Cystatin C: A New Renal Marker and Its Potential Use in Small Animal Medicine

L. Ghys, D. Paepe, P. Smets, H. Lefebvre, J. Delanghe, and S. Daminet

The occurrence of chronic kidney disease is underestimated in both human and veterinary medicine. Glomerular filtration rate (GFR) is considered the gold standard for evaluating kidney function. However, GFR assessment is time-consuming and labor-intensive and therefore not routinely used in practice. The commonly used indirect GFR markers, serum creatinine (sCr) and urea, are not sufficiently sensitive or specific to detect early renal dysfunction. Serum cystatin C (sCysC), a proteinase inhibitor, has most of the properties required for an endogenous GFR marker. In human medicine, numerous studies have evaluated its potential use as a GFR marker in several populations. In veterinary medicine, this marker is gaining interest. The measurement is easy, which makes it an interesting parameter for clinical use. This review summarizes current knowledge about cystatin C (CysC) in humans, dogs, and cats, including its history, assays, relationship with GFR, and biological and clinical variations in both human and veterinary medicine.

Key words: Cat; Dog; Glomerular filtration rate; Human; Renal diseases.

Abbreviations:

131Cr-EDTA chromium ethylenediamine tetraacetic acid
99mTc-DTPA diethyleneetriamine pentaacetic acid
AKI acute kidney injury
BUN blood urea nitrogen
CKD chronic kidney disease
Cr creatinine
CV coefficient of variation
CysC cystatin C
Da dalton
DM diabetes mellitus
GFR glomerular filtration rate
LMW low molecular weight
PENIA particle-enhanced nephelometric immuno-assay
PETIA particle-enhanced turbidimetric immuno-assay
sCr serum creatinine
sCysC serum cystatin C
uCr urinary creatinine
uCysC urinary cystatin C

Chronic kidney disease (CKD) is common not only in humans, with an overall prevalence of 13%, but also in veterinary medicine. The estimated prevalence of CKD is between 0.5 and 7% in dogs, between 1.6 and 20% in the general cat population, and approximately 30% in geriatric cats. Chronic kidney disease is progressive and irreversible. Early detection and treatment is of great importance and may increase median survival time by preventing or delaying additional renal damage. Direct measurement of GFR is considered the best overall index for evaluating kidney function. However, this procedure is labor-intensive and time-consuming, making it an inappropriate method for routine use in daily practice.

Indirect markers of GFR, sCr and blood urea nitrogen (BUN) concentration, can easily be measured and are widely available. Their serum concentrations increase when approximately 75% of the functional renal mass is lost. These markers, especially BUN, are influenced by nonrenal factors, such as age, diet, hydration status, and muscle mass. Cystatin C is a low molecular weight (LMW) 13 kilodalton (kDa) protein and proteinase inhibitor involved in intracellular protein catabolism that is produced at a constant rate because it is encoded by a housekeeping gene. Studies in rats have shown that there is no plasma protein binding, which allows glomerular filtration without restriction. Cystatin C is reabsorbed in the proximal tubules by megalin-mediated endocytosis and is completely catabolized. It is generally accepted that no tubular secretion of CysC occurs. Cystatin C has many properties that are ideal for endogenous GFR marker applications, such as constant production and plasma concentration in the absence of GFR variation, low intraindividual variability, no plasma protein binding, no tubular secretion, no tubular reabsorption without catabolism, and no extrarenal clearance. Cystatin C is considered superior to sCr in detecting renal dysfunction in humans. Furthermore, urinary CysC (uCysC) concentrations are extremely low in healthy individuals compared with individuals with renal tubular damage. Therefore, uCysC can be used as a marker for proximal tubular damage.

This review provides more information regarding the use of CysC in human medicine, available assays, biological and clinical variation, and its potential use in veterinary medicine.
History

In the early 1960s, a new protein was discovered in normal human cerebrospinal fluid and in the urine of patients with proteinuria. The highest concentration of this protein was measured in cerebrospinal fluid, followed by plasma, saliva, and urine, which suggested production in the central nervous system and catabolism by the kidney. The single polypeptide chain contained 120 amino acids, and the molecular mass was 13,260 kDa. Abrahamson et al observed expression in every examined tissue, including kidney, liver, pancreas, intestine, stomach, lung, placenta, seminal vesicles, and parotid salivary gland. Because of similar activity as cystatin A and B, this new protein was named cystatin C. These cystatins inhibit the activity of cysteine proteinases and therefore protect host tissue against destructive proteolysis.

Cystatin C in serum was investigated as a potential marker for GFR because a better correlation was observed between the reciprocal of CysC and GFR compared with the serum concentrations of other LMW proteins such as beta-2 microglobulin, retinol-binding protein, and factor D.

Assays

Human Medicine

In 1994, a fully automated particle-enhanced turbidimetric immuno-assay (PETIA) for CysC was developed and validated in serum and urine. A few years later, a particle-enhanced nephelometric immuno-assay (PENIA) was validated in serum and urine. Concentrations of CysC measured in serum using PENIA showed good correlation with those obtained with the PETIA. However, this correlation was not observed above concentrations of 2 mg/L, with the PETIA yielding lower concentrations.

Both turbidimetry and nephelometry are based on the dispersion of light caused by immune complexes formed by CysC and latex particles coated with polyclonal antibodies. In the turbidimetric assay, the particles are polystyrene particles that are 38 nm in diameter, and in the nephelometric assay, the particles are chloromethylstyrene particles that are 80 nm in diameter. Both assays use polyclonal rabbit anti-human CysC antibodies.

The major difference between these 2 methods is that PENIA can only be used with a specialized automated immunonephelometer, whereas PETIA can be used with several analyzers, including the Cobas Fara analyzer, Hitachi analyzer, Cobas 6000 analyzer, and Abbott Architect ci8200. Newer devices are available but are limited for veterinary use because of high cost. No interferences of triglycerides (≤8.5 mmol/L), bilirubin (≤150 µmol/L), hemoglobin (≤1.2 g/L), or rheumatoid factors (<3,230 kIU/L) were observed for PETIA. PENIA showed even less interference.

Similar to creatinine (Cr), standardization has been accomplished, and certified reference material (ERM-DA471/IFCC) is available for both PENIA and PETIA analyzers and enzyme-amplified single radial immunodiffusion.

