Estudo Controlado das Alterações Hemodinâmicas Centrais de uma Sessão de Exercício Inspiratório com Diferentes Cargas na Insuficiência Cardíaca

Controlled Study of Central Hemodynamic Changes in Inspiratory Exercise with Different Loads in Heart Failure

Luana de Decco Marchese,1,2* Sergio Chermont,1,3 Danielle Warol,1 Lucia Brandão de Oliveira,2 Sabrina Bernardez Pereira,4 Mônica Quintão,1,5 Evandro Tinoco Mesquita1

Universidade Federal Fluminense,1 Niterói, RJ – Brasil
Centro Universitário Serra dos Órgãos – Clínica de Insuficiência Cardíaca (CUCO),2 Teresópolis, RJ – Brasil
Hospital Santa Marta,3 Niterói, RJ – Brasil
Hospital do Coração,4 São Paulo, SP – Brasil
Instituto Nacional do Câncer,5 Rio de Janeiro, RJ – Brasil

Resumo

Fundamento: A fraqueza muscular inspiratória contribui para a intolerância ao exercício e diminuição da qualidade de vida dos pacientes com insuficiência cardíaca. Estudos com treinamento da musculatura inspiratória demonstram melhora da força muscular inspiratória, da capacidade funcional e da qualidade de vida. Porém, pouco se sabe sobre a resposta hemodinâmica central (RHC) durante o exercício inspiratório (EI).

Objetivo: Avaliar a RHC em uma única sessão de EI com diferentes cargas (placebo, 30 e 60%) na insuficiência cardíaca.

Métodos: Ensaio clínico randomizado placebo-controlado, em pacientes com insuficiência cardíaca com fração de ejeção reduzida, classe funcional II e III. Vinte pacientes, com idade de 65±11 anos, completaram uma sessão única de exercício inspiratório, em 3 ciclos de 15 minutos, com washout de 1 hora, envolvendo cargas de 30% (C30), 60% (C60) e placebo, utilizando um resistor de carga linear (PowerBreathe Light). O estudo hemodinâmico não invasivo foi realizado por bioimpedância cardiotorácica (Niccomo™CardioScreen®). Análise estatística foi feita com o Teste t de Student e a correlação de Pearson, considerado significante p≤0,05.

Resultados: Foi observado aumento da frequência cardíaca (FC) com a C30 (64±15 vs 69±15 bpm; p=0,005) e C60 (67±14 vs 73±14 bpm, p=0,002). No volume sistólico (VS), observou-se diminuição com a C30 (73±26 vs 64±20 ml; p=0,004). O débito cardíaco (DC) apresentou aumento apenas com a C60 (4,6±1,5 vs 5,3±1,7 l/min; p=-0,001).

Conclusão: Quando utilizada a carga de 60%, em uma sessão única de EI, foram observadas alterações na RHC. A FC e o DC aumentaram, assim como as escalas de Borg e sensação subjetiva de dispnéia. Já a carga de 30% promoveu diminuição do VS. (Arq Bras Cardiol. 2020; 114(4):656-663)

Palavras-chave: Insuficiência Cardíaca; Debilidade Muscular; Exercícios Respiratórios; Hemodinâmica; Síndrome de Fadiga Crônica; Terapia por Exercício; Qualidade de Vida; Técnicas de Exercício e Movimento.

Abstract

Background: Inspiratory muscle weakness contributes to exercise intolerance and decreased quality of life in patients with heart failure. Studies with inspiratory muscle training show improvement in inspiratory muscle strength, functional capacity and quality of life. However, little is known about the central hemodynamic response (CHR) during inspiratory exercise (IE).

Objective: To evaluate CHR in a single IE session with different loads (placebo, 30% and 60%) in heart failure.

Methods: Randomized placebo-controlled clinical trial in patients with heart failure with reduced ejection fraction, functional class II and III. Twenty patients aged 65 ± 11 years completed a single session of inspiratory exercise, in 3 cycles of 15 minutes, with a 1-hour washout, involving loads of 30% (C30), 60% (C60) and placebo, using a linear load resistor (PowerBreathe Light). The noninvasive hemodynamic study was performed by cardiothoracic bioimpedance (Niccomo™ CardioScreen®). Statistical analysis was performed with Student’s t-test and Pearson’s correlation, and P≤0,05 was considered significant.

