Tunable Assembly of Gold Nanorods in Polymer Solutions To Generate Controlled Nanostructured Materials

Ryan Poling-Skutvik, Jonghun Lee, Suresh Narayanan, Ramanan Krishnamoorti, Jacinta C. Conrad

ABSTRACT: Gold nanorods grafted with short-chain polymers are assembled into controlled open structures using polymer-induced depletion interactions and structurally characterized using small-angle X-ray scattering. When the nanorod diameter is smaller than the radius of gyration of the depletant polymer, the depletion interaction depends solely on the correlation length of the polymer solution and not directly on the polymer molecular weight. As the polymer concentration increases, the stronger depletion interactions increasingly compress the grafted chains and push the gold nanorods closer together. By contrast, other structural characteristics such as the number of nearest neighbors and fractal dimension exhibit a nonmonotonic dependence on polymer concentration. These parameters are maximal at intermediate concentrations, which are attributed to a crossover from reaction-limited to diffusion-limited aggregation. The control over structural properties of anisotropic nanoscale building blocks demonstrated here will be beneficial to designing and producing materials in situ with specific direction-dependent nanoscale properties and provides a crucial route for advances in additive manufacturing.

KEYWORDS: depletion interactions, fractal structures, protein limit, small-angle X-ray scattering, ultraviolet–visible spectroscopy

INTRODUCTION

Gold nanoparticles exhibit unique optical and electronic properties, advantageous for applications ranging from drug delivery and theranostics to sensing, electronics, and catalysis. Suspending the nanoparticles in solutions maximizes their accessible surface area to take advantage of these novel properties. Maximizing surface area requires that the nanoparticles remain stable and dispersed as individual particles, often in the presence of environmental factors that alter stability such as pH, ionic strength, and macromolecular depletants. Hence, in many applications the nanoparticle surface is functionalized with surfactants, charged compounds, or macromolecules to induce repulsions between the nanoparticles or favorable chemical interactions with the surrounding solution. In other settings, however, multiparticle assemblies of gold nanoparticles exhibit distinctive and desirable functional properties, such as modified cellular uptake or binding and detecting biomolecules. As a second example, percolating nanostructures can improve the thermal or electrical conductivity and optical or mechanical properties of composite materials. Tuning the desired functional properties requires control over the assembly of the nanoparticles. Spherical nanoparticles are easily assembled into amorphous aggregates but the production of one- and two-dimensional structures requires patchy functionalization. High-aspect-ratio nanorods such as carbon nanotubes can pack into triangular or hexagonal structures and form liquid crystals at modest particle volume fractions. Nanoparticles with greater geometric complexity can form a variety of complex superlattice structures due to the directionality of attractive interactions. Open fractal structures featuring a hierarchy of length scales are crucial to applications such as additive manufacturing and have been observed for polymer nanocomposites prepared with carbon nanotubes but only at high nanoparticle concentrations. The production of controlled and tunable 3-D structures of anisotropic nanoparticles at low concentrations, however, continues to pose a challenge.

One route to assemble nanoparticles is to induce well-controlled depletion interactions from macromolecules in solution. Polymers added to solution, as one example, have well-defined characteristic length scales (such as the radius of gyration and the correlation length representing the average distance between neighboring chains). Polymer-induced depletion interactions are well-studied for micron-sized colloidal particles, where the polymer chains are much smaller than the colloids, but additional factors alter interactions between nanoscale particles in crowded macromolecular solutions. The simplest theory for depletion interactions, due to Asakura and Oosawa, approximates the polymer coils as noninteracting hard spheres so that the depletant concentration is negligible at the particle surface and

