RESEARCH ARTICLE

Assessing medical professionalism: A systematic review of instruments and their measurement properties

Honghe Li¹, Ning Ding¹☯, Yuanyuan Zhang²☯, Yang Liu³, Deliang Wen¹*

¹ Research Center of Medical Education, China Medical University, Shenyang, Liaoning, China, ² School of Public Health, Dalian Medical University, Dalian, Liaoning, China, ³ School of Public Health, China Medical University, Shenyang, Liaoning, China

☯ These authors contributed equally to this work.
* diwen@cmu.edu.cn

Abstract

Background

Over the last three decades, various instruments were developed and employed to assess medical professionalism, but their measurement properties have yet to be fully evaluated. This study aimed to systematically evaluate these instruments’ measurement properties and the methodological quality of their related studies within a universally acceptable standardized framework and then provide corresponding recommendations.

Methods

A systematic search of the electronic databases PubMed, Web of Science, and PsycINFO was conducted to collect studies published from 1990–2015. After screening titles, abstracts, and full texts for eligibility, the articles included in this study were classified according to their respective instrument’s usage. A two-phase assessment was conducted: 1) methodological quality was assessed by following the COnsensus-based Standards for the selection of health status Measures INstruments (COSMIN) checklist; and 2) the quality of measurement properties was assessed according to Terwee’s criteria. Results were integrated using best-evidence synthesis to look for recommendable instruments.

Results

After screening 2,959 records, 74 instruments from 80 existing studies were included. The overall methodological quality of these studies was unsatisfactory, with reasons including but not limited to unknown missing data, inadequate sample sizes, and vague hypotheses. Content validity, cross-cultural validity, and criterion validity were either unreported or negative ratings in most studies. Based on best-evidence synthesis, three instruments were recommended: Hisar’s instrument for nursing students, Nurse Practitioners’ Roles and Competencies Scale, and Perceived Faculty Competency Inventory.
Conclusion

Although instruments measuring medical professionalism are diverse, only a limited number of studies were methodologically sound. Future studies should give priority to systematically improving the performance of existing instruments and to longitudinal studies.

Introduction

Facing medical professionals’ commitment to the society is being challenged by external forces of change within health care delivery systems, medical professionalism has received widespread attention as one of the core factors in providing high-quality patient care [1–4]. As demonstrated by many studies, professionalism is central to the practice of medicine because of its close associations with improvements in physician-patient relationships, patient satisfaction, health care professionals’ career satisfaction, and even healthcare outcomes [4–7]. The core components of medical professionalism require that all medical professionals commit to organize and deliver health care, to implement trust within patients and the public, and to self-monitor and improve in their respective fields [8–11]. Besides, understanding of professionalism varies across time and cultural contexts [12], suggesting that professionalism is a complex, multi-dimensional construct [9]. Therefore, for health researchers, educators and administrators, using and developing appropriate instruments to assess medical professionalism according to their purposes and target populations poses to be a challenge.

Over the last three decades, various instruments to assess medical professionalism were developed and employed in many empirical researches [13–15]. However, the validity of empirical findings is basically dependent on the quality of the instrument in use. Moreover, appropriate conclusions can only be drawn from high-quality assessment studies with proper measures. Therefore, selecting of an instrument carefully and based on the quality of instruments’ measurement properties was called for by many researchers [9, 16, 17].

In an effort to provide guidance for instrument usage, several published review articles have summarized and compared instruments assessing professionalism with respect to their content, type, and construction [9, 13, 15, 16, 18, 19]. These reviews have indicated that many instruments have not been fully evaluated for their measurement properties, which would then limit their usage [9, 13, 18]. To date, there is yet to be a systematic assessment of the quality of measurement properties of instruments measuring medical professionalism based on a universally accepted standardized framework.

The CO nsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist is a widely accepted framework developed for systematically evaluating the methodological quality of studies [20–22] and has been used for assessing the quality of empirical studies in various fields [23–25]. Besides instruments measuring health care outcomes, the COSMIN checklist was also used to assess the quality of instruments of other complex health-related issues, such as self-efficacy, trust in physicians, and neighborhood environments [24, 26, 27]. A structured review of the different existing medical professionalism instruments and their performances can be able to facilitate the selection of an suitable instrument in accordance with the research purpose and target population. Moreover, this will help to understand the gaps and needs for further research.

In this study, by using the COSMIN checklist, we aimed 1) to summarize existing instruments for measuring medical professionalism and then to classify them according to their uses; 2) to assess the methodological quality of the studies examining the measurement
properties of these instruments; 3) to evaluate the quality of identified instruments in terms of their measurement properties; and 4) to make recommendations for instrument selection based on best-evidence synthesis and to provide insights for future research.

Materials and methods

Search strategy

A systematic search of the electronic databases PubMed, Web of Science, and PsycINFO from January 1, 1990 through to December 31, 2015, was conducted to identify studies assessing medical professionalism with reports on measurement properties (S1 Appendix). Search strategy included a combination of the following five aspects in reference to the search construct developed by Terwee, et al. [28]: 1) construct search: professionalism AND 2) population search: physicians, residents, medical students, nurses, and nursing students AND 3) instruments AND 4) measurement properties AND 5) exclusion filter. The exclusion filter mainly limited publication types and subject groups according to Terwee’s criteria (S1 Appendix).

In this study, we identified professionalism to be a complete construct based on the classification of instruments by Arnold, et al. [29]. Arnold, et al., classified instruments assessing medical professionalism into three groups: those assessing professionalism as a facet of competence; those assessing professionalism as a comprehensive construct; and those assessing separate elements of professionalism, such as humanism and empathy [29]. This review included measures of professionalism as a comprehensive construct or as a facet of competency, since any measure of only an individual element of professionalism was not considered as a measure assessing professionalism as a whole.

In addition to the electronic database search, a secondary search was conducted by screening the references and citations of included full texts and of previous published reviews [9, 13, 15–19, 30], and then by searching using the names of the involved instruments.

Study selection

Two researchers (LH and ZY) independently screened titles and abstracts of the included records for potential inclusion and independently evaluated full texts for eligibility by using the following inclusion criteria: 1) target population was physicians, residents, medical students, nurses, and nursing students, where the specialties of physicians and residents referenced the MeSH terms for “physicians” (https://www.ncbi.nlm.nih.gov/mesh/68010820); 2) English full text, articles in peer-reviewed journals, and original article; 3) described the development of an instrument or reported at least one or more measurement properties of the instrument; and 4) instrument assessed professionalism as a comprehensive construct or as a facet of competency.

Differences concerning inclusion criteria were resolved by means of discussion until a consensus was reached. If not, a third reviewer (DN) made the final decision.

Data extraction and quality assessments

Before assessing the methodological quality of the included studies and the measurement properties of an instrument, descriptive variables of the included studies were extracted, including: the short name of the instrument, author/year, country, study design, target population, sample size, setting(s), age, and sex ratio. If an instrument did not have a specific short name in the study, a brief descriptive title using the first author’s last name was assigned. The descriptive variables of instruments contained total number of participants for each instrument, content of assessment, number of items, response options, administration method, generalizability (if applicable), the instrument’s domain, and the theoretical foundation of the
instruments. Instruments were then classified and organized according to their usage in reference to Wilkinson, et al. [9] and Goldie’s [19] classification of instruments assessing medical professionalism, which has been widely accepted in this study field.

Evaluation of methodological quality of the included studies

Methodological quality of the included studies was evaluated based on the COSMIN checklist [20]. The COSMIN checklist includes 9 boxes for classical test theory (CTT) based analyses (internal consistency, reliability, measurement error, content validity, structural validity, hypothesis testing, cross-cultural validity, criterion validity, and responsiveness) to rate different aspects of the design, methodological, and reporting quality of studies on instruments’ measurement properties. Each box contains 5 to 18 items measured on a 4-point scale (excellent, good, fair, or poor). For item response theory (IRT) models, there is only 1 box to rate its methodological quality. The lowest score for any item within the item determined the overall score for each box. Cross-cultural validity aimed to determine the performance of the items on a translated or culturally adapted instrument and whether or not the adapted instrument adequately reflects the performance of the items of the original version of the instrument. Responsiveness was defined by COSMIN as the ability of an instrument to detect change over time in the construct to be measured. A full description of the 9 measurement properties can be obtained from the COSMIN taxonomy [22]. The COSMIN checklist and the 4-point scale can be found on the COSMIN website [31].

Evaluation of measurement properties of the included instruments

Extraction of all reported aspects of the measurement properties was performed according to the COSMIN checklist [20–22]. The measurement properties of the identified measures were evaluated based on the criteria for quality of measurement properties developed by Terwee et al [32] (as can be seen in Table 1), which have been used in many systematic reviews in different study fields [33–35]. The Terwee’s criteria can be applied to all 9 properties as listed in the COSMIN checklist. Each available property was rated as positive (“+”), indeterminate (“?”), or negative (“-”) depending on the rating of measurement properties for each study.

Data synthesis and quality assessment

In order to determine instruments for recommendation for future use, best-evidence synthesis as proposed by the Cochrane Back Review Group [36, 37] was performed, with levels of instrument properties categorized as “strong”, “moderate”, “limited”, “conflicting”, or “unknown” (Table 2). The best-evidence synthesis combined three aspects for consideration: 1) the methodological quality of the measurement property stated by various studies, 2) the rating of the measurement properties of instruments, and 3) the number of studies for each instrument. For example, a measurement property of an instrument was rated as strong positive (“+++”) if multiple studies stated that the property had ”good” methodological quality and a positive (“+”) rating OR if at least one study stated that the property had “excellent” methodological quality and a positive (“+”) rating. More rating rules can be seen in Table 2.

In addition to evidence synthesis, best-rated instruments were identified as those which had at least two strong positive (“+++”) or three moderate positive (“++”) properties and no limited or negative (“-“,”- -” or “- - -”) measurement properties.

