Longitudinal high-resolution imaging through a flexible intravital imaging window

Guillaume Jacquemin¹*, Maria Benavente-Diaz²,³,⁴, Samir Djaber¹, Aurélien Bore¹,⁵, Virginie Dangles-Marie⁶,⁷, Didier Surdez⁸, Shahragim Tajbakhsh²,³, Silvia Fre¹*, Bethan Lloyd-Lewis¹,⁹*

Affiliations:

1 Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, F-75248 Paris Cedex 05, France.
2 Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France
3 UMR CNRS 3738, Institut Pasteur, Paris, France
4 Sorbonne Universités, Complexité du Vivant, F-75005, Paris, France
5 CRISPR'it, Platform for Genetic Screens, Institut Curie, PSL Research University, Inserm U934, CNRS UMR3215, F-75248 Paris Cedex 05, France.
6 Faculty of Pharmacy, Université Paris Descartes, Paris, France
7 In vivo Experiment Platform, PSL Research University, 75005 Paris, France
8 INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France.
9 School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK.

*Correspondence to: guillaume.jacquemin@curie.fr, silvia.fre@curie.fr, bethan.lloyd-lewis@bristol.ac.uk

Running title: Flexible imaging windows for intravital microscopy

Keywords: Intravital microscopy, in vivo imaging, imaging windows, stem cells, tissue morphogenesis, tumor development
Abstract:

Intravital microscopy (IVM) is a powerful technique that enables imaging of internal tissues at (sub)cellular resolutions in living animals. Here, we present a silicone-based imaging window consisting of a fully flexible, suture-less design that is ideally suited for long-term, longitudinal IVM of growing tissues and tumors. Crucially, we show that this window, without any customization, is suitable for numerous anatomical locations in mice using a rapid and standardized implantation procedure. This low-cost device represents a substantial technological and performance advance that facilitates intravital imaging in diverse contexts in higher organisms, opening new avenues for in vivo imaging of soft and fragile tissues.

One-sentence summary: This study presents a versatile, fully flexible imaging window that acts as an implantable transparent ‘second skin’ for small laboratory animal in vivo imaging.

MAIN TEXT

Introduction

Bioimaging across multiple scales is a universal and mainstay tool in life science research. Technological advances in live and deep-tissue imaging methodologies, including intravital microscopy (IVM), now enable the real-time microscopic imaging of individual cells within intact tissues in near physiological conditions (1–3). This powerful approach is increasingly leveraged in experimental and pre-clinical studies to reveal novel insights into the dynamic cellular mechanisms underlying disease development and response to therapy (4, 5). To facilitate repeated IVM over prolonged time periods in the same living animal, multiple imaging windows have been designed to provide optical access to internal tissues (6), including the brain (7), skin (8, 9), lung (10), mammary gland (6, 11, 12), abdominal organs (13–15), femur (16) and embryos (17). Typically, these models consist of a glass coverslip inserted in a titanium (or more rarely plastic) frame and rely on sutures and/or glue to fix the window in place. Although powerful, this implantation method - combined with the material composition and rigidity of conventional windows - is poorly suited to dynamic or rapidly growing soft tissues or tumors, often requiring customization to meet tissue- or study-specific needs. The inherent rigidity of glass also limits its ability to adequately cover anatomical locations that exhibit curvature or joints. Collectively, these
issues can cause animal distress, skin and tissue degradation, inflammation, fibrosis and window
detachment, ultimately leading to experimental failures. Moreover, the reliance of all conventional
windows on suturing (and occasionally glue) renders their implantation complicated and time-
consuming. Finally, the absence of standardized and affordable imaging windows forces
laboratories to make and reuse their own models, further precluding the universal and consistent
application of IVM.

To address these limitations, here we developed a flexible and suture-less polydimethylsiloxane
(PDMS)-based intravital imaging window dedicated to efficient, long-term maintenance at all
body sites and improved animal welfare. While a few studies have reported the use of fixed-skull
silicone membranes for brain IVM (18–20), the application of PDMS for soft tissue imaging
remains unexplored, being limited to window designs that maintain the use of glass coverslips and
sutures (21). As such, these models provide no benefit over conventional rigid windows. By
contrast, our design encompasses a flexible, seamlessly-joined PDMS window that ensures a
sealed barrier between the animal’s internal tissues and the external environment in a suture-free
manner. By thorough characterization of its optical properties, we validate the utility of the PDMS
membrane as an optical material for deep-tissue IVM. Alongside, we demonstrate the
compatibility of the flexible window with intravital imaging at dynamic body locations and in
conditions of extreme tissue growth, contexts that are less accessible to existing rigid windows. In
turn, our engineered device promises to open new perspectives for *in vivo* imaging of soft and
fragile tissues in higher vertebrates.

Results

PDMS-based intravital imaging window design

To address the restraints of current rigid models, we designed a flexible intravital imaging window
made entirely of polydimethylsiloxane (PDMS) (Fig. 1A-B). PDMS is a light, biocompatible,
chemically inert and optically clear material that is commonly used in medical or micro-fluidic
devices. Importantly, it can be easily and reproducibly cast into any desired shape, size, thickness
and rigidity by varying mold footprints, silicone composition and surface treatments. Collectively,
these properties make PDMS an optimal material for devices demanding specifications for
biocompatibility, versatility and optical performance. Our PDMS-based intravital imaging
window comprises a supple and lightweight frame surrounding a thinner (145 μm ±10μm) area for imaging (Fig. 1B). A priority for the design of a universally adaptable window centered on a rapid and stereotyped suture-free implantation. To achieve this, we designed a groove around the window circumference that is precisely angled to secure the skin in place in the absence of sutures or glue (Fig.1B [1]). Passive sealing at the silicone-skin interface maintains the window post-implantation, while a series of holes around the frame promotes tissue self-healing for long term maintenance (Fig. 1B [2]). In addition to securing the skin inside the groove, this design maintains the window in a planar and near-seamless position in line with the animal’s body. Windows are therefore poorly accessible to the mouse and surrounding cage enrichment, reducing the risk of dislodgement and damage. The window also includes a dedicated injection port, allowing the local administration of fluids, dyes or drugs with ease (Fig. 1B [3]).

