A multi-centre survey reveals variations in the standard treatments and treatment modifications for head and neck cancer patients during Covid-19 pandemic

Ifigenia Vasiliadou a,1, David Noble b,1, Andrew Hartley c, Rafael Moleron d, Paul Sanghera c, Teresa Guerrero Urbano a, Stefano Schipani e, Dorothy Goyal f, Bernie Foran g, Shree Bhide h, Anoop Haridass i, Kannon Nathan j, Andriana Michaelidou k, Mehmet Sen l, Konstantinos Geropantas m, Mano Joseph n, Lorcan O’Toole o, Matthew Griffin p, Laura Pettig g, Jonathan Chambers q, Petra Jankowska r, Emma De Winton s, Rebecca Goranova t, Niveditha Singh u, Ketan Shah v,2,*, Anthony Kong Conceptualisation v, w,2,*,

Guy’s and St. Thomas NHS Foundation Trust, London, United Kingdom
Edinburgh Cancer Centre, Edinburgh, United Kingdom
Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
Aberdeen Royal Infirmary, Aberdeen, United Kingdom
Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
Imperial College Healthcare NHS Trust, London, United Kingdom
Weston Park Cancer Centre, Sheffield, United Kingdom
Royal Marsden NHS Foundation Trust, London and Sutton, United Kingdom
Chatterbridge Cancer Centre, Liverpool, United Kingdom
Kent Oncology Centre, Maidstone and Canterbury, United Kingdom
Leeds Cancer Centre, Leeds, United Kingdom
Norfolk and Norwich University Hospital, Norwich, United Kingdom
The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
Castle Hill Hospital, Cottingham, United Kingdom
Nottingham University Hospitals, Nottingham, United Kingdom
Lincoln Davie Cancer Centre, Shrewsbury, United Kingdom
Torbay Hospital, Torquay, United Kingdom
Musgrove Park Hospital, Taunton, United Kingdom
Royal United Hospital, Bath, United Kingdom
Derriford Hospital, Plymouth, United Kingdom
Northampton General Hospital, Northampton, United Kingdom
Oxford University Hospitals, Oxford, United Kingdom
King’s College London, London, United Kingdom

ARTICLE INFO

Keywords:
Head and neck cancers
COVID-19 pandemic
SARS-CoV-2
Survey
Treatment modifications
Feeding tube
Radiotherapy

ABSTRACT

Background: The onset of the COVID-19 pandemic necessitated rapid changes to the practice of head and neck oncology in UK. There was a delay between the onset of the pandemic and the release of guidelines from cancer societies and networks, leading to a variable response of individual centres. This survey was conducted to assess the pre-Covid-19 pandemic standard of practice for head and neck oncology patients and the treatment modifications introduced during the first wave of the pandemic in UK.

Methodology: The UK National Cancer Research Institute (NCRI) Head and Neck Clinical Studies Group initiated a multi-centre survey using questionnaire to investigate the effect on feeding tube practice, radiotherapy (RT) fractionation and volumes, use of chemotherapy in the neo-adjuvant, concurrent and palliative setting, the use of...
Clinical and Translational Radiation Oncology 30 (2021) 50–59
51
consequences of anticancer treatment or of potential exposure of pa-
consider risk mitigation strategies for patients both because of reduced
without developing antibodies for a prolonged period [6].
non-cancer patients [5]. This may be related to some of the patients with
B cell-related haematological cancers have continued viral shedding
caused by the SARS-CoV-2 virus that is mainly spread by respiratory
secretions [1]. It was first recognised following an outbreak of the dis-
ease in December 2019 in Wuhan, China. It was declared as a global
pandemic by the World Health Organisation on 11th March 2020 [2].
Retrospective evidence produced early in the pandemic from China
indicated that cancer patients, including those receiving treatment for
cancer were at increased risk of serious COVID-19 morbidity, including
the need for ventilator support or death [3]. However, later studies
including a larger number of patients have shown that the mortality for
cancer patients with COVID-19 appears to be principally driven by the
patients’ other co-morbidities, age and gender rather than the use of anti-
cancer treatment [4]. Nevertheless, there may be a difference in patients
with haematological cancers since some of these patients with SARS-
CoV-2 infection have worse outcomes compared with both the general
population with SARS-CoV-2 and patients with haematological malign-
nancies without COVID-19 while the immune signatures of SARS-CoV-2
positive solid cancer patients resembled those for SARS-CoV-2 positive
non-cancer patients [5]. This may be related to some of the patients with
B cell-related haematological cancers have continued viral shedding
without developing antibodies for a prolonged period [6].
Since the outbreak of COVID-19, oncology departments have had to
to consider risk mitigation strategies for patients both because of reduced
availability of radiographers and chemotherapy nurses due to sickness,
self-isolation or staff redeployment and concerns regarding the possible
consequences of anticancer treatment or of potential exposure of pa-
tients to viral transmission during their visits to the hospital [7].
The outcomes for patients with head and neck squamous cell carcinoma
(HNSCC), depend on a number of factors, not least HPV status [8].
Recent data suggest 84.6% 5-yr overall survival [9] and 97.5% 2-yr
overall survival [10] for better prognosis HPV-driven disease whilst
mortality is much higher for high-risk HPV-negative tumours with a 3-
year overall survival of 57.1% (8). HNSCC poses particular problems
due to frequent visits required for a course of radical chemother-
radiotherapy. Moreover, there is a significant risk of aerosol generation
during diagnostic workup for patients with HNSCC, and there is evi-
dence from China, Italy, and Iran, of increased transmission rates to
otaryngologists [11]. A number of guidelines have been published from
both surgical and oncology networks at institutional, national and
international levels to assist clinicians in the safe delivery of services
based on the new challenges faced [12–16].
The American Society of Radiation Oncology (ASTRO) and the Eu-
ropean Society for Radiotherapy and Oncology (ESTRO) published
practice recommendations for radiation oncologists involved in the care
of head and neck cancer patients in April 2020 [12]. The aim of the
current study, initiated by NCRI Head and Neck Clinical studies group,
was to survey UK head and neck oncologists regarding both standard
practice pre-pandemic and the treatment modifications introduced for
head and neck cancer patients during the first wave of the COVID-19
pandemic.
Materials and methods
The UK NCRI Head and Neck Clinical Studies Group initiated a multi-
centre survey by distributing a Microsoft excel (with Microsoft word
version) questionnaire containing 21 questions to head and neck clinical
oncologists at different UK centres to assess pre-pandemic standard
treatments and the treatment/practice modifications introduced. The
questionnaire was designed to investigate the effect of the first wave of
the pandemic on prophylactic or reactive use of feeding tubes, access to
radiology and histopathology services, availability of diagnostic and
therapeutic surgical procedures, radiotherapy fractionation and vol-
umes, use of chemotherapy in the neo-adjuvant, concurrent and palli-
ative setting and the use of immunotherapy in the palliative setting.
The questionnaire was sent out in July to September 2020 to a total
of 30 centres across UK and all replies were collected by December 2020.
This survey covered the period between February 2020 to July 2020
which is the period following the first wave of COVID-19 pandemic. The
questionnaire included a total of 9 main domains with further questions
in each domain as evident in the appendix. The survey aimed to inves-
tigate changes in patterns of practice across head and neck oncology
units in general, and did not specify response stratification by primary
site or histological subtype. Therefore, whilst the majority of data pre-
sented pertain to patients with HNSCC, changes in practice for salivary
gland tumours, and cutaneous cancers of the head and neck are also
represented.
Results
Thirty centres were approached and twenty three (76.7%) oncolo-
gists from different cancer centres responded and participated in the
survey including those from Guys Cancer Centre (London), Leeds Cancer
Centre, Beatson Glasgow Centre, Imperial College Healthcare NHS Trust
(London), Weston Park Cancer Centre (Sheffield), Royal Marsden Hos-
pital (London & Sutton), Clatterbridge Cancer centre (Liverpool), Kent
Oncology Centre West, Kent Oncology Centre East, Oxford University Hospitals,
Aberdeen Royal Infirmary, Norfolk & Norwich University Hospitals NHS Foundation Trust, Queen Elizabeth Hospital (QEH)
(Stevenage), The Royal Wolverhampton NHS Trust, Castle Hill Hos-
pital (Cottingham), Nottingham University Hospitals, Lingen Davies Cancer Center (Royal Shrewsbury Hospital), Torbay Hospital (Torquay), Musgrove Park Hospital (Taunton), Royal United Hospital (Bath), Der-
riford Hospital (Plymouth), Edinburgh Cancer Centre and Northampton
General Hospital.
21 (91%) centres had at least one treatment modification and this
commenced in March 2020 during the peak of the first wave. 9/23

