Are there differences in outcomes by race among women with metastatic triple-negative breast cancer?

Bridget A. Oppong1 · Angel A. Rolle2 · Amara Ndumele3 · Yaming Li1 · James L. Fisher4 · Oindrila Bhattacharyya4 · Toyin Adeyanju5 · Electra D. Paskett5

Received: 28 June 2022 / Accepted: 3 September 2022 / Published online: 24 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Purpose Black women have higher breast cancer mortality rates than other groups, with Triple-negative breast cancer (TNBC) being more common among AAs with a worse prognosis. Our study seeks to explore differences among Non-Hispanic Black (NHB) vs. White (NHW) women, with Stage IV TNBC, focusing on survival and treatment patterns.

Methods SEER database was queried for TNBC patients diagnosed with metastatic disease from 2012 to 2016. Neighborhood socioeconomic status (nSES) was defined using the Yost index based on income, education, housing, and employment. Univariate and multivariate analyses were performed to evaluate receipt of surgery, radiation, and chemotherapy. Overall survival was evaluated using Kaplan–Meier curve and Cox proportional hazards model analysis.

Results 25,761 TNBC cases were identified with 1420 being metastatic (5.5%). Bone was the most common site for metastasis, with patients’ age being 63.7 years for NHW vs. 59.5 years for NHB. NHB women had the highest percentage of low nSES (62.3% vs 29.3%; p value = 0.001). On univariate analysis, fewer NHBs received radiation compared to NHWs (27.1 vs. 32.6%; p value = 0.040). On multivariate analysis, all women were less likely to undergo treatment if unmarried (p value < 0.01). NHB women had lower median survival compared to NHW women (13 vs. 15 months; p value < 0.01). Receipt of surgery and chemotherapy reduced the risk of mortality (p value <0.01).

Conclusion NHB women had lower median survival with metastatic TNBC. Race was associated with different treatment utilization. With a mortality differential between NHW and NHB women with metastatic TNBC, more investigation is needed to inform strategies to reduce this disparity.

Keywords Non-Hispanic Black · Non-Hispanic White · TNBC · Metastatic · Survival · Treatment

Introduction

Breast cancer

Breast, lung, and colorectal cancers are the three most frequent cancers among women, accounting for over half of all new cancer diagnoses by 2020 [1, 2]. For female breast malignancies, two unique distribution patterns of age at diagnosis are seen: incidence in White patients reach their peak at age 60, while non-White patients peak at their 40s [3]. Furthermore, Black women are more commonly diagnosed under the age of 45, compared to White women [3]. Black women with breast cancer also have a higher mortality rate and present with high-risk characteristics such as aggressive histopathology, greater tumor size at appearance, more nodal involvement, and negative estrogen receptor status [4].
Triple-negative breast cancer

Varied subtypes of breast cancer, based on biomarker status, have different tumor biology, prognoses, and therapeutic responses [5]. Triple-negative breast tumors lack the estrogen (ER), Progesterone (PR), and HER-2 receptors and this subgroup’s characteristics are similar to those of the basal-like breast cancer subgroup [6]. TNBC is more common in Black women than in White women, diagnosed at twice the rate [7–10]. This breast cancer phenotype currently lacks targeted treatment options and is linked to a shorter overall survival time [11]. Several histological series of malignancies in this category have documented poor clinical outcomes, and two studies have found a trend toward a worse outcome for individuals with tumors in this subgroup compared to those with HER2-positive tumors [6]. When compared to patients with other breast cancer subtypes, triple-negative breast cancer patients have a higher rate of local relapse and an earlier age of onset [6–11].

Racial disparities

Disparities in health care are defined as “racial or ethnic inequalities in the quality of health care that are not due to access-related variables or clinical needs, preferences, or appropriateness of intervention,” according to the IOM report [12]. Breast cancer death rates among minority Black women are much higher than those of White women and other ethnic groups in the USA [13]. Previous research has indicated that insufficient treatment, including adjuvant chemotherapy, is linked to a lower survival rate. Furthermore, in regard to systemic therapy, a higher percentage of Black women received less treatment than expected compared to White women [14]. Race/ethnicity and sociodemographic characteristics also are associated with a woman’s adherence to clinical breast examination, breast self-examination, or screening mammography guidelines, as well as the chance of seeking proper care if a breast mass is detected [15]. Consequently, non-White patients have a higher percentage of advanced breast cancers at the time of diagnosis than non-Hispanic White patients, including Stage IV or metastatic disease [3].

Metastatic breast cancer

Approximately 10% of new cases identified each year are metastatic at the time of presentation, with another 30% of individuals with early-stage cancer experiencing a recurrence [4]. African Americans have a shorter overall survival (OS) and breast cancer-specific survival (BCSS) at all stages, with the exception of Stage I HR+/HER2- illness, where survival is equal between African American and White patients [5]. Multivariate analysis revealed that African American patients with Stage IV HR-/HER2+ breast cancer had a significantly lower OS and BCSS [5]. However, in the TNBC group, this same study showed that despite African Americans having a greater incidence, their survival rates are comparable to White women [5].

