CHARACTERISTIC NUMBERS OF ELLIPTIC CURVES WITH FIXED J-INVariant

DUNG NGUYEN

Abstract. We solve the problem of counting elliptic curves with fixed j-invariant in projective space with tangency conditions. This is equivalent to counting rational nodal curves with condition on the node of the image. The solution is given in the form of effective recursions. We give explicit formulas when the dimension of the ambient projective space is at most 5. Many numerical examples are provided. A C++ program implementing all of the recursions is available upon request.

1. Introduction

Characteristic numbers of curves in projective spaces is a classical problem in algebraic geometry: how many curves in \mathbb{P}^r of given degree and genus that pass through a general set of linear subspaces, and are tangent to a general set of hyperplanes? Presented in this form, the problem seems almost unattackable, as not much is known even in the case of genus two space curves. However, the cases of genus zero and genus one space curves are well understood. Incidence-only (meaning no tangency condition is considered) characteristic numbers of rational plane curves were first computed by Kontsevich, see [FP]. The method was to pull back the WDVV equation on $\overline{\mathcal{M}}_{0,4}$ onto the moduli space of stable maps $\overline{\mathcal{M}}_{0,n}(2,d)$ to obtain a recursion counting rational plane curves. The same method works equally well for rational space curves. In [P1], Lemma 2.3.1, it was shown that the tangency divisor is numerically equivalent to a linear combination of the incident divisor and boundary divisors on $\overline{\mathcal{M}}_{0,n}(r,d)$. Hence one can write down a recursion computing full characteristic numbers of rational space curves.

In genus one, there are at least two counting problems. One could try to obtain enumeration of genus one curves with generic j− invariant, or of genus one curves with fixed j− invariant. This note will deal with the latter. Incidence-only characteristic numbers for genus one space curves with fixed-j invariant have been computed in [I] and [Z]. In this note, recursions computing all characteristic numbers will be provided. In case of incidence-only numbers, we obtain an algebraic solution that works over any closed field of zero characteristic, in contrast to the analytic method in [I] and [Z]. The results in this note will also be used to compute characteristic numbers of elliptic space curves in an upcoming paper by the author.

All the recursions are based on our algorithm counting rational two nodal reducible curves. These are projective curves having two rational smooth component intersecting at two points (or with a choice of two intersection points in the case of plane curves). Counting these curves is in turn based on an algorithm counting rational curves, now with an additional type of
conditions: special tangent conditions. This will be defined in Section 2. We work out in detail the algorithm counting rational curves with special tangent conditions in ambient space of dimension at most 5. For dimension 6 or higher, the numbers could in theory be expressed as intersections of tautological classes on a blowup of $\mathcal{M}_{0,1}(r, d)$, but this is much less implementable.

We use the following results to obtain our recursions. We use the WDVV equation on $\overline{\mathcal{M}}_{0,n}(r, d)$. We use the divisor theory on $\overline{\mathcal{M}}_{0,n}(r, d)$ as developed in [P1]. We do not use any outside input, and our method for incidence-only characteristic numbers is different from those in [I], [Z].

The author is very grateful to R.Vakil, his advisor, for numerous helpful conversations and ideas, and for introducing him to the beautiful subject of enumerative geometry.

2. Definitions and Notations

2.1. The moduli space of stable maps of genus 0 in \mathbb{P}^r. As usual, $\overline{\mathcal{M}}_{0,n}(r, d)$ will denote the Kontsevich compactification of the moduli space of genus zero curves with n marked points of degree d in \mathbb{P}^r. We will also be using the notation $\overline{\mathcal{M}}_{0,S}(r, d)$ where the markings are indexed by a set S. The following are Weil divisors on $\overline{\mathcal{M}}_{0,S}(r, d)$:

- The divisor $(U || V)$ of $\overline{\mathcal{M}}_{0,S}(r, d)$ is the closure in $\overline{\mathcal{M}}_{0,S}(r, d)$ of the locus of curves with two components such that $U \cup V = S$ is a partition of the marked points over the two components.
- The divisor (d_1, d_2) is the closure in $\overline{\mathcal{M}}_{0,S}(r, d)$ of the locus of curves with two components, such that $d_1 + d_2 = d$ is the degree partition over the two components.
- The divisor $(U, d_1 || V, d_2)$ is the closure in $\overline{\mathcal{M}}_{0,S}(r, d)$ of the locus of curves with two components, where $U \cup V = S$ and $d_1 + d_2 = d$ are the partitions of markings and degree over the two components respectively.

2.2. The constraints and the ordering of constraints. We will be concerned with the number of curves passing through a constraint. Each constraint is denoted by a $(r+1)-$tuple Δ as follows:

(i) $\Delta(0)$ is the number of hyperplanes that the curves need to be tangent to.
(ii) For $0 < i \leq r$, $\Delta(i)$ is the number of subspaces of codimension i that the curves need to pass through.
(iii) If the curves in consideration have a node and we place a condition on the node, that is the node has to belong to a general codimension k linear subspace, then Δ has $r+2$ elements and the last element, $\Delta(r+1)$, is k.

Note that because in general a curve of degree d will always intersect a hyperplane at d points, introducing an incident condition with a hyperplane essentially means multiplying...
the cycle class cut out by other conditions by \(d \). For example, if we ask how many genus zero curves of degree 4 in \(\mathbb{P}^3 \) that pass through the constraint \(\Delta = (1, 2, 3, 4, 0)(\Delta(1) = 2) \), that means we ask how many genus zero curves of degree 4 pass through three lines, four points, are tangent to one hyperplane, and then multiply that answer by \(4^2 \). We will also refer to \(\Delta \) as a set of linear spaces, hence we can say, pick a space \(p \) in \(\Delta \).

We consider the following ordering on the set of constraints, in order to prove that our algorithm will terminate later on. Let \(r(\Delta) = -\sum_{i \geq 1}^{\text{ir}} \Delta[i] \cdot i^2 \), and this will be our rank function. We compare two constraints \(\Delta, \Delta' \) using the following criteria, whose priority are in the following order:

- If \(\Delta(0) = \Delta'(0) \) and \(\Delta \) has fewer non-hyperplane elements than \(\Delta' \) does, then \(\Delta < \Delta' \).
- If \(\Delta(0) > \Delta'(0) \) then \(\Delta < \Delta' \).
- If \(r(\Delta) < r(\Delta') \) then \(\Delta < \Delta' \).

Informally speaking, characteristic numbers where the constraints are more spread out at two ends are computed first in the recursion. We write \(\Delta = \Delta_1 \Delta_2 \) if \(\Delta = \Delta_1 + \Delta_2 \) as a partition of the set of linear spaces in \(\Delta \).

2.3. The stacks \(\mathcal{R}, \mathcal{N}, \mathcal{RR}, \mathcal{RR}_2 \). We list the following definitions of stacks of stable maps that will occur in our recursions.

1) Let \(\mathcal{R}(r, d) \) be the usual moduli space of genus zero stable maps \(\overline{M}_{0,0}(r, d) \).

2) Let \(\mathcal{N}(r, d) \) be the closure in \(\overline{M}_{0,\{A,B\}}(r, d) \) of the locus of maps of smooth rational curves \(\gamma \) such that \(\gamma(A) = \gamma(B) \). Informally, \(\mathcal{N}(r, d) \) parametrizes degree \(d \) rational nodal curves in \(\mathbb{P}^r \).

3) For \(d_1, d_2 > 0 \), let \(\mathcal{RR}(r, d_1, d_2) \) be \(\overline{M}_{0,\{C\}}(r, d_1) \times \overline{M}_{0,\{C\}}(r, d_2) \) where the fibre product is taken over evaluation maps \(ev_C \) to \(\mathbb{P}^r \).

4) Similarly we can define \(\mathcal{NR}(r, d_1, d_2) \) (see figure 1).

5) For \(d_1, d_2 > 0 \), let \(\mathcal{RR}_2(r, d_1, d_2) \) be the closure in \(\overline{M}_{0,\{A,C\}}(r, d_1) \times \mathbb{P} \overline{M}_{0,\{B,C\}}(r, d_2) \) (the projections are evaluation maps \(e_{C'} \)) of the locus of maps \(\gamma \) such that \(\gamma(A) = \gamma(B) \). We call maps in this family rational two-nodal reducible curves.
2.4. **Special Tangent Condition.** It is necessary to understand the enumerative geometry of rational curves, now considering extra conditions of the form: there is a fixed marked point \(A \) on the curve, and the projective tangent line at \(A \) passes through a given codimension 2 linear subspace \(M \). The corresponding (Weil) divisor is denoted by \(W^M_A \). When there is no need to consider any particular codimension 2 subspace \(M \), we will only write \(W_A \). We would also need to consider the case where there is a condition on \(A \), which means it could be specified to lie on a certain linear subspace. By characteristic numbers of rational space curves with special tangent conditions, we mean the numbers of rational space curves having a marked point \(A \) that satisfy the following conditions:

- Pass through various linear spaces and are tangent to various hyperplanes.
- The tangent line at \(A \) to the curve passes through various codimension 2 linear spaces.
- The point \(A \) may or may not lie on a given linear space.

![Fig 2. A curve with a special tangent condition](image)

2.5. **Stacks of stable maps with constraints.** Let \(\mathcal{F} \) be a maps of curves into \(\mathbb{P}^r \). For a constraint \(\Delta \), we define \((\mathcal{F}, \Delta)\) be the closure in \(\mathcal{F} \) of the locus of maps that satisfy the constraint \(\Delta \). If the stack of maps \(\mathcal{F} \) has two marked points \(A \) and \(B \), we define \((\mathcal{F}, \mathcal{L}^u_A \mathcal{L}^v_B)\) to be the closure in \(\mathcal{F} \) of the locus of maps \(\gamma \) such that \(\gamma(A) \) lies on \(u \) general hyperplanes, and that \(\gamma(B) \) lies on \(v \) general hyperplanes.

