Insulin signaling in the central nervous system, a possible pathophysiological mechanism of anesthesia-induced delayed neurocognitive recovery/postoperative neurocognitive disorder: a narrative review

Ega Qevaab, Camilla Sollazoa and Federico Bilottaa

aDepartment of Anesthesia and Intensive Care Medicine, “Sapienza” University of Rome, ‘Policlinico Umberto I’ Hospital, 00161 Rome, Italy; bDepartment of Anesthesia, Intensive Care and Emergency, University of Turin, ‘Città Della Salute e Della Scienza’ Hospital, 10126 Turin, Italy

\textbf{ABSTRACT}

\textbf{Introduction:} Impairment in neurocognitive functions ranges between delayed neurocognitive recovery (DNR) and postoperative neurocognitive disorders (pNCD). Incidence varies from 11\% after non-cardiac surgery to 60\% after cardiac surgery.

\textbf{Areas covered:} Insulin receptors (IRs) signaling pathway in the central nervous system (CNS) could be a possible pathophysiological mechanism of anesthesia-induced DNR/pNCD and perioperative intranasal insulin administration could be a preventive approach. This hypothesis is supported by the following evidence: effects of IRs-CNS signaling pathway on neuromodulation; higher incidence of DNR/pNCD in patients with insulin resistance; neurotoxicity of IRs signaling pathways after anesthetic exposure; improvement of neurocognitive impairment after insulin exposure. This narrative review was conducted after a literature search of PubMed, EMBASE and SCOPUS online medical data performed in May 2022.

\textbf{Expert opinion:} Perioperative intranasal insulin is shown to be protective and future studies should address: the role of insulin as a neuromodulator; its integration into neuroprotection approaches; patient populations that might benefit from this approach; a well-defined protocol of intranasal insulin administration in a perioperative background and other disciplines; and possible collateral effects.

1. Introduction

Postoperative course can be complicated by an impairment in neurocognitive functions that ranges between delayed neurocognitive recovery (DNR) and postoperative neurocognitive disorders (pNCD) [1]. Various pathophysiological mechanisms have been hypothesized and available clinical studies used a huge variety of methodological approaches to evaluate these relevant postoperative complications [2,3]. These terms have been proposed to replace the former postoperative cognitive dysfunction (POCD), in order to characterize the specific timeline of these two complications [4,5]. The pooled incidence of these complications is 11\% after noncardiac surgery and 60\% after cardiac surgery [2]. Occurrence of DNR/pNCD imply the impairment of one or more cognitive domains and has relevant impact on functional recovery, hospital and social costs and mortality rate [2,6]. Proven risk factors for DNR/pNCD include: advanced age, education level, history of diabetes mellitus, malnutrition, blood pressure fluctuation during surgery, perioperative hyperglycemia, etc [6,7]. Preclinical and clinical evidence suggests a causal association between anesthesia and DNR/pNCD, and various pathophysiological mechanisms have been proposed: accumulation of amyloid-\(\beta\) (A\(\beta\)) protein, increase in tau proteins phosphorylation, mitochondrial dysfunction, calcium dysregulation, systemic and central nervous system (CNS) inflammatory response, mechanical ventilation, etc [3,8].

In the CNS, the interaction between insulin and insulin receptors (IRs) is part of a signaling system that interferes with cognitive functions through a neuromodulator-like action [9–11]. The relevance of IRs-CNS signaling in cognitive functions is proven by the higher risk of Alzheimer’s disease (AD) in patients with diabetes mellitus (DM) presented with a downregulation of insulin transport through blood brain barrier (BBB) and dysregulation on IRs intracellular cascade [12–14]. Recent evidence also suggests an interaction between anesthetics and IRs in the CNS, and this might contribute to anesthesia-induced DNR/pNCD [15].

This narrative review summarizes: effects of IRs stimulation in peripheral tissues and in CNS; the relationship between insulin resistance and DNR/pNCD; anesthetics effects on IRs and DNR/pNCD; evidence on perioperative role of insulin in preventing DNR/pNCD. The main point of this manuscript is to report the relationship between anesthesia exposure and incidence of DNR/pNCD, as a result of the impact on IRs signaling in the CNS and the perioperative role of intranasal insulin as a preventive approach.

2. Material and methods

This narrative review was conducted after a literature search accomplished according to a protocol that defined inclusion and exclusion criteria (preclinical and clinical studies, articles in
DNR/pNCD; anesthesia voltage-dependent (reduction)

Article highlights
- Incidence of postoperative neurocognitive impairment such as DNR and/or pNCD varies from 11% to 60%.
- A causal association between anesthesia exposure and DNR/pNCD onset has been reported by preclinical and clinical studies.
- Insulin receptors signaling pathway has a non-metabolic activity in the CNS and interferes with cognitive functions through a neuromodulator-like action.
- Recent evidence suggests an interaction between anesthetics and insulin receptors signaling in the CNS and shows that perioperative intranasal insulin administration improves the outcome.
- IRs signaling pathway might contribute to anesthesia-induced DNR/pNCD.
- Future studies should address the role of intranasal insulin in neuroprotection, patient population that might benefit of this approach and a well-defined administration protocol.

English, no limit of publication date, no abstract included. Selected studies assessed the effects of IRs stimulation in the whole body, the relationship between insulin resistance, anesthesia exposure and DNR/pNCD and the role of insulin in preventing postoperative neurocognitive impairment. A literature search of PubMed, EMBASE and SCOPUS online medical data was performed in May 2022. The following search terms were used: insulin receptors in peripheral tissues, insulin receptors and brain, postoperative neurocognitive impairment, insulin resistance and cognitive impairment, insulin receptors and anesthesia exposure, intranasal insulin and postoperative cognitive impairment. All authors independently screened and assessed titles, abstract and full-text of the retrieved articles. Selected studies were categorized into 5 chapters: (1) effects of IRs stimulation in peripheral tissues; (2) effects of IRs stimulation in the CNS; (3) insulin resistance and DNR/pNCD; (4) anesthetics effects on IRs and DNR/pNCD; (5) perioperative use of insulin in preventing DNR/pNCD.

