POLYPHENOLIC COMPOUNDS, ANTIOXIDANT ACTIVITY AND NEPHROPROTECTIVE PROPERTIES OF ROMANIAN TARAXACUM OFFICINALE

ALEXANDRA EPURE 1*, ALINA PĂRVU 2*, LAURIAN VLASE 3*, DANIELA BENEDEC 1, DANIELA HANGANU 1, ANA MARIA VLASE 4, ILIOARA ONIGA 1

1Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, Cluj-Napoca, Romania
2Department of Phisiopathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, Cluj-Napoca, Romania
3Department of Pharmaceutical Biotechnology and Biopharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, Cluj-Napoca, Romania
4Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, Cluj-Napoca, Romania

*corresponding author: laurian.vlase@umfcluj.ro
1Authors with equal contribution.

Abstract

Taraxacum officinale (L.) Weber ex F. H. Wigg. (dandelion) is a medicinal herb from the Asteraceae family, with a complex chemical composition. The purpose of this research was to determine the polyphenolic profile of Taraxaci herba tincture and to evaluate the antioxidant capacity and the nephroprotective activity. The polyphenolic compounds: total polyphenols content (TPC), total flavonoids content (TFC) and total caffeic acid derivates content (TCAD) were analysed by spectrophotometric and chromatographic methods. Some polyphenols were identified and quantified by HPLC-MS method, with cichoric acid as major compound. The evaluation of the in vitro antioxidant activity was performed using the DPPH• and FRAP methods. The nephroprotective activity of T. herba tincture was evaluated on a rat model with acute kidney injury (AKI) induced by gentamicin. Serum oxidative parameters (total oxidative stress – TOS, oxidative stress index – OSI, total antioxidant capacity – TAC, total nitrates and nitrates – NOx, malondialdehyde – MDA and total thiols – SH), kidney functional parameters (serum creatinine – SCr, serum urea – SU, urinary creatinine – Ucr, urinary urea – UU and creatinine clearance – CICr) and the transcription factor (Nuclear Factor Kappa B) NF-kB were determined. Although the in vitro test results were modest, in vivo experiments showed a pronounced antioxidant capacity, associated with an important nephroprotective activity.

Rezumat

Taraxacum officinale (L.) (păpădie) este o plantă medicinală din familia Asteraceae, cu o compoziție chimică foarte complexă. Scopul prezentei cercetări a fost determinarea profilului polifenolic al tincturii obținută din Taraxaci herba, precum și evaluarea capacității antioxidant și a activității nefroprotectoare. Compușii polifenolici: conținutul de polifenoli totali (TPC), conținutul de flavonoide totale (TFC) și conținutul de degeri de acid cafeic (TCAD) au fost analizați prin metode spectrophotometrice și cromatografice. D悟 polyphenols were identified and quantified by HPLC-MS method, with cichoric acid as major compound. The evaluation of the antioxidant activity in vitro s-a realizat prin metodele DPPH• și FRAP. Activitatea nefroprotectoare a tincturii de T. herba s-a evaluat pe șobolani de laborator cu insuficiență renală acută (AKI) induși cu gentamicină. S-au evaluat parametri ai stresului oxidativ (status oxidativ total – TOS, index al stresului oxidativ – OSI, capacitatea antioxidantă totală – TAC, nivelul de nitrati și nitrati – NOx, malondialdehide – MDA, tioli – SH), parametri funcționali renali (creatinina serică – SCr, urea serică – SU, creatinină urină – Ucr, urea urină – UU și clearance-ul creatininc – CICr) și factorul de transcripție NF-kB. Deși rezultatele testărilor in vitro au fost modeste, experimentele in vivo au arătat o acțiune antioxidantă bună, asociată cu o importantă activitate nefroprotectoare.

