Objective: This review aimed to analyse the timing of carotid endarterectomy (CEA) and carotid artery stenting (CAS) after the index event as well as 30 day outcomes at varying time periods within 14 days of symptom onset.

Methods: A systematic review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-analysis statement, comprising an online search of the Medline and Cochrane databases. Methodical quality assessment of the included studies was performed. Endpoints included procedural stroke and/or death stratified by delay from the index event and surgical technique (CEA/CAS).

Results: Seventy-one studies with 232,952 symptomatic patients were included. Overall, 34 retrospective analyses of prospective databases, nine prospective, three RCT, three case control, and 22 retrospective studies were included. Compared with CEA, CAS was associated with higher 30 day stroke (OR 0.70; 95% CI 0.58–0.85) and mortality rates (OR 0.41; 95% CI 0.31–0.53) when performed ≤ 2 days of symptom onset. Patients undergoing CEA/CAS were analysed in different time frames (≤ 2 vs. 3–14 and ≤ 7 vs. 8–14 days). Expedited CEA (vs. 3–14 days) presented a sampled 30 day stroke rate of 1.4%; 95% CI 0.9–1.8 vs. 1.8%; 95% CI 1.8–2.0, with no statistically significant difference. Expedited CAS (vs. 3–14 days) was associated with no difference in stroke rate but statistically significantly higher mortality rate (OR 2.76; 95% CI 1.39–5.50).

Conclusion: At present, CEA is safer than transfemoral CAS within 2/7 days of symptom onset. Also, considering absolute rates, expedited CEA complies with the accepted thresholds in international guidelines. The ideal timing for performing CAS (when indicated against CEA) is not yet defined. Additional granular data and standard reporting of timing of intervention will facilitate future monitoring.

Keywords: Carotid stenosis, Death, Endarterectomy, carotid, Stent, Stroke

Article history: Received 24 February 2021, Accepted 13 August 2021, Available online 23 December 2021

© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Society for Vascular Surgery. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
second (more severe) event against the potential for a higher peri-procedural risk when carotid interventions are performed very early after the onset of symptoms.

The optimal timing for carotid revascularisation, by either carotid endarterectomy (CEA) or carotid artery stenting (CAS), remains a matter for debate. The 2017 European Society for Vascular Surgery (ESVS) guidelines advise that CEA should be performed within 14 days of the index neurological event, as this was the highest risk time period for recurrent stroke. This is particularly true for neurologically stable patients presenting with TIA or minor stroke. However, it remains unclear as to the optimal timing of either CEA or CAS within this 14 day time period (i.e., is it better for the carotid intervention to be performed < 2 days, < 7 days, or perhaps 8 – 14 days after symptom onset?).

A recent systematic review reported that the risk of recurrent stroke can vary from 6% within 2 – 3 days of the index event, to 20% within 7 days, and up to 26% within 14 days of the index event. Conversely, a meta-analysis of published studies comparing expedited carotid interventions (2 days) vs. early (3 – 14 days) found a significantly higher risk of procedural stroke when CEA was performed within 2 days of the index event. However, this systematic review did not include two large national CEA registries (> 70 000 CEAs), which confounds meaningful interpretation of their data. In the case of CAS, the available data on safety very early after the onset of symptoms appears limited.

The lack of high quality evidence and consensus definitions for what constitutes “early” or “urgent” carotid interventions has contributed to conflicting results in the literature. Heterogeneity regarding patient symptoms, medical therapy, and varying surgical approaches have also led to polarised debates about the timing of CEA in patients who present with neurological symptoms.

The aims of the current systematic review and meta-analysis were to analyse temporal changes in the timing of carotid interventions after symptom onset and to determine 30 day outcomes following CEA and CAS when performed at varying time periods in the first 14 days after onset of symptoms, to define the optimal timing and carotid intervention (CEA vs. CAS) in recently symptomatic patients.

METHODS

A systematic review was conducted according to the recommendations of the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) statement. Using the Medline and Cochrane databases, the following query ("Carotid Stenosis"[Mesh]) AND "Stents"[Mesh] OR “Endarterectomy, Carotid”[Mesh] AND ("Stroke"[Mesh] OR Symptomatic OR timing of intervention) was used for online search.

Eligibility criteria included any publication regarding the revascularisation of symptomatic carotid artery stenosis by either CAS or CEA. Timing of intervention and impact of delay on procedural risks were documented. Only atherosclerotic stenotic carotid disease was considered, with exclusion of procedures performed for non-atherosclerotic pathologies.

Exclusion criteria were (1) articles published in a language other than English; and (2) case reports and literature reviews.

Endpoints included any stroke and/or death within 30 days of intervention stratified by delay of intervention after the index event and by intervention technique (CEA and

Figure 1. Preferred reporting items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram summarising literature screening process for studies of timing after index event and outcome after carotid endarterectomy (CEA) or carotid artery stenting (CAS).
Article (Year)	Type of article	Journal	CEA/ CAS	Patients	Symptomatic	Definition delay (days)	Timing of intervention	Mean delay ± SD – d	
Kashyap et al. (2020)	Prosp; Multicentre	Stroke Neurosurg	CAS	632	164 (26)	NR	NR	NR	
Karpfenko et al. (2020)	Retros; Single centre	J Stroke Cerebrovasc Dis	CEA/CAS	1 791	1215 (57); CAS: 917 (43)	160 (8.9)	NR	NR	NR
Jankowitz et al. (2020)	Retros analysis of prosp data; Single centre	Neurosurgery	CEA/CAS	120	CEA: 59 (49.2); CAS: 61 (59.8)	120 (100)	Urgent (0–2)	0–2 d: 120 (100)	CAS: 1.6 ± 0.8; p <0.001
Roussopoulos et al. (2019)	Prosp; Multicentre	Eur J Neurol	CAS	311	311 (100)	Urgent (0–2); Early (3–14)	0–2 d: 63 (20.3); 3–14 d: 248 (79.7)	NR	NR
Howie et al. (2019)	Retros; Single centre	World Neurosurg	CAS/CAS	314	CEA: 204 (64.9); CAS: 110 (35.1)	265 (84.5)	NR	NR	NR
Vang et al. (2019)	Retros; Single centre	Surgery	CAS	1233	509 (41.3)	NR	NR	NR	NR
Lee et al. (2018)	Retros; Multicentre	Ann Vasc Surg	CAS/CAS	677	CEA: 331 (48.9); CAS: 456 (61.1)	677 (100)	NR	NR	NR
Huang et al. (2018)	Retros; Single centre	J Vasc Surg	CAS	238	238 (100)	Early (0–14); (0–2); (3–7); (8–14); Delayed (15–180)	0–2 d: 11 (4.6); 3–7 d: 23 (9.7); 8–14 d: 23 (9.7); 15–180 d: 181 (76.1)	NR	NR
Rocco et al. (2018)	Retros analysis of prosp data; Single centre	J Vasc Interv Radiol	CEA/CAS	110	CEA: 48 (43.6); CAS: 62 (56.4)	110 (100)	NR	NR	CAS: 1.7 ± 2.4; CAS: 2.8 ± 2.1
Seguchi et al. (2017)	Retros; Single centre	J Stroke Cerebrovasc Dis	CAS	105	105 (100)	Early (0–2); Delayed (3–180)	0–2 d: 40 (38.1); 3–180 d: 65 (61.9)	NR	NR
Rannier et al. (2017)	Retros analysis of prosp data; Multicentre	Stroke EVA-3S, SPACE, ICSS, CREST	CEA vs. CAS	4 138	4 138 (100)	Early (0–7); Delayed (8–180)	0–7 d: 513 (12.4); 8–180 d: 3625 (87.6)	NR	NR
Nordsamting et al. (2017)	Retros analysis of prosp data; Single centre	Eur J Vasc Endovasc Surg	CAS/CAS	2 045	CAS: 2.8	2 045 (100)	Early (0–7); Delayed (8–180)	0–7 d: 226 (11); 8–180 d: 1819 (89)	34.5 ± 15.6
Kazandjian et al. (2016)	Retros analysis of prosp data; Single centre	J Vasc Surg	CAS	2 093	CAS: 677 (100)	Early (0–7); Delayed (8–180)	0–7 d: 287 (14); 8–180 d: 1806 (86)	31 ± 14.4	
Tsantillas et al. (2016)	Retros analysis of prosp data; Single centre	J Vasc Surg	CAS	187	187 (100)	NR	NR	12.8 ± 4.9	
Charbonneau et al. (2016)	CEA/CAS vs. BMT	Stroke	CAS/CAS	561	CEA/CAS: 187 (33.3); BMT: 374 (66.7)	103 (100)	NR	NR	NR
Chici et al. (2015)	Retros; Single centre	Ann Vasc Surg	CAS	322	322 (100)	Early (0–14); Delayed (15–30); 15–90 d: 37 (35.9); 91–180 d: 26 (25.2)	0–14 d: 40 (38.1); 15–90 d: 37 (35.9); 91–180 d: 26 (25.2)	36.5 ± 21.4	
Kretz et al. (2015)	Retros analysis of prosp data; Single centre	Ann Vasc Surg	CAS	417	CAS: 677	417 (100)	Early (0–15); Deferred (16–45); Delayed (46–180)	0–15 d: 158 (37.9); 16–45 d: 79 (18.9); 46–180 d: 180 (43.2)	7.7 ± 3.8
Charollai et al. (2014)	Retros; Single centre	Eur J Vasc Endovasc Surg	CAS	149	149 (100)	Early (0–14); Late (15–180)	0–14 d: 62 (41.6); 15–180 d: 87 (58.4)	NR	NR
Ranieri et al. (2014)	Retros; Single centre	Eur J Vasc Endovasc Surg	CAS	761	761 (100)	Early (0–14); (0–2); (3–7); (8–14); Delayed (15–180)	0–2 d: 206 (27.1); 3–7 d: 219 (28.8); 8–14 d: 136 (17.9); 15–180 d: 200 (26.3)	NR	NR
Tsivgos et al. (2014)	Prosp; Multicentre	Eur J Neurol	CAS	165	165 (100)	Ultra-Early (0–2); Early (3–14)	0–2 d: 20 (12); 3–14 d: 145 (88)	6 ± 1.7	
Mo et al. (2014)	Retros analysis of prosp data; Single centre	J NeuroIntervent Surg	CAS	402	169 (42.0)	NR	NR	NR	
Shahidi et al. (2013)	Prosp; Single centre	Stroke	CAS	115	115 (100)	Early (0–14); Deferred (15–30); Delayed (31–180)	0–14 d: 40 (38.1); 15–90 d: 37 (35.9); 91–180 d: 26 (25.2)	36.3 ± 25.1	

