A Selective Culture Medium for Screening Ceftazidime-Avibactam Resistance in Enterobacterales and Pseudomonas aeruginosa

Mustafa Sadek, a Laurent Poirel, a,b,c Camille Tinguely, a Patrice Nordmann a,b,c,d

a Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
b INSERM European Unit (IAME), University of Fribourg, Fribourg, Switzerland
c Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
d Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland

ABSTRACT The SuperCAZ/AVI medium was developed for screening ceftazidime-avibactam (CZA) resistance among Gram-negative bacteria (Enterobacterales and Pseudomonas aeruginosa). It was evaluated using 50 CZA-susceptible and 42 CZA-resistant Gram-negative isolates. Its sensitivity and specificity of detection were 100%. Excellent performance of the medium was also observed by testing spiked stools, with the lower limit of detection ranging from 10^1 to 10^2 CFU/ml. This screening medium provides the opportunity to detect CZA-resistant isolates regardless of their resistance mechanisms.

KEYWORDS ceftazidime, avibactam, screening, Enterobacterales, Pseudomonas aeruginosa

The emergence and spread of β-lactam resistance, especially resistance to carbapenems, are currently of great concern worldwide, particularly in Enterobacterales and Pseudomonas aeruginosa (1). Among the recently developed agents active against multidrug-resistant Gram-negative pathogens, a novel drug combination has been launched, namely, ceftazidime-avibactam (CZA) (2). Avibactam (AVI) is a non-β-lactam–β-lactamase inhibitor that inhibits the activities of Ambler class A, class C, and some class D β-lactamases, including carbapenemases (e.g., KPC, OXA-48) (3, 4). However, acquired resistance to CZA is increasingly reported and is mostly related to amino acid substitutions in the active sites of the respective β-lactamases. Many studies have identified KPC variants in Klebsiella pneumoniae, such as KPC-31, KPC-35, KPC-41, and KPC-50, all conferring resistance to CZA (5–8). Those KPC variants confer acquired resistance to CZA on the corresponding producers mainly as a consequence of decreased inhibitory activity of AVI against those enzymes, but also due to higher hydrolytic efficiency toward ceftazidime (CAZ). In addition, resistance to CZA in Gram-negative bacteria may be related to the production of Ambler class B enzymes (metallo-β-lactamases [MBL]), such as NDM, VIM, and IMP, or of several non-OXA-48-like class D β-lactamases, such as OXA-28 or OXA-32, whose hydrolytic activity includes CAZ but which are not inhibited by AVI (1). Furthermore, CZA resistance may be related to overproduction of efflux pumps and/or porin defects (9). Taking into account the increasing use of the CZA combination and consequently the increasing isolation of CZA-resistant Gram-negative bacteria, we have developed a selective culture medium for screening CZA-resistant isolates among Gram-negative species (Enterobacterales, P. aeruginosa).
Table 1: Preparation of the SuperCAZ/AVI medium

Compound	Stock solution	Quantity or vol to add	Final concn
CHROMagar Orientation medium	13.2 g	3.3%	
Distilled water	400 ml		
Cefazidime pentahydrate	6 mg/ml in PBS (pH 7.2)	400 µl	6 µg/ml
Avibactam sodium hydrate	4 mg/ml in water	400 µl	4 µg/ml
ZnSO₄·7H₂O	70 mg/ml in water	400 µl	70 µg/ml
Daptomycin	10 mg/ml in water	400 µl	10 µg/ml
Amphotericin B	5 mg/ml in 10% D- (+)-glucose	400 µl	5 µg/ml

*PBS, phosphate-buffered saline.

