C-SYMPLECTIC POSET STRUCTURE ON A SIMPLY CONNECTED SPACE

KAZUYA HAMADA, TOSHIHIRO YAMAGUCHI AND SHOJI YOKURA

ABSTRACT. For a field k of characteristic zero, we introduce a cohomologically symplectic poset structure $P_k(X)$ on a simply connected space X from the viewpoint of k-homotopy theory. It is given by the poset of inclusions of subgroups preserving c-symplectic structures in the group $E(X)_k$ of k-homotopy classes of k-homotopy self-equivalences of X, which is defined by the k-Sullivan model of X. We observe that the height of the Hasse diagram of $P_k(X)$ added by 1, denoted by c-s-depth$_k(X)$, is finite and often depends on the field k. In this paper, we will give some examples of $P_k(X)$.

1. Introduction

Compact Kähler manifolds are well-known to be symplectic manifolds and they are also formal spaces from the viewpoint of minimal models [4]. However, symplectic manifolds are not necessarily formal spaces (e.g. [7]). Dennis Sullivan posed the following problem [29] (cf. [30, Problem 4], [9, Question 4.99]): Are there algebraic conditions on the minimal model of a compact manifold, implying the existence of a symplectic structure on it? There are interesting approaches to answer this question for certain cases (e.g. see [19], [20], [30]). In this paper we discuss simply connected cohomologically symplectic structures, instead of the usual symplectic structures. A Poincaré duality space (cf. [9, Definition 3.1]) Y is said to have a cohomologically symplectic (abbr., c-symplectic) structure if there is a rational cohomology class $\omega \in H^2(Y; \mathbb{Q})$ such that ω^n is a top class for Y (cf. [9, Definition 4.87]). Since $H^2(Y; \mathbb{Z}) \cong [Y, K(\mathbb{Z}, 2)]$ and $H^2(Y; \mathbb{Q}) \cong H^2(Y; \mathbb{Z}) \otimes \mathbb{Q}$, we can consider the following situation:

(1) an integral cohomology class $\mu \in H^2(Y; \mathbb{Z})$ corresponds to the homotopy class of a map $\mu : Y \to K(\mathbb{Z}, 2)$ and
(2) $\mu \otimes 1_\mathbb{Q}$ in $H^2(Y; \mathbb{Z}) \otimes \mathbb{Q}$ is a c-symplectic class on Y.

Furthermore it follows from Serre’s result that in the homotopy category any map is “the same” as a fibration $p : Y' \to K(\mathbb{Z}, 2)$. Thus from the beginning we can assume that Y is the total space of a fibration to $K(\mathbb{Z}, 2)$. Let X be the fibre of the fibration $\mu : Y \to K(\mathbb{Z}, 2)$. Then we rationalize this fibration and study it by minimal models.

In [27], J. Sato and the second named author treated the above c-symplectic analogue of Sullivan’s question, considering the fiber space X of the fibration μ. They asked the following question under the additional condition that the fiber space X is simply connected: What conditions on X induce a c-symplectic structure

MSC: 55P62, 57R17
Keywords: c-symplectic space, homotopy self-equivalences, Sullivan minimal model, k-homotopy, c-symplectic poset structure, c-symplectic depth

1
of the total space \(Y_\mu \) of the fibration
\[
\mu : X \rightarrow Y_\mu \xrightarrow{\mu} K(\mathbb{Z}, 2). \tag{*}
\]

They call such a space \(X \) pre-c-symplectic (i.e., pre-cohomologically symplectic). For example, they gave necessary and sufficient conditions for that the product \(S^{k_1} \times S^{k_2} \times \cdots \times S^{k_n} \) of odd-dimensional spheres is pre-c-symplectic. In this paper, we furthermore consider the following

Problem 1.1. For a simply connected space \(X \), how can we classify c-symplectic spaces \(Y_\mu \) in (\(*\))?

When \(S^1 \) acts on \(X \), we have a Borel fibration (\(*\)) with \(K(\mathbb{Z}, 2) = BS^1 \). In our case, it is always a Borel fibration of a free \(S^1 \)-action on a finite \(CW \)-complex \(X' \) in the rational homotopy type of \(X \) \[14\] Proposition 4.2. In \[20\], V. Puppe gives a classification of \(S^1 \)-fibrations on a certain space \(X \) having fixed points via the algebraic deformation theory of M. Gerstenhaber over an algebraically closed field \(k \). This classification gives a Hasse diagram (e.g. see \[20\] page 350)). However, in the case of almost free \(S^1 \)-actions, which have empty fixed points, we cannot give such a classification using the algebraic deformation theory of Gerstenhaber. Thus we cannot get such a Hasse diagram. In this paper, we can get a classification of the rational homotopy types of products of odd-dimensional spheres. In our case, it is always a Borel fibration of a free \(S^1 \)-action on a finite \(CW \)-complex \(X' \) in the rational homotopy type of \(X \) \[14\] Proposition 4.2. In \[20\], V. Puppe gives a classification of \(S^1 \)-fibrations on a certain space \(X \) having fixed points via the algebraic deformation theory of M. Gerstenhaber over an algebraically closed field \(k \). This classification gives a Hasse diagram (e.g. see \[20\] page 350)). However, in the case of almost free \(S^1 \)-actions, which have empty fixed points, we cannot give such a classification using the algebraic deformation theory of Gerstenhaber. Thus we cannot get such a Hasse diagram. In this paper, we can get a classification of the total spaces \(Y_\mu \) by using the groups of \(k \)-homotopy classes of \(k \)-homotopy self-equivalences, by which we can get a poset denoted as \(\mathcal{P}_k(X) \) via the inclusions of the subgroups over a field of characteristic zero \(k \). See \[31\] for some examples of such a poset of free \(S^1 \)-actions on some rational types with \(X \) when \(k = \mathbb{Q} \). Refer to \[6\] for the other general classification given by a \(k \)-deformation of Sullivan model.

In \[2\] we recall \(k \)--Sullivan models according to \[3\]. In \[3\] we define the “c-symplectic poset structure” \(\mathcal{P}_k(X) \) for \(X \) over \(k \) and a \(c \)-symplectic depth of \(X \) over \(k \), denoted by \(c \)-depth\(_k(X) \) (which is defined by adding 1 to the height or the length of the Hasse diagram of the poset \(\mathcal{P}_k(X) \)). We give some results in \[3\] and their proofs are given in \[4\]. In \[5\] we treat \(\mathcal{P}_k(X) \) mainly in the case that spaces \(X \) have the rational homotopy types of products of odd-spheres.

2. \(k \)-Sullivan Models

Let \(X_\mathbb{Q} \) and \(f_\mathbb{Q} \) be the rationalizations \[18\] of a simply connected space \(X \) with finite rational cohomology and a map \(f \), respectively. Let \(M(X) = (\Lambda V, d) \) be the Sullivan model of \(X \). It is a freely generated \(\mathbb{Q} \)-commutative differential graded algebra (\(\mathbb{Q} \)-DGA) with a \(\mathbb{Q} \)-graded vector space \(V = \bigoplus_{i \geq 2} V^i \) where \(\dim V^i < \infty \) and a decomposable differential; i.e., \(d(V^i) \subset (\Lambda^+ V \cdot \Lambda^+ V)^{i+1} \) and \(d \circ d = 0 \). Here \(\Lambda^+ V \) is the ideal of \(\Lambda V \) generated by elements of positive degree. Denote the degree of a homogeneous element \(x \) of a graded algebra by \(|x| \). Then \(xy = (-1)^{|x||y|}yx \) and \(d(xy) = d(x)y + (-1)^{|x|}x d(y) \). Note that \(M(X) \) determines the rational homotopy type of \(X \). In particular, \(H^*(\Lambda V, d) \cong H^*(X; \mathbb{Q}) \) and \(V^i \cong \text{Hom}(\pi_i(X), \mathbb{Q}) \). Refer to \[7\] for details.

Let \(k \) be a field of characteristic zero (then \(\mathbb{Q} \subset k \)). The \(k \)-minimal model of a space \(X \) is \(M(X_k) := (\Lambda V_k, d_k) \) where \(\Lambda V_k := \Lambda V \otimes k \) and \(d_k \) is the \(k \)-extension of \(d \). We say that \(X \) and \(Y \) have the same \(k \)-homotopy type (denote \(X_k \cong Y_k \) when there is a \(k \)-DGA isomorphism \((\Lambda V_k, d_k) \cong (\Lambda U_k, d_k') \) for \(M(Y) = (\Lambda U, d') \). Refer to \[3\] Definition 1]. Notice that, for \(k_1 \supset k_2 \), \((\Lambda V_k, d_k) \cong (\Lambda U_k, d_k') \) if
(AV_k, d_k) \cong (AU_k, d'_k) \text{ ([3], [23]).}

The k-model of the above fibration (**) is given as the k-relative model

\((k[t], 0) \rightarrow (k[t] \otimes AV_k, D_k) \xrightarrow{\mu} (AV_k, d_k) = M(X_k)\) (**) where \(|t| = 2\) and \((k[t], 0)\) is the k-model of \(K(\mathbb{Z}, 2)\).

3. C-SYMPLECTIC POSET STRUCTURE

Let \(E(X_\mathbb{Q})\) be the group of homotopy classes of (unpointed) homotopy self-equivalences of a rationalized space \(X_\mathbb{Q}\) (e.g. [11, 22, 21, 22, 25]). Let \(autM\) be the group of k-DGA-autmorphisms of a k-DGA \(M\). Denote \(f \sim_k g\) when two maps \(f\) and \(g\) of \(autM\) are k-DGA-homotopic; i.e., there is a k-DGA-map \(H : M \rightarrow M \otimes \Lambda(s, ds)_k\) such that \(|s| = 0\) and \(|ds| = 1\) with \(H |_{s=0} = f\) and \(H |_{s=1} = g\). The group of k-DGA-homotopy classes of k-DGA-autmorphisms of \(M(X_k) = (AV_k, d_k)\)

\[Aut(AV_k, d_k) = aut(AV_k, d_k) / \sim_k\]

is denoted by \(E(X_k)\) and it is equal to \(aut(AV_k, d_k) / I\) for the subgroup \(I\) of inner automorphisms of \((AV_k, d_k)\) [29 Proposition 6.5].

