A MONOTONICITY PROPERTY OF VARIANCES

J. M. ALDAZ

Abstract. We prove that variances of non-negative random variables have the following monotonicity property: For all $0 < r < s \leq 1$, and all $0 \leq X \in L^2$, we have $\text{Var}(X^r)^{1/r} \leq \text{Var}(X^s)^{1/s}$. We also discuss the real valued case.

1. Introduction

Here, statements such as $X \geq 0$ or $X = Y$, are always meant in the almost sure sense. It is immediate from either Hölder’s or Jensen’s inequality that for every random variable $X \geq 0$ and all $0 < r < s < \infty$, we have $(EX^r)^{1/r} \leq (EX^s)^{1/s}$. In this note we obtain an analogous result for non-negative random variables $X \in L^2$ and variances. As in the case of norms, this inequality helps to clarify the strength of hypotheses that might be made on $\text{Var}(X^r)$. An application to a recent refinement of the AM-GM inequality $\prod_{i=1}^n x_i^{\alpha_i} \leq \sum_{i=1}^n \alpha_i x_i$ is presented. Lastly, this monotonicity property can be used when dealing with real valued random variables, by decomposing them into their positive and negative parts, since the variance of X is always comparable to the sum of the variances of X_+ and X_-.

2. Monotonicity of $\text{Var}(X^s)^{1/s}$, and the AM-GM inequality.

Let $0 \leq X \in L^2$, so $\text{Var}(X)$ is well defined. Since for all $0 < s \leq 1$ we have $\|X\|_2^s \leq \|X\|_2$, all variances $\text{Var}(X^s)$ are also well defined, and thus it is natural to ask how these quantities behave as s changes. In order to be able to compare them, we need to have the same homogeneity on both sides of the inequality, so we consider $\text{Var}(X^s)^{1/s}$, which always is homogeneous of order 2: For all $t \geq 0$, $\text{Var}((tX)^s)^{1/s} = t^2 \text{Var}(X^s)^{1/s}$.

Theorem 2.1. Let $0 \leq X \in L^2$ and let $0 < r < s \leq 1$. Then

\begin{equation}
\text{Var}(X^r)^{1/r} \leq \text{Var}(X^s)^{1/s}.
\end{equation}

Proof. Observe first that it is enough to prove the case $\text{Var}(X^s)^{1/s} \leq \text{Var}(X)$ whenever $0 < s < 1$. The fact that $\text{Var}(X^s)^{1/s}$ is increasing in s then follows immediately by making the change of variables $Y = X^s$: $\text{Var}(X^r)^{s/r} = \text{Var}(Y^{r/s})^{s/r} \leq \text{Var}(Y) = \text{Var}(X^s)$.

Next, we assume that $\|X\|_2 = 1$. This can be done by homogeneity, since writing $Y = X/\|X\|_2$, we see that $\text{Var}(X^s)^{1/s} \leq \text{Var}(X)$ is equivalent to $\text{Var}(Y^s)^{1/s} \leq \text{Var}(Y)$. Under the
condition \(\|X\|_2 = 1 \), we always have, for every \(0 < s \leq 1 \) and every \(t > 0 \), \(\|X\|_2^t \leq 1 \), and hence, \(\text{Var}(X^s)^t \leq 1 \).

We shall use the following well known (and direct) interpolation consequence of Hölder’s inequality (cf., for instance, [Fo, Proposition 6.10, p. 177]) which is valid for both finite and infinite measure spaces: If \(0 < r < s < p \), and \(f \in L^r \cap L^p \), then \(f \) belongs to all intermediate spaces \(L^s \), and furthermore, \(\|f\|_s \leq \|f\|_r^{-t} \|f\|_p^t \), where \(t \in (0,1) \) is defined by the equation \(\frac{1}{s} = \frac{1-t}{r} + \frac{t}{p} \).