Optical properties of PDMS-based intravital imaging windows

The PDMS window is highly transparent, possessing a RI of 1.38±0.05 - in between water (~1.33) and glass (~1.52) - with equivalent light transmittance to glass coverslips of a similar thickness (Fig. 1C, Fig. S1A-B). For decreased light scattering, and thus optimal light penetrance, most IVM studies rely on multiphoton microscopes equipped with pulsed infrared two-photon lasers (two-photon excitation fluorescence microscopy; 2PEF) and water-based objectives for deep-tissue imaging (3, 22, 23). To compare the resolution of the confocal signal through PDMS with conventional glass coverslips, we performed point spread function (PSF) analyses of 0.2 μm fluorescent beads embedded in agarose (Fig. S1C). The calculated Full Width of Half Maximum (FWHM) of signal intensities (Fig. S1D) obtained via PDMS significantly outperformed corresponding glass measurements in lateral (x, y axis; Fig. 1D-E) and, particularly, axial planes up to 700μm (z axis; Fig. 1F), imaging depths routinely achieved by IVM. Notably, X/Y ratios of the calculated FWHM for PDMS and glass were also comparable, showing similar means and dispersion close to a ratio of 1, indicative of perfect XY squareness (Fig. S1E). This implies that potential subtle deformations of the flexible window do not result in micro-scale geometrical aberrations during imaging. Moreover, using four-color fluorescent beads embedded in agarose (Fig. S1F), we did not observe any differences in the degree of chromatic aberrations induced by glass or PDMS, when both materials displayed co-localization (R/Ref < 1) of specific channel pairs (Fig. 1G). Finally, as macro-scale morphological aberrations arising from the imaging surface
are a concern for soft materials, we used a fluorescent stepped micro-grid to assess the deformation generated by PDMS windows in a relaxed or stretched state (Fig. S1G). While morphological aberrations induced by PDMS windows were marginally more pronounced than that induced by glass coverslips, these were negligible compared to the lateral imaging resolution and the inherent anomalies of the optical system (Fig.1H, Fig. S1H). Collectively, these results validate the PDMS membrane as an appropriate optical material for IVM, which is equivalent, and in some cases superior, to glass for water-based immersion imaging.

Intravitral imaging of dynamic, rapidly growing tissues through PDMS imaging windows

Next, we sought to test the long-term maintenance and imaging performance of our PDMS device in biological contexts where rapid tissue growth or anatomical constraints pose significant challenges for IVM using rigid windows: the branching mammary gland during puberty and pregnancy, Patient Derived Xenograft (PDX) tumors and joint muscles. Our optimized surgical protocol (schematically represented in Fig. 2A and described in detail in Methods) facilitates rapid (~5 min) window implantation over superficially located tissues that do not require additional steps for organ exposure. As the device can be folded, the initial incision can be smaller than the circumference of the window for insertion (Fig. S2A-B), and subsequently extended to precisely fit the frame (Fig. 2A). Moreover, pre-positioning the window typically takes less than 3 minutes from the initial incision (Fig. S2A-B), reducing the risk of infection and tissue desiccation prior to the final window-fitting step (Fig. 2A, Fig. S2C). As a result, animals rapidly recover from the short surgical procedure, and comfortably maintain windows for up to 35 days (maximum time tested) (Fig. S2D, Movies S1 and S2). Importantly, the suture-free implantation procedure does not require advanced surgical skills and can be rapidly conducted by non-expert users, a significant improvement over conventional windows. As the design is aimed at limiting constrains on the underlying tissues, the flexible window cannot be fixed for imaging. Thus, to stabilize the device and reduce motion artefacts during IVM, we also developed a custom-made holding system compatible with upright microscope configurations and high numerical aperture ceramic objectives with shallow nose-cones (Fig. S2E-H, Movie S3, Data S1).

To assess the compatibility of our device with longitudinal 2PEF IVM spanning several weeks, we implanted the window over the 4th abdominal mammary gland of pubertal and pregnant
R26^{mTmG/+} reporter mice (24), where all cells are labelled with membrane tdTomato fluorescence (Fig. 2B-D, Fig. S3A-D). Despite substantial increases in body size during puberty, PDMS-windows were well maintained over time, allowing specific tissue regions to be recognized in successive imaging sessions (Fig. 2C-D). Window implantation at late pregnancy also allowed the flexibility of our device to be tested under extreme conditions of skin stretching and rapid body growth (corresponding to a 10% increase over 3 days) (Fig. S3A). In this context, we could visualize lobulo-alveolar development in the pre-lactating mammary gland at high cellular resolution (Fig. S3B-C). Moreover, implanted windows had no detrimental impact on normal parturition nor the lactational competence of the underlying mammary gland (Fig. S3D). Occasionally, IVM post-implantation revealed an accumulation of immune cells underneath the window that obscured underlying epithelial structures (Fig. S3E). This was also reported with conventional glass/titanium imaging windows (6, 13), suggesting that local inflammatory reactions may occur in response to surgery. To mitigate this issue, we performed saline washes prior to imaging via the integrated window injection port (Fig. 1B [3]), which provides a low-risk and non-invasive method for conserving image quality over time (Fig. S3E).

Next, we evaluated the performance of our device over rapidly growing PDXs from Ewing sarcomas engrafted in the interscapular region of immunodeficient NMRI-Nude and Rag^{KO/KO-GFP} mice (25, 26). Importantly, PDMS windows implanted over tumors in this location were well-tolerated by both strains (Fig. 2E, Fig. S3F, Movie S4). To enable high-resolution fluorescence IVM of tumors, we generated tdTomato-expressing PDX tumor cells and grafted them in Rag^{KO/KO-GFP} host mice. Windows were subsequently implanted over tumors approximately 400 mm³ in size, which continued to grow rapidly underneath the device at a daily rate of 100-200 mm³ until reaching their defined endpoint size (Fig. 2E). Despite the anatomical constraints posed by this implantation site, we were able to obtain stable and high-quality IVM images of tumor cells (red), surrounding host stromal cells (green) and the encapsulating tumor collagen network (second harmonic generation, blue) through PDMS windows (Fig. 2F). PDXs are commonly used in pre-clinical studies, which typically rely on Near Infrared (NIR) imaging systems (e.g. IVIS) for monitoring tumor responses over time. However, these systems are poorly compatible with fluorescence imaging and, as expected, standard IVIS imaging failed to detect tdTomato fluorescence in our PDXs models (Fig. 2G). In contrast, a clear and well-defined signal was
detected for both green (host cells) and red (tdTomato-expressing tumor cells) fluorescence after PDMS window implantation (Fig 2H). Thus, the application of our PDMS window in this context enables increased reporter sensitivity, in addition to the pre-screening and prioritization of mice for downstream high-resolution confocal microscopy, representing a valuable improvement to canonical NIR studies.

