Extended Calogero models: a construction for exactly solvable kN-body systems

Zhe Chen, Jon Links, Ian Marquette and Yao-Zhong Zhang

School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia

E-mail: zhe.chen3@uqconnect.edu.au, jrl@maths.uq.edu.au, i.marquette@uq.edu.au and yzz*maths.uq.edu.au

Received 19 July 2018, revised 17 September 2018
Accepted for publication 27 September 2018
Published 16 October 2018

Abstract

We propose a systematic procedure for the construction of exactly solvable kN-body systems which are natural generalisations of Calogero models. As examples, we present two new $3N$-body models and determine explicit expressions for their eigenvalues and eigenfunctions.

Keywords: exactly solvable systems, Calogero models, pre-superpotential

1. Introduction

Exactly solvable (ES) quantum many-body problems attract considerable research activity due to their connections with many branches of physics, e.g. [1–8]. In 1969, Calogero obtained the exact solution for a three-particle system with pairwise interactions via square and inverse square potentials [9], and later generalized this result to the N-body case [10]. In 1974, Wolfes extended Calogero’s three-body problem by adding terms which are inverse squares of certain linear combinations of the three-particle coordinates [11]. In [12], Sutherland proposed ES models with trigonometric potentials [12]. In the 1980s, Olshanetsky and Perelomov carried out a survey and gave a classification of ES models according to the root systems of simple Lie algebras [13].

Over recent decades, models of the Calogero type (i.e. those where the potential is of the form ‘oscillator/inverse square’) have received considerable attention, and many interesting properties have been discovered [14–26]. There are also many works which have attempted to obtain new ES models by extending existing ones through separation of variables [27–29].
More complicated extensions, which have connections with orthogonal polynomials, can be obtained by \(PT \) (parity and time reversal) symmetric quantum mechanics [30–32]. In this work, we propose a systematic method for constructing ES \(kN \)-body systems in one dimension. Such models consist of \(N \) interacting blocks, each of which contains \(k \) particles. The blocks interact through their centres of mass, while particles in each block interact via \(A \) or \(G_2 \) type potential. As examples, we provide two new ES \(3N \)-body models and obtain their corresponding eigenvalues and eigenfunctions.

The paper is organized as follows. In section 2, we describe a general procedure for constructing ES many-body quantum Hamiltonians in terms of pre-superpotentials. By choosing an appropriate form of pre-superpotential, we derive a rational ansatz whose solutions give rise to ES models. All Calogero type models associated with the root systems of simple Lie algebras satisfy this ansatz. We list the Hamiltonians of such Calogero systems, and their corresponding ground state energies and wave functions. In section 3, we combine distinct \(A \) or \(G_2 \) type models together to form a new family of ES models through a coupling function. Various types of coupling functions will be studied. We show that every member in this family satisfies the rational ansatz, thus proving these new models remain ES. As examples, in section 4 we present two new \(3N \)-body systems. Applying appropriate coordinate transformations, we separate the \(3N \)-body eigenvalue problem into equations for radial, angular, and center-of-mass parts coordinates. We solve these equations to give the eigenvalues and eigenfunctions of the \(3N \)-body models. We summarize our work in the final section.

2. General discussion and results

Throughout this paper we set \(\hbar = 2m = 1 \). We start with the basic relation [26],

\[
\hat{p}^2 e^W = -\sum_{i=1}^{N} \left[\left(\frac{\partial W}{\partial x_i} \right)^2 + \frac{\partial^2 W}{\partial x_i^2} \right] e^W, \quad \hat{\rho}^2 = -\sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}.
\]

This relation guarantees that \(e^W \) is an eigenfunction of the following Hamiltonian

\[
\hat{H} = \hat{p}^2 + \sum_{i=1}^{N} \left[\left(\frac{\partial W}{\partial x_i} \right)^2 + \frac{\partial^2 W}{\partial x_i^2} \right],
\]

with zero eigenvalue, i.e.

\[
\hat{H} e^W = 0,
\]

provided that \(e^W \) is square-integrable. Such a function \(W \) is called a pre-superpotential. Now we set \(W \) to be of the form

\[
W = \sum_{i=1}^{M} \alpha_i \log |\vec{v}_i \cdot \vec{x}| - \frac{\omega}{2} \sum_{i=1}^{N} x_i^2,
\]

where \(\vec{x} = (x_1, x_2, \cdots, x_N) \), and \(\vec{v}_i \)'s are some distinct vectors. Then (1) becomes

\[
\left\{ \hat{p}^2 + \omega^2 \sum_{i=1}^{N} x_i^2 + \sum_{i=1}^{M} \frac{\alpha_i (\alpha_i - 1) |\vec{v}_i|^2}{(\vec{v}_i \cdot \vec{x})^2} + 2 \sum_{i<j}^{M} \frac{\alpha_i \alpha_j}{(\vec{v}_i \cdot \vec{x})(\vec{v}_j \cdot \vec{x})} (\vec{v}_i \cdot \vec{v}_j) - E_0 \right\} e^W = 0,
\]

where \(E_0 = 2\omega \sum_{i=1}^{M} \alpha_i + N\omega \). Thus if we choose \(\vec{v}_i \) and \(\alpha_i \) such that the following so-called rational ansatz is satisfied

\[
\left\{ \hat{p}^2 + \omega^2 \sum_{i=1}^{N} x_i^2 + \sum_{i=1}^{M} \frac{\alpha_i (\alpha_i - 1) |\vec{v}_i|^2}{(\vec{v}_i \cdot \vec{x})^2} + 2 \sum_{i<j}^{M} \frac{\alpha_i \alpha_j}{(\vec{v}_i \cdot \vec{x})(\vec{v}_j \cdot \vec{x})} (\vec{v}_i \cdot \vec{v}_j) - E_0 \right\} e^W = 0,
\]

where \(E_0 = 2\omega \sum_{i=1}^{M} \alpha_i + N\omega \). Thus if we choose \(\vec{v}_i \) and \(\alpha_i \) such that the following so-called rational ansatz is satisfied
\[
\sum_{i<j}^{M} \frac{\alpha_i \alpha_j}{(\vec{v}_i \cdot \vec{x})(\vec{v}_j \cdot \vec{x})} (\vec{v}_i \cdot \hat{\vec{v}}_j) = 0, \tag{3}
\]

and denote the corresponding Hamiltonian as \(\hat{H}_{\text{Cal}} \), we then have

\[
\hat{H}_{\text{Cal}} = \hat{p}^2 + \omega^2 \sum_{i=1}^{N} x_i^2 + \sum_{i=1}^{M} \alpha_i(\alpha_i - 1)|\vec{v}_i|^2, \]

\[
\hat{H}_{\text{Cal}} e^W = \left(2\omega \sum_{i=1}^{M} \alpha_i + N\omega \right) e^W. \tag{4}
\]

In other words, if (3) is satisfied, the Hamiltonian (4) admits a ground state \(e^W \) with corresponding energy \(E_0 \).