A duplicate assessment of the included studies was conducted by a second researcher to discuss or resolve any ambiguities ratings.
Property	Rating	Quality Criteria
Reliability		
Internal consistency		
+		Cronbach’s alpha(s) ≥ 0.70
?		Cronbach’s alpha not determined or dimensionality unknown
-		Cronbach’s alpha(s) < 0.70
Reliability		
+		ICC / weighted Kappa ≥ 0.70 OR Pearson’s r ≥ 0.80
?		Neither ICC / weighted Kappa, nor Pearson’s r determined
-		ICC / weighted Kappa < 0.70 OR Pearson’s r < 0.80
Measurement error		
+		MIC > SDC OR MIC outside the LOA
?		MIC not defined
-		MIC ≤ SDC OR MIC equals or inside LOA
Validity		
Content validity		
+		All items are considered to be relevant for the construct to be measured, for the target population, and for the purpose of the measurement AND the questionnaire is considered to be comprehensive
?		Not enough information available
-		Not all items are considered to be relevant for the construct to be measured, for the target population, and for the purpose of the measurement OR the questionnaire is considered not to be comprehensive
Structural validity		
+		Factors should explain at least 50% of the variance
?		Explained variance not mentioned
-		Factors explain < 50% of the variance
Hypothesis testing		
+		Correlations with instruments measuring the same construct ≥ 0.50 OR at least 75% of the results are in accordance with the hypotheses AND correlations with related constructs are higher than with unrelated constructs
?		Solely correlations determined with unrelated constructs
-		Correlations with instruments measuring the same construct < 0.50 OR < 75% of the results are in accordance with the hypotheses OR correlations with related constructs are lower than with unrelated constructs
Cross-cultural validity		
+		No differences in factor structure OR no important DIF between language versions
?		Multiple group factor analysis not applied AND DIF not assessed
-		Differences in factor structure OR important DIF between language versions
Criterion validity		
+		Convincing arguments that gold standard is “gold” AND correlation with gold standard ≥ 0.70
?		No convincing arguments that gold standard is “gold”
-		Correlation with gold standard < 0.70
Responsiveness		
Responsiveness		
+		Correlation with changes on instruments measuring the same construct ≥ 0.50 OR at least 75% of the results are in accordance with the hypotheses OR AUC ≥ 0.70 AND correlations with changes in related constructs are higher than with unrelated constructs
?		Solely correlations determined with unrelated constructs
-		Correlations with changes on instruments measuring the same construct < 0.50 OR < 75% of the results are in accordance with the hypotheses OR AUC < 0.70 OR correlations with changes in related constructs are lower than with unrelated constructs

MIC = minimal important change; SDC = smallest detectable change; LoA = limits of agreement; ICC = intraclass correlation coefficient; DIF = differential item functioning; AUC = area under the curve

https://doi.org/10.1371/journal.pone.0177321.t001
Results

Literature search and study selection

The electronic database search of PubMed, Web of Science, and PsycINFO identified 2,959 total records. After screening titles and abstracts and excluding duplicated records, 94 studies were selected. Twenty-one of these failed to meet the inclusion criteria, mainly because they did not test the measurement properties of the instruments. Seven records that met the inclusion criteria were found through secondary search by screening the reference list of included publications and review articles. Ultimately, 80 research studies were included in this review. The details of the selection process can be seen in Fig 1.

Description of included studies and instruments

The summary of the characteristics of the included studies (S2 Appendix) show that 78 of the 80 studies were published after 2000. More than 80% of studies were conducted in North America and Europe, including the United States, Canada, Netherlands, Spain, Turkey, and

Table 2. Rating levels for the quality of a measurement property.

Level	Rating	Criteria
Strong	+++ or - - -	Consistent findings in multiple studies of good methodological quality OR in one study of excellent methodological quality
Moderate	++ or - -	Consistent findings in multiple studies of fair methodological quality OR in one study of good methodological quality
Limited	+ or -	One study of fair methodological quality
Conflicting	+/-	Conflicting findings
Unknown	?	Only studies of poor methodological quality

- = negative rating, + = positive rating, ? = indeterminate rating

https://doi.org/10.1371/journal.pone.0177321.t002
Except for 2 longitudinal studies from the United States and Netherlands, the rest were all cross-sectional studies. 37 studies developed new instruments. The number of participants in a study ranged from 12 [38] to 18,564 [39], with about 10% of the studies having less than 100 participants each.

A total of 74 instruments were divided into two broad categories depending on whether professionalism was recognized as a comprehensive construct (n = 44) or as a facet of competence (n = 30). And then the 80 included studies were divided according to the type of tools' use of Wilkinson [9] and Goldie [19] taxonomy, instruments in each broad category were further classified into the following categories: self-administered rating, simulation, direct observation, multisource feedback (MSF), patients' opinion, role model evaluation, and professionalism environment. The role model evaluation category contained student or resident assessments of their instructor, clinical teacher, or faculty as a role model. The professionalism environment category contained studies assessing the medical professionalism of the practice or learning environment and not any specific individual. Among instruments regarding professionalism as a comprehensive construct, self-administered rating scales were most commonly used. In the category where professionalism was recognized as a facet of competency, MSF and direct observation were the most commonly used instrument. The classification of the 74 included instruments' classification can be seen in Table 3, and details of the included instruments can be found in the S3 Appendix.

12 instruments were developed based on the theoretical framework of the American Board of Internal Medicine (ABIM) [3], 7 were based on the Royal College of Physicians and Surgeons of Canada (RCPSC) [40], and 22 were based on the Accreditation Council for Graduate Medical Education (ACGME) [41], accounting for 55.4% of all instruments. The rest of the instruments were constructed based on literature review or on qualitative analysis involving focus group discussions, the Delphi method, or interviews with experts. No IRT based study met the inclusion criteria.

Methodological quality of the included studies

Internal consistency and **structural validity** were the most frequently reported measurement properties (reported in 64 and 54 studies, respectively), whereas **measurement errors**, **reliability**, **criterion validity** and **responsiveness** were not reported sufficiently, most likely due to the lack of follow-up studies (See Table 4). Inadequate sample sizes and lack of details in how missing data were managed resulted in 28 studies being rated as “fair” or “poor” in methodological quality. In 16 studies, each reported measurement property was rated as either “good” or “excellent”.

Type of tool use	Professionalism as a comprehensive construct	Professionalism as a facet for competency		
	Number of instrument	Number of study	Number of instrument	Number of study
Self-administered rating	14	17	5	4
Simulation	2	2	5	5
Direct observation	6	8	11	13
Multi Source Feedback	2	2	14	16
Peer assessment	1	1	1	1
Patients’ opinion	1	1	1	1
Role model evaluation	4	4	4	4
Professionalism environment	2	2	1	1

https://doi.org/10.1371/journal.pone.0177321.t003
Instrument	Authors/Year	Internal consistency	Reliability	Measurement error	Content validity	Structural validity	Hypothesis testing	Criterion validity	Cross-cultural validity	Responsiveness	Accuracy		---------------------	--------------	----------------------	--------------	-------------------	-------------------	---------------------	-------------------	----------------------	------------------------	-----------	----------
Professionalism in Nursing Inventory	Miller/1993 [42]	Poor (3,7)	Fair (3)	Good	Fair (3)	Poor (3)	Good	Good	Good	Good	Fair (6)	Good	Good											
Arnold scale (14 items)	Arnold/1996 [43]	Good	Good	Good	Poor (4)	Good																		
Arnold scale (12 items)	Delia/2001 [44]	Fair (3)	Good	Good	Poor (4)	Poor (4)	Good																	
Arnold scale (17 items)	Amsalu/2009 [45]	Good	Good	Good	Poor (3)	Good																		
PSQI (Professionalism Questionnaire)	Black/2009 [46]	Good																						
Professionalism in Nursing Inventory	DeLisa/2001 [47]	Fair (3)	Fair (3)	Good																				
Arnold scale (17 items)	Aramesh/2009 [48]	Good	Good	Good	Poor (14)	Good																		
PSCOM Professionalism Questionnaire	Green/2009 [49]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2009 [50]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2010 [51]	Good																						
PSCOM Professionalism Questionnaire	Blue/2011 [52]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2012 [53]	Good																						
PSCOM Professionalism Questionnaire	Blue/2013 [54]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2014 [55]	Good																						
PSCOM Professionalism Questionnaire	Blue/2015 [56]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2016 [57]	Good																						
PSCOM Professionalism Questionnaire	Blue/2017 [58]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2018 [59]	Good																						
PSCOM Professionalism Questionnaire	Blue/2019 [60]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2020 [61]	Good																						
PSCOM Professionalism Questionnaire	Blue/2021 [62]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2022 [63]	Good																						
PSCOM Professionalism Questionnaire	Blue/2023 [64]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2024 [65]	Good																						
PSCOM Professionalism Questionnaire	Blue/2025 [66]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2026 [67]	Good																						
PSCOM Professionalism Questionnaire	Blue/2027 [68]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2028 [69]	Good																						
PSCOM Professionalism Questionnaire	Blue/2029 [70]	Excellent	Good																					
PSCOM Professionalism Questionnaire	Blue/2030 [71]	Good																						

(Continued)
Instrument	Author/Year	Internal consistency	Reliability	Measurement error	Content validity	Structural validity	Hypothesis testing	Cross-cultural validity	Criterion validity	Responsiveness
PACT	Young/2014 [72]	Poor (7)	Poor (7)	Good	Poor (4)	Good	Fair (4)	Good	Good	Poor (4)
PEWO	Blau/Juni 2009 [73]	Good	Good	Poor (7)	Fair (4)	Good	Good	Good	Good	Poor (4)
Gillespie’s scale	Gillespie 2009 [74]	Poor (5)	Poor (6)	Good	Poor (4)	Good	Good	Good	Good	Poor (4)
NPS-R	West/2009 [75]	Good	Fair (3)	Poor (4)	Good (3)	Good	Good	Good	Good	Poor (4)
NPVS-R	Lui/2010 [76]	Fair (4)	Fair (4)	Poor (4)	Good (3)	Good	Good	Good	Good	Poor (4)
VPPVS	Sang/2015 [77]	Good	Good	Good	Poor (4)	Good	Good	Good	Good	Poor (4)
NPPVS	Lui/2015 [78]	Excellent	Good	Good	Poor (4)	Good	Good	Good	Good	Poor (4)
Hypothesis testing										
Cross-cultural validity										
Criterion validity										
Responsiveness										

