Research on the Influencing Mechanism of Zhong Yong (Doctrine of the Mean) Orientation on Employees’ Innovation Behavior: Based on the Mutual Inverse Mediating Effects of Intrinsic Innovation Motivation and Innovation Subjective Norms

Pin-hao DIAO¹,a,*, Hui JIN²,b and Bei WANG³,c

¹,²The School of Economics and Management, Jiangsu University of Science and Technology, Jiangsu, China
³The School of Foreign Languages, Jiangsu University of Science and Technology, Jiangsu, China

¹182040009@stu.just.edu.cn, ²jinhui123@just.edu.cn, ³beiwang@just.edu.cn
*Corresponding author

Keywords: Innovation behavior, Innovation motivation, Subjective norms, Zhong Yong orientation.

Abstract. Based on the theories of VMB, SIT and TRA, this study analyzes the main effect of Zhong Yong orientation on employees’ innovation behavior, and explores the mediating effects of intrinsic innovation motivation and subjective norms for innovation between Zhong Yong orientation and employees’ innovation behavior. A questionnaire survey of 293 R&D employees of Hi-tech Enterprises was conducted and the results show that: Zhong Yong orientation positively affects employees’ innovation behavior, intrinsic innovation motivation negatively mediates the positive relationship between Zhong Yong orientation and employees’ innovation behavior (i.e. the mediating effect has a “suppressing effect” on the main effect of Zhong Yong orientation); innovation subjective norms positively mediate the positive relationship between Zhong Yong orientation and employees’ innovation behavior (namely the mediating effects have “manifesting effects” on the main effect of Zhong Yong orientation). The results reveal that intrinsic innovation motivation and subjective norms for innovation play mutual inverse mediating roles between Zhong Yong orientation and employees' innovation behavior.

1. Introduction

Individual innovation, as the source of all innovation⁴, lays the foundation for national innovation and enterprise innovation. Therefore, stimulating employees' innovation behavior is the key issue faced by the governments and enterprises of all countries. Due to late start, most of Chinese early innovation practices were "following" and "imitating" the West. However, the western innovation theories and successful experience are not 100% applicable in the Chinese context due to the different cultural background. In fact, Previous research proves that many well-designed innovation management measures in the Western cultural context ended in failure after entering Chinese companies⁵.⁶. According to the situation theory and the cultural capital theory, the traditional culture of a specific country/region plays an extremely important role in guiding and
instructing the local people's behavior and preferences. Thus, Chinese traditional culture is an important factor in interpreting the innovation behavior of Chinese employees.

Deeply rooted in Chinese society, Zhong Yong is one of the core elements of the traditional Chinese cultural system, which plays a significant role in guiding Chinese people's thoughts and behaviors. Its core connotation includes two levels: "moderation" and "consistency". Although many scholars had discussed the relationship between the Zhong Yong orientation and employee's innovation behavior, most of the existing researches explored the direct impact of Zhong Yong orientation on employees' innovation behavior, or selected mediating variable based on research needs bias. These studies have two major problems: First, scholars have drawn divergent research conclusions. Some scholars have verified that the Zhong Yong orientation inhibits innovation, while some have proved that the Zhong Yong orientation promotes innovation; Second, the research methodology is unclear. The selection of mediating variables and the hypothesis deduction is short of mature theoretical basis.

In view of this, this paper adopted the Theory of Reasoned Action (TRA) to analyze the general mechanism of employees' innovation behavior, and then used the "Values-Motivations-Behavioral Attitude" (VMB) model and the Social Impact Theory (SIT) to identify and verify the mediating variables and paths between Zhong Yong orientation and employees' innovation behavior. It should be noted that the Zhong Yong orientation in this paper is the individual value orientation reflected by the national culture at the individual level, so it is an individual-level variable, not a national-level variable.