3. Main body

3.1. Effects of IRs stimulation in peripheral tissues

Insulin extraction was first reported in 1921 [16]. Early after the initial clinical use, it became evident that insulin administration induces metabolic (reduction in blood sugar concentration and abolishment of glycosuria) and neurological effects (reduction in opioid abstinence symptoms, disappearance of hallucinations and antipsychotic effects) [16–19]. Insulin is a peptide hormone formed by 51 amino acids, structured in 2 chains (α and β) linked together by disulfide bridges [20]. It is produced by β cells of the pancreas islets in response to increase of blood glucose concentration (BGC) and insulin-independent transport of glucose through glucose transporter (GLUT) 2 [21]. The increase of glucose concentration in pancreas β cells leads to membrane depolarization, activation of voltage-dependent Ca²⁺ channels, increase of intracellular [Ca²⁺] and exocytosis of insulin granules [21].

Insulin exerts its action binding transmembrane IRs that are formed by 2 heterodimers (extracellular α subunits and transmembrane β subunits) and expressed with different concentrations and functions in all mammalian tissues (Table 1) [22]. Insulin binding to IRs results into the activation of intracellular tyrosine-kinase activity and induces 2 signaling pathways (Figure 1) [23]:

1. Phosphoinositide 3-kinases (PI3K) induces the intracellular activation of protein kinase B (PKB/Akt) which turns in multiple substrate signaling: -Tre-2/Bub2/Cdc16 (TBC1D1 and TBC1D4) protein domains that induce synthesis and translocation of GLUT4 to cellular surface; -sterol regulatory element binding protein 1 (SREBP1) that promotes glycogen synthesis; -B-cell lymphoma 2 against of cell death (BAD) and caspase-9 (Casp9) that contribute to cell survival; p21 and p27 that regulate cell cycle; -glycogen synthase kinase 3 (GSK3) that stimulate synthesis of glycogen; -S6 kinase beta-1 (S6K1) and eukaryotic translocation initiation factor 4E binding protein 1 (4EBP1) stimulate protein synthesis; -sterol regulatory element-binding transcription factor 1 (SREBF1) that induces lipid synthesis; and forkhead box containing protein O subfamily (FoxO) that contributes to gluconegenesis, gene transcription and lipid synthesis.

2. Proto-oncogene protein p21 (RAS) induces activation of microtubule associated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK), leading to cell proliferation and gene transcription.

In different mammalian tissues, cellular glucose uptake is mediated by different GLUTs types [24]. Glucose uptake mediated by GLUT1–GLUT3, is an insulin-independent mechanism, while insulin-mediated glucose uptake takes place in muscles (skeletal and cardiac) and adipose cells through insulin-induced GLUT4 synthesis and translocation [24].

In conclusion, in peripheral tissues IRs modulate metabolic (glucose uptake and glycogen, protein and lipid synthesis) and non-metabolic (cell cycle, survival/proliferation/apoptosis and gene transcription) cellular activities.

3.2. Effects of IRs stimulation in the CNS

In the CNS, the IRs have peculiar distribution with highest concentration in the hippocampal, amygdala and para-hippocampal gyrus and intermediate to low concentration in cerebellum, cerebral cortex, caudate nucleus, substantia nigra and white matter [11,25]. The role of IRs in the CNS resides in non-metabolic activities of the intracellular signaling pathways: balancing neuronal proliferation and apoptosis and regulating gene transcription thus acting as neuromodulator-like factor, while neuronal glucose transport is warrant by non-insulin dependent transporters (GLUT1-3) [25,26]. Plasmatic insulin reaches CNS through a 3-component model: from plasma – through BBB – to the CNS interstitial fluid (ISF) and from the ISF – through ependymal cells (EC) – to cerebrospinal fluid (CSF) (Figure 2) [27,28]. After binding IRs on the endothelial BBB cells, plasmatic insulin is transported to ISF by a dedicated process called transcytosis [27]. Transcytosis is a saturable process inversely related with plasma insulin concentration: higher insulin plasma concentration associates with lower transcytosis [28]. Insulin transport from ISF to CSF occurs according to a passive transport through ependymal cells [27]. This process ensures the presence of ‘systemically produced’ insulin into the
CNS with a CSF insulin concentration (≈ 5–10 μU/ml) that is about 5–10% of plasmatic insulin concentration [27]. Insulin in the CNS, to a smaller extent, relies also on neuronal production as proven by the presence of C-peptide (polypeptide in the proinsulin molecule which is removed, leaving the active form of insulin molecule) and insulin distribution in some areas - such as hypothalamus, hippocampus and brain stem where it reaches 10 to 100 fold higher concentration than in the plasma [29].

