Triterpenoids and Sterols from the Leaves and Twigs of *Melia azedarach*

Wei-Ming Zhang · Jie-Qing Liu · Xing-Rong Peng · Luo-Sheng Wan · Zhi-Run Zhang · Zhong-Rong Li · Ming-Hua Qiu

Received: 22 March 2014 / Accepted: 18 April 2014 / Published online: 9 May 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Two new triterpenoids (1 and 2) and a new sterol (3), together with six known constituents (4–9), were isolated from the leaves and twigs of *Melia azedarach*. Their chemical structures were elucidated on the basis of spectroscopic analysis.

Keywords Meliaceae · *Melia azedarach* · Triterpenoids · Sterols

1 Introduction

Melia azedarach Linn. (Meliaceae) are widely distributed in southern districts of the Yellow River in China. The fruits and bark are commonly used as famous Traditional Chinese Medicine for acesodyne and disinsection [1]. This species has been reported to contain triterpenoids, steroids, limonoids, flavonoid glycosides, and simple phenolics [2], which have been found to possess some medicinal pharmacological effects, including analgesic, anticancer, antiviral, antimalarial, antibacterial, and antifeedant activities [3, 4].

As a well known natural pesticide, azadirachtin has attracted much attention [5]. Previous investigations of the bark and roots of *M. azedarach* have shown that it is a rich source of meliacarpinin type limonoids [6–10]. Until now, few chemical studies have analyzed its leaves and twigs, which prompted us to conduct this project. We identified three new compounds: a meliacarpinin type limonoid (1), an apotirucallane derivative (2), and a sterol (3), together with six known compounds (4–9) (Fig. 1). Herein, we report the details of the isolation, structural elucidation of compounds 1–3.

2 Results and Discussion

The air-dried powder of *M. azedarach* leaves and twigs was extracted with MeOH (30 L × 3) at room temperature three times to give the residue, which was then partitioned between CHCl₃ and water to get the CHCl₃ soluble fraction. Then, three new constituents together with six known compounds were acquired by a series of chromatographic methods. Herein, we described the isolation and structural elucidation of these new compounds.

Compound 1 was isolated as an amorphous powder. The molecular formula was determined as C₃₇H₅₉O₁₅ from the HREIMS ion peak at m/z 734.3159 [M]+ (calcd for 734.3150). Its IR spectrum showed the presence of hydroxyl (3456 cm⁻¹) and carbonyl (1739 cm⁻¹) groups. The 1D NMR data (Table 1) of 1 displayed characteristic signals of meliacarpinin skeleton with three methyls (δH...
1.75, s, 3H; δH 0.95, s, 3H; δH 1.66, s, 3H), two methoxyls (δH 3.29, s, 3H; δH 3.79, s, 3H), two acetyl (δH 1.90, s, 3H; δH 2.30, s, 3H), one 2-methylbutyryl (δH 2.59, m; δH 1.27, m; δH 2.02, m; δH 0.99, t, J = 7.4 Hz) and one hydroxyl (δH 4.34, s, 1H) groups, which had a close resemblance to 3-tigloyl-1,20-acetyl-11-methoxymeliacarpinin [8], except for the presence of one 2-methylbutyryl moiety in 1 instead of the tigloyl group at C-3 in 3-tigloyl-1,20-acetyl-11-methoxymeliacarpinin. Observed the HMBC correlations (Fig. 2) of of H-2 (δH 2.59, m), H-3 (δH 1.53, m), H-4 (δC 176.1), and 1H-1H COSY correlations of H-3/H-2/H-4/H-5 (δH, 0.99, t, J = 7.4 Hz) confirmed above deduction. The linkage of 2-methylbutyryl moiety to C-3 was determined by the HMBC correlations from H-3 (δH 4.96, br. t, J = 2.7 Hz) to C-1 (δC 71.2), C-5 (δC 35.2), and C-1′.

The absolute configuration of C-2′ was determined as S, supported by the [α]D value at +16.3 of (S)-2-methylbutyric acid derived from 1 by alkaline hydrolysis ([α]D = −14.3 for (R)-2-methylbutyric acid and [α]D = +19.3 for (S)-2-methylbutyric acid) [11, 12]. The ROESY correlation (Fig. 3) between H-3 and H-6β (δH 4.12, br. d, J = 9.2 Hz) indicated that the 2-methylbutyryloxy was α-oriented. Other relative configuration of 1 were identical with those of 3-tigloyl-1,20-acetyl-11-methoxymeliacarpinin on the basis of ROESY spectrum. Therefore, chemical structure of 1 was deduced as 3α-(2-methylbutyryl)-1,20-diacyl-11-methoxymeliacarpinin.