2. Research Hypothesis

2.1. Zhong Yong Orientation and Innovation Behavior

The definition of Zhong Yong orientation emphasizes that individuals with high Zhong Yong orientation hope to reach a harmonious and balanced state with the external environment; while in an era of knowledge economy that emphasized innovation, both the social environment and organizational environment require innovation behavior. On the national level, the development and progress of human society cannot be separated from the reform and innovation. On the organizational level, seeking progress through innovation is the need for enterprises to survive. Thus, innovation can nurture a more harmonious relationship between employees, and the environment and meet the expectations of employees to achieve a harmonious and balanced state with the external environment. Therefore, the higher the employees' Zhong Yong orientation is, the more likely they will innovate. Secondly, the Zhong Yong orientation also has the characteristics of focusing on "moderation". In order to remain "moderation" in a changing external environment, high-medium employees are often more sensitive to external influence. At this point, the innovation requirements and expectations put forward by the organization on its employees will be more intense in the eyes of the employees with a higher Zhong Yong orientation (i.e., the innovation pressure exerted by the organization on employees will be amplified), which will further
stimulate the generation of employees' innovative behavior. On this basis, the following hypothesis is put forward:

H1: Zhong Yong orientation positively affects employees' innovation behavior.

2.2. Mediating Effect of Intrinsic Innovation Motivation

Intrinsic innovation motivation refers to the motivation of employees to actively work out of interest, curiosity, and pleasure in innovative behavior itself. According to VMB, the individual's cultural value orientation will affect the individual's behavioral motivation. Based on this reasoning, Zhong Yong as a cultural value orientation can also have an impact on employees' intrinsic innovation motivation. Specifically: First, innovation is accompanied by changes and breakthroughs. However, the "moderation" emphasized by Zhong Yong orientation encourages individuals to deal with problems in a stable way. Therefore, employees with high Zhong Yong orientation are more likely to form conservative and stable thinking habits and are more willing to follow the inherent path\[^{10}\], therefore, they will not have enough interest and enthusiasm in innovation, which is not conducive to the formation of strong intrinsic innovation motivation. Secondly, the "neutralization" oriented by Zhong Yong orientation advocates individuals to pursue harmony and balance, while employees will inevitably seek help or cooperation from others in the process of innovation, which is often accompanied by risks of opinion collision and even interpersonal conflict\[^{8}\], and may also inhibit employees' pursuit of innovation to a certain extent. On this basis, the following hypothesis is put forward:

H2: Zhong Yong orientation negatively affects employees' intrinsic innovation motivation.

According to VMB, individual behavior motivation can positively affect individual behavior attitude; combined with TRA, the individual behavior attitude will enhance the individual behavior willingness and further promote the generation of the innovation behavior. Deduced to the employees' innovation situation that this paper concerned, employees' intrinsic motivation will also promote employees to hold positive behavior attitude towards innovation behavior, stimulate employees' strong innovation intention, and finally promote the actual occurrence of employees' innovation behavior. Previous studies have also shown that employees' intrinsic innovation motivation can effectively drive employees' innovative behavior\[^{11,12,13}\]. On this basis, the following hypothesis is put forward:

H3: Employees' intrinsic innovation motivation positively affects employees' innovation behavior.

According to the above hypotheses of the relationship between Zhong Yong orientation and innovation behavior, Zhong Yong orientation and employees' intrinsic innovation motivation, the employees' intrinsic innovation motivation and employees' innovation behavior (i.e. on the basis of hypotheses 1 ~ 3), it is inferred that Zhong Yong orientation will directly affect employees' intrinsic innovation motivation and then indirectly affect employees' innovation behavior. On this basis, the following hypothesis is put forward:
H4: Employees' intrinsic innovation motivation plays a mediating role between Zhong Yong orientation and employees' innovation behavior.

2.3. Mediating Effect of Innovation Subjective Norms

According to SIT, the generation mechanism of identification norms can be described as: when individuals need to define their roles by acquiring (or consolidating) relationships with others/collectives through certain behaviors, they will identify with certain behaviors\cite{14}. Zhong Yong orientation pursues harmony between the individual and the external environment\cite{15}. Therefore, in order to keep their words and behaviors consistent with the organizational environment or other members, employees with high Zhong Yong orientation will be more likely to identify with the innovation behaviors advocated and needed by the organization, and readily accept and carry out innovation behaviors, and actively put forward unique opinions or innovative viewpoints so as to obtain or maintain a stable and harmonious relationship between themselves and the organization.

