Response Surface Optimization for Investigating Antioxidant Potential of *Camellia Sinensis* and *Withania Somnifera* in Synergistic Manner

Arti Devi¹ · Vagish Dwibedi¹ · Nancy George¹ · Zaved Ahmed Khan²

Received: 18 December 2021 / Revised: 26 March 2022 / Accepted: 31 August 2022 / Published online: 1 November 2022
© The Author(s), under exclusive licence to The National Academy of Sciences, India 2022

Abstract The paper highlights the synergistic potential of the novel combination of *Camellia sinensis* (Kangra green tea) and *Withania somnifera* (Ashwagandha). One variable at a time approach was used to find antioxidant potential of *C. sinensis* and *W. somnifera* alone and in combination. Optimization of antioxidant potential was done by using different plant concentrations of *C. sinensis* and *W. somnifera* using a statistical approach of central composite design (CCD) of RSM (response surface methodology). Initial antioxidant activity during optimization of the solvent system was observed in methanol for *C. sinensis* with DPPH, superoxide radical scavenging assay and hydrogen peroxide scavenging assay (44.9 ± 0.62, 43.77 ± 0.10, 43.88 ± 0.10% scavenging) and for *W. somnifera* (40.22 ± 0.39, 43.29 ± 1.12, 41.88 ± 0.11% scavenging), respectively. Initially, IC₅₀ has been calculated for *C. sinensis* (235.26 ± 0.012 μg/mL) and *W. somnifera* (256.39 ± 0.43 μg/mL) in methanol. Before statistical optimization, the maximum synergistic antioxidant potential of *C. sinensis* (200 μg/mL) and *W. somnifera* (150 μg/mL) with DPPH assay, superoxide radical scavenging and hydrogen peroxide scavenging assay was found to be 56.57 ± 0.62, 56.99 ± 0.42, 55.44 ± 0.53% scavenging, respectively. IC₅₀ value has been calculated for *C. sinensis* + *W. somnifera* (IC₅₀ = 215.47 ± 0.06 μg/mL). Optimization of plant concentration using CCD of RSM resulted in enhancement of antioxidant potential of *C. sinensis* (200.5 μg/mL) and *W. somnifera* (200.5 μg/mL) was found to be 78.01 ± 0.01% scavenging when compared to the initial antioxidant potential, i.e., 56.57 ± 0.62% scavenging shows a 1.37-fold increase from initial antioxidant potential. Research unveils that using various combination of *C. sinensis* and *W. somnifera* enhance the antioxidant potential in vitro.

Significance statement In this work we have optimized the synergistic antioxidant potential of *Camellia sinensis* and *Withania somnifera* through RSM which has not reported earlier. We found RSM resulted in 1.37-fold increase from initial antioxidant potential.

Keywords Response surface methodology · Central composite design · Antioxidant · *Camellia sinensis* · *Withania somnifera*

Abbreviations
- DPPH 2: 2-Diphenyl-1-picrylhydrazyl
- CCD: Central composite design
- RSM: Response surface methodology
- PMS-NADH: Phenazine methosulfate-nicotinamide adenine dinucleotide
- NADH: Nicotinamide adenine dinucleotide
- NBT: Nitro-blue tetrazolium
- EDTA: Ethylenediamine tetra-acetic acid

Zaved Ahmed Khan
deanscience.bfc@babafaridgroup.edu.in
Arti Devi
arti.uibt@cumail.in
Vagish Dwibedi
vagish.lcc@gmail.com
Nancy George
nancy.george@cumail.in

¹ University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
² Faculty of Sciences, Baba Farid College, BFGI, Muktsar Road, Bathinda, Punjab, India
Introduction

Camellia sinensis (L) O Kuntze (Kangra green tea) is cultivated on the gentle slopes of Western Himalayas at elevation 1290 m above mean sea level and 32°27’15.68” N latitude, 76°31’42.26” E longitude since the 1850s [1]. Kangra green tea was first cultivated about 150 years ago by Dr. Jameson who was the superintendent of Botanical Gardens in North–West Province. Quality-wise, the Kangra tea estate has taken a most important place in the nineteenth and twentieth centuries. Kangra tea is very much famous for its unique flavor attributed to climatic and edaphic factors of Dhauladhar Hills having soil pH below 6, altitude 900–1400 m with annual rainfall 1500–2500 mm are highly appropriate areas for tea farming. Kangra green tea has higher total phenolic content and higher antioxidant activity as compared to Darjeeling tea. The exceptional qualities of Kangra green tea are mainly attributed to the geographical conditions of the region. In 2005, Kangra green tea received Geographical Indication tag under Himachal Pradesh Patent Information Centre, Shimla by Office of Controller-General of Patents, Designs and Trademarks, Chennai, as per Geographical Indications of Goods (Registration and Protection act, 1999). In 1886 and 1895, the tea received gold and silver medals at international conventions held in London and Amsterdam [1]. EGCG which is an active phytoconstituent of green tea and green tea extract has been proved to be anti-cancerous, anti-diabetic, anti-proliferative, anti-inflammatory, anti-atherosclerosis, neuroprotective, antioxidant, estrogenic and anti-aging [1–3]. Similarly, Withania somnifera has also been reported for its medicinal properties, and in Ayurveda, it is known for its anti-aging, immunomodulatory, and rejuvenating properties [4]. Nowadays, W. somnifera has also reported its preventive effect in COVID-19 attributed to its antiviral and immunomodulatory activities [5].