IVM of muscle regeneration through PDMS imaging windows

Finally, to test other body locations that require high levels of flexibility, we implanted the window over the mouse lower back and thigh muscles (Fig. 3A-B). These anatomical positions are uneven and adjacent to joints, leading to continual deformation of the window and its frame in multiple axes with body movement. While typically problematic with conventional rigid imaging devices - restricting studies to acute or short-term imaging (27–29) - our implanted PDMS windows were well-maintained at these locations for at least 3 weeks (maximum time examined). To validate the utility of the device for visualizing dynamic biological processes over time, we sought to monitor stem cell activation during injury-induced muscle regeneration in Pax7<sup>CreERT2/+; R26^{mTmG/+} mice (24, 30). Tamoxifen administration in this model induces permanent GFP labelling of Pax7-expressing muscle stem cells and their progeny, allowing their dynamic behaviors in response to muscle injury to be visualized in situ. To induce muscle injury in Pax7<sup>CreERT2/+; R26^{mTmG/+} mice, cardiotoxin was administered by intramuscular injection either during the window implantation procedure or after, using the inbuild window injection port to test the feasibility of accurate tissue targeting underneath the device. High-resolution IVM imaging through the PDMS window revealed the movement and division of GFP+ cells at 3 days post-injury (Fig. 3C, Movie S5), a time point at which muscle stem cells are maximally proliferating (29, 31). Importantly, high-resolution images could be acquired through PDMS windows with no observable decline in image quality for at least 18 days after injury (Fig. 3D), allowing the process of muscle regeneration to be visualized in its entirety. Thus, our device is ideally suited to high-resolution longitudinal IVM at the cell and tissue scale of dynamic processes that occur over prolonged timeframes, including in challenging anatomical sites where rigid windows cannot be maintained long-term.
Dynamic visualization of cellular processes unfolding inside living animals is essential for an in-depth understanding of normal and pathological organ function. A major challenge thus far has been the ability to study cellular dynamics in vivo, without perturbing tissue physiology. Intravital imaging represents a critical advance in this respect. Nevertheless, the ability to concomitantly expose and preserve tissues for long-term imaging remains a fundamental challenge, one largely inaccessible to most laboratories. The development of a flexible, transparent and seamlessly integrated “second skin” - as afforded by our imaging window - represents a marked advance in methodology. Our suture-less PDMS-based device possesses significant technical, biological and ethical advantages over conventional imaging windows. This includes a portal for ad hoc local delivery of substances, in addition to a rapid and straightforward implantation. The lightweight and low-profile design of the window also ensures minimal impact on normal animal behaviors, in addition to facilitating group housing and the safe inclusion of environmental enrichment, an important improvement on current welfare protocols. Moreover, implantation of PDMS imaging windows lead to substantial improvements in the performance of NIR-imaging systems for in vivo fluorescence detection. Importantly, this window is also compatible with other imaging technologies, including MRI and echography. Thus, our device is ideally suited for developmental, pathological or pharmacokinetic studies across multiple imaging scales.

While particularly suited to superficial tissues in dynamic and flexible locations, the versatility of PDMS makes our model readily adaptable for internal organ imaging, by incorporating additional surgical steps for organ exposure or silicone-based glues. The suppleness of the device, however, renders it less suitable for implantation over rigid tissue sites, such as for brain or thoracic organ imaging that demand more specialist solutions (10, 18, 19). Nonetheless, silicone mass or surface modifications, in addition to drug embedding, can be used to alter the window’s mechanical, adhesive or bio-activity properties for enhanced healing, tissue anchoring, permeability and resistance to biological/chemical agents. As substrate rigidity plays important roles in tissue development and tumorigenesis (32), the more physiological stiffness of PDMS - alongside the ability to tune its mechanical properties for specific research needs - is also an important advantage over conventional glass coverslip models. Moreover, in light of exponential progress in microfluidic devices using the same production methods, integrating micro-patterns, electrodes or
surface modifications into the window design for live sensing or interaction with the underlying tissue represents a realistic future advance. Finally, in contrast to currently available solutions, plastic engineered devices such as ours are scalable, allowing single-use and widespread distribution at low cost for basic and preclinical research.

Materials and Methods

Animals

All studies and procedures involving animals were in strict accordance with the recommendations of the European Community Directive (2010/63/UE) for the protection of vertebrate animals used for experimental and other scientific purposes. The project was specifically approved by the ethics committees of Institut Curie CEEA-IC #118 and Institut Pasteur (reference #2015-0008), and approved by the French Ministry of Research (authorization references #0424003, APAFIS #13310-2018020112578233-v1, APAFIS#6354-2016080912028839v4, APAFIS#11206-2017090816044613-v2). We comply with internationally established principles of replacement, reduction and refinement in accordance with the Guide for the Care and Use of Laboratory Animals (NRC 2011). Husbandry, supply of animals, as well as mouse maintenance and care in the Animal Facility of Institut Curie (facility license #C75–05–18) before and during experiments fully satisfied the animals' needs and welfare. Suffering of the animals was kept to a minimum.

The following mouse lines were used in this work: \(R26^{mTmG}\) mice(24); NMRI-Foxn1 nu/nu (purchased from Janvier Labs); \(Pax^{7CreERT2}\) mice(30), \(Rag^{K0/K0}\)-GFP mice (B6(Cg)-\(Rag^{2tm1.Cgn/J};Tg(UBC-GFP)\)(25, 26)). All experiments were performed in 4-8-week-old female mice.

Prototyping

3D conception of the window, mold and holder was performed using Solidworks 2018 (Dassault Systems). 3D printing was performed using a home-made system (FDM) and MultiJetFusion (HP) using various materials, predominantly generic Acrylonitrile Butadiene Styrene (FDM), Polyamide and Polypropylene (PP) (fusion). We recommend PP-fusion for higher printing resolution, temperature and hygroscopic stability.
Window production

Biocompatible transparent silicone (Elkem) components (A and B) were mixed at a 1:1 ratio (A:B) for 5 min per 50g of mix. The mix was then degassed for 5 min and 10 min (<10mbar) with a vacuum release in between to maximize air removal. Air removal was completed by centrifuging the mix at 1000g for 5 min. The degassed silicone mix was kept for a maximum of 24h at 4°C to prevent spontaneous polymerization. Windows were produced using a custom 3-stage single footprint compression mold maintained at 100°C throughout molding. Approximately 1ml of silicone was placed on the footprint prior to closing the mold and applying compression at 5 tons for 10 min. Polymerized windows were then post-cured for at least 24h at 60°C, and subsequently washed in 100° ethanol before autoclaving.

Optical characterization of PDMS windows

Optical, chromatic and morphological aberrations depend on the optical path, which includes the objective and microscope core. Therefore, all assays were performed using a single microscope setup, and water as the imaging medium. All measurements were acquired using a 40x/1NA Water DIC PL APO VIS-IR objective on an upright spinning disk microscope (CSU-X1 scan-head from Yokogaw; Carl Zeiss, Roper Scientific France), equipped with a CoolSnap HQ2 CCD camera (Photometrics) and Metamorph software.

Optical aberrations (PSF)

To measure the Point Spread Function (PSF) representing optical aberrations arising from refractive index changes, we prepared 2% agarose gels containing 1:200 fluorescein and 1:400 diluted FluoSpheres™ carboxylate-modified microspheres (0.2µm diameter). For both glass and PDMS windows, we acquired 8 stacks of 100 µm with a step size of 0.2µm at increasing depths from the window/gel interface (Z0, defined using the background signal in the fluorescein channel). PSF was calculated using the MetroloJ plugin(33) in FIJI (ImageJ v1.53) on at least 20 beads per section.

