Private Stochastic Non-Convex Optimization: Adaptive Algorithms and Tighter Generalization Bounds

Yingxue Zhou†, Xiangyi Chen‡, Mingyi Hong‡, Zhiwei Steven Wu†, Arindam Banerjee†

Abstract

We study differentially private (DP) algorithms for stochastic non-convex optimization. In this problem, the goal is to minimize the population loss over a p-dimensional space given n i.i.d. samples drawn from a distribution. We improve upon the population gradient bound of \sqrt{p}/\sqrt{n} from prior work and obtain a sharper rate of $4\sqrt{p}/\sqrt{n}$. We obtain this rate by providing the first analyses on a collection of private gradient-based methods, including adaptive algorithms DP RMSProp and DP Adam. Our proof technique leverages the connection between differential privacy and adaptive data analysis to bound gradient estimation error at every iterate, which circumvents the worse generalization bound from the standard uniform convergence argument. Finally, we evaluate the proposed algorithms on two popular deep learning tasks and demonstrate the empirical advantages of DP adaptive gradient methods over standard DP SGD.

1 Introduction

We study differentially private algorithms for private stochastic non-convex optimization. In this problem the goal is to approximately minimize the population loss given n i.i.d. samples z_1, \ldots, z_n subject to the constraint of differential privacy [13]. Mathematically speaking, we want to privately find a model w_{priv} for solving:

$$\min_{w \in \mathbb{R}^p} f(w) \triangleq \mathbb{E}_{z \sim \mathcal{P}} [\ell(w, z)] ,$$ \hspace{1cm} (1)

where $z \in \mathcal{Z}$ is a data point in the domain \mathcal{Z} following the unknown distribution \mathcal{P}, and $\ell : \mathbb{R}^p \times \mathcal{Z} \rightarrow \mathbb{R}$ is the loss function associated with the learning problem. For example, in classification problems, $z = (x, y)$ is an instance-label pair, w denotes the parameter of a classifier, and $\ell(w, z)$ represents a surrogate loss such as cross-entropy. The goal of this problem is to find the w_{priv} which converges to population stationarity, i.e., small norm of population gradient and preserves differential privacy with respect to the n training samples z_1, \ldots, z_n in the meanwhile.

A natural approach toward solving the problem stated in (1) is Differentially Private Empirical Risk Minimization (DP-ERM) [4, 31, 32, 34], which finds w_{priv} by minimizing the empirical risk:

$$\min_{w \in \mathbb{R}^p} \hat{f}(w) \triangleq \frac{1}{n} \sum_{j=1}^{n} \ell(w, z_j) ,$$ \hspace{1cm} (2)

*equal contribution

†Department of Computer Science & Engineering, University of Minnesota. Email: zhou0877@umn.edu, zsw@umn.edu, banerjee@cs.umn.edu.

‡Department of Electrical & Computer Engineering, University of Minnesota. Email: chen5719@umn.edu, mhong@umn.edu.
subject to differential privacy, where $\hat{f}(w)$ denotes the empirical risk. For DP-ERM with non-convex loss function, the utility of the private minimizer w^{priv} is usually measured by the ℓ_2 norm of the empirical gradient, i.e., $\|\nabla \hat{f}(w^{priv})\|$. Recent work \cite{30,31,32} solve non-convex DP-ERM by DP gradient descent and DP stochastic variance reduced gradient (SVRG) and provide $O\left(\sqrt{p}/\sqrt{n}\right)$ bound on the ℓ_2 norm of the empirical gradient over p-dimensional space. Built on the empirical risk results, the standard approach for deriving bounds on the population loss is the uniform convergence of the empirical gradient to the population gradient, namely an upper bound on $\sup_w \|\nabla f(w) - \nabla \hat{f}(w)\|$. It is known that there exist distributions over over p-dimensional space for which the best result on uniform convergence is $O\left(\sqrt{p}/\sqrt{n}\right)$ \cite{16,24,30} leverages this result and give the state-of-the-art upper bound $O\left(\sqrt{p}/\sqrt{n}\right)$ on the ℓ_2-norm of the population gradient.

In this work, we generalize the DP gradient descent algorithms \cite{30,31} for non-convex optimization along with popular gradient-based algorithms, including DP GD, DP RMSprop, and DP Adam. We provide population risk analysis for all these algorithms. Specifically, we obtain a bound of $\tilde{O}\left(\sqrt{p}/\sqrt{n}\right)$ on the ℓ_2-norm of the population gradient, showing that the known bound $O\left(\sqrt{p}/\sqrt{n}\right)$ given by \cite{30} is suboptimal. We get the sharper bound by leveraging the advantage of generalization properties of differential privacy itself. In particular, our approach to the population risk analysis, i.e., bound on the population gradient, relies on the generalization properties of differential privacy and adaptive data analysis (ADA) \cite{10,11,12} to bound the gap between the empirical gradient and population gradient at every iterate. Mathematically, we show that differentially private gradients approximate the population gradients with high probability across all iterations, leading to high probability bounds on the ℓ_2 norm of the population gradient, i.e., $\|\nabla f(w)\|$.

We further provide a lower bound of gradient uniform convergence rate that matches rate of \sqrt{p}/\sqrt{n} in \cite{30}. This indicates that in order to improve the current population gradient bound in \cite{30}, it is necessary to sidestep the uniform convergence argument in prior work.

We also provide an empirical risk analysis that bounds the empirical gradient norm for DPAGD algorithms, including DP RMSprop and DP Adam. To our best knowledge, we are the first to provide the first empirical risk analyses for DP variants of these adaptive gradient methods. Finally, we empirically evaluate DP SGD, DP Adam, and DP RMSprop on two popular deep learning tasks. Our experiments demonstrate that the adaptive methods of DP Adam and DP RMSprop tend to outperform the standard DP SGD method.

The remainder of this paper is organized as follows. Section 2 and Section 3 describe related work and preliminaries, respectively. The DP adaptive algorithms and corresponding population risk analyses are described in Section 4. Section 5 discusses the empirical risk analysis and the uniform convergence. Section 6 shows our experimental results. Section 7 concludes our work. All the proofs are deferred to the Appendix.

2 Related work

DP-ERM and Generalization: DP-ERM has been well-studied in the last decade. Algorithms such as output-perturbation that perturbs the output of a non-DP algorithm, objective function perturbation that perturbs the objective function \cite{7} and gradient perturbation that adds noise to the gradient in gradient descent algorithms \cite{4,28} have been proposed to solve DP-ERM. We mainly discuss those algorithms that are most related to our problem, i.e., gradient perturbation \cite{2,4,6,30,31,32,37}. Most DP gradient-based algorithms focus on minimizing the convex loss and aim to achieve optimal empirical and population risk bounds under privacy. \cite{4} propose DP gradient descent algorithms and apply uniform convergence \cite{27} of empirical loss to population loss, i.e., $\sup_w (f(w) - \hat{f}(w))$ to obtain a generalization bound on the population risk. Afterward, \cite{2} derive an optimal bound on the population risk using the generalization properties of uniform stability \cite{5}
of a standard noisy mini-batch stochastic gradient descent. More recently, \[15\] further reduces the number of gradient computations in the algorithm of \[2\].

Recently, DP algorithms have been studied for non-convex loss functions \[30, 31, 32, 37\]. Since finding the global minimum for non-convex functions is NP-hard, the utility of a DP algorithm is typically measured by the ℓ_2-norm of the gradient. \[30, 31, 32, 37\] show that a bound of $O(\sqrt{p}/\sqrt{n})$ on the ℓ_2-norm of the empirical gradient can be achieved by DP gradient descent and DP SVRG algorithms. \[30\] extend the bound from empirical gradient to population gradient by using uniform convergence \[24\], i.e., $\sup_w ||\nabla f(w) - \hat{\nabla}f(w)||$ which leads to a suboptimal rate of $O(\sqrt{p}/\sqrt{n})$.

Adaptive Data Analysis: In adaptive data analysis (ADA), an analyst reuses a dataset to generate hypotheses (e.g., statistical queries) and validate the results on the same dataset. The pioneering work of \[10, 11, 12\] provides a transfer theorem showing that as long as the value of a hypothesis selected by a DP algorithm is close to the true empirical value, its value evaluated on the dataset is close to its true value in the population. Later \[3, 19\] further improve and simplify the analysis for the transfer theorem. In our setting, the gradients across the iterations can be viewed as a sequence of adaptively chosen queries, and so we can bound the estimation error of these gradient queries as well. \[38\] leverages similar techniques for convex optimization.

Adaptive Gradient Methods: Adaptive gradient methods usually refer to a class of algorithms that change learning rates adaptively during optimization. Representative methods in this class include AdaGrad \[9\], RMSProp \[29\], Adam \[21\], and AMSGrad \[26\], which use the second moment of gradients to change the learning rates adaptively during optimization. Representative methods in this class include AdaGrad \[9\], RMSProp \[29\], Adam \[21\], and AMSGrad \[26\], which use the second moment of gradients to change the learning rates adaptively during optimization. Representative methods in this class include AdaGrad \[9\], RMSProp \[29\], Adam \[21\], and AMSGrad \[26\], which use the second moment of gradients to change the learning rates adaptively during optimization. Representative methods in this class include AdaGrad \[9\], RMSProp \[29\], Adam \[21\], and AMSGrad \[26\], which use the second moment of gradients to change the learning rates adaptively during optimization. Representative methods in this class include AdaGrad \[9\], RMSProp \[29\], Adam \[21\], and AMSGrad \[26\], which use the second moment of gradients to change the learning rates adaptively during optimization.

3 Preliminaries

Notations: We use g_t and $\nabla f(w_t)$ interchangeably to denote population gradient, i.e., $g_t = \nabla f(w_t) = \mathbb{E}_{z \in P}[\nabla \ell(w_t, z)]$. We also use $\hat{\nabla}f(w) = \frac{1}{n} \sum_{j=1}^n \nabla \ell(w_t, z_j)$ and \hat{g}_t interchangeably denotes the empirical gradient evaluated on n training samples S, i.e., $S = \{z_1, \ldots, z_n\}$. For a vector $v \in \mathbb{R}^p$, v^2 denotes element-wise product. Either v^i or $[v]_i$ are used to denote the i-th coordinate of v, where $i \in [p]$. $\|v\|$ denotes the ℓ_2-norm of v. For a scalar a and vector v, $v + a$, v/a denotes element-wise addition and division, and $\min(v, a)$ means element-wise operation such that $\min(v^i, a)$ for every coordinate $i \in [p]$.

Definition 1 (Differential Privacy) \[13\] A randomized algorithm \mathcal{M} is (ϵ, δ)-differentially private \[13\] if for any pair of datasets S, S' differ in exactly one data point and for all event $\mathcal{Y} \subseteq \text{Range}(\mathcal{M})$ in the output range of \mathcal{M}, we have

$$P\{\mathcal{M}(S) \in \mathcal{Y}\} \leq \exp(\epsilon)P\{\mathcal{M}(S') \in \mathcal{Y}\} + \delta,$$

where the probability is taken over the randomness of \mathcal{M}.

Intuitively, the definition of differential privacy means that the outcomes of two nearly identical datasets (different on a single component) should be nearly identical such that an analyst will not be able to distinguish any single data point by monitoring the change of the output. Differential privacy has several properties that make it particularly useful in applications such as Advanced Composition \[14\] and and Moments Accountant (MA) \[11\] which give the privacy analysis of composition of private mechanisms.

We make the following assumptions about the objective function throughout the paper.
We use Algorithm 1 to provide a generic adaptive framework of the DPAGD. Given
Algorithm 1 adds i.i.d. Gaussian noise to the gradient
Algorithm 1
\[\text{DPAGD: Differentially Private Adaptive Gradient Descent} \]
(line 4). Afterward, Algorithm 1 updates the \(w \)
The difference between non-private adaptive gradient descent and DP adaptive gradient descent is that
DPAGD uses the noisy gradient \(\tilde{g} \) instead of sample gradient \(g \) in the “averaging” functions \(\phi_t \) and \(\psi_t \) to
\|\nabla \ell(w,z)\| \leq G. \tag{4}
Note that this assumption implies that the population gradient and empirical gradient are also bounded as
\|\nabla f(w)\| \leq G and \|\nabla f(w)\| \leq G.
Assumption 2 Loss function \(\ell : \mathbb{R}^p \rightarrow \mathbb{R} \) is differentiable (but not necessarily convex), bounded from below by \(\ell^* \), and has L-Lipschitz gradient, i.e.,
\[\|\nabla \ell(w) - \nabla \ell(w')\| \leq L\|w - w'\|, \forall w, w' \in \mathbb{R}^p. \tag{5} \]
Assumption 2 implies the population loss \(f(w) \) and empirical loss \(\hat{f}(w) \) also have L-Lipschitz gradient and bounded from below.

