Draft genome assembly of the biofuel grass crop Miscanthus sacchariflorus [version 1; peer review: 2 approved]

Jose De Vega¹, Iain Donnison², Sarah Dyer¹, Kerrie Farrar²

¹Earlham Institute, Norwich, NR4 7UZ, UK
²Institute of Biological, Environmental & Rural Sciences (IBERS) - Aberystwyth University, Aberystwyth, SY23 3EE, UK

Abstract

Miscanthus sacchariflorus (Maxim.) Hack. is a highly productive C4 perennial rhizomatous biofuel grass crop. M. sacchariflorus is among the most widely distributed species in the genus, particularly at cold northern latitudes, and is one of the progenitor species of the commercial M. × giganteus genotypes. We generated a 2.54 Gb whole-genome assembly of the diploid M. sacchariflorus cv. “Robustus 297” genotype, which represented ~59% of the expected total genome size. We later anchored this assembly using the chromosomes from the M. sinensis genome to generate a second assembly with improved contiguity. We annotated 86,767 and 69,049 protein-coding genes in the unanchored and anchored assemblies, respectively. We estimated our assemblies included ~85% of the M. sacchariflorus genes based on homology and core markers. The utility of the new reference for genomic studies was evidenced by a 99% alignment rate of the RNA-seq reads from the same genotype. The raw data, unanchored and anchored assemblies, and respective gene annotations are publicly available.

Keywords

Miscanthus, biofuel, C4, assembly, annotation

This article is included in the Genomics and Genetics gateway.

This article is included in the Plant Science gateway.
Introduction

Miscanthus is a genus of C4 perennial rhizomatous grasses native to East Asia and Oceania, and naturally adapted to a wide range of climate zones and land types. _Miscanthus sacchariflorus_ is among the most widely distributed species within the genus. It originated in the Yellow Sea region of China and can be predominantly found in cool latitudes of East Asia with varying ploidy\(^1\). _M. sacchariflorus_ occurs in both diploid (2n=38) and tetraploid (2n=76) forms, where tetraploid _M. sacchariflorus_ genotypes originated by autopolyplody\(^2\). _M. sacchariflorus_ probably has the greatest winter hardiness among all the Saccharinae\(^3\).

Natural interspecific _Miscanthus_ hybrids are commonly observed, even between individuals of different ploidy. For example, introgression of _M. sacchariflorus_ is often found among cultivated European _M. sinensis_ ecotypes\(^1,4\). Furthermore, _M. x giganteus_, a sterile triploid hybrid resulting from the hybridization between _M. sinensis_ and _M. sacchariflorus_, is the predominant commercially grown species owing to its high biomass productivity and low chemical input requirements. The common occurrence of hybridization events and variable ploidy are challenging to the improvement of these bioenergy grasses and increase the need for genomic resources from different _Miscanthus_ species. A chromosomal-scale reference genome using a doubled-haploid _M. sinensis_ line was recently published\(^4\).

We assembled, annotated and validated a draft genome from the diploid _M. sacchariflorus_ cv. “Robustus 297” genotype, as well as generating rhirome, stem and leaf RNA-Seq data from the same genotype. This dataset was previously used to verify that both _M. sinensis_ and _M. sacchariflorus_ share the same A/B ancestral tetraploidy\(^4\). Here, we present the first draft genome of _M. sacchariflorus_, the second _Miscanthus_ genome available after _M. sinensis_\(^1\).

Methods

Plant materials and sequencing

DNA was extracted from leaves from the diploid _M. sacchariflorus_ cv. “Robustus 297” genotype (Biosample SAMN08580354) using the Qiagen DNeasy kit. RNA was also extracted from leaf, stem and root tissues from the same plant. All samples were taken from a plant grown from seed in trays in a glasshouse in 2009. This genotype is established and used in breeding at IBERS (Wales, UK). The RNA-seq libraries were deposited as part of previous work in the BioProject PRJNA639832.

Whole genome sequencing and assembly

We obtained ~5.86e9 pairs of 100 bp paired-end reads from an Illumina paired-end library with a 560 bp insert-size that was sequenced on Illumina HiSeq 2500 machines in rapid run mode by the Earlham Institute. This represents approximately 50X coverage of the heterozygous content and 100X coverage of the homozygous content of the genome. Read quality was assessed, and contaminants and adaptors removed using Kontaminant\(^4\). These paired-end short-reads were assembled into 17M contigs with a total length of 3.27 Gb using ABySS\(^5\) version 1.5.1, with default options and a kmer size of 71.

