Soil Microorganisms as Controllers of Atmospheric Trace Gases

(H₂, CO, CH₄, OCS, N₂O, and NO)

RALF CONRAD*

Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany

IMPORTANCE OF ATMOSPHERIC TRACE GASES

The composition of Earth’s atmosphere is the result of dynamic processes; it has changed in the past and is changing at the present. The most dramatic change in the past was that from an anoxic to an oxic atmosphere. This change occurred slowly over about 2.5 Gyr and was caused by the emergence of oxygenic photosynthesis (239, 458). The dramatic changes occurring in the atmosphere at present are due to the steady increase in the amount of CO₂ and several other trace gases (124, 405). Atmospheric theory predicts that changes in the concentrations of these gases will have dramatic consequences for the habitability of our planet (78, 83, 131–133, 135, 152, 367, 413, 414, 537). These consequences include (i) global warming due to the increased abundance of greenhouse gases,
mainly CO₂, CH₄, and N₂O; (ii) destruction of the stratospheric ozone layer due to the increased abundance of halogenated compounds and N₂O; (iii) an increase in the amount of tropospheric ozone due to the increased emission of NOₓ, CO, and hydrocarbons; and (iv) changes in the density of clouds in the troposphere and aerosol in the stratosphere due to changed emissions of dimethyl sulfate (DMS) and OCS, respectively. Many of the theoretical predictions have been confirmed by recent observations, e.g., the destruction of stratospheric ozone at higher latitudes (517, 569). However, many of the mechanisms responsible for changes in atmospheric composition are uncertain, as is the extent of future change (405). The biosphere in particular is one of the least understood components in the cycles of CO₂ and of atmospheric trace gases.

With the exception of the main constituents, i.e., N₂, O₂, Ar, and CO₂, trace gases in the atmosphere occur at mixing ratios of less than 20 ppbv (261). Atmospheric scientists preferentially describe the abundance of a compound in terms of volume mixing ratios (e.g., ppbv = 10⁻⁶ and ppbv = 10⁻⁹), which can be converted to concentrations (e.g., moles per cubic meter) if the pressure and temperature are known (564). With exception of the noble gases Ar, Ne, Kr, and Xe, which slowly accumulate in the atmosphere, all other constituents undergo cycles that are more or less dominated by the biosphere, including humans (261). Only a few trace gases (e.g., He and Rn) exhibit cycles that are governed purely by physicochemical processes. Others (e.g., the freons CFC₃ and CF₂Cl₂) are biologically inert and are being introduced into the atmosphere by human activity (210, 367). However, most of the atmospheric trace gases undergo cycles that have significant biogeochemical components or are even dominated by biogeochemical processes. For purposes of understanding trace gas dynamics, the biosphere can be separated into habitats (ocean, soil) and organisms (vegetation, animals). Soils are of particular interest, since they are one of the most important habitats for microorganisms. For example, in an agricultural soil, microorganisms are present at billions per g of soil and constitute a biomass of approximately 500 kg of C per ha (250), which corresponds to about 1 sheep per 100 m² (13).

TABLE 1. Contribution of soil to the global cycles of atmospheric trace gases

Trace gas	Mixing ratio (ppbv)	Lifetime (days)	Total budget (Tg yr⁻¹)	Annual increase (%)	Contribution (%) of soils as:	Importance	References	
H₂	550	1,000	90	0.6	5	95	Insignificant	88, 271
CO	100	100	2,600	1.0	1	15	Tropospheric chemistry	88, 272
CH₄	1,700	4,000	540	<0.8	60	5	Greenhouse effect; tropospheric and stratospheric chemistry	84, 270, 405, 512
OCS	0.5	1,500	2.3	0	25	?	Formation of stratospheric aerosol	12, 80, 366, 432
N₂O	310	60,000	15	0.2–0.3	70	?	Stratospheric chemistry; greenhouse effect	52, 140, 273, 405
NO	<0.1	1	60	?	20	?	Tropospheric chemistry	91, 140
DMS	<0.1	<0.9	38	?	<0.1	0	Cloud formation	78, 397
CH₃CCl₃	0.14	2,200	0.20	<3.4	0	0	Calibration of OH	406
CF₂Cl₂	0.48	44,000	0.45	<5	0	0	Stratospheric chemistry; greenhouse effect	83, 135, 405

* Unknown.

CONTRIBUTION OF SOILS TO THE BUDGETS OF ATMOSPHERIC TRACE GASES

Soils contribute to the budgets of many atmospheric trace gases by acting as sources or sinks. The most important of these trace gases include CH₄, CO, OCS, H₂, N₂O, and NO (Table 1). CCl₂F₂, CH₃CCl₃, and DMS are also important for various reasons but are largely unaffected by soils. CCl₂F₂ and CH₃CCl₃ are produced exclusively by industry, and DMS is produced almost exclusively by plants and oceanic phytoplankton. The absolute values of total budgets and percent contributions by soils should not be taken for granted, because the individual source and sink strengths are highly uncertain. The uncertainty is illustrated by looking, e.g., at the budget of CH₄ as it was repeatedly updated over the years (43, 84, 134, 164, 274, 405). Two points are striking: (i) the large range for most of the source strengths and (ii) the variations of the mean values estimated by the various authors.

There are a number of reasons for the variations, which cannot be discussed here in detail. The ranges of the soil sources and sinks, in particular, are highly uncertain. Although fluxes of trace gases between soil and atmosphere can be measured with some reliability by using various approaches (343), it is not trivial to estimate atmospheric budgets from field fluxes (516). The problem is that the fluxes generally show a high variability with respect to site and time. Integration of fluxes over larger areas and extended periods does not necessarily solve the problem, since each individual flux event is caused by deterministic processes that change in a nonlinear way when conditions change even slightly. In addition, soils are presently looked upon as a macroscopic system, although the function is controlled predominantly on a microscopic level, i.e., the level of the microorganisms. Perhaps only 1 to 10% of the existing soil bacterial species are known (61, 542). It is possible that a group of microorganisms with a particular function consists of populations of many different species, but virtually nothing is known about the dynamics of these populations and their regulation in soil. Clearly, we need to learn more about this microscopic level before we can safely make adaptations to the right scaling of flux measurements or of other experiments that aim to understand the role of soils in the dynamics of the composition of the atmosphere.
with temperature according to the Arrhenius law without reaching an optimum temperature (118), demonstrating that CO production is dominated by chemical processes. CO is apparently produced from the thermal decomposition of humic acids and other organic material (118). In the field, the CO flux between soil and atmosphere is strongly dependent on the magnitude of chemical production which results in net CO emission when the level of organic carbon in soil is high or the soil temperature is high, i.e., during early afternoon (119, 453).

Chemical processes also seem to be involved in the production and consumption of OCS in soil, since autoclaving or γ-ray treatment does not completely abolish activity (315). However, one of four soils tested exhibited a clear temperature optimum for both production and consumption. The chemical reactions involved in OCS production and consumption in soil are unknown.

Nitrous oxide (N₂O) can be produced chemically by decomposition of hydroxylamine, but this reaction seems to be of no or little importance under field conditions (55, 363). On the other hand, NO production in soil can be caused by chemical processes, most importantly the decomposition of nitrite (74, 352). Since nitrite is destroyed during autoclaving, lack of NO production in autoclaved soil is not necessarily proof of biological NO production (141, 353). On the other hand, readdition of nitrite to autoclaved soil or addition of small amounts of nitrite to natural soil often increases the NO production dramatically (44, 141, 486). This effect is probably caused by contact of the added nitrite with reactants that otherwise would not have led to its chemical decomposition. Sterilization of soil with γ-rays instead of autoclaving results in a similar effect since it stimulates nitrite production from nitrate (73). Therefore, it is presently not possible to exactly quantify the contribution of nitrite decomposition to NO production. However, in most soils, nitrite concentrations are very low. Chemical decomposition would rapidly deplete this pool, if it were not replenished by the microbial activity (nitrifiers and nitrate reducers). Under steady-state conditions, microorganisms thus control NO production, even if the mechanism of production is chemical. However, a peak of chemical NO production can be initiated by desiccation of soil. Desiccation probably increases nitrite concentrations and decreases pH, thus creating reactive levels within microsites (141).

In contrast, it is relatively easy to assess the contribution of chemical processes to the decomposition of NO. Autoclaving
soil usually abolishes any NO uptake at low concentrations (254, 424). This observation is reasonable since the chemical oxidation of NO to NO$_2$ by O$_2$ is a termolecular reaction that depends on the square of the NO concentration. Hence, chemical NO oxidation is significant only at relatively high NO mixing ratios. Whereas at 10 ppmv the half-life of NO is about 104 h, it is on the order of <1 h at mixing ratios of >100 ppmv (201).

Recently, we observed that the reaction of trace amounts of NO with O$_2$ is strongly enhanced if acetylene is present in mixing ratios of >0.1% (45, 46). Under natural conditions, this reaction is not relevant. However, it does play a role when denitrification rates in aerated soils are assayed by the acetylene blocking technique (143, 287, 391). In this case, the acetylene-catalyzed oxidation of NO results in the scavenging of nitrogen that would otherwise have accumulated as N$_2$O and thus results in a significant underestimation of the denitrification rate (Fig. 1).

Soil Enzymatic Processes

Soil enzymatic processes refer to the so-called abiotic enzymes (which by definition are free extracellular enzymes, enzymes bound to inert soil particles, enzymes within dead or nonproliferating cells, and enzymes associated with dead cell fragments) (498). Although the definition is straightforward, in practice it is difficult to differentiate between abiotic soil enzymes and the normal enzymes that are active in living microorganisms. The usual approach is to test enzyme activity after application of sterilizing agents, assuming that after inactivation of the living microbes, the residual enzymatic activity is due to abiotic soil enzymes. This approach is ambiguous, since the killing of microorganisms does not necessarily inactivate all of their enzymes. An example is the use of toluene as the sterilizing agent, which, however, can also be used to permeabilize (and kill) microorganisms for the assay of intracellular enzymes (249, 390).

Nevertheless, the criteria for abiotic soil enzymes are firmly established in soil science (68, 151, 497), and by applying these criteria, it can be shown that H$_2$ oxidation in soil is due to abiotic soil hydrogenases (115). In addition, no microorganism has so far been found that would fit the kinetic properties of active soil, i.e., exhibiting a K_{m} in the range of tens of ppmv of H$_2$ (equivalent to tens of nanomoles per liter in soil solution), although many different microorganisms and soil isolates have been tested (112, 122, 225, 291, 469). Obviously, the enzyme(s) responsible for the oxidation of atmospheric H$_2$ has to be isolated directly from soil to find out its molecular nature and origin. So far, abiotic soil hydrogenases are the only enzymes that appear to be important for trace gas exchange between soil and atmosphere. In fact, this activity represents about 95% of the global sink strength in the atmospheric H$_2$ budget (88).

Soil catalase reaction has been proposed to be involved in the decomposition of N$_2$O (548, 549), but this possibility has not been pursued.

Microbial Processes

Most of the trace gas production and consumption processes in soil are probably due to microorganisms. Trace gases can play different roles in the metabolism of microorganisms, i.e., as growth substrates, as cometabolites, as stoichiometric products, and as miscellaneous products, sometimes of unclear origin.

Growth on a substrate requires that the utilization of the substrate allow the generation of sufficient energy to cover maintenance plus biosynthesis costs. For the consumption of atmospheric trace gases, this means that two conditions must be met. (i) The Gibbs free energy of the consumption reactions at the actual ambient concentration must be sufficiently exergonic. This is not a problem for oxidation reactions with O$_2$, nitrate, or ferric iron as the electron acceptor but is a problem for other electron acceptors, especially bicarbonate reduction to acetate or CH$_4$ (see below). (ii) The consumption reaction must be sufficiently fast to match the maintenance requirements. This means that the $V_{\text{max}}/K_{\text{m}}$ ratio must be at least as high as the maintenance coefficient (87). Since there are limits for increasing V_{max}, i.e., the number of active enzyme molecules per cell, the ability to consume trace gases at low ambient concentrations is actually limited by the relative magnitude of the K_{m}, which must be sufficiently low. This kinetic limitation applies generally and is critical for aerobic reactions, such as the oxidation of trace gases with O$_2$ (87).

Because of these constraints, it is not unexpected that trace gases are seldom utilized at ambient concentrations for growth. However, they can instead be used as additional substrates with supporting microbial growth or as cometabolites without supporting growth. The constraints outlined above do not apply for additional substrates or cometabolites. A rigorous test for support of growth is to show that the trace compound is assimilated into biomass (easily done by applying radiocarbon tracers in the case of CO and CH$_4$), that it supports the generation of ATP, or that the growth yield is increased by the utilization of the trace gas. If these tests are negative, it is likely that the trace gas is cometabolized. There are several enzymes that are known to catalyze the conversion of trace gases in addition to the conversion of the physiologically meaningful substrate (see below).

To test whether the trace gas metabolism in soil can be caused by a particular microorganism, it is useful to study the kinetics of the consumption of a trace gas in both systems (87). In particular, the K_{m} and threshold values that are observed in the microbial cultures should be consistent with those observed in the soil. This is a necessary criterion whenever microorganisms with a particular K_{m} dominate the consumption process in soil, independent of whether they use the trace gas for growth or cometabolism. However, this criterion is often not fulfilled (Table 3), and then the responsible microorganisms must be considered as unknown. An example is as follows. Consumption of atmospheric CH$_4$ in soil is achieved by a microbial activity with a low K_{m} value for CH$_4$, typically in the nanomolar range (33, 34, 136, 160). Known cultures of methanotrophs have K_{m} values in the micromolar range (281). So far, the microorganisms that oxidize atmospheric CH$_4$ have escaped isolation. All the methanotrophs that have been isolated from soils thus far do not possess the required kinetic properties.
centrations that emerge in the vicinity of CH4 production. The consumption of H2 as the sole substrate was not due to H2 production, since removal of H2 to levels lower than the atmospheric CH4 but by oxidation of relatively high CH4 concentration occurs when consumption is balanced by simultaneous production (93). Many of the H2-consuming bacteria are able to produce small, nonstoichiometric amounts of H2 when they grow heterotrophically (see below). However, the thresholds observed in aerobic H2-oxidizing bacteria after the consumption of H2 as sole substrate were not due to H2 production, since removal of H2 to levels lower then the threshold did not result in an increase of H2 (98).

Threshold concentrations exist for growth but also for substrate degradation. The first are defined by the substrate concentration that still allows the generation of energy beyond the rate required for maintenance purpose. This subject has recently been reviewed (445). The thresholds required for growth are higher than the thresholds below which substrate degradation stops. The mechanisms that determine the latter thresholds are unclear.

In anaerobic bacteria, the magnitude of the H2 thresholds seems to depend on the thermodynamics of the H2 consumption reaction. Thus, the threshold concentrations decrease with increasing redox potential of the energy-yielding reaction, so that the H2 threshold for H2 utilization decreases in the following order: homoacetogenesis > methanogenesis > sulfate reduction > nitrate reduction (Fig. 2). Consequently, it was proposed that the H2 concentration measured in the environment is an indication for the electron acceptor used in the H2-utilizing process (331). By using chemostat cultures of anaerobic bacteria, it was found that the H2 thresholds are equivalent to a certain amount of Gibbs free energy, the so-called critical Gibbs free energy, ∆Gc (484). Thresholds that are similarly characterized by a ∆Gc were also observed for the anaerobic degradation of benzoate by syntrophic bacterial consortia (563). The magnitude of the ∆Gc is in the range of energy required to translocate 1 mol of protons through a fully energized membrane (462, 463), suggesting that the stoichiometric conversion of one substrate molecule is obligatorily coupled to the translocation of at least one proton.

However, the ∆Gc obviously increases with the increasing redox potential of the energy-yielding reaction (484). In Fig. 2, the Gibbs free energies of H2-consuming reactions with different electron acceptors are plotted as a function of the pH partial pressure. The diagram includes the H2 threshold values and the ∆Gc values that were observed for the different H2-consuming reactions. It is obvious that homoacetogens are the most efficient H2 utilizers, which leave the smallest amount of free energy (in the form of the substrate H2) unused. The other physiological groups of H2 utilizers leave the more energy

Trace gas	Soil or microorganism	Threshold (nM)	Km (nM)	Reference(s)
H2	Upland soil	<0.01	10–70	88, 226, 469
	Aerobic H2-oxidizing bacteria	>0.35	>800	88, 225, 291
	Wetland soil	10–180*	2,000–16,000	89, 207, 302, 440, 562
	Methanogenic bacteria	10–70	2,000–13,000	89, 123
CO	Upland soil	<0.01	5–50	88, 198
	Carboxydotrophic bacteria	<0.01	400–950	105, 198
	NH4+-oxidizing nitrifiers	?	>97	257
	Methanotrophic bacteria	?	2,700	176
	Wetland soil	3–20*	?	110, 302
	Acetogenic bacteria	?	>10,000	355
CH4	Upland soil	0.03–0.7	20–200	34, 136, 160
	Methanotrophic bacteria	<1.0	800–66,000	29, 70, 280, 464, 465
	NH4+-oxidizing nitrifiers	?	6,600–2,000,000	29
	Wetland soil, oxic rhizosphere and surface layers	1–300	2,500–10,700	193, 280, 282
OCS	Upland soil	<5*	>9	315
	Bacteria with carbonic anhydrase	?	8,900	408
	Phototrophic bacteria	?	2,200	170
	N2-fixing bacteria	?	>3,100,000	480
N2O	Soil, anoxic incubation	<0.8	700,000–1,000,000	40, 184
	Denitrifiers, DNRA bacteria	?	500–100,000	184, 531
NO	Soil, anoxic incubation	<0.01	1.6–8.5	26, 424, 475
	Denitrifying bacteria	<0.01	0.6–7.3	351, 424, 457
	Soil, oxic incubation	<0.01	1.8–26.0	424, 443, 475
	Heterotrophic Pseudomonas spp.	<0.01	>7.5	298
	Flexibacter canadensis	?	>67	582

*Values are probably compensation concentrations between simultaneously operating production and consumption reactions. The actual thresholds should be lower.

