Abstract: Volatile plant-derived products were observed to exhibit broad spectrum of biological effects. However, due to their volatility, results of conventional microplate-based bioassays can be significantly affected by the vapors. With aim to demonstrate this phenomenon, antimicrobial, antioxidant, and cytotoxic activities of three essential oils (Alpinia elegans, Cinnamomum iners, and Xanthostemon verdugonianus), one supercritical CO₂ extract (Nigella sativa), and four plant-derived compounds (capsaicin, caryophyllene oxide, 8-hydroxyquinoline, and thymoquinone) were evaluated in series of experiments including both ethylene vinyl acetate (EVA) Capmat sealed and nonsealed microplates. The results clearly illustrate that vapor transition to adjoining wells causes false-positive results of bioassays performed in nonsealed microtiter plates. The microplate layout and a duration of the assay were demonstrated as the key aspects defining level of the results affection by the vapors of volatile agents. Additionally, we reported biological activities and chemical composition of essential oils from A. elegans seeds and X. verdugonianus leaves, which were, according to our best knowledge, analyzed for the first time. Considering our findings, certain modifications of conventional microplate-based assays are necessary (e.g., using EVA Capmat as vapor barrier) to obtain reliable results when biological properties of volatile agents are evaluated.

Keywords: bioassay; broth microdilution; DPPH; essential oil; microtiter plate; MTT; plant compounds; supercritical CO₂ extract; volatilization

1. Introduction

Volatile plant-derived products (VPDPs) are a large group of carbon-based chemicals with low molecular weight and high vapor pressure at ambient temperature including different chemical classes such as hydrocarbons and their derivatives, e.g., benzoquinones, epoxides, methoxyphenols, and quinolines. [1,2]. Volatile products that can be obtained from different plant parts involve essential
oils, extracts, oleoresins, tinctures, distillates, and juice concentrates. They are isolated using an array of techniques such as expression, distillation, concentration, solvent extraction, and supercritical fluid extraction [3]. Essential oils (EOs), the complex mixtures composed mainly of terpenoids, are important representatives of VPDPs with a characteristic aroma and a flavor typical for certain plant families (e.g., Lauraceae, Myrtaceae, and Zingiberaceae) [4–7]. Since ancient times, EOs have been used for their medicinal and organoleptic properties. Nowadays, plant volatiles have various applications in pharmaceutical, agronomic, food, sanitary, cosmetic, and perfume industries [8]. For example, EO and supercritical CO\textsubscript{2} extract obtained from seeds of \textit{Nigella sativa} L. is used as a medicament for a variety of disorders in the digestive tract, kidney, cardiovascular, respiratory, and immune systems [9,10]. VPDPs were observed to exhibit broad spectrum of biological effects including antimicrobial, anticarcinogenic, antioxidant, and cytotoxic properties [11]. Especially plant species originating from tropical regions are considered valuable sources of biologically active agents due to the stronger pressure of bacterial and fungal pathogens affecting plants in tropical ecosystems [12]. Among the tropical areas, Philippine archipelago belongs to the important centers of biodiversity with a large number of endemic plants. Besides species that has been reported to exhibit medicinal properties [13], less explored medicinal and aromatic plants, such as \textit{Alpinia elegans} (C.Presl) K.Schum., \textit{Cinnamomum iners} Reinw. ex Blume, and \textit{Xanthostemon verdugonianus} Náves ex Fern.-Vill, occur in this region.

In a plant-based drug discovery, the in vitro biological screening using pharmacologically relevant microplate assays is one of the first steps to verify the effectivity and safety of medicinal plants and their constituents [14]. Since the microwell plate was created in 1951 by Hungarian scientist with aim to provide a potentially useful techniques suitable for the high throughput screening, a number of standardized procedures have been established such as methods widely referenced to Clinical and Laboratory Standards Institute (CLSI) [15]. The use of microplate together with a fully automated equipment makes bioassays simple, fast, and reliable, providing reproducible results [16]. In natural product research, they serve to determine biological effects such as antimicrobial [17], antioxidant [18], and cytotoxic activity [19]. Respective, broth microdilution, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and thiazolyl blue tetrazolium bromide (MTT) assays are examples of the most widely used methods for the assessment of plant-derived compounds including volatile agents [20–22]. Although conventional microplate-based bioassays are common in the laboratory practice, in case of VPDPs in vitro testing, they face specific problems due to physicochemical properties of these agents such as high volatility, hydrophobicity, and viscosity [23]. The hydrophobic nature worsens the solubility of VPDPs in water-based media (e.g., agar and broth), that may reduce the dilution capability and unequal distribution of active components through the medium [24]. The volatility causes a risk of active substance losses by evaporation during sample handling, experiment preparation, and incubation depending on its time and temperature conditions [25,26]. Moreover, significant influence of vapors of volatiles on the results of biological tests performed in microtiter plates by spreading of volatiles into adjoining wells has been described [27]. To prevent above mentioned difficulties, some modifications of standardized methods are required. For example, the use of ethylene vinyl acetate (EVA) Capmat was observed to be effective as a vapor barrier in assays for determination of antistaphylococcal activity of thymoquinone in combinations with antibiotics [28] and cytotoxicity of carvacrol, cinnamaldehyde, eugenol, 8-hydroxyquinoline, thymol, and thymoquinone [29]. However, certain current studies still continue to overlook the significant risk of results affection by vapors of plant volatiles when tested in microplate-based assays [30,31].

With aim to clearly demonstrate the significant results distortion of the standard methods for evaluation of biological properties of VPDPs by their vapors, the series of tests comparing identical experiments performed simultaneously in both sealed and nonsealed microtiter plates were assayed. For this purpose, we tested antimicrobial, antioxidant, and cytotoxic effects of three EOs obtained from Philippine plant species \textit{A. elegans}, \textit{C. iners}, and \textit{X. verdugonianus}, one supercritical CO\textsubscript{2} extract from \textit{N. sativa}, and four plant-derived compounds, i.e., capsaicin, caryophyllene oxide, 8-hydroxyquinoline,
and thymoquinone, as representatives of various classes of biologically effective agents with different levels of volatility. Moreover, chemical composition of EOs and supercritical CO₂ extract tested was analyzed to assess the relationship between their biological activities and chemistry.

2. Results

2.1. Antimicrobial Assay

The results of antimicrobial activity performed using multiplate design when all samples were tested in one replicate in one microtiter plate (Figure 1) were significantly affected by vapors of plant-derived products tested in nonsealed plates. In general, the effectiveness of samples varied ranging from 2 to 1024 µg/mL and from 2 to 512 µg/mL in EVA Capmat sealed and nonsealed plates, respectively. Importantly, 8-Hydroxyquinoline was determined as the most active antimicrobial agent, when its lowest minimum inhibitory concentration (MIC) was found against Staphylococcus aureus with value 2 µg/mL in both EVA Capmat sealed and nonsealed plates. The most affected result of antimicrobial assay was observed for capsain against Candida albicans, although no activity was detected in plates sealed with vapor barrier, MIC 64 µg/mL was found in nonsealed plates. Similarly, A. elegans oil, X. verdugonianus oil, caryophyllene oxide, and thymoquinone did not possessed any growth-inhibitory effect against one of these pathogens C. albicans, Enterococcus faecalis, and S. aureus in EVA Capmat sealed plates; however, certain degree of inhibition with MICs in the range of 256–512 µg/mL was observed in plates without vapor barrier. Except C. iners EO, all samples exhibited some antimicrobial efficacy; however, only 8-hydroxyquinoline was active against all pathogens tested. The detailed results of growth-inhibitory effect of VPDPs against four representatives of both Gram-negative and Gram-positive bacteria and one fungal strain in EVA Capmat sealed and nonsealed plates are summarized in Table 1.

![Figure 1.](Figure 1. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of capsain, 8-hydroxyquinoline, and thymoquinone tested in microtiter plates sealed with vapor barrier ethylene vinyl acetate (EVA) Capmat and nonsealed microplates.)

2.2. Antioxidant Assay

Although the results of antioxidant assay were affected less than those of antimicrobial testing, VPDPs showed different results in series of single-plate designed DPPH tests when one EO (or extract) and one compound were assayed in triplicates together in the same microtiter plate (Figure 2). Among all plant-derived volatiles, only three compounds, namely, capsain, 8-hydroxyquinoline, and thymoquinone, showed some level of antioxidant activity in both EVA Capmat sealed and nonsealed plates with respective half maximal inhibitory concentrations (IC₅₀) in the ranges of 24.22–313.36 and 23.11–199.33 µg/mL, respectively. A summary of all results of DPPH assay is shown in Table 2. The most promising free radical scavenging potential has been observed for capsain (IC₅₀ 24.22 and 23.11 µg/mL in sealed and nonsealed plates, respectively). The result of antioxidant activity of thymoquinone was the most affected by vapors, in contrast to IC₅₀ value 313.36 µg/mL in EVA Capmat sealed plates, lower value 199.33 µg/mL was detected in nonsealed plates. In addition,
certain level of vapors influence is apparent regarding to standard deviations of IC₅₀ values, which are represented by broader range of values in nonsealed plates as seen in Figure 1 showing data of absorbance average of triplicates in one experiment.

![Graphs showing cytotoxic activity of Alpinia elegans, Cinnamomum iners, Xanthostemon verdugonianus essential oils, Nigella sativa supercritical CO₂ extract, capsaicin, caryophyllene oxide, 8-hydroxyquinoline, and thymoquinone to human colon cancer cells Caco-2 tested in microtiter plates sealed with vapor barrier EVA Capmat and nonsealed microplates.](image)

Figure 2. Cytotoxic activity of *Alpinia elegans, Cinnamomum iners, Xanthostemon verdugonianus* essential oils, *Nigella sativa* supercritical CO₂ extract, capsaicin, caryophyllene oxide, 8-hydroxyquinoline, and thymoquinone to human colon cancer cells Caco-2 tested in microtiter plates sealed with vapor barrier EVA Capmat and nonsealed microplates.
Table 1. Influence of the vapors of volatile plant-derived products on the results of the antibacterial activity when tested by broth microdilution assay.

Plant Species/Compound	Candida albicans	Enterococcus faecalis	Escherichia coli	Pseudomonas aeruginosa	Staphylococcus aureus					
	Sealed	Nonsealed								
Essential oil, CO₂ extract										
Alpinia elegans	>1024	512	>1024	>1024	>1024	>1024	>1024	>1024	256	256
Cinnamomum iners	>1024	>1024	>1024	>1024	>1024	>1024	>1024	>1024	>1024	>1024
Nigella sativa	>1024	>1024	>1024	>1024	>1024	>1024	>1024	>1024	>1024	>1024
Xanthostemon verdugonianus	1024	256	>1024	>1024	>1024	>1024	>1024	>1024	>1024	>1024
Capsaicin	>1024	64	>1024	>1024	>1024	>1024	>1024	>1024	>1024	>1024
Caryophyllene oxide	>1024	256	>1024	>1024	>1024	>1024	>1024	>1024	>1024	>1024
8-Hydroxyquinoline	32	16	512	128	256	64	1024	512	2	2
Thymoquinone	64	32	>1024	512	512	264	>1024	>1024	64	16
Positive antibiotic control										
Ciprofloxacin	-	-	-	-	-	-	0.125	1	-	-
Fluconazole	0.5	4	-	-	-	-	-	-	-	-
Oxacillin	-	-	32	32	1	2	-	-	-	-
Tetracycline	-	-			1	2	-	-	-	-
Table 2. Influence of the vapors of volatile plant-derived products on the results of antioxidant activity testing using 2,2-diphenyl-1-picrylhydrazyl assay.

Plant Species/Compound	IC$_{50}$ ± SD 1 (µg/mL)	Sealed	Nonsealed
Essential oil, CO$_2$ extract			
Alpinia elegans	>512	>512	
Cinnamomum iners	>512	>512	
Nigella sativa	>512	>512	
Xanthostemon verdugonianus	>512	>512	
Compound			
Capsaicin	24.22 ± 2.57	23.11 ± 7.10	
Caryophyllene oxide	>512	>512	
8-Hydroxyquinoline	79.09 ± 24.15	61.92 ± 16.53	
Thymoquinone	313.36 ± 68.71	199.33 ± 88.02	
Positive control			
Trolox	9.94 ± 2.30	10.96 ± 1.96	

1 IC$_{50}$ ± SD: half maximal inhibitory concentration ± standard deviation.

2.3. Cytotoxicity Assay

Similarly, as in both antimicrobial and antioxidant assays, the results of cytotoxicity were significantly affected when tested in single-plates layouts with four samples in duplicates in one microtiter plate (Figure 2). The values IC$_{50}$ varied in ranges of 0.95–57.40 and 0.18–4.85 µg/mL for EVA Capmat sealed and nonsealed microplates, respectively. The detailed results of the MTT assay performed with human colon cancer cells Caco-2 are listed in Table 3. The lowest cytotoxic effect was observed for caryophyllene oxide (IC$_{50}$ value 57.40 µg/mL) in EVA Capmat sealed plates. Moreover, in case of this compound, the most significant difference in the results was recorded as IC$_{50}$ value determined in plates with vapor barrier was 11 times higher than IC$_{50}$ value in nonsealed plates (IC$_{50}$ = 4.85 µg/mL). The effect of vapors of volatile agents tested on results of cytotoxic assay is obvious when graph curves for each sample tested is compared as shown in Figure 2 displaying data from three independent experiments in duplicates. Moreover, IC$_{50}$ values of *A. elegans* oil, *C. iners* oil, *X. verdugonianus* oil, 8-hydroxyquinoline, and thymoquinone performed in nonsealed plates were not detected, as these values were below the lowest concentration tested.

