ERRATA

Erratum to: BOGOLIUBOV’S CAUSAL PERTURBATIVE QED AND WHITE NOISE. INTERACTING FIELDS

J. Wawrzycki∗

DOI: 10.1134/S0040577922090124

Lemmas 1 and 2 (Theoretical and Mathematical Physics, Vol. 211, No. 3, pp. 792–793 and 795–796) must be stated as follows.

Lemma 1. Let \(d \in S(\mathbb{R}^4; \mathbb{C})^* \), and let

\[
\kappa_{l,m} \in \mathcal{L}(\mathcal{E}, (E_{i_1} \otimes \cdots \otimes E_{i_l+m})^*) \cong \mathcal{L}(E_{i_1} \otimes \cdots \otimes E_{i_l+m}, \mathcal{E}^*),
\]

with the kernel

\[
\kappa_{l,m} = (\kappa_{l_1,m_1}^{n_1}) \otimes \cdots \otimes (\kappa_{M,M}^{n_M})
\]

corresponding to the Wick product (at the same space–time point \(x \))

\[
\Xi_{l,m}(\kappa_{lm}(x)) = \Xi_{l_1,m_1}(\kappa_{l_1,m_1}(x)) \cdots \Xi_{M,M}(\kappa_{M,M}(x)):
\]

of the integral kernel operators \(\Xi_{l_1,m_1}(\kappa_{l_1,m_1}(x)) \).

Let the integral kernel \(d \ast \kappa_{l,m} \) be equal to

\[
(d \ast \kappa_{l,m}(\xi_{i_1} \otimes \cdots \otimes \xi_{i_l+m}), \phi) = \int_{\mathbb{R}^4} d \ast \kappa_{lm}(\xi_1, \ldots, \xi_{l+m})(x)\phi(x) d^4x \times
\]

\[
\times \int_{\mathbb{R}^4 \times \mathbb{R}^4} d(x - y)\kappa_{l,m}(w_1, \ldots, w_{i_l+m}; y)\xi_1(w_1), \ldots, \xi_{i_l+m}(w_{i_l+m})\phi(x) dw_1 \ldots dw_{i_l+m} d^4y d^4x,
\]

where \(\xi_{ik} \in E_{ik}, \phi \in \mathcal{E} \) and \(\mathcal{E} = S(\mathbb{R}^4; \mathbb{C}) \) or \(\mathcal{E} = S_0(\mathbb{R}^4; \mathbb{C}) \).

Then

1. If the convolution \(d_n \ast d_{n-1} \ast \cdots \ast d_1 \ast \kappa_{l,m} \) exists, then it is continuous, i.e.,

\[
d_n \ast d_{n-1} \ast \cdots \ast d_1 \ast \kappa_{l,m} \in \mathcal{L}(E_{i_1} \otimes \cdots \otimes E_{i_l+m}, \mathcal{E}^*),
\]

provided

\[
\kappa_{l,m} = (\kappa_{l_1,m_1}^{n_1}) \otimes \cdots \otimes (\kappa_{M,M}^{n_M}), \quad l + m = M,
\]

and each \(d_i \) is equal to the product of pairings or to the retarded or advanced part of the causal combinations of products of pairings and \(M > 1 \), which we encounter as higher-order contributions to interacting fields in spinor QED.

∗Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia, e-mail: jaroslaw.wawrzycki@wp.pl.

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 212, No. 3, pp. 489–491, September, 2022. Received June 14, 2022. Revised June 14, 2022. Accepted June 14, 2022.
2. Let, moreover, in the case \(M = 1 \), \(\kappa_{1,m}^{n_1} = \kappa_{0,1}, \kappa_{1,0} \) be equal to the kernel of a free field with a mass \(m_{i_1} \). If further among the distributions \(d_n, d_{n-1}, \ldots, d_1 \) there are no (retarded or advanced parts of the) commutation functions of a free field of the mass \(m_2 = m_{i_1} \), then the convolutions

\[
d_n \ast \cdots \ast d_1 \ast \kappa_{0,1}(\xi), \quad d_n \ast \cdots \ast d_1 \ast \kappa_{1,0}(\xi), \quad \xi \in E,
\]

are well-defined and

\[
d_n \ast \cdots \ast d_1 \ast \kappa_{0,1}, \quad d_n \ast \cdots \ast d_1 \ast \kappa_{1,0} \in \mathcal{L}(E_{i_1}, \mathcal{E}^*) .
\]

3. If \(\kappa_{1,m}^{n_1} = \kappa_{0,1}, \kappa_{1,0} \) is the kernel of a free field with the mass not equal to the mass of the free field whose commutation function (or its retarded or advanced part) is equal to \(d \), then the convolutions

\[
d \ast \kappa_{0,1}, \quad d \ast \kappa_{1,0} \in \mathcal{L}(E_{i_1}^*, \mathcal{E}^*) = \mathcal{L}(\mathcal{E}, E_{i_1}) \subset \mathcal{L}(E_{i_1}, E^*)
\]

are well-defined.

4. If \(\kappa_{1,m}^{n_1} = \kappa_{0,1}, \kappa_{1,0} \) is the kernel of a free field with the mass equal to the mass of the free field whose commutation function (or its retarded or advanced part) is equal to \(d \), then the convolutions \(d \ast \kappa_{0,1} \) and \(d \ast \kappa_{1,0} \) are not well-defined.

Lemma 2. The following statements hold.