Several preclinical and clinical studies prove that insulin possesses trophic functions in the CNS through activation of cytosolic enzymes in neuronal and astroglial cells [29–31]. It also acts as a neuromodulator-like neuropeptide through gene expression and regulation of excitatory/inhibitory receptors – as glutamate and gamma-aminobutyric acid (GABA) receptors – thus affecting synaptic plasticity and influencing learning and memory processing [32]. In this setting, insulin exerts a neuroprotective role through increase of glutamate and GABA reuptake [32]. Furthermore, insulin signaling contributes to neurotransmission through inhibition of norepinephrine reuptake and induction of higher expression of N-methyl-D-aspartate (NMDA) receptors [33,34]. The dysfunction of IRs-CNS pathway, induced in preclinical experimental conditions, associates with neuronal mitochondrial dysfunction, increased levels of reactive O2-species and monoamine oxidase (with higher rate of dopamine turnover), defective in hippocampal neurogenesis and synaptic plasticity and

Tissue/organ	Distribution	Function
Skeletal muscle	Skeletal muscle cells	Stimulation of GLUT4-mediated glucose uptake; regulation of cell growth, differentiation and survival
Adipose tissue	Adipocytes	Stimulation of GLUT4-mediated glucose uptake, lipogenesis and suppression of lipolysis; regulation of cell proliferation
Heart	Cardiomyocytes	Stimulation of GLUT4-mediated glucose uptake and long-chain fatty acid uptake; regulation of protein synthesis, cell growth, and vascular toxicity
Liver	Hepatocytes	Stimulation of glycogen synthesis, lipogenesis and lipoprotein synthesis; suppression of gluconeogenesis/glycogenolysis; VLDL secretion; regulation of hepatic growth, and proliferation/regeneration
Pancreas	β cells	Stimulation of β cell insulin secretion; regulation of proliferation and survival
Intestine	Epithelial cells	Stimulation of glucose metabolism; regulation of intestinal growth
Kidney	Podocytes; distal renal tubules	Stimulation of podocyte function, sodium excretion, and blood pressure control
Lung	Epithelial cells	Stimulation of lung development during organogenesis
Bone	Osteoblasts	Regulation of proliferation, growth, differentiation, and survival
Eye	Neurons of retina	Regulation of proliferation, growth, differentiation, and survival
Skin	Keratinocytes	Regulation of proliferation, growth, differentiation, and survival

Figure 1. IR intracellular signaling pathway; insulin receptors (IRs), proto-oncogene protein p21 (RAS), phosphoinositide 3-kinases (PI3K), microtubule associated protein kinase (MAPK), protein kinase B (Akt), glucose transporter type 4 (GLUT4), B-cell lymphoma 2 against of cell death and caspase-9 (BAD/Casp9), sterol regulatory element binding protein 1 (SREBP1), glycogen synthase kinase 3 (GSK3), S6 kinase beta-1/eukaryotic translocation initiation factor 4E binding protein 1 (S6K1/4EBP1), sterol regulatory element-binding transcription factor 1 (SREBF1), forkhead box-containing protein O subfamily (FoxO).
impairment of normal response to stress by hypothalamic-pituitary-adrenal axis [35,36].

In conclusion, insulin transport through the BBB and IRs-CNS signaling pathway generate complex and relevant modulatory system with direct and indirect effects on neuronal survival, neuroprotection and neuropeptide provoking neurobehavioral disorders as: anxiety, mood, feeding and cognitive disorders in case of intracellular signaling pathway dysfunction.

3.3. Insulin resistance and DNR/pNCD

Persistent hyperinsulinemia induced by insulin resistance (as in type 2 DM), associates with downregulation of insulin transport through BBB, inhibition of Aβ protein processing, acceleration of neuronal tau protein phosphorylation and neuroinflammation, leading to frontal cortex dysfunction and AD-type neurodegeneration, while intracellular hoarding of misfolded Aβ proteins reduces IRs expression in the CNS and stimulates CNS innate immune system [13,37–43]. For these reasons, AD is considered a brain-specific form of DM (so called ‘type 3 diabetes’) in animal and human models [39]. Neuronal changes associated with AD are characterized by impaired energy metabolism, mitochondrial dysfunction, chronic oxidative stress, DNA damage and cell loss, leading to abnormalities in the expression of genes encoding CNS insulin and insulin receptors, a lower CSF/plasma insulin concentration ratio and a reduced IRs tyrosine-kinase activity [38,44].

Several clinical evidence, derived by studies in cardiac and noncardiac surgical patients, demonstrates that insulin resistance and type 2 DM, especially when hemoglobin A1c (HbA1c) values are suboptimal, associate with increased risk of DNR/pNCD [45–51]. Patients undergoing coronary artery bypass graft surgery with type 2 DM, diabetic retinopathy, insulin therapy and high serum levels of HbA1c, have an increased risk for DNR/pNCD at 7th postoperative day and 6th month follow-up [46]. In this setting, patients with type 2 DM show a pronounced systemic and neuronal inflammatory response that predicts DNR/pNCD [47]. The relationship between insulin resistance, the production of systemic inflammatory factors – interleukin 6 (IL-6) and tumor necrosis factors α (TNF-α) – and the increase in DNR/pNCD at the 7th day after surgery, was clinically proven in an observational study that enrolled 131 patients undergone cardiac surgery [48]. This evidence has been confirmed also in noncardiac surgery where ‘preoperative metabolic syndrome’ (i.e. insulin resistance, obesity, arterial hypertension) and insulin resistance have been independently proven to predict of DNR/ pNCD at 7th postoperative day [49,50].

In conclusion, preclinical and clinical studies suggest that insulin resistance, DM-induced cerebral dysfunction and AD-type neurodegeneration, are interrelated events that associate with DNR/pNCD in both cardiac and noncardiac surgical patients.

3.4. Anesthetics effects on IRs and DNR/pNCD

Several preclinical and clinical evidence suggests that general and local anesthetics interfere with IRs signaling pathways in peripheral tissues and in CNS, thus possibly inducing DNR/ pNCD [52–79].

General anesthetics interfere with IRs in peripheral tissues with various mechanisms: halogenated anesthetics (sevoflurane and isoflurane) inhibit the intracellular IRs-MAPK/ERK signaling pathway, inducing insulin resistance, hyperglycemia and hyperinsulinemia; propofol interferes with IRs signaling, stimulating tyrosine-kinase activity of skeletal muscle IRs resulting in pronounced BGC changes; α-2 adrenoceptor agonist (as dexmedetomidine) reduces insulin secretion and leads to increased BGC after injection in dogs models, because of its action on α receptors expressed by pancreatic β cells [52–55]. Also local anesthetics affect the intracellular IRs cascade, through PI3K/AKT and MAPK/ERK signaling pathways and it can lead to pro-apoptotic and anti-proliferative events [56–59].

