PRESSURE INDUCED HYDRATION DYNAMICS OF MEMBRANES

F. Österberg, M. Kriechbaum, A. Polcyn, V. Skita, M. W. Tate, P. T. C. So, S. M. Gruner, and Shyamsunder Erramilli

Department of Physics, Joseph Henry Laboratories Princeton University P.O. Box 708 Princeton, NJ 08544

(January 2, 2019)

Abstract

Pressure-jump initiated time-resolved x-ray diffraction studies of dynamics of the hydration of the hexagonal phase in biological membranes show that (i) the relaxation of the unit cell spacing is non-exponential in time; (ii) the Bragg peaks shift smoothly to their final positions without significant broadening or loss in crystalline order. This suggests that the hydration is not diffusion limited but occurs via a rather homogeneous swelling of the whole lattice, described by power law kinetics with an exponent $\beta = 1.3 \pm 0.2$. 64.70.Md,87.22.Bt

Typeset using REVTeX
The availability of high brightness x-ray synchrotron sources and a new generation of detectors that acquire complete 2-D Bragg diffraction patterns at video rates enables the direct structural study of the dynamics of lyotropic liquid crystalline systems on millisecond time-scales. This allows study of diffusion and water transport in these topologically complex systems which are of interest not only to the biophysics community, but also generally to those interested in fluid invasion into porous media with nanometer sized pores.

Dispersions of biological lipids in water exhibit a rich variety of liquid crystalline phases in which membranes form periodic lattices in either 1, 2 or 3 dimensions. The inverted hexagonal (H_{II}) phase (Fig. 1a, inset) is one of the simpler non-lamellar phases and has relevance to biological processes as well. This H_{II} phase is formed by a periodic lattice of cylindrical pores of water ~ 40 Å in diameter, each surrounded by a monolayer of lipid molecules. Detailed studies done on such systems in equilibrium have shown that the thermodynamics of such non-lamellar phases can be understood as a result of a frustration between the opposing requirements that membranes have to curl to satisfy curvature requirements on the one hand but also to maintain constant bilayer thickness on the other. This frustration results in extreme sensitivity of the H_{II} unit cell spacing a to changes in both temperature and pressure. Application of hydrostatic pressure in the presence of excess water leads to an increase in a, due primarily to an increase in the diameter of the water core, and hence, in the number of water molecules n_w associated with each lipid molecule. A pressure jump can therefore be used to induce a sudden change in the chemical potential of water in order to drive water into or out of the H_{II} domains. The dynamics of water uptake/release can then be examined.

Time-resolved studies: Time-resolved x-ray diffraction studies of the H_{II} phase were done at beamline X9A at the Brookhaven National Synchrotron Light Source, using pressure jumps in the range 0.1-2 kbar over a temperature range of 280-350 K. The beam had an intensity of about 10^{11} photons/sec in a $\sim 500\mu$m spot, and an energy of $E = 8$ keV, with a resolution of $\Delta E/E \sim 10^{-4}$. Samples of about 50 mg of material were contained in a temperature-controlled high-pressure cell with beryllium windows. Unit cell spacings
were obtained from positions of the Bragg peaks with calibration to silver stearate. The instrumental resolution (FWHM) for the scattering angle was $\Delta \theta \sim 1 \times 10^{-3}$ rad. Fast pressure jumps with a rise-time ~ 7 ms were obtained by the opening of a high-pressure valve driven by a computer-actuated pneumatic piston, similar to the method of Caffrey and co-workers [13]. The pressure jumps resulted in small temperature changes (~ 2 K for a 0.5 kbar jump) as measured by a fast response thermocouple embedded within the sample.

A home-built intensified x-ray detector system based on a 2-dimensional video rate CCD imager running in non-interlaced mode (with a frame time of 16 ms) was used to obtain more than one million x-ray diffraction patterns in order to investigate both pressure-induced phase transitions (to be reported elsewhere), as well as the pressure-induced changes in the structure of a single phase reported in this letter.

Sample preparation: H_{II} phases formed by aqueous dispersions of the lipid DOPE [5] were investigated, both with and without addition of a small amount (~ 0.05 w/w) of dodecane. The presence of the alkane extends the H_{II} phase boundary permitting studies over a much larger pressure range [6]. All experiments were performed on hydrated “powder” samples, which contain a large number of randomly oriented crystallites of several microns size. Samples were prepared by mechanically mixing ~ 200 mg of lipid (or lipid+alkane) with an equal amount of water. Even with mechanical mixing, full hydration of the liquid crystalline domains can take many days. Samples that were not fully hydrated showed broad Bragg diffraction peaks, indicative of a wide distribution in water concentration caused by the slow diffusion of water through many layers of lipid. Hydration was sped by incubating the sample at 10 C and 1500 bar for several hours. Subsequent experiments were performed at higher temperatures and lower pressures which require a lower concentration of water for full hydration of the liquid crystal. Fully hydrated samples exhibited sharp Bragg diffraction patterns and were used for the pressure jump studies reported here. Samples were checked for degradation by thin-layer chromatography both before and after x-ray exposure.

