Electron transfer under the Floquet modulation in donor–bridge–acceptor systems

Yu Su, Zi-Hao Chen, Haojie Zhu, Yao Wang,∗ Lu Han, Rui-Xue Xu, and YiJing Yan†
Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

Electron transfer (ET) processes are of broad interest in modern chemistry. With the advancements of experimental techniques, one may modulate the ET via such as the light–matter interactions. In this work, we study the ET under a Floquet modulation occurring in the donor–bridge–acceptor systems, with the rate kernels projected out from the exact dissipaton equation of motion formalism. This together with the Floquet theorem enables us to investigate the interplay between the intrinsic non-Markovianity and the driving periodicity. The observed rate kernel exhibits a Herzberg–Teller–like mechanism induced by the bridge fluctuation subject to effective modulation.

Introduction. Electron transfer (ET) processes are of broad interest in modern chemistry,1–4 and many of them occur in the donor–bridge–acceptor (DBA) scenarios.5–12 The bridge, which remains itself before and after the reaction, could be considered as a rigid spacer within an intramolecular ET system.10 In condensed phases, the solvent environment also plays a crucial role.13–17 Fluctuations of both the bridge and the solvent will manifestly affect the rate of ET processes. From a theoretical point of view, one can in principle exactly construct the generalized rate equation,

\[\hat{P}_D(t) = -\int_0^t d\tau k(t-\tau; t)P_D(\tau) + \int_0^t d\tau k'(t-\tau; t)P_A(\tau). \]

(1)

Here, \(P_D(t) \) and \(P_A(t) \) are the donor and acceptor populations, respectively. The forward and backward rate memory kernels, \(k(\tau; t) \) and \(k'(\tau; t) \), have involved the influences of the bridge fluctuations, the solvent effects and the possibly existent external modulations.18,19 Here, the variable \(\tau \) characterizes the memory timescale, i.e., the non-Markovianity, and \(t \) represents the time–dependence due to the external fields.

With the advancements of experimental techniques, one can modulate the ET process via such as light–matter interactions. Especially, if the external modulation is periodic, it is called the Floquet modulation.20–24 In this Letter, we investigate how the ET rate kernels will be influenced by the fluctuating bridges and Floquet modulation, with attention to the intrinsic non-Markovianity and the external periodicity. Specifically, we will focus on the case in which the energy difference between the donor state \(|D\rangle\) and the acceptor state \(|A\rangle\) is periodically modulated, which can be realized via the field–dipole interaction or the Stark effect.23 We first give a perturbative analysis, followed by the discussion on the influences of the fluctuating bridge and the period of modulation. Then the non-Markovian rate kernels in Eq. (1) are projected out from the exact dissipaton equation of motion (DEOM).25 This is the second quantization generation of the notable hierarchical equations of motion (HEOM) formalism,26–31 covering both the reduced system and hybrid bath modes dynamics.25,32–34 The linear space algebra of DEOM facilitates the utilization of Nakajima–Zwanzig projection operator technique, so that we can focus on any subspace dynamics and construct non-Markovian rate kernels.19 The rate kernels are investigated with a DBA model system via both numerical and analytical methods in the DEOM framework. Especially, we pay attentions to the interplay between the intrinsic non-Markovianity and the driving periodicity, with the help of Floquet theorem. The observed rate kernel exhibits a Herzberg–Teller–like mechanism induced by the bridge fluctuation subject to effective modulation.

Theoretical model and perturbative analysis. Consider an ET DBA system with the total composite Hamiltonian,

\[\hat{H}_{\text{ET}} = h_0|D\rangle\langle D| + (E^\circ + h_A)|A\rangle\langle A| + H_B + V(|\tilde{q}_k\rangle) (|D\rangle\langle A| + |A\rangle\langle D|). \]

(2)

Here \(V(|\tilde{q}_k\rangle) \) depends on the bridge coordinates and the fluctuating bridges Hamiltonian is \(H_B = \sum_r \hat{\omega}^2 (\hat{p}_r^2 + \hat{q}_r^2) \). In Eq. (2), \(E^\circ \simeq \Delta_G^2 \) amounts to the standard reaction Gibbs energy, for the electron transferring from \(|D\rangle\) to \(|A\rangle\). Donor and acceptor are both associated with their own solvent environments, \(h_0 \) and \(h_A \), being \(h_0 = \sum_r \hat{\omega} \left(\hat{p}_r^2 + \hat{q}_r^2 \right) \) and \(h_A = \sum_r \hat{\omega} \left[\hat{p}_r^2 + (x_j - d_j)^2 \right] \), respectively. The total ET composite was initially \(\rho_{eq}(t) = \rho_{eq}(T) \otimes |D\rangle\langle D| \), the thermal equilibrium in the donor state, with \(\rho_{eq}(T) \equiv (e^{-\beta H_0}/\text{tr}e^{-\beta H_0}) \otimes (e^{-\beta H_B}/\text{tr}e^{-\beta H_B}) \). Floquet modulation leads to the periodic changes of \(E^\circ \), as

\[E^\circ \rightarrow E(t) = E^\circ + \mathcal{E} \cos(\Omega t) \]

(3)

with the amplitude of \(\mathcal{E} \) and the frequency of \(\Omega \). We sketch these theoretical settings in Fig. 1.

In the absence of modulation (\(\mathcal{E} = 0 \)), the standard perturbation theory gives the forward rate constant the expression:10,12

\[K_0 = 2\text{Re} \int_0^\infty dt \, v(t)e^{-i(E^\circ + \lambda) t}e^{-\gamma(t)}, \]

(4a)

where \(v(t) = \langle V(|\tilde{q}_k(t)\rangle)|V(|\tilde{q}_k\rangle)\rangle_B \) with \(\tilde{q}_k(t) = e^{iH_BT}\tilde{q}_ke^{-iH_BT} \) and \(\langle \cdot \rangle_B \equiv \text{tr}(\cdot e^{-\beta H_B})/\text{tr}e^{-\beta H_B} \). In
FIG. 1: Schematics of ET under the Floquet modulation in the DBA system.