It is straightforward to show that \(e^{-\hat{W}H_{\text{Cal}}e^W} \) gives

\[
e^{-\hat{W}H_{\text{Cal}}e^W} = \hat{p}^2 - 2 \sum_{i=1}^{N} \sum_{j=1}^{M} \alpha_i \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} x_i^2 x_j + 2\omega \sum_{i=1}^{N} x_i \frac{\partial}{\partial x_i} + E_0 \tag{5}
\]

where \(v_{ij} \) denotes the \(i \)th component of the vector \(\vec{v}_j \). We find \(e^{-\hat{W}H_{\text{Cal}}e^W} P_n(t) \subset P_n(t) \) for any positive integer \(n \), where \(P_n(t) \) is defined by

\[
\mathcal{P}_n(t) = \text{span}\{1,t,t^2,\ldots,t^n\}, \quad t = \sum_{i=1}^{N} x_i^2.
\]

That is, \(e^{-\hat{W}H_{\text{Cal}}e^W} \) preserves the infinite flag of spaces

\[
\mathcal{P}_0(t) \subset \mathcal{P}_1(t) \subset \cdots \subset \mathcal{P}_n(t) \subset \cdots.
\]

It is not difficult to obtain

\[
e^{-\hat{W}H_{\text{Cal}}e^W} L_n^{(\alpha)}(4\omega t) = (4\omega n + E_0) L_n^{(\alpha)}(4\omega t), \quad \alpha = 4 \sum_{j=1}^{M} \alpha_j + 2N + 1,
\]

where \(L_n^{(\alpha)}(4\omega t) \) is the Laguerre polynomial of degree \(n \). Moreover, the results from [23–25] can be generalized to show the exact solvability of the Hamiltonian \(\hat{H}_{\text{Cal}} \). Indeed, from (5), we find

\[
\hat{g}^{-1} e^{-\hat{W}H_{\text{Cal}}e^W} \hat{g} = \hat{p}^2 + \omega^2 \sum_{i=1}^{N} x_i^2 + E_0 - N\omega, \]

\[
\hat{g} = \exp \left\{ \frac{1}{4\omega} \left[\hat{p}^2 - 2 \sum_{i=1}^{N} \sum_{j=1}^{M} \alpha_i \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} x_i^2 x_j \right] \right\} \cdot \exp \left\{ - \frac{1}{4\omega} \hat{p}^2 \right\} \cdot \exp \left\{ \frac{\omega}{2} \sum_{i=1}^{N} x_i^2 \right\}.
\]

In terms of the ladder operators

\[
\hat{a}_j = \frac{\partial}{\partial x_j} + \omega x_j, \quad \hat{a}_j^\dagger = -\frac{\partial}{\partial x_j} + \omega x_j,
\]
we have
\[\hat{g}^{-1} e^{-W} \hat{H}_{\text{Cal}} e^{W} \hat{g} = \frac{1}{2} \sum_{i=1}^{N} \{ \hat{a}_i, \hat{a}_i^\dagger \} + E_0 - N\omega. \]

We see that Hamiltonian \(\hat{H}_{\text{Cal}} \) can be mapped to independent harmonic oscillators and thus is ES. It is straightforward to show that the transformed ‘number operators’ \(\hat{J}_{ii} = e^{W} \hat{g}_i \hat{a}_i^\dagger \hat{a}_i \hat{g}_i^{-1} e^{-W} \), \(i = 1, 2, \ldots, N \) are conserved
\[[\hat{J}_{ii}, \hat{H}_{\text{Cal}}] = 0, \]
as expected.

It can be shown that the rational ansatz (3) has non-trivial solutions. With appropriate \(\alpha_j \)'s, root vectors of simple Lie algebras satisfy (3) and the corresponding \(\hat{H}_{\text{Cal}} \) in (4) give the Hamiltonians of the Calogero type models. On the other hand, it is worth noting that [27] provides an example of an ES Hamiltonian corresponding to \(\hat{J}_{ij} \)'s in (3) which are not related to a root system of a Lie algebra.

We now list some known results, taken from [15, 16, 20, 26], for later use. While the general discussion above is valid for parameters \(M \) and \(N \) are independent, the fact that the results below are expressed in terms of root systems imposes a relation between \(M \) and \(N \).

2.1. A type Calogero model
For the Calogero model associated with A type root system, the positive root vectors are
\[\hat{e}_i - \hat{e}_j = (\cdots, 1, \cdots, -1, \cdots) \quad 1 \leq i < j \leq N \]
where \(\hat{e}_i \) denotes a standard basis element in \(N \)-dimensional Euclidean space \(\mathbb{R}^N \), and the dots represent zeros. We set \(\vec{v}_1 = \hat{e}_1 - \hat{e}_2, \vec{v}_2 = \hat{e}_1 - \hat{e}_3, \ldots, \vec{v}_M = \hat{e}_N - \hat{e}_N \), where \(M = N(N - 1)/2 \). We also set \(\alpha_1 = \cdots = \alpha_M = \alpha \) in (2), such that
\[W = \alpha \sum_{i<j}^{N} \log |x_i - x_j| - \frac{\omega}{2} \sum_{i=1}^{N} x_i^2, \]
\[\hat{H}_A = \hat{p}^2 + \sum_{i<j}^{N} \frac{2\alpha(\alpha - 1)}{(x_i - x_j)^2} + \omega^2 \sum_{i=1}^{N} x_i^2, \]
\[\hat{H}_A e^W = (N\omega + N(N - 1)\omega_\alpha)e^W. \] (6)

