The Mixed Liu Estimator in Stochastic Restricted Linear Measurement Error Model

Jibo Wu

School of Mathematics and Big Data, Chongqing University of Arts and Sciences, Chongqing 402160, China

Correspondence should be addressed to Jibo Wu; linfen52@126.com

Received 4 December 2020; Revised 25 December 2020; Accepted 17 January 2021; Published 28 January 2021

1. Introduction

When we use the linear regression model to deal with the problem, some regression explanatory cannot be observed, and the values of the regression explanatory often have measurement. If we directly use these values to set the model, the estimator of regression coefficient may not be a consistent estimator. In order to overcome this problem, the statisticians and econometricians have proposed the linear measurements model. Fuller [2] and Cheng and Van Ness [3] have discussed the model.

It is well known that, in standard linear regression model when there exists collinearity, the ordinary least squares estimator is no longer a good estimator. Some statisticians are discussed how to deal with collinearity. One method is to consider the biased estimator, such as Stein [4]; Hoerl and Kennard [5]; Liu [6]; Yang and Chang [7]; and Wu and Yang [8] et al. Another method is to consider the linear restriction and stochastic linear restrictions [9], such as Li and Yang et al. [10].

In the linear measurement error model, the collinearity problem may also lead the estimator unstable. In order to deal with this problem, Saleh and Shalabh [11] considered the ridge estimator and Ghapani and Babdi [1] considered the Liu estimator. When the linear restrictions or stochastic linear restrictions are satisfied in linear measurement error model, Li et al. [12] proposed some new estimators and discussed the properties of these estimators under Pitman’s closeness criterion. Saleh and Shalabh [11] discussed the preliminary test ridge estimator in the linear measurement error model with linear restrictions, Li and Yang [13] consider the weighted mixed estimator. Ghapani et al. [14] have discussed the weighted ridge estimator in linear measurement error model with stochastic linear restrictions. There are many researches on Liu estimator for different models done by various researchers. To mention a few, Arashi et al. [15], Kibria [16], Alheety and Kibria [17], Ghapani [18], and, very recently, Li et al. [19] are among them.

In this paper, we use a different method to propose a new mixed Liu estimator by construct a Lagrange function. Furthermore, we discuss the properties of the new estimator.

The rest of the paper is organized as follows. In Section 2, we propose the mixed Liu in linear measurement error model with stochastic linear restrictions, and the properties of the new estimator are studied in Section 3. A simulation study has been conducted to support the theoretical results in Section 4, and some conclusion remarks are given in Section 5.
2.1. The Liu Estimator. Let us study the following linear measurement error model:

\[
\begin{align*}
y &= Z\beta + \epsilon, \\
X &= Z + \Delta,
\end{align*}
\]

where \(y = (y_1, y_2, \ldots, y_n)'\) denotes an \(n \times 1\) vector of response variables, \(\hat{\beta}\) shows a \(p \times 1\) vector of unknown parameters, and \(Z\) denotes an \(n \times p\) matrix of unobservable values of explanatory variables which can be observed through the matrix \(X\) with the measurement error \(\Delta' = (\delta_1, \delta_2, \ldots, \delta_n)\), where \(\delta_i, i = 1, 2, \ldots, n\) are \(p \times 1\) uncorrelated random vectors with \(E(\delta_i) = 0, \text{Var}(\delta_i) = \Sigma\). We assume that the common variance \(\Sigma\) of measurement errors associated with the explanatory variables is known. And, we also suppose that \(\epsilon\) is an \(n \times 1\) vector of unobservable random errors with \(E(\epsilon) = 0, \text{Var}(\epsilon) = \sigma^2I\). We let \(\epsilon\) and \(\Delta\) be mutually independent, and we assume the \(i\)th rows of matrices \(Z\) and \(X\) with \(z_i'\) and \(x_i'\), respectively.

