Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm

Anastassios Vourekas1,2, Panagiotis Alexiou1,2, Nicholas Vrettos1, Manolis Maragkakis1 & Zissimos Mourelatos1

The conserved Piwi family of proteins and piwi-interacting RNAs (piRNAs) have a central role in genomic stability, which is inextricably linked to germ-cell formation, by forming Piwi ribonucleoproteins (piRNPs) that silence transposable elements1. In Drosophila melanogaster and other animals, primordial germ-cell specification in the developing embryo is driven by maternal messenger RNAs and proteins that assemble into specialized messenger ribonucleoproteins (mRNPs) localized in the germ (pole) plasm at the posterior of the oocyte2,3. Maternal piRNPs, especially those loaded on the Piwi protein Aubergine (Aub), are transmitted to the germ plasm to initiate transposon silencing in the offspring germ line4–7. The transport of mRNAs to the oocyte by midoogenesis is an active, microtubule-dependent process8; mRNAs necessary for primordial germ-cell formation are enriched in the germ plasm at late oogenesis via a diffusion and entrapment mechanism, the molecular identity of which remains unknown8,9. Aub is a central component of germ granule RNPs, which house mRNAs in the germ plasm10–12, and interactions between Aub and Tudor are essential for the formation of germ granules13–16. Here we show that Aub-loaded piRNAs use partial base-pairing characteristics of Argonaute RNPs to bind piRNAs randomly in Drosophila, acting as an adhesive trap that captures mRNAs in the germ plasm, in a Tudor-dependent manner. Notably, germ plasm mRNAs in drosophilids are generally longer and more abundant than other mRNAs, suggesting that they provide more target sites for piRNAs to promote their preferential tethering in germ granules. Thus, complexes containing Tudor, Aub piRNPs and mRNAs couple piRNA inheritance with germline specification. Our findings reveal an unexpected function for piRNP complexes in mRNA trapping that may be generally relevant to the function of animal germ granules.

We performed ultraviolet crosslinking followed by stringent immunoprecipitation (CLIP)17 for Aub (Fig. 1a) and standard small RNA immunoprecipitation, using a highly specific antibody that we generated (Extended Data Fig. 1a) from wild-type (\textit{yw}) ovaries and from \textit{yw} and Tudor-null \textit{(tud)} Drosophila embryos collected up to 2 h after laying (0–2–h embryos); this is before zygotic transcription and degradation of maternal mRNAs. Crosslinked RNA–Aub complexes yielded strong, specific signals that were absent from non-immune serum and no-ultraviolet controls (Fig. 1a). CLIP and immunoprecipitation libraries contained essentially identical 23–29-nucleotide piRNAs (Fig. 1b, Extended Data Figs 1b–g and 2a–f and Extended Data Table 1). We verified minimal changes in the piRNA load of Aub in \textit{tud} versus \textit{yw} ovaries15 (Extended Data Fig. 2g), and found no changes in the piRNA load of 0–2–h embryos compared to ovaries in both genotypes (Extended Data Fig. 2h, i). Larger CLIP tags (lgCLIPs, ≥36 nucleotides) are present in libraries prepared from larger RNP complexes (Fig. 1a–c, Extended Data Fig. 1d and Supplementary Results).

We observe considerable overlap of retrotransposon IgCLIPs with complementary piRNAs (Extended Data Fig. 3a and Supplementary Table 1) and strong positive correlation of their abundances (Extended Data Fig. 3b, c). Relative distance analysis reveals high occurrence of lgCLIPs with a 10-nucleotide overlap to complementary piRNAs (Fig. 1d, peak at position +9) for all three genotypes. The majority of such lgCLIPs bear an adenine at the tenth position (Fig. 1e), and show prominent 5′–5′ end coincidence with Ago3 piRNAs (Fig. 1f), indicating that they correspond to ping-pong intermediate fragments produced by Aub slicing1. Furthermore, a second peak at position −15 (Fig. 1d), which is 25 nucleotides (the median Aub piRNA length) from position +9, represents 5′ ends of fragments of trigger piRNA targets undergoing phased piRNA biogenesis18. The above results indicate that CLIP captures piRNA biogenesis, complementary retrotransposon targeting and the transient products of Aub slicing activity (Fig. 1g).

A large percentage (35–66%) of IgCLIPs from all CLIP libraries are mRNA-derived (Fig. 1c and Extended Data Fig. 1g). Most Aub-bound mRNAs are not substrates for piRNA processing (Extended Data Fig. 4a). The Aub IgCLIP density is relatively high within 3′ untranslated regions (UTRs) compared to RNA sequencing (RNA-seq) analysis, and overall lgCLIP abundance is not correlated with mRNA abundance (Extended Data Fig. 4b–d), suggesting specific target mRNA recognition. We cross-indexed Aub-bound mRNAs with the mRNA localization categories (compiled in ref. 19). Notably, posterior localization categories are significantly enriched in all three sets of Aub CLIP libraries (embryo: \textit{yw} and \textit{tud}, ovary: \textit{yw}; Supplementary Table 2). Most importantly, we find 15 posterior and germ-cell localization categories significantly depleted, and ubiquitous mRNAs enriched in \textit{tud} embryo compared to \textit{yw} embryo CLIP libraries (Supplementary Table 3). Posteriorly localized mRNAs appear marginally upregulated compared to other localization categories in \textit{tud} versus \textit{yw} embryo RNA-seq libraries (two-sided t-test, \textit{P} = 0.01594), ruling out the possibility that the reduced Aub binding is due to reduced posterior mRNA levels in \textit{tud} embryos. Both Aub (Extended Data Fig. 1a) and germ plasm mRNAs15,20 are uniformly distributed throughout \textit{tud} embryos; therefore, the observed loss of binding specificity towards posterior mRNAs in the absence of Tudor can only be attributed to the disruption of the germ plasm. Thus, our experimental approach allows the identification of the mRNAs specifically bound by Aub in the germ plasm, irrespective of the function of Aub in the clearance of maternal mRNAs in the somatic part of the embryo21,22. To identify the primary mRNA targets of Aub within the germ plasm during the formation of germ cells, we calculated the rank product of the normalized IgCLIP values for mRNAs in the 12 posterior localization categories marked with an asterisk in Supplementary Table 3, from three replicate \textit{yw} embryo libraries (\textit{P} < 0.05). The list contains 220 genes, many of which appear enriched or selectively protected in germ cells10, and with established roles in germ-cell specification and development such as cycB, nos, osk, gcl, pge and Hsp83 (Supplementary Table 4). Characterization of Aub RNPs from early embryos provides independent support for the association of germ plasm mRNAs with Aub (Supplementary Results).
and Extended Data Fig. 5). Four separate analyses provide strong evidence that the extent of the observed Aub binding of mRNAs cannot be explained by piRNA targeting of transposon sequences embedded in mRNAs (Supplementary Results and Extended Data Fig. 6).

