Supporting Information. Pages S1 to S19. Figures S1 to S3. Tables S1 to S6.

Impact of environmental radiation on the health and reproductive status of fish from Chernobyl

1,2 *Adélaïde Lerebours, 3Dmitri Gudkov, 4Liubov Nagorskaya, 3Alexander Kaglyan, 4Viktor Rizewski, 4Andrey Leshchenko, 5Elizabeth H Bailey, 1Adil Bakir, 6Svetlana Ovsyanikova, 7Gennady Laptev, and 1Jim T. Smith

1School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, United Kingdom

2School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom

3Institute of Hydrobiology of the National Academy of Sciences of Ukraine, UA-04210 Kiev, Ukraine

4Applied Science Center for Bioresources of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus

5School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, United Kingdom

6Belarussian State University, Faculty of Chemistry, Research Laboratory of Radiochemistry, 220030 Minsk, Belarus

7Ukrainian HydroMeteorological Institute, 03028 Kiev, Ukraine
Figure S1. Mean activity concentration of 241Am in liver (A) and muscle (B), 239,240Pu in liver (C) and muscle (D) and 238Pu in liver (E) and muscle (F) of perch and roach ($n = 3$ to 5, mean ± Sd, Bq/kg, w.w.) collected in the CEZ. The activity concentrations in liver of fish were higher than in muscle and the highest levels of transuranium isotopes were found in perch from Glubokoye lake.

Figure S2. Figure showing the relative abundance of fish (%) species in each lake. The number of fish were recorded during the June 2015 session performed in Belarus and Ukraine.

Figure S3. Distribution of the GSI values of perch (A) and roach (B) collected from the 7 different lakes in September 2014 and 2015. Interquartile ranges are represented by the box. The boxes are delimited by the first (25% of samples) and the third (75% of samples) quartile. The line in each box is the median of the distribution.

Table S1. Number of perch and roach collected in September 2014 and 2015, and used for health and reproductive status assessment.

Table S2. Hydrological parameters and initial Cs deposition (A). Nutrient concentrations (NO_3^-, NO_2^- and PO_4^{3-} in μg/L, mean ± SD, $n = 3$ per lake) (B) and physicochemical parameters (Dissolved Oxygen, DO, in %, pH, temperature, conductivity in μS/cm) (C) measured in the surface water samples of the 7 lakes in September 2014 and 2015.

Table S3. Major alkali and alkali-earth element water concentrations (Na, Mg, S, K and Ca in mg/L, mean ± SD, $n = 3$ per lake) (A) and trace elements concentrations (As, Sr, Cd, Cs, Pb and U in μg/L, mean ± SD, $n = 3$ per lake) (B) determined by ICP-MS in the surface water samples of the 7 lakes in September 2014 and 2015.
Table S4. Mean activity concentration of 241Am in liver (A) and muscle (B), 239,240Pu in liver (C) and muscle (D) and 238Pu in liver (E) and muscle (F) of perch and roach ($n = 3$ to 5, mean \pm Sd, Bq/kg, w.w.) collected in the CEZ.

Table S5. Total length (cm), body weight (g), Fulton condition index, hepatosomatic index, gonad weight (g) (mean \pm SD) measured in female perch and roach collected at Glubokoye (H) ($n = 23$ and 15 respectively), Yanovsky (H) ($n = 11$ and 21 respectively), Cooling Pond (H) ($n = 16$ and 3 respectively), Gorova (L) ($n = 17$ and 18 respectively), Svatoje (M) ($n = 16$ and 9 respectively), Stoyachye (L) ($n = 13$) and Dvoriche (L) ($n = 7$ and 16 respectively). The age (yr) (mean \pm SD) was measured in female perch and roach collected at Glubokoye, Yanovsky, Cooling Pond and Gorova.

Table S6. Number of micronucleus counted per 1000 erythrocytes (mean \pm SD, $n = 5$).

