PPN as Explosions: Bullets vs Jets and Nebular Shaping

Timothy J. Dennis¹, Andrew J. Cunningham¹, Adam Frank¹

tdennis@pas.rochester.edu

Bruce Balick², Eric G. Blackman¹

and

Sorin Mitran³

ABSTRACT

Many proto-planetary nebulae (PPN) appear as narrow collimated structures sometimes showing multiple, roughly aligned lobes. In addition, many PPN flows have been shown to have short acceleration times. In this paper we explore whether jet or “bullet” (a massive clump) models fit the observations of individual collimated lobes adequately by comparing simulations of both radiatively cooled (stable) jets and bullets. We find that the clump model is somewhat favored over jets because (1) it leads to greater collimation of outflows (2) it accounts better and more naturally for ring-like structures observed in the PPN CRL 618, and (3) it is more successful in reproducing the Hubble-flow character of observed kinematics in some PPN. In addition, bullets naturally account for observed multipolar flows, since the likely MHD launch mechanisms required to drive outflows make multiple non-aligned jets unlikely. Thus we argue that PPN outflows may be driven by explosive MHD launch mechanisms such as those discussed in the context of supernovae (SNe) and gamma-ray bursts (GRB).

Subject headings: ISM:jets and outflows—planetary nebulae:general—planetary nebulae:individual (CRL-618)—stars:AGB and Post-AGB

¹Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627

² Department of Astronomy, University of Washington, Seattle, WA 98195

³ Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599
1. Introduction

In the past decade, images of very young planetary nebulae (PNs) and proto-planetary nebulae (PPNs) have revealed an unexpected diversity of morphological classes. Many of these objects appear to exhibit a level of complexity that cannot be accounted for in terms of the Generalized Interacting Stellar Winds model (GISW; Balick & Frank 2002 and references therein). Of particular interest are objects exhibiting point-symmetric, multi-polar, and “butterfly” morphologies, as well as bipolar and multi-polar objects exhibiting highly collimated “jet-like” outflows.

The appearance of these collimated and sometimes multi-polar outflows in so many PPNs has led to the suggestion that high-speed jets operate during the late asymptotic giant branch (AGB) and/or post-AGB evolutionary phases of the central star (Sahai & Trauger 1998). While the GISW model can account for narrow jets (Icke et al. 1992; Mellema & Frank 1997; Borkowski, Blondin, & Harrington 1997), it assumes the winds are radiatively driven. Radiative acceleration cannot however account for these flows since a number of observational studies demonstrate a momentum excess such that a factor $\sim 10^3$ exists between outflow momentum observed and what can be attributed to stellar radiation pressure (Bujarrabal et al. 2001). Moreover, it is difficult to attribute the degree of observed collimation to a large-scale dust torus as is usually required in the GISW model. In addition, the problem of accounting for the precession necessary for the production of point-symmetric flows remains to be solved [for an accretion disk based model see Icke (2003)]. For these reasons, the suggestion has been made that PPN jets and collimated outflows are magnetically driven (Blackman et al. 2001a, 2001b; Frank & Blackman 2004; Matt, Frank, & Blackman 2006, Frank 2006). Magnetically driven models couple rotation to a magnetic field. Jets therefore are bound to flow along the rotational axis of the central object and it is difficult to see how multiple jets of similar size can be driven by such a mechanism. We discuss these models and this issue in more detail at the end of the paper.

Observationally, clumps and collimated flows occur in many stellar outflows though not always together. The outflows in Wolf-Rayet (WR) nebulae are clumpy, but jets are not observed. In young stellar objects (YSOs), jets and collimated bipolar outflows are quite common, and while they can often be clumpy, the jet beams—distinct from the bow shocks which they drive—are often apparent, stretching all the way back to the stellar source. In mature PN, clumps are often seen [as in NGC 2392 (Eskimo), 6853 (Dumbbell) and NGC 7293 (Helix)]. Fully articulated jets are however very rare. We note that ionization shadows and “mass loaded” flows behind clumps can give the appearance of jets. In some mature PN such as the Cats Eye nebula, structures appear (some of which fall under the term FLIERS) which may be the remnants of poleward-directed flows. In HST images of many PPNs, the
outlines of reflected light are often bipolar, but within these boundaries the illuminated gas seems irregular. Thin jets (as opposed to thin finger-shaped lobes) are rarely seen directly except (perhaps) in 0H231.8+04.2 (Calabash). However, pairs or sets of knots lying along or near the apparent symmetry axes are not unusual (M1-92, IRAS 20028 +3910, IRAS 16594-3656, Hen 3-1475). Thus the creation of continuous jets as in the case of YSOs does not seem to be the norm in PN and PPN.

Clumps or “bullets” driven into the surrounding media have been found to be an effective explanation for some stellar outflow structures. In Poludnенко, Frank, & Mitran (2004) the authors modeled the strings of η Car as bullets of high speed material ejected by the star. The simulations showed that long, thin morphologies similar to jets were readily obtained along with multiple rings associated with vortex shedding and the break-up of the clump. The authors suggested that such “impulsive” models may be useful in PPNs as well. Such a scenario is very different from the jet-driven explanation for PPN/PN. In this paper we seek to explore the usefulness of the clump picture.