For a fibration \(\mu\) (see the above (**)) where \(Y = Y_\mu\) is c-symplectic, let \(E(p_\mathbb{Q})\) denote the group of (unpointed) fibrewise self-equivalences \(f_\mathbb{Q} : Y_\mathbb{Q} \rightarrow Y_\mathbb{Q}\) of the rationalized fibration \(p_\mathbb{Q} : Y_\mathbb{Q} \rightarrow K(\mathbb{Z}, 2)_\mathbb{Q} = K(\mathbb{Q}, 2)\) of (**). Thus \(p_\mathbb{Q} \circ f_\mathbb{Q} = p_\mathbb{Q}\). Furthermore, let \(E(p_k)\) denote the group of fibrewise self-equivalences \(f_k\) of \(p_k : Y_k \rightarrow K(\mathbb{Z}, 2)_k =: K(k, 2)\). Thus \(p_k \circ f_k = p_k\) in

\[\xymatrix{ X_k \ar[r]^{\mu} & Y_k \ar[r]^{p_k} & K(k, 2) \ar@{=}[d] \ar@{=}[d] \\
X_k \ar[r]^{\mu} & Y_k \ar[r]^{p_k} & K(k, 2), \ar@{=}[d] \ar@{=}[d]}
\]

where \(\bar{f}_k\) is the induced map of \(f_k\). Let \(E_\mu(X_k)\) denote the image of the natural homomorphism induced by fibre restrictions

\[F_\mu : E(p_k) \rightarrow E(X_k)\]

with \(F_\mu(f_k) = \bar{f}_k\). We let \(Aut_t(k[t] \otimes AV_k, D_k)\) denote the groups of k-DGA-homotopy classes of k-DGA-autmorphisms \(f\) of \((k[t] \otimes AV_k, D_k)\) in the above (**) with \(|f| = t\). Then

\[E(p_k) = Aut_t(k[t] \otimes AV_k, D_k)\]

and \(F_\mu : E(p_k) \rightarrow E(X_k)\) is equivalent to the restriction map

\[F'_\mu : Aut_t(k[t] \otimes AV_k, D_k) \rightarrow Aut(AV_k, d_k)\]

with \(F'_\mu(f) = p_t(f(v))\) for \(v \in V\) and \(p_t\) in (**). Then

\[E_\mu(X_k) = \text{Im} F'_\mu.\]

Refer to [28 Proposition 2.2] (also see [10, 8]).

Remark 3.1. Recall that, for a fibration \(X \rightarrow E \rightarrow B\), D. Gottlieb posed the problem [12, 55]: Which homotopy equivalences of \(X\) into itself can be extended to fibre homotopy equivalences of \(E\) into itself? In our case, we can propose a k-realization problem on c-symplectic spaces: For which subgroup \(G\) of \(E(X_k)\) does or does not there exist a fibration \(\mu\) such that \(E_\mu(X_k) = G\)?
Lemma 3.2. If $\mu \cong_k \mu'$ (over $K(k,2)$), then $E_\mu(X_k)$ and $E_{\mu'}(X_k)$ are naturally identified in $E(X_k)$.

We are interested in the set $S := \{E_\mu(X_k)\}_{\mu \in \mathcal{I}}$ of subgroups of $E(X_k)$ for the set I of isomorphism classes of Y_k in ($*$) where Y_k are c-symplectic.

Definition 3.3. We define an equivalence relation \sim for μ and τ of I if $E_\mu(X_k) = E_\tau(X_k)$ in $E(X_k)$. For equivalence classes $[\mu]$ and $[\tau]$, put $[\mu] \leq [\tau]$ when there is an inclusion $i : E_\mu(X_k) \rightarrow E_\tau(X_k)$ in $E(X_k)$. We define

$$P_k(X) := (S/\sim, \leq) = ([\mu]), \leq),$$

which is called the c-symplectic poset structure on X over k.

Definition 3.4. For a field k of characteristic zero, we define the c-symplectic depth (abbr., c-s-depth) of a simply connected space X over k by

$$c\text{-}s\text{-depth}_k(X) = \max \{n \mid [\mu_i] > [\mu_{i+1}] > \cdots \}$$

for $[\mu_i] \in P_k(X)$.

Here we note that

$$c\text{-}s\text{-depth}_k(X) = \text{the height of } P_k(X) + 1.$$

Suppose that $\mu_1 \cong_k \mu_1'$ and $\mu_2 \cong_k \mu_2'$. If $E_{\mu_1}(X_k) \subset E_{\mu_2}(X_k)$, then we can regard as $E_{\mu_1'}(X_k) \subset E_{\mu_2'}(X_k)$ from Lemma 3.4. Thus we have

Lemma 3.5. The non-negative integer $c\text{-}s\text{-depth}_k(X)$ is a k-homotopy invariant.

Proposition 3.6. When $\dim H^*(X; \mathbb{Q}) < \infty$, $c\text{-}s\text{-depth}_k(X) < \infty$ for all k.

If X is not pre-c-symplectic, then $P_k(X) = \emptyset$, in which case we set $c\text{-}s\text{-depth}_k(X) := 0$. If X is pre-c-symplectic, then $P_k(X) \neq \emptyset$, whence clearly we have that $c\text{-}s\text{-depth}_k(X) \geq 1$. Thus it is obvious that X is pre-c-symplectic if and only if $c\text{-}s\text{-depth}_k(X) > 0$ for any k.

Remark 3.7. It is expected that $c\text{-}s\text{-depth}_k(X)$ measures the abundance of c-symplectic structures associated to a simply connected space X.

Proposition 3.8. If X is pre-c-symplectic, then the formal dimension $fd(X)$ of X is odd, where $fd(X) := \max \{n \mid H^n(X; \mathbb{Q}) \neq 0\}$.

Proof. Since X is pre-c-symplectic, we have a fibration $\mu : X \rightarrow Y_\mu \rightarrow K(\mathbb{Z},2)$. Then we have a fibration one step back in the Barratt-Puppe sequence, which is an $\Omega K(\mathbb{Z},2) = S^1$-fibration over Y with the total space X, $S^1 \rightarrow X \rightarrow Y$. Let $fd(Y) := m$. Then it follows from the Gysin sequence for cohomology that $H^{m+1}(X; \mathbb{Q}) \cong H^m(Y; \mathbb{Q}) \neq 0$ and $H^{k+1}(X; \mathbb{Q}) \cong H^k(Y; \mathbb{Q}) = 0$ for $k > m$, thus we get $fd(X) = m+1 = fd(Y)+1$. Since $fd(Y) = m$ is even, the formal dimension $fd(X)$ of X is odd.

Note that $fd(X) = \max \{n \mid H^n(X; k) \neq 0\}$ for any k and that if X is a compact manifold, then the formal dimension is the same as the (real) dimension of the manifold.

Corollary 3.9. If the formal dimension of X is even, then $c\text{-}s\text{-depth}_k(X) = 0$.

Corollary 3.10. (1) For any $n > 0$, $c\text{-}s\text{-depth}_k(S^{2n}) = 0$.
(2) If X is a c-symplectic space, then $c\text{-}s\text{-depth}_k(X) = 0$.
(3) If $c\text{-}s\text{-depth}_k(G/H) > 0$ for a homogeneous space G/H, $\text{rank} G > \text{rank} H$.
(4) If $c\text{-}s\text{-depth}_k(X) > 0$ and $c\text{-}s\text{-depth}_k(Y) > 0$, then $c\text{-}s\text{-depth}_k(X \times Y) = 0$.

Proof. (1) $fd(S^{2n})$ is even.
(2) The formal dimension of a c-symplectic space is even (cf. [7] page 218, Theorem 32.6(i)).
(3) Suppose that $\text{rank } G = \text{rank } H$. Let T be a maximal torus for both G and H. Since root theory tells us that $\dim G - \dim T$ and $\dim H - \dim T$ are both even, then $\dim G/H = \dim G - \dim H$ is also even. Hence, c-s-depth$_k(G/H) = 0$.
(4) c-s-depth$_k(X) > 0$ and c-s-depth$_k(Y) > 0$ imply that their formal dimensions $fd(X)$ and $fd(Y)$ are both odd. By the Künneth theorem we have that $H^i(X \times Y, \mathbb{Q}) = \sum_{i+j=n} H^i(X, \mathbb{Q}) \otimes H^j(Y, \mathbb{Q})$. Hence $fd(X \times Y) = fd(X) + fd(Y)$, thus $fd(X \times Y)$ is even. Therefore c-s-depth$_k(X \times Y) = 0$. \hfill \Box

Theorem 3.11. For any $n > 0$, c-s-depth$_k(S^{2n+1}) = 1$.

Proof. The result c-s-depth$_k(S^{2n+1}) = 1$ follows from the fact that the k-Sullivan minimal model of Y in $(*)$ is uniquely determined as $(k[t] \otimes \mathcal{A}(v)_k, D_k)$ with $D_k t = 0$ and $D_k v = t^{n+1}$ for $M(S^{2n+1}) = (\mathcal{A}(v), 0)$.

