Title
Genome sequence of the orange-pigmented seawater bacterium Owenweeksia hongkongensis type strain (UST20020801(T)).

Permalink
https://escholarship.org/uc/item/8734g6jx

Journal
Standards in genomic sciences, 7(1)

ISSN
1944-3277

Authors
Riedel, Thomas
Held, Brittany
Nolan, Matt
et al.

Publication Date
2012-10-01

DOI
10.4056/sigs.3296896

Peer reviewed
Genome sequence of the orange-pigmented seawater bacterium \textit{Owenweeksia hongkongensis} type strain (UST20020801T)

Thomas Riedel1, Brittany Held2,3, Matt Nolan2, Susan Lucas2, Alla Lapidus2, Hope Tice2, Tijana Glavina Del Rio2, Jan-Fang Cheng2, Cliff Han2,3, Roxanne Tapia2,3, Lynne A. Goodwin2,3, Amrita Pati2, Amy Chen2, Krishna Palaniappan4, Manfred Rohde1, Brian J. Tindall6, John C. Detter2,3, Markus Göker6, Tanja Woyke2, James Bristow2, Jonathan A. Eisen2,7, Victor Markowitz4, Philip Hugenholtz2,8, Hans-Peter Klenk6*, and Nikos C. Kyrpides2

1 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
2 DOE Joint Genome Institute, Walnut Creek, California, USA
3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
6 Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
7 University of California Davis Genome Center, Davis, California, USA
8 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia

*Corresponding authors: Hans-Peter Klenk (hpk@dsmz.de)

\textbf{Keywords:} aerobic, motile, rod-shaped, mesophilic, non-fermentative, Gram-negative, orange-pigmented sea water, \textit{Bacteroidetes}, \textit{Flavobacteria}, \textit{Cryomorphaceae}, GEBA

\textit{Owenweeksia hongkongensis} Lau \textit{et al.} 2005 is the sole member of the monospecific genus \textit{Owenweeksia} in the family \textit{Cryomorphaceae}, a poorly characterized family at the genome level thus far. This family comprises seven genera within the class \textit{Flavobacteria}. Family members are known to be psychrotolerant, rod-shaped and orange pigmented (β-carotene), typical for \textit{Flavobacteria}. For growth, seawater and complex organic nutrients are necessary. The genome of \textit{O. hongkongensis} UST20020801T is only the second genome of a member of the family \textit{Cryomorphaceae} whose sequence has been deciphered. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,000,057 bp long chromosome with its 3,518 protein-coding and 43 RNA genes is a part of the \textit{Genomic Encyclopedia of Bacteria and Archaea} project.

Introduction

Strain UST20020801T (= DSM 17368 = NRRL B-23963 = JCM 12287) is the type strain of the species \textit{Owenweeksia hongkongensis} \cite{1} in the monotypic genus \textit{Owenweeksia} \cite{1}. The genus was named after Owen B. Weeks for his work on \textit{Flavobacterium} and \textit{Cytophaga} during the 1950s to 1970s \cite{1}. The species epithet points to Hong Kong, P. R. China, the place where the stain was isolated \cite{1}. Strain UST20020801T was first isolated in August 2002 from seawater samples collected from Port Shelter in Hong Kong during a study of the bacterial diversity in Hong Kong coastal sea water. Members of the phylum \textit{Bacteroidetes} are widely distributed in marine and freshwater ecosystems. Compared to free-living bacteria, they were more frequently attached to aggregates \cite{2,3} and occurred during algae blooms \cite{4,5}. Representatives of the phylum \textit{Bacteroidetes}, especially of the class \textit{Flavobacteria}, are well-known to efficiently degrade and consume high-molecular-mass organic matter \cite{6-11}. Recently, the family \textit{Cryomorphaceae} was proposed to constitute a branch within the
phyllum *Bacteroidetes* [12]. This family encompasses the marine genera *Brumimicrobium, Cryomorpha, Crocinotomix* [12], *Owenweeksia* [1], *Lishizhenia* [13], *Wandonia* [14], and "*Phaeocystidibacter*" [15] as well as the freshwater-living genus *Fluviicola* [16]. Here we present a summary classification and a set of features for *O. hongkongensis* UST20020801T, together with the description of the genomic sequencing and annotation.

