Identification of Cavities and Inclusions in Linear Elasticity with a Phase-Field Approach

Andrea Aspri¹ · Elena Beretta² · Cecilia Cavaterra¹,⁵ · Elisabetta Rocca³,⁵ · Marco Verani⁴

Accepted: 7 July 2022 © The Author(s) 2022

Abstract

In this paper we deal with the inverse problem of determining cavities and inclusions embedded in a linear elastic isotropic medium from boundary displacement’s measurements. For, we consider a constrained minimization problem involving a boundary quadratic misfit functional with a regularization term that penalizes the perimeter of the cavity or inclusion to be identified. Then using a phase field approach we derive a robust algorithm for the reconstruction of elastic inclusions and of cavities modelled as inclusions with a very small elasticity tensor.

Keywords Inverse problems · Cavity · Phase-field · Linear elasticity · Primal dual active set method

Mathematics Subject Classification 35R30 · 65N21 · 74G75

1 Introduction

The focus of this paper is the reconstruction of cavities and inclusions embedded in an elastic isotropic medium by means of boundary tractions and displacements. Identification of defects from boundary measurements plays an important role in non-destructive testing for damage assessment of mechanical specimens, which are possibly defective due to the presence of interior voids or cavities appearing during the manufacturing
process, see, for instance, [33, 47, 55, 63] for possible applications to 3D-printing and additive manufacturing. This kind of inverse problems has application also in medical imaging and in particular in elastography, a modality mapping the elastic properties and stiffness of soft tissue, [6–8, 31, 59, 60, 64] to cite a few, and in reflection seismology [20, 62], a non invasive technique used by the oil and gas industry to map petroleum deposits in the Earth’s upper crust and based on seismic data from land acquisition, see for example [61]. We also mention some applications in volcanology, see for example [9, 10, 58] and references therein.

The underlying mathematical model is the following: Consider a bounded domain \(\Omega \subset \mathbb{R}^d \), with \(d = 2, 3 \), representing the region occupied by an elastic isotropic medium and let \(\partial \Omega = \Sigma_D \cup \Sigma_N \), with \(\Sigma_D \) closed. Let the displacement field \(u \) be solution to the following mixed boundary value problem for the Lamé system of linearized elasticity:

\[
\begin{aligned}
\text{div}(C_0 \hat{\nabla} u) &= 0 \quad \text{in} \ \Omega \setminus \overline{C}, \\
(C_0 \hat{\nabla} u) n &= 0 \quad \text{on} \ \partial C, \\
(C_0 \hat{\nabla} u) v &= g \quad \text{on} \ \Sigma_N, \\
u &= 0 \quad \text{on} \ \Sigma_D.
\end{aligned}
\]

where \(C \subset \Omega \) is a cavity with Lipschitz boundary, and \(\hat{\nabla} u \) is the strain tensor. \(C_0 \) is a fourth-order isotropic elastic tensor, uniformly bounded and strongly convex, and \(n \) and \(v \) are the outer unit normal vector to \(\partial C \) and \(\Sigma_N \), respectively. The Neumann boundary datum \(g \) is assumed to be in \(L^2(\Sigma_N) \).

The forward problem consists in finding the elastic displacement \(u \) in the elastic body occupying the region \(\Omega \) induced by the tractions on \(\Sigma_N \), given the cavity \(C \). The inverse problem concerns the determination of the cavity \(C \) from partial observations of \(u \) on the boundary. More precisely, given measurements of the displacement, i.e. \(u_{\text{meas}} \in L^2(\Sigma_N) \), find \(C \) contained in \(\Omega \), such that \(u|_{\Sigma_N} = u_{\text{meas}} \), where \(u \in H^1_{\Sigma_D}(\Omega \setminus C) \) is the solution to the forward problem.

It is well known that this problem is severely ill-posed and only a very weak logarithmic conditional stability holds, assuming a-priori \(C^{1,\alpha} \) regularity of the unknown cavities [53]. A similar weak stability result holds also in the case of the determination of elastic inclusions, see for example [54]. Hence, in general, the reconstruction of cavities and inclusions turns out to be a challenging issue.

To solve the problem we follow a similar strategy as in [14, 30] and the one in [13] for the reconstruction of conductivity inclusions and cavities respectively. Specifically, we consider the problem of minimizing the functional

\[
J(C) = \frac{1}{2} \int_{\Sigma_N} |u(C) - u_{\text{meas}}|^2 d\sigma(x) + \alpha \text{Per}(C),
\]

over a suitable set of cavities of finite perimeter and where \(u(C) \) is the solution of (1.1) for a given cavity \(C \), \(\text{Per}(C) \) indicates the perimeter of \(C \), and \(\alpha \) is a positive regularization parameter.
We first investigate the continuity of solutions to (1.1) with respect to perturbations of the cavity C in the Hausdorff distance topology and prove it using the Mosco convergence, see [21, 22, 37]. Similarly as in [13], continuity then allows us to prove existence of minima of the functional $J(C)$, stability with respect to noisy data and convergence of the minimizers as $\alpha \to 0$ to the solution of the inverse problem.

In the second part of the paper, we use a suitable phase-field relaxation of the functional J in order to overcome issues arising from non-convexity and non-differentiability. To be more precise, we employ an idea adopted by Bourdin and Chambolle, [18] in the context of topology optimization which consists in filling the cavity with a fictitious elastic material described by an elastic tensor $C_1 := \delta C_0$, where δ is a small positive parameter and C_0 has been extended to the whole domain Ω. In this way, we transform the original inverse problem in the one of reconstructing an elastic inclusion. Then, since the identification of sharp interfaces is in general difficult to be treated numerically, we use a phase-field approach. Instead of binary (i.e., either 0 or 1) phase parameter v describing sharp interfaces between regions with two different materials we use a phase parameter v as a H^1 scalar field, taking values in the interval $[0, 1]$. Then, we approximate the functional J in (1.2) by means of a Ginzburg-Landau type functional (cf. [52])

$$J_{\delta, \epsilon}(v) := \frac{1}{2} \int_{\Sigma_N} |u_\delta(v) - u_{\text{meas}}|^2 d\sigma(x)$$

$$+ \frac{4\alpha}{\pi} \int_{\Omega} \left(\epsilon |\nabla v|^2 + \frac{1}{\epsilon} v(1 - v) \right) dx,$$

(1.3)

where ϵ is a small positive parameter, $\frac{4}{\pi}$ is a rescaled parameter in the Modica–Mortola relaxation of the perimeter, $u_\delta(v)$ denotes the solution of the modified boundary value problem:

$$\begin{cases}
\text{div}(C_\delta(v) \hat{\nabla} u_\delta(v)) = 0 & \text{in } \Omega, \\
(C_\delta(v) \hat{\nabla} u_\delta(v))v = g & \text{on } \Sigma_N, \\
u_\delta(v) = 0 & \text{on } \Sigma_D,
\end{cases}$$

(1.4)

where

$$C_\delta(v) = C_0 + (C_1 - C_0)v, \quad \text{with } C_1 = \delta C_0.$$

(1.5)

Here C_0 and C_1 are the elasticity tensors in $\Omega \setminus C$ and C, respectively. Ideally, the optimal phase variable v should be close to an ideal binary field. In fact, when ϵ is small the potential term ($\int_{\Omega} \frac{1}{\epsilon} v(1 - v) dx$) prevails and the minimum is attained by a phase-field variable which takes mainly values close to 0 and 1 and the transition occurs in a thin layer of thickness of order ϵ.

The phase-field approach to structural optimization problems has been successfully used by different authors (cf., e.g., [12, 15, 25, 36]), the main advantage being the fact that it allows to handle topology changes as well as nucleation of new holes.
To implement our algorithm in Sect. 3.2 we provide first order necessary optimality conditions for the minimization problem associated to $J_{\delta,\epsilon}$ whose discretized version is then employed in Sect. 4 in order to develop the reconstruction algorithm. Minima of the functional $J_{\delta,\epsilon}$ exist and the numerical experiments of Sect. 5 indicate that they are accurate approximations of minima of J, for ϵ and δ sufficiently small. This fact could be rigorously justified proving that the Γ-convergence, as ϵ and δ tend to 0, to the functional J holds, but this is still an open issue and will be the subject of a future research. Some attempts along this direction have been done in the scalar case for example in [13, 56, 57].

The literature on reconstruction algorithms for identification of inclusions and cavities in elastostatic, viscoelastic and elastic waves systems is very rich and of big impact. In the case of small elastic inclusions or cavities, asymptotic expansions of the perturbed displacement have been used to detect position, size and shape from boundary measurements, see for example [45] and [8]. The method followed in [5] is based on a shape derivative approach, both for elastic and thermoelastic problems. A topological gradient method has been applied in [24], for the detection of an elastic scatterer, and in [50], for identification of a cavity in time-harmonic wave elastic systems. Ikehata and Itou use the so-called enclosure method for the reconstruction of polygonal cavities in an elastostatic setting [42] and of a general cavity in a homogeneous isotropic viscoelastic body [43]. More recently, Doubova and Fernández–Cara proposed an augmented Lagrangian method to identify rigid inclusions in a elastic waves system [31]. Eberle and Harrach applied the monotonicity method for the reconstruction of elastic inclusions using the monotonicity property of the Neumann-to-Dirichlet map [32], and in [46] the authors used the method of fundamental solutions for the reconstruction of elastic cavities. For other reconstruction approaches we refer to the review paper [17] and references therein. Identification of cavities and elastic inclusions could be interpreted as a special case of the determination of Lamé parameters from boundary measurements, see for example [7, 41] and [61].

The plan of the paper is the following. In Sect. 2 we investigate the continuity of the solution to the direct problem with respect to perturbations of the cavity in the Haussdorff topology and then derive the major properties of the misfit functional $J(C)$. In Sect. 3 we consider the approximation of the cavity with an inclusion of small elasticity tensor, the corresponding misfit functional and its properties. We then introduce its phase-field relaxation and analyze its differentiability and derive necessary optimality conditions related to the phase-field minimization problem. In Sect. 4 we propose an iterative reconstruction algorithm allowing for the numerical approximation of the solution and prove its convergence properties. Finally, in Sect. 5 we present some numerical results showing the efficiency and robustness of the proposed reconstruction algorithm.

Notation and Geometrical Setting

We introduce the principal notation used in the paper.

Notation We denote scalar quantities, points, and vectors in italics, e.g. x, y and u, v, and fourth-order tensors in blackboard face, e.g. \mathbb{A}, \mathbb{B}.

Springer
The symmetric part of a second-order tensor A is denoted by $\hat{A} := \frac{1}{2} (A + A^T)$, where A^T is the transpose matrix. In particular, $\hat{\nabla} u$ represents the deformation tensor. We utilize standard notation for inner products, that is, $u \cdot v = \sum_i u_i v_i$, and $A : B = \sum_{i,j} a_{ij} b_{ij}$ (B is a second-order tensor). $|A|$ denotes the norm induced by the inner product on matrices:

$$|A| = \sqrt{A : A}.$$

Domains. To represent locally a boundary as a graph of function, we adopt the notation: \(\forall x \in \mathbb{R}^d\), we set $x = (x', x_d)$, where $x' \in \mathbb{R}^{d-1}, x_d \in \mathbb{R}$, with $d = 2, 3$. Given $r > 0$, we denote by $B_r(x) \subset \mathbb{R}^d$ the set $B_r(x) := \{(x', x_d) / |x'|^2 + x_d^2 < r^2\}$ and by $B'_r(x') \subset \mathbb{R}^{d-1}$ the set $B'_r(x') := \{x' \in \mathbb{R}^{d-1} / |x'|^2 < r^2\}$.

Definition 1.1 ($C^{0,1}$ regularity) Let Ω be a bounded domain in \mathbb{R}^d. We say that a portion Σ of $\partial \Omega$ is of Lipschitz class with constants r_0, L_0, if for any $p \in \Sigma$ there exists a rigid transformation of coordinates under which we have that p is mapped to the origin and

$$\Omega \cap B_{r_0}(0) = \{x \in B_{r_0}(0) : x_d > \psi(x')\},$$

where ψ is a $C^{0,1}$ function on $B'_{r_0}(0) \subset \mathbb{R}^{d-1}$, such that

$$\psi(0) = 0,$$

$$\|\psi\|_{C^{0,1}(B'_{r_0}(0))} \leq L_0.$$

The Hausdorff distance between two sets Ω_1 and Ω_2 is defined by

$$d_H(\Omega_1, \Omega_2) = \max\{ \sup_{x \in \Omega_1} \inf_{y \in \Omega_2} \text{dist}(x, y), \sup_{x \in \Omega_2} \inf_{y \in \Omega_1} \text{dist}(x, y) \}.$$

Functional setting: Let Ω be a bounded domain. We set

$$BV(\Omega) = \{v \in L^1(\Omega) : TV(v) < \infty\},$$

where

$$TV(v) = \sup \left\{ \int_{\Omega} v \text{div}(\varphi) ; \varphi \in C^1(\Omega), \|\varphi\|_{L^\infty(\Omega)} \leq 1 \right\}$$

is the total variation of v. The BV space is endowed with the natural norm $\|v\|_{BV(\Omega)} = \|v\|_{L^1(\Omega)} + TV(v)$. We recall that the perimeter of Ω is defined as

$$\text{Per}(\Omega) = TV(\chi_{\Omega}),$$

where χ_{Ω} is the characteristic function of the set Ω.

Setting $H^{1}_{\partial \Omega}(\Omega) := \{v \in H^1(\Omega) : v|_{\partial \Omega} = 0\}$, we recall the following inequalities.
Proposition 1.1 Let Ω be a bounded Lipschitz domain. For every $\nu \in H^1_0(\Omega)$, there exists a positive constant $c = c(\Omega)$ such that

$$\|\nabla \nu\|_{L^2(\Omega)} \leq c \|\hat{\nabla} \nu\|_{L^2(\Omega)}.$$

(Korn inequality) \hspace{1cm} (1.9)

$$\|\nu\|_{H^1(\Omega)} \leq c \|\nabla \nu\|_{L^2(\Omega)}.$$

(Poincaré inequality) \hspace{1cm} (1.10)

Estimates (1.9) and (1.10) hold also in the case where ν is zero, in the trace sense, only on a portion of $\partial \Omega$.

2 Elastic Problem—Detection of a Cavity

The focus of this work is the reconstruction of a cavity in an elastic body from boundary measurements using a phase-field approach. We assume that Ω is a bounded domain and that $\partial \Omega := \Sigma_N \cup \Sigma_D$, with $|\Sigma_N| > 0$, $|\Sigma_D| > 0$, Σ_D closed, where $\partial \Omega$ is of Lipschitz class with constants r_0 and L_0. Denoting by C the cavity, we consider the mixed boundary value problem

$$ \begin{cases} \text{div}(C_0 \hat{\nabla} u) = 0 & \text{in } \Omega \setminus C, \\ (C_0 \hat{\nabla} u)n = 0 & \text{on } \partial C, \\ (C_0 \hat{\nabla} u)\nu = g & \text{on } \Sigma_N, \\ u = 0 & \text{on } \Sigma_D, \end{cases} $$

(2.1)

where n, ν are the outer unit normal vector to ∂C and $\partial \Omega$, respectively.

