ISOLATION OF MULTIPOTENT MESENCHIMAL STROMAL CELLS FROM MINERAL HUMAN ENDOMETRIUM BIOPSY

A. V. Zlatska 1,2 , A. E. Rodnichenko 1,2 , O. S. Gubar 2,3 , D. O. Zubov 1,2 , R. G. Vasyliev 1,2 , S. M. Novikova 1
The aim of the research was establishing a cell culture from a minimal human endometrial biopsy and assessment its conformity with the criteria for multipotent mesenchymal stromal cells. It was shown that cells in the culture possess adhesion to plastic, have characteristic fibroblast-like morphology, express CD73+CD90+CD105+, and are negative for hematopoietic markers (CD34-CD45-HLA-DR-), have the ability to directed adipogenic, osteogenic and chondrogenic differentiation. Due to these properties, the cell population isolated from the minimal endometrial biopsy can be attributed to multipotent mesenchymal stromal cells.

Key words: human endometrium, multipotent mesenchymal stromal cells.
4. Haydukov S.N., Boiarskiy Y.K., Palchenko N.A. Modern view on the problem of receptivity and thin endometrium in ART programs. *Problemy reproduktsiyi*. 2013, V. 4, P. 51–60. (In Russian).

5. Murphy M.B., Moncivais K., Caplan A.I. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. *Exp. Mol. Med*. 2013, V. 45, P. 54. https://doi.org/10.1038/emm.2013.94

6. Doorn J., Moll G., Le Blanc K. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. *Tissue Eng.* 2012, 18(2), 101–115. https://doi.org/10.1089/ten.teb.2011.0488

7. Caplan A.I. Why are MSCs therapeutic? *New data: new insight*. 2009, V. 217, P. 318–324. https://doi.org/10.1002/path.2469

8. Gncechi M1, Melo LG. Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. *Meth. Mol. Biol.* 2009, V. 482, P. 281–294. https://doi.org/10.1007/978-1-59745-060-7_18
9. Dhanasekaran M., Indumathi S., Poojitha R., Kanmani A., Rajkumar J.S., Sudarsanam D.

Plasticity and banking potential of cultured adipose tissue derived mesenchymal stem cells. *Cell Tissue Bank*. 2013, 14(2), 303–315. https://doi.org/10.1007/s10561-012-9311-7

10. Karaöz E., Doğan B. N., Aksoy A., Gacar G., Akyüz S., Ayhan S., Genç Z. S., Yürük S., Duruksu G., Demircan P. C., Sariboyacı A. E. Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. *Histochem. Cell Biol*. 2010, 133(1), 95–112. https://doi.org/10.1007/s00418-009-0646-5

11. Manini I., Gulino L., Gava B., Pierantozzi E., Curina C., Rossi D., Brata A., D'Aniello C., Sorrentino V. Multipotent progenitors in freshly isolated and cultured human mesenchymal stem cells: a comparison between adipose and dermal tissue. *Cell Tissue Res*. 2011, 344(1), 85–95. https://doi.org/10.1038/emboj.2012.301

12. Romanov Y. A., Sviestskskaya V. A., Smirnov V. N. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. *Stem Cells*. 2003, 21(1), 105–10. https://doi.org/10.1634/stemcells.21-1-105

13. Fukuchi Y., Nakajima H., Sugiyama D., Hirose I., Kitamura T., Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential.
Stem Cells
.2004, 22(5), 649–58. https://doi.org/10.1634/stemcells.22-5-649

14. Sasson I. E., Taylor H. S. Stem cells and the pathogenesis of endometriosis. Ann. N. Y. Acad. Sci. 2008, V. 1127, P. 106–15. https://doi.org/10.1196/annals.1434.014

15. Padykula H. A. Regeneration in the primate uterus: the role of stem cells. Ann. N. Y, Acad. Sci. 1991, V. 622, P. 47–56.

16. Gargett C. E. Stem cells in gynaecology. Aust. N. Z. J. Obstet. Gynecol.,2004, 44(5), 380-386. https://doi.org/10.1111/j.1749-6632.2011.05969.x

17. Gargett C. E. Identification and characterisation of human endometrial stem/progenitor cells.

Austr. New Zealand J. Experimental articles 81Obstetrics Gynecol. 2006, V. 46, P. 250–253.

https://doi.org/10.1530/REP-07-0428

18. Xiaolong Meng. Endometrial regenerative cells: A novel stem cell population. J. Transl. Med. .
2007, V. 5, P. 57. https://doi.org/10.1186/1479-5876-5-57

19. Dominici M1, Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy.

2006, 8(4), 315–317. https://doi.org/10.1080/14653240600855905

20. Prockop D., Phinney D., Blundell B. Mesenchymal stem cells: methods and protocols. Meth. Mol. Biol 2008, V. 449, P. 192.

21. Gimble J. M., Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003, 5(5), 362–369. https://doi.org/10.1080/14653240310003026

22. Baer P., Geiger H. Adipose-Derived Mesenchymal Stromal/Stem Cells: Tissue Localization, Characterization, and Heterogeneity. Stem Cells Int. 2012, V. 2012, P. 1–11. https://doi.org/10.1155/2012/812693

23. Timper K., Seboek D., Eberhardt M. “Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun . 2006, 341(4), 1135–1140.
24. Pittenger M., Mackay A., Beck S., Jaiswal R., Douglas R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. *Science*. 1999, 284(5411), 143–147. https://doi.org/10.1126/science.284.5411.143

25. Kilroy G. E., Foster S. J., Wu X. et al. “Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors,” *J. Cell. Physiol.* 2007, 212(3), 702–709.

{/spoiler}