Characteristics classes of $\text{SL}(N, \mathbb{C})$-bundles and quantum dynamical elliptic R-matrices

A Levin1,2, M Olshanetsky1, A Smirnov1,3 and A Zotov1

1 Institute of Theoretical and Experimental Physics, Moscow, 117218, Russia
2 Laboratory of Algebraic Geometry, GU-HSE, 7 Vavilova Str., Moscow, 117312, Russia
3 Mathematical Department, Columbia University, New York, NY 10027, USA

E-mail: alevin57@gmail.com, olshanet@itep.ru, asmirnov@itep.ru and zotov@itep.ru

Received 29 August 2012, in final form 15 November 2012 Published 18 December 2012
Published Online at stacks.iop.org/JPhysA/46/035201

Abstract

We discuss quantum dynamical elliptic R-matrices related to arbitrary complex simple Lie group G. They generalize the known vertex and dynamical R-matrices and play an intermediate role between these two types. The R-matrices are defined by the corresponding characteristic classes describing the underlying vector bundles. The latter are related to elements of the center $Z(G)$ of G. While the known dynamical R-matrices are related to the bundles with trivial characteristic classes, the Baxter–Belavin–Drinfeld–Sklyanin vertex R-matrix corresponds to the generator of the center Z_N of $\text{SL}(N)$. We construct the R-matrices related to $\text{SL}(N)$-bundles with an arbitrary characteristic class explicitly and discuss the corresponding IRF models.

PACS numbers: 02.30.Ik, 02.10.-v, 02.20.Tw

1. Introduction

The quantum dynamical R-matrices and the quantum dynamical Yang–Baxter (QDYB) equation they satisfied, were introduced by G Felder [1, 2], while without the spectral parameter these structures appeared earlier [3–5]. The classical version of the QDYB equation is the classical dynamical Yang–Baxter equation and its solution is the classical dynamical r-matrix (CDRM). The classification of the CDRMs with the elliptic spectral parameter was proposed in [6] and then generalized in [26, 28, 22] (see also [29]).

The standard elliptic quantum R-matrix does not depend on dynamical variables [10, 7] (see also [8, 9]). It is defined only for the group $G = \text{SL}(N, \mathbb{C})$. We will refer to it as Baxter–Belavin–Drinfeld–Sklyanin R-matrix. The quantum R-matrix and the Yang–Baxter equation are the key tools for the quantum inverse scattering method [11–17]. In particular, they define the commutation relations in the vertex-type models and the corresponding Sklyanin-type algebras [18–20, 64].

On the other hand, Felder’s R-matrix depends on additional dynamical variable $u \in \mathfrak{h}$, where \mathfrak{h} is a Cartan subalgebra of $\mathfrak{g} = \text{Lie} (G)$. It is related to the IRF models of statistical mechanics [2].
can be explained as a monopole solution of the Bogomolny equation [85].

are spectrally dual to Gaudin models. In terms of a gauge field theory the Hecke transformation limit of the integrable chains. As is known from the recent papers [86], the integrable chains nonautonomous Zhukovsky–Volterra gyrostat [79–82]. The field (1+1) generalizations of the Hitchin systems [73–78] on elliptic curves the modification relates the Painlevé VI equation and Hitchin–Nekrasov (Gaudin) models are discussed in [52, 83, 84]. They describe the continuous Ruijsenaars type [55–62] with the elliptic Euler–Arnold tops [63, 52, 64]. In the theory a singular gauge transformation on the Lax matrices and relates the models of Calogero–

λ	$\exp (\frac{2\pi i}{N})$	$\exp (\frac{2\pi i}{N}p) , N = pl$
λ	Felder case	Baxter–Belavin–Drinfeld–Sklyanin case

Here we consider an intermediate situation. In our approach it arises when G is a simple Lie group with non-trivial centers, i.e. when G is a classical group or E_6 and E_7. In these cases the dynamical parameter belongs to some subalgebra h^0 of the Cartan subalgebra h of the Lie algebra g. At the classical level the problem was investigated from a different point of view in [26, 28] and in our papers [21–24]. In particular, we constructed there the classical elliptic r-matrices.

The quantum version of the classical construction [6, 26] was proposed in [25, 27]. The construction of the quantum R-matrices is more elaborate. It depends essentially on the representation space V. We suggest that upon the appropriate choice of V the R-matrices can be constructed in the general situation as in the case $h^0 = h$ and $G = SL(N, \mathbb{C})$. We demonstrate it explicitly for R-matrices in $SL(N, \mathbb{C})$ case with elliptic dependence of the spectral parameter. If N is a prime number then there are only two types of R-matrices. The first one is the Baxter–Belavin–Drinfeld–Sklyanin vertex R-matrix [4, 7] and the second type is the Felder dynamical R-matrix [2]. But if $N = pl$ ($p \neq 1, N$), then there exist new types of R-matrices. Their construction is the main result of this paper.

While different universal structures related to the Yang–Baxter equations are well studied for arbitrary simple Lie group in trigonometric and rational cases [30–38], the elliptic solution of the QDYB equation with spectral parameter (2.13) is known only in the $SL(N, \mathbb{C})$ case [40–44].

In the $A_{N−1}$ case, the center of $G = SL(N, \mathbb{C})$ is the cyclic group $\mu_N = \mathbb{Z}/N\mathbb{Z}$. Represent elements of μ_N as $\exp \frac{2\pi i j}{N}, j = 0 \ldots , N − 1$. Then Felder’s case corresponds to $j = 0$ while Baxter–Belavin–Drinfeld–Sklyanin’s one appears from $j = 1$. The intermediate situation takes place when $j = p > 1$ and $N = pl$. In this case dim $h = \text{g.c.d}(j, N) = p > 1$.

The purpose of the paper is to construct explicitly the quantum elliptic dynamical R-matrix in the intermediate case. The answer is given by the theorem 3.1 (section 3.4). It is shown that the suggested R-matrix satisfies the QDYB equation (2.13) with $u \in C \subset h_0$ (2.11). The result is schematically presented in table 1. The last column is the case of our interest.

The classical integrable system corresponding to the intermediate case is the system of interacting elliptic tops [21]. Our goal is to quantize its classical r-matrix.

It should be mentioned that the dynamical and non-dynamical elliptic R-matrices are related by the dynamical twist [46, 47][see also [48–51]]. This twist was interpreted as a modification of bundle (or Hecke transformation) in [52]. At the classical level it acts by a singular gauge transformation on the Lax matrices and relates the models of Calogero–Ruijsenaars type [55–62] with the elliptic Euler–Arnold tops [63, 52, 64]. In the theory of integrable models of statistical mechanics this Hecke transformation defines a passage from the so-called IRF type models [65, 66] to the vertex-type models [46, 47, 67–70]. In the isomonodromic deformation problem [71, 72] corresponding to the Hitchin systems [73–78] on elliptic curves the modification relates the Painlevé VI equation and nonautonomous Zhukovsky–Volterra gyrostat [79–82]. The field (1+1) generalizations of the Hitchin–Nekrasov (Gaudin) models are discussed in [52, 83, 84]. They describe the continuous limit of the integrable chains. As is known from the recent papers [86], the integrable chains are spectrally dual to Gaudin models. In terms of a gauge field theory the Hecke transformation can be explained as a monopole solution of the Bogomolny equation [85].
The paper is organized as follows: in the following section we review construction of bundles over elliptic curves and define classical and quantum elliptic R-matrices, related to these bundles. In section 3 we, first, recall the known quantum R-matrices corresponding to the first and to the second columns in table 1. Then the quantum R-matrix for the intermediate case is suggested (3.26) and the QDYB equation is verified (theorem 3.1). Finally, we discuss possible applications of the obtained solution of the QDYB equation to IRF models.

2. Characteristic classes of bundles over elliptic curves and R-matrices

2.1. Characteristic classes of bundles over elliptic curves

Let G be a complex simple Lie group with a non-trivial center $Z(G)$. A universal cover \tilde{G} of G in all cases apart from G_2, F_4 and E_8 has a non-trivial center $Z(\tilde{G})$. The center can be determined in terms of the co-weight P^\vee and the co-root Q^\vee lattices in the Cartan subalgebra h of the Lie algebra $\text{Lie}(G) = \mathfrak{g}$ [89]. Namely, $Z(\tilde{G}) \sim P^\vee / Q^\vee$. The center $Z(G)$ is a cyclic group except for the case $g = D_{2n}$. In the latter case the group $\tilde{G} = \text{Spin}_{2n}(\mathbb{C})$ has a non-trivial center $Z(\text{Spin}_{2n}) = (\mu_1^\times \times \mu_2^\times)$, $\mu_2 = \mathbb{Z} / 2\mathbb{Z}$. If $Z(\tilde{G})$ is cyclic, then there exists a fundamental co-weight $\sigma^\vee \in P^\vee$ generating $Z(\tilde{G})$. It means that $\text{ord}(Z(\tilde{G})) \sigma^\vee \in Q^\vee$.

The adjoint group is the quotient $G^{ad} = \tilde{G} / Z(\tilde{G})$. For the cases A_{n-1} (when $n = pl$ is non-prime) and D_l, the center $Z(\tilde{G})$ has non-trivial subgroups $\mathbb{Z}_l \sim \mu_l = \mathbb{Z} / l\mathbb{Z}$. Assume that (p, l) are co-prime. There exists the quotient-groups

$$G_1 = \tilde{G} / \mathbb{Z}_l, \quad G_p = G_1 / \mathbb{Z}_p, \quad G^{ad} = G_1 / Z(G_1),$$

where $Z(G_1)$ is the center of G_1 and $Z(G_1) \sim \mu_p = Z(\tilde{G}) / \mathbb{Z}_l$. The group \mathbb{Z}_l is generated by the co-weight σ^\vee such that $j \sigma^\vee \notin Q^\vee$ for $0 < j < l$ and $l \sigma^\vee \in Q^\vee$.

Let $N = \text{ord}(Z(\tilde{G}))$. Then we come to the diagram

In what follows we consider as G the group G_1. If $l = 1$ or $l = \text{Ord}(Z(\tilde{G})) G$ coincides with \tilde{G} or with G^{ad}. Let E_G is a principle G-bundle over an elliptic curve $\Sigma_r = \mathbb{C} / (\mathbb{Z} + r \mathbb{Z})$. For a G-module V we define a holomorphic G-bundle $E = E_G \times_G V$ (or simply E_G) over Σ_r. The bundle E_G has the space of sections $\Gamma(E_G) = \{ s \}$, where s takes values in V. The bundle E_G is defined by transition matrices of its sections around the fundamental cycles. Then sections of $E_G(V)$ assume the quasi-periodicities:

$$s(z + 1) = Q(z)s(z), \quad s(z + \tau) = \Lambda(z)s(z),$$

where $Q(z), \Lambda(z) \in \text{End}(V)$. Then $Q(z), \Lambda(z)$ satisfy the following equation:

$$Q(z + \tau)\Lambda(z)Q(z)^{-1}\Lambda^{-1}(z + 1) = Id.$$

4 The center $Z(\text{Spin}_{2n})$ is generated by the co-weights corresponding to the left and the right spinors.
It follows from \([93]\) that it is possible to choose the constant transition operators. Then we
come to the equation

\[
Q\Lambda Q^{-1}\Lambda^{-1} = Id.
\]

(2.4)

Solutions of this equation are defined up to conjugations from the moduli space of \(E_G\)-bundles
over \(\Sigma_r\). We can modify (2.4) as

\[
Q\Lambda Q^{-1}\Lambda^{-1} = \xi Id,
\]

where \(\xi\) is a generator of the center \(\mathcal{Z}(\mathcal{G})\). In this case \((Q, \Lambda)\) are the clutching operators for
\(G^{ad}\)-bundles, but not for \(\mathcal{G}\)-bundles, and \(\xi\) plays the role of obstruction to lift the \(G^{ad}\)-bundle
to the \(\mathcal{G}\)-bundle.

