Regular Article

A Network Pharmacology Approach Used to Estimate the Active Ingredients of Moutan Cortex Charcoal and the Potential Targets in Hemorrhagic Diseases

Shuqing Li, Xingyang Xue, Xiaolu Yang, Sujuan Zhou, Shumei Wang, and Jiang Meng

Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University; Guangzhou 510006, China; The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of TCM; Guangzhou 510006, China; The Research Center for Quality Engineering Technology of TCM; Guangzhou 510006, China; Guangzhou Medical University Cancer Hospital and Institute; Guangzhou 510095, China; and College of Medical Information Engineering, Guangdong Pharmaceutical University; Guangzhou 510006, China.

Received September 27, 2018; accepted November 29, 2018

Moutan Cortex charcoal has been used to ameliorate blood heat symptoms and treat pathologic hemorrhage down the ages. Although well known as an agent with the effect of astringency and hemostasis, its active ingredients and action mechanism remain unclear. In the present study, molecular docking technology was employed to screen the potential hemostatic compounds in Moutan Cortex charcoal and their target proteins. Protein–protein-interaction (PPI) analysis was performed to explain the functions and enrichment pathways of the target proteins. The results showed that a total of 25 compounds were estimated as active constituents targeting multiple proteins related to hemostatic diseases, including 5 proteins (SERPINC1, FVIII, FX, FII and FXII) that were considered as the key targets. Then the drug-target (D-T) network was constructed to analyze the underlying hemostatic mechanism of Moutan Cortex charcoal, followed by a hierarchical cluster analysis (HCA) for compounds clustering, and a coagulation screening test for compound verification on their coagulation activities, with the results indicating that M15 (5-Tetradecenoic acid) and M31 (1-Monolinolein) might be the key compounds contributing to the hemostasis effect of Moutan Cortex charcoal by involving in the pathways related to complement, coagulation cascades and the platelet activation, particularly by activating FVIII, FX, FII and FXII and inhibiting SERPINC1. This study has demonstrated that Moutan Cortex charcoal may work as a hemostatic through the interaction between multiple-compounds and multiple-proteins, which provides the basis for further researches on the hemostasis mechanism of Moutan Cortex charcoal.

Key words Moutan Cortex charcoal; molecular docking; active ingredient; potential target

INTRODUCTION

Medicinal carbon materials, as a popular hemostatic treatment, have been widely applied in clinical practice for over two thousand years. Moutan Cortex charcoal is the product of the root bark of Paeonia suffruticosa Andrews (Paeoniaceae), and it is produced after undergoing a processing step, in which the dried Moutan Cortex is stir-fried to be black-brown on the bark and burnt-brown inside.1 It has been used throughout the history of Traditional Chinese Medicine (TCM) from ancient China to modern society,21 with an early application dating back to the Yuan Dynasty in China as a component of the famous ancient prescription of “Shihui powder.”31 According to TCM theory, Moutan Cortex charcoal has the effect of blood cooling and hemostasis, and typically used for the treatment of uterine bleeding, gastrorrhagia, hematemesis, as well as other blood-heat and hemorrhage syndromes.13 Modern pharmacological investigations have also shown that Moutan Cortex charcoal is regarded as a satisfying hemostatic agent as demonstrated by significantly shortened bleeding time and clotting time in mice, as well as reduced rat plasma recalcification time (PRT), thrombin time (TT), prothrombin time (PT) and activated partial thromboplastin time (APTT). It can also increase the level of ADP and thromboxane B2 (TXB2) as well as collagen induced-platelet aggregation rate, in addition to a decrease in the content of 6-keto-prostaglandin F1α (PGF1α).4,5 To date, numerous researches have been conducted on Moutan Cortex charcoal, mainly focusing on the change of the chemical composition and its efficacy after processing.6–11 Moreover, the research strategy was basically routinized into chemical separation and analysis, components identification, and determination of the major active constituents, with the addition of some pharmacological experiments. However, the mechanism of its multi-compounds and multi-targets interaction remains to be revealed, let alone the low efficiency, big workload and cost of the separation and analysis work which is not uncommon to provide no benefit.

