

DFT Study of the BH$_4^-$ Hydrolysis on Au(111) Surface

Basil Raju Karimadom,[a] Shalaka Varshney,[a] Tomer Zidki,[a] Dan Meyerstein,[a, b] and Haya Kornweitz*^[a]

The mechanism of the catalytic hydrolysis of BH$_4^-$ on Au(111) as studied by DFT is reported. The results are compared to the analogous process on Ag(111) that was recently reported. It is found that the borohydride species are adsorbed stronger on the Au$_8$-NP surface than on the Ag$_8$-NP surface. The electron affinity of the Au is larger than that of Ag. The results indicate that only two steps of hydrolysis are happening on the Au(111) surface and the reaction mechanism differs significantly from that on the Ag(111) surface. These remarkable results were experimentally verified. Upon hydrolysis, only three hydrogens of BH$_4^-$ are transferred to the Au surface, not all four, and H$_2$ generation is enhanced in the presence of surface H atoms. Thus, it is proposed that the BH$_4^-$ hydrolysis and reduction mechanisms catalyzed by M^8-NPs depend considerably on the nature of the metal.

Introduction

Hydrogen is considered a potential replacement for existing fossil fuel based energy systems due to its high energy content, zero pollution emission and high environmental abundance.[1–3] Researchers consider borohydride as the front runner in this research due to its cheap production and high theoretical hydrogen storage capacity (10.8 wt.%). In addition to the comprehensive experimental efforts,[8–14] computational studies at various levels are also used to understand the catalyzed and uncatatylzed hydrogen evolution reaction (HER) mechanism of BH$_4^-$ hydrolysis.[15–18] Mondal et al. studied the homogeneous catalytic hydrolysis of BH$_4^-$ in the presence of Ag(H$_2$O)$_2$.[14] and AuCl$_4$.[17] Escaño et al.[19–21] reported the adsorption properties of BH$_4^-$ on metallic surfaces such as Au, Pt, Pd, Ir, Os, Mn etc. and Akça et al.[22] investigated the sequential decomposition of BH$_4^-$ on Au, Cu, Al and Ag(111) surfaces. The electro-oxidation of BH$_4^-$ was also investigated theoretically on Au[23] and Pt(111)[15] surfaces.

In parallel to electrochemistry, HER on metal surfaces is commonly assumed to proceed via one of two mechanisms:[11,14,23]

\[
\begin{align*}
\{ (M^0 \text{-NP}) - H\}_{(n-m)^-} + H^+ & \rightarrow \{ (M^0 \text{-NP}) - H_{m+1}\}_{(n-m-1)^-} \\
& \text{(Tafel)} \\
\{ (M^0 \text{-NP}) - H_{m-1}\}_{(n-m)^-} & \rightarrow \{ (M^0 \text{-NP}) - H_{m-1}\}_{(n-m-1)^-} + H_2 \\
& \text{(Tafel)} \\
\{ (M^0 \text{-NP}) - H_{m}\}_{(n-m)^-} + H^+ + H_2 & \rightarrow \{ (M^0 \text{-NP}) - H_{m}\}_{(n-m-1)^-} \\
& \text{(Heyrovsky)}
\end{align*}
\]

\[(1)\]

\[(2)\]

\[(3)\]

The metal-catalyzed hydrolysis of BH$_4^-$ is expected to proceed via transfer of all four hydrogens to the surface upon hydrolysis.[13] However, a recent study shows that at least on Ag$_8$-NP this mechanism is wrong; only in the first step, one hydrogen is transferred to the surface from BH$_4^-$ upon hydrolysis,[24] and another H$_2$ molecule is released in the second step. Another computational study by Mondal et al. reported that Ag(H$_2$O)$_2$ is a better catalyst than AuCl$_4^-$ for the BH$_4^-$ hydrolysis and the formation mechanism of Ag$_8$-NP and Au$_8$-NP via Creighton process[25] differs significantly.[17] Herein are reported the results of a DFT analysis of the reaction mechanism of BH$_4^-$ hydrolysis on Au$_8$-NP surface. The results demonstrate that the catalytic BH$_4^-$ hydrolysis on the surfaces of Ag$_8^0$ and Au$_8^1$ proceed via different mechanisms. Thus, the same mechanism cannot be considered on different metals without proof, as commonly assumed. These results were experimentally verified by measuring the time-dependent H$_2$ evolution yields via the Ag$_8^0$-NPs & Au$_8^0$-NPs catalyzed hydrolysis of BH$_4^-$.
Experimental Section