Let \(p = \text{ord}(\mathcal{Z}(\mathcal{G}))/l\). Consider a bundle with the space of sections defined by the
quasi-periodicities:

\[
s(z + 1) = Qs(z), \quad s(z + \tau) = \Lambda_ps(z),
\]

such that

\[
Q\Lambda_p Q^{-1}\Lambda_p^{-1} = \xi^p Id,
\]

(2.6)

where \(\xi^p\) generates \(\mathbb{Z}_l\). It means that \(\xi^p\) is an obstruction to lift the \(G_l\)-bundle to the \(\mathcal{G}\)-bundle.

The obstructions can be formulated in terms of the cohomology of \(\Sigma_r\). Namely, the first
cohomology \(H^1(\Sigma_r, G(\mathcal{O}_{\Sigma_r}))\) of \(\Sigma_r\) with coefficients in analytic sheaves \(G(\mathcal{O}_{\Sigma_r})\) defines the
moduli space \(\mathcal{M}(G, \Sigma_r)\) of holomorphic \(G\)-bundles over \(\Sigma_r\). Using (2.1) we write three exact
sequences:

\[
1 \to \mathcal{Z}(\mathcal{G}) \to \mathcal{G}(\mathcal{O}_{\Sigma_r}) \to G^{ad}(\mathcal{O}_{\Sigma_r}) \to 1,
\]

\[
1 \to \mathcal{Z}(G_l) \to G_l(\mathcal{O}_{\Sigma_r}) \to G^{ad}_l(\mathcal{O}_{\Sigma_r}) \to 1,
\]

\[
1 \to \mathcal{Z}(G_l) \to G_l(\mathcal{O}_{\Sigma_r}) \to G^{ad}_l(\mathcal{O}_{\Sigma_r}) \to 1.
\]

Then we come to the long exact sequences:

\[
\to H^1(\Sigma_r, \mathcal{G}(\mathcal{O}_{\Sigma_r})) \to H^1(\Sigma_r, G^{ad}(\mathcal{O}_{\Sigma_r})) \to H^2(\Sigma_r, \mathcal{Z}(\mathcal{G})) \sim \mathcal{Z}(\mathcal{G}) \to 0,
\]

(2.7)

\[
\to H^1(\Sigma_r, \mathcal{G}(\mathcal{O}_{\Sigma_r})) \to H^1(\Sigma_r, G_l(\mathcal{O}_{\Sigma_r})) \to H^2(\Sigma_r, \mathcal{Z}(G_l)) \sim \mathcal{Z}(G_l) \to 0,
\]

(2.8)

\[
\to H^1(\Sigma_r, G_l(\mathcal{O}_{\Sigma_r})) \to H^1(\Sigma_r, G^{ad}_l(\mathcal{O}_{\Sigma_r})) \to H^2(\Sigma_r, \mathcal{Z}(G_l)) \sim \mathcal{Z}(G_l) \to 0.
\]

(2.9)

The elements from \(H^2\) are obstructions to lift bundles, namely

\[
\xi (E_{G^{ad}}) \in H^2(\Sigma_r, \mathcal{Z}(\mathcal{G})) \text{ – obstructions to lift } E_{G^{ad}} \text{-bundle to } E_{\mathcal{G}} \text{-bundle},
\]

\[
\xi (E_{G_l}) \in H^2(\Sigma_r, \mathcal{Z}(G_l)) \text{ – obstructions to lift } E_{G_l} \text{-bundle to } E_{\mathcal{G}} \text{-bundle},
\]

\[
\xi^p (E_{G^{ad}_l}) \in H^2(\Sigma_r, \mathcal{Z}(G_l)) \text{ – obstructions to lift } E_{G^{ad}_l} \text{-bundle to } E_{\mathcal{G}} \text{-bundle}.
\]

Definition 2.1. Images of \(H^1(\Sigma_r, G(\mathcal{O}_{\Sigma_r}))\) in \(H^2(\Sigma_r, \mathcal{Z})\) are called the characteristic classes
\(\xi(\mathcal{E}_G)\) of \(G\)-bundles.

It was proved in \([22]\) that for generic bundles the solution of equation (2.6) can be written as

\[
Q = e(\kappa), \quad \Lambda_p = e(u)\Lambda_0, \quad \Lambda_p^0 = Id,
\]

(2.10)

\[
\kappa = e(\rho/\hbar), \quad \rho = \frac{1}{2}\sum_{\alpha^\vee > 0} \alpha^\vee, \quad h - \text{Coxeter number},
\]

where \(\{\alpha^\vee\}\) are co-roots of \(\mathfrak{g}\). The element \(\Lambda_0\) is uniquely defined by the element from \(\mathcal{Z}(G)\)
which is an element of the Weyl group \(W(\mathfrak{h})\) (it acts as a symmetry of the extended Dynkin
diagram [89]). Moreover, \(u \in \text{Ker}(\Lambda_0 - Id) \) and \(u \) belongs to Cartan subalgebra \(\mathfrak{h}_0 \subset \mathfrak{h} \), where \(\mathfrak{h} \) is a Cartan subalgebra containing \(\mathcal{Q} \). \(u \) plays the role of a parameter in the moduli space \(\mathcal{M}_G \) of holomorphic \(G \)-bundles over \(\Sigma_r \). The subalgebra \(\mathfrak{h}_0 \) is a Cartan subalgebra of invariant subalgebra \(\mathfrak{g}_0 \subset \mathfrak{g} \) [22]. There exists a basis \(\Pi^\vee \) in \(\mathfrak{h}_0 \) such that \(\Pi \) is a system of simple roots for \(\mathfrak{g}_0 \). See [22] for the list of these subalgebras. If \(p = N \), we come to the trivial bundles. In this case \(\Lambda_0 = Id, \mathfrak{h}_0 = \mathfrak{h} \) and \(\mathfrak{g}_0 = \mathfrak{g} \).

Let \(\mathcal{Q}^u \) be the co-root lattice in \(\mathfrak{h}_0 \) generated by \(\Pi^\vee \) and \(\mathcal{P}^\vee \) is the co-weight lattice. Then a big cell in the moduli space \(\mathcal{M}_G \) of the \(G \)-bundles can be identified with the fundamental domains \(C^\vee \) of the affine Weyl group \(W \ltimes (\tau \Gamma^\vee \oplus \Gamma^\vee) \), where \(\Gamma \) is a sublattice \(\mathcal{Q}^u \subseteq \Gamma \subseteq \mathcal{P}^\vee \) in \(\mathfrak{h}_0 \):

\[
u \in C^\vee = \mathfrak{h}_0/(W \ltimes (\tau \Gamma^\vee \oplus \Gamma^\vee)). \tag{2.11}
\]

2.2. Elliptic \(R \)-matrices

A general form of the (modified) QDYB equation related to a simple complex Lie group \(G \) has the following form. Let \(h \) be a Cartan subalgebra \(\mathfrak{h} \subset \mathfrak{g} = \text{Lie} G \). We identify \(\mathfrak{h} \) with its dual space \(\mathfrak{h}^* \) by means of the Killing form. Consider finite-dimensional \(\tilde{G} \)-modulus \(V_j \), \(j = 1, 2, 3 \) and let \(V = \bigoplus_{\mu \in C} V[\mu] \) be the weight decomposition. Let \(z \in \mathbb{C} \) be the spectral parameter and \(u \in \mathfrak{h}_0 \). The quantum elliptic dynamical \(R \)-matrix \(R(u, z) \) is the map \(\mathfrak{h}_0 \times \mathbb{C} \rightarrow \text{End}(V_j \otimes V_k), \) \((j, k = 1, 2, 3), j \neq k \), depending on the Planck constant \(\hbar \). \(R \) satisfies the following conditions.

- \(R \) has fixed quasi-periodicities with respect to the lattice \(\mathbb{Z} + r \mathbb{Z} \subset \mathbb{C} \). Let \(\mathcal{Q} \) and \(\Lambda \) be some fixed elements of \(G \) (transition functions) satisfying (2.6). Then

\[
R(u, z + 1) = \text{Ad}_{\mathcal{Q}} R(u, z), \quad R(u, z + \tau) = \text{Ad}_{\Lambda(u)} R(u, z). \tag{2.12}
\]

where the adjoint operators (2.10) act on the first factor \(\text{End}(V_j \otimes V_k) \). It means that \(R(u, z) \) is a section of a bundle \(\text{End}(V_j \otimes V_k) \) over the elliptic curve \(\Sigma_r = \mathbb{C}/(\mathbb{Z} + r \mathbb{Z}) \). The bundle has the characteristic class defined by \(\zeta^u \) (2.6). It is an obstruction to lift the \(\text{End} \)-bundle, considered as the \(G \)-bundle, to the \(\tilde{G} \)-bundle.\(^5\) The dynamical parameter \(u \) plays the role of the tangent vector to the moduli space of the bundle.

- \(R \) satisfies the QDYB equation in \(\text{Aut}(V_1 \otimes V_2 \otimes V_3) \)

\[
R^{12}(u - he^{(1)}, z_{12})R^{13}(u + he^{(2)}, z_{13})R^{23}(u - he^{(1)}, z_{23}) = R^{23}(u + he^{(1)}, z_{23})
\times R^{12}(u + he^{(2)}, z_{12})R^{13}(u + he^{(3)}, z_{13}) (z_{ik} = z_i - z_k), \tag{2.13}
\]

where \(e^{(j)} = (e_1, \ldots, e_l) \) is a basis in \(\mathfrak{h}_0 \) (for example, \([\mathfrak{h}_0, \alpha] \subset \Pi \) (2.17)), and the superscript \((j) \) means the action of \(\mathfrak{h}_0 \) on \(V_j \). The shift of the dynamical parameter \(u - he^{(j)} \) means, for example, that \(R^{12}_{V_j V_k}(u - he^{(j)}) \) acts on the tensor product \(v_1 \otimes v_2 \otimes v_3 \) as \(R^{12}_{V_j V_k}(u - (\mu, e^{(3)})h) \) for \(v_3 \in V_3[\mu] \).

- The unitarity condition

\[
R^{12}(u, z_{12})R^{21}(u, z_{21}) \sim \text{Id}_{V_1 \otimes V_j}. \tag{2.14}
\]

- The weight zero condition

\[
[X^1 + X^2, R^{12}(u, z_{12})] = 0, \quad \forall X \in \mathfrak{h}_0. \tag{2.15}
\]

\(^5\) There is an apparent inconsistency of this condition since some \(V \) are only \(\tilde{G} \) modules, but not \(G \) modules. But to define the \(R \)-matrix we consider the modules \(\text{End} V \) and they are \(G \) modules and even \(G^w \) modules for any \(V \). In particular, the Baxter–Belavin–Drinfeld–Sklyanin \(R \)-matrix considered below corresponds to the non-trivial \(\text{PSL}(N, \mathbb{C}) = \text{End}(V_0) \)-bundle, and it is defined for the \(N \)-vector representation \(V_N \).
The quasi-classical limit $\hbar \to 0$

$$R(u, z) = \frac{1}{\hbar} \text{Id} \otimes \text{Id} + r(u, z) + O(\hbar),$$ (2.16)

where $r(u, z)$ is defined below the CDRM. In this sense $R(u, z)$ is a quantization of the CDRM $r(u, z)$. In particular cases we obtain in this way the classical non-dynamical elliptic Belavin–Drinfeld r-matrix [9], or classical dynamical elliptic r-matrix [87, 88]. The latter types of r-matrices were classified in [6, 27].

These conditions do not define the R-matrix uniquely. There are additional transformations corresponding to shifts along the dynamical parameter. We will not discuss this issue here.

Let us focus now on the classical r-matrix in (2.16). We define the CDRM following [22]. In the general case they have the following form. To define the r-matrices for arbitrary characteristic classes let us define the special basis (the general sine basis (GS basis)) in the corresponding to shifts along the dynamical parameter. We will not discuss this issue here.