Network pharmacology has emerged as a new field of pharmacological study over the recent years.12 It aims to decipher the molecular mechanisms of the therapeutic effects of TCM and to determine their active ingredients or combinations.13–16 Estimating the potential key targets and pathways for the drugs against the diseases by computational methods is an efficient and time-saving approach for target discovery and experimental verification. Network pharmacology emphasizes “multi-components-multi-targets-multiple diseases”

© 2019 The Pharmaceutical Society of Japan

* To whom correspondence should be addressed. e-mail: 2395903468@qq.com; jiangmeng666@126.com
rather than “a drug—a gene—a disease” drug action pattern,17,18) which is becoming increasingly popular, particularly when dealing with the complex systems.19–21) Researches based on network pharmacology for predicting the active ingredients and potential targets of traditional Chinese medicine have also been reported.22–28)

Therefore, we use network pharmacology approaches in this study, including molecular docking technology, protein–protein-interaction (PPI) analysis, drug-target (D-T) network, and hierarchical cluster analysis (HCA) in combination with a coagulation screening test to explore the potential pharmacodynamic material basis and the hemostasis mechanism of Moutan Cortex charcoal (procedure shown in Fig. 1 and the details are described in Table S1).

MATERIALS AND METHODS

Reagents All the chemicals used in the experiments of this study were of reagent grade and obtained from commercial suppliers: Dade Actin Activated Cephaloplastin Reagent, Calcium Chloride Solution, Dade Fibrinogen Determination Reagents, Test Thrombin Reagent and Detergent for Fully Automated Blood Coagulation Analyzer (all from Siemens Healthcare Diagnostics Products GmbH, Germany); Disposable Vacuum Blood Vessels (SANLI, China); Chloral Hydrate (Damao Chemical Reagent Factory, Tianjin, China).

New Zealand white rabbits purchased from Laboratory Animal Center, Guangzhou University of Chinese Medicine (License No: SCXK (YUE) 2016-0041, Guangzhou, China); Compounds (M3, M9, M10, M11, M12, M15, M24, M31) were extracted, isolated and purified from Moutan Cortex Charcoal in our laboratory. The purity of the isolated components was shown to be higher than 96% by HPLC, and their structures were elucidated by comparing their spectroscopic data (electrospray ionization (ESI)-MS, 1H-NMR and 13C-NMR, heteronuclear multiple bond connectivity (HMBC), 1H-detected heteronuclear multiple quantum coherence (HMQC) and H–H correlation spectroscopy (COSY)) in literature.29,30) Structures of the eight compounds are shown in Fig. 2.

Compounds Database Construction and Compounds Bioactivity Prediction The compounds of Moutan Cortex charcoal were collected from the previous studies conducted by us and our peers.3–19, 25–33) Advanced Chemistry Development (ACD/Labs) Software V11.0232) was used to predict compounds bioactivity, and compounds of Moutan Cortex charcoal were preliminarily screened according to “Lipinski’s rule of five” (Moriguchi octanol–water partition coeff (Log\textsubscript{P} ≤ 5), Molecular weight (MW ≤ 500), The number of acceptor atoms for H-bonds (HA ≤ 10), The number of donor atoms of H-bonds (HD ≤ 5), Freely rotatable bonds (FRB ≤ 10)).33) Molecules violating more than one of these rules may be inefficient in bioavailability and thus is considered unqualified for this study.

Target Protein Screening As is known that blood coagulation mainly depends on the functioning of platelets34) and coagulation factors,35–37) the relevant proteins were collected from the protein structure database (PDB)38) to estimate the potential targets (Organism(s): Homo sapiens; Method: X-Ray diffraction; Resolution: > 1.5; Ligand: > 1) of Moutan Cortex charcoal for hemorrhagic diseases. Proteins were used to verify the reliability of the processing according to the following procedure (Fig. 3) by SYBYL-X 7.3 software (Tripos, U.S.A). First, the original ligand was pumped out, and then re-docked with the active pocket of the corresponding target, and total score (the total Surflex-Dock score expressed as $-\log(K_d)$39)) was used as the threshold value. Root Mean Square Deviation (RMSD) between the conformation of re-docked ligand and the ligand in the original crystal structure was used to evaluate the reliability of the docking technology, and a RMSD value of less than 2Å was deemed as an acceptable reliability.
PPI Analysis The target proteins were imported to STRING to construct PPI network, with the species limited to “Homo sapiens” and a confidence score > 0.7.

Molecular Docking The compounds were docked to target proteins using SYBYL-X 7.3 software. Based on the total score, potential active ingredients with an excellent binding to the target proteins were screened. The molecular docking process is shown in Fig. 3.

D-T Network Construction Cytoscape is an open source software platform for biological pathways visualizing molecular interaction networks and integrating these networks with annotations, gene expression profiles, and other data. In order to provide a direct viewing on the binding between the active compounds and the target proteins, the results of molecular docking were visualized using Cytoscape software to construct the D-T network.

HCA of Compounds Based on the data of “Lipinski’s rule of five,” compounds HCA was conducted using Ward Linkage method with SPSS 24.0.