Table 3. Influence of the vapors of volatile plant derived products on the results of cytotoxicity to human colon cancer cells Caco-2 determined using thiazolyl blue tetrazolium bromide (MTT) assay.

Plant Species/Compound	IC$_{50}$ ± SD 1 (µg/mL)	Sealed	Nonsealed
Essential oil, CO$_2$ extract			
Alpinia elegans	23.84 ± 3.29	n.d.2	
Cinnamomum iners	2.96 ± 0.28	n.d.	
Nigella sativa	21.71 ± 2.79	0.18 ± 0.04	
Xanthostemon verdugonianus	12.51 ± 3.62	n.d.	
Compound			
Capsaicin	11.95 ± 2.72	1.71 ± 0.26	
Caryophyllene oxide	57.40 ± 9.19	4.85 ± 1.03	
8-Hydroxyquinoline	3.24 ± 1.50	n.d.	
Thymoquinone	0.95 ± 0.05	n.d.	

1 IC$_{50}$ ± SD: half maximal inhibitory concentration of proliferation ± standard deviation, 2 n.d.: not detected.
2.4. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis

In this study, three EOs hydrodistilled from different parts of Philippines plant species *A. elegans*, *C. iners*, and *X. verdugonianus* were obtained in yields ranging from 0.52% to 2.86% (v/w). Yield of supercritical CO$_2$ extract of *N. sativa* was 5.80% (w/w). Based on the GC/MS analysis equipped with HP-5MS/DB-HeavyWAX columns, a total of 119, 106, 51, and 20 compounds were identified in the samples, representing 93.637/93.186, 95.571/96.676, 94.757/96.114, and 82.349/92.308% of their total contents, respectively. The analysis showed that monoterpenes and sesquiterpenes were the leading chemical classes of the major constituents in the EOs tested, however, *N. sativa* supercritical CO$_2$ extract was composed mainly by fatty acids. The complete chemical composition of all VPDPs analyzed is provided in Tables 4–7.

In *A. elegans* seed EO, D-limonene (16.77/15.39% = 2.39/2.33 mg/kg) was the main compound followed by α-pinene (13.66/12.24% = 1.96/1.86 mg/kg) and caryophyllene oxide (11.37/10.78% = 1.74/1.77 mg/kg). *C. iners* leaf EO was rich in content of caryophyllene (21.00/34.87% = 3.22/6.56 mg/kg), followed by linalool (15.44/13.89% = 3.15/3.02 mg/kg). Pseudolimonene was detected in a significant amount by HP-5MS column (9.50/9.53% = 1.71/1.72 mg/kg), and, conversely, β-phellandrene was found by DB-HeavyWAX column (5.50/5.92% = 1.08 mg/kg). The major component of *X. verdugonianus* leaf oil was α-gurjunene (32.28/19.51% = 3.74/3.64 mg/kg), followed by cyperenone (22.65/52.69% = 2.74/10.96 mg/kg) and caryophyllene (6.38/2.98% = 0.74/0.56 mg/kg). The most abundant component of *N. sativa* supercritical CO$_2$ extract was linoleic acid (71.65/59.24% = 3.01/6.71 mg/kg), followed by ethyl linoleate (5.02/0.26% = 0.14/0.03 mg/kg) and ethyl oleate (2.78/0.07% = 0.07/0.03 mg/kg). Other dominant compounds, oleic acid (19.57/19.52% = 2.20/0.68 mg/kg) and hexadecenoic acid (9.89/1.09% = 1.09/0.10 mg/kg), were detected by DB-HeavyWAX column only.
R1	Compound	C²	RF³	Column 4	Identification 5						
Obs.	Lit.			HP-5MS	DB-HeavyWAX						
				(%)	(%)						
				c	c						
1	924	924	α-Thujene	MH	0.765	0.117	0.016	- ⁸	-	RI, GC/MS	-
2	932	932	α-Pinene	MH	0.765	13.661	1.963	12.237	1.855	RI, GC/MS	GC/MS
3	945	953	Camphene	MH	0.765	0.245	0.035	0.225	0.032	RI, GC/MS	Std
4	951	957	2,4(10)-Thujadiene	MH	0.779	0.079	0.011	-	-	RI, GC/MS	-
5	971	975	4(10)-Thujene	MH	0.765	0.282	0.040	-	-	RI, GC/MS	-
6	973	974	β-Pinene	MH	0.765	0.521	0.073	0.455	0.066	RI, GC/MS	Std
7	990	988	Myrcene	SH	0.765	0.433	0.061	0.466	0.071	RI, GC/MS	Std
8	1002	1004	Pseudolimonene	MH	0.765	0.090	0.013	-	-	RI, GC/MS	-
9	1024	1026	m-Cymene	MH	0.700	1.578	0.203	1.722	0.232	RI, GC/MS	GC/MS
10	1029	1029	β-Phellandrene	MH	0.765	16.770	2.390	15.394	2.333	RI, GC/MS	GC/MS
11	1030	1031	D-Limonene	MO	0.887	0.147	0.024	0.630	0.112	RI, GC/MS	GC/MS
12	1089	1098	α-Campholenal	MO	0.887	0.146	0.024	0.148	0.026	RI, GC/MS	GC/MS
13	1097	1095	α-Pinene oxide	MO	0.887	0.028	0.005	-	-	RI, GC/MS	-
14	1116	1102	Thujone	MO	0.887	0.342	0.056	0.291	0.047	RI, GC/MS	GC/MS
15	1121	1123	1R,4R-p-Mentha-2,8-dien-1-ol	MO	0.911	0.065	0.011	0.017	0.003	RI, GC/MS	GC/MS
16	1131	1131	4-Acetyl-1-methylcyclohexene	MO	0.911	0.065	0.011	0.017	0.003	RI, GC/MS	GC/MS
17	1134	1136	Limonene epoxide	MO	0.887	0.036	0.006	0.061	0.011	RI, GC/MS	GC/MS
18	1139	1137	L-Pinocarveol	MO	0.887	0.625	0.102	0.645	0.115	RI, GC/MS	GC/MS
19	1145	1145	L-Limonene oxide	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS
20	1146	1146	Limonene	MO	0.887	0.028	0.005	-	-	RI, GC/MS	-
21	1147	1147	Limonene	MO	0.887	0.342	0.056	0.291	0.047	RI, GC/MS	GC/MS
22	-	-	Limonene	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS
23	-	-	Camphor	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS
24	-	-	Camphor	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS
25	-	-	Camphor	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS
26	-	-	Camphor	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS
27	-	-	Camphor	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS
28	-	-	Camphor	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS
29	-	-	Camphor	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS
30	-	-	Camphor	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS
31	-	-	Camphor	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS
32	-	-	Camphor	MO	0.887	0.542	0.068	0.492	0.087	RI, GC/MS	GC/MS

Table 4. Chemical composition of *Alpinia elegans* seed essential oil.
Obs.	Lit.	Compound	C²	RF³	Column 4	Identification 5		
RI	HP-5MS	DB-HeavyWAX	HP-5MS	DB-HeavyWAX				
	(%)	(%)	(%)	(%)	RI, GC/MS	-		
33	1208	1204	Berbenone	MO	9.07	0.198 0.033 - -	RI, GC/MS	-
34	1220	1229	Carveol	MO	0.887	0.546 0.089 0.103 0.018	RI, GC/MS	GC/MS
35	1229	1251	cis-p-Mentha-1(7),8-dien-2-ol	MO	0.887	0.0451 0.007 0.032 0.006	RI, GC/MS	GC/MS
36	-	1239	Isobornyl formate	MO	-	- - 0.357 0.072	-	GC/MS
37	1241	1244	2-Methyl-3-phenylpropanol	MO	0.824	0.059 0.009 - -	RI, GC/MS	-
38	1245	1243	Sclareol	MO	0.907	0.697 0.116 0.580 0.106	RI, GC/MS, Std	GC/MS
39	1254	1294	Limonene dioxide	MO	1.019	0.013 0.004 - -	RI, GC/MS	-
40	1276	1196	3-p-Menth-7-en-7-al	MO	0.887	0.131 0.021 - -	RI, GC/MS	-
41	1287	1287	Pichtosin	MO	0.957	0.042 0.007 - -	RI, GC/MS	-
42	1292	1228	D-Verbenone	MO	0.907	0.033 0.005 - -	RI, GC/MS	-
43	1342	1343	Tricycloexasantalal	A	0.867	0.069 0.011 - -	RI, GC/MS	-
44	-	1345	α-Cubebene	SH	-	- - 0.115 0.017	-	GC/MS
45	-	1371	Cyclosativene	SH	-	- - 0.052 0.008	-	GC/MS
46	1380	1374	α-Copaene	SH	0.751	0.878 0.122 0.514 0.077	RI, GC/MS	GC/MS
47	-	1374	Longicyclene	SO	-	- - 0.279 0.046	-	GC/MS
48	-	1388	β-Cubebene	SH	-	- - 0.088 0.013	-	GC/MS
49	1395	1389	β-Elemen	SH	0.751	2.001 0.277 2.223 0.342	RI, GC/MS	GC/MS
50	1413	1409	α-Gurjeneene	SH	0.751	0.033 0.005 - -	RI, GC/MS	-
51	1419	1422	α-Bergamotene	SH	0.751	0.142 0.020 0.045 0.007	RI, GC/MS	GC/MS
52	1424	1415	α-Santalene	SH	0.715	3.154 0.415 1.413 0.213	RI, GC/MS	GC/MS
53	1426	1418	Caryophyllene	SH	0.715	2.972 0.392 3.576 0.550	RI, GC/MS	GC/MS
54	-	1436	γ-Elemene	SH	-	- - 0.035 0.005	-	GC/MS
55	1448	1443	Guai-6,9-diene	SH	0.715	0.118 0.016 - -	RI, GC/MS	-
56	1452	1452	Epi-β-Santalene	MH	0.751	0.425 0.059 0.395 0.060	RI, GC/MS	GC/MS
57	-	1457	Altoaromadendrene	SH	-	- - 0.041 0.006	-	GC/MS
58	1460	1452	Humulene	SH	0.751	1.198 0.166 0.958 0.144	RI, GC/MS, Std	GC/MS
59	-	1464	epi-β-Caryophyllene	SH	-	- - 0.082 0.012	-	GC/MS
60	1467	1443	Aromandendrene	SH	0.751	0.070 0.010 - -	RI, GC/MS	-
61	1481	1478	γ-Muurolene	SH	0.715	0.177 0.023 - -	RI, GC/MS	-
62	1490	1473	2-Isopropenyl-4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalene	SH	0.745	2.972 0.392 3.576 0.550	RI, GC/MS	-
Table 4. Cont.