Soker (2000) has analytically explored the role of jets in PNs. In the excellent study of Lee & Sahai (2003), simulations of jets as the drivers of PPNs were presented, including detailed comparisons with observations. Our goals in this paper are more modest. In what follows we take a first step in the exploration of the clumps vs. jets issue by examining 2-dimensional and 3-dimensional pairs of simulations, with each pair consisting of either a steady jet impinging upon a circumstellar gaseous medium, or a clump of gas which is fired ballistically through the same medium along a trajectory corresponding to the direction of flow in the steady jet\(^1\). Both the jet and the clump are assumed to be magnetically launched though no attempt to model the launch mechanism is made here, and the simulations are purely hydrodynamic. For the present, we are merely interested in examining how the clump and jet differ in their effect on the surrounding circumstellar medium. As we will show, the jet and clump models show differences which require further study, but the clumps provide at least as good, or better, an account of key observational characteristics. Given the fact that in some cases multiple outflows are seen in a single object (such as CRL 618), the clump model may be more plausible since what are often interpreted as multiple “jets” could instead arise naturally from the fragmentation of an explosively driven polar directed shell. We note here that none of the widely accepted magnetically launched outflow models would create continuous multiple jets of similar or equal age driven in slightly different directions.

We note also that new models of binary stars in the context of PN’s (Nordhaus &

\(^1\)In a related study Raga et al.(2007) have also recently presented a model of the “3D structure of a radiative, cosmic bullet flow.”
Blackman 2006, Nordhaus, Blackman & Frank 2007) show the extent to which envelope ejection can be shaped by gravitational interactions. In Nordhaus & Blackman 2006 Common Envelope scenarios which lead to aspherical mass loss (including disk creation and possible MHD launching) were articulated. In Nordhaus, Blackman & Frank 2007 Common Envelope models were explored as the source of differential rotation in the primary which could drive strong dynamo supported magnetic fields. These models showed that while single stars may, in some cases, be able to support a strong field over AGB timescales, binary interactions were highly effective at creating the fields needed to power PPN outflows at the evolutionary moment when they will be required. As we will see, such models provide strong theoretical support for the scenario we argue for in this paper.

In section 2 we provide information concerning the numerical methods used, details of the jet and clump models, and a discussion of the initial conditions. In section 3 we discuss the results of our simulations and in section 4 we summarize our conclusions.

2. Computational Methods and Initial Conditions

We have carried out two pairs of hydrodynamic simulations (one “medium-resolution” 3D pair and one “high-resolution” 2.5D pair). Each pair consists of a jet and clump respectively with each parameterized to be as similar to one another as possible. Specific parameter values for the jet, clump, and ambient medium for each simulation are given in table 1. The simulations are performed using the AstroBEAR code which is an extension of the BEARCLAW adaptive mesh refinement (AMR) package for solving conservation laws. [For a detailed description of the AstroBEAR package see section 3 of Cunningham Frank & Blackman (2006).] The domain is a rectangular box with a square cross-section and with the x-axis chosen to intersect the center of the left square face of the domain. The origin of coordinates is placed at this point of intersection. The clump and jet are launched along the x-axis and placed so that their centers coincide with it. The jet was modeled in 3D with a circular cross-section of radius r_j (in 2.5D the jet cross-section reduces to a line-segment of length $2r_j$ and a thickness of one computational cell). The jet was launched into the domain from a set of fixed cells along the domain boundary. To prevent the expansion of the jet inflow boundary with time, a ring of zero velocity and with outer radius $1.125r_0$ was maintained around the jet-launching region. The velocity profile of the jet was smoothed about a nominal value $v_{j,0}$ according to

\[v_j = v_{j,0} \left[1 - (1 - s) \left(\frac{r}{r_0} \right)^2 \right], \tag{1} \]
where s is a shearing parameter taking values between 0 and 1 and for the jet simulation presented here is set equal to $s = 0.9$. The clump was modeled in 3D as a spherical overdensity of radius $r_c = r_j$. (The sphere reduces to a circle in 2.5D.) Its initial position in the domain is chosen so that its center is located at the point

$$\mathbf{r}_{c,0}(x, y, z) = (2r_c, 0, 0),$$

and the density of the clump as a function of location within the clump is

$$n_c(r) = n_a(r) + n_0 \left[1 - \left(\frac{|\mathbf{r} - \mathbf{r}_{c,0}|}{r_0} \right)^2 \right],$$

