99Ru and 61Ni Mössbauer Spectroscopic Studies Using the Accelerator at RIKEN

Y Kobayashi
Advanced Meson Science Laboratory, Nishina Center for Accelerator Based Science (RNC), RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
E-mail: kyoshio@riken.jp

Abstract. Ruthenium and nickel are important constituent elements of a wide variety of compounds, including oxides, catalysts, and functional and industrial materials for solar batteries and shape-memory alloys. 99Ru and 61Ni Mössbauer spectroscopy can reveal significant information about the physical and chemical properties of these compounds. However, there have not been many studies that use Mössbauer spectroscopy to investigate Ru and Ni compounds. This paper discusses Mössbauer source preparation methods using the RIKEN accelerator for conventional Mössbauer absorption spectra in addition to our recent results.

1. Introduction
The Mössbauer effect has been observed for nearly 100 nuclear transitions in about 80 nuclides distributed over 43 elements [1]. Of these elements, about 20 have yet to be investigated by Mössbauer spectroscopy, since not all transitions are amenable to normal experimental conditions. Mössbauer elements of Fe, Ni, Zn, Ru, Sn, Sb, Te, I, Xe, Eu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, U are used in chemistry, solid-state physics, biology, metallurgy, and earth science. Some Mössbauer nuclides including 57Fe, 119Sn and 151Eu have been extensively investigated in a wide variety of fields, whereas other nuclides have not been studied greatly by Mössbauer spectroscopy despite being significant elements for materials science. There are several reasons for this state of affairs: the half-lives of Mössbauer mother nuclides are too short, inappropriate lifetimes of the first excited levels, few Mössbauer transitions, and complicated preparation procedures or their chemical treatments to produce appropriate Mössbauer mother nuclides.

In addition to Fe and Sn, Ru and Ni are important iron-group elements. Ruthenium is a major element of important oxides, catalysts utilized in organic synthesis, and solar energy technologies. An interesting feature of Ru chemistry is that Ru has a large variety of oxidation states ranging from 0 to 8+. For example, Ru ions have an oxidation state of 4+ (4d6 configuration) in superconducting Sr2RuO4 (Tc=1.5 K) [2], and an oxidation state of 8+ (4d8) in RuO4. On the other hand, Ni is ferromagnetic near room temperature. It is used in many industrial and electrical devices including magnets, rechargeable batteries, shape-memory alloys, and catalysts. In addition, several enzymes and microorganisms contain nickel.

It is important to study the physicochemical properties of many Ru and Ni compounds using 99Ru and 61Ni Mössbauer spectroscopy. However, there have not been many Mössbauer spectroscopic studies of Ru and Ni compounds because of experimental difficulties. Specifically, 99Ru and 61Ni do not have long-lived nuclides that can be used as Mössbauer sources, and both the source and the
absorber should be cooled to low temperatures because of the low Debye–Waller factors caused by the relatively high energies of the γ-ray transitions (see Fig. 1). Table 1 compares typical precursors, the nuclear reactions for source preparation, and nuclear data of 99Ru and 61Ni Mössbauer spectroscopy with those of 57Fe Mössbauer spectroscopy. Facilities for the source preparation, including a heavy-ion accelerator and the liquid helium supply are necessary for continuous spectroscopic measurement. In this paper, the experimental procedures for 99Ru and 61Ni Mössbauer spectroscopy using the accelerator at RIKEN are introduced and recent results for CaRuO$_3$ [3], Hg$_2$Ru$_2$O$_7$ [4,5] and Ru-containing skutterudites [6,7] are presented.

Table 1. Mössbauer precursor nuclides and simplified nuclear data of 57Fe, 61Ni, and 99Ru.

nuclide	abundance	precursor (reaction)	$T_{1/2}$	$E_γ$ (keV)	$t_{1/2}$ (ns)	$Γ_0$ (mm/s)
57Fe	2.1 %	57Co	270 d	14.4	97.8	0.1946
61Ni	1.1 %	61Co (62Ni($γ$,p)61Co)	99 m	67.4	5.27	0.7805
		61Cu (58Ni(α,p)61Cu)	3.3 h			
99Ru	12.8 %	99Rh (99Ru(p,n)99Rh)	16 d	89.8	20.5	0.1468

$T_{1/2}$: half-life of Mössbauer precursor nuclide, $E_γ$: energy of Mössbauer γ-ray transition, $t_{1/2}$: lifetime of excited nuclear state, $Γ_0$: natural linewidth (FWHM).