RI	Compound	C²	RF³	Column⁴	Identification⁵						
				HP-5MS	DB-HeavyWAX	HP-5MS	DB-HeavyWAX				
		(%)	(%)	(%)	(%)	(%)	(%)				
63	1492 β-Eudesmenene	SH	0.756	0.518	0.072	-	-				
64	1498 Eremophilene	SH	0.751	1.448	0.209	1.301	0.196	RI, GC/MS	GC/MS		
65	1498 α-Selinene	SH	-	-	0.224	0.034	-	GC/MS			
66	1475 α-Himachalene	SH	0.751	0.746	0.103	-	-	RI, GC/MS	GC/MS		
67	1505 β-Bisabolene	SH	0.751	4.270	0.591	-	4.804	0.738	RI, GC/MS	GC/MS	
68	1515 Cubebol	SO	-	-	0.525	0.086	-	-			
69	1522 Calamene	SH	-	-	4.906	0.709	-	-			
70	1522 α-Maaliene	SH	0.751	2.823	0.391	3.115	0.469	RI, GC/MS	GC/MS		
71	1521 Calamene	SH	0.707	4.460	0.581	-	-	RI, GC/MS	-		
72	1632 Ledene oxide-(II)	O	0.830	0.195	0.030	-	-	RI, GC/MS	-		
73	1370 α-Ylangene	SH	0.751	0.159	0.022	-	-	RI, GC/MS	-		
74	1544 α-Calacorene	SH	-	-	0.103	0.018	-	GC/MS			
75	1549 Elemol	SO	-	-	0.040	0.006	-	GC/MS			
76	1562 Cadala-1(10),3,8-triene	SH	0.760	0.405	0.057	-	-	RI, GC/MS	-		
77	1565 α-Calacorene	SH	-	-	0.025	0.004	-	GC/MS			
78	1565 Nerolidol	SO	0.819	0.035	0.055	-	-	GC/MS			
79	1576 Spathulenol	SO	-	-	0.448	0.076	-	GC/MS			
80	1582 Caryophyllene oxide	SO	0.830	11.368	1.738	10.781	1.772	RI, GC/MS	GC/MS		
81	1602 Ledol	SO	0.819	0.521	0.075	0.251	0.041	RI, GC/MS	GC/MS		
82	1610 Humulene epoxide 2	SO	0.830	2.132	0.326	1.676	0.286	RI, GC/MS	GC/MS		
83	1630 α-Acorenol	SO	0.819	0.122	0.018	0.407	0.067	RI, GC/MS	GC/MS		
84	1626 Aromadendrene oxide-(2)	SO	0.830	0.795	0.116	0.438	0.073	RI, GC/MS	GC/MS		
85	1627 Epicubanol	SO	0.819	0.856	0.027	0.626	0.103	RI, GC/MS	GC/MS		
86	1640 Caryophylladienol II	SO	-	-	0.147	0.081	-	GC/MS			
87	1646 α-Muuro dol	SO	-	-	0.243	0.040	-	GC/MS			
88	1655 1645 Cubenol	SO	0.819	0.071	0.011	-	-	RI, GC/MS	-		
89	1662 Allilomachalol	SO	-	-	1.210	0.199	-	GC/MS			
90	1669 Intermediol	SO	0.819	1.729	0.261	1.053	0.176	RI, GC/MS	GC/MS		
91	1675 Ylangenal	SO	-	-	0.059	0.010	-	GC/MS			
92	1685 α-Bisabolol	SO	0.819	1.383	0.209	1.137	0.196	RI, GC/MS	GC/MS		
93	1612 Isoaromadendrene epoxide	SO	0.830	3.813	0.612	0.201	0.025	RI, GC/MS	GC/MS		
94	1629 (E)-α-Santalal	SO	0.841	1.391	0.233	1.456	0.264	RI, GC/MS	GC/MS		
95	1689 Cedr-8-en-13-ol	O	0.830	0.034	0.005	-	-	RI, GC/MS	-		
96	1740 Isolongifolol	SO	0.819	0.814	0.123	0.806	0.132	RI, GC/MS	GC/MS		
RI \(^1\)	Compound	C \(^2\)	RF \(^3\)	Column \(^4\)	Identification \(^5\)						
---	---	---	---	---	---						
Obs. Lit.		HP-5MS	DB-HeavyWAX	HP-5MS	DB-HeavyWAX						
97	-	1766	Costol	SO	-	-	0.198	0.033	-	GC/MS	
98	1814	1809	Ambrial	SO	0.821	0.908	0.137	0.954	0.160	RI, GC/MS	GC/MS
99	-	1899	Corymbolone	SO	-	-	0.042	0.008	-	GC/MS	
100	-	-	Menthen-2-ol	MO	-	-	0.123	0.021	-	GC/MS	
101	-	-	2-Isopropenyl-4a,8-dimethyl-1,2.3.4.4a.5.6.7-octahydronaphthalene	SH	-	-	2.146	0.323	-	GC/MS	
102	-	-	Isopiperitenol	MO	-	-	0.100	0.018	-	GC/MS	
103	-	-	β-(Z)-Curcumen-12-ol	SO	-	-	0.106	0.018	-	GC/MS	
104	-	-	Germacr-4(15).5.10(14)-trien-1β-ol	SO	-	-	0.058	0.010	-	GC/MS	
105	-	-	1-Methyl-8-(1-methylethyl)-tricyclo[4.4.0][2.7]dec-3-one-5-methanol	SO	-	-	0.333	0.055	-	GC/MS	
106	-	-	Diepicedrene-1-oxide	SO	-	-	0.175	0.029	-	GC/MS	
107	-	-	2,5,8-Trimethyltetralin	SH	-	-	0.273	0.039	-	GC/MS	
108	-	-	Neointermedeol	SO	-	-	0.360	0.059	-	GC/MS	
109	-	-	Epiglobulol	SO	-	-	0.709	0.117	-	GC/MS	
110	-	-	4-(2.4.4-Trimethyl-cyclohexa-1,5-dienyl)-but-3-en-2-one	MO	-	-	0.294	0.052	-	GC/MS	
111	-	-	Bicyclo[4.4.0]dec-2-ene-4-ol	SO	-	-	0.409	0.074	-	GC/MS	
112	-	-	2-methyl-9-(prop-1-en-3-ol-2-y1)-2(2E)-2-Methyl-4(2.6.6-trimethyl-1-cyclohexen-1-yl)-2-butene-1-ol	MO	-	-	0.697	0.114	-	GC/MS	
113	-	-	ent-Germacra-4(15).5.10(14)-trien-1β-ol	SO	-	-	1.662	0.284	-	GC/MS	
114	-	-	7-Isopropenyl-1,4a-dimethyl-4,6.5.7.8-hexahydro-3H-naphthalen-2-one	SO	-	-	0.096	0.013	-	GC/MS	
115	-	-	2,6-Ditet-butyl-4-methylphenyl	MO	-	-	0.076	0.012	-	GC/MS	
116	-	-	1-benzyl-2-methyleucilocopropanecarboxylate	MO	-	-	0.112	0.021	-	GC/MS	
117	-	-	Methyl hexadec-7.10.13-trienoate	E	-	-	0.070	0.012	-	GC/MS	
118	-	-	3-Deoxyestradiol	S	-	-	0.424	0.067	-	GC/MS	
119	-	-	1-Heptatriacotanol	O	-	-	0.117	0.017	-	GC/MS	
Table 4. Cont.

RI	Compound	C	RF	Column	Identification
				HP-5MS	DB-HeavyWAX
Obs.	Lit.	(%)	(%)	(%)	(%)
1		0.069	-		
2		0.570	0.450		
3		33.768	31.859		
4		4.961	6.545		
5		28.102	26.505		
6		25.938	27.216		
7		0.229	0.424		
8		-	0.181		

Chemical classes
- Aldehydes
- Ketones
- Esters
- Monoterpene hydrocarbons
- Oxygenated monoterpenes
- Sesquiterpene hydrocarbons
- Oxygenated sesquiterpenes
- Sterols
- Others

Total identified (%) 93.637 93.186

1 Retention indices: Obs = retention indices determined relative to a homologous series of n-alkanes (C8-C40) on a HP-5MS column, Lit = literature RI values [32,33]. 2 C = chemical class: A—aldehydes, E—esters, K—ketones, MH—monoterpene hydrocarbons, MO—oxygenated monoterpenes, O—others, S—sterols, SH—sesquiterpene hydrocarbons, SO—oxygenated sesquiterpenes. 3 RF = response factor; 4 column = composition of essential oil detected on HP-5MS and DB-HeavyWAX columns; (%) = relative percentage content; c = content is expressed as concentration in milligram per 1 kg of dry plant material; 5 identification method: GC/MS = mass spectrum was identical to that of the National Institute of Standards and Technology Library (ver. 2.0.f), RI = the retention index was matching literature database; Std = constituent identity confirmed by coinjection of authentic standards; 6 retention indices were not calculated for compounds identified only by DB-HeavyWAX column; 7 literature data not available; 8 not detected.

Table 5. Chemical composition of Cinnamomum iners leaf essential oil.

RI	Compound	C	RF	Column	Identification					
				HP-5MS	DB-HeavyWAX					
Obs.	Lit.	(%)	(%)	(%)	(%)					
1		0.075	0.013	0.043	0.008					
2		0.369	0.066	0.210	0.049					
3		0.056	0.009		8					
4		1.116	0.187	0.679	0.164					
5		1.125	0.202	0.810	0.144					
6		0.407	0.074		9					
Obs	RI	Compound	C	RF (%)	Column	Identification				
-----	-----	-------------------	-----	--------	--------	----------------				
					HP-5MS	DB-HeavyWAX	HP-5MS	DB-HeavyWAX		
7	1024	1022 α-Cymene	MH	0.698	1.511	0.245	1.314	0.229	RI, GC/MS	GC/MS
8	6	1024 D-Limonene	MH	0.69	-	-	1.479	0.326	-	GC/MS
9	1029	1029 β-Phellandrene	MH	-	5.982	1.080	-	-	GC/MS	
10	1029	1004 Pseudolimonene	MH	0.765	9.549	1.715	0.089	0.015	RI, GC/MS	GC/MS
11	1048	1048 β-Ocimene	MH	0.765	0.096	0.017	0.099	0.019	RI, GC/MS	Std, GC/MS
12	1058	1058 γ-Terpinene	MH	0.765	0.149	0.025	0.099	0.019	RI, GC/MS	Std, GC/MS
13	1088	1086 Terpinolene	MH	0.765	0.118	0.020	0.350	0.073	RI, GC/MS	Std, GC/MS
14	1105	1095 Linalool	MO	0.869	15.466	3.153	13.899	3.023	RI, GC/MS	Std, GC/MS
15	1122	1121 (Z)-2-Menthenol	MO	0.869	0.177	0.031	-	-	RI, GC/MS	-
16	1140	1136 (E)-2-Menthenol	MO	0.869	0.114	0.022	-	-	RI, GC/MS	-
17	1178	1174 Terpinen-4-ol	MO	0.869	0.965	0.170	-	-	RI, GC/MS	-
18	1186	1183 Cryptone	MO	0.911	0.303	0.056	-	-	RI, GC/MS	-
19	1191	1186 α-Terpinol	MO	0.869	0.895	0.158	0.729	0.203	RI, GC/MS	Std, GC/MS
20	1196	1195 (Z)-Piperitol	MO	0.869	0.031	0.005	0.082	0.019	RI, GC/MS	Std, GC/MS
21	1202	1143 (Z)-Sabinol	MO	0.887	0.033	0.006	-	-	RI, GC/MS	-
22	1208	1207 (E)-Piperitol	MO	0.869	0.052	0.010	-	-	RI, GC/MS	-
23	1241	1244 2-Methyl-3-phenylpropanol	MO	0.824	0.039	0.007	-	-	RI, GC/MS	-
24	1256	1255 Geraniol	MO	0.869	0.472	0.102	0.580	0.127	RI, GC/MS	Std, GC/MS
25	1276	1273 Phellandral	MO	0.887	0.155	0.028	-	-	RI, GC/MS	-
26	1291	1285 Safrole	MO	0.969	2.028	0.402	1.983	0.486	RI, GC/MS	Std, GC/MS
27	1353	1345 α-Cubeicene	SH	0.751	0.032	0.004	-	-	RI, GC/MS	-
28	1362	1356 Eugenol	SO	0.947	0.631	0.122	0.631	0.133	RI, GC/MS	Std, GC/MS
29	1369	1389 Longifolene	SH	0.751	0.086	0.010	-	-	RI, GC/MS	-
30	1380	1374 α-Copaene	SH	0.751	0.452	0.069	0.414	0.082	RI, GC/MS	Std, GC/MS
31	1388	1387 β-Bourbonene	SH	0.751	0.069	0.007	-	-	RI, GC/MS	-
32	1395	1389 β-Elemicene	SH	0.751	0.267	0.041	-	-	RI, GC/MS	-
33	1403	1403 Methyleneol	SO	0.879	2.028	0.402	1.983	0.486	RI, GC/MS	Std, GC/MS
34	1412	1571 Sesquisabinene hydrate	SO	0.819	0.260	0.042	0.184	0.041	RI, GC/MS	Std, GC/MS
35	1414	1414 β-Fumonene	SH	-	-	-	1.223	0.215	-	GC/MS
36	1417	1417 α-Santalene	SH	-	-	-	0.935	0.204	-	GC/MS
37	1432	1418 Caryophyllene	SH	0.751	21.002	3.223	34.875	6.561	RI, GC/MS, Std, GC/MS	
38	1435	1419 β-Ylangene	SH	0.751	0.183	0.028	-	-	RI, GC/MS	-
39	1440	1439 α-Bergamotene	SH	0.751	0.633	0.097	-	-	RI, GC/MS	-
40	1446	1402 Ledol	SO	0.751	0.143	0.022	0.067	0.015	RI, GC/MS	Std, GC/MS

Table 5. Cont.
Table 5. Cont.

