ON ENDO-SEMIPRIME AND ENDO-COSEMPRIME MODULES

P. KARIMI BEIRANVAND AND R. BEYRANVAND∗

Communicated by M.A. Iranmanesh

ABSTRACT. In this paper, we study the notions of endo-semiprime and endo-cosemiprime modules and obtain some related results. For instance, we show that in a right self-injective ring \(R \), all nonzero ideals of \(R \) are endo-semiprime as right (left) \(R \)-modules if and only if \(R \) is semiprime. Also, we prove that both being endo-semiprime and being endo-cosemiprime are Morita invariant properties.

1. INTRODUCTION

Throughout this paper, all rings have identity elements and all modules are right unitary. Unless otherwise stated, \(R \) denotes an arbitrary ring with identity element. If \(M \) is a right (resp., left) \(R \)-module, we use the notation \(M_R \) (resp., \(_R M \)). Let \(M \) be an \(R \)-module. If \(N \) is a submodule of \(M \), we write \(N \leq M \) and the annihilator of \(N \) (in \(R \)) is denoted by \(\text{ann}_R(N) = \{ r \in R \mid Nr = 0 \} \). Also, \(N \leq M \) is called a fully invariant submodule of \(M \) if for every \(R \)-endomorphism \(f : M \rightarrow M \), \(f(N) \subseteq N \).

DOI:http://dx.doi.org/10.29252/asta.5.1.69
MSC(2010): 16D10, 16D90, 16N60.
Keywords: Endo-prime modules; endo-semiprime modules; endo-coprime modules; endo-cosemiprime modules.
Received: 15 February 2018, Accepted: 29 September 2018
∗Corresponding author

© 2018 Yazd University.
An R-module M is said to be quasi injective if for any submodule N of M, any R-homomorphism from N to M can be extended to an endomorphism of M. A proper ideal P of a ring R is called a prime ideal of R if for any two ideals I and J of R, $IJ \subseteq P$ implies that $I \subseteq P$ or $J \subseteq P$. Also, P is called a semiprime ideal of R if for any ideal I of R, $I^2 \subseteq P$ implies that $I \subseteq P$. The notion of prime ideals was extended from rings to modules by Dauns in [3]. In fact, a nonzero R-module M is called prime if $\text{ann}_R(M) = \text{ann}_R(N)$, for every nonzero submodule N of M. Also, a nonzero R-module M is called semiprime if $\text{ann}_R(N)$ is a semiprime ideal of R, for any nonzero submodule N of M. The dual of prime modules was introduced and studied by Ceken, Alkan and Smith in [2]. In fact, a nonzero R-module M is called coprime if $\text{ann}_R(M/N) = \text{ann}_R(M/N)$, for any proper submodule N of M. Also, a nonzero R-module M is called cosemiprime if $\text{ann}_R(M/N)$ is a semiprime ideal of R, for any proper submodule N of M. It is easy to see that every prime (resp., coprime) R-module is semiprime (resp., cosemiprime). More details about these notions can be found in [1, 6, 8].

Let M be a right R-module and $S = \text{End}(M_R)$. In [2], the authors introduced and studied the notion of endo-prime modules. In fact, M is called endo-prime if for any nonzero fully invariant submodule N of M and any $f \in S$, $fN = 0$ implies that $f = 0$, i.e., $\text{ann}_S(N) = 0$, for any nonzero fully invariant submodule N of M. In this paper, we generalize this notion as follows: we say that M is endo-semiprime if $\text{ann}_S(N)$ is a semiprime ideal of S for any nonzero fully invariant submodule N of M. Also, we introduce and study the dual notion of endo-semiprime. A nonzero right R-module M is called endo-cosemiprime if $\text{ann}_S(M/N)$ is a semiprime ideal of S, for any proper fully invariant submodule N of M_R. Among other results, we prove that if M_R is epi-retractable (resp., co-mono-retractable) such that $S = \text{End}(M_R)$ is a semiprime ring, then M_R is endo-semiprime (resp., endo-cosemiprime) (Proposition 2.11). Also, it is shown that every semisimple module is both endo-semiprime and endo-cosemiprime (Corollary 2.14).

2. Endo-semiprime and endo-cosemiprime modules

Definition 2.1. Let M be a nonzero right R-module and $S = \text{End}(M_R)$.

(a) M is called endo-semiprime if for any nonzero fully invariant submodule N of M, $\text{ann}_S(N)$ is a semiprime ideal of S.

(b) M is called endo-cosemiprime if for any proper fully invariant submodule N of M,
$\text{ann}_{S}(M/N)$ is a semiprime ideal of S.

