Generalized Crewther relation and a novel demonstration of the scheme independence of commensurate scale relations up to all orders

Xu-Dong Huang, Xing-Gang Wu, Qing Yu, Xu-Chang Zheng, Jun Zeng, and Jian-Ming Shen

1 Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China
2 Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing 401331, People’s Republic of China
3 INPAC, Key Laboratory for Particle Astrophysics and Cosmology (MOE), Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China and
4 School of Physics and Electronics, Hunan University, Changsha 410082, People’s Republic of China

(Dated: August 2, 2021)

In the paper, we make a detailed study on the generalized Crewther Relation (GCR) between the Adler function (D) and the Gross-Llewellyn Smith sum rules coefficient (C^{GLS}) by using the newly suggested single-scale approach of the principle of maximum conformality (PMC). The resultant GCR is scheme-independent, whose residual scale dependence due to unknown higher-order terms are highly suppressed. Thus a precise test of QCD theory without renormalization scheme and scale ambiguities can be achieved by comparing with the data. Moreover, a demonstration of the scheme independence of commensurate scale relation up to all orders has been presented. And as the first time, the Padé approximation approach has been adopted for estimating the unknown 5-loop contributions from the known four-loop perturbative series.

I. INTRODUCTION

The Crewther relation [1, 2] provides a non-trivial relation for three fundamental constants, $3S = K R'$, where S is the anomalous constant of $\pi^0 \to \gamma \gamma$, K is coefficient of the Bjorken sum rules for the polarized deep-inelastic electron scattering [3], and R' is the isovector part of the cross-section ratio for the electron-positron annihilation into hadrons [4]. In the theory of quantum chromodynamics (QCD) [5, 6], the Crewther relation is improved as the “Generalized Crewther Relation (GCR)” [7–13]:

$$D^{\text{NS}}(a_s)C^{\text{Bj}}(a_s) = 1 + \Delta_{\text{csb}}^*, \quad (1)$$

or

$$D(a_s)C^{\text{GLS}}(a_s) = 1 + \Delta_{\text{csb}}, \quad (2)$$

where $a_s = \alpha_s/\pi$, D^{NS} is the non-singlet Adler function, C^{Bj} is derived by the Bjorken sum rules for polarized deep-inelastic electron scattering, D is the Adler function, and C^{GLS} is the coefficient of the Gross-Llewellyn Smith (GLS) sum rules [14]. The Δ_{csb}^* and Δ_{csb} are conformal breaking terms, and for example, the Δ_{csb}-term takes the form

$$\Delta_{\text{csb}} = \frac{\beta(a_s)}{a_s} K(a_s) = - \sum_{i \geq 2} \sum_{k=1}^{i-1} K_k \beta_{i-1-k} a_s^i, \quad (3)$$

where $\beta(a_s) = - \sum_{i \geq 0} \beta_i a_s^{i+2}$ is the usual β-function, and the coefficients K_k are free of $\{\beta_i\}$-functions.

The perturbative QCD (pQCD) corrections to D^{NS} and the Bjorken sum rules have been computed up to $O(\alpha_s^3)$-level [15–19] and $O(\alpha_s^4)$-level [20, 21], respectively. The GCR (1) between the non-singlet Adler function and the Bjorken sum rules has been discussed in Refs.[22–24]. The GCR (2) between the Adler function and the GLS sum rules has been investigated up to $O(\alpha_s^4)$-level in Ref.[10]. Using the known α_s^4-order corrections [25, 26], we has the chance to derive a more accurate GCR (2) up to $O(\alpha_s^5)$-level. It is well-known that a physical observable is independent to any choice of theoretical conventions such as the renormalization scheme and renormalization scale. This property is called as the “renormalization group invariance” (RGI) [27–31]. For a fixed-order pQCD prediction, if the perturbative coefficient before a_s and the corresponding a_s-value at each order do not well match with each other, then the RGI shall be explicitly broken [32, 33]. Conventionally, people adopts the “guessed” typical momentum flow of the process as the optimal renormalization scale with the purpose of eliminating the large logs to improve the pQCD convergence or minimizing the contributions from the higher-order loop diagrams or achieving theoretical prediction in agreement with the experimental data. Such kind of treatment directly breaks the RGI and reduces the predictive power of pQCD. Thus it is important to have a proper scale-setting approach to achieve a scale-invariant fixed-order prediction.

In the literature, the principle of maximum conformality (PMC) [34–37] has been proposed to eliminate those two artificial ambiguities. The purpose of PMC is not to find an optimal renormalization scale but to fix an effective a_s of the process by using the renormalization group equation (RGE); And the PMC prediction satis-
fies all self-consistency conditions of the renormalization group \[38\]. Two multi-scale approaches have been suggested to achieve the goal of PMC, which are equivalent in sense of perturbative theory \[39\], and a collection of their successful applications can be found in Ref.\[40\]. For the multi-scale approach, the PMC sets the scales via an order-by-order manner; the individual scales at each order reflect the varying virtuality of the amplitudes at those orders. It has been noted that the PMC multi-scale approach has two types of residual scale dependence because of unknown perturbative terms \[41\]. Those residual scale dependence suffer from both the α_s-power suppression and the exponential suppression, but their magnitudes could be large due to poor convergence of the perturbative series of either the PMC scale or the pQCD approximant \[42\].

