Early specification of CD8+ T lymphocyte fates during adaptive immunity revealed by single-cell gene-expression analyses

Janilyn Arsenio1,4, Boyko Kakaradov2,4, Patrick J Metz1, Stephanie H Kim1, Gene W Yeo2,3 & John T Chang1

T lymphocytes responding to microbial infection give rise to effector cells that mediate acute host defense and memory cells that provide long-lived immunity, but the fundamental question of when and how these cells arise remains unresolved. Here we combined single-cell gene-expression analyses with 'machine-learning' approaches to trace the transcriptional 'roadmap' of individual CD8+ T lymphocytes throughout the course of an immune response in vivo. Gene-expression signatures predictive of eventual fates could be discerned as early as the first T lymphocyte division and may have been influenced by asymmetric partitioning of the receptor for interleukin 2 (IL-2Rα) during mitosis. Our findings emphasize the importance of single-cell analyses in understanding fate determination and provide new insights into the specification of divergent lymphocyte fates early during an immune response to microbial infection.

During microbial infection, responding T lymphocytes give rise to two distinct classes of cellular progeny: effector cells that provide acute host defense, and long-lived memory cells that provide durable immunity. Terminally differentiated, short-lived effector T cells (T_SLE cells) can be identified phenotypically by their high expression of the lectin-like receptor KLRG1 and low expression of the receptor for interleukin 7 (IL-7R). At least two distinct subsets of long-lived memory cells, central memory T cells (T_CM cells) and effector memory T cells (T_EM cells), have been described; these can be distinguished on the basis of their proliferative capacity, cytotoxicity, anatomic localization and expression of certain homing and chemokine receptors, including L-selectin (CD62L) and CCR7.

Published studies using single-cell adoptive transfer and 'genetic barcoding' approaches have demonstrated that a single naive CD8+ T lymphocyte can give rise to cells with more than one fate and, notably, is able to generate all of the diverse cellular fates necessary for an immune response. The process by which a single activated T lymphocyte yields effector- and memory-fated progeny and the time at which those differentiation pathways begin to diverge, however, remain unresolved. One possibility is that the progeny of an activated naive CD8+ T lymphocyte progress along a linear differentiation path, initially becoming effector cells, with a subset of those cells later acquiring the memory fate. An alternative possibility is that the first CD8+ T cell division in vivo is asymmetric and thus enables lymphocyte fates to diverge early during an immune response owing to unequal inheritance of certain determinants, such as the receptor for interferon-γ (IFN-γ) and the transcription factor T-bet.

Tracing individual lymphocytes sequentially as they differentiate might distinguish whether lymphocytes progress along a linear differentiation pathway or diverge early during an immune response. While genomic profiling studies have begun to elucidate the transcriptional networks that control lymphocyte fate specification, such studies have been based on analyses of bulk cellular populations, which makes it impossible to discern cell-fate 'decisions' made by individual T cells. Technological advances that have coupled microfluidics and cancer biology. Here we used single-cell gene-expression profiling to investigate the ontogeny of effector and memory CD8+ T lymphocytes during microbial infection in vivo and found evidence of heterogeneity in gene expression within individual lymphocytes early after the initiation of an adaptive immune response.

RESULTS

Single-cell gene-expression analyses of CD8+ T cells

To delineate the hierarchy and mechanism of CD8+ T cell differentiation during an adaptive immune response at the single-cell level, we used an experimental system that allowed us to investigate the gene expression of individual CD8+ T lymphocytes throughout the course of a microbial infection in vivo. We adoptively transferred OT-I CD8+ T cells, which have transgenic expression of T cell antigen receptor that recognizes a specific ovalbumin (OVA) epitope, into wild-type recipient mice. We then infected the recipient mice...

1Department of Medicine, University of California San Diego, La Jolla, California, USA. 2Department of Cellular and Molecular Medicine, UCSD Stem Cell and Bioinformatics Programs, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA. 3Department of Physiology, National University of Singapore and Genome Institute of Singapore and Molecular Engineering Laboratory, A*STAR, Singapore. 4These authors contributed equally to this work. Correspondence should be addressed to G.W.Y. (geneyeo@ucsd.edu) or J.T.C. (changj@ucsd.edu).

Received 12 December 2013; accepted 30 January 2014; published online 2 March 2014; doi:10.1038/ni.2842
intravenously 24 h later with recombinant *Listeria monocytogenes* bacteria expressing ovalbumin (Lm-OVA) and isolated CD8+ T cells throughout the course of infection for single-cell analysis (Fig. 1).

In addition, we selected for analysis terminally differentiated T_{SLE} cells (KLRG1^{hi}IL-7R^{lo})ⁱⁱ), putative memory precursor T cells (T_{MP} cells; KLRG1^{lo}IL-7R^{hi}), T_{CM} cells (CD44^{hi}CD62L^{hi}) and T_{EM} cells (CD44^{lo}CD62L^{lo})ⁱⁱ (Fig. 1).

We used Fluidigm 96.96 Dynamic Arrays for quantitative real-time PCR analysis, which allowed simultaneous measurement of the expression of 96 genes in 96 individual cells (Supplementary Fig. 1a). Among the 94 genes (Table 1 and Supplementary Table 1) we selected for analysis were those encoding transcriptional regulators reported to influence CD8+ T lymphocyte differentiation^{2,4,12,13}; cytokines, chemokines, and their receptors¹⁹; and molecules associated with tissue homing and survival¹⁹. After excluding failed reactions, we retained expression data from 1,300 single cells for in-depth analyses (Supplementary Fig. 1b). Because expression of ‘housekeeping’ genes has been shown to vary substantially across cell types and states of differentiation²⁶, we used the expression of each gene of interest without normalization for all our analyses here.