Methods

Fish collection

The fulton condition, hepatosomatic and gonadosomatic index were determined as follow: $K =$ body weight/ (total length (cm)3) x 100; HSI = (liver weight/body weight) x 100 and GSI = (gonad weight/body weight) x 100, respectively.

Water chemistry

After filtration on a 0.2 μm mesh size filter and acidification (2% v/v of HNO$_3$ 65% trace metal grade, Sigma), major alkali and alkali-earth element water concentrations (Na, Mg, S, K and Ca in mg/L, mean \pm SD, n = 3 per lake) and trace elements concentrations (As, Sr, Cd, Cs, Pb and U
in μg/L, mean ± SD, n = 3 per lake) were measured in the 7 lakes (Table S3) with quadrupole-based ICP-MS system (Model iCAPQ; Thermo Scientific) equipped with CCTED, ‘collision cell mode’ (7% Hydrogen in Helium) with kinetic energy discrimination (KED) to eliminate polyatomic interferences. Samples entered the ICP-QMS through an auto-sampler (Cetac ASX-520) via a nebuliser (Thermo-Fisher Scientific; 1mL min⁻¹) and spray chamber. Internal standards were introduced to the sample stream via a separate line including Ge (50 μg/L), Rh (20 μg/L) and Ir (10 μg/L) in 2% HNO₃. Two sets of external multi-element calibration standards for major elements (0-30 mg/L) and trace elements (0-100 μg/L) were prepared from Certiprep(TM) multi-element stock solutions.

After filtration on a 0.45 μm mesh size filter and preservation (1% v/v of ZnCl₂ 50% w/v), concentrations of inorganic macronutrients (NO₃⁻, NO₂⁻ and PO₄³⁻ in μg/L, mean ± SD, n = 3 per lake) were determined using a QuAAtro segmented flow nutrient analyser with autosampler (SEAL Analytical, UK). Analysis was done according to standard procedures.

Micronucleus test

A total of 1000 cells were scored blindly for each fish. Micronuclei were identified as small, dark blue stained bodies of chromatin within the cytoplasm, outside the nucleus. Only structures of similar staining intensity as the nucleus were scored as micronuclei.

Histological analyses

Liver and Gonad sections were fixed for 24 h in 10% neutral buffered formalin before transfer to 70% ethanol for subsequent histological assessment. Livers and gonads were processed in a vacuum infiltration processor using standard histological protocols (18) and embedded in
paraffin wax. Using a rotary microtome, sections of 5-7 µm were taken and subsequently stained with haematoxylin and eosin (H&E).

Statistical analyses

Generalised linear models were used to assess the potential differences across the sites of the radionuclide specific activities, biometric parameters, oocyte distribution and size and chromosomal damage for both species. The effect of age on the oocyte distribution has been also assessed. The significance of parameters at the different sites was assessed using the contrast method (Hastie, 1992 *Statistical Models* in Wadsworth & Brooks/Cole Publishing Inc. Belmont) with the esticon function in R (DoBy package, (Hojsgaard, 2004, *Scandinavian Journal of Statistics*, 31:143–158)). Pearson correlation were used to assess the potential correlation between GSI and % of immature oocytes, and between DO, pH, T°C, conductivity, Na, Mg, Ca, K, stable Sr water concentration, 90Sr and 137Cs activity concentrations in perch and roach using the Hmisc package in R.

