Trace nonrecycling impurities (scandium and CaF₂) have been injected into Alcator C-Mod plasmas in order to determine impurity transport coefficient profiles in a number of operating regimes. Recycling Ar has also been injected to characterize steady-state impurity density profiles. Subsequent impurity emission has been observed with spatially scanning X-ray and vacuum ultraviolet spectrometer systems, in addition to very high spatial resolution X-ray and bolometer arrays viewing the plasma edge. Measured time-resolved brightness profiles of helium-, lithium-, and beryllium-like transitions have been compared with those calculated from a transport code that includes impurity diffusion and convection, in conjunction with an atomic physics package for individual line emission. Similar modeling has been performed for the edge observations, which are unresolved in energy. The line time histories and the profile shapes put large constraints on the impurity diffusion coefficient and convection velocity profiles. In L-mode plasmas, impurity confinement times are short (~20 ms), with diffusivities in the range of 0.5 m²/s, anomalously large compared to neoclassical values. During Enhanced Dₐ (EDA) H-modes, the impurity confinement times are longer than in L-mode plasmas, and the modeling suggests that there exists inward convection (~50 m/s) near the plasma edge, with greatly reduced diffusion (of order 0.1 m²/s), also in the region of the edge transport barrier. These edge values of the transport coefficients during EDA H-mode are qualitatively similar to the neoclassical values. In edge localized mode–free H-mode discharges, impurity accumulation occurs, dominated by large inward impurity convection in the pedestal region. A scaling of the impurity confinement time with H-factor reveals a very strong exponential dependence. In internal transport barrier discharges, there is significant impurity accumulation inside of the barrier foot, typically at r/a ~ 0.5. Steady-state impurity density profiles in L-mode plasmas have a large up-down asymmetry near the last closed flux surface. The impurity density enhancement, in the direction opposite to the ion B × VB drift, is consistent with modeling of neoclassical parallel impurity transport.

KEYWORDS: Alcator C-Mod tokamak, divertor, plasma transport
and ITB plasmas, respectively. In Sec.VI, observations of parallel impurity transport are shown, with a summary and conclusions in Sec.VII.

II. EXPERIMENT AND SPECTROMETER DESCRIPTION

Scandium and calcium fluoride (CaF₂) have been injected into L-mode and H-mode plasmas using the laser blowoff technique, while argon was introduced through a piezoelectric valve. Subsequent X-ray emission was recorded by a spatially scanable X-ray spectrometer array, each spectrometer of which has a resolving power of 5000, a 2-cm spatial resolution, and a luminosity function of 7 × 10⁻⁹ cm²·sr, with spectra typically collected every 20 ms, and with 120-mÅ coverage. The total count rate within the spectral range of the spectrometers (2.7 Å < λ < 4 Å) is available with 1-ms time resolution. In most of the analysis presented here, the resonance line w (1s²2p¹P₁ - 1s² 1S₀) of helium-like ions has been used; for Sc¹⁹⁺, Ca¹⁸⁺, and Ar¹⁶⁺, the transitions are at 2.8731 Å (Ref. 21), 3.1773 Å (Refs. 15 and 22), and 3.9492 Å (Refs. 22 and 23), respectively. For vacuum ultraviolet (VUV) emission, an absolute-intensity-calibrated spatially scanning VUV spectrograph has been employed to monitor the brightness of the 1s²2s - 1s²2p transitions in the lithium-like ions Sc¹⁸⁺ at 279.8 Å and Ca¹⁷⁺ at 344.8 Å (the brighter transition of the lithium-like calcium doublet at 302.2 Å is contaminated by the intense helium Lyₐ line at 303.8 Å), the 1s²2s² - 1s²2s²2p transition of beryllium-like Ca¹⁶⁺ at 192.9 Å, the sodium-like Ca⁹⁺ 3s-3p doublet at 557.8 and 574.0 Å, and the lithium-like F⁶⁺ 2s-2p doublet at 883.1 and 890.8 Å. This VUV spectrometer has ~0.6-Å first-order spectral resolution and 2-cm spatial resolution, with spectra collected typically every 4 to 16 ms. Both spectrometer systems can view all of the plasma, out to the last closed flux surface (LCFS). These spectrally resolved measurements are nicely complemented by high spatial resolution observations of the plasma edge (in the vicinity of the transport barrier) from X-ray and bolometer arrays.