One might expect or think that $fd(X)$ is even if and only if c-s-depth$_k(X) = 0$, or equivalently that $fd(X)$ is odd if and only if c-s-depth$_k(X) > 0$. However this turns out not to be the case, due to the following result:

Theorem 3.12. ([27] Theorem 1.2) When $H^*(X; \mathbb{Q}) \cong \Lambda(v_1, v_2, \ldots, v_n)$ with all $|v_i| \geq 1$, then X is pre-c-symplectic if and only if n is odd and $|v_1| + |v_{n-1}| < |v_n|$, $|v_2| + |v_{n-2}| < |v_n|$, $|v_3| + |v_{n-3}| < |v_n|$, \cdots, $|v_{n-1}| + |v_{n+1}| < |v_n|$.

Example 3.13. Let n be an odd integer ≥ 5 and consider the following space:

$$X := S^{11} \times S^{15} \times \cdots \times S^{4k-1} \times \cdots \times S^{4n-1} \quad (k > 3).$$

Since n is odd, the formal dimension $fd(X)$ is odd, but it follows from Theorem 3.12 that c-s-depth$_k(X) = 0$.

Theorem 5.13 at the end of §5 says for the symplectic group $Sp(n)$ whose dimension $\dim Sp(n)$ is $n(2n + 1)$ that c-s-depth$_k(\mathcal{A}(v)) \geq \frac{n+1}{2}$ for any odd integer $n > 3$. Thus we have the following

Proposition 3.14. A c-symplectic depth can be arbitrarily large.

The above Corollary 3.10(4) suggests that c-symplectic depth would not behave well with respect to taking the product of spaces. In fact, using Theorem 5.13 and Example 3.13 we can make the following

Proposition 3.15. (1) Even if c-s-depth$_k(X) = 0$ and c-s-depth$_k(Y) = 1$, c-s-depth$_k(X \times Y)$ can be arbitrarily large.

(2) Even if c-s-depth$_k(X) = c$-s-depth$_k(Y) = 0$, c-s-depth$_k(X \times Y)$ can be arbitrarily large.

Proof. (1) Indeed, let n be an odd integer ≥ 5 and let us consider the rational homotopy decomposition

$$Sp(n) \simeq Q S^3 \times S^7 \times \cdots \times S^{4(n-1)-1} \times S^{4n-1} \simeq Q Sp(n-1) \times S^{4n-1}.$$

We now let $X := Sp(n-1)$ and $Y := S^{4n-1}$. Then c-s-depth$_k(Y) = 1$. When n is odd, $\dim Sp(n) = n(2n + 1)$ is odd and $\dim Sp(n-1) = fd(Sp(n-1)) = fd(X)$
is even, thus $c\text{-s-depth}_k(X) = 0$. However it follows from Theorem 5.13 that $c\text{-s-depth}_k(X \times Y) \geq \frac{n+1}{2}$.

(2) Now consider the following:

$$Sp(n) \simeq \left(S^3 \times S^7\right) \times \left(S^{11} \times \cdots \times S^{4k-1} \times \cdots \times S^{4n-1}\right) \quad (k > 3)$$

and set $X := S^3 \times S^7$ and $Y := S^{11} \times \cdots \times S^{4n-1}$. Then we have that $c\text{-s-depth}_k(X) = c\text{-s-depth}_k(Y) = 0$, but we have $c\text{-s-depth}_k(X \times Y) \geq \frac{n+1}{2}$. \hfill \qed

The following theorem indicates an example that a $c\text{-symplectic depth}$ strongly depends on a field k.

Theorem 3.16. When $X = \mathbb{C}P^n \times S^{2n+3}$ with n even, $c\text{-s-depth}_0(X) = 1$ but $c\text{-s-depth}_k(X) = c(n+1)$ where $c(n+1) := n_1 + n_2 + \cdots + n_m + 1$ for the prime decomposition $n + 1 = p_1^{n_1} p_2^{n_2} \cdots p_m^{n_m}$. Here $\overline{\mathbb{Q}}$ means the algebraic closure of \mathbb{Q}. Moreover, there is a sequence of field extensions

$$\mathbb{Q} \subset k_1 \subset k_2 \subset \cdots \subset k_{c(n+1)} \subset \overline{\mathbb{Q}}$$

such that

$$c\text{-s-depth}_0(X) < c\text{-s-depth}_{k_1}(X) < c\text{-s-depth}_{k_2}(X) < \cdots < c\text{-s-depth}_{k_{c(n+1)}}(X).$$

We see the following result from the proof of Theorem 3.16.

Corollary 3.17. When $X = \mathbb{C}P^n \times S^{2n+3}$ with n even, the poset $\mathcal{P}_k(X)$ contains the subgroup poset of the group $\mathbb{Z}/(n+1)\mathbb{Z}$.

We remark that $\text{cat}_0(\mathbb{C}P^n \times S^{2n+3}) = \text{cat}(\mathbb{C}P^n \times S^{2n+3}) = n + 1$. Here cat and cat_0 are respectively the Lusternik-Schnirelmann (LS) category and the rational LS category $\text{cat}_0(X) := \text{cat}(X_\mathbb{Q})$ of a space X (e.g., see [7]). Notice that $\text{cat}_0(X) = \text{cat}(X_\mathbb{Q})$ for all field k. On the other hand, for a cyclotomic field k, the proof of Theorem 3.16 indicates that $\mathcal{P}_k(X)$ often presents more informations on a classification of $\{Y_\mu\}_\mu$ in (§1) than $\mathcal{P}_0(X)$. In connection with LS categories, we would like to pose the following

Question 3.18. For any field k, is $c\text{-s-depth}_k(X) \leq \text{cat}_0(X)$?

Remark 3.19. Let Y be a simply connected $c\text{-symplectic}$ space. We define

$$l_X(Y)_k := \begin{cases} \max \{ n \mid |\mu_1 > |\mu_2 > \cdots > |\mu_{n-1}| > |\mu_n| = |Y| \} \text{ in } \mathcal{P}_k(X), \\ 0, \text{ if there exists no fibration } X \to Y \to K(\mathbb{Z}, 2). \end{cases}$$

If $\dim \pi_2(Y) \otimes \mathbb{Q} = 1$, such a space X uniquely exists. We speculate that $l_X(Y)_k$ must reflect a certain complexity of $c\text{-symplectic}$ structure of Y. This definition is something like the co-height of a prime ideal (e.g., [22]) by adding 1. Here the co-height of a prime ideal p in a ring R is defined as the largest n for which there exists a chain of different prime ideals $p \subset p_1 \subset \cdots \subset p_n \neq R$.

4. Proofs

Proof of Lemma. Let $\mu : X \to Y_{\mu} \to K(\mathbb{Z}, 2)$ be a fibration with $\mu \equiv_k \mu'$. Suppose that

$$\psi : M(Y_{\mu k}) = (k[t] \otimes \Lambda V, D) \to (k[t] \otimes \Lambda V, D') = M(Y_{\mu' k})$$

Proof of Lemma
is an isomorphism over \((k[t], 0)\). Then the restriction map \(\overline{\psi} : (\Lambda V_k, D_k) \to (\Lambda V_k, D'_k)\) is an isomorphism. We define

\[
ad_{\psi} : Aut_t(k[t] \otimes \Lambda V_k, D_k) \to Aut_t(k[t] \otimes \Lambda V_k, D'_k)
\]

by \(ad_{\psi}(f) = \psi \circ f \circ \psi^{-1}\), which is well-defined. Then we get the following commutative diagram of groups:

\[
\begin{array}{ccc}
\mathcal{E}(X_k) & \xrightarrow{ad_{\psi}} & \mathcal{E}(X_k) \\
\text{res.} & & \text{res.} \\
\mathcal{E}(p_k) & \xrightarrow{ad_{\psi}} & \mathcal{E}(p'_k),
\end{array}
\]

where the vertical maps are the restriction maps. Thus \(E_{\mu}(X_k)\) is identified with \(E_{\mu'}(X_k)\) by the isomorphism \(ad_{\psi}\) given by \(ad_{\psi}(f) = \psi \circ f \circ \psi^{-1}\). \(\square\)

Proof of Proposition 3.6 Suppose that there is a sequence

\[
\mathcal{E}(X_k) \supseteq E_{\mu_1}(X_k) \supseteq E_{\mu_2}(X_k) \supseteq \cdots \supseteq E_{\mu_n}(X_k)
\]

for some \(m\). It is equivalent to a sequence

\[
Aut(\Lambda V_k, d_k) \supseteq \text{Im} F'_{\mu_1} \supseteq \text{Im} F'_{\mu_2} \supseteq \cdots \supseteq \text{Im} F'_{\mu_{m-1}}
\]

for the restriction maps \(F'_{\mu_i} : Aut_t(k[t] \otimes \Lambda V_k, D_{t,k}) \to Aut(\Lambda V_k, d_k)\) in §3. Then we have a sequence of \(k\)-algebraic groups

\[
\text{aut}(\Lambda V_k, d_k) \supseteq G_{\mu_1} \supseteq G_{\mu_2} \supseteq \cdots \supseteq G_{\mu_{m-1}}
\]

where \(G_{\mu_i}\) are the images of the restrictions sending \(t\) to zero

\[
\text{aut}_t(k[t] \otimes \Lambda V_k, D_{t,k}) \to \text{aut}(\Lambda V_k, d_k)
\]

with \(G_{\mu_i}/_k = \text{Im} F'_{\mu_i}\). Since \(\dim H^*(\Lambda V_k, d_k) = \dim H^*(X; k) < \infty\), being \(k\)-DGA-autmorphisms induces

\[
\text{aut}(\Lambda V_k, d_k) = \text{aut}(\Lambda V_k^{\leq n}, d_k|_{V_k^{\leq n}})
\]

for a sufficiently large \(n\). Here \(V_k^{\leq n}\) means the subspace \(\{v \in V_k : |v| \leq n\}\) of \(V_k\), which is finite-dimensional over \(k\). The latter is an algebraic matrix group (defined by polynomial equations in the entries) in the general \(k\)-linear group \(GL(N, k)\) for a sufficiently large \(N\) [29, page 294]. From the Noetherian property of descending chain condition, the integer \(m\) is bounded by \(N\). Thus we have \(c\)-s-depth\(_k(X) < \infty\). \(\square\)

