FLOP INVARIANCE OF THE TOPOLOGICAL VERTEX

YUKIKO KONISHI AND SATOSHI MINABE

Abstract. We prove transformation formulae for generating functions of Gromov–Witten invariants on general toric Calabi–Yau threefolds under flops. Our proof is based on a combinatorial identity on the topological vertex and analysis of fans of toric Calabi–Yau threefolds.

1. Introduction

Motivated by a conjecture [Mor, W] on quantum cohomology, Li and Ruan studied the transformation of Gromov–Witten (GW) invariants of projective Calabi–Yau (CY) threefolds under flops using symplectic approach [LR]. The algebro-geometric approach was pursued in [LY]. The same problem for Donaldson–Thomas invariants was studied in [HL], and this may be related since there is a conjecture that Donaldson–Thomas invariants and GW invariants are related at the level of generating functions [MNOP1, MNOP2].

In this paper, we study the behavior of GW invariants of toric Calabi–Yau (TCY) threefolds (which are noncompact) under a flop based on the method of the topological vertex. It is a formalism which expresses the partition functions of GW invariants of TCY threefolds in terms of symmetric functions [AKMV]. (In this paper, the partition function of GW invariants means the exponential of the generating function.) Although its original argument was based on the duality to the Chern-Simons theory, a mathematical theory including a definition of GW invariants for TCY threefolds has been developed later in [LLLZ] (see Remark 3.2). We remark that in [IK3], the case of some special TCY threefolds was studied (see remark 4.5).

Let us explain the results of this paper. Let X be a TCY threefold containing a torus invariant rational curve C such that its normal bundle is isomorphic to $\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1)$. Let X^+ be another TCY threefold obtained by flopping C. Identifying the expansion parameters with respect to second homology classes, we can compare the partition function of GW invariants of X and that of X^+. We show that they are equal except for factors coming from multiples of $[C]$ and from multiples of the class $[C^+]$ of the flopped curve C^+ (Theorem 4.4). Since the difference between the two appears only at the local contributions from neighborhoods of C and C^+, showing the equality of two partition functions reduces to showing a combinatorial identity on skew Schur functions (Theorem 2.7). Then we obtain the same result as [LR, LY] on the relation between GW invariants of X and

2000 Mathematics Subject Classification. Primary 14N35; Secondary 05E05.
those of X^+. As an example, we consider the TCY threefold X containing two disjoint $\mathbb{P}^1 \times \mathbb{P}^1$'s and another related by a flop. We also show that the partition function of X reproduces Nekrasov’s partition function of 4-dimensional $SU(2) \times SU(2)$ gauge theory with a matter in the bifundamental representation $(2,2)$ [N] (Proposition 5.1). As another application, we consider the canonical bundle K_S of a complete smooth toric surface S and the canonical bundle $K_{\hat{S}}$ of a blown-up surface \hat{S} and show that GW invariants of $K_{\hat{S}}$ with certain second homology classes are equal to those of K_S (Proposition 6.1).

The organization of this paper is as follows. In §2, we prove a key combinatorial identity. In §3, we give a definition of TCY threefolds used in this paper and review the method to write down their partition functions. In §4, we study the transformations of partition functions under a flop. In §5, we give an example and discuss the relationship with Nekrasov’s partition function. In §6, we study GW invariants of the canonical bundles of smooth toric surfaces related by a blowup. Combinatorial formulae are collected in Appendix A.

Acknowledgement. The authors would like to thank the organizers of the workshop “Symplectic varieties and related topics” held at Hokkaido University in November 2005. This work has grown out from discussions there. They are grateful to Prof. H. Kanno for useful discussions, comments and kindly providing them with his unpublished manuscript [Ka]. The result of §2 is a generalization of his result. They also thank Y. Tachikawa for discussions and comments. A part of §5 is based on discussions with him.

2. Topological vertex under Flops

2.1. Definitions. Let \mathcal{P} be the set of partitions. For $\mu = (\mu_1 \geq \mu_2 \geq \cdots) \in \mathcal{P}$, we define two integers $|\mu|$ and $\kappa(\mu)$ by

$$|\mu| = \sum_{j=1}^{l(\mu)} \mu_j \ , \quad \kappa(\mu) = |\mu| + \sum_{j=1}^{l(\mu)} \mu_j (\mu_j - 2j) \ ,$$

where $l(\mu)$ is the number of nonzero components in μ.

We use the following definition of the topological vertex ([ORV]):

Definition 2.1.

\begin{equation}
C_{\lambda_1,\lambda_2,\lambda_3}(q) \overset{\text{def}}{=} q^{\frac{1}{2}\kappa(\lambda_3)} s_{\lambda_2}(q^\rho) \sum_{\mu \in \mathcal{P}} s_{\lambda_1/\mu}(q^{\lambda_2^\rho+\rho}) s_{\lambda_3/\mu}(q^{\lambda_2+\rho}) \ ,
\end{equation}

where $s_{\mu/\nu}(q^{\mu+\rho})$ (resp. $s_{\mu}(q^\rho)$) is the skew Schur function with the specialization of variables:

$$s_{\mu/\nu}(x_i = q^{\mu_i-i+\frac{3}{2}}) \quad (\text{resp. } s_{\mu}(x_i = q^{-i+\frac{1}{2}})) \ .$$
Take four partitions $\lambda_1, \lambda_2, \lambda_3, \lambda_4$. These will be fixed throughout the rest of §2. We define
\begin{equation}
Z_0(q, Q_0) \overset{\text{def.}}{=} \sum_{\mu \in \mathcal{P}} (-Q_0)^{|\mu|} C_{\lambda_1, \lambda_2, \mu^t}(q) C_{\lambda_3, \lambda_4, \mu}(q),
\end{equation}
\begin{equation}
Z_0^+(q, Q_0^+) \overset{\text{def.}}{=} \sum_{\mu \in \mathcal{P}} (-Q_0^+)^{|\mu|} C_{\lambda_1, \mu^t, \lambda_4}(q) C_{\lambda_3, \mu, \lambda_2}(q).
\end{equation}

We also set
\begin{equation}
Z_{(-1,-1)}(q, Q) = \prod_{k=1}^{\infty} (1 - Q q^k)^k,
\end{equation}
and
\begin{align*}
Z_0'(q, Q_0) & \overset{\text{def.}}{=} \frac{Z_0(q, Q_0)}{Z_{(-1,-1)}(q, Q_0)}, & Z_0^{+\prime}(q, Q_0^+) & \overset{\text{def.}}{=} \frac{Z_0^+(q, Q_0^+)}{Z_{(-1,-1)}(q, Q_0^+)}.
\end{align*}

The goal of this section is to show an identity relating $Z_0'(q, Q_0)$ and $Z_0^{+\prime}(q, Q_0^+)$ under the identification $Q_0^+ = Q_0^{-1}$ (Theorem 2.7). Formulae necessary for proofs can be found in Appendix A.

Remark 2.2. Let us mention the geometrical meaning of the above formal power series. $Z_{(-1,-1)}(q, Q_0)$ is the partition function of the TCY threefold $\mathcal{O}_{p^1}(-1) \oplus \mathcal{O}_{p^1}(-1)$ (cf. §3.2, see also [EK1, (C.18)] and [FP, Theorem 3]). $Z_0(q, Q_0)$ and $Z_0^+(q, Q_0^+)$ appear as local contributions in the partition functions of TCY threefolds related by a flop such that both a flopping curve and a flopped curve have normal bundles isomorphic to $\mathcal{O}_{p^1}(-1) \oplus \mathcal{O}_{p^1}(-1)$ (see Figure 3).