$V(\{q'_k\})$ depending on bridge coordinates

Accepter Donor

Floquet modulation

E'

E

$T_0 \equiv 2\pi/\Omega$ to modify the rate constant given by perturbation theory [cf. Eq. (4a)]. To this end, we do the approximation $H'_s(t) \rightarrow \bar{H}_T \equiv \frac{1}{T_0} \int_0^{T_0} dt' H'_s(t')$, and this amounts to $\bar{V}(t) \rightarrow \bar{V} \equiv V(\{\bar{q}_k\})J_0(\bar{E}/\Omega)$ with $J_0(z)$ being the zeroth order Bessel function. Therefore, the nonadiabatic rate under the high-frequency Floquet modulation reads

$$K_0 = 2J_0^2(\bar{E}/\Omega)Re\int_0^\infty dt \: v(t)e^{-i(\bar{E}^2 + \lambda)t}e^{-\gamma(t)}.$$ (8)

This perturbative rate formula serves as a reference for the following nonperturbative exhibitions.

Projected DEOM to rate kernels. For illustrations, we assume $V(\{\bar{q}_k\})$ the form of

$$V(\{\bar{q}_k\}) \equiv \langle V \rangle_n - \delta \bar{V} = \langle V \rangle_n - \sum_k \ddot{c}_h \ddot{q}_k.$$ (9)

This is the scenarios that can be exactly handled by DEOM–space quantum mechanics. To proceed we introduce

$$v(t) = \langle V \rangle_n^2 + \langle \delta \bar{V}(t) \delta \bar{V} \rangle_n = \langle V \rangle_n^2 + \sum_j \dddot{c}_j^2 \dddot{q}_j(t) \dddot{q}_j.$$ (10)

Now we can construct the DEOM based on Eq. (5), or equivalently Eq. (7): (i) In the former case, the system–plus–environment decomposition reads

$$H_T(t) = H_s(t) + h_e - |A\rangle\langle A|\delta \bar{V} - \bar{Q} \delta \bar{V},$$ (11)

with $h_e = h_D + h_B$, $H_s = (E^0 + \mathcal{E} \cos \Omega t + \lambda)|A\rangle\langle A| + \langle V \rangle_B|D\rangle\langle A| + |A\rangle\langle D|$, and $\bar{Q} = |D\rangle\langle A| + |A\rangle\langle D|$. In this case, the system Hamiltonian is time–dependent, while the dissipative mode \bar{Q} is not; (ii) In the latter case,

$$H'_T(t) = H'_s(t) + h_e - |A\rangle\langle A|\delta \bar{V} - Q' \delta \bar{V}.$$ (12)

Compared with Eq. (11), the $H'_s(t) = (E^0 + \lambda)|A\rangle\langle A| + \langle V \rangle_B|D\rangle\langle A| + e^{i\varphi(t)}|A\rangle\langle D| |A\rangle\langle D|$ and $Q'(t) = e^{-i\varphi(t)}|D\rangle\langle A| + e^{i\varphi(t)}|A\rangle\langle D|$ are different from the former case. Both the system Hamiltonian and the dissipative mode $Q'(t)$ are time–dependent.

The rate kernels constructed from Eq. (11) should be exactly the same with that from Eq. (12), and our numerical results validate this point. The rate kernels are constructed via the DEOM approach. Based on the composite Hamiltonian in Eq. (11) or Eq. (12), we can write the DEOM in the form of

$$\rho(t) = -i\mathcal{L}(t)\rho(t).$$ (13)

This resembles $\dot{\rho}_v = -i\mathcal{L}_v(t)\rho_v$ with mapping the total system–plus–bath composite Liouvillian to the DEOM–space dynamics generator, $\mathcal{L}_v(t) \rightarrow \mathcal{L}(t)$, and $\rho_v(t) \rightarrow \rho(t) = \{\rho_v^n(t); n = 0, 1, 2, \cdots \}$. Here, $\mathcal{L}_v(t) \equiv [H_T(t), \cdot]$ in case (i) or $[H'_T(t), \cdot]$ in case (ii). We will leave the detailed information of the DEOM (13) in Supplementary
material (SM). To proceed, define DEOM–space projection operators, \mathcal{P} and $\mathcal{Q} = \mathcal{I} - \mathcal{P}$, for partitioning $\rho \equiv \{\rho_n^{(a)} \}$ into the population and coherence components, respectively:\(^{19}\)

$$
\mathcal{P} \rho(t) = \left\{ \sum_a \rho_{aa}^{(0)}(t) |a\rangle \langle a|: 0, 0, \cdots \right\} \equiv \rho(t),
$$

$$
\mathcal{Q} \rho(t) = \left\{ \sum_{a \neq b} \rho_{ab}^{(0)}(t) |a\rangle \langle b|; \rho_n^{(n>0)}(t) \right\} \equiv \sigma(t).
$$

We can now recast the DEOM (13) in terms of

$$
\begin{bmatrix}
\dot{\rho}(t)
\dot{\sigma}(t)
\end{bmatrix} = -i \left[\mathcal{P} \mathcal{L}(t) \mathcal{P} \mathcal{Q} \mathcal{L}(t) \mathcal{Q} \right] \begin{bmatrix}
\rho(t)
\sigma(t)
\end{bmatrix}.
$$

