On the Fourth Power Moment of Fourier Coefficients of Cusp Form

Jinjiang Li∗ & Panwang Wang† & Min Zhang‡
Department of Mathematics, China University of Mining and Technology∗†‡
Beijing 100083, P. R. China

Abstract: Let \(a(n) \) be the Fourier coefficients of a holomorphic cusp form of weight \(\kappa = 2n \geq 12 \) for the full modular group and \(A(x) = \sum_{n \leq x} a(n) \). In this paper, we establish an asymptotic formula of the fourth power moment of \(A(x) \) and prove that
\[
\int_{1}^{T} A^4(x)dx = \frac{3}{64\kappa \pi^4} s_{4;2}(\tilde{a}) T^{2\kappa} + O(T^{2\kappa - \delta_4 + \varepsilon})
\]
with \(\delta_4 = 1/8 \), which improves the previous result.

Keywords: Cusp form; Fourier coefficient; mean value; asymptotic formula

Mathematics Subject Classification 2010: 11N37, 11M06

1 Introduction and main result

Let \(a(n) \) be the Fourier coefficients of a holomorphic cusp form of weight \(\kappa = 2n \geq 12 \) for the full modular group. In 1974, Deligne [2] proved the following profound result
\[
a(n) \ll n^{(\kappa-1)/2} d(n),
\]
where \(d(n) \) denotes the Dirichlet divisor function and the implied constant in \(\ll \) is absolute. Suppose \(x \geq 2 \) and define
\[
A(x) := \sum_{n \leq x} a(n).
\]
It is well known that \(A(x) \) has no main term and \(A(x) \ll x^{\kappa/2-1/6} + \varepsilon \). In 1973, Joris [5] proved that
\[
A(x) = \Omega_{\pm} \left(x^{\kappa/2-1/4} \log \log \log x \right).
\]

†Corresponding author.

E-mail addresses: jinjiang.li.math@gmail.com (J. Li), panwangw@gmail.com (P. Wang), min.zhang.math@gmail.com (M. Zhang).
In 1990, Ivić [3] showed that there exist two points t_1 and t_2 in the interval $[T, T + CT^{1/2}]$ such that

$$A(t_1) > Bt_1^{\kappa/2-1/4}, \quad A(t_2) < -Bt_2^{\kappa/2-1/4},$$

where $B > 0$, $C > 0$ are constants. It is conjectured that

$$A(x) \ll x^{(\kappa-1)/2+1/4+\varepsilon}$$

is true for every ε. The evidence in support of this conjecture has been given by Ivić [3], who proved the following square mean value formula of $A(x)$, i.e.

$$\int_1^T A^2(x)dx = C_2 T^{\kappa+1/2} + B(T),$$

where

$$C_2 = \frac{1}{(4\kappa + 2)\pi^2} \sum_{n=1}^{\infty} a^2(n) n^{-\kappa-1/2},$$

$$B(T) \ll T^\kappa \log^5 T, \quad B(T) = \Omega\left(T^{\kappa-1/4} \frac{(\log \log \log T)^3}{\log T}\right).$$

In [3], Ivić also proved the upper bound of eighth power moment of $A(x)$, that is

$$\int_1^T A^8(x)dx \ll T^{4\kappa-1+\varepsilon}.$$

Cai [1] studied the third and fourth power moments of $A(x)$. He proved that

$$\int_1^T A^3(x)dx = C_3 T^{(6\kappa+1)/4} + O(T^{(6\kappa+1)/4-\delta_3+\varepsilon}),$$

$$\int_1^T A^4(x)dx = C_4 T^{2\kappa} + O(T^{2\kappa-\delta_4+\varepsilon}),$$

where $\delta_3 = 1/14$, $\delta_4 = 1/23$ and

$$C_3 := \frac{3}{4(6\kappa + 1)\pi^3} \sum_{n,m,k \in \mathbb{N}} \frac{(nmk)^{-\kappa/2-1/4}a(n)a(m)a(k)},$$

$$C_4 := \frac{3}{64\kappa\pi^4} \sum_{n,m,k,\ell \in \mathbb{N}} \frac{(nmk\ell)^{-\kappa/2-1/4}a(n)a(m)a(k)a(\ell)}{\sqrt{n+m+\sqrt{m+n}+\sqrt{k+\ell}}}.$$

In [10], Zhai proved that (1.3) holds for $\delta_3 = 1/4$. Following the approach of Tsang [9], Zhai [10] proved that the equation (1.4) holds for $\delta_4 = 2/41$. This approach used the method of exponential sums. In particular, if the exponent pair conjecture is true, namely, if $(\varepsilon, 1/2 + \varepsilon)$ is an exponent pair, then the equation (1.4) holds for $\delta_4 = 1/14$.