Results

Water chemistry

Correlation analyses revealed that the conductivity is positively correlated with the water concentration levels of stable Sr$^{2+}$ (cor: 0.8, $p = 0.03$), Na$^+$ (cor: 0.76, $p = 0.048$), Mg$^{2+}$ (cor: 0.82, $p = 0.02$) and Ca$^{2+}$ (cor: 0.75, $p = 0.05$) to a lesser extent (limit of signficancy) across the lakes. No correlations were found between the conductivity and the 137Cs specific activity in perch (cor: -0.4, $p = 0.38$) and roach (cor: -0.01, $p = 0.99$) across the contaminated lakes. The conductivity is negatively correlated to the 90Sr specific activity in perch (cor: -1, $p = 0.047$) and
in roach (cor: -0.99, \(p = 0.09 \)) to a lesser extent (\(p > 0.05 \)) across the lakes located in the 10 km exclusion zone. No correlations were found between the water concentration levels of \(K^+ \) and the \(^{137}\)Cs specific activity in perch (cor: -0.47, \(p = 0.29 \)) and roach (cor: -0.58, \(p = 0.23 \)) across the contaminated lakes. No correlations were found between the water concentration levels of \(Ca^{2+} \) and the \(^{90}\)Sr specific activity in perch (cor: -0.66, \(p = 0.54 \)) and roach (cor: -0.6, \(p = 0.59 \)) across the contaminated lakes. Stronger negative correlation coefficients (although non significant) were found between the water concentration levels of stable \(Sr^{2+} \) and the specific activity of \(^{90}\)Sr in perch (cor: -0.8, \(p = 0.41 \)) and roach (cor: -0.76, \(p = 0.45 \)) across the lakes located in the 10 km exclusion zone.

Significant contamination of fish from the CEZ with \(^{137}\)Cs, \(^{90}\)Sr, \(^{241}\)Am, \(^{239,240}\)Pu and \(^{238}\)Pu

Fish from the CEZ are significantly contaminated with \(^{241}\)Am (Figure S1 A and B, Table S3). Concentration levels of \(^{241}\)Am in liver and muscle of perch from Glubokoye (H) reached 44 and 4 \text{Bq/kg w.w.} \text{respectively and were higher than in perch from Cooling Pond (H) reaching 23 and 3 \text{Bq/kg w.w.} \text{respectively; and from Yanovsky (H) lake reaching 22 and 3 \text{Bq/kg w.w.} \text{in liver} (p = 0.001) and muscle (p = 0.01) respectively; and from Yanovsky (H) lake reaching 22 and 3 \text{Bq/kg w.w. in liver} (p = 0.002) and muscle (p = 0.02) respectively (Figure S1 A for liver and B for muscle, Table S4). Concentration levels of \(^{241}\)Am in liver and muscle of roach did not vary significantly across the lakes (\(p = 0.06 \)) (Figure S1 A and B respectively).

Fish from the CEZ are significantly contaminated with \(^{239,240}\)Pu (Figure S1 C and D, Table S4). Concentration levels of \(^{239,240}\)Pu in liver and muscle of perch from Glubokoye (H) reached 23 and 1 \text{Bq/kg w.w.} \text{respectively and were higher than in perch from Cooling Pond (H) reaching 9 and 0.1 \text{Bq/kg w.w.} \text{in liver} (p = 0.0005) and muscle (p = 0.01) respectively, and Yanovsky (H)
lake reaching 8 and 0.1 Bq/kg w.w. in liver \((p = 0.0005) \) and muscle \((p = 0.02) \) respectively (Figure S1 C for liver and D for muscle, Table S4). Concentration levels of \(^{239,240}\)Pu in liver and muscle of roach did not vary significantly across the lakes \((p = 0.32) \) (Figure S1 C and D respectively).

Fish from the CEZ are significantly contaminated with \(^{238}\)Pu (Figure S1 E and F, Table S3). Concentration levels of \(^{238}\)Pu in liver and muscle of perch from Glubokoye (H) reached 8 and 1 Bq/kg w.w. respectively and were higher than in perch from Cooling Pond (H) reaching 3 and 0.04 Bq/kg w.w. in liver \((p = 0.002) \) and muscle \((p = 0.01) \) respectively; and from Yanovsky (H) lake reaching 3 and 0.02 Bq/kg w.w. in liver \((p = 0.002) \) and muscle \((p = 0.02) \) respectively (Figure S1 E for liver and F for muscle, Table S4). Concentration levels of \(^{238}\)Pu in liver and muscle of roach did not vary significantly across the lakes \((p = 0.46) \) (Figure S1 E and F respectively, Table S4).