The Global Anti-Aging Market was worth $250 billion in 2016 and is estimated to be growing at a CAGR (compound annual growth rate) of 5.8% and is expected to reach $331.41 billion by 2021. Of the 4000 private and 600 public biotech companies worldwide, only a few percent have shown increasing profitability [6]. Very few drug candidates obtain approval and only a third of those retrieve their R&D costs. The future growth of the anti-aging market is observed to rely on the advancement and technological development with enhanced efficacy and safety of anti-aging products [7]. In ancient times herbal remedies were extensively used to minimize the effect of aging in India, China, and Egypt. There are several pieces of shred of evidence that show that plant and plant extracts are effective anti-aging agents [8]. A combination of different antioxidants having different modes of action is always a better alternative to increase the effectiveness, bioavailability, and decrease the toxicity. Thus, using a potent herbal remedy in its crude form will make the therapy less expensive and affordable [9]. It has been reported that the combination of vitamin E with astaxanthin can be a powerful antioxidant as astaxanthin, a natural carotenoid can scavenge free radicals and this effect was found to increase when combined with vitamin E [10]. Another study of ferulic acid in combination with resveratrol has been shown to increase apoptotic cell death in cancer cells [11]. In another study, tetrahydrocurcumin in combination with Centella asiatica extract helps to improve the symptoms of aging [12].

In the present study, we have tried to combine two plant extracts, C. sinensis and W. somnifera to study their synergistic effect on free radicals in vitro. We, therefore, aimed to find out the synergistic antioxidative potential of C. sinensis and W. somnifera in vitro. To extract the maximum phytochemicals from plants, the type of solvent plays a crucial role as in the case of secondary metabolite production, fermentation parameters play an important role [13].

RSM is a statistical technique practiced to augment the extraction of phytochemicals of various plants [14]. RSM is a statistical tool that is a combination of statistical methods and mathematical models that involves statistical significance, satisfactory point location, polynomial equations, to find out the interaction between various variables [14]. A statistical approach has been used in this investigation to enhance the antioxidant potential of C. sinensis and W. somnifera.

The present investigation is oriented toward the enhancement of antioxidant potential of C. sinensis and W. somnifera in a synergistic manner using Central Composite Design (CCD) based RSM using Design-Expert software version 11.

Material and Methods

Sample Collection

Leafy twigs of C. sinensis (Kangra green tea) and roots of W. somnifera (Ashwagandha) used in the current study were procured from Palampur tea gardens (Himachal Pradesh, India) (32°27’15.68” N latitude, 76°31’42.26” E) and Mohali (Punjab, India) (latitude 30.7046°N, longitude 76.7179°E), respectively, during July 2019. Plant samples were kept in a sterile bag and stored at 4 °C till further use.

ANOVA Analysis of variance
SOD Superoxide dismutase
Chemicals

DPPH (2,2-diphenyl-1-picrylhydrazyl), riboflavin, and ascorbic acid were purchased from Sigma-Aldrich, USA, whereas hydrogen peroxide was obtained from HiMedia Lab Ltd., Mumbai, India. DH$_2$O (distilled deionized water) was prepared by Camco Industries, Chandigarh (India). All other chemicals like methanol, sulphuric acid, Whatman filter paper, petroleum ether, and ethanol were purchased from HiMedia Lab Ltd., Mumbai, India.

Plant Extract and Stock Solution Preparation

Petroleum ether, methanol, ethanol, water (1:1) extracts of *C. sinensis* and *W. somnifera* were prepared by the method described by [15] with slight modifications. Twenty gram powdered roots of *W. somnifera* and powdered leaves of *C. sinensis* were soaked in petroleum ether, methanol, ethanol, and water (200 mL) each for one day at room temperature. The samples were vacuum filtrated by using Whatman filter paper, and after filtration, the filtrate was subjected to evaporation with the help of a rotary evaporator. Dried crude samples were collected and stored at 4°C which were used for phytochemical analysis as well as antioxidant analysis in vitro.

Optimization of the Solvent System for In Vitro Antioxidant Potential

To optimize the solvent system for plants *C. sinensis* and *W. somnifera*, different solvent systems were used to find out the best solvent which helps to enhance the antioxidant potential. The selection of a good solvent is very crucial for the extraction of maximum phytochemicals owing to different chemical structures as well as the polarity of phytochemicals in a specific solvent [16]. In this study, we have used different solvents (petroleum ether, methanol, ethanol, water) to evaluate antioxidant potential. After recovering the extract, it was used for different antioxidant assays (Superoxide scavenging assay, DPPH assay, and hydrogen peroxide scavenging assay).

Antioxidant Assays

Superoxide Anion Scavenging

This test was performed according to the method given by Vo et al. with minor modifications [17]. Superoxide free radical’s generation takes place in PMS-NADH (phenazine methosulfate-nicotinamide adenine dinucleotide) system due to the NADH oxidation which leads to the formation of formazan which is blue during NBT (nitro-blue tetrazolium) reduction.

DPPH Assay

This test was performed according to the method given by Emad et al. with minor modifications [19]. DPPH reaction with antioxidants leads to the formation of Diphenylpicryl hydrazine; nonradical and the purple color converted into yellow color. So, simply this is a color reduction assay that will be detected spectrophotometrically. DPPH (1 mL of 100 μM in methanol) was mixed with the test sample (50–200 μg/mL of *C. sinensis*, *W. somnifera*, and their combination) with a final reaction volume of 3 mL and after the 30 min incubation absorbance was recorded at 517 nm. Free radical scavenging activity was expressed in percent scavenging and calculated using the following formula and the inhibitory concentration (IC$_{50}$) value was recorded by linear regression analysis between concentrations of sample and inhibition percentage.

