Introduction

There is no doubt that Type 2 diabetes mellitus (T2DM) is too common and that its incidence is increasing worldwide especially with the continuous urbanization of life [1]. Reduced peripheral responsiveness to the pancreatic hormone “insulin” in the insulin-sensitive tissues (mainly adipose tissue, liver, and muscles) with the relative gradual deterioration in pancreatic β-cells function represents the main pathophysiology of the disease [2].

For a considerable long-time, insulin resistance (IR) is present in pre-diabetic people although hidden, but compensated, until symptoms of diabetes appear [3]. Identifying people with IR before the clinical manifestations flare up can assist slowing down the progress to diabetes and minimize its drawbacks [4].

Overall peripheral insulin sensitivity (IS)/resistance is best assessed through direct (somewhat invasive) methods such as hyperinsulinemic euglycemic clamp (HEC) and intravenous glucose tolerance test and their modifications. However, these investigations sound impractical in routine clinical practice or when large population-based studies are to be conducted [5]. Instead, several surrogate measures have been employed to assess peripheral IS/IR. Homeostasis Model Assessment-IR (HOMA-IR) which was developed in 1985 by Matthews et al. is the most widely used right now especially in large population-based studies [6], [7].

However, beside fasting serum insulin, HOMA and insulin/glucose ratio, other estimates are in use including different (random and fasting) blood indexes such as Stumwolls,’ Matsudas,’ Bennetts,’ Mc-Auleys,’ fasting insulin resistance index, quantitative insulin sensitivity check index (QUICKI), and others [8]. IR is well known to be associated with dyslipidemia [9], [10], [11]. Increased serum triglycerides (Tgs) levels can be a marker for defective insulin signaling.

In 2008, Simental-Mendía et al. developed a new simple estimate of IR as the product of fasting glucose and Tgs [12]. Triglyceride and glucose index (TyG index) can be utilized as a fast, practical, easy to calculate, and inexpensive tool to assess IR/IS in clinical settings. The aim of this study is to find out the reference interval for the TyG index in a group of apparently healthy Iraqi people.
Materials and Methods

Study design and patients

This is a small cross-sectional study conducted over an eight months period starting from December 2019. Ninety apparently healthy adult (≥ 30 years) subjects living in Mosul city/Northern Iraq with negative family history of diabetes were randomly selected to participate voluntarily. The study was conducted in accordance with the Declaration of Helsinki II. All participants signed a written informed consent and the study was approved by the Medical Research Ethics Committee, College of Medicine, University of Mosul (Ref. no.: UOM/COM/MREC/2019(27)).

Laboratory, anthropometric and clinical data collection

All subjects were interviewed with a brief medical history taking and physical examination. Body weight (with light clothes) and height (upright position without shoes) were recorded for all and body mass index (BMI) was calculated accordingly [13]. Resting blood pressure was measured in sitting position and hypertension was defined as SBP ≥140 and/or DBP ≥ 90 mmHg, according to the newest European guidelines [14].

Those with fasting serum glucose (FG) ≥ 100 mg/dl [15], positive family history of diabetes, having malignancy, hepatic, cardiovascular, or renal diseases and those taking drugs for dyslipidemia or hypertension were excluded from the study. Finally (77) subjects (41 men and 36 non-pregnant women) aged (30–68) years were only enrolled.

A 6-ml venous whole blood sample was aspirated from every subject following 10–12 h fasting, allowed to clot and serum was separated immediately by centrifugation, aliquoted and frozen at –20°C for subsequent measurement of serum glucose, lipids, and insulin. Biochemical analyses were conducted at the Clinical Biochemistry Laboratory, College of Medicine, University of Mosul.

Serum Tgs, total cholesterol, and FG were measured using endpoint enzymatic reaction kits purchased from Randox Ltd, UK. Serum HDL-cholesterol (HDL-c) was estimated by phosphotungstic acid-precipitation method [16] while LDL-c was just calculated mathematically [17]. Hypertriglyceridemia was defined as Tgs ≥ 150 mg/dL [18].