These data do not explore granular details in differences in outcomes of the subgroup with TNBC. In particular, differences in outcomes by racial groups outside of survival, such as treatments received still remain unclear in metastatic TNBC. Our study seeks to explore differences among women (non-Hispanic Black vs. non-Hispanic White) with Stage IV TNBC with a focus on survival and treatment patterns. We hypothesize a lower overall survival for NHB woman with differences in receipt of trimodal treatment (surgery, radiation, and chemotherapy) compared to NHW woman.

Methods

Data collection

The Surveillance, Epidemiology, and End Results (SEER) Program is a collection of population-based central cancer registries capturing facts from 21 geographic areas representing 36.7% of the USA population [16]. With permission from the SEER Program, a specialized SEER dataset which included additional information about area-based (census tract level) measures reflecting socioeconomic status and urban/rural residence was used for these analyses [17]. Institutional review board approval was not necessary and ethical consent was not required because SEER data are deidentified and publicly available, albeit with permission for use of the dataset used in these analyses.

Participant/Cohort selection

Using a case listing session in SEER*Stat [18], the SEER Program dataset was queried for patients with TNBC over a 5-year period (2012–2016). For analysis we selected women diagnosed with metastatic or Stage IV disease at presentation and compare Non-Hispanic Black patients with Non-Hispanic White patients. Hispanic women were excluded to focus better on Black and White ethnic differences.

Study variables/outcome measures

Race/ethnicity was a key factor for this study. A SEER variable was used which divided race and ethnicity into five categories: Non-Hispanic White (NHW), Non-Hispanic Black (NHB), non-Hispanic Asian or Pacific Islander
predictor variables. Between the breast cancer survival time of patients and the hazards model was created to investigate the association between the racial groups. A multivariate Cox proportional test was used to compare breast cancer-specific mortality reported along with the Wald Chi-Square tests. A log-rank chemotherapy, and radiation therapy. Odds ratios were rates to predict factors responsible for the receipt of surgery, logistic regression was performed using appropriate covariates for chemotherapy and radiation therapies described in the Discussion; these include in inability to distinguish 'no' receipt of chemotherapy or radiation from 'unknown.' The outcome of major interest was overall survival (OS) which was calculated from follow-up durations as observed in time (month) and follow-up status as defined at last contact (alive, deceased due to cancer, deceased due to other cause).

Statistical analysis

The study cohort was divided into two racial groups: White and Black. Socio-demographic, clinical, pathologic, treatment, and outcome variables were tabulated as frequencies for the categorical variables and reported as mean ± standard deviation (SD) for continuous variables. Pearson’s Chi-Square tests and Analysis of Variance (ANOVA), were used, as appropriate for intergroup bivariate analysis. Multivariate logistic regression was performed using appropriate covariates to predict factors responsible for the receipt of surgery, chemotherapy, and radiation therapy. Odds ratios were reported along with the Wald Chi-Square tests. A log-rank test was used to compare breast cancer-specific mortality between the racial groups. A multivariate Cox proportional hazards model was created to investigate the association between the breast cancer survival time of patients and the predictor variables.

A p value of < 0.05 was considered statistically significant. Analyses were performed using Stata, Version 16.0 (Stata Corporation, College Station, TX). This study was deemed IRB-exempt.

Results

Study population characteristics

Table 1 presents the sociodemographic and clinical characteristics of the participants grouped by race. Of the 1420 women who presented with metastatic Triple-Negative Breast Cancer (TNBC), 995 (70.1%) were NHW and 425 (29.9%) were NHB. The mean age at diagnosis for both groups was 62.5 years, with the average age at diagnosis for NHW women being significantly (p < 0.001) higher compared to NHB women (63.7 vs. 59.5 years; p value < 0.001). Most women were insured, however, NHB women were less likely to be insured compared to NHW women (64.9% vs 82.0%; p value < 0.001). While 42.0% of the participants were married/partnered, NHB women were more likely to be single compared to NHW women (36.0% vs 14.5%; p < 0.001). Significantly more NHB women were in the low Neighborhood Socioeconomic Status (nSES) group compared to NHW women (62.3% vs 29.3%; p < 0.001) and were less likely to have lived in a rural area compared to NHW women (4.5% vs 12.3%; p < 0.001). The most common metastasis site was bone only among 24.2% of the participants. There was no statistically significant difference between the two racial groups in terms of average survival months post diagnosis and cause-specific mortality.

Treatment utilization

Shown in Table 2 are the different treatment modalities (surgery, chemotherapy, and radiation) received by the two racial groups. Of the total patient population, 33.0% received surgery. A total of 144 (34.3%) of NHB women and 321 (32.5%) of NHW women were surgery recipients. About 70.2% of the study population underwent chemotherapy with 70.6% NHW women and 71.0% NHB women receiving this type of treatment. However, there was no statistically significant difference between the two groups in terms of surgery and chemotherapy receipt. A total of 439 (30.9%) participants used radiation as a treatment option with fewer NHB women receiving this modality compared to NHW women (27.1% vs. 32.6%; p value = 0.04).

