CMV Disease in AIDS Patients: Incidence of CMV Disease and Relation to Survival in a Population-based Study from Oslo

ARNE BROCH BRANTSÆTER, KNUT LIESTØL, ANNE KRISTIN GOPLEN, OONA DUNLOP and JOHAN N. BRUUN

From the 1Department of Infectious Diseases, Ulleval University Hospital, 2Department of Informatics, University of Oslo, and 3Department of Pathology, Ulleval University Hospital, Oslo, Norway

CMV disease is an important cause of morbidity and mortality in patients with AIDS. The purpose of this study was to investigate the incidence of CMV disease in a well-defined population of AIDS patients with a high rate of autopsy. No such study has previously been published from Scandinavia. A total of 248 patients who developed clinical AIDS in Oslo during the period 1 January, 1983 to 31 December, 1995 were included. Autopsy was performed in 152 of 213 deaths (71.3%). CMV disease was diagnosed in 95 patients. In the autopsy group, 73 patients (48%) had CMV disease, and in 52 of these patients CMV disease was first detected at autopsy. Retinitis was the most frequent manifestation, followed by adenitis, pneumonitis, encephalitis and gastrointestinal disease. No intravenous drug users (IVDUs) were diagnosed alive with CMV disease. All patients diagnosed with CMV disease before death had evidence of CMV disease at autopsy despite anti-CMV treatment. CMV disease was associated with increased risk of death. We conclude that CMV disease was frequent in patients with AIDS during the study period, was associated with increased mortality and was often diagnosed too late for the administration of appropriate therapy.

A. B. Brantsæter, MD, Department of Internal Medicine, Bærum Hospital, NO-1306 Bærum, Norway

INTRODUCTION

The prevalence of CMV seropositivity is high in HIV-infected individuals, and almost all homosexuals are infected (1). CMV disease is the most common serious opportunistic viral infection in patients with AIDS (2–7), usually occurring in patients with CD4 cell counts < 0.05 × 10^9/l (2, 8, 9). Until the introduction of effective antiretroviral therapy, the incidence of CMV disease was reported to be increasing among patients with HIV infection, probably due to improved survival of patients with severe immunodepression (10, 11).

In autopsy studies, evidence of CMV disease has been reported in 38–76% of AIDS patients (3–7, 12–15). The diagnosis of CMV disease is often difficult, and there is a high rate of discordance between clinical diagnosis and post-mortem findings (4–6, 13–15). However, most of these studies suffer from possible selection bias.

In addition to causing significant morbidity and mortality due to end-organ disease, there has also been concern that CMV may induce more rapid progression of HIV infection (16–22). In vitro there is evidence that CMV can interact with, and cause, increased HIV replication, and several reports have suggested that this is also plausible in vivo (23). However, other studies of the effect of CMV seropositivity and CMV disease on the progression of HIV infection and AIDS have not found an association with the progression of HIV disease (1, 24, 25). In addition, previous studies have suggested that the development of CMV disease is a predictor of increased risk of death (14, 26, 27). The aim of this study was to investigate the incidence of CMV disease in the pre-HAART (highly active antiretroviral therapy) era in a well-defined population of AIDS patients in Scandinavia with a high rate of autopsy, and also to examine the impact of CMV seropositivity and end-organ disease on the survival of AIDS patients. No such study has previously been published from Scandinavia.

MATERIALS AND METHODS

Study population

The study population comprised patients treated at the Department of Infectious Diseases, Ulleval University Hospital, representing > 90% of adult AIDS patients in Oslo. All patients fulfilling the clinical criteria for AIDS (28) during the period 1 January 1983 to 31 December 1995 were included in this retrospective population-based study. No haemophiliac patients were included. Computerized data and patient files were used to collect information regarding demographic, HIV exposure category, laboratory results (T-cell subsets, CMV serology, biopsy and autopsy results) and the presence of CMV disease.