If \(\mathcal{F} \) has one marked point \(A \) then we define \((\mathcal{F}, \mathcal{L}^u_A W^v_A)\) to be the closure of maps \(\gamma \) such that \(\gamma(A) \) lies on \(u \) general hyperplanes, and that the image of \(\gamma \) is smooth at \(\gamma(A) \) and the tangent line to the image of \(\gamma \) at \(\gamma(A) \) passes through \(v \) general codimension 2 subspaces (\(v \) special tangent conditions).

If a stack \(\mathcal{F} \) is supported on a finite number of points then we denote \(\# \mathcal{F} \) to be the stack-theoretic length of \(\mathcal{F} \).

If \(\mathcal{F} \) is a closed substack of the stacks \(\mathcal{NR}, \mathcal{RR} \) then we denote \((\mathcal{F}, \Gamma_1, \Gamma_2, k)\) to be the closure in \(\mathcal{F} \) of the locus of maps \(\gamma \) such that the restriction of \(\gamma \) on the \(i \)-th component...
satisfies constraint Γ_i and that $\gamma(C)$ lies on k general hyperplanes. We use the notation (\mathcal{F}, Δ, k) if we don’t want to distinguish the conditions on each component.

If \mathcal{F} is a closed substack of $\mathcal{R}_2(r, d_1, d_2)$ then we denote $(\mathcal{F}, \Gamma_1, \Gamma_2, k, l)$ to be the closure in \mathcal{F} of the locus of maps γ such that the restriction of γ on the i--th component satisfies constraint Γ_i and that $\gamma(C)$ lies on l general hyperplanes, and that $\gamma(A) = \gamma(B)$ lies on k general hyperplanes. Similarly, we use the notation $(\mathcal{F}, \Delta, k, l)$ if we don’t want to distinguish the conditions on each component.

Note that for maps of reducible source curves, tangency condition include the case where the image of the node lies on the tangency hyperplane, as the intersection multiplicity is 2 in this case.

3. COUNTING ONE-NODAL REDUCIBLE CURVES IN \mathbb{P}^r

In this section we discuss how to count maps with reducible source curves.

Proposition 3.1. Let \mathcal{F}_1 and \mathcal{F}_2 be two families of stable maps with marked point C. Let Γ_1 and Γ_2 be two constraints. Then we have

$$\#(\mathcal{F}_1 \times_{ev_C} \mathcal{F}_2, \Gamma_1, \Gamma_2, k) = \#(\mathcal{F}_1, \Delta'_1) \cdot \#(\mathcal{F}_2, \Delta'_2)$$

where Δ'_i are determined as follows. Let e_1 be the dimension of the pushforward under ev_C of $(\mathcal{F}_1, \Gamma_1)$ into \mathbb{P}^r. Let e_2 be the dimension of the pushforward under ev_C of $(\mathcal{F}_2, \Gamma_2)$ into \mathbb{P}^r. Then Δ'_i is obtained from Γ_i by adding a subspace of codimension e_i.

Proof. Let α_i be the class of $ev_C^*(\mathcal{F}_i, \Gamma_i)$ in the Chow ring of \mathbb{P}^r. Let h be the class of a subspace of codimension k. Then $\#(\mathcal{F}_1 \times_{ev_C} \mathcal{F}_2, \Gamma_1, \Gamma_2, k)$ is equal to the intersection product $\alpha_1 \cdot \alpha_2 \cdot h$ which is $\text{deg}(\alpha_1) \cdot \text{deg}(\alpha_2)$. To compute $\text{deg}(\alpha_i)$, we intersect α_i with a subspace of codimension e_i, thus

$$\text{deg}(\alpha_i) = \#(\mathcal{F}_i, \Delta'_i)$$

which proves the proposition. \square

The following lemma is useful because it allow us to express the tangency condition on maps of reducible curves in terms of tangency conditions on maps of each component and condition on the node.

Lemma 3.2. Let $\mathcal{X}_1, \mathcal{X}_2$ be stacks of stable maps into \mathbb{P}^r. Assume each map in each family carries at least one marked point C. Let $\mathcal{X} = \mathcal{X}_1 \times_{ev_C} \mathcal{X}_2$. Let \mathcal{T} be the tangency divisor-tangent on \mathcal{X}, and \mathcal{T}_i be the pull-back of the tangency divisor on the i--th component. Then on \mathcal{X} we have this divisorial equation: $\mathcal{T} = \mathcal{T}_1 + \mathcal{T}_2 + 2\mathcal{L}_C$.

Proof. Let \mathcal{C} be a general curve in \mathcal{X}. \mathcal{C} has the following description. There is a family of nodal curves over \mathcal{C}, $\pi : S \to \mathcal{C}$ such that S is the union of two families of nodal curves $\mathcal{X}_1, \mathcal{X}_2$ along a section $s : \mathcal{C} \to S$. The section s represents the marked point C of each family. There is also a map $\mu : S \to \mathbb{P}^r$ such that the restriction of μ on each fiber is an element
(a map) of $\mathcal{X}_1 \times_{ev_c} \mathcal{X}_2$. Now choose a general hyperplane H in \mathbb{P}^r. Then the restriction of the tangency divisor \mathcal{T} on \mathcal{C} is the branched divisor of the map $\pi : \mu^{-1}(H) = \mathcal{D} \to \mathcal{C}$. This map is a $d_1 + d_2$ sheet covering of \mathcal{C}. The ramification points of this map come from three sources:

- The ramification points on $\mu^{-1}(H)|_{X_1}$.
- The ramification points on $\mu^{-1}(H)|_{X_2}$.
- The intersections $\mu^{-1}(H) \cap s$.

The first two sources contribute to the pull backs $\mathcal{T}_1 \cdot \mathcal{C}$ and $\mathcal{T}_2 \cdot \mathcal{C}$ respectively. The intersections points $\mu^{-1}(H) \cap s$ correspond precisely to the maps γ with $\gamma(C) \in H$. These points are the nodes of the curve \mathcal{D}, because through each of them, there are two branches: one from $\mu^{-1}(H)|_{X_1}$, one from $\mu^{-1}(H)|_{X_2}$. If $P \in \mathcal{D}$ is one of such points, then the branched divisor of π contains $\pi(P)$ with multiplicity 2. Thus we have $\mathcal{T} \cdot \mathcal{C} = \mathcal{T}_1 \cdot \mathcal{C} + \mathcal{T}_2 \cdot \mathcal{C} + 2L_C \cdot \mathcal{C}$. □

Using the lemma, we can “expand” the tangency conditions on $\mathcal{F}_1 \times_{ev_c} \mathcal{F}_2$ until we have tangency conditions only on each individual component.

Proposition 3.3. Let Δ be a constraint and let Δ_l be the constraint obtained from Δ by removing l tangency conditions. Then we have the following equality:

$$\#(\mathcal{F}_1 \times_{ev_c} \mathcal{F}_2, \Delta, k) = \sum_{l=0}^{\Delta(0)} 2^l \binom{\Delta(0)}{l} \sum_{\Gamma_1, \Gamma_2 = \Delta_l} \#(\mathcal{F}_1 \times_{ev_c} \mathcal{F}_2, \Gamma_1, \Gamma_2, k + l).$$

Proof. There are $\binom{n}{l}$ ways to remove l tangency conditions. Doing this results in a codimension $k + l$ condition on the node (the image of C), and the multiplicity is 2^l. □

Applying the proposition to the family $\mathcal{R}\mathcal{R}_2(r, d_1, d_2)$ we have:

Corollary 3.4.

$$\#(\mathcal{R}\mathcal{R}_2(r, d_1, d_2), \Delta, k, k') = \sum_{l=0}^{\Delta(0)} 2^l \binom{\Delta(0)}{l} \sum_{\Gamma_1, \Gamma_2 = \Delta_l} \#(\mathcal{R}\mathcal{R}_2(r, d_1, d_2), \Gamma_1, \Gamma_2, k, k' + l).$$

4. Counting Rational Space Curves With Special Tangent Conditions

In this section, we will describe the algorithm counting rational space curves with special tangent conditions in \mathbb{P}^r. Let $X = \overline{\mathcal{M}}_{n, \{A\}}(r, d)$ throughout this section. Following the notation in [P1] let \mathcal{H} be the incident divisor (incident to a codimension 2 subspace), and let \mathcal{K}^A_j be the boundary divisor of $\overline{\mathcal{M}}_{n, \{A\}}(r, d)$ whose points represent reducible curves in which the component containing A is mapped with degree j. The main difficulty when we have multiple special tangent conditions is excess intersection: any special tangent divisor \mathcal{W}^M_A passes through the locus of maps γ where $\gamma(A)$ is not a smooth point of the image.
However, we have the following result that helps us reduce the number of special tangent divisors in our computation.

Proposition 4.1. Any characteristic number of rational curves with \(l \geq r - 1 \) special tangent conditions is expressible in terms of characteristic numbers of rational curves with at most \(r - 2 \) special tangent conditions.

Proof of this statement will be given in section 5. \(\square \)

Thus, we only need to care about excess intersection locus in codimension at most \(r - 2 \). The following proposition lists all components of this locus.

Proposition 4.2. Let \(S_n \) be the closure of locus of maps \(\gamma \) in \(\mathcal{X} \) such that the source curve has \(n + 1 \) components, and the component containing \(A \), called the principal component, is incident with \(n \) other components. Moreover, \(\gamma \) contracts the principal component. Then \(S_2, \ldots, S_{r-2} \) are the components of codimension at most \(r - 2 \) of the excess intersection locus of the special tangent divisors. Furthermore, \(S_n \) contributes to the excess intersection only if there are at least \(2n - 2 \) special tangent conditions. In particular, only \(S_n \)'s with \(2n \leq r \) are relevant in counting curves with special tangent conditions.