(Continued)
Instrument	Authors/Year	Internal consistency	Reliability	Measurement error	Content validity	Structural validity	Hypothesis testing	Cross-cultural validity	Criterion validity	Responsiveness
ITER	Kassam 2014 [108]	Fair (3)	Fair (2)	Fair (3)						Good
Dong's Graduates Form	Dong 2015 [109]	Good								Good
Simulation										
SDOT	Shayne 2006 [110]	Good								
Jefferies's OSCE of CanMEDS Roles	Jefferies 2007 [111]	Poor (6)			Poor (6)	Poor (4)	Fair (4)	Fair (4)		
Carss's Checklist of OSPRE	Carss 2011 [112]	Good	Poor (6)	Good	Fair (4)					
RO&CA	Musick 2010 [113]	Excellent								Good
ACGME competency checklist of OSCE	Yang 2011 [114]	Good				Good				
CanMEDS OSCE	Dwyer 2014 [115]	Poor (6)								Poor (3)
Role model evaluation										
Smith's instrument	Smith 2004 [110]	Good	Poor*	Poor (6)	Fair (4)					
Faculty Supervision Evaluation	Filho 2008 [116]	Poor (7)	Poor*							Good
Colletti evaluation of clinical educators	Colletti 2010 [117]	Fair (3)								Good
PFCI	Deemer 2011 [118]	Excellent								Good
Professionalism environment										
MSSAPS	Liao 2014 [119]	Good				Good	Good			

PSCOM = The Penn State College of Medicine, PSIQ = Professional Self Identity Questionnaire, LAMPS = Learners’ Attitude of Medical Professionalism Scale, PAS = Professionalism Assessment Scale, DUQuE = Deepening Our Understanding of Quality Improvement in Europe, OSCE = Objective Structured Clinical Examination, ECFMG-CSA = Educational Commission for Foreign Medical Graduates’ clinical skills assessment, UMDSPIAI = University of Michigan Department of Surgery Professionalism Assessment Instrument, P-MEX = Professionalism Mini-Evaluation Exercise, EPRO-GP = Evaluation of Professional Behavior in General Practice, AACS = Amsterdam Attitudes and Communications Scale, GMC = General Medical Council, PEFWQ = Factors in the Workplace Questionnaire, LEP = Learning environment for professionalism, PACT = The Professionalism Assessment of Clinical Teachers, MSSAPS = Medical Student Safety Attitudes and Professionalism Survey, NPVS-R = Nurses Professional Values Scale-Revised, VPPVS = Vietnamese Physician Professional Values Scale, NPRCS = Nurse Practitioners’ Roles and Competencies Scale, CPSA-PAR = The College of Physicians and Surgeons of Alberta, Physician Achievement Review, EOS = Education Outcomes Service Group, TRF = Traditional Rating Forms, PGY3 = Postgraduate Year 3, COMPASS = Competency Assessment List, OCEX = the Ophthalmic Clinical Evaluation Exercise, CEX = Clinical Evaluation Exercise, ITER = In-training Evaluation Report, OSPRE = Objective Structured Performance-Related Examination, RO&CA = Resident Observation and Competency Assessment, SDOT = Standardized Direct Observation Assessment Tool, PFCI = Perceived Faculty Competency Inventory.

Numbers in parentheses for poor or fair ratings represent the item number in the respective COSMIN box.

* More than two items were assessed as “poor” level.

https://doi.org/10.1371/journal.pone.0177321.t004
17 studies reported content validity, of which 11 were rated “fair” or “poor” in methodological quality because relevance or comprehensiveness was not sufficiently evaluated. 18 of the 71 studies implemented hypothesis testing, but only 4 were rated as “good”, and the rest failed to propose hypotheses or to clearly state hypothesis expectations (the directions or magnitudes of the effects). Cross-culture validity was tested for only five instruments, and poor performance in this property was mainly due to the lack of multiple-group confirmatory factor analysis. All but one of the 17 studies using MSF instruments performed poorly with respect to internal consistency, because Cronbach’s coefficients for subscales were not calculated.

Quality of measurement properties
The quality of instruments’ measurement properties were assessed based on Terwee’s criteria [32] (Table 5). Most instruments performed well and were rated positively (“+”) in internal consistency and structural validity. Indeterminate results in content validity were mainly due to insufficient information. Due to the lack of multiple-group confirmatory factor analysis, most results for cross-cultural validity also returned indeterminate. As for criterion validity, there was insufficient evidence that the gold standards (i.e. USMLE, program GPA) used in two of the studies were in fact valid gold standards [97, 98]. Additionally, Pearson correlations between the instruments and these recognized gold standards were less than 0.7, signifying negative results. As a result, criterion validity displayed poor overall measurement performance.

Best-evidence synthesis
Best-evidence synthesis was performed according to the method summarized in Table 2, by integrating the results of study methodological qualities (Table 4) and the results of measurement properties of instruments (Table 5). The performances of each instrument’s measurement properties are shown in Table 6. In general, instruments performed the best in internal consistency and structure validity, where 6 and 7 instruments achieved (“+++”) respectively. No study analyzed measurement error, and only one study reported on responsiveness. Among the studies reporting on content validity and the cross-culture validity, the majority of instruments received indeterminate (“?”) ratings, which means if the studies had poor methodological quality assessing the performance of these measurement properties, the exact performance of these measurement properties could not be determined irrespective of whether or not they were positively or negatively rated.

According to the data synthesis results, 3 instruments had at least two strong positive (“+++”) or three moderate positive (“++”) ratings without any limited or negative (“-” or “- - -”) ratings in measurement properties and were thus identified as best-rated. Two of these instruments, both self-administered rating scales in the nursing profession, were Hisar’s instrument for nursing students [53] and the Nurse Practitioners’ Roles and Competencies Scale (NPRCS) [80]. The third is the Perceived Faculty Competency Inventory (PFCI), a role model evaluation by medical students regarding medical professionalism as a facet of competency [118]. Further details on these 3 instruments and their respective studies can found in S2 and S3 Appendices.

Discussion
A systematic search of the electronic databases PubMed, Web of Science, and PsycINFO was conducted to collect studies published from 1990–2015. 80 studies satisfied the inclusion criteria, and a total of 74 instruments for assessing medical professionalism were identified. The methodological quality of the studies and the instruments’ measurement properties were
Instrument	Authors/Year	Internal consistency	Reliability	Measurement error	Content validity	Structural validity	Hypothesis testing	Cross-cultural validity	Criterion validity	Responsiveness
As a comprehensive construct										
Self-administered rating										
Professionalism in Nursing Inventory	Miller/ 1993 [42]	+	+							
Arnold scale (14-items)	Arnold / 1998 [43]	+	+							
Arnold scale (12-items)	DeLuisa/ 2001 [44]	+	+							
Arnold scale (17-items)	Aramesh/ 2009 [45]	+	+	?						
PSOCOM Professionalism Questionnaire	Blackall/ 2007 [46]	+	+	?						
	Ahmadi/ 2014 [47]	+	+	?						
	Bustamante/ 2014 [48]	+	+	?						
Tsai A/B/M questionnaire	Tsai/ 2007 [49]	+	+	?						
	Nhan/ 2014 [50]	+	+	?						
Blue’s Multiple instruments	Blue/ 2009 [51]	+	+	?						
PSQ	Crossley/ 2009 [52]	+	+	?						
Hisar’s instrument for nursing students	Hisar/ 2010 [53]	+	+	?						
Jiang’s knowledge instrument	Jiang/ 2010 [54]	+	+	?						
LAMPS	Eraky/ 2013 [55]	+	+	?						
Wittich Reflection instrument	Wittich/ 2013 [56]	+	+	?						
The new PAS	Ketis/ 2014 [57]	+	+	?						
DUQUE professionalism instrument	Lombardi/ 2014 [58]	?	+	?						
Simulation										
ECQMG-CSA	Zantefi/ 2005 [59]	+	+	?						
p-OSSC	Yang/ 2013 [60]	+	+	?						
Multi Source Feedback										
GMC patient and colleague questionnaires	Campbell/ 2008 [39]	+	+	?						
p-360° evaluation	Yang/ 2013 [60]	+	+	?						
Direct observation										
UMDISPAI	Gauger/ 2006 [61]	+	+	?						
P-MEX	Cruess/ 2004 [62]	+	+	?						
	Tsugawa/ 2009 [63]	+	+	?						
	Tsugawa/ 2011 [64]	+	+	?						
EPRO-GP instrument	Camp/ 2006 [38]	+	+	?						
Adaptation of AACS for foreigner	Tromp/ 2007 [65]	+	+	?						
Nijmegen Professionalism Scale	Tromp/ 2010 [66]	+	+	?						
p-mini-CEX	Yang/ 2013 [60]	+	+	?						
Peer assessment										
Cottrell’s peer assessment	Cottrell/ 2006 [67]	+	+	?						
Patients’ opinion										
Chandratilaka’s general public scale	Chandratilaka/ 2010 [68]	+	+	?						
Role model evaluation										
Ephgrave’s Assessment	Ephgrave/ 2006 [69]	+	+	?						
Arnold’s scale-environment version	Quaintance/ 2008 [70]	+	+	?						
LEP survey	Thrush/ 2011 [71]	+	+	?						
PACT	Young/ 2014 [72]	+	+	?						

(Continued)
Table 5. (Continued)

Professionalism environment	Authors/Year	Internal consistency	Reliability	Measurement error	Content validity	Structural validity	Hypothesis testing	Cross-cultural validity	Criterion validity	Responsiveness
PEFWO	Baumann/ 2009 [73]	+	-	+	+	+				
Gillespie’s scale	Gillespie/ 2009 [74]	+	?		+	+				

As one facet of competence

Self-administered rating

Hotjar’s Jefferson competency scale	Hojat/ 2007 [75]	+			+	+				
ABIM Patient Assessment	Symons/ 2009 [76]	+			+					
NPVS-R	Wei/ 2009 [77]	+			+					
Lin/ 2010 [78]	+			+	+					
Hotjar’s Jefferson competency scale	Hojat/ 2007 [75]	+			+	+				
ABIM Patient Assessment	Symons/ 2009 [76]	+			+					
NPVS-R	Wei/ 2009 [77]	+			+					
Lin/ 2010 [78]	+			+	+					
Hotjar’s Jefferson competency scale	Hojat/ 2007 [75]	+			+	+				
ABIM Patient Assessment	Symons/ 2009 [76]	+			+					
NPVS-R	Wei/ 2009 [77]	+			+					
Lin/ 2010 [78]	+			+	+					

