THE ISOTROPY GROUP OF A FOLIATION: THE LOCAL CASE.

D. CERVEA & A. LINS NETO

Abstract. Given a holomorphic singular foliation F of $(\mathbb{C}^n, 0)$ we define $\text{Iso}(F)$ as the group of germs of biholomorphisms on $(\mathbb{C}^n, 0)$ preserving F: $\text{Iso}(F) = \{\Phi \in \text{Diff}(\mathbb{C}^n, 0) \mid \Phi^*(F) = F\}$. The normal subgroup of $\text{Iso}(F)$, of biholomorphisms sending each leaf of F into itself, will be denoted as $\text{Fix}(F)$. The corresponding groups of formal biholomorphisms will be denoted as $\hat{\text{Iso}}(F)$ and $\hat{\text{Fix}}(F)$, respectively. The purpose of this paper will be to study the quotients $\text{Iso}(F)/\text{Fix}(F)$ and $\hat{\text{Fix}}(F)/\hat{\text{Fix}}(F)$, mainly in the case of codimension one foliation.

Contents

1. Introduction 1
2. Theorem 1 and correlated facts 7
 2.1. Preliminaries 7
 2.2. Proof of theorem 1 and complements 8
 2.3. An Application of theorem 1 9
 2.4. Examples with formal, but without meromorphic integrating factor 16
3. Conical and logarithmic foliations
 3.1. Preliminaries and statement of the results. 18
 3.2. Conical foliations: proof of theorem 4 21
 3.3. Logarithmic foliations
References 28

1. INTRODUCTION

Let F be a germ at $0 \in \mathbb{C}^n$ of a singular codimension p holomorphic foliation, where $1 \leq p \leq n - 1$. It is known that F can be defined by a germ of holomorphic p-form $\Omega \in \Omega^p(\mathbb{C}^n, 0)$, which is integrable in the following sense:

1. Ω is locally completely decomposable outside its singular set: if $m \notin \text{Sing}(\Omega)$, that is $\Omega(m) \neq 0$, then the germ Ω_m of Ω at m, is completely decomposable; i.e., there exist germs of holomorphic 1-forms at m, say $\omega_1, ..., \omega_p$, such that $\Omega_m = \omega_1 \wedge ... \wedge \omega_p$.
2. $\omega_1, ..., \omega_p$ satisfy the Frobenius integrability condition: $d\omega_j \wedge \Omega \equiv 0$, $\forall 1 \leq j \leq p$.

Condition (1) implies that we can define a codimension p distribution D outside $\text{Sing}(\Omega)$ by

$$D(m) = \{v \in T_m \mathbb{R}^n \mid i_v \Omega(m) = 0\} := \ker(\Omega(m)),$$

1991 Mathematics Subject Classification. 37F75, 34M15.
Key words and phrases. holomorphic foliation.
Condition (2) implies that the distribution D is integrable.

Remark 1.1. If $\text{Cod}_C(\text{Sing}(\Omega)) \geq 2$ and Ω is another germ of p-form that represents \mathcal{F} then there exists an unity $u \in \mathcal{O}_n^*$ such that $\Omega = u \cdot \Omega$. From now on, we will assume that $\text{Sing}(\mathcal{F}) = \text{Sing}(\Omega)$ has codimension ≥ 2.

Associated to the foliation \mathcal{F} we introduce the following group

$$\text{Iso}(\mathcal{F}) = \{ \phi \in \text{Diff}(\mathbb{C}^n, 0) \mid \phi^*(\mathcal{F}) = \mathcal{F} \},$$

the subgroup of $\text{Diff}(\mathbb{C}^n, 0)$ of germs of holomorphic diffeomorphisms fixing the foliation \mathcal{F}.

In terms of a germ of p-form Ω defining \mathcal{F} relation (1) means that $\phi^*(\Omega)$ also defines the foliation \mathcal{F}, and so $\phi^*(\Omega) = u \cdot \Omega$, where $u \in \mathcal{O}_n^*$.

We will consider also

$$\text{Iso}_u(\mathcal{F}) = \{ \phi \in \text{Diff}(\mathbb{C}^n, 0) \mid \phi^*(\Omega) = \widehat{u} \cdot \Omega, \widehat{u} \in \mathcal{O}_n^* \},$$

the group of formal diffeomorphisms "fixing" \mathcal{F}.

Remark 1.2. Let \mathcal{F} and Ω be as before. The reader can check that a germ $\phi \in \text{Iso}(\mathcal{F})$ if, and only if, there are neighborhoods U and V of $0 \in \mathbb{C}^n$, and representatives of Ω and ϕ, denoted by the same symbols, such that $\Omega \in \Omega^p(U \cup V)$, $\phi : U \to V$, and

a. $\phi(\text{Sing}(\Omega|_U)) = \text{Sing}(\Omega|_V)$,

b. ϕ sends leaves of $\mathcal{F}|_U$ onto leaves of $\mathcal{F}|_V$.

Let us see some examples.

Example 1. The simplest example of a germ \mathcal{F} of codimension p foliation is the regular foliation, when $\Omega(0) \neq 0$. In this case, the definition and Frobenius theorem implies that there are local coordinates $z = (z_1, ..., z_n)$ around $0 \in \mathbb{C}^n$ and an unity $v \in \mathcal{O}_n^*$ such that $\Omega = v(z) dz_1 \wedge ... \wedge dz_p$. In this case, it is easy to see that $\phi = (\phi_1, ..., \phi_n) \in \text{Iso}(\mathcal{F})$ if, and only if $\frac{\partial \phi_i}{\partial z_j} = 0, \forall 1 \leq i \leq p, \forall j > p$. In other words, if we set $\Psi_1 = (\phi_1, ..., \phi_p)$, $\Psi_2 = (\phi_{p+1}, ..., \phi_n)$, $\zeta_1 = (z_1, ..., z_p)$ and $\zeta_2 = (z_{p+1}, ..., z_n)$ then

$$\phi(z) = (\Psi_1(\zeta_1), \Psi_2(\zeta_1, \zeta_2)).$$

Example 2. Let \mathcal{F} and Ω be as above. We say that a germ of holomorphic (resp. formal) vector field $X \in \mathcal{X}(\mathbb{C}^n, 0)$ (resp. $X \in \tilde{\mathcal{X}}(\mathbb{C}^n, 0)$) is tangent to the foliation \mathcal{F} if $i_X \Omega = 0$. Let us denote the local flow of X by $t \in (\mathbb{C}, 0) \to X_t$. If X is holomorphic and $t \in (\mathbb{C}, 0)$ then X_t defines a germ of diffeomorphism $\mathcal{X}_t : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, X_t(0))$. In particular, if $X(0) = 0$ then $\mathcal{X}_t \in \text{Diff}(\mathbb{C}^n, 0), \forall t \in (\mathbb{C}, 0)$. The reader can verify directly that in this case $\mathcal{X}_t \in \text{Iso}(\mathcal{F}), \forall t \in (\mathbb{C}, 0)$.

In this example, X_t fixes the leaves of \mathcal{F}, in the sense that if L is a leaf of \mathcal{F} then $X_t(L) \cap L \neq \emptyset$ is an open subset of L.

Motivated by example 2 we define $\text{Fix}(\mathcal{F})$ as the subgroup of $\text{Iso}(\mathcal{F})$ of germs of diffeomorphisms that "fix" the leaves of \mathcal{F}. In other words, if $\Phi \in \text{Fix}(\mathcal{F})$, U is the domain of Φ and $L \subset U$ is a leaf of $\mathcal{F}|_U$ then $\Phi(L) \cap L \neq \emptyset$ is an open subset of L. For instance, if L accumulates in the origin $0 \in \mathbb{C}^n$ then, as a germ, we have $\Phi(0) = L$.

The formal completion of $\text{Fix}(\mathcal{F})$ in $\text{Diff}(\mathbb{C}^n, 0)$ will be denoted by $\widehat{\text{Fix}}(\mathcal{F})$.
Remark 1.3. $\text{Fix}(\mathcal{F})$ (resp. $\hat{\text{Fix}}(\mathcal{F})$) is a normal subgroup of $\text{Iso}(\mathcal{F})$ (resp. $\hat{\text{Iso}}(\mathcal{F})$). We leave the proof to the reader.

One of the goals of this paper is to describe the groups $\text{Iso}(\mathcal{F})$ (resp. $\hat{\text{Iso}}(\mathcal{F})$) and the quotient $\text{Iso}(\mathcal{F})/\text{Fix}(\mathcal{F})$ (resp. $\hat{\text{Iso}}(\mathcal{F})/\hat{\text{Fix}}(\mathcal{F})$) in certain cases. Let us begin by a simple example.

Example 3. Let $\omega \in \Omega^1(\mathbb{C}^n, 0)$ be an integrable 1-form and $\Phi \in \text{Diff}(\mathbb{C}^n, 0)$ be an involution $(\Phi^2 = I)$, which is not in $\text{Iso}(\mathcal{F}_\omega)$. In particular, $\eta := \omega \wedge \Phi^*(\omega) \neq 0$ and if $n \geq 3$ then η is integrable and defines a foliation \mathcal{F}_η of codimension two of $(\mathbb{C}^n, 0)$. Since $\Phi^2 = I$ we have

$$\Phi^*(\eta) = \Phi^*(\omega \wedge \Phi^*(\omega)) = \Phi^*(\omega) \wedge \omega = -\eta \implies \Phi \in \text{Iso}(\mathcal{F}_\eta).$$

We would like to observe that $\Phi \notin \text{Fix}(\mathcal{F}_\eta)$, so that its class in $\text{Iso}(\mathcal{F}_\eta)/\text{Fix}(\mathcal{F}_\eta)$ is non-trivial.

Another simple example is the following:

Example 4. We say that \mathcal{F} is a homogeneous foliation on \mathbb{C}^n if there exists a p-form Ω defining \mathcal{F} with all coefficients homogeneous of the same degree. Let $R = \sum_j z_j \frac{\partial}{\partial z_j}$ be the radial vector field. The p-form Ω is homogeneous if, and only if, $L_R \Omega = (d + p) \Omega$, where d is the degree of the coefficients. In particular, the group of dilatations of \mathbb{C}^n

$$H = \{ \eta(z) = \rho \cdot z \mid \rho \in \mathbb{C}^* \}$$

is contained in $\text{Iso}(\mathcal{F})$: $h^*_\rho(\Omega) = \rho^{d+p} \cdot \Omega$ and so $h^*_\rho \in \text{Iso}(\mathcal{F})$.

We note however that $i_R \Omega \equiv 0$ if, and only if, $H \subset \text{Fix}(\mathcal{F})$. When $i_R \Omega = 0$ we say that the foliation \mathcal{F} is conic.

If $i_R \Omega \neq 0$ then the generic element of H does not fix the leaves of \mathcal{F} and the quotient $H/H \cap \text{Fix}(\mathcal{F})$ can be very complicated in general, as in the next example.

Example 5. Let \mathcal{F} be the germ of codimension one logarithmic foliation given by $\Omega = x_1 \ldots x_n \sum_{j=1}^n \lambda_j \frac{dx_j}{x_j^2}$, where $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ are linearly independent over \mathbb{Z}.

In this case the holonomy group of the leaf $L := (x_1 = 0) \setminus \bigcup_{j>1} (x_j = 0)$ in the transversal section $\Sigma := \{(\tau, 1, \ldots, 1) \mid \tau \in \mathbb{C}\}$ is linear and its multipliers are in the sub-group G of \mathbb{C}^* generated by $e^{2\pi i \lambda_j/\lambda_1}$, $2 \leq j \leq n$. It can be shown that $H/H \cap \text{Fix}(\mathcal{F})$ is isomorphic to \mathbb{C}^*/G.

Example 6. Let $\omega_1, \ldots, \omega_p$ be p germs of integrable 1-forms on $(\mathbb{C}^n, 0)$, where $2 \leq p < n$. Let $\eta := \omega_1 \wedge \ldots \wedge \omega_p$. We will assume that $\eta \neq 0$. Note that η is integrable. We will assume also that:

1. If $\omega = \sum_{j=1}^p f_j \cdot \omega_j$ is integrable, where $f_1, \ldots, f_n \in \mathcal{O}_n$, and there is i such that $f_i \in \mathcal{O}_n^*$ then $\omega = f_i \cdot \omega_i$.

2. If $i \neq j$ then there is no $\Phi \in \text{Iso}(\mathcal{F}_\eta)$ such that $\omega_i \wedge \Phi^*(\omega_j) = 0$.

With the above hypothesis we have $\text{Iso}(\mathcal{F}_\eta) = \bigcap_{j=1}^p \text{Iso}(\mathcal{F}_{\omega_j})$.

In fact, if $\Phi \in \text{Iso}(\mathcal{F}_\eta)$ then $\Phi^*(\eta) = u \cdot \eta$, $u \in \mathcal{O}_n^*$, implies that $\Phi^*(\omega_j) = \sum_{i=1}^p f_{ji} \cdot \omega_i$, $\forall 1 \leq j \leq p$, where $f_{ji} \in \mathcal{O}_n^*$ for some i. Therefore, from (1) we get $\Phi^*(\omega_j) = f_{ji} \cdot \omega_i$ and by (2) we get $i = j$ and $\Phi^*(\omega_j) = f_{jj} \cdot \omega_j$, so that $\Phi \in \text{Iso}(\mathcal{F}_{\omega_j})$, $\forall j$. The converse statement is immediate and is left to the reader.
A concrete example of this situation is the following: let \(f, g \in \mathcal{O}_2 \) be such that \(f^{-1}(0) \) and \(g^{-1}(0) \) are not homeomorphic. Define \(\omega_1, \omega_2 \in \Omega^1(\mathbb{C}^4, 0) \) as \(\omega_1 = z_1 \, dz_2 + df(z_1, z_2) \) and \(\omega_2 = z_3 \, dz_4 + dg(z_3, z_4) \).

Using that \(dw_1 = dz_1 \wedge dz_2 \) and \(dw_2 = dz_3 \wedge dz_4 \) it is possible to prove that \(\omega_1 \) and \(\omega_2 \) satisfy hypothesis (1) and (2) above. In particular, we get \(Iso(\mathcal{F}_{\omega_1 \wedge \omega_2}) = \{ (\phi(z_1, z_2), \psi(z_3, z_4)) \mid \phi \in Iso(\mathcal{F}_{\omega_1}) \text{ and } Iso(\mathcal{F}_{\omega_2}) \} \simeq Iso(\mathcal{F}_{\omega_1}) \times Iso(\mathcal{F}_{\omega_2}) \).

Another example in \((\mathbb{C}^3, 0)\), satisfying (1) and (2), is the following: let \(\omega_1 = a(x, y) \, dx + b(x, y) \, dy \) and \(\omega_2 = dz \), where we assume that \(\omega_1 \) has no meromorphic integrating factor. Here we have \(Iso(\mathcal{F}_{\omega_1 \wedge \omega_2}) = \{ (\phi(x, y), \psi(z)) \mid \phi \in Iso(\mathcal{F}_{\omega_1}) \text{ and } \psi \in Diff(\mathbb{C}, 0) \} \simeq Iso(\mathcal{F}_{\omega_1}) \times Diff(\mathbb{C}, 0) \).

We begin in §2 studying the case of codimension one foliations. In [4] the authors study some special cases of this situation: when the dimension is \(n = 2 \) and when \(\mathcal{F} \) has an holomorphic first integral, related with a known Briançon-Skoda theorem [3]. In particular, we intend here to precise and generalize some of the results of [3]. Our first result in this direction is the following:

Theorem 1. Let \(\mathcal{F} \) be a germ at \(0 \in \mathbb{C}^n \) of codimension one foliation defined by a germ of integrable 1-form \(\Omega \). Suppose that the quotient \(\widehat{Iso}(\mathcal{F})/\widehat{Fix}(\mathcal{F}) \) has an element of infinite order. Then \(\mathcal{F} \) is formally Liouville integrable, that is, there exists \(f \in \mathcal{O}_n \) such that \(\frac{1}{f} \Omega \) is closed.

In §2.3 we will apply theorem [3] in the case of foliations on \((\mathbb{C}^2, 0)\) that in the process of resolution have a non-dicritical irreducible component with non-abelian holonomy. In theorem [4] we will prove that for such a foliation \(\mathcal{F} \) then \(\widehat{Iso}(\mathcal{F})/\widehat{Fix}(\mathcal{F}) \) is isomorphic to a finite subgroup of the linear group \(GL(2, \mathbb{C}) \).

