Top-quark decay into Υ-meson

S. Slabospitskii

aNRC “Kurchatov Institute” - IHEP, Protvino, Moscow Region, Russia

Abstract

The calculation of the partial width of the rare t-quark decay into Υ-meson, W-boson and b-quark ($t \to \Upsilon Wb$) is presented. The branching ratio equals $\text{Br}(t \to \Upsilon Wb) = 1.3 \times 10^{-5}$ that make possible searches for this rare t-quark decay at LHC.

PACS: 12.38.-t, 14.54Ha

Keywords: top-quark, rare decay, Υ-meson

Email address: Sergei.Slabospitskii@ihep.ru (S. Slabospitskii)
1. Introduction

In the SM the decay $t \to bW$ is by far the dominant one. The rates for other decay channels are predicted to be smaller by several orders of magnitude in the SM [1].

For example, for semi-exclusive t-quark decays the interaction of quarks among the t-decay products may lead to final states with one hadron (meson) recoiling against a jet. The decays of the top through an off-shell W with virtual mass M_{W^*} near to some resonance h, like $\pi^+, \rho^+, K^+, D_s^+$, leads to the estimate as follows [1]:

$$\Gamma(t \to bh) \approx \frac{G_F^2 m_t^3}{144\pi} f_M^2 |V_{qq'}|^2$$ \hspace{1cm} (1)

where the parameter f_M is same as a well-known coupling f_π. The typical values of the corresponding branching ratios are too small to be measured [1]:

$$\text{Br}(t \to b\pi) \sim 4 \times 10^{-8}, \quad \text{Br}(t \to bD_s) \sim 2 \times 10^{-7}$$ \hspace{1cm} (2)

There are several two-body t-quark decay through flavour changing neutral currents:

$$t \to \gamma q, \quad t \to Z q, \quad t \to g q; \quad q = u, c$$

These processes in the SM can occur due to loop contribution only and are highly suppressed due to GIM mechanism. The estimated branching ratios are as follows [1]:

$$\text{Br}(t \to V q) \sim O(10^{-11} \div 10^{-13}), \quad V = \gamma, Z, g, \quad q = u, c$$

In addition, it worth noting that almost all “interesting” t-quark rare decays have very small branching ratios and almost impossible to measured in experiment.

Among rare top-quark decays one can single out the processes with the production of heavy quark $Q\bar{Q}'$-pair (for example, $b\bar{b}$) followed by the formation of a heavy $M(Q\bar{Q}')$-meson. In this case, the description of such mesons production allows the use of the NRQCD-model [2, 3].

Note, that the top quarks production processes with subsequent t-quark decays into heavy quark $Q\bar{Q}'$-pair is described within SM with high accuracy. Therefore, the search and study of such t-quark rare decays can allow, in particular, to find out in more detail which models formation of quarkonium (Color-Evaporation Model, the Color-Singlet Model or the Color-Octet Mechanism, see [4] for detailed discussion of various mechanisms) describe more correctly such processes.

In this article we calculate the t-quark decay widths into Υ-meson within NRQCD model [2, 3]. As will be seen below, at least one decay channel has a “relatively” large branching fraction, providing an opportunity for experimental searches.

2. The effective $b \bar{b} \Upsilon$-vertex

Within NRQCD approach the integration on virtual momentum in the loop with two heavy quarks that entered into heavy $M(Q\bar{Q})$ meson (see fig. 1)
effectively produces the following expression (see [2, 3]) for details:

\[
\int \frac{d^4p}{i(2\pi)^4} G \left(-\frac{k}{2} + p \right) \hat{\epsilon} G \left(\frac{k}{2} + p \right) \{\cdots\} \Psi_\Upsilon \\
\Rightarrow \frac{R_s(0)}{\sqrt{4\pi M^3}} \left(m_b - \frac{k}{2} \right) \hat{\epsilon} \left(m_b + \frac{k}{2} \right) \{\cdots\}
\]