For example, if the integer number n is square-free, then $\mathbb{Z}/n\mathbb{Z}$ as \mathbb{Z}-module is endo-
semiprime. Because $n\mathbb{Z}$ is a semiprime ideal of \mathbb{Z}, see Corollary 2.11. Also, from the above
definition, we can easily see that if M_{R} is endo-semiprime, then $S = \text{End}(M_{R})$ is a semiprime
ring. We will show that $\mathbb{Z}_{p^{\infty}}$ is endo-cosemiprime while is not endo-semiprime, see Example
2.13. Also, it is easy to see that if M_{R} is endo-cosemiprime, then $S = \text{End}(M_{R})$ is a semiprime
ring.

Proposition 2.2. Let M be a right R-module and $S = \text{End}(M_{R})$. Then M_{R} is endo-semiprime
(resp., endo-cosemiprime) if and only if SM is a semiprime (resp., cosemiprime) module.

Proof. First suppose that M_{R} is endo-semiprime and $0 \neq N \leq SM$. Then NR is a fully
invariant submodule of M and by hypothesis, $\text{ann}_{S}(NR)$ is a semiprime ideal of S. Clearly,
$\text{ann}_{S}(NR) = \text{ann}_{S}(N)$ and this shows that SM is semiprime. Conversely, if SM is semiprime,
then it is clear that M_{R} is endo-semiprime.

Now, let M_{R} be an endo-cosemiprime module and K be a proper submodule of SM. We set
$J = \text{ann}_{S}(M/K)$. Then $JM \subseteq K \subseteq SM$ and so JM is a proper fully invariant submodule of
M_{R}. Since M_{R} is endo-cosemiprime, $\text{ann}_{S}(M/JM)$ is semiprime. On the other hand, we have
$J \subseteq \text{ann}_{S}(M/JM) \subseteq \text{ann}_{S}(M/K) = J$. Thus, $\text{ann}_{S}(M/JM) = \text{ann}_{S}(M/K)$ is semiprime
and hence, SM is cosemiprime. Conversely, if K is a proper fully invariant submodule of M_{R},
then K is a proper submodule of SM and so by assumption $\text{ann}_{S}(M/K)$ is semiprime. \Box

We need the following lemmas.

Lemma 2.3. Let M be a right R-module and I be an ideal of R such that $MI = 0$. Then

(1) $\text{End}(M_{R}) = \text{End}(M_{R/I})$;

(2) M_{R} is endo-semiprime if and only if $M_{R/I}$ is endo-semiprime;

(3) For any submodule N of M, $\text{ann}_{R}(N)$ is a semiprime ideal in R if and only if $\text{ann}_{R/I}(N)$
is a semiprime ideal in R/I.

Proof. (1) Since $mr = m(r + I)$, for any $r \in R$ and $m \in M$, we have $\text{End}(M_{R}) = \text{End}(M_{R/I})$.

(2) For any $N \subseteq M$, we have N is a fully invariant submodule of M_{R} if and only if N is a
fully invariant submodule of $M_{R/I}$. Now, the result follows from part (1).

(3) We first assume that $\text{ann}_{R}(N)$ is a semiprime ideal in R, where N is a submodule of
M_{R}. Let $a \in R$ and $(a + I)R/I(a + I) \subseteq \text{ann}_{R/I}(N)$. Then $N(a + I)R/I(a + I) = 0$ and so
$N(a + I)(r + I)(a + I) = 0$, for any $r \in R$. Thus $N(ar + I) = Nara = 0$, for any $r \in R$. This
implies that $NaRa = 0$ and since $\text{ann}_{R}(N)$ is semiprime, $Na = 0$. Therefore, $N(a + I) = 0$
and so \(a + I \in \text{ann}_{R/I}(N) \). Thus \(\text{ann}_{R/I}(N) \) is a semiprime ideal in \(R/I \). The argument for the converse is similar. \(\square \)

Lemma 2.4. Let \(M \) be a right \(R \)-module and \(I \) be an ideal of \(R \) such that \(MI = 0 \). Then

1. \(M_R \) is endo-cosemiprime if and only if \(\text{ann}_{R/I}(M/N) \) is a semiprime ideal in \(R/I \);
2. For any submodule \(N \) of \(M \), \(\text{ann}_R(M/N) \) is a semiprime ideal in \(R \) if and only if \(\text{ann}_{R/I}(M/N) \) is a semiprime ideal in \(R/I \).

Proof. By the equality \(\text{End}(M_R) = \text{End}(M_{R/I}) \), (1) is clear.

For see (2), we first assume that \(\text{ann}_R(M/N) \) is a semiprime ideal in \(R \), where \(N \) is a submodule of \(M_R \). Let \(a \in R \) and \((a + I)R/I(a + I) \subseteq \text{ann}_{R/I}(M/N) \). Then \(M/N(a + I)R/I(a + I) = 0 \) and so \(M(a + I)(r + I)(a + I) \subseteq N \), for any \(r \in R \). Thus \(M(ar + I) = MaRa \subseteq N \), for any \(r \in R \). This implies that \(MaRa \subseteq N \) and since \(\text{ann}_{R}(M/N) \) is semiprime, \(Ma \subseteq N \). Therefore, \(M(a + I) \subseteq N \) and so \(a + I \in \text{ann}_{R/I}(M/N) \). Thus \(\text{ann}_{R/I}(M/N) \) is a semiprime ideal in \(R/I \). The argument for the converse is similar. \(\square \)

For any two non-empty subsets \(A \) and \(B \) of a ring \(R \), we denote the set \(\{ r \in R \mid rA \subseteq B \} \) by \((A : B)_l \).