Multi Source Feedback

Musicik 360-degree instrument	Musick/ 2003 [81]	+			+	+				
Wood’s 360-degree evaluation	Wood/ 2004 [82]	+			+					
CPSA-PAR MSF for anesthesiologists	Lockyer/ 2006 [83]	+			+					
CPSA-PAR MSF for emergency physicians	Lockyer/ 2006 [84]	+			+					
CPSA-PAR MSF for pediatricians	Violato/ 2006 [85]	+			+					
CPSA-PAR MSF for international doctors	Lockyer/ 2006 [86]	+			+					
CPSA-PAR MSF for Psychiatrists	Violato/ 2008 [87]	+			+					
CPSA-PAR MSF for physicians	Violato/ 2008 [88]	+			+					
CPSA-PAR MSF for P&LMP	Lockyer/ 2009 [89]	+			+					
CPSA-PAR MSF for Middle eastern interns	Ansari/ 2015 [90]	+			+					
End-of-rotation evaluations	Park/ 2014 [91]	+			+					
EOS group 360-degree instrument	Ou/ 2010 [92]	+			+					
EOS group 360-degree instrument	Ou/ 2012 [93]	+			+					
EOS group 360-degree instrument	Ou/ 2013 [94]	+			+					
EOS group 360-degree instrument	Ou/ 2014 [95]	+			+					
EOS group 360-degree instrument	Ou/ 2015 [96]	+			+					
Senol’s Turkish 360-degree assessment	Senol/ 2009 [96]	+			+					
Overeen’s MSF instruments	Overeen/ 2011 [96]	+			+					

Direct observation

ACGME-TRF	Brasel/ 2004 [97]	+			+	+				
Global rating form for ACGME competencies	Silber/ 2004 [98]	+			+					
OCEX	Gohi/ 2004 [100]	?			+	+				
OCEX	Gohi/ 2005 [101]	-			+	+				
ACGME general competencies	Reisdorff/ 2004 [99]	?			+					
Durning’s Supervisor’s evaluation form	Durning/ 2005 [102]	+			+					
Durning’s Supervisor’s evaluation form-PGY3	Artino/ 2015 [103]	+			+					
Karayurt nursing students’ performance	Karayurt/2009 [104]	+			+					
COMPASS	Tromp/ 2012 [105]	+			+					
Handoff CEX	Horwitz/ 2013 [106]	-			+					
Handoff CEX	Horwitz/ 2013 [107]	+			+					
ITER	Kassam/ 2014 [108]	+			+					

(Note: The table continues with similar entries for the items listed above.)
Instrument	Authors/Year	Internal consistency	Reliability	Measurement error	Content validity	Structural validity	Hypothesis testing	Cross-cultural validity	Criterion validity	Responsiveness
Dong’s Graduates Form	Dong/2015 [109]	+								
Simulation										
SDOT	Shayne/2006 [110]			+						
Jefferies’s OSCE of CanMEDS Roles	Jefferies/2007 [111]	+								
Ponton-Carss Checklist of OSPRE	Carss/2011 [112]	-		?						
RO&CA	Musick/2010 [113]	+		?						
ACGME competency checklist of OSCE	Yang/2011 [114]	+		?						
CanMEDS OSCE	Dwyer/2014 [115]	+								
Role Model evaluation										
Smith instrument	Smith/2004 [116]	+	??							
Faculty Supervision Evaluation	Filho/2008 [117]	+	?							
Colletti evaluation of clinical educators	Colletti/2010 [118]	-								
PFO	Deemer/2011 [119]	+								
Professionalism environment										
MSSAPS	Liao/2014 [120]	+								

https://doi.org/10.1371/journal.pone.0177321.t005
Table 6. Summary of best-evidence synthesis.

Target population	Instrument	Internal consistency	Reliability	Measurement error	Content validity	Structural validity	Hypothesis testing	Cross-cultural validity	Criterion validity	Responsiveness
As a comprehensive construct										
Physicians	Self-administered rating	?	?	?	+					
	DUQuE professionalism instrument [58]									
	Multi Source Feedback	?	+++							
	GMC patient and colleague questionnaires [39]									
	Patients' opinion	?	?	?						
Residents	Self-administered rating	++	++	?						
	Arnold scale (14-items) [43]									
	Arnold scale (12-items) [44]									
	Arnold scale (17-items) [45]									
	Gillespie's scale [74]	?	?	?						
	Simulation									
	ECRMG-CSA [59]									
	p-OSCE [60]	++								
	Multi Source Feedback									
	p-360° evaluation [60]	++								
	Direct observation									
	UMDSPA [61]	?								
	P-MEX [62–64]	?	+++	?						
	EPRO-GP instrument [38]									
	Nijmegen Professionalism Scale [66]	?								
	Adaptation of AACS for foreigner [65]	++								
	p-mini-CEX [60]	++								
	Role model evaluation									
	Ephgrave's Assessment [69]	+								
	Professionalism environment									
	Gillespie's scale [74]	?	?	+						
Medical students	Self-administered rating	++	++	?						
	Arnold scale (14-items) [43]									
	PSCOM Professionalism Questionnaire [46–48]	+++	++	+++	-	-				
	Tsai ABIM questionnaire [49, 50]	++								
	PSIQ [52]	?								
	Blau's Multiple instruments [51]	?								
	Jiang's knowledge instrument [54]	++								
	LAMPS [55]	+								
	Wittich Reflection instrument [56]	++								
	The new PAS [57]	++		?						
	Peer assessment									
	Cotrell's peer assessment [67]	?								
	Role model evaluation									
	Arnold's scale environment version [70]	?								
	PACT [72]	?								
	LEP survey [71]	++								
Nurses	Self-administered rating									

(Continued)
Target population	Instrument	Internal consistency	Reliability	Measurement error	Content validity	Structural validity	Hypothesis testing	Cross-cultural validity	Criterion validity	Responsiveness
Nursing students	Self-administered rating	Professionalism in Nursing Inventory [42]	?	+	?	?	?	?	?	?
		DUQUE professionalism instrument [58]	?	+	?	?	?	?	?	?
		Hisar’s instrument for nursing students [53]	+++	++	?	+++	?	?	?	?
		Professionalism environment	PEFWQ [73]	++	-	++	?	?	?	?
	As one facet of competence									
Physicians	Self-administered rating	VPPVS [79]	++							
		Multi Source Feedback	CPSA-PAR MSF for anesthesiologists [80]	?	++					
		CPSA-PAR MSF for emergency physicians [91]	?	++						
		CPSA-PAR MSF for pediatrics [80]	?	++						
		CPSA-PAR MSF for Psychiatrists [87]	?	++						
		CPSA-PAR MSF for physicians [88]	?	++						
		Overeem’s MSF instruments [90]	++	?	++	?				
	Direct observation	Handoff CEX [106, 107]	+/-	+/						
Residents	Self-administered rating	Holjat’s Jefferson competency scale [75]	+							
		ABIM Patient Assessment-self assessment version [76]	++							
	Multi Source Feedback	Musick 360-degree instrument [81]	?							
		Wood’s 360-degree evaluation [82]	?							
		End-of-rotation evaluations [91]								
		EOS group 360-degree instrument [92–94]	?	++						
		Sendi’s Turkish 360-degree assessment [95]	?							
		CPSA-PAR MSF for international graduates [86]	?							
	Direct observation	ACGME-TRF [97]	+							
		Global rating form for ACGME competencies [98]	++							
		OCEX [100, 101]	?	++						
		ACGME general competencies [99]	?							
		Durning’s Supervisor’s evaluation form [102]	?	++						
		Durning’s Supervisor’s evaluation form-PGYS [103]	?	++						
		COMPASS [105]	+++	?	++					
		ITER [108]	+	+						
		Dong’s Graduates Form [109]	++							

(Continued)
Target population	Instrument	Internal consistency	Reliability	Measurement error	Content validity	Structural validity	Hypothesis testing	Cross-cultural validity	Criterion validity	Responsiveness
Medical students	Multi Source Feedback									
	CPSA-PAR MSF for Middle eastern interns [90]	?								
	Role model evaluation									
	PFI [118]	++		++	++	++				
	Professionalism environment									
	MSSAPS [119]	++		++	--					
Nurses	Self-administered rating									
	NPVS-R [77,78]	++		?	++					
	NPRCS [80]	+++		+++						
	Direct observation									
	Handoff CEX [106,107]	+/-		+/-	++					
Nursing students	Direct observation									
	Karayurt nursing students’ performance [104]	++		++	++					

Table 6. (Continued)
systematically evaluated according to the COSMIN checklist. The methodological qualities of studies were usually weakened by vague hypotheses, missing data, and inadequate sample sizes. The performances of instruments in content validity, cross-cultural validity, and criterion validity were unsatisfactory in most studies. Also, measurement errors and responsiveness were largely neglected by existing studies. Finally, based on best-evidence synthesis, three instruments were recommended: Hisar’s instrument for nursing students, the NPRCS, and the PFCI.

Up and prior to 2009, several published articles systematically reviewed the assessment tools or techniques used to assess medical professionalism [9, 13, 15, 18]. However, recent systematic reviews mainly focus on a specific instrument type (e.g., multisource feedback) or on a specific medical discipline [30, 121]. From 2009 onwards, there is yet to be a more up-to-date systematic review that comprehensively summarizes the existing instruments assessing medical professionalism, despite there being increasing attention and focus on the assessment of medical professionalism. In this review, we included new studies and a corresponding instrument published from 2008 to 2015, analyzes the methodological quality of the studies and the measurement properties of the reported instruments, and summarizes the instruments’ characteristics in order to facilitate their selection and use. Moreover, the COSMIN checklist was a critical appraisal tool for studying the quality of studies on instrument measurement properties. By using the COSMIN checklist to systematically assess and analyze each included study and its corresponding instrument, a summary on the performance of each instrument could be constructed based on a universally accepted standardized framework, which was not utilized in previous reviews.

The measurement instruments assessed in this review are diverse in target populations and tools’ uses. According to the type of tools’ uses [9], the instruments were divided into seven categories: self-administered ratings, MSF, simulations (including OSCEs and high-fidelity patient simulations), patients’ opinions, direct observations (observed clinical encounters, such as min-CEX and P-MEX, and supervisor evaluations), role model evaluation, and professionalism environment. The last one is an additional category to Wilkinson’s classification of instruments assessing professionalism [9].

Direct observations (through mini-CEX and P-MEX) and collated views (through MSF and patients’ opinions) have been demonstrated to be crucial instruments for assessing professionalism [9, 122]. These offer different perspectives from multiple assessors and would enhance the breadth of assessment, reliability, and objectivity [9, 122]. However, despite there being 14 MSF instruments assessing professionalism as a facet of competency, this study showed that there were few MSF instruments assessing professionalism as a comprehensive concept. Furthermore, 17 of the 18 studies using MSF obtained a “poor” methodology rating for internal consistency or did not report on this property. Thus, there is a calling to refine and enhance the existing methodological quality of MSF instruments or to develop more MSF instruments specific to professionalism. Miller’s Taxonomy (knows, knows how, shows, and does) [123], as a template for the development of systems of evaluation [12, 124, 125], has often been used to illustrate the relative position and usage of assessment in medical education. The existing instruments assessing professionalism as a comprehensive construct also failed to demonstrate the “shows how” level of Miller’s pyramid model because of no simulation instruments, whereas assessment of professionalism as a facet of competency held better performance in this level.

