The measurements of the CMB temperature in diffuse interstellar medium of the Milky-Way and high redshift galaxies based on excitation of C\textsubscript{i} fine-structure and H\textsubscript{2} rotational levels

V V Klimenko1 and A V Ivanchik1

1 Ioffe Institute, 26 Polytekhnicheskaya st., Saint Petersburg, 194021, Russia
E-mail: slava.klimenko@gmail.com

Abstract. Evolution of the cosmic microwave background (CMB) temperature with redshift $T_{\text{CMB}} = T_{\text{CMB}}^0 \times (1 + z)$ is predicted by the standard ΛCDM cosmological model and has been confirmed by measurements of the Sunyaev-Zel’dovich effect in Plank data (at $z \leq 1$) and excitation of CO rotational levels in quasar spectra (at $1.7 \leq z \leq 2.7$). Excitation of the fine-structure levels of neutral carbon (C\textsubscript{i}) is also sensitive to the temperature of the CMB radiation. However collisions and UV pumping lead to a significant degeneracy of the fitting parameters, since poor data on physical conditions. We found that a joint fit to excitation of low H\textsubscript{2} rotational and C\textsubscript{i} fine-structure levels can break this degeneracy and provide a tighter constraints on the T_{CMB}. We present estimates of the T_{CMB} derived from excitation of C\textsubscript{i} fine-structure levels in the Milky Way clouds and high redshift absorption systems.

1. Introduction

Temperature of the Cosmic Microwave Background (CMB) has been very precisely measured in Solar system with the space observatories experiments: Planck, WMAP and COBE/FIRAS, $T_{\text{CMB}}^0 = 2.72 \pm 0.03$ K \cite{1}. At high redshift it can be measured indirectly, and in last two decades there were many experiments aimed to estimate the CMB temperature in the early Universe. There are two different techniques: (i) at low redshift (up to $z \leq 1$) - the analysis of the thermal Sunyaev-Zel’dovich (SZ) effect towards galaxy clusters \cite{2}, (ii) at high redshift ($z > 1.7$) - the analysis of excitation of rotational levels of molecules (CO, \cite{3,4}) and fine-structure levels of C\textsubscript{i} and C\textsubscript{II} \cite{5,6}. It was found that the CMB temperature increases with an increase of redshift as $T_{\text{CMB}} = T_{\text{CMB}}^0 \times (1 + z)^{1-\beta}$ and the parameter β was constrained by $\beta = 0.016 \pm 0.012$ \cite{2}.

The estimate of CMB temperature with the C\textsubscript{i} excitation usually has a larger systematic uncertainty than ones with the CO. This induced by additional mechanism of excitation of fine-structure levels by collisions and UV pumping, and poor data on physical parameters of the interstellar medium (ISM) (the number density, kinetic temperature and intensity of UV field). In most cases estimates of the T_{CMB} based on the C\textsubscript{i} excitation give only upper limits (see references in \cite{5}) or point estimates, e.g. \cite{7,8}. Therefore C\textsubscript{i} fine-structure excitation usually used to probe physical conditions, assuming the $T_{\text{CMB}}(z)$ is known. Recently it was found that a joint fit to excitation of fine-structure levels C\textsubscript{i} and rotational levels of H\textsubscript{2} allows one to significantly tighter constraint the UV intensity and number density \cite{9}. Since
H$_2$ rotational excitation does not depend on the CMB temperature, we can use constraint on physical conditions based on the excitation of H$_2$ levels as a proxy distribution for estimate of the CMB temperature with the C1.

In this paper we present a systematic estimate of the CMB temperature in the cold ISM of local and high redshift galaxies based on a joint analysis of excitation of H$_2$ rotational and C1 the fine-structure levels. In Sect. 2 we describe the method. The samples of known high C1/H$_2$ absorption systems are compiled in Sect. 3. In Sect. 4 we present our results.

2. Method

The neutral carbon and molecular hydrogen are known to be a good tracer of the cold diffuse phase of the ISM [10]. Observationally, C1 is found to be tightly linked with H$_2$ [11], i.e. C1/CII transition occurs mostly in the regions where H$_2$ is the dominant form of hydrogen. This may be caused by enhanced absorption of C1 ionized photons (IP(C1)=11.26 eV) by H$_2$ in transitions of Lyman and Werner bands, as well as an increase of the number density (or thermal pressure) in regions, where H$_2$ formed. Therefore a joint analysis of C1 and H$_2$ excitation is likely probe the same physical region.