6 For A_n and E_6 root systems it is convenient to choose canonical bases in $\mathfrak{h} \oplus \mathbb{C}$.
where functions \(\varphi_{\alpha}(z) \) are defined in (A.34) and \(\{\tilde{h}_\alpha^0\} \) is the dual basis to \(\{h_\alpha\} \) in the invariant Cartan subalgebra \(h_0 \).

3. Quantum R-matrices related to SL\((N, \mathbb{C})\)

We apply the general construction of the quantum R-matrix to the case \(G = \text{SL}(N, \mathbb{C}) \) and \(V \) is the standard vector representation. We pass from the GS basis to the tensor basis (3.13) and write in this basis the transition matrices \(Q \) and \(\Lambda \).

3.1. The moduli space of SL\((N, \mathbb{C})\)-bundles over elliptic curves

The dynamical parameter \(u \) belongs to the moduli space of vector bundles over elliptic curves. We describe it here. We identify \(h^* \) and \(h \subset \text{sl}(N, \mathbb{C}) \) by means of the standard metric on \(\mathbb{C}^N \.

The roots and co-roots for \(\text{sl}(N, \mathbb{C}) \) coincide and, therefore, the co-root lattice \(Q^\vee \) coincides with the root lattice \(Q \). Let \(\{e_j\} \) be the standard basis in \(\mathbb{C}^N \). Then

\[
Q = \left\{ \sum m_j e_j | m_j \in \mathbb{Z}, \sum m_j = 0 \right\},
\]

generated by the simple roots \(\Pi = \{\alpha_k\} = \{\alpha_1 = e_1 - e_2, \ldots, \alpha_{N-1} = e_{N-1} - e_N\} \).

The fundamental weights \(\varpi_k, (k = 1, \ldots, N-1) \), dual to the basis of simple roots \(\Pi^\vee \sim \Pi \), are given by

\[
\varpi_j = e_1 + \cdots + e_j - \frac{j}{N} \sum_{l=1}^N e_l, \quad j = 1, \ldots, N-1 \quad \text{(3.2)}
\]

In a similar way we identify the fundamental weights and the fundamental co-weights. They generate the weight (co-weight) lattice

\[
P \subset h, P = \left\{ \sum_{i} n_i \varpi_i | n_i \in \mathbb{Z} \right\}, \quad \text{or} \quad P = \left\{ \sum_{j=1}^N m_j e_j, m_j \in \mathbb{Z}, m_j - m_k \in \mathbb{Z} \right\} \quad \text{(3.3)}
\]

The quotient-group \(P/Q \) is isomorphic to the center \(Z(\text{SL}(N, \mathbb{C})) \sim \mu_N \). It is generated by \(\zeta = \exp 2\pi i \varpi_1 \).

For the trivial bundles corresponding to Felder’s R-matrix we have few moduli spaces \(C_l \) (2.11), corresponding to a choice of the sublattice \(P_l \). If \(N \) is a prime number, then we have two options only. Let

\[
C^+ = \{ u \in \mathbb{C}^N | \Re u_1 \geq \Re u_2 \geq \ldots \geq \Re u_N \}
\]

be a positive Weyl chamber. Then similar to the lattice \(P_l \) in (2.11) we may take \(Q \) (\(l = 1 \))(3.1) or \(P \) (\(l = N \))(3.3). Then we come to the two types of alcoves

\[
C^+ = \left\{ u \in C^+ | u_j \sim u_j + n_j + m_j, n_j, m_j \in \mathbb{Z}, \sum n_j = \sum m_j = 0 \right\}, \quad \text{(3.4)}
\]

\[
C^N = \left\{ u \in C^N | n_j, m_j \in \mathbb{Z}, n_j - n_k \in \mathbb{Z}, m_j - m_k \in \mathbb{Z} \right\} \quad \text{(3.5)}
\]

\(C^+ \) is the moduli space of \(\text{SL}(N, \mathbb{C}) \)-bundles, while \(C^N \) is the moduli space of trivial \(\text{PSL}(N, \mathbb{C}) \)-bundles (i.e \(\text{PSL}(N, \mathbb{C}) \)-bundles that can be lifted to \(\text{SL}(N, \mathbb{C}) \)-bundles).
If N is not prime, then there are other sublattices of the weight lattice. For example, if $N = pl$ there are

$$C^l = \left\{ u \in C^l \mid n_j, m_j \in \frac{1}{l} \mathbb{Z}, n_j - n_k \in \mathbb{Z}, m_j - m_k \in \mathbb{Z} \right\},$$

$$C^p = \left\{ u \in C^l \mid n_j, m_j \in \frac{1}{p} \mathbb{Z}, n_j - n_k \in \mathbb{Z}, m_j - m_k \in \mathbb{Z} \right\},$$

in addition to C^1 and C^N. They are the moduli space of trivial $G_p = \text{SL}(N, \mathbb{C})/\mu_p^l$- and $\text{GL}_l = \text{SL}(N, \mathbb{C})/\mu_l^l$-bundles. In general, the number of different moduli spaces corresponds to the number of prime factors of N.

Consider the non-trivial bundles with transition matrices satisfying (3.8), where ζ can be represented as

$$\zeta = e(\sigma_p),$$

$$\sigma_p = \left(\frac{N-p}{N}, \ldots, \frac{N-p}{N}, -\frac{p}{N}, \ldots, -\frac{p}{N} \right) = \left(\frac{l-1}{l}, \ldots, \frac{l-1}{l}, -\frac{1}{l}, \ldots, -\frac{1}{l} \right), \quad (l\sigma_p \in Q).$$

It is a generator of the group μ_l^l, and in this way it is the obstruction to lift the $G_l = \text{SL}(N, \mathbb{C})/\mu_l^l$-bundle to the $\text{SL}(N, \mathbb{C})$-bundle (see (2.8)). We consider the root Q_l and the weight P_l lattices in \tilde{h}_0 (3.9). In the canonical basis $e_j = E_{jj}$ ($j = 1, \ldots, p$), they have the form (3.1) and (3.3). In particular,

$$P_l = \left\{ \gamma = \sum_{j=1}^{p} n_j e_j, n_j \in \frac{1}{p} \mathbb{Z}, \sum_{j=1}^{p} n_j = 0, n_j - n_k \in \mathbb{Z} \right\}.$$

It is an invariant sublattice of P.

If p is a prime number, then, similar to (3.4) and (3.5) we have two types of moduli spaces

$$C^{l,1}: u_j \sim u_j + \tau m_j + n_j, \quad n_j, m_j \in \mathbb{Z}, \sum_{j=1}^{p} n_j = \sum_{j=1}^{p} m_j = 0, \quad (3.6)$$

and for

$$C^{l,p}: u_j \sim u_j + \tau m_j + n_j, \quad n_j, m_j \in \frac{1}{p} \mathbb{Z},$$

$$\sum_{j=1}^{p} n_j = \sum_{j=1}^{p} m_j = 0, \quad n_j - n_k \in \mathbb{Z}, m_j - m_k \in \mathbb{Z}. \quad (3.7)$$

If p is non-prime we have additional types of moduli spaces as given above for the trivial bundles.

3.2. Description of the adjoint bundles and the model of interacting tops

In [21], the classical integrable models corresponding to $\text{SL}(N, \mathbb{C})$-bundles with non-trivial characteristic classes were studied. Let us recall the results. We consider the $\text{SL}(N, \mathbb{C})$-bundles with

$$N = lp, \quad l, p \in \mathbb{Z}$$

defined by its multiplicators (2.2) with the center element

$$\zeta = \exp \left(\frac{2\pi i}{p} \right) = \exp \left(\frac{2\pi i}{l} \right) \in \mathbb{Z}/N\mathbb{Z}.$$
from the condition (2.6). The multiplicators can be written explicitly in terms of \(SL(N, \mathbb{C}) \)-valued generators of the finite Heisenberg group (A.26) and (A.27):

\[
\mathcal{Q} \Lambda^p \mathcal{Q}^{-1} \Lambda^{-p} = \exp \left(\frac{2\pi i}{N} \right) \text{Id}, \quad \mathcal{Q}, \Lambda \in SL(N, \mathbb{C}).
\] (3.8)

The dimension of the moduli space of these bundles equals \(\text{g.c.d.}(N, p) = p \) [90–92]. Indeed, it is easy to see that the following Cartan element of the Lie algebra \(u \in \mathfrak{h} \subset \mathfrak{sl}(N, \mathbb{C}) \) commutes with both \(\mathcal{Q} \) and \(\Lambda^p \):

\[
u = \text{diag}(u_1, \ldots, u_p, u_1, \ldots, u_p, \ldots, u_1, \ldots, u_p) = \bigoplus_{j=1}^p u_{p \times p}, \quad \left(\sum_{j=1}^p u_j = 0 \right).
\] (3.9)

It was shown in [21] that there exists such a number matrix \(S \) (combination of permutations) that

\[
\begin{align*}
S \nu S^{-1} &= \bigoplus_{j=1}^p u_j \text{Id}_{p \times p}, \\
\mathcal{Q} S \Lambda S^{-1} &= \bigoplus_{j=1}^p \mathcal{Q} \Lambda_{p \times p}, \\
S \Lambda \nu S^{-1} &= \bigoplus_{j=1}^p \nu \Lambda_{p \times p}.
\end{align*}
\] (3.10)

The latter means that any section \(L(z) \in \Gamma(\text{End}(E_{SL(N, \mathbb{C})}(V))) \) has the following quasi-periodicity properties:

\[
\begin{align*}
L_{ij}(z + 1) &= e \left(\frac{I - I}{N} \right) Q_{p \times p} L_{ij}(z) Q_{p \times p}^{-1}, \\
L_{ij}(z + \tau) &= e(-u_I) \Lambda_{p \times p} L_{ij}(z) \Lambda_{p \times p}^{-1} e(u_I).
\end{align*}
\] (3.11)

The factor \(e \left(\frac{I - I}{N} \right) \) can be removed by

\[
L_{ij}(z) \rightarrow L_{ij}(z) e \left(-\frac{I - I}{N} \right),
\]

\[
u \rightarrow u_I - I \frac{\tau}{N}.
\]

Finally, the boundary conditions are of the form

\[
\begin{align*}
L_{ij}(z + 1) &= Q_{p \times p} L_{ij}(z) Q_{p \times p}^{-1}, \\
L_{ij}(z + \tau) &= e(-u_I) \Lambda_{p \times p} L_{ij}(z) \Lambda_{p \times p}^{-1} e(u_I).
\end{align*}
\] (3.12)

Therefore, it is natural to use the following basis:

\[
E_{ij}^n = E_{ij} \otimes T_n \in \mathfrak{gl}(N, \mathbb{C}), \quad E_{ij} \in \mathfrak{gl}(p, \mathbb{C}), \quad T_n \in \mathfrak{gl}(l, \mathbb{C})
\] (3.13)

in the Lie algebra \(\mathfrak{gl}(N, \mathbb{C}) \), where \(E_{ij} \) is a standard matrix basis in \(\mathfrak{gl}(p, \mathbb{C}) \) (generated by the fundamental representation of \(\mathfrak{gl}(p, \mathbb{C}) \)) and \(T_n \) is the basis of \(\mathfrak{gl}(l, \mathbb{C}) \) defined in (A.29)–(A.32). The basis (3.13) will be used in section 3.4 to construct the quantum \(R \)-matrix.