We used principal-component analysis (PCA) to visualize the expression data globally. PCA is an unsupervised dimensionality-reduction method that we used to project the data into two dimensions by its coordinates in the first two principal components (PC1 and PC2) that account for the largest variations in the data. Those principal components were linear combinations of the expression data for the 94 original genes. PCA revealed that naive cells, T_{SLE} cells, T_{CM} cells and T_{EM} cells clustered distinctly (Fig. 2a). Expression of Sell and Tcf7, which encode the trafficking molecule CD62L and the transcription factor TCF-1, respectively, distinguished naive cells from T_{SLE} cells (Fig. 2a), consistent with published findings^{2,4}. Although T_{SLE} cells formed a distinct cluster, these cells were projected closest to T_{EM} cells (Fig. 2a), which suggested that related gene-expression profiles may underlie some of their functional similarities, such as cytotoxicity and the secretion of proinflammatory cytokines²⁷. That clustering was driven by expression of Zeb2, which encodes a transcription factor expressed in T_{SLE} cells¹². In addition, T_{EM} cells and T_{CM} cells occupied distinct clusters, with higher expression of Tcf7, Il2rb, Il7r, Cxcr3 and Sell mRNA in T_{CM} cells and higher expression of Zeb2 mRNA in T_{EM} cells accounting for the variance between these memory cell populations. We confirmed at the protein level some of the disparities observed at the transcriptional level (Fig. 2b), which supported our finding that T_{CM} cells and T_{EM} cells were molecularly distinct. The higher expression of Il7r and Tcf7, which encode regulators of T lymphocyte survival and longevity^{25,28}, that we observed in T_{CM} cells may underlie the superior ability of these cells to persist in vivo²⁹. Putative T_{MP} cells did not form a distinct cluster but overlapped T_{SLE} cells, T_{EM} cells and T_{CM} cells (Fig. 2c). These results suggested that putative T_{MP} cells are molecularly heterogeneous, which raised the possibility that this population may not represent memory precursor cells but instead may consist of ‘mature’ memory cells and terminally differentiated effector cells. Together these findings suggested that T_{SLE} cells, T_{CM} cells and T_{EM} cells exhibited similar gene-expression profiles at the single-cell level, but putative T_{MP} cells did not.

Molecular heterogeneity at the single-cell level

To assess whether single responding CD8+ T cells were molecularly homogeneous early after infection, we analyzed the gene-expression profiles of individual CD8+ T cells (Fig. 3a) isolated throughout the course of the infection described above (Fig. 1). PCA revealed greater heterogeneity among cells isolated early after infection (division 1 and day 3) than among cells isolated at later time points (day 5 and day 7; T_{SLE}, T_{CM}, and T_{EM} Cells). The first two principal components captured 17% of the variance in our data set (Fig. 3), slightly lower than that in published results¹³; this was probably a reflection of a higher degree of heterogeneity in lymphocytes during differentiation and the greater number of genes analyzed in our study. In agreement with our findings obtained by PCA, an alternative ‘unsupervised’ method (t-distributed stochastic neighbor-embedding analysis³⁰) produced similar results (Supplementary Fig. 2). To determine whether the heterogeneity observed with data from single cells could be recapitulated with data from bulk cells, we formally compared the analyses with data derived from single populations versus those derived from bulk
populations (Fig. 3a). We found that the heterogeneity we observed at the single-cell level in putative T\textsubscript{MP} cells and cells isolated early after infection was not apparent in the bulk analysis (Fig. 3a); this illustrated the power and necessity of using a single-cell approach.

To further evaluate the degree of heterogeneity within and between cell populations at each time point, which was not previously possible with bulk analysis, we applied the Jensen-Shannon divergence (JSD) metric, a nonparametric, model-free measure of similarity between two empirical probability distributions. In general, the intrapopulation JSD metric was lowest for naive cells and highest for cells isolated early after infection (Fig. 3b and Supplementary Fig. 3a). We observed that the intrapopulation JSD metric decreased as a function of time after infection, with the notable exception of putative T\textsubscript{MP} cells (Fig. 3b). Those cells exhibited a high degree of intrapopulation divergence, consistent with the apparent heterogeneity of those cells by PCA (Fig. 3a). Pairwise comparison of JSD metrics for all cell populations (naive cells, cells at division 1, cells at days 3, 5 and 7 after infection, and T\textsubscript{MP}, T\textsubscript{SLE}, T\textsubscript{CM} and T\textsubscript{EM} cells) yielded similar results, with the greatest divergence between cells isolated early after infection versus those isolated late after infection (Fig. 3b and Supplementary Fig. 3a). Notably, the intrapopulation JSD metric was not affected by group size (Supplementary Fig. 3b). Together these results demonstrated that CD\textsuperscript{8\lowercase{+}} T lymphocytes responding to a microbe exhibited substantial molecular heterogeneity at the single-cell level early after infection and that this heterogeneity diminished with time.

Distinct transcriptional signatures early after infection

We hypothesized that the heterogeneity observed for lymphocytes early after infection might have reflected distinct gene-expression patterns that are predictive of more differentiated cells. We reasoned that ‘supervised’ classifiers ‘trained’ on relatively well-defined, differentiated cellular fates, such as sorted T\textsubscript{CM} cells and T\textsubscript{SLE} cells, could be used to assess whether cells isolated early after infection might be fated toward specific CD\textsuperscript{8\lowercase{+}} T lymphocyte subsets. We chose to use ‘boosted decision trees’ rather than other classification frameworks with similar performance characteristics because the ‘learned trees’ are easily interpretable.