Results: An increase in heart rate (HR) was observed with C30 (64±15 vs 69±15 bpm; p = 0.005) and C60 (67±14 vs 73±14 bpm, p = 0.002). A decrease was observed in systolic volume (SV) with C30 (73±26 vs 64±20 ml; p = 0.004). Cardiac output (CO), on its turn, increased only with C60 (4.6±1.5 vs 5.3±1.7 l/min; p = -0.001).

Conclusion: When using the 60% load, in a single IE session, changes in CHR were observed. HR and CD increased, as did the Borg scales and subjective sensation of dyspnea. The 30% load reduced the SV. (Arq Bras Cardiol. 2020; 114(4):656-663)

Keywords: Heart Failure; Muscle Weakness; Breathing Exercises; Hemodynamics; Fatigue Syndrome, Chronic; Fatigue Syndrome, Chronic; Quality of Life; Exercise Therapy; Exercise Movement Techniques.
Introdução

A maioria dos pacientes com insuficiência cardíaca (IC) apresenta intolerância ao exercício, devido principalmente a sintomas como dispnéia e fadiga. Essa baixa tolerância aos esforços gera um ciclo de inatividade física e consequente diminuição da qualidade de vida.¹

Além de outros mecanismos já descritos, como a excesiva necessidade ventilatória, o ergorreflexo muscular exacerbado e o aumento da atividade simpática, a fraqueza muscular inspiratória, presente em cerca de 30 a 50% dos pacientes com insuficiência cardíaca com fração de ejeção reduzida (ICFER), tem sido apontada como um fator que pode contribuir para a intolerância ao exercício²,³ e que apresenta valor prognóstico independente.⁴,⁵

Estudos previamente publicados demonstraram que o treinamento da musculatura inspiratória (TMI) resulta em melhorias significativas da força muscular inspiratória, da capacidade funcional, da dispneia e da resposta ventilatória durante o exercício, além de contribuir para melhora da qualidade de vida dos pacientes com IC.⁶,⁷ Porém, a intensidade ideal de treinamento para otimizar esses resultados ainda não está clara. Uma recente revisão sistemática com meta-análise sugere que o TMI de alta intensidade seja superior às menores cargas e parece não apresentar efeitos adversos.⁸

Os estudos concentram-se em demonstrar os benefícios sistêmicos do TMI, porém pouco se sabe sobre a resposta hemodinâmica central (RHC) desses pacientes durante o exercício inspiratório (EI).⁹ A hipótese do presente estudo é que, com uma carga mais alta, seriam observadas maiores repercussões hemodinâmicas. Sendo assim, este estudo teve como objetivo avaliar a RHC em uma única sessão de exercício inspiratório (EI) 30% ou 60% na ICFER.

Métodos

Ensaios clínicos randomizados, placebo-controlados. A carga era colocada no resistor de carga linear, de forma que os participantes não visualizavam em qual nível estava posicionado o marcador e também não eram informados sobre a carga empregada.

Critérios de inclusão e exclusão

Para atender o objetivo deste estudo, foram selecionados 29 pacientes com ICFER da Clínica de Insuficiência Cardíaca (CLIC) do Centro Universitário Serra dos Órgãos (UNIFESO), que preencheram os seguintes critérios de inclusão: diagnóstico clínico de insuficiência cardíaca, idade acima de 21 anos, ecodopplercardiograma com fração de ejeção do ventrículo esquerdo (FEVE) <45% (método de Simpson), classe II e III pela New York Heart Association (NYHA), enfermidade estável há pelo menos três meses, nunca ter realizado ou não estar em tratamento com TMI. E nenhum dos critérios de exclusão descritos a seguir: diagnóstico clínico (médico) de doença pulmonar obstrutiva crônica, angina instável, arritmias cardíacas importantes, infarto agudo do miocárdio dentro dos últimos três meses, incapacidade de realizar a sessão de EI. E ainda nenhum dos critérios de exclusão da bioimpedância cardiotorácica: derrame pleural volumoso, anasarca, insuficiência aórtica moderada ou grave, uso de balão intra-aórtico, pressão arterial média >130mmHg, altura <1,20m ou >2,30m, peso <30kg ou >155kg, e uso de marca-passos com sensores para ajuste de frequência cardíaca de acordo com a frequência respiratória.