Obs.	Lit.	Compound	C ²	RI ¹	RF ³	Column ⁴	Identification ⁵			
41	1453	1452	MH	0.751	0.112	0.017	0.054 0.012	RI, GC/MS		
42	-	1455	SO	-	-	-	- -	-		
43	1456	1460	SO	0.751	0.302	0.046	- -	RI, GC/MS		
44	1461	1452	SH	0.751	4.902	0.735	2.982 0.536	RI, GC/MS, Std		
45	1464	1413	SH	0.751	0.112	0.017	8.067 1.449	RI, GC/MS		
46	1470	1464	SH	0.751	10.216	1.570	- -	-		
47	-	1477	SH	-	-	-	0.235 0.494	-		
48	1479	1472	SH	0.751	0.042	0.009	2.235 0.394	RI, GC/MS		
49	-	1480	SH	-	-	-	0.162 0.026	-		
50	1482	1478	SH	0.751	0.755	0.045	- -	-		
51	1487	1484	SH	0.751	0.827	0.127	0.374 0.063	RI, GC/MS		
52	1490	1505	SH	0.751	1.161	0.178	0.684 0.144	RI, GC/MS		
53	1492	1485	SH	0.751	0.074	0.013	- -	-		
54	1494	1443	SH	0.751	0.095	0.016	- -	RI, GC/MS		
55	-	1496	SH	-	-	-	0.071 0.014	-		
56	1500	1496	SH	0.751	0.374	0.052	- -	RI, GC/MS		
57	1502	1505	SH	0.751	0.407	0.068	- -	RI, GC/MS		
58	1505	1500	SH	0.751	0.410	0.069	0.359 0.065	RI, GC/MS		
59	1512	1505	SH	0.751	1.051	0.177	1.137 0.200	RI, GC/MS		
60	1515	1512	SH	0.751	0.031	0.005	- -	RI, GC/MS		
61	-	1518	MO	-	-	-	0.174 0.048	-		
62	1520	1513	SH	0.751	0.688	0.106	- -	RI, GC/MS		
63	1530	1522	SH	0.751	2.095	0.322	- -	RI, GC/MS		
64	1537	1454	SH	0.751	0.043	0.007	- -	RI, GC/MS		
65	1539	1535	SH	0.751	0.040	0.007	- -	RI, GC/MS		
66	1544	1537	SH	0.751	0.099	0.019	0.131 0.023	RI, GC/MS		
67	1547	1536	SH	0.751	0.088	0.017	- -	RI, GC/MS		
68	1550	1544	SH	0.715	0.090	0.013	0.135 0.022	RI, GC/MS		
69	1567	1564	SO	0.819	0.482	0.081	0.330 0.060	RI, GC/MS		
70	-	1576	SO	-	-	-	0.150 0.026	-		
71	1579	1570	SO	0.819	0.887	0.149	0.827 0.151	RI, GC/MS		
72	1587	1576	SO	0.830	0.663	0.085	0.468 0.085	RI, GC/MS		
73	1593	1582	SO	0.830	2.080	0.425	2.196 0.431	RI, GC/MS		
74	1600	1600	SO	0.819	0.127	0.023	0.053 0.012	RI, GC/MS		
75	1609	1590	SO	0.819	0.561	0.094	0.570 0.105	RI, GC/MS		
Obs.	Lit.	Compound	C	RF	Column	Identification				
------	------	-----------	----	----	---------	----------------				
		RI 1	C 2	RF 3	HP-5MS	DB-HeavyWAX	HP-5MS	DB-HeavyWAX		
106	-	2.5-Anhydro-1-O-octylhexitol	O	-	-	0.133	0.049	-	GC/MS	
76	1610	Humulol	SO	-	-	0.092	0.021	-	GC/MS	
77	1614	Tetradecanal	A	0.806	1.168	0.193	0.991	0.180	RI, GC/MS	GC/MS
78	1610	Humulene oxide 2	SO	0.830	0.331	0.056	0.105	0.024	RI, GC/MS	GC/MS
79	1645	Cubenol	SO	0.819	0.021	0.003	0.144	0.032	RI, GC/MS	GC/MS
80	1616	Widdrol	SO	0.819	0.314	0.053	0.311	0.055	RI, GC/MS	GC/MS
81	1630	α-Acorenol	SO	-	-	0.221	0.039	-	GC/MS	
82	1619	1,10-Diepicubenol	SO	0.819	0.114	0.022	0.247	0.047	RI, GC/MS	GC/MS
83	1640	α-epi-Muurolol	SO	-	-	1.109	0.205	-	GC/MS	
84	1628	Caryophylladienol I	SO	0.830	0.538	0.091	0.472	0.114	RI, GC/MS	GC/MS
85	1641	α-Cadinol	SO	0.819	3.417	0.573	2.300	0.418	RI, GC/MS	GC/MS
86	1645	δ-Cadinol	SO	0.819	0.284	0.048	0.231	0.042	RI, GC/MS	GC/MS
87	1662	Longifolenaldehyde	SO	-	-	0.115	0.021	-	GC/MS	
88	1612	Isoaromadendrene epoxide	SO	0.830	0.460	0.078	-	-	RI, GC/MS	-
89	1685	α-Bisabolol	SO	0.819	0.141	0.026	-	-	RI, GC/MS, Std	-
90	1694	(1R,7S)-Germacr-4(15).5.10(14)-trien-1β-ol	SO	0.830	0.101	0.019	0.318	0.060	RI, GC/MS	GC/MS
91	1695	Farnesol	SO	-	-	0.075	0.017	-	GC/MS	
92	1699	2-Pentadecanone	K	0.799	0.053	0.010	0.047	0.011	RI, GC/MS	GC/MS
93	2201	Geranylgeraniol	SO	0.795	0.057	0.011	-	-	RI, GC/MS	-
94	1740	Isolongifolol	SO	-	-	0.111	0.026	-	GC/MS	
95	1747	1-Bisabolone	SO	0.830	0.051	0.010	-	-	RI, GC/MS	-
96	1717	Cyperenone	SO	0.841	0.097	0.019	-	-	RI, GC/MS	-
97	1798	Hexadec-7-enal	A	0.802	0.083	0.015	-	-	RI, GC/MS	-
98	1845	Hexahydrofarnesyl acetone	SO	0.782	0.240	0.038	-	-	RI, GC/MS	-
99	1877	Hexadec-2-enal	A	0.802	0.087	0.016	-	-	RI, GC/MS	-
100	1903	Homosalate	E	0.935	0.034	0.008	-	-	RI, GC/MS	-
101	1922	Farnesyl acetone	SO	0.806	0.337	0.056	0.316	0.055	RI, GC/MS	GC/MS
102	1960	Hexadecanoic acid	FA	-	-	0.724	0.132	-	GC/MS	
103	1967	Dibutyl phthalate	E	1.015	0.027	0.006	-	-	RI, GC/MS	-
104	2114	Phytol	O	0.774	0.229	0.036	0.234	0.040	RI, GC/MS	GC/MS
105	-	2.2,4,7,9-Tetramethyldecahydro-1H-cyclobuta[e]inden-5-ol	SO	-	-	0.124	0.028	-	GC/MS	
Table 5. Cont.

RI 1	Compound	C 2	RF 3	Column 4	Identification 5		
				HP-5MS DB-HeavyWAX HP-5MS DB-HeavyWAX			
Obs.	Lit.			(%) (%) (%) (%)			
106	-	-	2.5-Anhydro-1-O-octylhexitol O	-	-	0.133	0.049

Chemical classes

Aldehydes	Ketones	Fatty acids	Monoterpenes hydrocarbons	Oxygenated monoterpenes	Sesquiterpenes hydrocarbons	Oxygenated sesquiterpenes	Others
1.338	0.053	-	14.683	20.730	45.838	12.639	0.229

Total identified (%) 95.571 96.676

1 Retention indices: Obs = retention indices determined relative to a homologous series of n-alkanes (C8-C40) on a HP-5MS column, Lit = literature RI values [32,33]; 2 C = chemical class: A—aldehydes, E—esters, FA—fatty acid, K—ketones, MH—monoterpenes hydrocarbons, MO—oxygenated monoterpenes, O—others, SH—sesquiterpenes hydrocarbons, SO—oxygenated sesquiterpenes; 3 RF = response factor; 4 column = composition of essential oil detected on HP-5MS and DB-HeavyWAX columns; (%) = relative percentage content; c = content is expressed as concentration in milligram per 1 kg of dry plant material; 5 identification method: GC/MS = mass spectrum was identical to that of the National Institute of Standards and Technology Library (ver. 2.0.0), RI = the retention index was matching literature database; Std = constituent identity confirmed by coinjection of authentic standards; 6 retention indices were not calculated for compounds identified only by DB-HeavyWAX column; 7 literature data not available; 8 not detected.

Table 6. Chemical composition of *Xanthostemon verdugonianus* leaf essential oil.

RI 1	Compound	C 2	RF 3	Column 4	Identification 5			
				HP-5MS DB-HeavyWAX HP-5MS DB-HeavyWAX				
Obs.	Lit.			(%) (%) (%) (%)				
1	1341	1335	γ-Elemen	SH 0.751	0.062	0.007	-	
2	1377	1374	Isoledene	SH 0.751	0.063	0.007	-	
3	1388	1389	β-Elemen	SH 0.751	3.015	0.350	19.519	3.648
4	1419	1409	α-Gurjunene	SH 0.751	32.285	3.741	19.519	3.648
5	1425	1418	Caryophyllene	SH 0.751	6.386	0.739	2.987	0.559
6	1444	1443	Aromandendrene	SH 0.751	0.263	0.035	0.195	0.037

1 Retention indices: Obs = retention indices determined relative to a homologous series of n-alkanes (C8-C40); 2 C = chemical class: E—esters, FA—fatty acid, K—ketones, MH—monoterpenes hydrocarbons, MO—oxygenated monoterpenes, O—others, SH—sesquiterpenes hydrocarbons, SO—oxygenated sesquiterpenes; 3 RF = response factor; 4 column = composition of essential oil detected on HP-5MS and DB-HeavyWAX columns; (%) = relative percentage content; c = content is expressed as concentration in milligram per 1 kg of dry plant material; 5 identification method: GC/MS = mass spectrum was identical to that of the National Institute of Standards and Technology Library (ver. 2.0.0), RI = the retention index was matching literature database; Std = constituent identity confirmed by coinjection of authentic standards; not detected.
Table 6. Cont.

RI	Compound	C	RF	HP-5MS (%)	DB-HeavyWAX (%)	Identification					
				HP-5MS	DB-HeavyWAX						
7	1455	1479	γ-Himalchalene	SH	0.751	0.063	0.007	0.060	0.011	RI, GC/MS	GC/MS
8	1460	1452	Humulene	SH	0.751	0.724	0.082	0.417	0.079	RI, GC/MS, Std	GC/MS
9	1478	1477	γ-Gurjunene	SH	0.751	2.097	0.242	1.028	0.194	RI, GC/MS	GC/MS
10	1480	1479	γ-Selinene	SH	0.751	0.289	0.034	0.128	0.024	RI, GC/MS	GC/MS
11	1486	1484	Isogermacone D	SH	0.751	0.071	8000	-	-	RI, GC/MS	GC/MS
12	1492	1489	β-Eudesmesene	SH	0.751	0.235	0.027	0.148	0.028	RI, GC/MS	GC/MS
13	1503	1494	β-Cyclogermacone	SH	0.751	5.250	0.592	1.898	0.358	RI, GC/MS	GC/MS
14	-	1496	Viridiflorene	SH	-	-	-	0.846	0.166	-	GC/MS
15	-	1498	α-Selinene	SH	-	-	-	0.134	0.025	-	GC/MS
16	1519	1513	γ-Cadinene	SH	0.751	0.398	0.046	2.611	0.488	RI, GC/MS	GC/MS
17	1530	1522	δ-Cadinene	SH	0.751	2.463	0.280	-	-	RI, GC/MS	-
18	-	1522	Calamene	SH	-	-	-	0.058	0.010	-	GC/MS
19	1538	1535	Cubenene	SH	0.751	0.047	0.005	-	-	RI, GC/MS	-
20	1544	1537	α-Cadinene	SH	0.751	0.107	0.012	0.254	0.048	RI, GC/MS	GC/MS
21	-	1541	α-Copaen-11-ol	SO	-	-	-	0.914	0.191	-	GC/MS
22	1577	1567	Palastrol	SO	0.819	1.930	0.238	1.123	0.231	RI, GC/MS	GC/MS
23	-	1567	Maitol	SO	-	-	-	0.091	0.019	-	GC/MS
24	1586	1576	Spathuleneol	SO	0.830	0.582	0.075	0.428	0.089	RI, GC/MS	GC/MS
25	-	1583	Caryophyllene oxide	SH	-	-	-	0.089	0.019	-	GC/MS
26	1593	1590	Globulon	SO	0.819	1.297	0.160	0.624	0.123	RI, GC/MS	GC/MS
27	-	1595	Cubeban-11-ol	SO	-	-	-	0.267	0.055	-	GC/MS
28	1601	1600	Viridilol	SO	0.819	1.017	0.125	0.493	0.092	RI, GC/MS	GC/MS
29	-	1600	Rosilol	SO	-	-	-	0.100	0.020	-	GC/MS
30	1614	1602	Ledol	SO	0.819	3.629	0.445	1.517	0.312	RI, GC/MS	GC/MS
31	-	1619	1,10-di-epi-Cubinol	SO	-	-	-	0.074	0.015	-	GC/MS
32	1622	1630	α-Acenasol	SO	0.819	0.108	0.012	-	-	RI, GC/MS	GC/MS
33	1634	1755	α-Vetivol	SO	0.830	0.781	0.079	0.734	0.153	RI, GC/MS	GC/MS
34	1651	1640	α-epi-Murolol	SO	0.819	2.644	0.334	0.612	0.126	RI, GC/MS	GC/MS
35	1655	1645	δ-Cadinol	SO	0.819	0.397	0.047	-	-	RI, GC/MS	-
36	-	1650	β-Eudesmol	SO	-	-	-	0.138	0.029	-	GC/MS
37	1661	17	1-(3-Methyl-2-cyclopenten-1-yl)-1-cyclohexene	O	0.765	1.023	0.118	-	-	GC/MS	-
38	1665	1652	α-Cadinol	SO	0.819	3.730	0.473	2.628	0.534	RI, GC/MS	GC/MS
39	-	1662	Longifolenaldehyde	SO	-	-	-	0.444	0.093	-	GC/MS
40	1684	1678	Alloaromadendrene oxide-(2)	SO	0.830	0.062	0.008	-	-	RI, GC/MS	-
41	1704	-	γ-Gurjuneneoxide-(2)	SO	0.830	0.152	0.019	-	-	GC/MS	-
42	1710	1711	Valerenol	SO	0.830	0.214	0.027	0.067	0.014	RI, GC/MS	GC/MS
Table 6. Cont.

