Determination of optimal location and capacity of distributed generations based on artificial bee colony

F Ratuhaji\(^1,2,b\), A Arief\(^1,2,a\) and M B Nappu\(^1,2,c\)

\(^1\)Centre for Research and Development on Energy and Electricity, Hasanuddin University, Makassar 90245, Indonesia
\(^2\)Power and Energy Systems Research Group, Department of Electrical Engineering, Faculty of Engineering, Hasanuddin University, Gowa 92119, Indonesia
\(^a\)ardiaty@eng.unhas.ac.id; \(^b\)faruqratuhaji@gmail.com; \(^c\)bachtiar@eng.unhas.ac.id

Abstract. This study aims at giving descriptive computation of determining the optimal location and capacity of Distributed Generation (DG) for the compensation of active and reactive power on the electric power system using Artificial Bee Colony and minimizing the power losses. It employed the IEEE 34-Bus Reliability Test System (RTS) as the case study focusing on the determination of the location and capacity of Distributed Generation using Artificial Bee Colony algorithm. The data analysis shows that the placement of DG on the IEEE 34-bus system employing ABC can reduce the real power losses and the real power losses at the optimal location and capacity is minimum.

1. Introduction
The needs of electrical energy as a source of energy to support all human activities have increased over time. It comes on the surface, that this is due to lifestyle changes and equipment used in carrying out the all life activities which absorbing large amounts of electricity. The consumer demand for electrical energy would have to be covered by the amount of electric power generated by the power system and electricity network capabilities. However, the fact remains that, at the moment, the load demand is not, directly proportional to the availability of electrical power and network capabilities. There are issues that need specific attention concerning electrical energy distribution, namely voltage drop, low power factor, and power losses [1, 2]. It is well understandable that the load on the power grid can be capacitive or inductive or both. Nevertheless, in the distribution network, of the high inductive load generally indicates the higher the conditions of reactive power peak load and inductive load will increasingly affect the voltage drop, enlarge power losses, and lower the power factor [3]. In electrical power distribution system, bus voltage can decrease when power flows from electrical substation directly to consumers [4]. Low voltage can happen in every part of the systems and it will change as the load flow. In regard to this matter, several studies have shown that at the distribution level, approximately 10-13% of the total power generated was power losses that would result in the increase in energy costs and a poor voltage profile [1, 2].

One of the advance methods commonly used to improve the voltage stability of the power system is the appropriate placement of Distributed Generation (DG). DG is a small capacity power plant located on the electricity distribution system, which is usually placed on the buses that relate directly to the load. The installation of DG has several advantages, namely it increases the efficiency and
reliability of the system and improves power quality and voltage levels [5-7]. However, it also raises some drawbacks, such as it increases the number of short-circuit current source in the event of disruption in the system [8]. The placement and capacity size of DG can be said to be optimal if it is able to add the active and reactive power to the system, minimize power losses, and maintain the voltage level at normal conditions [5]. Therefore, an advance method is essential to solve the problems on the optimization of the location and capacity of the DG.

Optimization method used in this study is a metaheuristic method called Artificial Bee Colony (ABC). ABC is an optimization method inspired by the behavior of honey bees in searching for food which was firstly introduced by Karaboga in 2005 [9]. ABC algorithm has 4 advantages compared with other optimization methods, namely the concept and easy implementation, the few parameter used, very simple and flexible [9].

2. Distributed Generations

Based on some reviews of related literature, Distributed Generation (DG) can be defined as follows:

- International Council on Large Electricity Systems (CIGRE) defines DG as the generating unit with a maximum capacity of 50 MW to 100 MW, which is usually connected to the distribution net [10, 11],
- Institute of Electrical and Electronics Engineers (IEEE) defines DG as the generation of electrical energy with smaller equipment of power plants so as to enable their interconnection center in every point on the electric power system [12],
- The International Energy Agency (IEA) defines DG as an electric power generating unit to consumers and supplying electric power directly to the local distribution net [13].

DG has two main functions, they are: (1) it is a unit to anticipate the occurrence of disconnection of the power supply grid or stand-by units and (2) it is a unit supplying power in the peak hour load or peaking units. In addition, the installation of DG in the distribution network can improve the reliability of the electric power system since the DG is placed close to the load area [14]. Table 1 informs the classification of DG based on the characteristics of the active and reactive power generation

DG Type	Description
Type 1	able to inject the active power
Type 2	able to inject active and reactive power
Type 3	able to inject active power and absorb reactive power

3. The Proposed Methodology

In conjunction with the above mentioned issues, the researchers in this work used Artificial Bee Colony (ABC) method as an alternative solution to solve the determination of the optimal location and capacity of DG.

