Parameter estimation of a two state delay differential equation modeling the human respiratory system

Nirjal Sapkota*

Department of Mathematical Sciences,
The University of Texas at Dallas
Richardson, TX, 75080, USA

Janos Turi†

Department of Mathematical Sciences,
The University of Texas at Dallas
Richardson, TX, 75080, USA

Abstract

We study parameter estimation for the two state model which describes the balance equation for carbon dioxide and oxygen in human respiratory system. These are nonlinear parameter dependent and because of the transport delay in the respiratory control system, they are modeled with delay differential equation. Numerically simulated noisy data are generated and several examples are studied with Levenberg–Marquardt and Trust-region algorithms to determine the values of unknown parameters.

1 Introduction

We have the human respiratory system examined in [7, 15, 13, 2, 24] as

\[
\begin{align*}
\frac{dx}{dt} &= 1 - \alpha V(x(t - \tau), y(t - \tau)) x(t) \\
\frac{dy}{dt} &= 1 - \beta V(x(t - \tau), y(t - \tau)) y(t)
\end{align*}
\]

where the ventilation function is given by

\[V(x(t - \tau), y(t - \tau)) = 0.14 e^{-0.05(100-y(t-\tau))} x(t - \tau)\]

It is observed that the stability of the equilibrium of this model depends on the parameters \(\alpha\) and \(\beta\). We would like to get the estimates of these parameters from the measured (probably noisy) data. Hartung and Turi [12] studied the parameter identification of a two dimensional model representing the partial pressure of the respiratory control system. While they wrote the code for the numerical scheme to approximate the solutions of the delay differential equations and minimization of the objective function based on Trust-region technique, we will use two algorithms and the built in functions available in Matlab [19].

Parameter identification of delay differential equations are difficult theoretical problems (see [22, 26, 10, 21]). The question on whether there is a unique model that fits the measurement data is an important one which needs to be studied.

*Electronic address: nxs167030@utdallas.edu; Corresponding author
†Electronic address: turi@utdallas.edu
2 Parameter Estimation

Let’s suppose that our parameters α and β are not known. We will not consider τ to be a parameter in this study. So our goal is to find the estimates of α and β, when we have the observed data specified at certain times $t_1, t_2, ..., t_M$. The most common approach is to minimize the least squares criterion for fitting a model to data.

Let $x(t_i; \alpha, \beta)$ and $y(t_i; \alpha, \beta)$ be the model prediction of system (1) and X_i and Y_i be the observed data for x and y at the time t_i for $i = 1, ..., M$ observations, then the objection function is given by

$$ J(\alpha, \beta) = \sum_{i=1}^{M} (x(t_i; \alpha, \beta) - X_i)^2 + \sum_{i=1}^{M} (y(t_i; \alpha, \beta) - Y_i)^2 \quad (2) $$

Hartung et al [10, 11] and Rihan [23] have studied parameter identification and convergence properties of numerical schemes of approximate solutions of parameter estimation problems.

2.1 Computation of Estimates

There are many algorithms using the iterative technique for minimizing the nonlinear objective function $J(\alpha, \beta)$. We will use two commonly used procedures called Levenberg–Marquardt algorithm [16, 17, 20] and Trust-region algorithm [5, 4].

These algorithms are discussed in detail in book [18] where for the Trust-region algorithm, the authors used the procedure from Nocedal and Wright [22] with the parameters recommended from Conn et al [6]. For detailed information on optimization techniques we refer the reader to [2, 8, 14, 1, 9].

To find the global best-fit parameters, we should choose a starting point of the parameters close enough to the global minimum. A good initial starting point also speeds up the minimization procedure.

Next, we show some numerical examples to demonstrate this process for the human respiratory system (1). The experimental data with some noise are numerically simulated. We compare the two algorithms in how they perform.

Example 1

In this example, we generate measurements of the system (1) with a set of parameter values of $\alpha = 0.5$, $\beta = 0.8$ and $\tau = 1$. The measurements are taken over the interval $[T_0, T] = [0, 5]$. Then random measurement noise which has a normal distribution with a mean of zero and a standard deviation of 0.20 are added.

$$ x_i = x(t_i; \alpha = 0.5, \beta = 0.8) + \mathcal{N}(0, 0.20) $$

$$ y_i = y(t_i; \alpha = 0.5, \beta = 0.8) + \mathcal{N}(0, 0.20) \quad (3) $$

We consider the parameters α and β to be unknown, and the goal is to estimates these parameter values using the measurements. For this example, we start with the initial starting point of the parameters at $\alpha = 0.3$ and $\beta = 0.5$.