Métodos de avaliação

Como instrumentos de coleta, foram utilizados: um manovacuômetro analógico (Critical Med®, Brasil), um resistor de carga linear (PowerBreathe Light®, Estados Unidos) e um aparelho de bioimpedância cardiotórácica (BCT) (Niccomo ™ CardioScreen®, Alemanha).

As sessões de EMI foram realizadas de acordo com a randomização feita pelo site Randomizer, utilizando o resistor de carga linear durante 15 minutos com as seguintes resistências: 0 (placebo), 30% e 60% do valor da pressão inspiratória máxima (PImáx) medida previamente através da manovacuomètria, com washout de 1 hora. Para acompanhar a repercussão hemodinâmica, foi utilizado o aparelho de BCT.

Exercício inspiratório

Por ser a primeira vez que os participantes do estudo utilizaram o resistor de carga linear, após a avaliação inicial os foram orientados sobre como deveriam realizar o EI e, depois, permaneceram 15 minutos em repouso antes de começar a monitorização hemodinâmica.

Seguindo a randomização das cargas feita previamente (placebo, 30% ou 60%), o EI foi realizado durante 15 minutos, com o paciente em posição supina sobre poltrona reclinável, a 45⁰ de elevação. Todos os participantes utilizaram o mesmo resistor de carga linear, porém foi utilizado um filtro individual adquirido com o próprio fabricante, que foi descartado após o experimento.

Ao longo do EI, o indivíduo foi instruído a realizar inspiração e expiração de acordo com o sinal sonoro emitido por um software (Paced Breathing), de forma que todos os participantes realizaram 15 incursões respiratórias por minuto.⁸ O treinamento com as demais cargas foi realizado após uma hora de intervalo entre cada sessão. Para a realização do EI com placebo, foi retirada a mola do dispositivo, permanecendo somente a válvula unidirecional, não havendo resistência à inspiração do paciente.

Análise estatística

O número adequado de participantes a serem estudados foi calculado com base em publicações prévias que mostravam qual intervenção, como efeitos do exercício, provocam alterações significativas, tal como aumento da frequência cardíaca, entre outros. Para esta magnitude de efeitos e para fixar o poder estatístico em 0,8 e erro alfa em 0,05, a amostra deveria compreender 20 indivíduos.

Todos os dados foram submetidos à análise de Kolmogorov-Smirnov para determinar se havia ou não distribuição normal da amostra e dos dados. As variáveis de exclusão da bioimpedância cardiotorácica: derrame pleural volumoso, anasarca, insuficiência aórtica moderada ou grave, uso de balão intra-aórtico, pressão arterial média >130mmHg, altura <1,20m ou >2,30m, peso <30kg ou >155kg, e uso de marca-passos com sensores para ajuste de frequência cardíaca de acordo com a frequência respiratória.
pareado. Para associação das variáveis independentes, foi utilizada a correlação de Pearson. Quando os valores de p foram significantes, comparações pareadas foram feitas por meio do teste de Bonferroni (post-hoc).

Os dados foram transportados para uma planilha sistemática do programa Prism GraphPad 5.0 (GraphPad Software, San Diego, CA). As variáveis categóricas foram expressas em números absolutos. Todos os resultados foram expressos em média±desvio padrão e valores de p<0,05 foram considerados estatisticamente significativos.

Considerações éticas

Todos os participantes deste estudo receberam informações detalhadas sobre a finalidade da pesquisa e os procedimentos a serem realizados. O protocolo foi enviado para o Comitê de Ética em Pesquisa do UNIFESP e aprovado sob o parecer número 420.737, com registro na Plataforma Brasil.

Os pacientes, antes de participarem do estudo, assinaram o termo de consentimento livre e esclarecido, conforme a resolução 466/2012 do Conselho Nacional de Saúde.

Resultados

Dentre os 29 participantes selecionados para o estudo, 20 concluíram o experimento (nove pacientes recusaram-se a participar) (Figura 1). Na Tabela 1 estão descritas as características demográficas, clínicas e de tratamento farmacológico da amostra estudada.

