COMPACT METRIZABLE GROUPS ARE ISOMETRY GROUPS OF COMPACT METRIC SPACES

JULIEN MELLERAY

Abstract. This note is devoted to proving the following result: given a compact metrizable group G, there is a compact metric space K such that G is isomorphic (as a topological group) to the isometry group of K.

Introduction

It is an easy fact that, if X is a Polish metric space and $\text{Iso}(X)$ is endowed with the topology induced by the product topology on X^X, then it turns $\text{Iso}(X)$ into a Polish group. One may then wonder whether all Polish groups are of that form; this was proved by Gao and Kechris in [2]:

Theorem 1. (Gao-Kechris) Let G be a Polish group. Then there exists a Polish metric space Y such that G is isomorphic to $\text{Iso}(Y)$.

Similarly, it is easy to see that, if K is a compact metric space, then $\text{Iso}(K)$ is a compact metrizable group.

Given what we saw above, it is natural to wonder whether the converse holds; this question was mentioned to me by Alekos Kechris (private correspondence). The aim of this note is to provide a positive answer to that question:

Theorem 2. Let G be a compact metrizable group. Then there exists a compact metric space K such that G is isomorphic to $\text{Iso}(K)$.

To obtain the proof, it is natural to try to find a simpler proof of theorem 1 than the one in [2], which is a little buried among other considerations (it is a byproduct of a proof, so no ”direct” proof is given).

It turns out that such a simpler proof exists, and it is not very hard to use a variation of it in order to prove theorem 1.

The paper is organized as follows: first we give a simple proof of theorem 1, then we show how to adapt this proof in order to obtain theorem 2.

Acknowledgements: I would like to thank Alekos Kechris, who told me about the problem studied here.

MSC: Primary 54H11, Secondary 22A05, 51F99.
Notations and Definitions

If (X, d) is a complete separable metric space, we will say that it is a Polish metric space, and will often write it simply X.

A Polish group is a topological group whose topology is Polish; if X is a separable metric space, then we will denote its isometry group by $Iso(X)$, and endow it with the pointwise convergence topology, which turns it into a second countable topological group, and into a Polish group if X is Polish (see [1] for a thorough introduction to the theory of Polish groups).

Let (X, d) be a metric space; we will say that $f : X \to \mathbb{R}$ is a Katětov map iff

$$
\forall x, y \in X \ |f(x) - f(y)| \leq d(x, y) \leq f(x) + f(y).$

These maps correspond to one-point metric extensions of X. We denote by $E(X)$ the set of all Katětov maps on X; we endow it with the sup-metric, which turns it into a complete metric space.

If $f \in E(X)$ and $S \subseteq X$ are such that $f(x) = \inf(f(s) + d(x, s) : s \in S)$, we say that S is a support of f; or that S controls f.

It is useful to note here the following easy fact: if $f, g \in E(X, \omega)$ are both supported by some set S, then $d(f, g) = \sup_{s \in S} |f(s) - g(s)|$.

Notice that X isometrically embeds in $E(X)$ via the Kuratowski embedding $x \mapsto \delta_x$, where $\delta_x(y) = d(x, y)$, and that one has, for any $f \in E(X)$, that $d(f, \delta_x) = f(x)$.

Proofs of the theorems:

As promised, we begin by proving theorem [1]

Let G be a Polish group, and d be a left-invariant distance on G. Let X be the completion of (G, d). Then the left translation action of G on itself extends to an action by isometries of G on X, and it is not hard to check that this provides a continuous embedding of G in $Iso(X)$. We identify G with the corresponding (closed) subgroup of $Iso(X)$, and make the additional assumption that X is of diameter ≤ 1.

Claim. For all $\varphi \in Iso(X) \setminus G$, there exist $x_1, \ldots, x_m \in X$ and $\varepsilon > 0$ such that $V_\varphi = \{\psi \in Iso(X) : \forall 1 \leq k \leq m \ d(\psi(x_k), \varphi(x_k)) < \varepsilon\} \subseteq Iso(X) \setminus G$, and $2m\varepsilon = \min(d(x_1, x_k))$.

Proof. Obvious.

