Laparoscopic Small Bowel Resection And Anastomosis For Small Proximal Jejunal Gastrointestinal Stromal Tumor Presented With Acute Massive Lower Gastrointestinal Bleeding: Case report and Literature review

CURRENT STATUS: POSTED

khaled S ahmad
Prince Mohammed Bin Abdul Aziz Hospital

Khaled.ahmad.md@gmail.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-7835-9422

Mohamed S Essa
Prince Mohammed Bin Abdul Aziz Hospital

Naif A Alenazi
Prince Mohammed Bin Abdul Aziz Hospital

DOI:
10.21203/rs.2.19935/v1

SUBJECT AREAS
Surgery

KEYWORDS
Lower GI bleed, Jejunal GIST, GIST
Abstract
Background Gastrointestinal stromal tumors (GISTs) is the most common primary nonepithelial neoplasms of the gastointestinal tract, mostly expressing the KIT protein determined by immunohistochemical staining for the CD117 antigen. Jejunal GISTs represent approximately 10% of all GISTs. Abdominal discomfort is the usual presentation. Jejunal GISTs may present with complications such as intestinal obstruction or hemorrhage. Gastrointestinal bleeding occurs due to pressure necrosis and ulceration of overlying mucosa, and patients who develop significant bleeding may suffer from fatigue and malaise. Small-bowel GISTs are classified based on size, and several guidelines have recommended conservative treatment for small jejunal GISTs (<2 cm).
Case presentation In this report, we describe a 35-year-old male, with a jejunal GIST, who presented with an unusual massive lower GI bleeding. After resuscitation extensive work up, he was taken finally for a diagnostic laparoscopy and resection of the mass. Conclusion Small intestinal GISTs are rare and unusual to present with massive lower GI bleeding.

Introduction
A gastrointestinal stromal tumor (GIST) is a rare mesenchymal tumors of the gastrointestinal tract that arising from any site of the alimentary tract. The commonst anatomical site is the stomach, but it can develop anywhere in the digestive tract. The anatomical distribution of GISTs is two thirds occur in the stomach and one fourth develops in the small bowel mainly the duodenum. GISTs are uncommon mesenchymal neoplasms of the alimentary tract [1]. The overall incidence of GIST is very low (2 in 100,000), while jejunal GIST account for 0.1–3 % of all digestive tract tumors which is extremely rare [2]. Based on tumor size, small-intestinal GISTS smaller than 2 cm can be considered as small GISTS [3]. The most common presentation of jejunal GISTS are vague abdominal pain and discomfort. Overlying mucosa pressure necrosis and ulceration may cause gastrointestinal hemorrhage. We report a case of a very small jejunal GIST presenting with massive lower gastrointestinal bleeding.

Case Report
A 35-year-old male, presented to the emergency department with massive lower GI bleeding. He had
no associated symptoms and he was not on any medications. In regards to his medical history, he denied any major diseases or a risk factor for bleeding.

On examination, he was oriented, fully conscious but looked pale. His pulse rate was 130 beat per minute, blood pressure of 130/80. Abdominal examination was unremarkable. Per rectal examination showed hematochizia.

Nasogastric tube was inserted immediately and showed clear output. Blood tests showed hemoglobin level of 8 g/dL, hematocrit of 25, and normal platelet level. Kidney and liver function tests were also normal.

Transfusion of 3 units of packed red blood cells (PRBCs) was initiated. Infusion of proton pump inhibitors at a rate of 80 ml/hr was also given.

After resuscitation, patient was shifted to the endoscopy suite for upper and lower endoscopy. While upper gastrointestinal endoscopy was normal to the second part of duodenum, lower gastrointestinal endoscopy showed that the colon filled with blood and also there is blood coming from the distal ileum through ileocecal valve (Figure 1).

After that, our patient underwent a CT abdomen with IV contrast which showed a 2 x 2 cm mass in proximal jejunum with extravasation of contrast at that site (Figure 2). Therefore, SMA angiography with embolization of the bleeder was attempted. This study confirmed the results of the CT, but embolization was not successful (Figure 3).

The decision was made to shift the patient to the operation room for emergency surgery after obtaining an informed consent. Laparoscopic exploration of the abdomen revealed small bowel filled with blood (Figure 4) and the previously mentioned mass on the antimesenteric border of the proximal jejunum (Figure 5). It was resected and primarily anastomosed (Figure 6).

CT abdomen was repeated 48 hour after the surgery and showed an intact anastomosis and no evidence of leak. Liquid diet allowed and advanced to full as tolerated. Patient had a smooth postoperative period without any complications.

Hisopathologic analysis of the specimen showed well defined submucosal spindle cell tumor extending beyond musculosa and serosa. The tumor formed of of spindle cells arranged in fascicles
separated by fibrous septa. The cells have eosinophilic cytoplasm with oval spindle shape nuclei.

Immunohistochemistry was positive for CD117(Figure 7).

He was finally discharged home a week after the surgery with a follow up in outpatient clinic. As the tumor was classified as a low risk for recurrence based on the histopathological findings, adjuvant therapy in term of Tyrosine Kinase Inhibitors was not initiated.

Figure (1): Colon filled with blood.

Figure (2): CT abdomen with IV contrast showed proximal jejuna mass with extravasation (red arrow).

Figure (3): SMA angiography showed extravasations (yellow arrow).

Figure (4): Bowel filled with blood (red arrow).

Figure (5): GIST in proximal Jejunum (green arrow).

Figure (6): Laparoscopic small bowel resection anastmosis.

Figure (7): Spindle cell GIST, (A) hematoxylin and eosin stain (H&E), (B) KIT expression by immunohistochemistry, low magnification, (C) KIT expression, high magnification.

Mesenchymal or stromal tumors of the gastrointestinal tract divided into two major groups. The first one is the gastrointestinal stromal tumors (GISTs) which is the most common, the second one is less common and formed of a variety of neoplasms that are similar to that originate from soft tissue of the body and include leiomyomas, lipomas, desmoid tumors, peripheral nerve sheath tumors, leiomyosarcomas and liposarcomas[4-8].

Gastrointestinal stromal tumors are most commonly arise from the stomach and proximal part of the small bowel, it also can developed in any part of the gastrointestinal tract and occasionally in extragastrointestinal sites like omentum and retroperitoneum. GISTs characterized by expression of KIT protein and mutations in KIT gene and platelet-derived growth factor receptor alpha (PDGFA) gene [8].
GISTs tumors are the most common submucosal non epithelial neoplasm of the gastrointestinal tract, it account for less than 1% of primary intestinal cancers\cite{5, 9}. The prevalence of GISTs tumors is the third after gastrointestinal adenocarcinoma and lymphoma\cite{10}. Between 2001 and 2011 Surveillance, Epidemiology and End Results (SEER) analysis detected 6142 cases of histologically confirmed GIST with incidence approximately of 0.68 per 100,000\cite{11}. Prospective study from 2005 to 2007 in French Rhone Alps region showed incidence of GISTs is 11.2 per million per year. In united states about 5000 newly diagnosed case per year\cite{12}.