2.2. BC type Calogero model
For the Calogero model associated with BC type root system, the positive root vectors are
\[\hat{e}_i \pm \hat{e}_j = (\cdots, 1, \cdots, \pm 1, \cdots) \quad 1 \leq i < j \leq N, \]
\[\hat{e}_i = (\cdots, 1, \cdots), \quad i = 1, 2, \ldots, N. \]
We set \(\vec{v}_1 = \hat{e}_1 - \hat{e}_2, \vec{v}_2 = \hat{e}_1 - \hat{e}_3, \ldots, \vec{v}_M / 2 = \hat{e}_{N-1} - \hat{e}_N, \vec{v}_{M / 2 + 1} = \hat{e}_1 + \hat{e}_2, \ldots, \vec{v}_M = \hat{e}_{N-1} + \hat{e}_N \), where \(M' = N(N - 1) / 2 \). and \(\vec{v}_{M / 2 + i} = \hat{e}_i, i = 1, \ldots, N \). We also set \(\alpha_1 = \cdots = \alpha_{M'} = \beta_1, \alpha_{M' + 1} = \cdots = \alpha_M = \beta_2 \) in (2), where \(M = M' + N \). Then
\[
W = \beta_1 \sum_{i<j} \{ \log |x_i - x_j| + \log |x_i + x_j| \} + \beta_2 \sum_{i=1}^{N} \log |x_i| - \frac{\omega}{2} \sum_{i=1}^{N} x_i^2,
\]

\[
\hat{H}_{BC} = \hat{p}^2 + \sum_{i<j} \left\{ \frac{2 \beta_1 (\beta_1 - 1)}{(x_i - x_j)^2} + \frac{2 \beta_1 (\beta_1 - 1)}{(x_i + x_j)^2} \right\} + \omega^2 \sum_{i=1}^{N} x_i^2 + \sum_{i=1}^{N} \frac{\beta_2 (\beta_2 - 1)}{x_i^2},
\]

\[
\hat{H}_{BC} e^W = [2N(N-1)\omega \beta_1 + 2N\omega \beta_2 + N\omega] e^W.
\]

If \(\beta_2 = 0 \), then \(BC \) type reduces to \(D \) type.

2.3. \(E_8 \) type Calogero model

Before defining this model, we need to introduce some notation. For \(j = 1, \cdots, 7 \) let \(a_j \in \mathbb{Z}_2 \) and let \(\mathcal{I} \) denote the set of septuples \(\alpha = (a_1, \cdots, a_7) \) such that

\[
\sum_{j=1}^{7} a_j = 0.
\]

Then for the Calogero model associated with \(E_8 \) type root system, the positive root vectors are

\[
\hat{e}_i \pm \hat{e}_j = (\cdots, 1, \cdots, \pm 1, \cdots) \quad 1 \leq i < j \leq 8,
\]

\[
\hat{e}_8 + \sum_{i=1}^{7} (-1)^{a_i} \hat{e}_i = ((-1)^{a_1}, \cdots, (-1)^{a_7}, 1),
\]

\((a_1, \cdots, a_7) \in \mathcal{I}. \) \hspace{1cm} \((8) \)

We set \(\vec{v}_1 = \hat{e}_1 - \hat{e}_2, \) \(\vec{v}_{56} = \hat{e}_4 + \hat{e}_8, \) while the remaining \(\vec{v}_{57}, \cdots, \vec{v}_{120} \) have the form \((8) \). We also set \(\alpha_1 = \cdots = \alpha_{120} = \beta \) in \((2) \), so

\[
W = \beta \sum_{i<j} \{ \log |x_i - x_j| + \log |x_i + x_j| \} + \beta \sum_{\alpha \in \mathcal{I}} \log |x_{\alpha}| + \sum_{i=1}^{7} (-1)^{a_i} x_i - \frac{\omega}{2} \sum_{i=1}^{8} x_i^2,
\]

\[
\hat{H}_{E_8} = \hat{p}^2 + \sum_{i<j} \left\{ \frac{2 \beta (\beta - 1)}{(x_i - x_j)^2} + \frac{2 \beta (\beta - 1)}{(x_i + x_j)^2} \right\} + \sum_{\alpha \in \mathcal{I}} \left[\frac{8 \beta (\beta - 1)}{(x_{\alpha} + \sum_{i=1}^{7} (-1)^{a_i} x_i)^2} \right] + \omega^2 \sum_{i=1}^{8} x_i^2,
\]

\[
\hat{H}_{E_8} e^W = (240 \omega \beta + 8 \omega) e^W.
\]

2.4. \(F_4 \) type Calogero model

For the Calogero model associated with \(F_4 \) type root system, the vectors are

\[
\hat{e}_i \pm \hat{e}_j = (\cdots, 1, \cdots, \pm 1, \cdots) \quad 1 \leq i < j \leq 4,
\]

\[
\hat{e}_i + \sum_{j=2}^{4} (-1)^{a_j} \hat{e}_j = (1, \pm 1, \pm 1, \pm 1),
\]

\[
\hat{e}_i = (\cdots, 1, \cdots), \quad i = 1, 2, 3, 4.
\]

We set \(\vec{v}_1 = \hat{e}_1 - \hat{e}_2, \cdots, \vec{v}_{12} = \hat{e}_3 + \hat{e}_4, \) \(\vec{v}_{13} = (1, 1, 1, 1), \cdots, \vec{v}_{20} = (1, -1, -1, -1) \) and \(\vec{v}_{20+i} = \hat{e}_i, \) \(i = 1, \cdots, 4. \) We also set \(\alpha_1 = \cdots = \alpha_{12} = \nu, \) \(\alpha_{13} = \cdots = \alpha_{24} = \mu \) in \((2) \), so
\[W = \nu \sum_{i<j}^{4} \{ \log |x_i - x_j| + \log |x_i + x_j| \} + \mu \sum_{i=1}^{4} \log |x_i| + \mu \sum_{a \in \mathbb{Z}_2} \log |x_1 + \sum_{i=2}^{4} (-1)^a x_i| - \frac{\omega}{2} \sum_{i=1}^{4} x_i^2, \]
\[\hat{H}_{G_4} = p^2 + \sum_{i<j}^{4} \left\{ \frac{2\nu(\nu - 1)}{(x_i + x_j)^2} + \frac{2\nu(\nu - 1)}{(x_i - x_j)^2} \right\} + \sum_{i=1}^{4} \frac{\mu(\mu - 1)}{x_i^2} + \omega^2 \sum_{i=1}^{4} x_i^2 \]
\[+ \sum_{a \in \mathbb{Z}_2} \frac{4\mu(\mu - 1)}{(x_1 + \sum_{i=2}^{4} (-1)^a x_i)^2}. \]
\[\hat{H}_{G_4}e^W = (4\omega + 24\omega \mu + 24\omega \nu)e^W. \]