After some simple algebra we obtain\(^{19}\)

$$
\dot{\rho}(t) = \int_{t_0}^{t} d\tau \tilde{K}(t - \tau; t)p(\tau),
$$

with the rate kernel being formally of

$$
\tilde{K}(t - \tau; t) = -\mathcal{P} \mathcal{L}(t) \mathcal{Q} \mathcal{U}(t, \tau) \mathcal{Q} \mathcal{L}(t) \mathcal{P},
$$

with

$$
\mathcal{U}(t, \tau) \equiv \exp_{\omega} \left[-i \int_{\tau}^{t} d\tau' \mathcal{L}(\tau') \right].
$$

Apparently, $-k(t - \tau; t)$ and $k(t - \tau; t)$ in Eq. (1) are the $|D\rangle \langle D| \rightarrow |D\rangle \langle D|$ and $|A\rangle \langle A| \rightarrow |D\rangle \langle D|$ components of $\tilde{K}(t - \tau; t)$, respectively.

Rate kernel analysis. In the following, we explicitly illustrate some key properties of the forward rate kernel $k(\tau; t)$ in Eq. (1), with the help of numerical examples. The analysis on $k(\tau; t)$ is similar and thus omitted due to the limitation of space. It is worth noting the periodicity, $k(\tau; t + \tau) = k(\tau; t)$, in SM. In Fig. 2, we explicitly exhibit an example of the computed rate kernels. The kernel $k(\tau; t)$ is plotted with respect to τ and t. The external modulation frequency adopts $\beta \Omega = 8 \pi$. As shown in Fig. 2, the kernel is periodic ($T_0 = 2\pi/\Omega$) with respect to t, and damping along the memory length, τ. In the simulations, we model the spectral densities, $J_n(\omega) \equiv \frac{1}{2} \int_{-\infty}^{\infty} d\tau e^{i\omega \tau} \langle \delta U(t), \delta U(0) \rangle_0$, and $J_n(\omega) \equiv \frac{1}{2} \int_{-\infty}^{\infty} d\tau e^{i\omega \tau} \langle \delta V(t), \delta V(0) \rangle_0$, as\(^{35-37}\)

$$
J_n(\omega) = \frac{2\lambda \gamma \omega}{\omega^2 + \gamma^2} \quad \text{and} \quad J_n(\omega) = \frac{2\lambda \omega_0 \omega \zeta}{(\omega^2 - \omega_0^2)^2 + \omega^2 \zeta^2}.
$$

(18)

To further explicitly exhibit the underlying non-Markovianity, we represent the kernel in the frequency domain as

$$
K(\omega; t) = \int_{0}^{\infty} d\tau k(\tau; t) \cos(\omega \tau).
$$

(19)

FIG. 2: An example of rate kernel $k(\tau; t)$, in unit of β^{-2}. We adopt $\epsilon = 2$, $E^2 = 1.5$ and $(V)_B = 0.2$ [cf. Eq. (11)]. Besides, $\lambda = \lambda' = 0.2$ and $\gamma = \omega_0 = \zeta = 1$ [cf. Eq. (18)]. All these parameters are in units of β^{-1}.

Note the periodicity in t remains, i.e. $K(\omega; t) = K(\omega; t + T_0)$. The Fig. 3 depicts the time–dependent frequency–resolved rate kernel, where this periodicity is manifest. Therefore, we may do the Fourier expansion with respect to t,

$$
K(\omega; t) = \sum_{n=-\infty}^{\infty} K_n(\omega)e^{-in\Omega t},
$$

(20a)

obtaining its components $\{K_n(\omega)\}$ being

$$
K_n(\omega) = \frac{1}{T_0} \int_{0}^{T_0} dt K(\omega; t)e^{in\Omega t}.
$$

(20b)

In Fig. 4, we plot the real parts of the Fourier components $\{K_n(\omega)\}$, exemplified with the same case as in Fig. 2. These frequency–domain components exhibit the interplay between the external frequency, Ω, and the so–called Floquet frequency, ω_ϕ. The ω_ϕ is identified as the characteristic frequency of the Floquet Hamiltonian, H_ϕ, defined via $e^{iH_\phi t_0} \equiv \exp_{\omega} \left[-i \int_{0}^{t_0} dt H_\phi(t) \right]$. As shown in the figure, in the case of $\beta\Omega = 8\pi$ and $\beta \omega_\phi \sim 3$, the
In the high–frequency limit, the rate constant is given by

\[\dot{K}_\alpha(t) = K_\alpha^{(0)} + h_\text{e} - |A\rangle\langle A|\hat{\delta}\hat{\bar{V}} - \hat{\mu}_+ \hat{E}^+(t) - \hat{\mu}_- \hat{E}^-(t) \]

with

\[H_\text{e}^{(0)} = (\omega^0 + \lambda)|A\rangle\langle A| + (V)_n|(D)\langle A| + |A\rangle\langle D|, \]

\[\hat{\mu}_+ = |A\rangle\langle D|((V)_n - \delta\hat{V}) = (\hat{\mu}_-)^\dagger \text{ and } \hat{E}^+(t) = i\varphi(t) = [\hat{E}^-(t)]^\dagger. \]

The last two terms in Eq. (21) can be seen as an effective dipole–field coupling, where the total dipole involves the bridge degrees of freedom. This resembles a type of Herzberg–Teller coupling. In the Markovian and high–frequency limits, the rate constant is given by

\[K'_0 = K_0(\omega = 0), \]

which shall be compared with the perturbative result in Eq. (8). In Fig. 6, we plot the rate constants \(K_0 \) and \(K'_0 \) versus \(E^0 \), with different strengths of bridge fluctuation. As shown in Fig. 6, in the regime of \(E^0 + \lambda \sim 0 \), the perturbative results with larger \(\lambda' \) depart more from the nonperturbative results.