Lemma 2.5. Let \(I \) be a proper right ideal in a ring \(R \). Then the cyclic right \(R \)-module \(R/I \) is endo-semiprime (resp., endo-cosemiprime) if and only if for any right ideal \(J \) that properly contains \(I \) and \((I : I)_l \subseteq (J : J)_l \) the following holds, for any \(r \in R \):

\[
\begin{align*}
\text{if } r(I : I)_l & \subseteq (J : J)_l \Rightarrow r \in (J : I)_l, & (\star) \\
\text{resp., } r(I : I)_l & \subseteq (R : J)_l \Rightarrow r \in (R : J)_l. & (\star\star)
\end{align*}
\]

Proof. It is easy to see that:

1. \(\text{End}((R/I)_R) \cong (I : I)_l/I. \)
2. A submodule \(J/I \) of the right \(R \)-module \(R/I \) is fully invariant if and only if \((I : I)_l \subseteq (J : J)_l \).

Now, suppose that \((R/I)_R \) is endo-semiprime and \(I \nsubseteq J \) is a right ideal of \(R \) such that \((I : I)_l \subseteq (J : J)_l \). By (2) in the above, \(J/I \) is a fully invariant submodule of \((R/I)_R \). Then its left annihilator in \(\text{End}((R/I)_R) \) is semiprime and so is in the ring \((I : I)_l/I \) by (1). This implies that for any \(r + I \in (I : I)_l/I \), if \((r + I)\frac{(I : I)_l}{I}(r + I) \subseteq J/I \), then \((r + I)J/I = 0 \). In other words; if \((r(I : I)_l)J \subseteq I \), then \(rJ \subseteq I \). Conversely, let \(J/I \) be a fully invariant submodule in \((R/I)_R \). Then by (2), \((I : I)_l \subseteq (J : J)_l \) and by the relation (\(\star \)), the left annihilator of \(J/I \) is semiprime in \((I : I)_l/I \). So \((R/I)_R \) is endo-semiprime. For endo-cosemiprime, the proof is similar to the first part. \(\square \)
Proposition 2.6. Let I be a proper ideal in a ring R.

(1) If $(R/I)_R$ is endo-semiprime, then for any ideal J in R that properly contains I, $(J : I)_I$ is a semiprime ideal in R.

(2) $(R/I)_R$ is endo-cosemiprime if and only if any ideal J that contains I, is semiprime.

Proof. (1) Let $I \subseteq J$ be an ideal of R and $(R/I)_R$ be endo-semiprime. Then by Lemma 2.3, $(R/I)_R = I$ is endo-semiprime and so $\text{ann}_S(J/I)$ is a semiprime ideal of S, where $S = \text{End}((R/I)_R/I)$. Since $\text{End}((R/I)_R/I) \cong R/I$, we have $\text{ann}_{R/I}(J/I)$ is a semiprime ideal of R/I. Again by Lemma 2.3, $\text{ann}_{R}(J/I) = (J : I)_I$ is a semiprime ideal of R.

(2) It is an easy consequence of the Lemma 2.4 and this fact that $\text{End}(R) \cong R$, for any ring R.

Corollary 2.7. Let I be a proper ideal in a ring R. Then I is semiprime if and only if $(R/I)_R$ is endo-semiprime.

Proof. If $(R/I)_R$ is endo-semiprime, then by setting $J = R$, in Proposition 2.6, we have $(R : I)_I = \{ r \in R \mid rR \subseteq I \} = I$ is a semiprime ideal of R. Conversely, let I be semiprime and J be a right ideal in R such that properly contains I and $(I : J)_I \subseteq (J : J)_I$. Since $(I : J)_I = R$, we have $(J : J)_I = R$ and hence, J is a two-sided ideal of R. Now, suppose that $(r(I : I)_I)_rJ \subseteq I$. Then $rRrJ \subseteq I$ and since J is two-sided ideal, we have $RrRrJ = RrRrJ = RrRrJ \subseteq RI = I$. This implies that $RrRJ \subseteq I$. Thus, $rJ \subseteq I$ and by Lemma 2.5, $(R/I)_R$ is endo-semiprime.

Now, the following result is immediate.

Corollary 2.8. The following conditions are equivalent:

(1) R is a semiprime ring;
(2) R_R is endo-semiprime;
(3) R_R is endo-semiprime.

Corollary 2.9. (1) R_R is endo-cosemiprime if and only if every proper ideal of R is semiprime.