2. **99Ru Mössbauer spectroscopic studies at RIKEN**

2. 1. Source preparation and 99Ru Mössbauer measurement

First, the source nuclide, 99Rh ($T_{1/2}$=15.0 d) of 99Ru Mössbauer spectroscopy must be produced by the 99Ru(p,n)99Rh reaction. Figure 2 shows a schematic of the experimental layout at a beam-line connected with the AVF cyclotron (K70-MeV) in RIKEN Nishina Center (RNC) [8]. The AVF cyclotron typically provides protons with energies up to 14 MeV [9]. The proton beam for the (p,n) reactions was extracted from the AVF cyclotron and used to bombard the target of 96 % enriched 99Ru metallic powder. The energy and intensity of the p-beam were 12 MeV and 10 µA, respectively. The 99Ru-enriched powder was pressed and packed into an Al holder. The holder was tightly fixed to the irradiation equipment and the target was cooled by He gas flow and water flow during the p-irradiation. The active area (i.e., the spot size of the p-beam) was 8×8 mm2. After p-irradiation for

![Figure 1. Simplified decay schemes of 99Ru and 61Ni. Only transitions relevant to Mössbauer studies are shown.](image-url)
about 24 hours, the 99Rh Mössbauer source was estimated to have an activity of 10 MBq. The Al holder was removed from the beam-line, and immediately transported to the Mössbauer laboratory in RNC for off-line measurement without being subjected to annealing or chemical treatment. The obtained 99Rh Mössbauer source could be used for measurements up to about 7–8 weeks after p-irradiation.

99Ru Mössbauer spectra were obtained using a Mössbauer spectrometer (Wissel, MVT-1000) and a multichannel analyzer (EG&G, ORTEC MCS-plus). Due to the relatively high energy of the Mössbauer γ-ray (89.8 keV), both the source and the absorbers were maintained at low temperatures in a liquid-helium cryostat during the measurements. The Mössbauer γ-rays were detected by a 2-mm-thick NaI(Tl) scintillator. Velocity calibration of the system was performed by measuring the Mössbauer absorption lines of 57Fe in an iron foil against a 57Co/Rh source. In our experimental setup, the linewidth (FWHM) and the area intensity of the resonance singlet were 0.25(2) mm/s and 1.56(5) %, respectively, against an absorber of natural ruthenium metal.

We analyzed the 99Ru Mössbauer spectrum by least-squares fitting, adopting the following values for the electric quadrupole (Q) and magnetic dipole moments (μ) of the 99Ru nucleus: $Q_e = 0.22$ b and $\mu_e = -0.285$ nm for the excited level ($I_e = 3/2$), and $Q_g = 0.076$ b and $\mu_g = -0.623$ nm for the ground level ($I_g = 5/2$). The E2/M1 mixing ratio, δ, for the γ-transition was assumed to be 2.7 [10]. When the nuclei of 99Ru are in a pure magnetic field with no electric field gradient, 18 absorption lines appear symmetrically in the spectrum. An asymmetric doublet, each branch consisting of three unresolved lines, appears in the presence of an electric field gradient of ordinary magnitude [11]. The chemical valence state dependence of the isomer shift of 99Ru is similar to that of 57Fe, although the sign is reversed because $\Delta R/R$ is positive for 99Ru.

2. Applications of 99Ru Mössbauer spectroscopy
Since the 1990s, we have used 99Ru Mössbauer spectroscopy to investigate ruthenium trichlorides [11], Fe$_3$Si-based Heusler alloys [12] and to perform nuclear probe studies in iron oxides [13,14]. We summarize our recent results below.