Unknown.
unused the more their characteristic electron acceptors make available. However, the H₂ thresholds of the H₂ oxidation reactions with highly negative Gibbs free energies, i.e., those using ferric iron, nitrate, or O₂ as the oxidant, are all similar and are much higher than necessary for thermodynamic reasons. Obviously, the H₂ threshold is then no longer a function of the energetics of the reaction but is due to other unknown mechanisms.

Trace Gases as Substrates for Growth and Maintenance

Trace gases can support the growth of bacteria. Most of them (H₂, CO, CH₄, and OCS) serve as electron donors in oxidation reactions and yield energy for biosynthetic purposes. For most of the oxidation reactions, O₂, ferric iron, sulfate, or bicarbonate can serve as an alternative electron acceptor. Only oxidation of CH₄ requires O₂ for the initial monooxygenase reaction (but see the discussion on anaerobic CH₄ oxidation, below). The nitrogen gases (N₂O and NO), by contrast, serve as electron acceptors for growth of denitrifying bacteria on reduced compounds such as organic substrates and H₂.

H₂. Hydrogen is a good growth substrate for a large diversity of bacteria. For example, the aerobic H₂-oxidizing bacteria grow with H₂, O₂, and CO₂ as sole energy and carbon substrates (14). The key enzyme is a membrane-bound Ni/Fe-containing uptake hydrogenase (195). A few species also contain a cytoplasmic hydrogenase (195). However, they all oxidize H₂ only at concentrations that are much higher than those in the ambient atmosphere (Table 3). Therefore, they cannot be responsible for the degradation of atmospheric H₂ by soil and probably play no role as controllers of the flux of atmospheric H₂ into soil. Instead, this role is covered by abiotic soil hydrogenases (88). However, the aerobic H₂-oxidizing bacteria are able to scavenge H₂ whenever it arises at high concentrations, e.g., at sites with geothermal H₂ production (101), in composting material (30), and at N₂-fixing root nodules with bacteroids lacking uptake hydrogenase activity (309, 401, 470). Especially in the latter case, H₂-oxidizing bacteria may contribute to reduce the release of H₂ from soils which are covered by N₂-fixing legumes and are at least temporarily a net source of atmospheric H₂ (113). Aerobic H₂-oxidizing bacteria may also scavenge some of the H₂ which is produced in anoxic soil, e.g., rice fields, as it diffuses over the anoxic-oxic interface on the surface of rice roots and is released into the atmosphere via the vascular gas transport system of the rice plants (476). Indeed, aerobic H₂-oxidizing bacteria are found in the rhizosphere of rice (209, 312).

Hydrogen also serves as a growth substrate for different anaerobes, notably the methanogenic bacteria. It is one of the important precursors of CH₄ in anoxic soils, contributing approximately 10 to 50% to total CH₄ production (396, 440, 478, 518, 525). As for the aerobic H₂-oxidizing bacteria, anaerobic H₂ utilization is characterized by threshold concentrations that are usually higher than those found in the ambient atmosphere (Table 3).

CO. Carbon monoxide serves as a growth substrate for a similar diversity of bacteria to those served by H₂. However, it has not received much attention. The best-studied bacterial groups are the aerobic CO-oxidizing (carboxydotrophic) bacteria (357, 367, 593) and the CO-utilizing homoacetogenic bacteria (154, 597). There is a marked difference in the key enzymes for CO oxidation by these two groups. The aerobic carboxydotrophs possess a molybdopterin cofactor and dehydrogenate CO plus water to CO₂ plus reducing equivalents (367). The homoacetogens catalyze the same reaction with a nickel-containing enzyme whose main function, however, is the synthesis or degradation of acetyl coenzyme A (CoA) (412, 580). CO consumption has also been reported for methanogens which possess the Ni-containing CO dehydrogenase (179). This CO dehydrogenase activity is part of an acetyl-CoA decarboxylase synthase complex (212). A nickel-containing CO dehydrogenase is also present in sulfate-reducing bacteria (355, 586). An interesting mechanism of CO consumption has been reported for phototrophic bacteria which hydrolyze CO with water to H₂ and CO₂ (171, 545). This CO dehydrogenase also contains nickel and iron sulfur clusters but has a simpler structure than the CO dehydrogenase of homoacetogens and lacks the ability to catalyze the synthesis or degradation of acetyl-CoA (47, 268). A recently isolated thermophilic anaerobic CO utilization also hydrolyzes CO to H₂ and CO₂ (522).

Interestingly, recent studies indicate that the production of H₂ from CO also occurs in aerobic carboxydotrophic bacteria, i.e., those with the molybdopterin-containing CO dehydrogenase (454). In addition to these bacteria that are all able to grow on CO, CO can be oxidized by monoxygenases without being used for bacterial growth (see below). For the most recent review of the different CO dehydrogenases, see reference 180.

So far, no conclusive ecological niche has been found for the CO-utilizing mode of bacterial growth (88, 95). In contrast to aerobic H₂ utilization, a threshold for aerobic CO utilization has not been reported (114). However, the affinity of the commonly known aerobic CO-utilizing bacteria (Km, in the low micromolar range) is much lower than that observed in soils (Km, in tens of nanomoles per liter) (Table 3). Therefore, these bacteria cannot account for the CO consumption in soil. Instead, the CO-oxidizing nitifying bacteria may be responsible for CO consumption in soil (see below). Also, unknown oligotrophic bacteria have been suggested as possible agents.

FIG. 2. Relation between the H₂ thresholds and the critical Gibbs free energies (ΔGₛ) of different microbial H₂ oxidation reactions as function of the electron acceptor. The H₂ thresholds (○) and the ΔGₛ values for H₂ consumption (●) and for growth on H₂ (□) were taken from the literature (127, 225, 291, 332, 484) and are plotted on the line that is given by the Nernst equation of the individual reactions. For simplicity, the Nernst equation was calculated by assuming standard conditions at pH 7 except for the partial pressure of H₂. The curves show the upper and lower range of the data.
for atmospheric CO consumption (116). However, these bacteria have not been isolated in pure culture. A thermophilic actinomycete was reported to grow aerobically on CO with a relatively low \(K_m \) (70 nM), which is on the same order as that observed in soil (7 to 33 nM) (198). The CO-oxidizing microorganisms in soil seem not to grow with CO and assimilate only minor amounts of \(^{14}\)CO into biomass (22).

The role that the anaerobic CO utilizers (acetogens, methanogens, etc.) may play in anoxic soils is unexplored. Concentrations of CO in paddy soils and sediments are in the nanomolar range (Table 3). Turnover of CO is probably low but has so far not been investigated systematically. Submerged paddy soil seems to be only a small source of atmospheric CO, but the plants of these wetlands produce and emit significant amounts of CO (110, 598). Peat soils emit small amounts of CO when the water table is low (197). It is possible that the CO production at high water table is due to photodynamic effects acting on the Sphagnum plants (88, 526).

CH

The only known group of bacteria able to grow on CH\(_4\) are aerobic methylo trophic bacteria which oxidize CH\(_4\) with O\(_2\) to CO\(_2\) (85, 223, 233). The methanotrophs are subdivided into two major groups, type I and type II (280, 374). Type I methanotrophs (the genera *Methylobacter* and *Methylomonas*) belong to the \(\gamma \)-subdivision of the Proteobacteria and use the ribulose monophosphate pathway for formaldehyde assimilation. Type II methanotrophs (the genera *Methylomoccus* and *Methylocystis*) belong to the \(\alpha \)-subdivision and use the serine pathway. A third group, type X, is often proposed for *Methylloccus capsulatus* (\(\gamma \)-subdivision), because this bacterium has characteristics of both of the other groups. The oxidation pathway is initiated by the methane monooxygenase (MOM) which requires both O\(_2\) and reducing equivalents for activity. The MOM exists in two different forms. The membrane-bound enzyme is evolutionarily related to the ammonium monooxygenase (AMO) of the nitrifying bacteria (240) and is synthesized only in the presence of sufficient concentrations of copper but is apparently present in all methanotrophs (374). The soluble MMO, on the other hand, is found only in type II and type X methanotrophs and is expressed when the copper concentration is low (<1 \(\mu \)M) (280, 373). The \(K_m \) values for CH\(_4\) that are observed in bacterial culture or in enzyme preparations are in the range of 1 to 92 \(\mu \)M, with those of the particulate MMO possibly at the lower end (280). Chemostat and gradient culture studies suggest that type I methanotrophs dominate at lower CH\(_4\) concentrations (10, 211). Studies by Lidstrom’s group (318) indicate that copper-sufficient and copper-insufficient forms of the particulate MMO exist, with the copper-sufficient form having a lower \(K_m \) for CH\(_4\) than the copper-insufficient form. However, all of the culture studies so far have shown \(K_m \) values that are much higher than those observed for oxidation of low CH\(_4\) concentrations in soil (\(K_m < 200 \) nM [Table 3]). The existing methanotrophs are unable to grow on atmospheric CH\(_4\), an activity that is obviously accomplished by unknown and as yet unsolated bacteria in soils (33).

In principle, methanotrophs must have either a high affinity for CH\(_4\) or a low maintenance requirement to grow on atmospheric CH\(_4\) (87). Methanotrophs with low affinities seem to account for the activity that is induced in soils preincubated with high CH\(_4\) concentrations (33, 37, 466). The activity can be maintained over long periods but is lost when soils are incubated under atmospheric CH\(_4\) concentrations (466). Bock and Sand (42) recently claimed to demonstrate the existence on the surface of building stones of methanotrophs that are able to grow on atmospheric CH\(_4\). However, experimental details were not presented. Measurements of \(^{14}\)CH\(_4\) oxidation in soil generally demonstrated CH\(_4\) assimilation into microbial biomass even at low atmospheric CH\(_4\) concentrations (438, 466, 575). Probably, this activity is due to the same unknown high-affinity bacteria that were shown to be responsible for atmospheric CH\(_4\) oxidation (33). As tested in soil samples, they are apparently inhibited by ammonia and nitrite as described for methanotropic bacteria in culture (160, 284, 465).

Methanotrophs that have a \(K_m \) for CH\(_4\) in the micromolar range (Table 3) cannot account for atmospheric CH\(_4\) oxidation but are able to oxidize CH\(_4\) at anoxic-oxic interfaces, such as the surface layer of methanogenic sediments and paddy soil (279, 283) and the rhizosphere of rice and other aquatic plants (203, 204, 282). For example, CH\(_4\) concentrations in the micromolar range exist in the oxic surface layers of submerged soils where CH\(_4\) diffuses from below (107, 441). The micromolar \(K_m \) values for CH\(_4\) oxidation in this layer and in excised rice roots are typical for methanotrophs in culture (Table 3). Micromolar \(K_m \) values are sufficient to allow the methanotrophs in these zones to reduce the emission flux of CH\(_4\) from wetlands, rice fields, and other methanogenic environments and to exert an important control on the budget of atmospheric CH\(_4\) (75, 477). A similar role is played by methanotrophs in the cover soil of landfills (255). When exposed to high CH\(_4\) concentrations, the methanotrophic populations in this environment respond to high CH\(_4\) by shifts in \(K_m \) from 1.6 to 32 \(\mu \)M (276).

Methane oxidation is obviously also important under anoxic conditions, especially in marine and hypersaline sediments. The evidence for anaerobic CH\(_4\) oxidation is based on the use of \(^{14}\)CH\(_4\) on diffusive models, and on \(\delta^{13}\)CH\(_4\) profiles (6, 247, 248). The data usually show a coincidence of anaerobic CH\(_4\) oxidation with sulfate reduction. Anoxic CH\(_4\) oxidation has also been suggested to operate in the subsoil of rice fields (364). There, it coincided with reduction of ferric iron. However, microorganisms able to consume CH\(_4\) in the absence of O\(_2\) have not been isolated thus far. It has been suggested recently that the anaerobic CH\(_4\) oxidation is due to a reverse methanogenesis, producing CO\(_2\) plus H\(_2\) from CH\(_4\), which is thermodynamically possible if the H\(_2\) partial pressure is kept low by H\(_2\)-utilizing sulfate reducers (237). This hypothesis is analogous to that for “Reversibacter,” a homoacetogen, which is able to convert acetate to H\(_2\) and CO\(_2\) if the H\(_2\) partial pressure is low (313). The hypothesis is not unreasonable, since methanogens are known to keep a certain H\(_2\) partial pressure even when growing on acetate, methanol, or isopropanol (97, 125, 330). However, the hypothesis has so far not been supported by defined coculture studies. Inhibitor experiments are also inconclusive (7). It is also unclear how the methanogens could reverse the strongly exergonic final reactions of the methyl transferase, methyl-CoM reductase, and heterodisulfide reductase (371, 468).

OCS. Growth on carbonyl sulfide, as well as on carbon disulfide, has been obtained with *Thiobacillus thioparus* (506). The \(K_m \) for OCS is unknown, but that for CS\(_2\) is 16.5 \(\mu \)M. Recently, other eubacteria that are able to grow on OCS as the sole energy source have been isolated (259). These bacteria grow on a wide variety of sulfur compounds (including DMS, COS, and CS\(_2\)) aerobically and as denitrifiers. There is no indication that the hydrolysis of OCS would yield energy and/or support growth (267, 506). Therefore, we may assume that the bacteria just grow by oxidizing the H\(_2\)S that is produced by hydrolysis of OCS. The nature of the OCS-hydrolyzing enzyme in thiobacilli is not known. However, by analogy to autotrophic plants (407–409), OCS hydrolysis may be catalyzed by a carboxy anhydrase that functions in autotrophic CO\(_2\)
fixation. In fact, OCS may be a cometabolite in many more bacteria if they possess enzymes able to hydrolyze OCS.

N_2O. Nitrous oxide is an obligate intermediate in the denitrification pathway and can serve as the sole electron acceptor to support the growth of denitrifying bacteria (28, 294, 384, 602). Interestingly, N_2O can also be reduced to N_2 by some but not all bacteria that normally reduce nitrate to ammonia, i.e., the so-called DNRA (dissimilatory reduction of nitrate to ammonia) bacteria (452, 474, 531). N_2O reduction is the only known process important for N_2O turnover in soil. The bacterial K_m values for N_2O range from 0.5 to 100 μM, and values in soil are even higher (Table 3). The reason for this large variability is probably an analytical bias due to diffusion limitation during the experiments (538). However, it is obvious that the K_m values are large compared with the concentration of atmospheric N_2O, which is equivalent to an aqueous concentration of about 5 nM. Although soils usually act as net sources for atmospheric N_2O, uptake of N_2O from the atmosphere has been observed occasionally (72, 158, 446, 499). A threshold for N_2O uptake has not been observed; i.e., it is below the detection limit of N_2O analysis (40).

NO. Nitric oxide is an obligate intermediate in the denitrification pathway. Nitric oxide is produced by nitrite reductase and is reduced to N_2O by nitric oxide reductase (589, 601). Some fungi can denitrify (492), but they possess a NO reductase with a different molecular structure from that of bacteria (491). Theoretically, denitrifiers should be able to grow on NO as the sole electron acceptor, since the redox potential is high ($E_r' = +1.173$ mV for NO/N_2O) and since N_2O, the product of NO reduction, could equally serve as an electron acceptor ($E_r' = +1.355$ mV for $\text{N}_2\text{O}/\text{N}_2$). However, since NO is usually toxic to bacteria at the high concentrations that are required for testing growth (337), there are almost no reports on successful growth of denitrifiers by NO reduction (399). Nonetheless, it has been demonstrated that NO as an electron acceptor can support vectorial proton translocation and thus allow the generation of energy (489, 554). It has been shown that the reduction of NO by denitrifiers is important for NO turnover in soil (424) and that the K_m value for NO is very low in both soil and denitrifying bacteria (<8 nM; Table 3). However, there seem to be additional processes for NO consumption in soil, e.g., NO consumption by methanotrophs (35, 301). It is unknown whether NO consumption is beneficial for methanotrophs and also whether it is due to a reduction or an oxidation mechanism. Oxidation of NO to nitrate rather than reduction to N_2O has recently been found to be the dominant NO consumption mechanism in some soils (27, 161, 443). This oxidation reaction is possibly due to cooxidation of NO by heterotrophic bacteria (27, 298). A threshold for NO uptake has not been reported.

Trace Gases as Cometabolites

Monoxygenase. MMO of methanotrophic bacteria is able to oxidize not only CH$_4$ but also NH$_3$ and CO (29). Likewise, AMO also oxidizes CH$_4$ and CO. The physiology and environmental relevance of these reactions have been reviewed in detail (29). Both MMOs have overlapping ranges of K_m values for CH$_4$ (Table 3). AMO has a much lower V_{max} with CH$_4$ than does MMO, so that nitrifiers must be proportionally more numerous than methanotrophs in soil to exert the same activity (29). On the other hand, both nitrifiers and methanotrophs oxidize CO at similar rates per cell, so that the ratio of CH$_4$ to CO oxidized is higher in methanotrophs than in nitrifiers (258). Castro et al. (71) showed that in nitrogen-fertilized soils, rates of CO oxidation were similar but those of CH$_4$ oxidation were lower than in the control soil, and they thus concluded that upon fertilization, nitrifiers became relatively more important for CH$_4$ oxidation than did methanotrophs.

Tests for assimilation of 14CH$_4$ in nitrifiers gave contradictory results (29). At present, it cannot be excluded that CH$_4$ oxidation could be beneficial, at least for some species of nitrifiers, such as those (e.g., *Nitrososoccus*) species belonging to the γ-subgroup of *Proteobacteria* which exhibited 14CH$_4$ incorporation into biomass (256, 558). However, none of the nitrifiers is able to grow with CH$_4$.

