Internal jugular phlebectasia: A systematic review

Jose A. Figueroa-Sanchez, Ana S. Ferrigno, Mario Benvenutti-Regato, Enrique Caro-Osorio, Hector R. Martinez

Institute of Neurology and Neurosurgery, Hospital Zambrano Hellion, San Pedro Garza García, N.L., México.

E-mail: Jose A. Figueroa-Sanchez - dr.figueroa@itesm.mx; Ana S. Ferrigno - ana.ferrigno@gmail.com; Mario Benvenutti-Regato - benvenuttincx@gmail.com; Enrique Caro-Osorio - ecaro@tec.mx; *Hector R. Martinez - hector.ram.martinez@gmail.com

INTRODUCTION

Internal jugular phlebectasia (IJP), a nontortuous dilatation of the internal jugular vein (IJV), is typically considered a benign anatomical variant of unknown etiology. Clinically, its most common presentation is as a soft and painless mass in the lateral neck, which transiently appears in periods of increased intrathoracic pressure, such as when performing a Valsalva maneuver. At the present time, IJP treatment is not well defined. Both a conservative approach and surgical removal are described in literature. Surgery is mostly reserved for cosmetic reasons or to prevent complications such as enlargement or thrombosis of the dilatation.

In literature, multiple terms have been applied to describe IJP such as venoma, venous cyst, venous aneurysm, and venous ectasia. It was first described in a case report by Harris on a 5-month-old infant with a right-sided neck mass. The infant died during the surgery to remove the mass, and the only finding considered to explain the symptoms was a blood-filled cyst. It was controversial whether the original lesion was, in fact, IJP.
IJP was published by Zuckschwerdt, in 1929, and the anomaly was further characterized by Gerwig, in 1952.[30] Since then, there have been multiple case reports of IJP.[37,69,82] To the best of our knowledge, however, no systematic review defining the most common presentation of IJP and treatment of this anomaly can be found in literature. The aim of this study was to describe the most common clinical presentation, method of diagnosis, and treatment of IJP in adult and pediatric patients based on published data.

METHODS

Following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines,[60] literature search for IJP was conducted in COCHRANE, PUBMED, EBSCOHOST, SCOPUS, OVID, and SCIELO databases up to October 11, 2018. As search terms, we used “phlebectasia” or its synonyms, “venous cyst,” “aneurysmal varix,” “venoma,” “venectasia,” “venous aneurysm,” and “venous ectasia” in the title and/or abstract, with the word “jugular” included in all fields, excluding articles that had in the title the words “external” or “anterior.” Only papers written in English or Spanish were considered for this review. The search was not limited by date of publication. This search strategy resulted in 211 unique articles. Titles and abstracts of the articles were screened. Potentially suitable studies for IJP were read in full by three independent reviewers. A total of 114 of the original articles were excluded. Defined variables (patient characteristics, clinical presentation, IJP characteristics, method of diagnosis, treatment, and outcome) were extracted independently by the reviewers and disagreements were solved by consensus. All the statistical analyses were performed using the statistical program MATLAB R2016a (Mathworks Inc.) the Chi-squared test was used for dichotomous variables and the Mann–Whitney U-test for quantitative variables, with a confidence interval of 95%. We considered \(P < 0.05 \) to be statistically significant.

RESULTS

Following PRISMA guidelines, a total of 97 articles were included in the analysis [Figure 1]. These articles covered a total of 247 patients with IJP, including both pediatric and adult patients [Supplemental Table 1]. In the analyzed papers, not all searched variables were described; therefore, the number of cases described for each variable could vary in the description and statistical analyses [Table 1].

We found that IJP predominantly affected the pediatric population, with 206 patients (83.4%) younger than 18 years and only 41 adult cases (\(P < 0.001 \)) reported in literature. The mean age of presentation was 47.8 years in adults (range: 17–74 years) and 6.4 years in pediatric patients (range: 6 weeks–15 years). The sex most affected was female in the adult group (61%) and male in the pediatric group (71%).

IJP was published by Zuckschwerdt, in 1929, and the anomaly was further characterized by Gerwig, in 1952.[30] Since then, there have been multiple case reports of IJP.[37,69,82] To the best of our knowledge, however, no systematic review defining the most common presentation of IJP and treatment of this anomaly can be found in literature. The aim of this study was to describe the most common clinical presentation, method of diagnosis, and treatment of IJP in adult and pediatric patients based on published data.

