Asymptotically flat gravitating spinor field solutions. Step 2 - the compatibility of Dirac equations in a curve and a flat spaces

Vladimir Dzhunushaliev
Institute for Basic Research, Eurasian National University,
Astana, 010008, Kazakhstan
and
Institute of Physics of National Academy of Science Kyrgyz Republic,
265 a, Chui Street, Bishkek, 720071, Kyrgyz Republic
(Dated: January 18, 2012)

Using the fact that a spin connection is defined to an accuracy of a vector it is shown that the spin connection should be modified in such a manner that Dirac equation in a curve space would be compatible with Dirac equation in a flat space.

PACS numbers: 04.40.-b
Keywords: curve space; Dirac equation

I. DIRAC EQUATION IN A CURVE SPACE

This note is the continuation of the Ref.[1]. There it was mentioned that at the moment in general relativity asymptotically flat solutions for a spinor field are unknown although do exist asymptotically flat solutions for all known fields: scalar and gauge fields. We continue the investigations in this direction and we will consider Dirac equation in a curve space. We will show that a spin connection should be modified by the addition of a vector in order to obtain correct Dirac equation in a flat space.

A covariant derivative of a spinor \(\psi \) is
\[
\nabla_\mu \psi = \partial_\mu \psi - \Gamma_\mu \psi
\]
(1)
and the covariant derivative of a Dirac conjugated spinor \(\bar{\psi} \) is
\[
\nabla_\mu \bar{\psi} = \partial_\mu \bar{\psi} + \bar{\psi} \Gamma_\mu
\]
(2)
where a spin connection \(\Gamma_\mu \) is defined from following equation (here we follow to Ref. [2], section 1.7.2)
\[
\omega^{\bar{a}\bar{b}\mu} \gamma^{\bar{a}} \gamma^{\bar{b}} - \gamma^{\bar{a}} \Gamma_i^{\bar{a}} \gamma^{\bar{b}} + 4 \Gamma_\mu = 0.
\]
(3)
where \(\gamma^{\bar{a}} \) are Dirac matrixes in a flat (Minkowski) space, \(\gamma^\mu = e^\mu_{\bar{a}} \gamma^{\bar{a}} \) are Dirac matrixes in a curve space. For the definition of tetrad, spin connection and so on we follow to Ref. [2]. The inverse tetrad \(e^a_\mu \) satisfies
\[
e^a_\mu e^b_\nu = \delta^a_\nu, \quad e^a_\mu e^{\bar{a}}_\nu = \delta^\nu_\mu.
\]
(4)
(5)
where \(\bar{a}, \bar{b} = 0, 1, 2, 3 \) are Lorentz indices; \(\mu, \nu \) are world indices. The metric tensor \(g_{\mu\nu} \) in a curve space is related to the Minkowski metric \(\eta_{\bar{a}\bar{b}} \) through the tetrad
\[
g_{\mu\nu} = e^a_\mu e^{\bar{b}}_\nu \eta_{\bar{a}\bar{b}}.
\]
(6)
The solution of (3) is
\[
\Gamma_\mu = -\frac{1}{4} \omega^{\bar{a}\bar{b}\mu} \gamma^{\bar{a}} \gamma^{\bar{b}} - A_\mu,
\]
(7)
where \(A_\mu \) is a spinor-tensor quantity with one vector index. Substituting (7) to (3) gives us the equation for \(A_\mu \)
\[
- \gamma^{\bar{a}} A_\mu \gamma^{\bar{a}} + 4A_\mu = 0.
\]
(8)

*Email: vdzhunus@krsu.edu.kg
Here we would like to show that A_μ should be nonzero that the Dirac equation in a curve space would be consistent with the Dirac equation in a flat space. In order to find such solution we rewrite (7) in following form

$$\Gamma_\varepsilon = e_\varepsilon^\mu \Gamma_\mu = -\frac{1}{4} \sum_{a, b} \omega_{a b \varepsilon} \gamma^a \gamma^b - A_\varepsilon = -\frac{1}{4} \sum_{a, b \neq \varepsilon} \omega_{a b \varepsilon} \gamma^a \gamma^b - \frac{1}{2} \sum_{\mu \neq \varepsilon} \omega_{\mu \varepsilon} \gamma^\mu$$

