Response of Leaf Photosynthesis to Vapor Pressure Difference in Rice (Oryza sativa L) Varities in Relation to Stomatal and Leaf Internal Conductance

Akihiro Ohsumi 1*, Akihiro Hamasaki 1, Hiroshi Nakagawa 2, Koki Homma 1, Takeshi Horie 1 and Tatsuhiko Shiraiwa 1

(1) Division of Agronomy, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan;
(2) Ishikawa Prefectural University, Nonoichi, Ishikawa-gun, Ishikawa 921-8836, Japan)

Abstract: In the afternoon when air humidity decreases, leaf photosynthetic rate (Pn) often declines in rice grown under irrigated conditions. To clarify the genotypic difference of Pn in response to humidity, we measured Pn and stomatal conductance (gs) for nine rice varieties with diverse genetic backgrounds, at various vapor pressure differences (VPD) and developmental stages. Pn and gs of all the varieties decreased with VPD increase from 1.0 to 2.3 kPa of VPD. The variety with high gs at low VPD exhibited a greater decline of gs with VPD increase than the variety with low gs, but cv. Takanari showed the highest gs under altered VPD conditions. Significant logarithmic relations were found between the decreased Pn and gs at the respective developmental stages, suggesting that gs is the dominant factor determining Pn and its response to VPD change. To explicate the effect of decreased gs on Pn, we analyzed the relations by using the model that accurately estimated the genotypic difference in Pn at a low VPD with gs and leaf nitrogen content per unit leaf area in the previous study. The model assuming that leaf internal conductance (gw) remains unchanged well explained the decreased Pn at high VPDs by gs change alone. The analysis also suggested the constancy of gw and carboxylation capacity at high VPD. It is concluded that the genotypic difference in the decrease of Pn at a high VPD is brought mainly by that in decreased gs, and the varieties with a high gs always exhibit a high Pn owing to their relatively high gs at either high or low VPD environments.

Key words: Genotypic difference, Internal conductance, Leaf photosynthesis, Rice (Oryza sativa L), Stomatal conductance, Vapor pressure difference (VPD).

Improvement of yield potential of rice (Oryza sativa L) is a major concern for Asian food security. As a consequence of breeding rice cultivars for a higher yield potential, recent high-yielding cultivars commonly possess large sink size. However, the yield of these cultivars has been reported to be restricted by carbohydrate accumulates available for grain filling due to their large sink size (Kusutani et al., 1999; Nagata et al., 2001). This suggests that improvement of biomass productivity can stabilize the yields of high-yielding rice.

Photosynthesis is influenced by various environmental factors such as temperature, irradiance and air humidity (Singh and Sasahara, 1981; Brooks and Farquhar, 1985; Makino et al., 1988). Decreased humidity in the fine afternoon causes midday depression of leaf photosynthetic rate (Pn, μmol m⁻² s⁻¹) even in rice grown under well-irrigated conditions, although increased atmospheric vapor pressure deficit does not usually exceed 2.0 kPa in Japan (Hirai et al., 1984; Ishihara and Kuroda, 1986). This leads to reduction of cumulative carbohydrates and biomass productivity of the day. A decrease in Pn can be associated with the decrease of CO₂ supply from outside to the intercellular airspaces of leaves, which is controlled by stomatal function, CO₂ diffusion from intercellular airspaces to the carboxylation site and/or biochemical processes. Numerous studies have shown that decreased stomatal conductance (gs, mol m⁻² s⁻¹) strongly limits Pn at low humidity conditions (Morison and Gifford, 1983; Grantz, 1990; Dai et al., 1992). Franks and Farquhar (1999) reported that the responses of gs to the change of the difference between ambient and leaf vapor pressure (VPD, kPa) differed among species and that greater reduction of gs was found in tree species than in herbaceous species. The sensitivity of gs to Pn differs among herbaceous C₃ and C₄ species in temperate areas (El-Sharkawy et al., 1984;
Kawamitsu et al., 1993). In rice, however, there are few studies on the difference in the g_s sensitivity among diverse genotypes, since Tsunoda and Singh (1986) compared P_n and transpiration for three indica and one japonica varieties.