Summary. In summary, we study the ET under the Floquet modulation occurring in the DBA systems. The rate kernels are constructed and evaluated via the exact projected dissipaton–equation–of–motion formalism. This enables us to investigate the interplay between the intrinsic non-Markovianity and driving periodicity. The bridge fluctuations manifestly affect the rate kernel, exhibiting a Herzberg–Teller–like mechanism subject to effective modulation. It is anticipated that our study will benefit the design of ET manipulation in molecular sys-
tems. The same method can be also applied to such as excitation energy transfer in light harvest systems.23

Acknowledgments

The authors thank the support from the Ministry of Science and Technology of China (Grant No. 2021YFA1200103) and the National Natural Science Foundation of China (Grant Nos. 22103073, 22173088 and 21903078). YS and HJZ thank also the partial support from the College Students’ Innovative Entrepreneurial Training Plan Program (2020). YW and ZHC thank also the partial support from GHfund B (20210702).

\begin{thebibliography}{54}
\bibitem{1} Marcus, R. A. On the energy of oxidation-reduction reactions involving electron transfer. I. \textit{J. Chem. Phys.} \textbf{1956}, \textit{24}, 966–978.
\bibitem{2} Marcus, R. A. Chemical and electrochemical electron-transfer theory. \textit{Annu. Rev. Phys. Chem.} \textbf{1964}, \textit{15}, 155.
\bibitem{3} Suni, H.; Marcus, R. A. Dynamics effects in electron–transfer reactions. \textit{J. Chem. Phys.} \textbf{1986}, \textit{84}, 4894–4914.
\bibitem{4} Marcus, R. A. Electron transfer reactions in chemistry: Theory and experiment. \textit{Rev. Mod. Phys.} \textbf{1993}, \textit{65}, 599.
\bibitem{5} Delor, M.; Scattergood, P. A.; Suzanovich, I. V.; Parker, A. W.; Greetham, G. M.; Meijer, A. J. H. M.; Towrie, M.; Weinstein, J. A. Toward control of electron transfer in donor-acceptor molecules by bond-specific infrared excitation. \textit{Science} \textbf{2014}, \textit{346}, 1492–1495.
\bibitem{6} Bixon, M.; Jortner, J. Electron transfer from isolated molecules to biomolecules. \textit{Adv. Chem. Phys.} \textbf{1999}, \textit{106}, 35–208.
\bibitem{7} Newton, M. D. \textit{Electron Transfer in Chemistry}; John Wiley & Sons, Ltd, 2001; Chapter 1, pp 2–63.
\bibitem{8} Skourtis, S. S.; Beratan, D. N. \textit{Electron Transfer in Chemistry}; John Wiley & Sons, Ltd, 2001; Chapter 3, pp 109–125.
\bibitem{9} Nitzan, A. Electron transmission through molecules and molecular interfaces. \textit{Annu. Rev. Phys. Chem.} \textbf{2001}, \textit{52}, 681–750.
\bibitem{10} Troisi, A.; Nitzan, A.; Ratner, M. A. A rate constant expression for charge transfer through fluctuating bridges. \textit{J. Chem. Phys.} \textbf{2003}, \textit{119}, 5782–5788.
\bibitem{11} Galperin, M.; Ratner, M. A.; Nitzan, A. Molecular transport junctons: Vibrational effects. \textit{J. Phys.: Condens. Matter} \textbf{2007}, \textit{19}, 103201.
\bibitem{12} Zhao, Y.; Liang, W. Non-Condon nature of fluctuating bridges on nonadiabatic electron transfer: Analytical intepretation. \textit{J. Chem. Phys.} \textbf{2009}, \textit{130}, 034111.
\bibitem{13} Wolynes, P. G. Dissipation, tunneling, and adiabaticity criteria for curve crossing problems in the condensed phase. \textit{J. Chem. Phys.} \textbf{1987}, \textit{86}, 1957–66.
\bibitem{14} Sparpaglione, M.; Mukamel, S. Adiabatic vs. nonadiabatic electron transfer and longitudinal solvent dielectric relaxation: Beyond the Debye model. \textit{J. Phys. Chem.} \textbf{1987}, \textit{91}, 3938–43.
\bibitem{15} Sparpaglione, M.; Mukamel, S. Dielectric friction and the transition from adiabatic to nonadiabatic electron transfer. I. Solvation dynamics in Liouville space. \textit{J. Chem. Phys.} \textbf{1988}, \textit{88}, 3263.
\bibitem{16} Sparpaglione, M.; Mukamel, S. Dielectric friction and the transition from adiabatic to nonadiabatic electron transfer in condensed phases. II. Application to non-Debye solvents. \textit{J. Chem. Phys.} \textbf{1988}, \textit{88}, 4300.
\bibitem{17} Han, P.; Xu, R. X.; Li, B. Q.; Xu, J.; Cui, P.; Mo, Y.; Yan, Y. J. Kinetics and thermodynamics of electron transfer in Debye solvents: An analytical and nonperturbative reduced density matrix theory. \textit{J. Phys. Chem. B} \textbf{2006}, \textit{110}, 11438–43.
\bibitem{18} Gong, Z. H.; Tang, Z. F.; Mukamel, S.; Cao, J. S.; Wu, J. L. A continued fraction resummation form of bath relaxation effect in the spin-boson model. \textit{J. Chem. Phys.} \textbf{2015}, \textit{142}, 084103.
\bibitem{19} Zhang, H. D.; Yan, Y. J. Kinetic rate kernels via hierarchical Liouville-space projection operator approach. \textit{J. Phys. Chem. A} \textbf{2016}, \textit{120}, 3241–3245, Special Issue: Ronnie Kosloff Festschrift.
\bibitem{20} Bukov, M.; D’Alessio, L.; Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. \textit{Advances in Physics} \textbf{2015}, \textit{64}, 139–226.
\bibitem{21} Mikami, T.; Kitamura, S.; Yasuda, K.; Tsuji, N.; Oka, T.; Aoki, H. Brillouin-Wigner theory for high-frequency expansion in periodically driven systems: Application to Floquet topological insulators. \textit{Phys. Rev. B} \textbf{2016}, \textit{93}, 144307.
\bibitem{22} Restrepo, S.; Cerrillo, J.; Bastidas, V. M.; Angelakis, D. G.; Brandes, T. Driven Open Quantum Systems and Floquet Stroboscopic Dynamics. \textit{Phys. Rev. Lett.} \textbf{2016}, \textit{117}, 250401.
\bibitem{23} Thanh Phuc, N.; Ishizaki, A. Control of Excitation Energy Transfer in Condensed Phase Molecular Systems by Floquet Engineering. \textit{J. Phys. Chem. Lett.} \textbf{2018}, \textit{9}, 1243–1248.
\bibitem{24} Engelhardt, G.; Cao, J. Dynamical Symmetries and Symmetry-Protected Selection Rules in Periodically Driven Quantum Systems. \textit{Phys. Rev. Lett.} \textbf{2021}, \textit{126}, 090601.
\bibitem{25} Yan, Y. J. Theory of open quantum systems with bath of electrons and phonons and spins: Many-dissipaton density matrices approach. \textit{J. Chem. Phys.} \textbf{2014}, \textit{140}, 054105.
\bibitem{26} Tanimura, Y. Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. \textit{Phys. Rev. A} \textbf{1990}, \textit{41}, 6676–87.
\bibitem{27} Tanimura, Y. Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems. \textit{J. Phys. Soc. Jpn.} \textbf{2006}, \textit{75}, 082001.
\bibitem{28} Yan, Y. A.; Yang, F.; Liu, Y.; Shao, J. S. Hierarchical approach based on stochastic decoupling to dissipative systems. \textit{Chem. Phys. Lett.} \textbf{2004}, \textit{395}, 216–21.
\bibitem{29} Xu, R. X.; Cui, P.; Li, X. Q.; Mo, Y.; Yan, Y. J. Exact quantum master equation via the calculus on path integrals. \textit{J. Chem. Phys.} \textbf{2005}, \textit{122}, 041103.
\bibitem{30} Xu, R. X.; Yan, Y. J. Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach. \textit{Phys. Rev. E} \textbf{2007},
\end{thebibliography}
31 Jin, J. S.; Zheng, X.; Yan, Y. J. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. *J. Chem. Phys.* 2008, 128, 234703.