We make the following assumptions.

Assumption 2.1 $C_0 = C_0(x)$ is a fourth-order tensor such that

$$(C_0)_{ijkh}(x) = (C_0)_{jikh}(x) = (C_0)_{khij}(x), \quad \forall 1 \leq i, j, k, h \leq d, \text{ and } x \in \Omega.$$

Moreover, C_0 is assumed to be uniformly bounded and uniformly strongly convex, that is, C_0 defines a positive-definite quadratic form on symmetric matrices:

$$C_0(x)\hat{A} : \hat{A} \geq \xi_0|\hat{A}|^2, \quad \text{a.e in } \Omega,$$

for $\xi_0 > 0$.

Remark 2.1 We require that C_0 is defined in Ω, and not only in $\Omega \setminus C$, because we employ, in the second part of the paper, a reconstruction algorithm based on the strategy of filling the cavity with a fictitious elastic material.

Assumption 2.2

$$g \in L^2(\Sigma_N).$$

(2.2)
We assume Lipschitz regularity of the cavity (see Definition 1.1), which is a typical requirement to prove uniqueness of the solution to the inverse problem, see [53]. More precisely, we make the following assumption.

Assumption 2.3 Let

\[C \in \mathcal{C} := \{ D \subset \overline{\Omega}: \text{compact, simply connected } \partial D \in C^{0,1} \text{ with constants } r_0, \quad L_0 \text{ and } \text{dist}(D, \partial \Omega) \geq d_0 > 0 \}. \]

We define

\[\Omega^{d_0/2} = \left\{ x \in \Omega / \text{dist}(x, \partial \Omega) \leq \frac{d_0}{2} \right\}. \quad (2.3) \]

For the class of admissible sets \(\mathcal{C} \), the following result holds.

Remark 2.2 \(\mathcal{C} \) is compact with respect to the Hausdorff topology [29, 51].

Remark 2.3 From now on, we will denote with \(c \) any constant possibly depending on \(\Omega, r_0, L_0, d, \xi_0, d_0, c \), and on the uniform bounds of the elasticity tensor.

Well-posedness of (2.1) in \(H^1_{\Sigma_D}(\Omega \setminus C) \) follows from an application of the Lax-Milgram theorem to the weak formulation of Problem (2.1):

Find \(u \in H^1_{\Sigma_D}(\Omega \setminus C) \) solution to

\[\int_{\Omega \setminus C} C_0 \nabla u : \nabla \varphi \, dx = \int_{\Sigma_N} g \cdot \varphi \, d\sigma(x), \quad \forall \varphi \in H^1_{\Sigma_D}(\Omega \setminus C), \quad (2.4) \]

(see for example [28]). Moreover, it holds

\[\| u \|_{H^1(\Omega \setminus C)} \leq c \| g \|_{L^2(\Sigma_N)}. \quad (2.5) \]

Choosing \(\varphi = u \) in (2.4), the last inequality follows from the strong convexity of the elasticity tensor \(C_0 \) (see Assumption 2.1), from an application of the Korn and Poincaré inequality to the left-hand side of (2.4) (see Proposition 1.1), and from the use of a Cauchy–Schwarz inequality to the right-hand side. In fact,

\[\int_{\Omega \setminus C} C_0 \nabla u : \nabla u \, dx \geq c \| \nabla u \|_{L^2(\Omega \setminus C)}^2 \geq c \| \nabla u \|_{L^2(\Omega \setminus C)}^2 \geq c \| u \|_{H^1(\Omega \setminus C)}^2, \quad (2.6) \]

and

\[\left| \int_{\Sigma_N} g \cdot u \, d\sigma(x) \right| \leq \| g \|_{L^2(\Sigma_N)} \| u \|_{L^2(\Sigma_N)} \leq c \| g \|_{L^2(\Sigma_N)} \| u \|_{H^1(\Omega \setminus C)}, \quad (2.7) \]

and so estimate (2.5) follows by (2.6) and (2.7).

Our aim is to tackle the following inverse problem:
Problem 2.1 Under Assumptions 2.1, 2.2, and 2.3, given \(u_{\text{meas}} \in L^2(\Sigma_N) \), find \(C \in \mathbb{C} \) such that \(u \big|_{\Sigma_N} = u_{\text{meas}} \), where \(u \in H^1_{\Sigma_D}(\Omega \setminus C) \) solves (2.1).

It has been proved in [53] (see also [11]) that Problem 2.1 has a unique solution when \(\partial C \) is of Lipschitz class. Logarithmic stability estimates have been proved under the assumption of \(C^{1,\sigma} \) regularity, \(0 < \sigma \leq 1 \), on the cavity \(C \), cf. [53].

For the reconstruction of the solution to the inverse problem we consider a standard approach based on the minimization of a quadratic misfit functional, with a Tikhonov regularization penalizing the perimeter of \(C \). More precisely, let

\[
\min_{C \in \mathbb{C}} J(C), \quad \text{where} \quad J(C) = \frac{1}{2} \int_{\Sigma_N} |u(C) - u_{\text{meas}}|^2 \, d\sigma(x) + \alpha \text{Per}(C),
\]

where \(\alpha > 0 \) represents a regularization parameter, \(\text{Per}(C) \) the perimeter of the set \(C \), see (1.8), and \(u(C) \in H^1_{\Sigma_D}(\Omega \setminus C) \) the solution to (2.4).

2.1 Continuity Property of Solutions with Respect to \(C \)

Adapting to our case some known results in literature, see for example [21, 23, 26, 37, 49] and references therein, in this section we will show the continuity of the boundary term in (2.8) with respect to perturbations of the cavity \(C \) in the Hausdorff distance.

To this purpose, we recall the definition of Mosco convergence and some of its properties (see [21, 22, 37, 51]). Let \(X \) be a reflexive Banach space, and \(G_n \) a sequence of closed subspaces of \(X \). We define

\[
G' := \{ x \in X \mid x = w - \limsup y_{n_k}, \ y_{n_k} \in G_{n_k}, \ n_k \to +\infty \} \quad (2.9)
\]

and

\[
G'' := \{ x \in X \mid x = s - \liminf y_n, \ y_n \in G_n \text{ for } n \text{ large} \} \quad (2.10)
\]

\(G' \), \(G'' \) are called the weak-limsup and the strong-liminf of the sequence \(G_n \) in the sense of Mosco.

Definition 2.1 The sequence \(G_n \) converges in the sense of Mosco if \(G' = G'' = G \). \(G \) is called the Mosco limit of \(G_n \).

In other words, \(G_n \) converges in the sense of Mosco to \(G \) when the following two conditions hold:

\[
\begin{align*}
&\text{If } u_{n_k} \in G_{n_k} \text{ is such that } u_{n_k} \to u \text{ in } X, \text{ then } u \in G; \\
&\forall u \in G, \exists u_n \in G_n \text{ such that } u_n \to u \text{ in } X.
\end{align*}
\]

\(\Box \) Springer
Given Ω and $\Omega \setminus C$, we can identify the Sobolev space $H^1_{\Sigma_D}(\Omega \setminus C)$ with a closed subspace of $L^2(\Omega, \mathbb{R}^{d+d^2})$ through the map

$$H^1_{\Sigma_D}(\Omega \setminus C) \hookrightarrow L^2(\Omega, \mathbb{R}^{d+d^2})$$

$$u \mapsto (u, \partial_i u_j), \quad \forall i, j = 1, \ldots, d$$

(2.13)

with the convention of extending u and ∇u to zero in C. The same identification holds for $\Omega \setminus C_n$, extending u_n and ∇u_n to zero in $\Omega \setminus C_n$.

Since we are considering the case of uniform Lipschitz domains, we have the following result, which is an adaptation of Theorem 7.2.7 in [21].

Theorem 2.4 Let us assume that $C_n, C \subset \Omega$ belong to the class C. If $C_n \rightarrow C$ in the Hausdorff metric, then $H^1_{\Sigma_D}(\Omega \setminus C_n)$ converges to $H^1_{\Sigma_D}(\Omega \setminus C)$ in the sense of Mosco.

We can now prove the following continuity result.

Theorem 2.5 Let $C_n \in C$ be a sequence of sets converging to C in the Hausdorff metric (cf. Remark 2.2), and let $u(C_n) =: u_n \in H^1_{\Sigma_D}(\Omega \setminus C_n)$, $u(C) =: u \in H^1_{\Sigma_D}(\Omega \setminus C)$ be solutions of (2.4) in $\Omega \setminus C_n$, $\Omega \setminus C$, respectively. Then

$$\lim_{n \to +\infty} \int_{\Sigma_N} |u_n - u|^2 d\sigma(x) = 0.$$

(2.14)

Proof Thanks to the uniform Lipschitz regularity of $\partial(\Omega \setminus C_n)$ (and $\partial(\Omega \setminus C)$), we have that the Korn and Poincaré inequalities are uniform with respect to n in $H^1_{\Sigma_D}(\Omega \setminus C_n)$, since they depend only on the Lipschitz constants of the domain $\partial(\Omega \setminus C_n)$, see [2, 27]. Therefore, from (2.4) and (2.5), we have that

$$\|u_n\|_{H^1(\Omega \setminus C_n)} \leq c,$$

(2.15)

where c is independent of n.

Hence, from the identification (2.13), we get that $\|u_n\|_{L^2(\Omega, \mathbb{R}^{d+d^2})}$ is uniformly bounded. Up to subsequences, there exists $u^* \in L^2(\Omega, \mathbb{R}^{d+d^2})$ such that

$$u_n \rightharpoonup u^* \text{ in } L^2(\Omega, \mathbb{R}^{d+d^2}).$$

Thanks to Theorem 2.4 and from the first condition of the Mosco convergence applied to $G_n = H^1_{\Sigma_D}(\Omega \setminus C_n)$, $G = H^1_{\Sigma_D}(\Omega \setminus C)$, and $X = L^2(\Omega, \mathbb{R}^{d+d^2})$, see (2.11), we have that $u^* \in H^1_{\Sigma_D}(\Omega \setminus C)$.

Moreover, taking $\varphi \in H^1_{\Sigma_D}(\Omega \setminus C)$, there exists $\varphi_n \in H^1_{\Sigma_D}(\Omega \setminus C_n)$ by (2.12) such that

$$\varphi_n \to \varphi \text{ in } L^2(\Omega, \mathbb{R}^{d+d^2}).$$

(2.16)
Considering the weak formulation for u_n (see (2.4) specialized to the case with $C = C_n$ and $\varphi = \varphi_n$)

$$\int_{\Omega \setminus C_n} C_0 \nabla u_n : \nabla \varphi_n \, dx = \int_{\Sigma_N} g \cdot \varphi_n \, d\sigma(x), \quad (2.17)$$

and since $\varphi_n \in H^1_{\Sigma_D}(\Omega \setminus C_n)$ and $\varphi \in H^1_{\Sigma_D}(\Omega \setminus C)$, it holds

$$\int_{\Sigma_N} g \cdot \varphi_n \, d\sigma(x) = \int_{\Sigma_N} g \cdot (\varphi_n - \varphi) \, d\sigma(x) + \int_{\Sigma_N} g \cdot \varphi \, d\sigma(x).$$

Hence, thanks to Assumption 2.3 and (2.16), we have

$$\left| \int_{\Sigma_N} g \cdot (\varphi_n - \varphi) \, d\sigma(x) \right| \leq c \|g\|_{L^2(\Sigma_N)} \|\varphi_n - \varphi\|_{L^2(\Sigma_N)}$$

$$\leq c \|\varphi_n - \varphi\|_{H^1_{\Sigma_D}(\Omega^{d_0/2})} \to 0,$$

as $n \to +\infty$, where $\Omega^{d_0/2}$ is defined as in (2.3). Therefore,

$$\int_{\Sigma_N} g \cdot \varphi_n \, d\sigma(x) \to \int_{\Sigma_N} g \cdot \varphi \, d\sigma(x), \quad \text{as } n \to +\infty. \quad (2.18)$$

The term on the left-hand side of (2.17) is equal to

$$\int_{\Omega \setminus C_n} C_0 \nabla u_n : \nabla \varphi_n \, dx = \int_{\Omega \setminus C_n} C_0 \nabla u_n : \nabla (\varphi_n - \varphi) \, dx + \int_{\Omega \setminus C_n} C_0 \nabla u_n : \nabla \varphi \, dx.$$

Then, by (2.15) and (2.16), it follows

$$\left| \int_{\Omega \setminus C_n} C_0 \nabla u_n : \nabla (\varphi_n - \varphi) \, dx \right| \leq c \|\nabla u_n\|_{L^2(\Omega \setminus C_n)} \|\nabla (\varphi_n - \varphi)\|_{L^2(\Omega \setminus C_n)} \to 0,$$

as $n \to +\infty$. Analogously, for the second integral on the right-hand side of (2.19), using the symmetries of the elasticity tensor, we get

$$\int_{\Omega \setminus C_n} C_0 \nabla u_n : \nabla \varphi \, dx = \int_{\Omega \setminus C_n} \nabla u_n : C_0 \nabla \varphi \, dx$$

$$\to \int_{\Omega \setminus C} \nabla u^* : C_0 \nabla \varphi \, dx = \int_{\Omega \setminus C} C_0 \nabla u^* : \nabla \varphi \, dx,$$

\square Springer
as \(n \to +\infty \). Consequently, using (2.20) and (2.21) in (2.19), we get

\[
\int_{\Omega \setminus C_n} C_0 \nabla u_n : \nabla \varphi_n \, dx \to \int_{\Omega \setminus C} C_0 \nabla u^* : \nabla \varphi \, dx, \quad \text{as } n \to +\infty.
\] (2.22)

Therefore, we find that

\[
\int_{\Omega \setminus C} C_0 \nabla u^* : \nabla \varphi \, dx = \int_{\Sigma_N} g \cdot \varphi \, d\sigma(x)
\]

\[
= \int_{\Omega \setminus C} C_0 \nabla u : \nabla \varphi \, dx, \quad \forall \varphi \in H^1_{\Sigma_D}(\Omega \setminus C),
\]

where the last equality comes from the weak formulation (2.4). Therefore,

\[
\int_{\Omega \setminus C} C_0 \nabla (u^* - u) : \nabla \varphi \, dx = 0, \quad \forall \varphi \in H^1_{\Sigma_D}(\Omega \setminus C),
\]

so that \(u^* = u \). This conclusion comes from the choice \(\varphi = u^* - u \), and the use of Assumption 2.1 and Korn and Poincaré inequalities (see Proposition 1.1).