3.1 Power Flow Analysis

Power flow analysis is not only necessary in planning the electric power system in the future but also it is the basis for the study of power system[15]. The fundamental information obtained from the power flow study is power that flows in the form of active power (P) and reactive power (Q) from generation through transmission lines up to the load side. There are 4 purposes of power flow studies [16] as follows: knowing the characteristics of power flow as the effect of variations in load and losses in transmission lines, knowing the voltages at each node (bus) that exist in the system, knowing all the equipment specifications meet the specified boundaries to deliver the desired power and obtaining the initial condition on the planning of the new system.

The problem is the power flow calculation of the voltage and phase point at every bus in the power system with 4 conditions as follows [17]: three-phase system is balanced if the condition is steady-
state and the system is stable sinusoidal; transmission network consists of constant, linear, and centralized branches; active and reactive power demand on each bus (load) and power plants are specified in each bus (generator) except for one bus generator.

To solve the problem of power flow, there are three the most common iteration methods used, namely the Gauss-Seidel method, Newton-Raphson method, and Fast Decoupled method [18]. In the process of installation of DG on the distribution system, it needs to know two things, they are the power flow in the distribution system and the similarities in the power flow analysis problems that is a nonlinear equation and it must be solved using iterative methods [19].

3.2 Artificial Bee Colony (ABC) Algorithm

ABC Algorithm is a type of artificial intelligence or artificial intelligent (AI) method seeking the optimal value by reflecting on the behaviour of bee colonies in looking for nectars (flowers). It is assumed that the ability of bee colonies to determine the food sources is divided into three groups, which are employees, onlookers and scouts. The employees’ job is to find the food source and calculates the nectar. They provide information for onlookers by flying on dance area functioning as a meeting place for the bees. The onlookers are in charge of receiving information about the quality of the food source and choose the best one. The food source having more nectars has a greater chance to be selected by onlookers. After that, the employees in each food source then find another new food source in the neighbourhood. In the process of searching for a new source of food, the employees turned into scouts [20]. The three groups of bees perform task to determine the location and magnitude of a nectar, considering and comparing with other sources, which in turn they select a location with the most optimal source of nectar [21].

There are six major steps in solving optimization problems using ABC algorithm as follows [22]:

1. Initializing the position of the food source.
2. Moving the employees towards the food sources and determining the amount of nectar. For each employee, a new food source is generated by using the following formula:

 \[x'_{ij} = x_{ij} + \varphi_{ij} (x - x_{kj}) \]

3. Moving the onlookers towards the food sources and determining the amount of nectar. In this step, the onlookers choose a food source by using the probability calculation and obtaining a new food source in the area of chosen food source using the following formula:

 \[P_i = \frac{\text{Fitness}_i}{\sum_{k=1}^{n} \text{Fitness}_k} \]

4. Determining the remaining food source to be abandoned and allocating the employees as the scout bee to find new food sources randomly using the following formula:

 \[X'_i = X_{\text{min}}^j + \text{rand}[0,1] (X_{\text{max}}^j - X_{\text{min}}^j) \]

5. Recording the best food sources that have been found
6. Repeating steps 2-5 until the desired criteria are met.

4. Results and Discussions

This research employs the IEEE 34-bus system as case study where the study was focusing on the determination of the optimal location and capacity of DG type 1 and type 2 by using ABC algorithm. The single line diagram system the IEEE 34-bus is shown in Fig. 1 with maximum active power of 3.805 MW, reactive power of 2.34 MVar, losses of 22.18 kW and the minimum voltage is 0.9421 p.u. at the observed bus#27 [23].
The results of simulations inform the optimal location and capacity for DG type 1 and DG type 2. Fig. 2 provides information on total power losses for DG type 1 placement. The best location for DG type 1 placement is bus#32 with optimal capacity of 500 kW and resulting in the lowest network losses of 168.24 kW with reduction of 23.93%. Fig. 3 shows the losses information for DG type 2 placement. It confirms that best location for this type of DG is at bus#30. The optimal capacity for DG type 2 is also 500 kW. With the placement of this DG, the losses drop to 133.96 kW with the reduction percentage of 39.43%. Table 2 and 3 inform the total power losses for each placement.