Coagulation Screening Test Animal experiments of this Study were performed according to the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publications No. 85-23, revised 1996) and approved by the Ethics Committee of Guangdong Pharmaceutical University. New Zealand white rabbits (2.5 ± 0.2 kg) were housed in accordance with guidelines on Laboratory Animal Requirements of Environment as well as the requirements from the Committee on Ethics of Animal Experiments. The rabbits, after being fasted for 8 h, were anesthetized with 10% chloral hydrate. The blood was drawn from the heart and collected in a plastic centrifuge tube containing 3.8% sodium citrate (volume ratio 9:1) as the anticoagulant, followed by a 10-min 3000r/min centrifugation to separate the plasma for further analysis. Activated partial thromboplastin time (APTT), thrombin time (TT) and fibrinogen content (FIB) were used as the coagulation indexes. The monomer compounds were respectively dissolved in methanol to prepare solutions of 0.03 g/mL, with methanol solvent used as blank control. Nine hundred microliters of plasma was transferred into centrifuge tube, and then 10 µL monomer solution was added for determination by coagulation method according to the instructions of the kits. The results of coagulation screening test were expressed as means ± standard deviation (S.D.). The significance of inter-group differences was analyzed by one-way ANOVA using SPSS 24.0 statistical software. p-value of less than 0.05 or 0.01 was considered statistically significant.

RESULTS AND DISCUSSION

Compounds Collection A total of 40 compounds, including 5 compounds identified by the previous research and another 35 that were separated and authenticated by our lab, were collected for this study (Compounds information was reported in another paper). The bioactivity parameters of these compounds under “Lipinski’s rule of five” were obtained with Chemistry Development (ACD/Labs) Software V11.02 (Table 1), and each of the 40 compounds followed more than three of the five rules.

Target Proteins Estimation Following the procedure for coagulation protein screening as shown in Fig. 3, 15 proteins were eventually estimated as the target proteins according to the criteria of RMSD < 2 Å. The total score and RMSD values of these target proteins are shown in Table 2.

Construction of PPI Network The PPI network of the target proteins was constructed, as illustrated in Fig. 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis reveals that the 15 proteins are mainly enriched in pathways related to complement, coagulation cascades and platelet activation, and more than 10 out of the 15 proteins involve in the biological process of blood coagulation and fibrin clot formation according to Gene Ontology (GO) analysis (Table 3).
A total of 40 compounds were selected for docking to the 15 target proteins under the procedure shown in Fig. 3, and the molecular docking scores of the compounds are summarized in Table 4. The total score of the known small molecular ligand docking on the target protein complex was employed as the threshold, so the compounds docking on this protein with a total score greater than this threshold value is considered as the main compounds acting on the target. The results revealed that 25 out of the 40 compounds interacted with the 15 hemostasis target proteins (Table 4).

D-T Network D-T network was constructed, as shown in Fig. 5. Betweenness, degree and closeness were employed as the parameters to assess the binding activity of the compounds as well as the influence of the target proteins on the whole network (Tables 5, 6). Protein with a higher score reflects a greater influence, and can be regarded as a key protein in the network. Analysis of the D-T network revealed that 8 compounds (M3, M9, M10, M11, M12, M15, M24 and M31) demonstrated a good binding activity with 8 or more target proteins (Betweenness >0.032, Closeness >0.51, degree ≥ 8, Fig. 5, Table 5), and five proteins (SERPINC1, FVIII, FX, FII and FXII) qualified as the key ones related to the hemostatic effect of Moutan Cortex charcoal (Betweenness >0.129, Closeness >0.50, degree ≥ 13, Fig. 5, Table 6).

HCA Analysis Forty compounds were classified into four groups, as demonstrated in Fig. 6, and the results of HCA Analysis is shown in Table 7. Significant inter-group difference was observed in MW value among the four groups, as contrasted to HA and HD values in which the paired inter-group comparisons between any two of the four groups showed no remarkable difference. As for LogP and FRB, statistical difference was found in most of the paired-comparisons, except for the second group and the third group.

