Scaling in Counter Expressed Gene Networks Constructed from Gene Expression Data

Himanshu Agrawal

School of Information Technology, Jawaharlal Nehru University, New Delhi – 110067, India
(Dated: February 9, 2008)

We study counter expressed gene networks constructed from gene-expression data obtained from many types of cancers. The networks are synthesized by connecting vertices belonging to each others’ list of K-farthest-neighbors, with K being an a priori selected non-negative integer. In the range of K corresponding to minimum homogeneity, the degree distribution of the networks shows scaling. Clustering in these networks is smaller than that in equivalent random graphs and remains zero till significantly large K. Their small diameter, however, implies small-world behavior which is corroborated by their eigenspectrum. We discuss implications of these findings in several contexts.

PACS numbers: 89.75.-k, 87.16.Yc, 05.65.+b, 87.10.+e

Gene networks are fundamental objects underlying the regulatory mechanism of biological systems. Small portions of these networks have been studied by molecular biologists since long using mutagenesis techniques pivoted on manipulation of single gene, or at best a few genes, at a time [1]. Consequently, unraveling of gene networks has been slow. Recent advancements in DNA microarray technology [2] have made large scale studies of gene networks possible. Attempts have been made at identifying large segments of regulatory networks using data from gene microarray expression assays [3]. An aspect of these studies is identification of groups of co-regulated genes. This is done using specialized clustering techniques developed in recent years [4]. Genes in each coexpression group display similar expression pattern across different samples and are expected to be coregulated. Identification of coexpressed genes is almost a standard exercise in the expression profiling studies undertaken at present.

Regulatory genes function by means of both activating (up regulating) as well as inhibiting (down regulating) the expression of genes. Knocking out of such a gene leads to simultaneous change in the expression of genes that were either up or down regulated by it. This may, in turn, result in a cascade affecting other genes and destabilizing the organism. Thus, the co-regulated genes are not necessarily only coexpressed, they can also be counter expressed. Recent studies have verified that both increase and decrease of expression level of genes are equally discriminatory indicators of genetic pathologies [5]. Studies on large scale properties of coexpressed gene networks constructed from gene expression data have shown them to be having both small-world and scale-free characteristic [6]. In this letter we analyze counter expressed gene networks constructed from gene expression data and outline results showing their relevance in biological processes.

Raw gene expression data requires extensive processing before it can be used (see [6] for details). This gives an expression matrix having N rows, each with zero mean and unit variance, corresponding to the N genes and D columns corresponding to the samples. Henceforth this is the expression matrix that we use and refer to. The algorithm for constructing counter expressed gene networks is a modification of the algorithm used earlier for constructing coexpressed gene networks [7]. It requires specification of the maximum number of neighbors K, $0 \leq K < N$, that a vertex can have. For a given K, counter expressed gene network is constructed using the following two step procedure. (i) For each vertex i, $i = 1, \ldots, N$, make a list L_i of its K farthest neighbors ordered by decreasing distance. (ii) Connect all vertices i and j through an edge if $i \in L_j$ and $j \in L_i$, otherwise the vertices are not connected. We choose Euclidean distance as the measure for making the list of farthest neighbors. The use of other distance measures will not alter the results as long as they preserve the ordering of points obtained from the Euclidean measure.

The topological structure of these networks, as in the case of coexpressed gene networks [7], is highly dependent on K. Starting with N isolated vertices at $K = 0$, the network agglomerates very rapidly as K is increased and a single connected component is obtained for $K = K^*$, $0 < K^*/N \ll 1$. A giant connected component emerges for $K = K_{gcc} > 3$. As this algorithm preferentially connects vertices that are far away from each other, it selectively disfavors the formation of triangles. Consequently, we expect that the clustering coefficient of these networks will be lower than that of equivalent random graphs having the same number of vertices and edges. The formation of squares, however, is preferred. The squares occur as long as there are two groups of at least two vertices each such that the smallest distance between vertices of different groups is larger than the largest distance between vertices of the same group. The formation of squares, despite the absence of triangles, makes the average length of shortest paths between vertices small and gives these networks and their connected components a small-world structure.