Internal conductance (g_w, mol m$^{-2}$ s$^{-1}$) as well as g_s limits P_n under non-stressed conditions, and the variation in g_w is proportional to that in g_s among plant species with similar leaf functions (von Caemmerer and Evans, 1991; Lauteri et al., 1997; Hanba et al., 2003). However, it has not been proven whether g_w responds to a short-term environmental change (Warren and Adams, 2006), since inconsistent results were reported for the nature of g_w; von Caemmerer and Evans (1991) showed that g_w remains unchanged during the day, but Centritto et al. (2003) reported that g_w changed as quickly as g_s can, and coordinates with g_s under altered CO$_2$ concentrations. If g_w coordinates with g_s at different VPDs, g_w can be an important factor of midday depression of photosynthesis together with g_s.

The primary objective of this study was to clarify the difference of the responses of P_n and g_s to VPD in various rice varieties. For this purpose, we used nine rice varieties with diverse genetic backgrounds for gas-exchange measurements at different VPDs. We also tested the variability of g_w in response to VPD change and its effect on decreased P_n by a model analysis. The applied model is based on g_s and nitrogen content of leaf per unit leaf area (N, g m$^{-2}$) and was reported to explain both genotypic and ontogenetic variation of P_n under low VPD in our previous study (Ohsumi et al., 2007).

Materials and Method

1. Plant materials and growth conditions

Nine rice varieties selected for genotypic diversity were used. The varieties Takanari, IR72, Shanguichao and Ch86, are indica genotypes, and Nipponbare and Koshihikari are temperate japonica genotypes. The variety Banten is a tropical japonica. IR65564-44-2-2 (NPT) was bred by crossing between tropical japonica and indica. WAB450-I-B-P-38-HB (WAB) is an interspecific hybrid genotype between O. sativa sub. japonica and O. glaberrima. Ch86 and Banten are traditional varieties, and the others are improved ones.

Each variety was sown on 30 April in 2002 and transplanted on 24 May into 3.8 L pots with two seedlings per pot at Kyoto, Japan (35°2’N, 135°47’E, 65 m altitude). Plants with 12 replicates for each cultivar were grown outside sparsely to receive full sunlight and well watered throughout the growth period. N, P and K were applied at a rate of 0.3 g per pot as basal dressing, and 0.1 g of N was top-dressed biweekly.

2. Measurements of photosynthetic rate, stomatal conductance and leaf nitrogen content of leaves

The exchange rates of CO$_2$ and water vapor in the youngest fully-expanded leaves were measured at panicle initiation (PI), heading, and 3 weeks after heading (3WAH) by an open-gas exchange system devised in our laboratory (Ohsumi et al., 2007). From the afternoon of the day before gas-exchange measurement, plants in the pots were kept in a black net (transmittance: 60%) and watered to ensure the leaves were hydrated. Four leaves from each variety were enclosed in an acrylic chamber (30 × 5.5 × 6.5 cm in L × W × H), and four chambers were used for one series of measurement. The leaves were irradiated at 1000 μmol m$^{-2}$ s$^{-1}$ PPF (photosynthetic photon flux) for half an hour with halogen lamps (JD500W-M, IWASAKI, Tokyo, Japan), and then gas exchange rates were measured at 1500 μ mol m$^{-2}$ s$^{-1}$ PPF. Leaf temperature and CO$_2$ concentration of the air.
surrounding leaf were 27.7 ± 0.3°C and 346.8 ± 9.8 μmol CO₂ mol⁻¹, respectively, during the measurements. VPD was initially maintained at 1.0 ± 0.04 kPa, and stepwisely increased to 1.3 ± 0.04, 1.7 ± 0.08 and 2.3 ± 0.12 kPa. Steady-state gas-exchange rate at each VPD was determined after CO₂ and water vapor concentrations stabilized. It took about 2.5 hours to complete the entire cycle of gas-exchange measurements with varying VPDs. When Pₙ showed a marked drift, the sample was discarded. Thus, gas-exchange rates in 3−4 leaves were obtained for each variety at each developmental stage. From these measurements, leaf gas-exchange parameters were calculated according to von Caemmerer and Farquhar (1981).