Obs.	Lit.	Compound	C	RF	HP-5MS (%)	DB-HeavyWAX (%)	c (%)	c (%)	Identification	
43	-	6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-2-naphthalenol	SO	0.830	0.318	0.042	-	-	GC/MS	
44	1746	1723	Isolongifolen-9-one	SO	0.841	0.077	0.010	-	-	RI, GC/MS
45	1754	1730	2,2,7,7-Tetramethyltricyclo[6.2.1.0(1,6)]undec-4-en-3-one	SO	0.841	0.057	0.008	0.078	0.017	RI, GC/MS
46	1765	1766	Costol	SO	0.830	0.118	0.016	0.148	0.031	RI, GC/MS
47	1785	1717	Cyperenone	SO	0.841	22.653	2.745	52.694	10.958	RI, GC/MS
48	1835	-	Spiro[tricyclo[4.4.0.0(5,9)]decane-10,12′-oxirane], 1-methyl-4-isopropyl-7,8-dihydroxy-, (8S)	O	0.999	0.073	0.011	0.081	0.012	GC/MS
49	1910	-	Neointermedeol	MO	-	-	-	0.423	0.087	-
50	-	-	Tricyclo[5.3.1.1(2,6)]dodecan-11-ol, 11-methyl+12-methylene-	MO	-	-	-	0.065	0.014	-

Chemical classes

- Oxygenated monoterpenes
- Sesquiterpenes hydrocarbons
- Oxygenated sesquiterpenes
- Others

Total identified (%) 94.757 96.114

1 Retention indices: Obs = retention indices determined relative to a homologous series of n-alkanes (C8-C40) on a HP-5MS column, Lit = literature RI values [32,33]; 2 C = chemical class: MO—oxygenated monoterpenes, O—others, SH—sesquiterpene hydrocarbons, SO—oxygenated sesquiterpenes; 3 RF = response factor; 4 column = composition of essential oil detected on HP-5MS and DB-HeavyWAX columns; (%)= relative percentage content; c = content is expressed as concentration in milligram per 1 kg of dry plant material; 5 identification method: GC/MS = Mass spectrum was identical to that of the National Institute of Standards and Technology Library (ver. 2.0.f), RI = the retention index was matching literature database; Std = constituent identity confirmed by coinjection of authentic standards; 6 retention indices were not calculated for compounds identified only by DB-HeavyWAX column; 7 literature data not available; 8 not detected.
Table 7. Chemical composition of *Nigella sativa* seed supercritical CO\(_2\) extract.

Obs.	Compound	C \(^2\)	RF \(^3\)	Column \(^4\)	Identification \(^5\)				
				HP-5MS \(\%\)	DB-HeavyWAX \(\%\)	HP-5MS \(c\)	DB-HeavyWAX \(c\)		
1	o-Cymene	MH	-	-	-	0.113	0.010	-	GC/MS
2	D-Limonene	MH	0.765	0.376	0.015	0.089	0.009	RI, GC/MS	GC/MS
3	4-methoxy thujane	MO	0.852	0.130	0.003	0.240	0.028	RI, GC/MS	GC/MS
4	Carvone	MO	0.907	0.473	0.022	-	-	RI, GC/MS	-
5	Thymoquinone	K	1.071	0.700	0.037	-	RI	GC/MS	-
6	Anethole	MO	0.824	0.106	0.004	-	RI	GC/MS	-
7	2,4-Decadienal	A	0.887	0.080	0.003	0.096	0.012	RI, GC/MS	GC/MS
8	α-Terpinyl acetate	E	0.957	0.204	0.009	-	RI	GC/MS	-
9	Caryophyllene	SH	0.751	0.160	0.006	0.066	0.006	RI, GC/MS, Std	GC/MS
10	Tetradecanoic acid	FA	-	-	-	0.186	0.021	-	GC/MS
11	Sandaracopimaradiene	DH	0.744	0.119	0.003	-	RI, GC/MS	-	
12	Hexadecanoic acid	FA	-	-	-	9.897	1.097	RI, GC/MS	GC/MS
13	Ethyl hexadecanoate	E	0.845	0.205	0.009	0.102	0.011	RI, GC/MS	GC/MS
14	Oleic acid	FA	-	-	-	19.576	2.208	-	GC/MS
15	Ethyl linolate	E	0.846	5.023	0.138	1.582	0.174	RI, GC/MS	GC/MS
16	Ethyl oleate	E	0.838	2.782	0.072	0.265	0.030	RI, GC/MS	GC/MS
17	Linoleic acid	FA	0.863	71.657	3.019	59.245	6.713	RI, GC/MS	GC/MS
18	Disoocetyl phthalate	E	0.900	0.334	0.014	-	RI	GC/MS	-
19	1,2,15,16-Diepoxyhexadecane	O	-	-	-	0.090	0.010	-	GC/MS
20	β-Monoolein	E	-	-	-	0.761	0.091	-	GC/MS

Chemical classes

	C \(^2\)	RF \(^3\)	HP-5MS \(\%\)	DB-HeavyWAX \(\%\)	HP-5MS \(c\)	DB-HeavyWAX \(c\)
Aldehydes	0.080	-	0.086			
Ketones	0.700	-	-			
Fatty acids	71.657	-	88.904			
Esters	8.548	-	2.710			
Monoterpane hydrocarbons	0.376	0.202	-			
Diterpene hydrocarbons	0.119	-	-			
Oxygenated monoterpenes	0.709	0.240	-			
Sesquiterpene hydrocarbons	0.160	0.066	-			
Others	0.090	-	-			

Total identified (%) 82.549 92.308

1 Retention indices: Obs = retention indices determined relative to a homologous series of \(n\)-alkanes (C8-C40) on a HP-5MS column, Lit = literature RI values [32,33].
2 C = chemical class: A—aldehydes, DH—diterpene hydrocarbons, E—esters, FA—fatty acid, K—ketones, MH—monoterpene hydrocarbons, MO—oxygenated monoterpenes, O—others, SH—sesquiterpene hydrocarbons; RF = response factor; \(\%\) = composition of essential oil detected on HP-5MS and DB-HeavyWAX columns; \((\%) = relative percentage content; c = content is expressed as concentration in milligram per 1 kg of dry plant material; Identification method: GC/MS = mass spectrum was identical to that of the National Institute of Standards and Technology Library (ver. 2.0.0), RI = the retention index was matching literature database; Std = constituent identity confirmed by coinjection of authentic standards; retention indices were not calculated for compounds identified only by DB-HeavyWAX column; literature data not available; not detected.
3. Discussion

Based on the presented results, this study clearly demonstrates that the vapors of VPDPs can significantly affect results of microplate-based bioassays, as shown by the differences between the values observed for the plates sealed with vapor barrier and nonsealed plates covered with their lid only. Similar phenomenon has previously been observed in experiments assaying antistaphylococcal, toxic, and antifungal potentials of volatile agents such as thymoquinone, phenol, and plant EOs [28,34,35]. According to these findings, it is apparent that the results of assays evaluating biological activities of volatile agents in nonsealed microtiter plates might be unreliable. Unsealed wells are exposed to losses of bioactive compounds by evaporation, which can cause false-negative results [36]. On the other hand, vapors transition to adjoined wells can produce false-positive results of the tests [27], which is evident especially when the multiplate design of experiments is used. For this reason, the microplate layout is the important aspect affecting the accuracy of the results in nonsealed experiments. Considering the plate layouts, the results of the antimicrobial assay showed that the samples situated in rows closer to the most active volatile agents (8-hydroxyquinoline and thymoquinone) possessed lower or no growth-inhibitory effect in plates sealed with vapor barrier in comparison to nonsealed plates. Similarly, in MTT assay, the samples tested in the wells next to 8-hydroxyquinoline or thymoquinone were evaluated to be so highly toxic that their IC\textsubscript{50} values were not detected in nonsealed microplates as these values were below the lowest concentration tested. The same case occurred in our previous study [29] when high toxicity of carvacrol, eugenol, and thymol was observed in nonsealed experiments, whereas nontoxic potential of these compounds was determined in EVA Capmat sealed plates. Moreover, single-plate layouts with samples tested in one replicate in one microtiter plate are also affected by vapor losses of active agents and their transition to adjoining wells. Beside the design of microplate layout, a duration of the assay is a crucial parameter affecting the results of assessment of biological potential of volatiles. In the study on antistaphylococcal effect of thymoquinone, the increasing concentration of this compound during 5 h was detected by GC/MS in the microplate wells that were initially thymoquinone free [27]. Therefore, in the case of short-term tests such as DPPH assay, the influence of the vapors did not occur to such an extent because its incubation lasts only 30 min, in contrast to respective incubation times 24 and 72 h of standard antimicrobial and cytotoxicity assays.

As far as biological activity of VPDPs tested in this study is considered, N. sativa seed supercritical CO\textsubscript{2} extract is only one previously assessed for its antimicrobial effect. It exhibited growth-inhibitory activity with MIC values range of 16–128 µg/mL against standard strains of C. albicans, E. faecalis, Escherichia coli, Pseudomonas aeruginosa, and S. aureus [37]. In the case of A. elegans, the result can be supported by our previous study on A. elegans leaf EO where MIC value 512 µg/mL was determined against S. aureus [38]. Only weak antimicrobial potential of C. iners leaf methanol extract against C. albicans, E. coli, P. aeruginosa, and S. aureus was described by Mustafa et al. [39] with MIC values ranging from 780 to 25,000 µg/mL. Data on antimicrobial activity of X. verdugonianus are completely missing, nevertheless recent study concerting related plant species X. youngii from Thailand determined its antistaphylococcal activity with MIC value 1250 µg/mL [40]. Growth-inhibitory effects of capsaicin, caryophyllene oxide, 8-hydroxyquinoline, and thymoquinone were evaluated against various S. aureus strains by several authors with respective MIC values >50, 60, 4, and 16 µg/mL [41–44], which are corresponding to our results in nonsealed plates.

There is a lack of data on antioxidant potential of EOs obtained from the abovementioned plant species with the exception of C. iners leaf oil that was observed to possess antioxidant effect with IC\textsubscript{50} value of 218.88 µg/mL [45]. Other study has previously reported DPPH radical scavenging activity of ethanol extract from A. elegans leaves with IC\textsubscript{50} value of 97.58 µg/mL [46]. However, EOs of these both species did not produce any activity in our study. In case of N. sativa supercritical CO\textsubscript{2} extract, our result might be considered as similar to Solati et al. [47] who observed a low level of antioxidant activity of this extract with IC\textsubscript{50} value of 2590 µg/mL. In general, the results of DPPH assay in our study evaluating antioxidant activity of volatile compounds are in correspondence with those obtained by other authors except Karakaya et al. [48] who detected antioxidant effect of caryophyllene
Although, N. sativa × (99%, CAS 148-24-3, 1.66 \text{ mm Hg at 25 } ^\circ\text{C}) seeds are known for their high content of thymoquinone, as described, e.g., in study [38]. According to the results of Mustafa et al. [52] who evaluated acute toxicity of C. iners leaf methanol extract using a brine shrimp assay, this plant species is considered safe, although high toxic potential was found in our study for C. iners seed EO. In case of N. sativa supercritical CO$_2$ extract, a medium cytotoxic effect was observed against human breast cancer cells with IC$_{50}$ value of 53.34 \mu g/mL [53]. Numerous assays for testing the cytotoxicity of plant-derived compounds have previously been performed on various human cancer cell lines from tissues such as a bone marrow, a colon epithelium, and a peripheral blood. Similar to our results, all compounds tested here, i.e., capsaicin, caryophyllene oxide, 8-hydroxyquinoline, and thymoquinone, have been observed to possess a certain degree of the cytotoxicity with respective IC$_{50}$ values of 18.3, 57.7, 1.3, and 3.0–8.0 \mu g/mL [54–57].