Chromatic aberrations

To measure the chromatic aberrations representing optical aberrations induced by wavelength specific refractive index changes, we prepared 2% agarose gels containing TetraSpeck™
Microspheres (4µm diameter) diluted at 1:400. Data was acquired over 200µm from the first bead detected in Z for both glass and PDMS windows. Laser intensities and exposures were set to obtain similar intensity range (12-bits). R and Rref were calculated using the MetroloJ plugin(33) in FIJI (ImageJ v1.53) on at least 30 beads per condition.

314 Morphological aberrations
To measure morphological aberrations that may arise from an uneven window surface, we imaged a microgrid (Argolight SLG-075, Pattern B) using a laser excitation wavelength of 405nm through either water only (uncovered), glass, relaxed PDMS or stretched PDMS (wavy) window in duplicates. Dot grids were segmented using FIJI v1.53 (Threshold->Analyse Particles) and dot coordinates extracted. Using a central motif (cross 0;0) and the top left dot (-105; -75), we corrected the rotation of the grid under the different materials and compared the corrected coordinates of each dot to either “medium only” (measured) or the theoretical (15x15µm) Pattern B matrix. Graphical deformation maps were generated using ggplot2 of R(34).

324 Window implantation
Before surgery, all instruments were sterilized by autoclaving or heat sterilization. PDMS windows were sterilized by autoclaving to avoid darkening. To ensure sterility throughout the procedure, mouse preparation and handling, adjustment of anesthesia flow rates and similar tasks were performed by an assistant, limiting the surgeon to only contacting sterile surgical tools and the surgical field. The physiological body temperature of the anaesthetized mouse was maintained throughout the procedure using a heated induction chamber and heated surgical station.

332 Preparation (performed by the surgical assistant)
Pre-operative care: prior to anesthesia, mice were administered 125mg/kg of NOROCLAV® (140mg/ml amoxicillin; 35mg/ml clavulanic acid) and an analgesic cocktail (0.1 mg/kg Buprenorphine (BUPRECARE®) and 5 mg/kg of Carprofen (RIMADYL®)) by sub-cutaneous (SC) injection. Analgesics were administered into the neck skin fold for all experiments apart from implantation in PDX models, where they were administered in the rear leg skin fold.
Surgical field preparation: Mice were anaesthetized in an induction chamber using 4% isoflurane (ISOFLURIN®). Once anaesthetized, mice were transferred onto a heat-pad, and anesthesia maintained using an isoflurane concentration of 1.5-2%. Ophthalmic ointment was applied to eyes to prevent corneal drying. At the planned implantation site, mouse hair was trimmed using an electronic pet clipper (Aesculap® Exacta). Residual hairs were removed using depilatory cream for a maximum of 2 minutes to minimize the risk of skin damage and drying. Stray hairs and cream were removed using BETADINE Scrub 4%, prior to a soap rinse with sterile water. The shaved skin and surrounding areas were subsequently disinfected using dermal BETADINE 10%. Finally, the prepared surgical area was covered by pre-cut sterile film (Tegardem™).

Window implantation (performed by the surgeon, procedure illustrated in Fig. 2A)

We recommend the following surgical tools to limit skin and tissue damage: Graefe extra fine straight 1×2 teeth forceps (for skin and membranes - FST #11153-10), flat blunt forceps (for the window and tissue), serrated blunt forceps (for the window), fine, sharp straight scissors (for skin and membranes - FST #14568-09) and Strabismus blunt straight scissors (for blunt dissecting the subcutaneous pocket FST #14574-09).

To implant the PDSM-window (Ø18mm) in the prepared surgical area, a 10mm incision was made in the skin overlying the tissue of interest (corresponding to approximately 15mm when stretched). Next, using blunt scissors, the skin was carefully detached from underlying tissues approximately 5-10mm around the incision to generate sufficient space for the implanted window. Throughout the procedure, pre-warmed saline solution (sterile 0.9% NaCl) was used to prevent tissue dehydration. Prior to positioning the window, the incision site was filled with pre-warmed saline solution to minimize the risk of introducing air underneath the window during implantation. Using thin forceps with blunt and flat edges, the PDMS-window was folded in half and placed into the incision pocket where it was unfolded under the skin. Typically, the procedure from the first incision to pre-positioning of the window under the skin was performed in under 3 min (Fig. S2a-b). To fit the window in place, the skin edges were positioned into the window groove using two forceps that alternate between holding the upper frame and sliding the skin around the window (similar to the technique for adjusting a tire on a rim). During this step, the incision size can be
adjusted, if required, to tightly seal the skin around the window. Experienced users are capable of
performing the entire surgical procedure in ~ 5 min.

Post-operative care: After surgery, mice were placed in a pre-warmed cage (on a heating pad) to
recover from the anesthesia. Mice were closely monitored for signs of pain, discomfort and
infection after window implantation. The second and last NOROCLAV antibiotic dose was
provided by SC injection the day after surgery. The skin surrounding the window was cleaned
using Dermic BETADINE 1% every 2-4 days in order to prevent infection. Ibuprofen was
administered in drinking water (0.4 mg/ml) for 7 days post-surgery to minimize inflammation and
pain. If signs of pain are observed, post-operative analgesics (0.1 mg/kg Buprenorphine
(BUPRECARE®) and 5 mg/kg of Carprofen (RIMADYL®)) can be administered by SC injection
the day after surgery.

Mice bearing windows were group-housed where possible after surgery, and provided with cage
enrichment suitable for post-surgery recovery, including nesting material, housing and chew
sticks. Recovery food (DietGel® Recovery, ClearH20) was provided in the cage to limit
mechanical stress from reaching the feeder. Singly-housed mice without sufficient environmental
enrichment were more likely to damage the device during the first 1-2 days after surgery. Overall,
younger animals were more prone to skin damage arising from the procedure, which may be due
to the window/animal size ratio and/or increased activity at earlier ages. Cage cleanliness did not
appear to affect the risk of implant infection. Typically, mice exhibited minor weight loss the day
after surgery (-4.20%±4.74%, within ethical limits), which were restored by day 2
(+2.93%±3.18%).

Handling window-bearing mice: When the implantation is performed correctly with stringent
asepsis, no mouse should spontaneously lose their implanted windows. Windows are at a risk of
displacement, however, in the first few days after surgery when handling mice using conventional
restraining techniques. Thus, we recommend adapting handling techniques when assessing mice
in the days immediately after window implantation, and consider the use of light gas anesthesia
where possible e.g. when performing procedures such as IP injection.
Troubleshooting guide for the implantation procedure

[A] Air is trapped under the window during implantation

Prepare a 1ml syringe with sterile, pre-warmed 0.9% NaCl and a 30G needle. Position the mouse so that the injection port is facing upward and disinfect it with 70% ethanol. Using fine forceps, hold the injection site and inject 200-500µl of saline solution underneath the window: the air bubble(s) will move close to the injection site. Slowly aspirate using the syringe to remove air and as much of the saline solution as possible. Dry the injection port. Wait for the saline solution to be absorbed prior to imaging.