A ‘decision tree’ built from the data consisted of several predictive rules that compared the expression of Ptprc, Sell and Ccl5 to thresholds ‘learned’ from that data to ‘decide’ whether a cell was more like a T\textsubscript{CM} cell or a T\textsubscript{SLE} cell (Supplementary Fig. 4a). Ensembles of ‘decision trees’ were ‘trained’ with the RobustBoost algorithm to generate a binary classifier that achieved a misclassification error of approximately 4% in ‘leave-one-out’ cross-validation, which was split evenly when the classifier was distinguishing between T\textsubscript{CM} cells and T\textsubscript{SLE} cells (Fig. 4a and Supplementary Fig. 4b). The classifier revealed that Sell and Il7r were among the most predictive genes whose high expression accurately described T\textsubscript{CM} cells, whereas the lack of expression of Sell and Il7r, along with high expression of Zeb2, defined T\textsubscript{SLE} cells (Fig. 4b). Application of the classifier to cells isolated at days 5 and 7 after infection revealed that 49% and 57%, respectively, of total CD\textsuperscript{8\lowercase{+}} T cells at these time points were more like T\textsubscript{SLE} cells than T\textsubscript{CM} cells (Fig. 4c), consistent with the expected frequency of T\textsubscript{SLE} cells at days 5 and 7 after infection.

We next sought to determine whether the classifier could discern the fates of responding lymphocytes isolated early during an immune response. It has been suggested that asymmetric division of CD\textsuperscript{8\lowercase{+}} T lymphocytes yields daughter cells proximal to the immunological synapse (‘proximal daughter cells’) and distal to the immunological synapse (‘distal daughter cells’) that adopt different fates, which raises
Temporal expression of determinants of CD8+ T cell fates

Having determined that the gene-expression patterns of less-differentiated cells could be used to predict their eventual fates, we next sought to develop a simple generative model for the fate specification of CD8+ T lymphocytes that would capture key genes encoding molecules involved in each step of the differentiation pathway of an individual naive cell. In contrast to the classifiers we ‘trained’ on cells purified by sorting, to discriminate between different cellular fates (T_{CM} versus T_{SLE}), we used a hidden Markov model (HMM) ‘trained’ on lymphocytes representative of intermediate states of differentiation (division 1, day 3, day 5) between the naive state and the differentiated fates (Fig. 5a). HMMs have been applied to sequential and time-series analyses in diverse fields and have been particularly useful for modeling hidden, unobserved states during biological processes. HMMs not only capture the static expression profiles of subpopulations at a particular stage but also can detect dynamic expression changes responsible for the transitions between them. To construct a temporal paradigm of T lymphocyte fate specification in vivo, we first defined six linear HMMs and twelve divergent HMMs (Supplementary Fig. 4c) that represented possible hypothetical states (such as pre-T_{SLE} or pre-memory) through which an individual naive T lymphocyte could transition before differentiating into any of three observed fates (T_{SLE}, T_{CM} and T_{EM}). To evaluate each HMM, we analyzed all possible paths for each individual cell and compared the ‘log likelihood’ for each iteration. Our results showed that the divergent models generally outperformed the linear models, and we identified an early divergent model as the most likely pathway (Fig. 5b and Supplementary Fig. 4d). We further evaluated the performance of that final model by randomly ordering the population labels of the cells as well as the associated expression values. Notably, the likelihood of the best model was significantly higher than the likelihood for shuffled data (P = 0.00034), which showed that the model robustly indicated that an activated CD8+ T lymphocyte gave rise to cells that transitioned through either a hypothetical pre-T_{SLE} state or pre-memory state. Pre-T_{SLE} cells could undergo further differentiation to acquire the T_{SLE} fate, whereas pre-memory cells could further diverge to give rise to T_{CM} cells or T_{EM} cells. Together these findings suggested that an early divergent model may be the most likely pathway that underlies lymphocyte fate specification in vivo.

We analyzed the changes in expression of all 94 genes noted above (Table 1) during each of those five unique transitions: naive to pre-T_{SLE}, naive to pre-memory, pre-T_{SLE} to T_{SLE}, pre-memory to T_{CM}, and pre-memory to T_{EM} (Fig. 5b,c and Supplementary Fig. 5). This analysis revealed both shared and unique molecular features of each transition. The naive→pre-T_{SLE} and naive→pre-memory transitions, for example, were both associated with increased expression of Lgals1. Notably, however, the naive→pre-T_{SLE} transition was associated with higher expression of Il2ra and lower expression of Cxcr3, Sell and Tcf7 than that of the naive→pre-memory transition, which raised the possibility that these genes might encode molecules that influence whether a cell proceeds along the pathway toward terminal differentiation or self-renewal. The pre-memory→T_{CM} and pre-memory→T_{EM} transitions were both characterized by increased expression of Ccl5 and decreased expression of Foxo1 and Cxcr3. However, the pre-memory→T_{CM} transition was uniquely associated with increased expression of Tcf7, Il7r and Sell. In contrast, the pre-T_{SLE}→T_{SLE} transition was associated with increased expression of Ccl5 and decreased expression of Il2ra, Il2rb, and Foxo1. Together...
these results revealed the temporal expression patterns of key genes encoding molecules that influence the fates of CD8⁺ T lymphocytes responding to microbial infection in vivo.

IL-2Rα asymmetry is associated with distinct cellular fates

We found the prediction, raised by our temporal model, that IL-2Rα might represent an early molecular switch that promotes the pathway toward terminal differentiation intriguing, given published work suggesting a role for IL-2 signaling in the differentiation of CD8⁺ T lymphocytes. To determine how early we could detect a possible disparity in IL2ra expression in lineages destined for an effector fate versus those destined for a memory fate, we used flow cytometry to examine the expression of IL-2Rα in CD8⁺ T cells that had undergone their first division in vivo in response to microbial infection. We observed that differences in the abundance of IL-2Rα on the cell surface distinguished two populations of first daughter cells (Fig. 6a) and that IL-2Rα abundance was inversely correlated with CD62L expression (Fig. 6a). Furthermore, cells with higher expression of IL-2Rα also exhibited increased production of IFN-γ and granzyme B, characteristic of effector cells (Fig. 6b).