The soluble MMO has relatively high K_m values for CO (2.7 μM), which cannot explain the CO oxidation activity in soil which has K_m values of <50 nM (Table 3). AMO, on the other hand, has a much lower K_m for CO (>97 nM), which comes close to the K_m observed in soil (Table 3). Incubation experiments with soils showed that the uptake of atmospheric CO was enhanced when the population of nitrifiers was enriched (35). Nitrifiers do not assimilate 14CO in large amounts (257), similarly to the results found for soils (22). The low assimilation is probably due to fixation of 14CO$_2$, the oxidation product of 14CO, in the presence of ammonium as the energy substrate (257). In summary, it appears that cometabolism of CO by the AMO of nitrifiers may contribute to the uptake of atmospheric CO by soil.

Carbonic anhydrase. The carbonic anhydrase of cyanobacteria, algae, lichens, and plants is apparently able to react with OCS as a structural analog of CO$_2$ and thus to catalyze the hydrolysis of OCS to CO$_2$ and H$_2$S (21, 215, 359, 407–409) by the following reactions:

$$\text{OCS} + \text{OH}^- \rightarrow \text{CO}_2^- + \text{HS}^-$$

$$\text{CO}_2^- + \text{OH}^- \rightarrow \text{HCO}_3^-$$

The K_m value (Table 3) of the carbonic anhydrase for OCS is in the same range as or lower than that for CO$_2$ (269, 408, 409). Carbonic anhydrase is an enzyme that may be widespread among autotrophic soil microorganisms. For example, any microorganism which assimilates CO$_2$ by using an enzyme with CO$_2$ as the active species (e.g., ribulose-1,5-bisphosphate carboxylase) potentially contains carbonic anhydrase to facilitate the equilibration between bicarbonate and CO$_2$. In soils with many autotrophic bacteria (e.g., autotrophic nitrifiers), carbonic anhydrase could be responsible for much of the OCS consumption. However, systematic studies are lacking. The uptake of OCS in soil was found to be a first-order reaction for OCS mixing ratios of >400 ppbv, equivalent to about 8.8 nM in soil solution (315). Soil OCS uptake at lower mixing ratios has not yet been tested. However, atmospheric OCS mixing ratios are typically around 0.5 ppbv, equivalent to 11 pM. Because of the lack of data, it cannot be excluded that a second OCS degrading activity exists in soil that is predominantly active at concentrations below 4 nM and thus may have a K_m value in the picomolar range (315).

CO dehydrogenase and nitrogenase. Carbonyl sulfide can also be reduced to CO and H$_2$S by the CO dehydrogenase of *Rhodospirillum rubrum* (170) and the nitrogenase of *Azoto bacter vinelandii* (480). The CO dehydrogenase has a K_m for OCS ($K_m = 2.2$ μM) lower than that for its natural substrate, CO$_2$ ($K_m = 0.9$ μM). The K_m for OCS of the nitrogenase is much higher ($K_m = 3.1$ μM). Degradation of OCS has also been observed in cultures of homoeotogenic bacteria but only at relatively high mixing ratios (percent level) and without growth (504). Since homoacetogens also possess a CO dehydrogenase, OCS degradation may be due to this enzyme. However, the environmental significance of OCS hydrolysis by CO dehydrogenase and nitrogenase remains unclear.
Peroxidase. Peroxidases are believed to be involved in the decomposition of NO within tissues of higher organisms and to catalyze the oxidation of NO to nitrate (244, 389, 510). Recently, we isolated a new Pseudomonas species that also oxidizes NO with O_2 to nitrate by a membrane-bound enzyme (27, 298). This bacterium cannot nitrify or denitrify, and growth is not supported by NO oxidation. Therefore, it is likely that NO is consumed by cooxidation. Other heterotrophic microorganisms also seem to be able to consume low NO concentrations under oxic conditions (27). Oxidation of NO to nitrate has been demonstrated to occur in certain soils, although it is still unknown how widespread this NO consumption mechanism is in comparison with the reduction by denitrifying bacteria (27, 161, 443). Both activities can occur in the same soil; the oxidative pathway was active under anoxic conditions, the reductive pathway was active under oxic conditions, and the \(K_m \) value of NO oxidation seemed to be at least four times higher than that of NO reduction to \(\text{N}_2\text{O} \) (443). This feature may provide an experimental tool to distinguish oxidative and reductive NO consumption in soil (95).

Trace Gases as Stoichiometric Products

Several trace gases are stoichiometric products of dissipatory pathways, i.e., \(\text{H}_2 \), \(\text{CH}_4 \), \(\text{N}_2\text{O} \), and NO. However, only the production of \(\text{CH}_4 \), \(\text{N}_2\text{O} \), and NO has a large impact on atmospheric budgets. Microbial production of \(\text{H}_2 \) in soil plays only a minor role.

\(\text{H}_2 \). Hydrogen is an important product of bacterial fermentation and allows for the regeneration of redox carriers in their oxidized state. Even bacteria that are unable to grow fermentatively under anoxic conditions, e.g., methyloptrophs or Knallgas bacteria, can produce some \(\text{H}_2 \) by fermentation when they are kept under anoxic conditions or with limiting \(\text{O}_2 \) supply (264, 307, 552). However, the extent of \(\text{H}_2 \) formation depends on the redox potential of the particular \(\text{H}_2 \)-generating reaction and the \(\text{H}_2 \) partial pressure according to thermodynamic theory. For example, \(\text{H}_2 \) generation by fermentation of pyruvate is thermodynamically not restricted, because of the negative redox potential of the reaction, whereas \(\text{H}_2 \) generation by fermentation of propionate is thermodynamically restricted. This subject is covered in several reviews (97, 156, 462, 511). In soil, \(\text{H}_2 \) production by fermentation can be observed in two different situations.

(i) In anoxic methanogenic soil, \(\text{H}_2 \) production is usually in steady state with \(\text{H}_2 \) consumption by methanogenic bacteria. The turnover time of \(\text{H}_2 \) is within minutes and creates steady-state \(\text{H}_2 \) concentrations that are typically in the nanomolar range. The \(\text{H}_2 \) concentration is often only slightly higher than the threshold of methanogens for \(\text{H}_2 \) (Table 3). Thus, methanogenic soils are only a negligible source in the budget of atmospheric \(\text{H}_2 \) (88, 476).

(ii) When oxic soils are flooded, a phase of \(\text{H}_2 \) production usually precedes the phase of methanogenesis (104, 566). Production of \(\text{H}_2 \) then occurs transiently and is probably caused by fermentation of substrates (e.g., sugars) that have no thermodynamic restriction for the production of \(\text{H}_2 \) at high concentrations. Concentrations of \(\text{H}_2 \) in this phase can reach percentage levels. The source strength of this transient soil state for atmospheric \(\text{H}_2 \) has not been estimated so far. Such a transient state may also occur in microwells within generally oxic soil (95). However, it is probably not of widespread importance, because field studies indicate that soils usually act as a sink for atmospheric \(\text{H}_2 \).

The only incidences of a significant net emission of \(\text{H}_2 \) into the atmosphere (2.4 to 4.9 Tg year\(^{-1} \)) were reported for soils covered with \(\text{N}_2 \)-fixing legumes (88, 113). Here, however, \(\text{H}_2 \) is not produced by fermentation but, rather, is a side product of nitrogenase (166).

\(\text{CH}_4 \). The production of \(\text{CH}_4 \) in anoxic natural environments is understood in principle and has been reviewed repeatedly (89, 275, 594, 596, 600). Methane is an important degradation product of organic matter under anoxic conditions. Cellulose carbon, for example, is converted methanogenically to 50% \(\text{CO}_2 \) and 50% \(\text{CH}_4 \). The degradation is achieved by a complex microbial community consisting of hydrolytic, fermenting, syntrophic, acetogenic, and methanogenic bacteria. Methane production in anoxic environments such as sediments and flooded rice fields creates the most important source in the budget of atmospheric \(\text{CH}_4 \) (84, 405). The actual production of \(\text{CH}_4 \) is accomplished by methanogenic bacteria. The biochemical pathways of \(\text{CH}_4 \) production and the enzymes involved have been intensively studied during the past decades and are now understood in principle (178). However, further research is needed to learn something about the community structure of methanogenic environments and also about the populations of methanogens involved (see below).

NO and \(\text{N}_2\text{O} \). The microbial basis of the production of \(\text{NO} \) and \(\text{N}_2\text{O} \) in soil is more complicated than that of \(\text{CH}_4 \). Both \(\text{NO} \) and \(\text{N}_2\text{O} \) are intermediates in the sequential reduction pathway of nitrate by denitrifiers (177, 589, 601), and thus, both are produced and consumed by this microbial group. Production of \(\text{NO} \) and \(\text{N}_2\text{O} \) has also been demonstrated among bacteria that require nitrate to nitrite and those that dissimilate nitrate to ammonium (DNRA) (96, 538). \(\text{NO} \) and \(\text{N}_2\text{O} \) are also produced by nitrifiers apparently producing the nitrogenous gases by reduction of nitrite (403, 422). \(\text{NO} \) and \(\text{N}_2\text{O} \) can be produced in soil during both oxidation of ammonium and reduction of nitrate (143, 288, 289, 423), presumably involving nitrifiers and denitrifiers, respectively. However, since denitrifiers, nitrate respirers, and DNRA cannot be differentiated in situ, and since autotrophic and heterotrophic nitrifiers cannot always be differentiated either, the exact microbial basis of \(\text{NO} \) and \(\text{N}_2\text{O} \) production and consumption is still not clear (96). The problem is compounded by the fact that these physiologically defined groups are obviously widespread among the various taxa including the Proteobacteria, gram-positive bacteria, and fungi. In addition, the enzymatic basis of the \(\text{NO} \)-producing and \(\text{NO} \)-consuming reactions is not well understood. The level of understanding is best for denitrification (177, 589, 601); however, the biochemical pathways and enzymes involved in \(\text{NO} \) and \(\text{N}_2\text{O} \) production by other physiological groups are poorly understood (96).

Trace Gases as Miscellaneous Products

Oxic soils sometimes produce sufficient \(\text{CH}_4 \) to act as a net source of atmospheric \(\text{CH}_4 \) (145, 208, 265, 588). In contrast to the vigorous \(\text{CH}_4 \) production in anoxic soil, the microbial basis for the production of small amounts of \(\text{CH}_4 \) in oxic soils is still unclear. Whereas large amounts of acetate (in the millimolar range) are produced by anaerobic acetogenic bacteria in forest soil, production of \(\text{CH}_4 \) is minor as long as the soil is not completely anoxic (308). However, methanogens are present (though in small numbers) in every soil, even in dry desert soil (395), and methanogenesis can be initiated in these oxic soils if they are water saturated (308, 396, 557). Temporarily flooded soils apparently produce more \(\text{CH}_4 \) with longer flooding periods (11). Since methanogens are sensitive to \(\text{O}_2 \) and are unable to form resting stages, it is unclear how they could survive or even proliferate in soils that are generally oxic. If we assume that methanogenesis in oxic soil starts only if anoxic mi-
chroniches have become sufficiently numerous (e.g., after heavy rain), we still have the problem of explaining how methanogens can survive when no anoxic chroniches are present. A similar enigma occurs with respect to CH₄ production in epilimnetic surface water of lakes and oceans (493, 494). There are several conceivable answers (or combinations of them) to this problem. (i) There are methanogens in soil that are less sensitive to O₂ but have not yet been cultured. Interestingly, Methanosarcina species were shown to become active at redox potentials as high as +50 mV (182). Also, up to 5% of the methanogenic population of rice field soil was able to survive desiccation of the soil under oxic conditions (181). (ii) Even completely oxic soils contain chroniches suitable for the survival of methanogens, e.g., in the guts of small animals. As a result, methanogens can be reincorporated continuously by the soil microfauna and mesofauna, which distribute methanogens with their feces. This possibility is largely unexplored, although a study of various arthropod taxa suggests that only a few taxa, i.e., termites (Isoptera), cockroaches (Blattidae), millipedes (Diplopoda), and scarab beetles (Scarabaeidae), have methanogenic symbionts (220). Anoxic microsites could also be created in consortia with O₂-respiring microorganisms. This possibility was explored as a way to explain the CH₄ production in oxic seawater (494). (iii) Methane is produced in a minor side reaction, e.g., degradation of methionine by clostridia (431) that are able to survive in dry oxic soil as spores. Such low rates of CH₄ production have also been reported for sulfate reducers and other bacteria (402). Methane can also be produced by aerobic reactions such as bacterial degradation of methylphosphonates (139).

The microbial basis for the production of OCS is unclear. It has been observed that OCS production in soil is stimulated after the addition of thiocyanate (56, 315, 361). A OCS-producing enzyme, thiocyanate hydrolase, has been purified from Thiothrix thioparas (262). The same bacterium also produced OCS by hydrolysis of CS₂ (506). However, the mechanism of OCS production in soils that are not treated with thiocyanate is still unknown.

Although the majority of CO production in soil seems to be caused by chemical processes (see above), microbial production is also possible. Carbon monoxide can be produced from oxidation of the methin bridges in porphyrins (530, 590). Thus, CO production was found in heme- and hydroxocobalamin-degrading bacteria (167, 168, 232). Carbon monoxide production has also been reported for the microbial degradation of flavonoids (572), rutin (573), and aromatic acids (236) and has also been observed in cultures of various microorganisms as a result of unspecified processes (65, 410). All these processes can in principle take place in soil, but their actual biogeochemical role is unknown.

Worth mentioning also is the production of H₂ and CO in nonstoichiometric amounts by methanogens, acetogens, and sulfate-reducing bacteria. Both compounds are found in trace quantities in cultures of these bacteria (97, 121, 125, 153, 330, 334). Hydrogen and CO are formed as intermediates in metabolism and probably equilibrate to some extent with the medium. The production of small amounts of H₂ during acetate catabolism by Methanosarcina species is sufficient to serve as an electron donor for sulfate reducers (398). Likewise, the small amounts of H₂ produced by methanol-utilizing acetogens are sufficient as electron donors for methanogens or sulfate reducers (126). These cases of interspecies H₂ transfer have been observed primarily in defined bacterial cocultures, but some evidence points to their occurrence in anoxic paddy soil (3).

DEFINITION OF SOIL AND SOIL MICROORGANISMS

When characterizing trace gas metabolism in soil, one problem is a suitable definition of soil and soil microorganisms. The definition of soil in the various atmospheric budgets of trace gases usually assumes that it is a terrestrial site which is covered by some vegetation. These sites comprise farmland soils, which are dominated by mineral soils, as well as wetland soils, which are often dominated by living and dead plant biomass, e.g., Sphagnum bogs. The various soils usually also contain animals, which may produce trace gases on their own. From the viewpoint of a microbiologist, it is appropriate to assess the effects of plants and animals (mainly worms and arthropods) separately from those of microorganisms. However, the term “microorganisms” may also be ambiguous. Often the term is used as a proxy for members of the Bacteria, Archaea, fungi, and protozoa. However, from a practical point of view, the soil microbiota is best defined as including all organisms that are too small to be separated from the soil matrix by mechanic tools (e.g., forceps and sieves). Thus, soil microorganisms in a practical sense would comprise bacteria (Bacteria and Archaea), fungi, algae, and protozoa but also the micro- and mesofauna smaller than about 1 mm, e.g., rotifers, nematods, acari, and collemboles (524).

Role of Vegetation

In practice, the distinction between soil and vegetation is often not trivial and usually not solved simply by removing the plants, since plant processes and soil processes interact in various ways, e.g., metabolism of trace gases by the plants, transport of trace gases through the plants, or metabolism of trace gases in the rhizosphere of plants.

Trace gases that are metabolized by the plants include CO (24, 483, 526), OCS (64, 205, 407, 528), and NO/NO₂ (253, 481, 500, 536). The plant metabolism may create a trace gas flux that adds to the flux generated in the soil. In these cases, it is impossible to assess the effect of the soil if the vegetation is not removed.

Plants can serve as conduits for the transport of trace gases between the soil and the atmosphere. This phenomenon is especially important for wetland soils which are covered with aquatic plants that have a vascular gas transport system to provide the roots with O₂ (15). Vascular transport is most important for the flux of CH₄ (477), but other gases are transported as well, e.g., CO, H₂, and N₂O (110, 368, 476). It is almost impossible to measure realistic gas fluxes from wetland soils when aquatic plants are removed. However, it is relatively easy to assess the contribution of plant-mediated flux to total flux, if the plants are cut below the water level (e.g., in flooded rice fields) (149, 242, 478). This allows the measurement of the momentary contribution of vascular transport to the total flux. In the long term, however, the ongoing production of trace gas in the soil will result in another transport pathway, e.g., ebullition (75, 76).

Some trace gases are specifically metabolized in the rhizosphere. For example, H₂ is released into the atmosphere if soils are covered with N₂-fixing legumes (113). Hydrogen is produced by nitrogenase of the bacteroids in the root nodules and is only partially recycled by uptake hydrogenases of the bacteroids. Similar phenomena probably exist for Frankia root nodules (437, 485), although H₂ fluxes caused by Frankia symbiosis have not yet been measured in a soil system.
Role of Animals

Since the biomass and the overall contribution of the soil fauna to litter decomposition are relatively minor compared with those of soil microorganisms, they have usually been neglected (165). However, soil animals may affect the trace gas flux by directly producing trace gases, by affecting trace gas-metabolizing soil microorganisms through grazing, or by accelerating the gas transport between soil and atmosphere.

Some soil arthropod taxa, e.g., termites, produce H₂ and CH₄, since they contain fermenting and methanogenic bacteria in their guts (57–59, 220, 599). Protozoa may also contain fermenting and methanogenic bacteria and thus release H₂ or CH₄ into the soil (174, 175, 183). Since small animals usually cannot be removed selectively from soil, it is very hard to assess the contribution of individual arthropods to trace gas metabolism in soil.

Little is known about the grazing pressure and other effects of soil animals on soil microorganisms in general (165). Nothing is known on this subject with respect to microorganisms that metabolize trace gases.

Soil animals may also affect the diffusive transport of trace gases in wetland soils, but this issue has not been studied explicitly. Benthic animals may affect the trace gas exchange between sediment and water by changing the topography of the surface, e.g., by creating mounds that in turn affect the water flow at the surface, the diffusive boundary layer, and the penetration of water flow into the sediment according to Bernouille’s law (especially if it is a sandy sediment) (49, 219). Burrowing animals possibly accelerate the exchange of O₂ beyond diffusional transport by actively ventilating their burrowing holes with a stream of water (192, 305). Analogously, the exchange of trace gases may also be enhanced.