Background
Coronavirus disease 2019 (COVID-19) is highly contagious and
cured by the SARS-CoV-2 virus that is mainly spread by respiratory
secrections [1]. It was first recognised following an outbreak of the dis-
ease in December 2019 in Wuhan, China. It was declared as a global
pandemic by the World Health Organisation on 11th March 2020 [2].

Materials and methods
The UK NCRI Head and Neck Clinical Studies Group initiated a multi-
centre survey by distributing a Microsoft excel (with Microsoft word
version) questionnaire containing 21 questions to head and neck clinical
oncologists at different UK centres to assess pre-pandemic standard
treatments and the treatment/practice modifications introduced. The
questionnaire was designed to investigate the effect of the first wave of
the pandemic on prophylactic or reactive use of feeding tubes, access to
radiology and histopathology services, availability of diagnostic and
therapeutic surgical procedures, radiotherapy fractionation and vol-
umes, use of chemotherapy in the neo-adjuvant, concurrent and palli-
ative setting and the use of immunotherapy in the palliative setting.
The questionnaire was sent out in July to September 2020 to a total
of 30 centres across UK and all replies were collected by December 2020.
This survey covered the period between February 2020 to July 2020
which is the period following the first wave of COVID-19 pandemic. The
questionnaire included a total of 9 main domains with further questions
in each domain as evident in the appendix. The survey aimed to inves-
tigate changes in patterns of practice across head and neck oncology
units in general, and did not specify response stratification by primary
site or histological subtype. Therefore, whilst the majority of data pre-
sented pertain to patients with HNSCC, changes in practice for salivary
gland tumours, and cutaneous cancers of the head and neck are also
represented.
Results
Thirty centres were approached and twenty three (76.7%) oncolo-
gists from different cancer centres responded and participated in the
survey including those from Guys Cancer Centre (London), Leeds Cancer
Centre, Beatson Glasgow Centre, Imperial College Healthcare NHS Trust
(London), Weston Park Cancer Centre (Sheffield), Royal Marsden Hos-
pital (London & Sutton), Clatterbridge Cancer centre (Liverpool), Kent
Oncology Centre West, Kent Oncology Centre East, Oxford University Hospitals,
Aberdeen Royal Infirmary, Norfolk & Norwich University Hospitals NHS Foundation Trust, Queen Elizabeth Hospital (QEH)
(Stevenage), The Royal Wolverhampton NHS Trust, Castle Hill Hos-
pital (Cottingham), Nottingham University Hospitals, Lingen Davies Cancer Center (Royal Shrewsbury Hospital), Torbay Hospital (Torquay), Musgrove Park Hospital (Taunton), Royal United Hospital (Bath), Der-
riford Hospital (Plymouth), Edinburgh Cancer Centre and Northampton
General Hospital.
21 (91%) centres had at least one treatment modification and this
commenced in March 2020 during the peak of the first wave.
applied changes to standard practice for 2 months, 8/23
(34.8%) for 3 months, 3/23 (13.0%) for 4 months and 1/23 (4.3%)
for 7 months (change in radiotherapy fractionation maintained until
October 2020). All centres initiated modifications based on the increase
in incidence and the risk of complications and mortality from exposure
to SARS-CoV-2 infection. Most clinicians attempted to reduce the
number of visits and thus reduce the risk of the patients getting infected
with the virus. Although two centres did not report any treatment
modification during this period, one of the centres adopted a watch and
wait approach on new systemic treatment and the other centre used
pembrolizumab as 1st line systemic treatment for recurrent or meta-
static HNSCC in the palliative setting following NHS England’s Interim
Guidance on pembrolizumab [17]. The two centres with no modifications
reported low incidence of Covid-19 infection in the geographical
area covered by the unit surveyed and thus did not see any need for
treatment modifications