2
Later, combining the method of [4] and a deep result of Robert and Sargos [8], Zhai [12] proved that the equation (1.4) holds for $\delta_4 = 3/28$. By a unified approach, Zhai [11] proved that the asymptotic formula

$$\int_1^T A^k(x) dx = C_k T^{1+k(2\kappa-1)/4} + O(T^{1+k(2\kappa-1)/4 - \delta_k + \varepsilon})$$

holds for $3 \leq k \leq 7$, where C_k and $0 < \delta_k < 1$ are explicit constants.

The aim of this paper is to improve the value of $\delta_4 = 3/28$, which is achieved by Zhai [12]. The main result is the following

Theorem 1.1 We have

$$\int_1^T A^4(x) dx = \frac{3}{64\pi^4} s_{4,2}(\tilde{a}) T^{2\kappa} + O(T^{2\kappa - \delta_4 + \varepsilon})$$

with $\delta_4 = 1/8$, where

$$s_{4,2}(\tilde{a}) = \sum_{n, m, k, \ell \in \mathbb{N}^*} \frac{a(n)a(m)a(k)a(\ell)}{(nmk\ell)^{\kappa/2 + 1/4}}.$$

Notation. Throughout this paper, $a(n)$ be the Fourier coefficients of a holomorphic cusp form of weight $\kappa = 2n \geq 12$ for the full modular group; $d(n)$ denote the Dirichlet divisor function; $\tilde{a}(n) := a(n)n^{-\kappa/2 + 1/2}$; $\|x\|$ denotes the distance from x to the nearest integer, i.e., $\|x\| = \min_{n \in \mathbb{Z}} |x - n|$. $[x]$ denotes the integer part of x; $n \sim N$ means $N < n \leq 2N$; $n \asymp N$ means $C_1 N \leq n \leq C_2 N$ with positive constants C_1, C_2 satisfying $C_1 < C_2$. ε always denotes an arbitrary small positive constant which may not be the same at different occurrences. We shall use the estimates $d(n) \ll n^\varepsilon$. Suppose $f : \mathbb{N} \to \mathbb{R}$ is any function satisfying $f(n) \ll n^\varepsilon$, $k \geq 2$ is a fixed integer. Define

$$s_{k,\ell}(f) := \sum_{n_1, \ldots, n_k, n_{k+1}, \ldots, n_{k+\ell} \in \mathbb{N}^*} \frac{f(n_1)f(n_2) \cdots f(n_k)}{(n_1n_2 \cdots n_k)^{3/4}}, \quad 1 \leq \ell < k. \quad (1.5)$$

We shall use $s_{k,\ell}(f)$ to denote both of the series (1.5) and its value. Suppose $y > 1$ is a large parameter, and we define

$$s_{k,\ell}(f; y) := \sum_{n_1, \ldots, n_k, n_{k+1}, \ldots, n_{k+\ell} \leq y} \frac{f(n_1)f(n_2) \cdots f(n_k)}{(n_1n_2 \cdots n_k)^{3/4}}, \quad 1 \leq \ell < k.$$

2 Preliminary Lemmas

Lemma 2.1 If $g(x)$ and $h(x)$ are continuous real-valued functions of x and $g(x)$ is monotonic, then

$$\int_a^b g(x)h(x)dx \ll \left(\max_{a \leq x \leq b} |g(x)| \right) \left(\max_{a \leq u < v \leq b} \left| \int_u^v h(x)dx \right| \right).$$
Proof. See Tsang [9], Lemma 1. ■

Lemma 2.2 Suppose $A, B \in \mathbb{R}, A \neq 0$. Then we have
$$\int_{T}^{2T} t^{\alpha} \cos(A\sqrt{t} + B) dt \ll T^{1/2 + \alpha}|A|^{-1}.$$
Proof. It follows from Lemma 2.1 easily. ■

Lemma 2.3 If $n, m, k, \ell \in \mathbb{N}$ such that $\sqrt{n} + \sqrt{m} \pm \sqrt{k} - \sqrt{\ell} \neq 0$, then there hold
$$|\sqrt{n} + \sqrt{m} \pm \sqrt{k} - \sqrt{\ell}| \gg (nmk\ell)^{-1/2} \max(n, m, k, \ell)^{-3/2},$$
respectively. Proof. See Kong [7], Lemma 3.2.1. ■

