Long-term survival outcome of laparoscopic liver resection for hepatocellular carcinoma

Shi Lam, Kai-Chi Cheng

ORCID number: Shi Lam 0000-0003-3754-9657; Kai-Chi Cheng 0000-0002-6440-7825.

Author contributions: Cheng KC designed the research study; Lam S analyzed the data and wrote the manuscript; and all authors have read and approved the final manuscript.

Conflict-of-interest statement: There are no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: China

Peer-review report’s scientific

Abstract

Long-term survival is the most important outcome measurement of a curative oncological treatment. For hepatocellular carcinoma (HCC), the long-term disease-free and overall survival of laparoscopic liver resection (LLR) is shown to be non-inferior to the current standard of open liver resection (OLR). Some studies have reported a superior long-term oncological outcome in LLR when compared to OLR. It has been argued that improvement of visualization and instrumentation and reduced operative blood loss and perioperative blood transfusion may contribute to reduced risk of postoperative tumor recurrence. On the other hand, since most of the comparative studies of the oncological outcomes of LLR and OLR for HCC are non-randomized, it remained inconclusive as to whether LLR confers additional survival benefit compared to OLR. Despite the paucity of level 1 evidence, the practice of LLR for HCC has gained wide-spread acceptance due to the reproducible improvements in the perioperative outcomes and non-inferior oncological outcomes demonstrated by large-scaled, matched comparative studies. Meta-analyses of the outcomes of these studies by multiple systematic reviews have also returned noncontradictory conclusions. On the basis of a theoretical advantage of LLR over OLR in preventing tumor recurrence, the current review aims to dissect from the current meta-analyses and comparative studies any evidence of such superiority.

Key Words: Hepatocellular carcinoma; Laparoscopic hepatectomy; Liver resection; Long-term outcome; Overall survival; Disease-free survival

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Laparoscopic liver resection (LLR) resulted in better perioperative outcomes when compared with open liver resection. However, for long-term outcomes, the
Interestingly, such difference is less frequently observed in the more recent reports, consideration that is difficult to quantify for the performance of matching. The distance of tumor from the vital vasculature for LLR—an important preoperative predictor—has been published.

For HCC, predictors of long-term survival after resection of HCC include factors relating to tumor extent (size, number, macrovascular invasion), tumor biology (microvascular invasion, differentiation grading, serum alpha-fetoprotein level, etc.), ongoing liver damage and technical success of surgery (resection margin, perioperative transfusion, anatomical resection[4]). With accumulation of worldwide experience in LLR, reports to address such factors in the practice of LLR have also been published.

Prior to 2018, all studies comparing outcomes of LLR and OLR were non-randomized[5–14]. Selection bias has been a significant concern, especially in the earlier cohorts, in which patients included for LLR tended to have more favorable disease for oncologically adequate resections (tumor size, location, width of tumor-free margin)[5]. Later studies have attempted to ameliorate the impact of selection bias by matching of baseline patient characteristics such as demographic features, tumor status, degree of cirrhosis, American Society of Anesthesiologists (ASA) class, procedure types etc. in the LLR and OLR group. Nevertheless, a wider resection margin is often observed in the resected specimens from the LLR group. As acknowledged by Belli et al[5], this could be due to the selection of tumors with greater distance of tumor from the vital vasculature for LLR—an important preoperative consideration that is difficult to quantify for the performance of matching. Interestingly, such difference is less frequently observed in the more recent reports,

COMPARATIVE STUDIES

It appears to be true that LLR has a non-inferior oncological outcome compared to OLR for HCC—a finding supported by multiple comparative studies, despite the presence of heterogeneity of treatment effect among the studies.

In general terms, the survival outcome of a cancer treatment program is a function of the disease spectrum of patients included and the adequacy of treatment delivery. For HCC, predictors of long-term survival after resection of HCC include factors relating to tumor extent (size, number, macrovascular invasion), tumor biology (microvascular invasion, differentiation grading, serum alpha-fetoprotein level, etc.), ongoing liver damage and technical success of surgery (resection margin, perioperative transfusion, anatomical resection[4]). With accumulation of worldwide experience in LLR, reports to address such factors in the practice of LLR have also been published.

Prior to 2018, all studies comparing outcomes of LLR and OLR were non-randomized[5–14]. Selection bias has been a significant concern, especially in the earlier cohorts, in which patients included for LLR tended to have more favorable disease for oncologically adequate resections (tumor size, location, width of tumor-free margin)[5]. Later studies have attempted to ameliorate the impact of selection bias by matching of baseline patient characteristics such as demographic features, tumor status, degree of cirrhosis, American Society of Anesthesiologists (ASA) class, procedure types etc. in the LLR and OLR group. Nevertheless, a wider resection margin is often observed in the resected specimens from the LLR group. As acknowledged by Belli et al[5], this could be due to the selection of tumors with greater distance of tumor from the vital vasculature for LLR—an important preoperative consideration that is difficult to quantify for the performance of matching. Interestingly, such difference is less frequently observed in the more recent reports,
probably due to the more liberal inclusion of patients for LLR with accumulation of technical experience (Tables 1 and 2).

After 2018, 21 comparative studies of LLR vs OLR for HCC can be identified[15-35] (Tables 1-4). Only one was a randomized controlled trial[18], while the rest were non-randomized. Studies with special focus of patient population included major hepatectomy in six, minor hepatectomy in one, cirrhosis in four, small tumors in two, multiple tumors in one and elderly patients in one. All but three of the non-randomized studies adopt propensity score-matching (Table 3). Sporadic differences between the LLR and OLR group were still identifiable in some reports, including: Tumor size in the studies by Li et al[25] and Tsai et al[23]; prevalence of cirrhosis in the study by Guro et al[17]; ASA class in the study by Yoon et al[29] and procedure magnitude in the study by Tsai et al[23].

