Lignicolous freshwater ascomycota from Thailand: Phylogenetic and morphological characterisation of two new freshwater fungi: *Tingoldiago hydei* sp. nov. and *T. clavata* sp. nov. from Eastern Thailand

Li Xu¹, Dan-Feng Bao²,³,⁴, Zong-Long Luo², Xi-Jun Su², Hong-Wei Shen²,³, Hong-Yan Su²

¹ College of Basic Medicine, Dali University, Dali 671003, Yunnan, China ² College of Agriculture & Biological Sciences, Dali University, Dali 671003, Yunnan, China ³ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand ⁴ Department of Entomology & Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand

Corresponding author: Hong-Yan Su (suhongyan16@163.com)

Academic editor: R. Phookamsak | Received 31 December 2019 | Accepted 6 March 2020 | Published 26 March 2020

Citation: Xu L, Bao D-F, Luo Z-L, Su X-J, Shen H-W, Su H-Y (2020) Lignicolous freshwater ascomycota from Thailand: Phylogenetic and morphological characterisation of two new freshwater fungi: *Tingoldiago hydei* sp. nov. and *T. clavata* sp. nov. from Eastern Thailand. MycoKeys 65: 119–138. https://doi.org/10.3897/mycokeys.65.49769

Abstract

Lignicolous freshwater fungi represent one of the largest groups of Ascomycota. This taxonomically highly diverse group plays an important role in nutrient and carbon cycling, biological diversity and ecosystem functioning. The diversity of lignicolous freshwater fungi along a north-south latitudinal gradient is currently being studied in Asia. In this paper, we introduce two novel freshwater taxa viz. *Tingoldiago hydei* sp. nov. and *T. clavata* sp. nov. which were collected from freshwater substrates in Eastern Thailand. Morphological comparison based on the size of ascomata, asci and ascospores, as well as multi-gene phylogenetic analyses based on LSU, SSU, ITS and TEF1-α DNA sequences, supports their placement in *Tingoldiago* (Lentitheciaceae). Descriptions and illustrations of these two new species are provided.

Keywords

2 new species, Lentitheciaceae, Freshwater fungi, phylogeny, taxonomy
Introduction

Freshwater fungi are those which the whole or part of their life cycle is found in a freshwater habitat (Thomas 1996, Wong et al. 1998) and they are an evolutionary important group (Vijaykrishna et al. 2006). The members of freshwater fungi can be saprobes, parasites, endophytes and mutualistic taxa (Vijaykrishna et al. 2005, Zhang et al. 2008, Swe et al. 2009, Jones et al. 2014, Huang et al. 2018). There is a wide range of organisms that can be freshwater fungi hosts, such as wood, plants, alga, foams, fish etc. (Sparrow 1960, Ellis and Ellis 1985, Jones et al. 2014). However, a lot of studies on freshwater fungi have focused on lignicolous freshwater fungi (Tsui et al. 2000, Cai et al. 2002, Luo et al. 2004, 2018, Jones et al. 2014, Hyde et al. 2016, Yang et al. 2017), which were defined as those fungi that grow on submerged woody debris in freshwater streams, ponds, lakes and tree hollows (Hyde et al. 2016). They also grow on submerged wood in peat swamps and dams (Pinnoi et al. 2006, Pinruan et al. 2007, 2014, Hu et al. 2010). Lignicolous freshwater fungi are a diverse group comprising species from different phyla (Aphelidiomycota, Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Monoblepharomycota, Mortierellomycota and Rozellomycota) (Shearer et al. 2007, Kagami et al. 2012, Zhang et al. 2012, Jones et al. 2014, Wijayawardene et al. 2018). The dominant groups of lignicolous freshwater fungi are Dothideomycetes and Sordariales (Jones et al. 2014, Hyde et al. 2016, Wijayawardene et al. 2017, 2018).

We are studying the diversity of lignicolous freshwater fungi in Thailand, in order to establish the phylogenetic relationships of lignicolous freshwater fungi, understanding the natural classification of this group and contributing to the biogeographical diversity of fungi (Hyde et al. 2016). The study on freshwater fungi in Thailand was first investigated by Tubaki et al. (1983) and they reported 40 freshwater fungal species from foam. Subsequently, mycologists started to study lignicolous freshwater fungi in Thailand and several taxa have been reported (Sivichai et al. 1998, 1999, 2000, 2002, 2010, Jones et al. 1999, Marvanová et al. 2000, Hu et al. 2010, Zhang et al. 2013, Luo et al. 2015, 2016, Bao et al. 2018).

Lentitheciaceae was introduced by Zhang et al. (2012) to accommodate Massarina-like species in the order Pleosporales. Presently, 13 genera are accepted in this family (Dayarathne et al. 2018, Hyde et al. 2018). Species in this family are widely distributed in the world (China, Egypt, Hungary, Italy, Japan, Russia, Saudi, Thailand, UK, Uzbekistan) and are commonly saprobic on stems and twigs of herbaceous and woody plants in terrestrial or aquatic habitats (Wanasinghe et al. 2014, 2018, Knapp et al. 2015, Wijayawardene et al. 2015, Luo et al. 2016, Tibpromma et al. 2017, Hyde et al. 2018). The genus Tingoldiago was established by Hirayama et al. (2010) with a single species Tingoldiago graminicola K. Hiray. & Kaz. Tanak, this species being originally treated as Massarina ingoldiana. Later, Hirayama et al. (2010) re-assessed the phylogeny of Massarina ingoldiana and introduced two new genera Tingoldiago and Lindgomyces to accommodate Massarina ingoldiana sensu lato, based on phylogenetic analyses. Currently, only one species is accepted in this genus.
In this paper, we introduce two new freshwater species of Tingoldiago (Lentitheciaceae), based on morpho-molecular studies. Detailed descriptions and illustrations of these two new species are provided.

Materials and methods

Collection, Isolation and morphological studies

Submerged decaying wood samples were collected from That Phanom, Nakhon Phanom, Thailand and brought to the laboratory in plastic bags. The samples were incubated in plastic boxes lined with moistened tissue paper at room temperature for one week. Specimen observations and morphological studies were conducted, following the protocols provided by Luo et al. (2018).

Pure cultures were obtained by single spore isolation followed by Chomnunti et al. (2014). Germinating ascospores were transferred aseptically to potato dextrose agar (PDA) plates and grown at 16–25 °C in daylight. Colony colour and other characters were observed and measured after three weeks. The specimens were deposited in the herbarium of Mae Fah Luang University (MFLU), Chiang Rai, Thailand. Living cultures are deposited in the Culture Collection of Mae Fah Luang University (MFLUCC). Facesoffungi numbers and Index Fungorum numbers were obtained, following Jayasiri et al. (2015) and Index Fungorum (2019). New species have been established as recommended by Jeewon and Hyde (2016).