(2) If I is a right ideal in a ring R such that $(R/I)_R$ is an endo-semiprime R-module, then I behaves like a semiprime ideal, i.e., for any $a \in R$, $aRa \subseteq I$ concludes that $a \in I$.

(3) If R_R is endo-cosemiprime, then R is a semiprime ring.

(4) If R_R is endo-cosemiprime, then R_R is endo-semiprime.

Proof. (1) It follows from Proposition 2.6(2), by setting $I = 0$.

(2) Note that $(R : I)_I = I$ and $(I : I)_I \subseteq (R : R)_I = R$. If $aRa \subseteq I$, where $a \in R$, then by Lemma 2.5, $a \in (R : I)_I = I$.

(3) It follows from Corollary 2.6 because the zero ideal is a prime ideal in R.

(4) It follows from part (3) and Corollary 2.8.

Remark 2.10. In Corollary 2.9, the converse of part (4) is not true in general. For example, \mathbb{Z}_2 is endo-semiprime because \mathbb{Z} is a semiprime ring. But it is not endo-cosemiprime because $4\mathbb{Z}$ is a proper ideal of \mathbb{Z} that is not semiprime.

A right R-module M is called retractable if for any nonzero submodule N in M, $\text{Hom}_R(M, N) \neq 0$ and M_R is called epi-retractable if for any nonzero submodule N in M, $\text{Hom}_R(M, N)$ contains a surjective element.

A right R-module M is called co-retractable if for any proper fully submodule K in M, $\text{Hom}_R(M/K, M) \neq 0$. Also, an R-module M is called co-mono-retractable if for any proper submodule K in M, $\text{Hom}_R(M/K, M)$ contains an injective element; equivalently there exists a nonzero homomorphism $h \in \text{End}(M_R)$ such that $\ker h = K$. For more details see [4].

Proposition 2.11. Let M_R be epi-retractable (resp., co-mono-retractable) such that $S = \text{End}(M_R)$ is a semiprime ring. Then M_R is endo-semiprime (resp., endo-cosemiprime)

Proof. First suppose that M_R is epi-retractable. Let N be a nonzero fully invariant submodule of M_R and $fSfN = 0$, where $f \in S = \text{End}(M_R)$. By assumption, there exists $0 \neq g \in S$ such that $g(M) = N$. Thus, $fSfgM = 0$ and so $fgSfgM = 0$. Since S is semiprime, $fg = 0$ and hence, $fgM = fN = 0$.

For the second part, suppose that M_R is co-mono-retractable. Let K be a proper fully invariant submodule of M and $f \in S = \text{End}(M_R)$ such that $fSf(M) \subseteq K$. By assumption, there exists a nonzero homomorphism $h \in S$ such that $\ker h = K$. Then $hfSfh(M) \subseteq hfSf(M) \subseteq h(K) = 0$. Since S is semiprime, $hf(M) = 0$ and hence, $f(M) \subseteq \ker h = K$. \square.

Remark 2.12. The epi-retractable property is required in Proposition 2.11. For example, if p is a prime number, then \mathbb{Z}_p^∞ is not epi-retractable \mathbb{Z}-module and its endomorphism ring is the integral domain of p-adic integers that is a semiprime ring, but \mathbb{Z}_p^∞ is not an endo-semiprime \mathbb{Z}-module. Because if f is the homomorphism by multiplication p, then $f < \frac{1}{p^2} > 0$ whereas $f^2 < \frac{1}{p^2} = 0$.

Remark 2.10, together with the following example show that the concepts of endo-semiprime and endo-cosemiprime are independent conditions.

Example 2.13. \mathbb{Z}_p^∞ is an endo-cosemiprime \mathbb{Z}-module. Because for any proper submodule K in \mathbb{Z}_p^∞, $\mathbb{Z}_p^\infty/K \cong \mathbb{Z}_p^\infty$ as \mathbb{Z}-modules. Thus, \mathbb{Z}_p^∞ is co-mono-retractable and so by Proposition 2.11, \mathbb{Z}_p^∞ is endo-cosemiprime. However, by Remark 2.11, \mathbb{Z}_p^∞ is not endo-semiprime.
Corollary 2.14. Every semisimple \(R \)-module is both endo-semiprime and endo-cosemiprime.

Proof. Let \(M \) be a semisimple \(R \)-module. Then \(\text{End}(M_R) \cong \oplus_{\alpha \in A} \mathbb{RFM}_{\Gamma_{\alpha}}(D_{\alpha}) \), for some suitable division ring \(D_{\alpha} \) and nonempty set \(\Gamma_{\alpha} \), where \(\mathbb{RFM}_{\Gamma_{\alpha}}(D_{\alpha}) \) denotes a row finite \(\Gamma_{\alpha} \)-matrix ring over ring \(D_{\alpha} \). We note that for any \(\alpha \in A \), \(\mathbb{RFM}_{\Gamma_{\alpha}}(D_{\alpha}) \) is a prime ring and so \(\text{End}(M_R) \) is semiprime. Now, \(M \) is endo-semiprime by Proposition 2.11. On the other hand, since any semisimple \(R \)-module is co-mono-retractable, by Proposition 2.11, \(M \) is endo-cosemiprime.