DPPH scavenging activity (%) = \[
\frac{(A \text{ control} - A \text{ sample})}{A \text{ control}} \times 100
\]

where A control = absorbance of DPPH solution, A sample = absorbance of the sample. The test was performed in triplicates and data were represented as mean ± SD.
Synergistic Antioxidant Potential of *C. Sinensis* and *W. Somnifera*

C. sinensis and *W. somnifera* were tested in conjunction to see whether there was any synergy after refining the solvent system. DPPH assay, hydrogen peroxide radical scavenging assay, and superoxide radical scavenging assay were used to determine percent scavenging when mixing *C. sinensis* and *W. somnifera* extracts (50 μg/mL + 25 μg/mL, 50 μg/mL + 50 μg/mL, 150 μg/mL + 25 μg/mL, 200 μg/mL + 150 μg/mL. The test was performed in triplicates and data were represented as mean ± SD.

Synergistic Antioxidant Potential of *C. Sinensis* and *W. Somnifera* Using RSM (Response Surface Methodology)

Experimental Design Using RSM

In the current investigational study, CCD (central composite design) was used for getting different combinations of various concentrations of *C. sinensis* and *W. somnifera* extracts for enhancing antioxidant potential. RSM is used to obtain the optimized plant concentrations from all probable combinations. In the current investigation CCD (RSM) was explored to get optimized plant concentrations to get enhanced antioxidant potential from *C. sinensis* and *W. somnifera*.

Central Composite Design (CCD)

Once the independent variables having an extensive influence on the enhancement of antioxidant potential were identified, CCD was explored to augment the levels of these independent variables. The statistical software package ‘Design-Expert_11.0 Stat-Ease, Inc., (Minneapolis, USA) was used to analyze the experimental design. A set of 13 experiments were generated (Table 1). All the experiments were completed in triplicates and their mean ± SD was calculated. The experimental values of antioxidant potential were obtained from the following quadratic polynomial equation analyzed by the standard ANOVA (analysis of variance), which resulted in the following equation.

\[
Y = b_0 + \sum_{i=1}^{1} 1nb_iX_i + \sum_{i=1}^{1} 1nb_iX_iX_j + \sum_{i=1}^{n-1} 1n - 1 \sum_{j=i+1}^{1} 1nb_iX_iX_j
\]

where \(Y\) = response; \(X_i\) and \(X_j\) = independent variables; \(b_0\) defines regression coefficient for the intercept, \(b_i\) for linear, \(b_{ij}\) for cross-product terms and \(b_{ii}\) for quadratic.

Table 1

Run	Factor 1A: *C. sinensis* (µg/mL)	Factor 2B: *W. somnifera* (µg/mL)
1	81.63	200.5
2	482.63	200.5
3	200.5	482.63
4	400	1
5	200.5	200.5
6	200.5	200.5
7	400	400
8	200.5	81.63
9	1	400
10	200.5	200.5
11	1	1
12	200.5	200.5
13	200.5	200.5

Factor 1 corresponds to the various concentrations of *C. sinensis* and factor 2 corresponds to various concentrations of *W. somnifera*. C1 to C13 run represents combination numbers

RSM Response surface methodology, *C. sinensis* *Camellia sinensis*, *W. somnifera* *W. somnifera*

Statistical Analysis and Modeling

To design the experiments appropriately the values on the enhancement of antioxidant potential were exposed to ANOVA (analysis of variance). A second-order polynomial equation was used to calculate the scientific relationship of the independent variables (plant concentrations) and the response (Superoxide radical scavenging and H₂O₂ radical scavenging). Evaluation of the linear, quadratic and interactive effects of independent variables on the response can be done with the second-order polynomial equation. Multiple nonlinear regressions help to analyze the response for each run in Design Expert which further leads to the generation of coefficients of the second-order polynomial equation included in the final models. F-value and p-value were used to determine the goodness of the model. 3D contour plots were drawn to show optimized antioxidant potential. Grooved centers in the plots indicate the highest antioxidant potential.

Validation of Response Surface Model

To determine the accuracy of the model, the concentration of two independent variables (concentration of *C. sinensis* and *W. somnifera*) which have the main impact on antioxidant potential as attained by RSM were randomly selected within the design space.
Results and Discussions

Optimization of a Solvent System for In Vitro Antioxidant Potential

Plant concentrations (50, 100, 150, 200 μg/mL) for optimizing the solvent system were used with different solvent systems, i.e., petroleum ether, methanol, ethanol and water. After recovering the plant extract using different solvents DPPH, superoxide radical scavenging and hydrogen peroxide free radical assay was performed and the maximum antioxidant activity (% scavenging) for *C. sinensis* was found (44.9 ± 0.62, 41.99 ± 0.11, 38 ± 0.54, 20 ± 0.45) as shown in Fig. 1a and for *W. somnifera* (40.22 ± 0.39, 36 ± 0.58, 37.99 ± 0.51, 21.67 ± 0.21) as shown in Fig. 1b with methanol, ethanol, water, petroleum ether, respectively, for DPPH assay. Antioxidant potential for superoxide radical scavenging assay with *C. sinensis* found was (43.77 ± 0.62, 40.88 ± 0.54, 37 ± 0.54, 19.29 ± 0.45) as shown in Fig. 1c and with *W. somnifera* (43.29 ± 1.12, 33.66 ± 0.50, 37.99 ± 0.70, 18.66 ± 0.038) Fig. 1d with methanol, ethanol, water, petroleum ether, respectively. Free radical scavenging activity for hydrogen peroxide assay with *C. sinensis* was found to be (43.88 ± 0.10, 35.26 ± 0.36, 39.25 ± 0.71, 20.58 ± 0.54) as shown in Fig. 1e and with *W. somnifera* (41.88 ± 0.11, 35.3 ± 0.4, 37.99 ± 0.7, 20.6 ± 0.23) as shown in Fig. 1f with methanol, ethanol, water, petroleum ether, respectively. IC$_{50}$ has been calculated for *C. sinensis* (235.26 ± 0.012 μg/mL) and *W. somnifera* (255.89 ± 0.07 μg/mL) in the optimized solvent system (methanol) as shown in Table 2.