Received: December 1, 2017
Accepted: January 17, 2018
Published: January 17, 2018
discontinuously increases to the bulk concentration at a distance equal to the depletant radius away from the particle surface. Under this assumption, the interaction potential between particles is proportional to the osmotic pressure of the solution and the volume excluded to the polymer. The flexibility of the polymer chains, however, smooths out the concentration profile of the depletant near the particle surface, and can thus modulate the strength and range of polymer-induced forces.\(^{31}\) To a first-order approximation, the depletion strength becomes inversely proportional to \(\xi\) in semidilute polymer solutions.\(^{32}\) Furthermore, enthalpic interactions between the polymeric depletants and particles affect the interparticle forces, leading to stronger attraction for unfavorable enthalpic interactions and weaker attraction or even repulsion for favorable particle–polymer interactions.\(^{33}\) Because nanoparticles are much smaller than colloids, their characteristic length scales are comparable in magnitude to those of the depleting polymer. In this “protein limit,”\(^{34-36}\) depletion interactions may exhibit further deviations from the simple Asakura–Oosawa picture\(^ {35,36}\) instead agreeing with predictions from the polymer reference-interaction site model.\(^{37}\) These deviations modify the phase behavior of suspensions of nearly spherical nanoparticles,\(^ {38-45}\) but the effect of depletion interactions in the “protein limit” on the assembly of anisotropic particles remains incompletely understood.

Here, we use a well-characterized model system of polymer-grafted gold nanorods (AuNRs) in polymer solutions to investigate the effects of macromolecular crowding on the structure of AuNR aggregates. AuNRs synthesized through a seed-mediated growth method are grafted with short poly-(ethylene oxide) (PEO) chains and suspended in semidilute solutions of PEO of varying molecular weight. The optical spectra of these suspensions, arising from localized surface plasmon resonances, exhibit marked shifts as a function of polymer interactions.\(^ {33}\) Be-}
RESULTS

Characterization of Polymer Solutions. The viscoelastic properties of polymer solutions are dictated by two characteristic length scales: the polymer radius of gyration R_g and the correlation length ξ between chains. In the dilute limit, polymer chains exist as individual Gaussian chains with $R_g = (M_w/(4/3\pi N_A c^*)^{1/3}$, where M_w is the molecular weight and N_A is Avogadro’s number. R_g values are calculated to be 8.5, 16, 24, 36, and 62 nm for $M_w = 35, 100, 200, 400$, and 1000 kDa PEO, respectively. Above the overlap concentration c^*, the chains interact so that a second length scale ξ develops and scales with concentration according to $\xi = R_g(c/c^*)^{\nu/(3\nu-1)}$, where $\nu = 0.59$ is the excluded volume exponent for good solvent conditions (Table S1, Supporting Information). Scaling theory51 predicts that the bulk zero-shear viscosity of the polymer solutions should collapse onto a single master curve as a function of relative polymer concentration c/c^*, as confirmed for the PEO solutions using bulk rheology (Figure 1). The viscosity of the solutions scales as $\eta - \eta_0 \sim (c/c^*)^2$ until the entanglement concentration c_e, beyond which $\eta - \eta_0 \sim (c/c^*)^{14/3}$. Although the bulk viscosities collapse onto a master curve as a function of relative polymer concentrations, the individual length scales do not (inset to Figure 1). Thus, these polymer solutions have similar bulk viscoelastic properties but substantially different nanoscale structures.

Optical Properties of AuNR Suspensions. The optical properties of AuNRs depend on the shape and dispersion of the gold nanorods. Using optical spectroscopy, we assess the dispersion of the AuNRs in the polymer solutions. Whereas AuNRs used in many previous studies are stabilized with electrostatic charges,2,6,52 the AuNRs used in this study are covalently functionalized with short 2 kDa PEO chains. With this functionalization, the AuNRs are stable and well-dispersed in water, and the extinction spectrum exhibits two local maxima at wavelengths of 510 and 745 nm, corresponding to the transverse and longitudinal surface plasmon resonances, respectively (Figure 2). Thus, the surface functionalization appears to be uniform across the particle surface, ensuring neutral interactions between AuNRs and the dissolved PEO chains. For AuNRs dispersed in polymer solutions, the spectra change as a function of both polymer M_w and concentration. As the polymer concentration increases, the transverse peak shifts to a higher wavelength of 550 nm, and the longitudinal peak shifts to a lower wavelength of 675 nm. At the highest concentrations of low-M_w polymer, the longitudinal peak broadens so significantly as to nearly disappear. Furthermore, the relative concentration of polymer needed to induce these changes in optical properties becomes progressively larger for polymers of greater M_w.