Feeding tube

We found that the feeding tube practice for head and neck cancer
patients undergoing radical radiotherapy treatment varies across UK.
Most centres (18/23; 78.3%) reported the use of elective/prophylactic
percutaneous endoscopic gastrostomy (PEG) or radiologically inserted
gastrostomy (RIG) for most patients or specifically for patients under-
going bilateral neck irradiation and/or concurrent chemotherapy. A
smaller number of cancer centres (5/23; 21.7%) reported a reactive
policy of nasogastric/nasojejunal tube (NGT/NJT) inserted during
radiotherapy when patients experience difficulty in swallowing with
elective RIG/PEG being reserved for those with pre-existing or deemed
to have imminent swallowing or aspiration problems during radio-
therapy. Eight (34.8%) centres changed their feeding tube practice
during Covid-19 pandemic: two centres (8.7%) changed their practice
from reactive to elective feeding tube, five centres (21.7%) changed
from elective/prophylactic PEG/RIG to reactive NGT (three centres re-
ported that this was due to reduced capacity for the procedure) and one
centre (4.3%) changed from prophylactic gastrostomy to PEGs due to
restrictions in local endoscopy service (table 1 and Fig. 1)

Radiotherapy volumes and fractionation

The survey demonstrated variation in the standard primary radical
radiotherapy fractionation used for head and neck cancer patients
across the cancer centres. The 70 Gy/35 fractions/7 weeks (70 Gy/35#)
fractionation is regarded as gold standard worldwide and is more commonly
used at many cancer centres throughout the world. In this survey, it is
still used at 6/23 (26.1%) participating centres while the majority of the
centres (17/23;73.9%) have adopted 65 Gy/30 fractions/6 weeks
(65 Gy/30#). One centre uses 70 Gy/35 fractions for patients under-
going concurrent chemoradiation but uses 65 Gy/30 fractions for pa-
patients undergoing radical radiotherapy alone.

During the Covid-19 first wave peak, fifteen (65%) centres initiated a
change in radical radiotherapy fractionation schedule (Table 2 and
Fig. 2). For those centres that where 70 Gy/35# was standard, this
fractionation continued to be used for some younger and fit patients
while selected patients (including those older and those with co-
morbidities) received 65 Gy/30#, DAHANCA [18] (68 Gy/34# x 6/week)
instead of concurrent chemoradiation or 55/20# (small volume).
For those centres that use 65 Gy/30# as their standard fractionation,
treatment modification included 55 Gy in 20# (either all or selected
patients such as those with co-morbidities or older patients) or 50 Gy/
15–16# (small volumes) and 3 centres used 68 Gy/34# x 6 fractions per
week (DAHANCA) instead of chemoradiation [18]. For early larynx SCC
T1/T2N0M0, 55 Gy/20# is the standard fractionation but during Covid-
19 pandemic, one centre used 50 Gy/16# as an option for T1 larynx SCC
and another centre used 50 Gy/15# or 50 Gy/16#.

For postoperative radiotherapy (PORT), the standard practice for UK

![Clinical and Translational Radiation Oncology 30 (2021) 50–59](image-url)

Table 1
Feeding tube practice for head and neck patients undergoing radical radio-
therapy across UK.

Oncology centres	Standard practice	During COVID-19
Guys Cancer Centre; London	Reactive	Prophylactic
Leeds Cancer Centre; Leeds	Reactive	Prophylactic
Beatson Glasgow Centre; Glasgow	Reactive	No change
Imperial College Healthcare NHS Trust; London	Reactive	No change
Weston Park Cancer Centre; Sheffield	Prophylactic	No change
Royal Marsden Hospital; London and Sutton	Reactive	Prophylactic
Clatterbridge Cancer centre; Liverpool	Prophylactic	No change
Kent Oncology Centre-East (Canterbury)	Prophylactic	No change
Kent Oncology Centre – West (Maidstone)	Prophylactic	No change
Oxford University Hospitals; Oxford	Prophylactic	No change
Aberdeen Royal Infirmary; Aberdeen	Reactive NG feeding	No change
Norfolk & Norwich University Hospitals NHS Foundation Trust Norwich	Prophylactic	No change
Queen Elizabeth Hospital; Birmingham	Reactive	No change
The Royal Wolverhampton NHS Trust; Wolverhampton	Prophylactic	No change
Castle Hill Hospital; Nottingham	Prophylactic	No change
Lingen Davies Cancer Centre; Shrewbury	Prophylactic	No change
Torbay Hospital; Torquay	Prophylactic	No change
Musgrove Park Hospital; Taunton	Prophylactic	No change
Royal United Hospital; Bath	Prophylactic	No change
Derriford Hospital; Plymouth	Prophylactic	No change
Edinburgh Cancer Centre; Edinburgh	Prophylactic	No change
Northampton General Hospital; Northampton	Prophylactic	No change

centres was generally consistent, using 60 Gy/30# (64–66 Gy/32–33#
for high risks such as positive margin or extracapsular spread at some
centres). Ten (43.5%) centres reported changing their standard PORT
fractionation to 50 Gy or 55 Gy in 20# (either for all patients or for
selected patients such as those with co-morbidities or older patients and

![Image-url](image-url)
those undergoing small volume and unilateral radiotherapy treatment at some centres) (Table 2). In addition to using 50–55 Gy/20# for PORT, one centre stated that they discussed pros and cons of not having PORT in intermediate risk patients with comorbidities and omission of chemotherapy and use of PORT +/- boost in high-risk patients. One centre used 60 Gy/30# with simultaneous integrated boost (SIB), 65 Gy/30# to high-risk volume (in place of concurrent chemoradiation) while using 50 Gy/20# for small volumes (Table 3).

For palliative radiotherapy fractionation, four (17.4%) centres have reported a change with three centres avoided using radiotherapy longer than 1 week (e.g. 25 Gy/5#, 20 Gy/5# or 8 Gy/1#) and one centre changed from 45 Gy/15# to 27 Gy/6#/twice weekly. One centre reported no change for most patients but considered 27 Gy/6#/twice weekly if needed. Most other centres did not change palliative fractionation and used 20 Gy in 5 fractions and/or 8 Gy in 1 fraction while 3 centres continued to use 14 Gy/4# (twice a day and at least 6 h apart, for 2 consecutive days, repeated at 4 weekly intervals for a further two courses if no disease progression) [19].