Lemma 2.4 Let $f : \mathbb{N} \to \mathbb{R}$ be any function satisfying $f(n) \ll n^{\varepsilon}$. Then we have
$$|s_{k, \ell}(f) - s_{k, \ell}(f; y)| \ll y^{-1/2 + \varepsilon}, \quad 1 \leq \ell < k,$$
where $k \geq 2$ is a fixed integer. Proof. See Zhai [11], Lemma 3.1. ■

Lemma 2.5 Suppose $1 \leq N \leq M$, $1 \leq K \leq L$, $N \leq K$, $M \approx L$, $0 < \Delta \ll L^{1/2}$. Let $\mathcal{A}(N, M, K, L; \Delta)$ denote the number of solutions of the following inequality
$$0 < |\sqrt{n} + \sqrt{m} \pm \sqrt{k} - \sqrt{\ell}| < \Delta$$
with $n \sim N, m \sim M, k \sim K, \ell \sim L$. Then we have
$$\mathcal{A}(N, M, K, L; \Delta) \ll \Delta L^{1/2} N M K + NKL^{1/2 + \varepsilon}.$$
Especially, if $\Delta L^{1/2} \gg 1$, then
$$\mathcal{A}(N, M, K, L; \Delta) \ll \Delta L^{1/2} N M K.$$
Proof. See Zhai [12], Lemma 5. ■

Lemma 2.6 Suppose $N_j \geq 2$ ($j = 1, 2, 3, 4$), $\Delta > 0$. Let $\mathcal{A}_{\pm}(N_1, N_2, N_3, N_4; \Delta)$ denote the number of solutions of the following inequality
$$0 < |\sqrt{n_1} + \sqrt{n_2} \pm \sqrt{n_3} - \sqrt{\ell_4}| < \Delta$$
with $n_j \sim N_j$ ($j = 1, 2, 3, 4$), $n_j \in \mathbb{N}^*$. Then we have
$$\mathcal{A}_{\pm}(N_1, N_2, N_3, N_4; \Delta) \ll \prod_{j=1}^{4} \left(\Delta^{1/4} N_j^{7/8} + N_j^{1/2}\right) N_j^{\varepsilon}.$$
Proof. See Zhai [12], Lemma 3. ■
3 Proof of Theorem 1.1

In this section, we shall prove the theorem. We begin with the following truncated formula, which is proved by Jutila [6], i.e.,

\[
A(x) = \frac{1}{\sqrt{2\pi}} \sum_{n \leq N} \frac{a(n)}{n^{\kappa/2+1/4}} x^{\kappa/2-1/4} \cos(4\pi \sqrt{n} x - \pi/4) + O(x^{\kappa/2+\varepsilon} N^{-1/2}),
\]

where \(1 \leq N \ll x\).

Suppose \(T \geq 10\). By a splitting argument, it is sufficient to prove the result in the interval \([T, 2T]\). Take \(y = T^{3/4}\). For any \(T \leq x \leq 2T\), by the truncated formula (3.1), we get

\[
A(x) = \frac{1}{\sqrt{2\pi}} \mathcal{R}(x) + O(x^{\kappa/2+\varepsilon} y^{-1/2}),
\]

where

\[
\mathcal{R}(x) := x^{\kappa/2-1/4} \sum_{n \leq y} \frac{a(n)}{n^{\kappa/2+1/4}} \cos(4\pi \sqrt{n} x - \pi/4).
\]

We have

\[
\int_T^{2T} A^4(x) \, dx = \frac{1}{4\pi^4} \int_T^{2T} \mathcal{R}^4(x) \, dx + O(T^{2\kappa+1/4+\varepsilon} y^{-1/2} + T^{2\kappa+1+\varepsilon} y^{-2})
\]

\[
= \frac{1}{4\pi^4} \int_T^{2T} \mathcal{R}^4(x) \, dx + O(T^{2\kappa-1/8+\varepsilon}).
\]

(3.3)

Let

\[
g = g(n, m, k, \ell) := \begin{cases} a(n)a(m)a(k)a(\ell) \frac{1}{(nmk\ell)^{\kappa/2+1/4}}, & \text{if } n, m, k, \ell \leq y, \\ 0, & \text{otherwise.} \end{cases}
\]

