Threshold queries in theory and in the Wild
Angela Bonifati, Stefania Dumbrava, George Fletcher, Jan Hidders, Matthias Hofer, Wim Martens, Filip Murlak, Joshua Shinavier, Slawomir Staworko, Dominik Tomaszuk

To cite this version:
Angela Bonifati, Stefania Dumbrava, George Fletcher, Jan Hidders, Matthias Hofer, et al.. Threshold queries in theory and in the Wild. Proceedings of the VLDB Endowment (PVLDB), 2022, 15 (5), pp.1105-1118. 10.14778/3510397.3510407. hal-03516360

HAL Id: hal-03516360
https://inria.hal.science/hal-03516360v1
Submitted on 6 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Threshold Queries in Theory and in the Wild

Angela Bonifati
Lyon 1 Univ., Liris CNRS
angela.bonifati@univ-lyon1.fr

Stefania Dumbrava
ENSIE & Inst. Polytechnique de Paris
stefania.dumbrava@ensie.fr

George Fletcher
Eindhoven Univ. of Technology
g.h.fletcher@tue.nl

Jan Hidders
Univ. of London, Birkbeck
jan@dcs.bbk.ac.uk

Matthias Hofer
University of Bayreuth
matthias.hofer@uni-bayreuth.de

Wim Martens
University of Bayreuth
wim.martens@uni-bayreuth.de

Filip Murlak
Univ. of Warsaw
fmurlak@mimuw.edu.pl

Joshua Shinavier
LinkedIn
jshinavier@linkedin.com

Slawek Staworko
Univ. Lille, INRIA, CNRS, UMR 9189 - CRISTAL
slawomir.staworko@inria.fr

Dominik Tomaszuk
Univ. of Bialystok
d.tomaszuk@uwb.edu.pl

ABSTRACT
Threshold queries are an important class of queries that only require computing or counting answers up to a specified threshold value. To the best of our knowledge, threshold queries have been largely disregarded in the research literature, which is surprising considering how common they are in practice. In this paper, we present a deep theoretical analysis of threshold query evaluation and show that thresholds can be used to significantly improve the asymptotic bounds of state-of-the-art query evaluation algorithms. We also empirically show that threshold queries are significant in practice. In surprising contrast to conventional wisdom, we found important scenarios in real-world data sets in which users are interested in computing the results of queries up to a certain threshold, independently of a ranking function that orders the query results.

PVLDB Reference Format:
Angela Bonifati, Stefania Dumbrava, George Fletcher, Jan Hidders, Matthias Hofer, Wim Martens, Filip Murlak, Joshua Shinavier, Slawek Staworko, and Dominik Tomaszuk. Threshold Queries in Theory and in the Wild. PVLDB, 15(5): 1105–1118, 2022.
doi:10.14778/3510397.3510407

1 INTRODUCTION
Queries encountered in a wide range of data management applications, such as data interaction, data visualization, data exploration, data curation and data monitoring [8, 41, 45], often require computing or counting answers only up to a given threshold value. We call such queries threshold queries.

Threshold queries for data exploration. Querying voluminous rich data sources, such as Wikidata [67], may return more results than are needed during exploratory analytics. Thus, users may specify a threshold on the number of answers they want to see. Consider the following LIMIT query which lists up to a threshold businesses, total assets, and headquarter locations in the Wikidata dataset.

```
SELECT ?business ?assets ?city ?country
{ ?business <total_assets> ?assets .
  ?business <headquarters_location> ?city .
  ?city <country> ?country .}
LIMIT 10;
```

Without LIMIT, this query would return 2,684,138 objects, amounting to about 413MB in size, which is too large for human consumption. Note that here the user is interested in unranked output (i.e., there is no ORDER BY clause), which is typical for data exploration [8]. As we will see later in a deep-dive into real query logs (Section 5), such queries on Wikidata are very common in practice.

Threshold queries for data curation. Threshold queries are also useful in detecting violations of database constraints and identifying data items requiring curation actions. As an example, consider the following threshold query using grouping and aggregation in the Nobel Prize database, requiring that every Nobel prize has at most three laureates [4].

```
SELECT P.ID FROM NobelPrize P, Laureate L
WHERE P.ID = L.Prize_ID
GROUP BY P.ID HAVING COUNT(*) > 3;
```

Differences with other query answering paradigms. Although threshold queries might look similar in spirit to top-k queries [35, 43, 59, 60], they are inherently different because they do not assume that the results are ranked. They are also different from counting queries [32, 63], since these aim at computing an exact value, rather than only desiring exact values up to a given threshold. Therefore, prior problems are either more specific or have different objectives. We examine these differences in depth in Section 6.

Our contributions. We are motivated by the following question: Can we exploit the fact that we only need to count or compute the answers of a query up to a threshold? In this paper, we answer this question positively. The starting point for our work is the observation that evaluating some queries with a threshold k requires storing not more than $k + 1$ intermediate results [18, 51]. We show that this idea can be fully integrated with state-of-the-art complex join algorithms, leading to significant savings in the size of the intermediate results as typically computed in query processing, leading for some queries to improvements from $O(n^2)$ to $O(n \cdot k)$, where f is the free-connex treewidth of the query and k is the value of the threshold. Here, the free-connex treewidth of a query measures its treewidth in connection with its output variables. It can be large even if the query is acyclic.

In detail, the key contributions of our paper are as follows:

1. New results explaining the interplay between different structural properties of conjunctive queries (i.e., select-project-join queries) used in sophisticated evaluation algorithms (Lemma 4.5), and the consequences for threshold query processing (Theorem 4.7).
Our work provides the first in-depth theoretical treatment of threshold queries. In addition, it also shows that these queries are important in practical settings by means of an in-depth empirical study.

The paper is organized as follows. Section 2 contains basic definitions. Section 3, we identify the problems of interest, explain the complexity-theoretic limits, and explain some of our main ideas in an example. Section 4 presents the algorithms for the problems of interest. In Section 5, we present experiments and findings on threshold queries that can be found in practice. In Section 6, we discuss related work. Finally, in Section 7 we summarize our findings and outline further research directions. Because of space limitation, detailed proofs as well as additional material are omitted and can be found in an extended technical report [13].

2 PRELIMINARIES

Our results apply in both a relational database setting and a graph database setting. We first focus on the relational database setting, for which we loosely follow the preliminaries as presented in [1]. We assume that we have countably infinite and disjoint sets Rel of relation names and Const of values. Furthermore, when \((a_1, \ldots, a_k)\) is a Cartesian tuple, we may abbreviate it as \(\tilde{a}\). A \(k\)-ary database tuple (henceforth abbreviated as tuple) is an element of \(\text{Const}^k\) for some \(k \in \mathbb{N}\). A relation is a finite set \(S\) of tuples of the same arity. We denote the set of all such relations by \(\mathcal{R}\). A database is a partial function \(D : \mathcal{R} \to \text{Rel}\) such that \(\text{Dom}(D)\) is finite. If \(D\) is a database and \(R \in \mathcal{R}\), we write \(R(a_1, \ldots, a_k) \in D\) to denote that \((a_1, \ldots, a_k) \in \text{Dom}(D)\).

For defining conjunctive queries, we assume a countably infinite set \(\text{Var}\) of variables, disjoint from \(\mathcal{R}\) and \(\text{Const}\). An atom is an expression of the form \(R(u_1, \ldots, u_k)\), where \(u_i \in \text{Var} \cup \text{Const}\) for each \(i \in \{1, \ldots, k\}\). A conjunctive query (CQ) is an expression of the form

\[\exists \tilde{y} \, A_1(\tilde{u}_1) \land \ldots \land A_n(\tilde{u}_n),\]

where \(\tilde{y} = (y_1, \ldots, y_m)\) consists of existentially quantified variables and each \(A_i(\tilde{u}_i)\), with \(i \in \{1, \ldots, n\}\) is an atom. Each variable that appears in \(\tilde{y}\) should also appear in \(\tilde{u}_1, \ldots, \tilde{u}_n\). On the other hand, \(\tilde{u}_1, \ldots, \tilde{u}_n\) can contain variables not present in \(\tilde{y}\). For a tuple \(\tilde{x}\), we write \(q(\tilde{x})\) to emphasize that \(q\) is a CQ such that all variables in \(\tilde{u}_1, \ldots, \tilde{u}_n\) appear in either \(\tilde{x}\) or \(\tilde{y}\). Unless we say otherwise, we assume that the variables in \(\tilde{u}_1, \ldots, \tilde{u}_n\) are precisely the variables in \(\tilde{x}\) and \(\tilde{y}\). The arity of \(q(\tilde{x})\) is defined as the arity of the tuple \(\tilde{x}\). We denote by \(\text{Var}(q)\) the set of all variables appearing in \(q\) and by \(\text{FVar}(q)\) the set of so-called free variables of \(q\), which are the variables in \(\text{Var}(q)\) that are not existentially quantified. A full CQ is a CQ without existentially quantified variables.

