Using UHE Cosmic Rays to Probe the CBR and Test Standard Model Particle Physics

Frank J. Tipler and Daniel W. Piasecki
Department of Mathematics, Tulane University, New Orleans, LA 70118
(Dated: September 25, 2018)

Tipler has shown that if we assume that the particle physics Standard Model and DeWitt-Wheeler quantum gravity (equivalent to Feynman-Weinberg quantum gravity) are a Theory of Everything, then in the very early universe, the Cosmic Background Radiation (CBR) could not have coupled to right handed electrons and quarks. Tipler further showed that if this property of CBR has continued, the Sunyaev-Zel’dovich (SZ) effect would be observed to be too low by a factor of two. WMAP and PLANCK observed this. Tipler showed that this CBR property would also mean the Ultra High Energy Cosmic Rays (UHECR) would propagate a factor of ten further than standard theory predicts, since most of the cross section for pion production when a UHECR hits a CBR photon is due to a quark spin flip, and such a flip cannot occur if a CBR particle cannot couple to right-handed quarks. We show that taking this additional propagation distance into account allows us to identify the sources of 86% of the UHECR seen by the Pierre Auger Collaboration. We can also identify the sources of 9 of the 11 UHECR seen by the AGASA observatory, and the source of the 320 EeV UHECR seen by the Fly’s Eye instrument. We propose observations to test the theory underlying the UHECR identifications, beginning with measuring the redshifts of five galaxies whose apparent visual magnitude we estimate to be about 15, and whose positions we give to within one arcsecond. The particle physics Standard Model identifies the Dark Energy and Dark Matter.

Key words: Ultrahigh Energy Cosmic Rays (UHECR), Cosmic Background Radiation (CBR), AGN, Seyfert Galaxy, AGASA, Auger, Fly’s Eye, Gauge Fields, Higgs Boson, Very Early Universe, Dark Matter, Dark Energy

PACS numbers: 98.70.Sa, 98.70.Vc, 98.80.Bp

I. INTRODUCTION

Astrophysicists should analyze experimental data assuming the validity of the extensively tested laws of physics. The Standard Model of particle physics is one such law; the Standard Model has been confirmed experimentally over the past 50 years (The Standard Model’s most recent triumph has been explaining the muon g-factor; see [19]). According to the Standard Model, the electromagnetic field is not fundamental, but is instead composed of three more fundamental fields, an SU(2) gauge field, a U(1) gauge field, and a Higgs scalar field. Tipler has shown [30] that quantum field theory does not permit U(1) radiation (like the electromagnetic field) to exist in the very early universe. Thus, initially, the CBR (Cosmic Background Radiation) must have been entirely SU(2) radiation [30]. That is, initially, the CBR could only couple to left-handed fermions; this is the meaning of the subscript L. If this property of the initial CMB has persisted to the present day, then the CBR would consist mainly of pseudo-photons, just like photons, but unable to couple to fermions of right-handed chirality.

This would mean that a CBR particle propagating through clusters of galaxies would interact with only half of the free electrons in the gas between the galaxies, so in 2005, Tipler predicted ([30], pp. 945–950) that the SZ effect would be observed to be too low by a factor of two. WMAP observed that the SZ effect was indeed too low ([15], [5]), and PLANCK observed that it was too low by the predicted factor of two [21].

A CBR composed mainly of pseudo-photons would mean that UHECR could propagate a factor of ten further through the CBR, since 90% of the cross-section for pion production in the collision between a UHE proton and a CBR photon is due to a quark spin flip, and a pseudo-photon cannot generate a quark spin flip. The GZK effect would still exist — the pion production cross-section is still non-zero — and it would still make its appearance at the energy predicted by Greisen [9] and by Zatsepin and Kuz’min [34]. However, the GZK effect would not be as strong, and this would explain why several UHECR observer groups initially claimed (e.g., [25]) the effect was absent. It would also explain why UHECR with energies above the GZK cut-off have been seen by several groups. UHECR would be able to propagate through the CBR composed mainly of pseudo-photons from a distance as great as $z = 0.1$. We shall use this fact to show that 86% of the UHECR observed by the Pierre Auger Observatory can also be associated with Active Galactic Nuclei (AGN). Standard theory can identity AGN sources for only 40% of the UHECR observed by the Pierre Auger Observatory ([11], [4]). (Actually, standard CBR theory yields the identification of only 20% if a 3° window is used, the window size we propose.)

1 The PLANCK observers have since attempted to walk back their 2013 claim that the SZ effect was too low by a factor of two, but we think they got it right the first time.
predict that within 3° of the arrival direction of the remaining unidentified UHECR, there will be found a previously unknown AGN. We in fact propose sources for an additional 6% of the remaining unidentified UHECR, and show how these proposed sources can be confirmed by measuring the redshifts of galaxies whose positions we give to within one second of arc. If these redshifts are all observed to be less than $z = 0.1$, then we will have identified sources for 92% of the Auger UHECR.

ΛCDM cosmology is often called “Standard Model Cosmology,” because this simple model is consistent with all observations. Tipler showed \[30\] that Λ and Cold Dark Matter can naturally be explained by Standard Model particle physics. When combined with standard quantum gravity (i.e, DeWitt-Wheeler quantum gravity, which is equivalent to Feynman-Weinberg quantum gravity if the appropriate boundary conditions are imposed), the particle physics Standard Model can explain (1) why the universe is observed to be classical rather than quantum, (2) why the universe is spatially flat, (3) why the universe is homogeneous and isotropic, (4) why the universe has more matter than antimatter, (5) what the Dark Matter is, and (6) what the Dark Energy is.

The basic ideas of this paper will be presented in the next four pages. The data will be presented in two sets of Tables, which will appear as appendices after the bibliography.

II. SUMMARY OF STANDARD MODEL COSMOLOGY

Forty years of ever more precise observations have shown that the CBR has a Planckian distribution. Most astrophysicists assume that a Planckian distribution means a field in thermal equilibrium, but this is false: a Planckian distribution need not arise from thermal process. A Planckian distribution can also be a reflection of spacetime symmetries, as it is in the case of Hawking radiation, and in Rindler space, a spacetime that a spacetime with zero Riemann curvature everywhere that is globally the frame of a uniformly accelerating observer. Tipler has has shown \[30\] that a quantized gauge field in a flat Friedmann universe necessarily has a Planckian distribution, with “pseudo-temperature” proportional to $1/R$, where R is the scale factor of the Friedmann universe. It is thus possible that the pure $SU(2)_L$ gauge field in the very early universe survived to the present (combined with the Higgs field), in which case the CBR would not electromagnetic thermal radiation, but instead would still be missing the $U(1)$ piece, which would mean that the CBR would not couple to right-handed quarks. The UHE cosmic ray observations over the past few decades, including the Auger observations, indicate that this is the case.