2.2. Individual calculations. First, we compute $Z_0'(q, Q_0)$ and $Z_0^{+\prime}(q, Q_0^+)$ respectively.

Let us introduce the following functions:
\begin{equation}
f_\mu(q) = \frac{q}{q - 1} \sum_{i \geq 1} (q^{\mu_{-i}} - q^{-i}),
\end{equation}
\begin{equation}
f_{\mu, \nu}(q) = (q - 2 + q^{-1}) f_\mu(q) f_\nu(q) + f_\mu(q) + f_\nu(q),
\end{equation}
and let $C_k(\mu, \nu)$ be the expansion coefficients in the Laurent polynomial $f_{\mu, \nu}(q)$:
\begin{equation}
f_{\mu, \nu}(q) = \sum_{k \in \mathbb{Z}} C_k(\mu, \nu) q^k.
\end{equation}

Proposition 2.3. We have
\begin{equation}
Z_0'(q, Q_0) = \frac{1}{2} \frac{q^{\frac{1}{2}} (\lambda_3) + \frac{1}{2} \frac{q^{\lambda_4}}{q^{\lambda_3}} s_{\lambda_1}(q^\rho) s_{\lambda_3}(q^\rho)}{Q_0 q^k C_k(\lambda_1, \lambda_3)} \prod_{k \in \mathbb{Z}} (1 - Q_0 q^k)^{\nu_+}(q^{\lambda_3} + \rho, Q_0 q^{-\lambda_3 - \rho}),
\end{equation}
\begin{equation}
\times \sum_{\tau} (-Q_0)^{\tau} s_{\lambda_2}^t(q^{\lambda_1} + \rho, Q_0 q^{-\lambda_3 - \rho}) s_{\lambda_4}^{t\tau}(q^{\lambda_3} + \rho, Q_0 q^{-\lambda_1 - \rho}),
\end{equation}
\[Z_0^+(q, Q_0^+) = s_{\lambda_1}(q^\rho)s_{\lambda_3}(q^\rho) \prod_{k \in \mathbb{Z}} (1 - Q_0^+ q^k)^{C_k(\lambda_1, \lambda_3)} \]

(6)
\[\times \sum_{\tau} (-Q_0^+)^{\tau|} s_{\lambda_2/\tau}(q^{\lambda_2-\rho}, Q_0^+ q^{-\lambda_3-\rho}) s_{\lambda_2^{(1)}/\tau}(q^{\lambda_2+\rho}, Q_0^+ q^{-\lambda_2-\rho}) \, . \]

Proof. By definition (1) of the topological vertex, we have
\[Z_0(q, Q_0) = \sum_{\mu} (-Q_0)^{|\mu|} q^{\frac{1}{2} \kappa(\lambda_2)} s_{\lambda_1}(q^\rho) \sum_T s_{\mu/T}(q^{\lambda_1+\rho}) s_{\lambda_2/T}(q^{\lambda_1+\rho}) \]
\[q^{\frac{1}{2} \kappa(\lambda_3)} s_{\lambda_3}(q^\rho) \sum_{T'} s_{\mu/T'}(q^{\lambda_3+\rho}) s_{\lambda_3'/T'}(q^{\lambda_3+\rho}) \]
\[= q^{\frac{1}{2} \kappa(\lambda_2)+\frac{1}{2} \kappa(\lambda_3)} s_{\lambda_1}(q^\rho) s_{\lambda_3}(q^\rho) \sum_{T,T'} (-Q_0)^{|T|} s_{\lambda_2/T}(q^{\lambda_2+\rho}) s_{\lambda_2'/T'}(q^{\lambda_2+\rho}) \]
\[\sum_{\mu} s_{\mu/T}(-Q_0 q^{\lambda_1+\rho}) s_{\mu/T'}(q^{\lambda_3+\rho}) \, . \]

We perform the sum with respect to \(\mu \) by using (19):
\[Z_0(q, Q_0) = q^{\frac{1}{2} \kappa(\lambda_2)+\frac{1}{2} \kappa(\lambda_3)} s_{\lambda_1}(q^\rho) s_{\lambda_3}(q^\rho) \]
\[\prod_{i,j \geq 1} (1 - Q_0 q^{h_{\lambda_1, \lambda_3}^{(i,j)}}) \sum_{T,T'} (-Q_0)^{|T|} s_{\lambda_2/T}(q^{\lambda_2+\rho}) s_{\lambda_2'/T'}(Q_0 q^{-\lambda_2-\rho}) \sum_{T'} s_{\lambda_2'/T'}(Q_0 q^{-\lambda_2-\rho}) \, . \]

Here for \(\mu, \nu \in \mathcal{P}, \)
\[h_{\mu, \nu}(i, j) \overset{\text{def}}{=} \mu_i - i + \nu_j - j + 1 \, . \]

In passing to the second line, we have used (22). By using (20), we have
\[Z_0(q, Q_0) = q^{\frac{1}{2} \kappa(\lambda_2)+\frac{1}{2} \kappa(\lambda_3)} s_{\lambda_1}(q^\rho) s_{\lambda_3}(q^\rho) \prod_{i,j \geq 1} (1 - Q_0 q^{h_{\lambda_1, \lambda_3}^{(i,j)}}) \]
\[\sum_{\tau} (-Q_0)^{|\tau|} s_{\lambda_2^{(1)}/\tau}(q^{\lambda_1+\rho}, Q_0 q^{-\lambda_3-\rho}) s_{\lambda_2^{(2)}/\tau}(q^{\lambda_3+\rho}, Q_0 q^{-\lambda_1-\rho}) \, . \]

Applying Lemma A.1, we obtain (5). One can also compute \(Z_0^+(q, Q_0^+) \) in a similar way. \(\square \)

The next corollary is a consequence of Proposition 2.3.

Corollary 2.4. \(Z_0^+(q, Q_0^+) \) is a polynomial in \(Q_0^+ \) of degree at most \(|\lambda_1| + |\lambda_2| + |\lambda_3| + |\lambda_4| \). Moreover, if \(\lambda_3 = \lambda_4 = \emptyset \), \(Z_0^+(q, Q_0^+) \) is a polynomial in \(Q_0^+ \) of degree \(|\lambda_1| + |\lambda_2| \).

Similar statement also holds for \(Z_0^-(q, Q_0) \).
Proof. The first statement follows if we apply (16) and (21) to the expression (6). To prove the second statement, we show that the top term does not vanish. By (16), we have

$$\prod (1 - Q_0^+ q^k) C_k(\lambda'_1, \lambda'_3) = (-1)^{[\lambda_1] q^{-\frac{1}{2} k} \kappa_1} (Q_0^+)^{[\lambda_1]} + (\text{terms of lower degree in } Q_0^+).$$

Substituting this into (6) with λ_3, λ_4 set to \emptyset, and using (21), we obtain the claim. □

2.3. Comparison. Next, we compare $Z_0^+(q, Q_0)$ with $Z_0^+(q, Q_0^+)$ under the identification $Q_0^+ = Q_0^{-1}$. First we have the following

Lemma 2.5. Under the identification $Q_0^+ = Q_0^{-1}$, we have

$$\sum_{\tau} (-Q_0^+)^{|\tau|} s_{\lambda_2/\tau}(q^{\lambda_1_3} + \rho, Q_0^+ q^{\lambda_1 - \rho}) s_{\lambda_3/\tau}(q^{\lambda_1 + \rho}, Q_0^+ q^{\lambda_3 - \rho})$$

$$= (-Q_0)^{-|\lambda_2| - |\lambda_4|} \sum_{\tau} (-Q_0)^{|\tau|} s_{\lambda_2^3/\tau}(q^{\lambda_1 + \rho}, Q_0 q^{-\lambda_3 - \rho}) s_{\lambda_4^3/\tau}(q^{\lambda_3 + \rho}, Q_0 q^{-\lambda_1 - \rho}).$$