where

$$n_a(r) = \min \left(n_0, \frac{n_0 r_0^2}{r^2} \right),$$

is the ambient number density profile in regions of the domain unoccupied by jet or clump gas, and where $r^2 = x^2 + y^2 + z^2$, n_0 is the nominal ambient number density, and r_0 is a characteristic length taken to be equal to the jet or clump radius. The 3D (2.5D) simulations are carried out on a base grid with a resolution of 6 (12) cells per jet/clump radius and with two levels of AMR refinement providing an effective resolution of 24 (48) cells per jet/clump radius. In all cases, radiative cooling is modeled using the atomic line cooling function of Delgarno & McCray (1972), and we do not attempt to follow the detailed ionization dynamics or chemistry of the cooling gas. Given that both models give rise to similarly expanding shells of shock-heated gas we do not expect this simplification to materially affect our conclusions.
Model	Parameter	Value (2.5D)	Value (3D)
Jet	Radius, r_j	500 AU	500 AU
	Computational cells per r_j	48	24
	number density, n_j	500 cm$^{-3}$	500 cm$^{-3}$
	peak velocity, $v_{j,0}$	100 km s$^{-1}$	100 km s$^{-1}$
	Temperature, T_j	200 K	200 K
	Nominal ambient density, n_a	500 cm$^{-3}$	500 cm$^{-3}$
	Ambient temperature, T_a	200 K	200 K
	Shear parameter s	0.9	0.9
Clump	Radius, r_c	500 AU	500 AU
	Computational cells per r_c	48	24
	nominal number density, n_o	500 cm$^{-3}$	500 cm$^{-3}$
	velocity, v_c	100 km s$^{-1}$	100 km s$^{-1}$
	Temperature, T_o	200 K	200 K
	Nominal ambient density, n_a	500 cm$^{-3}$	500 cm$^{-3}$
	Ambient temperature, T_a	200 K	200 K

Table 1: Simulation Parameters
3. Results: Morphology

Results of our simulations are presented in figures 1−6. In Figures 1 and 2 we present the results of medium resolution, (24 cells per radius), 3D simulations of one jet and one clump respectively. The length of the domain in these simulations is 20 computational units with one computational unit corresponding to a physical scale of 500 AU. (One computational unit is also the value chosen for the radii of the jet and clump.) In each figure the upper image shows a plot of emission integrated along the line of sight which in the case of these figures is perpendicular to the plane of the image. The lower image in each figure is a plot of the logarithm of density in a plane coincident with the x-y plane. The images show the jet and clump near the end of their respective runs at time $t \approx 498$ yr for the case of the clump and at time $t \approx 636$ yr for the case of the jet. The resolution is seen to be sufficient to capture vortex-shedding events in both simulations. It is also evident from these images that while one can easily distinguish jet from clump in the density maps, the emission maps are quite similar. We note that the clump gives rise to a somewhat more collimated flow, while the jet bow shock expands laterally at a greater rate than the clump bow shock. The jet also lags behind the clump in its forward motion. This is likely due to the streamlining that occurs as the head of the clump is reduced in size as material is ablated away via its interaction with the ambient medium.

Due to limits on computational resources, it was necessary to impose limits on the resolution and run time of the 3D simulations from which the images in figures 1 and 2 are taken. The simulations end just as the vortex-shedding events begin to have an interesting effect on the nebular environment. To explore this stage further we carried out the second pair of 2.5D simulations mentioned above. In these high-resolution simulations, the effective resolution was doubled to 48 cells per jet/clump radius, the length of the domain was doubled, and the transverse dimensions of the domain were enlarged in an attempt to accomodate the lateral expansion of the jet/clump bow shock (this latter adjustment was successful only for the case of the clump). Results from these simulations are presented in figures 3 through 6. In figures 3 and 4 we again present images of the logarithm of density for the jet and clump respectively—this time reflected about the axis of symmetry. Both figures show the simulations at various stages of the flow. We observe that the differences found between the two models in the 3D simulations—i.e. the faster domain crossing time and the higher degree of collimation exhibited by the clump—are seen again in these images. The vortex shedding however, is now captured with greater clarity for both jet and clump, and we begin to see significant qualitative differences in the manner in which these events unfold. In particular we note that shedding events are much more frequent in the case of the clump. These results mirror those found by Poludnenko, Frank & Mitran (2004). It is noteworthy that their study used a different integration scheme than used here. AstroBEAR has a number of schemes
built into it and in the Poludnenko study a Wave Propagation scheme was used (LeVeque 1997), while here a MUSCL-Hancock method is used. The fact that the basic morphology of clumps driving bow shocks dominated by vortex shedding events is recovered using both schemes gives us confidence in this aspect of the dynamics.