Proof. Let \(\gamma \) be a map in \(\mathcal{X} \) such that \(\gamma(A) \) is not a smooth point of its image. If \(\gamma \) does not contract the component of the source curve containing \(A \) then \(\gamma(A) \) is at least a nodal singularity. Maps of this type vary in a family of codimension at least \(r - 1 \). Thus if \(\gamma \) belongs to a component (of the excess locus) of codimension at most \(r - 2 \), \(\gamma \) must contract the component of the source curve that contains \(A \). For a multi-index \(I(d, n) = (d_1, \ldots, d_n) \) with \(\sum_i d_i = d \), let \(V_{I(d, n)} \) be \(\prod_i \overline{M}_{0,\{A\}}(r, d_i) \) where the product is taken over the evaluation maps \(ev_A \). It is easy to see that each component of \(S_n \) is a finite quotient of a \(\overline{M}_{0,n+1} \times V_{I(d, n)} \), where \(\overline{M}_{0,n+1} \) is the moduli space of genus zero stable curves with \(n + 1 \) marked points. Now \(\overline{M}_{0,n+1} \) is of dimension \(n - 2 \), which means the "enumerative codimension" of \(S_n \) is \(n - 2 \) less than its codimension, hence is \(2n - 2 \). Since we will only need to count rational curves with at most \(r - 2 \) special tangent conditions, only \(S_n \) in which \(2n - 2 \leq r - 2 \), or equivalently \(2n \leq r \), is relevant. \(\square \)

![Fig 3. S₄](image)

We will blow up \(S_n \)'s in order to discount the excess contribution. The above proposition provides us with an useful guideline. In \(\mathbb{P}^3 \), no blowup is needed. One blowup of \(S_2 \) is needed.
for \mathbb{P}^4 and \mathbb{P}^5. More generally, we need one more blowup for each increase by two in the dimension of the ambient space. In the rest of this section, we provide explicit formula for the cases $\mathbb{P}^3, \mathbb{P}^4, \mathbb{P}^5$, which only requires at most one blowup as expect.

Case 1: Counting rational curves with one special tangent condition in $\mathbb{P}^r, r \geq 3$.

We can express the special tangent divisor as linear combinations of boundary divisors and incident divisors, as shown in the following lemma.

Lemma 4.3. The following equality holds in the group $A^1(\mathcal{X}) \otimes \mathbb{Q}$, for $r > 2$:

$$W_A = 2L_A + \psi_A$$

where ψ_A is the psi-class. In particular, we have

$$W_A = \left(2 - \frac{2}{d}\right)L_A + \frac{1}{d^2}H + \sum_{j=1}^{<d} \frac{(d-j)^2}{d^2}K^{A,j}$$

Proof. We use the method as described in [P1], intersecting the two sides of the equations with a general curve C in \mathcal{X}. Let γ denote the image of C under the evaluation map ev_A. Let M be the codimension 2 subspace in \mathbb{P}^r corresponding to the special tangent condition W_A. Because C is a general curve, we can assume γ is smooth. Let L be a general line in \mathbb{P}^r, and let $\pi_M : \mathbb{P}^r - M \rightarrow L$ be the projection onto L from M. Let ϕ_A be the line bundle on γ described as follows. For each point $p \in \gamma$, $ev_A^{-1}(p)$ is a map $\alpha \in C$. The fibre of ϕ_A over p is then the tangent vector to the image of α at $\alpha(A)$. Let R be the zero scheme of the bundle map $\phi_A \rightarrow \pi_M^*(T_L)$, with T_L being the tangent bundle of L. Geometrically, R represents the locus pf points $p \in \gamma$, such that the map $ev_A^{-1}(p)$ satisfies special tangent condition with respect to the subspace M. Thus $\deg R = R \cap [\gamma] = C \cap W_A$.

We have $\deg R = -c_1(\phi_A) + \deg(\pi_M|_C)c_1(T_L)$.

Now $c_1(T_L) = 2[\text{class of a point}]$, and $\deg(\pi_M|_C) = \deg \gamma = L_A \cap C$. The pullback of ϕ_A by ev_A is isomorphic to the line bundle on C obtained by attaching to each map the tangent vector at A to the source curve. Hence $-c_1(\phi_A) \cap \gamma = -c_1(ev_A^*(\phi_A)) \cap C = \psi_A \cap C$ is the usual psi-class. In short, we have $W_A = 2L_A + \psi_A$.

The second equality follows from the fact that $\psi_A = -\pi_*(s_2^2)$ on $\overline{M}_{0,\{A\}}(r,d)$ and Lemma 2.2.2 in [P1].

Case 2: Counting rational curves with two special tangent conditions in $\mathbb{P}^r, r \geq 4$.

Let $\pi : \tilde{\mathcal{X}} \rightarrow \mathcal{X}$ the blowup of \mathcal{X} along S_2. Let S_2^j be the component of S_2 with degree partition $(j,0,d-j)$, and let E_2^j be the corresponding exceptional divisor. We have that S_2^j is a \mathbb{Z}_2-quotient of $\mathcal{R}\mathcal{R}(j,d-j)$. A general element E_2^j has following geometric interpretation: it is a pair (γ,l) where γ is a map in $\mathcal{R}\mathcal{R}(j,d-j)$, and l is a line in \mathbb{P}^r. l must lie
on the plane \((l_1, l_2)\) where \(l_i\) is the projective tangent line to the image (under \(\gamma\)) of the \(i\)-th component at the image (under \(\gamma\)) of \(A\) (here we use \(A\) to denote the node of the family \(\mathcal{R}(j, d - j)\), instead of using \(C\) as in the definition in Section 2.2, but this does not change anything). For each divisor \(\mathcal{D}\) of \(\mathcal{X}\), let \(\bar{\mathcal{D}}\) be its proper transformation. The next lemma allows us to compute the class \(\pi_*(\bar{\mathcal{W}}^2_A)\)

Lemma 4.4. The following equality holds in \(A^2(\mathcal{X}) \otimes \mathbb{Q}\):

\[
\pi_*(\bar{\mathcal{W}}^2_A) = \left(2 - \frac{2}{d}\right) \mathcal{W}_A \mathcal{L}_A + \frac{1}{d^2} \mathcal{W}_A \mathcal{H} + \sum_{j=1}^{j<d} \frac{(j - d)^2}{d^2} \pi_*(\bar{\mathcal{W}}_A \bar{\mathcal{K}}^{A,j}) + \sum_{j=1}^{j\leq d/2} \frac{2j^2 - 2jd}{d^2} S^j_2
\]

The class \(\pi_*(\bar{\mathcal{W}}_A \bar{\mathcal{K}}^{A,j})\) is the class of the closure of the locus of maps with reducible source curves, where the restriction onto the component containing \(A\) satisfies one special tangent condition.

Counting maps in \(\pi_*(\bar{\mathcal{W}}_A \bar{\mathcal{K}}^{A,j})\) is doable by Lemma 4.1 and results in section 3. Counting maps in \(S^j_2\) is equivalent to counting maps in \(\mathcal{R}(j, d - j)\), which is also doable by results in section 3.

Proof. We pull back the main equation of Lemma 4.3:

\[
\pi^*\mathcal{W}_A = \left(2 - \frac{2}{d}\right) \tilde{\mathcal{L}}_A + \frac{1}{d^2} \tilde{\mathcal{H}} + \sum_{j=1}^{j<d} \frac{(d - j)^2}{d^2} \pi^*\bar{\mathcal{K}}^{A,j}
\]

\[
\pi^*\mathcal{W}_A = \bar{\mathcal{W}}_A + \sum_j E^j_2 \text{ and } \pi^*\bar{\mathcal{K}}^{A,j} = \bar{\mathcal{K}}^{A,j} + m_j E^j_2 \text{ where } m_j \text{ is } 1 \text{ if } j \neq d - j \text{ and } 2 \text{ if } j = d - j.
\]

Rearranging the terms, we have

\[
\bar{\mathcal{W}}_A = \left(2 - \frac{2}{d}\right) \tilde{\mathcal{L}}_A + \frac{1}{d^2} \tilde{\mathcal{H}} + \sum_{j=1}^{j<d} \frac{(d - j)^2}{d^2} \bar{\mathcal{K}}^{A,j} + \sum_{j=1}^{j\leq d/2} \frac{2j^2 - 2jd}{d^2} E^j_2
\]

Now it is obvious that \(\pi_*(\bar{\mathcal{W}}_A E^j_2) = S^j_2\). Multiply the above equation with \(\bar{\mathcal{W}}_A\) and pushforward yields the desired equation. \(\square\)

Using Lemma 4.4, we can reduce a counting problem involving two special tangent conditions into various counting problems involving at most one special tangent condition.

Case 3: Counting rational curves with three special tangent conditions in \(\mathbb{P}^r, r \geq 5\).

View \(\mathcal{R}(j, d - j)\) as \(\overline{\mathcal{M}}_{0,\{A\}}(r, j) \times_{ev_A} \overline{\mathcal{M}}_{0,\{A\}}(r, d - j)\). Let \(\mathcal{W}^{(i)}\) be the pullback of the special tangent divisor of the \(i\)-th factor. Let \(p : \mathcal{R}(j, d - j) \to S^j_2\) be the natural projection. We have the following lemma.
Lemma 4.5. The following equality holds in $A^3(\mathcal{X}) \otimes \mathbb{Q}$:

$$\pi_*(\tilde{W}_A^3) = \left(2 - \frac{2}{d}\right) \pi_*(\tilde{W}_A^2) \mathcal{L}_A + \frac{1}{d^2} \pi_*(\tilde{W}_A)^2 \mathcal{H} + \sum_{j=1}^{j<d/2} \frac{(j - d)^2}{d^2} \pi_*(\tilde{W}_A^2 \tilde{K}^{A,j})$$

$$+ \sum_{j=1}^{j<d/2} \frac{2j^2 - 2jd}{d^2} \pi_*(\tilde{W}_A E_2^j)$$

$\pi_*(\tilde{W}_A^2 \tilde{K}^{A,j})$ is the closure in \mathcal{X} of the locus of maps with reducible source curves, where the restriction of the map on the component containing A satisfies two special tangent conditions. Counting maps in this locus is doable by Lemma 4.4 and results in section 3. Furthermore, for any constraint Δ we have

$$(\pi_*(\tilde{W}_A^2 E_2^j), \Delta) = (\mathcal{W}^{(1)} + \mathcal{W}^{(2)}, \Delta)$$

if both sides are finite.