Continued
Table 1—continued

Article (Year) Journal	Type of article	CEA/CAS	Patients	Symptomatic	Definition delay (days)	Timing of intervention	Mean delay ± SD – d
Sharpe** (2013) Eur J Vasc Endovasc Surg	Retrosp; Single centre	CEA	475	475 (100)	Early (0–14); Hyperacute (0–2); (3–77); (8–14); Delayed (15–180)	0–2 d: 41 (8.6); 3–7 d: 167 (35.2); 8–14 d: 133 (28.0); 15–180 d: 134 (28.2)	NR
Faggioli54 (2013) Ann Vasc Surg	Retrosp analysis of prop data; Single centre	CEA	610	162 (27)	Early (0–14); Deferred (15–30); Delayed (31–180)	0–14 d: 60 (37.0); 15–30 d: 18 (11.1); 31–180 d: 84 (51.9)	NR
Hartog5 (2013) Eur J Vasc Endovasc Surg	Retrosp; Single centre	CEA	555	555 (100)	Early (0–14); Delayed (15–180)	0–14 d: 105 (18.9); 15–180 d: 450 (81.1)	40.3 ± 15.9
Tas35 (2013) Adv Ther	Retrosp; Single centre	CEA/CAS	65	65 (100)			
Annambhotla** (2012) J Vasc Surg	Retrosp; Single centre	CEA	312	312 (100)	Early (0–30); (0–7); (8–14); (15–21); (22–30); Delayed (31–180)	0–7 d: 27 (8.7); 8–14 d: 17 (5.4); 15–21 d: 12 (3.8); 22–30 d: 12 (3.8); 31–180 d: 243 (77.9)	NR
Kessler56 (2012) J Neuroradiol	Retrosp; Single centre	CAS	55	55 (100)			
Kimiagaran** (2012) Vasc Endovascular Surg	Retrosp; Single centre	CEA/CAS	116	116 (100)			
Lin46 (2009) J Neuroradiolent Surg	Retrosp; Single centre	CAS	224	224 (100)	Early (0–30); Ultra-Early (0–14); Delayed (31–180)	0–30 d: 122 (54.5); 31–180 d: 102 (45.5)	NR
Gray62 (2009) Circ Cardiovasc Intervent EXACT	Prosp; Multicentre	CAS	6320	759 (12.0)			
Ballotta61 (2008) J Vasc Surg	Retrosp; Single centre	CEA	102	102 (100)	Early (0–14)	0–14 d: 102 (100)	6.3 ± 3.2
Setacci** (2008) Eur J Vasc Endovasc Surg	Prosp; Multicentre	CAS	57	57 (100)	Deferred for TIA (1–2); Deferred for Stroke (14–30)	1–2 d (TIA): 24 (42); 14–30 (Stroke): 33 (58)	NR
Massop** (2008) Catheter Cardiovasc Interv	SAPHIRE Registry	CEA/CAS	2001	555 (27.7)			
Steinhauer** (2008) J Vasc Surg	RCT	CEA/CAS	87	87 (100)			
Topakian1 (2007) Eur J Neurrol	Retrosp; Single centre	CAS	77	77 (100)	Early (0–14)	0–14 d: 23 (29.9); 15–180 d: 54 (70.1)	NR
Suzue** (2007) J Vasc Surg	Retrosp; Single centre	CEA	72	72 (100)	Early (0–30); Delayed (31–180)	0–30 d: 15 (20.8); 31–180 d: 57 (79.2)	NR
Dellagrammaticas1 (2007) Clin Med GALA TRIAL	RCT	CEA	1001	867 (86.6)			
Flammaggia1 (2007) J Vasc Surg	Retrosp analysis of prop data; Single centre	CEA	442	170 (38.5)			
Sbarigia (2006) Eur J Vasc Endovasc Surg	Prosp; Multicentre	CEA	96	96 (100)			
Imam1 (2005) Am J Neuroradiol	Retrosp; Single centre	CAS	17	17 (100)			
Rantner** (2005) Eur J Vasc Endovasc Surg	Retrosp; Single centre	CEA	104	104 (100)	Acute (0–24 hours); Ultra-Early (0–6 hours); (0–27); (28–180)	0 d: 7 (6.7); <28 d: 29 (27.9); ≥28 d: 62 (39.6)	NR
Ecker** (2004) J Neuroursurg	Case Control	CEA/CAS	436	436 (100)			
Kastrup** (2003) Cerebrovasc Dia	Case Control	CEA/CAS	242	155 (64.0)			
Welsh** (2003) Cerebrovasc Dia	Prosp; Multicentre	CEA	40	40 (100)	Early (0–1); Delayed (60–180)	0–1 d: 19 (47.5); 60–180 d: 21 (52.5)	NR
ECST1 (1988) Lancet	RCT	CEA vs. BMT	1807	1807 (100)			
Table 1-continued

Article (Year) Journal	Type of article	CEA/ CAS	Patients	Symptomatic	Definition delay (days)	Timing of intervention	Mean delay ± SD – d
National Registry							
Kuhrij ²⁵ (2019) Eur J Vasc Endovasc Surg Dutch Audit for Carotid Intervention	Retrospective analysis of prosop data; Multicentre	CEA	8 620	8 620 (100)	Early (0–14)	0–14 d: 6645 (78)	11 ± 1.7
Faatreh²³ (2018) J Vasc Surg National Quality Improvement	Retrospective analysis of prosop data; Multicentre	CEA	9 271	9 271 (100)	Emergency: Performed within the same hospitalisation OR reported as emergency by the team	Emergency: 546 (5.9); Non-emergency: 8725 (94.1)	NR
Jonsson ²³ (2015)		CAS	4 717	4 717 (100)	Early (0–14); 0–2; (3–7); (8–14); Delayed (15–180)	0–2 d: 550 (11.6); 3–7 d: 1579 (33.4); 8–14 d: 1244 (26.3); 15–180 d: 1344 (28.4)	NR
Witt ²² (2013) Stroke Danish Stroke Registry/Danish Vascular Registry	Retrospective analysis of prosop data; Multicentre	CEA	8 079	8 079 (100)	Early (0–14)	0–2 d: 13 (4.0); 3–7 d: 85 (26.3); 8–14 d: 80 (24.8); 15–180 d: 145 (44.9)	NR
Faatreh²³ (2018) J Vasc Surg National Quality Improvement	Retrospective analysis of prosop data; Multicentre	CEA	989	989 (100)	Early (0–7); Delayed (8–180)	0–7 d: 3247 (94.7); 8–180 d: 180 (5.3)	NR
Venermo²² (2017) Eur J Vasc Endovasc Surg QV/ Vascenet	Retrospective analysis of prosop data; Multicentre	CEA/CAS	58 607	58 607 (100)	Early (0–14)	0–14 d: 227 (61.7); 15–180 d: 141 (36.8)	NR
Kjøstad²² (2017) Eur J Vasc Endovasc Surg National Norwegian Carotid Study	Retrospective analysis of prosop data; Multicentre	CEA	368	368 (100)	Early (0–14)	0–14 d: 227 (61.7); 15–180 d: 141 (36.8)	12.75 ± 4.3
Lofthus²² (2016) Eur J Vasc Endovasc Surg UK National Vascular Registry	Retrospective analysis of prosop data; Multicentre	CEA	33 194	23 235 (70.0)	Early (0–14); 0–2; (3–7); (8–14); (15–21); Delayed (22–180)	0–2 d: 780 (3.4); 3–7 d: 5126 (22.1); 8–14 d: 6292 (27.1); 15–21 d: 2765 (11.9); 22–180 d: 8272 (35.6)	NR
Jonsson²² (2015) Eur J Vasc Endovasc Surg Swedvasc Registry	Retrospective analysis of prosop data; Multicentre	CAS	323	323 (100)	Early (0–14); 0–2; (3–7); (8–14); Delayed (15–180)	0–2 d: 13 (4.0); 3–7 d: 85 (26.3); 8–14 d: 80 (24.8); 15–180 d: 145 (44.9)	NR
Geraghty²² (2014) J Vasc Surg SVS Vascular Registry	Retrospective analysis of prosop data; Multicentre	CEA/CAS	8 640	5 758 (66.6); 2 882 (33.3)	Symptomatic: Neurologic events in the previous 12 months	Symptomatic: Delayed (15–180)	NR
Villwock²² (2014) J Stroke Cerebrovasc Dis Nationwide Inpatient Sample	Retrospective analysis of prosop data; Multicentre	CEA vs. CAS	72 797	72 797 (100)	Ultra-Early (0–2); Early (3–14)	0–2 d: 41008 (56.3); 3–14 d: 31789 (43.7)	NR
Schermerhorn²⁶ (2013) J Vasc Surg CMS	Retrospective analysis of prosop data; Multicentre	CEA/CAS	10 107	6 370 (63.0); 3 737 (37.0)	Early (0–14)	0–14 d: 3 916 (38.7)	NR
Nolan²² (2012) J Vasc Surg VSGNE 2003–2010	Retrospective analysis of prosop data; Multicentre	CEA/CAS	8 079	7 649 (94.6); 430 (5.4)	Early (0–14)	0–14 d: 2 763 (34.2)	NR

Continued
CAS). An analysis of reporting of timing of CEA and CAS after the index event was also performed.

Stroke was defined as a rapidly developing clinical syndrome of focal disturbance of cerebral function lasting more than 24 hours or leading to death with no apparent cause other than that of vascular origin. Stroke was considered procedural if the event occurred at any time between the revascularisation procedure (day 0) and day 30 after revascularisation.

Stroke was classified as disabling if there was an increase in the modified Rankin score (mRS) to ≥ 3, attributable to the event 30 days after the procedure. Neurological symptomatic status was defined as a transient ischaemic attack or minor disabling ischaemic stroke in the previous six months attributable to the ipsilateral carotid artery territory.

For the purpose of this meta-analysis, “expedited intervention” was used to define any intervention performed within two days of the index event. Index event was defined as the symptom that led the patient to seek medical advice as suggested in the ESVS guidelines.

Two reviewers (AC and JP) screened the identified studies independently and were also responsible for data extraction (Fig. 1). Collected data included type of study, year of publication, number of patients and consecutive-ness, adjudication of events by a clinical event committee (CEC), age, gender, and criteria for carotid revascularisation (presence and type of neurological symptoms and their timing). The definition of intervention delay regarding the index event was registered in different studies. Neurological events after the index event and before intervention were registered as well as procedural (30 day) events: stroke, myocardial infarction (MI), and death. Comparative data between early and delayed intervention were analysed, especially for interventions performed ≤ 2 days vs. between 3 and 14 days and for interventions performed ≤ 7 days vs. between 8 and 14 days of the index event.