Name	Compound name	CAS	LogP	MW	HA	HD	FRB
M1	Paeonol	552-41-0	2.309	166.17	3	1	3
M2	3-(2-Furanlyl)-1-(2-hydroxy-4-methoxyphenyl)-2-propen-1-one	52542-11-7	3.369	244.24	4	1	5
M3	Dibutyl phthalate	84-74-2	4.752	278.34	4	0	10
M4	3,6-Dimethyl-5-benzofuranol	59211-24-4	3.224	162.19	2	1	1
M5	Diethyl phthalate	84-66-2	2.714	222.24	4	0	6
M6	a_1,a_2-Dethyl-1,2-benzenedimethanol	198871-46-2	1.616	194.27	2	2	6
M7	Betaprost	83-46-5	10.482	414.72	1	1	7
M8	Benzoic acid	65-85-0	5.048	304.52	4	2	18
M9	9-Octadecenoic acid-2-hydroxyethyl ester	25905-73-1	7.219	326.51	3	1	19
M10	Methyl tridecanoate	1731-88-0	5.88	228.37	2	0	12
M11	1-Monomyrystin	589-68-4	5.048	300.45	4	2	18
M12	3-(Decyloxy)-1-propanol	60851-88-9	4.302	216.37	2	1	13
M13	1,4-Diethyly-cyclohexane	10355-58-5	7.965	240.38	0	0	4
M14	1-(3,5-Dihydroxy-4-methylphenyl)-ethaneone	855925-40-5	1.101	166.17	3	2	3
M15	Methyl physterate	103385-67-7	5.965	240.38	0	2	12
M16	Betulinic acid	472-15-1	7.653	456.7	3	2	3
M17	Oleonanic acid	508-02-1	8.576	456.7	3	2	2
M18	1-(2,4-Dihydroxyphenyl)-ethaneone	74291-78-4	4.48	152.15	3	2	3
M19	Anisic acid	100-09-4	1.776	152.15	3	2	3
M20	1-(2,5-Dihydroxy-4-methoxyphenyl)-1-propanone	3835-85-5	2.059	196.2	4	2	5
M21	1-(2,5-Dihydroxy-4-methylphenyl)-ethaneone	54698-17-8	1.438	166.17	3	2	3
M22	Oxyclic acid	120-80-9	0.844	110.11	2	2	2
M23	1-(2,5-Dihydroxy-4-methylphenyl)-ethaneone	22089-12-9	1.549	182.17	4	2	4
M24	9,12-Octadecadienoic acid methyl ester	2462-85-3	7.615	294.47	2	0	15
M25	Paridol	99-76-3	1.882	152.15	3	2	3
M26	4-Acetyresorcinol	89-84-9	1.48	152.15	3	2	3
M27	2,3-Dihydroxy-4-methoxyacetophenone	708-53-2	1.773	182.17	4	2	4
M28	Laric acid	118-71-8	0.07	126.11	3	1	1
M29	Alginetin	6005-10-3	1.32	192.17	4	2	2
M30	β-Amyrenol	559-70-6	1.048	426.72	1	1	1
M31	1-Monoindolein	2277-28-3	6.273	354.52	4	2	20
M32	2,5-Dihydroxy-4,4-dimethylbenzeneacetic acid ethyl ester	2114236-13-2	1.641	224.25	4	2	6
M33	5-Acetyl-2-methoxyphenol	6100-74-9	1.373	166.17	3	1	3
M34	Betulinic acid methyl ester	2259-06-5	9.193	470.73	3	1	4
M35	Paeoniflorin	23180-57-6	0.245	480.46	11	5	12
M36	Quercetin	117-39-5	1.989	300.24	7	5	6
M37	Kaempferid	491-54-3	3.499	300.26	6	3	5
M38	Gallic acid	149-91-7	0.531	170.12	5	4	4
M39	Isorhamnetol	480-19-3	2.787	316.26	7	4	6
M40	5-Hydroxymethylfurfural	67-47-0	0.778	126.11	3	1	3
which showed no difference in either of the two parameters. This may explain why the second group and the third group are closer to each other in the HCA chart, while the first group and the fourth group are farther apart. Moreover, 8 compounds (M3, M9, M10, M11, M12, M15, M24 and M31) with strong binding activity all fell in the second and the third groups, and those (M4, M8, M13, M14, M16, M17, M18, M20, M21, M22, M26, M29, M30, M34, M40) with no binding activity all clustered in the first and the fourth groups. Combining with the molecular docking results, we may conclude that the first and the fourth groups have the compounds with low or no binding activity, while those in the second and the third groups are likely to have a stronger binding activity with the target proteins.

Coagulation Screening Test

As eight compounds (M3, M9, M10, M11, M12, M15, M24 and M31) were preliminarily

Table 2. Total Score and RMSD Values of the Target Proteins

Target	Abbreviation	PDB-ID	Total score	RMSD(Å)
Urokinase-type plasminogen activator	PLAU	1EJN	8.92	1.51
Ras-related protein Rap-1A	RaP1A	4KVG	8.68	1.70
Activated protein C	PROC	1AUT	7.34	1.79
Coagulation factor XI	FXI	4D76	7.23	1.69
Coagulation factor IX	FIX	5JBC	6.37	1.51
Plasma kallikrein	KLKB1	2ANY	6.17	0.14
Platelet glycoprotein Ib alpha chain	GP1BA	1QYY	6.14	0.78
Coagulation factor VII	FVII	4ZXW	5.77	1.54
Coagulation factor XII	FXII	4XE4	5.40	1.03
Guanine nucleotide-binding protein G(s) subunit alpha	GNAS	5G53	5.32	1.84
Coagulation factor VIII	FVIII	3J2Q	5.28	1.05
Antithrombin-III	SERPINC1/AT-III	2ZNH	5.28	0.67
Fibrin beta chain	FGB	1N86	5.24	0.70
Coagulation factor X	FX	1G2M	5.11	0.82
Prothrombin	FII	3TU7	5.11	1.45