[B] Air appears under the window after implantation

During surgery, take care to make a straight incision. Irregular and ragged incisions increase the risk of air leakage. Check the window integrity: if the window is perforated, it must be discarded. Check carefully the skin in the groove for breakages as small cuts can cause air leakiness. If a small break or nick (1-2mm max) is observed, place a small amount of glue on the groove to seal the leakage and proceed to [A]. The next day, check carefully for the absence of air bubbles.

[C] Presence of small amount of fluid (exudate) and immune cells between the tissue and the window

This is common for a few days post-surgery and should disappear after 2-3 days. To minimize this risk, review the surgery procedure to ensure stringent asepsis, check/change the ibuprofen in the drinking water and ensure that food is accessible to limit mechanical stress. If the exudate precludes imaging, administer pre-warmed saline through the injection port to flush underneath the window. (see [A], Fig. S3E).

[D] Hair underneath the window

Review the preparation step. Trim a larger area if necessary. A spray plaster can be used prior to incision to trap residual stray hairs.

[E] Skin becomes thinner or dry around the window

If this issue occurs within the first 7 days from implantation: reduce depilatory cream incubation and/or change the brand. Use 1x2 teeth forceps to reduce skin damage. Limit damage to
vasculature when performing blunt dissection to detach the skin. This issue may appear after long-
term maintenance (> 2 weeks), but in our experience it did not affect imaging (no infection, no air
bubbles) when post-surgery care was properly performed.

[F] Skin or tissue become necrotic
Immediately terminate the experiment. This should never happen; review the surgery procedure
(including asepsis, tissue drying and damage to vasculature).

Intravital imaging through PDMS-windows
Imaging on the day of implantation is not recommended to avoid additional stress to the surgery
area and over-constraining the window. Residual physiological saline under the window
immediately after implantation can also affect imaging depth. Instead, perform imaging the next
day (day 1) at the earliest. While the mouse is anaesthetized, administer post-operative antibiotics
by SC injection. Carefully inspect the device and clean the surgical area as described above. Mice
are gas-anaesthetized using 4% isoflurane (ISOFLURIN®) initially and maintained using 1.5-
2.5% isoflurane for short term imaging. When performing time-lapse imaging spanning several
hours, reduce the isoflurane concentration to between 0.8%-1.2%. These anesthesia levels are
optimal for long-term maintenance of mice in a nonresponsive state with a slow, constant and non-
forced breathing pattern. Irregular and abnormal breathing patterns are associated with persistent
anesthesia greater than 1.5%, which perturbs imaging (increases motion-induced image
deformations) and can decrease survival times (35). Fast breathing and reflex responses indicate
insufficient anesthesia, which also disturbs imaging and increases the risk of the mouse awakening
during imaging.

Before imaging: To maintain animal hydration for short-term imaging (< 2-3 hours), administer
250µl/10g of saline solution by sub-cutaneous injection after anesthesia induction. In experiments
exceeding 3 h, mouse hydration can be maintained during imaging using a subcutaneous or
intraperitoneal infusion of glucose and electrolytes (~ 50–100 µl/hour) via an indwelling line. Our
custom-made holder, adapted for upright microscopes (ready to print STL files provided in Data
S1), permits regional body immobilization through compression. A rigid conical structure
(containing immersion medium, usually water) presses on the edge of the window, allowing the
tissue and window to be exposed and stretched beneath the objective as the mouse rests on a foam bed, which preserves breathing while cushioning movements. The mouse is positioned on the imaging holder and gently pushed on the static stage, centering the window in the conic aperture. The mouse should be tightly constrained; the foam absorbs excessive compression. The mouse is then observed for 5 min to check breathing and the stability of the anesthesia. Prior to placing the holder onto the microscope stage, the conic aperture is filled with 2-3ml of pure water. The holder may be adapted for inverted microscope configurations, using gel-based immersion medium instead of water for imaging. **Critical: do not use oil-based imaging medium with PDMS windows.**

During imaging: Find structures of interest using brightfield or fluorescence with the oculars. During scanning, optimize laser power and exposure times to minimize photo-toxicity and pixel saturation.

After imaging: The imaging medium must be removed from the conic aperture using a paper towel. The mouse is released from the holder and placed on a heated pad (set at 38°C) for recovery. During this time, the window is cleaned using a paper towel and 70% ethanol and the surrounding skin disinfected with Dermic Betadine 1%.

Troubleshooting guide for imaging procedures

[G] The window cannot be correctly positioned on the conic aperture

Use softer foam in the holder that allows fitting to any position.

[H] The imaging medium (water) leaks

The conic aperture is not centered on the window. Reposition it or use a gel-based imaging medium.

[I] The holder disturbs breathing

Reduce the isoflurane dose. Reduce the compression on the animal. Sculpt the foam, ensuring that the mouse’s airway is not restricted. Chisel the foam to modify the mouse position (a horizontal plane may not be optimal for the tissue of interest).
Poor visibility during imaging

Exudate accumulation and/or epithelioid “membrane” formation beneath the window (which can develop with long-term maintenance) can interfere with imaging. This has also been observed with glass/titanium windows (6, 13), and is likely due to inflammatory reactions in response to surgery. To minimize this risk, review the surgical procedure, taking care to limit tissue damage and maintain stringent asepsis throughout. While the epithelioid membrane-like structure affects tissue imaging depths, overall, it has no detrimental impact on image quality. However, when coupled with immune cells and/or fibrosis, it can preclude imaging. To alleviate this issue, pre-warmed saline can be administered via the injection port to flush underneath the window (following the protocol in [A], Fig. S3E). Alternatively, reposition the window on a different area of the tissue of interest, or terminate the experiment.

Intravital microscopy

Animals were anaesthetized and positioned for imaging using the custom-made holder as described above. Intravital imaging was performed on an upright Nikon A1R MP multiphoton confocal microscope equipped with a pulsed Spectra-Physics Insight DeepSee laser (680-1300 nm, 120 fs pulses with auto-alignment), Luigs&Neumann XY motorised stage and four GaAsP non-descanned detectors with SP492, BP 525/50, BP 575/50 and BP 629/56 filter sets. The microscope was surrounded by a heated dark box maintained at 38°C. All images were acquired using 16x NA 0.8 or 25x NA 1.1 PlanApo LambdaS water objectives. An excitation wavelength of 960 nm was used for GFP and TdTomato, in addition to second harmonic generation (SHG) imaging of collagen.

Image processing and visualization

Time-lapse acquisitions were corrected for movements and drifts using the “Correct 3D drift” plugin(36) in FIJI (ImageJ v1.53) using the SHG channel as a reference.

