Vibrio aestuarianus subsp. *cardii* subsp. nov., pathogenic to the edible cockles *Cerastoderma edule* in France, and establishment of *Vibrio aestuarianus* subsp. *aestuarianus* subsp. nov. and *Vibrio aestuarianus* subsp. *francensis* subsp. nov.

Céline Garcia1,*,†, Aurélie Mesnil1,2†, Delphine Tourbiez1, Mirna Moussa1, Christine Dubreuil1, Amélie Gonçalves de Sa1, Bruno Chollet1, Yoann Godfrin1, Lionel Dégremont1, Delphine Serpin1 and Marie-Agnès Travers1,2

Abstract

Cockle mortality events have been reported in northern France since 2012. In the present study, we describe and investigate the implication of a potential bacterial causative agent in cockle mortality. Bacteria isolated from five different cockle mortality events were characterized and studied. Using phenotypic analysis combined with DNA–DNA hybridization (DDH) and whole genome sequencing, the isolates were shown to belong to *Vibrio aestuarianus*, a species regularly detected in France during oyster mortality events. Comparison of the strains from cockles with strains from French oysters and the type strain showed that the strains from cockles were genetically different to those from oysters and also different to the *V. aestuarianus* type strain. Moreover, the cockle and oyster strains were classified into two different, but close, groups both separated from the type strain by: (1) analyses of the *ldh* gene sequences; (2) DDH assays between 12/122 3T3 (=LMG 31436T=DSM 109723T), a representative cockle strain, 02/041T (=CIP 109791T=LMG 24517T) representative oyster strain and *V. aestuarianus* type strain LMG 7909T; (3) average nucleotide identity values calculated on the genomes; and (4) phenotypic traits. Finally, results of MALDI-TOF analyses also revealed specific peaks discriminating the three representative strains. The toxicity of representative strains of these cockle isolates was demonstrated by experimental infection of hatchery-produced cockles. The data therefore allow us to propose two novel subspecies of *Vibrio aestuarianus*: *Vibrio aestuarianus* subsp. *cardii* subsp. nov. for the cockle strains and *Vibrio aestuarianus* subsp. *francensis* subsp. nov. for the Pacific oyster strains, in addition to an emended description of the species *Vibrio aestuarianus*.

Author affiliations: 1Ifremer, SG2M- LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, 17390 La Tremblade, France; 2IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 34090 Montpellier, France.

Correspondence: Céline Garcia, celine.garcia@ifremer.fr

Keywords: bacterial pathogen; Bivalvia; cockle; mortality; shellfish; *Vibrio aestuarianus*.

Abbreviations: ANI, average nucleotide identity; DDH, DNA–DNA hybridization; FAME, fatty acid methyl ester; SASW, sterilized artificial seawater; TCBS, thiosulfate citrate bile salts sucrose agar.

The GenBank/EMBL/DDBJ accession numbers for the whole genome sequences of *Vibrio aestuarianus* subsp. *cardii* subsp. nov. 12/122 3T3T (=LMG 31436T=DSM 109723T), 15/061 4T2 (=LMG 31438T=DSM 109725), 15/064 3T2 (=LMG 31439T=DSM 109719) and 15/075 3T2 (=LMG 31440T=DSM 109720) are JAAKZK00000000, JAAKZL00000000, JAAKZM00000000 and JAAKZN00000000, respectively, under BioProject accession number PRJNA607444. Accession numbers for the 16S, *gyrB* and *ldh* sequences of the same strains are MK307684, MK307691, MK307697 and MK315009, MK315016, MK315019, MK315022, respectively. Lastly, for these three genes in strains LMG 31437 (=DSM 109724), 12/122 1T3, 12/122 2T3, 12/122 4T3, 12/122 5T3, 15/061 1T1, 15/061 2T2, 15/061 3T1, 15/061 3T2, 15/061 4T4, 15/061 5T2, 15/064 4T2, 15/075 1T2 of *Vibrio aestuarianus* subsp. *cardii* subsp. nov., the accession numbers are MK307681–307683, MK307685–307690, MK307692, MK307693, MK307695, MK307696, MK315006–315008, MK315010–315015, MK315017, MK315018, MK315020, MK315021, respectively. For *Vibrio aestuarianus* subsp. *francensis* subsp. nov., accession numbers for strains 01/308, 01/151, 01/032, 02/041 and 07/115 are JABANK00000000, JABANJ00000000, JAAZTV00000000 and JABANH00000000, respectively, under BioProject accession number PRJNA623953.

Finally, for *Vibrio aestuarianus* subsp. *aestuarianus* subsp. nov. LMG 7909T, the whole genome accession number is JAAZTU00000000.

†These authors contributed equally to this work

Five supplementary tables and three supplementary figures are available with the online version of this article.