When duplicates were identified, the most recent study was included unless the earlier version reported more data on specific parameters included in the analysis.
Table 2. Analysis of patient characteristics including the type of neurological symptoms undergoing carotid endarterectomy (CEA) or carotid artery stenting (CAS) after index event

Article (Year)	CEA / CAS	Time periods	Symptomatic CEA / CAS	Male sex	Type of event	Crescendo TIA / stroke in evolution	Afx	Minor / major stroke	New events before intervention
Jankowitz (2020)	CEA vs. CAS	All (0–180 d)	120 (100)	68.4 ± 11.3	38 (64)	NR	NR	NR	NR
Roussoupolou (2019)	CEA	All (0–14 d)	311 (100)	69 ± 11	230 (74)	128 (41)	28 (9)	–	183 (59)
Huang (2018)	CEA	All (0–180 d)	238 (100)	72 ± 9.1	158 (68)	176 (74)	–	71 (30)	62 (26)
Nordanstig (2017)	CEA	0–2 d	57 (23.9)	72 ± 10	34 (60.7)	48 (84)	–	18 (32)	9 (16)
Seguchi (2017)	CAS	All (0–180 d)	65 (100)	69.7 ± 5.3	59 (90.8)	NR	NR	NR	NR
Rantrier (2017)	CEA vs. EVA-3S, SPACE, ICSS, CRIST	All (0–180 d)	4138 (100)	68.4 ± 11.3	38 (64)	NR	NR	NR	NR
Charbonneau (2016)	CEA	All (0–180 d)	103 (100)	72.8 ± 13.7	71 (68.9)	42 (40.8)	–	21 (20.4)	40 (38.8)
Chieli (2015)	CEA	0–1 d	110 (27.4)	70.8 ± 14.1	75 (68)	46 (42)	–	29 (26)	35 (87)
Jonsson (2015)	CAS	All (0–180 d)	149 (100)	71.5	119 (79.9)	60 (40.3)	19 (12.7)	14 (9.4)	75 (50.3)

Continued
Article (Year)	CEA / CAS	Time periods	Symptomatic CEA / CAS	Age	Male sex	Type of event	Crescendo TIA / stroke in evolution	Afx	Minor / major stroke	New events before intervention
Tsivgoulis et al. (2014)	CEA	All	165 (100)	69 ± 10	114 (69)	50 (30)	–	–	115 (70)	NR
Shahidi (2013)	CEA	All	115 (100)	68 ± 10	154 (71)	44 (30)	–	–	101 (70)	NR
Sharpe (2013)	CEA	All	475 (100)	72 (37)	–	–	94 (20)	109 (23)	–	–
Faggioni et al. (2013)	CEA	All	162 (100)	81 (50)	–	9 (5.6)	–	72 (44.4)	NR	
National audits										
Annambhotla et al. (2012)	CEA	All	312 (100)	200 (64.1)	106 (34.0)	–	–	–	205 (65.6)	
Lin et al. (2009)	CAS	All	224 (100)							
Ballotta et al. (2008)	CEA	All	102 (100)	65 (65.7)	77 (71.3)	–	–	29 (28.7)	p = .002	p = .39
Setacci et al. (2008)	CAS	All	57 (100)	76.7 ± 8.0	37 (64.9)	–	–	–	NR	
Suzue et al. (2007)	CEA	All	72 (100)							NR
National audits										
Kuhrij (2019)	CEA	All	8620 (100)	72 ± 9.0	6010 (70)	NR	NR	NR	NR	NR
Dutch Audit for Carotid Intervention										
Fante et al. (2018)	CEA	All	9271 (100)							NR
National Quality Improvement										
eCEA										
Non-eCEA										
Tsantillas et al. (2018)	CEA	All	4717 (100)	69.8 ± 18	301 (67.8)	1351 (28.6)	–	797 (16.9)	2126 (45.1)	
ACS-NSQIP										
Rocco (2018)	CEA / CAS	All	110 (100)	78 (70.9)	10 (9.1)	–	–	100 (90.9)	NR	
Article (Year)	CEA / CAS	Time periods	Symptomatic CEA / CAS	Age	Male sex	Type of event	New events before intervention			
-----------------------------------	-----------	--------------	-----------------------	-----	----------	---------------	---------------------------------			
		(0–180 d)								
Avgironos43 (2017)	CEA	All	989 (100)	69.6 ± 0.7	653 (66)	NR	NR			
VSGNE Database		0 d	477 (48.2)	69.4 ± 10.5	307 (64.4)	NR	NR			
		1–2 d	96 (9.8)	70.1 ± 10.9	66 (68.8)	NR	NR			
		3–5 d	322 (32.6)	69.9 ± 10.8	210 (65.2)	NR	NR			
		6–180 d	94 (9.1)	69.3 ± 11.4	70 (74.5)	NR	NR			
Kjorstad18 (2017)	CEA	All	368 (100)	NR	NR	135 (36.7)	64 (17.4)			
National Norwegian Carotid Study		0 d	477 (48.2)	69.4 ± 10.5	307 (64.4)	NR	NR			
		1–2 d	96 (9.8)	70.1 ± 10.9	66 (68.8)	NR	NR			
		3–5 d	322 (32.6)	69.9 ± 10.8	210 (65.2)	NR	NR			
		6–180 d	94 (9.1)	69.3 ± 11.4	70 (74.5)	NR	NR			
Hobeau42 (2017)	CEA	187 (100)	71 ± 10	142 (75.9)	11029 (47.5)	3 553 (15.3)	8 229 (35.4)			
National Norwegian Carotid Study										
Viliwock12 (2014)	CEA/CAS	All	72 797 (100)	71.9 ± 8.2	1 731 (66.7)	1 041 (40.1)	54 (2.1)			
NIS Registry		0–2 d	41 008 (56.3)	69.8 ± 8.6	22 601 (55.1)	3 8001 (42.7)	3 007 (42.1)			
		3–14 d	31 789 (43.7)	72.8 ± 8.2	22 207 (50.3)	8 229 (35.4)	3 553 (15.3)			
Stromberg17 (2012)	CEA	All	2 596 (100)	71.9 ± 8.2	1 731 (66.7)	1 041 (40.1)	54 (2.1)			
Swedvasc Registry		0–2 d	148 (100)	69.8 ± 8.6	22 601 (55.1)	3 8001 (42.7)	3 007 (42.1)			
		3–14 d	804 (100)	72.6 ± 8.2	22 207 (50.3)	8 229 (35.4)	3 553 (15.3)			
Garg60 (2011)	CEA	All	2 237 (100)	71.0 ± 8.1	663 (46.6)	9 109 (100)	54 (2.1)			
Palombo62 (2009)	CEA	1 894 (32.6)	NR	NR	NR	NR	NR			
Italian Vascular Registry										
Halliday86 (2009)	CEA	All	4 576 (100)	71.0 ± 8.1	663 (46.6)	9 109 (100)	54 (2.1)			
UK Surgeons undertaking CEA		0–2 d	944 (20.6)	NR	NR	NR	NR			
		3–4 d	564 (14.3)	NR	NR	NR	NR			
		5–12 d	1 621 (35.4)	NR	NR	NR	NR			
		13–180 d	1 372 (30.0)	NR	NR	NR	NR			
Vogel82 (2009)	CEA/CAS	All	2 237 (100)	NR	NR	NR	NR			
Nationwide Inpatient Sample (2005)										
Glaudstone77 (2009)	CEA	105 (100)	NR	NR	NR	NR	NR			
Canadian Stroke Network										
Goodney66 (2008)	CEA	All	1 360 (100)	680 (50)	NR	572 (42.1)	340 (25)			
VSGNE (2003–2007)		Emergency / Urgent	309 (22.7)	NR	NR	NR	340 (25)			
Pell78 (2004)	CEA	All	855 (100)	510 (58.2)	NR	NR	NR	340 (25)		
National Prospective Survey Scotland										
Tu41 (2003)	CEA	All	4 192 (69.4)	NR	NR	NR	NR			

Data are presented as n (%) or mean ± standard deviation, unless stated otherwise. NA = not applicable; NR = not reported. p value is considered significant if ≤ .050.