Only three centres (13%) reported changing their radiotherapy delineation protocols. One centre adopted the international consensus target delineation guidelines (5 + 5 margin) [20] for primary and nodal GTV in selected patients; those with easily identified tumours in CT planning scan and those with MRI planning scan) and selected cases had modified target volume delineation including omitting contralateral nodal irradiation with possible reduction in ipsilateral nodal irradiation to include only the level adjacent to involved nodes except retropharyngeal node and avoided irradiation to the lung apices. A further centre changed the volume delineation for elderly high risk PORT patients by offering unilateral rather than bilateral neck radiotherapy, in selected cases, in an attempt to reduce the overall burden of acute toxicity, and the need for hospital admission. At one centre, standard delineation was carried out in most patients although small adaptation was applied to reduce the extent of prophylactic level 4 neck nodal volumes inferiorly to minimise irradiation to lung apices and prophylactic irradiation to the higher retropharyngeal (RP) lymph nodes was excluded where the risk of spread was low. In addition, unilateral treatment was considered in moderate risk or frail patients

Systemic treatment:

Neo-adjuvant chemotherapy:

Neoadjuvant chemotherapy is usually only given to selected patients at most cancer centres including those with nasopharyngeal cancer or those with heavier disease burden or positive nodal disease. During the COVID-19 pandemic, twelve (52.2%) centres stopped giving neo-adjuvant chemotherapy treatment to all patients and 8 (34.8%) centres were giving neo-adjuvant chemotherapy to very exceptional cases including young patients, those with significant disease related symptoms or those with nasopharyngeal cancers. If given, it was reported that neoadjuvant treatment was given either with dose reduction (75% Cisplatin), 2 drugs (instead of 3 drugs combination like docetaxel, cisplatin and 5FU chemotherapy) and/or with GCSF cover. One (4.3%) centre was giving neo-adjuvant chemotherapy with dose reduction (75% Cisplatin). Two (8.7%) centres reported no change in the neo-adjuvant chemotherapy standard practise (Fig. 3a).

Concurrent chemotherapy. One (4.3%) centre omitted chemotherapy for all patients. Thirteen (56.5%) centres omitted chemotherapy in selected cases (e.g. > 60 or if DAHANCA radiotherapy fractionation is used or after discussion with selected patients). At one of these centres patients were given the option to omit following detailed discussion of risk versus benefit. All but 2 patients at this centre chose to carry on with concurrent chemotherapy. Three (13%) centres changed cisplatin to carboplatin for all patients, whereas one centre changed to carboplatin for only selected patients. Two (8.7%) centres changed the cisplatin schedule from 3 cycles to 2 cycles (standard radiotherapy fractionation...
Radical radiotherapy fractionation (primary or PORT) for head and neck patient across UK.

Oncology centres	Standard practice	During COVID-19	
Guys Cancer Centre	Primary: 65 Gy/30#; PORT: 60 Gy/30#	Primary: 55 Gy/20#/50 Gy/15-16# (small volume); PORT: 50 Gy/20#	
Leeds Cancer Centre	Primary: 70 Gy/35#/74# (for RT only 65 Gy/30#/6 weeks) PORT: 60-66 Gy/30-33#	Primary: 65 Gy/30# PORT: No change	
Beatson Glasgow Centre	Primary: 65 Gy/30# low-risk; 54 Gy/30# low-risk;	No change	
Imperial College Healthcare NHS Trust	Primary: 65 Gy/30#; PORT: 60 Gy/30# Small field larynx: 55 Gy/20#	55 Gy/20# (~80 or significant comorbidities) or deferred during peak	
Weston Park Cancer Centre	Primary: 70 Gy/35#; PORT: 60-66 Gy/30-33#	Mostly no change. If small volume or DAHANCA (68 Gy/34# x 6/week)	
Royal Marsden Hospital	Primary: 65 Gy in 30#	No change	
Clatterbridge Cancer Centre	Primary: 70 Gy/35# PORT: 60 Gy/30#	Primary: Selected patients: 65 Gy/30#; Smaller volumes: 55 Gy/20#; T1 Larynx: 50 Gy/16# option; PORT: Fatigue discussion in intermediate risk patients with comorbidity. High-risk patients discuss omission of chemotherapy and use RT +/- boost; Consider use of 4-week regime 50-55 Gy in 20# Primary: 70 Gy/35# for young patients; otherwise 55 Gy/20#; PORT: 50 Gy/20#	
Kent Oncology Centre; East	Primary: 70 Gy/35# PORT: 66 Gy/33#	Primary: 70 Gy/35# for young patients; otherwise 55 Gy/20#; PORT: 55 Gy/20#/6 weeks) Primary: 70 Gy/35# for young patients; otherwise 55 Gy/20#; PORT: 55 Gy/20#	
Kent Oncology Centre; West	Primary: 70 Gy/35#	Primary: 55 Gy/20# (selected patients); PORT: 55 Gy/20#	
Oxford University Hospitals	Primary: 65 Gy/30# PORT: 60 Gy/30#	No change (used 55 Gy/20# in 4-5 patients)	
Aberdeen Royal Infirmary	Primary: 65 Gy/30# (Nasopharynx 70 Gy 33#/ early glottis 55 Gy/20#) PORT: 66-60 Gy 33-30#	No change	
Norfolk & Norwich University Hospitals	Primary: 65 Gy in 30# PORT: 60-66 Gy/30#	Primary: 55 Gy/20# in very selected elderly population; DAHANCA 68/34#/6 weeks per week when no chemo; PORT: 50 Gy/20# in very selected elderly population 55 Gy/20# discussed as alternative to standard particularly ≥ 60 years No change	
Queen Elizabeth Hospital	Primary: 65 Gy in 30# PORT: 60-65 in 30#	Primary: 55 Gy/20#	
The Royal Wolverhampton NHS Trust Castl Hill Hospital	Primary: 65 Gy/30#/weekly PORT: 60 Gy/30#/	No change	
Nottingham University Hospitals	Primary: 70 Gy in 35#/ PORT: 66 Gy/33# if ECE or RT (weekly platinum), 60 Gy in 30# for no high-risk features PORT: 60 Gy/30#	Primary: 65 Gy/30#/ PORT: No change	
Lingen Davies Cancer Centre	Primary: 65 Gy/30#/ PORT: 60 Gy/30#	Primary: 55 Gy/20# for patients felt to be high risk of at these centres was 70 Gy/35#; one centre gave GCSF cover and one centre gave reduced dose). One (4.3%) centres changed treatment to week 1 and week 5 instead of three weekly, one (4.3%) centre changed from three weekly cisplatin to weekly and one (4.3%) centre omitted cycle 2 of treatment for majority of patients already on concurrent chemoradiation. One (4.3%) centre changed cisplatin to 75% of dose with the same schedule and three (13.0%) centres did not change treatment (Fig. 3a).	