What has been holding up the advance of cosmology over the past thirty years is the assumption that observing a Planck spectrum must mean the radiation is in thermal equilibrium. It is certainly true that if a massless boson radiation field is in thermal equilibrium, then the spectrum must be Planck. Yet the converse need not be true. Assuming the converse is true is a logical error called “affirming the consequent.” We cosmologists must learn to think “outside the box” \[24\], pp. 292–297 of identifying an observed Planck distribution with thermal equilibrium.

One might think that rejecting thermal equilibrium would mean rejecting the great triumphs of physical cosmology, the correct prediction of the helium and deuterium abundances and the acoustic peak spectrum. Not true. These predictions follow not from thermal equilibrium, but from a consequence of thermal equilibrium, conservation of entropy. See for example any textbook of cosmology, e.g. \[32\], p. 150. But the central point is this: in Tipler’s theory, the CNR is PLANCKIAN, though at zero entropy, meaning that the Planck spectrum is imposed by the Friedman geometry rather than thermal equilibrium. This in Tipler’s theory, the particles created by the $SU(2)_L$ will be created by a non-thermal Planck distribution themselves, and this distribution will have the same pseudo-temperature as the $SU(2)_L$ field. Adiabatic expansion — the standard cosmological assumption that yields the correct observations — will preserve these Planckian distributions. Thus the only photon contribution to the CBR will be from the non-adiabatic process of re-ionization ending the Dark Ages. About 10% of the CBR would be photons today, and this is what is seen in SZ observations made by the PLANCK instrument.

Having a Planckian but non-thermal CBR in the very early universe allows the Standard Model to explain why there is more matter than antimatter in the universe. The Standard Model has four fundamental fields, three gauge fields $U(1)$, $SU(2)_L$, and $SU(3)$ and a complex doublet scalar field, called the Higgs field. The electromagnetic field is a combination of the first two gauge fields and the Higgs field, as is the weak force, while the $SU(3)$, the color force, is not coupled directly with the other three fields, and is responsible for the strong force. Thus, there are a total of five fundamental forces: gravity and the four forces of the Standard Model. A central theorem of quantum field theory, the Bekenstein Bound, requires isotropy and homogeneity at the Planck time, and also picks out the $SU(2)_L$ field as the only field that can exist at the Planck time. Furthermore, this $SU(2)_L$ field must be self-dual, so it will force tunneling between the vacua of the electroweak force, generating only particles, and not anti-particles. The Bekenstein Bound requires zero entropy and hence zero temperature at the Planck time. This forces the Sakarov conditions to be obeyed in the early universe, even with the Planck distribution: the Planck spectrum comes from the Friedmann geometry, and not thermal equilibrium.

This quantum field mechanism of forcing the universe to be homogeneous eliminates primordial gravitational waves, which yields the prediction that B-modes in the CBR spectrum from this source will be absent. This
mechanism also shows why there must be super horizon over and under densities: the Bekenstein Bound is a consistent condition that necessarily applies globally.

Eddington [7], then Lemaître [14] in 1931, and finally Feynman [3] in 1963, argued that the only natural initial condition for the universe was one of zero entropy and zero temperature. A pure self dual condition for the universe was one of zero entropy and zero temperature field in the very early universe gives a new mechanism for Standard Model baryogenesis, and Tipler has shown [30] that this mechanism naturally generates the observed photon to baryon ratio. Furthermore, the created baryons and leptons (recall that $B - L$, baryon number minus lepton number, is conserved in SM baryogenesis) themselves break the homogeneity that the Bekenstein Bound requires at the Planck time, and in a space-time that is very close to flat, generates the observed flat perturbation spectrum at the observed magnitude.

Feynman and Weinberg showed many years ago that there is a unique renormalizable quantum theory of gravity for a spin two field, and we know gravity must be spin two from the Hulse-Taylor pulsar quadrupole energy loss rate. Tipler has shown [30] that with the appropriate cosmological boundary conditions, the Feynman-Weinberg quantum theory of gravity is not only renormalizable, but term by term finite, and that the same mechanism that makes the theory term by term finite also forces the power series in the coupling constants to converge. Applying this theory of quantum gravity to the pre-Planckian early universe implies that the wave function of the universe must have been a delta function at the initial singularity. To see this, note that with appropriate boundary conditions, Feynman-Weinberg quantum gravity is equivalent to DeWitt-Wheeler quantum gravity [12]. If the early universe is radiation dominated, then there is a choice of the matter conjugate variables which will order the three geometries by conformal time, and the DeWitt-Wheeler equation is then mathematically equivalent to the non-relativistic Schrödinger equation for the simple harmonic oscillator. Requiring the initial wave function to be a delta function is equivalent to requiring that the Many-Worlds of quantum cosmology are classical from the initial singularity. This solves the problem of “why is the universe observed to be classical?”

The initial delta function wave function necessarily explodes outward, forcing the universe we find ourselves in to be flat, and the mechanism causing spatial flatness would thus be wave packet spreading, a process seen many times in elementary physics classes. The universe’s spatial flatness is due to a kinematical quantum mechanical mechanism, and not a finely tuned dynamical mechanism. Tipler [24, p. 265, 27, p. 212] proposed this quantum kinematical solution to the Flatness Problem in 1986, thirty-two years ago. A kinematical mechanism is necessarily more stable than any dynamical mechanism. An inflation field is not necessary to explain any cosmological observation. Furthermore, this delta function mechanism of generating spatial flatness means that the perturbation spectrum will be scale invariant, because, as Harrison and Zel’dovich showed decades ago, only a scale invariant spectrum is allowed in a spatially flat universe. Zero entropy means in addition that these scale invariant perturbations will be adiabatic.

The perturbation spectrum will actually not be perfectly scale invariant, because there are two ways of measuring scale, namely gravitational (the delta function forces this way to yield exact flatness) and Standard Model particle physics (this way gives a three-sphere closed universe which is quite large but not infinite). The combination of these two ways imply that the perturbation spectrum will be merely “nearly” flat, so the scalar spectral index will be a bit less than one.

Thus the Standard Model of particle physics, when combined with standard quantum mechanics explains the observed isotropy, homogeneity, and spatial flatness of the universe, as well as the observed photon to baryon ratio, the observed excess of matter over anti-matter, and the Harrison-Zel’dovich perturbation spectrum. And finally, it explains why we see the CZM cut-off, and yet UHECRs with energies beyond the CZM cut-off.

Standard Model physics is not required to solve the Hubble Constant Problem, which is the 3.8σ difference [22] between the Hubble constant measured by the distance ladder method — $H_0 = 73.24 \pm 1.7$ km/s/Mpc [22] — and the Hubble constant measured by PLANCK — $H_0 = 66.93 \pm 0.62$ km/s/Mpc. We note that the inverse ladder method agrees with PLANCK [1], and this strongly suggests a systematic error in the distance ladder method. Tipler [20] pointed out two decades ago that the distance ladder must be extended out to $z = 3$ in order to be sure that one is in the Hubble flow. As is well-known, H_0 will be biased toward higher values if we happen to live in an underdense region.