GIST occur most commonly in middle aged and older people and rare before the age of 40. Analysis of the SEER registered data mentioned before; the age at the time of diagnosis was 66 to 69 years (mean age 64 years) in 3 European population-based studies\cite{12-14}.

The vast majority of GIST are sporadic. Approximately 5% are syndromic including neurofibromatosis type 1 (NF1), primary familial GIST syndrome, and Carney-Stratakis syndrome, all are familial autosomal dominant syndromes. Sporadic GIST cannot differentiated phenotypically, histologically and genetically from familial GIST\cite{15-16}.

Intially GISTs were considered to originate from smooth muscle of the gastrointestinal tract according to histopathological features. However the immunophenotypic features of GISTs totally different from that of leiomyosarcoma and leiomyoma that derived from other tissues containing smooth muscles like uterus. In 1990, GISTs appeared that they are different from other gastrointestinal mesenchymal tumors. GISTs were found to be positive for CD34 in up to two-third of patients\cite{17-18}.

The cellular origin of GISTs is the interstitial cells of Cajal (ICCs) which are the pacemakers of the gastrointestinal tract that are responsible for regulation of peristalsis. They act as connection between the autonomic innervations and smooth muscles of the intestinal wall. The interstitial cells of Cajal have ultrastructure and immunophenotypic characteristics of both smooth muscles and neuronal differentiation. The association between the ICCs and GISTs has been suggested based on
both of them express KIT protein and also CD34 expressed in two-third of GISTs cases. It is presumed that GISTs arise from CD34-positive ICC cells and differentiate into the pacemaker cell phenotype [17, 19-22].

To confirm that the GISTs originate from ICCs is the resected tumors are associated with diffuse ICC hyperplasia within the intestinal wall in many families with GIST. These lesions are supposed to act as precursor lesions to GIST in such patients. Sporadic tumors may also harbor diffuse ICC hyperplasia, in such cases it is mandatory to differentiate between the sporadic and syndromic GIST (hereditary GIST syndromes) [23-30].

The conflict of hypothesis of GISTs derived from ICCs is extra-gastrointestinal GISTs (EGISTs) which are similar phenotypically to GISTs. It is suggested that these tumors originate from ICCs that are incidentally scattered during embryogenesis [6, 21, 25, 27].

Most of GISTs are due to gain –of – function mutation of c-kit proto-oncogene especially exon 11. The location of c-kit proto-oncogene is 4q11-12 and encodes transmembrane tyrosine kinase KIT. Most of c-kit mutations are frame type mutation which allows preservation of activation and expression of c-kit [32].

Normally KIT activation started by binding of stem cell factor (steel factor or mast cell growth factor) to extracellular domain of c-KIT result in homodimerization of the inactive monomers of c-KIT. Homodimerization of monomers is followed by auto-phosphorylation of intracellular residues of tyrosine kinase result in exposure of of intracellular signal transduction molecules binding sites. This followed by activation of several pathways like MAP kinase, RAS and others which result in transduction of signals inside the nucleus and lead to mitogenic activity and protein transcription [32-33].

In most of GISTs, KIT is activated and phosphorylated without stem cell factor (ligand- independent activation) result in increased transduction of signals to the nucleus support survival of cells and enhance cell replication over apoptosis and dormancy leading to oncogenesis [33].
Approximately 95% of GISTs are positive for KIT while 5% are negative. In those with KIT-negative GISTs, PDGFRA are mutated. Discrimination between KIT-negative GISTs and other mesenchymal tumors of gastrointestinal tract can be done using immunostainig of PDGFRA. There are small proportion of patients with GISTs lacking KIT/PDGFRA have mutation in BRAF, DOG-1 and protein kinase C theta (PKCtheta) gene. Initial studies reported that GISTs with BRAF mutations have tendency for small intestine without high risk of malignancy \[34-35\].

Stomach is the most common site of GISTs account for 50-70% (70% in cardia, 15% in cardia and fundus and 15% in antrum) followed by small bowel (20-30 of GISTs arise in jejunum and ileum). Rare sites include colon and rectum (5-15%) and esophagus (less than 5%). Primary extra-gastrointestinal GISTs has been reported in omentum, mesentery and pancreas but extremely \[35-36\].

GISTs are classified histopathologically into three categories 1-spindle cell type (70%), 2-epitheliod type (20%), and 3-mixed type (10%). Spindle cell type is formed of uniform cells with eosinophilic cytoplasm arranged in whorls or fascicles as in our case. Epithelioid type has cells with either clear or eosinophilic cytoplasm (Figure 8) and is mostly KIT negative but has PDGFRA gene mutations and occurs commonly in stomach. Mixed type GISTs harbor areas of transition between epithelioid and spindle cell types (Figure 9) \[7, 17, 19\].

Figure (8): Epithelioid GIST, hematoxylin and eosin stain (H&E).

Figure (9): Mixed GIST, epithelioid component (red arrow) and spindle component (yellow arrow).

Some GISTs are diagnosed accidentally either during endoscopy as subepithelial mass or on cross sectional imaging for other reasons. GISTs may be associated with non specific symptoms as bloating and early satiety unless they complicated by ulceration, bleeding or grow large to cause pain and obstruction. In general the clinical manifestation of GISTs is: 1- gastrointestinal bleeding either overt or occult (50% gastric and 20% small bowel), 2-abdominal pain (8-17%), 3-accidental finding (13-18%), 4- acute abdomen (2-14%), 5- abdominal mass (5%) \[1, 37\].
GISTs are rarely associated with paraneoplastic syndromes however there are paraneoplastic syndromes reported in few patients like hypoglycemia (non-islet cell tumor hypoglycemia) and hypothyroidism (consumptive hypothyroidism) \[^{[38]}\].

Metastasis to other sites in patients with GISTs occurs late in the course of the disease in most patients and commonly involves the liver and peritoneum. Lymph node metastasis is extremely rare, approximately 0-8% of patients with GISTs develop lymph node metastasis. However in pediatric patients with GISTs the lymph node and distatnt metastasis are common and present at time of diagnosis \[^{[39]}\].

Patients with multifocal GISTs are considered as metastatic (advanced) GITs, inspite of some patients (especially those with rare hereditary GISTs syndromes) are affected by multiple lesions \[^{[40]}\].