The impurity transport coefficients D(r) and V(r) have been determined from the time evolution of the radial brightness profiles of the helium-, lithium-, and beryllium-like X-ray and VUV transitions of injected impurities, and from the profile evolutions of (unresolved in energy) X-ray and bolometer emissivities. The simulated time histories were determined by the following method: The individual charge state density profile evolution times were determined from the MIST code, which uses measured electron density and temperature profiles as inputs, and the impurity diffusion coefficient and convection velocity profiles were taken as free parameters, constant in time. The emissivity profiles for individual transitions were then calculated from the LINEST code using the appropriate population rate coefficients in conjunction with the calculated charge state density profiles, along with the measured electron density and temperature profiles. The chordal line brightness time histories for the individual transitions were then determined by integrating the emissivity profiles over the appropriate sight lines. The absolute impurity densities may be determined by comparing the calculated signals with the observed line brightnesses. The spatial variations, time histories, and relative intensities of these profiles place a very strong constraint on the selection of the transport coefficient profiles.

III. IMPURITY TRANSPORT IN L-MODE PLASMAS

Figure 1 shows parameter time histories for an L-mode plasma into which a trace amount of scandium was injected. For the case of L-mode plasmas, the impurity confinement times are short, nominally ~20 ms. An example of the time histories of central chord helium-like (dots) and lithium-like (asterisks) scandium brightnesses from another L-mode discharge is shown in Fig. 2. The radiation from the two charge states (the X-ray signal has been increased by a factor of 100 for easier direct comparison) peaks sequentially in time, and the scandium has totally left the plasma within 100 ms after the injection. For this particular discharge, at the time of injection (0.75 s), the plasma current was 1.2 MA, the
toroidal magnetic field was 7.9 T, the central electron density was $2.0 \times 10^{20}/m^3$, the central electron temperature was 2800 eV, and there were 1.0 MW of auxiliary ion cyclotron range of frequencies (ICRF) heating power. For most Alcator C-Mod electron temperature profiles, helium-like scandium is a central charge state, while lithium-like scandium radiates mostly from the outer third of the plasma. The curves in Fig. 2 show the simulated central chord brightness time histories, calculated as described above. Not only is the agreement between the time histories of the measured and calculated lines quite good, but also the relative intensities of the simulated and observed lines are excellent. Here, there was only one normalization used (of the VUV line), which determines the scandium density in the plasma at one time. The impurity diffusion coefficient profile used for these simulations, along with the electron density and temperature profiles, are shown in Fig. 3. The diffusion coefficient was $0.5 \ m^2/s$ over most of the plasma interior and then dropped to $-0.05 \ m^2/s$ near the LCFS at $r = 0.22 \ m$; there was no need for any convection velocity in this simulation, similar to what was found in Alcator A and C (Refs. 5 and 7). Inclusion of any inward convection velocity would cause the predicted lithium-like scandium signal to increase much more quickly than is observed; effects on the predicted helium-like signal in this case would be insignificant.

Figure 4 shows the time histories from three X-ray spectrometer views of a scandium injection into another L-mode plasma, integrated over the wavelength region between 2.86 and 2.94 Å. In this case the scandium
injection time was 0.550 s. The three traces were from spectrometers viewing at \(r/a = 0.10, 0.39, \) and 0.69, respectively. The signals all decay with a 1/e time of \(\sim 19 \) ms, which implies a diffusion coefficient of \(\sim 0.5 \) m\(^2\)/s, as determined above. Notice that the signal at \(r/a = 0.39 \) (middle) rises to a peak in \(\sim 5 \) ms, nearly a factor of 2 faster than the more central chord (top). The transition upper-level population at these radii is dominated by collisional excitation of helium-like scandium, which exists over most of the plasma. During the influx phase of the injection, it takes longer for the scandium to reach the plasma center, so the signal at \(r/a = 0.10 \) peaks later than the signal at \(r/a = 0.39 \). In contrast, the outermost signal from \(r/a = 0.69 \) (bottom) actually peaks later than that of the central chord. This is because in the outer plasma regions where the electron temperature is much less than the transition energy, the upper levels for the lines are mainly populated by radiative recombination of hydrogen-like Sc\(^{20+} \), and during the influx phase of the injection, there is no hydrogen-like scandium at this radius. So, it is only late in the injection after Sc\(^{20+} \) is born at the center of the discharge and then diffuses out to this radius that the signal appears. At \(r/a = 0.9 \), the electron temperature was \(\sim 600 \) eV; here, at 2 ms after the injection, the ion density ratio of Sc\(^{20+}/\text{Sc}^{19+} \) was \(10^{-5} \), whereas at 15 ms after the injection, the ratio was 0.005. Also shown (by the smooth curves) are the code results, which are in excellent agreement. This agreement is taken to validate the use of the L-mode diffusion coefficient profile of Fig. 3.

