Electronic Chart Display and Information System

WAN Xiaoxia GAN Chaohua

1 Introduction

Electronic charts are new navigation aids that can provide significant benefits to maritime navigation, safety, and commerce. More than a simple computer graphics display, electronic chart systems combine both geographic and textual data into a readily useful operational tool. The electronic charts are a real-time navigation system that integrates a variety of information displayed and interpreted by the mariner. The most advanced form of electronic chart systems represents a new approach to maritime navigation[1].

2 ECDIS and ENC

There are two basic types of electronic charts. The most advanced form of electronic charts is the Electronic Chart Display and Information System (ECDIS). All other types of electronic charts can be regarded, in general, as Electronic Chart Systems (ECS).

2.1 ECDIS and international performance standards

To be considered as an ECDIS, an electronic chart must comply with the Performance Standards for ECDIS established by the International Maritime Organization (IMO). Under development for over 10 years, the IMO Performance Standards for ECDIS specify the components, features, functions of a system in which the primary function is to contribute to safe navigation[1]. They were formally adopted by IMO on 23 November 1995 and issued as IMO Resolution A. 817(19). Back-up arrangements for ECDIS were adopted by IMO in November 1996 and became Appendix 6 to the Performance Standards.

In conjunction with the IMO Performance Standards for ECDIS,
the International Hydrographic Organization (IHO) developed technical standards for the digital data format and display. IHO Special Publication 52 (IHO S-52) is the IHO specification for chart content and display of ECDIS\cite{3}. It includes appendices describing the means/process for updating, colour and symbol specifications. The 4th edition of IHO S-52 was issued in December 1996. IHO Special Publication 57 (IHO S-57) is the IHO transfer standard for digital hydrographic data\cite{4}. The current edition (Edition 3.0) was released in November 1996. Both IHO S-57 and S-52 are specified in the IMO Performance Standards for ECDIS.

The International Electromechanical Commission (IEC) developed its own ECDIS Performance Standard that describes the operational methods of testing and required test results for an IMO-compliant ECDIS\cite{5}. In September 1997, Draft of IEC 61174 was completed, and a final draft of the international standard was issued on 30 March 1998. Following a formal voting process, IEC 61174 was officially published by IEC as an international standard in August 1998. IEC 61174 is the basis for type-approval/certification process for an IMO-compliant ECDIS.

2.2 ECS

An Electronic Chart System (ECS) can be considered as any other type of electronic charts that does not comply with the IMO Performance Standard for ECDIS. This general category can be further sub-divided into electronic charts that use either raster or vector data.

In a vector-based system, electronic chart data is comprised of a series of lines (vectors) in which different layers of information may be stored or displayed. This form of so-called intelligent spatial data is obtained by digitizing information from existing paper charts or by storing a list of instructions that define various position referenced features or objects. With a vector ECS, the user has considerable flexibility and discretion regarding the amount of information that is displayed for the task at hand.

2.3 ECDIS components and data flow

ECDIS components consists of:
- Computer processor
- digital database (i.e., electronic chart data)
- navigation sensor inputs (e.g., GPS, Loran)
- color display

Additional shipboard sensor inputs may include ship's gyrocompass, depth sounder, a marine radar/ARPA and shipboard automated identification systems (AIS). Since ECDIS can function as the "Mariner's Window to the World", other navigation-related information could be displayed as well. This could include navigation-related information such as tides/water level, current flow, ice coverage, visibility, and the location of other vessels beyond visual or radar range. In this regard, IMO has recently adopted draft recommendation on Performance Standards for Universal Shipborne AIS that would operate in a ship-to-ship (transponder) and ship-to-shore/shore-to-ship (broadcast) mode of operation\cite{6}.

Fig. 1 shows the primary functional components of ECDIS.

![Fig. 1 ECDIS components and data flow](image-url)
3 Key features for ECDIS

The IMO Performance Standards for ECDIS provide specific guidance regarding the various components, features, and functions which make up an ECDIS. As described in the various sections of the IMO Performance Standards for ECDIS, there are important features, functions, and capabilities provided by ECDIS. From 1998 to now, we have been developing the electronic chart display and information system which based on international standards. The following are the key features.