Contrast-enhanced computed tomography (CECT) with oral and intravenous contrast is the imaging of choice to evaluate any abdominal mass. It provide information regarding size, extent, location, presence of multiple tumors, invasion into surrounding structures and presence or absence of distant metastasis which affect mainly peritoneum and liver \[^{[41-42]}\].

GISTs are characterized by Ghanem and colleagues based on the size as follow \[^{[43]}\]:

Small GIST (less than 5cm): well demarcated homogenous mass with intraluminal growth pattern.

Intermediate GIST (5-10cm): irregular heterogeneous mass with both extraluminal and intraluminal growth pattern and may have signs of aggressive biological behavior as infiltration of adjacent organs.

Large GIST (more than 10cm): irregular heterogeneous mass with signs of aggressive biologic behavior such as local infiltration, distant and peritoneal metastasis.

Magnetic resonance imaging (MRI) can be used in adjunction with CT for evaluation of large tumors that have hemorrhagic and necrotic component. Solid parts of the mass have low signal intensity on T1 and high signal intensity on T2 images with enhancement of tumor after administration of intravenous gadolinium. MRI is also helpful for evaluation of tumors at certain sites such as rectum to evaluate anatomic extent of tumors including sphincter involvement and also helpful for evaluation of liver for metastasis. The advantages of MRI are lack radiation exposure and are preferred in patients who cannot take intravenous contrast \[^{[42]}\].

Endoscopy may be helpful to characterize the lesion if gastric mass identified on image. GISTs and
leiomyomas appear as submucosal mass with bulging inside gastric lumen and intact overlying mucosa. Central ulceration of the overlying mucosa may be seen. Endoscopy alone cannot differentiate between extramural and intramural mass. So, endoscopic ultrasound (EUS) has major advantages including identification of layer of origin of tumor and enable tissue biopsies for histopathological studies including immunohistochemistry. GISTs appear as hypoechoic, homogenous with well-defined border on EUS, although they may have ulceration and irregular margins. Most of GISTs arise from the muscularis propria (4th layer of the gastrointestinal tract) while small tumors may arise from the muscularis mucosa (2nd layer of the gastrointestinal tract). Occasionally the tumors appear heterogenous because of liqufactive necrosis, connective tissue, and connective tissue, and hyaline and cystic degeneration of the tumors.[44]

The rule of Positron emission tomography (PET) scanning using fluorodeoxyglucose (FDG-PET) in GISTs is early detection of response to tyrosine kinase inhibitors (TKIs) like imatinib which may be necessary when treatment given as neoadjuvant therapy. Response to imatinib appear as marked reduction of glycolytic metabolism on FDG-PET which can be seen 24 hours after imatinib therapy is started. Also FDG-PET can be helpful in detection of tumor of unknown primary site or resolving equivocation from CT (eg, when there are ambiguities between CT and clinical findings). The sensitivity of FDG-PET for GISTs (including metastatic disease) is 86 to 100 percent.[45, 46, 47]

Preoperative biopsy is not indicated in a respectable tumor in which there is a strong suspicion for GIST and the patient is operable. The indications of biopsy are 1- to confirm diagnosis if metastatic disease is suspected, 2- if preoperative imatinib is indicated before attempted resection in a patient with a large locally advanced tumor with high suspicion for GIST. If preoperative biopsy is indicated EUS guided biopsy is better than image-guided percutaneous biopsy because of the risk of rupture of tumor capsule and peritoneal implantation of tumor cells associated with percutaneous biopsy, although there is strong evidence in patients receiving imatinib that patients undergoing percutaneous biopsy have inferior outcomes in comparison to patients who do not. The combination of histopathological analysis, immunohistochemical analysis for KIT protein expression, and
polymerase chain reaction (PCR) for KIT mutations may help the diagnosis of most of submucosal lesions by EUS-guided fine-needle aspiration (EUS-FNA). In one study including 65 patients underwent EUS-FNA for an upper gastrointestinal tract submucosal tumor, the sensitivity and specificity for diagnosis of GIST was 82 and 100 percent, respectively [48-49].

In spite of the proven success of imatinib therapy and newer tyrosine kinase inhibitors, surgical resection is the main line of treatment for localized GIST and exhibit the only chance for cure from GIST. The main principle in operative resection of GIST is resection with negative microscopic margins. Resection with wide margin (e.g., 2 cm margin) has not been approved to improve outcomes and expert consensus is that assertive adherence to resection with wide margin is not essential or recommended [41, 53-58].

Local resection for small GISTs is adequate, if it is technically feasible and does not affect a complete resection. Segmental resection is recommended for small bowel GIST and wedge resection may be adequate for gastric tumors in certain case. Enucleation is contraindicated for small tumors because prediction of malignant GISTs preoperatively is difficult even are the tumor looks benign [59]. En bloc resection of adjacent organs as colon, liver, or spleen may be adequate for locally advanced tumors. Lymphadenectomy is not recommended because lymph node metastasis is extremely rare [60].

Type of resection (wedge resection versus gastrectomy) does not affect survival or recurrence rate provided that complete resection (R0) done. Every effort should be done to avoid tumor rupture because rupture of tumor is associated with bad prognosis due to peritoneal seeding [59, 60]. Palliative resection may be considered in patients with disseminated disease, because long-term survival has been documented in certain cases. Also resection is considered in cases with recurrent disease that presents with solitary lesion in the liver or peritoneal cavity. Published data of hepatic resection for liver metastasis from gastric and other GISTs suggest better survival in selected cases [60, 61]. Because of the ability of imatinib therapy to make initially inoperable GISTs resectable, there is a role
for cytoreductive surgery (R0 or R1 resection) in patients presented with recurrent metastatic disease limited to the abdomen. Patients should receive at least 6 months of imatinib therapy or another TKIs and have had either partially responsive or stable tumor during this period. 40% of these patients needs hepatic resection and 60% require multivisceral resection including omentectomy, peritoneectomy, and/or intestinal resection. Even after aggressive resection, microscopically positive margins (R1 resections) are the rule, R0 resections are rare and approximately 5% of cases still have bulky disease as a remnant. [60, 61, 62].

Up to 70% of patients with stable or partially responsive disease after imatinib therapy who undergo R0/R1 resection have a progression-free survival (PFS) as long as 4 years. [62]

Given that adequate surgical resection for small malignant GISTs can be accomplished by wedge resection, minimally invasive surgical approaches can be considered in certain cases, such as those in suitable locations (eg, the greater curvature of the stomach or anterior gastric wall). [63]

Laparoscopic resection is used for treatment of GISTs. Chen et al reported that laparoscopic resection was technically feasible for GISTs not more than 5 cm situated at the stomach and small intestine. Advantages of laparoscopic surgical resection included faster returning of a normal diet, shorter hospital stays after surgery, and less use of analgesia. Short-term oncological results were similar to open surgery. [64].