Veterinary Medicine

Currently, veterinary assays for measurement of CysC are not available. Therefore, results in animals obtained using the assays designed for humans do not reflect exact CysC concentrations. An amino acid sequence homology of approximately 70% between human and feline CysC has been reported. In dogs, homology between 46 and 79% has been reported, but others have reported a maximum and minimum amino acid sequence homology of 63 and 22%, respectively. Cystatin C was first demonstrated in canine amyloid plaques. This finding was of major importance because the authors demonstrated cross-reactivity between the rabbit antihuman CysC antibody from human PETIA and canine CysC present in cerebrospinal fluid. Based on those findings and studies in humans, Jensen et al performed the first validation study using PETIA to measure sCysC in dogs (Table 1).

Species	Authors	Assay-Analyzer	Samples	Interassay CV (%)
Dog	Jensen et al	PETIA (Cobas Fara II, Hoffman-La Roche, Switzerland)	Low sCysC (<1.1 mg/L)	9.6
			Medium sCysC (1–2 mg/L)	5.9
			High sCysC (>2 mg/L)	1.7
Dog	Almy et al	PETIA (Hitachi 912, Roche)	Low sCysC	4.7
			Medium sCysC	4.7
			High sCysC	2.9
Dog	Wehner et al	PETIA (Hitachi 911, Roche, Germany)	High sCr	2.9
			Normal sCr	3.6
Cat	Ghys et al	PENIA	Serum	12.5
			Urine	4.1

CysC, cystatin C; CV, coefficient of variation; PETIA, particle-enhanced turbidimetric immuno-assay; sCr, serum creatinine; PENIA, particle-enhanced nephelometric immuno-assay.
Several other authors also have measured sCysC with PETIA\(^a\) in healthy dogs and in dogs with renal failure.\(^{47–51}\) Cross-reactivity between sCysC and the polyclonal rabbit antihuman CysC antibody by western blotting was only shown in 1 report,\(^{48}\) and analytical validation parameters were sufficient for PETIA.\(^{a,46,48,51}\) PETIA\(^a\) also was validated for measurement of canine urinary CysC.\(^{52}\) Miyagawa et al\(^{53}\) also measured canine sCysC with a noncommercially available ELISA using the same antibody from PETIA,\(^a\) but this technique is not suitable for everyday practice. PE-NIA\(^b\) recently was validated in feline serum and urine,\(^{54}\) with acceptable validation parameters (Table 1).\(^{55}\) Jonkisz et al\(^{56}\) observed significantly different results for serum CysC as measured by PENIAb among dogs of all International Renal Interest Society (IRIS) stages, which was not observed with PETIA.\(^a\)

Based on those findings, the authors suggested that PENIAb is more precise. In our opinion, parallel validation of both PENIAb and PETIA\(^a\) and correlation with GFR measurements are necessary to determine which assay is most appropriate for veterinary use.

Nakata et al\(^{42}\) developed recombinant feline CysC in *Escherichia coli* and 3 monoclonal antibodies against the protein. These antibodies also were able to recognize native feline CysC. These authors aimed to design a sensitive and specific sandwich ELISA to recognize native feline CysC. These antibodies also were able to obtain with sCr concentration\(^{79}\) and did not underestimate measured GFR.\(^{81}\) However, an equation including both plasma Cr and sCysC provided better results than all of the other equations, especially in patients with early-stage renal impairment.\(^{63,84}\)

In humans, sCysC has larger intra-individual variation and smaller inter-individual variation compared with sCr, which leads to a higher critical difference for the comparison of sequential serum concentrations for

Human Medicine

Several studies in humans have shown that the reciprocal of sCysC correlates more closely with GFR, as measured by exogenous clearance tests, than the reciprocal of sCr (Table 2). In addition, no significant correlation was observed between the reciprocal of sCr and GFR in patients with normal GFR, whereas the correlation with the reciprocal CysC concentration extended to the entire GFR range and remained significant.\(^{26}\) However, the correlation between GFR and the reciprocal of sCysC is weak in healthy individuals.\(^{71}\)

The sensitivity and specificity of the 2 variables were compared by receiver operating curve (ROC) analysis, and sCys C had higher sensitivity and negative predictive value in detecting a decreased Cr clearance as compared with sCr.\(^{53}\) Serum CysC concentration began to increase when the GFR decreased, whereas sCr did not change.\(^{33,72}\)

In human medicine, equation formulas were developed in patients with CKD and are commonly used to estimate GFR based on sCysC\(^{67,73–75}\) or sCysC.\(^{76–82}\) Equation formulas based on sCysC provided a more accurate and precise GFR estimate than those obtained with sCr concentration\(^{79}\) and did not underestimate measured GFR.\(^{81}\) However, an equation including both plasma Cr and sCysC provided better results than all of the other equations, especially in patients with early-stage renal impairment.\(^{63,84}\)

Author	Clearance Technique	Correlation Coefficient (r)	
		sCr	sCysC
Grubb et al\(^{24}\)	51Cr-EDTA	0.77	0.75
Simonsen et al\(^{25}\)	51Cr-EDTA	0.75	0.73
Kybye-Andersen\(^{26}\)	Iohexol	0.87	0.73
Newman et al\(^{13}\)	51Cr-EDTA	0.81	0.50
Bokkenkamp et al\(^{177}\)	Inulin	0.88	0.72
Randers et al\(^{98}\)	99mTc-DTPA	0.87	0.81
Risch et al\(^{99}\)	[125I]	0.83	0.67
Stickle et al\(^{100}\)	Inulin	0.77	0.84
		(4–12)	(4–12)
		(years)	(years)
		0.87	0.89
		(12–19)	(12–19)
		(years)	(years)
Nitta et al\(^{97}\)	Inulin	0.84	0.72

sCysC, serum Cystatin C; sCr, serum creatinine; Cr, creatinine; 51Cr-EDTA, 51-chromium-labeled ethylenediamine tetra-acetic acid; 99mTc-DTPA, 99-metastable-technetium-labeled diethylene-triamine penta-acetic acid.
CysC. These findings lead to the assumption that sCysC is better as a screening test for decreased GFR and that sCr is better for monitoring changes in established renal disease. Serum CysC showed no advantages over sCr in patients with advanced CKD. In addition, in the general healthy population, GFR equations based on CysC were not superior compared with those based on Cr. Authors have attributed the addition, in the general healthy population, GFR compared with healthy dogs and dogs with various nonrenal diseases (immune-mediated, endocrine, dermatologic, cardiologic, neoplastic) and that sCr is better for monitoring changes in established renal disease. Serum CysC showed no advantage and that sCysC is better as a screening test for decreased GFR because nonrenal factors may differ between patients with CKD and healthy individuals. Nonrenal elimination and lack of CysC measurement standardization may contribute to the observed differences. Therefore, in human medicine, sCysC is used as an additional marker for GFR evaluation without replacing sCr.