Next, we prove that \(u_n \to u \) in \(L^2(\Sigma_N) \) by showing strong convergence of \(u_n \) to \(u \) in \(H^1 \)-norm in a neighborhood of the boundary of \(\Omega \). Consider the weak formulations

\[
\int_{\Omega \setminus C_n} C_0 \nabla u_n : \nabla \varphi_1 \, dx = \int_{\Sigma_N} g \cdot \varphi_1 \, d\sigma(x), \quad \forall \varphi_1 \in H^1(\Omega \setminus C_n), \tag{2.23}
\]

\[
\int_{\Omega \setminus C} C_0 \nabla u : \nabla \varphi_2 \, dx = \int_{\Sigma_N} g \cdot \varphi_2 \, d\sigma(x), \quad \forall \varphi_2 \in H^1(\Omega \setminus C). \tag{2.24}
\]

Now, we define \(\Phi = (u_n - u) \chi^2 \), where \(\chi \) is a smooth cut-off function, \(\chi \in [0, 1] \) in \(\Omega \), such that

\[
\chi = \begin{cases}
1 & \text{in } \Omega^{d_0/4} \\
0 & \text{in } \Omega \setminus \Omega^{d_0/2}.
\end{cases}
\]

Then, we choose \(\varphi_1 = \varphi_2 = \Phi \) in (2.23) and (2.24), that is

\[
\int_{\Omega^{d_0/2}} C_0 \nabla u_n : \nabla \left((u_n - u) \chi^2\right) \, dx = \int_{\Sigma_N} g \cdot (u_n - u) \, d\sigma(x),
\]

\[
\int_{\Omega^{d_0/2}} C_0 \nabla u : \nabla \left((u_n - u) \chi^2\right) \, dx = \int_{\Sigma_N} g \cdot (u_n - u) \, d\sigma(x).
\]

Subtracting the last two equations, we find

\[
\int_{\Omega^{d_0/2}} C_0 \nabla (u_n - u) : \nabla \left((u_n - u) \chi^2\right) \, dx = 0,
\]
that is,
\[
\int_{\Omega_{d_0}/2} \chi^2 C_0 \hat{\nabla} (u_n - u) : \hat{\nabla} (u_n - u) \, dx + \int_{\Omega_{d_0}/2} 2\chi C_0 \hat{\nabla} (u_n - u) : ((u_n - u) \otimes \nabla \chi) \, dx = 0.
\] (2.25)

On the second integral, we apply the Young’s inequality with a suitable parameter \(\kappa > 0 \), that is
\[
\int_{\Omega_{d_0}/2} 2\chi C_0 \hat{\nabla} (u_n - u) : ((u_n - u) \otimes \nabla \chi) \, dx \leq 4\kappa \int_{\Omega_{d_0}/2} \chi^2 C_0 \hat{\nabla} (u_n - u) : \hat{\nabla} (u_n - u)
\]
\[
+ \frac{1}{\kappa} \int_{\Omega_{d_0}/2} C_0 ((u_n - u) \otimes \nabla \chi) : ((u_n - u) \otimes \nabla \chi).
\]

Hence, using this last inequality in (2.25), we get
\[
(1 - 4\kappa) \int_{\Omega_{d_0}/2} \chi^2 C_0 \hat{\nabla} (u_n - u) : \hat{\nabla} (u_n - u) \, dx
\]
\[
\leq \frac{1}{\kappa} \int_{\Omega_{d_0}/2} C_0 ((u_n - u) \otimes \nabla \chi) : ((u_n - u) \otimes \nabla \chi).
\]

The right-hand side integral goes to zero, noticing that
\[
\int_{\Omega_{d_0}/2} C_0 ((u_n - u) \otimes \nabla \chi) : ((u_n - u) \otimes \nabla \chi)
\]
\[
\leq c \int_{\Omega_{d_0}/2} C_0 |u_n - u|^2 |\nabla \chi|^2 \, dx \leq c \int_{\Omega_{d_0}/2} |u_n - u|^2 \, dx \longrightarrow 0, \quad \text{as } n \rightarrow +\infty.
\] (2.26)

The left-hand side can be estimated using the fact that
\[
\int_{\Omega_{d_0}/2} \chi^2 C_0 \hat{\nabla} (u_n - u) : \hat{\nabla} (u_n - u) \, dx \geq \int_{\Omega_{d_0}/4} C_0 \hat{\nabla} (u_n - u) : \hat{\nabla} (u_n - u) \, dx
\]
and, then, by means of the Korn inequality
\[
\int_{\Omega_{d_0}/4} C_0 \hat{\nabla} (u_n - u) : \hat{\nabla} (u_n - u) \, dx \geq c \| \nabla (u_n - u) \|_{L^2(\Omega_{d_0}/4)}^2.
\] (2.27)

From (2.27) and (2.26), and recalling that \(u_n \) is converging strongly in \(L^2 \)-norm to \(u \) from the previous results, we find that
\[
\| u_n - u \|_{H^1(\Omega_{d_0}/4)} \rightarrow 0, \quad \text{as } n \rightarrow +\infty.
\] (2.28)

Finally, by the continuity of the trace theorem the proof is concluded. ☐

\(\square \) Springer
Remark 2.6 In the previous result, \(u_n \to u \) in \(L^2(\Sigma_N) \) can be also proved using the following arguments: note that the trace operator is a linear continuous operator from \(H^{1}_{\Sigma_D}(\Omega \setminus C_n) \) to \(H^{1/2}(\Sigma_N) \) (and, analogously, from \(H^{1}_{\Sigma_D}(\Omega \setminus C) \) to \(H^{1/2}(\Sigma_N) \)), hence is also continuous in the weak topology, see [19]. Moreover, since \(H^{1/2}(\Sigma_N) \hookrightarrow L^2(\Sigma_N) \) is compact, we find that \(u_n \to u \) in \(L^2(\Sigma_N) \).

As a consequence of the continuity of the boundary functional, some properties of the functional \(J(C) \) defined in (2.8) follow.

Proposition 2.7 For every \(\alpha > 0 \) there exists at least one solution of the minimization problem (2.8).

Proof Let \(\{ C_n \}_{n \geq 0} \in \mathcal{C} \) be a minimizing sequence. Then there exists a positive constant \(M \) such that

\[
J(C_n) \leq M, \quad \forall n, \quad (2.29)
\]

hence

\[
\text{Per}(C_n) \leq M, \quad \forall n.
\]

By compactness (see Thereom 3.39 in [4]), there exists a set of finite perimeter \(C_0 \) such that, possibly up to a subsequence,

\[
|C_n \Delta C_0| \to 0, \quad n \to \infty,
\]

where \(C_n \Delta C_0 \) is the symmetric difference of the two sets. Moreover, thanks to the compactness and equiboundedness of the sets \(C_n \) and the fact that \(C_n \in \mathcal{C} \), there exists a further subsequence which converges in the Hausdorff metric to \(C_0 \in \mathcal{C} \), thanks to [39, Theorem 2.4.10]. Moreover, by the lower semicontinuity of the perimeter functional (see Section 5.2.1, Theorem 1, in [34]) it follows that

\[
\text{Per}(C_0) \leq \liminf_{n \to \infty} \text{Per}(C_n).
\]

Using the continuity of the boundary functional, see (2.14), we also have

\[
\int_{\Sigma_N} (u(C_n) - u_{meas})^2 d\sigma(x) \to \int_{\Sigma_N} (u(C_0) - u_{meas})^2 d\sigma(x), \quad \text{as} \ n \to \infty.
\]

In conclusion, we find that

\[
J(C_0) \leq \liminf_{n \to \infty} J(C_n) = \lim_{n \to \infty} J(C_n) = \inf_{C \in \mathcal{C}} J(C),
\]

and the claim follows. \(\Box \)

We also prove stability with respect to the measured data.
Proposition 2.8 Solutions of (2.8) are stable with respect to perturbations of the data u_{meas}, i.e., if $u_n \to u_{\text{meas}}$ in $L^2(\Sigma_N)$ as $n \to \infty$ then the solutions C_n of (2.8) with datum u_n are such that, up to subsequences,

$$d_H(C_n, \bar{C}) \to 0, \quad n \to \infty,$$

where $\bar{C} \in \mathcal{C}$ is a solution of (2.8), with datum u_{meas}.

Proof Using (2.8), we have that, for any n, C_n satisfies

$$\frac{1}{2} \int_{\Sigma_N} (u(C_n) - u_n)^2 d\sigma(x) + \alpha \text{Per}(C_n) \leq \frac{1}{2} \int_{\Sigma_N} (u(C) - u_n)^2 d\sigma(x) + \alpha \text{Per}(C),$$

for all $C \in \mathcal{C}$. Therefore, $\text{Per}(C_n) \leq M$ and hence, possibly up to subsequences,

$$d_H(C_n, \bar{C}) \to 0, \quad n \to \infty,$$

for some $\bar{C} \in \mathcal{C}$, and

$$\text{Per}(\bar{C}) \leq \liminf_{n \to \infty} \text{Per}(C_n).$$

Moreover, by the continuity of the solution of (2.4) with respect to C, see Theorem 2.5, we get

$$J(\bar{C}) \leq \liminf_{n \to \infty} \frac{1}{2} \int_{\Sigma_N} (u(C_n) - u_n)^2 d\sigma(x) + \alpha \text{Per}(C_n)$$

$$\leq \lim_{n \to \infty} \frac{1}{2} \int_{\Sigma_N} (u(C) - u_n)^2 d\sigma(x) + \alpha \text{Per}(C)$$

$$= \frac{1}{2} \int_{\Sigma_N} (u(C) - u_{\text{meas}})^2 d\sigma(x) + \alpha \text{Per}(C),$$

for all $C \in \mathcal{C}$. Summarizing, $\bar{C} \in \mathcal{C}$ and it is a minimizer of the functional, hence the assertion follows. \qed

Finally, we can prove that the solution of the minimization problem (2.8) converges to the unique solution of the inverse problem when the regularization parameter tends to zero.

Proposition 2.9 Let us assume that there exists a solution $C^\sharp \in \mathcal{C}$ of the inverse problem corresponding to datum u_{meas}. Moreover, for any $\eta > 0$ let $(\alpha(\eta))_{\eta > 0}$ be such that $\alpha(\eta) = o(1)$ and $\frac{\eta^2}{\alpha(\eta)}$ is bounded as $\eta \to 0$.

Furthermore, let C_η be a solution to the minimization problem (2.8) with $\alpha = \alpha(\eta)$ and datum $u_\eta \in L^2(\Sigma_N)$ satisfying $\|u_{\text{meas}} - u_\eta\|_{L^2(\Sigma_N)} \leq \eta$. Then

$$C_\eta \to C^\sharp$$

in the Hausdorff metric, as $\eta \to 0$. \hfill \(\Box\) Springer
Proof From the definition of C_η, it immediately follows that

\[
\frac{1}{2} \int_{\Sigma_N} (u(C_\eta) - u_\eta)^2 d\sigma(x) + \alpha \text{Per}(C_\eta) \leq \frac{1}{2} \int_{\Sigma_N} (u(C^\sharp) - u_\eta)^2 d\sigma + \alpha \text{Per}(C^\sharp)
\]

\[
= \frac{1}{2} \int_{\Sigma_N} (u_{\text{meas}} - u_\eta)^2 d\sigma + \alpha \text{Per}(C^\sharp)
\]

\[
\leq \eta^2 + \alpha \text{Per}(C^\sharp).
\]

(2.30)

Straightforwardly, we find that

\[
\text{Per}(C_\eta) \leq \frac{\eta^2}{\alpha} + \text{Per}(C^\sharp) \leq M.
\]

(2.31)

Hence, up to subsequences, arguing as in Proposition 2.8, we get

\[
d_H(C_\eta, C_0) \to 0, \quad \text{as } \eta \to 0,
\]

for some $C_0 \in \mathcal{C}$. From (2.30) and (2.31), as $\eta \to 0$, we find

\[
\int_{\Sigma_N} (u(C_\eta) - u_\eta)^2 d\sigma \to 0,
\]

hence, also

\[
\int_{\Sigma_N} (u(C_\eta) - u_{\text{meas}})^2 d\sigma(x)
\]

\[
\leq \int_{\Sigma_N} (u(C_\eta) - u_\eta)^2 d\sigma(x) + \int_{\Sigma_N} (u_{\text{meas}} - u_\eta)^2 d\sigma(x) \to 0.
\]

By the continuity result in Theorem 2.5 and using the last relation, we find that

\[
u(C_0) = u_{\text{meas}}, \quad \text{on } \Sigma_N.
\]

Therefore, thanks to the uniqueness result of the inverse problem in Lipschitz domains (cf. [53]) we get $C_0 = C^\sharp$. \square

3 Reconstruction of Cavities—Filling the Void

From the numerical point of view, the minimization of the functional (2.8) is complicated due to its non-differentiability. A typical approach to overcome this issue is to consider a further regularization of the functional, where the perimeter is approximated by a Ginzburg-Landau type functional, see for example [18]. This approach is well-known in the literature and it has been applied in different contexts, see for example [3, 12, 14–16, 18, 25, 30, 35, 44, 48].
First, we note that Problem (2.8) is equivalent to the following formulation

$$\min_{v \in X_{0,1}} J(v), \text{ where } J(v) = \frac{1}{2} \int_{\Sigma_N} |u(v) - u_{\text{meas}}|^2 d\sigma(x) + \alpha TV(v), \quad (3.1)$$

where

$$X_{0,1} := \{ v \in BV(\Omega) : v = \chi_C \text{ a.e. in } \Omega, C \in \mathcal{C} \},$$

and \(\chi_C \) is the indicator function of \(C \). Note that the space \(X_{0,1} \) is endowed with the norm \(\|v\|_{BV(\Omega)} = \|v\|_{L^1(\Omega)} + TV(v) \).

Remark 3.1 By compactness properties of \(BV(\Omega) \) (see, e.g., [4], Theorem 3.23), any uniformly bounded sequence in \(X_{0,1} \) admits a subsequence converging in \(L^1(\Omega) \) to an element in \(X_{0,1} \). In fact, let \(v_n \) a sequence uniformly bounded in \(X_{0,1} \), there exists, possibly up to a subsequence, \(v \in BV(\Omega) \) such that

$$v_n \to v \text{ in } L^1(\Omega) \Rightarrow v_n \to v \text{ a.e. in } \Omega.$$

Since \(v_n \) attains values 0 and 1 only, it follows that \(v \in X_{0,1} \).

Following the approach proposed in [18], we fill the cavity with a fictitious material with elastic properties that are different from the background. Specifically, we take an elasticity tensor \(C_1 := \delta C_0 \), where \(\delta > 0 \) is sufficiently small. Therefore, the boundary value problem (2.1) is modified into

$$\begin{cases}
\text{div}(C_\delta(v) \hat{\nabla} u_\delta(v)) = 0 & \text{in } \Omega, \\
(C_\delta(v) \hat{\nabla} u_\delta(v))v = g & \text{on } \Sigma_N, \\
u_\delta(v) = 0 & \text{on } \Sigma_D,
\end{cases} \quad (3.2)$$

where

$$C_\delta(v) = C_0 + (C_1 - C_0)v, \quad \text{with } C_1 = \delta C_0. \quad (3.3)$$

Here \(C_0 \) and \(C_1 \) are the elasticity tensors in \(\Omega \setminus C \) and \(C \), respectively.