Using the indices \(0 < s < 2 \), together with \(\|X\|_2 = 1 \), yields

\[
\frac{1}{s} = \frac{1}{2} - \frac{s}{2} \quad \text{and} \quad \frac{1}{s} = \frac{1}{2} - \frac{s}{2},
\]

while the indices \(0 < s < 1 < \frac{p}{2} \) give \(t = \frac{2-2s}{2-s} \) and

\[
E(X^2) \leq \left(\frac{EX^s}{(2-2s)/(2-s)} \right)^2.
\]

Now, by the preceding assumptions on the size of norms and variances (in particular, by \(\|X^s\|_2^s = \|X\|_2^s \leq 1 \)) together with \(1/s > 1 \), we have

\[
\text{Var}(X^s)^{1/s} \leq \text{Var}(X^s) = \|X^s\|_2^s \text{Var}\left(\frac{X^s}{\|X\|_2} \right) \leq \text{Var}\left(\frac{X^s}{\|X\|_2} \right) = 1 - \frac{(EX^s)^2}{E(X^2s)}.
\]

Thus, it suffices to show that

\[
1 - \frac{(EX^s)^2}{E(X^2s)} \leq \text{Var}(X) = 1 - (EX)^2,
\]

or equivalently, that

\[
(EX)^2 E(X^{2s}) \leq (EX^s)^2.
\]

But this follows from (3) and (2), since

\[
(EX)^2 E(X^{2s}) \leq (EX^s)^{2/(2-s)} (EX^s)^{(2-2s)/(2-s)} = (EX^s)^2.
\]

\[\square\]

\textbf{Remark 2.2.} The interpolation result noted above is useful in a probability context since, instead of the usual bound \(\|X\|_s \leq \|X\|_p \) whenever \(0 < s < p \), it yields the stronger inequality \(\|X\|_s \leq \|X\|_r^{1-t} \|X\|_p^t \) for each \(0 < r < s \), with \(t \) defined by \(1/s = (1-t)/r + t/p \).

Of course, under different integrability conditions (\(X \in L^p \) instead of \(X \in L^2 \)) the analogous inequalities hold, by using the change of variables \(Y = X^{p/2} \in L^2 \).

\textbf{Corollary 2.3.} Let \(p > 0 \), let \(0 \leq X \in L^p \), and let \(0 < r < s \leq p/2 \). Then

\[
\text{Var}(X^r)^{1/r} \leq \text{Var}(X^s)^{1/s}.
\]

Next we apply the preceding result to a recent refinement of the inequality between arithmetic and geometric means (the AM-GM inequality) proven in [A1] (the reader interested in some probabilistic aspects of the AM-GM inequality, may want to consult [A3] and the references contained therein; for non-variance bounds, see [A4] and its references).
Let us recall the notation used in [A1]: X denotes the vector with non-negative entries (x_1, \ldots, x_n), and $X^{1/2} = (x_1^{1/2}, \ldots, x_n^{1/2})$. Given a sequence of weights $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $\alpha_i > 0$ and $\sum_{i=1}^n \alpha_i = 1$, and a vector $Y = (y_1, \ldots, y_n)$, its arithmetic mean is denoted by $E_\alpha(Y) := \sum_{i=1}^n \alpha_i y_i$, its geometric mean, by $\Pi_\alpha(Y) := \prod_{i=1}^n y_i^{\alpha_i}$, and its variance, by

$$\text{Var}_\alpha(Y) = \sum_{i=1}^n \alpha_i \left(y_i - \sum_{k=1}^n \alpha_k y_k\right)^2 = \sum_{i=1}^n \alpha_i y_i^2 - \left(\sum_{k=1}^n \alpha_k y_k\right)^2.$$

Finally, Y_{max} and Y_{min} respectively stand for the maximum and the minimum values of Y.

Conceptually, variance bounds for $E_\alpha X - \Pi_\alpha X$ represent the natural extension of the equality case in the AM-GM inequality (zero variance is equivalent to equality). From a more applied viewpoint, the variance is used in the Economics literature to estimate the difference between these means (cf., for instance, [Si, Chapter 1, Appendix 2]; both the arithmetic and geometric means are used when reporting on the performance of a portfolio).