According to the elementary formula

\[
\cos a_1 \cos a_2 \cdots \cos a_h = \frac{1}{2^{h-1}} \sum_{(i_1, i_2, \ldots, i_h-1) \in \{0,1\}^{h-1}} \cos (a_1 + (-1)^{i_1} a_2 + \cdots + (-1)^{i_{h-1}} a_h),
\]

we can write

\[
\mathcal{R}^4(x) = S_1(x) + S_2(x) + S_3(x) + S_4(x),
\]

(3.4)

where

\[
S_1(x) := \frac{3}{8} \sum_{n,m,k,\ell \leq y} g x^{2\kappa-1},
\]

\[
S_2(x) := \frac{3}{8} \sum_{n,m,k,\ell \leq y} g x^{2\kappa-1} \cos (4\pi (\sqrt{n} + \sqrt{m} - \sqrt{k} - \sqrt{\ell}) \sqrt{x}),
\]

\[
S_3(x) := \frac{3}{8} \sum_{n,m,k,\ell \leq y} g x^{2\kappa-1} \cos (4\pi (\sqrt{n} + \sqrt{m} + \sqrt{k} + \sqrt{\ell}) \sqrt{x}),
\]

\[
S_4(x) := \frac{3}{8} \sum_{n,m,k,\ell \leq y} g x^{2\kappa-1} \cos (4\pi (\sqrt{n} - \sqrt{m} + \sqrt{k} - \sqrt{\ell}) \sqrt{x}),
\]

\[
S_5(x) := \frac{3}{8} \sum_{n,m,k,\ell \leq y} g x^{2\kappa-1} \cos (4\pi (\sqrt{n} - \sqrt{m} - \sqrt{k} + \sqrt{\ell}) \sqrt{x}),
\]

\[
S_6(x) := \frac{3}{8} \sum_{n,m,k,\ell \leq y} g x^{2\kappa-1} \cos (4\pi (\sqrt{n} + \sqrt{m} + \sqrt{k} - \sqrt{\ell}) \sqrt{x}),
\]

\[
S_7(x) := \frac{3}{8} \sum_{n,m,k,\ell \leq y} g x^{2\kappa-1} \cos (4\pi (\sqrt{n} - \sqrt{m} - \sqrt{k} - \sqrt{\ell}) \sqrt{x}),
\]

\[
S_8(x) := \frac{3}{8} \sum_{n,m,k,\ell \leq y} g x^{2\kappa-1} \cos (4\pi (\sqrt{n} - \sqrt{m} + \sqrt{k} + \sqrt{\ell}) \sqrt{x}).
\]
By (1.1) and Lemma 2.4, we get
\[
\int_T^{2T} S_1(x)dx = \frac{3}{8}s_{4.2}(a(n)n^{-1/2}; y)\int_T^{2T} x^{2\kappa-1}dx
\]
\[= \frac{3}{8}s_{4.2}(\hat{a}; y)\int_T^{2T} x^{2\kappa-1}dx
\]
\[= \frac{3}{8}s_{4.2}(\hat{a})\int_T^{2T} x^{2\kappa-1}dx + O(T^{2\kappa-1/2+\epsilon})
\]
\[= \frac{3}{8}s_{4.2}(\hat{a})\int_T^{2T} x^{2\kappa-1}dx + O(T^{2\kappa-3/8+\epsilon}). \tag{3.5}
\]
We now proceed to consider the contribution of \(S_4(x)\). Applying Lemma 2.2 and (1.1), we get
\[
\int_T^{2T} S_4(x)dx = \frac{1}{8}\sum_{n,m,k,\ell \leq y} g\int_T^{2T} x^{2\kappa-1} \cos \left(4\pi(\sqrt{n} + \sqrt{m} + \sqrt{k} + \sqrt{\ell})\frac{x}{2}\right) dx
\]
\[\ll \sum_{n,m,k,\ell \leq y} T^{2\kappa-1/2} a(n)a(m)a(k)a(\ell)
\]
\[= T^{2\kappa-1/2} \sum_{n,m,k,\ell \leq y} \frac{a(n)a(m)a(k)a(\ell)}{(nmk\ell)^{(n-1)/2}(nmk\ell)^{3/4}} \cdot \frac{1}{\sqrt{n} + \sqrt{m} + \sqrt{k} + \sqrt{\ell}}
\]
\[\ll T^{2\kappa-1/2} \sum_{n,m,k,\ell \leq y} \frac{d(n)d(m)d(k)d(\ell)}{(nmk\ell)^{3/4}\ell^{1/2}}
\]
\[\ll T^{2\kappa-1/2+\epsilon} \sum_{n,m,k,\ell \leq y} \frac{1}{(nmk\ell)^{3/4}\ell^{5/4}}
\]
\[\ll T^{2\kappa-1/2+\epsilon} y^{1/2} \ll T^{2\kappa-1/8+\epsilon}. \tag{3.6}
\]
Now let us consider the contribution of \(S_2(x)\). By the first derivative test, we have
\[
\int_T^{2T} S_2(x)dx \ll \sum_{n,m,k,\ell \leq y} g \min \left(T^{2\kappa}, \frac{T^{2\kappa-1/2}}{\sqrt{n} + \sqrt{m} + \sqrt{k} + \sqrt{\ell}}\right)
\]
\[\ll x^\epsilon \mathcal{G}(N, M, K, L), \tag{3.7}
\]
where
\[
\mathcal{G}(N, M, K, L) = \sum_{n \sim N, m \sim M, k \sim K, \ell \sim L} g \cdot \min \left(T^{2\kappa}, \frac{T^{2\kappa-1/2}}{\sqrt{n} + \sqrt{m} + \sqrt{k} + \sqrt{\ell}}\right).
\]
If $M \geq 200L$, then $|\sqrt{n} + \sqrt{m} - \sqrt{k} - \sqrt{t}| \gg M^{1/2}$, so the trivial estimate yields

