Dynamics of the State of Macrobenthos in the Gulf of Tub-Karagan

A Kenzhegaliev¹, A Abilgazieva¹, A Shahmanova¹, D Kulbatyrov¹ and A Saginayev¹,
¹Atyrau Oil and Gas University, Republic of Kazakhstan, Atyrau
*Corresponding author

Abstract. The paper shows the results of studies conducted in the area of the Tub-Karagan Bay for the 2015 seasons. In the winter, 22 taxa of macrozoobenthos were presented at the Tub-Karagan Bay. They were dominated by a group of worms that met at all stations. In spring, in the area of Tyubkaragan Bay, the dominant species and abundance were representatives of crustaceans. During the summer, makrozoobentose insects are marked on the Tubkaragansky Bay (18 species/m²). In the fall, the species composition of macrobenthos was represented by 28 taxa if the previous 3 seasons had four groups, the fall in the number of major groups was five: Worms, shellfish, crustaceans, insects and others represented in the main class of Gidrozoi. A group of insects occurs pointwise. Most of this group was marked on the section Tyubkaragansky Bay as before, this brackish-water species Chironomusalbidus, a permanent inhabitant of the bottom biocenose in this region of the sea.

Keywords: Caspian Sea; Gulf of Tube-Karagan; Macrozooobenthos.

1. Introduction
The structure of the Tube-Karagan, based on seismic works and geological surveys carried out in the early 21st century, has caused hope of oil and gas bearing, but the results of the exploration drilling on the structure have refuted the prediction of hydrocarbons stock availability [1-2].

Today, both above the structures of the Tub-Karagan and below the Gulf, are developing large as per our view that the petroleum exploration work in this structure will not stop because the Caspian Sea is in the north and the south, with promising oil structures are open. Therefore, the background state of the hydrobionts must be surveyed in this area.

We previously published the results of the monitoring work carried out in 2014 [1-2].

As in previous years, the main three species of zooplankton were found: rotifers, cladocerans and copepods crustaceans, and species composition and abundance was dominated by copepod crustaceans 48, 87 %, and the biomass of the other 78 %.

Research object and methods. The object of the study selected region of Tubkaragan Gulf. Samples of makrozoobentosa were selected from the seabed by a Peterson grab and were fixed by 4% formalin.

In the laboratory samples were processed by conventional methods [3-6]; was determined the taxonomic composition, abundance (species per 1 m²) and biomass (mg. per 1 m²).

2. Results and Discussions
Study and analysis of the variability of the ecological state of the environment in terms of the development of oil and gas fields is one of the most important tasks of environmental protection. As in
2014, samples of bottom sediments for the study was collected from 9 monitoring stations, three North, three East and three from the North-East side. The species composition of macrobenthos is shown in table 1.

The qualitative composition of macrozoobenthos in Tupkaragan Gulf was slightly changed depending on the season. Thus, during the period of the winter-spring, a group of shellfish consists of three species. In the summer, up to 2 species are reduced, due to the loss of Dreissena polymorpha from the samples, which is small in the given sea region and occurs pointwise. In the autumn the number of species increases to 5 species. The most constant number of species was observed in the Group of Worms-6 species. Changes in the group of crustaceans also occurred due to the loss of the least numerous species, which is confirmed by the rates of occurrence of these taxa by season. The most crustaceans were presented in the autumn. The average number is noticeably decreasing from winter to summer by reducing the abundance of worms. In parallel, the role of crustaceans and shellfish in the formation of the total number is increasing. There is an inverse dependence of the numbers and biomass of shellfish. So, with minimum average winter abundance, the mollusks have the highest biomass and make up its basis.

This is due to the rise of shellfish and the predominance in winter photography of large specials with large individual weights. In the period of winter, biomass is being reduced, with the consequent increase in the fall.

In the winter of 2015, the macrozoobenthos in the explored section of the Tupkaragan Bay was represented by 22 taxa. They were dominated by a group of worms that met at all stations. A group of worms was represented by 6 species. The frequency of occurrence was dominated by oligochaetes and nereis - 93% (each), subdominal Hypaniolar되었swicki and Manayunki caspica - 89% and 70%. High rates of frequency of occurrence differ mollusks which are presented by 3 kinds: Abra ovata-89%, Cerastoderma Lamarcki-70%, Dreissena hansenula-4%. Shellfish also have the greatest biomass value. Station 7 has the highest biomass of shellfish-34943 mg/m². Crustaceans are represented by 12 species. The most common representative of this group is SchizorhynchusEudorelloides, whose frequency is 70 per cent. The average number of crustaceans is 136 species/m². The largest number of crustaceans is reported at station 9-380 species/m². The group of insects is represented by one species of Chironomus albidus, which occurs in 70% of the stations, but has a small number and biomass.