The following example indicates that an endo-prime module is not necessarily an endo-semiprime module.

Example 2.15. Let \(M = N_1 \oplus N_2 \) be a semisimple module such that simple submodules \(N_1 \) and \(N_2 \) are not isomorphic. By Corollary 2.14, \(M \) is endo-semiprime but it is not endo-prime, because \(\text{End}(M_R) \cong \text{End}(N_1) \oplus \text{End}(N_2) \) is not prime.

Proposition 2.16. Let \(M_R \) be an endo-semiprime \(R \)-module. If either \(R \) is a commutative ring or \(M \) is retractable, then \(M \) is semiprime.

Proof. First assume that \(R \) is commutative, \(N \) is a nonzero submodule of \(M \) and \(a \in R \) such that \(a^2 \in \text{ann}_R(N) \). We define \(R \)-homomorphism \(f \) as follows:

\[
f : M \to M \\
f(x) = xa.
\]

Then \(f(SN) = SNa \) is a fully invariant submodule of \(M \), where \(S = \text{End}(M_R) \). Thus, for any \(h \in S \);

\[
fhf(SN) = fh(SNa) = fh(SN)a \subseteq f(SN)a = (SNa)a = SNa^2 = 0,
\]

and so \(fSf(SN) = 0 \). Since \(M_R \) is endo-semiprime and \(SN \) is a fully invariant submodule of \(M \), \(\text{ann}_R(SN) \) is semiprime and hence, \(Na = 0 \), as desired.

Now, assume that \(M \) is retractable and \(N \) is a nonzero submodule of \(M \) such that \(NI^2 = 0 \) and \(NI \neq 0 \), for some ideal \(I \) of \(R \). Then \(SNI \neq 0 \), where \(S = \text{End}(M_R) \). Since \(M \) is retractable, there exists a nonzero homomorphism \(f \in S \) such that \(f(M) \subseteq SNI \). Therefore, for any \(h \in S \);

\[
hf(M) \subseteq h(SNI) = h(SNI)I \subseteq SNI.
\]

Hence;

\[
fhf(M) \subseteq f(SNI) = f(SNI)I \subseteq f(M)I \subseteq (SNI)I = 0.
\]

Consequently, we have \(fSf = 0 \) and since \(M \) is endo-semiprime, \(f = 0 \), a contradiction. Thus, \(\text{ann}_R(N) \) is semiprime. \(\square \)
In [3], it is shown that if M is an endo-prime R-module, then the fully invariant submodules of M can not be summand. This fact is not true for endo-semiprime modules, because the \mathbb{Z}-modules \mathbb{Z}_6 is endo-semiprime and $3\mathbb{Z}_6$ is a fully invariant submodule in \mathbb{Z}_6 with $\mathbb{Z}_6 = 2\mathbb{Z}_6 \oplus 3\mathbb{Z}_6$.

The direct sum of two endo-semiprime modules may be not endo-semiprime. To see this, consider the following example.

Example 2.17. Let p be a prime number. It is easy to see that \mathbb{Z} and \mathbb{Z}_p are endo-semiprime, as \mathbb{Z}-module. However, $\mathbb{Z} \oplus \mathbb{Z}_p$ is not endo-semiprime, because the ring

$$\text{End}((\mathbb{Z} \oplus \mathbb{Z}_p)_{\mathbb{Z}}) \cong \begin{bmatrix} \mathbb{Z} & \mathbb{Z}_p \\ 0 & \mathbb{Z}_p \end{bmatrix}$$

is not semiprime.

In the following result we show that in some endo-semiprime modules, every fully invariant submodule is endo-semiprime.

Proposition 2.18. Let M_R be an endo-semiprime R-module and N be a fully invariant submodule of M. If either N is a direct summand of M or M_R is quasi-injective, then N is an endo-semiprime R-module.

Proof. If N is a direct summand of M, then it is easy to check that N is an endo-semiprime R-module. Now, assume that M_R is quasi-injective and K is a fully invariant submodule of N. Then K is also a fully invariant submodule of M. We set $S = \text{End}(N_R)$ and $\overline{S} = \text{End}(M_R)$. Suppose that $fSf(K) = 0$, for some $f \in S$. Then since M is quasi-injective, there exists $\overline{f} \in \overline{S}$ such that $\overline{f}|_N = f$. We show that $\overline{f} \overline{S} \overline{f}(K) = 0$. For each $\overline{h} \in \overline{S}$, $h = \overline{h}|_N \in S$ and since K is a fully invariant submodule of M we have:

$$\overline{f} \overline{h} \overline{f}(K) = \overline{f} \overline{h}f(K) = \overline{f}hf(K) = hf(K) = 0.$$

Therefore, $\overline{f} = 0$, because M is endo-semiprime. So $f(K) = \overline{f}|_N(K) = 0$. \square

Theorem 2.19. Let R be a ring. Consider the following statements:

(1) R is semiprime.