Computational Details

The Vienna Ab-initio Simulation Package (VASP)[25,29] was used for all the DFT calculations in this work with GGA-PBE[30] exchange-correlation functional and ion cores were modeled with PAW pseudo-potentials.[25,32] The plane wave cut-off energy of 400 eV is used to describe the valence electrons and 8x8x1 Monkhorst pack[31] k-point mesh is used for Brillouin zone integration. The climbing image nudged elastic band method (CI-NEB)[34] is used to locate the transition state. The DFT–D2 Van der Walls correction by Grimme[35,36] and solvent effect using VASPsol[37,38] are also considered in all calculations.

The Au(111) surface is modelled with six layers of Au, which contains eight Au atoms in each layer. To avoid the unwanted interactions between the slabs, 16 Å of vacuum thickness is introduced between the slabs in the z-direction. The counter ion (Cl) method[39] is used to calculate the adsorption energy of the charged adsorbents on the surface, in this method the supercell is neutral as a counter ion is placed in a non-interacting distance, the ionic model is achieved using an implicit self-consistent electrolyte solvation model (VASPsol). The Bader charge analysis program[39] is used to verify the correct charge of the ions. The adsorption energies (E_{ads}) of the ions are calculated using the equation:

$$E_{\text{ads}} = (E^* + E') - E^*;$$ \hspace{1cm} (4)

Where E^* is the energy of the surface, E' is the energy of the adsorbent molecule alone and E^*'s is the energy of the adsorbed system (surface and substrate). The phonon calculations are carried out with 0.015 Å step width to obtain the zero-point vibration energies (ZPVE) of the system, using the harmonic oscillator approximation. The reaction free energies (ΔG^0) are calculated using the equation:

$$\Delta G^0 = [E + ZPVE + (T*S)]_{\text{Products}} - [E + ZPVE + (T*S)]_{\text{Reactants}}$$

Where, S is the entropy and T is the temperature (298.15 K).

Experimental Details

Materials: All chemicals were of analytical grade and were used without further purification. Silver sulfate (Ag$_2$SO$_4$), tetra-chloroauric acid (HAuCl$_4$), and sodium borohydride (NaBH$_4$) were purchased from Strem Chemicals. Sulfuric acid (H$_2$SO$_4$) was purchased from Merck. Millipore water, with a resistivity of > 15 MΩ cm, was used throughout the experiments.

Methods and Instrumentation: To follow the reaction kinetics, we used a manometer-based set-up as follows: the reactions took place in a two-neck round bottom flask reactor (50 mL); one neck of the reactor is connected via a pipe to a U-tube manometer; the other neck is closed with a rubber septum for Ar purging and reagent additions. Before the last reagent, NaBH$_4$ is added, the water level in the arms of the manometer was balanced. The hydrogen evolution kinetics was followed by reading the water level in the U-tube manometer.

Catalyst Preparation: The M$_2$-NPs suspensions, were prepared as reported elsewhere using the modified Creighton’s procedure[40–42] by Zidki et al.[40–42] Briefly, 30 mL of an ice-cold aqueous solution containing NaBH$_4$ (2.0 mM) were added at once under vigorous stirring to 10 mL of 1.0 mM of the desired precursor salts dissolved in water (HAuCl$_4$ and Ag$_2$SO$_4$ for Ag and Au, respectively). The final metal ion concentration was 2.5 x 10$^{-4}$ M. All the NP concentrations are stated as ion-based M$^{n+}$ concentrations in all experiments. The resulting suspensions were yellow and ruby red for Ag and Au M$_2$-NPs, respectively. The M$_2$-NPs pH was ~ 9.0 due to the borate formed during the NP synthesis[40–42] and the borohydride hydrolysis, which acts as a buffer. Note that all the M$_2$-NPs have some oxides on their surface, which are partially responsible for maintaining their stability in aqueous suspensions.

