Objective: To determine new body mass index (BMI) reference values to classify the nutritional status of children aged six to ten years old from the city of Montes Claros (state of Minas Gerais), Southeast Brazil.

Methods: The sample consisted of 3,863 individuals from both genders. Body mass and height were measured to determine the BMI. We adopted the Lambda, Mu, and Sigma (LMS) method to obtain the cut-off points. After that, each stratum curve was smoothed using quartic polynomials by gender. Average interpolation was used to determine the biannual distribution values. We calculated the 3rd, 85th, and 95th centiles to classify underweight, overweight, and obesity, respectively, according to gender and age.

Results: After tabulating the LMS parameters at biannual intervals by gender, we plotted a graphic with seven centiles of BMI distribution and calculated the new BMI parameters for children aged 6–10 years old from the city of Montes Claros. The cut-off values for underweight, overweight, and obesity classification were, respectively, 17.5, 25 and 30 kg/m².

Conclusions: For the studied children, the use of traditional BMI references may result in the overestimation of underweight and underestimation of overweight and obesity. Studies should be carried out with periodic updates, respecting the characteristics of each location in order to use BMI reference values to classify the nutritional status of children and adolescents.

Keywords: Body mass index; Overweight; Obesity; Childhood obesity; Nutritional status.
INTRODUÇÃO

A obesidade é considerada um dos principais problemas de saúde pública em todo o mundo, alcançando proporções crescentes, independentemente da classe social, sexo e faixa etária. Estimativas anteriores indicaram que a população obesa alcançaria 1,5 bilhão de pessoas em 2012, com perspectivas de crescimento ao longo do tempo no mundo inteiro. Estudos revelam que a obesidade praticamente dobrou globalmente entre 1980 e 2008, e que entre 1980 e 2013 a proporção de adultos com índice de massa corporal (IMC) correspondente a 25 kg/m² ou mais aumentou de 29 para 37% entre os homens e de 30 a 38% entre as mulheres.

Em geral, a prevalência de obesidade no Brasil aumentou em média 53% entre os anos 1970 e o final dos anos 90 e, em algumas capitais brasileiras, a proporção de pessoas com sobrepeso cresceu de 42,7 para 46,6% entre 2006 e 2009, ao passo que o número de obesos aumentou de 11,4 para 13,9%. Nesse contexto, a obesidade infantil cresceu exponencialmente na maior parte do mundo, inclusive no Brasil. Dados da Pesquisa de Orçamento Familiar de 2008–2009 indicam que 33,5% das crianças de cinco a nove anos estavam acima do índice de massa corporal (IMC) correspondente a 25 kg/m² ou mais, sendo 14,3% eram obesas.9

Além do aumento do risco de desenvolver doenças crônicas associadas ao excesso de peso, como pressão alta, diabetes tipo 2, problemas ortopédicos e certos tipos de câncer, é provável que crianças com excesso de peso se tornem adultos obesos e com maior risco de desenvolver comorbidades.

Diante dessa realidade, várias medidas e valores de referência estão sendo utilizados para avaliar o sobrepeso e a obesidade infantis. Consequentemente, o IMC continua sendo um consenso para a classificação das razões de peso corporal na população em geral, pois apresenta alta correlação com os índices de obesidade adulta. O IMC é uma medida simples, reduzindo custos financeiros e sendo aplicável a estudos populacionais.

No entanto, o IMC apresenta uma variação significativa entre idade e sexo na infância e adolescência, exigindo o uso de pontos de corte específicos de acordo com essas variáveis. Consequentemente, diferentes critérios de classificação do IMC foram desenvolvidos e implementados em todo o mundo, inclusive no Brasil.

Considerando que o Brasil é um país de tamanho continental, com características geográficas distintas, marcadas pela pluralidade étnica e cultural, além de grande desigualdade socioeconômica, e que Montes Claros, uma cidade do norte de Minas Gerais localizada na região sudeste do Brasil (a mais desenvolvida no país), apresenta indicadores socioeconômicos mais próximos aos das regiões menos favorecidas (Norte e Nordeste), é possível que os valores de referência do IMC para a população infantil dessa cidade sejam diferentes daqueles adotados nacional e internacionalmente. Nesse cenário, o presente estudo tem como objetivo determinar novos valores de referência do IMC para classificar o estado nutricional de crianças de seis a 10 anos na cidade de Montes Claros, Minas Gerais, Brasil.