Results: Figure 1 shows diffraction from an aqueous DOPE-dodecane sample at 318 K undergoing a pressure jump from 100 to 820 bar. Fig 1a shows a representative plot of
scattered intensity as a function of the magnitude, q, of the scattering vector. The diffraction peaks can be fit to Lorentzian profiles with the peak positions yielding the spacing, a, of the hexagonal lattice. Several striking aspects of the data are illustrated in Figs. 1-2. (i) The peak positions relax continuously to their final value without significant increase in disorder. Note that the peak widths in any given frame are seen to increase with increasing diffraction order, characteristic of samples in which Bragg peaks are broadened by static lattice disorder (“disorder of the second kind”) rather than thermal (Debye-Waller) effects [15]. Analysis of the Lorentzian profile of the peaks, correcting for the finite beam width using standard techniques [15], shows that the density-density correlation function decays as $<\rho(0)\rho(r)> \sim e^{-r/\xi}$ with $\xi = 1800 \pm 500\text{Å}$. During the pressure jump shown in Fig. 1, the angular peak width $\Delta\theta$ of the (10) peak increases by $\sim 6 \times 10^{-5}$ rad, much less than shift in the peak position of 2×10^{-3} rad from its initial to final value. (ii) Immediately following the pressure jump, the relative intensities of the diffraction orders change, indicating a change in molecular arrangement has occurred. These intensity changes are consistent with those observed in equilibrium studies at various hydrations and pressure, suggesting a quasi-static picture in which elastic deformations have relaxed on time-scales shorter than 10 ms. On a longer time scale (seconds), the liquid crystal adjusts its composition (i.e. n_w) in response to the change in the chemical potential of water brought on by the change in pressure. This change in composition is manifest by the change in spacing, a. (iii) The relaxation of the lattice spacing, a, is non-exponential in time (Figure 2a,b). Moreover, the data from all the pressure jumps collapse on to a single curve if they are rescaled by a time constant and by an amplitude transform of the form

$$\Delta a_{\text{norm}} = \frac{a(t) - a(0)}{a(\infty) - a(0)},$$

where $a(0)$ and $a(\infty)$ are the initial and final lattice spacings which depend only on the initial and final pressures of the jump sequence (Figure 2b).

Given the quasi-static picture, the measurement of a as a function of time, t, can be combined with equilibrium high-pressure dilatometric data [10] to measure the number of
water molecules per lipid molecule, $n_w(t)$ (Fig. 2d). n_w is related to a and the radius of the water core, R_w, by a simple geometric relation:

$$n_w = \frac{v_l}{v_w} \frac{2\pi R_w^2}{\sqrt{3}a^2 - 2\pi R_w^2}.$$ \hspace{1cm} (2)

The ratio v_l/v_w of the molecular volumes of the lipid and water is known from high-pressure dilatometry measurements [10], and shows that the increase in a under pressure is due to an increase in n_w. $R_w(a, P)$ was found by static x-ray measurements [10]. Measurements of the intrinsic crystalline disorder Δa gives us the variance Δn_w. The quality of our data are such that only the first and second moments of the probability distribution $p(n_w, t)$ can be obtained. Fig 3 shows a plot of $p(n_w, t)$ as a function of time, and shows that the mean value, $\overline{n_w}$, also relaxes non-exponentially (Fig 2c) while the width of the distribution $p(n_w, t)$ does not change significantly. We may assume that, to a first approximation, the system may be described just by specifying the mean number $\overline{n_w}(t)$ as a function of time. We define a rescaled relaxation function

$$\zeta(t) = \frac{\overline{n_w}(t) - \overline{n_w}(\infty)}{\overline{n_w}(0) - \overline{n_w}(\infty)}.$$ \hspace{1cm} (3)