Remark 3.2 Thanks to Assumption 2.1, the fact that \(\delta > 0 \), and by (3.3), the elasticity tensor \(C_\delta(v) \) is strongly convex.

Remark 3.3 The following analysis can be generalized to the case of a generic fourth-order elasticity tensor \(C_1 \) which is strongly convex and uniformly bounded with the further hypothesis that

$$C_1 \hat{A} : \hat{A} \leq C_0 \hat{A} : \hat{A} \quad \text{or} \quad C_0 \hat{A} : \hat{A} \leq C_1 \hat{A} : \hat{A}.$$

Remark 3.4 When dealing with sequences, we will often use the simplified notation \(u_n := u_\delta(v_n), u := u_\delta(v), C_n := C_\delta(v_n), C := C_\delta(v) \).
The elastic problem (3.2) has the following weak formulation:

Find \(u_\delta(v) \in H^1_{\Sigma_D}(\Omega) \) solution to

\[
\int_{\Omega} C_\delta(v) \nabla u_\delta(v) : \nabla \varphi \, dx = \int_{\Sigma_N} g \cdot \varphi \, d\sigma(x), \quad \forall \varphi \in H^1_{\Sigma_D}(\Omega). \tag{3.4}
\]

Well-posedness of Problem (3.2) in \(H^1_{\Sigma_D}(\Omega) \) follows in the same way as for Problem (2.1), and, in addition

\[
\|u_\delta(v)\|_{H^1(\Omega)} \leq c \|g\|_{L^2(\Sigma_N)}
\]

We now approximate Problem (3.1) with the following one

\[
\min_{v \in X_{0,1}} J_\delta(v), \text{ where } J_\delta(v) = \frac{1}{2} \int_{\Sigma_N} |u_\delta(v) - u_{\text{meas}}|^2 \, d\sigma(x) + \alpha TV(v), \tag{3.5}
\]

where \(u_\delta(v) \in H^1_{\Sigma_D}(\Omega) \) is the solution of Problem (3.2).

We prove the existence of minima of \(J_\delta(v) \) in \(X_{0,1} \), on account of the ideas contained in [14]. The proof is a consequence of the following property.

Proposition 3.5 Let \(\{v_n\} \subset X_{0,1} \) be strongly convergent in \(L^1(\Omega) \) to \(v \in X_{0,1} \). Then \(\{u_\delta(v_n)|_{\Sigma_N}\} \) strongly converges in \(L^2(\Sigma_N) \) to \(u_\delta(v)|_{\Sigma_N} \), i.e., the map \(F : v \to u_\delta(v)|_{\Sigma_N} \) is continuous from \(X_{0,1} \) to \(L^2(\Sigma_N) \) in the \(L^1 \) topology.

Proof Consider the weak formulation (3.4) associated to \(v \) and \(v_n \), respectively,

\[
\int_{\Omega} C_\delta(v) \nabla u_\delta(v) : \nabla \varphi = \int_{\Sigma_N} g \cdot \varphi, \quad \forall \varphi \in H^1_{\Sigma_D}(\Omega),
\]

\[
\int_{\Omega} C_\delta(v_n) \nabla u_\delta(v_n) : \nabla \varphi = \int_{\Sigma_N} g \cdot \varphi, \quad \forall \varphi \in H^1_{\Sigma_D}(\Omega).
\]

Subtracting the two equations and setting \(u_n := u_\delta(v_n), u := u_\delta(v), C_n := C_\delta(v_n), C := C_\delta(v) \), we get

\[
\int_{\Omega} C_n \nabla (u_n - u) : \nabla \varphi + \int_{\Omega} (C_n - C) \nabla u : \nabla \varphi = 0, \quad \forall \varphi \in H^1_{\Sigma_D}(\Omega).
\]

Thus, making the choice \(\varphi = u_n - u \) and proceeding similarly as in (2.5) to get \(H^1 \)-estimates, we find

\[
\|u_n - u\|^2_{H^1(\Omega)} \leq c \| (C_n - C) \nabla u \|_{L^2(\Omega)} \| \nabla (u_n - u) \|_{L^2(\Omega)},
\]

and then, by \(C_n - C = (C_1 - C_0)(v_n - v) \) and the uniform bound on the elasticity tensor, see Assumption 2.1, we derive

\[
\|u_n - u\|_{H^1(\Omega)} \leq c \| (\nabla u)(v_n - v) \|_{L^2(\Omega)}.
\]
Observe now that \(v_n - v \to 0 \) in \(L^1(\Omega) \) as \(n \to +\infty \) so that, possibly up to a subsequence, \(v_n - v \to 0 \), a.e. in \(\Omega \). Moreover, recalling that \(v_n \) and \(v \) are bounded and \(u \in H^1(\Omega) \), we deduce, by dominated convergence theorem, that
\[
\|u_n - u\|_{H^1(\Omega)} \to 0, \quad \text{as } n \to +\infty.
\]
Finally, the trace theorem implies
\[
\|u_n - u\|_{L^2(\Sigma_N)} \to 0, \quad \text{as } n \to +\infty.
\]

Proposition 3.6 \(J_\delta(v) \) admits a minimum \(v \in X_{0,1} \).

Proof Observe that \(J_\delta(v) \) is bounded from below, by definition. Moreover, \(J_\delta(v) \neq +\infty \), for \(v \in X_{0,1} \). So, let \(\{v_n\} \subset X_{0,1} \) be a minimizing sequence of \(J_\delta(v) \), that is
\[
J_\delta(v_n) \to \inf_{v \in X_{0,1}} J_\delta(v) = M, \quad \text{as } n \to +\infty.
\]
Then
\[
0 \leq J_\delta(v_n) \leq 2M \quad \text{and} \quad 0 \leq \alpha TV(v_n) \leq 2M.
\]
Hence, there exists a positive constant \(c \), independent on \(n \), such that
\[
\|v_n\|_{BV(\Omega)} = \|v_n\|_{L^1(\Omega)} + TV(v_n) \leq c. \quad (3.6)
\]
This implies that \(v_n \) is uniformly bounded in \(X_{0,1} \). Therefore, thanks to Remark 3.1, there exists \(v \in X_{0,1} \) such that \(v_n \to v \) in \(L^1(\Omega) \). Due to the lower semicontinuity of \(TV(v) \) with respect to the \(L^1 \)-convergence, we have
\[
TV(v) \leq \liminf_{n \to +\infty} TV(v_n)
\]
and, using Proposition 3.5, we get
\[
J_\delta(v) = \frac{1}{2} \int_{\Sigma_N} |u_\delta(v) - u_{\text{meas}}|^2 + \alpha TV(v)
\leq \liminf_{n \to +\infty} \left(\frac{1}{2} \int_{\Sigma_N} |u_\delta(v_n) - u_{\text{meas}}|^2 + \alpha TV(v_n) \right)
= \lim_{n \to +\infty} J_\delta(v_n) = M. \quad (3.7)
\]
\[\square\]
3.1 Phase-Field Relaxation

Proceeding as in [14, 30], we now consider a phase-field relaxation of the optimization problem (3.5). More precisely, we define a minimization problem for a differentiable cost functional defined on a convex subspace of $H^1(\Omega)$, namely on the set

$$\mathcal{K} = \{ v \in H^1(\Omega) : 0 \leq v(x) \leq 1 \text{ a.e. in } \Omega, \; v(x) = 0 \text{ a.e. in } \Omega_{d_0/2} \},$$

where $\Omega_{d_0/2}$ has been defined in (2.3), and, for every $\varepsilon > 0$, we replace the total variation term with the following Modica–Mortola functional.

Problem 3.1 Given $u_{meas} \in L^2(\Sigma N)$, and $\varepsilon, \delta > 0$, find

$$\min_{v \in \mathcal{K}} J_{\delta, \varepsilon}(v), \quad J_{\delta, \varepsilon}(v) := \frac{1}{2} \| u_\delta(v) - u_{meas} \|^2_{L^2(\Sigma N)} + \tilde{\alpha} \int_\Omega \left(\varepsilon |\nabla v|^2 + \frac{1}{\varepsilon} v(1 - v) \right),$$

(3.8)

$u_\delta(v) \in H^1_{\Sigma D}(\Omega)$ being the solution to (3.2), for $v \in \mathcal{K}$, and $\tilde{\alpha} = \frac{4}{\pi} \alpha$, where $4/\pi = (2 \int_0^1 \sqrt{v(1 - v)} \, dv)^{-1}$ is a rescaling parameter, see [1].

Remark 3.7 We expect Γ-convergence of the functional $J_{\delta, \varepsilon}$ to J, given in (3.1). However, this analysis is involved in the elastic context and is still an open issue that needs a specific accurate study.

The following result holds

Proposition 3.8 For any $\delta, \varepsilon > 0$, Problem (3.8) admits a solution $v = v_{\delta, \varepsilon} \in \mathcal{K}$.

Proof Let us fix $\delta, \varepsilon > 0$ and consider a minimizing sequence $\{ v_n \} \subset \mathcal{K}$ for $J_{\delta, \varepsilon}(v)$ (we omit the dependence of v_n on δ and ε). We have

$$J_{\delta, \varepsilon}(v_n) \to \inf_{v \in \mathcal{K}} J_{\delta, \varepsilon}(v) = M.$$

Hence, by definition of minimizing sequence, $0 \leq J_{\delta, \varepsilon}(v_n) \leq 2M$ independently of n, which implies that also $\| \nabla v_n \|^2_{L^2(\Omega)}$ is bounded. Moreover, recalling that $v_n \in \mathcal{K}$ and $0 \leq v_n(x) \leq 1$ a.e. in Ω, we deduce that $\| v_n \|^2_{L^2(\Omega)} \leq M_1$, with M_1 independent of n and hence $\| v_n \|_{H^1(\Omega)} \leq M_2$, with M_2 independent of n. Due to the weak compactness of $H^1(\Omega)$, there exists $v \in H^1(\Omega)$ such that, possibly up to a subsequence, $v_n \rightharpoonup v$ in $H^1(\Omega)$. Hence, $v_n \to v$ strongly in $L^2(\Omega)$ and $v_n \to v$ a.e. in Ω. Since $v_n(1 - v_n) \leq 1/4$, by means of the Lebesgue’s dominated convergence theorem, we get

$$\int_\Omega v_n(1 - v_n) \to \int_\Omega v(1 - v).$$
Moreover, by the lower semicontinuity of the $H^1(\Omega)$ norm with respect to the weak convergence, we obtain

$$
\|v\|_{H^1(\Omega)}^2 \leq \liminf_{n \to +\infty} \|v_n\|_{H^1(\Omega)}^2,
$$

$$
\|v\|_{L^2(\Omega)}^2 + \|\nabla v\|_{L^2(\Omega)}^2 \leq \liminf_{n \to +\infty} \|v_n\|_{L^2(\Omega)}^2 + \liminf_{n \to +\infty} \|\nabla v_n\|_{L^2(\Omega)}^2,
$$

$$
\|\nabla v\|_{L^2(\Omega)}^2 \leq \liminf_{n \to +\infty} \|\nabla v_n\|_{L^2(\Omega)}^2.
$$

By the last inequality and the convergence of v_n to v a.e., by the use of Proposition 3.5 and the fact that v_n is a minimizing sequence, we have

$$
J_{\delta, \varepsilon}(v) = \frac{1}{2} \|u_{\delta}(v) - u_{\text{meas}}\|_{L^2(\Sigma_N)}^2 + \tilde{\alpha} \int_{\Omega} \left(\varepsilon |\nabla v|^2 + \frac{1}{\varepsilon} v(1 - v) \right)
$$

$$
\leq \liminf_{n \to +\infty} \left(\frac{1}{2} \|u_{\delta}(v_n) - u_{\text{meas}}\|_{L^2(\Sigma_N)}^2 + \tilde{\alpha} \int_{\Omega} \left(\varepsilon |\nabla v_n|^2 + \frac{1}{\varepsilon} v_n(1 - v_n) \right) \right)
$$

$$
= \lim_{n \to +\infty} J_{\delta, \varepsilon}(v_n) = M.
$$

Finally, by pointwise convergence, we know that $0 \leq v \leq 1$ a.e. in Ω and $v = 1$ a.e. in $\Omega^{d_0}/2$. Hence, v is a minimum of $J_{\delta, \varepsilon}$ in K.

3.2 Necessary Optimality Conditions

In this section we provide an expression for the first order necessary optimality condition associated with the minimization problem (3.8), formulated as a variational inequality involving the Fréchet derivative of $J_{\delta, \varepsilon}$.

Proposition 3.9 Define the map $F : K \to H^1(\Omega)$, $F(v) = u_{\delta}(v)$, $u_{\delta}(v)$ solution to (3.2). Then the operators F and $J_{\delta, \varepsilon}$ (for every $\delta, \varepsilon > 0$) are Fréchet-differentiable on $K \subset L^\infty(\Omega) \cap H^1(\Omega)$.