Theorem [3] is stated in a formal context. A germ of meromorphic closed 1-form \(\omega/f, \omega \in \Omega^1(\mathbb{C}^n, 0) \), \(f \in \mathcal{O}_n \), can be written in a normal form of the following type: if \(f = f_1^{n_1+1} \cdots f_r^{n_r+1} \) is the decomposition of \(f \) into irreducible factors, then it can be proved that (cf. [3])

\[
\frac{\omega}{f} = \sum_{j=1}^{r} \lambda_j \frac{df_j}{f_j} + d \left(\frac{H}{f_1^{n_1} \cdots f_r^{n_r}} \right),
\]

where \(H \in \mathcal{O}_n \) and \(\lambda_j \in \mathbb{C} \), \(1 \leq j \leq r \).

In the formal case, when \(\omega \in \widehat{\Omega}^1(\mathbb{C}^n, 0) \) and \(f_j \in \widehat{\mathcal{O}}_n \), \(1 \leq j \leq r \), there is a similar result, proved in [23], with \(H \in \widehat{\mathcal{O}}_n \) in [22]. In our case, \(\omega \in \Omega^1(\mathbb{C}^n, 0) \) and \(f \in \widehat{\mathcal{O}}_n \), but there are conditions, on the residues \(\lambda_j \), assuring the convergence of \(f \) (see [3]).

About the cardinality of the quotient group and the existence of holomorphic integrating factor, by using results of Pérez Marco [20] it is possible to construct examples of germs of foliations \(\mathcal{F} \) on \((\mathbb{C}^2, 0)\) in which \(Iso(\mathcal{F})/Fix(\mathcal{F}) \) is non-countable, contains elements of infinite order, but \(\mathcal{F} \) is not Liouville integrable: it cannot be defined by a meromorphic closed form (see theorem [3] in §2.4).

In §3 we will study \(Iso(\mathcal{F}) \) and \(Fix(\mathcal{F}) \) when \(\mathcal{F} \) is homogeneous or has an integrating factor.
Definition 1. We say that a p-form Ω on \mathbb{C}^n is conical if it is homogeneous and $i_\xi \Omega = 0$, where R is the radial vector field on \mathbb{C}^n. A holomorphic foliation of codimension p on \mathbb{C}^n is conical if it can be defined by a conical p-form.

If \mathcal{F} is a conical foliation on \mathbb{C}^n, as above, then \mathcal{F} induces a foliation $\tilde{\mathcal{F}}$, of the same codimension, on the projective space \mathbb{P}^{n-1}. In theorem 4 we prove that, in this case, $\text{Iso}(\tilde{\mathcal{F}})/\text{Fix}(\mathcal{F})$ is isomorphic to $\text{Aut}(\tilde{\mathcal{F}})$, the subgroup of $\text{Aut}(\mathbb{P}^{n-1})$ of automorphisms of \mathbb{P}^{n-1} preserving $\tilde{\mathcal{F}}$. Let us see an example.

Example 7. Jouanolou’s example of degree $d \geq 2$ on \mathbb{P}^n (see [9] and [12]) is defined in homogeneous coordinates of \mathbb{C}^{n+1} by the homogeneous $(n - 1)$-form $\Omega = i_R \omega$, where R is the radial vector field on \mathbb{C}^{n+1}, $\omega = dx_1 \wedge \ldots \wedge dx_{n+1}$ and

$$X = x_{n+1}^d \frac{\partial}{\partial x_1} + \sum_{j=2}^n x_j^{d-1} \frac{\partial}{\partial x_j}.$$

The foliation $\tilde{\mathcal{F}}$, induced on \mathbb{P}^n by \mathcal{F}_Ω, can be defined in the affine coordinate $x_{n+1} = 1$ by the vector field

$$Y = (1 - x_{n+1}^d, x_1) \frac{\partial}{\partial x_1} + \sum_{j=2}^n (x_j^{d-1} - x_{n+1}^d) \frac{\partial}{\partial x_j}.$$

Let $D = \frac{d^{n+1}}{n+1}$ and λ be a primitive Dth-root of unity. It is known that $\text{Aut}(\tilde{\mathcal{F}})$ is isomorphic to the finite sub-group $G(n, d)$ of $\text{PSL}(n+1, \mathbb{C})$ generated by the transformations τ and ρ, where

$$\tau(x_1, \ldots, x_n, x_{n+1}) = \left(\lambda. x_1, \lambda^{d+1}. x_2, \ldots, \lambda^{d^{n-1}}. x_j, \ldots, \lambda^{d^{n-1}}. x_n, x_{n+1}\right)$$

and

$$\rho(x_1, x_2, \ldots, x_n, x_{n+1}) = (x_{n+1}, x_1, x_2, \ldots, x_n).$$

In particular, $\text{Iso}(\mathcal{F}_\Omega)/\text{Fix}(\mathcal{F}_\Omega) \simeq G(n, d)$ by theorem 4.

On the other hand, if $\omega \in \Omega^1(\mathbb{C}^n)$ is integrable and homogeneous, but is non-conical, then the following facts are known (see [3]):

a. If $i_\xi \omega = f \neq 0$ then f is an integrating factor of ω: $d(f^{-1}. \omega) = 0$.

b. f is homogeneous: $R(f) = \ell \xi$, for some $\ell \in \mathbb{N}$.

c. If $f = f_1^{r_1+1} \ldots f_r^{r_r+1}$ is the decomposition of f into homogeneous factors then the hypersurfaces $(f_j = 0)$ are \mathcal{F}_ξ-invariant, $\forall 1 \leq j \leq r$. Moreover, the form $f^{-1}. \omega$ can be written as in [2].

d. When f is reduced, $f = f_1 \ldots f_r$, then $\Omega := f^{-1}. \omega$ is logarithmic:

$$\Omega = \sum_{j=1}^r \lambda_j \frac{df_j}{f_j}.$$

When $\Omega = f^{-1}. \omega$ is like in [2] or [3] and $f_1, \ldots, f_r \in \mathcal{O}_n$ are relatively prime, but not necessarily homogeneous, we will consider in §3.3 the case in which \mathcal{F}_Ω has no meromorphic first integral. In proposition 4 we will prove that if Ω is a closed meromorphic 1-form, without meromorphic first integral, and if $\Phi \in \text{Iso}(\mathcal{F}_\Omega)$ then $\Phi^* (\Omega) = \delta \Omega$, where δ is a root of unity. As we will see there, in this case Φ permutes the "separatrices" $(f_j = 0)$, and if $\Phi(f_j = 0) = (f_j = 0)$, $1 \leq j \leq r$, then $\delta = 1.$
In theorem 3 we will prove that if Ω is logarithmic, has no meromorphic first integral and $Iso(\mathcal{F}_1)$ contains a transformation Φ with $D\Phi(0) = \rho, I$, where ρ is not a root of unity, then there exists $h \in Diff(C^n, 0)$ such that $h^* \Omega$ is homogeneous.

In corollaries 2, 3, 4 and 5 we apply theorem 3 in some special situations.

Example 8. Let $f_1, f_2 \in \mathcal{O}_2$ be such that:

1. f_1 is irreducible in \mathcal{O}_n and its first non-vanishing jet at $0 \in \mathbb{C}$ is $J^1_0(f_1) = z_1^* z_2^*$.
2. $J^1_0(f_2) = z_1 + z_2$.

Let $\Omega = \frac{df_1}{f_1} + \lambda \frac{df_2}{f_2}$, where $\lambda \notin \mathbb{Q}$. Then $Iso(\mathcal{F}_1) = Fix(\mathcal{F}_1)$.

This example is an application of corollary 4 as we will see in § 3.4.

Remark 1.4. Let $\omega \in \Omega^1(C^n, 0)$ be an integrable form inducing the germ of foliation \mathcal{F}_ω. Note that $Iso(\mathcal{F}_\omega)/Fix(\mathcal{F}_\omega)$ can be considered as a subgroup of $\tilde{Iso}(\mathcal{F}_\omega)/\tilde{Fix}(\mathcal{F}_\omega)$.

In fact, there is a natural group inclusion $In: Iso(\mathcal{F}_\omega)/Fix(\mathcal{F}_\omega) \rightarrow \tilde{Iso}(\mathcal{F}_\omega)/\tilde{Fix}(\mathcal{F}_\omega)$, as the reader can check. This map is injective, but not surjective in general.

For instance, in the case of 1-forms $\omega \in \Omega^1(C^2, 0)$ that are formally linearizable, but not holomorphically linearizable, studied in theorem 3 the map is not surjective. In contrast, in the case of conical foliations, to be studied in § 3.2 the map is an isomorphism. A natural problem is the following:

Problem 1. When $In: Iso(\mathcal{F}_\omega)/Fix(\mathcal{F}_\omega) \rightarrow \tilde{Iso}(\mathcal{F}_\omega)/\tilde{Fix}(\mathcal{F}_\omega)$ is an isomorphism?

Another natural problem is the following:

Problem 2. Let \mathcal{F} be a germ of foliation such that any element $\Phi \in Iso(\mathcal{F})/Fix(\mathcal{F})$ has finite order. Is $Iso(\mathcal{F})/Fix(\mathcal{F})$ finite? The same question can be posed for $\tilde{Iso}(\mathcal{F})/\tilde{Fix}(\mathcal{F})$.

In theorem 2 we prove that the answer of problem 2 is positive in a particular case in dimension two. In corollary 3 of theorem 5 we prove a similar statement in the case of logarithmic foliations in $(C^n, 0)$ (see § 3.1).

Remark 1.5. Let $S = \sum_{j=1}^{n} k_j z_j \frac{\partial}{\partial z_j}$ be a semi-simple linear vector field with eigenvalues $k_1, ..., k_n \in \mathbb{Z}_{>0}$ and $gcd(k_1, ..., k_n) = 1$. We say that a p-form $\eta \in \Omega^p(C^n, 0)$ is S quasi-homogeneous if $L_S \eta = k \eta$, where $k \in \mathbb{N}$. In the case of a germ of function $f \in \mathcal{O}_n$ the identity $S(f) = L_S(f) = k \cdot f$ means that

$$f(\tau^{k_1} z_1, ..., \tau^{k_n} z_n) = \tau^k f(z_1, ..., z_n), \forall (z_1, ..., z_n) \in (C, 0), \forall \tau \in C.$$

We would like to observe the following facts:

1. η is homogeneous if, and only if, η is quasi-homogeneous with respect to R, the radial vector field in C^n.
2. If η is S quasi-homogeneous then their coefficients are S quasi-homogeneous. As a consequence all coefficients of η are polynomials.
3. The flow $exp(t \cdot S)$ of S induces a C^* action $\Psi: C^* \times C^n \rightarrow C^n$:

$$\Psi_{(z_1, ..., z_n)} := \Psi(\tau, z_1, ..., z_n) = (\tau^{k_1} z_1, ..., \tau^{k_n} z_n).$$
The relation $L_S \eta = k \eta$ is equivalent to $\Psi^*(\eta) = \tau^k \eta$.

We say that η is a S conical foliation if η is S quasi-homogeneous and $i_S \eta = 0$. A S conical and integrable form induces a foliation on the weighted projective space \mathbb{P}^{n-1}_k, associated to the weights $k = (k_1, ..., k_n)$ (cf. [7]).

A natural question is the following:

Problem 3. Let $S = \sum_{j=1}^n k_j z_j \frac{\partial}{\partial z_j}$ be as above. Are there statements concerning S conical and S quasi-homogeneous foliations, similar to theorems 4 and 5?

2. Theorem and Correlated Facts

2.1. Preliminaries. This section is devoted to the statement of some well known results that will be used along the text. We will prove also theorem 1 in § 2.2 and give an application in § 2.3. In § 2.4 we construct examples of foliations F in dimension two for which $Iso(F)/Fix(F)$ is non-countable. These examples are not Liouville integrable, but formally Liouville integrable, in the sense that they admit a formal integrating factor.

We begin recalling the concept of unipotent germ of formal diffeomorphism.

Definition 2. We say that $\phi \in \hat{Diff}(\mathbb{C}^n, 0)$ is unipotent if the linear part $D\phi(0)$ is unipotent. A formal vector field $X \in \hat{X}(\mathbb{C}^n, 0)$ is nilpotent if its linear part $DX(0)$ is nilpotent.

In fact, the following proposition is known (cf. [1] and [4]):

Proposition 1. A formal germ $\phi \in \hat{Diff}(\mathbb{C}^n, 0)$ is unipotent if, and only if, there exists a nilpotent formal vector field $X \in \hat{X}(\mathbb{C}^n, 0)$ such that $\phi = \exp(X)$, where $t \mapsto \exp(t X)$ denotes the formal flow of X. Moreover, if $X \in \hat{X}(\mathbb{C}^n, 0)$ is nilpotent then the formal flow is polynomial in t, in the sense that

$$
\exp(t X)(z) = \sum_\sigma P_\sigma(t) z^\sigma,
$$

where $P_\sigma(t)$ is a polynomial in t for all $\sigma = (\sigma_1, ..., \sigma_n)$.

As a consequence, we have the following:

Corollary 2.1. If $\phi \in \hat{Iso}(F)$ is unipotent and $\phi = \exp(X)$ then $\phi_t = \exp(t X) \in \hat{Iso}(F)$, $\forall t \in \mathbb{C}$.

Proof. Let Ω be a germ of integrable p-form that represents F. Since $\phi \in \hat{Iso}(F)$ we have

$$
\phi^*(\Omega) = \hat{u} \cdot \Omega, \quad \hat{u} \in \mathcal{O}^*_n.
$$

From the above relation, we get by induction on $k \in \mathbb{N}$ that

$$
(\phi^k)^*(\Omega) = \hat{u}_k \cdot \Omega,
$$

where \hat{u}_k is defined inductively by $\hat{u}_1 = \hat{u}$ and $\hat{u}_{k+1} = \hat{u}_k \circ \phi \cdot \hat{u}$, if $k \geq 1$.

Write

$$
\Omega = \sum_I F_I(z) dz^I,
$$

where $I = (1 \leq i_1 < ... < i_p \leq n)$, $dz^I = dz_{i_1} \wedge ... \wedge dz_{i_p}$ and $F_I(z) = \sum_\sigma A_{I,\sigma} z^\sigma$.

Let $X \in \tilde{\mathcal{X}}(\mathbb{C}^n, 0)$ be such that $\phi = \exp(X)$. Since $\exp(tX)(z) = \sum P_\sigma(t) z^\sigma$, where $P_\sigma \in \mathbb{C}[t]$, we get by direct substitution that

$$\exp(tX)^*(\Omega) = \sum I F_i(t, z) dz^I,$$

where $F_i(0, z) = F_i(z)$ and

$$F_i(t, z) = \sum Q_{I, \sigma}(t) z^\sigma, \quad Q_{I, \sigma} \in \mathbb{C}[t], \forall I, \sigma \label{eq:6}$$

Now, we can write $\phi^k = \exp(k X)$ if $k \in \mathbb{Z}$, so that, from (6) and (5) we obtain that for all I_1, σ_1 and I_2, σ_2 such that $A_{I_1, \sigma_1} A_{I_2, \sigma_2} \neq 0$ we have

$$\frac{Q_{I_1, \sigma_1}(k)}{A_{I_1, \sigma_1}} = \frac{Q_{I_2, \sigma_2}(k)}{A_{I_2, \sigma_2}}, \forall k \in \mathbb{Z}.$$

Since all $Q_{I, \sigma}(t)$ are polynomials in t, from the above relation that

$$\frac{Q_{I_1, \sigma_1}(t)}{A_{I_1, \sigma_1}} = \frac{Q_{I_2, \sigma_2}(t)}{A_{I_2, \sigma_2}}, \forall t \in \mathbb{C}$$

which implies the corollary. \qed

Another well known fact is the following:

Proposition 2. Let $\phi \in \text{Diff}(\mathbb{C}^n, 0)$ be a formal diffeomorphism. Then ϕ admits a formal Jordan decomposition: $\phi = \phi_S \circ \phi_U$, where ϕ_S and ϕ_U are commuting formal diffeomorphisms, ϕ_S is semi-simple (formally conjugated to its linear part $D\phi_S(0)$) and ϕ_U is unipotent.

Remark 2.1. If $\phi \in \tilde{\text{Isol}}(\mathcal{F})$ then $\phi_S, \phi_U \in \tilde{\text{Isol}}(\mathcal{F})$. The proof can be found in [4].