To test the hypothesis that the amount of IL-2Rα expression conferred a distinct predisposition toward the effector lineage or
memory lineage, we sorted CD62LhiIL-2Rαhi or CD62LloIL-2Rαlo cells that had undergone their first division in vivo. We then adaptively transferred those cells into recipient wild-type mice that we had infected 48 h before with Lm-OVA. We tracked the progeny of adaptively transferred cells at multiple time points throughout the course of the primary response and found that the progeny of both CD62LloIL-2Rαhi and CD62LhiIL-2Rαlo cells were detectable after infection (Supplementary Fig. 6). Notably, however, the progeny of the transferred IL-2Rαhi cells exhibited a fourfold greater capacity to give rise to TCM cells than did the progeny of transferred IL-2Rαlo cells (Fig. 6c). To confirm functionally that those cells were indeed memory lymphocytes, we assessed their ability to respond in vivo. We challenged the recipient mice with Lm-OVA at day 50 after the primary infection. (e) Confocal microscopy of IL-2Rα (green; top row) or CD62L (green; bottom row), β-tubulin (red) and DNA (blue; stained with the DNA-intercalating dye DAPI) in sorted OT-I CD8+ T cells undergoing their first division after adoptive transfer into Lm-OVA-infected recipient mice. Each symbol (a–c, left), d represents an individual mouse; small horizontal lines indicate the mean (± s.e.m.). *P < 0.05, **P < 0.01 and ***P = 0.0002 (Kolmogorov-Smirnov test). Data are representative of three (a,b,e) or two (c,d) experiments.

Figure 6 Asymmetric segregation of IL-2Rα during the division of T lymphocytes influences the eventual fate of daughter cells. (a) Expression of CD62L and IL-2Rα (left) by OT-I CD8+ T cells undergoing their first division after adoptive transfer into recipient mice infected 24 h later with Lm-OVA; numbers adjacent to outlined areas indicate percent CD62LhiIL-2Rαhi cells (top left) or CD62LloIL-2Rαlo cells (bottom right). Right, quantification of results at left. (b) Frequency of cells expressing IFN-γ or granzyme B among CD62LloIL-2Rαlo and CD62LhiIL-2Rαhi cells as in a. (c) CD62L expression (left) by CD45.1+CD8+ T cells in CD45.2+ mice (n = 13) challenged with Lm-OVA and then, 48 h later, given IL-2RαloCD62Llo or IL-2RαhiCD62Lhi cells at division 1 (purified by sorting), assessed on day 49 after infection of recipients; numbers in top left corners indicate percent CD62Llo cells. Right, quantification of CD62L+ T cells among CD45.1+ T cells (as at left). (d) Population expansion of CD45.1+CD8+ T cells in blood obtained (time, horizontal axis) from mice in (a) that were subsequently rechallenged with Lm-OVA at day 50 after the primary infection. (e) Confocal microscopy of IL-2Rα (green; top row) or CD62L (green; bottom row), β-tubulin (red) and DNA (blue; stained with the DNA-intercalating dye DAPI) in sorted OT-I CD8+ T cells undergoing their first division after adoptive transfer into Lm-OVA-infected recipient mice. Each symbol (a–c, left), d represents an individual mouse; small horizontal lines indicate the mean (± s.e.m.). *P < 0.05, **P < 0.01 and ***P = 0.0002 (Kolmogorov-Smirnov test). Data are representative of three (a,b,e) or two (c,d) experiments.

** DISCUSSION **

Advances in high-throughput single-cell gene-expression profiling have enabled the use of this technique in such diverse fields as embryonic development, hematopoiesis, stem cell reprogramming and cancer biology14-17. Those advances, coupled with computational modeling approaches, enabled us to investigate, on a level of molecular detail not previously possible, the ontogeny of effector and memory lymphocytes during microbial infection in vivo. We found evidence of considerable heterogeneity in gene expression among individual CD8+ T lymphocytes early after the initiation of microbial infection. Notably, we demonstrated that such heterogeneity could not be identified by traditional bulk-population analyses and that many of our computational analyses here, including JSD, classifier and HMM, were possible only with data derived from single cells. Our observations provide a compelling argument for the integration of single-cell approaches into future studies of the fate specification of cells of the immune system.

Through the use of sequential single-cell gene-expression measurements in activated lymphocytes during the course of a microbial infection in vivo, we constructed a temporal model that allowed us to predict the timing and changes in the expression of key genes in individual lymphocytes as they transitioned from the naive state toward each of several cellular fates. We provided experimental evidence in support of a prediction of this temporal model: that differences in the expression of IL-2Rα may reflect one of the earliest molecular determinants that influence the memory-versus-effector fate decision. Moreover, we demonstrated that unequal partitioning of IL-2Rα during the first asymmetric division in vivo may result in its disparate abundance in daughter lymphocytes and potentially contribute to their acquisition of distinct gene-expression profiles and cellular fates.