32 Zhang, H. D.; Xu, R. X.; Zheng, X.; Yan, Y. J. Nonperturbative spin-boson and spin-spin dynamics and nonlinear Fano interferences: A unified dissipaton theory based study. *J. Chem. Phys.* 2015, 142, 024112.

33 Zhang, H. D.; Xu, R. X.; Zheng, X.; Yan, Y. J. Statistical quasi-particle theory for open quantum systems. *Mol. Phys.* 2018, 116, 780–812, Special Issue, “Molecular Physics in China”.

34 Wang, Y.; Xu, R. X.; Yan, Y. J. Entangled system-and-environment dynamics: Phase-space dissipaton theory. *J. Chem. Phys.* 2020, 152, 041102.

35 Weiss, U. *Quantum Dissipative Systems*; World Scientific: Singapore, 2008; 3rd ed. Series in Modern Condensed Matter Physics, Vol. 13.

36 Kleinert, H. *Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets*, 5th ed.; World Scientific: Singapore, 2009.

37 Yan, Y. J.; Xu, R. X. Quantum mechanics of dissipative systems. *Annu. Rev. Phys. Chem.* 2005, 56, 187–219.

38 Zhang, H. D.; Qiao, Q.; Xu, R. X.; Yan, Y. J. Effects of Herzberg–Teller vibronic coupling on coherent excitation energy transfer. *J. Chem. Phys.* 2016, 145, 204109.
Supplementary material on “Electron transfer under the Floquet modulation in donor–bridge–acceptor systems”

Yu Su, Zi-Hao Chen, Haojie Zhu, Yao Wang,∗ Lu Han, Rui-Xue Xu, and Yijing Yan†
Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
(Dated: March 23, 2022)

This supplementary material contains: (i) a brief introduction to DEOM, (ii) the rigorous proof of the periodicity of rate kernels, and (iii) the analytical analysis of the frequency–resolved rate kernels with the help of the Floquet theorem.

I. A BRIEF INTRODUCTION TO DEOM

Consider an arbitrary system coupled to the environment with the temperature T. Generally, the composite Hamiltonian can be decomposed into the system, the system–environment coupling and the environment parts as

$$H_{\pi}(t) = H_{S}(t) + \sum_{a} \dot{Q}_{a}(t) \hat{F}_{a} + h_{B}.$$ \hspace{1cm} (S1)

Here, the dissipative modes $\{\dot{Q}_{a}\}$ are rather arbitrary, while the environment Hamiltonian is adopted to be Gaussian. This requires not only h_{B} to be harmonic but also the hybrid reservoir modes $\{\hat{F}_{a}\}$ be linear. That is

$$h_{B} = \frac{1}{2} \sum_{j} \omega_{j} (p_{j}^{2} + x_{j}^{2}) \quad \text{and} \quad \hat{F}_{a} = \sum_{j} c_{aj} x_{j}.$$ \hspace{1cm} (S2)

Here, the oscillators of frequency $\{\omega_{j}\}$, with position $\{x_{j}\}$ and momentum $\{p_{j}\}$, are coupled to the system with strength $\{c_{aj}\}$. As in the main text, we set $\hbar = 1$ and $\beta = 1/(k_{B}T)$, with k_{B} being the Boltzmann constant. Specifically, Eq. (S1) with Eq. (S2) covers both the Hamiltonians in Eqs. (11) and (12) of the main text.