* Of the most recent neurological event before intervention.
† Early category was subclassified into ultra-early (0–14 d) with not significant difference compared with other categories.
‡ Only minor strokes were included.
| Study, year | CEA/CAS | 0–2 d | 3–7 d | 8–14 d | 15–30 d | 31–180 d |
|-------------|---------|-------|-------|--------|---------|---------|
| **30 day stroke — % (n)** | | | | | | |
| Jankowitz, 2020 | CEA | 5.1 (3) | — | — | — | — |
| CAS | 3.3 (2) | — | — | — | — | — |
| Huang, 2018 | CEA | 27 (3) | 0 (0) | 4.3 (1) | 0.6 (1) | — |
| Tsantilas, 2018 | CAS | 3.8 (21) | 3.5 (56) | 1.8 (22) | 2.2 (30) | — |
| Sharpe, 2013 | CEA | 2.4 (1) | 1.8 (3) | 0.8 (1) | 0.8 (1) | — |
| Stromberg, 2012 | CEA | 10.8 (16) | 2.5 (20) | 3.4 (23) | 4.0 (39) | — |
| Nordanstig, 2017 | CEA | 8.0 (6) | 3.0 (9) | — | — | — |
| Averinos, 2017 | VSGNE | 3.5 (20) | — | 2.4 (10) | — | — |
| Tsantilas, 2016 | VSGNE | 0 (0) | 1.8 (2) | 1.5 (1) | 1.8 (3) | — |
| Loftus, 2016 UK National Vascular Registry | CEA | 3.1 (24) | 2.0 (103) | 1.7 (107) | 1.8 (199) | — |
| Jonsson, 2015 | CAS | 0 (0) | 3.5 (3) | 6.3 (5) | 3.5 (5) | — |
| Rantner, 2014 | CEA | 8 (3.9) | 4 (1.8) | 6 (4.4) | 5.2 (5) | — |
| Villwock, 2014 | CAS | 1.1 (341) | 1.6 (496) | — | — | — |
| Roussopoulou, 2019 | CEA | 7.9 (5) | 4.4 (11) | — | — | — |
| Seguchi, 2017 | CEA | 2.5 (1) | — | 6.2 (4) | — | — |
| Setacci, 2007 | CEA | 0 (0) | — | — | — | — |
| Blay, 2018 ACS-NSQIP | CEA | 2.7 (86) | 2.8 (5) | — | — | — |
| Rantner, 2017 | CEA | 1.3 (3) | 3.4 (63) | — | — | — |
| Annambhotla, 2012 | CEA | 0 (0) | 0 (0) | 1.6 (4) | — | — |
| Chisci, 2016 | CEA | 3.0 (3) | 0.4 (1) | — | — | — |
| Kretz, 2015 | CAS | 1.3 (2) | 1.5 (4) | — | — | — |
| Charmoille, 2014 | CAS | 0 (0) | — | 3.5 (3) | — | — |
| Faggioni, 2013 | CAS | 6.6 (4) | 2.9 (3) | — | — | — |
| Ballotta, 2008 | CAS | 0 (0) | — | — | — | — |
| Suzue, 2007 | CAS | 0 (0) | 0 (0) | 1.6 (4) | — | — |
| **30 day myocardial infarction — % (n)** | | | | | | |
| Jankowitz, 2020 | CEA | 3.4 (2) | — | — | — | — |
| CAS | 4.9 (3) | — | — | — | — | — |
| Huang, 2018 | CEA | 0 (0) | 0 (0) | 0 (0) | 3.3 (6) | — |
| Tsantilas, 2018 German Statutory Quality | CAS | 0.3 (1) | 0.1 (1) | 0 (0) | 0.1 (1) | — |
| Jonsson, 2015 | CAS | 0 (0) | 3.5 (3) | 2.5 (2) | 1.4 (2) | — |
| Averinos, 2017 | CEA | 1.4 (8) | 1.2 (5) | — | — | — |
| Tsantilas, 2016 | VSGNE | 2.0 (1) | 1.0 (1) | 0 (0) | 1.0 (1) | — |
| Roussopulo, 2019 | CEA | 0 (0) | 0.8 (2) | — | — | — |
| Seguchi, 2017 | CAS | 0 (0) | 0 (0) | 0 (0) | 0 (0) | — |
| Setacci, 2007 | CEA | 0 (0) | 0 (0) | 0 (0) | 0 (0) | — |
| Annambhotla, 2012 | CEA | 0 (0) | 0 (0) | 0 (0) | 0.8 (2) | — |
| Chisci, 2016 | CEA | 0 (0) | 0 (0) | 0 (0) | 1.8 (4) | — |
| Charmoille, 2014 | CEA | 0 (0) | 0 (0) | 0 (0) | 3.5 (3) | — |
| Faggioni, 2013 | CEA | 0 (0) | 0 (0) | 0 (0) | 0 (0) | — |
| Ballotta, 2008 | CEA | 0 (0) | 0 (0) | 0 (0) | — | — |
| Blay, 2018 ACS-NSQIP | CEA | 0.99 (32) | 0.56 (1) | — | — | — |
| Kretz, 2015 | CEA | 0.6 (1) | 1.2 (3) | — | — | — |
| **30 day mortality — % (n)** | | | | | | |
| Jankowitz, 2020 | CEA | 0 (0) | — | — | — | — |
| CAS | 1.6 (1) | — | — | — | — | — |
| Huang, 2018 | CEA | 0 (0) | 0 (0) | 0 (0) | 0.6 (1) | — |
| Tsantilas, 2018 German Statutory Quality | CAS | 2.2 (12) | 0.9 (14) | 0.6 (8) | 0.7 (10) | — |
| Jonsson, 2015 | CAS | 0 (0) | 0 (0) | 3.8 (3) | 0.7 (1) | — |
| Sharpe, 2013 | CEA | 0 (0) | 0 (0) | 0.8 (1) | 0 (0) | — |
| Stromberg, 2012 | CEA | 2.0 (3) | 1.2 (10) | 1.5 (10) | 1.7 (16) | — |
| Averinos, 2017 | VSGNE | 1.2 (7) | — | 1.4 (6) | — | — |
| Tsantilas, 2016 | CEA | 0 (0) | 1.0 (1) | 0 (0) | 1.0 (1) | — |
| Loftus, 2016 UK National Vascular Registry | CEA | 1.0 (8) | 0.9 (46) | 0.7 (44) | 0.8 (88) | — |
| Rantner, 2014 | CEA | 0.5 (1) | 0 (0) | 0.7 (1) | 0.5 (1) | — |
| Villwock, 2014 | CAS | 0.4 (129) | 0.8 (258) | — | — | — |
| Roussopoulou, 2019 | CEA | 0 (0) | 0.4 (1) | — | — | — |
| Nordanstig, 2017 | CEA | 0 (0) | 0.3 (1) | 0 (0) | 0 (0) | — |
| Seguchi, 2017 | CAS | 0 (0) | 0 (0) | 0 (0) | 0 (0) | — |
| Annambhotla, 2012 | CAS | 0 (0) | 0 (0) | 0 (0) | 0 (0) | — |
| Chisci, 2016 | CEA | 0 (0) | 0 (0) | 0 (0) | 0 (0) | — |
Quality assessment

The methodology of the studies and risk of bias were systematically assessed by two independent reviewers (AC and JP) using the Methodological Index for Non-Randomized Studies (MINORS) score, with a maximum score of 16 for non-comparative and 24 for comparative studies. A score of 8 was considered poor quality, 9—14 moderate quality, and 15—16 good quality for non-comparative studies. Cut off points were 14, 15—22, and 23—24, respectively, for comparative studies.

Authorship of the studies was unblinded during review. Discrepancies between the reviewers during the search, selection, and quality assessment were resolved by discussion. In case of persisting disagreement, a third reviewer was consulted.

Statistical analysis

The software Review Manager 5.4 (REVMAN) was used to analyse data. Odds ratios (OR) and 95% confidence intervals (CI) were used for dichotomous variables, and mean differences (MDs) with 95% CI for continuous data.

Statistical heterogeneity, defined as a measure of the variability of outcomes between studies, was assessed by the Cochran’s Q test: the H^2 test (Higgins and Thompson) was used to quantify the magnitude of heterogeneity. The parameter I^2 retrieved from the H^2 test was used with a cut off of 25% for low, 25%—50% for intermediate, and above 50% for high heterogeneity. A fixed effects model was used when heterogeneity (I^2) was less than 50% and a random effects model was used when heterogeneity (I^2) was high.

RESULTS

A total of 1 495 potentially relevant articles were identified initially. After reviewing title or abstract, 112 articles were retrieved and 71 judged eligible for inclusion (Fig. 1). Agreement between reviewers was reached for all articles and arbitration by the third reviewer was unnecessary.

Overall, there were 24 retrospective analyses of prospective national databases, 10 retrospective analyses of prospective databases, nine prospective studies, three RCTs, and three case control studies. The remaining 22 studies

Study, year	CEA/CAS	0–2 d	3–7 d	8–14 d	15–30 d	31–180 d
Blay, 2018 ACS-NSQIP	CEA	1.2 (38)	1.9 (3)	1.5 (4)	1.4 (1)	1.2 (1)
Kretz, 2015	CEA	1.7 (1)	1.7 (1)	1.2 (1)		
Charmoille, 2014	CEA	1.6 (1)	0 (0)	3.6 (3)		
Faggioli, 2013	CEA	0 (0)				
Ballotta, 2008	CEA	7.9 (5)	4.8 (12)			
30 day death / stroke $-$ % (n)						
Jankowittz, 2020	CEA	5.1 (3)				
Roussopoulou, 2019	CEA	4.9 (3)				
Huang, 2018	CEA	0 (0)				
Nordanstig, 2017	CEA	8.0 (6)	3.0 (9)			
Tsantillas, 2016	CEA	3.0 (2)	3.0 (3)	2.0 (1)		
Lofus, 2016 UK National Vascular Registry	CEA	29 (3.7)	128 (2.5)	132 (2.1)		254 (2.3)
Jonsson, 2015	CAS	12.4 (4)	6.3 (6)	4.1 (6)		
Rantner, 2014	CEA	2.4 (1)	1.8 (3)	0.8 (1)		0.8 (1)
Sharpe, 2013	CEA	11.5 (17)	3.6 (29)	4.0 (27)		5.4 (52)
Stromberg, 2012	CEA	29 (3.7)	152 (2.5)	212 (2.1)		
Swedvasc	CEA	29 (3.7)	128 (2.5)	132 (2.1)		254 (2.3)
Nordanstig, 2017	CEA	6 (8)	10 (3)			
Seguchi, 2017	CEA	3.0 (3)	1.7 (3)	0.8 (1)		
Rantner, 2017	CEA	3.0 (3)	1.7 (3)	0.8 (1)		0.8 (1)
Chisci, 2016	CEA	3.0 (3)	1.7 (3)	0.8 (1)		0.8 (1)

Mean 30 day death / stroke ± standard deviation

Study, year	CEA/CAS	0–2 d	3–7 d	8–14 d	15–30 d	31–180 d
Jankowittz, 2020	CEA	5.6 ±3.2				
Roussopoulou, 2019	CEA	4.7 ±7.2	3.3 ±1.7	2.0 ±1.5	1.8 ±1.5	
Tsantillas, 2018	CAS	3.5 ±1.2	3.3 ±0.9	2.5 ±0.6		
Villwock, 2014	CAS for Stroke	3.5 ±1.2	7.3 ±1.5			
Roussopoulou, 2019	CAS	6.5 ±1.7	10.3 ±2.0			
Seguchi, 2017	CAS	22.5 ±6.3	21.5 ±4.6			
Chisci, 2016	CEA	3.7 ±2.2	2.5 ±1.5			

TIA = transient ischaemic attack; AFX = amaurosis fugax

* In hospital data
were retrospective, single centre, or multicentre, analysis of patient data. The total number of symptomatic patients in the constituent studies was 232 952 (Table 1). Methodological quality is reported in Supplementary Table S1. A total of 18 non-comparative studies of moderate quality and 53 comparative studies (50 moderate, two poor quality, and one good quality) were included (Supplementary Table S1).

Definitions

The definitions of “delay” and “index event” were heterogeneous (Table 1). Most studies defined “early intervention” when CEA or CAS were performed within 14 days of the index event, although some studies applied stricter or looser definitions (Table 1). Stratification of the timing of events within the first 14 days was described in some studies, for example as “acute/urgent/emergency/ultra-early interventions” (Table 1). One study was identified that defined the timing of intervention as the time from the qualifying event (defined as the most recent neurological event before intervention, rather than the index event).8

Symptomatic status and timing of intervention

Considering all symptomatic patients (232 952), the time to intervention was reported for 148 653 patients (63.8%), of whom 44 410 (29.9%) underwent either CEA or CAS within the first 48 hours and 108 139 (72.7%) within the first 14 days after the index event.