2
Computation of Estimates with Levenberg–Marquardt algorithm

Figure 1: Data and curve fit for \(x \) and \(y \) with Levenberg–Marquardt algorithm for Example 1

Table 1: Estimation of \(\alpha \) and \(\beta \) with Levenberg–Marquardt algorithm for Example 1

Iteration	Function count	Residual	First-order optimality	Lambda	Norm of step
0	3	738.83	2.02e+03	0.01	
1	6	14.9085	139	0.001	0.326315
2	9	9.39073	0.977	0.0001	0.0348424
3	12	9.39033	0.000298	1e-05	0.000312417
4	15	9.39033	7.96e-07	1e-06	3.28038e-08

The data points, the curve fit are plotted in Figure 1. Table 1 contains the values of iteration count, function count, residual, first-order optimality, lambda and norm of the step. Function count is the number of function evaluations. Lambda is the Lagrange multiplier. We used the default settings of the Levenberg–Marquardt algorithm in Matlab. The optimization stopped because the relative norm of the current step is less than step tolerance of 1.000000e-06. After four iterations it gives the best fit of the parameters.

Table 2: True and best fit of \(\alpha \) and \(\beta \) for Example 1

	Initial	True	Best fit
\(\alpha \)	0.3	0.5	0.5021
\(\beta \)	0.5	0.8	0.7996

The fitted parameters are off by about 0.42% in \(\alpha \) and 0.05% in \(\beta \). We have good recovery of the original parameters. Figure 2 shows the histogram of the difference between the data values and the best-fit.
Figure 2: Histogram of the errors between the data and curve fit with Levenberg–Marquardt algorithm for Example 1

Computation of Estimates with Trust-region algorithm

Figure 3: Data and curve fit for x and y with Trust-region algorithm for Example 1

Table 3: Estimation of α and β with Trust-region algorithm for Example 1

Iteration	Function count	Residual	Norm of step	First-order optimality
0	3	738.83	1.96e+04	
1	6	17.6464	0.102945	1.59e+03
2	9	9.39188	0.0139484	17.9
3	12	9.39033	0.00020538	0.00338
4	15	9.39033	6.93959e-08	1.28e-05

The data points, the curve fit are plotted in Figure 3. Table 3 contains the values of iteration count, function count, residual, norm of the step and first-order optimality. We used the default settings of the Trust-region
algorithm in Matlab. The optimization stopped because the relative sum of squares is changing by less than function tolerance of 1.000000e-06. After four iterations it gives the best fit of the parameters.

	Initial	True	Best fit
α	0.3	0.5	0.5021
β	0.5	0.8	0.7996

Table 4: True and best fit of α and β for Example 1

The fitted parameters are off by about 0.42% in α and 0.05% in β which is the same as in Levenberg–Marquardt algorithm. We have good recovery again of the original parameters. Figure 4 shows the histogram of the difference between the data values and the best-fit.

Figure 4: Histogram of the errors between the data and curve fit with Trust-region algorithm for Example 1

The two algorithms found the same solution taking the same number of iterations.

Example 2

In this example we just change the initial starting point of the parameters. We use $\alpha = 0.01$ and $\beta = 0.01$.
Computation of Estimates with Levenberg–Marquardt algorithm

Figure 5: Data and curve fit for x and y with Levenberg–Marquardt algorithm for Example 2

Table 5: Estimation of α and β with Levenberg–Marquardt algorithm for Example 2

Iteration	Function count	Residual	First-order optimality	Lambda	Norm of step
0	3	6862.57	7.94e+03	0.01	
1	6	346.729	1.08e+03	0.001	0.667034
2	9	10.8027	60.7	0.0001	0.245493
3	12	9.39036	0.32	1e-05	0.0187851
4	15	9.39033	7.49e-05	1e-06	9.29755e-05
5	18	9.39033	1.62e-06	1e-07	8.75649e-09

After five iterations it gives the same best fit of the parameters as in Example 1.