We obtained ~141.1e6 pairs of reads from a Nextera 150 bp mate-pair library with approximately 7 Kb insert-size, which was used for scaffolding the previous contigs together with the paired-end reads, using SSPACE\(^7\) without “extension” step. Nextera mate-pair reads were required to include a fragment of the adaptor to be used in the scaffolding step\(^7\), and we filtered out sequences shorter than 500 bp. We obtained 589K scaffolds, a total length of 2.54 Gb with an N50 of 10.2 Kb. This whole-genome assembly was denominated “Msac_v2” and is deposited at NCBI in BioProject PRJNA679435.

Gene model and functional annotations

Our gene structure annotation pipeline\(^6\) used five sources of evidence that were provided to AUGUSTUS\(^8\) (version 2.7) for gene annotation: (1) Repetitive and low complexity regions of the scaffolds identified using RepeatMasker\(^9\) (version open-4.0.5) based on homology with the RepBase\(^1\) public database (Release 20140131) and a new database of repeat elements identified in the assembly with RepeatModeler\(^10\). The repeats annotation was deposited in Zenodo (See data availability); (2) exon-intron junctions identified by Tophat\(^1\) (version 2.1.0); (3) _de novo_ and genome-guided _ab initio_ transcripts assembled with Trinity\(^11\) (version 2.6.5) and Cufflinks\(^12\) (version 2.2.1) from RNA-Seq reads obtained from several tissues from the same genotype; (4) _ab initio_ gene models predicted by SNAP\(^13\) (version 29-11-2013) and GeneID\(^14\) (version 1.4.4); and (5) homology-based alignments of transcripts and proteins from _Miscanthus sinensis_ and maize using Exonerate\(^15\) with a minimal identity of 0.7 and coverage of 0.7. Finally, AUGUSTUS\(^1\) was run with the options “genemodel=complete” and “alternatives-from-evidence=true” to ensure that the predicted genes were compatible with all the previous provided evidence.

For the functional annotation of these predicted genes, translated gene sequences were compared with the NCBI non-redundant (nr 20170116) proteins and EBI’s InterPro (version 5.2.22.61) databases, and the results were imported into Blast2GO\(^16\) to annotate the GO and GO slim terms, enzymatic protein codes and KEGG pathways. A similar GO annotation from translated gene sequences can be done with eggNOG-mapper\(^17\). These functional descriptors were deposited in Zenodo (See Underlying data).

Anchoring the whole genome assembly using the _Miscanthus sinensis_ reference

To improve the genome contiguity, we anchored our _M. sacchariflorus_ scaffolds to the _Miscanthus sinensis_ genome\(^1\). However, no nucleotide content from _M. sinensis_ was incorporated in the _M. sacchariflorus_ assemblies.

Firstly, scaffolds longer than 2 kbps from the whole genome assembly “Msac_v2” were scaffolded again using SSPACE\(^7\) and the _M. sinensis_ mate-pairs reads, the gaps between scaffolds were filled in with Ns. This new whole-genome assembly was...
denominated “Msac_v3”, and was deposited at NCBI in Bioproject PRJNA435476, under the GenBank accession GCA_002993905. It contains 137,916 scaffolds for a total of 2.074 Gb with an N50 of 25.6 Kbps. The gene annotation was projected to the “Msac_v3” assembly using PASA\(^2\) (version 2.0.1): genes were aligned to the new assembly using GMAP, requiring a minimum identity of 0.85 and coverage of 0.55, and later validated using the default parameters in PASA.

Finally, we obtained the chromosomal position in the *M. sinensis* chromosomes of the scaffolds from the “Msac_v3” assembly. Using Satsuma\(^2\) (version untagged-330e3341a1151a978b37), we identified every perfect-identify match between both assemblies (3,635,504 matches in total). The coordinates of these matches in BED 8 format were used as input to the “OrderOrientBySynteny” script from Satsuma2, which identifies the best chromosomal position for each scaffold. These position coordinates are available as an AGP file as part of GCA_002993905, which anchors our final whole-genome assembly to 19 chromosomes (accessions CM00959 to CM009609 in NCBI).