On multivariate logistic regression analysis, those who were insured compared to uninsured women (OR 2.39, 95% CI 1.07–5.30; p value = 0.033), and resided in neighborhoods with low nSES compared to high nSES (OR 1.56, 95% CI 1.11–2.18; p value = 0.009) faced higher odds of surgery receipt, whereas being single compared to being married (OR 0.60; 95% CI...
0.42–0.85; \(p \) value = 0.005) reduced the odds of undergoing surgery (Table 3). The factors associated with higher odds of receipt of chemotherapy included patients who were insured in general (OR 2.25, 95% CI 1.14–4.41; \(p \) value = 0.019) or had Medicaid (OR 2.44, 95% CI 1.19–5.02; \(p \) value = 0.015), all compared to being uninsured. Increasing age (OR 0.95, 95% CI 0.93–0.96; \(p \) value < 0.001), and marital status being separated or divorced (OR 0.61, 95% CI 0.42–0.88, REF: Married; \(p \) value = 0.009), single or unmarried (OR 0.59, 95% CI 0.40–0.87; \(p \) value = 0.007), or widowed (OR 0.49, 95% CI 0.34–0.72; \(p \) value < 0.001) all compared to being married, however, reduced the odds of chemotherapy receipt (Table 4). For receipt of radiation, the odds decreased with increasing age (OR 0.98, 95% CI 0.97–0.99; \(p \) value = 0.003) and being single compared to being married (OR 0.70, 95% CI 0.49–0.99; \(p \) value = 0.048) (Table 5). Race was not statistically significantly associated with either of the three types of treatment receipt.

Table 1: Socio-demographic and clinical characteristics of patients with TNBC and metastasis stratified by race/ethnicity

Variables	Total sample	NH White N=995 (0.7)	NH Black N=425 (0.3)	\(p \) value
Age at diagnosis	62.47±(14.07)	63.74±(13.94)	59.50±(13.94)	<0.001***
Insurance				<0.001***
Uninsured	51 (3.6)	24 (2.4)	27 (6.4)	
Medicaid	263 (18.5)	145 (14.6)	118 (27.8)	
Insured	1092 (76.9)	816 (82.0)	276 (64.9)	
Unknown	14 (1.0)	10 (1.0)	4 (0.9)	
Marital status				<0.001***
Married	597 (42.0)	493 (49.5)	104 (24.5)	
Separated	227 (16.0)	145 (14.6)	82 (19.3)	
Single	297 (20.9)	144 (14.5)	153 (36.0)	
Widowed	230 (16.2)	168 (16.9)	62 (14.6)	
Unknown	69 (4.9)	45 (4.5)	24 (5.6)	
Census tract residence				<0.001***
Rural	136 (9.9)	117 (12.3)	19 (4.5)	
Urban	1235 (90.1)	835 (87.7)	400 (95.5)	
nSES group				<0.001***
Low	529 (39.4)	274 (29.3)	255 (62.3)	
Middle	457 (34.0)	342 (36.6)	115 (28.1)	
High	358 (26.6)	319 (34.1)	39 (9.5)	
Metastasis				0.240
Bone only	343 (24.2)	250 (25.1)	93 (21.9)	
Liver only	130 (9.2)	95 (9.5)	35 (8.2)	
Lung only	282 (19.9)	191 (19.2)	91 (21.4)	
Brain only	44 (3.1)	26 (2.6)	18 (4.2)	
Distant lymph nodes only	44 (3.1)	27 (2.7)	17 (4.0)	
≥ 2 metastasis	577 (40.6)	406 (40.8)	171 (40.2)	
Survival months	10.37±(10.82)	10.57±(10.59)	9.91±(11.32)	0.290
SEER cause-specific death classification				0.120
Alive or dead of other cause	382 (26.9)	260 (26.1)	122 (28.7)	
Dead (attributable to this cancer dx)	773 (54.4)	547 (55.0)	226 (53.2)	
Dead (missing/unknown cause of death)	2 (0.1)	0 (0.0)	2 (0.5)	
N/A not first tumor	263 (18.5)	188 (18.9)	75 (17.6)	

Univariate analysis of study cohort based on socioeconomic and clinical factors, stratified by race. Results are listed as n (%) with n = sample size unless otherwise specified.

NHW Non-Hispanic Whites, *NHB* Non-Hispanic Blacks

***Statistical significance at 1% level, ** statistical significance at 5% level, and * statistical significance at 10% level
Survival

Median survival for NHW women was 15 months compared to 13 months for NHB women (Table 7). Kaplan–Meier curve (Fig. 1) and log rank test (Table 6) comparing survival by race showed no statistically significant difference in survival between the two racial groups. A Cox proportional hazards model analysis in Table 8 showed that woman who received surgery (HR 0.49, 95% CI 0.41–0.59; \(p \) value = 0.001) and chemotherapy (HR 0.49, 95% CI 0.40–0.59; \(p \) value = 0.001) compared to receiving neither were more likely to survive in reference to those who did not receive the treatment option.