The only randomized controlled trial was performed in Egypt[18]. They included patients with Child’s A solitary HCC equal to or less than 5 cm, located in the peripheral segments of the liver II-VI, at a distance from the line of transection, hepatic hilum, and the vena cava and treatable by limited resection (< 3 segments). Exclusion criteria were tumors close to the portal pedicle or hepatic veins, located in segments I, VII and VIII, an ASA score exceeding 3, a decompensated cirrhosis (Child B or C), esophageal varices grade > 2, and a platelet count < 80 × 10^3/L, and patients with previous upper abdominal surgeries. On sample size calculation, a total of 42 patients was required in the study to detect a change of mean hospital stay duration from 8.5 d among patients subjected to OLR to 4.0 d among patients subjected to LRR. The estimated sample size was made assuming 95% confidence interval (CI) and 80% power of study. Eventually, they recruited a total of 50 patients with 25 patients in each group. The LLR group achieved similar disease-free survival compared to the OLR group (P = 0.849). The 1- and 3-year disease-free survival was 88% and 59%, and 84% and 54% for the LLR and OLR groups, respectively. However, survival outcomes were secondary endpoints, with such a small sample size, these survival outcomes were subject to type II error.

 META-ANALYSES

Due to the paucity of randomized controlled trial, meta-analyses of non-randomized comparative studies with low risk of bias represented the highest level of evidence until recently. The majority of meta-analyses were published after the Morioka consensus, although evidence of four meta-analyses have been adopted by the consensus[2]. A summary of the findings of these four meta-analyses is provided in the systematic review of Morise et al[36] – there is no difference in disease-free and overall survival with LLR or OLR for HCC, a result with low impact of statistical heterogeneity. This is probably because the studies included four meta-analysis of oncological outcome published between the release of Louisville and Morioka consensus statements, when LLRs were mainly performed for resection of lesions in the antero-lateral segments[37-41].

Following the Morioka consensus meeting in 2014, there was a bloom of publications reporting experience worldwide on the practice of LLR for the treatment of
While level 1 evidence was lacking at that time, strong recommendations were made regarding the non-inferiority of both minor and major LLR in short-term postoperative and long-term outcomes, as the relative benefits of LLR over OLR had appeared to be reproducible in the larger-scaled, propensity score-matched non-randomized comparative studies conducted worldwide[2]. Yet in 2018, the very “concern of selection bias” that is inherent to non-randomized studies was then resolved with the publication of the OSLO-COMET trial, which convincingly showed that LLR has superior perioperative outcomes, non-inferior oncological safety, similar cost and better gain of life quality to OLR for the treatment of colorectal cancer liver metastases[42].

Table 1 Summary of comparative studies: Operative outcomes

Ref.	Blood loss in mL /transfused %	Resection margin in mm	R0 resection rate %						
	LLR	OLR	P	LLR	OLR	P	LLR	OLR	P
Belli et al[5]	297	580	< 0.001	100	93.6	0.057			
Tranchart et al[6]	364.3	723.7	< 0.0001	10.4	10.6	NS			
Lee et al[7]	150	240	NS	1.8	1.05	0.016			
Ahn et al[8]	350	355	NS	17	13	NS			
Memeo et al[9]	200	200	NS	10	6	0.02			
Lee et al[10]	300	700	0.004	13	10	0.25			
Yoon et al[11]	3.4%	7.5%	0.04	2.03	1.12	0.01			
Xiao et al[12]	272	450	0.001	100	98	NS			
Sposito et al[13]	NS	6	5	NS	98	98	NS		
Cheung et al[14]	100	300	< 0.001	100	93.1	NS			
Ryu et al[15]	95	83	NS						
Rhu et al[16]	13%	2%	NS	13	12	NS			
Guro et al[17]	1543	1248	97.6	94.6	NS				
El-Gendi et al[18]	230	250	NS	100	100	NS			
Inose et al[19]	100	380	< 0.0001	7	5	NS			
Kim et al[20]	300	250	NS	13	15	NS			
Deng et al[21]	150	380	< 0.001	98	90	NS			
Wu et al[22]	150	250	NS						
Tsai et al[23]	363	839	< 0.001	5	5.2	NS			
Di Sandro et al[24]	150	200	0.007	5	5	NS			
Li et al[25]	328	396	NS						
Kim et al[26]	152	245	8.5	8.4	NS				
Chen et al[27]	300	500	< 0.1	97	100	NS			
Untereiner et al[28]	150	250	NS	91	85	NS			
Yoon et al[29]	226	251	98	98					
Peng et al[30]	200	300	NS	100	100	NS			
Yamamoto et al[31]	87	223	3	3	NS				
Lee et al[32]	19%	28%	9	16.5	NS				
Navarro et al[33]	234	454	0.021	100	100	NS			
Delvecchio et al[34]	13%	25%	NS	95	87	NS			
Ho et al[35]	500	725	NS	5	3	0.043			