MÉTODO

Este é um estudo transversal de um segmento com análise quantitativa dos dados. Seguimos os padrões de Fortalecimento dos Relatórios de Estudos Observacionais em Epidemiologia (Strengthening the Reporting of Observational Studies in Epidemiology - STROBE).

Os dados foram coletados em 16 escolas (10 públicas e seis particulares) localizadas na cidade de Montes Claros, no período de fevereiro a dezembro de 2014. A seleção e o recrutamento escolar ocorreram por meio de sorteio de uma lista numerada. Antes da aprovação do projeto pelo Comitê de Ética em Pesquisa em Seres Humanos, enviámos uma carta de esclarecimento juntamente com um pedido de autorização à Secretaria Municipal de Educação de Montes Claros para obter permissão para visitar as escolas selecionadas. Posteriormente, uma carta com o mesmo conteúdo foi entregue ao diretor de cada escola, solicitando autorização para a realização da pesquisa. Além disso, os responsáveis pelas crianças selecionadas assinaram o Termo de Consentimento Livre e Esclarecido (TCLE), permitindo sua participação na amostra do estudo. As visitas escolares e a coleta de dados sempre ocorreram durante as aulas de Educação Física.

Os estudantes selecionados foram devidamente matriculados e atenderam aos critérios de inclusão (idade entre seis e 9,9 anos e TCLE preenchido e assinado) e exclusão (participavam de atividades físicas prévias à coleta de dados).

A amostra foi determinada pela estratificação dos estudantes de um total de 81.088 alunos, do ensino fundamental ao ensino médio, resultando em 30.625 indivíduos no grupo de seis a 9,9 anos e TCLE preenchido e assinado) e exclusão (participavam de atividades físicas prévias à coleta de dados).

O tamanho da amostra foi estabelecido com um erro de três pontos percentuais, um intervalo de confiança de 95% e um efeito de desenho de 1,5 (deff), com um incremento de três pontos percentuais, um intervalo de confiança de 95% e um efeito de desenho de 1,5 (deff), com um incremento de 10% para possíveis perdas e/ou reclusas. Assim, foram selecionadas 4.480 crianças, das quais 329 foram excluídas devido à ausência durante a coleta...
de dados. Portanto, a amostra foi composta por 4.151 alunos, sendo 1.654 de escolas particulares e 2.497 de escolas públicas.

Além da autorização dos responsáveis pelas crianças, todos os participantes foram informados sobre os procedimentos e objetivos do estudo, cumprindo a Resolução nº 466/12 do Conselho Nacional de Saúde e conforme o parecer nº 798.138 do Comitê de Ética em Pesquisa da Universidade Estadual de Montes Claros — UNIMONTES.

As variáveis antropométricas foram determinadas de acordo com Lohman, Roche e Martorell.14 Para a coleta de dados, utilizou-se uma balança digital com precisão de 0,1 kg e um estadiômetro com precisão de 0,1 cm.

- **Massa corporal:** embora a massa corporal deva ser preferencialmente medida com os indivíduos sem roupas, decidimos restringir as vestimentas a roupas leves, com os participantes vestindo trajes de banho ou shorts, camisas de manga curta e com os pés descalços.
- **Altura:** os indivíduos estudados, vestindo as roupas mencionadas acima, ficaram próximos ao estadiômetro, com a cabeça ajustada pelo pesquisador de acordo com o Plano Horizontal de Frankfurt.14
- **IMC:** esse índice foi calculado dividindo a massa corporal (em quilogramas) pela altura (em metros) ao quadrado;14 massa corporal/altura².