Respostas das variáveis hemodinâmicas centrais ao EI

A resposta hemodinâmica central apresentou um comportamento diferente entre as diferentes cargas de EI na amostra estudada. A FC aumentou com as cargas de 30% (C30) (64±15 vs 69±15 bpm; p=0,005) e 60% (C60) (67±14 vs 73±14 bpm, p=0,002), mas não apresentou mudanças no modo placebo (P) (Figura 2). Ocorreu diminuição do VS quando realizado o EI com a C30 (73±26 vs 64±20 ml; p=0,004) e não houve mudanças com as cargas P e C60 (Figura 3). O DC aumentou quando realizado o EI com a C60 (4,6±1,5 vs 5,3±1,7 l/min; p=0,001) e não apresentou mudanças com as cargas P e C30 (Figura 4).

Figura 1 – Diagrama de fluxo CONSORT.
Respostas das demais variáveis hemodinâmicas ao EI

Além da RHC, outras variáveis hemodinâmicas também sofreram modificações ao longo do EI com a C60. O placebo e a C30 não geraram nenhuma alteração nas variáveis apresentadas.

Quando realizado o EI com a C60, houve aumento da pressão arterial sistólica (PAS) (124,1 ± 27,4 vs 130,6 ± 25,9 mmHg; p=0,001) (Figura 5), da pressão arterial média (PAM) (85,7 ± 17,9 vs 89,2 ± 17,3 mmHg, p=0,004) (Figura 6), bem como aumento da escala de esforço percebido de Borg (0,3 ± 0,9 vs 1,1 ± 1,9, p=0,01) (Figura 7) e da escala subjetiva de dispneia (0,2 ± 0,7 vs 0,8 ± 1,5, p=0,02) (Figura 8).

Correlação

Houve moderada correlação entre o DC basal e a força muscular inspiratória (r=0,45; p=0,04) (Figura 9).

Discussão

O presente estudo é pioneiro ao descrever as alterações na RHC com diferentes cargas de EI em pacientes ambulatoriais com ICFER, utilizando um método não invasivo de monitorização hemodinâmica. Diferentes estratégias de

Respostas das demais variáveis hemodinâmicas ao EI

Além da RHC, outras variáveis hemodinâmicas também sofreram modificações ao longo do EI com a C60. O placebo e a C30 não geraram nenhuma alteração nas variáveis apresentadas.

Quando realizado o EI com a C60, houve aumento da pressão arterial sistólica (PAS) (124,1 ± 27,4 vs 130,6 ± 25,9 mmHg; p=0,001) (Figura 5), da pressão arterial média (PAM) (85,7 ± 17,9 vs 89,2 ± 17,3 mmHg, p=0,004) (Figura 6), bem como aumento da escala de esforço percebido de Borg (0,3 ± 0,9 vs 1,1 ± 1,9, p=0,01) (Figura 7) e da escala subjetiva de dispneia (0,2 ± 0,7 vs 0,8 ± 1,5, p=0,02) (Figura 8).

Correlação

Houve moderada correlação entre o DC basal e a força muscular inspiratória (r=0,45; p=0,04) (Figura 9).

Discussão

O presente estudo é pioneiro ao descrever as alterações na RHC com diferentes cargas de EI em pacientes ambulatoriais com ICFER, utilizando um método não invasivo de monitorização hemodinâmica. Diferentes estratégias de
TMI são utilizadas na prática clínica, porém não está claro qual intensidade de treinamento é a mais eficiente.

Houve um comportamento hemodinâmico diferente quando comparadas as cargas placebo, de 30% e 60%. Apenas a FC apresentou resposta semelhante ao EI com as cargas de 30% e 60%, com aumento dessa variável. Já o VS sofreu queda significativa somente quando utilizada a carga de 30%, e o DC aumentou apenas no EI com a maior carga, de 60%. O grupo controle (placebo) não apresentou nenhuma mudança significativa.