Along with published evidence that other critical signaling molecules, such as the receptor for IFN-γ, can be unequally partitioned3,
our results suggest that asymmetric segregation of cytokine receptors during lymphocyte division may result in proximal daughter cells' encountering more signaling by IL-2 and IFN-γ than that encountered by distal daughters. As IL-2 has been shown to induce Prdm1 and repress Bcl6 and Il7ra37,38, while IFN-γ is known to induce Tbx21 (refs. 40,41), differences in cytokine signaling encountered by proximal and distal daughter cells may initiate a pre-effector gene-expression program or pre-memory gene-expression program, respectively, consistent with our experimental observations and with published work showing that cells that receive prolonged IL-2 signals acquire characteristics of terminally differentiated effector cells37. Continued changes in gene-expression patterns, influenced by environmental signals, may allow lymphocytes to continue along distinct pathways toward terminal differentiation or self-renewal.

Published reports describing additional subsets of memory T lymphocytes, however, raise the possibility that the effector lineage or effector-phenotype memory T cells share certain phenotypic characteristics with terminally differentiated effector cells and mediate robust immunological protection in certain infectious settings despite 'effector-phenotype' memory T cells remaining in the peripheral tissues after pathogen clearance, while so-called central memory lineage may not be the exclusive fate adopted by the progeny of IL-2−CD62LloIL-2Rhi and CD62LhiIL-2Rab cells. Tissue-resident memory T cells24,43 do not circulate and instead remain in the peripheral tissues after pathogen clearance, while so-called 'effector-phenotype' memory T cells share certain phenotypic characteristics with terminally differentiated effector cells and mediate robust immunological protection in certain infectious settings despite exhibiting poor proliferative recall responses44. Indeed, some of the progeny of IL-2−CD62Lhi cells seemed to go on to give rise to a population of lymphocytes that, although poorly proliferative in response to microbial rechallenge, persisted in vivo, reminiscent of effector-phenotype memory cells. Thus, it remains possible that the first cellular division, in addition to mediating a divergence of the effector and memory fates, may also facilitate the specification of distinct memory cell subset fates.

Although the generation of long-lived memory lymphocytes is an essential feature of an adaptive immune response, the fundamental question of when and how these cells arise has remained controversial. Resolving whether lymphocytes progress along a linear differentiation pathway or diversify early during an immune response, owing to asymmetric cell division, necessitated our tracing individual lymphocytes as they underwent differentiation in vivo. By investigating the gene-expression patterns of individual lymphocytes during an immune response to a microbial pathogen, we reconstructed the lineage paths of single lymphocytes as they differentiated in vivo. This approach has yielded new insights into lymphocyte fate specification and has provided new evidence in support of the proposal of an early divergence of lymphocyte fates, via asymmetric division, during an adaptive immune response to microbial infection. More broadly, we anticipate that single-cell gene-expression approaches undertaken by investigators across scientific disciplines, along with ever-improving advances in such technologies as single-cell RNA sequencing45,46 and single-cell mass cytometry47, will continue to provide unprecedented molecular insights into cell-fate specification in diverse biological settings, including immunity, development and cancer.

METHODS
Methods and any associated references are available in the online version of the paper.

Accession codes. GEO: gene-expression array data, GSE54321.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.
27. Masopust, D., Vezys, V., Marzo, A.L. & Lefrançois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).
28. Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrançois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).
29. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).
30. van der Maaten, L.J.P. & Hinton, G.E. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
31. Freund, Y. & Mason, L. The Alternating Decision Tree Learning Algorithm. In Proceedings of the Sixteenth International Conference on Machine Learning (eds. Bratko, I. & Dzeroski, S.) 124–133 (Morgan Kaufmann Publishers, 1999).
32. Freund, Y. Invited talk: Drifting games, boosting and online learning. In Proceedings of the 26th Annual International Conference on Machine Learning 162, (ACM, 2009).
33. Beerenwinkel, N. & Drton, M. A mutagenetic tree hidden Markov model for longitudinal clonal HIV sequence data. Biostatistics 8, 53–71 (2007).
34. Bulla, J. & Bulla, I. Stylized facts of financial time series and hidden semi-Markov models. Comput. Stat. Data Anal. 51, 2192–2209 (2006).
35. Feau, S., Arens, R., Togher, S. & Schoenberger, S.P. Autocrine IL-2 is required for secondary population expansion of CD8+ memory T cells. Nat. Immunol. 12, 908–913 (2011).
36. Williams, M.A., Tyznik, A.J. & Bevan, M.J. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441, 890–893 (2006).
37. Kalia, V. et al. Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32, 91–103 (2010).
38. Pipkin, M.E. et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32, 79–90 (2010).
39. Obar, J.J. & Lefrançois, L. Early signals during CD8 T cell priming regulate the generation of central memory cells. J. Immunol. 185, 263–272 (2010).
40. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).
41. Lighvani, A.A. et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. USA 98, 15137–15142 (2001).
42. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).
43. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).
44. Olson, J.A., McDonald-Hyman, C., Jameson, S.C. & Hamilton, S.E. Effector-like CD8+ T cells in the memory population mediate potent protective immunity. Immunity 38, 1250–1260 (2013).
45. Tang, F. et al. miRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).
46. Shalek, A.K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).
47. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).
ONLINE METHODS

Mice. All animal work was done in accordance with Institutional Animal Care and Use Guidelines of the University of California, San Diego. All mice were housed in specific pathogen–free conditions before use. Wild-type C57BL/6J mice were from the Jackson Laboratory, and OT-1 mice that recognize the OVA peptide SIINFEKL (residues 257–264) presented by H-2Kb were used. Mice were from the Jackson Laboratory, and OT-I mice that recognize the OV A 323–339 peptide SIINFEKL (residues 257–264) presented by H-2Kb were used.