2.2. Proof of theorem \[1\] and complements.

Let \mathcal{F} be a germ of codimension one foliation defined by an integrable germ $\Omega \in \Omega^1(\mathbb{C}^n, 0)$. We will assume that $\tilde{\text{Isol}}(\mathcal{F})$ has an element of infinite order in the quotient $\tilde{\text{Isol}}(\mathcal{F})/\tilde{\text{Fix}}(\mathcal{F})$, say ϕ. The proof will be based in several remarks. The first is elementary:

Proposition 3. Let $\phi \in \tilde{\text{Isol}}(\mathcal{F})$ be unipotent and $X \in \tilde{\mathcal{X}}(\mathbb{C}^n, 0)$ be such that $\phi = \exp(X)$. Let $f := i_X \Omega \in \tilde{\mathcal{O}}_n$. We have two possibilities:

(a). $f \neq 0$ and $\omega := \frac{1}{i} \Omega$ is closed.

(b). $f \equiv 0$ and in this case $\phi \in \tilde{\text{Fix}}(\mathcal{F})$.

Proof. From corollary [2.1] we know that $\exp(tX) \in \tilde{\text{Isol}}(\mathcal{F})$, which means that $\exp(tX)^* \Omega = u_t \Omega$, where $u_t \in \tilde{\mathcal{O}}_n^* \forall t \in \mathbb{C}$. Using that $\frac{d}{dt}\exp(tX)^* \Omega|_{t=0} = L_X \Omega$, where L_X denotes the Lie derivative in the direction of X, and taking the derivative in both members of the above relation we get

$$L_X \Omega = v \Omega, \quad v = \frac{d}{dt} u_t|_{t=0}.$$

Since $v \Omega = L_X \Omega = i_X d\Omega + d i_X \Omega = i_X d \Omega + d f$ we get

$$0 = L_X \Omega \wedge \Omega = i_X d \Omega \wedge \Omega + df \wedge \Omega \implies df \wedge \Omega = \Omega \wedge i_X d \Omega.$$

On the other hand, the integrability condition $\Omega \wedge d\Omega = 0$ implies that

$$0 = i_X (\Omega \wedge d\Omega) = i_X \Omega \wedge d\Omega - \Omega \wedge i_X d\Omega = f d\Omega - \Omega \wedge i_X d \Omega \implies$$
This proves (a).

If X is holomorphic and $i_X\Omega = 0$ then the orbits of the flow $exp(tX)$ are contained in the leaves of \mathcal{F}, so that $\phi = exp(X) \in Fix(\mathcal{F})$.

In the general case the formal flow $t \mapsto exp(tX)$ is tangent to \mathcal{F}.

Let us finish the proof of theorem 1. Let \mathcal{F} be defined by the germ of integrable 1-form Ω and $\phi \in \tilde{Iso}(\mathcal{F})$ be of infinite order in $\tilde{Iso}(\mathcal{F})/\tilde{Fix}(\mathcal{F})$. By proposition 2 we can decompose $\phi = \phi_S \circ \phi_U$, where ϕ_S is semi-simple and ϕ_U unipotent. By remark 2.1 ϕ_S and ϕ_U are in $\tilde{Iso}(\mathcal{F})$. Let $X \in \mathcal{X}(\mathbb{C}^n, 0)$ be such that $\phi_U = exp(X)$. If $i_X \Omega \neq 0$ we are done by proposition 3. If $i_X \Omega \equiv 0$ then $\phi_U \in \tilde{Fix}(\mathcal{F})$ and this implies that the classes of ϕ_S and ϕ in $\tilde{Iso}(\mathcal{F})/\tilde{Fix}(\mathcal{F})$ coincide. Hence, ϕ_S is of infinite order in $\tilde{Iso}(\mathcal{F})/\tilde{Fix}(\mathcal{F})$. Now, ϕ_S is linearizable: there exists $\varphi \in \tilde{Diff}(\mathbb{C}^n, 0)$ such that $\varphi^{-1} \circ \phi_S \circ \varphi = L$, where $L = D\phi_S(0)$ is linear and semi-simple: in some base of \mathbb{C}^n the matrix of L is diagonal and the subgroup of powers of L, $H = \{L^k | k \in \mathbb{Z}\} \subset GL(n, \mathbb{C})$, is abelian. Note that L is not of finite order, for otherwise ϕ_S would be also of finite order. In particular H is infinite.

Let G be the Zariski closure of H. Since H is infinite and abelian, G is an abelian algebraic Lie group of dimension ≥ 1. Let

$$\hat{G} = \varphi \circ G \circ \varphi^{-1} = \{\varphi \circ g \circ \varphi^{-1} | g \in G\} \subset \tilde{Diff}(\mathbb{C}^n, 0).$$

Note that \hat{G} is abelian. We assert that $\hat{G} \subset \tilde{Iso}(\mathcal{F})$. In fact, let $\hat{\Omega} = \varphi^*(\Omega)$. From $\phi_S^*(\Omega) = u_\Omega$, where $u \in \mathcal{O}_{\mathbb{C}^n}$, we get $L^*(\hat{\Omega}) = \hat{u}_\Omega$ and $(L^k)^*(\hat{\Omega}) = \hat{u}_k \hat{\Omega}$, $\hat{u}_k \in \mathcal{O}_{\mathbb{C}^n}$, $\forall k \in \mathbb{Z}$. Since G is the Zariski closure of H, for all $g \in G$ we must have $g^*(\hat{\Omega}) = \hat{u}_g \hat{\Omega}$, $\hat{u}_g \in \mathcal{O}_{\mathbb{C}^n}$. Hence, if $\hat{g} = \varphi \circ g \circ \varphi^{-1} \in \hat{G}$ then $\hat{g}^*(\hat{\Omega}) = u_g \Omega$, $u_g = \hat{u}_g \circ \varphi^{-1}$, so that $\hat{g} \in \tilde{Iso}(\mathcal{F})$.

Now, since G is a complex Lie group of dimension ≥ 1 the Lie algebra \mathcal{G} of G has dimension ≥ 1. Moreover, if $X \in \mathcal{G}$ then $exp(tX)^*(\hat{\Omega}) = u_t \hat{\Omega}$, so that $L_X \hat{\Omega} = h \hat{\Omega}$, where $h = \frac{d}{dt} u_t|_{t=0}$. We assert that there exists $X \in \mathcal{G}$ such that $i_X \hat{\Omega} \neq 0$.

In fact, if not then $0 \in \mathcal{G}$ has a neighborhood V such that $i_X \hat{\Omega} = 0 \forall X \in V$. In particular, if G^o is the connected component of G containing the identity, then for any $g \in G^o$ we have $g = exp(tX)$ where $t \in \mathbb{C}$ and $X \in V$. This implies that the conjugate $\hat{g} := \varphi \circ g \circ \varphi^{-1} \in \tilde{Fix}(\mathcal{F})$.

On the other hand, since G has a finite number of connected components there exists $k \in \mathbb{N}$ such that $L^k \in G^o$. But, this would imply that the class of ϕ_S^k in $\tilde{Iso}(\mathcal{F})/\tilde{Fix}(\mathcal{F})$ would be trivial, contradicting the hypothesis.

Finally, if $X \in \mathcal{G}$ is such that $i_X \hat{\Omega} \neq 0$ then the vector field $Y = \varphi_*(X) \in \tilde{X}(\mathbb{C}^n, 0)$ satisfies $f := i_Y \hat{\Omega} \neq 0$, so that $d\left(\frac{1}{f} \hat{\Omega}\right) = 0$.

2.3. Application of theorem 1

A consequence of theorem 1 is that when a germ of holomorphic form that has no formal integrating factor then all elements of $\tilde{Iso}(\mathcal{F})/\tilde{Fix}(\mathcal{F})$ are of finite order.

We will apply the above remark in the case of germs of foliations on $(\mathbb{C}^2, 0)$.
Is is known that any germ at $0 \in \mathbb{C}^2$ of foliation by curves, say \mathcal{F}, has a resolution by a sequence of punctual blowing-ups (cf. [22] and [19]). After the resolution process $\Pi: (M, E) \to (\mathbb{C}^2, 0)$, where Π denotes the blowing-up map and $E \subset M$ the exceptional divisor, we obtain the resolved foliation $\Pi^*(\mathcal{F}) := \tilde{\mathcal{F}}$. All the irreducible components of E are biholomorphic to \mathbb{P}^1. Some of them, the non-dicritical components, are $\tilde{\mathcal{F}}$-invariant, whereas others, the dicritical ones, are not invariant. The foliation $\tilde{\mathcal{F}}$ has only simple singularities (see [19]). A singularity of a germ of holomorphic vector field Z at $(\mathbb{C}^2, 0)$ is simple if:

a. The derivative $DZ(0)$ is semi-simple and not identically zero. Let λ_1 and λ_2 be the eigenvalues of $DZ(0)$.

b. If $\lambda_1 \neq 0$ and $\lambda_2 = 0$, or vice-versa, the singularity is called a saddle-node.

c. If $\lambda_1, \lambda_2 \neq 0$ then $\lambda_2/\lambda_1 \notin \mathbb{Q}_+.$

A non-dicritical component D of E contains necessarily singularities of $\tilde{\mathcal{F}}$, say $S = \{p_1, ..., p_k\}$. If we fix a transverse section Σ to $\tilde{\mathcal{F}}$ at a non-singular point $p \in D$ then the holonomy group of $\tilde{\mathcal{F}}$ at D is a representation ρ of $\Pi_1(D \setminus S)$ on the group of germs of biholomorphisms $Diff(\Sigma, p) \simeq Diff(\mathbb{C}, 0)$. The image $\rho(\Pi_1(D \setminus S))$ is called the holonomy group of D.

We would like to observe that, given a finitely generated subgroup H of $Diff(\mathbb{C}, 0)$ then it is possible to construct examples of foliations such that $\tilde{\mathcal{F}}$ has a non-dicritical divisor D with holonomy group isomorphic to H (see [13]). As an application of theorem [4] we have the following result:

Theorem 2. Let \mathcal{F} be a germ at $0 \in \mathbb{C}^2$. Assume that after the resolution process, $\Pi: (M, E) \to (\mathbb{C}^2, 0)$, the total divisor E has a non-dicritical irreducible component D for which the holonomy of the strict transform $\Pi^*(\mathcal{F})$ is non-abelian. Then $\text{Iso}(\mathcal{F})/\text{Fix}(\mathcal{F})$ is isomorphic to a finite subgroup of the linear group $\text{GL}(2, \mathbb{C})$.

Proof. Assume that \mathcal{F} is defined by the germ of vector field $X = P \frac{\partial}{\partial x} + Q \frac{\partial}{\partial y}$, or equivalently, by the dual form $\Omega = P \, dy - Q \, dx$, where $P, Q \in \mathcal{O}_2$ and $P(0) = Q(0) = 0$.

Lemma 2.1. Ω has no formal integrating factor. In particular, any $\phi \in \text{Iso}(\mathcal{F})/\text{Fix}(\mathcal{F})$ has finite order.

Proof. Suppose by contradiction that Ω has a formal integrating factor \hat{f}: $d \left(\frac{\hat{f}}{\hat{f}} \Omega \right) = 0$. Let $\hat{f} = \prod_{j=1}^k \hat{f}_j$ be the decomposition of \hat{f} into formal irreducible factors. In this case, we can write (cf. [3] and [23]):

\[
\frac{1}{\hat{f}} \, \Omega = \sum_{j=1}^k \lambda_j \, \frac{df_j}{\hat{f}_j} + d \left(\frac{g}{\hat{f}_1 \cdots \hat{f}_k} \right)
\]

where $\lambda_j \in \mathbb{C}$ and $g \in \hat{O_2}$. Let $\Pi: (M, E) \to (\mathbb{C}^2, 0)$ be the minimal resolution process of \mathcal{F} and \mathcal{F}^* be the strict transform of \mathcal{F} by Π. Let $D \subset E$ be the irreducible component with non abelian holonomy group.

Claim 2.1. Let $p \in D \setminus \text{Sing}(\mathcal{F}^*)$. Then there are formal coordinates (t, \hat{x}) around p such that

a. $\{\hat{x} = 0\} \subset D$ and $p = (0, 0)$.

b. $\Pi^* \left(\frac{1}{\hat{f}} \, \Omega \right) = \phi(\hat{x}) \, d\hat{x}$, where ϕ is of one of the following types:
1. \(\phi(\bar{x}) = \bar{x}^m \), where \(m \geq 0 \).
2. \(\phi(\bar{x}) = \lambda/\bar{x} \), where \(\lambda \in \mathbb{C}^* \).
3. \(\phi(\bar{x}) = (1 + \lambda \bar{x}^{\ell-1})/\bar{x}^\ell \), where \(\lambda \in \mathbb{C} \) and \(\ell \geq 2 \).

Proof. Since \(p \notin \text{Sing}(\mathcal{F}^*) \) and \(D \) is \(\mathcal{F}^* \)-invariant there exists a holomorphic coordinate system \((U, (t, x)) \) such that:

i. \(D \cap U = (x = 0) \) and \(p = (0, 0) \).

ii. \(\mathcal{F}^*|_{U} \) is defined by \(dx = 0 \), or equivalently their leaves are the levels \(x = cte \).

Let \(\bar{f}_j := f_j \circ \Pi \) and \(\bar{g} = g \circ \Pi \). Since \(f_j(0) = 0 \) and \(p \notin \text{Sing}(\mathcal{F}^*) \) we must have \(\bar{f}_j(t, x) = x^{m_j}, u_j(t, x) \), where \(m_j \geq 1 \) and \(u_j \) is a formal unity, \(1 \leq j \leq k \). Since \(\mathcal{F}^* \) is defined by \(dx = 0 \), we must have \(\Pi^* (\Omega) = (v(t, x), x^\mu \, dx) \), where \(\mu \geq 1 \) and \(v \) is a holomorphic unity. In particular, we get

\[\Pi^* \left(\frac{1}{f} \Omega \right) = \frac{\tilde{v}}{x^\ell}, \]

where \(\tilde{v} = v/u_1^\ell \ldots u_k^\ell \) is a formal unity, and \(\ell = \sum_j r_j m_j - \mu \in \mathbb{Z} \). Since \(\frac{1}{f} \Omega \) is closed, we must have \(d\tilde{v} \wedge dx = 0 \), so that \(\tilde{v} = \tilde{v}(x) \).

1. If \(\ell = -m \leq 0 \) then \(\tilde{\phi}(x) dx = \tilde{v}(x), x^m \, dx \). Let \(H(x) = x^{m+1}, w(x) \) be a formal series with \(H'(x) = x^m \tilde{v}(x) \) and \(w \in \mathcal{O}_a^n \). Since \(w(0) \neq 0 \) there exists \(u \in \mathcal{O}_a^n \) with \(u^{m+1} = (m+1) \). If \(\bar{x} = x \) then \(H = (m+1)^{-1} \bar{z}^{m+1} \) and \(dH = \bar{z}^m \, d\bar{x} \).

2. If \(\ell = 1 \) then \(\tilde{\phi}(x) dx \) has a pole of order one and we can write

\[\tilde{\phi}(x) = \frac{\lambda}{x} + \varphi(x), \]

where \(\lambda \in \mathbb{C}^* \) and \(\varphi(x) \) is a formal power series. If we set \(u(x) = \text{exp}(\varphi(x)/\lambda) \) then \(d\varphi = \lambda \frac{d\bar{x}}{x} \). In particular, if \(\bar{x} = u(x) \) then

\[\tilde{\phi}(x) dx = \lambda \frac{d\bar{x}}{x}. \]

3. If \(\ell > 1 \) and \(\tilde{\phi}(x) = \sum_{j \geq 1} a_j x^j \) then we can write

\[\tilde{\phi}(x) dx = \left(\frac{\lambda}{x} + \frac{\varphi(x)}{x^\ell} \right) dx = \frac{\varphi(x) + \lambda x^{\ell-1}}{x^\ell} dx, \]

where \(\lambda = a_{\ell-1} \) and \(\varphi(0) = a_0 \neq 0 \). In this case we consider the formal vector field \(X = \bar{x}^\ell \frac{\partial}{\partial x} \), for which \(i_X(\tilde{\phi}(x) dx) = 1 \). It is known that there exists \(\bar{x} = \psi(x) \in \text{Diff}(\mathcal{C}, 0) \) such that \(\psi^*(X) = \frac{\bar{x}^\ell}{\bar{x}^{\ell-1}} \frac{\partial}{\partial x} \) (see [17] and [6]). It can be checked that \(\psi^*(\tilde{\phi}(x) dx) = \frac{1+\lambda x^{\ell-1}}{x^\ell} d\bar{x} \), which proves the claim. □

Claim 2.2. Let \(h \in \text{Diff}(\mathcal{C}, 0) \) be such that \(h^*(\phi(x) dx) = \phi(x) dx \), where \(\phi(x) \) is like (1), (2) or (3) of claim [2.1]. Then:

i. If \(\phi \) is like in (1) then \(h(x) = \delta x \), where \(\delta^{m+1} = 1 \).

ii. If \(\phi \) is like in (2) then \(h(x) = \rho x \), \(\rho \in \mathbb{C}^* \).

iii. If \(\phi \) is like in (3) then \(h(x) = \delta \exp(t Z) \) for some \(t \in \mathbb{C} \), where \(\delta^{\ell-1} = 1 \) and \(Z = \frac{\bar{x}^\ell}{1+\lambda x^{\ell-1}} \frac{\partial}{\partial x} \).