The biological properties of EOs and supercritical CO$_2$ extract tested in this study have been attributed to their chemical composition primarily rich in monoterpenes, sesquiterpenes, and fatty acids. The chemical profile of C. iners leaf oil and N. sativa seed supercritical CO$_2$ extract has previously been described, whereas literature about chemical analysis of EOs from A. elegans seeds and X. verdugonianus leaves is not available. When comparing analytical data in this study with previously published works on C. iners leaf oil, its chemical composition corresponds to results of Son et al. [58], who detected \beta-caryophyllene, caryophyllene oxide, and humulene as the main components. Although, N. sativa seeds are known for their high content of thymoquinone, as described, e.g., in study of Venkatachallam et al. [59], the supercritical CO$_2$ extract analyzed in our study was observed to contain a high level of linoleic acid and other fatty acids. This finding was confirmed by [47,60] who also detected dominant prevalence of linoleic acid (60.74\%) and low amount of thymoquinone (0.28–1.42\%). In our previous study [38], we identified caryophyllene oxide (24.70/30.50\%), \alpha-pinene (9.70/10.50\%), isolongifolol methyl ether (4.20/3.80\%), and linalool (4.10\%) as major compounds of A. elegans leaf oil, which resembles chemical profile of EO obtained from its seeds. In addition to determination of raw percentages of peak areas, concentration of components in 1 kg of dry plant material was computed using predicted relative response factors with aim to increase the accuracy and reliability of the volatile compounds’ quantification. This approach is important in technological processes with several applications in the field of chemical analysis of VPDPs as it enables the quantification of volatile compounds by GC/MS with flame-ionization detection without having authentic compounds available, and also, it can avoid time-consuming calibration procedures [61].

4. Materials and Methods

4.1. Chemicals and Reagents

With aim to evaluate agents of different volatility characterized by distinct values of a vapor pressure, following plant-derived compounds: capsaicin (95\%, CAS 404-86-4, 1.32 \times 10^{-8} \text{ mm Hg at 25 } ^\circ\text{C}), caryophyllene oxide (99\%, CAS 1139-30-6, 7.00 \times 10^{-3} \text{ mm Hg at 25 } ^\circ\text{C}), 8-hydroxyquinoline (99\%, CAS 148-24-3, 1.66 \times 10^{-3} \text{ mm Hg at 25 } ^\circ\text{C}), and thymoquinone (99\%, CAS 490-91-5, 6.00 \times 10^{-2} \text{ mm Hg at 25 } ^\circ\text{C}) were assayed. Ciprofloxacin (98\%, CAS 85721-33-1), fluconazole (98\%, CAS 86386-73-4), oxacillin (86.3\%, CAS 7240-38-2), and tetracycline (98–102\%, CAS 60-54-8) were used as positive antibiotic controls. Other chemicals used were as follows: DPPH (CAS 1898-66-4), n-hexane
(CAS 110-54-3), 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox, CAS 53188-07-1), dimethyl sulfoxide (DMSO, CAS 67-68-5), methanol (CAS 67-56-1), MTT (CAS 298-93-1), and Tween 20% (CAS 9005-64-5). α-Bisabolol (CAS 23089-26-1), camphene (CAS 79-92-5), carvone (CAS 6485-40-1), caryophyllene (CAS 87-44-5), geraniol (CAS 106-24-1), humulene (CAS 6753-98-6), linalool (CAS 126-91-0), methyl octanoate (CAS 111-11-5), myrcene (CAS 123-35-3), α-pinene (CAS 7785-70-8), β-pinene (CAS 18172-67-3), α-terpinene (CAS 99-86-5), γ-terpinene (CAS 99-85-4), and terpinolene (CAS 586-62-9) were used as analytical standards. With exception, methanol and DMSO purchased from Penta (Prague, Czech) and n-hexane from Merck KGaA (Darmstadt, Germany), all other chemicals were obtained from Sigma-Aldrich (Prague, Czech).

4.2. Plant Material

The seeds of *A. elegans* and leaves of *C. iners* and *X. verdugonianus* were collected in the foothills of Mount Pangasugan located on the island Leyte (Philippines) in April 2018. The seeds of *N. sativa* were purchased in local spice store U Salvatora (Prague, CZ). The plants were authenticated by ethnobotanist Ladislav Kokoska from the Department of Tropical Crop Sciences and Agroforestry, the Faculty of Tropical Agrisciences, Czech University of Life Sciences (CUZ), Prague (CZ), and by taxonomist Edwino S. Fernando from the Institute of Biology Jose Vera Santos Memorial Herbarium, College of Science, University of the Philippines, Diliman (PHL). The voucher specimens of *A. elegans, C. iners,* and *X. verdugonianus* and voucher sample of *N. sativa* seeds were deposited in the herbarium of the Department of Botany and Plant Physiology of the Faculty of Agrobiology, Food and Natural Resources, CUZ Prague (CZ). Dried plant material was ground and homogenized by Grindomix apparatus (GM 100 Retsch, Haan, Germany). The residual moisture content was evaluated gravimetrically at 130 °C by Scaltec SMO 01 analyzer (Scaltec Instruments, Gottingen, Germany) in triplicates. A detailed botanical description and physicochemical characteristic of plant samples including scientific name, family, voucher specimen/sample number, area of collection, part used, isolation technique for obtaining of EOs and supercritical CO₂ extract, their yield, and color are summarized in Table 8.

4.3. Hydrodistillation

Essential oils were obtained from *A. elegans, C. iners,* and *X. verdugonianus* by hydrodistillation of ground dried plant material in 1 L of distilled water for 3 h using a Clevenger-type apparatus (Merci, Brno, Czech) according to the procedures described in the European Pharmacopoeia [62]. The essential oils were stored in sealed glass vials at 4 °C. The data on yields (v/w, based on the dry plant weight) of obtained essential oils are shown in Table 8.

4.4. Supercritical Fluid Extraction

Supercritical CO₂ extraction of *N. sativa* seeds was carried out using Speed SFE Helix system (Applied Separations, Allentown, PA, USA). Initially, 10 g of ground material were filled into the 100 mL stainless steel extraction vessel between two layers of glass wool and subsequently installed into the extraction module. The extraction process was than performed using following parameters: isocratic pressure 200 Bar, temperature 40 °C and CO₂ flow rate 5 LPM. The extracts were stored in sealed glass vials at 4 °C. The properties and yield (w/w, based on the dry plant weight) of obtained extracts are shown in Table 8.

4.5. Bacterial Strains and Culture Media

The following four bacterial and one yeast standard strains of the American Type Culture Collection (ATCC) were used: *C. albicans* ATCC 90028, *E. faecalis* ATCC 29212, *E. coli* ATCC 25922, *P. aeruginosa* ATCC 27853, and *S. aureus* ATCC 29213. All strains were purchased from Oxoid (Basingstoke, UK). Cation-adjusted Mueller-Hinton broth (MHB) (Oxoid) equilibrated to pH 7.6 with a Trizma base (Sigma-Aldrich) was used as the cultivation and assay medium for all bacteria tested, whereas further supplementation by 1% of glucose (Sigma Aldrich) was done in case of *E. faecalis.*
Table 8. Botanical description and physicochemical characteristic of plant species and samples tested.

Scientific Name	Family	Voucher Specimen/Sample Number	Area of Collection	Part Used	Isolation Technique	Yield %	Color
Alpinia elegans (C.Presl) K.Schum.	Zingiberaceae	02509KBFR7	Mt Pangasugan, PHL	Seed	HD	0.52	Yellow
Cinnamomum iners Reinw. ex Blume	Lauraceae	02577KBFRC	Mt Pangasugan, PHL	Leaf	HD	0.52	Pale yellow
Nigella sativa L.	Ranunculaceae	02604KBFR3	U Salvatora, Prague, CZ	Seed	SFE	5.80	Pale greenish yellow
Xanthostemon verdugonianus Náves ex	Myrtaceae	02581KBFR7	Mt Pangasugan, PHL	Leaf	HD	2.86	Pale yellow
Fern.-Vill.							

1 HD: hydrodistillation, 2 SFE: supercritical fluid extraction.
Stock cultures of bacterial strains were cultivated in broth medium at 37 °C for 24 h prior to testing. For the preparation of inoculum, the turbidity of the bacterial suspension was adjusted to 0.5 McFarland standard using a Densi-La-Meter II (Lachema, Brno, Czech) to obtain a final concentration of 10^8 CFU/mL.

4.6. Cell Cultures

Human colon cancer cells Caco-2 obtained from ATCC (Rockville, MD, USA) were propagated in Eagle’s Minimum Essential Medium (EMEM) obtained from Biowest (Nuaille, FR) supplemented with 10% fetal bovine serum, 1% sodium bicarbonate, 1% sodium pyruvate, 5 mM glutamine, 1% Minimum Essential Medium nonessential amino acids, and 1% penicillin-streptomycin solution (10,000 units/mL of penicillin and 10 mg/mL of streptomycin). The components for cells’ cultivation were purchased from Sigma-Aldrich. Cultures were incubated at 37 °C in a humidified atmosphere of 5% CO₂ in the air.

4.7. Antimicrobial Assay

The in vitro antibacterial potential of EOs, supercritical CO₂ extract, and volatile compounds was determined using a broth microdilution method according to the guidelines of the CLSI [63]. Each sample of volatile agents was dissolved in DMSO and diluted in MHB in a range of 2–1024 µg/mL using an automated pipetting platform Freedom EVO 100 equipped with a four-channel liquid handling arm (Tecan, Mannedorf, Switzerland). Plates were inoculated with bacterial suspension and incubated at 37 °C for 24 h sealed/nonsealed with vapor barrier EVA Capmat (Micronic, Aston, PA, USA). Bacterial growth was measured spectrophotometrically using a Multimode Reader Cytation 3 (BioTek Instruments, Winooski, VT, USA) at 405 nm. The MICs were determined as the lowest concentrations that inhibited bacterial growth by ≥80% compared with that of the agent-free growth control and expressed in microgram per milliliter. DMSO assayed as the negative control did not inhibit any of the strains tested. The susceptibilities of *C. albicans*, *P. aeruginosa*, and *S. aureus*, to fluconazole, ciprofloxacin, and oxacillin, respectively, and susceptibilities of *E. faecalis* and *E. coli* to tetracycline were checked as positive antibiotic controls [64]. All experiments were carried out in triplicate in three independent experiments and the results were expressed as median/modal MIC values. The multiplate design of broth microdilution assay when eight different samples were tested in one microtiter plate is described in Figure 3.

![Figure 3. Scheme of multiplate design of broth microdilution assay. Ns: *Nigella sativa*, Ci: *Cinnamomum iners*, Ae: *Alpinia elegans*, Xv: *Xanthostemon verdugonianus*, Tq: thymoquinone, Hq: hydroxyquinoline, C: capsaicin, Co: caryophyllene oxide—nine serial twofold dilutions of volatile agents tested, ATB: eight serial twofold dilutions of positive antibiotic control, G: growth control (inoculated broth, 100% growth of bacteria), S: sterility control (noninfected medium control, 0% growth of bacteria), X: empty wells (not used in data calculation).](image-url)
4.8. Antioxidant Assay

The DPPH radical scavenging assay was performed using a slightly modified method previously described by Sharma and Bhat [65]. Initially, EOs, supercritical CO₂ extract, and plant-derived compounds were dissolved in DMSO and diluted in methanol to obtain concentration of 1024 µg/mL. Subsequently, serial dilutions of each sample were prepared in absolute methanol (100 µL) in 96-well microtiter plates using the automated pipetting platform Freedom EVO 100. Trolox was used as a standard reference material and pure methanol as blank control. The radical-antioxidant reaction was started after adding 75 µL of absolute methanol and 25 µL of freshly prepared 1 mM DPPH in methanol to each well, creating a range of concentrations from 0.25 to 512 µg/mL (final volume of 200 µL). The plates were kept in the dark at room temperature for 30 min nonsealed/sealed with vapor barrier EVA Capmat. Absorbance was measured at 517 nm using Cytation 3 microplate reader. All tests were performed in triplicates at three independent experiments. Results were expressed as IC₅₀ with standard deviation (±SD) in microgram per milliliter. The single-plate design of DPPH assay when two samples in triplicates are tested in one microplate is presented in Figure 4.