DNA extraction, PCR amplification and sequencing

Fungal mycelium was scraped from the surface of colonies grown on a PDA plate or MEA plate at 25 °C for 4 weeks, transferred into a 1.5 ml centrifuge tube and ground using liquid nitrogen. The EZ geneTM fungal gDNA kit (GD2416) was used to extract DNA from the ground mycelium according to the manufacturer’s instructions. The gene regions of the large subunit of the nuclear ribosomal DNA (LSU), the internal transcribed spacers (ITS), the small subunit of the nuclear ribosomal DNA (SSU) and the translation elongation factor (TEF1-α) RNA were amplified using the primer pairs LR0R/LR7 (Vilgalys and Hester 1990), ITS5/ITS4, NS1/NS4 (White et al. 1990) and 983F/2218R (Liu et al. 1999), respectively. The amplification reactions were performed in 25 μl of PCR mixtures containing 9.5 μl ddH₂O, 12.5 μl 2× PCR MasterMix (Tsingke Co., China), 1 μl DNA sample and 1 μl of each primer. The PCR thermal cycle programme for LSU, ITS, SSU and TEF1-α amplification were as follows: 94 °C for 3 minutes, followed by 35 cycles of denaturation at 94 °C for 30 seconds, annealing at 56 °C for 30 seconds, elongation at 72 °C for 1 minute and a final extension at 72 °C for 10 minutes and finally kept at 4 °C. PCR amplification was confirmed on 1% agarose electrophoresis gels.
stained with ethidium bromide. PCR products were sequenced using the same set of primers used in PCR in Beijing Tsingke Biological Engineering Technology and Services Co. Ltd. (Beijing, P.R. China).

Sequencing and sequence alignment

The sequence was assembled by using BioEdit and sequences with high similarity indices were determined from a BLAST search to find the closest matches with taxa in Lentitheciaceae and from recently published data (Dayarathne et al. 2018). All consensus sequences and the reference sequences were aligned using MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/index.html) (Katoh and Standley 2013), then checked visually and manually optimised using BioEdit v.7.0.9 (Hall 1999). Ambiguous regions were excluded from the analyses and gaps were treated as missing data. The phylogeny website tool “ALTER” (Glez-Peña et al. 2010) was used to convert the alignment fasta file to Phylip format for RAxML analysis and Clustalx BETA and PAUP 4.0 were used to convert the alignment fasta file to a Nexus file for Bayesian analysis. Phylogenetic analyses were obtained from Maximum Likelihood (ML), Maximum Parsimony (MP) and Bayesian analysis.

Phylogenetic analyses

Maximum likelihood trees were generated using the RAxML-HPC2 on XSEDE (8.2.8) (Stamatakis 2006, Stamatakis et al. 2008) in the CIPRES Science Gateway platform (Miller et al. 2010) using GTR+ I + G model of evolution which was estimated by MrModeltest 2.2 (Nylander et al. 2008). Maximum likelihood bootstrap values (ML), equal to or greater than 75%, are given above each node (Figure 1).

MP analyses were performed using the heuristic search option with 1000 random taxa addition and tree bisection and reconnection (TBR) as the branch-swapping algorithm. All characters were unordered and of equal weight and gaps were treated as missing data. Maxtrees were unlimited, branches of zero length were collapsed and all multiple, equally parsimonious trees were saved. Clade stability was assessed using a bootstrap (BS) analysis with 1000 replicates, each with ten replicates of random stepwise addition of taxa (Hillis and Bull 1993).

The Bayesian analysis was performed with MrBayes v3.2 (Ronquist et al. 2012), with the best-fit model of sequence evolution estimated with MrModeltest 2.2 (Nylander et al. 2008) to evaluate posterior probabilities (PP) (Rannala and Yang 1996, Zhaxybayeva and Gogarten 2002) by Markov Chain Monte Carlo (MCMC) sampling. Six simultaneous Markov chains were run for 10,000,000 generations, trees were sampled every 1000th generation and 1,0000 trees were obtained. Based on the tracer analysis, the first 1,000 trees representing 10% were discarded as the burn-in phase in the analysis. The remaining trees were used to calculate posterior probabilities in the majority rule consensus tree (critical value for the topological convergence diagnostic set to 0.01).
Table 1. Taxa used in this study and their GenBank accession numbers, the newly generated sequences are indicated with * and the type strains are indicated in bold.