Veterinary Medicine

Cystatin C has been evaluated as an endogenous indirect marker for GFR in dogs. Dogs with CKD had significantly higher CysC concentrations compared with healthy dogs and dogs with various nonrenal diseases (immune-mediated, endocrine, dermatologic, cardiologic, neoplastic) and dogs with various nonrenal diseases cannot be excluded. Furthermore, very limited information is available for dogs with clinical signs of CKD but without azotemia. In 1 study, plasma CysC was increased in only 1 of 7 dogs that met those criteria. No clearance test was performed in that dog, and thus it remains unclear whether or not GFR was decreased. In a remnant kidney model in young adult Beagle dogs, correlation with GFR was better for the reciprocal of CysC than sCr in the first week after the procedure, when GFR was lowest (0.50 ± 0.15 mL/min/kg). At 10 weeks after the procedure, when GFR was higher (1.00 ± 0.27 mL/min/kg) but still below the reference interval, equal correlation was observed for sCysC and sCr. The authors hypothesized that the equal correlation of sCysC and sCr with increasing GFR was caused by a difference in inter- and intraindividual variation. The inter- and intraindividual variation for sCysC and sCr

Table 3. Overview of studies evaluating the use of sCysC in small animal medicine. Serum CysC (mg/L) was expressed as the mean ± SD, median sCysC or (range).

Species	Status	Age (years)	n	sCysC
Dog	Healthy (sCr <130 μmol/L)	1–9	17	1.06 (0.4–1.38)
	Nonrenal disease (sCr <130 μmol/L)	0.5–13	12	1.62 (0.4–2.24)
	CKD (sCr >130 μmol/L)	0.5–9	8	5.01 (3.39–7.35)
Dog	Healthy (sCr <141.4 μmol/L)	Adult	25	1.08 ± 0.16
	CKD (sCr <141.4 μmol/L)	Adult	25	4.37 ± 1.79
Dog	Healthy	0.16–16.5	179	0.60 ± 0.31
	CKD (sCr >133 μmol/L)	27	(0–8.6)	
	Signs of CKD, no azotemia	7	(0.2–1.2)	
	Azotemia, no signs of CKD	13	(0–1.2)	
Dog	Healthy (sCr 55.31–108.5 μmol/L)	0.25–13	99	(0.68–1.6)
	Reduced ECPC (<3 mL/min/kg)	0.5–15	15	>1.6
Dog	Healthy (sCr 69.8 ± 22.1 μmol/L)	1–9	10	1.2 ± 0.42
	CKD (sCr 588.7 ± 373 μmol/L)	2–13.5	20	2.96 ± 1.09
Dog	Healthy dogs (EIPC >30 mL/min/m²)	76	0.85 ± 0.15	
	CKD (EIPC <30 mL/min/m²)	88	1.23 ± 0.21	
	Neoplasia	5	0.93 ± 0.13	
	Congestive heart disease	5	0.80 ± 0.12	
Cat	Healthy (Pcr <229 μmol/L)	99	1.60 (0.19–4.37)	
	Signs of CKD and azotemia	75	2.64 (0.35–9.52)	
	Signs of CKD, no azotemia	35	1.595 (0.4–4.36)	
	Azotemia, no signs of CKD	24	1.74 (0.69–3.48)	
Cat	Healthy (EIPC 2.4 ± 0.8 mL/min/kg)	24	0.7 ± 0.2	
	CKD (EIPC 1.2 ± 0.7 mL/min/kg)	46	1.3 ± 0.6	
	IRIS I	16	1.1 ± 0.3	
	IRIS II	16	10 ± 0.5	
	IRIS III	6	14 ± 0.3	
	IRIS IV	8	1.25 ± 0.6	
Cat	Healthy (sCr <141.4 μmol/L)	1.8–19	10	0.79 (0.43–1.05)
	CKD	10	1.24 (0.63–2.99)	

sCysC, serum Cystatin C; SD, standard deviation; CKD, chronic kidney disease; sCr, serum Creatinine; EIPC, exogenous creatinine plasma clearance; EIPC, exogenous iohexol plasma clearance; PCr, plasma creatinine; IRIS, International Renal Interest Society.
was investigated in the dog by calculating the index of individuality (IoI) determined by the analytical, interindividual and intraindividual coefficient of variation. For parameters with a low IoI, the repeat test results will be similar to the first result and will not provide new information. If parameters have a high IoI, the ratio of true positives/false positives will increase. In humans, this explains the higher sensitivity of sCysC (high IoI) in detecting renal impairment, but in dogs, sCysC and sCr showed comparable IoI. However, the authors attributed the difference in IoI of sCysC and sCr between humans and dogs to different storage times, different food, different physical activity index, and different breeds, which require further investigation.

A higher sensitivity of sCysC (76%) than sCr (65%) and comparable specificity (87% for sCysC and 91% for sCr) for detecting decreased GFR (>3.0 mL/min/kg), as measured by an exogenous Cr clearance test, was observed in dogs by Wehner et al. In this study, dogs with normal GFR (≥3 mL/kg/min; n = 23), slightly decreased GFR (2.00–2.99 mL/min/kg; n = 22), and markedly decreased GFR (<1.99 mL/min/kg; n = 15) were included. Cystatin C and sCr had comparable positive predictive values, but sCysC had higher negative predictive value (69%) compared with Cr (62%) for detecting early CKD. There was a slightly better negative correlation between sCysC (r = −0.630) and exogenous Cr clearance compared with sCr (r = −0.572). There was also a better correlation between sCysC and sCr compared with uCysC of normal dogs (r = −0.704) and plasma iohexol clearance compared with sCr (r = −0.598). In that study, 88 dogs with CKD and 43 healthy control dogs were included.

