Recreation of Biotic Community from Native Early-Flowering Plants in Greening Urban Lands as a Factor in Preserving the Region’s Biodiversity (the Case of Primorsky Krai)

N M Belousova¹, T N Kirtaeva², L F Rogacheva³

¹Associate professor of basic and additional education, State Autonomous Institution of Additional Professional Education Primorsky regional center "School for Advanced Studies", 690003, Russia, Primorsky Krai, Vladivostok, Stanyukovich st. 28
²Candidate of Agriculture, assistant professor of agritechnology department, Land management and agritechnology Institute Federal State Budget Educational Institution Primorskaya State Academy of Agriculture, 692500, Russia, Primorsky Krai, Ussuriisk, Bluher ave. 44
³Senior Lecturer of Philosophy and humanities department Federal State Budget Educational Institution Primorskaya State Academy of Agriculture, 692500, Russia, Primorsky Krai, Ussuriisk, Bluher ave. 44

E-mail: kirtaevat@mail.ru

Abstract. One of the effective ways of preserving native early flowering plants is their introduction, as a result of which it is possible to recreate plant communities in the form of a model similar to the natural prototype according to dominant characters. An analysis of the species biodiversity of herbaceous early flowering native plants for Primorsky Krai made it possible to identify associations taking into account their morphological traits and color scheme, flowering periods, preservation of ornamental qualities during the seasons, and to develop cenosis models for their use in greening urbanized landscapes.

1. Introduction

Primorsky Krai, located in the South of the Far East, covers 164.7 thous. km² (about 1% of the area of the Russian Federation) and is the zone of the northernmost subtropics on the planet, which pass into the southernmost taiga. Forests occupy almost three quarter of the area in Primorye and are the most important element of the region forming landscapes.

Primorye has no equal in terms of species diversity of flora and fauna among all regions of Russia. The biodiversity of the region has international significance [27]. The richness of flora, distinctness of the climatic regime at the "junction" of the vast continent of Eurasia and the greatest Pacific Ocean on the Earth, a wide range of ecotopes - from mountain peaks till wide river valleys of the flat part of the region, create conditions for the existence of very diverse vegetation and, very often, exotic combinations of its elements.

In the flora of Primorye, there are more than two thousand species of higher plants, early-flowering perennial plants are numerous and diverse. Appearing in early spring, they attract attention and have
long been used by humans - as medicinal [8,38], food [7,26], as indicators that characterize the degree of disturbance of the territory under the influence of anthropogenic load [2].

Life forms and rhythms of seasonal development of early-flowering plants in Primorsky Krai [6], reproduction and distribution of primroses [4,5,10,11,15], physiological and biomorphological features of primroses [6,32,35] are described and studied, as well as evolution and distribution patterns [39], their significance as honey-bearing and medicinal plants [19].

The issues of introduction and propagation of ornamental early-flowering plants were also considered by both Russian [34] and foreign authors [40].

The idea of using ornamental native plants for greening urbanized landscapes is not new, but, unfortunately, only general issues of introduction to the culture of individual species and taxa of plants are considered in most materials on introduction [12,13,37].

In recent years, there have been ideas of using wild plants for landscaping in communities [3,18], which will certainly enhance durability of such artificial cenoses. The reproduction of natural cenoses, native to this territory of plants, in urbanized landscapes, can be considered as a method of conservation of biological diversity.

The aim of the work is to create models of coenoses from native ornamental early-flowering herbaceous plants for their use in greening urbanized landscapes.

The following tasks were highlighted:
1. To analyze the species biodiversity of herbaceous early-flowering native plants for Primorsky Krai and identify associations with similar environmental requirements.
2. To study the plant communities of early-flowering herbaceous perennials formed on the territory of the Botanical Garden of FEB RAS, to analyze the taxonomic composition of artificial communities, to conduct their ecologo-phytocenotic analysis
3. To consider associations of herbaceous early-flowering native plants for Primorsky Krai and, taking into account their morphological traits and color scheme, the time of flowering, preservation of decorative qualities during the seasons, to develop models of cenoses for their use in greening urbanized landscapes.