$\zeta(t)$ relaxes from an initial value of 1 to a final value of 0. Non-exponential kinetics are often analyzed empirically by fitting the observed decays to either stretched exponential or power laws, particularly in the long time limit. We find that the data may be fit to the empirical form $\zeta(t) = (1 + t/\tau)^{-1/\beta}$. A plot of $\zeta^{-\beta} - 1$ as a function of time appears linear over nearly three decades in time (Fig 2d) [10], as can be seen in Fig. 2d. All pressure jumps, both upwards and downwards, can be fit to this functional form with an exponent of $\beta = 1.3 \pm 0.2$. For a sample of a given chemical composition, the characteristic time-constant depends on temperature, but is relatively insensitive to the pressure or even the direction of the pressure jumps. In the absence of a microscopic description, the proposed power law decay can only be regarded as a phenomenological characterization of the data, but may serve as a guide to future theoretical work. Studies at shorter times and over larger pressure ranges are needed to improve the error bars in the exponent β, and to observe if there are systematic deviations from the scaled collapse in Fig. 2b.
We know of no simple model which explains observations (i)-(iii). A straightforward explanation for the observed non-exponential nature of the kinetics is to postulate that the observed relaxation is due to domains of different sizes relaxing with different time constants to the final value of the lattice spacing. Perhaps the simplest model is a two-state model, with the system relaxing from its initial state to the final state. Such a model would give rise to a diffraction pattern in which the scattering pattern at intermediate times is a superposition of initial and final state Bragg patterns. Inspection of Fig 1 shows that such a superposition is not observed. Extensions of this idea in which each domain relaxes exponentially but independently (‘in parallel’) also leads to the prediction that the peak widths following the pressure jump would be much broader than observed.

Power law kinetics arise generically in diffusion problems. Water diffuses in from the outer surface of the crystallite driven by the pressure-induced chemical potential difference. If the observed kinetics are indeed determined by diffusion of water inside the liquid crystal, one would predict that density-density correlation would be reduced, leading to an increase in peak-widths. Simulations of such models suggest that the widths of the Bragg peaks should increase by an amount comparable to the shifts in peak position. However this is not what is observed in Figs 1-2. Sophisticated treatments of concentration changes following a perturbation have been based on dynamics of the type first analyzed by Cahn and Hilliard (for both conserved and unconserved order parameters) [18]. Linearized versions of such treatments invariably lead to exponential kinetics. There have been recent reports of extensions to Cahn-Hilliard theory to take into account non-linear effects due because the mobility may depend on the local concentration or on time [19], but applications of this approach to the present problem are unclear at present. The phenomenological characterization of our data presented above may provide a guide to future theoretical work.

One class of models that is consistent with the spirit of the discussion above are sequential models of relaxation inspired by spin glass literature, in which water molecules encounter barriers of ever increasing height, with the barrier height being renormalized by the number of water molecules already transported. This model would lead to a swelling of the lattice and
is consistent with the observed x-ray diffraction data. Non-exponential kinetics then arise from a distribution of barriers to the entry of water molecules. Such a sequential model assumes that diffusion of water molecules within the crystallites is not the rate limiting process. A uniform swelling of all the cylindrical pores is possible only if all the water cylinders locally have ready access to water. This picture may be difficult to reconcile with electron micrographs of compact H_{II} phase crystallites [20]. It is possible that the crystallites observed in electron microscopy may be obtained under rather special conditions, not typical of those in our pressure-jump cells. However, until this question is settled, sequential models of relaxation are not consistent with all that is known about the H_{II} phase.

The most interesting question concerns the microscopic origin of the energy barriers involved in the non-exponential kinetics, and an understanding of the processes determining the time-scales involved in the transport of water within and into liquid crystalline domains. Studies on single crystals would be useful in that the domain size effects can be sorted out, but it is difficult to grow single crystals of the H_{II} phase. Studies of transport in different liquid crystalline toplogies, such as the lamellar or cubic phases, may also provide insight into the microscopic origin of the energy barriers. Whatever the microscopic mechanism, the fact that the pores are formed by elastic membranes may be expected to give rise to nonlinear effects rather different from conventional studies on fluid invasion into porous media, where the substrate forms a rigid framework.

I. ACKNOWLEDGEMENTS

This work was supported by the ONR (Contract N00014-86-K-0396 P0001), and by the DOE (Grant DE-FG02-87ER60522) and by the NIH (Grant GM32614). M. K. was supported by the Max-Kade Foundation. We thank our colleagues M. Aizenman, J. T. Gleeson, R. E. Goldstein, P. Harper and O. Narayan for useful discussions.
REFERENCES

a Present address: Institute für Biophysik and Röntgenstrukturforschung, Austrian Academy of Sciences, Graz, Austria.

b Present address: Physics dept., Mass. Inst. of Tech., Boston, MA-02139.

c Present address: University of Connecticut, Stoors, CT.

∗ Present address: Physics dept., University of Illinois, Urbana IL-61801.