Synergistic Antioxidant Potential of *C. Sinensis* and *W. Somnifera*

Synergy among *C. sinensis* and *W. somnifera* has been checked using various concentrations of two plant extracts with the help of DPPH, hydrogen peroxide and superoxide free radical scavenging assay. The maximum antioxidant potential was found to be with a combination of 200 μg/mL *C. sinensis* and 150 μg/mL of *W. somnifera* 56.57 ± 0.62 with DPPH assay, 56.998 ± 0.42 with hydrogen peroxide assay and 55.44 ± 0.53 as shown in Fig. 2 with superoxide radical scavenging assay and IC$_{50}$ value for *Camelia sinensis+W. somnifera* was (IC$_{50}$ = 215.47 ± 0.06 μg/mL) for methanol was found as shown in Table 2. All the tests were executed in triplicates, and the data was represented in terms of mean ± standard deviation. The results were analyzed by ANOVA followed by Turkey post hoc test (p ≤ 0.05). Statistical analysis was performed using Graph Pad Prism 7 software and p ≤ 0.05 was considered significant.
Synergistic Antioxidant Potential of *C. Sinensis* and *W. Somnifera* Through RSM

Antioxidant potential in terms of percent scavenging was found to be 55.9 ± 0.62% in the presence of parameters, i.e., 200 μg/mL of *C. sinensis* and *W. somnifera*, respectively, when experiments were performed without RSM. However, in this study, optimization of antioxidant potential is carried out by using RSM, maximum antioxidant potential found was 77.08% for superoxide radical scavenging and 78.01% for hydrogen peroxide scavenging assay. At this point, the interactions between the most influencing factors obtained from OVAT (one variable at a time) approach was considered to design RSM using Central Composite Design of Design-Expert_6.0.8 Stat-Ease, Inc., (Minneapolis, USA) for getting maximum antioxidant potential.

Table 2 IC₅₀ of different extracts evaluated using DPPH, hydrogen peroxide scavenging superoxide radical scavenging

S. No	Sample (μg/mL)*	DPPH scavenging	Hydrogen peroxide scavenging assay	Superoxide scavenging assay
1	Standard	115.69 ± 0.014	115.69 ± 0.014	115.69 ± 0.014
2	Kangra green tea	235.26 ± 0.012	238.44 ± 0.005	240.03 ± 0.12
3	Ashwagandha	256.39 ± 0.43	259.93 ± 0.16	255.89 ± 0.07
4	Kangragreen tea + Ashwagandha	215.48 ± 0.06	217.09 ± 0.019	218.06 ± 0.034

*Data presented are mean ± standard deviation of three replicates

CCD

The CCD was used for the enhancement of antioxidant potential which helps to analyze the behavior of the model inside the limits provided. Therefore, how the factors under investigation interact with each other can be deduced. Design-Expert_6.0.8 Stat-Ease, Inc., (Minneapolis, USA) has generated a set of 13 experiments (Table 1). A set of 13 experiments (Table 1) with plant concentrations ranging from 1 to 400 μg/mL for *C. sinensis* and 1–400 μg/mL for *W. somnifera* was generated as per Design matrix data. These concentrations were further performed and analyzed for antioxidant potential using superoxide radical scavenging assay and hydrogen peroxide scavenging assays.

Table 5 and Fig. 4a show observed and predicted percent scavenging for superoxide radical scavenging assay. ANOVA was used to analyze triplicate experimental values of % scavenging and predicted values as given below.

Model Equation

An explanatory model was devised by software using Design expert. The explanatory model obtained from the data was

\[
Y = 74.63 + 11.39A + 6.48B - 0.6792AB - 9.11A^2 - 8.16B^2
\]

where \(Y \) is the response value (% scavenging) and \(A, B \) depicts the concentrations of *C. sinensis* and *W. somnifera*, respectively.

Table SI and Fig. 4b show the mean observed value of % scavenging and the mean predicted value of % scavenging for hydrogen peroxide scavenging assay. ANOVA was used to analyze triplicate experimental values of % scavenging and predicted values as given below.

An explanatory model was devised by software using a Design expert. The explanatory model obtained from the data was

\[
Y = 75.93 + 11.45A + 5.77B - 0.6792AB - 9.88A^2 - 8.78B^2
\]

(5)
where Y is the response value (% scavenging) and A, B depicts the concentrations of $C. sinensis$ and $W. somnifera$, respectively.

Superoxide Radical Scavenging

Quantification of superoxide free radical scavenging activity of 13 different combinations was attained by quantifying the scavenging of superoxide free radicals. All combinations unraveled an extensive difference in the free radical scavenging for aqueous, ethanolic, and methanolic extracts. However, the maximum response in increasing the free radical scavenging potential of $C. sinensis$ and $W. somnifera$ was shown by combination number 6 of methanolic extract containing (200.5 μg/mL + 200.5 μg/mL) of $C. sinensis$ and $W. somnifera$ concentration (77.08%), respectively, followed by combination number 3 containing (200.5 μg/mL + 482.63 μg/mL) of $C. sinensis$ and $W. somnifera$ concentration (67.10%), followed by combination number 4 containing (1 μg/mL + 400 μg/mL) (60.23%) of $C. sinensis$ and $W. somnifera$ concentration, respectively. Tables 3, 4, 5 and Figs. 3a and 4a signify the outcome of superoxide scavenging assay for methanolic extracts.