MATERIALS AND METHODS

The SuperCAZ/AVI medium. In the design of our medium (named the SuperCAZ/AVI medium), the necessity of preventing contamination by Gram-positive bacteria and fungi was considered. Based on our experience in the development of screening media (10), the optimal screening medium was based on the CHROMagar Orientation medium (reference RT412; CHROMagar, Paris, France), which is commonly used as a differential medium for the isolation and differentiation of common urinary tract pathogens. The CZA resistance breakpoint is defined as \(\geq 8 \mu g/ml \) for Enterobacterales and P. aeruginosa with a fixed concentration of AVI (4 µg/ml) (11). The optimal final concentration of CAZ was 6 µg/ml with a fixed concentration of AVI at 4 µg/ml. Since Gram-positive bacteria, such as Enterococcus, Streptococcus, and Staphylococcus strains, may grow on CHROMagar Orientation medium, daptomycin (code 46137500; Acros Organics) (which can be replaced by vancomycin) was added as an anti-Gram-positive molecule at a final concentration of 10 µg/ml. Amphotericin B (code 45590050; Acros Organics) was also added as an antifungal at a final concentration of 5 µg/ml. In addition, ZnSO₄ (70 µg/ml) was added to enhance the activity of MBL producers (10). The stock solutions of CAZ, AVI, daptomycin, and amphotericin B were prepared as shown in Table 1 and may be kept at \(-20^\circ\)C for 1 year. For the preparation of the SuperCAZ/AVI medium, the diluted powder of CHROMagar Orientation medium was autoclaved at 121°C for 15 min. After the medium was cooled for 1 h at 56°C, the antibiotic stock solutions were added (Table 1). The SuperCAZ/AVI plates were stored at 4°C and were protected from direct light exposure before use, for as long as 1 week.

Susceptibility testing. The MICs of CZA were determined using Etest strips (bioMérieux, La Balme-les-Grottes, France) on Mueller-Hinton agar plates at 37°C, and the results were interpreted according to the latest EUCAST breakpoints for Enterobacterales and P. aeruginosa (i.e., susceptibility [S], \(\leq 8 \mu g/ml \); resistance [R], \(>8 \mu g/ml \)) (Table 2) (10).

RESULTS

A total of 92 isolates of worldwide origin were included in this study to evaluate the performance of the SuperCAZ/AVI medium. The β-lactamase contents of all strains were characterized at the molecular level by PCR and sequencing or, for some isolates, by whole-genome sequencing (Table 2). A total of 50 strains were susceptible to CZA (40 Enterobacterales, including Enterobacter cloacae, K. pneumoniae, and Escherichia coli, and 10 P. aeruginosa strains), and 42 were resistant to CZA (20 Enterobacterales, including E. cloacae, K. pneumoniae, and E. coli, and 22 P. aeruginosa strains) (Table 2).

Starting with an optical density of a 0.5 McFarland standard (an inoculum of \(\sim 1.5 \times 10^8 \) CFU/ml), serial 10-fold dilutions were made in 0.85% saline solution, and 100-µl aliquots of each dilution were plated onto the SuperCAZ/AVI medium. To quantify the viable bacteria in each dilution step, tryptic soy agar plates were inoculated concomitantly with 100 µl of each suspension and were incubated overnight at 37°C. Viable colonies were counted the following day. When no growth was observed after 18 h, incubation was extended up to 48 h in order to definitely assess the negativity of the culture. The lower limit of detection for the strains tested was determined using the SuperCAZ/AVI medium.

