41. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy.
Nature Phys. 4, 532–535 (2008).
42. Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of
graphene at finite doping. New J. Phys. 8, 318 (2006).
43. Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in
two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).
44. Brenneis, A. et al. Ultrafast electronic readout of diamond nitrogen-vacancy
centres coupled to graphene. Preprint at http://arXiv.org/abs/1408.1864 (2014).
45. Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature
497, 91–95 (2013).

Acknowledgements
K.J.T. thanks NWO for a Rubicon fellowship. F.H.L.K. acknowledges support by the
Fundacio Cellex Barcelona, the ERC Career integration grant 294056 (GRANOP), the
ERC starting grant 307806 (CarbonLight) and support by the E.C. under Graphene
Flagship (contract no. CNECT-ICT-604391). F.J.G.d.A. acknowledges support from the
Graphene Flagship CNECT-ICT-604391 and FP7-ICT-2013-613024-GRASP. The work at
MIT has been supported by AFOSR grant number FA9550-11-1-0225, a Packard
Fellowship, and the MISTI-Spain program. This work made use of the Materials Research
Science and Engineering Center Shared Experimental Facilities supported by the
National Science Foundation (NSF; award no. DMR-0819762) and of Harvard’s Center
for Nanoscale Systems, supported by the NSF (grant ECS-0335765). P.G. thanks ANR
project RAMACO (No. 12-BS08-0035-01).

Author contributions
F.H.L.K., P.J.-H., F.J.G.d.A., H.d.R. and K.J.T. conceived the experiment. K.J.T., L.O., M.B.,
S.C. and L.G. carried out the experiments. K.J.T., L.O., F.J.G.d.A., P.J.-H. and F.H.L.K.
performed the data analysis. A.F., B.K., T.C., A.C., A.P., A.Z. and P.G. provided materials.
G.N., M.B., L.O., S.N. and Q.M. fabricated the samples. F.J.G.d.A. developed the
thoretical models. K.J.T., F.H.L.K., P.J.-H. and F.J.G.d.A. wrote the manuscript with the
participation of all authors.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to F.H.L.K.

Competing financial interests
The authors declare no competing financial interests.

ERRATUM
A universal origin for secondary relaxations in supercooled liquids and structural glasses
Jacob D. Stevenson and Peter G. Wolynes
Nature Physics 6, 62–68 (2010); published online 1 November 2009; corrected after print 18 February 2015.

In the version of this Article originally published the equation for the distribution of free energy barriers, which follows equation 4,
was incorrect and should have read:
\[
\Gamma(F^\dagger) = \frac{\partial}{\partial F^\dagger} \exp \left(-\frac{F_{\mathrm{in}}}{\delta f} - \frac{1}{2} F_{\mathrm{in} q}^2 \right) \times \left(1 - \frac{\exp(F_{\mathrm{in} q}) - 1}{\exp(F^\dagger q) - 1} \right) \quad \text{if} \ F_{\mathrm{in}} < F^\dagger
\]

This has now been corrected in the online versions of the Article.