TRACE GAS FLUXES BETWEEN SOIL AND ATMOSPHERE

From the viewpoint of microbial trace gas metabolism, it is appropriate to distinguish at least two different groups of soils. Upland soils are not water-saturated, well-aerated soils which are generally oxic. Wetland soils are water-saturated soils that are generally anoxic. These two groups of soils have different characteristics with respect to microbial production and consumption of trace gases. This issue has been reviewed recently (94, 95). Perhaps even more importantly, however, the gas consumption of trace gases. This issue has been reviewed recently (94, 95). Perhaps even more importantly, however, the gas consumption of trace gases is known on this subject. The gas consumption of trace gases is known on this subject. The gas consumption of trace gases is known on this subject. The gas consumption of trace gases is known on this subject.

Wetland Soils

Wetland soils are submerged and generally anoxic. However, O₂ penetrates from the surface and creates a thin (1- to 5-mm-deep) oxic soil layer. It also penetrates from roots of aquatic plants with gas vesicular systems into deeper soil layers. Vertical redox gradients. The depth of the oxic surface layer is the result of a balance between the influx of O₂ from above and the O₂ consumption by the soil microflora. The O₂ influx is mainly due to molecular diffusion but may be enhanced by bioirrigation of the soil fauna (see above) and by photosynthetic O₂ production by benthic algae (19, 430). The O₂ consumption and thus the O₂ penetration depth are a function of the availability of degradable organic matter present in the surface layers (421, 429). However, O₂ consumption in the surface layer is also a function of the production of reduced compounds such as CH₄, ammonium, ferrous iron, and sulfide in the anoxic layers below. These compounds diffuse upward until they reach the oxic zone, and there they contribute to the microbial (and chemical) O₂ demand (523).

In general, O₂ is depleted rapidly with distance from the soil surface or the root surface, resulting in a redox stratification (595). This stratification theoretically creates relatively well-defined habitats for the different groups of trace gas-metabolizing microorganisms, which may be studied separately to some extent. The different redox zones are characterized by the dominance of the electron acceptors O₂, NO₃⁻, Mn⁴⁺, Fe³⁺, SO₄²⁻, and CO₂ (Fig. 3) (595). Experimentally, the different zones may be distinguished by spatial sampling, but few studies in which profiles of manganese and iron were measured simultaneously with other electron acceptors have been performed. These profiles (all in marine sediments) showed the existence of redox zones, which, however, were not sharply separated (507, 532). The different redox processes can also be studied on a temporal basis, for example, by observing the sequential reduction of the different electron acceptors when oxic soils are submerged and become anoxic (393, 400).

Most wetland soil is devoid of O₂ (below 2 to 3 mm deep) and also contains no other electron acceptors (below a few centimeter deep) other than CO₂ and H⁺. Therefore, this zone is dominated by fermentation and methanogenesis (Fig. 3). Production of H₂ by fermentation is intensive, but most of the produced H₂ (together with CO₂) is immediately converted by methanogens to CH₄, so that the steady-state concentration of H₂ is typically in the nanomolar range (10 to 180 nM, corresponding to about 8 to 140 ppmv in the gas phase [Table 3]). It must be emphasized that this concentration range, although low with respect to substrate requirements by methanogens, still represents a substantial supersaturation with respect to the atmospheric H₂ concentration (0.55 ppmv).

Methane is an end product of the microbial metabolism in this zone and occurs in concentrations equivalent to mixing ratios of up to 90% (191). The pathways of CH₄ production (89, 275, 594, 596, 600) have frequently been reviewed. Further trace gases that seem to be produced in the anoxic soil zone are CO (110, 197, 302) and OCS (234, 235, 361). However, the mechanism for production of these gases is not clear (see above).

The sulfate reduction zone can also be quite extensive in wetland soils, especially in marshes that are influenced by seawater. Sulfate reducers consume H₂ and, in steady state, re-
duce the H₂ concentration to lower values than found in the methanogenic zone, typically less than 2 to 10 nM (2, 331, 358). Therefore, there will be a flux of H₂ from the methanogenic into the SO₄²⁻-reducing zone (Fig. 3). However, this soil zone is still substantially supersaturated with respect to atmospheric H₂. Nothing is known about the metabolism of CO in this zone, although one could theoretically expect CO turnover by sulfate reducers (334). The Fe³⁺-reducing zones should further reduce the H₂ concentration, since iron reducers are able to metabolize H₂ more efficiently than are sulfate reducers (331).

The NO₃⁻ reduction zone is the site where H₂ concentrations are kept at a low partial pressure by the action of, e.g., denitrifiers or DNRA bacteria (127, 225). However, partial pressures are not necessarily lower than those in the Fe³⁺-reducing zone (see above) (Fig. 2). Consumption of CO and OCS should theoretically be also possible, since carboxydotrophs and thiobacilli, respectively, that reduce nitrate are known (267, 367).

The NO₃⁻ reduction zone is also the zone where production and consumption of NO and N₂O occur by the action of denitrifiers and DNRA. A conceptual model of the effect of soil water status on the production of N₂O was presented by Keller (265). The vertical zonation in soil and sediment of nitrifying and nitrate-reducing activities and the regulation of these activities have been studied in great detail by means of chemical microsensors and ¹⁵N isotope pairing (251, 252, 382, 447, 448). The results show that nitrification of ammonium in the oxic surface layer is an important source of nitrate and that denitrification is often tightly coupled to this process (Fig. 3). The fluxes of NO and N₂O into the atmosphere are relatively small, mainly because most of the produced NO and N₂O is further reduced to N₂. The ratio of N₂ to N₂O produced increases with the saturation of the soil pore space with water (568).

The oxic zone is dominated by consumption of trace gases, i.e., oxidation of CH₄, H₂, CO, and H₂S with O₂ as the electron acceptor (Fig. 3). The concentration of trace gases at the base of the oxic zone is generally much higher than the concentrations detected in the atmosphere or the gaseous pore space of upland soils. This allows the development of trace gas-oxidizing microbial communities that are different from those dominant in upland soils (95). The best-studied example so far is the oxidation of CH₄, which is obviously achieved by common methanotrophs in the CH₄-rich oxic zone of wetland soils but is achieved by unknown bacteria with high affinity for CH₄ in the upland soils, where CH₄ is supplied mainly from the atmosphere (33).

Although the zonation in wetland soil is usually relatively well defined, activity overlaps may occur. For example, al-
though CH₄ production is usually inhibited by the presence of SO₄²⁻, Fe³⁺, or NO₃⁻, mainly since sulfate reducers, iron reducers, and nitrate reducers outcompete methanogens for common electron donors (331, 562), the simultaneous operation is possible if electron donors are not limiting, e.g., in organic-rich soils and sediments (2, 328, 370, 571). However, more complex interactions on the community level have also been discussed (3) (see below).

Radial redox gradients. The same redox zonation as in the vertical dimension theoretically also occurs radially around the roots of O₂-transporting aquatic plants. The release of O₂ by aquatic plants and increased redox potentials around the roots have been documented (15, 16, 82, 187, 189, 194, 243, 293). The availability of O₂ allows the operation of chemical and microbial oxidation reactions in the rhizosphere. Thus, the rhizosphere of aquatic plants is an important site for the oxidation of CH₄ (144, 203, 204, 241, 286). Oxidation of H₂ and the presence of aerobic H₂-oxidizing bacteria in the rhizosphere has also been documented (209, 312, 476). Other reduced compounds, such as ferrous iron (31), ammonium (18, 169, 419), and sulfide (579), are also oxidized in the rhizosphere. Although little is known about the actual zonation of the individual redox-active substances because of methodological difficulties, theoretical models have been constructed for the distribution of O₂ (17, 150, 547) and ferric iron (31, 285, 286).

Experiments with ¹⁵N-labelled ammonium or urea and flux measurements in microcosms have indicated that denitrification in bulk soil is tightly coupled to nitrification in the oxic rhizosphere, which in turn can influence the production of N₂O and NO (18, 419). The importance of rhizospheric processes for the emission of NO and N₂O has not yet been properly quantified, but field measurements of total fluxes, including diffusion, ebullition, and plant transport, indicate that wetlands constitute only a weak source of atmospheric NO and N₂O (see above).

The roots of aquatic plants are also sources of organic material, which is either actively excreted or derived from sloughed-off cells or decomposing dead roots (Fig. 3) (322, 565). One of the seasonal maxima of CH₄ emission from rice fields which is usually observed when the rice plants are in their maximum growth phase is ascribed to stimulation of the methanogenic bacterial community by root exudation (242, 383, 453). Recently, it has been demonstrated that the roots of rice plants are colonized with methanogenic bacteria (320, 321) and that root preparations of aquatic plants produce CH₄ (52, 138, 277, 282, 320). However, the percent contribution of these particular methanogenic populations to total CH₄ emission from wetlands is unknown. Also, the amount of microbially available organic substrates should influence the extent of the redox layers around the root, since these substrates fuel the reduction of O₂, NO₃⁻, Fe³⁺, SO₄²⁻, and CO₂. However, no experimental data exist.

Flux into the atmosphere. The flux of trace gases between wetland soil and the atmosphere is driven by the concentration gradient from the soil to the atmosphere. The transport processes have been studied in some detail for the emission of CH₄ from wetlands (75, 76, 89, 92, 223, 477) but should, by analogy, also apply to other trace gases and wetlands. There are basically three different pathways of CH₄ transport: plant vascular transport, ebullition, and diffusion through soil and flooding water.

The transport is driven by the CH₄ concentration gradient between the anoxic soil and the atmosphere (Fig. 3 and 4). The gradient is built up by microbial production of CH₄ in the anoxic methanogenic zone of the soil but is modulated to a large extent by CH₄ oxidation taking place both in the oxic surface layer and around the roots. More than 80% of the diffusive CH₄ flux appears to be oxidized in the oxic surface layer of freshwater wetlands (53, 107, 223, 279, 283, 523). The CH₄ oxidation efficiency in the rhizosphere usually does not quite reach the efficiency that is typical of the oxic soil surface (>80%) but seems to be mostly in a range of only 20 to 50% (148, 172, 203, 204, 478). The flux of CH₄ by plant vascular transport is usually the dominating emission pathway when the wetland soil is covered by the appropriate vegetation. This has been well documented in rice fields and other wetlands (76, 77, 241, 242, 478).

The process of ebullition has been reviewed (75, 76). Ebul- lition is especially important in unvegetated wetlands. The ebullition flux of CH₄ (and other trace gases contained in the bubbles) does not seem to be under the control of CH₄-oxi- dizing bacteria. However, the ebullition events can create channels in the soil and thus enlarge the surface area that is in direct contact with the oxic flooding water and consequently can enlarge the oxic boundary layer at the soil-water interface, which constitutes a suitable habitat for methanotrophic bacte- ria (339).

In marine environments, aerobic CH₄ oxidation is some- times small (247, 387). Hypersaline microbial mats exhibited no aerobic CH₄ oxidation at all (102). Addition of salt to rice fields resulted in a stronger inhibition of CH₄ oxidation than of CH₄ production (147). The reason is probably the insufficient adaptation of methanotrophic bacteria to high salt concentra- tions (280, 467). Although a potential activity of halotolerant methanotrophs has recently been found in hypersaline lagoons (508), it is unclear how much this potential activity attenuates the diffusive CH₄ flux in situ.

The CH₄ that has passed the CH₄-oxidizing zone in the soil surface layer enters the flooding water and is more or less homogeneously mixed. The CH₄ emission from the water phase into the atmosphere is then a function of the CH₄ concen- tration gradient between water and air. The CH₄ flux can be modelled from this concentration gradient and the gas transfer velocity between the water and the atmosphere. The transfer velocity is mainly a function of the wind speed (326, 336). Comparison of the calculated CH₄ fluxes with those actually measured indicate that some CH₄ is consumed at the water-air interface, presumably by microorganisms living in the aquatic surface layer (neuston layer) (120, 224, 476). Hence, the diffusive flux of CH₄ from the anoxic methanogenic soil layers into the atmosphere seems to be not only under the control of CH₄ production and CH₄ oxidation at the soil-water interface but also under the control of CH₄ oxidation at the water-atmosphere interfaces.

Upland Soils

Although upland soils are generally well aerated, they may contain anoxic microniches (238, 488, 539, 592). One may assume that gases are transported by diffusion or convection within the soil gas phase rather than within the water phase. Individual soil crumbs may then be considered units of trace gas metabolism. In nonaggregated soils, similar units may be represented by sand grains that are covered by a microbial biofilm (Fig. 5).

Soil crumbs. Microorganisms in the soil crumbs or on sand grains are the actual units of trace gas metabolism. However, we know very little about the distribution of trace gas-metabolizing microorganisms and of their activities on this microscopic scale. The CH₄-oxidizing activity per gram (dry weight) or per surface area was highest in a soil fraction consisting of
relatively large soil particles (0.5 to 2 mm in diameter) (36). The activity of the abiotic soil hydrogenase was found mainly in soil particles of 0.1 to 0.5 mm in diameter, i.e., also in somewhat large soil particles (227). These observations differed from the finding that bulk microbial biomass and microbial ATP levels generally slightly increased with decreasing particle sizes and were greatest in the clay fractions 3 to 10 μm in diameter (227). Hence, individual activities in soil crumbs and on sand grains may be quite heterogeneous.

Because of this heterogeneity, individual soil crumbs or sand grains are likely to exhibit different redox gradients. However, the redox stratification in soil crumbs is not well known because of methodological difficulties. Gradients can be measured only with microelectrodes on relatively large soil crumbs that are usually prepared for this purpose. Studies of gradients of O₂ and N₂O are noteworthy (238, 488, 592). However, we are far from understanding the dynamics of processes in soil crumbs. A central problem is the fact that soil crumbs are very heterogeneous. Most are probably dominated by aerobic metabolism, but some may be dominated by anaerobic metabolism. The extent of the two processes depends mainly on the availability of O₂, which again is a function of diffusion and microbial consumption (214, 428).

A further complication is that soil crumbs are not static. Metabolic processes in an individual soil crumb continue only as long as suitable substrates are available. Eventually, metabolic degradation will cease if no substrates are supplied from the outside. The lifetime of a soil crumb is thus limited.

FIG. 4. Change of trace gas concentrations with time in the headspace and of the initial vertical profiles of trace gases and trace gas-consuming and/or trace gas-producing activities in incubated soil cores, such as are typical for CH₄ in wetland soil (A), CH₄ in upland soil (B), H₂ in upland soil (C), and NO in upland soil (D). Hatched areas indicate zones of consumption activity, and stippled areas indicate zones of production activity.
Crumbs may aggregate after rainfall or bioturbation by the soil fauna. New soil crumbs will be formed from fecal pellets. Crumbs will form anew upon desiccation, especially in clay soil. All these processes will have dramatic effects at the microscopic level, where the trace gas-metabolizing microorganisms are active.

Compensation concept. Soil crumbs may show net production or net consumption, with both occurring simultaneously in the same bulk soil sample (Fig. 4 and 5). The simultaneous operation of both production and consumption has in fact been shown for many trace gases, and this observation is the basis for the compensation concept (93).

Trace gas consumption generally increases with trace gas concentration (first-order kinetics, Michaelis-Menten kinetics, etc.), in contrast to trace gas production, which is usually independent of end product concentration. Therefore, there is a concentration at which production equals consumption, i.e., the compensation point,

\[m_c = \frac{P}{k} \]

where \(m_c \) is the compensation mixing ratio, \(P \) is the production rate, and \(k \) is the first-order uptake rate constant of the trace gas. Compensation points have been demonstrated in upland soils for most trace gases, e.g., \(\text{H}_2 \), CO, NO, \(\text{N}_2\text{O} \), and OCS, and this has recently been reviewed (93, 94).

To determine the production rate and consumption rate separately in a soil system, one must measure the kinetics of release or uptake in a way that allows the determination of both \(k \) and \(m_c \). This can be done in a dynamic or a static system, as described in detail elsewhere (93). \(P \) can then be calculated from the equilibrium equation above, which assumes compensation between production and consumption at zero flux.

The determination of a production rate \((P) \) should not be confused with the determination of a release rate \((R) \). Whereas the former \((P) \) is a gross rate, the latter \((R) \) is a net rate, which is given by

\[R = P - km \]

Both \(P \) and \(R \) are similar only if the simultaneously operating consumption process \((k) \) is negligible. Release rates of NO, for example, can be much lower than the NO production rates, since NO consumption is of a similar magnitude to NO production. For understanding the actual flux of NO at the soil surface on a theoretical basis, it is thus better to know both the production and consumption rates than only the resulting release rates.

In fact, the actual NO flux at the soil-atmosphere interface was successfully calculated from NO production and consumption rates by using a simple diffusion model that is based on the compensation concept (200, 426, 442, 444). Nitric oxide is a good example, since it shows both high and variable production and consumption rates in soil and, consequently, highly dynamic compensation points (25, 303, 450). However, the basic equations should also be applicable to other trace gases. A good example for future research would be CO, which also shows highly variable compensation points under both laboratory and field conditions (114, 119, 319).

The compensation concept provides a useful theoretical framework for measuring trace gas metabolism in upland soils. However, there are some caveats. The situation may be more complicated when production and consumption are not distributed homogeneously. Legume fields, for example, both release and take up \(\text{H}_2 \). The detection of a particular compensation point for a given field situation or for planted soil microcosms was used to quantify the gross rates of \(\text{H}_2 \) release and \(\text{H}_2 \) uptake (111, 113, 470). On a smaller scale, however, e.g., for soil samples taken from the legume field, the compensation concept would give completely different results, since the soil samples either are devoid of \(\text{H}_2 \)-producing root nodules or contain them in a different state of activity. Root nodules themselves are small entities that show both production of \(\text{H}_2 \) by nitrogenase and consumption of \(\text{H}_2 \) by uptake hydrogenase (166). Nodules are again surrounded by soil in which \(\text{H}_2 \) consumption is achieved by processes, i.e., the action of aerobic \(\text{H}_2 \)-oxidizing bacteria, different from those in bulk soil, i.e., the action of abiotic soil hydrogenases (88, 309, 401, 470).