Completeness assessment

RNA-seq cleaned reads from each tissue were independently aligned to both assembly versions using STAR\(^4\) (version 2.6.0c). BUSCO\(^5\) (version 4.1.4) was used to assess completeness with the single-copy orthologs database for green plants (Viridiplantae, version 2020-09-10). Orthologs were identified using Orthofinder\(^2\) (version 2.3.12) with default parameters and the option “-msa”, which directly provided comprehensive statistics comparing the provided proteomes. All the proteomes from the other species used (Table 1) were downloaded from Phytozome (v7.1 DOE-JGI). Genomes were aligned using Minimap\(^2\) (version 2.17) with the “asm10” parameter for related genomes, secondary alignments (tp:A:S) filtered out, and results visualised using dotPlotly\(^7\) (Github version, latest updated on 4 May 2018).

Table 1. Completeness statistics of the unanchored and anchored *M. sacchariflorus* whole-genome assemblies in comparison to the *M. sinensis* reference.

	Msac_v2 (unanchored)	Msac_v3 (anchored by *M. sinensis*)	Reference: *M. sinensis*						
NCBI bioproject	PRJNA679435	PRJNA435476 (GCA_002993905)	v.7.1 from Phytozone						
Length	2.539 Gb	2.074 Gb	1.68 Gbps						
Scaffolds	588,758 scaffolds	137,931 scaffolds*	19 Chrs and 14,414 scaffolds						
N20	25.39 Kbps	62.61 Kbps	146.1 Mbps						
N50	10.25 Kbps	25.63 Kbps	88.51 Mbps						
N80	2.79 Kbps	9.42 Kbps	75.06 Mbps						
Max	378.48 Kbps	458.83 Kbps	160.9 Mbps						
ANNOTATION									
Gene models	81,431	68,578	67,967						
Proteins	86,767	68,578**	67,789						
BUSCO									
Complete	55.5% (48% in single copy)	59.8% (50.4% in single copy)	97.6% (36.2% in single copy)						
Fragmented	32.2%	26.4%	1.6%						
Missing	12.3%	13.6%	0.8%						
RNA MAPPING									
Reads mapping in the genome once (root, stem and leaf)	76.2%	76.4%	78.8%	75%	76.7%	78.1%	78.8%***	83.5%	82.5%
Reads mapping in the genome multiple times (root, stem and leaf)	22.5%	23%	20.7%	19.5%	18.8%	17.3%	19.7%***	15.5%	16.6%

*15 scaffolds from plastids were discarded during the deposit in NCBI resulting in 137,916 scaffolds. **Only the longest transcript was considered in each projected locus. ***Cross-species alignments.
Results

We produced two whole-genome assemblies for *M. sacchariflorus* that we named “Msac_v2” and “Msac_v3”, with total lengths of 2.54 Gbps and 2.074 Gbps, respectively (Table 1). The difference in size is mainly a result of filtering 402 Mb from sequences under 2 kb in the latter before anchoring to the *M. sinensis* genome. Our “Msac_v2” assembly covered ~59 % of *M. sacchariflorus* genome size, which is estimated to be 4.3 Gb. Approximately 40% of the assembly was composed by transposable elements (987.3 Mb; Table 2), including 491 Mb (19.4%) and 154 Mb (6.1%) by copies of the Gypsy and Copia LTRs, respectively; and 180 Mb (7.1%) by several class 2 DNA transposons (MULE, CMC, Harbinger, etc.)

We identified 219,394 primary alignments longer than 2 kb between the unanchored *M. sacchariflorus* (“Msac_v2”) and *M. sinensis*. The resulting dotplot (Figure 1) shows the conserved synteny between both species, which diverged 1.6 Mya. Figure 1 also shows the highly conserved synteny between the pairs of homoeologous chromosomes (e.g. green boxes in chromosomes one and two), and the fusion in chromosome 7 of the chromosome homolog to chromosome 13; which was also reported in *M. sinensis*. There are several large inversions between chromosomes 9 and 10, and 3 and 4 (cyan boxes in Figure 1). Our assembly of a heterozygous genotype resulted in multiple heterotigs (heterozygous contigs) containing the alternative or secondary haplotypes (e.g. pink boxes in Figure 1).