Proof. Under $Q_0^+ = Q_0^{-1}$, we have

$$(\text{LHS}) = \sum_{\tau} (-Q_0^{-1})^{|\tau|} s_{\lambda_2/\tau}(q^{\lambda_1_3} + \rho, Q_0^{-1} q^{-\lambda_1 - \rho}) s_{\lambda_3/\tau}(q^{\lambda_1 + \rho}, Q_0^{-1} q^{-\lambda_3 - \rho})$$

$$= \sum_{\tau} (-Q_0^{-1})^{|\tau|} (-1)^{|\lambda_2| + |\lambda_4|} s_{\lambda_2^3/\tau}(q^{-\lambda_3 - \rho}, Q_0^{-1} q^{\lambda_1 + \rho}) s_{\lambda_4^3/\tau}(q^{-\lambda_1 - \rho}, Q_0^{-1} q^{-\lambda_3 + \rho}),$$

$$= \sum_{\tau} (-Q_0)^{-|\lambda_2| + |\tau| - |\lambda_4| + |\tau|} (-Q_0^{-1})^{|\tau|} s_{\lambda_2^3/\tau}(q^{\lambda_1 + \rho}, Q_0 q^{-\lambda_3 - \rho}) s_{\lambda_4^3/\tau}(q^{\lambda_3 + \rho}, Q_0 q^{-\lambda_1 - \rho})$$

$$= (\text{RHS}).$$

Note that we have used the property (22) in the second line and the homogeneity (21) of skew Schur functions in the third line. □

The next lemma was proven in [IK3, eq.(45)].

Lemma 2.6. The following identity holds:

$$\prod_k (1 - Q_0^{-1} q^k) C_k(\lambda_1, \lambda_3) = (-Q_0)^{-|\lambda_3| - |\lambda_4|} q^{-\frac{1}{2} \kappa(\lambda_3) + \frac{1}{2} \kappa(\lambda_3)} \prod_k (1 - Q_0 q^k) C_k(\lambda'_1, \lambda'_3).$$

Proof. By (17), we have

$$\prod_k (1 - Q_0^{-1} q^k) C_k(\lambda_1, \lambda_3) = \prod_k \left(1 - Q_0^{-1} q^{-k} C_k(\lambda'_1, \lambda'_3)\right)$$

$$= \frac{1}{Q_0^{-\frac{1}{2} (|\lambda_1| + |\lambda_3|)}} q^{-\frac{1}{4} (\kappa(\lambda'_1) + \kappa(\lambda'_3))} \prod_k \left(Q_0^{-\frac{1}{2} q^{-k}} - Q_0^{-\frac{1}{2} q^{-k}}\right)^{C_k(\lambda'_1, \lambda'_3)}. $$
On the other hand, we have
\[
\prod_k \left(1 - Q_0 q^k \right)^{C_k(\lambda_1^k, \lambda_2^k)} = Q_0^{\frac{1}{2}(\lambda_1 + |\lambda_2|)} q^{\frac{1}{2}(\kappa(\lambda_1) + \kappa(\lambda_2))} \prod_k \left(Q_0^{\frac{1}{2} q^k} - Q_0^{\frac{1}{2} q^{-k}} \right)^{C_k(\lambda_1^k, \lambda_2^k)}
\]
\[
= \left(-1 \right)^{|\lambda_1| + |\lambda_2|} Q_0^{\frac{1}{2}(|\lambda_1| + |\lambda_3|)} q^{\frac{1}{2}(\kappa(\lambda_1) + \kappa(\lambda_3))} \prod_k \left(Q_0^{\frac{1}{2} q^k} - Q_0^{\frac{1}{2} q^{-k}} \right)^{C_k(\lambda_1^k, \lambda_3^k)}.
\]
By comparing the above two equations and by using a symmetry (15) of a \(\kappa \)-factor, we get the claim. \(\square \)

The following is the main result in this section. (The case of \(\lambda_1 = \lambda_4 = \emptyset \) was proved in \([Ka]\).)

Theorem 2.7. Under the identification \(Q_0^+ = Q_0^{-1} \), we have
\[
Z_0^+(q, Q_0^+) = \left(-Q_0 \right)^{-|\lambda_1| + |\lambda_2| + |\lambda_3| + |\lambda_4|} q^{\frac{1}{2}(\kappa(\lambda_1) - \kappa(\lambda_2) + \kappa(\lambda_3) - \kappa(\lambda_4))} Z_0'(q, Q_0).
\]

Proof. This follows from Proposition 2.3 and Lemmas 2.5 and 2.6. \(\square \)

3. **Toric Calabi–Yau threefolds and Partition Functions**

In this section, we give definitions of toric Calabi–Yau threefolds and their partition functions. Our reference is \([Ko]\).

3.1. **Toric Calabi–Yau threefolds.**

Definition 3.1. A toric Calabi–Yau (TCY) threefold is a three-dimensional smooth toric variety \(X \) over \(\mathbb{C} \) associated with a fan \(\Sigma \) satisfying following conditions:

(i) the primitive generator \(\vec{\omega} \) of every 1-cone satisfies \(\vec{\omega} \cdot \vec{u} = 1 \) where \(\vec{u} = (0, 0, 1) \);

(ii) all maximal cones are three dimensional;

(iii) \(|\Sigma| \cap \{z = 1\} \) is simply connected where \(|\Sigma| = \bigcup_{\sigma \in \Sigma} \sigma \subset \mathbb{R}^3 \) is the support of \(\Sigma \) and \(z \) is the third coordinate of \(\mathbb{R}^3 \).

The condition (i) is equivalent to the condition that \(\wedge^3 T^* X \) is trivial (Calabi–Yau condition) and the condition (ii) implies that \(\pi_1(X) = 0 \). The condition (iii) is imposed for simplicity of arguments.

We briefly describe necessary facts on (co)homology of TCY threefolds. Recall that the subset \(\Sigma_n \subset \Sigma \) of \(n \)-cones is in one-to-one correspondence with the set of \((3 - n) \)-dimensional torus invariant subvarieties in \(X \). Let \(\Sigma_1 = \{ \rho_1, \ldots, \rho_r \} \) be the set of 1-cones. Denote by \(\vec{\omega}_i \) (\(1 \leq i \leq r \)) the primitive lattice vector generating \(\rho_i \) and by \(D_{\rho_i} \subset X \) (\(1 \leq i \leq r \)) the torus invariant Weil divisor corresponding to \(\rho_i \). The group \(A_2(X) \) of all Weil divisors modulo rational equivalence is generated by \(D_{\rho_1}, \ldots, D_{\rho_r} \) with rational
equivalence given by \(\sum_{j=1}^{r} A_{ij} D_{\rho_j} = 0 \) \((i = 1, 2, 3) \) ([F], the first proposition in \(\S 3.4 \)) where \(A = (A_{ij}) \) is the \(3 \times r \) matrix
\[
A = (\tilde{\omega}_1, \ldots, \tilde{\omega}_r).
\]

Let \(\Sigma_2 \) be the set of 2-cones which lie in the interior of \(|\Sigma| \):
\[
\Sigma_2' = \{ \tau \in \Sigma_2 \mid \tau \subset |\Sigma| \setminus \partial |\Sigma| \}.
\]

It is in one-to-one correspondence with the set of torus invariant (hence rational) curves in \(X \). Let us write \(\Sigma_2' = \{ \tau_1, \ldots, \tau_p \} \) and let \(C_{\tau_i} \subset X \) denote the rational curve corresponding to \(\tau_i \). We define \(N_1^T(X) \) to be the set of 2-cycles generated by \(C_{\tau_1}, \ldots, C_{\tau_p} \) modulo numerical equivalence. Note that by the intersection pairing \(A_2(X) \times N_1^T(X) \to \mathbb{Z} \), \(A_2(X) \otimes \mathbb{R} \) and \(N_1^T(X) \otimes \mathbb{R} \) become dual to each other.