$$
G(N, M, K, L) \ll \frac{T^{2\kappa-1/2+\varepsilon} \ell}{(NML)^{3/4}M^{1/2}} \ll T^{2\kappa-1/2+\varepsilon} y^{1/2} \ll T^{2\kappa-1/8+\varepsilon}.
$$

If $L \geq 200M$, we can get the same estimate. So later we always suppose that $M \asymp L$.

Let $\eta = \sqrt{n} + \sqrt{m} - \sqrt{k} - \sqrt{t}$. Write

$$
G(N, M, K, L) = G_1 + G_2 + G_3,
$$

where

$$
G_1 := T^{2\kappa} \sum_{0 < \eta < T^{-1/2}} g, \\
G_2 := T^{2\kappa-1/2} \sum_{T^{-1/2} < \eta \leq 1} g|\eta|^{-1}, \\
G_3 := T^{2\kappa-1/2} \sum_{|\eta| > 1} g|\eta|^{-1}.
$$

We estimate G_1 first. By Lemma 2.5, we get

$$
G_1 \ll \frac{T^{2\kappa+\varepsilon}}{(NML)^{3/4}} A_1(N, M, K, L; T^{-1/2}) \\
\ll \frac{T^{2\kappa+\varepsilon}}{(NML)^{3/4}} (T^{-1/2} L^{1/2} N M K + N K L^{1/2}) \\
\ll T^{2\kappa-1/2+\varepsilon} (N K)^{1/4} + T^{2\kappa+\varepsilon} (N K)^{1/4} L^{-1} \\
\ll T^{2\kappa-1/2+\varepsilon} y^{1/2} + T^{2\kappa+\varepsilon} (N K)^{1/4} L^{-1} \\
\ll T^{2\kappa-1/8+\varepsilon} + T^{2\kappa+\varepsilon} (N K)^{1/4} L^{-1}. \quad (3.9)
$$

On the other hand, by Lemma 2.6, without loss of generality, we assume that $N \leq K \leq L$ and obtain

$$
G_1 \ll \frac{T^{2\kappa+\varepsilon}}{(NML)^{3/4}} A_2(N, M, K, L; T^{-1/2}) \\
\ll \frac{T^{2\kappa+\varepsilon}}{(NML)^{3/4}} (T^{-1/8} N^{7/8} + N^{1/2}) (T^{-1/8} K^{7/8} + K^{1/2}) (T^{-1/4} L^{7/4} + L) \\
\ll T^{2\kappa+\varepsilon} (N K)^{-1/4} L^{-1/2} (T^{-1/8} N^{7/8} + 1) (T^{-1/8} K^{7/8} + 1) (T^{-1/4} L^{7/4} + 1) \\
\ll T^{2\kappa+\varepsilon} (N K)^{-1/4} L^{-1/2} (T^{-1/4} (N K)^{3/8} + T^{-1/8} K^{3/8} + 1) (T^{-1/4} L^{3/4} + 1) \\
\ll T^{2\kappa-1/4+\varepsilon} (N K)^{1/8} L^{-1/2} + T^{2\kappa+\varepsilon} (N K)^{-1/4} L^{-1/2} (T^{-1/8} K^{3/8} + 1) (T^{-1/4} L^{3/4} + 1) \\
\ll T^{2\kappa-1/4+\varepsilon} L^{-1/4} + T^{2\kappa+\varepsilon} (N K)^{-1/4} L^{-1/2} (T^{-3/8} L^{9/8} + 1) \\
\ll T^{2\kappa-1/4+\varepsilon} + T^{2\kappa+\varepsilon} (N K)^{-1/4} L^{-1/2} (T^{-3/8} L^{9/8} + 1). \quad (3.10)
$$
From (3.9) and (3.10), we get