![Figure 4](image-url)

Figure 4. Scheme of single-plate designs with triplicates of two samples in one microtiter plate for DPPH assay. Ns: *Nigella sativa*, Tq: thymoquinone, Ci: *Cinnamomum iners*, Hq: 8-hydroxyquinoline, Ae: *Alpinia elegans*, C: capsaicin, Xv: *Xanthostemon verdugonianus*, Co: caryophyllene oxide—nine serial twofold dilutions of volatile agents tested; BL: blank control (pure methanol, 0% of radical inhibition); TRX: six twofold dilutions of positive Trolox control.

4.9. Cytotoxicity Assay

Cell viability was measured using a modified MTT cytotoxicity assay originally developed by Mosmann [66]. Caco-2 cell lines were seeded in 96-well plates at a density of 2.5 × 10³ cells per well. After 24 h, the cells were treated with twofold serially diluted samples (0.25–512 µg/mL) of EOs, supercritical CO₂ extract, and compounds dissolved in DMSO and cultivated for 72 h with/without vapor barrier EVA Capmat (Figure 5). Thereafter, MTT reagent (1 mg/mL) in EMEM solution was added to each well and the plates were incubated for an additional 2 h at 37 °C in a humidified atmosphere of 5% CO₂ in the air. The media with MTT were removed and the intracellular formazan
product was dissolved in 100 µL of DMSO. The solvent used did not affect the viability of the intestinal cells. The absorbance was measured at 555 nm using a Tecan Infinite M200 spectrometer (Tecan Group, Mannedorf, Switzerland), and the viability was calculated in comparison to an untreated control. Three independent experiments (two replicates each) were performed for every test. The single-plate design when four different samples in duplicates are tested in one microtiter plate is shown in Figure 6. The results of the cytotoxicity effect were calculated by GraphPad Prism software (GraphPad Software, Inc., La Jolla, CA, USA) and expressed as average IC\textsubscript{50} value with standard deviation in microgram per milliliter. The levels of cytotoxic effects were classified according to the Special Program for Research and Training in Tropical Diseases (WHO—Tropical Diseases) [67] as cytotoxic (IC\textsubscript{50} < 2 µg/mL), moderately cytotoxic (IC\textsubscript{50} 2–89 µg/mL), and nontoxic (IC\textsubscript{50} > 90 µg/mL).

![Thiazolyl blue tetrazolium bromide cytotoxicity assay](image1)

Figure 5. Thiazolyl blue tetrazolium bromide cytotoxicity assay performed in (a) the microtiter plate sealed with vapor barrier EVA Capmat and (b) nonsealed microtiter plate covered with the lid only.

![Single-plate design](image2)

Figure 6. Scheme of single-plate designs with duplicates of four samples in one microtiter plate for thiazolyl blue tetrazolium bromide cytotoxicity assay. Ae: *Alpinia elegans*, Hq: 8-hydroxyquinoline, Xv: *Xanthostemon verdugonianus*, Co: caryophyllene oxide, Ns: *Nigella sativa*, Tq: thymoquinone, Ci: *Cinnamomum iners*, C: capsaicin—12 serial twofold dilutions of volatile agents tested.

4.10. GC/MS Analysis

For determination of the main components of EOs and supercritical CO\textsubscript{2} extract, GC/MS analysis was performed using the dual-column/dual-detector gas chromatograph Agilent GC-7890B system equipped with autosampler Agilent 7693, two columns, a fused-silica HP-5MS column (30 m × 0.25 mm, film thickness 0.25 µm, Agilent 19091s-433) and a DB-HeavyWAX (30 m × 0.25 mm, film thickness 0.25 µm, Agilent 122–7132), and a flame ionization detector (FID) coupled with single quadrupole mass selective detector Agilent MSD-5977B (Agilent Technologies, Santa Clara, CA, USA).
Operational parameters were as follows: helium as a carrier gas at 1 mL/min and injector temperature 250 °C for the both columns. The oven temperature was raised for the both columns after 3 min from 50 to 280 °C. Initially, after an isothermic period of 3 min, the heating rate was 3 °C/min until the temperature reached 120 °C. Subsequently, the heating velocity increased to 5 °C/min until it reached 250 °C, and after 5 min of holding time on 250 °C, the heating rate increased to 15 °C/min until it reached 280 °C. Heating was followed by the isothermic period of 20 min. The essential oils were diluted in n-hexane for GC/MS at a concentration of 20 µg/mL, and for a quantitative analysis, 1 µL of methyl octanoate was added as an internal standard. Precisely, 1 µL of each EO solution was injected in a split mode (split ratio 1:50). The mass detector was set to the following conditions: ionization energy 70 eV, ion source temperature 230 °C, scan time 1 s, and mass range 40–600 m/z.

Identification of the constituents was based on the comparison of their retention indices, retention times and spectra with the National Institute of Standards and Technology Library ver. 2.0.f (NIST, USA) [32], as well as with authentic standards (Sigma-Aldrich) and literature [33]. The RI were calculated for compounds separated by H5-5MS column using the retention times of n-alkanes series ranging from C8 to C40 (Sigma-Aldrich). For each EO and supercritical CO2 extract analyzed, the final number of compounds was calculated as the sum of components simultaneously identified using the both columns and the remaining constituents identified by individual column only. Quantitative data were computed as described in Cachet et al. [68] using the following formula:

\[m_i = \text{RRF}_{\text{pred}} m_{\text{MO}} \frac{A_i}{A_{\text{MO}}}, \]

where \(m_i \) is the mass of the compound \(i \) to be quantified, expressed in milligram per 1 kg of the plant dry weight (DWP); \(\text{RRF}_{\text{pred}} \) predicted relative response factor of compound \(i \), \(m_{\text{MO}} \) mass of methyl octanoate (internal standard, IS), \(A_i \) and \(A_{\text{MO}} \) are the peak areas of the analyte and the IS, respectively, determined by the FID. Moreover, relative percentage contents of identified components have been determined using the FID data and indicated for the both columns.

5. Conclusions

The results of experiments presented in this study clearly demonstrate that the vapors of VPDPs can significantly affect the results of standard microplate-based bioassays. In series of experiments using EVA Capmat sealed and nonsealed microplates, antimicrobial, antioxidant, and cytotoxic activities of three EOs from Philippine less explored plant species (\textit{A. elegans}, \textit{C. iners}, and \textit{X. verdugonianus}), one supercritical CO2 extract from \textit{N. sativa} and four plant compounds (capsaicin, caryophyllene oxide, 8-hydroxyquinoline, and thymoquinone) were evaluated. It was confirmed that vapor transition causes false-positive results of the bioassays performed in nonsealed microtiter plates. The microplate layout and a duration of the assay were demonstrated as the crucial aspects defining level of the results affinity by the vapors of volatile agents. In several cases, no antimicrobial activity was detected in sealed plates, however, certain grown-inhibitory effect was found in nonsealed plates. As well as in the cytotoxicity assay, significant differences in results were recorded between sealed and nonsealed plates. Due to the strong effect of the vapors of the most cytotoxic agents, toxicity of the samples in adjoining wells was not detected in nonsealed plates. Only capsaicin, 8-hydroxyquinoline, and thymoquinone showed some level of antioxidant activity, while IC\textsubscript{50} values of thymoquinone were the most affected by vapors. However, in DPPH assay, the influence of the vapors was not occurred to such an extent because this is a short-term test. Additionally, we reported biological activities and chemical composition of EOs from \textit{A. elegans} seeds and \textit{X. verdugonianus} leaves, which were, according to our best knowledge, analyzed for the first time. Due to our findings, certain modifications of the conventional bioassays performed in microtiter plates are necessary for evaluation of biological properties of the volatile agents (e.g., using of vapor barrier) in order to protect against vapor transition and to obtain reliable results.
Author Contributions: Coordination and performance of the antimicrobial and antioxidant activity testing and its related data analysis, the manuscript drafting, M.H.; performance of the GC/MS analysis and data analysis, G.A.; coordination and performance of the cytotoxicity assay and graphical data analysis, I.D.; coordination of the antioxidant activity testing, J.T.; coordination of the GC/MS analysis, K.U.; participation in the plant material collection, E.E.T.; conceptualization and coordination of the whole study and finalization of the manuscript, L.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Czech University of Life Sciences Prague (projects IGA 20205001, IGA 20205002) and European Regional Development Fund (project CZ.02.1.01/0.0/0.0/16_019/0000845).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bennett, J.W.; Inamdar, A.A. Are some fungal volatile organic compounds (VOCs) mycotoxins? Toxins 2015, 7, 3785–3804. [CrossRef] [PubMed]
2. Altındal, D.; Altındal, N. Plant volatile compounds in growth. In Volatiles and Food Security; Choudhary, D.K., Sharma, A.K., Agarwal, P., Varma, A., Tuteja, N., Eds.; Springer Nature: Singapore, 2017; pp. 1–13. [CrossRef]
3. Margetts, J. Aroma chemicals V: Natural aroma chemicals. In Chemistry and Technology of Flavors and Fragrances, 1st ed.; Rowe, D.J., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2005; pp. 169–198. ISBN 1-4051-1450-9.
4. Kumari, S.; Pundhir, S.; Priya, P.; Jeena, G.; Punetha, A.; Chawla, K.; Jafaree, Z.F.; Mondal, S.; Yadav, G. EssOilDB: A database of essential oils reflecting terpene composition and variability in the plant kingdom. Database 2014, 1–12. [CrossRef] [PubMed]
5. Damasceno, C.S.B.; Higaki, N.T.F.; Dias, J.D.G.; Miguel, M.D.; Miguel, O.G. Chemical composition and biological activities of essential oils in the family Lauraceae: A systematic review of the literature. Planta Med. 2019, 85, 1054–1072. [CrossRef] [PubMed]
6. Farias, D.P.; Neri-Numa, I.A.; de Araujo, F.E.; Pastore, G.M. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem. 2020, 306, 125630. [CrossRef]
7. Gilli, C.; He, Z.; But, P.P.; Schinnerl, J.; Valant, V.K.M.; Greger, H. Chemodiversity and biological activity of the genus Alpinia (Zingiberaceae). Planta Med. 2011, 77, PG71. [CrossRef]
8. Baptista-Silva, S.; Borges, S.; Ramos, O.L.; Pintado, M.; Sarmento, B. The progress of essential oils as potential therapeutic agents: A review. J. Essent. Oil Res. 2020, 32, 279–295. [CrossRef]
9. Islam, M.T.; Khan, M.; Mishra, S.K. An updated literature-based review: Phytochemistry, pharmacology and therapeautic promises of Nigella sativa L. Orient. Pharm. Exp. Med. 2019, 19, 115–129. [CrossRef]
10. Ghahramanloo, K.H.; Kamalideghhan, B.; Javar, H.A.; Widodo, R.T.; Majidzadeh, K.; Noordin, M.I. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction. Drug Des. Dev. Ther. 2017, 11, 2221–2226. [CrossRef]
11. Shaaban, H.A.E.; El-Ghorab, A.H.; Shibamoto, T. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res. 2012, 24, 203–212. [CrossRef]
12. Kokoska, L.; Kloucek, P.; Leuner, O.; Novy, P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019, 26, 1–38. [CrossRef]
13. Guzman, G.Q.; Dacanay, A.T.L.; Andaya, B.A.; Alejandro, G.J.D. Ethnopharmacological studies on the uses of Eschscholzia hirta in the treatment of dengue in selected indigenous communities in Pangasinan (Philippines). J. Intercult. Ethnopharmacol. 2016, 5, 239–243. [CrossRef] [PubMed]
14. Jachak, S.M.; Saklani, A. Challenges and opportunities in drug discovery from plants. Curr. Sci. 2007, 92, 1251–1257.
15. Kavanagh, A.; Ramu, S.; Gong, Y.; Cooper, M.A.; Blaskovich, M.A.T. Effects of microplate type and broth additives on microdilution MIC susceptibility assays. Antimicrob. Agents Chemother. 2019, 63, e01760-18. [CrossRef] [PubMed]
16. Casey, J.T.; O’Cleirigh, C.; Walsh, P.K.; O’Shea, D.G. Development of a robust microtiter plate-based assay method for assessment of bioactivity. J. Microbiol. Methods 2004, 58, 327–334. [CrossRef]
17. Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [CrossRef]
18. Bobo-Garcia, G.; Davidev-Pardo, G.; Arroqui, C.; Virseda, P.; Marin-Arroyo, M.R.; Navarro, M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J. Sci. Food Agric. 2015, 95, 204–209. [CrossRef]
19. Martin, A.; Clynes, M. Comparison of 5 microplate colorimetric assays for in vitro cytotoxicity testing and cell proliferation assays. *Cytotechnology* 1993, **11**, 49–58. [CrossRef]

20. Thielmann, J.; Muranyi, P.; Kazman, P. Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria *Escherichia coli* and *Staphylococcus aureus*. *Helikon* 2019, **5**, e01860. [CrossRef]

21. Lin, C.W.; Yu, C.W.; Wu, S.C.; Yih, K.H. DPPH free-radical scavenging activity, total phenolic contents and chemical composition analysis of forty-two kinds of essential oils. *J. Food Drug Anal.* 2009, **17**, 386–395. [CrossRef]

