Suppression of Non-photonic Electrons from Enhancement of Charm Baryons in Heavy Ion Collisions

P. Sørensen¹ and X. Dong²

¹Brookhaven National Laboratory, Upton, New York 11973
²University of Science & Technology of China, Anhui 230027, China

(Dated: March 31, 2022)

At intermediate transverse momentum (2 < p_T < 6 GeV/c), the baryon-to-meson ratio in Au+Au collisions is enhanced compared to p+p collisions. Since charm-baryon decays produce electrons less frequently than charm-meson decays, the non-photonic electron spectrum is sensitive to the \(\Lambda_c/D \) ratio. In this report we study the dependence of the non-photonic electron spectrum on the baryon-to-meson ratio for charm hadrons. As an example, we take the \(\Lambda_c/D \) ratio to have the same form as the \(\Lambda/K_S^0 \) ratio. In this case, even if the total charm quark yield in Au+Au collisions scales with the number of binary nucleon-nucleon collisions (\(N_{bin} \)), the electron spectrum at 2 < p_T < 5 GeV/c is suppressed relative to \(N_{bin} \) scaled p+p collisions by as much as 20%.

PACS numbers: 25.75.Ld, 25.75.Dw

Introduction. — Non-photonic electrons from heavy flavor decays can be used to study charm production even when direct measurements of heavy flavor hadrons are experimentally unfeasable. Radiative energy loss models that successfully describe the large hadron suppression experimentally unfeasable. Radiative energy loss models predict such a large suppression to have the same form as the \(\Lambda/K_S^0 \) ratio. In this report we assume that the \(\Lambda_c/D \) ratio is the same as the \(\Lambda/K_S^0 \) ratio. Unless specified otherwise, the symbol \(D \) represents the sum of \(D^0, D^+ \), and \(D_s \). PYTHIA \(^{12} \) is used to generate the decay electron spectrum from the input charm hadrons. We find that even when the total charm hadron production in Au+Au collisions scales with the number of binary nucleon-nucleon collisions \(N_{bin} \), the non-photonic electron spectrum when the total charm hadron \(R_{AA} = 1 \) \(^{13} \), the non-photonic electron spectrum at intermediate \(p_T \) can be suppressed by as much as 20%. We also present the non-photonic electron spectrum when the total charm hadron \(R_{AA} \) follows the measured charged hadron \(R_{AA} \) \(^{14} \). We find that if charm baryons are enhanced as much as lighter flavor baryons, preliminary non-photonic electron measurements imply a smaller suppression of charm quarks than light quarks \(^{15} \).

Results. — Fig. 1 shows the \(\Lambda/K_S^0 \) ratio in p+p and Au+Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV \(^{11} \). The \(\Lambda/K_S^0 \) ratio is larger than the \(p/\pi \) ratio and the baryon enhancement becomes even stronger for multi-strange baryons \(^{16} \). In the following analysis we take the \(\Lambda_c/D \) ratio to have the same form as the \(\Lambda/K_S^0 \) ratio. For \(p_T > 6.5 \) GeV/c where the \(\Lambda/K_S^0 \) ratio is unknown, we take the value \(\Lambda_c/D = 0.33 \). Since the source of the baryon enhancement at intermediate \(p_T \) is still under debate, it’s difficult to assess the validity of our assumed \(\Lambda_c/D \) ratio. Possible explanations for the enhancement include \(^{6} \) radial flow pushing heavy baryons from lower \(p_T \) into the intermediate \(p_T \) region, baryon junction dynamics, and enhanced production through coalescence or recombination of quarks. We are not aware, however, of predictions for the \(p_T \) dependence of the \(\Lambda_c/D \) ratio.