After the gas-exchange measurement, leaf area enclosed in a chamber was measured with a LI-3000 (LI-COR, USA). The leaf samples were oven-dried at 80°C for at least 72 hours, weighed, and then subjected to determination of the nitrogen concentrations by the Kjeldahl method. The nitrogen concentration was multiplied by the specific leaf weight to calculate the nitrogen content of leaf on an area basis for the individual leaf.

3. Simulation method

Pₙ was obtained from the difference between CO₂ concentration on the leaf surface (Ca, μmol mol⁻¹) and CO₂ compensation point in the absence of mitochondrial dark respiration (Γ*, μmol mol⁻¹), divided by total limitation, which consists of reciprocals of carboxylation capacity, gₛ and gₙ (Ohsumi et al., 2007).

\[
Pₙ = \frac{k₁ • gₙ(N–N₀)}{gₛ+k₁(1+gₛ/gₙ)(N–N₀)} (Ca–Γ*)
\]

where N₀ and k₁ are empirical parameters; N₀ is N when the amounts of Rubisco reached zero, and k₁ represents the amount of active Rubisco per (N–N₀) and its kinetics. Thus, carboxylation capacity is expressed as the product of k₁ and (N–N₀) in Eqn 1. Γ* was assumed to be 43.8 μmol mol⁻¹ for rice leaves at 30°C (Horie, 1981).

On the basis of previous reports showing that gₛ varies with gₙ (Loreto et al., 1992; Lauteri et al., 1997; Hanba et al., 2003), gₙ was assumed to be proportional to gₛ with little variation in the proportionality constant among plant species. In this case,

\[
gₙ = k₂ gₛ
\]

where k₂ is an empirical parameter. Using Eqns 1 and 2, we regressed Pₙ of the nine varieties over developmental stages against their gₛ, N and Ca measured at a low VPD (1.0 kPa) to obtain best estimates for the values of parameters k₁, k₂ and N₀ on the assumption that these parameter values are independent of genotypes and developmental stages. A least square method for non-linear functions was applied for this regression to minimize the sum of squared errors between measured and estimated Pₙ values. These estimated parameters represent the average of the attributes of all the individual leaves.

Eqn 1 with the three parameters obtained for a low VPD was applied to the simulation of Pₙ at higher VPDs. We made two simulations based on the following different assumptions for the response of gₙ to VPD. The first was based on the assumption that gₙ coordinates with gₛ change for a short term (Centritto et al., 2003). If such coordination was applicable for rice gₙ, the ratio of gₛ/gₙ, k₂, obtained at a low VPD should be maintained at higher VPDs. The second assumption was that gₙ remains unchanged during the day (von Caemmerer and Evans, 1991). If this is applicable, the gₙ values estimated by k₂ and gₛ in