In cats, CysC was evaluated in 3 reports, and contradictory results were observed. Martin et al. concluded that plasma CysC was not a valuable marker for the detection of renal impairment because only 14 of the 75 cats that had clinical signs of CKD and azotemia had CysC concentrations above the upper reference limit of 4.11 mg/L, which was determined by the authors. However, group allocation in this study did not take into account IRIS guidelines, and the reference interval was not calculated according to the American Society of Clinical Veterinary Pathology guidelines. In contrast, a significant difference in sCysC and uCysC (uCysC/sCr) ratios between healthy cats and cats with CKD was found by our group. One possible explanation for this result could be the use of different assays and the measurement of plasma CysC and sCysC. Until now, GFR has only been measured in 1 report on feline CysC; Poświętowska-Kaszczyńska found a significantly better correlation between GFR and sCysC (r = −0.51) than between GFR and sCr (r = −0.46), which is comparable to findings in humans and dogs. An interesting and common finding in all 3 studies is the overlap in sCysC concentrations between healthy cats and cats with CKD. In Ghys et al. no GFR measurement was performed; thus, early kidney impairment in the healthy cats cannot be excluded. In the study of Poświętowska-Kaszczyńska, GFR was calculated, and GFR also was found to overlap between healthy cats and cats with CKD, potentially explaining the overlap of sCysC for both groups. However, this study lacked information on urine specific gravity (USG) and used the 1-compartment model for GFR calculation. It is generally accepted that 1-compartment models may overestimate true GFR, which recently was confirmed by Finch et al. Thus, correlation between sCysC and GFR should be further investigated.

Urinary CysC

Human Medicine

Cystatin C is freely filtered through the glomerulus, reabsorbed, and catabolized in the tubules, as has been shown in rats. With normal renal function, CysC can be found in small quantities in the urine. With proximal tubular damage, uCysC increases. Urinary CysC was higher in human patients with renal tubular damage compared with patients with proteinuria without tubular damage and a healthy control group. Cystatin C might be more sensitive than other LMW proteins, such as α₁-microglobulin and β₂-microglobulin, because uCysC showed the highest correlation coefficient with sCr. However, it is mandatory to measure total proteinuria because massive proteinuria has been shown to inhibit tubular reabsorption of CysC in experimentally induced nephropathies and in children with idiopathic nephropathy, causing higher uCysC concentrations and therefore underestimating tubular function.

Small Animal Medicine

To the authors' knowledge, only 1 report has validated PETIA for measuring canine uCysC in healthy dogs, dogs with renal impairment and dogs with nonrenal disease. The assay was linear and precise, and the uCysC/uCr ratio was significantly higher in dogs with renal disease compared with healthy dogs and dogs with nonrenal disease. In cats, PENIA was validated for measuring feline uCysC, and a significant difference in uCysC/uCr ratio between healthy cats and cats with CKD was observed. Although the results for uCysC seem promising in both dogs and cats, additional studies are required. First, uCysC has not yet been investigated as a marker of early renal damage. Second, canine and feline purified CysC were not available, and therefore, the accuracy of the method could not be evaluated. Third, follow-up to evaluate uCysC/uCr as a prognostic marker was not performed. In addition, the effect of proteinuria on uCysC concentration was not investigated.

Biological Variations of CysC

Human Medicine

Age and Sex. Because the estimation of renal function by sCr requires adjustment for height and body
composition, sCysC was studied as an alternative marker for GFR in children and the elderly. Serum CysC showed diagnostic superiority over sCr as a marker for decreased GFR in the pediatric population, and the CysC-based GFR equation was better than the Schwartz formula, except in individuals >60 years old. The superiority of CysC and more common use of an enzymatic assay instead of the Jaffe method to measure Cr resulted in a new Schwartz formula. Interestingly, several studies have shown that sCysC was high during the first days of life, rapidly declined during the first 4 months, and then stayed constant beyond the first year of life. In contrast, sCr falls to a nadir at 4 months and gradually increases to adult concentrations by 15–17 years of age. The decrease in both parameters during the first year can be explained by developing renal function, which causes an increase in GFR. The increase in sCr beyond the first year of life is mainly attributable to increasing muscle mass and body weight, in contrast with sCysC, which is not correlated with muscle mass. In an adult population, increasing age, male sex, greater weight, greater height, cigarette smoking, and higher C-reactive protein concentrations were independently associated with higher sCysC concentration before and after adjusting for age, sex, and weight of individuals for whom GFR was estimated by a urinary Cr clearance test. The latter indicates that these factors may influence sCysC independent of their effects on renal function. However, others have observed no difference between healthy male and female individuals.

Serum CysC concentrations were significantly higher in individuals >80 years of age compared with individuals between 65 and 80 years of age, which corresponds to the inverse change in the predicted Cr clearance. However, no benefit was found for sCysC compared with sCr in detecting early renal impairment.

Interindividual Variation. A larger intraindividual variation has been reported for CysC compared with sCr in healthy individuals and in individuals with impaired kidney function, and a smaller interindividual variation has been found. Therefore, some authors propose using sCr as the marker of choice for detecting temporal changes in renal function. A possible explanation for the greater intraindividual variation for CysC is the better ability of CysC to reflect small changes in GFR.

Food. Serum CysC was unaffected after intake of a cooked meal, whereas sCr concentration was significantly higher after eating.

Storage. Cystatin C generally is considered a stable protein. Cystatin C was stable in serum for 6 months at −80°C and for 7 days at temperatures ranging from 20 to −20°C. Others have reported stability up to 1 month at 2–8°C, but only 1 day at ambient temperature (19–23°C) and 2 days at 4°C. No significant differences in sCysC concentrations were observed when comparing concentrations of selected proteins in samples stored at −25°C for 2 years and 25 years with samples stored for 1 month.

Urinary CysC was stable at urine pH ≥5 at both −20 and 4°C for 7 days and at 20°C for 48 hours.

Veterinary Medicine

Serum Cr concentration in dogs is influenced by breed, age, diet, and exercise, which may result in errors in diagnosing CKD. Because sCysC appeared to be a sensitive GFR marker, some authors have investigated the effect of physiological factors on sCysC. Plasma CysC was shown to be lower in adult dogs compared with younger and older dogs and lower in dogs with body weight <15 kg compared with heavier dogs. In this study, 179 dogs were included: 89 young dogs (<1 year), 39 adult dogs (1–8 years), and 51 old dogs (8–16.2 years). An overlap in plasma CysC concentration was observed (0.12–1.10 mg/L in the adult dogs, 0–1.73 mg/L in the young dogs, and 0–1.60 mg/L in the old dogs). Moreover, it remained unclear whether all of the dogs were healthy because complete CBC, serum biochemistry, and urinalysis were not performed. Other studies did not find a correlation between sCysC and age or weight. No circadian rhythm or sex difference was observed. In Wehner et al, 99 healthy dogs were included, with an equal sex distribution (52 female, 47 male dogs) and a wide range in age and body weight (3 m–13 year; 5–42 kg). In contrast, the study of Pagitz was limited by including only 24 healthy dogs (16 female and 8 male) with an age range of 10–97 months. Because contradictory results were reported regarding the effect of age and body weight on sCysC in dogs, additional studies in a larger number of healthy dogs, preferably in which GFR is measured, are required.