Figure 1. Single line diagram of the IEEE 34-bus radial distribution system

Figure 2. Total Real Power Losses for DG Type 1 Placement

Figure 3. Total Real Power Losses for DG Type 2 Placement

5. Conclusions
The simulation results in this study with the IEEE 34-bus system have shown that the optimal capacity for both DG type 1 and type 2 is 500 kW. Whereas the optimal location by using Artificial Bee Colony for DG type 1 is bus#32 and for DG type 2 is bus#30 and both placement show the smallest network losses.

References
[1] Kowsalya, M. Optimal Distributed Generation and capacitor placement in power distribution networks for power loss minimization. in Advances in Electrical Engineering (ICAEE), 2014 International Conference on. 2014. IEEE.

[2] Esmaeilian, H.R. and R. Fadaeinjad, Distribution system efficiency improvement using network reconfiguration and capacitor allocation. International Journal of Electrical Power & Energy Systems, 2015. 64: p. 457-468.
[3] Arief, A., M.B. Nappu, and Antamil, Analytical Method For Reactive Power Compensators Allocation. International Journal of Technology, 2018. 9(3): p. 602-612.

[4] Nappu, M.B., M.I. Bachtiar, and A. Arief. Network losses reduction due to new hydro power plant integration. in 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE). 2016. IEEE.

[5] Elnashar, M.M., R. El Shatshat, and M.M. Salama, Optimum siting and sizing of a large distributed generator in a mesh connected system. Electric Power Systems Research, 2010. 80(6): p. 690-697.

[6] Gözel, T. and M.H. Hocaoglu, An analytical method for the sizing and siting of distributed generators in radial systems. Electric Power Systems Research, 2009. 79(6): p. 912-918.

[7] Arief, A. and M.B. Nappu. DG placement and size with continuation power flow method. in 2015 International Conference on Electrical Engineering and Informatics (ICEEI). 2015. IEEE.

[8] Arief, A., et al., Under voltage load shedding in power systems with wind turbine-driven doubly fed induction generators. Electric Power Systems Research, 2013. 96: p. 91-100.

[9] Karaboga, D., An idea based on honey bee swarm for numerical optimization. 2005, Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.

[10] CIGRE, W., 37-23: Impact of increasing contribution of dispersed generation on the power system—Final Report. Electra, September, 1998.

[11] Nappu, M.B., A. Arief, and M.I. Bachtiar. Strategic Placement of Capacitor and DG for Voltage Improvement after Large Penetration of Renewable Energy Power Plant: An Indonesian Study. in 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA). 2018. IEEE.

[12] Ackermann, T., G. Andersson, and L. Soder. Electricity market regulations and their impact on distributed generation. in DRPT2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Proceedings (Cat. No. 00EX382). 2000. IEEE.

[13] IEA, I.E.A., World Energy Statistical. 2012.

[14] Viawan, F., Steady state operation and control of power distribution systems in the presence of distributed generation. 2006.

[15] Nappu, M.B., A. Arief, and R.C. Bansal, Transmission management for congested power system: A review of concepts, technical challenges and development of a new methodology. Renewable and Sustainable Energy Reviews, 2014. 38: p. 572-580.

[16] Sulaso, I., Analisis Sistem Tenaga Listrik. Edisi kedu, Badan Penerbit Universitas Diponegoro, Semarang, 2001.

[17] Deng, J.-J. and H.-D. Chiang, Convergence region of Newton iterative power flow method: Numerical studies. Journal of Applied Mathematics, 2013. 2013.

[18] Multa, L., Restu Prima Aridani. (2013). Modul Pelatihan ETAP. Yogyakarta: Universitas Gadjah Mada.

[19] Hizbullah, A.Z., I. Robandi, and S. Anam, Penempatan dan Penentuan Kapasitas Optimal Distributed Generator Menggunakan Artificial Bee Colony. Jurnal Teknik ITS, 2012. 1(1): p. B16-B21.

[20] Sundar, S. and A. Singh, A swarm intelligence approach to the quadratic minimum spanning tree problem. Information Sciences, 2010. 180(17): p. 3182-3191.

[21] Wahid, A. and D. SubhraChandanBehera, Artificial Bee colony and its Application: An Overview. International Journal of Advanced Research in Computer Engineering & Technology (IJARCEt), 2015. 4(4).

[22] Karaboga, D. and B. Akay. Artificial bee colony (ABC), harmony search and bees algorithms on numerical optimization. in Innovative production machines and systems virtual conference. 2009.

[23] Biswas, S., S.K. Goswami, and A. Chatterjee, Optimum distributed generation placement with voltage sag effect minimization. Energy Conversion and Management, 2012. 53(1): p. 163-174.