METHODS

Following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines,[60] literature search for IJP was conducted in COCHRANE, PUBMED, EBSCOHOST, SCOPUS, OVID, and SCIELO databases up to October 11, 2018. As search terms, we used “phlebectasia” or its synonyms, “venous cyst,” “aneurysmal varix,” “venoma,” “venectasia,” “venous aneurysm,” and “venous ectasia” in the title and/or abstract, with the word “jugular” included in all fields, excluding articles that had in the title the words “external” or “anterior.” Only papers written in English or Spanish were considered for this review. The search was not limited by date of publication. This search strategy resulted in 211 unique articles. Titles and abstracts of the articles were screened. Potentially suitable studies for IJP were read in full by three independent reviewers. A total of 114 of the original articles were excluded. Defined variables (patient characteristics, clinical presentation, IJP characteristics, method of diagnosis, treatment, and outcome) were extracted independently by the reviewers and disagreements were solved by consensus. All the statistical analyses were performed using the statistical program MATLAB R2016a (Mathworks Inc.) the Chi-squared test was used for dichotomous variables and the Mann–Whitney U-test for quantitative variables, with a confidence interval of 95%. We considered \(P < 0.05 \) to be statistically significant.

RESULTS

Following PRISMA guidelines, a total of 97 articles were included in the analysis [Figure 1]. These articles covered a total of 247 patients with IJP, including both pediatric and adult patients [Supplemental Table 1]. In the analyzed papers, not all searched variables were described; therefore, the number of cases described for each variable could vary in the description and statistical analyses [Table 1].

We found that IJP predominantly affected the pediatric population, with 206 patients (83.4%) younger than 18 years and only 41 adult cases (\(P < 0.001 \)) reported in literature. The mean age of presentation was 47.8 years in adults (range: 17–74 years) and 6.4 years in pediatric patients (range: 6 weeks–15 years). The sex most affected was female in the adult group (61%) and male in the pediatric group (71%).
In just 150 of 247 cases, the primary diagnostic study was reported. Ultrasound (US) was employed for 108 patients (72%) as the primary study, a percentage that was higher in the pediatric population compared with that in adult patients. A contrast-enhanced computed tomography (CECT) was performed on 22 patients (14.6%), venography on 8 patients (5.3%), angiography on 4 patients (2.7%), magnetic resonance imaging (MRI) on 3 patients (2%), xenography on 2 patients (1.3%), and cinefluorographic studies, plain X-ray, and scintigraphy 99mTc-fibrinogen on 1 patient each (0.7%). The most common secondary study was CECT in 25 cases, MRI in 13 cases, US in 7 cases, barium swallow in 4, and unenhanced CT in 1 (2%).

Secondary invasive studies were venography in 22 cases and angiography in 10 cases.

The treatment most frequently reported was a conservative approach in 85 patients (62%); however, the proportion of patients treated conservatively in the pediatric population was greater than that in the adult population. In the adult group for whom the treatment was described, no complications were found during conservative treatment, and complications from surgical resection were reported in 4 (11.4%) patients ($P < 0.001$): massive hemorrhage in 2 cases and paralysis of the left vocal cord and incomplete surgical resection in one case each. In the pediatric population, 102 patients had their treatment described. No complications were found during conservative treatment, and two (2%) patients had surgical complications ($P < 0.001$). The complications were subjective congestion of the left side of the head for 24 h after surgery and a postoperative transient increase in blood pressure. One patient treated conservatively died 14 months later due to Menkes disease complications.

DISCUSSION

IJP remains an infrequently diagnosed vascular anomaly. Although it is becoming increasingly recognized, partly due to improved diagnostic techniques,[44] medical guidelines have not yet been established. Clinical decisions for the diagnosis and treatment of this condition are based almost exclusively on personal experience. In this study, we analyzed clinical data gathered from literature on 247 patients with IJP. IJP is classically found unilaterally, although a few bilateral cases have been reported. In this review, bilateral IJP was only found in a few pediatric cases. IJP is most commonly found incidentally during a physical examination as a mass in the neck that increases with common efforts such as talking, coughing, or swallowing. Other symptoms include voice alteration, paralysis of the vocal cords, and/or dysphagia, all of which are caused by the proximity of the vagus nerve and other lower cranial nerves to the IJP.[44,63,82]

Multiple pathologies affecting the neck are considered to be differential diagnoses, especially laryngocele, branchial cyst, cystic hygroma, hemangioma, and paraganglioma.[6,7]
In this review, we found some cases with initial inaccurate diagnoses that varied depending on the age group. In the adult population, four patients had other causes of the neck mass including globus pharyngeus, an infectious process, aneurysm of the subclavian artery, and an ovoid-shaped neuroma. In the pediatric patients, the erroneous diagnoses included goiter, laryngoele, adenopathy, adenoidectomy, and aerocoele.