Proof of Theorem 3.16 Let \(M(X_k) = (\Lambda(x, y, z, k), d_k)\) with

\[
|x| = 2, \ |y| = 2n + 1, \ |z| = 2n + 3 \quad \text{and} \quad d_k(x) = d_k(z) = 0, \ d_k(y) = x^{n+1}.
\]

Then we have

\[
\mathcal{E}(X_k) = \text{Aut}(\Lambda(x, y, z, k), d_k) = \left\{ \begin{pmatrix} a & a^{n+1} \\ b \\ d \end{pmatrix} \mid a, b \in k - 0 \right\},
\]

where \(f(x) = ax, \ f(y) = a^{n+1}y\) and \(f(z) = bz\) for \(f \in \text{Aut}(\Lambda(x, y, z, k), d_k)\). Let us denote the \(k\)-relative models of \((*)\) by \((k[t] \otimes \Lambda(x, y, z, k), D_{\mu}) = M(Y_{\mu, k})\) with

\[
D_\mu(t) = D_\mu(x) = 0, \quad D_\mu(y) = x^{n+1} + x^i t^{n-i+1} + t^{n+1} \quad \text{and} \quad D_\mu(z) = xt^{n+1}
\]
where \(i \) is one of the divisors of \(n + 1 \) but not \(n + 1 \) itself or \(i = 0 \). Then \(f_d(Y_\mu) = 4n + 2 \) and \([t^{2n+1}] \neq 0 \) in \(H^*(Y_\mu; k) = k[t, x]/(x^{n+1} + x^i t^{n-i+1} + t^{n+1}, x t^{n+1}) \).

Let

\[
N_\mu := \begin{cases} i & \text{when } i \neq 0 \\ n + 1 & \text{when } i = 0. \end{cases}
\]

Then we have

\[
\mathcal{E}_\mu(X_k) = \text{Im}(F'_\mu : Aut_1(k[t] \otimes \Lambda(x, y, z)_k, D_\mu) \to Aut(\Lambda(x, y, z)_k, d_k)) = \begin{cases} \begin{pmatrix} a \\ 1 \end{pmatrix} \mid a^N = 1 & \text{for } a \in k - 0 \end{cases}
\]

\[
\cong \{ a \in k - 0 \mid a^N = 1 \}
\]
as groups. Suppose that \(k \supseteq \mathbb{Q}(e^{2 \pi i /(n+1)}) \). Then \(\mathcal{E}_\mu(X_k) \) is isomorphic to \(\mathbb{Z}_{N_\mu} = \mathbb{Z}/N_\mu \mathbb{Z} \). Notice that \(\mathcal{E}_{\mu_1}(X_k) \cap \mathcal{E}_{\mu_2}(X_k) \) if and only if \(N_j | N_i \), i.e., \(N_j \) is a divisor of \(N_i \). Therefore there is a sequence

\[
([a \in k \mid a^N = 1]) = \mathcal{E}_{\mu_1}(X_k) \supseteq \mathcal{E}_{\mu_2}(X_k) \supseteq \cdots \supseteq \mathcal{E}_{\mu_{(n+1)}}(X_k) = \{ \text{id}_{X_k} \}.
\]

Since any subgroup \(\mathcal{E}_\mu(X_k) \) of \(\mathcal{E}(X_k) \) is isomorphic to some subgroup of \(\mathbb{Z}_{n+1} \) from the degree argument of \(t, x, y \) and \(z \), it has the maximal length of inclusions of subgroups. Thus we have that

\[
\text{c-s-depth}_{k}(X) (= \text{c-s-depth}_{\mathbb{Q}}(X)) = c(n + 1).
\]

Moreover the sequence of length \(c(n + 1) \)

\[
\mathbb{Z}_{p_1^{n_1} p_2^{n_2} \cdots p_m^{n_m}} \supseteq \mathbb{Z}_{p_1^{n_1-1} p_2^{n_2} \cdots p_m^{n_m}} \supseteq \mathbb{Z}_{p_1^{n_1-2} p_2^{n_2} \cdots p_m^{n_m}} \supseteq \cdots \supseteq \mathbb{Z}_{p_m} \supseteq \{ 0 \}
\]

identified with the proper sequence of subgroups for the fibration \(\mu \) of the differential \(D_\mu \) with \(D_\mu(t) = D_\mu(x) = 0, D_\mu(y) = x^{n+1} + t^{n+1} \) and \(D_\mu(z) = x t^{n+1} \),

\[
\mathcal{E}_\mu(X_{\mathbb{Q}(p_1^{n_1} p_2^{n_2} \cdots p_m^{n_m})}) \supseteq \mathcal{E}_\mu(X_{\mathbb{Q}(p_1^{n_1-1} p_2^{n_2} \cdots p_m^{n_m})}) \supseteq \cdots \supseteq \mathcal{E}_\mu(X_{\mathbb{Q}(p_m)}) \supseteq \mathcal{E}_\mu(X_{\mathbb{Q}}),
\]

where \(\mathbb{Q}(q) \) means the extension field \(\mathbb{Q}(e^{2 \pi i/q}) \) of \(\mathbb{Q} \) by adding a primitive \(q \)th root of unity. Thus there is the sequence

\[
\text{c-s-depth}_{\mathbb{Q}}(X) < \text{c-s-depth}_{k_1}(X) < \text{c-s-depth}_{k_2}(X) < \cdots < \text{c-s-depth}_{k_{(n+1)}}(X)
\]
for \(k_1 = \mathbb{Q}(p_1), k_2 = \mathbb{Q}(p_1 p_2) \) or \(\mathbb{Q}(p_1^2), \cdots, k_{(n+1)} = \mathbb{Q}(p_1^{n_1} p_2^{n_2} \cdots p_m^{n_m}) \). \(\square \)

5. Examples

In this section, for odd integers \(n_1 \leq n_2 \leq \cdots \leq n_k \), let

\[
M(S^{n_1} \times S^{n_2} \times \cdots \times S^{n_k}) = (\Lambda V, 0) = (\Lambda(v_1, v_2, \ldots, v_k), 0)
\]
with \(|v_i| = n_i \) for all \(i \). In the following Examples 5.1, 5.2, and 5.3(1), the poset structure of \(P_k(X) \) does not depend on \(k \).

Example 5.1. (c-s-depth\(_k(X) = 1\). When \(X \) is

(a) \(S^3 \times S^3 \times S^7 \),

(b) \(S^7 \times S^9 \times S^{11} \times S^{13} \times S^{23} \),

(c) \(S^9 \times S^9 \times S^{11} \times S^{13} \times S^{15} \times S^{17} \times S^{29} \),

(d) \(S^9 \times S^{11} \times S^{13} \times S^{15} \times S^{17} \times S^{19} \times S^{31} \),
then the Hasse diagrams of $\mathcal{P}_k(X)$ are respectively one point, two points, three points and four points:

\[(a) \bullet, \quad (b) \bullet\bullet, \quad (c) \bullet\bullet\bullet, \quad (d) \bullet\bullet\bullet\bullet\]

For example, the differential D in the case of (d), $\{\bullet\bullet\bullet\bullet\} = \{\mu_1, \ldots, \mu_4\}$, is given by

\[
Dv_1 = \cdots = Dv_6 = 0 \quad \text{and} \\
\mu_1: Dv_7 = v_1v_6t^2 + v_2v_5t + v_3v_4t^2 + t^{16}, \\
\mu_2: Dv_7 = v_1v_6t^2 + v_2v_4t^3 + v_3v_5t + t^{16}, \\
\mu_3: Dv_7 = v_1v_5t^3 + v_2v_6t + v_3v_4t^2 + t^{16}, \\
\mu_4: Dv_7 = v_1v_4t^4 + v_2v_6t + v_3v_5t + t^{16}.
\]

Notice that $Dv_1 = \cdots = Dv_{k-1} = 0$ when c-s-depth$_k(S^{n_1} \times S^{n_2} \times \cdots \times S^{n_k}) = 1$ in general. Let

\[
\mathcal{E}(X_k) = \text{Aut}(AV_k, 0) = \left\{ \begin{pmatrix} a & b \\ c & d \\ e & f \\ g \end{pmatrix} \mid a, b, c, d, e, f, g \in k - 0 \right\}
\]

where $h(v_1) = av_1$, $h(v_2) = bv_2$, $h(v_3) = cv_3$, $h(v_4) = dv_4$, $h(v_5) = ev_5$, $h(v_6) = fv_6$ and $h(v_7) = gv_7$ for $h \in \mathcal{E}(X_k)$. Then

\[
\mathcal{E}_{\mu_1}(X_k) = \{ \text{diag}(a, b, c, b^{-1}, a^{-1}, 1) \} \\
\mathcal{E}_{\mu_2}(X_k) = \{ \text{diag}(a, b, c, b^{-1}, a^{-1}, 1) \} \\
\mathcal{E}_{\mu_3}(X_k) = \{ \text{diag}(a, b, c, a^{-1}, b^{-1}, 1) \} \\
\mathcal{E}_{\mu_4}(X_k) = \{ \text{diag}(a, b, c, a^{-1}, b^{-1}, 1) \}
\]

for $a, b, c \in k$ as subgroups of $\mathcal{E}(X_k)$.

