Visible-light-driven cascade radical cyclization toward the synthesis of α-carbonyl alkyl-substituted benzimidazo[2,1-a]isoquinolin-6(5H)-one derivatives†

Jing Liu,‡ab Hong-Li Huang,‡c Chen Wang,b Yinghua Li,b Huaqiang Li,b Honggang Hu,b Shipeng He,b Hua Tang* and Fei Gao*ab

A visible-light-driven cascade radical cyclization process of N-methacryloyl-2-phenylbenzimidazole has been established with α-carbonyl alkyl bromide. This protocol provides an efficient and practical method for the synthesis of various α-carbonyl alkyl-substituted benzimidazo[2,1-a]isoquinolin-6(5H)-ones in outstanding yields, mild reaction conditions and excellent functional group tolerance.

Benzimidazo-fused polycyclic motifs, especially benzimidazo[2,1-a]isoquinolin-6(5H)-one derivatives, have been frequently found in numerous pharmaceutical molecules, natural products and synthetic materials.1–7 As a consequence, considerable efforts have been made to develop efficient methods for the preparation of benzimidazo-fused polycyclic compounds. Among them, the cascade radical cyclization strategies have attracted special attention from chemists. In 2019, Yu and co-workers realized the construction of benzimidazo[2,1-a]isoquinolin-6(5H)-ones via silver-catalyzed decarboxylative radical cascade cyclization (Scheme 1a).8 A metal-free oxidative acylation/cyclization of N-methacryloyl-2-phenylbenzimidazole with aryl aldehydes has also been found by Reddy’s group (Scheme 1b).9 At the same time, Aiwen Lei’s laboratory has devoted effort to the development of Mn-catalyzed electrochemical radical cascade cyclization reaction toward the preparation of benzimidazo[2,1-a]isoquinolin-6(5H)-ones (Scheme 1c).10 Despite important breakthroughs in the radical cascade cyclization, room still exists for developing a visible-light-driven pathway to acquire benzimidazo-fused polycyclic compounds under milder reaction conditions.

Recently, visible-light-mediated photoredox catalysis has arguably gained considerable momentum due to its inherent green, excellent functional group tolerance, safe and availability.11–17 α-Carbonyl alkyl bromide, which are readily available and inexpensive chemical reagents, could be successfully converted into α-carbonyl alkyl radicals for rapidly constructing C–C bonds under the irradiation of visible light.18–23 During the past decades, the applications on the visible-light-promoted cascade radical cyclization process for the synthesis of complex polycyclic hydrocarbons have been reported.24,25 In contrast to the previous achievements in the formation of benzimidazo-fused polycyclic compounds, research on visible-light-induced α-carbonyl alkylation to construct benzimidazo[2,1-a]isoquinolin-6(5H)-ones remains scarce. Inspired by these researches, we designed a novel visible-light-driven cascade radical cyclization for the synthesis of benzo[4,5]imidazo[2,1-a]isoquinoline tetracyclic skeleton, in which α-carbonyl alkyl radical generated from the corresponding bromide could undergo intermolecular radical addition to the C–C double bonds under the irradiation of visible light.26–28 During the past decades, the applications on the visible-light-promoted cascade radical cyclization process for the synthesis of complex polycyclic hydrocarbons have been reported.24,25

Scheme 1 Reported synthesis of benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one derivatives and our strategy.

† Electronic supplementary information (ESI) available. See DOI: 10.1039/d1ra05936j
‡ These authors contributed equally to this work.

Department of Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
Institute of Translation Medicine, Shanghai University, Shanghai, 200444, China
College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China

RSC Advances
Cite this: RSC Adv., 2021, 11, 29372
Received 5th August 2021
Accepted 24th August 2021
DOI: 10.1039/d1ra05936j
rsc.li/rsc-advances

29372 | RSC Adv., 2021, 11, 29372–29375 © 2021 The Author(s). Published by the Royal Society of Chemistry

PAPER
bond, followed by the formation of intramolecular C–C bond, to synthesize the corresponding cyclization compounds (Scheme 1d).

At the outset, we chose N-methacryloyl-2-phenylbenzimidazole (1a) and 2-bromoacetophenone (2a) as the model substrates. Optimization of the reaction conditions was explored by irradiating a mixture of model substrates, base and photocatalyst under Ar atmosphere using 5 W blue LEDs at room temperature (Table 1). In the presence of \(\text{fac-Ir(ppy)}_3 \) (5% mol), K$_2$HPO$_4$ (2.0 equiv.), and CH$_3$CN (1 mL), the target product 3aa was afforded in 60% isolated yield (entry 1). Next, the reaction was investigated using diverse photocatalysts. Unfortunately, some common photocatalysts, such as Ir \([\text{dF(CF}_3\text{)ppy}]_2(\text{dtbpy})\text{PF}_6\), Ru(ppy)$_3$Cl$_2$ and EosinY showed low catalytic activity (entries 2–4). Subsequently, further screening on the solvent revealed that DMF could provide a slightly improvement in reaction efficiency (entries 5–7). Gratifying, examination on the bases showed that 2,6-lutidine was the ideal choice and the desired product 3aa was obtained in 88% yield (entries 8–15). In addition, control experiments confirmed that the photocatalyst and visible light were essential for this transformation (entries 16–17).