For the Gaussian environment (also named as “bath”), its influences on the system is totally characterized by the spectral density, $J_{ab}(\omega) = \frac{\beta}{2} \sum_{j} c_{aj} c_{bj} \delta(\omega - \omega_{j})$ for $\omega \geq 0$, and it is related to the statistical bath correlation via the fluctuation–dissipation theorem as1,2,

$$\langle \hat{F}_{a}(t) \hat{F}_{b}(0) \rangle_{B} = \frac{1}{\pi} \int_{-\infty}^{\infty} d\omega \frac{e^{-\omega t} J_{ab}(\omega)}{1 - e^{-\beta \omega}} \simeq \sum_{k=1}^{K} \eta_{abk} e^{-\gamma_{k} t}.$$ \hspace{1cm} (S3)

Here, $\hat{F}_{a}(t) \equiv e^{i h_{B} t} \hat{F}_{a} e^{-i h_{B} t}$ is the hybridizing bath operator in the h_{π}-interaction picture. The average $\langle \hat{O} \rangle_{B} = \text{tr}_{B}(\hat{O} e^{-\beta h_{B}}) / \text{tr}_{B}(e^{-\beta h_{B}})$ runs over the bare–bath thermal equilibrium ensembles for any operator \hat{O}. The multi-exponential decomposition in the the last identity can be readily achieved with some advancing sum-over-pole schemes.3,4 The exponents from the poles of Bose function and the corresponding pre-exponents coefficients are both real. On the other hand, those originating from the spectral density are either real or complex conjugate paired. Therefore, we can define \tilde{k} such that $\gamma_{\tilde{k}} = \gamma_{k}$.

Dynamical variables in DEOM are the dissipaton–augmented–reduced density operators (DDOs):5–7 $\rho^{(n)}_{a}(t) \equiv \text{tr}_{B} \left(\left[\prod_{ak} \hat{F}_{ak}^{n_{ak}} \right] \hat{\rho}_{a}(t) \right)$. Here, $n \equiv \{n_{ak}\}$ specifies the configuration of the total n–dissipatons, where $n = \sum_{ak} n_{ak}$, with $n_{ak} \geq 0$ for bosonic dissipatons. The reduced system density operator is just $\rho^{(0)}_{a}(t)$. The DEOM reads5

$$\dot{\rho}^{(n)}_{a}(t) = - [H_{S}(t), \rho^{(n)}_{a}(t)] - \sum_{ak} n_{ak} \gamma_{k} \rho^{(n)}_{ak} - i \sum_{ak} \left[\hat{Q}_{a}(t), \rho^{(n+1)}_{ak} \right] - i \sum_{abk} n_{ak} \left[\eta_{abk} \hat{Q}_{a}(t) \rho^{(n-1)}_{bk} - \eta^{*}_{abk} \rho^{(n-1)}_{bk} \hat{Q}_{a}(t) \right].$$ \hspace{1cm} (S4)

This describes the same dynamics of the HEOM formalism.8–13 It is worth emphasizing that the DEOM theory contains not only the above hierarchical dynamics, but also the dissipaton algebra.14 For brevity, we may express the Eq. (S4) in the form of

$$\dot{\rho}(t) = -i \mathcal{L}(t) \rho(t).$$ \hspace{1cm} (S5)

This resembles $\dot{\rho} = -i \mathcal{L}(t) \rho$ with mapping the total system–plus–bath composite Liouvillian to the DEOM–space dynamics generator as defined in Eq. (S4), $\mathcal{L}_{a}(t) \rightarrow \mathcal{L}(t)$, and $\rho_{a}(t) \rightarrow \rho(t) = \{ \rho^{(n)}_{a}(t); n = 0, 1, 2, \cdots \}$. Equation (S5) is exactly Eq.(13) of the main text.
II. PROOF OF THE PERIODICITY OF RATE KERNELS

We first review the projected DEOM approach to rate kernels in more details [cf. Eqs.(13)-(17) of the main text]. From the DEOM (S5), we know that the propagator

$$\mathcal{U}(t, \tau) = \exp \left[-i \int_{\tau}^{t} d\tau' \mathcal{L}(\tau') \right] \tag{S6}$$

governs the dynamics of the DEOM state function $\rho \equiv \{\rho_n^{(a)}\}$. To proceed, define DEOM–space projection operators, \mathcal{P} and $\mathcal{Q} = \mathcal{I} - \mathcal{P}$, for partitioning $\rho \equiv \{\rho_n^{(a)}\}$ into the population and coherent components, respectively:15

$$\mathcal{P} \rho(t) = \left\{ \sum_a \rho_{aa}^{(0)}(t) |a\rangle \langle a|; \ 0, 0, \ldots \right\} \equiv p(t),$$

$$\mathcal{Q} \rho(t) = \left\{ \sum_{a \neq b} \rho_{ab}^{(0)}(t) |b\rangle \langle a|; \ \rho_n^{(n>0)}(t) \right\} \equiv \sigma(t). \tag{S7}$$