Generation of tdTomato-expressing PDX tumor cells

Ewing Sarcoma PDX tumors (IC-pPDX-87) were surgically removed and enzymatically dissociated to single cell level using the protocol described in Stewart et al (37). Cells were resuspended (2.25 x 10^7 cells/1.5mL) in DMEM/F12 supplemented with 1% penicillin-
streptomycin and 2% B27 (all from ThermoFisher) and transduced overnight with a TdTomato-
lentivirus in a 2ml tube using an Intelli-Mixer RM-2L (Dutcher), program F1, 5rpm, in a 37°C
incubator with 5% CO₂. TdTomato-lentivirus was generated by replacing the GFP sequence with
tandem Tomato in the Lenti-sgRNA-GFP (LG) plasmid (Addgene plasmid # 65656; http://n2t.net/addgene:65656, a kind gift from Christopher Vakoc). The next day, cells were spun
at 500g for 10 min. For one injection, 1 x 10⁷ cells were resuspended in 50µL of media and kept
on ice. 50µL of Matrigel (Corning, Ref 354234) was added to the cell suspension prior to injection
into the interscapular fat tissue using an insulin syringe (BD ref 324891).

Muscle regeneration studies
Muscle injury was performed in Pax7^{CreERT2};R26^{mTmG} adult mice at the time of PDMS-
window implantation by intramuscular injection of 50 µl of Cardiotoxin (10 µM, Latoxan, L8102)
diluted in 0.9% NaCl. Cardiotoxin was administered either before window positioning, or after
through the injection port. Mice received 3 mg of tamoxifen free base (Euromedex) by
intraperitoneal injection two days prior to intravital imaging.

IVIS imaging
NIR fluorescence imaging was performed with a highly sensitive, CCD camera mounted in a light-
tight specimen box (In Vivo Imaging System – IVIS 50; Living Image Version: 4.3.1.0.15880).
Animals were anaesthetized in a warm induction chamber using 4% isoflurane, and subsequently
placed onto a warmed stage inside the camera box and supplied with 1.5-2% isoflurane to maintain
anesthesia during imaging. The emitted fluorescence signal was detected by the IVIS camera
system, integrated, digitized, and displayed. Excitation filters for Tomato and GFP fluorescence
were 535 (DsRed filter, Position 3) and 465 (GFP filter, Position 2) respectively. Exposure times
and pixel binning were auto-optimized for each fluorescence channel to minimize over-exposure
and normalized for comparison using the formula Normalised_Intensity = (Measured_Intensity /
Exposure_Time) / Binning_Factor². Raw parameters are provided in Data S2.
1. M. J. Pittet, R. Weissleder, Intravital imaging. *Cell* **147**, 983–91 (2011).

2. G. Follain, L. Mercier, N. L. Osmani, S. Sébastien Harlepp, J. G. Goetz, Seeing is believing-multi-scale spatio-temporal imaging towards in vivo cell biology (2017), doi:10.1242/jcs.189001.

3. B. Lloyd-Lewis, Multidimensional Imaging of Mammary Gland Development: A Window Into Breast Form and Function. *Front. Cell Dev. Biol.* **8** (2020), doi:10.3389/fcell.2020.00203.

4. M. Nobis, S. C. Warren, M. C. Lucas, K. J. Murphy, D. Herrmann, P. Timpson, Molecular mobility and activity in an intravital imaging setting - Implications for cancer progression and targeting. *J. Cell Sci.* **131** (2018), doi:10.1242/jcs.206995.

5. A. Coste, M. H. Oktay, J. S. Condeelis, D. Entenberg, *Cytom. Part A*, in press, doi:10.1002/cyto.a.23963.

6. M. Alieva, L. Ritsma, R. J. Giedt, R. Weissleder, J. van Rheenen, Imaging windows for long-term intravital imaging: General overview and technical insights. *Intravital*. **3**, e29917 (2014).

7. A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, L. Wilbrecht, Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. *Nat. Protoc.* **4**, 1128–1144 (2009).

8. H. A. Lehr, M. Leunig, M. D. Menger, D. Nolte, K. Messmer, Dorsal skinfold chamber technique for intravital microscopy in nude mice. *Am. J. Pathol.* **143**, 1055–1062 (1993).

9. G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, M. W. Dewhirst, In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters. *Nat. Protoc.* **6**, 1355–1366 (2011).

10. D. Entenberg, S. Voiculescu, P. Guo, L. Borriello, Y. Wang, G. S. Karagiannis, J. Jones, F. Baccay, M. Oktay, J. Condeelis, A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. *Nat. Methods.* **15**, 73–80 (2018).

11. D. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, J. van...
Rheenen, Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods. 5, 1019–1021 (2008).

12. A. Zomer, S. I. J. Ellenbroek, L. Ritsma, E. Beerling, N. Vrisekoop, J. Van Rheenen, Brief Report: Intravital Imaging of Cancer Stem Cell Plasticity in Mammary Tumors. Stem Cells. 31, 602–606 (2013).

13. L. Ritsma, E. J. A Steller, S. I. J Ellenbroek, O. Kranenburg, I. H. M Borel Rinkes, J. van Rheenen, Surgical implantation of an abdominal imaging window for intravital microscopy. Nat. Protoc. (2013), doi:10.1038/nprot.2013.026.

14. L. Ritsma, E. J. A. S teller, E. Beerling, C. J. M. Loomans, A. Zomer, C. Gerlach, N. Vrisekoop, D. Seinstra, L. Van Gurp, R. Schäfer, D. A. Raats, A. De Graaff, T. N. Schumacher, E. J. P. De Koning, I. H. B. Rinkes, O. Kranenburg, J. Van Rheenen, Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Sci. Transl. Med. 4 (2012), doi:10.1126/scitranslmed.3004394.

15. N. Rakhilin, A. Garrett, C.-Y. Eom, K. R. Chavez, D. M. Small, A. R. Daniel, M. M. Kaelberer, M. A. Mejooli, Q. Huang, S. Ding, D. G. Kirsch, D. V Bohórquez, N. Nishimura, B. B. Barth, X. Shen, An intravital window to image the colon in real time. Nat. Commun. 10, 5647 (2019).

16. N. Hansen-Algenstaedt, C. Schaefer, L. Wolfram, C. Joscheck, M. Schroeder, P. Algenstaedt, W. Rüther, Femur window—a new approach to microcirculation of living bone in situ. J. Orthop. Res. 23, 1073–1082 (2005).

17. Q. Huang, M. A. Cohen, F. C. Alsina, G. Devlin, A. Garrett, J. McKey, P. Havlik, N. Rakhilin, E. Wang, K. Xiang, P. Mathews, L. Wang, C. Bock, V. Ruthig, Y. Wang, M. Negrete, C. W. Wong, P. K. L. Murthy, S. Zhang, A. R. Daniel, D. G. Kirsch, Y. Kang, B. Capel, A. Asokan, D. L. Silver, R. Jaenisch, X. Shen, “Intravital imaging of mouse embryos” (American Association for the Advancement of Science, 2020), doi:10.1126/science.aba0210.

18. C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y. H. Kim, S.-G. Kim, M. Suh, A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Sci. Rep. 6, 27818 (2016).