Keywords: Taraxacum officinale, polyphenols, antioxidant capacity, nephroprotective activity

Introduction

Taraxacum officinale L. is a perennial herbaceous plant belonging to the Asteraceae family, Cichorioideae subfamily, with a wide distribution in the Northern Hemisphere [32]. It grows spontaneous in wild population all across Romania, from the grasslands to the mountain regions [9]. In Transylvania, the leaves of the plant were used as a diuretic in traditional medicine, for counteracting water retention, as well as in kidney related diseases [11]. The active compounds that determine the pharmacological properties are present in both aerial parts and roots [39]. Generally, the active principles of the roots are active towards liver
and gallbladder illnesses, while the compounds from aerial parts exhibit diuretic properties, antioxidant, anti-inflammatory, anti-carcinogenic, analgesic, anti-coagulant and anti-hyperglycaemic activities [37, 39]. Recent studies have shown new properties such as neuroprotective and anti-depressive [20, 26]. The composition of *T. officinale* consists mainly in polyphenols, terpenoids, together with polysaccharides (inulin), vitamins and minerals. Polyphenols are largely distributed in all parts of the plant with higher quantities in aerial parts [48]. The major polyphenolic compounds from the entire plant are hydroxycinnamic acid derivatives, such as cichoric acid (2,3-dicaffeoyl-L-tartaric acid), moncaffeoyl-tartaric acid and chlorogenic acid. Flavonoids were detected only in aerial parts [48]. The most abundant are luteolin 7-glucoside, luteolin 7-rutinoside, apigenin 7-glucoside, quercetin 7-O-glucoside, isorhamnetin 3-glucoside [21, 48]. The terpenes identified in the dandelion are di- or tri-terpenes (taraxacin, taraxacerin, taraxerol, taraxasterol, beta-amyrin) and sterols (sitosterol, stigmasterol) [40, 48]. The diuretic activity of dandelion extracts tested on mice and rats was comparable to furosemide [13, 28]. In addition, due to the high content of potassium, *T. officinale* extract is able to replace potassium lost through diuresis, being an important agent in restoring the electrolytic imbalance [24]. Thus, the focus of this research was to evaluate the nephroprotective activity of *T. herba* tincture on rats, by determining several parameters involved in the oxidative stress and inflammatory processes, which may be responsible of some kidney diseases.

Materials and Methods

Plant material: T. officinale aerial parts (*T. herba*) were harvested from Sibiu County, Lat. 45.714966 / Long. 24.321213 Romania, during blooming stage, in May 2018, from wild populations. The plant material was identified by botany Prof. Mircea Tămăș. A sample of the vegetable material is available in the herbarium of Pharmacognosy Department (voucher number 115), Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania. The vegetable material was air-dried and grinded; the powder was used for the extracts preparation.

Extraction procedure: The vegetable powder was extracted with dichloromethane in Soxhlet apparatus [17] and then the tincture (THT; 1:10 g/g w/w) was obtained, accordingly to the Romanian Pharmacopoeia: 50 g of herbal powder and 500 g 70% ethanol, maceration at room temperature, 7 days [50].

For the assessment of the nephroprotective activity, *T. herba* tincture (THT) was diluted with distilled water as follows: THT 1:1 (corresponding to 0.5 mg dry weight (d.w.) plant material/10 mL) and THT 1:3 (corresponding to 0.25 mg d.w. plant material/10 mL).

The total polyphenols content (TPC) was determined using the Folin-Ciocalteu spectrophotometric method and the results were expressed as mg gallic acid equivalents (GAE)/100 g d.w. plant material (*R*² = 0.999) [36].

The total flavonoids content (TFC) was spectrophotometrically determined using AlCl₃ as a colouring reagent. The results were expressed as mg rutin equivalents (RE)/100 g d.w. plant material (*R*² = 0.999) [22].

The total caffeic acid derivatives content (TCADC): a spectrophotometric method was used, based on the reaction with the Arnow reagent. The results were expressed as mg cichoric acid equivalents (CAE)/100 g dry plant material (*R*² = 0.994) [35].

The HPLC analysis of polyphenolic compounds was undertaken using an Agilent 1100 HPLC Series system equipped with degasser, binary gradient pump, column thermostat and autosampler. The HPLC system was coupled with an Agilent 1100 mass spectrometer (LC/MSD Ion Trap SL). The analysis was performed using the conditions previously described [34]. The polyphenol-carboxylic acids were UV detected at 330 nm, and the flavonoids at 370 nm. The polyphenolic compounds were identified based on their retention time and MS spectra compared to standards (different polyphenolic compounds). Calibration curves in the 0.5 - 50 µL/mL concentration range (*R* > 0.999) were used [29]. Cichoric acid was quantified using a newly optimised method of LC-MS previously described [10]. Cichoric acid was identified based on the retention time and the MS spectra compared to the standard. The calibration curve was prepared in the range of 0.75 - 15 µg/mL concentrations, with *R* > 0.999. All determinations were performed in triplicate.