Laboratory methods

In the case of CMV retinitis, ante-mortem diagnosis was based on typical ophthalmoscopic findings. The characteristic histopathological features of cytomegalocytes with inclusions were required for diagnosis of all other CMV disease manifestations. Demonstration of CMV by culture of biopsies, blood or urine without histopathological verification was not accepted for diagnosis. In the autopsy group, a full autopsy including neuropathological examination was performed in each case. Paraffin-embedded sections were routinely stained with haematoxylin–eosin but immunohistochemistry for CMV was performed in a few cases of doubt to confirm CMV infection.

© 2002 Taylor & Francis. ISSN 0036-5548 DOI: 10.1080/00365540110076976
Statistical analysis

To compare groups we used 2-sample t-tests for continuous variables, χ^2 tests for categorical variables and Kaplan–Meier plots for survival (event history) type data. Cox proportional hazard regression was used to evaluate the impact of CMV disease on survival. CMV disease was then represented as a time-dependent indicator variable changing from 0 to 1 when CMV disease was diagnosed (ante-mortem). Based on repeated CD4 measurements, the times at which cell counts dropped below $0.1 \times 10^9/l$ and $0.05 \times 10^9/l$ were estimated for each patient. This information was used to define additional time-dependent covariates in the Cox analysis.

RESULTS

Study population

A total of 248 patients were included. Characteristics of the study population are presented in Table I. Autopsy was performed in 152 patients (71.3%). Tissue was taken from all internal organs except for the gastrointestinal tract in 47 patients, adrenal glands in 35 patients and eyes in 21 patients. An average of 40–50 sections were taken per autopsy. The autopsy and non-autopsy groups were similar, except for longer survival from AIDS in the non-autopsy group.

CMV disease was the first AIDS-defining diagnosis in 13 patients (6.1%) who died during the study period (7 diagnosed at autopsy, 6 ante-mortem). In addition, 2 patients with CMV disease as their initial AIDS-defining diagnosis were alive at the end of the study period.

CMV serology

The results of CMV serological testing are shown in Table II. With 1 exception, all tested homosexuals were CMV IgG-positive. The difference between homosexuals and intravenous drug users (IVDUs) was highly significant ($p < 0.0001$).

Incidence of CMV disease

Ninety-five of 248 patients with AIDS developed CMV disease during the study period (Fig. 1). CMV disease was diagnosed in 73 of 152 autopsies (48%), but only 21 of these patients (14%) had a known diagnosis of CMV disease ante-mortem. In 61 non-autopsy deaths, CMV disease was diagnosed in 16 cases (26%). When taking the longer survival of patients in the non-autopsy group into account, there was no difference in the incidence of CMV disease before death between the 2 groups (Fig. 2).

All patients with an ante-mortem diagnosis of CMV disease also had evidence of CMV disease at autopsy. With the exception of 2 patients who died before ganciclovir or foscarnet were available, all patients with CMV disease diagnosed before death received anti-CMV therapy for variable lengths of time.

Among patients in the autopsy group, there was a rising incidence of CMV disease from 39% to 51% when comparing deaths during the period 1983–89 to those during the period 1990–95. Survival from onset of AIDS to death was 190 and 432 d during the early and later periods, respectively, and this difference may explain the rise in the incidence of CMV disease.

End-organ disease

Retinitis was the most frequent manifestation of CMV disease, closely followed by adrenalitis (Table III). Thirty-two patients were diagnosed with retinitis ante-mortem. All diagnoses of adrenalitis and encephalitis were made at autopsy, as histopathological confirmation was required for diagnosis, and biopsies of these organs were not performed. In this study only 14 of 20 patients with encephalitis had a previous or concomitant diagnosis of retinitis.