Proof. Only the last equality needs proving. Because the constraint Δ cuts out a one-dimensional family on $\mathcal{R}\mathcal{R}(j, d-j)$, proving the equality is an intersection theory problem on a \mathbb{P}^1-bundle over a curve. We reformulate the problem as follows. Let \mathcal{F}_1 be a one-dimensional family of projective rational curves of degree j with a marked point A. We associated with \mathcal{F}_1 the line bundle l_1 which is the line bundle of the projective tangent lines at A. Similarly, we have \mathcal{F}_2 and l_2, where curves in \mathcal{F}_2 have degree $d-j$. Let $\mathcal{C} = \mathcal{F}_1 \times_{ev_A} \mathcal{F}_2$, which is a curve ($\mathcal{F}_i$’s are chosen so that \mathcal{C} is not empty). Let \mathcal{P} be the projectivization of $l_1 \oplus l_2$. Thus $\pi : \mathcal{P} \to \mathcal{C}$ is a rank-one projective bundle. A general element of \mathcal{P} is a pair of curve-line (γ, l) with $\gamma \in \mathcal{C}$ and $l \subset (l_1, l_2)$. Let \mathcal{W} be the divisor on \mathcal{P} define as follows. For a general codimension 2 subspace $M \in \mathbb{P}^r$, a pair $(\gamma, l) \in \mathcal{P}$ is in \mathcal{W} if and only if $l \subset M$. We have a natural inclusion $\mathcal{F}_i = P(l_i) \subset \mathcal{P}$, with $P(l_i)$ being the projectivization of the line bundle l_i. Let \mathcal{D} be the canonical line bundle on \mathcal{P}, and let \mathcal{G} be the pullback of a point $\pi^{(-1)}(p)$ for any $p \in \mathcal{C}$. With this reformulation, the equality that we need to prove becomes

$$\mathcal{W}^2 = \mathcal{W}\mathcal{F}_1 + \mathcal{W}\mathcal{F}_2$$

Let $a_i = -c_1(l_i) \cdot C$. We have

$$\mathcal{F}_1 = \mathcal{D} + \pi^*(c_1(\phi_2) \cap C) = \mathcal{D} - a_2\mathcal{G}$$

hence

$$\deg(\mathcal{F}_1^2) = \deg(\pi^*(\mathcal{D}^2 - 2a_2\mathcal{G} + a_2^2\mathcal{G}^2)) = \deg(s_1(F) \cap C) - 2a_2 = a_1 + a_2 - 2a_2 = a_1 - a_2$$

which means that $\mathcal{F}_1^2 = a_1 - a_2$ as F_1^2 is of dimension 0 in the Chow ring of \mathcal{P}. Similarly $\mathcal{F}_2^2 = a_2 - a_1$, thus $F_1^2 + F_2^2 = 0$. Now let $\mathcal{W} = a\mathcal{F}_1 + b\mathcal{G}$. Then we have $\mathcal{W}\mathcal{G} = 1 = a(\mathcal{F}\mathcal{G}) \Rightarrow a = 1$. Now we have $\mathcal{W}\mathcal{F}_1 = \mathcal{F}_1^2 + b \Rightarrow b = \mathcal{W}\mathcal{F}_1 - \mathcal{F}_1^2$. That leads to $\mathcal{W}^2 = 2\mathcal{W}\mathcal{F}_1 - \mathcal{F}_1^2$. Similarly $\mathcal{W}^2 = 2\mathcal{W}\mathcal{F}_2 - \mathcal{F}_2^2$. Add the two equalities together we have

$$\mathcal{W}^2 = \frac{1}{2}(2\mathcal{W}\mathcal{F}_1 + 2\mathcal{W}\mathcal{F}_2 - \mathcal{F}_1^2 - \mathcal{F}_2^2) = \mathcal{W}\mathcal{F}_1 + \mathcal{W}\mathcal{F}_2.$$
Using Lemma 4.5, we can reduce a counting problem involving three special tangent conditions into various counting problem involving at most 2 special tangent conditions.

We end this section with some examples.

Example 4.6. How many conics in \(\mathbb{P}^3 \) passing through 3 points, that have a marked point \(A \) which must lie on a fixed line \(M \), and that the tangent line at \(A \) to the curve passes through a fixed line \(L \)? The answer is 1.

Proof. Because the three points that the conic passes through determine its plane \(H \), this problem reduces to an enumerative problem in \(\mathbb{P}^2 \): how many conics in \(\mathbb{P}^2 \) that pass through 3 points and is tangent to a line at a fixed point? The answer is therefore 1. Now we will compute this number in a different way, using Lemma 4.3. Let \(\Delta = (0,0,0,3) \), and \(\Delta' = (0,0,1,3) \). We need to compute \(\#((\mathcal{M}_{0,\{A\}}(3,2), \Delta), \mathcal{L}_A^2 W_A) \). On \(\mathcal{M}_{0,\{A\}}(3,2) \), there is one boundary divisor, \(\mathcal{K} = (0,1 \| \{A\},1), \) which parametrize pair of lines intersecting at one point, and the marked point \(A \) is on one of them. Using lemma 4.3 we have

\[
\mathcal{W}_A = \mathcal{L}_A + \frac{\mathcal{H}}{4} + \frac{\mathcal{K}}{4}
\]

Thus

\[
\#((\mathcal{M}_{0,\{A\}}(3,2), \Delta), \mathcal{L}_A^2 W_A) = \#((\mathcal{M}_{0,\{A\}}(3,2), \Delta), \mathcal{L}_A^3) + \frac{1}{4} \#((\mathcal{M}_{0,\{A\}}(3,2), \Delta'), \mathcal{L}_A^2) + \frac{1}{4} \#((\mathcal{K}, \Delta), \mathcal{L}_A^2)
\]

\[
= 0 + \frac{1}{4} + \frac{1}{4} 3 = 1.
\]

The first ”#” term of the right hand side is the number of conics in \(\mathbb{P}^r \) passing through 4 points. The second ”#” term is the number of conics in \(\mathbb{P}^r \) passing through 3 points and 2 lines. The last ”#” term is the number of pair of lines in \(\mathbb{P}^r \) with one common point, that pass through 3 points, and that the component with the marked point \(A \) intersect a line at \(A \). \(\square \)

Example 4.7. There are 2 conics in \(\mathbb{P}^4 \) satisfying the following conditions. The conics pass through 3 points and a plane, and there is a marked point \(A \) on the curve, the projective tangent line at which passes through 2 other planes.

Proof. Again, the three point conditions determine the plane \(H \) for the conics. Thus in fact we have a plane curve counting problem. The conics must pass through 4 points (the plane condition now become point condition), and the tangent line at \(A \) must pass through 2 other points on the plane \(H \). Thus the problem is equivalent to counting plane conics through 4 points and tangent to 1 line, thus the answer is two. We must show that

\[
\#((\mathcal{M}_{0,A}(4,2), \Delta), \mathcal{W}_A^2) = 2
\]
with $\Delta = (0, 1, 0, 0, 3)$. From the proof of Lemma 4.4 we have
\[
\widetilde{W}_A = \bar{L}_A + \frac{\bar{H}}{4} + \frac{\bar{K}^{A,1}}{4} - \frac{E_j^2}{2}
\]
Multiply the equation with \widetilde{W}_A, pushforward and integrate against $(\mathcal{M}_{0,(4,2)}, \Delta)$ we have
\[
\#(\mathcal{M}_{0, A}(4,2), \Delta), \mathcal{W}_A^2) = \#((\mathcal{M}_{0, A}(4,2), \Delta), \mathcal{W}_A \mathcal{L}_A) + \frac{1}{4}((\mathcal{M}_{0, A}(4,2), \Delta'), \mathcal{W}_A) \\
+ \frac{1}{4}#((\mathcal{K}^{A,1}, \Delta), \mathcal{W}_A) - \frac{1}{2}#(E_j^2, \Delta) \\
= 3 + \frac{2}{4} + 0 - \frac{3}{2} = 2
\]
where $\Delta' = (0, 2, 0, 0, 3)$. We list below several numbers of curves with special tangent conditions in $\mathbb{P}^3, \mathbb{P}^4, \mathbb{P}^5$. The special class (a, b) means the marked point as a codimension a condition and there are b special tangent conditions.

Degree	Condition	Special Classes	Numbers
Cubic	(1, 2, 3)	(3, 1)	34
Cubic	(4, 2, 2)	(2, 1)	4736
Quartic	(7, 2, 3)	(1, 1)	35131904
Quintic	(4, 4, 6)	(0, 1)	280111872
Quintic	(2, 2, 7)	(2, 1)	352176
Sextic	(3, 4, 7)	(3, 1)	340403776

Table 1. Some enumerative numbers with special class in \mathbb{P}^3

Degree	Condition	Special Classes	Numbers
Conic	(1, 1, 2, 1)	(1, 2)	38
Cubic	(2, 1, 1, 3)	(1, 2)	980
Quartic	(2, 2, 1, 4)	(2, 2)	37792
Quintic	(3, 3, 1, 5)	(2, 2)	31565232
Sextic	(3, 3, 4, 5)	(1, 2)	49679646304

Table 2. Some enumerative numbers with special classes in \mathbb{P}^4

Degree	Condition	Special Classes	Numbers
Conic	(1, 1, 1, 0, 2)	(0, 3)	20
Cubic	(1, 1, 1, 2, 2)	(0, 3)	1240
Quartic	(2, 3, 1, 2, 2)	(3, 3)	1181400
Quintic	(2, 2, 3, 4, 2)	(0, 3)	1654232816

Table 3. Some enumerative numbers with special classes in \mathbb{P}^5
5. Counting curves in $\mathcal{R}_2(r, d_1, d_2)$

First we need a result about the Chow ring of $\text{Bl}_D(\mathbb{P}^r \times \mathbb{P}^r)$, which is the blowup of $\mathbb{P}^r \times \mathbb{P}^r$ along the diagonal. For details of the derivation, we refer the readers to [N2].

