Nowadays, the anterolateral thigh flap (ALT) represents the workhorse for most complex head and neck reconstructions not involving osseous components.1–3 It was first described by Song et al4 in 1984, and it has since been popularized by Wei,1,3,5 showing its application for head and neck reconstruction. The ALT flap achieved wide acceptance thanks to its versatility, the length of the pedicle, and the low morbidity of the donor site. The major drawback is the bulkiness of this flap with the frequent need for secondary revisions. To overcome this, we have developed a novel way to harvest and inset the ALT, called the sandwich fascial ALT flap (SALT).

\textbf{Methods:} All patients undergoing head and neck reconstruction using the SALT flap from January 2013 to March 2016 were included in this retrospective analysis. The SALT flap was harvested as a composite flap including the superficial fascia, the subscapral fat, and the deep fascia. At the recipient site, the flap was inset with the deep fascia facing out. A split thickness skin graft (± dermal substitute) was used to cover the deep fascia and the pedicle.

\textbf{Results:} Eleven patients were included: 8 cases of orbital exenteration, 1 case of forehead reconstruction, and 2 cases of palatal reconstruction after radical maxillectomy. Flap survival was 100%. One patient required an early take back for venous thrombosis. The reconstruction was effective in all cases, allowing a prosthetic rehabilitation when required. Donor-site morbidity was minimal.

\textbf{Conclusions:} The reconstruction of head and neck defects with a bulky fasciocutaneous ALT flap might not be the best option in every case. The SALT flap could represent a valid alternative for selected cases, with encouraging functional and cosmetic outcomes. (Plast Reconstr Surg Glob Open 2017;5:e1197; doi: 10.1097/GOX.0000000000001197; Published online 17 January 2017.)

\textbf{Disclosure:} The authors have no financial interest to declare in relation to the content of this article. The Article Processing Charge was paid for by the authors.

Supplemental digital content is available for this article. Clickable URL citations appear in the text.
ALT (from superficial fascia to muscular fascia), called “sandwich fascial ALT flap” (SALT). The aims of this article were to propose this innovative surgical technique and to present our preliminary outcomes.

PATIENTS AND METHODS
All patients treated by the way of a SALT flap for the reconstruction of surgical defects after head and neck cancer ablation between January 2013 and March 2016 were retrospectively reviewed. The study has been conducted in line with policies approved by the local ethical committee. We design the study according to the population, intervention, control, outcome, setting, and time horizon recommendation6 (See video, Supplemental Digital Content 1, which demonstrates the SALT flap technique. This video is available in the “related videos” section of the full-text article on PRSGlobalOpen.com or available at http://links.lww.com/PRSGO/A350).

The skin incision is marked 2 to 3 cm anterior to the skin projection of the intermuscular septum between the rectus femoris and the vastus lateralis. The incision is carried down to the deep fascia while sparing the medial branch of the lateral cutaneous femoral nerve. The deep fascia past the lateral border of the rectus femoris is opened, and the perforators in the subfascial plane are identified and isolated. If no perforator through the septum or the vastus lateralis is identified, we use a tensor fasciae latae or rectus femoris perforator. We follow the perforators to dissect out the pedicle until an adequate length is achieved. Once the pedicle is properly isolated, the dissection of the flap continues on the top of the superficial fascia (Scarpa’s fascia), thereby separating the cutaneous and subcutaneous plane from our flap (Fig. 1). Once an adequate area has been exposed, the flap design is marked on the superficial fascia. The superficial fascia, subscapular fat, and deep fascia are then incised, and the harvest was completed by elevating the flap (Fig. 1). The pedicle is cut, and the flap is transferred to the recipient site (Fig. 2). At the inset, the flap is turned upside down, so that the undersurface of the deep fascia faces outward. The deep fascia is then secured to the dermis of the recipient site (Fig. 2). With this technique, the donor site can always be closed primary. A laser Doppler probe was used as a postoperative flap monitoring system.

RESULTS
Eleven patients (9 males and 2 females), aged from 27 to 76 years (mean age, 57.2 years), were included in this case series. Clinical and pathological findings of the patients enrolled are summarized in Table 1. The defects were classified according to the classification by Brown and Shaw.7 The perforators were classified according to the classification by Yu and Shieh.8,9 The recipient vessels were the temporal artery and vein in 10 patients. In 1 case, where a simultaneous neck dissection was performed, the facial artery and the vein of the thyrolingual trunk were used. All the flaps survived, and there was no partial flap loss observed. A vein thrombosis occurred in 1 case (patient 6), and a surgical revision of the anastomosis...
was performed within 24 hours after the primary surgery. The mean time for complete healing was 34.3 days from the time of surgery. The reconstruction was effective in all cases, allowing a prosthetic rehabilitation without any surgical revision (Fig. 4). However, of 8 patients with orbital exenteration, only 2 demanded external prosthesis once the wounds were healed. Donor-site morbidity was minimal (Fig. 4).