Table 3. Analysis on the Protein–Protein Interaction Network

Term	ID	Description	Count	FRD
Biological process (GO)	GO:0072378	Blood coagulation, fibrin clot formation	10	3.82E-23
	GO:0007596	Blood coagulation	15	2.44E-21
Molecular function (GO)	GO:0004252	Serine-type endopeptidase activity	9	1.29E-13
	GO:0016787	Hydrolase activity	10	1.57E-04
Cellular component (GO)	GO:0005615	Extracellular space	11	4.60E-08
	GO:0005796	Golgi lumen	5	1.75E-06
KEGG pathways	04610	Complement and coagulation cascades	12	8.44E-26
	04611	Platelet activation	4	2.55E-04

Fig. 4. PPI Network

(Color figure can be accessed in the online version.)
Table 4. Molecular Docking Score of Moutan Cortex Charcoal

Name	PLAU	RaP1A	PROC	FXI	FIX	KLKB1	GP1BA	FVII	FXII	GNAS	FVIII	AT-III	FGB	FX	FII
M1	—	—	—	—	—	—	—	—	—	—	—	—	—	—	5.67
M2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	5.64
M3	—	—	—	—	—	—	—	—	—	—	—	—	—	6.32	5.54
M4	—	—	—	—	—	—	—	—	—	—	—	—	—	—	5.41
M5	—	—	—	—	—	—	—	—	—	—	—	—	—	5.37	5.77
M6	—	—	—	—	—	—	—	—	—	—	—	—	—	—	6.50
M7	—	—	—	—	—	—	—	—	—	—	—	—	—	5.77	5.72
M8	—	—	—	—	—	—	—	—	—	—	—	—	—	5.85	5.48
M9	—	—	—	—	—	—	—	—	—	—	—	—	—	7.63	6.17
M10	—	—	—	—	—	—	—	—	—	—	—	—	—	5.76	7.01
M11	—	—	—	—	—	—	—	—	—	—	—	—	—	7.37	5.40
M12	—	—	—	—	—	—	—	—	—	—	—	—	—	6.41	6.72
M13	—	—	—	—	—	—	—	—	—	—	—	—	—	7.18	6.43
M14	—	—	—	—	—	—	—	—	—	—	—	—	—	5.98	7.03
M15	—	—	—	—	—	—	—	—	—	—	—	—	—	6.27	7.02
M16	—	—	—	—	—	—	—	—	—	—	—	—	—	6.34	7.57
M17	—	—	—	—	—	—	—	—	—	—	—	—	—	7.50	6.34
M18	—	—	—	—	—	—	—	—	—	—	—	—	—	6.95	5.44
M19	—	—	—	—	—	—	—	—	—	—	—	—	—	5.44	5.35
M20	—	—	—	—	—	—	—	—	—	—	—	—	—	5.44	5.44
M21	—	—	—	—	—	—	—	—	—	—	—	—	—	5.24	5.54
M22	—	—	—	—	—	—	—	—	—	—	—	—	—	5.24	5.54
M23	—	—	—	—	—	—	—	—	—	—	—	—	—	5.90	6.90
M24	—	—	—	—	—	—	—	—	—	—	—	—	—	9.43	7.19
M25	—	—	—	—	—	—	—	—	—	—	—	—	—	6.55	7.50
M26	—	—	—	—	—	—	—	—	—	—	—	—	—	8.49	8.33
M27	—	—	—	—	—	—	—	—	—	—	—	—	—	8.68	8.93
M28	—	—	—	—	—	—	—	—	—	—	—	—	—	7.10	7.10
M29	—	—	—	—	—	—	—	—	—	—	—	—	—	5.49	5.49
M30	—	—	—	—	—	—	—	—	—	—	—	—	—	6.01	6.01
M31	—	—	—	—	—	—	—	—	—	—	—	—	—	7.17	9.74
M32	—	—	—	—	—	—	—	—	—	—	—	—	—	8.36	8.10
M33	—	—	—	—	—	—	—	—	—	—	—	—	—	8.25	8.93
M34	—	—	—	—	—	—	—	—	—	—	—	—	—	8.80	8.80
M35	—	—	—	—	—	—	—	—	—	—	—	—	—	6.18	6.50
M36	—	—	—	—	—	—	—	—	—	—	—	—	—	5.99	5.99
M37	—	—	—	—	—	—	—	—	—	—	—	—	—	5.69	7.25
M38	—	—	—	—	—	—	—	—	—	—	—	—	—	5.47	—
M39	—	—	—	—	—	—	—	—	—	—	—	—	—	4.99	—
M40	—	—	—	—	—	—	—	—	—	—	—	—	—	5.38	5.27