IV. IMPURITY TRANSPORT IN H-MODE PLASMAS

Impurity confinement times are considerably longer in H-mode discharges. The time histories of several parameters of interest for an EDA H-mode plasma are shown in Fig. 5. The EDA H-mode period for this 5.4-T deuterium discharge, induced by 2.0 MW of ICRF power, lasted from 0.63 to 1.21 s, as evidenced by increases in the plasma stored energy, the electron and ion temperatures. The steady EDA interval was from 0.7 to 1.2 s.) The stored energy increase during the H-mode period was a modest 40 kJ, and the ITER-89P H-factor was 1.2. There was a CaF\(_2\) injection at 0.8 s, as seen by the increases in the soft-X-ray signal and the total calcium density. Figure 6 shows the time evolution of the Ca\(^{18+}\) X-ray spectrum between 3.17 and 3.22 Å for this same EDA H-mode plasma. The spectrum is dominated by the resonance line and the forbidden line \(1s2s^3S_1 - 1s^21S_0, 3.2111 \) Å, and the intercombination lines are prominent. Also visible are several dielectronic and inner shell satellites. This spectrum is described in detail in Ref. 32. For this central chord view, all of the individual transitions rise and fall with similar time signatures.

![Fig. 5. Parameter time histories for an EDA H-mode plasma with a trace CaF\(_2\) injection at 0.8 s. From top to bottom, the plasma stored energy, the central density (electron: solid line; calcium: chain line, \(\times 10^5 \)), the central temperature (electron: with sawteeth; ion: smooth), the ICRF input power, the \(D_{\alpha} \) brightness, and the central chord X-ray brightness (3.17 Å < \(\lambda \) < 3.22 Å).](image)

![Fig. 6. A surface plot of the X-ray brightness between 3.17 and 3.22 Å, as a function of time.](image)
The top frame of Fig. 7 shows the time history of the brightest X-ray transition, the resonance line \(w \) from Ca\(^{18+}\) for the same EDA H-mode discharge of Fig. 5. The signal reaches a maximum \(-35\) ms after the injection and then decays with a characteristic time of 68 ms, which is indicative of the central impurity confinement time. The top frame of Fig. 7 also shows the time histories of the lithium- and beryllium-like resonance lines, which peak much more quickly but have similar decay times. In the bottom frame of Fig. 7 are the simulated normalized brightness time histories, which are in good agreement with the observations. The transport coefficient profiles, near the plasma edge, used in the simulations of Fig. 7 are shown in Fig. 8 by the solid lines, along with the edge electron density and temperature profiles. Over the plasma core region, the diffusion coefficient is a factor of \(-2\) lower than the case of L-mode, which is shown in Fig. 3. The calculated neoclassical impurity transport coefficient\(^{33}\) profile is plotted for comparison. A more recent treatment of neoclassical impurity transport coefficients may be found in Ref. 34. In the region of the edge pedestal and transport barrier, the diffusion coefficient profile (0.15 m\(^2\)/s) is very similar to the calculated neoclassical profile,\(^{14}\) while in the interior of the plasma, the diffusion is highly anomalous, much larger than neoclassical. The convection velocity profile is qualita-

tively very similar to the calculated neoclassical profile, with the inward pinch the strongest where the density gradient is the largest, and near 0 elsewhere. The peak value for the observed pinch is \(-70\) m/s, a factor of 5 smaller than the neoclassical value. The position of the LCFS is indicated by the vertical dotted line.

