On the reliability of C IV λ1549 as an abundance indicator for high redshift star-forming galaxies

Paul A. Crowther1, Raman K. Prinja2, Max Pettini3 and Charles C. Steidel4

1 Dept of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK
2 Dept of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
3 Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK
4 California Institute of Technology, MS 105-24, Pasadena, CA 91125, USA

Received: 2006 January 24; Accepted 2006 February 7

ABSTRACT

We reconsider the use of the equivalent width of C IV λ1549, EW(C IV), as an indicator of the oxygen abundance in star-forming galaxies, as proposed by Heckman et al. for nearby starbursts. We refine the local calibration of EW(C IV) vs. log (O/H) by using a restricted wavelength window which minimises blending with interstellar absorption lines. When applied to the stellar component only of the complex C IV λ1549 features in two high redshift galaxies with good quality spectra, MS 1512–cB58 (z = 2.7268) and Q1307-BM1163 (z = 1.4105), the local calibration gives values of the oxygen abundance which are in good agreement with other metallicity determinations based on nebular emission and interstellar absorption lines. Our main conclusion is that for this method to give reliable results at high redshifts, it should only be used on data of sufficiently high spectral resolution (R ≳ 1000) for stellar and interstellar C IV components to be clearly separated. Oxygen abundances will be systematically overestimated if the local calibration is applied to spectra of high z galaxies obtained with the low resolving powers (R ≳ 200 – 300) of many current wide field surveys. It will also be necessary to understand better the causes of the scatter in the local relation, before we can be confident of inferences from it at high z.

Key words: galaxies: abundances – galaxies: starburst – ultraviolet: galaxies

1 INTRODUCTION

Great progress has been made recently towards establishing both the star formation history (e.g. Madau et al. 1996; Hopkins 2004; Bunker et al. 2004 and references therein), and the chemical enrichment history (e.g. Kewley & Kobulnicky 2005; Pettini 2006 and references therein) of the universe. The latter, whilst observationally more challenging, represents a powerful means of assessing how metallicity responds to star formation from z ∼ 5 through to the present day.

As discussed by Pettini (2006), various metallicity diagnostics have been applied to the analysis of the spectra of high redshift galaxies. Those most widely used so far are based on rest-frame optical emission lines from H II regions (e.g. Pagel et al. 1979; Kewley & Dopita 2002; Pettini & Pagel 2004). In a few exceptionally bright, or gravitationally lensed, galaxies these nebular metallicity measures have been supplemented by estimates derived from the strengths of photospheric lines from OB stars at rest-frame ultraviolet (UV) wavelengths (e.g. Leitherer et al. 2001; Rix et al. 2004).

These methods have their limitations, however. The accurate measurement of shallow, stellar photospheric features requires spectra of higher signal-to-noise ratio (S/N) than generally attainable at present (see, for example, Erb et al. 2006). The nebular emission lines, on the other hand, are only accessible (from the ground) at redshifts which place them within gaps between the numerous OH emission lines from the night sky which mar the near-IR spectral windows. The most severe limitation of the nebular abundance diagnostics is that they cease to be applicable at redshifts z ≳ 3.4, as [O III] λ5007 is redshifted beyond the K-band window. Their application to the increasingly large numbers of galaxies at 3.4 < z < 6.5 (e.g. Iwata et al. 2005) will have to await the advent of the James Webb Space Telescope (JWST) in the next decade.

With thousands of UV spectra of galaxies at z ≥ 1.5 now available (e.g. Steidel et al. 2003, 2004; Le Fèvre et al. 2005), attention naturally turns to searching for useful metallicity measures in the rest-frame UV spectral region. The work by Rix et al. (2004) identified the strong P Cygni lines of C IV λ1549 and Si IV λ1397 as the most suit-

1 For convenience we use the multiplet wavelengths. The lines
able for this purpose. These features originate in the winds of the most luminous OB stars and their strengths are reduced at subsolar metallicities, reflecting the lower mass-loss rates and wind terminal velocities of these stars at \(Z < Z_\odot \) (Prinja & Crowther 1998; Leitherer et al. 2001, Vink et al. 2001). Storchi-Bergmann, Calzetti, & Kinney (1994) were the first to confirm observationally a relationship between the equivalent widths of \(\text{C}^\text{IV}\lambda 1549 \) and \(\text{Si}^\text{IV}\lambda 1397 \) in the integrated spectra of local star-forming galaxies recorded with the International Ultraviolet Explorer (IUE) satellite and their oxygen abundance (determined from nebular emission lines). The correlation was later confirmed and quantified by the analyses of Heckman et al. (1998) and Mehlert et al. (2002).