The bounds for the difference in the AM-GM appearing in [A1] involve $\text{Var}(X^{1/2})$, rather than $\sigma(X) = \text{Var}_\alpha(X)^{1/2}$. Using Theorem 2.1 or Corollary 2.3 the following upper bound follows: $E_\alpha X - \Pi_\alpha X \leq \frac{1}{\alpha_{\text{min}}} \sigma(X)$. More generally, by putting together [A1, Theorem 4.2] with Corollary 2.3 we obtain the next result.

Theorem 2.4. For $n \geq 2$ and $i = 1, \ldots, n$, let $X = (x_1, \ldots, x_n)$ be such that $x_i \geq 0$, and let $\alpha = (\alpha_1, \ldots, \alpha_n)$ satisfy $\alpha_i > 0$ and $\sum_{i=1}^n \alpha_i = 1$. Then for all $r \in (0, 1]$ and all $s \in [1, \infty)$ we have

$$\frac{1}{1 - \alpha_{\text{min}}} \text{Var}_\alpha(X^{r/2})^{1/r} \leq E_\alpha X - \Pi_\alpha X \leq \frac{1}{\alpha_{\text{min}}} \text{Var}_\alpha(X^{s/2})^{1/s}. \quad (5)$$

These bounds are optimal (cf. [A1] Examples 2.1 and 2.3). Theorem 4.2 from [A1], and its proof, were suggested by [CaFi, Theorem], which states that if $0 < X_{\text{min}}$, then

$$\frac{1}{2X_{\text{max}}} \text{Var}_\alpha(X) \leq E_\alpha X - \Pi_\alpha X \leq \frac{1}{2X_{\text{min}}} \text{Var}_\alpha(X). \quad (6)$$

A drawback of (6) is that the bounds depend explicitly on X_{max} and X_{min}, something that makes it unsuitable for some standard applications, such as, for instance, refining Hölder’s inequality (see [A1] for more details). Of course, since the variance is homogeneous of degree 2, dividing by X_{max} and X_{min} in (6), gives the left and right hand sides the same homogeneity as the middle term. We also point out that the inequality $\text{Var}_\alpha(X^{1/2}) \leq E_\alpha X - \Pi_\alpha X$, appeared in [A2, Theorem 1]; this inequality is trivial, useful, and as $n \to \infty$, asymptotically optimal, since $(1 - \alpha_{\text{min}})^{-1} \to 1$.

3. Real valued random variables.

The monotonicity result applies to $X \geq 0$ only: If $X < 0$ with positive probability, then X^s may fail to be defined as a real valued function, for certain values of $s > 0$. While trivially $\text{Var}(X) \geq \text{Var}(|X|)$, in general these two quantities are not comparable, so it is not possible to simply replace X with $|X|$. However, monotonicity can be used on $\text{Var}(X_+)$ and $\text{Var}(X_-)$,
where \(X_+ := \max\{X, 0\} \) and \(X_- := -\min\{X, 0\} \) denote the positive and negative parts of \(X \), respectively. Thus, indirectly it also applies to \(\text{Var}(X) \), since the latter is indeed comparable to \(\text{Var}(X_+) + \text{Var}(X_-) \). We have not found this result in the literature, so we include it here for completeness. Essentially, the next theorem says that

\[
\text{Var}(X_+) + \text{Var}(X_-) \leq \text{Var}(X) \leq 2 (\text{Var}(X_+) + \text{Var}(X_-)),
\]

and the extremal cases occur, for the left hand side inequality, when either \(X \geq 0 \) or \(X \leq 0 \), and for the right hand side inequality, when \(X = c(1_D - 1_{D^c}) \), where \(c \in \mathbb{R} \) and \(D \) is a measurable set.