Hydrogen Evolution Experiments: In a typical procedure, 50 mL of water were mixed with 2.35 mL of M$_2$-NPs (to give 11.2 µM as a metal ion concentration) in the reactor and purged with Ar for 15 min during stirring. The water level of the arms of the manometer was balanced before the last added reagent. Then, 0.30 mL, 0.106 M of Ar-purged, freshly prepared NaBH$_4$ (a final concentration of 6.0 x 10$^{-4}$ M in the reaction) was quickly added to the reactor to initiate the catalytic reaction. All the reactions were performed at room temperature (24°C). Note that the water level in the manometer did not change appreciably since the NaBH$_4$ solution was concentrated to allow the addition of a minimal volume of the reagents. As the reaction proceeded, the water level in the manometer was recorded at different time intervals, providing the hydrogen evolution rate for each catalyst. The resulting data are plotted as hydrogen yield vs. time. The calculated amount of H$_2$ from the complete conversion of NaBH$_4$ to hydrogen is 126.36 µmol, resulting in 100% H$_2$ yield and a gauge pressure of 479 Pa (calculated using the ideal gas equation). This value is denoted in the figure by a dashed line. The hydrogen yield was calculated accordingly from three independent measurements for each data point and the graphs have an experimental error limit value of ± 5%.

Results and Discussion

Molecular Adsorption on Au(111)

Au bulk has a fcc structure[45,46] therefore, Au(111) surface has four adsorption sites: atop, bridge, fcc hollow and hcp hollow. The optimized ground state geometries of various species involved in BH$_4^-$ hydrolisis adsorbed on Au(111) surface are given in Figure 1 and the adsorption energies, charge transfer, and binding distances are tabulated in Table 1. The adsorption energies of the neutral species that are given in Table 1 are higher than those published earlier, given as a footnote in table1, due to the different computational details. These values do not include the ZPVE correction, they are calculated using solvent effects and not vacuum, dispersion is taken into account, the adsorption sites may be different, and the coverage ratio is small (0.125).

The species formed during the BH$_4^-$ hydrolisis reactions are better adsorbed on Au(111) surface than on the Ag(111) surface. Both surfaces have similar adsorption sites, and the extent of adsorption linearly depends on the amount of charge transferred to the surface from the adsorbates. BH$_4^-$ and BH$_4^-(\text{OH})_{\text{n=+1},2,3}$ species (where n =0,1,2,3) were adsorbed on fcc-top, where boron is in the middle of the fcc site and the H and the O atoms are on the top sites of Au and Ag. The H$_2$O molecule is adsorbed on the Au atop position via the oxygen atom, while it is adsorbed via H atoms to the Au surface when
The DFT studies of Akça et al. \cite{22} position of BH$_4^-$ ions. Since their calculations did not account for the charges on the adsorbed species, it should be reassessed with the charged ions.

Adsorption Energies, Charge Transfer and Binding Distances of Each Species in BH$_4^-$ Hydrolysis on Au(111) and Ag(111) Surface.

Adsorbate	Adsorption Site	Au(111) Adsorption Energy [eV]	Charge Transfer [eV]	Au-H Distance [Å]	Ag(111) Adsorption Energy [eV]	Charge Transfer [eV]	Ag-H Distance [Å]
H$^+$	fcc	2.96	−0.85	1.80	−	2.32	−0.67
H$^-$	fcc	3.30a	0.10	1.80	−	3.19a	0.27
H$_2$	atop	0.01	−0.02	2.24	−	0.09	−0.02
H$_2$O	atop	0.39b	−0.08	2.86	0.31	2.49	0.31
BH$_4^-$	fcc	1.26	−0.53	1.94	−	0.91	−0.30
BH$_3^-$	fcc	1.34b	0.13	2.03	−	1.11b	0.40
BH$_3$(OH)$^-$	fcc	1.60	−0.52	1.94	2.51	1.12	−0.32
BH$_2$(OH)$_2$	fcc	1.59	−0.41	2.13	2.40	1.10	−0.25
BH$_2$(OH)$_2$	fcc	0.63	−0.01	2.79	2.95	0.21	0.09
BH$_2$(OH)$_3$	fcc	1.64	−0.40	2.43	2.26	1.22	−0.26