Lately, the PMC single-scale approach \[43\] has been suggested to suppress the residual scale dependence by introducing an overall effective α_s. The argument of such effective α_s corresponds to the overall effective momentum flow of the process, which is also independent to any choice of renormalization scale. It has been shown that by using the PMC single-scale approach and the C-scheme strong coupling constant \[44\], one can achieve a strict demonstration of the scheme-invariant and scale-invariant PMC prediction up to any fixed order \[45\]. Moreover, the resulting renormalization scheme- and scale-independent conformal series is helpful not only for achieving precise pQCD predictions but also for a reliable prediction of the contributions of unknown higher-orders; some of its applications have been performed in Refs.\[46–50\], which are estimated by using the Padé resummation approach \[51–53\]. In the present paper, we shall adopt the PMC single-scale approach to deal with the GCR \[2\], and then, as the first time, we shall estimate the unknown 5_{th}-loop contributions for GCR \[2\]. A novel demonstration of the scheme independence of commensurate scale relation up to all orders shall also be presented.

II. GENERALIZED CREWTHER RELATION UNDER THE PMC SINGLE-SCALE APPROACH

It is helpful to define the effective charge for a physical observable \[54–56\], which incorporates the entire radiative correction into its definition. For example, the GLS sum rules indicates that the isospin singlet structure function $xF_3(x, Q^2)$ satisfies an unsubtracted dispersion relation \[14\], i.e.,

$$\frac{1}{2} \int_0^1 \frac{dx}{x} x F_3(x, Q^2) = 3C^{GLS}(a_s),$$

(4)

where $xF_3(x, Q^2) = x F_3^{pip}(x, Q^2) + x F_3^{pp}(x, Q^2)$, and Q is the momentum transfer. The entire radiative QCD corrections can be defined as an effective charge $a_{F_3}(Q)$. Moreover, the Adler function of the cross-section ratio for the electron-positron annihilation into hadrons \[4\]

$$D(Q^2) = -12\pi^2 Q^2 \frac{d}{dQ^2} \Pi(Q^2),$$

(5)

where

$$\Pi(Q^2) = -\frac{Q^2}{12\pi^2} \int_{4m^2}^{\infty} \frac{R_{e^+e^-}(s)ds}{s(s + Q^2)}.$$

(6)

The Adler function D can be defined as the effective charge $a_D(Q)$. Thus the Adler function D and the GLS sum rules coefficient C^{GLS} can be rewritten as

$$D(a_s) = 1 + a_D(Q),$$

(7)

$$C^{GLS}(a_s) = 1 - a_{F_3}(Q).$$

(8)

The effective charges $a_D(Q)$ and $a_{F_3}(Q)$ are by definition pQCD calculable, which can be expressed as the following perturbative form,

$$a_S = r_{i,0}^S a_s + (r_{i}^{S,0} + \beta_0 r_{i}^{S,1}) a_s^2$$

$$+ (r_{i}^{S,2} + \beta_0 r_{i}^{S,3} + \beta_0^2 r_{i}^{S,4}) a_s^3$$

$$+ (r_{i}^{S,4} + \beta_0 r_{i}^{S,5} + \beta_0^2 r_{i}^{S,6} + \frac{5}{2} \beta_0^3 r_{i}^{S,7}) a_s^4$$

$$+ 3\beta_0 r_{i}^{S,8} + 3\beta_0^2 r_{i}^{S,9} + \beta_0^3 r_{i}^{S,10}) a_s^5 + O(a_s^6),$$

(9)

where $S = D$ or F_3, respectively. $r_{i,j}^{S,0}$ are conformal coefficients with $r_{i,0}^S = 1$, and $r_{i,j}^{S,0}$ are nonconformal coefficients. The β-pattern at each order is determined by RGE \[35, 37\]. The coefficients $r_{i,j}^{D,F_3}$ up to four-loop level under MS scheme can be read from Refs.\[21, 57\] by using the general QCD degeneracy relations \[39\].

![FIG. 1: The PMC scales \tilde{Q}_* and \tilde{Q}_* versus the momentum scale Q up to LL, NLL and N^2LL accuracies, respectively.](image)
where \(\tilde{Q}_* \) and \(\tilde{Q}_* \) are in perturbative series which can be derived from the pQCD series of \(a_D \) and \(a_{F_3} \). \(\tilde{Q}_* \) and \(\tilde{Q}_* \) correspond to the overall momentum flows of the effective charges \(a_D(Q) \) and \(a_{F_3}(Q) \), which are independent to any choice of renormalization scale. This property confirms that the PMC is not to choose an optimal renormalization scale, but to find the correct momentum flow of the process. Using the four-loop pQCD series of \(a_D \) and \(a_{F_3} \), we determine their magnitudes up to \(N^2 \)LL accuracy by replacing the coefficients \(r_{i,j} \) in the Eqs. (8-11) of Ref.[43] with \(r_{i,D}^D \) or \(r_{i,F}^F \), respectively. We present \(\tilde{Q}_* \) and \(\tilde{Q}_* \) up to different accuracies in Fig. 1. As shown by Fig. 1, because the perturbative series of \(a_D \) and \(a_{F_3} \) have good perturbative convergence, it is interesting to find that their magnitudes up to different accuracies, such as the leading log (LL), the next-to-leading log (NLL), and the next-next-leading log (\(N^2 \)LL) accuracies, are very close to each other. Thus one can treat the \(N^2 \)LL-accurate \(\tilde{Q}_* \) and \(\tilde{Q}_* \) as their exact values.