4 Private Adaptive Gradient Descent

In this section, we first present a general framework of DP adaptive gradient descent algorithms (DPAGD) that capture DP GD, DP RMSprop, and DP Adam as special cases. Then we present the privacy guarantee of DPAGD. Later, we discuss the generalization guarantee achieved by differential privacy. Finally, we give the theoretical analysis, i.e., the bound on the \(\ell_2 \)-norm of the population gradient \(\|\nabla f(w)\| \).

Algorithm 1 DPAGD: Differentially Private Adaptive Gradient Descent

1: **Input**: Dataset \(S \), loss \(\ell(\cdot) \), initial point \(w_0 \), sequence of functions \(\{\phi_t, \psi_t\}_{t=1}^T \).
2: **Set**: Noise parameter \(\sigma \), iteration time \(T \), step size parameters \(\eta_t, \nu, \lambda \).
3: **for** \(t = 0, \ldots, T \) **do**
4: Compute noisy gradient \(\tilde{g}_t = \mathbb{E}_{z \in S} \nabla \ell(w_t, z) + b_t \), where \(b_t \sim \mathcal{N}(0, \sigma^2 I_p) \).
5: \(m_t = \phi_t(\tilde{g}_1, \ldots, \tilde{g}_t) \) and \(v_t = \min(\psi_t(\tilde{g}_1, \ldots, \tilde{g}_t), \lambda) \)
6: \(w_{t+1} = w_t - \eta_t m_t / (\sqrt{v_t} + \nu) \).
7: **end for**

Table 1: An overview of DP adaptive gradient algorithms.

\(\phi_t \)	\(\tilde{g}_t \)	\(\tilde{g}_t \)	\(\frac{1}{(1 - \beta_2) \sum_{j=1}^t \beta_2^{-j} \tilde{g}_j^2} \)	\(\frac{1 - \beta_1}{(1 - \beta_2) \sum_{j=1}^t \beta_2^{-j} \tilde{g}_j^2} \)
DP GD	DP RMSprop	DP Adam		

We use Algorithm 1 to provide a generic adaptive framework of the DPAGD. Given \(n \) training samples \(S \), loss function \(\ell \), at each iteration \(t \in [T] \), Algorithm 1 first computes gradient \(\tilde{g}_t = \mathbb{E}_{z \in S} \nabla \ell(w_t, z) \). Then Algorithm 1 adds i.i.d. Gaussian noise to the gradient \(\tilde{g}_t = \mathbb{E}_{z \in S} \nabla \ell(w_t, z) + b_t \), where \(b_t \sim \mathcal{N}(0, \sigma^2 I_p) \) (line 4). Afterward, Algorithm 1 updates the \(w_{t+1} \) based on \(\phi_t \) and \(\psi_t \) that are functions of past noisy gradients \(\tilde{g}_1, \ldots, \tilde{g}_t \) (line 5, 6). We specify the “averaging” functions \(\phi_t \) and \(\psi_t \) for different adaptive gradient algorithms, i.e., DP GD, DP RMSprop and DP Adam in Table 1.

The difference between non-private adaptive gradient descent and DP adaptive gradient descent is that DPAGD uses the noisy gradient \(\tilde{g}_t \) instead of sample gradient \(g_t \) in the “averaging” functions \(\phi_t \) and \(\psi_t \) to
update the step size and parameter \(w_{t+1} \). Note that \(\psi_t \) in Table 1 for DP RMSProp and DP Adam is the exponentially decaying average of the square of the past noisy gradients, which can be extremely large due to the injected noise, leading to a vanished step size \(\eta_t / (\sqrt{T} + \nu) \). Thus, Algorithm 1 clips the \(\psi_t \) by a threshold \(\lambda > 0 \) is a hyper-parameter.

In this work, we mainly focus on DP GD, DP RMSprop, and DP Adam (see details in Table 1). Note that noise variance \(\sigma^2 \), step size \(\eta_t > 0 \), and iteration number \(T \), \(0 < \beta_1, \beta_2 < 1, \nu \geq 0, \lambda > 0 \) are the parameters of Algorithm 1. We present the optimal values of them for DP GD, DP RMSprop, and DP Adam, respectively in the subsequent sections.

Theorem 1 (Privacy guarantee) There exist constants \(c_1 \) and \(c_2 \) so that given the number of iterations \(T \), for any \(\epsilon \leq c_1 T \), DPAGD (Algorithm 1) is \((\epsilon, \delta)\)-differentially private for any \(\delta > 0 \) if

\[
\sigma^2 \geq c_2 \frac{G^2 T \ln \left(\frac{1}{\delta} \right)}{n^2 \epsilon^2}.
\]

Theorem 1 is a variant of Theorem 1 in [11] where the variance of noise is derived by moments accountant (MA) [11][33]. MA is a method to calculate the privacy cost for a composition of differential private mechanisms which has sharper bound on \(\epsilon \) and \(\delta \). DPAGD is a composition of \(T \) Gaussian Mechanism (line 4 in Algorithm 1). MA allows DPAGD to save a factor of \(\ln(T/\delta) \) on the variance of noise compared with those achieved by using the Advanced Composition [14].

4.1 Generalization guarantee of differential privacy

To analyze the convergence of DPAGD in terms of the \(\ell_2 \) norm of the population gradient, we need to bound the gradient estimation error between population gradient \(\mathbf{g}_t \) and noisy gradient \(\hat{g}_t \), i.e., \(\| \hat{g}_t - g_t \| \). To bound this error, one needs to bound the generalization error between population gradient \(\mathbf{g}_t \) and empirical gradient \(\hat{g}_t \) as well as the noise \(b_t \), i.e., \(\| \hat{g}_t - g_t \| \leq \| \hat{g}_t - g_t \| + \| b_t \| \) at every iteration \(t \). Usually the deviation bound of \(\| \hat{g}_t - g_t \| \) can be estimated by the Hoeffding’s bound, i.e., for an initial \(w_0 \) which is independent of the dataset \(S \), we have \(\mathbb{P} \{ \| \hat{g}_t - g_t \| \geq \mu \} \leq 2 \exp \left(\frac{-2n \mu^2}{G^2} \right) \), \(\forall \nu \in [p] \) and \(\mu > 0 \), where \(G_{\infty} \) is the \(\ell_\infty \)-norm of the gradient \(g_0 \). However, in general, this concentration bound will not hold for \(w_t, \forall t > 0 \) since \(w_t \) is no longer independent of dataset \(S \). Since DPAGD is differentially private, we use the generalization property of differential privacy itself to provide the gradient concentration bound which holds even though the \(w_t, \forall t > 0 \) are adaptively generated on the same dataset \(S \) (Theorem 2).

Theorem 2 In DPAGD, set \(\sigma \) to be as (6), and for any \(\mu > 0, \epsilon, \delta \) and sample size \(n \) satisfying \(\epsilon \leq \frac{\sigma}{13T} \), \(\delta \leq \frac{\sigma \exp(-\mu^2/2)}{13 \ln(2b/\sigma)} \) and \(n \geq \frac{2 \ln(8/\delta)}{\epsilon^2} \), the noisy gradients \(\hat{g}_1, \ldots, \hat{g}_T \) produced in Algorithm 1 satisfy

\[
\mathbb{P} \{ \| \hat{g}_t - g_t \| \geq \sqrt{p} \sigma (1 + \mu) \} \leq 4p \exp(-\mu^2 / 2)
\]

for all \(t \in [T] \).

Theorem 2 indicates that gradient \(\hat{g}_t \) produced by DPAGD is concentrated around population gradient \(g_t \) with a tight concentration error bound \(\sqrt{p} \sigma (1 + \mu) \). The noise variance \(\sigma \) illustrates a trade-off between privacy and accuracy: A higher noise level \(\sigma \) brings a better privacy guarantee (i.e., a smaller \(\epsilon \)), but meanwhile incurs a larger concentration error \(\sqrt{p} \sigma (1 + \mu) \).
To obtain a generalization bound (i.e., the upper bound on the ℓ_2-norm of the population gradient) of Algorithm 1 with the guarantee of being (ϵ, δ)-differential private, we set the parameter σ, iteration T in Algorithm 1 to satisfy the conditions in Theorem 2, which also brings out an requirement on the sample size n. We present the details and the convergence of the population gradient for DP GD, DP RMSprop and DP Adam in the following section.

4.2 Convergence of the population gradient

In this section, we present the convergence rate of Algorithm 1. We consider different choice of ϕ_t and ψ_t as stated in Table 1. Note that for $\phi_t(\tilde{g}_1, ..., \tilde{g}_t) = \tilde{g}_t$, $\psi_t(\tilde{g}_1, ..., \tilde{g}_t) = I$, Algorithm 1 represents DP GD, which recovers the Algorithm 4 in [31]. For $\phi_t(\tilde{g}_1, ..., \tilde{g}_t) = \tilde{g}_t$, and $\psi_t = (1 - \beta_2) \sum_{j=1}^{t} \beta_2^{t-j} \tilde{g}_j^2$, Algorithm 1 represents DP RMSProp. For $\phi_t(\tilde{g}_1, ..., \tilde{g}_t) = (1 - \beta_1) \sum_{j=1}^{t} \beta_1^{t-j} \tilde{g}_j$, and $\psi_t = (1 - \beta_2) \sum_{j=1}^{t} \beta_2^{t-j} \tilde{g}_j^2$, Algorithm 1 represents DP Adam, which is similar to the noisy adam algorithm in [6]. In the following theorem, we present the convergence rate of DP GD, DP RMSprop and DP Adam respectively.

Theorem 3 (Population risk analysis) Under the Assumption 1 and 2 given training sample S of size n, for any $\epsilon, \delta > 0$ and $n \geq \frac{2 \ln(8/\delta)}{\epsilon^2}$, set σ in Algorithm 1 to be as (6), for any $\beta > 0$,

1. **(DP GD)** Algorithm 1 with $\phi_t(\tilde{g}_1, ..., \tilde{g}_t) = \tilde{g}_t$, $\psi_t(\tilde{g}_1, ..., \tilde{g}_t) = I$, $\nu = 0$, $\lambda = 1$, $T = \frac{ne \sqrt{T}}{G \sqrt{p \ln(1/\delta)}}$, and step size $\eta_t = \frac{\nu}{4L}$ satisfies,

$$
\mathbb{E}\|\nabla f(w_R)\|^2 \leq O \left(\frac{G \sqrt{p \ln(1/\delta)} \ln(np/\beta)}{ne} \right)
$$

with probability at least $1 - \beta$, where w_R is uniformly sampled from $\{w_1, w_2, ..., w_T\}$ and the expectation is over the draw of w_R;

2. **(DP RMSprop)** Algorithm 1 with $\phi_t(\tilde{g}_1, ..., \tilde{g}_t) = \tilde{g}_t$, and $\psi_t = (1 - \beta_2) \sum_{j=1}^{t} \beta_2^{t-j} g_j^2$, $T = \frac{ne \sqrt{T}}{G \sqrt{p \ln(1/\delta)}},$ step size $\eta_t = \eta$, $0 < \beta_2 < 1$, $\lambda > 0$, parameters ν and η are chosen such that: $\eta \leq \frac{\nu}{4L}$ satisfies,

$$
\mathbb{E}\|\nabla f(w_R)\|^2 \leq O \left(\frac{G \sqrt{p \ln(1/\delta)} \ln(np/\beta)}{ne} \right)
$$

with probability at least $1 - \beta$, where w_R is uniformly sampled from $\{w_1, w_2, ..., w_T\}$ and the expectation is over the draw of w_R;

3. **(DP Adam)** Algorithm 1 with $\phi_t(\tilde{g}_1, ..., \tilde{g}_t) = (1 - \beta_1) \sum_{j=1}^{t} \beta_1^{t-j} \tilde{g}_j$, and $\psi_t = (1 - \beta_2) \sum_{j=1}^{t} \beta_2^{t-j} \tilde{g}_j^2$, $T = \frac{ne \sqrt{T}}{G \sqrt{p \ln(1/\delta)}},$ step size $\eta_t = \eta$, $0 < \beta_2 < 1$, $\lambda > 0$, β_1 and ν are chosen such that: $\eta \leq \frac{(\sqrt{1/2} + 4\beta_1/(1 - \beta_1)^2 - 1/2)(1 - \beta_1)^2}{\beta_1} \frac{\nu}{4L}$ satisfies,

$$
\mathbb{E}\|\nabla f(w_R)\|^2 \leq O \left(\frac{G \sqrt{p \ln(1/\delta)} \ln(np/\beta)}{ne} \right)
$$

with probability at least $1 - \beta$, where w_R is uniformly sampled from $\{w_1, w_2, ..., w_T\}$ and the expectation is over the draw of w_R.