034654 © 2021 The Authors

This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
INTRODUCTION

The edible cockle *Cerastoderma edule* is one of the most common bivalve species and is widely distributed along the European coasts. It is commercially important in the UK, Netherlands, Spain and France. For many years, mortalities of cockles and dramatic declines in their populations have been reported [1]. Predation, diseases, climatic events, pollution, poor recruitment and over-fishing have all been suggested as driving factors [2]. Cockles are host to a wide variety of viruses, bacteria, fungi and protists. Many of these micro-organisms are normally innocuous but can become problematic if prevailing environmental conditions are poor. Some parasites have been isolated during mass mortality events (review [1]): Protistan *Martella cochillia* in Spain [3], gregarines *Nematopsis scheideri* and *Nematopsis incognito* in Portugal [4, 5], *Amoeba* [6], *Haplosporidia* [7], and a wide range of *Digenea* (trematodes) [8, 9]. Cockles also host emerging parasites, such as *Perkinsus chesapeaki*, newly described in Europe [10]. They can also suffer from a transmissible disease known as disseminated neoplasia [11, 12]. Some studies have suggested that different factors, such as genetic alterations, viruses, retrotransposons and contaminants [12], can act in concert [13]. However, bacteria have rarely been isolated associated with mortalities, apart from mycoplasma-like organisms in Spain [14].

Vibrio are the most abundant cultivable bacteria found in the marine environment. Free, associated with plankton or with marine animals, bacteria belonging to this genus are classified in clades [15–18] clustering more than 100 different species [19]. Some of these species have virulent strains implicated in fish and shellfish diseases either alone, in bacterial consortia [20–22] or in concert with other pathogens [23]. For bivalves, the main pathotypes belong to the *Splendidus* clade (*Vibrio tasmaniensis, Vibrio crassostreae, Vibrio splendidus*) or the species *Vibrio tapetis*, *Vibrio tubiashii*, *Vibrio bivalvica, Vibrio europaeus* or *Vibrio aestuarianus* [19, 24].

Vibrio aestuarianus was first isolated in the 1980s in the USA from seawater and several shellfish including oysters, clams and crabs presenting no signs of disease [25]. This species was isolated for the first time in France in 2001, during mortality events of Pacific oyster, *Crassostrea gigas*. Garnier et al. [26] compared the French strains with the American one and found that the French strains had some different biochemical and pathogenic characters. These authors concluded that the French strains could constitute a new subspecies within *V. aestuarianus* and proposed to name the American strain *V. aestuarianus* subsp. *aestuarianus* and the French strains *V. aestuarianus* subsp. *francensis*, although these two subspecies were never officially validated.

The present study describes the isolation and classification of bacteria from cockle mortality events that occurred in France in 2012 and 2015. Strains were described and sequenced that allowed us to reproduce and describe this new cockle disease. These strains were compared with the French ‘oyster’ strains [26] and with the type strain of *V. aestuarianus* (LMG 7909) [25], and led us to propose two novel subspecies of *V. aestuarianus*.

ISOLATION AND ECOLOGY

In 2012, mass mortality events of *Cerastoderma edule* were reported in two wild beds on the English Channel coast: Baie des Veys and Baie de Somme, the latter of which is the largest cockle bed in France. In 2015, another mortality event occurred in both these locations as well as in Binic, also on the English Channel coast (Fig. S1, available with the online version of this article). Fishers reported these mortality events to the competent authority and national network for surveillance and monitoring of mollusc health, REPAMO (REseau de PAthologie des MOllusques), in charge of recording mortality cases and analysing representative samples associated with them. In 2012 and 2015, 15–30 adult cockles were collected from the different wild beds. Each collected individual was examined for macroscopic characteristics and processed using either histological or bacteriological analysis in addition to molecular analyses (Table S1). The mortality rate in 2012 was estimated at 80–89% according to site. For each site, the mortality rate was lower in 2015 than in 2012 ranging from 33 to 49% (Table S1). In all cases, cockle mortality was uniform, massive and sudden, concerning mainly adults. No other species were affected by these mortality events except in Baie des Veys where a number of stocks of *Crassostrea gigas* spat and juveniles also suffered mortalities. The cockle mortality occurred during summer and lasted from 1 to 2 months, according to fisherman. No specific environmental events were reported during the summers of 2012 or 2015, except a high level of macroalgae at Binic. The sampled individuals were mainly moribund, lying on the bottom and characterized by very slow valve closing valves and limited intrapallial fluid. No specific macroscopic signs such as pustules, conchyolin deposits or necrosis and degradation of the hinge could be observed.

For the detection and quantification of bacterial pathogens, pieces of gill, muscle and mantle of five moribund cockles per sample were individually crushed in 150 µl sterile seawater, diluted 100-fold and 10000-fold and spread onto marine agar (Conda) incubated for 48–72 h at 20°C. Colonies were enumerated and those bacterial colonies found in abundance were isolated and tested by duplex real time PCR for the detection of *V. aestuarianus* and bacteria of the *Splendidus* clade [27]. Pure cultures of these bacterial strains were conserved frozen at −80°C in Zobell broth with 15% glycerol. These bacteriological analyses revealed that all analysed samples yielded numerous bacterial colonies. The species *V. aestuarianus* was detected in all samples after 48 h at 20°C (Table S2). Bacteria of the *Splendidus* clade were also isolated in some samples but these bacteria were not the dominant strains in the Petri dishes. Moreover, *V. aestuarianus* DNA was detected by molecular analyses [28] in all samples, at a generally high detection frequency. DNA of OsHV-1 (Ostreid Herpevirus type 1) known to contribute to mortality events in *Crassostrea gigas* [23, 29], was not detected in any of the samples (Table S2).