(9)

here there is not summation over ε. In order to find A_ε we calculate the term $\gamma^\varepsilon \Gamma_\varepsilon$

$$\gamma^\varepsilon \Gamma_\varepsilon = -\frac{1}{4} \sum_{a, b \neq \varepsilon} \omega_{a b \varepsilon} \gamma^a \gamma^b + \frac{1}{2} \sum_{a \neq \varepsilon} \omega_{a \varepsilon} \gamma^a - \sum_{a \neq \varepsilon} \gamma^a A_\varepsilon$$

(10)

here we calculated

$$\sum_{a \neq \varepsilon} \omega_{a b \varepsilon} \gamma^a \gamma^b = -\sum_{a \neq \varepsilon} \omega_{a \varepsilon} \gamma^a$$

(11)

We choose

$$A_\varepsilon = \frac{1}{2} \sum_{c \neq \varepsilon} \omega_{a c \varepsilon}$$

(12)

It is easy to show that (12) is the solution of (8). Let us rewrite the term

$$\sum_{a, b \neq \varepsilon} \omega_{a b \varepsilon} \gamma^a \gamma^b = \sum_{a, b \neq \varepsilon} \omega_{a b \varepsilon} \gamma^a \gamma^b$$

(13)

Finally we choose the spin connection Γ_μ in the form

$$\tilde{\Gamma}_\mu = -\frac{1}{4} e_\mu^\varepsilon \sum_{a, b} \omega_{a \varepsilon} \gamma^a \gamma^b - \frac{1}{2} \sum_{\varepsilon \neq \mu} \omega_{e \varepsilon}$$

(14)

here $\tilde{\Gamma}_\mu$ means that we use the Fock - Ivanenko coefficients $\omega_{a \varepsilon}$ with $\bar{a} \neq \bar{b}, \bar{b} \neq \bar{c}, \bar{a} \neq \bar{c}$. Consequently one can write Dirac equation in a curve space in following form

$$i \gamma^\mu \nabla_\mu \psi - m \psi = i \gamma^\mu \left(\partial_\mu - \tilde{\Gamma}_\mu \right) \psi - m \psi = 0$$

(15)

or

$$i \left(\nabla_\mu \tilde{\psi} \right) \gamma^\mu - m \tilde{\psi} = i \tilde{\psi} \left(\partial_\mu + \tilde{\Gamma}_\mu \right) \gamma^\mu - m \tilde{\psi} = 0$$

(16)

for the Dirac conjugated spinor $\tilde{\psi}$, here $\gamma^\mu \tilde{\psi} = \partial_\mu \tilde{\psi}$. Usually Dirac equation is written as

$$i \gamma^\mu \nabla_\mu \psi = i \gamma^\mu \left(\partial_\mu \psi - \Gamma_\mu \right) \psi - m \psi = i \gamma^\mu \left(\partial_\mu + \frac{1}{4} \omega_{a b \mu} \gamma^a \gamma^b \right) \psi - m \psi = 0$$

(17)

In order to compare equations (15) and (17) we will write Dirac operators $\mathcal{D}_1, \mathcal{D}_2$ for both equations (15) and (17)

$$\mathcal{D}_1 \psi = \left(i \gamma^\mu \partial_\mu + i \sum_{a,b,c} \omega_{a b c} \gamma^a \gamma^b + i \sum_{b \neq c} \omega_{b c} \gamma^c \right) \psi$$

(18)

$$\mathcal{D}_2 \psi = \left(i \gamma^\mu \partial_\mu + i \sum_{a,b,c} \omega_{a b c} \gamma^a \gamma^b - m \right) \psi$$