The sensitivity and specificity cutoff values for the detection of CZA-resistant Enterobacterales and P. aeruginosa were set at \(1 \times 10^3 \) CFU/ml, i.e., the CZA-resistant isolates recovered on SuperCAZ/AVI medium plates at \(<1 \times 10^3 \) CFU/ml were considered positive, while the CZA-susceptible isolates grown using an inoculum of \(\geq 1 \times 10^3 \) CFU/ml were considered negative (10). All the CZA-resistant isolates could be recovered within 24 h on SuperCAZ/AVI medium plates by using an inoculum below the cutoff value of \(1 \times 10^3 \) CFU/ml (1 \times 10⁰ to 1 \times 10² CFU/ml) (Table 2). In contrast, growth of
Category and strain	Species	MIC of CZAa (mg/liter)	CZA susceptibility or resistanceb	Resistance determinant(s)	Lower limit of detection (CFU/ml)c in:	Culture	Stoolsd
Enterobacterales							
R1433	Enterobacter cloacae	France	0.19	S	Wild type	>10⁸	>10⁷
R254	Klebsiella pneumoniae	France	0.064	S	Porin deficiency, SHV, AmpC	10⁸	10⁸
R1233	Escherichia coli	France	0.5	S	ACC-1	>10⁸	>10⁷
R1241	Klebsiella pneumoniae	USA	1.5	S	ACT-1	10⁸	10⁸
R2077	Escherichia coli	Switzerland	0.5	S	ACC-1	10⁸	10⁸
R1291	Escherichia coli	USA	0.032	S	OXA-1	>10⁸	>10⁷
R1335	Escherichia coli	France	0.064	S	TEM-1	10⁸	10⁸
R941	Enterobacter cloacae	Switzerland	1.5	S	TEM-1	>10⁸	>10⁷
R1906	Escherichia coli	France	0.75	S	SHV-12	>10⁸	>10⁷
R2180	Enterobacter cloacae	France	2.0	S	GES-5	>10⁸	>10⁷
N23	Escherichia coli	Switzerland	0.032	S	CTX-M-15	10⁸	>10⁷
N41	Escherichia coli	Switzerland	0.064	S	CTX-M-9	10⁸	>10⁷
N71	Escherichia coli	Switzerland	0.125	S	CTX-M-15	>10⁸	>10⁷
R1039	Escherichia coli	Switzerland	0.032	S	CTX-M-15	>10⁸	>10⁷
R1104	Klebsiella pneumoniae	Thailand	0.25	S	VEB-1, OXA-10, TEM-1	>10⁸	>10⁷
R1103	Klebsiella pneumoniae	Thailand	0.75	S	VEB-1	>10⁸	>10⁷
R144	Escherichia coli	France	0.75	S	VEB-1	>10⁸	>10⁷
R1105	Klebsiella pneumoniae	Thailand	0.25	S	VEB-1	>10⁸	>10⁷
R2658	Escherichia coli	France	0.125	S	VEB-1, TEM-1, OXA-10	>10⁸	>10⁷
R3659	Escherichia coli	USA	0.5	S	KPC-2 (E. coli DH10B/pBRL322 b(la_KPC-2)	>10⁸	>10⁷
R89	Klebsiella pneumoniae	France	0.047	S	KPC-2	10⁸	>10⁷
R3521	Klebsiella pneumoniae	Switzerland	1.5	S	KPC-2	10⁸	>10⁷
R3668	Escherichia coli	USA	0.064	S	KPC-2 (E. coli DH10B/pBRL322 b(la_KPC-2)	>10⁸	>10⁷
R82	Escherichia coli	France	0.047	S	KPC-2	>10⁸	>10⁷
R91	Klebsiella pneumoniae	France	0.75	S	KPC-2	>10⁸	>10⁷
R94	Klebsiella pneumoniae	France	2.0	S	KPC-2	>10⁸	>10⁷
R3485	Klebsiella pneumoniae	Switzerland	1.0	S	KPC-2	10⁸	>10⁷
R3486	Klebsiella pneumoniae	Switzerland	1.0	S	KPC-2	10⁸	>10⁷
R3488	Klebsiella pneumoniae	Switzerland	1.0	S	KPC-2	10⁸	>10⁷
R3522	Klebsiella pneumoniae	Switzerland	1.5	S	KPC-2	>10⁸	>10⁷
R132	Klebsiella pneumoniae	France	1.0	S	KPC-2	>10⁸	>10⁷
R297	Klebsiella pneumoniae	France	0.25	S	KPC-2, OXA-1	>10⁸	>10⁷
R100	Klebsiella pneumoniae	France	1.5	S	KPC-11	10⁸	>10⁷
R22	Escherichia coli	France	0.094	S	OXA-48	>10⁸	>10⁷
R740	Escherichia coli	The Netherlands	1.0	S	OXA-48	>10⁸	>10⁷
R19	Klebsiella pneumoniae	France	0.5	S	OXA-48	>10⁸	>10⁷
R23	Klebsiella pneumoniae	France	0.5	S	OXA-48	10⁸	10²
N59	Escherichia coli	Switzerland	0.023	S	OXA-181	>10⁸	>10⁷
R131	Klebsiella pneumoniae	France	1.5	S	OXA-181	10⁸	>10⁷
R3338	Klebsiella pneumoniae	USA	24.0	R	CMY-4, VIM-1	10⁸	10¹
R169	Klebsiella pneumoniae	USA	24.0	R	VIM-19	10¹	10¹
N284	Enterobacter cloacae	Switzerland	48.0	R	VIM-1	10¹	10¹
R48	Klebsiella pneumoniae	France	>256.0	R	VIM-1	10¹	10¹
R61	Escherichia coli	France	24.0	R	VIM-1, SHV-12	10²	10¹
R63	Klebsiella pneumoniae	France	24.0	R	VIM-19	10¹	10¹
N6	Escherichia coli	Switzerland	>256.0	R	NDM-5	10¹	10¹
R464	Escherichia coli	France	>256.0	R	NDM-4, OXA-1	10¹	10¹
R466	Escherichia coli	France	>256.0	R	NDM-4, OXA-1, CTX-M-15	10²	10¹
R3778	Klebsiella pneumoniae	Spain	48.0	R	KPC-3 D179Y	10¹	10¹
R3780	Klebsiella pneumoniae	Spain	>256.0	R	KPC-3 G168N E169H	10¹	10¹
R3781	Klebsiella pneumoniae	Spain	64.0	R	KPC-3 E169P L172T	10¹	10¹
R3776	Klebsiella pneumoniae	Spain	96.0	R	KPC-3 D179Y	10¹	10¹
R3777	Klebsiella pneumoniae	Spain	>256.0	R	KPC-3 D179Y A172T	10¹	10¹
N435	Klebsiella pneumoniae	Switzerland	>256.0	R	KPC-41	10¹	10¹
N859	Klebsiella pneumoniae	Switzerland	>256.0	R	KPC-50	10¹	10¹