Threshold Queries. A threshold query (TQ) is an expression of the form

\[q(\tilde{x}) \land \exists^{\leq b} \tilde{y} \, \rho(\tilde{x}, \tilde{y}),\]

where, from left to right, \(q(\tilde{x})\) is a CQ, \(a \in \mathbb{N}, b \in \mathbb{N} \cup \{\infty\}\), and \(\rho(\tilde{x}, \tilde{y})\) is a CQ in which we do not require that every variable in \(\tilde{x}\) appears in one of its atoms. Notice that a TQ only has a single counting quantifier \(\exists^{\leq b}\), although further ordinary existential quantifiers may occur inside \(q\) and \(\rho\). We use \(\exists^{\leq a}\) and \(\exists^{\leq b}\) as shorthands for \(\exists^{\leq \infty}\) and \(\exists^{\leq b}\), respectively, and the corresponding threshold queries will be called at-least and at-most queries. Similar to CQs, we usually denote the entire query as \(q(\tilde{x})\) or even as \(q\) when \(\tilde{x}\) is clear from the context. When representing \(q(\tilde{x})\) for decision problems, we assume that the numbers \(a\) and \(b\) are given in binary.

As an example, recall the Nobel Prize threshold query in Section 1, and suppose that the schema is \(\text{NobelPrize}(\text{id}, \text{year}, \text{category})\) and \(\text{Laureate}(\text{nid}, \text{name}, \text{name})\) with the foreign key constraint \(\text{Laureate}[\text{nid}] \subseteq \text{NobelPrize}[\text{id}]\). This threshold query can be formalized as follows.

\[t(\tilde{x}) = \exists x_1, x_2, \text{NobelPrize}(x_1, x_2, x_3) \land \exists^{\leq 4} y, z. \exists \text{Laureate}(x, y, z).\]

The set of answers of \(t(\tilde{x})\) is the set of answers \(\eta\) of \(q(\tilde{x})\) on \(D\) that have between \(a\) and \(b\) compatible answers of \(\rho(\tilde{x}, \tilde{y})\). Formally, \(\eta \in (D)\) iff \(\eta \in q(\tilde{x})\) and \(a \leq |\{p(D, \eta)\}| \leq b\), where \(p(D, \eta) = \{\eta' \in p(D) \mid \eta' \text{ is compatible with } \eta\} \text{ and } \eta' \text{ is compatible with } \eta\text{.}

If \(t\) is a threshold query of the form above, we call \(\tilde{x}\) the free variables (or answer variables) of the query \(t\) and we write \(\text{FVar}(t)\) for the set of these variables. We call \(\tilde{y}\) the tally variables of the query \(t\) and we write \(\text{TVar}(t)\) for the set of these variables. For the ease of presentation we shall assume that the sets of existentially quantified variables in \(q\) and \(\rho\) are disjoint; we shall write \(\text{QVar}(t)\) for the union of these sets. Thus, \(\text{Var}(t)\) is the union of three disjoint sets: \(\text{FVar}(t), \text{TVar}(t), \text{QVar}(t)\).

A threshold query \(t\) can be intuitively expressed as a SQL query defining \(q(\tilde{x})\) such that in the WHERE clause we additionally check

\[\text{Notice that here we also denote by } \eta \text{ the extension of } \eta \text{ that is the identity on } \text{Const}, \text{ and its extension thereof to tuples of variables and constants.}\]
if the number of tuples returned by a correlated SELECT-FROM-WHERE subquery defining \(p(x, y) \) is at least \(a \) and at most \(b \).

Graph Databases. For the purposes of this paper, graph databases can be abstracted as relational databases with unary and binary relations. That is, a graph database can be seen as a database \(G \) with a unary relation Node and binary relations \(A, B, \ldots \) where

- \(\text{Node}(a) \in G \) if \(a \) is a node of the graph database and
- \(A(a_1, a_2) \in G \) if \((a_1, a_2) \) is an edge with label \(A \) in the graph database. An important feature that distinguishes graph database queries from relational database queries are regular path queries (RPQs) [14]. In a nutshell, a regular path query is an expression of the form \(r(x, y) \), where \(r \) is a regular expression over the set of edge labels in the graph database. When evaluated over a graph database \(G \), the query returns all node pairs \((u, v) \) such that there exists a path from \(u \) to \(v \) that is labeled with some word in the language of \(r \).

All results in the paper extend naturally to RPQs and therefore to so-called conjunctive regular path queries (CRPQs) [14]. This means that we can generalize CQs to CRPQs, which are defined exactly the same as CQs, but we additionally allow RPQs at the level of atoms. Generalizing threshold queries is analogous. If we want to evaluate a threshold query with RPQs, we can pre-evaluate all RPQs in the query and treat their result as a materialized view. We can then treat the query as an ordinary threshold query in which each RPQ becomes an atom, which is evaluated over the corresponding materialized view.

3 Exploiting Thresholds at a Glance

Query evaluation is arguably the most fundamental problem in databases and comes in many variants, such as:

- (E1) Boolean evaluation, i.e., testing existence of an answer;
- (E2) returning a given number of answers;
- (E3) counting the total number of answers;
- (E4) sampling answers with uniform probability; and
- (E5) enumerating the answers with small delay.

An important reason why all these variants are considered is that the set of answers to a query can be very large and one is not always interested in the set of all answers.

The computational cost of these variants tends to increase as we go down in the list, but already for CQs even the simplest problem (E1) is intractable [1, Chapter 15]. Triggered by Yannakakis’ seminal result on efficient evaluation of acyclic CQs [71], the literature developed a deep understanding that teaches us that, essentially, low tree-width is not only helpful but even necessary for polynomial-time Boolean evaluation of CQs [39]. Intuitively, the tree-width of a CQ measures the likeness of its graph structure to a tree. In essence, this graph structure is obtained by taking the queries’ variables as nodes and connecting variables with an edge if they appear in a common atom. Queries with low tree-width are tree-like and queries with high tree-width are cyclic.

Example 3.1. Consider the following variant of the first query from the introduction:

\[
q(x, y, z) \leftarrow \text{Assets}(x, y), \text{Subsidiary}(w, x), \text{Shareholder}(w, z).
\]

For the purpose of Boolean evaluation we can rewrite \(q \) as

\[
q'(y) \leftarrow \text{Assets}(x, y), U(x); \\
U(x) \leftarrow \text{Subsidiary}(w, x), V(w); \\
V(w) \leftarrow \text{Shareholder}(w, z)
\]

using views \(U \) and \(V \). It is clear that one can materialize the views and answer \(q' \) in time \(O(n \cdot \log n) \) over databases of size \(n \). The tree-width of \(q \) manifests itself as the number of variables used in the definitions of the views. For CQs of tree-width \(d \), views in the optimal rewriting will use up to \(d \) variables and the data complexity will be \(O(n^d \cdot \log n) \).

For threshold queries, however, low tree-width is not sufficient. The reason is that it is already hard to decide if the number of results of an acyclic CQ is above a threshold (represented in binary).

Proposition 3.2. Given an acyclic conjunctive query \(q \), a threshold \(k \) in binary representation, and a database \(D \), testing if \(q \) returns at least \(k \) tuples on \(D \) is coNP-hard.

So, we cannot have a polynomial-time algorithm even for evaluating Boolean acyclic threshold queries of the form \(\exists a.b \ p(\bar{y}) \), unless \(P = NP \). This is why one focus in the paper is on pseudopolynomial-time algorithms for threshold queries of low tree-width.

We call an algorithm **pseudopolynomial**, if it is a polynomial-time algorithm assuming that the numerical values \(a \) and \(b \) in \(\exists a.b \ p(\bar{y}) \) are represented in unary (instead of binary). For instance, a pseudopolynomial algorithm can evaluate threshold queries of the form \(\exists a.b \ p(\bar{y}) \) by keeping \(b+1 \) intermediate results in memory, which is not possible in a polynomial-time algorithm.

Let us revisit Example 3.1 and rewrite the query in a suitable way to produce its output. The next rewriting is inspired by research on constant-delay enumeration and answer counting for CQs.

Example 3.3. The rewriting in Example 3.1 is not suitable for non-Boolean evaluation because it projects out answer variables. The only way to rewrite \(q \) while keeping track of all answer variables is

\[
q''(x, y, z) \leftarrow \text{Assets}(x, y), U(x, z); \\
U(x, z) \leftarrow \text{Subsidiary}(w, x), \text{Shareholder}(w, z).
\]

The standard approach for constant-delay enumeration algorithms [5] first has a preprocessing phase, in which it materializes \(U \) and groups \(\text{Assets} \) and \(U \) by \(x \). In the enumeration phase it iterates over possible values of \(x \) and, for each value of \(x \), over the contents of the corresponding groups of \(\text{Assets} \) and \(U \). The complexity of the preprocessing phase is then affected by the cost of materializing \(U \), which can be quadratic in the worst case. Overall, the complexity is \(O(n^2 \cdot \log n) \) over databases of size \(n \).

Evaluating a threshold query is closely related to constant-delay enumeration and counting answers to CQs. Indeed, a threshold query of the form \(\exists a.b \ p(\bar{y}) \) can be evaluated by enumerating answers to \(p \) up to threshold \(b+1 \) or by counting all answers to \(p \). For both these tasks, however, tractability relies on more restrictive parameters of the query. For enumeration, tree-width needs to be replaced with its free-connex variant [5], which treats answer variables in a special way. For counting, the additional parameter is the star-size [32]. Intuitively, it measures how many answer
variables are maximally connected to a non-answer variable. The query \(q \) has star-size 2 because the existentially quantified variable \(w \) is connected to two answer variables, \(x \) and \(z \).