Taxa	strain	GenBank accession number			
	LSU	SSU	ITS	TEF1	
Bambusicola bambusae	MFLUCC 11–0614	JX442035	JX442039	NR121546	KP761722
B. irregulispora	MFLUCC 11–0437	JX442036	JX442040	NR121547	KP761723
B. massarinia	MFLUCC 11–0389	JX442037	JX442041	NR121548	–
Binuria novaezelandiae	AFTOL 1D931	–	–	–	DQ471087
Byssothecium circinans	CBS67592	GU205217	GU205235	–	GU349061
Corynespora cassiicola	CBS100822	GU301808	GU296144	–	GU349052
C. smithii	CAB15649b	GU323201	–	–	GU349018
Dacampia engeliana	72868	KT383791	–	–	–
D. hoekeri	74269	KT383793	–	–	–
D. hoekeri	81840	KT383795	–	–	–
Darksidea alpha	CBS 135650	KP184019	KP184049	NR137619	KP184166
D. beta	CBS 135637	KP184023	KP184049	NR137597	KP184189
D. delta	CBS 135638	–	NR137075	–	–
D. epsilon	CBS 135658	KP184029	KP184070	NR137959	KP184186
D. gamma	CBS 135634	KP184031	KP184073	NR137587	KP184188
D. zeta	CBS 135640	KP184013	KP184071	NR137958	KP184191
Falciiformispora lignatilis	BCC 21117	GU371826	GU371834	–	GU371819
F. lignatilis	BCC 21118	GU371827	GU371835	–	GU371820
Halobyssothecium obiones	27AY2385	–	–	–	XX263864
H. obiones	MFLUCC 15–0381	MH376744	MH376745	MH377060	MH376746
Helicascus nypae	BCC36752	GU479789	GU479755	–	GU479855
Kalmusia scabrispora	KT2202	AB524594	AB524453	–	AB539107
Karstenella rhodostoma	CBS69094	GU301821	GU296154	–	GU349067
Katumotoa bambusicola	KT1517a	AB524595	AB524454	LCO14560	AB539108
Keizeriella brevisaca	KT649	AB807588	AB797298	–	AB808567
K. culmifida	KT2642	AB807592	AB797302	LCO14562	–
K. gloeospora	KT829	AB807589	AB797299	LCO14563	–
K. poagena	CBS136767	KJ869170	–	KJ869112	–
K. quadriripetata	KT2292	AB807593	AB797303	AB811456	AB808572
K. taminensis	KT571	AB807595	AB797305	LCO14564	AB808574
K. trichophoricola	CBS 136770	AB807595	AB797305	LCO14566	AB808515
Lentithecium clionina	KT1149A	AB807540	AB797250	LCO14566	AB808515
L. fluviatile	CBS 123090	FJ795450	FJ795492	–	–
L. pseudoliminum	KT1111	AB807544	AB797254	AB809632	AB808520
Massarina cisti	CBS 266 62	FJ795447	FJ795490	LCO14568	AB808514
M. eburna	CBS 473 64	GU301840	GU296170	–	GU349040
Montagnula opulenta	AFTOLID1734	DQ678086	AF164370	–	–
Morosphaeria	JK5304B	GU479794	GU479790	–	–
ramunculicola					
Murilentinhectium clematidis	IT1078	KM408758	KM408760	KM408756	–
M. clematidis	MFLUCC 14–0562	KM408759	KM408761	KM408757	KM454445
Neophytophaerella sassaica	KT1706	AB524599	AB524458	LCO14577	AB539111
Palmisacoma gregariacomum	MFLUCC 11–0175	KP744495	KP753958	KP744452	–
Paraconiothyrium brasiliense	CBS100299	JX496124	AY642523	JX496011	–
Paraphaeosphaeria michotii	MFLUCC 13–0349	JX939282	JX939285	JX939279	–
P. minutans	CBS122788	EU754173	EU754074	–	GU349083
Phaeodatis winterti	CBS18258	–	GU296183	–	–
Phragnocamarosporium platani	MFLUCC 14–1191	KP842915	KP842918	–	–
Taxa	strain	GenBank accession number			
----------------------	----------	-------------------------			
Pleurophoma ossicola	CBS139905	KR476769 – KR476736 –			
P. ossicola	CPC24985	KR476770 – NR137992 –			
Pleurophoma pleurospora	CBS130329	JF740327 – – –			
Poacea coma aquaticum	MFLUCC 14-0048	KT324690 KT324691 – –			
P. halophila	MFLUCC 15-0949	MF615399 MF615400 – –			
P. helicoides	MFLUCC 11-0136	KP998462 KP998463 KP998459 KP998461			
Pseudomurilentithecium camporeisi	MFLUCC 14-1118	MN638846 MN638850 MN638861 –			
Seto septoria arundinacea	KT600	AB807575 AB797285 LC014595 AB808551			
S. magniarundinacea	KT1174	AB807576 AB797286 LC014596 AB808552			
S. phragmitis	CBS 114802	KF251752 – KF251249 –			
S. scirpi	MFUCC 14-0811	KY770982 KY770980 MF939637 KY770981			
Stagonospora macropycnida	CBS 114202	GU301873 GU296198 – GU349026			
Tingo diago graminicola	KH155	AB521745 AB521728 LC014599 AB808562			
T. graminicola	KH68	AB521743 AB521726 LC014598 AB808561			
T. graminicola	KT891	AB521744 AB521727 – AB808563			
T. hydei	MFLUCC 19-0499	MN857177 – MN857181 –			
T. clavata	MFLUCC 19-0496	MN857178 MN857186 MN857182 –			
T. clavata	MFLUCC 19-0498	MN857179 MN857187 MN857183 –			
T. clavata	MFLUCC 19-0495	MN857180 MN857188 MN857184 –			
Towyspora aestuari	MFLUCC 15-1274	KU248852 KU248853 NR148095 –			
Trematosphaeria pertusa	CBS 122368	FJ201990 FJ201991 NR132040 KF015701			
T. pertusa	CBS 122371	GU301876 GU348999 KF015669 KF015702			

The phylograms were visualised in FigTree 1.4.2 (Rambaut 2014) and made in Adobe Illustrator CS5 (Adobe Systems Inc., USA). All newly generated sequences of this study have been submitted in GenBank.

Results

Phylogenetic analyses

The aligned sequence matrix comprises LSU, SSU, ITS and TEF1-α sequence data for 69 taxa, with Corynespora smithii and Corynespora cassiicola as out-group taxa. The dataset comprises 3334 characters after alignment including gaps (LSU: 1–897; SSU: 898–1920; ITS: 1921–2522; TEF1-α: 2523–3479). The topologies of RAxML, MP and Bayesian are similar and the bootstrap support values for Maximum Likelihood (ML), Maximum Parsimony (MP) higher than 75% and Bayesian posterior probabilities (PP) greater than 0.95 are given above the nodes. Maximum parsimony analyses indicated that 2,442 characters were constant, 232 variable characters parsimony un-informative and 805 characters are parsimony-informative. The RAxML analysis of the combined dataset yielded the best scoring tree (Figure 1) with a final ML optimisation likelihood value of -21568.71378. The matrix had 1322 distinct alignment patterns,
The novel species Tingoldiago hydei and T. clavata, introduced in this paper, are supported by multi-phylogenetic analyses. Four newly generated strains clustered together within Tingoldiago with strong statistical support (100 ML/95 MP/1.00 PP, Figure 1). Three strains of T. clavata clustered together and sister to T. hydei with strong bootstrap support (99 ML/97 MP/1 PP, Figure 1).
Taxonomy

Tingoldiago hydei D.F. Bao, Z.L. Luo & H.Y. Su, sp. nov.

Index Fungorum No: IF557047

Facesoffungi No: FoF07082

Figure 2

Etymology. Referring to Kevin D. Hyde for his contributions in fungal taxonomy.

Holotype. THAILAND, That Phanom, Nakhon Phanom, on submerged decaying wood, 13 November 2018, D.F. Bao, B-126 (MFLU 19–2842, holotype), ex-type living culture, MFLUCC 19–0499.

Description. Saprobic on submerged decaying wood. **Sexual morph:** Ascomata 180–280 × 330–470 μm (x = 400 × 420 μm, n = 10), immersed to semi-immersed, erumpent, gregarious, scattered, depressed globose to conical with a flattened base, dark brown to black, as dark spots on host surface. Ostioles central, papillate, short, crest-like, dark brown. Peridium 33.5–50 μm wide, comprising 4–6 layers, brown to dark brown cells of textura anngularis. Hamathecium comprising 2–2.5 μm (n = 30) wide, numerous, branched, septate, hyaline, cellular pseudoparaphyses. Asci 95–164 × 18–22 μm (x = 129 × 20 μm, n = 20), 8-spored, bitunicate, fissitunicate, cylindrical-clavate, rounded at apex, with a short pedicellate. Ascospores 37.5–42 × 7.5–9 μm (x = 40 × 8 μm, n = 30), overlapping, 2–3-seriate, clavate with round ends, straight, unisepatate, deeply constricted at septum, with broad and short upper cells 17.5–20 × 7–8.7 μm (x = 18.7 × 7.9 μm, n = 30), narrow and long lower cells 20.6–23.3 × 5.9–7.4 μm (x = 21.9 × 6.7 μm, n = 30), tapering towards the end, with short appendages at the septum, hyaline, guttulate, smooth, surrounded by a fusiform gelatinous sheath.