(19)

in Minkowski space for the spherical coordinate system. For the calculations of $\omega_{a b \mu}$ we use following definitions from (2) (section 1.5.4)

$$\Lambda_{\alpha \mu \nu} = \frac{1}{2} \left(\partial_\mu e^\alpha_{\nu} - \partial_\nu e^\alpha_{\mu} \right) = -\Lambda_{\nu \mu \alpha}$$

(20)

$$\omega_{\alpha \beta \gamma} = -\Lambda_{\alpha \beta \gamma} + \Lambda_{\alpha \beta \gamma} - \Lambda_{\beta \alpha \gamma} = -\omega_{\beta \alpha \gamma}$$

(21)

$$\omega_{a b \mu} = e^a_{\alpha} e^b_{\beta} \omega_{\alpha \beta \mu} = -\omega_{b a \mu}$$

(22)
that obviously is not the necessary equation.

The metric is

\[ds^2 = dt^2 - dr^2 - r^2 (d\theta^2 + \sin^2 \theta d\varphi^2). \]

(24)

The Dirac matrices for the spherical coordinate system \((24)\) are

\[
\gamma^\alpha = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix},
\]

(25)

\[
\gamma^1 = \begin{pmatrix}
0 & 0 & \cos \theta & \sin \theta e^{-i\varphi} \\
-\cos \theta & -\sin \theta e^{-i\varphi} & 0 & 0 \\
\sin \theta & \sin \theta e^{i\varphi} & \cos \theta & 0 \\
-\cos \theta e^{i\varphi} & -\sin \theta & 0 & 0
\end{pmatrix},
\]

(26)

\[
\gamma^2 = \begin{pmatrix}
0 & 0 & -\sin \theta & \cos \theta e^{-i\varphi} \\
0 & 0 & \cos \theta e^{i\varphi} & \sin \theta \\
\sin \theta & -\cos \theta e^{-i\varphi} & \cos \theta & 0 \\
-\cos \theta e^{i\varphi} & -\sin \theta & 0 & 0
\end{pmatrix},
\]

(27)

\[
\gamma^3 = \begin{pmatrix}
0 & 0 & 0 & -i e^{-i\varphi} \\
0 & 0 & i e^{i\varphi} & 0 \\
0 & -i e^{i\varphi} & 0 & 0 \\
-i e^{i\varphi} & 0 & 0 & 0
\end{pmatrix}.
\]

(28)

The Fock - Ivanenko coefficients \((22)\) are

\[
\omega_{\tilde{1}\tilde{2}} = 1, \quad \omega_{\tilde{1}\tilde{3}} = \sin \theta, \quad \omega_{\tilde{2}\tilde{3}} = \cos \theta.
\]

(29)

For this case

\[
\omega_{\tilde{a}\tilde{b}\tilde{c}} = 0, \quad \text{with } \tilde{a}, \tilde{b} \neq \tilde{c}
\]

(30)

which we will use in \((18)\). For the first case \((18)\) we have

\[
D_1 \psi = e^{i\Omega} \begin{pmatrix}
g'(r) + \frac{2}{r} g(r) + (m + \Omega) f(r) \\
0 \\
i [-f' + (\Omega - m) g(r)] \cos \theta \\
i [-f' + (\Omega - m) g(r)] \sin \theta e^{i\varphi}
\end{pmatrix}
\]

(31)

that is agreed with Dirac equation for an electron in hydrogen atom. But for the second case \((19)\) we have

\[
D_2 \psi = e^{i\Omega} \begin{pmatrix}
-\left[g'(r) + \frac{2}{r} g(r) + (m + \Omega) f(r) \right] \\
-\frac{i e^{i\varphi} \cot \theta}{2} g(r) \\
-i \left[f'(r) + \frac{f(r)}{r} + (m - \Omega) g(r) \right] \cos \theta \\
i \left[-f'(r) + \frac{-3 + \cos(2\Theta) f(r)}{4r} - (m - \Omega) g(r) \right] \sin \theta e^{i\varphi}
\end{pmatrix}
\]

(32)

that obviously is not the necessary equation.