Fasting serum insulin levels were measured using TOSOH AIA-360 System Analyzer and ST AIA- PACK IRI kits from Tosoh Bioscience, Japan as directed by the manufacturer. IR/sensitivity was estimated mathematically. Surrogates included HOMA-IR as (Fasting insulin [μU/mL] × FG [mg/dL]/405) [6], McAuley index (Exp [2.63–0.28X In [insulin]–0.3X In [Tgs]) [19], and QUICKI as the reciprocal of the sum of log values of fasting insulin (μU/mL) and glucose (mg/dL) [20]. However, the modified TyG index was calculated as ln (Tgs [mg/dL] × glucose [mg/dL])/2 [12, 21] and this is the form that the online TyG index calculators apply.

Statistical analysis

SPSS (version 20.0) was used for analysis of data. Descriptive statistics were employed to determine mean, range, standard deviation (SD), and skewness as indicated. Normality of data was determined using the “1-sample Kolmogorov–Smirnov test”. Data followed Gaussian pattern when p ≥ 0.05. Linear regression analysis was used to study the relationship between independent and dependent variables (namely TyG and other surrogate measures of IS/IR). Independent Student t-test (two-tailed) was used to compare continuous variables among the two genders, and χ² test for categorical variables. One-way ANOVA was used to compare means of TyG index among different age groups and BMI subclasses followed by post hoc Duncan’s test when significant. Values were expressed as mean ± SD or N% as indicated. Differences were considered statistically significant when p < 0.05.

Results

The mean age of subjects enrolled was 46.3 ± 10.2 years (range 30–68). About 18% were hypertensive and dyslipidemic. In general, men were leaner than women with no significant differences in any of the surrogate measures of IR. The basic characteristics of the study subjects are shown in Table 1.

| Table 1: The basic characteristics of the study subjects. Data are expressed as mean ± SD or n (%) as indicated |
|------------------|-----------------|-----------------|-----------------|
| | Men | Women | p-value* |
| N | 41 | 36 | 77 |
| Age (years) | 45.2 ± 9.4 | 47.58 ± 11.09 | 46.3 ± 10.2 | 0.32 |
| Smoking | Yes | No | |
| | 22 (54) | 3 (8) | 25 (32) | <00001 |
| Body Weight (Kg) | 72.8 ± 16.9 | 69.25 ± 12.5 | 71.2 ± 15.1 | 0.33 |
| BMI (Kg/m²) | 24.80 ± 5.25 | 28.00 ± 4.95 | 26.3 ± 5.32 | 0.008 |
| SBP (mmHg) | 120.7 ± 22.9 | 122.8 ± 15.23 | 121.7 ± 19.6 | 0.65 |
| DBP (mmHg) | 80 ± 7.3 | 79.9 ± 6.14 | 79.8 ± 8.2 | 0.94 |
| FG (mg/dL) | 84.39 ± 8.36 | 85.06 ± 8.27 | 84.7 ± 8.27 | 0.73 |
| Insulin (uU/mL) | 6.3 ± 3.8 | 7.0 ± 3.1 | 6.65 ± 3.48 | 0.37 |
| Tgs (mg/dL) | 121 ± 49.99 | 125.4 ± 50 | 125 ± 49.7 | 0.70 |
| Total cholesterol (mg/dL) | 148.5 ± 38.14 | 181 ± 43.2 | 163.6 ± 43.5 | 0.001 |
| HDL-Cholesterol (mg/dL) | 54.39 ± 12.80 | 57.5 ± 12.5 | 55.8 ± 12.7 | 0.27 |
| LDL-Cholesterol (mg/dL) | 70.17 ± 35.07 | 98.69 ± 41.9 | 83.5 ± 40.76 | 0.002 |
| HOMA-IR | 1.34 ± 0.88 | 1.47 ± 0.66 | 1.40 ± 0.76 | 0.48 |
| QUICKI | 0.38 ± 0.05 | 0.37 ± 0.03 | 0.38 ± 0.04 | 0.12 |
| McAuley index | 8.3 ± 2.06 | 7.7 ± 1.47 | 8.0 ± 1.83 | 0.13 |
| TyG index | 4.57 ± 0.21 | 4.60 ± 0.19 | 4.59 ± 0.20 | 0.50 |
| Tgs/HDL-C index | 2.46 ± 1.45 | 2.35 ± 1.26 | 2.41 ± 1.36 | 0.72 |
| Hyperglycemia | 8.19 (0.15) | 6.16 (0.17) | 6.16 (0.17) | 0.75 |
| Hypertension | 8 (19.5) | 6 (16.7) | 6 (16.7) | 0.75 |