Preclinical evidence on CNS toxicity induced by general anesthetics suggests an association between IRs-mediated intracellular pathways and cognitive dysfunction [60–69]. Multiple exposures of mice models to either sevoflurane or isoflurane, but not desflurane, were found to reduce PI3K/Akt
pathway activity, leading to development of neurotoxicity and worsening of cognitive performance (learning and memory) [61,62]. Sevoflurane and isoflurane can induce neurotoxicity through elevated phosphorylation of MAPK which inhibit ERK signaling, causing neuroapoptosis [63,64]. Propofol inhibits both PI3K/Akt and MAPK/ERK signaling pathway in in-vitro neurons, inducing apoptosis and reducing cell proliferation [65,66]. On the other hand, the use of dexmedetomidine, as anesthetic adjuvant, promotes PI3K/Akt and MAPK/ERK signaling pathways in in-vitro cells [67,68]. Urethane and ketamine-induced anesthesia reduces MAPK/ERK signaling pathway and increase tau protein phosphorylation [69].

Local anesthetics have several potential neurotoxic effects including seizures and CNS depression [56]. Differences in terms of toxicity between local anesthetics are still under scrutiny, especially their neurotoxic effects [70]. Longer-acting local anesthetics have higher CNS toxicity than the shorter-acting [71]. In vitro models have shown that neurotoxicity of local anesthetics is triggered by PI3K and MAPK-pathways of CNS cells, which interfere with neuronal survival and induce neuronal apoptosis respectively [72,73]. Intravenously administered lidocaine, tested to reduce incidence of DNR/pNCD after cardiac surgery, was investigated in a randomized controlled trial enrolling 114 patients receiving lidocaine infusion and 127 patients receiving placebo [74]. Recorded results proved that lidocaine did not reduce DNR/pNCD incidence at 6th week and 1st year postoperatively, while doses of >35 mg/kg were reported to be an independent predictor of DNR/pNCD in diabetic patients, exerting neurotoxic effect.

In conclusion, exposure to both general and local anesthetics interferes with IRS signaling pathways, resulting in neurotoxicity. The main mechanisms that lead to impairment of cognitive performance are: neuroapoptosis, reduction of cell proliferation and increase of tau protein phosphorylation.

3.5. Perioperative use of insulin in preventing DNR/pNCD

Preclinical and clinical evidence suggests that insulin administration associates with reduced neuronal damage and when used in the perioperative period, might exert a protective effect toward DNR/pNCD [15,47,75,76].

The neurological effects of insulin administration were described shortly after the initial experimental and clinical use [11–14]. The possible protective effect of insulin in cerebral ischemia was studied by Strong et al. in 1985 [77]. In a pre-clinical model of cerebral ischemia, mild hypoglycemia induced by insulin administration protected brain mitochondrial activity in vitro and led to better electrophysiological functions. In 1987, Robertson et al. proved in a model of spinal cord damage, that reduction of blood glucose with insulin resulted in improved recovery of electrophysiological functions when compared to a control group, probably because of a reduced lactic acid production [78]. The effects of insulin administration before experimental CNS ischemia on neurologic functions in rats were investigated by Le May et al. in 1988, showing that insulin-induced normoglycemia or mild-hypoglycemia associated with decreased neurological deficit and increased survival [79]. In 1991, Voll et al. determined that insulin exerted its neuroprotective mechanism through a neuromodulatory role, causing neuronal inhibition in most areas of the CNS, and a growth factor effect, promoting neuronal survival [80]. The role of insulin in preventing apoptosis was first studied by Tanaka et al. in 1995 that proved how cerebellar insulin deprivation induced increased neuronal apoptosis [81]. In 2005, Duarte et al. showed that insulin protected against oxidative stress-induced apoptosis and necrosis in the brain and how extended exposure to reactive oxygen species contributed to the pathophysiology of neurodegenerative diseases [82]. The neuroprotective role of insulin in chronic neurodegenerative diseases was also studied by Rensink et al. in 2004; evidence suggested that it had an important effect in regulating Aβ fibrillation in patients with AD, preventing neuronal degeneration by inhibiting interaction between Aβ fibrils and cell surface [83]. Mice undergoing anesthesia showed a higher level of tau protein phosphorylation compared to controls and this mechanism was proposed that could relate anesthesia and DNR/pNCD [84,85]. Evidence suggested that intranasal insulin administration before anesthesia associated with lower levels of tau protein phosphorylation, hence this treatment can prevent these disorders [86]. Furthermore, general anesthesia was reported to enhance changes or reductions of synaptic proteins, such as post-synaptic density protein 95, and brain-derived neurotrophic factor, while prior administration of intranasal insulin can preserve the physiological asset [86–88].

In humans, intranasal administration of insulin led to rapid distribution to the CNS through olfactory and trigeminal neurons and the passage of cribriform plate and is hypothesized to exert neuroprotective effects [89]. This technique was used in patients suffering from ischemic stroke events, during acute, subacute and chronic phase, and in memory-impaired patients, diagnosed with mild cognitive impairment, AD, Parkinson’s disease and multiple system atrophy diagnosis [89–96]. A recent clinical study proved a reduced incidence of postoperative delirium in anesthetized patients when treated with preoperative intranasal insulin [97].

4. Conclusion

Considering the effects of IRS-CNS signaling pathway on neuronal survival, neuroprotection and neuromodulation, the higher incidence of DNR/pNCD in patients who presented insulin resistance, neurotoxicity induced to IRS signaling pathways after exposure to general and local anesthetics and the improvement of neurocognitive impairment after insulin exposure, we support the hypothesis that IRS-CNS signaling pathway could be a possible pathophysiological mechanism of anesthesia-induced DNR/pNCD and perioperative intranasal insulin administration could be a preventive approach.