Table 1. Species composition of macrobenthos by seasons in 2015

Types	Winter	Spring	Summer	Autumn
Vermes/Worms	6	6	5	6
Mollusca/Shellfish	3	3	2	5
Crustacea/Crustacean	12	11	10	13
Insecta/L. Insects	1	1	1	2
Others/Other	-	-	-	2
Total taxa	22	21	18	28

Tables 2 and 3 represent the number and biomass of major groups of Macrobenothosbe seasons in 2015.
Station	1	2	3	4	5	6	7	8	9	average
Vermes	W* 317	480	482	422	494	620	633	247	347	401
S 351	673	338	326	335	210	391	187	249	273	
A 104	1446	250	122	105	154	163	547	837	265	
A 133	2987	113	321	127	102	163	249	347	9	
Mollusca	W* 713	0	580	310	347	193	283	347	87	318
S 270	0	113	210	677	73	327	403	140	246	
S 887	1700	760	227	503	263	397	167	107	557	
A 256	53	255	501	890	967	900	843	172	2	
Crustacea	W* 57	47	33	150	40	87	347	80	380	106
S 147	13	87	400	23	103	553	197	340	106	
S 127	700	177	97	17	203	250	150	313	207	
A 40	267	40	90	20	137	143	113	226	2	
Insecta	W* 40	0	30	7	63	67	0	23	100	106
S 13	0	50	17	87	43	0	30	63	37	
S 3	0	30	33	13	20	23	7	33	34	
A 340	0	180	483	297	393	290	500	18	18	
Others	W* 0	0	0	0	0	0	0	0	0	310
S 0	0	0	0	0	0	0	0	0	0	
S 0	0	0	0	0	0	0	0	0	0	
A 10	0	0	17	0	0	0	0	0	3	
Total	W* 398	527	547	469	539	654	696	292	404	450
S 394	687	363	389	414	232	479	250	303	321	
S 205	1686	256	158	158	202	230	870	129	346	
A 428	3307	527	881	247	252	330	196	399	5	

W* - season of the year
Table 3. Biomass of the main macrozoobenthos groups by 2015 seasons

Station	1	2	3	4	5	6	7	8	9	average
Verme	W*	4861	6	6563	5386	8850	9554	8644	7312	6133
S	5169	29	7733	5553	1098	3994	9460	6274	5964	6129
A	4338	145	5747	3870	3619	4758	6894	2148	3175	3855
	4649	27	6281	6588	3705	9195	8899	4874	5527	6274
W*	1990	0	34720	2487	1636	1596	3494	3339	20632	
7	0	7	0	3	0	5	3074	20632		
S	8907	0	10270	1685	3405	5960	3196	2466	1239	16118
Molus	S	1943	510	16280	9363	2984	1010	2894	3613	4980
S	3		3	3	0	3	3	0	3	14814
A	1641	6	3407	2725	1478	6369	1307	6359	14851	
W*	583	150		1622	878	545	1197	117	237	2095
Crustae	S	3383	267	1655	1140	26	54	1197	117	237
S	32	467	457	20	1288	1426	1861	33	58	627
A	123	140	28	34	206	31	1957	39	219	
Insecta	W*	47	0	40	3	70	47	0	15	35
S	18	0	60	17	123	60	0	67	130	53
	10	0	25	38	35	22	12	3	47	21
A	242	0	68	205	332	323	175	410		
Others	W*	0	0	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0	0	0	0
A	0	0	0	0	0	0	0	0	0	0
Total	W*	2539	156	41485	3113	2583	2570	6128	4073	1319
S	1747	295	19718	2356	4519	1006	5340	3112	1872	24395
S	3813	571	2508	3291	4789	6308	7706	5798	8259	18687
A	2143	507	40583	3408	1902	1591	2410	1168	20917	

Figures 1-4 show the abundance and biomass of the main macrozoobenthos in 2014 and 2015.
Figure 1. Number of major groups of Macrobenthos in 2014

Figure 2. Number of major groups macrobenthos in 2015

Figure 3. The biomass of major groups of macrobenthos by 2014 seasons.
In the spring of 2015, the Tupkaragan Gulf was dominated by species diversity and number of crustaceans.

During the summer, makrozoobenthose insects are marked on the Tubkaragansky Bay (18 species/m²).

In the fall of 2015, the species composition of macrobenthos was determined by five major groups: Worms, shellfish, crustaceans, insects and others represented in the main class of Gidrozoii. A group of insects occurs pointwise. Most commonly, this group is marked on the Tupkaraganskij Bay, as it was previously the Solonovatovodnyj species of Chironomusalbidus, a permanent resident of bottom biocenosis in a given area of the sea.

3. References
[1] A. Kenzhegaliyev, A. A. Abilgaziyeva, A. K. Shakhmanova, Condition of a makrozoobenthos near the gulf Tyub-Karagan, Sciencesof Europe. 7 (2015) 103-105.
[2] Kenzhegaliyev A., A. A. Abylgazi, A. K. Shahmanova, Condition of hydrobions in tub-Karagan bay, HeraldTarSU "Nature and problems of anthroposphere" International Science Journal. 3 (2016) 65-72.
[3] A methodical grant at hydrobiological fishery researches of reservoirs of Kazakhstan (plankton, a zoobenthos), Almaty, 2006. 27 p.
[4] A technique of studying of biogeocenoses of internal reservoirs, Nauka publishing house, Moscow, 1975, 240 p.
[5] Guide to methods of the hydrobiological analysis of a surface water and ground sediments, Gidrometeoizdat publishing house, Leningrad, 1983, pp. 78-86.
[6] Sea ecological researches, Annual report, 2015, 1295 p.