Choose for all $\varphi \in Iso(X) \setminus G$ such a V_φ; then, since $Iso(X)$ is Lindelöf, there are $\{\varphi_i\}_{i \geq 1}$ such that $Iso(X) \setminus G = \bigcup_{i \geq 1} V_{\varphi_i}$. We denote
$V_{\varphi_i} = \{ \psi \in Iso(X) : \forall 1 \leq k \leq m_i \ d(y^i_k, \psi(x^i_k)) < \varepsilon_i \}.$

For each $i \geq 1$ we define maps $f_i, g_i \in E(X)$:

$f_i(x) = \min \{ \min_{1 \leq k \leq m_i} (1 + d(x, x^i_k) + 2(k-1)\varepsilon_i), 1 + 2m_i\varepsilon_i) \},$ and

g_i(x) = \min \{ \min_{1 \leq k \leq m_i} (1 + d(x, y^i_k) + 2(k-1)\varepsilon_i), 1 + 2m_i\varepsilon_i) \}.

If $\varphi \in Iso(X)$, we let φ^* denote its (unique) extension to $E(X)$, defined by $\varphi^*(f)(x) = f(\varphi^{-1}(x))$. We now have the following lemma:

Lemma 3. $\forall \varphi \in Iso(X) \forall i \geq 1 \ (\varphi \in V_{\varphi_i}) \iff (d(\varphi^*(f_i), g_i) < \varepsilon_i)$.

Proof of Lemma 3.
Let $\varphi \in V_{\varphi_i}$. Then the various inequalities involved imply that:

$\varphi^*(f_i)(y^i_k) = 1 + d(\varphi(x^i_k), y^i_k) + 2(k-1)\varepsilon_i$, so $|\varphi^*(f_i)(y^i_k) - g_i(y^i_k)| < \varepsilon_i$.

$g_i((\varphi(x^i_k)) = 1 + d(\varphi(x^i_k), y^i_k) + 2(k-1)\varepsilon_i$, so $|\varphi^*(f_i)(\varphi(x^i_k)) - g_i(\varphi(x^i_k))| < \varepsilon_i$.

Since $\varphi^*(f_i)$ and g_i are both supported by the set $\{\varphi(x^i_k)\}_{k=1...m_i} \cup \{y^i_k\}_{k=1...m_i}$, the inequalities above are enough to show that $d(\varphi^*(f_i), g_i) < \varepsilon_i$.

Conversely, let $\varphi \in Iso(X)$ be such that $d(\varphi^*(f_i), g_i) < \varepsilon_i$. We prove by induction on $k = 1...m$ that $d(\varphi(x^i_k), y^i_k) < \varepsilon_i$.

To see that this is true for $k = 1$, remark that we have that $g_i(\varphi(x^i_1)) < 1 + \varepsilon_i$, so that we must have $g_i(\varphi(x^i_1)) = g_i(y^i_1) + d(y^i_1, x^i_1)$. In turn, this implies that $d(y^i_1, x^i_1) < \varepsilon_i$.

Suppose now that we have proved the result up to rank $k - 1 \leq m - 1$.

Notice that we have this time that $g_i(\varphi(x^i_k)) < 1 + \varepsilon_i + 2(k-1)\varepsilon_i$ (*). Also, we know that for all $l < k$ we have $d(x^i_k, x^i_l) > 2m_i\varepsilon_i$, and $d(x^i_k, x^i_l) < \varepsilon_i$.

Thus, $d(x^i_k, y^i_l) > (2m_i - 1)\varepsilon_i$ for all $l < k$.

It is then clear that (*) implies that $g_i(\varphi(x^i_k)) = g_i(y^i_k) + d(y^i_k, x^i_k)$, which means that $d(y^i_k, x^i_k) < \varepsilon_i$.

We now let $F_0 = X$, $F_i = \{\varphi^* f_i : g \in G\} \subset E(X)$, and $Z = \overline{F_i}$. Notice that Z is a Polish metric space, since it is closed in $E(X)$, which is complete, and it admits a separable dense subset.

Also, it is important to remark that lemma 3 implies that $d(\psi^*(f_i), g_i) \geq \varepsilon_i$ for all $\psi \in G$; in other words, $d(F_i, g_i) \geq \varepsilon_i$ for all i.

Lemma 4. Any element φ of G extends (uniquely) to an isometry φ^Z of Z, and

$\{\varphi^Z : \varphi \in G\} = \{\varphi \in Iso(Z) : \varphi(X) = X \text{ and } \forall i \geq 0 \varphi(F_i) = F_i\}$

Proof of Lemma 4.

The first assertion is easy to prove: since $\varphi^*(F_i) = F_i$ for all $\varphi \in G$, we see that $\varphi^*(Z) = Z$ for all $\varphi \in G$. The fact that this extension is unique is a classical consequence of the definition of the distance on $E(X)$, see for instance 3.