To investigate the potential of piRNAs to direct Aub to complementary mRNA sequences further, we analysed chimaeric lgCLIPs,23,24 that each contain an intact piRNA, ligated with a sequence fragment (≥20 nucleotides) that is uniquely aligned on mRNAs (Fig. 2a and Supplementary Table 5). To uncover complementarity patterns, we implemented unweighted local alignment between the piRNA (in reverse complement orientation) and the mRNA fragment, scoring matches (+1), mismatches (−1) and indels (−2), and reporting the best alignment for every chimaeric read. The search was performed within ±100 bases around the midpoint of the mRNA fragment; this allows the identification of the entire complementary sequence that might be missing from the chimaeric fragment, and also provides a reliable estimate of the signal-to-noise ratio. We observed prominent peaks of hundreds of thousands of complementarity events forming around the midpoint and within ±25 nucleotides, in yw and tud embryo CLIP libraries (Fig. 2b, c). Most events score between 7 and 12; therefore, the
that the piRNA–mRNA contact sites are not preferentially conserved
unpaired and flanking nucleotides on the mRNA sequence reveals
mechanics of piRNA complementary binding are analogous to those
the small RNA in the context of an Ago–miRNA–target RNA tripartite
Fig. 7i) evokes the helical conformation and base-pairing availability of
in the 2–6 region, suggesting that piRNAs do not use a conserved
the miRNA hybridization profile24 in the less frequent base-pairing
in positions 16–24 (Fig. 3c and Extended Data Fig. 7h, i). This profile
piRNAs to use nucleotides at positions 2–6 with additional base pairs
Net density of base-paired nucleotides reveals a clear preference for
(type binding); additional base-paired stretches start at positions 9–17
Complementarity events
chimaeric CLIP tags, to identify potential piRNA target sites in the
D. melanogaster transcriptome. In 206,400,271 total sites, the vast
majority (99.6%) are of scores 7–11 (Fig. 4a). Importantly, the densities
of putative piRNA target sites on mRNA regions are essentially
identical for mRNAs with or without posterior localization, and very
similar to that of the chimaeric mRNA fragments (higher densities in
the UTRs compared to the coding sequences; Fig. 4b, c and Extended
Data Fig. 8).

mRNAs in the 12 posterior localization categories are signifi-
cantly longer than non-posterior localized mRNAs26 (Fig. 4d), and
so contain a higher number of piRNA target sites (Fig. 4e); never-
thess, transcript length normalization eliminates this difference
(Fig. 4f, g). This holds true when the scores of the predicted sites are
accounted for (Fig. 4g), and also when the scores are weighted
for the preference of piRNA nucleotides 2–6 and 16–24 to base-
pair (not shown). Posterior mRNAs are also more abundant than
non-posterior; when factored in, this increases the difference of the
target site abundance per transcript for the two localization categories
(Fig. 4h). Posterior and non-posterior mRNAs are equally targeted
(per kilobase) by each piRNA even when piRNA copy number is
accounted for (Extended Data Fig. 9a). Notably, the size differential
(not the absolute length) of posterior and non-posterior
mRNAs is conserved among drosophilids: the intra-species size dif-
ferential (and not the absolute length) of posterior and non-posterior
mRNAs is accounted for (Extended Data Fig. 9a). Notably, the size differential always favours posterior mRNAs, although non-posterior
mRNAs from one species might be longer than the posterior mRNAs
of another (Fig. 4i). Therefore, although piRNAs randomly base pair
with non-conserved mRNA sequences, this mechanism is biased
towards a specific class of mRNAs for germ plasm anchoring.
Additionally, from the two categories of posterior localized mRNAs,
‘localized’ and ‘protected’10, localized mRNAs have longer 3’ UTRs
than protected mRNAs, further supporting the notion that mRNA
length positively affects germ plasm enrichment (Extended Data Fig. 9b, c).

The concept of mRNA entrapment at the germ plasm during
ooplasmic streaming is well established8,27, but the mechanism at
the molecular level has so far been elusive. We propose that germ
plasm localized Tud–Aub–piRNA complexes play the role of a non-
discriminatory adhesive trap that can form numerous, non-conserved
piRNA–mRNA contacts to capture mRNAs and form germ plasm
mRNPs (Fig. 4j) and Supplementary Discussion). This mechanism
probably shows preference for posterior mRNAs because they are

Figure 3 | Characteristics of piRNA base-pairing identified by
chimaeric CLIP tag analysis. a, Heat maps showing base-paired
nucleotides within the piRNA sequence, for all complementarity events
(score ≥7) within ±25-base window, for yw embryo and negative control.
Stacked piRNAs are sorted (bottom to top) by starting position and length
of the longest stretch and total number of base-paired nucleotides. Every
nucleotide position is coloured according to the length of the stretch of
complementarity is not extensive. The distribution of the complemen-
tarity events in the negative control (random piRNA) is completely flat
across the search area and has lower scores (Extended Data Fig. 7a), sug-
gesting that the chimaeric reads capture genuine sequence-dependent
Aub-piRNA–mRNA contacts.

piRNAs in chimaeric reads are typical Aub piRNAs (Extended
Data Fig. 7b–e). piRNA–mRNA complementarities with alignment
score ≥7 congregate within a 50-nucleotide window (Fig. 2b–d), so
we focused on events that have such scores and locations. piRNA
complementarity towards posterior and non-posterior mRNAs is
indistinguishable (Fig. 2d and Extended Data Fig. 7f), suggesting
that the basis of mRNA binding preference by Aub is not sequence
specificity. Chimaeric reads show substantial overlap (Fig. 2a) and the
same enrichment in posterior-localized mRNAs with non-chimaeric
lgCLIPs (Supplementary Tables 5 and 6), suggesting that they both
capture the same RNA binding events.