The determination of the physical condition of the cold diffuse ISM with the population of H$_2$ levels usually requires the computational expensive modelling of the cold ISM including detailed radiative transfer in resonant H$_2$ lines [12, 13], which are typically in optically thick regime. However, for saturated H$_2$ absorption systems, with log N(H$_2$) > 18, the levels of J=0,1,2 are predominantly thermalized and their excitation is typically close to the thermal temperature [14], which is set by the thermal balance, itself being a function of the density and intensity of the UV field. This makes population of rotational levels of H$_2$ a promising tool for estimation of physical parameters in the diffuse ISM [9].

We used the PDR Meudon code [14], which performs a complete calculation of the radiative transfer of UV radiation in the UV lines of H$_2$ in combination with a solution of the thermal balance and chemistry. We calculated grids of constant-density model, that uniformly cover the space of three main physical parameters - the metallicity, hydrogen density and intensity of UV field. For certain absorption system we choose appropriate I_{UV}−n_H grid with metallicity closest to the observed one. We found that the lower rotational levels of H$_2$ J=0, 1, 2 in saturated systems usually corresponds to the kinetic temperature in the cloud, and therefore obtained constraint in I_{UV}−n_H plane reflects the excitation temperature T_{0-2} of H$_2$. In the reasonable range of number densities corresponded to the cold diffuse medium (n_H ∼ 2 – 3) this translates in almost linear dependence between I_{UV} and n_H. This dependence is usually orthogonal to the dependence obtained with the C1fine-structure excitation.

Here we briefly outline the assumptions used to analyse the C1 excitation. We assumed a homogeneous medium, where C1 fine-structure levels are populated by the CMB photons, UV pumping and collisions. We assumed that UV lines, at which excitation of C1 fine-structure levels takes place are usually optically thin, thus we neglected the self-shielding effect for a calculation of C1 UV pumping. The collisions occurs with H, H$_2$ and He, the collisional coefficients are taken from [15,16,17]. The number density, UV intensity, kinetic temperature and CMB temperature are the fitting parameters.

We used Monte Carlo Markov Chain calculations with an affine invariant sampler [18] to obtain the posterior probability density function (PDF) of fitting parameters. We use the likelihood for I_{UV}, n_H and T_{kin}, calculated with the analysis of H$_2$ rotational excitation as prior distributions. While we directly obtained the PDF, in the following we use the standard way of reporting the best-fitting parameters and uncertainties. The best-fitting value corresponds to the maximum posterior probability and the estimated uncertainties correspond to the 68.3 per cent confidence interval around this value (corresponding to formal 1σ uncertainty for Gaussian PDF).
Figure 1. An example of analysis of excitation of H$_2$ rotational and C$^+$ fine-structure levels in the H$_2$ absorption systems at $z = 3.287$ towards QSO J0816+1446. In the left panel green and purple contours represent constraints on the number density and UV intensity obtained with the analysis of excitation of fine-structure levels of C$^+$ and lower rotational levels of H$_2$ (J=0 to J=2), respectively. Other parameters of the fit were fixed to $T_{\text{CMB}} = 11.6$ K and $T_{\text{kin}} = 110$ K. Right panels: example of the 1d and 2d posterior distributions of the parameters log n_{H}, log I_{UV}, log T_{kin}, and log T_{CMB}. Dark and light blue areas in central panels respectively show the 30% and 68% confidence levels for 2D distributions. The diagonal panels indicate 1D marginalized distributions.

An example of the procedure is shown in Fig. 1 (for H$_2$-bearing DLAs towards quasar J0816+1446). We estimate the CMB temperature to $14.2^{+1.3}_{-4.0}$ K at $z = 3.287$, that is in agreement with the expected $T_{\text{CMB}}(z_{\text{abs}}) = 11.7$ K.