![FIG. 2: The \(D(a_s)C^{\text{GLS}}(a_s) \) versus the momentum \(Q \) under the PMC single-scale approach up to two-loop, three-loop, and four-loop levels, respectively. The uncalculated five-loop result is predicted by using the Padé approximation approach.](image)

By applying the PMC single-scale approach, one can improve the precision of \(D(a_s) \) and \(C^{\text{BF}}(a_s) \). Fig. 2 shows the PMC predictions of \(D(a_s)C^{\text{GLS}}(a_s) \) up to two-loop, three-loop, and four-loop levels, respectively. Moreover, the PMC scheme-invariant and scale-invariant conformal series provides a reliable platform for predicting the uncalculated high-order terms [46]. As the first time, we also present the uncalculated five-loop result in Fig. 2, which is predicted by using the Padé approximation approach (PAA) [51-53] and by using the preferable \([N/M]=0/n] \)-type Padé generating function which makes the PAA geometric series be self-consistent with the PMC prediction [46]. More explicitly, the PAA has been introduced for estimating the \((n+1)_{\text{th}} \)-order coefficient in a given \(n_{\text{th}} \)-order perturbative series and feasible conjectures on the likely high-order behavior of the series. For example, for the following conformal series

\[
\rho(Q) = \sum_{i=1}^{n} r_{i,0} a_s^i, \tag{12}
\]

for the present cases, we have \(n = 4 \) and \(\rho(Q) = a_D|_{\text{PMC}} \) or \(a_{F_3}|_{\text{PMC}} \); its \([N/M] \)-type fractional generating function by using the PAA is defined as

\[
\rho^{N/M}(Q) = a_s \times \frac{b_0 + b_1 a_s + \cdots + b_N a_s^N}{1 + c_1 a_s + \cdots + c_M a_s^M}, \tag{13}
\]

where \(M \geq 1 \) and \(N + M = n - 1 \). Then the unknown \((n+1)_{\text{th}} \)-order coefficient \(r_{n+1,0} \) can be predicted by using the known coefficients \(\{r_{1,0}, \cdots, r_{n,0}\} \) via expanding the fractional generating function over \(a_s \). That is Eq.(13) can be reexpressed as

\[
\rho^{N/M}(Q) = \sum_{i=1}^{n} r_{i,0} a_s^i + r_{n+1,0} a_s^{n+1} + \cdots. \tag{14}
\]

We can first express all the coefficients \(\{b_0, \cdots, b_N\} \) and \(\{c_1, \cdots, c_M\} \) by the known coefficients \(r_{1, \cdots, n,0} \), and then get the coefficient \(r_{n+1,0} \) over \(\{b_i\} \) and \(\{c_i\} \), which can be finally expressed by \(\{r_{1,0}, \cdots, r_{n,0}\} \). We put the PAA predictions of \(a_D|_{\text{PMC}} \) and \(a_{F_3}|_{\text{PMC}} \) in Table. I and Table. II, respectively, in which the known coefficients (“Exact”) at different orders are also presented as comparison. They show that when we have known more perturbative terms, the PAA predicted coefficients shall become closer to the “Exact” ones.

Exact	PAA	
\(r_{1,0}^D \)	1	-
\(r_{2,0}^D \)	1.84028	-
\(r_{3,0}^D \)	-3.03222	0/1: 3.38662
\(r_{4,0}^D \)	-23.2763	0/2: -17.3926
\(r_{5,0}^D \)	-	0/3: -34.1991

TABLE I: The preferable \([0/n] \)-type PAA predictions of three-, four-, and five-loop coefficients of \(a_D|_{\text{PMC}} \) under the PMC single-scale approach. The known coefficients (“Exact”) are also presented as comparisons.

Fig. 2 shows that the two-, three-, four-, and the predicted five-loop predictions are close in shape, especially the predicted five-loop curve almost coincides with the four-loop one. This is due to the fact that the PMC conformal series is free of renormalon divergence [58-60], which inversely results in a good pQCD convergence. The scheme-independent \(D(a_s)|_{\text{PMC}} \) and \(1/C^{\text{GLS}}(a_s)|_{\text{PMC}} \) have the same conformal coefficients, but as shown by Fig. (1), their PMC scales are not identical, \(\tilde{Q}_* \neq \tilde{Q}_* \), thus there is a small deviation from unity:

\[
D(a_s)|_{\text{PMC}} C^{\text{GLS}}(a_s)|_{\text{PMC}} \approx 1. \tag{15}
\]
scale where all the coefficients are exactly equal to 1, the PMC scale, which can be fixed up to N_a are also presented as comparisons. The known coefficients (“Exact”) introduced to collect all the conformal breaking terms.

In GCR (2), the scheme dependent Δ_{cab}-term has been introduced to collect all the conformal breaking terms. This leads to explicit scheme dependence of the GCR (2) under conventional scale-setting approach due to the mismatching of α_s and its corresponding expansion coefficients. On the other hand, by applying the PMC single-scale approach, we can achieve an exactly scheme and scale invariant GCR at any fixed order. More explicitly, after applying the PMC single-scale approach, we obtain the following conformal series,

$$a_n(Q) = \sum_{i=1}^{n} a_{F_3}^{i}(Q),$$

(16)

where all the coefficients are exactly equal to 1, the PMC scale Q, is independent to the choice of renormalization scale, which can be fixed up to N2LL accuracy by using the known four-loop coefficients1, i.e.,

$$\ln \frac{Q^2}{Q_0^2} = T_0 + T_1 a_{F_3}(Q) + T_2 a_{F_3}^2(Q),$$

(17)

where

$$T_0 = r_{F_3}^{D} - r_{F_3}^{D},$$

(18)

$$T_1 = 2(r_{F_3}^{D} - r_{F_3}^{D}) + r_{F_3}^{D} + r_{F_3}^{D} - r_{F_3}^{D},$$

(19)

$$T_2 = 3(r_{F_3}^{D} - r_{F_3}^{D}) - 2r_{F_3}^{D} + 4r_{F_3}^{D} + 3r_{F_3}^{D} - r_{F_3}^{D}.$$

(20)

Table II: The preferable [0/n]-type PAA predictions of three-, four-, and five-loop coefficients of a_{F_3} under the PMC single-scale approach. The known coefficients (“Exact”) are also presented as comparisons.