| Table I. Characteristics of the study population. Values shown are incidences, with percentages in parentheses |
|---|-----------------|-----------------|-----------------|
Characteristic	Died during study period ($n = 213$)	Autopsy group ($n = 152$)	Non-autopsy group ($n = 61$)	Total number of patients ($n = 248$)
Exposure category				
Homosexual	169 (68)	107 (70.4)	41 (67.2)	169 (68)
IVDU	41 (17)	27 (17.8)	7 (11.5)	41 (17)
Other	38 (15)	18 (11.8)	13 (21.2)	38 (15)
Age at AIDS diagnosis (y)	38.5	36.6	38.5	38.5
Male sex	219 (88.3)	139 (91.4)	51 (83.6)	219 (88.3)
CMV seroprevalence a				
IgG-positive	222 (92.9)	140 (94.0)	55 (93.2)	222 (92.9)
IgG-negative	17 (7.1)	9 (6.0)	4 (6.8)	17 (7.1)
No. of patients receiving antiretroviral treatment	183 (73.8)	101 (66.4)	49 (80.3)	183 (73.8)
Median survival from AIDS (d)	409	275	509	409

a Percentage of tested patients.
Table II. **CMV serological results according to HIV exposure category in 248 patients with AIDS. Values shown are incidences, with percentages in parentheses**

Exposure category	Homosexual a	IVDU a	Other a	Total
CMV IgG				
Positive	166 (99.4%)	27 (71.1)	29 (83.3)	222 (92.9)
Negative	1 (0.6%)	11 (28.9)	5 (16.7)	17 (7.1)
Not tested	2	3	4	9
Total	169	41	38	248

a Percentage of tested patients.

In the autopsy group, homosexuals had a significantly ($p < 0.05$) higher incidence of CMV disease (55/107) compared to IVDUs (7/27). However, this difference was not significant when restricting the analysis to CMV IgG-positive individuals (55/105 and 7/19 in homosexuals and IVDUs, respectively). No patients with intravenous drug use as the only risk factor for HIV infection were diagnosed alive with CMV disease. Only 1/7 IVDUs with CMV disease at autopsy had retinitis. There was a strong trend ($p = 0.07$) towards lower incidence of CMV retinitis among IVDUs (1/19) compared to homosexuals (27/105) among CMV IgG-positive individuals.

T lymphocytes

Patients with CMV disease at autopsy had significantly ($p < 0.001$) lower final mean CD4 cell counts ($0.031 \times 10^9/\ell$) compared to patients without CMV disease ($0.101 \times 10^9/\ell$). There was no significant difference in the time from last CD4 cell count to death between these groups. Final CD4 cell counts were significantly ($p < 0.05$) higher during the period 1983–89 ($0.149 \times 10^9/\ell$) than during the period 1990–95 ($0.044 \times 10^9/\ell$). Again, there was no significant difference in the time from last CD4 cell count to death between these periods. Similarly, patients with CMV disease at autopsy had lower final CD8 cell counts ($0.368 \times 10^9/\ell$) than patients who died without CMV disease ($0.602 \times 10^9/\ell$), but this difference was not statistically significant.

Survival from AIDS according to CMV serology and CMV disease

For the total population there was no significant difference in survival from AIDS between patients who were seropositive or seronegative for CMV.

In a time-dependent Cox regression analysis, where CMV disease diagnosed before death was handled as a time-dependent covariate, CMV disease was found to be a significant risk factor, with a relative risk for death of 1.50 (Table IV).

DISCUSSION

This is the first population-based report of the incidence of CMV disease in Scandinavian AIDS patients. Haemophiliacs were excluded, but in other respects the study population is representative of adult patients with AIDS in Oslo. An autopsy rate of 71.3% is the highest reported to our knowledge, with the exception of highly selected populations.