Fuller [2] has introduced the consistent estimator of \(\beta\), which is presented as follows:

\[
\hat{\beta} = (X'X - n\sum)\beta = (X'X - n\sum)^{-1}X'y,
\]

and this estimator is obtained by solving the following function:

\[
S_1(\beta) = \arg\min_\beta \left\{ (y - X\beta)'(y - X\beta) - n\beta'\delta - \sum \beta \right\}.
\]

In order to deal with the collinearity problem, Ghapani and Babdi [1] introduced a Liu estimator (LE), and this estimator can be obtained as follows: based on (3), consider the following objective function:

\[
S_2(\beta) = \arg\min_\beta \left\{ (y - X\beta)'(y - X\beta) - n\beta'\delta - \sum \beta \\
+ (d\hat{\beta} - \beta)'(d\hat{\beta} - \beta) \right\}.
\]

Dealing with (4), we can obtain

\[
\hat{\beta}(d) = (X'X - n\sum +I)^{-1}(X'y + d\hat{\beta}), \quad 0 < d < 1.
\]

In Section 2.2, we will present the new estimator.

2.2. The Mixed Liu Estimator. In this article, we suppose that the stochastic linear restrictions on the parametric component are of the following form:

\[
h = H\beta + e, e \sim N(0, \sigma^2W),
\]

where \(h\) is a \(q \times 1\) observable random vector, \(H\) is a \(q \times p\) known matrix with rank \((H) = q\) for \(q < p\), and \(e\) shows a \(q \times 1\) error vector with \(E(e) = 0\) and \(\text{Var}(e) = \sigma^2W\), and we also assume that \(W\) is a known positive definite matrix. Furthermore, we also suppose that \(e\) is stochastically independent of \(\epsilon\) and \(\Delta\).

Based on models (1) and (6), using the mixed method, we can minimize the following equation:

\[
S_3(\beta) = \arg\min_\beta \left\{ (y - X\beta)'(y - X\beta) - n\beta'\delta - \sum \beta \\
+ (h - H\beta)'W^{-1}(h - H\beta) \right\},
\]

with respect to \(\beta\). By (7), we obtain the mixed estimator (ME):

\[
\hat{\beta}_{\text{ME}} = (X'X - n\sum +H'W^{-1}H)^{-1}(X'y + H'W^{-1}h).
\]

Ghapani and Babdi [1] proposed a mixed Liu estimator, which is defined as follows:

\[
\hat{\beta}_{\text{MLE}} = (X'X - n\sum +H'W^{-1}H)^{-1} \times \left((X'X - n\sum +I)X'y + H'W^{-1}h\right).
\]

Now, we will propose a new mixed Liu estimator. Consider the following function:

\[
S_4(\beta) = \arg\min_\beta \left\{ (y - X\beta)'(y - X\beta) - n\beta'\delta - \sum \beta \\
+ (h - H\beta)'W^{-1}(h - H\beta) + (d\hat{\beta}_{\text{ME}} - \beta)'(d\hat{\beta}_{\text{ME}} - \beta) \right\}.
\]

Dealing with (9), we can obtain

\[
\hat{\beta}_{\text{NMLE}}(d) = (X'X - n\sum +H'W^{-1}H + I)^{-1} \times (X'y + H'W^{-1}h + d\hat{\beta}_{\text{ME}}).
\]

where \(0 < d < 1\) denotes the biasing parameter and \(\hat{\beta}_{\text{ME}}\) denotes the mixed estimator, and we call this estimator as a new mixed Liu estimator.

The new estimator can also be written as follows:

\[
\hat{\beta}_{\text{NMLE}}(d) = (X'X - n\sum +H'W^{-1}H + I)^{-1} \times (X'y + H'W^{-1}h + d\hat{\beta}_{\text{ME}}).
\]

By the definition of the new estimator, we can see that the new estimator is a general estimator which contains \(\hat{\beta}_{\text{ME}}, \hat{\beta}_{\text{MLE}}, \hat{\beta}_{\text{NMLE}}(d),\) and \(\hat{\beta}_{\text{MLE}}\) as special cases.

If \(d = 1\), \(\hat{\beta}_{\text{NMLE}}(d) = \hat{\beta}_{\text{ME}}\).

If \(H = 0\), \(\hat{\beta}_{\text{NMLE}}(d) = \hat{\beta}(d)\).