6
Theorem 3 shows that DP RMSprop and DP Adam as well as DP GD achieve bound $O\left(\frac{\sqrt{p}}{\sqrt{n}\epsilon}\right)$ on the square of the ℓ_2-norm of the population gradient, i.e., $\|\nabla f(w_R)\|^2$. Using the fact that $\mathbb{E}\|\nabla f(w_R)\|^2 \leq \sqrt{\mathbb{E}\|\nabla f(w_R)\|^2}$, the optimal rate of the ℓ_2-norm of the population gradient i.e., $\|\nabla f(w_R)\|$ is $O\left(\frac{\sqrt{p}}{\sqrt{n}\epsilon}\right)$. Our results and existing results [4, 30, 31] show that there is an additional factor p in the bound caused by privacy compared with non-private case. Compared to the previous result $O\left(\frac{\sqrt{p}}{\sqrt{n}\epsilon}\right)$ in [30], our rate shows improvement on the dependence dimension p. Note that with Polyak-Łojasiewicz condition [20, 25], i.e., $f(w_R) - f(w^*) \leq \kappa \|\nabla f(w_R)\|^2$ for $\kappa > 0$ with w^* to be any population risk minimizer, which shows that the small gradient norm implies small population risk, one can generalize the Theorem 3 to the population risk bound. In terms of computational complexity, Algorithm 1 requires $O\left(\frac{n^2 \epsilon^2}{\sqrt{p}}\right)$ individual gradient computations for $O(n\epsilon/\sqrt{p})$ passes over n samples, which is the same as the DP gradient algorithms in [30].

5 Empirical Risk Analysis

In this section, we compare the generalization bound, i.e., the ℓ_2-norm of the population gradient achieved based on uniform convergence and the bound given by our proof technique in Section 4. Hence, we first provide the empirical risk analysis of DPAGD, i.e., the bound on the population gradient based on uniform convergence.

Theorem 4 (DP GD) Under the Assumption 1 and 2, for any $\epsilon, \delta > 0$, DPAGD (Algorithm 1) with $\phi_t(\tilde{g}_1, \ldots, \tilde{g}_T) = \tilde{g}_t$, $\psi_t(\tilde{g}_1, \ldots, \tilde{g}_t) = 1$, $\beta_2 \geq 0$, σ^2 be as in (6), $\eta_t = \frac{1}{T}$, $T = O\left(\frac{\sqrt{Tn\epsilon}}{\sqrt{p\log(1/\delta)G}}\right)$, $\lambda = 1$ and $\nu = 0$ achieves:

$$
\mathbb{E}\|\nabla \hat{f}(w_R)\|^2 \leq O\left(\frac{\sqrt{LG}\sqrt{p\log(1/\delta)}}{n\epsilon}\right),
$$

where w_R is is uniformly sampled from $\{w_1, w_2, \ldots, w_T\}$.

Theorem 3 shows that DP GD achieves the rate of $\frac{\sqrt{p}}{\sqrt{n}\epsilon}$ on the ℓ_2-norm of the empirical gradient. Actually, in this case, Algorithm 1 is exactly the Algorithm 4 in [31] and we get the same result of the empirical gradient as in [31].

Theorem 5 (DP RMSprop) Under the Assumption 1 and 2, for any $\epsilon, \delta > 0$, DPAGD (Algorithm 1) with $\phi_t(\tilde{g}_1, \ldots, \tilde{g}_t) = \tilde{g}_t$, and $\psi_t = (1 - \beta_2) \sum_{j=1}^t \beta_2^{t-j} \tilde{g}_j^2$, σ^2 be as in (6), $T = O\left(\frac{n\epsilon}{\sqrt{p\log(1/\delta)G}}\right)$, $\eta_t = \eta$, $\lambda > 0 \forall t \in [T]$, ν, β_2 and η are chosen such that $\eta \leq \frac{\nu}{2T}$ and $1 - \beta_2 \leq \frac{\nu^2}{16G^2}$ achieves:

$$
\mathbb{E}\|\nabla \hat{f}(w_R)\|^2 \leq O\left(\frac{G^2\sqrt{p\log(1/\delta)}}{n\epsilon}\right),
$$

where w_R is uniformly sampled from $\{w_1, w_2, \ldots, w_T\}$.

Theorem 5 shows that DP RMSprop achieves the same bound $O\left(\frac{\sqrt{p}}{\sqrt{n}\epsilon}\right)$ as DP GD.
We empirically evaluate the performance of DP SGD, DP RMSprop and DP Adam. Appendix D, we provide a lower bound of gradient uniform convergence rate that matches rate of training and hyper-parameter setting:

From Theorem 5, Theorem 6 and Theorem 4, we have $E\|\nabla \hat{f}(\theta_R)\|^2 \leq O \left(\frac{G^2 \sqrt{p \ln(1/\delta)} \ln(n\sqrt{p\epsilon}/\beta)}{n\epsilon} \right)$, with probability at least $1 - \beta$, where θ_R is uniformly sampled from $\{w_1, w_2, ..., w_T\}$ and the expectation is over the draw of θ_R.

Theorem 6 shows that DP ADAM achieves the same bound $\tilde{O}(\frac{\sqrt{p}}{\sqrt{n}\epsilon})$ as DP GD. Especially, based on the current optimization analysis [8] of Adam that has a worse dependence on p, i.e., $\frac{\sqrt{p}}{\sqrt{n}}$ over n stochastic gradient computations/iterations.

From Theorem 5, Theorem 6 and Theorem 4, we have $E\|\nabla \hat{f}(\theta_R)\|^2 \leq \sqrt{E\|\nabla \hat{f}(\theta_R)\|^2} \leq O(\frac{\sqrt{p}}{\sqrt{n}\epsilon})$. The prior approach extends the bound on the empirical gradient $\|\nabla \hat{f}(\theta)\|$ by using the uniform convergence of empirical gradient to population gradient, i.e., $\sup_\theta \|\nabla f(\theta) - \nabla \hat{f}(\theta)\| = O(\frac{\sqrt{p}}{\sqrt{n}})$ (Theorem 1 in [24]). In Appendix D, we provide a lower bound of gradient uniform convergence rate that matches rate of \sqrt{p}/\sqrt{n}. The lower bound suggests that, the uniform convergence approach, i.e., $E\|\nabla f(\theta_R) - \hat{f}(\theta_R)\| \leq O(\frac{\sqrt{p}}{\sqrt{n}})$ and $E\|\nabla f(\theta_R)\| \leq O(\frac{\sqrt{p}}{\sqrt{n}n\epsilon})$, fails to match our results in Theorem 3.

6 Experiments

We empirically evaluate the performance of DP SGD, DP RMSprop and DP Adam for training various modern deep learning models. We consider two tasks: the MNIST image classification task [23] and the CIFAR-10 image classification task [22]. After briefly discussing the experimental setup, we present experimental results.

Network Architecture and Datasets: For MNIST, we focus on fully connected networks with ReLU activation of 2 hidden layers. For CIFAR10, we use ResNet-18 [18]. The MNIST dataset contains 60,000 black and white training images, representing handwritten digits 0 to 9. Each image of size 28 × 28 is normalized by subtracting the mean and dividing the standard deviation of the training set and converted into a vector of size 784. The CIFAR-10 dataset consists of 60,000 color images including 10 categories. 50,000 of them are for training, and the rest 10,000 are for validation/testing purpose. Every image is of size 32x32 and has 3 color channels. The setup of each task is given in Table 2.

Training and Hyper-parameter Setting: Since optimization hyper-parameters affect the quality of solutions, and [35] find that the initial step size and the scheme of decaying step sizes have a marked impact on the performance, we follow the grid search method with search space $\{0.1, 0.01, 0.001\}$ to tune the step size. For training, a fixed budget on the number of epochs i.e., 100 is assigned for every task. We decay the learning rate by 0.1 every 30 epochs for MNIST and CIFAR-10. The mini-batch size is set to be 256 for CIFAR10 and

\[1\text{We implemented the mini-batch version of DP GD, DP RMSprop and DP Adam in PyTorch based on this repository https://github.com/ChrisWaits/pyvcy.}\]
Table 2: Neural network architecture setup.

Dataset	Network Type	Architecture
MNIST	Feedforward	2-Layer with ReLU
CIFAR-10	Deep Convolutional	ResNet-18

128 for MNIST. Cross-entropy is used as our loss function throughout experiments. We choose the settings achieving the lowest final training loss. We repeat each experiments 5 times and report the mean and standard deviation of the accuracy on the training and test set.

Parameter of Differential Privacy. Since the gradient bound G is unknown for deep learning, we follow the gradient clipping method in [1] to guarantee the privacy. We choose clip size to be 1.0 for MNIST and 0.1 for CIFAR-10. We report results for three choices of the noise scale, i.e., $\sigma^2 = \{2, 4, 8\}$ for MNIST, and $\sigma^2 = \{0.5, 1, 2\}$ for CIFAR-10. We follow the MA [6] to calculate the accumulated privacy cost. Fixing $\delta = 10^{-5}$, the ϵ is $\{1.34, 0.63, 0.31\}$ for MNIST, $\{25.12, 3.48, 1.39\}$ for CIFAR-10.

Figure 1: Comparison of DP Adam, DP RMSprop and DP SGD on MNIST with $\epsilon = \{0.31, 0.63, 1.34\}$. (a-c) correspond to the training accuracy and (d-f) correspond to the test accuracy. The X-axis is the number of epochs, and the Y-axis is the train/test accuracy. The adaptive gradient methods such as DP RMSprop and DP Adam achieve better training and test accuracy than DP SGD, especially for small ϵ.

Experimental Results. The training accuracy and test accuracy for different level of privacy, i.e., ϵ, are reported in Figure 1 and Figure 2 corresponding to MNSIT and CIFAR-10 dataset. For MNIST, Figure 1 shows that adaptive methods such as DP Adam and DP RMSprop progress faster than DP SGD, especial for small privacy cost, i.e., $\epsilon = 0.31$. For CIFAR-10, Figure 2 also shows that adaptive methods performs better that DP SGD in terms of training and test accuracy. As the ϵ increases, the performance gap between adaptive methods and DP SGD increases. In conclusion, DP adaptive gradient methods outperform DP SGD for the two tasks we consider.
7 Conclusion

In this paper, we study the differential private adaptive gradient descent algorithms for non-convex optimization. We provide population risk analysis using the generalization property of differential privacy itself and adaptive data analysis. We obtain a sharper bound on the ℓ_2 norm of the population gradient by taking the advantages of generalization guarantee of differential privacy. We show that uniform convergence argument gives a worse generalization bound even if those algorithms obtain a better empirical gradient bound. Finally, we experimentally evaluate the proposed algorithms and show that DP adaptive gradient methods tend to outperform DP SGD.

Acknowledgement

The research was supported by NSF grants IIS-1908104, OAC-1934634, IIS-1563950, FAI 1939606, CMMI-172775, an ARO grant 73202-CS, an Amazon Research Award, a Google Faculty Research Award, and a Mozilla Research Grant. We would like to thank the Minnesota Super-computing Institute (MSI) for providing computational resources and support.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, pages 308–318, 2016.
[2] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Thakurta. Private stochastic convex optimization with optimal rates. In Advances in Neural Information Processing Systems, pages 11279–11288, 2019.

[3] Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and Jonathan Ullman. Algorithmic stability for adaptive data analysis. In Proceedings of the 48th annual ACM symposium on Theory of computing, pages 1046–1059, 2016.

[4] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Differentially private empirical risk minimization: Efficient algorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, 2014.

[5] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine learning research, 2(Mar):499–526, 2002.

[6] Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep learning with gaussian differential privacy. arXiv preprint arXiv:1911.11607, 2019.

[7] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In Advances in neural information processing systems, pages 289–296, 2009.

[8] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type algorithms for non-convex optimization. In International Conference on Learning Representations, 2019.

[9] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[10] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toni Pitassi, Omer Reingold, and Aaron Roth. Generalization in adaptive data analysis and holdout reuse. In Advances in Neural Information Processing Systems, pages 2350–2358, 2015.

