Mechanism of orbital reconstruction at the interfaces of transition metal oxides

Natalia Pavlenko
Institute for Condensed Matter Physics, 79011 Lviv, Ukraine
and EKM, Universitat Augsburg, 86135 Augsburg, Germany

(Received 28 January 2009; revised manuscript received 4 June 2009; published 6 August 2009)

Orbital reconstruction at interfaces between YBa2Cu3O7 and SrO-terminated SrTiO3 is studied using local spin-density approximation (LSDA) with intra-atomic Coulomb repulsion (LSDA + U). The change in population of interfacial Cu 3d orbitals results in stabilization of a new oxidation state 3d9/2, which involves an additional modification of orbital occupancies in the nearest SrO and TiO2 layers. We find that an increase in electron charge in Cu 3d2−1/2 states counterbalances a depopulation of 3d3/2−1/2 orbitals which induces, on account of the on-site Coulomb repulsion U, a splitting of 3d5/2−3/2 states at CuO2-SrO interfaces.

DOI: 10.1103/PhysRevB.80.075105 PACS number(s): 73.20.-r, 74.78.Fk

I. INTRODUCTION

Interfaces between transition metal oxides attract much attention due to their technological and fundamental importance. In a complex transition metal oxide system, new electronic states at the interfaces between different components can bring dramatic changes into its physical properties. The prominent examples are metallic mixed-valence heterostructures of SrTiO3 and LaTiO3 and the quasi-two-dimensional electron gas at the interface between two insulators SrTiO3 and LaAlO3 with recently discussed superconducting properties.1–3

In the transition metal oxide heterostructures, the new interfacial electronic states can be driven by the mechanisms of electronic reconstructions.4 These mechanisms involve charge compensation of interface polarity or charge self-doping due to interface chemical abruptness which is one of the ways to maintain the overall electrostatic neutrality of the system.5 Besides the well-understood scenarios of interface charge doping, other mechanisms of interface reconstructions can play a decisive role in the unusual electronic properties of transition metal systems. Recently, the so-called orbital reconstruction has been shown to occur at the interfaces between cuprate and manganite films which results in changes in 3d orbital occupations of the interfacial copper ions.6

The first evidence for the interface orbital reconstruction came from resonant x-ray spectroscopy studies of YBa2Cu3O7/LaCaMnO3 heterostructures.6 In these experiments, the x-ray spectral intensity at the interface between YBa2Cu3O7 and La2/3Ca1/3MnO3 is found to be similar for the photon polarization in (x, y) plane and in z direction, which is interpreted in terms of the appearance of hole charge in 3d3/2−1/2 orbitals. This is in strong contrast to the standard hole-doping mechanism in Ref. 7 where the holes occupy O 2p orbitals of the Zhang-Rice singlets in Cu2+O2− planes of YBa2Cu3O7−δ. The 3d3/2−1/2 orbital reconstruction has been explained by a formation of new “extended molecular orbital” at the oxide interfaces in which a substantial amount of hole charge is distributed over the Mn, Cu, and O orbitals. As is shown in Refs. 6 and 8, the high Mn charge +3 results in an electron transfer from Mn to 3d3/2−1/2 orbitals of Cu, whereas the Cu 3d3/2−1/2 states become partially occupied. Moreover, in such an electron-doped system, the coexistence of two partially occupied εr orbitals leads to the formation of Zhang-Rice triplets centered on Cu with the total spin S=1. In contrast, for the hole-doped interfaces, the author in Ref. 8 expects a rather standard x2−y2-singlet character of the electron configuration with a stabilization of triplet states when the hole density is increased. As is shown in Ref. 8, the singlet character of the electron state can be possibly changed due to structural Jahn-Teller distortions.