Antibodies and flow cytometry. The following antibodies were used: anti-CD8α (53-6.7), anti-CD45.1 (A20), anti-CD62L (MEL-14), anti-KLRG1 (2F1), anti-IFN-γ (XMG1.2), anti-CD44 (IM7), anti-IL-2Rα (PC61), anti-V-CAM1 (B20.1), anti-CD4 (RM4-5), anti-B220 (RA3-6B2), anti-CD11b (M1/70), anti-CD11c (N418), anti-F4/80 (BM8), and anti-IL-7R (A7R34; all from Biologend; F(ab')2 antibody to rabbit IgG (polyclonal; eBioscience); rabbit anti-TCF-1 (C63D9; Cell Signaling Technology; and antibody to human granuzyme B (GB11; Life Technologies). For intracellular detection of IFN-γ, CD8+ T cells were stimulated for 4 h at 37°C ex vivo with 0.25 ng/ml SIINFEKL in the presence of brefeldin A (Sigma); cells were fixed in 4% paraformaldehyde (Electron Microscopy Services) and were permeabilized before staining. All samples were analyzed on an Accuri C6 or FACS Canto (BD Biosciences).

Adoptive cell transfer and infection. 5 x 10^6 OT-I CD45.1+ CD8+ T cells were adoptively transferred into congeneric wild-type CD45.2+ recipient mice, followed by intravenous infection 1 d later with 5 x 10^5 colony-forming units of L. monocytogenes expressing full-length chicken OVA (Lm-OVA). Splenocytes were isolated from recipient mice at 5, 7 or 45 d after infection. For the isolation of cells at 3 d after infection, 2 x 10^4 OT-I CD8+ T cells were adoptively transferred. For the isolation of cells that had undergone their first division, 2 x 10^6 OT-I CD8+ T cells were first labeled with CFSE (carboxyfluorescein tetrachloroindocarbocyanine tetrahydrochloride; Invitrogen) peak) were electronically gated, and IL-2Rα (CD122) expression by TCM and TEM cells, respectively.

Microbead-based enrichment. Magnetic bead–based enrichment was done as described14 and high-throughput quantitative PCR was done on 96.96 Dynamic Arrays with a BioMark system (Fluidigm). Cycling threshold values were calculated with BioMark system software. Cells in which the expression of both Actb mRNA and Rn18s mRNA was detected were retained for further analysis. Statistical analysis. For statistical analysis, the Kolmogorov-Smirnov test was used for model-free comparisons involving two groups (Figs. 2b and 6b–d). Differences with a P value of <0.05 were considered significant.

Confocal microscopy of T lymphocytes. Immunofluorescence of T cells was analyzed as described in the following antibodies: anti-β-tubulin (AA2; Sigma), anti-IL-2Rα (PC61; eBioscience), anti-CD62L (MEL-14; eBioscience), Alexa Fluor 488–conjugated anti-mouse IgG (A11029; Invitrogen) and Alexa Fluor 633–conjugated anti-rat IgG (A21094; Invitrogen). DAPI (4,6-diamidino-2-phenylindole; Life Technologies) was used for the detection of DNA. Cells undergoing cytokinesis were identified by brightfield as those having dual nuclei and a pronounced cytoplasmic cleft. Acquisition of image stacks was done as described with an FV1000 laser-scanning confocal microscope (Olympus). The volume of three-dimensional pixels (‘voxels’) containing the designated receptor fluorescence was quantified in each nascent daughter in cytokinetic cells as described with ImageJ software.

Data and preprocessing. The log expression of each gene ‘g’ was computed as follows: logE_{g,c} = 40 – Ct_{g,c}, where c is the cell and Ct_{g,c} is the cycling threshold value obtained from the BioMark (Fluidigm). Cells c’ with undefined cycling threshold values (Ct_{g,c} = 999) for both g = Rn18s and g = Actb, or cells c’ with at least 60 ≤ 2^{Ct_{g,c}} ≤ 0 unexpressed genes were also removed from our analyses. The remaining ‘good’ cells in each population were deemed sufficient for all subsequent analyses, since they exceeded the number of free parameters for any supervised model by a factor of at least 5.

PCA. We used PCA to diminish dimensionality of the data with a linear transformation and projected data X from their original 94 dimensions to the first two principal components. MATLAB software was used for PCA, with the function ’pca’. To visualize the clustering of populations, we projected the cells from their original 94-gene space to the first two principal components of X. Each principal component, also known as ‘eigen-gene’, captures some percentage of the total variance in X proportional to its corresponding eigen value in the singular value decomposition of X. The first two eigen-genes have the largest eigen values. To visualize the contribution of each original dimension to those eigen-genes, we projected the 94 unit vectors on to the two-dimensional space spanned by the principal components. We combined these projections into the scatter and spike plots presented here (Figs. 2a,c and 3a).

t-distributed stochastic neighborhood embedding. To confirm our unsupervised clustering results, we used t-distributed stochastic neighborhood embedding (tSNE)28, one of the most powerful dimensionality reduction methods, with our data set. This is specifically designed for the visualization of high-dimensional data and has been shown to capture more useful variance and more complex clustering patterns in data by attempting to preserve the distances between data points from high dimension to low dimension without any prior assumptions about the distribution of the data. In contrast, PCA captures only linear relationships between genes and principal components and assumes a single homoscedastic (spherical) Gaussian distribution for the entire data set.