Table 6: True and best fit of α and β for Example 2

	Initial	True	Best fit
α	0.01	0.5	0.5021
β	0.01	0.8	0.7996
Computation of Estimates with Trust-region algorithm

Figure 6: Data and curve fit for \(x \) and \(y \) with Trust-region algorithm for Example 2

Table 7: Estimation of \(\alpha \) and \(\beta \) with Trust-region algorithm for Example 2

Iteration	Function count	Residual Norm of step	First-order optimality	
0	3	41238.5	1.61e+04	
1	6	9601.81	1.95587	6.79e+03
2	9	1550.04	0.941773	2.05e+03
3	12	144.481	0.451259	483
4	15	12.7639	0.167543	69.4
5	18	9.39496	0.0306896	2.56
6	21	9.39033	0.00116804	0.00343
7	24	9.39033	1.51337e-06	8.85e-06

After seven iterations it gives the best fit of the parameters.

Table 8: True and best fit of \(\alpha \) and \(\beta \) for Example 2

	Initial	True	Best fit
\(\alpha \)	0.3	0.5	0.5021
\(\beta \)	0.5	0.8	0.7996

Example 3

In this example we repeat example 1 but the noise in our data is increased. The noise has a normal distribution with a mean of zero and a standard deviation of 0.40.

\[
x_i = x(t_i; \alpha = 0.5, \beta = 0.8) + \mathcal{N}(0, 0.40)
\]

\[
y_i = y(t_i; \alpha = 0.5, \beta = 0.8) + \mathcal{N}(0, 0.40)
\]
Computation of Estimates with Levenberg–Marquardt algorithm

Figure 7: Data and curve fit for x and y with Levenberg–Marquardt algorithm for Example 3

Table 9: Estimation of α and β with Levenberg–Marquardt algorithm for Example 3

Iteration	Function count	Residual	First-order optimality	Lambda	Norm of step
0	3	773.538	2.04e+03	0.01	
1	6	43.1368	141	0.001	0.327075
2	9	37.5617	0.957	0.0001	0.0349491
3	12	37.5613	0.000643	1e-05	0.000308975
4	15	37.5613	2.09e-06	1e-06	7.65485e-08

Table 10: True and best fit of α and β for Example 3

	Initial	True	Best fit
α	0.3	0.5	0.5042
β	0.5	0.8	0.7992

The fitted parameters are off by about 0.84% in α and 0.1% in β. Figure 8 shows the histogram of the difference between the data values and the best-fit.
Figure 8: Histogram of the errors between the data and curve fit with Levenberg–Marquardt algorithm for Example 3

Computaion of Estimates with Trust-region algorithm

Figure 9: Data and curve fit for x and y with Trust-region algorithm for Example 3

Table 11: Estimation of α and β with Trust-region algorithm for Example 3

Iteration	Function count	Residual Norm of step	First-order optimality	
0	3	773.538	1.98e+04	1.61e+03
1	6	45.902	0.10318	17.7
2	9	37.5629	0.0139874	0.00248
3	12	37.5613	0.000204213	3.07e-05
4	15	37.5613	1.87423e-07	3.07e-05

After four iterations it gives the best fit of the parameters.
Table 12: True and best fit of α and β for Example 3

	Initial	True	Best fit
α	0.3	0.5	0.5042
β	0.5	0.8	0.7992

The fitted parameters are the same with both algorithms. Figure 10 shows the histogram of the difference between the data values and the best-fit.

Figure 10: Histogram of the errors between the data and curve fit with Trust-region algorithm for Example 3

Example 4

In this example we repeat example 2 but the noise in our data is increased. The noise has a normal distribution with a mean of zero and a standard deviation of 0.40.

$$x_i = x(t_i; \alpha = 0.5, \beta = 0.8) + N(0, 0.40)$$

$$y_i = y(t_i; \alpha = 0.5, \beta = 0.8) + N(0, 0.40)$$

(5)
Computation of Estimates with Levenberg–Marquardt algorithm

![Data and curve fit for x and y with Levenberg–Marquardt algorithm for Example 4](image)

Figure 11: Data and curve fit for x and y with Levenberg–Marquardt algorithm for Example 4

Table 13: Estimation of α and β with Levenberg–Marquardt algorithm for Example 4

Iteration	Function count	Residual	First-order optimality	Lambda	Norm of step
0	3	6908.63	7.98e+03	0.01	
1	6	376.107	1.08e+03	0.001	0.667467
2	9	38.9771	60.7	0.0001	0.245833
3	12	37.5614	0.318	1e-05	0.0188103
4	15	37.5613	0.000146	1e-06	9.14884e-05

After four iterations it gives the same best fit of the parameters.