*Comparisons using t-test for continuous variables or χ² for non-parametric ones. BMI: Body mass index, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, FG: Fasting glucose, Tgs: Triglycerides, HOMA-IR: Homeostasis model assessment-insulin resistance, QUICKI: Quantitative insulin sensitivity check index, TyG index: Triglycerides glucose index.
Values of the (TyG index) ranged between 4.02 and 5.16 (mean 4.59 ± 0.20). TyG index relationship to some other surrogates of IS/IR was studied. Linear regression analysis revealed a significant positive correlation between TyG index and HOMA-IR \((r = 0.32, \ p = 0.004) \), Tgs/HDL-c index \((r=0.84, \ p < 0.0001) \). Meanwhile, it gave significant negative correlations with both Mc-Auley index and QUICKI \((r = −0.68, \ p < 0001 \) and −0.29, \(p = 0.01) \), respectively, (Figures 1-4).

There were no statistically significant differences in the mean TyG values comparing both sexes (Table 1). In addition, when subjects were stratified by age (10 years interval), there were no significant differences in mean TyG values as well (using ANOVA test \([F = 2.06, \ p = 0.113] \)) despite non-significant increments with advancing age, (Table 2).

To determine the reference range of the TyG index as a surrogate measure for overall IR in our population representatives, its pattern of distribution was examined first using One-sample Kolmogorov–Smirnov statistics. This test revealed the normal distribution of TyG index where \((\text{Mean} = 4.59, \ \text{SD} = 0.20, \ Z = 0.86 \) and \(p = 0.45) \). The frequency distribution of TyG index values in the studied population is exhibited in Figure 5.

People in this study were categorized into three groups based on their BMI (lean BMI <25, overweight 25–29.9, and obese ≥30 kg/m\(^2\)) [22]. Values of TyG index were compared among the BMI subclasses using On-way ANOVA, followed by post hoc Duncan’s test which revealed significant differences between lean people, on the one hand, and overweight and obese subjects, on the other hand.
Based on the normal pattern of distribution of TyG index values, its reference range as a surrogate measure for peripheral IR in our subjects (regardless of sex and age) was calculated as mean ± 2SD. Accordingly, BMI-based TyG reference intervals were constructed for lean and (obese and overweight) subjects, respectively. The reference range for the TyG index in lean people is 4.11–4.91 and 4.25–5.05 for overweight and obese, (Table 3).

Table 2: Comparison of TyG index values by age groups

Age (years)	n (%)	TyG Index (mean ± SD)*
30–39	23 (29.9)	4.51 ± 0.20
40–49	27 (35.1)	4.59 ± 0.18
50–59	17 (22.1)	4.63 ± 0.26
60–69	10 (12.9)	4.66 ± 0.12
p-value*		0.113

*Using One-Way ANOVA. TyG index: Triglycerides glucose index.

Discussion

IR is the main player in the development of metabolic syndrome and T2DM. Many people would have IR while asymptomatic. These people may be yet euglycemic or have some kind of derangement in glucose metabolism such as impaired fasting or impaired glucose tolerance whose prevalence is increasing worldwide and represent a high risk of developing future diabetes [23].