Example 5.2. (c-s-depth$_k(X) = 2$). (1) Let $X(n) = S^1 \times S^5 \times S^7 \times S^9 \times S^n$.

When (a) $n = 13$, (b) $n = 15$ and (c) $n = 17$, the Hasse diagrams of $\mathcal{P}_k(X(n))$ are respectively given as

\[
\begin{array}{cccccccc}
(a) & \mu_1 & (b) & \mu_1 & \mu_3 & (c) & \mu_1 & \mu_3 & \bullet \mu_5 \\
\mu_2 & \mu_2 & \mu_4 & \mu_2 & \mu_4 \\
\end{array}
\]

Here the point μ_1 of (a) is given by $Dv_1 = Dv_2 = Dv_3 = Dv_4 = 0$ and $Dv_5 = v_1v_4t + v_2v_3t + t^7$. On the other hand, μ_2 is given by $Dv_4 = v_1v_2t$ and Dv_i ($i \neq 4$) are the same as μ_1.

Next, the points μ_k with $k = 1, 2, 3, 4, 5$ of (b) and (c) are given by the following differentials

\[
Dv_1 = Dv_2 = Dv_3 = 0 \quad \text{and}
\]
(2) Let us consider (a) \(X = S^3 \times S^5 \times S^7 \times S^{11} \times S^{15} \) and (b) \(X = S^7 \times S^9 \times S^{11} \times S^{13} \times S^{41} \). Then the Hasse diagrams of \(P_k(X) \) are respectively as follows:

\[
\begin{array}{c}
(a) & (b) \\
\begin{array}{c}
1 \\
2 & 3 \\
4
\end{array} & \\
\begin{array}{c}
1 \\
2 & 3 \\
4
\end{array}
\end{array}
\]

Here the differentials are given by

\[
Dv_1 = Dv_2 = Dv_3 = 0 \quad \text{and}
\]

\[
\begin{array}{c|ccc}
(a) & Dv_4 & Dv_5 \\
1 & 0 & v_1v_4 + v_2v_3t^4 + t^8 \\
2 & v_1t^2v_4 + v_2v_3t^4 + t^8 \\
3 & v_1v_3t + v_2v_3t^2 + t^8
\end{array}
\]

\[
\begin{array}{c|ccc}
(b) & Dv_4 & Dv_5 \\
1 & 0 & v_1v_4v_3t^4 + t^{21} \\
2 & v_1v_2t^4 + v_3v_4t^2 + t^{21} \\
3 & v_1v_3t^2 + v_2v_4t^5 + t^{21} \\
4 & v_1v_4t + v_2v_3t^2 + t^{21}
\end{array}
\]

(Note: From here on we simply denote \(k \) for \(\mu_k \) in the Hasse diagram and the left column of the table.)

In the case of (a), by degree arguments we have

\[
\mathcal{E}(X_k) = \{(\text{diag}(a,b,c,d,e),\lambda) \mid a,b,c,d,e \in k - 0, \lambda \in k\},
\]
where \(f(v_1) = av_1, f(v_2) = bv_2, f(v_3) = cv_3, f(v_4) = dv_4 \) and \(f(v_5) = ev_5 + \lambda v_1 v_2 v_3 \) for \(f \in \mathcal{E}(X_k) \). As subgroups of \(\mathcal{E}(X_k) = \{ \text{diag}(a, b, c, d, e) \} \), we have

\[
\mathcal{E}_{n_1}(X_k) = \{ (\text{diag}(a, b, b^{-1}, a^{-1}, 1), \lambda) \}
\]
\[
\mathcal{E}_{n_2}(X_k) = \{ (\text{diag}(a^{-2}, a^2, a^{-1}, 1), \lambda) \}
\]
\[
\mathcal{E}_{n_3}(X_k) = \{ (\text{diag}(a, a^2, a^{-2}, a^{-1}, 1), \lambda) \}
\]

In the case of \(b \), similarly as subgroups of \(\mathcal{E}(X_k) \), we have

\[
\mathcal{E}_{n_1}(X_k) = \{ (\text{diag}(a, b, c, d, 1) | abcd = 1) \}
\]
\[
\mathcal{E}_{n_2}(X_k) = \{ (\text{diag}(a, a^{-1}, c, c^{-1}, 1) \}
\]
\[
\mathcal{E}_{n_3}(X_k) = \{ (\text{diag}(a, b, a^{-1}, b^{-1}, 1) \}
\]
\[
\mathcal{E}_{n_4}(X_k) = \{ (\text{diag}(a, b, b^{-1}, a^{-1}, 1) \}
\]

for \(a, b, c, d \in k - 0 \).

Example 5.3. (c-s-depth\(_k\)(\(X\)) = 3).

(1) Let us consider (a) \(X = S^9 \times S^9 \times S^{13} \times S^{17} \) and (b) \(X = S^7 \times S^9 \times S^{11} \times S^{17} \times S^{15} \). Then we will show that the Hasse diagrams of \(P_k(X) \) are respectively as follows:

(a) \[\begin{array}{c}
2 \quad 3 \\
\downarrow \quad \downarrow \\
5 \quad 4
\end{array} \]

(b) \[\begin{array}{c}
2 \quad 3 \\
\downarrow \quad \downarrow \\
6 \quad 7
\end{array} \]

The differentials in (a) and (b) are given by

\[
Dv_1 = Dv_2 = 0 \ (Dv_3 = 0 \ for \ (b)) \ and \ Dv_4 = Dv_5
\]

(a)			
\(Dv_3 \)	\(Dv_4 \)	\(Dv_5 \)	
1 0 0	\(v_1 v_4 t + v_2 v_3 t^2 + t^3 \)		
2 \(v_1 v_2 t \)	\(v_1 v_4 t + v_2 v_3 t^2 + t^3 \)		
3 0 \(v_1 v_3 t \)	\(v_1 v_4 t + v_2 v_3 t^2 + t^3 \)		
4 0 \(v_1 v_2 t^2 \)	\(v_1 v_4 t + v_2 v_3 t^2 + t^3 \)		
5 \(v_1 v_2 t \)	\(v_1 v_4 t + v_2 v_3 t^2 + t^3 \)		

(b)		
\(Dv_4 \)	\(Dv_5 \)	
1 0	\(v_1 v_2 v_3 v_4 t + t^{23} \)	
2 0	\(v_1 v_2 t^{13} + v_3 v_4 t^9 + t^{23} \)	
3 0	\(v_1 v_3 t^{14} + v_2 v_4 t^{10} + t^{23} \)	
4 0	\(v_1 v_4 t^{11} + v_2 v_3 t^{13} + t^{23} \)	
5 \(v_1 v_2 t \)	\(v_1 v_2 v_3 v_4 t + t^{23} \)	
6 \(v_1 v_2 t \)	\(v_1 v_3 t^{12} + v_2 v_4 t^{10} + t^{23} \)	
7 \(v_1 v_2 t \)	\(v_1 v_4 t^{11} + v_2 v_3 t^{13} + t^{23} \)	

In the case of (a), we have

\[\mathcal{E}(X_k) = \{ (\text{diag}(a, b, c, d, e), \lambda) | a, b, c, d, e \in k - 0, \lambda \in k \} \]

where \(f(v_1) = av_1, f(v_2) = bv_2, f(v_3) = cv_3, f(v_4) = dv_4, f(v_5) = ev_5 + \lambda v_1 v_2 v_3 \) for \(f \in \mathcal{E}(X_k) \). In the case of (b), we have

\[\mathcal{E}(X_k) = \{ \text{diag}(a, b, c, d, e) | a, b, c, d, e \in k - 0 \} \]

The subgroups of \(\mathcal{E}(X_k) \) for (a) and (b) are as follows:
Hence the Hasse diagram contains the following:

(a)	$\mathcal{E}_{\mu_i}(X_K)$	(b)	$\mathcal{E}_{\mu_i}(X_K)$
1	$(a, b, b^{-1}, a^{-1}, 1, \lambda)$	1	$(a, b, c, d, 1), \ abcd = 1$
2	$(b^{-2}, b, b^{-1}, b^2, 1, \lambda)$	2	$(a, a^{-1}, c, c^{-1}, 1)$
3	$(a, a^2, b, b^{-1}, 1, \lambda)$	3	$(a, b, a^{-1}, b^{-1}, 1)$
4	$(a, a^2, a^2, a^{-1}, 1, \lambda)$	4	$(a, b, b^{-1}, a^{-1}, 1)$
5	$(a, a^2, a^2, a^{-1}, 1, \lambda), a^\tau = 1$	5	$(a, a, a, a, 0), a^\tau b^2 c = 1$
6	$(a, a^2, a^2, a^{-1}, 1, \lambda), \ a^\tau = 1$	6	$(b^{-2}, b, b^2, b^{-1}, 1)$
7	$(a, a^{-2}, a^2, a^{-1}, 1)$	7	$(a, a^{-2}, a^2, a^{-1}, 1)$

for $a, b, c \in k - 0$ and $\lambda \in k$. In the case (a), $\mathcal{E}_{\mu_i}(X_K) \cong \mathbb{Z}_5 \times k$ when $k \supseteq \mathbb{Q}(\zeta_{2n})$ and it is isomorphic to k when $k \nsubseteq \mathbb{Q}(\zeta_{2n})$.