3.1. Morphology

To get a better sense of how the differences between the models might appear observationally, we present integrated emission maps for the jet and clump respectively in figures 5 and 6. These figures were produced by calculating the effect on the line-of-sight emission resulting from a rotation of the cylindrically symmetric data set about the axis of symmetry. The intensity shown, which does not distinguish among cooling lines, was determined according to:

\[I_{i,j,k} = \sum_k n_{i,j,k}^2 \Lambda(T_{i,j,k}), \]

where \(i, j, \) and \(k \) refer to the \(x,y \) and \(z \) directions in the final data cube created by rotating \(n(r,z) \) and \(T(r,z) \) about the axis of symmetry, and \(\Lambda \) is the cooling function. The images shown correspond to the final frames in each of figures 3 and 4 respectively. Each figure provides two views of the data: one in which the angle of inclination of the symmetry axis with respect to the image plane, \(\theta \), is 0°; and one in which it is 20°. One difference between the jet and clump cases appears in the shape of the head of the bow shock. A clump has a finite reservoir of mass which interacts with the ambient medium. As the clump propagates down the grid, it drives a (bow) shock wave into the ambient medium. A second shock passes through the clump heating and compressing it. When cooling is present this ”transmitted shock” first leaves the clump flattened. As material is then ablated away via the interactions with the ambient medium the remaining clump material becomes dense and streamlined in the direction of propagation. At later times in the simulation the dense core of the clump drives a \(V \) - shaped bow shock head. In the case of a jet the situation is different. The jet head drives a bow shock into the ambient medium and transmitted shock, called a jet shock, propagates back into the jet material. Decelerated jet material flows transverse the these shocks inflating a cocoon behind the wings of the bow shock. Unlike the clump however, there is always more high speed material behind the jet shock/bow shock pair to resupply the interaction. Thus with material continuously flowing into the cocoon, the bow shock head remains wider and takes on a flatter more \(U \) - shaped configuration. Such a distinction between \(V \) - and \(U \) - shaped flows may be important in comparing with observations. We note that both the 2.5D and 3D simulations both show this difference. We note however that the axial symmetry will tend to enhance features on the axis. Our 3D runs do not yet have the resolution to accurately track the break-up of the clump. Thus the \(V \) and \(U \) bow
shock head distinction must be considered less than conclusive and await further study.

Vortex shedding provides another morphological distinction. In the case of the clump, the relatively frequent shedding events have led to a series of thin, irregularly spaced rings of enhanced intensity centered about the symmetry axis. These are reminiscent of the ring-like structures observed in some collimated PPN outflows [see for example Trammell & Goodrich (2002)]. The shedding events occurring in the jet simulation lead to similar structures, but these are less frequent and somewhat more band-like in character. The qualitative differences in the manner in which these rings form in the outflows depending on whether one models them as jets or clumps might suggest a means of distinguishing between the two models in observations. One must, once again, be careful not to over-interpret these results due to limits on the resolution and the fact that these simulations are 2.5D. We thus conclude that the high-resolution 2.5D simulations lend weight to the assertion that clumps and/or jets can account for observed ringed structures, but neither can be ruled out as a model for the collimated outflows observed in the environments of PPNs. In the meantime, we note that this conclusion in itself is important with respect to PPN studies as we will discuss in the last section.

It is also noteworthy that Lee & Sahai (2003) attempted to model the rings via a pulsed jet. Each ring became associated with an “internal working surface” where faster moving material swept over slower moving material. The internal shocks lead to transverse motions of shocked material which impinge upon the bow shock. As might be expected, the strength of the emission from these shocks decreased as the pulse traveled down the length of the beam. Such dimming of the rings with distance from the source is not what is observed in CRL 618. The clump on the other hand produces the opposite kind of pattern, as ablation events on the clump lead to rings that are bright closer to the head of the bow shock.

3.2. Kinematics

In addition to comparisons of morphology, it is also important to consider the flow kinematics, since observed flows are often seen to exhibit “Hubble-flow” characteristics—that is, the flow velocity is observed to increase linearly with respect to distance from the flow origin. To address this issue we present in figure [7] plots of the x-component of the flow velocity averaged over the directions transverse to the flow $\langle v_x \rangle$. Velocity tracers were not used in our simulations. In order, therefore, to differentiate between mildly perturbed ambient gas, and gas that is fully involved in the flow, values of velocity $\leq 0.01v_0$ were ignored, where v_0 is the initial velocity of the clump or jet gas. The top row of the figure shows, from left to right, the results for the 3D jet and clump respectively while the bottom
figure shows the results for the 2.5D jet and clump. The data for these plots are taken from times near the end of the simulation when the flows have crossed most of the domain. In the two plots involving clumps, there are large regions of the flow for which the variation of velocity with distance is roughly linear. The jets on the other hand, fail to model this behavior altogether. Comparison of the 3D clump plots to the 2.5D case yields an interesting result. Recall that the first vortex-shedding events in both clump and jet were observed to occur in the 3D simulations shortly before the end of the simulation. Because of this they do not have time to perturb the flow in a way that might be noticeable in these plots. However, when we examine this phenomenon kinematically in the extended spatial domain allowed by the 2.5D simulation, we find that while the vortex shedding events, appear to perturb the kinematics of both jet and clump, these perturbations do not alter the overall qualitative character of the flows in either case.