3. Data

We selected eight H$_2$-bearing damped Lyα systems (DLAs), where C$^+$ were also detected. This DLAs have a high column density of H$_2$ ($\log N$(H$_2$) >18), that ensures that the lower rotational levels of H$_2$ are self-shielded from the incident UV radiation and their populations well trace physical conditions. This sample, that we call S_{DLA}, is presented in Table 1.

Additionally, we prepared the sample of known C$^+$-bearing H$_2$ absorption systems in the Milky-Way for an additional test of our procedure. We want to be sure that obtained estimate of the T_{CMB} will correspond to the $T_{\text{CMB}}^0 = 2.72 \pm 0.03$ K [1]. Based on the results of [9] we selected four systems with low values of the number density and UV intensity. For such systems the excitation of C$^+$ fine-structure levels is more sensitive to the temperature by CMB photons. The sample, that we call S_{MW}, is presented in Table 2.

4. Results and discussion

The estimate of the T_{CMB} derived from the excitation of the C$^+$ fine-structure levels in the S_{DLA} and S_{MW} samples are presented in Fig. 2 together with other measurements obtained
Table 1. The list of H$_2$ absorption systems included in S^{DLA} sample. The columns are: (1) name of QSO, (2) the redshifts of DLA, (3) total C1 column density, (4) T_{01} excitation temperature of H$_2$, (5) hydrogen density, (6) intensity of incident UV radiation and (7) T_{CMB}.

Name	z_{abs}	log N_{CI} [cm$^{-2}$]	T_{01} [K]	log n_{H} [cm$^{-3}$]	log I_{UV} [Mathis unit]	T_{CMB} [K]	Ref
J0000+0048	2.525458	16.21±0.07	52±2	1.80±0.15	0.00±0.28	6.5±2.5	[20]
B0528−2505	2.811124	12.64±0.02	167±15	2.47±0.07	1.39±0.21	12.3±1.5	[21]
J0812+3208	2.626443	13.52±0.15	48±2	2.55±0.16	0.04±0.23	< 20	[22]
J0816+1446	3.28742	13.67±0.02	110±33	1.77±0.31	−0.03±0.39	14.4±1.0	[23]
J0843+0221	2.786582	13.76±0.05	123±37	1.70±0.14	1.90±0.13	< 12	[24]
J1232+0815	2.3377	14.07±0.05	66±12	2.03±0.17	0.02±0.31	6.8±2.4	[25]
J1513+0352	2.463622	15.02±0.05	82±7	1.95±0.16	0.60±0.33	15.1±1.4	[26]
J2140−0321	2.3399	13.57±0.03	78±12	2.86±0.23	1.78±0.25	< 20	[27]

Table 2. The list of H$_2$ absorption systems included in S^{MW} sample. The columns are the same as in Table 1, except the redshift column that is not provided for the Milky-Way.

Name	log N_{CI} [cm$^{-2}$]	T_{01} [K]	log n_{H} [cm$^{-3}$]	log I_{UV} [Mathis unit]	T_{CMB} [K]	Ref
HD27778	15.08±0.05	56±5	2.05±0.16	−0.26±0.39	2.0±1.2	[28,29]
HD40893	14.95±0.05	75±8	1.61±0.04	−0.68±0.36	1.0±0.9	[28,29]
HD185418	14.82±0.05	101±10	1.58±0.08	−0.47±0.33	1.6±1.3	[28,29]
HD192639	14.99±0.05	98±9	1.79±0.07	−0.28±0.33	2.1±2.0	[28,29]

Figure 2. The measurements of the temperature of the CMB as a function of redshift. Green circle and orange squares represent measurements derived from the excitation of C1 fine-structure for high redshift systems $2 < z < 3.5$ and local ones, respectively. Blue circles represent estimate of T_{CMB} obtained from analysis of the SZ effect [19], red circles – are the constraints from the analysis of CO molecular absorptions [3]. Dashed line represents the evolution of T_{CMB} expected in the standard ΛCDM model.
from excitation of CO molecules at high redshift [3] and analysis of the SZ effect for galaxy clusters [2,19].