(2) There exists a faithful retractable right (left) endo-semiprime R-module.

(3) All nonzero two-sided ideals of R are endo-semiprime as right (left) R-modules.

Then (1) \iff (2) and (3) \implies (1). Moreover; if R_R is injective, then (1) \implies (3).

Proof. (1) \implies (2). Let I be a nonzero right ideal of R and $0 \neq x \in I$. Then the map $f : R \to I$ defined by $f(r) = xr$ is a nonzero R-homomorphism. Thus, R_R is retractable. Since R is semiprime, by Corollary 2.8, R_R is endo-semiprime.
Let M be a faithful retractable endo-semiprime right R-module. By Proposition 2.16, for any nonzero submodule N in M, $\text{ann}_R(N)$ is a semiprime ideal of R. Thus, $\text{ann}_R(M) = 0$ is also semiprime. Consequently, R is a semiprime ring.

(3) \Rightarrow (1) is trivial by Corollary 2.8.

(1) \Rightarrow (3). Since R is semiprime, by Corollary 2.8, R is endo-semiprime. Now by Proposition 2.18, (3) is obtained because R is injective.

Let M be a right R-module. A nonzero submodule N of M is called essential in M, denoted $N \leq_e M$, if $N \cap K \neq 0$, for any nonzero submodule K of M. Also, the singular submodule of M is the submodule $Z(M) = \{m \in M \mid \text{ann}_R(m) \leq_e R_R\}$. M is called singular (resp., nonsingular) if $Z(M) = M$ (resp., $Z(M) = 0$).

Remark 2.20. Let N be a nonzero fully invariant submodule of M. If M_R is nonsingular and $N \leq_e M$, then one can easily see that the restriction map $\varphi : \text{End}(M_R) \to \text{End}(N_R)$ is an injective homomorphism of rings, see [3, Lemma 1.8].

Proposition 2.21. Let M be a quasi-injective nonsingular R-module and N be an essential fully invariant submodule of M. Then M_R is endo-semiprime if and only if N_R is endo-semiprime.

Proof. The necessity is covered by Proposition 2.18. For sufficiency, suppose that N_R is endo-semiprime and K is a nonzero fully invariant submodule of M such that $fSf(K) = 0$, where $S = \text{End}(M_R)$ and $f \in S$. By assumption, $N \leq_e M$ and so $N \cap K \neq 0$. Since both N and K are fully invariant, $N \cap K$ is also fully invariant. Now, as M is quasi-injective and $fSf(N \cap K) = 0$, we have $f|_N S' f|_N (N \cap K) = 0$, where $S' = \text{End}(N_R)$. Thus, $f|_N (N \cap K) = 0$ and so $f|_{N \cap K} (N \cap K) = 0$. Since N is a fully invariant essential submodule of M, by Remark 2.20, $\varphi : \text{End}(M) \to \text{End}(N \cap K)$ is injective. Therefore, $f|_{N \cap K} (N \cap K) = 0$ implies that $f = 0$ and so $f(K) = 0$. □

In the following example, we show that the concepts of semiprime and endo-semiprime are independent conditions.

Example 2.22. (a) Let p be a prime number. By Example 2.17, the \mathbb{Z}-module $M = \mathbb{Z} \oplus \mathbb{Z}_p$ is not endo-semiprime. However we show that M is a semiprime \mathbb{Z}-module. Let $0 \neq K \leq M$ and $J = n\mathbb{Z}$ is an ideal of \mathbb{Z} such that $KJ^2 = 0$. If $n = 0$, then $KJ = 0$. Thus, suppose that $n \neq 0$ and $(x, y) \in K$. Then $(x, y)n^2\mathbb{Z} = 0$ implies that $xn^2 = 0$ and $yn^2 = 0$; so $x = 0$ and p divides y or p divides n. In any case, we conclude that $(x, y)n\mathbb{Z} = 0$. Thus, $Kn\mathbb{Z} = 0$, as desired.
Then \(\beta \) is not semiprime. Now set \(M = eR \). Then \(\text{End}(M_R) \cong eRe \cong K \) as rings, and hence, \(M \) is a semiprime left \(K \)-module. Thus, by Proposition 2.22, \(M_R \) is endo-semiprime. On the other hand, it is easy to see that \(\text{ann}_R(M) = 0 \) and since \(R \) is not a semiprime ring, we have \(M_R \) is not semiprime.

Theorem 2.23. Both being endo-semiprime and being endo-cosemiprime are Morita invariant properties.