In the present work, we explore theoretically a mechanism of the orbital reconstruction occurring through the splitting of 3d3/2−1/2 and 3d5/2−3/2 bands by the interface charge redistribution. As an example of a system where the interface-caused splitting of 3d3/2−1/2 can be obtained within the density-functional theory, we consider a supercell with a CuO2 layer directly deposited on the top of a SrTiO3 slab terminated by SrO, a model oxide interface recently studied in Refs. 9 and 10 and shown schematically in Fig. 1. In this model system, the electrostatic polarity of the interfaces between CuO2 and SrO could be compensated via the interface self-doping by holes. In the bulk YBa2Cu3O7−δ, in heterostructures the interface self-doped holes in the CuO2 layers are accumulated predominantly in the O 2p orbitals. Al-

FIG. 1. (Color online) Scheme of a polar CuO2/SrTiO3 superlattice where a STO layer is terminated by a SrO plane. The right side shows a structural configuration which appears at the interface.

1098-0121/2009/80(7)/075105(6) 075105-1 ©2009 The American Physical Society
the compensation of the polarity proceeds through a standard bulk $\text{YBa}_2\text{Cu}_3\text{O}_6$. For larger interface distances, as can be seen in Fig. 2, the holes are located in $\text{O}_{1,2}$ layers below the columns of Cu in CuO_2 planes.

This new mechanism is associated with a change in the occupancy of one of the $3d_{\text{Cu}}^{\text{2+}}$ orbitals from one to zero due to a “displacement” of this band above the Fermi level (see Fig. 3). From the point of view of classical chemical valence theory, the resulting electronic configuration can be formally described as a “$3d^{\text{8+}}$” state. In Fig. 2, the charge and orbital reconstructions caused by the +2-doping level are schematically shown for comparison. Formally, a Cu $3d^8$ configuration corresponds to a change in the valency of Cu from +2 to +3 and is typically considered as unstable in the literature. The expectation of such an instability was the reason for a preference for the standard self-doping reconstruction mechanism in our earlier discussion of the $\text{CuO}_2/\text{SrTiO}_3$ system in Ref. 9. However, a closer and careful examination of the electronic reconstruction in this system shows a more complex scenario which is beyond a simple integerlike change in the electron charge on the copper ion (Fig. 2, bottom panel). In this mechanism, the modification of the oxidation state of Cu can be described by two steps, namely, (i) by a depletion of electron charge from a $3d_{\text{Cu}}^{\text{2+}}$ band and from the $2p$ band of O(2) (SrO) and (ii) by an increase in electron density in the $3d_{\text{Cu}}^{\text{2+}}$ orbitals hybridized with O(1) $2p_{\text{Sr}}$ states. These two steps provide jointly a decrease in the net electron charge on Cu which is an additional way to compensate the interface polarity. Consequently, in the relaxed structure the electrostatic neutrality is achieved by a combination (a) of the standard self-doping mechanism with the self-doped hole charge $n_\text{h}=1$ on O $2p$ orbitals (Fig. 2, top panel) and (b) of the $3d_{\text{Cu}}^{\text{2+}}$ orbital reconstruction which leads to a decrease in the local electron charge on Cu (Fig. 2, bottom panel).

Let us estimate the crystal field which would be sufficient for stabilization of the new oxidation state formally denoted here as extended Cu $3d^8$. Using the notations $\{\uparrow, \downarrow\}$ for the majority and minority-spin states, the $3d^8$ state can be described as $3d^{\uparrow\uparrow\downarrow\downarrow}$ configuration where the occupied states $3d_{\text{Cu}}^{\text{2+}}$ and $3d_{\text{Cu}}^{\text{2-}}$ have a character of a Zhang-Rice triplet, similar to the results of Ref. 8. In the relaxed structure, this configuration corresponds to the minimum of the total energy. In the LDA+U calculations, the energy gain $\Delta E_{\text{tot}} = E_{\text{tot}}(h_1) - E_{\text{tot}}(h_0)$ due to the relaxation of the interface distance from $h=h_1=2.2$ Å to $h=h_0$ approaches 1 eV. It is remarkable that in the extended Cu $3d^8$ configuration, the main contribution to ΔE_{tot} is provided by the reconstruction of the