We can now recast the DEOM (S5) in terms of

$$\begin{bmatrix} \dot{p}(t) \\ \dot{\sigma}(t) \end{bmatrix} = -i \begin{bmatrix} \mathcal{P} \mathcal{L}(t) \mathcal{P} & \mathcal{P} \mathcal{L}(t) \mathcal{Q} \\ \mathcal{Q} \mathcal{L}(t) \mathcal{P} & \mathcal{Q} \mathcal{L}(t) \mathcal{Q} \end{bmatrix} \begin{bmatrix} p(t) \\ \sigma(t) \end{bmatrix}. \tag{S8}$$

The formal solution to $\sigma(t)$ reads

$$\sigma(t) = -i \int_{0}^{t} d\tau \mathcal{Q} \mathcal{U}(t, \tau) \mathcal{Q} \mathcal{L}(\tau) p(\tau). \tag{S9}$$

Equation (S9) contains no inhomogeneous term, as we assume initially the total density operator is factorized, and thus $\sigma(0) = 0$. Noting that $-i \mathcal{P} \mathcal{L}(t) p(t) = 0$,15 the first identity of Eq. (S8) then has the expression

$$\dot{p}(t) = \int_{0}^{t} d\tau' \tilde{K}(t - \tau'; t) p(\tau), \tag{S10}$$

with the rate kernel being formally of

$$\tilde{K}(t - \tau; t) = -\mathcal{P} \mathcal{L}(t) \mathcal{Q} \mathcal{U}(t, \tau) \mathcal{Q} \mathcal{L}(\tau) \mathcal{P}. \tag{S11}$$

Apparently, $-k(t - \tau; t)$ and $k'(t - \tau; t)$ in Eq. (1) of main text are the $|D\rangle \langle D| \rightarrow |D\rangle \langle D|$ and $|A\rangle \langle A| \rightarrow |D\rangle \langle D|$ components of $\tilde{K}(t - \tau; t)$, respectively. That is to say,

$$-k(t - \tau; t) = \langle |D\rangle \langle D|, 0, 0, \ldots \mid \mid \tilde{K}(t - \tau; t) \mid \mid |D\rangle \langle D|, 0, 0, \ldots \rangle, \tag{S12}$$

$$k'(t - \tau; t) = \langle |D\rangle \langle D|, 0, 0, \ldots \mid \mid \tilde{K}(t - \tau; t) \mid \mid |A\rangle \langle A|, 0, 0, \ldots \rangle. \tag{S13}$$

Now we can prove that the kernel in Eq. (S11) satisfies

$$\tilde{K}(t - \tau; t + T_0) = \tilde{K}(t - \tau; t). \tag{S14}$$

To this end, we note that $\mathcal{L}(t + T_0) = \mathcal{L}(t)$ according to our Floquet setting. This leads to

$$\tilde{K}(t - \tau; t + T_0) = -\mathcal{P} \mathcal{L}(t + T_0) \mathcal{Q} \mathcal{U}(t + T_0, \tau + T_0) \mathcal{Q} \mathcal{L}(\tau + T_0) \mathcal{P} = \mathcal{P} \mathcal{L}(t) \mathcal{Q} \mathcal{U}(t, \tau) \mathcal{Q} \mathcal{L}(\tau) \mathcal{P} = \tilde{K}(t - \tau; t). \tag{S15}$$

Here we have used

$$\mathcal{U}(t + T_0, \tau + T_0) = \exp_o \left[-i \int_{\tau + T_0}^{t + T_0} d\tau' \mathcal{L}(\tau') \right] = \exp_o \left[-i \int_{\tau}^{t} d\tau' \mathcal{L}(\tau' + T_0) \right] = \exp_o \left[-i \int_{\tau}^{t} d\tau' \mathcal{L}(\tau') \right] = \mathcal{U}(t, \tau). \tag{S16}$$

Therefore, we conclude $k(t - \tau; t)$ and $k'(t - \tau; t)$ is periodic with respect to their second parameters.
III. ANALYSIS OF THE FREQUENCY–RESOLVED RATE KERNELS

To proceed, we first recast Eq. (S11) as
\[
\tilde{K}(\tau; t) = -\mathcal{P} \mathcal{L}(t) \mathcal{Q} \mathcal{U}(t, t - \tau) \mathcal{Q} \mathcal{L}(t - \tau) \mathcal{P}.
\] (S17)

Then, according to the Floquet theorem, the total propagator can be decomposed as16
\[
U_\lambda(t, 0) \equiv T_+ e^{-i \int_0^{T_+} \dot{H}_T(\tau) \, d\tau} = e^{-iK_T^0(t)} e^{-iH_T^0 t} t
\] (S18)
with the Floquet Hamiltonian H_T^0 defined as
\[
e^{-iH_T^0 T_0} \equiv U(T_0, 0)
\] (S19)
and the stroboscopic kick operator $K_T^0(t)$
\[
e^{-iK_T^0(t)} \equiv U(t, 0) e^{iH_T^0 t}.
\] (S20)

The stroboscopic kick operator satisfies $K_T^0(0) = K_T^0(nT_0) = 0$. Then, in the DEOM–space we may obtain
\[
\tilde{K}(\tau; t) = -\mathcal{P} \mathcal{L}(t) \mathcal{Q} \mathcal{U}_K(t) \mathcal{G}_F(\tau) \mathcal{U}_K^\dagger(t - \tau) \mathcal{Q} \mathcal{L}(t - \tau) \mathcal{P},
\] (S21)
with $\mathcal{G}_F(\tau), \mathcal{U}_K(\tau)$ and $\mathcal{U}_K^\dagger(t - \tau)$ are the $\exp\{ -i\tau [H_T^0, \cdot]\}, \exp\{ -i[K_T^0(\tau), \cdot]\}$ and $\exp\{i[K_T^0(t - \tau), \cdot]\}$ mapped to DEOM space, respectively.