(3)

where \(G = (m + \hat{p})/(m^2 - p^2) \) is fermion propagator, \(M = m_\Upsilon \) stands for \(\Upsilon \)-meson mass, \(\Psi_\Upsilon \) is the \(\Upsilon \)-meson wave function, \(\{\cdots\} \) is other terms in the loop; \(\hat{\epsilon}^\mu \) is the polarization vector of the \(\Upsilon \)-meson. The \(\Upsilon \)-meson wave function at the origin of the \(R_s(0) \) is related to the lepton decay width [2, 3] as follows:

\[
\Gamma(\Upsilon \to \ell^+\ell^-) = \frac{4e_b^2\alpha^2}{M^2} |R_s(0)|^2
\]

(4)

here \(e_b \) is \(b \)-quark charge, \(\alpha = e^2/(4\pi) \).

Note, that in the final expression (3) the heavy \(b \)-quarks (entered in the heavy \(\Upsilon \)-meson vertex) are considered to be on-shell with mass equals:

\[
m_b = \frac{M}{2}
\]

Taking into account that \((k\epsilon) = 0 \) we get the final expression for \(b\bar{b}\Upsilon \) vertex:

\[
V(\bar{b}b\Upsilon) = g_\Upsilon \hat{\epsilon}(M + \hat{k}), \quad g_\Upsilon = \frac{M}{2} \cdot \frac{R_s(0)}{\sqrt{4\pi M^3}} = \frac{R_s(0)}{4\sqrt{\pi M}}
\]

(5)

3. \(t \to \Upsilon c \) decay

In this section we present the evaluation of the two-body \(t \)-quark decay width

\[
t \to \Upsilon c
\]

(6)

within NRQCD Color Singlet model approach. This width was calculated previously in [5, 6]. For the sake of completeness we repeat the evaluation of this quantity. The diagram describing this decay is shown in fig. 2. We set the mass of the light \(c \)-quark equals zero; \(m_t \) is the mass of \(t \)-quark, \(M = m_\Upsilon \) is the \(\Upsilon \) mass\(^1\).

\(^1\)Throughout of this article we follow [7] for the notations, the SM vertices and SM parameters.
The amplitude has the following form (see [2] for details):

\[A = \left(\frac{g \gamma^2 V_{bc}}{2} \right) D_W^{\alpha\beta} \bar{u}(q)\gamma^\alpha P_L \tilde{u} (M + k) \gamma^\beta P_L u(p), \quad P_L = (1 - \gamma^5)/2 \]

(7)

where \(g = 2M_W \sqrt{2} G_F \) (\(G_F \) is the Fermi coupling constant); \(D_W^{\alpha\beta} \) is the \(W \)-boson propagator, \(\varepsilon \) is the \(\Upsilon \)-meson polarization vector:

\[D_W^{\alpha\beta} = g^{\alpha\beta} - \frac{p_W^\alpha p_W^\beta}{M_W^2}, \quad \sum_{pol\Upsilon} \varepsilon^\mu \varepsilon^\nu = g^{\mu\nu} - \frac{k^\mu k^\nu}{M^2}, \quad (\varepsilon k) = 0 \]

Then the decay width equals

\[\Gamma(t \to c\Upsilon) = \left(\frac{g \gamma^2 V_{bc}}{768 \pi Z^2} \right) \frac{m_t}{m_t^2} \left(1 - \frac{M^2}{m_t^2} \right) \times U \]

(8)

\[U = 6m_t^2 F^2 + (m_t^2 - M^2) \left[8 \left(1 + \frac{M^2}{8M_W^2} \right)^2 - \frac{m_t^2 m_W^2}{2M_W^4} \right], \quad F = \frac{p_W^2}{M_W^2} - 2 \]

\[p_W^2 = \frac{m_t^2}{2} - \frac{M^2}{4}, \quad Z^2 = (M_W^2 - p_W^2)^2 + (\Gamma_W M_W)^2 \]

here \(\Gamma_W \) is the total decay width of the \(W \)-boson. The resulted width (with \(m_t = 172.5 \) GeV, \(|V_{bc}| = 0.04 \) [8]) equals

\[\Gamma(t \to \Upsilon c) = 6.35 \times 10^{-10} \text{ GeV} \]

(9)

and is very similar to previous result [5]. At the same time this quantity is 2.5 smaller then result from [6]. This difference can be explained by the fact that authors used contributions of both color singlet and color octet to this decay channel (see [6] for details).