LLR: Laparoscopic liver resection; NS: Statistically not significant; OLR: Open liver resection.
Ref.	Difference between study groups	ICG, %	Child A/B/C, %	Tumor size in cm	Microvascular invasion, %		
		LLR	OLR	LLR +/- SD/95%CI	OLR +/- SD/95%CI	LLR	OLR
Belli et al[5]	Tumor size, AFP level, margin width	91/9/0	93.6/6.4/0	3.8 +/-1.3	6 +/- 2.3	37	39.2
Tranchart et al [6]							
Lee et al[7]	Cirrhosis, previous abdominal surgery, margin width						
Ahn et al[8]		14.5	13.1	2.6 +/-1.5	2.8 +/- 1.2	15.7	19.6
Memeo et al[9]	Margin width	98/2/0	96/4/0	3.2 +/- 1.1	3.7 +/- 0.1	0.1-15	56.6
Lee et al[10]	Margin width	97.6/2.4/0	97.6/2.4/0	5.4 +/- 1.16	4.4 +/- 2.14	52.5	43.5
Yoon et al[11]	Margin width	12.1	12.4	2.87 +/- 0.749	3.04 +/- 0.249	0.2-4.9	
Xiao et al[12]		95/5/0	96.5/3.5/0	4.22 +/- 2.05	4.3 +/- 1.49		
Sposito et al[13]		15	15	98/2/0	95/5/0	56	37
Cheung et al[14]							
Ryu et al[15]		11.9	14	3.9 +/- 1.17	4.9 +/- 1.145	30	40
Rhu et al[16]		37.7/0	37.1/0/0	3.1 +/- 5.7	3.1 +/- 1.7	56.6	58.8
Guro et al[17]	Cirrhosis, tumor size	95/2.4/2.4	88/9.9/7.2	4.1 +/- 2.4	6.3 +/- 3.8		
El-Gendi et al [18]		100/0/0	100/0/0	3.3 +/- 0.57	3.4 +/- 0.59	60	68
Inoue et al[19]		89/11/0	100/0/0	2.5	2.6	12	13
Kim et al[20]		9.3	8	2.8	2.8	25	23
Deng et al[21]	Procedure type	100/0/0	100/0/0	2.5	2.8	10.2	16.6
Wu et al[22]		3.5	3.5	0.9-12.5	3.5	38.4	41.9
Tsai et al[23]	Procedure magnitude, tumor size	93/7/0	98/2/0	3.9 +/- 2.6	7.2 +/- 5.3		
Di Sandro et al[24]		87/13/0	84/16/0	2.5	2.3	2.5	3.3
Li et al[25]	Tumor size	4	4	+/- 2	5.7	17	30
Kim et al[26]		10.4	12.8	3 +/-2.1	3.2 +/- 3.14	22.2	27.8
Chen et al[27]		6.9	6.9	7.3 +/-3.4	7.6 +/- 4.2	37	32
Untereiner et al[28]		64/0/0	73/0/3	3	2.1-4.9	3	2.3-5
Yoon et al[29]	ASA class, medical disease	13.6	14	66.8/0.0/0	65.4/0.0/0	14.3	15.7
Peng et al[30]		94/6/0	91/9/0	4.8	2.8-5	30	30
Yarnamoto et al[31]		88/22/0	84/16/0	1.7	1.2-4.2	2	0.7-9.9
Lee et al[32]		90/10/0	91/9/0	2.5	7.1-4.5	2.6	1.1-14.5
Navarro et al [33]		3.5	3.5	8.5	3.3	8.1	51.2
Delvecchio et al[34]		97/3/0	98/2/0	4	3.0-16	7	1.5-14
Ho et al[35]	Hepatitis C carrier status	100/0/0	92/8/0	3.5	2.5	4	3-5

Table 2 Summary of comparative studies: Baseline clinical-pathological features of both treatment groups
DISCUSSION

The question is now left with HCC though, as obvious difference exists between patients with HCC and colorectal liver metastases. As a majority of HCC patients have underlying cirrhosis, liver decompensation and oncological outcomes are HCC-specific outcomes to consider for LLR. Since the first published meta-analysis on the long-term outcomes of LLR for HCC in 2011[43], there have been about 20 meta-analyses on the topic published, 15 of which were published after 2017. Ciria et al.[44] published a meta-analysis in 2018 that included 28 non-randomized comparative studies with low risk of bias. In contrast to those included by meta-analyses in the “pre-Morioka era”, the studies reviewed by Ciria et al.[44] encompassed a much wider spectrum of disease in clinical practice: Three were on major liver resection, twenty-two on minor liver resection, five on Child-Pugh class A cirrhosis, sixteen on solitary tumors and three on unstratified operable patients. For the disease-free and overall survival, meta-analyses could only be performed for studies featuring cirrhotic patients, minor hepatectomy and solitary tumors but not for major hepatectomy. The pooled relative effect of LLR to OLR showed an odds ratio (OR) in favor of LLR for 1-year disease-free survival in patients with minor hepatectomy ($I^2 = 66\%$; OR = 0.133; 95\%CI: 0.001–0.265; $P < 0.048$). For patients with Child’s A cirrhosis and solitary tumor, no significant relative benefit or harm were found for the 1-, 3- and 5-year disease-free and overall survivals. For patients with major hepatectomy, meta-analysis was not performed due to lack of data. Moderate to high heterogeneity ($I^2 = 17\%–66\%$) was noted among the studies of laparoscopic minor hepatectomy. The highest heterogeneity is among the five studies for compilation of 1-year disease-free survival ($I^2 = 66\%$), and the biggest discrepancy of mean relative effect lies between the study by Cheung et al.[14] and Kobayashi et al.[45]. This is probably related to the inclusion of recurrent HCC and hybrid or hand-assisted laparoscopic procedures in the study population in the study by Kobayashi et al.[45]. Moreover, two studies with the greatest tendency to favor LLR came from the same center[14,46] with overlapping study period and study population (left lateral sectionectomy in 25% and 100% of studied population), giving rise to the concern of overestimation of the relative benefit of LLR.