Although the etiology of IJP is not completely understood, some authors have suggested previous direct neck injuries or medical procedures such as central venous catheterization, positive-pressure ventilation, neck surgeries, or tumors.[11,26,63,88] In this review, no definitive association with these variables was found.

Histopathological changes in those cases treated with surgical resection include a thinning of the muscular and elastic layers; however, the great majority of cases showed no significant changes compared with the normal venous wall.[17,92] Several authors have found this abnormality in patients with neurofibromatosis type 1 and in Ehlers–Danlos syndrome.[18,39,49,67] In the present review, there was no significant association with these pathologies.

IJP most commonly presents as a unilateral right-sided anomaly.[91] In this review, the right-to-left ratio was 4:1. Although no clear etiology has been elucidated for IJP, multiple hypotheses have been formulated to explain the right-sided predominance.[71] LaMonte first proposed that, given the right innominate vein is in close contact with the right apical pleura, an increase in intrathoracic pressure would be transmitted to the right IJV and thus predispose an individual to unilateral phlebectasia. The left IJV, anatomically located more medially, does not receive such stress.[54] More recently, Paleri and Gopalakrishnan hypothesized that intrathoracic pressure could be easily transmitted to the right jugular bulb due to several anatomic factors including the following: (1) the fact that the right IJV valves, which are involved in preventing retrograde blood flow, are located more cephalad than their left-sided counterparts; (2) the larger diameter of the right IJV compared with the left side; (3) the direct continuity of the superior vena cava with the right brachiocephalic vein; (4) the higher number of valves in the left brachiocephalic vein in comparison with that of the right side; and (5) the higher number of competent valves in the right subclavian vein compared with that of the left side.[71] However, not all reported cases agree with the theory proposed by Paleri,[61] and more studies are needed to fully understand the side predominance of IJP.

The image study most frequently used for the diagnosis of IJP is US, with color Doppler as the study of choice to confirm the flow. This study continues to be useful because it is safe, feasible, sensitive, and of low cost. Other studies, such as MRI or CT, are usually helpful in complementing the diagnosis. Invasive studies such as angiography and venography are less commonly used, with only 10 (4%) and 22 (9%) cases, respectively, diagnosed by such methods.

Classically, IJP has been considered a benign entity; however, a serious possible complication resulting from abnormal vascular flow is thrombosis. In this review, the presentation of this complication was more frequent in adults, with 7 (17.1%) cases reported in literature, than in pediatric patients, with only 3 (1.5%) cases. Some authors describe Horner syndrome[46] as another complication. However, no significant association with that complication was found in this study.

Conservative treatment was most frequently reported for IJP in the pediatric population, given it is classically considered a benign vascular abnormality. In adults, surgical resection was selected in almost the same proportion as conservative treatment. Alternative treatments consisted of endovascular angioplasty, surgical wrapping, and endoscopic resection, but these were only performed on the pediatric population. In general, the clinical outcome in both groups was described as good, although the follow-up was not described in a standardized manner. Descriptions of surgical treatment revealed a complication rate of 6.9% in the pediatric population and 11.4% in the adult population. In the cases treated conservatively, no complications were reported in either group. In general, conservative treatment was a safer option than surgical treatment in both groups.

Table 2: Average IJP dimensions.

Affected side	Adult	Pediatric					
	Average	Maximum	Minimum	Average	Maximum	Minimum	
Right sided	Diameter	3.95 cm	5.1 cm	1.1 cm	3.35 cm	12 cm	1.1 cm
	Length	3.18 cm	7.0 cm	1.1 cm	3.43 cm	7.0 cm	1.0 cm
Left sided	Diameter	4.73 cm	10 cm	3.0 cm	3.59 cm	5.5 cm	2.0 cm
	Length	3.98 cm	6.9 cm	1.5 cm	3.96 cm	7.0 cm	2.8 cm

IJP: Internal jugular phlebectasia
CONCLUSIONS

Following PRISMA guidelines, we analyzed a total of 247 patients with IJP, including pediatric and adult patients. Due to the low incidence of this abnormality, there are not enough original prospective studies to perform a meta-analysis. In the analyzed papers, not all the studied variables were described, and the heterogeneity of the reports prevented the homologation of the variables. However, we conducted a systematic review, in which we compiled all the available literature at the present time including all reported cases in the English and Spanish literature. IJP is considered by most authors to be a benign abnormality, is most frequently found in children, and it affects predominantly the right IJV. The clinical outcome in most cases was benign regardless of the treatment, which was either conservative or surgical. Conservative treatment is preferred for children but not for adults. To the best of our knowledge, this is the largest review of IJP to date. Future prospective multicenter studies that study diagnostic and treatment options are necessary to be able to develop guidelines on approaching this vascular abnormality.