(2) Let $X = \mathbb{C}P^1 \times S^3$. It is the case of $n = 14$ in Theorem 3.16. Let

$$M(X_k) = (\Lambda(x, y, z)_k, d_k) \quad \text{with} \quad |x| = 2, |y| = 29, |z| = 31, d_ky = x^{15}.$$

Since $n + 1 = 15(3 \cdot 5)$, assume $k \supseteq \mathbb{Q}(\zeta_{15})$. Let $(k[t] \otimes \Lambda(x, y, z)_k, D_i)$ ($i = 1, 2, 3, 4$) be the relative model with

$$D_1(x) = 0, \quad D_1(z) = x t^{15}$$

and the differential of y being one of the following:

$$D_1(y) = x^{15} + t^{15},$$
$$D_2(y) = x^{15} + x^3 t^{12} + t^{15},$$
$$D_3(y) = x^{15} + x^5 t^{10} + t^{15},$$
$$D_4(y) = x^{15} + x t^{14} + t^{15}.$$

Then, we have the subgroups of $\mathcal{E}(X_k) = \{ \text{diag}(a, a^{15}, b) \mid a, b \in k - 0 \} \cong (k - 0)^\times$, which are the following:

$\mathcal{E}_{\mu_1}(X_K) = \{ \text{diag}(a, 1, a) \mid a^{15} = 1 \} = \{ a \in k - 0 \mid a^{15} = 1 \} \cong \mathbb{Z}/15\mathbb{Z},$

$\mathcal{E}_{\mu_2}(X_K) = \{ \text{diag}(a, 1, a) \mid a^{5} = 1 \} = \{ a \in k - 0 \mid a^{5} = 1 \} \cong \mathbb{Z}/3\mathbb{Z},$

$\mathcal{E}_{\mu_3}(X_K) = \{ \text{diag}(a, 1, a) \mid a^{5} = 1 \} = \{ a \in k - 0 \mid a^{5} = 1 \} \cong \mathbb{Z}/5\mathbb{Z},$

$\mathcal{E}_{\mu_4}(X_K) = \{ \text{diag}(1, 1, 1) \} \cong \{0\}.$

Hence the Hasse diagram contains the following:

```
\begin{tikzpicture}
  \node (z15) at (0,0) {$\mathbb{Z}_{15}$};
  \node (z3) at (-1,-1) {$\mathbb{Z}_3$};
  \node (z5) at (1,-1) {$\mathbb{Z}_5$};
  \node (z) at (0,-2) {$\{0\}$};
  \draw (z15) -- (z3);
  \draw (z15) -- (z5);
  \draw (z3) -- (z);
  \draw (z5) -- (z);
\end{tikzpicture}
```
(3) Let $X = \mathbb{C}P^8 \times S^{19}$. It is the case of $n = 8$ in Theorem 3.10. Then, when $k \supset \mathbb{Q}(e^{2\pi i/9})$, the Hasse diagram contains the following:

$$
\vcenter{\hbox{
\begin{tabular}{c|c}
\mathbb{Z}_9 & \mathbb{Z}_3 \\
\end{tabular}\
\{0\}}}
$$

Example 5.4. $(c\text{-}s\text{-}depth}_k(X) = 4)$. When $X = S^3 \times S^5 \times S^9 \times S^{15} \times S^{33}$ (cf. [27] Example 2.8), we have the following two cases:

1. Case of $k \supset \mathbb{Q}(e^{2\pi i/9})$. Then $\mathcal{P}_k(X) = 20$.
2. The other fields k. Then $\mathcal{P}_k(X) = 19$.

Indeed, the 20 (19) types of c-symplectic models $\{[\mu_1], ..., [\mu_{20}]\}$ are given as

$$M(Y_n) = (k[t] \otimes \Lambda(v_1, v_2, v_3, v_4, v_5)_k, D_n)$$

with $|v_1| = 3$, $|v_2| = 5$, $|v_3| = 9$, $|v_4| = 15$, $|v_5| = 33$ and the differentials are given by $D_nv_1 = D_nv_2 = 0$ and

n	D_nv_3	D_nv_4	D_nv_5	$\dim H^\ast(Y_n; k)$
1	0	0	$v_1v_4t^{8} + v_2v_3t^{10} + t^{17}$	272
2	0	$v_1v_2t^{4}$	$v_1v_4t^{8} + v_2v_3t^{10} + t^{17}$	220
3	0	$v_1v_3t^{2}$	$v_1v_4t^{8} + v_2v_3t^{10} + t^{17}$	212
4	v_1v_2t	0	$v_1v_4t^{8} + v_2v_3t^{10} + t^{17}$	209
5	v_1v_2t	$v_1v_3t^{2}$	$v_1v_4t^{8} + v_2v_3t^{10} + t^{17}$	149
6	0	0	$v_1v_2t^{13} + v_3v_4t^{9} + t^{17}$	272
7	0	$v_1v_3t^{2}$	$v_1v_2t^{13} + v_3v_4t^{9} + t^{17}$	212
8	0	v_2v_3t	$v_1v_2t^{13} + v_3v_4t^{9} + t^{17}$	204
9	0	0	$v_1v_2t^{13} + v_2v_4t^{8} + t^{17}$	272
10	0	$v_1v_2t^{4}$	$v_1v_2t^{13} + v_2v_4t^{8} + t^{17}$	220
11	0	v_2v_3t	$v_1v_2t^{13} + v_2v_4t^{8} + t^{17}$	204
12	v_1v_2t	0	$v_1v_2t^{13} + v_2v_4t^{8} + t^{17}$	209
13	v_1v_2t	v_2v_3t	$v_1v_2t^{13} + v_2v_4t^{8} + t^{17}$	144
14	0	0	$v_1v_2v_3v_4t + t^{17}$	272
15	0	$v_1v_2t^{4}$	$v_1v_2v_3v_4t + t^{17}$	220
16	0	$v_1v_3t^{2}$	$v_1v_2v_3v_4t + t^{17}$	212
17	0	v_2v_3t	$v_1v_2v_3v_4t + t^{17}$	204
18	v_1v_2t	0	$v_1v_2v_3v_4t + t^{17}$	209
19	v_1v_2t	$v_1v_3t^{2}$	$v_1v_2v_3v_4t + t^{17}$	149
20	v_1v_2t	v_2v_3t	$v_1v_2v_3v_4t + t^{17}$	144

* For example, the relative model \mathcal{M}_r with $Dv_3 = Dv_4 = 0$, $Dv_5 = v_1v_2v_3v_4t + v_2v_3t^{10} + t^{17}$ has same self-equivalence as one of $i = 1$ in the above table, i.e., $\mathcal{E}_r(X_k) = \mathcal{E}_{\mu_1}(X_k)$. So \mathcal{M}_r is not noted.
For degree reasons, the \(k \)-homotopy self-equivalences of \(X_k \) are given as

\[
\mathcal{E}(X_k) = \begin{cases}
\begin{pmatrix} a & b \\ c & d \\ e \end{pmatrix} & \text{if } a, b, c, d, e \in k - 0 \\
\end{cases}
\]

\[
= \{(a, b, c, d, e) | a, b, c, d, e \in k - 0\} = (k - 0)^{\times 5}
\]

and the subgroups \(\mathcal{E}_{\mu_n}(X_k) \) for \(n = 1 \sim 20 \) are given as the following conditions on \(a, b, c, d \) with \(e = 1 \):

1	\(ad = bc = 1 \)			
2	\(a^2b = bc = 1, ab = d \)			
3	\(a^2c = bc = 1, ac = d \)			
4	\(ad = ab^2 = 1, ab = c \)			
5	\(ab = c, a^2b = d, a^4b = ab^2 = 1 \)			
6	\(ab = cd = 1 \)			
7	\(ac = d, ab = ac^2 = 1 \)			
8	\(bc = d, ab = bc^2 = 1 \)			
9	\(ac = bd = 1 \)			
10	\(ab = d, ac = ab^2 = 1 \)			
11	\(bc = d, ac = b^2c = 1 \)			
12	\(ab = c, a^2b = bd = 1 \)			
13	\(ab = c, a^2b = ab^2 = 1 \)			
14	\(ab = c, a^2b = ab^2 = 1 \)			
15	\(ab = c, a^2b = ab^2 = 1 \)			
16	\(ab = c, a^2b = ab^2 = 1 \)			
17	\(ab = c, a^2b = ab^2 = 1 \)			
18	\(ab = c, a^2b = ab^2 = 1 \)			
19	\(ab = c, a^2b = ab^2 = 1 \)			
20	\(ab = c, a^2b = ab^2 = 1 \)			

Notice that when \(n = 5 \) and \(13 \),

\[
\mathcal{E}_{\mu_5}(X_k) = \{(a, a^2, a^3, a^4, 1); a^5 = 1\},
\]

\[
\mathcal{E}_{\mu_{13}}(X_k) = \{(a, a^4, a^3, a^2, 1); a^5 = 1\}
\]

are both the identity \((1, 1, 1, 1, 1)\) in the case \((2)\); i.e., \([\mu_5] = [\mu_{13}] \) in \(P_k(X) \). Thus the Hasse diagram of \(P_k(X) \) is given as

![Hasse diagram](image-url)
and c-s-depth$_k(X) = 4$ in both cases. In particular, (2) is a lattice.

Remark 5.5. Let $F_\mu : \mathcal{E}(p_\mu) \to \mathcal{E}(X)$ be the restriction map between ordinary self-homotopy equivalence groups for the fibration (\ast) in §1. From Example 5.4 (2) and the integral homotopy theory [29, §10], we see that $\text{Im}(F_\mu)$ may be at most finite even when X has the rational homotopy type of the product of odd-spheres. So we would like to pose the following question.

Question 5.6. When is $\text{Im}(F_\mu)$ finite?