Assessing professionalism usually implies the need to gather information to provide feedback, to guide remedial programs and decision-makers on grading, and to give referrals to promotion or certification decisions. However, in this study, very few of the involved instruments met the critical criteria for validity and reliability that would support their operational use for decision-making. Multiple previous reviews [9, 15, 18] have suggested that it may be
more practical to improve the measurement properties of existing instruments rather than
develop new measures of assessing medical professionalism. However, 37 of the
instruments involved in this study were newly developed, and most of the existing
instruments lacked refinement. In addition, good new instruments should be derived
from sound qualitative research, repeated verification, and rigorous pilot studies [126].
In this review, few studies that developed a new instrument had good content validity
(a crucial component in the development of a new instrument), demonstrated by failure to
report details of how measurement items were derived. This limits the evidence available
for developing and testing existing properties.

Both reliability and measurement error were ignored in many studies due to the lack of ade-
quate follow-up. As can be seen in Tables 4, 5 and 6, based on the COSMIN definitions of
measurement properties [22] and COSMIN checklist manual’s requirement of this measure-
ment property [127], no study reported measurement error. It was defined as “the systema-
tic and random error of a patient’s score that is not attributed to true changes in the construct
to be measured” and needed to take into account the variance between time points. Thus, in
this review none of the included studies reported acceptable measurement error. However, we
also have to acknowledge that a large number of generalizability studies, especially those on
direct observation instruments and MSF instruments, reported Standard Error Measurement (SEM).
A possible explanation may be the difference between research assessments in medical educa-
tion and healthcare outcome evaluations. Although medical education oriented assessments
did not take the variance between time points into account to point out how the random error
of the scores attribute to the true change, they instead used multiple evaluators to assess one
target person to investigate the number of forms (evaluators) needed in order to obtain an esti-
mate of the calculated average score via generalizability analysis. The generalizability coeffi-
cient reported by the included studies can be found in the “Administration/ generalizability”
column of S3 Appendix. Thus, adjustment of the definition of measurement error in the COS-
MIN checklist would provide a better fit and also potentially include studies in the medical
education context.

Lack of longitudinal studies and corresponding interventions are the primary reasons for
the lack of evaluation of responsiveness. Additionally, criterion validity was also rarely reported.
The most likely reason is that professionalism is an abstract concept. There is currently no uni-
versal definition of professionalism, not to mention a reasonable gold standard for its assess-
ment. This is also the case in many other fields, such as trust in physicians [26], teamwork
[128], communication skills [129, 130], and social skills [131].

After screening titles and abstracts, two IRT based studies assessing medical professionalism
were found [133, 133]. However, they were not included in the review because they did
not meet the inclusion criteria. Roberts et al only assessed the reasoning-skill of medical stu-
dents, which was not a comprehensive concept of medical professionalism,[132] while another
study did not include sociodemographic variables needed to assess differential item function-
ing [133]. This meant that it was not possible to obtain a total score for the methodological
quality of these studies, since the assumptions for estimating parameters of the IRT model
could not be checked. IRT models could provide more flexibility and has been widely used
in medical education, especially for summative evaluation [134]. However, since it is a relatively
modern theory, more evidence-based research is needed to confirm the applications and out-
comes of IRT models in assessing medical professionalism.

As seen in the summary of best-evidence synthesis, no measurement instrument had been
tested for all measurement properties, but three instruments—Hisar’s instrument for nursing
students [53], the NPRCS [80], and the PFCI [118]—had better performance in both methodo-
logical quality and measurement properties. The former two self-administered rating scales
belonged to the “knows” and “knows how” levels of Miller’s Taxonomy. This highlights the need for high-quality studies and for instruments that assess medical professionalism on higher cognitive levels of Miller’s Pyramid Model. Moreover, two of three recommended instruments assessed professionalism in nurses, while the third instrument targeted medical students. These could be referenced for the development or improvement of instruments assessing professionalism in other medical subfields, such as physicians.

The present review may be limited in its inclusion of studies and instruments. It is noted that there is also literature specific to each dimension of professionalism, such as empathy, teamwork, lifelong learning, communication skills, or humanity. However, these do not represent professionalism as a whole. Therefore, studies of instruments specifically assessing these dimensions were not included in the search in order to maintain conceptual integrity. Researchers may wish to search for relevant instruments of specific concepts not included in this review. Furthermore, as with every systematic review, the results were limited by the inclusion criteria and the inclusion of only papers that were available as full text, and certain instruments for assessing professionalism may have been overlooked because the corresponding studies did not test for measurement properties.

Conclusion

This study summarized and described 74 instruments for assessing medical professionalism from 80 existing studies and followed the COSMIN checklist to systematically evaluate these instruments’ measurement properties and the studies’ methodological quality. The instruments were diverse in tools’ use and target population, but the performance of their measurement properties and the methodological quality of the corresponding studies were varied. Specifically, reliability and measurement error were ignored in many studies due to the lack of adequate follow-up, and responsiveness was rarely reported due to lack of longitudinal study and corresponding intervention. For the measurement properties that were reported, content validity and criterion validity had more negative or indeterminate ratings, which would limit the usage of the instruments and the significance of assessment results. Thus, future studies should give priority to the application of existing instruments in different populations from various regions in order to verify the comparability of results based on these instruments. In addition, more follow-up investigations and longitudinal studies are needed. Of the instruments reviewed, Hisar’s instrument for nursing students, the Nursing Practitioner’s Roles and Competencies Scale, and Perceived Faculty Competency Inventory were best rated and had outstanding performance in both measurement properties and corresponding study methodological quality. However, there is still the need for high-quality instruments assessing medical professionalism in other subfields, such as for physicians. By taking the instruments’ performance and their type of tools’ use into account, we hope this review could help researchers or educators to choose suitable instruments according to their study purposes and target populations.

Supporting information

S1 Appendix. Search strategy for PubMed, Web of Science, and PsycINFO.
(DOCX)

S2 Appendix. Characteristics of included studies.
(DOCX)

S3 Appendix. Characteristics of included instruments.
(DOCX)
S4 Appendix. PRISMA 2009 checklist.

(DOCX)

Acknowledgments

The research team would like to thank Terwee CB for providing permission to use the COS-MIN checklist. This study was supported by The Social Science Foundation of Chinese Ministry of Education (Funding Number: 14YJAZH085) URLs: http://www.sinoss.net/2014/0704/50699.html. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors would like to express their gratitude to Nan Jiang for her critical review and Haolin Zhang for language editing.

Author Contributions

Conceptualization: DW HL.
Data curation: HL YZ ND.
Formal analysis: HL YZ.
Funding acquisition: DW.
Investigation: HL.
Methodology: HL YL.
Project administration: DW HL.
Resources: DW.
Supervision: DW.
Writing – original draft: HL YZ ND YL.
Writing – review & editing: HL DW.

References

1. Cruess SR. Professionalism and medicine’s social contract with society. Clin Orthop Relat Res. 2006; 449: 170–176. https://doi.org/10.1097/01.blo.0000229275.66570.97 PMID: 16760821
2. Irvine D. The performance of doctors: the new professionalism. The Lancet. 1999; 353: 1174–1177.
3. Project MP. Medical professionalism in the new millennium: a physicians’ charter. The Lancet. 2002; 359: 520–522.
4. Lesser CS, Lucey CR, Egener B, Braddock CH 3rd, Linas SL, Levinson W. A behavioral and systems view of professionalism. JAMA. 2010; 304: 2732–2737. https://doi.org/10.1001/jama.2010.1864 PMID: 21177508
5. Relman AS. Medical professionalism in a commercialized health care market. JAMA. 2007; 298: 2668–2670. https://doi.org/10.1001/jama.298.22.2668 PMID: 18073363
6. Abadel FT, Hattab AS. Patients’ assessment of professionalism and communication skills of medical graduates. BMC Med Educ. 2014; 14: 1.
7. Alfonso P, Ramos MR, Saraiva S, Moreira CA, Figueira ML. Assessing the relation between career satisfaction in psychiatry with lifelong learning and scientific activity. Psychiatry Res. 2014; 217: 210–214. https://doi.org/10.1016/j.psychres.2014.03.044 PMID: 24745473
8. Hafferty F, Papadakis M, Sullivan W, Wynia MK. The American Board of Medical Specialties Ethics and Professionalism Committee Definition of Professionalism. Chicago, Ill: American Board of Medical Specialties; 2012.
9. Wilkinson TJ, Wade WB, Knock LD. A blueprint to assess professionalism: results of a systematic review. Acad Med. 2009; 84: 551–558. https://doi.org/10.1097/ACM.0b013e31819fbaa2 PMID: 19704185

10. Frohna A, Stern D. The nature of qualitative comments in evaluating professionalism. Med Educ. 2005; 39: 763–768. https://doi.org/10.1111/j.1365-2929.2005.02234.x PMID: 16048618

11. Swick HM. Toward a normative definition of medical professionalism. Acad Med. 2000; 75: 612–616. PMID: 10875505

12. Hodges BD, Ginsburg S, Cruess R, Cruess S, Delport R, Hafferty F, et al. Assessment of professionalism: recommendations from the Ottawa 2010 Conference. Med Teach. 2011; 33: 354–363. https://doi.org/10.3109/0142159X.2011.577300 PMID: 21517683

13. Veloski JJ, Fields SK, Boex JR, Blank LL. Measuring professionalism: a review of studies with instruments reported in the literature between 1982 and 2002. Acad Med. 2005; 80: 366–370. PMID: 15793022

14. Arnold EL, Blank LL, Race KE, Cipparrone N. Can professionalism be measured? The development of a scale for use in the medical environment. Acad Med. 1998; 73: 1119–1121. PMID: 9795633

15. Lynch DC, Surdyk PM, Eiser AR. Assessing professionalism: a review of the literature. Med Teach. 2004; 26: 366–373. https://doi.org/10.1080/01421590410001696434 PMID: 15203852