Exact	PAA	
$r_{F_3}^{D}$	1	-
$r_{F_3}^{D}$	0.840278	-
$r_{F_3}^{D}$	-5.71277	[0/1]: 0.706067
$r_{F_3}^{D}$	-16.0776	[0/2]: -10.1939
$r_{F_3}^{D}$	-	[0/3]: 18.2157

Eq. (16) is exactly scheme-independent, which can be treated as a kind of commensurate scale relation (CSR). The CSR has been suggested in Ref.[61] with the purpose of ensuring the scheme-independence of the pQCD approximants among different renormalization schemes, and all the original CSRs suggested in Ref.[61] are at the NLO level. The PMC single-scale approach provides a way to extend the CSR to any orders. A general demonstration on the scheme independence of the CSR (16) shall be given in next section. As a special case, taking the conformal limit that all $\{\beta_i\}$-terms tend to zero, we have $Q \rightarrow Q$, and then the relation (16) turns to the original Crewther relation [9]

$$[1 + a_D(Q)] [1 - a_D(Q)] = 1.$$

(21)

By applying the PMC single-scale approach, one can obtain similar scheme-independent relations among different observables. The relation (16) not only provides a fundamental scheme-independent relation but also has phenomenologically useful consequences.

For example, the effective charge a_{F_3} can be related to the effective change a_R of R-ratio for the e^+e^- annihilation cross section ($R_{e^+e^-}$). The measurable R-ratio can be expressed by the perturbatively calculated Adler function, i.e.,

$$R_{e^+e^-}(s) = \frac{1}{2\pi i} \int_{-s-i\epsilon}^{-s+i\epsilon} \frac{P(a_s(Q))}{Q^2} dQ^2$$

(22)

where Q_f is the electric charge of the active flavor. Similarly, the perturbative series of the effective charge $a_R(Q)$ can be written as

$$a_R = r_{1,0}^{R} a_s + (r_{2,0}^{R} + \beta_0 r_{2,1}^{R}) a_s^2$$

(23)

where the coefficients $r_{i,j}^{R}$ under the \overline{MS}-scheme can be derived from Refs.[20, 21, 26, 57]2. After applying the

\footnote{The scale Q_s satisfies Eqs.(8-11) of Ref.[43], whose value can be determined by replacing a_s and \dot{a}_s with a_{F_3} and $r_{i,j}^{D,F_3}$. The $r_{i,j}^{D,F_3}$ is a function of $r_{i,j}^{D}$ and $r_{i,j}^{F_3}$ [37]. One can derive Eqs.(18-20) by substituting those functions into Eqs.(9-11) of Ref.[43].}

\footnote{Here, we will not consider the nonperturbative contributions, which may be important in small Q^2-region [62-71], but are negligible for comparatively large s and Q^2.}
where the first error is for $\Delta Q = (^{+1.46}_{-1.26})$ GeV and the second error is for $\Delta \alpha_s(M_Z) = 0.1179 \pm 0.0011$ [73]. At present, the GLS sum rules is measured at small Q^2-values [74, 75], an extrapolation of the data gives [76]

$$a^\text{exp}_{F_3}(Q = 12.25 \text{ GeV}) \approx 0.093 \pm 0.042,$$

which agrees with our prediction within errors.

III. A DEMONSTRATION OF THE SCHEME INDEPENDENCE OF COMMENSURATE SCALE RELATION

In this section, we give a novel demonstration of the scheme independence of CSR to all orders by relating different pQCD approximants within the effective charge method. The effective charge a_A can be expressed as a perturbative series over another effective charge a_B,

$$a_A = r_{1,0}^ABa_B + (r_{2,0}^AB + \beta_or_{2,1}^AB)a_B^2 + (r_{3,0}^AB + 2\beta_or_{3,1}^A + \beta_or_{3,2}^AB)a_B^3 + (r_{4,0}^A + \beta_1^B + 2\beta_1r_{3,1}^A + 5/2\beta_1^B\beta_0r_{3,2}^AB + 3\beta_0r_{4,1}^A + 3\beta_0r_{4,2}^AB + 3\beta_0r_{4,3}^A)a_B^4 + O(a_B^5),$$

where a_A and a_B are the effective charges under arbitrary schemes A and B, respectively. The previously mentioned a_D and a_F are such kind of effective charges. The $\{\beta_i\}$-functions are usually calculated under the MS-scheme, and the $\{\beta_i\}$-functions for A/B scheme can be obtained by using its relation to the MS-scheme one, i.e. $\beta^{A/B} = \partial\alpha_s^{A/B}/\partial\alpha_s^{\text{MS}}\beta^{\text{MS}}$. The effective charge a_B at any scale μ can be expanded in terms of a C-scheme coupling $\hat{a}_B(\mu)$ at the same scale [45], i.e.,

$$a_B = \hat{a}_B + C\hat{a}_B^2 + \left(\frac{\beta_B^2}{\beta_0} - \beta_B^3 + \beta_B^3\right)\hat{a}_B^3 + \left[\frac{\beta_B^5}{2\beta_0} - \frac{\beta_B^3}{2\beta_0} + \left(3\beta_B^2 - \frac{2\beta_B^2}{\beta_0}\right)C - \frac{5}{2}\beta_0\beta_1C^2\right] \hat{a}_B^4 + O(\hat{a}_B^5),$$

where by choosing a suitable C, the coupling \hat{a}_B can be equivalent to a_B defined for any scheme at the same scale, i.e. $a_B = \hat{a}_B$. By using the C-scheme coupling, the relation (37) becomes

$$a_A = r_1\hat{a}_B + (r_2 + \beta_0r_1C)\hat{a}_B^2 + \left[r_3 - \left(\beta_1r_1 + 2\beta_0r_2\right)C + \beta_0r_1C^2 + r_1\left(\frac{\beta_0^2}{\beta_0} - \frac{\beta_0}{\hat{a}_B}\right)\right]a_B^3 + \left[r_4 + \left(3\beta_0r_3 + 2\beta_1r_2 + 3\beta_0^2r_1 - 2\beta_0^2r_1\right)C\right] + \left(3\beta_0^2r_2 + \frac{5}{2}\beta_1\beta_0r_1\right)C^2 + r_1\beta_0^2C^3$$