JSD. To quantify differences between populations and heterogeneity in each population, we used JSD, a symmetric version of the Kullback–Liebler (KL) divergence, a parameter- and model-free metric of the distance between empirical distributions. Given two sets of experimental measurements, \{x_1, x_2, \ldots, x_{n}\} and \{y_1, y_2, \ldots, y_{n}\}, such as expression profiles for individual cells from the TCM and TEM populations (in this case x_i \in \mathbb{R}^d), we used JSD to characterize the distance between the two empirical distributions P_x and P_y, indicated by the expression $ \text{JS}(P_x, P_y) = \frac{1}{2} KL(P_x || M) + \frac{1}{2} KL(P_y || M)$ (1)

\[KL(P || M) = \frac{1}{2} \int \frac{P(z) \ln \frac{P(z)}{M(z)}}{\log z} dz \] (2)
where \(M = \frac{(P_t + P_{t'})}{2} \) is an equal mixture of the two distributions, and the KL divergence can be approximated over ‘discretized’ histograms of its two input distributions:

\[
\hat{d}_{P_x}(i) = \int_{i}^{i+1} P_x(dy) \quad \text{and} \quad \hat{d}_{P_y}(i) = \int_{i}^{i+1} P_y(dy)
\]

This is the common form of JSD, which does not take into account the group sizes \(m \) and \(n \). Instead of using the more general form, which allows arbitrary reweighting of the contribution from each distribution, we randomly subsampled the larger group and concluded that the common form we used was not sensitive to differences in group size when those sizes were within a factor of 2; i.e., \(\min(m,n) \geq \max(m,n) / 2 \).

We interpreted each cell’s expression profile as a sample from the 94-dimensional empirical distribution of its population. Expression values for each of the 94 genes is ‘discretised’ in the same bins, so we simply added the single-dimensional JSD of the two populations for each gene. Moreover, we identified the genes with the greatest and least difference in expression in the two populations, which did not need to match the PCA results exactly, since the JSD analysis does not make the simple linear modeling assumption that PCA does. Finally, to quantify the heterogeneity within a single population, we randomly partitioned the population in half and measured the JSD of the two halves. Averaging that intrapopulation JSD for multiple random partitions gave an estimate of the true variation in each population.

That approach is more principled than a published application of JSD for measuring single-cell diversity, which arbitrarily converted each cell’s expression profile into a separate probability distribution over RNA molecules\(^{15}\). That was a misrepresentation of the BioMark output, which does not distribute a fixed ‘budget’ of expression units over the 94 genes of interest but instead measures the doubling times for each PCR primer and can be justified only for single-cell RNA-Seq experiments in which similar numbers of ‘reads’ are produced for each cell.

Rationale for approach to supervised analysis of gene-expression data

PCA and other unsupervised dimensionality-reduction methods aid in understanding the structure of a cell population. However, such determinations are made by visual inspection. Given a heterogeneous (unsupervised) population of cells \(X \), to classify a new cell (i.e., to identify which subpopulation it belongs to), we could cluster together the new samples with existing labeled data in \(X \). Such an approach is suboptimal for two reasons: efficiency and accuracy. That approach is not efficient because to classify even one new cell \(x' \) in \(X \), we must redo PCA of the original data \(X \) extended by a single row \(x' \). More notably, the accuracy of that approach depends not only on the quality of \(X \) but also on that of \(x' \), which we are trying to assess. If some of the new samples in \(X \) contain bad or ‘noisy’ readings that are not filtered by our criteria for \(X \), the variance inherent in \(X \) will eclipse the useful structure observed in \(X \) and the clustering result will be unrelated to or, even worse, counter to the original clustering of \(X \). To resolve both of these problems, we decided to use supervised analysis, which ‘learns’ to distinguish between subpopulations of the labeled data \(X \) in the form of ‘boosted’ classifiers and applies the classifiers to the remainder of the cells in \(X \).

Robust boosting

We used the RobustBoost algorithm\(^{22}\) to ‘train’ an ensemble of ‘decision trees’ at depths of ≤20. We chose boosting rather than other classification frameworks because the models that are ‘learned’ are easily interpretable. For example, the alternating decision tree (ADTree) method\(^{23}\) for the \(T_{CM} \) versus \(T_{SLE} \) classifier (Supplementary Fig. 4a) consisted of simple rules by which the expression of \(Ptprc, Ccl3 \) and \(Sell \) was compared with thresholds ‘learned’ from the data. The classifier’s confidence was measured by the margin of each prediction (red bars, Fig. 4a). We evaluated the performance of the classifier by its prediction accuracy in ‘leave-one-out’ cross-validation, where the m classifiers \(h_1, h_2, \ldots, h_m \) are each trained on a different subset of \(m-1 \) cells. Each classifier \(h_i \) was tested on cell \(x_0 \), which corresponded to the \(i^{th} \) row of the data matrix \(X \), after being trained on the remaining cells \(X_{t} = \{x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_m\} \). Such cross-validation produced a group of \(m \) classifiers that provided an estimate of the generalization error \(\varepsilon = \sum_{i=1}^{m} h_i(x_0) / m \) on the validation examples. This also generated an overall margin \(\gamma = \sum_{i=1}^{m} \gamma_i \), on the training examples by tallying the predictions of \(m-1 \) informed and 1 uninform classifier for each of the \(m \) cells, where \(\gamma_i = \|b_1 - \cdot m(x_i) - l_i \| \) and \(l_i \) is the label of cell \(c \) (in this case \(l_i = -1 \) means \(T_{CM} \) and \(l_i = 1 \) means \(T_{SLE} \)).

Temporal model of CD8⁺ T cell differentiation

Akin to the Heisenberg uncertainty principle, the problem of observing a cell’s gene expression is that a cell must be modified (i.e., destroyed) to allow observation of its gene expression. Although it is not a concern for single-cell analysis of static populations, it is a limitation in capturing the dynamics of tracing the lineage of a cell. We propose a statistical modeling approach to overcome that limitation with approximate single-cell histories sampled from the available time-series gene-expression data\(^{35}\). We constructed hypothetical differentiation paths and trained an HMM on the resulting expression time courses. Starting from each naive cell, we sampled cells in successively more mature stages whose expression profiles satisfied an ensemble of predictors for one of the terminal fates, matched those samples in the early differentiation stages (division 1 and day 3), connected both ends of each path and finally estimated the transition and observation parameters of a six-state HMM to learn the state-to-state transition probabilities and in-state mixture components that capture the dynamics of gene expression in the hypothesized histories.