Several published studies of laparoscopic resection of gastric GISTs have elucidated the feasibility and safety of this approach. In a retrospective study included 666 patients who underwent surgical resection for GIST of the stomach less than 20 cm, Piessen et al reported that laparoscopic resection of gastric GISTs had significant lower overall, surgical, and medical morbidity, and better 5-year recurrence-free survival (RFS). Furthermore, subgroup analysis of patients with tumors greater than 5 cm showed that laparoscopic and open approaches had comparable hospital morbidity and 5-year RFS. [65-71].

Estimation of the risk of recurrence following surgical resection of GIST is of greater significance in selection of patients who could benefit from adjuvant imatinib. There are a lot of risk stratification
models such as the original National Institutes of Health (NIH) consensus model, has been used to detect prognosis in surgically resected GIST (Table 1) [50].

In the series including 289 patients applied this model the cumulative disease specific five-year survival rates for risk level I through IV risk were 100%, 96%, 67%, and 25%, respectively. The prognostic significance of mitotic rate, tumor size, and anatomical location was confirmed analysis of ACOSOG Z9001 trial [51].

NIH risk stratification model do not take into account the anatomical location of the primary GIST tumor. Overall, tumors originating from the small intestine, colon, rectum, or mesentery have less favorable outcomes in comparison to those arising from the stomach [1, 37, 52].

Other risk stratification models have taken into account anatomical site of GIST origin, for example the Armed Forces Institute of Pathology (AFIP), use a tumor, node, and metastasis (TNM) staging system for risk stratification. Although the T and N installation are similar for all disease sites, there are different stage groupings for gastric/omental and small bowel/esophageal/colorectal/mesenteric and peritoneal primary tumors as in (Table 2) [52, 72, 73].

Table (1): Modified NIH consensus criteria for risk stratification of GISTs

Risk group	Size, cm	Mitotic rate, per 50 HPF
Level I	≤ 5	<5
Level II	< 5	6-10
Level III	5-10	<5
Level IV	> 10	>10
	> 5	

Table (2): Incidence of progression-free survival for GISTs of stomach, small bowel, and rectum based on mitotic rate and tumor size

Tumor size (cm)	Mitotic rate (HPFs)	Gastric	Jejunum/ileum	Duodenum	Rectum
≤ 2	≤ 5/50	100	100	100	100
2 to 5	≤ 5/50	98.1	95.7	91.7	91.5
5 to 10	≤ 5/50	96.4	76	66α	43α
> 10	≤ 5/50	88	48	66α	43α
≤ 5	> 5/50	100Δ	50α	-	46
2 to 5	> 5/50	84	27	50	48
5 to 10	> 5/50	45	15	14α	29α
10	> 5/50	14	10	14α	29α
HPFs: high power fields, α Data are combined for tumors >5 cm, Δ Small number of cases.

Although tumor rupture and incomplete surgical resection are not included in TNM staging system, they are independent predictors that negatively affect prognosis. A modification of the NIH risk stratification model has been suggested that mingle both site and tumor rupture as prognostic factors [74, 75, 76].

As alternative to risk stratification models, others use GIST tumor nomogram for detection of the rates of disease recurrence after complete surgical resection. Different nomograms are available [77, 78, 79]. Data from the Scandinavian Sarcoma Group (SSG) XVIII trial recommend adjuvant therapy with a tyrosine kinase inhibitors TKI (imatinib 400 mg daily) for patients who underwent complete resection of primary high risk GIST for a minimum of three years [79]. It is not known whether treatment with a TKI should be given for more than three years. Rates of recurrence of GIST is high within 6 to 12 months of discontinuation of adjuvant imatinib for up to three years, and it is likely that imatinib is preserving tumor dormancy rather than eradication of microdeposits. Patients with high-risk tumors may select to remain on a well-tolerated medication instead of increased rate of recurrence following discontinuation of the drug [81, 82].

The benefits of adjuvant imatinib therapy are illustrated in the following phase III trials:

1. ACOSOG Z9001 showed that adjuvant imatinib therapy significantly increase recurrence free survival (RFS) 98% vs. 83% at 1 year; overall hazard ratio 0.35; one-sided p<0.0001) but overall survival was similar in comparison to placebo (99.2% vs. 99.7% at 1 year; hazard ratio 0.66; p=0.47). The conclusion of this trial was that adjuvant imatinib is effective, safe and prolong RFS after surgery for primary GIST in comparison to placebo treatment while OS was similar in both groups [10, 83].

2. EORTC 62024 showed that adjuvant imatinib associated with significant increase in 5-year imatinib failure-free survival (IFFS) (87% versus 84% in the control group, HR 0.79, 98.5% CI 0.50-1.25), 3-year RFS (84% versus 66%) and overall survival (100%
versus 99%). Even among high risk GIST patients based on the 2002 NIH classification the adjuvant imatinib significantly increase IFFS (5-year IFFS 79% versus 73%, p = 0.087) but when the risk stratified based on modified NIH risk stratification criteria there is no statistically significant difference in IFFS between treated and control group [84].

3. SSG XVIII trial, The Scandinavian Sarcoma Group (SSG) XVIII trial compared 36 versus 12 months of adjuvant imatinib therapy for 36 versus 12 months (400 mg daily) in 400 high-risk GIST patients. High-risk patients was determined based on the modified consensus criteria as having one of the following: tumor size more than 10 cm, mitotic count more than 10 per 50 high-power fields (HPF), tumor size larger than 5 cm with mitotic rate more than 5/HPF, or rupture of tumor. Approximately 50% of the patients enrolled in trial had primary gastric tumors. After a median follow-up period of 54 months, treatment for long time was associated with a significant improvement in RFS, (5-year RFS 66% versus 48%, HR 0.46, 95% CI 0.32-0.65) and overall survival (92% versus 82 %, HR 0.45, 85% CI 0.22-0.89). With a longer median follow-up of 90 months; patients received three years of adjuvant imatinib continued to have significantly higher RFS (71% versus 52%) and overall survival (92% versus 85%) [19, 80, 85].

Many centers perform genotype all patients with GIST who are candidates for adjuvant imatinib routinely. Adjuvant imatinib therapy is contraindicated in patients with neurofibromatosis (NF)-associated GIST, SDH-deficient GIST, and PDGFRA D842V GIST. For patients whose GISTs harbor a KIT exon 9 mutations, high dose of imatinib(800 mg rather than 400 mg daily) is advisable, if tolerated, inspite of there are no data on which these recommendations can be based either for or against this practice [86].