Acknowledgments

We thank the investigation group at Instituto de Neurología y Neurocirugía at Hospital Zambrano Hellion for their help in data recollection.

Financial support and sponsorship

None.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Al Dousary S. Internal jugular phlebectasia. Int J Pediatr Otorhinolaryngol 1997;38:273-80.
2. Aydoğan F, Taştan E, Aydin E, Kürkçüoğlu M, Demir S. Bilateral internal jugular vein phlebectasia. Ear Nose Throat J 2011;90:E1-3.
3. Baker JB, Ingraham CR, Fine GC, Iyer RS, Monroe EJ. Pediatric jugular vein aneurysm (phlebectasia): Report of two cases and review of the literature. Radiol Case Rep 2017;12:391-5.
4. Balik E, Erdener A, Taneli C, Mevsim A, Sayan A, Yüce G, et al. Jugular phlebectasia in children. Eur J Pediatr Surg 1993;3:46-7.
5. Bhattacharya D, Endrakanti M, Kumar R. Right internal jugular vein phlebectasia: A rare cause of neck swelling. Case Rep Pediatr 2017;2017:9278728.
6. Bindal SK, Vasisth GO, Chhibber P. Phlebectasia of internal jugular vein. J Surg Tech Case Rep 2012;4:103-5.
7. Bora MK. Internal jugular phlebectasia: Diagnosis by ultrasonography, doppler and contrast CT. J Clin Diagn Res 2013;7:1194-6.
8. Bosshardt TL, Honig MP. Congenital internal jugular venous aneurysm: Diagnosis and treatment. Mil Med 1996;161:246-7.
9. Bowdler DA, Singh SD. Internal jugular phlebectasia. Int J Pediatr Otorhinolaryngol 1986;12:165-71.
10. Calligaro KD, Ahmad S, Dandora R, Dougherty MJ, Savarese RP, Doerr KJ, et al. Venous aneurysms: Surgical indications and review of the literature. Surgery 1995;117:1-6.
11. Chakraborty S, Dey PK, Roy A, Bagchi NR, Sarkar D, Pal S, et al. Internal jugular vein phlebectasia presenting with hoarseness of voice. Case Rep Vasc Med 2013;2013:386961.
12. Chang YT, Lee JY, Wang JY, Chiou CS. Transaxillary subfascial endoscopic approach for internal jugular phlebectasia in a child. Head Neck 2010;32:806-11.
13. Chao HC, Wong KS, Lin SJ, Kong MS, Lin TY. Ultrasonographic diagnosis and color flow Doppler sonography of internal jugular venous ectasia in children. J Ultrasound Med 1999;18:411-6.
14. Chua E, Udom V, Huang DY. Internal jugular vein aneurysm in an adult: Diagnosis on non-invasive imaging. BMJ Case Rep 2018;2018:bcr-2017-223593.
15. Czyżowski J, Tomaszewski KA, Walocha JA. Jugular phlebectasia presenting as globus pharyngeus. Folia Morphol (Warsz) 2013;72:278-80.
16. Daley NC, Colliver EB. A case of vernet syndrome associated with internal jugular phlebectasia. PM R 2014;6:1163-5.
17. Danis RK. Isolated aneurysm of the internal jugular vein: A report of three cases. J Pediatr Surg 1982;17:130-1.
18. Delvecchio K, Moghul F, Patel B, Seman S. Surgical resection of rare internal jugular vein aneurysm in neurofibromatosis type 1. World J Clin Cases 2017;5:419-22.
19. Dhillon MK, Leong YP. Jugular venous aneurysm a rare cause of neck swelling. Singapore Med J 1991;32:177-8.
20. Eksioglu AS, Senel S, Cinar G, Karacan CD. Sonographic measurement criteria for the diagnosis of internal jugular phlebectasia in children. J Clin Ultrasound 2013;41:486-92.
21. El Fakiri MM, Hassan R, Aderdour L, Nouri H, Rochdi Y, Raji A, et al. Congenital internal jugular phlebectasia. Eur Ann Otorhinolaryngol Head Neck Dis 2011;128:324-6.
22. Erdem CZ, Erdem LO, Camuzcuoğlu I. Internal jugular phlebectasia: Usefulness of color Doppler ultrasonography in the diagnosis. J Trop Pediatr 2002;48:306-10.
23. Fan XD, Qiu WL, Tang YS. Internal jugular vein phlebectasia: Case report. J Oral Maxillofac Surg 2000;58:897-9.
24. Fazilah M, Jusna M, Munirah NN. Right internal jugular phlebectasia. Malays J Med Sci 2006;13:121.
25. Fernando TA, Perera DS. Internal jugular vein phlebectasia. Ceylon Med J 2002;47:30.
26. Fitoz S, Atasoy C, Yagmurlu A, Erden I, Akyar S. Gadolinium-enhanced three-dimensional MR angiography in jugular phlebectasia and aneurysm. Clin Imaging 2001;25:323-6.
27. Furukawa T, Yamada T, Mori Y, Shibakiri I, Fukakusa S, Tamaki M, et al. A case of aneurysm of the jugular and mediastinal veins radioisotopic blood pool study of venous aneurysm. Eur J Nucl Med 1984;9:196-8.
28. Garrow E, Kirschtein M, Som ML. Internal jugular phlebectasia: A case report and review of the literature. J Oral Maxillofac Surg 1990;48:306-10.
29. Gerek M, Akçam T, Umittalas D, Deveci S, Ozkaptan Y. Internal jugular phlebectasia surrounded by mature adipose