Identifying people with IR while apparently healthy (with or without abnormal glycemic state) is of high value to slow down their progress toward diabetes through modifying their living habits and/or adding some medicines [24]. The use of techniques like the HEC to diagnose IR in clinical practice is not practical as it is invasive, difficult to do and time consuming [25]. Surrogate measures have been thus developed and alternatively used on a wide basis.

Most of these mathematically calculated surrogates of IR are based on fasting plasma glucose, insulin and Tgs mainly HOMA, QUICKI, Mc-Auely index, Tgs/HDL-c index, and others. Of these, HOMA-IR is considered as the gold standard among these and is still the most widely used. Many studies worldwide-enrolling different ethnic groups and BMI - have established reference intervals for HOMA-IR [26], [27], [28].

Table 3: Reference intervals for TyG index-based on categories of BMI

BMI (kg/m²)	n (%)	TyG Index (Mean ± SD)	Reference Interval (Mean ± 2SD)
<25	36 (46.8)	4.51 ± 0.20**	4.11–4.91
25–29.9	21 (27.3)	4.65 ± 0.21**	4.25–5.05**
≥30	20 (25.9)	4.65 ± 0.19**	

*Comparisons by One-Way ANOVA. Means with different letters (a, b) indicate significant difference at p < 0.05. **Reference intervals were calculated using SD of 0.20. BMI: Body mass index, TyG index: Triglycerides glucose index.

However, the problem of HOMA-IR calculation is its dependence on fasting insulin measurement which may not be freely available in most hospital laboratories of developing countries and expensive privately. For this reason, scientists were so eager to look for some alternative that would be available, reproducible, cheap, reliable, and insulin independent.

Reduced fatty acid oxidation due to decreased action of insulin-sensitive lipoprotein lipase in the presence of IR together with the enhanced flux of free fatty acids to non-adipose tissues (like the liver and muscles) would help build up more Tgs in these tissues and contribute to more metabolic abnormalities including hypertriglyceridemia - the one of IR characteristics [29], [30]. Simental-Mendía et al. in 2008 proposed an index that is based on both fasting glucose and Tgs values-the TyG index.

They found that TyG index performed as a highly sensitive (but not fairly specific) tool to diagnose IR in apparently healthy (but at risk) subjects in clinical settings at the cutoff value of Ln 4.65. As the current study shows, they also revealed a very good correlation between the TyG index and HOMA-IR. However, its relative low specificity limits its benefit as a large scale tool for IR screening [12]. Beside its association with IR, TyG index has been found in different liver studies to be associated with problems such as fatty liver diseases, hypertension, and diabetes [31], [32], [33]. These findings support the need for further focusing on TyG index in clinical association studies.

Referring to normal values is mandatory for appropriately interpreting laboratory tests. To the best of our best knowledge, this is the first study that establishes a reference interval for TyG index among apparently healthy adult people in Iraq. It was established between the (2.5th) and (97.5th) percentiles
of our TyG data which followed Gaussian distribution, as recommended [34]. Obesity is well-known to associate with IR and hypertriglyceridemia and our results showed statistically significant differences in the mean TyG index value by BMI classes - but not by age or sex categories. Thus, we have determined the upper limit of the TyG index as 4.91 in lean people and 5.05 when BMI ≥25 Kg/m^2.

One of our study’s limitations is the small sample size. The study was interrupted by the pandemic of COVID-19. In addition, our study compared the TyG index to HOMA-IR and some other surrogates of IR, but not with the real gold-standard test - the HEC. Overall, calculating TyG index is easy, insulin independent requiring FG and Tgs only and can be used in clinical settings.

Conclusions

The TyG index is a reasonable estimate of IR in apparently healthy people keeping in mind the person’s BMI. In Iraqi adult people, the upper limit of the TyG index is 4.91 in lean people and 5.05 if BMI ≥25 Kg/m^2. Further studies are needed to validate its performance as a diagnostic test for IR involving people with different glycemic states.

Acknowledgments

I would like to thank all the participating volunteers in this study and all the staff of Clinical Biochemistry Laboratory, College of Medicine, University of Mosul for their help. I declare that this study did not receive any financial support.