The antioxidant capacity was assessed in vitro, with the DPPH* and FRAP methods. The DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) method evaluate the antioxidant capacity of the tincture based on an electron-transfer reaction. The results were defined as IC50 value. The half maximal inhibitory concentration representing the concentration of the sample that can scavenge 50% of DPPH free radical. The IC50 value is inversely proportional to the free radical scavenging activity/antioxidant property of the sample) [18].

The FRAP method evaluate the reduction of the ferric ion to the ferrous ion, by forming the complex of iron with the radical 2,4,6-tripryidyl-s-triazine. The results were expressed as mM Trolox equivalents/100 mL extract (*R*² = 0.992). The calibration curve was obtained with 10 - 40 mg/L Trolox standard [41]. All the quantitative determinations were performed in triplicate.

Nephroprotective activity evaluation The experiments were performed on adult male Wistar Albino rats that were bred in the “Iuliu Hațieganu”
University of Medicine and Pharmacy Animal Facility, Cluj-Napoca, Romania, and held under strict controlled conditions. At the end of the study, the animals were sacrificed by cervical dislocation under general anaesthesia. The experimental design was approved by the Institutional Animal Ethical Committee (IAEC) of the “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania, and by the National Sanitary Veterinary and Food Safety Agency from Romania (no. 171/13.07.2019).

The animals were divided into 5 groups (n = 5): negative control (Control), gentamicin group (Genta), and three T. herba tincture groups. The animals were given orally in a single administration of 5 mL per day water by gavage in Control and Genta groups, respectively, the three dilutions of extract in the THT groups: THT, THT 1:1 and THT 1:3, during seven days [18]. Excepting the Control group, in the days 7 and 8, animals received gentamicin (s.c. 400 mg/kg b.w./day) for nephrotoxic acute kidney failure induction [12]. The 24 hours urine was collected, between day 8 and 9. In day 9 blood samples were collected by orbital puncture under general anaesthesia (ketamine 70 mg/kg b.w. and xylazine 10 mg/kg b.w.) [47]. Serum was separated and stored at -80°C until the evaluation of oxidative stress and renal parameters.

Oxidative stress parameters evaluation

TOS was determined using a colorimetric method based on the oxidation of a ferrous ion to a ferric ion in the presence of various oxidant species [5]. The results were expressed in µmol H₂O₂ equiv/L. TAC was assessed using a colorimetric assay and the results were expressed as mmol Trolox equiv/L [19]. OSI was calculated as the ratio between TOS and TAC.

MDA parameter representing a lipid peroxidation marker was determined using the thiobarbituric acid assay [15]. MDA serum concentration was expressed as nmol/mL. The serum NO concentration was assessed using the Griess reaction and expressed as nitrite μmol/L (NOx) [33]. Serum total thiols were quantified as mmol GSH/mL and were determined using Ellman’s reagent [25]. Serum and urine creatinine were measured according to the manufacturer instructions and CrCL was evaluated accordingly. The NF-kB, an inflammation marker, was evaluated using a NF-kB ELISA KIT, (ER1186, Fine Biotech, and Wuhan, China) according to the manufacturer instructions.

Statistical analyses

The results were expressed as means ± standard deviation (± SD). One way ANOVA test and Bonferroni-Holm post-hoc test were used to compare the data. The correlation between the parameters of the same group was evaluated using Pearson’s coefficient (r) correspondingly to the Colton scale. The level of statistical significance was set at p < 0.05. The statistical analysis was performed using STATISTICA 12.0 software.

Results and Discussion

The results for the determinations of TPC, TFC, TCADC and the antioxidant capacity are summarized in Table I.

Table I

Sample	TPC (mg GAEE/g d.w.)	TFC (mg RE/g d.w.)	TCADC (mg cichoric acid /g d.w.)	IC50 (µg/mL)	FRAP (µM TE/ 100 mL extract)
THT	13.15 ± 0.81	6.87 ± 0.34	9.7 ± 0.36	234.988 ± 11.74	365.56 ± 14.25

Values are expressed as mean of 3 determinations ± SD. TPC – Total polyphenols content; TFC – Total flavonoids content; TCADC – Total caffeic acid derivates content; IC50 – half maximal inhibitory concentration; FRAP – ferric reducing ability of plasma; GAEE – gallic acid equivalents; RE – rutin equivalents; TE – trolox equivalents