2.5. \(G_2 \) type Calogero model

For the Calogero model associated with \(G_2 \) type root system, the vectors \(\vec{v}_i, i = 1, \ldots, 6 \) are given by

\[\vec{v}_1 = (1, -1, 0), \quad \vec{v}_2 = (1, 0, -1), \quad \vec{v}_3 = (0, 1, -1), \]
\[\vec{v}_4 = (1, 1, -2), \quad \vec{v}_5 = (1, -2, 1), \quad \vec{v}_6 = (-2, 1, 1). \]

We also set \(\alpha_1 = \alpha_2 = \alpha_3 = \beta_1, \alpha_4 = \alpha_5 = \alpha_6 = \beta_2 \) in (2), so

\[W = \beta_1 \sum_{i<j}^{3} \log |x_i - x_j| + \beta_2 \sum_{l \neq i < j \neq l}^{3} \log |x_i + x_j - 2x_l| - \frac{\omega}{2} \sum_{i=1}^{3} x_i^2, \]
\[\hat{H}_{G_2} = p^2 + \sum_{i<j}^{3} \frac{2\beta_1(\beta_1 - 1)}{(x_i - x_j)^2} + \sum_{l \neq i < j \neq l}^{3} \frac{6\beta_2(\beta_2 - 1)}{(x_i + x_j - 2x_l)^2} + \omega^2 \sum_{i=1}^{3} x_i^2, \]
\[\hat{H}_{G_2}e^W = (3\omega + 6\beta_1 \omega + 6\beta_2 \omega)e^W. \] (10)

The \(E_6 \) and \(E_7 \) cases have constraints on the coordinates [20]. These do not lend to a convenient physical interpretation, so we omit them.

3. Construction of new models

In this section, we present a systematic approach for constructing ES \(kN \)-body systems in one dimension. Such models describe systems of \(N \) interacting blocks, each of which has \(k \) particles interacting via an \(A \) type or \(G_2 \) type potential.

The \(kN \)-body system is proposed to have a Hamiltonian \(\hat{H} \) given by

\[\hat{H} = \sum_{i=1}^{N} \hat{H}_i + C(X_1, X_2, \cdots, X_N). \] (11)

Here \(X_i = \frac{1}{k} \sum_{j=1}^{k} x_j \), \(i = 1, 2, \cdots, N \), is the center-of-mass of the \(i \)th block, \(C(X_1, \cdots, X_N) \) is called the coupling function, and \(\hat{H}_i \) is the Hamiltonian for the \(i \)th block,
\[\hat{H}_i = \hat{p}_i^2 + \omega^2 \sum_{j=1}^{k} x_j^2 + V_i, \quad \hat{p}_i^2 = -\sum_{j=1}^{k} \frac{\partial^2}{\partial x_j}, \quad i = 1, 2, \ldots, N. \] (12)

The potential \(V_i \) above is of the inverse square form:

\[V_i = \sum_{l=1}^{m_i} \frac{g_i}{(\bar{v}_{il} \cdot \bar{x})^2}. \]

In this model, \(\hat{H}_i \) is assigned \(m_i \) vectors, \(\bar{v}_{il} \) is the \(l \)th vector associated with \(\hat{H}_i \),

\[\bar{v}_{il} = (0, 0, \ldots, 0, v_{il1}, v_{il2}, \ldots, v_{ilr}, 0, \ldots, 0), \]

and \(\bar{x} \) is the collection of coordinates of the form,

\[\bar{x} = (x_{11}, \ldots, x_{1k}, \ldots, x_{l1}, \ldots, x_{lk}, \ldots, x_{N1}, x_{N2}, \ldots, x_{Nk}). \] (13)

We take the coupling function to be of the inverse square form, i.e.

\[C(X_1, \ldots, X_N) = \frac{1}{k} \sum_{i=1}^{r} \frac{\beta_i (\beta_i - 1) |\bar{\mu}_i|^2}{(|\bar{\mu}_i \cdot \bar{X}|^2}, \]

where \(\bar{X} = (X_1, \ldots, X_N) \) and \(\bar{\mu}_i = (\mu_{i1}, \ldots, \mu_{iN}), \quad i = 1, 2, \ldots, r \). In fact, we have

\[k \bar{\mu}_i \cdot \bar{X} = \bar{\mu}'_i \cdot \bar{x}, \]

where \(\bar{x} \) is given by (13), and \(\bar{\mu}'_i \) is some `expansion’ of \(\bar{\mu}_i \),

\[\bar{\mu}'_i = (\mu_{i1}, \ldots, \mu_{i1}, \mu_{i2}, \ldots, \mu_{i2}, \ldots, \mu_{iK}, \ldots, \mu_{iK}), \]

with \(k \) copies of \(\mu_{i1} \), \(k \) copies of \(\mu_{i2} \), \(k \) copies of \(\mu_{iK} \).

It is then clear that the inner product \(\bar{\mu}'_i \cdot \bar{v}_{il} \) is well defined. Putting \(\bar{x}, \bar{v}_{il} \) and \(\bar{\mu}'_i \) into (3), and using the relations

\[\bar{v}_{il} \cdot \bar{v}'_{il} = \delta_{il} \bar{v}_{il} \cdot \bar{v}'_{il}, \]
\[\bar{v}_{il} \cdot \bar{\mu}'_i = \mu_{il} \sum_{j=1}^{k} v_{ilj}, \]
\[\bar{\mu}_i \cdot \bar{\mu}_j = k (\bar{\mu}'_i \cdot \bar{\mu}'_j), \]

we arrive at \(S_1 + S_2 + S_3 = 0 \) where

\[S_1 = \sum_{i=1}^{N} \sum_{l<j} \sum_{s<t} \frac{\alpha_{il}^s\alpha_{jt}^t}{(\bar{v}_{il} \cdot \bar{x}) (\bar{v}_{jt} \cdot \bar{x})} (\bar{v}_{il} \cdot \bar{v}_{jt}), \]
\[S_2 = \sum_{i,j,l} \sum_{s<t} \frac{\beta_{il}^s\beta_{jt}^t}{(\bar{v}_{il} \cdot \bar{x}) (\bar{v}_{jt} \cdot \bar{x})} (\mu_{il} \sum_{j=1}^{k} v_{ilj}), \]
\[S_3 = \frac{1}{k} \sum_{i,j,l} \sum_{s<t} \frac{\beta_{il}^s\beta_{jt}^t}{(\bar{\mu}_i \cdot \bar{x}) (\bar{\mu}_j \cdot \bar{x})} (\bar{\mu}_i \cdot \bar{\mu}_j). \] (14)