Using Standard Model physics to solve all of the problems of cosmology will mean accepting that the universe began in a singularity. This many physicists are reluctant to do, because they believe that the existence of a singularity in a theory means the theory is wrong. Nonsense! Liouville’s Theorem (bounded entire functions are constants) tells us that non-constant analytic functions necessarily have a singularity somewhere, and Liouville’s Theorem is a consequence of the Fundamental Theorem of Calculus. Do we therefore reject calculus? Of course not. Instead, we make use of the singularities of the functions of complex analysis to solve problems. We propose that physicists should do the same for the cosmological singularity. Experience tells us that there are no singularities in the laboratory. Experience tells us nothing about the existence of singularities on the edge of space-time, the location of the cosmological singularity. Tipler has recently shown [22] that the reason nature is quantized is to ensure that singularities do not appear in the laboratory. Tipler has also shown [28] that quantization cannot eliminate singularities if gravity is curvature.

Conversely, accepting that the universe began in a singularity requires the use of quantum gravity theory in
the ultra-high energy energy regime near the singularity, where energies were far beyond the Planck energy. As mentioned above, applying standard quantum gravity theory there yields the solution to two outstanding cosmological problems: (1) why does classical physics hold at the macroscopic level, and (2) why is the universe spatially flat?

If the CBR is indeed composed of pseudo-photons and not photons, then the Standard Model of particle physics also tells us what the Dark Matter and Dark Energy are. Tipler has pointed out that if the CBR were not thermalized in the early universe, then the Higgs field oscillations around the Higgs vacuum would be damped only by the expansion of the universe, and this oscillation energy has been known for decades (\[30\], p.942) to have an effective energy density that falls off as R^{-3}, which is to say, it would be the Dark Matter. The Higgs vacuum energy minimum acts as an enormous negative cosmological constant, and this necessitates a positive cosmological constant to nearly cancel it out. The sum of this positive cosmological constant and the Higgs vacuum energy is the Dark Energy. Thus Standard Model particle physics and standard quantum gravity provide an explanation for all astronomical observations. If the CBR is composed of a pseudo-photon field, it would represent a detectable fifth force, a fifth force whose existence arises from the more basic four forces of the Standard Model.

III. ANALYSIS OF PIERRE AUGER AND AGASA UHECR DATA

In the complete Pierre Auger data, there were 231 UHECR. We used the online VizieR data base to scan the locations of these events in the 2006 (12th edition) of the Veron + list of Quasars and Active Galactic Nuclei, looking for quasars and AGN with a redshift up to $z = 0.1$, as allowed by the possibility that the CMR would not couple to right-handed protons, and hence could propagate to Earth from this distance. Following the original Pierre Auger procedure, we looked for acceptable sources within 3° of the 231 UHECR directions. We are able to identify a source for 199, or 86%. Conventional theory, with the window expanded to 5°, allows identification of only 40% (with the 3° window, we have only 40, or 20%, with a redshift less than 0.01). In addition, there is also a source (MCG +08.11.011) located 3° from the observed direction for the 320 EeV Fly’s Eye event, a source noticed in 1994 by Elbert and Sommers \[2\], who rejected this source since its redshift is 0.020, a factor of 2 too high to be the source by conventional GZK theory, but well within the limit allowed by the Standard Model theory. Of the identified UHECR sources, 107 of the 199, or 54%, are Seyfert galaxies. Of the Seyferts, 45, or 42%, are Seyfert type 1, and thus 62, or 58%, are Seyfert type 2. Most of the Seyferts, in other words, have broad doppler emission lines, which is what one would expect if the UHECR were emitted perpendicular to a supermas-
There are two of the 5 in the constellation Sagittarius. One is Table VI entry day 191 of year 2009, located at RA 19h 36m 08s and dec —20\textdegree 43\textprimeminutes 03\textprimisecond. The other is Table VI entry day 224 of year 2010, located at RA 18h 53m 05s and dec —27\textdegree 09\textprimeminutes 34\textprimisecond, located in the handle of the Teapot, less than 1\textdegree southwest from α Sagittarii (16\textdegree from Sgr A*), so our galaxy’s black hole is not the source of this UHECR. Finally there is Table VI entry day 235 of year 2007, located at RA 07h 00m 25s and dec —22\textdegree 05\textprimeminutes 29\textprimisecond, in the constellation Canis Major, about 6\textdegree southeast of Sirius.

V. DISCUSSION

When the GZK effect was first discovered, one UHECR had been seen with an energy above 100 EeV, and Greisen himself wrote [9] in his paper on the GZK effect that it was surprising such a cosmic ray could exist at all. Seeing these few events beyond the GZK cut-off is evidence that the CMBR indeed cannot couple to right-handed protons. Such a CMBR would imply the GZK cut-off — which has now been seen — but would also allow the existence of truly ultra high energy cosmic rays — which have also been seen.

If the CBR is an SU(2)_L gauge field combined with the Higgs vacuum, and not a complete electromagnetic field, then it cannot couple to right-handed electrons either. Thus we would expect CBR pseudo-photons to show substantially less Sunyaev-Zel’dovich effect that conventional theory would predict. This has now been seen, first by WMAP [12],[13], and later by PLANCK [21]. Since these two completely different types of observations both indicate that the CBR may be composed of pseudo-photons rather than photons, we suggest that the particle physics Standard Model coupled to DeWitt-Wheeler quantum gravity should be taken seriously as a Theory of Everything.

As pointed out above, accepting the CBR as composed mainly of pseudo-photons rather than photons solve the two outstanding mysteries of cosmology, namely (1) what is the Dark Matter, and (2) what is the Dark Energy? Both of these energies arise naturally from the particle physics Standard Model.

In addition, pseudo-photons would demonstrate that the Standard Model baryogenesis mechanism generated normal matter, and shows exactly why there is more matter than anti-matter. DeWitt-Wheeler quantum gravity forces the universe to be flat without having to involve any physics, like an inflaton field, not seen in the laboratory. Standard quantum field theory as coded in the Bekenstein Bound, forces the universe to be homogeneous and isotropic, once again without having to appeal to physics not seen in the laboratory.

We think it is time to take standard physics, the physics confirmed in the laboratory in thousands of experiments, seriously.

VI. ACKNOWLEDGMENTS

We thank P. Sommers and Alan A. Watson for some very helpful comments on the Pierre Auger experiment, and for directing us to the published data on the arXiv.