Table 14: True and best fit of α and β for Example 4

	Initial	True	Best fit
α	0.01	0.5	0.5042
β	0.01	0.8	0.7992
Computation of Estimates with Trust-region algorithm

Figure 12: Data and curve fit for x and y with Trust-region algorithm for Example 4

Table 15: Estimation of α and β with Trust-region algorithm for Example 4

Iteration	Function count	Residual Norm of step	First-order optimality
0	3	41221.9	1.61e+04
1	6	9605.73	1.95602
2	9	1570.02	0.941485
3	12	171.046	0.4507
4	15	40.837	0.166794
5	18	37.5656	0.0302478
6	21	37.5613	0.00112156
7	24	37.5613	1.12797e-06

After seven iterations it gives the best fit of the parameters.

Table 16: True and best fit of α and β for Example 4

	Initial	True	Best fit
α	0.3	0.5	0.5042
β	0.5	0.8	0.7992

Example 5

In this example we look at system when it is at the equilibrium. The initial condition are $x(t) = 29.1842$ and $y(t) = 18.2401$ which corresponds to the equilibrium values. For the initial starting point of the parameters, we use $\alpha = 0.01$ and $\beta = 0.01$ with random measurement noise $N(0, 0.20)$ similar to Example 2.
Figure 13: Data and curve fit for x and y with Levenberg–Marquardt algorithm for Example 5

Table 17: Estimation of α and β with Levenberg–Marquardt algorithm for Example 5

Iteration	Function count	Residual	First-order optimality	Lambda	Norm of step
0	3	1630.31	1.92e+03	0.01	
1	6	40.987	187	0.001	0.774995
2	9	9.4066	3.64	0.0001	0.152423
3	12	9.38722	0.00402	1e-05	0.00420468
4	15	9.38722	1.91e-06	1e-06	4.20596e-06

After four iterations it gives the same best fit of the parameters.

Table 18: True and best fit of α and β for Example 5

	Initial	True	Best fit
α	0.01	0.5	0.5040
β	0.01	0.8	0.7990
Figure 14: Histogram of the errors between the data and curve fit with Levenberg–Marquardt algorithm for Example 5

Computation of Estimates with Trust-region algorithm

Figure 15: Data and curve fit for x and y with Trust-region algorithm for Example 5

Table 19: Estimation of α and β with Trust-region algorithm for Example 5

Iteration	Function count	Residual Norm	Norm of step	First-order optimality
0	3	18743.5	8.96e+03	8.96e+03
1	6	4288.67	1.87713	3.32e+03
2	9	742.288	0.956862	954
3	12	88.1657	0.492103	230
4	15	12.5793	0.208053	39.3
5	18	9.40059	0.0506639	2.44
6	21	9.38722	0.00350099	0.0116
7	24	9.38722	1.66463e-05	5.13e-05
After seven iterations it gives the best fit of the parameters.

Table 20: True and best fit of α and β for Example 5

	Initial	True	Best fit
α	0.3	0.5	0.5040
β	0.5	0.8	0.7990

Figure 16: Histogram of the errors between the data and curve fit with Trust-region algorithm for Example 5

3 Summary of the Examples

Table 21: Summary of parameter estimation examples where the true parameters are $\alpha = 0.5$ and $\beta = 0.8$

	Initial	Noise	LM fit	TR fit
Example 1	$\alpha = 0.3$	$\mathcal{N}(0, 0.20)$	$\alpha = 0.5021$	$\alpha = 0.5021$
	$\beta = 0.5$		$\beta = 0.7996$	$\beta = 0.7996$
Example 2	$\alpha = 0.01$	$\mathcal{N}(0, 0.20)$	$\alpha = 0.5021$	$\alpha = 0.5021$
	$\beta = 0.01$		$\beta = 0.7996$	$\beta = 0.7996$
Example 3	$\alpha = 0.3$	$\mathcal{N}(0, 0.40)$	$\alpha = 0.5042$	$\alpha = 0.5042$
	$\beta = 0.5$		$\beta = 0.7992$	$\beta = 0.7992$
Example 4	$\alpha = 0.01$	$\mathcal{N}(0, 0.40)$	$\alpha = 0.5042$	$\alpha = 0.5042$
	$\beta = 0.01$		$\beta = 0.7992$	$\beta = 0.7992$
Example 5	$\alpha = 0.01$	$\mathcal{N}(0, 0.20)$	$\alpha = 0.5040$	$\alpha = 0.5040$
	$\beta = 0.01$		$\beta = 0.7990$	$\beta = 0.7990$

We observe that the two algorithms produce similar results in these simulated examples. The initial starting point and noise didn’t have significant impact in the number of iteration it takes to compute the estimates. We were able to compute the estimates both at the starting time interval (Example 1-4) and at the equilibrium (Example 5).
References

[1] Antoniou, A. and W.-S. Lu (2007). *Practical optimization*. Springer.