Proposition 5.1. The Chow ring of $\text{Bl}_D(\mathbb{P}^r \times \mathbb{P}^r)$ is generated by h, k, the hyperplane class of the first and second factor, and the exceptional divisor e with the following relations:

\[
\begin{align*}
 h^r + 1 &= k^r + 1 = 0, \\
 he &= ke, \\
 e^r &= \sum_{i < r} (-1)^{i-1}(r+1)h^i e^{r-i} + \sum_{i \geq 0} h^i k^{r-i}.
\end{align*}
\]

Example. The following are the third relation in the case $r = 1, 2, 3, 4$:

\[
\begin{align*}
 e &= h + k, \\
 e^2 &= 3he - (h^2 + hk + k^2), \\
 e^3 &= 4he^2 - 6h^2e + (h^3 + h^2k + hk^2 + k^3), \\
 e^4 &= 5he^3 - 10h^2e^2 + 5h^3e - (h^4 + h^3k + h^2k^2 + hk^3 + k^4).
\end{align*}
\]

Recall that $\mathcal{R}_2(r, d_1, d_2)$ is a substack of $\overline{\mathcal{M}}_{0,\{A,C\}}(r, d_1) \times_{\text{ev}_C} \overline{\mathcal{M}}_{0,\{B,C\}}(r, d_2)$ of maps γ such that $\gamma(A) = \gamma(B)$. We rephrase the problem of counting maps in $\mathcal{R}_2(r, d_1, d_2)$ as follows:

*Given two families \mathcal{F}_1 and \mathcal{F}_2 of maps of rational curves with two marked points A, C. How many times a map γ_1 from \mathcal{F}_1 and a map γ_2 from \mathcal{F}_2 intersect in such a way that:

- $\gamma_1(A) = \gamma_2(A)$ and $\gamma_1(C) = \gamma_2(C)$.
- $\gamma_1(A)$ lies on a fixed linear space of codimension p.
- $\gamma_1(C)$ lies on a fixed linear space of codimension q.*

We consider the evaluation map

$$
\text{ev}_{AC} : \mathcal{F}_i \longrightarrow (\mathbb{P}^r \times \mathbb{P}^r)
$$

Let T_i be the closure in $\text{Bl}_D(\mathbb{P}^r \times \mathbb{P}^r)$ of $\text{ev}_{AC}(\mathcal{F}_i)$. Let h, k be the hyperplane classes of the first and second factor in $\text{Bl}_D(\mathbb{P}^r \times \mathbb{P}^r)$. Then the answer to our enumerative problem above is the intersection number

$$
T_1 T_2 h^p k^q
$$

where the product is evaluated in the Chow ring of $\text{Bl}_D(\mathbb{P}^r \times \mathbb{P}^r)$. ($T_i$ parametrizes ordered pair of points on the curves in \mathcal{F}_i. The blowup is to prevent us from counting in the case where two points run into each other).
To count maps in $\mathcal{R}_2(r, d_1, d_2)$ satisfying the constraint $(Δ, p, q)$, we first consider all the partitions $Δ = Γ_1 Γ_2$, and for each such partition, assign constraint $Γ_i$ to the i-th component. If $Δ(0) ≠ 0$, meaning if there are tangency conditions, we also have to distribute the tangency conditions over each component first, in the sense of Proposition 3.3. Then the constraint $Γ_1$ cuts out a family F_1 on $\overline{\mathcal{M}}_{0,\{A,C\}}(r, d_1)$. Similarly, $γ_2$ cuts out a family F_2 on $\overline{\mathcal{M}}_{0,\{A,C\}}(r, d_2)$. Let T_i be the closure of $ev_{AC}(F_i)$ in $Bl_D(\mathbb{P}^r × \mathbb{P}^r)$. Then we calculate the product

$$T_1 T_2 h^p k^q$$

in the Chow ring $A^*(Bl_D(\mathbb{P}^r × \mathbb{P}^r))$. Then we take the sum over all partitions $Δ = Γ_1 Γ_2$ to get the number of maps $#(\mathcal{R}_2(r, d_1, d_2), Δ, p, q)$. We need a result to calculate the classes of T_i in $A^*(Bl_D(\mathbb{P}^r × \mathbb{P}^r))$. The following lemma is useful:

Lemma 5.2. Let F be a family of stable maps in $\overline{\mathcal{M}}_{0,\{A,C\}}(r, d)$ such that A, C moves freely, that is, the forgetful map $\overline{\mathcal{M}}_{0,\{A,C\}}(r, d) → \overline{\mathcal{M}}_{0,0}(r, d)$ has fibre dimension 2. Let T be the closure in $Bl_D(\mathbb{P}^r × \mathbb{P}^r)$ of the image of F under the evaluation map $ev_{AC} : F → \mathbb{P}^r × \mathbb{P}^r$. Let G be the family of stable maps in $\overline{\mathcal{M}}_{0,\{A\}}(r, d)$ that is the image of F under the forgetful morphism $\overline{\mathcal{M}}_{0,\{A,C\}}(r, d) → \overline{\mathcal{M}}_{0,\{A\}}(r, d)$. Assume $\dim T ≤ 2r$. Then we have

- For m, n such that $m + n = \dim T$:
 $$Th^m k^n = #(F, L_A^m L_C^n).$$

- For m such that $m + 1 = \dim T$:
 $$Th^m e = #(G, L_A^m).$$

- For m, n such that $m + n = \dim T$, we have
 $$Th^m e(h + k - e)^{n-1} = #(G, L_A^m W_A(n-1)).$$

Proof. The first equality is trivial. The number $Th^m k^n$ is the number of maps $γ ∈ F$ such that $γ(A)$ belongs to h hyperplanes, and that $γ(C)$ belongs to k hyperplanes. That is precisely the number $#(F, L_A^m L_C^n)$. The second equality follows from the fact that multiplying with e is the same as replacing the family F by the family G.

Now we prove the third equality. Let

$$[x_0 : x_1 : ⋯ : x_n] × [y_0 : y_1 : ⋯ : y_n]$$

be a homogeneous coordinate system of $\mathbb{P}^r × \mathbb{P}^r$. Let H be the hypersurface $x_0 y_n = x_n y_0$ in $\mathbb{P}^r × \mathbb{P}^r$. H contains D with multiplicity one and $T = h + k$ in $A^*(\mathbb{P}^r × \mathbb{P}^r)$, hence the proper transformation \tilde{H} of H in $Bl_D(\mathbb{P}^r × \mathbb{P}^r)$ satisfies

$$\tilde{H} = h + k - e.$$
entire curve f_x onto x. The intersection $H \cap P_x$ is a hyperplane in P_x which is the span of x and the codimension 2 subspace $x_0 = y_0 = 0$. Then for a point $y \in T$ with $\pi(y) = x$, we have $y \in T \cap e \cap \tilde{H}$ iff f_x, as a curve in the projective space P_x is tangent to H_x at x. Thus intersecting with \tilde{H} (after intersecting with e) has the effect of imposing one special tangent condition on the family \mathcal{G}. It follows that intersecting with $n - 1$ instances of \tilde{T} has the effect of imposing $n - 1$ special tangent conditions. □

![Diagram](image)

Fig 4.

Now we have enough to be able compute the class of $T = ev_{AC_*} (\mathcal{F})$ in $A^*(Bl_D(\mathbb{P}^r \times \mathbb{P}^r))$. The formal statement of that fact is the following proposition, whose proof is trivial.

Proposition 5.3. Let $T \in A^*(Bl_D(\mathbb{P}^r \times \mathbb{P}^r))$ be a class of codimension $d, 0 \leq d \leq 2r$. Then the following intersection products determine T :

- $Th^m k^n$ with $0 \leq m \leq r, 0 \leq n \leq r$.
- $Th^m e(h + k - e)^n$ with $0 \leq m \leq r, 0 \leq n \leq r - 2$.
- $Th^{d-1} e$.

with m, n appropriately chosen so that the intersection number is well-defined.

The reason the power n of $h + k - e$ is at most $r - 2$ is because e' is expressible as polynomials in h and k, so we never need to multiply T with a power of e that is more than $r - 1$, in order to determine T. □

In particular, if we know all characteristic numbers of rational curves with at most $r - 2$ special tangent conditions, then that is enough to count maps in $\mathcal{R}\mathcal{R}_2(d_1, d_2)$.

Proof of Proposition 4.1. If the number of special tangent conditions l is greater than $2r - 2$, then the number is 0 because the tangent line at $\gamma(A)$ can pass through at most
2r − 2 general codimension 2 subspaces. Now assume l ≤ 2r − 2. Let Δ be the constraint (beside the special tangent conditions). Let \mathcal{F} be $(\overline{\mathcal{M}}_{0,\{A,C\}}(r, d), \Delta)$ and T be the closure in $Bl_D(\mathbb{P}^r \times \mathbb{P}^r)$ of the image of \mathcal{F} under ev_{AC}. We have $\dim T < 2r$. If we know all the characteristic numbers with at most $r − 2$ special tangent conditions, then Proposition 5.3 shows that we can determine T. Then the characteristic number with constraint Δ (and \mathcal{L}_A^m) and l special tangent conditions is the intersection number $Th^m e(h + k − e)^l$.

□

We end the section with some examples.

Example 5.4. How many pair of lines (L_1, L_2) in \mathbb{P}^3 such that they intersect twice, and that each of them passes through 3 lines? The answer is 0.