The autopsy and non-autopsy groups were similar, with the exception of longer survival from AIDS in the latter group. Two factors contribute to this difference. Firstly, there was a lower autopsy rate in the last part of the study period when survival was longer. Secondly, long-term survivors and their next of kin had an increased tendency to refuse autopsy. Longer survival from AIDS is a known risk factor for CMV disease, explaining the higher incidence of

Table III. **Incidence of CMV end-organ disease**

CMV manifestation	Autopsy group ($n = 152$)	Total deaths ($n = 213$)		
	Diagnosed alive	Diagnosed alive and/or post-mortem	Diagnosed alive	Diagnosed alive and/or post-mortem
Retinitis	17	34	32	49
Adrenalitis	0	43	0	43
Pneumonitis	2	34	3	35
Encephalitis	0	24	0	24
Gastrointestinal	5	16	9	20
Miscellaneous	1	9	3	11
Any manifestation	21	73	37	89
CMV disease diagnosed in alive patients in the non-autopsy group. The incidence of CMV disease in the autopsy group may therefore underestimate the “true” incidence that would have been expected if autopsy had been carried out on all deceased patients. However, as the autopsy group included > 70% of the population, this difference is most likely moderate.

In the autopsy group, we found evidence of CMV disease in almost half of the patients. In accordance with previous studies (4–6, 12–15), CMV disease was often first diagnosed at autopsy. This underscores the danger of grossly underestimating the incidence of CMV disease in studies with low autopsy rates, as well as the need for better diagnostic methods. Certain advances have already been made since the end of the study period, such as the use of PCR to detect CMV in cerebrospinal fluid and blood (29–32).

Retinitis was the most common CMV manifestation. This is in agreement with several other reports (14, 33, 34). Interestingly, over one-third of retinitis patients who died were first diagnosed at autopsy. Routine ophthalmoscopy of AIDS patients with low CD4 cell counts has been proposed. However, the effect of early detection and treatment of asymptomatic retinitis on survival and relapse has not been evaluated (35), and routine ophthalmoscopy is not common practice at our centre. Fourteen of 20 patients with CMV encephalitis had concomitant retinitis, and this association is weaker than that previously reported (36). This may be due to the higher total number of encephalitis cases in our study and possible under-reporting of retinitis.

Table IV. *Relative risk of death (estimated from Cox regression)*

Variable	Risk ratio (95% confidence interval)
Gender (male)	1.03 (0.65–1.62)
Age (10-y increments)	1.15 (0.99–1.35)
Later period *	0.78 (0.57–1.05)
CMV disease diagnosed alive	1.50 (1.02–2.20)
CD4 cells < 0.10 × 10⁹/l	1.25 (0.76–2.07)
CD4 cells < 0.05 × 10⁹/l	1.97 (1.25–3.07)

* Diagnosed with AIDS during 1983–89 vs. 1990–95.

Fig. 1. CMV disease in AIDS patients who died and patients who were still alive at the end of the study period 1983–95. CMV = CMV disease.

Fig. 2. Probability of CMV-free survival from time of AIDS diagnosis in the autopsy and non-autopsy groups.
as histopathological examination of the eyes of all patients was not performed.

In this study, all patients with CMV disease diagnosed ante-mortem had some manifestation of CMV disease at autopsy despite therapy with ganciclovir and/or foscarnet. This clearly indicates the inadequacy of conventional therapy. HAART has been shown to prevent reactivation of CMV in those responding to HIV therapy, but it remains to be demonstrated whether this will also influence histopathological evidence of CMV disease at autopsy. Certainly in patients not responding satisfactorily to antiretroviral treatment, more effective anti-CMV therapy is needed.

In agreement with previous reports (10, 11), we found an increasing incidence of CMV disease in AIDS patients in the period before effective combination therapy. This is probably due to the longer survival of patients with immunodeficiency in later years. However, during recent years, and in parallel with more effective HIV therapy, the incidence of CMV has stabilized and even decreased (33, 37–40). One recent autopsy-based study (7) also reported a decreasing incidence of CMV disease. Whether this is just a transient situation remains to be seen.

Homosexuals are known to have significantly higher rates of seropositivity for CMV compared to IVDUs, and this was confirmed in our study. This is probably because sexual exposure is a risk factor for infection with both HIV and CMV. Also, in accordance with previous studies (14, 26, 33), we found the incidence of total CMV disease to be higher in homosexuals than in IVDUs. However, this difference was not significant when considering only CMV IgG-positive individuals in whom autopsy was performed. Interestingly, no IVDUs were diagnosed with CMV disease ante-mortem.