ANOVA

ANOVA (analysis of variance) is used to analyze the implication and authenticity of Central Composite Design (CCD) (Table 4). Variation of the data about its mean value is measured by the F value. The significance and authenticity of the model solely depend on the F value which should be higher and the p-value which should be lower. We found our model significant as the F value 67.22 suggests the model is significant enough on the other hand $p \leq 0.05$ designates the model is significant which

Table 3	Percentage scavenging of superoxide radical scavenging assay and hydrogen peroxide free radical by phytochemicals present in the methanolic extract of $C. sinensis$ (Kangra green tea) and $W. somnifera$ (Ashwagandha)			
RUN	A: $C. sinensis$ (μg/mL)	B: $W. somnifera$ (μg/mL)	Superoxide radical scavenging assay (% Scavenging)	Hydrogen peroxide scavenging assay (% scavenging)
1	81.63	200.5	41.08	40.546
2	482.636	200.5	74.25	74.09
3	200.5	482.63	67.10	65.091
4	400	1	60.23	60.23
5	200.5	200.5	73.2083	74
6	200.5	200.5	77.08	78.01
7	400	400	74.1	74.1
8	200.5	81.63	52.01	53.98
9	1	400	53.36	53.36
10	200.5	200.5	71.2167	76
11	1	1	36.78	36.78
12	200.5	200.5	76.7	76.7
13	200.5	200.5	74.95	74.95

The methanolic combination number 6 showed the highest percentage scavenging of superoxide radical scavenging (77.08%) and hydrogen peroxide free radical (78.01%).

Table 4	The Analysis of Variance (quadratic model) for percentage scavenging of superoxide free radical.					
Source	Sum of squares	df	Mean square	F-value	p-value	
Model	2295.31	5	459.06	67.22	<0.0001	Significant
A-C. sinensis	1037.13	1	1037.13	151.87	<0.0001	
B-W. somnifera	335.52	1	335.52	49.13	0.0002	
AB	1.85	1	1.85	0.2702	0.6192	
A2	576.82	1	576.82	84.47	<0.0001	
B2	463.17	1	463.17	67.82	<0.0001	
Residual	47.8	7	6.83			
Lack of fit	23.72	3	7.91	1.31	0.3862	Not significant
Pure error	24.08	4	6.02			
Cor total	2343.12	12				

The lack of fit value for p-value was of 1.31 found as not significant, the model value of 0.0001 found significant and model is also significant.
further indicates only 0.01% chance can cause large model value could be there due to error. Significant model terms we found in our model as A, B, A2, B2. If there are values larger than 0.10 designate the model terms are not significant. In the case of several model terms which are insignificant, the model can be improved by reducing it. The significance of the model can also be analyzed by R (correlation coefficient) and R^2 (determination coefficient). Experimental and predicted values are said to be in better correlation if the values are close to 1. In our experiment, we found a correlation coefficient (0.97) which shows that 97% variation is mainly due to two variables and 2.04% dissimilarity in the model could not be explained by the model. Both ‘Pred R-Squared’ of 0.91 and ‘Adj R-Squared’ of 0.96 are in reasonable agreement with each other. All the above results showed that experimental conditions are well predicted by the model. The adequate Precision value found more than 4 is a good measure of the signal to noise ratio therefore our results show the ratio of 20.16 specifies an adequate signal. This model can be used to navigate the design space. We found 2.61, 64.01, and 47.80 values as standard deviation, mean, and predicted residual sum of squares, respectively, in the CCD model. 3D contour plots (response surface curves) have been shown to analyze how different plant concentrations interact with each other and this helps to find out the optimum value of plant concentration interaction to enhance antioxidant potential (Fig. 3a).

Validation of the Model

Three sets of experiments, with optimized antioxidant potential plant concentrations enhanced by RSM (CCD) viz-(A) concentration of *C. sinensis* (B) concentration of *W. somnifera* were carried out in triplicates to find out the authenticity of the CCD model to show that the model predicted values are reliable with experimental results. (Table 5) presents the antioxidant potential of each experiment along with the predicted response. The results verify the previous model that 200.5 μg/mL plant concentration of *C. sinensis* free radical by phytochemicals present in the methanolic extract of A (*Camellia sinensis*) and B (*W. somnifera*). The methanolic combination number 6 showed the highest percentage scavenging of hydrogen peroxide free radical (78.01%).

Run	Coded variables	Response (percent scavenging)			
	C. sinensis (μg/mL)	*W. Somnifera* (μg/mL)	Actual	Predicted	Difference
6	200.5	200.5	77.08	76	1.08
3	200.5	482.63	67.10	67	0.10
4	400	1	60.23	61	1.23
and 200.5 μg/mL plant concentration of *W. somnifera* was found as the most appropriate set for attaining the highest antioxidant potential. The experimental antioxidant potential of 77.08% and predicted value of 76% is very close to each other. A very minute difference between predicted and experimental values shows the validity of an experiment.