Remark 5.7. M.R. Hilali conjectures that $\dim \pi_\ast(Y) \otimes \mathbb{Q} \leq \dim H^\ast(Y; \mathbb{Q})$ for an elliptic simply connected space Y [10, 17]. When Y is c-symplectic with $\dim \pi_{\text{even}}(Y) \otimes \mathbb{Q} = 1$, it is true. Indeed, when $M(Y) = (\mathbb{Q}[t] \otimes \Lambda(v_1, \ldots, v_n), d)$ $(n > 1)$ with $|v_i|$ odd, $\dim \pi_\ast(Y) \otimes \mathbb{Q} = n + 1 < (\sum_{i=1}^n |v_i|) - 1)/2 = \max\{m \mid t^m \neq 0\} =: N$. Thus it follows from $H^\ast(Y; \mathbb{Q}) \supset \{1, t, t^2, \ldots, t^N\}$.

We first speculated that if $[\mu_i] < [\mu_j]$ in $\mathcal{P}_k(X)$, then $\dim H^\ast(Y_i; k) \leq \dim H^\ast(Y_j; k)$. But it is not true in a general field k. Indeed, we can see in the above Example 5.4 (2) that $[\mu_5] < [\mu_20]$ but $\dim H^\ast(Y_5; k) = 149 > 144 = \dim H^\ast(Y_{20}; k)$. Notice that the above speculation holds in the case (1). So the following question would be reasonable.

Question 5.8. For a sufficiently large field k, if $[\mu_i] < [\mu_j]$ in $\mathcal{P}_k(X)$, then is $\dim H^\ast(Y_i; k) \leq \dim H^\ast(Y_j; k)$?

Example 5.9. Recall Corollary 3.17. For example, the following Hasse diagrams of height 3 are contained in those of $\mathcal{P}_5(X)$ with $X = \mathbb{C}P^n \times S^{2n+3}$ of c-s-depth$_5(X) = 4$ for $n = 26$, 74 and 104, respectively:
Example 5.10. (c-s-depth$_k(X) = 5$). For the exceptional simple Lie group E_7, the rational type is known as (see [23])

$$(3, 11, 15, 19, 23, 27, 35)$$

namely,

$$E_7 \cong S^3 \times S^{11} \times S^{15} \times S^{19} \times S^{23} \times S^{27} \times S^{35}.$$

Then, for $|v_1| = 3$, $|v_2| = 11$, $|v_3| = 15$, $|v_4| = 19$, $|v_5| = 23$, $|v_6| = 27$, $|v_7| = 35$,

$$\mathcal{E}(X_k) = Aut(\Lambda(v_1, v_2, v_3, v_4, v_5, v_6, v_7)_k, 0) \cong \left\{ \text{diag}(a, b, c, d, e, f, g) | a, b, c, d, e, f, g \in k - 0 \right\}$$

for degree reasons. There are the following 20-types of k-c-symplectic models, i.e.;

$$(k[t] \otimes \Lambda(v_1, v_2, v_3, v_4, v_5, v_6, v_7)_k, D)$$

with the differentials given as

$$Dv_1 = Dv_2 = 0,$$

$$Dv_7 = v_1v_6t^3 + v_2v_5t + v_3v_4t + t^{18}$$

and

μ	Dv_3	Dv_4	Dv_5	Dv_6	$\mathcal{E}_\mu(X_k)$
1	0	0	0	0	$(a, b, c, c^{-1}, b^{-1}, a^{-1}, 1)$
2	v_1v_3t	0	0	0	$(c^{-2}, b, c, c^{-1}, b^{-1}, c^{-1}, 1)$
3	0	0	$v_1v_2t^3$	0	$(b^{-2}, b, c, c^{-1}, b^{-1}, b', 1)$
4	0	0	0	v_1v_2t'	$(a, a^{-2}, c, c^{-1}, a^{-1}, a^{-1}, 1)$
5	0	0	0	$v_1v_3t^2$	$(a, b, a^{-2}, a^{-2}, b^{-1}, a^{-1}, 1)$
6	0	0	0	$v_1v_4t^2$	$(a, b, a^{-2}, a^{-2}, b^{-1}, a^{-1}, 1)$
7	0	0	0	$v_1v_5t^2$	$(a, a', c, c^{-1}, a^{-2}, a^{-1}, 1)$
8	v_1v_3t	$v_1v_2t^3$	0	0	$(b^{-2}, b, \pm b, \pm b^{-1}, b', b'^2, 1)$
9	0	v_1v_3t	0	v_1v_2t'	$(c^{-2}, c^{-2}, c, c^{-1}, c^{-1}, c^{-1}, 1)$
10	0	v_1v_3t	0	$v_1v_4t^3$	$(c^{-2}, b, c, c^{-1}, b^{-1}, c^{-1}, 1)$: $c^2 = 1$
11	0	v_1v_3t	0	$v_1v_5t^3$	$(c^{-2}, c^{-2}, c, c^{-1}, c^{-1}, c^{-1}, 1)$
12	0	$v_1v_2t^3$	v_1v_3t'	$(b^{-2}, b, b', b^{-1}, b'^2, 1)$	
13	0	$v_1v_2t^3$	v_1v_4t'	$(b^{-2}, b, b', b^{-1}, b'^2, 1)$	
14	0	$v_1v_2t^3$	$v_1v_5t^3$	$(b^{-2}, b, c, c^{-1}, b^{-1}, b'^2, 1)$: $b'^2 = 1$	
15	0	v_1v_3t	$v_1v_2t^3$	$v_1v_4t'	$(b^{-2}, b, \pm b, \pm b^{-1}, b'^2, 1)$: $b'^2 = \pm 1$
16	0	v_1v_3t	$v_1v_2t^3$	$v_1v_5t	$(b^{-2}, b, \pm b, \pm b^{-1}, b'^2, 1)$: $b'^2 = \pm 1$
17	0	0	$v_1v_3t^3$	$v_2v_3t	$(b^{-2}, c, c, b, c^{-1}, b^{-1}, b, c, 1)$
18	0	$v_1v_2t^3$	$v_1v_3t^3$	0	$(a, b, a^{-2}, b^{-1}, b'^2, a^{-1}, 1)$
19	0	$v_1v_2t^3$	0	$v_2v_3t	$(a, b, a^{-2}, b^{-1}, ab, a^{-1}, 1)$
20	v_1v_2t	$-v_1v_2t^3$	0	$v_2v_3t	$(a, b, ab, a^{-2}, b^{-1}, a^{-1}, 1)$

for $a, b, c \in k - 0$. Then, for any k, the Hasse diagram is
Corollary 5.11. The poset structure of $\mathcal{P}_k(E_7)$ does not depend on k. Moreover c-s-depth$_k(E_7) = 5$ for any field k.

Example 5.12. For the n-dimensional symplectic group $Sp(n)$, the rational type is given as $(3, 7, 11, \cdots, 4n - 1)$ (see [23]), namely,

$$Sp(n) \cong \mathbb{Q} S^3 \times S^7 \times \cdots \times S^{4k-1} \times \cdots \times S^{4n-1}.$$

It is pre-c-symplectic if n is odd [27]. Let

$$M(Sp(n)_k) = (\Lambda(v_1, v_2, v_3, \cdots, v_n)_k, 0) \quad \text{with} \quad |v_i| = 4i - 1.$$

Then, for degree reasons [27], for the differential D over a sufficiently large field k,

$$Dv_n = v_1v_{n-1}t + v_2v_{n-2}t + v_3v_{n-3}t + \cdots + v_{(n-1)/2}v_{(n+1)/2}t + t^{2n}$$

is uniquely defined to be c-symplectic. Thus by seeing Dv_1, \cdots, Dv_{n-1} we have the following:

1. c-s-depth$_k(Sp(1)) = c$-s-depth$_k(Sp(3)) = 1$.
2. c-s-depth$_k(Sp(5)) = 3$ from the sequence $|\mu_1| > |\mu_2| > |\mu_3|$ for

$$M(Y_{1k}) = (k[t] \otimes \Lambda(v_1, v_2, v_3, v_4, v_5)_k, D)$$

with $Dv_5 = v_1v_4t + v_2v_3t + t^5$ and

$$M(Y_{1k}) : \quad Dv_1 = Dv_2 = 0, \quad Dv_3 = 0, \quad Dv_4 = 0$$

$$M(Y_{2k}) : \quad Dv_1 = Dv_2 = 0, \quad Dv_3 = v_1v_2t, \quad Dv_4 = 0$$

$$M(Y_{3k}) : \quad Dv_1 = Dv_2 = 0, \quad Dv_3 = v_1v_2t, \quad Dv_4 = v_1v_3t.$$

Then we have

$$\mathcal{E}_{\mu_1}(X_k) = \{(a, b, b^{-1}a^{-1}, 1)\},$$

$$\mathcal{E}_{\mu_2}(X_k) = \{(b^{-2}, b, b^{-1}, b^2, 1)\},$$

$$\mathcal{E}_{\mu_3}(X_k) = \{(b^{-2}, b, b^{-1}, b^2, 1); \quad b^5 = 1\}$$

for $a, b \in k - 0$ and we can directly check that the sequence $\mathcal{E}_{\mu_1}(X_k) \supseteq \mathcal{E}_{\mu_2}(X_k) \supseteq \mathcal{E}_{\mu_3}(X_k)$ is maximal.

3. c-s-depth$_k(Sp(7)) = 4$ since $M(Y_{1k}) = (k[t] \otimes \Lambda(v_1, v_2, v_3, v_4, v_5, v_6, v_7)_k, D)$ with $Dv_1 = Dv_2 = Dv_3 = 0, \quad Dv_7 = v_1v_6t + v_2v_5t + v_3v_4t + t^{14}$ and
for \((a, b, c) := \text{diag}(a, b, c, c^{-1}, b^{-1}, a^{-1}, 1)\) and we can directly check that the sequence \(E_{\mu_1}(X_k) \supseteq E_{\mu_2}(X_k) \supseteq E_{\mu_3}(X_k) \supseteq E_{\mu_4}(X_k)\) is maximal.