New palliative systemic treatment

Seventeen (73.9%) centres changed 1st line palliative systemic chemotherapy treatment to pembrolizumab for recurrent or metastatic HNSCC following NHS England’s interim guidance and approval of pembrolizumab for eligible patients. Five centres (21.7%) followed either a ‘watch and wait’ approach or delayed all referrals. One (4.3%) centre did not change palliative 1st line treatment practice (Fig. 3a).

Existing systemic treatment

Ten (43.5%) centres did not change chemotheraphy treatment for patients on treatment; eight (34.8%) centres stopped the treatment early or offer delays during lockdown, one (4.3%) centre reduced dose to 75% and stopped cetuximab, one (4.3%) centre changed cetuximab from weekly to two weekly. One (4.3%) centre stopped only 3rd line chemotherapy with two (8.7%) centres decision was taken on individual basis (Fig. 3a).
Second-line immunotherapy (nivolumab) post platinum chemotherapy progression

Twelve (52%) centres changed nivolumab treatment from 2-weekly to 4-weekly. Nine (39%) centres did not make any change to nivolumab treatment (one centre changed some to 4 weekly based on individual discussion). Two (8.7%) centres offered a treatment break during lockdown (Fig. 3a).

Surgery

Fourteen (64.8%) centres had no change in surgical practice. Seven (30.4%) centres had changes in selected cases where it was decided to deliver primary radiotherapy instead of surgery due to various reasons including limited access to theatre or intensive care unit (Fig. 3b). One centre (4.3%) did not proceed to surgery in high-risk cases with low chance of cure which might have been attempted before Covid-19 pandemic and these patients were not treated radically. At one centre (4.3%), the maxillofacial team undertook local resection and omitted neck dissections in cN0 high risk patients and replaced with close surgical FU instead. Since the trial recruitment for PATHOS (Post-operative Adjuvant Treatment for HPV-positive Tumours) was suspended nationally during this time, patients who would have been offered the trial were treated with definitive radiotherapy instead for the duration of the trial as per the standard of care at their cancer centres.

Radiology

The radiologist assistance during target volume contouring remained the same in eighteen (78%) centres and it was not applicable in 5 centres (22%). Moreover, twelve (52.2%) centres had the same capacity for scans. Ten (43.5%) centres performed only urgent scans and one (4.3%) centre had delays in imaging. Sixteen (70%) centres had no delays in reporting; eight (30%) centres had only minor delays in reporting (Fig. 3b).

Histopathology

Twenty-two (95.7%) centres had no change in histopathology reporting while only one (4.3%) centre has some delays in reporting (Fig. 3b).

Dental screening

Nineteen centres (82.6%) had no change in baseline dental screening; four (17.4%) centres had some changes with one (4.3%) having telephone-based prevention advice and two centres (8.7%) stopping their service. Ten (43.5%) centres had no change in post-treatment dental monitoring; in ten (43.5%) centres their treatment was cancelled or deferred; two (8.7%) centres changed to telephone consultation and 1 centre (4.3%) moved all patients to a different department as the local dental department closed.

COVID-19 screening pre-treatment and other changes

Twelve (52.2%) centres performed pre-treatment COVID swab test since the pandemic and four of these centres reported doing swabs weekly during treatment. Most centres have introduced several safety measures including personal protective equipment (PPE) use, reducing face to face consultation and increasing the use of video or telephone consultation, limitation of visitors to cancer centres, temperature check for patients and visitors, symptomatic and/or Covid-19 positive patients to have either treatment delay and/or to have treatment at a separate machine or the end of the day if it was deemed absolutely necessary to...
Radiotherapy across UK. Concurrent chemotherapy schedule for head-neck patients on chemo-radiation therapy. I. Vasiliadou et al.

Oncology centres	Standard practice	During COVID-19
Guys Cancer Centre	3 weekly cisplatin	Omitted for all patients
Leeds Cancer Centre	3 weekly cisplatin; 3 cycles (35#)	2 cycles (30#)
Beatson Glasgow Centre	3 weekly cisplatin	75% dose
Imperial College Healthcare NHS Trust	3 weekly cisplatin	Carboplatin substituted cisplatin
Weston Park Cancer Centre	3 weekly cisplatin	Omitted in some patients if > 60yrs of age and if DAHANCA schedule used (68 Gy/34#)
Royal Marsden Hospital Centre	Week 1 & 4 cisplatin; 100 mg/m2	Carboplatin substituted cisplatin
Clatterbridge Cancer Centre	3 weekly cisplatin (35#)	2 cycles (30#); reduced dose
Kent Oncology Centre; East	Weekly cisplatin	No omission or change to carboplatin. Change cisplatin to weeks 1 and 5 chemotherapy in a few patients balancing risk and benefit. No change of cisplatin to carboplatin or schedule
Kent Oncology Centre; West	3 weekly cisplatin	Considered omitting in > 60 - when given changed from 3 weekly to week 1 and week 5 with GCSF cover
Oxford University Hospitals	3 weekly for P05 patients, 40 mg/m2 weekly for other eligible patients risk of toxicity	Omission in selected cases after discussion with patient
Aberdeen Royal Infirmary	3 weekly cisplatin	No change
Norfolk & Norwich University Hospitals	Weekly cisplatin (opted for DAHANCA instead)	
Queen Elizabeth Hospital	Weekly cisplatin	For < 60 considered changing cisplatin to 3 weekly carboplatin. Omission of chemotherapy considered in 60-70 years
The Royal Wolverhampton NHS Trust	Weekly cisplatin (3 weekly in also in formulay)	Omission of chemotherapy discussed for patients 60-70 and avoided in some patients balancing risk and benefit. No change of cisplatin to carboplatin or schedule
Castle Hill Hospital	Weekly cisplatin (except nasopharynx 3 weekly)	No change; but patients were given the option to omit following detailed discussion of risk vs benefit.
Nottingham University Hospitals	Weekly or 3 weekly	Omitted for some patients > 60 where benefit felt to be smaller; change of cisplatin to carboplatin for most patients given concurrent chemo but no change of schedule change schedule
Lingen Davies Cancer Centre	Weekly cisplatin	Omission for some patients; no change of cisplatin to carboplatin or schedule
Torbay Hospital, Torquay	Weekly cisplatin	Omission in selected cases after discussion with patient; continue weekly cisplatin (not changed to carboplatin)
Mungrove Park Hospital, Taunton	3 weekly cisplatin	Omission in a small number of patients age > 60, 3 weekly changed to weekly but no change of cisplatin to carboplatin
Royal United Hospital	3 weekly cisplatin	Second cycle of concurrent chemo omitted for majority of patients already on CRT after discussion regarding risks/benefits; no change of cisplatin to carboplatin