By scanning the X-ray and VUV spectrometers shot-to-shot, complete brightness profiles of selected lines may be obtained. Two such brightness profiles are shown in Fig. 9, for the Ca\(^{18+}\) resonance line (3.1773 Å) at 0.870 s and for the Ca\(^{16+}\) resonance line (192.9 Å) at 0.815 s, from a series of discharges identical to that shown in Fig. 5. The Ca\(^{18+}\) resonance line profile is sharply peaked near the plasma center since the dominant population mechanism for the upper level of this transition is collisional excitation, and here the electron temperature is highest. The Ca\(^{16+}\) resonance line brightness profile is strongest in the outer regions of the plasma since this is where that charge state density profile is peaked. Shown for comparison are the simulated profiles, using the same transport coefficient profiles from Fig. 8, again with good agreement. From Figs. 7 and 9, one can see that one set of impurity transport coefficients produces good agreement with both the temporal and spatial variations of individual calcium line brightnesses over the complete
plasma cross section. Another way of visualizing this is via contour plots of line brightness profiles. Figure 10 and 11 are plots of the measured helium- and beryllium-like transitions, respectively, including the simulated contours. Again, the overall agreement is good.

The details of the transport coefficient profiles in the vicinity of the edge transport barrier may be revealed through use of the complement high spatial resolution edge diagnostics available on Alcator C-Mod. Figure 12 shows the measured X-ray emissivity profile at the peak of the injection in the neighborhood of the LCFS, with the preinjection background subtracted off, for the same discharge conditions as in Figs. 5 through 7 and 9 through 11. This emission is mainly due to F$^{8+}$. The X-ray “pedestal” is located well inside of the LCFS and the measured electron density pedestal (top frame), which clearly demonstrates the effect of the inward impurity pinch.15,16 Figure 12 also show the simulated X-ray emissivity profile, again using the transport coefficient profiles of Fig. 8, which is in excellent agreement with the observed profile. The simulated emission is modeled with all of the fluorine radiation that can contribute within the band pass of the beryllium foil on the front of the detector, the Rydberg series of F$^{8+}$ and F$^{7+}$, and the radiative recombination continuum from fully stripped F$^{9+}$. However, 50% of the total radiation is from F$^{8+}$ Ly$_\alpha$ and Ly$_\beta$. The

![Fig. 9. Measured X-ray (resonance line of Ca$^{18+}$, 3.1773 Å, at 0.87 s, top frame) and VUV (resonance line of Ca$^{16+}$, 192.9 Å, at 0.815 s, bottom frame) brightness profiles are depicted as the dots, and the simulations are shown by the solid curves.](image)

![Fig. 10. Contour plot of the measured Ca$^{18+}$ resonance line brightness (thick lines) and simulation (smooth thin lines). Each contour is 0.01 GR.](image)

![Fig. 11. Contour plot of the measured Ca$^{16+}$ resonance line brightness (thick lines) and simulation (smooth thin lines). Each contour is 1 GR.](image)
match between the measured and the simulated profiles (location of the X-ray pedestal) puts very large constraints on the location of the inward convection velocity pinch and on the relative magnitudes of D and V at that location.16

For the case of ELM-free H-modes, the impurity confinement times are even longer than in EDA H-mode plasmas, and the transport is so slow that the impurity signals do not reach a peak during the ELM-free period,14 as demonstrated in Fig. 13. The ELM-free period began at 0.6 s shortly after the ICRF power was turned on, and the scandium was injected at 0.7 s. The Sc$^{18+}$ brightness increased steadily following the injection and began to decay at 0.86 s when the ELM-free period ended, as seen on the D_a signal. The total radiated power also increased steadily during this time, until the radiation dominated the input power, causing the stored energy to drop. During the subsequent EDA H-mode (0.86 to 1.04 s), the impurity confinement time was reduced to ~ 100 ms, as reflected in the decay of the scandium signal, and the radiated power decreased as well, allowing the stored energy to rise again. The ICRF heating power was turned off at 1.04 s, and the plasma reentered L-mode at 1.135 s, when the scandium decayed with a confinement time of ~ 20 ms, the nominal L-mode value. The scandium remained in the plasma for 500 ms. During the ELM-free period, the impurity transport coefficient profiles are qualitatively similar to those in the EDA case, but quantitatively, the convection velocity reaches more negative values, close to the neoclassical levels.14,15 Such impurity transport coefficients lead to very long impurity confinement (>1 s), and this is why the VUV signal in Fig. 13 was unable to reach a peak and begin to decay before the plasma went out of ELM-free H-mode.