According to SIT, the generation mechanism of Internalization norms can be described as: Internalization occurs when an individual feels that his certain behavior matches his own inherent value system and such behavior helps realize the maximization of his own value\cite{14}. First of all, creating innovative ideas requires individuals to have dynamic and flexible thinking, which is consistent with the ideas of Zhong Yong orientation that requires individuals not to be stubborn, to keep pace with the changes in the external environment, and to emphasize "contingency"\cite{15}; Secondly, in order to ensure that innovation ideas can be put into practice, individuals also need to have convergent thinking, team consciousness and rule-based thinking to obtain support\cite{6}, which is also in line with the concept of maintaining harmony and consistency with the surrounding environment advocated by Zhong Yong orientation. In addition, in organizations that advocate innovation, innovation behavior can also help employees realize and enhance their own value. Therefore, it can be inferred that under the action of Zhong Yong orientation, the promotion of innovation behavior will be internalized as part of the individual value system, which will give rise to employees' recognition of innovative behavior. To sum up, the following hypotheses are put forward:

H5: Zhong Yong orientation positively affects employees' innovation subjective norms.

H5a: Zhong Yong orientation positively affects employees' identification norms of innovation behavior.

H5b: Zhong Yong orientation positively affects employees' internalization norms of innovation behavior.

According to SIT and TRA, subjective norms affect the individual's behavior intention, and behavior intention directly determines whether the behavior will eventually occur. Deduced to the employee innovation situation that this paper focuses on, the stronger the employees' innovation subjective norms (Internalization norms and identification norms) are, the stronger the employees' innovation intention will be, and the greater the probability of the occurrence of their innovation behavior will be. On this basis, the following hypotheses are put forward:
H6: Employees' innovation subjective norms positively affect employees' innovation behavior.

H6a: The employees' identification norms of innovation behavior positively affect the employees' innovation behavior.

H6b: The employees' Internalization norms of innovation behavior positively affect the employees' innovation behavior.

Based on the above hypotheses of the relationship between Zhong Yong orientation and employees' innovation behavior, Zhong Yong orientation and employees' innovation subjective norms, the employees' innovation subjective norms and employees' innovation behavior (i.e. on the basis of hypotheses 1, 5, and 6), it is inferred that Zhong Yong orientation will directly act on employees' innovation subjective norms and then indirectly act on employees' innovation behavior. On this basis, the following hypotheses are put forward:

H7: employees' innovation Subjective norms play a mediating role between Zhong Yong orientation and employees' innovation behavior.

H7a: employee's identification norms of innovation behavior play a mediating between Zhong Yong orientation and employees' innovation behavior.

H7b: employee's Internalization norms of innovation behavior play a mediating between Zhong Yong orientation and employees' innovation behavior.

Based on the above research hypotheses, the theoretical model is shown in Figure 1.

Figure 1. The mediating model of Zhong Yong orientation influencing employees' innovation behavior.

3. Research Design

3.1. Scale Design

This paper adopted questionnaire survey to collect data. In order to ensure the quality of the survey, this paper adopted the mature scale of the existing literature to measure each construct. Among them, the Innovative behavior Scale originated from the study of Liu et al[16], which has 5 items; The Zhong Yong Orientation Scale originated from the study of Du & Yao[17], which has 8 items; Intrinsic Innovation Motivation Scale originates from the study of Tierney et al[18] which has 5 items;
The Innovation Subjective Norms Scale originated from the study of Hwang & Kim[19], and was revised according to the innovation situation; among them, the identification norms scale has three items; The Internalization Norms Scale has 3 items.

As for the selection of control variables, Zhong Yong orientation and innovation behavior both may be influenced by demographic variables, so this paper referred to previous studies[20,21] and selected gender, age, education level and length of service as control variables. In terms of item measurement, Likert 5 grade score was adopted (except control variables); In the translation of English scales, back-translation technique was adopted.