a A Negative value indicates charge transfer from adsorbate to the surface, and a positive value indicates charge transfer from the surface to the adsorbate. b Adsorption energies according to ref. 22: 0.86 eV for H/Au(111) and 0.82 eV for BH$_4$/Ag(111), 2.12 eV for H/Au(111) and 0.11 for H$_2$O/Au(111). According to ref. 44: 2.21 eV for H/Au(111).

On Au(111) surface the BH$_4^-$ dissociate as follows (*X means that X is adsorbed at the surface):

$$\begin{align*}
* \text{BH}_4^- & \rightarrow * \text{BH}_3^- + * \text{H} + * \text{e} \\
\Delta G^0 &= -0.02 \text{ eV} \quad (E_a = 0.72 \text{ eV}) \\
* \text{BH}_3^- & \rightarrow * \text{BH}_2^- + * \text{H} \\
\Delta G^0 &= 0.37 \text{ eV}
\end{align*}$$

Reaction (5) is thermodynamically and kinetically feasible on Au(111) surface but it is thermodynamically unfavored on Ag(111) surface ($\Delta G^0 = 0.42 \text{ eV}$) and the dissociation is not observed on the Ag surface. According to reaction (5), BH$_4^-$ dissociates and transfers its charge to the Au(111) surface, while BH$_3^-$ is adsorbed as a radical on the Au surface (surface charge is −0.61e). The subsequent dissociation of BH$_3^-$ to BH$_2^-$ is highly endothermic on Au(111) (reaction (6)), so only one hydrogen is transferred to the surface from BH$_3^-$ upon dissociation. TSn denotes the transition state (TS) of reaction n, and all relevant TS geometries are given in Figure 2.

Dissociation Mechanism of BH$_4^-$ on Au(111)

The DFT studies of Akça et al. \cite{22} reported sequential decomposition of BH$_4^-$ on various metal surfaces. Their study showed that Au(111) surface is kinetically favored over Ag(111) surface for the dissociation of BH$_4^-$ to BH$_3^-$ and H on the metal surface even though the dissociation is thermodynamically unfavorable. Since their calculations did not account for the charges on the adsorbed species, it should be reassessed with the charged ions.

Hydrolysis of BH$_4^-$ on the Au(111) surface

Spectroscopic \cite{8,14} and computational \cite{16,26} studies suggest a sequential four-step reaction mechanism for the hydrolysis of BH$_4^-$ (Scheme 1). In this section, the four-step hydrolysis mechanism is explored on Au(111) surface to account for the kinetic and thermodynamic feasibilities of each step.

$$\begin{align*}
\text{BH}_4^- & \rightarrow \text{BH}_3(\text{OH})^- + \text{H}^+ \\
\text{BH}_3(\text{OH})^- & \rightarrow \text{BH}_2(\text{OH})^- + \text{H}^+ \\
\text{BH}_2(\text{OH})^- & \rightarrow \text{BH}(\text{OH})^- + \text{H}^+ \\
\text{BH}(\text{OH})^- & \rightarrow \text{B(OH)}^- + \text{H}^+
\end{align*}$$

Scheme 1. Reaction channel of BH$_4^-$ hydrolysis.
The surface is neutral (surface charge more negative for the Au(111) surface). The \(\text{BH}_3(\text{OH}) \) species is formed along with either \(\text{H}_2 \) or \(\text{H} \) atoms.

\[
\Delta G^0 = -0.28 \text{ eV} \quad (E_a = 0.92 \text{ eV})
\]