CMV disease was the first AIDS-defining diagnosis in 13 cases (61%). This is similar to the incidence of 6.9% reported by the CDC for the period 1992–97 (33) but lower than the 9.5% reported by d’Arminio et al. (14).

It has previously been shown that a low CD4 cell count is a predictor for CMV disease (8, 14). Our study also shows that patients with CMV disease at autopsy had significantly lower CD4 cell counts than other patients. There was a non-significant trend towards the same effect when considering CD8 cell counts prior to death, as was previously shown in patients with CMV retinitis (9, 41, 42). As previously demonstrated (26), we found CMV disease to be a predictor of increased risk of death (14, 27) irrespective of treatment.

The majority of AIDS patients in Oslo, as in the rest of the world, are infected with CMV, a cause of significant morbidity and mortality in these patients. In this population-based study, CMV disease was frequently diagnosed too late for appropriate therapy to be given. Despite CMV treatment, evidence of CMV disease was nevertheless found at autopsy in all cases. HAART has proven effective in reducing the incidence of CMV disease in patients responding to treatment, but many are still at risk of developing CMV disease. There is a continuing need for improvements in diagnosis and therapy, and in an ongoing study we are looking into the predictive value of quantitative CMV PCR for diagnosing the development of CMV disease.

REFERENCES

1. Jackson JB, Erice A, Englund JA, Edson JR, Balfour HH Jr. Prevalence of cytomegalovirus antibody in hemophiliacs and homosexuals infected with human immunodeficiency virus type 1. Transfusion 1988; 28: 187–9.

2. Moore RD, Chiasson RE. Natural history of opportunistic disease in an HIV-infected urban clinical cohort. Ann Intern Med 1996; 124: 633–42.

3. Lyon R, Haque AK, Asmuth DM, Woods GL. Changing patterns of infections in patients with AIDS: a study of 279 autopsies of prison inmates and nonincarcerated patients at a university hospital in eastern Texas, 1984–1993 [see comments]. Clin Infect Dis 1996; 23: 241–7.

4. Afessa B, Greaves W, Green W, Olopela N, Delapenha R, Saxinger C, et al. Autopsy findings in HIV-infected inner-city patients. J Acquir Immune Defic Syndr 1992; 5: 132–6.

5. d’Arminio MA, Vago L, Lazzarin A, Boldorini R, Bini T, Guzzetti S, et al. Aids-defining diseases in 250 HIV-infected patients: a comparative study of clinical and autopsy diagnoses. AIDS 1992; 6: 1159–64.

6. Wilkes MS, Fortin AH, Felix JC, Godwin TA, Thompson WG. Value of necropsy in acquired immunodeficiency syndrome. Lancet 1988; 2: 85–8.

7. Masliah E, DeTeresa RM, Mallory ME, Hansen LA. Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS 2000; 14: 69–74.

8. Pertel P, Hirschtick R, Phair J, Chmiel J, Poggensee L, Murphy R. Risk of developing cytomegalovirus retinitis in persons infected with the human immunodeficiency virus. J Acquir Immune Defic Syndr 1992; 5: 1069–74.

9. Fiala M, Kermani V, Gornbein J. Role of CD8+ in late opportunistic infections of patients with AIDS. Res Immunol 1992; 143: 903–7.

10. Selik RM, Chu SY, Ward JW. Trends in infectious diseases and cancers among persons dying of HIV infection in the United States from 1987 to 1992 [see comments]. Ann Intern Med 1995; 123: 933–6.

11. Hoover DR, Saah AJ, Bacellar H, Phair J, Detels R, Anderson R, et al. Clinical manifestations of AIDS in the era of pneumocystis pneumonia. Multicenter AIDS Cohort Study. N Engl J Med 1993; 329: 1922–6.