Discussion

The onset of the COVID-19 epidemic necessitated swift changes to the practice of head and neck oncology. This was facilitated by guidelines produced by a range of specialist professional organisations, as well as by guidance from central authorities such as NHS England, and included changes to rigid commissioning and funding rules including those for the Cancer Drugs Fund (12–16). However, there was an inevitable delay between the onset of the pandemic and these publications, let alone any pertinent clinical data to guide decision making in the era of COVID-19. Therefore, as case numbers increased exponentially throughout the country in March and April, individual cancer centres had to make decisions about how standard treatment protocols should, or should not, be amended in the absence of any guidelines or consensus. We were particularly interested in the changes introduced following the first wave when oncologists were uncertain what to do, having never encountered this previously. We covered the survey between February to July 2020 since most centres had resumed normal practice by the end of June 2020 when the Covid-19 restrictions started to ease in the UK (although the survey found out that one centre had changes lasted until October 2020).

That individual centre responses should vary was inevitable. Not only were there significant differences in rates of COVID-19 infection, hospitalisation and pressures on ITU beds across the country during this time, but centres faced heterogeneous practical challenges such as the physical layout of departments, size of waiting rooms, availability of slots for systemic therapy, and staffing issues, in addition to the pressures on allied services such as surgery and radiology as seen in our data. Therefore, it is reasonable to suppose that each surveyed centre was faced with its own unique set of specific challenges, within the context of the broader national response to the pandemic.

Despite this, there are some clear trends in the ways in which clinicians responded to the challenges of COVID-19. With regards to radiotherapy fractionation schedules, 2 interesting themes emerge. Firstly, that 65 Gy in 30 fractions over 6 weeks has been widely accepted across the country as standard practice, with 17/23 surveyed centres (73.9%) reporting that this schedule was a standard protocol option before the onset of the pandemic. In contrast, 2 Gy per fraction schedules (70/35) were used by only 6/23 (26.1%) of centres. Secondly, we observed a clear trend towards centres increasing dose per fraction, and or reducing overall treatments during the pandemic. Fifteen of 23 surveyed centres (65.2%) changed practice to incorporate a schedule that did at least one of these things, for at least some patients treated at that centre, early in the pandemic. The use of radical hypofractionated radiotherapy courses in this context did have some randomised controlled trial (RCT) data to support it [18]. However, responses from centres infer that decision-making was also pragmatic, weighing up possible reductions in efficacy by implementing such regimes, with the risks of not reducing acute toxicity, fallout, and overall treatment as the pandemic.
approached its zenith. It is worth stating that amongst individual centres having their own heterogenous challenges, national guidance from the Royal College of Radiologists (Clinical Oncology) was strongly advocating consideration of hypofractionation to reduce footfall and risk of infection [21].

This theme of there being broad alignment in the use of first principles to guide decision making, with more superficial heterogeneity in the application of these principles to daily practice, is also seen in our data on systemic therapy. In general, survival benefits with the addition of concomitant systemic therapy to radical radiotherapy in patients with HNC are modest [22]. Weighing against this, the addition of cisplatin chemotherapy to radical radiotherapy regimes, requires long infusion times in hospital, an increased risk of toxicity requiring emergency management, and some direct risks of immunosuppression, which was naturally a concern during the pandemic. Furthermore, the delivery of chemotherapy in some areas was compromised by staff availability, and even where this was less problematic the modest survival benefit had to be balanced against the short-term perceived risks related to the effects of COVID-19. The latter were clearly difficult to quantify, although groups at risk of severe COVID were identified early in the pandemic.

![Figure 3a](image-url) Systemic treatment changes during the first wave of COVID-19 pandemic; one centre included both selective omission for older patients and drug switch for younger patients (included in drug switch); The other centre included both selective omission and drug switch (included in drug switch).

![Figure 3b](image-url) Changes in surgery, radiology assistance (input for radiotherapy contouring), radiology scans, radiology reporting and histopathology during the first wave of COVID-19 pandemic.
This balance of risks is reflected in the data pertaining to concomitant therapy, with 14/23 centres (60.9%) either omitting concomitant therapy altogether, or in selected cases. In addition, for centres where concomitant therapy was continued during the pandemic, many chose to reduce total dose, or dose density, or switch to a regime thought to be less immunosuppressive, or add GCSF, in an attempt to mitigate perceived risks. Interestingly, 2 centres either started or increased their use of the accelerated DAHANCA regimen, whilst reducing use of concomitant systemic therapy, on the basis that this protocol confers similar additional disease control benefits, and acute toxicity risks relative to the addition of systemic therapy to standard fractionation approaches, but without the immunosuppression [18].

The data in this study confirm our pre-conception that feeding tube practice is highly variable across UK centres. Again, this is not surprising, as evidence for one feeding tube policy being more efficacious is inconclusive; a review investigating different nutritional policies concluded that there was insufficient evidence to determine the optimal approach [23]. However, the data also show similar trends in the way issues around feeding tubes were managed during the pandemic. The fact that 15/23 (65.2%) of centres reported no change to practice suggests that clinicians were generally reluctant to amend this aspect of treatment protocols unless determined by necessity. Interestingly, 2 centres (8.7%) switched from reactive to elective feeding tube insertion in an attempt to reduce the risk of acute hospital admission during the pandemic, whilst five of 23 centres (21.7%) had to switch from elective feeding tubes to reactive NGT, due to reduced capacity and access to endoscopy. However, in our view, it is a testament to our colleagues across the multi-disciplinary team that this proportion was so low, given the extreme pressures on hospitals at the time.