Classification and features

A representative genomic 16S rRNA sequence of *O. hongkongensis* UST20020801T was compared using NCBI BLAST [17,18] under default settings (e.g., considering only the high-scoring segment pairs (HSPs) from the best 250 hits) with the most recent release of the Greengenes database [19]. The relative frequencies of taxa and keywords (reduced to their stem [20]) were determined, weighted by BLAST scores. The only named genus in the list was *Owenweeksia* (1 hit in total). Regarding the single hit to a sequence from members of the species, the average identity within HSPs was 99.9%, whereas the average coverage by HSPs was 99.8%. No hits to sequences with other species names were found. (Note that the Greengenes database uses the INSDC (= EMBL/NCBI/DDBJ) annotation, which is not an authoritative source for nomenclature or classification.) The highest-scoring environmental sequence was EU328017 ('dynamics during bioremediation crude oil contaminated moderate saline soil clone B76'), which showed an identity of 93.2% and an HSP coverage of 99.9%. The most frequently occurring keywords within the labels of all environmental samples which yielded hits were 'marine' (3.0%), 'lagoon' (2.9%), 'depth' (2.7%), 'water' (2.6%) and 'zone' (2.5%) (249 hits in total) and corresponded with the habitat from which strain UST20020801T was isolated.

Figure 1 shows the phylogenetic neighborhood of *O. hongkongensis* in a 16S rRNA based tree. The sequences of the two identical 16S rRNA gene copies in the genome do not differ from the previously published 16S rRNA sequence (AB125062).

O. hongkongensis UST20020801T is a Gram-negative, halophilic, non-flagellated, motile, and rod-shaped bacterium (Figure 2) [1]. Colonies are orange, convex, smooth, glistening and translucent with an entire margin [1]. Cells are 0.3-0.5 μm in width and 0.5-4.0 μm in length [1]. The strain does not sporulate [1]. Cells are strictly aerobic heterotrophs requiring Na+, Mg2+, sea salts and yeast extract or peptone for growth [1]. Growth occurs between 4°C and 37°C with an optimum at 25°C-33°C [1]. The pH range for growth is 5.2-9.0 with an optimum at pH 6.0-8.0 [1]. The salinity range for growth is 1.0-7.5% NaCl as well as 15-100% seawater [1]. Yeast extract, peptone or starch is required for growth [1]. Ampicillin (10 μg), chloramphenicol (30 μg), erythromycin (10 μg), penicillin G (2U), rifampicin (10 μg), streptomycin (10 μg), tetracycline (30 μg) and polymyxin B (300 U) inhibit growth whereas cells were resistant to kanamycin (10 μg), gentamic sulphate (10 μg) and spectinomycin (10 μg) [1]. Cells contain oxidase, catalase and alkaline phosphatase [1].

Chemotaxonomy

The fatty-acid profile of strain UST20020801T differs significantly from those of other members of the *Cryomorphaceae* [1]. The principal cellular fatty acids of strain UST20020801T were the following saturated branched-chain fatty acids: iso-C15:0 (28.0%), iso-C16:0 (18.7%), iso-C17:0 3-OH (18.1%), iso-C17:1 ω9c (7.3%), iso-C15:0 3-OH (4.9%), and a summed feature containing iso-C15:0 2-OH and/or C16:1ω7c (10.0%) [1]. Strain UST20020801T had the highest level of iso-C17:0 3-OH within *Cryomorphaceae*. Compared with other members of the *Cryomorphaceae*, the strain most similar to strain UST20020801T with respect to the content of straight-chain fatty acids and branched-chain hydroxy fatty acids is *Cryomorpha ignava* 1-22T [1]. In addition to phosphatidyl-ethanolamine as major polar lipid, six unidentified lipids, one unidentified aminolipid, one unidentified aminophospholipid and one unidentified glycolipid were found in strain UST20020801T [15]. MK-6 was detected as a major respiratory quinone in strain UST20020801T [1].