Fifteen to twenty individuals per sample were also processed for histological analyses. After 48 h in Davidson's fixative,
tissues were maintained in 70% ethanol until histological preparation by dehydration and embedding in paraffin following standard procedures. Sections of 2–3 µm thickness were stained with haematoxylin and eosin. Histological analyses revealed the presence of other organisms at low infection intensity (a few parasites per individual), despite a high prevalence in some cases such as gregarine spores or rickettsia-like organisms (Table S2).

16S rRNA GENE PHYLOGENY

A total of 59 bacterial strains were isolated during periods when the REPAMO surveillance network reported high levels of cockle mortalities. After isolation, the predominant bacteria appeared small (1–2 mm), translucid, regular and white to cream-coloured on marine agar after 48 h at 20°C (Fig. S2). For genotyping, DNA was extracted by boiling in distilled water [30] and the *ldh* (lactate dehydrogenase) gene was amplified and sequenced according to methods previously described [20], as were the 16S rRNA and *gyrB* genes [17] (Table S4). Sequences were aligned and phylogenetic trees built using MEGA X [31]. The trees were drawn using the neighbour-joining method with the Kimura two-parameter model [32] and the maximum-parsimony method [33]. A total of 17 isolates (isolated in 2012 and 2015 from cockle mortality events) were identified as belonging to *V. aestuarianus* by qPCR (Table S3) and gene sequencing (16S rRNA and *gyrB*; Table S4). They showed a high degree of similarity to the 16S rRNA gene reference sequences of *V. aestuarianus* (99% to the type strain LMG 7909T). Phylogenetic analyses based on the *ldh* gene sequence of these strains led to their affiliation to the species *V. aestuarianus*, in a group close to but apart from the oyster strains and type strain. Moreover, oyster strains formed an individual branch clearly separated from the type strain of *V. aestuarianus* (Fig. 1) [26]. This classification was confirmed by DNA–DNA hybridization (DDH) performed by the BCCM/LMG laboratory at Ghent University (Belgium). After genomic DNA extraction according to a modified Wilson protocol [34], hybridizations were performed in microplates at 40°C [35] and DNA relatedness values (%) based on means of a minimum of six hybridizations. DDH of two strains isolated from diseased cockles in 2012 and 2015 and one strain isolated...
from diseased oysters were performed with *V. aestuarianus*, *V. ordalii* and *V. salilacus* reference strains. With more than 70% hybridization to the *V. aestuarianus* type strain, we confirmed the affiliation of the cockle and oyster strains to the species *V. aestuarianus*. Indeed, hybridizations were 70, 71 and 79% with the *V. aestuarianus* type strain for strains 12/122 3T3, 15/061 4T2 and 02/041T, respectively, and were 80 and 80% with the *V. aestuarianus* oyster strain for cockle strains 12/122 3T3 and 15/061 4T2, respectively (Table 1). Garnier et al. generally found similar results for hybridizations between the *V. aestuarianus* type strain and different oyster strains: their hybridizations were between 54 and 87% [26].

The three representative strains for the three subspecies were further studied by whole-cell MALDI-TOF MS profiling. MALDI-TOF mass spectrum measurements and processing were carried out as described by Mougin et al. [36]. The analyses were performed using Flex Analysis (version 3.4) and ClinProTool (version 3.0) software (Bruker Daltonics). Fig. 2 shows the comparison of the MALDI-TOF spectra. First, all three strains were identified with Bruker database as *V. aestuarianus* with correct scores. Moreover, significant differences observed between spectra (12 per strain) with prominent mass ions at 3877.4 and 7321.7, characteristic for the *V. aestuarianus* subsp. *francensis* subsp. nov. type strain and the *V. aestuarianus* subsp. *cardii* subsp. nov. type strain, respectively. The dendrogram based on whole-cell MALDI-TOF mass spectra as well as principal component analysis demonstrated a clear separation of the three strains. Comparison in other isolates is now needed to confirm the peak combination allowing discrimination [37].

Genome features

The existence of three distinct and coherent groups was also supported by results from the comparison of the complete genomes of four cockle isolates, the genome of the *V. aestuarianus* type strain and the five genomes already available for different *V. aestuarianus* oyster strains. Briefly, whole genomes of cockle isolates were sequenced by Biofidal (Vaulx-en-Velin, France) after DNA isolation using Nucleospin microbial DNA (Macherey-Nagel). DNA libraries were made from 1 ng genomic DNA using Nextera XT DNA kit (Illumina). Paired-end isolate sequencing (2x300) was performed on a MiSeq system (Illumina). Genomes were assembled de novo using SPAdes (version 3.11.0 [38]), with read error corrections and 20× coverage cut-off. Assembly quality was checked using QUAST [39]. Assemblies were added in MAGE [40], excluding contigs with lengths below 1000 bp. Oyster and cockle *V. aestuarianus* strain draft genomes presented typical features for the species. They ranged between 4.02 and 4.51 Mb, with a relatively close number of CDSs, genes coding for transfer RNA (between 91 and 102 for cockle isolates and between 84 and 85 for oyster isolates) and G+C contents (42.68–42.89 mol% for the cockle isolates and 42.52–42.83 mol% for the oyster isolates) (Table 2). 16S sequences and whole genome comparisons were performed by calculating average nucleotide identity (ANI) between strains ([SpeciesWS [41])]. A distance matrix was calculated by inversed ANI results based on whole genomes. Similarity percentages calculated between 16S sequences extracted from whole genomes ranged from 99.09–100% (data not shown). All values were above the 98.7% cut-off generally accepted for differentiating two species [42]. Moreover, ANI values calculated with whole genomes indicated an intra-clade similarity of 99.21–99.99% (mean value of 99.69%) for the *V. aestuarianus* oyster strains and an intra-clade similarity ranging from 97.88 to 99.99% (mean value of 98.47%) for the cockle isolates. The inter-clade similarity ranged from 96.83 to 97.8% depending on the isolates (Table S5) and confirmed that all strains belong to the same species (ANI >95%) but can be classified into three different subspecies.