Obtivemos os valores críticos do IMC para a população de seis a 10 anos da cidade de Montes Claros, adotando o mesmo método usado para construir o padrão internacional de IMC proposto pela Força-Tarefa Internacional para Obesidade (International Obesity Task Force - IOTF).15

Seguimos o método LMS, que consiste na transformação Box-Cox de valores positivos de dados independentes para levar à uma distribuição normal. A amostra foi dividida por sexo e faixa etária com pontos de corte a cada seis meses, e foram excluídos valores de IMC menores ou maiores que dois desvios-padrão da média de cada grupo, preservando o número de indivíduos adequado ao método LMS.16 O valor não convencional de ± 2 desvios-padrão foi escolhido para preservar a homogeneidade da amostra.17 Dessa forma, a amostra sofreu uma redução de 288 indivíduos, totalizando 3.863 participantes estratificados por sexo e idade.

Calculamos os parâmetros do LMS para cada faixa etária, com L representando o coeficiente (Box-Cox) usado para transformar os valores do IMC para obter uma distribuição normal dos dados para cada estrato. M indica o valor mediano do IMC em cada estrato, e S é o coeficiente de variação de cada estrato. As curvas de cada estrato foram então suavizadas usando polinômios quadráticos para cada gênero, e os valores de distribuição semestral foram determinados pela interpolação média. Após a obtenção dos três parâmetros, construímos a curva para cada centíl usando a fórmula proposta por Cole:16

\[C100\alpha(t) = M(t) [1 + L(t)S(t)Z_{\alpha}] / L(t) \]

Em que \(Z_{\alpha} \) é o desvio normal para a área \(\alpha \); \(C100\alpha \) é o centíl correspondente a \(Z_{\alpha} \); \(t \) é a idade em meses; e \(L, M, S \) e \(C100\alpha \) indicam os valores para cada curva na idade \(t \). Valores \(z \) equivalentes aos percentis 3, 85 e 95 foram utilizados para determinar a classificação do estado nutricional – abaixo do peso, sobrepeso e obesidade, respectivamente.

Inicialmente, o método LMS exigia que os dados fossem inseridos e analisados pelo software Minitab 18.0®, desenvolvido pela Minitab Inc. (State College, Pensilvânia, EUA), que fornece as transformações Box-Cox, mediana e coeficiente de variação de cada um. estrato. Utilizamos o software SPSS 22.0®, desenvolvido pela IBM (Armonk, Nova York, EUA) para caracterização da amostra em relação aos valores mínimo, máximo, médio, desvio padrão e percentil, e o software Matlab®, desenvolvido pela MathWorks Inc. (Natick, Massachusetts, EUA) para suavização e construção de curvas.

RESULTADOS

Embora a amostra inicialmente tivesse 4.151 indivíduos, a exclusão de alguns participantes foi necessária devido à significativa variabilidade do IMC causada por fatores biológicos. Portanto, removemos valores acima ou abaixo de dois desvios-padrão. No entanto, o pequeno número de indivíduos excluídos evidencia a qualidade dos dados e preserva a representatividade na cidade de Montes Claros.

A amostra foi estratificada por sexo e idade em intervalos de 6 meses, resultando em um número médio por faixa etária de 265 indivíduos do sexo masculino (mínimo de 197 e máximo de 330) e 253 do sexo feminino (mínimo de 184 e máximo de 329). As Tabelas 1, 2 e 3 e a Figura 1 apresentam esses valores.

A Tabela 1 mostra os valores descritivos do IMC. Os valores crescentes do IMC foram associados ao aumento da idade em ambos os sexos. Os meninos tiveram médias ligeiramente mais altas em comparação às das meninas.

A Tabela 2 indica os valores LMS utilizados para obter os novos IMCs para a classificação do estado nutricional. A Tabela 3 apresenta o IMC de acordo com sexo e idade, com três parâmetros de classificação. O terceiro percentil correspondeu a indivíduos com baixo peso e o 85º a indivíduos com exceso de peso. Assim, todos os participantes com IMC entre os percentis 3º e 85º foram classificados como tendo peso normal. O percentil 95º indica obesidade. A Figura 1 apresenta...
Tabela 1 Valores descritivos do índice de massa corporal (kg/m²) segundo sexo e faixa etária em crianças de seis a dez anos da cidade de Montes Claros – Minas Gerais.