II. INTERFACE Crystal FIELDS AND STRUCTURAL RELAXATION

As appears from the earlier local density approximation (LDA) with intra-atomic Coulomb repulsion (LDA+U) studies, the relaxation of the interfacial distance h between CuO_2 and SrO planes results in the optimized value $h=h_0=1.83$ Å, which is 0.5 Å smaller than the distance between the apical oxygen O(2) and Cu in CuO_2 planes of the bulk $\text{YBa}_2\text{Cu}_3\text{O}_6$. For larger interface distances $h \approx 2.2$ Å, the compensation of the polarity proceeds through a standard self-doping mechanism of the electronic reconstruction and leads to an extremely high self-doping level $n_\text{h}=+2$ holes/unit cell which enforces charge neutrality (cf. the formal valency of each layer in Fig. 1, to the left of the block scheme). As can be seen in Fig. 2, the holes are located in O(1) $2p_{\text{xy}}$ orbitals (top panel, dashed arrows), in close analogy to the Zhang-Rice singlets described by a $3d^8$ configuration in the CuO_2 planes.

In contrast to the unrelaxed interfaces, for the optimized distances $h \approx h_0$ the new (orbital) mechanism of the compensation of the interface polarity becomes equally important. This new mechanism is associated with a change in the occupancy of one of the $3d_{\text{Cu}}^{\text{2+}}$ orbitals from one to zero due to a “displacement” of this band above the Fermi level (see Fig. 3). From the point of view of classical chemical valence
where $\Delta E_{3z^2-r^2}$, $\Delta E_{2z^2-r^2}$, and $\Delta E_{\pi+y+z}$ are the changes in the 3d orbital energies; ΔP_{O}^2 refers to the shifts in the energies of the 2p bands of oxygens O(2). In our calculations, the band energies are represented by their gravity centers. Here, gravity center E_g of a band with a density of states $\rho(E)$ is calculated from the expression $E_g = \int E \rho(E) f(E) dE$. As the displacements of the gravity centers of the 2p states of O(1), 2p$_x$ and 2p$_y$ states of O(2), and 3d$_{x^2}$ bands of Cu are negligibly small as compared to the splitting of e_g, 3d$_{yz}$, and 3d$_{zx}$ bands, they are not included into Eq. (1).

In the SIC (self-interaction correction) LDA+U approach, the 3d$_{3z^2-r^2}$ orbital energies in the optimized (ν=0) and unrelaxed (ν=1) system can be represented as

$$e_{3z^2-r^2,0} = e_{3z^2-r^2}^{(0)} + U_{eff}(\frac{1}{2} - n_{3z^2-r^2,0})$$

(2)

Here $U_{eff} = U - J$ and σ is the spin index. In our calculations, we consider the local Coulomb corrections for Cu 3d orbitals $U=8$ eV and the Hund coupling $J=0.8$ eV. In the unrelaxed structure, the states 3d$_{3z^2-r^2}$ are filled by electrons; $n_{3z^2-r^2,0} \approx 1$. In contrast, in the optimized system, the orbital reconstruction leads to $n_{3z^2-r^2,0} \approx 1$ and $n_{3z^2-r^2,1} \approx 0$. The quantities $e_{3z^2-r^2,0}$ are the corresponding LDA orbital potentials which are assumed to be independent of the spin direction. As a consequence, the total 3d$_{3z^2-r^2}$ energy shift for the relaxed structure is given by

$$\Delta E_{3z^2-r^2} = \Delta E_{3z^2-r^2} + \Delta E_{\pi+y+z} + \Delta E_{2z^2-r^2}$$

$$\approx \Delta E_{3z^2-r^2}^{(0)} + n_{3z^2-r^2,1}^{(1)} - \frac{1}{2}U_{eff}$$

(3)

where the potential difference $\Delta E_{3z^2-r^2}^{(0)} = e_{3z^2-r^2,1}^{(0)} - e_{3z^2-r^2,0}^{(0)}$ is determined by the change in the orbital crystal field due to the interfacial relaxation.