Discussion

The goal of this study was to evaluate the racial differences in outcomes among women with de novo metastatic TNBC. We find no statistically significant racial differences in overall survival but differences in treatment utilization. More NHB women underwent surgery, and less likely to receive radiation or have unknown radiation receipt status than NHW women.

Table 2 Treatment received stratified by race/ethnicity

Variables	Total sample	NH White	NH Black	\(p \) value
Surgery	1420	995 (0.7)	425 (0.3)	0.500
No	944 (67.0)	668 (67.5)	276 (65.7)	
Yes	465 (33.0)	321 (32.5)	144 (34.3)	
Surgery with axilla	0.160			
No	272 (59.8)	194 (62.0)	78 (54.9)	
Yes	183 (40.2)	119 (38.0)	64 (45.1)	
Chemotherapy	0.840			
None/unknown	423 (29.8)	298 (29.9)	125 (29.4)	
Yes	997 (70.2)	697 (70.1)	300 (70.6)	
Radiation	0.040**			
None/unknown	981 (69.1)	671 (67.4)	310 (72.9)	
Yes	439 (30.9)	324 (32.6)	115 (27.1)	

Univariate analysis of study cohort based on treatment types, stratified by race. Results are listed as \(n \) (%) with \(n = \) sample size unless otherwise specified

NHW Non-Hispanic Whites, NHB Non-Hispanic Blacks

***Statistical significance at 1% level, **statistical significance at 5% level, and *statistical significance at 10% level

Table 3 Multivariable Logistic regression to predict the factors associated with receipt of surgery

Variables	Odds Ratio	95% Confidence Interval	\(p \) value
Age at diagnosis	0.99	(0.98–1.00)	0.077
Race			
NH White	REF		
NH Black	1.04	(0.78–1.39)	0.788
Insurance			
Uninsured	REF		
Medicaid	1.93	(0.84–4.41)	0.119
Insured	2.39	(1.07–5.30)	0.033**
Marital status			
Married	REF		
Separated	0.76	(0.54–1.08)	0.133
Single	0.60	(0.42–0.85)	0.005***
Widowed	1.08	(0.75–1.55)	0.679
Residence Census Tract			
Rural	REF		
Urban	0.99	(0.66–1.49)	0.974
nSES group			
Low	1.56	(1.11–2.18)	0.009***
Middle	0.99	(0.72–1.36)	0.935
High	REF		

Multivariate analysis of factors associated with surgery receival. Results are listed as odds ratios

NHW Non-Hispanic Whites, NHB Non-Hispanic Blacks

***Statistical significance at 1% level, **statistical significance at 5% level, and *statistical significance at 10% level

Sociodemographic differences

Previous studies showed that NHB women were diagnosed with breast cancer at younger ages [5]. This study similarly showed that NHB women were diagnosed at younger mean age (NHB average age 58 vs. 61 in NHW). A higher proportion of NHB women were unmarried and resided in urban census tracts with more than half from low nSES census tracts. More NHB woman were uninsured compared to NBW woman with majority of the Black woman being insured either via Medicare or private insurance. While health insurance is the most commonly mentioned and significant obstacle to seeking care [19–21], a number of other issues, such as cancer-related out-of-pocket financial problems [22], required time away from work [23], and transportation issues [24, 25] may potentially have a disproportionate impact on African American women with cancer [26]. These socioeconomic characteristics are reflected in the Yost index (nSES) which we show NHB women comprising the overwhelming majority of those in the lowest tertile. Our findings are consistent with previous reports [19–25].
Management patterns in metastatic TNBC

In terms of treatment by race, more NHB women on univariate analysis received surgery (not statistically significant), fewer received or had an unknown status for radiation \((p \text{ value} < 0.05)\) while there are no differences seen with chemotherapy. We also did not find a statistically significant difference in receipt of surgery, chemotherapy, or radiation based on race with multivariate analysis. There are established data on treatment differences in NHB women compared to NHW in non-metastatic TNBC but there is a dearth of data in the metastatic group. Generally, for stage IV breast cancer, systemic therapies consisting of chemo, hormonal, targeted, and immune therapies are recommended. Local–regional therapy with surgery or radiation lacks consensus and is reserved for palliation of symptoms [26]. NHB women with earlier stages of breast cancer have a treatment preference for breast conservation, a higher rate of chemotherapy and radiation refusal [27–29].