16. van Mook WN, van Luijk SJ, O'Sullivan H, Wass V, Schuwirth LW, van der Vleuten CP. General considerations regarding assessment of professional behaviour. Eur J Intern Med. 2009; 20: 090–095. https://doi.org/10.1016/j.ejim.2008.11.011 PMID: 19524166

17. Clauser BE, Margolis MJ, Holtzman MC, Katsurakis PJ, Hawkins RE. Validity considerations in the assessment of professionalism. Adv Health Sci Educ Theory Pract. 2012; 17: 165–181. https://doi.org/10.1007/s10459-010-9219-6 PMID: 20094911

18. Jha V, Bekker HL, Duffy SR, Roberts TE. A systematic review of studies assessing and facilitating attitudes towards professionalism in medicine. Med Educ. 2007; 41: 822–829. https://doi.org/10.1111/j.1365-2923.2007.02804.x PMID: 17661891

19. Goldie J. Assessment of professionalism: a consolidation of current thinking. Med Teach. 2013; 35: e952–956. https://doi.org/10.3109/0142159X.2012.714888 PMID: 22936875

20. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study. Qual Life Res. 2010; 19: 539–549. https://doi.org/10.1007/s11136-010-9606-8 PMID: 20169472

21. Terwee CB, Mokkink LB, Knol DL, Ostelo RW, Bouter LM, de Vet HC. Rating the methodological quality in systematic reviews of studies on measurement properties: a scoring system for the COSMIN checklist. Qual Life Res. 2012; 21: 651–657. https://doi.org/10.1007/s11136-011-9960-1 PMID: 21732199

22. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010; 63: 737–745. https://doi.org/10.1016/j.jclinepi.2010.02.006 PMID: 20494804

23. Collins NJ, Prinsen CAC, Christensen R, Bartels EM, Terwee CB, Roos EM. Knee Injury and Osteoarthritis Outcome Score (KOOS): systematic review and meta-analysis of measurement properties. Osteoarthritis Cartilage. 2016; 24: 1317–1329. https://doi.org/10.1016/j.joca.2016.03.010 PMID: 27012756

24. Garratt AM, Lochting I, Smedslund G, Hagen KB. Measurement properties of instruments assessing self-efficacy in patients with rheumatic diseases. Rheumatology (Oxford). 2014; 53: 1161–1171.

25. Abma IL, van der Wees PJ, Veer V, Westert GP, Rovers M. Measurement properties of patient-reported outcome measures (PROMs) in adults with obstructive sleep apnea (OSA): A systematic review. Sleep Med Rev. 2015; 28: 14–27.

26. Muller E, Zill JM, Dirmaier J, Harter M, Scholl I. Assessment of trust in physician: a systematic review of measures. PLoS One. 2014; 9: e106844. https://doi.org/10.1371/journal.pone.0106844 PMID: 25208074

27. Reimers AK, Mess F, Bocksch J, Jekauc D, Woll A. Systematic review on measurement properties of questionnaires assessing the neighbourhood environment in the context of youth physical activity behaviour. BMC Public Health. 2013; 13: 461. https://doi.org/10.1186/1471-2458-13-461 PMID: 23663328

28. Terwee CB, Jansma EP, Riphagen II, de Vet HC. Development of a methodological PubMed search filter for finding studies on measurement properties of measurement instruments. Qual Life Res. 2009; 18: 1115–1123. https://doi.org/10.1007/s11136-009-9528-5 PMID: 19711195
29. Arnold L. Assessing professional behavior: yesterday, today, and tomorrow. Acad Med. 2002; 77: 502–515. PMID: 12063194

30. Donnon T, Al Ansari A, Al Alawi S, Violato C. The reliability, validity, and feasibility of multisource feedback physician assessment: a systematic review. Acad Med. 2014; 89: 511–516. https://doi.org/10.1097/ACM.0000000000000147 PMID: 24448051

31. Terwee CB, Bot SD, de Boer MR, van der Windt DA, Knol DL, Dekker J, et al. COSMIN: Consensus-based Standards for the selection of health Measurement Instruments. http://www.cosmin.nl.

32. Terwee CB, Bot SD, de Boer MR, van der Windt DA, Knol DL, Dekker J, et al. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol. 2007; 60: 34–42. https://doi.org/10.1016/j.jclinepi.2006.03.012 PMID: 17161752

33. Tijssen M, van Cingel R, van Melick N, de Visser E. Patient-Reported Outcome questionnaires for hip arthroscopy: a systematic review of the psychometric evidence. BMC Musculoskelet Disord. 2011; 12: 1.

34. Egerton T, Riphagen II, Nygard AJ, Thingstad P, Helbostad JL. Systematic content evaluation and review of measurement properties of questionnaires for measuring self-reported fatigue among older people. Qual Life Res. 2015; 24: 2239–2255. https://doi.org/10.1007/s11136-015-0963-1 PMID: 25778536

35. Hanratty J, Livingston N, Robalino S, Terwee CB, Glod M, Oono IP, et al. Systematic Review of the Measurement Properties of Tools Used to Measure Behaviour Problems in Young Children with Autism. PLoS One. 2015; 10: e0144649. https://doi.org/10.1371/journal.pone.0144649 PMID: 26659821

36. Van Tulder M, Furlan A, Bombardier C, Bouter L, Group EBotCCBR. Updated method guidelines for systematic reviews in the Cochrane Collaboration Back Review Group. Spine. 2003; 28: 1290–1299. https://doi.org/10.1097/01.BRS.0000065484.95996.AF PMID: 12811274

37. Furlan AD, Pennick V, Bombardier C, van Tulder M. 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine. 2009; 34: 1929–1941. https://doi.org/10.1097/BRS.0b013e3181b1c999 PMID: 19680101

38. Van de Camp K, Vernooij-Dassen M, Grol R, Bottema B. Professionalism in general practice: Development of an instrument to assess professional behaviour in general practitioner trainees. Med Educ. 2006; 40: 43–50. https://doi.org/10.1111/j.1365-2929.2005.02346.x PMID: 16441322

39. Campbell JL, Richards SH, Dickens A, Greco M, Narayanan A, Brearley S. Assessing the professional performance of UK doctors: an evaluation of the utility of the General Medical Council patient and colleague questionnaires. Qual Saf Health Care. 2008; 17: 187–193. https://doi.org/10.1136/qshc.2007.024679 PMID: 18519625

40. Royal College of Physicians and Surgeons of Canada(RCPSC). The CanMEDS 2005 physician competency framework[M]. Ottawa: Royal College of Physicians and Surgeons of Canada, 2005.

41. Accreditation Council for Graduate Medical Education. ACGME Common Program Requirements. 2002. http://www.acgme.org/Portals/0/PPAssets/ProgramRequirements/CPRs_07012016.pdf.

42. Miller BK, Adams D, Beck L. A behavioral inventory for professionalism in nursing. J Prof Nurs 1993; 9: 290–295. PMID: 8294646

43. Arnold EL B L, Race KE, Cipparrone N. Can professionalism be measured? The development of a scale for use in the medical environment. Acad Med. 1998; 73: 1119–1121. PMID: 9795633

44. DeLisa JA, Foye PM, Jain SS, Krishna B, Chistodoulou C. Measuring professionalism in a physiatry residency training program. Am J Phys Med Rehabil. 2001; 80: 225–229. PMID: 11237277

45. Aramesh K, Mohebbi M, Jessri M, Sanagou M. Measuring professionalism in residency training programs in Iran. Med Teach. 2009; 31: E356–E361. PMID: 19811199

46. Blackall GF, Melnick SA, Shoop GH, George J, Lerner SM, Wilson PK, et al. Professionalism in medical education: the development and validation of a survey instrument to assess attitudes toward professionalism. Med Teach. 2007; 29: e58–62. https://doi.org/10.1080/01421590601044984 PMID: 17701611

47. Akhund S, Shaikh ZA, Ali SA. Attitudes of Pakistani and Pakistani heritage medical students regarding professionalism at a medical college in Karachi, Pakistan. BMC Res Notes. 2014; 7: 150. https://doi.org/10.1186/1756-0500-7-150 PMID: 24628768

48. Bustamante E, Sanabria A. Spanish adaptation of The Penn State College of Medicine Scale to assess professionalism in medical students. Biomedica. 2014; 34: 291–299. https://doi.org/10.1590/S0120-41572014000200015 PMID: 24967934

49. Tsai TC, Lin CH, Harasym PH, Violato C. Students’ perception on medical professionalism: the psychometric perspective. Med Teach. 2007; 29: 128–134. https://doi.org/10.1080/01421590701310889 PMID: 17701622
50. Nhan VT, Violato C, Le An P, Beran TN. Cross-cultural construct validity study of professionalism of Vietnamese medical students. Teach Learn Med. 2014; 26: 72–80. https://doi.org/10.1080/10401334.2013.857333 PMID: 24405349

51. Blue AV, Crandall S, Nowacek G, Luecht R, Chauvin S, Swick H. Assessment of matriculating medical students' knowledge and attitudes towards professionalism. Med Teach. 2009; 31: 928–932. https://doi.org/10.3109/01421590903193547 PMID: 19995162

52. Crossley J, Vivekananda-Schmidt P. The development and evaluation of a Professional Self Identity Questionnaire to measure evolving professional self-identity in health and social care students. Med Teach. 2009; 31: e603–607. https://doi.org/10.3109/01421590903193547 PMID: 20378213

53. Hısar F, Karadag A, Kan A. Development of an instrument to measure professional attitudes in nursing students in Turkey. Nurse Educ Today. 2010; 30: 726–730. https://doi.org/10.1016/j.nedt.2010.01.013 PMID: 20378213

54. Jiang S, Yan Z, Xie X, Tang W, Lu F, He J. Initial knowledge of medical professionalism among Chinese medical students. Med Teach. 2010; 32: 961–970. https://doi.org/10.3109/0142159X.2010.497827 PMID: 21090949

55. Al-Eraky MM, Chandratilleke M, Wajid G, Donkers J, van Merrienboer J. Medical professionalism: development and validation of the Arabian LAMPS. Med Teach. 2013; 35 Suppl 1: S56–62.