The utility of our assemblies for genomic studies is evidenced by the proportion of RNA-seq from three different tissues from the same *M. sacchariflorus* genotype that aligned to the assemblies. On average 99% and 95% of the RNA-seq reads aligned in “Msac_v2” and “Msac_v3”, respectively (Table 1).

We estimated that we assembled more than 85% of the *M. sacchariflorus* genes. Furthermore, our assemblies include several alleles of genes in the heterozygous regions of the genome, while the *M. sinensis* reference was generated from a double-haplotyped genotype. The estimation of the proportion of assembled genes (~85%) was supported by (1) the results from BUSCO, which reported 86.4–87.7% of presented core genes, of which ~2/3rds were complete (Table 1); and (2) the difference in the number of proteins from related species for which we can identify an ortholog in *M. sacchariflorus* compared to *M. sinensis*, as control, using Orthofinder2 (Table 3).

Based on the results from Orthofinder2 (Table 3), we found orthologs in *M. sacchariflorus* for 64.5% of the *M.sinensis* Table 2. Transposable elements identified in the Miscanthus sacchariflorus genome.

Category	Superfamily	Coverage(bp)	Fraction (2.539 Gb)
Class 1 TEs: retrotransposons (copy and paste)	Gypsy LTR	491,915,558	19.37%
	Copia LTR	154,244,411	6.08%
	Other LTRs	87,661,401	3.45%
	SINEs	5,029,476	0.20%
	LINEs	25,076,275	0.99%
	Other non-LTR retrotransposons	29,192,841	1.15%
Class 2 TEs: DNA transposons (cut and paste)	hAT	10,722,644	0.42%
	Harbinger/PIF	24,553,614	0.97%
	MULE/MuDR	29,733,691	1.17%
	Stowaway/TcMar	14,112,359	0.56%
	CMC_EnSpm	56,449,907	2.22%
	Helitron	10,601,152	0.42%
	Other	34,676,501	1.37%
Unclassified TEs	Unclassified TEs	5,934,794	0.23%
Non TEs	Satellites	5,339,464	0.21%
	snRNAs	23,147	0.00%
TOTAL		985,267,235	38.81%
Figure 1. Conserved synteny between *M. sacchariflorus* and *M. sinensis* genomes. The plot shows the primary alignments longer than 2 kbps between both species. The *M. sacchariflorus* scaffolds (Y-axis) have been sorted by their coordinates in *M. sinensis* chromosomes (X-axis). Large homoeologous blocks and chromosomal rearrangements are highlighted in boxes.
annotated proteins, so we estimated ~1/3 of the Miscanthus proteins to be specific to each species. On the other hand, we estimated that ~3,000 genes may be missing in the “Msac_v2” annotation based on the number of Sorghum bicolor proteins with orthologues in M. sinensis but absent in M. sacchariflorus. Better estimations were obtained with the other four species, where the genes absent in Msac_v2 compared with M. sinensis were estimated to be 254, 579 and 1627 (Table 3). Additionally, ~6,000 genes could be missed in “Msac_v3” compared to “Msac_v2” based on the difference in the number of M. sinensis orthologues in each assembly (Table 3). This is likely from genes in the sequences shorter than 2 Kbps (totalling 402 Mbps) that were filtered out before anchoring. There was a large difference in the proportion of “fragmented” BUSCO genes found in the M. sacchariflorus (32.2%) and M. sinensis (1.6%) assemblies (Table 1). To assess if that difference had an effect on the quality of the annotation, we compared the number of proteins from M. sacchariflorus and M. sinensis for which we can identify an ortholog in another species (Table 3); we found the difference between both Miscanthus species ranged between 6,571 proteins when compared to sorghum (43,475 to 38,219; Table 2) to only 61 when compared to maize (39,986 to 39,927, Table 3).

In conclusion, our M. sacchariflorus genome can served as the basis for functional genetic analyses on Miscanthus, one of the main biofuel grass crops used in temperate latitudes. However, there are opportunities to improve it using new approaches, such as long-reads.

Data availability

Underlying data
NCBI BioProject: Miscanthus sacchariflorus cultivar:Robustus 297. Accession number PRJNA435476; https://identifiers.org/bioproject:PRJNA435476.

This BioProject contains the raw paired-end and mate-pair reads.