With the optimized reaction conditions in hand, we then surveyed the scope of substrate 1. As shown in Table 2, a series of N-methacryloyl-2-phenylbenzimidazoles could undergo cascade radical cyclization to synthesize the desired products successfully. Different substituents, including –F, –Cl, –Br, –Me, –OMe, and –Bu at the 2-benzene ring of benzimidazole were well tolerated (3ba–3ja), especially substrate 1c with strong electron-donating –OMe group transformed to the product 3ca in 91% yield. Notably, steric hindrance didn’t affect the reaction efficiency, employing ortho-, meta- and para-substituted 2-arylbenzimidazoles as the starting materials, the cyclization products were obtained in good yields. When the meta-position of the 2-benzene ring of benzimidazole was substituted by a –Me or –Br group (1f and 1g), the regioisomers were afforded in a ratio of 2 : 1. As expected, in the case of substrates 1k and 1l, good yields of the desired products were formed (3ka and 3la, 62% and 92%, respectively).

To further gain more information about this protocol, using 1a as the model substrate, we turned our attention to explore the scope of \(\alpha \)-carbonyl alkyl bromide derivatives 2 (Table 3). First, a wide range of 2-bromoacetophenones were examined (2b–2l). To our delight, 2-bromoacetophenones with electron-donating substituents (–Me, –OMe) or electron-withdrawing groups (–F, –Cl, –CF$_3$, –CN) at the ortho-position/meta-position/para-position of the benzene ring were all competent partners in this transformation (3ab–3aj), especially compound 2f and 2h successfully led to the desired products 3af and 3ah in 91% and 93% yields, respectively. By contrast, 2-bromoacetophenone bearing strong electron-drawing NO$_2$ group at the para-position of the benzene ring afforded the expected product 3ag in 32% yield. Next, when 2-bromoacetophenones 2k or 2l was applied as the oxidant, this reaction proceeded smoothly

Table 1: Optimization of reaction conditions

Entry	Photocatalyst	Base	Solvent	Yield [%]
1	\(\text{fac-Ir(ppy)}_3 \)	K$_2$HPO$_4$	CH$_3$CN	60
2	\(\text{Ir[CF}_3\text{ppy}]_2(\text{dtbpy})\text{PF}_6 \)	K$_2$HPO$_4$	CH$_3$CN	15
3	Ru(ppy)$_3$Cl$_2$	K$_2$HPO$_4$	CH$_3$CN	Trace
4	EosinY	K$_2$HPO$_4$	CH$_3$CN	Trace
5	\(\text{fac-Ir(ppy)}_3 \)	K$_2$HPO$_4$	DMF	70
6	\(\text{fac-Ir(ppy)}_3 \)	K$_2$HPO$_4$	DMSO	59
7	\(\text{fac-Ir(ppy)}_3 \)	K$_2$HP$_4$	DCM	67
8	\(\text{fac-Ir(ppy)}_3 \)	NaHCO$_3$	DMF	65
9	\(\text{fac-Ir(ppy)}_3 \)	Na$_2$CO$_3$	DMF	<10
10	\(\text{fac-Ir(ppy)}_3 \)	Cs$_2$CO$_3$	DMF	Trace
11	\(\text{fac-Ir(ppy)}_3 \)	KH$_2$PO$_4$	DMF	50
12	\(\text{fac-Ir(ppy)}_3 \)	2,6-Lutidine	DMF	88
13	\(\text{fac-Ir(ppy)}_3 \)	Pyridine	DMF	11
14	\(\text{fac-Ir(ppy)}_3 \)	DBU	DMF	13
15	\(\text{fac-Ir(ppy)}_3 \)	DABCO	DMF	41
16*	\(\text{fac-Ir(ppy)}_3 \)	K$_2$HP$_4$	DMF	0
17*	—	K$_2$HP$_4$	DMF	0

* Reaction conditions: 1a (0.1 mmol), 2a (0.2 mmol), \(\text{fac-Ir(ppy)}_3 \) (0.005 mmol), base (0.2 mmol), solvent (anhydrous, 1 mL), Ar, 5 W blue LEDs, room temperature (r.t.), 16 h. * Isolated yield. *No photocatalyst.