In contrast to plasma Cr concentration, which increases in dogs during the first 12 hours after a meal, plasma CysC concentration showed a dramatic decrease during the first hour after a meal. This decrease lasted for 9 hours and then returned to baseline after 12 hours. Based on these results, dogs should be fasted for at least 12 hours before taking blood samples to measure CysC concentration. Creatinine originates primarily from the amino acids glycine, arginine, and methionine but also from the gastrointestinal tract, which can explain the increase after a meal. Because plasma CysC concentration is mainly determined by GFR, and it has been shown that a meal causes a significant increase in GFR, the increased clearance of CysC could explain the decreased concentration, but this has not yet been confirmed.

To the authors’ knowledge, no studies about the biological variation in sCysC in cats have been performed.

Clinical Variation in CysC

Human Medicine

CysC in Patients with Diabetes Mellitus. Diabetic nephropathy is a common complication in human
diabetes patients and is characterized by persistent albuminuria and an associated decrease in GFR. Several studies have reported that sCysC is a better GFR marker than sCr for the early detection of incipient diabetic nephropathy. Moreover, the correlation between GFR measured with 51Cr-EDTA and sCysC ($r = 0.84$) was significantly stronger compared with using estimated GFR ($r = 0.70$). However, others have reported that sCysC is equal to sCr as a GFR marker in micro- and macro-proteinuric diabetes patients. This difference can be explained by the different methods used to measure sCr, differing GFR reference methods, and varying diabetes populations studied.

CysC and AKI. Acute kidney injury (AKI) is associated with high mortality. Therefore, early detection is critical to prevent further progression. Serum CysC concentration could detect development of AKI 1 or 2 days earlier than sCr concentration in intensive care patients with ≥ 2 predisposing factors of AKI. A limitation of this study was that GFR was not measured. Interestingly, the uCysC concentration also may predict renal replacement requirement in patients initially diagnosed with nonoliguric acute tubular necrosis. In similar studies, CysC was as effective as or less sensitive than sCr in the detection of AKI. However, similar to sCr, CysC could not discriminate between CKD and AKI. In conclusion, several authors have suggested that the use of CysC to detect AKI must be evaluated in larger studies and with different types of AKI and that the prognostic value also must be determined.

CysC and Thyroid Function. In patients with hyperthyroidism, renal blood flow is stimulated, which masks patients with concurrent CKD. Contrasting effects have been observed in patients with hypothyroidism. As sCysC was introduced as a new marker of kidney function, the impact of thyroid dysfunction on sCysC also was investigated. With treatment, sCysC concentration decreased, which masks patients with concurrent CKD. As sCysC was introduced as a new marker of kidney function, the impact of thyroid dysfunction on sCysC also was investigated. With treatment, sCysC concentration decreased in patients with hypothyroidism and decreased in patients with hyperthyroidism. However, others did not observe higher or lower sCysC concentrations in patients with untreated hyper- or hypothyroidism, respectively. When considering sCysC concentrations in patients with hyperthyroidism, GFR is underestimated, and, in patients with hypothyroidism, GFR is overestimated. Den Hoolander suggested that there is increased or decreased production of CysC in hyper- and hypothyroidism, respectively, because of the influence of the thyroid state on general metabolism. Serum concentrations of CysC and transforming growth factor β (TGF-β) were significantly higher in patients with hyperthyroidism, and a positive correlation among sCysC, thyroid hormones, and TGF-β was observed. After treatment, sCysC and TGF-β decreased. In vitro findings have suggested an increase in TGF-β concentrations in hyperthyroidism and a stimulatory effect of thyroid hormones and TGF-β on CysC production.

CysC and Cardiovascular Risk. Chronic kidney disease is a known risk factor for ischemic heart disease. In contrast with sCr, CysC was associated with an increased risk of heart failure. Serum CysC tends to be a stronger predictor of mortality than sCr in elderly individuals with heart failure as well as in the wider elderly population. Because CysC is a proteinase inhibitor that plays an important role in tissue remodeling, a higher CysC concentration also could represent a compensatory mechanism in vascular injury.

CysC and Cancer. Because renal disease has a high prevalence in the elderly, concurrent neoplasia may be present. Decreased regulation by cystatins is responsible for increased cysteine protease activity in tumor cells. Cystatin C has 2 antitumor effects. First, it is a major inhibitor of the cathepsins, enzymes that cause degradation of basal membranes by tumor cells. Therefore, CysC suppresses the metastatic process. Second, CysC inhibits TGF-β and the TGF-β signaling pathway. The specific role of CysC in oncogenesis has not yet been elucidated. However, individuals with untreated carcinomas and leukemia had significantly higher sCysC concentrations compared with patients after treatment. However, 2 other studies did not find a difference in sCysC concentrations between patients with malignancy and a healthy control group.

CysC and Inflammation. In vitro, CysC regulates certain aspects of immune function because IL-10 controls CysC synthesis in response to inflammation. Several reports have shown a good correlation between sCysC and other inflammatory markers, but these studies were performed in populations with either cardiovascular or renal impairment, which can cause bias. Dexamethasone caused a dose-dependent increase in CysC secretion in vitro, in vivo, sCysC is influenced by prednisolone administration.

Veterinary Medicine

One study in dogs showed no influence of inflammation on sCysC. However, only a limited number of dogs was examined; therefore, additional research is needed to examine the impact of inflammation on sCysC. Because glucocorticoids are commonly administered to small animals, future studies are needed to evaluate whether corticosteroids falsely increase sCysC. Serum CysC concentration and GFR should be measured in healthy dogs and cats before, during, and after glucocorticoid administration.