2. 2. Perovskite CaRuO$_3$: Orthorhombic ruthenates MRuO$_3$ (M = Sr or Ca) have attracted renewed interest as a result of the superconductivity found in Sr$_2$RuO$_4$ [2]. SrRuO$_3$ and CaRuO$_3$ have orthorhombically distorted GdFeO$_3$-type structures and exhibit metallic conductivity. However, despite having similar crystallographic and electrical properties, they exhibit quite different magnetic properties. SrRuO$_3$ is ferromagnetic with a T_C of 165 K [15,16], whereas the magnetic ground state of CaRuO$_3$ has yet to be determined (possibilities include antiferromagnetic [17], weak ferromagnetic [18–20], a spin-glass-like state [21], exchange-enhanced paramagnetic [22]). We have studied the magnetism of CaRuO$_3$ by magnetization measurements and Mössbauer spectroscopy. Our previous
studies revealed that no spin glass-like state exists in CaRuO$_3$ and that its magnetism strongly depends on its purities. Single crystals of CaRuO$_3$ were prepared by a self-flux method using CaCl$_2$ as the flux. An off-stoichiometric mixture of CaCO$_3$, RuO$_3$, and CaCl$_2$ was charged into a Pt crucible and heated to 1350 °C in an electric furnace. It was then carefully cooled to 900 °C, and quenched to room temperature to prevent other phases from growing. A small-crystal sample of CaRuO$_3$ was found to be mostly composed of rough cubes of 0.5 mm3. These crystals were characterized by XRD, EPMA, magnetization and electrical resistivity measurements [3]. 95Ru Mössbauer spectroscopy, and μSR method.

Figure 3. 99Ru Mössbauer spectrum of the single crystals of CaRuO$_3$ at 4.2 K.

From the measurements of the temperature dependence of the magnetic susceptibility between 2 and 300 K, it was found that the magnetic susceptibility, $\chi(T)$, exhibited paramagnetic behavior and obeyed the Curie-Weiss law. The effective magnetic moment in the temperature range 90 K < T < 300 K was estimated to be P_{eff} = 2.92 μ_B. Figure 3 shows the 99Ru Mössbauer spectrum obtained from single crystals of CaRuO$_3$ at 4.2 K. This spectrum could be satisfactorily analyzed by assuming an axially symmetric electric field gradient. The isomer shift was −0.31 mm/s and the quadrupole splitting was 0.22 mm/s. Based on these Mössbauer parameters, the Ru ion was assigned to be in a low-spin state of Ru$^{4+}$. The Mössbauer measurement results indicate that CaRuO$_3$ has no long-range magnetic order down to 4.2 K. In addition, the μSR measurements were performed down to 0.3 K at RIKEN RAL muon facility. The results obtained for the temperature dependences of ZF, TF, and LF-μSR measurements agree with those described above.

2.2.2. Pyrochlore Hg$_2$Ru$_2$O$_7$: Hg$_2$Ru$_2$O$_7$ is a new ruthenium oxide with pyrochlore structure, $A_2B_2O_7$, which was recently synthesized by Yamamoto et al. [4,5]. Of the wide variety of 4d- and 5d-pyrochlore oxides, pyrochlores with tetravalent ruthenium Ru$^{4+}$ occupying the B-site, A_2^{3+}Ru$_2^{4+}$O$_7$, have been intensively studied. In contrast to Ru$^{4+}$ pyrochlores, only two Ru$^{5+}$ pyrochlores, Cd$_2$Ru$_2$O$_7$ and Ca$_2$Ru$_2$O$_7$, has been reported, partly due to the difficulty of oxidizing Ru to make it pentavalent. Hg$_2$Ru$_2$O$_7$ is a new pyrochlore oxide and it is the third Ru$^{5+}$ compound to be synthesized. The properties of Cd and Ca analogues have not been completely explored. However, both have a relatively low resistivity (ρ) of the order of milliohm-centimeters but neither exhibits a metallic T dependence (i.e., $d\rho/dT > 0$) [23,24]. In contrast to Cd and Ca analogues, Yamamoto et al. found a well defined a metal–insulator transition (MIT) at ~107 K in Hg$_2$Ru$_2$O$_7$. 99Ru Mössbauer spectroscopy was used to determine the oxidation state of Ru ions in Hg$_2$Ru$_2$O$_7$. The Hg$_2$Ru$_2$O$_7$ sample was prepared in a small Au cell under 6 GPa using a cubic-anvil-type high-temperature and high-pressure apparatus. Consequently, it was very difficult to produce an adequate amount for 99Ru Mössbauer measurements. Although the quality of the 99Ru Mössbauer spectrum was low, preliminary analysis suggests that the oxidation state of Ru ions in Hg$_2$Ru$_2$O$_7$ is Ru$^{5+}$; however, further studies are needed to confirm this.
2. 2. 3. Skutterudite SmRu₄P₁₂ : SmRu₄P₁₂ is an attractive compound among filled skutterudites. Its electric resistivity shows MIT at $T_{MI} = 16$ K. Specific heat measurements with an applied magnetic field suggest that successive transitions occur around T_{MI}. The magnetic susceptibility of SmRu₄P₁₂ has a cusp around 14 K, implying an antiferromagnetic ordering. The successive transitions were initially ascribed to antiferroquadrupole and antiferromagnetic orderings, since the entropy at T_{MI} reaches $R \log 4$. The possibility of an octupole ordering has been proposed in SmRu₄P₁₂ based on a macroscopic point of view. The clear jump in the specific heat and antiferromagnetic-like temperature dependence of the magnetic susceptibility in SmRu₄P₁₂ resemble those in NpO₂, which is a typical system with octupole ordering. If the ordering in SmRu₄P₁₂ is caused by an octupole similar to NpO₂, the absence of the hyperfine field and/or magnetic moment should be clarified at the Sm site in addition to the observation of the hyperfine field at ligand sites.