There is a very strong dependence of the impurity confinement time on the energy confinement H-factor, as shown in Fig. 14. There is a cluster of points between 0.8 and 1.0 for L-mode plasmas, with impurity confinement times in the range from 15 to 30 ms, and another cluster for EDA H-mode plasmas with an H-factor between 1.2 and 1.5. For these latter plasmas, the impurity confinement times are in the range from 50 to 300 ms. For ELM-free discharges with very high H-factors, the impurity confinement times are much longer than the ELM-free period duration, of order seconds, and are estimates.

V. IMPURITY TRANSPORT IN ITB PLASMAS

Impurity transport coefficients have also been determined in ITB discharges with argon puffing. ITBs in C-Mod (see Ref. 18) are characterized by a strong peaking of the electron density profile inside of the half-radius, as demonstrated in Figs. 15 and 16. ITBs can be generated by off-axis ICRF heating, which in this case
was initiated at 0.7 s, and the density rise can be stabilized with application of on-axis ICRF heating, which in this case was added at 1.25 s. Individual profiles are shown from every 100 ms, starting at 0.575 s. The two chain traces are from the ohmic L-mode portion of the discharge, while the dashed and solid traces are from the evolving and steady-state ITB phases, respectively. The L-H transition time was 0.76 s, and the ITB began forming at 0.88 s.

Rice et al. IMPURITY TRANSPORT IN ALCATOR C-MOD PLASMAS

Fig. 14. The measured impurity confinement times as a function of ITER 89-P H-factor.

Fig. 15. Electron density profiles shown every 100 ms, beginning at 0.575 s, for an ITB plasma. The chain curves are from the ohmic L-mode portion of the discharge, while the dashed and solid traces are from the evolving and steady-state ITB phases, respectively. The L-H transition time was 0.76 s, and the ITB began forming at 0.88 s.

Fig. 16. Time histories of the central soft-X-ray brightness (top), total radiated power (second frame), and Z_{eff} (third frame) for an ITB discharge. In the bottom frame is the ratio of the central electron density and that at $R = 0.83 \text{ m} (r/a = 0.7)$, outside of the ITB foot. The L-H transition time was 0.76 s, and the ITB began forming at 0.88 s.
is demonstrated in Fig. 16. Between 1.35 and 1.5 s, the ambient level of central soft-X-ray emission was held constant. Similarly, the additional on-axis heating stemmed the increase of the total radiated power, holding it at a tolerable level of ~50% of the total input power. Likewise, Z_{eff} was maintained at a constant value of 1.8 during this time. Figure 16 also shows the ratio of the central electron density to the value at $R = 0.83 \text{ m}$ ($r \approx 13.6 \text{ cm}$; $r/a \approx 0.65$), well outside of the ITB foot, reiterating the arrest of the density peaking. Impurity transport coefficients for this discharge (Ref. 18) have been characterized by examining the impurity X-ray brightness profiles from argon, which was injected at 0.35 s.

Figure 17 shows brightness profiles of argon X-ray lines between 3.94 and 4.00 Å, which originate from helium-like Ar^{16+} and nearby lithium-like satellites. During the ohmic L-mode phase of this series of similar discharges (as in Figs. 15 and 16), the brightness profile was relatively flat (asterisks) while during the steady ITB phase (between 1.25 and 1.5 s), the brightness profile was highly peaked (dots), with a factor of ~ 20 increase in the core. Similar observations have been made with the (spectrally unresolved) X-ray array. The behavior of the impurity transport coefficients in ITB plasmas near the barrier foot may be addressed from a comparison of these observed argon X-ray brightness profiles with those predicted using MIST, in conjunction with the LINES atomic physics package. The chain curve in Fig. 17 shows the calculated brightness profile using the previously determined L-mode transport coefficient profiles, which are reproduced in Fig. 18, also by the chain curves. In ohmic L-mode the impurity diffusion coefficient is highly anomalous while there is no evidence for any inward convection velocity. During the steady ITB phase, a radical modification to the impurity transport coefficients is necessary in order to reproduce the highly peaked argon X-ray brightness profile. Simply using the ITB electron density and temperature profiles, together with the argon density profiles calculated using the L-mode impurity transport coefficients, leads to the upper-chain curve of Fig. 17, which has the same shape as the L-mode brightness profile and does not represent the observed profile. The solid curve of Fig. 17, which does an excellent job of matching the data, was generated using the transport coefficients shown as solid lines in Fig. 18. These are very close to the calculated neoclassical impurity transport coefficient profiles shown by the dashed curves. For these ITB plasmas both the thermal and impurity transport approaches neoclassical levels in the core. The impurity transport is characterized by greatly reduced diffusion and a strong inward convection velocity in the vicinity of the large ion (and electron) density gradient. It should be noted that using only steady-state