$$G_1 \ll T^{2\kappa - 1/8 + \epsilon} + T^{2\kappa + \epsilon} \cdot \min\left(\frac{(NK)^{1/4}}{L}, \frac{T^{-3/8} L^{9/8} + 1}{(NK)^{1/4} L^{1/2}}\right).$$

Case 1 If $L \gg T^{1/3}$, then $T^{-3/8} L^{9/8} \gg 1$, we get

$$G_1 \ll T^{2\kappa - 1/8 + \epsilon} + T^{2\kappa + \epsilon} \cdot \min\left(\frac{(NK)^{1/4}}{L}, \frac{T^{-3/8} L^{9/8}}{(NK)^{1/4} L^{1/2}}\right)$$

$$\ll T^{2\kappa - 1/8 + \epsilon} + T^{2\kappa + \epsilon} \left(\frac{L}{(NK)^{1/4}}\right)^{1/2} \left(\frac{T^{-3/8} L^{9/8}}{(NK)^{1/4} L^{1/2}}\right)^{1/2}$$

$$\ll T^{2\kappa - 1/8 + \epsilon} + T^{2\kappa - 3/16 + \epsilon} L^{-3/16} \ll T^{2\kappa - 1/8 + \epsilon}. \quad (3.11)$$

Case 2 If $L \ll T^{1/3}$, then $T^{-3/8} L^{9/8} \ll 1$. By noting that $M \asymp L \asymp \max(N, M, K, L)$ and Lemma 2.3, we have

$$T^{-1/2} \gg |\eta| \gg (nmk\ell)^{-1/2} \max(n, m, k, \ell)^{-3/2} \asymp (NK)^{-1/2} L^{-5/2}.$$

Hence, we obtain

$$G_1 \ll T^{2\kappa - 1/8 + \epsilon} + T^{2\kappa + \epsilon} \min\left(\frac{(NK)^{1/4}}{L}, \frac{1}{(NK)^{1/4} L^{1/2}}\right)$$

$$\ll T^{2\kappa - 1/8 + \epsilon} + T^{2\kappa + \epsilon} \left(\frac{L}{(NK)^{1/4}}\right)^{1/4} \left(\frac{1}{(NK)^{1/4} L^{1/2}}\right)^{3/4}$$

$$= T^{2\kappa - 1/8 + \epsilon} + T^{2\kappa + \epsilon} \frac{(NK)^{-1/4}}{L^{-5/8}}$$

$$\ll T^{2\kappa - 1/8 + \epsilon} + T^{2\kappa + \epsilon} (T^{-1/2})^{1/4} \ll T^{2\kappa - 1/8 + \epsilon}. \quad (3.12)$$

Combining (3.11) and (3.12), we get

$$G_1 \ll T^{2\kappa - 1/8 + \epsilon}. \quad (3.13)$$

Now, we estimate G_2. By a splitting argument, we get that there exists some δ satisfying $T^{-1/2} \ll \delta \ll 1$ such that

$$G_2 \ll \frac{T^{2\kappa - 1/2 + \epsilon}}{(NK)^{3/4} \delta} \sum_{\delta < |\eta| \leq 2\delta, \eta \neq 0} 1.$$

By Lemma 2.5, we get

$$G_2 \ll \frac{T^{2\kappa - 1/2 + \epsilon}}{(NK)^{3/4} \delta} \sum_{\delta < |\eta| \leq 2\delta} \Phi_1(N, M, K, L; 2\delta)$$

$$\ll \frac{T^{2\kappa - 1/2 + \epsilon}}{(NK)^{3/4} \delta} \left(\delta L^{1/2} N M K + N K L^{1/2}\right)$$

$$= T^{2\kappa - 1/2 + \epsilon} (NK)^{1/4} + T^{2\kappa - 1/2 + \epsilon} \delta^{-1} (NK)^{1/4} L^{-1}$$

$$\ll T^{2\kappa - 1/2 + \epsilon} \frac{y^{1/2}}{2} + T^{2\kappa - 1/2 + \epsilon} \delta^{-1} (NK)^{1/4} L^{-1}$$