Asexual morph: Undetermined.

Culture characteristics. Ascospores germinating on PDA within 24 hours. Colonies on MEA effuse, greyish-white to dark brown from above and below, reaching 3–4 cm diameter within 30 days at room temperature under natural light, composed of subhyaline to pale brown, septate, smooth hyphae.

Notes. Phylogenetic analysis showed that *Tingoldiago hydei* is related to *T. clavata*; however, they are in different lineages with significant support (99 ML/97 MP/1.00 PP, Figure 1). *Tingoldiago hydei* resembles *T. clavata* in having bitunicate, cylindrical-clavate asci and clavate, hyaline, unisepatate, ascospores with broad and short upper cells, narrow and long lower cells, tapering towards the end, surrounded by a gelatinous sheath. However, *Tingoldiago hydei* can be distinguished from *T. clavata* in having longer and narrower asci (95–164 × 18–22 vs. 110–148 × 20–27 μm) and smaller ascospores (37.5–42 × 7.5–9 vs. 48–51 × 7.5–8.5 μm). Moreover, ascospores of *T. clavata* have longer appendages at the septum, while the appendages of *T. hydei* are much shorter than *T. hydei*.

Tingoldiago clavata is similar to the type species, *T. raminicola* in having immersed to semi-immersed, depressed globose to conical ascomata with flattened base, bitunicate, fissitunicate, cylindrical-clavate asci and clavate, straight, unisepatate ascospores.
Figure 2. Tingoldiago hydei (MFLU 19–2842, holotype). a–c Ascomata on wood d section of ascoma e peridium f, g pseudoparaphyses h ostiole i–l asci m–r ascospores s germinating ascospore t vegetative hyphae in culture u, v culture on PDA from surface and reverse. Scale bars: 50 μm (d, e, h), 20 μm (f–g, m–t), 30 μm (i–l).
However, *T. clavata* differs from *T. raminicola* in having longer asci (95–164 × 18–22 vs. 87.5–122 × 18.25–25 μm) and smaller ascospores (37.5–42 × 7.5–9 vs. 43.5–53 × 7.5–11 μm). Moreover, ascospores of *T. clavata* have short appendages at the septum while ascospores of *T. raminicola* lack appendages. In addition, we compared the base pairs of ITS regions between these two species and there were 25 base pairs without gaps (5.1%) differences. Therefore, we introduce our isolate as a new species based on both phylogeny and morphological characters.

Tingoldiago clavata D.F. Bao, L. Xu & H.Y. Su, sp. nov.
Index Fungorum No: IF557048
Facesoffungi No: FoF07083
Figure 3

Etymology. Referring to the clavate ascospores of this fungus.

Holotype. THAILAND, That Phanom, Nakhon Phanom, on submerged decaying wood, 13 November 2018, D.F. Bao, B-161 (MFLU 19–2843, holotype), ex-type culture, MFLUCC 19–0496.

Description. Saprobic on submerged decaying wood. **Sexual morph:** Ascomata 145–210 × 145–195 μm (x = 175 × 169 μm, n = 10), immersed to semi-immersed, gregarious, scattered, erumpentia, depressed globose to conical with a flattened base, dark brown to black, as dark spots on host surface. **Ostiole** central, round to papilate, short, crest-like, dark brown. **Peridium** 28–47 μm wide, comprising several layers, pale brown to brown cells of textura anngularis. **Hamathecium** comprising 1.5–2.0 μm (n = 30) wide, numerous, branched, septate, hyaline, cellular pseudoparaphyses. Asci 110–148 × 20–27 μm (x = 129 × 23 μm, n = 20), 8-spored, bitunicate, fissitunicate, cylindrical-clavate, rounded at apex, with a short pedicellate. **Ascospores** 48–51 × 7.5–9 μm (x = 50.5 × 8.5 μm, n = 30), overlapping, 2–3-seriate, clavate, with round ends, straight, uniseptate, deeply constricted at septum, hyaline, with broad and short upper cells 16.6–18.9 × 7.8–9.0 μm (x = 17.7 × 8.4 μm, n = 30), narrow and long lower cells 30–32.9 × 6.5–8.0 μm (x = 31.5 × 7.3 μm, n = 30), tapering towards the end, guttulate, smooth, 2–4 equatorial appendages at the septum and surrounded by a fusiform gelatinous, sheath. **Asexual morph:** Undetermined.

Culture characteristics. Ascospores germinating on PDA within 24 hours. Colonies on MEA effuse, velvety, greyish-white to dark brown from above and below, reaching 2.5–3 cm diameter within 30 days at room temperature under natural light, composed of subhyaline to brown, septate, smooth hyphae.

Additional specimens examined. THAILAND, That Phanom, Nakhon Phanom, on submerged decaying wood, 13 November 2018, D.F. Bao, B160 (paratype: MFLU 19–2844; living culture, MFLUCC 19–0498); THAILAND, That Phanom, Nakhon Phanom, on submerged decaying wood, 13 November 2018, D.F. Bao, B136 (paratype: MFLU 19–2845; living culture, MFLUCC 19–0495)
Lignicolous freshwater ascomycota from Thailand

Figure 3. Tingoldiago clavata (MFLU 19–2843, holotype). a–c ascomata on wood d section of ascoma e ostiole f peridium g pseudoparaphyses h–l asci m–r ascospores s vegetative hyphae in culture t, u culture on PDA from surface and reverse. Scale bars: 50 μm (d, e), 20 μm (f–l), 10 μm (m–s).
Notes. *Tingoldiago clavata* resembles the type species, *T. graminicola* in having bitunicate, cylindrical-clavate asci with a short pedicellate and clavate, hyaline, 1-septate, ascospores with broad upper cells, narrow lower cells. However, we can distinguish them by the size of ascomata and asci and the colour, septate and appendages of ascospores. *Tingoldiago clavata* has smaller ascomata (110–148 × 145–195 vs. 150–250 × 250–450 μm) and larger asci (110–148 × 20–27 vs. 87.5–122 × 18.25–25 μm). Moreover, ascospores of *T. clavata* are hyaline, uniseptate, with 2–4 equatorial appendages at the septum, while ascospores of *T. graminicola* are brown and 3-septate at maturity and lacking appendages at the septum. In addition, a comparison of the 491 nucleotides across the ITS gene region of *T. clavata* and *T. graminicola* reveals 25 base-pair differences and therefore provides further evidence to introduce *T. clavata* as a new species as recommended by Jeewon and Hyde (2016).