Thirty-five studies reported outcomes after CEA alone (73 242), while five studies reported outcomes after CAS alone (5 443). Five studies reported mixed outcomes, three of which compared CEA (64 430) with CAS (15 624) (Table 2). Stratification of the demographic data, type of neurological index event, and occurrence of new neurological symptoms, stratified by intervention delay are detailed in Table 2.

Where reported, patients presenting with crescendo TIA were more likely to undergo an early intervention.9,10 The remaining presenting events (TIA, amaurosis fugax and stroke) were evenly distributed by intervention delay, with few exceptions (Table 2).

Primary and secondary outcomes

Peri-operative (30 day) outcomes along with data on hospitalisation duration (in days), stratified by intervention delay and by type of revascularisation (CEA vs. CAS) are detailed in Table 3. Almost all of the CAS procedures in the varying meta-analyses were performed via the transfemoral route. No published studies have evaluated outcomes for transcarotid artery revascularisation (TCAR) vs. CEA, with stratification for delays to treatment.11

Carotid endarterectomy vs. carotid artery stenting

Overall data. Outcome data from eight CEA studies (88 129) and two CAS studies (3 551) are detailed in Table 4. In CEA patients, 30 day stroke was 1.8% (95% CI 1.3 – 2.3) when performed within two days, vs. 2.2% (95% CI 0.3 – 4.2) between three and 14 days (Table 4). Across all intervention timings, there were higher rates of stroke after CAS (vs. CEA), while there were higher rates for MI after CEA (vs. CAS). Individual study data used to calculate the pooled rates are available in Supplementary Table S2 (Supplementary material).

Carotid endarterectomy vs. carotid artery stenting when performed ≤ 2 days after the index event. Two moderate quality studies reported outcomes after CEA vs. CAS (75 917) when performed within two days of the index event, including one retrospective analysis of prospective single centre data (120) and one retrospective analysis of Nationwide Inpatient Sample (NIS) database (72 797).12,13 Compared with CEA, meta-analysed data revealed significantly higher risks for 30 day stroke when CAS was performed within ≤ 2 days (OR 0.70; 95% CI 0.58 – 0.85) as well as significantly higher rates of 30 day death (OR 0.41; 95% CI 0.31 – 0.53) (Fig. 2). One of the above mentioned registries (72 797) analysed patients with and without cerebral infarction separately and concluded that expedited revascularisation in patients with cerebral infarction on admission increased the risk of iatrogenic stroke and death; the increase in mortality was more dramatically seen in patients treated by CAS. No differences were found in stroke/death rates between CEA and CAS if patients presented without infarction.12

Carotid endarterectomy vs. carotid artery stenting when performed 3 – 14 days after index event. The same large national registry (72 797) cited in the previous section also reported comparative outcomes between CEA vs. CAS when performed 3 – 14 days after the index event (with or without cerebral infarction). There was no statistically significant difference in 30 day stroke after CAS (1.8%) vs. after CEA (1.6%; OR 1.1; 95% CI 0.9 – 1.4). However, 30 day mortality was statistically significantly higher after CAS (1.6%) vs. after CEA (0.8%; OR 1.9; 95% CI 1.4 – 2.5). Again, no differences were found in stroke/death rates between CEA and CAS if patients presented without infarction.12

Outcomes after carotid endarterectomy

≤ 2 days vs. 3 – 14 days after index event. A total of nine moderate quality manuscripts were included in this analysis, three of which were retrospective analyses of national registries, two prospective multicentre studies, and four retrospective studies. CEA performed 3 – 14 days after the index event was associated with a statistically significantly lower 30 day death/stroke risk (OR 2.05; 95% CI 1.56 – 2.68) compared with performing CEA within ≤ 2 days of index event. No statistically significant difference was attained regarding 30 day stroke, MI, and mortality (OR 1.87; 95% CI 0.99 – 3.51, OR 1.50; 95% CI 0.21 – 10.45, and OR 1.11; 95% CI 0.58 – 2.14, respectively) (Fig. 3).
Meta-analysis of 30 day stroke, mortality, and MI included the same core studies, while in the analysis of 30 day death/stroke, three studies were excluded as they did not report the composite outcome,9,12,14 while one study was included that only reported combined stroke/death data, with worse outcomes reported in the expedited cohort (Fig. 3).15

≤ 7 days vs. 8 – 14 days after index event. A total of five moderate quality manuscripts were included in this analysis, two of which were retrospective analyses of national registries and three retrospective studies. Meta-analyses (Fig. 4) revealed that CEA performed within 7 days of the index event was associated with a significantly lower risk of 30 day stroke compared with 8 – 14 days (OR 0.67; 95% CI 0.54 – 0.84). There was no difference regarding CEA performed within 7 days of the index event (vs. 8 – 14) in the outcomes 30 day mortality (OR 1.86; 95% CI 0.19 – 18.21), 30 day death/stroke (OR 0.79; 95% CI 0.47 – 1.34), or 30 day MI (OR 1.94; 95% CI 0.09 – 41.03) (Fig. 4).

Outcomes after carotid artery stenting

≤ 2 days vs. 3 – 14 days after index event. This systematic review identified 17 578 patients who underwent CAS ≤ 14 days of symptom onset, including 9 833 (55.9%) who underwent CAS within ≤ 2 days of the index symptom. Two moderate quality national registries compared outcomes when CAS was performed within ≤ 2 days vs. 3 – 14 days of the index symptom.14,16 Compared with CAS interventions within 3 – 14 days, performing CAS ≤ 2 days was not associated with significant differences in 30 day stroke (OR 1.36; 95% CI 0.84 – 2.21) or 30 day MI (OR 2.23; 95% CI 0.34 – 14.41) However, performing CAS within ≤ 2 days of the index symptom was associated with significantly higher risks of 30 day death (OR 2.76; 95% CI 1.39 – 5.50) compared with CAS interventions within 3 – 14 days of the index event (Fig. 5). A single study (n = 323) reported the results of a comparative analysis of 30 day death/stroke and showed no significant difference when CAS was performed in either time period (OR 0.61; 95% CI 0.03 – 11.06).16

≤ 7 days vs. 8 – 14 days after index event. The same national registries that compared outcomes when CAS was performed ≤ 2 days vs. 3 – 14 days, also analysed outcomes ≤ 7 days vs. 8 – 14 days.14,16 Forest Plot analyses (Fig. 6) revealed that there was no significant difference in 30 day stroke, MI, or mortality when CAS was performed ≤ 7 days vs. 8 – 14 days after the index event (OR 1.18; 95% CI 0.29 – 4.83; OR 1.62; 95% CI 0.35 – 7.43; and OR 0.67; 95% CI 0.04 – 10.12, respectively).

Recurrent events while awaiting a carotid intervention

Recurrent neurological events occurring after a decision to perform CEA but before it was performed were reported rarely. In one single centre study, 42% of patients who waited 0 – 180 days to undergo CEA suffered a recurrent TIA or stroke prior to CEA.17 The National Norwegian Carotid Study reported that 3.3% suffered recurrent symptoms prior to undergoing CEA within 14 days of the index event (Table 2).18

Neurological outcome

Surprisingly, few studies used the National Institutes of Health Stroke Scale (NIHSS) to quantify improvements in neurological disability after carotid interventions, stratified for the timing of carotid interventions (Table 3). A single centre study reported improved neurological outcomes for interventions performed within 14 days vs. 15 – 30 days of the index event (NIHSS range 0.9 ± 0.4 vs. 0.5 ± 0.2; p = .011).15 Other studies report NIHSS range but with no discriminative data concerning carotid intervention delay from index event.13,16,20

Hospital stay

Hospital stay analysis presented a trend towards prolonged stay in patients undergoing CEA between 3 – 14 days after the index event vs. ≤ 2 days, with a mean difference (MD) of −1.28 (95% CI −6.96 – 4.40) (Fig. 7).

Only one study10 reported length of hospital stay after CAS, with non-significant difference between intervention ≤ 2 vs. 3 – 14 days (MD −1.0; 95% CI −3.1 – 1.1).

DISCUSSION

The ESVS guidelines advise that CEA (CAS) should be performed within 14 days of symptom onset.1 Evidence suggests that there has been a major drive towards performing interventions ≤ 14 days (especially in Europe), where the median delay to CEA is now 11 days in the Netherlands,21 7 days in Sweden,22 9 days in Germany,23 and 11 days in the UK.24 A temporal trend towards a progressive decrease in delays from index event to undergoing CEA (or CAS) has been reported by several national registries.24–26 The proportion of Danish Stroke Registry patients undergoing carotid interventions within two weeks of the index event increased from 13% in 2007 to 47% by 2010 (OR 5.8; 95% CI 4.3 – 10.1).25 Similar findings were reported by the UK National Vascular Registry.24 However, uncertainty persists regarding the ideal timing for either CEA or CAS within the 14 day time frame to balance the dichotomy between recurrent stroke prevention and minimising peri-operative risks.25

The Swedish Vascular Registry (Swedvasc) were the first to highlight concerns about intervening within ≤ 48 hours of the index event, as they observed an 11.5% rate of 30 day death/stroke, compared with 3.6% (3 – 7 days), 4% (8 – 14 days), and 5.4% (> 14 days) for CEA. However, only a small proportion of Swedvasc patients were treated ≤ 48 hours (5.7%), which may have limited the generalisability of the Swedish registry data.27 Other (much larger) national registries have not corroborated the Swedvasc findings. In the German CEA registry (56 000 CEAs), there was no difference in 30 day death/stroke between patients treated ≤ 48 hours by CEA (3%) vs. later time periods (2.5% between 3 – 7
days; 2.6% between 8 — 14 days; 2.3% for CEA thereafter).23 In the UK national registry involving 20 000 patients, conclusions were that the pathway from most recent symptom to surgery for patients with symptomatic carotid stenosis, could be shortened to maximise the benefit of intervention, without increased peri-operative risk in the period. However, they admitted a slight increase in peri-operative risk of stroke and death in the first 48 hours.24

In this systematic review, 44 410 (29.9%) carotid interventions were undertaken within ≤ 2 days of the index event with no significant difference in 30 day stroke, mortality, and MI, while CEA performed 3 — 14 days after the index event was associated with a significantly lower risk of the composite outcome 30 day death/stroke. On the other hand, CEA within 7 days was associated with a significantly lower risk of stroke (vs. 8 — 14 days). These contradictory results may be explained by the differences in included studies in each analysis, as already shown. Compared with the analysis of the outcomes stroke and mortality, analysis of the composite outcome stroke/death did not include data from two national registries and one prospective multicentre study,12,14 while it included data from one retrospective single centre study that only reported combined stroke/death data.15 Therefore, studies included in the analysis of 30 day stroke, death, and MI are of better study design compared with the studies in the 30 day death/stroke analysis, even though quality assessment is similar.