For calculation of the branching ratio we use LO \(t \)-quark decay width value of

\[\Gamma(t \to bW^+) = 1.47 \text{ GeV} \]

(10)

and get the corresponding branching ratio for this decay channel

\[Br(t \to \Upsilon c) = \frac{\Gamma(t \to \Upsilon c)}{\Gamma(t \to bW^+)}_{LO} = 4.32 \times 10^{-10} \]

(11)
4. Top-quark decay $t \rightarrow \Upsilon W b$

It follows from previous section that two-body t-quark decay $t \rightarrow \Upsilon c$ is very small (see (11)). It is explained by very small value of $|V_{tc}| \approx 0.04$ and high virtuality of the W-boson ($p_{W}^2 = m_t^2/2 - M^2/4 \gg M_W^2$, see (8)).

To avoid such suppression factors we consider t-quark decay width additional $b\bar{b}$-pair production in the final state:

$$t \rightarrow bW^+ \bar{b}$$

This decay process is described by 28 Feynman diagrams. We use the C++ version of the TopReX package [9] for calculation the decay width into this channel. The results equal

$$\Gamma(t \rightarrow bW^+ \bar{b}) = 8.37 \times 10^{-4} \text{ GeV}$$
$$Br(t \rightarrow bW^+ \bar{b}) = 5.7 \times 10^{-4}$$

(13)

However, the diagrams with $b\bar{b}$ pair production due to Higgs, Z-boson or γ exchange are highly suppressed (due to small couplings). As a result we have 4 diagrams, describing $t \rightarrow \Upsilon Wb$ decay channel. The diagrams with W-boson exchange (see fig. 3) are also highly suppressed (due to small couplings and high virtuality of intermediate u, c, t-quarks and W).

Figure 3: The diagrams describing $t \rightarrow \Upsilon Wb$ decay through W-boson exchange.

Therefore, the dominant contribution to the amplitude of $t \rightarrow \Upsilon Wb$ decay comes from two diagrams with gluon exchange (see fig. 4).

Figure 4: The diagrams describing $t \rightarrow \Upsilon Wb$ decay through gluon exchange.

The amplitude A has the form (the particle’s momenta notations are shown in the fig. 4):

$$A = A_1 + A_2, \quad A_1 = \left(\frac{g_\gamma g g^2}{\sqrt{2} z_1 q^2} \right) \rho g^2 \times T_1, \quad A_2 = \left(\frac{g_\gamma g g^2}{\sqrt{2} z_2 q^2} \right) \rho g^2 \times T_2$$

$$T_1 = \rho g^2 \varepsilon W \bar{u}(p_0) \gamma^\alpha \varepsilon_T \left(M + \hat{k} \right) \gamma^\beta \left(\frac{M}{2} + \hat{x}_1 \right) \gamma^\lambda P_L u(p)$$
$$T_2 = \rho g^2 \varepsilon W \bar{u}(p_0) \gamma^\alpha \varepsilon_T \left(M + \hat{k} \right) \gamma^\lambda P_L (m + \hat{x}_2) \gamma^\beta u(p)$$

$$x_1 = q + k/2, \quad x_2 = p - q, \quad q = p_0 + k/2, \quad z_1 = \frac{M^2}{4} - x_1^2, \quad z_2 = m_t^2 - x_2^2$$

(14)
The square of the full amplitude is rather cumbersome and we present it in the Appendix.