We want \(S_1, S_2 \) and \(S_3 \) in (14) to vanish individually. First, let us examine \(S_1 \), it is nothing but a sum of ansatzes (3) of each \(\hat{H}_i \). For the \(i \)th Hamiltonian \(\hat{H}_i \), we can choose \(\bar{v}_{il} \)'s to be the root
system of a simple Lie algebra, with appropriate α_i’s such that S_1 vanishes. For S_2, we can make it vanish by choosing $\vec{\mu}_i$'s to be root vectors of Lie algebra A or G_2, i.e. by choosing the potential V_i to have the form

$$V_i = \sum_{j<i}^k \frac{2\lambda_i(\lambda_i - 1)}{(x_j - x_i)^2},$$

or

$$V_i = \sum_{j<i}^3 \frac{2\lambda_i(\lambda_i - 1)}{(x_j - x_i)^2} + \sum_{s=1}^3 \frac{6\lambda_i(\lambda_i - 1)}{(x_j + x_i - 2x_s)^2}.$$

To make S_3 vanish, we can just choose $\vec{\mu}_i$’s to be the root vectors of some Lie algebra. That is we choose the coupling function C to be one of the A, BC, F_4 or G_2 types. It is seen from (6) and (10) that each \hat{H}_i in (11) admits a ground state e^{W_i} with ground energy $E_0^{(i)}$. So we can readily give the ground state wavefunction and energy of the Hamiltonian (11), for each choice of C, as follows.

3.1. A type coupling

If C is A type, i.e.

$$C = \frac{1}{k} \sum_{j<s}^N \frac{2\alpha(\alpha - 1)}{(x_j - x_s)^2}, \quad \alpha > 0,$$

we have the pre-superpotential

$$W_A = \sum_{i=1}^N W_i + \alpha \sum_{j<s}^N \log |x_j - x_s|.$$

So e^{W_A} is the ground state of the Hamiltonian (11), with ground-state energy

$$E_0 = \sum_{i=1}^N E_0^{(i)} + N(N - 1)\omega \alpha.$$

3.2. BC type coupling

If C is BC type, i.e.

$$C = \frac{1}{k} \sum_{j<s}^N \left(\frac{2\beta_1(\beta_1 - 1)}{(x_j - x_s)^2} + \frac{2\beta_1(\beta_1 - 1)}{(x_j + x_s)^2} \right) + \frac{1}{k} \sum_{j=1}^N \frac{\beta_2(\beta_2 - 1)}{x_j^2}, \quad \beta_1 > 0, \quad \beta_2 > 0,$$

we have the pre-superpotential

$$W_{BC} = \sum_{i=1}^N W_i + \beta_1 \sum_{j<s}^N \{\log |x_j - x_s| + \log |x_j + x_s|\} + \beta_2 \sum_{i=1}^N \log |x_i|.$$
Then $e^{W_{BC}}$ is the ground state of the Hamiltonian (11), with ground-state energy

$$E_0 = \sum_{i=1}^{N} E_0^{(i)} + 2N(N - 1)\omega_1 + 2N\omega_2.$$

We remind that when $\beta_2 = 0$, BC type reduces to D type.

3.3. E_8 type coupling

If C is E_8 type (so $N = 8$), i.e.

$$C = \frac{1}{k} \sum_{i < j} \left\{ \frac{2\beta(\beta - 1)}{(X_i - X_j)^2} + \frac{1}{k} \frac{2\beta(\beta - 1)}{(X_i + X_j)^2} \right\} + \frac{1}{k} \sum_{a \in \mathbb{Z}_2} \frac{8\beta(\beta - 1)}{(X_a + \sum_{i=1}^{a} (-1)^a X_i)^2}, \beta > 0,$$

we have the pre-superpotential

$$W_{E_8} = \sum_{i=1}^{8} W_i + \beta \sum_{i < j} \left\{ \log |X_i - X_j| + \log |X_i + X_j| \right\} + \beta \sum_{a \in \mathbb{Z}} \log |X_a + \sum_{i=1}^{7} (-1)^a X_i|.$$

Then $e^{W_{E_8}}$ is the ground state of the Hamiltonian (11), with ground-state energy

$$E_0 = \sum_{i=1}^{8} E_0^{(i)} + 240\omega\beta.$$

3.4. F_4 type coupling

If C is F_4 type (so $N = 4$), i.e.

$$C = \frac{1}{k} \sum_{i < j} \left\{ \frac{2\nu(\nu - 1)}{(X_i + X_j)^2} + \frac{1}{k} \frac{2\nu(\nu - 1)}{(X_i - X_j)^2} \right\} + \frac{1}{k} \sum_{a \in \mathbb{Z}_2} \frac{4\mu(\mu - 1)}{(X_1 + \sum_{i=2}^{a} (-1)^a X_i)^2},$$

we have the pre-superpotential

$$W_{F_4} = \sum_{i=1}^{4} W_i + \nu \sum_{i < j} \left\{ \log |X_i - X_j| + \log |X_i + X_j| \right\} + \mu \sum_{a \in \mathbb{Z}_2} \log |X_a + \sum_{i=1}^{3} (-1)^a X_i|.$$

Then $e^{W_{F_4}}$ is the ground state of the Hamiltonian (11), with ground-state energy

$$E_0 = \sum_{i=1}^{4} E_0^{(i)} + 24\omega\nu + 24\omega\mu.$$

3.5. G_2 type coupling

If C is G_2 type (so $N = 3$), i.e.

$$C = \frac{1}{k} \sum_{j < s} \frac{2\beta_1(\beta_1 - 1)}{(X_j - X_s)^2} + \frac{1}{k} \sum_{l \neq j \neq s} \frac{6\beta_2(\beta_2 - 1)}{(X_j + X_s - 2X_l)^2}, \beta_1 > 0, \beta_2 > 0,$$
we have the pre-superpotential

\[W_{G_2} = \sum_{i=1}^{3} W_i + \beta_1 \sum_{j<k}^{3} \log |X_j - X_k| + \beta_2 \sum_{l \neq j<k}^{3} \log |X_l + X_j - 2X_k|. \]

Then \(e^{W_{G_2}} \) is the ground state of the Hamiltonian (11), with ground-state energy

\[E_0 = \sum_{i=1}^{N} E_0^{(i)} + 6\omega (\beta_1 + \beta_2). \]

4. Exactly solvable 3N-body problems

As examples of the general results above, we consider the \(k = 3 \) case and construct two ES 3N-body systems.