$$\ll T^{2\kappa - 1/8 + \epsilon} + T^{2\kappa - 1/2 + \epsilon} \delta^{-1} (NK)^{1/4} L^{-1}. \quad (3.14)$$
On the other hand, by Lemma 2.6, without loss of generality, we assume that $N \leq K \leq L$ and obtain

$$
\mathcal{G}_2 \ll \frac{T^{2\kappa-1/2+\varepsilon}}{(N M K L)^{3/4} \delta} \times \sigma_\alpha(N, M, K, L; 2\delta)
$$

$$
\ll \frac{T^{2\kappa-1/2+\varepsilon}}{(N M K L)^{3/4} \delta} \left(\delta^{1/4} N^{7/8} + N^{1/2} \right) \left(\delta^{1/4} K^{7/8} + K^{1/2} \right) \left(\delta^{1/2} L^{7/4} + L \right)
$$

$$
\ll T^{2\kappa-1/2+\varepsilon} (NK)^{-1/4} L^{-1/2} \delta^{-1} \left(\delta^{1/4} N^{3/8} + 1 \right) \left(\delta^{1/4} K^{3/8} + 1 \right) \left(\delta^{1/2} L^{3/4} + 1 \right)
$$

$$
\ll T^{2\kappa-1/2+\varepsilon} (NK)^{-1/4} L^{-1/2} \delta^{-1} \left(\delta^{1/4} N^{3/8} + 1 \right) \left(\delta^{1/4} K^{3/8} + 1 \right) \left(\delta^{1/2} L^{3/4} + 1 \right)
$$

$$
+ T^{2\kappa-1/2+\varepsilon} (NK)^{-1/4} L^{-1/2} \delta^{-1} \left(\delta^{1/4} K^{3/8} + 1 \right) \left(\delta^{1/2} L^{3/4} + 1 \right)
$$

$$
\ll T^{2\kappa-1/4+\varepsilon} L^{-1/4} + T^{2\kappa-1/2+\varepsilon} (NK)^{-1/4} L^{-1/2} \delta^{-1} \left(\delta^{3/4} L^{9/8} + 1 \right).
$$

(3.15)

From (3.14) and (3.15), we get

$$
\mathcal{G}_2 \ll T^{2\kappa-1/8+\varepsilon} + T^{2\kappa-1/2+\varepsilon} \delta^{-1} \cdot \min \left(\frac{(NK)^{1/4}}{L}, \frac{\delta^{3/4} L^{9/8} + 1}{(NK)^{1/4} L^{1/2}} \right).
$$

Case 1 If $\delta \gg L^{-3/2}$, then $\delta^{3/4} L^{9/8} \gg 1$, we get (recall $\delta \gg T^{-1/2}$)

$$
\mathcal{G}_2 \ll T^{2\kappa-1/8+\varepsilon} + T^{2\kappa-1/2+\varepsilon} \delta^{-1} \cdot \min \left(\frac{(NK)^{1/4}}{L}, \frac{\delta^{3/4} L^{9/8}}{(NK)^{1/4} L^{1/2}} \right)
$$

$$
\ll T^{2\kappa-1/8+\varepsilon} + T^{2\kappa-1/2+\varepsilon} \delta^{-1} \left(\frac{(NK)^{1/4}}{L} \right)^{1/2} \left(\frac{\delta^{3/4} L^{9/8}}{(NK)^{1/4} L^{1/2}} \right)^{1/2}
$$

$$
\ll T^{2\kappa-1/8+\varepsilon} + T^{2\kappa-1/2+\varepsilon} \delta^{-5/8} L^{-3/16}
$$

$$
\ll T^{2\kappa-1/8+\varepsilon} + T^{2\kappa-1/2+\varepsilon} T^{5/16} L^{-3/16} \ll T^{2\kappa-1/8+\varepsilon}.
$$

(3.16)

Case 2 If $\delta \ll L^{-3/2}$, then $\delta^{3/4} L^{9/8} \ll 1$. By Lemma 2.3, we have

$$
\delta \gg |\eta| \gg (nmk\ell)^{-1/2} \max(n, m, k, \ell)^{3/2} \gg (NK)^{-1/2} L^{-5/2}.
$$