Discussion

\(^{137}\)Cs and \(^{90}\)Sr specific activities

The \(^{137}\)Cs activity concentration measured in the perch (mean: 7844 Bq/kg) and in the roach (mean: 2905 Bq/kg) from Glubokoye lake exceeded the EU maximum permitted level in imported foodstuffs (1250 Bq/kg). Activity concentrations of \(^{137}\)Cs in roach from the other CEZ lakes (Yanovsky mean: 781 Bq/kg; Cooling Pond mean: 1231 Bq/kg) and Svyatoye lake (mean: 587 Bq/kg) were higher than Ukrainian and Japanese limits for human consumption (150 and 100 Bq/kg respectively). Activity concentrations of \(^{90}\)Sr in both species exceeded the EU maximum permitted level (750 Bq/kg) in Yanovsky (mean: 3603 Bq/kg in perch; 2572 Bq/kg in
roach) and Glubokoye (mean: 13636 Bq/kg in perch; 12556 Bq/kg in roach) and the Ukrainian permitted level (35 Bq/kg) in the Cooling Pond (mean: 79 Bq/kg in perch; 157 Bq/kg in roach).

Doses span the lowest protection level for an ecosystem

There are uncertainties in the estimate of the external dose to organisms since habitat occupancy is not precisely known and varies during different stages of the life cycle. The embryonic stage of the fish may be the most externally exposed as the embryos grow close to the bottom sediments, the main source of external radiation. The estimation of the external dose was calculated by considering a homogeneous distribution of the 137Cs in the 15 cm upper layer of the sediment whereas in reality this is likely to be a heterogeneous distribution. Despite these inevitable uncertainties, internal activity concentration correlates strongly with surface contamination density hence relative dose rates are robust despite potential errors in absolute dose rate estimation.
Figure S1.

A)

B)
Figure S2.

Relative abundance of fish species (%)

- Pike
- Perch
- Roach
- Rudd
- Tench
- Crucian carp
- Prussian carp
- Common carp
- White bream
- Blue bream
- Common bream
- Ruffe
- European chub
- Aspe
- Gudgeon
- Pontian monkey goby

Species:
- Gorova
- Dvoriche
- Stoyacheye
- Svyatoye
- Cooling Pond
- Yanovsky
- Glybokoye
Figure S3.

A)

B)
Table S1.

Location	Roach 2014	Roach 2015	Perch 2014	Perch 2015
Glubokoye (H)	5	10	2	21
Yanovskiy (H)	10	11	13	9
Cooling Pond (H)	1	2	9	16
Svyatoye (M)	9	/	17	/
Stoyacheye (L)	/	/	13	/
Dvoriche (L)	16	/	7	/
Gorova (L)	5	13	6	11
Table S2.

A

Lake	Maximum depth (m)	Surface (km²)	Distance from CNPP (km)	137Cs deposition (kBq/m²)
Cooling Pond (H)	18	22	1.5	19180
Yanovsky (H)	11	0.8	2.3	18650
Glubokoye (H)	7.3	0.1	10	15500
Svyatoye (M)	5.1	0.25	225	1778
Stoyacheye (L)	17	0.46	167	293
Dvoriche (L)	3.5	0.128	95	100
Gorova (L)	2	0.05	88	10