2. Objects and methods of research
The study object was both natural plant communities of early-flowering perennials and plant communities of early-flowering plants native to Primorsky Krai, artificially created on the territory of the Botanical Garden of the FEB RAS, and the species represented in them.

The material for the work was both live samples of plants of natural communities in Primorsky Krai, and plants growing in the Botanical Garden of FEB RAS, as well as data from price lists of nurseries that cultivate decorative perennials.

The study of plant communities was carried out by us according to the generally accepted method [25, 33].

The model community was created based on the ecologo-phytocenotic method of plant introduction according to N V Trulevich [36], which includes the use of all the main data obtained from the analysis of the species composition, phenology, structure and environmental conditions of plant growth on the studied areas.

Phenological observations of perennial early-flowering ornamental plants were conducted according to the generally accepted method of phenological observations in the Botanical Gardens [1] and according to the observations of G N Zaitsev [16].

3. Results and discussion
A special role in the conservation of rare and endangered plant species belongs to the Botanical Gardens as the centers for increasing species diversity. The main function of Botanical Gardens is to preserve collections of living plants and use them for scientific research, biodiversity conservation, show, and educational purposes. Of the 92 Botanical Gardens in Russia, only five of them propagate
and sell open-ground plants, including early-flowering herbaceous plants. The ratio of native species and cultivated early-flowering herbaceous perennials in prices is shown in figure 1.

![Figure 1](image-url)

Figure 1. Number of early-flowering native species in the price lists of the Botanical Gardens in Russia in relation to the total number of sold early-flowering plants and the total number of species of herbaceous perennials offered for open ground.

1 – The Botanical Garden - Institute of FEB RAS
2 – Amur branch Botanical Garden - Institute of FEB RAS
3 – The South Siberian Botanical Garden of Altai State University
4 – Ekaterinburg Botanical Garden - UB RAS
5 – Kemerovo - Kuzbass Botanical Garden

Thus, out of 80 species of ornamental early-flowering perennials that grow in natural communities of Primorsky Krai, the Botanical Garden of FEB RAS propagates and offers less than 20 species for greening. The list can be increased (table 1) and one may use native plants to create compositions in parks, arboretums, for landscaping slopes (in Vladivostok), for strengthening screes and dividing strips along highways in combination with decorative tree-shrubby native plants for Primorsky Krai, such as *Deutzia parviflora* var. *amurensis* Regel, *Philadelphia temulifolius* Rupr. & Maxim., *Weigela praecox* (Lemoine) L. H. Bailey, *Lonicera maximowiczii* (Rupr.) Regel, *Crataegus pinnatifida* var. major N.E.Br., *Padus asiatica* Kom., *Syringa wolffii* Schneid., (Oliv.) Oliv., *Rosa rugosa* Thunb., *Rosa maximowicziana* Regel and others. The use of native species in culture will solve not only the problems of their conservation and expansion of areas, but also increase the stability of artificial plantations, provided that the ecological and biological characteristics of the species are taken into account.

Table 1. List of early spring flowering plants in Primorsky Krai.