If \(d = 1\) and \(H = 0\), \(\hat{\beta}_{\text{NMLE}}(d) = \hat{\beta}\).

In Section 3, we will study the asymptotic properties of these estimators.

3. The Properties of These Estimators

In this section, we will give the comparison of the new estimator with some estimators. Firstly, we give the properties of these estimators.

3.1. Large Sample Properties of These Estimators. Though the exact distribution and small sample properties of these estimators are difficult to obtain, in this paper, we use the large sample asymptotic approximation theory to study the asymptotic distribution of the estimators. We assume that the parameter \(\beta\) is identifiable and we also assume that as \(n\) tends to infinity, the limits of \(n^{-1}(Z'Z + H'W^{-1}H), n^{-1}(Z'Z + H'W^{-1}H + dI),\) and \(n^{-1}(Z'Z + H'W^{-1}H + I)\) exist and \(E\) denotes the global expectation taken at the true value \(\beta\).
Theorem 1. \(\hat{\beta}_{\text{NMLE}}(d) \) is asymptotically normally distributed. The asymptotically mean and variance of \(\hat{\beta}_{\text{NMLE}}(d) \) are, respectively, given as \(\text{E}[\hat{\beta}_{\text{NMLE}}(d)] = M_1^{-1}M_d\beta \) and \(\text{AVar}[\hat{\beta}_{\text{NMLE}}(d)] = M_1^{-1}M_dM_0^{-1}(B + \sigma^2(Z'Z + H'W^{-1}H))M_0^{-1}M_dM_1^{-1} \), where \(M_d = n^{-1}(Z'Z + H'W^{-1}H + dl) \) and \(B = (n\sigma^2 + \beta'Z'\beta)\Sigma \).

Proof. By Fung et al. [20], \(E(X'X) = Z'Z + n\Sigma \), we have

\[
X'X = Z'Z + n\sum + O_p(n^{1/2}).
\]

Therefore, we may write

\[
n^{-1}(X'X + H'W^{-1}H + I) = n^{-1}(Z'Z + H'W^{-1}H + I) + \sum + O_p(n^{-1/2}), \quad (14)
\]

\[
n^{-1}(X'X + H'W^{-1}H + dl) = n^{-1}(Z'Z + H'W^{-1}H + dl) + \sum + O_p(n^{-1/2}), \quad (15)
\]

\[
n^{-1}(X'X + H'W^{-1}H) = n^{-1}(Z'Z + H'W^{-1}H) + \sum + O_p(n^{-1/2}). \quad (16)
\]

Thus, by (14)–(16), we can obtain that

\[
\sqrt{n} \hat{\beta}_{\text{NMLE}}(d) = \left\{ n^{-1}(Z'Z + H'W^{-1}H + I) + O_p(n^{-1/2}) \right\}^{-1}
\times \left\{ n^{-1}(Z'Z + H'W^{-1}H + dl) + O_p(n^{-1/2}) \right\}
\times \left\{ n^{-1}(Z'Z + H'W^{-1}H) + O_p(n^{-1/2}) \right\}^{-1} n^{-1/2}(X'y + H'W^{-1}h)
\]

\[
= \left[I + O_p(n^{-1/2}) \right]^{-1} \left\{ n^{-1}(Z'Z + H'W^{-1}H + I) + O_p(n^{-1/2}) \right\}^{-1}
\times \left\{ n^{-1}(Z'Z + H'W^{-1}H + dl) + O_p(n^{-1/2}) \right\}
\times \left\{ n^{-1}(Z'Z + H'W^{-1}H) + O_p(n^{-1/2}) \right\}^{-1} n^{-1/2}(X'y + H'W^{-1}h).
\]

Then, we get

\[
\text{AVar}[\hat{\beta}_{\text{NMLE}}(d)] = M_1^{-1}M_dM_0^{-1}(B + \sigma^2(Z'Z + H'W^{-1}H))M_0^{-1}M_dM_1^{-1}.
\]