The main limitation of this paper is the lack of clinical evidence as it is a very innovative topic. Future trials should appropriately be designed in order to better investigate the proposed hypothesis and address the patient population that might benefit of perioperative intranasal insulin administration.
5. Expert opinion

DNR/pNCD can complicate the postoperative course of the patients exposed to anesthesia, compromising one or more cognitive domains, resulting in a slower functional recovery, higher social costs and mortality rate. Incidence of these complications is higher in patients undergoing cardiac surgery compared to noncardiac one and the pathophysiological mechanisms listed below have been proven: advanced age, education level, history of diabetes mellitus, malnutrition, blood pressure fluctuation intraoperatively, perioperative hyperglycemia. Exposure to anesthesia was proposed to be another risk factor as it is demonstrated to be associated with accumulation of Aβ protein, increase in tau proteins phosphorylation, mitochondrial dysfunction, calcium dysregulation, systemic and CNS inflammatory response, impact of mechanical ventilation, etc. As neuronal glucose transport is ensured by non-insulin dependent transporters (GLUT1 – GLUT3) and insulin in the CNS exerts non-metabolic activities through intracellular signaling pathways such as neuronal proliferation, apoptosis and gene transcription, the hypothesis proposed is the impact of anesthetics on IRs signaling in the CNS, thus increasing DNR/pNCD incidence and determine worse postoperative outcomes.

The present narrative review provides an overview of the effects of IRs stimulation in peripheral tissues and in CNS; of the relationship between insulin resistance and DNR/pNCD; of anesthetics effects on IRs and DNR/pNCD; of perioperative role of insulin in preventing DNR/pNCD. It can serve as a methodological guide to design dedicated trials that evaluate the role of insulin signaling in the CNS on neurocognitive performance through a neuromodulator-like action in a perioperative setting. Despite the numerous preclinical studies, protective role of preoperative intranasal insulin on reducing DNR/pNCD incidence is actually supported by weak evidence in clinical settings, even if this frame of reference may impact short and long-term prognosis of patients who are at high risk of DNR/pNCD after exposure to anesthesia, length of stay and unit costs of healthcare services.

Currently, there is a particular interest on analyzing the effects of anesthesia and specific drugs on cerebral metabolism, brain circuits, oscillation patterns through cerebral monitoring and on considering the different crosstalk between brain and other organs, systems or procedures/treatment approach such as for example kidney, endocrine system or mechanical ventilation. These findings are useful to avoid burst suppression pattern, intracranial hypertension or hypotension, ischemia, neuroinflammation, etc. Actually, use of intranasal insulin is not part of the daily clinical practice and this fact limits drafting a wide-shared posology protocol and route of administration. Therefore, future clinical studies are crucial for the evolution of this research field. This would be the best approach to obtain the use of intranasal insulin in patients with high risk of DNR/pNCD undergoing surgical procedures and extend the implementation of intranasal insulin out of a perioperative background, such as a neurological, diabetological, geriatric and nutritional context.

Five years from now, we are confident that there will be a clear explanation regarding the role of insulin as a neuromodulator, its integration into neuroprotection approaches, patient population that might benefit of this approach, a well-defined protocol of intranasal insulin administration in a perioperative background and other disciplines and possible collateral effects.

Abbreviations list

Abbreviation	Description
Aβ	amyloid-β
AD	Alzheimer’s disease
BAD	B-cell lymphoma 2 against of cell death
BBB	blood–brain barrier
BGC	blood glucose concentration
Casp9	caspase-9
CNS	central nervous system
CSF	cerebrospinal fluid
DM	diabetes mellitus
DNR	delayed neurocognitive recovery
4EBP1	eukaryotic translocation initiation factor 4E binding protein 1
EC	ependymal cells
ERK	extracellular signal-regulated kinase
FoxO	forkhead box-containing protein O subfamily
GABA	gamma-aminobutyric acid
GLUT	glucose transporter
GSK3	glycogen synthase kinase 3
Hb1Ac	hemoglobin A1c
IL-6	interleukin 6
IRs	insulin receptors
ISF	interstitial fluid
MAPK	microtubule-associated protein kinase
NMDA	N-methyl-D-aspartate
PI3K	phosphoinositide 3-kinases
PKB	protein kinase B
pNCD	postoperative neurocognitive disorders
PCOD	postoperative cognitive dysfunction
RAS	proto-oncogene protein p21
S6K1	S6 kinase beta-1
SREBF1	sterol regulatory element-binding transcription factor 1
SREBP1	sterol regulatory element binding protein 1
TNF	tumor necrosis factor

Author contributions

EQ: conception and design of the paper, interpretation of the relevant literature, writing and editing the manuscript. CS: conception and design of the paper, interpretation of the relevant literature, writing and editing the manuscript. FB: conception and design of the paper, interpretation of the relevant literature, writing and editing the manuscript.

Funding

This paper was not funded.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.
References

Papers of special note have been highlighted as either of interest (+) or of considerable interest (⇒) to readers.

1. Evered L, Silbert B, Knopman DS, et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery. 2018. Br J Anaesth. 2018;121(5):1005–1012.

2. Needham MJ, Webb CE, Bryden DC. Postoperative cognitive dysfunction and dementia: what we need to know and do. Br J Anaesth. 2017;119(suppl_1):i115–i125.

3. Eckenhoff RG, Maze M, Xie Z, et al. Perioperative neurocognitive disorder: state of the preclinical science. Anesthesiology. 2020;132(1):55–68.

4. Evered LA, Silbert BS. Postoperative cognitive dysfunction and noncardiac surgery. Anesth Analg. 2018;127(2):496–505.

5. Evered L, Silbert B, Scott DA, et al., Recommendations for a new perioperative cognitive impairment nomenclature. Alzheimers Dement. 2019; 15(8): 1115–1116.

