Membrane Transport

Anatomy 36
Unit 1
Membrane Transport

• Cell membranes are selectively permeable
• Some solutes can freely diffuse across the membrane
• Some solutes have to be selectively moved across the membrane
 • Facilitated by a carrier or transport protein
 • Carrier mediated transport (passive transport)
 • Active transport
• **Passive transport:** Solutes move on their concentration gradient
 • Does not require energy input
• **Active transport:** Solutes move against their concentration gradient
 • Have to be pumped
 • Requires energy expenditure
Passive vs. Active Transport

• Passive transport
 • Diffusion
 • Osmosis
 • Filtration
 • Facilitated diffusion

• Active transport
 • Primary active transport
 • Secondary active transport
Diffusion

- Net movement of solutes from an area of high concentration to an area of low concentration by random molecular motion

- *Molecules move on their concentration gradient*
 - High to low concentration

An Ink Drop Gradually Dissolves into a Glass of Water by DIFFUSION
Diffusion Across a Cell Membrane

- **Easily diffuse**
 - H_2O (small, polar covalent bonds)
 - Lipids
 - Various forms of fatty acids that do not carry a charge
 - 2-monoglyceride
 - Lipid soluble chemical messengers
 - Gases
 - O_2
 - CO_2
 - NO
- **Diffuse rapidly**
- **Movement driven by the concentration gradient of the molecule**

- **Do Not diffuse**
 - Movement across the membrane must be facilitated
 - Facilitated by a transporter
 - Solutes that carry a full charge and/or are too big
 - Ions
 - Large, polar molecules
 - Amino acids
 - Proteins
 - Free fatty acids (carry a negative charge)
 - Triglycerides
Rate of Diffusion

- **Flux** is the magnitude and direction of flow across a membrane due to a concentration gradient
 - **Influx** is diffusion into the cell
 - **Efflux** is diffusion out of the cell
 - **Net flux** is the overall direction of movement

- Influenced by
 - ✔ Magnitude of concentration difference
 - ✔ Mass of the molecule
 - ✔ Temperature
 - ✔ **Surface area of the membrane**
Osmosis
Diffusion of H_2O

- The movement of water from an area of high water concentration to an area of low water concentration across a semi-permeable membrane

- Water can freely move across cell membranes in both directions

- H_2O will move to establish H_2O equilibrium
Solutions and Solutes

• A solution is made up of
 • Solvent – \(\text{H}_2\text{O} \)
 • Solutes – everything else in the solution

• \(\text{H}_2\text{O} \) can freely move across cell membranes

• Solutes are non-penetrating \((\text{they can not move across the membrane})\)

• Water will move towards the higher solute concentration

• 2 ways we represent the concentration of the solutes
 • Osmolality – a measure of all solutes
 • Tonicity – a measure of \(\text{NaCl} \)

WATER CHASES THE SALT!
Osmolality

- **Molality** = # of moles of solute per kg of solvent

- **Osmolality** = ionic concentration of dissolved substances per kg of water (water is the solvent)
 - Osmolality of plasma = 300 mOsm = *isomotic*
 - Determined by the number of solute particles in 1 kg of water
 - 1 m of $C_6H_{12}O_6$ = 1 osmole (Osm)
 - 1 m of NaCl = 2 osmoles
 - 1 m of CO_2 + 1 m of KCl = 3 osmoles
Tonicity

- The relative concentration of NaCl dissolved in solution
- The concentration of NaCl outside of the cell compared to inside the cell
- The ability of a solution to cause a cell to gain or lose water
- Determines the direction and extent of water movement

WATER CHASES THE SALT!
Isotonic Solution

- The solute concentration is the same outside the cell and inside the cell
- Usually 0.9% NaCl
- The solute concentration is the same across the cell membrane
- Water moves in both directions across the plasma membranes
- **There is no net water gain/loss inside of the cell**
Hypertonic Solution

- The solute concentration is higher outside the cell than inside the cell
- Greater than 0.9% NaCl
- Water moves in both directions across the plasma membranes
- **There is a net loss of water inside of the cell**
- Causes crenation

WATER CHASES THE SALT!
Hypotonic Solution

• The solute concentration is lower outside the cell than inside the cell
• Less than 0.9% NaCl
• Water moves in both directions across the plasma membranes

• There is a net gain of water inside of the cell
• Causes lysis
Ion Channels

• Ions move through ion channels
 • *Ion channels can be considered transporters*
 • Ion channels formed by integral membrane proteins
 • Ions move on their concentration gradient through the ion channels
 • The electrical gradient also directs the movement of ions

• Ion channels are selective
 • Channel diameter
 • Charged and polar protein surfaces

• Ion channels are gated – they are **closed** until a “stimulus” causes them to open
 • Ligand gated (chemical messengers)
 • Voltage gated
 • Mechanically gated
Electrochemical Gradient

• Important consideration in ion diffusion
• Inner core of a cell is **negatively** charged
 • PO_4^{3-} groups, proteins, amino acids
• Membrane separates electrical charges
 • Same charges repel
 • Opposite charges attract
Transporters

• Membrane transport proteins
• Integral membrane proteins span the plasma membrane
• Solute binds to the transporter
• Transporter changes shape
• Solute moves across the membrane
 • Small molecules
 • Macromolecules

• Movement of solutes on their the concentration gradient

• Examples
 • GLUT transporters (glucose)
 • Aquaporins (water)
 • Fatty acid transporters
Transporters

- GLUT transporters for glucose
- Aquaporins for H₂O
 - Usually transport solute-free water
 - About 10 different types of aquaporins
 - One will transport about 3 billion H₂O molecules per second

Transporter	Tissue distribution	Special properties
GLUT 1	Most cells.	High capacity, relatively low Kᵥ (1-2mM).
GLUT 2	Liver, beta cells, hypothalamus, basolateral membrane small intestine.	High capacity but low affinity (high Kᵥ, 15-20mM) part of "the glucose sensor" in β-cells. Carrier for glucose and fructose / liver and intestine.
GLUT 3	Neurons, placenta, testes.	Low Kᵥ (1mM) and high capacity.
GLUT 4	Skeletal and cardiac muscle, fat.	Activated by insulin. Kᵥ, 5mM.
GLUT 5	Mucosal surface in small intestine, sperm.	Primarily fructose carrier in intestine.