To further examine the kinematics of our simulated flows, we have also produced a set of synthetic position-velocity (PV) diagrams for the 2.5D simulations. These are presented in figure 8. Once again, as in figures 5 and 6 we present our results in pairs corresponding to values of 0° and 20° for the angle of inclination, θ, of the flow symmetry axis with respect to the image plane. These plots were produced by calculating the velocity structure along the line of sight and with the “slit” placement taken to be along the projected axis of symmetry. Results for the jet are given in the first row of the figure, and results of the clump are given in the second row. In these images, the difference between the clump and jet are even more striking. For either angle of inclination, the velocity structure of the jet cannot be said to be even approximately Hubble-like. The clump however, continues to exhibit line-of-sight velocity structure indicative of a linear increase with distance along the projected direction of flow. The effect is particularly apparent in the case of the flow which is inclined with respect to the image plane. These results, and those of figure 7 suggest that it may be possible to distinguish outflows from steady jets from those from explosive events through a careful examination of their kinematics.

One caveat which must be considered in these results is the role of emission. Because our models do not track emission from individual species we cannot separate the emission at the bow shock from that within the jet or from the shocked jet material. In Ostriker et al. (2001), a model for the emission from a jet-driven bow shock was presented which showed a characteristic spur pattern in synthetic PV diagrams. The spur exhibits a rapid drop in velocity away from the tip of the bow shock. Lee & Sahai (2003) found a range of patterns in their jet simulations which in some cases took on the spur morphology. Thus our results are suggestive of the differences between jets and clumps and indicate that clumps appear to be better, in general, at recovering quasi-linear increases in velocity along the nebular outflow lobe.
3.3. Kinematic Models

In order to interpret our results we consider the time-dependent distortion of the clump gas during the evolution of the outflow. Strongly radiative, hypersonic clouds of any geometry will be rapidly compressed into a thin ballistic sheet after ejection by the outflow progenitor. We therefore consider the motion of a cylindrically symmetric disk with surface density \(\chi(r) \) and velocity \(v(r, t) \) where \(v(r, 0) = v_0 \) to model the time-dependent evolution of the clump gas. The equation of motion for a differential ring of the disk under the ram pressure of the ambient gas of density \(\rho \) is given by:

\[
\rho v^2(r, t) = -\frac{d\chi}{dt}.
\]

(6)

Because the outflow bow shock is convex, most of the outflow-entrained ambient gas will be swept outside of the path of the clump into the bow shock. We therefore neglect accretion of ambient material onto the clump and the kinematics of ambient material ejection in this model. Because the disk is hypersonic in a strongly cooling environment, we consider the model disk to be ballistic, neglecting pressure forces. For simplicity we also take the density of the ambient gas to be constant. Thus the equation of motion for a differential ring of clump gas with radius \(r \) integrates to:

\[
v = \frac{v_0}{1 + \rho v_0 t / \chi}.
\]

(7)

The distance traversed by the ring is given as:

\[
L(\chi, t) = \int_0^t v(t) dt = \frac{\chi}{\rho} \ln \left[1 + \frac{\rho v_0 t}{\chi} \right].
\]

(8)

The quantities \(v, t, \) and \(L \), all refer to the same ring. What differentiates one ring of material from another is the parameter \(r \). Now at some late time \(t \), we imagine the rings to have been distributed over the length of the outflow with this distribution depending on \(r \). For this fixed value of \(t \), we are interested plotting the velocity of each ring against its corresponding distance. The \(r \)-dependence of \(v \) and \(L \) enter into the expressions for these quantities through the surface density \(\chi \). We therefore model \(\chi \) by assuming that the clump of gas from which our disk formed was initially spherical, of constant volume mass density \(\sigma \), and compressed in such a way that all material within the volume of the clump and lying along a given line passing through the clump in the direction of its motion remains on this line after compression. Then,

\[
\chi(r) = 2\sigma r_0 \sqrt{1 - \left(r/r_0 \right)^2},
\]

(9)
where r_0 is the radius the clump/disk. Introducing the dimensionless quantities:

\[\tilde{r} = \frac{r}{r_0}, \quad \tilde{\nu} = \frac{\nu}{\nu_0}, \quad \tilde{\tau} = \frac{\nu_0 t}{2\sigma r_0} \]

and,

\[\tilde{L} = \frac{\rho}{2\sigma r_0} L, \]

our parametric equations are:

\[\tilde{\nu} = \left[1 + \frac{\tilde{\tau}}{\sqrt{1 - \tilde{r}^2}} \right]^{-1}, \]

and

\[\tilde{L} = \sqrt{1 - \tilde{r}^2} \ln \left[1 + \frac{\tilde{\tau}}{\sqrt{1 - \tilde{r}^2}} \right]. \]