Moreover, any minimizer $v_{\delta, \varepsilon}$ of $J_{\delta, \varepsilon}$ satisfies the variational inequality

$$
J'_{\delta, \varepsilon}(v_{\delta, \varepsilon})[\omega - v_{\delta, \varepsilon}] \geq 0, \quad \forall \omega \in K, \quad (3.9)
$$

where

$$
J'_{\delta, \varepsilon}(v)[\vartheta] = \int_{\Omega} \vartheta (C_0 - C_1) \widehat{\nabla} u_{\delta}(v) : \widehat{\nabla} p_{\delta}(v) + 2\tilde{\alpha}\varepsilon \int_{\Omega} \nabla v : \nabla \vartheta
$$

$$
+ \frac{\tilde{\alpha}}{\varepsilon} \int_{\Omega} (1 - 2v) \vartheta. \quad (3.10)
$$
Here $\vartheta \in \mathcal{K} - v = \{ z \text{ s.t. } z + v \in \mathcal{K} \}$ and $p_{\delta} \in H^{1}_{\Sigma_D}(\Omega)$ is the solution to the adjoint problem
\[
\int_{\Omega} C_{\delta}(v) \hat{\nabla} p_{\delta} : \hat{\nabla} \psi = \int_{\Sigma_N} (u_{\delta}(v) - u_{\text{meas}}) \psi, \quad \forall \psi \in H^{1}_{\Sigma_D}(\Omega).
\] (3.11)

Proof First we prove that F is Fréchet differentiable in $L^{\infty}(\Omega)$. More precisely,
\[
F'(v)[\vartheta] = u^{\vartheta}(v), \quad \text{for } \vartheta \in L^{\infty}(\Omega) \cap (\mathcal{K} - v),
\]
where $u^{\vartheta}(v)$ is the solution in $H^{1}_{\Sigma_D}(\Omega)$ of
\[
\int_{\Omega} C_{\delta}(v) \hat{\nabla} u^{\vartheta}(v) : \hat{\nabla} \varphi = \int_{\Omega} \vartheta(C_{0} - C_{1}) \hat{\nabla} u_{\delta}(v) : \hat{\nabla} \varphi, \quad \forall \varphi \in H^{1}_{\Sigma_D}(\Omega),
\] (3.12)

namely,
\[
\| F(v + \vartheta) - F(v) - u^{\vartheta}(v) \|_{H^{1}(\Omega)} = o(\| \vartheta \|_{L^{\infty}(\Omega)}).
\] (3.13)

To this aim, we first show that
\[
\| u_{\delta}(v + \vartheta) - u_{\delta}(v) \|_{H^{1}(\Omega)} \leq c \| \vartheta \|_{L^{\infty}(\Omega)}, \quad \text{for } \vartheta \in L^{\infty}(\Omega) \cap (\mathcal{K} - v).
\]

Indeed, the difference $u_{\delta}(v + \vartheta) - u_{\delta}(v)$ satisfies
\[
\int_{\Omega} C_{\delta}(v + \vartheta) \hat{\nabla} (u_{\delta}(v + \vartheta) - u_{\delta}(v)) : \hat{\nabla} \varphi
+ \int_{\Omega} (C_{\delta}(v + \vartheta) - C_{\delta}(v)) \hat{\nabla} u_{\delta}(v) : \hat{\nabla} \varphi = 0, \quad \forall \varphi \in H^{1}_{\Sigma_D}(\Omega).
\] (3.14)

Taking $\varphi = u_{\delta}(v + \vartheta) - u_{\delta}(v)$ and recalling that $C_{\delta}(v + \vartheta) - C_{\delta}(v) = (C_{1} - C_{0}) \vartheta$, we obtain
\[
\int_{\Omega} C_{\delta}(v + \vartheta) \hat{\nabla} (u_{\delta}(v + \vartheta) - u_{\delta}(v)) : \hat{\nabla} (u_{\delta}(v + \vartheta) - u_{\delta}(v))
= - \int_{\Omega} \vartheta(C_{1} - C_{0}) \hat{\nabla} u_{\delta}(v) : \hat{\nabla} (u_{\delta}(v + \vartheta) - u_{\delta}(v)).
\] (3.15)
Hence, by using the assumptions on the elasticity tensors, Korn and Poincaré inequalities, and the fact that \(v + \vartheta \in \mathcal{K} \), we obtain
\[
\| u_\delta(v + \vartheta) - u_\delta(v) \|_{H^1(\Omega)} \leq c \| \vartheta \|_{L^\infty(\Omega)} \| \nabla u_\delta(v) \|_{L^2(\Omega)} \leq c \| \vartheta \|_{L^\infty(\Omega)} \| u_\delta(v) \|_{H^1(\Omega)} \leq c \| \vartheta \|_{L^\infty(\Omega)},
\]
(3.16)

We now estimate \(u_\delta(v + \vartheta) - u_\delta(v) - u^\sharp(v) \). Subtracting (3.12) from (3.14) and setting \(\omega = u_\delta(v + \vartheta) - u_\delta(v) \), then it holds
\[
\int_\Omega C_\delta(v + \vartheta) \nabla \omega : \nabla \varphi - \int_\Omega C_\delta(v) \nabla u^\sharp(v) : \nabla \varphi = 0,
\]
(3.17)
from which
\[
\int_\Omega C_\delta(v) \nabla (\omega - u^\sharp(v)) : \nabla \varphi = - \int_\Omega (C_\delta(v + \vartheta) - C_\delta(v)) \nabla \omega : \nabla \varphi = \int_\Omega \vartheta (C_0 - C_1) \nabla \omega : \nabla \varphi,
\]
(3.18)
Choosing now \(\varphi = \omega - u^\sharp(v) \), we get
\[
\int_\Omega C_\delta(v) \nabla (\omega - u^\sharp(v)) : \nabla (\omega - u^\sharp(v)) = \int_\Omega (C_0 - C_1) \vartheta \nabla \omega : \nabla (\omega - u^\sharp(v)),
\]
(3.19)
and again by the boundedness of the elasticity tensors and the use of Korn and Poincaré inequalities it follows
\[
\| \omega - u^\sharp(v) \|_{H^1(\Omega)} = \| u(v + \vartheta) - u_\delta(v) - u^\sharp(v) \|_{H^1(\Omega)} \leq c \| \vartheta \|_{L^\infty(\Omega)},
\]
(3.20)
so that \(F'(v)[\vartheta] = u^\sharp(v) \).

We now prove that \(J_{\delta,\varepsilon} \) is Fréchet differentiable. By means of the chain rule and the Fréchet differentiability of \(F \), we compute the expression of \(J'_{\delta,\varepsilon}(v) \), i.e.,
\[
J'_{\delta,\varepsilon}(v)[\vartheta] = \int_{\Sigma_N} (F(v) - u_{\text{meas}}) F'(v)[\vartheta] + \alpha \int_\Omega \left(2\varepsilon \nabla v : \nabla \vartheta + \frac{1}{\varepsilon} (1 - 2v) \vartheta \right),
\]
(3.21)
where, with abuse of notation, \(F(v) \) and \(F'(v)[\vartheta] \) denote the trace of \(F(v) \) and \(F'(v)[\vartheta] \) on \(\Sigma_N \), respectively. By the definition of the adjoint problem and of \(u^\sharp(v) \),
we get
\[\int_{\Sigma_N} (F(v) - u_{\text{meas}}) F'(v) [\vartheta] = \int_{\Sigma_N} (F(v) - u_{\text{meas}}) u_{\delta}^2(v) = \int_\Omega (C_0 - C_1) \vartheta \hat{\nabla} F(v) : \hat{\nabla} p_\delta \] (3.22)
and hence
\[J'_{\delta,\varepsilon}(v)[\vartheta] = \int_\Omega (C_0 - C_1) \vartheta \hat{\nabla} F(v) : \hat{\nabla} p_\delta + \tilde{\alpha} \int_\Omega \left(2\varepsilon \nabla v \cdot \nabla \vartheta + \frac{1}{\varepsilon}(1 - 2v) \vartheta \right). \]

Finally, by standard arguments, since \(J_{\delta,\varepsilon} \) is a continuous and Fréchet differentiable functional on a convex subset \(\mathcal{K} \) of the Banach space \(H^1(\Omega) \), the optimality conditions for the optimization problem (3.8) are expressed in terms of the variational inequality (3.9).

\[\square \]

4 Discretization and Reconstruction Algorithm

4.1 Convergence Analysis

Here, we assume that \(\Omega \) is a polygonal \((d = 2)\) or polyhedral \((d = 3)\) domain. Again, for simplifying the notation, we denote by \(u := u_{\delta} \) and \(p := p_{\delta} \).

Let \((T_h)_{0 < h \leq h_0}\) be a regular triangulation of \(\Omega \) and define
\[V_h := \{ v_h \in C(\overline{\Omega}) : v_h|_T \in P_1(T), \forall T \in T_h \}, \] (4.1)
where \(P_1(T) \) is the set of polynomials of first degree on \(T \), and
\[\mathcal{K}_h := V_h \cap \mathcal{K}, \]
\[V_{h,\Sigma_D} := V_h \cap H^1_{\Sigma_D}(\Omega). \] (4.2)

For every \(h > 0 \), we set \(u_h := (u_{\delta})_h : \mathcal{K} \rightarrow \mathcal{V}_{h,\Sigma_D} \) where \(u_h \) is solution to
\[\int_\Omega C_\delta(v) \hat{\nabla} u_h(v) : \hat{\nabla} \varphi_h = \int_{\Sigma_N} g_h \cdot \varphi_h, \forall \varphi_h \in \mathcal{V}_{h,\Sigma_D}. \] (4.3)

Here \(g_h \) is a piecewise linear, continuous approximation of \(g \) such that \(g_h \rightarrow g \) in \(L^2(\Sigma_N) \) as \(h \rightarrow 0 \).

As in [30], one can show that for every \(v \in \mathcal{K} \) there exists a sequence \(v_h \in \mathcal{K}_h \) such that \(v_h \rightarrow v \) in \(H^1(\Omega) \). Most of the following results are an adaptation of those presented in [30] for a scalar equation to the case of the elasticity system, hence we do not provide the proofs for some of them.

\[\square \] Springer
The following lemma is a consequence of the continuity and coercivity of the bilinear form on the left-hand side of (4.3) and Céa’s Lemma (see, e.g., [14]).

Lemma 4.1 Let \(g \in L^2(\Sigma_N) \). Then, \(\forall v \in \mathcal{K}, u_h(v) \to u(v) \) strongly in \(H^1(\Omega) \) as \(h \to 0 \).

Next we state a result concerning the continuity of \(u_h \) in the space \(V_h, \Sigma D \).

Proposition 4.2 Let \(h_k, v_{h_k} \) be two sequences such that \(\lim_{k \to +\infty} h_k = 0 \) and \(v_{h_k} \in K_h \) with \(v_{h_k} \to v \) in \(L^1(\Omega) \). Then \(u_{h_k}(v_{h_k}) \to u(v) \) in \(H^1(\Sigma D)(\Omega) \) for \(k \to +\infty \).

Proof The proof can be obtained reasoning similarly as in Lemma 3.1 of [30]. \(\square \)

Let \(J_{\delta,\varepsilon,h} : K_h \to \mathbb{R} \) be the approximation to \(J_{\delta,\varepsilon} \) defined as follows

\[
J_{\delta,\varepsilon,h} := \frac{1}{2} \| u_h(v_h) - u_{meas,h} \|^2_{L^2(\Sigma_N)} + \tilde{\alpha} \int_{\Omega} \varepsilon |\nabla v_h|^2 + \frac{1}{\varepsilon} v_h(1 - v_h), \tag{4.4}
\]

where we assume that \(u_{meas,h} \to u_{meas} \), as \(h \to 0 \). Similarly as in Theorem 3.2 of [30], we can show the following result.

Theorem 4.3 There exists \(v_h \in K_h \) such that \(J_{\delta,\varepsilon,h}(v_h) = \min_{\eta_h \in K_h} J_{\delta,\varepsilon,h}(\eta_h) \). Moreover, let \(h_k \) be such that \(\lim_{k \to +\infty} h_k = 0 \). Then every sequence \(v_{h_k} \) has a subsequence converging strongly in \(H^1(\Omega) \) and a.e. in \(\Omega \) to a minimum of \(J_{\delta,\varepsilon} \).

In our numerical algorithm we approximately solve (3.8) and so we look for an admissible point \(v_h \in K_h \) that satisfies the first order necessary condition

\[
J'_{\delta,\varepsilon,h}(v_h)[\omega_h - v_h] \geq 0, \quad \forall \omega_h \in K_h, \tag{4.5}
\]

rather than trying to locate a global minimum of \(J_{\delta,\varepsilon,h} \). To this aim, we consider the discrete adjoint problem: find \(p_h := (p_{\delta})_h \in \mathcal{V}_h, \Sigma D \) such that

\[
\int_{\Omega} \nabla \delta(v_h) \nabla p_h : \nabla \psi_h = \int_{\Sigma N} (u_h(v_h) - u_{meas,h}) \psi_h, \quad \forall \psi_h \in \mathcal{V}_h, \Sigma D. \tag{4.6}
\]

Then using \(v_h \in K_h \), we can prove the discrete version of Proposition 3.9, where the discrete variational inequality reads as:

\[
\int_{\Omega} (C_0 - C_1)(\omega_h - v_h) \nabla u_h(v_h) : \nabla p_h + 2\tilde{\alpha} \varepsilon \int_{\Omega} \nabla v_h \cdot \nabla (\omega_h - v_h) + \frac{\tilde{\alpha}}{\varepsilon} \int_{\Omega} (1 - 2v_h)(\omega_h - v_h) \geq 0, \quad \forall \omega_h \in K_h. \tag{4.7}
\]

Then, we can prove the following theorem:
Theorem 4.4 Let h_k be such that $\lim_{k \to +\infty} h_k = 0$ and v_{h_k} be a sequence satisfying (4.5). Then there exists a subsequence of v_{h_k} that converges strongly in $H^1(\Omega)$ and a.e. in Ω to a solution v of (3.9).

Proof We set $v_k := v_{h_k}$, $u_k := u_{h_k}(v_{h_k})$ and $p_k := p_{h_k}(v_{h_k})$. Testing (4.6) with $\psi_h = p_k$ we get
\[
\int_{\Omega} C \delta(v_k) \hat{\nabla} p_k : \hat{\nabla} p_k = \int_{\Sigma_N} (u_k - u_{\text{meas},k}) \cdot p_k,
\]
which yields, arguing as in (2.5) to get H^1-estimates,
\[
c \|p_k\|_{H^1(\Omega)}^2 \leq \|u_k - u_{\text{meas},k}\|_{L^2(\Sigma_N)} \|p_k\|_{L^2(\Sigma_N)}.
\]
As the problem for u_k is well-posed with $u_k \in H^1_{\Sigma_D}(\Omega)$ and $u_{\text{meas},k} \to u_{\text{meas}}$ (implying that $\|u_{\text{meas},k}\|_{L^2(\Sigma_N)}$ is uniformly bounded with respect to k), we get
\[
\|p_k\|_{H^1(\Omega)} \leq c.
\]
A similar result holds for $\|u_k\|_{H^1(\Omega)}$. Therefore
\[
\|p_k\|_{H^1(\Omega)} + \|u_k\|_{H^1(\Omega)} \leq c, \quad \text{uniformly in } k. \tag{4.8}
\]
From (4.7), employing $(1 - 2v_k)(w_k - v_k) \leq w_k + 2v_k^2$ and testing with $w_k = 0 \in \mathcal{K}_h$, we get
\[
2\tilde{c} \varepsilon \int_{\Omega} |\nabla v_k|^2 \leq c \|\hat{\nabla} u_k\|_{L^2(\Omega)} \|\hat{\nabla} p_k\|_{L^2(\Omega)} + \frac{2\tilde{c}}{\varepsilon} |\Omega| \leq c\varepsilon, \tag{4.9}
\]
where we used (4.8). Therefore, v_k is bounded in $H^1(\Omega)$, hence there exists a subsequence (still denoted by v_k) and $v \in \mathcal{K}$ such that
\[
v_k \to v \quad \text{in } H^1(\Omega), \quad v_k \to v \quad \text{in } L^2(\Omega) \quad \text{(and in } L^1(\Omega)),
\]
\[
v_k \to v \quad \text{a.e. in } \Omega.
\]
Thanks to Proposition 4.2 we have
\[
u_k \to u \quad \text{in } H^1_{\Sigma_D}(\Omega). \tag{4.10}
\]
Now, let $p \in H^1_{\Sigma_D}(\Omega)$ be the solution of the continuous adjoint problem and let $\hat{p}_k \in V_{h_k, \Sigma_D}$ be such that $\hat{p}_k \to p$ in $H^1_{\Sigma_D}(\Omega)$. Taking the difference of the problems solved by p and p_k, after some standard manipulation we get
\[
\int_{\Omega} \mathcal{C}_\delta(v_k) \nabla (p_k - \hat{p}_k) : \nabla \psi \\
= \int_{\Omega} \mathcal{C}_\delta(v_k) \nabla (p - \hat{p}_k) : \nabla \psi + \int_{\Omega} (\mathcal{C}_\delta(v) - \mathcal{C}_\delta(v_k)) \nabla p : \nabla \psi \\
+ \int_{\Sigma_N} (u_k - u) \cdot \psi + \int_{\Sigma_N} (u_{meas} - u_{meas,k}) \cdot \psi,
\]

for all \(\psi \in \mathcal{V}_{h_k, \Sigma_D} \). Taking \(\psi = p_k - \hat{p}_k \), we get

\[
\|p_k - \hat{p}_k\|_{H^1(\Omega)} \leq c \left(\|\nabla (p - \hat{p}_k)\|_{L^2(\Omega)} + \int_{\Omega} |v - v_k|^2 |\nabla p|^2 \\
+ \|u_k - u\|_{L^2(\Sigma_N)} + \|u_{meas} - u_{meas,k}\|_{L^2(\Sigma_N)} \right). \tag{4.11}
\]

By hypothesis, we have \(\|u_{meas} - u_{meas,k}\|_{L^2(\Sigma_N)} \to 0 \) and \(\|p - \hat{p}_k\|_{H^1(\Omega)} \to 0 \) for \(k \to +\infty \). Hence, invoking Proposition 4.2 and observing that \(\int_{\Omega} |v - v_k|^2 |\nabla p|^2 \to 0 \) for \(k \to +\infty \), we deduce \(p_k \to p \) in \(H^1(\Omega) \).