Base-paired nucleotides for every piRNA from three replicate
CLIP libraries are summarized in a comprehensive plot (Fig. 3a and
Extended Data Fig. 7g), revealing a bimodal distribution of the
complementary regions within the piRNA. Many are found at the 5’ end
of the piRNA, starting at positions 1 and 2 (reminiscent of miRNA seed-
type binding); additional base-paired stretches start at positions 9–17
(Fig. 3a, b). This pattern is absent from the negative control (Fig. 3a).
Net density of base-paired nucleotides reveals a clear preference for
piRNAs to use nucleotides at positions 2–6 with additional base pairs
in positions 16–24 (Fig. 3c and Extended Data Fig. 7h, i). This profile
is markedly similar in yw and tud libraries, and differs slightly from the
miRNA hybridization profile24 in the less frequent base-pairing
in the 2–6 region, suggesting that piRNAs do not use a conserved
seed sequence. The periodicity of the graph in Fig. 3c (Extended Data
Fig. 7i) evokes the helical conformation and base-pairing availability of
the small RNA in the context of an Ago–miRNA–target RNA tripartite
complex25, suggesting that despite the absence of a conserved seed, the
mechanics of piRNA complementary binding are analogous to those
of microRNAs. Analysis of the evolutionary conservation of paired,
unpaired and flanking nucleotides on the mRNA sequence reveals
that the piRNA–mRNA contact sites are not preferentially conserved
(Fig. 3d).

We used the local alignment approach by which we analysed the
chimaeric CLIP tags, to identify potential piRNA target sites in the
Figure 4 | Transcriptome-wide prediction of piRNA target sites and length differential of posterior-localized mRNAs. a, Number of predicted piRNA complementary sites on mRNAs, per score. b, c, Average binned density of chimaeric mRNA fragments (Aub CLIP, yw embryo 0–2 h) along the meta-mRNA. CDS, coding sequence. Error bars denote s.d.; n = 3 (b); predicted piRNA complementary sites within all (14,058), posterior (380), and non-posterior (6,747) localized mRNAs (c). d–f, Box-and-whisker plots of: lengths of mRNAs expressed in yw embryos (0–2 h) (d); number of predicted piRNA complementary sites per mRNA (e); length-normalized number of predicted piRNA complementary sites (f); length-normalized total score of predicted piRNA complementary sites (g); number of predicted piRNA complementary sites per mRNA multiplied by the abundance of each mRNA RPKM (reads per kilobase per million mapped reads) (h); and lengths of orthologous mRNAs in other Drosophila species (i). Black lines denote median; white dots denote mean. ***P < 0.005, one-sided t-test (d); ***P < 1 × 10⁻¹⁶, one-sided Wilcoxon exact rank test (i). J, Aub couples piRNA inheritance with germ-cell specification in Drosophila. Aub, carrying symmetrically dimethylated arginine residues (sDMAs) dimethylated by Csl methyltransferase, interacts with Tudor, and both are localized in the germ plasm during mid-stage oogenesis. Ooplasmic streaming at later stages promotes diffusion of mRNPs, facilitating random contacts of mRNAs with the germ plasm. Aub piRNAs form an adhesive trap that captures mRNAs forming numerous low complementarity contacts. mRNAs with posterior functions are longer and more abundant than the rest, form more piRNA-mediated contacts with the germ plasm, and thus their entrapment is enhanced. Tudor–Aub–piRNA–mRNA complexes along with other RNA binding proteins form germ granules that contain both piRNAs and mRNAs that induce immune response against transposons.

Received 7 September 2015; accepted 13 January 2016.
Published online 7 March 2016.

Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.
8. Kugler, J. M. & Lasko, P. Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly (Austin) 3, 15–28 (2009).
9. Forrest, K. M. & Gavis, E. R. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr. Biol. 13, 1159–1168 (2003).
10. Rangan, P. et al. Temporal and spatial control of germ-plasm RNAs. Curr. Biol. 19, 72–77 (2009).
11. Thomson, T., Liu, N., Arkov, A., Lehmann, R. & Lasko, P. Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins. Mech. Dev. 125, 865–873 (2008).
12. Trcek, T. et al. Drosophila germ granules are structured and contain homotypic mRNA clusters. Nature Commun. 6, 7962 (2015).
13. Kirino, Y. et al. Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA 16, 70–78 (2010).
14. Liu, H. et al. Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes Dev. 24, 1876–1881 (2010).
15. Arkov, A. L., Wang, J.-Y. S., Ramos, A. & Lehmann, R. The role of Tudor domains in germline development and polar granule architecture. Development 133, 4053–4062 (2006).
16. Boswell, R. E. & Mahowald, A. P. tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43, 97–104 (1985).
17. Vourekas, A. et al. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nature Struct. Mol. Biol. 19, 773–781 (2012).
18. Mohn, F., Handler, D. & Brennecke, J. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis and function in Drosophila germ plasm mRNAs. Nature Struct. Mol. Biol. 19, 441–449 (2012).
19. Lécuyer, E. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 174–187 (2007).
20. Thomson, T. & Lasko, P. Drosophila tudor is essential for polar granule architecture and pole cell specification, but not for posterior patterning. Dev. Cell 12, 1205–1216 (2007).
21. Barckmann, B. et al. Aubergine CLIP reveals piRNA-dependent decay of mRNAs involved in germ cell development in the early embryo. Cell Rep. 12, 164–170 (2015).
22. Rouget, C. et al. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467, 1128–1132 (2010).
23. Moore, M. J. et al. miRNA-target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nature Commun. 6, 8864 (2015).
24. Grosswendt, S. et al. Unambiguous identification of miRNA: target site interactions by different types of ligation reactions. Mol. Cell 54, 1042–1054 (2014).
25. Schirle, N. T., Sheu-Grutjadaria, J. & MacRae, I. J. Structural basis for microRNA targeting. Science 346, 608–613 (2014).
26. Jambor, H. et al. Systematic imaging reveals features and changing localization of miRNAs in Drosophila development. eLife 4, e05003 (2015).
27. Sinsimer, K. S., Lee, J. J., Thiberge, S. Y. & Gavis, E. R. Germ plasm anchoring is a dynamic state that requires persistent trafficking. Cell Rep. 5, 1169–1177 (2013).
28. Little, S. C., Sinsimer, K. S., Lee, J. J., Wieschaus, E. F. & Gavis, E. R. Independent and coordinate trafficking of Drosophila germ plasm mRNAs. Nature Cell Biol. 17, 558–568 (2015).
29. Ghosh, S., Marchand, V., Gáspar, I. & Ephrussi, A. Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nature Struct. Mol. Biol. 19, 441–449 (2012).
30. Gavis, E. R., Lunsford, L., Bergsten, S. E. & Lehmann, R. A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development 122, 2791–2800 (1996).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank former and current laboratory members for discussions; M. Siomi for the Tudor antibody; A. Arkov for tud flies; G. Dreyfuss for the PABP antibody; and J. Schug for Illumina sequencing. Work was supported by a Brody family fellowship to M.M., and a National Institutes of Health (NIH) grant GM072777 to Z.M.

Author Contributions A.V. and Z.M. conceived, and Z.M. supervised, the study. A.V. and N.V. performed the experiments. P.A. performed bioinformatic analyses with contribution from M.M. and A.V. A.V., P.A., N.V., M.M. and Z.M. interpreted the data. A.V. wrote the manuscript, with contribution from all authors.