The value of $\tilde{\tau}$ is chosen by assuming $\sigma \gtrsim 2\rho$, and by noting that at late times $\nu_0 t \gtrsim r_0$. In our 2.5D simulations we have $\nu_0 t/r_0 \sim 4\tilde{\tau} \simeq 20$ making $\tilde{\tau} \simeq 5$. Figure 9 shows a plot of ν vs L in astronomically relevant units with this choice of $\tilde{\tau}$. For purposes of comparison, a line with an appropriately chosen slope and intercept is plotted as well. In spite of the simplicity of our analytical model, a comparison of this plot with the upper-right-hand plot of figure 7 reveals good agreement between the two. Both curves exhibit a small concave curvature for small L while becoming increasingly linear with increasing L (the downward turn in the 2.5D simulation-based plot results from extending the plot into regions not yet reached by the clump). We also find that the range of L-values over which the curve shows linear behavior increases for increasing $\tilde{\tau}$, implying that a correlation between the kinematical ages of PPN outflows and the extent to which they are observed to exhibit Hubble-flow. We take this calculation as further evidence that our simulations are accurately capturing the dynamics of the flow and the relevance of bullet models for PPN.
Fig. 1.— 3D Jet at time $t \simeq 636$ yr, top: integrated emission assuming atomic line cooling; bottom, base-ten logarithm of density.
Fig. 2.— 3D clump at time $t \approx 498$ yr, top: integrated emission assuming atomic line cooling; bottom, base-ten logarithm of density.
Fig. 3.— Density of 2.5D Jet at times $t \approx 336, 628, 896,$ and 1165 yr. The data is shown here reflected about the axis of symmetry.
Fig. 4.— Density crosscut of 2.5D Clump at times $t \approx 208, 477, 753,$ and 1082 yr. The data is shown here reflected about the axis of symmetry.
Fig. 5.— Integrated emission of 2.5D Jet at time $t \simeq 1132$ yr. The data is shown here rotated about the axis of symmetry and with angles of inclination of the symmetry axis with respect to the image plane of $\theta = 0^\circ$ (top), and $\theta = 20^\circ$ (bottom).
Fig. 6.— Integrated emission of 2.5D Clump at time $t \simeq 1082$ yr. The data is shown here rotated about the axis of symmetry and with angles of inclination of the symmetry axis with respect to the image plane of $\theta = 0^\circ$(top), and $\theta = 20^\circ$(bottom).
Fig. 7.— Comparisons of weighted average parallel flow velocity, $\langle v_x \rangle$, vs distance from the flow origin for clump and jet for the 3D simulations (top row) calculated at time $t \simeq 636$ yr, and the 2.5D simulations (bottom row) calculated at time $t \simeq 1165$ yr. (See the text for an explanation of the weighting.)
Fig. 8.— Position-velocity diagrams at time $t \approx 1082$ yr for the 2.5D Jet (top row) and the 2.5D Clump (bottom row) assuming inclination angles of $\theta = 0^\circ$(left) and $\theta = 20^\circ$(right).
Fig. 9.— $V(r)$ vs $L(r)$ for $\tilde{t} = 5$. See section 3.3 for an explanation of this figure.
4. Discussion and Conclusions

In this paper we have examined the results of two pairs of simulations intended to model the gross morphological and kinematical properties of PPNs. Our primary purpose was to ask not if we could distinguish between jet and clump models, but instead to ascertain if clump models could perform equally well at recovering these properties. Below we explain the justification for this more explicitly and present the conclusion of our study. As was discussed in the introduction, MHD models of PN shaping have been explored by a variety of authors and in a variety of forms. As we will explain below, it is the imperative of MHD models, particularly magneto-centrifugal launch and collimation scenarios, which motivate this paper.

Two distinct classes of model for the magnetic shaping of winds in PNs and PPNs have been suggested to date. First there is the Magnetized Wind Bubble (MWB) model, originally proposed by Chavalier & Luo (1994) and studied numerically by Różyczka & Franco (1996) and García-Segura et al. (1999). In these models, an initially weak toroidal magnetic field is embedded in a radiatively-driven wind. This configuration has been shown capable of accounting for a wide variety of outflow morphologies including highly-collimated jets. These models clearly demonstrate the importance of magnetic fields. They cannot however account for the excess momentum in the flows (Bujarrabal et al. 2001) because of the weak fields which simply ride along in a radiatively-driven wind.

The other class of model invokes so-called Magnetocentrifugal Launching (MCL; Blandford & Payne 1982; Pelletier & Pudritz 1992). This paradigm has, for many years, been explored as the mechanism driving jets in young stellar objects (YSOs), micro-quasars and active galactic nuclei (AGNs). The MCL paradigm assumes the presence of a rotating central gravitating object (which may or may not include an accretion disk). In the case of a disk, plasma is threaded by a magnetic field whose poloidal component is in co-rotation with the disk. Disk-coronal gas is then subject to centrifugal force which accelerates the gas flinging it out along field lines. The magnetized plasma eventually expands to a configuration where the toroidal component of the field dominates and hoop stresses collimate the flow. Thus the MCL paradigm accounts for both the origin of the wind and the means of collimation.

The success of the MCL paradigm in modeling jets associated with YSOs and AGNs has led some authors to suggest applying the idea in the context of PNs and PPNs (Blackman et al. 2001a, Frank & Blackman 2004). Most recently it has been shown that the observed total energy and momentum in PPNs can be recovered with disk wind models using existing disk formation scenarios via binary interaction (Frank & Blackman 2004 and references within).