Methane uptake. The compensation concept can probably not be applied for the flux of \(\text{CH}_4 \) between upland soils and the atmosphere. Actually, compensation points for \(\text{CH}_4 \) have so far not been demonstrated, either in the field or in the laboratory. In most upland soils, \(\text{CH}_4 \) production is usually absent.
or marginal and the CH₄ flux is dominated by CH₄ oxidation. However, examples of upland soils with a low CH₄ production activity also exist, although the production processes are still unclear (see above). It seems that CH₄ production and oxidation processes are not homogeneously distributed but are vertically separated from each other (Fig. 4). Therefore, any “compensation point” that may be measured in the field would have an ambiguous meaning, and the compensation concept is not useful for modelling the CH₄ flux.

If CH₄ production were localized preferentially in surface soil, e.g., in anoxic microniches of the litter layer (487), then CH₄ would be released into the atmosphere despite a relatively strong CH₄ consumption in deeper soil layers. Exactly this kind of CH₄ profile has been observed in forest soils of the Appalachian mountains (587). On the other hand, other forest soils (Adirondack) exhibited highest activities of CH₄ production and consumption in the organic litter layers (588). Only in the latter case might the compensation concept be applied.

However, in most soils, atmospheric CH₄ consumption seems to be located in the subsoil, usually between the A and B horizons (4, 136, 160, 297, 465, 574). This zonation contrasts with that of other trace gases (H₂, CO, NO, and N₂O) for which maximum production and consumption activities are found in surface soil (Fig. 4) (117, 173, 319, 442–444, 482), where most of the microbial biomass is located. The deeper location of CH₄ oxidation is possibly caused by edaphic factors in the surface soil that are suboptimal or inhibitory for the growth of CH₄-oxidizing bacteria. Thus, the higher abundance of ammonium in surface soil than in subsoil may cause inhibition of CH₄ oxidation (465). The relatively large fluctuations of soil moisture in the upper horizon may also restrict methanotrophic activity to deeper layers, since methanotrophs seem to be sensitive to water stress (467). The ecology of methanotrophic bacteria has recently been reviewed (223, 280, 281). The subsurface location of methanotrophs means that energy requirements for maintenance and growth are obtained from CH₄ concentrations that are lower than atmospheric. Goulding et al. (208) have hypothesized that methanotrophic populations may persist only at soil sites that are adjacent to methanogenic microniche. However, this hypothesis is not supported by the vertical CH₄ profiles that have so far been reported in soil.

ROLE OF MICROORGANISMS AS CONTROLLERS OF TRACE GAS FLUXES

Most of our knowledge about trace gas metabolism in soil is derived from functional studies, i.e., the determination of activities in soil and in microbial culture. However, we know very little about the microbial populations and communities in soil that are actually performing the observed reactions. To correlate soil function with soil microbial populations, it is important to know the physiological groups and the taxa of the microorganisms involved, their numbers, and their localization in the soil.

Diversity of Trace Gas-Metabolizing Microorganisms

One possibility for differentiating the various activities involved in trace gas metabolism involves the use of inhibitors specific (385) for particular groups of microorganisms or particular enzymes. For example, the selective contribution of fungi and bacteria to atmospheric CO consumption was analyzed by using cycloheximide or streptomycin to inhibit the two respective groups (114). Production of NO and N₂O by either nitrifiers or denitrifiers is usually differentiated by the addition of AMO inhibitors such as nitrapyrin or acetylene (143, 288, 289, 423). An unambiguous routine assay for differentiating between CH₄-oxidizing methanotrophs and nitrifiers has not been reported yet (29, 386, 387).

Functional groups of bacteria are usually detected and enumerated by their ability to grow under specific conditions. For example, CH₄-oxidizing bacteria are enumerated by using growth in media with CH₄ as the sole energy source. However, this procedure does not cover any bacteria that cooxidize CH₄ without using it for growth. Therefore, the classical enumeration procedures have only a very restricted usefulness for the study of trace gas-metabolizing microorganisms. It is very likely that the functional groups of microorganisms involved in trace gas metabolism consist of several species. Many species belonging to the same functional groups are probably present in soil but have not yet been cultured. It is likely that the most active bacteria in soil are unknown. Therefore, it is necessary to assess the microbial diversity involved in trace gas metabolism by methods others than cultivation techniques. Study of the reassociation kinetics of single-stranded soil DNA has demonstrated that 1 g of soil contains about 4,000 different bacterial genomes (542).

A possible approach to the study of soil microbial populations without culturing them is to investigate macromolecules that are characteristic of the bacteria of interest. These macromolecules can either be directly isolated from soil or be detected in soil by the use of labelled antibodies or nucleic acid probes. The most promising target molecules are nucleic acids (8, 388, 456, 561) and lipids (544, 550), as reviewed elsewhere. Most of the techniques address the microbial diversity at the phylogenetic level, e.g., 16S rRNA genes or lipids that are diagnostic for specific bacterial taxa. The assessment of microbial diversity at the physiological level is more difficult, since it requires the detection and quantification of macromolecules that are typical of a physiological function, e.g., structural genes or the mRNA of an enzyme or the enzyme itself. Such techniques have not been applied to a great extent to the study of microbial trace gas metabolism in soil or sediment. However, some examples do exist.

Progress has recently been made with respect to the detection of CH₄-oxidizing bacteria in soil and peat by using PCR techniques that target the genes of either soluble methane monooxygenase or group-specific sequences of the 16S rRNA (349, 375). The results indicate the existence of so far unknown “species” of methanotrophs in soil and water. The presence and abundance of methanotrophs in soil were also assessed by analyzing signature phospholipid fatty acids (218, 381, 519). Phyllogenetic hybridization probes have been developed for methanogens and successfully applied to the analysis of the composition of the methanogenic community in anaerobic reactors (416, 417). Methanogenic microbial communities in digestors have also been studied by using immunological probes, which give some information on their topography in digestor flocs (217, 335). Signature lipids of methanogens have been used for a coarse analysis of the methanogenic community of an Antarctic lake sediment (338). Similar studies should also be possible in other CH₄-producing habitats, e.g., soil. By using rice soil microcosms, cloning and sequencing techniques have recently been applied to determine the dominant methanogenic populations (320). The results indicate that methanogens related to the genera Methanobacterium and Methanosetaea are most frequent in the anoxic bulk soil while methanogens related to the genus Methanosarcina and to a new branch within the Methanomicrobacteria were dominant in the rhizosphere of the rice plants (320, 321).

The composition of the natural communities of microorgan-
isms which belong to a well-defined physiological group but are polyphyletic and spread over several taxa cannot be readily analyzed by using probes and primers that are based on tRNA genes. Instead, functional probes and primers based on the genes of dissimilatory enzymes may be used. For analyzing communities of denitrifiers, probes and primers against nitrate reductase, nitrite reductase, and N₂O reductase (503, 559) and antibodies against nitrite reductases (128, 295) have been developed. Both approaches have been applied to natural environments (325, 560). The study of soil environments demonstrated the presence of bacteria that possess genes for denitrifying enzymes (325, 503). However, because of cross-reactions and false-positive results on the one hand and of too narrow a specificity of the probes on the other hand, the techniques targeting functional genes or enzymes are of very limited use for analyzing the community of denitrifiers (including uncultured ones) in soil.

Similarly, hybridization probes against the hydrogenase gene of aerobic H₂-oxidizing bacteria were used to characterize H₂-consuming bacterial isolates from soil, but with limited success (292). The problem is that the probes and primers were designed for a rather limited range of bacterial species but are intended to target a large number of unknown and usually uncultured bacteria that by definition share only the characteristic of possessing a hydrogenase gene. The design of primers and probes with such a broad specificity is very difficult. However, probes and primers with a narrow specificity, e.g., against the hydrogenase gene of bacteria related to Alcaligenes eutrophus, were successfully applied to retrieve sequence information for so far uncultured Knallgas bacteria in soil (312). Primers and probes against a limited group of hydrogenase genes, e.g., those of the sulfate-reducing genus Desulfovibrio, have also been applied successfully to detect these bacteria in anaerobic reactors and microbial mats (567). Communities of hydrogenase gene-containing sulfate reducers in oil fields and soil have also been analyzed by reverse sample genome probing, in which the environmental DNA is used as the probe and is assayed against a selection of cultured bacteria to test whether they might be present in the particular environment (529, 553). However, sulfate reducers are related to each other closely enough that their communities in microbial mats can also be analyzed by phylogenetic (16S rRNA) probing (9, 415).

Recently, PCR amplification of the gene (mcr) of the methyl-CoM reductase, the key enzyme of CH₄ production, has been used to detect and characterize populations of methanogens in peat soil (221).

Composition of the Microbial Community and Control of Trace Gas Flux

Microbial metabolism is one of the controls of the trace gas flux between soil and atmosphere. Metabolic processes are affected by environmental variables (e.g., temperature and nutrients) acting either on the enzyme activities that have been expressed by the resident microbial populations, on the synthesis of new enzyme activities, or on the proliferation of particular soil microorganisms. All these levels of control are important. However, the role of microbial community composition is the least understood. I will give a few examples.

Effect of nitrogen fertilization on methane uptake. A number of studies have shown that nitrogen addition reduces the uptake of atmospheric CH₄ by soil (71, 130, 206, 222, 369, 379, 495, 513). However, some investigators have observed no effect of nitrogen fertilization (62, 188, 527), found only a long-term but no short-term effect (245, 246), or even observed a stimulation associated with a change in vegetation (306). These different observations have been interpreted as either direct inhibition of CH₄ oxidation by ammonium, gradual competitive displacement of the CH₄-oxidizing methanotrophs by CH₄-oxidizing nitrifiers, or more complex changes in the soil. Direct inhibition of CH₄ oxidation by ammonium has been demonstrated in pure cultures of methanotrophs as well as in soil samples (29, 35, 63, 160, 284, 465). Castro et al. (71) and Steudler et al. (514) observed that the ratio of CH₄ to CO₂ oxidation became lower upon nitrogen fertilization and attributed this to a shift from methanotrophs to nitrifiers as the prevailing CH₄-oxidizing population. On the other hand, Bender and Conrad (35) observed no decrease in CH₄ oxidation rates when soil samples were enriched in the population of ammonium-oxidizing nitrifiers. Quite in contrast, the addition of ammonium to these soils was less inhibitory to CH₄ oxidation than to the control soils. Hence, it remains unclear whether and how much a population shift from methanotrophs to nitrifiers can contribute to the fertilizer effects observed in field studies.

The interpretations of most of the field studies suffer from a lack of information about the vertical distribution of the activities of CH₄ oxidation in the context of nitrogen transformation. Dunfield et al. (163) recently showed that fertilization had no effect on the CH₄ uptake by peat soil, since the CH₄-oxidizing activity was localized in subsoil but the ammonium added was immobilized, volatilized as NH₃, or oxidized to nitrate in the soil surface layers.

A conceptual model of the effects of nitrogen fertilizers on CH₄ uptake by soil is presented in Fig. 6. This model is based on the observation that the zone of ammonium oxidation is located in the soil surface layers and thus is separated from the zone of CH₄ oxidation, which is located in deeper soil layers (465). This separation is thought to be due to the inhibition of CH₄ oxidation by ammonium. Populations of methanotrophs can therefore persist only in subsoil, where ammonium concentrations are usually below the inhibitory level. As a consequence, CH₄ has to diffuse from the surface down to the subsoil to become oxidized. The CH₄ oxidation activity in subsoil extends over depths where sufficient CH₄ is available and ceases when CH₄ concentrations decrease below a threshold. Fertilization temporarily increases the ammonium concentration in the surface layer. If the ammonium oxidation activity in the surface layers is too low to prevent vertical transport, the
ammonium concentrations may reach inhibitory levels in the zone of CH₄ oxidation, so that CH₄ has to diffuse to still deeper layers to become oxidized. Consequently, the vertical CH₄ gradient would become less steep and the CH₄ flux would decrease. The inhibitory effect of the ammonium fertilizer would thus basically be a displacement of the CH₄ oxidation activity to deeper soil layers. On the other hand, if the ammonium oxidation activity in surface soil (or other ammonium removal mechanisms) is high enough to prevent leakage of ammonium to deeper layers, fertilization would have no immediate effect on CH₄ oxidation. This would particularly be the case when soil plots have received fertilizers for a long time, so that nitrogen turnover in surface soil is more active and the zone of CH₄ oxidation is displaced to greater depth. Cores of such soil plots would exhibit lower CH₄ uptake rates than those of unfertilized control plots and would be less prone to react to short-term fertilization (188, 245, 527). Natural soil with a relatively deep location of the CH₄ oxidation zone or high activity of the ammonium oxidation zone would behave similarly (163).

Initiation of methanogenesis. Production of CH₄ in periodically submerged wetland soils is initiated some time after flooding. Methanogenesis is initiated after the sequential reduction of O₂, nitrate, manganese(IV), iron(III), and sulfate. The sequential reduction process occurs largely according to the thermodynamic theory, which predicts that electron acceptors with a more positive redox potential are preferred (595). The general operation of the sequential reduction process has been repeatedly shown in soils that become anaerobic after being flooded (393, 400). However, the exact mechanism that controls the initiation of CH₄ production and the dynamics of the microbial populations involved is still unclear.

One possibility is that methanogens are present only as a marginal population and increase in number as soon as the nonmethanogenic electron acceptors are reduced and thermodynamic conditions become favorable for CH₄ production. Indeed, the numbers of methanogens increased in soils that had never been flooded before, e.g., desert soil (396). On the other hand, however, the numbers of methanogens were relatively stable at a high titer throughout the annual drainage and flooding periods of rice fields (19, 348, 478). Obviously, the nonsporulating, obligately anaerobic methanogens are able to survive in soil under adverse conditions to a greater extent than was previously believed possible (181). However, because of the presence of yet uncultured methanogens in soil (221, 320, 321), we cannot be sure that the composition of the community of methanogens remains unaltered during the initiation of methanogenesis upon flooding of soil.

Irrespective of whether the methanogens grow first or are already present in sufficient numbers, a central question is which environmental factor triggers the initiation of CH₄ production. One possible factor is the concentration of methanogenic substrates. For example, the H₂ concentration has to be higher than the threshold value required for a favorable thermodynamic reaction (Fig. 2) (see above). Similarly, the acetate concentration has to be sufficiently high to allow exergonic CH₄ production from acetate. Theoretically, the concentrations of both substrates should be kept below the threshold of methanogens by the thermodynamically more favorable consumption activities of sulfate reducers and ferric iron reducers, which are active as long as sulfate and ferric iron are available. After depletion of sulfate and ferric iron, the steady-state concentrations of H₂ and acetate would increase and thus trigger the initiation of CH₄ production. This theory is supported by observations in a river sediment which exhibited increasingly higher H₂ concentrations during the successive reduction of sulfate and ferric iron and stabilized at the methanogenesis-specific threshold when production of CH₄ was the only exergonic process (331). Similarly, in anoxic lake sediment and paddy soil, inhibition of CH₄ production by sulfate or ferric iron was paralleled by a decrease of H₂ to concentrations that were thermodynamically nonpermissive for CH₄ production (2, 329). In this case, a too low substrate concentration was probably the factor that turned CH₄ production off. However, the theory was not supported by observations in four different submerged soils, which showed H₂ and acetate concentrations that were sufficient for exergonic methanogenesis but in which CH₄ production was nevertheless not initiated before sulfate and ferric iron were depleted (396). In this case, the methanogenic substrates cannot have acted as the signal for initiation of CH₄ production.

Another potential signal for initiation of methanogenesis is the soil redox potential (Eₜ). Rates of CH₄ emission from rice fields correlate negatively with the soil redox potential (342). Production of CH₄ in Methanosarcina barkeri starts as soon as the redox potential of the medium drops below +50 mV (182). As the redox potential of the medium was buffered by a mixture of ferrous and ferric iron, one could hypothesize that CH₄ production in methanogens is switched on by a regulator protein that reacts with iron similarly to the global regulation of aerobic and anaerobic metabolism in Escherichia coli (546). Indications of soil redox potential as a signal for initiation of methanogenesis were recently obtained when several upland soils were flooded, resulting in anoxic and methanogenic soils (396). The possible importance of redox potential in addition to that of thermodynamically permissive substrate concentrations was also demonstrated for methanogenic paddy soil that was temporarily aerated or drained and subsequently showed suppression of CH₄ production until all the sulfate and ferric iron that were produced during the aeration phase was reduced again (418). It is possible that both the concentration of methanogenic substrates and the redox potential (mediated by a redox active compound, e.g., iron) act as signals depending on the type of methanogenic community involved, but the dynamics of the latter have not yet been investigated.

Effect of temperature on methanogenesis. Methane production increases exponentially with increasing temperature of submerged peat or paddy soil (162, 479, 487, 521, 570, 571). In addition, temperature seems to affect the contribution of acetate relative to H₂ plus CO₂ as precursors for CH₄ production. At low temperatures, the contribution of H₂ plus CO₂ to methanogenesis is small, with CH₄ being derived mainly from acetate (79, 109, 471, 472, 520). Existing cultures of methanogens all cease to produce CH₄ from H₂ plus CO₂ if temperatures are lower than 15 to 20°C (51, 600). On the other hand, there are psychrotrophic homoacetogenic cultures that are able to convert H₂ plus CO₂ to acetate at low temperatures (100, 299, 300). Setting up cultures on H₂ plus CO₂ with soil or sediment as the inoculum usually results in the enrichment of bacteria producing acetate instead of CH₄ at low temperature (100, 299, 300, 471). On the other hand, at high temperature, some acetogens can convert acetate to H₂ plus CO₂ (313). This acetate cleavage is then followed by H₂-dependent methanogenesis in thermophilic digestor sludge (5, 314).