It is also clear that $\{\varphi^Z : \varphi \in G\} \subseteq \{\varphi \in Iso(Z) : \varphi(X) = X\}$; to prove the
converse, take \(\varphi \in Iso(Z) \) such that \(\varphi(X) = X \) and \(\varphi(F_i) = F_i \) for all \(i \).
So \(\varphi|_X \) is an isometry of \(X \) such that \(d((\varphi|_X)^*(f_i), g_i) = d(\varphi(f_i), g_i) \geq \varepsilon_i \) for all \(i \), which means that \(\varphi|_X \notin V_{\varphi_i} \) for all \(i \), so that \(\varphi|_X \in G \) and we are done.

To conclude the proof of the theorem, notice that \(Z \) is a bounded Polish metric space, so we may assume that \(\text{diam}(Z) \leq 1 \).
Then we conclude as in [2]: for each \(i \in I \) we let \(y_i \in E(Z) \) be defined by \(y_i(z) = d(y_i, z) = (i + 2) + d(z, F_i) \) for all \(z \in Z \). Notice that \(\varphi^*(y_i) = y_i \) for all \(i \in I \) and all \(\varphi \in G \).
Let \(Y = Z \cup \{y_i\} \subset E(Z) \); \(Y \) is complete, and we claim that \(G \) is isomorphic to \(Iso(Y) \).
Indeed, any element \(\varphi \) of \(G \) has a unique isometric extension \(\varphi^Y \) to \(Y \), and the mapping \(\varphi \mapsto \varphi^Y \) is continuous. Conversely, let \(\psi \) be an isometry of \(Y \); necessarily \(\psi(Z) = Z \), and \(\psi(y_i) = y_i \) for all \(i \).
Since \(F_i = \{z \in Z : d(z, y_i) = 0\} \), we must have \(\psi(F_i) = F_i \) for all \(i \). So, we see that there is some \(\varphi \in G \) such that \(\psi|_X = \varphi^Z \), so that \(\psi = \varphi^Y \).
To conclude the proof of theorem [4] recall that any bijective, continuous morphism between two Polish groups is actually bicontinuous.

Now we will see that the ideas of this proof enable one to also prove theorem [2]

Proof of theorem [2]
We may again assume that \(G \) has more than two elements. Let \(d \) be an invariant metric on \(G \); the metric space \(X = (G, d) \) is compact, and \(G \) embeds topologically in \(Iso(X) \), via the mapping \(g \mapsto (x \mapsto g.x) \). We again identify \(G \) with the corresponding (closed) subgroup of \(Iso(X) \), and make the additional assumption that \(X \) is of diameter \(\leq 1 \).

We again choose for, all \(\varphi \in Iso(X) \setminus G \), a \(V_{\varphi} \) as in the claim; there are \(\{\varphi_i\}_{i \geq 1} \) such that \(Iso(X) \setminus G = \bigcup_{i \geq 1} V_{\varphi_i} \). We again denote \(V_{\varphi_i} = \{\psi \in Iso(X) : \forall 1 \leq k \leq m_i \ \ d(y_k^i, \psi(x_k^i)) < \varepsilon_i \} \).
For each \(i \geq 1 \) we define slightly different maps \(f_i, g_i \):

\[
f_i(x) = \min \left(\min_{1 \leq k \leq m_i} \left(1 + \frac{1}{2^i} + d(x, x_k^i) + 2(k - 1)\varepsilon_i \right), 1 + \frac{1}{2^i} + 2m_i\varepsilon_i \right),
\]

\[
g_i(x) = \min \left(\min_{1 \leq k \leq m_i} \left(1 + \frac{1}{2^i} + d(x, y_k^i) + 2(k - 1)\varepsilon_i \right), 1 + \frac{1}{2^i} + 2m_i\varepsilon_i \right).
\]

If \(\varphi \in Iso(X) \), we let \(\varphi^* \) denote its (unique) extension to \(E(X) \); we have again that

\[
\forall \varphi \in Iso(X) \forall i \geq 1 \ (\varphi \in V_{\varphi_i}) \iff (d(\varphi^*(f_i), g_i) < \varepsilon_i).
\]
Now, we let Y be the set of $f \in E(X)$ such that

$$\exists x_1 \ldots x_n \ \forall x \ f(x) = \min \left(\min_{1 \leq i \leq n} (1 + 2(i - 1)\varepsilon + d(x, x_i)), 1 + 2n\varepsilon \right),$$

where $2n\varepsilon = \min(d(x_i, x_j))$.