Thus, in the general approaches to constant-delay enumeration and counting, complexity is very sensitive to the interaction between answer and non-answer variables. Our key insight is that in the presence of a threshold this is no longer the case and low tree-width is sufficient.

Example 3.4. Consider again query \(q \) from Example 3.1 and suppose that we should return up to \(c \) answers. We can rely on the rewriting in Example 3.1, but we need to store additional information when materializing the views. For each \(w \) in \(V \) we store up to \(c \) witnessing values of \(z \) such that \(Shareholder(w, z) \) holds. Similarly, for each \(x \) in \(U \) we store up to \(c \) values of \(z \) that were stored as witnesses for some \(w \) in \(V \) with \(Subsidiary(w, x) \). Now, we can obtain up to \(c \) answers to \(q \) by taking the join of \(Assets(x, y) \) with \(U(x) \) and iterating through the witnessing values of \(z \) for each \(x \). Both extended materialization steps, as well as the final computation of answers, can be realized in time \(O(c \cdot n \cdot \log (c \cdot n)) \). If we are to count answers up to threshold \(c \), we can just count the ones returned by the algorithm above.

This idea allows evaluating low tree-width TQs of the form \(\exists \bar{y} \varphi(y) \) in pseudopolynomial-time. It is also crucial in our treatment of general TQs of the form \(q(x) \land \exists \bar{y} \varphi(x, y) \) but, as the following proposition shows, we cannot expect pseudopolynomial evaluation algorithms even for acyclic threshold queries. Our proof uses a reduction from MINSAT [52].

Proposition 3.5. Boolean evaluation of acyclic at-least and at-most threshold queries is \(NP \)-hard, even if thresholds are given in unary.

The reason is that acyclic queries can have arbitrarily high free-connex tree-width, which is the actual source of hardness. For TQs of bounded free-connex tree-width our approach will yield pseudopolynomial evaluation algorithms for all variants (E1)–(E5). That is, our results are tight in terms of combined complexity.

In the remainder of the paper, we will analyze algorithms using \(O \)-notation. We will use this notation to reflect the data complexity of the algorithms and to hide logarithmic factors. Essentially, using \(O \) allows us to freely use sorting and indexes such as B-trees. For instance, if we say that something can be done in time \(O(n^2 \log n) \) we mean that its data complexity is in time \(O(n^2 \log n) \).

4 Threshold Queries in Theory

In this section we define the notions of widths and decompositions informally discussed in Section 3, explore in depth the approach to threshold queries via exact counting, develop the idea illustrated in Example 3.4 to cover arbitrary CQs in a slightly more general setting involving grouping, and employ the obtained algorithm to construct a single data structure that supports constant-delay enumeration, counting, and sampling answers to TQs.

4.1 Tree Decompositions and How to Find Them

The rewritings discussed in Section 3 are guided by tree decompositions of queries. A tree decomposition of a conjunctive query \(q \) is a finite tree \(T \) with a set \(X_q \subseteq \text{Var}(q) \), called a bag, assigned to each node \(v \) of \(T \), satisfying the following conditions:

1. For each atom \(A \) of \(q \) there exists a node \(v \) of \(T \) such that \(\text{Var}(A) \subseteq X_v \) (we say that \(v \) covers \(A \));
2. For each variable \(x \in \text{Var}(q) \), the set of nodes \(v \) of \(T \) such that \(x \in X_v \) forms a connected subgraph of \(T \).

By the width of \(T \) we shall understand \(\max_{v \in T} |X_v| \). The tree-width of \(q \), written as \(\text{tw}(q) \), is the minimal width of a tree decomposition of \(q \). For example, \(T_1 \) in Figure 1 is a tree decomposition of width 2 for the query \(q \) in Example 3.1. Since \(q \) contains atoms involving two variables, it does not admit a tree decomposition of width 1. Hence, \(\text{tw}(q) = 2 \).

A tree decomposition \(T \) of a query \(q \) is \(X \)-connex for a set \(X \subseteq \text{var}(q) \), if there exists a connected subset \(U \) of nodes of \(T \), containing the root of \(T \), such that the union of bags associated to nodes in \(U \) is precisely \(X \). Note that there is exactly one such \(U \) that is maximal: it is the one that includes all nodes \(u \) with \(X_u \subseteq X \). We shall refer to it as the maximal \(X \)-connex set in \(T \). The \(X \)-connex tree-width of \(q \) is the minimal width of an \(X \)-connex tree decomposition of \(q \). If \(X = \text{Var}(q) \), we speak of free-connex decompositions and free-connex tree-width; we write \(\text{fc-tw}(q) \) for the free-connex tree-width of \(q \). For instance, \(T_2 \) in Figure 1 is a free-connex tree decomposition of width 3 for the query \(q \) of Example 3.1. It is not hard to see that \(q \) has no free-connex decomposition of width 2. That is, \(\text{tw}(q) = 2 \) but \(\text{fc-tw}(q) = 3 \). This difference can be arbitrarily large, e.g., for \(\text{CQs we used in the proof of Proposition 3.2} \).

A tree decomposition \(T \) of \(q \) is \(X \)-rooted, for \(X \subseteq \text{Var}(q) \), if the root bag of \(T \) is exactly \(X \). The \(X \)-rooted tree-width of \(q \) is the minimal tree-width of an \(X \)-rooted tree decomposition. By analogy to free-connex, if \(X = \text{Var}(q) \), we speak of free-rooted decompositions and free-rooted tree-width.

It is convenient to work with tree decompositions \(T \) of a special shape. A node \(u \) of \(T \) is a project node if it has exactly one child \(u \) and \(X_u \subseteq X_v \); a join node if it has exactly two children, \(v_1 \) and \(v_2 \), and \(X_u = X_{v_1} \cup X_{v_2} \). We say that \(u \) is safe if each variable in \(X_u \) occurs in an atom of \(q \) that is covered either by \(u \) or by a descendant of \(u \). We say that \(T \) is nice if each node of \(T \) is either a leaf or a project node or a join node, and all nodes of \(T \) are safe.

Lemma 4.1. Each tree decomposition \(T \) of a conjunctive query \(q \) can be transformed in polynomial time into a nice tree decomposition \(T' \) of the same width and linear size. Moreover, if \(T \) is \(X \)-rooted or \(X \)-connex, so is \(T' \).
We now introduce some notions that will be useful later. With each node \(u \) in a tree decomposition \(T \) of \(q \) we associate the subquery \(q_u \) obtained by taking all atoms of \(q \) over the variables appearing in the subtree of \(T \) rooted at \(u \), and quantifying existentially all used variables except those in \(X_u \cup \text{FVar}(q) \). Let \(\tilde{q}_u \) be the full CQ obtained by taking all atoms of \(q_u \) that do not occur in \(q_v \land q_w \land \cdots \land q_k \), where \(v_1, v_2, \ldots, v_k \) are the children of \(u \); we then have \(\text{Var}(\tilde{q}_u) = \text{FVar}(q_u) \subseteq X_u \). For instance, for the query \(q \) discussed in Section 3 and its tree decomposition \(T_1 \) shown in Figure 1 with nodes numbered 0, 1, 2 starting from the root, we have \(q_0 = q = \exists w \text{ Assets}(x, y) \land \text{Subsidiary}(w, x) \land \text{Shareholder}(w, z) \), \(\tilde{q}_0 = \text{Assets}(x, y) \), \(q_1 = \exists x \text{ Subsidiary}(w, x) \land \text{Shareholder}(w, z) \), \(\bar{q}_1 = \text{Subsidiary}(w, x) \), and \(\bar{q}_2 = \text{Shareholder}(w, z) \). In general, if \(u \) is a leaf then \(\tilde{q}_u = \bar{q}_u \) and if \(u \) is the root then \(\tilde{q}_u = q \). One can evaluate \(q \) on a database \(\mathcal{D} \) by computing \(q_u(\mathcal{D}) \) bottom up, as follows. Assuming that \(T \) is nice, if \(u \) is a leaf then
\[
q_u(\mathcal{D}) = \tilde{q}_u(\mathcal{D}),
\]
if \(u \) is a project node with child \(v \) then
\[
q_u(\mathcal{D}) = \pi_{\text{FVar}(q_u)}(q_v(\mathcal{D})),
\]
and if \(u \) is a join node with children \(v_1 \) and \(v_2 \) then
\[
q_u(\mathcal{D}) = \bar{q}_u(\mathcal{D}) \bowtie q_{v_1}(\mathcal{D}) \bowtie q_{v_2}(\mathcal{D}).
\]
If \(T \) is free-rooted then \(\text{FVar}(q_u) \subseteq X_u \) for each \(u \) and the above computation can be performed in time \(O(|\mathcal{D}|^d) \), where \(d \) is the width of \(T \). The following simple fact will also be useful.

Lemma 4.2. Let \(T \) be a nice tree decomposition of a CQ \(q \).

1. For each node \(u \) in \(T \) that has children \(X_u \subseteq \text{FVar}(q_u) \).
2. If \(T \) is \(X \)-connex and \(U \) is the maximal \(X \)-connex set in \(T \), then each node in \(U \) either has all its children in \(U \) or it is a \(U \)-leaf; that is, it has no children in \(U \).

