Structural Basis for Dityrosine-Mediated Inhibition of α-Synuclein Fibrilization

Cagla Sahin,1 Eva Christina Østerlund, Nicklas Österlund, Joana Costeira-Paulo, Jannik Nedergaard Pedersen, Gunna Christiansen, Janni Nielsen, Anne Louise Gronnemose, Søren Kirk Amstrup, Manish K. Tiwari, R. Shyama Prasad Rao, Morten Jannik Bjerrum, Leopold L. Ilag, Michael J. Davies, Erik G. Marklund, Jan Skov Pedersen, Michael Landreh, Ian Max Møller, Thomas J. D. Jørgensen, and Daniel Erik Otzen

Received: April 4, 2022
Published: June 24, 2022

α-Synuclein (α-Syn) is a 140-residue intrinsically disordered protein whose exact physiological role remains unknown.1 However, it is strongly associated with Parkinson’s disease (PD) and forms inclusions known as Lewy bodies in the brains of PD patients.2 Metal-ion-catalyzed oxidation (MCO) is believed to play a significant role in the origin and progression of PD.2,3 However, common MCO modifications, including carbonylation of the side chains of Lys, Pro, Arg, and Thr residues, occur only to a low extent with α-Syn.4 MCO of α-Syn predominantly leads to the oxidation of Met to Met sulfoxides5,6 and the formation of dityrosine (diTyr) linkages.5 These modifications favor assembly into soluble aggregates rather than fibrils.7−9 DiTyr cross-linkages, both intra- and intermolecular, are associated with oxidative stress8,10−12 and have been identified post mortem in brains of PD patients.13 Intermolecular diTyr formation connecting Tyr39-Tyr39 results in covalent α-Syn dimers that have been shown to have various effects on α-Syn aggregation.10,12,13 At early time points of α-Syn MCO, the formation of intramolecular diTyr cross-linked α-Syn monomers was favored over the formation of diTyr-linked dimers.7 This raises the question of how early oxidative modifications influence the fibrillation mechanism.

To answer this question, we employed an MCO protocol5 combining Cu2+ and H2O2 to investigate how early α-Syn modifications, mainly Met oxidations and diTyr cross-links, affect structure and amyloidogenic properties.

α-Syn contains four Tyr residues, one in the N-terminal region (Tyr39) and three in close proximity in the C-terminal tail (Tyr125, Tyr133, and Tyr136) (Figure 1A). Monitoring Tyr and diTyr fluorescence in parallel, it is seen that diTyr is formed rapidly in α-Syn upon MCO with a half-life of 0.86 min, in reasonable accord with a half-life of 1.41 min for Tyr fluorescence decay (Figure 1B). We used mass spectrometry (MS) to characterize modifications within the intact protein. MCO of α-Syn showed up to three +16 Da increases for 15 min of oxidation (Figure S1A) and more for longer incubation times. LC-MS/MS supported the presence of Met sulfoxides and sulfones (data not shown). The deconvoluted mass spectrum further showed a −2 Da loss for the oxidized wild-type (wt) protein (Figure 1C and Figure S1B), corresponding to an intramolecular Tyr cross-link formation (loss of 2 H). Tyr→Phe mutations in either the N-terminal (Tyr39Phe) or in the C-terminal tail (Tyr125/133/136Phe) of α-Syn led to similar modifications, i.e. Met oxidations, as well as loss of 2 H, suggesting MCO-induced cross-links. However, since Tyr125/133/136Phe α-Syn contains only one Tyr residue, other cross-links can be formed, e.g., between Tyr39 and one of the 15 Lys residues14 or His50. A shift in charge state distribution toward lower charge states for wt and the Tyr125/133/136Phe variant (Figure S1C) indicates a shift toward compact conformations.15 The rate of Met oxidation was not a function of mild oxidation on monomeric α-Syn and its aggregation. Using a combination of biophysical methods, small-angle X-ray scattering, and native ion mobility mass spectrometry, we find that oxidation leads to formation of intramolecular dityrosine cross-linkages and a compaction of the α-Syn monomer by a factor of √2. Oxidation-induced compaction is shown to inhibit ordered self-assembly and amyloid formation by steric hindrance, suggesting an important role of mild oxidation in preventing amyloid formation.
were detected, with an increase in intensity at 15 min for both the wt and the Tyr39Phe samples. SDS-PAGE analysis showed formation of faster-migrating species (Figure 1D, bottom, and Figure S4). Higher molecular weight bands detected for wt α-Syn under oxidative conditions. Data fitted to a single-exponential decay with linear drift. Fit shown with a solid line. (C) Deconvoluted MS spectra of wt, Tyr39Phe, and Tyr125/133/136Phe α-Syn either unmodified (black) or 15 min oxidized (red). Arrows showing decrease and increase of molecular mass. (D) Top: DiTyr detection on an immunoblot of wt, Tyr39Phe, and Tyr125/133/136Phe α-Syn, oxidized for 0, 3, 15, and 60 min. Monomeric diTyr is indicated by an arrowhead. Positive control: oxidized α-casein. Bottom: Coomassie-stained SDS-PAGE showing different migration patterns of unmodified and oxidized α-Syn.