Model 1: We choose all \(V_i \)'s in (12) to be \(G_2 \) type and set \(g_{il} = g_i \) for all \(l = 1, 2, 3 \), i.e. each \(\hat{H}_i \) is of the form

\[\hat{H}_i = -\sum_{j=1}^{3} \frac{\partial^2}{\partial x_{ij}^2} + \omega^2 \sum_{j=1}^{3} x_{ij}^2 + \frac{2}{9} \rho_i \sum_{j<k}^{3} (x_{ij} - x_{ik})^2 + \frac{2}{3} \sum_{s \neq j<k}^{3} \frac{\lambda_i}{(x_{sj} + x_{si} - 2x_{kj})^2}. \]

(18)

We choose \(C \) in (11) to be \(A \) type, i.e. \(C \) is given by (17). Putting (18) and (17) into (11) gives the Hamiltonian

\[\hat{H} = -\sum_{i=1}^{N} \sum_{j=1}^{3} \frac{\partial^2}{\partial x_{ij}^2} + \omega^2 \sum_{i=1}^{N} \sum_{j=1}^{3} x_{ij}^2 + \frac{2}{9} \sum_{i=1}^{N} \sum_{j<k}^{3} (x_{ij} - x_{ik})^2 + \frac{2}{3} \sum_{i=1}^{N} \sum_{l \neq j<k}^{3} \frac{\lambda_i}{(x_{ij} + x_{il} - 2x_{kl})^2} + \frac{2}{3} \sum_{i=1}^{N} \sum_{l \neq j<k}^{3} \frac{6\alpha(\alpha - 1)}{(x_{ij} + x_{il} + x_{kl} - x_{jl} - x_{jk} - x_{kl})^2}. \]

In order to solve the Schrödinger equation \(\hat{H}\Psi = E\Psi \), we first make a transformation for each triplet \(\{x_{i1}, x_{i2}, x_{i3}\} \)

\[x_{i1} = \frac{Y_i}{\sqrt{3}} + \sqrt{\frac{2}{3}} \rho_i \left(-\frac{1}{2} \cos \theta_i + \frac{\sqrt{3}}{2} \sin \theta_i \right), \]

\[x_{i2} = \frac{Y_i}{\sqrt{3}} + \sqrt{\frac{2}{3}} \rho_i \cos \theta_i, \]

\[x_{i3} = \frac{Y_i}{\sqrt{3}} + \sqrt{\frac{2}{3}} \rho_i \left(-\frac{1}{2} \cos \theta_i - \frac{\sqrt{3}}{2} \sin \theta_i \right) \]

(19)

such that \(X_i = Y_i/\sqrt{3} \). Then \(\hat{H} \) becomes

\[\hat{H} = -\sum_{i=1}^{N} \left(\frac{\partial^2}{\partial Y_i^2} + \frac{\partial^2}{\partial \theta_i^2} + \frac{1}{\rho_i} \frac{\partial}{\partial \rho_i} + \frac{1}{\rho_i^2} \frac{\partial^2}{\partial \theta_i^2} \right) + \omega^2 \sum_{i=1}^{N} (Y_i^2 + \rho_i^2) \]

\[+ \sum_{i=1}^{N} \left(\frac{g_i}{\rho_i^2 \sin^2 \theta_i} + \frac{\lambda_i}{\rho_i^2 \cos^2 \theta_i} \right) + \sum_{i<j}^{N} \frac{2\alpha(\alpha - 1)}{(Y_i - Y_j)^2}. \]

This means we can partially factorize the eigenfunction \(\Psi \):
\[\Psi = \psi_{(n_1, \ldots, n_0)}(Y_1, \ldots, Y_N) \prod_{i=1}^N R_i(r_i) \prod_{i=1}^N \Theta_n^{(i)}(\theta_i), \]

which leads to \(2N + 1\) independent equations:

\[
\left[-\frac{\partial^2}{\partial \theta_i^2} + \frac{g_i}{\sin^2 \theta_i} + \frac{\lambda_i}{\cos^2 \theta_i} \right] \Theta_n^{(i)}(\theta_i) = (B_n^{(i)})^2 \Theta_n^{(i)}(\theta_i), \quad i = 1, 2, \ldots, N, \tag{20} \]

\[
\left[-\frac{\partial^2}{\partial r_i^2} - \frac{1}{r_i} \frac{\partial}{\partial r_i} + \frac{(B_n^{(i)})^2}{r_i^2} + \omega^2 r_i^2 \right] R_i(r_i) = E_i R_i(r_i), \quad i = 1, 2, \ldots, N, \tag{21} \]

and

\[
\hat{H}_Y \psi_{(n_1, \ldots, n_0)} = E_Y \psi_{(n_1, \ldots, n_0)},
\]

\[
\hat{H}_Y = \sum_{i=1}^N \left[-\frac{\partial^2}{\partial Y_i^2} + \omega^2 Y_i^2 \right] + \sum_{i<j}^N \frac{2\alpha(\alpha + 1)}{(Y_i - Y_j)^2}.
\]

The total energy \(E\) is given by

\[
E = E_Y + \sum_{i=1}^N E_i.
\]

For each \(i\), equation (20) has a known solution, with eigenvalue and eigenfunction given by

\[
\Theta_n^{(i)}(\theta_i) = \sin^{2\nu_i}(3\theta_i) \cos^{2\eta_i}(3\theta_i) P_n^{2\nu_i-1/2, 2\eta_i-1/2}(\cos 6\theta_i),
\]

\[
B_n^{(i)} = 6(n_i + \nu_i + \eta_i), \quad n_i = 0, 1, 2, \ldots, i = 1, 2, \ldots, N,
\]

\[
\nu_i = \frac{3 + \sqrt{9 + 4\omega^2}}{12}, \quad \eta_i = \frac{3 + \sqrt{9 + 4\lambda_i}}{12}, \tag{22}
\]

where \(P_n^{2\nu_i-1/2, 2\eta_i-1/2}(\cos 6\theta_i)\) is the Jacobi polynomial of degree \(n_i\).