From these observations, one is tempted to conclude that H₂-dependent methanogens do not operate at low temperature and are replaced by H₂-dependent homooacetogens. However, this is probably not the case. Although psychrotrophic methanogens have not been isolated thus far, there are reports of H₂-dependent methanogenesis in sediments and submerged soil at low temperatures (69, 377, 378, 570). Therefore, it is likely that psychrotrophic H₂-consuming methanogens do exist.

(Continued on next page...)
but have not been cultured. In addition, thermodynamic calculations have often indicated that H₂-dependent homoacetogenesis is endergonic at in situ H₂ concentrations (79, 439, 471, 533). A more likely explanation for the decreased contribution of H₂ to methanogenesis at low temperature is a shift in the fermentation pathway of organic matter. It has been shown that the production of H₂ by syntrophic proton-reducing bacteria is especially sensitive to low temperatures (79, 109, 471). For example, a decrease in the temperature of methanogenic paddy soil from 30 to 15°C resulted in both a decrease in the H₂ concentration and an increase in the concentration of fatty acids, indicating that syntrophic fatty acid degraders were inhibited at the lower temperature (79). An increase in the temperature of cold profundal lake sediment from 4 to 20°C, on the other hand, resulted in increased H₂ concentrations, increased production of fatty acids, and increased contribution of H₂ to CH₄ production (471). These observations suggest that temperature has a decisive influence on the pathway of organic matter degradation to CH₄. Presently available experiments and observations indicate that at low temperature, organic matter degradation is dominated by homoacetogenesis followed by aceticlastic methanogenesis, whereas at high temperature organic matter degradation is dominated by fermentation followed by syntrophic H₂ production plus H₂-dependent methanogenesis. The assumption that the syntrophic bacteria rather than the H₂-dependent methanogens constitute the step that is actually limited by low temperature is supported by the following observation: an increase in the concentration of H₂ but not in cellulose stimulated H₂-dependent methanogenesis in lake sediment at low temperature (472). The enhancement of syntrophic bacteria and H₂-dependent methanogenesis by increasing temperature may be one of the reasons why the aggregation of syntrophic and methanogenic bacteria seemed to intensify in a lake sediment during summer stratification (103).

Interspecies hydrogen transfer in microbial aggregates. Interspecies H₂ transfer is a key process in the anaerobic degradation of organic matter to CH₄ (156, 462, 511, 594, 596). Interspecies H₂ transfer is accomplished between fatty acid- or alcohol-oxidizing H⁻-reducing acetogenic syntrophic bacteria and H₂-consuming methanogenic bacteria. The process is obligatory for the syntrophs which depend on the maintenance of a low H₂ concentration by the methanogens for thermodynamic reasons. Characterization of the kinetics and thermodynamics of the H₂ transfer reaction in anoxic digestors, sediments, and soil has shown that syntrophs and methanogens are juxtaposed: i.e., they operate within a microbial aggregate (90, 99, 106, 108). Hydrogen may be replaced by formate as the transferred electron equivalent in some situations (50, 157, 535). The formation of microbial aggregates to achieve syntrophic degradation of fatty acids and alcohols probably facilitates the diffusional transfer of H₂ or formate between the two bacterial groups and thus alleviates the energetic problems involved (50, 463).

Nothing is known about the actual composition of the microbial aggregate communities in anoxic soil and sediment. In fact, evidence for the existence of microbial aggregates in soil and sediment is only circumstantial and is not based on direct microscopic observations (90). However, information exists for anaerobic digestor flocs which may be considered to be a model system for microbial aggregates with interspecies H₂ transfer (217, 228, 551, 583–585). Harmsen (228) investigated the architecture of different digestor flocs by using phylogenetic DNA probes and showed that the syntrophic and methanogenic bacteria existed in distinct clusters in the interior of the flocs, whereas the bacteria fermenting the primary substrates formed the outer layer of the flocs. However, a lattice-type rather than a cluster-type arrangement of the syntrophic partner cells has also been observed (159, 534). Schink (462) suggested that because of continuous cell division, small lattice-type aggregates inadvertently turn into cluster-type aggregates until the whole floc is mixed up again. Soils and sediments probably can contain only small microbial aggregates because of spatial limitations. The observation that the contribution of juxtaposed interspecies H₂ transfer to total CH₄ production increased during the season in the relatively fluffysediment of Lake Mendoata was interpreted as being due to increased formation of microbial aggregates (103). In anoxic paddy soil, on the other hand, CH₄ production by juxtaposed H₂ transfer was maximal from the onset of CH₄ production (104). Possibly, syntrophic bacterial aggregates that produce CH₄ consist of only a few bacteria which are confined together in or on a soil crumb or grain.

The digestor flocs exhibited a very high bacterial diversity including not only fermenting bacteria, homoacetogens, syntrophs, and methanogens, as theoretically expected, but also sulfate reducers (583) and even aerobic heterotrophs (263). The aerobes allow the operation of CH₄ production even in anoxic environment. The sulfate reducers, on the other hand, may function as syntrophs themselves and convert ethanol or lactate to acetate plus H₂ in the presence of H₂-consuming methanogens (66, 350). There is strong evidence that sulfate reducers can function as syntrophs in digestor flocs (534, 583). Phylogenetic analysis indicated a close relationship of syntrophic propionate-oxidizing bacteria to sulfate reducers (229, 230, 556).

Circumstantial evidence from kinetics studies indicates that sulfate reducers may function as syntrophic partners in methanogenic aggregates in Lake Mendota sediment (103). In this case, the immediate inhibition of methanogenesis by addition of sulfate may actually be the result of a diversion of the electron flow (Fig. 7): the fatty acid- or alcohol-degrading sulfate reducers stop producing H₂ syntrophically and instead reduce sulfate, maybe even competing with the methanogens for H₂ produced by other bacteria (89).

We recently interpreted the inhibition of acetate-dependent methanogenesis by sulfate in anoxic paddy soil in a similar way (3). In this particular soil, the population of acetate-utilizing sulfate reducers was very small and was confined to spores of Desulfitomaculum. However, H₂-utilizing Desulfovibrio species were present and were able to decrease the H₂ concentration in the presence of sulfate so much that H₂-dependent methanogenesis was thermodynamically no longer feasible. Inhibition and radiotracer experiments indicated that the decrease in H₂ concentration could have resulted in the conversion of the methyl group of acetate to CO₂ instead to CH₄ and in the transfer of the reducing equivalents as H₂ to the sulfate reducers (Fig. 7). Such an interspecies H₂ transfer has been shown for cocultures of acetate-utilizing Methanosarcina and H₂-utilizing Desulfovibrio species (398). It is questionable whether similar explanations hold for the inhibition of acetate-dependent methanogenesis by iron(III) and nitrate (2, 3, 260, 290). However, not only is there a close phylogenetic relationship among the genus Pelobacter (functioning as a fermenting or syntrophic bacterium), sulfate- or sulfur-reducing bacteria, and Fe³⁺-reducing bacteria, but also members of all of these functionally defined groups are able to reduce Fe³⁺ to Fe²⁺ (86, 333).

Therefore, one could imagine that a bacterium functions in a microbial aggregate once as the syntrophic partner but also as a sulfate reducer or ferric iron reducer when sulfate or Fe³⁺ becomes available. A similar situation may also be imagined with respect to nitrate, as, for example, Desulfovibrio desulfu-
ricans can function not only as a sulfate reducer but also as a nitrate reducer, as a ferric iron reducer, and as a syntroph with methanogens (86, 127, 484). In fact, this bacterium can also function as an O$_2$ respirer, reducing O$_2$ preferentially before NO$_3^-$ and SO$_4^{2-}$ (304). Investigation of both function and community structure will be necessary to elucidate these kinds of microbial interactions in soil and other environments.

Production of NO and N$_2$O. NO and N$_2$O flux between the soil and the atmosphere results from complex and little-understood interactions of different processes in soil that occur simultaneously. Since processes involved in production (e.g., nitrification) often differ from those involved in consumption (e.g., denitrification), production and consumption are regulated differently (96). Furthermore, NO production and N$_2$O production are a composite of different processes, such as nitrification and denitrification, that vary in relative significance depending on soil conditions (141–143, 289, 423, 433, 475, 496, 543). Even one particular process, e.g., denitrification, can be a composite of different bacterial species that may be phylogenetically distant from each other and express different types of enzymes. For example, the NO-producing nitrate reductase can be either a copper-type or a cytochrome cd-type enzyme (128). Both NO production and N$_2$O production in denitrifiers are a function of the relative activity of the producing and the consuming enzymes, i.e., nitrite reductase and NO reductase for NO production and NO reductase and N$_2$O reductase for N$_2$O production (38, 351, 591). The actual turnover of nitrogen by these enzymes depends on substrate concentrations and the kinetic properties of the enzymes. The specific activities of the enzymes depend on biosynthesis (transcription and translation) and inactivation. The available information on the regulation of enzyme synthesis suggests that O$_2$ partial pressure and concentrations of nitrogen substrates are major regulators (538). More importantly, however, the patterns of regulation seem to be different in different species of denitrifiers (32, 48, 129, 296, 351, 425, 581). The expression of denitrifying enzymes shows different O$_2$ sensitivities for the different bacterial strains. There are also bacteria that denitify under aerobic conditions (327, 435, 436). The different effects of O$_2$ on the expression of the various bacterial nitrite reductases, NO reductases, and N$_2$O reductases will affect whether NO or N$_2$O is the dominant product when the O$_2$ availability in soil changes. Therefore, knowledge of the composition of the community of denitrifiers in soil is important for understanding of the production of NO and N$_2$O. Unfortunately, there are only a few studies of expression of denitrifying enzymes in soil after the onset of anaerobiosis (146, 186, 505). The results indicate that synthesis of nitrate reductase and nitrite reductase starts within hours whereas synthesis of nitrous oxide reductase is delayed for more than 1 day, so that N$_2$O is produced. None of these studies involved the investigation of the composition the microbial community or looked for the metabolism of NO. Therefore, it remains unclear whether the pattern of NO and N$_2$O production are affected by the composition of the denitrifier community in natural soil. Community effects are not unlikely, since soil which is amended with different denitrifiers exhibits completely different patterns of production of NO and N$_2$O (1, 372).

There are reports that the soil microbial communities which reduce nitrate differ as a function of temperature (202, 278, 449) and pH (41, 392, 490). There are also numerous reports that the production and release of NO and N$_2$O from soil into the atmosphere are affected by soil temperature and pH (213, 434, 451, 578). However, the available information does not allow a synthesis of the observed patterns of release or production of NO and N$_2$O with patterns of microbial community composition.

These examples provide a narrow focus on denitrification and on three of the most conspicuous soil variables, i.e., aeration (soil water), temperature, and pH. The real situation,
however, is much more complex and involves a hierarchy of environmental controls that affect denitrification rates on the one hand (538) and the fraction of NO and N₂O produced on the other hand (185). Furthermore, the real situation in soil probably involves many more types of microbial metabolism, such as autotrophic and heterotrophic nitrification, nitrate respiration, and DNRA, which produce and consume NO and N₂O (96). This complexity will be understood only when more is known about the microorganisms involved and their metabolism.

CONTROL ON THE ECOSYSTEM LEVEL

Trace gases are produced and consumed by defined reactions in individual microorganisms. Any control of the production or consumption process is exerted at this level initially. However, it is also relevant to ask whether the microbial diversity and community structure in soil have any consequences at the ecosystem level (461). Although a microbiologist may tend to answer this question in the affirmative, the true answer is by no means clear.

In fact, much of the spatial and temporal variability of trace gas fluxes between the soil and the atmosphere can often be explained by only a limited number of factors, including soil and parent material, climate, vegetation, and topography (346). Thus, empirical models that are based on correlation analysis involving easily measurable soil variables (e.g., temperature, moisture, texture, and organic carbon) often predict trace gas fluxes quite well. Statistical techniques, such as multiple regression or multivariate data analysis, help to assess the optimum set of variables to be measured. For example, water table position, temperature, and degree of peat humification explained 91% of the variance in the logs of CH₄ flux from a peatland in Northern Minnesota (155). Weaker but still significant correlations of CH₄ flux to a few predictors have also been reported for other sites (67, 196). Emission rates of N₂O from some soil environments (e.g., prairie ecosystems) have also been predicted amazingly well from a few soil variables such as temperature, moisture, and inorganic nitrogen (460).

The strong correlations of CH₄ emission with water table height and of N₂O emission to inorganic nitrogen compounds are easily understood, since microbial methanogenesis requires anoxia and microbial N₂O production requires either ammonium or nitrate as a substrate. Empirical models based on various physical and chemical parameters are successful without considering the structure of the microbial community. Even largely mechanistic models of NO and N₂O production that differentiate between nitrification and denitrification neglect microbial community structure (316, 317, 404).

In some studies, it was found that trace gas fluxes were controlled largely by a single ecosystem function that created a bottleneck in substrate flow. For example, rates of N₂O emission from tropical soils were strongly correlated with rates of net nitrogen mineralization which limited nitrification and denitrification and thus also N₂O production (344). On the other hand, although NO release should be limited by nitrogen mineralization in the same way as N₂O release is limited, the release rates of these gases have often been found to be anti-correlated because of the different reactions of the gases to changing soil moisture (266). Annual fluxes of N₂O were correlated with the annual aboveground net primary production in a tallgrass prairie landscape (216). Similarly, rates of CH₄ emissions from wetlands correlated well with the net ecosystem productivity, i.e., the amount of the net primary production that is left in the ecosystem and is not immediately liberated by microbial decomposition (576). A control of CH₄ production by primary productivity was supported by the observation that CH₄ emission rates increased when wetland vegetation was exposed to elevated CO₂ concentrations (137). On the other hand, net ecosystem productivity was not a decisive controller of CH₄ emission in Swedish peatlands (555).

Relevant trace gas flux measurements on the ecosystem or landscape level are still scarce. In addition, the classification of ecosystems is not satisfactory, and the possible mosaic structure of an ecosystem is also subject of debate (427). The microbial community structure in the soil of the various ecosystems and ecosystem mosaics is largely unknown. Therefore, it cannot be assessed safely at present whether the soil community structure is important for the trace gas flux. In addition, we do not know the scale in space and time on which it is possibly important. Therefore, it remains unclear whether trace gas flux at the ecosystem level is finally controlled by a few processes only or whether changes in the diversity and composition of microbial species are also important. However, by analogy to ecological studies of plant and animal communities (376, 473, 540, 541), I would dare to predict that microbial species diversity is an important factor in ecosystem function.

ACKNOWLEDGMENTS

This review benefited from the experimental work of and/or discussions with numerous coworkers, students, and colleagues over the past 10 years. I thank all of them. I thank Anja Meier for producing the artwork in the figures and Gary King, Roger Knowles, and Sylvia Schnell for critical reading of the manuscript and for helpful comments.