Fig. 2 shows the spectra for \(D^0, D^\pm, D_s \), and \(\Lambda_c \). The spectra are derived such that the sum of the \(D^0, D^\pm, D_s \), and \(\Lambda_c \) spectra follows a power-law, the \(\Lambda_c/D \) ratio has
the form shown in Fig. 1 and the D-meson spectra all have the same p_T dependence. Since we are interested in the shape of the spectra, the scale of the y-axis is arbitrary. The non-photonic electron spectrum will also be sensitive to the D^+ / D^0 and the D_s / D^0 ratios (the $D_s \rightarrow e + anything$ branching ratio is 8^{+6}_{-5}% [10]). An increase in the D_s / D^0 ratio can therefore lead to fewer decay electrons depending on the poorly known branching ratio. At intermediate p_T, the K / π ratio in Au+Au collisions is enhanced compared to p+p collisions [17]. One can also investigate how modifications to the D_s / D^\pm ratio in Au+Au collisions affect the non-photonic electron spectrum. Since the enhancement in the Λ / K^0_S ratio is larger than the enhancement in the K / π ratio, and since the branching ratios for $D_s \rightarrow e + anything$ and $D^0 \rightarrow e + anything$ are similar, we expect a charm baryon enhancement to have a larger effect on the decay electron spectrum. For this reason, in this report we use p_T independent relative D-meson abundances of 18, 7, and 5 for D^0, D^\pm, and D_s respectively [18].

In Fig. 2 we show the effect of a Λ_c enhancement on the charm decay electron spectrum. The ratio of two cases is taken: Λ_c / D follows the shape of the Λ / K^0_S ratio in Au+Au collisions, or it follows the shape of the Λ / K^0_S ratio in p+p collisions. A suppression of electrons from heavy flavor decays due to the larger charm baryon-to-meson ratio in Au+Au collisions is visible. The suppression in this figure is a result of smaller $\Lambda_c \rightarrow e + anything$ branching ratio, which has large uncertainties. The highest and lowest curves show the cases corresponding to the upper and lower experimental uncertainties on the branching ratio [10]. The figure demonstrates that even if the total charm yield follows N_{bin} scaling, the non-photonic electron spectrum may be suppressed. The magnitude of the suppression depends on the Λ_c / D ratio and the $\Lambda_c \rightarrow e + anything$ branching ratio. The Λ_c / D ratio in Au+Au collisions is unknown but for the charm baryon-to-meson ratio assumed here, the suppression can be as large as 20%.

The presence of a charm baryon enhancement will change the charm quark energy loss inferred from the preliminary non-photonic electron R_{AA} data. In Fig. 3 we show the effect of a Λ_c enhancement on the charm decay electron spectrum. The ratio of two cases is taken: Λ_c / D follows the shape of the Λ / K^0_S ratio in Au+Au collisions, or it follows the shape of the Λ / K^0_S ratio in p+p collisions. A suppression of electrons from heavy flavor decays due to the larger charm baryon-to-meson ratio in Au+Au collisions is visible. The suppression in this figure is a result of smaller $\Lambda_c \rightarrow e + anything$ branching ratio, which has large uncertainties. The highest and lowest curves show the cases corresponding to the upper and lower experimental uncertainties on the branching ratio [10]. The figure demonstrates that even if the total charm yield follows N_{bin} scaling, the non-photonic electron spectrum may be suppressed. The magnitude of the suppression depends on the Λ_c / D ratio and the $\Lambda_c \rightarrow e + anything$ branching ratio. The Λ_c / D ratio in Au+Au collisions is unknown but for the charm baryon-to-meson ratio assumed here, the suppression can be as large as 20%.
we show the case when the total charm R_{AA} has the same shape as charged hadron R_{AA}. In the lower p_T region, this assumption may not be realistic since the total charm quark production is expected to follow N_{bin} scaling. The error introduced, however, will mostly affect the region below $p_T = 1.5$ GeV/c and may be irrelevant to the higher p_T regions of interest. Our analysis shows that if the Λ_c/D ratio has the form assumed in this report, the PHENIX non-photonic electron data at $p_T < 6$ GeV/c is 35% greater than charged hadron R_{AA}. At p_T near 6 GeV/c the derived decay electron R_{AA} at $p_T < 6$ GeV/c will be smaller than the total charm R_{AA}.