3.2. Data Acquisition

The research samples are employees of R&D departments of 25 high-tech enterprises in Jiang Su province. High-tech enterprises were selected as the research objects because they are generally knowledge-intensive enterprises focusing on innovation, and R&D departments attach great importance to employees' innovative behavior. Data was collected online. We distributed electronic questionnaire link to the leaders of R&D departments in five enterprises through the online questionnaire survey tool and invited them to forward the questionnaire link to the department members and entrusted them to read guidance and explain the questionnaire. 308 questionnaires were actually recovered, 15 invalid questionnaires were excluded, and the final valid questionnaires were 293. The effective recovery rate was 95.129%.

Among the valid samples, males accounted for 57.1% and females accounted for 42.9%. 20.8% were under 25 years old, 55.4% were between 25 and 35 years old, and 23.8% were over 35 years old. Junior college degree or below accounted for 5.5%, undergraduate degree accounted for 44.3%, and graduate degree or above accounted for 50.2%. Participants with length of service under 3 years accounted for 42.6%, 3-10 years accounted for 32.6%, and over 10 years accounted for 14.9%. On the whole, the structure composition of the valid samples was reasonable.

4. Data Analysis and Hypotheses Testing

4.1. Data Quality Analysis

(1) Reliability analysis. In this paper, the composite reliability and internal consistency analysis were used to test the reliability. As shown in Table 1, the CR value of each variable is between 0.823 and 0.928, and the Cronbach α value is between 0.820 and 0.927, showing a high internal consistency and composite reliability.

(2) Validity analysis. This paper evaluated the validity through the analysis of the convergent validity and discriminant validity respectively. As shown in Table 1, the AVE value of each variable is between 0.609 and 0.688 (all greater than the minimum threshold of 0.5), indicating a good d convergent validity. As shown in Table 2, the R-squared of the 5-factor model is optimal compared to other factor models, indicating that each potential variable has good discriminant validity. In addition, the square root of AVE value of each variable in Table 3 (data in diagonal brackets) is
greater than the correlation coefficient between the variable and other variables, which further confirms the good discriminant validity.

(3) Common method biases. In this paper, Harman's single-factor test was used to test first. The variance interpretation rate of the first factor is 29.806%, which indicates that no single factor will explain most of the variation, i.e. the common method deviation is not serious. Secondly, the second test was carried out by controlling the non-measurable potential factors. As shown in Table 4, the measurement model with the common factor and without the common factor is $\chi^2(218)=248.461$ and $\chi^2(242)=293.934$, $\Delta \chi^2(24)=45.473$, and the corresponding significance is rather than 0.05, indicating that the model with common factors is not significantly better than the model without common factors, i.e. the common method biases are within the controllable range.

Variable	Items	Cronbach α	CR	AVE
Zhong Yong Orientation	8	0.927	0.928	0.616
Intrinsic Innovation Motivation	5	0.876	0.877	0.688
Innovation Identification Norms	3	0.820	0.823	0.609
Innovation Internalization Norms	3	0.831	0.834	0.627
Innovation Behavior	5	0.881	0.887	0.611

Table 2. Factor fitting degree comparative analysis.

Test statistic	χ^2	df	χ^2/df	RMR	RMSEA	GFI	NFI	TLI	CFI
Criterion									
5 factors	293.934	24	1.215	0.039	0.027	0.924	0.927	0.984	0.986
4 factors	635.496	24	2.583	0.089	0.074	0.833	0.842	0.883	0.896
3 factors	1048.920	24	4.213	0.153	0.106	0.743	0.740	0.764	0.787
2 factors	1510.561	25	6.018	0.144	0.132	0.643	0.625	0.631	0.664
1 factor	2161.845	25	8.579	0.172	0.162	0.514	0.463	0.442	0.491
Table 3. Descriptive statistics of variables and correlation coefficients.