As before we use the C++ version of the TopReX package [9] for calculation of the decay width. In the table 1 we present the results for three Υ-meson states (Υ(1S), Υ(2S) and Υ(3S)).

Table 1: The partial top-quark decay widths (Γ) and branching ratios (Br) into three Υ-meson states. The widths are in GeV.

Υ	Γ(t → ΥW⁺b)	Br(t → ΥW⁺b)	Γ(t → Υc)	Br(t → Υc)
Υ(1S)	1.95 × 10⁻⁵	1.33 × 10⁻⁵	6.4 × 10⁻¹⁰	4.35 × 10⁻¹⁰
Υ(2S)	0.83 × 10⁻⁵	0.56 × 10⁻⁵	3.1 × 10⁻¹⁰	2.11 × 10⁻¹⁰
Υ(3S)	0.58 × 10⁻⁵	0.33 × 10⁻⁵	2.3 × 10⁻¹⁰	1.56 × 10⁻¹⁰

As mentioned above two-body t-quark decays t → Υ(nS)c (two right columns) have very small branching ratios for experimental study. On the other hand the decay channel t → Υ W⁺b looks much more promising for experimental searches.

In the fig. 5 we present the distributions on invariant masses of the final state particles: M(b, W), M(b, Υ), and M(W, Υ).

Figure 5: dΓ/dM_{inv} distributions. The left (red), central (blue), and right (green) curves correspond to M_{inv} = M(b Υ), M(b W) and M(W Υ) invariant masses, respectively.

As it seen the final W and b-quark are rather well separated, while b and Υ pair (the left
curve, fig. 5) has an invariant mass very close to $m_b + m_\Upsilon$. Therefore, one may expect that the Υ-meson will produce dominantly inside final b-jet.

Now we present very rough estimates of the expected number of events for this rare t-quark decay channel for LHC Run-2 option. We consider the process of $t\bar{t}$-pair production with subsequent t-quark (or \bar{t}-quark) decay into three $\Upsilon(nS)$ states $t \rightarrow \Upsilon(nS)Wb$, $n = 1, 23$. The total $t\bar{t}$ cross section, extrapolated to the full phase space, is [10]:

$$\sigma_{t\bar{t}} = 803 \pm 2{\text{stat}} \pm 25{\text{syst}} \pm 20{\text{lumi}} \text{ pb}$$ \hspace{1cm} (15)

Then, for estimation the expected number of events we use the following options:
- the LHC Run-2 integrated luminosity equals $L_{\text{tot}} = 100 \text{ fb}^{-1}$,
- W^+W^- decay into lepton and quark pairs $W^+W^- \rightarrow e(\mu)\nu q\bar{q}'$,
- all three Υ states decay into charged leptons $\Upsilon(nS) \rightarrow ee$ or $\mu\mu$.

As a result, at LHC Run-2 the expected number of events for $t\bar{t}$-pair production with subsequent $t \rightarrow \Upsilon W^+b$ decay are as follows:

$$pp \rightarrow t\bar{t}, \hspace{0.5cm} t \rightarrow \Upsilon_{1S+2S+3S}Wb, \hspace{0.5cm} \Upsilon \rightarrow \ell^+\ell^-$$

$$N(\Upsilon_{1S+2S+3S} \rightarrow \ell\ell) bb W^+W^- = 230$$

$$N(\Upsilon_{1S+2S+3S} \rightarrow \ell\ell) bb \ell\nu q\bar{q}') = 80$$ \hspace{1cm} (16)

The total number of events $N = 80$ is not very large. However, this number looks more or less suitable for the experimental study.

Conclusion

In this paper the calculation of the partial width for rare t-quark decay into Υ-meson ($t \rightarrow \Upsilon Wb$) is presented. The decay width was evaluated within NRQCD-model. The calculated branching ratio equals $\text{Br}(t \rightarrow \Upsilon(1S)Wb) = 1.3 \times 10^{-5}$ that make possible searches for this rare t-quark decay at LHC.

Acknowledgments

In conclusion the author is grateful to V.F. Obraztsov for multiple and fruitful discussions.