Table 2: Scope of N-methacryloyl-2-phenylbenzimidazoles

Entry	Photocatalyst	Base	Solvent	Yield [%]
3aa	\(\text{fac-[(ppy)}_3 \)	K$_2$HPO$_4$	DMF	91
3ab	\(\text{Ir[CF}_3\text{ppy}]_2(\text{dtbpy})\text{PF}_6 \)	K$_2$HPO$_4$	DMF	50
3ca	2,6-Lutidine	NaHCO$_3$	DMF	65
3cb	Pyridine	Na$_2$CO$_3$	DMF	<10
3cc	DBU	Cs$_2$CO$_3$	DMF	Trace
3cd	DABCO	KH$_2$PO$_4$	DMF	50
3ce	2,6-Lutidine	2,6-Lutidine	DMF	88
3cf	Pyridine	2,6-Lutidine	DMF	11
3cg	DBU	2,6-Lutidine	DMF	13
3ch	DABCO	2,6-Lutidine	DMF	41
3ci	K$_2$HP$_4$	2,6-Lutidine	DMF	0

* Reaction conditions: 1 (0.1 mmol), 2a (0.2 mmol), \(\text{fac-[(ppy)}_3 \) (0.005 mmol), K$_2$HPO$_4$ (0.2 mmol), dry DMF (1 mL), 5 W blue LEDs, r. t., Ar, 16 h. Isolated yield.
and the corresponding cyclization products (3ak-3al) were obtained in good yields. In addition, α-bromoalkyl esters 2m-2p were also suitable reaction partners, delivering the corresponding products 3am-3ap in moderate to good yields. Finally, it seemed that this reaction conditions were not ideal for α-bromoalkyl esters 2q.

Based on the above experimental results and literature reports,26–28 a plausible reaction mechanism for this visible-light-induced cascade cyclization was described in Scheme 2.

Upon irradiation with visible light, the ground-state \([\text{fac}^{-}\text{II} \text{Ir}(ppy)_3]\) was excited to the excited-state \([\text{fac}^{-}\text{III} \text{Ir}(ppy)_3]^*\), which was readily reduced by 2-bromoacetophenone (2a) to produce the corresponding α-carbonyl alkyl radical specie. Following intermolecular addition with the C–C double bond of the substrate 1a, the resulting radical intermediate A underwent radical addition cyclization to form the intermediate B. Subsequently, the intermediate B was oxidized by \([\text{fac}^{-}\text{IV} \text{Ir}(ppy)_3]^*\) to produce the carbocation C, which finally transformed to the eventual product 3aa after rapid deprotonation.

Benzimidazo[2,1-α]isoquinolin-6(5H)-one derivatives have been reported as potential pharmaceutical molecules with antitumor activity.29,30 Then, we explored the cell cytotoxicity of several representative cyclization products against MDA-MB-231 cells (human breast cancer cells) and U87 cells (human glioblastoma cells). As shown in Fig. 1, these products almost showed definite antitumor activities, especially the IC_{50} of compound 3ab was 4.228 \(\mu\)M against U87 cells. It is very hopeful that these α-carbonyl alkyl-substituted benzimidazo[2,1-α]isoquinolin-6(5H)-ones show outstanding antitumor activity after further structural optimization.

In conclusion, we have developed a simple and efficient photoredox-assisted cascade radical cyclization method to synthesize a series of α-carbonyl alkyl-containing benzimidazo [2,1-α]isoquinolin-6(5H)-ones, some of which exhibited definite anticancer ability against U87 cells and MDA-MB-231 cells. Additional research on the improvement of biological activity is currently underway in our group. Moreover, this transformation shows the advantages of mild reaction conditions, good functional group compatibility and acceptable to excellent yields. We believe that this method will be widely used in organic synthesis.

Table 3: Substrate scope of compound 2

Substrate	R1	R2	Yield (%)
3ab	CH₃	63	2a
3ac	F	63	3am
3ad	CH₃	62	3am
3ae	CN	62	3am
3af	CF₃	91	3am
3ag	NO₂	32	3am
3ah	CH₂	59	3am, 59%
3ak	OMe	73	3am, 59%

Reaction conditions: 1a (0.1 mmol), 2 (0.2 mmol), fac-Ir(ppy)_3 (0.005 mmol), K₂HPO₄ (0.2 mmol), dry DMF (1 mL), 5 W blue LEDs, r. t., Ar, 16 h. Isolated yield.

Fig. 1 (A) Cytotoxicity of 3ab, 3ac, 3ad, 3ah and 3ak against U87 cells for 72 h. (B) Cytotoxicity of 3ac, 3ad, 3ah, 3ak and 3ao against MDA-MB-231 cells for 72 h.
Conflicts of interest
There are no conflicts to declare.