Neste estudo foi testada a hipótese de que diferentes cargas de EI poderiam produzir uma resposta hemodinâmica central diferente entre elas. Apesar de já ter sido testada tanto a variabilidade da FC quanto os efeitos da fadiga muscular respiratória através do TMI, este estudo, até então, é o único a verificar a resposta hemodinâmica central de diferentes cargas de EI em pacientes com ICFER.
Para avaliar a resposta hemodinâmica, foi utilizado um aparelho de bioimpedância cardiorápica, um método de avaliação hemodinâmica não invasiva que, quando comparado a métodos de termodiluição, apresentou elevada correlação. Mesmo quando utilizada na avaliação de pacientes cardiopatas, como demonstrado no estudo de Villacorta et al., a BCT demonstrou acurácia no cálculo do DC, índice cardíaco e VS quando comparada à ressonância magnética cardíaca. Portanto, no presente estudo, foi empregado um método de avaliação hemodinâmica capaz de registrar fidedignamente as mudanças ocorridas ao longo do EI.

A fraqueza muscular inspiratória, presente em cerca de 30 a 50% dos pacientes com ICFER, tem sido reconhecida como um fator que contribui para a limitação ao exercício nesses pacientes, além de possuir valor prognóstico independente.

Um dos principais estudos com TMI na IC foi realizado por Dall’ago et al., onde 32 pacientes foram randomizados em dois grupos (TMI-placebo e TMI 30%). Após 12 semanas de treinamento (7 vezes na semana, durante 30 minutos), os pacientes do grupo intervenção apresentaram aumento significativo de 115% na PImáx, 17% de aumento da captação de oxigênio e 19% de aumento na distância percorrida em seis minutos, além de melhora na qualidade de vida.

Os estudos com treinamento muscular inspiratório, realizados desde 1995 na IC, concentraram-se em demonstrar a melhora na força e resistência muscular, melhora da capacidade funcional e na qualidade de vida. Porém, as repercussões hemodinâmicas do EI continuam pouco esclarecidas.

Variáveis hemodinâmicas

A tendência da resposta hemodinâmica, quando um indivíduo saudável é submetido a uma carga resistiva ao exercício, é de elevar a PAS, ao mesmo tempo em que o DC aumentará e, independentemente, os componentes da fórmula desta variável. Em relação à intensidade do exercício, há evidências de que quanto maior a intensidade para o mesmo número de repetições, maior o aumento da FC e da pressão arterial. Da mesma forma, quando comparada à ressonância magnética cardíaca. Portanto, o que parece ter sido determinante para o não aumento do débito foi a queda de 12,5% do VS.

Alguns pesquisadores relatam que, durante o exercício nos pacientes com IC, ocorre um pequeno aumento do VS. Outros demonstram que não ocorre nenhum aumento dessa variável. No presente estudo, com carga de 60%, a resposta foi um pequeno aumento de 4,5% e uma diminuição no EI com carga de 30%.

A diminuição do VS e o aumento da FC com carga de 30% reportados nesse estudo são semelhantes a repercussão hemodinâmica da manobra de Muller, que também faz com que haja pressão intratorácica negativa. Orhan et al., estudaram o efeito hemodinâmico da manobra da Muller, sustentada por 12 segundos, em 20 adultos jovens saudáveis e, dentre outros resultados, encontraram diminuição do VS e aumento da FC. Hall et al., avaliaram o efeito da manobra de Muller, sustentada por 15 segundos, em 8 pacientes com insuficiência cardíaca congestiva e concluíram que, durante a manobra, ocorre aumento da pós-carga ventricular esquerda e diminuição do volume sistólico, porém a FC não sofreu alterações significativas.

Entretanto, a pressão necessária para a realização da manobra de Muller é em torno de -40 mmHg (-54 cm/H2O), e a carga média utilizada durante as sessões de EI foram de -31 cm/H2O com 30% e -61 cm/H2O com 60%. Desse modo, a carga que mais se aproximou do valor para a realização da manobra de Muller não foi a que apresentou comportamento semelhante à manobra, exceto o aumento da FC.

McConnell e Griffiths, avaliaram a resposta aguda da FC, PA e PAM a diferentes cargas de treinamento muscular inspiratório (50%, 60%, 70%, 80% e 90%) em 8 atletas. Todas as cargas provocaram aumento da FC, porém apenas a carga de 60% provocou um aumento sustentado da PAM, PES e pressão arterial diastólica (PAD). Como conclusão, os autores sugerem evidência de uma resposta à ativação do metaboreflexo nesta carga.