For patients harboring tumors with a KIT or PDGFRA mutation other than D842V, neoadjuvantimatinib
indicated for patients with locally advanced unresectable tumors or borderline resectable tumors, for potentially resectable GISTs, if reduction in the size of the tumor would result in significant reduction in surgical morbidity and for most patients with GIST of the rectum, unless there is small tumor and sphincter preservation is feasible upfront. If possible, patients with these criteria should be enrolled in a clinical trial. The dose of neoadjuvant imatinib is 400 mg daily. There are some institutions, perform tumor genotyping routinely for all patients before neoadjuvant imatinib. If an exon 9 mutation is detected in a rare patient candidate for neoadjuvant imatinib, the option of a high daily dose (800 mg per day) should be discussed with patients, inspite of there are no data on which these recommendations can be based either for or against this practice. Most of these patients will have primary small intestinal tumor and better referred for initial surgical resection instead of neoadjuvant therapy with imatinib.

Patients harboring PDGFRA D842V mutated tumor or without KIT or PDGFRA mutations (wild-type tumors), neoadjuvant imatinib is not recommended because these tumors are insensitive to imatinib therapy, instead, surgery should be proceeded directly. If genotyping is not available, checking for an early response to imatinib therapy is advisable using computed tomography (CT), positron emission tomography (PET), or contrast-enhanced ultrasound (CEUS).

The ideal duration of TKIs as a neoadjuvant therapy is not well known. There are several factors, the duration of neadjuvant imatinib based on such as anatomical location and extent of tumor, drug tolerance, urgency of surgical resection and the results of frequent radiographic evaluation. So the decision as for how long to give imatinib and when to resect (either at first resectability or after maximal response) must be individualized. Generally, imatinib is given for 10 to 12 months, as long as there is evidence of radiological response. Patients who received neoadjuvant imatinib therapy, they should complete the course of imatinib therapy for at least 3 years (combined preoperative and postoperative). For patients presented with potentially respectable metastatic tumors with wild-type gene or without PDGFRA D842V mutation neoadjuvant imatinib therapy is better than upfront surgical
Finally small GIST in the proximal jejunum rarely presented with acute massive lower gastro intestinal (GIT) bleeding. We have found 7 cases of jejuna GIST presented with lower GIT bleeding, most of them are large in size and also treated with exploratory laparotomy (Table 3). Our case treated via laparoscopic approach.

Case	Age (year)	Sex	Size (cm)	Anatomical location	Approach	GIST subtype
Javeed et al [91]	23	female	9x8x5	Jejunum	Laparotomy	Spindle cell
Srinivasan et al [92]	55	female	3x3	Jejunum	Laparotomy	Spindle cell
Thanapal et al [93]	43	male	4.4x3.4x5	Jejunum	Laparotomy	Spindle cell
Govindaraj et al [94]	50	female	2x2	Jejunum	Laparotomy	Spindle cell
Daldoul et al [95]	34	male	7 x 5 x 4	Jejunum	Laparotomy	Spindle cell
Shim et al [96]	44	female	3.6x2.0	Jejunum	Laparoscopy	Spindle cell
Sass et al [97]	42	female	8	Jejunum	Laparoscopy	Spindle cell

Conclusion

Massive lower GIT bleeding is rare and atypical presentation of Jejunal GIST. CT is useful modality for diagnosis and localization of submucosal GIT tumors. Angioembolization is an essential diagnostic and therapeutic method in small bowel GIST presented by active bleeding but associated with high risk of bowel necrosis. Laparoscopic small bowel resection and anastmosis is feasible in patients with small intestinal GIST coming with active lower GIT bleeding as in our case.

Abbreviations

GIST: Gastrointestinal stromal tumor

GIT: Gastrointestinal tract

PRBCs: Packed red blood cells
CT: Computed tomography
SEER: Surveillance, Epidemiology, and End Results.
ICC: Interstitial cells of Cajal
EGIST: Extraintestinal gastrointestinal tumor
CECT: Contrast enhanced computed tomography
EUS: Endoscopic ultrasound
FGG-PET: Fluorodeoxyglucose- Positron emission tomography
MRI: Magnetic resonance imaging
FNA: Fine-needle aspiration
PCR: polymerase chain reaction
TNM: Tumor, node, and metastasis
AFIP: Armed Forces Institute of Pathology
NIH: National Institutes of Health
SSG: Scandinavian Sarcoma Group
TKIs: Tyrosine kinase inhibitors
NF: Neurofibromatosis
CEUS: Contrast enhanced ultrasound

Declarations

Acknowledgements:
Not applicable

Ethical approval and consent to participate:
Our study exempted from ethical approval

Consent for publication:
Written consent was obtained for publication of this case report and any accompanying images.
Availability of supporting data:

All relevant data are within the paper and its Supporting Information files.

Declaration of Competing Interest:

There is no conflict of interest to disclose

Source of Funding:

There are no sources of funding to acknowledge

Authors’ contributions:

Khaled A Sami: Study concept, design, data collection, interpretation, literature review, writing

Mohamed S Essa: Literature review, writing:

Naif A Alenazi: Data collection, writing

References

1-Miettinen M, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J SurgPathol. 2005;29(1):52–68.

2-Kramer K, Siech M, Sträter J, et al. GI hemorrhage with fulminant shock induced by jejunal gastrointestinal stromal tumor (GIST) coincident with duodenal neuroendocrine carcinoma (NET) + neurofibromatosis (NF)—case report and review of the literature. Z Gastroenterol. 2005;43(3):281-288.

3-Rammohan A, Sathyanesan J, Rajendran K, et al. A gist of gastrointestinal stromal tumors: a review. World J GastrointestOncol. 2012;5(6):102-112.
4-Rubin BP, Fletcher JA, Fletcher CD. Molecular insights into the histogenesis and pathogenesis of gastrointestinal stromal tumors. International journal of surgical pathology. 2000;8(1):5-10.

5-Miettinen M, Lasota J. Gastrointestinal stromal tumors—definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Archiv. 2001;438(1):1-2.

6-Reith JD, Goldblum JR, Lyles RH, Weiss SW. Extragastrointestinal (soft tissue) stromal tumors: an analysis of 48 cases with emphasis on histologic predictors of outcome. Modern Pathology. 2000;13(5):577.

7-Medeiros F, Corless CL, Duensing A, et al. KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. The American journal of surgical pathology. 2004;28(7):889-94.

8-Jenkins TD. Atlas of tumor pathology, tumors of the esophagus and stomach. Gastroenterology. 1999;117(2):508.

9-Miettinen M, Sarlomo-Rikala M, Lasota J. Gastrointestinal stromal tumors: recent advances in understanding of their biology. Human pathology. 1999;30(10):1213-20.