Next, we have to show that \(v \) satisfies the variational inequality (3.9). Given \(\omega \in \mathcal{K} \), there exists a sequence \(\hat{\omega}_k \in \mathcal{K}_{h_k} \) such that \(\hat{\omega}_k \to \omega \) in \(H^1(\Omega) \) and a.e. in \(\Omega \). Then, from the discrete variational inequality (4.7) we have for \(v_k \) that

\[
\int_{\Omega} (\mathcal{C}_0 - \mathcal{C}_1)(\hat{\omega}_k - v_k) \nabla u_k : \nabla p_k + 2\alpha \varepsilon \int_{\Omega} \nabla v_k \cdot \nabla (\hat{\omega}_k - v_k) \\
+ \frac{\alpha}{\varepsilon} \int_{\Omega} (1 - 2v_k)(\hat{\omega}_k - v_k) \geq 0. \tag{4.12}
\]

Now, observe that

\[
\int_{\Omega} (\mathcal{C}_0 - \mathcal{C}_1)(\hat{\omega}_k - v_k) \nabla u_k : \nabla p_k - \int_{\Omega} (\mathcal{C}_0 - \mathcal{C}_1)(\omega - v) \nabla u : \nabla p \\
= \int_{\Omega} (\mathcal{C}_0 - \mathcal{C}_1)(\hat{\omega}_k - v_k)[\nabla (u_k - u) : \nabla p_k + \nabla u : \nabla (p_k - p)] \\
+ \int_{\Omega} (\mathcal{C}_0 - \mathcal{C}_1)[(\hat{\omega}_k - \omega) - (v_k - v)] \nabla u : \nabla p. \tag{4.13}
\]

The first integral on the right hand side converges to zero by (4.10) and \(p_k \to p \) in \(H^1(\Omega) \). To show that also the second integral converges to zero, we invoke the dominated convergence theorem. Hence, from (4.13), we obtain

\[
\int_{\Omega} (\mathcal{C}_0 - \mathcal{C}_1)(\hat{\omega}_k - v_k) \nabla u_k : \nabla p_k - \int_{\Omega} (\mathcal{C}_0 - \mathcal{C}_1)(\omega - v) \nabla u : \nabla p \to 0, \tag{4.14}
\]
as \(k \to +\infty \). Then, utilizing (4.14) into (4.12), together with the fact that \(v_k \rightharpoonup v \) in \(H^1(\Omega) \), and the lower semicontinuity of the norm, we find

\[
\| \nabla v \|_{L^2(\Omega)}^2 \leq \liminf_{k \to +\infty} \| \nabla v_k \|_{L^2(\Omega)}^2.
\]

Moreover, noticing that \(\int_{\Omega} v_k \hat{\omega}_k \to \int_{\Omega} v \omega \) for \(k \to +\infty \), we get

\[
\int_{\Omega} (C_0 - C_1)(\omega - v) \hat{\nabla} u : \hat{\nabla} p + 2\tilde{\alpha} \varepsilon \int_{\Omega} \nabla v \cdot \nabla (\omega - v)
\]

\[
+ \frac{\tilde{\alpha}}{\varepsilon} \int_{\Omega} (1 - 2v) (\omega - v)
\]

\[
\geq \liminf_{k \to +\infty} \left\{ \int_{\Omega} (C_0 - C_1)(\hat{\omega}_k - v_k) \hat{\nabla} u_k : \hat{\nabla} p_k
\right.\]

\[
+ 2\tilde{\alpha} \varepsilon \int_{\Omega} \nabla v_k \cdot \nabla (\hat{\omega}_k - v_k) + \frac{\tilde{\alpha}}{\varepsilon} \int_{\Omega} (1 - 2v_k)(\hat{\omega}_k - v_k) \right\} \geq 0. \quad (4.15)
\]

Finally, it remains to show that \(v_k \to v \) strongly in \(H^1(\Omega) \). We choose a sequence \(\hat{v}_k \in K_{h,k} \) such that \(\hat{v}_k \to v \) in \(H^1(\Omega) \) and using the discrete variational inequality (4.7) with \(\omega_{h,k} = \hat{v}_k \), we easily get \(\nabla v_k \to \nabla v \) in \(L^2(\Omega) \), implying the result. \(\square \)

4.2 Reconstruction Algorithm

In order to solve the discrete optimization problem we follow the method used in [14] and [30]. The method is based on solving the following parabolic obstacle problem. For \(\delta, \varepsilon > 0 \) fixed, let \(v \) be the solution to

\[
\int_{\Omega} \partial_t v(\omega - v) + J_{\delta,\varepsilon}^t(v)[\omega - v] \geq 0, \quad \forall \omega \in K, t \in (0, +\infty),
\]

\[
v(\cdot, 0) = v_0 \in K.
\]

An easy computation shows that the value of the objective functional decreases in time. Hence, we expect that if the limit as \(t \to +\infty \) of its solution \(v(\cdot, t) \) exists and it is equal to the asymptotic state \(v_{\infty} \), then this should satisfy the continuous optimality conditions (3.9).

We now discretize the above problem by using a semi-implicit time discretization scheme. We denote by \(\{v^n_h\}_{n \in \mathbb{N}} \subseteq K_h \) the sequence of approximations \(v^n_h \simeq v(\cdot, t^n) \) obtained as follows:

\[
v^0_h = v_0 \in K_h
\]

\[
v^{n+1}_h \in K_h : \quad \frac{1}{\tau_n} \int_{\Omega} (v^{n+1}_h - v^n_h)(\omega_h - v^{n+1}_h)
\]

\[
+ \int_{\Omega} (C_0 - C_1)(\omega_h - v^{n+1}_h) \hat{\nabla} u^n_h : \hat{\nabla} p^n_h + 2\tilde{\alpha} \varepsilon \int_{\Omega} \nabla v^{n+1}_h \cdot \nabla (\omega_h - v^{n+1}_h)
\]

\(\square \) Springer
where τ_n is the time step, and $u^n_h, p^n_h \in V_h, \Sigma_D$ are the discrete solutions of the forward problem (4.3) and adjoint problem (4.6), respectively, for $v = v^n_h$. We now prove a monotonicity property of the method.

Lemma 4.5 For each $n \in \mathbb{N}$, there exists a constant $c^n > 0$ such that, if $\tau_n \leq (1 + c^n)^{-1}$, then

$$
\|v^{n+1}_h - v^n_h\|^2_{L^2(\Omega)} + J_{\delta, e, h}(v^{n+1}_h) \leq J_{\delta, e, h}(v^n_h),
$$

where $c^n = c^n(\Omega, \delta, \xi_0, h, \|C_0 - C_1\|L^\infty(\Omega), \|p^n_h\|W^{1,\infty}(\Omega), \|u^n_h\|W^{1,\infty}(\Omega))$.

Proof Choosing $\omega_h = v^n_h$ in (4.16), after some simple manipulations we obtain

$$
\frac{1}{\tau_n} \|v^{n+1}_h - v^n_h\|^2_{L^2(\Omega)} + \tilde{\alpha} \|\nabla (v^{n+1}_h - v^n_h)\|^2_{L^2(\Omega)}
+ \frac{\tilde{\alpha}}{\varepsilon} \|v^{n+1}_h - v^n_h\|^2_{L^2(\Omega)} + \tilde{\alpha} \int_\Omega \left(\varepsilon |\nabla v^{n+1}_h|^2 - \frac{1}{\varepsilon} v^{n+1}_h (1 - v^{n+1}_h) \right)
- \tilde{\alpha} \int_\Omega \left(\varepsilon |\nabla v^{n+1}_h|^2 - \frac{1}{\varepsilon} v^n_h (1 + v^n_h) \right)
\leq \int_\Omega (C_0 - C_1) (v^n_h - v^{n+1}_h) \nabla u^n_h : \nabla p^n_h.
$$

Adding and subtracting $\frac{1}{2} \|u^{n+1}_h - u_{\text{meas}, h}\|^2_{L^2(\Sigma_N)}$ and $\frac{1}{2} \|u^n_h - u_{\text{meas}, h}\|^2_{L^2(\Sigma_N)}$, we get

$$
\frac{1}{\tau_n} \|v^{n+1}_h - v^n_h\|^2_{L^2(\Omega)} + \tilde{\alpha} \|\nabla (v^{n+1}_h - v^n_h)\|^2_{L^2(\Omega)}
+ \tilde{\alpha} \|v^{n+1}_h - v^n_h\|^2_{L^2(\Omega)} + \frac{\tilde{\alpha}}{\varepsilon} \|v^{n+1}_h - v^n_h\|^2_{L^2(\Omega)}
+ \frac{1}{2} \|u^n_h - u_{\text{meas}, h}\|^2_{L^2(\Sigma_N)} \leq \int_\Omega (C_0 - C_1) (v^n_h - v^{n+1}_h) \nabla u^n_h : \nabla p^n_h,
$$

which implies

$$
\frac{1}{\tau_n} \|v^{n+1}_h - v^n_h\|^2_{L^2(\Omega)} + \tilde{\alpha} \|\nabla (v^{n+1}_h - v^n_h)\|^2_{L^2(\Omega)}
+ \tilde{\alpha} \|v^{n+1}_h - v^n_h\|^2_{L^2(\Omega)} + \frac{\tilde{\alpha}}{\varepsilon} \|v^{n+1}_h - v^n_h\|^2_{L^2(\Omega)}
+ J_{\delta, e, h}(v^{n+1}_h) - J_{\delta, e, h}(v^n_h)
\leq \int_\Omega (v^n_h - v^{n+1}_h) (C_0 - C_1) \nabla u^n_h : \nabla p^n_h + \frac{1}{2} \|u^{n+1}_h - u^n_h\|^2_{L^2(\Sigma_N)}
+ \int_{\Sigma_N} (u^{n+1}_h - u^n_h) \cdot (u^n_h - u_{\text{meas}, h})
$$

\(\boxed{\text{Springer} } \)
where in the last step we employed
\[c_n \leq \int (\mathcal{C}_\delta(v_h^{n+1}) - \mathcal{C}_\delta(v_h^n)) \nabla u_h^n : \nabla p_h^n + \frac{1}{2} \| u_h^{n+1} - u_h^n \|_{L^2(\Sigma_N)}^2 \]
(4.18)

where the last step follows from the definition of the discrete adjoint problem.

It is easy to verify that it holds
\[
\int \left((\mathcal{C}_\delta(v_h^{n+1}) - \mathcal{C}_\delta(v_h^n)) \nabla u_h^n : \nabla p_h^n + \frac{1}{2} \| u_h^{n+1} - u_h^n \|_{L^2(\Sigma_N)}^2 \right)
\]
\[+ \int \mathcal{C}_\delta(v_h^n) \nabla u_h^n : \nabla (u_h^{n+1} - u_h^n) \]
\[= \int \left((\mathcal{C}_\delta(v_h^n) - \mathcal{C}_\delta(v_h^{n+1})) \nabla (u_h^{n+1} - u_h^n) : \nabla p_h^n + \frac{1}{2} \| u_h^{n+1} - u_h^n \|_{L^2(\Sigma_N)}^2 \right) \]
\[+ \int \mathcal{C}_\delta(v_h^{n+1}) \nabla u_h^n : \nabla p_h^n - \int \mathcal{C}_\delta(v_h^n) \nabla u_h^n : \nabla p_h^n \]
\[= \int \left((\mathcal{C}_\delta(v_h^n) - \mathcal{C}_\delta(v_h^{n+1})) \nabla (u_h^{n+1} - u_h^n) : \nabla p_h^n + \frac{1}{2} \| u_h^{n+1} - u_h^n \|_{L^2(\Sigma_N)}^2 \right)
=: I_1, \]

where the last step follows from the definition of the discrete adjoint problem.

Then, using the Cauchy–Schwarz inequality, the trace theorem and the fact that in finite dimensional spaces all norms are equivalent, we have
\[
|I_1| \leq c_0^n \| \mathcal{C}_1 - \mathcal{C}_0 \|_{L^\infty(\Omega)} \| \nabla p_h^n \|_{L^\infty(\Omega)} \| v_h^n - v_h^{n+1} \|_{L^2(\Omega)} \| \nabla (u_h^{n+1} - u_h^n) \|_{L^2(\Omega)}
\]
\[+ \frac{1}{2} \| u_h^{n+1} - u_h^n \|_{L^2(\Sigma_N)}^2 \]
\[\leq c_1^n \| v_h^n - v_h^{n+1} \|_{L^2(\Omega)} \| u_h^{n+1} - u_h^n \|_{H^1(\Omega)} + \frac{c_2^n}{2} \| u_h^{n+1} - u_h^n \|_{H^1(\Omega)}^2 \]
(4.19)

where \(c_0^n = c_0^n(\Omega, h) \), \(c_1^n = c_1^n(\| \mathcal{C}_1 - \mathcal{C}_0 \|_{L^\infty(\Omega)}, \| \nabla p_h^n \|_{L^\infty(\Omega)}, \Omega, h) \) and \(c_2^n \) is the constant in the trace theorem.