In particular, in any case, the group \(G = \left\{ h \in \text{Diff}(\mathcal{C}, 0) \mid h^*(\phi(x) dx) = \phi(x) dx \right\} \) is abelian.
The proof of claim 2.2 can be found in [6] or [11].

Now, let \(p \in D \setminus \text{Sing}(F^*) \) and \(\Sigma \) be a parameterization section to \(F^* \) with \(p \in \Sigma \). Let \(x \in \mathbb{C}, 0 \mapsto \rho(x) \in (\mathbb{C}, p) \) be a parametrization of \(\Sigma \), so that, we can consider \(\text{Diff}(\mathbb{C}, \Sigma) = \text{Diff}(\mathbb{C}, 0) \) and the holonomy group of \(D \) in the section as a subgroup \(H \subset \text{Diff}(\mathbb{C}, 0) \). Let \(\tilde{x} = x u(x) \) be a formal change of variables as in claim 2.1.

The definition of holonomy and claim 2.2 implies that any \(h \in H \) satisfies \(h^*(\eta) = \eta \). In particular, if \(\Omega \) has a formal integrating factor then the holonomy group of \(D \) must be abelian, contradicting the hypothesis, which proves lemma 2.1.

Let us continue the proof of theorem 2.3.

Claim 2.3. Any \(\phi \in \widehat{\text{Isom}}(F) / \widehat{\text{Fix}}(F) \) has a semi-simple representative \(\phi_S \in \widehat{\text{Isom}}(F) \). Moreover:

- a. If \(\rho: \widehat{\text{Isom}}(F) \rightarrow \text{GL}(2, \mathbb{C}) \) is the group homomorphism \(\rho(\phi) = D\phi(0) \) then \(\ker(\rho) \subset \widehat{\text{Fix}}(F) \).
- b. If \(\phi \in \widehat{\text{Isom}}(F) \setminus \widehat{\text{Fix}}(F) \) then \(\rho(\phi) \) has finite order in \(\text{GL}(2, \mathbb{C}) \).

Proof. Given \(\phi \in \widehat{\text{Isom}}(F) \) let \(\phi = \phi_S \circ \phi_U \) be the the Jordan decomposition of \(\phi \), where \(\phi_S \) is semi-simple and \(\phi_U \) unipotent. As we have seen \(\phi_S, \phi_U \in \widehat{\text{Isom}}(F) \). By proposition 2.4 there exists a formal nilpotent vector field \(Y \in \widehat{X}_2 \) such that \(\phi_U = \exp(Y) \). On the other hand, by proposition 3. \(\phi_U \in \widehat{\text{Fix}}(F) \), because otherwise \(\Omega \) would have a formal integrating factor, which contradicts lemma 2.1. In particular, the classes of \(\phi \) and \(\phi_S \) in \(\widehat{\text{Isom}}(F) / \widehat{\text{Fix}}(F) \) are the same, which proves the first assertion of the claim.

Assume that \(\phi \in \widehat{\text{Isom}}(F) \) and \(D\phi(0) = I \) then there exists \(Y \in \widehat{X}_2 \) such that \(\phi = \exp(Y) \). Therefore, as above, \(\phi \in \widehat{\text{Fix}}(F) \). This proves (a).

It remains to prove (b). Let \(\phi \in \widehat{\text{Isom}}(F) \setminus \widehat{\text{Fix}}(F) \). By the first assertion we can suppose that \(\phi \) has a semi-simple representative in \(\widehat{\text{Isom}}(F) \), that we call \(\phi_S \). In this case, there exists \(\nu \in \text{Diff}(\mathbb{C}^2, 0) \) such that \(\nu^{-1} \circ \phi \circ \nu = D\phi(0) := L \) is linear and diagonal in some base of \(\mathbb{C}^2 \).

Suppose by contradiction that \(L \) has infinite order. Let \(\mathcal{H} \) be the Zariski closure in \(\text{GL}(2, \mathbb{C}) \) of the group \(H = \{ L^k \mid k \in \mathbb{Z} \} \). As we have seen in the proof of theorem 1 \(\mathcal{H} \) is abelian and \(dim(\mathcal{H}) \geq 1 \). Let \(\mathcal{H} = \varphi \circ \mathcal{H} \circ \varphi^{-1} \), so that \(\phi_S \in \mathcal{H} \). Since \(\phi_S \) has finite order in \(\widehat{\text{Isom}}(F) / \widehat{\text{Fix}}(F) \) there exists \(\ell \in \mathbb{N} \) such that \(\phi_S^n \in \widehat{\text{Fix}}(F) \), \(\forall n \in \mathbb{Z} \). Note that \(\mathcal{H} \) is also the Zariski closure of \(\{ L^n \mid n \in \mathbb{Z} \} \). As a consequence, if \(\mathcal{H} \) is the Lie algebra of \(\mathcal{H} \) and \(\mathcal{H} = \varphi_\ast \mathcal{H} \), then for any \(Y \in \mathcal{H} \) we have \(iY \Omega = 0 \) and \(\exp(Y) \in \widehat{\text{Fix}}(F) \). However, since \(L = \exp(A) \) for some \(A \in \mathcal{H} \), this would imply that \(\phi_S = \exp(\hat{A}) \in \widehat{\text{Fix}}(F) \), where \(\hat{A} = \varphi_\ast(A) \), a contradiction.

By the argument of the proof of claim 2.3 we can construct an injective representation \(\rho: \widehat{\text{Isom}}(F) / \widehat{\text{Fix}}(F) \rightarrow \text{GL}(2, \mathbb{C}) \): \(\rho(\phi) = D\phi_S(0) \). Denote \(G := \rho \left(\widehat{\text{Isom}}(F) / \widehat{\text{Fix}}(F) \right) \), the image of \(\rho \). Observe that any element \(T \in G \) has finite order, say \(o(T) \in \mathbb{N} \).
The idea is to prove that there exists $k \in \mathbb{N}$ such that $o(T) \leq k$, $\forall T \in G$. It is known that any subgroup of $GL(2, \mathbb{C})$ with this property is finite and this will finish the proof of theorem \[2\]

Lemma 2.2. There exists $k \in \mathbb{N}$ such that $o(T) \leq k$, $\forall T \in G$.

Proof. We will assume first that the resolution process of \mathcal{F} involves just one blowing-up $\Pi: (M, D) \to (\mathbb{C}^2, 0)$. In this case, $D \simeq \mathbb{P}^1$ is not dicritical and contains at least three singularities of $\Pi^*(\mathcal{F}) := \mathcal{F}^*$, because the holonomy group of D is not abelian. Let $\{p_1, ..., p_k\}, k \geq 3$, and $\ell = k!$. We assert that for any $T \in G$ then

$$T^\ell \in \{\lambda I | \lambda \in \mathbb{C}^*\}.$$

In fact, fix $T \in G$ and $\phi \in \tilde{I}so(\mathcal{F})$ semi-simple such that $D\phi(0) = T$. Assume that \mathcal{F} is represented by the germ of vector field X, with Taylor series $X = \sum_{j \geq n} X_j$, where X_j is homogeneous of degree j, $\forall j$, and $X_n \neq 0$. From $\phi^*(X) = u X$, $u \in \mathcal{O}_2^*$, we get $T^*(X_n) = u(0) X_n$. The singularities $p_1, ..., p_k$ of \mathcal{F}^* in D correspond to the X_n-invariant directions of \mathbb{C}^2. In particular, T induces a permutation of the set $\{p_1, ..., p_k\}$ and so $T^\ell(p_j) = p_j$, $1 \leq j \leq k$. A linear isomorphism of \mathbb{C}^2 that preserves more than two directions is of the form $\lambda I, \lambda \in \mathbb{C}^*$, which proves the assertion.

Let $H = \langle T^\ell | T \in G \rangle \subset \{\lambda I | \lambda \in \mathbb{C}^*\}$ and let $S \in H$ with $o(S) = r$.

Claim 2.4. We assert that there exists $h \in \text{Diff}^\infty(\mathbb{C}^2, 0)$ and $v \in \hat{\mathcal{O}}_2^*$ such that $h^*(v X) := \tilde{X}$ has the Taylor series of the form

$$\tilde{X} = \sum_{m \geq 1} X_{n+m,r}, \text{ where } X_n = X_n.$$

In fact, let $\phi \in \tilde{I}so(\mathcal{F})$ be semi-simple with $D\phi(0) = S$. Let $\phi^*(X) = u X$, where $u \in \mathcal{O}_2^*$. Since ϕ is formally linearizable there exists $f \in \text{Diff}^\infty(\mathbb{C}^2, 0)$ such that $f^{-1} \circ \phi \circ f = S$. Let $Y = f^*(X)$, so that $S^*(Y) = \tilde{u} Y$, where $\tilde{u} = u \circ f$. Note that $u(0) = \delta$ where $\delta^r = 1$. This follows from

$$(S^j)^*(Y) = \tilde{u}_j Y, \quad \tilde{u}_j = \Pi_{i=0}^{j-1} \tilde{u} \circ S^i.$$

Since $S^r = I$ we must have $\tilde{u}_r = 1 \implies \delta^r = \tilde{u}_r(0) = 1$.

We assert that there exists $\tilde{v} \in \tilde{\mathcal{O}}_2^*$ such that $\tilde{v}(0) = 1$ and

$$S^*(\tilde{v} Y) = \tilde{u}(0) \tilde{v} Y.$$

As the reader can check, the existence of \tilde{v} as in (8) is equivalent to solve the functional equation

$$(9) \quad \tilde{v} \circ S = \frac{\tilde{u}(0)}{\tilde{u}}. \tilde{v} := w \tilde{v}.$$

Note that $\Pi_{j=0}^{r-1} w \circ S^j = 1$. If $\varphi \in \hat{\mathcal{O}}_2$ is such that $\exp(\varphi) = w$ then

$$\sum_{j=0}^{r-1} \varphi \circ S^j = 0$$

The reader can check that relation (10) implies that it is possible to solve the functional equation

$$(10) \quad \theta \circ S - \theta = \varphi \implies \tilde{v} := \exp(\theta) \text{ is a solution of (9).}$$
We leave the details for the reader.

Set $\tilde{X} = \tilde{v} \cdot Y$. Let $\tilde{X} = \sum_{j \geq n} \tilde{X}_j$, where \tilde{X}_j is homogeneous of degree j, $j \geq k$. Note that $\tilde{X}_n = X_n$.

We have seen that $S^*(\tilde{X}) = \delta \tilde{X}$, where $S = \lambda I$, λ is a primitive rth root of the unity and $\delta^r = 1$. A direct computation shows that

$$S^*(\tilde{X}) = \sum_{j \geq k} \lambda^{j-1} \tilde{X}_j = \delta \tilde{X} = \delta \sum_{i = 0}^{r-1} Z_i,$$

where

$$Z_i = \sum_{m = 0}^{\infty} \tilde{X}_{i+1+m,r}, \text{ } 1 \leq i \leq r - 1.$$

Therefore,

$$\sum_{i = 0}^{r-1} (\lambda^i - \delta) Z_i \equiv 0.$$

Since $Z_{n-1} = X_n + h.o.t. \neq 0$ we have $\delta = \lambda^{n-1}$ and $Z_i = 0$ if $i \neq n - 1$. In particular, we get

$$\tilde{X} = Z_{n-1} = X_n + \sum_{m \geq 1} \tilde{X}_{n+m,r},$$

which proves claim \square

Let $\tilde{X}_j = P_j \frac{\partial}{\partial x} + Q_j \frac{\partial}{\partial y}$, where P_j and Q_j are homogeneous of degree j. In the chart $\Pi(t, x) = (x, t x) = (x, y)$ of the blow-up Π we obtain

$$\Pi^*(X_j) = x^{j-1} \left(f_j(t) \frac{\partial}{\partial t} + x P_j(1,t) \frac{\partial}{\partial x} \right),$$

where $f_j(t) = Q_j(1,t) - t P_j(1,t)$.

This implies $\Pi^*(\tilde{X}) = x^{n-1} \left[x G(t, x^r) \frac{\partial}{\partial x} + F(t, x^r) \frac{\partial}{\partial t} \right]$, where

$$\begin{cases}
G(t, x^r) = \sum_{m \geq 0} f_{n+mr}(t) x^{mr} \\
F(t, x^r) = \sum_{m \geq 0} p_{n+mr}(1,t) x^{mr}.
\end{cases}$$

The strict transform of $\Pi^*(F)$ is therefore defined by the form $\Omega^* := x G(t, x^r) dt - F(t, x^r) dx$.

Let $\gamma : [0, 1] \to D \setminus \{p_1, ..., p_k\}$ be a C^1 closed curve with $\gamma(0) = \gamma(1) = t_o \in D$. The holonomy h_γ of the curve γ calculated in the section $(t = t_o)$ is the solution of the differential equation

$$(11) \quad \frac{dx}{ds} = x, \quad \frac{G(\gamma(s), x^r)}{F(\gamma(s), x^r)} \gamma'(s)$$

with initial condition $x(0) = x$. If $X(s, x)$ is this solution then $h_\gamma(x) = X(1, x)$.

Note that h_γ is necessarily of the form

$$h_\gamma(x) = \lambda x (1 + H_\gamma(x^r)).$$

In fact, if we consider the ramification $y = x^r$ applied in (11) we obtain

$$\frac{dy}{ds} = r x^{r-1} \frac{dx}{ds} = r x^r \frac{G(\gamma(s), x^r)}{F(\gamma(s), x^r)} \gamma'(s) = r \frac{G(\gamma(s), y)}{F(\gamma(s), y)} \gamma'(s).$$

If $Y(s, y)$ is the solution of the above equation with initial condition $Y(0, y) = y$ then
(1). $Y(s, y) = y \cdot U(s, y)$ where

$$U(s, 0) = \exp \left(\int_0^s \frac{G(\gamma(s), 0)}{F(\gamma(s), 0)} \gamma'(s) \, ds \right).$$

(2). $X(s, x) = x \left(U(s, x^m) \right)^{1/r}$. This implies the assertion.

Note also that

$$h'_{\gamma}(0) = \exp \left(\int_{\gamma} \frac{G(z, 0)}{F(z, 0)} \, dz \right).$$

Since the holonomy of D is non abelian, there are $\alpha, \beta \in \Pi_1(D \setminus \{p_1, \ldots, p_k\}, t_0)$ such that if $\gamma = [\alpha, \beta] := \alpha \beta \alpha^{-1} \beta^{-1}$, then $h_\gamma \neq id$, but is tangent to the identity. Therefore, the formal diffeomorphism is necessarily of the form

$$h_{\gamma}(x) = x + a \cdot x^{m \cdot r} + h.o.t.,$$

where $a \neq 0$ and $m \geq 1$.

The integer $m \cdot r$ is the order of tangency of h_γ with the identity. It is a formal invariant of h_γ, in the sense that if $g = f^{-1} \circ h_\gamma \circ f$, where $f \in \text{Diff}(\mathbb{C}, 0)$ then the order of tangency of g with the identity is also $m \cdot r$.

Suppose by contradiction that the assertion of lemma [2] is false. This implies that the set $\{o(T) \mid T \in G\}$ is unbounded, so that there is $T \in G$ such that $o(T) = r' > m \cdot r$. But, as we have seen above, this implies that the order of tangency of h_γ with the identity is a multiple $m', r' > m \cdot r$, a contradiction. Therefore, the set $\{o(T) \mid T \in G\}$ is finite, as we wished.

Suppose now that the resolution process $\Pi: (M, E) \to (\mathbb{C}^2, 0)$ involves more than one blowing-up. Let $\text{Diff}(M, E)$ be the set of germs at E of formal diffeomorphims of M.

We assert that for any $\phi \in \hat{\text{Iso}}(F)$ there is $\bar{\phi} \in \hat{\text{Diff}}(M, E)$ such that the diagram below commutes

$$
\begin{array}{ccc}
(M, E) & \xrightarrow{\bar{\phi}} & (M, E) \\
\Pi \downarrow & & \downarrow \Pi \\
(\mathbb{C}^2, 0) & \xrightarrow{\phi} & (\mathbb{C}^2, 0)
\end{array}
$$

(12)

The proof is done following the resolution process. To give an idea, we will do the two first steps. Since $\phi(0) = 0$, when we perform the first blow-up $\Pi_1: (M_1, D_1) \to (\mathbb{C}^2, 0)$ then there is $\phi_1 \in \hat{\text{Diff}}(M_1, D_1)$ that lifts ϕ: $\Pi_1 \circ \phi_1 = \phi \circ \Pi_1$.