[11] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Roth. The reusable holdout: Preserving validity in adaptive data analysis. Science, 349(6248):636–638, 2015.

[12] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Leon Roth. Preserving statistical validity in adaptive data analysis. In Proceedings of the 47th annual ACM symposium on Theory of computing, pages 117–126. ACM, 2015.

[13] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In Theory of Cryptography Conference, pages 265–284. Springer, 2006.

[14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[15] Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization: optimal rates in linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 439–449, 2020.
[16] Dylan J Foster, Ayush Sekhari, and Karthik Sridharan. Uniform convergence of gradients for non-convex learning and optimization. In Advances in Neural Information Processing Systems, pages 8745–8756, 2018.

[17] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[19] Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe Shenfeld. A new analysis of differential privacy’s generalization guarantees. In 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, pages 31:1–31:17, 2020.

[20] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient methods under the polyak- lojasiewicz condition. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[22] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[24] Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for non-convex losses. arXiv preprint arXiv:1607.06534, 2016.

[25] Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

[26] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International Conference on Learning Representations, 2018.

[27] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic convex optimization. In Conference on Learning Theory, 2009.

[28] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with differentially private updates. In IEEE Global Conference on Signal and Information Processing, pages 245–248, 2013.

[29] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

[30] Di Wang and Jinhui Xu. Differentially private empirical risk minimization with smooth non-convex loss functions: A non-stationary view. In Proceedings of the Conference on Artificial Intelligence, volume 33, pages 1182–1189, 2019.
[31] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization revisited: Faster and more general. In Advances in Neural Information Processing Systems, pages 2722–2731, 2017.

[32] Lingxiao Wang, Bargav Jayaraman, David Evans, and Quanquan Gu. Efficient privacy-preserving nonconvex optimization. arXiv preprint arXiv:1910.13659, 2019.

[33] Yu Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled renyi differential privacy and analytical moments accountant. In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1226–1235, 2019.

[34] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: sharp convergence over nonconvex landscapes. In International Conference on Machine Learning, pages 6677–6686, 2019.

[35] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal value of adaptive gradient methods in machine learning. In Advances in Neural Information Processing Systems, pages 4148–4158, 2017.

[36] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for nonconvex optimization. In Advances in Neural Information Processing Systems, pages 9793–9803, 2018.

[37] Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang. Efficient private erm for smooth objectives. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017.

[38] Yingxue Zhou, Sheng Chen, and Arindam Banerjee. Stable gradient descent. In Conference on Uncertainty in Artificial Intelligence, pages 766–775, 2018.
A Proofs for Section 4.1

Theorem 1 (Privacy guarantee) There exist constants c_1 and c_2 so that given the number of iterations T, for any $\epsilon \leq c_1 T$, DPAGD (Algorithm 7) is (ϵ, δ)-differentially private for any $\delta > 0$ if

$$
\sigma^2 \geq c_2 \frac{G^2 T \ln \left(\frac{1}{\delta} \right)}{n^2 \epsilon^2}.
$$

Proof of Theorem 7: Let w^0 be a parameter generated at each iteration $t \in [T]$ and g_t be the empirical gradient such that $g_t = \mathbb{E}_{z \in S}[\nabla \ell(w_t, z)]$. Then, for any $\tau > 0, \rho > 0$, if the privacy cost of Algorithm 7 satisfies $\epsilon \leq \frac{\tau}{\tau^2}, \delta \leq \frac{\tau^2}{20 \ln(26/\tau)}$ and the sample size $n \geq \frac{2 \ln(8/\delta)}{\epsilon^2}$, we have the following gradient concentration bound for $\hat{g}_t, i.e., \forall i \in [p]$ and $\forall t \in [T],\n
$$
\mathbb{P} \{ |\hat{g}_t - g_t| \geq \tau \} \leq \rho.
$$

Lemma 1 Set σ^2 in DPAGD (Algorithm 7) to be as eq. (6) in Theorem 7. Let w_t be the parameter generated across all iterations, i.e., gradient estimation error $\|\hat{g}_t - g_t\|$ can be bounded with high probability $\forall t \in [T]$ (Theorem 2).

Theorem 2 In DPAGD, set σ to be as (6), and for any $\mu > 0, \epsilon$ and sample size n satisfying $\epsilon \leq \frac{\sigma}{13}$, $\delta \leq \frac{\sigma \exp(-\mu^2/2)}{13 \ln(26/\sigma)}$ and $n \geq \frac{2 \ln(8/\delta)}{\epsilon^2}$, the noisy gradients $\tilde{g}_1, ..., \tilde{g}_T$ produced in Algorithm 7 satisfy

$$
\mathbb{P} \{ \|\tilde{g}_t - g_t\| \geq \sqrt{p} \sigma(1 + \mu) \} \leq 4p \exp(-\mu^2/2)
$$

for all $t \in [T]$.

Proof: The concentration bound can be deduced into two parts:

$$
\mathbb{P} \{ \|\tilde{g}_t - g_t\| \geq \sqrt{d} \sigma(1 + \mu) \} \leq \mathbb{P} \{ \|\tilde{g}_t - \hat{g}_t\| \geq \sqrt{d} \sigma \mu \} + \mathbb{P} \{ \|\hat{g}_t - g_t\| \geq \sqrt{d} \sigma \}
$$

In the above inequality, there are two types of error we need to control. The first type of error, referred to as empirical error T_1, is the deviation between the differentially private estimate gradient \hat{g}_t and the empirical gradient g_t. The second type of error, referred to as generalization error T_2, is the deviation between the empirical gradient \hat{g}_t and the population gradient g_t.

The second term T_2 can be bounded through the generalization guarantee of differential privacy. Recall that from Lemma 1 under the condition that for any $\tau > 0$ and $\rho > 0$, $\epsilon \leq \frac{\tau}{13}$, $\delta \leq \frac{\tau \rho}{26 \ln(26/\sigma)}$ and the sample size $n \geq \frac{2 \ln(8/\delta)}{\epsilon^2}$, we have $\forall i \in [d]$ and $\forall t \in [T]$:
\[P\{ |\hat{g}_i^t - g_i^t| \geq \tau \} \leq \rho. \quad (15) \]
Replace $\tau = \sigma$ and $\rho = 2 \exp(-\mu^2/2)$, we have
\[P\{ |\hat{g}_i^t - g_i^t| \geq \sigma \} \leq 2 \exp(-\mu^2/2), \quad (16) \]
under the condition that $\epsilon \leq \frac{\sigma}{13}$, $\delta \leq \frac{\sigma \exp(-\mu^2/2)}{13 \ln(26/\sigma)}$ and the sample size $n \geq \frac{2 \ln(8/\delta)}{\epsilon^2}$. So that we have
\[P\{ \|\hat{g}_t - g_t\| \geq \sqrt{d}\sigma \} \leq P\{ \|\hat{g}_t - g_t\|_\infty \geq \sigma \} \leq dP\{ |\hat{g}_i^t - g_i^t| \geq \sigma \} \leq 2p \exp(-\mu^2/2) \quad (17) \]
Now we bound the second term T_1. Recall that $\tilde{g}_t = \hat{g}_t + b_t$, where b_t is a noise vector drawn from Gaussian noise $N(0,\sigma^2 I_p)$. Using the tail bound of Gaussian random variable, we have
\[P\{ \|\tilde{g}_t - g_t\| \geq \sqrt{p}\sigma \mu \} \leq P\{ \|b_t\| \geq \sqrt{p}\sigma \mu \} \leq P\{ \|b_t\|_\infty \geq \sigma \mu \} \leq pP\{ |b_i^t| \geq \sigma \mu \} = 2p \exp(-\mu^2/2). \quad (18) \]
The second inequality come from $\|b_t\| \leq \sqrt{d}\|b_t\|_\infty$. Combine (17) and (18), we complete the proof.

B Proofs for Section 4.2

We restate the Theorem 3 in the following three theorems, i.e., Theorem 8, Theorem 9 and Theorem 10 for DP SGD, DP RMSprop and DP Adam in in Sections B.1, B.2 and B.3 respectively. Then we provide the proof of them. Before that, we first give a simplified version of Theorem 2 in Theorem 7.

Theorem 7 Assume σ, ϵ and δ are set to satisfy the conditions in Theorem 2 such that $\epsilon \leq \frac{\sigma}{13}$, $\delta \leq \frac{\sigma \exp(-\mu^2/2)}{13 \ln(26/\sigma)}$ and $\mu > 0$: for the noisy gradients $\tilde{g}_1, ..., \tilde{g}_T$ in Algorithm 1 we have $\forall t \in [T]$ and any $\mu > 0$:
\[P\{ \|\tilde{g}_t - g_t\| \geq \alpha \} \leq \xi, \quad (19) \]
where $\alpha = \sqrt{p}\sigma (1 + \mu)$ and $\xi = 4p \exp(-\mu^2/2)$.

Theorem 7 uses α to present the concentration error $\sqrt{p}\sigma (1 + \mu)$, and ξ to present the probability $4p \exp(-\mu^2/2)$. For simplicity, we first refer to Theorem 7 and use α and ξ in the following sections. Then we bring in $\alpha = \sqrt{p}\sigma (1 + \mu)$ and $\xi = 4p \exp(-\mu^2/2)$ to complete the proof.

B.1 Proof of Theorem 8

Now we present the proof of Theorem 8.
Theorem 8 (DP GD) Under the Assumption 1 and 2, given training sample S of size n, for any $\epsilon, \delta > 0$ and $n \geq \frac{2\ln(8/\delta)}{\epsilon^2}$, for any $\beta > 0$, Algorithm 1 with σ set to be as in (6), $\phi_\ell(\bar{g}_1, ..., \bar{g}_t) = \bar{g}_t$, $\psi_\ell(\bar{g}_1, ..., \bar{g}_t) = I$, $\nu = 0$, $\lambda = 1$, $T = \frac{mn_T}{G\sqrt{p\ln(1/\delta)}}$, and step size $\eta_t = \frac{1}{t\bar{L}}$ satisfies,

$$
\mathbb{E}\|\nabla f(w_R))\|^2 \leq O\left(\frac{G\sqrt{pL\ln(1/\delta)\ln(n\sqrt{p}/\beta)}}{n\epsilon}\right)
$$

(20)

with probability at least $1 - \beta$, where w_R is uniformly sampled from $\{w_1, w_2, ..., w_T\}$ and the expectation is over the draw of w_R.

Proof: Upon the choice of ϕ and ψ in Theorem 8, the update of Algorithm 1 becomes:

$$
w_{t+1} = w_t - \eta_t \bar{g}_t,
$$

(21)

where we have \bar{g}_t, approximate population gradient g_t as $\mathbb{P}\{\|g_t - g_t\| \geq \alpha\} \leq \xi$, and α and ξ are given in Theorem 7.

With Assumption 2 and the update of Algorithm 1, let $\Delta_t = \bar{g}_t - g_t$, we have

$$
f(w_{t+1}) \leq f(w_t) + <g_t, w_{t+1} - w_t> + \frac{L}{2}\eta_t^2\|g_t\|^2
$$

$$
\leq f(w_t) - \eta_t\|g_t\|^2 - \eta_t <g_t, \Delta_t> + \frac{L\eta_t^2}{2}\|\Delta_t\|^2
$$

$$
\leq f(w_t) - \frac{\eta_t}{2}\|g_t\|^2 + \frac{\eta_t}{2}\|\Delta_t\|^2 + L\eta_t^2 (\|g_t\|^2 + \|\Delta_t\|^2)
$$

$$
= f(w_t) - \left(\frac{\eta_t}{2} - L\eta_t^2\right)\|g_t\|^2 + \left(\frac{\eta_t}{2} + L\eta_t^2\right)\|\Delta_t\|^2
$$

(22)

Rearrange the above equation, apply Theorem 7, that $\|\Delta_t\| \leq \alpha$ with probability at least $1 - \xi$, then we have the following

$$
\left(\frac{\eta_t}{2} - L\eta_t^2\right)\|g_t\|^2 \leq f(w_t) - f(w_{t+1}) + \left(\frac{\eta_t}{2} + L\eta_t^2\right)\alpha^2
$$

(23)

with probability at least $1 - \xi$.