Experimentally, the effective charge a_R has been constrained by measuring R_{ee^-} above the thresholds for the production of (ee^-)-bound state [72], i.e.

$$a^\text{exp}_R(\sqrt{s} = 5\text{GeV}) \approx 0.08 \pm 0.03.$$

Substituting it into Eq. (24), we obtain

$$a^\text{F}_3(Q = 12.58^{+1.48}_{-1.26} \text{ GeV}) = 0.073^{+0.025}_{-0.026},$$

which is consistent with the PMC prediction derived directly from Eq. (11) within errors, e.g.

$$a^\text{F}_3(Q = 12.58^{+1.48}_{-1.26} \text{ GeV})|_{\text{PMC}} = 0.063^{+0.002}_{-0.001}.$$
where the coefficients r_i are

\[r_1 = r_{1,0}^{AB}, \]
\[r_2 = r_{2,0}^{AB} + \beta_0 r_{1,2}^{AB}, \]
\[r_3 = r_{3,0}^{AB} + \beta_1 r_{2,1}^{AB} + 2 \beta_0 r_{3,1}^{AB} + \beta_0^2 r_{3,2}^{AB}, \]
\[r_4 = r_{4,0}^{AB} + 2 r_{2,1}^{AB} + 2 \beta_1 r_{3,1}^{AB} + 5 \frac{\beta_1}{2} r_{1,0} r_{3,2}^{AB} + 3 \beta_0 r_{4,1}^{AB} + 3 \beta_0^2 r_{4,2}^{AB} + \beta_0^3 r_{4,3}^{AB}. \]

Following the standard PMC single-scale approach, we obtain the following CSR

\[a_A(Q) = \sum_{i=1}^{n} r_{i,0}^{AB} a_{i,0}^{B}(Q_{**}), \tag{44} \]

where the effective PMC scale Q_{**} is obtained by vanishing all nonconformal terms, which can be expanded as a power series over $\hat{a}_B(Q_{**})$, i.e.,

\[\ln \frac{Q_{**}^2}{Q^2} = \sum_{i=0}^{n-2} \hat{S}_i \hat{a}_B(Q_{**}). \tag{45} \]

whose first three coefficients are

\[\hat{S}_0 = -\frac{r_{1,0}^{AB}}{r_{1,0}^{AB}} - C, \]
\[\hat{S}_1 = \frac{2 (r_{2,0}^{AB} r_{1,2}^{AB} - r_{1,0}^{AB} r_{3,1}^{AB})}{(r_{1,0}^{AB})^2} + \frac{(r_{2,1}^{AB})^2 - r_{1,0}^{AB} r_{3,2}^{AB}}{(r_{1,0}^{AB})^2} \beta_0 + \frac{\beta_1}{\beta_0} + \frac{\beta_2}{\beta_0^2}, \tag{47} \]

and

\[\hat{S}_2 = \frac{3 r_{1,0}^{AB} r_{2,1}^{AB} r_{3,2}^{AB} - (r_{1,0}^{AB})^2 r_{4,3}^{AB} - 2 (r_{2,1}^{AB})^3}{(r_{1,0}^{AB})^3} \beta_0^2 + \frac{3 r_{1,0}^{AB} r_{2,1}^{AB} r_{3,2}^{AB} - (r_{1,0}^{AB})^2 r_{4,3}^{AB} - 2 (r_{2,1}^{AB})^3}{(r_{1,0}^{AB})^3} \beta_0^2 + \frac{3 r_{1,0}^{AB} r_{2,1}^{AB} r_{3,2}^{AB} - (r_{1,0}^{AB})^2 r_{4,3}^{AB} - 2 (r_{2,1}^{AB})^3}{(r_{1,0}^{AB})^3} \beta_0^2 + \frac{3 r_{1,0}^{AB} r_{2,1}^{AB} r_{3,2}^{AB} - (r_{1,0}^{AB})^2 r_{4,3}^{AB} - 2 (r_{2,1}^{AB})^3}{(r_{1,0}^{AB})^3} \beta_0^2 + \frac{3 r_{1,0}^{AB} r_{2,1}^{AB} r_{3,2}^{AB} - (r_{1,0}^{AB})^2 r_{4,3}^{AB} - 2 (r_{2,1}^{AB})^3}{(r_{1,0}^{AB})^3} \beta_0^2 \]
\[+ \frac{3 (r_{2,1}^{AB})^2 - r_{1,0}^{AB} r_{3,2}^{AB}}{2 (r_{1,0}^{AB})^2} \beta_1 + \frac{\beta_1}{\beta_0} + \frac{\beta_2}{\beta_0^2} - \frac{\beta_3}{\beta_0^3}. \tag{48} \]

One may observe that only the LL scheme coefficient \hat{S}_0 depends on the scheme parameter C, and all the higher order coefficients \hat{S}_i ($i \geq 1$) are free of C.