Corollary 1. \(\hat{\beta}_{\text{MLE}} \) has asymptotically normal distribution with \(E[\hat{\beta}_{\text{MLE}}] = \beta \) and \(\text{AVar}[\hat{\beta}_{\text{MLE}}] = M_0^{-1}(B + \sigma^2(Z'Z + H'W^{-1}H))M_0^{-1}. \)

Corollary 2. \(\hat{\beta}(d) \) has asymptotically normal distribution with \(E[\hat{\beta}(d)] = G_d\beta \) and \(\text{AVar}[\hat{\beta}(d)] = G_d(Z'Z)^{-1}(B + \sigma^2Z'Z)(Z'Z)^{-1}G_d, \) where \(G_d = (Z'Z + I)^{-1}(Z'Z + dl). \)

By [1], we know that \(E[\hat{\beta}_{\text{MLE}}(d)] = M_0^{-1}(G_dZ'Z + H'W^{-1}H)\beta \) and \(\text{AVar}[\hat{\beta}_{\text{MLE}}(d)] = M_0^{-1}[G_dBG_d + \sigma^2(G_dZ'ZG_d + H'W^{-1}H)]M_0^{-1}. \)
3.2. Comparisons among Biased Estimators. In this subsection, we will present the comparison of the new estimator to the $\hat{\beta}_{\text{ME}}$, $\hat{\beta}(d)$, and $\hat{\beta}_{\text{MLE}}(d)$ under the mean-squared error matrix. Firstly, we present the mean-squared error matrix of an estimator $\hat{\theta}$ of θ is defined as

$$\text{MSEM}(\hat{\theta}) = E((\hat{\theta} - \theta)'(\hat{\theta} - \theta)) = \text{Var}(\hat{\theta}) + \text{Bias}(\hat{\theta})\text{Bias}(\hat{\theta})' ,$$

where $\text{Bias}(\hat{\theta}) = E(\hat{\theta} - \theta)$ denotes the bias vector. In order to present the main results, we give some lemmas.

$$\begin{align*}
\text{AMSEM}[\hat{\beta}_{\text{MLE}}(d)] &= M_0^{-1}M_0^{-1}\left[B + \sigma^2(Z'Z + H'W^{-1}H)\right]M_0^{-1}M_0^{-1} + b_1b_1', \\
\text{AMSEM}[\hat{\beta}_{\text{ME}}] &= M_0^{-1}\left[B + \sigma^2(Z'Z + H'W^{-1}H)\right]M_0^{-1} , \\
\text{AMSEM}[\hat{\beta}(d)] &= G_d(Z'Z)^{-1}\left[B + \sigma^2(Z'Z + H'W^{-1}H)\right]G_d + b_2b_2' , \\
\text{AMSEM}[\hat{\beta}_{\text{MLE}}(d)] &= M_0^{-1}\left[G_dBG_d + \sigma^2(G_dZ'ZG_d + H'W^{-1}H)\right]M_0^{-1} + b_3b_3' ,
\end{align*}$$

where $b_1 = M_1^{-1}M_0\beta$, $b_2 = (G_d - I)\beta$, and $b_3 = (M_1^{-1}(G_dZ'Z + H'W^{-1}H) - I)\beta$.

In order to compare the $\hat{\beta}_{\text{MLE}}(d)$ to $\hat{\beta}_{\text{ME}}(d)$, we consider the asymptotic AMSEM differences:

$$\begin{align*}
\text{V}_1 &= \text{AMSEM}[\hat{\beta}_{\text{ME}}] - \text{AMSEM}[\hat{\beta}_{\text{MLE}}(d)] \\
&= D_1 - b_1b_1' , \\
\text{V}_2 &= \text{AMSEM}[\hat{\beta}_{\text{MLE}}] - \text{AMSEM}[\hat{\beta}_{\text{MLE}}(d)] \\
&= D_2 + b_2b_2' - b_1b_1' , \\
\text{V}_3 &= \text{AMSEM}[\hat{\beta}_{\text{MLE}}(d)] - \text{AMSEM}[\hat{\beta}_{\text{MLE}}(d)] \\
&= D_3 + b_3b_3' - b_1b_1' ,
\end{align*}$$