One divergent finding is in our sample, women with low nSES were more likely to receive surgery. Therefore, surgery receipt especially if it occurs antecedent to chemotherapy would be considered low value care. Previous studies have shown that low value treatment options like surgery in the metastatic setting is disproportionately performed in women of low socioeconomic classes and medical facilities with a large concentration of Black patients [30]. Patients who are poor are sometimes given care that is neither medically necessary nor useful. The

Table 4 Multivariable Logistic regression to predict the factors associated with receipt of chemotherapy

Variables	Odds Ratio	95% Confidence Interval	\(p \text{ value} \)
Age at diagnosis	0.95	(0.93–0.96)	<0.001***
Race			
NH White REF			
NH Black	0.99	(0.72–1.36)	0.952
Insurance			
Uninsured REF			
Medicaid Insured	2.44	(1.19–5.02)	0.015**
	2.25	(1.14–4.41)	0.019**
Marital status			
Married REF			
Separated	0.61	(0.42–0.88)	0.009***
Single	0.59	(0.40–0.87)	0.007***
Widowed	0.49	(0.34–0.72)	<0.001***
Residence Census Tract			
Rural REF			
Urban	0.96	(0.61–1.52)	0.868
nSES group			
Low	0.88	(0.61–1.27)	0.496
Middle	0.99	(0.70–1.41)	0.981
High			

Multivariate analysis of factors associated with chemotherapy receipt. Results are listed as odds ratios

\textit{NHW} Non-Hispanic Whites, \textit{NHB} Non-Hispanic Blacks

***Statistical significance at 1% level, **statistical significance at 5% level, and *statistical significance at 10% level

Table 5 Multivariable Logistic regression to predict the factors associated with receipt of radiation

Variables	Odds Ratio	95% Confidence Interval	\(p \text{ value} \)
Age at diagnosis	0.98	(0.97–0.99)	0.003***
Race			
NH White REF			
NH Black	0.76	(0.56–1.02)	0.067
Insurance			
Uninsured REF			
Medicaid Insured	1.12	(0.55–2.29)	0.747
	1.02	(0.51–2.02)	0.957
Marital status			
Married REF			
Separated	1.20	(0.85–1.68)	0.294
Single	0.70	(0.49–0.99)	0.048**
Widowed	0.91	(0.62–1.33)	0.622
Residence Census Tract			
Rural REF			
Urban	1.24	(0.81–1.91)	0.315
nSES group			
Low	1.01	(0.72–1.42)	0.928
Middle	1.03	(0.75–1.41)	0.858
High			

Multivariate analysis of factors associated with radiation receipt. Results are listed as odds ratios

\textit{NHW} Non-Hispanic Whites, \textit{NHB} Non-Hispanic Blacks

***Statistical significance at 1% level, **statistical significance at 5% level, and *statistical significance at 10% level

Table 6 Log rank test comparing survival among \textit{NHW} vs. \textit{NHB} women

Variable	Events observed	Expected events	\(p \text{ value} \)
Race			0.5898
NH White	491	497.22	
NH Black	202	195.78	

Log rank test compares survival among the two racial groups

\textit{NHW} Non-Hispanic Whites, \textit{NHB} Non-Hispanic Blacks

***Statistical significance at 1% level, **statistical significance at 5% level, and *statistical significance at 10% level
lack of health literacy to comprehend and make educated decisions about their health may be the cause [31]. We show crude rates of higher surgery in NHB and on logistic regression the effect of nSES on surgery suggests potential non-guideline concordant care.

In all treatment types (surgery, chemotherapy, and radiation), both NHW and NHB woman without a married partner were less likely to definitively undergo treatment. Previous studies agree with these results and showed that breast cancer survival is impacted by marital status [32–35] suggesting lack of support from spouse and family, finances (insurance) and concerns about potential physical deformities with treatment. Furthermore, having a strong social network is linked to a higher chance of survival in several studies [36–42]. Having family, friends, and spouses for support encourages patients to seek medical attention, complete their treatments, and seek support from breast cancer survivors [43–45].

Racial differences in survival

There is a median survival of 13 months vs. 15 months in NHB compared to NHW women but we did not detect a statistically significant difference in overall survival. In a previous study from Arciero et al., after correcting for age, tumor grade, surgery, and radiation treatments, NHB patients exhibited lower overall survival and BCSS (breast cancer-specific survival time) in both the univariate and multivariate analyses [5]. Another study explained that non-biological causes and factors unrelated to the stage at which the patient presents, such as residual treatment/healthcare inequalities

Table 7 Median survival in months

Variable	Number of subjects	Median (SD)	95% Confidence Interval
Race			
NH White	914	15 (0.68)	(14–17)
NH Black	384	13 (0.81)	(11–15)
Total	1298	14 (0.58)	(13–15)

Median survival is provided in months for the study cohort

SD Standard Deviation, NHW Non-Hispanic Whites, NHB Non-Hispanic Blacks

Fig. 1 Kaplan–Meier curve comparing survival by race. The Kaplan–Meier curve shows breast cancer-specific survival by racial status: Non-Hispanic White (shown by black solid line) and Non-Hispanic Black women (shown by black dotted line). The vertical axis shows the probability of survival, and the horizontal axis shows the survival time in months. NHW Non-Hispanic Whites, NHB Non-Hispanic Blacks

Table 8 Multivariable Cox PH model to predict the disease-specific survival in NHB and NHW women