Our results show a good level of polyphenols in the tincture, with high concentrations of flavonoids and caffeic acid derivatives. The TPC value was smaller than those obtained by Ivanov (33.90 mg GAEE/g d.w., 50% ethanol extract) and by Khan et al. (41.47 - 691.6 mg GAEE/g d.w., aqueous and hydroalcoholic extracts) [28, 30]. Xue et al. reported values of 33.94 mg GAEE/g d.w. (50% ethanol extract) and 23.27 mg GAEE/g d.w. (80% ethanol extract) [49]. All these results are in agreement with Tsai et al. considering that higher concentrations of ethanol determine a possible decrease in the polyphenols extraction [43]. The TFC was lower in T. herba tincture than the values reported by other authors: 14.00 mg RE/g d.w. - 50% ethanol and 12.35 mg RE/g d.w. - 80% ethanol [49]. To the best of our knowledge, the TCAD content in T. herba tincture was not reported before. Our results show an important concentration of these compounds, expressed in cichoric acid.

The results of the antioxidant activity determination showed a modest antioxidant capacity. Our results were higher than those obtained in similar conditions by Aremu et al. (IC50 = 400 µg/mL) and lower than those obtained by Indradi et al. (IC50 = 100 µg/mL [6, 27]. The FRAP assay showed better antioxidant capacity than that reported by Aremu et al. [6, 28]. The HPLC assay was employed in order to evaluate the qualitative and quantitative polyphenols composition of T. herba tincture. The results were summarized in Table II.
Cichoric acid was the predominant polyphenolic compound in *Taraxaci herba* tincture, with a substantial quantity compared to other polyphenols. Other authors reported 4840 μg/g cichoric acid d.w. (ethanol 95% extract) and 31480 μg/g cichoric acid d.w. (ethanol 50% extract) [28]. Stylianou et al. found cichoric acid concentrations between 3190 μg/g - 5060 μg/g for flower and stems [42].

The identified flavonoids were rutin, quercetin, luteolin and apigenin, data comparable with other findings as those of Schutz et al. [40].

Nephroprotective activity evaluation

In order to evaluate the effect of *Taraxaci herba* tincture on acute kidney injury (AKI) induced by gentamicin, the functional renal parameters (Table III), the serum oxidative markers and the NF-Kb levels (Table IV) were determined.

Table III

Renal function parameters in rat gentamicin-induced acute kidney injury

Groups	SCr (mg/dL)	UCr (mg/dL)	SU (mg/dL)	UU (mg/dL)	CrCl (mL/min)
Control	0.72 ± 0.03	32.10 ± 1.66	23.23 ± 4.17	173.33 ± 61.28	0.60 ± 0.08
Genta	1.24 ± 0.07	47.46 ± 0.32	79.04 ± 6.55	433.33 ± 0.00	0.28 ± 0.001
THT 1:1	1.01* ± 0.05	49.4 ± 6.60	48.12*** ± 4.40	208.00*** ± 0.00	0.67* ± 0.10
THT 1:3	1.14 ± 0.08	50.38 ± 2.93	46.73 *** ± 4.40	199.33*** ± 17.33	0.31 ± 0.07

Values are expressed as ± SD (n=5). n.s. = p > 0.05, * = p < 0.05, ** = p < 0.01, *** = p < 0.001 versus gentamicin group.

SCr – serum creatinine; UCr – urine creatinine; SU – serum urea; UU – urine urea; CrCl – creatinine clearance; Genta – gentamicin; THT – *Taraxaci herba* tincture

Consecutive to the AKI, the renal functional parameters exhibit higher values, and THT pre-treatments reduced AKI consequences. The SCr was significantly reduced only by THT 1:1 (p < 0.05). SU and UU were significantly reduced by all extract dilutions (p < 0.001). CrCl was increased by THT 1:1 (p < 0.05). None of the pre-treatments had any significant activity on UCr (p > 0.05).

The tincture pre-treatments lowered the oxidative stress by reducing TOS, OSI and NOx. TOS was lowered in the order THT 1:1 → THT → THT 1:3 (p < 0.05), NOx was reduced by THT 1:1 (p < 0.05). The THT had no significant effect on TAC, MDA and SH (p > 0.05). NF-kB, an inflammation marker, was lowered significantly by all tincture dilutions (p < 0.001), mostly by THT. The correlation between the parameters was evaluated with Pearson coefficient referring to Colton’s scale. In the Genta group, TOS and OSI were negative correlated with TAC and SH. The same relationship was observed between UCr and SH, while UCr was correlated positive with MDA. The NF-kB parameter correlated positive with TOS and OSI and UCr and negative with SH. In the THT groups, the renal functional parameters were negatively correlated with oxidative stress parameters and CrCl was positive correlated with TAC.