1. Let \(d_i \) be equal to the product of pairings or to the retarded or advanced part of the causal combinations of products of pairings and \(M > 1 \), which we encounter as the kernels of higher-order contributions to interacting fields in spinor QED and with the “natural” splitting of the causal distributions in the computation of the scattering operator. Assume that the convolution \(d_n \ast d_{n-1} \ast \cdots \ast d_1 \ast \kappa_{1,m} \) exists. Then the operator

\[
d_n \ast \cdots \ast d_1 \ast \Xi_{l,m}(\kappa_{l,m})(x) = \int_{[\mathbb{R}^4]^n} d_n(x - y_n)d_{n-1}(y_n - y_{n-1}) \cdots d_1(y_2 - y_1)\Xi_{l,m}(\kappa_{l,m}(y_1)) d^4y_1 \cdots d^4y_n = \Xi_{l,m}\left(\int_{[\mathbb{R}^4]^n} d_n(x - y_n)d_{n-1}(y_{n-1} - y_{n-2}) \cdots d_1(y_2 - y_1)\kappa_{l,m}(y_1) d^4y_1 \cdots d^4y_n \right) = \Xi_{l,m}(d_n \ast \cdots \ast d_1 \ast \kappa_{l,m}(x))
\]

defines an integral kernel operator

\[
\Xi_{l,m}(d_n \ast \cdots \ast d_1 \ast \kappa_{l,m}) \in \mathcal{L}((\mathcal{E}) \otimes \mathcal{E}, (\mathcal{E})^*) \cong \mathcal{L}(\mathcal{E}, \mathcal{L}((\mathcal{E}), (\mathcal{E})^*))
\]

with the vector-valued kernel

\[
d_n \ast \cdots \ast d_1 \ast \kappa_{l,m} \in \mathcal{L}(\mathcal{E}, (E_{i_1} \otimes \cdots \otimes E_{i_{l+m}})^*) \cong \mathcal{L}(E_{i_1} \otimes \cdots \otimes E_{i_{l+m}}, \mathcal{E}^*) .
\]
2. Let, moreover, for the higher-order contributions, in the case $M = 1$, $\kappa_{\ell_1,m_1}^{n_1} = \kappa_{0,1}, \kappa_{1,0}$ be equal to the kernel of a free field with a mass m_{i_1}. If further among the distributions $d_n, d_{n-1}, \ldots, d_1$ there are no (retarded or advanced parts of the) commutation functions of a free field of the mass $m_2 = m_{i_1}$, then

\[
d_n \ast \ldots \ast d_1 \ast \Xi_{0,1}(\kappa_{0,1})(x) = \\
= \int_{[\mathbb{R}^4]^n} d_n(x - y_n)d_{n-1}(y_n - y_{n-1}) \ldots d_1(y_2 - y_1)\Xi_{0,1}(\kappa_{0,1}(y))d^4y_1 \ldots d^4y_n = \\
= \Xi_{0,1}\left(\int_{[\mathbb{R}^4]^n} d_n(x - y_n)d_{n-1}(y_n - y_{n-1}) \ldots d_1(y_2 - y_1)\kappa_{0,1}(y)d^4y_1 \ldots d^4y_n\right) = \\
= \Xi_{0,1}(d_n \ast \ldots \ast d_1 \ast \kappa_{0,1}(x))
\]

defines an integral kernel operator

\[
\Xi_{0,1}(d_n \ast \ldots \ast d_1 \ast \kappa_{lm}) \in \mathcal{L}(E \otimes \mathcal{E}, (E)^*) \cong \mathcal{L}(\mathcal{E}, \mathcal{L}((E), (E)^*))
\]

with the vector-valued kernel

\[
d_n \ast \ldots \ast d_1 \ast \kappa_{0,1} \in \mathcal{L}(E_{i_1}, \mathcal{E}^*)
\]

and similarly for the kernel $\kappa_{1,0}$.

3. If, moreover, in the case $M = 1$, $\kappa_{\ell_1,m_1}^{n_1} = \kappa_{0,1}, \kappa_{1,0}$ is the kernel of a free field with the mass not equal to the mass of the free field whose commutation function (or its retarded or advanced part) is equal to d, then the integral kernel operators

\[
d \ast \Xi_{0,1}(\kappa_{0,1}) = \Xi_{0,1}(d \ast \kappa_{0,1}), \\
d \ast \Xi_{1,0}(\kappa_{1,0}) = \Xi_{0,1}(d \ast \kappa_{1,0})
\]

are well-defined and belong to

\[
\mathcal{L}(\mathcal{E}, E_{i_1}) = \mathcal{L}(E_{i_1}^*, \mathcal{E}^*) \subset \mathcal{L}(E_{i_1}, \mathcal{E}^*)
\]

4. If $\kappa_{\ell_1,m_1}^{n_1} = \kappa_{0,1}, \kappa_{1,0}$ is the kernel of a free field with the mass equal to the mass of the free field whose commutation function (or its retarded or advanced part) is equal to d, then the integral kernel operators

\[
d \ast \Xi_{0,1}(\kappa_{0,1}) = \Xi_{0,1}(d \ast \kappa_{0,1}), \\
d \ast \Xi_{1,0}(\kappa_{1,0}) = \Xi_{0,1}(d \ast \kappa_{1,0})
\]

are not well-defined.

The original article can be found online at https://doi.org/10.1134/S0040577922060034