(Continued on next page)
the CZA-susceptible isolates was possible only when an inoculum of \(>10^3 \) CFU/ml was used (the lower limit of detection was above the cutoff value of \(10^3 \) CFU/ml), giving rise to 100% sensitivity and specificity.

Spiked stools were also tested with the same representative collection of CZA-resistant and -susceptible Gram-negative bacteria \((n = 92)\) using this selective culture medium. Spiked fecal samples were made by adding 100 \(\mu l \) of serial 10-fold bacterial dilutions to 900 \(\mu l \) of a stool suspension. Stool suspensions were obtained by suspending 6 g of freshly pooled feces from healthy volunteers in 60 ml of distilled water as described previously \((10)\). Aliquots (100 \(\mu l \)) of the spiked stool suspension were inoculated onto the SuperCAZ/AVI medium. Aliquots (100 \(\mu l \)) of stool suspensions with no bacteria added were plated onto the SuperCAZ/AVI medium as negative controls. The lower limit of detection was below the cutoff value for all CZA-resistant strains with which stools were spiked, ranging from \(10^1 \) to \(10^2 \) CFU/ml, whereas the lower limit of detection for the CZA-susceptible strains was above the cutoff value, at \(\geq 10^6 \) CFU/ml (Table 2). Sensitivity and specificity were determined using the same cutoff value, set

Table 2 (Continued)

Category and strain	Species	Origin	MIC of CZA\(^a\) (mg/liter)	CZA susceptibility or resistance\(^b\)	Resistance determinant(s)	Lower limit of detection (CFU/ml) in:	Culture	Stools\(^c\)
R3671	Escherichia coli	USA	>128	R	KPC-2 (E. coli DH10B/pBR322 KPC-2 D179M)	\(10^2 \)	\(10^2 \)	
R3779	Klebsiella pneumoniae	Spain	128	R	KPC-3 D179Y	\(10^2 \)	\(10^2 \)	
R72	Escherichia coli	France	128	R	IMP-1	\(10^1 \)	\(10^1 \)	
R73	Klebsiella pneumoniae	France	>256	R	IMP-1	\(10^1 \)	\(10^1 \)	