Appendix

Here we present the amplitude square $|T|^2$ from (14). The parameters m_t, M, and M_W stand for t-quark, Υ and W-boson masses, respectively. $(a.b)$ is the scalar product of two 4-momenta.

$$|T|^2 = |(T_1 + T_2)^2| = 8 (\chi_1 + \chi_2 + \chi_{\text{int}})$$

$$\chi_1 = 4(p.p_b)(p_b.k)M^2 + 4(p.p_b)(p_b.k)^2 - 2(p.p_b)M^4 + 4(p.k)(p_b.k)M^2 - (p.k)M^4$$

$$+ \frac{2(p.p_W)}{M_W^4} [4(p_b.k)(p_b.p_W)M^2 + 4(p_b.k)(k.p_W)M^2 + 4(p_b.k)^2(p_b.p_W) - 2(p_b.p_W)M^4$$

$$- (k.p_W)M^4]$$

7
\[
\chi_2 = -20(p.p_b)(p.k)(k.q) + 12(p.p_b)(p.k)^2 + 8(p.p_b)(k.q)^2 - (p.p_b)M^2q^2
+ \frac{1}{(p.k)} \left[4(p.q)(p_b.k) - 4(p.q)M^2 - 2(p_b.k)q^2 - 6(p.k)(p_b.k)m^2 + 4(p_b.q)(k.q)
- 3M^2m^2 - 4(p.k)(p_b.q) \right]
+ \frac{1}{M_W^2} \left[24(p.p_b)(p.k)(p.p_W)(k.p_W) - 24(p.p_b)(k.p_W)(q.p_W) + 16(p.p_b)(p.q)(k.p_W)^2
- 16(p.p_b)(p.p_W)(k.q)(k.p_W) + 4(p.p_b)(p.p_W)(q.p_W)M^2 + 16(p.p_b)(k.q)(k.p_W)(q.p_W)
- 8(p.k)(p.p_W)(p.q)(k.p_W) + 2(p.k)(p.p_W)(q.p_W)M^2 - 8(p.p_b)(k.p_W)^2q^2
- 4(p.p_b)(q.p_W)^2M^2 + 8(p.k)(p.p_b)(k.p_W) + 8(p.k)(p.b.q)(k.p_W)(q.p_W)
- 4(p.k)(p.p_b)(k.p_W)(q.p_W)^2 - 2(p.k)(q.p_W)^2M^2 + 4(p.q)(p.p_W)(p.b.p_W)^2
+ 2(p.q)(p.p_W)(k.p_W)M^2 + 6(p.q)(k.p_W)(q.p_W)M^2 + 4(p.p_W)(p.b.q)(q.p_W)M^2
- 2(p.p_W)(p.p_W)^2q^2 + 2(p.p_W)(q.p_W)M^2 - 4(p.p_W)(k.p_W)M^2q^2
- 4(p.p_W)^2(p.b.q)M^2 - 2(p.p_W)^2(q.k)^2 \right]
+ \frac{2m^2}{M_W^2} \left[-6(p.p_W)(p.b.q)(k.p_W) - 3(p.p_W)(k.p_W)M^2 + 6(p.b.q)(k.p_W)(q.p_W)
- 2(p.b.q)(k.p_W)^2 + 2(p.p_W)(k.q)(k.p_W) - 2(p.p_W)(q.p_W)M^2 + 2(k.p_W)(q.p_W)M^2 \right]
}\]

\[
\chi_{int} = -8(p.p_b)(p.k)(p.b.q) + 4(p.p_b)(p.k)M^2 - 4(p.p_b)(p.b.q)(k.q) - 8(p.p_b)(p.b.q)M^2
+ 4(p.q)(p.b.k)^2 + 8(p.p_b)^2M^2 - 4(p.p_b)M^2 - 6(p.q)(p.b.k)M^2
+ 12(p.b.k)(p.b.q) + 6(p.b.q)(p.b.k)M^2 + 4(p.k)(k.q)M^2 + 2(p.b.k)^2m^2
+ 4(p.b.k)^2M^2 - (p.q)^4 + 10(p.p_b)(p.b.q)M^2
\]