Compound 2 was obtained as an amorphous powder. Based on the positive HREIMS (m/z 572.4083, calcd for 572.4077), the molecular formula was defined as C35H56O6. The 1HNMR, 13C-DEPT (Table 1) spectra showed the presence of nine methyls (two of which belonged to a tigloyl), eight methylenes (one oxygenated), eight methines (four oxygenated), one trisubstituted double bond, and four quaternary carbon. These data suggested that 2 was the apo-tirucallol (euphol) skeleton [13]. Comparison of NMR data of 2 with those of compound 5 (CAS NO: 100234-51-6) revealed that they were similar [14], except that a senecioyl ester side chain at C-3 in compound 5 was replaced by a tigloyl group (δC 169.3 C-1′, 130.3 C-2′, 138.6 C-3′, 14.6 C-4′, and 12.4 C-5′ in 2 [8], which was confirmed by the HMBC correlations (Fig. 2) of H-3.
Table 1. ¹H NMR and ¹³C NMR spectroscopic data of 1 and 2

Pos	¹H NMR Data	¹³C NMR Data	Pos	¹H NMR Data	¹³C NMR Data
	¹H (J, Hz)	¹³C		¹H (J, Hz)	¹³C
1	4.26 (d, 9.3)	71.2 d	1a	1.27 (m)	35.0 t
2a	2.27 (m)	28.4 t	1b	1.43 (m)	43.5 d
2b	2.34 (m)		2a	1.60 (m)	37.7 s
3	4.96 (br. t, 2.7)	71.6 d	2b	1.99 (m)	80.1 d
4	4.33 (d, 12.7)	35.2 d	3	4.65 (t, 2.7)	25.6 t
5	4.12 (br. d, 9.2)	72.1 d	4	2.09 (m)	52.8 s
6	4.53 (br. d, 5.7)	84.0 d	5	1.71 (m)	41.9 d
8	52.3 s	6b	7	3.95 (s-like)	74.1 d
9	3.84 (s)	48.5 d	7a	1.55 (m)	36.3 t
10	50.1 s	8	8	1.93 (m)	47.9 s
11	107.7 s	9	13	1.53 (m)	17.9 t
12	170.5 s	10	14	1.71 (m)	37.4 d
15	4.34 (overlap)	82.3 d	16a	2.31 (ddd, 15.1, 7.3, 3.6)	162.7 s
16b	2.26 (m)	13	17	3.18 (d, 5.9)	48.7 d
18	1.75 (s)	26.2 q	18	5.49 (d, 2.4)	121.1 d
19a	4.12 (br. d, 9.2)	70.7 t	19b	2.12 (m)	35.9 t
19b	5.01 (overlap)	29.4 t	19b	2.31 (dd, 15.1, 7.3, 3.6)	53.8 d
20	92.2 s	17	21	5.98 (s)	106.7 d
21	106.7 d	18	22	5.59 (d, 3.0)	106.2 d
22	5.59 (d, 3.0)	19	23	6.65 (d, 3.0)	147.6 d
23	6.65 (d, 3.0)	20	28a	3.68 (d, 3.0)	76.7 t
28b	3.70 (br. s)	21b	29	0.95 (s)	18.2 q
30	1.66 (s)	18.5 q	30	1.56 (m)	53.8 d
14-OH	4.34 (s)	23	11-OH	3.29 (s)	52.4 q
12-OH	3.79 (s)	24	12-OH	3.79 (s)	53.0 q
1-CH₂CO	170.5 s	26	1-CH₂CO	171.2 s	27
20-CH₂CO	1.90 (s)	21.5 q	20-CH₂CO	2.30 (s)	29
1'	176.1 s	30	2'	2.59 (m)	41.0 d
3'	1.27 (d, 7.1)	16.7 q	3'	1.27 (d, 7.1)	16.7 q
4'a	1.53 (m)	26.3 t	3'	6.92 (qq, 7.1, 1.4)	138.6 d
4'b	2.02 (m)		4'	1.81 (dd, 7.1, 1.1)	14.6 q
5'	0.99 (t, 7.4)	11.8 q	5'	1.85 (s-like)	12.4 q

* Recorded in C₅D₅N; ¹H and ¹³C NMR recorded at 500, 125 MHz

* Recorded in CD₃OD; ¹H and ¹³C NMR recorded at 600, 150 MHz
The ROESY correlation (Fig. 3) between H-3 and Me-19β suggested that the tigloyl group at C-3 was α-oriented. The coupling constant between H-23 and H-24 (J = 9.0 Hz) suggested their anti-periplanar relation [14], and combination with the ROESY correlations of H-17/H-23, H-17/H-19β, H-20/Me-18α and H-24/Me-18α revealed that the configuration of C-23 and C-24 were both R*. Thus, the structure of 2 was established as 3α-tigloyl-17α-20S-21,24-epoxy-apotirucall-14-en-7α,23α,25-triol.