Fig. 5. Drug-Target Interaction Network of Moutan Cortex Charcoal

The edges represent interactions between the compounds and the targets. The network was constructed and visualized with Cytoscape. (Color figure can be accessed in the online version.)
predicated by D-T network having a strong binding activity with the target proteins, coagulation screening test for them were performed in vitro, using APTT, FIB and TT as the indexes for analysis (Table 8). The APTT mainly reflects the activity and content of endogenous coagulation factors, and TT is a parameter indicating the coagulation, anticoagulation and fibrinolysis system, while FIB words as the raw material of synthetic fibrin, and plays a significant role in coagulation process. As compared with the normal group, APTT was significantly increased by compound M9, M10 and M12, and the level of FIB was dramatically decreased by compound M12 but showed a remarkable increase in compound M15 and M31 groups ($p < 0.01$). The results suggest that compound M15 and M31 are likely to have a coagulation effect, while compound M9, M10 and M12 appear to demonstrate an anticoagulation effect. These inferences on their biological activity need further verification in more in vivo studies. In this study, we found that the processing of Moutan Cortex led to a decrease of M3, M11 and M24 as well as an increase of M9, M10 and M12 in Moutan Cortex charcoal. Also, other researches reported an elevated level of hemostatic components (gallic acid and 5-hydroxymethylfurfural (5-HMF)) in contrast to a significant decline in blood activating components (quercetin, kaempferol and isorhamnetin) after the stir-fried processing of Moutan Cortex. According to the theory in traditional Chinese Medicine (TCM), Moutan Cortex has a function of promoting blood circulation, and the carbonizing process can weaken its blood activating while at the same time enhance its hemostasis effect. Moutan Cortex charcoal is therefore regarded as a hemostatic without the consequence of blood stasis. Based on these findings and the theory, we conclude that among the five active constituents (M15, M31, M9, M10 and M12, Fig. 2), compounds M15 and M31 are most...
likely to be the key ones responsible for the hemostasis effect of Moutan Cortex charcoal.

Mechanism Analysis The results delineated as above can lead that compounds M15 and M31 are the hemostasis active components, and close binding to 5 target proteins (SERPINC1, FVIII, FX, FII and FXII). Factor VIII is important for the generation of amplified factor Xa and sustained reaction cascades as well as platelet activation. Moreover, M15 and M31 possibly play their parts by a positive effect on FVIII, FX, FII and FXII, and in the meantime, inhibiting the activity of SERPINC1.

CONCLUSION

In this study, 40 active compounds of Moutan Cortex charcoal were obtained by rapid screening and then semiflexibly docked to 15 proteins involved in hemostasis. The results reveal that Moutan Cortex charcoal may act as a blood coagulation promotor mainly through the interaction between two compounds (M15 and M31) and five target proteins (SERPINC1, FVIII, FX, FII and FXII) which are involved in the pathways associated with complement and coagulation cascades as well as platelet activation. Moreover, M15 and M31 possibly play their parts by a positive effect on FVIII, FX, FII and FXII as well as an inhibitory action on SERPINC1. This study provides a basis for further exploration on the hemostasis mechanism of Moutan Cortex charcoal using a multi-compounds and multi-targets approach. Plus, it also provides a reference for the studies on the hemostasis mechanism of Chinese charcoal medicines.

Acknowledgments The authors sincerely thank all the volunteers for their participation in this study. This work was supported by the National Natural Sciences Foundation of China (No. 81473352); the Guangdong Province innovation training project (No. 201610573040); the Guangzhou science and technology planning project (No. 201707010170).

Conflict of Interest The authors declare no conflict of interest.

Supplementary Materials The online version of this article contains supplementary materials.

