Metastatic Invasive Lobular Carcinoma of the Breast Presenting Peritoneal Metastasis with Bilateral Ureteral Obstruction

Masahiro TAKEUCHI1*, Kei YABUKI1, Masaki AKIYAMA1, Koichi ARASE1, Takayuki TANOUÉ2, Yuzuru INOUE2, Kotaro KITAHARA1 and Keiji HIRATA2

1 Department of Digestive and General Surgery, Wakamatsu Hospital, University of Occupational and Environmental Health, Japan. Wakamatsu-ku, Kitakyushu 808-0024, Japan
2 Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Japan. Yahatanishi-ku, Kitakyushu 807-8555, Japan

Abstract: The most common sites for recurrence of breast cancer are the lungs, liver, and bones. The frequency of peritoneal, gastrointestinal metastasis is significantly lower than those, and bilateral ureteral obstruction caused by peritoneal metastasis is relatively rare. A 66-year-old woman was referred to our hospital because of appetite loss and frequent urination. She was on adjuvant hormonal therapy for local recurrence of right breast cancer. She was diagnosed with bilateral ureteral obstruction due to extramural compression. Exploratory laparoscopy revealed omental cake and peritoneal nodules of which pathological examination showed peritoneal metastasis of invasive lobular carcinoma. Peritoneal metastases from breast cancer are unusual and consequently difficult to identify without non-invasive tools. Exploratory laparoscopy revealed that the cause of hydronephrosis in this case was peritoneal metastasis of invasive lobular carcinoma. Clinical history and histological study play a pivotal role in determining the correct diagnosis.

Keywords: breast cancer, peritoneal metastasis, ureteral obstruction.

(Received May 10, 2021, accepted July 6, 2021)

Background

Breast cancer easily metastasizes to the whole body, usually to the lungs, liver, bones, and lymph nodes. Nakamura et al [1, 2], reported that metastasis to the adrenal glands, ovaries and peritoneum was found in 37.9–40%, 24.5–26% and 16–21.5% of autopsy cases, respectively. The condition is rarely diagnosed before death. Mukaiyama et al stated that 31% of autopsy cases had metastases to the gastrointestinal tract and peritoneum, but only 6% could be clinically diagnosed before death [3]. Invasive lobular carcinoma is known to be the second most common histological type of invasive breast cancer, representing 5–15% of cases, following invasive ductal carcinoma, which accounts for 65–75% of all cases [4–6]. In patients with recurrent breast cancer, the rates of metastasis to the peritoneum and retroperitoneum have been reported to be 0.6% and 3.1%. This event tends to be more common in invasive lobular carcinoma than in invasive ductal carcinoma [7]. Hydronephrosis is a rare complication of metastatic breast cancer [8, 9]. We herein report a case of metastatic invasive lobular carcinoma of the breast to the peritoneum presenting with bilateral ure-
teral obstruction without bowel obstruction.

Case presentation

A 66-year-old woman was referred to our hospital because of appetite loss and frequent urination during adjuvant hormonal therapy after resection of a local recurrent tumor of an invasive lobular carcinoma of the breast.

She had a past history of hormone receptor positive and human epidermal receptor 2 (HER2) negative invasive lobular carcinoma of the right breast (Figure 1 A to D), and had undergone total mastectomy with axillary lymph node dissection 22 years previously, after which she received hormone therapy with tamoxifen. However, local recurrence was detected and resected 7 years previously.

The recurrent tumor was metastasis of invasive lobular carcinoma. Immunohistochemical staining was positive for estrogen receptor (ER) (95%) and progesterone receptor (PgR) (95%), and the Ki-67 index was <5%. At that time, HER2 showed positive conversion (luminal B HER2-positive type).

She was treated with letrozole, a non-steroidal aromatase inhibitor for adjuvant hormonal therapy, without any evidence of distant metastasis. Her tumor marker values were within normal limits during follow up.

On admission, the patient had an operation scar

![Microscopic findings](image1.png)

Figure 1. Microscopic findings, and Immunostaining findings. A: Microscopic findings (Hematoxylin-Eosin (H&E) staining: ×20). Tumor cells with a high a nuclear/cytoplasmic ratio proliferated in a cord among these collagen fibers (Indian filing). B-E: Immunostaining findings (×40). ER-positive (B), PgR-positive (C), Ki-67-labeling index <5% (D), HER2 negative (E). ER: estrogen receptor, PgR: progesterone receptor, HER2: human epidermal receptor2.
Recurrent Breast Cancer Presenting Hydronephrosis

from a Stewart's incision and from local resection on her right chest. There were no positive findings in her neck, axilla, or abdomen. Laboratory data showed renal dysfunction (blood urea nitrogen: 32 mg/dl, creatinine: 4.74 mg/dl), and her tumor marker levels (carcinoembryonic antigen, cancer antigen 15–3) were within the normal limits.