The lack of long-term survival data specifically for laparoscopic major hepatectomies in the above meta-analysis was addressed by a recent meta-analysis by Wang et al.[47] that included nine studies of the patient population. Interestingly, a favorable result for LLR was again noted in 1-year disease-free survival ($I^2 = 0\%$; OR = 1.55; 95\%CI: 1.04–2.31; $P = 0.03$), but not in disease-free or overall survival in another analyzed timespan. Again, one of the constituent studies for the pooled analysis of 1-year disease-free survival is notably out-standing with regard to the tumor recurrence rate in the OLR group, and an apparent reason that is also acknowledged by the author was the significantly bigger tumor size (6.3 ± 3.8 vs. 4.1 ± 2.4 cm; $P = 0.000$) included in the OLR arm[17].

In contrast to most of the meta-analyses showing non-significant difference in overall survival, Jiang et al.[48] meta-analyzed studies of cirrhotic patients and found significant relative benefit of LLR in 1-, 3- and 5-year overall survival and 1-year disease-free survival, with only moderate issue of heterogeneity ($I^2 = 36\%–39\%$). The apparent reason for the discrepancy between that study and Ciria et al.[44]’s sub-group analyses for cirrhotic patients is that the two reviews included different sets of studies for analyses. The rationale behind study selection is difficult to judge, but Jiang et al.[48] excluded the study because the data were not retrievable, which could potentially lead to bias. On the other hand, Ciria et al.[44] only included three studies for the analyses of long-term outcome of cirrhotic patients, which may not be powerful enough to detect small effects.
Ref.	Year	Number of patients	Matching	Study population	Procedure
	LLR	OLR			
Belli et al[5]	2009	54	125	No	< 5 cm, anterolaterally located
Tranchart et al[6]	2010	42	42	Yes	
Lee et al[7]	2011	33	50	Yes	Minor resection
Ahn et al[8]	2014	51	51	Yes	Solitary
Memeo et al[9]	2014	45	45	Yes	Cirrhosis
Lee et al[10]	2015	43	86	Yes	
Yoon et al[11]	2015	58	174	Yes	< 5 cm
Xiao et al[12]	2015	41	86	No	Posterolateral
Sposito et al[13]	2016	43	43	Yes	Cirrhosis
Cheung et al[14]	2016	24	29	Yes	Left lateral sectionectomy
Ryu et al[15]	2018	40	30	No	Anatomical resection
Rhu et al[16]	2018	58	133	Yes	Right posterior sectionectomy
Garro et al[17]	2018	67	110	No	Major hepatectomy
El-Gendi et al[18]	2018	25	25	Randomized	< 5 cm
Inoue et al[19]	2018	61	175	Yes	Child A
Kim et al[20]	2018	37	37	Yes	Left hepatectomy
Deng et al[21]	2018	157	157	Yes	
Wu et al[22]	2019	86	86	Yes	Cirrhosis
Tsai et al[23]	2019	153	160	Yes	
Di Sandro et al[24]	2018	75	75	Yes	Cirrhosis
Li et al[25]	2019	41	307	Yes	Mesohepatectomy
Kim et al[26]	2018	18	36	Yes	Central
Chen et al[27]	2019	38	38	Yes	Right hepatectomy
Untereiner et al[28]	2019	33	33	Yes	
Yoon et al[29]	2020	217	434	Yes	
Peng et al[30]	2019	33	33	Yes	Multiple
Yamamoto et al[31]	2020	58	197	Yes	Cirrhosis
Lee et al[32]	2021	58	110	Yes	
Navarro et al[33]	2021	106	299	Yes	Major hepatectomy
Delvecchio et al[34]	2021	38	84	Yes	Elderly
Ho et al[35]	2021	45	90	Yes	

LLR: Laparoscopic liver resection; OLR: Open liver resection.