Surgical Neurology International • 2019 • 10(106) • 5
tissue. Otolaryngol Head Neck Surg 2003;128:761-3.
30. Gervig WH Jr. Internal jugular phlebectasia. Ann Surg 1952; 135:130-3.
31. Gilbert MG, Greenberg LA, Brown WT, Puranik S. Fusiform venous aneurysm of the neck in children: A report of four cases. J Pediatr Surg 1972;7:106-11.
32. Gordon DH, Rose JS, Kottmeier P, Levin DC. Jugular venous ectasia in children. A report of 3 cases and review of the literature. Radiology 1976;118:147-9.
33. Gorenstein A, Katz S, Rein A, Schiller M. Giant cystic hygroma associated with venous aneurysm. J Pediatr Surg 1992; 27:1504-6.
34. Grange DK, Kaler SG, Albers GM, Petterschak JA, Thorpe CM, DeMello DE, et. al. Severe bilateral panlobular emphysema and pulmonary arterial hypoplasia: Unusual manifestations of menkes disease. Am J Med Genet A 2005;139A:151-5.
35. Gundlach U, Unlü C, Wüst AF, Voorwinnie A. Unilateral jugular vein phlebectasia. Vasc Endovascular Surg 2009;43:193-4.
36. Gürpinar A, Kiriştioğlu I, Doğruyol H. Jugular phlebectasia. Eur J Pediatr Surg 1999;9:182-3.
37. Haney JC, Shortell CK, McCann RL, Lawson JH, Stirling MJ, Stone DH, et. al. Congenital jugular vein phlebectasia: A case report and review of the literature. Ann Vasc Surg 2008;22:681-3.
38. Harris R. Brief communications: Congenital venous cyst of the mediastinum. Ann Surg 1928;88:953-7.
39. Hiraki T, Higashi M, Goto Y, Kitazono I, Yokoyama S, Iuchi H, et. al. A rare case of internal jugular vein aneurysm with massive hemorrhage in neurofibromatosis type 1. Cardiovasc Pathol 2014;23:244-7.
40. Hopsu E, Tarkkanen J, Vento SI, Pitkäranta A. Acquired jugular vein phlebectasia. J Vasc Surg 2008;47:1337-8.
41. Hu X, Li J, Hu T, Jiang X. Congenital jugular vein phlebectasia. Hong Kong Med J 2000;6:431.
42. Huang CC, Chen HC. Images in vascular medicine. Internal jugular vein phlebectasia. Vasc Med 2013;18:372-3.
43. Hughes PL, Qureshi SA, Galloway RW. Jugular venous aneurysm in children. Br J Radiol 1988;61:1082-4.
44. Hung T, Campbell AL. Surgical repair of left internal jugular phlebectasia. J Vasc Surg 2008;47:1337-8.
45. Hussein A, Trowitzsch E. Jugular phlebectasia in children. Eur J Pediatr Surg 1996;5:67.
46. Inci S, Bertan V, Kanso T, Cila A. Horner’s syndrome due to internal jugular vein phlebectasia an unusual cause of neck swelling. Ann Trop Paediatr 1999;19:105-8.
47. Jeon CW, Choo MJ, Bae IH, Shin SO, Choi YS, Lee DW, et. al. Diagnostic criteria of internal jugular phlebectasia in Korean children. Yonsei Med J 1999;40:329-34.
48. Jianhong L, Xuewu J, Tingze H. Surgical treatment of jugular vein phlebectasia in children. J Pediatr Surg 2006;41:182-90.
49. Khashram M, Walker PJ. Internal jugular venous aneurysm. J Vasc Surg Venous Lymphat Disord 2013;3:94.
50. Krstačić A, Župetić I, Soldo SB, Jelavić MM, Krstačić G. Jugular phlebectasia in adult-an overlooked cause of cervical pain. Neurol Sci 2017;38:1703-4.
51. Kuo WR, Chien CC, Chai CY, Huang HR, Jan YS, Huang YC, et al. Internal jugular phlebectasia. Gaoxiong Yi Xue Ke Xue Za Zhi 1992;8:503-9.
52. Kwok KL, Lam HS, Ng DK. Unilateral right-sided internal jugular phlebectasia in asthmatic children. J Paediatr Child Health 2000;36:517-9.
53. LaMonte SJ, Walker EA, Moran WB. Internal jugular phlebectasia. A clinicoradiogenotypic diagnosis. Arch Otolaryngol 1976;102:706-8.
54. Liu X, Sun CZ, Zou H, Luo RZ. Jugular vein phlebectasia in paediatric patients with vocal fold nodules. Eur J Pediatr 2013;172:1085-8.
55. Lubiana-Neto JM, Mau M, Prati C. Internal jugular phlebectasia in children. Am J Otolaryngol 2005;26:172-4.
56. Malik V, Kumari A, Murthy T. Unusual case of focal neck swelling: Phlebectasia of internal jugular vein with intracranial extension. Int J Appl Basic Med Res 2015;5:58-60.
57. Matsuba HM, Thawley SE, Smith PG. Internal jugular phlebectasia. Head Neck Surg 1985;7:431-3.
58. Mickelson SA, Spickler E, Roberts K. Management of internal jugular vein phlebectasia. Otolaryngol Head Neck Surg 1995; 112:473-5.
59. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009;6:e1000097.
60. Momoo T, Johkura K, Kurotya W. Jugular phlebectasia: A manometric study in an unanaesthetized patient. J Clin Neurosci 2008;15:914-6.