Proof. Suppose that \(A \) and \(B \) are Morita equivalent rings with inverse category equivalences \(\alpha : \text{Mod}_A \to \text{Mod}_B \) and \(\beta : \text{Mod}_B \to \text{Mod}_A \). First let \(M \) be an endo-semiprime object in \(\text{Mod}_A \) and \(N \) be a nonzero fully invariant submodule of \(\alpha(M) \) with inclusion map \(i \) to \(\alpha(M) \). Then \(\beta(i)\beta(N) \) is a nonzero submodule of \(\beta\alpha(M) \). Now, assume that \(hTh(N) = 0 \), for some \(h \in T = \text{End}(\alpha(M)_B) \). So for any \(f \) and \(f' \) in \(\text{End}(M_R) \), \(h\alpha(f)h\alpha(f')i(N) = 0 \). Then \(\beta(h)\beta\alpha(f)\beta(h)\beta\alpha(f')\beta(i)(\beta(N)) = 0 \). Thus, \(\beta(h)U\beta(h)U\beta(i)(\beta(N)) = 0 \), where \(U = \text{End}(\beta\alpha(M)_A) \). Since \(\beta\alpha(M) \) is endo-semiprime and \(U\beta(i)(\beta(N)) \) is a nonzero fully invariant submodule of \(\beta\alpha(M) \), \(\beta(h)U\beta(i)(\beta(N)) = 0 \). Then \(\beta(h)\beta(i)(\beta(N)) = 0 \) and so \(h(N) = 0 \).

Now, let \(M \) be an endo-cosemiprime object in \(\text{Mod}_A \) and \(N \) be a proper fully invariant submodule of \(\alpha(M) \) with inclusion map \(i \) to \(\alpha(M) \). Then \(\beta(i)(\beta(N)) \) is a proper submodule of \(\beta\alpha(M) \). We set \(J = \text{ann}_U(\beta\alpha(M)/\beta(i)\beta(N)) \) where \(U = \text{End}(\beta\alpha(M)_A) \). Since \(J\beta\alpha(M) \subseteq \beta(i)(\beta(N)) \subseteq \beta\alpha(M) \), then \(J\beta\alpha(M) \) is a proper fully invariant submodule of \(\beta\alpha(M) \). We show that \(\text{ann}_T(\alpha(M)/N) \) is semiprime, where \(T = \text{End}(\alpha(M)_B) \). Let \(hTh\alpha(M) \subseteq N \), for some \(h \in T \). Then for any \(f \in \text{End}(M_A) \), \(h\alpha(f)h\alpha(M) \subseteq N = iN \). So \(\beta(h)U\beta(h)\beta\alpha(M) \subseteq \beta(i)\beta(N) \). Therefore, \(\beta(h)U\beta(h) \leq J \). So \(\beta(h)U\beta(h)\beta\alpha(M) \leq J\beta\alpha(M) \). Since \(\beta\alpha(M) \) is endo-cosemiprime, then \(\beta(h)\beta\alpha(M) \leq J\beta\alpha(M) \leq \beta(i)\beta(N) \) and so \(h\alpha(M) \leq N \). \(\square \)

Now, we focus more on properties of endo-cosemiprime modules.

Proposition 2.24. If \(R \) is a commutative ring and \(M \) is an endo-cosemiprime \(R \)-module, then \(R/\text{ann}_R(M) \) is a semiprime ring.

Proof. We show that \(\text{ann}_R(M) \) is a semiprime ideal of \(R \). Let \(a \in R \) such that \(a^2 \in \text{ann}_R(M) \). Then \(f : M \to M \) defined by \(f(x) = xa \) is an \(R \)-homoorphism. Now, we have \(fSf(M) = fS(Ma) \leq f(M)a = Ma^2 = 0 \), where \(S = \text{End}(M_R) \). Since \(M \) is endo-cosemiprime, \(S \) is semiprime. Thus, \(f(M) = 0 \) and so \(Ma = 0 \). \(\square \)
Proposition 2.25. Let M_R be a co-mono-retractable module. If either M is nonsingular or every submodule of M is a projective R-module, then M is endo-cosemiprime.

Proof. First assume that M is nonsingular and N is a submodule of M. If N is an essential submodule of M_R, then $(M/N)_R$ is singular. Since M is co-mono-retractable, there exists a monomorphism $f : M/N \to M$. Then $M/N \cong f(M/N) \subseteq M$ and so $Z(M) \cap f(M/N) = Z(f(M/N))$. Since $Z(M) = 0$ and $Z(M/N) = M/N$, we have $f(M/N) = 0$ and hence, $M/N = 0$. Thus, $M = N$ and this implies that M is semisimple; so it is endo-cosemiprime.

Now, suppose that every submodule of M is a projective R-module and N is a submodule of M. By assumption there exists a nonzero homomorphism $f \in \text{End}(M_R)$ such that $\ker f = N$ and $M/N \cong \text{Im} f$ is a projective submodule of M. Therefore, $0 \to N \to M \to M/N \to 0$ is a split short exact sequence, and so $M = N \oplus K$, for some submodule K of M. Thus, M is semisimple and by Corollary 2.24, it is endo-cosemiprime. \qed

Proposition 2.26. Let M_R be endo-cosemiprime and $S = \text{End}(M_R)$, then S_S is co-mono-retractable if and only if S is semisimple.