Variables	Hazards Ratio	95% Confidence Interval	p value
Race			
NH White REF			
NH Black	1.06	(0.86–1.29)	0.580
Age at diagnosis	1.00	(0.99–1.01)	0.522
Insurance			
Uninsured REF			
Medicaid	0.98	(0.59–1.60)	0.925
Insured	0.75	(0.46–1.22)	0.243
Marital status			
Married REF			
Separated	1.15	(0.91–1.45)	0.225
Single	0.97	(0.77–1.22)	0.817
Widowed	1.06	(0.82–1.37)	0.647
Residence census tract			
Rural REF			
Urban	1.17	(0.89–1.55)	0.263
nSES group			
Low	1.11	(0.88–1.41)	0.363
Middle	1.12	(0.91–1.39)	0.282
High	REF		
Surgery			
No	REF		
Yes	0.49	(0.41–0.59)	0.001***
Chemotherapy			
None/unknown REF			
Yes	0.49	(0.40–0.59)	0.001***
Radiation			
None/unknown REF			
Yes	1.11	(0.93–1.31)	0.244

Cox Proportional Hazards model analysis of factors associated with disease-specific mortality. Results are listed as hazards ratios

NHW Non-Hispanic Whites, NHB Non-Hispanic Blacks

***Statistical significance at 1% level, **statistical significance at 5% level, and *statistical significance at 10% level
due to socioeconomic and health-care system issues, could possibly account for a large amount of the mortality difference [46]. Other studies that investigated stage IV breast cancer patients identified between 1998 and 2003, found that survival for NHW women improved dramatically, whereas survival for NHB women did not [4]. The survival gap has continued to increase as a result of this tendency [47].

Predictors of disease-specific survival in our study population show receipt of surgery and chemotherapy to be significant. Surgery in the setting of metastatic breast cancer is controversial. Typically, it is reserved for patients showing significant disease stability [26, 48]. It is possible that those who received chemotherapy would also undergo surgery, with both treatments prolonging survival.

Limitations

Given the retrospective nature of this study, it has several limitations. SEER data represent individual variables such as race, while census data were used for nSES and rural/urban residence. nSES and rural/urban residence were assessed at one point in time and do not reflect potential (especially recent) changes in residence; further, it is possible that nSES does not accurately ascertain individual SES. In the models for receipt of radiation and chemotherapy, we cannot determine and exclude patients for whom treatment was not recommended to assess differences among NHB and NHW women. For chemotherapy and radiation therapy receipt, the SEER database does not distinguish between “no treatment received” and “unknown if treatment received” so those variables were combined into “no/unknown.” Further, there may be biases due to differences in whether or not treatments were received based on unmeasured factors including patient and provider preferences, patient refusal, distance traveled, hospital characteristics, and comorbidities. The data from providers detailing their recommendations would provide more meaningful assessment of racial differences in treatment. Ideally, we would know whether treatment was offered and refused, or not recommended based on patient factors such as comorbidities. Last, the categories for distant disease were not consistent in variables used by the SEER Program across the study time period so metastatic categories as clinically described may be heterogeneous.

Conclusion

With the lethality associated with metastatic TNBC, more investigation is needed to explore differences in survival among racial and ethnic groups and inform strategies to reduce disparity. A larger, prospective study of metastatic patients would allow analysis of mortality differences and treatment patterns.

Author contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BAO, JLF, and YL. The first draft of the manuscript was written by AR, BAO, and EDP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding Ohio State University Comprehensive Cancer Center using Pelotonia funds, OSU Comprehensive Cancer Center (P30-CA016058).

Data availability The dataset (referenced below) used during the current study is available through access granted from the SEER Program. The dataset is not available from the authors. In order to access this specialized database, you must already have access to the latest SEER Research Plus data with a valid institutional account and instructions on access can be found at: Census Tract-level SES and Rurality Database - SEER*Stat (cancer.gov), Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence - SEER 18 Regs (Excl AK) Custom Data (with additional treatment fields), Nov 2018 Sub (2000–2016) < Vintage 2016 Pops by Tract 2000/2010 Mixed Geographies >_Linked To Census Tract Attributes - Time Dependent (2000–2016) - SEER 18 (excl AK) Census 2000/2010 Geographies with Index Field Quantiles, National Cancer Institute, DCCPS, Surveillance Research Program, released January 2020, based on the November 2018 submission.

Declarations

Competing interests The authors have no relevant financial or non-financial interests to disclose.

Ethical approval N/A.

Consent to participate N/A.

Consent to publish N/A.

References

1. Fitzmaurice C, Abate D, Abbastabar H, Abd-Allah F (2019) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol 5(12):1749–1768

2. Common Cancer Sites - Cancer Stat Facts. SEER. https://seer.cancer.gov/statfacts/html/common.html. Accessed 4 May 2022

3. Stapleton SM, Oseni TO, Bababekov YJ, Hung YC, Chang DC (2018) Race/ethnicity and age distribution of breast cancer diagnosis in the United States. JAMA Surg 153(6):594–595. https://doi.org/10.1001/jamasurg.2018.0035

4. Dawood S, Broglio K, Gonzalez-Angulo AM, Buzdar AU, Hortobagyi GN, Giordano SH (2008) Trends in survival over the past two decades among White and Black patients with newly diagnosed stage IV breast cancer. J Clin Oncol 26(30):4891–4898. https://doi.org/10.1200/JCO.2007.14.1168