In the sequel we bound \(\| u_h^{n+1} - u_h^n \|_{H^1(\Omega)} \) by means of the term \(\| v_h^n - v_h^{n+1} \|_{L^2(\Omega)} \).

To this aim, we subtract the equations for \(u_h^{n+1} \) and \(u_h^n \) (cf. (4.3)) and employ \(\varphi = u_h^{n+1} - u_h^n \) as a test function. A standard manipulation yields
\[
\| u_h^{n+1} - u_h^n \|_{H^1(\Omega)} \leq c_3^n \| v_h^n - v_h^{n+1} \|_{L^2(\Omega)}, \]
(4.20)
with $c_3^n = c_3^n(\Omega, \delta, \xi_0, h, \|C_1 - C_0\|_{L^\infty(\Omega)}, \|\hat{\nabla}p_h^n\|_{L^\infty(\Omega)})$. Employing (4.20) into (4.19), we obtain

$$|I_1| \leq c_4^n \|v_h^{n+1} - v_h^n\|_{L^2(\Omega)},$$

(4.21)

where $c_4^n = c_4^n(\Omega, \delta, \xi_0, h, \|(C_1 - C_0\|_{L^\infty(\Omega)}, \|\hat{\nabla}p_h^n\|_{L^\infty(\Omega)}, c_2^n)$.

Using (4.21) into (4.18), we deduce

$$\frac{1}{\tau_n} \|v_h^{n+1} - v_h^n\|_{L^2(\Omega)}^2 + \tilde{\alpha} \varepsilon \|\nabla (v_h^{n+1} - v_h^n)\|_{L^2(\Omega)}^2 + \frac{\tilde{\alpha}}{\varepsilon} \|v_h^{n+1} - v_h^n\|_{L^2(\Omega)}^2$$

$$+ J_{\delta, \varepsilon, h}(v_h^{n+1}) \leq J_{\delta, \varepsilon, h}(v_h^n) + c_4^n \|v_h^{n+1} - v_h^n\|_{L^2(\Omega)}^2.$$

(4.22)

Now, since

$$\frac{1}{\tau_n} \|v_h^{n+1} - v_h^n\|_{L^2(\Omega)}^2 + \tilde{\alpha} \varepsilon \|\nabla (v_h^{n+1} - v_h^n)\|_{L^2(\Omega)}^2 + \frac{\tilde{\alpha}}{\varepsilon} \|v_h^{n+1} - v_h^n\|_{L^2(\Omega)}^2$$

$$\geq \frac{1}{\tau_n} \|v_h^{n+1} - v_h^n\|_{L^2(\Omega)}^2,$$

(4.23)

we get

$$\left(\frac{1}{\tau_n} - c_4^n\right) \|v_h^{n+1} - v_h^n\|_{L^2(\Omega)}^2 + J_{\delta, \varepsilon, h}(v_h^{n+1}) \leq J_{\delta, \varepsilon, h}(v_h^n).$$

(4.24)

Finally, choosing $\tau_n \leq \frac{1}{1+c_4^n}$, the assertion of the lemma follows, just setting $c^n := c_4^n$.

We are now ready to state a convergence result for our numerical scheme.

Theorem 4.6 Let $v_0^h \in K_h$ be an initial guess. Then there exists a collection of timesteps τ_n such that $0 < \gamma \leq \tau_n \leq (1 + c^n)^{-1}, \forall n > 0,$ where c^n is the constant appearing in Lemma 4.5, and γ depends on the data and possibly on h. The corresponding sequence v_h^n generated by (4.16) has a convergence subsequence (still denoted by v_h^n) in $W^{1,\infty}$ such that

$$v_h^n \to v_h, \quad n \to +\infty,$$

where $v_h \in K_h$ satisfies the discrete optimality condition

$$J'_{\delta, \varepsilon, h}(v_h)[\omega_h - v_h] \geq 0, \quad \forall \omega_h \in K_h.$$
Proof Consider a collection of timesteps bounded by $(1 + c^n)^{-1}$, for all $n > 0$. Employing Lemma 4.5, we have

$$
\sum_{n=0}^{+\infty} \| v^n_h - v^{n+1}_h \|_{L^2(\Omega)}^2 \leq J_{\delta, \varepsilon, h}(v^0_h), \quad (4.25)
$$

$$
\sup_{n \in \mathbb{N}} J_{\delta, \varepsilon, h}(v^n_h) \leq J_{\delta, \varepsilon, h}(v^0_h). \quad (4.26)
$$

Hence, the sequence v^n_h is bounded in $H^1_0(\Omega)$ and it holds

$$
\lim_{n \to +\infty} \| v^n_h - v^{n+1}_h \|_{L^2(\Omega)}^2 = 0. \quad (4.27)
$$

From the weak formulation of the forward and adjoint problems, the previous relations give that u^n_h and p^n_h are bounded in $H^1(\Omega)$, hence in $W^{1,\infty}(\Omega)$ as we are in finite dimensional spaces. Therefore, thanks to the definition of the constant c^n, reported in the last part of the proof of Lemma 4.5, this gives that there exists a constant $M > 0$ such that $c^n < M$, and equivalently there exists a positive constant $\gamma > 0$, independent of n, such that $\gamma \leq (1 + c^n)^{-1}$. Hence, there exists a subsequence of (v^n_h, u^n_h, p^n_h) (still denoted by the same symbol) such that

$$(v^n_h, u^n_h, p^n_h) \to (v_h, u_h, p_h) \text{ in } W^{1,\infty}(\Omega),$$

and in particular

$$u^n_h \to u_h \text{ a.e. in } \Omega, \quad p^n_h \to p_h \text{ a.e. in } \Omega.$$

Hence, u_h is the solution of the discrete forward problem and p_h is the solution of the discrete adjoint problem. Finally, from (4.16) and $\tau_n \geq \gamma$ we get

$$
\int_{\Omega} (C_0 - C_1) (\omega_h - v^{n+1}_h) \nabla u^n_h : \nabla p^n_h + 2\alpha \varepsilon \int_{\Omega} \nabla v^{n+1}_h \cdot \nabla (\omega_h - v^{n+1}_h)
$$

$$
+ \frac{\alpha}{\varepsilon} \int_{\Omega} (1 - 2v^n_h) (\omega_h - v^{n+1}_h) \geq - \frac{C}{\gamma} \| v^{n+1}_h - v^n_h \|_{L^2(\Omega)} \| \omega_h - v^{n+1}_h \|_{L^2(\Omega)}.
$$

From (4.27) and recalling that $v^n_h \to v_h$, we deduce that v_h satisfies the discrete optimality condition (4.5).

\[\square \]

5 Numerical Examples

In this section we show the numerical results which are obtained from an application of the Primal Dual Active Set Method (PDASM) to the variational inequality (4.16). This method has been presented in [40] and later applied for the detection of conductivity inclusions in [30] and [14] for a linear and a semilinear elliptic equation, respectively.
Primal dual active set methods represent a very good choice in engineering applications due to their effectiveness and robustness (cf., e.g., [38]). Here, we show that choosing the parameter δ sufficiently small we are able to reconstruct elastic cavities of different shapes. Given a tolerance $\text{tol} > 0$, the reconstruction algorithm is based on the following steps.

Algorithm 1 Discrete Parabolic Obstacle Problem

Set $n = 0$ and $v_0^h = v_0$, the initial guess for the inclusion

\[
\text{while } \|v^n_h - v^{n-1}_h\| > \text{tol} \text{ do}
\]

find solution of the forward problem (4.3) with $v = v^n_h$

find solution of the adjoint problem (4.6) with $v = v^n_h$

find v^{n+1}_h solving (4.16) via PDASM algorithm

update $n = n + 1$;

end while

In the implementation of Algorithm 1, the numerical experiments are performed for $d = 2$ in the domain $\Omega = (-1, 1)^2$, using a triangular tessellation T_h of Ω. As boundary measurements, we use synthetic data. They are generated by solving via the Finite Element method the forward problem (2.1), with boundary conditions prescribed as in Fig. 2a on the square, with one or more cavities of given geometries. We use a tessellation T_h^{ref} which is more refined than T_h on the common part outside the cavities (see Fig. 1 for an example of the two tessellations) in order not to commit inverse crime. Once extracting the values of the solution of the forward problem on the boundary of the domain Ω obtained by the mesh T_h^{ref}, we interpolate these values on the mesh T_h.

Therefore, by u_{meas} we denote the resulting boundary datum on the mesh T_h. We also mention that the triangular mesh is adaptively refined during the reconstruction.
procedure using the values of ∇v_h after an a-priori fixed number of iterations which depend on the specific numerical example. See, as example, Fig. 2b related to the reconstruction of a circular cavity.

In the reconstruction procedure, i.e. for the implementation of the Algorithm 1, we assume to know two different boundary measurements. In fact, in the context of inverse boundary value problems of this kind, it is reasonable to use $N_g > 1$ different boundary measurements u^i_{meas}, for $i = 1, \ldots, N_g$ which clearly improve the numerical reconstruction results. Thus, we consider a slight modification of the original optimization problem (3.8), assuming the knowledge of N_g different Neumann boundary data g^i, for $i = 1, \ldots, N_g$ and hence considering

$$
\min_{v \in K} J^{sum}_{\delta, \varepsilon}(v),
$$

$$
J^{sum}_{\delta, \varepsilon}(v) := \frac{1}{N_g} \sum_{i=1}^{N_g} \left(\frac{1}{2} \| u^i_{\delta}(v) - u^i_{meas} \|_{L^2(\Sigma_N)}^2 \right) + \tilde{\alpha} \int_{\Omega} \left(\varepsilon |\nabla v|^2 + \frac{1}{\varepsilon} v(1 - v) \right),
$$

where $u^i_{\delta}(v) \in H^1_{\Sigma_N}(\Omega)$ is the solution to (3.2) with $g = g^i$ and for $v \in K$. The necessary optimality condition related to (5.1) can be equivalently obtained reasoning similarly as we did to derive (3.10).

In Table 1, we collect some of the parameters utilized in most numerical tests. Possible changes in these values are highlighted in the text related to each specific experiment.
Finally, all the numerical experiments are performed choosing, as initial guess, the phase-field variable $v_0 = 0$.

5.1 Numerical Experiments with $N_g = 2$ and Without Noise in the Measurements

Test 1: reconstruction of a circular cavity The elastic medium is described by the Lamé parameters $\mu = 0.2$ and $\lambda = 1$. The Neumann boundary conditions are $g^1(x, y) = (0, \frac{1}{10} - \frac{3}{10} y)$ and $g^2(x, y) = (-\frac{1}{2} x^2, y^2)$. We set the parameter $\varepsilon = \frac{1}{16\pi}$. The mesh is refined with respect to the gradient of the phase-field variable every 1000 iterations. The algorithm stops after $n = 3544$ iterations. In Fig. 3 we show the numerical results at three different time steps.

Test 2: reconstruction of a circular cavity—changing boundary conditions and Lamé parameters We propose the same numerical experiments of Test 1, showing how the results change using different Neumann boundary conditions and Lamé parameters. We report in the captions of Fig. 4 the selected parameters, data, and also the number of time steps needed for reaching the tolerance. Note that the three experiments consider different values for the Poisson coefficient $\nu := \frac{\lambda}{2(\lambda + \mu)}$, that is

Table 1	Values of some parameters utilized in Algorithm 1				
Tol	α	τ_η	ε	$\frac{1}{16\pi}$ or $\frac{1}{8\pi}$	10^{-2}
10^{-5}	10^{-2}	10^{-3}	$\frac{1}{16\pi}$ or $\frac{1}{8\pi}$	10^{-2}	

Fig. 3 Test 1. Reconstruction of a circular cavity. Dotted line represents the target cavity.
(a) \((\mu, \lambda) = (1, 1)\);
\(g^1(x, y) = (2, 0)\);
\(g^2(x, y) = (-\frac{1}{2}x^2, y^2)\);
\(n = 4308\).

(b) \((\mu, \lambda) = (0.5, 1)\);
\(g^1(x, y) = (x, 0)\);
\(g^2(x, y) = (-y, -x)\);
\(n = 5375\).

(c) \((\mu, \lambda) = (2, -0.2)\);
\(g^1(x, y) = (5x, 4y)\);
\(g^2(x, y) = (-3y, 3x)\);
\(n = 3362\).

Fig. 4 Test 2. Reconstruction of a circular cavity using several parameters and data. For each experiment, we report the configuration at the final step \(n\). Dotted line represents the target cavity.

\(\nu = \frac{1}{4} \), \(\nu = \frac{1}{3} \), and \(\nu = -\frac{1}{18} \), respectively. In the three numerical examples of Fig. 4, the refinement of the mesh happens every 1500, 1000, 2000 iterations, respectively.

Test 3: reconstruction of a Lipschitz domain This experiment aims at reconstructing a square-shaped cavity. We show several numerical tests, choosing different values for \(\varepsilon\), different boundary conditions and different values of the number of iterations for the refinement of the mesh. We have already shown results based on different choices for the values of the Lamé parameters in the previous numerical tests, so we fix the values of Lamé coefficients to be \(\mu = 0.5\) and \(\lambda = 1\). In fact, recalling that the range of the Poisson coefficient is \(-1 < \nu < \frac{1}{2}\) (\(\nu = \frac{1}{2}\) represents the incompressible case), we have considered four relevant cases for the Poisson coefficient: one test on an elastic material close to incompressible case (\(\nu = \frac{5}{12}\) in Fig. 3e), two tests on elastic coefficients of common materials (\(\nu = \frac{1}{4}\) and \(\nu = \frac{1}{3}\) in Fig. 4a, b, respectively), and one test on auxetic materials, that is materials with negative Poisson ratio (\(\nu = -\frac{1}{18}\) in Fig. 4c). In the results of Fig. 5, the refinement of the mesh happens every 6000 for the first two experiments and every 3000 iterations for the last one. The second
Fig. 6 Test 4. Reconstruction of two cavities. Dotted line represents the target cavity

(a) \(\varepsilon = \frac{1}{16\pi}; \quad \delta = 10^{-2}; \quad n = 8531. \)

(b) \(\varepsilon = \frac{1}{4\pi}; \) for \(n \leq 7999; \)
\(\varepsilon = \frac{1}{16\pi}; \) for \(n \geq 8000; \)
\(\delta = 7.5 \times 10^{-2}; \quad n = 10852. \)

Fig. 7 Test 5. Reconstruction of a non-convex domain. It seems that the algorithm tends to reconstruct a convex domain. Dotted line represents the target cavity

Test 4: reconstruction of two cavities

This test provides results when the two cavities to be reconstructed are a square and a circle. Neumann boundary conditions are given by \(g^1(x, y) = (x, y) \) and \(g^2(x, y) = (-y, -x) \). We propose two numerical reconstruction procedures, see Fig. 6. In Fig. 6a, we report the results obtained by the standard algorithm, while in Fig. 6b we use a variant of the Algorithm 1 where the parameter \(\varepsilon \) is initially set \(\varepsilon = \frac{1}{4\pi} \) but after a fixed and a-priori chosen number
Fig. 8 Test 6. Reconstruction of cavities by means of noisy measurements. Dotted line represents the target cavity.