The described types of bundles were used in [21] in order to construct the ‘models of interacting tops’.
3.3. Baxter–Belavin–Drinfeld–Sklyanin and Felder quantum R-matrices

As we said, there exist two extreme cases in the description of the R-matrices. The first case is the vertex R-matrices [10, 7]. These R-matrices correspond to the SL(N, \mathbb{C})-bundles with the characteristic classes \(\zeta = \exp \frac{2\pi i}{N} \), where \(k \) and \(N \) are co-prime. In this case \(\mathfrak{h}_0 = \{0\} \). These are the so-called non-dynamical R-matrices. Another case corresponds to the SL(N, \mathbb{C})-bundles with the trivial characteristic classes \(\zeta = 1 \) [1, 25]. We first consider the R-matrices for these two cases. The R-matrices satisfy the non-dynamical or dynamical Yang–Baxter equations correspondingly. The latter equations are

\[
R^{12}(z - w)R^{13}(z)R^{23}(w) = R^{23}(w)R^{13}(z)R^{12}(z - w),
\]

\[
R^{12}(u, z - w)R^{13}(u - h^2, z)R^{23}(u, w) = R^{23}(u - h^e, w)R^{13}(u, z)R^{12}(u - h^e, z - w).
\]

3.3.1. Non-dynamical case: Baxter–Belavin–Drinfeld–Sklyanin vertex R-matrix. The elliptic non-dynamical R-matrix is related to SL(N, \mathbb{C}). It is defined in the basis (A.29) as follows:

\[
R^{12}(z) = \sum_{a \in \Gamma_N} \varphi_a(z, \omega_a + \hbar)T_a \otimes T_{-a}
\]

Proposition 3.1. The Baxter–Belavin–Drinfeld–Sklyanin R-matrix (3.16) satisfies the quantum Yang–Baxter equation (3.14) [10, 7].

Proof. Consider a basic component of the tensor product \(T_a \otimes T_{-a} \otimes T_{b} \):

\[
\sum_{c \in \Gamma_N} \kappa_{0,0,k_a,k_{2a+2b},c}\varphi_{a-c}(\omega_a - \omega_c + \hbar, z - w)\varphi_c(\omega_c + \hbar, z)\varphi_{-b-c}(-\omega_b - \omega_c + \hbar, w)
\]

Making the shift \(c \rightarrow -c - b \) in the lhs, we have the following expression for (lhs)—(rhs):

\[
\sum_{c \in \Gamma_N} \kappa_{0,0,k_{2a},\kappa_c,2a+2b}\varphi_{a+b+c}(\omega_a + \omega_b + \omega_c + \hbar, z - w)\varphi_{-b-c}(-\omega_b - \omega_c + \hbar, z)\varphi_c(\omega_c + \hbar, w)
\]

\[
- \varphi_{a-c}(\omega_a - \omega_c + \hbar, z - w)\varphi_c(\omega_c + \hbar, z)\varphi_{-b-c}(-\omega_b - \omega_c + \hbar, w)).
\]

Using (A.22) in the case \(a + b \neq 0 \) mod \(\Gamma_N \) we obtain

\[
\varphi_a(\omega_a + 2\hbar, z)\varphi_{-a-b}(-\omega_a - \omega_b, w)\sum_{c \in \Gamma_N} \kappa_{0,0,k_{2a},\kappa_c,2a+2b}(E_1(\omega_a + \omega_b + \omega_c + \hbar)
\]

\[
- E_1(\omega_a - \omega_c + \hbar) + E_1(-\omega_b - \omega_c + \hbar) - E_1(\omega_c + \hbar)) = 0.
\]

Indeed, \(\kappa_{0,0,k_{2a},\kappa_c,2a+2b} \) is invariant under the substitution \(c \rightarrow c - a - b \). Then making this shift in the first \((E_1(\omega_a + \omega_b + \omega_c + \hbar))\) and the third \((E_1(-\omega_b - \omega_c + \hbar))\) terms one can see that the whole sum vanishes.

In the case \(a + b = 0 \) mod \(\Gamma_N \) it follows from (A.24) for (lhs)—(rhs) that

\[
\varphi_a(\omega_a + 2\hbar, z) \left(\frac{N}{2\pi i} \right)^3 \sum_{c \in \Gamma_N} (E_2(\omega_c + \hbar) - E_2(\omega_a - \omega_c + \hbar)) = 0,
\]

where the normalization factor \(\frac{N}{2\pi i} = \kappa(0, 0) \) appears from (A.30). \(\square \)
3.3.2. Dynamical case: Felder R-matrix. Felder’s R-matrix is defined as follows [1]:

\[R_{12}(u, z) = \sum_{i,j} r_{ij}(u, z) E_{ij} \otimes E_{ji} + \sum_{\mu \neq v} \rho_{\mu\nu} E_{\mu\nu} \otimes E_{\nu\mu}, \]

(3.18)

where

\[r_{ij}(u, z) = \phi(u_{ij} + \delta_{ij} h, z), \quad \rho_{ij} = \phi(-u_{ij}, h), \quad u_{ij} = u_i - u_j \]

and

\[R_{13}(z, u - \hbar h(2)_1) = \sum_{m,n,s} t_{mn}(z) E_{mn} \otimes \tilde{E}_{zs} \otimes E_{nm} + \sum_{\gamma \neq \xi} \tilde{\rho}_{\gamma\xi} E_{\gamma\gamma} \otimes \tilde{E}_{\xi\xi} \otimes E_{\xi\xi}. \]

We use ‘check’ to indicate the possible shift of the argument of \(R_{13} \) by \(-\hbar h(2)_1\):

\[\sum_{m,n,s} t_{mn}(z) E_{mn} \otimes \tilde{E}_{zs} \otimes E_{nm} = \sum_{m,n,s} \phi(u_{mn} + \delta_{mn} h - h\delta_{mn} + h\delta_{ns}, z) E_{mn} \otimes \tilde{E}_{zs} \otimes E_{nm} \]

\[\times \sum_{\gamma \neq \xi, s} \tilde{\rho}_{\gamma\xi} E_{\gamma\gamma} \otimes \tilde{E}_{\xi\xi} \otimes E_{\xi\xi} = \sum_{\gamma \neq \xi, s} \phi(-u_{\gamma\xi} + \delta_{\gamma\xi} h - \delta_{\xi\xi} h, h) E_{\gamma\gamma} \otimes \tilde{E}_{\xi\xi} \otimes E_{\xi\xi}. \]

(3.19)

Proposition 3.2. Felder’s R-matrix (3.18) satisfies the QDYB equation (3.15).

We omit here the proof of this proposition since it is contained as a particular case of more general structure which will be discussed in section 3.4.

3.3.3. Classical limits. Let us also take the classical limits of the quantum R-matrices (3.16) and (3.18):

\[r^{BD}_{12}(z, w) = \lim_{h \to 0} \left(R^{BD}_{12}(z, w) - \frac{1}{\hbar} \otimes 1 \right) \]

\[= E_1(z - w) 1 \otimes 1 + \sum_{\alpha \in \Gamma} \phi_{\alpha}(z - w, \omega_\alpha) T_\alpha \otimes T_{-\alpha}. \]

(3.20)

Note that the summation is taken over \(\Gamma_N \) (A.28). This r-matrix satisfies the classical Yang–Baxter equation:

\[[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0 \]

(3.21)

For the dynamical r-matrix we have

\[r^{\ast}_{12}(z, w) = \lim_{h \to 0} \left(R^{\ast}_{12}(z, w) - \frac{1}{\hbar} 1 \otimes 1 \right) \]

\[= E_1(z - w) \sum_{i} E_{ii} \otimes E_{ii} + \sum_{i,j} \phi(z - w, u_{ij}) E_{ij} \otimes E_{ji} - \sum_{i,j} E_{ij}(u_{ij}) E_{ii} \otimes E_{jj}. \]

(3.22)

The modified classical Yang–Baxter equation

\[[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] + D^{(1)}_b r_{23} - D^{(2)}_b r_{13} + D^{(3)}_b r_{12} = 0. \]

(3.23)

In the standard basis the operator \(D^{(1)}_b \) is written as follows:

\[D^{(1)}_b = \sum_{i=1}^{N} E_{ii} \otimes 1 \otimes 1 \partial_{u_i}. \]

It should be mentioned that the r-matrix (3.22) without the last sum \(\sum_{\gamma \neq \xi} \) also satisfies (3.23). The reason is that it can be removed by the dynamical twist (see e.g. [44] or [24]).

Note that both r-matrices \(r^{BD} \) (3.20) and \(r^{\ast} \) (3.22) are particular cases of the general form (2.20).
3.4. General quantum R-matrices for SL(N, C)-bundles

Let us consider the basis (3.13) in GL(N, C) ≃ GL(p, C) × GL(l, C), where N = lp, l, p ∈ ℤ:

\[E_{ij}^a = E_{ij} \otimes T_a, \quad E_{ij} \in \text{gl}(p, \mathbb{C}), \quad T_a \in \text{gl}(l, \mathbb{C}), \]

(3.24)

where \(E_{ij} \) is a standard matrix basis in the fundamental representation of GL(p, C) and \(T_a \) is the basis of GL(l, C) defined in (A.29). From (A.30) it follows that:

\[E_{ij}^a E_{kl}^b = \kappa_{a,b} \delta_{ij} E_{jl}^{a+b}. \]

(3.25)

Now let us introduce the following R-matrix:

\[R_{12}(u, z) = \sum_{i,j}^{p} \sum_{a \in V_1} r_{ij}^a(u, z) E_{ij}^a \otimes E_{ji}^{-a} + \sum_{\mu, \nu}^{p} \rho_{\mu \nu}^0 E_{\mu \nu}^0 \otimes E_{\nu \mu}^0, \]

(3.26)

where

\[r_{ij}^a(u, z) \equiv r_{ij}^a(z) = \phi_{-a}(-u_{ij} - \delta_{ij}h, z), \quad \rho_{ij}^0 = \phi(-u_{ij}, l h), \]

\[u_{ij} = u_i - u_j, \quad \omega_a = \frac{a_1 + \tau a_2}{l}. \]

In particular, if \(p = 1 \) (\(l = N \)) then (3.26) coincides with (3.16). For \(p = N \) (\(l = 1 \)) we come to (3.18). In this way the elliptic R-matrix (3.26) unifies the dynamical and non-dynamical cases.

Consider dependence of \(R(u, z) \) on \(z \) and \(u \). The shifts of \(z \) yield (see (A.37))

\[R(u, z + \tau) = \lambda_{p \times p} R(u, z) \lambda_{p \times p}^{-1}, \quad R(u, z + \tau) = e_1(u + h) \Lambda_{p \times p} R(u, z) \Lambda_{p \times p}^{-1} e_1(-u - h), \]

where \(\lambda_{p \times p} \) and \(\Lambda_{p \times p} \) act on the second factor of the basis (3.24), and the adjoint transformation by \(e_1(u + h) \) acts on the first factor as \(E_{ij} \rightarrow e_1(u_i - u_j + \delta_{ij} h) E_{ij} \). These conditions define the characteristic class of bundles.

Consider quasi-periodicities of \(R(u, z) \) (\(u \in \hat{G}_0 \)) with respect to shifts of the weight lattice \(P_1 \) or the root lattice \(Q_1 \) in \(\hat{G}_0 \) (see (3.6) and (3.7)). Let \(\gamma = (m_1, \ldots, m_p) \in P_1 \), or \(Q_1 \) and \(\gamma_p(y, z) = e(\gamma z) = \text{diag}(e(m_1 z), \ldots, e(m_p z)) \). It follows from (3.26) and (A.38) that

\[R(u + \gamma, z) = R(u, z), \quad R(u + \gamma, z) = (\gamma_q^{-1}(y, z) \otimes \text{Id}_l) R(u, z) (\gamma_p(y, z) \otimes \text{Id}_l). \]

It means that \(R(u, z) \) is a section of the trivial bundle over the moduli spaces (3.6) and (3.7).

Now we prove the main result of the paper:

Theorem 3.1. The R-matrix (3.26) satisfies the QDYB equation (3.15).