Now let us explain the calculation of the intersection numbers and numerical equivalence. If \(\rho_j \) and \(\tau_i \) spans a 3-cone, \(D_{\rho_j}.C_{\tau_i} = 1 \) and if \(\rho_j \) and \(\tau_i \) do not span a cone in the fan, \(D_{\rho_j}.C_{\tau_i} = 0 \) ([F], §5, p.98). If two 1-cones, say \(\rho_1, \rho_2 \), are contained in \(\tau_i \), then \(D_{\rho_1}.C_{\tau_i} \) and \(D_{\rho_2}.C_{\tau_i} \) are obtained via rational equivalence relations of \(D_{\rho_j} \)'s. For convenience, we introduce the following injective map
\[
(8) \quad l_X : N_1^T(X) \to \{ l \in \mathbb{Z}^r \mid A.l = 0 \} = L_A, \quad Z \mapsto (D_{\rho_1}.Z, \ldots, D_{\rho_r}.Z).
\]

Then \(D_{\rho_1}.C_{\tau_i} \) and \(D_{\rho_2}.C_{\tau_i} \) are obtained by solving the equation \(A.l_X([C_{\tau_i}]) = 0. \) (Hence they satisfy the relation \(D_{\rho_1}.C_{\tau_i} + D_{\rho_2}.C_{\tau_i} = -2 \).) The numerical equivalence can be read from linear relations between the vectors \(l_X([C_{\tau_1}]), \ldots, l_X([C_{\tau_p}]). \)

By the analysis of the gluing of local coordinate systems around \(C_{\tau_i} \), we see that its normal bundle is isomorphic to \(O_{p_1}(D_{\rho_1}.C_{\tau_i}) \oplus O_{p_2}(D_{\rho_2}.C_{\tau_i}). \) We will use a term a \((-1,-1)\)-curve for a torus invariant curve with the normal bundle isomorphic to \(O_{p_1}(-1) \oplus O_{p_2}(-1) \).

3.2. Partition functions. Let \(X \) be a TCY threefold and \(\Sigma \) be its fan. We briefly review how to write down the partition function of \(X \).

First, consider the following directed graph \(\Gamma_X \) (called a toric graph) with labels on edges of a certain type. The vertex set is
\[
V(\Gamma_X) = V_3(\Gamma_X) \cup V_1(\Gamma_X), \quad V_3(\Gamma_X) = \{ v_\sigma \mid \sigma \in \Sigma_3(X) \}, \quad V_1(\Gamma_X) = \{ v_\tau \mid \tau \in \Sigma_2(X) \setminus \Sigma_2'(X) \}.
\]

The edge set is
\[
E(\Gamma_X) = E_3(\Gamma_X) \cup E_1(\Gamma_X), \quad E_3(\Gamma_X) = \{ e_\tau \mid \tau \in \Sigma_3(X) \}, \quad E_1(\Gamma_X) = \{ e_\tau \mid \tau \in \Sigma_2(X) \setminus \Sigma_2'(X) \}.
\]

An edge \(e_\tau \in E_3(\Gamma_X) \) joins \(v_\sigma, v_\sigma' \in V_3(\Gamma) \) iff \(\tau = \sigma \cap \sigma' \) (see Figure 1) and an edge \(e_\tau \in E_1(\Gamma) \) joins \(v_\sigma \in V_3(\Gamma_X) \) and \(v_\tau \in V_1(\Gamma_X) \) iff \(\sigma \) is a unique 3-cone such that \(\tau \) is a face of \(\sigma \). (Note that a vertex in \(V_3(\Gamma_X) \) is trivalent and a vertex in \(V_1(\Gamma_X) \) is univalent.)
The direction of edges can be taken arbitrarily. The label $n : E_3(\Gamma) \to \mathbb{Z}$, called the \textit{framing}, is given as follows:

$$n(e_\tau) = D_\rho_1.C_\tau - D_\rho_2.C_\tau,$$

where $\tau \in \Sigma'$ and $\rho_1, \rho_2 \in \Sigma_1$ are as shown in Figure 1. Note that Γ_X is connected by the condition (iii) in Definition 3.1

Secondly, we write down the partition function from Γ_X. Let \[\mathcal{P}(\Gamma_X) = \{ \tilde{\lambda} : E_3(\Gamma) \to \mathcal{P} \}. \]

Take the set of formal variables $\vec{Q} = (Q_e)_{e \in E_3(\Gamma_X)}$ associated to $E_3(\Gamma_X)$. Then the partition function of X is a formal power series in \vec{Q} given by

$$Z_X(q, \vec{Q}) = \sum_{\vec{\lambda} \in \mathcal{P}(\Gamma)} \prod_{e \in E_3(\Gamma)} (-1)^{\sigma(e)}(n_e + 1) q^{\frac{1}{2} n_e} Q_e \prod_{v \in V_3(\Gamma)} C_{\tilde{\lambda}_v}(q).$$

Here $C_{\tilde{\lambda}_v}(q)$ is the topological vertex defined in (1) and $\tilde{\lambda}_v (v \in V_3(\Gamma), \tilde{\lambda} \in \mathcal{P}(\Gamma))$ is as in Figure 2 (for $e \in E(\Gamma_X) \setminus E_3(\Gamma_X)$, set $\tilde{\lambda}(e)$ to \emptyset). We remark that the partition function does not depend on the directions of edges since the framing changes the sign if one gives the opposite direction to an edge $e \in E_3(\Gamma_X)$ and it is compensated by (15) and the summation.

\textit{Remark 3.2.} Precisely speaking, the partition function obtained in [LLLZ] has the expression almost same as (9) except that $C_{\tilde{\lambda}_v}(q)$ is replaced by $\tilde{W}_{\tilde{\lambda}_v}(q)$. Here $\tilde{W}_{\lambda_1,\lambda_2,\lambda_3}(q)$ is a rational function in $q^{\frac{1}{2}}$ similar to $C_{\lambda_1,\lambda_2,\lambda_3}(q)$ but has a slightly different expression. It is conjectured that $\tilde{W}_{\lambda_1,\lambda_2,\lambda_3}(q) = C_{\lambda_1,\lambda_2,\lambda_3}(q)$ [LLLZ, Conjecture 8.3]. Here we use $C_{\lambda_1,\lambda_2,\lambda_3}(q)$ assuming that the conjecture is true.
Figure 3. Fans (sections at $z = 1$): Σ (left), $\bar{\Sigma}$ (middle) and Σ^+ (right).

The generators $\bar{\omega}_1, \ldots, \bar{\omega}_4$ of ρ_1, \ldots, ρ_4 satisfy the relation $\bar{\omega}_1 + \bar{\omega}_3 = \bar{\omega}_2 + \bar{\omega}_4$.

The Gromov–Witten invariant $N_{g,\beta}(X)$ of X with the genus g and the second homology class $\beta \in H_2^{cpt}(X, \mathbb{Z})$ (see [LLLZ] for a definition) is obtained as follows:

$$
\sum_{g \geq 0} N_{g,\beta}(X) g_s^{2g-2} = \sum_{\tilde{d} = (d_e)_{e \in E_3(\Gamma_X)}, \tilde{d}[\tilde{C}] = [\beta]} F_{\tilde{d}}(e^{\sqrt{-1}g_s}),
$$

where $\tilde{C} = ([C_e])_{e \in E_3(\Gamma_X)}$ and $C_e \subset X$ is the rational curve corresponding to e. $F_{\tilde{d}}(q)$ is the coefficient of $\tilde{Q}^{\tilde{d}} = \prod_{e \in E_3(\Gamma_X)} Q_e^{d_e}$ in log $Z_X(q, \tilde{Q})$.

4. Transformations of partition functions under flop

In this section, we study the transformation of the partition function of TCY threefolds under a flop.