(4) c-s-depth\(_h\)(\(Sp(9)\)) \(\geq 5\). Indeed, \(M(Y_{k}) = (k[t] \otimes \Lambda(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9)_k, D)\) with \(Dv_1 = Dv_2 = \cdots = Dv_4 = 0, Dv_5 = v_1v_8t + v_2v_7t + v_3v_6t + v_4v_5t + t^{18}\) and

\[
\begin{array}{|c|c|c|c|c|}
\hline
\mu_1 & 0 & 0 & 0 & 0 \\
\mu_2 & v_3v_1t & 0 & 0 & 0 \\
\mu_3 & v_3v_1t & v_2v_3t & 0 & 0 \\
\mu_4 & v_3v_1t & v_2v_3t & v_1v_2t^4 & 0 \\
\mu_5 & v_3v_1t & v_2v_3t & v_1v_2t^4 & v_1v_2t^{15} \\
\hline
\end{array}
\]

\(\{(a, b, c, d) \mid a, b, c, d \in k - 0\}\)

Thus we have \(E_{\mu_1}(X_k) \supseteq E_{\mu_2}(X_k) \supseteq \cdots \supseteq E_{\mu_5}(X_k)\); i.e.,

\([\mu_1] > [\mu_2] > [\mu_3] > [\mu_4] > [\mu_5]\),

which implies c-s-depth\(_h\)(\(Sp(9)\)) \(\geq 5\).

(5) c-s-depth\(_h\)(\(Sp(11)\)) \(\geq 6\). Indeed,

\(M(Y_{k}) = (k[t] \otimes \Lambda(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11})_k, D)\) with \(Dv_1 = Dv_2 = \cdots = Dv_5 = 0, Dv_{11} = v_1v_{10}t + v_2v_9t + v_3v_8t + v_4v_7t + v_5v_6t + t^{22}\) and

\[
\begin{array}{|c|c|c|c|c|}
\hline
\mu_1 & 0 & 0 & 0 & 0 \\
\mu_2 & v_5v_1t & 0 & 0 & 0 \\
\mu_3 & v_5v_1t & v_4v_1t^5 & 0 & 0 \\
\mu_4 & v_5v_1t & v_4v_1t^5 & v_3v_2t^4 & 0 \\
\mu_5 & v_5v_1t & v_4v_1t^5 & v_3v_2t^4 & v_2v_4t^2 \\
\mu_6 & v_5v_1t & v_4v_1t^5 & v_3v_2t^4 & v_2v_4t^2 & v_1v_2t^{15} \\
\hline
\end{array}
\]

\(\{(a, b, c, d, e) \mid a, b, c, d, e \in k - 0\}\)

Thus we have \(E_{\mu_1}(X_k) \supseteq E_{\mu_2}(X_k) \supseteq \cdots \supseteq E_{\mu_6}(X_k)\); i.e.,

\([\mu_1] > [\mu_2] > [\mu_3] > [\mu_4] > [\mu_5] > [\mu_6]\),

which implies c-s-depth\(_h\)(\(Sp(11)\)) \(\geq 6\).

In general, for \(Sp(n)\), by setting

\[
M(Y_{(n+1)/2}) = (\mathbb{Q}[t] \otimes \Lambda(v_1, v_2, v_3, \cdots, v_n)_n, D)
\]

with

\[
Dv_1 = Dv_2 = \cdots = Dv_{(n-1)/2} = 0,
Dv_i = \epsilon_i v_j v_k^{2(i-j-k)+1} \quad (\epsilon_i = 0 \text{ or } 1)
\]

\(\{(a, b, c, d, e) \mid a, b, c, d, e \in k - 0\}\)
where \(i + j = n \) for \((n+1)/2 \leq i < n\) and certain \(k \in \{ 1, 2, \cdots, (n-1)/2 \}\) with \(i \geq j + k \), we obtain the following

Theorem 5.13. For any odd integer \(n > 3 \),

\[
c_{s-depth}^{\mathbb{Q}}(Sp(n)) \geq \frac{n+1}{2}.
\]

Acknowledgements. The authors are grateful to the referee for his/her many valuable comments and suggestions.

References

[1] M.Arkowitz, *The group of self-homotopy equivalences - a survey*, Springer L.N.M. **1425** (1990) 170-203
[2] M.Arkowitz and G.Lupton, *On finiteness of subgroup of self-homotopy equivalences*, Contemp. Math. **181** (1995) 1-25
[3] G.Bazzoni and V.Muñoz, *Classification of minimal algebras over any field up to dimension 6*, Trans. A.M.S. **364** (2012) 1007-1028
[4] P. Deligne, P. Griffith, J. Morgan and D. Sullivan, *Real homotopy theory of Kähler manifolds*, Inventiones Math., **29** (1975), 245–274.
[5] A.Dold and R.Lashof, *Principal quasi-fibrations and fibre homotopy equivalence of bundles*, Illinois J.Math. **3** (1959) 285-305.
[6] Y.Félix, *Dénombrement des types de \(K \)-homotopie théorie de la déformation*, Memoire Soc.Math.France **3** (1980) 1-49
[7] Y.Félix, S.Halperin and J.C.Thomas, *Rational homotopy theory*, Graduate Texts in Mathematics **205**, Springer-Verlag, 2001
[8] Y.Félix, G.Lupton and S.B.Smith, *The rational homotopy type of the space of self-equivalences of a fibration*, H.H.A. **12** (2010) 371-400.
[9] Y.Félix, J.Oprea and D.Tanrè, *Algebraic Models in Geometry*, GTM **17**, Oxford, 2008.
[10] Y.Félix and J. C. Thomas, *Nilpotent subgroups of the group of fiber homotopy equivalences*, Publications Math. **39** (1995), 95–106
[11] J.B. Gatsinzi, *The homotopy Lie algebra of classifying spaces*, J. Pure and Appl. Alg., **120** (1997) 281-289.
[12] D.H.Gottlieb, *On fibre spaces and the evaluation map*, Ann. of Math. **87** (1968) 42-55
[13] P. Griffith and J. Morgan, *Rational homotopy theory and differential forms*, Birkhäuser, 1981
[14] S.Halperin, *Rational homotopy and torus actions*, Aspects of topology, Cambridge Univ. Press, Cambridge, (1985) 293-306
[15] K.P.Hess, *A proof of Ganea's conjecture for rational spaces*, Topology **30** (1991) 205-214
[16] M.R.Hilali and M.I.Mamouni, *A lower bound of cohomologic dimension for an elliptic space*, Topology and its Appl. **156** (2008) 274-283
[17] M.R.Hilali and M.I.Mamouni, *A conjectured lower bound for the cohomological dimension of elliptic spaces*, J.H.R.S. **3** (2008) 379-384
[18] P.Hilton, G.Mislin and J.Roitberg, *Localization of nilpotent groups and spaces*, North-Holland Math. Studies **15** 1975
[19] G.Lupton and J.Oprea, *Symplectic manifolds and formality*, J.P.A.A. **91** (1994) 193-207
[20] G.Lupton and J.Oprea, *Cohomologically symplectic spaces: toral actions and the Gottlieb group*, Trans A.M.S. **347** (1995) 261-288
[21] K.Maruyama, *Localization of certain subgroup of self-homotopy equivalences*, Pacific J.Math. **136** (1989) 293-301
[22] K.Maruyama and J.Rutter (ed.), *Groups of homotopy self-equivalences and related topics*, Contemporary Math.A.M.S. **274** 1999
[23] M.Mimura, *Homotopy theory of Lie groups*, Handbook of Algebraic Topology, Chap. 19 (1995) 951-991
[24] M.Mimura and H.Shiga, *On the classification of rational homotopy types of elliptic spaces with homotopy Euler characteristic zero for dim<8*, Bull. Belg. Math. Soc. Simon Stevin **18** (2011) 925-939
[25] S. Piccarreta, *Rational nilpotent groups as subgroups of self-homotopy equivalences*, Cahiers de Topologie et Geometrie Differentielle Categoriques, **XLII-2** (2001) 137-153

[26] V. Puppe, *Cohomology of fixed sets and deformation of algebras*, Manuscripta math. **23** (1978) 343-354

[27] J. Sato and T. Yamaguchi, *Pre-c-symplectic condition for the product of odd-spheres*, J. Homotopy Relat. Struct. **8** (2013) 13-34

[28] H. Shiga and T. Yamaguchi, *Principal bundle maps via rational homotopy theory*, Publ. Res. Inst. Math. Sci. **39** no. 1 (2003) 49-57

[29] D. Sullivan, *Infinitesimal computations in topology*, Publ. I.H.E.S. **47** (1977) 269-331

[30] A. Tralle and J. Oprea, *Symplectic manifolds with no Kähler structure*, Springer L.N.M. **1661** (1997)

[31] T. Yamaguchi, *Examples of a Hasse diagram of free circle actions in rational homotopy*, JP Journal of Geometry and Topology **11**(3) (2011) 181-191

[32] O. Zariski and P. Samuel, *Commutative algebra 1*, Springer-Verlag, 1975

Kinkowan High School, 4047, HIRAKAWA-CHO, KAGOSHIMA, 891-0133, JAPAN
E-mail address: Hamada-kazuya@edu.pref.kagoshima.jp

Faculty of Education, Kochi University, 2-5-1, AKEBONO-CHO, KOCHI, 780-8520, JAPAN
E-mail address: tyamag@kochi-u.ac.jp

Faculty of Science, Kagoshima University, 21-35, KORIMOTO 1-chome, KAGOSHIMA, 890-0065, JAPAN
E-mail address: yokura@sci.kagoshima-u.ac.jp