![Fig. 17. Measured X-ray brightness profiles (3.94 to 4.00 Å, from helium-like Ar^{16+} and lithium-like satellites) from the ohmic L-mode phase (asterisks) and steady-state ITB phase (dots). MIST simulations are shown by the lines; dash-dot curves using the L-mode transport coefficients, solid curve with the ITB transport coefficients. The dashed line represents the total argon density profile during the steady ITB phase.](image)

![Fig. 18. Radial profiles of the impurity diffusion coefficients (top frame) and convection velocities (bottom frame) used in the MIST simulations. Ohmic L-mode (chain), steady-state ITB (solid), and neoclassical values for the ITB plasma (dashed).](image)
impurity brightness profiles does not uniquely determine the impurity transport coefficients; modeling of temporally evolving brightness profiles following impurity injection is necessary. Other combinations of diffusion and convection profiles can also match the observed argon X-ray brightness profiles during the ITB phase. However, no match could be found using a combination of the neoclassical convection velocity and the anomalous diffusion coefficient. Regardless of the actual impurity diffusion coefficient and convection velocity profiles, the deduced impurity density profiles (and X-ray brightness profiles) are highly peaked near the plasma core, more so than the electron density profile. This analysis could not be performed for ITB plasmas with only on-axis heating since the electron and impurity density profiles are not steady state. The observations are consistent with the impurity transport approaching neoclassical levels in ITB plasmas.

VI. PARALLEL IMPURITY TRANSPORT

Sections III, IV, and V address the issue of perpendicular impurity transport, which has anomalously high diffusion in L-mode plasmas, and with transport coefficients whose values approach neoclassical levels in H-mode regimes that have reduced turbulence levels. In this section parallel impurity is explored. Near the plasma edge, neoclassical parallel impurity transport manifests itself in an up-down asymmetry of impurity densities. Figure 19 shows X-ray spectra of Ar^{16+} (Ref. 36) taken from two chords tangent to the same flux surface [from EFIT (Ref. 37)], which crosses the plasma midplane at a major radius of 0.812 m (r/a ∼ 0.6) for an L-mode discharge with the ion B × V B drift downward. The plasma center, denoted in Fig. 19 by the “+” sign, was located at R = 0.681 m and Z = −0.7 cm, so these spectra are from flux surfaces characterized by r = 13.1 cm (the difference between 81.2 and 68.1 cm). The vacuum vessel center is shown by the “x.” The individual lines of sight are depicted in the Fig. 19 inset, and the spectrum shown by the solid curve was from a view that crossed the vertical plane of R = 0.67 m at Z = +16.5 cm (solid line); the dotted spectrum was from Z = −18.0 cm (dotted line). The two spectra are nearly identical in intensity, indicating that the argon X-ray emission on this flux surface is constant. (The mappings of the two lines of sight back to the plasma midplane are shown by the dot and the asterisk.) These spectra are quite different from the central chord spectrum in that the overall intensity is greatly reduced, and all line intensities have grown relative to the resonance line. The lines are narrow because of the lower ion temperature at this radius. The thin line in Fig. 19 shows a synthetic spectrum for these viewing chords, again in good agreement with the observed spectra. Figure 20 presents spectra obtained from near the LCFS for a similar discharge. The solid curve shows a spectrum from along the solid sight line viewing the top of the plasma, characterized by R = 0.894 m, r = 21.1 cm, and Z = +28.9 cm. This spectrum is dominated by the forbidden line z, as the resonance line has fallen in intensity compared to Fig. 19, the satellites have all disappeared, and the lines are all very narrow. This is indicative of a recombining plasma, where the line population is overwhelmingly dominated by radiative recombination of hydrogen-like Ar^{17+}. The reason that Ar^{17+} exists at this radius, where the electron temperature is ∼200 eV, is because of the fast radial (outward) impurity transport in L-mode, characterized by D = 0.5 m²/s. The dotted curve shows a spectrum from along the dotted sight line viewing the bottom of the plasma but near the same flux surface, at R = 0.885 m, r = 20.2 cm, and Z = −30.9 cm. The brightness of this spectrum is a factor of ∼6 lower than the spectrum taken from the top of the plasma. The thin line in Fig. 20 shows a synthetic spectrum for these viewing chords, normalized to the top spectrum, again in good agreement with the observed spectra. The plasmas of Figs. 19 and 20 had the ion B × V B drift direction toward the bottom of the machine (plasma current and toroidal field in the clockwise direction from above), and the single-null X-point was at the bottom as well. Alcator
C-Mod has also been operated with the ion $\mathbf{B} \times \nabla \mathbf{B}$ drift direction toward the top of the machine, by reversing the toroidal magnetic field direction. Argon X-ray spectra have been obtained for plasmas with similar discharge conditions as in Figs. 19 and 20.