We analyzed counter expressed networks constructed using gene expression data from several types of cancers [8, 9, 10]. Let z_i be the degree of vertex i, z_{max} be the
largest degree in the network, $P(z)$ be the degree density

$$P(z) = \frac{1}{N} \sum_{i=1}^{N} \delta(z_i - z),$$

and $F(z) = \sum_{i=\leq z} P(i)$ be the distribution. For each network we calculated $P(z)$, $F(z)$, and the homogeneity in terms of the homogeneity order parameter $\Lambda(K)$ defined earlier. The variation of homogeneity in both coexpressed and counter expressed gene networks constructed from colon cancer data is shown in Fig. 1. The figure clearly shows that on increasing K the homogeneity of both the types of networks first decreases for small K, reaches a minimum, and then increases to its maximum value of 1 at $K = N - 1$. The minimum, as seen in the Fig. 1, is somewhat noisy and flat in both the networks. Furthermore, for the same K the homogeneity of the counter expressed networks is smaller than that of the coexpressed networks, except at K of the order of N.

Figure 2 shows the variation of the observed cumulative probability distribution function $F(z)$ with normalized degree $(z + 1)/(\bar{z}_{\text{max}} + 1)$ in a wide range of values of K for counter expressed networks constructed from several gene expression data sets. From the figure it is clear that in the range $K_1 \leq K \leq K_2$ of K corresponding to the flat minimum of the order parameter $\Lambda(K)$, the degree distributions of the networks collapse together and show good scaling for all the data sets. The tails of these distributions fit well with the form

$$F(z) = a - b \ln \left(\frac{z + 1}{\bar{z}_{\text{max}} + 1} \right),$$

where a and b are fit parameters. This implies that the corresponding $P(z)$ has scale-free behavior of the form $b(z + 1)^{-1}$ in the tails, sharply truncated at $z = \bar{z}_{\text{max}}$. As the number of hubs \bar{H} in these networks varies in the range 20–60, the observed \bar{z}_{max} is consistent with that expected $N/\bar{H}(\bar{z}_{\text{max}} + 1) - 1$ for sharply truncated power-law probability density with exponent -1, where $\bar{H}(n)$ is nth Harmonic number.

The scale-free behavior, seen above in 50–75% of the range of variation of the normalized degree, is also indicated by the spectral density $\rho(\lambda)$ of the eigenvalue spectrum of the adjacency matrix of the networks

$$\rho(\lambda) = \frac{1}{N} \sum_{j=1}^{N} \delta(\lambda - \lambda_j),$$

where λ_j is the jth eigenvalue. Figure 3 shows that $\rho(\lambda)$ develops a triangular form for $K \geq K_1$, indicating the
presence of a power-law in the networks. The triangular shape persists till $K \approx N - 1$. For $K < K_1$, $\rho(\lambda)$ is highly skewed with several blurred peaks indicating the presence of small-world behavior. Similar observed behavior earlier in coexpressed gene networks was accompanied by very high clustering coefficient. In the present case, however, the clustering coefficient has a completely different behavior. This implies that the structural details of counter and coexpressed networks, contrary to the intuition, are very different.

The clustering coefficient $C_i(K)$ of a vertex i of degree z_i is defined as

$$C_i(K) = \begin{cases} 0, & z_i \leq 1 \\ \frac{y_i}{z_i(z_i - 1)/2}, & z_i \geq 2 \end{cases}, \quad (4)$$

where y_i is the total number of links present among the z_i neighbors of the vertex. The clustering coefficient of the network is defined as the mean of $C_i(K)$ in two different ways. First, it is $\bar{C}(K)$ the average over all the vertices.

Second, it is $\tilde{C}(K)$ the average taken only over vertices of degree at least 2. The clustering coefficient of the equivalent random graph is $C_{\text{rand}}(K) = E/[N(N-1)/2]$, where E is the number of edges in the graph.

The variation of the clustering coefficient with K for both coexpressed and counter expressed gene networks is shown in Fig. 4. The figure clearly shows that $\tilde{C}(K)$ of coexpressed networks is much higher than that of equivalent random graphs for all K. It is almost constant at ≈ 0.277 for small K and then increases to its maximum values of 1 as K increases to $N - 1$. The $C(K)$ also has similar behavior except at small K when it increases rapidly from ≈ 0.055 at $K = 2$ to ≈ 0.229 at $K = 10$ and then to ≈ 0.277 at $K = 20$. Despite this $C(K)$ remains higher than that for the corresponding random graphs for all K, except at $K = N - 1$ when both are 1, as seen by the variation of $C(K)/C_{\text{rand}}(K)$ in Fig. 4.