Most theoretical investigations of the MCL paradigm assume a steady-state flow. Ob-
servations suggest however, that acceleration times for the flows are as much as an order of magnitude shorter than typical kinematical PPN ages (Bujarrabal et al. 2001). This implies that the mechanism responsible for the observed flows may operate explosively, i.e. the time over which the mechanism acts is short compared to the lifetime of the flow. Moreover, it has been suggested by Alcolea et al. (2001) that such a scenario would also provide the most straightforward explanation for the “Hubble law” kinematics observed in some PPN outflows (Balick & Frank 2002; Bujarrabal, Alcolea, & Neri 1998; Olafsson & Nyman 1999). The MCL paradigm can act transiently however, when linked with the rapid evolution of its source, as for example in the case of the proposed mechanisms for gamma-ray bursts (GRBs; Piran 2005) and Supernovae (SNe). This scenario has been investigated by a number of authors (Kluźniak & Ruderman 1998; Wheeler et al. 2002; Akiyama et al. 2003; Blackman et al. 2006). In these scenarios differential rotation twists an initially weak poloidal field thereby generating and amplifying a toroidal field. When the toroidal component reaches a critical value it drives through the stratified layers of the collapsing core carrying trapped material with it. The hoop stresses associated with such a field also serve to collimate the flow.

Recently Matt, Frank, & Blackman (2006) examined numerically a simplified version of this idea which was originally suggested for PPN in Blackman et al. 2001b. In these studies the authors began with a gravitating core threaded by an initially poloidal field set rotating at 10% of the escape speed within an envelope of ionized gas. As the simulation progressed, the resulting toroidal field was sufficiently strong to drive a complete and rapid expulsion of the gaseous envelope. Since the initial conditions assumed in Matt, Frank & Blackman (2006) are applicable to either a young PPN or a collapsing protopulsar, it is reasonable to ask whether such transient events are occurring in the early stages of the formation of PNs, and if such events can serve as well as steady-state jets can in accounting for the complex morphologies observed in such systems. We note that these classes of model are sometimes referred to as “magnetic towers” or “springs” because it is the gradient of toroidal field pressure which drives the outflow. Again we note that the magnetic fields needed for our scenario can be delivered by binary interactions as has been demonstrated by Nordhaus & Blackman 2006 and Nordhaus, Blackman & Frank 2007.

There is growing evidence to suggest that magneto-centrifugal launch models are appropriate for PNs and, more importantly, PPNs (Vlemmings et al. 2006). Taken together with the evidence that many PPNs have short acceleration time scales for which $\tau_{\text{acc}} < .1\tau_{\text{dyn}}$, it suggests that some PPNs may be considered to have arisen from explosive, or at least impulsive, depositions of momentum and energy into surrounding, circumstellar environments. Together we argue that these lines of evidence suggest that many PPNs may be shaped by shells which fragment into clumps rather than multiple jets.
There is a subset of PPNs and young PNs with multiple lobes of roughly similar size. These include CRL 2688, CRL 618, IRS 19024+004, IRS 09371+1212, M1-37 and He2-47. It is natural to try and interpret these structures initially as resulting from the action of jets. However, consideration of magneto-centrifugal launching models shows this to be unlikely. In all forms of the model, gravitational binding energy is tapped via rotational motions of the central source about some axis ω, and is converted into outflow kinetic energy using the magnetic fields as a “drive belt”. The existence of a quasi-stable rotational axis is a requirement of the models in order to produce a continuous outflow. Multiple jets of equal length are difficult to imagine in such a scenario as the jets would then each require their own rotational engine with separate alignments. Even so-called magnetic tower models which drive the jet by winding up an initially weak poloidal field require a net spin axis such that $B_\phi 2\pi n_\phi B_p$ where n_ϕ is the number of turns about ω.

The production of multiple bow shocks from clumps or bullets driven by a transient MCL process is not as difficult to envision. In Matt, Frank, & Blackman (2006), it was shown that the static envelope or atmosphere of a star could be entirely driven off of a rotating magnetized core. These models relied on the magnetic tower “spring” mechanisms, and the envelope becomes compressed into a thin shell which rides at the front of the expanding magnetic tower. Such a thin accelerating shell would be subject to a variety of instabilities including the Rayleigh-Taylor, Thin-Shell (Vishniac 1993) and Non-linear Thin Shell (Vishniac 1994) modes, all of which would be modified by the presence of an ordered magnetic field which would impose a long coherence length onto the resulting flow. The precise detail of such fragmentation in this situation have yet to be calculated and stand as an open problem. Given the impulsive acceleration of a dense, radiatively cooling shell into a lower density environment, it is likely that the shell would fragment into a number of high mach number clumps directed along the poles (and perhaps the equator, see Matt, Frank, & Blackman 2006 and CRL 6888). A potential challenge to this model would be the creation of fragmentation modes that can, in some cases produce roughly equivalent clumps in terms of propagation direction on either side of the source as is seen in some cases. Given that caveat however, the ability for explosive magnetic tower models already explored in the literature to drive unstable shells makes them an attractive means of producing high mach number clumps. As we have shown, these clumps, propelled into the surrounding media then drive bow shocks which do at least as good a job as, if not better than, jets in recovering gross morphological and kinematic observations. Similar conclusions have recently been reached by Raga et al. (2007).