Table IV

Serum oxidative stress markers in the rat gentamicin-induced acute kidney injury

Groups	TOS (μM H₂O₂ equiv/L)	OSI	TAC (mmol Trolox equiv/L)	NOx (μM/L)	MDA (nM/L)	SH (mM/L)	NF-kB (ng/mL)
Control	5.13 ± 0.84	4.70 ± 0.77	1.09 ± 0.001	32.67 ± 2.38	1.91 ± 0.19	0.52 ± 0.05	2.2 ± 0.22
Genta	7.55 ± 1.43	6.94 ± 1.33	1.09 ± 0.001	51.73 ± 4.25	2.77 ± 0.26	0.48 ± 0.12	5.81 ± 0.10
THT	4.61** ± 0.20	4.24** ± 0.18	1.09 ± 0.001	44.51 ±10.36	2.77 ± 0.30	0.42 ± 0.11	2.39*** ± 0.10
THT 1:1	4.48** ± 1.15	4.11** ± 0.14	1.09 ± 0.001	37.00** ± 2.46	2.76 ± 0.27	0.45 ± 0.04	3.40*** ± 0.43
THT 1:3	4.63** ± 0.27	4.26** ± 0.24	1.09 ± 0.001	43.84 ± 7.74	2.38 ± 0.29	0.44 ± 0.06	2.59*** ± 0.98

Values are expressed as ± SD (n = 5). n.s. = p > 0.05, * = p < 0.05, ** = p < 0.01, *** = p < 0.001 versus gentamicin group. TOS – total oxidative status; TAC – total antioxidant capacity; OSI – oxidative stress index; NOx – nitrites and nitrates; MDA – malondialdehyde; SH – total thiol; NF-kB – nuclear factor kappa-light-chain-enhancer of activated B cells; THT – *Taraxaci herba* tincture
Gentamicin has been showed to accumulate in the renal proximal tubules in larger quantities than in the serum inducing acute kidney failure in a dose dependant manner [16]. Nephrotoxicity studies have shown the generation of hydrogen peroxide, enhancing generation of the superoxide anion and hydroxyl radical in renal mitochondria, and promoting proinflammatory responses as possible mechanism [3, 45]. The AKI was in accordance to the increased levels of SCr, SU, Ucr, UU and CiCr [44]. The increased value of NF-kB supported the hypothesis of inflammation [31] and the escalation of serum oxidative parameters promoted the involvement of oxidative stress [3]. These findings show the need of an approach on anti-inflammatory therapy based on the antioxidant effect. Our results showed that in the AKI group, THT reduced the serum oxidative parameters TOS, OSI, NOx and NF-kB, THT 1:1 reduced the most TOS and NOx and the undiluted tincture was the most effective in lowering NF-Kb. SU and UU were lowered by the THT, in a reversed dose dependent manner, the lower concentrations being the optimum inhibitor. In addition, SCr and CiCl were lowered by THT 1:1. A possible explanation of the higher in vivo antioxidant activity for the lower concentration of extract is the fact that some antioxidants may have pro-oxidant effect at higher levels [7]. Our findings are consistent with the results documented by other researchers that flavonoids (as luteolin, rutin, quercetin and apigenin) and their glycosides can act as nephroprotective agents through an antioxidant mechanism, in AKI induced by several chemical compounds in an animal model [2, 4, 23, 38]. In a previous study, the role of choric acid as a major polyphenolic compound of *Cichorium intybus*, in re-establishing renal parameters post AKI induced on a rat model, was highlighted [18]. Also, the nephroprotective effect of choric acid was studied by Sanna *et al.* revealing a mechanism based on antioxidant activity and the inhibition of NF-kB proinflammatory pathway [1].

Recent studies have shown the presence of polyphenolic compounds as choric acid, quercetin and luteolin as well as active metabolites, in special 4’-O-methyl-luteolin-3’-O-β-D-glucuronide and luteolin-3’-O-β-D-glucuronide in the kidney tissue. These findings also support the pharmacological activity on kidney and the role in nephroprotection [8, 14, 46].