Discussion

During the last decade, freshwater fungi in Thailand have been mainly reported from north, south and northeast of Thailand (Jones et al. 1999, Marvanová and Hywel-Jones 2000, Sivichai and Boonyuen 2010, Sivichai and Hywel-Jones 1999, Sivichai et al. 1998, 2000, Sri-indrasutdhi et al. 2010). No freshwater fungi from Eastern Thailand have been reported so far. In this study, two new freshwater species, viz. *Tingoldiago hydei* and *T. clavata* from Eastern Thailand, are introduced, based on morphology and phylogeny. *Tingoldiago hydei* and *T. clavata* satisfied the generic concept of the genus *Tingoldiago* (Hirayama et al. 2010). They comprise globose to conical, immersed to erumpent ascomata, cellular pseudoparaphyses, bitunicate, fissitunicate asci and clavate ascospores with a median primary septum and a large fusiform gelatinous sheath around the ascospore (Hirayama et al. 2010). Morphologically, *T. hydei* and *T. clavata* are quite similar as they have similar shape of asci and ascospores; however, we can distinguish them by the size of ascomata, asci and ascospores (Table 2). In addition, we also compared the morphological differences of these two species with the type species, *T. graminicola*. Ascospores of *T. hydei* and *T. clavata* are hyaline, uniseptate, with appendages at the septum and the upper cells are broader and shorter than the lower cells, while the ascospores of *T. graminicola* are hyaline, uniseptate, but becoming brown and 3-septate with age, lacking appendages at the septum, upper cells and lower cells are similar lengths. Phylogenetic analyses showed that our two new isolates clustered together and are sister to the type species, *Tingoldiago graminicola* with strong bootstrap support (100 ML/92 MP/1.00 PP). This evidence strongly supports our two isolates to be the new species.

Hyde et al. (2020) introduced a new genus, *Pseudomurilentithecium* in Lentitheciaceae. In their phylogenetic analysis, *Pseudomurilentithecium* clustered with *Poaceascoma* and was basal to Lentitheciaceae. However, in our phylogenetic analysis, *Pseudomurilentithecium* grouped with the members of Massarinaceae, rather than Lentitheciaceae. Therefore, further investigation is required to confirm the placement of the genus.
Tingoldiago is a well-resolved genus in this family with a stable clade within Lentitheciaceae. The genus can be distinguished from other genera in this family by having hyaline, uniseptate, upper cells are broad and basal cells are narrow ascospores with a large fusiform gelatinous sheath. The sheath is considered to be an adaptation by the genus that enables ascospores to attach to the substrates in moving water (Shearer 1993, Hyde and Goh 2003, Jones 2006, Devadatha et al. 2019). It is reported that the genus Tingoldiago is exclusively found in freshwater habitats (Hirayama et al. 2010) and our two new species were collected from lotic habitats of Mekong River.

Acknowledgements

We would like to thank the National Natural Science Foundation of China (NSFC 31860006, 31660008) and the Fungal Diversity Conservation and Utilization Innovation team of Dali University (ZKLX2019213) for financial and laboratory support. Dan-Feng Bao thanks Shaun Pennycook from Landcare Research, Auckland, New Zealand, for advising on the taxon names. Wen-Li Li and Yan-Mei Zhang are acknowledged for their help on DNA extraction and PCR amplification.

References

Bao DF, Luo ZL, Jeewon R, Nalumpang S, Su HY, Hyde KD (2018) Neoastrosphaeriella aquatica sp. nov. (Aigialaceae), a new species from freshwater habitat in southern Thailand. Phytotaxa 391: 197–206. https://doi.org/10.11646/phytotaxa.391.3.3

Cai L, Tsui CKM, Zhang KQ, Hyde KD (2002) Aquatic fungi from Lake Fuxian, Yunnan, China. Fungal Diversity 9: 57–70.

Dayarathne MC, Hyde KD, Wanasighe DN, Jones EBG, Chomnunti P (2018) A novel marine genus, Halobyssothecium (Lentitheciaceae) and epitypification of Halobyssothecium obiones comb. nov. Mycological Progress 17: 1161–1171. https://doi.org/10.1007/s11557-018-1432-3

Taxa	Distribution	Ascomata (μm)	Pseudoparaphyses (μm)	Asci (μm)	Ascospores (μm)	References
Tingoldiago						Hirayama et al. 2010
graminicola	Japan, UK	150–250 × 250–450	1.5–4	87.5–122 × 18.25–25	43.5–53 × 7.5–11	
T. hydei	Thailand	180–280 × 330–470	1.8–2.5	95–164 × 18–22	37.5–42 × 7.5–9	This study
T. clavata	Thailand	145–210 × 145–195	1.4–2.0	110–148 × 20–27	48–51 × 7.5–8.5	This study

Table 2. The morphological comparisons of Tingoldiago species discussed in this study.
Devadatha B, Sarma VV, Jeewon R, Hyde KD, Jones EBG (2019) *Morosphaeria muthupetens* sp.nov. (Morosphaeriaceae) from India: Morphological characterisation and multigene phylogenetic inference. Botanica Marina 61: 395–405. https://doi.org/10.1515/bot-2017-0124

Ellis MB, Ellis JP (1985) Microfungi on Land Plants: An Identification Handbook (1st ed.). Macmillan Pub Co.

Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D (2010) ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Research 38: 14–18. https://doi.org/10.1093/nar/gkq321

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. https://doi.org/10.1093/nar/gkq321

Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192. https://doi.org/10.1093/sysbio/42.2.182

Hirayama K, Tanaka K, Raja HA, Miller AN, Shearer CA (2010) A molecular phylogenetic assessment of *Matarina ingoldiana sensu lato*. Mycologia 102: 729–746. https://doi.org/10.3852/09-230

Hu DM, Cai L, Chen H, Bahkali AH, Hyde KD (2010) Fungal diversity on submerged wood in a tropical stream and an artificial lake. Biodiversity and Conservation 19: 3799–3808. https://doi.org/10.1007/s10531-010-9927-5

Hyde KD (1995) Tropical Australia freshwater fungi VII. New genera and species of ascomycetes. Nova Hedwigia 61: 119–140.