Tree decompositions are not easy to find. Indeed, determining if an arbitrary graph admits a tree decomposition of width at most \(d \) is NP-hard [3]. However, the problem has been studied in great depth and there is an ongoing effort of making these approaches practical at large scale. For instance, computing tree decompositions of large graphs was the topic of the PACE Challenge [29, 30] twice. However, in the present context, we only want to compute tree decompositions of queries, which are very small in practice. There are libraries available [31, 36] that can find optimal tree decompositions of queries very efficiently. Indeed, DetkDecomp [31] was used to compute the tree-width of more than 800 million real-world queries [15–17] and worked very efficiently. Importantly for us, the analysis in [15–17] showed that real-life queries have very low tree-width. Each algorithm for computing tree decompositions can be used also to compute \(X \)-rooted and \(X \)-connex tree decompositions, with quadratic overhead [5]. In our complexity estimations we rely on Bodlaender’s algorithm [11], which allows computing optimal tree decompositions in linear time (assuming bounded tree-width).

4.2 Threshold Queries via Exact Counting

Processing a threshold query
\[
t(\bar{x}) = q(\bar{x}) \land \exists^a \hat{y} p(\bar{x}, \hat{y})
\]
involves counting, for each answer \(\eta \) in \(q(D) \), how many answers in \(p(D) \) are compatible to \(\eta \). Formally, this means that we need to determine the size of \(p(D, \eta) \) for each \(\eta \in q(D) \), where \(p(D, \eta) \) is the set of answers in \(p(D) \) that are compatible to \(\eta \). So we need to solve the following computational problem for \(p \).

Counting answers to \(p \) grouped by \(q \subseteq \text{FVar}(p) \) over database \(D \) consists in computing all pairs \((\eta, k)\) such that \(\eta : X \rightarrow \text{Adom}(D) \) and \(k = |p(D, \eta)| \).

Counting answers can leverage low star-size [32]. While the original notion is designed to fit hypertree decompositions, we shall work with a slightly faster growing variant that fits tree decompositions better and is much easier to define; the two variants coincide for queries using at most binary atoms. The star-size of a conjunctive query \(q \), written ss\((q)\), is the least positive integer \(f \) such that by grouping atoms and pushing quantifiers down, we can rewrite \(q \) as \(q_1 \land q_2 \land \cdots \land q_t \) with \(|\text{FVar}(q_i)| \leq f \) or \(\text{QVar}(q_i) = \emptyset \) for all \(i \). The following is a routine generalization of the result on counting answers [32].

Proposition 4.3. Counting answers grouped by \(X \) for conjunctive queries of \(X \)-rooted tree-width \(d \) and star-size \(f \) over databases of size \(n \) can be done in time \(O(n^{d^2} f) \).

When we consider (constant-delay) enumeration algorithms, we see that the state-of-the-art approaches, e.g., [5, 42], use a different parameter of the query. Instead of bounded star-size, these rely on bounded free-connex tree-width. At first sight, this difference is not surprising, because in the absence of a threshold, counting and enumeration cannot be reduced to each other. But a closer look reveals that both parameters play a similar role: limiting them allows to reduce the problem to the much simpler case of full CQs by rewriting the input query as a join of views of bounded arity. This is readily visible for the star-size method, where the views correspond to the queries \(q_i \) in the definition of star-size of \(q \), but it is also true for the free-connex method: there, the views correspond to subtrees of the decomposition rooted at the shallowest nodes holding an existentially quantified variable. Hence, the methods can be used interchangeably and we can replace star-size with free-connex tree-width in Proposition 4.3. Below, the \(X \)-rooted free-connex tree-width of a query is the minimal width of a tree decomposition of the query that is both \(X \)-rooted and free-connex.

Proposition 4.4. Counting answers grouped by \(X \) for conjunctive queries of \(X \)-rooted free-connex tree-width \(d \) over databases of size \(n \) can be done in time \(O(n^{d^2} f) \).

In particular, all answers to \(p \) can be counted in \(O(n^{\text{tw}(p)} \cdot \text{ss}(p)) \) by Proposition 4.3 or in \(O(n^{\text{fc-tw}(p)}) \) by Proposition 4.4. The following lemma shows that the latter bound is tighter, so we shall rely on Proposition 4.4.

Lemma 4.5. For each conjunctive query \(p \),
\[
\text{ss}(p) \leq \text{fc-tw}(p) \leq \text{tw}(p) \cdot \max(1, \text{ss}(p)).
\]
The same holds for the \(X \)-rooted variant and the \(X \)-connex variant, for every \(X \subseteq \text{FVar}(p) \). Moreover, there exist CQs \(p \) with arbitrarily large \(\text{fc-tw}(p) \) that satisfy \(\text{fc-tw}(p) \leq \sqrt{\text{tw}(p) \cdot \text{ss}(p) + 1} \).
Let us now come back to the threshold query t. By a tree decomposition of t we shall mean a tree decomposition of the associated CQ $q \land p$. Based on this, we define all variants of tree-width for threshold queries just like for CQs. Importantly, free-connex refers to $\text{FVar}(t)$-connex, not $\text{FVar}(q \land p)$-connex. Applying Proposition 4.4 requires an $\text{FVar}(p)$-connex decomposition; that is, $\text{FTVar}(t)$-connex in terms of t, where $\text{FTVar}(t) = \text{FVar}(t) \cup \text{Var}(t)$. Moreover, to avoid manipulating full answers, we need to factorize the evaluation of q and counting answers to p grouped by $\text{FVar}(t)$ in a compatible way. This can be done if our decomposition is also $\text{FVar}(t)$-connex. Putting it together, we arrive at free-connex $\text{FTVar}(t)$-connex decompositions of t.

Example 4.6. Consider an at-least query

$$t(x, y, z) = B(x, y) \land C(x, z) \land \exists (u, v) \ r(y, u) \land s(z, v)$$

for $r(y, u) = \exists y' D(y, y') \land E(y', u)$, $s(z, v) = \exists z' D(z, z') \land E(z', v)$. Figure 1 shows a free-connex $\text{FTVar}(t)$-connex tree decomposition T_3 of minimal width, which is 3. The subqueries $r(y, u)$ and $s(z, v)$ correspond to bags $\{y\}$ and $\{z\}$, respectively, and the subtrees rooted at these bags are $\{y\}$-rooted (resp. $\{z\}$-rooted) free-connex tree decompositions for these subqueries. Consider the input database in Figure 2. Let us count the answers to $r(y, u)$ grouped by y and the answers to $s(z, v)$ grouped by z (using Proposition 4.4) and store the resulting pairs in sets $R(y)$ and $R(z)$, respectively. We get $R(y) = \{b_1, b_2, b_3, c_1, c_2\}$, where a pair $\{b, k\}$ in $R(y)$ means that for $y = b$ there are k witnessing values of u, and similarly for $R(z)$.

In terms of data complexity, however, we can improve Theorem 4.7. Here we exploit the presence of thresholds to handle queries with unbounded $\text{FTVar}(t)$-connex tree-width. We will cover not only at-least and at-most queries, but arbitrary TQs, and we will solve not only Boolean evaluation, but also constant-delay enumeration, counting answers, and sampling, all based on a single data structure. The small price we have to pay is pseudopolynomial combined complexity. Our starting point is again the problem of counting grouped answers, but this time up to a threshold.

Algorithm 1 Answers to p grouped by X up to threshold c

1. $T \leftarrow$ a nice X-rooted tree decomposition of p
2. loop through nodes u of T bottom-up
3. if u is a leaf then $A_u \leftarrow p_u(D)$
4. if u is a project node with child v then
 5. $A_u \leftarrow \text{prune}_{X_u}^c(\pi_{\text{FVar}(p)}(A_v))$
6. if u is a join node with children v_1, v_2 then
 7. $A_u \leftarrow \text{prune}_{X_u}^c(A_{v_1} \Join A_{v_2} \Rightarrow \Phi_u(D))$

Theorem 4.7. Boolean evaluation of an at-most or at-least query of $\text{free-connex } \text{FTVar}(t)$-connex tree-width d over databases of size n can be done in time $O(n^d)$. The combined complexity of the algorithm is polynomial, assuming d is constant.

In terms of combined complexity, Theorem 4.7 is optimal as both conditions imposed on tree decompositions are needed. Indeed, the hard TQs used in Proposition 3.5 have $\text{FTVar}(t)$-connex tree-width 2; and the hard Boolean TQs stemming from Proposition 3.2 have free-connex tree-width 2.

4.3 Threshold Problems for CQs

In terms of data complexity, however, we can improve Theorem 4.7. Here we exploit the presence of thresholds to handle queries with unbounded $\text{FTVar}(t)$-connex tree-width. We will cover not only at-least and at-most queries, but arbitrary TQs, and we will solve not only Boolean evaluation, but also constant-delay enumeration, counting answers, and sampling, all based on a single data structure. The small price we have to pay is pseudopolynomial combined complexity. Our starting point is again the problem of counting grouped answers, but this time up to a threshold.

Figure 2: Database from Example 4.6.
of T. By Lemma 4.2, $X_u \subseteq FVar(p_u)$. By analogy to the evaluation algorithm described in Section 4.1, for each u we solve the problem of computing answers to p_u grouped by X_u, up to threshold c over D; that is, we compute a subset $A_u \subseteq p_u(D)$ that is complete for X_u and c. The final answer is then the set obtained in the root.