II. ENERGY - MOMENTUM TENSOR

According to Ref. \([3]\) the energy - momentum tensor for the classical spinor field is \([4]\)

\[
T_{\mu\nu} = -\frac{i}{2} \left[\bar{\psi} \gamma_{(\mu} \nabla_{\nu)} \psi - \nabla_{(\mu} \bar{\psi} \gamma_{\nu)} \psi \right] + g_{\mu\nu} L_{\psi},
\]

(33)

\[
L_{\psi} = \frac{i}{2} \left(\bar{\psi} \gamma^\mu \nabla_{\mu} \psi - \nabla_{\mu} \bar{\psi} \gamma^\mu \psi \right) - m \bar{\psi} \psi
\]

(34)
here $a_{(\mu\nu)} = (1/2)(a_{\mu}b_{\nu} + a_{\nu}b_{\mu})$ means the symmetrization. For our goal we change $\nabla \rightarrow \tilde{\nabla}$

$$
\tilde{T}_{\mu\nu} = \frac{i}{2} \left\{ \bar{\psi} \gamma^{\mu} (\tilde{\nabla}_{\nu}) \psi - \tilde{\nabla}_{(\mu} \bar{\psi} \gamma_{\nu)} \psi \right\} + g_{\mu\nu} \tilde{\nabla} \psi,
$$

(35)

$$
\tilde{\nabla} \psi = \frac{i}{2} \left(\bar{\psi} \gamma^{\mu} \nabla_{\mu} \psi - \nabla_{\mu} \bar{\psi} \gamma^{\mu} \psi \right) - m\bar{\psi} \psi.
$$

(36)

The calculation of the energy - momentum tensor $\tilde{T}_{a\bar{b}}$ with the spinor ansatz (23) and modified spin connection (14) gives us

$$
\tilde{T}_{\bar{0}0} = - \Omega \left[f(r)^2 + g(r)^2 \right],
$$

(37)

$$
\tilde{T}_{\bar{1}\bar{1}} = - \left[g(r) f'(r) - f(r) g'(r) \right],
$$

(38)

$$
\tilde{T}_{\bar{1}\bar{4}} = \tilde{T}_{\bar{4}\bar{1}} = \left[\Omega f(r) - \frac{g(r)}{2r} \right] g(r) \sin \theta,
$$

(39)

$$
\tilde{T}_{\bar{2}\bar{2}} = \tilde{T}_{\bar{3}\bar{3}} = \frac{f(r) g(r)}{r}.
$$

(40)

The current

$$
J^\mu = \bar{\psi} \gamma^\mu \psi
$$

(41)

is

$$
J^0 = f(r)^2 + g(r)^2,
$$

(42)

$$
J^3 = \frac{2 f(r) g(r)}{r}.
$$

(43)

From (37) and (42) we see that there is the energy and charge densities. From (43) we see that there is the current J^3 along φ direction leading to $\tilde{T}_{\bar{1}\bar{4}}$ component of energy - momentum (39). One can say that $\tilde{T}_{\bar{1}\bar{4}} \neq 0$ and $J^3 \neq 0$ is the consequence of a spin distinct from zero.

III. CONCLUSIONS

Thus we have shown that the standard definition of the spin connection in a curve space should be modified that the Dirac equation in a curve space would have correct limit in going from a curve space to a flat space. The modification of the spin connection to lie in the fact that to the standard spin connection is a vector added. So that the modified spin connection has Fock - Ivanenko coefficients with unequal indices only.

Acknowledgements

I am grateful to the Research Group Linkage Programme of the Alexander von Humboldt Foundation for the support of this research.

[1] V. Dzhunushaliev, “Asymptotically flat gravitating spinor field solutions. Step 1 - the statement of the problem and the comparison with confinement problem in QCD,” arXiv:0910.3352 [gr-qc].

[2] Nikodem J. Poplawski, “Spacetime and fields”, arXiv:0911.0334.

[3] Tomas Ortin, “Gravity and Strings”, Cambridge university press, 2004.

[4] It is necessary to note that the definition of Ricci tensors in Ref’s 2 and 3 have the opposite sign.