In a study comprising 10 volume-depleted dogs and 1 dog with AKI, a weaker correlation between sCysC and GFR than sCr and GFR was observed. These results indicate that CysC is not a good GFR marker for decreased GFR because of prerenal causes. However, caution is warranted. Only a few dogs were sampled, which could have influenced the regression analysis. Furosemide administration used to achieve volume depletion also could have affected CysC kinetics. In the same study, the sCysC concentrations of
the dog with AKI fell within the reference interval established for healthy dogs, which is in contrast to observations in human patients. This suggests that in dogs with AKI, sCysC is not a sensitive indicator of decreased GFR. However, in critically ill dogs, sCysC concentrations were significantly higher in dogs in shock compared with healthy dogs, but this result was not observed in multiple-trauma dogs, which is in contrast to reports in humans. To date, no large-scale study in dogs with AKI has been performed to evaluate sCysC.

One of the diseases leading to AKI in dogs is babesiosis, and diagnosis of this serious complication is difficult. Photochemistry assays can cause false-positive results in babesiosis attributable to free hemoglobin or bilirubin. In 1 study, no difference between sCysC and sCr was observed. Studies investigating correlations between GFR and sCr and sCysC should be performed to identify the most appropriate marker for screening for renal damage in dogs with babesiosis. In our opinion, additional studies in dogs with AKI or prerenal azotemia are needed.

Cystatin C also was of particular interest in dogs with visceral leishmaniasis, a disease that results in CKD caused by immune-complex disposition and glomerular injury. In humans, sCysC concentrations were positively correlated with circulating immune complexes and the production of granulocyte-macrophage colony stimulating factor (GM-CSF), 2 factors leading to glomerular dysfunction in leishmaniasis. In dogs with visceral leishmaniasis, mean sCysC concentration was significantly higher than in the control groups, and sCr concentration was lower than in the control group, although not significantly. However, the mean sCysC concentration was in the reference interval proposed by 2 other authors using a turbidimetric assay. GFR should be determined, and renal biopsies should be performed to determine if the increased sCysC concentration in dogs with leishmaniasis is caused by immune-complex deposition or an extrarenal factor.

Cystatin C has not yet been investigated in cats with nonrenal disease, except for hyperthyroidism. Serum CysC was evaluated in cats with hyperthyroidism using PETIA. No correlation was observed between GFR measured by exogenous inulin clearance and 1/sCysC concentration, although a significant correlation between GFR and 1/sCr was observed. In addition, no significant decrease in sCysC concentration was observed after treatment with 131I. Although preliminary, the study of Jepson et al suggests a potentially similar influence of thyroid function in cats as in humans, with hyper- and hypothyroidism causing increased or decreased sCysC concentrations, respectively. Additional studies to clarify the impact of thyroid function on CysC are warranted.

In human medicine, contradictory reports have been published regarding the effect of different tumors on sCysC concentration. Therefore, studies in small animals evaluating the effect of neoplasia on sCysC are essential. Cystatin C is an antitumor marker because it is a protease inhibitor, and therefore, it inhibits damage from tumor cells and the metastatic process. Serum Cr concentration is not a good GFR marker in patients with neoplasia attributable to the decreased muscle mass, and sCysC potentially may be a valuable alternative.

Conclusion

Cystatin C has the potential to become a valuable biomarker in small animal medicine, but adequate analytical, biological, and clinical validation is needed first.

A few studies using canine serum have been performed, but studies in cats are scarce. There is a need to perform a thorough analytical validation of the nephelometric and turbidimetric assays for determining CysC in serum and urine of both cats and dogs. These studies will identify which assay is most suitable for CysC measurement.

To evaluate whether sCysC is a better GFR marker than sCr, it is necessary to evaluate the biological factors that may influence sCysC and to establish a reference range.

In addition, the correlations of GFR with sCysC and sCr must be compared. To use sCysC as GFR marker in practice, conditions that contribute to CysC production, such as neoplasia and inflammation, also must be investigated.

Finally, further investigations of sCysC should be performed to assess its value for the detection of tubular dysfunction.

Footnotes

a PETIA Cystatin C assay, Dako, Glostrup, Denmark
b PENIA Cystatin C assay, Siemens, Marburg, Germany
c Cobas Fara analyser, Roche Diagnostics, Basel, Switzerland
d Hitachi analyser, Roche Diagnostics, Indianapolis, IN
e Cobas 6000 analyser, Roche Diagnostics, Basel, Switzerland
f Abbott Architect ci8200 analyser, Abbott Laboratories, Abbott Park, IL
g PETIA Cystatin C assay, Gentian AS, Moss, Norway

Acknowledgment

Conflict of Interest: This article received support from the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT).

References

1. Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA 2007;298:2038–2047.
2. Lulich JP, Osborne CA, Obrien TD, et al. Feline renal failure – Questions, answers, questions. Comp Cont Educ Pract 1992;14:127–151.
3. Lund EM, Armstrong PJ, Kirk CA, et al. Health status and population characteristics of dogs and cats examined at
private veterinary practices in the United States. J Am Vet Med Assoc 1999;214:1336–1341.

4. DiBartola SP, Rutgers HC, Zack PM, et al. Clinicopathologic findings associated with chronic renal disease in cats: 74 cases (1973-1984). J Am Vet Med Assoc 1987;190:1196–1202.

5. Boyd LM, Langston C, Thompson K, et al. Survival in cats with naturally occurring chronic kidney disease (2000-2002). J Vet Intern Med 2008;22:1111–1117.

6. Braun JP, Lefebvre HP. Kidney function and damage. In: Kaneko JJ, Harvey JW, Bruss ML, ed. Clinical Biochemistry of Domestic Animals, 6th ed. London: Elsevier; 2008:485–528.

7. Paepe D, Daminet S. Feline CKD: Diagnosis, staging and screening-what is recommended? J Feline Med Surg 2013;15:15–27.

8. Abrahamson M, Olafsson I, Paldstott A, et al. Structure and expression of the human cystatin C gene. Biochem J 1990;268:287–294.

9. Jacobsson B, Largellid H, Bergerheim USR. Transtraetin and cystatin C are catabolized in proximal tubular epithelial cells and the proteins are not useful as markers for renal cell carcinomas. Histopathology 1995;26:559–564.

10. Tenstad O, Roald AB, Grubb A, et al. Renal handling of radio labelled human cystatin C in the rat. Scand J Clin Lab Invest 1996;56:409–414.

11. Kaseda R, Ino N, Hosojima M, et al. Megalin-mediated endocytosis of cystatin C in proximal tubule cells. Biochem Biophys Res Commun 2007;357:1130–1134.

12. Seronin-Viven S, Delanape P, Pieron L, et al. Cystatin C: Current position and future prospects. Clin Chem Lab Med 2008;46:1644–1686.