Figure 1. DiTyr formation of α-Syn. (A) Schematic of α-Syn (PDB: 1XQ8, SDS micelle bound). Possible oxidation sites indicated. Insert: diTyr formation. (B) Time course of Tyr and diTyr fluorescence for wt α-Syn under oxidative conditions. Data fitted to a single-exponential decay with linear drift. Fit shown with a solid line. (C) Deconvoluted MS spectra of wt, Tyr39Phe, and Tyr125/133/136Phe α-Syn either unmodified (black) or 15 min oxidized (red). Arrows showing decrease and increase of molecular mass. (D) Top: DiTyr detection on an immunoblot of wt, Tyr39Phe, and Tyr125/133/136Phe α-Syn, oxidized for 0, 3, 15, and 60 min. Monomeric diTyr is indicated by an arrowhead. Positive control: oxidized α-casein. Bottom: Coomassie-stained SDS-PAGE showing different migration patterns of unmodified and oxidized α-Syn.

were detected, with an increase in intensity at 15 min for both the wt and the Tyr39Phe samples. SDS-PAGE analysis showed formation of faster-migrating species (Figure 1D, bottom, and Figure S4). Higher molecular weight bands detected for wt suggest cross-linked oligomers. As expected, no diTyr was detected in the triple mutant (Figure 1D top). The loss of 2 Da supports formation of an intramolecular cross-link (Figures S2 and S3). The immunoblot highlights the importance of diTyr cross-links in the oxidation of α-Syn but does not rule out alternative cross-links formed in parallel.

We then asked whether these intramolecular diTyr links affect the conformational preferences of α-Syn. Small-angle X-ray scattering (SAXS) data for unoxidized and 60 min oxidized α-Syn display Guinier behavior, i.e., a relatively constant level at low values of the modulus of the scattering vector, q, followed by a power-law behavior (linear decline in the log–log plot) at intermediate q, characteristic of polymer-like structures (Figure 2). Radii of gyration (R_g) from indirect Fourier transformation (IFT, see the Supporting Information (SI)) are given in Table 1. Native α-Syn showed an R_g of 3.96 nm, in good agreement with an extended α-Syn conformation (Figure 2, Table 1, SS). R_g was reduced to 2.69 nm (a factor 1.47) upon MCO. An ideal ring (joined at the two termini) will have an R_g that is $\sqrt{2}$ (\sim1.4) smaller than that of an ideal chain (see SI), suggesting that MCO induced a conversion from disordered to compact monomer.

The scattering curves were subsequently fitted by the models derived in the SI (fits in Figure 2, summarized in Table 1). The native monomer is in good agreement with the linear chain model, giving a concentration value identical to the one determined by absorbance measurements and a Kuhn length, only slightly larger than the expected value of 1.51 nm. The oxidized monomer is best described by a loop-containing model, which represents a structure with a link from Tyr39 to one of the three C-terminal Tyr residues.