Compound 3 was isolated as an amorphous powder. The HREIMS of 3 gave a [M]+ ion peak at m/z 320.1985 (calcld for 320.1988), consistent with the molecular formula of C_{19}H_{28}O_{4}. Detailed analysis of its 1H and 13C-DEPT (Table 2) and 2D NMR data indicated that 3 and 2α,3α-dihydroxyandrostan-16-one 2β,19-hemiketal [15] had the same planar structure. The only difference between them was the configuration of substituent group at C-3. Comparison its 1H NMR data with that of epi-isomer showed that the coupling constants of H-3 (δH 4.11, dd, J = 10.3, 6.0 Hz) and the chemical shifts for H-1α (δH 1.38, d, J = 11.3 Hz) and H-1β (δH 2.54, d, J = 11.3 Hz) were obviously different from those of 2α,3α-dihydroxyandrostan-16-one 2β,19-hemiketa. But the aforementioned data was familiar with 2α,3β-dihydroxypregnan-16-one 2β,19-hemiketals [10], which implied that the H-3 of 3 was α-

Table 2 1H NMR and 13C NMR spectroscopic data of 3

Pos	δH (J, Hz)	δC	Pos	δH (J, Hz)	δC				
1a	1.38 (d, 11.3)	44.3 t	11a	1.34 (m)	21.5 t				
1b	2.54 (d, 11.3)	11b	1.58 (m)	12a	1.20 (m)	38.2 t			
2	4.11 (dd, 10.3, 6.0)	74.7 d	12b	1.59 (m)	1.16 (m)	29.8 t	15b	2.14 (dd, 17.9, 7.5)	16
4a	1.73 (m)	39.1 t	13	39.2 s	14				
4b	2.19 (m)	1.24 (m)	51.7 d	1.38 (overlap)	43.8 d				
5	1.38 (overlap)	15a	1.84 (m)	39.7 t					
6a	1.16 (m)	29.8 t	15b	2.14 (dd, 17.9, 7.5)	16				
6b	1.46 (m)	16	217.5 s	7a	0.79 (overlap)	32.3 t	17a	1.93 (d, 16.6)	56.2 t
7b	1.37 (overlap)	17b	2.06 (d, 16.6)	8	0.80 (overlap)	36.8 d			
8	1.05 (m)	46.4 d	19a	3.86 (d, 8.1)	67.6 t				
10	48.2 s	19b	4.08 (d, 8.1)						

Recorded in CD_{3}D; 1H and 13C NMR recorded at 600, 150 MHz

(δH 4.65, t, J = 2.7 Hz), H-3′ (δH 6.92, qq, J = 7.1, 1.4 Hz), and H-5′ (δH 1.85, s-like) with C-1′, and of H-4′ (δH 1.81, dd, J = 7.1, 1.1 Hz) with C-2′, together with the 1H-1H COSY correlations of H-3′/H-4′.

Fig. 2 Selected 1H-1H COSY () and HMBC () correlations of 1–3

Fig. 3 Selected ROESY () correlations of 1–3

© Springer
oriented. This conclusion further confirmed by the cross peak between H-3 and H-5 (δ H 1.38, overlap) in the ROESY spectrum (Fig. 3). So the hydroxyl group at C-3 was β-configuration. Consequently, the chemical structure of 3 was elucidated as 2x,3β-dihydroxyandrostan-16-one 2β,19-hemiketal.

Six known constituents: 1-cinnamoyl-3-acetyl-11-methoxymeliacarpinin (4) [8], 3-tigloyl-1,20-diacyetyl-11-methoxymeliacarpinin (5) [8], 3x,23R,25-trihydroxytriter-7-en-24-one (6) [16], and 2x,3x,16β-trihydroxy-5x-pregnane 20R-methacrylate (7) [17], 6-de(acyetoxy)-7-deacetylchisocheton compound E (8) [18]. Toonapubesin C (9) [19], were identified by comparison of their spectroscopic data with those reported in the literature.

