Superconductivity in Sr(Pd$_{1-x}$Ni$_x$)$_2$Ge$_2$

C D Yanga, H C Hsua, W Y Tsenga, H C Chena, H C Kub, M N Ouc, Y Y Chenc, and Y Y Hsua1

a Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
b Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
c Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

E-mail: hcku@phys.nthu.edu.tw

Abstract. The systematic variations of lattice structure and superconducting transition temperature in Sr(Pd$_{1-x}$Ni$_x$)$_2$Ge$_2$ are reported. The X-ray diffraction patterns can be labeled by tetragonal $I4/mmm$ (no. 139) space group with only minor impurities, which indicates the substitution Ni into Pd sites is successful and formed pure phase. The tetragonal lattice parameter a decreases and c increases monotonically with Ni concentration x, while the unit cell volume decreases. A systematic, gradual change of superconducting transition temperature T_c increases slightly to 3.2 K for very small Ni doping of $x \sim 0.1$ then slowly decreases to 2.1 K for $x = 0.5$. Further investigation for SrNi$_2$Ge$_2$ by low temperature resistivity indicated a $T_{c,mid}$ of 0.87 K suggesting that superconductivity exists through the whole Ni substitution levels.

1. Introduction

The appearance of superconductivity in iron-based pnictide compounds has attracted much attention, providing both a new aspect in understanding the physics of unconventional, non-BCS mechanism, superconductivity and a big new family of superconducting materials of fundamental and technological interest. Superconducting transition temperature $T_c = 26$ K was first reported in LaO$_{1-x}$F$_x$FeAs, later was raised to the highest T_c in these materials ~ 55 K in SmFeAsO$_{1-x}$F$_x$ [1,2]. Oxygen-free compounds with the ThCr$_2$Si$_2$-type structure also exhibit superconductivity with a maximum $T_c \simeq 37$ K in (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ (122 system) [3]. Because of the common structural element of Fe-As tetrahedral layer, these two systems are regarded as members of the same family and share a common mechanism of superconductivity. Due to the far better possibility to grow high quality and big crystals, a lot of research efforts were focused on the 122 systems for its superconducting properties and possible mechanisms. However, the importance of the 122-type compounds is not only for its easiness of high-quality crystals, but also for its wide variety of physical properties reported in a huge range of different compounds and compositions.

More recently the ThCr$_2$Si$_2$-type compound SrPd$_2$Ge$_2$ was reported to be superconducting with $T_c = 3.04$ K [4]. However, the reported property of the closely related compound SrNi$_2$Ge$_2$ was not superconducting down to 2 K with neither magnetic orderings [5]. To further explore the understandings of superconductivity in the 122-type structure, it is important whether superconductivity of SrPd$_2$Ge$_2$ is a singular existence or belonged to a series of superconductors with tunable physical variables related to the superconductivity. In this report, systematic

1 This work was supported by NSC of Taiwan under grand no. NSC-97-2112-M-003-001-MY3.

2 To whom any correspondence should be addressed.
Ni doped compounds \(\text{Sr}(\text{Pd}_{1-x}\text{Ni}_x)\text{Ge}_2 \) were synthesized and investigated for structural and superconducting properties. The existence of superconductivity and systematic variations of \(T_c \) with Ni concentration \(x \) were observed for the entire system.

2. Experimental

The intermetallic compounds \(\text{Sr}(\text{Pd}_{1-x}\text{Ni}_x)\text{Ge}_2 \) were prepared by two-step arc melting under Ar gas atmosphere on a water-cooled copper hearth. First the start materials having higher melting points, Pd wire (99.99%), Ni foil (99.99%) and Ge grains (99.9999%) were weighed by stoichiometric ratio and arc melted several times with intermediated turning over of the melted button. After that, Sr rock (99.5% pure) was added and carefully melted together with the previous button for several times to minimize the loss of Sr. The weight loss of the resultant samples were within a few percent. Structural analysis was performed by powder X-ray diffraction with a Rigaku Rotaflex 18-kW rotating anode diffractometer with graphite monochromatized Cu-K\(\alpha \) radiation in 2\(\theta \) range of 15\(^\circ \)-65\(^\circ \). The magnetic susceptibility measurements were performed by a QUANTUM DESIGN \(\mu \)-metal shielded 1-T MPMS\(_2 \) superconducting quantum interference device (SQUID) magnetometer at temperature range of 2-5 K. Low temperature Resistivity was done by standard four-probe technique in a \(^3\)He refrigerator down to 0.4 K.