NCBI BioProject: RNA-seq Miscanthus hybrids with contrasting phenotypes. Accession number PRJNA639832; https://identifiers.org/bioproject:PRJNA639832.

This BioProject contains RNA-seq reads, deposited as part of a previous project.

NCBI BioProject: Miscanthus sacchariflorus cultivar:Robustus 297. Accession number PRJNA679435; https://identifiers.org/bioproject:PRJNA679435.

This Bioproject contains the unanchored “Msac_v2” assemblies and gene annotations under accession JADQCR0000000.

The anchored “Msac_v3” assemblies and gene annotations are deposited under accession GCA_002993905 under Bioproject PRJNA435476.

The chromosomal positions in the M. sinensis chromosomes of the scaffolds from the “Msac_v3” assembly are available in an AGP file as part of GCA_002993905, which places the scaffolds in 19 chromosomes (accessions CM009591 to CM009609 in NCBI).

Zenodo: Supplementary dataset to “Draft genome assembly of the biofuel grass crop Miscanthus sacchariflorus”. http://doi.org/10.5281/zenodo.4207235.

This project contains the assemblies in FASTA format, gene annotations in GFF3 format, functional annotations in tabulated text format, and AGP file with anchoring information.

Data deposited with Zenodo are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
References

1. Clark LV, Jin X, Petersen KK, et al.: Population structure of Miscanthus sacchariflorus reveals two major polylodization events, tetraploid-mediated unidirectional introgression from diploid M. sinensis, and diversity centred around the Yellow Sea. Ann Bot. 2019; 124(4): 731–48. PubMed Abstract | Publisher Full Text | Free Full Text

2. Dwiyanti MS, Rudolph A, Swaminathan K, et al.: Genetic analysis of putative triploid Miscanthus hybrids and tetraploid M. sacchariflorus collected from sympatric populations of Kusima, Japan. Bioenergy Res. 2013; 6(2): 486–93. Publisher Full Text

3. Clark LV, Dzyubenko E, Dzyubenko N, et al.: Ecological characteristics and in situ genetic associations for yield-component traits of wild Miscanthus from eastern Russia. Ann Bot. 2016; 118(3): 941–55. PubMed Abstract | Publisher Full Text | Free Full Text

4. Mitros T, Session AM, James BT, et al.: Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nat Commun. 2020; 11(1): 5442. Publisher Full Text | Publisher Full Text | Free Full Text

5. Leggett RM, Ramirez-Gonzalez RH, Clavijo BJ, et al.: Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front Genet. 2013; 4: 288. PubMed Abstract | Publisher Full Text | Free Full Text

6. Simpson JT, Wong K, Jackman SD, et al.: Abyss: a parallel assembler for short read sequence data. Genome Res. 2009; 19(6): 1117–23. PubMed Abstract | Publisher Full Text | Free Full Text

7. Boetzer M, Henkel CV, Jansen HJ, et al.: Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011; 27(4): 578–9. PubMed Abstract | Publisher Full Text | Free Full Text

8. De Vega JJ, Ayling S, Hegarty M, et al.: Improving the genome assembly and annotation completeness with single-copy orthologs. Genome Res. 2015; 25(1): 1117–23. PubMed Abstract | Publisher Full Text | Free Full Text

9. Stanke M, Keller O, Gunduz I, et al.: Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci Rep. 2015; 5: 17394. PubMed Abstract | Publisher Full Text | Free Full Text

10. Slater GSC, Birney E: AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006; 34(Web Server issue): W435–W9. PubMed Abstract | Publisher Full Text | Free Full Text

11. Poorten T. RepeatModeler Open-1.0. 2008. Reference Source

12. Grubherr MG, Haas BJ, Yassour M, et al.: Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011; 29(7): 646–52. PubMed Abstract | Publisher Full Text | Free Full Text

13. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009; 25(9): 1105–11. PubMed Abstract | Publisher Full Text | Free Full Text

14. Trapnell C, Roberts A, Goff L, et al.: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012; 7(3): 562–78. PubMed Abstract | Publisher Full Text | Free Full Text

15. Bromberg Y, Rost B: SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 2007; 35(11): 3823–35. PubMed Abstract | Publisher Full Text | Free Full Text

16. Blanco E, Parra G, Guigó R: Using geneid to identify genes. Curr Protoc Bioinformatics. 2007; Chapter 4: Unit 4.3. PubMed Abstract | Publisher Full Text