Thus, it opens a new pathway for the formation of \(\text{BH}_3(\text{OH})^- \) compared to the reaction mechanism on the \(\text{Ag}^0 \) surface.

\[
\begin{align*}
\text{BH}_3 + \text{H}_2\text{O} + \text{H} + e^- &\rightarrow \text{BH}_3(\text{OH})^- + \text{H}_2 & (9a) \\
\Delta G^0 &= 0.05 \text{ eV} \quad (E_a = 0.25 \text{ eV}) \\
\end{align*}
\]

\[
\begin{align*}
\text{BH}_3 + \text{H}_2\text{O} + \text{H} + e^- &\rightarrow \text{BH}_3(\text{OH})^- + 2\text{H} & (9b) \\
\Delta G^0 &= 0.00 \text{ eV} \quad (E_a = 0.58 \text{ eV}) \\
\end{align*}
\]

The \(\text{H}_3\text{B-OH}_2 \) intermediate enhances the \(\text{H}_2 \) formation on the \(\text{Au}^0 \) surface compared to the hydrogen atom release to the surface. However, the activation energy barrier of reaction (9) is significantly higher than reaction (5) and \(\text{BH}_3 \) formation on the \(\text{Au} \) surface is preferred. Since reaction (6) is highly endothermic, \(\text{BH}_3 \) will react with water according to one of the following reactions:

\[
\begin{align*}
\text{BH}_3 + \text{H}_2\text{O} + \text{H} + e^- &\rightarrow \text{BH}_3(\text{OH})^- + \text{H}_2 & (10) \\
\Delta G^0 &= -0.21 \text{ eV} \quad (E_a = 2.26 \text{ eV}) \\
\end{align*}
\]

\[
\begin{align*}
\text{BH}_3 + \text{H}_2\text{O} + e^- &\rightarrow \text{BH}_3(\text{OH})^- + \text{H} & (11) \\
\Delta G^0 &= -0.18 \text{ eV} \quad (E_a = 1.14 \text{ eV}; \ 0.99 \text{ eV in the presence of } \text{H}) \\
\text{BH}_3 + \text{H}_2\text{O} + e^- &\rightarrow \text{BH}_3\text{B-OH}_2 + e^- & (12) \\
\Delta G^0 &= -0.26 \text{ eV} \quad (E_a = 0.74 \text{ eV}; \ 0.73 \text{ eV in the presence of } \text{H}) \\
\end{align*}
\]

The formation of the \(\text{H}_3\text{B-OH}_2 \) intermediate is the thermodynamically and kinetically favored step of the reaction between \(\text{BH}_3 \) and \(\text{H}_2\text{O} \). Since the surface is charged, presence of the adsorbed \(\text{H} \) on the surface is less significant in reactions (11) and (12). A plausible alternative to reaction (12) is the analogous reaction with a water molecule not adsorbed on the surface:

\[
\begin{align*}
\text{BH}_3 + \text{H}_2\text{O}_{(aq)} + e^- &\rightarrow \text{H}_3\text{B} - \text{OH}_2 + e^- & (13) \\
\Delta G^0 &= -0.46 \text{ eV} \quad (E_a = 0.62 \text{ eV}) \\
\end{align*}
\]

Reaction (13) is clearly favored over reaction (12). Reactions (8) and (11) were also reassessed with an aqueous water molecule reacting with the adsorbed species (S1 and S2); however, these reactions are kinetically unfavorable due to the large activation energy barriers. In contrast with the hydrolysis mechanism on \(\text{Ag}(111) \) surface, \(\text{BH}_3(\text{OH})^- \) formation on \(\text{Au}(111) \) surface is a multi-step process with an aqueous water molecule instead of the one-step process with adsorbed water molecule on \(\text{Ag}(111) \). Due to this multi-step process on \(\text{Au}^0 \)-NPs, the \(\text{H}_2 \) generation will be slower than that on the \(\text{Ag}^0 \)-NPs. The reaction profile is given in Figure 3 and Scheme 2.