In this report we have not considered contributions to the non-photonic electrons from beauty decays. The p_T value where the yield of electrons from beauty decays is larger than from charm decays is experimentally unknown. Theoretical calculations indicate that the cross-over happens somewhere between $p_T = 3$ GeV/c and $p_T = 10$ GeV/c. The branching ratios for beauty mesons and baryons are not well known. We refer the reader to Ref. [20] for discussion of the contribution of beauty to the non-photonic electron spectrum.

In the intermediate p_T region, the preliminary non-photonic electron data are systematically above our calculations for the decay electron R_{AA}. In the case that the heavy flavor baryons have an enhancement similar to the light flavor baryons, the non-photonic electron data indicate that the suppression for charm quarks is smaller than that for light quarks. We varied the input total charm hadron R_{AA} and made a χ^2 comparison to the PHENIX data (with the systematic and statistical errors added in quadrature). For $p_T > 2.0$ GeV/c, the PHENIX non-photonic electron data are better represented when the total charm hadron R_{AA} is 35% greater than charged hadron R_{AA}. At p_T near 6 GeV/c the derived decay electron R_{AA} matches the charged hadron R_{AA} and the preliminary non-photonic electron R_{AA} data reported in Ref. [19]. We find that the Λ_c/D ratio has the form assumed in this report, the PHENIX non-photonic electron data at intermediate p_T prefer a total charm hadron R_{AA} 35% larger than the total charm hadron R_{AA}. At p_T near 6 GeV/c the derived decay electron R_{AA} matches the charged hadron R_{AA} and the preliminary non-photonic electron R_{AA} data reported in Ref. [19]. This may indicate that at $p_T = 6$ GeV/c (within the large errors) the total charm hadron suppression is as large as the light hadron suppression. In light of the results of this analysis, however, we believe one must also consider that a charm baryon enhancement could extend to a higher p_T than assumed here. Direct measurements of heavy flavor hadrons are therefore needed in order to accurately assess the energy loss of charm quarks.

Summary. — We have studied the effect of the Λ_c/D ratio on the non-photonic electron R_{AA}. We find that even when the total charm hadron production scales with the number of binary nucleon-nucleon collisions, an increase in the Λ_c/D ratio similar to that seen for the Λ/K_S^0 ratio can lead to a suppression in central Au+Au collisions of non-photonic electrons at intermediate p_T. This may help explain why the non-photonic electron R_{AA} is smaller than was predicted by radiative energy loss models: models which are able to describe the light hadron R_{AA}. If the Λ_c/D ratio has the form assumed in this report, the PHENIX non-photonic electron data at intermediate p_T prefer a total charm hadron R_{AA} 35% larger than the total charm hadron R_{AA}. At p_T near 6 GeV/c the derived decay electron R_{AA} matches the charged hadron R_{AA} and the preliminary non-photonic electron R_{AA} data reported in Ref. [19]. This may indicate that at $p_T = 6$ GeV/c (within the large errors) the total charm hadron suppression is as large as the light hadron suppression. In light of the results of this analysis, however, we believe one must also consider that a charm baryon enhancement could extend to a higher p_T than assumed here. Direct measurements of heavy flavor hadrons are therefore needed in order to accurately assess the energy loss of charm quarks.