The answer is obvious because two distinct lines can never intersect twice. But our algorithm does not know that. Let $\Delta = (0, 0, 3, 0)$. We need to compute

$$\frac{1}{2} \#(\mathcal{R}_{\Delta}(3, 1, 1), \Delta, \Delta).$$

The factor 1/2 accounts for the fact that the statement of the problem does not distinguish the two intersection points. Let \mathcal{F}_i be the family of the lines L_i with a choice of two marked points A, C on them. Let T_i be the pushforward of \mathcal{F}_i under the evaluation maps $ev_{AC} : \mathcal{F}_i \to Bl_D(\mathbb{P}^r \times \mathbb{P}^r)$. T_i is three dimensional, so we can assume

$$T_1 = \alpha(h^3 + k^3) + \beta(h^2k + hk^2) + \gamma eh^2 + \mu e^2h.$$

The coefficients of h^3 and k^3 must be the same due to symmetry. Similarly the coefficients of h^2k and hk^2 must be the same.

$$\alpha = \alpha h^3 k^3 = T_1 k^3 = \#(\overline{\mathcal{M}}_{0,\{A,C\}}(3, 1), \Delta, \mathcal{L}_A^3) = 0$$

$$\beta = \beta h^3 k^3 = T_1 k^3 = \#(\overline{\mathcal{M}}_{0,\{A,C\}}(3, 1), \Delta, \mathcal{L}_A^2 \mathcal{L}_C) = 2$$

$$\mu = \mu h^3 e^3 = T_1 h^2 e = \#(\overline{\mathcal{M}}_{0,\{A\}}(3, 1), \Delta, \mathcal{L}_A^2) = 2$$

Computation of γ is a little bit lengthier. First we have

$$\gamma = \gamma h^3 k^3 = T_1 h e^2 - \mu e^4 h^2 = (2T_1 e^2 - T_1 h e(h + k - e)) - 4\mu$$

$$= -2\mu - T_1 h e(h + k - e).$$

Now $T_1 h e(h + k - e) = \#(\overline{\mathcal{M}}_{0,\{A\}}(3, 1), \Delta, \mathcal{L}_A \mathcal{W}_A)$ is the number of lines with a marked point A in \mathbb{P}^3 that pass through 3 lines, such that A lies on a fixed plane, and such that the tangent line at A passes through a general line. This number is the same as the number of lines passing through 4 general lines in \mathbb{P}^r, which is 2. Thus $\gamma = -2\mu - T_1 h k(h + k - e) = -4 - 2 = -6$. Therefore

$$T_1 = 2(h^2k + hk^2) - 6h^2e + 2he^2$$

Obviously $T_1 = T_2$, so after a bit of algebra we have

$$T_1 T_2 = (2(h^2k + hk^2) - 6h^2e + 2he^2)^2 = 0.$$

□
Example 5.5. How many pair of conics-twisted cubics in \(\mathbb{P}^5 \) intersecting at two nodes, with the first node being on a fixed hyperplane and the second node being on a fixed 3-space, such that the conic passes through one 3-space, one general plane, one general line, one general point, and the cubic passes through two general 3-spaces, one general plane, one general line, two general points? The answer is 956.

Let \(\Gamma_1 = (0, 0, 1, 1, 1, 0) \) and \(\Gamma_2 = (0, 0, 2, 1, 1, 2, 0) \). We need to compute

\[
\#(\mathcal{R}\mathcal{R}_2(5, 2, 3), \Gamma_1, \Gamma_2, 1, 2).
\]

Let \(\mathcal{F}_1 \) be a family of lines conics in \(\mathbb{P}^5 \) with a choice of two marked points \(A, C \) on them, such that the conics satisfy \(\Gamma_1 \). Let \(\mathcal{F}_2 \) be the a family of twisted cubics in \(\mathbb{P}^5 \) with a choice of two marked points \(A, C \) on them, such that the cubics satisfy \(\Gamma_2 \). Let \(T_i \) be the pushforward of \(\mathcal{F}_i \) under \(ev_{AC} \), onto the Chow ring \(A^*(\text{Bl}_D(\mathbb{P}^5 \times \mathbb{P}^5)) \). The we need to compute the intersection product \(hh^2T_1T_2 \).

Using Lemma 5.2 and Proposition 5.3, we can find the classes of \(T_i \) to be:

\[
T_1 = 2h^4 + 6h^3k + 8h^2k^2 + 6hk^3 + 2k^4 - 42h^3e + 29h^2e^2 - 9he^3 + e^4
\]
\[
T_2 = 45h^3 + 88h^2k + 88hk^2 + 45k^3 - 308h^2e + 140he^2 - 23e^3
\]

Using proposition 5.1, we can calculate the product:

\[
(2h^4 + 6h^3k + 8h^2k^2 + 6hk^3 + 2k^4 - 42h^3e + 29h^2e^2 - 9he^3 + e^4)
\times
(45h^3 + 88h^2k + 88hk^2 + 45k^3 - 308h^2e + 140he^2 - 23e^3)hh^2 = 956.
\]

Some numbers;

Degree	Degree	Constraint	Constraint	Nodes	Number
Conic	Conic	(2, 3, 1)	(2, 3, 1)	(0, 0)	3360
Conic	Cubic	(2, 3, 1)	(3, 4, 1)	(1, 1)	614656
Line	Quadratic	(0, 1, 0)	(3, 4, 3)	(2, 2)	570752
Cubic	Cubic	(3, 3, 2)	(1, 4, 2)	(0, 3)	963360
Conic	Quadratic	(3, 3, 1)	(0, 6, 4)	(0, 0)	2253312

Table 4. Some enumerative numbers of pair of rational curves in \(\mathbb{P}^3 \)

Degree	Degree	Constraint	Constraint	Nodes	Number
Conic	Conic	(1, 1, 2, 1)	(0, 0, 0, 3)	(0, 0)	4
Conic	Cubic	(1, 2, 1, 1)	(1, 1, 2, 2)	(1, 2)	4816
Line	Conic	(0, 1, 1, 0)	(1, 1, 1, 1)	(1, 2)	18
Cubic	Cubic	(3, 1, 0, 3)	(3, 1, 0, 3)	(1, 1)	2297664

Table 5. Some enumerative numbers of pair of rational curves in \(\mathbb{P}^4 \)
First we gave a recursion counting incidence-only characteristic numbers of rational nodal curves (with condition on the node) in \mathbb{P}^r.

Theorem 6.1. Let Δ be a constraint that $\Delta(0) = 0$. Let $k = \Delta(r + 1)$. Choose a subspace u in Δ which is not a hyperplane, such that the dimension of u is largest possible. Then choose any two other subspaces s, t in Δ. The following constraints are derived from Δ:

1) Δ_0 by removing u, s, t from Δ.
2) Δ_1 is derived from Δ_0, by replacing p and s with $p \cap s$.
3) Δ_2 is derived from Δ_0, by replacing q and t with $q \cap t$.
4) Δ_3 is derived from Δ_0, by replacing s and t with $s \cap t$.

If Γ is a set of linear spaces, and a and b are two linear spaces, denote $\Gamma^{(a,b)}$ the set obtained from Γ by adding a and b. Then the following formula holds:

$$
\#(\mathcal{N}(r, d), \Delta) = - \sum_{d_1 + d_2 = d} \binom{\Delta}{\Gamma_1} \#(\mathcal{N}\mathcal{R}(r, d_1, d_2), \Gamma_1^{(s,t)}, \Gamma_2^{(p,q)}, 0) - \sum_{d_1 + d_2 = d} \binom{\Delta}{\Gamma_1} \#(\mathcal{N}\mathcal{R}(r, d_1, d_2), \Gamma_1^{(p,q)}, \Gamma_2^{(s,t)}, 0) - 2 \sum_{d_1 + d_2 = d} \binom{\Delta}{\Gamma_1} \#(\mathcal{R}\mathcal{R}_2(r, d_1, d_2), \Gamma_1^{(p,q)}, \Gamma_2^{(s,t)}, k, 0) + \sum_{d_1 + d_2 = d} \binom{\Delta}{\Gamma_1} \#(\mathcal{N}\mathcal{R}(r, d_1, d_2), \Gamma_1^{(q,t)}, \Gamma_2^{(p,s)}, 0) + \sum_{d_1 + d_2 = d} \binom{\Delta}{\Gamma_1} \#(\mathcal{N}\mathcal{R}(r, d_1, d_2), \Gamma_1^{(p,s)}, \Gamma_2^{(q,t)}, 0) + 2 \sum_{d_1 + d_2 = d} \binom{\Delta}{\Gamma_1} \#(\mathcal{R}\mathcal{R}_2(r, d_1, d_2), \Gamma_1^{(p,s)}, \Gamma_2^{(q,t)}, k, 0) - \#(\mathcal{N}(r, d), \Delta_3) + \#(\mathcal{N}(r, d), \Delta_1) + \#(\mathcal{N}(r, d), \Delta_2).
$$

Degree	Degree	Constraint	Constraint	Nodes	Number
Conic	Conic	(0, 0, 0, 2, 1)	(0, 0, 0, 2, 1)	(1, 1)	2
Conic	Cubic	(1, 0, 1, 0, 2)	(1, 1, 0, 1, 3)	(0, 0)	144
Line	Quartic	(0, 0, 0, 0, 1)	(2, 0, 0, 2, 3)	(1, 3)	844
Cubic	Cubic	(3, 4, 1, 1, 1)	(2, 1, 1, 2, 1)	(1, 2)	1027324928

Table 6. Some enumerative numbers of pair of rational curves in \mathbb{P}^5.
Furthermore, $\Delta_1, \Delta_2, \Delta_3$ are all of lower rank than that of Δ. Here $\binom{n}{\beta} = \prod_{i=0}^{n} \binom{n(i)}{\beta(i)}$ for any two tuples α, β having the same length.