The formal diffeomorphism ϕ_1 converges in the divisor and $\phi_1|_{D_1}$ is an automorphism of D_1. Moreover, it preserves the germ of the strict transform of F, say F_1, along D_1. In particular, it induces a permutation in the set of singularities $\text{Sing}(F_1) \subset D_1$.

Let $p_1 \in \text{Sing}(F_1)$ be a non-simple singularity of F_1. Its orbit by ϕ_1 is periodic: $p_2 = \phi_1(p_1)$, $p_3 = \phi_1(p_2)$, ..., $p_i = \phi_1(p_{i-1})$. Since $\phi_1^i(F_1) = F_1$ the germs of F_1 at all p_j are equivalent and to continue the blowing-up process we have to blow-up in all these singularities, thus obtaining another step of the process $\Pi_2: (M_2, E_2) \to (M_1, D_1)$, with $E_2 = \bar{D}_1 \cup D_1' \cup \ldots \cup D_{l}',$ where \bar{D}_1 is the strict transform of D_1 and $D_j' = \Pi_2^{-1}(p_j)$.

In this case, we can lift ϕ_1 to a formal germ of diffeomorphism $\phi_2 \in \hat{\text{Diff}}(M_2, E_2)$ such that

$$\Pi_2 \circ \phi_2 = \phi_1 \circ \Pi_2.$$
(4). \(\phi_2|_{E_2} \) is an automorphism of \(E_2 \).

(5). \(\phi_2(D_1) = D_1 \) and \(\phi_2(D'_j) = D'_{j+1}, \forall 1 \leq j \leq \ell - 1 \).

(6). If \(\mathcal{F}_2 = \Pi^2_1(\mathcal{F}_1) \) then \(\phi^*_2(\mathcal{F}_2) = \mathcal{F}_2 \).

Continuing this process inductively, at the end we will find a germ of formal diffeomorphism \(\tilde{\phi} \in \text{Diff}(M, E) \) that makes the diagram \(\text{(12)} \) to commute. Moreover, if \(\tilde{\mathcal{F}} = \Pi^*(\mathcal{F}) \) then \(\tilde{\phi}^*(\tilde{\mathcal{F}}) = \tilde{\mathcal{F}} \). The restriction \(\tilde{\phi}^*|_E \) is an automorphism of \(E \) and permutes the irreducible components of \(E \) and also \(\tilde{\phi}(\text{Sing}(\tilde{\mathcal{F}})) = \text{Sing}(\tilde{\mathcal{F}}), \tilde{\mathcal{F}} = \Pi^*(\mathcal{F}) \).

Let \(D \) be an irreducible component of \(E \) with non abelian holonomy. Since \(E \) has a finite number \(k \) of irreducible components, if \(m = k! \) then for any \(\phi \in \text{Iso}(\mathcal{F}) \) we have \(\tilde{\phi}^m(D) = D \), where \(\tilde{\phi} \) lifts \(\phi \). Let \(\#(\text{Sing}(\tilde{\mathcal{F}}) \cap D) = k' \). Since the holonomy of \(D \) is non abelian we have \(k' \geq 3 \). In particular, if \(m' = k!k'! \) then \(\tilde{\phi}^{m'}|_D = \text{id}_D \), the identity of \(D \).

Assume that the divisor \(D \) was obtained blowing-up a singularity \(q \) in a previous step of the process. Taking local coordinates at \(q \) we can assume that the blowing-up is \(\Pi : (M, D) \rightarrow (\mathbb{C}^2, q = 0) \) and the germ at \(q \) of the previous foliation in the process was \(\mathcal{F}' \), so that \(\Pi^*(\mathcal{F}') \) is the germ of \(\mathcal{F} \) along \(D \). The group \(G := \langle \tilde{\phi}^m|_{M'} \mid \phi \in \text{Iso}(\mathcal{F}) \rangle \subset \text{Diff}(M', D) \) is a subgroup of \(\text{Iso}(\tilde{\mathcal{F}}|_{M'}) \).

Repeating the previous argument it can be shown that \(\text{Iso}(\tilde{\mathcal{F}}|_{M'})/\text{Fix}(\tilde{\mathcal{F}}|_{M'}) \) is finite. In particular, there exists \(k \in \mathbb{N} \) such that for any semi-simple \(\phi \in \text{Iso}(\mathcal{F}) \backslash \text{Fix}(\mathcal{F}) \) we have \(\tilde{\phi}^k|_{M'} = \text{id}_{M'} \), which implies that \(\tilde{\phi}^k = \text{id}_{M} \) and \(\phi^k = \text{id}_{\mathbb{C}^2} \), proving lemma \(\text{(22)} \) and theorem \(\text{(2)} \). \(\square \)

2.4. **Examples with formal, but without meromorphic integrating factor.**

The purpose of this section is to prove the following result:

Theorem 3. There exist germs of foliations \(\mathcal{F} \) on \((\mathbb{C}^2, 0) \) with the following properties:

(a). \(\text{Iso}(\mathcal{F})/\text{Fix}(\mathcal{F}) \) is non-countable and contains elements of infinite order.

(b). \(\mathcal{F} \) is not liouvillé integrable: it cannot be defined by a closed meromorphic 1-form.

Proof. The proof is based in \(\text{(20)} \) and in the fact that any germ \(h \in \text{Diff}(\mathbb{C}, 0) \) can be realized as the holonomy of a separatrix of a germ holomorphic vector field \(X \in \mathcal{X}(\mathbb{C}^2, 0) \) such that \(DX(0) \) is linear and diagonal:

Claim 2.5. Let \(h \in \text{Diff}(\mathbb{C}, 0) \) be a germ of biholomorphism with \(h'(0) = \lambda \in \mathbb{C}^* \). Then there exists a holomorphic vector field \(X \in \mathcal{X}(\Delta), \Delta = \{(x, y) \in \mathbb{C}^2 \mid |x| < 2, |y| < \epsilon\} \) of the form

\[
X(x, y) = x \frac{\partial}{\partial x} + y b_h(x, y) \frac{\partial}{\partial y},
\]

where \(\lambda = e^{2\pi i \alpha_h}, \alpha_h = b_h(0, 0), \) and the holonomy of the curve \(\beta(t) = (e^{2\pi i t}, 0), t \in [0, 1], \) contained in the leaf \((y = 0) \backslash \{(0, 0)\} \), in the transversal section \(\Sigma := (x = 1) \) is \(y \mapsto h(y) \).

Proof. When \(h \) is linearizable theorem \(\text{(35)} \) is immediate. When \(h \) is non-linearizable then \(|\lambda| = 1 \). When \(\lambda \) is a root of unity the proof can be found in \(\text{(18)} \), whereas when \(\lambda \) is not a root of unity the proof can be found in \(\text{(21)} \). \(\square \)
Let \(F = F_X \) be the germ of foliation defined by the vector field \(X \). The foliation \(F \) satisfies the following properties:

1. Outside the axis \((x = 0) \) it is transverse to the vertical fibration \((x = ct) \).
2. The leaf \(L_y \) of \(F \) through the point \((1, y)\) cuts the fiber \((x = 1) \) exactly at the points of the form \((1, \tilde{y})\), where \(\tilde{y} \) belongs to the pseudo-orbit of \(h \): \(\tilde{y} = h^n(y), \ n \in \mathbb{Z} \).

More precisely, given \(n \in \mathbb{Z} \) let \(Dom(h^n) \) = the connected component of \(0 \in \mathbb{C} \) of the set \(\{ y \in \mathbb{C} \mid |y| < \epsilon \} \) and \(h^j(y) \) is defined for all \(j \) with \(0 \leq |n - j| \leq |n| \). If \(y \in Dom(h^n) \), then \((1, h^j(y)) \in L_y \cap (x = 1) \) for all \(j \) with \(0 \leq |n - j| \leq |n| \).

We will assume also that \(\alpha_h \notin \mathbb{R}^+ \). With this condition, the saturation by \(F \) of the set \(\Sigma_\epsilon = \{(1, y) \mid |y| < \epsilon \} \) contains a set of the form \(D_\delta \times D_\epsilon \setminus \{ x = 0 \} \), where \(D_\epsilon \) denotes the disc \(\{ z \in \mathbb{C} \mid |z| < \epsilon \} \).

Given \(h_1 \in Diff(\mathbb{C}, 0) \) a germ of diffeomorphism commuting with \(h \), we will construct a germ \(\Phi_{h_1} \in Iso(F) \subset Diff(\mathbb{C}^2, 0) \). The construction will be done in such a way that:

3. \(\Phi_{h_1}(x, y) = (x, f(x, y)) \), so that \(\Phi_{h_1} \) preserves the fibers \((x = ct) \).
4. \(\Phi_{h_1}(1, y) = (1, h_1(y)) \) \(\{ f(1, y) = h_1(y) \} \).

Remark 2.2. We will see that there is only one \(\Phi_{h_1} \in Iso(F) \) satisfying (3) and (4).

In order to formalize the construction of \(\Phi_{h_1} \) we consider the universal covering of \(\Delta \setminus \{ x = 0 \} \), \(\Pi: B \times D_\epsilon \rightarrow \Delta \setminus \{ x = 0 \} \),

\[\Pi(z, y) = (e^z, y), \]

where \(B = \{ z \in \mathbb{C} \mid Re(z) \in (-\infty, log(2)) \} \) and \(\Delta = D_2 \times D_\epsilon \).

The pull-back foliation \(\tilde{F} := \Pi^*(F) \) is defined in \(B \times D_\epsilon \) by the vector field

\[\tilde{X}(z, y) = \Pi^*(X)(z, y) = \frac{\partial}{\partial z} + y \cdot b_h(e^z, y) \frac{\partial}{\partial y}. \]

Note that this foliation has no holonomy, in the sense that if \(\tilde{L} \) is a leaf of \(\tilde{F} \) then it cuts any transversal \((z = ct) \) in at most one point. Denote by \(\tilde{L}_y \) the leaf of \(\tilde{F} \) such that \(\tilde{L}_y \cap (z = 0) = \{ 0, y \} \).

Note that, by the definition of holonomy (of \(F \)), if \(y \in Dom(h^n) \) then \(\tilde{L}_y \cap (z = 2n \pi i, h^n(y)) \).

Now, we define the covering \(\tilde{\Phi}_{h_1} \) of (the future) \(\Phi_{h_1} \) as the germ along \((y = 0) = B \times \{ 0 \} \) of map that satisfies:

5. \(\tilde{\Phi}_{h_1} \) preserves the fibers \((z = ct) \): \(\tilde{\Phi}_{h_1}(z = z_0) \subset (z = z_0) \).
6. \(\tilde{\Phi}_{h_1}(\tilde{L}_y) = \tilde{L}_{h_1(y)} \).

Since \(\tilde{F} \) has no holonomy (5) and (6) define an unique germ of holomorphic diffeomorphism \(\tilde{\Phi}_{h_1} \) along \(B \times \{ 0 \} \) such that \(\tilde{\Phi}_{h_1}(B \times \{ 0 \}) = B \times \{ 0 \} \).

Now, we will see that there exists a germ \(\Phi_{h_1} \in Iso(F) \subset Diff(\mathbb{C}^2, 0) \) such that \(\Phi_{h_1} \circ \Pi = \Pi \circ \tilde{\Phi}_{h_1} \). By (5) and (6), the extension of \(\tilde{\Phi}_{h_1} \) to the fiber \((t = t_0) \) is done
using the holonomy of \(\tilde{F} \), say \(H_t : (t = t_o) \to (t = 0) \), so that

\[
\tilde{F}_{h_1}(t_o, y) = (t_o, H_{t_o}^{-1}(h_1(H_{t_o}(y)))) .
\]

For instance, \(H_{2\pi i}(y) = h^{-1}(y) \) and so

\[
\tilde{F}_{h_1}(2\pi i, y) = (2\pi i, h(h_1(h^{-1}(y)))) = (2\pi i, h_1(y)) ,
\]

because \(h \) and \(h_1 \) commute. In particular,

\[
\Pi \circ \tilde{F}_{h_1}(2\pi i, y) = (1, h_1(y)) = \Pi(0, h_1(y)) = \Pi \circ \tilde{F}_{h_1}(0, y) .
\]

Similarly, \(\Pi \circ \tilde{F}_{h_1}(2k\pi i, y) = \Pi \circ \tilde{F}_{h_1}(0, y) \) for all \(k \in \mathbb{Z} \) and \(y \in \text{Dom}(h^k) \). This implies that we can define \(\Phi_{h_1}(1, y) = (1, h_1(y)) \) for all \(y \in \text{Dom}(h_1) \).

The extension of \(\Phi_{h_1} \) to the fibers \((x = x_o) \), \(x_o \neq 0 \), can be done by using (13). We leave the details to the reader. It remains to prove that \(\Phi_{h_1} \) can be extended to the fiber \((x = 0) \).

When \(\alpha = \alpha_h \notin \mathbb{R} \) then, by Poincaré’s linearization theorem, we can assume that \(X \) is linear. In this case, \(h(y) = \lambda y \), where \(\lambda = \exp(2\pi i \alpha) \). If \(h_1 \) commutes with \(h \) then \(h_1 \) is also linear and \(\Phi_{h_1}(x, y) = (x, h_1(y)) \), as the reader can check.

When \(\alpha \in \mathbb{R} \) and \(h \) is non-linearizable, then we have to use that the saturation of the transversal \((x = 1) \) by \(F \) contains a set of the form \(D_\delta \times D_\epsilon \setminus (x = 0) \). In this case, it can be proved that \(\Phi_{h_1} \) is bounded in the set \(D_\delta \times D_\epsilon \setminus (x = 0) \) and so \(\Phi_{h_1} \) can be extended to \(\{0\} \times D_\epsilon \) by Riemann’s extension theorem (see [10]). We leave the details to the reader.

Now, we use a construction of Perez Marco. In [20] he proves the following result:

Theorem. There exists non-linearizable germs of diffeomorphisms \(h \in Diff(\mathbb{C}, 0) \) of the form \(h(y) = \lambda y + h.o.t., \) with \(|\lambda| = 1 \) and not a root of unity, whose centralizer

\[
C(h) = \{ g \in Diff(\mathbb{C}, 0) \mid g \circ h \circ g^{-1} \circ h^{-1} = Id \}
\]

is a Cantor set, in the sense that the set \(\{ g'(0) \mid g \in C(h) \} \) is a Cantor set of \(S^1 = \{ \mu \in \mathbb{C} \mid |\mu| = 1 \} \). In particular, \(C(h) \) is non-countable. In fact, in \(C(h) \) there are infinitely many elements of finite order and a non-countable set of elements of infinite order.

Now, we take a vector field \(X \) like in claim (2.3) associated to \(h \) like in Perez Marco’s theorem. The foliation \(F_X \), associated to \(X \), cannot be defined by a closed meromorphic 1-form, and \(Iso(F_X)/\text{Fix}(F_X) \) is non-countable.

This finishes the proof of theorem [11].

3. Conical and logarithmic foliations

In this section we study \(Iso(F) \) when \(F \) is a conical or a logarithmic foliation.

3.1. Preliminaries and statement of the results. A conical foliation \(F \) on \(\mathbb{C}^n \) induces a foliation of the same codimension, say \(\tilde{F} \), on the projective space \(\mathbb{P}^{n-1} \). Denote by \(Aut(\tilde{F}) \) the subgroup of \(Aut(\mathbb{P}^{n-1}) \), of automorphisms of \(\mathbb{P}^{n-1} \) preserving \(\tilde{F} \):

\[
Aut(\tilde{F}) = \left\{ \Phi \in Aut(\mathbb{P}^{n-1}) \mid \Phi^*(\tilde{F}) = \tilde{F} \right\} .
\]

We have the following:
Theorem 4. If \mathcal{F} is conical and $\tilde{\mathcal{F}}$ is the foliation induced by \mathcal{F} on the projective space \mathbb{P}^{n-1} then $\text{Iso}(\mathcal{F})/\text{Fix}(\mathcal{F})$ and $\text{Iso}(\tilde{\mathcal{F}})/\tilde{\text{Fix}}(\tilde{\mathcal{F}})$ are isomorphic to $\text{Aut}(\tilde{\mathcal{F}})$.