Table 1. DDH values (%) measured by comparing *Vibrio aestuarianus* strains from cockles and oysters with *V. aestuarianus* LMG 7909T and other close species

Strain	1	2	3	4	5	6	7
V. aestuarianus subsp. *cardii* subsp. nov. 12/122 3T3	100						
V. aestuarianus subsp. *cardii* subsp. nov. 15/061 4T2	84 (7)	100					
V. aestuarianus subsp. *francensis* subsp. nov. 02/041T	80 (18)	80 (11)	100				
V. aestuarianus subsp. *aestuarianus* subsp. nov. LMG 7909T	70 (2)	71 (5)	79 (22)	100			
V. furnissi LMG 7910T	14 (3)	18 (4)	16 (5)	17 (20)	100		
V. ordalii LMG 13544T	14 (12)	16 (5)	16 (5)	9 (16)	8 (19)	100	
V. salilacus JCM 19265T	15 (4)	16 (4)	12 (2)	ND	ND	ND	100
CDSs encoding putative virulence effectors, virulence regulators, secretion systems (SST1, SST2, SST4 and SST6) and pili/flagella/chemotaxis-related proteins. But, some predicted virulence factors are missing in the different strains as haemolysin co-regulated protein in LMG7909T, zonular occludens toxin zot and T1SS-2 in 12/122 3T3T and a complete T6SS locus in 02/041T. However, their implication in pathogenesis must definitively be demonstrated.

PHYSIOLOGY AND CHEMOTAXONOMY

The phenotypes of selected isolates were characterized in different ways. Bacterial growth was observed on marine agar, thiosulfate citrate bile salts sucrose agar (TCBS) medium (AES Chemunex) and CHROMagar Vibrio medium (CHROMagar) (Fig.S2). The capacity of bacteria to grow in Zobell broth with 0–10% NaCl at 20°C or with 2% NaCl at 4, 10, 37 and 40°C was determined (Table 3).

Antibiograms were carried out using disc-diffusion assays on Mueller–Hinton agar (Oxoid) with commercial impregnated discs (Oxoid): flumequine 30 µg (UB30), kanamycin 30 µg (K30), tetracycline 30 µg (TE30), sulfamethoxazole/trimethoprim 19:1 25 µg (SXT25), streptomycin 25 µg (S25), sulfonamides 300 µg (S3), erythromycin 30 µg (E30), penicillin 10 UI (6 µg) (P10), Trimethoprim 5 µg (W5), Chloramphenicol 30 µg (C30), ampicillin 10 µg (AMP10), gentamicin 30 µg (CN30) or the vibriostatic agent, pteridine 150 and 10 µg (O129/150 and O129/10). Inhibition was observed after 24–48 h at 22°C.

API 20E, API 20NE and API 50CH kits (bioMérieux) were used in accordance with the manufacturer’s recommendations. Fresh colonies, obtained from culture bacteria on tryptone soya agar (Difco) adjusted to 2% NaCl, were suspended in SASW to obtain about OD 600 =0.1. After inoculation, the strips were incubated for 48 h at 20°C and results were determined according to the manufacturer’s instructions. Finally, FAME (fatty acid methyl ester) determination was performed by the BCCM/LMG laboratory at Ghent University using a standard commercial identification system (midi) and gas chromatography.

The 17 cockle strains and two oyster strains were able to grow in Zobell liquid medium at different temperatures from 4 to 37°C, with a limited growth rate at the extremes. However, no growth was observed at 40°C, with or without 6% salt. Only the *V. aestuarianus* type strain was able to...
grow in the presence of 6% salt. All the strains, like the type strain, were shown to be sensitive to the tested antibiotics (Table 3). Cockle and oyster strains appeared under blue light on CHROMagar medium and, unlike the type strain, had a limited growth capacity on TCBS medium, where a few yellow colonies appeared (Fig. S2). The observations of the oyster strains and the type strain were similar to those made by Garnier et al. [26]. Additional biochemical characterization analyses were performed to test this proposition, using API20E and 50CH strips (Table 4) and FAME analyses (Table 5). The strains isolated from cockles and oysters, like the *V. aestuarianus* type strain, could form acids from d-glucose, sucrose, trehalose, N-acetyl-d-glucosamine and had β-galactosidase activity and indole production. Cockle strains could be distinguished from oyster strains by their utilization of d-mannitol and arginine and fermentation of starch, d-ribose and glycogen. They could be distinguished from the type strain by the non-fermentation of potassium gluconate. The oyster strains could not use d-mannitol and arginine. However, as fermentation and utilization of substrates appeared variable among the cockle and oyster strains, no character clearly separated the three groups of strains.