3.1 Updating

ECDIS must be capable of accepting official updates to the system data, provided in conformity with IHO standards. We have developed an ECDIS which can keep a record of updates including time of application, and allow the mariner to review their contents and ascertain that they have been included in the system data.

3.2 Colours and symbols

The colours and symbols used in an ECDIS display must conform to the specifications contained in IHO Special Publication 52. This includes a specified size and appearance of symbols, figures, and letters. A particularly useful feature is the Mariner’s ability to select different color display schemes for daylight, nighttime, or twilight conditions.

Fig. 2 ECDIS display in bright daylight and during dark time

3.3 Standard display and display base

This is the level of information that should be shown when a chart is first displayed. Depending upon the needs of the mariner, a amount of information may be modified by the mariner for route planning or route monitoring. However, an ECDIS must return to the standard display at any time by a selection operation. Thus, it is the mariner who decides what level of information is required during a particular situation or task at hand.

Fig. 3 Chart data in the overview display and the same data in detail
Display base is the layer of information which cannot be removed from the display, and includes information which is required in all geographic areas and during all circumstances. It is not intended to be sufficient for safe navigation.

Depending on the needs of the mariner, information may be displayed at different scales (i.e. zoom-in or zoom-out). This system will show us different details.

3.4 Safety depth/ contour

With ECDIS the mariner can select a safety depth or safety contour. For a safety depth, all soundings less than or equal to the safety depth are emphasized. For a safety contour, ECDIS highlights this contour over other depth contours.

Fig. 4 Safety depth/contour in 5 meters and 30 meters

3.5 Display orientation/mode

With ECDIS, the mariner can select either a “north-up” or a “course-up” orientation. The ECDIS display can also be configured to operate in a true motion or relative motion mode of operation. In true motion, own ship’s symbol moves across chart display. With a relative motion display, the own ship’s symbol remains stationary in the center while the chart information appears to move.

3.6 Other information

Radar signal or other navigational information may be added to the display. However, it should not degrade the display and not obscure other electronic chart information. Different information is not simply superimposed together. Transferred radar information may contain both the radar image and ARPA (automated radar piloting aid) information. Those information can be crucial for collision avoidance.

4 Important functions for ECDIS

ECDIS is different from other GIS. It has not only its own displaying features, but also some special important functions.

4.1 Route planning

With ECDIS the mariner should be able to perform route planning in a simple and reliable manner. It should be possible to add or delete waypoints, or to change the position or order of waypoints in a selected route. It should also be possible to plan both primary and alternate routes.

4.2 Route monitoring

During route monitoring, ECDIS must show own ship’s position whenever the display covers that area. Key information provided during route monitoring includes a continuous indication of vessel position, course, and speed. Additional information that ECDIS can provide includes such information as distance right/left of intended track, time-to-run, distance-to-turn, position and past track history.

4.3 Voyage recording

After the voyage, ECDIS must be able to reconstruct the navigation and verify the official database used. Recorded at one minute intervals the information includes:
own ship’s past track including time, position, heading, and speed,
• a record of official ENC used including source, edition, date, cell, and update history.

In addition, ECDIS must be able to record the complete track for the entire voyage with time marks. ECDIS should also have the capability to preserve the record of the voyage. Finally, it should not be allowed to manipulate or change the recorded information.

5 Conclusion

In order to gain type approval/certification by user, the ECDIS system which we are developing will need to comply fully with the IMO Performance Standard for ECDIS. Anything else (e.g., use of non-official data, different chart content/display, reduced functional capability, etc.) will likely be considered non-compliant.

Results from Shanghai Marine Administration’s experiments and at-sea trials have showed that ECDIS is the most effective means of navigation comparing with more traditional methods (e.g., visual fixes, radar, or plotting fixes on paper charts). ECDIS has also showed that mental stress and workload on the bridge, and the portion of time spent on navigation-related tasks can be reduced. This in turn allows more time for the higher risk task of collision avoidance.

Since ECDIS is capable of continuously displaying own ship’s position on the electronic chart, there is increasing benefit of having other real-time information available that can be used to increase the safety and efficiency of the voyage. Timely information on water levels and current flow can be of significant benefit to a mariner in terms of optimizing the timing of vessel transits, or the amount of vessel cargo loading.