When \mathcal{F} is a conical homogeneous foliation of dimension one and the degree of the foliation $\tilde{\mathcal{F}}$, as a foliation of \mathbb{P}^{n-1}, is d then the degree of the homogeneous form Ω on \mathbb{C}^n inducing \mathcal{F} is $d + 1$ (see [14]). Denote by $\text{Fol}(d, n - 1)$ the set of 1-dimensional foliations on \mathbb{P}^{n-1} of degree d. It is known that $\text{Fol}(d, n - 1)$ can be identified with a Zariski open and dense subset of some \mathbb{P}^{nN}. As a consequence of theorem 4 we have the following:

Corollary 1. If $d \geq 2$ then $\text{Fol}(d, n - 1)$ contains a Zariski open and dense subset, say G, such that for any $\mathcal{G} \in G$ we have $\text{Iso}(\Pi^*(\mathcal{G})) = \text{Fix}(\Pi^*(\mathcal{G}))$, where $\Pi: \mathbb{C}^n \setminus \{0\} \to \mathbb{P}^{n-1}$ is the canonical projection.

When $\Omega \in \Omega^1(\mathbb{C}^n)$ is homogeneous and non-conical, then it has a holomorphic integrating factor: if $f := i_\theta \Omega \neq 0$ then $f^{-1}\Omega$ is closed. In particular, if the decomposition of f into irreducible factors is $f_1^{d_1}...f_r^{d_r}$, then

$$\frac{\Omega}{f} = \sum_{j=1}^r \lambda_j d\frac{f_j}{j} + d\left(\sum_{k=1}^r \frac{H}{f_1^{k_1-1}...f_r^{k_r-1}}\right),$$

where $\lambda_j \in \mathbb{C}$, $1 \leq j \leq r$, and $f_1,...,f_r,H$ are all quasi-homogeneous with respect to S. When $f = f_1...f_r$, is reduced, then in the above formula we have $H = 0$ and $\lambda_1...\lambda_r \neq 0$. In this case, the form $f^{-1}\Omega$ is logarithmic.

In section 3.3 we will consider germs of closed logarithmic 1-forms in general, that is when the divisor of poles is reduced and not necessarily quasi-homogeneous. In this case, if Ω has pole divisor $F = f_1...f_r$ then

$$\Omega = \sum_{j=1}^r \lambda_j \frac{df_j}{f_j} + dh,$$

where $\lambda_1,...,\lambda_r \in \mathbb{C}^*$ and $h \in \mathcal{O}_n$.

Remark 3.1. Multiplying f_1 by an unity $u \in \mathcal{O}_n$, we can suppose that $dh = 0$. In fact, since $\lambda_1 \neq 0$, if we set $\tilde{f}_1 = u f_1$, where $u = \exp(-h/\lambda_1)$, then

$$\Omega = \lambda_1 \frac{df_1}{\tilde{f}_1} + \sum_{j \geq 2} \lambda_j \frac{df_j}{f_j}.$$

Other remarks about a 1-form Ω as above are the following

a. Ω has a holomorphic (or formal) non-constant first integral if, and only if, there exists $\lambda \in \mathbb{C}^*$ such that $(\lambda_1/\lambda,...,\lambda_n/\lambda) \in \mathbb{N}^n$.

b. Ω has a meromorphic (or formal meromorphic) non-constant first integral if, and only if, there exists $\lambda \in \mathbb{C}^*$ such that $(\lambda_1/\lambda,...,\lambda_n/\lambda) \in \mathbb{Z}^n$.

Another fact is the following:

Proposition 4. Let Ω be a germ at $0 \in \mathbb{C}^n$ of closed meromorphic 1-form, without non-constant meromorphic first integral. If $\Phi \in \text{Iso}(\mathcal{F}_\Omega)$ then $\Phi^*(\Omega) = \delta \Omega$, where δ is a root of unity.

Example 9. In general $\delta = 1$ in proposition 4 as we will see in the proof. Let us see an example in which $\delta = e^{2\pi i/3}$, we set $\Omega = \frac{dx}{y} + \delta \frac{dy}{x} + \delta^2 \frac{dz}{z}$ and $\Phi(x,y,z) = (z,x,y)$. As the reader can check we have $\Phi^*(\Omega) = \delta \Omega$.

In the next result we give conditions implying that a logarithmic 1-form is holomorphically equivalent to a homogeneous form.

Theorem 5. Let $\Omega = \sum_{j=1}^{r} \lambda_j \frac{df_j}{f_j}$, where f_1, \ldots, f_r are irreducible and F_{Ω} has no meromorphic first integral. Suppose also that:

(a) There exists $\Phi \in \text{Iso}(F_{\Omega})$ such that $D\Phi(0) = \rho.I$ and, either ρ is not a root of unity, or the class of Φ in $\text{Iso}(F_{\Omega})/\text{Fix}(F_{\Omega})$ has infinite order.

(b) The first non-zero jet of f_j is $J_0^{k_j}(f_j) = h_j$ and $\sum_{j=1}^{r} k_j \lambda_j \neq 0$.

Then there exists $\phi \in \text{Diff}(\mathbb{C}^n, 0)$ such that

$$\phi^*(\Omega) = \sum_{j=1}^{r} \lambda_j \frac{dh_j}{h_j}.$$

In particular, F_{Ω} is holomorphically equivalent to a homogeneous foliation.

As a consequence we have:

Corollary 2. Let $\Omega = \sum_{j=1}^{r} \lambda_j \frac{df_j}{f_j}$, where $f_1, \ldots, f_r \in \mathcal{O}_n$ are irreducible. Suppose further that:

(a) F_{Ω} has no meromorphic first integral.

(b) The first non-zero jet of f_j is $J_0^{k_j}(f_j) = h_j$ and $\sum_{j=1}^{r} k_j \lambda_j \neq 0$.

(c) There exists a formal diffeomorphism $\psi \in \text{Diff}(\mathbb{C}^n, 0)$ such that $\psi^*(\Omega) = \Omega_h$, where $\Omega_h = \sum_{j=1}^{r} \lambda_j \frac{dh_j}{h_j}$.

Then there exists $\psi \in \text{Diff}(\mathbb{C}^n, 0)$ such that $\psi^*(\Omega) = \Omega_h$.

The proof of corollary 2 is based in the fact that if $T = \rho.I$ then $T \in \text{Iso}(F_{\Omega_h})$. This of course, implies that hypothesis (a) of theorem 5.

We state below a condition implying that for any $\Phi \in \text{Iso}(F_{\Omega})$ there exists $N \in \mathbb{N}$ such that $D\Phi^N(0) = \rho.I$, where $\rho \in \mathbb{C}^*$.

Definition 3. Let $H = \langle h_1, \ldots, h_\ell \rangle$ be a set of homogeneous polynomials, not necessarily of the same degree. Set

$$\mathcal{I}(H) = \{T \in GL(n, \mathbb{C}) \mid h_j \circ T = \alpha_j, h_j, \alpha_j \in \mathbb{C}^*, 1 \leq j \leq \ell\}.$$

Note that:

I. $\mathcal{I}(H)$ is a closed sub-group of $GL(n, \mathbb{C})$.

II. $\mathcal{I}(H) \supset \mathcal{C}.I = \{\rho.I \mid \rho \in \mathbb{C}^*\}$, where I is the identity in $GL(n, \mathbb{C})$.

We say that $H = \langle h_1, \ldots, h_\ell \rangle$ is rigid if $\mathcal{I}(H) = \mathcal{C}.I$.

Example 10. If $H = \langle z_1, \ldots, z_n \rangle \subset \mathcal{O}_n$ then $\mathcal{I}(H) = \{T \mid T(z_1, \ldots, z_n) = (\lambda_1, z_1, \ldots, \lambda_n, z_n), \lambda_1, \ldots, \lambda_n \in \mathbb{C}^*\}$.

Two examples of rigid sets are $H_1 = \langle z_1, \ldots, z_n, z_1 + z_2 + \ldots + z_n \rangle$ and $H_2 = \langle z_1, z_2^2, z_3^n, z_4 + \ldots + z_n \rangle$.

Corollary 3. Let $\Omega = \sum_{j=1}^{r} \lambda_j \frac{df_j}{f_j}$ and assume that:

(a) f_1, \ldots, f_r are irreducible and F_{Ω} has no meromorphic first integral.

(b) The first non zero jet of f_j at $0 \in \mathbb{C}^n$ is $J_0^{k_j}(f_j) := h_j$, where $k_j \geq 1$, and the set $H := \langle h_1, \ldots, h_r \rangle$ is rigid.

(c) $\sum_{j=1}^{r} k_j \lambda_j \neq 0$.
There exists $\Phi \in \tilde{Iso}(\mathcal{F}_\Omega)$ whose class in $\tilde{Iso}(\mathcal{F}_\Omega)/\tilde{Fix}(\mathcal{F}_\Omega)$ has infinite order.

Then there exists $\phi \in Diff(C^n,0)$ such that $\phi^*(\Omega) = \sum_{j=1}^{r} \lambda_j \frac{dh_j}{h_j}$.

Another consequence of theorem 3 is the following:

Corollary 4. Let $\Omega = \sum_{j=1}^{r} \lambda_j \frac{df_j}{f_j}$ and assume that:

(a) $f_1, ..., f_r$ are irreducible and \mathcal{F}_Ω has no meromorphic first integral.

(b) The first non-zero jet of f_j at $0 \in C^n$ is $J_0^1(f_j) = h_j$, where $k_j \geq 1$, and the set $H := (h_1, ..., h_r)$ is rigid.

(c) h_1 is not irreducible.

(d) $\sum_{j=1}^{r} k_j \lambda_j \neq 0$.

Then $Iso(\mathcal{F}_\Omega)/\tilde{Fix}(\mathcal{F}_\Omega) \simeq \tilde{Iso}(\mathcal{F}_\Omega)/\tilde{Fix}(\mathcal{F}_\Omega)$ and both are isomorphic to the same finite sub-group of $GL(n,C)$.

Example 11. An example for which $Iso(\mathcal{F}_\Omega) = Fix(\mathcal{F}_\Omega)$ and $\tilde{Iso}(\mathcal{F}_\Omega) = \tilde{Fix}(\mathcal{F}_\Omega)$ is $\Omega = \lambda_1 \frac{dt_1}{t_1} + \lambda_2 \frac{dt_2}{t_2} + \lambda_3 \frac{dt_3}{t_3} + \lambda_4 \frac{dt_4}{t_4}$, where $\lambda_j/\lambda_i \notin \mathbb{Q}$, $\forall i \neq j$, $f_1 = t_1^2 + t_2^2$, $f_2 = t_1$, $f_3 = t_3$ and $f_4 = t_1 + t_2$.

Another example was done in example 8.

In the case of dimension two we have the following:

Corollary 5. Let $\Omega = \sum_{j=1}^{r} \lambda_j \frac{df_j}{f_j} \in \Omega_1(C^n,0)$, where $f_1, ..., f_r \in O_2$ are all irreducible and relatively primes two by two. Suppose that:

(a) \mathcal{F}_Ω has no meromorphic first integral.

(b) The first non-zero jet of f_j is $J_0^1(f_j) = h_j$, $1 \leq j \leq r$, and the set $(h_1, ..., h_r)$ is rigid.

(c) $\sum_{j=1}^{r} k_j \lambda_j \neq 0$.

(d) There exists $\Phi \in \tilde{Iso}(\mathcal{F}_\Omega)$ whose class in $\tilde{Iso}(\mathcal{F}_\Omega)/\tilde{Fix}(\mathcal{F}_\Omega)$ has infinite order.

Then $k_1 = ... = k_r = 1$, $h_1, ..., h_r$ are linear forms and there coordinates (z_1, z_2) such that Ω is holomorphically equivalent to

$$\lambda_1 \frac{dz_1}{z_1} + \lambda_2 \frac{dz_2}{z_2} + \sum_{j=3}^{r} \lambda_j \frac{dh_j}{h_j}.$$ (15)

Corollary 5 is a direct consequence of corollary 3 and the fact that any homogeneous polynomial in $\mathbb{C}[z_1, z_2]$ can be decomposed into linear factors. We leave the details to the reader.

3.2. Conical foliations: proof of theorem 4

Let ω be a conic integrable p-form on C^n. We will assume that $\text{cod}(\text{Sing}(\omega)) \geq 2$. The form ω is homogeneous and defines a codimension p foliation \mathcal{F}_ω on C^n and a foliation \mathcal{F}_ω on \mathbb{P}^{n-1}. We want to prove that $\text{Aut}(\mathcal{F}_\omega) \simeq Iso(\mathcal{F}_\omega)/Fix(\mathcal{F}_\omega)$.

Given $\Phi \in Iso(\mathcal{F}_\omega)$ we denote as Φ its class in $Iso(\mathcal{F}_\omega)/Fix(\mathcal{F}_\omega)$.

Lemma 3.1. Let $\Phi \in \tilde{Iso}(\mathcal{F}_\omega)$ and $\Phi_1 = D\Phi(0)$ be the linear part of Φ at 0. Then:

(a) $\Phi_1 \in Iso(\mathcal{F}_\omega)$.

(b) Φ and Φ_1 define the same class at $\tilde{Iso}(\mathcal{F}_\omega)/\tilde{Fix}(\mathcal{F}_\omega)$.

Proof. The condition $\Phi \in \tilde{Iso}(F_\omega)$ is equivalent to $\Phi^*(\omega) = u.\omega$, where $u \in \hat{O}_n^\ast$. Since the coefficients of ω are homogeneous of the same degree, the first non-zero jet of $u.\omega$ is $u(0).\omega$, whereas the first non-zero jet of $\Phi^*(\omega)$ is $\Phi^*(\omega)$. Hence $\Phi^*(\omega) = u(0).\omega$ and $\Phi_1 \in Iso(F_\omega)$.

In particular, we can write $\Phi = \Phi_1 \circ \varphi$, where $\varphi \in \tilde{Iso}(F_\omega)$ and $D\varphi(0) = I$. We assert that $\varphi \in \hat{Fix}(F_\omega)$.

To see this, let us blow-up once at the origin $0 \in \mathbb{C}^n$. If we denote this blow-up by $\Pi: (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^n, 0)$ then the exceptional divisor $E = \Pi^{-1}(0) \simeq \mathbb{P}^{n-1}$ and there exists a germ $\hat{\varphi} \in Diff(\mathbb{C}^n, 0)$ such that $\Pi \circ \hat{\varphi} = \varphi \circ \Pi$.

Recall also that \mathbb{C}^n is a linear bundle over E, say $P: \tilde{\mathbb{C}}^n \rightarrow E$, where E is the zero section and the fibers $P^{-1}(a)$, $a \in E$, project by Π onto the lines of \mathbb{C}^n through the origin.

Let $\tilde{F}_\omega = \Pi^*(F_\omega)$. Since F_ω is conical with respect to the radial vector field $R = \sum_j z_j \frac{\partial}{\partial z_j}$, the lines through the origin of \mathbb{C}^n are contained in the leaves or in the singular set of F_ω, so that the fibers of P are contained in the leaves or in the singular set of \tilde{F}_ω. In particular the leaves and the singular set of \tilde{F}_ω are transverse to E.

Finally, we note that $\tilde{F}_\omega = i_E^*(\tilde{F}_\omega)$, where $i_E: E \rightarrow \tilde{\mathbb{C}}^n$ is the inclusion. In other words, \tilde{F}_ω can be viewed as the intersection of \tilde{F}_ω with the zero section E. Since $d\varphi(0) = I$ we get $\hat{\varphi}|_E = id_E$, the identity map of E, which implies that $\hat{\varphi}$ preserves the leaves and the singular set of \tilde{F}_ω. This implies that $\varphi \in \hat{Fix}(F_\omega)$. \(\square\)

In particular, any $\tilde{\Phi} \in \tilde{Iso}(F)/\tilde{Fix}(F)$ has a linear representative $\Phi_1 \in GL(n, \mathbb{C})$.

On the other hand, any $T \in GL(n, \mathbb{C})$ induces an automorphism $\tilde{T} \in Aut(\mathbb{P}^{n-1})$. Let $Q: GL(n, \mathbb{C}) \rightarrow Aut(\mathbb{P}^{n-1})$ be the group homomorphism given by $Q(T) = \tilde{T}$, where \tilde{T} is as before. Recall that Q is surjective and

\begin{equation}
ker(Q) = \mathbb{C}^\ast \cdot I = \{ \rho \cdot I \mid \rho \in \mathbb{C}^\ast \}.
\end{equation}

Finally, we have seen in lemma 3.1 that $Q(Iso(F)) \subset Aut(\tilde{F})$ and that $\Phi_1 \in Fix(\tilde{F})$ if, and only if, $Q(\Phi_1) = id$, where id is identity of $Aut(\mathbb{P}^{n-1})$. Therefore [10] implies that

$$Aut(F) \simeq \tilde{Iso}(F)/ker(Q|_{\tilde{Iso}(F)}) = \tilde{Iso}(F)/\tilde{Fix}(F) = Iso(F)/Fix(F).$$

This proves theorem [4] \(\square\)

3.3. Logarithmic foliations. In this section we prove the results stated before concerning the isotropy group of logarithmic foliations.