Let X be a TCY threefold and let Σ be its fan. Assume that X contains at least one $(-1, -1)$-curve C_0. Denote the corresponding 2-cone by τ_0. Near τ_0, the fan looks like the left diagram in Figure 3. We set $\Sigma = (\Sigma \setminus \{\tau_0, \sigma_1, \sigma_2\}) \cup \{\sigma_0\}$, $\Sigma^+ = (\Sigma \setminus \{\tau_0, \sigma_1, \sigma_2\}) \cup \{\tau_0^+, \sigma_1^+, \sigma_2^+\}$ where $\tau_0, \sigma_1, \sigma_2, \sigma_0, \tau_0^+, \sigma_1^+, \sigma_2^+$ are cones shown in Figure 3. Let Y be the singular toric variety associated with the fan Σ and X^+ be the TCY threefold associated with the fan Σ^+. Then associated to the evident maps $\Sigma \to \bar{\Sigma}$ and $\Sigma^+ \to \bar{\Sigma}^+$, there are the following birational maps:

$$
\begin{align*}
X & \xrightarrow{\phi} X^+ \\
Y & \xleftarrow{f} f^+
\end{align*}
$$

The map f is a small contraction with the exceptional set C_0 and ϕ is a flop of f.

Remark 4.1. Since Σ and Σ^+ have the same set of 1-cones, there is a canonical isomorphism $A_2(X) \cong A_2(X^+)$ induced by ϕ. In turn, this induces an isomorphism $\phi_* : N^T_1(X) \otimes \mathbb{R} \to N^T_1(X^+) \otimes \mathbb{R}$ via the duality between $A_2(\cdot) \otimes \mathbb{R}$ and $N^T_1(\cdot) \otimes \mathbb{R}$ where $\cdot = X, X^+$.

From here on, we proceeds assuming that $\tau_1, \ldots, \tau_4 \in \Sigma'_2$. Other cases can be recovered by setting to zero the formal variables associated to any of τ_1, \ldots, τ_4 which are not in Σ'_2. We use the notations shown in Table 1.
Table 1.

2-cone curve	X	X^+
$\tau_0, \tau_1, \ldots, \tau_4$	τ	$\tau_0^+, \tau_1^+, \ldots, \tau_4^+$
C_0, C_1, \ldots, C_4	C_τ	$C_0^+, C_1^+, \ldots, C_4^+$
e_0, e_1, \ldots, e_4	e_τ or just e	$e_0^+, e_1^+, \ldots, e_4^+$
Q_0, Q_1, \ldots, Q_4	Q_τ	$Q_0^+, Q_1^+, \ldots, Q_4^+$

Figure 4. Toric graphs Γ_X (left) and Γ_{X^+} (right).

Lemma 4.2. Under the flop $\phi : X \rightarrow X^+$, the curve classes transform as follows.

$$\phi_*[C_0] = -[C_0^+], \quad \phi_*[C_i] = [C_i^+] + [C_0^+], \quad \phi_*[C_\tau] = [C_\tau^+] \quad (\tau \in \Sigma^2_2(X) \setminus \{\tau_0, \ldots, \tau_4\})$$

Proof. The first statement follows from $l_X([C_0]) = -l_{X^+}([C_0^+])$ by remark 4.1. The proof of the other two is similar. \qed

Let Γ_X be a toric graph of X. Near the edge e_0, the graph looks like the left diagram in Figure 4. Under the flop ϕ, the toric diagram (and the framings) changes as follows.

Lemma 4.3. A graph obtained from Γ_X by replacing the left diagram in Figure 4 with the right is a toric graph of X^+.

We associate the same formal variables $\vec{Q} = (Q_e)$ to edges in $E_3(\Gamma_X) \setminus \{e_0, \ldots, e_4\}$ and those in $E_3(\Gamma_{X^+}) \setminus \{e_0^+, \ldots, e_4^+\}$ and write the partition functions of X and X^+ as $Z_X(q, \vec{Q}, Q_0, Q_1, Q_2, Q_3, Q_4)$ and $Z_{X^+}(q, \vec{Q}, Q_0^+, Q_1^+, Q_2^+, Q_3^+, Q_4^+)$ respectively. It is immediate to check that

$$Z_X(q, \vec{q}, Q_0, 0, 0, 0, 0) = Z_{(-1,-1)}(q, Q_0),$$
$$Z_{X^+}(q, \vec{q}, Q_0^+, 0, 0, 0, 0) = Z_{(-1,-1)}(q, Q_0^+).$$
We set

\[
Z'_X(q, \vec{Q}, Q_0, Q_1, Q_2, Q_3, Q_4) \overset{\text{def.}}{=} \frac{Z_X(q, \vec{Q}, Q_0, Q_1, Q_2, Q_3, Q_4)}{Z_X(q, 0, Q_0, 0, 0, 0)},
\]

\[
Z'_X(q, \vec{Q}, Q_0^+, Q_1^+, Q_2^+, Q_3^+, Q_4^+) \overset{\text{def.}}{=} \frac{Z_X^+(q, \vec{Q}, Q_0^+, Q_1^+, Q_2^+, Q_3^+, Q_4^+)}{Z_X^+(q, 0, Q_0^+, 0, 0, 0)}.
\]

Now we will compare these. To do so, we should identify the formal variables so that the identification is compatible with Lemma 4.2:

\[
Q_0 = (Q_0^+)^{-1}, \quad Q_i = Q_0^+ Q_i^+.
\]

Theorem 4.4.

(i) The coefficients of \(\vec{Q}' \vec{d}'_0 Q_0^d_1 \ldots Q_4^d_4\) in \(Z'_X(q, \vec{Q}, Q_0, Q_1, Q_2, Q_3, Q_4)\) is zero if \(d_0 > d_1 + d_2 + d_3 + d_4\). A similar result holds for \(X^+\).

(ii) Under the identification \(Q_0 = (Q_0^+)^{-1}, Q_i = Q_0^+ Q_i^+\), we have

\[
Z'_X(q, \vec{Q}, Q_0, Q_1, Q_2, Q_3, Q_4) = Z'_X(q, \vec{Q}, Q_0^+, Q_1^+, Q_2^+, Q_3^+, Q_4^+).
\]

(This is an equality between two formal power series in \(\vec{Q}, Q_0^+, \ldots, Q_4^+\).)

Remark 4.5. In [IK3, §4.1], Iqbal and Kashani–Poor studied the special case such that the 2-cones \(\tau_2, \tau_4 \not\in \Sigma'_2\) and the curves \(C_1, C_3\) have normal bundles \(\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1)\) or \(\mathcal{O}_{\mathbb{P}^1}(-2) \oplus \mathcal{O}_{\mathbb{P}^1}(0)\). They obtained the result of Lemma 4.2 and proved the second statement of Theorem 4.4 in that case.

Proof. (i) follows from the first statement of Corollary 2.4.

(ii) Let

\[
\mathcal{P}'(\Gamma_X) = \{ \vec{v} : E_3(\Gamma_X) \setminus \{ e_0 \} \rightarrow \mathcal{P} \}
\]

and define \(\vec{v}_v \in \mathcal{P}'\) for \(\vec{v} \in \mathcal{P}'(\Gamma_X)\) and \(v \in V_3(\Gamma_X) \setminus \{ v_1, v_2 \}\) in the same way as \(\vec{\lambda}_v\) (Figure 2). After \((9)\), \(Z_X(q, \vec{Q}, Q_0, Q_1, Q_2, Q_3, Q_4)\) is written as follows:

\[
Z_X(q, \vec{Q}, Q_0, Q_1, Q_2, Q_3, Q_4) = \sum_{\vec{v} \in \mathcal{P}'(\Gamma_X)} \prod_{e \in E_3(\Gamma_X) \setminus \{ e_0, \ldots, e_4 \}} (-1)^{(n(e)+1)|\vec{v}(e)|} Q_e^{\vec{v}(e)} \prod_{v \in V_3(\Gamma_X) \setminus \{ v_1, v_2 \}} C_{\vec{v}_v}(q) \\
\times \prod_{i=1}^{4} (-1)^{(n(e_i)+1)|\vec{v}(e_i)|} Q_i^{\vec{v}(e_i)} \sum_{\mu \in \mathcal{P}} C_{\vec{v}(e_1), \vec{v}(e_2), \mu}(q) C_{\vec{v}(e_3), \vec{v}(e_4), \mu}(q) (-Q_0)^{|\mu|}. \tag{a}
\]
Similarly, $Z_{X^+}(q, \bar{Q}, Q_0^+, Q_1^+, Q_2^+, Q_3^+, Q_4^+)$ is written as follows:

$$Z_{X^+}(q, \bar{Q}, Q_0^+, Q_1^+, Q_2^+, Q_3^+, Q_4^+) = \sum_{\nu \in P'} \prod_{e \in E_3(\Gamma_X^+)} (-1)^{(n(e)+1)|\nu(e)|} \prod_{v \in V_3(\Gamma_X^+)} C_{\nu_v}(q) \times 4 \prod_{i=1}^{4} (-1)^{(n(e_i^+)+1)|\bar{\nu}(e_i^+)|} Q_{-1}^{e_i^+} \sum_{\mu \in P} C_{\nu(\bar{e}_i^+), \mu, \bar{\nu}(e_i^+)}(q) Q_{-1}^{-1}.$$