[1] Éric Aubourg et al 2015 “Cosmological Implications of Baryon Acoustic Oscillation Measurements,” Phys. Rev. D 92 123516.
[2] Abraham, J. et al (Pierre Auger Collaboration) 2007a Science 318 938.
[3] Abraham, J. et al (Pierre Auger Collaboration) 2007b, arXiv:0712.2843, (17 December 2007).
[4] Abraham, J. et al (Pierre Auger Collaboration) 2010 “Measurement of the Depth of Maximum of Extensive Air Showers above 10^{19} eV Phys. Rev. Lett. 104 091101.
[5] Diego J. M. and Bruce Partridge 2010 “The Sunyaev–Zeldovich Effect in Wilkinson Microwave Anisotropy Probe Data” Mon. Not. R. Astron. Soc. 402 1179–1194.
[6] Elbert, J. W. and Sommers 1994 arXiv:astro-ph/9410069, v1 (20 October 1994).
[7] Eddington, Arthur S. 1931, “The End of the World: From the Standpoint of Mathematical Physics,” Nature 127 447–453.
[8] Feynman, Richard P. 1963 The Feynman Lectures on Physics, Volume I (New York: Addison-Wesley), Section 46-5.
[9] Greisen K. 1966 “End to the Cosmic Ray Spectrum?” Phys. Rev. Lett. 16 748.
[10] Grosser, Morton 1962 The Discovery of Neptune Harvard University Press, Cambridge (MA).
[11] Hand, Eric (2010) “Cosmic-ray theory unravels,” Nature 463 1011.
[12] Hartle, James and Stephen W. Hawking 1983 “Wave Function of the Universe” Phys. Rev. D28 2960.
[13] High Resolution Flys Eye Collaboration (2008) “First Observation of the Greisen-Zatsepin-Kuzmin Suppression,” Phys. Rev. Lett. 100 101101.
[14] Lemaître, Georges, 1931 “The Beginning of the World from the Point of View of Quantum Theory.” Nature 127 (#3210) 706.
[15] Lieu, Richard, Jonathan P.D. Mattiaz, and Shuang-Nan Zhang 2006 “The Sunyaev-Zel’dovich Effect in a Sample of 31 Clusters — a Comparison Between the X-ray Predicted and WMAP Observed CMB Temperature Decrement,” Astrophysical Journal 648 176–181. We are grateful to Gary Hinshaw for this reference.
[16] LeVerrier, Urbain Jean Joseph 1846 “Sur la planète qui produit les anomalies observées dans le mouvement d’Uranus — Détermination de sa masse, de son orbite et de sa position actuelle,” Comptes rendus 23 428–438, 657–662.
[17] LeVerrier, Urbain Jean Joseph 1910 “Letter to Johann Galle on Neptune,” Nature 85 (# 2145), 184-185.
[18] MILLIQUAS - Million Quasars Catalog, Version 5.2 (5 August 2017) https://heasarc.gsfc.nasa.gov/W3Browse/all/milliquas.html

[19] Morishima, Takahiro, Toshifumi Futamase, and Hirohiko M. Shimizu (2018) “Post-Newtonian Effects of Dirac Particle in Curved Spacetime - III: the Muon g-2 in the Earths Gravity” [arXiv:1801.10246v1 [hep-ph]] 30 January 2018.

[20] O’Sullivan, S. P., C. R. Purcell, C. S. Anderson, J. S. Farnes, X. H. Sun, and B. M. Gaensler 2017 “Broadband, Radio Spectro-polarimetric Study of 100 Radiative-mode and Jet-mode AGN,” [arXiv:1705.00102v1].

[21] Planck Collaboration 2013 “Planck 2013 Results. XX Cosmology from Sunyaev-Zeldovich Cluster Counts to appear in Astronomy & Astrophysics

[22] Riess, Adam G. et al 2018 Ap. J. 855 136.

[23] Riess, Adam G. et al 2018 “Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant,” [arXiv:1804.10655v2 [astro-ph.CO]]

[24] Root-Bernstein, Robert S. 1989 Discovering: Inventing Solving Problems at the Frontiers of Scientific Knowledge Harvard University Press, Cambridge (MA).

[25] Takeda, M., et al 2003, Astropart. Phys. 19 447.

[26] Tipler, Frank J. 1986a “Interpreting the Wave Function of the Universe,” Physics Reports 137 231–275.

[27] Tipler, Frank J. 1986b “The Many-Worlds Interpretation of Quantum Mechanics in Quantum Cosmology,” in Quantum Concepts of Space and Time, edited by R. Penrose and C.J. Isham (Oxford University Press, Oxford), pages 204–214.

[28] Tipler, Frank J. 1994 The Physics of Immortality, Doubleday, New York.

[29] Tipler, Frank J. 1999 “How Far Out Must We Go To Get Into the Hubble Flow? The Answer, We’ll See, Is z = 3,” Ap. J. 511, 546–549.

[30] Tipler, Frank J. 2005 “The Structure of the World from Pure Numbers” Rep. Prog Phys. 68 897–964.

[31] Tipler, Frank J., Jessica Graber, Matthew McGinley, Joshua Nichols-Barrer, and Christopher Staecker, 2007, “Closed Universes with Black Holes but No Event Horizons as a Solution to the Black Hole Information Problem” Mon. Not. Royal Astron. Soc. 379, 629–640.

[32] Tipler, Frank J. 2014 “Quantum Nonlocality Does Not Exist” Proceedings of the National Academy of Sciences 111 (#31) 11281–11286.

[33] Weinberg, Steven 2008 Cosmology Oxford University Press, Oxford.

[34] Zatsepin, G.T., Kuz’mín 1966 “Upper Limit of the Spectrum of Cosmic Rays” Sov. Phys. JETP Lett. 4 78–79.

[35] Zaw, Ingyin, Glennys R. Farrar, and Jenny E. Greene (2017, December) “Galaxies Correlating with Ultra High Energy Cosmic Rays.” Astrophysical Journal, to appear.
Appendix A: Tables of Unidentified UHECR from the Pierre Auger Data

We first give tables that list the UHECR for which we have been unable to identify AGN sources.

year	day	E	galactic longitude	galactic latitude
2004	239	54.0	−59.1	−31.8
2005	233	61.9	29.7	+3.4
2006	126	82.0	57.6	−4.7
2007	205	61.9	−55.9	−0.6
2007	235	60.8	−125.2	−7.7
2008	013	64.2	−1.9	+13.7
2008	036	65.3	−59.5	−0.7
2008	268	118.3	36.5	−3.6
2008	322	62.2	−67.1	−54.8
2008	337	65.8	16.7	+0.1

TABLE II: List of unidentified Pierre Auger UHECR for the years 2009 through 2010. The first column gives the year of observation of the UHECR. The second column gives the day of observation. The third gives the energy of the UHECR in EeV. The fourth column gives the unidentified UHECR’s galactic latitude. The fifth column gives the UHECR’s galactic longitude. Notice that of the 15 unidentified UHECR, only 4 are within 7° of the galactic equator.

