Supporting Information

Photoelectric and Flexible poly (styrene-b-ethylene/butylene-b-styrene)-Zinc porphyrin- graphene hybrid composite: synthesis, performance, and mechanism

Shumei Tang, Yu Xu, Gehong Su, Jianjun Bao and Aimin Zhang*

State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, China

*Corresponding author: Aimin Zhang (Email: zhangaimin@scu.edu.cn)
1. XPS Characterization of Graphene

Fig. S1 XPS spectra of Graphene

Table S1 Element contents of Graphene calculated based on the XPS spectra in Fig. s1

Sample	Element content/%
	C
	O
Graphene	96.31%
	3.69%

A typical XPS spectrum shows that mechanically exfoliated graphene is composed of 96.31% carbon and 3.69% oxygen and does not contain any heteroatoms.
2. Raman Characterization of Graphene

A typical Raman spectrum shows the sheet structure of graphene and without much defects.

Fig. S2 Raman spectra of Graphene
3. **Porphyrinization degree**

Porphyrinization degree is calculated by the equation below:

\[
G = \frac{5S_{NH}}{S_{NH} + 2S_{benzene}}
\]

![Fig. S3 1H-NMR spectra of Zn-PorSEBS I](image-url)
Fig. S4 1H-NMR spectra of Zn-PorSEBS II
Fig. S5 1H-NMR spectra of Zn-PorSEBS III

Table S2 Summary of chloromethylation degree of Zn-PorSEBS

Samples	Zn-PorSEBS I	Zn-PorSEBS II	Zn-PorSEBS III
Chloromethylation degree (%)	7.2%	10.9%	13.6%

References:

1. E. J. Heller, Y. Yang, L. Kocia, W. Chen, S. Fang, M. Borunda and E. Kaxiras, *Acs Nano*, 2016, **10**, 2803-2818.