Substrate Specificity of D-Galactose Oxidase

EVIDENCE FOR THE OXIDATION OF INTERNALLY LINKED GALACTOSYL RESIDUES OF HELIX POMATIA GALACTOGEN

(Received for publication, October 31, 1983)

Esther M. Goudsmit†
From the Department of Biological Sciences, Oakland University, Rochester, Michigan 48063

Fumito Matsuraj
From the Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824

Diane A. Blake††
From the Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan 48109

Linkage analysis of the carbohydrate portion of glycoproteins and glycolipids is widespread. Sequential treatment with D-galactose oxidase and tritiated borohydride is a standard method for incorporation of radioactive marker into what has been assumed to be exclusively terminal residues of D-galactose or N-acetyl-D-galactosamine.

The data presented here establishes the ability of D-galactose oxidase to act upon a specific subterminal D-galactosyl residue, [→2]-D-Gal(1→), as well as upon terminal non-reducing galactosyl residues. Helix pomatia galactogen, a high molecular weight galactose homopolymer, was sequentially treated with D-galactose oxidase and tritiated borohydride. The 3H-galactogen was recovered and analyzed to determine which galactosyl units carried radioactive label. After complete methylation and acid hydrolysis of 3H-galactogen, its partially methylated galactosyl components were reduced and acetylated for identification by gas chromatography and mass spectrometry. Radioactivity was located by collection of effluent fractions during gas chromatography. The only subterminal residue to be labeled was the 2-linked D-galactose, although another with a free oxidizable 6-carbon was present, 3-linked D-galactose, [→3]-D-Gal(1→).

Linkage analysis of internal radio labeled galactosyl residues could be used to detect changes in saccharide structure during cellular events.

Sequential treatment of intact cells or isolated glycoconjugates with D-galactose oxidase and tritiated borohydride has been widely used as a means of incorporating radiolabel into cell surface glycoproteins and glycolipids (1–4). Based on substrate specificity studies performed using oligosaccharides, polysaccharides, and glycolipids (2, 5), it has been assumed that D-galactose oxidase reacts solely with terminal D-galactosyl and N-acetyl-D-galactosaminitol residues. With few exceptions (1, 2) no attempts have been made to establish whether the galactosyl residues thus labeled were present exclusively at the non-reducing termini of specific glycoconjugates.

During the course of a study on the enzymic synthesis of Helix pomatia galactogen, this high molecular weight galactose homopolymer was subjected to treatment with D-galactose oxidase and [3H]KBH₄. Methylation analysis of the 3H-galactogen preparation revealed terminal non-reducing D-galactose to be labeled as expected (6). However, approximately one-third of the total radiolabel was present in an internally linked D-galactosyl residue substituted at the C-2 position: [→2]-D-Gal(1→). Another residue, [→3]-D-Gal(1→), with the C-6 position available for oxidation and reduction, did not become labeled. D-Galactose oxidase has also been reported by Gathmann and Aminoff (7) to act upon the subterminal β-linked galactosyl residue of the trisaccharide α-L-Fuc(1→2)-β-D-Gal(1→3)-D-GalNacol.

EXPERIMENTAL PROCEDURES

Materials—D-Galactose oxidase (EC 1.11.1.7), horseradish peroxidase (EC 1.11.1.7), and catalase (EC 1.11.1.6) were purchased from Sigma. [3H]KBH₄ (1550 mCi/mmol) was a product of New England Nuclear. Aquacide 31A was obtained from Calbiochem-Behring and used according to the manufacturer’s instructions. Sephadex LH-20 was purchased from Pharmacia Whatman No. 1MM and Whatman No. 3MM papers were products of Whatman. Plastic tlc plates precoated with silica gel were obtained from Brinkmann Instruments. Radiolabeled samples on paper or tlc plates were counted in a scintillation fluid which contained 4 g of 2,5-diphenyloxazole/liter. Radiolabeled samples in solution were counted in ACS counting scintillator from Amersham Corp.