Table 2. Genome characteristics for *Vibrio aestuarianus* subsp. cardii subsp. nov., *V. aestuarianus* subsp. francensis subsp. nov and *V. aestuarianus* subsp. aestuarianus subsp. nov. type strain (LMG 7909T)

Strain	Source	Genome size (bp)	No. of CDS	No. of tRNA	G+C content (%)	N50 (bp)	L50 CheckM Completness	CheckM contamin.	Accession no.	No. of reads	
12/122 3T3 T	Cerastoderma edule	4350835	4449	97	42.73	50782	25	100%	0.91%	JAAKZN0000000000	694942
15/061 1T1	Cerastoderma edule	4099086	4205	102	42.89	43962	29	100%	0.91%	JAAKZK0000000000	843350
15/064 3T2	Cerastoderma edule	4024371	4101	91	42.79	44282	29	99.93%	0.83%	JAAKZM0000000000	703751
15/075 3T2	Cerastoderma edule	4394098	4614	98	42.68	55001	26	99.90%	1.10%	JAAKZL0000000000	1091426
LMG 7909 T	Type strain	4229739	4020	103	42.67	96002	16	100%	0.09%	JAAZTU0000000000	897933
01/032	Crassostrea gigas	4204160	4188	84	42.83	–	–	99.72	0.12%	JABANi0000000000	–
01/151	Crassostrea gigas	4368412	4350	84	42.73	–	–	100%	0.12%	JABANi0000000000	–
01/308	Crassostrea gigas	4510343	4534	85	42.52	–	–	100%	0.16%	JABANK0000000000	–
02/041 T	Crassostrea gigas	4196441	4063	84	42.83%	–	–	99.72%	0.12%	JAAZTV0000000000	–
07/115	Crassostrea gigas	4245988	4243	84	42.79	–	–	99.72%	0.12%	JABANH0000000000	–

Table 3. Key phenotypic characteristics (antibiotic sensitivity and growth capacity) of *Vibrio aestuarianus* strains isolated from cockles and oysters compared with the *V. aestuarianus* type strain

Characteristic	1	2	3	4	5
AMP10, C30, E30, K30, TE30	+	+	+	+	+
P10, UB30, SXT25, S25, S3, W5, CN30, O129/150, O129/10	+	+	+	+	ND
Growth at 4 and 20°C	+	+	+	+	+
Growth at 35 and 37°C	+	+	+	+	–
Growth at 40°C or in absence of salt	–	–	–	–	–
Growth in 6% NaCl	–	–	–	–	–
Growth on TCBS	–	–	–	–	–

Strains: 1, 17 strains from cockles; 2, *V. aestuarianus* LMG 7909T; 3, oyster strain 02/041 T; 4, oyster strain 02/093; 5, Results of Garnier et al. for 11 oyster strains [26]. Flumequine 30 µg (UB30), kanamycin 30 µg (K30), tetracycline 30 µg (TE30), sulfamethoxazole/trimethoprim 19:1 25 µg (SXT25), streptomycin 25 µg (S25), sulfonamides 300 µg (S3), erythromycin 30 µg (E30), penicillin 10 UI (6 µg) (P10), trimethoprim 5 µg (W5), chloramphenicol 30 µg (C30), ampicillin 10 µg (AMP10), gentamicin 30 µg (CN30) or the vibriostatic agent, pteridine 150 µg and 10 µg (O129/150 and O129/10). +, Positive; −, negative; ND, no data.
Other characters that can also differentiate the strains include their fatty acids (Table 5). *V. aestuarianus* strains can be distinguished from *V. ordalii* and *V. furnissii* by their lower level of 3 hydroxy-dodecanoic acid and higher level of iso-C_{16 : 0}. Between the *V. aestuarianus* strains, differences were observed for C_{12 : 0} 3-OH, iso-C_{14 : 0} and C_{14 : 0}, for which the cockle strains appeared intermediate and the oyster strains had a high level compared with the type strain. However, the most remarkable difference concerned C_{18 : 1 ω7c}, which was present at a higher level in the type strain compared with the oyster (low level) or cockle strains (intermediate level). In contrast, the oyster and cockle strains showed a high level of the C_{16 : 0} compared to the type strain.

Finally, the pathogenicity of nine cockle isolates (12/122 1T1, 12/122 2T3, 12/122 3T3, 12/122 4T3, 15/061 1T1, 15/061 4T2, 15/064 3T2, 15/075 1T2, 15/075 3T2) on reared cockles was investigated by experimental injections, which also included oyster strain 02/041^T, pathogenic for oysters, and *V. splendidus* related 15/064 1T2, isolated from cockles (Fig. 1). Cockles were induced to spawn in September 2015 at the Ifremer hatchery in La Tremblade and larvae were grown according to standard protocols used for *C. gigas*, except that seawater temperature was maintained at 20 °C for cockle larvae [43]. Settlement took place from 11 to 16 days post fertilization. All progenies were maintained under controlled environmental conditions in our facilities using unheated UV treated (40 mj cm^{−2}) seawater in a flow-through system. All animals were fed ad libitum. Following an initial screening of 30 of these animals (no detection of *Vibrio aestuarianus* on 159 screened colonies, no detection of *V. aestuarianus* or herpesvirus OsHV-1 DNA and no detection of any other pathogens by histology) and in the absence of mortality over the rearing period, we chose to use this biological material for the controlled infections. Experiments were conducted in May and June 2016 when cockles weighed 4.39 g (s.d. 0.80) and measured 23.28 mm (s.d. 1.52).