B

Lakes	NO$_3^-$ (μM)	NO$_2^-$ (μM)	PO$_4^{3-}$ (μM)
Glubokoye (H)	49.3 ± 1.8	1.8 ± 0.5	8.1 ± 1.7
Yanovsky (H)	76.1 ± 44.7	9.8 ± 14.7	6.0 ± 1.1
Cooling Pond (H)	57.9 ± 21.9	11.9 ± 3.9	15.0 ± 15.5
Svyatoye (M)	159.3 ± 81.8	2.0 ± 1.0	1.7 ± 0.5
Stoyacheye (L)	259.2 ± 182.7	1.5 ± 0.5	1.4 ± 0.9
Dvoriche (L)	201.0 ± 39.7	2.1 ± 0.2	1.4 ± 0.4
Gorova (L)	79.6 ± 68.7	2.5 ± 0.1	5.6 ± 1.0

C

Lake	DO (%)	pH	T (°C)	Conductivity (μS/cm)
Glubokoye (H)	105	7.6	18.1	193
Yanovsky (H)	108	8	17.7	277
Cooling Pond (H)	48	8.6	15.6	318
Svyatoye (M)	110	6.3	18.9	120
Stoyacheye (L)	125	7.1	19.3	226
Dvoriche (L)	95	6.3	20.1	186
Gorova (L)	55	8.3	17.2	255
Table S3.

A

Lake	Na	Mg	S	K	Ca
Glubokoye (H)	5.6 ± 1.4	3.8 ± 0.4	1.1 ± 0.7	1.5 ± 0.2	26.2 ± 0.8
Yanovsky (H)	16.1 ± 1.3	4.9 ± 0.2	13.8 ± 1.8	4.8 ± 0.7	25.4 ± 1.4
Cooling Pond (H)	11.1 ± 1.4	7.9 ± 0.2	8.1 ± 1.1	3.2 ± 0.6	37.0 ± 1.3
Svyatoye (M)	2.02 ± 0.2	2.7 ± 0.1	0.3 ± 0.1	4.0 ± 0.2	18.0 ± 0.3
Stoyacheye (L)	2.7 ± 0.1	5.6 ± 0.3	0.8 ± 0.2	6.0 ± 0.3	33.2 ± 1.7
Dvoriche (L)	3.6 ± 0.1	5.7 ± 0.1	1.0 ± 0.1	2.4 ± 0.03	28.2 ± 0.5
Gorova (L)	6.2 ± 1.3	7.0 ± 0.3	2.4 ± 1.2	3.6 ± 0.7	37.8 ± 6.4

B

Lake	As	Sr	Cd	Cs	Pb	U
Glubokoye (H)	0.4 ± 0.05	103.6 ± 11.5	0.01 ± 0.009	0.003 ± 0.002	0.04 ± 0.06	0.01 ± 0.003
Yanovsky (H)	0.7 ± 0.2	117.5 ± 6.8	0.008 ± 0.009	0.005 ± 0.0007	0.02 ± 0.03	0.2 ± 0.1
Cooling P. (H)	0.8 ± 0.1	188.4 ± 14.2	0.002 ± 0.001	0.004 ± 0.0006	0.1 ± 0.3	0.6 ± 0.06
Svyatoye (M)	0.3 ± 0.001	64.4 ± 1.1	nd	0.01 ± 0.0009	nd	0.0006 ± 0.00005
Stoyacheye (L)	0.7 ± 0.05	61.5 ± 2.9	0.001 ± 0.001	0.006 ± 0.0002	nd	0.03 ± 0.003
Dvoriche (L)	0.9 ± 0.05	71.4 ± 1.8	0.0004 ± 0.0002	0.02 ± 0.0007	0.01 ± 0.028	0.003 ± 0.0006
Gorova (L)	0.9 ± 0.2	159.8 ± 5.7	0.002 ± 0.001	0.002 ± 0.0007	0.006 ± 0.014	0.2 ± 0.03
Table S4