Here

\[P'(\Gamma_X^+) = \{ \bar{\nu} : E_3(\Gamma_X^+) \to \{ e_0^+ \} \} \]

and for $\nu \in P'(\Gamma_X^+)$ and $v \in V_3(\Gamma_X^+) \setminus \{ v_1^+, v_2^+ \}$, $\bar{\nu}$ is defined in the same way.

Since Γ_X and Γ_X^+ are identical outside the diagrams described in Figure 4, $E_3(\Gamma_X^+) \setminus \{ e_0, \ldots, e_4 \} = E_3(\Gamma_X) \setminus \{ e_0^+, \ldots, e_4^+ \}$, $V_3(\Gamma_X) \setminus \{ v_1, v_2 \} = V_3(\Gamma_X^+) \setminus \{ v_1^+, v_2^+ \}$ and we have a natural bijection $p : P'(\Gamma_X) \to P'(\Gamma_X^+)$ such that $p(\bar{\nu}) = \bar{\nu}^+$ if $\nu(e) = \bar{\nu}^+(e)$ for all $e \in E_3(\Gamma_X) \setminus \{ e_0, \ldots, e_4 \}$ and $\bar{\nu}(e_i) = \bar{\nu}^+(e_i^+)$ for $1 \leq i \leq 4$. Under this identification, we could see that the two partition functions have the same expressions except for the factors (a) and (b). Taking into account the change in framings, we have

$$Z_{(-1,-1)}(q, Q_0^+) = Z_{(-1,-1)}(q, Q_0^+) = Z_{(-1,-1)}(q, Q_0^+)$$

by Theorem 2.7. \qed

We finish this subsection by restating Theorem 4.4 in terms of GW invariants. (Compare with [LR, Corollary A.1] and [LY, Theorem 3.1.1].)

Corollary 4.6. For $\beta \in H_2^{opt}(X, \mathbb{Z})$ such that β is not a multiple of $[C_0]$,

$$N_{g,\beta}(X^+) = N_{g,\beta}(X).$$

Moreover,

$$N_{g,d[C_0]}(X) = N_{g,d[C_0^+]}(X^+) = N_{g,d[\mathbb{P}^1]}(\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1)).$$

Proof. Theorem 4.4 implies that $\log Z_X(q, \bar{Q}, Q_0^+, \ldots, Q_4)$ and $\log Z_{X^+}(q, \bar{Q}, Q_0^+, \ldots, Q_4)$ are written in the following form:

$$\log Z_X(q, \bar{Q}, Q_0^+, \ldots, Q_4) = \sum_d \sum_{d_0, \ldots, d_4 \geq 0} F_{\bar{d}, d_0, d_1, d_2, d_3, d_4}(q) \bar{Q}^{d_0} Q_0^{d_1} \ldots Q_4^{d_4},$$

$$\log Z_{X^+}(q, \bar{Q}, Q_0^+, \ldots, Q_4^+) = \sum_d \sum_{d_0, \ldots, d_4 \geq 0} F_{\bar{d}, d_0, d_1, d_2, d_3, d_4}(q) \bar{Q}^{d_0} (Q_0^+)^{d_1} \ldots (Q_4^+)^{d_4}.$$

Comparing with (10), we obtain the first statement. The second statement follows from (11). \qed
5. Example and geometric engineering

In this section, we first give an example of §4. Then we will discuss its relation with Nekrasov’s partition function [N] along the same lines with [IK1, IK2, EK1, EK2, Z].

Let \(X \) and \(X^+ \) be the TCY threefolds associated with the left and right toric graphs in Figure 5, respectively. \(X \) contains two copies of \(\mathbb{P}^1 \times \mathbb{P}^1 \) disjoint to each other and \(X^+ \) is obtained by a flop of a unique \((-1,-1)\)-curve in \(X \). In this example, formal variables should be assigned as in Figure 5: the five variables for \(X \) variables for \(X \) should be assigned as in Figure 5: the five variables for \(X \) variables for \(X \) have the four relations \(Q_{F_i} = Q_{F_i}^+ Q_0^+ (i = 1, 2) \) and \(Q_{B_i} = Q_{B_i}^+ Q_0^+ (i = 1, 2) \). The variables of \(X \) and \(X^+ \) should be identified by \(Q_0^+ = Q_0^{-1} \) and \(Q_{F_i}, Q_{B_i} \) of \(X^+ = Q_{F_i}, Q_{B_i} \) of \(X \).

Let us compute the partition function \(Z_X \) of \(X \) (we omit the variables). By Proposition 2.3, we have

\[
Z_X = \sum_{\mu_1, \mu_2, \nu_1, \nu_2} \prod_{k=1}^{2} (Q_{B_k} - \mu_1^k + |\mu_2^k|) \frac{s^2(\nu_1^k)}{s^2(\nu_2^k)} \frac{2}{s^2(\nu_1^k)} \prod_{i,j \geq 1} \left(1 - Q_{F_i} q^{h^{\nu_1^k}(\nu_2^k)^t (i,j)} \right)^{-2} \sum_{\lambda} (-Q_0)^{|\lambda|} s_{\lambda}(\mu_1^2 + |\mu_2^2|, Q_{F_i} q^{\mu_1^2 + \rho}, Q_{F_i} q^{\mu_1^2 + \rho}, Q_{F_i} q^{\mu_1^2 + \rho}, Q_{F_i} q^{\mu_1^2 + \rho}).
\]

We can perform the sum in the last factor by (19):

\[
\sum_{\lambda} (-Q_0)^{|\lambda|} s_{\lambda}(\mu_1^2 + |\mu_2^2|, Q_{F_i} q^{\mu_1^2 + \rho}, Q_{F_i} q^{\mu_1^2 + \rho}, Q_{F_i} q^{\mu_1^2 + \rho}) = \prod_{i,j \geq 1} \left(1 - Q_0 q^{h^{\nu_1^k}(\nu_2^k)^t (i,j)} \right) \left(1 - Q_0 Q_{F_i} q^{h^{\nu_1^k}(\nu_2^k)^t (i,j)} \right) \left(1 - Q_0 Q_{F_i} Q_{F_i} q^{h^{\nu_1^k}(\nu_2^k)^t (i,j)} \right).
\]

Therefore Theorem 4.4 implies that the partition function \(Z_{X^+} \) is obtained from \(Z_X \) by replacing

\[
\prod_{i,j \geq 1} \left(1 - Q_0 q^{h^{\nu_1^k}(\nu_2^k)^t (i,j)} \right) \to \prod_k \left(1 - (Q_0^+)^{-1} q^k \right) C_k(\mu_1^2, \mu_2^2)^t \prod_{k \geq 1} \left(1 - Q_0^+ q^k \right)^k,
\]

and replacing \(Q_0 \) in other factors by \((Q_0^+)^{-1}\).