References

1. Reddy PH. Can diabetes be controlled by lifestyle activities? Curr Res Diabetes Obes J. 2017;1(4):559568. PMid:29399663
2. Sklyer JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes 2017;66:241-55. https://doi.org/10.2337/db16-0806 PMid:27980006
3. Sagesaka H, Sato Y, Someya Y, Tamura Y, Shimodaira M, Miyakoshi T, et al. Type 2 diabetes: When does it start? J Endocr Soc. 2018;2(5):476-484. https://doi.org/10.1210/js.2018-00071 PMid:29732459
4. Ormazabal V, Nair S, Eflekly O, Aguayo C, Salomon C, Zuniga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122. https://doi.org/10.1186/s12933-018-0762-4 PMid:30170598
5. Heise T, Zijlstra E, Nosek L, Heckermann S, Plum-Mörschel L, Forst T. Euglycaemic glucose clamp: what it can and cannot do, and how to do it. Diabetes Obes Metab. 2016;18(10):962-72. https://doi.org/10.1111/dom.12703 PMid:27324560
6. Matthews DR, Roskos J, Rudenski AS, Naylor BA, Teacher DF, Turner RC. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. https://doi.org/10.1007/BF00280883 PMid:3899825
7. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487-95. https://doi.org/10.2337/diabcare.27.6.1487 PMid:15161807
8. Gutch M, Kumar S, Razi SM, Gupta KK, Gupta A. Assessment of insulin sensitivity/resistance. Indian J Endocrinol Metab. 2015;19(1):160-4. https://doi.org/10.4103/2230-8210.146874 PMid:25593845
9. Robins SJ, Lyass A, Zachariah JP, Massaro JM, Vasan RS. Insulin resistance and the relation of a dyslipidemia to coronary heart disease. The Framingham heart study. Arterioscler Thromb Vasc Biol. 2011;31(5):1208-14. https://doi.org/10.1161/ATVBAHA.110.219055 PMid:21311041
10. Jung UJ, Choi MS. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184-223. https://doi.org/10.3390/ijms1504184 PMid:24733068
11. Akhtar DH, Iqbal V, Vazquez-Montesino LM, Dennis BB, Ahmed A. Pathogenesis of insulin resistance and atherogenic dyslipidemia in nonalcoholic fatty liver disease. J Clin Transl Hepatol. 2019;7(4):362-70. https://doi.org/10.14218/JCTH.2019.00028 PMid:31915606
12. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299-304. https://doi.org/10.1089/met.2008.0034 PMid:19067533
13. Krachler B, Volgyi E, Savonen K, Tylavsky FA, Alén M, Cheng S. The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184-223. https://doi.org/10.3390/ijms1504184 PMid:24733068
14. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021-104. https://doi.org/10.1093/eurheartj/ehy339 PMid:30165516
15. Güemes M, Rahman SA, Hussain K. What is a normal blood glucose? Arch Dis Child. 2016;101(6):569-74. https://doi.org/10.1136/archdischild-2015-308336 PMid:26369574
16. Warnick GR, Mayfield C, Benderson J, Chen JS, Albers JJ. HDL cholesterol quantitation by phosphotungstate-Mg2+ and...
by dextran sulfate-Mn2+-polyethylene glycol precipitation, both with enzymatic cholesterol assay compared with the lipid research method. Am J Clin Pathol. 1982;78(5):718-23. https://doi.org/10.1093/ajcp/78.5.718 PMid:6182791

17. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499-502. PMid:4337382

18. Lee JS, Chang PY, Zhang Y, Kizer JR, Best LG, Howard BV. Triglyceride and HDL-C dyslipidemia and risks of coronary heart disease and ischemic stroke by glyceremic dysregulation status: The Strong Heart study. Diabetes Care. 2017;40(4):529-37. https://doi.org/10.2337/dc16-1958. PMid:28122840

19. McAuley KA, Williams SM, Mann JI. Diagnosing insulin resistance in the general population. Diabetes Care. 2001;24:460-4. https://doi.org/10.2337/diacare.24.3.460 PMid:11289468

20. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402-10. https://doi.org/10.1210/jcem.85.7.6661 PMid:10902785

21. Hosseini SM. Triglyceride glucose index simulation. J Clin Basic Res. 2017;1(1):11-6.

22. Yakushiji H, Goto T, Shirasaka W, Hagiwara Y, Watase H, Okamoto H, et al. Associations of obesity with tracheal intubation success on first attempt and adverse events in the emergency department: An analysis of the first multicenter prospective observational study in Japan. PLoS One. 2018;13(4):e0195938. https://doi.org/10.1371/journal.pone.0195938 PMid:29672600

23. Mula-Abed WS, Al-Naemi AH. Prevalence of diabetes mellitus in Mosul City: Comparison of 1997 American diabetes association classification with 1985 world health Organization classification. Ann Coll Med Mosul. 2002;28(2):109-16.

24. Feldman AI, Long GH, Johansson I, Weinehall L, Fhärø EM, Wennberg P, et al. Change in lifestyle behaviors and diabetes risk: Evidence from a population-based cohort study with 10 year follow-up. Int J Behav Nutr Phys Act. 2017;14(1):39. https://doi.org/10.1186/s12966-017-0489-8 PMid:28351358

25. Tam CS, Xie W, Johnson WD, Cefalu WT, Redman LM, Ravussin E. Defining insulin resistance from hyperinsulinemic-euglycemic clamps. Diabetes Care. 2012;35(7):1605-10. https://doi.org/10.2337/dc11-2339 PMid:22511259

26. Ascaso JF, Romero P, Real JT, Priego A, Valdecabres C, Carmona R. Insulin resistance quantification by fasting insulin plasma values and HOMA index in a non-diabetic population. Med Clin (Barc). 2001;117(14):530-3. https://doi.org/10.1016/s0025-7753(01)72168-9 PMid:11707218

27. Lee JM, Okumura MJ, Davis MM, Herman WH, Gurney JG. Prevalence and determinants of insulin resistance among U.S. adolescents: A population-based study. Diabetes Care. 2006;29(11):2427-32. https://doi.org/10.2337/dc06-0709 PMid:17065679

28. Yamada C, Mitsuhashi T, Hiratsuka N, Inabe F, Araida N, Takahashi E. Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population. J Diabetes Investig. 2011;2(5):373-6. https://doi.org/10.1111/j.2040-1124.2011.00113.x PMid:22464316

29. Kelley DE, Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes Care. 2001;24(5):933-41. https://doi.org/10.2337/diacare.24.5.933 PMid:11347757

30. Ryssy L, Hääkinen AM, Goto T, Vehkavaara S, Westerbacka J, Halavaara J, et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in Type 2 diabetic patients. Diabetes. 2000;49(5):749-58. https://doi.org/10.2337.diabetes.49.5.749 PMid:10905483

31. Navarro-González D, Sánchez-Iñigo L, Pastrana-Delgado J, Fernández-Montero A, Martinez JA. Triglyceride glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: The Vascular-Metabolic CUN cohort. Prev Med. 2016;86:99-105. https://doi.org/10.1016/j.ypmed.2016.01.022 PMid:26854766

32. Zheng R, Mao Y. Triglyceride and glucose (TyG) index as a predictor of incident hypertension: A 9- year longitudinal population- based study. Lipids Health Dis. 2017;16(1):175. https://doi.org/10.1186/s12944-017-0562-y PMid:28903774

33. Kitae A, Hashimoto Y, Hamaguchi M, Obora A, Kojima T, Fukui M. The triglyceride and glucose index is a predictor of incident nonalcoholic fatty liver disease: A population- based cohort study. Can J Gastroenterol Hepatol. 2019;2019:5121574. https://doi.org/10.1155/2019/5121574 PMid:31687367

34. Häggström M. Establishment and clinical use of reference ranges. Wiki J Med. 2014;1(1):1-7. https://doi.org/10.15347/wjm/2014.003