In summary, the results presented here add weight to an emerging paradigm in which transient (explosive) MCL processes act as the driver for PPN evolution in some case. The fact that such magnetic launch mechanisms are already favored by some theorists to explain
supernovae and gamma-ray bursts (Piran 2005), makes all the more compelling the notion that lower energy analogues of the processes believed to be occurring during the penultimate stages of massive stars’ evolution, are also occurring in low and intermediate mass stars.

The authors thank Orsola De Marco and Pat Huggins for providing insights in a number of ways.

This work was supported by Jet Propulsion Laboratory Spitzer Space Telescope theory grant 051080-001, NSF grants AST-0507519, Hubble Space Telescope theory grant 11251 and the Laboratory for Laser Energetics.

REFERENCES

Akiyama, S., Wheeler, J. C., Meier, D. L., & Lichtenstadt, I. 2003, ApJ, 584, 954
Alcolea, J., Bujarrabal, V. Sànchez Contreras, C., Neri, R., & Zweigle, J. 2001, A&A, 373, 932
Balick, B. & Frank, A. 2002, ARA&A, 40, 439
Blackman, E. G., Frank, A., Markiel, A.J., Thomas, J.H., & Van Horn, H. M. 2001a, Nature, 409, 485
Blackman, E. G., Frank, A., & Welch, C. 2001b, ApJ, 546, 288
Blackman, E. G., Nordhaus, J. T., & Thomas, J. H. 2006, New Astronomy, 11, 452
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883
Borkowski, K. J., Blondin, J. M., & Harrington, J. P. 1997, ApJ, 482, L97
Bujarrabal, V., Alcolea, J., & Neri, R. 1998, ApJ, 504, 915
Bujarrabal, V., Castro-Carrizo, A., Alcolea, J., & Sànchez Contreras, C. 2001, A&A, 377, 868
Chevalier, R. A., & Luo, D. 1994, ApJ, 421, 225
Cunningham, A. J., Frank, A., & Blackman, E. G. 2006, ApJ, 646, 1059
Delgado, A., & McCray, R. A. 1972, ARA&A, 10, 375
Frank, A. 2006, arXiv:astro-ph0606583v1
Frank, A., & Blackman, E. G. 2004, ApJ, 614, 737
Garcia-Segura, G., Langer, N., RÓżyczka, M., & Franco, J. 1999, ApJ, 517, 767
Icke, V. 2003, A&A, 405, L11
Icke, V., Mellema, G., Balick, B., Eulderink, F., & Frank, A. 1992 Nature, 355, 524
Kluzniak, W., & Ruderman, M. 1998, ApJ, 505, L113
Lee, C.-F., & Sahai, R. 2003, ApJ, 586, 319
LeVeque, R. J. 1997, J. Comp. Phys., 131, 327
Matt, S., Frank, A., & Blackman, E. G. 2006, ApJ, 647, L45
Mellema, G., & Frank, A. 1997, MNRAS, 292, 795
Nordhaus, J., & Blackman, E. G. 2006, MNRAS, 370, 2004
Nordhaus, J., Blackman, E. G., & Frank, A. 2007, MNRAS, 376, 599
Olafsson, H. & Nyman, L.-Å 1999, 347, 194
Ostriker, E. C., Lee, C.-F., Stone, J. M., & Mundy, L. G. 2001, ApJ, 557, 443
Pelletier, G. & Pudritz, R. E. 1992, ApJ, 394, 117
Piran, T. 2005, Rev. Mod. Phys., 76, 1143
Poludnenko, A. Y., Frank, A., & Mitran, S. 2004, ApJ, 613, 387
Raga, A. C., Esquivel, A., Riera, A., & Velazquez, P. F. 2007, ApJ, Submitted
Różyczka, M., & Franco, J. 1996, ApJ, 469, L127
Sahai, R., & Trauger, J. T. 1998, ApJ, 116, 1357
Soker, N. 2000, MNRAS, 318, 1017
Trammell, S. R., & Goodrich, R. W. 2002, ApJ, 579, 688
Vishniac, E. T. 1983, ApJ, 274, 152
Vishniac, E. T. 1994, ApJ, 428, 186
Vlemmings, W. H. T., Diamond, P. J., & Hiroshi, I. 2006 Nature, 440, 58
Wheeler, J. C., Meier, D. L., & Wilson, J. R. 2002 ApJ, 568, 807

This preprint was prepared with the AAS LaTeX macros v5.2.