Set $\eta_t = \frac{L}{4}$ and sum the above equation over $t = 1, ..., T$, with $f^* = \ell^*$ in Assumption 2, we have

$$
\frac{1}{T}\sum_{t=1}^{T} \frac{1}{16L}\|g_t\|^2 \leq \frac{f(w_1) - f^*}{T} + \frac{3}{16L}\alpha^2
$$

(24)

$$
\Rightarrow \frac{1}{T}\sum_{t=1}^{T} \|g_t\|^2 \leq \frac{16L(f(w_1) - f^*)}{T} + 3\alpha^2
$$

(25)

$$
\Rightarrow \mathbb{E}\|\nabla f(w_R))\|^2 = \frac{1}{T}\sum_{t=1}^{T} \|g_t\|^2 \leq \frac{16L(f(w_1) - f^*)}{T} + 3\alpha^2
$$

(26)

with probability at least $1 - T\xi$.

16
Plugging in \(\alpha = \sqrt{p}\sigma(1 + \mu), \xi = 4p\exp(-\mu^2/2) \) from Theorem 7, \(T = \frac{n\epsilon T}{G\sqrt{p\ln(1/\delta)}} \), and \(\sigma^2 = O\left(\frac{G^2T\ln(\frac{1}{\epsilon})}{n^2\epsilon^2}\right) \) and setting \(\mu = \sqrt{2\ln(4pT/\beta)} \) we have

\[
E\|\nabla f(w_R)\|^2 \leq \left(f(w_1) - f^* \right) \frac{16G\sqrt{pL\ln(1/\delta)}}{n\epsilon} + 3\frac{G\sqrt{pL\ln(1/\delta)}(1 + \mu)^2}{n\epsilon} \leq O\left(\frac{G\sqrt{pL\ln(1/\delta)}\ln(n\sqrt{p}/\beta)}{n\epsilon}\right)
\]

with probability at least \(1 - \beta \).

\[\tag{27}\]

B.2 Proof of Theorem 9

Theorem 9 (DP RMSprop) Under the Assumption 2 and 2 given training sample \(S \) of size \(n \), for any \(\epsilon, \delta > 0 \) and \(n \geq \frac{2\ln(5/\delta)}{\epsilon} \), for any \(\beta > 0 \), Algorithm 2 with \(\sigma \) set to be as (6), \(\psi_t(g_1, ..., g_t) = \tilde{g}_t \), and \(\psi_t = (1 - \beta_2)\sum_{j=1}^{t} \beta_2^{t-j}g_j^T, \quad T = \frac{n\epsilon}{G\sqrt{p\ln(1/\delta)}} \), step size \(\eta_t = \eta, \quad 0 < \beta_2 < 1, \quad \lambda > 0 \), parameters \(\nu \) and \(\eta \) are chosen such that: \(\eta \leq \frac{\nu}{4L} \) satisfies,

\[
E\|\nabla f(w_R)\|^2 \leq O\left(\frac{G\sqrt{pL\ln(1/\delta)}\ln(n\sqrt{p}/\beta)}{n\epsilon}\right)
\]

with probability at least \(1 - \beta \), where \(w_R \) is uniformly sampled from \(\{w_1, w_2, ..., w_T\} \) and the expectation is over the draw of \(w_R \).

Proof: Recall that the update in Theorem 9 is the following

\[
w_{t+1} = w_t - \eta_t \frac{\tilde{g}_t}{\sqrt{v_t} + \nu}.
\]

With Assumption 2 and the update of Algorithm 2 let \(\Delta_t = \tilde{g}_t - g_t \), we have

\[
f(w_{t+1}) \leq f(w_t) + \langle g_t, w_{t+1} - w_t \rangle + \frac{L}{2} \|w_{t+1} - w_t\|^2
\]

\[
= f(w_t) - \eta_t \langle g_t, \tilde{g}_t/(\sqrt{v_t} + \nu) \rangle + \frac{L\eta_t^2}{2} \left\| \frac{\tilde{g}_t}{\sqrt{v_t} + \nu} \right\|^2
\]

\[
= f(w_t) - \eta_t \langle g_t, \tilde{g}_t + \Delta_t/(\sqrt{v_t} + \nu) \rangle + \frac{L\eta_t^2}{2} \left\| \frac{g_t + \Delta_t}{\sqrt{v_t} + \nu} \right\|^2
\]

\[
\leq f(w_t) - \eta_t \langle g_t, \frac{g_t}{\sqrt{v_t} + \nu} \rangle - \eta_t \langle g_t, \frac{\Delta_t}{\sqrt{v_t} + \nu} \rangle + L\eta_t^2 \left(\left\| \frac{g_t}{\sqrt{v_t} + \nu} \right\|^2 + \left\| \frac{\Delta_t}{\sqrt{v_t} + \nu} \right\|^2 \right)
\]

\[
= f(w_t) - \eta_t \sum_{i=1}^{d} \frac{|g_t|^2}{\sqrt{v_t} + \nu} - \eta_t \sum_{i=1}^{d} \sqrt{g_t^2 + \nu} + L\eta_t^2 \left(\sum_{i=1}^{d} \frac{|g_t|^2}{\sqrt{v_t} + \nu} + \sum_{i=1}^{d} \frac{|\Delta_t|^2}{\sqrt{v_t} + \nu} \right)
\]

\[
\leq f(w_t) - \eta_t \sum_{i=1}^{d} \frac{|g_t|^2}{\sqrt{v_t} + \nu} + \frac{\eta_t}{2} \sum_{i=1}^{d} \left| g_t \right|^2 + \frac{\eta_t}{2} \sum_{i=1}^{d} \left| \Delta_t \right|^2 + L\eta_t^2 \left(\sum_{i=1}^{d} \frac{|g_t|^2}{\sqrt{v_t} + \nu} + \sum_{i=1}^{d} \frac{|\Delta_t|^2}{\sqrt{v_t} + \nu} \right)
\]

\[\tag{28}\]
\[f(w_t) - \eta_t = f(w_t) - \left(\eta_t - \eta_t^2 \right) + \left(\eta_t + \frac{L\eta_t^2}{\nu} \right) \sum_{i=1}^{d} \frac{|g_t|_i^2}{\sqrt{v_t^i + \nu}} + \left(\eta_t - \frac{L\eta_t^2}{\nu} \right) \sum_{i=1}^{d} \frac{(|\Delta_t|_i^2)}{\sqrt{v_t^i + \nu}} \]

(30)

Given the parameter setting from the Theorem 9 with \(\eta_t = \eta \) we have the following condition hold

\[\frac{L\eta}{\nu} \leq \frac{1}{4}. \]

(31)

Then we obtain

\[
\begin{align*}
f(w_{t+1}) &\leq f(w_t) - \eta \sum_{i=1}^{d} \frac{|g_t|_i^2}{\sqrt{v_t^i + \nu}} + \frac{3\eta}{4} \sum_{i=1}^{d} \frac{|\Delta_t|_i^2}{\sqrt{v_t^i + \nu}} \\
&\leq f(w_t) - \frac{\eta}{\sqrt{\lambda + \nu}} \|g_t\|^2 + \frac{3\eta}{4\nu} \|\Delta_t\|^2
\end{align*}
\]

(32)

The second inequality follows from the fact that \(0 \leq v_t^i \leq \lambda \). Using the telescoping sum and rearranging the inequality, we obtain

\[
\frac{\eta}{\sqrt{\lambda + \nu}} \sum_{t=1}^{T} \|g_t\|^2 \leq f(w_1) - f^* + \frac{3\eta}{4\nu} \sum_{t=1}^{T} \|\Delta_t\|^2
\]

(33)

Multiplying with \(\frac{\sqrt{\lambda + \nu}}{\eta T} \) on both sides and with the guarantee in Theorem 1 that \(\|\Delta_t\| \leq \alpha \) with probability at least \(1 - \xi \), we obtain

\[
\frac{1}{T} \sum_{t=1}^{T} \|g_t\|^2 \leq \left(\sqrt{\lambda + \nu} \right) \times \left(\frac{f(w_1) - f^*}{\eta T} + \frac{3\alpha^2}{4\nu} \right)
\]

(34)

\[
\Rightarrow E\|\nabla f(w_R)\|^2 = \frac{1}{T} \sum_{t=1}^{T} \|g_t\|^2 \leq \left(\sqrt{\lambda + \nu} \right) \times \left(\frac{f(w_1) - f^*}{\eta T} + \frac{3\alpha^2}{4\nu} \right)
\]

(35)

with probability at least \(1 - T\xi \).

Plugging in \(\alpha = \sqrt{p} \sigma(1 + \mu) \), \(\xi = 4p \exp(-\mu^2/2) \) from Theorem 7, \(T = \frac{ne}{G \sqrt{p \ln(1/\delta)}} \), and \(\sigma^2 = O \left(\frac{G^2 T \ln(\frac{1}{T})}{n \epsilon^2} \right) \) and setting \(\mu = \sqrt{2 \ln(4pT/\beta)} \) we have

\[
E\|\nabla f(w_R)\|^2 \leq \left(\sqrt{\lambda + \nu} \right) \left(f(w_1) - f^* \right) \frac{G \sqrt{p \ln(1/\delta)}}{\eta T} + 3 \frac{G \sqrt{p L \ln(1/\delta)}(1 + \mu)^2}{n \epsilon}
\]

(36)

with probability at least \(1 - \beta \).
B.3 Proof of Theorem 10

Theorem 10 (DP Adam) Under the Assumption 7 and 2, given training sample S of size n, for any ε, δ > 0 and n ≥ \(\frac{2\ln(8/δ)}{\epsilon^2}\), for any β > 0, Algorithm \(\Box\) with σ set to be as (6), \(\phi_t(g_1, \ldots, g_t) = (1 - \beta_1)\sum_{j=1}^{t} \beta_1^{t-j} g_j\), and \(\psi_t = (1 - \beta_2)\sum_{j=1}^{t} \beta_2^{t-j} \hat{g}_j^2\), \(T = \frac{ne}{G\sqrt{p\ln(1/δ)}}, \) step size \(\eta_t = \eta, 0 < \beta_2 < 1, \lambda > 0, \beta_1\) and \(\nu\) are chosen such that: \(\eta \leq (\sqrt{1/2 + 4\beta_1/(1 - \beta_1)^2} - 1/2)\frac{(1 - \beta_1)^2}{\beta_1 - \epsilon} \) satisfies,
\[\mathbb{E}\|\nabla f(w_R)\|^2 \leq O\left(\frac{G\sqrt{p\ln(1/δ)}\ln(\frac{n\epsilon}{\beta})}{n\epsilon}\right)\]
with probability at least \(1 - \beta\), where \(w_R\) is uniformly sampled from \(\{w_1, w_2, \ldots, w_T\}\) and the expectation is over the draw of \(w_R\).

Proof: Recall that the Adam update rule is
\[w_{t+1} = w_t - \eta_t \frac{m_t}{\sqrt{v_t} + \nu}\]
where \(m_t = \psi_t = (1 - \beta_1)\sum_{j=1}^{t} \beta_1^{t-j} \hat{g}_j\).
For the ease of presentation, we reload division operation for vectors. We let \(a/b\) to be element-wise division when both \(a\) and \(b\) are vectors. When \(a\) is a vector, \(b\) is a scalar, we let \(a/b\) return a vector with each element in \(a\) divided by \(b\). Multiplication, addition and subtraction are reloaded similarly.

With this notation, the update rule of Adam is rewritten as
\[w_{t+1} = w_t - \eta_t \frac{m_t}{\sqrt{v_t} + \nu}\]
(38)

First, by smoothness assumption, we have
\[
f(w_{t+1}) \leq f(w_t) + \langle g_t, w_{t+1} - w_t \rangle + \frac{L}{2}\|w_{t+1} - w_t\|^2
\]
\[
= f(w_t) - \eta_t \frac{1}{\gamma_t} \langle \sqrt{\gamma_t} g_t, \frac{m_t}{\sqrt{v_t} + \nu} \rangle + \frac{L}{2}\|w_{t+1} - w_t\|^2
\]
\[
= f(w_t) - \frac{\eta_t}{2\gamma_t} \left(\left\| \frac{m_t}{\sqrt{v_t} + \nu} \right\|^2 + \left\| \frac{\gamma_t g_t}{\sqrt{v_t} + \nu} \right\|^2 - \left\| \frac{\gamma_t g_t - m_t}{\sqrt{v_t} + \nu} \right\|^2 \right) + \frac{L}{2}\|w_{t+1} - w_t\|^2
\]
(40)

where we define \(\gamma_t \triangleq 1 - \beta_1^t\).