- This manuscript proposes changes in perioperative cognitive impairment nomenclature from (POCD to DNR/pNCD).

6. Borodzina A, Qeva E, Cinicola M, et al. Perioperative cognitive evaluation. Curr Opin Anaesthesiol. 2018;31(6):756–761.

7. Bilotta F, Qeva E, Matot I. Anesthesia and cognitive disorders: a systematic review of the clinical evidence. Expert Rev Neurother. 2016;16(11):1311–1320.

8. Mason SE, Noel-Storr A, Ritchie CW. The impact of general and regional anaesthesia on the incidence of post-operative cognitive dysfunction and post-operative delirium: a systematic review with meta-analysis. J Alzheimers Dis. 2010;22(suppl_3):67-79.

9. Margolis RU, Altszuler N. Insulin in the cerebrospinal fluid. Nature. 1967;215(5108):1375–1376.

10. Duarte AJ, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res. 2012;2012:384017.

11. Bilotta F, Lauretta MP, Tewari A, et al., Insulin and the brain: a sweet relationship with intensive care. J Intensive Care Med. 2017;32(1):48–58.

- This paper reports evidence that insulin interferes with cognitive functions through a neuromodulator-like action.

12. Unger JW, Livingston JN, Moss AM. Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol. 1991;36(5):343–362.

13. Stoeckel LE, Arvanitakis Z, Gandy S, et al. Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction. F1000Res. 2016;5:353.

14. Blázquez E, Velázquez E, Hurtado-Carneiro V, et al. Insulin in the brain: its pathophysiologic implications for states related with central insulinaemia, type 2 diabetes and Alzheimer’s disease. Front Endocrinol (Lausanne). 2014;5:161.

15. Badenes R, Qeva E, Giordano G, et al. Intranasal insulin administration to prevent delayed neurocognitive recovery and postoperative neurocognitive disorder: a narrative review. Int J Environ Res Public Health. 2021;18(5):2681.

16. Banting FG, Best CH, Collip JB, et al. Pancreatic extracts in the treatment of diabetes mellitus. Can Med Assoc J. 1922;12(3):141–146.

17. Fink M, Shaw R, Gross GE, et al. Comparative study of chlorpromazine and insulin coma in therapy of psychosis. J Am Med Assoc. 1958;166(15):1846–1850.

18. Sakel M. The origin and nature of the hypoglycemic therapy of the psychoses. Bull N Y Acad Med. 1937;13(3):97–109.

19. Mack CW, Burch BO. Insulin shock therapy in dementia praecox: a report of a series of cases. Cal West Med. 1939;50(5):339–344.

20. Sonksen P, Sonksen J. Insulin: understanding its action in health and disease. Br J Anaesth. 2000;85(1):69–79.

21. Rorsman P, Braun M. Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol. 2013;75(1):155–179.

22. Watanabe M, Hayasaki H, Tamayama T, et al. Histologic distribution of insulin and glucagon receptors. Braz J Med Biol Res. 1998;31(2):243–256.

23. White MF. Insulin signaling in health and disease. Science. 2003;302(5651):1710–1711.

24. Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab. 2010;298(2):E141–E145.

25. Schulingkamp RJ, Pagano TC, Hung D, et al., Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000; 24(8): 855–872.

- This manuscript describes the non-metabolic IRs intracellular signaling pathways in the CNS.

26. Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Ther. 2012;136(1):82–93.

27. Begg DP. Insulin transport into the brain and cerebrospinal fluid. Vitam Horm. 2015;98:229–248.

28. Baura GD, Foster DM, D P Jr, et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest. 1993;92(4):1824–1830.

29. Dom A, Bernstein HG, Rinne A, et al. Insulin-and glucagonlike peptides in the brain. Anat Rec. 1983;207(1):69–77.

30. Wozniak M, Rydzewski B, Baker SP, et al. The cellular and physiologial actions of insulin in the central nervous system. Neurochem Int. 1993;22(1):1–10.

31. Lee CC, Huang CC, Wu MY, et al. Insulin stimulates postsynaptic density-95 protein translation via the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway. J Biol Chem. 2005;280(18):18543–18550.

32. Duarte AJ, Santos MS, Seic,a R, et al. Insulin affects synaptosomal GABA and glutamate transport under oxidative stress conditions. Brain Res. 2003;977(1):23–30.

33. FT B Jr, Clarke DW, Raizada MK. Insulin inhibits specific norepinephrine uptake in neuronal cultures from rat brain. Brain Res. 1986;398(1):1–5.

34. Skeberdis VA, LAN, J, Zhang X, et al. Insulin promotes rapid delivery of N-methyl-D-aspartate receptors to the cell surface by exocytosis. Proc Natl Acad Sci U S A. 2001;98(6):3561–3566.

35. Lyra E, Silva NM, Lam MP, et al. Insulin resistance as a shared pathogenic mechanism between depression and type 2 diabetes. Front Psychiatry. 2019;10(57).

36. Kleinridders A, Cai W, Cappellucci L, et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci U S A. 2015;112(3):3463–3468.

37. Freude S, Plum L, Schnitker J, et al. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes. 2005;54(12):3343–3348.

38. Erol A. An integrated and unifying hypothesis for the metabolic basis of sporadic Alzheimer’s disease. J Alzheimers Dis. 2008;13(3):241–253.

39. De la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol. 2008;2(6):1111–1113.

- This paper reports the relationship between insulin resistance and frontal cortex dysfunction/AD-taupe neurodegeneration.

40. Dineley KT, Jahrling JB, Denner L. Insulin resistance in Alzheimer’s disease. Neurobiol Dis. 2014;72:92–103.

41. Abbatecola AM, Paolillo G, Lamponi M, et al. Insulin resistance and executive dysfunction in older persons. J Am Geriatr Soc. 2004;52(10):1713–1718.