variety	Panicle initiation	Heading	3 weeks after heading
	1.0kPa 1.7kPa	1.0kPa 1.7kPa	1.0kPa 1.7kPa
Takanari	0.32±0.04 0.19±0.01	0.52±0.06 0.25±0.03	0.36±0.06 0.22±0.04
IR72	0.32±0.02 0.13±0.02	0.52±0.05 0.20±0.04	0.39±0.06 0.23±0.03
Shanguichao	0.22±0.01 0.13±0.01	0.56±0.02 0.25±0.01	0.20±0.02 0.11±0.01
Ch86	0.20±0.03 0.14±0.00	0.14±0.01 0.12±0.00	0.15±0.04 0.09±0.01
Nipponbare	0.17±0.01 0.16±0.01	0.26±0.03 0.20±0.03	0.11±0.01 0.08±0.00
Koshihikari	0.34±0.01 0.22±0.02	0.23±0.01 0.18±0.01	0.15±0.02 0.11±0.01
Banten	0.21±0.01 0.19±0.01	0.31±0.03 0.15±0.01	0.20±0.04 0.09±0.02
NPT*	0.17±0.01 0.17±0.01	0.26±0.03 0.20±0.02	0.14±0.01 0.10±0.01
WAB*	0.28±0.03 0.20±0.02	0.21±0.01 0.20±0.02	0.24±0.06 0.14±0.01
avg.	0.25 0.17	0.31 0.19	0.22 0.13
c.v.	0.27 0.20	0.41 0.21	0.46 0.43

a NPT and WAB denotes IR65564-44-2 and WAB4504-B-P-38-HB, respectively.

Values are expressed as mean ± S.E. of 3-4 leaves in each variety.

Table 1. Stomatal conductance (gₛ, mol CO₂ m⁻² s⁻¹) in nine rice varieties measured at 1.0 kPa and 1.7 kPa VPDs at different developmental stages.
Eqn 2 at a low VPD for the individual leaves should be maintained at a higher VPD. Their goodness of fit to the measured P_n at higher VPDs was compared to examine the variability of g_s at different VPDs.

Results

1. Measurements of gas exchange

Fig. 1 shows the P_n, g_s, and CO$_2$ concentrations in the intercellular airspaces (C_i, μmol mol$^{-1}$) at different VPD in the five representative varieties at the heading stage, when the rice varieties showed the highest P_n. All the varieties excepting Ch86 reduced P_n and g_s with increased VPD. Takanari and IR72 exhibiting a high g_s at a low VPD tended to reduce g_s sharply as VPD increased from 1.0 to 1.3 kPa and maintained moderate g_s values at higher VPDs, while Ch86 with the lowest g_s decreased g_s at a high VPD only slightly. C_i tended to decrease linearly with increasing VPD, but was maintained at 1.3 kPa VPD, despite the concurrent decreases of P_n and g_s at a VPD of 2.3 kPa in Takanari and IR72 (Fig. 1C). Ch86 having low sensitivity of P_n and g_s to VPD showed small change in C_i. The pattern that the variety with a high g_s at a low VPD decreases g_s largely with the increase in VPD was observed similarly at all developmental stages (Table 1). However, the varieties with a high g_s at a low VPD tended to show higher g_s even at increased VPDs. Takanari had a high g_s at a high VPD than Ch86, Nipponbare and NPT at all the stages, although g_s of some varieties changed their ranks depending on the stages. Genotypic differences in g_s became smaller as VPD increased; coefficients of variance at 1.0 and 1.7 kPa VPDs were 27 and 20%, respectively, at PI, 41 and 21% at heading, and 46 and 43% at 3WAH.

When g_s values of the nine varieties at different VPDs were aggregated at each developmental stage, the responses of P_n to a change in g_s could be well approximated by logarithmic curves with determination coefficients of 0.71, 0.88 and 0.71 for the stages of PI, heading, and 3WAH, respectively (Fig. 2). These relations indicate that the leaves with high g_s at a low VPD has low sensitivity of P_n to a decreased g_s, while the leaves showing a low g_s at a low VPD largely decreases P_n with the decrease in g_s. The regression curves differed with the stages. These differences might reflect the differences in N, and the average N values of the nine varieties were 1.35, 1.39 and 1.02 g N m$^{-2}$ at PI, heading and 3WAH, respectively (Table 2).