Hydrogen Peroxide Scavenging Assay

Determination of antioxidant potential of 13 different combinations was assessed by another chemical test, i.e., hydrogen peroxide free radical scavenging. All combinations in aqueous, ethanolic, and methanolic extracts were capable of neutralizing free radicals, whereas the maximum antioxidant potential of *C. sinensis* and *W. somnifera* was shown by combination number 6 of methanolic extract containing (200.5 μg/mL + 200.5 μg/mL) of *C. sinensis* and *W. somnifera* concentration, respectively, followed by combination number 7 of methanolic extract containing (400 μg/mL + 400 μg/mL) of *C. sinensis* and *W. somnifera* concentration, respectively. In vivo hydrogen peroxide is formed by the enzyme superoxide dismutase or SOD in a dismutation reaction (Eq. 1). Although H$_2$O$_2$ is not considered a free radical, it has the potential to damage the cell at very low concentrations and at high concentrations, it can deactivate glyceraldehyde-3-phosphate dehydrogenase. It can easily penetrate the biological membranes. H$_2$O$_2$ in the presence of transition metal ions produces hydroxyl radical which can damage DNA also [20]. Tables 3, 4, and 5 signify the outcome of the hydrogen peroxide scavenging assay of methanolic extracts.

ANOVA

ANOVA is used to find the implication and authenticity of Central Composite Design (CCD) (Table 6). Variation of the data about its mean value is measured by the F value. The significance and authenticity of the model solely depend on the F value which should be higher and the *p*-value which should be lower. We found our model significant as the F value 68.74 suggests the model is significant enough on the other hand *p* ≥ 0.05 designates the model is significant which further indicates only 0.01% chance can cause large model
value could be there due to error. Significant model terms we found in our model as A, B, A2, B2. If there are values larger than 0.10 designate the model terms are not significant. In the case of several model terms which are insignificant, the model can be improved by reducing it. The significance of the model can also be analyzed by R (correlation coefficient) and R² (determination coefficient). Experimental and predicted values are said to be in better correlation if the values are close to 1. In our experiment, we found a correlation coefficient (0.98) which shows that 98% dissimilarity is mainly by two variables and 2% dissimilarity in the model could not be explained by the model. Both “Pred R-Squared” of 0.87 and “Adj R-Squared” of 0.96 are in reasonable agreement with each other. All the above results showed that experimental conditions are well predicted by the model. The adequate Precision value found more than 4 is good measures the signal to noise ratio therefore our results show the ratio of 20.39 specifies an adequate signal. This model can be used to navigate the design space. We found 2.64, 64.45, and 48.75 values as standard deviation, mean, and predicted residual sum of squares, respectively, in the CCD model. 3D contour plots (response surface curves) have been shown to analyze how different plant concentrations interact with each other and this helps to find out the optimum value of plant concentration interaction to enhance antioxidant potential (Fig. 3b).

Discussion

Exploration of synergistic antioxidant potential of *C. sinensis* (Kangra green tea) and *W. somnifera* (Ashwagandha) through RSM is relatively new, although these two plant phytochemicals were known for their therapeutic potential but still work is not done on their synergistic behavior. *C. sinensis* has been linked with numerous health benefits like antioxidant activity, anti-inflammatory, anti-diabetic, anti-atherosclerosis, anti-cancer, and an anti-aging moiety. Similarly, *W. somnifera* has also been reported for various therapeutic benefits like anti-inflammatory, antioxidant, anticancer, anti diabetic, immunomodulatory, anti-atherosclerosis, antiaging and antiviral [4, 5]. However, there is no data available on enhancing the antioxidant potential of *C. sinensis* and *W. somnifera* synergistically by using response surface methodology.

The history of drinking green tea is quite ancient but the chemical component investigation has started recently. In 1827, caffeine was isolated from tea [21] and the presence of flavonoids like epicatechin, epicatechin-gallate, and epigallocatechin was confirmed in 1927 [22]. Several reports published show that green tea polyphenols help to cure age-related disorders like cardiovascular diseases, skin anti-aging [23, 24]. In Ayurveda, roots of *W. somnifera* have been used as a medicine to treat rheumatoid arthritis, in treating infertility [4]. Thus, both these plants have excellent anti-oxidant and anti-aging properties. Therefore, the current investigation was focused on the enhancement of plant concentrations of *C. sinensis* and *W. somnifera* with the help of RSM for the enhancement of antioxidant potential in a synergistic way.

Table 6 The Analysis of Variance (quadratic model)

Source	Sum of squares	df	Mean square	F-value	p-value	Sig.
Model	2393.8	5	2393.8	68.74	<0.0001	Significant
A-A	1049.32	1	1049.32	1049.32	<0.0001	Significant
B-B	266.46	1	266.46	266.46	0.0005	
AB	1.85	1	1.85	1.85	0.6226	
A²	679.59	1	679.59	679.59	<0.0001	Significant
B²	535.67	1	535.67	535.67	<0.0001	Significant
Residual	48.75	7	48.75	6.96		
Lack of fit	39.15	3	39.15	13.05	0.0679	Not significant
Pure error	9.61	4	9.61	2.4		
Cor total	2442.55	12	2442.55			
The selection of appropriate solvent plays an important function in the extraction of phytochemicals to maximize the extraction as well as the antioxidant potential of plants and in this investigation, they found maximum antioxidant activity in methanol as various medicinal phytochemicals have different affinities for different solvents [16]. In our case, we have used various solvents to extract phytochemicals and methanol was optimized as the best solvent for extraction which is in agreement with the previous study.