Proof. By analogy with the notation \(\gamma \) from (3.19) we use an acute accent \(\gamma \) for the indication of possible shift of the argument of \(R_{23} \) (in the rhs of (3.15)) and a tilde \(\tilde{\gamma} \) for \(R_{12} \) (in the rhs of (3.15)). Let us write down equation (3.15) explicitly:

\[\text{lhs} = \sum_{ij} r_{ij}^{\tilde{\gamma} - e} (z - w) r_{mz}^e (z) r_{kl}^{-b} (w) E_{ij}^{a-e} E_{mn}^{c-e} \otimes E_{ji}^{b-e} E_{kl}^{b-e} \otimes E_{mn}^{c-e} E_{kl}^{e+c} \]

\[+ r_{ij}^{\tilde{\gamma} - e} (z - w) r_{mz}^e (z) r_{kl}^{-b} (w) E_{ij}^{a-e} E_{mn}^{c-e} \otimes E_{ji}^{b-e} E_{kl}^{b-e} \otimes E_{mn}^{c-e} E_{kl}^{e+c} \]

\[+ r_{ij}^{\tilde{\gamma} - e} (z - w) r_{mz}^e (z) r_{kl}^{-b} (w) E_{ij}^{a-e} E_{mn}^{c-e} \otimes E_{ji}^{b-e} E_{kl}^{b-e} \otimes E_{mn}^{c-e} E_{kl}^{e+c} \]

\[+ r_{ij}^{\tilde{\gamma} - e} (z - w) r_{mz}^e (z) r_{kl}^{-b} (w) E_{ij}^{a-e} E_{mn}^{c-e} \otimes E_{ji}^{b-e} E_{kl}^{b-e} \otimes E_{mn}^{c-e} E_{kl}^{e+c} \]

\[+ r_{ij}^{\tilde{\gamma} - e} (z - w) r_{mz}^e (z) r_{kl}^{-b} (w) E_{ij}^{a-e} E_{mn}^{c-e} \otimes E_{ji}^{b-e} E_{kl}^{b-e} \otimes E_{mn}^{c-e} E_{kl}^{e+c} \]
\[+ \rho^0_{ij}(z-w) \hat{r}^{a,c}_{ij}(z-w) E^a_{\mu\nu} E^c_{\alpha\beta} \\]
The notation δ_{ui} here (for example, in the first line of (3.30)) means that the corresponding \tilde{r}_{ij} has the shift of the argument u_{kj} by $-h$ if $k = m$ and by $+h$ when $j = m$.

Making the change of the summation variable $c \rightarrow -c - b$ in the lhs (3.29) we obtain the same factor $\kappa_{0,0,k,b,K_2 + 2b,c} \rightarrow \kappa_{0,0,k,b,K_2 + 2b,c}$ for both sides due to (A.31):

lhs = \[\sum_{\kappa_{0,0,k,b,K_2 + 2b,c}} \delta_{ui} r_{ij}^{a+b+c} (z - w) \tilde{r}_{j}^{b-c} (w) E_{nm} \otimes E_{kn} \otimes E_{kn}^b + \delta_{ui,c} \kappa_{0,0,k,b,K_2 + 2b,c} \delta_{ki} r_{ij}^{a+b+c} (z - w) \tilde{r}_{ji}^{b-c} (z) E_{ij} \otimes E_{ij} \otimes E_{ij}^b + \delta_{ui,c} \kappa_{0,0,k,b,K_2 + 2b,c} \delta_{ki} r_{ij}^{a+b+c} (z - w) \tilde{r}_{ji}^{b-c} (z) E_{ij} \otimes E_{ij} \otimes E_{ij}^b \]

rhs = \[\sum_{\kappa_{0,0,k,b,K_2 + 2b,c}} \delta_{ui} \delta_{mn} \delta_{kn} \tilde{r}_{ij}^{a+b+c} (z - w) \tilde{r}_{j}^{b-c} (w) E_{mj} \otimes E_{kj} \otimes E_{kj}^b + \delta_{ui,c} \kappa_{0,0,k,b,K_2 + 2b,c} \delta_{mn} \delta_{kn} \tilde{r}_{ij}^{a+b+c} (z - w) \tilde{r}_{j}^{b-c} (w) E_{mn} \otimes E_{mj} \otimes E_{kj}^b + \delta_{ui,c} \kappa_{0,0,k,b,K_2 + 2b,c} \delta_{mn} \delta_{kn} \tilde{r}_{ij}^{a+b+c} (z - w) \tilde{r}_{j}^{b-c} (w) E_{mn} \otimes E_{mj} \otimes E_{kj}^b \]

A careful check shows that the equality (3.31) and (3.32) holds. The general idea of the verification is the following: if $a \neq -b$, the proof is similar to the one given for the non-dynamical case (3.16) and if $a = -b$, the equality is achieved by the *' ρ-term* in the R-matrix via the summation of (A.42) over c.

Let us demonstrate the verification for some concrete cases:

\[E_{ij}^a \otimes E_{kj}^{a+b} \otimes E_{kn}^b. \]

\[\text{lhs} = \sum_{c \in T_j} \kappa_{0,0,k,b,K_2 + 2b,c} \]

\[(\tilde{r}_{ij}^{a+b+c} (z - w) \tilde{r}_{j}^{b-c} (w) + \delta_{ij} \delta_{a+b+c} \kappa_{0,0,k,b,K_2 + 2b,c} \tilde{r}_{ij}^{a+b+c} (z - w) \tilde{r}_{j}^{b-c} (z) \tilde{r}_{j}^{b-c} (w)) \]

\[= \text{rhs} = \sum_{c \in T_j} \kappa_{0,0,k,b,K_2 + 2b,c} \]

\[(\tilde{r}_{ij}^{a+b+c} (z - w) \tilde{r}_{j}^{b-c} (w) + \delta_{ij} \delta_{a+b+c} \kappa_{0,0,k,b,K_2 + 2b,c} \tilde{r}_{ij}^{a+b+c} (z - w) \tilde{r}_{j}^{b-c} (z) \tilde{r}_{j}^{b-c} (w)). \]

9 Here and elsewhere we imply unequal lower indices while the upper may be dependent, e.g. $a = -b$ or $a = 0$ or $b = 0$. Note also that the summation will be taken only over b.

14
Index s in the lhs of (3.33) is responsible for the possible shift of argument in \tilde{r}. In this case we can see that it does not match the corresponding arguments. The same holds for indices t and q. Thus there are no shifts in this case. Now combining the first terms from both sides we obtain:

$$\sum_{c \in \Gamma} \kappa_{0,0}^{\kappa,\kappa_2,2a+2b}(\varphi_{a+b+c}(z-w, u_{d} + \omega_{a} + \omega_{b} + \omega_{c}) \varphi_{-b-c}(z, u_{j} - \omega_{b} - \omega_{c}) \varphi_{w}(w, u_{d} + \omega_{c})$$

$$= \delta_{a-b-c}(z-w, u_{j} + \omega_{a} - \omega_{c}) \varphi_{a-b-c}(z, u_{j} + \omega_{a} - \omega_{b} - \omega_{c}))$$

$$\delta_{a-b-c}(\tilde{r}_{ij}^c(z-w, u_{d} + \omega_{a} + \omega_{b} + \omega_{c}) \tilde{r}_{ij}^{-c}(z-w, u_{j} + \omega_{a} + \omega_{b} + \omega_{c}))$$

(3.34)

Let us examine the lhs of (3.34). Due to (A.42) it simplifies to:

1. For $a \neq -b \mod 2N^2$:

$$\text{lhs}(3.34) = \varphi_{a}(z, \omega_{a} + u_{j}) \varphi_{a-b}(w, -\omega_{a} - \omega_{b}) \sum_{c \in \Gamma} \kappa_{0,0}^{\kappa,\kappa_2,2a+2b}(E_{1}(u_{d} + \omega_{a} + \omega_{b} + \omega_{c})$$

$$E_{1}(u_{j} + \omega_{a} - \omega_{b} - \omega_{c}) + E_{1}(u_{d} + \omega_{a} + \omega_{b} - \omega_{c})) = 0$$

exactly as in (3.17).

2. For $a = -b \mod 2N^2$:

$$\delta_{a-b-c}^{3}(\tilde{r}_{ij}^c(z-w, u_{d} + \omega_{a} + \omega_{b} + \omega_{c}))$$

$$\delta_{a-b-c}^{3}(\tilde{r}_{ij}^{-c}(z-w, u_{j} + \omega_{a} + \omega_{b} + \omega_{c}))$$

(3.35)

$$E_{i}^{a} \otimes E_{i}^{a-b} \otimes E_{j}^{b} :$$

$$\text{lhs} = \sum_{c \in \Gamma} \kappa_{0,0}^{\kappa,\kappa_2,2a+2b}(\varphi_{a+b+c}(z-w, u_{d} + \omega_{a} + \omega_{b} + \omega_{c} + \hbar)$$

$$\times \varphi_{-b-c}(z, u_{j} - \omega_{b} - \omega_{c} + \hbar) \varphi_{w}(w, u_{d} + \hbar)$$

$$= \delta_{a-b-c}^{3}(\tilde{r}_{ij}^c(z-w, u_{d} + \omega_{a} + \omega_{b} + \omega_{c} + \hbar) \tilde{r}_{ij}^{-c}(z-w, u_{j} - \omega_{b} - \omega_{c} + \hbar))$$

(3.37)

$$E_{i}^{a} \otimes E_{i}^{a-b} \otimes E_{j}^{b} :$$

$$\delta_{a-b-c}^{3}(\tilde{r}_{ij}^c(z-w, u_{d} + \omega_{a} + \omega_{b} + \omega_{c} - (z, u_{j} - \omega_{b} - \omega_{c}) \varphi_{w}(w, u_{d} + \omega_{c} + \hbar))$$

$$\delta_{a-b-c}^{3}(\tilde{r}_{ij}^{-c}(z-w, u_{j} - \omega_{b} - \omega_{c}) \varphi_{w}(w, u_{d} + \omega_{a} + \omega_{b} + \omega_{c} + \hbar))$$

(3.38)

or

$$\varphi_{a+b}(z-w, u_{d} + \omega_{a} + \omega_{b}) \varphi_{-b}(z, u_{j} - \omega_{b}) + \varphi_{a}(z, u_{j} + \omega_{a}) \varphi_{-a-b}(w, u_{d} - \omega_{a} - \omega_{b})$$

$$\varphi_{a+b}(z-w, u_{d} + \omega_{a} + \omega_{b}) \varphi_{-b}(z, u_{j} - \omega_{b}) + \varphi_{a}(z, u_{j} + \omega_{a}) \varphi_{-a-b}(w, u_{d} - \omega_{a} - \omega_{b})$$

(3.39)
3.5. Trigonometric and rational limits

We can calculate the trigonometric limit $\Im \tau \to +\infty$ of the elliptic R-matrix (3.26) using (A.11) and (A.35)

$$R^{\text{trig}}(u, z) = \sum_{i,j} \sum_{\alpha \in A_i} r_{ij}^\alpha(u, z) E_{ij}^\alpha \otimes E_{ji}^{-\alpha} + \sum_{\alpha \neq \beta} \rho_{ij}^{\alpha \beta} E_{ij}^\alpha \otimes E_{ji}^{-\beta},$$

$$r_{ij}^\alpha(u, z) = \begin{cases} \cot \pi z + \cot \pi \left(u_{ij} + \frac{a_1}{N} + \delta_{ij} \hbar \right) & a_2 = 0, \\ e \left(\frac{a_2}{N} + 1 \right) \sin^{-1} \pi z & a_2 \neq 0. \end{cases}$$

$$\rho_{ij}^{\alpha \beta} = \frac{\sin \pi (l \hbar - l_{ij})}{\sin \pi (l \hbar) \sin \pi (l_{ij})}, \quad u_{ij} = u_i - u_j.$$

Going to the rational limit we find

$$r_{ij}^\alpha(u, z) = \begin{cases} \frac{1}{\pi z} + \frac{1}{\pi \left(u_{ij} + \frac{a_1}{N} + \delta_{ij} \hbar \right)} & a_2 = 0, \\ \frac{1}{\pi z} & a_2 \neq 0. \end{cases}$$

$$\rho_{ij}^{\alpha \beta} = \frac{1}{\pi l \hbar} + \frac{1}{\pi l_{ij}}.$$

For the elliptic R-matrices and related models there exists another trigonometric and rational limit [96–98]. This construction can be generalized to $\text{SL}(N, \mathbb{C})$ elliptic matrix. The same approach can be applied in our case as well but we will not develop this issue here.