There were inconsistent findings regarding timing and outcomes in CAS patients. In patients undergoing CAS ≤ 2 days of the index event (vs. 3 — 14), there was no apparent difference in 30 day stroke or MI but there was a statistically significantly higher risk of death. Conversely, there were no differences in 30 day outcomes between CAS performed ≤ 7 days (vs. 8 — 14). The pathophysiology of procedural stroke may differ with expedited (vs. delayed) interventions in line with acute changes in atherosclerotic plaque vulnerability, which have been associated with an increased risk of embolism and neurological events after CAS.28

The systematic review also addressed the question of whether CEA or CAS was safer (or equivalent) when performed in the first 14 days after symptom onset. Compared with CEA, CAS was associated with significantly higher 30 day stroke and death rates when performed within ≤ 2 days of index event.

Table 4. Pooled estimated prevalence in different sized samples on main outcomes, stratified by intervention timing and type of procedure

Study or Subgroup	CEA	CAS	Odds ratio for 30-d stroke	Odds ratio for 30-d mortality
	0–2 days — % (95% CI)	3–14 days — % (95% CI)	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Villwock 2014	1.4 (0.9—1.8); SE 0.2*	1.8 (1.5—2.0); SE 0.1**	1.8 (1.3—2.3); SE 0.2 **	2.2 (0.3—4.2); SE 0.5**
Jankowitz 2020	1.5 (0.7—2.2); SE 0.2	0.9 (0.0—1.7); SE 0.2	0.6 (0.0—2.5); SE 0.6	0.2 (0.0—1.3); SE 0.3
Total (95% CI)	344 28995	156 9179	0.70 [0.58, 0.85]	100.0%
Heterogeneity: $p^2 = 0.77$, $df = 1$ ($p = 0.38$); $I^2 = 0%$	Test for overall effect: $Z = 3.64$ ($p = 0.001$)			

Figure 2. Forest plot showing the odds ratio (OR) for (A) 30 day stroke and (B) 30 day mortality after carotid endarterectomy (CEA) vs. carotid artery stenting (CAS) within two days of index event. A Mantel-Haenszel (M-H) fixed effect model was used for meta-analysis. OR are shown with 95% confidence intervals (CI).
of symptom onset. In an individual patient meta-analysis of data from the four largest RCTs comparing CEA with CAS (4138 patients), CAS was associated with significantly higher risks of 30 day stroke, mortality, and death/stroke when performed within ≤ 7 days of the index event.12 These data suggest that, at the current time, CEA is probably safer than CAS both when performed ≤ 2 days and ≤ 7 days after symptom onset. However, virtually all of the CAS procedures in the current meta-analyses were performed via the transfemoral route. Registry data suggest that TCAR can be performed with 30 day outcomes similar to CEA in symptomatic patients.29 Unfortunately, no studies have published outcome data for TCAR when used in the first 14 days after symptom onset,11 and these data are keenly awaited. There are relatively few data published on the incidence of recurrent events prior to expedited interventions. A prospective cohort study concluded that the risk was about

Study or Subgroup	< 2 days	3 – 14 days	Study or Subgroup	< 2 days	3 – 14 days	Study or Subgroup	< 2 days	3 – 14 days	Study or Subgroup	< 2 days	3 – 14 days			
	Events	Total												
Stromberg 2012	16	148	43	1481	138	Villwock 2014	345	28899	496	30248	Sharpe 2014	1	41	300
Ranter 2014	8	205	10	357	4	60	3	175	24	775	Loftus 2016	126	75	343
Sharpe 2014	1	41	3	300	0	60	3	175	0	60	Tsantilas 2016	2	775	210
Nordanstig 2017	6	75	9	343	0	60	3	175	24	775	Huang 2018	3	11	46
Roussopoulo 2019	5	66	11	248	0	60	3	175			Roussopoulo 2019	5	66	11
Total (95% CI)														
	408	30277	787	44865										

Heterogeneity: Tau² = 0.60; Chi² = 59.55, df = 8 (p < .001); I² = 87%
Test for overall effect: Z = 1.94 (p = .05)

Figure 3. Forest plot showing the odds ratio (OR) for (A) 30 day stroke, (B) 30 day myocardial infarction (MI), (C) 30 day mortality, and (D) stroke/mortality after carotid endarterectomy (CEA) within ≤ 2 vs. 3 – 14 days of the index event. A Mantel-Haenszel (M-H) fixed effect model was used for meta-analysis. OR are shown with 95% confidence intervals (CI).
12% with modern best medical therapy, but that half of all recurrent events occurred within two days of the index event. On the other hand, a recent meta-analysis revealed that 12% with modern best medical therapy, but that half of all recurrent events occurred within two days of the index event.

However, this attitude is likely to change as more symptomatic patients are started on dual antiplatelet therapy (DAPT) within 24 hours of symptom onset. The 2017 ESVS guidelines recommended that early treatment with DAPT “may be considered” to prevent recurrent events (prior to CEA) in patients with TIA or minor ischaemic stroke and an ipsilateral 50% – 99% stenosis awaiting CEA (Evidence IIb, Level C). At the time, the ESVS Writing Group were unable to recommend routine DAPT in all symptomatic patients because there was no compelling evidence that this strategy conferred additional benefit over antiplatelet monotherapy.

However, based on a meta-analysis of three recent RCTs (CHANGE, POINT, and FASTER) in which 10 447 patients were randomised within 24 hours of experiencing a minor ischaemic stroke (NIHSS ≤ 3) or “high risk TIA” (ABCD² score ≥ 4) to aspirin monotherapy or short term aspirin and clopidogrel DAPT, there is now compelling evidence to support short term treatment with DAPT in these patient subgroups. A recently published RCT also proved that in the subgroup of stroke patients with carotid artery stenosis, ticagrelor added to aspirin in the first 24 hours after the
A Study or Subgroup	< 2 days	3 – 14 days	Odds ratio for 30-d stroke	Odds ratio for 30-d MI	Odds ratio for 30-d mortality
Jonnson 2015 | 0 | 13 | 0.22, df = 1 (p = .64); I² = 0% | 0.67 [0.04, 10.12] | 0.11 [0.01, 2.21]
Tsantilas 2018 | 21 | 165 | 2.23 [0.34, 14.41] | 2.76 [1.39, 5.50] | 0.69 [0.04, 12.55]
Total (95% CI) | 21 | 165 | 2.76 [1.39, 5.50] | 2.76 [1.39, 5.50] | 2.76 [1.39, 5.50]
Heterogeneity: Chi² = 0.22, df = 1 (p = .64); I² = 0%
Test for overall effect: Z = 0.29 (p = .77)

B Study or Subgroup	< 7 days	8 – 14 days	Odds ratio for 30-d stroke	Odds ratio for 30-d MI	Odds ratio for 30-d mortality
Jonnson 2015 | 3 | 2 | 0.23, df = 1 (p = .63); I² = 0% | 2.84 [1.40, 5.77] | 2.84 [1.40, 5.77]
Tsantilas 2018 | 22 | 22 | 5.14 [0.32, 82.30] | 5.14 [0.32, 82.30] | 5.14 [0.32, 82.30]
Total (95% CI) | 25 | 27 | 5.14 [0.32, 82.30] | 5.14 [0.32, 82.30] | 5.14 [0.32, 82.30]
Heterogeneity: Chi² = 0.23, df = 1 (p = .63); I² = 0%
Test for overall effect: Z = 0.84 (p = .40)

C Study or Subgroup	< 7 days	8 – 14 days	Odds ratio for 30-d mortality
Jonnson 2015 | 0 | 98 | 0.11 [0.01, 2.21] | 0.17 [0.08, 3.63]
Tsantilas 2018 | 3 | 2129 | 0.36 [0.20, 6.60] | 0.36 [0.20, 6.60]
Total (95% CI) | 26 | 8 | 0.36 [0.20, 6.60] | 0.36 [0.20, 6.60]
Heterogeneity: Chi² = 2.88; Chi² = 3.33, df = 1 (p = .07); I² = 70%
Test for overall effect: Z = 0.29 (p = .77)

Figure 5. Forest plot showing the odds ratio (OR) for (A) 30 day stroke, (B) 30 day myocardial infarction (MI), and (C) 30 day mortality after carotid artery stenting (CAS) within ≤ 2 vs. 3 – 14 days of the index event. A Mantel-Haenszel (M-H) fixed effect model was used for meta-analysis. OR are shown with 95% confidence intervals (CI).

Figure 6. Forest plot showing the odds ratio (OR) for (A) 30 day stroke, (B) 30 day myocardial infarction (MI), and (C) 30 day mortality after carotid artery stenting (CAS) within ≤ 7 vs. 8 – 14 days of the index event. A Mantel-Haenszel (M-H) fixed effect model was used for meta-analysis. OR are shown with 95% confidence intervals (CI).
event, had greater absolute risk reduction of stroke or death at 30 days than stroke patients without carotid artery stenosis with a clinically meaningful benefit with a number needed to treat of 34 (95% CI 19 – 171).33

Methodological quality assessment revealed that the included studies are moderate to low quality, with a single high quality study in this analysis. Only a small number of studies was eligible for quantitative analysis, hindering conclusions. Also, heterogeneity of quantitative synthesis is significant, as determined by the I^2 test. Risk of bias is therefore significant. Probably one of the main biases was introduced in the election for CAS/CEA (selection bias), with fit patients treated by CEA while high risk patients were treated by CAS. Also, with the inclusion of mainly prospective cohort studies the risk of confounding is inherent.

In conclusion, the predicted magnitude of procedural risks will ultimately determine whether CEA or CAS is safer in the early time period after onset of symptoms.34 The evidence from the current systematic review and meta-analysis suggests that (at present) CEA is still safer than CAS/CEA (selection bias) is not yet defined and it remains to be seen whether newer CAS technologies (such as TCAR) can provide outcomes similar to CEA when performed in the first 2 — 7 days after symptom onset. Additional granular data and standard reporting of timing of intervention will facilitate future clinical decisions.

CONFLICT OF INTEREST
None.

FUNDING
None.

APPENDIX A. SUPPLEMENTARY DATA
Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejvs.2021.08.021.