Figure 2. TS geometries of each step of \(\text{BH}_3^- \) hydrolysis on Au(111) surface.

First Step: The existence of short-lived \(\text{BH}_3(\text{OH})^- \) is observed experimentally during the hydrolysis of \(\text{BH}_3^- \). The \(\text{BH}_3(\text{OH})^- \) species is formed along with either \(\text{H}_2 \) or \(\text{H} \) atoms.

\[
\begin{align*}
\text{BH}_3^- + \text{H}_2\text{O} &\rightarrow \text{BH}_3(\text{OH})^- + \text{H}_2 & (7) \\
\Delta G^0 &= -0.28 \text{ eV} \quad (E_a = 1.72 \text{ eV}; \ 0.89 \text{ eV in the presence of } \text{H}) \\
\end{align*}
\]
However, in the presence of an H atom, H formation of hydrogen atoms on the surface afterwards, the one from BH formation of a stable BH(OH) intermediate on the surface.

The second step of hydrolysis is highly dependent on the presence of H atom on the Au surface. In the absence of H on the Au surface, two hydrogen atoms are released to the surface, one from BH(OH)− and the other from H2O (reaction 15). However, in the presence of an H atom, H2 is formed on the surface along with BH(OH)2− with a lower activation energy barrier (reaction 14). Thus, the reaction begins with the formation of hydrogen atoms on the surface afterwards, the second step proceeds via reaction (14), and an H2 molecule is released to the surface. Reaction (14) was also evaluated for the reaction with a non-adsorbed water molecule. The latter reaction is kinetically unfavored due to a large activation energy barrier (S3). Similar to the hydrolysis mechanism on Ag(111) surface,36H present on the catalyst surface enhances the H2 generation upon hydrolysis.

Third Step: The sequential hydrolysis mechanism expects the formation of BH(OH)− on the Au(111) surface. The NEB study of the reaction between BH(OH)− and H2O showed the formation of a stable BH(OH)2 intermediate on the surface before the hydrolysis.

\[
\text{BH}_3 \text{H}_2O \rightarrow \text{BH}_3^+H^+e^- \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

The hydrolysis of BH(OH)2 on Au(111) surface is highly endothermic. Therefore, the formation of BH(OH)2− and B(OH)2− species are not observed on Au(111) surface in contrast to the results on Ag(111) surface. Hence, only two steps of hydrolysis of BH3− can happen on the Au(111) surface, and BH(OH)2 is the final product adsorbed on the Au3-NP surface.

The release of products from the Au(111) surface was studied according to equations (S4)–(S15). When H2 is adsorbed with BH3(OH)− and BH3(OH)2−, BH3− is preferably released from the Au3-NP surface (S4–S7). When BH3(OH)− and BH3(OH)2− are adsorbed, the release of BH3(OH)2− is preferred (S8 and S9). However, reaction (16) is more exothermic than reaction (S9), and the H release to the Au3-NP surface will be preferred over BH3(OH)2− desorption from the Au3-NP surface. According to reactions (S10)–(S13), the BH(OH)2 desorption is highly endothermic when BH(OH)2− is adsorbed with other borohydride species on the Au3-NP surface. At higher surface coverage, weakening of adsorption is observed for the adsorbates, facilitating the desorption of adsorbates from the surface. The BH(OH)2 adsorption energy on Au(111) surface is lowered with an increase of surface coverage (Table S1), and according to reactions (S14) and (S15), the desorption free energies of BH(OH)2 from the Au3-NP surface becomes less endothermic with increased surface coverage. Therefore, upon BH3− hydrolysis on Au(111) surface, BH(OH)2 will be released to the aqueous phase only at a high BH3− coverage ratio.