We found an increase of the temperature of the CMB with an increase of the redshift of C1 systems. The measured values of the T_{CMB} derived from the excitation of the C1 fine-structure levels are consistent with the evolution, expected from the standard ΛCDM model. The statistical uncertainty of our estimate of T_{CMB} is typically higher than ones derived from the rotational excitation of CO molecules ($\Delta T \sim 1$ K). Nevertheless, in two out of nine systems (J0812+32081 and J0816+14460) we measured the T_{CMB} with an uncertainty about $\sim 2 - 3$ K. These systems have the lowest values of the number density and higher values of the redshift in our sample. The advantage of the survey of the T_{CMB} at high redshift with the C1 absorption systems may be statistics. The cross section of the diffuse C1 gas in the ISM is significantly higher than ones for translucent and dense molecular clouds.

Acknowledgments
This work is partially supported by RFBR 18-32-00701.

References
[1] Planck Collaboration et al 2016 Astron. Astroph. 594 A13
[2] Luzzi G, Genova-Santos R T, Martins C J A P, De Petris M, Lamagna L 2015 Journal of Cosmology and Astroparticle Physics 09 11
[3] Noterdaeme P, Petitjean P, Srianand R, Ledoux C and Lo'pez S 2011 Astron. and Astroph. 526 L7
[4] Sobolev A, Ivanchik A V, Varshalovich D A, Balashev S A 2015 J. Phys.: Conf. Ser. 661 012013
[5] Silva A I and Viegas S M 2002 MNRAS 329 135
[6] Srianand R, Noterdaeme P, Ledoux C and Petitjean P 2008 Astron. Astroph. 482 L39
[7] Songaila A, Cowie L L, Hogan C J and Rugers M 1994 Nature 371 43
[8] Ge J, Bechtold J and Black J H 1997 Astron. J. 474 67
[9] Klimenko V V and Balashev S A 2020 Preprint astro-ph.GA:2007.12231v2
[10] Srianand R, Petitjean P, Ledoux C, Ferland G and Shaw G 2005 MNRAS 362 549
[11] Ge J and Bechtold J 1999 Pub. Astron. Soc. Pacific 156 121
[12] Abgrall H, Le Bourlot J, Pineau des Forets G, Roueff E, Flower D R and Heck I 1992 Astron. Astroph. 253 525
[13] Balashev S A, Varshalovich D A, Ivanchik A V 2009 Astron. Lett. 35 150
[14] Le Petit F, Nehme C, Le Bourlot J and Roueff E 2006 Astroph. J. S. 164 506
[15] Schroder K, Staemmier V, Smith M D, Flower D R, Jaquet R 1991 J. Phys. B At. Mol. Opt. Phys. 24 2487
[16] Staemmier V, Flower D R 1991 J. Phys. B At. Mol. Opt. Phys. 24 2343
[17] Abrahamsson E, Klemm L, Dalgarno A 2007 Astroph. J. 654 1171
[18] Goodman J, Weare J 2010 Commun. Appl. Math. Comput. Sci. 5 65
[19] Luzzi G, Shimon M, Lamagna L, Pehfarli Y, De Petris M, Conte A, De Gregory S, Battistelli E S 2009 Astron. J. 705 1122
[20] Noterdaeme P et al 2017 Astron. Astroph. 597 82
[21] Klimenko V, Balashev S A, Ivanchik A V, Ledoux C, Noterdaeme P, Petitjean P, Srianand R, Varshalovich D 2015 MNRAS 448
[22] Balashev S A, Ivanchik A V, Varshalovich D A 2010 Astron. Lett. 36 761
[23] Guimaraes R, Noterdaeme P, Petitjean P, Ledoux C, Srianand R, Lopez S, Rahmani H 2012 Astroph. J 143 147
[24] Balashev S A et al 2017 MNRAS 470 2890
[25] Balashev S A, Petitjean P, Ivanchik A V, Ledoux C, Srianand R, Noterdaeme P, Varshalovich D A 2011 MNRAS 418 357
[26] Ranjan A et al. 2018 Astronomy and Astrophysics 618 A184
[27] Noterdaeme P, Srianand R, Rahmani H, Petitjean P, Páris I, Ledoux C, Gupta N, Lopez S 2015 Astron. Astroph. 577 A24
[28] Jenkins E B, Tripp T M 2011 Astron. J. 734 65
[29] Jensen A G, Snow T P, Sonneborn G, Rachford B L 2010 Astron. J. 711 1236