Layered Heaps Beating Standard and Fibonacci Heaps in Practice

P. Huggins

October 13, 2015

Abstract

We consider the classic problem of designing heaps. Standard binary heaps run faster in practice than Fibonacci heaps but have worse time guarantees. Here we present a new type of heap that runs faster in practice than both standard binary and Fibonacci heaps, but has asymptotic insert times arbitrarily better than $O(\log n)$, namely $O((\log n)^{1/m})$ for arbitrary positive integer m. Our heap is defined recursively and maximum run time speed up occurs when a recursion depth of 1 is used, i.e. a heap of heaps.

1 Layered Heaps

We will define M-layered heaps for arbitrary integer $M \geq 1$. For $M = 1$ the M-ary heap is a standard binary heap stored in an array. For $M \geq 2$, a k_M-ary heap is used, with $k_M = 2^{(\log n)^{(M-1)/M} \times (1/(M-1))}$. Then by inductive hypothesis, insert operations on the children heaps will be $(\log n)^{(M-1)/M} \times (1/(M-1)) = (\log n)^{1/M}$. Furthermore the height of the M-ary heap will also be $(\log n)^{1/M}$. So insert operations take $O((\log n)^{1/M})$ time for any M we want. Pop/delete functions take standard $O(\log n)$ time, because we may need to do a children heap operation which takes $(\log n)^{(M-1)/M}$ time a total of $(\log n)^{1/M}$ times, i.e. the height of the M-ary layered heap.

The operations and running times for them are explained in the following pseudocode:

INSERT INTO M-ARY HEAP A: Before swapping, start by placing the element at end of array (position $n = N$). Then do the following:

- Set $k = 2^{(\log n)^{(M-1)/M}}$
- While $n > 0$:
 - If $A[n] > A[n/k]$ then swap their values
 - Else insert $A[n]$ into children $(M-1)$-ary layered heap that contains position n in the array. (Recursive) Then BREAK.
- Set \(n := n/k \)

POP OUT OF M-ARY HEAP \(A \):

- Set \(k = 2^{(\log N)\left(\frac{M-1}{M}\right)} \)
- Store and remove root element of \(M \)-ary heap.
- Put the last item in the heap at the root.
- Swap downwards with top of children heap while top of children heap is greater than element. (Recursively balance the \((M-1)\)-ary heap in time \(O((\log n)^{\left(\frac{M-1}{M}\right)}) \)).
- Break when element is greater than top of current children heap.
- Return popped top of heap

As can be seen, the running time for insert is \(O\left(\left((\log n)^{\left(\frac{M-1}{M}\right)}\right)^{1/(M-1)}\right) \) which is \(O((\log n)^{1/M}) \). The running time for pop is \(O((\log n)^{\left(M-1\right)/M + 1/M}) \).

2 Popular Competing Heaps

In [1] the Fibonacci heap is presented, which has (amortized) constant insert time, and standard \(O(\log n) \) delete/pop time. The amortized running times were later improved to strict running time bounds per operation in a later publication. However, in practice, the constants associated with various Fibonacci heaps are too large to outperform a standard binary tree. Thus, due to its simplicity and faster running time, binary heaps are traditionally what is taught and used.

3 Running time comparisons for insert/pop

To simulate situations where asymptotically faster insertions in heaps may be better than traditional heaps, we did a 10 to 1 simulation where 1000 elements would be added and then 100 elements would be popped, where the \(i \)th insert inserted the value \(i \) (and the heap is a max-heap), and repeated over and over with running times being recorded as a function of the size of the heap. Binary heaps are faster than Fibonacci heaps for practical data sizes in practice. Furthermore, analysis of our recursively defined \(M \)-ary layered heaps made it clear that the constants become too large to be overcome in practice unless \(M = 2 \). Thus we compared the 2-layer heap to the traditional binary heap. Results are shown in the figure, where \(N \) is the number of elements in the heap as the heap grows. Results were computed out to \(N = 2^{12} \) and then extrapolated to \(N = 2^{40} \) to cover all feasible data sizes.

As the figure shows, despite the \(O(\log n) \) time for both heaps when a pop is performed, the 2-ary layered heap has good cache performance when processing a children heap because it only has about 50 elements and so usually they all fit into cache after one memory access into the
children heap. Thus the running time in practice for inserts into the 2-ary layered heap look more like an inflated $O(\sqrt{\log n})$. Memory use is identical for both heaps.

4 Discussion

Although M-ary layered heaps are interesting from a theoretical point of view for arbitrary M, giving asymptotic insert running time arbitrarily closer and closer to constant, in practice the 2-ary layered heap is the fastest in practice and can run up to 3-4 times faster than a binary heap for reasonable data sizes.

In fact, 2-ary heaps are easy enough to describe and implement and analyze directly (as opposed to using induction/recursion for $M > 2$), they should probably be taught in data structures courses after standard binary heaps are presented.

5 Bibliography

1. Fredman, Michael Lawrence and Tarjan, Robert E. (1987). "Fibonacci heaps and their uses in improved network optimization algorithms". Journal of the Association for Computing Machinery 34 (3): 596615. doi:10.1145/28869.28874.