Heckman et al. (1998) emphasised the fact that the IUE spectra, taken through the large entrance aperture, sample comparable physical scales to those encompassed by ground-based spectroscopic observations of high redshift galaxies and should therefore provide a set of local templates suitable for the interpretation of distant galaxies. Thus, their calibration of the equivalent widths of \(\text{C}^\text{IV}\lambda 1549 \) and \(\text{Si}^\text{IV}\lambda 1397 \) vs. \(\text{O}/\text{H} \) has been used to infer the metallicity of galaxies at \(z > 1.5 \) (e.g. Mehlert et al. 2002, 2005). Given that these wind lines are probably our only means of estimating abundances in galaxies at \(z \gtrsim 3.5 \), as explained above, we thought it important to reassess the local calibrations. Specifically, we examine how well the calibrations perform in the cases of two high redshift galaxies with exceptionally high S/N UV spectra and for which a number of independent metallicity determinations have been reported. We pay particular attention to the effect which spectral resolution and blending with interstellar absorption lines have on the determination of abundances from UV wind lines.

2 LOCAL STARBURSTS

We begin by attempting to reproduce the local calibration by Heckman et al. (1998). To this end, we remeasured the equivalent widths of the \(\text{C}^\text{IV}\lambda 1549 \) and \(\text{Si}^\text{IV}\lambda 1397 \) doublets in the same subsample of 45 star-forming galaxies from the Kinney et al. (1993) low resolution IUE galaxy atlas, performing the equivalent width integrations over the same spectral windows as those used by Heckman et al., 1507–1553 Å and 1378–1406 Å for \(\text{C}^\text{IV} \) and \(\text{Si}^\text{IV} \) respectively. The measurements were made independently by two of us (PAC and RKP) using the Starlink dipso software package (Howarth et al. 2003) and averaged to give the quantity \(\text{EW(C}^\text{IV} + \text{Si}^\text{IV})/2 \) which can then be directly compared with the same measurement reported by Heckman et al., as in Fig. 1. For the purpose of this comparison we adopted the same galaxy redshifts and oxygen abundances as Heckman et al., even though there are indications from more recent work (Garnett et al. 2004a; Garnett, Kennicutt & Bresolin 2004b; Bresolin, Garnett & Kennicutt 2004; Bresolin et al. 2005) than the R23 index of Pagel et al. (1979), on which the values of \(\text{O}/\text{H} \) in Fig. 1 are based, overestimates the oxygen abundance at high (i.e. apparently super-solar) metallicities.

As can be seen from Fig. 1, we do confirm the increase of \(\text{EW(C}^\text{IV} + \text{Si}^\text{IV})/2 \) with \(\log (\text{O}/\text{H}) + 12 \) reported by Heckman et al., but also find a 1–2 Å offset between their best fit and ours. This is clearly a concern, further compounded by the relative large dispersion, with standard deviation \(\sigma \approx 1 \text{ Å} \), between the values of \(\text{EW(C}^\text{IV} + \text{Si}^\text{IV})/2 \) measured independently by two of the authors. The origin of these differences is unclear; they may reflect different placements of the continuum level, but in any case they are certainly a reason for caution in the application of the Heckman et al.’s relation.

The \(\text{Si}^\text{IV}\lambda 1397 \) wind line is nearly always weaker than \(\text{C}^\text{IV}\lambda 1549 \) and its equivalent width more difficult to reliably measure. We therefore chose to concentrate on \(\text{C}^\text{IV}\lambda 1549 \) alone (as done by Mehlert et al. 2002), and remeasured \(\text{EW(C}^\text{IV}) \), this time over a more restricted wavelength in-
terval, 1534 – 1551 Å, which corresponds to C IV λ1548.20
wind velocities from −2750 to +550 km s⁻¹ and avoids the
nearby interstellar absorption lines Si II λ1526.71, 1533.43.
Again the values of EW(C IV) were measured independently
by two of us and averaged; in this case we found the scatter
between the two sets of measure to be considerably smaller
than that of the earlier measurements, with σ ≃ 0.2 Å.
Values of EW(C IV) are plotted in Fig. 3 vs. log O/H, together
with our line of best fit which satisfies the equation:

\[
\log (O/H) + 12 = 7.15 + \frac{\text{EW(C IV)}}{3.74}
\] (1)

where EW(C IV) is in Å.