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position [41], and is part of the *Genomic Encyclopedia of Bacteria and Archaea* project [42]. The genome project is deposited in the Genomes On Line Database [27] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.
Figure 1. Phylogenetic tree highlighting the position of *O. hongkongensis* relative to the type strains of the other species within the family Cryomorphaceae. The tree was inferred from 1,409 aligned characters [21,22] of the 16S rRNA gene sequence under the maximum likelihood (ML) criterion [23]. Rooting was done initially using the midpoint method [24] and then checked for its agreement with the current classification (Table 1). The branches are scaled in terms of the expected number of substitutions per site. Numbers adjacent to the branches are support values from 400 ML bootstrap replicates [25] (left) and from 1,000 maximum-parsimony bootstrap replicates [26] (right) if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [27] if larger than 60%.

Figure 2. Scanning electron micrograph of *O. hongkongensis* UST20020801T
Table 1. Classification and general features of *O. hongkongensis* UST20020801\(^1\) according to the MIGS recommendations [29] and NamesforLife [30].

MIGS ID	Property	Term	Evidence code
	Domain	*Bacteria*	TAS [31]
	Phylum	*Bacteroidetes*	TAS [32,33]
	Class	*Flavobacteria*	TAS [34-36]
	Current classification	**Order** *Flavobacteriales*	TAS [33,37,38]
		Family *Cryomorphaceae*	TAS [12]
		Genus *Owenweeksia*	TAS [1]
		Species *Owenweeksia hongkongensis*	TAS [1]
		Strain UST20020801	TAS [1]
	Gram stain	negative	TAS [1]
	Cell shape	rod-shaped	TAS [1]
	Motility	motile	TAS [1]
	Sporulation	none	TAS [1]
	Temperature range	mesophile, 4-37°C	TAS [1]
	Optimum temperature	25-33°C	TAS [1]
	Salinity	1.0-7.5% NaCl (w/v), 0-100% sea water	TAS [1]
MIGS-22	**Oxygen requirement**	aerobe	TAS [1]
MIGS-6	**Habitat**	Seawater	TAS [1]
MIGS-15	**Biotic relationship**	free-living	TAS [1]
MIGS-14	**Pathogenicity**	none	NAS
	Biosafety level	1	TAS [39]
MIGS-23.1	**Isolation**	sea water (sand-filtered)	TAS [1]
MIGS-4	**Geographic location**	Port Shelter, Hong Kong, China	TAS [1]
MIGS-5	**Sample collection time**	August 2002	TAS [1]
MIGS-4.1	**Latitude**	22.341	NAS
MIGS-4.2	**Longitude**	114.281	NAS
MIGS-4.3	**Depth**	5 m	TAS [1]
MIGS-4.4	**Altitude**	not reported	

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). Evidence codes are from the Gene Ontology project [40].
Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Three genomic libraries: one 454 pyrosequence standard library, one 454 PE library (8.5 kb insert size), one Illumina library
MIGS-29	Sequencing platforms	Illumina GAii, 454 GS FLX Titanium
MIGS-30.2	Sequencing coverage	300.0 × Illumina; 8.6 × pyrosequence
MIGS-31.2	Assemblers	Newbler version 2.3-PreRelease-6/30/2009, Velvet 1.0.13, phrap version SPS - 4.24
MIGS-32	Gene calling method	Prodigal
INSDC ID		CP003156
GenBank Date of Release		June 15, 2012
GOLD ID		Gc02043
NCBI project ID		65297
Database: IMG-GEBA		2508501098
MIGS-13	Source material identifier	DSM 17368
Project relevance		Tree of Life, GEBA

Growth conditions and DNA isolation

Owenweeksia hongkongensis strain UST20020801T, DSM 17368, was grown in DSMZ medium 1168 (YP medium) [43] at 30°C. DNA was isolated from 0.5-1 g of cell paste using Jetflex Genomic DNA Purification kit (GENOMED 600100) following the standard protocol as recommended by the manufacturer with an extended cell-lysis procedure, i.e. incubation with additional 80 µl protease K for one hour at 58°C. DNA is available through the DNA Bank Network [44].