From Eq. (2), the change in the splitting of the spin bands $e_{3z^2-r^2,1}$ and $e_{3z^2-r^2,0}$ due to structural relaxation can be described as

$$\Delta e_{3z^2-r^2,1} - \Delta e_{3z^2-r^2,0} = U_{eff}(n_{3z^2-r^2,1} - n_{3z^2-r^2,0}) \approx U_{eff}$$

(4)

where $n_{3z^2-r^2,1}$ is the occupation of the $(3z^2-r^2,1)$ orbital in the optimized (ν=0) and unrelaxed (ν=1) system. The last result demonstrates that the on-site Coulomb repulsion controls the spin band splitting and the consequent enhancement of the local magnetic moments.

As the width of the 3dx2-y2 bands exceeds the shift $\Delta e_{3z^2-r^2}$ caused by the orbital reconstruction, the use of the centers of gravity to estimate the changes in the crystal fields cannot be sufficiently accurate to convey the physical picture. Therefore, we consider a different analysis of these fields. In this approach, we calculate the centers of gravity of the 3dx2-y2 and 3dx2-z2 bands which are expected to be accurate due to their substantial shifts by about 2 eV caused by the crystal field. The obtained values for $\Delta e_{3z^2-r^2}$ and $\Delta e_{\pi+y+z}$ together with the similarly calculated ΔP_{O}^2 can be directly substituted into the Eq. (1). For the known ΔE_{tot}, this equation provides an estimate for the minimal energy $\Delta E_{3z^2-r^2}$

$$\Delta E_{3z^2-r^2} = \Delta E_{tot} + \frac{1}{2}U_{eff} - \Delta e_{3z^2-r^2}^{(0)} - \Delta e_{\pi+y+z} - \Delta P_{O}^2$$

(5)

which is sufficient for the stabilization of the orbitally reconstructed extended Cu 3d8 configuration. Here $e_{3z^2-r^2}^{(0)} = -1.86$ eV is the LDA energy level of the unrelaxed 3d$_{3z^2-r^2}$ orbital.

In expression (5), the energies of the 3d$_{3z^2-r^2}$ bands can be represented as

$$e_{3z^2-r^2,0} = e_{3z^2-r^2}^{(0)} + U_{eff}(\frac{1}{2} - n_{3z^2-r^2,0})$$

(6)

In distinction to the reconstructed 3d$_{3z^2-r^2}$ orbitals, the occupation numbers $n_{3z^2-r^2,\sigma}$ of 3d$_{3z^2-r^2}$ states are affected only slightly by the decrease in h. In Eq. (6), the latter property leads to small changes of 0.07 eV in the second local Coulomb contribution due to atomic relaxation. Consequently, the effect of the interface relaxation on 3d$_{3z^2-r^2}$ is reduced to a modification of the LDA potentials $e_{3z^2-r^2,\sigma}$

$$\Delta e_{3z^2-r^2,\sigma} = \Delta E_{3z^2-r^2,\sigma} + \Delta E_{2z^2-r^2,\sigma}$$

(7)

where $\Delta E_{3z^2-r^2,\sigma} = e_{3z^2-r^2,\sigma}^{(0)} - e_{3z^2-r^2,\sigma}$ and $e_{3z^2-r^2,\sigma}^{(0)}$ are the results of the LDA+U calculations, the shift $\Delta E_{3z^2-r^2,\sigma}$ and the concentrations $n_{3z^2-r^2,\sigma}$ can be found from the centers of gravity of 3d$_{3z^2-r^2}$ bands and by integration of the densities of states obtained for the relaxed and optimized interfaces. Similar to $\Delta e_{3z^2-r^2}$, the shift $\Delta e_{\pi+y+z}$ can be easily determined from the changes in the LDA potentials $e_{\pi+y+z,\sigma}$.