Also shown with a dash line in Fig. 3 is the relationship
between EW(C IV) and log (O/H) + 12 proposed by Mehlert
et al. (2002; their Eqn. 3) which is significantly steeper than
that found here. Undoubtedly this is due, at least in part,
to the wider spectral window adopted by these authors for
their equivalent width measurements: 1535 – 1565 Å, cor-
responding to velocities of −2550 to +3250 km s⁻¹. Thus,
the Mehlert et al. measures refer to the combined (emission
plus absorption) equivalent width of the P Cygni feature, as
do those by Storchi-Bergmann et al. (1994). The windows
chosen by all the analyses of the C IV λ1549 line mentioned
above are compared in Fig. 2.

Returning to Fig. 3, we see that, apart from the
ambiguity due to different wavelength ranges over which
EW(C IV) is measured, there appears to be considerable
scatter of the data about the line of best fit. This could be
due to intrinsic dispersion, reflecting the evolutionary sta-
tus of the starbursts; to errors in both the measurement
of EW(C IV)—the IUE spectra are of limited S/N—and the
determination of the oxygen abundance; and to varying
strength of interstellar C IV absorption which is buried
within the stellar P Cygni profile at the low resolution
(R ≃ 250) of the IUE spectra. It is interesting, however,
that our line of best fit in Fig. 3 is in excellent agreement
with the values (open triangles) we measure from the fully
synthetic UV spectra produced by Rix et al. (2004) for the
standard case of continuous star formation with a Salpeter
Initial Mass Function (IMF). These are purely stellar syn-
thetic spectra and so do not include any interstellar absorp-
tion.

The degree of contamination by interstellar absorp-
tion lines becomes clearer when we compare the low res-
olution IUE spectra with those obtained with the Hubble
Space Telescope (HST), although the latter normally
do not sample the whole galaxy (and thus would gener-
ally underestimate the interstellar contamination). An
example is reproduced in Fig. 2 for the Wolf-Rayet galaxy
NGC 4214. From the low resolution IUE spectrum, we mea-
sure EW(C IV) = 5.2 Å within the spectral range suggested
by Heckman et al. (1998), and EW(C IV) = 4.2 Å using our
smaller integration window which does not include the inter-
stellar Si II λ1527, 1533 absorption lines. The higher resolu-
tion HST STIS spectrum of a bright knot within the galaxy
(NGC 4214-1, Chandar, Leitherer, & Tremonti 2004) shows
clearly Si II λ1527 and what, in this instance, appears to be
only a weak contribution by interstellar C IV λ1549 to the P
Cygni line.

Figure 2. (a) Portion of the IUE/SWP spectrum of the starburst
galaxy NGC 4214 (corrected to the rest-frame of the galaxy) from
the Kinney et al. (1993) atlas, in the region of the C IV λ1549 line.
The resolving power is R ≃ 250. Also shown are the windows used
by different authors to measure EW(C IV). (b) The same portion
of the higher resolution (R ≃ 600) archival HST/STIS G140L
spectrum of a bright UV knot within the galaxy (NGC 4214-1;
Chandar, et al. 2004). The locations of the narrow interstellar
lines of Si II and C IV are indicated.

3 HIGH-REDSHIFT GALAXIES

3.1 Abundances from medium resolution
rest-frame UV spectroscopy

In the case of most star-forming galaxies at high redshifts,
however, interstellar absorption is a significant contributor
to the integrated equivalent width of C IV λ1549, as can be
readily appreciated from inspection of the composite spectra
of galaxies at z = 2 – 3 published by Shapley et al. (2003)
and Erb et al. (2006).