As seen with practice changes in both radiotherapy and systemic therapy, the range and magnitude of additional pressures seen in the early stages of the pandemic had an inevitable effect on surgical practice – notably the big reduction in access to ITU beds. However, recent evidence has highlighted the safety of head and neck surgical practice during the COVID-19 pandemic [25]. Interestingly, where surgery was omitted, radiotherapy and/or chemotherapy was considered as a substitute or a temporising measure, slightly in conflict with the logic of arguments detailed above. Furthermore, where surgery could and did take place, this triggered further debate in the use, and technical details, of post-operative radiotherapy. Some evidence supported the indications and doses for treatment and helped to quantify the benefits of chemoradiotherapy in this setting [26,27].

Our results are consistent with ASTRO/ESTRO recommendations, which were published during the peak of the 1st wave of the pandemic in April 2020 [12]. First of all, there was a strong agreement to suggest hypofractionation radiation schedule in case of severely reduced radiation therapy capacity; however, these changes were implemented during the risk mitigation phase in a lot of centres (61% of centres offering hypofractionation schedule to all or selected patients). Moreover, there was a strong agreement to continue with the use of concurrent chemotherapy with numerous panelists stating they would consider changing to weekly cisplatin. However, it was recognised that the use should be restricted in patients with a higher risk of more serious SARS-CoV-2 infection such as patients with co-morbidities or of older age. This is also evident on the results of the survey with only one centre (4.3%) omitting chemotherapy for all patients and thirteen (56.5%) omitting selected cases deemed to be high-risk of infection and mortality. This was in agreement with the national guidance from the Royal College of Radiologists (Clinical Oncology) [21], which advocated omission of concurrent chemotherapy in patients over 60 years old or in those with significant comorbidity. Finally, there was a strong agreement not to increase the use of prophylactic feeding tube. As highlighted above, there are underlying discrepancies on feeding tube practice across UK centres. During the first wave of COVID-19 pandemic, 14/23 (60.9%) centres were using prophylactic feeding tubes with 2 of those centres changing their policy from reactive to prophylactic during the first wave.

One focus of the UK NCRI Head and Neck Clinical Studies Group has been to consider whether the changes instituted due to the epidemic present an opportunity to answer clinical research questions. The interventions described were generally short term, and implemented quickly, and often simultaneously across the country (and indeed internationally). It is relatively easy to identify the patients affected because the time at which clinical decisions and treatments were made is clearly defined. However, as we have demonstrated, centres across the country took differing approaches, changing management in a heterogeneous manner depending on local oncological and epidemiological considerations, and for varying lengths of time. Data on short term outcomes such as toxicity is poorly collected and not standardised outside clinical trials. Collection of long-term outcomes such as recurrence, feeding tube dependency, other quality of life outcomes and even death is also poor, and national initiatives to improve data quality following the Data Audit for Head and Neck Oncology (DAHNO) have faltered. Thus, whilst the notion of learning as much as we can from the pandemic is both scientifically and ethically laudable, we suggest that the problems described will confer very significant methodological challenges for those seeking to do so.

So what can be learned from the experience in Head and Neck oncology during the pandemic of 2020? This study shows that whilst the details of crisis response across the nation were heterogeneous, there were clear trends in the principles and logic that clinicians applied to weigh the relevant risks, before clinical data or consensus expert opinion was available to help frame these decisions. Furthermore, the study also shows considerable variation in many aspects of practice prior to the onset of the pandemic. Whilst the fundamentals of treatment for HNSCC are similar across the country, there is a lack of baseline consensus on the detailed application of issues as diverse as prophylactic dental management, feeding tube placement, radiotherapy fractionation and chemotherapy drugs and doses. We aim to collect the treatment and survival outcome data on some of these affected patients who had treatment modifications, which may provide lessons to be learnt for future pandemics. Moreover, it will be interesting to assess outcomes and the effect of delays to diagnosis and treatment as the delays reported in this survey were subjective and we did not report actual metrics.

In summary therefore, these data present an interesting paradox. In one sense, it is reassuring that centres across the country applied such similar approaches to dealing with the ‘once in a generation’ crisis brought by COVID-19. However, the crisis has also exposed underlying discrepancies in standard practice, and may provide an impetus to change. A timely initiative from the Royal College of Radiologists seeks to form a consensus on UK head and neck cancer management, as has been achieved in other tumour sites [28].

Funding

This research received no external funding.

Informed consent statement

Not applicable.

Data availability statement

All data relevant to the study are included in the article.

CRediT authorship contribution statement

Ifigenia Vasiliadou: Methodology, Formal analysis, Data curation, Writing – original draft. David Noble: Methodology, Formal analysis, Data curation, Writing – original draft. Andrew Hartley: Data curation. Rafael Moleron: Data curation. Paul Sanghera: Data curation. Teresa
Guerrero Urbano: Data curation. Stefano Schipani: Data curation. Dorothy Gujral: Data curation. Bernie Foran: Data curation. Shree Bhide: Data curation. Anoop Haridass: Data curation. Kannon Nathan: Data curation. Andriana Michaelidou: Data curation. Mehmet Sen: Data curation. Konstantinos Geronantas: Data curation. Mano Joseph: Data curation. Lorcan O’Toole: Data curation. Matthew Griffin: Data curation. Laura Pettit: Data curation. Jonathan Chambers: Data curation. Petra Jankowska: Data curation. Emma De Winton: Data curation. Rebecca Goranova: Data curation. Niveditha Singh: Data curation. Ketan Shah: Methodology, Formal analysis, Data curation, Writing – original draft, Writing - review & editing. Anthony Kong Conceptualisation: Methodology, Formal analysis, Resources, Data curation, Writing – original draft, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ctro.2021.06.002.

References

[1] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223): 497-504.

[2] WHO/Europe | Coronavirus disease (COVID-19) outbreak - WHO announces COVID-19 outbreak a pandemic [Internet]. [cited 2021 Mar 6]. Available from: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3-who-announces-covid-19-outbreak-a-pandemic.

[3] Liang W, Guan W, Chen R, Wang R, Li J, Xu K, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 2020;21(3):335-7.

[4] Lee LY, Czajek JB, Angelis V, Arnold R, Bisht V, Campion NA, et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: A prospective cohort study. The Lancet. 2020;395(10241):1919–26.

[5] Passamonti F, Cattaneo C, Arcaini L, Bruna R, Cavo M, Merli F, et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. The Lancet Haematology. 2020 Oct 17;7(10):e376–85.

[6] Abdul-Jawad S, Baül L, Alaguthurai T, del Molino del Barrio I, Laing AG, Hyadis TS, et al. Acute Immune Signatures and Their Legacies in Severe Acute Respiratory Syndrome Coronavirus-2 Infected Cancer Patients. Cancer Cell 2021; 39(2):257–265.e6.