Input data

To capture the temporal structure of T cell differentiation in our time-course gene-expression data from single cells, we developed a semi-supervised method based on the fate classifier predictions in early heterogeneous populations (Fig. 4d) and on the expression profiles of putative pre-memory and pre-effector cells purified from \(T_{CM} \) and \(T_{SLE} \) populations by sorting on day 5 after infection. Then, we constructed hypothetical differentiation histories of single cells starting from the naive population, going through an intermediate stage and ending in one of the three terminal fates: \(T_{CM} \), \(T_{EM} \) or \(T_{SLE} \). To approximate the real distribution of proliferation transitions between these stages, we used 1,000 bootstrap samples from each subpopulation ‘strung’ along one of the three main paths according to their classifier scores. This resulted in an empirical distribution over early transitions (naive to \(T_{CM} \), naive to \(T_{EM} \) and \(T_{SLE} \)) and another distribution over late transitions (pre-memory to \(T_{CM} \), pre-memory to \(T_{EM} \), and pre-\(T_{SLE} \) to \(T_{SLE} \)). The early transitions were then connected to the late transitions by cells at the intermediate states.

Model structure

Since the differentiation dynamics of individual proliferating T cells are not yet well described, we used an HMM to model the data because of its simple yet powerful structure, which decouples uncertainty in the lineage reconstruction (state transitions) from measurement noise (observations-emissions). We constructed an HMM with six states (naive, pre-memory, \(T_{CM} \), \(T_{EM} \), pre-TSLE and \(T_{SLE} \)) to capture the signal in each empirical distribution from our temporal approximation input. Each state ‘emits’ gene expression from a mixture of two 94-dimensional Gaussian distributions with full covariance matrices.

Because of concerns about our model’s sensitivity to initialization, we constructed 18 biologically plausible differentiation pathways (6 sequential and 12 bifurcating; structures, Supplementary Fig. 4c) and fixed the transition parameters to the corresponding adjacency matrix of each structure in turn. Using the learning algorithm described below, we calculated the posterior log-likelihood of each pathway. To address any further concerns about the robustness of these results, we reinitialized each structure twice more with 10% random noise drawn from the standard uniform distribution over the [0,1] interval, which also ensured that there were no zero-probability transitions between any two states.

Transition parameters

For a cell \(c \) in state \(f \), the probability of transitioning to state \(t \) is \(P_{ft} \). We assumed that other cells whose expression profile in state \(f \) was similar to that of cell \(c \) would have similar differentiation potential and, in particular, have a similar probability of transitioning to state \(t \). That assumption allowed us to share the parameters \(P_{ft} = P(f \rightarrow t) \) which gives the probability of any cell in state \(f \) to proliferate to state \(t \).

Observation parameters

Because of the bimodal nature of our ‘violin plots’ (Fig. 4d), we modeled the observed expression \(x \) of cell \(c \) in state \(l \) as a mixture model of two Gaussian distributions with 94-dimensional means \(\mu_c \) and \(\eta_l \).
94 × 94 full covariance matrices Σ_{ic}^f and Ξ_{ic}^f. Like the transitions, parameter sharing between cells allowed us to simplify the observation parameters, which resulted in the following observation model:

$$P(x|s = i) = a_i N(x; \mu_i, \Sigma_i) + b_i N(x; \eta_i, \Xi_i)$$

Learning algorithm. First, we initialized the model parameters to their prior distributions. Specifically, the transitions $P(f \rightarrow t)$ were initialized to the matrix $T_{f,t}^0$ (Fig. 5b). The emission parameters for the naive, T SLE, T CM and T EM states were initialized to the maximum-likelihood fit for a mixture of two Gaussian distributions to the empirical histograms of gene expression for the respective population. The emission parameters in the intermediate states, pre-memory and pre-T SLE, were fit to the empirical histograms accumulated over all intermediate states. The transition parameters were fixed throughout the duration of each learning run but were randomized with up to 10% noise as described above.

Finally, we optimized the parameters of the HMM with the expectation maximization algorithm implemented in pmtk3, the probabilistic modeling toolkit for MATLAB or Octave software. The learned emission parameters were used to identify the genes whose relative expression changed the most during each transition (Fig. 5b–c). While we did not learn the transition probabilities, we did resample them from 18 plausible structures and picked the most likely structure (transition matrix, Supplementary Fig. 4d; adjacency graph, far bottom right, Supplementary Fig. 4c). To determine the most likely structure, we calculated the posterior likelihoods of each HMM (starting from ten random re-initializations) and compared their cumulative distribution functions (Supplementary Fig. 4c). To further gauge the statistical significance of the best model, we randomly shuffled the input data 100 times for each model and built a background distribution of the resulting log-likelihoods. To determine both the significance and robustness of each HMM compared with its own shuffled background consisting of 100 random shuffles of the data, we used the nonparametric Kolmogorov-Smirnov method to determine if the log-likelihoods of each model were significantly higher for the real data than for the shuffled data and to provide a P value for the significance of each result. To test the reproducibility of our results relative to that of the bootstrap sampling method, we resampled the data and did another 10 randomly initialized training runs on the best model (Supplementary Fig. 4c, bottom right). Finally, we did Kolmogorov-Smirnov tests of each proposed structure to ensure that the best model's cumulative distribution function represented significantly higher log-likelihoods than those of the other models or its own background.

48. Moon, J.J. et al. Tracking epitope-specific T cells. *Nat. Protoc.* 4, 565–581 (2009).