(a) $(\mu, \lambda) = (0.2, 1)$, $\tau_n = 5 \times 10^{-4}$.
$n = 11071$. Noise level 2%.

(b) $(\mu, \lambda) = (0.2, 1)$, $\tau_n = 5 \times 10^{-4}$.
$\bar{\alpha} = 5 \times 10^{-2}$, $n = 14361$.
Noise level 5%.

(c) $(\mu, \lambda) = (0.5, 1)$, $\tau_n = 5 \times 10^{-4}$.
$n = 23652$. Noise level 2%.

(d) $(\mu, \lambda) = (0.5, 1)$, $\tau_n = 5 \times 10^{-4}$.
$n = 15854$. Noise level 5%.

(e) $(\mu, \lambda) = (0.5, 1)$.
$n = 11776$. Noise level 2%.

(f) $(\mu, \lambda) = (0.5, 1)$, $\tau_n = 5 \times 10^{-4}$.
$n = 25480$. Noise level 5%.
of iterations (8000 iterations) is updated and set $\varepsilon = \varepsilon/4$. In both cases the mesh is refined after 5000 iterations. It is worth noting that the variant of Algorithm 1 does not produce the visible oscillations of the test in Fig. 6a.

Note that we also change a little bit the value of δ. We have observed that δ cannot be chosen too small otherwise numerical instability can appear. Numerically we have seen that, in order to overcome this issue, τ_n has to be chosen always smaller than δ. However, choosing τ too small increases the number of necessary iterations to satisfy the stopping criterium.

Test 5: reconstruction of a non-convex domain We finally propose the reconstruction of a cavity which is not convex, see Fig. 7. We use $g^1(x, y) = (x, y)$ and $g^2(x, y) = (-y, -x)$ as Neumann boundary conditions and $\mu = 0.5$ and $\lambda = 1$. Parameters have the following values: $\varepsilon = \frac{1}{16\pi}$, and $\tau_n = 5 \times 10^{-4}$. Mesh is refined every 5000 iterations. The stopping criterium is satisfied after $n = 6825$ iterations.

5.2 Numerical Experiments with $N_g = 2$ and Noise in the Measurements

Test 6: reconstruction of cavities of different shapes using noisy measurements

Here we run some of the numerical tests showed in the previous section, adding to the boundary measurements a normal distributed noise with zero mean and variance equal to one. We choose two different noise levels: 2% and 5%. The results are reported in Fig. 8.

For the the test in Fig. 8a, b, we use values of parameters as in Test 1 and refine the mesh every 2000 and 2500 iterations, respectively. The reconstruction of a square-shaped cavity, that is Fig. 8c, d, are obtained by means of parameters of Test 3—Fig. 5c, refining the mesh every 3000 and 10000 iterations. Lastly, to get the results in Fig. 8e, f we use the same parameters of Test 4—Fig. 6b. The mesh is refined every 5000 and 8000 iterations, while the value of the parameter ε is adapted after 8000 and 10000 iterations, respectively. In the captions of the single figures, we specify the values that are changed with respect to the ones proposed in the Tests 1, 3, and 4.

Acknowledgements The authors deeply thank Dorin Bucur and Alessandro Giacomini for suggesting relevant literature and for useful discussions that led us to improve some of the results in this work. This research has been partially performed in the framework of the MIUR-PRIN Grant 2020F3NCPX “Mathe- matics for industry 4.0 (Math4I4)”. Andrea Aspri, Cecilia Cavaterra and Elisabetta Rocca are members of GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica). Marco Verani has been partially funded by MIUR PRIN research grants n. 201744KLJL and n. 20204LN5N5. Marco Verani is a member of GNCS (Gruppo Nazionale per il Calcolo Scientifico) of INdAM.

Funding Open access funding provided by Università degli Studi di Milano within the CRUI-CARE Agreement.

Declarations

Competing Interests The authors have not disclosed any competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alberti, G.: Variational models for phase transitions, an approach via \(\Gamma \)-convergence. In: Calculus of variations and partial differential equations (Pisa, 1996), pp. 95–114. Springer, Berlin (2000)
2. Alessandrini, G., Morassi, A., Rosset, E.: The linear constraints in Poincaré and Korn type inequalities. Forum Math. 20(3), 557–569 (2008)
3. Almi, S., Stefanelli, U.: Topology optimization for incremental elastoplasticity: a phase-field approach. SIAM J. Control. Optim. 59(1), 339–364 (2021)
4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)
5. Ameur, H.B., Burger, M., Hackl, B.: Cavity identification in linear elasticity and thermoelasticity. Math. Methods Appl. Sci. 30(6), 625–647 (2007)
6. Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Mathématiques & Applications, vol. 62. Springer, Berlin (2008)
7. Ammari, H., Breit, E., Garnier, J., Kang, H., Lee, H., Wahab, A.: Mathematical Methods in Elasticity Imaging. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2015)
8. Ammari, H., Kang, H., Nakamura, G., Tanuma, K.: Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion. J. Elast. 67(2), 97–129 (2003)
9. Aspri, A.: An Elastic Model for Volcanology. Lecture Notes in Geosystems Mathematics and Computing. Birkhäuser/Springer, Cham (2019)
10. Aspri, A., Beretta, E., Mascia, C.: Analysis of a Mogi-type model describing surface deformations induced by a magma chamber embedded in an elastic half-space. J. Éc. polytech. Math. 4, 223–255 (2017)
11. Aspri, A., Beretta, E., Rosset, E.: On an elastic model arising from volcanology: an analysis of the direct and inverse problem. J. Differ. Equ. 265(12), 6400–6423 (2018)
12. Auricchio, F., Bonetti, E., Carraturo, M., Hömberg, D., Reali, A., Rocca, E.: A phase-field-based graded-material topology optimization with stress constraint. Math. Models Methods Appl. Sci. 30(8), 1461–1483 (2020)
13. Beretta, E., Cerutti, M.C., Pierotti, D.: Detection of cavities in a nonlinear model arising from cardiac electrophysiology via \(\gamma \)-convergence. arXiv:2106.04213 (2021)
14. Beretta, E., Ratti, L., Verani, M.: Detection of conductivity inclusions in a semilinear elliptic problem arising from cardiac electrophysiology. Commun. Math. Sci. 16(7), 1975–2002 (2018)
15. Blank, L., Garcke, H., Farshbaf-Shaker, M.H., Styles, V.: Relating phase field and sharp interface approaches to structural topology optimization. ESAIM Control Optim. Calc. Var. 20(4), 1025–1058 (2014)
16. Blank, L., Garcke, H., Hecht, C., Rupprecht, C.: Sharp interface limit for a phase field model in structural optimization. SIAM J. Control. Optim. 54(3), 1558–1584 (2016)
17. Bonnet, M., Constantinescu, A.: Inverse problems in elasticity. Inverse Prob. 21(2), R1–R50 (2005)
18. Bourdin, B., Chambolle, A.: Design-dependent loads in topology optimization. ESAIM Control Optim. Calc. Var. 9, 19–48 (2003)
19. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’ Degree]. Masson, Paris, 1983. Théorie et applications. [Theory and applications]
20. Brown, B.M., Jais, M., Knowles, I.W.: A variational approach to an elastic inverse problem. Inverse Prob. 21(6), 1953–1973 (2005)
21. Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations and their Applications, vol. 65. Birkhäuser Boston Inc, Boston, MA (2005)
22. Bucur, D., Henrot, A., Sokolowski, J., Żochowski, A.: Continuity of the elasticity system solutions with respect to the geometrical domain variations. Adv. Math. Sci. Appl. 11(1), 57–73 (2001)
23. Bucur, D., Varchon, N.: Stabilité de la solution d’un problème de Neumann pour des variations de frontière. C. R. Acad. Sci. Paris Sér. I Math., 331(5):371–374 (2000)
24. Carpio, A., Rapun, M.L.: Topological Derivatives for Shape Reconstruction. In Inverse Problems and Imaging, vol. 1943 of Lecture Notes in Math., pp. 85–133. Springer, Berlin (2008)
25. Carraturo, M., Rocca, E., Bonetti, E., Hömberg, D., Reali, A., Auricchio, F.: Graded-material design based on phase-field and topology optimization. Comput. Mech. 64(6), 1589–1600 (2019)
26. Chambolle, A., Doveri, F.: Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets. Commun. Partial Differ. Eq. 22(5–6), 811–840 (1997)
27. Chenais, D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52(2), 189–219 (1975)
28. Ciarlet, P.G.: Mathematical elasticity. Vol. I, volume 20 of Studies in Mathematics and Its Applications. North-Holland Publishing Co., Amsterdam (1988). Three-dimensional elasticity
29. Dal Maso, G.: An introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston Inc, Boston (1993)
30. Deckelnick, K., Elliott, C.M., Styles, V.: Double obstacle phase field approach to an inverse problem for a discontinuous diffusion coefficient. Inverse Probl., 32(4):045008, 26 (2016)
31. Doubova, A., Fernández-Cara, E.: Some geometric inverse problems for the Lamé system with applications in elastography. Appl. Math. Optim. 82(1), 1–21 (2020)
32. Eberle, S., Harrach, B.: Shape reconstruction in linear elasticity: standard and linearized monotonicity method. Inverse Probl. 37(4):045006, 27 (2021)
33. Eiliat, H., Urbanic, J.: Visualizing, analyzing, and managing voids in the material extrusion process. Int. J. Adv. Manuf. Technol. 96, 4095–4109 (2018)
34. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Revised Textbooks in Mathematics. CRC Press, Boca Raton (2015)
35. Garcke, H., Hecht, C., Hinze, M., Kahle, C.: Numerical approximation of phase field based shape and topology optimization for fluids. SIAM J. Sci. Comput. 37(4), A1846–A1871 (2015)
36. Garcke, H., Lam, Fong, K., Nürnberg, R., Signori, A.: Overhang penalization in additive manufacturing via phase field structural topology optimization with anisotropic energies. arXiv:2111.14070 (2021)
37. Giacomini, A.: A stability result for Neumann problems in dimension $N ≥ 3$. J. Convex Anal. 11(1), 41–58 (2004)
38. He, X., Yang, P.: The primal-dual active set method for a class of nonlinear problems with T-monotone operators. Math. Probl. Eng. pages Art. ID 2912301, 8 (2019)
39. Henrot, A., Pierre, M.: Shape Variation and Optimization, volume 28 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2018. A geometrical analysis, English version of the French publication [MR2512810] with additions and updates
40. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003)
41. Hubmer, S., Sherina, E., Neubauer, A., Scherzer, O.: Lamé parameter estimation from static displacement field measurements in the framework of nonlinear inverse problems. SIAM J. Imaging Sci. 11(2), 1268–1293 (2018)
42. Ikehata, M., Ito, H.: On reconstruction of an unknown polygonal cavity in a linearized elasticity with one measurement. J. Phys. 290, 012005 (2011)
43. Ikehata, M., Ito, H.: On reconstruction of a cavity in a linearized viscoelastic body from infinitely many transient boundary data. Inverse Prob. 28(12), 125003 (2012)
44. Jin, B., Zou, J.: Numerical estimation of the Robin coefficient in a stationary diffusion equation. IMA J. Numer. Anal. 30(3), 677–701 (2010)
45. Kang, H., Kim, E., Lee, J.-Y.: Identification of elastic inclusions and elastic moment tensors by boundary measurements. Inverse Probl. 19(3), 703–724 (2003)
46. Karageorghis, A., Lesnic, D., Marin, L.: The method of fundamental solutions for the detection of rigid inclusions and cavities in plane linear elastic bodies. Comput. Struct. 106 (2012)
47. Kurahashi, T., Maruoka, K., Iyama, T.: Numerical shape identification of cavity in three dimensions based on thermal non-destructive testing data. Eng. Optim. 49(3), 434–448 (2017)
48. Lam, K.F., Yousept, I.: Consistency of a phase field regularisation for an inverse problem governed by a quasilinear Maxwell system. Inverse Probl. 36(4):045011, 33, (2020)
49. Liu, H., Rondi, L., Xiao, J.: Mosco convergence for $H(\text{curl})$ spaces, higher integrability for Maxwell’s equations, and stability in direct and inverse EM scattering problems. J. Eur. Math. Soc. (JEMS) 21(10), 2945–2993 (2019)

50. Martínez-Castro, A.E., Faris, I.H., Gallego, R.: Identification of cavities in a three-dimensional layer by minimization of an optimal cost functional expansion. Comput. Model. Eng. Sci. 87(3), 177–206 (2012)

51. Menegatti, G., Rondi, L.: Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Probl. Imaging 7(4), 1307–1329 (2013)

52. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)

53. Morassi, A., Rosset, E.: Stable determination of cavities in elastic bodies. Inverse Prob. 20(2), 453–480 (2004)

54. Morassi, A., Rosset, E.: Stable determination of an inclusion in an inhomogeneous elastic body by boundary measurements. Rend. Istit. Mat. Univ. Trieste 48, 101–120 (2016)

55. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D.: Additive manufacturing (3d printing): a review of materials, methods, applications and challenges. Composites B 143, 172–196 (2018)

56. Ring, W., Rondi, L.: Reconstruction of cracks and material losses by perimeter-like penalizations and phase-field methods: numerical results. Interfaces Free Bound. 13(3), 353–371 (2011)

57. Rondi, L.: Reconstruction of material losses by perimeter penalization and phase-field methods. J. Differ. Eq. 251(1), 150–175 (2011)

58. Segall, P.: Earthquake and Volcano Deformation. Princeton University Press, Princeton, NJ (2010)

59. Shao, J., Shi, G., Qi, Z., Zheng, J., Chen, S.: Advancements in the application of ultrasound elastography in the cervix. Ultrasound Med. Biol. 47(8), 2048–2063 (2021)

60. Sherina, E., Krainz, L., Hubmer, S., Drexler, W., Scherzer, O.: Displacement field estimation from OCT images utilizing speckle information with applications in quantitative elastography. Inverse Probl. 36(12):124003, 27 (2020)

61. Shi, J., Beretta, E., de Hoop, M.V., Francini, E., Vessella, S.: A numerical study of multi-parameter full waveform inversion with iterative regularization using multi-frequency vibroseis data. Comput. Geosci. 24(1), 89–107 (2020)

62. Symes, W.W.: The seismic reflection inverse problem. Inverse Probl. 25(12):123008, 39 (2009)

63. Tronvoll, S.A., Welo, T., Elverum, C.W.: The effects of voids on structural properties of fused deposition modelled parts: a probabilistic approach. Int. J. Adv. Manuf. Technol. 97(9), 3607–3618 (2018)

64. Widlak, T., Scherzer, O.: Stability in the linearized problem of quantitative elastography. Inverse Probl., 31(3):035005, 27 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.