Provided the stellar and interstellar components can be
resolved, it should still be possible to use the equiva-
 lent width of the former to deduce the metallicity of the
OB stars in which it arises, if the local calibration derived
here—and re-enforced by the spectral modelling by Rix et
al. (2004)―also applies to high redshift star-forming galax-
ies. We test this hypothesis by considering two high redshift
galaxies for which spectra of unusually high S/N are avail-
able in the literature; the z = 2.7268 gravitationally lensed
galaxy MS 1512–cB58 (Pettini et al. 2000, 2002) and the
z = 1.4105 UV bright galaxy Q1307-BM1163 from the sur-
We now compare these values with those obtained from other metallicity indicators available for these two galaxies. We consider cB58 first. NEBULAR EMISSION LINES were measured by Teplitz et al. (2000) who deduced \log (O/H) +12 = 8.39 using the R23 index of Pagel et al. (1979). From the emission line fluxes listed in Table 1 of Teplitz et al., it can also be seen that N2 \equiv \log([N II] \lambda 6583/\lambda Hα) = -1.04 which implies \log (O/H) + 12 = 8.31 using the calibration by Pettini & Pagel (2004). Furthermore, from O3N2 \equiv \log\{([O III] \lambda 5007/\lambda H β)/([N II] \lambda 6583/\lambda Hα)\} = 1.60 we find \log (O/H) + 12 = 8.22 from Eqn. (3) of Pettini & Pagel (2004). Each of these strong line abundance estimators has an accuracy of about \pm 0.2 dex.

Using high resolution spectroscopy, Pettini et al. (2002) were able to measure the abundances of several elements in the neutral interstellar gas of cB58. They found that the alpha-capture elements Mg, Si, P, and S have abundances of ~ 0.4 solar, while the Fe-peak elements Mn, Fe, and Ni are more underabundant, at ~ 0.1 solar. In each case the uncertainty of these determinations is about \pm 0.1 dex. The difference between the two groups of elements may be real, reflecting the prompt release of the nucleosynthetic products of massive stars, and/or it could be due to dust depletion of the Fe-peak elements—probably both effects contribute.

Comparing all of these estimates with \log (O/H) + 12 = 8.17 (Z \simeq 0.32Z⊙) deduced here from EW(C IV), we conclude that the latter is in reasonable agreement with other abundance indicators. The same conclusion is reached for Q1307-BM1163 for which Steidel et al. (2004) reported \log (O/H) + 12 = 8.53 \pm 0.25 from the N2 index, in good agreement with \log (O/H) + 12 = 8.51 we deduced from EW(C IV), although our BM1163 stellar wind fit was in part guided by that of cB58.

Clearly, in both cases discussed here we would have considerably overestimated the metallicity had we not been able to resolve the wind component from the interstellar absorption of C IVλ1549. Specifically, the combined equivalent widths, measured within the narrow window on which Eqn. (1) is based, are 7.0 and 8.8 Å, corresponding to \log (O/H) + 12 = 9.02 and 9.50. These are highly discrepant from all other metallicity measurements, as summarised in Table 1.

Before concluding this section, we point out that our SEI fits to the stellar P Cygni components of the C IV lines in cB58 and BM1163 are further supported by the results of spectral synthesis models. Specifically, Pettini et al. (2003) presented Starburst99 (Leitherer et al. 1999, 2001) fits to the spectral region near 1550 Å in these galaxies obtained using template spectra of OB stars of, respectively, Magellanic Cloud and Milky Way metallicity, and assuming continuous star formation with a Salpeter IMF. The spectral morphology of our SEI fits to the C IVλ1549 profiles in cB58 and BM1163 reproduced in Fig. 3 closely resembles the corresponding Starburst99 models.

3.2 Abundances from low resolution rest-frame UV spectroscopy

The resolution of the LRIS-B spectrum of Q1307-BM1163 shown in Fig. 3 (R \simeq 750) is near the minimum required for deconvolving stellar and interstellar components of C IVλ1549. While this resolving power is typical of the...
The CIV 1549 line, one of the strongest features in the rest-frame UV spectra of star-forming galaxies, may well be the only tool at our disposal for measuring the degree of chemical evolution of galaxies at $z \geq 3.5$, at least until the advent of ground-based 30 m telescopes and of space-borne near-IR spectrographs on large aperture telescopes such as the JWST. This realisation has prompted us to reconsider the usefulness and limitations of this transition as an abundance indicator. Our main conclusions are as follows.