Theorem 3.1. Let \(X \in L^2 \) be real valued, and denote by \(\mathcal{B} \) the sub-\(\sigma \)-algebra

\[
\mathcal{B} := \{\emptyset, \Omega, \{X > 0\}, \{X = 0\}, \{X < 0\}\}.
\]

Then

\[
\text{(7)} \quad \text{Var}(X_+) + \text{Var}(X_-) \leq \text{Var}(X)
\]

\[
\text{(8)} \quad \leq \text{Var}(X_+) + \text{Var}(X_-) + \text{Var}(E(X_+|\mathcal{B})) + \text{Var}(E(X_-|\mathcal{B})) \leq 2 (\text{Var}(X_+) + \text{Var}(X_-)).
\]

Furthermore, equality holds in the first inequality if and only if either \(X \geq 0 \) or \(X \leq 0 \); in the second, if and only if either \(X > 0 \), or \(X < 0 \), or \(0 < P(\{X > 0\}) \), \(0 < P(\{X < 0\}) \), \(0 = P(\{X > 0\}) \), and \(E(X_+|\{X > 0\}) = E(X_-|\{X < 0\}) \); and in the third, if and only if \(X = E(X|\mathcal{B}) \).

Proof. The first inequality follows directly from the definitions, the second, from the convexity of \(\phi(x) = x^2 \), and the third, from the law of total variance. More precisely,

\[
\text{Var}(X_+) + \text{Var}(X_-) \leq \text{Var}(X_+) + \text{Var}(X_-) + 2EX_+EX_-
\]

\[
= E(X_+^2) - (EX_+)^2 + E(X_-^2) - (EX_-)^2 + 2EX_+EX_- = E(X^2) - (EX_+ - EX_-)^2 = \text{Var}(X),
\]

and we have equality if and only if \(EX_+EX_- = 0 \), which happens if and only if either \(X \geq 0 \) or \(X \leq 0 \).

Since, as we just saw, \(\text{Var}(X) = \text{Var}(X_+) + \text{Var}(X_-) + 2EX_+EX_- \), to prove the middle inequality in \(\text{(7)-(8)} \), it is enough to show that

\[
\text{(9)} \quad 2EX_+EX_- \leq \text{Var}(E(X_+|\mathcal{B})) + \text{Var}(E(X_-|\mathcal{B})).
\]

Observe that if either \(X \geq 0 \) or \(X \leq 0 \), then

\[
2EX_+EX_- = 0,
\]

and if additionally either \(X > 0 \) or \(X < 0 \), then

\[
0 = \text{Var}(E(X_+|\mathcal{B})) + \text{Var}(E(X_-|\mathcal{B})).
\]

Next, assume that both \(A := P\{X > 0\} > 0 \) and \(B := P\{X < 0\} > 0 \), and write \(C := P\{X = 0\} \), so \(0 < A + B = 1 - C \leq 1 \). Then \(E(X|\mathcal{B}) \) takes exactly two values different from 0, say \(E(X|\mathcal{B}) = a > 0 \) on \(\{X > 0\} \), and \(E(X|\mathcal{B}) = -b < 0 \) on \(\{X < 0\} \). With this notation, in order to obtain the middle inequality it suffices to show that

\[
2EX_+EX_- = 2AaBb \leq \text{Var}(E(X_+|\mathcal{B}))) + \text{Var}(E(X_-|\mathcal{B})) = Aa^2 - (Aa)^2 + Bb^2 - (Bb)^2,
\]
or equivalently, that

$$(Aa + Bb)^2 \leq Aa^2 + Bb^2.$$

But this follows from the convexity of $\phi(x) = x^2$, since

$$(Aa + Bb)^2 = (A + B)^2 \left(\frac{A}{A+B}a + \frac{B}{A+B}b \right)^2 \leq (A + B)^2 \left(\frac{A}{A+B}a^2 + \frac{B}{A+B}b^2 \right) = (A + B) \left(Aa^2 + Bb^2 \right) \leq Aa^2 + Bb^2.$$

Furthermore, $(Aa + Bb)^2 = Aa^2 + Bb^2$ if and only if both $a = b$ (by the strict convexity of ϕ) and $A + B = 1$.