Idade (anos)	Mínimo	Máximo	Média	Desvio padrão
Sexo masculino				
6,0 — 6,5 (n=243)	12,15	18,88	15,35	1,59
6,5 — 7,0 (n=261)	12,33	19,38	15,56	1,58
7,0 — 7,5 (n=237)	12,48	19,48	15,70	1,58
7,5 — 8,0 (n=206)	12,86	19,17	15,81	1,59
8,0 — 8,5 (n=251)	13,24	19,85	16,00	1,64
8,5 — 9,0 (n=278)	13,52	20,19	16,14	1,65
9,0 — 9,5 (n=301)	13,70	20,92	16,39	1,71
9,5 — 10,0 (n=187)	14,20	24,72	17,31	2,36
Sexo feminino				
6,0 — 6,5 (n=201)	12,00	18,77	15,22	1,61
6,5 — 7,0 (n=306)	12,19	19,02	15,50	1,66
7,0 — 7,5 (n=236)	12,33	19,16	15,55	1,61
7,5 — 8,0 (n=221)	12,48	19,27	15,68	1,60
8,0 — 8,5 (n=224)	13,77	19,44	15,95	1,56
8,5 — 9,0 (n=238)	13,97	19,57	16,09	1,54
9,0 — 9,5 (n=294)	14,12	19,72	16,18	1,47
9,5 — 10,0 (n=179)	14,34	19,84	16,36	1,47

IMC: índice de massa corporal.

Tabela 2 Valores do LMS para distribuição do índice de massa corporal (kg/m²) na população de Montes Claros com idades entre seis e dez anos, de acordo com sexo e faixa etária.

Idade (anos)		Sexo masculino		Sexo feminino		
	L	M	S	L	M	S
6,0 — 6,5 (n=243)	-1,34	15,4978	0,0922	-1,38	15,3542	0,0942
6,5 — 7,0 (n=261)	-1,41	15,6669	0,0933	-1,42	15,5713	0,0982
7,0 — 7,5 (n=237)	-1,45	15,7206	0,0963	-1,45	15,6713	0,1009
7,5 — 8,0 (n=206)	-1,47	15,8093	0,0991	-1,47	15,7769	0,1048
8,0 — 8,5 (n=251)	-1,49	15,9507	0,1017	-1,49	16,0145	0,1050
8,5 — 9,0 (n=278)	-1,51	16,2252	0,1077	-1,52	16,3297	0,1107
9,0 — 9,5 (n=301)	-1,48	16,3297	0,1107	-1,48	16,3297	0,1107
9,5 — 10,0 (n=187)	-1,43	16,2083	0,1195	-1,43	16,2083	0,1195
o comportamento da curva de percentil do IMC em cada faixa etária por gênero.

DISCUSSÃO
Este estudo identificou que os valores críticos do IMC para crianças de seis a 10 anos na cidade de Montes Claros, bem como a respectiva classificação, diferem daqueles estabelecidos pelas diretrizes internacionais e nacionais. Essa situação também pode ocorrer em outras regiões, provavelmente devido à diversidade de características geográficas, culturais e até biológicas dos indivíduos.

O IMC é rotineiramente usado como uma ferramenta para monitorar o processo de desenvolvimento das crianças, bem como classificar seu estado nutricional.18,19 Por outro lado, vale ressaltar que o IMC é afetado pela dinâmica do processo de desenvolvimento e, por isso, não deve ser usado da mesma maneira que é usado em adultos. Além disso, o IMC em crianças deve ser interpretado com cautela, pois não indica necessariamente excesso de gordura corporal, sendo as medidas de composição corporal mais sensíveis nesse sentido.18,19

Os valores de referência do IMC são considerados uma ferramenta adequada para classificar o estado nutricional de crianças e adolescentes. No entanto, procedimentos estatísticos que fornecem suporte e robustez são necessários para que esses valores mostrem especificidade de acordo com a população de referência.

Portanto, o uso do método LMS proposto por Cole et al.16 parece suficiente para construir tabelas com valores de referência específicos do IMC de acordo com sexo e idade. Dessa forma, o estudo, utilizando uma amostra final de 3.863 estudantes de seis a 10 anos de ambos os sexos, propôs o estabelecimento de novos valores de referência para a população de Montes Claros pelo método mencionado.