The hydrogen atoms released to the surface react to form H2 according to reaction (20) on Au3-NP and reaction (21) on Ag3-NP. Reaction (21) is much more exothermic (−0.30 eV) than reaction (20) (−0.03 eV). Consequently, on Au3-NP, not all the hydrogen atoms form H2 molecules, as reaction (20) describes an equilibrium process, while on Ag3-NP, all the released hydrogen atoms form H2 molecules.

\[
\Delta G^0 = -1.01 \text{ eV} \quad (E_a = 0.03 \text{ eV})
\]

The BH(OH)2 intermediate formation is highly exothermic and the H is released to the Au(111) surface without an activation energy barrier similar to that on the Ag(111) surface. BH(OH)2

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]

\[
\text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e \rightarrow \text{BH}_3^+H^+e
\]
The hydrolysis of BH$_4^-$ on Ag$_x$-NPs and Au$_x$-NPs are different in their final desorbed products from the surface. In both cases the hydrolysis of BH$_4^-$ on the surface is not complete. On the silver surface the BH$_4^-(\text{OH})_2$ is released to the aqueous phase, as the following hydrolysis steps have a higher barrier, while BH$_2(\text{OH})_2$ is the final product of hydrolysis of BH$_4^-$ on Au$_x$-NPs. The overall hydrolysis pathway on Ag$_x$-NP and Au$_x$-NP surface is given in Figure 4. The desorption of BH$_2(\text{OH})_2$ from Au$_x$-NPs is endothermic and may succeed only in a very high coverage ratio. It was decided to check this conclusion experimentally.

Experimental Determination of the H$_2$ Yield in the Catalytic Hydrolysis of BH$_4^-$ on Ag$_x$-NPs and Au$_x$-NPs

The kinetics of hydrogen evolution from the catalytic hydrolysis of NaBH$_4$ was investigated in the presence of Ag$_x$-NPs and Au$_x$-NPs, Figure 5. The results clearly point out that:

1. The yield of H$_2$ formed in the catalytic hydrolysis of BH$_4^-$ on Ag$_x$-NPs and Au$_x$-NPs differs considerably. The experimental results are in agreement with the DFT derivation: Thus, for silver the DFT evaluation suggests that the catalysis on the surface involves 50% of the expected H$_2$ and then BH$_2(\text{OH})_2$ is released to the aqueous phase which is expected to release the rest of the H$_2$ upon acid addition, in reasonable agreement with the experimental result. On the other hand, the DFT predicts that on gold BH$_2(\text{OH})_2$ is the final product that does not desorb from the surface. This probably inhibits some BH$_4^-$ from reaching the surface. This BH$_4^-$ reacts with the acid upon addition. Why the adsorbed BH$_2(\text{OH})_2$ does not react with the acid is not clear at present.

2. When H$_3$SO$_4$ is added to lower the suspension’s pH to 2.0 after the catalytic process completion, the H$_2$ yield increases. The increment in yield reaches 100 and 60% in the Ag and Au systems, respectively. It is tentatively proposed that the acid hydrolys the borane species released into the homogeneous aqueous phase. This suggestion is in reasonable agreement with the DFT suggestions. However, it is difficult to explain how such large amounts of BH$_2(\text{OH})_2$ are adsorbed on the Au$_x$-NPs.

The HER study by Sermiagin et al. [11] on the hydrolysis of BD$_2^-$ on Ag$_x$-NPs and Au$_x$-NPs pointed out that the hydrogen evolution mechanism differs on these metals. The considerably higher HD formation on Ag$_x$-NPs than on Au$_x$-NPs is probably due to the fact that on Ag$_x$-NPs four H$_2$ molecules are released (two from the surface and two probably in the aqueous phase) whereas on Au$_x$-NPs only two are released.