Previous studies have associated similar changes in optical spectra to the aggregation of AuNRs.$^{9,53-55}$ Because the grafted PEO chains have a low M_w, the dissolved chains with much higher M_w do not significantly penetrate the grafted layer.$^{56-58}$ Hence, depletion attractions are expected to arise as the dissolved PEO is excluded from a region near the AuNR surface. The changes to the optical spectra confirm that the depletion attractions indeed induce the aggregation of the nanorods. Resuspension of the aggregated AuNRs in water recovers the original optical extinction spectra (Supporting Information, Figure S1), indicating that the aggregation is reversible, as expected for entropic depletion interactions. To support the optical measurements, we obtain quantitative and semiquantitative information on the structure of the AuNR aggregates using small-angle X-ray scattering.

Structural Characterization of AuNR Aggregates. Using SAXS, we assess the structural properties of the AuNR aggregates in these polymer solutions, for which the nanoscale polymer structural length scales are comparably sized to the dimensions of the AuNRs. Although the nanorods are geometrically anisotropic, they orient randomly within the suspension to generate azimuthally isotropic scattering patterns. The azimuthally averaged 1-D SAXS scattering intensity $I(Q)$ exhibits significant changes with increasing polymer concen-

Figure 1. Bulk specific viscosity $\eta - \eta_0$ as a function of relative polymer concentration c/c^* for various PEO molecular weights. Solid lines are scaling predictions51 with an entanglement concentration $c_e \approx 9.5c^*$. Inset: predicted correlation length ξ for the bulk rheology samples. Dashed line indicates the diameter d_{AuNR} of AuNRs.

Figure 2. Optical extinction spectra for suspensions of AuNRs in solutions of (a) 35, (b) 100, (c) 200, (d) 400, and (e) 1000 kDa PEO at various concentrations. Curves are shifted vertically to overlap at 450 nm.
The SAXS intensity for AuNRs dispersed in pure water is well-described by a 1-dimensional cylindrical form factor

\[P(Q) = A \int_0^{\pi/2} f^2(Q, \alpha) \sin(\alpha) \, d\alpha + I_{\text{bkg}} \]

where

\[f(Q, \alpha) = \frac{\sin(QL \cos(\alpha)/2)}{QL \cos(\alpha)/2} J_1(Qd_{NP} \sin(\alpha)/2) \]

Here, \(A \) is a prefactor, \(\alpha \) is the angle between the cylinder axis and the wavevector \(Q \), \(J_1 \) is the first-order Bessel function of the first kind, and \(I_{\text{bkg}} \) is a constant background scattering. With this model, the AuNR dimensions are \(L = 58 \pm 1 \) nm and \(d_{NP} = 19 \pm 1 \) nm, in good agreement with the dimensions measured using TEM. At low polymer concentrations (i.e., 3\(c^* \) of 100 kDa PEO), the AuNRs remain well-dispersed. At higher concentrations, however, the AuNRs aggregate, leading to significant scattering intensity between AuNRs and the appearance of a structure factor \(S(Q) \) (Figure 3b). Even for aggregated samples, the scattering pattern remains isotropic so that \(S(Q) = I(Q)/P(Q) \). The \(Q \)-dependence of \(S(Q) \) contains information about the structure of the aggregates: the primary peak at \(Q^* \) is related to the center-to-center distance \(d = 2\pi Q^*^{-1} \) between nanorods in an aggregate; the ratio \(S(Q^*)/S(Q_{\text{min}}) \) of the structure factor intensity at the primary peak to the first minimum after the peak semiquantitatively captures the number of nearest neighbors within the aggregate and describes the ordering of the nanoparticles. The slope \(n \) at low \(Q \) captures the mesoscopic fractal dimension of the aggregates.

First, we examine how the center-to-center distance between nanorods changes as a function of depletant \(M_w \) and concentration (Figure 4). This interparticle distance is a function of the nanorod diameter and the thickness \(h \) of the grafted layer according to \(d = d_{NP} + 2h \). At the lowest concentration of polymer that induces aggregation (e.g., 3\(c^* \) of 100 kDa PEO where \(d_{NP} \approx 5 \)), the interparticle distance \(d \approx 29 \) nm corresponds to cylinders that are packed parallel to each other, as expected from the directionality of the depletion attractions. The resulting grafted thickness at this polymer concentration, \(h \approx 5 \) nm, is between the size of a free chain in

Figure 3. (a) SAXS intensity \(I(Q) \) as a function of wavevector \(Q \) for AuNRs suspended in aqueous solutions of 100 kDa PEO at various concentrations. Solid curve is fit to cylinder form factor (eq 1). Inset: TEM micrograph of AuNRs grafted with 2 kDa PEO. (b) Structure factor \(S(Q) \) as a function of wavevector \(Q \) for the same samples. Solid line indicates the low-\(Q \) slope \(n \), and arrows indicate wavevectors corresponding to a maximum in \(S(Q) \) at \(Q^* \) and the first minimum after maximum at \(Q_{\text{min}} \). All data are shifted vertically for clarity. SAXS data for remaining depletants shown in the Supporting Information.