[2] Batzel, J. J. and H. T. Tran (2000). Stability of the human respiratory control system i. analysis of a two-dimensional delay state-space model. *Journal of mathematical biology* 41(1), 45–79.

[3] Boyd, S., S. P. Boyd, and L. Vandenberghe (2004). *Convex optimization*. Cambridge university press.

[4] Coleman, T. F. and Y. Li (1994). On the convergence of interior-reflective newton methods for nonlinear minimization subject to bounds. *Mathematical programming* 67(1), 189–224.

[5] Coleman, T. F. and Y. Li (1996). An interior trust region approach for nonlinear minimization subject to bounds. *SIAM Journal on optimization* 6(2), 418–445.

[6] Conn, A. R., N. I. Gould, and P. L. Toint (2000). *Trust region methods*. SIAM.

[7] Cooke, K. L. and J. Turi (1994). Stability, instability in delay equations modeling human respiration. *Journal of Mathematical Biology* 32(6), 535–543.

[8] Gill, P. E., W. Murray, and M. H. Wright (2019). *Practical optimization*. SIAM.

[9] Griva, I., S. G. Nash, and A. Sofer (2009). *Linear and nonlinear optimization*, Volume 108. Siam.

[10] Hartung, F., T. L. Herdman, and J. Turi (2000). Parameter identification in classes of neutral differential equations with state-dependent delays. *Nonlinear Analysis: Theory, Methods & Applications* 39(3), 305–325.

[11] Hartung, F. and J. Turi (1997). On differentiability of solutions with respect to parameters in state-dependent delay equations. *journal of differential equations* 135(2), 192–237.

[12] Hartung, F. and J. Turi (2013). Parameter identification in a respiratory control system model with delay. In *Mathematical Modeling and Validation in Physiology*, pp. 105–118. Springer.

[13] Khoo, M., R. E. Kronauer, K. P. Strohl, and A. S. Slutsky (1982). Factors inducing periodic breathing in humans: a general model. *Journal of applied physiology* 53(3), 644–659.

[14] Kochenderfer, M. J. and T. A. Wheeler (2019). *Algorithms for optimization*. Mit Press.

[15] Kollár, L. E. and J. Turi (2005). Numerical stability analysis in respiratory control system models. In *Electronic Journal of Differential Equations: Proceedings of 2004 Conference on Differential Equations and Applications in Mathematical Biology*, Volume 12, pp. 65–78. Texas State University.

[16] Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. *Quarterly of applied mathematics* 2(2), 164–168.

[17] Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. *Journal of the society for Industrial and Applied Mathematics* 11(2), 431–441.

[18] Martins, J. R. and A. Ning (2021). *Engineering design optimization*. Cambridge University Press.

[19] MATLAB (2020). *version 9.8.0 (R2020a)*. Natick, Massachusetts: The MathWorks Inc.

[20] Moré, J. J. (1978). The levenberg-marquardt algorithm: implementation and theory. In *Numerical analysis*, pp. 105–116. Springer.
[21] Nakagiri, S. and M. Yamamoto (1995). Unique identification of coefficient matrices, time delays and initial functions of functional differential equations. *Journal of Mathematical Systems, Estimation and Control* 5(3), 323–344.

[22] Nocedal, J. and S. J. Wright (1999). *Numerical optimization*. Springer.

[23] Rihan, F. (2021). *Delay Differential Equations and Applications to Biology*. Forum for Interdisciplinary Mathematics. Springer Singapore.

[24] Sapkota, N. and J. Turi (2022). Stability and hopf bifurcation analysis of a two state delay differential equation modeling the human respiratory system. *arXiv preprint arXiv:2206.13693*.

[25] Verduyn Lunel, S. M. (2001). Parameter identifiability of differential delay equations. *International Journal of Adaptive Control and Signal Processing* 15(6), 655–678.

[26] Zhang, J., X. Xia, and C. Moog (2006). Parameter identifiability of nonlinear systems with time-delay. *IEEE Transactions on Automatic Control* 51(2), 371–375.