Table 2. Leaf nitrogen content per unit leaf area (g m$^{-2}$) in nine rice varieties at different developmental stages.

variety	Panicle initiation	Heading	3 weeks after heading
Takanari	1.51 ± 0.10	1.54 ± 0.08	1.03 ± 0.06
IR72	1.43 ± 0.05	1.51 ± 0.06	1.21 ± 0.15
Shanguichao	1.31 ± 0.04	1.39 ± 0.06	0.65 ± 0.08
Ch86	1.07 ± 0.08	1.09 ± 0.09	0.80 ± 0.12
Nipponbare	1.53 ± 0.06	1.46 ± 0.05	0.96 ± 0.01
Koshihikari	1.41 ± 0.09	1.30 ± 0.08	1.00 ± 0.03
Banten	1.19 ± 0.09	1.24 ± 0.04	1.04 ± 0.15
NPTa	1.19 ± 0.08	1.52 ± 0.08	1.18 ± 0.04
WABa	1.47 ± 0.08	1.45 ± 0.10	1.30 ± 0.04
avg.	1.35	1.39	1.02
c.v.	0.12	0.11	0.20

a NPT and WAB denotes IR65564-44-2-2 and WAB450-I-B-P-38-HB, respectively. Values are expressed as mean ± S.E. of 3-4 leaves in each variety.
2. Simulation of P_n at different VPDs

Considerable differences were observed in P_n, g_s at low VPDs and N among the nine rice varieties at different developmental stages, and the values of P_n, g_s and N ranged from 6.8 to 19.7 μmol m$^{-2}$ s$^{-1}$, from 0.11 to 0.52 mol CO$_2$ m$^{-2}$ s$^{-1}$, and from 0.69 to 1.59 g N m$^{-2}$, respectively. There was no correlation between g_s at a low VPD and N in the varieties examined. Applying the measured P_n, g_s and N values to Eqns 1 and 2, the model well explained the measured P_n at a low VPD (1.0 kPa) (Fig. 3). The parameter values of k_1, k_2 and N_0 estimated by the model were 0.09 mol CO$_2$ g N$^{-1}$ s$^{-1}$, 1.05 and 0.32 g N m$^{-2}$, respectively. There was little difference in goodness of fit for 1.7 kPa VPD between the two different simulations that assumed g_w change and do not change with the VPD. However, the slopes between the estimated and measured P_n were different between the simulations at 1.7 kPa VPD. The slope in the model assuming constant g_s differed little at all VPDs, but the model assuming that g_s coordinates with g_w changes underestimated the P_n particularly at a high VPD (Table 3). The slopes of the latter at 1.7 and 2.3 kPa VPDs significantly differed from that at 1.0 kPa VPD ($P < 0.05$).

Discussion

The responses of P_n and g_s to VPD were evaluated for the rice varieties with diverse genetic backgrounds in the present study. The change of P_n with the increase in VPD was related to the decrease of g_s (Fig. 2), and genotypic difference in g_s well accounted for that in P_n in the model analysis (Fig. 3). This confirmed that g_s is one of the major determinants of the genotypic difference in P_n and its response to VPD, as reported previously (Morison and Gifford, 1983; Hirasawa et al., 1988; Grantz, 1990; Dai et al., 1992; Kawamitsu et al., 1993). Therefore, clarification of the genotypic difference in sensitivity of g_s to VPD will help confirm the genotypic difference in the sensitivity of P_n to VPD in rice.