Based on the SAXS data, we hypothesize that MCO could promote α-Syn compaction through intramolecular diTyr formation. To investigate this, we used native ion mobility mass spectrometry (IM-MS) (Figure 3A). Briefly, from the time it takes ions to traverse a gas-filled drift cell, we can calculate their collision cross sections (CCSs), giving information on their conformational preferences. Analysis of unmodified α-Syn revealed a CCS distribution centered around 2400 Å² for all major charge states (Figure 3B). Five minutes of MCO did not notably increase dimers (cf. Figure 1) but shifted the CCSs of the monomers toward a compact state with CCS ≈ 1900 Å² for lower charge states (Figure 3B), consistent with our extended-to-ring-transformation hypothesis. A direct correlation between molecular weight and CCS is observed (Figure S6). To investigate the conformational stability of different α-Syn populations, we employed collision-induced unfolding (CIU). Here, the protein ions are subjected to increasing collisional activation in the ion trap of the mass spectrometer. The resulting change in CCS informs about the conformational stability of the ion. Interestingly, oxidized α-Syn showed no significant increase in CCS as the collisional activation was increased from 5 to 50 V, at which protein fragmentation (not unfolding) occurred (Figure 3C). The high resistance of the compact states to unfolding indicates covalent stabilization rather than altered non-covalent interactions in the oxidized monomer.
To corroborate that the compaction stems from intramolecular cross-links, we performed IM-MS of the Tyr39Phe single mutant and the Tyr125/133/136Phe triple mutant. To exclude effects from altered solution conformations in response to the Tyr-to-Phe mutations, we performed IM-MS under denaturing conditions using 50% acetonitrile with 0.1% formic acid (Figure S7). Under these conditions, all variants exhibited the same extended conformation as native wt monomer (Figure 5, black line). Following MCO, the denatured wt monomer underwent the same extended-to-compact shift as seen under native conditions. However, the oxidized Tyr39Phe mutant showed two populations with similar intensities, one more compact and the other extended. We speculate that, in this variant, the central His50 could be linked to a C-terminal Tyr, resulting in a smaller compact population. His50’s role as a Cu

Table 1. Results from SAXS Analysis

	\(c\) [mg/mL]	\(R_g\) (IFT) [nm]	\(c\) (model) [mg/mL]	\(R_g\) (model) [nm]	\(b\) (model) [nm]	\(\chi^2\) (model)
monomer	4.0	3.96 ± 0.02	4.00 ± 0.03	3.80	1.71 ± 0.02	1.0
oxidized monomer	2.2	2.69 ± 0.02	2.55 ± 0.02	2.95	1.96 ± 0.03	1.1

\(c\), concentration measured by absorbance; \(R_g\) (IFT), radius of gyration from IFT; \(c\) (model), concentration determined from the model fits (linear chain model for native monomer and ring model for oxidized monomer); \(R_g\) (model), radius of gyration of the two models determined numerically from the low-q range of the model curves; \(b\), Kuhn length; \(\chi^2\), reduced weighted chi-square.

Figure 3. IM-MS analysis of oxidized \(\alpha\)-Syn. (A) Spectrum of 5 min oxidized wt \(\alpha\)-Syn and ion mobiligrams showing +11 to +8 charge states. (B) Overlay of CCSs of wt untreated \(\alpha\)-Syn (red) and oxidized wt \(\alpha\)-Syn (black). (C) CIU shown from 5 to 45 V for the same charge states as given in the CCS plots (B).
In conclusion, we show that MCO associated with PD can induce long-range intramolecular diTyr cross-links which induce a compact, yet disordered, α-Syn monomer species. Steric hindrance from the diTyr linkage prevents aggregation of the monomer through β-sheet formation. Interference with the extended conformation of α-Syn opens up new interpretations of α-Syn function and pathology, as well as strategies to prevent α-Syn aggregation and ultimately treat PD.

ASSOCIATED CONTENT

* Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c03607.

Additional discussion, experimental data, and materials and methods (PDF)

AUTHOR INFORMATION

Corresponding Authors
Cagla Sahin − Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark; Present Address: Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Solna, Sweden, and Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark; orcid.org/0000-0002-2889-5200; Email: cagla.sahin@ki.se

Thomas J. D. Jørgensen − Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark

Daniel Erik Otzen − Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark; orcid.org/0000-0002-2918-8989; Email: dao@inano.au.dk

Authors
Eva Christina Østerlund − Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark

Nicklas Østerlund − Department of Biochemistry and Biophysics, Stockholm University, SE-114 18 Stockholm, Sweden; orcid.org/0000-0003-0905-7911

Joana Costeira-Paulo − Department of Chemistry - BMC, BMC − Uppsala University, SE-751 23 Uppsala, Sweden; Present Address: Department of Chemistry, Chemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.