Proof. Let S be a set of markings that is in one-to-one correspondence $\mu : \Delta_0 \to S$ with the linear spaces in Δ_0. Let X be the moduli space $\mathcal{M}_{0,\{A,B\}} \cup S(r,d)$, and let $\mathcal{N}^{(S)}(r,d)$ be the closure in X of the locus of maps γ such that $\gamma(A) = \gamma(B)$. Let Y be the closure in $\mathcal{N}^{(S)}$ of the locus of maps γ such that $\gamma(\mu(m)) \in m$ for all $m \in \Delta_0$. Because $\#(\mathcal{N}(r,d), \Delta)$ is finite, Y is one-dimensional. We consider two equivalent divisors on X:

$$\{(\mu(p), \mu(q)) \mid \{\mu(s), \mu(t)\}\} = \{(\mu(p), \mu(s)) \mid \{\mu(q), \mu(t)\}\}.$$ Let $\mathcal{K}_1 = \{(\mu(p), \mu(q)) \mid \{\mu(s), \mu(t)\}\}$, and let $\mathcal{K}_2 = \{(\mu(p), \mu(s)) \mid \{\mu(q), \mu(t)\}\}$. Then we have

$$\#(Y \cap \mathcal{K}_1) = \#(Y \cap \mathcal{K}_2).$$

Let us analyze the left-hand side of the equation. Let γ be a general point of $Y \cap \mathcal{K}_1$. Then γ is a stable map whose source curve has two components C_1, C_2 joined at a node, such that $\mu(p), \mu(q) \in C_1$ and $\mu(s), \mu(t) \in C_2$. There are several cases to consider:

- $\deg \gamma|_{C_1} = 0$. If only A or C is on C_1 then by dimension counting we have that this case has no contribution. If both A, C are on C_1 then the image curve has a cusp, on which we impose condition like those we impose on p, q. By dimension count again, we also have that the case has no contribution. The quick reason is that if a map contracted a component containing at least 4 special points (marked or nodes), then the dimension of the family of image curves is less than the dimension of the family of maps, therefore is enumeratively irrelevant. Now if $A, B \in C_2$, $\gamma|_{C_2}$ is a rational nodal curve and satisfies the constraint Δ (but these conditions are marked). The contribution to $\#(Y \cap \mathcal{K}_1)$ in this case is $\#(\mathcal{N}(r,d), \Delta)$.

- $\deg \gamma|_{C_2} = 0$. Arguing similarly, we have that the contribution to $\#(Y \cap \mathcal{K}_1)$ is $\#(\mathcal{N}(r,d), \Delta_3)$

- γ has positive degree d, component C_i. There are three subcases:

 - $A, B \in C_1$: In this case, $\gamma|_{C_1}$ is a rational nodal curve and $\gamma|_{C_2}$ is a rational curve. The contribution in this case is

 $$\sum_{d_1 + d_2 = 0} \#(\mathcal{N}\mathcal{R}(r,d_1,d_2), \Gamma_1^{(p,q)}, \Gamma_2^{(s,t)}, 0).$$

 - $A, B \in C_2$: The contribution is

 $$\sum_{d_1 + d_2 = d} \#(\mathcal{N}\mathcal{R}(r,d_1,d_2), \Gamma_1^{(s,t)}, \Gamma_2^{(p,q)}, 0).$$

 - $A \in C_1, B \in C_2$ or vice versa. In this case the image of γ is a curve having two components that intersect twice at distinguished points. The contribution is therefore

 $$2 \sum_{d_1 + d_2 = d} \#(\mathcal{R}\mathcal{R}(r,d_1,d_2), \Gamma_1^{(p,q)}, \Gamma_2^{(s,t)}, k, 0).$$
We can analyze $\mathcal{Y} \cap \mathcal{K}_2$ in the same way and after rearranging the terms, we derive the equation in the statement of the theorem.

It is now possible to use the results so far to compute the characteristic number of rational nodal curves.

Theorem 6.2. Let Δ be a constraint such that $\Delta(0) > 0$. Let $\Delta(r + 1) = k$ Let Δ'' be the constraint obtained from Δ by removing a tangency hyperplane. Let Δ' be the constraint obtained from Δ'' by adding an incident codimension 2 subspace. Then we have the following equality, provided that the left hand side is finite.

\[
\#(\mathcal{N}(r, d), \Delta) = \frac{d-1}{d} \#(\mathcal{N}(r, d), \Delta') + \sum_{d_1+d_2=d} \left(\#(\mathcal{N}\mathcal{R}(r, d_1, d_2), \Delta'') + \#(\mathcal{R}\mathcal{R}_2(r, d_1, d_2), \Delta'', k, 0) \right).
\]

Warning : if $\Delta(0) \neq 0$ then those summands above involving reducible curves contain (twice) the case where the node is mapped to a tangency hyperplane. Also, in computing those summands, one needs to consider all possible splitting of constraints over two components (see Proposition 3.3 and Corollary 3.4).

Proof. We have the following equality of divisors on $\overline{\mathcal{M}}_{0,\{A,B\}}(r, d)$

\[
T = \frac{d-1}{d} \mathcal{H} + \sum_{d>0}^{j\leq d/2} \frac{j(d-j)}{d} (j, d-j).
\]

For a proof of this see [P1], Lemma 2.3.1. Thus

\[
\#(\mathcal{N}(r, d), \Delta) = \#((\mathcal{N}(r, d), \Delta''), T)
\]

\[
= \frac{d-1}{d} \#((\mathcal{N}(r, d), \Delta''), \mathcal{H}) + \sum_{j>0}^{j\leq d/2} \#(\mathcal{N}(r, d) \cap (j, d-j), \Delta'').
\]

Now we will analyze $\#(\mathcal{N}(r, d) \cap (j, d-j), \Delta'')$. A general map $\gamma \in \mathcal{N}(r, d) \cap (j, d-j)$ has two-component source curve. There are two cases:

- A, B belong to a same component. The contribution is $\#(\mathcal{N}\mathcal{R}(j, d-j), \Delta'') + \#(\mathcal{N}\mathcal{R}(d-j, j), \Delta'')$ if $j < d-j$ depending on whether A, B are in the component of lower or higher degree. If $j = d-j$, the contribution is just $\#(\mathcal{N}\mathcal{R}(j, d-j), \Delta'')$.
- A, B belong to different components. The contribution is $2\#(\mathcal{R}\mathcal{R}_2(j, d-j), \Delta'', k, 0)$ if $j < d-j$ and is $\#(\mathcal{R}\mathcal{R}_2(j, d-j), \Delta'', k, 0)$ if $j = d-j$.

Sum up all possibilities, we derive the formula in Theorem 6.2. \qed
Calculation of \(#(\mathcal{R} \mathcal{R}_2(r, d_1, d_2), \Delta'', k, 0)\) should make use of Corollary 3.4. One point worth mentioning when counting rational nodal curves with tangency conditions and with condition on the node is that maps with degree 2 do contribute enumeratively. Rational nodal curves with degree two are rational degree two covers of \(\mathbb{P}^1\) with a marked point specified as the node. For these maps, having a hyperplane passing through the branched points count as tangency.

From characteristic number of rational nodal curves, it is easy to get characteristic number of rational nodal curves. Let \(m = \Delta(0)\), and \(\Delta_i\) be the constraint received by removing \(i\) tangency conditions and replace them by a codimension \(i\) on the node. Then we have the number of elliptic curves with fixed \(j\)– invariant, with \(j\) generic, of degree \(d\) in \(\mathbb{P}^r\) satisfying constraint \(\Delta\) denoted \(#(\mathcal{J}(r, d), \Delta)\), is:

\[
#(\mathcal{J}(r, d), \Delta) = \sum_{i=0}^{m} 2^i \binom{n}{i} #(\mathcal{N}(r, d), \Delta_i).
\]

Now we give several numerical examples. We recover all previously known numbers in literature. The characteristic numbers of plane nodal cubics were computed in [A]. The characteristic numbers of elliptic plane curves with fixed \(j\)– invariant were computed in [V2]. Characteristic numbers of rational plane cubics in \(\mathbb{P}^3\) were computed in [HMX]. Let \(N, N_l, N_p\) be the family of rational nodal curves, rational nodal curves with the node on a fixed line, rational nodal curves with the node on a fixed point. Similarly, we denote \(N_s, N_b, N_f\) for the same family with the node on a fixed plane, a fixed 3–space, or a fixed 4–space. The following tables list the characteristic numbers of such families and of elliptic curves with fixed \(j\)– invariant (denoted by \(\mathcal{J}\)). Below are tables of characteristic numbers of such families of low degree (2, 3, 4, 5). In some tables, we put some point conditions so that the numbers are small enough to fit in the table. The only other conditions are tangency, and top incident condition. For example, in the table for quartics in \(\mathbb{P}^4\), the curves must pass through 2 points, the other conditions are combination of tangency and incident to planes.

\# tang	\(N\)	\(N_l\)	\(N_p\)	\(\mathcal{J}\)
0	0	0	0	0
1	0	0	0	0
2	0	2	1	0
3	0	3	3/2	12
4	0	3/2		48
5	0			75

Table 7. Plane conics.
Table 8. Plane cubics.

# tang	N	N_t	N_p	\mathcal{J}
0	12	6	1	12
1	36	22	4	48
2	100	80	16	192
3	240	240	52	768
4	480	604	142	2784
5	712	1046	256	8832
6	756	1212	304	21828
7	600	1000		39072
8	400			50448

Table 9. Plane quartics.

# tang	N	N_t	N_p	\mathcal{J}
0	1860	768	96	1860
1	6552	2952	384	8088
2	21600	10712	1448	33792
3	65328	35616	4992	134208
4	178272	106752	15516	497952
5	429120	281348	42416	1696320
6	886632	633972	99024	5193768
7	1515960	1166352	187248	13954512
8	2097648	1705856	279152	31849968
9	2350752	1986672	329496	60019872
10	2184480	1893528		92165280
11	1745712			115892448

Table 10. Conics in \mathbb{P}^3.

# tang	N	N_s	N_t	N_p	\mathcal{J}
0	0	0	0	0	0
1	0	0	0	0	0
2	0	16	8	2	0
3	0	24	12	3	96
4	0	20	10	$7/2$	384
5	0	10	5		840
6	0	5			1200
7	0				1470
# tang	N	N_s	N_l	N_p	\mathcal{J}
-------	-----	-------	-------	-------	--------------------------
0	12960	5040	904	72	12960
1	29520	13120	2512	216	39600
2	61120	32048	6568	612	117216
3	109632	64608	13904	1384	332640
4	167616	107072	23904	2524	849024
5	214400	144960	33304	3732	1890240
6	230240	162760	38432	4656	3625440
7	211200	155288	37808	5112	5994096
8	170192	130048	32864	5424	8631120
9	124176	98352	25664	11038224	12875520
10	85440	70880			14422080

Table 11. Cubics in \mathbb{P}^3.