1. CIV 1549 is a complex spectral feature which in starburst galaxies consists of a blend of stellar P Cygni emission-absorption, narrower interstellar absorption, and potentially nebular emission, although this last component is of minor importance except in galaxies with Active Galactic Nuclei (AGN) (e.g. Leitherer, Calzetti, & Martins 2002). The same considerations apply to SiIV 1397 which is however normally weaker, and consequently less accurately measured, than CIV 1549. Thus, we see little practical advantage in averaging the equivalent widths of the two lines to give a combined measure of the strength of wind absorption, as done by Heckman et al. (1998), and instead consider it advantageous to concentrate on CIV 1549 alone, as proposed by Mehlert et al. (2002).

2. In high redshift star-forming galaxies, the interstellar component of CIV can be the dominant contributor to the composite spectral feature. It is therefore essential, for abundance determinations, to obtain spectra of sufficiently high resolution for the stellar and interstellar components to be clearly recognised—$R \sim 1000$ seems to be the minimum resolving power required. A fitting technique such as the Sobolev with Exact Integral method of Lamers et al. (1987) accounts for the stellar wind profile morphology. Without it, the strength of the wind line—and the metal abundance it implies—would be systematically underestimated. Furthermore, we advocate measuring the equivalent width of CIV 1549, EW(CIV), over a restricted wavelength range, from 1534 to 1551 Å, corresponding to wind velocities in the interval -2750 to $+550$ km s$^{-1}$, thereby avoiding contamination with SiII 1527, 1533 interstellar absorption.

3. We have derived a local calibration between EW(CIV), measured between 1534 and 1551 Å, and the oxygen abundance (from the R23 method):

$$\log(O/H) + 12 = 7.15 + \frac{EW(CIV)}{3.74}$$

based on low resolution IUE spectra of nearby starburst galaxies. While the IUE spectra do not resolve stellar and interstellar components, the above relationship is in very good agreement with the fully synthetic starburst spectra computed by Rix et al. (2004). Given that the latter are purely stellar, it would appear that in local star-forming galaxies—unlike their high z counterparts—interstellar CIV absorption makes a relatively minor contribution to the blend.

4. We applied the above calibration to the stellar component of the CIV line in two well-observed high redshift star-forming galaxies—the gravitationally lensed $z = 2.7268$ galaxy MS1512−cB58 and the $z = 1.4105$ UV bright galaxy Q1307-BM1163. The resulting abundances, $12 + \log(O/H) = 8.2$ and 8.5 respectively, are in encouraging agreement with those determined by other methods, within the ~ 0.2 dex uncertainties of other abundance determinations.

4 SUMMARY AND CONCLUSIONS

Table 1. Summary of various metallicity (log(O/H)+12) indicators for cB58 and BM1163 considered here, including strong nebular line methods (R23, N2 and O3N2, see text) and application of Eqn. (1) based on the measured EW(CIV) either excluding (SEI model) or including interstellar contributions.

Galaxy	R	R23	N2	O3N2	EW(CIV) Wind	EW(CIV) Wind+ISM
MS1512–cB58	1900	8.39	8.31	8.22	8.17	9.02
200	8.67	8.79				
Q1307–BM1163	750	8.53		8.51	9.50	

Note that EW(CIV) is not conserved, and is lower than the value we measured from the $R = 1900$ spectrum, due to the restricted integration range of -2750 to $+550$ km s$^{-1}$ we use.

Surveys for Lyman break, BX, and BM galaxies by Steidel et al. (2003, 2004), many other surveys for high redshift galaxies have been conducted at lower spectral resolutions. Thus, the FORS Deep Field survey, on which the study of Mehlert et al. (2002) is based, employs $R \sim 200$; the Gemini Deep Deep Survey (GDDS) of Abraham et al. (2004) has $R \simeq 300$ in the blue (where the CIV 1549 line falls at the redshifts of most GDDS galaxies); and the VIMOS VLT Deep Survey (VVDS) of Le Fèvre et al. 2005 delivers spectra with $R \sim 230$.

These resolutions are too coarse for the purpose of measuring the equivalent width of the stellar CIV line, as demonstrated in Fig. 2. Once the LRIS spectrum of cB58 shown in Fig. 2 is degraded to $R = 200$, we measure EW(CIV) = 5.8 Å by straightforward integration across our restricted integration range of -2750 to $+550$ km s$^{-1}$ we use.