Operative stratification, diverting away of selected patient population to liver transplantation, improved surgical techniques to minimize blood transfusion requirement even in the OLR group, a better medical control of background liver disease activity, etc., might all be possible to ameliorate any marginal survival advantage of LLR over OLR.
Ref.	1-year OS, %	3-year OS, %	5-year OS, %	1-year DFS, %	3-year DFS, %	5-year DFS, %									
	LLR	OLR	P												
Belli et al[5]	94	85	NS	67	73	NS	78	79	NS	52	52	NS			
Tranchart et al[6]	93.1	81.8	NS	74.4	73	NS	81.6	70.2	NS	60.9	54.3	NS	45.6	37.2	NS
Lee et al[7]	86.9	98	NS	81.8	80.6	NS	78.8	76.1	NS	51	55.9	NS	45.3	55.9	NS
Ahn et al[8]	80.1	85.7	NS	59	44	NS	60	88	NS	63	62	NS	60.9	54.3	NS
Memeo et al[9]	88	63	NS	59	44	NS	60	88	NS	63	62	NS	60.9	54.3	NS
Lee et al[10]	95.3	93.9	NS	89.7	89.5	NS	60.5	81.5	NS	60.3	66.7	NS	60.3	58.6	NS
Yoon et al[11]	95	98	NS	86	84	NS	82	88	NS	63	62	NS	60.9	54.3	NS
Xiao et al[12]	95.1	89.5	NS	78	76.7	NS	87.8	82.6	NS	70.7	68.6	NS	60.9	54.3	NS
Sposito et al[13]	75	79	NS	38	46	NS	41	44	NS	25	11	NS	60.9	54.3	NS
Cheung et al[14]	100	93	NS	85.6	84.1	NS	69.1	77.6	NS	95	69.2	NS	72.8	61.5	NS
Ryu et al[15]	89.9	89.9	NS	84.7	68	NS	70.9	63.1	NS	79.5	72.4	NS	58	56.1	NS
Rhu et al[16]	96.8	96.8	NS	94.5	94.5	NS	94.5	94.5	NS	77.8	77.8	NS	68.3	68.3	NS
Guro et al[17]	77.3	60.2	NS	75	79	NS	38	46	NS	41	44	NS	25	11	NS
El-Gendi et al[18]	88	84	NS	58.7	54	NS									
Inoue et al[19]	97.8	87.9	NS	78.8	70.6	NS	83.8	75	NS	57.5	54.8	NS	79.6	91.1	NS
Kim et al[20]	93.9	93.8	NS	72.6	73.4	NS	77	79.6	91.1	NS	79.6	91.1	NS		
Deng et al[21]	96.2	96.8	NS	81.4	73.5	NS	69.8	62.8	NS	75.6	69.8	NS	60.5	53.5	NS
Wu et al[22]	93	81.4	NS	81.4	73.5	NS	69.8	62.8	NS	75.6	69.8	NS	60.5	53.5	NS
Tsai et al[23]	90.3	85	0.002	82.9	63.6	0.002	78.1	57.6	0.002	72.9	60.8	NS	49.2	43	NS
Di Sandro et al[24]	68	76	NS	38	46	NS	41	44	NS	25	11	NS			
Li et al[25]	96.3	95.3	NS	68.4	90.5	NS	84	87.2	NS	36	59.7	NS			
Kim et al[26]	94.4	100	NS	94.4	92.9	NS	93.8	76.5	NS	56.3	41.3	NS			
Chen et al[27]	69.8	74	NS	51.6	57.8	NS									
Untereiner et al[28]	78	79	NS	72	58.6	NS									
Yoon et al[29]	98.1	93.8	NS	87	90.8	NS	81	85.3	NS	62	64.7	NS	49.1	56.2	NS
Two observations were made from the current review of meta-analyses and recent comparative studies. Firstly, the non-inferiority in long-term oncological outcome of LLR vs OLR has been repeatedly shown by pooling of various combinations of studies, patient populations and LLR procedures. This should partially address the concern of selection bias, as such outcomes are now widely reproducible worldwide. Secondly, while the studies on LLR for HCC are increasingly heterogenous in terms of disease spectrum included and type of procedure performed, the study methodologies adopted are more and more standardized. Thus, future publications are likely to reflect the advanced practice of difficult procedures of high-volume centers, while the diffusion of the technique among lower-volume centers may be underrepresented in the medical literature. This echoes the need of a broad-based prospectively collected registry database for the purpose of ongoing consolidation of evidence and monitoring of the development of LLR.

CONCLUSION

The current review has updated the findings on long-term oncological outcomes of LLR for HCC. Depicted is also a phenomenal development of LLR, in which there is a widespread adoption of an innovative invasive technique long before the availability of level 1 evidence. Complicated surgical procedures, heterogenous diseases presentation and a long learning curve are the main hurdles of conducting a widely generalizable randomized controlled trial. Given the heterogeneity of the data and the lack of randomized controlled trial, it may still be too bold to prioritize LLR in long-term survival, its advantage being more evident in the perioperative period. A broad-based prospective LLR registry keeping safety and oncological outcomes in check may be a better solution to the need of stronger evidence in the field.
REFERENCES

1. **Buell JF**, Cherqui D, Geller DA, O'Rourke N, Iannitti D, Dagher I, Koffron AJ, Thomas M, Gayet B, Han HS, Wakabayashi G, Belli G, Kaneko H, Ker CG, Scatton O, Laurent A, Abdalla EK, Chaudhury P, Dutson E, Gamblin C, D'Angelica M, Nagorney D, Testa G, Labow D, Manas D, Poon RT, Nelson H, Martin R, Clary B, Pinson WC, Martinie J, Vauthey JN, Goldstein R, Roayae S, Barlet D, Esat J, Abeccassis M, Rees M, Fong Y, McMasters KM, Broelsch C, Busuttil R, Belghiti J, Larsson S, Char R, World Consensus Conference on Laparoscopic Surgery. The international position on laparoscopic liver surgery: The Louisville Statement, 2008. *Ann Surg 2009; 250*: 825-830. [DOI: 10.1097/SLA.0b013e3181863be6]

2. **Wakabayashi G**, Cherqui D, Geller DA, Buell JF, Kaneko H, Han HS, Ashburn H, O'Rourke N, Tanabe M, Koffron AJ, Tsung A, Soubrane O, Machado MA, Gayet B, Troisi RI, Pessaux P, Van Dam RM, Scatton O, Abu Hilal M, Belli G, Kwon CH, Edwin B, Choi GH, Aldrichetti LA, Cai X, Cleary S, Chen KH, Schön MR, Sugioaki A, Tang CN, Herman P, Pekolj J, Chen XP, Dagher I, Jarnagin W, Yamamoto M, Strong R, Jagannath P, Lo CM, Clavien PA, Kokudo N, Barkun J, Strasberg SM. Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. *Ann Surg 2015; 261*: 619-629. [DOI: 10.1097/sla.0b013e3182500118]