Conclusions

Our study confirmed that *T. officinale* is a valuable source of polyphenols, with an important concentration of cichoric acid. Our findings reveal a good *in vivo* antioxidant activity of *T. herba* tincture, by evaluating serum oxidative parameters and kidney functional parameters, although the *in vitro* results were modest. *T. officinale* tincture has nephroprotective effect in gentamicin induced AKI, due to the antioxidant and anti-inflammatory properties. Further studies may extend the knowledge about the nephroprotective mechanism and other possible benefits in the prevention or the treatment of various kidney disorders.

Conflict of interest

The authors declare no conflict of interest.

References

1. Abd El-Twab SM, Hussein OE, Hozyen WG, Bin-Jumah M, Mahmoud AM. Chicoric acid prevents methotrexate-induced kidney injury by suppressing NF-kB/NLRP3 inflammasome activation and up-regulating Nrf2/ARE/HO-1 signaling. *Inflammation Research: Official Journal of the European Histamine Research Society*, 2019; 68(6): 511-523.
2. Abdel-Raheem IT, Abdel-Ghany AA, Mohamed GA. Protective Effect of Quercetin against Gentamicin-Induced Nephrotoxicity in Rats. *Biol Pharm Bull.*, 2009; 32(1): 61-67.
3. Acharya C, Thakar H, Vajpeeyee SP. A Study of Oxidative Stress in Gentamicin Induced Nephrotoxicity and Effect of Antioxidant Vitamin C in Wistar Rats. *Nat J Physiol Pharmucol.*, 2013; 3(1): 14-20.
4. Albarakati AJA, Baty RS, Aljoudi AM, Habotta OA, Elmahallawy EK, Kassab RB, Abdel Moneim AE. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways. *Mol Biol Rep.*, 2020; 47(4): 2591-2603.
5. Andreicut AD, Părău AE, Mot AC, Părău M, Fischer Fodor E, Cătoi AE, Felfânian V, Ceanu M, Irimie A, Phytochemical analysis of anti-inflammatory and antioxidant effects of Mahonia aquifolium flower and fruit extracts. *Oxid Med Cell Longev.*, 2018; 2018: Art. ID 2879793: 1-12.
6. Aremu OO, Oyedeji AO, Oyedeji OO, Nkech-Chungag BN, Sewani-Rusike CR, *In Vitro and In Vivo Antioxidant Properties of Taraxacum officinale in No-Nitro-I-Arginine Methyl Ester (L-NAME)-Induced Hypertensive Rats. Antioxidants (Basel)*, 2019; 8(8): 309: 1-12.
7. Balea ŢS, Părău AE, Pop N, Marin FZ, Părău M, Polyphenolic Compounds, Antioxidant, and Cardioprotective Effects of Pomace Extracts from *Fetursă Neagră* Cultivar. *Oxid Med Cell Longev.*, 2018; Art. ID 8194721: 1-11.
8. de Boer VCI, Diïal AA, van der Woude H, Arts ICW, Wolffram S, Alink GM, Rietjens IMCM, Keijer J, Hoffman PCH. Tissue distribution of quercetin in rats and pigs. *J Nutr.*, 2005; 135(7): 1718-1725.
9. Bojor O, Crăciun F, Alexan M, The Nature’s Pharmacy. *Ceres Publishing House, Bucharest, Romania, 1977; 226-228*, (available in Romanian).
10. Butiac-Keul AL, Vlase L, Crăciuănă C, Clonal propagation and production of cichoric acid in three species of Echinacea. *In Vitro Cell Dev Biol – Plant*, 2012; 48(2): 249-258.
11. Butură V, Encyclopedică of Romanian ethobotany. *Sfintica și Enciclopedică Publishing House: Bucharest, Romania, 1979; 180*, (available in Romanian).

51
12. Chen Q, Cui Y, Ding G, Jia Z, Zhang Y, Zhang A, PEA3 protects against gentamicin nephrotoxicity: role of mitochondrial dysfunction. Am J Transl Res., 2017; 9(5): 2153-2162.

13. Clare BA, Conroy RS, Spelman K. The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day. J Altern Complement Med., 2009; 15(8): 929-934.