REFERENCES

1. Abou-Seada, M. N. L., and J. C. G. Ottow. 1988. Einfluß chemischer Bodeneigenschaften auf Ausmaß und Zusammensetzung der Denitrifikationsverluste drei verschiedener Bakterien. Z. Pflanzenernehr. Bodenkld. 152:109–115.
2. Achtnich, C., F. Bak, and R. Conrad. 1995. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol. Fertil. Soils 19:65–72.
3. Achtnich, C., A. Schuhmann, T. Wind, and R. Conrad. 1995. Role of interspecies H₂ transfer to sulfite and ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil. FEMS Microbiol. Ecol. 16:61–69.
4. Adamsen, A. P. S., and G. M. King. 1993. Methane consumption in temperate and subarctic forest soils—rates, vertical zonation, and responses to water and nitrogen. Appl. Environ. Microbiol. 59:483–490.
5. Ahring, B. K. 1995. Methanogenesis in thermophilic biogas reactors. Antonie Leeuwenhoek 67:91–102.
6. Alperin, M. J., and W. S. Reeburgh. 1984. Geochemical observations supporting anaerobic methane oxidation, p. 282–289. In R. L. Crawford and R. S. Hanson (ed.), Microbial growth on C₁ compounds. American Society for Microbiology, Washington, D.C.
7. Alperin, M. J., and W. S. Reeburgh. 1985. Inhibition experiments on anaerobic methane oxidation. Appl. Environ. Microbiol. 50:940–945.
8. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143–169.
9. Amann, R. I., J. Stromley, R. Devereux, R. Key, and D. A. Stahl. 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614–623.
10. Amaral, J. A., C. Archambault, S. R. Richards, and R. Knowles. 1995. Denitrification associated with groups I and II methanotrophs in a gradient enrichment system. FEMS Microbiol. Ecol. 18:289–298.
11. Ambus, P., and S. Christensen. 1995. Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and peat ecosystems. J. Environ. Qual. 24:993–1001.
12. Andreae, M. O., and W. A. Jaeschke. 1992. Exchange of sulphur between biosphere and atmosphere over temperate and tropical regions, p. 27–61. In R. W. Howarth, J. W. B. Stewart, and M. V. Ivanov (ed.), Sulphur cycling in ecosystems. SCOPE report 48. John Wiley & Sons, Ltd., Chichester, United Kingdom.
13. Anonymous. 1982. The secret life of the soil. New Sci. 1982(2 Dec):664.
14. Aragno, M., and H. G. Schlegel. 1992. The mesophilic hydrogen-oxidizing (Knallgas) bacteria, p. 344–384. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (ed.), The prokaryotes, vol. 1, 2nd ed. Springer-Verlag, New York.
15. Armstrong, W. 1979. Accumulation in higher plants. Adv. Bot. Res. 7:226–332.
16. Armstrong, W. 1994. Polarographic oxygen electrodes and their use in plant.
aeration studies. Proc. R. Soc. Edinb. Sect. B 102:511–527.
17. Armstrong, W., M. E. Strange, S. Cringle, and P. M. Beckett. 1994. Micro-electrode and modelling study of oxygen distribution in roots. Ann. Bot. 74:281–299.
18. Arth, L., P. Frenzel, and R. Conrad. Unpublished data.
19. Asakawa, S., and K. Hayano. 1995. Populations of methanogenic bacteria in paddy field soil under double cropping conditions (rice-wheat). Biol. Fertil. Soils 20:113–117.
20. Aselmann, I., and P. J. Crutzen. 1989. Global distribution of natural fresh-water wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 8:307–358.
21. Bäddle, H. J., W. Seiler, and B. Bolin. 1989. Physiology, biochemistry, and specific effects on trace gases and global climate change. American Society of Agronomy, Madison, Wis.
22. Bender, M., and R. Conrad. 1992. Role of nitrate and nitrite for production and consumption of nitrite oxide in oxic soils. Biol. Fertil. Soils 14:168–174.
23. Bender, M., and R. Conrad. 1992. Role of nitrate and nitrite in soil during denitrification in soil. FEMS Microbiol. Ecol. 101:59–65.
24. Bender, M., M. Koschorreck, and R. Conrad. 1996. Oxidative consumption of nitrite oxide by heterotrophic bacteria in soil. FEMS Microbiol. Ecol. 19:165–170.
25. Bazylnski, D. A., C. K. Soohoo, and T. C. Hollocher. 1986. Growth of Pseudomonas aeruginosa on nitrate oxide. Appl. Environ. Microbiol. 51:1239–1246.
26. Bedard, C., and R. Knowles. 1989. Physiology, biochemistry, and specific inhibitors of CH4, N2O, and CO2 oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53:80–84.
27. Böhlke, T., M. Blanc, and M. Aragôn. 1996. Obligately and facultatively autotrophic sulfur- and hydrogen-oxidizing thermophilic bacteria isolated from hot composts. Arch. Microbiol. 165:34–40.
28. Begg, C. B. M., G. J. D. Kirk, A. F. Mackenzie, and H. U. Neue. 1994. Reductive dechlorination of pentachlorophenol by pH changes in the lowland rice rhizosphere. New Phytol. 128:469–477.
29. Bell, L. C., and S. J. Ferguson. 1991. Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha. Biochem. J. 278:425–427.
30. Bender, M., and R. Conrad. 1992. Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol. Ecol. 101:261–270.
31. Bender, M., and R. Conrad. 1993. Kinetics of methane oxidation in oxic soils. Chemosphere 26:687–696.
32. Bender, M., and R. Conrad. 1994. Microbial oxidation of methane, ammonium and carbon monoxide, and turnover of nitrous oxide and nitrite oxide in oxic soil. Biocycle 25:97–112.
33. Bender, M., and R. Conrad. 1994. Methane oxidation activity in various soils and freshwater sediments: occurrence, characteristics, vertical profiles and distribution on grain size fractions. J. Geophys. Res. 99:16531–16540.
34. Böhlke, M., and R. Conrad. 1995. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol. Biochem. 27:1517–1527.
35. Betlach, M. R., and J. M. Tiedje. 1981. Kinetic explanation for accumulation of nitrite, nitrate and nitrous oxide during bacterial denitrification. Appl. Environ. Microbiol. 42:1074–1084.
36. Bjornstad, B. N., J. P. McKinley, T. O. Stevens, S. A. Rawson, J. K. Carlsen, H. N., L. Joergensen, and H. Degn. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55:1735–1741.
37. Bollmann, A., and R. Conrad. 1994. Measuring the flux of oxygen to a muddy sediment with a cylindrical microcosm. Neth. J. Sea Res. 32:1–11.
38. Bosse, U., and P. Frenzel. Unpublished results.
39. Bosse, U., P. Frenzel, and R. Conrad. 1993. Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment. FEMS Microbiol. Ecol. 13:123–134.
40. Bosse, U., P. Frenzel, and R. Conrad. 1993. Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment. FEMS Microbiol. Ecol. 13:123–134.
41. Bouwman, A. F. 1997. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere, p. 61–127. In A. F. Bouwman (ed.), Soils and the greenhouse effect. John Wiley & Sons, Ltd., Chichester, United Kingdom.
42. Bremner, J. M., A. M. Blackmer, and S. A. Waring. 1980. Formation of nitrous oxide and dinitrogen by chemical decomposition of hydroxylamine in soils. Soil Biol. Biochem. 12:263–269.
43. Bremner, J. M., and C. G. Slechte. 1978. Role of microorganisms in the atmospheric NO cycle. Adv. Microb. Ecol. 2:155–201.
44. Breznak, J. A. 1982. Intestinal microbiota of termites and other xylophagous insects. Annu. Rev. Microbiol. 36:323–343.
45. Breznak, J. A. 1994. Acetogenesis from carbon dioxide in termite guts, p. 303–330. In H. L. Drake (ed.), Acetogenesis. Chapman & Hall, New York.
46. Breznak, J. A., and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Ann. Rev. Entomology 39:453–487.
47. Brock, T. D. 1978. The poisoned control in biogeochemical investigations, p. 717–725. In W. E. Krumbein (ed.), Environmental biogeochemistry and geomicrobiology, vol. 3. Ann Arbor Science Publishers, Ann Arbor, Mich.
48. Brock, T. D. 1987. The study of microorganisms in situ: progress and problems, p. 1–17. In M. Fletcher, T. R. Gray, and J. G. Jones (ed.), Ecology of microbial communities. Cambridge University Press, Cambridge.
49. Bronson, K. F., and A. R. Mosier. 1993. Nitrous oxide emissions and methane consumption in wheat and corn-cropped systems in northeastern Colorado, p. 133–144. In L. A. Harper et al. (ed.), Agricultural ecosystem effects on trace gases and global climate change. American Society of Agronomy, Madison, Wis.
50. Breznak, J. A., and A. R. Mosier. 1994. Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biol. Fertil. Soils 17:263–268.
51. Brown, K. A., and J. N. B. Bell. 1978. Vegetation - the missing sink in the global cycle of carbon dioxide (CO2). Atmos. Environ. 12:537–540.
52. Brown, S. K., and L. R. Brown. 1981. The production of carbon monoxide and ethylene by Rhizoctonia solani. Dev. Ind. Microbiol. 22:725–731.
53. Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977. Growth of Methylophilus in lactate-ethanol medium in sulfite in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33:1162–1169.
54. Buhrer, J. L., T. R. Moore, and N. T. Routet. 1993. Methane emissions from wetlands in the midboreal region of Northern Ontario, Canada. Ecology 74:2240–2254.
55. Burns, R. G. 1983. Extracellular enzyme-substrate interactions in soil, p. 249–298. In J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny (ed.), Microbes in their natural environment. Cambridge University Press, Cambridge.
56. Capone, D. G., and R. P. Kiehn. 1980. Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbonabilism. Limnol. Oceanogr. 25:725–749.
57. Carlsen, H. N., L. Joergensen, and H. Degn. 1991. Inhibition by ammonia of methanol utilization in Methylcoccus capsulatus (Bath). Appl. Microbiol. Biotechnol. 35:124–127.
58. Casto, M. S., W. T. Piet, J. H. Johnston, J. M. Melillo, P. A. Steudler, H. L. Gholz, and D. Lewis. 1994. Effects of nitrogen fertilization on the fluxes of N2O, CH4, and CO2 from soils in a Florida slash pine plantation. Can. J. Forest Res. 24:9–13.
59. Casto, M. S., P. A. Steudler, J. M. Melillo, J. D. Aber, and S. Millham. 1992. Exchange of N2O and CH4 between the atmosphere and soils in spruce-fir forests in the northeastern United-States. Biogeochemistry, 18:119–135.
60. Coates, P. A., and A. H. Cornfield. 1972. Biological and chemical reduction of nitrate to nitrite in irradiated soils, and factors leading to eventual loss of denitrification rates in oxic soil due to scavenging of intermediate nitric oxide. Soil Biol. Biochem., in press.
Conrad, R., M. Aragno, and W. Seiler. 1991. Effects of vegetation on methane flux and reservoir, and carbon isotopic composition, p. 65–92. In J. E. Rogers, and W. B. Whitman (ed.), Trace gas emissions by plants. Academic Press, Inc., New York.

Chanton, J. P., and J. W. Dacey. 1983. Field measurements of hydrogen by soil. FEMS Microbiol. Lett. 15:232–33.

Chanton, J. P., G. J. Whiting, J. D. Happell and G. Gerard. 1995. Trace gas exchange in freshwater and coastal marine environments: ebullition and transport by plants, p. 98–125. In P. A. Matson and R. C. Harris (ed.), Biogenic trace gases: measuring emissions from soil and water. Blackwell Scientific Publications Ltd., Oxford.

Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren. 1987. The carbon cycle from the National Oceanic and Atmospheric Administration, p. 39–58. In P. A. Matson and R. C. Harriss (ed.), Biogenic trace gases between terrestrial ecosystems and the atmosphere. Dahlem Konferenzen, R. S. Oremland (ed.), The biogeochemistry of hydrogen. FEMS Microbiol. Ecol. 120:83–97.

Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren. 1987. The carbon cycle from the National Oceanic and Atmospheric Administration, p. 39–58. In P. A. Matson and R. C. Harriss (ed.), Biogenic trace gases between terrestrial ecosystems and the atmosphere. Dahlem Konferenzen, R. S. Oremland (ed.), The biogeochemistry of hydrogen. FEMS Microbiol. Ecol. 120:83–97.
128. Coyne, M. S., A. Arunakumari, B. A. Averill, and J. M. Tiedje. 1989. Immunological identification and distribution of dissimilatory heme cdI and nonheme copper nitrite reductases in denitrifying bacteria. Appl. Environ. Microbiol. 55:2924–2931.

129. Coyne, M. S., and J. M. Tiedje. 1990. Induction of denitrifying enzymes in oxygen-limited Achromobacter cycloclastes continuous culture. FEMS Microbiol. Ecol. 7:263–270.

130. Crill, P. M., P. M. Crill, and R. C. Harriss. 1995. Environmental factors influencing the emission of methane over temperate zone soils. J. Geophys. Res. 100:9399–9364.

131. Dacey, J. W. H., B. G. Drake, and M. J. Klug. 1994. Production of methane and nitrous oxide from a calcareous soil. Soil Sci. Soc. Am. J. 58:320–325.

132. Dannenberg, S., and R. Conrad. Unpublished results.

133. DeGroot, C. J., A. Vermoesen, and O. VanCleemput. 1976. The possible importance of CSA for the sulfate layer of the stratosphere. Geophys. Res. Lett. 3:73–76.

134. DeGroot, C. J., A. Vermoesen, and O. VanCleemput. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. FEMS Microbiol. Lett. 59:1–53.

135. DeWittigen, P., and M. VanNoordwijk. 1994. Laboratory study of the emission of N2O and CH4 from a calcareous soil. Soil Sci. Soc. Am. J. 58:495–502.

136. DeWittigen, P., A. P. Motson, P. M. Vitousek, R. Kiley, D. G. Garcia-Mendez, and J. M. Maass. 1993. Processes regulating soil emissions of NO and NO2 in a seasonally dry tropical forest. Ecology 74:130–139.

137. Davidson, E. A., W. T. Swank, and T. O. Perry. 1972. Carbon monoxide production from heme compounds by bacteria. J. Bacteriol. 112:3130–3135.

138. Davidson, E. A., W. T. Swank, and T. O. Perry. 1982. Carbon monoxide production from hydroxocobalamin by bacteria. Biochem. Biophys. Acta 131:150–155.

139. Denier Vander Gon, H. A. C., and H. U. Neue. 1993. Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol. Ecol. 15:223–228.

140. Denier Vander Gon, H. A. C., and H. U. Neue. 1995. The role of methane in atmospheric chemistry and climate. p. 291–315. In W. vonEngelhardt, S. Leonhardt-Marek, G. Breves, and D. Giesecke (ed.). Ruminant physiology: digestion, metabolism, growth and reproduction. Enke, Stuttgart, Germany.

141. DeWittigen, P., A. P. Motson, P. M. Vitousek, R. Kiley, D. G. Garcia-Mendez, and J. M. Maass. 1993. Processes regulating soil emissions of NO and NO2 in a seasonally dry tropical forest. Ecology 74:130–139.

142. DeWittigen, P., A. P. Motson, P. M. Vitousek, R. Kiley, D. G. Garcia-Mendez, and J. M. Maass. 1993. Processes regulating soil emissions of NO and NO2 in a seasonally dry tropical forest. Ecology 74:130–139.

143. DeWittigen, P., A. P. Motson, P. M. Vitousek, R. Kiley, D. G. Garcia-Mendez, and J. M. Maass. 1993. Processes regulating soil emissions of NO and NO2 in a seasonally dry tropical forest. Ecology 74:130–139.

144. Engelaar, W. M. H. G., J. C. Symens, H. J. Laanbroek, and C. W. P. M. Blom. 1995. Preservation of nitrifying capacity and nitrate availability in waterlogged soils by radial oxygen loss from roots of wetland plants. Biol. Fertil. Soils 20:243–248.

145. Ensign, S. A. 1995. Reactivity of carbon monoxide dehydrogenase from Rhodospirillum rubrum with carbon dioxide, carbonyl sulfide, and carbon monoxide. J. Biol. Chem. 260:18395–18403.

146. Ensign, S. A., and P. W. Ludden. 1991. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum—role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. J. Biol. Chem. 266:18395–18403.

147. Epp, M. A., and J. P. Chanton. 1993. Methanogenic methane oxidation determined via the methyl fluoride inhibition technique. J. Geophys. Res. 98:18413–18422.

148. Fallon, R. D. 1982. Molecular tritium uptake in Southeastern U.S. soils. Soil Biol. Biochem. 14:553–566.

149. Fenichel, T., and B. J. Finlay. 1991. The biology of free-living anaerobic ciliates. Eur. J. Protistol. 35:375–380.

150. Ferguson, S. J. 1994. Dinitrogen fixation and its control. Antonie Leeuwenhoek 66:89–110.

151. Ferry, J. G. (ed.). 1993. Methanogenesis. Ecology, physiology, biochemistry and genetics. Chapman & Hall, New York.

152. Ferry, J. G. 1994. CO dehydrogenase of methanogens, p. 539–567. In H. L. Drake (ed.), Acetogenesis. Chapman & Hall, New York.

153. Fetzer, S., F. Bak, and R. Conrad. 1993. Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol. Ecol. 12:107–115.

154. Ferretti, S., and R. Conrad. 1993. Effect of redox potential on methanogenesis by Methanosarcina barkeri. Arch. Microbiol. 157:475–480.

155. Ferring, S. J. 1994. Dinitrogen fixation and its control. Antonie Leeuwenhoek 66:89–110.

156. Firestone, M. K. 1982. Biological denitrification. Agron. Monogr. 22:289–326.

157. Firestone, M. K., and E. A. Davidson. 1989. Microbiological basis of NO and N2O production and consumption in soil, p. 7–21. In M. O. Andrews and D. S. Schimel (ed.). Exchange of trace gases between terrestrial ecosystems and the atmosphere. Dahlem Konferenzen. John Wiley & Sons, Ltd., Chichester, United Kingdom.