Bacteria isolated from diseased cockles as well as controls (V. splendidus-related from cockles 15/064 1T2 and *V. aestuarianus* oyster strain 02/041^T) were grown at 20 °C for 20 h in marine broth with constant shaking at 40 r.p.m. (Rotator SB3, Stuart). After an SASW wash, bacterial concentrations were evaluated spectrophotometrically at an optical density (OD)

Table 4. Key differential phenotypic characteristics (API) of* Vibrio aestuarianus* strains isolated from cockles and oysters from the *Vibrio aestuarianus* type strain

Characteristic	1	2	3	4	5
Fermentation of:					
d-Glucose	+	+	−	−	(+)
N-Acetyl-d-glucosamine	(+)	+	+	+	(+)
Sucrose and trehalose	+	+	+	+	+
Potassium gluconate	−	+	+	−	v
d-Galactose	+	+	−	−	+
Maltose	(+)	+	−	−	v
Cellobiose	(+)	+	−	−	v
d-Fructose and d-mannose	+	+	+	−	v
Starch, d-ribose and glycogen	(+)	+	−	−	v
Arginine dihydrolase	+	+	+	−	(+)
β-Galactosidase	+	+	+	−	(+)
Tryptophan deaminase	−	−	−	−	v
Gelatinase	v	+	−	−	+
Indole production	+	+	−	−	+
Utilization of d-mannitol	v	+	−	−	+
Utilization of citrate	(−)	−	−	−	v
LDC, ODC, VP, H2S, URE, INO, SOR, RHA, MEL, ARA, GLY, ERY, DXYL, LXYL, ADO, MDX, SBE, DUL, MDM, MDG, AMY, ARB, ESC, SAL, LAC, INU, MLZ, RAF, XLT, GEN, TUR, LXY, TAG, DFUC, LFUC, DARL, LARL, 2KG, 5KG	−	−	−	−	−
For all moribund cockles, the predominant bacterial isolates of total fatty acids.

Vibrio aestuarianus subsp. nov. 12/122 3T3; 2, V. aestuarianus subsp. francensis subsp. nov. 02/041; 3, V. aestuarianus subsp. aestuarianus subsp. nov. LMG 7909\(^7\); 4, V. furnissi LMG 7910\(^1\); 5, V. ordalii LMG 1354\(^4\). TR. Trace; –, not detected. Values are percentages of total fatty acids.

Table 5. Fatty acid compositions (as percentage of the total fatty acids present) in Vibrio aestuarianus strains from cockles and oysters, V. aestuarianus type strain and related species

Fatty acid	1	2	3	4	5
C\(_{14:0}\)	4.4 (0.4)	4	3.2	6.7	–
C\(_{12:0} 3\text{-OH}\)	2.1 (0.4)	3.4	1.3	6.1	4.5
iso-C\(_{14:0}\)	1.2 (0.1)	2.1	TR	–	–
C\(_{14:0}\)	4.8 (1.7)	8.7	4	4.5	5.9
iso-C\(_{15:0}\)	4.1 (1.4)	5.4	5.6	TR	–
C\(_{16:0}\)	18.6 (1.5)	16.3	13.4	12	19.2
C\(_{16:0} 07c\)	14.5 (2.7)	11.3	22.6	17.1	23.4
Summed feature 2	2.9 (1.6)	2.3	1.1	6.7	1.5
Summed feature 3	41.6 (1.8)	34.6	41.8	37.5	39.8

of 600 nm, adjusted to 0.4 and 0.04 and checked by plating. Cockles were anesthetized for 2 to 4h in a magnesium chloride solution (MgCl\(_2\); Fluka) at a final concentration of 50 g l\(^{-1}\) (1/4; v/v seawater/freshwater) under aeration. Subsequently, 50 µl bacterial suspension (10\(^7\) c.f.u. to 10\(^6\) per cockle) was injected into the adductor muscle. A group of cockles were injected with SASW to serve as negative controls. After injection, the cockles were transferred to tanks (triplicates of 10 cockles in 3 l) filled with UV-treated, 1 µm-filtered seawater to ampicillin, and tetracycline. The major fatty acids are C\(_{12:0}\) (2.2–4.4%), C\(_{12:0} 3\text{-OH}\) (1.3–3.4%), C\(_{14:0}\) (4–8.7%), iso-C\(_{15:0}\) (4.1–5.6%), C\(_{16:0}\) (13.4–20.06%) and C\(_{18:1} 07c\) (11.3–22.6%).