Genome sequencing and assembly

The genome was sequenced using a combination of Illumina and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website [45]. Pyrosequencing reads were assembled using the Newbler assembler (Roche). The initial Newbler assembly, consisting of 39 contigs in one scaffold, was converted into a phrap [46] assembly by making fake reads from the consensus to collect the read pairs using Jetflex Genomic DNA Purification kit (GENOMED 600100) following the standard protocol as recommended by the manufacturer with an extended cell-lysis procedure, i.e. incubation with additional 80 µl protease K for one hour at 58°C. DNA is available through the DNA Bank Network [44]. Possible mis-assemblies were corrected with gapResolution [45], Dupfinisher [48], or sequencing cloned bridging PCR fragments with subcloning. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks (J.-F. Chang, unpublished). A total of 58 additional reactions were necessary to close gaps and to raise the quality of the finished sequence. Illumina reads were also used to correct potential base errors and increase consensus quality using the software Polisher developed at JGI [49]. The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Illumina and 454 sequencing platforms provided 308.6 x coverage of the genome. The final assembly contained 291,505 pyrosequence and 75,503,620 Illumina reads.

Genome annotation

Genes were identified using Prodigal [50] as part of the Oak Ridge National Laboratory genome-annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [51]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) non-redundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. These data sources were combined to assert a product description for each predicted protein. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [52].
Genome properties
The genome consists of a 4,000,057 bp long circular chromosome with a G+C content of 40.2% (Figure 3 and Table 3). Of the 3,563 genes predicted, 3,518 were protein-coding genes, and 45 RNAs; 33 pseudogenes were also identified. The majority of the protein-coding genes (67.9%) were assigned a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

Figure 3. Graphical map of the chromosome. From outside to center: Genes on forward strand (colored by COG categories), Genes on reverse strand (colored by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content (black), GC skew (purple/olive).
Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	4,000,057	100.00%
DNA coding region (bp)	3,661,831	91.54%
DNA G+C content (bp)	1,609,363	40.23%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	3,563	100.00%
RNA genes	45	1.26%
rRNA operons	2	
tRNA genes	38	0.93%
Protein-coding genes	3,518	98.74%
Pseudo genes	33	0.93%
Genes with function prediction (proteins)	2,301	64.58%
Genes in paralog clusters	1,516	42.55%
Genes assigned to COGs	2,279	63.96%
Genes assigned Pfam domains	2,263	66.32%
Genes with signal peptides	1,095	30.73%
Genes with transmembrane helices	822	23.07%

Table 4. Number of genes associated with the general COG functional categories

Code	Value	%age	Description
J	155	6.2	Translation, ribosomal structure and biogenesis
A	0	0.0	RNA processing and modification
K	139	5.6	Transcription
L	141	5.7	Replication, recombination and repair
B	1	0.0	Chromatin structure and dynamics
D	33	1.3	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	54	2.2	Defense mechanisms
T	147	5.9	Signal transduction mechanisms
M	233	9.3	Cell wall/membrane biogenesis
N	13	0.5	Cell motility
Z	3	0.1	Cytoskeleton
W	0	0.0	Extracellular structures
U	45	1.8	Intracellular trafficking and secretion, and vesicular transport
O	107	4.3	Posttranslational modification, protein turnover, chaperones
C	116	4.7	Energy production and conversion
G	71	2.9	Carbohydrate transport and metabolism
E	181	7.3	Amino acid transport and metabolism
F	57	2.3	Nucleotide transport and metabolism
H	115	4.6	Coenzyme transport and metabolism
I	114	4.6	Lipid transport and metabolism
P	127	5.1	Inorganic ion transport and metabolism
Q	54	2.2	Secondary metabolites biosynthesis, transport and catabolism
R	337	13.5	General function prediction only
S	251	10.1	Function unknown
-	1,284	36.0	Not in COGs
Insights into the genome sequence