10-DeMatteo RP, Ballman KV, Antonescu CR, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. The Lancet. 2009;373(9669):1097-104.

11-Ma GL, Murphy JD, Martinez ME, et al. Epidemiology of gastrointestinal stromal tumors in the era of histology codes: results of a population-based study. Cancer Epidemiology and Prevention Biomarkers. 2015;24(1):298-302.

12-Cassier PA, Ducimetière F, Lurkin A, et al. A prospective epidemiological study of new incident GISTs during two consecutive years in Rhône Alpes region: incidence and molecular distribution of GIST in a European region. British journal of cancer. 2010;103(2):165.

13-Nilsson B, Bümminning P, Meis-Kindblom JM, et al. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinibmesylate era: a population-based study in western Sweden. Cancer. 2005;103(4):821-829.
14-Tryggvason G, Gíslason HG, Magnússon MK, et al. Gastrointestinal stromal tumors in Iceland, 1990–2003: The Icelandic GIST study, a population-based incidence and pathologic risk stratification study. International journal of cancer. 2005;117(2):289-93.

15-Miettinen M, Fetsch JF, Sobin LH, Lasota J. Gastrointestinal stromal tumors in patients with neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. The American journal of surgical pathology. 2006;30(1):90-6.

16-Mussi C, Schildhaus HU, Gronchi A, et al. Therapeutic consequences from molecular biology for gastrointestinal stromal tumor patients affected by neurofibromatosis type 1. Clinical Cancer Research. 2008;14(14):4550-4555.

17-Miettinen M, Sobin LH, Sarlomo-Rikala M. Immunohistochemical spectrum of GISTs at different sites and their differential diagnosis with a reference to CD117 (KIT). Modern pathology. 2000;13(10):1134.

18-Newman PL, Wadden C, Fletcher CD. Gastrointestinal stromal tumours: correlation of immunophenotype with clinicopathological features. The Journal of pathology. 1991;164(2):107-17.

19-Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: a consensus approach. International journal of surgical pathology. 2002;10(2):81-9.

20-Sakurai S, Fukasawa T, Chong JM, et al. C-kit gene abnormalities in gastrointestinal stromal tumors (tumors of interstitial cells of Cajal). Japanese journal of cancer research. 1999;90(12):1321-8.

21-Wang L, Vargas H, French SW. Cellular origin of gastrointestinal stromal tumors: a study of 27 cases. Archives of pathology & laboratory medicine. 2000;124(10):1471-5.

22-Sircar K, Hewlett BR, Huizinga JD, et al. Interstitial cells of Cajal as precursors of gastrointestinal stromal tumors. The American journal of surgical pathology. 1999;23(4):377-389.

23-Agaimy A, Wünsch PH, Hofstaedter F, et al. Minute gastric sclerosing stromal tumors (GIST tumorlets) are common in adults and frequently show c-KIT mutations. Am J SurgPathol. 2007;31 (1):113-20.

24-Broudy VC. Stem cell factor and hematopoiesis. Blood 1997; 90: 1345-1364.

25-van Roggen JG, Van Velthuysen ML, Hogendoorn PC. The histopathological differential
diagnosis of gastrointestinal stromal tumours. Journal of clinical pathology. 2001; 54(2):96-102.

26-Théou-Anton N, Tabone S, Brouty-Boye D, et al. Co expression of SCF and KIT in gastrointestinal stromal tumours (GISTs) suggests an autocrine/paracrine mechanism. British journal of cancer. 2006; 94(8):1180.

27-Yamamoto H, Oda Y, Kawaguchi K, et al. c-kit and PDGFRA mutations in extragastrointestinal stromal tumor (gastrointestinal stromal tumor of the soft tissue). The American journal of surgical pathology. 2004; 28(4):479-88.

28-Janeway KA, Liegl B, Harlow A, et al. Pediatric KIT–Wild-Type and Platelet-Derived Growth Factor Receptor α–Wild-Type Gastrointestinal Stromal Tumors Share KIT Activation but not Mechanisms of Genetic Progression with Adult Gastrointestinal Stromal Tumors. Cancer research. 2007; 67(19):9084-8.

29-Corless CL, Schroeder A, Griffith D, et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J ClinOncol. 2005; 23(23):5357-64.

30-Agaimy A, Märkl B, Arnholdt H, et al. Sporadic segmental Interstitial cell of cajal hyperplasia (microscopic GIST) with unusual diffuse longitudinal growth replacing the muscularispropria: differential diagnosis to hereditary GIST syndromes. International journal of clinical and experimental pathology. 2010; 3(5):549.

31-Miettinen M, Monihan JM, Sarlomo-Rikala M, et al. Gastrointestinal stromal tumors/smooth muscle tumors (GISTs) primary in the omentum and mesentery: clinicopathologic and immunohistochemical study of 26 cases. The American journal of surgical pathology.1999; 23(9):1109.

32-Hirota S, Isozaki K. Pathology of gastrointestinal stromal tumor. Pathol Int. 2006; 56:1-9.

33-Rubin BP, Singer S, Tsao C, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res. 2001; 61 (22):8118-8121.

34-Agaimy A, Terracciano LM, Dirnhofer S, et al. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. Journal of clinical pathology. 2009; 62(7):613-616.
35-Fukasawa T, Chong JM, Sakurai S, et al. Allelic loss of 14q and 22q, NF2 mutation, and genetic instability occur independently of c-kit mutation in gastrointestinal stromal tumor. Japanese journal of cancer research. 2000;91(12):1241-1249.

36-Miettinen M, El-Rifai W, Sobin LH, et al. Evaluation of malignancy and prognosis of gastrointestinal stromal tumors: a review. Hum Pathol. 2002;33 (5):478-483.

37-Miettinen M, Makhlouf H, Sobin LH, et al. Gastrointestinal stromal tumors of the jejunum and ileum: a clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before imatinib with long-term follow-up. The American journal of surgical pathology.2006;30(4):477-89.

38-Maynard MA, Marino-Enriquez A, Fletcher JA, et al. Thyroid hormone inactivation in gastrointestinal stromal tumors. New England Journal of Medicine. 2014;370(14):1327-1334.

39-Rege TA, Wagner AJ, Corless CL, et al. "Pediatric-type" gastrointestinal stromal tumors in adults: distinctive histology predicts genotype and clinical behavior. Am J SurgPathol. 2011;35(4):495-504.

40-Gasparotto D, Rossi S, Bearzi I, et al. Multiple primary sporadic gastrointestinal stromal tumors in the adult: an underestimated entity. Clinical Cancer Research. 2008;14(18):5715-21.

41-[Guideline] ESMO/European Sarcoma Network Working Group. Gastrointestinal stromal tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(3):21-26.