Figure 4. Interparticle distance \(d \) as a function of ratio of particle diameter to correlation length \(d_{NP} \xi^{-1} \) and (inset) polymer concentration for various PEO molecular weights. Solid curves are guides to the eye.
Thus, although such an explicit functional form does not exist for suspensions achieved by quantifying the number of nearest neighbors could also be estimated, however, so that the grafted layers are more compressed at higher polymer concentrations. Similar compressions have been observed for polymer-grafted spherical nanoparticles or star polymers dispersed in solutions of linear polymers. Although analytical expressions for the strength of attraction exist in the spherical colloidal limit, no such expressions exist for anisotropic particles in the protein limit. Nevertheless, we expect that the inverse relationship between depletion strength and holds. Thus, we attribute the decrease in interparticle distance with decreasing to an increase in the strength of the depletion attraction. Additionally, the strength of attraction appears to be dependent only on and independent of depletant .

Although the interparticle distance changes monotonically with , the other two structural measures exhibit pronounced nonmonotonic trends (Figure 5). Previous reports have shown that the height of the primary peak increases concomitant with the average number of nearest neighbors. As the primary peak height increases, the following minimum deepens so that the ratio increases concomitant with the number of nearest neighbors. Hence, is a semiquantitative measure of the number of nearest neighbors, and thus the local number density, within an aggregate. is required to approach 1 as . This high- limit is not achieved experimentally, however, so estimating the structure factor peak height introduces an arbitrary vertical scaling factor. Alternatively, the number of nearest neighbors can be quantified by converting to the pair distribution function using an inverse transform and then integrating over the primary peak. Reproducing the primary peak in from such an inversion, however, requires highly accurate measurements at large , which are absent for this system. Precisely quantifying the number of nearest neighbors could also be achieved by fitting to an explicit functional form for , which is common practice for hard sphere suspensions, but such an explicit functional form does not exist for suspensions of anisotropic particles with strong interparticle interactions. Thus, although is a semiquantitative measure of the number of nearest neighbors, this metric removes error associated with vertically scaling or inverting and hence provides a more accurate understanding of how the local number density varies with .

The height of the primary peak in (Figure 5a) trends similarly to the ratio as a function of (Figure 5b). We focus on the changes to the ratio as a function of (Figure 5b), which exhibits a cleaner collapse due to removal of arbitrary vertical scaling. For , the absence of a local maximum in indicates that the AuNRs remain dispersed in solution; thus . At higher polymer concentrations, how varies with depends on the depletant (Figure 5b). For the 35 kDa depletant , the ratio increases with , indicating that the number of nearest neighbors in the aggregate increases with increasing depletion attraction strength. By stark contrast, the ratio of peak height to first minimum for various PEO molecular weights. Inset to part c: surface fractal dimension as a function of size ratio . Dashed blue curves are guides to the eye for the 35 kDa samples. Black curves are guides to the eye for other molecular weights.
increased. For these high-M_w depletants, the number of nearest neighbors is maximal at the lowest depletion strength that can still induce aggregation. As the strength of attraction increases, the number of nearest neighbors decreases independently of depletant M_w. Similar to how the number of nearest neighbors depends on d_{NP}^{-1}, the slope n of $S(Q)$ at low Q changes monotonically for the 35 kDa depletant and nonmonotonically for the higher M_w depletants (Figure 5c). At low concentrations, n is clustered between 0 and 1, indicating that there is little to no structuring on long length scales; the absence of a peak in $S(Q)$ at these concentrations indicates that any structures that are formed do not have controlled interparticle spacing. Due to the differences in polymer–particle interactions when the depletant R_g is greater than or less than d_{NP}, the fractal dimensions of the assembled structures vary with depletant M_w. For the 35 kDa depletant, n increases with increasing polymer concentration, indicating that the resulting aggregates are increasingly dense fractals. For higher M_w depletants, n attains a maximum when $d_{NP}^{-1} \approx 5$ and ranges from 3 to 4 for all solutions that induce aggregation, indicating that these depletants induce surface fractal structures. Thus, n for the higher-M_w depletants can be related to a surface fractal dimension $d_s = 6 - n$ (inset to Figure 5c), which ranges in value from 2 to 3 corresponding to structures with smooth (i.e., dense) and rough interfaces, respectively. Based on this change in fractal dimension, the aggregates formed with high-M_w depletants are densest when $d_{NP}^{-1} \approx 5$ and are increasingly rough as the polymer concentration increases.