14. Deng C, Gao C, Tian X, Chao B, Wang F, Zhang Y, Zou J, Liu D. Pharmacokinetics, tissue distribution and excretion of luteolin and its major metabolites in rats: Metabolites predominate in blood, tissues and are mainly excreted via bile. J Funct Foods, 2017; 35: 332-340.

15. Draper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, Hadley M. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med., 1993; 15(4): 353-363.

16. Du XH, Yang CL. Mechanism of gentamicin nephrotoxicity in rats and the protective effect of zinc-induced metallothionein synthesis. Nephrol Dial Transplant., 1994; 9(Suppl. 4): 135-140.

17. Epure A, Oniga I, Benedec D, Hangar D, Gheldiu AM, Toiu A. Chemical analysis and antioxidant activity of some rooibos tea products. Farmacia, 2019; 67(6): 963-966.

18. Epure A, Pârvu AEE, Vlase L, Benedec D, Hangar D, Gheldiu AM, Toma VAl, Oniga I. Phytochemical Profile, Antioxidant, Cardioprotective and Nephroprotective Activity of Romanian Chiceroy Extract. Plants (Basel), 2020; 10(1): 64: 1-18.

19. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem., 2004; 37(4): 277-285.

20. Gao C, Kong S, Guo B, Liang X, Duan H, Li D. Antidepressive Effects of Taraxacum Officinale in a Mouse Model of Depression Are Due to Inhibition of Corticosterone Levels and Modulation of Mitogen-Activated Protein Kinase Phosphatase-1 (Mkp-1) and Brain-Derived Neurotrophic Factor (Bdnf) Expression. Med Sci Monit., 2019; 25: 389-394.

21. González-Castejón M, Visioli F, Rodríguez-Casado A. Diverse biological activities of dandelion. Nutr Rev., 2012; 70(9): 534-547.

22. Hangar D, Olah NK, Pop CE, Vlase L, Oniga I, Ciocarlan N, Matei A, Pușcaș C, Silaghi-Dumitrescu R, Benedec D. Evaluation of polyphenolic profile and antioxidant activity for some Salvia species. Farmacia, 2019; 67(5): 801-805.

23. Hassan SM, Khalaf MM, Sadek SA, Abo-Youssef AM. Protective Effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. Pharm Biol., 2017; 55(1): 766-774.

24. Hook I, McGee A, Henman M. Evaluation of Dandelion for Diuretic Activity and Variation in Potassium Content. Int J Pharmacogn., 1999; 31(1): 29-34.

25. Hu ML. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol., 1994; 233: 380-385.

26. Huang Y, Meng N, Liu Z, Guo L, Dong L, Li B, Ye Q. Neuroprotective Effects of Taraxacum officinale Wigg. Extract on Glutamate-Induced Oxidative Stress in HT22 Cells via HO-1/Nrf2 Pathways. Nutrients, 2018; 10(7): 926: 1-12.

27. Indradi B, Fidrianny I, Wirasutisna K. DPPH Scavenging Activities and Phytochemical Content of Four Asteraceae Plants. Int J Pharmacogn Phytochem Res., 2017; 9: 1-7.

28. Ivanov IG. Polyphenols Content and Antioxidant Activities of Taraxacum officinale F.H. Wigg (Dandelion) Leaves. Int J Pharmacogn Phytochem Res., 2014; 6(4): 889-893.

29. Ivánsicus B, Pop CE, Vlase L, Corciovă A, Gherghel D, Vochita G, Tuchiluș C, Mardari C, Teodor CM. Cytotoxic effect of chloroform extracts from Taraxacum vulgare, T. macrophyllum and T. corymbosum on HELA, A375 and V79 cell lines. Farmacia, 2021; 69(1): 12-20.

30. Khan AS, Atif K, Munir B, Kiran S, Jafri F, Qureshi N, Hassan SM, Soomro GA, Nazir A, Ghaffar A, Tahir MA, Iqbal M. Estimating Total Phenolics in Taraxacum officinale (L.) Extracts. Pol J Environ Stud., 2019; 28(1): 497-501.

31. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther., 2017; 2: e17023: 1-9.

32. Martínez M, Poirrier P, Chamy R, Prüfer D, Schulze-Gronover C, Joquera L, Ruíz G. Taraxacum officinale and related species—An ethnopharmacological review and its potential as a commercial medicinal plant. J Ethnopharmacol., 2015; 169: 244-262.

33. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 2001; 5(1): 62-71.