The mean follow-up time was 12.4 months (range, 9–48 months). One patient (case 6) died 6 months after surgery because of the persistence of a high-grade glioma (grade IV). Another patient (case 5) died after 1 year of local recurrence and systemic dissemination of a mucosal melanoma. The remaining patients (9/11) are alive and satisfied by the reconstructions. Follow-up data are detailed in Table 1.

DISCUSSION

The ALT flap is a well-described and frequently used flap for complex reconstruction. Its application has been described for soft-tissue reconstruction in almost every area of the body and for a variety of indications. The characteristics of an ideal soft-tissue free flap for head and neck reconstruction might be described as having a large skin
Table 1. Patient Data

Patient	Age	Sex	Histology	Site of Onset	Surgery	Classification by Brown and Shaw⁷	Type of Perforator (Classification by Yu and Shieh⁸)	Hospitalization Time, d	Status
1	54	M	Squamouscellular carcinoma	Left alveolus	Tracheotomy, left hemimaxillectomy, SALT	Ib	A, type II	21	NED
2	72	M	Adenoid cystic carcinoma	Right maxillary sinus	Right hemimaxillectomy, SALT flap, local flap	IVb	B, type III	16	NED
3	76	F	Squamouscellular carcinoma	Left alveolus	Tracheotomy, left hemimaxillectomy, SALT	Ib	B, type III	23	NED
4	40	M	Squamouscellular carcinoma with focal neuroendocrine differentiation	Right nasal cavity	Tracheotomy, right hemimaxillectomy, exenteratio orbitae, SALT flap, STSG	IVb	B, type I	22	AWD
5	64	M	Malignant melanoma	Right nasal cavity	Tracheotomy, right hemimaxillectomy, frontal-ethmoidal-exenteratio orbitae, SALT flap → dermal substitute → STSG	IVb	B, type III	29	DOD (7/6/2015)
6	73	F	Glioma IV grade, with sarcomatoid aspects (relapsed)	Left frontal lobe	SALT flap, STSG	NA	B, type I	14	NED
7	50	M	Uveal malignant melanoma	Right ocular globe	Exenteratio orbitae, SALT flap, STSG	V	C + B, type I	11	NED
8	27	M	Pleomorphic rhabdomyosarcoma	Right maxillary sinus, nasal cavity	Right hemimaxillectomy, exenteratio orbitae, ethmoidal-sphenoidal resection, cranietomy, ASB reconstruction, SALT flap → dermal substitute → STSG	V	B, type I	31	AWD
9	63	M	Basal cell carcinoma	Right lower lid skin	Exenteratio orbitae, SALT flap, dermal substitute, STSG	V	A + B, type II	6	NED
10	73	M	Squamouscellular carcinoma with focal neuroendocrine differentiation	Right nasal cavity	Right hemimaxillectomy, frontal-ethmoidal-exenteratio orbitae, ASB reconstruction, SALT flap, STSG	V	C + B, type I	31	NED
11	73	M	Intestinal like adenocarcinoma	Right maxillary sinus, ocular cavity	Exenteratio orbitae, SALT flap, STSG	V	B, type I	15	NED

ASB, anterior skull base; AWD, alive with disease; DOD, died of disease; NA, not applicable; NED, no evidence of disease; STSG, split thickness skin graft.
territory, good color and texture match with the recipient site, a long and large caliber vascular pedicle, reliability for different flap designs, constant pedicle anatomy, acceptable donor-site morbidity, suitability for sensate reconstruction, feasibility for a two-team approach, no need of major artery or muscle sacrifice, applicability as a flow-through flap, and suitability for usage as a thin flap. The ALT flap presents most of these characteristics, and this is why it has become the workhorse for most head and neck soft-tissue reconstructions. However, the ALT also has some disadvantages. Multiple factors can result in donor-site morbidity of the ALT flap including damage to the vastus lateralis muscle or motor nerve, closure with skin grafts, loss of function, or injury to the lateral cutaneous femoral nerve. Recently, Chen et al. to overcome the morbidity of the donor site, suggested the harvesting of the ALT flap in a suprafascial plane for head and neck reconstruction. In our experience, this technique is valid in the case of thin person and especially for male patients. Conversely, when dealing with obese patients and in women, the dissection around the pedicle in the suprafascial plane may represent a difficult procedure, and the risk of damaging the perforator limits the ability to thin the flap. In such situations, generally, the surgeon prefer to thin only the periphery of the flap, thereby resulting in a pyramid shape flap. Furthermore, the standard cutaneous