6 The future

Looking forward to the future, it is evident that ECDIS offers enormous potential to improve the safety and efficiency of maritime navigation[7,8]. ECDIS will lead to dramatic changes in the type of navigation safety waterways services that will need to be provided in order to improve both the safety and efficiency of maritime commerce in the world’s increasingly congested ports and waterways. Since ECDIS is a real-time navigation system, there are opportunities to improve upon the type of information that can be provided to the mariner in digital form.

ECDIS will be used in the following areas:
1) As an electronic nautical chart system ECDIS is used primarily by professional navigators in the shipping sector, and in particular on ferries in dangerous water areas and in bad weather (e.g., fog).
2) ECDIS will lead to dramatic changes in the types of Vessel Traffic Information Service (VTIS) that will be operated to benefit the efficiency and safety of maritime commerce. An important component of the VTIS in the future will be the increased employment of ECDIS-related technology[9].
3) Instead of relying primarily on voice communications, vessels will eventually have GPS/DGPS transponders (i.e., AIS) that will communicate with one another or to a VTIS center. With a standard format and protocol (e.g., vessel identification, location, course, speed, and time), it would be possible for each vessel to display the location and movement of other vessels on ECDIS.
4) ECDIS will be also employed for the national coastal and environmental protection, oil spill clearance duties, surveillance by aircraft and by the sea rescue service.
5) Simulation systems used for the basic and advanced training of navigators, pilots, etc., are equipped with ECDIS.

References
1. IMO (1995) Performance standards for electronic chart display and information systems (ECDIS), IMO Resolution A.817 (19). International Maritime Organization, London.
2. International Convention for the Safety of Life at Sea (1986) Consolidated text of 1974 SOLAS Convention, the 1978 SOLAS Protocol, the 1981 and 1983 SOLAS Amendments, International Maritime Organization, London.

(Continued on Page 21)
As GPS furnishes 3D coordinates, some analyses concerning the course of the height of the calbeway are possible. On one hand it is possible to draw a side-face of the calbeway, which emphasises the position of the tower (in Fig. 3). On the other hand it is possible to integrate this information in a GIS, e.g. about the obstacles for the aviation. Therewith, given the suitable software, 3D scenery representing the landscape and the calbeway are computable (in Fig. 4).

![Fig. 3 Side-face of the cableway](image)

Fig. 3 Side-face of the cableway

5 Conclusion

From the described project, the following conclusions can be drawn:

1) Methods of satellite geodesy can be applied to determine the actual position of the axis of the calbeway. As a consequence, also the deviations of the position of the tower, due to geodynamic process or mechanical movement, can be detected.

2) Compensation of GPS observations brings about better results, when a condition of linearity is taken into account.

3) Conditions of linearity allow to detect outliers.

4) The method is reliable and precise.

References

1 Salvini D. (1999) Überprüfung des Seilverlaufes bei Gondelbahnen und Sesselliften mit Methoden der Satellitengeodäsie. Zurich, Switzerland: IGP-Bericht Nr. 287, ETHZ (in German)

2 Salvini D. (1999) Dreidimensionale Modellierung von Seilbahnanlagen für eine geographische Datenbank der Luftfahrthindernisse. Zurich, Switzerland: IGP-Bericht Nr. 286, ETHZ (in German)

(Continued from Page 11)

3 IHO (1996) IHO Specification for Chart Content and Display of ECDIS, IHO Special Publication No. 52 (IHO S-52), 4th ed. Monaco.

4 IHO (1996) IHO Transfer Standard for Digital Hydrographic Data, IHO Special Publication No. 57 (IHO S-57), 3rd ed. Monaco.

5 IEC 61177: Maritime navigation and radiocommunication equipment systems—Electronic chart display and information system (ECDIS)—Operational and performance requirements, methods of testing, and required test results. International Electrotechnical Commission, Geneva.

6 IMO Draft recommendation on performance standards for an universal shipborne automatic identification system (AIS). IMO Safety of Navigation Sub-committee Report NAVA43/WP. 2, Annex 2, IMO London.

7 U. S. Coast Guard Research and Development Center (1996). Electronic chart display and information systems (ECDIS) test and evaluation — summary report. Report No. CG-D-20-97

8 Offshore Systems Ltd (1997) Canadian electronic chart pilot project — final report. Vancouver, BC.

9 Lee A., Ganjon F. K. (1995) ECDIS: Current status/future expectations. Sea Technology, 36(3)