where

$$\begin{align*}
D_1 &= M_0^{-1}\left[B + \sigma^2(Z'Z + H'W^{-1}H)\right]M_0^{-1} - M_1^{-1}M_0M_0^{-1}\left[B + \sigma^2(Z'Z + H'W^{-1}H)\right]M_0^{-1}M_0^{-1} , \\
D_2 &= G_d(Z'Z)^{-1}\left(B + \sigma^2Z'Z\right)(Z'Z)^{-1}G_d - M_1^{-1}M_0M_0^{-1}\left[B + \sigma^2(Z'Z + H'W^{-1}H)\right]M_0^{-1}M_0^{-1} , \\
D_3 &= M_0^{-1}\left[G_dBG_d + \sigma^2(G_dZ'ZG_d + H'W^{-1}H)\right]M_0^{-1} - M_1^{-1}M_0M_0^{-1}\left[B + \sigma^2(Z'Z + H'W^{-1}H)\right]M_0^{-1}M_0^{-1} .
\end{align*}$$

\textbf{Lemma 1} (see [21]). 0 Suppose that M be a positive matrix, namely, $M > 0$ and a be some vector, then $M - ad' \geq 0$ if and only if $d M^{-1}a \leq 1$.

\textbf{Lemma 2} (see [9]). Let $n \times n$ matrices $M > 0$, $N \geq 0$, then $M > N$ if and only if $\lambda_{\text{max}}(NM^{-1}) < 1$.

Now, we give the comparison of the estimator $\hat{\beta}_{\text{MLE}}(d)$ to the $\hat{\beta}_{\text{ME}}$ in the MSEM sense.

\textbf{Theorem 2}. The $\hat{\beta}_{\text{MLE}}(d)$ is better than the estimator $\hat{\beta}_{\text{ME}}$ in the MSEM sense, if and only if $b_1'(D_2 + b_2b_2')^{-1}b_1 \leq 1$.

\textbf{Proof}. Now we prove

$$D_1 = M_0^{-1}\left[B + \sigma^2(Z'Z + H'W^{-1}H)\right]M_0^{-1} - M_1^{-1}M_0M_0^{-1}\left[B + \sigma^2(Z'Z + H'W^{-1}H)\right]M_0^{-1}M_0^{-1} > 0 .$$

Let $H = M_0^{-1}\left(B + \sigma^2(Z'Z + H'W^{-1}H)\right)M_0^{-1}$, we have $H > 0$, then we can write D_1 as follows:

$$D_1 = H - M_1^{-1}M_0HM_0M_0^{-1} = (1 - d)M_1^{-1}M_0(M_0^{-1}H + (1 - d)M_0^{-1}H)^{-1}M_0^{-1}M_0^{-1} .$$

Since $0 < d < 1$, $M_0^{-1} > 0$, and $H > 0$, we have $D_1 > 0$. By Lemma 1, we have $\hat{\beta}_{\text{MLE}}(d)$ is better than the estimator $\hat{\beta}_{\text{ME}}$ in the MSEM sense, if and only if $b_1'(D_2 + b_2b_2')^{-1}b_1 \leq 1$.

\textbf{Theorem 3}. When

$$\lambda_{\text{max}}\left[M_1^{-1}M_0M_0^{-1}\left[B + \sigma^2(Z'Z + H'W^{-1}H)\right]M_0^{-1}M_0^{-1}\left[(G_d(Z'Z)^{-1}(B + \sigma^2Z'Z)(Z'Z)^{-1}G_d)^{-1}\right]\right] \leq 1 ,$$

the $\hat{\beta}_{\text{MLE}}(d)$ is better than the estimator $\hat{\beta}(d)$ in the MSEM sense, if and only if $b_1'(D_2 + b_2b_2')^{-1}b_1 \leq 1$.