3. **Abu Hilal M**, Aldrichetti L, Dagher I, Edwin B, Troisi RI, Alikhanov R, Arooni S, Belli G, Besselink M, Briceno J, Gayet B, D'Hondt M, Lesurert M, Menon K, Lodge P, Rotellar F, Santojo Y, Scatton O, Soubrane O, Sutcliffe R, Van Dam R, White S, Hallis MC, Cirpiani F, Van der Poel M, Ciria R, Barkhatov L, Gomez-Luque Y, Ocana-Garcia S, Cook A, Buel J, Clavien PA, Dervenis C, Fussi G, Geller D, Lang H, Primrose J, Taylor M, Van Guik T, Wakabayashi G, Ashburn H, Chenqui D. The Southampton Consensus Guidelines for Laparoscopic Liver Surgery: From Indication to Implementation. *Ann Surg 2018; 268*: 11-18. [DOI: 10.1097/SLA.0000000000002528]

4. **Tung-Ping Poon R**, Fan ST, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. *Ann Surg 2000; 232*: 10-24. [DOI: 10.1097/00002527-200007000-00003]

5. **Belli G**, Limongelli P, Fantini C, D’Agostino A, Cioffi L, Belli A, Russo G. Laparoscopic and open treatment of hepatocellular carcinoma in patients with cirrhosis. *Br J Surg 2009; 96*: 1041-1048. [PMID: 19672933]

6. **Tranchart H**, Di Giuro G, Lainas P, Roudie J, Agostini H, Franco D, Dagher I. Laparoscopic resection for hepatocellular carcinoma: a matched-pair comparative study. *Surg Endosc 2010; 24*: 1170-1176. [PMID: 19915908]

7. **Lee KF**, Chong CN, Wong J, Cheung YS, Lai P. Long-term results of laparoscopic hepatectomy versus open hepatectomy for hepatocellular carcinoma: a case-matched analysis. *World J Surg 2011; 35*: 2268-2274. [PMID: 21642300]

8. **Ahn KS**, Kang KJ, Kim YH, Kim TS, Lim TJ. A propensity score-matched case-control comparative study of laparoscopic and open liver resection for hepatocellular carcinoma. *J Laparoendosc Adv Surg Tech A 2014; 24*: 872-877. [PMID: 25393886]

9. **Memeo R**, de’Angelis N, Compagnon P, Salloum C, Cherqui D, Laurent A, Azoulay D. Laparoscopic vs. open liver resection for hepatocellular carcinoma of cirrhotic liver: a case-control study. *World J Surg 2014; 38*: 2919-2926. [PMID: 24912628]

10. **Lee JJ**, Connelly JB, Smoot RL, Gallinger S, Greig PD, Moulton CA, Wei A, McGilvray I, Cleary S, Chen KH, Schön MR, Sugioka A, Tang CN, Herman P, Roayaie S, Belli G, Lang H, Primrose J, Taylor M, Van Guik T, Wakabayashi G, Ashburn H, Chenqui D. The Southampton Consensus Guidelines for Laparoscopic Liver Surgery: From Indication to Implementation. *Ann Surg 2018; 268*: 11-18. [DOI: 10.1097/SLA.0000000000002528]

11. **Yoon SY**, Kim KH, Jung DH, Yu A, Lee SG. Oncological and surgical results of laparoscopic versus open liver resection for HCC less than 5 cm: case-matched analysis. *Surg Endosc 2015; 29*: 2628-2634. [PMID: 25487545]

12. **Xiao L**, Xiang LJ, Li JW, Chen J, Fan YD, Zheng SG. Laparoscopic versus open liver resection for hepatocellular carcinoma in posterosuperior segments. *Surg Endosc 2015; 29*: 2994-3001. [PMID: 25899815]

13. **Sposito C**, Battiston C, Facciorusso A, Mazzola M, Muscará C, Scotti M, Romito R, Mariani L, Mazzaferrro V. Propensity score analysis of outcomes following laparoscopic or open liver resection for hepatocellular carcinoma. *Br J Surg 2016; 103*: 871-880. [PMID: 27029597]

14. **Cheung TT**, Poon RT, Dai WC, Chok KS, Chan SC, Lo CM. Pure Laparoscopic Versus Open Left Lateral Sectionectomy for Hepatocellular Carcinoma: A Single-Center Experience. *World J Surg 2016; 40*: 198-205. [PMID: 26316115]

15. **Ryu T**, Honda G, Kurata M, Kobayashi S, Sakamoto K, Honjo M. Perioperative and oncological outcomes of laparoscopic anatomical hepatectomy for hepatocellular carcinoma introduced gradually in a single center. *Surg Endosc 2018; 32*: 790-798. [PMID: 28733745]

16. **Rhu J**, Kim SJ, Choi GS, Kim JM, Jho JW, Kwon CHD. Laparoscopic Versus Open Right Posterior Sectionectomy for Hepatocellular Carcinoma in a High-Volume Center: A Propensity Score Matched Analysis. *World J Surg 2018; 42*: 2930-2937. [DOI: 10.1007/s00268-018-4531-z]

17. **Guro H**, Cho JY, Han HS, Yoon YS, Choi Y, Kim S, Kim K, Hyun IG. Outcomes of major
laparoscopic liver resection for hepatocellular carcinoma. Surg Oncol 2018; 27: 31-35 [PMID: 29549901 DOI: 10.1016/j.suronc.2017.11.006]

18 El-Gendi A, El-Shafei M, El-Gendi S, Shawky A. Laparoscopic Versus Open Hepatic Resection for Solitary Hepatocellular Carcinoma Less Than 5 cm in Cirrhotic Patients: A Randomized Controlled Study. J Laparoendosc Adv Surg Tech A 2018; 28: 302-310 [PMID: 29172949 DOI: 10.1089/lap.2017.0518]