Lake (H)	241Am Activity concentration (Bq/kg w.w.) 2015	239,240Pu Activity concentration (Bq/kg w.w.) 2015	238Pu Activity concentration (Bq/kg w.w.) 2015									
	Roach	Perch										
Glubokoye	31.2 ± 4.1	4.6 ± 0.3	43.9 ± 8.4	4.1 ± 0.9	15.0 ± 4.4	1.8 ± 0.2	22.7 ± 4.0	1.2 ± 0.9	5.5 ± 2.2	0.7 ± 0.1	8.4 ± 2.0	0.5 ± 0.4
Yanovskoy	33.1 ± 14.5	3.0 ± 0.03	22.1 ± 2.5	3.0 ± 0.03	12.5 ± 4.4	0.09 ± 0.04	8.4 ± 1.6	0.06 ± 0.03	4.6 ± 1.9	0.03 ± 0.01	3.2 ± 0.8	0.02 ± 0.01
Cooling Pond	23.9 ± 12.6	3.0 ± 0.04	23.2 ± 3.9	3.0 ± 0.03	9.5 ± 8.2	0.08 ± 0.05	9.3 ± 2.5	0.09 ± 0.03	3.7 ± 3.3	0.02 ± 0.01	3.3 ± 1.1	0.04 ± 0.01
Table S5.

	Glubokoye (H)	Yanovsky (H)	Cooling P. (H)	Syvatoye (M)	Stoyacheye (L)	Dvoriche (L)	Gorova (L)
Fulton condition factor							
Perch	1.2 ± 0.4	1.2 ± 0.1	1.2 ± 0.2	1.2 ± 0.1	1.3 ± 0.1	1.2 ± 0.1	1.1 ± 0.1
Roach	1.1 ± 0.1	1.0 ± 0.1	1.1 ± 0.0	1.1 ± 0.1	/	1.2 ± 0.1	1.1 ± 0.1
Hepatosomatic index							
Perch	0.9 ± 0.3	1.4 ± 0.4	1.3 ± 0.4	0.8 ± 0.3	1.2 ± 0.5	0.9 ± 0.3	1.0 ± 0.3
Roach	1.0 ± 0.2	0.9 ± 0.2	1.4 ± 0.1	0.7 ± 0.2	/	0.9 ± 0.1	1.2 ± 0.4
Body weight (g)							
Perch	74 ± 38	88 ± 32	81 ± 20	99 ± 29	85 ± 14	70 ± 26	70 ± 16
Roach	115 ± 23	80 ± 16	69 ± 13	105 ± 14	/	96 ± 16	77 ± 21
Total length (cm)							
Perch	18.0 ± 2.4	19.4 ± 1.9	19.1 ± 1.6	20.0 ± 1.9	18.5 ± 1.1	17.9 ± 2.5	18.4 ± 1.4
Roach	21.7 ± 1.5	20.2 ± 1.1	18.6 ± 1.3	21.1 ± 0.8	/	20.2 ± 1.0	19.1 ± 1.6
Gonad weight (g)							
Perch	1.7 ± 1.2	2.0 ± 1.7	2.0 ± 1.4	2.5 ± 1.2	1.9 ± 0.8	2.3 ± 0.9	3.0 ± 1.0
Roach	6.3 ± 2.0	2.8 ± 0.9	1.4 ± 0.2	3.2 ± 1.1	/	5.3 ± 1.2	3.9 ± 1.5
Age (yr)							
Perch	5.1 ± 0.6	5.3 ± 0.7	4.5 ± 0.6	/	/	/	5.6 ± 0.8
Roach	5.3 ± 0.5	6.9 ± 0.7	4.0 ± 0.0	/	/	/	4.9 ± 1.0
Table S6.

	Svyatoye (M)	Stoyacheye (L)	Dvoriche (L)	Glubokoye (H)	Yanovsky (H)	Cooling Pond (H)	Gorova (L)
Perch	0.3 ± 0.2	0.4 ± 0.2	0.3 ± 0.1	0.3 ± 0.3	0.2 ± 0.3	0.2 ± 0.1	0.1 ± 0.1
Roach	0.6 ± 0.2	/	0.6 ± 0.2	0.5 ± 0.1	0.1 ± 0.1	/	0.5 ± 0.1