Now we look at (21): for each \(i\), (21) is recognized from Calogero’s work [9], with solution given by

\[
R_i(r_i) = r_i^\frac{B_n^{(i)}}{2} L_n^{(i)}(\omega r_i^2) \times \exp \left\{ -\frac{\omega}{2} r_i^2 \right\},
\]

\[
E_i = 2\omega(2k_i + B_n^{(i)} + 1), \quad k_i = 0, 1, 2, \ldots, i = 1, 2, \ldots, N, \tag{23}
\]

where \(L_n^{(i)}\) is Laguerre polynomial of degree \(k_i\), with parameter \(B_n^{(i)}\).

To solve the last equation \(\hat{H}_Y \psi_a = E_Y \psi_a\), we adopt the approach of [17] involving Dunkl operators. Define

\[
\hat{D}_j = -i \frac{\partial}{\partial Y_j} + \im \sum_{i \neq j}^N \frac{1}{Y_j - Y_i} \sigma_j, \quad \hat{A}_j^\pm = D_j \pm \im \omega Y_j, \quad j = 1, 2, \ldots, N,
\]

\[
\hat{A}_m^\pm \equiv \sum_{j=1}^N (\hat{A}_j^\pm)^m, \quad m = 1, 2, \ldots, N,
\]

\[
[H_Y, \hat{A}_m^\pm] = \pm 2\omega \hat{A}_m^\pm.
\]
where the σ_{ij} interchange coordinates, i.e. $\sigma_{if}(\cdots x_i, \cdots, x_j, \cdots) = f(\cdots x_i, \cdots, x_j, \cdots)$. The solutions are given by
\[
\psi(n_i, \cdots, n_i) = \prod_{i=1}^{N} (A_i^+)^{n_i} \psi_0, \quad \psi_0 = \prod_{i<j} (Y_i - Y_j)|\exp\left\{ -\frac{\omega}{2} \sum_{i=1}^{N} Y_i^2 \right\},
\]
where
\[
n = \sum_{i=1}^{N} n_i, \quad n_i = 0, 1, 2, \cdots.
\]
The total energy E for \hat{H} is then
\[
E = 2n\omega + N\omega + N(N-1)\alpha\omega + 2\omega \sum_{i=1}^{N} [2\kappa_i + 6(n_i + \nu_i + \eta_i) + 1].
\]

Model 2: We again choose V_i to be G_2 type but choose C to be D type. This gives rise to the following Hamiltonian:
\[
\hat{H} = -\sum_{i=1}^{N} \sum_{j=1}^{3} \frac{\partial^2}{\partial x_{ij}^2} + \omega^2 \sum_{i=1}^{N} \sum_{j=1}^{3} x_{ij}^2 + \frac{2}{9} \sum_{i=1}^{N} \sum_{j<l} \frac{g_{ij}}{(x_{ij} - x_{il})^2}
\]
\[
+ \frac{2}{3} \sum_{i=1}^{N} \sum_{j<l} \frac{\lambda_i}{(x_{ij} + x_{il} - 2x_{il})^2} + \sum_{i<j} \frac{6\beta(\beta - 1)}{(x_{ij} + x_{il} - x_{ji} - x_{ij})^2}
\]
\[
+ \sum_{i<j} \frac{6\beta(\beta - 1)}{(x_{ij} + x_{il} + x_{jl} + x_{ij} + x_{il} + x_{jl})^2}.
\]

(24)

It can be seen that when transformation (19) is applied again, the equations for r_i’s and θ_i’s are the same as (20) and (21), as well as the solutions (22) and (23). The equation for Y_t is
\[
\hat{H}_Y \psi_n = E_Y \psi_n,
\]
\[
\hat{H}_Y = \sum_{i=1}^{N} \left[-\frac{\partial^2}{\partial Y_i^2} + \omega^2 Y_i^2 \right] + \sum_{i<j} \frac{2\beta(\beta - 1)}{(Y_i - Y_j)^2} + \sum_{i<j} \frac{2\beta(\beta - 1)}{(Y_i + Y_j)^2}.
\]

In order to solve this equation, we again use results from [17]:
\[
\hat{D}_j = -i \frac{\partial}{\partial Y_j} + i\beta \sum_{i<j} \left\{ \frac{1}{Y_j - Y_s} \sigma_{js} + \frac{1}{Y_j + Y_s} t_{js} \sigma_{js} \right\},
\]
\[
\hat{a}^\pm_j = \hat{D}_j \pm i\omega Y_j, \quad j = 1, 2, \cdots, N,
\]
\[
A^\pm = \sum_{j=1}^{N} (a^\pm_j)^2,
\]
where the t_i change coordinate signs, i.e. $t_i f(\cdots Y_i, \cdots) = f(\cdots - Y_i, \cdots)$. Eigenfunctions and eigenvalues of (24) are given by
\[\psi_n = (\hat{A}^\dagger)^n \psi_0, \quad \psi_0 = \prod_{i<j} |Y_i - Y_j|^\beta |Y_i + Y_j|^\beta \exp \left\{ -\frac{\omega}{2} \sum_{i=1}^N Y_i^2 \right\}, \]

\[E_Y = 4n\omega + 2\beta N(N-1)\omega + N\omega, \quad n = 0, 1, 2, \ldots. \]

In this case, the total energy \(E \) is then

\[E = 4n\omega + 2\beta N(N-1)\omega + N\omega + 2\omega \sum_{i=1}^N [2k_i + 6(n_i + \nu_i + \eta_i) + 1]. \]

5. Conclusion

In this work, we have presented a general approach for constructing ES \(kN \)-body systems in one dimension. In our construction the coupling function \(C \) plays a crucial role. We give examples which demonstrate that, in some instances, these can be chosen in relation to the root system of a simple Lie algebra. For each listed choice of \(C \), we give the ground state and ground-state energy of the corresponding ES model. As non-trivial examples, we have presented two \(3N \)-body systems. We have solved the two models by separating their Schrödinger equations into the centers-of-mass, radial, and angular parts. The equations for radial and angular parts are familiar ones, and can be solved analytically. The equation for the centers-of-mass is not generally separable, but can be solved by using Dunkl operators [17].

For more general \(kN \)-body systems with \(k > 3 \), we have found that the procedure for separating variables does not generalise in an obvious manner. The solution to this problem will be the subject of future investigations.