(for $n = 0$ one gets g defined by $g(x) = 1$ for all $x \in X$.)

Lemma 5. Y is compact.

Proof. Let (f_i) be a sequence of maps in Y, and let x_1^i, \ldots, x_n^i be points witnessing the fact that $f_i \in Y$.

Then, either we can extract a sequence $f_{\varphi(i)}$ such that $n_{\varphi(i)} \to +\infty$, or (n_i) is bounded.

In the first case, notice that, since X is totally bounded, one must necessarily have that $\min_{1 \leq j < k \leq n_{\varphi(i)}} d(x_j^{\varphi(i)}, x_k^{\varphi(i)}) \to 0$ when $n \to +\infty$, so that the definition of f_i ensures that $f_{\varphi(i)} \to g$.

In the other case, we may extract a subsequence $f_{\psi(i)}$ such that $n_{\psi(i)} = n$ for all i.

We assume that $\min_{1 \leq j < k \leq n} d(x_j^{\psi(i)}, x_k^{\psi(i)}) \geq \delta$ for some $\delta > 0$ (if not, we can conclude as in the first case that some subsequence of $(f_{\psi(i)})$ converges to g). But then, up to another extraction, we can suppose that

$x_1^{\psi(i)} \to x_1, \ldots, x_n^{\psi(i)} \to x_n$.

This implies that $\min_{1 \leq j < k \leq n} d(x_j^{\psi(i)}, x_k^{\psi(i)}) \to \min_{1 \leq j < k \leq n} d(x_j, x_k)$, and one checks easily that $f_{\psi(i)} \to f$ for some $f \in Y$.

We let, for all $i \geq 1$, $F_i = G^* \cdot \{f_i\}$ (which is a compact subset of $E(X)$), and $Z = X \cup Y \cup \bigcup F_i$.

We proceed to prove that Z is compact: for that, it is enough to see that any sequence (x_n) of elements of $\bigcup F_i$ admits a subsequence converging to some $z \in Z$.

We know by definition that $x_n = \varphi_n(f_{i_n})$ for some $\varphi_n \in G$ and $i_n \in \mathbb{N}$. Since G is compact, we may assume that $\varphi_n \to \varphi$, so that it is enough to show that f_{i_n} admits a subsequence converging to some $z' \in Z$.

We may of course assume that $i_n \to +\infty$. Notice that, by definition, $f_{i_n} = \frac{1}{2i_n} + h_n$, for some $h_n \in Y$; since Y is compact, and $i_n \to +\infty$, we are done.

The end of the proof is very similar to that of theorem 1, only a bit simpler (that is why we have chosen the f_i more carefully this time): we pick $k \in E(Z)$ such that $d(k, z) = \text{diam}(Z) + d(z, X)$, and let $\{k\} \cup Z = K$.

k is compact, any element of G extends uniquely to an isometry of K, and the extension morphism is continuous.

So, we only need to prove that all isometries of K are extensions of elements of G; to that end, let $\psi \in \text{Iso}(K)$.

We see that $\psi(k) = k$, so $\psi(Z) = Z$.

COMPACT METRIZABLE GROUPS ARE ISOMETRY GROUPS OF COMPACT METRIC SPACES 5
Also, since \(X = \{ z \in Z : d(z,k) = \text{diam}(Z) \} \), we must have \(\psi(X) = X \).
Similarly, \(F_i = \{ z \in Z : d(z, X) = 1 + \frac{1}{2^i} \} \), so \(\psi(F_i) = F_i \).
We may now conclude as above: \(\psi|_X \not\in V_{\varphi_i} \) for all \(i \), so \(\psi|_X \in G \), and we are done.

\[\Diamond \]

References

[1] H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lecture Notes Series, 232, Cambridge University Press (1996).
[2] S. Gao and A. S. Kechris, On the classification of Polish metric spaces up to isometry, Memoirs of Amer. Math. Soc., 766, Amer. Math. Soc. (2003).
[3] M. Katětov, On universal metric spaces, Proc. of the 6th Prague Topological Symposium (1986), Frolík (ed). Helderman Verlag Berlin, pp 323-330 (1988).
[4] V. V. Uspenskij, On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolinae, 31(1) (1990), pp 181-182.