3.3.1. Proof of proposition [4]. Let $\omega \in \Omega^1(\mathbb{C}^n, 0)$ be integrable and having an integrating factor $f \in O_n$, so that, $\Omega := f^{-1} \cdot \omega$ is closed. We will assume that, F_ω has no meromorphic first integral and we want to prove that for any $\Phi \in \tilde{Iso}(F_\omega)$ then $\Phi^*(\Omega) = \delta \cdot \Omega$, where δ is a root of unity.

First of all, recall that $\Phi^*(\omega) = u.\omega$ where $u \in \hat{O}_n^\ast$. We assert that $\Phi^*(f) = v. f$, where $v \in \hat{O}_n^\ast$.
In fact, since \(f^{-1}, \omega \) is closed we have \(\frac{df}{f} \wedge \omega = d\omega \). Applying \(\Phi^* \) in both members of this relation we get

\[
\frac{d(f \circ \Phi)}{f \circ \Phi} \wedge \Phi^*(\omega) = d(\Phi^*(\omega)) \iff \left(\frac{d(f \circ \Phi)}{f \circ \Phi} - \frac{du}{u} \right) \wedge \omega = d\omega
\]

If we set \(g = \frac{f \circ \Phi}{u} \) then the above relation becomes

\[
\frac{dg}{g} \wedge \omega = d\omega \implies \left(\frac{dg}{g} - \frac{df}{f} \right) \wedge \omega = 0 \implies d(g/f) \wedge \omega = 0.
\]

Therefore, \(g/f \) is a meromorphic first integral of \(\mathcal{F}_\Omega \) and so \(f/g = c \), where \(c \in \mathbb{C}^* \).

Hence,

\[
\Phi^*(\Omega) = \Phi^* \left(\frac{\omega}{f} \right) = C. \Omega,
\]

where \(C = 1/c \).

It remains to prove that \(C \) is a root of unity. Let \(f = \Pi_{j=1}^r f_j^{k_j}, \ k_j \geq 1 \), be the decomposition of \(f \) into irreducible factors, so that

\[
\Omega = \sum_{j=1}^r \lambda_j \frac{df_j}{f_j} + d\left(\frac{H}{f_1^{k_1-1} \cdots f_r^{k_r-1}} \right),
\]

where \(\lambda_1, \ldots, \lambda_r \in \mathbb{C} \). Note that:

i. \(\lambda_j \neq 0 \) for some \(j \), because otherwise \(\frac{df_j}{f_j} \) would be a meromorphic first integral. Without lost of generality, we will assume that \(j = 1 \).

ii. \(\Phi^* \) permutes the factors of \(f \); there exists a permutation \(\sigma \in S_r \) such that \(f_j \circ \Phi = u_j \cdot f_{\sigma(j)} \), where \(u_j \in \hat{O}_n^* \).

In particular, we have

\[
C. \Omega = \Phi^*(\Omega) = \sum_{j=1}^r \lambda_j \left(\frac{df_{\sigma(j)}}{f_{\sigma(j)}} + \frac{du_j}{u_j} \right) + d\Phi^* \left(\frac{H}{f_1^{k_1-1} \cdots f_r^{k_r-1}} \right)
\]

Comparing the residues, we get

\[
\lambda_{\sigma(i)} = C. \lambda_i, \ 1 \leq i \leq r.
\]

Let \(m \in \{1, \ldots, r\} \) be such that \(\sigma^m(1) = 1 \). From the above relation we get

\[
\lambda_1 = \lambda_{\sigma^m(1)} = C. \lambda_{\sigma^{m-1}(1)} = C^2. \lambda_{\sigma^{m-2}(1)} = \ldots = C^m. \lambda_1 \implies C^m = 1. \quad \Box
\]

Remark 3.2. It follows from the proof of proposition 4 that if \(\Phi^*(f_j) = u_j \cdot f_j \), \(\forall 1 \leq j \leq r \), then \(\delta = 1; \Phi^*(\Omega) = \Omega \).

3.3.2. **Proof of theorem** Let \(\Omega = \sum_{j=1}^r \lambda_j \frac{df_j}{f_j} \) satisfying the hypothesis of theorem \(\Box \) and let \(\Phi \in \widetilde{Iso}(\mathcal{F}_\Omega) \) be such that \(D\Phi(0) = \rho \cdot I \), where either \(\rho \) is not a root of unity, or the class of \(\Phi \) in \(\widetilde{Iso}(\mathcal{F}_\Omega)/\text{Fix}(\mathcal{F}_\Omega) \) has infinite order. Since \(\Phi \) permutes the hypersurfaces \((f_j = 0), \ 1 \leq j \leq r \), there exists \(N \leq r! \) such that \(\Phi^N(f_j = 0) = (f_j = 0), \ 1 \leq j \leq N \). Note that \(\Phi := \Phi^N \) fixes all hypersurfaces \((f_j = 0) \) and \(D\Phi(0) = \rho^N \cdot I \).

Lemma 3.2. Let \(\phi \in \widetilde{Iso}(\mathcal{F}_\Omega) \) be such that \(D\phi(0) = I \). Then \(\phi \in \text{Fix}(\mathcal{F}_\Omega) \).
Proof. We will consider the more general case where \(D\phi(0) = \beta. I \).

Let \(\Pi: (\mathbb{C}^n, E) \rightarrow (\mathbb{C}^n, 0) \) be a blow-up at \(0 \in \mathbb{C}^n \), where \(E \simeq \mathbb{P}^{n-1} \) is the exceptional divisor. Denote by \(\widetilde{F}_\Omega \) the foliation \(\Pi^*(\mathcal{F}_\Omega) \).

In the chart \(U_1 = \{(x, t) \in \mathbb{C} \times \mathbb{C}^{n-1} \mid x \in \mathbb{C}, \ t = (t_2, \ldots, t_n) \in \mathbb{C}^{n-1} \} \subset \mathbb{C}^n \) we have
\[
\Pi(x, t) = (x, x t_2, \ldots, x t_n) = (x, x t) \in \mathbb{C}^n,
\]
and \(E \cap U_1 = \{x = 0\} \).

Moreover, since the order of \(f_j \) at \(0 \in \mathbb{C}^n \) is \(k_j \), we can write
\[
f_j \circ \Pi(x, t) = x^{k_j} \tilde{f}_j(x, t),
\]
where \(\tilde{f}_j \) is the strict transform of \(f_j \) in this chart. Note that:

iii. The foliation \(\widetilde{F}_\Omega \) is defined in this chart by
\[
(17) \quad \tilde{\Omega} := \Pi^*(\Omega) = \alpha. \frac{dx}{x} + \sum_{j=1}^{r} \lambda_j \frac{df_j}{\tilde{f}_j},
\]
where \(\alpha = \sum_{j=1}^{r} k_j \). \(\lambda_j \neq 0 \).

In particular, \(\tilde{\Omega} \) is non-dicritical and \(\Lambda_E := E \setminus \bigcup_j (\tilde{f}_j = 0) \) is a leaf of \(\tilde{F}_\Omega \).

Let \(p = (0, t_0) \in \Lambda_E \) and fix. We assert that there exists a local chart \((U, (\tilde{x}, t) \in (\mathbb{C}, 0) \times (\mathbb{C}^{n-1}, 0)) \) such that
\[
\tilde{\Omega}|_U = \alpha \frac{d\tilde{x}}{\tilde{x}}.
\]

In fact, since \(\tilde{f}_j(0, t_0) \neq 0, 1 \leq j \leq r \), the form \(\theta := \sum_j \lambda_j \frac{df_j}{f_j} \) is exact in a neighborhood \(U \) of \((0, t_0) \). In particular, there exists \(h \in \mathcal{O}(U) \) such that \(\theta|_U = dh \).

Therefore, if \(\tilde{x} = x.e^h \) then \(\tilde{\Omega}|_U = \alpha \frac{d\tilde{x}}{\tilde{x}} \).

Now, there exists \(\tilde{\phi} \in Diff(\mathbb{C}^n, E) \) such that \(\Pi \circ \tilde{\phi} = \phi \circ \Pi \). The reader can check that in the chart \((\tilde{U}, (\tilde{x}, t)) \) the transformation \(\tilde{\phi} \) is of the form
\[
\tilde{\phi}(\tilde{x}, t) = (g_1(\tilde{x}, t), g_2(\tilde{x}, t), \ldots, g_n(\tilde{x}, t)) = (g_1(x, t), t + \tilde{x}, H(\tilde{x}, t))
\]
where \(H \in \mathcal{O}(U) \). In particular, \(\tilde{\phi}|_E = id_E \), the identity map of \(E \).

On the other hand, by proposition \(3 \) we have \(\phi^*(\Omega) = \delta \Omega \), where \(\delta \) is a root of unity. From \(\Pi \circ \tilde{\phi} = \phi \circ \Pi \) we get
\[
\tilde{\phi}^*(\tilde{\Omega}) = \tilde{\phi}\circ \Pi^*(\Omega) = (\Pi \circ \tilde{\phi})^*(\Omega) = \Pi^* \circ \phi^*(\Omega) = \Pi^* \delta \Omega = \delta \tilde{\Omega} \quad \Rightarrow \quad \\
\tilde{\phi}^*(\alpha. \frac{d\tilde{x}}{\tilde{x}}) = \delta \alpha. \frac{dx}{x} \quad \Rightarrow \quad \delta = 1 \text{ and } \frac{dg_1}{g_1} = \frac{d\tilde{x}}{\tilde{x}} \quad \Rightarrow \quad g_1(x, t) = \beta. x.
\]

In the chart \((\tilde{x}, t) \) the leaves of \(\tilde{F}_\Omega \) are of the levels \(\tilde{x} = \text{constant} \). If \(\beta = 1 \) then \(\tilde{\phi}(\tilde{x}, t) = (\tilde{x}, t + x, H(\tilde{x}, t)) \), so that \(\tilde{\phi} \) preserves the leaves of \(\tilde{F}_\Omega \), which implies that \(\phi \in Fix(\mathcal{F}_\Omega) \). \qed

Corollary 3.1. Let \(\Phi \in \widehat{Iso}(\mathcal{F}_\Omega) \) such that \(D\Phi(0) = \rho. I \), where \(\rho \neq 1 \). Then the class of \(\Phi \) in \(\widehat{Iso}(\mathcal{F}_\Omega)/Fix(\mathcal{F}_\Omega) \) has a formally linearizable representative \(\widehat{\Phi} \).

Proof. Let \(\Phi \in \widehat{Iso}(\mathcal{F}_\Omega) \) be such that \(D\Phi(0) = \rho. I \). Let \(\Phi = \Phi_S \circ \Phi_U \) be the decomposition of \(\Phi \) as in proposition \(2 \). Recall that \(\Phi_S, \Phi_U \in \widehat{Iso}(\mathcal{F}_\Omega) \), \(\Phi_S \) is formally linearizable and \(\Phi_U \) is unitary. Since \(\rho. I = D\Phi_S(0) \circ D\Phi_U(0) \) we have
the other hand, the Zariski closure of the group root of unity.

linearization theorem: there exists an unique \(\Phi \) formally linearizable representative of \(\hat{g} \) for some \(k \). In particular, \(g^*(\Omega) \) is homogeneous.

Proof. It follows from lemma 3.2 that \(\rho \neq 1 \). Therefore by corollary 3.1, there is a formally linearizable representative of \(\Phi \) in \(Iso(F \Omega) \) say \(\Phi \). If \(\rho^k = 1 \), for some \(k \in \mathbb{N} \) then \(\Phi^k = I \), so that its class has finite order. Therefore, \(\rho \) is not a root of unity.

In particular, \(D\Phi(0) \) is non-resonant and \(\Phi \) is formally linearizable by Poincaré’s linearization theorem: there exists an unique \(g \in Diff(\mathbb{C}^n, 0) \) such that \(Dg(0) = I \) and \(g^{-1} \circ \Phi \circ g = D\Phi(0) \).

Let us prove (b). Set \(\Omega^* := g^*(\Omega) \), so that \(T^*\Omega^* = \Omega^* \) by proposition [4]. On the other hand, the Zariski closure of the group \(H = \{ T^0 | n \in \mathbb{Z} \} \) is the group \(\mathbb{C}^*. I \subset GL(n, \mathbb{C}) \). This implies that, if \(T_\tau = e^{\tau}. I = exp(\tau R) \) then

\[
exp(\tau R)^* \Omega^* = \Omega^*, \quad \forall \tau \in \mathbb{C}^* \quad \implies \quad L_R \Omega^* = \frac{d}{d\tau} (exp(\tau R)^* \Omega^*)|_{\tau = 0} = 0 .
\]

Let us finish the proof that \(\Omega^* = \sum_{j=1}^r \lambda_j \frac{d h_j}{h_j} \). Set \(f_j^* := f_j \circ g \in \hat{\mathcal{O}}_\Omega \), \(1 \leq j \leq r \), so that \(\Omega^* = \sum_{j=1}^r \lambda_j \frac{d f_j^*}{f_j^*} \). Note that \(j_0^0 j_0^1 f_j^* = h_j \), because \(Dg(0) = I \). Now,

\[
L_R \Omega^* = i_R d\Omega^* + d i_R \Omega^* = d i_R \Omega^* = 0 \quad \implies \quad i_R \Omega^* = c \quad \iff \quad \sum_{j=1}^r \lambda_j f_j^* \ldots R(f_j^*) \ldots f_r^* = c f_1^* \ldots f_r^* \quad \implies \quad R(f_j^*) = v_j, f_j^*, v_j \in \hat{\mathcal{O}}_\Omega ,
\]

because \(f_j^* \) is irreducible, \(1 \leq j \leq r \). As the reader can check, the last relation implies that \(h_j \) divides \(f_j^* \): \(f_j^* = v_j, h_j \). Therefore,

\[
\Omega^* = \sum_{j=1}^r \lambda_j \frac{d h_j}{h_j} + \Theta , \quad \Theta = \sum_j \lambda_j \frac{d v_j}{v_j} \in \hat{\mathcal{O}}^1(\mathbb{C}^n, 0) .
\]

Since \(h_j \) is homogeneous of degree \(k_j \) we have \(R(h_j) = k_j h_j \) by Euler’s identity, so that \(L_R \left(\frac{d h_j}{h_j} \right) = 0 \). This implies that \(L_R \Theta = 0 \) and so \(\Theta = 0 \).

If \(\Phi \) is holomorphic and \(|\rho| \neq 1 \) or if \(|\rho| = 1 \) and \(\rho \) satisfies a small denominator condition then \(g \in Diff(\mathbb{C}^n, 0) \) (cf. [2]) and we are done.

In the general case however, when \(\Phi \) is only formal, the idea is to prove that there exists a holomorphic vector field \(\bar{R} \in \mathcal{X}(\mathbb{C}^n, 0) \) with \(D\bar{R}(0) = R \), the radial vector field, with \(i_{\bar{R}}\Omega = \alpha = \sum_j k_j \lambda_j \). In the proof of this fact, we will use Artin’s approximation theorem.

Let us finish the proof of theorem [5] assuming the existence of a vector field \(\bar{R} \) as above. If \(i_{\bar{R}}\Omega = \alpha \) then \(L_{\bar{R}}\Omega = i_{\bar{R}}d\Omega + d i_{\bar{R}}\Omega = 0 \), because \(\Omega \) is closed and \(i_{\bar{R}}\Omega \) is a constant.
On the other hand, since $D\tilde{R}(0) = R$, by Poincaré’s linearization theorem (cf. [2]), the vector field \tilde{R} is holomorphically linearizable: there exists $\phi \in Diff(C^n,0)$ such that $D\phi(0) = I$ and $\phi^*(\tilde{R}) = R$. We assert that $\phi^*(\Omega)$ is homogenous:

$$\phi^*(\Omega) = \sum_{j=1}^{r} \lambda_j \frac{dh_j}{h_j}.$$

In fact, set $\tilde{f}_j = \phi^*(f_j)$ and $\tilde{\Omega} = \phi^*\Omega$. Then

$$R(\tilde{f}_j) = u_j \tilde{f}_j, \quad u_j \in \mathcal{O}_n \quad \text{and} \quad u_j(0) = k_j.$$

Writing the Taylor series of \tilde{f}_j and of u_j, by an induction argument, we obtain that there exists an unity $v_j \in \mathcal{O}_n^*$ such that $\tilde{f}_j = v_j, h_j$. In particular, we get

$$\Omega_1 = \sum_{j=1}^{r} \lambda_j \frac{d\tilde{f}_j}{\tilde{f}_j} + \Theta,$$

where $\Theta = \sum_{j} \lambda_j \frac{dv_j}{v_j} \in \Omega^1(C^n,0)$.

