Agricultural Crop Monitoring and Controlling using IoT

V.Vineela, P.Bhavya, B.Sandeep

Abstract- To get the better crop production in agriculture business the farmer needs regular status of crop. This can be achieved by using Internet of Things (IoT) which collects information about soil moisture, temperature, light intensity etc., from integration of wireless sensors. The IoT technology provides control actions by using micro controllers based on this information through smart phones or laptops when farmers get alerts in their phones. The collected data can be stored and viewed as results based on graphical charts. This work tries to digitalize farming and agricultural activities so farmer can face the challenges by accurately predicting the crop growth. This system will definitely accelerate the agriculture business by keep updating the current conditions of land with the help of IoT at anywhere in the world.

Index terms: Internet of things, monitoring and controlling and sensors.

I. INTRODUCTION

IoT helps to connect humans and things for passing the information. The objective of IoT is draw out a gigantic system by joining diverse composes associated gadgets. IoT targets three perspectives Correspondence, mechanization and cost sparing in a framework. IoT engages individuals to complete routine exercises utilizing web, in this process time and cost can be saved. IoT empowers the articles to be detected and additionally controlled remotely crosswise over existing system. IoT in natural checking thinks about the water level, cultivating to upgrade the efficiency of the homestead. The fundamental point of the venture is to structure agribusiness crop monitoring and controlling using IoT.

In this process, information about soil moisture, temperature, light intensity is collected for monitoring agriculture crop by using integration of sensors. And based on this information controlling actions are taken by using IoT technology through smart phones or laptops when we get alerts in smart phones[1]. The collected information can be stored and viewed as results based on graphical charts. A smart phone helps farmer to know the ongoing situations of the yield by using IoT at anywhere in the world. IoT technology can reduce the cost and enhance the productivity of traditional farming.

II. EXISTING METHOD AND PROPOSED METHOD

In present Energy management system there are so many draw backs they are,

a. Inflexibility
b. Labor
c. High Power Consumption

These are the fundamental variables affecting the rural product monitoring and upkeep[2]. To defeat this downside here an innovation proposed, and the block diagram shown in below Fig.1. The block diagram predominantly comprises of three sensors they are Soil moisture sensor, LM35 temperature sensor and LDR sensor. The fundamental point of this task is Agriculture crop monitoring and controlling using IoT. Out of three sensors the moisture sensor measures the content of water in the soil, this information will be passed to cloud through WiFi module and this information can be seen in IoT and dependent on the sensor data we can take control activities.
III. SOFTWARE AND HARDWARE REQUIREMENTS

A. Software Details:

Keil compiler:
It gives an expansive scope of improvement devices like ANSI C compiler, large scale constructing agents, debuggers and test systems, linkers, IDE, library supervisors, ongoing working frameworks and assessment sheets for Intel 8051, Intel MCS-251, ARM Families.

Embedded C: C programming is arranged by the dialect augmentations and the shared characteristic issues that exist between c expansions are addressed by C guidelines for installed frame works. Colourful highlights like settled point number juggling, numerous memory banks and I/O activities are produced by implanted C programming non standard augmentations.

B. Hardware Details:

Arduino UNO:
The Arduino UNO is a naturally available as open-source microcontroller board dependant on the ATmega 328P microcontroller and it was created by Arduino.cc. The board is furnished by computerized and simple info/yield (I/O) sticks that might be interfaced to different extension sheets (shields) and different circuits. The board consists of 14 advanced pins and 6 Simple pins. It can be programmable with the Arduino IDE (Incorporated Advancement Condition) by means of a sort B USB link.

Soil Moisture Sensor: The soil moisture sensor measures the volumetric substance of water that is the presence of water content in soil and gives us the dampness level. The soil moisture sensor will be available for two tests in the presence of moisture in soil can be detected. Both the tests are used to enable the flow of electrons that go through the soil later the dampness esteem can be identified by opposition incentive.

LM35 Temperature Sensor: The LM35 is a sensor that incorporated in circuit to know the value of temperature (in °C). It can quantify temperature more precisely than the sensor thermistor. The sensor hardware should not allow for oxidation and it should be fixed. The LM35 generates a higher yield voltage than the yield voltage produced by thermocouples and it not stated that yield voltage can be increased.

LDR Sensor: It is additionally called photograph resistor is in which resistivity is an element that causes electromagnetic radiation. Consequently, they are light delicate gadgets. They are additionally called as photograph conductors, photograph conductive cells or just photocells.

LCD Display: It acts like a “valve” that passes the light or stops the passage of light. The synthetic properties of each LCC (Liquid Crystal Cell) can be modified by focusing electric field so that the picture in LCD is shaped at

Fig. 2. Arduino UNO board

Fig. 3: Soil Moisture Sensor

Fig. 4: LM35 Temperature Sensor

Fig. 5: LDR

Fig. 1: Keil compiler

Fig. 6: Soil Moisture Sensor

Retrieval Number: F12190886S2192019©BEIESP
DOI: 10.35940/ijeat.F1219.0886S219
last the goal is to change the assimilation properties of pixel’s light.