61. Nagata H, Uike K, Nakashima Y, Hirata Y, Yamamura K, Hara T, et. al. Diagnostic imaging of a child with congenital internal jugular vein phlebectasia. J Pediatr 2013;163:1229-0.
62. Nakayama M, Fujita S, Kawamata M, Namiki A, Mayumi T. Traumatic aneurysm of the internal jugular vein causing vagal nerve palsy: A rare complication of percutaneous catheterization. Anesth Analg 1994;78:598-600.
63. Nasiri AM, Rayes N, Bakarman KA. Internal jugular vein aneurysm: A case report. Medicine (Baltimore) 2018;97:e9588.
64. Neddumaran B, Krishnasamy A. Internal jugular venous ectasia in an adult female. J Clin Diagn Res 2018;12:PD07-8.
65. Ng DK, Kwok KL, Lam HS. Unilateral internal jugular phlebectasia. Hong Kong Med J 2000;6:431.
66. Nopajaroonsri C, Lurie AA. Venous aneurysm, arterial dysplasia, and near-fatal hemorrhages in neurofibromatosis type 1. Hum Pathol 1996;27:982-5.
67. Nwako FA, Ogwu NE, Udeh CA, Usoruji IR. Jugular phlebectasia. Otolaryngol Head Neck Surg 1995;112:473-5.
68. Ogbole GI, Irabor AE, Adeoye PO, Yusuf BP. Internal jugular vein phlebectasia. Vasc Med 2009;43:193-4.
69. Ogsole GI, Iboro AE, Adeoye PO, Yusuf BP. Internal jugular phlebectasia in an African adult. BMJ Case Rep 2010;2010:bcr2020102724.
70. Ohk YH, Blyk D, Koop IG, Budow J. Phlebectasia of the jugular and great mediastinal veins. Radiology 1970;95:629-30.
71. Paleri V, Gopalakrishnan S. Jugular phlebectasia: Theory of pathogenesis and review of literature. Int J Pediatr Otorhinolaryngol 2001;57:155-9.
72. Passariello R, Cozzi F, Casalena G, Colarossi G, Rossi P, Simonetti G, et. al. Angiographic diagnosis of jugular venous system dilatation in children. A report of five cases. Pediatr Radiol 1979;8:247-50.
73. Patel R, Horton D, Robinson G, Lakshminarayan R, Rejoo DD.
Congenital bilateral internal jugular venous malformation in an infant with spinal osteomyelitis and discitis-nature's recipe for disaster at vascular access. J Pediatr Surg Spec 2016;10:28-33.
74. Phookan S, Strickland PT, Hanna B, Hartlage GR, Parikh A, Clements SD Jr., et al. Internal jugular venous pseudoaneurysm in a patient with heart failure and severe tricuspid regurgitation. Case Rep Vasc Med 2017;2017:3592459.
75. Price DJ, Ravindranath T, Kaler SG. Internal jugular phlebectomy in menkes disease. Int J Pediatr Otorhinolaryngol 2007;71:1145-8.
76. Rajendran VR, Vasu CK, George AN, Anjay MA, Anoop P. Unilateral internal jugular phlebectomy. Indian J Pediatr 2004;71:751-3.
77. Raut MS, Maheshwari A, Shad S, Joshi S, Kumar A, Das S. An unexpected right neck mass appearing before central venous catheter placement. J Cardiothorac Vasc Anesth 2016;30:1154-5.
78. Reed JA, Grewal H. Jugular phlebectomy manifesting as an unusual neck mass in a child. Am J Surg 2001;182:289-90.
79. Rha EY, Choi IK, Byeon JH. Internal jugular phlebectomy in a patient with facial trauma. Arch Plast Surg 2013;40:456-8.
80. Rossi A, Tortori-Donati P. Internal jugular vein phlebectomy and duplication: Case report with magnetic resonance angiography features. Pediatr Radiol 2001;31:134.
81. Sakallioğlu AE, Yaşgurlu A, Yaşgurlu B, Gökçora HI. An asymmetric ballooning of the neck: Jugular vein aneurysm. J Pediatr Surg 2002;37:111-3.
82. Sander S, Eliçevik M, Unal M, Vural O. Jugular phlebectomy in children: Is it rare or ignored? J Pediatr Surg 1999;34:1829-32.
83. Shimizu M, Takagi Y, Yoshio H, Takeda R, Matsui O. Usefulness of ultrasonography and Doppler color flow imaging in the diagnosis of internal jugular phlebectomy. Heart Vessels 1992;7:95-8.
84. Singh H, Maurya V, Satua L, Saini M. Internal jugular phlebectomy. Med J Armed Forces India 2001;57:70-1.
85. Soares-Medina AR, López-Gutiérrez JC, Fernández-Pineda I, Vivas G. Association between lymphatic malformations of the mediastinum and congenital venous ectasia: Is it just coincidental? Lymphat Res Biol 2016;14:30-4.
86. Som PM, Shugar JM, Sacher M, Lanzieri CF. Internal jugular vein phlebectomy and duplication: CT features. J Comput Assist Tomogr 1985;9:390-2.
87. Sommer L, Forte V. Congenital venous aneurysm of the internal jugular vein in a child. J Otolaryngol 2001;30:126-8.
Supplemental Table 1: Articles included in data analysis.