O resultado encontrado pelos autores citados acima são semelhantes ao do presente estudo, onde ambas as cargas produziram aumento da FC, porém apenas a carga de 60% gerou aumento significativo na PAS e PAM, o que pode ter ocorrido devido à ativação do metaboreflexo inspiratório.

Essa hipótese está de acordo com outros estudos, em que os autores afirmam que a ativação do metaboreflexo inspiratório se manifesta pelo aumento da FC e da PAM.

A ativação do metaboreflexo pelo trabalho muscular inspiratório é um fator que contribui para a intolerância ao exercício nos pacientes com IC. Durante o aumento do trabalho respiratório, ocorre redistribuição do fluxo sangüíneo dos músculos periféricos para o diafragma, cerca de 14 a 16% de roubo de fluxo do DC, ocasionando exacerbação da fadiga dos músculos periféricos.

Corroborando os achados do presente estudo, Moreno et al., avaliaram o efeito da fadiga muscular respiratória na oxigenação e perfusão dos músculos intercostais e do antebraço em pacientes com ICFER. Após realizarem o exercício inspiratório com carga de 60% até a fadiga, os autores relataram diminuição da perfusão e oxigenação tanto no músculo intercostal quanto no antebraço, e sugerem que isso leva a uma redução do reflexo de perfusão muscular da musculatura periférica, levando à ativação do metaboreflexo inspiratório.

No entanto, a longo prazo, Chiappa et al., demonstraram que 4 semanas de TMI com carga de 60% é capaz de atenuar o metaboreflexo inspiratório em pacientes com IC e fraqueza...
Correlação entre DC e Plmáx

Foi encontrada, em nosso estudo, uma moderada correlação entre DC e Plmáx.

Resultado semelhante foi encontrado por Nishimura et al.,23 ao avaliarem 23 pacientes com IC. Porém, a correlação encontrada foi entre o índice cardíaco e a Plmáx. Naquela época, os autores já sugeriram que a musculatura inspiratória poderia ser dependente da função cardíaca.

Mais recentemente, Filusch et al.,24 avaliaram 532 pacientes com insuficiência cardíaca congestiva por meio de cateterismo cardíaco direito e também encontraram moderada correlação entre DC e Plmáx. Os autores afirmam que a Plmáx, por ser facilmente medida na prática clínica, pode ser um parâmetro adicional na monitorização que a PImáx, por ser facilmente medida na prática clínica, pode ser considerada valor prognóstico mesmo naqueles que fazem uso de β-bloqueadores.

Limitações do estudo

O tamanho da amostra impossibilitou avaliar apenas o grupo com fraqueza muscular inspiratória e, tendo em vista que o presente estudo foi de efeito agudo, não sabemos se esses efeitos são mantidos ou atenuados. São necessárias futuras investigações que avaliem a RHC relacionada ao TMI de forma crônica.

Aplicabilidade clínica

Esses dados apontam que a resposta hemodinâmica do EI, em suas diferentes propostas de carga resistiva com o resistor de carga linear, poderia ter um potencial de aplicabilidade no tratamento não medicamentoso em pacientes com IC (NYHA II e III), de forma segura, sem efeitos adversos.

Conclusões

Quando utilizada a carga de 60%, em uma sessão única de exercício inspiratório, foram observadas alterações na RHC. Particularmente aumentaram a frequência cardíaca, o débito cardíaco, a escala de Borg e a sensação subjetiva de dispneia. Já a carga de 30% promoveu diminuição do volume sistólico. O placebo não promoveu mudanças significativas na RHC no presente estudo e, por fim, observou-se uma correlação moderada entre débito cardíaco e força muscular inspiratória.

Contribuição dos autores

Concepção e desenho da pesquisa: Marchese LD, Chermont S, Pereira SB, Mesquita ET; Obtenção de dados: Marchese LD, Chermont S, Warol D, Quintão M; Análise e interpretação dos dados: Marchese LD, Warol D, Oliveira LB, Mesquita ET; Análise estatística: Marchese LD, Chermont S; Redação do manuscrito: Marchese LD, Warol D; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Chermont S, Oliveira LB, Pereira SB, Quintão M, Mesquita ET.