12. Dore GJ, Marriott DJ, Dulou JA. Clinico-pathological study of cytomegalovirus (CMV) in AIDS autopsies: under-recognition of CMV pneumonitis and CMV adrenalitis. Aust N Z J Med 1995; 25: 503–6.

13. Hofman P, Saint-Paul MC, Battagline V, Michels JF, Louibiere R. Autopsy findings in the acquired immunodeficiency syndrome (AIDS). A report of 395 cases from the south of France. Pathol Res Pract 1999; 195: 209–17.

14. d’Arminio MA, Mainini F, Testa L, Vago L, Balotta L, Nebuloni M, et al. Predictors of cytomegalovirus disease, natural history and autopsy findings in a cohort of patients with AIDS. AIDS 1997; 11: 517–24.

15. Pillay D, Lipman MC, Lee CA, Johnson MA, Griffiths PD, McLaughlin JE. A clinico-pathological audit of opportunistic
CMV disease in AIDS

viral infections in HIV-infected patients. AIDS 1993; 7: 969–74.

16. Griffiths PD. Studies to define viral cofactors for human immunodeficiency virus. Infect Agents Dis 1992; 1: 237–44.

17. Webster A. Cytomegalovirus as a possible cofactor in HIV disease progression. J Acquir Immune Defic Syndr 1991; 4 (Suppl 1): S47–52.

18. Sabin CA, Devereux HL, Clewley G, Emery VC, Phillips AN, Loveday C, et al. Cytomegalovirus seropositivity and human immunodeficiency virus type 1 RNA levels in individuals with hemophilia. J Infect Dis 2000; 181: 1800–3.

19. Karlsson A, Bratt G, von Krogh G, Morfeldt-Manson L, Bottiger B, Sandstrom E. A prospective study of 115 initially asymptomatic HIV infected gay men in Stockholm, Sweden. Scand J Infect Dis 1991; 23: 431–41.

20. Sabin CA, Phillips AN, Lee CA, Janossy G, Emery V, Griffiths PD. The effect of CMV infection on progression of human immunodeficiency virus disease in a cohort of haemophilic men followed for up to 13 years from seroconversion. Epidemiol Infect 1995; 114: 361–72.

21. Sinicco A, Raiteri R, Scandra M, Dassio G, Bechis G, Maiello A. The influence of cytomegalovirus on the natural history of HIV infection: evidence of rapid course of HIV infection in HIV-positive patients infected with cytomegalovirus. Scand J Infect Dis 1997; 29: 543–9.

22. Griffiths PD. Herpesviruses and AIDS. Scand J Infect Dis Suppl 1996; 100: 3–7.

23. Griffiths PD. Studies of viral co-factors for human immunodeficiency virus in vitro and in vivo. J Gen Virol 1998; 79: 213–20.

24. Shepp DH, Moses JE, Kaplan MH. Seroepidemiology of cytomegalovirus in patients with advanced HIV disease: influence on disease expression and survival. J Acquir Immune Defic Syndr Hum Retrovirol 1996; 11: 460–8.

25. Rabkin CS, Hatzakis A, Griffiths PD, Pillay D, Ragni MV, Hilgartner MW, et al. Cytomegalovirus infection and risk of AIDS in human immunodeficiency virus-infected hemophilia patients. National Cancer Institute Multicenter Hemophilia Cohort Study Group. J Infect Dis 1993; 168: 1260–3.

26. Gallant JE, Moore RD, Richman DD, Keruly J, Chaisson RE. Incidence and natural history of cytomegalovirus disease in patients with advanced human immunodeficiency virus disease treated with zidovudine. The Zidovudine Epidemiology Study Group [see comments]. J Infect Dis 1992; 166: 1223–7.

27. Chaisson RE, Gallant JE, Keruly JC, Moore RD. Impact of opportunistic disease on survival in patients with HIV infection. AIDS 1998; 12: 29–33.