22. Al-Tamimi, M.A.; Rastall, B.; Abu-Reidah, I.M. Chemical composition, cytotoxic, apoptotic and antioxidant activities of main commercial essential oils in Palestine: A comparative study. *Medicines* 2016, **3**, 27. [CrossRef]

23. Houdkova, M.; Kokoska, L. Volatile antimicrobial agents and in vitro methods for evaluating their activity in the vapour phase: A review. *Planta Med.* 2020, **86**, 822–857. [CrossRef] [PubMed]

24. Al-Tamimi, M.A.; Rastall, B.; Abu-Reidah, I.M. Chemical composition, cytotoxic, apoptotic and antioxidant activities of main commercial essential oils in Palestine: A comparative study. *Medicines* 2016, **3**, 27. [CrossRef]

25. Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. *Curr. Med. Chem.* 2003, **10**, 813–829. [CrossRef] [PubMed]

26. Fisher, K.; Phillips, C. Potential antimicrobial uses of essential oils in food: Is citrus the answer? *Trends Food Sci. Technol.* 2008, **19**, 156–164. [CrossRef]

27. Novy, P.; Klouceck, P.; Rondevaldova, J.; Havlik, J.; Kourimska, L.; Kokoska, L. Thymoquinone vapour significantly affects the results of *Staphylococcus aureus* sensitivity tests using the standard broth microdilution method. *Fitoterapia* 2014, **94**, 102–105. [CrossRef] [PubMed]

28. Rondevaldova, J.; Novy, P.; Urban, J.; Kokoska, L. Determination of anti-staphylococcal activity of thymoquinone in combinations with antibiotics by checkerboard method using EVA capmat (TM) as a vapor barrier. *Arab. J. Chem.* 2017, **10**, 566–572. [CrossRef]

29. Houdkova, M.; Rondevaldova, J.; Doskocil, I.; Kokoska, L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. *Fitoterapia* 2017, **118**, 56–62. [CrossRef]

30. Karki, N.; Aggarwal, S.; Laine, R.A.; Greenway, F.; Losso, J.N. Cytotoxicity of juglone and thymoquinone against pancreatic cancer cells. *Chem. Biol. Interact.* 2020, **327**, 109142. [CrossRef]

31. Chraibi, M.; Farah, A.; Elamin, O.; Iraqui, H.I.; Fikri-Benbrahim, K. Characterization, antioxidant, antimycobacterial, antimicrobial effects of Moroccan rosemary essential oil, and its synergistic antimicrobial potential with carvacrol. *J. Adv. Pharm. Technol. Res.* 2020, **11**, 25–29. [CrossRef]

32. NIST WebBook Chemie. NIST Standard Reference Database Number 69. 2017. Available online: http://webbook.nist.gov (accessed on 29 September 2020).

33. Adams, R.P. *Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry*, 4th ed.; Allured Publ. Corp: Carol Stream, IL, USA, 2007.

34. Thellen, C.; Blaise, C.; Roy, Y.; Hickey, C. Round Robin testing with the *Selenastrum capricornutum* microplate toxicity assay. *Hydrobiologia* 1989, **188**, 259–268. [CrossRef]

35. Feyaerts, A.F.; Mathe, L.; Luyten, W.; Tournu, H.; Van Dyck, K.; Broekx, L.; Van Dijck, P. Assay and recommendations for the detection of vapour-phase-mediated antimicrobial activities. *Flavour Fragr. J.* 2017, **32**, 347–353. [CrossRef]

36. Van Vuuren, S.F.; Kamatou, G.P.P.; Viljoen, A.M. Volatile composition and antimicrobial activity of twenty commercial frankincense essential oil samples. *S. Afr. J. Bot.* 2010, **76**, 688–691. [CrossRef]

37. Piras, A.; Rosa, A.; Marongiu, B.; Porcedda, S.; Falconieri, D.; Dessi, M.A.; Ozcelik, B.; Koca, U. Chemical composition and in vitro bioactivity of the volatile and fixed oils of *Nigella sativa* L. extracted by supercritical carbon dioxide. *Ind. Crops Prod.* 2013, **46**, 317–323. [CrossRef]

38. Houdkova, M.; Doskocil, I.; Urbanova, K.; Tulin, E.K.C.B.; Rondevaldova, J.; Tulin, A.B.; Kudera, T.; Tulin, E.E.; Zeleny, V.; Kokoska, L. Evaluation of antipneumonic effect of Philippine essential oils using broth microdilution volatilization method and their lung fibroblasts toxicity. *Nat. Prod. Commun.* 2018, **13**, 1059–1066. [CrossRef]

39. Mustaffa, F.; Indurkar, J.; Islam, S.; Shah, M.; Mansor, S.M. An antimicrobial compound isolated from *Cinnamomum iners* leaves with activity against methicillin-resistant *Staphylococcus aureus*. *Molecules* 2011, **16**, 3037–3047. [CrossRef]

40. Visuththi, M. Anti-staphylococcal screening of selected Thai medicinal plants from Nakhon Ratchasima province. *Suranaree J. Sci. Technol.* 2016, **23**, 109–114.
41. Wang, Z.C.; Wei, B.Y.; Pei, F.N.; Yang, T.; Tang, J.; Yang, S.; Yu, L.F.; Yang, C.G.; Yang, F. Capsaicin derivatives with nitrothiophene substituents: Design, synthesis and antibacterial activity against multidrug-resistant S. aureus. Eur. J. Med. Chem. 2020, 198, 112352. [CrossRef]

42. Schmidt, E.; Bail, S.; Friedl, S.M.; Jirovetz, L.; Buchbauer, G.; Wanner, J.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Geissler, M. Antimicrobial activities of single aroma compounds. Nat. Prod. Commun. 2010, 5, 1365–1368. [CrossRef]

43. Srisung, S.; Suksrichavalit, T.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Antimicrobial activity of 8-hydroxyquinoline and transition metal complexes. Int. J. Pharmaco. 2013, 9, 170–175. [CrossRef]

44. Hariharan, P.; Paul-Satyaseela, M.; Gnanamani, A. In vitro profiling of antimethicillin-resistant Staphylococcus aureus activity of thymoquinone against selected type and clinical strains. Lett. Appl. Microbiol. 2016, 62, 283–289. [CrossRef]

45. Phuthdhawong, W.; Kawaree, R.; Sanjaiya, S.; Sengpracha, W.; Buddhasukh, D. Microwave-assisted isolation of essential oil of Cinnamomum iners Reinw. ex Bl: Comparison with conventional hydrodistillation. Molecules 2007, 12, 868–877. [CrossRef] [PubMed]

46. Naive, M.A.K.; Dalisay, J.A.G.P.; Maglangit, E.P.T.; Cafe, G.C.; Nuneza, O.M. Free radical scavenging effects of the Philippine endemic medicinal plant Alpinia elegans (Zingiberaceae). Gard. Bull. Singap. 2019, 71, 435–444. [CrossRef]

47. Solati, Z.; Baharin, B.S.; Bagheri, H. Antioxidant property, thymoquinone content and chemical characteristics of different extracts from Nigella sativa L. seeds. J. Am. Oil Chem. Soc. 2014, 91, 295–300. [CrossRef]

48. Karakaya, S.; Yilmaz, S.V.; Ozdemir, O.; Koca, M.; Pinar, N.M.; Demirci, B.; Yildirim, K.; Sytar, O.; Turkez, H.; Baser, K.H.C. A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae). J. Essent. Oil Res. 2020, 10. [CrossRef]

49. Nascimento, P.L.A.; Nascimento, T.C.E.S.; Ramos, S.M.; Silva, G.R.; Gomes, J.E.G.; Falcao, R.E.A.; Moreira, K.A.; Porto, A.L.F.; Silva, T.M.S. Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta). Molecules 2014, 19, 5434–5447. [CrossRef]

50. Cherdtrakulkiat, R.; Boonpangrak, S.; Sinthupoom, N.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Derivatives (halogen, nitro and amino) of 8-hydroxyquinoline with highly potent antimicrobial and antioxidant activities. Biochem. Biophys. Rep. 2016, 6, 135–141. [CrossRef]

51. Yildiz, S.; Turan, S.; Kiralan, M.; Ramadhan, M.F. Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J. Food Meas. Charact. 2020, 16, 1121–1130. [CrossRef]

52. Mustafa, F.; Indurkar, J.; Ismail, S.; Mordi, M.N.; Ramanathan, S.; Mansor, S.M. Antioxidant capacity and toxicity screening of Cinnamomum iners standardized leaves methanolic extract. Int. J. Pharmocol. 2010, 6, 888–895. [CrossRef]

53. Baharetha, H.M.; Nassar, Z.D.; Aisha, A.F.; Ahamed, M.B.K.; Al-Suied, F.S.R.; Kadir, M.O.A.; Ismail, Z.; Majid, A.M.S.A. Proapoptotic and antimetastatic properties of supercritical CO2 extract of Nigella sativa Linn. against breast cancer cells. J. Med. Food 2013, 16, 1121–1130. [CrossRef]

54. Richeux, F.; Cascante, M.; Ennamily, R.; Saboureau, D.; Creppy, E.E. Cytotoxicity and genotoxicity of capsaicin in human neuroblastoma cells SHSY-5Y. Arch. Toxicol. 1999, 33, 403–409. [CrossRef]

55. Ambroz, M.; Bousova, I.; Skarka, A.; Hanusova, V.; Králova, V.; Matouškova, P.; Sotáková, B.; Skalova, L. The influence of sesquiterpenes from Myrrica rubra on the antiproliferative and pro-oxidative effects of doxorubicin and its accumulation in cancer cells. Molecules 2015, 20, 15343–15358. [CrossRef]

56. Reis, D.C.; Pinto, M.C.X.; Souza-Fagundez, E.M.; Rocha, L.F.; Pereira, V.R.A.; Melo, C.M.L.; Beraldo, H. Investigation on the pharmacological profile of antimony(III) complexes with hydroxyquinoline derivatives: Anti-trypanosomal activity and cytotoxicity against human leukemia cell lines. Biometals 2011, 24, 595–601. [CrossRef]

57. Norsiharina, I.; Maznah, I.; Aied, A.A.; Ghany, A.N. Thymoquinone rich fraction from Nigella sativa and thymoquinone are cytotoxic towards colon and leukemic carcinoma cell lines. J. Med. Plant Res. 2011, 5, 3359–3366.

58. Son, L.C.; Dai, D.N.; Thai, T.H.; Huyen, D.D.; Thang, T.D.; Ogunwande, I.A. The leaf essential oils of four Vietnamese species of Cinnamomum (Lauraceae). J. Essent. Oil Res. 2013, 25, 267–271. [CrossRef]

59. Venkatachallam, S.K.T.; Pattekhan, H.; Divakar, S.; Kadimi, U.S. Chemical composition of Nigella sativa L. seed extracts obtained by supercritical carbon dioxide. J. Food Sci. Technol. 2010, 47, 598–605. [CrossRef]
60. Machmudah, S.; Shiramizu, Y.; Goto, M.; Sasaki, M.; Hirose, T. Extraction of *Nigella sativa* L. using supercritical CO₂: A study of antioxidant activity of the extract. *Sep. Sci. Technol.* **2005**, *40*, 1267–1275. [CrossRef]
61. Tissot, E.; Rochat, S.; Debonneville, C.; Chaintreau, A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. *Flavour Fragr. J.* **2012**, *27*, 290–296. [CrossRef]
62. European Directorate for the Quality of Medicines and Healthcare (EDQM). Essential oils in herbal drugs (Monograph 2. 8.12.). In *European Pharmacopoeia*, 8th ed.; EDQM: Strasbourg, France, 2014; pp. 273–274.
63. Clinical and Laboratory Standards Institute (CLSI). *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard*, 9th ed.; CLSI: Wayne, PA, USA, 2012.
64. Clinical and Laboratory Standards Institute (CLSI). *Performance Standards for Antimicrobial Susceptibility Testing;* 25th Informational Supplement M100-S25; CLSI: Wayne, PA, USA, 2015.
65. Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. *Food Chem.* **2009**, *113*, 1202–1205. [CrossRef]
66. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. *J. Immunol. Methods* **1983**, *65*, 56–63. [CrossRef]
67. Special Programme for Research and Training in Tropical Diseases. Available online: http://www.who.int/tdr/grants/workplans/en/cytotoxicity_invitro.pdf/ (accessed on 17 July 2020).
68. Cachet, T.; Brevard, H.; Chaintreau, A.; Demyttenaere, J.; French, L.; Gassenmeier, K.; Joulain, D.; Koenig, T.; Leijts, H.; Liddle, P.; et al. IOFI recommended practice for the use of predicted relative-response factors for the rapid quantification of volatile flavouring compounds by GC-FID. *Flavour Fragr. J.* **2016**, *31*, 191–194. [CrossRef]

Sample Availability: Samples of the compounds are available from the authors.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).