Acknowledgments

This work was partially supported by the Australian Research Council through Discovery Project DP150101294. Zhe Chen is supported by the Australian Government Research Training Program Scholarship.

ORCID iDs

Jon Links https://orcid.org/0000-0003-1049-0616
Ian Marquette https://orcid.org/0000-0003-4654-6810
Yao-Zhong Zhang https://orcid.org/0000-0002-8099-5866

References

[1] Leinaas J M and Myrheim J 1988 Intermediate statistics for vortices in superfluid films Phys. Rev. B 37 9286–91
[2] Polychronakos A P 1989 Non-relativistic bosonization and fractional statistics Nucl. Phys. B 324 597–622
Polychronakos A P 1991 Exact anyonic states for a general quadratic hamiltonian Phys. Lett. B 264 362–6
[3] Haldane F D M 1991 ‘Fractional statistics’ in arbitrary dimensions: a generalization of the Pauli principle Phys. Rev. Lett. 67 937–40
[4] Haldane F D M 1988 Exact Jastrow–Gutzwiller resonating-valence-bond ground state of the spin-1/2 antiferromagnetic Heisenberg chain with 1/r2 exchange Phys. Rev. Lett. 60 635–8
Haldane F D M 1991 ‘Spinon gas’ description of the S = 1/2 Heisenberg chain with inverse-square exchange: exact spectrum and thermodynamics Phys. Rev. Lett. 66 1529–32
[5] Chen H H, Lee Y C and Pereira N R 1979 Algebraic internal wave solitons and the integrable Calogero–Moser–Sutherland N-body problem Phys. Fluids 22 187–8
[6] Kazakov V A 1991 Bosonic strings and string field theories in one-dimensional target space Random Surfaces and Quantum Gravity (Cargese Lectures vol 1990) (New York: Plenum) pp 269–306
[7] Minahan J A and Polychnokas A P 1994 Interacting fermion systems from two-dimensional QCD Phys. Lett. B 326 288–94
[8] Simons B D, Lee P A and Altshuler B L 1993 Exact description of spectral correlators by a quantum one-dimensional model with inverse-square interaction Phys. Rev. Lett. 70 4122–5
[9] Calogero F 1969 Solution of a three-body problem in one dimension J. Math. Phys. 10 2191–6
[10] Calogero F 1971 Solution of the one-dimensional n-body problems with quadratic and/or inversely quadratic pair potentials J. Math. Phys. 12 419–36
[11] Wolfes J 1974 On the three-body linear problem with three-body interaction J. Math. Phys. 15 1420–4
[12] Sutherland B 1971 Exact results for a quantum many-body problem in one dimension Phys. Rev. A 4 2019
Sutherland B 1972 Exact results for a quantum many-body problem in one dimension, II Phys. Rev. A 5 1372
[13] Olshanetsky M A and Perelomov A M 1981 Classical integrable finite-dimensional systems related to Lie algebras Phys. Rep. 71 313–400
Olshanetsky M A and Perelomov A M 1983 Quantum integrable systems related to Lie algebras Phys. Rep. 94 313–404
[14] Dunkl C F 1989 Differential-difference operators associated to reflection groups Trans. Am. Math. Soc. 311 167–83
[15] Brink L, Hansson T H and Vasiliev M A 1992 Explicit solution to the N-body Calogero problem Phys. Lett. B 286 109–11
[16] Turbiner A 1994 Hidden algebra of the N-body Calogero problem Phys. Lett. B 320 281–6
[17] Ghosh P K, Khare A and Sivakumar M 1998 Supersymmetry, shape invariance, and solvability of \(A_{p-1} \) and \(BC_p \) Calogero–Sutherland model Phys. Rev. A 58 821
[18] Brink L, Turbiner A and Wyllard N 1998 Hidden algebras of the (super) Calogero and Sutherland models J. Math. Phys. 39 1285–315
[19] Wojciechowski S 1983 Superintegrability of the Calogero–Moser system Phys. Lett. A 95 279–81
[20] Borevsk K G, Turbiner A V and Vieyra J C L 2005 Solvability of the Hamiltonians related to exceptional root spaces: rational case Commun. Math. Phys. 260 17–44
[21] Kuznetsov V B 1996 Hidden symmetry of the quantum Calogero–Moser system Phys. Lett. A 218 212–22
[22] Khastgir S P, Pocklington A J and Sasaki R 2000 Quantum Calogero–Moser models: integrability for all root systems J. Phys. A: Math. Gen. 33 9033
[23] Gurappa N, Khare A and Panigrahi P K 1998 Connection between Calogero–Marchioro–Wolfes type few-body models and free oscillators Phys. Lett. A 244 467–72
[24] Gurappa N, Panigrahi P K and Raju T S 1999 A unified algebraic approach to few and many-body Hamiltonians having linear spectra (arXiv:cond-mat/9901073)
[25] Gurappa N and Panigrahi P K 1999 Equivalence of the Calogero–Sutherland model to free harmonic oscillators Phys. Rev. B 59 R2490
[26] Sasaki R and Takasaki K 2001 Quantum Inozemtsev model, quasi-exact solvability and V-fold supersymmetry J. Phys. A: Math. Gen. 34 9533–53
[27] Jakubsy V, Znojil M, Luís E A and Kleeved F 2005 Trigonometric identities, angular Schrödinger equations and a new family of solvable models Phys. Lett. A 334 154–9
[28] Kumari N, Yadav R K, Khare A and Mandal B P 2017 A class of exactly solvable rationally extended Calogero–Wolfes type 3-body problems Ann. Phys. 385 57–69
[29] Bachkhazadji A and Lassaut M 2013 Extending the four-body problem of Wolfes to non-translationally invariant interactions Few-Body Syst. 54 1945–56

[30] Gómez-Ullate D, Kamran N and Milson R 2009 An extended class of orthogonal polynomials defined by a Sturm–Liouville problem J. Math. Anal. Appl. 359 352–67

Gómez-Ullate D, Kamran N and Milson R 2010 Exceptional orthogonal polynomials and the Darboux transformation J. Phys. A: Math. Theor. 43 434016

[31] Quesne C 2008 Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry J. Phys. A: Math. Theor. 41 392001

[32] Sasaki R, Tsujimoto S and Zhedanov A 2010 Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux–Crum transformations J. Phys. A: Math. Theor. 43 315204