3. Results and discussion

The powder X-ray diffraction patterns of the as-melted samples \(\text{Sr}(\text{Pd}_{1-x}\text{Ni}_x)\text{Ge}_2 \) (0 \(\leq \) \(x \) \(\leq \) 0.5) were shown collectively in Figure 1 with each pattern shifted for clearance. The diffraction patterns can be well indexed by tetragonal ThCr\(_2 \)Si\(_2 \)-type structure as indicated in the figure. The minor impurities observed in some samples were marked by asterisks. The lattice constants were then obtained by least-square analysis on the indexed patterns which were in good agreement with the reported values of \(\text{SrPd}_2\text{Ge}_2 \) and \(\text{SrNi}_2\text{Ge}_2 \) [4,5]. The tetragonal \(a \)-axis contracted with the Ni doping monotonically from 0.4422 nm for \(x = 0 \) to 0.4292 nm for \(x = 0.5 \), then finally to 0.4178 nm for \(x = 1 \), while the \(c \)-axis increase from 1.0131 nm (\(x = 0 \)) through 1.0179 nm (\(x = 0.5 \)) to 1.0252 nm (\(x = 1 \)). The obtained unit cell volume shrinks almost linearly with the Ni concentration \(x \) from 0.19799 nm\(^3\) for \(x = 0 \) to 0.17922 nm\(^3\) for \(x = 1 \) which corresponds to \(V \sim 10\% \) decrease. On the contrary, the \(c/a \) values also increase nearly linearly from 2.29 (\(x = 0 \)) to 2.45 (\(x = 1 \)). The systematic variation of the tetragonal lattice constants \(a \) and \(c \) as well as only randomly observed minor impurities indicate that Ni can be substituted into the Pd-site of the \(\text{Sr}(\text{Pd}_{1-x}\text{Ni}_x)\text{Ge}_2 \) system without any solubility limit.

The low temperature, \(T \leq 4 \) K, molar magnetic susceptibility \(\chi_m(T) \) for \(\text{Sr}(\text{Pd}_{1-x}\text{Ni}_x)\text{Ge}_2 \) system with 10 G applied field \(B_a \) in zero-field-cooled (ZFC) mode was shown collectively in Figure 2. Meissner effect was observed clearly with a large diamagnetic signal indicates bulk

![Figure 1](image-url)
superconductivity of all compounds observed. The superconducting transition temperature T_c of each Ni doping concentration was denoted by arrows at the onset of diamagnetic signal. A systematic change of T_c with the Ni doping was observed. In the inset, low temperature ($T \leq 1.1$ K) resistance $R(T)$ of the $x = 1$ SrNi$_2$Ge$_2$ compound was shown. Superconductivity was confirmed by the rapid decrease of resistance below $T_{c,\text{onset}} = 0.915$ K which dropped to zero at $T_{c,0} = 0.845$ K with a transition mid-point and width of $T_{c,\text{mid}} = 0.87$ K and $\Delta T_c = 0.036$ K. The observation of T_c varied through out the whole Ni substitution levels indicates the existence of superconductivity in all compounds of the system.

Figure 3 is the phase diagram of superconducting transition temperature as a function of Ni substitution level, T_c vs x, for Sr(Pd$_{1-x}$Ni$_x$)$_2$Ge$_2$ system. As the Ni concentration increases, T_c is first raised slightly from 3 K for SrPd$_2$Ge$_2$ to 3.2 K for $x = 0.1$, then gradually lowered down to 2.1 K for $x = 0.5$, SrPdNi$_2$Ge$_2$. By plotting the T_c of SrNi$_2$Ge$_2$ into the phase diagram, it is more clear that the superconductivity exists through out the system and follows a systematic change. Combining information from both the structural, lattice parameters changed almost linearly, and superconducting T_c has a slight maximum at $x = 0.1$, it is clearly indicated that Ni-doped Sr(Pd$_{1-x}$Ni$_x$)$_2$Ge$_2$ is a superconducting system whose T_c is believed to be tuned by the electronic structure changed with x due to structural changes and element substitution effects.

4. Conclusions

Compounds of Sr(Pd$_{1-x}$Ni$_x$)$_2$Ge$_2$ system were successfully synthesized in good quality. Systematic variations of tetragonal lattice parameters, a and c, as well as superconducting T_c with Ni concentration x was reported. The finite T_c was observed for the whole system which increases from 3 K ($x = 0$) to a slightly higher maximum 3.2 K ($x = 0.1$) then drops down monotonically to 0.87 K for $x = 1$.

Figure 2. Low temperature molar magnetic susceptibility $\chi_m(T)$ of Sr(Pd$_{1-x}$Ni$_x$)$_2$Ge$_2$ at 10 G applied field. The T_c’s were indicated by arrows at the onset of Meissner diamagnetic signal. Inset: The superconducting transition observed in SrNi$_2$Ge$_2$ by resistance.

Figure 3. Systematic variation of the superconducting transition temperature T_c of the Sr(Pd$_{1-x}$Ni$_x$)$_2$Ge$_2$ as a function of Ni concentration x. The dashed line is draw as a guide to the eyes.
References
[1] Y Kamihara, T Watanabe, M Hirano, H Hosono, J. Am. Chem. Soc. 2008, 130, 3296.
[2] Z A Ren, W Lu, J. Yang, W Yi, X L Shen, Z C Li, G C Che, X L Dong, L L Sun, F Zhou, Z X Zhao, Chin. Phys. Lett. 2008, 25, 2215.
[3] Marianne Rotter, Marcus Tegel, and Dirk Johrendt Phys. Rev. Lett. 2008 101 107006.
[4] H Fujii, and A Sato Phys. Rev. B 2009 79 224522.
[5] H Fujii, and A Sato J. Alloy. Compd. 2009 487 198.