Katzmarzyk et al.20 destacam que a obesidade infantil resulta de uma interação complexa de múltiplos fatores ao longo do tempo e que a contribuição de cada um desses fatores para a obesidade pode não ser a mesma em diferentes regiões do mundo. Vários níveis de influência, como políticas locais e nacionais, e inúmeras configurações comportamentais culturalmente específicas afetam esses fenômenos. Esse argumento justifica o uso de valores de referência do IMC ou de outros

Tabela 3 Valores do índice de massa corporal (kg/m²) como critério para classificação de baixo peso, sobrepeso e obesidade na população de Montes Claros com idades entre seis e dez anos, de acordo com sexo e idade.

Idade (anos)	Sexo masculino		
	BP	SP	OB
6,0 — 6,5 (n=243)	13,26	17,17	18,37
6,5 — 7,0 (n=261)	13,39	17,39	18,64
7,0 — 7,5 (n=237)	13,39	17,52	18,83
7,5 — 8,0 (n=206)	13,41	17,68	19,06
8,0 — 8,5 (n=251)	13,48	17,90	19,35
8,5 — 9,0 (n=278)	13,47	18,04	18,58
9,0 — 9,5 (n=301)	13,60	18,35	19,96
9,5 — 10,0 (n=187)	13,62	18,53	20,21

Idade (anos)	Sexo feminino		
	BP	SP	OB
6,0 — 6,5 (n=201)	13,10	17,06	18,29
6,5 — 7,0 (n=306)	13,22	17,39	18,72
7,0 — 7,5 (n=236)	13,25	17,56	18,96
7,5 — 8,0 (n=221)	13,27	17,77	19,26
8,0 — 8,5 (n=224)	13,25	17,91	19,50
8,5 — 9,0 (n=238)	13,28	18,14	18,81
9,0 — 9,5 (n=294)	13,29	18,32	20,07
9,5 — 10,0 (n=179)	13,34	18,59	20,43

BP: baixo peso; SP: sobrepeso; OB: obesidade.
Índices antropométricos específicos de cada região para a classificação do estado nutricional.

Avaliações sobre o processo de crescimento somático determinado por índices antropométricos são essenciais, principalmente em relação ao monitoramento do estado nutricional e à identificação de possíveis alterações no estado de saúde da população pediátrica. Nesse sentido, os valores de referência auxiliam na avaliação do crescimento e do estado nutricional, como

Figura 1 Distribuição centil das curvas de índice de massa corporal em crianças (meninos e meninas) de Montes Claros — Minas Gerais.
sobrepeso e obesidade em crianças e adolescentes. No entanto, o padrão de crescimento muda com o tempo e são necessárias atualizações regulares sobre esses valores de referência.

Nas últimas décadas, diversas metodologias foram desenvolvidas e implementadas para estabelecer pontos de corte de índices antropométricos para crianças e adolescentes, a fim de destacar um certo padrão de crescimento e estado nutricional em populações pediátricas de diferentes países. Entre elas, o método LMS apresentado por Cole & Green é um procedimento estatístico robusto, utilizando valores percentuais para variáveis antropométricas que normalmente não são distribuídas na população.

O método LMS consiste em três parâmetros, Lambda (L), Mu (M) e Sigma (S), com L correspondendo à potência lambda de Box-Cox, M à mediana dos valores apresentados em um determinado grupo e S ao coeficiente de variação. A IOTF também adotou essa metodologia para propor valores de referência para a classificação do IMC em crianças e adolescentes, e Conde e Monteiro a utilizaram para determinar pontos de corte do IMC para avaliar o estado nutricional de crianças e adolescentes brasileiros.

Os valores de IMC aqui apresentados para cada sexo e faixa etária são diferentes dos pontos de corte estabelecidos em outros estudos, que propõem determinar um parâmetro para a classificação do estado nutricional de crianças e adolescentes. Essas diferenças estão presentes em vários estudos que objetivaram comparar os desempenhos e as especificidades dos valores de referência estabelecidos pelo Centro de Controle e Prevenção de Doenças (CDC), IOTF, Conde e Monteiro, Organização Mundial da Saúde (OMS), entre outros.