19 Inoue Y, Suzuki Y, Ota M, Fujii K, Kagawachi N, Hirokawa F, Hayashi M, Uchiyama K. Short- and Long-Term Results of Laparoscopic Parenchyma-Sparing Hepatectomy for Small-Sized Hepatocellular Carcinoma: A Comparative Study Using Propensity Score Matching Analysis. Am Surg 2018; 84: 230-237 [PMID: 29580351]

20 Kim JM, Kwon CHD, Yoo H, Kim KS, Lee J, Kim K, Choi GS, Joh JW. Which approach is preferred in left hepatocellular carcinoma? BMC Cancer 2018; 18: 668 [PMID: 29921239 DOI: 10.1186/s12885-018-4506-3]

21 Deng ZC, Jiang WZ, Tang XD, Liu SH, Qin L, Qian HX. Laparoscopic hepatectomy versus open hepatectomy for hepatocellular carcinoma in 157 patients: A case controlled study with propensity score matching at two Chinese centres. Int J Surg 2018; 56: 203-207 [PMID: 29935365 DOI: 10.1016/j.ijsu.2018.06.026]

22 Wu X, Huang Z, Lau WY, Li W, Lin P, Zhang L, Chen Y. Perioperative and long-term outcomes of laparoscopic versus open liver resection for hepatocellular carcinoma with well-preserved liver function and cirrhotic background: a propensity score matching study. Surg Endosc 2019; 33: 206-215 [PMID: 29987365 DOI: 10.1007/s00464-018-6296-8]

23 Tsai KY, Chen HA, Wang WY, Huang MT. Long-term and short-term surgical outcomes of laparoscopic versus open liver resection for hepatocellular carcinoma: might laparoscopic approach be better in early HCC? Surg Endosc 2019; 33: 1131-1139 [PMID: 30043170 DOI: 10.1007/s00464-018-6732-0]

24 Di Sandro S, Bagnardi V, Najjar M, Buscemi V, Lautero A, De Carlis R, Danieli M, Pinotti E, Benuzzi L, De Carlis L. Minor laparoscopic liver resection for Hepatocellular Carcinoma is safer than minor open resection, especially for less compensated cirrhotic patients: Propensity score analysis. Surg Oncol 2018; 27: 722-729 [PMID: 30449499 DOI: 10.1016/j.suronc.2018.10.001]

25 Li W, Han J, Xie G, Xiao Y, Sun K, Yuan K, Wu H. Laparoscopic versus open mesohepatectomy for patients with centrally located hepatocellular carcinoma: a propensity score matched analysis. Surg Endosc 2019; 33: 2916-2926 [PMID: 30498855 DOI: 10.1007/s00464-018-6593-2]

26 Kim WJ, Kim KH, Kim SH, Kang WH, Lee SG. Laparoscopic Versus Open Liver Resection for Centrally Located Hepatocellular Carcinoma in Patients With Cirrhosis: A Propensity Score-matching Analysis. Surg Laparoendosc Percutan Tech 2018; 28: 394-400 [PMID: 30181038 DOI: 10.1097/SLE.0000000000000569]

27 Chen K, Pan Y, Wang VF, Zheng XY, Liang X, Yu H, Cai XJ. Laparoscopic Right Hepatectomy for Hepatocellular Carcinoma: A Propensity Score Matching Analysis of Outcomes Compared With Conventional Open Surgery. J Laparoendosc Adv Surg Tech A 2019; 29: 503-512 [PMID: 30625024 DOI: 10.1089/lap.2018.0480]

28 Untereiner X, Cagniet A, Memeo R, Cherkauzi Z, Piardi T, Severac F, Mutter D, Kianmanesh R, Wakabayashi T, Sommaclae D, Pessaux P. Laparoscopic Hepatectomy Versus Open Hepatectomy for the Management of Hepatocellular Carcinoma: A Comparative Study Using a Propensity Score Matching. World J Surg 2019; 43: 615-625 [PMID: 30341471 DOI: 10.1007/s00268-018-4827-z]

29 Yoon YI, Kim KH, Cho HD, Kwon JH, Jung DH, Park GC, Song GW, Ha TY, Lee SG. Long-term perioperative outcomes of pure laparoscopic liver resection versus open liver resection for hepatocellular carcinoma: a retrospective study. Surg Endosc 2020; 34: 796-805 [PMID: 31161292 DOI: 10.1007/s00464-019-06831-w]

30 Peng Y, Liu F, Xu H, Lan X, Wei Y, Li B. Outcomes of Laparoscopic Liver Resection for Patients with Multiple Hepatocellular Carcinomas Meeting the Milan Criteria: A Propensity Score-Matched Analysis. J Laparoendosc Adv Surg Tech A 2019; 29: 1144-1151 [PMID: 31411541 DOI: 10.1089/lap.2019.0362]

31 Yamamoto M, Kobayashi T, Oshita A, Abe T, Kohashi T, Onoe T, Fukuda S, Omori I, Imaoka Y, Homnoy N, Ohdan H. Laparoscopic versus open limited liver resection for hepatocellular carcinoma with liver cirrhosis: a propensity score matching study with the Hiroshima Surgical study group of Clinical Oncology (HiSCO). Surg Endosc 2020; 34: 5055-5061 [PMID: 31824989 DOI: 10.1007/s00464-019-07302-y]

32 Lee DH, Kim D, Park YH, Yoon J, Kim JS. Long-term surgical outcomes in patients with hepatocellular carcinoma undergoing laparoscopic vs. open liver resection: A retrospective and propensity score-matched study. Asian J Surg 2021; 44: 206-212 [PMID: 32532684 DOI: 10.1016/j.asjsur.2020.05.028]