The solid curve in Fig. 21 is a spectrum from the solid sight line characterized by $R = 0.874$ m, $r = 19.5$ cm, and $Z = +25.9$ cm, and by the dotted curve from $R = 0.872$ m, $r = 19.3$ cm, and $Z = -28.9$ cm. In this case, with the ion $\mathbf{B} \times \nabla \mathbf{B}$ drift direction upward, the spectrum from the bottom of the plasma was a factor of ~ 8 brighter. (The X-point was located in the bottom of the machine for these spectra.) Figures 20 and 21 demonstrate that impurity X-ray emission is not constant on flux surfaces near the edge and that this large up-down impurity asymmetry is in the direction opposite to that of the ion $\mathbf{B} \times \nabla \mathbf{B}$ drift direction. These results are summarized in Fig. 22, where the brightness of the forbidden line is plotted as a function of the vertical distance from the sight line to the vacuum vessel center at $R = 0.67$ m. The asterisks were obtained during the low-density plateau of a sequence of identical L-mode discharges, with the ion $\mathbf{B} \times \nabla \mathbf{B}$ drift direction down. The asymmetry begins at the top of the plasma around $+20$ cm and extends out to the LCFS, with a maximum brightness ratio (of the top to the bottom) of a factor of ~ 10. The points shown as boxes were obtained from a series of discharges with similar conditions, except with the ion $\mathbf{B} \times \nabla \mathbf{B}$ drift direction up, and in this case the asymmetry (enhancement) was at the bottom of the plasma. Modeling of the observed up-down impurity densities is in reasonable agreement, both in magnitude and direction, with neoclassical predictions. For the plasmas of Figs. 20 and 21, the electron density and temperature profiles were up-down symmetric at $r/a = 0.9$. In both cases the X-point was down, so up-down neutral density asymmetries should have been the same.

VII. DISCUSSION AND CONCLUSIONS

Perpendicular impurity transport coefficients have been determined using laser blowoff injection of scandium and CaF$_2$ and measured emissivity profiles, in conjunction with the impurity transport code MIST and the atomic physics package LINES. L-mode impurity confinement is short ($\tau \sim 20$ ms) with a diffusivity $D \sim 0.5$ m2/s over most of the plasma, anomalously large...
compared to neoclassical values. In EDA H-mode plasmas, impurity confinement times are considerably longer, in the range of 50 to 200 ms, with D greatly reduced in the edge pedestal region, and with substantial inward convection, also at the plasma edge. In ELM-free H-mode discharges, the impurity confinement is very long, and the edge transport coefficients approach the neoclassical levels. For ITB plasmas, there is strong impurity accumulation inside the barrier foot.

Steady-state impurity densities near the plasma edge are not constant on flux surfaces, with large (a factor of ~ 10) up-down asymmetries. The impurity density is enhanced opposite to the ion $\mathbf{B} \times \mathbf{V_B}$ drift direction and is consistent with modeling of neoclassical parallel impurity transport.

ACKNOWLEDGMENTS

The authors thank C. Fiore for ion temperature measurements and the Alcator C-Mod Operations and ICRF Groups for expert running of the tokamak. Work was supported at the Massachusetts Institute of Technology by U.S. Department of Energy contract DE-FC02-99ER54512.