REFERENCES
1 Naylor AR, Rico JB, de Borst GJ, Debuis S, de Haro J, Halliday A. Editor’s Choice - Management of Atherosclerotic Carotid and Vertebro Artery Disease: 2017 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg 2018;55:3–81.
2 Tsantilas P, Kuhn A, Kallmayer M, Knappich C, Schmid S, Kuetchou A, et al. Stroke risk in the early period after carotid related symptoms: a systematic review. J Cardiovasc Surg (Torino) 2015;56:845–52.
3 Milgrom D, Hajibandeh S, Antoniou SA, Torella F, Antoniou GA. Editor’s Choice - Systematic Review and Meta-Analysis of Very Urgent Carotid Intervention for Symptomatic Carotid Disease. Eur J Vasc Endovasc Surg 2018;56:622 –31.
4 Naylor AR. Time is brain: an update. Expert Rev Cardiovasc Ther 2015;13:1111–26.
5 den Hartog AG, Moll FL, van der Worp HB, Hoff RG, Kappelle LJ, de Borst GJ. Delay to carotid endarterectomy in patients with symptomatic carotid artery stenosis. Eur J Vasc Endovasc Surg 2014;47:233–9.
6 Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010;8:336–41.
7 Slim K, Nini E, Forestier D, Kwaitkowski F, Panis Y, Chipponi J. Methodological Index for Non-Randomized Studies (MINORS): development and validation of a new instrument. ANZ J Surg 2003;73:712–6.
8 Nordanstig A, Tsvigoulis G, Krogias C, Lazaris A, Moulakakis K, Georgiadis GS, et al. Safety of urgent endarterectomy in acute non-disabling stroke patients with symptomatic carotid artery stenosis: an international multicenter study. Eur J Neurol 2019;26:673–9.
9 Roussopoulou A, Tsivgoulis G, Krogias C, Lazaris A, Moulakakis K, Georgiadis GS, et al. Safety of urgent endarterectomy in acute non-disabling stroke patients with symptomatic carotid artery stenosis: an international multicenter study. Eur J Neurol 2019;26:673–9.
10 Seguchi M, Shibata M, Sato Y, Maekawa K, Kitano Y, Sano T, et al. The safety of carotid artery stenting for patients in the acute poststroke phase. J Stroke Cerebrovasc Dis 2018;27:83–91.
11 Coelho A, Prassaparo T, Mansilha A, Kappelle J, Naylor R, de Borst GJ. Critical appraisal on the quality of reporting on safety and efficacy of transcatheter artery stenting with flow reversal. Stroke 2020;51:2863–71.
12 Villwock MR, Singla A, Padalino DJ, Deshaies EM. Stenting versus endarterectomy and the impact of ultra-early revascularization for emergent admissions of carotid artery stenosis. J Stroke Cerebrovasc Dis 2014;23:2341–9.
13 Jankowitz BT, Tonetti DA, Kenmuir C, Rao R, Ares WJ, Zussman B, et al. Urgent treatment for symptomatic carotid stenosis: the Pittsburgh Revascularization and Treatment Emergently After Stroke (PIRATES) Protocol. Neurosurgery 2020;87:811–5.
14 Huang Y, Glicovicz P, Duncan AA, Kalra M, Oderich GS, DeMartino RR, et al. Outcomes after early and delayed carotid endarterectomy in patients with symptomatic carotid artery stenosis. J Vasc Surg 2018;67:1110–9.
15 Sharpe R, Sayers RD, London NJ, Bown MJ, McCarthy MJ, Nasim A, et al. Procedural risk following carotid endarterectomy in the hyperacute period after onset of symptoms. Eur J Vasc Endovasc Surg 2013;46:519–24.
16 Jonsson M, Gillgren P, Wanhamin A, Acosta S, Lindström D. Peri-procedural risk with urgent carotid artery stenting: a population-based Swedish study. Eur J Vasc Endovasc Surg 2015;49:506–12.

17 Chabonneau P, Bonaventure PL, Drudi LM, Beaudoin N, Blair JF, Elkouri S. An institutional study of time delays for symptomatic carotid endarterectomy. J Vasc Surg 2016;64:1726–33.

18 Kjøstred KE, Baksaas ST, Bundgaard D, Halbakk E, Hasselgård T, Jonung T, et al. Editor’s Choice - The National Norwegian Carotid Study: Time from Symptom Onset to Surgery is too Long, Resulting in Additional Neurological Events. Eur J Vasc Endovasc Surg 2017;54:415–22.

19 Chisci E, Pigozzi C, Troisi N, Tramaceire L, Zaccara G, Cincotta M, et al. Thirty-day neurologic improvement associated with early versus delayed carotid endarterectomy in symptomatic patients. Ann Vasc Surg 2015;29:435–42.

20 Rocco A, Sallustio F, Toschi N, Rizzotto B, Legramante J, Ippoliti A, et al. Carotid artery stent placement and carotid endarterectomy: a challenge for urgent treatment after stroke and 12-month outcomes in a comprehensive stroke center. J Interv Radiol 2018;129:1245–61.

21 Tsenilas P, Kühnl A, Kallmayer M, Pelisek J, Poppert H, Schmid S, et al. Factors associated with hospital dependent delay to carotid endarterectomy in the Dutch Audit for Carotid Interventions. Eur J Vasc Endovasc Surg 2019;58:495–501.

22 Kragstømer B, Nordanstig A, Lindstrøm D, Stromberg S, Thuresson M, Nordanstig J. Editor’s Choice - Effect of more expedited carotid intervention on recurrent ischaemic event rate: a national audit. Eur J Vasc Endovasc Surg 2018;56:467–74.

23 Tsenilas P, Kühnl A, Kallmayer M, Pelisek J, Poppert H, Schmid S, et al. Short time interval between the neurologic index event and carotid endarterectomy is not a risk factor for carotid surgery. J Vasc Surg 2017;65:12–20.

24 Loftus IM, Paraskevas KI, Johal A, Waton S, Heikkila K, Naylor AR, et al. Editor’s Choice - Delays to surgery and procedural risks following carotid endarterectomy in the UK National Vascular Registry. Eur J Vasc Endovasc Surg 2016;52:438–43.

25 Witt AH, Johnsen SP, Jensen LP, Hansen AK, Hundborg HH, Andersen G. Reducing delay of carotid endarterectomy in acute ischemic stroke patients: a nationwide initiative. Stroke 2013;44:868–90.

26 Kretz B, Kazandjian C, Bejot Y, Abello N, Brenot R, Giroud M, et al. Delay between symptoms and surgery for carotid artery stenosis: modification of our practice. Ann Vasc Surg 2015;29:426–34.

27 Stromberg S, Gelin J, Osterberg T, Bergstrom GM, Karlstrom L, Osterberg K, et al. Very urgent carotid endarterectomy confers increased procedural risk. Stroke 2012;43:1311–5.

28 van Lammersen GW, Reichmann BL, Moll FL, Bots ML, de Kleijn DP, de Vries JP, et al. Atherosclerotic plaque vulnerability as an explanation for the increased risk of stroke in elderly undergoing carotid artery stenting. Stroke 2011;42:2550–5.

29 Malas MB, Dakour-Aridi H, Wang GJ, Kashyap VS, Motaganahalli RL, Eldrup-Jorgensen J, et al. Transcarotid artery revascularization versus transfemoral carotid artery stenting in the Society for Vascular Surgery Vascular Quality Initiative. J Vasc Surg 2019;69:92–103.

30 Eriksson H, Koskinen S, Nuotio K, Heikilä HM, Vikatmaa P, Silvennoinen H, et al. Predictive Factors for Pre-operative Recurrence of Cerebrovascular Symptoms in Symptomatic Carotid Stenosis. Eur J Vasc Endovasc Surg 2020;60:809–15.

31 Fisch U, von Felten S, Wiencierz A, Jansen O, Howard G, Hendrikse J, et al. Editor’s Choice - Risk of stroke before revascularisation in patients with symptomatic carotid stenosis: a pooled analysis of randomised controlled trials. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery Eur J Vasc Endovasc Surg 2021;61:881–7.

32 Prasad K, Siemieniuk R, Hao Q, Guyatt G, O’Donnell M, Lytvyn L, et al. Dual antiplatelet therapy with aspirin and clopidogrel for acute high risk transient ischaemic attack and minor ischaemic stroke: a clinical practice guideline. BMJ 2018;363:k5130.

33 Amarenco P, Denison H, Evans SR, Himmelmann A, James S, Knutsen M, et al. Ticagrelor added to aspirin in acute non symptomatic stroke or transient ischaemic attack of atherosclerotic origin. Stroke 2020;51:3504–13.

34 Kashyap VS, Schneider PA, Foteh M, Motaganahalli R, Shah R, Eckstein HH, et al. Early outcomes in the ROADSTER 2 study of transcarotid artery revascularization in patients with significant carotid artery disease. Stroke 2020;51:2620–9.

35 Karpenko A, Starodubtsev V, Ignatenko P, Dixon F, Bugurov S, Bochov I, et al. Comparative analysis of carotid artery stenting and carotid endarterectomy in clinical practice. J Stroke Cerebrovasc Dis 2020;29:104751.

36 Howie BA, Witek AM, Hussain MS, Bain MD, Toth G. Carotid endarterectomy and carotid artery stenting in a predominantly symptomatic real-world patient population. World Neurosurg 2019;127:e722–6.

37 Vang S, Hans SS. Carotid endarterectomy in patients with high plaque. Surgery 2019;166:601–6.

38 Lee J, You JH, Oh SH, Shin S, Kim BM, Kim TS, et al. Outcomes of stenting versus endarterectomy for symptomatic extracranial carotid stenosis: a retrospective multicenter study in Korea. Ann Vasc Surg 2019;54:185–92.

39 Faateh M, Dakour-Aridi H, Kuo PL, Lo Charm S, Rizwan M, Malas MB. Risk of emergent carotid endarterectomy varies by type of presenting symptoms. J Vasc Surg 2019;70:130–7.

40 Tsenilas P, Kuehnl A, Kallmayer M, Knappich C, Schmid S, Breikreuz T, et al. Risk of stroke or death is associated with the timing of carotid artery stenting for symptomatic carotid stenosis: a secondary data analysis of the German Statutory Quality Assurance Database. J Am Heart Assoc 2018;7:e007983.

41 Blay Jr E, Balogun Y, Nooromid MJ, Eskandari MK. Early carotid endarterectomy after acute stroke yields excellent outcomes: an analysis of the procedure-targeted ACS-NSQIP. Ann Vasc Surg 2019;57:194–200.

42 Hobeau C, Lavalleé PC, Rothwell PM, Sissani L, Albers GW, Bornstein NM, et al. Symptomatic patients remain at substantial risk of arterial disease complications before and after endarterectomy or stenting. Stroke 2017;48:1005–10.

43 Averinos ED, Farber A, Abou Ali AN, Rybin D, Doros G, Eslami MH. Early carotid endarterectomy performed 2 to 5 days after the onset of neurologic symptoms leads to comparable results to carotid endarterectomy performed at later time points. J Vasc Surg 2017;66:1719–26.