Pseudomonas aeruginosa

R1553	Pseudomonas aeruginosa	France	1.5	S	None (wild type)	\(>10^6 \)	\(>10^7 \)
R2267	Pseudomonas aeruginosa	France	0.75	S	None (wild type)	\(>10^6 \)	\(>10^7 \)
N382	Pseudomonas aeruginosa	Switzerland	0.38	S	None (wild type)	\(>10^6 \)	\(>10^7 \)
N339	Pseudomonas aeruginosa	Switzerland	0.5	S	None (wild type)	\(>10^6 \)	\(>10^7 \)
N146	Pseudomonas aeruginosa	Switzerland	4	S	GES-5	\(10^6 \)	\(10^7 \)
N254	Pseudomonas aeruginosa	Switzerland	1	S	None (wild type)	\(>10^6 \)	\(>10^7 \)
N214	Pseudomonas aeruginosa	Switzerland	0.5	S	None (wild type)	\(>10^6 \)	\(>10^7 \)
R1187	Pseudomonas aeruginosa	Belgium	4	S	BEL-2	\(10^6 \)	\(10^7 \)
R1188	Pseudomonas aeruginosa	Brazil	2	S	CTX-M-2	\(>10^6 \)	\(>10^7 \)
R3451	Pseudomonas aeruginosa	France	1	S	GES-6	\(10^6 \)	\(10^7 \)
R3680	Pseudomonas aeruginosa	USA	24	R	Unknown mechanism	\(10^6 \)	\(10^7 \)
R3681	Pseudomonas aeruginosa	USA	32	R	Unknown mechanism	\(10^6 \)	\(10^7 \)
R3682	Pseudomonas aeruginosa	USA	64	R	Unknown mechanism	\(10^6 \)	\(10^7 \)
R3683	Pseudomonas aeruginosa	USA	>256	R	Unknown mechanism	\(10^6 \)	\(10^7 \)
R1308	Pseudomonas aeruginosa	France	>256	R	OXA-28	\(10^6 \)	\(10^7 \)
R1311	Pseudomonas aeruginosa	France	12	R	OXA-32	\(10^6 \)	\(10^7 \)
R609	Pseudomonas aeruginosa	Turkey	64	R	VIM-2	\(10^6 \)	\(10^7 \)
R50	Pseudomonas aeruginosa	France	24	R	VIM-2	\(10^6 \)	\(10^7 \)
R51	Pseudomonas aeruginosa	France	>256	R	VIM-2	\(10^6 \)	\(10^7 \)
R52	Pseudomonas aeruginosa	France	16	R	VIM-2	\(10^6 \)	\(10^7 \)
R54	Pseudomonas aeruginosa	France	>256	R	VIM-2	\(10^6 \)	\(10^7 \)
R598	Pseudomonas aeruginosa	France	24	R	VIM-2	\(10^6 \)	\(10^7 \)
R599	Pseudomonas aeruginosa	France	16	R	VIM-2	\(10^6 \)	\(10^7 \)
R600	Pseudomonas aeruginosa	Japan	16	R	VIM-2	\(10^6 \)	\(10^7 \)
R604	Pseudomonas aeruginosa	The Netherlands	12	R	VIM-2	\(10^6 \)	\(10^7 \)
R608	Pseudomonas aeruginosa	France	16	R	VIM-2	\(10^6 \)	\(10^7 \)
R610	Pseudomonas aeruginosa	France	32	R	VIM-2	\(10^6 \)	\(10^7 \)
N885	Pseudomonas aeruginosa	Switzerland	>256	R	NDM-1	\(10^6 \)	\(10^7 \)
N520	Pseudomonas aeruginosa	Switzerland	>256	R	NDM-1	\(10^6 \)	\(10^7 \)
N521	Pseudomonas aeruginosa	Switzerland	>256	R	NDM-1	\(10^6 \)	\(10^7 \)
R186	Pseudomonas aeruginosa	France	16	R	NDM-6	\(10^6 \)	\(10^7 \)
R2760	Pseudomonas aeruginosa	France	>256	R	NDM-1	\(10^6 \)	\(10^7 \)

\(^a\)CZA, ceftazidime-avibactam. MICs of CZA were determined using Etest.

\(^b\)R, resistant; S, susceptible.

\(^c\)Underlined CFU counts are considered negative results (cutoff values were set at \(>10^7 \) CFU/ml).
at 10^8 CFU/ml (10). Again, the sensitivity and specificity of the SuperCAZ/AVI medium for isolating CZA-resistant isolates were both 100%.

To assess the storage stability of the SuperCAZ/AVI medium, *Candida albicans* and *Staphylococcus aureus* strains, as well as the CZA-susceptible *E. coli* ATCC 25955 reference strain, were subcultured daily onto the SuperCAZ/AVI medium from a single batch of medium stored at 4°C. No growth was observed consistently for at least a 7-day period.

DISCUSSION

The SuperCAZ/AVI medium constitutes an adequate screening medium for the detection of CZA-resistant bacteria regardless of their resistance mechanisms. This SuperCAZ/AVI medium may be used for the screening of patients potentially colonized with CZA-resistant strains in order to rapidly implement infection control measures aimed at limiting their spread. This medium is also adequate for epidemiological surveys aiming to evaluate the prevalence of CZA-resistant Gram-negative bacteria in a given population. Further clinical evaluation of the proposed medium in daily clinical practice is needed. It may be useful for rapid identification of outbreaks of CZA-resistant strains, such as those reported in the United States (12) and Italy (13).

ACKNOWLEDGMENTS

We thank Luis Martinez-Martinez (Spain) and Robert Bonomo (United States) for the gifts of several CZA-resistant strains.