\textbf{Proof}. Since

$$G_d(Z'Z)^{-1}(B + \sigma^2Z'Z)(Z'Z)^{-1}G_d > 0 ,$$

$M_1^{-1}M_0M_0^{-1}\left[B + \sigma^2(Z'Z + H'W^{-1}H)\right]M_0^{-1}M_0^{-1} > 0 ,$$

(29)
then by Lemma 2, when

$$
\lambda_{\max}\left[M_1^{-1}M_dM_0^{-1}\left(B + \sigma^2(Z'Z + H'W^{-1}H) \right) M_0^{-1}M_dM_1^{-1} \cdot \left(G_d(Z'Z)^{-1}(B + \sigma^2Z'Z)(Z'Z)^{-1}G_d \right)^{-1} \right] \leq 1,
$$

we have $D_3 > 0$, then by Lemma 1, we get that the new estimator is superior to the $\hat{\beta}(d)$ in the MSEM sense, if and only if $b_1'(D_3 + b_1b_1')^{-1}b_1 \leq 1$. \hfill \Box

Theorem 4. When

$$
\lambda_{\max}\left[M_1^{-1}M_dM_0^{-1}\left(B + \sigma^2(Z'Z + H'W^{-1}H) \right) M_0^{-1}M_dM_1^{-1} \cdot \left(M_0^{-1}[G_dBG_d + \sigma^2G_dZ'ZG_d + H'W^{-1}H]M_0^{-1} \right)^{-1} \right] \leq 1.
$$

then by Lemma 2, when

we have $D_3 > 0$, then by Lemma 1, we get that the new estimator is superior to the $\hat{\beta}_{\text{MLE}}(d)$ in the MSEM sense, if and only if $b_1'(D_3 + b_1b_1')^{-1}b_1 \leq 1$. \hfill \Box

4. Monte Carlo Simulation Experiments

In this section, we will conduct a Monte Carlo simulation experiment is designed to show the performance of these estimators. Following McDonald and Galarneau [22], we may get the explanatory variables by using

$$
z_{ij} = (1 - \rho^2)^{1/2}w_{ij} + \rho w_{i(p+1)},
$$

where w_{ij} are got by the standard normal distribution and ρ is chosen so that the correlation between any two variables is ρ^2. Three different values of the correlation are used, namely, 0.9, 0.95, and 0.99. The real values of the parameter vector β are chosen as the eigenvector of the matrix $Z'Z$ corresponding to the largest eigenvalue. Moreover, we have considered the explanatory variable as $\rho = 4$. We also assume that $\Sigma = \text{diag}(0.01, \ldots, 0.01)$ and $\sigma = 1, 5$, and 10. The sample size is taken to be 50, 100, and 150.

The stochastic linear restrictions of H are generated by norm distributions and $e \sim N(0, \sigma^2I)$. Note that in this paper we did not introduced any estimators of the shrinkage parameter d; therefore, we only consider some values of d such that $0 < d < 1$. We generated 5000 data sets containing the explanatory variables and the dependent variable. The simulated mean-squared error (MSE) is used to compare the estimators such that it can be computed as follows:

$$
\tilde{\beta}_r = \frac{\sum_{r=1}^{5000}(\hat{\beta}_r - \beta)(\hat{\beta}_r - \beta)}{5000}
$$

where $\hat{\beta}_r$ is any estimator considered in this paper in the r^{th} repetition. All computations are performed using the R Program.

We have summarized the results of the simulation in Tables 1–5. We can conclude the following from the tables.

(1) The new estimator is always superior to the ME and LE.

(2) The new estimator is superior to the MLE in most cases. When the $\rho^2 = 0.99$, that is the multicollinearity is serve, the new estimator is superior to the MLE.

(3) When the n is small, the new estimator performs well.
Table 1: MSE values of the estimator for different values of d and ρ when $\sigma = 1$ and $n = 50$.

ρ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
OME	0.3466	0.3466	0.3466	0.3466	0.3466	0.3466	0.3466	0.3466	0.3466
LE	0.3630	0.3740	0.3851	0.3964	0.4080	0.4196	0.4315	0.4436	0.4558
MLE	0.2849	0.2914	0.2979	0.3046	0.3113	0.3182	0.3251	0.3322	0.3394
NMLE	0.2839	0.2905	0.2972	0.3040	0.3109	0.3179	0.3249	0.3321	0.3393

Table 2: MSE values of the estimator for different values of d and ρ when $\sigma = 1$ and $n = 100$.