Genome analysis of strain UST20020801T revealed the presence of genes encoding an arylsulfatase A family protein (Oweho_0043), a bacterio-phytochrome (light-regulated signal transduction histidine kinase (Oweho_0350), a cytochrome c\textsubscript{2} and a cytochrome c oxidase cbb\textsubscript{3} type (Oweho_2085)). Additional gene sequences of interest encode a homogenisate 1,2-dioxigenase (Oweho_2010), a haloacid dehalogenase superfamily protein (Oweho_2094) as well as a 2-haloalkanoic acid dehalogenase type II (Oweho_2503). The presence of these genes could indicate that strain UST20020801T plays a role in the respiratory degradation of recalcitrant compounds in its ecological niche. Further, a light-dependent regulation of metabolic activities using bacteriophytochrome as a sensor seems to be possible.

Acknowledgements

The authors would like to gratefully acknowledge the help of Helga Pomrenke for growing \textit{O. hongkongensis} cultures and Evelyne-Marie Brambilla for DNA extraction and quality control (both at DSMZ). This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-2 and Transregio-SFB 51 Roseobacter.

References

1. Lau KWK, Ng CYM, Ren J, Lau SCL, Qian PY, Wong PK, Lau TC, Wu M. Owenweeksia hongkongensis gen. nov., sp. nov., a novel marine bacterium of the phylum 'Bacteroidetes'. \textit{Int J Syst Evol Microbiol} 2005; 55:1051-1057. PubMed http://dx.doi.org/10.1099/ijs.0.63155-0

2. Delong EF, Franks DG, Alldredge AL. Phylogenetic diversity of aggregate-attached versus free-living marine bacterial assemblages. \textit{Limnol Oceanogr} 1993; 38:924-934. http://dx.doi.org/10.4319/lo.1993.38.5.0924

3. Rath J, Wu KY, Herndl GJ, DeLong EF. High phylogenetic diversity in a marine-snow-associated bacterial assemblage. \textit{Aquat Microb Ecol} 1998; 14:261-269. http://dx.doi.org/10.3354/ame014261

4. Pinhasi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A, Marrasé C. Changes in bacterioplankton composition under different phytoplankton regimes. \textit{Appl Environ Microbiol} 2004; 70:6753-6766. PubMed http://dx.doi.org/10.1128/AEM.70.11.6753-6766.2004

5. Riemann L, Steward GF, Azam F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. \textit{Appl Environ Microbiol} 2000; 66:578-587. PubMed http://dx.doi.org/10.1128/AEM.66.2.578-587.2000

6. Cottrell MT, Kirchman DL. Natural assemblages of marine proteobacteria and members of the \textit{Cytophaga-Flavobacter} cluster consuming low- and high-molecular weight dissolved organic matter. \textit{Appl Environ Microbiol} 2000; 66:1692-1697. PubMed http://dx.doi.org/10.1128/AEM.66.4.1692-1697.2000

7. Kirchman DL. The ecology of \textit{Cytophaga-Flavobacteria} in aquatic environments. \textit{FEMS Microbiol Ecol} 2002; 39:91-100. PubMed

8. Anderson KL, Salyers AA. Biochemical evidence that starch breakdown by \textit{Bacteroides thetaiotaomicron} involves outer membrane starch binding sites and periplasmatic starch-degrading enzymes. \textit{J Bacteriol} 1989; 171:3192-3198. PubMed

9. Anderson KL, Salyers AA. Genetic evidence that outer membrane binding of starch is required for starch utilization by \textit{Bacteroides thetaiotaomicron}. \textit{J Bacteriol} 1989; 171:3199-3204. PubMed

10. Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, Würdemann CA, Quast C, Kuhl H, Knaust F, et al. Whole genome analysis of the marine \textit{Bacteroidetes 'Gramella forsetii'} reveals adaption to degradation of polymeric organic matter. \textit{Environ Microbiol} 2006; 8:2201-2213. PubMed http://dx.doi.org/10.1111/j.1462-2920.2006.01152.x
11. González JM, Fernández-Gómez B, Fernández-Guerra A, Gómez-Consarnau L, Sánchez O, Coll-Lladó M, Del Campo J, Escudero L, Rodríguez-Martínez R, Alsonso-Sáez L, et al. Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc Natl Acad Sci USA 2008; 105:8724-8729. PubMed
http://dx.doi.org/10.1073/pnas.0712027105

12. Bowman JP, Mancuso Nichols C, Gibson JAE. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumicribium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 2003; 53:1343-1355. PubMed
http://dx.doi.org/10.1099/ijs.0.02553-0

13. Lau KW, Ren J, Wai NL, Qian PY, Wong PK, Wu M. Lishizhenia caseinilytica gen. nov., sp. nov., a marine bacterium of the phylum Bacteroidetes. Int J Syst Evol Microbiol 2006; 56:2317-2322. PubMed
http://dx.doi.org/10.1099/ijs.0.64415-0

14. Lee DH, Choi EK, Moon SR, Ahn S, Lee YS, Jung JS, Jeon CO, Whang KS, Kahng HY. Wandonia halitosis gen. nov., sp. nov., a marine bacterium of the family Cryomorphaeaceae, phylum Bacteroidetes. Int J Syst Evol Microbiol 2010; 60:510-514. PubMed
http://dx.doi.org/10.1099/ijs.0.012674-0

15. Zhou Y, Su J, Lai Q, Li X, Yang X, Dong P, Zheng T. Phaeocystidibacter luteus gen. nov. sp. nov., a new member of the family Cryomorphaeaceae isolated from the marine alga Phaeocystis globosa and emended description of Owenweeksia hongkongensis. Int J Syst Evol Microbiol 2012. PubMed
http://dx.doi.org/10.1099/ijs.0.030254-0

16. O’Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC. Fluviicola taffensis gen. nov., sp. nov., a novel freshwater bacterium of the family Cryomorphaeaceae in the Phylum ‘Bacteroidetes’. Int J Syst Evol Microbiol 2005; 55:2189-2194. PubMed
http://dx.doi.org/10.1099/ijs.0.63736-0

17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403-410. PubMed

18. Korf I, Yandell M, Bedell J. BLAST, O’Reilly, Sebastopol, 2003.

19. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006; 72:5069-5072. PubMed
http://dx.doi.org/10.1128/AEM.03006-05

20. Porter MF. An algorithm for suffix stripping. Program: electronic library and information systems 1980; 14:130-137.

21. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics 2002; 18:452-464. PubMed
http://dx.doi.org/10.1093/bioinformatics/18.3.452

22. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540-552. PubMed
http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334

23. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 2008; 57:758-771. PubMed
http://dx.doi.org/10.1080/10635150802429642

24. Hess PN, De Moraes Russo CA. An empirical test of the midpoint rooting method. Biol J Linn Soc Lond 2007; 92:669-674. http://dx.doi.org/10.1111/j.1095-8312.2007.00864.x

25. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? Lect Notes Comput Sci 2009; 5541:184-200. http://dx.doi.org/10.1007/978-3-642-02008-7_13

26. Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0 b10. Sinauer Associates, Sunderland, 2002.

27. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2012; 40:D571-D579. PubMed
http://dx.doi.org/10.1093/nar/gkr1100

28. Woyke T, Chertkov O, Lapidus A, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Tapia R, Han C, et al. Complete genome sequence of the gliding freshwater bacterium Fluviicola taffensis type strain (RW262'). Stand Genomic Sci 2011; 5:21-29. PubMed
http://dx.doi.org/10.4056/sigs.2124912

29. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information
about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed http://dx.doi.org/10.1038/nbt1360

30. Garrity G. NamesforLife. BrowserTool takes expertise out of the database and puts it right in the browser. Microbiol Today 2010; 37:9.

31. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms. Proposal for the domains Archaea and Bacteria. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576

32. Krieg NR, Ludwig W, Euzéby J, Whitman WB. Phylum XIV. Bacteroidetes phyl. nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 4, Springer, New York, 2011, p. 25.

33. Validation List No. 143. [PubMed]. Int J Syst Evol Microbiol 2012; 62:1-4.

34. Bernardet JF. Class II. Flavobacteria class. nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 4, Springer, New York, 2011, p. 105.

35. Ludwig W, Euzéby J, Whitman WG. Draft taxonomic outline of the Bacteroidetes, Planctomycetes, Chlamydiae, Spirochaetes, Fibrobacteres, Fusobacteria, Acidobacteria, Verrucomicrobia, Dictyoglomi, and Gemmatimonadetes.

36. Judicial Commission of the International Committee on Systematics of Prokaryotes. The nomenclatural types of the orders Acholeplasmatales, Halanaerobiales, Halobacteriales, Methanobacterales, Methanococcales, Methanomicrobiales, Planctomycetes, Prochlorales, Sulfobacterales, Thermococcales, Thermoproteales and Verrucomicrobiales are the genera Acholeplasma, Halanaerobium, Halobacterium, Methanobacterium, Methanococcus, Methanomicrobium, Planctomyces, Prochloron, Sulfobolus, Thermococcus, Thermoproteus and Verrucomicrobiu, respectively. Opinion 79. Int J Syst Evol Microbiol 2005.

37. Bernardet JF. Order I. Flavobacteriales ord. nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 4, Springer, New York, 2011, p. 105.

38. Errata: List of new names and new combinations previously effectively, but not validly, published – Validation List No. 143. Int J Syst Evol Microbiol 2012; 62:1016. http://dx.doi.org/10.1099/ijs.0.68147-0

39. BAuA. 2010, Classification of bacteria and archaea in risk groups. http://www.baua.de TRBA 466, p. 158.

40. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25-29. PubMed http://dx.doi.org/10.1038/sj.nrg.1010737

41. Klenk HP, Göker M. En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 2010; 33:175-182. PubMed http://dx.doi.org/10.1016/j.syapm.2010.03.003

42. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven Genomic Encyclopaedia of Bacteria and Archaea. Nature 2009; 462:1056-1060. PubMed http://dx.doi.org/10.1038/nature08656

43. List of growth media used at DSMZ: http://www.dsmz.de/catalogues/catalogue-microorganisms/culture-technology/list-of-media-for-microorganisms.html.

44. Gemeinholzer B, Dröge G, Zetzsche H, Haszprunar G, Klenk HP, Güntsch A, Berendsohn WG, Wägele JW. The DNA Bank Network: the start from a German initiative. Biopreserv Biobank 2011; 9:51-55. http://dx.doi.org/10.1089/bio.2010.0029

45. The DOE Joint Genome Institute. http://www.jgi.doe.gov

46. Phrap and Phred for Windows. MacOS, Linux, and Unix. http://www.phrap.com

47. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821-829. PubMed http://dx.doi.org/10.1101/gr.074492.107

48. Han C, Chain P. Finishing repeat regions automatically with Dupfinisher. In: Proceedings of the 2006 international conference on bioinformatics & computational biology. Arabnia HR, Valafer H (eds), CSREA Press. June 26-29, 2006: 141-146.
49. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltsman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.

50. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal Prokaryotic Dynamic Programming Genefinding Algorithm. *BMC Bioinformatics* 2010; 11:119. PubMed http://dx.doi.org/10.1186/1471-2105-11-119

51. Pati A, Ivanova N, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: A Gene Prediction Improvement Pipeline for microbial genomes. *Nat Methods* 2010; 7:455-457. PubMed http://dx.doi.org/10.1038/nmeth.1457

52. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; 25:2271-2278. PubMed http://dx.doi.org/10.1093/bioinformatics/btp393