year	day	E	galactic longitude	galactic latitude
2009	030	66.2	26.8	−25.8
2009	035	57.7	−54.2	−23.1
2009	191	59.5	19.1	−19.2
2009	282	60.8	168.6	−38.7
2009	288	58.6	+41.6	8.4
2010	052	52.1	−17.0	−3.3
2010	148	74.8	−142.2	−17.5
2010	196	52.3	−32.6	−32.8
2010	224	65.2	8.1	−13.9
2010	226	53.8	71.2	−25.0
2010	277	73.7	−55.3	−76.5
2010	320	54.3	−86.2	−34.1
2010	320	68.7	−111.9	0.4
2010	347	54.9	−36.7	0.0
2010	348	54.4	−61.9	−6.2
TABLE III: List of unidentified Pierre Auger UHECR for the years 2012 and 2013. The first column gives the year of observation of the UHECR. The second column gives the day of observation. The third gives the energy of the UHECR in EeV. The fourth column gives the unidentified UHECR’s galactic longitude. The fifth column gives the UHECR’s galactic latitude. Notice that of the 7 unidentified UHECR, 3 are within 3° of the galactic equator. It is hard to measure the redshift of an AGN near the galactic equator because of obscuration.

year	day	E	galactic longitude	galactic latitude
2012	052	66.1	−75.3	−55.2
2012	154	58.7	−64.3	−39.9
2012	183	61.8	−6.2	2.7
2013	036	73.6	−34.8	−19.7
2013	222	61.5	−41.3	−12.1
2013	332	65.2	−30.5	−1.0
2013	364	53.2	−54.5	−1.2

TABLE IV: List of all unidentified Pierre Auger UHECR with high galactic latitude (galactic latitudes which are NOT within 7° of the galactic equator). There are 19 such unidentified UHECR. The first column gives the year of observation of the UHECR. The second column gives the day of observation. The third gives the energy of the UHECR in EeV. The fourth column gives the unidentified UHECR’s galactic longitude. The fifth column gives the UHECR’s galactic latitude.

year	day	E	galactic longitude	galactic latitude
2004	239	54.0	−59.1	−31.8
2007	235	60.8	−125.2	−7.7
2008	013	64.2	−1.9	+13.7
2008	322	62.2	−67.1	−54.8
2009	030	66.2	26.8	−25.8
2009	035	57.7	−54.2	−23.1
2009	191	59.5	19.1	−19.2
2009	282	60.8	168.6	−38.7
2009	288	58.6	+41.6	8.4
2010	148	74.8	−142.2	−17.5
2010	196	52.3	−32.6	−32.8
2010	224	65.2	8.1	−13.9
2010	226	53.8	71.2	−25.0
2010	277	73.7	−55.3	−76.5
2010	320	54.3	−86.2	−34.1
2012	052	66.1	−75.3	−55.2
2012	154	58.7	−64.3	−39.9
2013	036	73.6	−34.8	−19.7
2013	222	61.5	−41.3	−12.1

TABLE V: List of all unidentified Pierre Auger UHECR with LOW galactic latitude (galactic latitudes which are within 7° of the galactic equator). There are 13 such unidentified UHECR. The first column gives the year of observation of the UHECR. The second column gives the day of observation. The third column gives the unidentified UHECR galactic latitude. The fourth column gives the UHECR’s right ascension (J2000). The fifth column gives the UHECR’s declination (J2000). We predict an ADN with redshift less than 0.1 will be found within 3° of the positions in the Table.

year	day	GLAT	right ascension	declination
2005	233	+3.4	278.4	−1.3
2006	126	−4.7	299.0	19.4
2007	205	−0.6	195.5	−63.4
2008	036	−0.7	187.5	−63.5
2008	337	+0.1	275.2	−14.4
2009	268	−3.6	287.7	1.5
2010	052	−3.3	258.1	−44.9
2010	320	+0.4	121.1	−30.6
2010	347	+0.0	231.9	−56.6
2010	348	−6.2	179.7	−61.9
2012	183	+2.7	259.8	−32.7
2013	332	−1.0	241.6	−53.5
2013	364	−1.2	198.8	−63.9
TABLE VI: List of all unidentified Pierre Auger UHECR with high galactic latitude AND which have a WISE galaxy within 3° all which have a listed redshift of 0.100. This means, as we pointed out in the text, that the redshift has been measured photometrically only to within 0.1. The first column gives the year of observation of the UHECR. The second column gives the day of observation. The third gives the WISEA number. The fourth gives our estimate of the visual apparent magnitude of the WISEA galaxy. Of the 19 UHECR with high galactic latitude, 14 have a possible WISEA source, leaving only 5 high galactic latitude UHECR with no candidate sources. For those unidentified UHECR with no possible WISE source the galactic latitudes are given instead. The J2000 right ascensions and declinations of the WISE objects are given in their names. For example, the first object in the list, WISEA J070024.74-220528.8, has RA 07^h, 00^m, 24.74^s and DEC −22°, 05′, 28.8″. According to the WISE website, these locations are not completely accurate, but nevertheless using the designation coordinates will result in an (unsigned) error of at most 0.0996″ in declination, and 0.1488″ in right ascension. Accuracy to within a faction of a second should be sufficient to locate the AGN. The last WISEA in the list is our proposed source for the last AGASA UHECR.

year	day	WISEA number	mV
2004	239	WISEA J070024.74-220528.8	15^{HJK}(20^{IR})
2007	235	+31.8	
2008	013	WISEA J013930.20-624702.4	12^{W}(15^{IR})
2009	030	WISEA J201607.90-170044.5	15^{HJK}(20^{IR})
2009	035	WISEA J162218.92-843110.7	12^{W}(17^{IR})
2009	191	WISEA J193608.18-204302.8	12^{W}(17^{IR})
2009	282	−38.7	
2009	288	+8.4	
2010	148	−17.5	
2010	196	WISEA J201219.71-693603.7	15^{HJK}(20^{IR})
2010	224	WISEA J185304.60-270934.0	16^{HJK}(21^{IR})
2010	226	SDSS J213738.10+182926.0	22
2010	277	WISEA J003708.21-414957.1	15^{HJK}(20^{IR})
2010	320	WISEA J053008.59-643617.6	16^{HJK}(21^{IR})
2012	052	WISEA J020533.87-614820.7	13^{W}(18^{IR})
2012	154	WISEA J024849.75-763942.5	15^{HJK}(20^{IR})
2013	036	WISEA J174226.14-675411.0	17^{HJK}(22^{IR})
2013	222	WISEA J155611.19-690351.7	15^{HJK}(20^{IR})
2002	04 9	WISEA J054606.42+295145.6	15^{HJK}(20^{IR})
Appendix B: Tables of Identified UHECR from the Pierre Auger Data

We now give lists for all the 199 UNECR for which we have been able to identify AGN as sources.