Abdominal ultrasound (US) and computed tomography (CT) revealed a small amount of ascites, omental shrinkage, bilateral hydronephrosis, and extramural compression of the ureters (Figure 2 A and B). Cytology of the urine, cystoscopy and ureteroscopy showed no particular findings other than ureteral obstruction. Gastroduodenoscopy, total colonoscopy and positron emission tomography-computed tomography (PET-CT) did not show any particular lesions.

The patient first underwent ureteral stent placement for renal dysfunction. After the recovery of her renal function, exploratory laparoscopy was performed under a diagnosis of bilateral hydronephrosis with ascites caused by peritoneal metastasis of breast cancer or retroperitoneal fibrosis.

There was a large amount of serous turbid ascites in the abdomen, in the subphrenium and Douglas cavity (Figure 3 A). The omentum was shrunken, which made so-called "omental cake" (Figure 3 B). There were numerous small, whitish nodules on the parietal peritoneum (Figure 3 C and D). The appendix and reproductive organs were intact. The upper urinary tract could not be fully explored, so we collected ascites for cytology, and did an incisional biopsy of the omentum and peritoneal nodule for pathological examinations.

The cytology of the ascites showed no evidence of malignancy. A histopathological examination of the omentum and peritoneal nodule showed a proliferation of atypical cells having round nuclei, and a small amount of eosinophilic cytoplasm in cords among the adipose tissue or embedded in a fibrous connective tissue (Figure 4 A). Immunohistochemically, these atypical epithelial cells were positive for ER: 95%, PgR: 5%, Ki-67 index was less than 5% and HER2(1+), suggesting a type of luminal type B (Figure 4 B, C, D and E). Based on these findings, we made a conclusive diagnosis of peritoneal metastasis of recurrent invasive lobular carcinoma of the breast. After the definite diagnosis was made, the patient was treated with palbociclib (a cyclin-dependent kinase 4/6 inhibitor) and fulvestrant (an ER antagonist).

Discussion

Considering the current evidence, we concluded that the bilateral hydronephrosis was caused by peritoneal metastasis of breast cancer. Interestingly, recurrence was observed as a luminal B HER2-positive type. The rates of negative to positive conversion were 21.5% (95% CI=18.1–25.5%), 15.9% (95% CI=11.3–22%), and 9.5% (95% CI=7.4–12.1%), respectively [10]. It is possible that cytokines, such as TNF-α, elevated reactive oxygen species, hypoxia due to angiopathy,
DNA damage, and heat shock protein are induced to increase the inherent properties of cancer cells [11, 12].

Late recurrence of breast cancer more than 5 years after surgery is estimated to be about 10% [13], which is not rare compared to other organ cancers. Breast cancer often metastasizes to other parenchymal organs, such as bone, lymph node, lung and liver [3]. Intraabdominal metastasis of breast cancer is usually found in the liver. Extrahepatic metastasis of breast cancer has been reported, but it is extremely rare. Caskey et al reported stomach metastasis of breast cancer [14], and Tabei et al reported a few cases of retroperitoneal and peritoneal metastasis [15].

Ureteral obstruction with hydronephrosis is a rare complication of metastatic breast cancer [8, 9]. Winston et al reported that 11% of patients with metastatic lobular breast cancer with peritoneal metastasis had hydronephrosis caused by metastatic infiltration of the retroperitoneum, and resection was performed in all the cases that involved small or large bowel obstruction [16]. A case of hydronephrosis without bowel obstruction by metastatic lobular breast carcinoma is considered rare.

As shown in our case, it is hard to detect peritoneal metastasis using CT or PET-CT unless the tumor has reached a certain volume [17]. Most cases have bowel obstruction because they are discovered after peritoneal metastasis has progressed.

There are some current reports on patients with peritoneal carcinomatosis of breast cancer who achieved long-term survival with treatment [18, 19], but whether a long-term effect can be expected in all cases is unclear. As the survival rate of breast cancer improves, the number of cases involving peritoneal recurrence at more than 5 years after surgery—as was observed in this case—is expected to increase. It is expected that cases such as this will accumulate and that effective treatments will be discovered.

We should keep in mind the possibility that breast cancer patients may develop peritoneal recurrence without other organ recurrence. Although most cases have some bowel symptoms, it is difficult to detect peritoneal metastasis in the early stage, and there are also rare cases, such as ours, that only present bilateral hydronephrosis. In the present case, a patient with metastatic invasive lobular carcinoma of the breast to the peritoneum presented with bilateral ureteral obstruction that could be diagnosed in exploratory laparoscopy.
Conclusion

We herein described a rare case of recurrent invasive lobular carcinoma of the breast, presenting bilateral ureteral obstruction caused by peritoneal metastasis without bowel obstruction.