RSM is the best method to optimize the production of industrially important enzymes, food products, pharmaceutical drugs. Statistically designed experiments can help to set up the relation between linear and quadratic terms [25]. RSM has been used to optimize polyphenol content in green tea with the help of the ultrasonic extraction method [26]. In the current study, plant concentrations of C. sinensis and W. somnifera have been optimized using RSM. Two independent variables C. sinensis and W. somnifera were considered to find out the optimum combination of plant concentrations to enhance the antioxidant potential. The predicted values given by RSM were again performed experimentally to validate the results. The superoxide radical scavenging method is popularly used to find out the antioxidant capacity of various foods [17]. The contour plot diagram of superoxide anion scavenging and hydrogen peroxide scavenging activity of combined formulation of C. sinensis and W. somnifera was found as 77.08% for superoxide anion scavenging and hydrogen peroxide scavenging assay which is significantly higher as compared to the scavenging effects of the formulated beverage (pineapple, orange, carrot and Hibiscus sabdariffa) ranging from 33 to 73% as reported by Ogundele et al. [28]. In another study tea and ginger blend in 2:1 ratio has been reported to show 78.7% scavenging of peroxide-free radicals [29].

Three-dimensional contour plots generated in CCD in superoxide anion scavenging and hydrogen peroxide scavenging assay were able to describe (97.96% and 98%, respectively) effect of variation on a combined formulation which is in agreement with the previous investigation reported by Ogundele et al. in 2016. From ANOVA, the model’s F-value of 67.22 (superoxide anion scavenging assay) and 68.74 (hydrogen peroxide scavenging assay) implies that there was a significant effect of the herbal extract mixture on the antioxidant property at P ≤ 0.05 which is in agreement with the previous report [27].

After RSM studies, we were able to achieve a 1.37-fold increase in the antioxidant potential of the herbal mixture. Thus, the present study has shown that RSM is the best method to optimize antioxidant potential. We also conclude that plant’s antioxidant potential can be enhanced synergistically. Therefore, in future clinical studies, C. sinensis and W. somnifera can be used in combination to analyze their efficacy on animal models which will be helpful to release its combinatorial effect to delay the onset of aging diseases in humans.

Conclusion

A combination of strong antioxidant factors which are specific in their action, are nontoxic, and show anti-stress properties from plants will be a better solution for anti-aging. We expect to make a suitable formulation containing C. sinensis and W. somnifera to control ROS-mediated pathogenesis, and its control by suitable antioxidant therapy/therapies. Development of a formulation in the form of nutritional supplement that will not have any side-effects, thus the product can have market value in near future.

Acknowledgements The first author thanks Chandigarh University for providing the infrastructure to carry out research work.

Authors’ Contribution Zaved Ahmed Khan conceived the idea and designed the experiments. Arti Devi carried out the experiments and wrote the manuscript. Zaved Ahmed Khan, Vagish Dwibedi and Nancy George supervised the work and edited the paper.

Funding This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declarations

Conflict of interest The authors declare that they have no conflicts of interest.

References:

1. Sharma R, Verma S, Kumar D (2021) Polyphenolics and therapeutic insights in different tissues extract and fractions of C. sinensis (L.) Kuntze (Kangra Tea). Food Biosci 1:42–101164. https://doi.org/10.1016/j.foodbio.2021.101164
2. Si H, Lai CQ, Liu D (2021) Dietary epicatechin, a novel anti-aging bioactive small molecule. Curr Med Chem 28:3–18. https://doi.org/10.2174/0929867327666191230104958
3. Diao JX, Ou JY, Dai H, Li HY, Huang W, Hua HY, Xie T, Wang M, Yang YG (2020) Antioxidant and antiapoptotic polyphenols from green tea extract ameliorate CCl4-induced acute liver injury in mice. Chin J Integr Med 26:736–744. https://doi.org/10.1007/s11655-019-3043-5
4. Saggam A, Tillu G, Dixit S, Chavan-Gautam P, Borse S, Joshi K, Patwardhan B (2020) W somnifera (L.) Dunal: a potential...
therapeutic adjunct in cancer. J Ethnopharmacol. https://doi.org/10.1016/j.epj.2020.112759
5. Singh T, Nigam A, Kapila R (2022) Analyzing the use of medicinal herbs during the first wave and second wave of COVID-19. Proc Natl Acad Sci India Sect B Biol Sci 92:219–222. https://doi.org/10.1007/s40011-021-01303-5
6. Ferreira MS, Magalhães MC, Sousa-Lobo JM, Almeida IF (2020) Trending anti-aging peptides. Cosmetics. https://doi.org/10.3390/cosmetics7040091
7. Nazir M, Arif S, Khan RS, Nazir W, Khalid N, Maqsood S (2019) Opportunities and challenges for functional and medicinal beverages: current and future trends. Trends Food Sci Technol 88:513–526. https://doi.org/10.1016/j.tifs.2019.04.011
8. Hernandez DF, Cervantes EL, Luna-Vital DA, Mojica L (2021) Food-derived bioactive compounds with anti-aging potential for nutricosmetic and cosmeceutical products. Crit Rev Food Sci Nutr 61:3740–3755. https://doi.org/10.1080/10408398.2020.1805407
9. Zhou X, Li CG, Chang D, Bensoussan A (2019) Current status and major challenges to the safety and efficacy presented by Chinese herbal medicine. Medicines 6:14. https://doi.org/10.3390/medicines6010014
10. Davinelli S, Nielsen ME, Scapagnini G (2018) Astaxanthin in skin health, repair, and disease: a comprehensive review. Nutrients 10:522. https://doi.org/10.3390/nu10040522
11. Kumar CS, Thangam R, Mary SA, Kannan PR, Arun G, Madhan B (2020) Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115682
12. Devi A, Dwibedi V, Khan ZA (2021) Natural antioxidants in new age-related diseases. Rev Bras Farmacogn 31:387–407. https://doi.org/10.1007/s43450-021-00175-0
13. Tanguler H, Cankaya A, Agcam E, Uslu H (2021) Effect of temperature and production method on some quality parameters of fermented carrot juice (Shalgam). Food Biosci 1:41–100973. https://doi.org/10.1016/j.fbio.2021.100973
14. Tang W, Li S, Wang M, Wang B (2021) Ultrasound-assisted extraction of four groups of Osmanthus fragrans fruit: optimization, UPLC-Orbitrap-MS/MS characterization and anti-inflammatory activity evaluation. Arab J Chem. https://doi.org/10.1016/j.arabjc.2021.103086
15. Mohammad Salamatullah A, Hayat K, Mabood Husain F, Asif Ahmed M, Arzoo S, Musaad Alhibbi M, Alzahrani A, Al-Zaed BA, Kahlil Aiyahya H, Albader N, Naifdi HA (2022) Effects of different solvents extractions on total polyphenol content, hplc analysis, antioxidant capacity, and antimicrobial properties of peppers (red, yellow, and green (Capsicum annuum L.)). Evid Based Complement Alternat Med. https://doi.org/10.1155/2022/7372101
16. Wang R, Wang L, Zhang L, Wan S, Li C, Liu S (2022) Solvents effect on phenolics, iridoids, antioxidant activity, antibacterial activity, and pancreatic lipase inhibition activity of noni (Morinda Citrifolia L.) fruit extract. Food Chem 377:131989. https://doi.org/10.1016/j.foodchem.2021.131989
17. Vo QV, Hoa NT, Thong NM, Mechler A (2021) The hydroperoxyl and superoxide anion radical scavenging activity of anthocyanidins in physiological environments: theoretical insights into mechanisms and kinetics. Phytochemistry 192:112968. https://doi.org/10.1016/j.phytochem.2021.112968
18. Dwibedi V, Saxena S (2020) In vitro anti-oxidant, anti-fungal and anti-staphylococcal activity of resveratrol-producing endophytic fungi. Proc Natl Acad Sci India Sect B Biol Sci 90:207–219. https://doi.org/10.1007/s40011-019-01098-6
19. Emad AM, Rasheed DM, El-Kased RF, El-Kersh DM (2022) Antioxidant, antimicrobial activities and characterization of Polyphenol-enriched extract of egyptian celery (Apium graveolens L., Apioceae) aerial parts via UPLC/ESI/TOF-MS. Molecules 27:698. https://doi.org/10.3390/molecules27030698
20. Hallwell B, Clement MV, Ramalingam J, Long LH (2000) Hydrogen peroxide. ubiquitous in cell culture and in vivo? IUBMB Life 50:251–257. https://doi.org/10.1007/BF0339727
21. Shi J, Yang G, You Q, Sun S, Chen R, Lin Z, Simal-Gandara J, Ly H (2021) Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001–2021). Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.2007353
22. Suganuma M, Takahashi A, Watanabe T, Iida K, Matsuoka T, Yoshikawa HY, Fujiki H (2016) Biophysical approach to mechanisms of cancer prevention and treatment with green tea catechins. Molecules 21:1566. https://doi.org/10.3390/molecules21111566
23. Roh E, Kim JE, Kwon JY, Park JS, Bode AM, Dong Z, Lee KW (2017) Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging. Crit Rev Food Sci Nutr 57:1631–1637. https://doi.org/10.1080/10408398.2014.1030365
24. Prasanth MJ, Sivamurthi BS, Chaiayasut C, Tencombao T (2019) A review of the role of green tea (Camellia sinensis) in anti-photoaging, stress resistance, neuroprotection, and autophagy. Nutrients. https://doi.org/10.3390/nu10020474
25. Dwibedi V, Rath SK, Prakash R, Saxena S (2021) Response surface statistical optimization of fermentation parameters for resveratrol production by the endophytic fungus Arcopilus aureus and its tyrosinase inhibitory activity. Biotechnol Lett 43:627–644. https://doi.org/10.1007/s10529-020-03032-7
26. Lee LS, Lee N, Kim YH, Lee CH, Hong SP, Jeon YW, Kim YE (2013) Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology. Molecules 18:13530–13545. https://doi.org/10.3390/molecules181113530
27. Awe FB, Fagbemi TN, Ilesan BOT, Badejo AA (2013) Antioxidant properties of cold and hot water extracts of cocoa, Hibiscus flower extract, and ginger beverage blends. Int Food Res J 52:490–495. https://doi.org/10.1016/j.jfoodres.2013.01.021
28. Ogundele OM, Awolu OO, Badejo AA, Nwachukwu ID, Fagbemi TN (2016) Development of functional beverages from blends of Hibiscus sabdariffa extract and selected fruit juices for optimal antioxidant properties. Food Sci Nutr 4:679–685. https://doi.org/10.1002/fsn3.331
29. Makanjuola SA, Enujiugha VN, Omoba OS, Sanni DM (2015) Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology. Molecules 20:13530–13545. https://doi.org/10.3390/molecules20113530
30. Awe FB, Fagbemi TN, Ilesan BOT, Badejo AA (2013) Antioxidant properties of cold and hot water extracts of cocoa, Hibiscus flower extract, and ginger beverage blends. Int Food Res J 52:490–495. https://doi.org/10.1016/j.jfoodres.2013.01.021
31. Ogundele OM, Awolu OO, Badejo AA, Nwachukwu ID, Fagbemi TN (2016) Development of functional beverages from blends of Hibiscus sabdariffa extract and selected fruit juices for optimal antioxidant properties. Food Sci Nutr 4:679–685. https://doi.org/10.1002/fsn3.331
32. Makanjuola SA, Enujiugha VN, Omoba OS, Sanni DM (2015) Combination of antioxidants from different sources could offer synergistic benefits: a case study of tea and ginger blend. Nat Prod Commun. https://doi.org/10.1777/1934578X1501001110

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.