This work was funded by the Swiss National Science Foundation (projects FNS-407240_177381 and FNS-407240_177382).

REFERENCES

1. Nordmann P, Poirel L. 2019. Epidemiology and diagnostics of carbapenem resistance in Gram negative bacteria. Clin Infect Dis 69(Suppl 7):S521–S528. https://doi.org/10.1093/cid/ciz824.
2. Wright H, Bonomo RA, Paterson DL. 2017. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect 23:704–712. https://doi.org/10.1016/j.cmi.2017.09.001.
3. Zhanel GG, Lawson CD, Adam H, Schweizer F, Zelenitsky S, Lagacé-Wiens PRS, Denisuik A, Rubinstein E, Gin AS, Hoban DJ, Lynch JP, Karlowsky JA. 2013. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination. Drugs 73:159–177. https://doi.org/10.1007/s40265-013-0013-7.
4. Sharma R, Park TE, Moy S. 2016. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination for the treatment of resistant gram-negative organisms. Clin Ther 38:431–444. https://doi.org/10.1016/j.clinthera.2016.01.018.
5. Barnes MD, Winkler ML, Taracila MA, Page MG, Desarbre E, Kreiswirth BN, Shields RK, Nguyen M-H, Clancy C, Spellberg B, Papp-Walace KM, Bonomo RA. 2017. Këbëgiëla pneumoniae carbapenemase-2 (KPC-2), substitutions at Ambler position Asp179, and resistance to ceftazidime-avibactam: unique antibiotic-resistant phenotypes emerge from β-lactamase protein engineering. mBio 8:e00528-17. https://doi.org/10.1128/mBio.00528-17.
6. Mueller L, Masseron A, Prod’Hom G, Galperine T, Greub G, Poirel L, Nordmann P. 2019. Phenotypic, biochemical, and genetic analysis of KPC-41, a KPC-3 variant conferring resistance to ceftazidime-avibactam and exhibiting reduced carbapenemase activity. Antimicrob Agents Chemother 63:e01111-19. https://doi.org/10.1128/AAC.01111-19.
7. Poirel L, Vuillemin X, Juhas M, Masseron A, Bechtel-Grosch U, Tiziani S, Mancini S, Nordmann P. 25 May 2020. KPC-50 confers resistance to ceftazidime-avibactam associated with reduced carbapenemase activity. Antimicrob Agents Chemother https://doi.org/10.1128/AAC.00321-20.
8. Hemarajata P, Humphries RM. 2019. Ceftazidime-avibactam resistance associated with L169P mutation in the omega loop of KPC-2. J Antimicrob Chemother 74:1241–1243. https://doi.org/10.1093/jac/dkz026.
9. Wang Y, Wang J, Wang R, Cai Y. 19 December 2019. Resistance to ceftazidime-avibactam and underlying mechanisms. J Glob Antimicrob Resist 22:16–27. https://doi.org/10.1016/j.jgar.2019.12.009.
10. Nordmann P, Girlich D, Poirel L. 2012. Detection of carbapenemase producers in *Enterobacteriaceae* by use of a novel screening medium. J Clin Microbiol 50:2761–2766. https://doi.org/10.1128/JCM.06477-11.
11. EUCAST. 2020. Breakpoint tables for interpretation of MICs and zone diameters, version 10.0. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf.
12. Aitken SL, Tarrand JJ, Deshpande LM, Tverdek FP, Jones AL, Shelburne SA, Prince RA, Bhatti MM, Rolston KVI, Jones RN, Castanheira M, Chemaly RF. 2016. High rates of non-susceptibility to ceftazidime-avibactam and identification of New Delhi metallo-β-lactamase production in *Enterobacterales* bloodstream infections at a major cancer center. Clin Infect Dis 63:954–958. https://doi.org/10.1093/cid/ciw398.
13. Giani T, Antonelli A, Sennati S, Di Pilato V, Chiarelli A, Cannatelli A, Gatsch C, Luzzaro F, Spanu T, Stefani S, Rossolini GM. 2020. Results of the Italian infection-Carbapenem Resistance Evaluation Surveillance Trial (iCREST-IT): activity of ceftazidime-avibactam against Enterobacteriales isolated from urine. J Antimicrob Chemother 75:979–983. https://doi.org/10.1093/jac/dkz547.