If u is a leaf, then $X_u = FVar(p_u) = Var(p_u)$ and $p_u(D)$ itself is the only subset of $p_u(D)$ complete for X_u and c. Because $|Var(p_u)| \leq d$, one can compute $p_u(D)$ in time $O(D^d)$.

Consider a project node u and its unique child v. Then $X_u \subseteq X_v$. To compute A_u, the algorithm projects A_v on $FVar(p_u)$ and then, using the operation $prune(X_u)$, it groups the resulting set of bindings by X_u and keeps only c bindings from each group. It is clear that this can be done in time $O(c \cdot |D|^d)$.

Finally, consider a join node u with children v_1, v_2. As explained in Section 4.1, the set $p_u(D)$ is then the join of $p_{v_1}(D)$, $p_{v_2}(D)$, and $p_u(D)$. We compute A_u in exactly the same way, except that for each binding q of variables in X_u we only keep the first c bindings extending q and discard the remaining ones. Naïve implementation takes time $O(c \cdot |D|^d)$, but it is easy to modify the standard merge-join algorithm to achieve this in time $O(c \cdot |D|^d)$.

It is routine to check that each A_u is complete for X_u and c. □

Recall that d is very small in practice and most queries can be expected to be acyclic [16]. If we are just interested in returning answers up to a threshold c (no grouping), then the algorithm underlying the present theorem improves the state-of-the-art algorithm from $O(n^d)$ to $O(c \cdot n)$ for acyclic queries, where f is the free-connex treewidth of the query, which can be large even for acyclic queries.

4.4 Processing Threshold Queries

We now turn to processing general threshold queries. We give a unified approach to constant-delay enumeration, counting, and sampling, based on a single data structure that can be computed using the methods presented in Section 4.3.

Example 4.9. Consider again the database from Figure 2 and the query t from Example 4.6. This time we shall work with the free-connex tree decomposition T of t shown in Figure 1; it has smaller width than T. Like before, the subqueries $r(y,u)$ and $s(z,v)$ correspond to bags $\{y\}$ and $\{z\}$, respectively, and the subtrees rooted at these bags are $\{y\}$-rooted (resp. $\{z\}$-rooted) tree decompositions for these subqueries, but they are not free-connex. We count the answers to r grouped by y and the answers to s grouped by z, up to threshold 3, as described in Section 4.3, and store the results in sets $R_{\{y\}}$ and $R_{\{z\}}$, respectively. Because the counts obtained in Example 4.6 were all below 3, $R_{\{y\}}$ and $R_{\{z\}}$ are just like before. Sets $R_{\{x,y\}}$ and $R_{\{x,z\}}$ are also computed like before. For Boolean evaluation we would now put into $R_{\{x,y\}}$ all pairs (a,m) such that m is the maximal number of witnessing values u that any $y = b$ with (a,b) can provide. To support constant-delay enumeration we need to pass more information up the tree: we include all pairs (a,k) such that some $y = b$ with (a,b) can provide k witnesses (up to threshold 3); that is, we forget the values b, but we keep all values k (up to 3), not only the greatest of them. In our case, $R_{\{x,y\}} = \{(a_1,1), (a_2,1)\}$ and $R_{\{x,y\}} = \{(a_1,2), (a_1,3)\}$. In the root we store the set $R_{\{x\}}$ of values u such that some combination of $y = b$ and $z = c$ with $B(a,b)$ and $C(a,c)$ can provide at least 3 witnessing pairs of values for u and v. The set $R_{\{x\}}$ can be obtained by taking all a such that there exist $(a,m) \in R'_{\{x,y\}}$ and $(a,n) \in R'_{\{x,z\}}$ with $m \cdot n \geq 3$. In our case, $R_{\{x\}} = \{a_1\}$.

In the enumeration phase, we iterate over all combinations of $(a,m) \in R'_{\{x,y\}}$ and $(a,n) \in R'_{\{x,z\}}$ with $a \in R_{\{x\}}$. For each such combination we iterate over corresponding $(a,b,m) \in R_{\{y,u\}}$ and $(a,c,n) \in R_{\{z,u\}}$ and return (a,b,c). In our case this gives (a_1, b_1, c_1), (a_1, b_2, c_1), (a_1, b_3, c_1), and (a_1, b_3, c_2). To access relevant (a,b,m) and (a,c,n) directly, we use an index that can be built while constructing $R_{\{x,y\}}$ and $R'_{\{x,y\}}$ from $R_{\{x,y\}}$ and $R_{\{x\}}$.

To support counting and sampling, we add multiplicities to the pairs stored in the nodes of the decomposition. Specifically, for each $(a,m) \in R'_{\{x,y\}}$, we also store the number of values b with $B(a,b)$ that provide n witnesses (up to 3). In our case, the multiplicity of $(a_1,1) \in R'_{\{x,y\}}$ is 2, and all other multiplicities in $R'_{\{x,y\}}$ and $R'_{\{x,z\}}$ are 1. Similarly, for each $a \in R_{\{x\}}$ we store the number of combinations of b and c with $B(a,b)$ and $C(a,c)$ that provide at least 3 pairs of witnesses. In our case, the multiplicity of $a_1 \in R_{\{x\}}$ is 4: the witnessing combinations are (b_1, c_1), (b_2, c_1), (b_3, c_1), and (b_3, c_2). The number of answers to t is the sum of all multiplicities in the root. In our case it is 4. To sample an answer, we first sample $a \in R_{\{x\}}$ with weights given by the multiplicities. In our case we choose a_1 with probability 1. Then we sample $(a,m) \in R_{\{x,y\}}$ and $(a,n) \in R_{\{x,z\}}$ such that $m \cdot n \geq 3$ with weights given by the product of the multiplicities of (a,m) in $R'_{\{x,y\}}$ and (a,n) in $R'_{\{x,z\}}$. In our case, $(a_1, 1)$, $(a_1, 3)$ is chosen with probability $\frac{1}{4}$, and both $(a_1, 2)$, $(a_1, 3)$ and $(a_1, 2)$, $(a_1, 2)$ with probability $\frac{1}{4}$. Finally, we sample (a,b,m) and (a,c,n) uniformly among relevant triples in $R_{\{x,y\}}$ and $R_{\{x,z\}}$, respectively, and return (a,b,c). In our case, for $(a_1,1), (a_1,3)$ we choose either $(a_1, b_1, 1), (a_1, c_1, 3)$ or $(a_1, b_2, 1), (a_1, c_1, 3)$ with probability $\frac{1}{2}$, and for $(a_1, 2), (a_1, 3)$ and $(a_1, 2), (a_1, 2)$ there is only one choice; overall, each answer is returned with probability $\frac{1}{4}$.

Theorem 4.10. For TQs of free-connex tree-width d, over databases of size n, one can: count answers in time $O(n^d)$; enumerate answers with constant delay after $O(n^d)$ preprocessing; and sample answers uniformly at random in constant time after $O(n^d)$ preprocessing. Assuming d is constant, the combined complexity of each of these algorithms is pseudopolynomial.
We write c for the threshold up to which we will be counting witnesses: if $b < \infty$, we let $c = b + 1$; if $b = \infty$, we let $c = a$. Let T be a nice free-connex tree decomposition of t, of width d, and let U be the maximal free-connex set in T.

Being a tree decomposition of $r(\bar{x}, \bar{y}) = q(\bar{x}) \land \exists^a \bar{y} \ p(\bar{x}, \bar{y})$, up to dropping unused variables, T is a tree decomposition of both $p(\bar{x})$ and $q(\bar{x}, \bar{y})$. Let q_u and p_u be the corresponding subqueries associated to node u. With each node $u \in U$ we associate the set R_u of records that will provide information necessary to enumerate, count, and sample answers to t. A record for $u \in U$ is a triple (η, n, k) consisting of a binding $\eta : X_u \rightarrow \text{Adom}(D)$, a multiplicity $n > 0$, and a witness count $k \in \{0, 1, \ldots, c\}$ such that there are exactly n extensions η' of η to $\text{FVar}(q_u) \cup (\text{FVar}(p_u) \cap \text{FVar}(t))$ such that $\text{FVar}(q_u)(\eta') \in q_u(D)$ and $k = \min(c, |p_u(D, \eta')|)$. We can interpret a record (η, n, k) as a binding extending η to two fresh variables, multiplicity and witness count, with values n and k.

By Lemma 4.2, each node in u either is a U-leaf or has all its children in U. Consequently, we can compute R_u for $u \in U$ bottom-up, as in Algorithm 2. In U-leaves, we use Theorem 4.8 to get a solution $p_u(D, \text{FVar}(p_u) \cap \text{FVar}(t), c)$ to the problem of counting answers to p_u grouped by $\text{FVar}(p_u) \cap \text{FVar}(t)$ up to threshold c over D; the set $q_u(D)$ of all answers to q_u over D is computed as explained in Section 4.1. Higher up the tree, we compute R_u based on the values obtained for the children of u, by means of standard relational operators with multiset semantics, including grouping (\{\}) and antijoin (*), as well as the c-join $R_0 \bowtie \ldots \bowtie R_c$ defined as the multiset of records $\{(\eta_1, \ldots, \eta_c, n_1 \cdot \ldots \cdot n_c, \min(c, k_1 \cdot \ldots \cdot k_c)) : (\eta_1, n_1, k_1) \in R_1, \ldots, (\eta_c, n_c, k_c) \in R_c\}$ such that $\eta_1 \in \eta_2, \ldots, \eta_c$ and η is compatible with η_c. Each R_u is computed in $O(c \cdot |D|^d)$. With all R_u at hand, we can enumerate, count, and sample answers to t as in Example 4.9. □

5 THRESHOLD QUERIES IN THE WILD

In this section we give evidence that threshold queries are indeed common and useful in practice. Furthermore, we present an experimental evaluation of our algorithm.