42-Scarpa M, Bertin M, Ruffolo C, et al. A systematic review on the clinical diagnosis of gastrointestinal stromal tumors. Journal of surgical oncology.2008 ;98(5):384-392.

43-Ghanem N, Altehoefer C, Furtwängler A, et al. Computed tomography in gastrointestinal stromal tumors. EurRadiol. 2003;13 (7):1669-1678.

44-Tio TL, Tytgat GN, den HartogJager FC. Endoscopic ultrasonography for the evaluation of smooth muscle tumors in the upper gastrointestinal tract: an experience with 42 cases. Gastrointestinal endoscopy. 1990;36(4):342-50.

45- Demetri GD, Benjamin RS, Blanke CD, et al. NCCN Task Force report: management of patients with gastrointestinal stromal tumor (GIST)--update of the NCCN clinical practice guidelines. J
46-Gayed I, Vu T, Iyer R, et al. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. Journal of Nuclear Medicine. 2004;45(1):17-21.

47-Kamiyama Y, Aihara R, Nakabayashi T, et al. 18 F-fluorodeoxyglucose positron emission tomography: useful technique for predicting malignant potential of gastrointestinal stromal tumors. World journal of surgery. 2005;29(11):1429-1435.

48-Eriksson M, Reichardt P, Hall KS, et al. Needle biopsy through the abdominal wall for the diagnosis of gastrointestinal stromal tumour–Does it increase the risk for tumour cell seeding and recurrence?. European Journal of Cancer. 2016;59:128-133.

49-Watson RR, Binmoeller KF, Hamerski CM, et al. Yield and performance characteristics of endoscopic ultrasound-guided fine needle aspiration for diagnosing upper GI tract stromal tumors. Digestive diseases and sciences. 2011;56(6):1757-1762.

50-Huang HY, Li CF, Huang WW, et al. A modification of NIH consensus criteria to better distinguish the highly lethal subset of primary localized gastrointestinal stromal tumors: a subdivision of the original high-risk group on the basis of outcome. Surgery. 2007;141(6):748-756.

51-Corless CL, Ballman KV, Antonescu CR, et al. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: the ACOSOG Z9001 trial. Journal of Clinical Oncology. 2014;32(15):1563.

52-Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. InSeminars in diagnostic pathology 2006;23(2):70-83.

53-Boni L, Benevento A, Dionigi G, et al. Surgical resection for gastrointestinal stromal tumors (GIST): experience on 25 patients. World journal of surgical oncology. 2005;3(1):78.

54-Bucher P, Egger JF, Gervaz P, et al. An audit of surgical management of gastrointestinal stromal tumours (GIST). Eur J Surg Oncol. 2006;32(3):310-314.

55-Knoop M, St Friederichs K, Dierschke J. Surgical management of gastrointestinal stromal tumors of the stomach. Langenbecks Arch Surg. 2000;385(3):194-198.

56-Kosmadakis N, Visvardis EE, Kartsaklis P, et al. The role of surgery in the management of
gastrointestinal stromal tumors (GISTs) in the era of imatinibmesylate effectiveness. Surg Oncol. 2005;14(2):75-84.

57-Lehnert T, Sinn HP, Waldherr R, et al. Surgical treatment of soft tissue tumors of the stomach. Eur J Surg Oncol. 1990;16(4):352-359.

58-Peiper M, Schroder S, Zornig C. Stromal sarcoma of the stomach--a report of 20 surgically treated patients. Langenbecks Arch Surg. 1998;383(6):442-446.

59-Katai H, Sasako M, Sano T. Wedge resection of the stomach for gastric leiomyosarcoma. Br J Surg. 1997;84(4):560-561.

60-Eisenberg BL, Judson I. Surgery and imatinib in the management of GIST: emerging approaches to adjuvant and neoadjuvant therapy. Ann Surg Oncol. 2004;1(5):465-75.

61-Rutkowski P, Nowecki Z, Nyckowski P, et al. Surgical treatment of patients with initially inoperable and/or metastatic gastrointestinal stromal tumors (GIST) during therapy with imatinibmesylate. J Surg Oncol. 2006;93(4):304-311.

62-Chen H, Pruitt A, Nicol TL, et al. Complete hepatic resection of metastases from leiomyosarcoma prolongs survival. J Gastrointest Surg. 1998;2(2):151-5.

63-[Guideline] NCCN Clinical Practice Guidelines in Oncology. Soft Tissue Sarcoma: Version 2.2016.

64-Chen YH, Liu KH, Yeh CN, et al. Laparoscopic resection of gastrointestinal stromal tumors: safe, efficient, and comparable oncologic outcomes. J Laparoendosc Adv Surg Tech A. 2012;22 (8):758-763.

65-Aogi K, Hirai T, Mukaida H, et al. Laparoscopic resection of submucosal gastric tumors. Surg Today. 1999;29(2):102-106.

66-Hindmarsh A, Koo B, Lewis MP, et al. Laparoscopic resection of gastric gastrointestinal stromal tumors. Surg Endosc. 2005;19(8):1109-1112.

67-Nguyen SQ, Divino CM, Wang JL, et al. Laparoscopic management of gastrointestinal stromal tumors. Surg Endosc. 2006;20(5):713-716.

68-Bedard EL, Mamazza J, Schlachta CM, et al. Laparoscopic resection of gastrointestinal stromal
tumors: not all tumors are created equal. SurgEndosc. 2006;20(3):500-503.

69-Kitano S, Shiraishi N. Minimally invasive surgery for gastric tumors. SurgClin North Am. 2005;85(1):151-164.

70-Piessen G, Lefèvre JH, Cabau M, et al. Laparoscopic Versus Open Surgery for Gastric Gastrointestinal Stromal Tumors: What Is the Impact on Postoperative Outcome and Oncologic Results?. Ann Surg. 2015;262(5):831-840.

71-Rosen MJ, Heniford BT. Endoluminal gastric surgery: the modern era of minimally invasive surgery. SurgClin North Am. 2005;85(5):989-1007.

72-Byrd DR, Carducci MA, Compton CC, et al. AJCC cancer staging manual. Edge SB, editor. New York: Springer; 2010.

73-DeMatteo RP, Maki RG, Agulnik M, et al. Gastrointestinal Stromal Tumor. In: AJCC Cancer Staging Manual, 8th, Amin MB (Ed), AJCC, Chicago 2017. p.523. Corrected at 4th printing, 2018.

74-Joensuu H, Vehtari A, Riihimäki J, et al. Risk of recurrence of gastrointestinal stromal tumour after surgery: an analysis of pooled population-based cohorts. The lancet oncology. 2012;13(3):265-274.