The band gravity centers calculated for Cu 3d$_{3z^2-r^2}$, 3d$_{\pi+y+z}$, and for 2p$_{z}$ orbitals of O(2) in superlattices with unrelaxed and optimized h are presented in Table I. From this table, one can detect that a central feature of the interface relaxation is a strong shift in the center of the minority band $3d_{2z^2-r^2}$ down to the energy -1.07 eV below the Fermi level. The reason for this shift can be understood from the analysis of the band structures of the optimized and unrelaxed interfaces plotted in Fig. 4. In Fig. 4, the size of the circles is proportional to the Cu 3d$_{3z^2-r^2}$ character of the respective states. The comparison shows a substantial Cu 3d$_{3z^2-r^2}$ contribution to the 2p states of oxygens in the

| h (Å), σ | $e_{3z^2-r^2}$ | $e_{\pi+y+z}$ | e_{2z} | $e_{3z^2-r^2}$ |
|---------------------|----------------|----------------|----------|
| 1.83 (1) | -5.03 | -5.23 | -2.98 |
| 2.20 (1) | -4.68 | -3.60 | -1.93 |
| 2.20 (1) | 0.97 | -3.16 | -1.82 |
CuO$_2$ planes which are located below the Fermi level. This contribution is especially significant at the energies (0.6–0.8) eV, at −2.5 eV, as well as at about (3.8–4) eV. Specifically, the integration of the partial densities of states below the Fermi level shows an increase in the population of electrons in the relaxed structure. To check the numerical accuracy of this result we have also calculated the increase in the density of states below the Fermi level. This increase results in an increase in the population of electrons in the relaxed structure. To check the numerical accuracy, we have also calculated the increase in the density of states below the Fermi level. This increase results in an increase in the population of electrons in the relaxed structure.

Using the values of the band centers given in Table I, we find from Eq. (5) that the minimal energy shift ΔE_{10} sufficient for orbital reconstruction is given by ΔE_{12} \approx 1 eV. As the typical values of the crystal fields expected in this type of systems can approach 2–3 eV, we can conclude that the mechanism of the orbital reconstruction realized through the stabilization of the Cu $3d^9$ configuration shown in Fig. 2 (bottom panel) appears to be a plausible scenario. We note that this reconstruction occurs despite a strong local Coulomb repulsion U=8 eV which is overcome by the modifications of the structure of the Cu $3d_{x^2-y^2}$ and $3d_{3z^2-r^2}$ bands.

III. ELECTRONIC DENSITY AT ORBITAL RECONSTRUCTION

To understand better the nature of the reconstruction of Cu $3d_{x^2-y^2}$, we also analyze the (x, z) electron density maps (represented in Fig. 5) in the energy range of the bonding states Cu $3d_z$-p_z-O 2p. Here the z axis is directed perpen-

FIG. 4. Band structure for different h where the top panel corresponds to $h=1.83$ Å and the bottom panel to $h=2.2$ Å. The size of the circles is proportional to the Cu $3d_{x^2-y^2}$ character of the respective states. Here the coordinates of the symmetric points of the Brillouin zone are $A=(-\pi, \pi)$, $R=(-\pi, 0)$, and $Z=(0, 0)$.