Galactogen Preparation—Galactogen, available from a previous study, was isolated from albumen glands of adult H. pomatia as described earlier (8, 9). In this procedure albumen glands were solubilized in 5 N KOH at 100 °C, cooled, and polysaccharide precipitated with 2 volumes of absolute ethanol. After three resolution in water and reprecipitation with ethanol, the polysaccharide was dialyzed against distilled water overnight, recovered by a final precipitation with ethanol. The white galactogen powder was rinsed in ethanol, then in ether, and dried in a vacuum desiccator. Paper chromatograms of the carbohydrate portion...
graphic and enzymatic analyses of acid hydrolysates showed galactose to be the only component present (8, 9).

Galactogen Oxidation.—The ability of β-galactose oxidase to act upon galactogen was first assessed using a spectrophotometric assay (10). The reaction mixture, prepared in a 1-ml quartz cuvette, contained 34 μg (8.3 units) of galactose oxidase, 168 μg of horseradish peroxidase, 37 μg of O-tolidine, 0.1% Triton X-100, and 10 mM citrate buffer, pH 6.0, in a total volume of 950 μl. After equilibration at room temperature, 50 μl of substrate were added and the change in absorbance at 425 nm recorded by a double beam Cary spectrophotometer. The reaction was monitored for 10 min at room temperature, with aliquots of increasing galactogen concentrations, between 0 and 14 mm, and the K₅₀ for galactogen was calculated to be 28 μM.

Preparation of H-Galactogen.—The reaction mixture was carried out in a sterile loosely capped 5-ml Falcon test tube at room temperature. The incubation mixture contained 3.0 mg of galactose oxidase, 0.3 mg of catalase, 7.5 mg of galactogen, 0.1 M phosphate buffer, pH 7.0, and 30 μl of toluene in a 3.0-ml total volume. After incubation for 54 h an aliquot was removed, heated at 60 °C for 3 min to inactivate catalase, and then assayed spectrophotometrically for the presence of any remaining oxidizable β-galactose. None was detected.

For reduction with tritiated potassium borohydride the incubation mixture containing oxidized galactogen was brought to pH 10.0 with 1 N NaOH. [3H]KBH₄ (10 μmol, 12.5 mCi) was added. After standing for 30 min at 41 °C, 5.0 mg of cold potassium borohydride dissolved in 0.2 ml of 0.1 N NaOH was added and the incubation continued an additional 30 min. Excess borohydride was destroyed by slowly adding 1 N H₂SO₄ until the pH reached 6.0. The product, [3H]-galactogen, was purified by dialysis against distilled water overnight and then completely solubilized in 7.0 ml of dimethyl sulfoxide by sonication for 20 min with powdered Aquacide 11A for 20 min. The specific activity of 3H-galactogen was determined and K₅₀ for galactogen was calculated to be 28 μM.

Methylation of H-Galactogen.—Tritiated galactogen (2.5 × 10⁵ cpm) was mixed with 4.5 μg of carrier galactogen for methylation by the Hakomori method (12). Unlabeled galactogen (5.0 mg) was carried through identical procedures. In preparation for methylation, samples were completely dried by evaporation over phosphorus pentoxide and then completely solubilized in 7.0 ml of dimethyl sulfoxide by sonication for 3 h at 60 °C. Methylsulfinyl carbanion (2.5 ml) was added with stirring, followed after 22 h by the addition of 2.0 ml of methyl iodide. The methylation reaction continued for 12 h. The product was purified by dialysis, lyophilized, and the Hakomori methylation repeated. Twice methylated galactogen was finally purified by column chromatography on Sephadex LH-20 prepared in chloroform:methanol (1:1) (13, 14). An infrared spectrum of 0.3 mg of methylated galactogen in 50.0 mg of KBr showed the reaction to be complete. Recovery of methylated [H]-galactogen was 60%, based on radioactivity.