The sensitivity of g_s to VPD varied with the variety and developmental stage. A number of factors have
been suggested to affect the sensitivity of g_s before. Cunningham (2004) reported that, comparing eight tree species collected from a wide range in Australia, tropical species showed a higher g_s sensitivity than temperate ones. This indicates that the water environment affects the sensitivity of g_s. Tropical rice varieties in Southeast Asia experience a higher VPD during midday in the growing seasons than the temperate varieties bred in Japan. In our study, there was no consistent difference in the sensitivity of g_s to VPD between tropical varieties (IR72, Banten and NPT), and temperate varieties (Nipponbare and Koshihikari) at the three developmental stages. On the other hand, Ishihara and Kuroda (1986) showed that leaves with high nitrogen concentrations showed a greater decline of g_s with the increase in VPD than leaves with low nitrogen concentrations in a temperate japonica variety. However, the genotypic difference in the sensitivity of g_s to VPD was not related to the nitrogen concentrations in leaves (Table 2). This is because, while Ishihara et al. (1978) reported that high nitrogen concentrations in leaves enhanced g_s in a temperate japonica cultivar, there was no significant relation between genotypic differences of g_s and nitrogen concentration/content in the leaves at low VPDs among rice varieties in the present study, which has been suggested previously (Ohsumi et al., 2007). The variety with a high g_s at a low VPD showed a large decline of g_s with increasing VPD (Fig. 1B, Table 1), indicating that sensitivity of g_s to VPD depends on the g_s at low VPDs rather than nitrogen concentrations of the leaves in rice.

Tsunoda and Singh (1986) showed that the variety ranks of P_n and transpiration remain constant at different VPDs comparing three indica lowland and one japonica upland varieties in rice. In our study with the diverse rice genotypes, the variety rank of g_s changed in some varieties under varied VPD conditions, but no difference in the sensitivity of g_s to VPD was observed at any developmental stage (Table 1). However, it is evident that Takanari that has the highest g_s at a low VPD exhibited the highest g_s at higher VPDs throughout development.

The decrease of C_i at a VPD below 1.7 kPa implies that g_w and carboxylation capacity did not vary with the VPD in most rice varieties (Fig. 1C). This is because, if g_w and carboxylation capacity decrease coordinately with decreased g_s, C_i should remain constant under altered VPD. However, it is not clear whether the carboxylation capacity and g_w were stable under different VPD conditions: C_i decreased, when the g_w and carboxylation capacity decreased at high VPDs, but not so much as that of g_s. Thus, the model simulation successfully demonstrated the constancy of g_w and carboxylation capacity under altered VPD conditions. The model assuming that g_w changes coordinately with the decrease of g_s underestimated the measured P_n at higher VPDs (Fig. 3), and significant differences between the measured and estimated P_n were found at 1.7 and 2.3 kPa VPDs (Table 3). On the other hand, the model assuming that g_w remains unchanged at a high VPD well explained the measured P_n at different VPDs without noticeable biases. These results indicate that g_w and carboxylation capacity changed little in rice varieties depending on VPD, which agrees with the previous study on the nature of g_w by von Caemmerer and Evans (1991). The stability of carboxylation capacity is also supported by previous studies showing that Rubisco activation reached a maximum (higher than 1000 μmol m$^{-2}$s$^{-1}$ PPF) after a 30-minute irradiation and does not change during the day (Vu et al., 1983; Servaites et al., 1984; Jiang et al., 1994).

In some varieties, C_i slightly increased with increasing VPD from 1.7 to 2.3 kPa (Fig. 1C), which would be reflected in the slight increase of the bias at the VPD of 1.7 and 2.3 kPa in the simulation assuming that g_w is constant due to the overestimated k_1 (Table 3). This suggests that carboxylation capacity decreases above 2.0 kPa VPD, as suggested by the previous report for rice (Morison and Gifford, 1983). However, C_i is overestimated when patchy stomatal closure occurred (Terashima, 1992). Patchy stomatal closure occurs in thin and amphi-stomatous leaves as in rice at severely high VPD, which might be also observed in the increases in C_i at 2.3 kPa in some leaves. Therefore, our analysis could not clarify if g_w and/or carboxylation capacity decreased at above 1.7 kPa VPD, but these effects on P_n appeared to be small (Table 3). There is also a possibility that calculation of C_i is affected by cuticular conductance (g_c) when g_w decreased markedly. Boyer et al. (1997) precisely measured g_w using grape leaves with no stoma at the upper surface. Their measured g_c-values for H_2O were about 0.004 mol m$^{-2}$s$^{-1}$, which were considerably lower than the measured g_c values at high VPD in our study. Thus, the effect of g_c on our analyses can be negligible.