Figure 4 shows 99Ru Mössbauer spectra of SmRu₄P₁₂ at 77 K and 5 K [7].

Figure 4 shows 99Ru Mössbauer spectra of SmRu₄P₁₂. The spectra obtained at 77 and 5K could be satisfactorily analyzed using typical doublets with no obvious magnetic field. These doublets are caused by a sufficiently large electric field gradient near the 99Ru nuclei that possess small asymmetries. The value of the isomer shift (I.S. = $-0.24(2)$ mm/s at 5 K) suggests that the Ru ions are in the tetravalent state.

The Debye temperature at the Ru site in SmRu₄P₁₂ was estimated to be high because the relative area intensity of the spectrum exhibited little variation with increasing temperature. The Mössbauer spectroscopic results support the presence of a dipole moment, which was demonstrated by X-ray absorption spectroscopy and 149Sm nuclear resonant forward scattering at low temperatures performed by Tsutsui et al. [7]. The presence of the magnetic dipole moments at the Sm ions is in a sharp contrast with their absence in NpO₂. The experimental results reported thus far suggest that a possible primary order parameter is a Tα-type octupole.

3. 61Ni Mössbauer spectroscopic studies at RIKEN

Two parent nuclides of 61Co and 61Cu are used for 61Ni Mössbauer spectroscopy (see Fig. 1). Although the half-life of 61Co ($T_{1/2} = 99$ m) is considerably shorter than that of 61Cu ($T_{1/2} = 3.4$ h), 61Co is more suitable for Mössbauer measurements because it undergoes β⁻ decay direct to 67.4-keV Mössbauer levels. The Mainz group in Germany has performed extensive 61Ni Mössbauer spectroscopic investigations using the 61Co source. 61Co source are typically produced by 62Ni(γ,p)⁶¹Co using bremsstrahlung (100 MeV) from an electron accelerator or by 64Ni(p,α)⁶¹Co with proton bombardment. These nuclear reactions require enriched 62Ni or 64Ni, but both isotopes have very low isotopic abundances (3.6 % for 62Ni and 0.9 % for 64Ni). On the other hand, we adopted 61Cu as the source at RNC, although it decays in a complex manner with only 2.4 % populating the Mössbauer level. The
nuclear reactions of $^{58}\text{Ni}(\alpha,p)^{61}\text{Cu}$ and $^{58}\text{Ni}(\alpha,n)^{61}\text{Zn}\rightarrow \text{EC} \beta^+ \rightarrow ^{61}\text{Cu}$ are utilized to produce the source nuclide in the AVF cyclotron. When a paramagnetic Ni$_{0.86}$V$_{0.16}$ alloy was irradiated for 3 hours with 25 MeV α-particles, a ^{61}Cu Mössbauer source with an activity of 10 MBq was obtained. This preparation method has an advantage that it does not require an enriched isotope because ^{58}Ni has a high natural abundance of 68.1 %. The Mössbauer source preparation procedure was the same as that for ^{99}Rh. Recently, we have used ^{61}Ni Mössbauer spectroscopy to evaluate the catalytic performance of NiO samples; detailed results of this study will soon be published elsewhere.