Jannik Nedergaard Pedersen − Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark

Gunna Christiansen − Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, DK-9220 Aalborg Ø, Denmark

Janni Nielsen − Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark

Anne Louise Gronnemose − Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; Present Address: BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark

Figure 4. MCO inhibits amyloid formation. (A) ThT fluorescence was measured for α-Syn oxidized for 0, 0.1, 1, 5, 30, and 60 min prior to aggregation. (B) After the ThT signal had plateaued, the secondary structure was analyzed by FTIR, where the second derivative is shown for all time points. (C) CD spectra of untreated and 60 min oxidized monomer, and after reaching plateau in the ThT assay. (D) TEM images of untreated and oxidized α-Syn samples from the ThT assay. Scale bar: 200 nm.
Søren Kirk Amstrup — Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
Manish K. Tiwari — Department Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; Present Address: Novozymes A/S, Biologiens Vej 2, DK-2800 Kongens Lyngby, Denmark; orcid.org/0000-0002-4667-1112

R. Shyama Prasad Rao — Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangaluru 575018 Karnataka, India; Present Address: Center for Bioinformatics, NITTE deemed to be University, Mangaluru 575018, India; orcid.org/0000-0002-2285-6788

Morten Jannik Bjerrum — Department Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; orcid.org/0000-0002-8410-627X

Leopold L. Ilgå — Department of Materials and Environmental Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden

Michael J. Davies — Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; orcid.org/0000-0002-5196-6919

Erik G. Marklund — Department of Chemistry - BMC, BMC – Uppsala University, SE-751 23 Uppsala, Sweden; orcid.org/0000-0002-9804-5009

Jan Skov Pedersen — Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark

Michael Landreh — Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65 Solna, Sweden; orcid.org/0000-0002-7958-4074

Ian Max Møller — Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.2c03607

Funding
Danish Council for Independent Research - Technology and Production Sciences (Grant no. DFF15TP 4005-00082) to I.M.M. C.S. was supported by the NNF postdoctoral fellowship (Grant no. NNF19OC0055700). J.C.-P. was funded by a Marie Skłodowska Curie International Career Grant held by EGM and awarded by the European Commission and the Swedish Research Council (2015-00559). E.G.M. is supported by the Swedish Research Council (2020-04825). M.J.D. was supported by the Novo Nordisk Foundation (Grant no. NNF13OC0004294). D.E.O. is supported by the Lundbeck Foundation (Grant no. R276-2018-671).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We thank Nicholas P. Schafer and Ryan Cheng for discussions, Poul Henning Jensen and Jette Bank Lauridsen for help with the immunoblotting, Hilal Lashuel for providing αSyn mutant plasmids, Jan S. Nowak for help with αSyn protein production, Jeppe Buur Madsen for general discussions and input on MS experiments, and René Jørgensen for fruitful discussions.