Moreover, the C-scheme coupling $\hat{a}_B(Q_{**})$ satisfies the following relation [45],

\[1 \frac{1}{\hat{a}_B(Q_{**})} + \frac{\beta_1}{\beta_0} \ln \hat{a}_B(Q_{**}) = \beta_0 \left(\ln \frac{Q_{**}^2}{\Lambda^2} + C \right). \tag{49} \]

Substituting Eq. (45) into the right hand side of the equation, we obtain

\[\frac{1}{\hat{a}_B(Q_{**})} + \frac{\beta_1}{\beta_0} \ln \hat{a}_B(Q_{**}) = \beta_0 \left[\ln \frac{Q_{**}^2}{\Lambda^2} + \sum_{i=1}^{n-2} \hat{S}_i \hat{a}_B(Q_{**}) \right]. \tag{50} \]

By using this equation, we can derive a solution for $\hat{a}_B(Q_{**})$. Because all the coefficients in Eq. (50) are free of C at any fixed order, the magnitude of $\hat{a}_B(Q_{**})$ shall be exactly free of C. Together with the scheme-independent conformal coefficients and the fact that the value of C can be chosen to match any renormalization scheme, we can conclude that the CSR (44) is exactly scheme independent. This demonstration can be extended to all orders.

\[\text{IV. SUMMARY} \]

The PMC provides a systematic approach to determine an effective α_s for a fixed-order pQCD approximant. By using the PMC single-scale approach, the determined effective α_s is scale-invariant, which is free of any choice of renormalization scale. Because all nonconformal terms have been eliminated, the resultant pQCD series shall be scheme independent, well satisfying the requirements of RGI. Furthermore, by applying the PMC single-scale approach, we obtain a scheme-independent GCR, $D(a_s)|_{\text{PMC}}^C_{\text{GLS}}(a_s)|_{\text{PMC}} \approx 1$, which provides a significant connection between the Adler function and the GLS sum rules. We have shown that their corresponding effective couplings satisfy a scheme-independent CSR, $\hat{a}_B(Q) = \sum_{i=1}^{n} a_{i,0}^{B}(Q_{**})$. Furthermore, we obtain a CSR that relates the effective charge a_{F_2} to the effective charge β_0 of R-ratio, $a_{F_2}(Q) = \sum_{i=1}^{4} a_{i,0}^{B}(Q_{**})$. This leads to $a_{F_2}(Q = 12.58^{+1.48}_{-1.26}$ GeV) = 0.073 $^{+0.025}_{-0.026}$, which agrees with the extrapolated measured value within errors. A demonstration on the scheme-independence of the CSR has been presented. The scheme- and scale-independent CSRs shall provide important tests of pQCD theory.

\[\text{Acknowledgements:} \] This work is partly supported by the Chongqing Graduate Research and Innovation Foundation under Grant No.ydstdt1912 and No.CYB21045, the National Natural Science Foundation of China under Grant No.11625520 and No.12047564, and the Fundamental Research Funds for the Central Universities under Grant No.2020CQJQY-Z003.
[1] R. J. Crewther, Nonperturbative evaluation of the anomalies in low-energy theories, Phys. Rev. Lett. 28, 1421 (1972).

[2] S. L. Adler, C. G. Callan, Jr., D. J. Gross, and R. Jackiw, Constraints on anomalies, Phys. Rev. D 6, 2982 (1972).

[3] J. D. Bjorken, Applications of the Chiral $U(6) \times U(6)$ Algebra of Current Densities, Phys. Rev. 148, 1467 (1966).

[4] S. L. Adler, Some Simple Vacuum Polarization Phenomenology: $e^+e^- \rightarrow$ Hadrons: The μ - Mesic Atom x-Ray Discrepancy and (g-2) of the Muon, Phys. Rev. D 10, 3714 (1974).

[5] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30, 1346 (1973).

[6] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30, 1343 (1973).

[7] J. D. Bjorken, Inequality for Backward electron-Nucleon and Muon-Nucleon Scattering at High Momentum Transfer, Phys. Rev. 163, 1767 (1967).

[8] J. D. Bjorken, Inelastic Scattering of Polarized Leptons from Polarized Nucleons, Phys. Rev. D 1, 1376 (1970).

[9] D. J. Broadhurst and A. L. Kataev, Connections between deep inelastic and annihilation processes at next to next-to-leading order and beyond, Phys. Lett. B 315, 179 (1993).

[10] S. J. Brodsky, G. T. Gabadadze, A. L. Kataev, and H. J. Lu, The Generalized Crewther relation in QCD and its experimental consequences, Phys. Lett. B 372, 133 (1996).

[11] R. J. Crewther, Relating inclusive e^+e^- annihilation to electroproduction sum rules in quantum chromodynamics, Phys. Lett. B 397, 137 (1997).

[12] G. T. Gabadadze and A. L. Kataev, On connection between coefficient functions for deep inelastic and annihilation processes, JETP Lett. 61, 448 (1995).

[13] V. M. Braun, G. P. Korchemsky and D. Müller, The Uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys. 51, 311 (2003).

[14] D. J. Gross and C. H. Llewellyn Smith, High-energy neutrino - nucleon scattering, current algebra and partons, Nucl. Phys. B 14, 337 (1969).

[15] S. G. Gorishnii, A. L. Kataev, and S. A. Larin, The $O(\alpha_s^3)$-corrections to $\sigma_{tot}(e^+e^- \rightarrow \text{hadrons})$ and $\Gamma(\tau^- \rightarrow \nu_\tau + \text{hadrons})$ in QCD, Phys. Lett. B 259, 144 (1991).

[16] L. R. Surguladze and M. A. Samuel, Total hadronic cross-section in e^+e^- annihilation at the four loop level of perturbative QCD, Phys. Rev. Lett. 66, 560 (1991).

[17] K. G. Chetyrkin, J. H. Kuhn, and A. Kwiatkowski, QCD corrections to the e^+e^- cross-section and the Z boson decay rate, Phys. Rep. 277, 189 (1996).