Potencial conflito de interesses

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica

Este artigo é parte de dissertação de Mestrado de Luana de Decco Marchese pela Universidade Federal Fluminense.
Referências

1. Tucker WJ, Haykowsky MJ, Seo Y, Stebling E, Forman DE. Impaired Exercise Tolerance in Heart Failure: Role of Skeletal Muscle Morphology and Function. Curr Heart Fail Rep. 2018. [Epub ahead of print].

2. Achten RJ, Staal JB, van der Voort S, Kemps HM, Koers H, Jongert MW et al. Exercise-based cardiac rehabilitation in patients with chronic heart failure: a Dutch practice guideline. Neth Heart J. 2015;23(1):6-17.

3. Miyagi M, Kinugasa Y, Sota T, Yamada K, Ishisugi T, Hiroi M et al. Diaphragm Muscle Dysfunction in Patients With Heart Failure. J Card Fail. 2018;24(4):209-16.

4. Meyer FJ, Borst MM, Zugck C, Kirschke A, Schellberg D, Kübler W, et al. Impaired central respiratory muscle function in patients with chronic heart failure changes with beta-blocker treatment. Eur J Cardiovasc Prev Rehabil. 2009;16(4):424-9.

5. Frankenstein L, Nelles M, Meyer FJ, Sigg C, Schellberg D, Remppis BA et al. Validity, prognostic value and optimal cutoff of respiratory muscle strength in patients with chronic heart failure changes with beta-blocker treatment. Eur J Prev Cardiol. 2018;25(16):1691-701.

6. Wu J, Kuang L, Fu L. Effects of inspiratory muscle training in chronic heart failure patients: A systematic review and meta-analysis. Braz J Phys Ther. 2013;17(2):194-202.

7. Gomes Neto M, Ferrai F, Lopes AA, Carvalho VO, Stein R. The impact of high-intensity inspiratory muscle training on exercise capacity and inspiratory muscle strength in heart failure with reduced ejection fraction: a systematic review and meta-analysis. Clin Rehabil. 2018;32(11):1842-92.

8. Dall’Ago P, Chiappa GR, Guth H, Stein R, Ribeiro JP. Inspiratory muscle training with heart failure and inspiratory muscle weakness. J Am Coll Cardiol. 2006;47(4):757-63.

9. Archiza B, Simões RP, Mendes RC, Fregonezi GA, Catali AM, Borghi-Silva A. Acute effects of different inspiratory resistive loading on heart rate variability in healthy elderly patients. Braz J Phys Ther. 2013;17(4):401-8.

10. Moreno AM, Castro RR, Silva BM, Villacorta H, Sant’Anna Junior M, Nóbrega AC. Intercostal and forearm muscle deoxygenation during respiratory fatigue in patients with heart failure: potential role of a respiratory muscle metaboreflex. Braz J Med Biol Res. 2014;47(11):972-6.

11. Paredes OL, Shiite J, Shinke T, Watanabe S, Otake H, Matsumoto D et al. Impedance Cardiography for cardiac output estimation. Circ J. 2006;70(9):1164-8.

12. Villacorta Junior H, Villacorta AS, Amador F, Hadlich M, Albuquerque DC, Azevedo CF. Throat inspiratory capacity and respiratory muscle metaboreflex activation in heart failure patients. Arq Bras Cardiol. 2012;99(6):1149-55.

13. McConnell AK, Griffiths LA. Acute cardiorespiratory responses to inspiratory pressure threshold loading. Med Sci Sports Exerc. 2010;42(9):1696-703.

14. Villacorta Junior H, Villacorta AS, Amador F, Hadlich M, Albuquerque DC, Azevedo CF. Throat inspiratory capacity and respiratory muscle metaboreflex activation in heart failure patients. Arq Bras Cardiol. 2012;99(6):1149-55.

15. McConnell TR. A review to develop an effective exercise training for heart failure patients. Eur J Med Pharmacol. 2005;41(1):49-56.

16. Hall MJ, Ando S, Floras JS, Bradley TD. J Magnitude and time course of hemodynamic responses to Mueller maneuvers in patients with congestive heart failure. J Am Coll Cardiol. 2008;52(11):1537-61.

17. Filusch A, Ewert R, Altesellmeier M, Zugck C, Hetzer R, Borst MM et al. Respiratory muscle dysfunction in congestive heart failure--the role of pulmonary hypertension. J. Int J Cardiol. 2011;150(2):182-5.