# tang	N	N_s	N_l	N_p	\mathcal{J}
0	247191840	61582704	7487280	402216	247191840
1	519424512	138566640	17469840	975192	642589920
2	1034619648	295896480	38636160	2242512	1618835328
3	1932171072	588656160	79348512	4785408	3920405760
4	3353134848	1079389056	149728320	9378160	9020858112
5	5361957120	1808973504	257515200	16752296	19509189120
6	7841572992	2752793920	401264800	27140752	39298619520
7	10431095808	3788712880	564734880	39830752	73227372288
8	12599060192	4716456320	718744512	53161088	125665152480
9	13851211968	5333385216	831757440	65099040	198307833792
10	13948252800	5522229504	883153920	74131776	288227491200
11	12986719872	5292561600	870495360	79929312	387635041920
12	11309818368	4757882880	807883200	84550992	486058242048
13	9330496512	4070594880	715629312	57423507200	648194719872
14	7394421888	3381893376			71549059080
15	5703866880				

Table 12. Quartics in \mathbb{P}^3.

# tang	N	N_s	N_t	N_p	J
0	2987074368	597069288	59293632	2757288	2987074368
1	6654861504	1393675584	142403568	6890568	7849000080
2	14302171008	3141287760	330349200	16691344	20114047872
3	29534616768	6800411520	736077600	387843208	631585386720
4	58394890752	14081928256	1569037056	87466348	1538700870672
5	110164217088	27795971008	3189343752	188200508	281761911168
6	197654921184	52144209544	6165495488	387843208	631585386720
7	336286484448	92755042440	11312688400	765476504	1358700870672
8	541376364848	156271230640	19684719200	1449944208	2800306366128
9	823917940992	249556959696	32520764016	2653490208	5526457857888
10	1186459103808	379132252128	51221741472	4769939328	10455705197568
11	1621483284864	552185368704	77488852608	74888852608	19030887269760
12	2114474172288	783085854720	111405535872	58098921777408	33559605535872
13	2648546358528				

Table 13. Quintics in \mathbb{P}^3, passing through 3 points.

# tang	N	N_b	N_s	N_t	N_p	J
0	7833840	2565720	468935	52140	2865	7833840
1	14708400	5294270	1017980	119400	6984	19839840
2	25085900	10073080	2038520	252192	15720	48138720
3	37705920	16296840	3416336	440272	28924	110777280
4	49732080	22491008	4833312	644504	44470	232897920
5	57643520	26854560	5889580	812540	59250	439941120
6	59232320	28240140	6319450	906690	70854	745702080
7	54660200	26636130	6095150	916962	78360	1141405440
8	45993500	22938610	5383586	858012	82584	1593774300
9	35861700	18337518	4423952	755184	85440	2055201960
10	26323500	138098900	342200	626640	87360	2480472300
11	18497240	9949360	2513120	480480	2841879120	
12	12649200	6978480	1786880	3137555760		
13	8510880	4808480			3385230720	
14	5673920				3589051200	

Table 14. Cubics in \mathbb{P}^4. 24
# tang	N	N_b	N_s	N_l	N_p	\mathcal{I}
0	264271032	61079694	8388348	749421	34860	264271032
1	493716948	120918936	17290038	1630488	81252	615876336
2	878434848	228232116	33980664	20905076	1429930	2189197336
3	1479817080	405964896	62797160	6629800	383672	306268560
4	2353692768	589968256	944430080	12151512	761888	6469681248
5	3530480992	815950592	1236374720	1429930	12151512	306268560
6	4995675728	1249818704	1834065600	1429930	12151512	6469681248
7	6680908448	1660225184	2490337920	1429930	12151512	6469681248
8	8472417440	2092994208	3139491200	1429930	12151512	6469681248
9	10234272948	2586854592	3935781600	1429930	12151512	6469681248
10	11836475952	3170518784	4753354720	1429930	12151512	6469681248
11	13167563808	3951890512	5927834704	1429930	12151512	6469681248
12	14112721248	4533584288	6800376384	1429930	12151512	6469681248
13	14531107200	5066370880	7289161120	1429930	12151512	6469681248

Table 15. Quartics in \mathbb{P}^4 passing through 2 points.

# tang	N	N_b	N_s	N_l	N_p	\mathcal{I}
0	5264130996	960390870	105886953	7801695	311311	5264130996
1	10335707556	1973618742	224710598	17371678	742316	12256489296
2	19791788388	3960252460	465840460	37911496	1746624	28109811168
3	36896035320	7737537944	940326944	80796848	4041128	63416490816
4	66880583024	14699954352	1845469104	167905648	9189708	140521932288
5	117792292576	27145486560	3519654728	340028520	20558296	305497218816
6	201506364736	48745168872	6523861268	670681448	45308086	651327035136
7	334871977648	85223104580	11759484440	1287078386	98524384	1362231952128
8	540951986840	145379939744	20637848154	2397410108	211715288	2797819372056
9	850242885024	242702404542	35332114224	4312424928	5652591017568	
10	1301286873156	397849014300	59181220928	11257978051236		
11	1938666465816	641728301752	963518793600			
12	250469121008	736446174336	115267028672			

Table 16. Quintics in \mathbb{P}^4 passing through 4 points.
Table 17. Cubics in \mathbb{P}^5

# tang	N	N_f	N_b	N_s	N_t	N_p	\mathcal{J}
0	3580435656	1034759292	189136374	24039939	2009982	85745	3580435656
1	5820250128	1803057816	343203840	45424176	3974516	178640	7889768712
2	8641680264	2888520852	572163144	78755588	7205344	341240	1661045704
3	11507535984	4048138080	1179603568	157723006	18576208	1267280	319397674176
4	13759570272	4992894416	1036797728	172833416	14773856	764324	6136232732
5	14867247680	5502189760	1161050240	172833416	17554792	954832	104391383040
6	14650427520	5502894720	1179603568	180279708	19079772	1102606	163351745280
7	13303631040	5066847184	1104900496	174051444	19343536	1204100	236503108800
8	11252393152	4350397184	967029476	157723006	18576208	1267280	319397674176
9	8959119120	3522421644	799569876	135605388	17095224	1305896	405992118672
10	6782773704	2715749316	629998440	111418656	15173120	1331840	490193697672
11	4929887760	2011043040	476256768	87775688	12973792	1349216	567210910536
12	347645440	1442366496	347592224	66354624	10586880	1360832	634363027200
13	2392303152	1010425424	246675392	48224736	738716078016		
14	1624181888	696607744	171653932	34118336	738716078016		
15	1092498624	474968055040	171653932	34118336	738716078016		
16	730705920	321392512	81125866768	1305896	236503108800		
17	487137280	838048055040	838048055040	838048055040	838048055040		

Table 18. Quartics in \mathbb{P}^5 passing through 3 points.

# tang	N	N_f	N_b	N_s	N_t	N_p	\mathcal{J}
0	17793468	4315338	675729	82815	7629	408	17793468
1	33892524	8728578	1428506	187086	1122	42523200	
2	61915284	16962956	2898296	406116	3012	99532512	
3	108109320	31398264	5580216	834384	100788	7728	227691648
4	180450912	55599884	10188624	1618620	214248	384363027200	
5	288477120	93327232	17697268	2968056	429304	44638	1099292256
6	442955328	151262244	29385528	5155156	807974	101692	2318653056
7	655304328	237174048	46930448	8512992	1413096	4771225200	
8	936129552	361876128	72589134	13497600	9605588880		
9	1291589856	539604810	109323720	18969484704			
10	1716845652	788940756	36822211764				
11	2184938712	838048055040	838048055040	838048055040	838048055040		

Table 18. Quartics in \mathbb{P}^5 passing through 3 points.

REFERENCES

[A] P. Aluffi *The enumerative geometry of plane cubics II: nodal and cuspidal cubics*, Math. Annalen 289 (1991), 543-572.

[F] W. Fulton *Intersection Theory*, Second Edition, Springer 1996.

[FP] W. Fulton and R. Pandharipande, *Notes on stable maps and quantum cohomology*, preprint 1996, alg-geom/9608011.
X. Hernandez, J. M. Miret, *The characteristic numbers of cuspidal plane cubics in \mathbb{P}^3*, Bull. Belg. Math. Soc. Simon Stevin, 10 (2003) No. 1, 115–124.

X. Hernandez, J. M. Miret and S. Xambo-Descamps, *Computing the characteristic numbers of the variety of nodal plane cubics in \mathbb{P}^3*, J. Symb. Comp. 42 (2007) 192–202.

E. Ionel, *Genus-one enumerative invariants in \mathbb{P}^n with fixed j-invariant*, Duke Math. J. 94 (2) (1998) 279–324.

E. Getzler, *Intersection theory on $\overline{M}_{1,4}$ and elliptic Gromov-Witten invariants*, J. Amer. Math. Soc. 10 No. 4 (1997) 973–998.

D. Nguyen, *Doctoral thesis at Stanford University*, in preparation.

R. Pandharipande, *Intersection of \mathbb{Q}-divisors on Kontsevich’s moduli space $\overline{M}_{0,n}(\mathbb{P}^r, d)$ and enumerative geometry*, Trans. Amer. Math. Soc. 351 (1999), 1481-1505.

R. Pandharipande, *A note on elliptic plane curves with fixed j-invariant*, Proc. Amer. Math. Soc., 125, No. 12, 3471–3479.

R. Vakil, *The enumerative geometry of rational and elliptic plane curves in projective space*, J. Reine Angew. Math. (Crelle’s Journal), 529 (2000), 101–153.

R. Vakil, *Recursions for characteristic numbers of genus one plane curves*, Arkiv for Matematik, 39 (2001), no. 1, 157–180.

R. Vakil, A. Zinger, *A desingularization of the main component of the moduli space of genus-one stable maps to projective space*, Geom. Topol. 12 (2008), no. 1, 1-95.

A. Zinger, *Enumeration of one-nodal rational curves in projective spaces*, Topology 43 (2004) 793–829.