5. Arciero CA, Yang J, Pang L et al (2017) African American patients with breast cancer have worse prognosis than White patients in certain subtypes and stages. Breast Cancer Res Treat 166(3):743–755. https://doi.org/10.1007/s10549-017-4484-1

6. Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8(3):235–244. https://doi.org/10.1016/S1470-2045(07)70074-8
7. Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502. https://doi.org/10.1001/jama.295.21.2492
8. Beverly LN, Flanders WD, Go RC, Soong SJ (1987) A comparison of estrogen and progesterone receptors in Black and White breast cancer patients. Am J Public Health 77(3):351–353
9. Newman LA (2005) Breast cancer in African-American women. Oncologist 10(1):1–14. https://doi.org/10.1634/theoncologist.10-1-1
10. Bernstein L, Lacey JV (2011) Receptors, associations, and risk factor differences by breast cancer subtypes: positive or negative? JNCI J Natl Cancer Inst 103(6):451–453. https://doi.org/10.1093/jnci/djqr046
11. Institute of Medicine (US) Committee on Understanding and Eliminating Racial and Ethnic Disparities in Health Care. Unequal treatment: confronting racial and ethnic disparities in health care. (Smedley BD, Stith AY, Nelson AR, eds.). National Academies Press (US), Washington, DC. http://www.ncbi.nlm.nih.gov/books/NBK220358/. Accessed 4 May 2022
12. Wray CJ, Phatak UR, Robinson EK et al (2013) The effect of age on race-related breast cancer survival disparities. Ann Surg Oncol 20(8):2541–2547. https://doi.org/10.1245/s10434-013-2913-x
13. Lipscomb J, Gillespie TW, Goodman M et al (2012) Black-White differences in receipt and completion of adjuvant chemotherapy among breast cancer patients in a rural region of the US. Breast Cancer Res Treat 133(2):165–173. https://doi.org/10.1007/s10549-011-1916-1
14. Iqbal J, Ginsburg O, Rochon PA, Sun P, Narod SA (2015) Differences in breast cancer stage at diagnosis and cancer-specific survival by race and ethnicity in the United States. JAMA 313(2):165–173. https://doi.org/10.1001/jama.2014.17322
15. Harris LN, Broadwater G, Lin NU et al (2006) Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: results from CALGB 9342. Breast Cancer Res 8(6):R66. https://doi.org/10.1186/bcr1622
16. Number of Persons by Race and Hispanic Ethnicity for SEER Participants - SEER Registries. SEER. https://seer.cancer.gov/registries/data.html. Accessed 24 June 2022
17. SEER*Stat Software. SEER. https://seer.cancer.gov/seerstat/index.html. Accessed 24 June 2022
18. SEER*Stat Database: Incidence - SEER 18 Regs (Excl AK) Custom Data (with additional treatment fields), Nov 2018 Sub (2000–2016) <Vine & 2016 Pops by Tract 2000/2010 Mixed Geographies> - Linked To Census Tract Attributes - Time Dependent (2000–2016) - SEER 18 (excl AK) Census 2000/2010 Geographies with Index Field Quantiles. www.seer.cancer.gov.
19. Cancer Facts & Figures for African Americans 2011–2012. American Cancer Society.
20. Greenwald HP, O’Keefe S, Dicamillo M (2004) The importance of public sector health care in an underserved population. J Health Hum Serv Adm 27(2):142–157
21. Ward E, Halpern M, Schrag N et al (2008) Association of insurance with cancer care utilization and outcomes. CA Cancer J Clin 58(1):9–31. https://doi.org/10.3322/caac.20070011
22. Moore KA (1999) Breast cancer patients’ out-of-pocket expenses. Cancer Nurs 22(5):389–396
23. Chirikos TN, Russell-Jacobs A, Jacobsen PB (2002) Functional impairment and the economic consequences of female breast cancer. Women Health 36(1):1–20. https://doi.org/10.1300/J013v36n01_01
24. Atas WS, Adams-Cameron M, Hunt WC, Amir-Fazli A, Key CR (2000) Travel distance to radiation therapy and receipt of radiotherapy following breast-conserving surgery. J Natl Cancer Inst 92(3):269–271. https://doi.org/10.1093/jnci/92.3.269
25. Lamont EB, Hayreh D, Pickett KE et al (2003) Is patient travel distance associated with survival on phase II clinical trials in oncology? JNCI J Natl Cancer Inst 95(18):1370–1375. https://doi.org/10.1093/jnci/djg035
26. Li X, Huang R, Ma L, Liu S, Zong X (2019) Locoregional surgical treatment improves the prognosis in primary metastatic breast cancer patients with a single distant metastasis except for brain metastasis. Breast 45:104–112. https://doi.org/10.1016/j.breast.2019.03.006
27. Akinemiyu TF, Vin-Raviv N, Chavez-Yentzer D, Zhao X, Budhwan H (2015) Race/ethnicity and socio-economic differences in breast cancer surgery outcomes. Cancer Epidemiol 39(5):745–751. https://doi.org/10.1016/j.canep.2015.07.010
28. Li X, Huang R, Ma L, Liu S, Zong X (2019) Locoregional surgical treatment improves the prognosis in primary metastatic breast cancer patients with a single distant metastasis except for brain metastasis. Breast 45:104–112. https://doi.org/10.1016/j.breast.2019.03.006
29. Prakash O, Hossain F, Danos D, Lassak A, Scribner R, Miele L (2020) Racial disparities in triple negative breast cancer: a review of the role of biologic and non-biologic factors. Front Public Health 8:576964. https://doi.org/10.3389/fpubh.2020.576964
30. Hallbert CH, Armstrong K, Gandy OH Jr, Shaker L (2006) Racial differences in trust in health care providers. Arch Intern Med 166(8):896–901
31. Carman KL, Maurer M, Yegian JM et al (2010) Evidence that consumers are skeptical about evidence-based health care. Health Aff 29(7):1400–1406. https://doi.org/10.1377/hlthaff.2009.0296
32. Ernstet VL, Sacks ST, Selvin S, Petrakis NL (1979) Cancer incidence by marital status: US Third National Cancer Survey. J Natl Cancer Inst 63(3):567–585. https://doi.org/10.1093/jnci/63.3.567
33. Pinquart M, Duberstein PR (2010) Associations of social networks with cancer mortality: a meta-analysis. Crit Rev Oncol Hematol 75(2):122–137. https://doi.org/10.1016/j.critrevonc.2009.06.003
34. Kravdal H, Syse A (2011) Changes over time in the effect of marital status on cancer survival. BMC Public Health 11(1):804. https://doi.org/10.1186/1471-2458-11-804
35. O’Brien B, Koru-Sengul T, Miao F et al (2015) Disparities in overall survival for male breast cancer patients in the State of Florida (1996–2007), Clin Breast Cancer 15(4):e177–e187. https://doi.org/10.1016/j.clbc.2014.12.010
36. Spiegel D, Kraemer HC, Bloom JR, Gottheil E (1989) Effect of psychosocial treatment on survival of patients with metastatic breast cancer. The Lancet 334(8668):888–891. https://doi.org/10.1016/S0140-6736(89)91551-1
37. Maunsell E, Brisson J, Deschénes L (1995) Social support and influence of marital status on cancer survival. Breast Cancer Res Treat 44(1):1–14. https://doi.org/10.1007/BF00109714
38. Osborne C, Ozturk GV, Du X, Piek MK, Goodwin JS (2005) The influence of marital status on the stage at diagnosis, treatment, and survival of older women with breast cancer. Breast Cancer Res Treat 93(1):41–47. https://doi.org/10.1007/s10549-005-3702-4
39. Krowenke CH, Kubanszky LD, Schernhammer ES, Holmes MD, Kawachi I (2006) Social networks, social support, and survival after breast cancer diagnosis. J Clin Oncol 24(7):1105–1111. https://doi.org/10.1200/JCO.2005.04.2846
40. Hanske J, Meyer CP, Sammon JD et al (2016) The influence of marital status on the use of breast, cervical, and colorectal cancer screening. Prev Med 89:140–145. https://doi.org/10.1016/j.ypmed.2016.05.017
41. Merrill RM, Johnson E (2017) Benefits of marriage on relative and conditional relative cancer survival differ between males and females in the USA. J Cancer Surviv 11(5):578–589. https://doi.org/10.1007/s11764-017-0627-y
42. Soler-Vila H, Kasl SV, Jones BA (2003) Prognostic significance of psychosocial factors in African-American and White breast cancer
Aizer AA, Chen MH, McCarthy EP et al (2013) Marital status and survival in patients with cancer. J Clin Oncol 31(31):3869–3876. https://doi.org/10.1200/JCO.2013.49.6489