56. Wittich CM, Pawlina W, Drake RL, Szostek JH, Reed DA, Lachman N, et al. Validation of a method for measuring medical students' critical reflections on professionalism in gross anatomy. Anat Sci Educ. 2013; 6: 232–238. https://doi.org/10.1002/ase.1329 PMID: 23212713

57. Klementc-Ketis Z, Vrecko H. Development and validation of a professionalism assessment scale for medical students. Int J Med Educ. 2014; 5: 205–211. https://doi.org/10.5116/ijme.544b.7972 PMID: 25382090

58. Lombarths KM, Plochg T, Thompson CA, Arah OA, Consortium DUP. Measuring professionalism in medicine and nursing: results of a European survey. PLoS One. 2014; 9: e97069. https://doi.org/10.1371/journal.pone.0097069 PMID: 24849320

59. an Zanten M, Boulet JR, Norcini JJ, McKinley D. Using a standardized patient assessment to measure professional attributes. Med Educ. 2005; 39: 20–29. https://doi.org/10.1111/j.1365-2923.2004.02029.x PMID: 15612897

60. Yang YY, Lee FY, Hsu HC, Lee WS, Chuang CL, Chang CC, et al. Validation of the behavior and concept based assessment of professionalism competence in postgraduate first-year residents. J China Med Assoc. 2013; 76: 186–194.

61. Gauger PG, Gruppen LD, Minter RM, Colletti LM, Stern DT. Initial use of a novel instrument to measure professionalism in surgical residents. Am J Surg. 2005; 189: 479–487. https://doi.org/10.1016/j.amjsurg.2004.09.020 PMID: 15820466

62. Cruess R, McIlroy JH, Cruess S, Ginsburg S, Steiner Y. The professionalism mini-evaluation exercise: A preliminary investigation. Acad Med. 2006; 81: S74–S78. PMID: 17001141

63. Tsugawa Y, Tokuda Y, Ohbu S, Okubo T, Cruess R, Cruess S, et al. Professionalism mini-evaluation exercise for medical residents in Japan: A pilot study. Med Educ. 2009; 43: 968–978. https://doi.org/10.1111/j.1365-2923.2009.03437.x PMID: 19769646

64. Tsugawa Y, Ohbu S, Cruess R, Cruess S, Okubo T, Takahashi O, et al. Introducing the Professionalism Mini—Evaluation Exercise (P-MEX) in Japan: Results from a multicenter, cross-sectional study. Acad Med. 2011; 86: 1026–1031. https://doi.org/10.1097/ACM.0b013e318222bb0 PMID: 21694563

65. Tromp F, Rademakers J, Cate TJ. Development of an instrument to assess professional behaviour of foreign medical graduates. Med Teach. 2007; 29: 150–155. https://doi.org/10.1080/01421590601178014 PMID: 17701625

66. Tromp F, Vermeij-Dassen M, Kramer A, Grol R, Bottema B. Behavioural elements of professionalism: assessment of a fundamental concept in medical care. Med Teach. 2010; 32: e161–169. https://doi.org/10.3109/014215990903544728 PMID: 20353315

67. Cottrell S, Diaz S, Cather A, Shumway J. Assessing medical student professionalism: An analysis of a peer assessment. Med Educ Online. 2006; 11: 1–8.

68. Chandratilake M, McAlender S, Gibson J, Roff S. Medical professionalism: what does the public think? Clin Med. 2010; 10: 364–369.

69. Ephgrave K, Stansfield RB, Woodhead J, Sharp WJ, George T, Lawrence J. The resident view of professionalism behavior frequency in outstanding and “not outstanding” faculty. Am J Surg. 2006; 191: 701–705. https://doi.org/10.1016/j.amjsurg.2006.02.002 PMID: 16647364

70. Quaintance JL, Arnold L, Thompson GS. Development of an Instrument to Measure the Climate of Professionalism in a Clinical Teaching Environment. Acad Med. 2008; 83: S5–S8. https://doi.org/10.1097/ACM.0b013e318183e3d4 PMID: 18820501
71. Thrush CR, Spollen JJ, Tariq SG, Williams DK, Shorey JM II. Evidence for validity of a survey to measure the learning environment for professionalism. Med Teach. 2011; 33: e683–e688. https://doi.org/10.3109/0142159X.2011.611194 PMID: 22225451

72. Young ME, Cruess SR, Cruess RL, Steiner Y. The Professionalism Assessment of Clinical Teachers (PACT): The reliability and validity of a novel tool to evaluate professional and clinical teaching behaviors. Adv Health Sci Educ Theory Pract. 2014; 19: 99–113. https://doi.org/10.1007/s10459-013-9466-4 PMID: 23754583

73. Baumann A, Kolotylo C. The Professionalism and Environmental Factors in the Workplace Questionnaire: development and psychometric evaluation. J Adv Nurs. 2009; 65: 2216–2228. PMID: 20568326

74. Gillespie C, Paik S, Ark T, Zabar S, Kalet A. Residents’ perceptions of their own professionalism and the professionalism of their learning environment. J Grad Med Educ. 2009; 1: 208–215. https://doi.org/10.4300/JGME-D-09-00018.1 PMID: 21975980

75. Hojat M, Paskin DL, Callahan CA, Nasca TJ, Louis DZ, Veloski J, et al. Components of postgraduate competence: analyses of thirty years of longitudinal data. Med Educ. 2007; 41: 982–989. https://doi.org/10.1111/j.1365-2923.2007.02841.x PMID: 17908116

76. Symons AB, Swanson A, McGuigan D, Orrange S, Akl EA. A tool for self-assessment of communication skills and professionalism in residents. BMC Med Educ. 2009; 9: 7.

77. Weis D, Schank MJ. Development and Psychometric Evaluation of the Nurses Professional Values Scale—Revised. J Nurs Meas. 2009; 17: 221–231. PMID: 20069950

78. Lin YH, Wang LCS. A Chinese version of the revised nurses professional values scale: Reliability and validity assessment. Nurse Educ Today. 2010; 30: 492–498. https://doi.org/10.1016/j.nedt.2009.10.016 PMID: 19932928

79. Sang NM, Hall A, Huang TT, Giang le M, Hinh ND. Validity and reliability of the Vietnamese Physician Professional Values Scale. Glob Public Health. 2015; 10 Suppl 1: S131–148.

80. Lin LC, Lee S, Ueng SW, Tang WR. Reliability and validity of the Nurse Practitioners’ Roles and Competencies Scale. J Clin Nurs. 2016; 25: 99–108. https://doi.org/10.1111/jocn.13001 PMID: 26419605

81. Musick DW, McDowell SM, Clark N, Salcido R. Pilot study of a 360-degree assessment instrument for physical medicine and rehabilitation residency programs. Am J Phys Med Rehabil. 2003; 82: 394–402. https://doi.org/10.1097/01.PHM.000064737.97937.45 PMID: 12704281

82. Wood J, Collins J, Burnside ES, Albanese MA, Propeck PA, Kelcz F, et al. Patient, faculty, and self-assessment of radiology resident performance: a 360-degree method of measuring professionalism and interpersonal/communication skills. Acad Radiol. 2004; 11: 931–939. https://doi.org/10.1016/j.acra.2004.04.016 PMID: 15288041

83. Lockyer JM, Violato C, Fidler H. A multi source feedback program for anesthesiologists. Can J Anaesth. 2006; 53: 33–39. https://doi.org/10.1007/BF03021525 PMID: 16371607

84. Lockyer JM, Violato C, Fidler H. The assessment of emergency physicians by a regulatory authority. Acad Emerg Med. 2006; 13: 1296–1303. https://doi.org/10.1111/j.1479-0331.2006.00331.x PMID: 17099191

85. Yudkowsky R, Downing SM, Sandlow LJ. Developing an institution-based assessment of resident communication and interpersonal skills. Acad Med. 2006; 81: 1115–1122. https://doi.org/10.1097/01.ACM.0000246752.00689.bl PMID: 17122484

86. Lockyer J, Blackmore D, Fidler H, Crutcher R, Saile B, Shaw K, et al. A study of a multi-source feedback system for international medical graduates holding defined licences. Med Educ. 2006; 40: 340–347. https://doi.org/10.1111/j.1365-2929.2006.02410.x PMID: 16573670

87. Violato C, Lockyer JM, Fidler H. Assessment of psychiatrists in practice through multisource feedback. Can J Psychiatry. 2008; 53: 525–533. https://doi.org/10.1177/07067437080500807 PMID: 18801214

88. Violato C, Lockyer JM, Fidler H. Changes in performance: A 5-year longitudinal study of participants in a multi-source feedback programme. Med Educ. 2008; 42: 1007–1013. https://doi.org/10.1111/j.1365-2923.2008.03127.x PMID: 18823520

89. Lockyer JM, Violato C, Fidler H, Alakija P. The Assessment of Pathologists/Laboratory Medicine Physicians Through a Multisource Feedback Tool. Arch Pathol Lab Med. 2009; 133: 1301–1308. https://doi.org/10.1043/1543-2165-133.8.1301 PMID: 19653730

90. Al Ansari A, Al Khalifa K, Al Azzawi M, Al Amer R, Al Sharqi D, Al-Mansoor A, et al. Cross-cultural challenges for assessing medical professionalism among clerkship physicians in a Middle Eastern country (Bahrain): feasibility and psychometric properties of multisource feedback. Adv Med Educ Pract. 2015; 6: 509–515. https://doi.org/10.2147/AMEP.S86068 PMID: 26316836