TABLE VII: List of Pierre Auger UHECR for 2004. The first column gives the day of observation of the UHECR. The second gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR. A question mark means we have not been able to identify a source within 3° of the UHECR observed direction.

day	E	source	object type	redshift	distance
125	62.2	J17418-1212	microquasar	0.037	1.85°
142	84.7	J1304 – 3406	jet mode AGN	0.051	2.96°
177	54.6	ESO 113-G10	Seyfert type 1.8	0.026	2.65°
239	54.0	?	?	?	?
282	58.6	Centaurus B	Seyfert type 1	0.0129	0.796°
339	78.2	ESO139 – G12	Seyfert type 2	0.017	2.21°
343	58.2	IC4518A	Seyfert type 2	0.016	0.909°

TABLE VIII: List of Pierre Auger UHECR for 2005. The first column gives the day of observation of the UHECR. The second gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR. A question mark means we have not been able to identify a source within 3° of the UHECR observed direction.

day	E	source	object type	redshift	distance
050	60.2	KUG 0202-122	radio AGN	0.072	2.88°
054	71.2	Tololo0109.383	Seyfert 1	0.0112	0.371°
063	71.9	J22044-0056	AGN	0.063	0.303°
081	51.1	NGC 4945	Seyfert 2	0.002	2.02°
186	108.2	NGC1194	AGN	0.013	0.673°
233	61.9	?	?	?	?
295	54.9	ESO 344-G16	Seyfert 1.5	0.039	0.852°
306	74.9	J07282339	AGN	0.0817	2.44°
347	77.5	NGC 452	AGN	0.017	1.92°
TABLE IX: List of Pierre Auger UHECR for 2006. The first column gives the day of observation of the UHECR. The second gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR. We have used the IAU truncation abbreviation convention for long object names. A question mark means we have not been able to identify a source within 3° of the UHECR observed direction.

day	E	source	object type	redshift	distance
005	78.2	NPM1G-03.0065	AGN	0.054	1.81°
035	72.2	LQAC 053-007-015	quasar	0.097	0.845°
055	52.8	ESO139-G12	Seyfert 2	0.017	1.71°
064	64.8	IC 4709	Seyfert 2	0.0169	1.008°
081	69.5	WKK 2031	Seyfert 2	0.031	1.375°
100	54.7	NPM1G-15.0089	linear AGN	0.0514	2.20°
118	56.3	NGC 7069	linear AGN	0.031	0.504°
126	82.0	?	?	?	?
142	64.3	ESO 209-G12	Seyfert 1	0.040	2.78°
160	60.7	IRAS 03278-4329	Seyfert 2	0.058	0.217°
185	89.0	NGC 7674	Seyfert 2	0.029	2.1°
263	53.0	PGC 1439494	Seyfert 1	0.024	1.38°
284	54.0	1Jy 0915-118	linear AGN	0.0547	2.92°
296	67.7	MKN 607	Seyfert 2	0.0092	2.26°
299	59.5	NGC 5128	Seyfert 2	0.001	2.32°
350	60.0	NGC 6890	Seyfert 2	0.008	1.64°
TABLE X: List of Pierre Auger UHECR for 2007. The first column gives the day of observation of the UHECR. The second gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR. We have used the IAU truncation abbreviation convention for long object names. A question mark means we have not been able to identify a source within 3° of the UHECR observed direction.

day	E	source	object type	redshift	distance
009	53.8	UGC 11763	Seyfert 1	0.061	2.89°
013	127.1	2MASX J1258	AGN	0.0473	1.71°
014	52.2	Q 1241+1624	Seyfert 1-2	0.023	1.99°
069	60.0	NGC 5128	Seyfert 2	0.001	0.89°
084	60.8	NGC 2907	linear AGN	0.007	1.42°
106	70.3	MKN 975	Seyfert 1	0.049	1.00°
145	68.4	NGC 1204	Seyfert 2	0.015	1.44°
161	53.6	MARK 703	AGN	0.013	2.67°
166	54.9	PGC 3084749	Seyfert 1	0.038	2.82°
186	61.5	IGR J14515-5542	Seyfert 2	0.018	2.69°
193	79.7	NGC 7135	AGN	0.007	2.14°
203	57.0	PGC 3096554	Seyfert 1	0.03	2.18°
205	61.9	?	?	?	?°
221	67.8	MKN 1376	Seyfert 2	0.0061	0.589°
227	60.7	MCG -06.28.025	linear AGN	0.009	1.58°
234	68.1	ESO 505-IG031	Seyfert 2	0.04	1.92°
235	60.8	?	?	?	?°
295	65.9	LQAC-328-01...	AGN	0.034	2.86°
295	55.8	NGC 918	AGN	0.005	2.86°
314	52.5	2MASX J0353...	Seyfert 2	0.018	1.42°
339	54.0	NGC 6240	Seyfert 2	0.024	2.96°
343	82.4	SDSS J052...	AGN	0.100	1.16°
345	72.7	IRAS 205...	Seyfert 2	0.0239	1.10°
TABLE XI: List of Pierre Auger UHECR for 2008. The first column gives the day of observation of the UHECR. The second gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR. (NELG means “Narrow Emission Line Galaxy). We have used the IAU truncation abbreviation convention for long object names. A question mark means we have not been able to identify a source within 3° of the UHECR observed direction.

day	E (EeV)	source	object type	redshift	distance
010	80.2	NGC 6500	linear AGN	0.01	2.05°
013	64.2	?	?	?	?
018	111.8	NPM1G-19.0685	Seyfert 2	0.031	2.05°
036	65.3	?	?	?	?
048	60.4	2QZ J01...1-27...	NELG	0.053	2.37°
049	56.0	NGC 1566	Seyfert 1	0.0043	2.26°
051	53.3	IRAS 13120-5453	Seyfert 2	0.031	1.85°
052	56.2	MCG -02-15-004	AGN	0.029	2.60°
072	52.4	IRAS 12031-3216	Seyfert 2	0.039	2.62°
087	73.1	NGC 5643	Seyfert 2	0.0033	2.23°
118	62.9	2MASXJ0716...	QSO	0.052	1.70°
142	56.7	MKN 1347	Seyfert 1	0.050	2.06°
184	55.7	PGC 1425207	Seyfert 2	0.042	2.31°
192	55.1	IC 4995	Seyfert 2	0.016	2.63°
205	56.7	MCG +02.60.017	Seyfert 2	0.026	1.98°
250	52.0	LQAC 068+002	AGN	0.016	1.59°
264	89.5	ESO 208-G34	AGN	0.025	1.08°
266	61.2	6dFGS g22345...	AGN	0.056	2.45°
268	118.3	?	?	?	?
282	58.1	MCG -03.34.064	Seyfert 2	0.017	1.63°
296	64.7	ESO 541-G001	Seyfert 2	0.021	2.65°
322	62.2	?	?	?	?
328	63.1	MCG 1-22-013	AGN	0.047	2.87°
329	66.9	MCG -01.05.047	Seyfert 2	0.017	0.98°
331	52.6	IRAS 20033-2803	AGN	0.047	2.98°
337	65.8	?	?	?	?
355	71.1	IGR J13168-7157	Seyfert 1	0.07	2.40°
362	74.0	NGC 5357	linear AGN	0.016	1.11°
TABLE XII: List of Pierre Auger UHECR for 2009. The first column gives the day of observation of the UHECR. The second gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR. We have used the IAU truncation abbreviation convention for long object names. A question mark means we have not been able to identify a source within 3° of the UHECR observed direction.