43. Tao L, Gomez SL, Keegan TH, Kurian AW, Clarke CA (2015) Breast cancer mortality in African-American and non-Hispanic White women by molecular subtype and stage at diagnosis: a population-based study. Cancer Epidemiol Biomarkers Prev 24(7):1039–1045. https://doi.org/10.1158/1055-9965.EPI-15-0243

44. Aizer AA, Paly JJ, Zietman AL et al (2012) Multidisciplinary care and pursuit of active surveillance in low-risk prostate cancer. J Clin Oncol 30(25):3071–3076. https://doi.org/10.1200/JCO.2012.42.8466

45. Nápoles-Springer AM, Ortíz C, O’Brien H, Díaz-Méndez M, Pérez-Stable EJ (2007) Use of cancer support groups among Latina breast cancer survivors. J Cancer Surviv 1(3):193–204. https://doi.org/10.1007/s11764-007-0029-7

46. DeSantis CE, Siegel RL, Sauer AG et al (2016) Cancer statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J Clin 66(4):290–308. https://doi.org/10.3322/caac.21340

48. Stahl K, Wong W, Dodge D et al (2021) Benefits of surgical treatment of stage IV breast cancer for patients with known hormone receptor and HER2 status. Ann Surg Oncol 28(5):2646–2658. https://doi.org/10.1245/s10434-020-09244-5

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.