4. Dynamical R-matrices and integrable systems

4.1. IRF models

Following [1] we construct the Boltzmann weights of the interaction-round-the-face models starting with the quantum R-matrices described above. Let $\mu \in \mathfrak{h}^*$ be a weight of $(\mu \in \mathfrak{h}^*)$ of the vector representation of $\text{sl}(N, \mathbb{C})$ in V. In other words we have N weights

$$P_V = \left\{ \mu_j = \frac{1}{N}(-1, \ldots, -1, N - 1, -1, \ldots, -1) : (j = 1, \ldots, N) \right\},$$

where $N - 1$ stays on the j place. Let $V[\mu_j]$ be the corresponding component of the space V, and $E[\mu_j] : V \to V[\mu_j]$ is a projection. In our case all $V[\mu_j]$ are one-dimensional.

Define the local states $a, b, c, d \in \mathfrak{h}^*$ of the IRF model $b-a = \mu_4, c-b = \mu_3, d-c = \mu_2, \quad d-a = \mu_1$, where all weights from P_V (4.1), satisfy the equality $\mu_1 + \mu_2 = \mu_3 + \mu_4$.

Define the map $W(a, b, c, d) : V[\mu_4] \otimes V[\mu_2] \to V[\mu_4] \otimes V[\mu_2]$ by means of the R-matrix

$$W(a, b, c, d, z, u) = E[c - b] \otimes E[b - a] R(u + ha + hc, z) V[d - a] \otimes V[c - d].$$

In fact $W(a + \hat{u}, b + \hat{u}, c + \hat{u}, d + \hat{u}, z - 2\hat{u})$ is independent on \hat{u}. In this way we can define the Boltzmann weights of the IRF model as $W(a, b, c, d, z) = W(a, b, c, d, 0, z)$. The partition function of the IRF model takes the form

\[\text{We will also use notation } \delta_{\alpha, \beta} \rho_{ij}^{\alpha \beta} = \rho_{ij}^{\beta \beta} \text{ in order to keep uniformity in formulae.} \]
\[Z = \sum_{\text{lattice}} W(a_{ij}, a_{i,j+1}, a_{i-1,j+1}, a_{i-1,j-1}). \]

If \(R \) satisfies QDYB equation (3.15), then \(W \) obeys star-triangle relations [2]

\[
\sum_g W^{12}(b, c, d, g, z_{12})W^{13}(a, b, g, f, z_{13})W^{23}(f, g, d, c, z_{23})
= \sum_g W^{23}(a, b, c, g, z_{23})W^{13}(g, c, d, e, z_{13})W^{12}(a, g, e, f, z_{12})
\]
on \(V[f - a] \otimes V[e - f] \otimes V[d - e] \) providing the integrability of the model.

4.2. Elliptic quantum groups

Let \(R \) be a solution of QDYB. Define the quantum Lax operator \(L(\hat{v}, u, \hat{S}, z) \) as a map of \(\mathfrak{h}_0 \times \mathbb{C} \) to \(\text{Aut}(V) \). Here \(\hat{S} \) are generators of \(\text{SL}(N, \mathbb{C}) \) acting on the module \(V \), and \([\hat{v}_j, u_k] = \hbar \delta_{jk} \).

The Lax operator satisfies the equation

\[
R^{12}(z - w, u + \hbar e^3)L^1(u - \hbar e^2, z)L^2(u + \hbar e^1, w)
= L^2(u + \hbar e^3, w)L^1(u - \hbar e^2)R^{12}(u - \hbar e^3 u, z - w),
\]

where \(L^1 = L \otimes \text{Id}, L^2 = \text{Id} \otimes L. \)

Assume that \(L(\hat{v}, u, z, \hat{S}) \) satisfies the quasi-periodicity conditions (2.12) and the weight zero condition (2.15). The relation (4.3) defines the quadratic algebra with respect to \(u \) and \(\hat{S} \).

This algebra is the Felder elliptic quantum group [2] for the trivial bundles and \(R(3.18) \). In the case \(R(3.16) \) we come to the Sklyanin–Feigin–Odesski algebras [18–20, 64].

In the classical limit, \(L = L(\hat{v}, u, \hat{S}, z) \) becomes the classical Lax operator for interacting tops described in section 3.1. The angular momentum variable \(S \) belongs to the co-adjoint \(\text{SL}(p, \mathbb{C}) \) orbit corresponding after quantization to the representation \(V \). In this way we obtain the quadratic Poisson algebras

\[
\{L^1(u, S), L^2(u, S)\} = [r(u), L^1(u, S), L^2(u, S)]
\]
defining the Poisson structure on the phase space of interacting tops.

Acknowledgments

The work was supported by grants RFBR-09-02-00393, RFBR-09-01-92437-KEn, and by the Federal Agency for Science and Innovations of Russian Federation under contract 14.740.11.0347. The work of AZ and AS was also supported by the Russian President fund MK-1646.2011.1, RFBR-09-01-93106-NCNIL, RFBR-12-01-00482 and RFBR-12-01-33071 molaved. The work of AL was partially supported by AG Laboratory GU-HSE, RF government grant, ag. 11 11.G34.31.0023.
Appendix. Elliptic functions

A.1. Basic definitions and properties

Let \(q = \exp(2\pi i \tau) \), where \(\tau \) is the modular parameter of the elliptic curve \(E_\tau \). The basic element is the theta function:

\[
\vartheta(z|\tau) = q^{\frac{1}{2}} \exp \left(\frac{i\pi}{4} (e^{iz} - e^{-iz}) \right) \prod_{n=1}^{\infty} \left(1 - q^n \right) \left(1 - q^n e^{2i\pi z} \right) \left(1 - q^n e^{-2i\pi z} \right).
\]
(A.1)

The Eisenstein functions

\[
E_1(z|\tau) = \partial_z \log \vartheta(z|\tau), \quad E_1(z|\tau) \sim \frac{1}{z} - 2\eta_1 z,
\]
(A.2)

where

\[
\eta_1(\tau) = \frac{3}{\pi^2} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(m\tau + n)^2} = \frac{24}{2\pi^4} \eta'(\tau) \eta(\tau),
\]
(A.3)

and \(\eta(\tau) = q^{\frac{1}{24}} \prod_{m>0} (1 - q^m) \) is the Dedekind function;

\[
E_2(z|\tau) = -\partial_z^2 \log \vartheta(z|\tau), \quad E_2(z|\tau) \sim \frac{1}{z^2} + 2\eta_1.
\]
(A.4)

The higher Eisenstein functions

\[
E_j(z) = \frac{(-1)^j}{(j-1)!} \partial_z^{j-2} E_2(z) \quad (j > 2).
\]
(A.5)

Relation to the Weierstrass functions

\[
\xi(z, \tau) = E_1(z, \tau) + 2\eta_1(\tau) z,
\]
(A.6)

\[
\wp(z, \tau) = E_2(z, \tau) - 2\eta_1(\tau).
\]
(A.7)

The next important function is

\[
\phi(u, z) = \frac{\vartheta(u + z) \vartheta(0)}{\vartheta(u) \vartheta(z)},
\]
(A.8)

\[
\phi(u, z) = \phi(z, u), \quad \phi(-u, -z) = -\phi(u, z).
\]
(A.9)

It has a pole at \(z = 0 \) and

\[
\phi(u, z) = \frac{1}{z} + E_1(u) + \frac{z}{2} (E_2^2(u) - \wp(u)) + \cdots.
\]
(A.10)

Trigonometric limit for \(\phi(u, z) \) follows from (A.1),

\[
\lim_{\gamma \to \infty} \phi(u, z) = \frac{\sin \pi (z + u)}{\sin \pi z \sin \pi u}.
\]
(A.11)

Let \(f(u, z) = \partial_\gamma \phi(u, z) \). Then

\[
f(u, z) = \phi(u, z) (E_1(u + z) - E_1(u)).
\]
(A.12)

Heat equation

\[
\partial_t \phi(u, w) - \frac{1}{2\pi i} \partial_u \partial_w \phi(u, w) = 0.
\]
(A.13)
Quasi-periodicity

\[
\vartheta(z + 1) = -\vartheta(z), \quad \vartheta(z + \tau) = -q^{1/2}e^{-2\pi i\tau}\vartheta(z),
\]
(A.14)

\[
E_1(z + 1) = E_1(z), \quad E_1(z + \tau) = E_1(z) - 2\pi i,
\]
(A.15)

\[
E_2(z + 1) = E_2(z), \quad E_2(z + \tau) = E_2(z),
\]
(A.16)

\[
\phi(u, z + 1) = \phi(u, z), \quad \phi(u, z + \tau) = e^{-2\pi i\tau}\phi(u, z);
\]
(A.17)

\[
f(u, z + 1) = f(u, z), \quad f(u, z + \tau) = e^{-2\pi i\tau}f(u, z) - 2\pi i\phi(u, z).
\]
(A.18)

The Fay three-section formula:

\[
\phi(u_1, z_1)\phi(u_2, z_2) = \phi(u_1 + u_2, z_1)\phi(u_2, z_2 - z_1) - \phi(u_1 + u_2, z_2)\phi(u_1, z_1 - z_2) = 0.
\]
(A.19)

A particular case of this formula is the Calogero functional equation

\[
\phi(u, z)\partial_u\phi(v, z) - \phi(v, z)\partial_u\phi(u, z) = (E_2(u) - E_2(v))\phi(u + v, z),
\]
(A.20)

\[
\phi(u, z)\phi(-u, z) = E_2(z) - E_2(u).
\]
(A.21)

Another important relation is

\[
\phi(v, z - w)\phi(u_1 - v, z)\phi(u_2 + v, w) - \phi(u_1 - u_2 - v, z - w)\phi(u_2 + v, z)\phi(u_1 - v, w)
\]
\[= \phi(u_1, z)\phi(u_2, w)f(u_1, u_2, v),
\]
(A.22)

where

\[
f(u_1, u_2, v) = E_1(v) - E_1(u_1 - u_2 - v) + E_1(u_1 - v) - E_1(u_2 + v).
\]
(A.23)

Taking limit \(u_2 \to 0\) in (A.22) we obtain

\[
\phi(v, z - w)\phi(u_1 - v, z)\phi(v, w) - \phi(u_1 - v, z - w)\phi(v, z)\phi(u_1 - v, w)
\]
\[= \phi(u_1, z)(E_2(v) - E_2(u_1 - v)),
\]
(A.24)

which is equivalent to (A.20) due to (A.12).