EMENDED DESCRIPTION OF VIBRIO AESTUARIANUS

The characteristics modified or added to those reported in original descriptions by Tison and Seidler [25] are as follows:

Vibrio aestuarianus is a Gram-negative, oxidase-positive, motile bacterium. Colony morphology is variable according to the subspecies. Growth occurs on marine agar from 4 to 30°C with an optimum between 20 and 25°C and strains do not grow at 40°C or in the absence of NaCl. Most strains utilize N-acetyl-d-glucosamine, β-galactosidase and produce indole. Strains ferment sucrose, d-mannose, d-fructose, d-glucose, d-galactose and trehalose. Strains are susceptible to ampicillin, erythromycin, chloramphenicol, kanamycin and tetracycline. The major fatty acids are C\(_{12:0}\) (2.2–4.4%), C\(_{12:0} 3\text{-OH}\) (1.3–3.4%), C\(_{14:0}\) (4–8.7%), iso-C\(_{15:0}\) (4.1–5.6%), C\(_{16:0}\) (13.4–20.06%) and C\(_{18:1} 07c\) (11.3–22.6%).

The genome size is 3.9–4.5 Mb (GenBank genome accession number JAAZTU000000000) and the genomic DNA G+C content is 42.5–42.9 mol%.

The type strain is ATCC 35048\(^7\) (=DSM 19606\(^7\)=CAIM 592\(^7\)=CCUG 28583\(^7\)=CECT 625\(^7\)=CIP 102971\(^7\)=LMG 7909\(^7\)=NBRC 15629\(^7\)=NCMB 2236\(^7\)). The GenBank/EMBL/DDJ accession number for the genome of the type strain is JAAZTU000000000.

DESCRIPTION OF VIBRIO AESTUARIANUS SUBSP. AESTUARIANUS SUBSP. NOV.

Vibrio aestuarianus subsp. aestuarianus Tison and Seidler 1983 (a.es.tu.r.i.a’nus. N.L. masc. adj. aestuarianus, pertaining to an estuary).

The description is essentially the same as that given above for the species Vibrio aestuarianus, with the following additions.

Colonies are opaque, 2–3 mm in diameter on marine agar after 24 h at 20°C. It grows on TCBS, with 6% salt and at 37°C. It has gelatinase and arginine dihydrolase activity and utilizes starch, d-ribose, maltose, cellobiose, glycogen and potassium gluconate. Among the three subspecies, it presents the highest...
level of C$_{18:1}$ω7c and the lowest level of C$_{12:0}$ 3-OH and iso-C$_{14:0}$ fatty acids. The type strain does not induce mortality of Pacific oyster, Crassostrea gigas. The genome size is predicted around 4.2 Mb and genomic DNA G+C content is 42.6 mol% (GenBank genome accession number JAAZTU000000000).

The type strain is ATCC 35048T (=DSM 19606T=CAIM 592T=CCUG 28583T=CECT 625T=CIP 102971T=LMG 7909T=NBRC 15629T=NCMB 2236T).

DESCRIPTION OF VIBRIO AESTUARIANUS SUBSP. FRANCENSIS SUBSP. NOV.

Vibrio aestuarianus subsp. francensis Garnier et al. 2008 (fran. cen’sis. N.L. masc. adj. francensis: of, or belonging to, France).

It displays typical characteristics for the species *V. aestuarianus*. Colonies are white and slightly opaque on marine agar and are less than 1 mm in diameter after 24 h at 20 °C. No strain can grow in the absence of NaCl or in the presence of 6% NaCl (except for strain 02/041T) or on TCBS. Growth occurs from 4–30 °C. Most strains have no arginine dihydrolase and cannot use D-mannitol. Some strains use citrate. It presents the highest level of C$_{16:1}$ω7c and the lowest level of C$_{18:1}$ω7c compared to the two other subspecies.

The majority of strains, including the type strain 02/041T, are pathogenic to the Pacific oyster, Crassostrea gigas, but the type strain is not pathogenic to edible cockles, *Cerastoderma edule*. The genome size is estimated around 4.18–4.53 Mb with the draft genomes, and genomic DNA G+C content is about 42.52–42.83 mol%.

The type strain is 02/041T (LMG 24517T=CIP 109791T), which was isolated from a diseased oyster maintained in the Argenton experimental hatchery (Ifremer, France). The GenBank genome accession number is JAAZTV000000000.

DESCRIPTION OF VIBRIO AESTUARIANUS SUBSP. CARDII SUBSP. NOV.

Vibrio aestuarianus subsp. cardii (car’di.i. N.L. fam. cardii referring to Cardium – latin: cockle).

It displays typical characteristics for the species *V. aestuarianus*. Colonies are around 1 mm in diameter after 24 h at 20 °C. No strain can grow in the absence of NaCl and growth was poor on TCBS. Growth occurs from 4 to 30 °C, difficult at 37 °C and not at 40 °C. Strains can use D-mannitol and do not ferment potassium gluconate. Concerning its fatty acid composition, it presents a high level of C$_{16:0}$ and an intermediate level of other fatty acids. Some strains, including the type strain 12/122 3T3T, are pathogenic to the edible cockle *Cerastoderma edule* but the type strain is not pathogenic to Pacific oyster *Crassostrea gigas*.

The type strain is 12/122 3T3T (LMG 31436T=DSM 109723T), which was isolated from a diseased cockle sampled from a wild bed (Baie de Somme) in France. The GenBank genome accession number is JAAKZK000000000.
11. Metzger MJ, Villaíba A, Carbállal MJ, Iglesias D, Sherry J et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 2016;534:705–709.

12. Díaz S, Iglesias D, Villaíba A, Carbállal MJ. Long-Term epidemiological study of disseminated neoplasia of cockles in Galicia (NW Spain): temporal patterns at individual and population levels, influence of environmental and cockle-based factors and lethality. J Fish Dis 2016;39:1027–1042.