Author	Year	Country of journal	Author origin	‘of cases
Chua et al. [14]	2018	England	England	1
Nasiri et al. [64]	2018	USA	Saudi Arabia	1
Nedumaran et al. [60]	2018	India	India	1
Delvecchio et al. [64]	2017	USA	USA	1
Krstačić et al. [61]	2017	Italy	Croatia	1
Baker et al. [3]	2017	USA	USA	1
Bhattacharya et al. [5]	2017	India	India	1
Phookan et al. [34]	2017	USA	USA	1
Patel et al. [53]	2016	Romania	England	1
Raut et al. [57]	2016	USA	India	1
Sundaram et al. [91]	2016	USA	India	1
Soares-Medina et al. [88]	2016	USA	Spain	1
Yaadhavakrishnan and Navaneethan [98]	2015	India	India	2
Malik et al. [55]	2015	India	India	1
Khashram et al. [30]	2014	USA	Australia	1
Daley and Colliver [16]	2014	USA	USA	1
Tanigawa et al. [93]	2014	USA	Japan	1
Hiraki et al. [38]	2014	USA	Japan	1
Huang et al. [42]	2013	England	China	1
Eksioglu et al. [20]	2013	USA	Turkey	21
Nagata et al. [92]	2013	USA	Japan	1
Liu et al. [56]	2013	Germany	China	23
Czyżowski et al. [13]	2013	Czech Republic	Poland	1
Rha et al. [79]	2013	Korea	Korea	1
Bora [7]	2013	India	India	1
Chakraborty et al. [11]	2013	Egypt	India	1
Bindal et al. [6]	2012	India	India	1
El Fakiri et al. [21]	2011	France	Morocco	1
Aydoğan et al. [2]	2011	USA	Turkey	1
Thulasiraman et al. [94]	2010	India	India	1
Ogbole et al. [90]	2010	England	Africa	1
Chang et al. [12]	2010	USA	China	1
Gundlach et al. [13]	2009	USA	Netherlands	1
Hopsu et al. [40]	2009	USA	Finland	1
Wen et al. [37]	2009	USA	China	4
Haney et al. [37]	2008	Netherlands	USA	1
Momoo et al. [84]	2008	Scotland	Japan	1
Hung et al. [44]	2008	USA	Canada	1
Price et al. [79]	2007	Ireland	USA	3
Fazilah et al. [24]	2006	Malaysia	Malaysia	1
Jianhong et al. [49]	2006	USA	China	39
Grange et al. [14]	2005	USA	USA	1
Hu et al. [41]	2005	USA	China	29