Since the system is driven periodically, we can expand the rate kernel as
\[
\tilde{K}(\tau; t) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} A_m \mathcal{G}_F(\tau) B_n e^{-i(m+n)\Omega t} e^{i\Omega \tau},
\] (S22)
where
\[
A_m \equiv -i \int_0^{T_0} dt \mathcal{P} \mathcal{L}(t) \mathcal{Q} \mathcal{U}_K(t) e^{i\Omega t}
\] (S23)
and
\[
B_n \equiv -i \int_0^{T_0} dt \mathcal{U}_K^\dagger(t) \mathcal{Q} \mathcal{L}(t) \mathcal{P} e^{i\Omega t}.
\] (S24)

By changing the summation indices, the rate kernel can be recast as
\[
\tilde{K}(\tau; t) = \sum_{m=-\infty}^{\infty} e^{-i\Omega \tau} \sum_{n=-\infty}^{\infty} A_{m-n} \mathcal{G}_F(\tau) B_n e^{i\Omega \tau}.
\] (S25)

Therefore, the corresponding Fourier components in frequency domain are given by
\[
\tilde{K}_m(\omega) = \int_0^\infty d\tau \sum_{n=-\infty}^{\infty} A_{m-n} \mathcal{G}_F(\tau) B_n e^{i\Omega \tau} \cos(\omega \tau).
\] (S26)

Since the Floquet Hamiltonian is independent of time, one could express the Fourier components formally via the eigenstates of \(\mathcal{L}_F\), the mapping of \([H_T^0, \cdot]\) in DEOM–space, as
\[
\tilde{K}_m(\omega) = \int_0^\infty d\tau \sum_{n=-\infty}^{\infty} \sum_{\omega_F} A_{m-n} (\omega_F) B_n (\omega_F) e^{i(\Omega - \omega_F) \tau} \cos(\omega \tau).
\] (S27)

That is to say, we set $B_n = \sum_{\omega_F} B_n (\omega_F)$, such that $A_{m-n} \mathcal{L}_F B_n (\omega_F) = \omega_F A_{m-n} (\omega_F) B_n (\omega_F)$. The integral over τ gives the basic profiles of the peak (real part) of $\tilde{K}_m(\omega)$ proportional to
\[
\alpha \left[\frac{1}{\omega - (n\Omega - \omega_F)} - \frac{1}{\omega + (n\Omega - \omega_F)} \right] + \alpha' \left[\frac{1}{\omega - (n\Omega + \omega_F)} - \frac{1}{\omega + (n\Omega + \omega_F)} \right],
\] (S28)
with α and α' being the coefficients. Equation (29) results in the peak–split phenomenon of $\tilde{K}_m(\omega)$.

* Electronic address: wy2010@ustc.edu.cn
† Electronic address: yanyj@ustc.edu.cn

1 U. Weiss, *Quantum Dissipative Systems*, World Scientific, Singapore, 2008, 3rd ed. Series in Modern Condensed Matter Physics, Vol. 13.

2 Y. J. Yan and R. X. Xu, “Quantum mechanics of dissipative systems,” Annu. Rev. Phys. Chem. 56, 187 (2005).

3 J. Hu, R. X. Xu, and Y. J. Yan, “Padé spectrum decomposition of Fermi function and Bose function,” J. Chem. Phys. 133, 101106 (2010).

4 J. Hu, M. Luo, F. Jiang, R. X. Xu, and Y. J. Yan, “Padé spectrum decompositions of quantum distribution functions and optimal hierarchial equations of motion construction for quantum open systems,” J. Chem. Phys. 134, 244106 (2011).

5 Y. J. Yan, “Theory of open quantum systems with bath of electrons and phonons and spins: Many-dissipaton density matrices approach,” J. Chem. Phys. 140, 054105 (2014).

6 Y. J. Yan, J. S. Jin, R. X. Xu, and X. Zheng, “Dissipaton equation of motion approach to open quantum systems,” Frontiers Phys. 11, 110306 (2016).

7 H. D. Zhang, R. X. Xu, X. Zheng, and Y. J. Yan, “Statistical quasi-particle theory for open quantum systems,” Mol. Phys. 116, 780 (2018), Special Issue, “Molecular Physics in China”.

8 Y. Tanimura and R. Kubo, “Time evolution of a quantum system in contact with a nearly Gaussian-Markovian noise bath,” J. Phys. Soc. Jpn. 58, 101 (1989).

9 Y. Tanimura, “Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath,” Phys. Rev. A 41, 6676 (1990).

10 Y. Tanimura, “Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems,” J. Phys. Soc. Jpn. 75, 082001 (2006).

11 Y. A. Yan, F. Yang, Y. Liu, and J. S. Shao, “Hierarchical approach based on stochastic decoupling to dissipative systems,” Chem. Phys. Lett. 395, 216 (2004).

12 R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan, “Exact quantum master equation via the calculus on path integrals,” J. Chem. Phys. 122, 041103 (2005).

13 R. X. Xu and Y. J. Yan, “Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach,” Phys. Rev. E 75, 031107 (2007).

14 Y. Wang, R. X. Xu, and Y. J. Yan, “Entangled system-and-environment dynamics: Phase-space dissipaton theory,” J. Chem. Phys. 152, 041102 (2020).

15 H. D. Zhang and Y. J. Yan, “Kinetic rate kernels via hierarchical Liouville–space projection operator approach,” J. Phys. Chem. A 120, 3241 (2016), Special Issue: Ronnie Kosloff Festschrift.

16 S. Restrepo, J. Cerrillo, V. M. Bastidas, D. G. Angelakis, and T. Brandes, “Driven Open Quantum Systems and Floquet Stroboscopic Dynamics,” Phys. Rev. Lett. 117, 250401 (2016).