FIG. 5. Electron density map (in $e/Å^3$) in the energy range $-4.5 \leq E \leq -2.5$ eV below the Fermi level for unrelaxed and optimized interface distances. Here the electron density is plotted in the (x, z) plane with the x axis along the O(1)-Cu-O(1) diagonal of the CuO$_4$ plaquettes shown in the right panel of Fig. 1.
dicular to (001). The decrease in the interface distance \(h \) leads to stronger electron repulsion in the nearest CuO\(_2\) and SrO layers. The effect of this repulsion is clearly visible in the bottom panel of Fig. 5 \((h=1.83 \, \text{Å})\) which shows electron depletion in the spatial region between Cu (located at \(x = 2 \, \text{Å} \) and \(z = 4.5 \, \text{Å} \)) and oxygen O (\(z = 2.5 \, \text{Å} \)) in the SrO plane. The decrease in the electron density along the \(z \) direction has an extended character and involves Cu 3d\(_{2z^2-r^2}\), O(2)2p\(_z\), and Ti 3d\(_{2z^2-r^2}\) orbitals which may be interpreted as reduced hybridization between these orbitals. In Fig. 6 this decrease is manifested through a peak centered at \(E = 1 \, \text{eV} \) above the Fermi level which appears due to the splitting of the 3d\(_{2z^2-r^2}\) bands. The peak remains significant even in the density of Ti 3d\(_{2z^2-r^2}\) states which are more distant from the interface. The consequent increase in the difference between the electron occupancy of the majority and minority-spin states also leads to the enhancement of the magnetic moment of Cu from 0.65 to 0.86 \(\mu_B \), an effect discussed in the previous section.

In contrast to the electron depletion in \(z \) direction, in the CuO\(_2\) plane the interface relaxation results in a strong charge hybridization between Cu and O(1) which is presented in more detail in Fig. 7. To estimate the modification of electron charge resulting from the combination of (i) electron depletion across the interface and (ii) electron accumulation in CuO\(_2\) planes, we have calculated planar \((x, y)\) and orthogonal \((z)\) contributions to the electron density. To obtain the orthogonal part (i) (electron depletion) we have extracted the charge density in the range between 0.5 and 1.4 eV which corresponds to the new DOS peak. The direct integration of the obtained spatial density profiles results in the value \(n_z^e = 1.45 \) carriers per unit cell. This value should be corrected by \(\Delta n_z^e \) on account of an overlap with the states 3d\(_{3z^2-r^2}\), 2p\(_z\), and 2p\(_x\) which are shifted toward lower energies in the relaxed system (see Fig. 3). The integration of the corresponding projected DOS parts gives \(\Delta n_z^e = 0.28 \). It should be noted that the latter integration has been performed without consideration of extra charge in the interstitial regions which should give additional contributions to \(\Delta n_z^e \). In our analysis, the interstitial contributions are expected to be small and the resulting \(\Delta n_z^e \) does not exceed the maximal value of about 0.45–0.5. As a consequence, the obtained modification of the depleted charge density \(\Delta n_{d,ii} = n_z^e - \Delta n_z^e = 1 \). This implies that approximately one electron per unit cell is depleted from the 3d\(_{3z^2-r^2}\) and 2p\(_z\) orbitals of the interfacial bonding complex Cu-O(2)-Ti. In the interfacial stack CuO\(_2\)-SrO-TiO\(_2\), about 70% of the depleted charge is located in the CuO\(_2\) layers which suggests a strong spatial charge confinement to the 3d\(_{3z^2-r^2}\) orbitals of Cu.

To calculate the amount of the electrons accumulated in the CuO\(_2\) planes of the relaxed structure [contribution (ii)], we performed the integration of the hole charge from the Fermi level to the top of the O(1) valence band which gives \(n_{v}^{p} = 1 \) holes. These holes are located in the 2p\(_{x, y}\) states of O(1) hybridized with the 3d\(_{3z^2-r^2}\) orbitals of Cu. The comparison with the value \(n_{v}^{p}(h_{1}) = 2 \) for the unrelaxed system provides the resultant amount \(n_{v}^{p} = 1 \) for the additional electron charge accumulated due to structural relaxation. It is remarkable that in their combination, both contributions (i) and (ii) give the total positive charge +2e required for the overall neutrality of the relaxed system.