Variable	Mean	SD	1	2	3	4	5
1. Zhong Yong Orientation	3.325	1.060	(0.785)				
2. Intrinsic Innovation Motivation	3.213	0.998	-0.268**	(0.767)			
3. Innovation Identification Norms	3.257	1.109	0.339**	-0.088**	(0.780)		
4. Innovation Internalization Norms	3.261	1.093	0.381**	-0.112**	0.178**	(0.792)	
5. Innovation Behavior	3.251	1.014	0.281**	0.187**	0.383**	0.262**	(0.782)

Note: SD: standard deviation; ** means p<0.01 (two-sided test, and the data in parentheses are the square roots of the AVE of variables.

Table 4. Factor analysis results of controlling non-measurable potential method.

Test statistic	χ²	df	χ²/df	SRMR	RMSEA	GFI	NFI	TLI	CFI
Have common factor	293.934	242	1.215	0.039	0.027	0.924	0.927	0.984	0.986
No common factor	248.461	218	1.140	0.037	0.022	0.935	0.938	0.990	0.992

4.2. Research Hypothesis Testing

(1) Main effect test. Through multiple linear regression analysis, the main effects of Zhong Yong orientation, intrinsic innovation motivation, innovation identification norms and innovation internalization norms on innovation behavior are tested respectively. As shown in Table 5, M1 tests the influence of control variables on innovation behavior; M2 adds Zhong Yong orientation on the basis of M1, and the results show that Zhong Yong orientation has a significant positive impact on innovation behavior (β=0.247, p<0.001), hence H1 is valid; M3 adds intrinsic innovation motivation on the basis of M1, and the results show that intrinsic innovation motivation has a significant positive impact on innovation behavior (β=0.188, p<0.01), hence H3 is valid; M4 adds innovation identification norms and innovation internalization norms on the basis of M1, and the results show that both of them have significant positive effects on innovation behavior (β identification =0.326, P < 0.001; β internalization =0.192, p<0.001), indicating that H6a and H6b are valid.

(2) Mediating effect test. Through multiple linear regression analysis, this paper examines the effect of Zhong Yong orientation (independent variable) on intrinsic innovation motivation, innovation identification norms and innovation internalization norms (mediating variable). As shown in Table 6, M5 tests the influence of control variables on intrinsic innovation motivation, M6 adds Zhong Yong orientation on the basis of M5, and the results show that Zhong Yong orientation has a significant negative impact on intrinsic innovation motivation (β= -0.275, p<0.01), H2 is supported; M7 tests the influence of control variables on innovation identification norms, M8 adds Zhong Yong orientation on the basis of M7, and the results show that Zhong Yong orientation has a significant
positive impact on innovation identification norms ($\beta = 0.315$, $p < 0.001$), H5a is supported; M9 tests the influence of control variables on innovation internalization norms, M10 adds Zhong Yong orientation on the basis of M9, and the results show that Zhong Yong orientation has a significant positive impact on innovation internalization norms ($\beta = 0.383$, $p < 0.001$), H5b is supported.

On this basis, this paper further tests the effect of each variable on innovation behavior (dependent variable) after Zhong Yong orientation (independent variable) and intrinsic innovation motivation, innovation identification norms and innovation internalization norms (mediating variable) are put into the regression equation simultaneously. As shown in M11 in Table 6, Zhong Yong orientation (independent variable) still has significant positive effect on innovation behavior (dependent variable) ($\beta = 0.163$, $p < 0.01$), but the effect is significantly lower than M2 ($\beta = 0.247$, $p < 0.001$); intrinsic innovation motivation, innovation identification norms and innovation internalization norms (mediating variable) all have significant positive effects on innovation behavior (dependent variable) ($\beta_{\text{motivation}} = 0.273$, $p < 0.001$; $\beta_{\text{identification}} = 0.304$, $p < 0.001$; $\beta_{\text{internalization}} = 0.164$, $p < 0.001$).

The above results indicate that the mediating effects of intrinsic innovation motivation, innovation identification norms and innovation internalization norms are established, so H4, H7a and H7b are valid. It should be emphasized that since Zhong Yong orientation and the intrinsic innovation motivation are negatively related (see Table 6 M6) and the intrinsic innovation motivation and innovation behavior are positively related (see Table 6 M11), so the direction of mediating effect of the intrinsic innovation motivation is negative, which is opposite to the direction (positive) of direct effect of Zhong Yong orientation. According to viewpoint of Wen & Ye[22], if indirect effect and direct effect are in the opposite direction, the total effect will be "suppressed". The existing researches mostly distinguish this kind of situation from common mediating effects, and call it "Suppressing Effects"[23]. It can be seen that the intrinsic innovation motivation plays a "suppressing effect" between Zhong Yong orientation and innovation behavior.