Figure 4. Portion of the Keck I/LRIS spectrum of cB58 degraded to a resolving power $R=200$, typical of many surveys for high redshift galaxies. At this coarse resolution even the Sobolev with Exact Integral fitting technique (dotted line) is unable to separate stellar and interstellar components of the CIV line, leading to systematic overestimates of the metallicity.
5. Even so, the local relationship between EW(C IV) and the oxygen abundance shown in Fig. 1b, exhibits a worryingly large scatter which demands further study.

One problem is the determination of a trustworthy oxygen abundance in the galaxies: values of $12+\log(O/H) > 9.0$ ($Z > 2Z_\odot$) in Fig. 1b are called into question by recent work which has failed to confirm supersolar abundances in individual H II regions of nearby spirals (Bresolin et al. 2005 and references therein). If the $R23$ index systematically overestimates (O/H) at high metallicities, the relationship shown in Fig. 1b may be altered significantly, rather than requiring a simple systematic downward revision.

A second cause for concern is the fact that EW(C IV) responds not only to metallicity, but also to the age of the starburst, as vividly demonstrated by the difference between ‘field’ and ‘super star cluster’ UV light in nearby galaxies (Chandar et al. 2005). However, this difficulty may be alleviated when considering the integrated spectrum of a whole galaxy, for which the idealised case of continuous star formation may be more likely to be an adequate approximation to reality.

Thus, in order to improve on the present calibration of EW(C IV) vs. (O/H) we require observations of starburst galaxies with sufficiently high spectral resolution to separate stellar and interstellar lines, but of sufficiently coarse spatial resolution to give an integrated spectrum truly representative of the whole galaxy. Furthermore, such observations should be performed in galaxies where a variety of abundance indicators are available, including at least N2 as well as R23. Paradoxically, these seemingly mutually exclusive requirements can at present be met most easily in galaxies at $z \approx 1.5 - 2.5$ observed from the ground with optical and near-IR spectrographs on large telescopes. Certainly, a relationship between EW(C IV) and (O/H) determined for galaxies at $z \approx 1.5 - 2.5$ would be the appropriate baseline against which to consider galaxies at higher redshifts. Once HST is equipped again with a working UV spectrograph, it may become possible to examine such a relationship for much nearer galaxies drawn from large data bases, as produced for example by the Sloan Digital Sky Survey (e.g. Tremonti et al. 2004; Gallazzi et al. 2005).

ACKNOWLEDGMENTS

Based, in part, on observations with the NASA/ESA Hubble Space Telescope, obtained from the ESO/ST-ECF Science Archive Facility. PAC gratefully acknowledges financial support from the Royal Society. We thank Sam Rix for providing her synthetic UV spectra of star-forming galaxies.

REFERENCES

Abraham, R. G., Glazebrook, K., McCarthy, P. J., et al., 2004, AJ, 127, 2455
Asplund M., Grevesse N., Sauval A. J., Allende Prieto C., Kiselman D. 2004, A&A, 417, 751
Bresolin F., Garnett D. R., Kennicutt R. C., 2004, ApJ, 615, 228
Bresolin F., Schaerer, D., Gonzalez Delgado, R. M., Stasinska, G., 2005, A&A, 441, 981