33 Navarro JG, Kang I, Rho SY, Choi GH, Han DH, Kim KS, Choi JS. Major Laparoscopic Versus Open Resection for Hepatocellular Carcinoma: A Propensity Score-Matched Analysis Based on Surgeons’ Learning Curve. Ann Surg Oncol 2021; 28: 447-458 [PMID: 32602059 DOI: 10.1245/s10434-020-08764-4]

34 Delvecchio A, Conticchio M, Ratti F, Gelli M, Anelli FM, Laurent A, Vitali GC, Magistri P, Assirati G, Felli E, Wakabayashi T, Pessaux P, Piardi T, Di Benedetto F, de'Angelis N, Briceño-Delgado J, Adam R, Cherqui D, Aldighetti L, Memeo R. Laparoscopic major hepatectomy for hepatocellular carcinoma in elderly patients: a multicentric propensity scorebased analysis. Surg Endosc 2021; 35:
Lam S et al. Survival after laparoscopic hepatectomy for HCC

3642-3652 [PMID: 32748269 DOI: 10.1007/s00464-020-07843-7]

35 Ho KM, Cheng KC, Chan FK, Yeung YP. Laparoscopic hepatectomy versus open hepatectomy for hepatocellular carcinoma: A propensity case-matched analysis of the long-term survival. Ann Hepatobiliary Pancreat Surg 2021; 25: 1-7 [PMID: 33649248 DOI: 10.14701/ahbps.2021.25.1.1]

34 Morise Z, Ciria R, Chequer D, Chen KH, Belli G, Wakabayashi G. Can we expand the indications for laparoscopic liver resection? J Hepatobiliary Pancreat Sci 2015; 22: 342-352 [PMID: 25663288 DOI: 10.1002/jhbp.215]

33 Shimada M, Hashizume M, Muhara S, Tsujita E, Rikiman T, Yamashita Y, Tanaka S, Adachi E, Sugimachi K. Laparoscopic hepatectomy for hepatocellular carcinoma. Surg Endosc 2001; 15: 541-544 [PMID: 11591936 DOI: 10.1007/s004640080099]

32 Laurent A, Chequer D, Lesurrtel M, Brunetti F, Tayar C, Fagniez PL. Laparoscopic liver resection for subcapsular hepatocellular carcinoma complicating chronic liver disease. Arch Surg 2003; 138: 763-9, discussion 769 [PMID: 12860758 DOI: 10.1001/archsurg.138.7.763]

31 Kaneko H, Takagi S, Otsuka Y, Tsuchiya M, Tamura A, Katagiri T, Maeda T, Shiba T. Laparoscopic liver resection of hepatocellular carcinoma. Am J Surg 2005; 189: 190-194 [PMID: 15720988 DOI: 10.1016/j.amjsurg.2004.09.010]

30 Endo Y, Ohta M, Sasaki A, Kai S, Eguchi H, Iwaki K, Shibata K, Kitano S. A comparative study of the long-term outcomes after laparoscopy-assisted and open left lateral hepatectomy for hepatocellular carcinoma. J Laparoendosc Adv Surg Tech A 2015; 25: 48-54 [PMID: 25905416 DOI: 10.1089/lap.2018.0588]

29 Lam S, Hasegawa N, Hashizume M, Tanaka S, Shimada M, Fujiwara S, Yamauchi Y, Nakanuma T, Takahashi H, Takahashi Y, et al. Survival after laparoscopic hepatectomy for HCC. Hepatobiliary Pancreat Surg 2016; 5: 38-44 [PMID: 26773287 DOI: 10.1089/lap.2016.0046]

28 Chang KL, Yeh FC, Lin CN, Yang YH, Chen JS. Laparoscopic versus open major liver resection for hepatocellular carcinoma: a single-center experience. J Hepato Biliary Pancreat Sci 2011; 5: 231-235 [PMID: 21298075 DOI: 10.4149/jhbps.2010-0042]

27 Wang ZY, Chen QL, Sun LL, He SP, Luo XF, Huang LS, Huang JH, Xiong CM, Zhong C. Laparoscopic versus open major liver resection for hepatocellular carcinoma: systematic review and meta-analysis of comparative cohort studies. BMC Cancer 2019; 19: 1047 [PMID: 31694596 DOI: 10.1186/s12885-019-6240-x]

26 Cheung TT, Poon RT, Yuen WK, Chok KS, Jenkins CR, Chan SC, Fan ST, Lo CM. Long-term survival analysis of pure laparoscopic versus open hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a single-center experience. Ann Surg 2013; 257: 506-511 [PMID: 23299521 DOI: 10.1097/SLA.0b013e31827b947a]

25 Wang ZY, Chen QL, Sun LL, He SP, Luo XF, Huang LS, Huang JH, Xiong CM, Zhong C. Laparoscopic versus open major liver resection for hepatocellular carcinoma: systematic review and meta-analysis of comparative cohort studies. BMC Cancer 2019; 19: 1047 [PMID: 31694596 DOI: 10.1186/s12885-019-6240-x]

24 Jiang S, Wang Z, Ou M, Pang Q, Fan D, Cui P. Laparoscopic Versus Open Hepatectomy in Short- and Long-Term Outcomes of the Hepatocellular Carcinoma Patients with Cirrhosis: A Systematic Review and Meta-Analysis. J Laparoendosc Adv Surg Tech A 2019; 29: 643-654 [PMID: 30702362 DOI: 10.1089/lap.2018.0588]