RESULTS

Analyses of Methylated H-Galactogen
tlc.—Methylated samples of galactogen were hydrolyzed at 100 °C for 5 h in 90% formic acid followed by 0.25 N sulfuric acid for 14 h, then neutralized with barium carbonate. tlc of partially methylated sugars obtained was performed using either solvent a (acetone, 5 N NH₄OH (100:1.8, v/v) or solvent b (acetone, benzene, water, 1 N NH₄OH (200:50:3:1, v/v). Carbohydrates were visualized after spraying with ethanol, concentrated H₂SO₄ (95:5) and heating 10 min at 110 °C. tlc of the neutralized hydrolysate in each solvent resolved 4 components corresponding in migration rate to authentic 2,3,4,6-tetra-O-methylgalactose, 2,3,4-tri-O-methylgalactose, 2,4,6-tri-O-methylgalactose, and 2,4-di-O-methylgalactose (Fig. 1). tlc analysis of methylated hydrolyzed H-galactogen indicated two radiolabeled areas whose migration rates corresponded to 2,3,4,6-tetra-O-methyl- and 2,3,4-tri-O-methylgalactose (Fig. 1). Since we had assumed the tritium would have been confined to the tetra-O-methylgalactose (6), it seemed important to discover the identity of the second radiolabeled component whose radioactivity comprised about 50% of that in the tetramethylgalactose.

gc-ms.—For structural analysis of the unknown radiolabeled component, methylated galactogens were hydrolyzed and then reduced and acetylated by the method of Stellner et al. (13). Gas chromatography was performed with a Hewlett-Packard 5840A gas chromatograph equipped with flame ionization detectors, using a 6-foot glass column (2 mm, inner diameter) packed with 3% OV-210 on Supelcoport (80–100 mesh) and temperature programmed from 150 to 230 °C at 3°/min. Six partially methylated alditol acetate derivatives were found (Fig. 2): 41% of 1,5-di-0-Ac-2,3,4,6-tetra-O-Me, 8.5% of 1,3,5-tri-O-Ac-2,4,6-tri-O-Me, 8.4% of 1,2,5-tri-O-Ac-3,4,6-tri-O-Me, 1% of 1,5,6-tri-O-Ac-2,3,4-tri-O-Me, 1% of 1,5,6-tri-O-Ac-2,3,4-tri-O-Me, 36.6% of 1,3,5,6-tetra-O-Ac-2,4-di-O-Me, and 3% of 1,2,5,6-tetra-O-Ac-3,4-di-O-Me-galactitol. Ratios were practically identical with
D-Galactose Oxidase Acts on Internally Linked Galactose

Identification of the Unknown Tritiated Component As 3,4,6-Tri-O-methylgalactose

2,3,4- and 3,4,6-tri-O-methylgalactose are not resolved by the tlc systems used here (18). Since the latter is one of the partially methylated galactoses from *H. pomatia* galactogen and would have a free oxidizable carbon at the 6-position it was hypothesized to be the unknown tritiated component.

Methylated 3H-galactogen was hydrolyzed with formic acid:H$_2$SO$_4$, as described above and a 200-μg (1×10^6 cpm) aliquot was chromatographed by tlc in solvent a. The area containing the unknown tritiated component was cut from the plastic-backed sheet, and the silica gel was scraped into a 12-ml conical Pyrex test tube. Methylated compounds were eluted with chloroform:methanol (3:1, v/v). After being dried, the compounds were reduced with NaBH$_4$ and acetylated (13).

Analysis by gc-ms revealed that the tlc area eluted had contained 2,3,4-tri-O-methylgalactose and 3,4,6-tri-O-methylgalactose as the sole constituents (Fig. 3A). In order to determine which molecule carried the tritium, radioactivity of gc effluent was monitored as follows: the flame ionization detector was shut off and Teflon tubing inserted through the detector outlet so that the end tightly covered the jet tip. The other end of the tubing was placed in a scintillation vial containing 3 ml of chilled chloroform. Sample was injected into the gas chromatograph and volatilized effluent collected at timed intervals based on retention times of the trimethylgalactitol acetates previously calibrated with a stop watch. A new set of vials and tubing was used for each timed interval. Condensate collecting inside the tubing was washed out with 2.0 ml of chloroform into the appropriate vial. After evaporation of chloroform, 1.0 ml of scintillation fluid was added for counting. All of the radioactive material applied to the column was recovered, and it all appeared as a single peak with a retention time identical to that of alditol acetate derivative of 3,4,6-tri-O-methylgalactose (Fig. 3).