day	E	source	object type	redshift	distance
007	61.0	PGC-3082731	AGN	0.058	1.62°
030	66.2	?	?	?	?
032	70.3	MCG-03.01.002	AGN	0.036	1.42°
035	57.7	?	?	?	?
039	64.1	NGC 2989	AGN	0.013	0.81°
047	52.9	NPM1G-18.0222	AGN	0.042	2.47°
051	66.7	NGC 5253	AGN	0.001	1.91°
073	72.5	MCG-06.28.025	linear AGN	0.009	0.236°
078	74.4	LQAC-125-057	galaxy	0.060	2.74°
078	59.0	NGC 613	AGN	0.005	2.78°
080	65.8	6dFGS g1635550 . . . AGN*	0.0004	2.03°	
080	63.8	IRAS 11215-2806	Seyfert 2	0.014	1.35°
083	56.2	PGC 1399638	Seyfert 1	0.047	2.89°
140	55.1	TEX 2149-084	Seyfert 2	0.035	2.73°
160	52.8	LQAC-045-023	Seyfert 1	0.035	2.41°
162	70.5	IC 1813	AGN	0.015	1.45°
163	71.9	NGC 625	AGN	0.001	1.26°
172	65.8	CGMW 4-1205	Seyfert 2	0.065	1.46°
191	59.5	?	?	?	?
197	52.2	SDSS J084518 . . . Seyfert 1	0.061	2.06°	
202	63.6	IC 1524	Seyfert 1	0.019	2.10°
212	55.3	ESO 18-G09	Seyfert 2	0.017	1.04°
219	53.2	NGC 788	Seyfert 2	0.014	2.04°
219	58.3	IRAS 20253-8152	Seyfert 2	0.034	0.66°
237	70.0	UGC 11805SW	two galaxies	0.018	0.53°
250	52.3	UGC 9035	linear AGN	0.027	0.69°
262	58.7	RX J0319.8-2627	Seyfert 1	0.076	0.58°
274	82.3	IC 4870	AGN	0.003	2.95°
281	75.3	IRAS 17080+1347	AGN*	0.031	0.89°
282	60.8	?	?	?	?
288	58.6	?	?	?	?
304	55.6	IRAS F11500-0211	Seyfert 1	0.0035	2.57°
335	52.5	H 1118-429	Seyfert 1	0.0567	0.96°
TABLE XIII: List of Pierre Auger UHECR for 2010. The first column gives the day of observation of the UHECR. The second gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR. We have used the IAU truncation abbreviation convention for long object names. A question mark means we have not been able to identify a source within 3° of the UHECR observed direction.

day	E	source	object type	redshift	distance
024	54.3	IGR J06415+3251	Seyfert 2	0.017	2.97°
045	61.5	HE 1136-2304	Seyfert	0.027	2.19°
050	64.5	IRAS 15091-2107	Seyfert 1	0.044	0.18°
052	66.9	?	?	?	?
072	72.9	PGC 1365707	Seyfert 2	0.019	1.88°
121	54.7	6dFGS g08093...	AGN*	0.0004	2.29°
148	74.8	?	?	?	?
182	82.0	NGC 5084	linear AGN	0.005	2.75°
193	58.4	SDSS J1001...	AGN	0.043	2.17°
194	53.8	PGC 1365707	Seyfert 2	0.019	2.77°
196	52.3	?	?	?	?
204	53.2	Q 1209-1105	AGN	0.016	2.46°
205	53.5	IRAS 20253-8152	Seyfert 2	0.034	1.08°
223	56.1	PGC 259433	AGN	0.090	2.60°
224	65.2	?	?	?	?
226	75.6	?	?	?	?
235	60.3	Circinus Galaxy	Seyfert 2	0.0014	1.64°
238	69.6	B1514-24	QSO	0.049	2.95°
239	58.4	NPM1G-15.0552	AGN	0.080	1.60°
256	76.1	IRAS 08417-1351	Seyfert 1	0.028	1.69°
277	73.7	?	?	?	?
284	89.1	IRAS 14167-7236	Seyfert 1	0.026	2.25°
295	58.0	ESO112-6	AGN*	0.029	2.46°
310	53.1	PGC 1351981	Seyfert 1	0.047	2.74°
311	70.5	Carafe Nebula	Linear AGN	0.016	2.37°
319	55.0	IGR J07597-3842	Seyfert 1	0.040	1.69°
320	54.3	?	?	?	?
320	68.7	?	?	?	?
342	54.6	ESO 265- G 023	Seyfert 1	0.057	0.689°
347	54.9	?	?	?	?
348	54.4	?	?	?	?
364	68.0	NGC 3621	AGN	0.002	2.75°
TABLE XIV: List of Pierre Auger UHECR for 2011. The first column gives the day of observation of the UHECR. The second gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR. AGN* means that we cannot independently identify the object as an AGN, but we list the object as an AGN because it is in the VizieR data base of quasars and AGN. We have used the IAU truncation abbreviation convention for long object names.

day	E	source	object type	redshift	distance
019	64.4	IGR J18027-1455	Seyfert 1	0.035	2.24°
026	100.1	IRAS 09595-0755	Seyfert 1	0.055	2.21°
035	54.0	ESO 506-G04	Linear AGN	0.013	0.41°
038	58.2	LQAC 033-02	Seyfert 1	0.051	2.42°
041	52.0	LQAC_125…	AGN*	0.060	2.13°
045	62.7	MCG -2-37-004	Seyfert 2	0.041	2.10°
049	60.3	PGC 1237895	Seyfert 1	0.033	1.52°
075	71.1	Q 1515+0205	Quasar	0.020	0.93°
086	56.2	MCG-01.27.031	Seyfert 1	0.021	2.41°
106	81.4	WISEA J2027…	AGN*	0.100	2.13°
111	69.7	MARK 585	AGN	0.021	1.34°
113	54.8	IGR J19405-3016	Seyfert 1	0.052	2.59°
119	67.3	LQAC 255-0…	AGN*	0.033	2.83°
120	73.1	PGC 1439494	Seyfert 1	0.023	1.82°
132	56.8	NGC 1097	Linear AGN	0.004	1.86°
136	65.9	IRAS 22547-8018	Seyfert 2	0.038	2.17°
162	55.9	SDSS J0902…	AGN	0.030	2.93°
203	77.9	LQAC_125-057…	AGN*	0.060	2.54°
207	56.4	MCG-3-58-7	Seyfert 2	0.031	2.09°
215	68.3	NVSS J16313…	AGN*	0.072	2.38°
221	70.8	NGC 2845	Seyfert 2	0.008	2.22°
240	58.8	NGC 5643	Seyfert 2	0.003	2.38°
252	80.9	WISEA J1853…	AGN*	0.100	1.41°
294	75.6	TOL 0514-415	Seyfert 2	0.049	1.42°
307	52.4	IC 1339	Linear AGN	0.028	1.62°
309	63.3	ESO353-G9	Seyfert 2	0.016	2.84°
316	70.2	LQAC 002-035…	Seyfert 1	0.093	2.91°
318	57.2	NGC 2992	Seyfert 2	0.008	2.71°
360	67.4	IAU 2031-359	AGN*	0.088	2.93°
361	92.8	FRL 357	AGN	0.028	2.47°
364	64.8	NGC 5291	AGN	0.014	1.28°
TABLE XV: List of Pierre Auger UHECR for 2012. The first column gives the day of observation of the UHECR. The second gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR. A question mark means we have not been able to identify a source within 3° of the UHECR observed direction.