As diferenças entre as propostas tornam-se evidentes quando comparamos diretamente os valores encontrados no presente estudo com os relatados pelos sistemas de classificação nacionais e internacionais. No caso da investigação realizada por Conde e Monteiro, que estabelece os valores de classificação do IMC para crianças e adolescentes brasileiros, a maioria dos valores de baixo peso é menor que os apresentados nesta pesquisa, enquanto os valores de sobrepeso e obesidade são maiores.

Quanto aos pontos de corte propostos pela IOTF, todos os dados sobre sobrepeso e obesidade referentes às mesmas faixas etárias de ambos os sexos são superiores aos sugeridos aqui para a população de Montes Claros — Minas Gerais.

Comparados ao CDC, os valores para meninas de seis a 10 anos de Montes Claros são mais baixos para sobrepeso e obesidade. Entre os meninos, encontramos uma variação: naqueles com até 7,5 anos, os pontos de corte para excesso de peso são maiores em crianças de Montes Claros, enquanto todos os valores do CDC são maiores para a obesidade.

Leal et al. testaram e compararam a especificidade dos sistemas de classificação do IMC para crianças e adolescentes de acordo com os valores propostos pela OMS, IOTF, e Conde e Monteiro. Os autores utilizaram uma amostra de crianças de sete a 10 anos de idade de Santa Catarina, Brasil, e identificaram que todas as abordagens são eficazes na avaliação de sobrepeso e obesidade infantis. No entanto, a referência brasileira apontou para um maior equilíbrio na avaliação de indivíduos com sobrepeso, sugerindo que aspectos regionais poderiam explicar o melhor desempenho dos valores propostos por Conde e Monteiro.

Em contrapartida, Oliveira et al. revelaram que os pontos de corte recomendados pela OMS são mais sensíveis à identificação da obesidade em comparação com outros critérios, como os estipulados pelo CDC e pelo Centro Nacional de Estatísticas de Saúde (National Center for Health Statistics - NCHS). Nesse caso, enfatizamos que a proposta da OMS foi revisada e atualizada em 2007, demonstrando a necessidade de atualizações periódicas sobre os valores de referência.

Além disso, Kêkê et al. compararam o IMC de crianças e adolescentes franceses de quatro a 12 anos com referências da OMS, IOTF, e a proposta francesa de classificação do IMC para crianças e adolescentes. No geral, os valores da OMS levaram à uma superestimação de sobrepeso e/ou obesidade em comparação com a classificação francesa e a IOTF. No entanto, a associação entre as referências depende de faixas etárias e sexo. Além disso, os valores de referência franceses parecem concordar estreitamente com os da IOTF no que diz respeito à definição de excesso de peso, especialmente em crianças de sete a 12 anos.

As variações observadas nos diferentes critérios de classificação do estado nutricional de crianças e adolescentes, causadas pelo uso do IMC em populações e períodos distintos, refletem a necessidade de considerar prováveis mal-entendidos em relação aos resultados obtidos, subestimando ou superestimando uma dada condição. O uso de valores que não atendem às necessidades reais de uma determinada região pode, em última instância, resultar em estratégias inadequadas de saúde pública.

Portanto, devemos levar em consideração que os padrões de crescimento das crianças estão sujeitos a alterações de acordo com aspectos relacionados ao tempo, região, ecologia, ambiente e genética. Nesse sentido, os valores de referência devem se ajustar especificamente a uma determinada área e ser atualizados continuamente. Além disso, as curvas devem ser especialmente ajustadas para a população de interesse. No entanto, destacamos que, mesmo com essa variedade de critérios de corte de IMC para a classificação do estado nutricional da população pediátrica, a Sociedade Brasileira de Pediatria (SBP) utiliza e recomenda que os profissionais de saúde usem as curvas de referência propostas pela OMS.
Destacamos as limitações do presente estudo, principalmente no que se refere a valores restritos a uma pequena faixa etária, sendo necessários mais estudos para cobrir todo o período que inclui a infância e a adolescência. Consequentemente, sugerimos que novos estudos sejam realizados e que valores de referência para classificar o estado nutricional de crianças e adolescentes usando o IMC sejam adotados de acordo com uma lógica temporal, com atualizações periódicas e dentro de uma especificidade regional, respeitando as características de cada local.