Proof. Let S_S be co-mono-retractable. Since M_R is endo-cosemiprime, S is semiprime. So by [11, Corollary 1.7(7)], S is a semisimple ring. The converse is straightforward. \qed

Proposition 2.27. Let R be a ring in which every two ideals are comparable. Then the followings are equivalent:

1. $\text{ann}_R(M)$ is semiprime;
2. $\text{ann}_R(K) = \text{ann}_R(M)$ or $\text{ann}_R(M/K) = \text{ann}_R(M)$, for any nontrivial submodule K of M;
3. $\text{ann}_R(K) = \text{ann}_R(M)$ or $\text{ann}_R(M/K) = \text{ann}_R(M)$, for any nontrivial fully invariant submodule K of M.

Proof. (1) \Rightarrow (2). Let K be a nontrivial submodule of M. By assumption, $\text{ann}_R(K) \subseteq \text{ann}_R(M/K)$ or $\text{ann}_R(M/K) \subseteq \text{ann}_R(K)$. If $\text{ann}_R(K) \subseteq \text{ann}_R(M/K)$, then $(\text{ann}_R(K))^2 \subseteq \text{ann}_R(M)$. For any $x \in \text{ann}_R(K)$, we have $(xR)^2 \subseteq (\text{ann}_R(K))^2 \subseteq \text{ann}_R(M)$. Since by (1), $\text{ann}_R(M)$ is semiprime, $xR \subseteq \text{ann}_R(M)$ and so $x \in \text{ann}_R(M)$. Thus, $\text{ann}_R(K) = \text{ann}_R(M)$.

The other case is similar.
(2) \Rightarrow (3) is trivial.
(3) \Rightarrow (1) Let I be an ideal of R such that $MI^2 = 0$. If $MI = M$, or $MI = 0$, then $MI^2 = MI = 0$. Thus, we assume that MI is a nontrivial submodule of M. It is clear that MI is fully invariant. By (3), $\text{ann}_R(MI) = \text{ann}_R(M)$ or $\text{ann}_R(M/MI) = \text{ann}_R(M)$. If $\text{ann}_R(MI) = \text{ann}_R(M)$, then $I \subseteq \text{ann}_R(MI) = \text{ann}_R(M)$ and so $MI = 0$. If $\text{ann}_R(M/MI) = \text{ann}_R(M)$.\
ann\(_R(M)\), then \(I \subseteq \text{ann}_R(M/MI) = \text{ann}_R(M)\). Thus, in any case, \(MI^2 = MI = 0\), as desired.

Corollary 2.28. Let \(R\) be a ring in which every two ideals are comparable and \(M\) be a faithful \(R\)-module. Then the following statements are equivalent:

1. \(R\) is a semiprime ring;
2. \(\text{ann}_R(K) = 0\) or \(\text{ann}_R(M/K) = 0\), for any nontrivial submodule \(K\) of \(M\);
3. \(\text{ann}_R(K) = 0\) or \(\text{ann}_R(M/K) = 0\), for any nontrivial fully invariant submodule \(K\) of \(M\).

3. Acknowledgments

The authors would like to thank the referees for helpful comments and suggestions that improved this paper.

References

[1] M. Behboodi and S. H. Sojaae, *On chains of classical prime submodules and dimensions theory of modules*, Bull. Iranian Math. Society, 36(1) (2010), 149-166.

[2] S. Ceken, M. Allan and P. F. Smith, *Second modules over noncommutative rings*, Comm. Algebra, 41 (2013), 83-98.

[3] J. Dauns, *Prime modules*, J. Reine Angew. Math., 298 (1978), 156-181.

[4] A. Ghorbani, *Co-epi-retractable modules and co-pri rings*, Comm. Algebra, 38 (2010), 3589-3596.

[5] A. Haghany and M. R. Vedadi, *Endoprime modules*, Acta Math. Hungar., 106(1-2) (2005), 89-99.

[6] B. Sarac, *On semiprime submodules*, Comm. Algebra, 37(7) (2009), 2485-2495.

[7] R. Wisbauer, *Foundations of module and ring theory*, Gordon and Breach Science Publishers Reading (1991).

[8] S. Yassemi, *The dual notion of prime submodules*, Arch. Math. Brno., 37 (2001), 273-278.

Parvin Karimi Beiranvand
Department of mathematics, Lorestan university, P.O.Box 465, Khoramabad, Iran.

karimi.pa@fs.lu.ac.ir

Reza Beyranvand
Department of mathematics, Lorestan university, P.O.Box 465, Khoramabad, Iran.

beyranvand.r@lu.ac.ir; beyranvand.r94@gmail.com