28. 1993 Centers for Disease Control and Prevention. Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Morb Mortal Wkly Rep 1992; 41(RR-17): 1–19.

29. Rasmussen L, Morris S, Zipeto D, Fessel J, Wolitz R, Dowling A, et al. Quantitation of human cytomegalovirus DNA from peripheral blood cells of human immunodeficiency virus-infected patients could predict cytomegalovirus retinitis. J Infect Dis 1995; 171: 177–82.

30. Rasmussen L, Zipeto D, Wolitz RA, Dowling A, Efron B, Merigan TC. Risk for retinitis in patients with AIDS can be assessed by quantitation of threshold levels of cytomegalovirus DNA burden in blood. J Infect Dis 1997; 176: 1146–55.

31. Dodt KK, Jacobsen PH, Hofmann B, Meyer C, Kolmos HJ, Skinhøj P, et al. Development of cytomegalovirus (CMV) disease may be predicted in HIV-infected patients by CMV polymerase chain reaction and the antigenemia test. AIDS 1997; 11: F21–8.

32. Spector SA, Hsia K, Crager M, Pilcher M, Cabral S, Stempjen MJ. Cytomegalovirus (CMV) DNA load is an independent predictor of CMV disease and survival in advanced AIDS. J Virol 1999; 73: 7027–30.

33. Surveillance Centers for Disease Control and Prevention for AIDS-defining opportunistic illnesses 1992–1997. MMWR Morb Mortal Wkly Rep 1999; 48(SS-2): 1–22.

34. Saillour F, Bernard N, Ragnaud JM, Morlat P, Blanchard Y, Monlun E, et al. Incidence of cytomegalovirus disease in the Aquitaine cohort of HIV-infected patients: a retrospective survey, 1987-1993. Groupe d'Epidemiologie Clinique du SIDA en Aquitaine (GECSA). J Infect 1997; 35: 155–61.

35. Whitley RJ, Jacobson MA, Friedberg DN, Holland GN, Jabs DA, Dieterich DT, et al. Guidelines for the treatment of cytomegalovirus diseases in patients with AIDS in the era of potent antiretroviral therapy: recommendations of an international panel. International AIDS Society—USA. Arch Intern Med 1998; 158: 957–69.

36. Byslma SS, Achim CL, Wiley CA, Gonzalez C, Kuppermann BD, Berry C, et al. The predictive value of cytomegalovirus retinitis for cytomegalovirus encephalitis in acquired immunodeficiency syndrome. Arch Ophthalmol 1995; 113: 89–95.

37. Brodt HR, Kamps BS, Gute P, Knupp B, Staszewski S, Helm EB. Changing incidence of AIDS-defining illnesses in the era of antiretroviral combination therapy. AIDS 1997; 11: 1731–8.

38. Mocroft A, Sabin CA, Youle M, Madge S, Tyrer M, Devereux H, et al. Changes in AIDS-defining illnesses in a London Clinic, 1987-1998. J Acquir Immune Defic Syndr 1999; 21: 401–7.

39. Casado JL, Arrizabalaga J, Montes M, Marti-Belda P, Tural C, Pinilla J, et al. Incidence and risk factors for developing cytomegalovirus retinitis in HIV-infected patients receiving protease inhibitor therapy. Spanish CMV-AIDS Study Group. AIDS 1999; 13: 1497–502.

40. Moore RD, Chaisson RE. Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS 1999; 13: 1933–42.

41. Lodwer CY, Butler CP, Dodds EM, Secic M, Recillas-Gispert C. CD8+ T lymphocytes and cytomegalovirus retinitis in patients with the acquired immunodeficiency syndrome [see comments]. Am J Ophthalmol 1995; 120: 283–90.

42. Tay-Kearney ML, Enger C, Semma RD, Royal W III, Dunn JP, Jabs DA. T cell subsets and cytomegalovirus retinitis in human immunodeficiency virus-infected patients. J Infect Dis 1997; 176: 790–4.