Em conclusão, os valores aqui apresentados para classificar o estado nutricional de crianças de seis a 10 anos na população de Montes Claros, Minas Gerais, não concordam com aqueles disponíveis na literatura e mais comumente utilizados pela comunidade científica. Quanto à classificação de baixo peso, o presente estudo relata valores superiores aos encontrados em outras referências. Por outro lado, os valores de sobrepeso e obesidade desta pesquisa são menores quando comparados a outros estudos. Essas contradições suscitam uma preocupação importante com relação a estratégias equivocadas e podem até induzir os especialistas a diagnósticos errôneos. Portanto, novos estudos devem ser realizados em outras regiões brasileiras, permitindo uma melhor compreensão do uso do IMC em crianças e adolescentes.

Financiamento
Fundação de Amparo à Pesquisa do Estado de Minas Gerais – FAPEMIG.

Conflito de interesses
Os autores declaram que não há conflito de interesses.

REFERÊNCIAS

1. Weiss KM, Leal DB, Assis MA, Pelegrini A. Diagnostic accuracy of anthropometric indicators to predict excess body fat in adolescents aged 11-14 years. Rev Bras Cineantropom Desempenho Hum. 2016;18:548-56. http://dx.doi.org/10.5007/1980-0037.2016v18n5p548
2. Aekplakorn W, Intawong R, Kessomboon P, Sangthong R, Chariyalertsk S, Putwatana P, et al. Prevalence and trends of obesity and association with socioeconomic status in the adults: national health examination surveys, 1991-2009. J Obes. 2014;D410259. https://doi.org/10.1155/2014/410259
3. Seidell JC, Halberstadt J. The occurrence of obesity in an individual or in populations is a result of combinations of factors at multiple levels of influence. Ann Nutr Metab. 2013;66 (Suppl 2):7-12. https://doi.org/10.1159/000375143
4. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377:557-67. https://doi.org/10.1016/S0140-6736(10)62037-5
5. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766-81. https://doi.org/10.1016/S0140-6736(10)62037-5
6. Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica [homepage on the Internet]. Documento do consenso latino americano sobre obesidade [cited 2018 Sep 23]. Available from: http://www.abeso.org.br/pdf/consenso.pdf
7. Brazil - Ministério da Saúde. Secretaria de Vigilância em Saúde. Vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico. Brasília: Ministério da Saúde; 2010.
8. Duncan S, Duncan EK, Fernandes RA, Buonani C, Bastos KD, Segatto AF, et al. Modifiable risk factors for overweight and obesity in children and adolescents from São Paulo, Brazil. BMC Public Health. 2011;11:585. https://doi.org/10.1186/1471-2458-11-585
9. Brazil - Ministério do Planejamento, Orçamento e Gestão. Instituto Brasileiro de Geografia e Estatística - IBGE. Pesquisa de Orçamentos Familiares 2008-2009. Antropometria e sobrepeso e obesidade de crianças, adolescentes e adultos no Brasil. Rio de Janeiro: IBGE; 2010.
10. Pulgarón ER. Childhood obesity: a review of increased risk for physical and psychological comorbidities. ClinTher. 2013;35:A18-32. https://doi.org/10.1016/j.clinthera.2012.12.014
11. Wang Y, Lim H. The global childhood obesity epidemic and the association between socio-economic status and childhood obesity. Int Rev Psychiatry. 2012;24:176-88. https://doi.org/10.3109/09540261.2012.688195
12. Oliveira-Campos M, Cerqueira MB, Rodrigues Neto JF. Dinâmica populacional e o perfil de mortalidade no município de Montes Claros (MG). Ciência Saúde Coletiva. 2011;16 (Suppl 1):1303-10. http://dx.doi.org/10.1590/S1413-81232011000700064
13. von Elm EV, Altman DG, Egger M, Pocock SJ, Gatche PC, Vandenbroucke JP, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61:344-9. https://doi.org/10.1016/j.jclinepi.2007.11.008
14. Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaign: Human Kinetics; 1988.
15. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ. 2000;320:1240-3. https://doi.org/10.1136/bmj.320.7244.1240
16. Cole TJ. The use and construction of anthropometric growth reference standards. Nutr Res Rev. 1993;6:19-50. https://doi.org/10.1079/NNR19930005
17. Conde WL, Monteiro CA. Valores críticos de Índice de Massa Corporal para classificação do estado nutricional de crianças e adolescentes brasileiros. J Pediatr (Rio J). 2006;82:266-72. http://dx.doi.org/10.2223/JPED.1492
18. Malina RM, Bouchard C, Bar-Or O. Growth, maturation and physical activity. Champaign, IL: Human Kinetics, 2004.
19. Kêkê LM, Samouda H, Jacobs J, diPompeo C, Lemdani M, Hubert H, et al. Body mass index and childhood obesity classification systems: a comparison of the French, International Obesity Task Force (IOTF) and World Health Organization (WHO) references. Rev Epidem Sante Publique. 2015;63:173-82. https://doi.org/10.1016/j.respe.2014.11.003
20. Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput JP, Fogelholm M, et al. The international study of childhood obesity, lifestyle and the environment (ISCOLE): design and methods. BMC Public Health. 2013;13:900. https://doi.org/10.1186/1471-2458-13-900
21. Tambalis KD, Panagiotakos DB, Arnaoutis G, Maraki M, Mourtakos S, Sidossis LS, et al. Establishing cross-sectional curves for height, weight, body mass index and waist circumference for 4- to 18-year-old Greek children, using the Lambda Mu and Sigma (LMS) statistical method. Hippokratia. 2015;19:239-48.
22. Barbosa Filho VC, Lopes AS, Fagundes RR, Campos W. Anthropometric indices among schoolchildren from a municipality in southern Brazil: a descriptive analysis using the LMS method. Rev Paul Pediatr. 2014;32:333-41. http://dx.doi.org/10.1590/S0103-05822014000400009
23. Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med. 1992;11:1305-19. https://doi.org/10.1002/sim.478011005
24. Kuczynski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, et al. CDC growth charts: United States. Adv Data. 2000;314:1-27.
25. de Onis M, Onyango AW, Borghi E, Siyan A, Nishida C, Siekmann J. Development of WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660-7. https://doi.org/10.2471/blt.07.043497
26. Leal DB, Assis MA, Conde WL, Bellisle F. Performance of references based on body mass index for detecting excess body fatness in schoolchildren aged 7 to 10 years. Rev Bras Epidemiol. 2014;17:517-30. http://dx.doi.org/10.1590/1809-4503201400020017ENG
27. Leal DB, Costa FF, Assis MA. Sensitivity and specificity of body mass index-based classification systems for overweight in children 7-10 years old. Rev Bras Cineantropom Desempenho Hum. 2013;15:267-75. http://dx.doi.org/10.5007/1980-0037.2013v15n3p267
28. Oliveira GJ, Barbiero SM, Cesa CC, Pellanda LC. Comparison of NCHS, CDC, and WHO curves in children with cardiovascular risk. Rev Assoc Med Bras. 2013;59:375-80. http://dx.doi.org/10.1016/j.ramb.2013.02.001
29. Hamill PV, Drizd TA, Johnson CL, Reed RB, Roche A, Moore WM. Physical growth: National Center for Health Statistics percentiles. Am J Clin Nutr. 1979;32:607-29. https://doi.org/10.1093/ajcn/32.3.607
30. Brazil - Agência Nacional de Saúde Suplementar. Diretoria de Normas e Habilitação dos Produtos. Gerência-Geral de Regulação Assistencial. Gerência de Monitoramento Assistencial. Coordenadoria de Informações Assistenciais. Manual de diretrizes para o enfrentamento da obesidade na saúde suplementar brasileira. Rio de Janeiro: ANS; 2017.