Acknowledgements

We are grateful for the financial support from the National Natural Science Foundation of Shanghai (No. 1ZR1422600), the Science and Technology Project of Nantong, China (No. MS22019026), and Shanghai Sailing Program (No. 20YF1414100).

References

1 C. Pan, C. Yuan and J.-T. Yu, Org. Biomol. Chem., 2021, 19, 619–626.
2 X.-X. Guo, D.-W. Gu, Z. Wu and W. Zhang, Chem. Rev., 2015, 115, 1622–1651.
3 G. Yadav and S. Ganguly, Eur. J. Med. Chem., 2015, 97, 419–443.
4 L.-Y. Xie, J. Qu, S. Peng, K.-J. Liu, Z. Wang, M.-H. Ding, Y. Wang, Z. Cao and W.-M. He, Green Chem., 2018, 20, 760–764.
5 Y. Li, J. Zhu, H. Xie, S. Li, D. Peng, Z. Li, Y. Wu and Y. Gong, Chem. Commun., 2012, 48, 3136–3138.
6 G. Meng, H.-Y. Niu, G.-R. Qu, J. S. Fossey, J.-P. Li and H.-M. Guo, Chem. Commun., 2012, 48, 9601–9603.
7 E. Moriarty, M. Carr, S. Bonham, M. P. Carty and F. Aldabbagh, Eur. J. Med. Chem., 2010, 45, 3762–3769.
8 K. Sun, S.-J. Li, X.-L. Chen and Y. Liu, Chem. Commun., 2019, 55, 2861–2864.
9 R. Boora, G. Ravi kumar and B. V. Subba Reddy, Org. Biomol. Chem., 2019, 17, 9627–9630.
10 Y. Yuan, Y. Zheng, B. Xu, J. Liao, F. Bu, S. Wang, J. Hu and A. Lei, ACS Catal., 2020, 10, 6676–6681.
11 J. M. R. Narayananam and C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102–113.
12 C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322–5363.
13 C. Wang, P. H. Dixneuf and J. F. Soulé, Chem. Rev., 2018, 118, 7532–7585.
14 L. Zou, P. Li, B. Wang and L. Wang, Chem. Commun., 2019, 55, 3737–3740.
15 Y.-P. Wu, M. Yan, Z.-Z. Gao, J.-L. Hou, H. Wang, D.-W. Zhang, J. Zhang and Z.-T. Zhang, Chin. Chem. Lett., 2019, 30, 1383–1386.
16 Y. Kong, W. Xu, X. Liu and J. Weng, Chin. Chem. Lett., 2020, 31, 3245–3249.
17 W. Ou, R. Zou, M. Han, L. Yu and C. Su, Chin. Chem. Lett., 2020, 31, 1899–1902.
18 X. Yong, Y.-F. Han, Y. Li, R.-J. Song and J.-H. Li, Chem. Commun., 2018, 54, 12816–12819.
19 W. Dong, Y. Yuan, X. Gao, M. Keranmu and W. Li, J. Org. Chem., 2019, 84, 1461–1467.
20 Q. Li, Y. Yin, Y. Li, J. Zhang, M. Huang, J. K. Kim and Y. Wu, Org. Chem. Front., 2019, 6, 3238–3243.
21 P. Gandeepan, J. Koeller, K. Korvorapun, J. Mohr and L. Ackermann, Angew. Chem., Int. Ed., 2019, 58, 9820–9825.
22 B. Zhao, Z. Li, Y. Wu, Y. Wang, J. Qian, Y. Yuan and Z. Shi, Angew. Chem., Int. Ed., 2019, 131, 9548–9552.
23 H.-L. Huang, J.-Y. Du, Q.-L. Li, F. Gao and C.-L. Ma, J. Org. Chem., 2020, 85, 3963–3972.
24 F.-L. Zeng, K. Sun, X.-L. Chen, X.-Y. Yuan, S.-Q. He, Y. Liu, Y.-Y. Peng, L.-B. Qu, Q.-Y. Lv and B. Yu, Adv. Synth. Catal., 2019, 361, 5176–5181.
25 B. Wang, L. Zou, L. Wang, M. Sun and P. Li, Chin. Chem. Lett., 2021, 32, 1229–1232.
26 D. Lu, Y. Wan, L. Kong and G. Zhu, Org. Lett., 2017, 19, 2929–2932.
27 L.-L. Mao, D.-G. Zheng, X.-H. Zhu, A.-X. Zhou and S.-D. Yang, Org. Chem. Front., 2018, 5, 232–236.
28 Y. Yuan, W. Dong, X. Gao, X. Xie and Z. Zhang, Org. Lett., 2019, 21, 469–472.
29 L. W. Deady and T. Rodemann, Aust. J. Chem., 2001, 54, 529–534.
30 X. Wang and A. B. Fulp, WO2005002503A2, 2005.