The nonmonotonic behavior of the fractal dimension and the number of nearest neighbors suggest that the aggregate structure is the result of two opposing kinetic processes. Aggregation in the colloidal size limit depends on the rate and strength with which two colloids bind upon contact and the rate at which they transport toward each other. When the bonds are strong, the rate of diffusive transport limits the growth kinetics of the aggregate, termed diffusion-limited aggregation (DLA). In the opposite extreme of weak bonds and fast diffusive transport, the rate of the reaction binding the colloids together restricts the aggregate growth, resulting in reaction-limited aggregation (RLA). RLA aggregates are denser with a larger fractal dimension than those formed by DLA because the colloids within an aggregate are able to rearrange. The strength of the depletion attractions increases, and the AuNR dynamics decrease with decreasing ξ.

To synthesize the changes in various structural properties investigated here, we propose that the aggregation process transitions from RLA to DLA as the depletant concentration is increased. This transition results in the structural assemblies of AuNRs illustrated in Figure 6. At low polymer concentrations ($d_{NP}^{-1} < 5$), the depletion attractions are too weak to induce aggregation, and the AuNRs remain individually dispersed in solution. With the addition of a small amount of polymer so that $d_{NP}^{-1} \approx 5$, the depletion attractions become strong enough to induce aggregation, but the AuNR dynamics are still fast compared to the rate of irreversible binding. Thus, the AuNRs form dense aggregates via RLA with a high number of nearest neighbors and extended grafted layers. At higher concentrations of dissolved polymer ($d_{NP}^{-1} > 5$), stronger attraction forces and slower dynamics lead to DLA, and the resulting aggregates are less dense; each AuNR has fewer nearest neighbors than for aggregates formed at lower concentrations, and the grafted layers are compressed. The collapse of the structural properties onto a master curve as a function of d_{NP}^{-1} in a depletant system is a unique feature of the "protein limit." In this limit, the bond strength and dynamics are both functions of ξ. By contrast, in the traditional colloidal limit the particle dynamics do not depend on ξ but on the bulk viscosity, which in turn depends on the relative polymer concentration c/c^* (Figure 1). The collapse of structural properties requires d_{NP} to be smaller than the depletant R_g. For the 35 kDa depletant, the nanorod diameter is larger than the depletant R_g and the resulting aggregate structures are markedly different. The origin of this difference is unclear but may lie in a change in the range of attraction or in different transport properties of the AuNRs when $d_{NP} \geq R_g$.