To proceed, we need to further upper-bound \(U_1(t)\) and \(U_2(t)\). We can first bound \(U_2(t)\) as
\[
\sum_{t=1}^{T} U_2(t) = \sum_{t=1}^{T} \|w_{t+1} - w_t\|^2 = \sum_{t=1}^{T} \eta_t^2 \left\| \frac{m_t}{\sqrt{v_t} + \nu} \right\|^2 \leq \sum_{t=1}^{T} \eta_t^2 \frac{1}{\nu} \left\| \frac{m_t}{\sqrt{v_t} + \nu} \right\|^2
\]
(41)
For $U_1(t)$, we can rewrite it as

$$U_1(t) = \left\| \frac{\gamma_t g_t - m_t}{\sqrt{v_t + \nu}} \right\|^2 = \left\| \frac{(1 - \beta_1^t)g_t - (1 - \beta_1^t)\sum_{j=1}^t \beta_1^{t-j}g_t + ((1 - \beta_1)\sum_{j=1}^t \beta_1^{t-j}g_t - (1 - \beta_1)\sum_{j=1}^t \beta_1^{t-j}\tilde{g}_j)}{\sqrt{v_t + \nu}} \right\|^2$$

where the last equality is due to $\sum_{j=1}^t \beta_1^{t-j} = \frac{1 - \beta_1^t}{1 - \beta_1}$.

Now we have

$$U_1(t) = \left\| \frac{(1 - \beta_1)\sum_{j=1}^t \beta_1^{t-j}(g_t - \tilde{g}_j)}{\sqrt{v_t + \nu}} \right\|^2 \leq \frac{1}{\nu} \left\| (1 - \beta_1)\sum_{j=1}^t \beta_1^{t-j}(g_t - \tilde{g}_j) \right\|^2$$

$$= \frac{1}{\nu} (1 - \beta_1)^2 \left\langle \sum_{j=1}^t \beta_1^{t-j}(g_t - \tilde{g}_j), \sum_{k=1}^t \beta_1^{t-k}(g_t - \tilde{g}_k) \right\rangle$$

$$= \frac{1}{\nu} (1 - \beta_1)^2 \sum_{j=1}^t \sum_{k=1}^t \beta_1^{t-j}\beta_1^{t-k} \langle g_t - \tilde{g}_j, g_t - \tilde{g}_k \rangle$$

$$\leq \frac{1}{\nu} (1 - \beta_1)^2 \sum_{j=1}^t \sum_{k=1}^t \beta_1^{t-j}\beta_1^{t-k} \frac{1}{2} (\|g_t - \tilde{g}_j\|^2 + \|g_t - \tilde{g}_k\|^2)$$

$$= \frac{1}{\nu} (1 - \beta_1)^2 \sum_{j=1}^t \sum_{k=1}^t \beta_1^{t-j}\beta_1^{t-k} \|g_t - \tilde{g}_j\|^2$$

$$= \frac{1}{\nu} (1 - \beta_1)^2 \sum_{j=1}^t \|g_t - \tilde{g}_j\|^2$$

$$\leq \frac{1}{\nu} (1 - \beta_1) \sum_{j=1}^t \beta_1^{t-j} \|g_t - \tilde{g}_j\|^2$$

(42)

By the smoothness assumption, we further have

$$U_1(t) \leq \frac{1}{\nu} (1 - \beta_1) \sum_{j=1}^t \beta_1^{t-j} \|g_t - \tilde{g}_j\|^2$$

$$\leq \frac{1}{\nu} (1 - \beta_1) \sum_{j=1}^t \beta_1^{t-j} 2(\|g_t - \tilde{g}_j\|^2 + \|g_j - \tilde{g}_j\|^2)$$

$$\leq \frac{2L^2}{\nu} (1 - \beta_1) \sum_{j=1}^t \beta_1^{t-j} \|w_t - w_j\|^2 + \frac{1}{\nu} (1 - \beta_1) \sum_{j=1}^t \beta_1^{t-j} \|g_j - \tilde{g}_j\|^2$$

(43)
For $U_3(t)$, when $\eta_t = \eta$ we have

\[
\sum_{t=1}^{T} U_3(t) = \sum_{t=1}^{T} \sum_{j=1}^{t} \beta_1^{t-j} \|w_j - w_{t-j}\|^2 = \sum_{t=1}^{T} \sum_{k=0}^{t-1} \beta_1^{t-k} \|w_t - w_{t-k}\|^2
\]

\[
= \sum_{t=1}^{T} \sum_{k=0}^{t-1} \beta_1^{t-k} \eta^2 \left(\sum_{t=k+1}^{t-1} \frac{m_t}{\sqrt{\nu_t + \nu}} \right)^2
\]

\[
\leq \frac{2\beta_1}{(1 - \beta_1)^3} \eta^2 \sum_{t=1}^{T} \frac{m_t}{\sqrt{\nu_t + \nu}} \left(\sum_{t=k+1}^{t-1} \frac{m_t}{\sqrt{\nu_t + \nu}} \right)^2
\]

\[
\leq \frac{2\beta_1}{(1 - \beta_1)^3} \eta^2 \sum_{t=1}^{T-1} \frac{m_t}{\sqrt{\nu_t + \nu}} \left(\sum_{t=k+1}^{t-1} \frac{m_t}{\sqrt{\nu_t + \nu}} \right)^2
\]

(44)

where the first inequality is by applying Lemma 2.

Now we bound $U_4(t)$ using Theorem 7 as

\[
\sum_{t=1}^{T} U_4(t) = \sum_{t=1}^{T} \sum_{j=1}^{t} \beta_1^{t-j} \|g_j - \hat{g}_j\|^2 \leq \sum_{t=1}^{T} \sum_{j=1}^{t} \beta_1^{t-j} \alpha^2 \leq \frac{T}{1 - \beta_1} \alpha^2
\]

(45)

with probability at least $1 - T\xi$.

Now, sum (40) with t from 1 to T and substitute into (43), (41), (44) and (45) with some rearrangement, we get

\[
\sum_{t=1}^{T} \frac{\eta^2}{2\gamma_t} \left(\left\| \frac{m_t}{\sqrt{\nu_t + \nu}} \right\|^2 + \gamma_t \left\| \frac{g_t}{\sqrt{\nu_t + \nu}} \right\|^2 \right) \leq f(w_1) - f(w_{T+1}) + \frac{L}{2} \eta^2 \sum_{t=1}^{T} \left\| \frac{m_t}{\sqrt{\nu_t + \nu}} \right\|^2
\]

\[
+ \eta^3 \frac{2L^2}{\nu} \frac{\beta_1}{(1 - \beta_1)^2} \sum_{t=1}^{T-1} \left\| \frac{m_t}{\sqrt{\nu_t + \nu}} \right\|^2 + \frac{\eta}{2(1 - \beta_1)} \frac{1}{\nu} T \alpha^2
\]

(46)

Merging similar terms, we have

\[
\sum_{t=1}^{T} \frac{\eta^2}{2\gamma_t} \left(\gamma_t \left\| \frac{g_t}{\sqrt{\nu_t + \nu}} \right\|^2 \right) \leq f(w_1) - f(w_{T+1}) + \frac{\eta}{2(1 - \beta_1)} \frac{1}{\nu} T \alpha^2
\]

(47)

\[
+ \left(\eta^3 \frac{2L^2}{\nu^2} \frac{\beta_1}{(1 - \beta_1)^2} + \eta^2 \frac{L}{2\nu} - \frac{\eta}{2} \right) \sum_{t=1}^{T} \frac{1}{\gamma_t} \left\| \frac{m_t}{\sqrt{\nu_t + \nu}} \right\|^2
\]

When \(\left(\eta^3 \frac{2L^2}{\nu^2} \frac{\beta_1}{(1 - \beta_1)^2} + \eta^2 \frac{L}{2\nu} - \frac{\eta}{2} \right) \leq 0 \), i.e., \(\eta \leq (\sqrt{1/2 + 4\beta_1/(1 - \beta_1)^2} - 1/2) \frac{(1 - \beta_1)^2}{4\beta_1} \), we can further simplify the above inequality as

\[
\frac{(1 - \beta_1)}{\sqrt{\nu + \nu}} \sum_{t=1}^{T} \frac{\eta}{2} \left\| g_t \right\|^2 \leq \sum_{t=1}^{T} \frac{\eta^2}{2\gamma_t} \gamma_t \left\| \frac{g_t}{\sqrt{\nu_t + \nu}} \right\|^2 \leq f(w_1) - f(w_{T+1}) + \frac{\eta}{2(1 - \beta_1)} \frac{1}{\nu} T \alpha^2
\]

(48)
where the first inequality is due to the fact that $0 \leq v_i \leq \lambda$.

Rearranging, we have

$$\frac{1}{T} \sum_{t=1}^{T} \|g_t\|^2 \leq \frac{\sqrt{\lambda} + \nu}{1 - \beta_1} \left(\frac{2}{\eta T} (f(w_1) - f(w_{T+1})) + \frac{1}{(1 - \beta_1) \nu^2} \right)$$

Pick R uniformly randomly from 1 to T, we know

$$\mathbb{E}\|\nabla f(w_R)\|^2 \leq \frac{\sqrt{\lambda} + \nu}{1 - \beta_1} \left(\frac{2}{\eta T} (f(w_1) - f(w_{T+1})) + \frac{1}{(1 - \beta_1) \nu^2} \right)$$

with probability at least $1 - T \xi$.

Plugging in $\alpha = \sqrt{p \sigma (1 + \mu)}$, $\xi = 4p \exp(-\mu^2/2)$ from Theorem 7, $T = \frac{ne}{G \sqrt{p \ln(1/\delta)}}$, and $\sigma^2 = O \left(\frac{G^2 T \ln(1/\delta)}{n^2 \epsilon^2} \right)$ and setting $\mu = \sqrt{2 \ln(4pT/\beta)}$, with $f^* = \ell^*$ in Assumption 2 we have

$$\mathbb{E}\|\nabla f(w_R)\|^2 \leq \left(\frac{\sqrt{\lambda} + \nu}{1 - \beta_1} \right) \left((f(w_1) - f^*) \frac{G \sqrt{p \ln(1/\delta)}}{n \epsilon} + 3 \frac{G \sqrt{p L \ln(1/\delta)} (1 + \mu)^2}{n \epsilon} \right)$$

$$\leq O \left(\frac{G \sqrt{p \ln(1/\delta)} \ln(n \sqrt{p}/\beta)}{n \epsilon} \right)$$

with probability at least $1 - \beta$.

Lemma 2 For any $T \geq 1$, $0 < \beta_1 < 1$ and b_t we have

$$\sum_{t=1}^{T} \sum_{k=0}^{t-1} \beta_k^i \left\| \sum_{l=t-k}^{t-1} b_l \right\|^2 \leq \frac{2\beta_1}{(1 - \beta_1)^3} \sum_{t=1}^{T-1} \|b_t\|^2$$

Proof: The proof consists of a series of algebraic manipulations as follows.

$$\sum_{t=1}^{T} \sum_{k=0}^{t-1} \beta_k^i \left\| \sum_{l=t-k}^{t-1} b_l \right\|^2$$

$$\leq \sum_{t=1}^{T} \sum_{k=0}^{t-1} \beta_k^i k \sum_{l=t-k}^{t-1} \|b_l\|^2$$

$$= \sum_{t=1}^{T} \sum_{k=1}^{t-1} \sum_{l=t-k}^{t-1} k \beta_k^i \|b_l\|^2$$

$$= \sum_{t=1}^{T} \sum_{l=1}^{t-1} \|b_l\|^2 \sum_{k=t-l}^{t-1} \sum_{o=1}^{k} \beta_k^i$$

$$= \sum_{t=1}^{T} \sum_{l=1}^{t-1} \|b_l\|^2 \sum_{o=1}^{t-1} \sum_{k=\max(o,t-l)}^{t-1} \beta_k^i$$

22
≤ \sum_{t=1}^{T} \sum_{l=1}^{t-1} \|b_l\|^2 \sum_{o=1}^{t-1} \frac{1}{1 - \beta_1 \beta_1^{\max(o,t-l)}}
\leq \frac{1}{1 - \beta_1} \sum_{t=1}^{T} \sum_{l=1}^{t-1} \|b_l\|^2 \left((t - l) \beta_1^{t-l} + \frac{1}{1 - \beta_1} \beta_1^{t-l+1} \right)
= \frac{1}{1 - \beta_1} \sum_{l=1}^{T-1} \|b_l\|^2 \sum_{l=t+1}^{T} \left((t - l) \beta_1^{t-l} + \frac{1}{1 - \beta_1} \beta_1^{t-l+1} \right)
\leq \frac{1}{1 - \beta_1} \sum_{l=1}^{T-1} \|b_l\|^2 \left(\frac{\beta_2}{(1 - \beta_1)^2} + \sum_{r=1}^{T-l} r \beta_1^r \right)
\leq \frac{1}{1 - \beta_1} \sum_{l=1}^{T-1} \|b_l\|^2 \left(\frac{\beta_2}{(1 - \beta_1)^2} + \beta_1 \right)
\leq 2 \frac{\beta_1}{(1 - \beta_1)^3} \sum_{l=1}^{T-1} \|b_l\|^2
\leq O \left(\frac{\beta_1}{(1 - \beta_1)^2} \right)
\leq O \left(\frac{\beta_1}{(1 - \beta_1)^2} \right)
(52)

where (a) is by introducing \(r = t - l \) and (b) is due to \(\sum_{r=1}^{T-l} r \beta_1^r = \sum_{q=1}^{T-l} \sum_{r=q}^{T-l} \beta_1^r \leq \frac{\beta_1}{1 - \beta_1} \sum_{q=1}^{T-l} \beta_1^q \leq \frac{\beta_1}{(1 - \beta_1)^2} \).