REFERENCES
(1) Murphy, D. D.; Rueter, S. M.; Trojanowski, J. Q.; Lee, V. M. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 2000, 20 (9), 3214–20.
(2) Spielmanni, M. G.; Schmidt, M. L.; Lee, V. M.; Trojanowski, J. Q.; Jakue, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature 1997, 388 (6645), 839–40.
(3) Pall, H. S.; Williams, A. C.; Blake, D. R.; Lanec, J.; Gutteridge, J. M.; Hall, M.; Taylor, A. Raised cerebrospinal-fluid copper concentration in Parkinson’s disease. Lancet 1987, 330 (8553), 238–241.
(4) Ambani, L. M.; Van Woert, M. H.; Murphy, S. Brain peroxidase and catalase in Parkinson disease. Arch. Neurol. 1975, 32 (2), 114–8.
(5) Tiwari, M. K.; Leinisch, F.; Sahin, C.; Møller, I. M.; Otzen, D. E.; Davies, M. J.; Bjerrum, M. J. Early events in copper-ion catalyzed oxidation of alpha synuclein. Free Rad. Biol. Med. 2018, 121, 38–50.
(6) Binolfi, A.; Limatola, A.; Verzini, S.; Kosten, J.; Theillet, F. X.; Rose, H. M.; Bekei, B.; Stuiver, M.; van Rossum, M.; Selenko, P. Intracellular repair of oxidation-damaged alpha-synuclein fails to target C-terminal modification sites. Nat. Commun. 2016, 7, 10251.
(7) Cole, N. B.; Murphy, D. D.; Lebowitz, J.; Di Noto, L.; Levine, R. L.; Nasbaum, R. L. Metal-catalyzed oxidation of alpha-synuclein: helping to define the relationship between oligomers, protofibrils, and filaments. J. Biol. Chem. 2005, 280 (10), 9670–98.
(8) Paik, S. R.; Shin, H. J.; Lee, J. H. Metal-catalyzed oxidation of alpha-synuclein in the presence of Copper(II) and hydrogen peroxide. Arch. Biochem. Biophys. 2000, 378 (2), 269–77.
(9) Hokenson, M. J.; Uversky, V. N.; Goers, J.; Yanin, G.; Munishkina, L. A.; Fink, A. L. Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein. Biochemistry 2004, 43 (15), 4621–33.
(10) Krishnan, S.; Chi, E. Y.; Wood, S. J.; Kendrick, B. S.; Li, C.; Garzon-Rodriguez, W.; Wypych, J.; Randolph, T. W.; Narhi, L. O.; Bire, A. L.; Citron, M.; Carpenter, J. F. Oxidative dimer formation is the critical rate-limiting step for Parkinson’s disease alpha-synuclein fibrillogenesis. Biochemistry 2003, 42 (3), 829–837.
(11) Wordhoff, M. M.; Shaykhalisibahi, H.; Gross, L.; Gremer, L.; Stoldt, M.; Buell, A. K.; Willbold, D.; Hoyer, W. Opposed Effects of Dityrosine Formation in Soluble and Aggregated alpha-Synuclein on Fibril Growth. J. Mol. Biol. 2017, 429 (20), 3018–3030.
(12) van Maarschalkerweerd, A.; Pedersen, M. N.; Peterson, H.; Nilsson, M.; Nguyen, T.; Skamris, T.; Rand, K.; Vetrli, V.; Langkilde, A. E.; Vestergaard, B. Formation of covalent di-tyrosine dimers in recombinant alpha-synuclein. Intrins. Disord. Proteins 2015, 3 (1), e1071302.
(13) Al-Hilaly, Y. K.; Biasetti, L.; Blakeman, B. J.; Pollack, S. J.; Zibae, S.; Abdul-Sada, A.; Thorpe, J. R.; Xue, W. F.; Serpell, L. C. The involvement of dityrosine crosslinking in alpha-synuclein assembly and deposition in Lewy Bodies in Parkinson’s disease. Sci. Rep. 2016, 6, 39171.
(14) Mariotti, M.; Leinisch, F.; Leeming, D. J.; Svensson, B.; Davies, M. J.; Hagglund, P. Mass-Spectrometry-Based Identification of Cross-Links in Proteins Exposed to Photo-Oxidation and Peroxyl Radicals Using (18)O Labeling and Optimized Tandem Mass Spectrometry Fragmentation. J. Proteome Res. 2018, 17 (6), 2017–2027.
(15) Li, J.; Santambrogio, C.; Brocca, S.; Rossetti, G.; Carloni, P.; Grandori, R. Conformational effects in protein electrospray-ionization mass spectrometry. Mass Spectrom. Rev. 2016, 35 (1), 111–22.

ABBREVIATIONS
α-Syn, α-synuclein; ATD, arrival time distribution; CIU, collision-induced unfolding; CCS, collision cross section; CD, circular dichromism; FTIR, Fourier transformed infrared spectroscopy; IM-MS, ion mobility mass spectrometry; MS, mass spectrometry; MCO, metal-catalyzed oxidation; PD, Parkinson’s disease; Rg, radius of gyration; SAXS, small-angle X-ray scattering; THT, thioflavin T
Modifications.

Promote and Stabilize Alpha-Synuclein Oligomers by Chemical Jorgensen, T. J. D. Lipid Peroxidation Products HNE and ONE Christiansen, G.; Nielsen, J.; Mulder, F. A. A.; Otzen, D. E.; Ischiropoulos, H. Dityrosine cross-linking promotes formation of stable alpha-synuclein polymer s. Implication of nitrative and fibrillation enhancement. J. Am. Chem. Soc. 2006, 128 (30), 9893–901.

(18) Fluegel, S.; Fischer, K.; McDaniel, J. R.; Chilkoti, A.; Schmidt, M. Chain Stiffness of Elastin-Like Polypeptides. Biomacromolecules 2010, 11 (11), 3216–3218.

(19) Kohn, J. E.; Millett, I. S.; Jacob, J.; Zagrovic, B.; Dillon, T. M.; Cingel, N.; Dothager, R. S.; Seifert, S.; Thiyyagarajan, P.; Sosnick, T. R.; Hasan, M. Z.; Pande, V. S.; Rucinski, I.; Doniach, S.; Plaxco, K. W. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 (34), 12491–12496.