5.1 Quantitative Study on Query Logs

We first present some analytical results on large-scale real-world query logs from Wikidata’s SPARQL query service [69]. Our study considers a corpus of more than 560M queries. (Previous work has considered a subset in the order of 200M queries [15].) These logs contain a massive amount of real-life queries, which are classified into (1) robotic (high-volume, single-source bursts) and organic (human-in-the-loop) [58]. Furthermore, the logs distinguish between successful (“OK”) and timeout (“TO”) requests.

Compared to [5, 32], this theorem provides the same complexity guarantees as for counting answers and enumerating answers for conjunctive queries, but we are able to generalize these to threshold queries (and add sampling). This generalization comes at the small cost of dependence on the value of the threshold. The results in [5, 32] can be strengthened to more refined measures such as hypertreewidth, but we believe that this is also true here.

Proof sketch. Consider a database D and a threshold query $t(\bar{x}) = q(\bar{x}) \land \exists^a \bar{y} \ p(\bar{x}, \bar{y})$.

Figure 3: Threshold value occurrence ratio in **organic** and **robotic** CRPQ logs.

Occurrences of Threshold Queries. We first report on the usage of the keywords LIMIT and ORDER BY in the Wikidata logs, which contain ~563M well-formed queries, among which ~74M are unique (Table 1). Since our algorithms apply to CRPQs, we focus on those. As can be seen in the table, these still constitute 45.2% of the queries and 56.4% of the unique ones. In the remainder of this part, whenever we write a percentage as X% (Y%), then X refers to all and Y to the unique queries i.e., the set of queries after removing duplicates.

If we simply investigate how many CRPQs use LIMIT (columns All and Unique), these numbers are not so spectacular. Indeed, around 6% (4.5%) of the CRPQs use the LIMIT operator. What is remarkable though, is that almost all these queries that use LIMIT, do not use an ORDER BY operation (bottom line of Table 1).

By looking at the data more closely, we discovered that many of these queries are rather trivial in the sense that they only use one atom (or, equivalently, just one RDF triple pattern), which means that they do not even perform a join. For this reason, we decided to zoom in on the queries with at least two atoms, see the columns All (≥ 2) and Unique (≥ 2). It turns out that the numbers change significantly: around 14.9% (45.3%) of the CRPQs with at least two triples use LIMIT, which is a significant amount. Again, we see that almost all the queries that use LIMIT, do not use ORDER BY.

This is remarkable, because a commonly held belief is that LIMIT is most often used in combination with ORDER BY, i.e., as a means to express top-k queries. But, in this major real-world query log, this is not the case. Indeed, almost all non-trivial queries using LIMIT are threshold queries, seeking to return just an arbitrary unordered sample of results. In fact, we have run the same analysis on a broader class of queries (CRPQs, which extend CRPQ with unary filter conditions) and the percentages were very similar.

LIMIT Values. We now investigate the values of the thresholds of queries in the logs. To this end, we considered the subset of CRPQs in the raw logs that use the keyword LIMIT (~15.2M queries, including duplicates). To gain deeper insight, we break down the logs into robotic (~15.2M) and organic (~44k) queries. Fig. 3 shows the relative shares of threshold values with varying numbers of digits. The figure shows that threshold values between 1 and 9 are the most common. Still, in both organic and robotic queries, we see that large threshold values (≥ 10k) are not uncommon. Since robotic logs can have large bursts of similar queries, we see that the distribution is not as smooth as for organic logs. For instance, only 0.08% of queries in the robotic logs have three-digit limit values (depicted in blue), whereas there are much more (9.2%) with four-digit values (depicted in green). The largest value we found in
robotic logs had 9 digits. In organic logs, however, we found three limit values containing 11, 14, and 17 digits, respectively.

Conclusion of Quantitative Study. Threshold queries are indeed quite common, e.g., in querying knowledge bases such as Wikidata. Since the actual values of the thresholds are typically small, our empirical study confirms the utility in practice of our pseudopolynomial algorithm (Theorem 4.10) that, in order to evaluate queries with a threshold \(k \), solely needs to maintain up to \(k + 1 \) intermediate results per each candidate answer tuple. This is in contrast with traditional query plans where the number of intermediate results per candidate answer tuple is determined by the input data and therefore potentially orders of magnitude larger.

5.2 Qualitative Study

To demonstrate further the usefulness of threshold queries in practice across diverse contemporary domains, we also performed a qualitative study on two real-world graph datasets.

Covid-19 Dataset. The Covid-19 Knowledge Graph [26] is a continuously evolving dataset, with more than 10M nodes and 25M edges, obtained by integrating various data sources, including gene expression repositories (e.g., the Genotype Tissue Expression (GTEx) and the COVID-19 Disease Map genes), as well as article collections from different scientific domains (ArXiv, BioRxiv, MedRxiv, PubMed, and PubMed Central). The inferred schema of this graph exhibits more than 60 distinct node labels and more than 70 distinct edge labels [54]. Such typing information is, however, not sufficient to express the domain-specific constraints that can be found in these real-life graph datasets. Non-trivial constraints expressible with threshold queries can be naturally crafted in order to complement the schema, as we showcase in our study.

Wikidata Dataset. Wikidata is a collaborative knowledge base launched in 2012 and hosted by the Wikimedia Foundation [67]. By the efforts of thousands of volunteers, the project has produced a large, open knowledge base with numerous applications. Wikidata can be seen as a graph database with a SPARQL endpoint that lets users and APIs run queries on its massive knowledge graph. The query logs collected along the years on this endpoint [53] constitute a useful resource for the qualitative analysis of threshold queries.

Working Method. We have manually inspected the Covid-19 Knowledge Graph schema in search of constraints that can be validated with threshold queries. We have also found a number of threshold queries by sieving through a large sample of Wikidata query logs. We analyzed the structural properties of the collected threshold queries. Below we discuss our findings with the help of five selected threshold queries from the two datasets. The queries are depicted in Figure 4. We focus on the structure of the underlying graph patterns, omitting most of the labels. Constants are in quotes, variables are in rounded rectangles, and output variables have a double edge. Wavy edges represent path expressions in the original query. For readability, we sometimes change the labels of nodes.

Selected Queries. The first example comes from the Wikidata logs and appears to be a data exploration query.

TQ1 *Return all given names with more than 1000 occurrences.*

```cypher
SELECT ?name WHERE { ?person <given_name> ?name } GROUP BY ?name HAVING (( COUNT(*) > 1000 ) );
```

A structurally similar query can help detect integrity violations in the Covid-19 Knowledge Graph. Namely, the latest release (June 2021) of the Gene Ontology (GO) contains 43917 valid terms [24, 25]. Therefore, in the Covid-19 Knowledge Graph one can check whether a protein is suspicious if it exhibits more than this number of GO terms associated to it.

TQ2 *Find each protein that has more than 43917 associated gene ontology terms.*

```cypher
MATCH (p:Protein)-[:MAPS *| PART_OF *]-(:IS_A+|PART_OF*)\( \rightarrow \) (:GOTerm) WITH p, COUNT(DISTINCT t) AS count_go WHERE count_go > 43917 RETURN p;
```

Notice the large threshold and the complex regular expression. As another example, reporting coverage in the Covid-19 Knowledge Graph demands that for each age group, in each country, there should be at least three reports for the current number of Covid cases (one for females, one for males, and one for the total). Deviations can be identified with the following threshold query.

TQ3 * Returned all given names with more than 1000 occurrences.*

```cypher
SELECT ?name WHERE { ?person <given_name> ?name } GROUP BY ?name HAVING (( COUNT(*) > 1000 ) );
```

A structurally similar query can help detect integrity violations in the Covid-19 Knowledge Graph. Namely, the latest release (June 2021) of the Gene Ontology (GO) contains 43917 valid terms [24, 25]. Therefore, in the Covid-19 Knowledge Graph one can check whether a protein is suspicious if it exhibits more than this number of GO terms associated to it.

TQ4 *Find each protein that has more than 43917 associated gene ontology terms.*

```cypher
MATCH (p:Protein)-[:MAPS *| PART_OF *]-(:IS_A+|PART_OF*)\( \rightarrow \) (:GOTerm) WITH p, COUNT(DISTINCT t) AS count_go WHERE count_go > 43917 RETURN p;
```

...Note that Cypher does not currently support concatenation (\(A \cdot B \)).
TQ3 Find each country that does not have three reports for some age group.

This query can be expressed in Cypher-like syntax as follows.

```
MATCH (c:Country)-[e:CURRENT_FEMALE | CURRENT_MALE]->(a:AgeGroup)
WITH c, a, COUNT(type(e)) AS ecount
WHERE ecount < 3 RETURN c, a;
```

We point out that this query although acyclic is not free-connex.