day	E	source	object type	redshift	distance
012	62.4	3C 29.0	AGN	0.045	2.33°
052	66.1	?	?	?	?
081	99.0	5BZG J2103-6812	AGN*	0.041	2.84°
103	70.4	PKS0959-443	Quasar	0.021	2.94°
109	62.6	IC 1816	Seyfert 2	0.017	2.78°
132	58.5	MKN 1330	Seyfert 1	0.009	0.87°
154	58.7	?	AGN*	?	?
155	60.0	LQAC 244-028,001	AGN*	0.055	2.49°
162	83.8	ESO 543-G11	Seyfert 1	0.086	2.97°
183	61.8	?	?	?	?
189	61.1	ESO 244-17	Seyfert 1	0.024	1.90°
193	54.4	NPM1G-04.0637	Seyfert 1	0.025	2.35°
206	56.8	IRAS 20253-8152	Seyfert 2	0.034	1.41°
211	58.7	MCG 2-30-017	AGN	0.021	2.27°
301	53.3	NGC 1410	Seyfert 2	0.025	2.24°
332	71.1	NGC 5852	AGN	0.022	1.34°
TABLE XVI: List of Pierre Auger UHECR for 2013. The first column gives the day of observation of the UHECR. The second gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR. A question mark means we have not been able to identify a source within 3° of the UHECR observed direction.

day	E	source	object type	redshift	distance
011	55.7	ESO 511-G030	Seyfert 1	0.022	2.95°
027	62.7	MCG -06.30.015	Seyfert 1	0.008	2.65°
027	70.7	PKS 0352-686	BL Lac	0.087	0.96°
031	53.2	5BZG J2103-6812	AGN*	0.041	1.03°
036	73.6	?	?	?	?
052	71.9	NGC 1692	AGN	0.035	0.08°
070	53.9	PGC 917316	Seyfert 1	0.058	2.42°
119	62.1	NGC 2824	AGN	0.009	1.02°
132	57.3	ESO0012-G21	Seyfert 1	0.033	2.87°
134	85.3	MCG-01.22.006	Seyfert 2	0.023	2.70°
144	54.3	MCG-07.05.010	Linear AGN	0.017	0.64°
163	52.2	NGC 7733	Seyfert 2	0.034	2.85°
175	58.9	CGCG 74-129	Seyfert 2	0.016	2.05°
190	68.8	ESO 055-IG02	Seyfert 2	0.048	2.91°
191	67.3	ESO 340-22	Seyfert 2	0.056	2.03°
222	61.5	?	?	?	?
224	63.4	MCG -02.58.021	AGN	0.024	0.43°
247	84.8	6dFGS g1011...	AGN*	0.100	0.53°
249	55.5	NGC 3281	Seyfert 2	0.011	2.02°
249	65.4	IRAS 06317-6403	Seyfert 2	0.048	2.61°
281	58.5	IRAS 21363-2700	Seyfert 1	0.030	2.96°
297	73.0	IAU 1045-721	AGN*	0.026	1.83°
302	54.6	IRAS 19542+1110	LIRG	0.065	2.54°
319	54.4	IRXS J190749...	Seyfert 1	0.073	2.70°
320	52.9	IRXS J185650...	AGN	0.056	1.48°
329	63.6	MCG-02.31.015	Linear AGN	0.018	1.81°
332	65.2	?	?	?	?
352	72.5	ESO 121-IG28	Seyfert 2	0.040	2.19°
364	53.2	?	?	?	?
TABLE XVII: List of Pierre Auger UHECR for 2014. The first column gives the day of observation of the UHECR. The second gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR.

day	E	source	object type	redshift	distance
008	60.0	ESO 033-G02	Seyfert 2	0.018	2.07°
030	74.5	ESO 381-G07	Seyfert 1	0.055	0.92°
032	54.6	ESO 506-G04	Linear AGN	0.013	1.38°
049	54.9	LQAC 001-050	Seyfert 1	0.033	1.01°
050	60.2	IGR J15415-5029	AGN	0.032	2.94°
064	63.8	MS 03215-6657	Quasar	0.093	2.36°
065	118.3	UGC 12237	Seyfert 2	0.028	2.89°

TABLE XVIII: List of all AGASA UHECR. There were 11 detected from 1993 to 2002. The first column gives the year of observation of the UHECR. The second column gives the day of observation. The third gives the energy of the UHECR in EeV. The third column is the most likely source, in our judgment. The fourth column gives the astronomical classification of our proposed source. The fifth column gives the redshift of our proposed source. The sixth column gives the angular distance between our proposed sources and the direction of the UHECR. Of the 11 UHECR, we can identify the source of 9. We do not include the WISEA object in the 9, since the redshift is not measured with sufficient precision. We have used the IAU truncation abbreviation convention for long object names. A question mark means we have not been able to identify a source within 3° of the UHECR observed direction.

year	day	E	source	type	redshift	distance
1993	01 21 101	SDSS J0820	AGN	0.044	0.87°	
1993	12 03 213	PG 0119+229	Seyfert 1	0.053	2.69°	
1994	07 06 134	3C 388	Seyfert 1	0.091	2.70°	
1996	01 11 144	PGC 1740204	AGN	0.041	2.61°	
1996	10 22 105	?	?	?	?°	
1997	03 30 150	CGMW 3-4394	Seyfert 1	0.010	0.41°	
1998	06 12 120	NGC 7479	Seyfert 2	0.008	2.70°	
1999	09 22 104	LQAC 346	AGN*	0.019	0.69°	
2001	04 30 122	NGC 3941	Seyfert 2	0.003	1.93°	
2001	05 10 246	MRK 331	Seyfert 2	0.018	1.76°	
2002	04 09 121	WISEA J0546	AGN*	0.100	2.37°	