13. Dharmidethara VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: A meta-analysis. Am J Kidney Dis 2002;40:221–226.

14. Conti M, Moutereau S, Zater M, et al. Urinary cystatin C as a specific marker of tubular dysfunction. Clin Chem Lab Med 2006;44:288–291.

15. Uchida K, Gotoh A. Measurement of cystatin-C and creatinine in urine. Clin Chim Acta 2002;323:121–128.

16. Clausen J. Proteins in normal cerebrospinal fluid not found in serum. Proc Soc Exp Biol Med 1961;107:170–172.

17. Butler EA, Flynn FV. The occurrence of post-gamma-protein in urine: A new protein abnormality. J Clin Pathol 1961;14:172–178.

18. Loefberg H, Grubb AO. Quantitation of gamma-trace in human biological fluids: Indications for production in the central nervous system. Scand J Clin Lab Invest 1979;39:619–626.

19. Grubb A, Lofberg H. Human gamma-trace, a basic microprotein: Amino acid sequence and presence in the adenosynophosph. Proc Natl Acad Sci USA 1982;79:3024–3027.

20. Moller CA, Loefberg H, Grubb AO, et al. Distribution of cystatin C (gamma-trace), an inhibitor of lysosomal cysteine proteinases, in the anterior lobe of simian and human pituitary glands. Neuroendocrinology 1985;41:400–404.

21. Colle A, Tonnelle C, Jarry T, et al. Isolation and characterization of post gamma globulin in mouse. Biochem Biophys Res Comm 1984;122:111–115.

22. Barrett AJ, Davies ME, Grubb A. The place of human gamma-trace (cystatin C) amongst the cysteine proteinase inhibitors. Biochem Biophys Res Comm 1984;120:631–636.

23. Bobek LA, Levine MJ. Cystatin-inhibitors of cysteine proteinases. Crit Rev Oral Biol Med 1992;3:307–332.

24. Grubb A, Simonsen O, Sturfelt G, et al. Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand 1985;218:499–503.

25. Simonsen O, Grubb A, Thyssell H. The blood serum concentration of cystatin C (gamma-trace) as a measure of the glomerular filtration rate. Scand J Clin Lab Invest 1985;45:97–101.

26. Kyhse-Andersen J, Schmidt C, Nordin G, et al. Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem 1994;40:1921–1926.

27. Sohrabian A, Noraddin FH, Flodin M, et al. Particle enhanced turbidimetric immunoassay for the determination of urinary cystatin C on Cobas c311. Clin Biochem 2012;45:339–344.

28. Finney H, Newman DJ, Gruber W, et al. Initial evaluation of cystatin C measurement by particle-enhanced immuno nephelometry on the Behring nephelometer systems (BNA, BN II). Clin Chem 1997;43:1016–1022.

29. Herget-Rosenthal S, Feldkamp T, Volbracht L, et al. Measurement of urinary cystatin C by particle-enhanced nephelometric immunoassay: Precision, interferences, stability and reference range. Ann Clin Biochem 2004;41:111–118.

30. Mussap M, Ruzzante N, Varaguno M, et al. Quantitative automated particle-enhanced immunonephelometric assay for the routine measurement of human cystatin C. Clin Chem Lab Med 1998;36:859–865.

31. Erlandsen EJ, Randers E, Kristensen JH. Evaluation of the Dade Behring N Latex Cystatin C assay on the Dade Behring Nephelometer II system. Scand J Clin Lab Invest 1999;59:1–8.

32. Flodin M, Hansson LO, Larsson A. Variations in assay protocol for the Dako cystatin C method may change patient results by 50% without changing the results for controls. Clin Chem Lab Med 2006;44:1481–1485.

33. Newman DJ, Thakkar H, Edwards KG, et al. Serum cystatin C measured by automated immunoassay: A more sensitive marker of changes in GFR than serum creatinine. Kidney Int 1995;47:312–318.

34. Garrido MJ, Hermida J, Tutor JC. Immunoturbidimetric assay for serum cystatin C using the Cobas Faras analyzer. Clin Chem Lab Med 2002;40:853–854.

35. Al-Turkmani MR, Law T, Kellogg MD. Performance evaluation of a particle-enhanced turbidimetric cystatin C assay on the Hitachi 917 analyzer. Clin Chim Acta 2008;389:75–77.

36. Conde-Sanchez M, Roldan-Fontana E, Chueca-Porcuna N, et al. Analytical performance evaluation of a particle-enhanced turbidimetric cystatin C assay on the Roche COBAS 6000 analyzer. Clin Biochem 2010;43:921–925.

37. Flodin M, Larsson A. Performance evaluation of a particle-enhanced turbidimetric cystatin C assay on the Abbott c8200 analyzer. Clin Biochem 2009;42:873–876.

38. Delanghe JR, Cobbaert C, Harmoimen A, et al. Focusing on the clinical impact of standardization of creatinine measurements: A report by the EFCC Working Group on Creatinine Standardization. Clin Chem Lab Med 2011;49:977–982.

39. Grubb A, Blirup-Jensen S, Lindstrom V, et al. First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 2010;48:1619–1621.

40. Myers GL. Standardization of serum creatinine measurement: Theory and practice. Scand J Clin Lab Invest 2008;68:57–63.

41. Myers GL, Miller WG, Coresh J, et al. Recommendations for improving serum urinary creatinine measurement: A report from the laboratory working group of the National Kidney Disease Education Program. Clin Chem 2006;52:5–18.

42. Nakata J, Nakahari A, Takahashi C, et al. Molecular cloning, expression in Escherichia coli, and development of monoclonal antibodies to feline cystatin C. Vet Immunol Immunopathol 2010;138:231–234.