REFERENCES

1. J. Wesson, *Tokamaks*, Oxford University Press, Oxford (1987).
2. M. Shimada, *Fusion Eng. Des.*, 15, 325 (1992).
3. J. E. Rice, E. S. Marmar, B. Lipschultz, and J. L. Terry, *Nucl. Fusion*, 24, 329 (1984).
4. E. Marmar, J. Cecchi, and S. Cohen, *Rev. Sci. Instrum.*, 46, 1149 (1975).
5. E. S. Marmar, J. E. Rice, and S. L. Allen, *Phys. Rev. Lett.*, 45, 2025 (1980).
6. TFR Group, *Phys. Lett.*, 87A, 169 (1982).
7. E. S. Marmar, J. E. Rice, J. L. Terry, and F. Seguin, *Nucl. Fusion*, 22, 1567 (1982).
8. TFR Group, *Nucl. Fusion*, 23, 559 (1983).
9. B. C. Stratton et al., *Nucl. Fusion*, 27, 1147 (1987).
10. G. Fussmann, J. Hofmann, G. Janeschitz, and K. Krieger, *J. Nucl. Mater.*, 162, 14 (1989).
11. K. Ida, R. J. Fonck, S. Sesnic, R. A. Hulse, B. LeBlanc, and S. F. Paul, *Nucl. Fusion*, 29, 231 (1989).
12. M. E. Perry, N. H. Brooks, D. A. Content, R. A. Hulse, M. A. Mahdavi, and H. W. Moos, *Nucl. Fusion*, 31, 1859 (1991).
13. D. Pasini et al., *Plasma Phys. Control. Fusion*, 34, 677 (1992).
14. J. E. Rice et al., *Phys. Plasmas*, 4, 1605 (1997).
15. J. E. Rice et al., *Phys. Plasmas*, 7, 1825 (2000).
16. T. Sunn Pedersen et al., *Nucl. Fusion*, 40, 1795 (2000).
17. H. Takenaga et al., *Phys. Plasmas*, 8, 2217 (2001).
18. J. E. Rice et al., *Nucl. Fusion*, 42, 510 (2002).
19. R. Dux et al., *Nucl. Fusion*, 44, 260 (2004).
20. J. E. Rice and E. S. Marmar, *Rev. Sci. Instrum.*, 61, 2753 (1990).
21. J. E. Rice et al., *J. Phys. B*, 28, 893 (1995).
22. L. A. Vainshtein and U. I. Safronova, *Phys. Scr.*, 31, 519 (1985).
23. J. E. Rice et al., *Phys. Rev. A*, 35, 3033 (1987).
24. M. A. Graf et al., *Rev. Sci. Instrum.*, 66, 636 (1995).
25. R. A. Hulse, *Nucl. Technol./Fusion*, 3, 259 (1983).
26. M. A. Graf, “Impurity Injection Experiments on the Alcator C-Mod Tokamak,” PhD Dissertation, Massachusetts Institute of Technology (1995).
27. R. Mewe, *Astron. Astrophys.*, 20, 215 (1972).
28. R. Mewe and J. Schrijver, *Astron. Astrophys.*, 65, 99 (1978).
29. R. Mewe, J. Schrijver, and J. Sylwester, *Astron. Astrophys.*, 87, 55 (1980).
30. F. Bely-DuBay et al., *Mon. Not. R. Astr. Soc.*, 201, 1155 (1982).
31. L. A. Vainshtein and U. I. Safronova, *At. Data Nucl. Data Tables*, 21, 49 (1978).
32. W. L. Acton et al., *Astrophys. J.*, 244, L137 (1980).
33. R. Hawryluk, S. Suckewer, and S. Hirshman, *Nucl. Fusion*, 19, 607 (1979).
34. W. A. HouLberg et al., *Phys. Plasmas*, 4, 3230 (1997).
35. J. E. Rice et al., *Nucl. Fusion*, 41, 277 (2001).
36. J. E. Rice et al., *Nucl. Fusion*, 37, 241 (1997).
37. L. L. Lao, H. St. John, R. D. Stambaugh, A. G. Kellman, and W. Pfeiffer, *Nucl. Fusion*, 25, 1611 (1985).
38. K. H. Burrell and S. K. Wong, *Nucl. Fusion*, 19, 1571 (1979).
39. C. T. Hsu and D. J. Sigmar, *Plasma Phys. Control. Fusion*, 32, 499 (1990).