In conclusion, we showed that the genotypic difference in P_n decrease with increasing VPD mainly by that in g_w decrease without any marked changes in g_s and carboxylation capacity. Our study also showed that the developed model is useful for analyses of the responses of P_n to environmental changes. The genotypic difference in the sensitivity of g_s to VPD was found in rice, and the variety with a high g_s at a low VPD reduced g_s sharply with increasing VPD. Takanari exhibited the highest g_s not only at a low VPD but also at high VPDs. As the genotypic variability of g_s is greater at a low VPD than at a high VPD, selection of genotypes with a high g_s at a low VPD would be effective for finding the plants with large daily CO$_2$ accumulates at a single leaf level. Since, we did not examine the changes of leaf water potential or water-absorbing ability relating to midday depression of g_s and P_n were not examined (Hirasawa et al., 1988;
Saliendra et al., 1995), clarification of their effects on the genotypic difference of g, in response to VPD in diverse rice genotypes should help improve the daily biomass productivity of rice.

Acknowledgements

We thank the staff of Laboratory of Crop Science, Graduate School of Agriculture, Kyoto University, for their advice and experimental support.

References

Boyer, J.S., Wong, S.C. and Farquhar, G.D. 1997. CO₂ and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiol. 114 : 185-191.

Brooks, A. and Farquhar, G.D. 1985. Effects of temperature on the CO₂/O₂ specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165 : 397-406.

von Caemmerer, S. and Evans, J.R. 1991. Determination of the average partial pressure of CO₂ in Chloroplasts from leaves of several C₃ Plants. Aust. J. Plant Physiol. 18 : 287-305.

von Caemmerer, S. and Farquhar, G.D. 1981. Some relationships between biochemistry and photosynthesis and the gas exchange of leaves. Planta 153 : 376-387.

Centritto, M., Loreto, F. and Chartzoulakis, K. 2003. The use of low [CO₂] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ. 26 : 585-594.

Cunningham, S.C. 2004. Stomatal sensitivity to vapour pressure deficit of temperate and tropical evergreen rainforest trees of Australia. Trees 18 : 399-407.

Dai, Z., Edwards, G.E. and Ku, M.S.B. 1992. Control of photosynthesis and stomatal conductance in Ricinus communis L. (caster bean) by leaf to air vapor pressure deficit. Plant Physiol. 99 : 1426-1434.

El-Sharkawy, M.A., Cock, J.H. and Held, K.A.A. 1984. Water use efficiency of cassava. II. Differing sensitivity of stomata to air humidity in cassava and other warm-climate species. Crop Sci. 24 : 503-507.

Franks, P.J. and Farquhar, G.D. 1999. A relationship between humidity response, growth form and photosynthetic operating point in C₃ plants. Plant Cell Environ. 22 : 1337-1349.

Grantz, D.A. 1990. Plant response to humidity. Plant Cell Environ. 13 : 667-679.

Hanba, Y.T., Kogami, H. and Terashima, I. 2003. The effect of internal CO₂ conductance on leaf carbon isotope ratio. Isotopes Environ. Health Stud. 39 : 5-13.

Hirai, G., Takahashi, M., Tanaka, O., Shimamura, N. and Nakayama, N. 1984. Studies on the effects of relative humidity of the atmosphere upon the growth and physiology of rice plant. II. The influence of atmospheric humidity on the rate of photosynthesis. Jpn. J. Crop Sci. 53 : 261-267*.

Hirai, G., Terashima, I., Hanba, Y.T., Kogami, H. and Nakayama, N. 1984. Studies on the effects of relative humidity of the atmosphere upon the growth and physiology of rice plant. III. The influence of atmospheric humidity on the rate of photosynthesis. Jpn. J. Crop Sci. 53 : 268-270*.