REFERENCES

1) People’s Republic of China Pharmaceutical Administration Bureau. *National standard for Chinese medicine processing.* People Health Publishing House, Beijing, p. 285 (1988).
2) Gong Q-F. *Science of processing Chinese materia medica.* China Press of Traditional Chinese Medicine, Beijing, p. 152 (2012).
3) Wu Y-P, Zhang L. Zhang Lei’s experience with charcoal medicine. *J. Tradit. Chin. Med.*, 52, 98–100 (2011).
4) Li X, Zhang L, Ding A-W. Study on the effective part and mechanism of the hemostatic effect of carbonized Cortex Moutan. *Chin. Tradit. Herbal Drugs*, 40, 1278–1280 (2009).
5) Li X, Zhang L, Ding A-W. Effects of carbonized Cortex Moutan and the main hemostasis active fractions of carbonized Cortex Moutan on platelet aggregation and TXB2, 6-keto-PGF1α in rat. *Chinese Journal of Experimental Traditional Medical Formulae*, 15, 41–43 (2009).
6) Qiu Z-C, Sun D-M, Zhang C-G. Effects of different processing on the contents of Paenol and Paenolin in Cortex Moutan. *Journal of Medical Research*, 38, 131–133 (2009).
7) Huang Q-Y, Zhou S-J, Chen Q-F, Meng J, Wang SM. Multicomponent content difference among different processing degrees of Moutan Cortex charcoal. *Zhong Yao Cai*, 39, 1024–1027 (2016).
8) Li X, Wei X-L, Zhao X-L, Ding A-W. Compared before and after the chemical composition of carbon Cortex Moutan study of changes. *Chinese Journal of Experimental Traditional Medical Formulae*, 17, 32–35 (2011).
9) Ding A-W, Zhang L, Zhao X-L, Li X. Dynamic change of flavonoids’ content in various extent of cortex moutan carbon isatum.
Zhang H, Ding A-W, Zhang L. Optimal processing techniques of carbonized paonia suffruticosa selected by orthogonal experiment. *China Pharmaceuticals*, **17**, 25–26 (2008).

Qiu Z-C, Chen Y-X, Zhou R-L. Effects of different processing to some pharmacodynamic action of Cortex Moutan. *Progress in Modern Biomedicine*, **9**, 2882–2884 (2009).

Huang H, Wu X, Ragini P, Li J, Zhao G, Librahim S, Chen JY. C2Maps: a network pharmacology database with comprehensive disease-cause-drug connectivity relationships. *BMC Genomics*, **13** (Suppl. 6), S17 (2012).

Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. *Chin. J. Nat. Med.*, **11**, 110–120 (2013).

Li S. Network target: a starting point for traditional Chinese medicine network pharmacology. *Chung Kuo Chung Tsa Chih*, **36**, 2017–2020 (2011).

Mo M-Y. Study on chemical constituents of the Petroleum ether fraction of Cortex Moutan charcoal. Guangdong Pharmaceutical University, Guangzhou (2017).

Mo M-Y. Study on chemical constituents of the ethyl acetate fraction of Cortex Moutan charcoal. Guangdong Pharmaceutical University, Guangzhou (2016).

Xiong Y, Zhang J, Shi J, Huang S-H. Effects of different processing methods on contents of paonel, paonolin total flavonoids and total polysaccharides in Moutan Cortex. *Chinese Journal of Experimental Traditional Medical Formulae*, **20**, 40–43 (2014).

ACD/Labs., Advanced Chemistry Development, Inc. (ACD/Labs), Toronto, Software V11.02, 1994–2018.

Liptinska CI, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv. Drug Deliv. Rev.*, **64**, 4–17 (2012).

Kong X-P, Chen P-D, Zhang L, Shan M-Q, Cao Y-D, Ding A-W. Experimental study on the effects of some pharmacodynamic action of Cortex Moutan charcoal. *Modern Biomedicine*, **34**, 965–968 (2009).

Lin W-D, Ma W-Y, Tian Y-X, Wu C-W, Liang S-W, Wang S-M. Effect–activity relationships. *Thromb. Res.*, **96**, S160–S166 (2000).

Yue S-J, Xin L-T, Fan Y-C, Li S-J, Tang Y-P, Duan J-A, Guan H-S, Luchtman-Jones L, Jr GB. The current status of coagulation. *Scientific Reports*, **7**, 40318 (2017).

Mo M-Y. Study on chemical constituents of the Petroleum ether fraction of Cortex Moutan charcoal. Guangdong Pharmaceutical University, Guangzhou (2017).

Huang H, Wu X, Ragini P, Li J, Zhao G, Librahim S, Chen JY. C2Maps: a network pharmacology database with comprehensive disease-cause-drug connectivity relationships. *BMC Genomics*, **13** (Suppl. 6), S17 (2012).

Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. *Chin. J. Nat. Med.*, **11**, 110–120 (2013).

Li S. Network target: a starting point for traditional Chinese medicine network pharmacology. *Chung Kuo Chung Tsa Chih*, **36**, 2017–2020 (2011).

Mo M-Y. Study on chemical constituents of the Petroleum ether fraction of Cortex Moutan charcoal. Guangdong Pharmaceutical University, Guangzhou (2017).

Huang H, Wu X, Ragini P, Li J, Zhao G, Librahim S, Chen JY. C2Maps: a network pharmacology database with comprehensive disease-cause-drug connectivity relationships. *BMC Genomics*, **13** (Suppl. 6), S17 (2012).