![Figure 6](image-url) Illustration of the proposed structures formed by the AuNRs in polymer solutions: (left) individually dispersed rods at low polymer concentrations, (middle) dense RLA aggregates with extended grafted brushes at intermediate concentrations, and (right) diffuse DLA aggregates with compressed grafted brushes at high concentrations.
The assembly of nanomaterials into larger scale structures in complex environments is a physically rich problem. By using polymer-induced depletion in the "protein limit" and functionalizing the nanoparticle interface with neutrally interacting polymer chains, we isolate the effect of depletant concentration and M_w on structural properties from complicating factors such as charge stabilization or particle—depletant interactions. While this simplified model system allows us to quantify the structural changes that occur during assembly, other systems may have different characteristics that affect structural properties. For example, in the limit of large M_w or low grafting density of the grafted polymer, dissolved polymers may penetrate the grafted layer and thus no longer induce depletion attractions. Additionally, changing the interactions or surface functionalization of the AuNRs will modify the depletion interactions. Attractive interactions between dissolved PEO and the particle surface may greatly reduce the effects of depletion. For a charged surface, the long-range electrostatic repulsions will shift the aggregation threshold to higher polymer concentrations, potentially rendering the RLA region inaccessible. These types of interactions, along with particle size and shape, may shift the critical ratio of $d_{NP}/\xi \approx 5$ at which the depletants induce aggregation. For colloids, the strength of depletion attractions scales proportionally with colloid diameter. We expect this scaling to hold for these anisotropic nanorods. Whereas the structural properties collapse as a function of d_{NP}/ξ, the role of nanorod length is likely more complicated. In the spherical limit where $L = d_{NP}$, the depletion interactions are isotropic, and local anisotropic assembly cannot be achieved. In the opposite limit of infinitely large rods $L \gg d_{NP}$, the rods are kinetically trapped by the surrounding polymer matrix, and thus cannot reorient to align in parallel. Between these limits, we expect the physics described here to hold, resulting in a transition between RLA and DLA structures. For longer rods, the depletion interactions should be stronger because of an increase in overlap volume with increasing length, thus shifting the critical d_{NP}/ξ ratio to lower values. Finally, because the aggregation process is kinetically controlled and therefore path-dependent, solution preparation and processing will likely affect the nanorod structure. As one example, if instead of dispersing the AuNRs directly into polymer solutions the polymer is slowly added to the AuNR suspension, the DLA structures may not form. Although determining the effects of each of these parameters is beyond the scope of this study, they are relevant to many applications and should be considered when targeting specific structures. Nevertheless, this study describes how to prepare nanoparticle assemblies in situ and characterize their structural properties via scattering. This approach has broad potential for guiding the design of fractal assemblies of anisotropic nanoparticles and their properties in practically relevant environmental conditions.

CONCLUSIONS

The assembly of anisotropic gold nanoparticles into fractal structures with controlled properties is essential for applications in drug delivery, theranostics, sensing, catalysis, and electronics. Here, we demonstrate control over the assembly of anisotropic AuNRs using polymer-induced depletion attractions. Nanorods functionalized with short PEO polymer chains are stable in aqueous suspensions and neutrally interact with dissolved PEO polymers. Because the nanorods and polymers are comparably sized, the depletion forces and transport rates are dependent on the length scale ratio d_{NP}/ξ. The physics controlling the assembly process transitions from reaction-limited at low polymer concentrations (low d_{NP}/ξ) to diffusion-limited at high polymer concentrations (high d_{NP}/ξ), independent of depletant molecular weight. We exploit this change in physics to form structures with controlled interparticle spacing, number density, and fractal dimension.

The production of bulk materials with controlled nanoscale properties limits the deployment of nanotechnology in many applications. Porous nanomaterials demonstrate unique mechanical properties while remaining lightweight, but production of these materials often requires complex and expensive fabrication techniques. Using depletion interactions in the "protein limit" to assemble anisotropic nanoparticles is a facile route to produce open, porous materials in bulk and in situ with tunable nanoscale properties. The decoupling of structural properties from the polymer M_w enables the bulk mechanical moduli and nanoscale structures of polymer composites to be independently tuned; varying the molecular weight and grafting density of the grafted polymer grants additional control over the interparticle spacing. Beyond the development of novel materials, the assembly of gold nanoparticles has proven to be beneficial for biosensing and targeted drug delivery by reducing the rate of exocytosis. In addition to generating controlled structures, this study elucidates physics that will improve understanding of the behavior of polymer-grafted nanomaterials in crowded media. Biopolymers and proteins present at volume fractions of up to 40% crowd nanoparticles deployed in biological environments. With a priori knowledge of the density or effective correlation length in the cellular cytoplasm or other biological fluids, the nanoparticle dimensions can be varied to generate structures in vivo with desired properties.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsanm.7b00277.

Details on the aggregate reversibility, correlation lengths as a function of depletant M_w and concentration, and additional SAXS data (PDF)

AUTHOR INFORMATION

Corresponding Authors
*E-mail: ramanan@uh.edu.
*E-mail: jconrad@uh.edu.

ORCID

Ryan Poling-Skutvik: 0000-0002-1614-1647
Ramanan Krishnamoorti: 0000-0001-5831-502X
Jacinta C. Conrad: 0000-0001-6084-4772

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Nayoung Park for helpful discussions. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. J.C.C. acknowledges support from the Welch Foundation (E-1869).