158. Firestone, M. K., and J. M. Tiedje. 1979. Temporal change in nitrous oxide and dinitrogen from denitrification following onset of anaerobiosis. Appl. Microbiol. Rev. 52:155–174.
psychrophilic acetogens: Acetobacterium halikii sp. nov., A. paludisom sp. nov., A. fenestratum sp. nov. Arch. Microbiol. 168:29–34.
301. Krämer, M., M. Baumgärtner, M. Bender, and R. Conrad. 1990. Consumption of NO by methanotrophic bacteria in pure culture and in soil. FEMS Microbiol. Ecol. 58:263–350.
302. Krämer, H., and R. Conrad. 1993. Measurement of dissolved H2 concentrations in methanogenic environments with a gas diffusion probe. FEMS Microbiol. Ecol. 12:149–158.
303. Krämer, M., and R. Conrad. 1991. Influence of oxygen on production and consumption of nitrite oxide in soil. Biol. Fertil. Soils 11:38–42.
304. Krekeler, D., and H. Cypionka. 1995. The preferred electron acceptor of Desulfobulbus desulfuricans. Can. J. Microbiol. 41:271–277.
305. Kruse, C. W., R. D. DeLaune, S. Jiraporncharoen, and D. Manajuti. 1995. Oxygen and inorganic nitrogen exchange in a Nereis virens (Polychaeta) bioturbated sediment-water system. J. Coastal. Res. 1:109–116.
306. Kruve, C. W., and N. Iversen. 1995. Effect of plant succession, ploughing, and fertilization on the microbiological oxidation of atmospheric methane in a heathland soil. FEMS Microbiol. Ecol. 18:121–128.
307. Kuhn, M., A. Steinbichsel, and H. G. Schlegel. 1984. Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions. J. Bacteriol. 158:633–639.
308. Käsel, K., and H. L. Drake. 1995. Effects of environmental parameters on the formation and turnover of acetate by forest soils. Appl. Environ. Microbiol. 61:3667–3675.
309. LaFave, J. S., and D. D. Focht. 1983. Conservation in soil of H2 liberated from N, fixation by hyp + nodules. Appl. Environ. Microbiol. 46:304–311.
310. Lang, K., J. Silvolta, J. Ruuskanen, and P. J. Martikainen. 1995. Emissions of nitrite oxide from boreal peat soils. J. Biogeogr. 22:359–364.
311. Law, C. F., A. P. Rees, and N. J. P. Owens. 1992. Nitrous oxide–estuarine gases and atmospheric flux. Estuarine Coastal Shelf Sci. 35:301–314.
312. Lechner, S., and R. Conrad. Detection in soil of aerobic hydrogen-oxidizing bacteria related to Alcaligenes eutrophus by PCR and hybridization assays targeting the hydrogenase gene. FEMS Microbiol. Ecol., in press.
313. Lee, M. J., and S. H. Zinder. 1988. Isolation and characterization of a thermophilic bacterium which oxides acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54:124–129.
314. Lee, M. J., and S. H. Zinder. 1988. Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic coculture. Appl. Environ. Microbiol. 54:1457–1461.
315. Lehmann, S., and R. Conrad. 1996. Characteristics of turnover of carbolyl sulfide in four different soils. J. Atmos. Chem. 25:193–207.
316. Li, C., S. Froliking, and T. A. Froliking. 1992. A model of nitrous oxide evolution from soil driven by rainfall events. 1. Model structure and sensitivity. J. Geophys. Res. 97:9779–9786.
317. Li, C., S. Froliking, and T. A. Froliking. 1992. A model of nitrous oxide evolution from soil driven by rainfall events. 2. Model application. J. Geophys. Res. 97:9777–9783.
318. Laidstrom, M. E. 1996. Environmental molecular biology approaches: promers and pitfalls, p. 121–134. In J. C. Murrel and D. P. Kelly (ed.), Microbiology of atmospheric trace gases. Sources, sinks and global change processes. Springer-Verlag KG, Berlin.
319. Lieb, K. H., and W. Seiler. 1976. CO and H2 destruction at the soil surface, p. 215–229. In H. G. Schlegel, G. Gottschalk, and N. Planing (ed.), Microbial transformation and utilization of gases. Goltze, Göttingen, Germany.
320. Liesack, W., R. Grosskopf, U. Bosse, and P. Frenzel. Molecular analysis of methanogenic populations in flooded rice microcosms. Proceedings of ISME-7, Santos, Brazil, in press.
321. Liesack, W. P., H. Janssen, F. A. Rainey, N. L. Ward-Rainey, and E. Stackebrant. Microbial diversity in soil—the need for a combined approach using molecular and cultivation techniques. In J. D. VanElssas, E. H. M. Wellington, and J. T. Trevors (ed.), Modern soil microbiology, in press. Marcel Dekker, Inc., New York.
322. Lin, M., and C. You. 1990. Root exudates of rice (Oryza sativa L.) and its interaction with Alcaligenes faexcula. Sci. Agric. Sin. 22:6–12.
323. Lindau, C. W., and R. DeLaune. 1991. Dinitrogen and nitrous oxide emissions from Spartina alterniflora saltmarsh soils following addition of N15 labelled ammonium and nitrate. Estuarine Coastal Shelf Sci. 32:161–172.
324. Lindau, C. W., R. D. DeLaune, S. Jiraporncharoen, and D. Manajuti. 1991. Nitrous oxide and dinitrogen emissions from Panicum henryanum S fresh-water marsh soil following addition of N15 labelled ammonium and nitrate. J. Freshwater Ecol. 6:191–198.
325. LinneVenBerg, K. H. L., and H. Bothe. 1992. The distribution of denitrifying bacteria in soils monitored by DNA-probing. FEMS Microbiol. Ecol. 6:311–340.
326. Liss, P. S., and L. Merlavit. 1986. Air-sea gas exchange rates: introduction and synthesis. NATO ASI Ser. B18:113–127.
327. Lloyd, D. L., B. Dody, and K. P. Davies. 1987. Persistence of bacterial denitrification capacity under aerobic conditions: the rule rather than the exception. FEMS Microbiol. Ecol. 45:185–190.
328. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55:259–287.
329. Lovley, D. R., D. F. Dwyer, and M. J. Klug. 1982. Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediment slurries. Appl. Environ. Microbiol. 43:350–355.
330. Lovley, D. R., and J. G. Ferry. 1985. Production and consumption of H2 during growth of Methanosarcina sp. on acetate. Appl. Environ. Microbiol. 49:247–249.
331. Lovley, D. R., and S. Goodwin. 1988. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52:2993–3003.
332. Lovley, D. R., E. J. P. Phillips, and D. J. Loneragan. 1989. Hydrogen and formate oxidation coupled to nitrate reduction by iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55:700–706.
333. Lovley, D. R., E. J. P. Phillips, D. J. Loneragan, and P. K. Widman. 1995. Fe(III) and S2 reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol. 61:2132–2138.
334. Lupton, F. S., R. Conrad, and J. G. Zeikus. 1984. CO metabolism of Desulfosporosinus vulgaris strain Madison: physiological function in absence and presence of exogenous substrate. FEMS Microbiol. Lett. 25:263–268.
335. Macario, A. J., L. F. A. Visser, J. B. Vanntier, and E. Conway-Macario. 1991. Topography of methanogenic subpopulations in a microbial consortia adapting to thermophilic conditions. J. Gen. Microbiol. 137:2179–2189.
336. MacIntyre, S., and R. Iversen. 1990. Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiol. Ecol. 72:103–112.
337. McDonald, I. R., E. M. Kenna, and J. C. Murrel. 1995. Detection of methanotrophic bacteria in environmental samples with the PCR. Appl. Environ. Microbiol. 61:116–121.
338. McInerney, M. J., and M. P. Bryant. 1981. Anaerobic degradation of lactate by methanogenic association of Methanobrevibacter R2 and Desulfoarculus species and effect of H2 on acetate degradation. Appl. Environ. Microbiol. 47:346–354.
339. McKinney, D. J., C. F. Drury, W. J. Findlay, B. Mutus, T. McDonnell, and C. Gajda. 1994. Kinetics of denitrification by Pseudomonas fluorescens—oxygen effects. Soil Biol. Biochem. 26:901–908.
340. McKinney, D. J., C. Lazar, and W. J. Findlay. 1990. Kinetics of the nitrite to nitric oxide reaction in peat. Soil Sci. Soc. Am. J. 54:106–112.
341. McKinney, D. J., K. K. Shuttleworth, J. R. Vriesacker, and W. J. Findlay. 1982. Production and loss of nitrite oxide from denitrification in anaerobic
Elsevier Biomedical Press, Amsterdam.

469. Schuler, S., and R. Conrad. 1990. Soils contain two different activities for oxidation of hydrogen. FEMS Microbiol. Ecol. 73:77–84.

470. Schuler, S., and R. Conrad. 1991. Hydrogen oxidation in soil following rhizobial H2 production due to N2 fixation by a Vicia faba-Rhizobium leguminosarum symbiosis. Biol. Fertil. Soils 11:190–195.

471. Schulz, S., and R. Conrad. 1996. Influence of temperature on pathways to methane production in the permanently cold permanent sediment of Lake Constance. FEMS Microbiol. Ecol. 20:1–9.

472. Schulz, S., H. Matsuyama, and R. Conrad. Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). Submitted for publication.

473. Schuler, E. D. 1995. Flux control at the ecosystem level. Trends Ecol. Eolv. 10:40–43.

474. Schumacher, W., and P. M. H. Kronke. 1992. Anaerobic energy metabolism of the sulfur-reducing bacterium “Spirillum” 5175 during dissimilatory nitrate reduction to ammonia. Arch. Microbiol. 157:464–470.

475. Schuster, M., and R. Conrad. 1992. Metabolism of nitric oxide and nitrous oxide during nitrification and denitrification in soil at different incubation conditions. FEMS Microbiol. Ecol. 101:133–143.

476. Schütz, H., R. Conrad, S. Goodwin, and W. Seiler. 1988. Emission of hydrogen from deep and shallow freshwater environments. Biogeochimie 5:295–311.

477. Schütz, H., P. Schröder, and R. Bremmenn. 1991. Role of plants in regulating the methane flux to the atmosphere, p. 29–63. In T. D. Sharkey, E. A. Holland, and H. A. Mooney (ed.), Trace gas emissions by plants. Academic Press, Inc., San Diego, Calif.

478. Schütz, H., W. Seiler, and R. Conrad. 1989. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33–55.

479. Schütz, W., W. Seiler, and R. Conrad. 1990. Influence of soil temperature on methane emission from rice paddies fields. Biogeochemistry 11:77–95.

480. Seefeldt, L. C., M. E. Rasche, and S. A. Ensign. 1995. Carboxydothermus hydrogenoformans gen. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal vents. Int. J. Syst. Bacteriol. 45:538–545.

481. Segers, H., and A. L. B. Beaufort. 1984. Noxidation and its redox-activated forms. Science 220:470–474.

482. Sexton, J. J. 1995. Biology of sulfate-reducing bacteria in anoxic freshwater environments. FEMS Microbiol. Ecol. 15:25–32.

483. Skujins, J. J. 1995. In situ methaneproduction from Chlorella vulgaris. FEMS Microbiol. Ecol. 15:25–32.

484. Shapleigh, J. P., and W. J. Payne. 1995. Nitrate-oxide oxidoreductase cytochrome P450 nor, a NO-reductase cytochrome P450 involved in nitrate reduction in Nitrobacter. J. Bacteriol. 167:677–680.

485. Shirley, J. J., and A. J. Saxton. 1989. Denitrification and nitrate-reducing bacterial populations in abandoned and reclaimed minesoles. FEMS Microbiol. Ecol. 62:59–70.

486. Shirai, Y., M. Fujii, Y. Iogai, S. Adachi, T. Inoue, E. Obayashi, R. Makino, K. Nakahara, and H. Shoun. 1995. Iron-ligand structure and iron redox property of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum: relevance to its NO reduction activity. Biochemistry 34:9852–9859.

487. Shou, H., D. H. Kim, H. Uchiyama, and J. Sugiyama. 1992. Denitrification by fungi. FEMS Microbiol. Lett. 94:277–281.

488. Sieboldt, W. 1986. Acetylene reduction, H2 evolution and N2 fixation in the Alnus incana-Franklinia symbiosis. Planta 167:382–386.

489. Serca, R., D. Delmas, C. Jambert, and L. Labroue. 1994. Emissions of nitrogen oxides from equatorial rainforests in Central Africa—origin and transport. Eur. J. Geochem. 1:15–25.

490. Shou, H., D. H. Kim, H. Uchiyama, and J. Sugiyama. 1992. Denitrification by fungi. FEMS Microbiol. Lett. 94:277–281.

491. Siebritz, R., R. Bojkov, L. Bishop, C. Zerefos, J. Staelen, and J. Zawodny. 1992. Measured trends in stratospheric ozone. Science 256:342–349.

492. Sugimoto, A., and E. Wada. 1995. Hydrogen isotopic composition of bacterial methane: CO2/H2 reduction and acetate fermentation. Geochim. Cosmochim. Acta 59:1329–1337.

493. Sundh, I., P. Borga, M. Nilsson, and B. H. Svensson. 1995. Contents of cell numbers of methanotrophic bacteria in boreal peatlands based on analysis of specific phospholipid fatty acids. FEMS Microbiol. Ecol. 18:103–112.

494. Stewart, J. W. B., I. A. Asseman, A. F. Bowman, R. L. Desjardins, B. B. Hicks, P. A. Matson, H. Rodhe, D. S. Schimel, B. H. Svensson, R. Wassmann, M. J. Whiticar, and M. X. Yang. 1989. Extrapolation of flux measurements to regional and global scales, p. 155–174. In M. O. Andreae and D. S. Schimel (ed.), Exchange of trace gases between terrestrial ecosystems and the atmosphere. Dahlem Konferenzen. John Wiley & Sons, Ltd., Chichester, United Kingdom.

495. Stoiber, P. A. 1995. Microbial controls of methane oxidation in temperate forest and agricultural soils, p. 69–84. In C. Murrell and D. P. Kelly (ed.), Microbiology of atmospheric trace gases. Sources, sinks and global change processes. Springer-Verlag KG, Berlin.

496. Stevens, T. O., and J. P. McKinley. 1995. Lithoautotrophic microbial ecosys- tems. In P. F. H. Forster and D. Wall, eds., Introduction to microbial ecology, p. 619–649. John Wiley & Sons, Chichester, UK.

497. Stewart, J. W. B., I. A. Asseman, A. F. Bowman, R. L. Desjardins, B. B. Hicks, P. A. Matson, H. Rodhe, D. S. Schimel, B. H. Svensson, R. Wassmann, M. J. Whiticar, and M. X. Yang. 1989. Extrapolation of flux measurements to regional and global scales, p. 155–174. In M. O. Andreae and D. S. Schimel (ed.), Exchange of trace gases between terrestrial ecosystems and the atmosphere. Dahlem Konferenzen. John Wiley & Sons, Ltd., Chichester, United Kingdom.

498. Shafizadeh, F., and T. A. Zavarzin. 1991. Carbosubhatenhydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydro-
thermal environments of Kunashir Island. Syst. Appl. Microbiol. 14:254–260.

523. Sweerts, J. P. R. A., M. J. Bär-Glissén, A. A. Cornelese, and T. E. Cappenburg, 1991. Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small mesotrophic lake (Lake Vechten, the Netherlands). Limnol. Oceanogr. 36:1124–1133.

524. Swift, M. J., O. W. Heal, and J. M. Anderson, 1979. Decomposition in terrestrial ecosystems. Blackwell Scientific Publications Ltd., Oxford.

525. Takai, Y. 1970. The mechanism for methane fermentation in flooded paddy soil. Sci. Plant Nutr. 16:238–244.

526. Tarr, M. A., W. L. Miller, and R. G. Zegg. 1995. Direct carbon monoxide photoproduction from plant matter. J. Geophys. Res. 100:11403–11413.

527. Tariq, C. M., and M. G. Stiegl. 1995. Methane oxidation and sulphate reducing bacteria in oil field samples. Appl. Environ. Microbiol. 57:3070–3078.

528. Voss, W., A. M. E. Matsumoto, and N. S. Matsumoto. 1991. The production and utilization of nitric oxide by a new, denitrifying strain of *Pseudomonas aeruginosa.* FEMS Microbiol. Ecol. 6:195–204.

529. Waddington, J. M., and N. T. Rater. 1996. Atmosphere-wetland carbon exchanges: scale dependency of CO2 and CH4 exchange on the development topography of a peatland. Global Biogeochem. Cycles 10:223–245.

530. Wollrabstein, C., N. Gorny, N. Springer, W. Ludwig, and R. Schink. 1995. Pure culture of *Syntrophus buswellii*, definition of its phylogenetic status, and description of *Syntrophus gentianae* sp. nov. Syst. Appl. Microbiol. 18:62–66.

531. Wang, F. L., and J. R. Bettany. 1995. Methane emission from a usually well-drained prairie soil after snowmelt and precipitation. Can. J. Soil Sci. 75:239–241.

532. Ward, B. B. 1987. Kinetic studies on ammonia and methane oxidation by *Nitratereducerycoles.* Arch. Microbiol. 147:126–133.

533. Ward, B. B. 1995. Diversity of culturable denitrifying bacteria—limits of *rDNA* RFLP analysis and probes for the functional gene, nitrite reductase. Arch. Microbiol. 163:167–175.

534. Ward, B. B., A. R. Cockcroft, and K. A. Kilpatrick. 1993. Antibody and DNA probes for detection of nitrite reductase in seawater. J. Gen. Microbiol. 139:2285–2293.

535. Ward, D. M. 1989. Molecular probes for analysis of microbial communities. p. 145–163. In W. G. Characklis and P. A. Wilder (ed.), Structure and function of biofilms. John Wiley & Sons, Ltd., Chichester, United Kingdom.

536. Ward, D. M., and M. R. Winfrey. 1989. Interactions between methanogenic and sulphate-reducing bacteria in sediments. Adv. Aquat. Microbiol. 3:141–179.

537. Warikoo, V., M. J. McInerney, J. A. Robinson, and J. M. Sulfita. 1996. Interspecies acetate transfer influences the extent of anaerobic benzene degradation by syntrophic consortia. Appl. Environ. Microbiol. 62:26–32.

538. Warnecke, P. 1985. Chemistry of the natural atmosphere. Academic Press, Inc., San Diego, Calif.

539. Waschütz, S., N. Hofmann, E. G. Niemann, and I. Fendrik. 1992. Investigations on root exudates of Korean rice. Symbiosis 13:181–189.

540. Watanebe, I. 1984. Anaerobic decomposition of organic matter in flooded rice soils, p. 237–238. In *International Rice Research Institute* (ed.), Organic matter and rice. IRRI, Los Baños, Philippines.

541. Wawer, C., and G. Muyzer. 1995. Genetic diversity of *Dehalococcoides* spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of NiFe*he* hydrogenase gene fragments. Appl. Environ. Microbiol. 61:2203–2210.

542. Weier, K. L., J. W. Doran, J. F. Power, and D. T. Walters. 1993. Denitri- fication and the dinitrogen nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci. Soc. Am. J. 57:66–72.

543. Wennberg, P. O., R. C. Cohen, R. M. Stimpfle, J. P. Koplow, J. G. Anderson, R. J. Salawitch, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, C. R. Webster, R. D. May, D. W. Toohey, L. M. Avallone, M. H. Profitt, M. Loewenstein, J. R. Podoske, K. R. Chan, and S. C. Wofsy. 1994. Removal of stratospheric *O3* by radicals: in situ measurements of O3, HOX, NOX, NOX, CO2, and BrO. GeoScience 266:398–404.

544. Westermann, P. 1993. Temperature regulation of methanogenesis in wetlands. Chemosphere 26:321–328.

545. Westermann, P., and B. K. Ahring. 1987. Dynamics of methane production, sulphate reduction, and denitrification in a permanently waterlogged alder swamp. Appl. Environ. Microbiol. 53:2554–2559.

546. Westlake, D. W., J. M. Roxburgh, and G. Talbot. 1961. Microbial production of carbon monoxide from flavonoids. Nature (London) 198:510–511.

547. Westlake, D. W., G. Talbot, E. R. Blakley, and F. J. Simpson. 1959. Microbial decomposition of rutin. Can. J. Microbiol. 5:621–629.

548. Whalen, S. C., W. S. Reeburgh, and V. A. Barber. 1992. Oxidation of methane in boreal forest soils—a comparison of 7 measures. Biogeochemistry 16:181–211.

549. Whalen, S. C., W. S. Reeburgh, and K. A. Sandbeck. 1990. Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol. 56:3405–3411.

550. Whiting, G. J., and J. P. Chanton. 1993. Primary production control of methane emission from wetlands. Nature (London) 364:794–795.

551. Widder, F. 1992. Microbical corrosion, p. 256–300. In R. K. Finn, P. Prave, M. Schillingmann, W. Crueger, K. Esser, R. Thauer, and F. Wagner (ed.), Biotechnology focus: Fundamentals, applications, information, vol. 3. Han- therwil, Switzerland.

552. Williams, E. J., G. L. Hutchinson, and F. C. Fenselud. 1992. NOX and...