[18] K. G. Chetyrkin, Corrections of order α_s^3 to R(had) in pQCD with light gluinos, Phys. Lett. B 391, 402 (1997).

[19] S. A. Larin and J. A. M. Vermaseren, The α_s^3 corrections to the Bjorken sum rules for polarized electroproduction and to the Gross-Llewellyn Smith sum rule, Phys. Lett. B 259, 345 (1991).

[20] P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Order α_s^3 QCD Corrections to Z and τ Decays, Phys. Rev. Lett. 101, 012002 (2008).

[21] P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Adler Function, Bjorken Sum Rule, and the Crewther Relation to Order α_s^4 in a General Gauge Theory, Phys. Rev. Lett. 104, 132004 (2010).

[22] G. Cvetič and A. L. Kataev, Adler function and Bjorken polarized sum rule: perturbation expansions in powers of SU(Nc) conformal anomaly and studies of the conformal symmetry limit, Phys. Rev. D 94, 014006 (2016).

[23] A. V. Garkusha, A. L. Kataev, and V. S. Molokoedov, Renormalization scheme and gauge (in)dependence of the generalized Crewther relation: what are the real grounds of the β-factorization property?, JHEP 1802, 161 (2018).

[24] J. M. Shen, X. G. Wu, Y. Ma, and S. J. Brodsky, The Generalized Scheme-Independent Crewther Relation in QCD, Phys. Lett. B 770, 494 (2017).

[25] P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Adler Function, DIS sum rules and Crewther Relations, Nucl. Phys. Proc. Suppl. 205-206, 237 (2010).

[26] P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, and J. Rittinger, Adler Function, Sum Rules and Crewther Relation of Order $O(\alpha_s^4)$: the Singlet Case, Phys. Lett. B 714, 62 (2012).

[27] A. Petermann, La normalisation des constantes dans la théorie des quantaNormalization of constants in the quanta theory, Helv. Phys. Acta 26, 499 (1953).

[28] M. Gell-Mann and F. E. Low, Quantum electrodynamics at small distances, Phys. Rev. 95, 1300 (1954).

[29] C. G. Callan, Jr., Broken scale invariance in scalar field theory, Phys. Rev. D 2, 1541 (1970).

[30] K. Symanzik, Small distance behavior in field theory and power counting, Commun. Math. Phys. 18, 227 (1970).

[31] A. Peterman, Renormalization Group and the Deep Structure of the Proton, Phys. Rept. 53, 157 (1979).

[32] X. G. Wu, S. J. Brodsky, and M. Mojaza, The Renormalization Scale-Setting Problem in QCD, Prog. Part. Nucl. Phys. 72, 44 (2013).

[33] X. G. Wu, Y. Ma, S. Q. Wang, H. B. Fu, H. H. Ma, S. J. Brodsky, and M. Mojaza, Renormalization Group Invariance and Optimal QCD Renormalization Scale-Setting, Rep. Prog. Phys. 78, 126201 (2015).

[34] S. J. Brodsky and X. G. Wu, Scale Setting Using the Extended Renormalization Group and the Principle of Maximum Conformality: the QCD Coupling Constant at Four Loops, Phys. Rev. D 85, 034038 (2012).

[35] M. Mojaza, S. J. Brodsky, and X. G. Wu, Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in Perturbative QCD, Phys. Rev. Lett. 110, 192001 (2013).

[36] S. J. Brodsky and X. G. Wu, Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the Principle of Maximum Conformality, Phys. Rev. Lett. 109, 042002 (2012).

[37] S. J. Brodsky, M. Mojaza, and X. G. Wu, Systematic Scale-Setting to All Orders: The Principle of Maximum Conformality and Commensurate Scale Relations, Phys. Rev. D 89, 014027 (2014).

[38] S. J. Brodsky and X. G. Wu, Self-Consistency Requirements of the Renormalization Group for Setting the Renormalization Scale, Phys. Rev. D 86, 054018 (2012).

[39] H. Y. Bi, X. G. Wu, Y. Ma, H. H. Ma, S. J. Brodsky, and M. Mojaza, Degeneracy Relations in QCD and the Equivalence of Two Systematic All-Orders Methods for Setting the Renormalization Scale, Phys. Lett. B 748, 13
X. G. Wu, S. Q. Wang and S. J. Brodsky, Importance of proper renormalization scale-setting for QCD testing at colliders, Front. Phys. 11, 111201 (2016).

J. C. Zheng, X. G. Wu, S. Q. Wang, J. M. Shen, and Q. L. Zhang, Reanalysis of the BFKL Pomeron at the next-to-leading logarithmic accuracy, JHEP 1310, 117 (2013).

X. G. Wu, J. M. Shen, B. L. Du, X. D. Huang, S. Q. Wang, and S. J. Brodsky, The QCD Renormalization Group Equation and the Elimination of Fixed-Order Scheme-and-Scale Ambiguities Using the Principle of Maximum Conformality, Prog. Part. Nucl. Phys. 108, 103706 (2019).

J. M. Shen, X. G. Wu, B. L. Du, and S. J. Brodsky, Novel All-Orders Single-Scale Approach to QCD Renormalization Scale-Setting, Phys. Rev. D 95, 094006 (2017).

D. Boito, M. Jamin, and R. Miravitllas, Scheme Variations of the QCD Coupling and Hadronic τ Decays, Phys. Rev. Lett. 117, 152001 (2016).

X. G. Wu, J. M. Shen, B. L. Du, and S. J. Brodsky, Novel demonstration of the renormalization group invariance of the fixed-order predictions using the principle of maximum conformality and the C-scheme coupling, Phys. Rev. D 97, 094030 (2018).