Hyde KD, Chaiwan N, Norphanphoun C, Boonmee S, Camporesi E, Chethana KWT, Dayarathne MC, de Silva NI, Dissanayake AJ, Ekanayaka AH, Hongsanan S, Huang SK, Jayasiri SC, Jayawardena RS, Jiang HB, Karunarathna A, Lin CG, Liu JK, Liu NG, Lu YZ, Luo ZL, Maharachchikumbura SSN, Manawasinghe IS, Pem D, Perera RH, Phukhamsakda C, Samarakoon MC, Senwanna C, Shang QJ, Tennakoon DS, Thambugala KM, Tibpromma S, Wanasinghe DN, Xiao YP, Yang J, Zeng XY, Zhang JF, Zhang SN, Bulgakov TS, Bhat DJ, Cheewangkoon R, Goh TK, Jones EBG, Kang JC, Jeewon R, Liu ZY, Lumyong S, Kuo CH, Mckenzie EHC, Wen TC, Yan JY, Zhao Q (2018) Mycosphere notes 169–224. Mycosphere 9(2): 271–430. https://doi.org/10.5943/mycosphere/9/2/8

Hyde KD, Fryar S, Tian Q, Bahkali AH, Xu JC (2016) Lignicolous freshwater fungi along a north–south latitudinal gradient in the Asian/Australian region; can we predict the impact of global warming on biodiversity and function? Fungal Ecology 19: 190–200. https://doi.org/10.1016/j.funeco.2015.07.002

Hyde KD, Goh TK (2003) Adaptations for dispersal in filamentous freshwater fungi. Fungal Diversity 10: 231–258.

Hyde KD, Jones EBG, Liu JK, Ariyawansa H, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous PW, Dai DQ, Diederich P, Dissanayake A, Doilom M, Doveri F, Hongsanan S, Jayawardena R, Lawrey JD, Li YM, Liu XY, Lösing R, Monkai J, Muggia L, Nelsen MP, Pang KL, Phookamsak R, Senanayake IC, Shearer CA, Suetsong S, Tanaka K, Thambugala KM, Wijayawardene NN, Wikee S, WuHX, Zhang Y, Aguirre-Hudson B, Alias SA,
Aptroot A, Bahkali AH, Bezerra JL, Bhat DJ, Camporesi E, Chukeatirote E, Gueidan C, Hawksworth DL, Hirayama K, Hoog SD, Kang JC, Knudsen K, Li WJ, Li XH, Liu ZY, Mapook, A, McKenzie EHC, Miller AN, Mortimer PE, Phillips AJL, Raja HA, Scheuer C, Schumm F, Taylor JE, Tian Q, Tibbromma S, Wanasinghe DN, Wang Y, Xu JC, Yacharoen S, Yan JY, Zhang M (2013) Families of Dothideomycetes. Fungal Diversity 63: 1–313.
https://doi.org/10.1007/s13225-013-0263-4

Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EBG, Liu NG, Abeywickrama PD, Mapook A, Wei DP, Perera RH, Manawasinghe IS, Pem D, Bundhun D, Karunarathna A, Ekanayaka AH, Bao DF, Li JF, Samarakoone MC, Chaiwan N, Lin CG, Phutthacha roen K, Zhang SN, Senanayake IC, Goonasekara ID, Thambugala KM, Phuhamsakda C, Tennakoong DS, Jiang HB, Yang J, Zeng M, Huanraluek N, Liu JK, Wijesinghe SN, Tian Q, Tibbromma S, Brahmanage RS, Boonmee S, Huang SK, Thiagaraja V, Lu YZ, Jayawarden LS, Dong W, Yang EF, Singh SK, Singh SM, Rana S, Lad SS, Anand G, Devadatha B, Niranjan M, Sarma VV, Liimapachin K, Aguirre-Hudson B, Niskanen T, Overall A, Alvarenga RLM, Gibertoni TB, Plieglger WP, Horváth E, Imre A, Alves AL, Santos ACDS, Tiago RV, Bulgakov TS, Wanasinghe DN, Bahkali AH, Doi Alom M, Elgorban AM, Marachchikumbura SSN, Rajeshkumar KC, Haelewaters D, Mortimer PE, Zhao Q, Lumyong S, Xu JC, Sheng J (2020) Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity In press.

Huang SK, Jeewon R, Hyde KD, Bhat JD, Wen TC (2018) Novel taxon within Nectriaceae: *Cosnosporella* gen. nov. and *Aquanectria* sp. nov. from freshwater habitats in China. Cryptogamie Mycologie 39: 169–192. https://doi.org/10.7872/crym/v39.iss2.2018.169

Jayasiri SC, Hyde KD, Ariyawansha HA, Bhat DJ, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, Liu JK, Luangsaard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo JM, Gho bad-Nejhad M, Nilsson H, Pang KA, Pereira OL, Phillips AJL, Raspé O, Rollins AW, Romero Al, Etayo J, Selçuk F, Stephenson SL, Suetrong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wahab MA, Wen TC, Boonmee S, Dai DQ, Daranagama DA, Dissanayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardenara RS, Li WJ, Perera RH, Phookamsak R, de Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao RL, Zhao Q., Kang JC, Promputtha I (2015) The faces of fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74: 3–18. https://doi.org/10.1007/s13225-015-0351-8

Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7: 1669–1677. https://doi.org/10.5943/mycosphere/7/11/4

Jones EBG (2006) Form and function of fungal spore appendages. Mycoscience 47: 167–183. https://doi.org/10.1007/S10267-006-0295-7

Jones EBG, Hyde KD, Pang KL (2014) Freshwater Fungi and Fungal-like Organisms. De Gruyter, Germany. https://doi.org/10.1515/9783110333480

Jones EBG, Wong SW, Sivichai S, Au DWT, Hywel-Jones NL (1999) Lignicolous freshwater ascomycota from Thailand: *Micropeltopsis quinquecladiopsis* sp. nov. Mycological Research 103: 729–735. https://doi.org/10.1017/S0953756298007618
Kagami M, Amano Y, Ishii N (2012) Community structure of planktonic fungi and the impact of parasitic chytrids on phytoplankton in Lake Inba, Japan. Microbial Ecology 63: 358–368. https://doi.org/10.1007/s00248-011-9913-9

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010

Knapp DG, Kovács GM, Zajta E, Groenewald JZ, Crous PW (2015) Dark septate endophytic pleosporalean genera from semiarid areas. Persoonia 35: 87–100. https://doi.org/10.3767/003158515X687669

Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092

Luo J, Yin JF, Cai L, Zhang KQ, Hyde KD (2004) Freshwater fungi in Lake Dianchi, a heavily polluted lake in Yunnan, China. Fungal Diversity 16: 93–112.