Author Information Sequences have been deposited in the Sequence Read Archive (SRA) under the accession number SRP067739. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to Z.M. (mourelaz@uphs.upenn.edu).
METHODS

Drosophila strains, tissue collection. The following strains and heteroallelic combinations were used: *y*^w*118* as the wild-type stock (*yw*), *aub*^{H350V/G324} (*aub*) and *tud*^{P1870;20}Pup^P137* (*tud*), for *aub* and *tud* mutants (loss-of-function), respectively. All flies were grown at 25°C with 70% relative humidity on a 12 h light–dark cycle. The 2–4-day female flies were crossed to *yw* males for 2 days in standard cornmeal food supplemented with yeast paste before ovary dissection. Embryos collected at well-defined time-windows were dechorionated in 50% commercial bleach for 2 min, washed extensively in water and collected in PBS or HBSS or fixation solution, depending on downstream applications.

Antibodies. Antibody against Aubergine (Aub-83) was produced by immunizing rabbits with Aub peptide (HKEGDPRGDSVGRGC, in which the cysteine was used to couple to KLH; Genscript) and selected with peptide-affinity purification of sera. Other antibodies that were used in this study: mouse monoclonal anti-PABP (6E2 clone)44, E7 mouse monoclonal anti-β-tubulin (Developmental Studies Hybridoma Bank) and anti-Tudor monoclonal (gift from M. Sioni).

Immunofluorescence. Fixation and immunohistochemistry of dissected ovaries and embryos was performed according to standard protocols. Primary antibodies against Aub and Tud were used at 1 ng/μl final concentration. Secondary antibodies conjugated to Alexa 488 and 594 (Life technologies) were used at 1:1,000 dilution. Ovary and embryo samples were imaged on Leica TCS SPE confocal microscope.

Aub CLIP-seq (HTIS-CLIP, high-throughput sequencing after crosslinking and immunoprecipitation). CLIP was performed as previously described for *Mili, Miwi and MOV10L1* (refs 17, 35, 36). The protocol is described in detail elsewhere36. Complementary DNA from two PCR steps was resolved using 4–12% Novex reducing loading gels. Size profiles of cDNA libraries were compared to ribosomal RNA size distribution and fragments up to ~150 bp were excised. The remaining reads were mapped against *D. melanogaster* transcript, exon and repeat genomic locations downloaded from UCSC genome browser (downloaded 22 March 2011 from http://genome.ucsc.edu). Repeat consensus sequences were downloaded from Flybase (http://flybase.org/ - transposon_sequence_set v9.42). Localization categories for *Drosophila* genes were taken from ref. 19. The localization annotation matrix was downloaded from (http://fly-fish.cbcr.utoronto.ca/annotation_matrix. csv). CLIP was performed as previously described.44

Immunoprecipitation. The 3° end-ligated adaptor (GTGTCAGTCACTTCCAGCGGTC for *aub* and GTGTCAGTCACTTCCAGCGGTC for *osk, cycB, dhd*, and reverse: GTGTCAGTCACTTCCACGCGGTTC) was removed from the sequences using the cutadapt software and a 0.25 acceptable error rate for the alignment of the adaptor on the read. To eliminate reads in which the adaptor was ligated more than one time, adaptor removal was performed three times.

Alignment. Reads for all samples were aligned against the dm3 *Drosophila melanogaster* genome assembly using the aligner bwa v0.6.2-r126, with the default settings41. Reads were also aligned against the Repeat consensus sequences using the same aligner.

Preprocessing. The 3° end-ligated adaptor (GTGTCAGTCACTTCCAGCGGTC for *aub* and GTGTCAGTCACTTCCACGCGGTTC for *osk, cycB, dhd*, and reverse: GTGTCAGTCACTTCCACGCGGTTC) was removed from the sequences using the cutadapt software and a 0.25 acceptable error rate for the alignment of the adaptor on the read. To eliminate reads in which the adaptor was ligated more than one time, adaptor removal was performed three times.

Gene expression was defined as the number of reads that map on each gene and the values were normalized by the upper quartile normalization method42. The log2 expression levels of replicates are compared using the Pearson Correlation function in R.

Coincidence with immunoprecipitation. Reads mapping in the same position (same 3° end mapping) were considered as coinciding. When comparing CLIP with immunoprecipitation libraries, the percentage of piRNA-size CLIP reads that had a coinciding start with any standard immunoprecipitation read were counted as positive.

Localizantion. For each localization category, the quartile-normalized log2 CLIP binding level (‘mRNA expression level’ in each CLIP library) is compared via a two-sided *t*-test between genes that belong to the category versus genes that do not belong to it. To compare two samples, we measure the difference in binding (per gene) between the two conditions (log2(gene.expr.cond1/gene.expr.cond2)) and then perform a *t*-test of differences in gene binding to the category versus genes not belonging in the category.

Early embryo posterior localization categories. The following twelve mRNA localization categories were then considered to be intergenic reads:

- mRNA localized to posterior egg cylinder
- Posterior end of the egg cylinder
- Posterior localization
- Ubiquitous localization
- Posterior localization

Cloning of genic CLIP binding sites. For each localization category, the quartile-normalized log2 CLIP binding level was compared via a one-sided *t*-test between genes that belong to the category versus genes that do not belong to it. To compare two samples, we measure the difference in binding (per gene) between the two conditions (log2(gene.expr.cond1/gene.expr.cond2)) and then perform a *t*-test of differences in gene binding to the category versus genes not belonging in the category.

Early embryo posterior localization categories. The following twelve mRNA localization categories were then considered to be intergenic reads:
The remaining mRNAs are mentioned as non-posterior localized mRNAs. The following three posterior localization categories were also depleted in tud embryo Aub CLIP libraries compared to yw: ‘1:39:Posterior localization,’ ‘2:124:Posterior localization,’ ‘3:352:Posterior localization.’ Almost all of the mRNAs contained in the above twelve categories are also contained in these three, but these three categories also contain some mRNAs that do not actually localize in the pole plasm or the germ cells (that is, with apical localization); therefore, mRNAs belonging in any of these three localization categories but not in any of the above mentioned twelve posterior categories were not considered for the generation of the Supplementary Table 4. Many mRNAs do not have a designated localization pattern, and they are mentioned as ‘undetermined localization’. It is worth mentioning that this category contains several mRNAs with clear posterior–pole plasm localization. Through manual searches of the Berkeley Drosophila Genome Project chromogenic ISH database (http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl) we noticed that many Aub-bound mRNAs, the localization of which is not annotated in the Fly-FISH database, are indeed localized in the germ plasm/cells (such as CG4735/shu, CG7070/Fyk, CG4903/MSR4, CG5425/dnk and CG9429/Calr). Therefore, our analysis is most likely underestimating the true number of Aub-bound mRNAs that are important for germine specification and function. Because of this, mRNAs with ‘undetermined localization’ were never mixed with ‘non-posterior localized’ mRNAs in our analyses.