C Proofs for Section 5

We present the proof of Theorem 4, Theorem 5 and Theorem 6 in Section C.1, Section C.2 and Section C.3 respectively.

C.1 Proof of Theorem 4

Theorem 4 (DP GD) Under the Assumption 1 and 2, for any \(\epsilon, \delta > 0 \), DPAGD (Algorithm 1) with \(\phi_t(\tilde{g}_1, ..., \tilde{g}_t) = \tilde{g}_t, \psi_t(\tilde{g}_1, ..., \tilde{g}_t) = I, \sigma^2 \) be as in (6), \(\eta_t = 1 \leq \frac{1}{T}, T = O \left(\frac{\sqrt{L} G \sqrt{p \log(1/\delta)}}{\epsilon} \right), \lambda = 1 \) and \(\nu = 0 \) achieves:

\[
\mathbb{E}\|\nabla \hat{f}(w_R)\|^2 \leq O \left(\frac{L G \sqrt{p \log(1/\delta)}}{\epsilon} \right),
\]

where \(w_R \) is is uniformly sampled from \(\{w_1, w_2, ..., w_T\} \).

Proof: Let \(\tilde{g}_t = \mathbb{E}_{z \in S}[\nabla \ell(w_t, z)] \) denotes the full-batch gradient at iteration \(t \). We have \(\tilde{g}_t = \nabla \hat{f}(w_t) \).

Using this notation, we have the update of Algorithm 1 in Theorem 4 is

\[
w_{t+1} = w_t - \eta_t \tilde{g}_t
\]
(53)

where \(\tilde{g}_t = \hat{g}_t + b_t \).
By descent lemma:
\[
\mathbb{E}_t[\hat{f}(w_{t+1})] \leq \hat{f}(w_t) + \mathbb{E}_t \left[<\nabla \hat{f}(w_t), w_{t+1} - w_t > \right] + \frac{L}{2} \eta_t^2 \mathbb{E}_t \left[||\tilde{g}_t||^2 \right]
\]
\[
= \hat{f}(w_t) - \eta_t \mathbb{E}_t <\nabla \hat{f}(w_t), \tilde{g}_t + b_t > + \frac{L}{2} \eta_t^2 \mathbb{E}_t \left[||\tilde{g}_t + b_t||^2 \right]
\]
\[
\leq \hat{f}(w_t) - \left(\eta_t + \frac{L}{2} \eta_t^2 \right) ||\nabla \hat{f}(w_t)||^2 + \frac{L}{2} \eta_t^2 \nu \sigma^2
\]
(54)

Take \(\eta_t = \frac{1}{T} \) we have
\[
\mathbb{E}_t[\hat{f}(w_{t+1})] \leq \hat{f}(w_t) - \frac{1}{2L} ||\nabla \hat{f}(w_t)||^2 + \frac{1}{2L} \nu \sigma^2
\]
(55)

Using telescoping sum and rearranging the inequality, with \(f^* = \ell^* \) in Assumption 2 we obtain
\[
\mathbb{E}||\nabla \hat{f}(w_T)||^2 = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}||\nabla \hat{f}(w_t)||^2 \leq \frac{L (f(w_1) - f^*)}{T} + \nu \sigma^2
\]
(56)

Plugging in \(T = O \left(\frac{\sqrt{T \log(1/\delta)} }{ \sqrt{p \log(1/\delta)} } \right) \) and \(\sigma^2 = O \left(\frac{G^2 T \ln(\frac{1}{\delta})}{n \epsilon^2} \right) \) achieves:
\[
\mathbb{E}||\nabla \hat{f}(w_T)||^2 \leq O \left(\frac{\sqrt{L G \sqrt{p \log(1/\delta)}}}{n \epsilon} \right),
\]
(57)

where \(w_R \) is is uniformly sampled from \(\{w_1, w_2, ..., w_T\} \).

\[\]
\[\]
\[\]
\[\]
C.2 Proof of Theorem 5

We restate the Theorem 5 here for convenience.

Theorem 5 (DP RMSprop) Under the Assumption 7 and 2 for any \(\epsilon, \delta > 0 \), DPAGD (Algorithm 1) with \(\phi_t(\tilde{g}_1, ..., \tilde{g}_t) = \tilde{g}_t \), and \(\psi_t = (1 - \beta_2) \sum_{j=1}^{t} \frac{\beta_2^j}{j} \tilde{g}_j^2 \), \(\sigma^2 \) be as in (6), \(T = O \left(\frac{\eta \nu \log(1/\delta)}{\sqrt{p \log(1/\delta)G}} \right) \), \(\eta_t = \eta \), \(\lambda > 0 \forall t \in [T], \nu, \beta_2 \) and \(\eta \) are chosen such that: \(\eta \leq \frac{\nu}{2L} \) and \(1 - \beta_2 \leq \frac{\nu^2}{16 \lambda \sigma^2} \) achieves:
\[
\mathbb{E}||\nabla \hat{f}(w_T)||^2 \leq O \left(\frac{G^2 \sqrt{p \log(1/\delta)}}{n \epsilon} \right),
\]
(12)

where \(w_R \) is uniformly sampled from \(\{w_1, w_2, ..., w_T\} \).

Proof: Let \(\tilde{g}_t = \mathbb{E}_{z \in S}[\nabla \ell(w_t, z)] \) denotes the full-batch gradient at iteration \(t \). We have \(\tilde{g}_t = \nabla \hat{f}(w_t) \).

Using this notation, we have the update of Algorithm 1 in Theorem 5 is
\[
w_{t+1} = w_t - \eta_t \tilde{g}_t / (\sqrt{\nu_t} + \nu),
\]
(58)

where \(\tilde{g}_t = \hat{g}_t + b_t \) and \(\nu_t = (1 - \beta_2) \sum_{i=j}^{t} \frac{\beta_2^j}{j} \tilde{g}_j^2 \).
By descent lemma, we have

\[
\mathbb{E}_t[\tilde{f}(w_{t+1})] \leq \hat{f}(w_t) + \mathbb{E}_t (g_t, w_{t+1} - w_t) + \frac{L}{2} \mathbb{E}_t \|w_{t+1} - w_t\|^2 \\
= \hat{f}(w_t) - \eta_t \mathbb{E}_t (g_t, \tilde{g}_t/(\sqrt{\nu}) + \frac{L\eta_t^2}{2} \mathbb{E}_t \left\| \frac{\tilde{g}_t}{(\sqrt{\nu})} \right\|^2 \\
= \hat{f}(w_t) - \eta_t \sum_{i=1}^{p} \left(\tilde{g}_t^i \times \mathbb{E}_t \left[\frac{\tilde{g}_t^i + b_t^i}{\sqrt{\nu}} + \frac{\tilde{g}_t^i + b_t^i}{\sqrt{\nu}} - \frac{\tilde{g}_t^i + b_t^i}{\sqrt{\nu}} \right] \right) + \frac{L\eta_t^2}{2} \mathbb{E}_t \left\| \frac{\tilde{g}_t + b_t}{(\sqrt{\nu})} \right\|^2 \\
\leq \hat{f}(w_t) - \eta_t \sum_{i=1}^{p} \left(\frac{|\tilde{g}_t^i|^2}{\beta_2 v_{t-1}^i + \nu} + \eta_t \sum_{i=1}^{p} |\tilde{g}_t^i| \mathbb{E}_t \left[\frac{\tilde{g}_t^i + b_t^i}{\sqrt{\nu}} - \frac{\tilde{g}_t^i + b_t^i}{\sqrt{\nu}} \right] \right) + \frac{L\eta_t^2}{2} \mathbb{E}_t \left\| \frac{\tilde{g}_t + b_t}{(\sqrt{\nu})} \right\|^2 \\
\tag{59}
\]

The forth equality follows from the fact that \(b_t \) and \(g_t \) are independent of \(v_{t-1} \) conditioned on the release of the past parameters and noise at time step \(t \). Now we found \(T_1 \):

\[
T_1 = \frac{\tilde{g}_t^i + b_t^i}{\sqrt{\nu}} - \frac{\tilde{g}_t^i + b_t^i}{\sqrt{\nu}} \\
\leq |\tilde{g}_t^i + b_t^i| \times \left| \frac{1}{\sqrt{\nu}} - \frac{1}{\sqrt{\nu}} \right| \\
= \frac{|\tilde{g}_t^i + b_t^i|}{(\sqrt{\nu})^2} \times \frac{|v_{t-1} - \beta_2 v_{t-1}^i|}{\sqrt{\nu} + \sqrt{\beta_2 v_{t-1}^i}} \\
= \frac{|\tilde{g}_t^i + b_t^i|}{(\sqrt{\nu})^2} \times \frac{(1 - \beta_2)(\tilde{g}_t^i + b_t^i)^2}{\sqrt{\nu} + \sqrt{\beta_2 v_{t-1}^i}} \\
= \frac{|\tilde{g}_t^i + b_t^i|}{(\sqrt{\nu})^2} \times \frac{(1 - \beta_2)(\tilde{g}_t^i + b_t^i)^2}{\sqrt{\beta_2 v_{t-1}^i} + (1 - \beta_2)(\tilde{g}_t^i + b_t^i)^2 + \sqrt{\beta_2 v_{t-1}^i}} \\
\leq \frac{1}{(\sqrt{\nu})^2} \times (1 - \beta_2)(\tilde{g}_t^i + b_t^i)^2 \\
\leq \frac{\sqrt{(1 - \beta_2)(\tilde{g}_t^i + b_t^i)^2}}{(\sqrt{\beta_2 v_{t-1}^i} + (1 - \beta_2)(\tilde{g}_t^i + b_t^i)^2 + \sqrt{\beta_2 v_{t-1}^i})} \\
\leq \frac{1}{\sqrt{1 - \beta_2}} \tag{60}
\]

Here, the last inequality is obtained by dropping \(v_{t}^i \) from the denominator to obtain an upper bound. The second inequality is due to the fact that

\[
\frac{|\tilde{g}_t^i + b_t^i|}{\sqrt{\beta_2 v_{t-1}^i} + (1 - \beta_2)(\tilde{g}_t^i + b_t^i)^2 + \sqrt{\beta_2 v_{t-1}^i}} \leq \frac{1}{\sqrt{1 - \beta_2}} \tag{61}
\]

25
Substituting the above bound on T_1 in (59), using $g_t = \nabla \hat{f}(w_t)$, we have the following:

\[
\mathbb{E}[\hat{f}(w_{t+1})] \leq \hat{f}(w_t) - \eta_t \sum_{i=1}^{p} \frac{\left[\nabla \hat{f}(w_t)\right]_i^2}{\sqrt{\beta_2 v_{i-1}^t + \nu}} + \frac{\eta_t G \sqrt{1 - \beta_2}}{\nu} \sum_{i=1}^{p} \mathbb{E}_t \left[\frac{\left[\nabla \hat{f}(w_t)\right]_i + b_i^t}{\sqrt{\beta_2 v_{i-1}^t + \nu}}\right] \\
+ \frac{L_n^2}{2\nu} \sum_{i=1}^{d} \mathbb{E}_t \left[\frac{\left[\nabla \hat{f}(w_t)\right]_i + b_i^t}{\sqrt{\beta_2 v_{i-1}^t + \nu}}\right]
\]

\[
\leq \hat{f}(w_t) - \eta_t \sum_{i=1}^{p} \frac{\left[\nabla \hat{f}(w_t)\right]_i^2}{\sqrt{\beta_2 v_{i-1}^t + \nu}} + \frac{\eta_t G \sqrt{1 - \beta_2}}{\nu} \sum_{i=1}^{p} \mathbb{E}_t \left[\frac{\left[\nabla \hat{f}(w_t)\right]_i + b_i^t}{\sqrt{\beta_2 v_{i-1}^t + \nu}}\right] \\
+ \frac{L_n^2}{2\nu} \sum_{i=1}^{d} \mathbb{E}_t \left[\frac{\left[\nabla \hat{f}(w_t)\right]_i + b_i^t}{\sqrt{\beta_2 v_{i-1}^t + \nu}}\right]
\]

\[
= \hat{f}(w_t) - \left(\eta_t - \frac{\eta_t G \sqrt{1 - \beta_2}}{\nu} \right) \sum_{i=1}^{p} \frac{\left[\nabla \hat{f}(w_t)\right]_i^2}{\sqrt{\beta_2 v_{i-1}^t + \nu}} + \left(\frac{\eta_t G \sqrt{1 - \beta_2}}{\nu} + \frac{L_n^2}{2\nu}\right) \sum_{i=1}^{p} \frac{\sigma_i^2}{\sqrt{\beta_2 v_{i-1}^t + \nu}}.
\]