[1] To whom correspondence should be addressed.

[2] S. M. Gruner, Science 238, 305-312 (1987).

[3] M. Caffrey, Biochemistry 26, 6349 (1987).

[4] M. W. Tate, E. F. Eikenberry, D. C. Turner, E. Shyamsunder and S. M. Gruner, Chem. Phys. Lipids. 57, 147-164 (1991).

[5] Dioleoyl-Phosphatidyl-Ethanolamine

[6] S. M. Gruner, Proc. Natl. Acad. Sci. 82, 3665-3669 (1985).

[7] Some recent reviews of non-bilayer phases are: S. M. Gruner, J. Phys. Chem. 93, 7562 (1989); J. M. Seddon, Biochim. Biophys. Acta1031, 1-69 (1990); G. Lindblom and L. Rilfnor, Biochim. Biophys. Acta988, 221-256 (1989); K. Larsson, J. Phys. Chem. 93, 7304 (1989).

[8] G. L. Kirk, S. M. Gruner and D. L. Stein, Biochem. 26, 6592-6598 (1984).

[9] J. Charvolin J. Physique 46, C3-173 to C3-190 (1985).

[10] P. T. C. So, S. M. Gruner and Shyamsunder Erramilli, Phys. Rev. Lett., 70, 3455-3458 (1993).

[11] ‘Excess water’ is defined as the point at which water added to the lipid sample does not get absorbed by the H_{II} lattice, but instead forms pools of bulk water. As the temperature
and pressure are varied, the chemical potential of water changes leading to a change in the excess water point.

[12] D. C. Turner and S. M. Gruner, Biochem. 31, 1340-1355 (1992).

[13] A. P. Mencke, A. Cheng and M. Caffrey, Rev. Sci. Instr. 64, 383-389 (1993).

[14] P. T. C. So, S. M. Gruner and Erramilli Shyamsunder, Rev. Sci. Instr. 63 1763 (1992).

[15] A. Guinier in X-ray Diffraction W. H. Freeman and Company, (1963).

[16] Other functional forms may provide qualitatively good fits. Indeed, long experience with debates between advocates of power laws vs stretched exponentials to describe the decay kinetics in the glass transition literature suggests that this functional form should be regarded only as a characterization of the non-exponential nature of the relaxation.

[17] G. Lindblom and H. Wennerström, Biophysical Chemistry, 6, 167-171 (1977).

[18] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 688-699 (1959).

[19] F. Sciortino, R. Bhansil, H. E. Stanley and P. Alstrom, Phys. Rev. E 47, 4615-4618.

[20] S. M. Gruner, K. J. Rothschild, W. J. DeGrip and N. A. Clark, J. Physique 46 193 (1985).
FIGURES

FIG. 1. a) The figure shows a fit to the integrated diffraction pattern. Fitting the Bragg diffraction peaks to Lorentzian line-shapes, allowed for determination of the positions, peak widths and areas of the peaks as a function of time. For the pattern indicated, the inter-cylinder spacing $a = 69.1 \, \text{Å}$; analysis of the peak widths yields a variance $\Delta a = 0.6 \pm 0.2 \, \text{Å}$ which characterizes the crystalline disorder. b) Bragg peak positions as a function of time. Integrations along the equatorial plane of the X-ray data obtained from time-resolved x-ray diffraction. An upward pressure jump from 100 bar to 1200 bar at a temperature of $318 \pm 4 \, \text{K}$ occurs about two seconds after the x-ray shutter is opened.

FIG. 2. a) Unit cell spacing in the H_{II} phase as a function of time. b) Rescaled plot of Δa_{norm} as a function of time showing the non-exponential nature of the decay. Data shown are from five different pressure jumps ranging in amplitude from 0.7 kbar-1.3 kbar, with changes in the unit cell spacing ranging from $2 \, \text{Å} - 7 \, \text{Å}$ and appear to collapse to a single normalized curve. The time axis has been rescaled with a characteristic time constant τ obtained from a fit shown in Fig. 2d (see below). c) Observed peak width as function of time for the (1,0) and (1,1) peaks of the inverted hexagonal lattice. d) A log-log plot of the normalized relaxation function shows that the relaxation is strongly non-exponential. Solid line is a fit to a power law form discussed in the text.

FIG. 3. A time sequence of the probability distribution $p(n_w, t)$ obtained from the measured first and second moments for a pressure jump from 1 kbar to 0.13 kbar. Curves at 240 ms interval have been displaced vertically for clarity. Note that the increase in the width of the distribution is about ten times smaller than the shift in the average position.