No.	Species	Morphology traits used in creating compositions	Time of flowering (month of the year)	Ecological features	Biotope
1	*Adonis* *(Chysocyathus)* *amurensis*	During flowering up to 12 cm, after	III-IV	Mesophyte	Deciduous forests and forest edges,
Regel et Rde	Flowering up to 35 cm	Mixed-grass slopes of sea coasts			
------------------	-----------------------	---------------------------------			
2	*Aquilegia parviflora* Ledeb., *Aquilegia*	20-45 cm	V	Meso-petrophyte	Dry meadows, rocky hills
3	*Arsenjevia glabrata* (Maxim.) Starod., *Arsenjevia*	15-25 cm	IV-V	Mesophyte	Wet soils in valley forests, riverine terraces
4	*Arisaema amurense* Maxim., *Arisaema robustum*	Up to 60 cm	V-VI	Mesophyte	Moist soils of mixed valley forests, along the banks of rivers and streams
5	*Bergenia pacifica* (L.) BSP.	15-50 cm	V-VI	Meso-petrophyte	Rocks, scree, old moraines and rocky slopes, coniferous and deciduous forests
6	*Petasites fominii* Bordz.	15-50 cm	IV-V	Mesophyte	Sand and pebbles along rivers
7	*Calla palustris* L.	10-25 cm	V-VI	Hygrophyte	Water and moist habitats with rich inorganic nutrition: swamps, lakes, streams, shallow waters
8	*Eranthis stellata* Maxim.	Up to 20 cm	III-IV	Mesophyte	Cedar-broad-leaved and mixed forests, edges
9	*Anemonoides amurensis* (Korsh.) Holu	25-30 cm	IV-V	Mesophyte	Cedar-broad-leaved forests,
No.	Species	Height	Life Form	Habitat Description	
-----	---	-----------	-----------	---	
10	*Epimedium koreanum* Nakai	40-60 cm	V	Mesophyte, riverine shrubs and stone birch forests	
11	*Iris uniflora* Pall. ex Link*	10-15 cm	V	Meso-petrophyte, dry stony and open grassy slopes, pine forests, white birch and oak sparse forests	
12	*Caltha palustris* L.	Up to 60 cm	V-VI	Hygrophyte, around springs and along rivers and streams, lakes, swamps and wetlands in forests and meadows	
13	*Asarum Sieboldii* Miq	10-15 cm	IV-V	Mesophyte, mixed coniferous-broad leaved forests, river valleys	
14	*Polygonatum odoratum* (Mill.) Druce	Up to 90 cm	V	Mesophyte, forest slopes, river valleys, screes	
15	*Polygonatum humile* var. *humillimum* (Nakai) *Y.N. Lee*	Up to 40 cm		Meso-petrophyte, dry stony slopes, pebbles, dry meadows, sandy soils	
16	*Polygonatum involucratum* (Franch. & Sav.) Maxim. *	5-50 cm		Mesophyte, mixed coniferous-broad leaved forests, slopes, edges	
17	*Hylomecon vernalis* = *H. Japonicum.*	40 cm	V	Mesophyte, forests, under a tree canopy	
18	*Lloydia triflora* (Ledeb.) Baker.	Up to 30 cm	V-VI	Mesophyte, edges, glades,	
No.	Species	Height	Environmental Conditions		
-----	---------------------------------	---------------	--------------------------		
19	*Allium ochotense* Prokh.*	Up to 70 cm	shrubby thickets in mixed forests in mixed forests, valleys of rivers and streams		
20	*Papaver amurense* (N. Busch) H. Chuang*	40-60 cm	Forests, edges, valleys of rivers and streams		
21	*Euphorbia komaroviana* Prokh.*	Up to 45 cm	River valleys, lake banks, dry stony slopes		
22	*Primula patens* (Turcz.) E.A. Busch*	Up too 40 cm	Slopes of hills covered with forest, sea shores		
23	*Pulsatilla dahurica* Fisch. ex DC.*	Up to 45 cm	Wet meadows, coastal shrubs in the flood-plain of rivers		
24	*Pulsatilla chinensis* (Bunge) Regel, Tent. Fl.-Ussur.	12 cm	Pebbles, stony and rocky slopes, dry meadows		
25	*Anemone cernua* Thunb.*	Up to 25 cm	Dry slopes		
26	*Fritillaria camschatensis* (L.) Ker Gawl.*	35-65 cm	Stony rock slopes, dry meadows		
27	*Symlocarpus renifolius* Schott ex Tzvel.	Up to 40 cm	Forest edges, forbs, wet meadows		
28	*Chrysosplenium pilosum* Maxim.	Up to 10 cm	Mixed forests, wet areas		