34. Moldovan ML, Carpa R, Fizesan I, Vlase L, Bogdan C, Iurian S, Benedec D, Pop A. Phytochemical Profile and Biological Activities of Tendrils and Leaves Extracts from a Variety of Vitis vinifera L. Antioxidants, 2020, 9(5): 373: 1-20.

35. Niculae M, Hangar D, Oniga I, Benedec D, Ielciu I, Giupana R, Sandru CD, Ciocârlan N, Spinu M, Phytocological Profile and Antimicrobial Potential of Extracts Obtained from Thymus marshallianus Willd. Molecules, 2019; 24(17): 3101: 1-12.

36. Oniga I, Pușcaș C, Silaghi-Dumitrescu R, Olah NK, Sevastre B, Marica R, Marcus I, Sevastre-Berghian AC, Benedec D, Pop CE, Hangar D, Origanum vulgare ssp. vulgare: Chemical Composition and Biological Studies. Molecules, 2018; 23(8): 2077: 1-14.

37. Pfingstgrao IO, Taulescu M, Pop RM, Orășan R, Vlase L, Uifalean A, Todea D, Alexescu T, Toma C, Pârvu AE. Protective Effects of Taraxacum officinale L. (Dandelion) Root Extract in Experimental Acute on Chronic Liver Failure. Antioxidants, 2021; 10(4): 504: 1-14.

38. Ramhariya R, Ganeshpurkar A, Ayachi C, Kanojia P, Dubey N, Ram S, Aditya G. Ameliorative Effect of Rutin on Gentamicin-Induced Nephrotoxicity in Murine Model. Austin J Pharmacol Ther., 2015; 3(1): 1066: 1-4.

39. Schütz K, Carle R, Schieber A, Taraxacum – a review on its phytochemical and pharmacological profile. J Ethnopharmacol., 2006; 107(3): 313-323.

40. Schütz K, Kammerer DR, Carle R, Schieber A. Characterization of phenolic acids and flavonoids in
dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom., 2005; 19(2): 179-186.

41. Sevastre-Berghian AC, Ieiciu I, Mitre AO, Filip GA, Oniga I, Vlase L, Benedec D, Gheltdiu AM, Toma VA, Mihart B, Mihuț A, Bâlea I, Olteanu D, Chis CI, Clichici SV, Hanganu D, Targeting Oxidative Stress Reduction and Inhibition of HDAC1, MECP2, and NF-kB Pathways in Rats With Experimentally Induced Hyperglycemia by Administration of Thymus marshallianus Willd. Extracts. Front Pharmacol., 2020; 11: 581470: 1-18.

42. Stylianou N, Gekas V, Istdor V, Ioniță C, Research regarding Taraxacum officinale (L.) Weber with the intention of therapeutic exploring. Note I. Studies of phenoliccarboxylic acids. Farmacia, 2014; 62(2): 358-365.

43. Tsai YL, Chiou SY, Chan KC, Sung JM, Lin SD, Caffeic acid derivatives, total phenols, antioxidant and antimutagenic activities of Echinacea purpurea flower extracts. LWT - Food Science and Technology, 2012; 46(1): 169-176.

44. Udupa V, Prakash V, Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats. Toxicol Rep., 2018; 6: 91-99.

45. Walker PD, Barri Y, Shah SV, Oxidant mechanisms in gentamicin nephrotoxicity. Ren Fail., 1999; 21(3-4): 433-442.

46. Wang Y, Xie G, Liu Q, Duan X, Liu Z, Liu X, Pharmacokinetics, tissue distribution, and plasma protein binding study of chicoric acid by HPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci., 2016; 15: 1031: 139-145.

47. Wellington D, Mikaelian I, Singer L, Comparison of ketamine–xylazine and ketamine–dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J Am Assoc Lab Anim Sci., 2013; 52(4): 481-487.

48. Williams CA, Goldstone F, Greenham J, Flavonoids, cinnamic acids and coumarins from the different tissues and medicinal preparations of Taraxacum officinale. Phytochemistry, 1996; 42(1): 121-127.

49. Xue Y, Zhang S, Du M, Zhu M, Dandelion extract suppresses reactive oxidative species and inflammasome in intestinal epithelial cells. J Funct Foods, 2017; 29: 10-18.

50. *** Romanian Pharmacopoeia. X-th Edition. Editura Medicală Publishing House, Bucharest, Romania, 1993; 1316, (available in Romanian).