We also discovered that graph patterns in limit-k queries can be quite large, as in the following query from the Wikidata logs.

```
WITH J1 AS (SELECT DISTINCT A AS X1, B AS X2 FROM R),
W1 AS (SELECT X1, X2, ROW_NUMBER() OVER (PARTITION BY X1) AS RK FROM J1),
S1 AS (SELECT X1, X2 FROM W1 WHERE RK <= 10),
J2 AS (SELECT (X1, X2) AS R1, (X1, X2) AS R2 FROM R, S1 WHERE R1.B = R2.A),
W2 AS (SELECT X0, X2, ROW_NUMBER() OVER (PARTITION BY X0) AS RK FROM J2),
S2 AS (SELECT X0, X2 FROM W2 WHERE RK <= 10)
SELECT X0, X2 FROM S2 LIMIT 10;
```

For k-neigh we can use the same decomposition and the corresponding query is the same except for the last line which is

```
SELECT X0 FROM S1 GROUP BY X0 HAVING count(*) >= 10;
```

5.3 Experimental Study

As a proof-of-concept, we implemented the algorithm in Theorem 4.8 in SQL and compared it with the optimizer of a popular DBMS engine, namely the PostgreSQL 13.4 optimizer. Using SQL windowing functions, our implementation can mimic some important aspects of our query evaluation algorithm (like internal information passing up to a threshold), but we note that SQL does not allow to capture our algorithm precisely. As shown in the remainder, the results of this comparison already show the superiority of our algorithm for threshold queries compared to naive evaluation.

All the experiments were executed on an Intel Core i7-4770K CPU @ 3.50GHz, 16GB of RAM, and an SSD. We used PostgreSQL 13.4 in Linux Mint 20.2 and built our own micro-benchmark [12] consisting of the following three types of query templates:

- **q1** k-path selects up to 10 pairs of nodes linked by a k-hop path;
- **q2** k-neigh selects all nodes with \(k \geq 10 \) k-hop neighbors;
- **q3** k-conn selects all pairs of nodes linked by \(k \geq 10 \) k-hop paths.

Assuming that the database consists of a single binary relation \(R \), then these queries for \(k = 2 \) can be naturally formulated in SQL as:

```
SELECT DISTINCT R1.A, R2.B FROM R AS R1, R AS R2
WHERE R1.B = R2.A LIMIT 10;
```

```
SELECT R1.A FROM R AS R1, R AS R2
WHERE R1.B = R2.A GROUP BY R1.A HAVING COUNT(DISTINCT R2.B) >= 10;
```

```
SELECT X0, X2 FROM
(SELECT DISTINCT R1.A AS X0, R1.B AS X1, R2.B AS X2
FROM R AS R1, R AS R2 WHERE R1.B = R2.A) AS SUB
GROUP BY X0, X2 HAVING COUNT(*) >= 10;
```

In the following, we will refer to these formulations as the baseline formulations of the queries.

We compared these queries with alternative formulations in SQL that mimic crucial aspects of our evaluation algorithm and that can be understood as follows. A simple decomposition for k-path is a tree with a single branch and one node per each joined copy of table \(R \). For this decomposition and \(k = 2 \) the algorithm in Theorem 4.8 amounts to evaluating the following query:

```
WITH J1 AS (SELECT DISTINCT A AS X1, B AS X2 FROM R),
W1 AS (SELECT X1, X2, ROW_NUMBER() OVER (PARTITION BY X1) AS RK FROM J1),
S1 AS (SELECT X1, X2 FROM W1 WHERE RK <= 10),
J2 AS (SELECT DISTINCT R.A AS X0, X2 FROM R, S1 WHERE R.B = S1.X1),
W2 AS (SELECT X0, X2, ROW_NUMBER() OVER (PARTITION BY X0) AS RK FROM J2),
S2 AS (SELECT X0, X2 FROM W2 WHERE RK <= 10)
SELECT X0, X2 FROM S2 LIMIT 10;
```

```
SELECT J1 AS (SELECT DISTINCT A AS X1, B AS X2 FROM R),
W1 AS (SELECT X1, X2, ROW_NUMBER() OVER (PARTITION BY X1) AS RK FROM J1),
S1 AS (SELECT X1, X2 FROM W1 WHERE RK <= 10),
J2 AS (SELECT DISTINCT R.A AS X0, X2 FROM R, S1 WHERE R.B = S1.X1),
W2 AS (SELECT X0, X2, ROW_NUMBER() OVER (PARTITION BY X0) AS RK FROM J2),
S2 AS (SELECT X0, X2 FROM W2 WHERE RK <= 10)
SELECT X0, X2 FROM S2 LIMIT 10;
```

```
WITH J1 AS (SELECT DISTINCT A AS X1, B AS X2 FROM R),
W1 AS (SELECT X1, X2, ROW_NUMBER() OVER (PARTITION BY X1) AS RK FROM J1),
S1 AS (SELECT X1, X2 FROM W1 WHERE RK <= 10),
J2 AS (SELECT DISTINCT R.A AS X0, X2 FROM R, S1 WHERE R.B = S1.X1),
W2 AS (SELECT X0, X2, ROW_NUMBER() OVER (PARTITION BY X0) AS RK FROM J2),
S2 AS (SELECT X0, X2 FROM W2 WHERE RK <= 10)
SELECT X0, X2 FROM S2 LIMIT 10;
```

For k-neigh we can use the same decomposition and the corresponding query is the same except for the last line which is

```
SELECT X0 FROM S1 GROUP BY X0 HAVING count(*) >= 10;
```

For k-conn we can also use the same decomposition but the corresponding query is a bit different, as we need to collect the whole paths, not just their endpoints. We refer to these alternative implementations as the windowed versions of the queries. Natural query plans for the windowed versions have worst-case complexity \(O(k \cdot n) \) for k-path and k-neigh, and \(O(k \cdot n^2) \) for k-conn.

Datasets. We considered two kinds of data sets:

1. **Real-world data.** We used the IMDb dataset [2], which contains information about movies and related facts about actors, directors, production companies, etc. In our experiments, we focused on the `movie_link` relation, which has a graph-like structure, so that finding paths is meaningful.

2. **Barabási-Albert graphs [18].** We used synthetic data sets that model the structure of social networks, with varying parameters of \(n \) (total number of nodes to add) and \(m_0 \) (number of edges to attach from newly added nodes to existing nodes).

We repeated each experiment several times and report the median.

First Experiment. We compared the running time of the baseline and windowed versions of \((q1)-(q3)\) for varying values of \(k \) on both the IMDb and synthetic data sets, both on fully indexed and non-indexed databases. Table 2 shows the results for the non-indexed case. We see that our approach (windowed) outperforms the baseline with speedups up to three orders of magnitude, while the baseline times out (T/O) for higher values of \(k \). The running times of the windowed versions reflect the good theoretical bounds, while the baseline clearly shows exponential dependence on \(k \). For the indexed case, leveraging the DBMS’s default indexes, the baseline ran only marginally faster (\(\pm 5\% \)), remaining three orders of magnitude slower than our algorithm.

Second Experiment. In this second experiment, we wanted to assess the impact of the structure and size of the data on the runtimes of our algorithm. To this purpose, we have employed the Barabási-Albert synthetic graphs with varying outdegree (\(m_0 \)) and number of nodes (\(n \)) and considered query \(q2 \) with \(k = 3 \). Table 3 shows the different speedups that the windowed approach offers, when compared to the baseline. We varied \(m_0 \) from 5 to 25, using increments of 5, and varied \(n \) from 32 to 1M in a logarithmic
Table 2: Experimental evaluation for the baseline (b) and windowed (w) versions of (q1–q3) on the IMDb database (left) and on Barabási-Albert graphs (right) with \(m_0 = 10 \) and \(n = 3000 \). Time is measured in ms. Better running time is depicted in bold.

\(m_0 \)	1	2	3	4	5	6	7	8	9	10
\(q_1/b \)	39	277	1,517	103,449	T/O	T/O	T/O	T/O	T/O	T/O
\(q_1/w \)	39	58	69	88	97	115	132	148	162	176
\(q_2/b \)	50	349	5,742	134,970	T/O	T/O	T/O	T/O	T/O	T/O
\(q_2/w \)	44	63	74	93	104	119	137	150	167	180
\(q_3/b \)	94	652	11,568	267,176	T/O	T/O	T/O	T/O	T/O	T/O
\(q_3/w \)	146	690	2,695	5,266	10,679	18,400	31,020	48,942	74,795	103,054

Table 3: Experimental evaluation of the speedup factor (the ratio of baseline to windowed) for \(q_2 \) on Barabási-Albert graphs for varying \(n \) and \(m_0 \).

\(m_0 \) \(\times n \)	32	100	316	1k	3.2k	10k	32k	100k	316k	1M
5	0.6	1.8	3.0	3.6	4.6	5.7	6.7	7.7	8.7	10.0
10	1.4	6.8	13.8	22.8	29.7	37.1	40.0	73.5	T/O	T/O
15	2.1	16.5	46.6	66.2	90.5	120.4	T/O	T/O	T/O	T/O
20	1.1	35.4	96.0	149.1	192.8	404.3	T/O	T/O	T/O	T/O
25	0.6	55.2	184.7	272.5	351.7	1,235	T/O	T/O	T/O	T/O

scale with increment factor of \(\sqrt{10} \approx 3.16 \). In the table, we see that the speedup factor of the windowed approach increases by up to three orders of magnitude as the size of the data and out-degree \(m_0 \) increase. T/O means that the baseline approach timed out (> 30 minutes). For all entries in Table 3, the windowed algorithm terminated under 15 minutes. These results show the robustness of our algorithm to variations of dataset size and outdegree as well as its superiority with respect to the baseline.