According to the suggestions of Zhao et al.[24], this paper uses Bootstrap to conduct a secondary test of the mediating effect. The sampling method is the non-parametric percentile method for deviation correction. The sample size is set to 5000 and the confidence level of confidence interval is set to 95%. The analysis results are shown in Table 7. The estimated value of indirect effect of intrinsic innovation motivation is -0.075 and is significant at 95% confidence interval (Boot LLCI = -0.128, Boot ULCI = -0.038, excluding 0); the estimation value of indirect effect of innovation identification norms is 0.096 and is significant at 95% confidence interval (Boot LLCI = 0.055, Boot ULCI = 0.151, excluding 0); the estimated value of the indirect effect of the innovation internalization norms is 0.063 and is significant in the 95% confidence interval (Boot LLCI = 0.021, Boot ULCI = 0.116, excluding 0); Therefore, Bootstrap test results also support H4, H7a and H7b.
Table 5. The regression analysis of the main effects of Zhong Yong orientation, intrinsic innovation motivation and innovation subjective norms on innovation behavior.

Variable	Innovation behavior	M1	M2	M3	M4
Control variable					
Gender		-0.037	-0.014	-0.031	-0.024
Age		-0.265**	-0.166*	-0.260**	-0.178*
Education level		0.018	0.009	0.042	-0.019
Length of level		0.147*	0.080	0.162*	0.068
Independent variable					
Zhong Yong orientation		0.247**			
Intrinsic innovation motivation		0.188*			
Innovation identification norms		0.326**			
Innovation internalization norms		0.192**			
Statistical change					
R^2		0.050	0.107	0.085	0.209
ΔR^2		0.056	0.035	0.158	
F		3.768*	6.770**	5.258**	12.391**
ΔF		17.881**	10.700*	28.192**	

Notes: * means p < 0.05, ** means p < 0.01, and *** means p < 0.001. The symbols in the table below have the same meanings.

Table 6. The regression analysis of the mediating effects of intrinsic innovation motivation and innovation subjective norms.

Variable	Intrinsic motivation	Innovation identification norms	Innovation internalization norms	Innovation behavior					
	M5	M6	M7	M8	M9	M10	M1	M2	M11
Control variable									
Gender	-0.035	-0.017	0.004	-0.016	-0.074	-0.099	-0.037	-0.053	-0.027
Age	-0.024	-0.100	0.193*	-0.106	-0.125	-0.021	0.265**	-0.197*	-0.134*
Education level	-0.127*	-0.097	0.071	0.037	0.072	0.031	0.018	-0.008	0.002
-----------------	---------	--------	-------	-------	-------	-------	-------	--------	-------
Length of level	-0.079	-0.033	0.126	0.073	0.197*	0.132*	0.147*	0.105	0.070

Independent variable

Zhong Yong orientation	-0.275*	0.315**	0.383**	0.247**	0.163**
Intrinsic innovation motivation					0.273**
Innovation identification norms					0.304**
Innovation internalization norms					0.164**

Statistical change

\(R^2\)	0.024	0.093	0.032	0.124	0.031	0.167	0.050	0.107	0.282
\(\Delta R^2\)	0.070	0.092	0.136	0.056	0.175				
\(F\)	1.711	5.831**	2.370	8.009**	2.305	11.354**	3.768*	6.770**	13.733**
\(\Delta F\)	21.811**	29.612**	46.085**	0.050	17.881**	22.737**			

Table 7. Indirect effects test by Bootstrap.