19. S. S. Cha, M. E. Bucklin, X. Han, Removable cranial window for sustained wide-field
optical imaging in mouse neocortex. *bioRxiv* (2020), doi:10.1101/2020.01.14.905851.

20. L. Ghanbari, R. E. Carter, M. L. Rynes, J. Dominguez, G. Chen, A. Naik, J. Hu, M. A. K. Sagar, L. Haltom, N. Mossazghi, M. M. Gray, S. L. West, K. W. Eliceiri, T. J. Ebner, S. B. Kodandaramaiah, Cortex-wide neural interfacing via transparent polymer skulls. *Nat. Commun.* **10**, 1500 (2019).

21. T. Sobolik, Y.-J. Su, W. Ashby, D. K. Schaffer, S. Wells, J. P. Wikswo, A. Zijlstra, A. Richmond, Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging. *Intravital.* **5**, e1125562 (2016).

22. F. Helmchen, W. Denk, Deep tissue two-photon microscopy. *Nat. Methods.* **2** (2005), pp. 932–940.

23. K. W. Dunn, P. A. Young, Principles of Multiphoton Microscopy. *Nephron Exp. Nephrol.* **103**, e33–e40 (2006).

24. M. D. Muzumdar, B. Tasic, K. Miyamichi, L. Li, L. Luo, A global double-fluorescent Cre reporter mouse. *genesis.* **45**, 593–605 (2007).

25. B. C. Schaefer, M. L. Schaefer, J. W. Kappler, P. Marrack, R. M. Kedl, Observation of antigen-dependent CD8+ T-cell/dendritic cell interactions in vivo. *Cell. Immunol.* **214**, 110–122 (2001).

26. Z. Hao, K. Rajewsky, Homeostasis of Peripheral B Cells in the Absence of B Cell Influx from the Bone Marrow. *J. Exp. Med.* **194**, 1151–1164 (2001).

27. S. Takaoka, Y. Kamioka, K. Takakura, A. Baba, H. Shime, T. Seya, M. Matsuda, Live imaging of transforming growth factor-β activated kinase 1 activation in Lewis lung carcinoma 3 <scp>LL</scp> cells implanted into syngeneic mice and treated with polyinosinic:polycytidylic acid. *Cancer Sci.* **107**, 644–652 (2016).

28. J. Lau, C. C. Goh, S. Devi, J. Keeble, P. See, F. Ginhoux, L. G. Ng, Intravital multiphoton imaging of mouse tibialis anterior muscle. *Intravital.* **5**, e1156272 (2016).

29. M. T. Webster, U. Manor, J. Lippincott-Schwartz, C. M. Fan, Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration. *Cell Stem Cell.* **18**, 243–252 (2016).

30. M. M. Murphy, J. A. Lawson, S. J. Mathew, D. A. Hutcheson, G. Kardon, Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration.
Development. **138**, 3625–3637 (2011).

31. B. Evano, S. Khalilian, G. Le Carrou, G. Almouzni, S. Tajbakhsh, Dynamics of Asymmetric and Symmetric Divisions of Muscle Stem Cells In Vivo and on Artificial Niches. *Cell Rep.* **30**, 3195-3206.e7 (2020).

32. M.-E. Fernandez-Sanchez, T. Brunet, J.-C. Röper, E. Farge, Mechanotransduction’s Impact on Animal Development, Evolution, and Tumorigenesis. *Annu. Rev. Cell Dev. Biol.* **31**, 373–397 (2015).

33. C. Matthews, F. P. Cordelières, in *ImageJ User & Developer Conference* (2010).

34. H. Wickham, H. Wickham, in *ggplot2* (Springer New York, 2009), pp. 1–7.

35. A. J. Ewald, Z. Werb, M. Egeblad, Monitoring of vital signs for long-term survival of mice under anesthesia. *Cold Spring Harb. Protoc.* **6** (2011), doi:10.1101/pdb.prot5563.

36. A. Parslow, A. Cardona, R. J. Bryson-Richardson, Sample drift correction following 4D confocal time-lapse Imaging. *J. Vis. Exp.*, 51086 (2014).

37. E. Stewart, S. M. Federico, X. Chen, A. A. Shelat, C. Bradley, B. Gordon, A. Karlstrom, N. R. Twarog, M. R. Clay, A. Bahrami, B. B. Freeman, B. Xu, X. Zhou, J. Wu, V. Honnell, M. Ocarz, K. Blankenship, J. Dapper, E. R. Mardis, R. K. Wilson, J. Downing, J. Zhang, J. Easton, A. Pappo, M. A. Dyer, Orthotopic patient-derived xenografts of paediatric solid tumours. *Nature*. **549**, 96–100 (2017).

Acknowledgments: We particularly acknowledge Philippe Jacquemin (Lycée Marcelin Berthelot, Questembert – plastic engineering section) for his help on window and mould design, initial prototyping and for teaching us the basics in polymer properties and processing. We especially thank Lucie Sengmanivong, Marie Irondelle and Olivier Leroy from the Cell and Tissue Imaging (PICT-IBiSA) facility and the Nikon Imaging Centre, Institut Curie, member of the French National Research Infrastructure France-BioImaging (ANR10-INBS-04). We are also grateful to Raphael Margueron (Institut Curie) for advice and constructive discussions. We wish to acknowledge Olivier Delattre and Sakina Zaidi (Institut Curie) for providing the PDX tumours, in addition to the Institut Curie In Vivo Experimental Facility for help in the maintenance and care of the mouse colony. **Funding:** This work was supported by grants to S.F., B.L-L and G.J. from Paris Sciences et Lettres (PSL* Research University), Institut Carnot, the French National
Research Agency (ANR - grant # ANR-15-CE13-0013-01), the Canceropole Ile-de-France (grant # 2015-2-APD-01-ICR-1), the Ligue contre la cancer (grant #RS19/75-101) and by the Labex DEEP ANR-Number 11-LBX-0044, as well as the "FRM Equipes" EQU201903007821 and the FSER (Fondation Schlumberger pour l'éducation et la recherche) FSER20200211117. The PICT-IBiSA facility is supported by the Fondation pour la Recherche Médicale (FRM # DGE20111123020), the Canceropole Ile-de-France (# 2012-2-EML-04-IC-1), InCA (Cancer National Institute, # 2011-1-LABEL-IC-4). D.S and A.B. are supported by the Institut Curie-SIRIC (Site de Recherche Intégrée en Cancérologie, INCa-DGOS-Inserm_12554; ITMO Cancer AVIESAN). B.L-L acknowledges support from the Academy of Medical Sciences, Wellcome Trust and the University of Bristol. S.T acknowledges funding support from the Institut Pasteur, Agence Nationale de la Recherche (Laboratoire d'Excellence Revive, Investissement d’Avenir; ANR-10-LABX-73), M.B.D. was supported by the Laboratoire d’Excellence Revive and La Ligue Contre le Cancer. Author contributions: G.J., S.F., and B.L-L., conceived and administered the study. G.J., M.B.D., V.D-M., D.S., S.T., S.F. and B.L-L., conceived and designed experiments. G.J., M.B.D., S.D., A.B. and B.L-L. performed experiments. G.J., S.F. and B.L-L., wrote the manuscript. All authors reviewed and approved the manuscript. Competing interests: The PDMS imaging window described in this publication is patented under the number #EP3656349A1 by Institut Curie, where G.J., B.L-L. and S.F. are named inventors. Data and materials availability: Data supporting the findings of this study are available within the article. Source data are available in the manuscript files. Requests for further information should be directed to corresponding authors.
Figure 1

A: Image of a sample.