(Contd..)
Supplemental Table 1: Continued

Author	Year	Country of journal	Author origin	# of cases
Rajendran et al.⁷⁶	2004	India	India	1
Gerek et al.²⁹	2003	USA	Turkey	1
Erdem et al.²²	2002	England	Turkey	3
Jeon et al.⁴⁰	2002	Korea	Korea	3
Fernando et al.²³	2002	Sri Lanka	Sri Lanka	1
Sakallioglu et al.²⁹	2002	USA	Turkey	1
Reed and Grewal⁷⁹	2001	USA	USA	1
Fitoz et al.²⁶	2001	USA	Turkey	2
Yoon and Messner¹⁰¹	2001	Canada	Canada	1
Sommer and Forlê⁶⁷	2001	Canada	Canada	1
Paleri et al.⁷¹	2001	Ireland	India	2
Rossi and Tortori-Donati⁴⁰	2001	Germany	Italy	1
Singh et al.⁸⁴	2001	India	India	1
Ng et al.⁶⁶	2000	China	China	1
Kwok et al.⁸¹	2000	Australia	China	3
Fan et al.²³	2000	USA	China	1
Sander et al.⁸²	1999	USA	Turkey	8
Lubiana-Neto et al.³⁶	1999	USA	Brazil	2
Gürpinar et al.³⁶	1999	USA	Turkey	1
Chao et al.¹³	1999	England	China	8
Indudharan et al.⁴⁷	1998	England	Malaysia	1
Sugiyama et al.⁹⁰	1998	Japan	Japan	1
Al-Dousary et al.¹³	1997	Ireland	Saudi Arabia	1
Nopajaroonrri et al.⁸⁷	1996	USA	USA	1
Bosshardt et al.⁹	1996	USA	USA	1
Hussein et al.⁸⁵	1996	Germany	Germany	1
Inci et al.⁸⁶	1995	Germany	Turkey	1
Mickelson et al.¹⁴⁶	1995	USA	USA	1
Calligaro et al.¹⁰⁰	1995	USA	USA	3
Balik et al.¹⁴	1995	Germany	Turkey	1
Walsh et al.⁹⁵	1993	Ireland	England	1
Gorenstein et al.³³³⁵	1992	USA	Israel	1
Kuo et al.³²	1992	China	China	2
Walsh et al.⁹⁶	1992	England	England	2
Shimizu et al.⁸³	1992	Japan	Japan	1
Spiro et al.⁸⁸	1991	USA	USA	1
Dhillon et al.¹⁹⁴	1991	Singapore	Malaysia	1
Yokomori et al.¹⁸⁰	1990	USA	Japan	2
Nwako et al.⁶⁸	1989	USA	Nigeria	1
Zohar et al.¹⁰²	1988	Scotland	Israel	2
Hughes et al.⁹³	1988	England	England	1
Bowdler and Singh⁹¹	1986	Ireland	England	1
Matsuba et al.³⁴⁴	1985	USA	USA	1
Som et al.⁹⁰	1985	USA	USA	1
Yashiro and Iio⁹⁰	1984	USA	Brazil	2
Furukawa et al.²⁷⁷	1984	Germany	Japan	1

(Contd..)
Supplemental Table 1: Continued

Author	Year	Country of journal	Author origin	# of cases
Stevens et al.	1982	USA	USA	1
Passariello et al.	1979	Germany	Italy	4
LaMonte et al.	1976	USA	USA	2
Gordon et al.	1876	USA	USA	2
Gilbert et al.	1972	USA	USA	2
Okay et al.	1970	USA	USA	1
Garrow et al.	1964	USA	USA	1
Gerwig Jr.	1952	USA	USA	1