Adapted from King and Agre, 1998
Transporters

• Protein carriers transport molecules too large or polar across the plasma membrane
 • Facilitated diffusion
 • Transporters
 • Active transport

• Types of mediated transport
 • Uniport – one thing moves
 • Symport – two things move in the same direction
 • Antiport – two things move in opposite directions

• 4 characteristics of transporters
 • Chemical specificity
 • Competition
 • Affinity
 • Saturation

• These 4 characteristics apply to ALL ligand to protein binding
 • Ion Channels
 • Transporters
 • Enzymes
 • Receptors
Transporters
Chemical Specificity

- Only ligands with the requisite chemical structure will bind to the structural protein

- Ideally, functional protein specificity is absolute
 - ONLY one molecule can “fit”

- Realistically, specificity is not always absolute
 - More than one molecule can “fit”
 - This will result in
 - Affinity differences
 - Competition
Transporters

Competition

• Structurally related ligands may compete for binding to the functional protein
 • Some ligands may be inhibitory to the action of the functional protein

• Competition decreases the rate of action of the functional protein
Transporters

Affinity

• The attraction of the functional protein for the ligand
 • Ion channel to ion
 • Transporter to solute
 • Enzyme to substrate

• The action of the functional protein can be inhibited by ligands which alter the shape of the binding site.
Transporters

Saturation

• Transport system is saturated when all of the binding sites are occupied

• At that point, the rate of transport can not increase
Filtration

- Movement of a solution down a pressure gradient
 - High pressure to low pressure
 - Across a membrane
- What is filtered is determined by:
 - the blood pressure coming in to the nephron
 - the size of the pores (fenestrations) in the glomerulus and podocytes
- In the kidney
 - Protein and blood cells are not found in urine because of size and charge restrictions of the glomerulus
Solute Sizes

- **Crystalloid**
 - Diameter < 1\(\mu m\)
 - Solutes stay dissolved in solution
 - Solution is clear
 - Example: Ions

- **Colloid**
 - Diameter between 1\(\mu m\)-100\(\mu m\)
 - Solutes stay dissolved in solution
 - Solution is cloudy
 - Example: Proteins

- **Suspension Particle**
 - Diameter > 100\(\mu m\)
 - Solids settle out of solution
 - Solution is clear with visible sediment at the bottom
 - Not found in biological systems
Filtration Experiment

- Collect 250 mL of your mixed solution
 - FeCl₃
 - Starch
 - Charcoal

- Pour the mixture into the funnel lined with filter paper

- Observe how fast/slow the solution passes through the filter

- After 90 minutes, perform your indicator tests to determine what passed through the filter paper
Active Transport

• Movement against the concentration gradient
• Requires hydrolysis of ATP

• Transporters called pumps
• Two types
 • Primary active transport
 • Secondary active transport
Primary Active Transport

• Steps
 – Molecule or ion binds at recognition site
 – *Phosphorylation* of pump
 – Conformational change
 – Transported molecule flipped to other side of membrane
 – *Dephosphorylation* of pump releases the transported molecule
 – Returns to its original conformation
Na\(^+\)/K\(^+\)/ATPase Pump

• 1 cycle of the pump:
 • Requires 1 ATP
 • Pumps 3 Na\(^+\) out
 • Pumps 2 K\(^+\) in

• Establishes and maintains low intracellular [Na\(^+\)]
 • Commonly used for cotransport

• Establishes and maintains a negative membrane potential
 • Neurons
 • Muscle cells
Secondary Active Transport

• Movement of a substance B can be coupled to the movement of substance A.
 • Substance A is pumped out of the cell on the apical membrane – creating a concentration gradient
 • Substance A moves through an ion channel on the luminal side into the epithelial cell on its concentration gradient that was established by the pump
 • *The movement of Substance B is coupled to the movement of Substance A*
 • The energy expenditure comes from the pump for Substance A

• **Cotransport**
 • Same direction
 • SGLT’S (Na⁺ coupled)
 • Intestinal mucosa
 • PCT of nephron

• **Counter transport**
 • Opposite direction

\[\text{Na}^+ \text{ is commonly coupled to the movement of something else across the same membrane} \]
Summary of Passive and Active Transport Mechanisms
Endocytosis and Exocytosis

- Requires ATP
- *Allows membrane impermeable molecules to pass*

- Endocytosis moves substance into the cell
 - May be receptor mediated
- Exocytosis moves substance out of the cell
 - Chylomicrons
 - Basolateral membrane transport
 - Absorption into blood
Enterocytes

Diffusion of 2 Monoglyceride fatty acids

Exocytosis of triglyceride
Epithelial Transport

- **ALL** tubes are lined with epithelial cells
- Movement of substances across the wall of the tube (absorption, filtration, secretion)
 - Apical/Basolateral membranes do not have same permeability or transport characteristics
 - Apical membrane faces the lumen of the tube
 - Basolateral membrane faces the blood vessels outside of the tube

- **Paracellular pathway**
 - Para = alongside, next to
 - Only H$_2$O can move in between some epithelial cells

- **Transcellular pathway**
 - Trans = across
 - Substance has to move across or through the cell