Figure 4 shows that the clustering coefficient of counter expressed gene networks remains smaller than that for the corresponding random graphs for all K. Both become equal and equal to their maximum value of 1 only at $K = N - 1$. Furthermore, both $C(K)$ and $\tilde{C}(K)$ remain zero till significantly large $K = K_\Delta$ in these networks (here $K_\Delta = 37$). This is a consequence of absence of triangles. Selective disfavoring of triangle formation, in general, leads to $C(K)/C_{\text{rand}}(K) < 1$ for all $K < N - 1$.

The most important indicator of small-world behavior is the mean $\bar{\ell}$ and the maximum ℓ_{max} of the shortest paths between mutually reachable vertices. In disjoint networks these are defined by using only the finite length shortest paths. In all networks having N vertices, $\bar{\ell}$ and ℓ_{max} are bounded in $[1, (N + 1)/3]$ and $[1, N - 1]$, respectively. The variation of $\bar{\ell}$ with K in both counter expressed and coexpressed gene networks is shown in Fig. 5. The figure shows that in both types of networks $\bar{\ell}^{-1}$, starting with 1 at $K = 1$, decreases sharply as K increases till $K = K_{\text{gcc}}$, the value at which giant connected component emerges in the network. On increasing K further, $\bar{\ell}^{-1}$ decreases and attains a minimum at $K = K_{\text{gcc}}$. This occurs because large chunks merge, forming still larger chunks and introducing paths, longer than $\bar{\ell}$, connecting vertices across the merged chunks. At $K = K_{\text{gcc}}$ the effect of long paths introduced by merging of chunks is balanced by the simultaneously introduced short paths and reduction in the length (if any) of existing paths due to new shortcuts within the chunks. Increasing K beyond K_{gcc} leads to decrease in $\bar{\ell}$, as seen by the behavior of $\bar{\ell}^{-1}$ in Fig. 5 till the vertices form a complete graph. In data containing widely separated big chunks, merging and consequent rapid increase in $\bar{\ell}$ can occur at $K > K_{\text{gcc}}$. This will appear as sharp dips in the presently smooth $\bar{\ell}^{-1} \times K$ curve seen in Fig. 5. The figure shows that immediately after the minimum, $\bar{\ell}^{-1}$ follows $a + b \ln \tilde{z}/\ln N$ very well till the onset of finite size effects at large K, where \tilde{z} is mean degree. This behavior is characteristic of both random graphs and small-world networks. The behavior of ℓ_{max}, although more noisy, was similar to that of $\bar{\ell}$.

Zero clustering for $K \leq K_\Delta$ and very low clustering otherwise observed in counter expressed networks is
a consequence of the definition of clustering coefficient which looks for triangles in the network. This definition, although good for random graphs, does not always reveal the actual extent of clustering. We defined new clustering coefficient using squares instead of triangles by setting y_i in Eq. 1 to the number of pairs of neighbors of i that have at least one more common neighbor. The square based clustering coefficients C_\square and C_\Box, computed similarly to C and C, respectively, have much higher values relative to random graphs for both counter expressed and coexpressed networks. The C_\square, rand value for random graphs is the probability that two vertices connected to a vertex (say, “O”) have another common neighbor (say, “Θ”; Θ ≠ O). It evaluates to $1 - (1 - p)^{\hat{z} - 1}$ for large N, where $p = \hat{z}/(N - 1)$ is the edge density. The variation of $C_\square(K)/C_\text{rand}(K)$ is shown in Fig. 6. The behavior of $C_\Box(K)/C_\text{rand}(K)$ is similar. These results show that clustering in counter expressed networks, despite $C(K)$ being zero, is actually very high and comparable to that in coexpressed networks.