17. Slater GSC, Birney E: Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005; 6(1): 31. PubMed Abstract | Publisher Full Text | Free Full Text

18. Conesa A, Gótz S, García-Gómez JM, et al.: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21(18): 3674–6. PubMed Abstract | Publisher Full Text | Free Full Text

19. Huerta-Cepas J, Forléus K, Coelho LP, et al.: Fast Genome-Wide Functional Annotation through Ortholog Assignment by eggNOG-Mapper. Mol Biol Evol. 2017; 34(3): 215–22. PubMed Abstract | Publisher Full Text | Free Full Text

20. Simpson T, Jia Y, Li P, et al.: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009; 25(9): 1105–11. PubMed Abstract | Publisher Full Text | Free Full Text

21. GapMerker. Using geneid to identify genes. Curr Protoc Bioinformatics. 2007; Chapter 4: Unit 4.3. PubMed Abstract | Publisher Full Text | Free Full Text

22. Guigó R: RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009; 25(1): Chapter 4: Unit 4.4. PubMed Abstract | Publisher Full Text

23. Li H: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34(18): 3994–400. PubMed Abstract | Publisher Full Text | Free Full Text

24. Li H: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34(18): 3994–400. PubMed Abstract | Publisher Full Text | Free Full Text

25. Vezirli Y, Elovici Y, Shalev O, et al.: Using RepeatModeler to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009; 25(1): Chapter 4: Unit 4.4. PubMed Abstract | Publisher Full Text | Free Full Text

26. Li H: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34(18): 3994–400. PubMed Abstract | Publisher Full Text | Free Full Text

27. Poorten T. Reference Source

28. Rayburn AL, Crawford J, Rayburn CM, et al.: Genome Size of Three Miscanthus Species. Plant Mol Biol Report. 2009; 27(2): 194. Publisher Full Text

29. De Vega JJ, Peel N, Purdy SJ, et al.: Differential expression of starch and sucrose metabolic genes linked to varying biomass yield in Miscanthus hybrids. BioRxiv. 2020; 2020–08. Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Version 1

Reviewer Report 01 March 2021

https://doi.org/10.5256/f1000research.47786.r78040

© 2021 Dwiyanti M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Maria Stefanie Dwiyanti
Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan

The availability of Miscanthus sacchariflorus genome sequence will be useful for Miscanthus related research, particularly in bioenergy related topics.

"Better estimations were obtained with the other four species, where the genes absent in Msac_v2 compared with M. sinensis were estimated to be 254, 579 and 1627 (Table 3)."

- I found that the difference between number of genes in "Msac_v2" compared to other four species is larger than 254, 579, and 1627; or the way I look into the table is wrong?

- Perhaps the sentence above can be reworded so we can easily compare with the Table 3 content.

Also, what are the predicted functions of genes absent in "Msac_v2" compared to M. sinensis?

- This information may provide some clues to trait difference between M. sacchariflorus and M. sinensis.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Plant genetics and genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 25 February 2021

https://doi.org/10.5256/f1000research.47786.r77622

© 2021 Riaño-Pachón D. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Diego Mauricio Riaño-Pachón

Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo, Piracicaba, Brazil

The Data Note, "Draft genome assembly of the biofuel grass crop Miscanthus sacchariflorus", introduces two Miscanthus sacchariflorus genome assemblies, which have been deposited in NCBI under the bioprojects: PRJNA679435 and PRJNA435476. Genome sequencing was carried out with Illumina paired end reads and mate-pairs, the assemblies are greatly fragmented, which is expected due to the sequencing technologies used. This is the first Miscanthus sacchariflorus genome assembly, which is of interest for the bioenergy community, and can be used to generate insights with the genomes of other bioenergy crops, like sorghum and sugarcane.

Suggestions:

- Look for contaminant organisms in the final assemblies using BlobPlots.
- Provide GenomeScope and Smudgeplots for the clean reads, to generate further statistics prior to assembly.

Is the rationale for creating the dataset(s) clearly described?

Yes

Are the protocols appropriate and is the work technically sound?

Yes

Are sufficient details of methods and materials provided to allow replication by others?

No

Are the datasets clearly presented in a useable and accessible format?

Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, genome assembly and annotation.
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com