Hirai, G., Takahashi, M., Tanaka, O., Shimamura, N. and Nakayama, N. 1984. Studies on the effects of relative humidity of the atmosphere upon the growth and physiology of rice plant. III. The influence of atmospheric humidity on the rate of photosynthesis. Jpn. J. Crop Sci. 53 : 261-267*.

Hirasawa, T., Ishihara, K. and Kuroda, E. 1986. Effects of air humidity on photosynthetic rate in the leaf of the rice plant. Jpn. J. Crop Sci. 55 : 458-464*.

Ishihara, K. and Kuroda, E. 1986. Effects of air humidity on photosynthetic rate in the leaf of the rice plant. Jpn. J. Crop Sci. 55 : 458-464*.

Jiang, D.A., Hirasawa, T. and Ishihara, K. 1994. The difference of diurnal changes in photosynthesis in rice plants with different root activities induced by soluble starch application on the soil. Jpn. J. Crop Sci. 63 : 539-545.

Kawamitsu, Y., Yoda, S. and Agata, W. 1993. Humidity pretreatment affects the responses of stomata and CO₂ assimilation to vapour pressure difference in C₃ and C₄ plants. Plant Cell Physiol. 34 : 113-119.

Kusutani, A., Ueda, K., Asanuma, K. and Toyota, M. 1999. Studies on varietal difference in yielding ability in rice – relationship between source-sink ratio and yield. Jpn. J. Crop Sci. 68 : 21-28*.

Lauteri, M., Scartazzra, A., Guido, M.C. and Brugnoli, E. 1997. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Func. Ecol. 11 : 675-683.

Loreto, F., Harley, P.C., Marco, G.D. and Sharkey, T.D. 1992. Estimation of mesophyll conductance to CO₂ flux by three different methods. Plant Physiol. 98 : 1437-1443.

Makino, A., Mae, T. and Ohira, K. 1988. Differences between wheat and rice in the enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange. Planta 174 : 30-38.

Mörison, J.L.L. and Gifford, R.M. 1983. Stomatal sensitivity to carbon dioxide and humidity. A comparison of two C₃ and two C₄ grass species. Plant Physiol. 71 : 789-796.

Nagata, K., Yoshinaga, S., Takenashi, J. and Terao, T. 2001. Effects of dry matter production, translocation of nonstructural carbohydrates and nitrogen application on grain filling in rice cultivar Takenari, a cultivar bearing a large number of spikelets. Plant Prod. Sci. 4 : 173-183.

Ohsumi, A., Hamasaki, A., Nakagawa, H., Yoshida, H., Shiraiwa, T. and Horie, T. 2007. A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance. Ann. Bot. 99 : 265-273.

Saliendra, N.Z., Sperry, J.S. and Comstock, J.P. 1995. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta 196 : 357-366.

Servaites, J.C., Torisky, R.S. and Chao, S.F. 1984. Diurnal changes in ribulose 1,5-bisphosphate carboxylase activity and activation state in leaves of field-grown soybeans. Plant Sci. Lett. 35 : 115-121.

Singh, M.K. and Sasahara, T. 1981. Photosynthesis and transpiration in rice as influenced by soil moisture and air humidity. Ann. Bot. 48 : 513-517.

Terashima, I. 1992. Anatomy of non-uniform leaf photosynthesis. Photosynth. Res. 31 : 195-212.

Tsunoda, S. and Singh, M.K. 1986. Photosynthetic efficiencies of rice under humid and dry conditions in leaf areal nitrogen.
Ohsumi et al. — Sensitivity of Leaf Conductance to Humidity in Rice Varieties

Vu, C.V., Allen Jr, L.H. and Bowes, G. 1983. Effects of light and elevated atmospheric CO₂ on the ribulose bisphosphate carboxylase activity and ribulose bisphosphate level of soybean leaves. Plant Physiol. 73 : 729-734.

Warren, C.R. and Adams, M.A. 2006. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ. 29 : 192-201.

* In Japanese with English abstract.