Highly bound genes. To identify highly bound genes, we used the rank product method. Specifically, genes are sorted by expression per sample, and for each gene the product of their ranks is calculated. The probability of this rank product produced by chance is calculated by permutations of all non-zero value genes.

Transcript expression calculation. We calculated the expression for protein-coding transcripts by counting the number of RNA-seq reads that map within the exons of each transcript. The counts were normalized using RPKM and upper quartile normalization, effectively dividing each count by the upper quartile of all counts. The transcript with the highest RPKM score was used (‘best transcript’) unless otherwise noted.

Transcript Aub-binding calculation. We calculated the expression for protein-coding transcripts by counting the number of CLIP reads that map within the exons of each transcript in the sense orientation. The counts were normalized using reads per million and upper quartile normalization, effectively dividing each count by the upper quartile of all counts. RNA-seq correlation versus CLIP. Upper quartile normalized RPKM for RNA-seq was compared to similarly normalized CLIP binding levels defined as average number of reads per transcript in CLIP replicates. Correlation was calculated using the Pearson Correlation function in R.

Identification of hybrid reads. (1) Identified IgCLIP size reads (read length >35 nt) that did not align to the genome. (2) Made a set of substrings from both ends of reads from (1) of piRNA size (L = [23,29]). (3) Identified the substring from (2) to full-length piRNAs (L = [23,29]) from corresponding low samples (Extended Data Fig. 1b). (4) The longest aligning piRNAs are retained and coupled with the remainder of the reads as piRNA–IgCLIP couples. (5) The piRNA aligning fragment is cut from the read. Very small remainder reads (L = (<20)) are discarded. (6) The remainders are aligned to the genome (using bwa default settings). (7) Remainders aligned in one single position that is on a known mRNA are retained.

Alignment of piRNAs to regions. (1) Regions of 200-nucleotide length were cut around the midpoint of the genomic alignment region from step 7 of previous protocol. Specifically, if (d = 200 the length of the final region we want and L is the length of the read), a genomic region flanking the read on each side of length d/2 was excised from the chromosome sequence. If the alignment was located in the minus strand the sequence was reversed and complemented at this point. This total region has length d + L. We discard an equal number of nucleotides from each side to reach a final length of L (specifically we substring starting from int(L/2) and for d nucleotides. Note, int will always round down). At this point we have a region of length 200 nucleotides centred around the alignment region of the fragment. (2) We use a slightly modified Smith–Waterman alignment method (weights: match = +1, mismatch = −1, gap = −2) to align piRNAs on the 200-nucleotide long regions from (1). Differences of our alignment versus Smith–Waterman: (a) No penalties are given to non-matching nucleotides on the edges of the alignment. (b) If there are multiple optimal alignment scores, one is picked randomly. (c) Alignments in which part of one sequence is outside the boundaries of the other sequence are not considered. (3) The midpoint of the alignment (if k nucleotides matched that is the int(k/2) nucleotide) is used for graphs of alignment positioning on regions.

mRNA target prediction for the top 2,000 expressed piRNAs. We grouped piRNA sequences into families based on the first 23 nucleotides of each piRNA. Using the alignment algorithm described above we aligned one piRNA (the most abundant) for each of the top 2,000 families to the longest annotated transcript for each protein-coding gene. These 2,000 piRNA families represent ~37% of piRNA reads from low yw CLIP libraries. To factor in transcript abundance, we multiplied the RNA-seq (yw 0–2-h embryo) RPKM value for each mRNA with the number of predicted piRNA target sites found within the mRNA. This provides a ‘targeting potential’ of every mRNA species, corrected for its abundance.

We then evaluated the targeting potential of each piRNA–mRNA pair using three different scoring schemes. For the first, we sum the alignment score of all putative piRNA binding sites on the mRNA. For the second, we calculated a weighted alignment score for each putative piRNA binding site and then we sum all scores similar to the previous scheme. The weighted score for each binding site is calculated based on the following formula \(\sum x_i \cdot A_i \), in which \(x_i \) is 1 or 0 based on whether the nucleotide at position \(i \) of the piRNA is bound or not, and \(A_i \) is the weight for nucleotide \(i \). For the third, we multiplied the total number of predicted complementary sites per piRNA, with the piRNA copy number.

Study of the lengths of D. melanogaster orthologous mRNAs in other Drosophila species. Transcript sequences (fasta file) for each species were downloaded from Flybase (ftp://ftp.flybase.net/genomes/ on 1 September 2015, current version used for each genome). For each gene (identified as the ‘parent’ tag in the fasta file header), the longest transcript length was identified. For the analysis of the expressed mRNAs (Fig. 4d), we used our yw embryo RNA-seq data to identify the longest transcript with the highest length normalized abundance. Orthologue gene tables were downloaded from Flybase (gene_orthologs_fb_2015_03.tsv.gz) and were used to identify orthologue genes across species. For each species, all genes that mapped to localized and unlocalized Drosophila melanogaster genes were used in the comparison and were assigned to the corresponding group as their D. melanogaster orthologue. Boxplots were created using the lattice package in R (bwplot) and omitting outliers, P values were calculated using the Wilcoxon exact rank test (wilcox.test in R) one-sided with the hypothesis that localized genes are longer than non-localized.