These LCD’s sets the backdrop illumination in to the screen yield which is required for the controller. Through the end yield might be in shading, the LCC’s are monochrome, and later shading can be added through the separating procedure.

![Fig. 6: LCD Display](image)

Wi-fi Module:

Espressif's ESP8266EX conveys exceptionally incorporated Wi-Fi is available in SoC to meet client requirements for productive power utilization, smaller plan and dependable execution in the digital world. Wi-Fi has independent organizing abilities due to this ESP8266EX is used as independent application or works under host MCU.

![Fig. 7: Wi-fi Module](image)

As it contains the whole and self-contained networking capabilities, ESP8266EX can be used as a standalone application or works under host MCU.

Relay: It is electrically worked switch, so working standards are also prepared for the purpose like strong state transfers. Transfers can be used for controlling a circuit with a low control flag or some circuits can controlled by one flag. The primary transfers were used as intensifiers for long separation of broadcast circuits. They can transfer the flag rolling in from one circuit and re transmitted it on another circuit. These transfers were used mainly in phone trades and early PC s to perform coherent activities.

![Fig. 8: The Relay](image)

IV. RESULTS

The networks which uses wireless sensors are used for knowing the current status of the farming so that the yield of the crop and quality can be improved. Different Sensors can be placed to monitor several parameters of environment like temperature, moisture level, temperature, intensity etc. The Outcome Examination is given underneath. This gives the yield's temperature, Light and Dampness investigation. With this venture we can enhance the yield of products successfully.

![Fig. 9: Pin Diagram of Relay Driver](image)
Fig. 9: Shows Temperature analysis of CropMonitor.

Fig. 10: Shows Light analysis of Crop Monitor

Fig. 11: Shows Moisture analysis of Crop Monitor.

V. CONCLUSION

In future this system can be developed for large acres of land by using Raspberry Pi instead of Arduino board. This system can be upgraded to discover the standard of the soil so that for better yield the suited crop can be selected to that particular soil. If this system is implemented then definitely the overall production and crop yield can be enhanced.

REFERENCES

1. Prathibha S R1, Anupama Hongal, Jyothish M P3, “IoT based monitoring system in smart agriculture”, 2017 in International conference on recent advances in electronics and communication technology.

2. Balaji Bhavan, Raghava Rao, J.V.N. Ramesh and Mohammed Ali Hussain, “Agriculture Field Monitoring and Analysis using Wireless Sensor Networks for improving Crop Production”, 2014 Eleventh International Conference on Wireless and Optical Communications Networks (WOCN).

3. Joseph Haile, Kisanbir Michael, “Deployment of wireless sensor networks (WSN) in automated irrigation management and scheduling systems: a review”, Science, Computing and Telecommunications (PACT), 2014, Pan African Conference.

4. S. Vijayakumar, J. Nelson Rosario, “Preliminary Design for Crop Monitoring Involving Water and Fertilizer Conservation Using Wireless Sensor Networks”, Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference.

5. G. Nisha, J. Megala, “Wireless Sensor Network Based Automated Irrigation and Crop Field Monitoring System”, 2014 Sixth International Conference on Advanced Computing (IcoAC). MengJi-hua, Wu Bing-fang, Li Qiang-zh.

6. “A Global Crop Growth Monitoring System Based on Remote Sensing”, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

7. Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, John Anderson, “Wireless Sensor Networks for Habitat Monitoring”, International Conference.

8. Lei Xiao, Lejiang Guo, “The Realization of Precision Agriculture Monitoring System Based on Wireless Sensor Network”, 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering.

AUTHORS PROFILE

V. Vineela, M.Tech., pursuing Ph.D in EIE, currently works as Sr. Assistant Professor in EIE department at LBRCE.

Journals:
1. Published paper in Scholars Research Library, European Journal of Applied engineering and research, 2014, 3 (2):8-12 ISSN: 2278 – 0041 On Design and simulation of MEMS piezoelectric gyroscope

2. “Area and delay optimization for ambaaxi in SOC applications”, International Journal of Research, Vol 3, issue no.17, P-ISSN: 2348-6848, November 16.

Memberships:
- Life Member of Institution of Electronics & Telecommunication Engineering (IETE) – AM- 236717
- Member of IAENG International Association of Engineers with membership number 234042

Achievements:
- Received Best teacher Award at LBRCE for the academic year 2014

P. Bhavya, M.Tech., pursuing Ph.D in EIE, presently works as Assistant Professor in EIE department at LBRCE.

Journals:
P. Bhavya, “The Intelligent Patient Monitoring System with Wireless Network” published in International Journal for research in Applied Science & Engineering Technology, ISSN: 2321-9653; Volume 6 Issue V, May 2018.

Memberships:
- Life Member of Institution of Electronics & Telecommunication Engineering (IETE) – AM- 236717
- Member of IAENG International Association of Engineers with membership number 162149

Achievements:
- Received Best teacher Award at LBRCE for the academic year 2016

B. Sandeep, M.Tech., pursuing Ph.D in EIE, current position is Sr. Assistant Professor in EIE department at LBRCE.

Memberships: Life Member of IETE.

Achievements:
- Received Best teacher Award at LBRCE for the academic year 2016