Therefore, we obtain (recall $\delta \gg T^{-1/2}$)

$$
\mathcal{G}_2 \ll T^{2\kappa-1/8+\varepsilon} + T^{2\kappa-1/2+\varepsilon} \delta^{-1} \cdot \min \left(\frac{(NK)^{1/4}}{L}, \frac{1}{(NK)^{1/4} L^{1/2}} \right)
$$

$$
\ll T^{2\kappa-1/8+\varepsilon} + T^{2\kappa-1/2+\varepsilon} \delta^{-1} \left(\frac{(NK)^{1/4}}{L} \right)^{1/4} \left(\frac{1}{(NK)^{1/4} L^{1/2}} \right)^{3/4}
$$

$$
\ll T^{2\kappa-1/8+\varepsilon} + T^{2\kappa-1/2+\varepsilon} \delta^{-1} (NK)^{-1/8} L^{-5/8}
$$

$$
\ll T^{2\kappa-1/8+\varepsilon} + T^{2\kappa-1/2+\varepsilon} \delta^{-1} \delta^{1/4}
$$

$$
\ll T^{2\kappa-1/8+\varepsilon} + T^{2\kappa-1/2+\varepsilon} T^{3/8} \ll T^{2\kappa-1/8+\varepsilon}.
$$

(3.17)

Combining (3.16) and (3.17), we get

$$
\mathcal{G}_2 \ll T^{2\kappa-1/8+\varepsilon}.
$$

(3.18)
For G_3, by a splitting argument and Lemma 2.5 again, we get

$$G_3 \ll \frac{T^{2\kappa-1/2+\varepsilon}}{(NMKL)^{3/4\delta}} \times \sum_{\delta<|\eta|\leq 2\delta} 1$$

$$\ll \frac{T^{2\kappa-1/2+\varepsilon}}{(NMKL)^{3/4\delta}} \cdot \delta L^{1/2} NMK \ll T^{2\kappa-1/2+\varepsilon} (NK)^{1/4}$$

$$\ll T^{2\kappa-1/2+\varepsilon} y^{1/2} \ll T^{2\kappa-1/8+\varepsilon}.$$ (3.19)

Combining (3.7), (3.8), (3.13), (3.18) and (3.19), we get

$$\int_T^{2T} S_2(x)dx \ll T^{2\kappa-1/8+\varepsilon}. \quad (3.20)$$

In the same way, we can prove that

$$\int_T^{2T} S_3(x)dx \ll T^{2\kappa-1/8+\varepsilon}. \quad (3.21)$$

From (3.3)-(3.6), (3.20) and (3.21), we get

$$\int_T^{2T} A_4(x)dx = \frac{3}{32\pi^2} s_{4;2}(\tilde{a}) \int_T^{2T} x^{2\kappa-1}dx + O(T^{2\kappa-1/8+\varepsilon}), \quad (3.22)$$

which implies Theorem 1.1 immediately.

Acknowledgement

The authors would like to express the most and the greatest sincere gratitude to Professor Wenguang Zhai for his valuable advice and constant encouragement.

References

[1] Y. C. Cai, *On the third and fourth power moments of Fourier coefficients of cusp forms*, Acta Math. Sinica (N.S.), 13 (4) (1997) 443–452.

[2] P. Deligne, *La conjecture de Weil. I*, Publ. Math. Inst. Hautes Études Sci., 43 (1) (1974) 273–307.

[3] A. Ivić, *Large values of certain number-theoretic error terms*, Acta Arith., 56 (2) (1990) 135–159.

[4] A. Ivić and P. Sargos, *On the higher power moments of the error term in the divisor problem*, Illinois J. Math., 51 (2) (2007) 353–377.
[5] H. Joris, Ω-Sätze für gewisse multiplikative arithmetische Funktionen, Comment. Math. Helv., 48 (1) (1973) 409–435.

[6] M. Jutila, Riemann’s zeta-function and the divisor problem, Ark. Mat., 21 (1) (1983) 75–96.

[7] K. L. Kong, Some mean value theorems for certain error terms in analytic number theory, Master degree thesis, The University of Hong Kong (2014).

[8] O. Robert and P. Sargos, Three-dimensional exponential sums with monomials, J. Reine Angew. Math., 591 (2006) 1–20.

[9] K. M. Tsang, Higher-power moments of \(\Delta(x) \), \(E(t) \) and \(P(x) \), Proc. London Math. Soc., 65 (3) (1992) 65–84.

[10] W. G. Zhai, On higher-power moments of \(\Delta(x) \), Acta Arith., 112 (2004) 367–395.

[11] W. G. Zhai, On higher-power moments of \(\Delta(x)(II) \), Acta Arith., 114 (2004) 35–54.

[12] W. G. Zhai, On higher-power moments of \(\Delta(x)(III) \), Acta Arith., 118 (2005) 263–281.