Conclusions

The BH$_4^-$ hydrolysis mechanism on Au(111) surface is explored computationally using DFT methods; the results are supported experimentally. The adsorption energies of the species involved in the hydrolysis reaction are considerably larger on Au(111) than on Ag(111) due to the larger charge transfer between the adsorbate and the surface. The hydrolysis begins with the dissociation of BH$_4^-$ into BH$_3$ and H on the Au$_x$-NP surface. Upon hydrolysis, three hydrogen atoms are transferred from BH$_4^-$ to the Au$_x$-NP surface instead of one hydrogen on the Ag$_x$-NP surface (reactions (5), (15) and (16)) and the presence of hydrogen atoms enhances the H$_2$ formation on the Au$_x$-NP surface (reaction (14)). Only two steps of hydrolysis occur on the Au$_x$-NP surface and BH$_2(\text{OH})_2$ is the final product. The BH$_2(\text{OH})_2$ formation is highly endothermic in contrast to the observations on the Ag$_x$-NP surface. Different hydrolysis products were experimentally desorbed from Ag$_x$- and Au$_x$-NPs. Not all four hydrogens of BH$_4^-$ are catalytically hydrolyzed on the
Au–NP surface due to diverge hydrolysis mechanism on Au– and Ag–NPs, excluding the assumption that the catalytic BH$_4^-$ hydrolysis mechanism on M–NPs is independent of the nature of M. This conclusion is probably correct also for M–NPs catalyzed reductions by BH$_4^-$.

Acknowledgements

B.R.K. and S.V. is thankful to Ariel University for a Ph.D. fellowship

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: hydrolysis · hydrides · gold · density functional calculations · heterogeneous catalysis

[1] F. Dawood, M. Anda, G. M. Shafiullah, Int. J. Hydrogen Energy 2020, 45, 3847–3869.
[2] H. N. Abdelhamid, Int. J. Hydrogen Energy 2021, 46, 726–765.
[3] M. Dresselhaus, G. Crabtree, M. Buchanan, T. Mallouk, L. Mets, K. Taylor, P. Jena, F. DiSalvo, T. Zawadowski, H. Kung, I. S. Anderson, P. Britt, L. Curtiss, J. Keller, R. Kumar, W. Kwok, J. Taylor, J. Allgood, B. Campbell, K. Talamini, Basic Research Needs for the Hydrogen Economy. Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use, May 13–15, 2003.
[4] H. I. Schlesinger, H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Hoekstra, E. K. Hyde, J. Am. Chem. Soc. 1953, 75, 215–219.
[5] C. Çakanyıldırım, M. Gür, Int. J. Hydrogen Energy 2008, 33, 4634–4639.
[6] S. Amendola, Int. J. Hydrogen Energy 2000, 25, 969–975.
[7] S. Choi, Y. Jeong, J. Yu, Catal. Commun. 2016, 84, 80–84.
[8] J. Andrieux, U. B. Demirci, J. Hannon, G. Gervais, C. Goutaudier, P. Miele, Int. J. Hydrogen Energy 2011, 36, 224–233.
[9] Y.-C. Lu, M.-S. Chen, Y.-W. Chen, Int. J. Hydrogen Energy 2012, 37, 4254–4258.
[10] C. Xiang, D. Jiang, Z. She, Y. Zou, H. Chu, S. Qiu, H. Zhang, F. Xu, C. Tang, L. Sun, Int. J. Hydrogen Energy 2015, 40, 4111–4118.
[11] A. Sermiagin, D. Meyerstein, R. Bar-Ziv, T. Zidki, Angew. Chem. Int. Ed. 2018, 57, 16525–16528; Angew. Chem. 2018, 130, 16763–16766.
[12] A. Zabeliäte, A. Balciūnaitė, I. Stainioniene, S. Lichüsiné, D. Simkūnaitė, J. Vaičiūnë, B. Šimkūnaitė-Stanyniené, A. Selskis, L. Tamašauskaite-Tamašiūnaitė, E. Norkus, Int. J. Hydrogen Energy 2018, 43, 23310–23318.
[13] V. Kojima, K. I. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, H. Hayashi, Int. J. Hydrogen Energy 2002, 27, 1029–1034.
[14] G. Guella, B. Patton, A. Miotello, J. Phys. Chem. C 2007, 111, 18744–18750.
[15] G. Rostamikia, M. J. Janik, Electrochim. Acta 2010, 55, 1175–1183.

Manuscript received: January 27, 2022
Revised manuscript received: April 10, 2022
Accepted manuscript online: April 11, 2022
Version of record online: May 17, 2022