ρ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
OME	0.1493	0.1493	0.1493	0.1493	0.1493	0.1493	0.1493	0.1493	0.1493
LE	0.1551	0.1567	0.1583	0.1600	0.1616	0.1633	0.1650	0.1667	0.1684
MLE	0.1375	0.1388	0.1401	0.1414	0.1427	0.1440	0.1453	0.1466	0.1479
NMLE	0.1375	0.1388	0.1401	0.1414	0.1427	0.1440	0.1453	0.1466	0.1479

Table 3: MSE values of the estimator for different values of d and ρ when $\sigma = 1$ and $n = 150$.

ρ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
OME	0.1009	0.1009	0.1009	0.1009	0.1009	0.1009	0.1009	0.1009	0.1009
LE	0.1040	0.1048	0.1055	0.1063	0.1070	0.1077	0.1085	0.1093	0.1100
MLE	0.0953	0.0959	0.0965	0.0971	0.0977	0.0984	0.0990	0.0996	0.1002
NMLE	0.0953	0.0959	0.0965	0.0971	0.0977	0.0984	0.0990	0.0996	0.1002

Table 4: MSE values of the estimator for different values of d and ρ when $\sigma = 1$ and $n = 200$.

ρ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
OME	0.0928	0.0932	0.0932	0.0932	0.0932	0.0932	0.0932	0.0932	0.0932
LE	0.0967	1.0154	1.0867	1.1606	1.2370	1.3159	1.3975	1.4815	1.5682
MLE	0.6152	0.6461	0.6781	0.7112	0.7454	0.7807	0.8171	0.8545	0.8931
NMLE	0.6132	0.6451	0.6778	0.7115	0.7461	0.7816	0.8180	0.8554	0.8936
5. Conclusions

In this paper, we use a new method to propose a new mixed estimator in the linear measurement error model and we also discuss the properties of the new estimator. A Monte Carlo simulation experiment is designed to evaluate the performances of the estimators in terms of the simulated mean-squared error criterion. Simulation results indicated that the new estimator performed better than the rest of the estimators when the multicollinearity problem exists in the data. Therefore, the new estimator can be an alternative to the existing estimators especially in the presence of highly correlated data.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The author declares that they have no conflicts of interest.

Acknowledgments

This work was sponsored by the Natural Science Foundation of Chongqing (Grant nos. cstc2019jcyj-msxmX0379 and cstc2020jcyj-msxmX0028) and the Scientific Technological Research Program of Chongqing Municipal Education Commission (Grant no. KJQN202001321).

References

[1] F. Ghapani and B. Babadi, "Mixed Liu estimator in linear measurement error models," Communications in Statistics-Theory and Methods, vol. 47, no. 7, pp. 1561–1570, 2018.
[2] W. A. Fuller, Measurement Error Models, Wiley, New York, NY, USA, 1987.
[3] C. Cheng and J. W. Van Ness, Statistical Regression with Measurement Error, Arnold, London, UK, 1999.
[4] C. Stein, "Inadmissibility of usual estimator for the mean of a multivariate normal distribution," in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, pp. 197–206, Berkeley University of California Press, Berkeley, CA, USA, August 1956.

Table 4: MSE values of the estimator for different values of d and ρ when $\sigma = 5$ and $n = 50$.

ρ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
OME	7.3456	7.3456	7.3456	7.3456	7.3456	7.3456	7.3456	7.3456	7.3456
LE	7.6629	7.8677	8.0756	8.2868	8.5011	8.7187	8.9395	9.1634	9.3906
MLE	6.1826	6.3046	6.4285	6.5541	6.6815	6.8108	6.9418	7.0746	7.2092
NMLE	6.1587	6.2846	6.4119	6.5407	6.6711	6.8029	6.9363	7.0713	7.2077

Table 5: MSE values of the estimator for different values of d and ρ when $\sigma = 10$ and $n = 50$.