From the discussions in [KMV, §2.1], it seems natural to expect that the partition function of \(X \) reproduces Nekrasov’s partition function for a gauge theory with a product gauge group and with a matter. We want to clarify this statement. Let us set

\[
Z_{X}^{\text{inst}} = \frac{Z_X}{Z_X|_{Q_{B_1} = Q_{B_2} = 0}}.
\]

Then, by the same method with [EK1, Z], we can show the following

Proposition 5.1. Let

\[
q = e^{-2Rh}, \quad Q_{F_1} = e^{-4Ra_1}, \quad Q_{F_2} = e^{-4Ra_2}, \quad Q_0 = e^{2R(a_1 + a_2 - m)}.
\]
Then we have

\[Z_{\text{inst}}^X = \sum_{\mu_1, \mu_2} \prod_{k=1}^2 \left(\frac{Q B_k}{2^4 Q F_k} \right)^{2|\mu_k|+|\mu'_k|} \prod_{l,n,i,j \geq 1} \frac{\sinh R \left(a^{(k)}_{ln} + h \left(\mu_{1,i}^k - \mu_{2,j}^k + j - i \right) \right)}{\sinh R \left(a^{(k)}_{ln} + h (j - i) \right)} \]

\[\times q^{\frac{1}{2} \left(\kappa(\mu_1) + \kappa(\mu_2) - \kappa(\mu'_1) - \kappa(\mu'_2) \right)} \left(2^2 Q_0 \right)^{2|\mu_1|+|\mu'_1|+|\mu_2|+|\mu'_2|} \left(\frac{Q_{F_1}}{Q_{F_2}} \right)^{2|\mu_1|+|\mu'_1|+|\mu_2|+|\mu'_2|} \prod_{l,n=1}^2 \prod_{i,j \geq 1} \frac{\sinh R \left(a^{(1,2)}_{ln} + m + h (j - i) \right)}{\sinh R \left(a^{(1,2)}_{ln} + m + h \left(\mu_{1,i}^1 - \mu_{2,j}^2 + j - i \right) \right)} , \]

where

\[a^{(k)}_{11} = a^{(k)}_{22} = 0, \quad a^{(k)}_{12} = -a^{(k)}_{21} = 2a_k \]

and

\[a^{(1,2)}_{11} = a_1 + a_2, \quad a^{(1,2)}_{21} = -a_1 + a_2, \quad a^{(1,2)}_{12} = a_1 - a_2, \quad a^{(1,2)}_{22} = -a_1 - a_2. \]

By Proposition 5.1, it is easy to see that the \(R \to 0 \) limit of

\[Z_{\text{inst}}^X \big|_{q = e^{-2Rh}, Q B_k = 2^2 A_k, Q F_k = e^{-4R A_k}, Q_0 = e^{2R (a_1 + a_2 - m)}} \]

is equal to the instanton part of Nekrasov’s partition function of 4-dimensional SU(2) \(\times \) SU(2) gauge theory with a matter in the bifundamental representation \((2, \bar{2})\) [N, (66)]. (See also [FMP, HIV, MO, S] for related works.)

Remark 5.2. It is immediate to see that \(Z_{X+} = Z_{X+}|_{Q_{B_1} = Q_{B_2} = 0} \) also coincides with the same Nekrasov’s partition function with a similar variable identification in the limit \(R \to 0 \). More generally, Theorem 4.4 may imply that if TCY threefolds \(X \) and \(X^+ \) are related by flops with respect to \((-1, -1)\)-curves and if the partition function of \(X \) reproduces Nekrasov’s partition function for a gauge theory, then the partition function of \(X^+ \) also reproduces it. (This statement itself seems to be well-known to specialists.)

6. Application to toric surface and its blowup

As an application, we compare GW invariants of the canonical bundle of a complete smooth toric surface and those of the canonical bundle of a blown-up surface. Some relevant numerical data can be found in [CKYZ].

Let \(S \) be a complete smooth toric surface (see [F, \S 2.5]) and \(\hat{S} \) its blowup at a torus fixed point. The exceptional curve of \(\psi : \hat{S} \to S \) is denoted by \(E \). Let \(X \) be the total space of the canonical bundle \(K_S \) of \(S \) and \(\tilde{X} = K_{\hat{S}} \). These are TCY threefolds and \(E \) is a \((-1, -1)\)-curve in \(K_{\hat{S}} \).
Figure 5. TCY threefold which contains two disjoint $\mathbb{P}^1 \times \mathbb{P}^1$ connected by a $(-1,-1)$-curve (left) and its flop (right).

Figure 6. Fans (sections at $z = 1$): Σ (left), $\bar{\Sigma}$ (middle) and $\hat{\Sigma}$ (right). The generators $\bar{\omega}_1, \ldots, \bar{\omega}_4$ of ρ_1, \ldots, ρ_4 satisfy the relation $\bar{\omega}_1 + \bar{\omega}_3 = \bar{\omega}_2 + \bar{\omega}_4$.

Since all torus invariant curves in X are contained in $S \subset X$, there is a canonical map $N^T_1(X) \to H_2(S,\mathbb{Z})$. In fact, the following maps p, \hat{p} are isomorphisms:

\begin{equation}
(12) \quad p : H_2(S,\mathbb{R}) \sim \to N^T_1(X) \otimes \mathbb{R}, \quad \hat{p} : H_2(\hat{S},\mathbb{R}) \sim \to N^T_1(\hat{X}) \otimes \mathbb{R}.
\end{equation}

Proposition 6.1.

(i) For $\beta \in H_2(\hat{S},\mathbb{Z})$ such that β is not an multiple of $[E]$ and satisfying $\beta.E < 0$,

$$N_{g,\hat{p}(\beta)}(\hat{X}) = 0.$$

(ii) For $\beta \in H_2(\hat{S},\mathbb{Z})$ such that $\beta.E = 0$,

$$N_{g,\hat{p}(\beta)}(\hat{X}) = N_{g,p(\psi_{*}(\beta))}(X).$$

(iii) For a multiple of $[E]$,

$$N_{g,d}[E](\hat{X}) = N_{g,d[\mathbb{P}^1]}(\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1)).$$

Proof. Let \bar{X} be the TCY threefold obtained from \hat{X} by flopping the curve E. Let $\Sigma, \bar{\Sigma}, \hat{\Sigma}$ be fans of X, \bar{X}, \hat{X}, and let τ_0 be the 2-cone in $\hat{\Sigma}$ representing E. Then near τ_0, $\hat{\Sigma}$ looks
like the right diagram in Figure 6 and \(\Sigma, \hat{\Sigma} \) are like the left and the middle diagrams. \(\Sigma, \hat{\Sigma}, \tilde{\Sigma} \) are identical outside these parts.

A natural inclusion \(\Sigma \hookrightarrow \hat{\Sigma} \) induces the isomorphism

\[
\alpha : N^T(X) \xrightarrow{\sim} \{ Z \in N^T(\hat{X}) \mid Z.D_{\rho_4} = 0 \},
\]

where \(\rho_4 \) is the 1-cone in \(\hat{\Sigma} \) shown in Figure 6. Composed with the isomorphism \(\phi_* : N^T(\hat{X}) \otimes \mathbb{R} \to N^T(\check{X}) \otimes \mathbb{R} \) induced from the flop \(\phi : \check{X} \dashrightarrow \hat{X} \),

\[
\phi_* \circ \alpha : N^T(\hat{X}) \otimes \mathbb{R} \xrightarrow{\sim} \{ Z \in N^T(\check{X}) \otimes \mathbb{R} \mid Z.D_{\rho_4} = 0 \},
\]

where \(\rho_4 \) is the 1-cone in \(\check{\Sigma} \) shown in Figure 6. By calculating intersection numbers, we see that the RHS is spanned by (recall \(E = C_{\tau_0} \))

\[
[E] + [C_{\tau_1}], \quad [E] + [C_{\tau_2}], \quad [C_\tau] \quad (\tau \in \hat{\Sigma}_2 \setminus \{ \tau_1, \tau_2 \}).
\]

Under the isomorphisms (12), the inverse of the isomorphism (13) becomes

\[
\psi_* : \{ \beta \in H^2(\hat{S}, \mathbb{R}) \mid \beta.E = 0 \} \xrightarrow{\sim} H^2(S, \mathbb{R}).
\]

By applying Theorem 4.4 to \(\hat{X} \) and \(\check{X} \), we obtain (i). The statement (iii) follows from the second statement of Corollary 4.6. The first statement of Corollary 4.6, together with the following, implies (ii):

\[
N_{g,\beta}(X) = N_{g,\alpha(\beta)}(\check{X}) \quad (\beta \in N^T_1(X)),
\]

by the construction of partition function (9).

\[\square\]

Appendix A. Combinatorial Formulae

We collect some combinatorial formulae which are used in this paper. Our basic references are [Mac, EK1, ORV, Z].