13. Barber BJ. Neoplastic diseases of commercially important marine bivalves. Aquat. Living Resour 2004;17:449–466.

14. Azevedo C. Neoplastic diseases of commercially important marine bivalves. J Fish Dis 2016;39:1027–1042.

15. Sawabe T, Kita-Tsukamoto K, Thompson FL. Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 2007;189:7932–7936.

16. Sawabe T, Ogura Y, Matsumura Y, Feng G, Amin AR, Gao F, Amin AKM et al. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol 2013;4:414.

17. Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S et al. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 2005;71:5107–5115.

18. Thompson FL, Iida T, Swings J. Biodiversity of vibrios. Microbiol Mol Biol Rev 2004;68:403–431.

19. Romalde JL, Dieguez AL, Lasa A, Balboa S. New Vibrio species associated to molluscan microbiota: a review. Front Microbiol 2014;4:413.

20. Goudenège D, Travers MA, Lemire A, Petton B, Haffner P et al. A single regulatory gene is sufficient to alter Vibrio aestuarianus pathogenicity in oysters. Environ Microbiol 2015;17:4189–4199.

21. Lemire A, Goudenège D, Versigny T, Petton B, Calteau A et al. Populations, not clones, are the unit of Vibrio pathogenesis in naturally infected oysters. Isme J 2015;9:1523–1531.

22. Lasa A, di Cesare A, Tassistro G, Borello A, Gualdi S et al. Dynamics of the Pacific oyster pathobiota during mortality episodes in Europe assessed by 16S rRNA gene profiling and a new target enrichment next-generation sequencing strategy. Environ Microbiol 2019;21:4548–4562.

23. de Lorgeril J, Lucasson A, Petton B, Toulza E, Montagnani C et al. Immune-suppression by Ov-HV-1 viral infection causes fatal bacte-raemia in Pacific oysters. Nat Commun 2018;9:4215.

24. Travers M-A, Boettcher Miller K, Roque A, Friedman CS. Bacterial diseases in marine bivalves. J Invertebr Pathol 2019;153:1–31.

25. Tison DL, Seidler RJ. Vibrio aestuarianus: a new species from estuarine waters and shellfish. Int J Syst Bacteriol 1983;33:699–702.

26. Garnier M, Labreuche Y, Nicolas J-L. Molecular and phenotypic characterization of Vibrio aestuarianus subsp. francensis subsp. nov., a pathogen of the oyster Crassostrea gigas. Syst Appl Microbiol 2008;31:358–365.

27. Saulnier D, De Decker S, Tourbiez D, Travers MA. Development of a duplex Taqman real-time PCR assay for rapid identification of Vibrio splendidus-related and V. aestuarianus strains from bacte-rial cultures. J Microbiol Methods 2017;140:67–69.

28. Saulnier D, De Decker S, Haffner P. Real-Time PCR assay for rapid detection and quantification of Vibrio aestuarianus in oyster and seawater: a useful tool for epidemiologic studies. J Microbiol Methods 2009;77:191–197.

29. Garcia C, Thébault A, Dégremont L, Arzul I, Miossec L et al. Ostreid herpesvirus 1 detection and relationship with Crassostrea gigas spat mortality in France between 1998 and 2006. Vet Res 2011;42:73.

30. Saulnier D, De Decker S, Haffner P, Cobet L, Robert M et al. A large-scale epidemiological study to identify bacteria pathogenic to Pacific oyster Crassostrea gigas and correlation between virulence and metalloprotease-like activity. Microb Ecol 2010;59:787–798.

31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. megaX: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547–1549.

32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425.

33. Eck RV. Dayhoff Ma. Atlas of Protein Sequence and Structure. Maryland: Silver Springs; 1966.

34. Wilson K. Preparation of genomic DNA from bacteria. In: Ausubel FM BR, Kingston RE, Seidman JG, Smith JA, Struhl K (editors). Current protocols in molecular biology: New York: Greene Publishing and Wiley Interscience; 1987.

35. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic Acid-Deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioiso-topes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 1989;39:224–229.

36. Mougin J, Flahaut C, Roquigny R, Bonnin-Jusserand M, Grard T et al. Rapid identification of Vibrio Species of the harveyi clade using MALDI-TOF MS profiling with main spectral profile database implemented with an in-house database: lubibase. Front Microbiol 2020;11:2494.

37. Rahmani A, Vercauterens M, Vanrckx K, Boyen F, Bidault A et al. Vibrio-Mof MS as a promising tool to assess potential virulence of Vibrio tapetis isolates. Aquaculture 2021;530:735729.

38. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477.

39. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072–1075.

40. Vallenet D, Calteau A, Dubois M, Amours P, Bazin A et al. Microscope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pan genomic and metabolic comparative analysis. Nucleic Acids Res 2020;48:579–589.

41. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J, Glöckner FO. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:pii: btv681.

42. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351.

43. Dégremont L, Bédier E, Solestchnik P, Ropert M, Huvet A et al. Relative importance of family, site, and field placement timing on survival, growth, and yield of hatchery-produced Pacific oyster spat (Crassostrea gigas). Aquaculture 2005;249:213–229.