Fig. 4. Immediate postoperative appearance after reconstruction of the orbital cavity. A, A dermal substitute was used to cover the flap (patient 9). B, A split thickness skin graft was sutured directly on the deep fascia of the flap (patient 8).

Fig. 5. Preoperative appearance and early follow-up after 3 weeks (patient 11).
ALT flap has some disadvantages at the recipient site as well. The aesthetic outcome is rarely optimal as there is usually a marked color mismatch. Also, the flap is often too bulky and over time leads to a ptotic appearance with it “melting” down the face, thereby worsening the aesthetic appearance and precluding the possibility of prosthetic rehabilitation.

This is particularly evident in the case of orbital exenteration where the patients cannot wear an eye prosthesis until a debulking procedure is performed. However, the need to submit the patient to additional surgical procedures may represent a limitation considering that this patient population often has a poor life expectancy. Ideally, the first surgical procedure should achieve the goals of a good functional and aesthetic outcome, avoiding subsequent surgical procedures.

To overcome these issues, we developed the SALT flap. Harvesting the flap in the superficial plane does not need any particular skills when compared with the standard ALT flap technique. The perforators can be identified in a standard fashion in the subfascial plane and dissected in a retrograde fashion till enough length of the pedicle is achieved. As such, the harvest is no different than in the standard ALT dissection. The only technical difference is that the harvest is performed through a single incision.

By turning the flap upside down, the robust fascia can be sutured to the recipient dermis, preventing secondary drop of the loose subcutaneous tissue. Skin grafting on the fascia is considered a valid treatment for third-grade burns. For all these reasons, we advocate turning the flap upside down and to skin graft the deep fascia. During the harvesting of the flap, we generally leave a little cuff of soft tissue around the pedicle to prevent the skin graft from being directly on the pedicle. The use of the dermal substitute (i.e., Integra, Inc., Plainsboro, N.J.) can assist in protecting the pedicle at the same time providing a more pliable skin and a higher vascularity of the reconstructed soft tissues. In the present case series, we used the dermal substitute in 3 cases with encouraging results (Table 1; Figs. 5, 6). To improve the color match, the skin graft could be harvested from the supraclavicular region. In case that, there are no significant differences between the color of the thigh and the recipient site, or a wide flap is needed; a split thickness skin graft can be harvested directly from the donor site and closed primary exactly as for the standard ALT flap (Fig. 6). In selected cases, the SALT flap does not need any skin cover. For the reconstruction of palatal defects resulting from a radical maxillectomy, the intraoral por-

![Fig. 6. Twelve-month follow-up: the patient can wear an external prosthesis without any surgical revision. The donor site is closed primarily (patient 7).](image-url)
In our opinion, the SALT flap represents an evolution of the standard ALT flap, which may revolutionize head and neck reconstruction. Several case series support the use of the SALT flap as a valid and safe option for several head and neck reconstruction indications. The preliminary outcomes obtained from the present case series support the use of the SALT flap as a valid and safe option for several head and neck reconstructions. Our opinion, the SALT flap represents an evolution of the standard ALT flap, which may revolutionize head and neck cancer reconstruction.

CONCLUSIONS

The preliminary outcomes obtained from the present case series support the use of the SALT flap as a valid and safe option for several head and neck reconstructions. In our opinion, the SALT flap represents an evolution of the standard ALT flap, which may revolutionize head and neck cancer reconstruction.

PATIENT CONSENT

Patients provided written consent for the use of their images.