31. Malone, C. D. et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137, 522–535 (2009).
32. Wilson, J. E., Connell, J. E. & Macdonald, P. M. aubergine enhances oskar translation in the Drosophila ovary. Development 122, 1631–1639 (1996).
33. Schupbach, T. & Wieschaus, E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119–1136 (1991).
34. Matusin, M. J., Matusin, E. L. & Dreyfuss, G. Isolation of hnRNP complexes from Drosophila melanogaster. J. Cell Biol. 136, 245–295 (1992).
35. Voreukas, A. et al. The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes Dev. 29, 617–629 (2015).
36. Voreukas, A. & Mourelatos, Z. HTS-CLIP (CLIP-Seq) for mouse Pwi proteins. Methods Mol. Biol. 1093, 73–95 (2014).
37. Kirino, Y., Voreukas, A., Khandros, E. & Mourelatos, Z. Immunoprecipitation of piRNPs and directional, next generation sequencing of piRNAs. Methods Mol. Biol. 725, 281–293 (2011).
38. Kirino, Y. et al. Arginine methylation of Pwi proteins catalyzed by dPRMT5 is required for Arg3 and Aub stability. Nature Cell Biol. 11, 652–658 (2009).
39. Maragkakis, M., Alexiou, P., Nakaya, T. & Mourelatos, Z. CLIPSeqTools—a novel bioinformatics CLIP-seq analysis suite. RNA 22, 1–9 (2016).
40. Maragkakis, M., Alexiou, P. & Mourelatos, Z. GenOÖ: a modern perl framework for high throughput sequencing analysis. Preprint at http://boxsin.org/content/early/2015/11/03/109265 (2015).
41. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
42. Bullard, J. H., Purdom, E., Hansen, K. D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments. BMC Bioinformatics 11, 94 (2010).
43. Breitling, R., Armengaud, P., Amtmann, A. & Herzyk, P. Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 573, 83–92 (2004).
44. Smith, T. F. & Waterman, M. S. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981).
Extended Data Figure 1 | Endogenous Aub localization in genotypes used, sequenced and mapped reads of CLIP sequencing and RNA immunoprecipitation libraries used in this study, and general characteristics of yw ovary and tud embryo (0–2 h) CLIP sequencing libraries. a, Immunofluorescence of ovary and early embryo of indicated genotypes using antibodies against Aub (Aub-83; green) and Tudor (red), and schematic representation of the egg chamber. Aub is localized in the nuage and germ (pole) plasm of wild-type ovaries, in the germ plasm of early wild-type embryos (stage 2) and within PGCs as they form in the posterior pole (stage 5), and as they migrate during gastrulation (stage 10). Tudor colocalizes with Aub in the germ plasm of early embryos but is not detected after PGC formation. In Tudor mutant early embryos, Aub is not concentrated in the posterior but is diffusely present throughout the embryo; PGCs are never specified resulting in agametic adults (see also Extended Data Fig. 9). b, Sequenced and mapped reads of CLIP sequencing (CLIP-seq) libraries prepared in this study. c, Sequenced and mapped reads of RNA immunoprecipitation deep-sequencing libraries prepared in this study. d, Size distribution for the three low (one for tud) and three high yw ovary and tud embryo (0–2 h) Aub CLIP-seq libraries. The size range of piRNAs (23–29 nucleotides) is indicated by a dashed box. e, Average 5′ end nucleotide composition for piRNAs (23–29 nucleotides) from three low yw ovary, tud embryo (0–2 h) Aub CLIP-seq libraries. f, Average 5′ end nucleotide composition of CLIP tags from three high yw ovary and tud embryo (0–2 h) Aub CLIP-seq libraries. piRNAs (23–29 nucleotides) are indicated by a dashed box. g, Genomic distribution of CLIP tags for three high yw ovary and tud embryo (0–2 h) Aub CLIP-seq libraries. Overlap of piRNAs from CLIP and immunoprecipitation libraries. All error bars denote s.d.; n = 3.
Extended Data Figure 2 | See next page for caption.
Extended Data Figure 2 | Pairwise comparisons of transposon piRNA populations from various libraries. a–c, Scatterplot comparison of normalized abundance of piRNAs mapped on consensus retrotransposon sequences (sense and antisense), from yw embryo (0–2 h) standard Aub immunoprecipitation and Aub CLIP libraries (a); from yw ovary libraries (b); and from tud embryo (0–2 h) libraries (c). Pearson correlation is shown for all elements in each plot. Retrotransposon categories are set as in ref. 31. d–f, Scatterplot comparison of normalized abundance of transposon-derived piRNAs in Aub CLIP libraries prepared from higher molecular mass signals (high; Fig. 1a, marked with a light blue line), with the piRNAs found in the libraries prepared from the main radioactive signal (low; Fig. 1a, marked with a dark blue line) from yw embryo (0–2 h) (d); from yw ovary Aub CLIP 'high' and 'low' libraries (e); and from tud embryo (0–2 h) Aub CLIP high and low libraries (f). These comparisons indicate that the piRNA loads in low and high CLIP libraries are essentially identical. g, Scatterplot comparison of normalized abundance of transposon-derived piRNAs for yw ovary Aub immunoprecipitation libraries, to evaluate changes of piRNA load in the absence of Tudor. While antisense-derived piRNAs are largely unchanged, a few sense-derived piRNAs are changed (blood retrotransposon is indicated). h, i, Scatterplot comparison of normalized abundance of transposon-derived piRNAs for yw ovary and yw embryo (0–2 h) Aub immunoprecipitation libraries (h); and for tud ovary and tud embryo (0–2 h) libraries (i).
Extended Data Figure 3 | Retrotransposon targeting by complementary piRNAs identified by Aub CLIP. a, Overlap of IgCLIPS with complementary piRNAs from CLIP libraries, mapping on retrotransposons. b, c, Scatterplots of normalized abundance of antisense piRNAs and sense IgCLIPS (b) and for sense piRNAs and antisense IgCLIPS (c) mapped on retrotransposons for the indicated Aub CLIP libraries. Pearson correlation is shown for all elements in every plot. Retrotransposon categories are set as in ref. 31.
Extended Data Figure 4 | See next page for caption.
Extended Data Figure 4 | CLIP identifies extensive mRNA binding by Aub. **a.** Ratio average plot of normalized (reads per million, RPM) Aub CLIP tag (pi, piRNA; lg, lgCLIP) abundance (A value) versus lgCLIPs over piRNA abundance (R value), for all mRNAs. Outlined circles (red) correspond to genes that belong in the 12 posterior localization categories depleted in *tud* versus *yw* Aub CLIP libraries. Zero values are substituted with a small (smaller than the minimum) value so that log calculations are possible. This graph strongly suggests that mRNA binding by Aub as captured by CLIP is not for piRNA biogenesis purposes. **b.** Sequenced and mapped reads of RNA-seq libraries prepared in this study. **c.** Density of Aub CLIP-seq tags (*yw* embryo, and bottom panel: *tud* embryo) and RNA-seq reads (top panel: *yw* embryo) within the UTRs and coding sequences of the meta-mRNA. Each mRNA region is divided in 30 bins, and the number of the chimaeric mRNA fragments (genomic coordinate of the mRNA fragment midpoint) mapped within each bin is counted. Error bars indicate one s.d., *n* = 3 for CLIP-seq; minimum and maximum values for the two RNA-seq replicate libraries. **d.** Scatterplot of average normalized mRNA abundance for *yw* embryo RNA-seq (RPKM) and Aub CLIP-seq (RPM). Aub highly bound mRNAs with posterior localizations (Supplementary Table 4) are marked with a red circle. Zero values are substituted with a small (smallest than the minimum) value so that log calculations are possible. CLIP-seq identifies mRNAs that span the whole expression range of RNA-seq libraries, indicating that Aub CLIP does not capture transcripts simply based on abundance.
Extended Data Figure 5 | Partial purification of Aub RNPs from early embryo supports binding of germ plasm mRNAs by Aub.