Luo ZL, Maharachchikumara SSN, Liu XY, Li SH, Chen LJ, Su HY, Zhou DQ, Hyde KD (2015) Annulatascus saprophyticus sp. nov. and Pseudoannulatascus gen. nov. to accommodate Annulatascus biatriisporus (Annulatasccales Sordariomycetes) from Thailand. Phytotaxa 239(2): 174–182. https://doi.org/10.11646/phytotaxa.239.2.6

Luo ZL, Bahkali AH, Liu XY, Phookamsak R, Zhao YC, Zhou DQ, Su HY, Hyde KD (2016) Poaceascoma aquaticum sp. nov. (Lentitheciaceae), a new species from submerged bamboo in freshwater. Phytotaxa 253(1): 71–80. https://doi.org/10.11646/phytotaxa.253.1.5

Luo ZL, Hyde KD, Liu JK, Bhat DJ, Bao DF, Li WL, Su HY (2018) Lignicolous freshwater fungi from China II: Novel Distoseptispora (Distoseptisporaceae) species from northwestern Yunnan Province and a suggested unified method for studying lignicolous freshwater fungi. Mycosphere 9: 444–461. https://doi.org/10.5943/mycosphere/9/3/2

Marvanová L, Hywel-Jones NL (2000) Sigmoidoidea conforta sp. nov. and two rare hyphomycete species from streams in Thailand. Cryptogamie Mycologie 21: 13–26. https://doi.org/10.1016/S0181-1584(00)00101-9

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the 2010 Gateway Computing Environments Workshop (GCE): 1–8. https://doi.org/10.1109/GCE.2010.5676129

Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581–583. https://doi.org/10.1093/bioinformatics/btm388

Pinnoi A, Lumyong S, Hyde KD, Jones EBG (2006) Biodiversity of fungi on the palm Eleiodoxa conferta in Sirindhorn peat swamp forest, Narathiwat, Thailand. Fungal Diversity 22: 205–218.

Pinruan U, Lumyong S, Hyde KD, Jones EBG (2007) Occurrence of fungi on tissues of the peat swamp palm Licuala longicalycata. Fungal Diversity 25: 157–173.

Pinruan U, Lumyong S, Hyde KD, Jones EBG (2014) Tropical peat swamp fungi with special reference to palms. In: Jones EBG, Hyde KD, Pang KL (Eds) Freshwater Fungi. De Gruyter, Germany, 371–388. https://doi.org/10.1515/9783110333480.371

Rambaut A (2014) FigTree v1.4: tree figure drawing tool. http://tree.bio.ed.ac.uk/software/figtree/
Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43(3): 304–311. https://doi.org/10.1007/BF02338839

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Lartet B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Shearer CA (1993) The freshwater ascomycetes. Nova Hedwigia 56: 1–33.

Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thornton HA, Voglmayr H (2007) Fungi biodiversity in aquatic habitats. Biodiversity and Conservation 16: 49–67. https://doi.org/10.1007/s10531-006-9120-z

Sivichai S, Boonyuen N (2010) *Jahnula morakotii* sp. nov. and *J. appendiculata* from a peat swamp in Thailand. Mycotaxon 112: 475–481. https://doi.org/10.5248/112.475

Sivichai S, Hywel-Jones N (1999) *Biflagellospora* (aero-aquatic hyphomycetes) from submerged wood in Thailand. Mycological Research 103: 908–914. https://doi.org/10.1017/S0953756298007928

Sivichai S, Hywel-jones NL, Jones EBG (1998) Lignicolous freshwater Ascomycota from Thailand: 1. *Ascostaiwania sawada* and its anamorph state Monotosporella. Mycoscience 39: 307–311. https://doi.org/10.1007/BF02464013

Sivichai S, Hywel-jones NL, Somrithipol S (2000) Lignicolous freshwater Ascomycota from Thailand: *Melanochaeta* and *Sporoschisma anamorphs*. Mycological Research 104: 478–485. https://doi.org/10.1017/S0953756299001604

Sivichai S, Jones EBG, Hywel-Jones NL (2000) Fungal colonisation of wood in a freshwater stream at Khao Yai National Park, Thailand. Fungal Diversity 5: 71–88.

Sivichai S, Jones EBG, Hywel-Jones NL (2002) Fungal colonisation of wood in a freshwater stream at Tad Ta Phu, Khao Yai National Park, Thailand. Fungal Diversity 10: 113–129.

Sparrow FK (1960) Aquatic Phycymycetes (Second Rev). The University of Michigan Press, Ann Arbor. https://doi.org/10.5962/bhl.title.5685

Sri-indrasudthi V, Boonyuen N, Suetrong S, Chuasecharonnachai C, Sivichai S, Jones EBG (2010) Wood-inhabiting freshwater fungi from Thailand: *Asoctailandia grenadoidia* gen. et sp. nov., *Canalisporium grenadoidia* sp. nov. with a key to *Canalisporium* species (Sordariomycetes, Ascomycota). Mycoscience 51: 411–420. https://doi.org/10.1007/S10267-010-0055-6

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21): 2688–2690. https://doi.org/10.1093/bioinformatics/btl446

Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758–771. https://doi.org/10.1080/10635150802429642

Swe A, Jeewon R, Pointing SB, Hyde KD (2009) Diversity and abundance of nematode-trapping fungi from decaying litter in terrestrial, freshwater and mangrove habitats. Biodiversity and Conservation 18: 1695–1714. https://doi.org/10.1007/s10531-008-9553-7

Thomas K (1996) Australian freshwater fungi. In: Grigorovich CA (Ed.) Introductory Volume to the Fungi (Part2). Fungi of Australia. Canberra, Australia: Australian Biological Resources Study 1–37.
Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK, Bhat DJ, Jones EBG, McKenzie EHC, Camporesi E, Bulgakov TS, Doilom M, de Azevedo Santiago ALCM, Das K, Manimohan P, Gibertoni TB, Lim YW, Ekanayaka AH, Thongbai B, Lee HB, Yang JB, Kirk PM, Sysouphanthong P, Singh SK, Boonmee S, Dong W, Raj KNA, Latha KPD, Phookamsak R, Phukhamsakda C, Konta S, Jayasiri SC, Norphanphoun C, Tennakoon DS, Li JF, Dayarathne MC, Perera RH, Xiao Y, Wanasinghe DN, Senanayake IC, Goonasekara ID, de Silva NI, Mapook A, Jayawardena RS, Dissanayake AJ, Manawasinghe IS, Chethana KWT, Luo ZL, Hapuarachchi KK, Baghela A, Soares AM, Vizzini A, Meiras-Otonni A, Mešić A, Dutta AK, de Souza CAF, Richter C, Lin CG, Chakraborty D, Daranagama DA, Lima DX, Chakraborty D, Ercole E, Wu F, Simonini G, Vasquez G, da Silva GA, Plautz HL, Ariyawansa HA, Lee H, Kusun I, Song J, Sun JZ, Karmakar J, Hu K, Semwal KC, Thambugala KM, Voigt K, Acharya K, Rajeshkumar KC, Ryvarden L, Jadan M, Hosen MI, Mikšík M, Samarawoko MC, Wijayawardene NN, Kim NK, Matočec N, Singh PN, Tian Q, Bhatt RP, de Oliveira RJV, Tulloss RE, Amir S, Kaewchai S, Marathe SD, Khan S, Hongsanan S, Adhikari S, Mehmood T, Bandypadhyay TK, Svetasheva TY, Nguyen TTT, Antonín V, Li WJ, Wang Y, Indoliya Y, Tkáčec Z, Elgorban AM, Bahkali AH, Tang AMC, Su HY, Zhang H, Promptutta I, Luangsard J, Xu JC, Yan YJ, Kang JC, Stadler M, Mortimer PE, Chommunti P, Zhao Q, Phillips AJL, Nontachaiyapoom S, Wen T-C, Karunarathna SC (2017) Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 83(1): 1–261. https://doi.org/10.1007/s13225-017-0378-0