Given the parameter setting from the theorem, we see the following condition hold: $\frac{L_n}{\nu} \leq \frac{1}{2}$ and $\frac{G \sqrt{1 - \beta_2}}{\nu} \leq \frac{1}{4}$. Let $\eta_t = \eta$, we obtain

\[
\mathbb{E}_t \hat{f}(w_{t+1}) \leq \hat{f}(w_t) - \frac{\eta}{4} \sum_{i=1}^{p} \frac{\left[\nabla \hat{f}(w_t)\right]_i^2}{\sqrt{\beta_2 v_{i-1}^t + \nu}} + \frac{\eta}{2} \sum_{i=1}^{p} \frac{\sigma_i^2}{\sqrt{\beta_2 v_{i-1}^t + \nu}}
\]

\[
= \hat{f}(w_t) - \frac{\eta}{4} \frac{\left\|\nabla \hat{f}(w_t)\right\|^2}{\sqrt{\beta_2 \lambda + \nu}} + \frac{\eta \sigma^2}{2 \nu} \quad (62)
\]

The second inequality follows from the fact that $0 \leq v_{i-1}^t \leq \lambda$. Using the telescoping sum and rearranging the inequality, with $\hat{f}^* = \ell^*$ in Assumption 2 we obtain

\[
\mathbb{E}\|\nabla \hat{f}(w_R)\|^2 = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\|\nabla \hat{f}(w_t)\|^2 \leq 4(\sqrt{\beta_2 \lambda + \nu}) \left(\frac{f(w_1) - f^*}{\eta T} + 2\sigma^2\right). \quad (63)
\]

Plugging in $T = O\left(\frac{ne}{\sqrt{p \log(1/\delta)}G}\right)$ and $\sigma^2 = O\left(\frac{G^2 T \ln(\frac{1}{\delta})}{n^2 \varepsilon^2}\right)$ achieves:

\[
\mathbb{E}\|\nabla \hat{f}(w_R)\|^2 \leq O\left(\frac{G^2 \sqrt{p \log(1/\delta)}}{n\varepsilon}\right), \quad (64)
\]

where w_R is is uniformly sampled from $\{w_1, w_2, ..., w_T\}$.
C.3 Proof of Theorem 6

We restate the Theorem 6 here.

Theorem 6 (DP Adam) Under the Assumption 1 and 2 for any \(\epsilon, \delta > 0 \) and \(n \geq \frac{2 \ln(8/\delta)}{\epsilon^2} \), for any \(\beta > 0 \), DPAGD (Algorithm 1) with \(\sigma^2 \) set to be as (6), \(\phi_t(\mathbf{g}_1, ..., \mathbf{g}_t) = (1 - \beta_1) \sum_{j=1}^t \beta_1^{t-j} \mathbf{g}_j \), and \(\psi_t = (1 - \beta_2) \sum_{j=1}^t \beta_2^{t-j} \mathbf{g}_j^2 \), step size \(\eta_t = \eta, 0 < \beta_2 < 1, \lambda > 0, \beta_1 \) and \(\nu \) are chosen such that:
\[
\eta \leq (\sqrt{1/2} + 4\beta_1/(1 - \beta_1)^2 - 1/2)(1 - \beta_2)^2 \frac{\nu}{4\lambda} \text{ satisfies,}
\]
\[
\mathbb{E}\|\nabla \hat{f}(\mathbf{w}_R)\|^2 \leq O \left(\frac{G^2 \sqrt{p \ln(1/\delta)}}{\eta n} \sum_{j=1}^t \sqrt{\sigma^2 + \nu} \right),
\]
with probability at least \(1 - \beta \). where \(\mathbf{w}_R \) is uniformly sampled from \(\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_T\} \) and the expectation is over the draw of \(\mathbf{w}_R \).

Before we provide the proof of Theorem 6, we first state the following lemma.

Lemma 3 Assume \(\sigma, \epsilon \) and \(\delta \) are set to satisfy the conditions in Theorem 6 such that \(\epsilon \leq \frac{\sigma}{\sqrt{13}}, \delta \leq \frac{\sigma \exp(-\mu^2/2)}{13 \ln(26/\sigma)} \) and \(n \geq \frac{2 \ln(8/\delta)}{\epsilon^2} \), for the noisy gradients \(\mathbf{g}_1, ..., \mathbf{g}_T \) in Algorithm 1 we have \(\forall t \in [T] \) and any \(\mu > 0 \):
\[
\mathbb{P}\{\|\mathbf{g}_t - \bar{\mathbf{g}}_t\| \geq \alpha\} \leq \xi,
\]
where \(\alpha = \sqrt{\mu} \sigma \) and \(\xi = 2p \exp(-\mu^2/2) \).

Proof: Recall that \(\bar{\mathbf{g}}_t = \mathbf{g}_t + \mathbf{b}_t \), where \(\mathbf{b}_t \) is a noise vector drawn from Gaussian noise \(\mathcal{N}(0, \sigma^2 \mathbb{I}_p) \). Using the tail bound of Gaussian random variable, we have
\[
\mathbb{P}\{\|\bar{\mathbf{g}}_t - \mathbf{g}_t\| \geq \sqrt{\mu} \sigma\mu\} \leq \mathbb{P}\{\|\mathbf{b}_t\| \geq \sqrt{\mu} \sigma\mu\} \leq \mathbb{P}\{\|\mathbf{b}_t\|_\infty \geq \sigma \mu\} \leq \mathbb{P}\{\|\mathbf{b}_t\|_\infty \geq \sigma \mu\} = 2p \exp(-\mu^2/2).
\]
The second inequality come from \(\|\mathbf{b}_t\| \leq \sqrt{d} \|\mathbf{b}_t\|_\infty \). we complete the proof.

Now we present the proof of Theorem 6

Proof of Theorem 6 The proof follows that of Theorem 10 until (39) with the target function \(f(w) \) and gradient \(g_t \) changed to be empirical risk function \(\hat{f}(w) \) and empirical gradient \(\bar{g}_t \), so that we have
\[
\mathbb{E}\|\nabla \hat{f}(\mathbf{w}_R)\|^2 \leq \frac{\sqrt{\lambda} + \nu}{1 - \beta_1} \left(\frac{2}{\eta T}(\hat{f}(\mathbf{w}_1) - \hat{f}(\mathbf{w}_{T+1})) + \frac{1}{(1 - \beta_1)\nu} \alpha^2 \right)
\]
with probability at least \(1 - T \xi \).

Plugging in \(\alpha = \sqrt{\mu} \sigma, \xi = 2p \exp(-\mu^2/2) \) from Lemma 3, \(T = \frac{\nu}{G \sqrt{p \ln(1/\delta)}} \), and \(\sigma^2 = O \left(\frac{G^2 T \ln(\frac{1}{\delta})}{n^2} \right) \) and setting \(\mu = \sqrt{2 \ln(2pT/\beta)} \) we have
\[
\mathbb{E}\|\nabla \hat{f}(\mathbf{w}_R)\|^2 \leq O \left(\frac{G^2 \sqrt{p \ln(1/\delta)}}{\eta n} \sum_{j=1}^t \sqrt{\sigma^2 + \nu} \right),
\]
with probability at least \(1 - \beta \).
D Uniform Convergence Lower Bounds

We now show that there are simple loss function ℓ and distributions over z for which the gradient deviation bound scales with \sqrt{p}/\sqrt{n}.

Let ℓ be loss function such that for any $z \in \mathbb{R}^p$, $\ell(w, z) = \frac{1}{2} ||w - z||_2^2$. Suppose there are n observations z_1, \ldots, z_n drawn i.i.d. from a p-dimensional product distribution over $\{0, 1\}^p$. Let $\mu = \mathbb{E}[z]$. We assume that for each $j \in [p]$, $|\mu_j| \in [1/3, 2/3]$.

For any w and any z_i, the gradient $g_i = \nabla \ell(w, z_i) = (w - z_i)$, and so $\mathbb{E}_z[\nabla \ell(w, z)] = w - \mu$. In other words, $\frac{1}{n} \sum_i g_i(w) - \mathbb{E}_z[\nabla \ell(w, z)] = \mu - \frac{1}{n} \sum z_i$ for any w.

Theorem 11 Suppose that X_1, \ldots, X_n are i.i.d. random variables. Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

- **Multiplicative Chernoff.** Suppose that each $X_i \in [0, 1]$, then for any $\delta > 0$, we have
 \[
 \Pr[|\mathbb{E}[X_i] - \bar{X}| > \delta \mathbb{E}[X_i]] < \exp\left(-\mathbb{E}[X_i]n\delta^2/3\right)
 \]

- **Berry-Esseen.** Suppose that
 \[
 \sigma^2 = \mathbb{E}[(X_1 - \mathbb{E}[X_1])^2] \quad \text{and} \quad \rho = \mathbb{E}[|X_1 - \mathbb{E}[X_1]|^3]
 \]

Let F_n be the cumulative distribution function of $\frac{(X - \mathbb{E}[X])\sqrt{n}}{\sigma}$ and Φ be the cumulative distribution function of the standard normal distribution. Then for all $x \in \mathbb{R}$,

\[
|F_n(x) - \Phi(x)| \leq \frac{\rho}{2\sigma^3\sqrt{n}}
\]

Theorem 12 Suppose there are n observations z_1, \ldots, z_n drawn i.i.d. from a product distribution over $\{0, 1\}^p$ such that the mean of each coordinate $\mu_j \in [1/3, 2/3]$. Then with constant probability, for all w,

\[
\left\| \frac{1}{n} \sum_{i=1}^n \nabla \ell(w, z_i) - \mathbb{E}_z[\nabla \ell(w, z)] \right\|_2 \geq \Omega\left(\sqrt{\frac{p}{n}}\right)
\]

Proof: By applying Berry-Esseen theorem to each coordinate $j \in [p]$ with $X_i = (\nabla_j \ell(w, z_i) - \mathbb{E}_z[\nabla_j \ell(w, z)]) = \mu_j - z_{ij}$, we have

\[
\Pr\left[\frac{\sqrt{n}}{\sigma} \left(\mu_j - \frac{1}{n} \sum_{i=1}^n g_{ij} \right) > 1/2 \right] \geq \Phi(1/2) - \frac{\rho}{2\sigma^3\sqrt{n}}.
\]

There exists a constant n_0 such that for any $n \geq n_0$, $\Phi(1/2) - \frac{\rho}{2\sigma^3\sqrt{n}} \geq 1/10$. Let E_j denote the event that $\frac{\sqrt{n}}{\sigma} (\mu_j - \frac{1}{n} \sum_{i=1}^n g_{ij}) > 1/2$, and E be the event that $\sum_j 1[E_j] \geq p/20$. Then from the multiplicative Chernoff bound, let $X_j = 1[E_j]$, with $\delta = 1/2$ and the fact that $\mathbb{E}[1[E_j]] > \frac{1}{10}$, we have

\[
\Pr[E] \geq 1 - \exp\left(-p/120\right) \geq 1/2,
\]

where the last step holds for sufficiently large p. Then with probability at least $1/2$, we have

\[
\sqrt{\sum_j \left(\mu_j - \frac{1}{n} \sum_{i=1}^n g_{ij} \right)^2} > \sqrt{\frac{p}{20}} \left(\frac{\sigma}{2\sqrt{n}} \right)^2 = \Omega(\sqrt{p/n})
\]

Then our theorem statement follows from the observation that $g_i = \nabla \ell(w, z_i) = (w - z_i)$.

28