[7] Yuen E, Fote G, Horwich P, Nguyen SA, Patel R, Davids J, et al. Head and neck cancer care in the COVID-19 pandemic: A brief update. Oral Oncol 2020;105: 104738. https://doi.org/10.1016/j.oraloncology.2020.104738.

[8] Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-T , et al. Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer. N Engl J Med 2010;363(1):24–35.

[9] Gillison ML, Trotti AM, Harris J, Ebhruch A, Harari PM, Adelstein DJ, et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet 2019;393(10166):60–50.

[10] Mehanna H, Robinson M, Harley A, Kong A, Foran B, Fulton-Liew T, et al. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALATE HPV): an open-label randomised controlled phase 3 trial. Lancet 2019 Jan;393(10166):51-60.

[11] AAO-HNS Position Statement: Otolaryngologists and the COVID-19 Pandemic | American Academy of Otolaryngology-Head and Neck Surgery [Internet]. [cited 2021 Mar 6]. Available from: https://www.entnet.org/content/aao-hns-position-statement-otolaryngologists-and-covid-19-pandemic.

[12] Thomson DJ, Palma D, Guckenberger M, Balenemas P, Beiter JJ, Blanchard P, et al. Practice Recommendations for Risk-Adapted Head and Neck Cancer Radiation Therapy During the COVID-19 Pandemic: An ASTRO-ESTRO Consensus Statement. Int J Radiat Oncol Biol Phys 2020;107(4):618–27.

[13] Mehanna H, Hardman JC, Shonson JA, Abou-Foul AK, Topf MC, Alfalasi M, et al. Recommendations for head and neck surgical oncology practice in a setting of acute severe resource constraint during the COVID-19 pandemic: an international consensus. Vol. 21, The Lancet Oncology. Lancet Publishing Group; 2020. p. e350-9.

[14] NHS England, 2021. NHS England interim treatment options during the COVID-19 pandemic. Available at https://www.nice.org.uk/guidance/ng161/resources/interim-treatment-change-options-during-the-covid-19-pandemic-endorsed-by-nhs-England-pdf-8715724381 (Accessed 23th March 2021).

[15] Kiog KI, Guo T, Yao CMKL, Gross NO, Hamanono MM, Ferrarotto R, et al. Changing practice patterns in head and neck oncologic surgery in the early COVID-19 era: In: Head and Neck. John Wiley and Sons Inc.; 2020. p. 1179-86.

[16] Crosby DL, Sharma A. Evidence-Based Guidelines for Management of Head and Neck Mucosal Malignancies during the COVID-19 Pandemic. Otolaryngol Head Neck Surg 2020;163(1):16–24.

[17] Harrington KJ, Bhida SA, Forster MD, Good JS, Gunn L, Kong A, et al. Looking a Gift Horse in the Mouth: Observations on NHS England’s Interim Guidance on Peribulbarnum in Head and Neck Squamous Cell Cancer. Clin Oncol (R Coll Radiol). 2020;32(8):490–2.

[18] Overgaard J, Hansen HS, Specht L, Overgaard M, Grau C, Andersen E, et al. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6’7 randomised controlled trial. Lancet 2003 Sep 20;362(9388):933–40.

[19] Corry J, Peters LJ, Costa ID’, Milner AD, Fawns H, Rischin D, et al. The “QUAD SHOT”: A phase II study of palliative radiotherapy for incurable head and neck cancer. Radiother Oncol 2005;77(2):137–42.

[20] Gégoire V, Evans L, Le Q-T, Boursin J, Budach V, Chen A, et al. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinomas: ARO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HNBNPCG, HNCG, JAG-KHT, IPHRHT, NCIC CTC, NCRI, NRG Oncology, PHSN, SBRT, SOMERA, SSO, SHENO, TROG consensus guidelines. Radiother Oncol 2018;128(1):3–24.

[21] Tom Roques RP. Head and neck cancer and COVID-19 [Internet]. Royal College of Radiologists website. 2021 [cited 2021 Mar 24]. Available from: https://www.rcr.ac.uk/sites/default/files/heads-and-neck-cancer-treatment-covid19.pdf.

[22] Pignon J-P, Maître Al, Maillard E, Bourhis J. Meta-analysis of chemotherapy in oropharyngeal and oropharyngeal and oral cavity squamous cell carcinomas: ARO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HNBNPCG, HNCG, JAG-KHT, IPHRHT, NCIC CTC, NCRI, NRG Oncology, PHSN, SBRT, SOMERA, SSO, SHENO, TROG consensus guidelines. Radiother Oncol 2018;128(1):3–24.

[23] COVID-19: review of disparities in risks and outcomes - GOV.UK [Internet]. [cited 2021 Mar 6]. Available from: https://www.gov.uk/government/publications/covid-19-review-of-disparities-in-risks-and-outcomes.

[24] Nagent B, Lewis S, O’Sullivan JM. Enteral feeding methods for nutritional management in patients with head and neck cancers being treated with radiotherapy and/or chemotherapy. Cochrane Database of Systematic Reviews. 2013;2013(11):CD007994.

[25] Shaw, R., Winter, S.C., Glasby, J., Ho, M.W.S., Jackson, R., Ciconni, S., Ganly, L., Batstone, M., Rey Biel, J. and Nankivell, P.C., 2020. Head and neck cancer surgery during the COVID-19 pandemic: An international, multicenter, observational cohort study. Cancer. COVIDSurg Collaborative. Cancer 2021 Jul 15;127(14): 2476-2488.

[26] Winquist E, Oliver T, Gilbert R. Postoperative chemoradiationotherapy for advanced squamous cell carcinoma of the head and neck: A systematic review with meta-analysis. Head Neck 2007;29(1):38–46.

[27] Rosenthal DI, Mohsin ASR, Garden AS, Morrison WH, El-Naggar AK, Kamal M, et al. Final Report of a Prospective Randomized Trial to Evaluate the Dose-Response Relationship for Postoperative Radiation Therapy and Pathologic Risk Groups in Patients with Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2017; 98(5):1002–11.

[28] Bloomfield DJ. Development of Postoperative Radiotherapy for Breast Cancer: UK Consensus Statements — A Model of Patient, Clinical and Commissioner Engagement? Vol. 29, Clinical Oncology. Elsevier Ltd; 2017. p. 639–41.