91. Park YS, Riddle J, Tekian A. Validity evidence of resident competency ratings and the identification of problem residents. Med Educ. 2014; 48: 614–622. https://doi.org/10.1111/medu.12408 PMID: 24807437
92. Qu B, Zhao YH, Sun BZ. Evaluation of resident s in profession alism and communicat ion skills in south China. Saudi Med J. 2010; 31: 1260–1265. PMID: 21063660
93. Qu B, Zhao YH, Sun BZ. Assessme nt of resident physicians in profession alism, interpers onal and commu nication skills: a multisourc e feedback. Int J Med Sci. 2012; 9: 228–236. https://doi.org/10.7150/ijms.3353 PMID: 22577337
94. Zhao Y, Zhang X, Chang Q, Sun B. Psychomet ric characteris tics of the 360 degrees feedback scales in profession alism and interpersona l and commu nication skills assessmen t of surgery resident s in China. J Surg Educ. 2013; 70: 628–635. https://doi.org/10.1016/j.jsurg.2013.04.004 PMID: 24016374
95. Senol Y, Dicle O, Durak HI. Evaluation of Dermatolog y Residents Using the Multisource (360-Degree) Assessment Method. J Kuwait Med Assoc. 2009; 41: 205–209.
96. Overeem K, Wollersh eim HC, Arah OA, Cruijsber g JK, Grol R, Lombar ts K. Evaluati on of physicians’ profession al perform ance: An iterative development and validation study of multisource feedback instruments. BMC Health Serv Res. 2012; 12: 11.
97. Brasel KJ, Bragg D, Simpson DE, Weigelt JA. Meeting the Accreditat ion Council for Graduate Medical Educatio n competenc ies using established residency training program assessment tools. Am J Surg. 2004; 188: 9–12.
98. Silber CG, Nasca TJ, Paskin DL, Eiger G, Robeson M, Veloski JJ. Do global rating forms enable pro- gram directors to assess the ACGME competenc ies? Acad Med. 2004; 79: 549–556. PMID: 15165974
99. Reisdorff EJ, Carlson DJ, Reeves M, Walker G, Hayes OW, Reynolds B. Quantitative validation of a general competency composite assessmen t evaluation. Acad Emerg Med. 2004; 11: 881–884. PMID: 15289197
100. Golnik KC, Goldenhar LM, Gittinger JW, Lustbader JM. The Ophthalm ic Clinical Evaluation Exercise (OCEX). Ophth almology. 2004; 111: 1271–1274. https://doi.org/10.1016/j.ophtha.2004.04.014 PMID: 15234125
101. Golnik KC, Goldenhar L. The ophthal mic clinical evaluatio n exercise: reliability determination. Ophthalmology, 2005; 112: 1649–1654. https://doi.org/10.1016/j.ophtha.2005.06.006 PMID: 16111754
102. Durning SJ, Pangaro LN, Lawrence LL, Waechter D, McManigle J, Jackson JL. The feasibility, reliability, and validity of a program director’s (supervisor’s) evaluation form for medical school graduates. Acad Med. 2005; 80: 964–968. PMID: 16186618
103. Artino AR, Dong T, Cuess DF, Gilliland WR, During SJ. Development and Initial Validation of a Program Director’s Evaluation Form for Third-Year Residents. Mil Med. 2015; 180: 104–108.
104. Karayurt O, Mert H, Beser A. A study on developme nt of a scale to assess nursing students’ perfor- mance in clinical settings. J Clin Nurs. 2009; 18: 1123–1130. https://doi.org/10.1111/j.1365-2702.2008.02417.x PMID: 19320782
105. Tromp F, Vernooij-Dassen M, Grol R, Kramer A, Bottema B. Assessment of CanMEDS roles in post-graduate training: the validation of the Compass. Patient Educ Couns. 2012; 89: 199–204. https://doi.org/10.1016/j.pec.2012.06.028 PMID: 22796085
106. Horwitz LI, Dombroski J, Murphy TE, Farnan JM, Johnson JK, Arora VM. Validation of a handoff assessme nt tool: The Handoff CEX. J Clin Nurs. 2013; 22: 1477–1486. https://doi.org/10.1111/j.1365-2702.2012.04131.x PMID: 22671983
107. Horwitz LI, Rand D, Staisiunas P, Van Ness PH, Araujo KLB, Banerjee SS, et al. Development of a handoff evaluation tool for shift-to-shift physician handoffs: The handoff CEX. J Hosp Med. 2013; 8: 191–200. https://doi.org/10.1002/jhm.2023 PMID: 23559502
108. Kassam A, Donnon T, Rigby I. Validity and reliability of an in-training evaluation report to measure the CanMEDS roles in emergency medicine residents. CJEM. 2014; 16: 144–150. PMID: 24626119
109. Dong T, Durning SJ, Gilliland WR, Swygert KA, Artino AR Jr. Development and initial validation of a program director’s evaluation form for medical school graduates. Mil Med. 2015; 180: 97–103.
110. Shayne P, Gallahue F, Rinnert S, Anderson CL, Hem G, Katz E. Reliability of a core competency checklist assessment in the emergency department: The standardized direct observation assessment tool. Acad Emerg Med. 2006; 13: 727–732. https://doi.org/10.1119/j.aem.2006.01.030 PMID: 16636361
111. Neff A, Simmons B, Tabak D, McIlroy-JH, Lee K-S, Roukema H, et al. Using an objective structured clinical examination (OSCE) to assess multiple physician competencies in postgraduate training. Med Teach. 2007; 29: 183–191. https://doi.org/10.1080/01421590701302290 PMID: 17701631
112. Ponton-Carsa A, Hutchison C, Violato C. Assessment of communication, professionalism, and surgical skills in an objective structured performance-related examination (OSPRA): a psychometric study. Am J Surg. 2011; 202: 433–440. https://doi.org/10.1016/j.amjsurg.2010.07.045 PMID: 21861980

Systematic review of medical professionalism measures

PLOS ONE | https://doi.org/10.1371/journal.pone.0177321 May 12, 2017 26 / 28
113. Musick DW, Bockenek WL, Massaghi TL, Miknevich MA, Poduri KR, Sliwa JA, et al. Reliability of the physical medicine and rehabilitation resident observation and competency assessment tool: a multi-institution study. Am J Phys Med Rehabil. 2010; 89: 235–244. https://doi.org/10.1097/PHM.0b013e3181cf1b30 PMID: 20173427

114. Yang YY, Lee FY, Hsu HC, Huang CC, Chen JW, Lee WS, et al. A core competence-based objective structured clinical examination (OSCE) in evaluation of clinical performance of postgraduate year-1 (PGY(1)) residents. J Chin Med Assoc. 2011; 74: 198–204. https://doi.org/10.1016/j.jcma.2011.03.003 PMID: 21550005

115. Dwyer T, Takahashi SG, Hynes MK, Herold J, Wasserstein D, Nousiainen M, et al. How to assess communication, professionalism, collaboration and the other intrinsic CanMEDS roles in orthopedic residents: use of an objective structured clinical examination (OSCE), Can J Surg. 2014; 57: 229–235.

116. de Oliveira GR, Dal Mago AJ, Garcia JHS, Goldschmidt R. An instrument designed for faculty supervision evaluation by anesthesia residents and its psychometric properties. Anesth Analg. 2008; 107: 1316–1322. https://doi.org/10.1213/ane.0b013e318182f6d PMID: 18806047

117. Colletti JE, Flottemesch TJ, O’Connell TA, Ankle FK, Asplin BR. Developing a Standardized Faculty Evaluation in an Emergency Medicine Residency. J Emerg Med. 2010; 39: 662–668. https://doi.org/10.1016/j.jemermed.2009.09.001 PMID: 19959319

118. Deemer ED, Thomas D, Hill CL. Measuring students’ perceptions of faculty competence in professional psychology: Development of the Perceived Faculty Competency Inventory. Train Educ Prof Psychol. 2011; 5: 38–47.

119. Liao JM, Etchegary JM, Williams ST, Berger DH, Bell SK, Thomas EJ. Assessing medical students’ perceptions of patient safety: the medical student safety attitudes and professionalism survey. Acad Med. 2014; 89: 343–351. https://doi.org/10.1097/ACM.000000000000124 PMID: 24362375

120. Smith CA, Varkey AB, Evans AT, Reilly BM. Evaluating the performance of inpatient attending physicians—A new instrument for today’s teaching hospitals. J Gen Intern Med. 2004; 19: 766–771. https://doi.org/10.1111/j.1525-1497.2004.30269.x PMID: 15209591

121. Rodriguez E, Siegelman J, Leone K, Kessler C. Assessing professionalism: summary of the working group on assessment of observable learner performance. Acad Emerg Med. 2012; 19: 1372–1378. https://doi.org/10.1111/acem.12031 PMID: 23279244

122. Miller GE. The assessment of clinical skills/competence/performance. Acad Med. 1990 Sep; 65(9 Suppl):S63–7. PMID: 2400509

123. Hawkins RE, Katsuraklis PJ, Holtman MC, Clauer HE. Assessment of medical professionalism: who, what, when, where, how, and . . . why? Med Teach. 2009 Apr; 31(4):348–61. https://doi.org/10.1080/01421590902887404 PMID: 19404894

124. Hays R, Assessing professionalism. In: Walsh K, ed. Oxford Textbook of Medical Education. Oxford, UK: Oxford University Press; 2013:500–512.

125. Albuan G. Questionnaire Design, Interviewing and Attitude Measurement by A. N. Oppenheim.J Mark Res. 1993; 30: 393–395.

126. Lidwine BM, Caroline BT, Donald LP, Jordi Alonso, Paul WS, Dirk LK, et al. COSMIN Checklist Manual. 2012. http://www.cosmin.nl/images/upload/files/COSMIN%20checklist%20manual%20v9.pdf

128. Valentine MA, Nemhارد IM, Edmondson AC. Measuring teamwork in health care settings: a review of survey instruments. Med Care. 2015; 53: e16–30. https://doi.org/10.1097/MLR.0b013e3182728f85 PMID: 24189550

129. Zill JM, Christalle E, Muller E, Harter M, Dirmaier J, Scholl I. Measurement of physician-patient communication-a systematic review. PLoS One. 2014; 9: e112637. https://doi.org/10.1371/journal.pone.0112637 PMID: 25532118

130. Comert M, Zill JM, Christalle E, Dirmaier J, Harter M, Scholl I. Assessing Communication Skills of Medical Students in Objective Structured Clinical Examinations (OSCE)-A Systematic Review of Rating Scales. PLoS One. 2016; 11: e0152717. https://doi.org/10.1371/journal.pone.0152717 PMID: 27031506

131. Cordier R, Speyer R, Chen YY, Wilkes-Gillan S, Brown T, Bourke-Taylor H, et al. Evaluating the Psychometric Quality of Social Skills Measures: A Systematic Review. PLoS One. 2015; 10: e0132299. https://doi.org/10.1371/journal.pone.0132299 PMID: 2615362
132. Roberts C, Zoanetti N, Rothnie I. Validating a multiple mini-interview question bank assessing entry-level reasoning skills in candidates for graduate-entry medicine and dentistry programmes. Med Educ. 2009; 43: 350–359. https://doi.org/10.1111/j.1365-2923.2009.03292.x PMID: 19335577

133. Tiffin PA, Finn GM, McLachlan JC. Evaluating professionalism in medical undergraduates using selected response questions: findings from an item response modeling study. BMC Med Educ. 2011; 11: 43. https://doi.org/10.1186/1472-6920-11-43 PMID: 21714870

134. De Champlain AF. A primer on classical test theory and item response theory for assessments in medical education. Med Educ. 2010; 44: 109–117. https://doi.org/10.1111/j.1365-2923.2009.03425.x PMID: 20078762