Theta functions with characteristics. For \(a, b \in \mathbb{Q}\) by definition:

\[
\theta\left[\begin{array}{c}
 a \\
 b
\end{array}\right]\left(z, \tau \right) = \sum_{j \in \mathbb{Z}} e\left(\frac{(j + a)^2 \tau}{2} + (j + a)(z + b) \right).
\]

In particular, the function \(\vartheta\) (A.1) is a theta function with characteristics:

\[
\vartheta(\frac{1}{2}, \tau) = \theta\left[\begin{array}{c}
 \frac{1}{2} \\
 \frac{1}{2}
\end{array}\right](x, \tau).
\]
(A.25)

Properties:

\[
\theta\left[\begin{array}{c}
 a \\
 b
\end{array}\right]\left(z + 1, \tau \right) = e(a)\theta\left[\begin{array}{c}
 a \\
 b
\end{array}\right]\left(z, \tau \right),
\]

\[
\theta\left[\begin{array}{c}
 a \\
 b
\end{array}\right]\left(z + a\tau, \tau \right) = e\left(-a^2\frac{\tau}{2} - a'(z + b) \right)\theta\left[\begin{array}{c}
 a' + a \\
 b
\end{array}\right]\left(z, \tau \right),
\]

\[
\theta\left[\begin{array}{c}
 a + j \\
 b
\end{array}\right]\left(z, \tau \right) = \theta\left[\begin{array}{c}
 a \\
 b
\end{array}\right]\left(z, \tau \right), \quad j \in \mathbb{Z}.
\]
A.2. Lie Group GL\((N, \mathbb{C})\) and elliptic functions

Introduce the notation (see [95])
\[
e_\alpha(z) = \exp \left(\frac{2\pi i}{N} z \right)
\]
and two matrices
\[
Q = \text{diag}(e_1(1), \ldots, e_N(m), \ldots, 1)
\]
\[
\Lambda = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{pmatrix}
\]
We have \(Q\Lambda = \exp\left(-\left(\frac{2\pi i}{N}\right)\Lambda\right)Q\). Let
\[
\Gamma_N = \mathbb{Z}^2_N = (\mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}), \quad \tilde{\Gamma}_N = \mathbb{Z}^2_N / N \mathbb{Z}
\]
be the two-dimensional lattice of order \(N^2\) and \(N^2 - 1\) correspondingly. The matrices
\[
Q^a A^a, \quad a = (a_1, a_2) \in \mathbb{Z}^2_N\n\]
generate a basis in the group GL\((N, \mathbb{C})\), while \(Q^a A^a, \quad a = (a_1, a_2) \in \mathbb{Z}^2_N\)
generate a basis in the Lie algebra gl\((N, \mathbb{C})\). Consider the projective representation of \(\mathbb{Z}^2_N\) in GL\((N, \mathbb{C})\),
\[
a \to T_a = \frac{N}{2\pi i} e^{\frac{N}{2}\alpha_a (a_1, a_2)},
\]
\[
T_a T_b = \kappa_{a,b} T_{a+b}, \quad \kappa_{a,b} = \frac{N}{2\pi i} e_{\alpha_a} \left(-\frac{a \times b}{2}\right). \tag{A.30}
\]
Let us mention some simple properties of \(\kappa\):
\[
\kappa_{a,b} = \left(\frac{N}{2\pi i}\right)^2, \quad \kappa_{a,c} \kappa_{b,c} = \frac{N}{2\pi i} \kappa_{a+b,c}, \quad \kappa_{a,a} = \frac{N}{2\pi i}. \tag{A.31}
\]
Note that \(\kappa_{a,b}\) can be interpreted as a non-trivial two-co-cycle in \(H^2(\mathbb{Z}^2_N, \mathbb{Z}_{2N})\). It follows from (A.30) that
\[
[T_a, T_\beta] = C(\alpha, \beta) T_{a+\beta}, \tag{A.32}
\]
where \(C(\alpha, \beta) = \frac{N}{2} \sin \frac{\pi}{2} (\alpha \times \beta)\) are the structure constants of gl\((N, \mathbb{C})\).

Deformed elliptic functions
\[
\phi_a(\eta, z) = e_\alpha(\eta, z) \phi(\omega_a + \eta, z), \quad \omega_a = \frac{a_1 + a_2}{N}, \quad a \in \mathbb{Z}_N^2, \quad \eta \in \Sigma^\tau, \tag{A.33}
\]
and
\[
\phi^m(\eta, z) = e(\kappa, \beta) \phi \left(\eta + \frac{a_1}{N}, \frac{m}{t}, z\right). \tag{A.34}
\]

Trigonometric limit for \(\phi_a(\eta, z)\) (see (A.11))
\[
\lim_{t \to +\infty} \phi_a(\eta, z) = \begin{cases}
\cot \pi z + \cot \pi \left(\eta + \frac{a_1}{N}\right) \quad & a_2 = 0, \\
\exp \left(\frac{a_2}{N} + \frac{1}{2}\right) z \sin^{-1} \pi z \quad & a_2 \neq 0.
\end{cases} \tag{A.35}
\]

It follows from (A.17) that \(\phi_a(\eta, z)\) is well defined on \(\mathbb{Z}_N^2\):
\[
\phi_{a+c}(\eta, z) = \phi_a(\eta, z), \quad \text{for } c_{1,2} \in \mathbb{Z} \text{ mod } N \tag{A.36}
\]
\[\varphi_{\eta, z} = \varphi_{\eta}(z, z + 1) = e_{N}(m)\varphi_{a}(\eta, z), \quad \varphi_{\eta}(\eta, z + 1) = e_{N}(N\eta)\varphi_{a}(\eta, z); \quad (A.37) \]

\[\varphi_{\varphi_{a}(\eta, z) + 1} = e_{N}(m)\varphi_{a}(\eta, z), \quad \varphi_{\varphi_{a}(\eta, z + 1)} = e_{N}(N\eta)\varphi_{a}(\eta, z). \quad (A.38) \]

For \(\varphi_{a}^{m}(u, z) \) (A.34) we have

\[\varphi_{a}^{m}(u, z + 1) = e((\nu, \beta))\varphi_{a}^{m}(u, z), \quad \varphi_{a}^{m}(u, z + \tau) = e - (u, \beta) - \frac{m}{\tau}\varphi_{a}^{m}(u, z). \quad (A.39) \]

The following formulae can be proved directly by checking the structure of poles and quasi-periodic properties:

\[\sum_{a \in \mathbb{Z}_{N}^{(2)}} E_{z}(\varphi, \varphi_{b}) = N^{2}E_{z}(N\varphi). \quad (A.40) \]

By analogy with (A.19) and (A.22)-(A.24) we have

\[\varphi_{a+b}(z - w, u + \omega_{a} + \omega_{b})\varphi_{a-b}(z, v - \omega_{b}) + \varphi_{a}(z, u + v + \omega_{a})\varphi_{a-b}(w, -u - \omega_{a} - \omega_{b}) \]

\[= \varphi_{a}(z - w, u + v + \omega_{a})\varphi_{a-b}(w, v - \omega_{b}) \quad (A.41) \]

\[\varphi_{a+b+c}(z - w, u + \omega_{a} + \omega_{b} + \omega_{c})\varphi_{a-c}(z, v - \omega_{b} - \omega_{c})\varphi_{c}(w, u + \omega_{c}) \]

\[- \varphi_{a-c}(z - w, v + \omega_{a} - \omega_{c})\varphi_{c}(z, u + \omega_{c})\varphi_{b-c}(w, v - \omega_{b} - \omega_{c}) \quad (A.42) \]

\[= \begin{cases} \varphi_{a+b+c}(z - w, u + v)(\varphi_{a}(z, u + \omega_{a} + \omega_{b} + \omega_{c}) - E_{z}(u + \omega_{a} + \omega_{b} + \omega_{c}) - E_{z}(v + \omega_{a} + \omega_{b} + \omega_{c})) \\ + E_{z}(u + \omega_{a} + \omega_{b} + \omega_{c}) - E_{z}(u + \omega_{a} + \omega_{c})), \text{ if } a + b \neq 0 \mod \mathbb{Z}_{N}^{(2)}, \end{cases} \]

\[\begin{cases} \varphi_{a}(z, u + v)(E_{z}(u + \omega_{a}) - E_{z}(v + \omega_{a} + \omega_{b})), \text{ if } a + b = 0 \mod \mathbb{Z}_{N}^{(2)}. \end{cases} \]

References

[1] Felder G 1994 Conformal field theory and integrable systems associated with elliptic curves ICM: Proc. Int. Congress Mathematicians (Boston, MA: Birkhäuser) pp 1247–55 (arXiv:hep-th/9407154)

[2] Felder G 1995 Elliptic quantum groups Proc. XIIth Int. Congress of Mathematical Physics (Paris, 1994) (Cambridge, MA: International Press) pp 211–18 (arXiv:hep-th/9412207)

[3] Gerve G L and Neveu A 1984 Novel triangle relation and absence of tachyons in Liouville theory Nucl. Phys. B 238 125

[4] Babelon O 1991 Universal exchange algebra for Bloch waves and Liouville theory Commun. Math. Phys. 139 619–43

[5] Alekseev A and Faddeev L 1994 \((T^{*}G)_{T}\): a toy model for conformal field theory Commun. Math. Phys. 159 549–79

[6] Etingof P and Varchenko A 1998 Geometry and classification of solutions of the classical dynamical Yang–Baxter equation Commun. Math. Phys. 192 77–120

[7] Belavin A A 1981 Dynamical symmetry of integrable quantum systems Nucl. Phys. B 180 189–200

[8] Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 Yang–Baxter equation and representation theory: I Lett. Math. Phys. 5 393–403

[9] Belavin A and Drinfeld V 1982 Solutions of the classical Yang–Baxter equation for simple Lie algebras Funct. Anal. Appl. 16 159–80

[10] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)

[11] Sklyanin E, Takhtajan L and Faddeev L 1979 Quantum inverse scattering method Theor. Math. Phys. 40 194

[12] Sklyanin E 1992 Quantum inverse scattering method. Selected topics arXiv:hep-th/9211111

[13] Kulish P and Sklyanin E 1979 Quantum inverse scattering method and the Heisenberg ferromagnet Phys. Lett. A 80 461-463

[14] Izergin A and Korepin V 1981 The inverse scattering method approach to the quantum Shabat–Mikhailov model Commun. Math. Phys. 79 303–16

[15] Faddeev L D 1990 Lectures on Quantum Inverse Scattering Method (Singapore: World Scientific)