a, Fractionation of isopycnic Nycodenz density gradients of post-nuclear yw embryo lysate. Protein and Nycodenz concentration for every fraction is plotted. b, Western blot detection of indicated proteins in gradient fractions. A short and a long exposure (exp.) for Aub is shown. Uncropped gels for b, d and e can be found in Supplementary Fig. 1. c, Heat map of levels of indicated germ plasm mRNAs determined by quantitative RT–PCR (qRT–PCR), normalized to spiked luciferase RNA, and with fraction 2 as a reference. d, Western blot detection of Aub in indicated diluted Nycodenz fractions used for Aub RNA immunoprecipitation. e, Electrophoretic analysis on denaturing polyacrylamide gel of 32P-labelled small RNAs immunoprecipitated with Aub from indicated gradient fractions. A bracket denotes piRNAs, detected primarily in fractions 6 and 7 (asterisk denotes 2S rRNA). f, Bar chart showing fold enrichment (over fraction-extracted total RNA) of indicated germ plasm mRNAs in Aub immunoprecipitations from gradient fractions, measured by qRT–PCR. Luciferase mRNA was used as a spike.
Extended Data Figure 6 | See next page for caption.
Extended Data Figure 6 | Analysis of Aub CLIP tags mapping to mRNAs with regard to the presence of mRNA embedded transposons. a, Overlap of IgCLIPs with complementary piRNAs from CLIP libraries, mapping on mRNAs. b, Scatterplot of yw embryo Aub IgCLIPs mapped in the sense orientation on mRNAs, with piRNAs mapped in the antisense orientation. Zero values are substituted with a small (smaller than the minimum) value so that log calculations are possible. Contrary to retrotransposons (Extended Data Fig. 3), there is no correlation, suggesting that extensive piRNA complementarity cannot explain the widespread mRNA binding shown by mRNA IgCLIPs. c, Scatterplot of yw embryo Aub IgCLIPs mapped in the sense orientation on mRNAs with per base (nucleotide) mRNA embedded retrotransposons (LINE, long terminal repeat (LTR), satellite). Posterior, non-posterior and undetermined localizations are marked as indicated. The graph is separated into four quadrants: clockwise from bottom left corner: 0 embedded repeats, 0 CLIP tags; 0 embedded repeats, >0 CLIP tags; >0 embedded repeats, >0 CLIP tags; >0 embedded repeats, 0 CLIP tags. The number of genes in the four quadrants is indicated. Zero values are substituted with a small (smaller than the minimum) value (different small value for every localization category was used for clarity) so that log calculations are possible. This graph suggests that there is no correlation between the numbers of CLIP tags and embedded repeats within the mRNAs. d, Aub IgCLIPs density surrounding (+–200 bases) mRNA-embedded retrotransposons (LINE, LTR, satellite as indicated). This analysis shows that there is no increase in the IgCLIP density in the areas flanking embedded repeats, suggesting that repeat sequences are not used as enriched target areas for mRNA binding by Aub. Error bars denote s.d.; n = 3. e, Analysis of mRNA expression level in relation to the number of embedded repeats. The number of embedded repeats per nucleotide of exon was plotted with the ratio (log$_{10}$) of mRNA expression in yw embryo (0–2 h) versus aub^{N2/QC42} embryo (0–2 h) (left), and yw embryo (0–2 h) versus tud embryo (0–2 h) (right). The mRNAs are divided into groups based on the number of embedded repeats. The number above each data point denotes the number of mRNAs in each group. The graphs suggest that there is no proportional or consistent abundance change, decrease or increase, with the number of embedded repeats.
Extended Data Figure 7 | See next page for caption.
Extended Data Figure 7 | Characteristics of piRNAs and piRNA base-pairing with complementary target sites identified from analysis of chimaeric CLIP tags. a, piRNA–mRNA complementarity events for a random piRNA (negative control, average of three *yw* (top) and *tud* (bottom) embryo (0–2 h) samples), within ±100 bases from the midpoint of the mRNA part of the chimaeric read. Complementarity events are plotted per alignment score group as indicated, for clarity. Inset (per sample): bar chart of average complementarity events per score group. b, Size distribution of the piRNAs identified within chimaeric CLIP tags, for *yw* and *tud* embryo CLIP libraries. Only the piRNAs implicated in the complementarity events occurring within ±25 nucleotides from the midpoint of the mRNA fragment and with score ≥7 are analysed in this graph, and the graphs in c–e, g–i. c, 5′ end nucleotide preference for the piRNAs identified within chimaeric CLIP tags, for *yw* and *tud* embryo Aub CLIP libraries. d, Genomic distribution for the piRNAs identified within chimaeric CLIP tags, for *yw* and *tud* embryo Aub CLIP libraries. e, Per position nucleotide preference for all piRNAs in Aub *yw* embryo (0–2 h) CLIP library L3 (left), and for the piRNAs identified within chimaeric CLIP tags, for *yw* and *tud* embryo Aub CLIP libraries. f, Complementarity events between piRNAs and mRNA fragments of chimaeric reads, for posterior and non-posterior localized mRNAs (*yw* embryo). The plots are separated per score group. g, Heat maps showing base-paired nucleotides of piRNAs for all complementarity events identified within chimaeric CLIP tags (events occurring within ±25 nucleotides from mRNA fragment midpoint, score ≥7) for *tud* embryo. Colour is according to the length of the consecutive stretch of base-paired nucleotides that runs over every position (colour code shown on the right). Stacked piRNAs are aligned at their 5′ ends and sorted (bottom to top) following these rules: (a) starting position of the longest stretch of consecutive base paired nucleotides, relative to the piRNA end; (b) length of longest base-paired stretch; (c) total number of base-paired nucleotides. h, Base-pairing frequency along the piRNA length for *yw* embryo libraries (blue) and their negative control (red). i, Net base-pairing frequency along the piRNA length (red) and net density of base paired nucleotides (grey) in mRNAs from chimaeric CLIP tags from *tud* embryo libraries. All error bars denote s.d.; *n* = 3.
Extended Data Figure 8 | See next page for caption.
Extended Data Figure 8 | Non-chimaeric Aub CLIP tag (lgCLIP), chimaeric mRNA fragment and RNA-seq read density along the untranslated and coding sequences of mRNAs. a, Average density of chimaeric mRNA fragments (Aub CLIP, yw 0–2-h embryo) along the three parts of the meta-mRNA. Each mRNA region is divided in 30 bins and the number of the chimaeric mRNA fragments (genomic coordinate of the mRNA fragment midpoint) mapped within each bin is counted. Inset: bar plot showing cumulative density in each mRNA region. b, Average density of the chimaeric mRNA fragments on mRNA regions; mRNAs are separated into three localization groups as indicated: posterior localized (12 categories; Supplementary Table 3), non-posterior and undetermined localization. Inset: bar plot showing cumulative density in each mRNA region. c, As in a for chimaeric mRNA fragments from Aub CLIP libraries, tud embryo (0–2 h). d, As in b for chimaeric mRNA fragments from Aub CLIP libraries, tud embryo (0–2 h). e, As in a for non-chimaeric lgCLIPs from Aub CLIP libraries, yw embryo (0–2 h). f, As in b for non-chimaeric lgCLIPs from Aub CLIP libraries, yw embryo (0–2 h). g, As in a for non-chimaeric lgCLIPs from Aub CLIP libraries, tud embryo (0–2 h). h, As in b for non-chimaeric lgCLIPs from Aub CLIP libraries, tud embryo (0–2 h). i, As in a for RNA-seq reads, yw embryo (0–2 h). j, As in b for RNA-seq reads, yw embryo (0–2 h). k, As in a for RNA-seq reads, tud embryo (0–2 h). l, As in b for RNA-seq reads, tud embryo (0–2 h). Error bars denote s.d.; n = 3.
Extended Data Figure 9 | See next page for caption.
Extended Data Figure 9 | Lengths of posterior localized mRNAs in Drosophila species; characteristics of embryos used in our studies.