Tsui CKM, Hyde KD, Hodgkiss IJ (2000) Biodiversity of fungi on submerged wood in Hong Kong streams. Aquatic Microbial Ecology 21: 289–298. https://doi.org/10.3354/ame021289

Tubaki K, Watanabe K, Manoch L (1983) Aquatic hyphomycetes from Thailand. Transactions of the Mycological Society of Japan 24: 451–457. https://doi.org/10.3354/ame021289

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990

Vijaykrishna D, Jeewon R, Hyde KD (2005) Fusoidispora aquatica: New freshwater ascomycetes from Hong Kong based on morphology and molecules. Sydowia 57: 267–280.

Vijaykrishna D, Jeewon R, Hyde KD (2006). Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Diversity 23: 367–406.

Wanasinghe DN, Jones EBG, Camporesi E, Boonmee S, Ariyawansa HA, Wijayawardene NN, Hyde KD (2014) An Exciting Novel Member of Lentitheciaceae in Italy from Clematis Vitalba. Cryptogamie Mycologie 35(4): 323–337. https://doi.org/10.7872/crym.v35.iss4.2014.323

Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R, Lee HB, Jones EG, Tibpromma S, Tennakoon DS, Dissanayake AJ, Jayasiri SC, GafforovErio Y, Camporesi E, Bulgakov TS, Ekanayake AH, Perera RH, Samarawoko SC, Goonasekara ID, Mapook A, Li WJ, Senanayake IC, Li JF, Norphanphoun C, Doilom M, Bahkali AH, Xu JC, Mortimer PE, Tibell L, Tibell S, Karunarathna SC (2018) Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity 89(1): 1–236. https://doi.org/10.1007/s13225-018-0395-7
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis GM, Shinsky D, White T (Eds) PCR protocols: a guide to methods and applications. Academic, New York, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wijayawardene NN, Hyde KD, Bhat DJ, Goonasekara ID, Nadeesha D, Camporesi E, Schumacher RK, Yong W (2015) Additions to Brown Spored Coelomycetous Taxa in Massarinae, Pleosporales: Introducing Phragmocamarosporium gen. nov. and Suttonomyces gen. nov. Cryptogamie Mycologie 36: 213–224. https://doi.org/10.7872/crym/v36.iss2.2015.213

Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H, Kirk PM, Braun U, Singh RV, Crous PW, Kukwa M, Lücking R, Kurtzman CP, Yurkov A, Haelewaters D, Aptroot A, Lumbsch HT, Timdal E, Ertz D, Etayo J, Phillips AJL, Groenewald JZ, Papizadeh M, Selbmann L, Dayarathne MC, Weerakoon G, Jones EBG, Suetrong S, Tian Q, Castanéda-Ruíz RF, Bahkali AH, Pang KL, Tanaka K, Dai DQ, Sakayaroj J, Hujslová M, Lombard L, Shenoy BD, Suija A, Maharachchikumbura SSN, Thambugala KM, Wanasinhe DN, Sharma BO, Gaikwad S, Pandit G, Zuccconi L, Onofri S, Egidi E, Raja HA, Kodsuëb R, Cáceres MES, Pérez-Ortega S, Fiúza PO, Monteiro JS, Vasilyeva LN, Shivais RG, Prieto M, Wedin M, Olariaga I, Lateef AA, Agrawal Y, Fazeli SAS, Amoozegar MA, Zhao GZ, Pfiegerl WP, Sharma G, Oset M, Abdel MA, Takamatsu S, Bensch K, Silva NI, De Kesel A, Karunarathna A, Boonmee S, Pfister DH, Lu YZ, Luo ZL, Boonyuen N, Daranagama DA, Senanayake IC, Jayasiri SC, Samarakaon MC, Zeng XY, Doilom M, Quijada L, Rampadarath S, Heredia G, Dissanayake AJ, Jayawardana RS, Perera PH, Tang LZ, Phukhamsakda C, Hernández-Restrepo M, Ma XY, Tibpromma S, Gusmão LFP, Weerahewa D, Karunarathna SC (2017) Notes for genera: Ascomycota. Fungal Diversity 86: 1–594. https://doi.org/10.1007/s13225-017-0386-0

Wijayawardene NN, Pawlowska J, Letcher PM, Kirk PM, Humber RA, Schüssler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD (2018) Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthromycota, Glomeromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycolae). Fungal Diversity 92: 43–129. https://doi.org/10.1007/s13225-018-0409-5

Wong MKM, Goh TK, Hodgkiss IJ, Hyde KD, Ranghoo VM, Tsui CKM, Ho WH, Wong WSW, Yuen TK (1998) Role of fungi in freshwater ecosystems. Biodiversity and Conservation 7: 1187–1206. https://doi.org/10.1023/A:1008883716975

Yang J, Liu JK, Hyde KD, Jones EBG, Liu Z (2017) Two new species in Fuscosporellaceae from freshwater habitat in Thailand. Mycosphere 8: 1893–1903. https://doi.org/10.5943/mycosphere/8/10/12

Zhang H, Jones EBG, Zhou DQ, Bahkali AH, Hyde KD (2011) Checklist of freshwater fungi in Thailand. Cryptogamie, Mycologie 32: 199–217. https://doi.org/10.7872/crym.v32.iss2.2011.199
Zhang H, Hyde KD, Abdel-Wahab MA, Abdel-Aziz F A, Ariyawansa HA, KoKo TW, Zhao RL, Alias SA, Bahkali AH, Zhou DQ (2013) A modern concept for Helicascus with a Pleurophomopsis-like asexual state. Sydowia 65: 147–166.

Zhang Y, Jeeon R, Fournier J, Hyde KD (2008) Multi-gene phylogeny and morphotaxonomy of Amniculicola lignicola: novel freshwater fungus from France and its relationships to the Pleosporales. Fungal Biology 112: 1186–1194. https://doi.org/10.1016/j.mycres.2008.04.004

Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Diversity 53: 1–221. https://doi.org/10.1007/s13225-011-0117-x

Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3: 4. https://doi.org/10.1186/1471-2164-3-4