B. L. Du, X. G. Wu, J. M. Shen, and S. J. Brodsky, Extending the Predictive Power of Perturbative QCD, Eur. Phys. J. C 79, 182 (2019).

Q. Yu, X. G. Wu, J. Zeng, X. D. Huang, and H. M. Yu, The heavy quarkonium inclusive decays using the principle of maximum conformality, Eur. Phys. J. C 80, 362 (2020).

Q. Yu, X. G. Wu, S. Q. Wang, X. D. Huang, J. M. Shen, and J. Zeng, Properties of the decay $H \rightarrow \gamma \gamma$ using the approximate α_s^4 corrections and the principle of maximum conformality, Chin. Phys. C 43, 093102 (2019).

X. D. Huang, X. G. Wu, J. Zeng, Q. Yu, X. C. Zheng, and S. Xu, Determination of the top-quark MR running mass via its perturbative relation to the on-shell mass with the help of principle of maximum conformality, Phys. Rev. D 101, 114024 (2020).

H. M. Yu, W. L. Sang, X. D. Huang, J. Zeng, X. G. Wu, and S. J. Brodsky, Scale-Fixed Predictions for $\gamma + p_{t}$ production in electron-positron collisions at NNLO in perturbative QCD, JHEP 01, 131 (2021) [arXiv:2007.14553].

J. L. Basdevant, The Padé approximation and its physical applications, Fortsch. Phys. 20, 283 (1972).

M. A. Samuel, G. Li, and E. Steinfels, Estimating perturbative coefficients in quantum field theory using Padé approximants. 2., Phys. Lett. B 323, 188 (1994).

M. A. Samuel, J. R. Ellis, and M. Karliner, Comparison of the Padé approximation method to perturbative QCD calculations, Phys. Rev. Lett. 74, 4380 (1995).

G. Grunberg, Renormalization Group Improved Perturbative QCD, Phys. Lett. B 95, 70 (1980).

G. Grunberg, Renormalization Scheme Independent QCD and QED: The Method of Effective Charges, Phys. Rev. D 29, 2315 (1984).

A. Dhar and V. Gupta, A New Perturbative Approach to Renormalizable Field Theories, Phys. Rev. D 29, 2822 (1984).

P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, and J. Ritfinger, Vector Correlator in Massless QCD at Order $O(\alpha_s^4)$ and the QED beta-function at Five Loop, JHEP 1207, 017 (2012).

M. Beneke and V. M. Braun, Naive nonAbelianization and resummation of fermion bubble chains, Phys. Lett. B 348, 513 (1995).

M. Neubert, Scale setting in QCD and the momentum flow in Feynman diagrams, Phys. Rev. D 51, 5924 (1995).

M. Beneke, Renormalons, Phys. Rep. 317, 1 (1999).

S. J. Brodsky and H. J. Lu, Commensurate scale relations in quantum chromodynamics, Phys. Rev. D 51, 3652 (1995).

M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD and Resonance Physics. Theoretical Foundations, Nucl. Phys. B 147, 385 (1979).

R. L. Jaffe and M. Solod, Twist Four in Electroproduction: Canonical Operators and Coefficient Functions, Phys. Rev. D 26, 49 (1982).

E. V. Shuryak and A. I. Vainshtein, Theory of Power Corrections to Deep Inelastic Scattering in Quantum Chromodynamics (1). Q^{-4} Effects, Nucl. Phys. B 199, 451 (1982).

E. V. Shuryak and A. I. Vainshtein, Theory of Power Corrections to Deep Inelastic Scattering in Quantum Chromodynamics(1). Q^{-4} Effects: Polarized Target, Nucl. Phys. B 201, 141 (1982).

X. D. Ji and P. Unruh, Q^2 dependence of the proton’s G_1 structure function sum rule, Phys. Lett. B 333, 228 (1994).

V. M. Braun and A. V. Kolesnichenko, Power Corrections To Bjorken And Gross-llewellyn Smith Sum Rules In Qcd, Nucl. Phys. B 283, 723 (1987).

I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko, Power corrections $1/Q^2$ to parton sum rules for deep inelastic scattering from polarized targets, Phys. Lett. B 242, 245 (1990).

G. G. Ross and R. G. Roberts, Improved QCD sum rules estimates of the higher twist contributions to polarized and unpolarized nucleon structure functions, Phys. Lett. B 322, 425 (1994).

E. Stein, P. Gornicki, L. Mankiewicz, A. Schafer, and W. Greiner, QCD sum rules calculation of twist - three contributions to polarized nucleon structure functions, Phys. Lett. B 343, 369 (1995).

E. Stein, P. Gornicki, L. Mankiewicz, and A. Schafer, QCD sum rules calculation of twist four corrections to Bjorken and Ellis-Jaffe sum rules, Phys. Lett. B 353, 107 (1995).

A. C. Mattingly and P. M. Stevenson, Optimization of $R(e^+e^-)$ and 'freezing' of the QCD couplant at low-energies, Phys. Rev. D 49, 437 (1994).

P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020, 083C01 (2020).

W. C. Leung et al., A Measurement of the Gross-Llewellyn-Smith Sum Rule from the CCFR xF_3 Structure Function, Phys. Lett. B 317, 655 (1993).

P. Z. Quintas et al., A Measurement of Δ_{FF}^γ from ν_μ - Fe Nonsinglet Structure Functions at the Fermilab Tevatron, Phys. Rev. Lett. 71, 1307 (1993).

A. L. Kataev and A. V. Sidarov, The Jacobi polynomials QCD analysis of the CCFR data for xF_3 and the Q^2 dependence of the Gross-Llewellyn-Smith sum rule, Phys. Lett. B 331, 179 (1994).