42. Akama KT, Van Eldik LJ. Beta-amylloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFAlpha)-dependent, and involves a TNFAlpha receptor-associated factor- and NFKappaB inducing kinase-dependent signaling mechanism. J Biol Chem. 2000;275(11):7918–7924.

43. Carrero I, Gonzalez MR, Martin B, et al. Oligomers of β-amylloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1β, tumour necrosis factor-α, and a nuclear factor κ-B mechanism in the rat brain. Exp Neurol. 2012;236(2):215–227.

44. Kern W, Born J, Fehm HL. Role of insulin in Alzheimer’s disease: approaches emerging from basic animal research and neurocognitive studies in humans. Drug Dev Res. 2002;56(3):511–525.
45. Feinkohl I, Winterer G, Pischon T. Diabetes is associated with risk of postoperative cognitive dysfunction: a meta-analysis. Diabetes Metab Res Rev. 2017;33(5).

46. Kadiri Y, Saito S, Fujita N, et al. Risk factors for cognitive dysfunction after coronary artery bypass graft surgery in patients with type 2 diabetes. J Thorac Cardiovasc Surg. 2005;129(3):576–583.

47. van Harten AE, Scheeren TWL, Absalom AR. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia. 2012;67(2):280–293.

48. Tang N, Jiang R, Wang X, et al. Insulin resistance plays a potential role in postoperative cognitive dysfunction in patients following cardiac valve surgery. Brain Res. 2017;1657:377–382.

49. Hudetz JA, Patterson KM, Amole O, et al. Postoperative cognitive dysfunction after noncardiac surgery; effects of metabolic syndrome. J Anesth. 2011;25(3):337–344.

50. He X, Long G, Quan C, et al. Insulin resistance predicts postoperative cognitive dysfunction in elderly gastrointestinal patients. Front Aging Neurosci. 2019;11:197.

51. Hermanides J, Qeva E, Preekel B, et al. Perioperative hyperglycemia and neurocognitive outcome after surgery: a systematic review. Minerva Anestesiol. 2018;84(10):1178–1188.

52. Yang X, Zheng YT, Rong W. Sevoflurane induces apoptosis and inhibits the growth and motility of colon cancer in vitro and in vivo via inactivating Ras/Raf/MEK/ERK signaling. Life Sci. 2019;239:116916.

53. Fang X, Xia T, Xu F, et al. Isoflurane aggravates peripheral and central insulin resistance in high-fat diet/streptozocin-induced type 2 diabetic mice. Brain Res. 2020;1727:146511.

54. Chen Z, Zhang L, Liu C, et al. Effect of propofol on the skeletal muscle insulin receptor in rats with hepatic ischemia-reperfusion injury. J Int Med Res. 2020;48(4):300060519894450.

55. Restitutti F, Raekallio M, Vainionpää M, et al. Plasma glucose, insulin, free fatty acids, lactate and cortisol concentrations in dexmedetomidine-sedated dogs with or without MK-467: a peripheral α-2 adrenoceptor antagonist. Vet J. 2012;193(2):481–485.

56. Oda Y. Local anesthetic systemic toxicity: proposed mechanisms for lipid resuscitation and methods of prevention. J Anesth. 2019;33(5):567–571.

57. Maurice JM, Gain Y, Ma FX, et al. Bupivacaine causes cytotoxicity in mouse C2C12 myoblast cells: involvement of ERK and Akt signaling pathways. Acta Pharmacol Sin, 2010;31(4):493–500.

58. Beigh MA, Showkat M, Bashir B, et al. Growth inhibition by bupivacaine is associated with inactivation of ribosomal protein S6 kinase 1. Biomed Res Int. 2014;2014:831845.

59. Piegelar T, Votta-Velis EG, Bakhshi FR, et al. Endothelial barrier protection by local anesthetics: ropivacaine and lidocaine block tumor necrosis factor-α-induced endothelial cell Src activation. Anesthesiology. 2014;120(6):1414–1428.

60. Sinner B, Becke K, Engelhard K. General anaesthetics and the developing brain: an overview. Anaesthesia. 2014;69(9):1009–1022.

61. Tao G, Xue Q, Luo Y, et al. Isoflurane is more deleterious to developing brain than desflurane: the role of the Akt/GSK3β signaling pathway. Biomed Res Int. 2016;2016:7919640.

62. Liu XS, Xue QS, Zeng QW, et al. Sevoflurane impairs memory consolidation in rats, possibly through inhibiting phosphorylation of glycogen synthase kinase-3β in the hippocampus. Neurobiol Learn Mem. 2010;94(4):461–467.

63. Bi C, Cai Q, Shan Y, et al. Sevoflurane induces neurotoxicity in the developing rat hippocampus by upregulating connexin 43 via the JNK/C-Jun/AP-1 pathway. Biomed Pharmacother. 2018;108:1469–1476.

64. Brambrink AM, Evers AS, Avidan MS, et al. Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesia. 2010;112(4):834–841.

65. Xiao Y, Zhou L, Tu Y, et al. Dexmedetomidine attenuates the propofol-induced long-term neurotoxicity in the developing brain of rats by enhancing the PI3K/Akt signaling pathway. Neuropsychiatr Dis Treat. 2018;14:2191–2206.

66. Li GF, Li ZB, Zhuang SJ, et al. Inhibition of microRNA-34a protects against propofol anesthesia-induced neurotoxicity and cognitive dysfunction via the MAPK/ERK signaling pathway. Neurosci Lett. 2018;675:152–159.

67. Bao F, Kang X, Xie Q, et al. HIF-α/PKM2 and PI3K-AKT pathways involved in the protection by dexmedetomidine against isoflurane or bupivacaine-induced apoptosis in hippocampal neuronal HT22 cells. Exp Ther Med. 2019;17(1):63–70.