Summary. — We have studied the effect of the Λ_c/D ratio on the non-photonic electron R_{AA}. We find that even when the total charm hadron production scales with the number of binary nucleon-nucleon collisions, an increase in the Λ_c/D ratio similar to that seen for the Λ/K_S^0 ratio can lead to a suppression in central Au+Au collisions of non-photonic electrons at intermediate p_T. This may help explain why the non-photonic electron R_{AA} is smaller than was predicted by radiative energy loss models: models which are able to describe the light hadron R_{AA}. If the Λ_c/D ratio has the form assumed in this report, the PHENIX non-photonic electron data at intermediate p_T prefer a total charm hadron R_{AA} 35% larger than the total charm hadron R_{AA}. At p_T near 6 GeV/c the derived decay electron R_{AA} matches the charged hadron R_{AA} and the preliminary non-photonic electron R_{AA} data reported in Ref. [19]. This may indicate that at $p_T = 6$ GeV/c (within the large errors) the total charm hadron suppression is as large as the light hadron suppression. In light of the results of this analysis, however, we believe one must also consider that a charm baryon enhancement could extend to a higher p_T than assumed here. Direct measurements of heavy flavor hadrons are therefore needed in order to accurately assess the energy loss of charm quarks.
than the charged hadron R_{AA} — implying less energy loss for charm quarks than light quarks. If the relative fractions of charm hadrons are not altered in Au+Au collisions compared to p+p collisions, the non-photonic electron R_{AA} values are difficult to understand within current radiative energy loss models. Since the non-photonic electron measurements depend on the D^0/D_s, D^\pm/D_s and the Λ_c/D ratio, direct measurements of heavy-flavor hadron yields are needed to draw firm conclusions regarding energy loss for heavy quarks. These measurements will only be possible at RHIC with detector upgrades [21].

Acknowledgements: We thank N. Xu for his comments and suggestions which have greatly improved this work. One of us (P. R. S.) would like to thank the Battelle Memorial Institute and Stony Brook University for support in the form of the Gertrude and Maurice Goldhaber Distinguished Fellowship. This work was supported in part by the National Natural Science Foundation of China under grant number 10475071.

[1] Y. L. Dokshitzer and D. E. Kharzeev, Phys. Lett. B 519, 199 (2001); M. Djordjevic and M. Gyulassy, Nucl. Phys. A 733, 265 (2004).
[2] S. S. Adler [PHENIX Collaboration], arXiv:nucl-ex/0510047.
[3] J. C. Dunlop [STAR Collaboration], arXiv:nucl-ex/0510073.
[4] Private Comm. M. Gyulassy, 2005.
[5] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 91, 172301 (2003); P. R. Sorensen, arXiv:nucl-ex/0309003.
[6] J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 92, 052302 (2004).
[7] P. R. Sorensen, arXiv:nucl-ex/0510062.
[8] X. Dong, arXiv:nucl-ex/0509011.
[9] J. Bielcik, arXiv:nucl-ex/0511005.
[10] K. Adcox et al. [PHENIX Collaboration], Phys. Rev. Lett. 88, 022301 (2002); J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 91, 172302 (2003).
[11] S. S. Adler et al. [PHENIX Collaboration], arXiv:nucl-ex/0509003.
[12] S. Salur [STAR Collaboration], arXiv:nucl-ex/0509011.
[13] R_{AA} is the ratio of the p_T spectrum in nucleus-nucleus collisions and p+p collisions where each has been scaled by N_{bin} to account for the trivial increase in particle production with collision system-size.
[14] K. Adcox et al. [PHENIX Collaboration], Phys. Rev. Lett. 88, 022301 (2002); J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 91, 172302 (2003).
[15] X. Dong, arXiv:nucl-ex/0509003.
[16] S. Salur [STAR Collaboration], arXiv:nucl-ex/0509005.
[17] J. C. Dunlop [STAR Collaboration], Phys. Rev. C 69, 044909 (2004).
[18] X. Dong, arXiv:nucl-ex/0509011.
[19] J. Bielcik, arXiv:nucl-ex/0511005.
[20] M. Cacciari, P. Nason and R. Vogt, Phys. Rev. Lett. 95, 122001 (2005).
[21] K. Schweda [STAR Collaboration], arXiv:nucl-ex/0510003.