Acknowledgments

We would like to thank all of the clinical and medical staff members of Wakamatsu Hospital.

Conflict of Interest

The authors declare no conflicts of interest in association with the present study.

References

1. Nakamura T, Sakamoto G, Kitagawa T, Kasuga T & Sugano H (1983): Visceral metastasis in 135 cases of breast cancer: evaluation at autopsy. Gan No Rinsho 29 (15): 1717–1720 (in Japanese)
2. Urano Y, Fukushima T, Kitamura S, Mori H, Baba K, Aizawa S (1986): Statistical studies on metastasis of breast cancer and cancer metastasis to the breast. Gan No Rinsho Suppl: 205–223 (in Japanese)
3. Mukaiyama T, Ogawa M, Horikoshi N et al (1989): Analysis of metastatic behaviors and causes of death in 100 autopsied patients with breast cancer. Jpn J Breast Cancer 4(1): 121–126 (in Japanese)
4. Ashikari R, Huvos AG, Urban JA & Robbins GF (1973): Infiltrating lobular carcinoma of the breast.

Figure 4. Resected specimens. A: Microscopic findings (H&E, × 20). B-E: Immunostaining findings (× 40). ER positive (B), PgR positive (C), Ki-67-labeling index <5% (D), HER2 (1+) (E). ER: estrogen receptor, PgR: progesterone, HER2: human epidermal receptor 2.
5. Pestalozzi BC, Zahrieh D, Mallon E et al (2008): Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J Clin Oncol 26 (18): 3006–3014

6. Orvieto E, Maiorano E, Bottiglieri L et al (2008): Clinicopathologic characteristics of invasive lobular carcinoma of the breast: results of an analysis of 530 cases from a single institution. Cancer 113 (7): 1511–1520

7. Borst MJ & Ingold JA (1993): Metastatic patterns of invasive lobular versus invasive ductal carcinoma of the breast. Surgery 114 (4): 637–641; discussion 641–642

8. Kuhn W, Loos W & Graeff H (1994): Hydronephrosis as the first manifestation of primary metastatic breast cancer. Geburtshilfe Frauenheilkd 54 (5): 308–310 (in Germany)

9. Bhandari BB & Basnet RB (2011): Metastasis to the ureter: A rare cause of structure. Post-Graduate Medical Journal of NAMS 11(2): 60–61

10. Schrijver W, Suikerbuijk KPM, van Gils CH, van der Wall E, Moelans CB & van Diest PJ (2018): Receptor conversion in distant breast cancer metastases: A systematic review and meta-analysis. J Natl Cancer Inst 110 (6): 568–580

11. Molina R, Escudero JM, Munoz M, Auge JM & Filella X (2012): Circulating levels of HER-2/neu oncoprotein in breast cancer. Clin Chem Lab Med 50 (1): 5–21

12. Swanton C (2012): Intratumor Heterogeneity: Evolution through Space and Time. Cancer Research 72 (19): 4875–4882

13. Pan H, Gray R, Braybrooke J et al (2017): 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. New England Journal of Medicine 377 (19): 1836–1846

14. Caskey CI, Scatarige JC & Fishman EK (1991): Distribution of metastases in breast carcinoma: CT evaluation of the abdomen. Clinical Imaging 15 (3): 166–171

15. Tabei T (1995): Management of Ovarian Metastasis from Breast Carcinoma: Combined modality therapy with salvage surgery and chemoendocrine therapy. Jpn J Breast Cancer 10: 368–374

16. Winston CB, Hadar O, Teitcher JB et al (2000): Metastatic lobular carcinoma of the breast: Patterns of spread in the chest, abdomen, and pelvis on CT. American Journal of Roentgenology 175 (3): 795–800

17. Yoshioka T, Yamaguchi K, Kubota K et al (2003): Evaluation of 18F-FDG PET in patients with advanced, metastatic, or recurrent gastric cancer. Journal of Nuclear Medicine 44 (5): 690–699

18. Fuke A, Tabei I, Okamoto T & Takeyama H (2020): Complete remission from peritoneal metastasis of late recurrent breast cancer by endocrine therapy: a case report. Surgical Case Reports 6 (1): 313

19. Gennari A, Conte P, Rosso R, Orlandini C & Bruzzi P (2005): Survival of metastatic breast carcinoma patients over a 20-year period. Cancer 104 (8): 1742–1750

J UOEH 43 (4): 409–414 (2021)