3 Experimental

3.1 General Experimental Procedures

Optical rotations were measured with a Horiba SEPA-300 polarimeter. UV spectra were detected on a Shimadzu UV-2401A spectrophotometer. IR spectra were measured on a Bruker Tensor-27 infrared spectrophotometer with KBr pellets. ESIMS analysis were recorded on an API QSTAR Pulsar I spectrometer. EIMS and HREIMS were performed on a Waters Autospec Premier P776 mass spectrometer. 1D and 2D NMR spectra were recorded on Bruker DRX-500 and Bruker Avance III-600 spectrometers with TMS as internal standard. Semi-preparative HPLC studies were carried out on an Agilent 1100 liquid chromatograph with a Zorbax SB-C18 (9.4 mm × 25 cm) column. Column chromatography was performed with silica gel (200–300 mesh, Qingdao Marine Chemical, Inc.), Sephadex LH-20 (20–150 μm, Pharmacia), and Lichroprep RP-18 (40–63 μm, Merck). Fractions were monitored by TLC, and spots were visualized by heating the silica gel plates sprayed with 10 % H2SO4 in EtOH.

3.2 Plant Material

The leaves and twigs of *M. azedarach* were collected from Kunming, Yunnan Province, China. A voucher sample (NO: 2011-05-07) has been deposited in the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences.

3.3 Extraction and Isolation

The air-dried and powdered leaves and twigs of *M. azedarach* (10 kg) were extracted with MeOH (30 L × 3) at room temperature. Evaporation of the solvent under reduced pressure provide a dark residue (700 g), which was suspended in water and then partitioned with CHCl3 and n-BuOH, successively, to yield CHCl3 fraction (120 g), n-BuOH fraction (156 g). The CHCl3 extract was chromatographed by silica gel column eluted with CHCl3-MeOH as a gradient (100:1, 50:1, 20:1, 5:1) to afford four fractions. The CHCl3-MeOH (100:1) portion was evaporated to obtain a residue (20 g), which was subjected to silica gel chromatograph column with petroleum ether-EtOAc (10:1, 6:1, 3:1, 1:1) as elution, to give four fractions (A, B, C, and D). Fraction B (5 g) was further subjected to RP-18 chromatograph column, eluting with MeOH-H2O (40:60, 60:40, 80:20, and 100:0) to afford five fractions: B1–B5. Fraction B4 was then purified by HPLC (70 % CH3CN aq.; 2.0 mL/min; 210 nm; Zorbax SB-C18, 9.4 mm × 25 cm) to give compounds 1 (4 mg), 4 (2 mg) and 5 (3 mg). In the same way, 2 (4 mg), 6 (5 mg) and 7 (mg) were isolated from fraction B3. Fraction B2 was subjected to silica gel chromatograph column with petroleum ether-EtOAc (8:1, 5:1, 3:1, 1:1; and 0:1) as elution, to give five subfractions (E, F, G, and H). Subfraction F was further separated and purified by silica gel chromatograph column with CHCl3-MeOH (50:1, 20:1, 5:1, and 1:1) as elution, to give four fractions. E1–E4, fraction E2 was successively subjected to Sephadex LH-20 (MeOH) and HPLC (80 % CH3CN aq.; 2.0 mL/min; 210 nm; Zorbax SB-C18, 9.4 mm × 25 cm), and compounds 3 (1.5 mg), 7 (3 mg) and 8 (6 mg) were obtained.

3.4 3x-(2-Methylbutyryl)-1,20-diacyetyl-11-methoxymeliacarpinin (1)

Amorphous powder; [α]D20 = −17.8 (c 0.08, MeOH); UV (MeOH) λmax (log ε) 204 (4.09) nm; IR (KBr) νmax 3456, 2953, 1739, 1706, 1618, 1438, 1376, 1252, 1160, 1131, 1061, and 949 cm−1; 1H NMR (500 MHz, C6D6) and 13C DEPT (125 MHz, C6D6) data, see Tables 1 and 2; positive ESIMS m/z 757 [M+Na]+; positive HREIMS m/z 734.3159 (calcd for C37H50O15 [M]+, 734.3150).