Li S, Zhang B, Zhang N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. *BMC Syst. Biol.*, **5** (Suppl 1), i-13 (2011).

Zhang B, Wang X, Li S. An integrative platform of TCN network pharmacology and its application on a Herbal Formula, Qing-Luo-Yin. *Evid. Based Complement. Alternat. Med.*, **2013**, 456747 (2013).

Hopkins AL. Network pharmacology: the next paradigm in drug discovery. *Nat. Chem. Biol.*, **4**, 682–690 (2008).

Barabási AL. Scale-free networks: a decade and beyond. *Science*, **325**, 412–413 (2009).

Girvan M, Newman MEJ. Community structure in social and biological networks. *Proc. Natl. Acad. Sci. U.S.A.*, **99**, 7821–7826 (2002).

Camilla L, Shoemaker JE, Sanft KR, Petzold LR, Doyle II. Confidence from uncertainty—a multi-target drug screening method from robust control theory. *BMC Syst. Biol.*, **4**, 161 (2010).

Tang F, Tang Q, Tian Y, Fan Q, Huang Y, Tan X. Network pharmacology-based prediction of the active ingredients and potential targets of Mahuang Fuzi Xixin decoction for application to allergic rhinitis. *J. Ethnopharmacol.*, **176**, 402–412 (2015).

Tao W, Xu X, Wang X, Li B, Wang Y, Li Y, Yang L. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. *J. Ethnopharmacol.*, **145**, 1–10 (2013).

Tong X. A network pharmacology approach to determine active compounds and action mechanisms of ge-gen-qin-lian decoction for application to traditional Chinese medicine. *BMC Syst. Biol.*, **11**, 1110–1111 (2007).

Jain AN. Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. *J. Comput. Aided Mol. Des.*, **10**, 427–440 (1996).

Plam TA, Jain AJ. Parameter estimation for scoring protein-ligand interactions using negative training data. *J. Med. Chem.*, **49**, 5856–5868 (2006).

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.*, **13**, 2498–2504 (2003).

Lopes CF, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD. Cytoscape Web: an interactive web-based network browser. *Bioinformatics*, **26**, 2347–2348 (2010).

Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. *Bioinformatics*, **27**, 431–432 (2011).

Zhang B, Wang X, Li S. An integrative platform of TCN network pharmacology and its application on a Herbal Formula, Qing-Luo-Yin. *Evid. Based Complement. Alternat. Med.*, **2013**, 456747 (2013).

Tang F, Tang Q, Tian Y, Fan Q, Huang Y, Tan X. Network pharmacology-based prediction of the active ingredients and potential targets of Mahuang Fuzi Xixin decoction for application to allergic rhinitis. *J. Ethnopharmacol.*, **176**, 402–412 (2015).

Tao W, Xu X, Wang X, Li B, Wang Y, Li Y, Yang L. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. *J. Ethnopharmacol.*, **145**, 1–10 (2013).

Li H, Zhao L, Zhang B, Jiang Y, Wang X, Guo Y, Liu H, Li S, Tong X. A network pharmacology approach to determine active compounds and action mechanisms of ge-gen-qin-lian decoction for treatment of type 2 diabetes. *Evid. Based Complement. Alternat. Med.*, **2014**, 495840 (2014).

Fang H, Wang Y, Yang T, Ga Y, Zhang Y, Liu R, Zhang W-D, Zhao J. Bioinformatics analysis for the anti-therapeudic effects of huang-hua-nie-du-tang from a network perspective. *Evid. Based Complement. Alternat. Med.*, **2013**, 245357 (2013).

Suo T, Liu J, Chen X, Yu H, Wang T, Li C, Wang Y, Wang C, Li Z. Combining chemical profiling and network analysis to investigate the pharmacology of complex prescriptions in traditional Chinese medicine. *Scientific Reports*, **7**, 40529 (2017).

Huang Q-Y. Study on chemical constituents of the Petroleum ether fraction of Cortex Moutan charcoal. Guangdong Pharmaceutical University, Guangzhou (2017).
52) Cooper DN, Millar DS, Wacey A, Banner DW, Tuddenham EG. Inherited factor X deficiency: molecular genetics and pathophysiology. *Thromb. Haemost.*, **78**, 161–172 (1997).

53) Bick RL, Dukes ML, Wilson WL, Fekete LF. Antithrombin III (at-III) as a diagnostic aid in disseminated intravascular coagulation. *Thromb. Res.*, **10**, 721–729 (1977).

54) Colman RW, Schmaier AH. Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and pro-inflammatory attributes. *Blood*, **90**, 3819–3843 (1997).