[16] Gaudin M 1983 La fonction d’onde de Bethe (Paris: Masson)
[17] Kulish P and Reshetikhin N 1981 Zapiski Nauch. Semin. LOMI 101 101
[18] Stryjan E 1982 Some algebraic structures connected with the Yang–Baxter equation Funct. Anal. Appl. 16 27–34
[19] Feigin B and Odesski A 1989 Sklyanin’s elliptic algebras Funct. Anal. Appl. 23 207–14
[20] Braden H W, Dolgushev V A, Olshanetsky M A and Zotov A V 2003 Classical R-matrices and the Feigin–Odesskii algebra via Hamiltonian and Poisson reductions J. Phys. A: Math. Gen. 36 6079–7000 (arXiv:hep-th/0301211)
[21] Levin A M, Olshanetsky M and Zotov A 2008 Quadratic algebras related to elliptic curves Theor. Math. Phys. 156 163–83 (arXiv:0710.1072 [nlin.SI])
[22] Levin A and Zotov A 2006 Integrable model of interacting elliptic tops Theor. Math. Ph. 146 55–64
[23] Levin A, Olshanetsky M, Smirnov A and Zotov A 2012 Characteristic classes and Hitchin systems. General construction Commun. Math. Phys. 316 1–44 (arXiv:1006.0702 [math-ph])
[24] Levin A, Olshanetsky M, Smirnov A and Zotov A 2012 Calogero–Moser systems for simple Lie groups and characteristic classes of bundles J. Geom. Phys. 62 1810–30 (arXiv:1007.4127 [math-ph])
[25] Levin A, Olshanetsky M, Smirnov A and Zotov A 2012 Hecke transformations of conformal blocks in WZW theory: I. KZB equations for non-trivial bundles arXiv:1207.4386 [math-ph]
[26] Etingof P and Varchenko A 1998 Solutions of the quantum dynamical Yang–Baxter equation and dynamical quantum groups Commun. Math. Phys. 196 591–640
[27] Etingof P and Schifffmann O 1999 Twisted traces of intertwiners for Kac–Moody algebras and classical dynamical r-matrices corresponding to generalized Belavin–Drinfeld triples Math. Res. Lett. 6 593–612 (arXiv:math/9908115)
[28] Etingof P, Schiffmann O and Varchenko A 2002 Traces of intertwiners for quantum groups and difference equations Lett. Math. Phys. 62 143–58
[29] Feigin B and Odesski A 1989 Sklyanin’s elliptic algebras Nucl. Phys. B 621 622–642 (arXiv:math/0109132 [math.QA])
[30] Kuroki G and Takebe T 1997 Twisted Wess–Zumino–Witten models on elliptic curves Commun. Math. Phys. 190 1–56
[31] Kirillov A and Reshetikhin N 1986 The Yangians, Bethe ansatz and combinatorics Lett. Math. Phys. 12 199–208
[32] Kirillov S M and Tolstoy V N 1991 Universal R-matrix for quantized (super) algebras Commun. Math. Phys. 141 599–617
[33] Kirillov S M and Tolstoy V N 1992 The universal R-matrix for quantum non-twisted affine Lie algebras Funct. Anal. 26 85–88
[34] Nazarov M and Olshanski G 1996 Bethe subalgebras in twisted Yangians Commun. Math. Phys. 178 483–506 (arXiv:q-alg/9607003)
[35] Molev A I 2003 Universal R-matrices and the Drinfeld realization of the elliptic quantum group Mosc. Math. J. 5 146 243–86
[36] Ping X 2001 Quantum groupoids Commun. Math. Phys. 216 539–81
[37] Jimbo M, Konno H, Odake S and Shiraishi J 1999 Quasi-Hopf twistors for elliptic quantum groups Transformation Groups 4 303–27
[38] Gerasimov A, Kharchev S and Lebedev D 2005 Representation theory and quantum integrability Prog. Math. 237 133–56 (arXiv:math/0402112 [math.QA])
[39] Gerasimov A, Kharchev S, Lebedev D and Oblezin S 2005 On a class of representations of the Yangian and moduli space of monopoles Commun. Math. Phys. 260 511–25 (arXiv:math/0409031 [math.AG])
[40] Felder G and Varchenko A 1996 On representations of the elliptic quantum group $\hat{U}_{t,q} (\mathfrak{sl}_2)$ Commun. Math. Phys. 181 741–61 (arXiv:q-alg/9601003)
[41] Tarasov V and Varchenko A 2001 Small elliptic quantum group $e_{t,r} (\mathfrak{sl}_N)$ Moscow Math. J. 1 551–64 (arXiv:math/0011145 [math.QA])
[42] Kojima T and Konno H 2003 The elliptic algebra $U_{t,q} (\mathfrak{sl}_N)$ and the Drinfeld realization of the elliptic quantum group $B_{t,q} (\mathfrak{sl}_N)$ Commun. Math. Phys. 239 405–47 (arXiv:Math.QA/0210383)
[43] Konno H 2009 Elliptic quantum group $U_{t,q} (\mathfrak{sl}_N)$, Hopf algebraic structure and elliptic hypergeometric series J. Geom. Phys. 62 1845–50 (arXiv:0803.2292)
[44] Rubtsov V, Silantyev A and Talalaev D 2009 Manin matrices, quantum elliptic commutative families and characteristic polynomial of elliptic Gaudin model SIGMA 5 110 (arXiv:0908.4064v3 [math-ph])

22
[45] Pakuliak S, Ruhtsov V and Silantyev A 2008 The SOS model partition function and the elliptic weight functions J. Phys. A: Math. Theor. 41 295204 (arXiv:0802.0195)

[46] Pasquier V 1988 Etiology of IRF models Commun. Math. Phys. 118 355–64

[47] Hasegawa K 1997 Ruijsenaars’ commuting difference operators as commuting transfer matrices Commun. Math. Phys. 187 289–325 (arXiv:q-alg/9512029)

[48] Cremmer E and Gervais J L 1990 Classical and quantum mechanics of the non-linearly extended Virasoro algebras Commun. Math. Phys. 134 619

[49] Buffenoir E, Roche Ph and Terras V 2007 Quantum dynamical coboundary equation for finite dimensional simple Lie algebras Adv. Math. 214 181–229 (arXiv:math/0512500)

[50] Buffenoir E, Roche Ph and Terras V 2007 Universal vertex-IRF transformation for quantum affine algebras arXiv:0707.0955

[51] Levin A, Olshanetsky M and Zotov A 2003 Hitchin systems—symplectic Hecke correspondence and two-dimensional version Commun. Math. Phys 236 93–133 (arXiv:nlin/03110035 [nlin.SI])

[52] Olshanetsky M and Perelomov A 1980 Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems related to Lie algebras Phys. Rep. 71 313–400

[53] Reyman A G and Semenov-Tian-Shansky M A 1989 Lie algebras and Lax equations II Invent. Math. 16 1–23

[54] Krichever I M 1980 Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles J. Sov. Math. 18 1–29 (Engl. transl.)

[55] Khesin B, Levin A and Olshanetsky M 2004 Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus Commun. Math. Phys. 250 581–612

[56] Bordner A, Corrigan E and Sasaki R 1998 Calogero–Moser models: I. A new formulation Prog. Theor. Phys. 101 1107–29

[57] Kazdan D, Kostant B and Sternberg S 1978 Hamiltonian group actions and dynamical systems of Calogero type Commun. Pure Appl. Math. 31 481–507

[58] Olshanetsky M and Perelomov A 1981 Reduction of Hamiltonian systems, affine Lie algebras and Lax equations Invent. Math. 63 423–32

[59] Ruijsenaars S N M and Schneider H 1986 A new class of integrable systems and its relation to solitons Ann. Phys. 170 370–405

[60] Reyman A G and Semenov-Tian-Shansky M A 1989 Lie algebras and Lax equations II Invent. Math. 16 333–9

[61] Khesin B, Levin A and Olshanetsky M 2004 Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus Commun. Math. Phys. 250 581–612

[62] Krichever I M 1980 Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles J. Sov. Math. 18 1–29 (Engl. transl.)

[63] Khesin B, Levin A and Olshanetsky M 2004 Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus Commun. Math. Phys. 250 581–612

[64] Baxter R J 1973 Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain: II. Equivalence to a generalized ice-type lattice Ann. Phys. 76 25–47

[65] Jimbo M, Miwa T and Okado M 1988 Solvable lattice models related to the vector representation of classical simple Lie algebras Commun. Math. Phys. 116 507–25

[66] Babelon O, Bernard D and Billey E 1996 A quasi-Hopf algebra interpretation of quantum 3-j and 6-j symbols and difference equations Phys. Lett. B 375 89–97 (arXiv:q-alg/9511019)

[67] Etingof P and Schiffmann O 1999 Lectures on the dynamical Yang–Baxter equations London Mathematical Society (Lecture Notes Series) 290 89–129 (arXiv:math.QA/9908064)

[68] Etingof P and Varchenko A 1999 Exchange dynamical quantum groups Commun. Math. Phys. 205 19–52

[69] Etingof P and Nikshych D 2001 Vertex-IRF transformations and quantization of dynamical r-matrices Math. Res. Lett. 8 331–45 (arXiv:math/0103079)
[71] Levin A and Olshanetsky M 1999 Isomonodromic deformations and Hitchin systems Am. Math. Soc. Transl. 2 191 223–62
[72] Takasaki K 1998 Gaudin model, KZ equation, and isomonodromic deformation on torus Lett. Math. Phys. 44 143–56 (arXiv:hep-th/9711058)
[73] Hitchin N 1987 Stable bundles and integrable systems Duke Math. J. 54 91–114
[74] Hurtubise J and Markman E 2001 Calogero–Moser systems and Hitchin systems Commun. Math. Phys. 223 533–52 (arXiv:math/9912161)
[75] Markman E 1994 Spectral curves and integrable systems Comput. Math. 93 255–90
[76] Gorsky A and Nekrasov N 1994 Elliptic Calogero–Moser system from two dimensional current algebra arXiv:hep-th/9401021
[77] Nekrasov N 1996 Holomorphic bundles and many-body systems Commun. Math. Phys. 180 587–604 (arXiv:hep-th/9503157)
[78] Enriquez B and Rubtsov V 1996 Hitchin systems, higher Gaudin operators and R-matrices Math. Res. Lett. 3 343–57
[79] Levin A, Olshanetsky M and Zotov A 2006 Painlevé VI, rigid tops and reflection equation Commun. Math. Phys. 268 67–103 (arXiv:math/0508058 [math.QA])
[80] Olshanetsky M A and Zotov A V 2005 Isomonodromic problems on elliptic curve, rigid tops and reflection equations Rokko Lect. Math. 18 149–71
[81] Chernyakov Yu, Levin A, Olshanetsky M and Zotov A 2006 Elliptic Schlesinger system and Painlevé VI J. Phys. A: Math. Gen. 39 12083–102 (arXiv:nlin/0602043v [nlin.SI])
[82] Levin A and Zotov A 2007 On rational and elliptic forms and Painlevé VI equation Moscow Seminar in Mathematical Physics: II (American Mathematical Society) pp 173–83
[83] Krichever I 2002 Vector bundles and Lax equations on algebraic curves Commun. Math. Phys. 229 229–69 (arXiv:hep-th/0108110)
[84] Zotov A 2006 Classical integrable systems and their field-theoretical generalizations Phys. Part. Nucl. 37 400–43
[85] Kapustin A and Witten E 2006 Electric–magnetic duality and the geometric Langlands program arXiv:hep-th/0604151
[86] Mironov A, Morozov A and Shakirov S 2012 Towards a proof of AGT conjecture by methods of matrix models Int. J. Mod. Phys. A 27 1230001 (arXiv:1011.5629)
[87] Mironov A, Morozov A, Runov B, Zenkevich Y and Zotov A 2012 Spectral duality between Heisenberg chain and Gaudin model Lett. Math. Phys. at press arXiv:1206.6349
[88] Sklyanin E 1994 Dynamical r-matrices for the elliptic Calogero–Moser model Algebra Anal. 6 227–37
[89] Billey E, Avan J and Babelon O 1994 The r-matrix structure of the Euler–Calogero–Moser model Phys. Lett. A 186 114–8
[90] Bourbaki N 2002 Lie Groups and Lie Algebras (Berlin: Springer) chapters 4–6
[91] Atiyah M 1957 Vector bundles over an elliptic curve Proc. Lond. Math. Soc. 7 414–52
[92] Friedman R and Morgan J 1998 Holomorphic principal bundles over elliptic curves arXiv:math/9811130 [math.AG]
[93] Narasimhan M S and Seshadri C S 1965 Stable and unitary vector bundles on a compact Riemann surface Ann. Math. 82 540–64
[94] Arnold V 1978 Mathematical Methods in Classical Mechanics (Berlin: Springer)
[95] Fairlie D, Fletcher P and Zachos C 1990 Infinite dimensional algebras and a trigonometric basis for the classical Lie algebras J. Math. Phys. 31 1088–94
[96] Gorsky A and Zabrodin A 1993 Degenerations of Sklyanin algebra and Askey–Wilson polynomials arXiv:hep-th/9303026
Antonov A, Hasegawa K and Zabrodin A 1997 On trigonometric intertwining vectors and non-dynamical R-matrix for the Ruijsenaars model Nucl. Phys. B 503 747–70
[97] Stolin A and Kulish P 1996 New rational solutions of Yang–Baxter equation and deformed Yangians arXiv:q-alg/9608011v1
[98] Chernyakov Yu and Zotov A 2001 Integrable many-body systems via Inozemtsev limit Theor. Math. Phys. 129 1526–42 (arXiv:hep-th/0102069)
Smirnov A 2008 Correspondence between Calogero–Moser systems and integrable $SL(N, \mathbb{C})$ Euler–Arnold tops arXiv:0809.2187
Aminov G and Arthamonov S 2010 Reduction of the elliptic $SL(N, \mathbb{C})$ top J. Phys. A: Math. Theor. 44 075201 (arXiv:1009.1867 [nlin.SI])