B: Diagram showing a cross-section with labeled parts:
- Obj. 118°
- Wd. 9 mm
- Id. 18 mm

C: Graph showing light intensity relative to air (%)
- X-axis: Wavelength (nm)
- Y-axis: Light intensity relative to air (%)

D: Graph showing X-FWHM (µm) vs. Depth (µm)
- Depth (µm): 0, 200, 400, 600, 800
- X-FWHM (µm): 0.35, 0.40, 0.45, 0.50

E: Graph showing Y-FWHM (µm) vs. Depth (µm)
- Depth (µm): 0, 200, 400, 600, 800
- Y-FWHM (µm): 0.35, 0.40, 0.45, 0.50

F: Graph showing Z-FWHM (µm) vs. Depth (µm)
- Depth (µm): 0, 200, 400, 600, 800
- Z-FWHM (µm): 2, 3, 4

G: Bar chart showing R/Ref for different samples:
- Glass PDMS relaxed PDMS stretched

H: Image showing:
- Glass
- PDMS relaxed
- PDMS stretched
Figure 1. PDMS implantable devices display microscopy-ready optical characteristics.

(A) Photograph of a PDMS intravital imaging window. (B) 3D drawing and cross-sectional view of the window; 18mm in diameter (ld) and 2mm in height (lh). The device allows imaging with an angled objective (Obj) up to 118° over a working diameter (Wd) of 9mm. At 200mg, the PDMS window is at least 3x lighter than conventional titanium/glass windows. The angle of the skin groove [1] protects the window frame from damage and removal by the mouse. To promote healing and immobilisation of the window, equally spaced holes surround the structure [2]. A port for safe injection [3] is positioned on the side of the window. (C) Light intensity measured through glass (red) or PDMS (green) windows relative to air. (D-F) Point Spread Function analysis comparing glass (red) and PDMS (green). Graphs display calculated Full Width at Half Maximum (FWHM) values in (D) X axis, (E) Y axis or (F) Z axis over depth. Comparison between glass and PDMS FWHM at each depth was performed using a Mann-Whitney test (n > 20 measurements per section). (G) Chromatic aberration analysis of the indicated colour pairs through glass (red) or PDMS (green) windows. Both glass and PDMS in every colour pairs are significantly lower than ratio R/Ref < 1, indicative of co-localisation (p-values < 0.01; One-sample Wilcoxon text). No significant differences were observed between glass and PDMS for all colour pairs (p-values > 0.05, Mann-Whitney test). (H) Mapping of the micro-grid deformations arising from glass coverslips, relaxed or stretched PDMS windows compared to the micro-grid alone. Vectors of deformation were calculated on each dot of the grid to generate 2D maps (md = measured deformation norms (µm), vectors represented at 50x). Deformations induced by glass coverslips (0.037±0.019 µm SD), relaxed (0.076±0.031 µm SD) and stretched (0.099±0.043µm SD) PDMS windows were all below the lateral imaging resolution (0.161µm/pixel) and the inherent aberrations of the optical system. P-values: ns = non-significant; * < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001. All source data are provided in Supplementary Files 2 and 3.
Figure 2

A Incision
Window folding

B

C 0d 1d 22d

D 1d 6d 35d

E

F

G 0d 1d 4d

H 1d

Tom
Tom

SHG
SHG

RagKO/KO-GFP
RagKO/KO-GFP

PDX
PDX

GFP
GFP

GFP
GFP
Figure 2. PDMS-based intravital windows allow high-resolution longitudinal imaging in vivo.

(A) Schematic representation of the suture-free window implantation procedure. For details see Methods section. (B) Representative photograph of a 6-week-old mouse carrying a newly implanted PDMS window over the abdominal mammary gland. (C) Photographs of a PDMS window maintained over the 4th mammary gland of a pubertal mouse for the indicated period in days (d). Representative of n > 10 mice implanted at 5-6 weeks of age. (D) Longitudinal tissue-scale IVM of a mammary duct expressing tdTomato (Tom) in a R26^{ERTmG} mouse for the indicated period in days (d). Scale bar: 100µm. Maximum tissue depth achieved: 400µm (day 35). (E) Photographs of a PDMS intravital imaging window maintained on a growing PDX tumour grafted in the interscapular region of a Rag^{KO/KO}-GFP mouse for the indicated period in days (d). Brown skin colouring is due to dermal betadine solution. Representative of n=7 mice. (F) IVM of tdTomato-expressing PDX tumour cells (red) engrafted in a Rag^{KO/KO}-GFP recipient mouse (host cells in green). Second harmonic generation (SHG) shows fibrillar collagen around the tumour (blue). Scale bar: 100µm. (G-H), Near Infrared imaging (NIR-IVIS) of Rag^{KO/KO}-GFP mice bearing PDX tumours expressing tdTomato fluorescence before (G) or after (H) window implantation.
Figure 3
Figure 3. PDMS-based intravital windows allow high-resolution longitudinal imaging of injury induced muscle regeneration \textit{in vivo}.

(A-B) Representative photographs of a PDMS intravital imaging window maintained on the back (A) or thigh (B) muscle of a mouse for the indicated period in days (d). Brown skin colouring at day 1 in (A) is due to dermal betadine solution. Representative of \(n = 9 \) mice implanted on the back or thigh muscles. (C) IVM of thigh muscle regeneration through a PDMS imaging window 3 days (3d) after Cardiotoxin-induced muscle injury in \(P_{\alpha 7\text{CreERT2};R26^{mTmG}} \) adult mice. All cells were labelled with membrane tdTomato fluorescent protein (Tom, red). Tamoxifen induced Cre-mediated EGFP protein expression (green) in \(P_{\alpha 7}\)-positive muscle stem cells and their progeny. Second harmonic generation (SHG) imaging shows fibrillar collagen organisation in blue. Time-lapse imaging shows muscle stem cell division and migration (white asterisks) over 70 minutes. Scale bar: 100\(\mu \)m. (D) Representative IVM images of muscle fibres 7 and 18 days after implantation in a \(P_{\alpha 7\text{CreERT2};R26^{mTmG}} \) mouse, showing resolution at the cellular scale and maintenance of excellent imaging quality over time. Scale bar: 100\(\mu \)m. The small bump in the image at 7 days is due to breathing-induced movement during image acquisition.