Zhong Yong orientation - Innovation behavior	Effect size	Standard error	Bias Corrected (95%)
Direct effect	0.164	0.061	0.044 - 0.283
Total effect	0.247	0.058	0.132 - 0.362
Total mediating effect	0.084	0.040	0.006 - 0.164
Mediating effects of each intermediate variable			
Intrinsic innovation motivation	-0.075	0.023	-0.128 - -0.038
Innovation identification norms	0.096	0.024	0.055 - 0.151
Innovation internalization norms	0.063	0.024	0.021 - 0.116
5. Conclusion and Prospect

5.1. Research Conclusion

The main conclusions obtained in this study are as follows.

(1) This paper finds that Zhong Yong orientation positively affects employees' innovation behavior (H1 is supported). Specifically, the higher the level of employees' Zhong Yong orientation is, the more they will be willing to keep in line with the surrounding external environment, and the more sensitive he will be to external pressure. Therefore, when they perceive the organization's calls and requirements for innovation, they will be more likely to generate innovation behavior.

(2) This paper finds that intrinsic innovation motivation has a negative "suppressing effect" between Zhong Yong orientation and innovation behavior (H2~H4 are supported). This conclusion reveals a very interesting phenomenon: although Zhong Yong orientation has a positive direct impact on innovation behavior, it can also inhibit the generation of intrinsic innovation motivation when employees have a higher level of Zhong Yong orientation, and thus have a negative impact on innovation behavior.

(3) This paper finds that innovation identification norms and innovation internalization norms have a positive mediating effect between Zhong Yong orientation and the innovation behavior (H5~H7 are supported). This finding shows that the higher the employees' Zhong Yong orientation level is, the more likely they will agree with the innovation behavior promoted by the organization, and the easier they are to internalize the promotion of innovation behavior as part of their own values, thereby stimulating the generation of innovation behavior. It can be seen that innovation identification norms and innovation internalization norms play a "strengthening effect" on the main effect of Zhong Yong orientation.

5.2. Theoretical Contribution

The theoretical contributions of this paper are as follows: first, in this paper, TRA, VMB and SIT are comprehensively used to separate out two mediating paths that Zhong Yong orientation affects employees' innovation behavior, which provides a new theoretical perspective for systematically opening the "black box" that Zhong Yong orientation affects employees' innovation behavior. Second, this paper reveals that the two mediating paths have mutually inverse mediating effects on the main effect of Zhong Yong orientation, in which the intrinsic innovation motivation plays a "suppressing effect", while the innovation subjective norms play a "strengthening effect". Furthermore, this paper combines TRA, VMB and SIT to construct a universal research framework for analyzing how individual cultural value orientation influence individual innovation behavior (see Figure 1 for details), which not only verifies the applicability of TRA, VMB and SIT in the research field of innovation management, but also provides a new theoretical framework and reference for exploring the influence mechanism of other cultural value orientations on employees' innovation behavior.
5.3. Management Inspiration

(1) Enterprises should vigorously publicize innovation stories, reward employees with innovation awareness and achievements, and actively exert the exemplary effect to guide employees to identify with innovation in order to make themselves consistent with the organizational environment or others, so as to promote employees to innovate initiatively and actively.

(2) Enterprises should create a relaxed atmosphere that tolerates trial and error, so that employees can have more active and positive psychological hints in the process of innovation and change, and to alleviate employees' worries about whether their behaviors are too aggressive and extreme.

(3) Enterprises should encourage frank communication between employees, help employees coordinate conflicts and contradictions, reduce employees' worries about complicated interpersonal communication caused by innovation, and avoid employees' lack of innovation motivation due to their constant pursuit of "superficial" harmonious relationships.

Acknowledgements

This article is in the Teaching research project “Chinese National Funding of Social Sciences” No. 18BGL135, and “China Postdoctoral Science Foundation” No. 2017M621660, and “Jiangsu Province Postdoctoral Science Foundation” No. 1701069C.

References

[1] Du J., Ran M M., Cao P. “Context-contingent Effect of Zhongyong on Employee Innovation Behavior”, Acta Psychologica Sinica. 2014: 113-124.

[2] Kim K H. “Exploring the Interactions between Asian Culture (Confucianism) and Creativity”, Journal of Creative Behavior. 2007: 28-53.