DISCUSSION

While the exact structural pattern of galactogen remains uncertain, detailed analyses by several laboratories indicate a highly branched structure of β-α(1→3) and β-α(1→6) linkages (16, 19-21). Galactogen of the land snail *H. pomatia* is unusual in that approximately 14% of total galactose is the L-isomer, which occupies a nonreducing terminal position and...
The data presented herein argue for caution in the interpretation of changes in labeling patterns as a means of determining events such as the cell cycle or transformation. We have found that the identification of labeled internal galactosyl residues has allowed us to detect complex changes in the structure of H. pomatia galactogen during its enzymic synthesis.

Reprint requests—The work reported here was carried out during sabbatical leave of E. M. G. who thanks the following people for their generous hospitality: Dr. Irwin J. Goldstein, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, and Dr. Charles C. Sweeley, Department of Biochemistry, Michigan State University, East Lansing, MI. Mass spectra were obtained by Brian D. Musselman at the Michigan State University Mass Spectrometry Facility supported by Grant RR-00480 from the Biotechnology Resources Branch, Division of Research Resources, National Institutes of Health.

REFERENCES

1. Gahmberg, C. G., and Hakomori, S. (1973) J. Biol. Chem. 248, 4511-4517
2. Steck, T. L., and Dawson, G. (1974) J. Biol. Chem. 249, 2125-2142
3. Morell, A. G., Van Den Hamer, C. J. A., Scheinberg, I. H., and Ashwell, G. (1986) J. Biol. Chem. 241, 3745-3749
4. Gahmberg, C. G. (1976) J. Biol. Chem. 251, 510-515
5. Avigad, G., Amael, D., Azenio, C., and Horecker, B. L. (1972) J. Biol. Chem. 237, 2736-2743
6. Morell, A. G., and Ashwell, G. (1972) Methods Enzymol. 28B, 205-208
7. Gathmann, W. D., and Aminoff, D. (1981) Biochem. Biophys. Res. Commun. 103, 68-76
8. Goudsmit, E. M., and Ashwell, G. (1985) Biochem. Biophys. Res. Commun. 19, 417-422
9. Petrella, A., Goudsmit, E. M., and Ketchum, P. A. (1980) Arch. Microbiol. 124, 87-89
10. Rao, A. K., and Mendicino, J. (1976) Anal. Biochem. 72, 400-406
11. Schachter, H. (1975) Methods Enzymol. 41, 3-10
12. Hakomori, S. (1964) J. Biochem. (Tokyo) 55, 206-208
13. Stellner, K., Saito, H., and Hakomori, S. (1973) Arch. Biochem. Biophys. 155, 464-472
14. Masuura, F., Nunez, H. A., Grabowski, G. A., and Sweeley, C. C. (1981) Arch. Biochem. Biophys. 207, 337-352
15. Blake, D. A., and Goldstein, I. L. (1981) J. Biol. Chem. 256, 5387-5393
16. Brettman, H., Whittaker, N. F., Kabat, E. A., Koningsmann-Lange, K., and Hjem, H-J. (1981) Carbohydr. Res. 98, 213-236
17. Jansson, P. E., Kehne, L., Liedgren, H., Lidberg, B., and Lonngham, J. (1976) Univ. Stockholm Chem. Commun. 8, 2-75
18. Stoffyn, A., and Stoffyn, P. (1967) J. Org. Chem. 32, 4001-4006
19. Bell, D. J., and Baldwin, E. (1941) J. Chem. Soc. (Lond.) 125-132
20. O’Colla, P. (1953) Proc. R. Ir. Acad. Sect. B 55, 165-170
21. May, F., and Weinland, H. (1956) Hoppe-Seyler’s Z. Physiol. Chem. 305, 207-218
Substrate specificity of D-galactose oxidase. Evidence for the oxidation of internally linked galactosyl residues of Helix pomatia galactogen.
E M Goudsmit, F Matsuura and D A Blake

J. Biol. Chem. 1984, 259:2875-2878.

Access the most updated version of this article at http://www.jbc.org/content/259/5/2875

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/259/5/2875.full.html#ref-list-1