(20) Hopper, J. T.; Oldham, N. J. Collision induced unfolding of protein ions in the gas phase studied by ion mobility-mass spectrometry: the effect of ligand binding on conformational stability. J. Am. Soc. Mass Spectrom. 2009, 20 (10), 1851–8.

(21) Rasia, R. M.; Bertoccin, C. W.; Marsh, D.; Hoyer, W.; Cherny, D.; Zweckstetter, M.; Griesinger, C.; Jovin, T. M.; Fernandez, C. O. Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (12), 4294–4299.

(22) Guerrero-Ferreira, R.; Taylor, N. M.; Mona, D.; Ringer, P.; Lauer, M. E.; Riek, R.; Britschgi, M.; Stahlberg, H. Cryo-EM structure of alpha-synuclein fibrils. eLife 2017, 7, 36402.

(23) Li, B.; Ge, P.; Murray, K. A.; Seth, P.; Zhang, M.; Nair, G.; Sawaya, M. R.; Shin, W. S.; Boyer, D. R.; Ye, S.; Eisenberg, D. S.; Zhou, Z. H.; Jiang, L. Cryo-EM of full-length alpha-synuclein reveals fibril polymorphs with a common structural kernel. Nat. Commun. 2018, 9 (1), 3609.

(24) Ni, X.; McGlinchey, R. P.; Jiang, J.; Lee, J. C. Structural Insights into alpha-Synuclein Fibril Polymorphism: Effects of Parkinson’s Disease-Related C-Terminal Truncations. J. Mol. Biol. 2019, 431 (19), 3913–3919.

(25) Vilar, M.; Chou, H. T.; Luhrs, T.; Maji, S. K.; Riek-Loher, D.; Verel, R.; Manning, G.; Stahlberg, H.; Riek, R. The fold of alpha-synuclein fibrils. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (25), 8637–42.

(26) Schweighauser, M.; Shi, Y.; Tarutani, A.; Kametani, F.; Murzin, A. G.; Ghetti, B.; Matsubara, T.; Tomita, T.; Ando, T.; Hasegawa, K.; Murayama, S.; Yoshida, M.; Hasegawa, M.; Scheres, S. H. W.; Goedert, M. Structures of alpha-synuclein filaments from multiple system atrophy. Nature 2020, 585 (7825), 464–469.

(27) Zhao, K.; Lim, Y. J.; Liu, Z.; Long, H.; Sun, Y.; Hu, J. J.; Zhao, C.; Tao, Y.; Zhang, X.; Li, D.; Li, Y. M.; Liu, C. Parkinson’s disease-related phosphorylation at Tyr39 rearranges alpha-synuclein amyloid fibril structure revealed by cryo-EM. Proc. Natl. Acad. Sci. U.S.A. 2020, 117 (33), 20305–20315.

(28) Souza, J. M.; Giasson, B. I.; Chen, Q.; Lee, V. M.; Ischiropoulos, H. Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrosative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem. 2000, 275 (24), 18344–9.

(29) Andersen, C.; Gronnemose, A. L.; Pedersen, J. N.; Nowak, J. S.; Christiansen, G.; Nielsen, J.; Mulder, F. A. A.; Otzen, D. E.; Jorgensen, T. J. D. Lipid Peroxidation Products HNE and ONE Promote and Stabilize Alpha-Synuclein Oligomers by Chemical Modifications. Biochemistry 2021, 60 (47), 3644–3658.

(30) Verzini, S.; Shah, M.; Theiliet, F. X.; Belsom, A.; Bieschke, J.; Wanker, E. E.; Rappsilber, J.; Binolfi, A.; Selenko, P. Megadalton-sized Dityrosine Aggregates of alpha-Synuclein Retain High Degrees of Structural Disorder and Internal Dynamics. J. Mol. Biol. 2020, 432 (24), 166689.

(31) Uversky, V. N.; Yamin, G.; Souillac, P. O.; Goers, J.; Glaser, C. B.; Fink, A. L. Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Lett. 2002, 517 (1–3), 239–44.

(32) Shaykhalishahi, H.; Gauhar, A.; Wordehoff, M. M.; Gruning, C. S.; Klein, A. N.; Bannach, O.; Stoldt, M.; Willbold, D.; Hard, T.; Hoyer, W. Contact between the beta1 and beta2 Segments of alpha-Synuclein that Inhibits Amyloid Formation. Angew. Chem., Int. Ed. Engl. 2015, 54 (30), 8837–40.