6 RELATED WORK

Top-k and Any-k. The potential of predefined thresholds to speed up query processing was first noticed by Carey and Kossmann [18], who explored ways of propagating thresholds down query plans, dubbed \textit{LIMIT pushing}. This early study only considered applying the thresholds directly to subplans, which made joins a formidable obstacle. In contrast, we first group the answers to subqueries by variables determined based on the structure of the whole query, and then apply thresholds within groups; this way we can push thresholds down through multi-way joins, guided by a tree decomposition of the query. Most follow-up work concerns the ranked scenario, where the goal is to compute top-k answers according to a specified preference order. The celebrated Threshold Algorithm [33] solves the top-k selection problem: it operates on a single vertically-partitioned table, with each partition being managed by a different external service that only knows the scores of base tuples in its own partition, and produces \(k \) tuples with the highest score while minimizing the number of reads. There are also multiple approaches to the more general top-k join problem. \(J^* \) [60] is based on the A* search algorithm: it maintains a priority queue of partial and complete join combinations ordered by the upper bounds of their scores. Rank-Join [43] maintains scores for complete join combinations only, and stops when new combinations cannot improve the current top-k. LARA-J* [59] offers improved handling of multi-way joins. FPRA [35] keeps the number of reads within a constant factor of the optimal. Overall, the focus and the main challenge in top-k processing is ordering the answers according to their ranking scores [44]. In the unranked case, when this challenge is absent, the rich body of work on top-k processing does not go beyond the initial observations made by Carey and Kossmann [18]. NeedleTail [50, 51] specifically focuses on providing any-k answers to queries without ORDER BY clauses, but it only handles key-foreign key joins, which dominate in the OLAP scenarios. In contrast, we support arbitrary CQs (i.e., select-project-join queries), allowing the complexity to grow with the tree-width (Theorem 4.8). Moreover, any-k evaluation of CQs is just a building block of the processing of much more general threshold queries.

Runtime optimization. A large body of research on query processing led to powerful optimization techniques, such as \textit{aggregate pushing} [20, 21, 40, 70] and \textit{sideways information passing} [10, 22, 46, 57, 62]. These techniques aim to speed up the execution of a given join plan and rely on a cost model to heuristically approximate instance-optimal plans. Our focus is on reducing the search space of the heuristic methods by identifying plans with good worst-case guarantees. Such plans can be further improved towards instance-optimality, using classical techniques. For LIMIT queries the combination of sideways information passing and LIMIT pushing might be beneficial. Indeed, if we can ensure that each tuple produced by the subplan extends to a full answer, then we can stop the execution of the subplan when the desired number of tuples is output. For general threshold queries, the potential for such optimization is less clear. There, instead of a global limit on the number of answers we have a per-group limit. Consequently, the execution of the subplan can be stopped only when each group has sufficiently many tuples. The level of savings depends on the order in which the subplan produces its results. Such optimization goes beyond the scope of our paper, but is a promising direction for future work.

Quantified Graph Patterns. Fan et al. [34] introduced quantified graph patterns (QGP) that allow expressing nested counting properties like having at least 5 friends, each with at least 2 pets. Moreover, QGPs adopt isomorphism matching, whereas threshold queries follow the standard semantics of database queries.

Aggregate Queries. In the context of factorized databases, Babić et al. [6] observed that pushing aggregation down through joins can speed up evaluating queries. These results can be reinterpreted in the context of tree decompositions [61], but they optimize different aggregates in isolation and do not investigate the interplay...
between counting and existential quantification. AJAR (aggregations and joins over annotated relations) [47] and FAQs (functional aggregate queries) [49] are two very general sister formalisms capturing, among others, CQs enriched with multiple aggregate functions. Because different aggregate functions are never commutative, the evaluation algorithms for both these formalisms require decompositions consistent with the order of aggregating operations. For example, when applied to counting answers to CQs, this amounts to free-connex decompositions, as in our Proposition 4.4. In contrast, we remove the free-connex assumption by showing that counting up to a threshold and existential quantification can be reordered at the cost of keeping additional information of limited size.

Counting Answers. For projection-free CQs, the complexity of counting answers is tightly bound to tree-width [27, 37], just like in the case of Boolean evaluation [38, 39], but the presence of projection makes counting answers intractable even for acyclic CQs [63]. Efficient algorithms for counting answers require not only low tree-width but also low star-size [32]. However, when the problem is relaxed to randomized approximate counting, low tree-width is enough [2], just like for Boolean evaluation. Our results imply that for a different relaxation — counting exactly, but only up to a given threshold — CQs of low tree-width can also be processed efficiently. However, we go far beyond CQs and show how to count answers to threshold queries (which themselves generalize counting answers to CQs up to a threshold).

Enumerating Answers. Also in the context of constant-delay enumeration low tree-width is not enough to guarantee efficient algorithms: the query needs to have low free-connex tree-width [5]. Importantly, even acyclic queries can have very large free-connex tree-width. Tree-width with can be replaced with fractional hypertree-width [28, 48, 61] or submodular width [9] but always in the restrictive free-connex variant. Tzialevas et al. [64, 65] partially lift these results to the setting of ranked enumeration, where query answers must be enumerated according to a predefined order; the lifted results allow enumeration with logarithmic delay and handle projection-free CQs of low submodular width as well as free-connex acyclic CQs (but not general CQs). In this work, we show that if the number of needed answers is known beforehand, general CQs of low tree-width can be processed efficiently even if they have large free-connex tree width. Moreover, this result is only the starting point for processing general threshold queries, for which we also provide constant-delay enumeration algorithms.

Sampling Answers. Sampling query answers was identified as an important data management task by Chaudhuri at al. [19], who proposed a simple algorithm for sampling the join \(S \bowtie T \) by sampling a tuple \(s \in S \) with weight \(|T \bowtie \{s\}| \) and then uniformly sampling a tuple \(t \in T \bowtie \{s\} \). Using the alias method for weighted sampling [66, 68], this algorithm can be implemented in such a way that after a linear preprocessing phase, independent samples can be obtained in constant time. This approach was generalized to acyclic projection-free CQs [72]. We extend the latter result in three ways: we handle non-acyclic CQs, allowing the complexity to grow with the tree-width; we can allow projection, at the cost of replacing tree-width with its faster growing free-connex variant; and we handle threshold queries, rather than just CQs. A different approach to non-acyclic projection-free CQs [23] provides a uniform sampling algorithm with guarantees on the expected running time; this is incomparable to constant-time sampling after polynomial-time preprocessing, offered by our approach. Finally, Arenas et al. [2] show that efficient almost uniform sampling is possible for CQs of low tree-width. Here, almost uniform means that the algorithm approximates the uniform distribution up to a multiplicative error; this is a weaker notion than uniform sampling. Let us also reiterate that the all these papers only consider CQs, not threshold queries.

7 Conclusions and Future Work

In this paper, we have embarked on a deep theoretical study of a newly identified class of threshold queries. Our extensive empirical study shows that threshold queries are highly relevant in practice as witnessed by their utility in real-world knowledge graphs and their presence in massive query logs. Our theoretical investigation shows that threshold queries occupy a distinctive spot in the landscape of database querying problems. Indeed, our complexity analysis proves that threshold queries allow for a more efficient evaluation than solutions for closely related problems of counting query answers, constant-delay query answer enumeration, and top-\(k \) querying.

As one of the first future steps, we intend to gauge thoroughly the performance of the proposed algorithms. Designing adequate protocols for experimental evaluation requires a deep understanding of the relationships between evaluation of threshold queries and the related querying problems, which we have already accomplished in the present paper. We intend to carry out a comprehensive implementation of threshold queries in an existing database system similarly to how algorithms of top-\(k \) queries have been implemented and evaluated [56]. More precisely, we will implement dedicated threshold-aware variants of relational operators and then we will introduce them in the query planning stage.

Our work has led us to identify remarkable similarities in the query answering methods tackling counting and enumerating answers: they rely on various techniques for compiling out existentially quantified variables. We plan to pursue this discovery further and give full treatment to the emerging question: is there a unifying framework for assessing threshold queries and the related problems? Further theoretical results about threshold queries can be envisioned, such as establishing a dichotomy of evaluation complexity and identifying a condition under which evaluation is strongly polynomial, rather than pseudopolynomial.

Acknowledgments

This work stems from a larger effort on developing schemas for property graph databases, including cardinality constraints, led by the LDBC Property Graph Schema Working Group. We thank Andrea Calì, Leonid Libkin, Victor Lee, Juan Sequeda, Bryon Jacob, and Michael Schmidt for their useful comments and early feedback.

This work was partially supported by DFG grants 369116833 and 431183758 (Martens); NCN grant 2018/30/E/ST6/00042 (Murlak); ANR-21-CE48-0015 VeriGraph (Bonifati); EU Horizon 2020 research and innovation programme under grant agreement No 825041 (Fletcher).