\[
+ \frac{4(p.p_b)}{M_W^2} \left[-2(p.p_W)(p.b.k)(k.p_W) + 4(p.p_W)(p.b.p_W)M^2 + 4(p.p_W)(k.p_W)^2
+ 2(p.b.q)(k.p_W)(q.p_W) - 2(p.p_W)(q.p_W)M^2 - (k.p_W)(q.p_W)M^2 \right]
\]

\[
+ \frac{4}{M_W^2} \left[(p.b.k)(p.p_W)(q.p_W)M^2 - 2(p.b.q)(p.b.p_W)(k.p_W) + (p.q)(p.b.p_W)(k.p_W)M^2
+ 2(p.q)(p.p_W)^2M^2 - (p.q)(p.p_W)^2M^2 \right]
\]

\[
+ \frac{4(p.p_W)}{M_W^2} \left[-2(p.b.k)(p.b.p_W) - 2(p.b.k)(p.p_W)M^2 - 2(p.k)(k.p_W)M^2 + 2(p.b.k)(p.b.p_W)(k.q)
- (p.b.q)(q.p_W)M^2 - 2(p.b.k)^2(q.p_W) - 2(p.b.q)(p.p_W)M^2 - 3(p.b.q)(k.p_W)M^2
+ 2(p.p_W)(k.q)M^2 + (k.q)(k.p_W)M^2 + (p.p_W)(p.b.k)M^2 + 2(p.p_W)(p.b.k)^2 \right]
\]
References

[1] M. Beneke, et al., Top quark physics, in: Workshop on Standard Model Physics (and more) at the LHC (First Plenary Meeting), 2000, pp. 419–529. arXiv:hep-ph/0003033.

[2] V. G. Kartvelishvili, E. G. Chikovani, S. M. Esakiya, The Production and Decays of Heavy Quark Bound States in Strong and Electroweak Interactions. (In Russian), Fiz. Elem. Chast. Atom. Yadra 19 (1988) 139–179.

[3] G. T. Bodwin, E. Braaten, G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125–1171, [Erratum: Phys.Rev.D 55, 5853 (1997)]. arXiv:hep-ph/9407339, doi:10.1103/PhysRevD.55.5853.

[4] J.-P. Lansberg, New Observables in Inclusive Production of Quarkonia, Phys. Rept. 889 (2020) 1–106. arXiv:1903.09185, doi:10.1016/j.physrep.2020.08.007.

[5] L. T. Handoko, C.-F. Qiao, $t \to cv$ within and beyond the Standard Model, J. Phys. G 27 (2001) 1391–1404. arXiv:hep-ph/9907375, doi:10.1088/0954-3899/27/7/302.

[6] D. d'Enterria, H.-S. Shao, Rare two-body decays of the top quark into a bottom meson plus an up or charm quark, JHEP 07 (2020) 127. arXiv:2005.08102, doi:10.1007/JHEP07(2020)127.

[7] V. I. Borodulin, R. N. Rogalyov, S. R. Slabospitski, CORE 3.1 (COmpendium of RE-lations, Version 3.1) arXiv:1702.08246.

[8] P. A. Zyla, et al., Review of Particle Physics, PTEP 2020 (8) (2020) 083C01, https://pdg.lbl.gov/. doi:10.1093/ptep/ptaa104.

[9] S. R. Slabospitsky, L. Sonnenschein, TopReX generator (version 3.25): Short manual, Comput. Phys. Commun. 148 (2002) 87–102. arXiv:hep-ph/0201292, doi:10.1016/S0010-4655(02)00471-X.

[10] S. Grancagnolo, Top quark pair-production cross section measurements at LHC, PoS DIS2019 (2019) 152. doi:10.22323/1.352.0152.