Crowther, Prinja, Pettini and Steidel

Bunker, A. J., Stanway, E. R., Ellis, R. S., McMahon, R. G. 2004, MNRAS, 355, 374
Chandar R., Leitherer C., Tremonti C. A., 2004, ApJ, 604, 153
Chandar, R., Leitherer, C., Tremonti, C. A., Calzetti, D., Aloisi, A., Meurer, G. R., de Mello, D., 2005, ApJ, 628, 210
Erb D. K., Shapley A. E., Pettini M., Steidel C. C., Reddy N. A., Adelman-Kerber K. L., 2006, ApJ, submitted
Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., Tremonti, C. A., 2005, MNRAS, 362, 41
Garnett, D. R., Edmunds, M. G., Henry, R. B. C., Pagel, B. E. J., Skillman, E. D., 2004a, AJ, 128, 2772
Garnett, D. R., Kennicutt, R. C., Bresolin, F., 2004, ApJ, 607, L21
Heckman T. M., Robert C., Leitherer C., Garnett D. R., van der Rydt F., 1998, ApJ, 503, 646
Hopkins, A. M., 2004, ApJ, 615, 209
Howarth I. D., Murray J., Mills D., Berry D. S., 2003, Starlink User Note 50.24, Rutherford Appleton Laboratory
Iwata, I., Ohta, K., Tamura, N., Ando, M., Akiyama, M., Aoki, K., 2005, in de Grijis, R., Gonzalez Delgado, R. M., eds, Starbursts: From 30 Doradus to Lyman Break Galaxies. Springer-Verlag, Berlin, p. 29
Kewley, L. J., Dopita, M. A., 2002, ApJS, 142, 35
Kewley, L., & Kohulnicky, H. A. 2005, in de Grijis, R., Gonzalez Delgado, R. M., eds, Starbursts: From 30 Doradus to Lyman Break Galaxies. Springer-Verlag, Berlin, p. 307
Kiney A., Bohlin R., Calzetti D., Panagia N., Wyse R. F. G., 1993, ApJS, 86, 5
Lamers H. J. G. L. M., Cerruti-Sola M., Perinotto M., 1987, ApJ, 314, 726
Leitherer C., Calzetti D., Martins L. P., 2002, ApJ, 574, 114
Leitherer C., Schaerer D., Goldader J.D. et al. 1999, ApJS 123, 3
Leitherer C., Leao J. R. S., Heckman T. M., Lennon D. J., Pettini M., Robert C., 2001, ApJ, 550, 724
Le Fèvre, O., Vettolani, G., Garilli, B., et al., 2005, Nature, 437, 519
Madau P., Ferguson H. C., Dickinson M. et al., 1996, MNRAS, 283, 1388
Massa D., Fullerton A. W., Sonneborn G., Hutchings J. B., 2003, ApJ, 586, 996
Mehrtens, N., Soll, S., Appenzeller I. et al., 2002, A&A, 393, 809
Mehrtens, D., Tapken C., Appenzeller I., Noll S., de Mello, D., Heckman T. M., 2005, in de Grijis, R., Gonzalez Delgado, R. M., eds, Starbursts: From 30 Doradus to Lyman Break Galaxies. Springer-Verlag, Berlin, p. 299
Pagel B. E. J., Edmunds M. G., Blackwell D. E., Chun M. S., Smith M. G., 1979, MNRAS, 189, 95
Pettini M., 2006, in Le Brun, V., Mazure, A., Arnouts, S., Burgarella, D., eds, The Fabulous Destiny of Galaxies: Bridging Past and Present. Edition Frontières, Paris, in press
Pettini M., Pagel, B. E. J. 2004, MNRAS, 348, L59
Pettini M., Steidel C. C., Adelberger K. L., Dickinson M., Giavalisco M., 2000, ApJ, 528, 96
Pettini M., Rix S. A., Steidel C. C., Adelberger K. L., Hunt M. P., Shapley A. E., 2002, ApJ, 569, 742
Pettini M., Rix S. A., Steidel C. C., Shapley A. E., Adelberger K. L., 2003, in van der Hucht K. A., Herrero A.,
Abundances in starbursts from CIV λ1549

Esteban, C., eds, A Massive Star Odyssey, from Main Sequence to Supernova, Proc IAU Symp 212. ASP, San Francisco, p. 671
Prinja R. K., Crowther P. A., 1998, MNRAS, 300, 828
Rix S. A., Pettini M., Leitherer C., Bresolin F., Kudritzki R-P., Steidel C. C., 2004, ApJ, 615, 98
Shapley A. E., Steidel, C. C., Pettini, M., Adelberger, K. L., 2003, ApJ, 588, 65
Steidel, C. C., Adelberger, K. L., Shapley, A. E., Pettini, M., Dickinson, M., Giavalisco, M., 2003, ApJ, 592, 728
Steidel C. C., Shapley A. E., Pettini M., Adelberger K. L., Erb D. K., Reddy N. A., Hunt M. P., 2004, ApJ, 604, 534
Storchi-Bergmann, T., Calzetti, D., Kinney, A., 1994, ApJ, 429, 572
Teplitz H. I., McLean I. S., Becklin E. E. et al, 2000, ApJ, 533, L65
Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al., 2004, ApJ, 613, 898
Vink J. S., de Koter A., Lamers H. J. G. L. M., 2001, A&A, 369, 574