3.5 3x-Tigloyl-17x-20S-21,24-epoxy-apotirucall-14-en-7x,23x,25-triol (2)

Amorphous powder; [α]D20 = −28.9 (c 0.20, MeOH); UV (MeOH) λmax (log ε) 204 (3.80) nm; IR (KBr) νmax 3441, 2927, 2855, 1631, 1452, 1384, 1268, 1075 and 578 cm−1; 1H NMR (600 MHz, CD3OD) and 13C DEPT (150 MHz, CD3OD) data, see Tables 1 and 2; positive ESIMS m/z 595 [M+Na]+; positive HREIMS m/z 572.4083 (calcd for C35H52O15 [M]+, 572.4077).

3.6 2x,3β-Dihydroxyandrostan-16-one 2β,19-hemiketal (3)

Amorphous powder; [α]D20 = −48.0 (c 0.30, MeOH); UV (MeOH) λmax (log ε) 202 (3.56), 219 (3.51) nm; IR (KBr)
\(\nu_{\text{max}} \) 3464, 2924, 2874, 1720, 1187, 1130, 1044, and 993 cm\(^{-1}\); \(^1\)H NMR (600 MHz, C\(_5\)D\(_5\)N) and \(^13\)C DEPT (150 MHz, C\(_5\)D\(_5\)N) data, see Tables 1 and 2; positive ESIMS \(m/z \) 343 [M+Na]\(^+\); positive HREIMS \(m/z \) 320.1985 (calcd for C\(_{20}\)H\(_{28}\)O\(_5\) [M]\(^+\), 320.1988).

Acknowledgments This work was supported financially by Joint Fund of NSFC and NSFY (No.U1132604), Key Program of MOST of CHINA (Nos. 2007BAD32B03 and SB2007FY400), as well as Foundation of State Key Laboratory of Phytochemistry and Plant Resources in West China (P2010-ZZ14).

Conflict of interest The authors declare no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Editorial Committee of Flora of China, Chinese Academy of Science. In Flora of China, vol 43 (Science Press, Beijing, 1997), pp. 100–102
2. Z.S. Su, S.P. Yang, S. Zhang, L. Dong, J.M. Yue, Helv. Chim. Acta 94, 1515–1526 (2011)
3. S.B. Mahato, N.P. Sahu, G. Podder, Sci. Cult. 53, 29 (1987)
4. Vishnukanta, A.C. Rana, [Vishnukanta, 2008 #2350]
5. E.D. Morgan, Bioorg. Med. Chem. 17, 4096–4105 (2009)
6. M. Nakatani, R.C. Huang, H. Okamura, T. Iwagawa, Chem. Lett. 12, 2125–2128 (1993)
7. M. Nakatani, S. Arikawa, H. Okamura, T. Iwagawa, Heterocycles 38, 327–331 (1994)
8. K. Takeya, Z.S. Qiao, C. Hirobe, H. Itokawa, Phytochemistry 42, 709–712 (1996)
9. Q.G. Tan, X.N. Li, H. Chen, T. Feng, X.H. Cai, X.D. Luo, J. Nat. Prod. 73, 693–697 (2010)
10. F. Yoshiyasu, O. Mari, T. Hironobu, M. Hiroyuki, Chem. Pharm. Bull. 48, 301–303 (2000)
11. A.I. Meyers, G. Knaus, K. Kamata, J. Am. Chem. Soc. 96, 268–270 (1974)
12. B.B. Sylvia, B. George, M. George, J. Org. Chem. 32, 2641–2642 (1967)
13. X.D. Luo, S.H. Wu, D.G. Wu, Y.B. Ma, S.H. Qi, Tetrahedron 58, 6691–6695 (2002)
14. K. Mitsui, H. Saito, R. Yamamura, H. Fukaya, Y. Hitotsubayagi, K. Takeya, Chem. Pharm. Bull. 55, 1442–1447 (2007)
15. M.T. Pupo, P.C. Vieira, J.B. Fernandes, M.F.G.F. da Silva, E. Rodrigues Filho, Phytochemistry 45, 1495–1500 (1997)
16. M. Arisawa, A. Fujita, N. Morita, P.J. Cox, R.A. Howie, G.A. Cordell, Phytochemistry 26, 3301–3303 (1987)
17. M. Nakatani, H. Takao, I. Miura, T. Hase, Phytochemistry 24, 1945–1948 (1985)
18. J. Li, M.Y. Li, T. Satyanandamurty, J. Wu, Helv. Chim. Acta 94, 1651–1656 (2011)
19. J.R. Wang, H.L. Liu, T. Kurtan, A. Mandi, S. Antus, J. Li, H.Y. Zhang, Y.W. Guo, Org. Biomol. Chem. 9, 7685–7696 (2011)