ρ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
OME	58.8476	58.8476	58.8476	58.8476	58.8476	58.8476	58.8476	58.8476	58.8476
LE	38.5358	48.9573	60.7964	74.0531	88.7275	104.8194	122.3290	141.2563	161.6011
MLE	24.7887	27.6342	30.2419	33.4217	36.9038	40.6882	44.7747	49.1635	53.8544
NMLE	21.0234	24.2775	27.6287	31.2570	35.1625	39.3452	43.8051	48.5421	53.5563
[5] A. E. Hoerl and R. W. Kennard, "Ridge regression: biased estimation for nonorthogonal problems," Technometrics, vol. 12, no. 1, pp. 55–67, 1970.
[6] K. Liu, "A new class of biased estimate in linear regression," Communications in Statistics - Theory and Methods, vol. 22, pp. 393–402, 1993.
[7] H. Yang and X. Chang, "A new two-parameter estimator in linear regression," Communications in Statistics-Theory and Methods, vol. 39, no. 6, pp. 923–934, 2010.
[8] J. Wu and H. Yang, "Efficiency of an almost unbiased two-parameter estimator in linear regression model," Statistics, vol. 47, no. 3, pp. 535–545, 2013.
[9] C. R. Rao, H. Toutenburg, and H. C. Shalabh, Linear Models: Least Squares and Alternatives, Springer, Berlin, Germany, 2008.
[10] Y. Li and H. Yang, "Efficiency of a stochastic restricted two-parameter estimator in linear regression," Applied Mathematics and Computation, vol. 249, pp. 371–381, 2014.
[11] A. K. M. E. Saleh and S. Shalabh, “A ridge regression estimation approach to the measurement error model,” Journal of Multivariate Analysis, vol. 123, pp. 68–84, 2014.
[12] W. Li, T. Li, and H. Yang, "Restricted estimation and testing of hypothesis in linear measurement errors models," Communications in Statistics - Theory and Methods, vol. 45, no. 18, pp. 5318–5330, 2016.
[13] W. Li and H. Yang, "Weighted stochastic restricted estimation in linear measurement error models," Communications in Statistics - Simulation and Computation, vol. 42, no. 4, pp. 932–968, 2013.
[14] F. Ghapani, A. R. Rasekh, and B. Babadi, "The weighted ridge estimator in stochastic restricted linear measurement error models," Statistical Papers, vol. 59, no. 2, pp. 709–723, 2018.
[15] M. Arashi, B. M. G. Kibria, M. Norouzirad, and S. Nadarajah, "Improved preliminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model," Journal of Multivariate Analysis, vol. 126, pp. 53–74, 2014.
[16] B. M. G. Kibria, "Some Liu and ridge-type estimators and their properties under the ill-conditioned Gaussian linear regression model," Journal of Statistical Computation and Simulation, vol. 82, no. 1, pp. 1–17, 2012.
[17] M. I. Alheety and B. M. Golam Kibria, "Modified liu-type estimator based on (r−k) class estimator," Communications in Statistics-Theory and Methods, vol. 42, no. 2, pp. 304–319, 2013.
[18] F. Ghapani, "Stochastic restricted Liu estimator in linear mixed measurement error models," Communications in Statistics-Simulation and Computation, 2019.
[19] Y. Li, Y. Asar, and J. Wu, "On the stochastic restricted Liu estimator in logistic regression model," Journal of Statistical Computation and Simulation, vol. 90, no. 15, pp. 2766–2788, 2020.
[20] W.-K. Fung, X.-P. Zhong, and B.-C. Wei, "On estimation and influence diagnostics in linear mixed measurement error models," American Journal of Mathematical and Management Sciences, vol. 23, no. 1-2, pp. 37–59, 2003.
[21] R. W. Farebrother, "Further results on the mean square error of ridge regression," Journal of the Royal Statistical Society: Series B (Methodological), vol. 38, no. 3, pp. 248–250, 1976.
[22] G. C. McDonald and D. I. Galarneau, "A Monte Carlo evaluation of some ridge-type estimators," Journal of the American Statistical Association, vol. 70, no. 350, pp. 407–416, 1975.