Finally, the law of total variance $\text{Var}(X) = \text{Var}(E(X|\mathcal{B})) + E(\text{Var}(X|\mathcal{B}))$, applied to both X_+ and X_-, tells us that $\text{Var}(X_+) \geq \text{Var}(E(X_+|\mathcal{B}))$ and $\text{Var}(X_-) \geq \text{Var}(E(X_-|\mathcal{B}))$, with equality if and only if $E(\text{Var}(X_+|\mathcal{B})) = 0 = E(\text{Var}(X_-|\mathcal{B}))$, which happens if and only if both X_+ and X_- are constant on $\{X > 0\}$ and on $\{X < 0\}$ respectively. This yields the last inequality, together with the equality condition $X = E(X|\mathcal{B})$.

Remark 3.2. Instead of $\mathcal{B} = \{\emptyset, \Omega, \{X > 0\}, \{X = 0\}, \{X < 0\}\}$, either of the simpler algebras $\mathcal{B}_1 = \{\emptyset, \Omega, \{X \geq 0\}, \{X < 0\}\}$ or $\mathcal{B}_2 = \{\emptyset, \Omega, \{X > 0\}, \{X \leq 0\}\}$ could have been used in the preceding theorem, and the inequalities stated there would still hold. But the equality conditions would be less symmetric. For instance, if $X \geq 0$, then \mathcal{B}_1 is trivial up to sets of measure zero (that is, as a measure algebra), so $E(X_+|\mathcal{B}_1) = EX_+ = EX$, and $\text{Var}(E(X_+|\mathcal{B}_1)) = 0$. Thus, the middle inequality in (7)-(8), is actually an equality in this case. However, if $X = -1_D \leq 0$, where $0 < P(D) < 1$, then $X = X_+ = E(X_+|\mathcal{B}_1)$, and $\text{Var}(X) \leq \text{Var}(X_+) + \text{Var}(E(X_+|\mathcal{B}_1)) = 2 \text{Var}(X)$.

Corollary 3.3. Let $p \geq 2$, let $X \in L^p$ be real valued, and let $0 < r \leq 2 \leq s \leq p$. Then

$$\text{Var}(X^{r/2})^{2/r} + \text{Var}(X^{-r/2})^{2/r} \leq \text{Var}(X) \leq 2 \left(\text{Var}(X^{s/2})^{2/s} + \text{Var}(X^{-s/2})^{2/s} \right).$$

References

[A1] Aldaz, J. M. Sharp bounds for the difference between the arithmetic and geometric means, Archiv der Mathematik, to appear. DOI: 10.1007/s00013-012-0434-7. [arXiv:1203.4454]

[A2] Aldaz, J. M. Self-improvement of the inequality between arithmetic and geometric means. Journal of Mathematical Inequalities, 3, 2 (2009) pp 213–216. [arXiv:0807.1788]

[A3] Aldaz, J. M. Concentration of the ratio between the geometric and arithmetic means. Journal of Theoretical Probability, Volume 23, Number 2, 498–508 (2010). DOI 10.1007/s10959-009-0215-9. [arXiv:0807.4832]

[A4] Aldaz, J. M. Comparison of differences between arithmetic and geometric means. Tamkang J. of Math., 42 (2011) no. 4, 453–462. [arXiv:1001.5055]

[CaFi] Cartwright, D. I.; Field, M. J. A refinement of the arithmetic mean-geometric mean inequality. Proc. Amer. Math. Soc. 71 (1978), no. 1, 36–38.

[Fo] Folland, G. B. Real analysis. Modern techniques and their applications. Pure and Applied Mathematics (New York). Wiley, 1984.

[Si] Siegel, J.; Stocks for the long run. Fourth edition, McGraw-Hill 2008.
J. M. Aldaz

Departamento de Matemáticas, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.

E-mail address: jesus.munarriz@uam.es