LETTER Special Section on Empirical Software Engineering

Quantitative Evaluation of Software Component Behavior Discovery Approach

SUMMARY During the execution of software systems, their execution data can be recorded. By fully exploiting these data, software practitioners can discover behavioral models describing the actual execution of the underlying software system. The recorded unstructured software execution data may be too complex, spanning over several days, etc. Applying existing discovery techniques results in spaghetti-like models with no clear structure and no valuable information for comprehension. Starting from the observation that a software system is composed of a set of logical components, Liu et al. propose to decompose the software behavior discovery problem into smaller independent ones by discovering a behavioral model per component in [1]. However, the effectiveness of the proposed approach is not fully evaluated and compared with existing approaches. In this paper, we propose to evaluate the quality of the software component behavior discovery approach by using a software case study in a quantitative manner.

The remainder of this paper is organized as follows. Section 2 review the basic idea of software component behavior discovery approach. Section 3 shows our quantitative evaluation results. Finally, Sect. 4 concludes the paper.

1. Introduction

Software systems form an integral part of the most complex artifacts built by humans, and we have become totally dependent on these complex software artifacts. Such complex software systems are extremely difficult to maintain. During the execution of a software system, their execution data can be recorded. By fully exploiting the recorded data, one can discover behavioral models describing the actual execution [1] and [2]. The software behavioral model provides insight regarding the real usage of the software, motivates novel idea on model-based testing, enables software usability improvements and redesign, localizes performance problems and architectural challenges [3] and [4].

With the great flush of process mining techniques [5], [6] and [7] on the one hand, and the growing availability of software execution data on the other hand, a new form of software analytic is enabled, i.e., applying process mining techniques to analyze software execution data. This interdisciplinary research area is called Software Process Mining [8], [9] and [10], which aims to analyze software execution data from a process-oriented perspective. Applying existing process mining techniques results in flat and spaghetti-like models with no clear structure and no valuable information for comprehension and further analysis.

Given the observation that a software system typically involves a set of interacted components. We proposed to decompose the behavior discovery problem into smaller independent ones by discovering a behavioral model per component in [1]. However, the effectiveness of the proposed software component behavior discovery approach is not fully evaluated and compared with existing approaches. In this paper, we propose to evaluate the quality of the software component behavior discovery approach by using a software case study in a quantitative manner.

The remainder of this paper is organized as follows. Section 2 review the basic idea of software component behavior discovery approach. Section 3 shows our quantitative evaluation results. Finally, Sect. 4 concludes the paper.

2. An Overview of the Software Component Behavior Discovery Approach

This section reviews component behavioral model discovery from software execution data as proposed in [1]. The starting point is software execution data, which can be obtained by instrumenting and monitoring software execution. In the following, the main steps are summarized.

- **Component Execution Data Construction.** Software typically contains a set of components. By taking as input software execution data and component configurations, we first construct execution data for each component. Note that the component configurations can be obtained from development documents or identified by clustering classes [11].

- **Component Instance Identification.** Starting from the software execution data of each component, we propose to identify component instances. The identified instances serve as the basic case notion to generate a software event log for each component. Here, a component instance refers to one independent instantiation of a software component.

- **Hierarchical Software Event Log Construction.** Because a software system usually has a hierarchical structure, the discovered component behavioral model should depict this hierarchy nature. To achieve this, we recursively transform the software event log of each component to a hierarchical one using calling relations among method calls.

- **Component Behavioral Model Discovery.** For each
component, we discover a hierarchical Petri net from its hierarchical software event log. Note that we can use the state-of-the-art process discover technique, i.e., Inductive Miner [12], in this step.

3. Quantitative Evaluation

In this section, we use an online bookstore software case to show the approach which exploits both component information and hierarchy structure helps to discover better behavioral models in a quantitatively manner. This online bookstore software contains two components: OnlineBookStore and OrderAndDelivery. The former consists of four classes, i.e., BookstoreStarter, Catalog, BookSeller, Bookstore, and the latter involves Order class and Delivery classes. We first instrument its source code using the open-source Kieker\footnote{http://kieker-monitoring.net/framework/} framework\footnote{http://www.xes-standard.org/xesstandardextensions}. therefore, method invocations are stored as software execution data in the XES-software format\footnote{http://kieker-monitoring.net/framework/}.

Setup. To show the effectiveness of component behavior discovery approach, we conduct four groups of controlled experiments and compare their results with regard to the understandability using a group of quality metrics [13]. Our scope is to show to what extend the use of component information and hierarchy helps to discover more understandable behavioral models. Detailed experiment settings are illustrated in Table 1.

Table 1
Experiment	Use Component Information	Hierarchical Behavioral Model
Experiment 1	No	No
Experiment 2	No	Yes
Experiment 3	Yes	No
Experiment 4	Yes	Yes

Fig. 1
Software behavior model without hierarchy

Fig. 2
Software behavior model with hierarchy

Fig. 3
Software behavior model of component OnlineBookStore

Fig. 4
Software behavior model of component OrderAndDelivery

Fig. 5
Software behavior model of component OrderAndDelivery

Experiment 1. The first experiment does not use component information and only uses existing Inductive Miner [12] to discover a flat Petri net by taking the whole software execution data as input. The discovered behavioral model of this software is shown in Fig. 1. It is a flat Petri net where single-line transitions represent methods and places represent method invocation relation.