\(\kappa(\mu) \) is always even and

\[
\kappa(\mu^t) = -\kappa(\mu),
\]

where \(\mu^t \) denotes the conjugate partition (the partition corresponding to the transposed Young diagram of \(\mu \)).

\(C_k(\mu, \nu) \) are nonnegative integers which are nonzero for finitely many values of \(k \) [Z, Theorem 5.1], and have the following properties ([EK1, §3.1], [Z, §5.3]):

\[
\sum_k C_k(\mu, \nu) = |\mu| + |\nu|, \quad \sum_k kC_k(\mu, \nu) = \frac{1}{2}(\kappa(\mu) + \kappa(\nu)),
\]

\[
C_k(\mu, \nu) = C_{-k}(\mu^t, \nu^t).
\]

The following lemma is proved in [EK1, Lemma in §C], [Z, Proposition 6.1]:
Lemma A.1. For $\mu, \nu \in \mathcal{P}$, the following identity holds:

$$\prod_{i,j \geq 1} (1 - Qq^{\mu_{i,j}}) = Z_{(-1,-1)}(q, Q) \prod_k (1 - Qq^k)^{C_k(\mu, \nu)}.$$

Here are some properties of skew Schur function. Let $x = (x_1, x_2, \ldots)$ and $y = (y_1, y_2, \ldots)$ be sets of variables and $(x, y) = (x_1, x_2, \ldots, y_1, y_2, \ldots)$. The following formulae are useful in performing the summations over partitions ([Mac, p.93,(5.10)]):

$$\sum_{\lambda \in \mathcal{P}} s_{\lambda/\lambda_1}(x)s_{\lambda/\lambda_2}(y) = \prod_{i,j \geq 1} (1 - x_i y_j)^{-1} \sum_{\mu \in \mathcal{P}} s_{\lambda_1/\mu}(x)s_{\lambda_2/\mu}(y),$$

(18)

$$\sum_{\lambda \in \mathcal{P}} s_{\lambda/\lambda_1}(x)s_{\lambda^t/\lambda_2}(y) = \prod_{i,j \geq 1} (1 + x_i y_j) \sum_{\mu \in \mathcal{P}} s_{\lambda_2/\mu}(x)s_{\lambda_1/\mu^t}(y),$$

(19)

$$\sum_{\xi \in \mathcal{P}} s_{\mu/\xi}(x)s_{\xi/\nu}(y) = s_{\mu/\nu}(x, y).$$

(20)

Other properties are ([Z, Proposition 4.1]):

$$s_{\mu/\nu}(Qx) = Q^{|\mu| - |\nu|} s_{\mu/\nu}(x),$$

(21)

where $Qx = (Qx_1, Qx_2, \ldots)$.

$$s_{\lambda/\mu}(q^{\nu+\rho}) = (-1)^{|\lambda| - |\mu|} s_{\lambda^t/\mu^t}(q^{-\nu^t-\rho}).$$

(22)

References

[AKMV] M. Aganagic, A. Klemm, M. Marino and C. Vafa, *The topological vertex*, Commun. Math. Phys. 254, 425 (2005) [arXiv:hep-th/0305132].

[CKYZ] T. M. Chiang, A. Klemm, S. T. Yau and E. Zaslow, *Local mirror symmetry: Calculations and interpretations*, Adv. Theor. Math. Phys. 3, 495 (1999) [arXiv:hep-th/9903053].

[EK] T. Eguchi and H. Kanno, *Topological strings and Nekrasov’s formulas*, JHEP 0312, 006 (2003) [arXiv:hep-th/0310235].

[EK2] , *Geometric transitions, Chern-Simons gauge theory and Veneziano type amplitudes*, Phys. Lett. B 585, 163 (2004) [arXiv:hep-th/0312234].

[F] C. Faber and R. Pandharipande, *Hodge integrals and Gromov-Witten theory*, Invent. Math. 139 (2000), no. 1, 173–199.

[FMP] F. Fucito, J. F. Morales and R. Poghossian, *Instantons on quivers and orientifolds*, JHEP 0410, 037 (2004) [arXiv:hep-th/0408090].

[HIV] T. J. Hollowood, A. Iqbal and C. Vafa, *Matrix models, geometric engineering and elliptic genera*, arXiv:hep-th/0310272.

[HL] J. Hu and W. P. Li, *The Donaldson-Thomas invariants under blowups and flops*, arXiv:math.AG/0505542.

[IK1] A. Iqbal and A. K. Kashani-Poor, *Instanton counting and Chern-Simons theory*, Adv. Theor. Math. Phys. 7, 457 (2004) [arXiv:hep-th/0212279].

[IK2] , *SU(N) geometries and topological string amplitudes*, arXiv:hep-th/0306032.

[IK3] , *The vertex on a strip*, arXiv:hep-th/0410174.
[KMV] S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4D $N = 2$ gauge theories. I, Adv. Theor. Math. Phys. 1, 53 (1998) [arXiv:hep-th/9706110].

[Ka] H. Kanno, Unpublished manuscript, Jan. 2004.

[Ko] Y. Konishi, Integrality of Gopakumar-Vafa invariants of toric Calabi-Yau threefolds, to appear in Publ. Res. Inst. Math. Sci. Kyoto, arXiv:math.AG/0504188.

[LR] A.-M. Li and Y. Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds I, Invent. Math. 145 (2001), no. 1, 151–218 [arXiv:math.AG/9803036].

[LLLZ] J. Li, C.-C. M. Liu, K. Liu and J. Zhou, A Mathematical Theory of the Topological Vertex, arXiv:math.AG/0408426.

[LY] C.-H. Liu and S.-T. Yau, Transformation of algebraic Gromov-Witten invariants of three-folds under flops and small extremal transitions, with an appendix from the stringy and the symplectic viewpoint, arXiv:math.AG/0505084.

[Mac] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.

[MO] S. Matsuura and K. Ohta, Localization on D-brane and gauge theory/Matrix model, arXiv:hep-th/0504176.

[MNOP1] D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov–Witten theory and Donaldson-Thomas theory, I, arXiv:math.AG/0312059.

[MNOP2] ______, Gromov–Witten theory and Donaldson-Thomas theory, II, arXiv:math.AG/0406092.

[Mor] D. R. Morrison, Beyond the Kähler cone, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), 361–376, Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996 [arXiv:alg-geom/9407007].

[N] N. Nekrasov, Lectures on nonperturbative aspects of supersymmetric gauge theories, Class. Quant. Grav. 22, S77 (2005).

[ORV] A. Okounkov, N. Reshetikhin and C. Vafa, Quantum Calabi-Yau and classical crystals, arXiv:hep-th/0309208.

[S] S. Shadchin, Cubic curves from instanton counting, arXiv:hep-th/0511132.

[W] E. Witten, Phases of $N = 2$ theories in two dimensions, Nucl. Phys. B 403, 159 (1993) [arXiv:hep-th/9301042].

[Z] J. Zhou, Curve counting and instanton counting, arXiv:math.AG/0311237, to appear in Adv. Theor. Math. Phys..