a, Box-and-whisker plot of the number of predicted piRNA target sites (per kilobase of mRNA sequence) for every mRNA–piRNA pair, multiplied by the piRNA copy number. Posterior and non-posterior mRNAs are as indicated. Black lines denote the median. This graph indicates that the ‘targeting potential’ (number of predicted complementary sites multiplied by the piRNA copy number) of each piRNA against each mRNA is the same for the two localization categories, suggesting that the piRNA copy number is not a contributing factor for the observed preference of posterior localized mRNAs for piRNA adhesion. b, Box-and-whisker plot of the lengths of D. melanogaster mRNAs (and their 5′ UTR, coding sequences and 3′ UTR parts) that are found in the enriched and protected categories, as defined previously. Black lines denote the median; white dots denote the mean. n.s., not significant (P > 0.05); **P < 0.01; ***P < 0.001; one-sided Wilcoxon rank test. c, Box-and-whisker plot of the lengths of the 3′ UTRs of mRNAs from the indicated Drosophila species that are orthologous to the D. melanogaster mRNAs found in the localized and protected categories, as defined previously. Incomplete annotation did not allow us to perform this analysis for all the species shown in Fig. 4i. White dots denote the mean. P values of the statistical test (one-sided Wilcoxon test) of whether the lengths of the localized versus protected mRNAs are different, are shown for each species. d, e, RNA-seq scatterplots from 0–2-h wild-type (yw) and 0–2-h Aub-null (aub) embryos. Shown in red are posterior localized mRNAs (d) or the top 100 mRNAs identified from Aub CLIP piRNA–mRNA chimaeric reads (e). There is no change in mRNA levels between wild-type and aub mutant 0–2-h embryos. f, g, Hatch rates (f) and fertility of progeny (g) of embryos from indicated genotypes. Note that, unlike Tudor and Csul, the absence of Aub (aubHN2/QC42) leads to complete embryo lethality. h, Gross ovary appearance of wild-type (yw), Tudor mutant (tud[1/Df]) and Csul mutant (csulRM50) adult flies. Note complete absence of germline ovarian tissue in adult flies lacking Tudor or Csul; embryos from these flies develop into agamic adults because PGCs are never specified.
Extended Data Table 1 | Overlap of piRNAs from CLIP and immunoprecipitation libraries

Library 1	Library 2	unique piRNA sequences in library 1	unique piRNA sequences in library 2	common	percent1	percent2	average percent 2
A61_IP_yw_embryo_0-2h	A61_CLIP_yw_embryo_0-2h_H1	6913438	348812	150654	2.179147336	43.19060124	42.22806
A61_IP_yw_embryo_0-2h	A61_CLIP_yw_embryo_0-2h_H2	6913438	838891	333876	4.829377222	39.7996792	
A61_IP_yw_embryo_0-2h	A61_CLIP_yw_embryo_0-2h_H3	6913438	694458	264532	4.115636822	40.97180923	
A61_IP_yw_ovary	A61_CLIP_yw_ovary_H1	9938639	560082	286627	2.883966306	51.17589924	
A61_IP_yw_ovary	A61_CLIP_yw_ovary_H3	9938639	293375	156976	1.579451873	53.50694504	
A61_IP_yw_ovary	A61_CLIP_yw_ovary_H2	9938639	332484	176012	1.770986953	52.93847727	
A61_IP_tud_embryo_0-2h	A61_CLIP_tud_embryo_0-2h_L1	5147948	1257672	458182	8.900284152	36.43096133	
A61_IP_tud_embryo_0-2h	A61_CLIP_tud_embryo_0-2h_H2	5147948	1104187	460392	8.943213879	41.69511143	
A61_IP_tud_embryo_0-2h	A61_CLIP_tud_embryo_0-2h_H3	5147948	2567880	948630	18.4273423	36.94214683	
A61_IP_tud_embryo_0-2h	A61_CLIP_tud_embryo_0-2h_H1	5147948	1040626	379030	7.362739484	36.4232683	
A61_IP_yw_ovary	A61_CLIP_yw_ovary_L1	9938639	1850192	674693	8.80933407	47.27579624	
A61_IP_yw_ovary	A61_CLIP_yw_ovary_L2	9938639	2407082	1108175	11.15016855	46.03810755	
A61_IP_yw_ovary	A61_CLIP_yw_ovary_L3	9938639	3082922	1367516	13.75959022	44.35778784	
A61_IP_yw_embryo_0-2h	A61_CLIP_yw_embryo_0-2h_L1	6913438	2012094	722743	10.45417634	35.91994211	
A61_IP_yw_embryo_0-2h	A61_CLIP_yw_embryo_0-2h_L2	6913438	2161685	759241	11.12675054	35.58624947	
A61_IP_yw_embryo_0-2h	A61_CLIP_yw_embryo_0-2h_L3	6913438	2701578	902250	13.0506703	33.39714789	

Comparisons of piRNA sequences found in CLIP and immunoprecipitation libraries from same tissues.