REFERENCES

1. Lutz BS, Wei FC. Microsurgical workhorse flaps in head and neck reconstruction. *Clin Plast Surg.* 2005;32:421–430, vii.
2. Chen VC, Scaglioni MF, Carrillo Jimenez LE, et al. Suprafascial anterolateral thigh flap harvest: a better way to minimize donor-site morbidity in head and neck reconstruction. *Plast Reconstr Surg.* 2016;138:689–698.
3. Wong CH, Wei FC. Anterolateral thigh flap. *Head Neck* 2010;32:529–540.
4. Song YG, Chen GZ, Song YL. The free thigh flap: a new free flap concept based on the septocutaneous artery. *Br J Plast Surg.* 1984;37:149–159.
5. Wong CH, Wei FC. Microsurgical free flap in head and neck reconstruction. *Head Neck* 2010;32:1236–1245.
6. Coroneos CJ, Ignaty TA, Thoma A. Designing and reporting case series in plastic surgery. *Plast Reconstr Surg.* 2011;128:361e–368e.
7. Brown JS, Shaw RJ. Reconstruction of the maxilla and midface: introducing a new classification. *Lancet Oncol.* 2010;11:1001–1008.
8. Lee YC, Chen WC, Chou TM, et al. Anatomical variability of the anterolateral thigh flap perforators: vascular anatomy and its clinical implications. *Plast Reconstr Surg.* 2015;135:1097–1107.
9. Yu P. Characteristics of the anterolateral thigh flap in a Western population and its application in head and neck reconstruction. *Head Neck* 2004;26:759–69.
10. Zaretski A, Wei FC, Lin CH, et al. Anterolateral thigh perforator flaps in head and neck reconstruction. *Semin Plast Surg.* 2006;20:964–972.
11. Demirtas Y, Kelahmetoglu O, Cici M, et al. Comparison of free anterolateral thigh flaps and free muscle-musculocutaneous flaps in soft tissue reconstruction of lower extremity. *Microsurgery* 2010;30:24–31.
12. Cherubino M, Turri-Zanoni M, Battaglia P, et al. Chimeric anterolateral thigh free flap for reconstruction of complex cranio-orbito-facial defects after skull base cancers resection. *J Craniofac Surg.* 2016;2:5101–5182.
13. Collins J, Ayeni O, Thoma A. A systematic review of anterolateral thigh flap donor site morbidity. *Can J Plast Surg.* 2012;20:17–23.
14. Agostini T, Lazzari D, Spinelli G. Anterolateral thigh flap: systematic literature review of specific donor-site complications and their management. *J Craniofac Surg.* 2013;41:15–41.
15. Tyers AG. Orbital exenteration for invasive skin tumours. *Eye (Lond.)* 2006;20:1165–1170.
16. Kovacevic PT, Visojic MM, Kovacevic TT, et al. Extended orbital exenteration in the treatment of advanced periorbital skin cancer with primary reconstruction with a galea flap. *Soud J Plast Reconstr Surg Hand Surg.* 2009;43:325–329.
17. Moncrieff MD, Thompson JR, Quinn MJ, et al. Reconstruction after wide excision of primary cutaneous melanomas: part I—the head and neck. *Lancet Oncol.* 2009;10:700–708.
18. Wong JC, Thamnp R, Cook A. Life expectancy following orbital exenteration. *Br J Ophthalmol.* 2015;99:1–4.
19. Cherubino M, Pellegratta I, Tamborini F, et al. Evaluation of lymphangiogenesis in acellular dermal matrix. *Indian J Plast Surg.* 2014;47:318–324.
20. Valdatta L, Maggiulli F, Scarnoni S, et al. Reconstrucive management of degloving trauma of male external genitalia using deral regeneration template: a case report. *J Plast Reconstr Aesthet Surg.* 2014;67:264–266.
21. Cherubino M, Valdatta L, Balzaretti R, et al. Human adipose-derived stem cells promote vascularization of collagen-based scaffolds transplanted into nude mice. *Regen Med.* 2016;11:261–271.
22. Atallah S, Guth A, Chabolle F, et al. Supraclavicular artery island flap in head and neck reconstruction. *Eur Ann Otorhinolaryngol Head Neck Dis.* 2013;135:1130–1135.
23. Piazza C, Paderno A, Taglietti V, et al. Evolution of complex palatomaxillary reconstructions: the scapular angle osteomuscular free flap. *Curr Opin Otolaryngol Head Neck Surg.* 2013;21:95–103.
24. Peng X, Mao C, Yu GY, et al. Maxillary reconstruction with the free fibula flap. *Plast Reconstr Surg.* 2005;115:1562–1569.
25. Miles BA, Gilbert RW. Maxillary reconstruction with the scapular angle osteomyogenous free flap. *Arch Otolaryngol Head Neck Surg.* 2011;137:1130–1135.
26. Yetzer J, Fernandez R. Reconstruction of orbitomaxillary defects. *J Oral Maxillofac Surg.* 2013;71:398–409.