26 | *Fritillaria camschatensis* (L.) Ker Gawl.* | 35-65 cm | Forest edges, forbs, wet meadows |
27 | *Symlocarpus renifolius* Schott ex Tzvel. | Up to 40 cm | Mixed forests, wet areas |
28 | *Chrysosplenium pilosum* Maxim. | Up to 10 cm | River banks, wetlands in mixed deciduous forests |
No	Species	Height	Growth Period	Life Form	Habitat
29	Smilacina hirta Maxim.	Up to 40 cm	V	Mesophyte	Moist rich soils of forests, river banks and streams, swamps
30	Viola xanthopetala Nakai	15 cm	IV-V	Mesophyte	Mixed and deciduous forests, dry and rocky slopes
31	Viola mandshurica W. Beck.	Up to 20 cm	V	Mesophyte	Sandy or stony soils, dry slopes
32	Corydalis buschii Nakai	Up to 25 cm	V	Mesophyte	Wet and temporary waterlogged valleys of ash trees and wet meadows
33	Corydalis repens Mandl & Muehld.	Up to 10 cm	IV-V		Cedar-broad-leaved and hardwood forests on rich humus soils
34	Corydalis ambigu Cham. et Schelecht	15-25 cm	IV-V		Forests, underbrushes river and stream banks, slopes along the sea coast

Forming associations of plants that are close to environmental requirements and preserving decorative effect not only for three months, during flowering, and also until late autumn, will increase the species diversity of plants in parks, the aesthetics of some areas, especially shaded because some of them, after flowering and growing, form a dense blanket of leaves with nuances of color, texture, shape. More-layered community will be more stable than single plantings.

About 20 species of early-flowering perennials can be used as groundcover plants under conditions of Primorsky Krai, using layering when forming plantings (table 2).
Table 2. Groundcover plans for enriching the biodiversity of herbaceous plants in parks.

Ranking in the association	Names of species
First row, shortgrowing	Common moschatel, large-sepal barrenwort, blunt-leaved sandwort, naked mitrewort, Asiatic liverleaf, Manchurian rue anemone, hairy golden saxifrage, Sakhalin violet, creeping corydalis, ambiguous corydalis
Middle row	Truncate-leaflet sorrel, common woodsorrel, Siebold's wild ginger, Japanese poppy, Okhotian onion
Back row, tall grass	Shaggy Solomon’s seal, blue cohosh, Komarov’s trillium, Radde’s false rue anemone

To frame the paths in purpose of preventing the trampling of the herb layer in the park zone, we also suggest using a multilayered mixborder of native decorative perennials (table 3).

Table 3. Associations of early flowering ornamental perennials for mixborders in parks.

Ranking in the association	Names of species
First row, shortgrowing	Amur Adonis, Asian twin flower, hollow primrose, spreading primrose, Asiatic liverleaf
Middle row	Uda anemone, aromatic Solomon's seal, Asian lily-of-the-valley, may lily, amphi-Pacific two-leaf Solomon’s seal, s parse corydalis
Back row, tall grass	Japanese chloranthus, common brachybotrys, nettle-leaved Meehan’s mint, Amur Jack-in-the-pulpit, peninsular Jack-in-the-pulpit, large-sepal primrose, Kamchatka fritillary

Large plants such as Caulophyllum robustum, Arisaema, and Symlocarpus can be used to design mixborders or as solitaires.

Due to the decorative nature of leaves, some plants remain quite attractive even after flowering. The size of plants is also very important when forming a mixborder. Tall plants can be perfectly combined with short ones. We will consider options for grouping early-flowering herbaceous perennials native to the flora of Primorsky Krai below.

Several groups of perennials are distinguished by height:
- very tall plants - more than 2 m (there are no early-flowering plants in Primorsky Krai);
- tall – from 1 to 2 m (Thalictrum, Actaea acuminata, Polygonatum odoratum, Caulophyllum robustum), such plants are usually planted as solitaires or along paths in mixborders;
- medium-grown - from 0.5 to 1 m (Aquilegia parviflora, Petasites tatewakianus, Aruncus parvulus, Epimedium koreanum, Brachybotrys paridiformis Maxim. ex Olivier, Papaver amurense), these plants are usually used for forming flower beds, color spots on the background of other perennials to create emphasis;
- shortgrowing – from 0.25 to 0.5 m (Bergenia, Chloranthus japonicus, Polygonatum), they are usually used for the design of flower beds, slides, trunk circles;
- dwarf - no more than 0.25 m (Waldsteinia, Caltha, Primula, Adoxa, Gentiana zollingeri, Gagea nakaiana), such plants can be used as groundcover, to create a decorative beautiful-blooming spring lawn.