An implication of $C(K) = 0$ for $K \leq K_\Delta$ is that all the connected components comprising the counter expressed networks are bipartite for these values of K. This allows each connected component to be partitioned into two groups such that the genes within each group are coexpressed but those in different groups are counter expressed. This is done by assigning a gene to one group (say, A) and its neighbors to the other group (say, B) and then iteratively assigning neighbors of genes in group A (or, B) to group B (or, A) till no gene in the connected component remains unassigned. This procedure can be used even if the network contains triangles by first eliminating them, e.g., in the counter expressed networks for $K > K_\Delta$, by iteratively identifying all the links forming triangles and removing the smallest one. Triangle elimination may decompose a connected component into two or more parts. In such a case, isolated vertices, doublets, and small chunks are ignored and each of the big chunks is separately processed further. However, the larger the number of triangles that need to be removed before partitioning, the smaller will be the clarity of partitions.

The results presented above were verified using counter expressed networks constructed from several other gene expression data sets also [14]. Flat minimum of $\Lambda(K)$ implies that counter expressed gene networks have non-trivial structure that is robust against noise. High $C_\Box(K)$ and $C_\square(K)$ imply that the structure is highly clustered. Thus, these networks can be used for non-parametric partitioning of gene expression data. The scale-free character of these networks implies that they are built around few crowded hubs and are robust. The small-world structure, a key evolutionary aspect, implies that signaling mechanism encoded by these networks, despite the lack of triangles, functions as efficiently as that of coexpressed networks. These results show that the role of counter expressed networks is as important in biological processes as that of coexpressed networks. Thus, despite difference in their regulatory behavior (activating versus inhibiting gene expression), both these types of networks should be considered together.

\footnotesize
\begin{itemize}
 \item [1] D. Botstein and D. Shortle, Science 229, 1193 (1985); C. R. Geyer, A. Colman-Lerner, and R. Brent, Proc. Natl. Acad. Sci. U.S.A. 96, 8567 (1999); W. L. Stanford, J. B. Cohn, and S. P. Cordes, Nat. Rev. Genet. 2, 756 (2001).
 \item [2] A. C. Pease et al., Proc. Natl. Acad. Sci. U.S.A. 91, 5022 (1994); M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Science 270, 467 (1995).
 \item [3] D. K. Slonim, Nat. Genet. Sup. 32, 502 (2002); H. Zhu and M. Snyder, Curr. Op. Cell Biol. 14, 173 (2002).
 \item [4] M. B. Eisen et al., Proc. Natl. Acad. Sci. U.S.A. 95, 14863 (1998); M. Blatt, S. Weizmann, and E. Domany, Phys. Rev. Lett. 76, 3251 (1998); H. Agrawal and E. Domany, Phys. Rev. Lett. 90, 158102 (2003).
 \item [5] T. Ernst et al., Am. J. Pathol. 160, 2169 (2002).
 \item [6] H. Agrawal, Phys. Rev. Lett. 89, 268702 (2002).
 \item [7] R. Nadon and J. Shoemaker, Trends Genet. 18, 265 (2002); J. Quackenbush, Nat. Rev. Genet. 2, 418 (2001).
 \item [8] D. A. Notterman et al., Cancer Res. 61, 3124 (2001).
 \item [9] T. R. Golub et al., Science 286, 531 (1999).
 \item [10] C. M. Perou et al., Proc. Natl. Acad. Sci. U.S.A. 96, 9212 (1999).
 \item [11] I. J. Farkas, I. Derényi, A.-L. Barabási, and T. Vicsek, Phys. Rev. E 64, 026704 (2001); K.-I. Goh, B. Kahng, and D. Kim, ibid. 64, 051903 (2001).
 \item [12] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).
 \item [13] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002); S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079 (2002).
 \item [14] A. Bhattacharjee et al., Proc. Natl. Acad. Sci. U.S.A. 98, 13790 (2001); D. G. Beer et al., Nat. Med. (NY) 8, 816 (2002); S. A. Armstrong et al., Nat. Genet. 30, 41 (2002).
 \item [15] Keys in the graphs are as follows. Gola99-I (Gola99-T): 1049 (1030) genes in 34 (38) samples of the independent (training) set from acute leukemia data [9]. Pero99-26: 1030 genes in 26 samples in breast cancer data [10]. Nott01-CF: 1211 genes in 36 samples from colon cancer data [5]. All the data sets were preprocessed as in [8].
\end{itemize}