68. Wang K, Zhu Y. Dexmedetomidine protects against oxygen-glucose deprivation/reoxygenation injury-induced apoptosis via the p38 MAPK/ERK signaling pathway. J Int Med Res. 2018;46(2):675–686.

69. Holscher C, van Aalten L, Sutherland C. Anaesthesia generates neuronal insulin resistance by inducing hypomacha. BMC Neurosci. 2008;9(1):100.

70. Werdehausen R, Fazeli S, Braun S, et al. Apoptosis induction by different local anaesthetics in a neuroblastoma cell line. Br J Anaesth. 2009;103(5):711–718.

71. Mather LE. Disposition of mepivacaine and bupivacaine enantiomers in sheep. Br J Anaesth. 1991;67(3):239–246.

72. Lirk P, Haller I, Colvin HP, et al. In vitro, inhibition of mitogen-activated protein kinase pathways protects against bupivacaine- and ropivacaine-induced neurotoxicity. Anesth Analg. 2008;106(5):1456–1464.

73. Verlende M, Hollmann MW, Stevens MF, et al. Local anesthetic-induced neurotoxicity. Int J Mol Sci. 2016;17(3):339.

74. Mathew JP, Mackensen GB, Phillips-Bute B, et al. Randomized, double-blinded, placebo controlled study of neuroprotection with lidocaine in cardiac surgery. Stroke. 2009;40(3):880–887.

75. Voll CL, Whishaw IQ, Auer RN. Postischemic insulin reduces spatial learning deficit following transient forebrain ischemia in rats. Stroke. 1989;20(3):646–651.

76. Van der Heide LP, Ramakers GMJ, Smidt MP. Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol. 2006;79(4):205–221.

77. Strong AJ, Miller SA, West IC. Protection of respiration of a crude mitochondrial preparation in cerebral ischaemia by control of blood glucose. J Neurol Neurosurg Psychiatry. 1985;48(5):450–454.

78. Robertson CS, Grossman RG. Protection against spinal cord ischaemia with insulin-induced hypoglycaemia. J Neurosurg. 1987;67(5):739–744.

79. LeMay DR, Gehua L, Zelenock GB, et al. Insulin administration protects neurologic function in cerebral ischemia in rats. Stroke. 1988;19(11):1411–1419.

80. Voll CL, Auer RN. Insulin attenuates ischemic brain damage independent of its hypoglycemic effect. J Cereb Blood Flow Metab. 1991;11(6):1006–1014.

81. Tanaka M, Sawada M, Yoshida S, et al. Insulin prevents apoptosis of external granular layer neurons in rat cerebellar slice cultures. Neurosci Lett. 1995;199(1):37–40.

82. Duarte AI, Santos MS, Oliveira CR, et al. Insulin neuroprotection against oxidative stress in cortical neurons—involvement of uric acid and glutathione antioxidant defenses. Free Radic Biol Med. 2005;39(7):868–889.

83. Rensink AAM, Otte-Höller I, de Boer R, et al. Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes. Neurobiol Aging. 2004;25(1):93–103.

84. Chen Y, Run X, Liang Z, et al. Intranasal insulin prevents anesthesia-induced hyperphosphorylation of tau in 3xTg-AD mice. Front Aging Neurosci. 2014;6:100.

85. Zhang Y, Dai CL, Chen Y, et al. Intranasal insulin prevents anesthesia-induced spatial learning and memory deficit in mice. Sci Rep. 2016;6(1):21186.

86. Li X, Run X, Wei Z, et al. Intranasal insulin prevents anesthesia-induced cognitive impairments in aged mice. Curr Alzheimer Res. 2019;16(1):8–18.

87. Li H, Dai CL, Gu JH, et al. Intranasal administration of insulin reduces chronic behavioral abnormality and neuronal apoptosis induced by general anesthesia in neonatal mice. Front Neurosci. 2019;13:706.

88. Yu Q, Dai CL, Zhang Y, et al. Intranasal insulin increases synaptic protein expression and prevents anesthesia-induced cognitive deficits through mTOR-eEF2 pathway. J Alzheimers Dis. 2019;70(3):925–936.
89. Lioutas VA, Alfaro-Martinez F, Bedoya F, et al. Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res. 2015;6(4):264–275.
90. Lioutas VA, Novak V. Intranasal insulin neuroprotection in ischemic stroke. Neural Regen Res. 2016;11(3):400–401.
91. Reger MA, Watson GS, Frey 2nd WH. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451–458, 2nd.
92. Avgerinos KI, Kalaitzidis G, Malli A, et al. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: systematic review. J Neurol. 2018;265(7):1497–1510.
93. Benedict C, Frey 2nd WH, and Schiøth HB 2nd , et al. Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Exp Gerontol. 2011;46(2–3):112–115.
94. Chapman CD, Schiøth HB, Grillo CA, et al. Intranasal insulin in Alzheimer’s disease: food for thought. Neuropharmacology. 2018;136(Pt B):196–201.
95. Claxton A, Baker LD, Hanson A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis. 2015;45(4):1269–1270.
96. Novak P, Pimentel Maldonado DA, Novak V. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson’s disease and multiple system atrophy: a double-blinded placebo-controlled pilot study. PLoS One. 2019;14(4): e0214364.
97. Huang Q, Li Q, Qin F, et al. Repeated preoperative intranasal administration of insulin decreases the incidence of postoperative delirium in elderly patients undergoing laparoscopic radical gastrointestinal surgery: a randomized, placebo-controlled, double-blinded clinical study. Am J Geriatr Psychiatry. 2021. 29 (12): 1202–1211.

This paper reports a reduced incidence of postoperative delirium in patients treated with preoperative intranasal insulin.