To enrich the biodiversity of plants in the shaded corners of parks, on the Northern side of buildings, we suggest using such shade-tolerating plants as: Gagea lutea and Lloydia triflora, Chrysosplenium pilosum, Corydalis repens and C. Yanhusuo - ephemerals appear in the early spring and form a bright carpet for a short time. Adoxa moschatellina preserves green stems and leaves for 2-3 months, until mid-summer. Waldsteina ternata, Eranthis stellata and Anemonoides amurenensis, A. extremorientalis, A. reflexa, A. raddeana, A. udensis bloom until mid-May forming groups of plants.
under the canopy of trees. Actaea acuminata vegetates on shady or semi-shady areas until the beginning of October. Chloranthus japonicus, Asarum sieboldii are planted in mixborders as background plants. Polygonatum, Convallaria, Smilacina grow well on fertile soils in the shade (table 4).

Table 4. Associations of early-flowering herbaceous perennials for shaded areas of parks.

Ranking in the associations	Names of species
First row, shortgrowing	Maximowicz's barren strawberry, stellate springflower, Nakai’s star-of-Bethlehem, Amur Adonis, three-flowered alpilily, Franchet’s buttercup, Asiatic liverleaf
Middle row	Glabrate arsenyevia, petaloid-filament meadow-rue, Amur anemone, Far East anemone, Japanese poppy
Back row, tall grass	Asiatic baneberry, robust Jack-in-the-pulpit, shaggy Solomon’s seal, blue cohosh

To create picturesque small glades Fragaria orientalis, Potentilla fragarioides, Ranunculus franchetii, Mochringia lateriflora, Pulsatilla, Viola can be used on dry areas (table 5).

Table 5. Community composition of early-flowering herbaceous perennials for dry slopes.

Ranking in the associations	Names of species
First row, shortgrowing	Amur Adonis, Far East strawberry, one-flowered iris, Chinese anemone, golden violet
Middle row	North Pacific strawberry cinquefoil, false scape groundsel, large-sepal primrose, Manchurian violet, hill violet
Back row, tall grass	Japanese gerbera, showy corydalis

For stony gardens and mixborders Bergenia pacifica is used in combination with Juniperus Microbiota which preserves its decorative value all seasons, even under snow. Aquilegia parviflora, Gentiana zollingeri, Papaver amurense, Pulsatilla chinensis and R. Corydalis species bloom at different times (table 6).

Table 6. Associations of early-flowering perennial herbaceous plants for rocky hills and alpine scree gardens.

Ranking in the associations	Names of species
First row, shortgrowing	Pacific bergenia, Zollinger's gentian, Asiatic liverleaf, golden violet, variegated violet, Pacific violet
Middle row	Small-flowered columbine, dwarf goatsbeard, one-flowered iris, rock primrose, Daurhian pasqueflower, nodding pasqueflower
Back row, tall grass	Dentate dentostemon, Amur poppy, showy corydalis

To frame water bodies and current of water you can use Petasites tatewakianus, Caltha palustris and C. silvestris, Oxalis, Chrysosplenium, Corydalis buschii, as emergent plants - Calla palustris, Menyanthes trifoliata, in May they form original flowers with dense inflorescences (table 7).
Table 7. Community of early-flowering perennial herbaceous plants for moistened lower areas, framing streams and water bodies.