Experiment 2. The second experiment does not use component information but uses the hierarchy to discover a hierarchical Petri net by taking the whole software execution data as input. This approach is discussed in [3]. The discovered behavioral model of this software is shown in Fig. 2 where: (1) single-line rectangles represent atomic method calls; and (2) double-line rectangles represent nested method calls which refers to another sub-net. It is worth noting that two kinds of method relations, i.e., method invocation flow relation for methods in the same level and nested method calling relation for methods of different levels, are contained in the behavioral model. For example, Bookstore.init() is followed by Bookstore.searchBook() in the second-level model and Bookstore.getOffer() is called by Bookstore.searchBook().

The next two experiments use component information to decompose the software behavior model into smaller independent ones by discovering a behavioral model per component. To do so, we first identify component instances for each component and transform the identified software execution data to a software event log. After identification and transformation, we get two software execution data for components OnlineBookStore and OrderAndDelivery.

Experiment 3. The third experiment uses the component information but only uses existing Inductive Miner [12] to discover a flat Petri net for each component. The discovered component behavioral models are shown in Fig. 3.

Experiment 4. The fourth experiment uses both component and the hierarchy information as introduced in [1]. The discovered behavior model for component OnlineBookStore is shown in Fig. 4. The OnlineBookStore component is used to search book stock and get offer for each book. In the main() method (left panel of this figure), a loop where each iteration handles the search and get offer separately for each book. The discovered behavior model for OrderAndDelivery is shown in Fig. 5. The OrderAndDelivery component is used to generate book order and perform delivery. It depicts that this component will generate one book order and perform one delivery for all ordered books in the Online-
In the following, we evaluate the quality of the discovered behavioral models in terms of their structural complexity. According to [14], we select the following quality factors as they are regarded as the most convincing ones.

- **Number of Nodes (NoN).**
- **Number of Arcs (NoA).**
- **Control Flow Complexity (CFC).**
- **Average Connector Degree (ACD).**
- **Coefficient of Network Connectivity (CNC).**
- **Density.**

NoN gives the number of nodes in a process model. NoN = |N| where |N| is the number of nodes. NoA gives the number of arcs in a process model. NoA = |A| where |A| denotes the number of arcs. The CFC metric evaluates the complexity of the process model by XOR-split and AND-split connector and is defined as:

\[
CFC = \sum_{c \in AND} 1 + \sum_{c \in XOR} |c^*|
\]

(1)

where AND is the AND-split connector set and XOR is the XOR-split set. The ACD measures the average number of incoming or outgoing arcs an connector is connected to and is defined as:

\[
ACD = \frac{1}{|C|} \sum_{c \in C} |c^*| + |c^*|
\]

(2)

where C denotes the connector set, \(\forall c \in C, |c^*|\) represents the number of out-coming arcs of c and \(|c|\) represents the number of in-coming arcs of c. The CNC gives the ratio of edges to nodes and is defined as:

\[
CNC = \frac{|A|}{|N|}
\]

(3)

where |A| is the number of nodes and |N| is the number of nodes. The Density gives the ratio of existing arcs to the maximal number of arcs between the nodes in the model and is defined as:

\[
Density = \frac{|A|}{|N| \times (|N| - 1)}
\]

(4)

The density ranges from 0 to 1. A density close to 1 means that the process graph is highly dense, i.e. all possible connections between the nodes are present.

Table 2 summarizes the quality metrics for the discovered behavioral models of Experiments 1-4. Note that Experiments 3-4 result in two independent models each, and we sum them up to get the overall quality factor values.

It is proved that all these factors point at a negative effect on the model’s understandability [14]. According to Table 2, we observe that the model discovered by Experiment 1...
Table 3 Quality results for Experiments 2 and 4

Experiment	NoN	NoA	CFC	ACD	CNC	Density
Experiment 2	40	40	8	3.00	1.00	0.03
Experiment 4 (onlineBookstore)	30	30	8	3.00	1.00	0.03
Experiment 4 (orderAndDelivery)	12	10	0	1.00	0.83	0.07

has roughly the same structural complexity as the model discovered by Experiment 3. Similarly, the model discovered by Experiment 2 has roughly the same structural complexity as the model discovered by Experiment 4. However, the complexity values of Experiment 1 (Experiment 3) are bigger than those of Experiment 2 (Experiment 4), which indicates that the use of hierarchy information greatly reduces the complexity of the discovered model and gives a better understanding of how software behaviors.

Different from Experiment 2, Experiment 4 decomposes the whole software behavior into smaller ones. To show the use of component information improve the understandability of discovered models, we compare the quality metrics for the discovered behavioral models of Experiments 2 and Experiments 4 (each per component) in Table 3.

According to Table 3, the complexity values of two component behavioral models discovered by Experiment 4 are smaller than that of the model discovered by Experiment 2. In this way, the complexity of the model is reduced greatly, which indicates the use of component information greatly reduces the complexity of the discovered model and gives a better understanding of how software behaviors.

In summary, we demonstrate that the use of component and hierarchy information improve the quality of discovered models from an understandability point of view.

4. Conclusion

By exploiting software execution data, one can discover behavioral models describing the actual behavior of the software system. However, applying existing discovery techniques results in extremely complex models that are difficult for comprehension. A software system is usually composed of a set of components. Starting from this observation, Liu et al. propose to decompose the discovery problem into smaller ones by discovering a behavioral model per component in [1]. However, the effectiveness of the proposed approach is not evaluated. In this paper, we evaluate the understandability (or complexity) of discovered component behavior models in a quantitative manner. By experimental evaluation, we show that our approach reduces the complexity of the discovered models and gives a better understanding of how software behaves.

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (61902222), and Taishan Scholars Program of Shandong Province (tsqn201909109).