4. Conclusion

Ru and Ni are important constituent elements of a wide variety of compounds, including oxides, catalysts, and functional materials in solar batteries and shape-memory alloys. ^{99}Ru and ^{61}Ni Mössbauer spectroscopy can reveal important information about the physicochemical properties of these compounds. We have developed irradiation equipment for these Mössbauer sources and an off-line measurement system at low temperatures at RNC. In addition, ^{61}Ni Mössbauer spectra have been obtained by a new technique using synchrotron radiation at SPring-8 and ESRF. Moreover, short-lived radioisotope-beam implantation methods will be available for studying these elements. Conventional methods that use Mössbauer sources produced by nuclear reactions play a complementary role to these sophisticated Mössbauer techniques, but they remain the most basic Mössbauer measurement technique.

References

[1] Gültlich P, Link R and Trautwein A 1978 Mössbauer Spectroscopy and Transition Chemistry (Berlin: Springer-Verlag)
[2] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature, 372 532
[3] Koriyama A, Ishizaki M, Ozawa T C, Taniguchi T, Nagata Y, Samata H, Kobayashi Y and Noro Y 2004 J. Alloys Comp. 372 58
[4] Yamamoto A, Sharma P A, Okamoto Y, Nakao A, Katori H A, Niitaka S, Hashizume D and Takagi H 2007 J. Phys. Soc. Jpn. 76 0437031
[5] Takeshita N, Terakura C, Tokura Y, Yamamoto A and Takagi H 2007 J. Phys. Soc. Jpn. 76 0637071
[6] Tsutsumi S, Umemura J, Kobayashi H, Tazaki T, Nasu S, Kobayashi Y, Yoda Y, Onodera H, Sugawara H, Matsuda T D, Kikuchi D, Satoh H, Sekine C and Shirotani I 2006 Hyp. Int. 168 1073
[7] Tsutsumi S, Kobayashi Y, Okada T, Haba H, Onodera H, Yoda Y, Mizumaki M, Tanida T, Uraga T, Sekine C, Shirotani I, Kikuchi D, Sugawara H and Satoh H 2006 J. Phys. Soc. Jpn. 75 0937031.
[8] Haba H and Enomoto S 2005 RIKEN Prog. Accel. Prog. Rep. 38 105
[9] refer to WEB of RNC (http://www.nishina.riken.jp/UsersGuide/accelerator/overview.html).
[10] Kistner O C 1966 Phys. Rev. 144 1022
[11] Kobayashi Y, Okada T, Asai K, Katada M, Sano H and Ambe F 1992 Inorg. Chem. 31 4570
[12] Kobayashi Y, Asai K, Okada T and Ambe F 1994 Hyp. Int. 84 131
[13] Ohkubo Y, Kobayashi Y, Asai K, Okada T and Ambe F 1993 Phys. Rev. B 47 11954
[14] Ohkubo Y, Kobayashi Y, Harasawa K, Ambe S, Okada T, Ambe F, Asai K and Shibata S 1995 J. Phys. Chem. 99 10629
[15] Callaghan A, Moeller C W and Ward R 1966 Inorg. Chem. 5 1572
[16] Bouchard R J and Gillson J L 1972 Mater. Res. Bull. 7 873
[17] Longo J M, Raccah P M and Goodenough J B 1968 J. Appl. Phys. 39 1327
[18] Yoshimura K, Imai T, Kiyama T, Thuerber K R, Hunt A W and Kosuge K 1999 Phys. Rev. Lett. 83 4397
[19] Kiyama T, Yoshimura K and Kosuge K 1999 J. Phys. Soc. Jpn. 68 3372
[20] Mukuda H, Ishida K, Kitaoka Y, Asayama K, Kanno R and Takano M 1999 Phys. Rev. B 60 12279
[21] Fehlner I, Nowik I, Bradaric I and Gospodinov M 2000 Phys. Rev. B 62 11332
[22] Kiyama T, Yoshimura K, Kosuge K, Ikeda Y and Bando Y 1996 Phys. Rev. B 54 R756
[23] Wang R and Sleight A W 1998 Mater. Res. Bull. 33 1005
[24] Munenaka T and Sato H 2006 J. Phys. Soc. Jpn. 75 103801