Ranking in the associations	Names of species
Emergent plants	Marsh calla, water shamrock
Edges of water bodies	Cowslip, forest marsh marigold, long-beaked sedge,
	Busch’s corydalis
Moisty lowlands	Tatewaki’s coltsfoot, Komarov’s arisaema

Thus, the proposed associations of early-flowering plants in Primorsky Krai allow will allow creating sustainable artificial communities when greening urbanized territories. Such plants as Arsenjevia glabrata, Adonis amurensis, Semiaquilegia manshurica, Anemonoides raddeana are decorative in the first half of summer. It is better to plant ephemers and ephemeroids with summer-green species that begin their vegetative season later and preserve decorative qualities until autumn. Brachybotrys paridiformis, Thalictrum filamentosum, Mitella nuda are decorative throughout the season and form a dense cover in shady places, as well as Meehania urticifolia which flowers splendidly.

4. Conclusion
One of the most effective ways to preserve native early-flowering plants is their introduction, as a result of which it is possible to recreate plant communities in the form of a model similar to the natural prototype in basic features. The analysis of the species biodiversity of herbaceous early-flowering native plants for Primorsky Krai allowed us to identify associations taking into account their morphological traits and color scheme, the time of flowering, the preservation of decorative qualities during the seasons, and to create models of communities for their use in greening urbanized landscapes.