[3] Kim K H. “Cultural Influence on Creativity: The Relationship between Asian Culture (Confucianism) and Creativity among Korean Educators”, Journal of Creative Behavior. 2009: 73-93.

[4] Du J., Mu H N., Liu Y T. “Does collectivism hamper creativity? an empirical study considering moderating effect of contexts Scientific Research”, Studies in Science of Science. 2014: 919-926.

[5] Du J., Qiu Y Y., Yin J. “Does Zhongyong hamper creativity?—An empirical multi-level study”, Studies in Science of Science. 2018:378-384.

[6] Zhang G Z., Gu X Y. “Moderation thinking and employees' creativity”, Science Research Management. 2015: 251-257.

[7] Liao B., Dong W Q. “The Study for the Relationship among Golden-mean Thinking, Organizational Harmony and Innovation Behavior of Knowledge Staff”, Science & Technology Progress and Policy. 2015: 150-154.

[8] Yang J Z., Yang D T., Sun Q J. “The effect of organizational culture types on employee innovational behavior”, Science Research Management. 2012: 123-129.
[9] Yao X., Yang Q., Wang L., et al. “Moderating Effect of Zhong Yong on the Relationship between Creativity and Innovation Behavior”, Asian Journal of Social Psychology. 2010: 53-57.

[10] Wu Y Q. “The Negative Impact of Traditional Chinese Culture on the Technological Innovation”, Journal of Nanjing Normal University (Social Science Edition). 2009: 32-37.

[11] Oldham G R., Cummings A. “Employee Creativity: Personal and Contextual Factors at Work”, Academy of Management Journal. 1996: 607-634.

[12] Amabile T M., Gryskiewicz S S. “Creativity in the R&D laboratory”, Greensboro, NC: Center for Creative Leadership. 1987

[13] Shalley C E., Gilson L L. “What Leaders Need to Know: A Review of Social and Contextual Factors That Can Foster or Hinder Creativity”, Leadership Quarterly. 2004: 33-53.

[14] Kelman H C. “Compliance, Identification, and Internalization: Three Processes of Attitude Change”, Journal of Conflict Resolution. 1958: 51-60.

[15] Chen Y., Qi Z F., Chen Z W., et al. “An Analysis of the Effect and Mechanism of Zhong-yong Thinking on Team Innovation”, Forecasting. 2018: 15-21.

[16] Liu L L., Du R., Ai S Z. “Impact of Culture on the Relationship between Knowledge Sharing and Innovative Behavior in IT Services Industry”, Chinese Journal of Management Science. 2016: 159-166.

[17] Du J., Yao J H. “Zhongyong: The Connotation and Its Relationship with Collectivism”, Chinese Journal of Management. 2015: 638-646.

[18] Tierney P., Farmer S M., Graen G B. “An Examination of Leadership and Employee Creativity: The Relevance of Traits and Relationships”, Personnel psychology. 1999: 591-620.

[19] Hwang Y., Kim D J. “Understanding Affective Commitment, Collectivist Culture, and Social Influence in Relation to Knowledge Sharing in Technology Mediated Learning”, IEEE Transactions on Professional Communication. 2007: 232-248.

[20] Tu X Y., Wang Z Y., He X., et al. “Critical Thinking, Creative Process Engagement and Innovation Behavior: The Empirical Study of Technology-Based Enterprises”, Science of Science and Management of S&T. 2017: 126-138.

[21] Li B Z., Gao S. “Reciprocity, Knowledge Sharing and Collaborative Original Innovation—Moderating Effects of Strategic Flexibility”, R&D Management. 2017: 76-86.

[22] Wen Z L, Ye B J. “Analyses of Mediating Effects: The Development of Methods and Models”, Advances in Psychological Science. 2014: 731-745.

[23] Mackinnon D P., Krull J L., Lockwood C M. “Equivalence of the Mediation, Confounding and Suppression Effect”, Prevention Science. 2000: 173-181.

[24] Zhao X., Lynch J G., Chen Q. “Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis”, Journal of Consumer Research. 2010: 197-206.