Since h_j is homogeneous, $1 \leq j \leq r$, we have

$$L_{\tilde{R}} \left(\sum_{j} \lambda_j \frac{d\tilde{f}_j}{\tilde{f}_j} \right) = 0 \implies L_{\tilde{R}} \Theta = 0 \implies \Theta = 0,$$

because Θ is holomorphic. Therefore, $\tilde{\Omega}$ is homogeneous.

It remains to prove the existence of \tilde{R} with $i_{\tilde{R}} \Omega = \alpha$. We have proved that there exists $g \in \tilde{Diff}(C^n,0)$ such that

$$g^*(\Omega) = \sum_{j=1}^{r} \lambda_j \frac{dh_j}{h_j} := \Omega^*.$$

In particular, if R is the radial vector field on C^n then

$$i_{\tilde{R}} \Omega^* = \sum_{j=1}^{r} \lambda_j \frac{R(h_j)}{h_j} = \alpha.$$

Let $\tilde{R} = g_* R \in \tilde{X}(C^n,0)$ and note that $i_{\tilde{R}} \Omega = \alpha$, because $i_{\tilde{R}} g^* \Omega = \alpha$. In fact, let $\tilde{R} = \sum_{j=1}^{n} \varphi_j \frac{\partial}{\partial z_j}$, where $\varphi_1, ..., \varphi_n \in \tilde{O}_n$. Writing explicitly the relation $i_{\tilde{R}} \Omega = \alpha$ we get

$$\sum_{j=1}^{r} \lambda_j \frac{\tilde{R}(f_j)}{f_j} = \alpha \implies \sum_{j=1}^{r} f_1 ... \tilde{R}(f_j) ... f_r = \alpha. f_1 ... f_r \implies$$

$$\implies \sum_{1 \leq j \leq r} \varphi_j. f_1 ... \frac{\partial f_j}{\partial z_{i_1}} ... f_r = \alpha. f_1 ... f_r.$$

In particular, $\varphi = (\varphi_1, ..., \varphi_n) \in \tilde{O}_n^*$ is a formal solution of the analytic equation $F(z,w) = 0$, where

$$F(z,w) = \sum_{1 \leq j \leq r} \sum_{1 \leq i \leq n} w_j. f_1(z) ... \frac{\partial f_j(z)}{\partial z_{i_1}} ... f_r(z) - \alpha. f_1(z)... f_r(z).$$
It follows from Artin’s approximation theorem that \(F(z, w) = 0 \) has a convergent solution \(w = \phi(z) = (\phi_1(z), ..., \phi_n(z)) \) such that \(J^1_0(\phi) = J^1_0(\varphi) \). Since \(j^1_R(R) = R \), the radial vector field, we can conclude that the vector field \(\vec{R} = \sum_{j=1}^n \phi_j \frac{\partial}{\partial z_j} \) satisfies \(i^*_R \Omega = \alpha \) and \(D \vec{R}(0) = R \), as desired. This finishes the proof of theorem.

3.3.3. Proof of corollaries \(\text{[X]} \) and \(\text{[X]} \)

Proof of corollary \(\text{[X]} \) Let us sketch how theorem \(\text{[X]} \) implies corollary \(\text{[X]} \). Let \(\Phi \in \widetilde{Iso}(\mathcal{F}_\Omega) \) whose class in \(\widetilde{Iso}(\mathcal{F}_\Omega)/\widetilde{Fix}(\mathcal{F}_\Omega) \) has infinite order. Since \(\mathcal{F}_\Omega \) has no formal meromorphic first integral, then \(\Phi \) permutes the set of hypersurfaces \((f_j = 0) \), \(1 \leq j \leq r \). In particular, there exists \(N \in \mathbb{N} \) such that \(f_j \circ \Phi^N = u_j, f_j \), where \(u_j \in \mathcal{O}_n \). If \(T = D \Phi^N(0) \) then \(h_j \circ T = u_j(0), h_j, \forall \ 1 \leq j \leq r \). Since \((h_1, ..., h_r) \) is rigid we must have \(D \Phi^N(0) = \rho I \). In particular \(\Phi := \Phi^N \) satisfies hypothesis (a) of theorem \(\text{[X]} \) as wished. This finishes the proof of corollary \(\text{[X]} \).

Proof of corollary \(\text{[X]} \) First of all we would like to observe that there exists \(N \in \mathbb{N} \) such that for any \(\Phi \in \widetilde{Iso}(\mathcal{F}_\Omega) \) then \(D \Phi^N(0) = \rho I \), where \(\rho \) is a root of unity.

In fact, there exists \(N \in \mathbb{N} \) with \(N \leq r! \) and such that \(f_j \circ \Phi^N = u_j, f_j, 1 \leq j \leq r \). Since the set \((h_1, ..., h_r) \) is rigid, we have \(D \Phi^N(0) = \rho I \). If \(\rho \) was not a root of unity then by theorem \(\text{[X]} \) there would exist \(\psi \in \widetilde{Diff}(\mathbb{C}^n, 0) \) such that \(f_1 \circ \psi = u_1, h_1 \). However, this is impossible, because \(f_1 \) is irreducible and \(h_1 \) is not.

Claim 3.1. Let \(\Sigma = \{ k \in \mathbb{N} \mid \text{ there exists a primitive } k^{th}\text{-root of unity } \rho \text{ such that } D \Phi(0) = \rho I, \text{ for some } \Phi \in \widetilde{Iso}(\mathcal{F}_\Omega) \text{ such that } f_j \circ \Phi = u_j, f_j, \forall j \} \). We claim that \(\Sigma \) is bounded.

Proof. We will use that \(f_1 \) is irreducible and \(h_1 \) is not. First of all, we assert that for any \(\rho \in X \) there exists \(\Phi \in \widetilde{Iso}(\mathcal{F}_\Omega) \) such that \(D \Phi(0) = \rho I \) and \(\Phi \) is formally linearizable.

Fix \(\ell \in \Sigma \), so that there is \(\Phi \in \widetilde{Iso}(\mathbb{C}^n, 0) \) with \(D \Phi(0) = \rho I \), where \(\rho \) is a \(\ell^{th}\text{-root of unity and } f_j \circ \Phi = u_j, f_j, 1 \leq j \leq r \). Let \(\Phi = \Phi_S \circ \Phi_U \), where \(\Phi_S \) is semi-simple, \(\Phi_U \) unitary and \(\Phi_S \circ \Phi_U = \Phi_U \circ \Phi_S \). As we have seen in remark \(\text{[X]} \) \(\Phi_S, \Phi_U \in \widetilde{Iso}(\mathcal{F}_\Omega) \). On the other hand, \(D \Phi_U(0) = I \) and \(D \Phi_S(0) = \rho I \). Since \(\Phi_S \) is linearizable, this proves the assertion.

Let \(\ell \in \Sigma \) and \(\Phi \in \widetilde{Fix}(\mathcal{F}_\Omega) \) be formally linearizable with \(D \Phi(0) = \rho I \). Since \(\Phi \) is linearizable there exists \(\psi \in \widetilde{Diff}(\mathbb{C}^n, 0) \) such that \(\psi^{-1} \circ \Phi \circ \psi = \rho I \). Let \(f^*_1 = f_1 \circ \psi \). We assert that, if \(\ell > k_1 \) then \(h_1 \) divides the \((\ell + k_1 - 1)^{th}\)-jet of \(f^*_1 \).

In fact, let \(f^*_1 = \sum_{i \geq k_1} g_i \) be the Taylor series of \(f^*_1 \), where \(g_i \) is homogeneous of degree \(i \). Note that \(g_{k_1} = h_1 \), because \(D \psi(0) = I \). Since \(f_1 \circ \Phi = u_1, f_1 \), where \(u_1 \in \mathcal{O}_n^* \), we have

\[
(18) \quad f^*_1 \circ (\rho I) = u^*_1 \cdot f^*_1,
\]

where \(u^*_1 = u_1 \circ \psi \). Let \(u^*_1 = \sum_{i \geq 0} w_i \) be the Taylor series of \(u^*_1 \). Relation \((18) \) can be written as

\[
\sum_{i \geq k_1} \rho^i g_i = \sum_{i \geq k_1} \sum_{s=k_1}^i w_{i-s} \cdot g_s \quad \implies \quad w_0 = \rho^{k_1} \text{ and } (\rho^i - \rho^{k_1}) g_i = \sum_{s=k_1}^{i-1} w_{i-s} \cdot g_s, \forall i > k_1
\]
Since \(\rho \) is a primitive \(\ell \)th root of unity, \(\rho^i - \rho^{k_1} \neq 0 \) if \(k_1 + 1 \leq i \leq \ell + k_1 - 1 \). Therefore, the above relation implies that \(h_1 | g_j \) if \(k_1 \leq i \leq \ell + k_1 - 1 \), as the reader can check. Hence, \(h_1 \) divides the \((\ell + k_1 - 1)\)th jet of \(f_1^* \), as asserted.

Now, suppose by contradiction that \(\Sigma \) was unbounded. In this case, since \(h_1 \) is reducible, the above argument implies that for any \(k \in \mathbb{N} \) there exists \(\psi \in Diff(C^n,0) \) such that \(J^k_0(f_1 \circ \psi) \) is reducible. On the other hand, we have

\[
J^k_0(f_1 \circ \psi) = J^k_0(f_1 \circ J_0^k \psi) \implies J^k_0 f_1 \text{ is reducible } \mod m_n^{k+1},
\]

in the sense that there exist \(f, g \in \mathcal{O}_n \) such that \(f(0) = g(0) = 0 \) and \(J^k_0 f_1 = J^k_0(f, g) \). Therefore, for any \(k \in \mathbb{N} \) then \(J^k_0(f_1) \) is reducible \(\mod m_n^{k+1} \), and this implies that \(f_1 \) is reducible. This proves the claim. \(\square \)

Now, let \(\Delta : \overset{\sim}{Iso}(\mathbb{F}_\Omega) \rightarrow GL(n, \mathbb{C}) \) be the homomorphism \(\Delta(\Phi) = D\Phi(0) \). Note that lemma 3.2 implies that \(ker(\Delta) \subset \overset{\sim}{Fix}(\mathbb{F}_\Omega) \). We assert that, in fact \(ker(\Delta) = \overset{\sim}{Fix}(\mathbb{F}_\Omega) \).

In fact, if \(\Phi \in \overset{\sim}{Fix}(\mathbb{F}_\Omega) \) then \(f_j | f_j \circ \Phi, 1 \leq j \leq r \), because \((f_j = 0) \) is a leaf of \(\mathbb{F}_\Omega \). This implies that \(D\Phi(0) \in I(h_1, ..., h_r) \) (see definition 3). Since \((h_1, ..., h_r) \) is rigid, we \(\Delta(\Phi) = I \). Hence, \(ker(\Delta) = \{ I \} \).

This implies that \(\overset{\sim}{Iso}(\mathbb{F}_\Omega)/\overset{\sim}{Fix}(\mathbb{F}_\Omega) \simeq Im(\Delta) \). On the other hand, since \(X \) is bounded, the subgroup \(G := \mathbb{C}^* I \cap Im(\Delta), \) of \(Im(\Delta) \), is finite. This subgroup is contained in the center of \(Im(\Delta) \), and so is a normal subgroup.

In order to conclude the proof of corollary 4 it is sufficient to prove that \(Im(\Delta)/G \) is finite. However, this group can be identified with a subgroup of the group \(S_r \) of permutations of \(\{1, ..., r\} \).

In fact, as we have seen before, if \(\Phi \in \overset{\sim}{Iso}(\mathbb{F}_\Omega) \) then there exists a permutation \(\sigma \in S_r \) such that \(f_j \circ \Phi = u_j f_{\sigma(j)}, \forall j \). Moreover, \(\Phi \in G \) if, and only if, \(\sigma = id \), which proves the assertion. This finishes the proof of corollary 4. \(\square \)

References

[1] P. Ahern, J. P. Rosay: "Entire functions in the classification of differentiable germs tangent to the identity in one and two variables"; Trans. Amer. Math. Soc. 347 (2) (1995) 543-572.
[2] V. Arnold: "Chapitres Supplémentaires de la Théorie des Équations Différentielles Ordinaires"; Éditions MIR, 1980.
[3] D. Cerveau, J.-F. Mattei: "Formes intégrables holomorphes singulières"; Astérisque, vol. 97(1982).
[4] M. Bertshier, D. Cerveau, R. Meziani: "Transformations isotropes des germes de feuilletages holomorphes"; J. Math. Pures Appl., 78 (1999), pp. 701–722.
[5] D. Cerveau, A. Lins Neto: "Logarithmic foliations"; arXiv:1803.08894, to appear in the Ann. Sc. de la Faculté de Toulouse.
[6] D. Cerveau, R. Moussu: "Groupes d’automorphismes de \((\mathbb{C},0) \) et équations différentielles \(ydy + \cdots = 0 \)"; Bull. Soc. Math. France, 116 (1988), 459–488.
[7] Dolgachev, I.: "Weighted projective varieties"; Group actions and vector fields (Vancouver, B.C., 1981), Lecture Notes in Math., 956, Berlin: Springer, pp. 344–371.
[8] A. R. Iano-Fletcher: "Working with weighted complete intersections". Explicit birational geometry of 3-folds, ed. A. Corti and M. Reid, Cambridge Univ. Press (2000), 101–173.
[9] J.P. Jouanolou: "Équations de Pfaff algébriques"; Lecture Notes in Math. 708, Springer-Verlag, Berlin, 1979.
[10] C. Camacho, A. Lins Neto, P. Sad: "Topological invariants and equidesingularization for holomorphic vector fields"; J. of Diff. Geometry, vol. 20, nº 1 (1984), pp. 143–174.
[11] A. Lins Neto P. Sad, B. Scárdua: "On topological rigidity of projective foliations"; Bull. Soc. Math. de France, 126 (1998), p. 381-406.
[12] A. Lins N, M. G. Soares: "Algebraic solutions of one dimensional foliations"; J. Diff. Geometry 43 (1996) pg. 652-673.
[13] A. Lins Neto: "Construction of singular holomorphic vector fields and foliations in dimension two"; Journal of Diff. Geometry 26 (1987), pg. 1-31.
[14] A. Lins Neto: "Germs of complex two dimensional foliations"; Bull. Brazilian Math. Soc. (NS) 46, 4 (2015) 645-680.
[15] A. Lins Neto & W. Costa e Silva: "Pull-back components of the space of foliations of codimension ≥ 2", Article published electronically on August 9, 2018, Transactions of the Am. Math. Soc.
[16] R. Gunning, H. Rossi: "Analytic functions of several complex variables"; Prentice Hall, Englewood Cliffs, NJ, 1965.
[17] J. Martinet: "Normalisations des Champs de vecteurs holomorphes (d’après A.-D. Brjuno)"; Séminaire Bourbaki, vol. 1980/81, pp. 55-70. Lect. Notes in Math. 901, S. V.
[18] J. Martinet; J. P. Ramis: "Analytic classification of resonant saddles and foci."; Singularities and dynamical systems, 109 - 135, North-Holland Math. Stud., 103, North-Holland, Amsterdam, 1985.
[19] J.F. Mattei; R. Moussu: "Holonomie et intégrales premières"; Ann. Ec. Norm. Sup. 13 (1980), pg. 469-523.
[20] R. Pérez Marco: "Centralisateurs non dénombrables de germes de difféomorphismes holomorphes non linéarisables de (C,0)"; C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 7, 461-464.
[21] R. Pérez Marco, J. C. Yoccoz: "Germes de feuilletages holomorphes à holonomie prescrite."; Complex analytic methods in dynamical systems (Rio de Janeiro, 1992). Astérisque No. 222 (1994), 7, 345-371.
[22] A. Seidenberg: "Reduction of singularities of the differential equation $Ady = Bdx$"; Amer. J. de Math. 90 (1968), pp. 248-269.
[23] O. Thom: "Decomposition en éléments simples des formes méromorphes formelles fermées."; arXiv:1812.07551 ,dec.2018.

D. CERVEAU
Université de Rennes, CNRS,
IRMAR-UMR 6625,
F-35000 Rennes, France
E-Mail: dominique.cerveau@univ-rennes1.fr

A. LINS NETO
Instituto de Matemática Pura e Aplicada
Estrada Dona Castorina, 110
Horto, Rio de Janeiro, Brasil
E-Mail: alcides@impba.br