5. References
[1] Alexandrova M S, Bulygin N E, Voroshilov V N and et al 1975 Method of phenological observations in the Botanical gardens of the USSR (Moscow) GBS AS USSR p 28
[2] Ashikhmina T Ya 2002 Environmental monitoring (Moscow) AGAR
[3] Bakalov A N 2015 The use of rare and endangered plant species of native flora in the creation of artificial plant communities in the Botanical gardens of Krasnodar Krai (Electronic Materials) p 202
[4] Bezdeleva T A and Bezdelev A B 2002 Models of shoot formation and life forms of violets in the Ussuri reserve Introduction centers of the Russian Far East: research results (Vladivostok, Dalnauka) pp 9-16
[5] Bezdeleva T A and Bezdelev A B 2002 Ontomorphogenesis of the life form Viola selkirkii (Violaceae) Introduction centers of the Russian Far East: research results (Vladivostok, Dalnauka) pp 9-16
[6] Bezdelev A B and Bezdeleva T A 2006 Life forms of seed plants in the Russian Far East (Vladivostok, Dalnauka) p 296
[7] Budantsev A L and Lesiovskaya E E 2001 Wild useful plants of Russia (St. Petersburg) SPKHFA p 663
[8] Budantsev A L 2009 Plant resources of Russia: wild flowering plants, their component composition and biological activity 2 (St. Petersburg) KMK p 513
[9] Volodko I K, Lunina M N, Zavadskaya L V, Borodin G S, Gaishun V V, Ryzhenkova Yu I, Dyachenko O I, Belousova N L and Svitkovskaya O I 2008 Decorative perennials: results of introduction and prospects for use in the national economy (Minsk) Belarussian science p 2014
[10] Voronkova N M, Nesterova S V and Kholina A B 1995 To the biology of seed germination of some rare and endangered species in Primorye Proc.Sci. Conf. on Biological diversity Introduction of plants (St. Petersburg) pp 199-200
[11] Voronkova N M, Nesterova S V and Zhuravlev Yu N 2000 Propagation of rare plant species in Primorsky Krai (Vladivostok, Dalnauka) p 145
[12] Golovan E V 2010 Prospects for the use of rare plants in block green belt Proceedings of the Institute of bioresources and applied ecology 9 (Orenburg) pp 31-34
[13] Golovan E V 2015 Resources of decorative plants for landscaping of local territories (on the example of Vladivostok) (Vladivostok) p 24
[14] Budantsev A L and Lesiovskaya E E 2001 Wild useful plants of Russia (St. Petersburg) SPKHFA p 663
[15] Elisafenko T V 2013 Some features of the biology in seed germination of species of the genus Viola L. at introduction Modern botany in Russia: Proc. XIII WBO Congress and Conf. on Scientific bases of protection and rational use of vegetation cover in the Volga basin Tolyatti Cassandra pp 132-134
[16] Zaitsev G N 1978 Phenology of herbaceous perennials (Moscow) Nauka p 149
[17] Zorikova V T 1983 Rare plants in the landscaping of Primorye towns Constructive landscape science (some questions of theory and methodology) (Vladivostok) pp 159-172
[18] Kerimova N A 2011 The use of natural plant communities of the North-West in Russia for greening public buildings as a way to increase the sustainability of the environment and environmental education of the population. Education through life: continuing education for sustainable development (Electronic Materials 9)
[19] Kovtonyuk N K 2015 Taxonomic aspects of medicinal use of primroses (Primula, Primulaceae) Proc. Int. Sci. Conf. on Medicinal plants: fundamental and applied problems (Novosibirsk State Agrarian University) (Novosibirsk) SAU Zoototy Kolos pp 21-24
[20] Koldaeva M N, Dudkin R V and Lobanova T E 2003 Stony gardens Landscaping of school grounds (Vladivostok) BSI FEB RAS pp 51-77
[21] Koldaeva M N and Beresnev M V 2013 Prospects for greening coastal and marine stony zones Proc.Mun. Sci. Pract.Conf. on Problems of greening settlement (Vladivostok) Vladivostok Maritime State University pp 82-56
[22] Koldaeva M N, Nesterova S V and Pshennikova L M 2013 100 moments of spring (Vladivostok Maritime State University) p 254
[23] Kopeva A V, Khrapko O V and Nebaykin V D 2003 Problems of gardening Far Eastern towns Proc.Int.Conf. on Landscape design of the urban environment and garden and park architecture (St. Petersburg) pp 46-47
[24] The Red Book of Primorsky Krai: Plants. Rare and endangered species of plants and fungi 2008 (Vladivostok) AVK Apelsin p 688
[25] Bogolyubov A S 1996 Handbook on methods of geobotanical research (Moscow) Ecosystem p 21
[26] Nebaykin V D 1991 Green accompanying plants of a summer resident (Khabarovsky) p 224
[27] Environmental situation in Primorsky Krai Analytical note 2020 Primorskstat p 44
[28] Belousova N M and Irzhevskaya M G 2020 Early flowering plants in Primorsky Krai: Handbook on the educational and research work for the creation of the final individual project (Vladivostok) SAU CVE PK IRD p 68
[29] Primorsky Krai of Russia (Electronic Materials)
[30] Skripka M A 1960 Wild perennial ornamental herbaceous plants of the South in the Far East for green construction (Vladivostok) p 36
[31] Skripka M A, Vasilyuk V K and Shchebrova M A 1964 Wood-shrub species recommended landscaping rocky areas of the hill slopes in Vladivostok Nature Protection in the Far East 2 (Vladivostok) pp 75-89
[32] Smirnova O V and Kagarlitskaya T N 1972 Two types of life cycle Viola mirabilis L. Botanical journal 57 5 pp 481–492
[33] Smirnova O V, Zagolnova L B and Ermakova I M 1976 Coenopopulations of plants (basic concepts and structure) (Moscow) p 217
[34] Sobolevskaya K A 1975 Introduction of plants as a way to preserve and reproduce useful species of natural flora *Bulletin GBS* 85 pp 29-34
[35] Starodubtsev V N 1980 Growth and development of some Far Eastern representatives of the genus Viola Rhythms of seasonal plant development in Primorye (Vladivostok) *FSC AS* pp 58-71
[36] Trulevich N V 1991 Ecological and phytocenotic fundamentals of plant introduction (Moscow) *Nauka* p 213
[37] Khrapko O V and Golovan E V 2010 Varieties of plants for adjacent territories Proc. Sci. Pract. Conf. on Urboecosystems: problems and prospects of development 5 *Ishim IGPI* pp 117-118
[38] Schreter A I 1975 Medicinal flora of the Soviet Far East (Moscow) *Medicine* p 328
[39] Havran J C, Sytsma K J and Ballard H E Jr. 2009 Evolutionary relationships, interisland biogeography, and molecular evolution in the Hawaiian violets (Viola: Violaceae) *Am. J. Bot.* 96(11) pp 2087–99
[40] Kovtonyuk N, Han I and Gatilova E 2018 Digitization of the herbarium specimens of higher vascular plants in the Central Siberian Botanical Garden *Skvortsovia* 4(3) pp 100-111