75-Joensuu H. Risk stratification of patients diagnosed with gastrointestinal stromal tumor. Human pathology. 2008;39(10):1411-1419.

76-Joensuu H, Eriksson M, Hall KS, et al. Risk factors for gastrointestinal stromal tumor recurrence in patients treated with adjuvant imatinib. Cancer. 2014;120(15):2325-2333.

77-Gold JS, Gönen M, Gutiérrez A, et al. Development and validation of a prognostic nomogram for recurrence-free survival after complete surgical resection of localised primary gastrointestinal stromal tumour: a retrospective analysis. The lancet oncology. 2009;10(11):1045-1052.

78-Bischof DA, Kim Y, Behman R, et al. A nomogram to predict disease-free survival after surgical resection of GIST. Journal of Gastrointestinal Surgery. 2014;18(12):2123-2129.

79-Rossi S, Miceli R, Messerini L, et al. Natural history of imatinib-naive GISTs: a retrospective analysis of 929 cases with long-term follow-up and development of a survival nomogram based on mitotic index and size as continuous variables. The American journal of surgical pathology.
80-Joensuu H, Eriksson M, Hall KS, et al. One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial. Jama. 2012;307(12):1265-72.

81-Andtbacka RH, Ng CS, Scaife CL, et al. Surgical resection of gastrointestinal stromal tumors after treatment with imatinib. Annals of surgical oncology. 2007;14(1):14-24.

82-Bednarski BK, Araujo DM, Yi M, et al. Analysis of prognostic factors impacting oncologic outcomes after neoadjuvant tyrosine kinase inhibitor therapy for gastrointestinal stromal tumors. Annals of surgical oncology. 2014;21(8):2499-505.

83-Corless CL, Ballman KV, Antonescu C, et al. Relation of tumor pathologic and molecular features to outcome after surgical resection of localized primary gastrointestinal stromal tumor (GIST): results of the intergroup phase III trial ACOSOG Z9001. Journal of Clinical Oncology. 2010;28(15):10006.

84-Casali PG, Cesne AL, Velasco AP, et al. Time to definitive failure to the first tyrosine kinase inhibitor in localized GI stromal tumors treated with imatinib as an adjuvant: a European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group intergroup randomized trial in collaboration with the Australasian Gastro-Intestinal Trials Group, UNICANCER, French Sarcoma Group, Italian Sarcoma Group, and Spanish Group for Research on Sarcomas.

85-Joensuu H, Eriksson M, Sundby Hall K, et al. Adjuvant imatinib for high-risk GI stromal tumor: analysis of a randomized trial. Journal of Clinical Oncology. 2015;34(3):244-250.

86-Casali PG, Abecassis N, Bauer S, et al. Gastrointestinal stromal tumours: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology. 2018;29(4):68-78.

87-CHACON M. CASE 3. Pathologic complete remission of metastatic gastrointestinal stromal tumor after imatinibmesylate. J Clin Oncol. 2005;23(7):1580-1582.

88-Lassau N, Lamuraglia M, Chami L, et al. Gastrointestinal stromal tumors treated with imatinib: monitoring response with contrast-enhanced sonography. American Journal of Roentgenology. 2006;187(5):1267-1273.
89-Tirumani SH, Shinagare AB, Jagannathan JP, et al. Radiologic assessment of earliest, best, and plateau response of gastrointestinal stromal tumors to neoadjuvant imatinib prior to successful surgical resection. European Journal of Surgical Oncology (EJSO). 2014;40(4):420-428.

90-Gronchi A, Raut CP. The combination of surgery and imatinib in GIST: a reality for localized tumors at high risk, an open issue for metastatic ones. Annals of surgical oncology. 2012;19(4):1051-5.

91-Javeed SJ, Ishaq R, Khalid A, et al. Synchronous Development of Gastrointestinal Stromal Tumor and Arteriovenous Malformation in the Jejunum. International Journal of Pathology. 2018;176-178.

92-Srinivasan PH, Maliekal JL, Reddy CS, et al. GIST jinx–a rare case of acute massive life threatening bleed from a jejunal gastro-intestinal stromal tumour. Journal of clinical and diagnostic research: JCDR. 2016;10(3):3.

93-Thanapal M, Hussein H, Ariffin Z. Bleeding jejunal GIST: An uncommon cause of gastrointestinal bleeding. Med J Malaysia. 2015;70(1):31.

94-Govindaraj S, Dias BH, Gautham SL. A sporadic small jejunal GIST presenting with acute lower gastrointestinal hemorrhage: a review of the literature and management guidelines. Indian Journal of Surgery. 2015;77(1):143-146.

95-Daldoul S, Moussi A, Triki W, et al. Jejunal GIST causing acute massive gastrointestinal bleeding: role of multidetector row helical CT in the preoperative diagnosis and management. Arab journal of gastroenterology. 2012;13(3):153-157.

96-Shim SH, Han YH, Kwak JE, et al. Synchronous Development of Gastrointestinal Stromal Tumor and Arteriovenous Malformation in the Jejunum: A Case Report. The Korean Journal of Pathology. 2008;42(3):185-188.

97-Sass DA, Chopra KB, Finkelstein SD, et al. Jejunal gastrointestinal stromal tumor: a cause of obscure gastrointestinal bleeding. Archives of pathology & laboratory medicine. 2004;128(2):214-217.
Figure 1

Colon filled with blood.
Figure 1

Colon filled with blood.
CT abdomen with IV contrast showed proximal jejuna mass with extravasation (red arrow).
CT abdomen with IV contrast showed proximal jejuna mass with extravasation (red arrow).
Figure 3

SMA angiography showed extravasations (yellow arrow).
SMA angiography showed extravasations (yellow arrow).

Figure 4
Bowel filled with blood (red arrow).
Figure 4

Bowel filled with blood (red arrow).
Figure 5

GIST in proximal Jejunum (green arrow).
Figure 5

GIST in proximal Jejunum (green arrow).
Figure 6

laparoscopic small bowel resection anastmosis.
Figure 6

laparoscopic small bowel resection anastmosis.
Figure 7

Spindle cell GIST, (A) hematoxylin and eosin stain (H&E), (B) KIT expression by immunohistochemistry, low magnification, (C) KIT expression, high magnification.
Spindle cell GIST, (A) hematoxylin and eosin stain (H&E), (B) KIT expression by immunohistochemistry, low magnification, (C) KIT expression, high magnification.
Figure 8

Epithelioid GIST, hematoxylin and eosin stain (H&E).
Figure 8

Epithelioid GIST, hematoxylin and eosin stain (H&E).
Figure 9

Mixed GIST, epithelioid component (red arrow) and spindle component (yellow arrow).
Mixed GIST, epithelioid component (red arrow) and spindle component (yellow arrow).