Therefore, in this mechanism for the orbital reconstruction one can distinguish two key factors which are responsible for the stabilization of the extended Cu 3d\(^6\) configuration near structurally relaxed CuO\(_2\)/SrTiO\(_3\) interfaces: (i) the depletion of the electrons from a 3d\(_{3z^2-r^2}\) orbital of Cu hybridized with 2pO(2) and 3d\(_{3z^2-r^2}\) states of Ti, a process caused by the splitting of the 3d\(_{3z^2-r^2}\) bands; (ii) the increase...
in electron charge density in the Cu $3d_{x^2-y^2}$ orbitals which are strongly hybridized with the $2p_{x,y}$ bands of the oxygens O(1) in the CuO$_2$ planes. This increase is accompanied by a shift in the $3d_{x^2-y^2}$ band toward lower energies and it provides the energy gain sufficient for the orbital reconstruction.

It is worth noting that the second stage [increase in electron concentration on O(1)$2p$ and Cu $3d_{x^2-y^2}$] in fact counterbalances the electron depopulation in stage (i). In this way, it minimizes the loss of energy due to the splitting of Cu $3d_{x^2-y^2}$ bands with the orbital reconstruction. The obtained charge self-regulation is in agreement with the negative feedback mechanism discussed in Ref. 15 which supports its general character for the transition metal oxides.

IV. CONCLUSIONS

To summarize, we note that in the orbital reconstruction mechanism, the effective change in the valency of Cu due to the splitting of $3d_{x^2-y^2}$ bands appears to be a plausible and realistic property. For the cuprate-titane interfaces, the resulting electronic state is characterized by the electronic configuration $3d^{10}$ of Cu $3d$ orbitals extended by the changes in orbital occupancies of ions in the neighboring SrO and TiO$_2$ planes. Surprisingly, the strong hybridization between O $2p_{x,y}$ and Cu $3d_{x^2-y^2}$ states of CuO$_2$ planes plays an essential role, making even moderate crystal fields acting on Cu $3d_{x^2-y^2}$ orbitals sufficient for the orbital reconstruction at CuO$_2$-SrO interfaces and the consequential splitting of the $3d_{x^2-y^2}$ states through the on-site Coulomb interaction U. An increase in the magnetic moment of Cu (from 0.65 to 0.86 μ_B) is predicted for the reconstructed interface state.

ACKNOWLEDGMENTS

This work was partially supported through the DFG under Grant No. SFB-484. The author thanks Thilo Kopp for helpful discussions. Grants of computer time from the project OXSIM of DEISA Extreme Computing Initiative and from the Leibnitz-Rechenzentrum München are greatly acknowledged.

1. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004); 441, 120 (2006).
2. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
3. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, Nature (London) 456, 624 (2008).
4. This mechanism was demonstrated for a polar surface of K$_3$C$_60$ by R. Hesper, L. H. Tjeng, A. Heeres, and G. A. Sawatzky, Phys. Rev. B 62, 16046 (2000).
5. C. Noguera, F. Finocchi, and J. Goniakowski, J. Phys.: Condens. Matter 16, S2509 (2004).
6. J. Chakhalian, J. W. Freeland, H.-U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, and B. Keimer, Science 318, 1114 (2007).
7. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
8. M. van Veenendaal, Phys. Rev. B 78, 165415 (2008).
9. N. Pavlenko, I. Ellimov, T. Kopp, and G. A. Sawatzky, Phys. Rev. B 75, 140512(R) (2007).
10. N. Pavlenko and T. Kopp, in High-Performance Computing in Science and Engineering (Springer, 2008), pp. 697–707.
11. R. E. Watson, H. Ehrenreich, and L. Hodges, Phys. Rev. Lett. 24, 829 (1970).
12. V. Eyert, U. Schwingenschlögl, and U. Eckern, Europhys. Lett. 70, 782 (2005).
13. P. Blaha et al., WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (TU Wien, Austria, 2001).
14. V. I. Anisimov, I. V. Solov’yev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Phys. Rev. B 48, 16929 (1993).
15. H. Raebiger, S. Lany, and A. Zunger, Nature (London) 453, 763 (2008).