44 Rantner B, Kollerits B, Roubin GS, Ringleb PA, Jansen O, Howard G, et al. Early endarterectomy carries a lower risk of early stroke than early stenting in patients with symptomatic stenosis of the internal carotid artery: results from 4 randomized controlled trials. Stroke 2017;48:1580–7.

45 Vennermo M, Wang G, Sedrakyan A, Mao J, Eldrup N, DeMartino R, et al. Editor’s Choice - Carotid Stenosis Treatment: Variation in International Practice Patterns. Eur J Vasc Endovasc Surg 2017;53:511–9.

46 Kazandjian C, Kretz B, Lemogne B, Abou Ebouil C, Bejot Y, Steinmetz E. Influence of the type of cerebral infarct and timing of intervention in the early outcomes after carotid endarterectomy for symptomatic stenosis. J Vasc Surg 2016;63:1256–61.

47 Charmelosse E, Brizzu V, Lepidi S, Sassout G, Rouillet S, Ducasse E, et al. Thirty-day outcome of delayed versus early management of symptomatic carotid stenosis. Ann Vasc Surg 2015;29:977–84.

48 Rantner B, Schmidauer C, Knoflach M, Friedrich G. Very urgent carotid endarterectomy does not increase the procedural risk. Eur J Vasc Endovasc Surg 2015;49:129–36.

49 Tsivgoulis G, Krogias C, Georgiadis GS, Mikulik R, Safouris A, Meves SH, et al. Safety of early endarterectomy in patients with...
symptomatic carotid artery stenosis: an international multicenter study. *Eur J Neurother 2014;21:1251–7.*

50 Geraghty PJ, Brothers TE, Gillespie DL, Upchurch GR, Stoner MC, Siami FS, et al. Preoperative symptom type influences the 30-day perioperative outcomes of carotid endarterectomy and carotid stenting in the Society for Vascular Surgery Vascular Registry. *J Vasc Surg* 2014;60:639–44.

51 Mo D, Wang B, Ma N, Gao F, Miao Z. Comparative outcomes of carotid artery stenting for asymptomatic and symptomatic carotid artery stenosis: a single-center prospective study. *J Neurointerv Surg* 2016;8:126–9.

52 Taş MH, Simşek Z, Colak A, Koza Y, Demir P, Demir R, et al. Comparison of carotid artery stenting and carotid endarterectomy in patients with symptomatic carotid artery stenosis: a single center study. *Adv Ther* 2013;30:845–53.

53 Shahidi S, Owen-Falkenberg A, Hjerpsted U, Rai A, Ellemann K. Urgent best medical therapy may obviate the need for urgent surgery in patients with symptomatic carotid stenosis. *Stroke* 2013;44:2220–5.

54 Faggioli G, Pini R, Mauro R, Gargiulo M, Freyrie A, Stella A. Perioperative outcome of carotid endarterectomy according to type and timing of neurologic symptoms and computed tomography findings. *Ann Vasc Surg* 2013;27:874–82.

55 Schermerhorn ML, Fokkema M, Goodney P, Dillavou ED, Jim J, Annambhotla S, Park MS, Keldahl ML, Morasch MD, Garg J, Frankel DA, Dilley RB. Carotid endarterectomy in symptomatic patients. *J Vasc Surg* 2013;57:1318–24.

56 Kessler I, Gory B, Macian F, Nakiri G, Al-Khawaldeh M, Riva R, et al. Carotid artery stenting in patients with symptomatic carotid stenosis: a single-center series. *J Neurointerv Surg* 2013;4:38–44.

57 Kimiaei J, Gurr AY, Auriel E, Peer A, Sacagiu T, Bass A. Long-term follow-up of patients after carotid stenting with or without distal protective device in a single tertiary medical center. *Vasc Endovascular Surg* 2012;46:536–41.

58 Nolan BW, De Martino RR, Goodney PP, Schanzer A, Stone DH, Butzel D, et al. Comparison of carotid endarterectomy and stenting in real world practice using a regional quality improvement registry. *J Vasc Surg* 2012;56:990–6.

59 Annambhotla S, Park MS, Keldahl ML, Morasch MD, Rodriguez HE, Pearce WH, et al. Early versus delayed carotid endarterectomy in symptomatic patients. *J Vasc Surg* 2012;56:1296–302.

60 Garg J, Frankel DA, Dilley RB. Carotid endarterectomy in academic versus community hospitals: the national surgical quality improvement program data. *Ann Vasc Surg* 2011;25:433–41.

61 Lin R, Mazighi M, Yadav J, Abou-Chebl A. The impact of timing on outcomes of carotid artery stenting in recently symptomatic patients. *J Neurointerv Surg* 2010;2:55–8.

62 Palombo D, Lucertini G, Mambrini S, Spinella G, Pane B. Carotid endarterectomy: results of the Italian Vascular Registry. *J Cardiovasc Surg (Torino)* 2009;50:183–7.

63 Gladstone DJ, Oh J, Fang J, Lindsay P, Tu JV, Silver FL, et al. Urgency of carotid endarterectomy for secondary stroke prevention: results from the Registry of the Canadian Stroke Network. *Stroke* 2009;40:2776–82.

64 Gray WA, Chaturvedi S, Verta P. Thirty-day outcomes for carotid artery stenting in 6320 patients from 2 prospective, multicenter, high-surgical-risk registries. *Circ Cardiovasc Interv* 2009;2:159–66.

65 Vogel TR, Dombrovskiy VY, Haser PB, Scheirer JC, Graham AM. Outcomes of carotid artery stenting and endarterectomy in the United States. *J Vasc Surg* 2009;49:325–30.

66 Goodney PP, Likosky DS, Cronenwett JL. Factors associated with stroke or death after carotid endarterectomy in Northern New England. *J Vasc Surg* 2008;48:1139–45.

67 Massop D, Dave R, Metzger C, Bachinsky W, Solis M, Shah R, et al. Stenting and angioplasty with protection in patients at high-risk for endarterectomy: SAPPHIRE Worldwide Registry first 2,001 patients. *Catheter Cardiovasc Interv* 2009;73:129–36.

68 Ballotta E, Meneghetti G, Da Graia G, Manara R, Saladini M, Baracchi C. Carotid endarterectomy within 2 weeks of minor ischemic stroke: a prospective study. *J Vasc Surg* 2008;48:595–600.

69 Setacci C, de Donato G, Chisci E, Setacci F, Stella A, Faggioni G, et al. Deferred urgent carotid artery stenting in symptomatic patients: clinical lessons and biomarker patterns from a prospective registry. *J Eur Vasc Endovasc Surg* 2008;35:644–51.

70 Steinbauer MG, Pfister K, Greindl M, Schlachetzki F, Borisich I, Schuierer G, et al. Alert for increased long-term follow-up after carotid artery stenting: results of a prospective, randomized, single-center trial of carotid artery stenting vs carotid endarterectomy. *J Vasc Surg* 2006;48:93–8.

71 Dellagrammaticas D, Lewis S, Colam B, Rothwell PM, Warlow CP, Gough MJ. Carotid endarterectomy in the UK: acceptable risks but unacceptable delays. *Clin Med (Lond)* 2007;7:589–92.

72 Flanigan DP, Flanigan ME, Dorne AL, Harward TR, Razavi MK, Ballard JL. Long-term results of 442 consecutive, standardized carotid endarterectomy procedures in standard-risk and high-risk patients. *J Vasc Surg* 2007;46:876–82.

73 Topakian R, Strasak AM, Sonberger M, Haring HP, Nussbaumer K, Trenkler J, et al. Timing of stenting of symptomatic carotid stenosis is predictive of 30-day outcome. *Eur J Neurol* 2007;14:672–8.

74 Suzue A, Uno M, Kitazato KT, Nishi K, Yagi K, Liu H, et al. Comparison between early and late carotid endarterectomy for symptomatic carotid stenosis in relation to oxidized low-density lipoprotein and plaque vulnerability. *J Vasc Surg* 2007;46:870–5.

75 McPhee JT, Hill JS, Ciocca RG, Messina LM, Elsami MH. Carotid endarterectomy was performed with lower stroke and death rates than carotid artery stenting in the United States in 2003 and 2004. *J Vasc Surg* 2007;46:1112–8.

76 Sbarigia E, Toni D, Speziale F, Acconia MC, Fiorani P. Early carotid endarterectomy after ischemic stroke: the results of a prospective multicenter Italian study. *Eur J Vasc Endovasc Surg* 2006;32:229–35.

77 Imai K, Mori T, Izumo H, Watanabe M, Majima K. Emergency carotid artery stent placement in patients with acute ischemic stroke. *AJNR Am J Neuroradiol* 2005;26:1249–58.

78 Rantner B, Pavelka M, Posch L, Schmidauer C, Fraedrich G. Carotid endarterectomy after ischemic stroke—is there a justification for delayed surgery? *Eur J Vasc Endovasc Surg* 2005;30:36–40.

79 Pell JP, Slack R, Dennis M, Welch G. Improvements in carotid endarterectomy in Scotland: results of a national prospective survey. *Scott Med J* 2004;49:53–6.

80 Ecker RD, Brown Jr RD, Nichols DA, McClelland RL, Reinalda MS, Piepgras DG, et al. Cost of treating high-risk symptomatic carotid artery stenosis: stent insertion and angioplasty compared with endarterectomy. *J Neurosurg* 2004;101:904–7.

81 Welsh S, Mead G, Chant H, Picton A, O’Neill PA, McCollum CN. Early carotid surgery in acute stroke: a multicentre randomised pilot study. *Cerebrovasc Dis* 2004;18:200–5.

82 Tu JV, Wang H, Bowyer B, Green L, Fang J, Ruczyk D. Risk factors for death or stroke after carotid endarterectomy: observations from the Ontario Carotid Endarterectomy Registry. *Stroke* 2003;34:2568–73.

83 Kastrup A, Skalej M, Krapf H, Nägele T, Dichgans J, Schulz JB. Early outcome of carotid angioplasty and stenting versus carotid endarterectomy in a single academic center. *Cerebrovasc Dis* 2003;15:84–9.

84 Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). *Lancet* 1998;351:1379–87.
A 74 year old farmer presented with deep vein thrombosis and pulmonary embolism four days after suffering a crush injury. His tractor overturned, trapping him by his legs under the vehicle for five hours. (A and B) Transoesophageal echocardiogram revealed a patent foramen ovale (PFO) with a long thrombus (7.15 cm x 10 mm) stuck within it. One end of the thrombus was situated in the right atrium (RA) and the other in the left atrium (LA), ready to embolise into the systemic circulation. The paradoxical embolus was removed and the PFO repaired by a cardiothoracic surgeon.