43. Pearson WR, Wood T, Zhang Z, et al. Comparison of DNA sequences with protein sequences. Genomics 1997;46:24–36.

44. Poulik MD, Shinnick CS, Smithies O. Partial amino-acid sequences of human and dog post-gamma-globulins. Mol Immunol 1981;18:569–572.
85. Keevil BG, Kilpatrick ES, Nichols SP, et al. Biological variation of cystatin C: Implications for the assessment of glomerular filtration rate. Clin Chem 1998;44:1535–1539.
86. Horio M, Imai E, Yasuda Y, et al. Performance of serum cystatin C versus serum creatinine as a marker of glomerular filtration rate as measured byulin renal clearance. Clin Exp Nephrol 2011;15:868–876.
87. Schuck O, Teplan V, Jabor A, et al. Glomerular filtration rate estimation in patients with advanced chronic renal insufficiency based on serum cystatin C levels. Nephron Clin Pract 2003;93:e146–e151.
88. Eriksen BQ, Mathisen UD, Melsom T, et al. Cystatin C is not a better estimator of GFR than plasma creatinine in the general population. Kidney Int 2010;78:1305–1311.
89. Antognoni MT, Siepi D, Porciello F, et al. Serum cystatin-C evaluation in dogs affected by different diseases associated or not with renal insufficiency. Vet Res Commun 2007;31(Suppl 1):269–271.
90. Pagitz M, Frommetl F, Schwendener T, et al. Cystatin C in comparison with other endogenous markers of glomerular filtration rate in healthy dogs. J Vet Intern Med 2007;21:936–942.
91. Petersen PH, Fraser CG, Sandberg S, et al. The index of individuality is often a misinterpreted quantity characteristic. Clin Chem Lab Med 1999;37:655–661.
92. Martin C, Péchereau D, De la Farge F, et al. Cystatine C plasmatique chez le chat: Les technique actuelles ne permettent pas de l’utiliser comme marqueur d’insufficance rénale. Revue médecine vétérinaire 2002;153:305–310.
93. Friedrichs KR, Harr KE, Freeman KP, et al. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet Clin Pathol 2012;41:441–453.
94. Poswiatowska-Kaszczysyczyn I. Usefulness of serum cystatin C measurement for assessing renal function in cats. Bull Vet Inst Pulawy 2012;56:235–239.
95. Al-Tonbary YA, Hammad AM, Zaghboul HM, et al. Pretreatment cystatin C in children with malignancy: Can it predict chemotherapy-induced glomerular filtration rate reduction during the induction phase? J Pediatr Hematol Oncol 2004;26:336–341.
96. Bokenkamp A, Domanetzki M, Zinck R, et al. Cystatin C-a new marker of glomerular filtration rate in children independent of age and height. Pediatrics 1998;101:875–881.
97. Nitta K, Hayashi T, Uchida K, et al. Serum cystatin C concentration as a marker of glomerular filtration rate in patients with various renal diseases. Intern Med 2002;41:931–935.
98. Randers E, Kristensen JH, Erlandsen EJ, et al. Serum cystatin C as a marker of the renal function. Scand J Clin Lab Invest 1998;58:585–592.
99. Risch L, Blumberg A, Huber A. Rapid and accurate assessment of glomerular filtration rate in patients with renal transplants using serum cystatin C. Nephrol Dial Transplant 1999;14:1991–1996.
100. Stickle D, Cole B, Hock K, et al. Correlation of plasma concentrations of cystatin C and creatinine to inulin clearance in a pediatric population. Clin Chem 1998;44:1334–1338.
101. Heine R, Moe L. Pharmacokinetic aspects of measurement of glomerular filtration rate in the dog: A review. J Vet Intern Med 1998;12:401–414.
102. Finch NC, Syme HM, Elliott J, et al. Glomerular filtration rate estimation by use of a correction formula for slope- intercept plasma iohexol clearance in cats. Am J Vet Res 2011;72:1652–1659.
103. Roald AB, Aukland K, Tenstad O. Tubular absorption of filtered cystatin-C in the rat kidney. Exp Physiol 2004;89:701–707.
104. Kabanda A, Jadoul M, Lauwers Y, et al. Low-molecular-weight proteinuria in Chinese herbs nephropathy. Kidney Int 1995;48:1571–1576.
105. Kabanda A, Vandercam B, Bernard A, et al. Low molecular weight proteinuria in human immunodeficiency virus-infected patients. Am J Kidney Dis 1996;27:803–808.
106. Nakai K, Kikuchi M, Omori S, et al. [Evaluation of urinary cystatin C as a marker of renal dysfunction]. Nihon Jinzo Gakkai Shi 2006;48:407–415.
107. Thielemans N, Lauwers Y, Bernard A. Competition between albumin and low-molecular-weight proteins for renal tubular uptake in experimental nephropathies. Nephron 1994;66:453–458.
108. Tkaczyk M, Nowicki M, Lukamowicz J. Increased cystatin C concentration in urine of nephrotic children. Pediatr Nephrol 2004;19:1278–1280.
109. Filliger G, Lepage N. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 2003;18:981–985.
110. Cordeiro VF, Pinheiro DC, Silva GB, Jr., et al. Comparative study of cystatin C and serum creatinine in the estimative of glomerular filtration rate in children. Clin Chim Acta 2008;391:46–50.
111. Zappitelli M, Parvex P, Joseph L, et al. Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis 2006;48:221–230.
112. Burkhardt H, Bojarsky G, Grentz N, et al. Creatinine clearance, Cockcroft-Gault formula and cystatin C. Estimators of true glomerular filtration rate in the elderly? Gerontology 2002;48:140–146.
113. Fanos V, Mussap M, Plebani M, et al. Cystatin C in paediatric nephrology. Present situation and prospects. Minerva Pediatr 1999;51:167–177.
114. Harmoinen A, Ylinen E, Ala-Houhala M, et al. Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr Nephrol 2000;15:105–108.
115. Finney H, Newman DJ, Thakkar H, et al. Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 2000;82:71–75.
116. Baxmann AC, Ahmed MS, Marques NC, et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol 2008;3:348–354.
117. Galteau MM, Guyon M, Gueguen R, et al. Determination of serum cystatin C: Biological variation and reference values. Clin Chem Lab Med 2001;39:850–857.
118. Knight EL, Verhave JC, Spiegelman D, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 2004;65:1416–1421.
119. Finney H, Newman DJ, Price CP. Adult reference ranges for serum cystatin C, creatinine and predicted creatinine clearance. Ann Clin Biochem 2000;37(Pt 1):49–59.
120. Erlandsen EJ, Randers E, Kristensen JH. Reference intervals for serum cystatin C and serum creatinine in adults. Clin Chem Lab Med 1998;36:393–397.
121. Finney H, Bates CJ, Price CP. Plasma cystatin C determinations in a healthy elderly population. Arch Gerontol Geriatr 1999;29:75–94.
122. Van Den Noortgate NJ, Janssens WH, Delanghe JR, et al. Serum cystatin C concentration compared with other markers of glomerular filtration rate in the old old. J Am Geriatr Soc 2002;50:1278–1282.
123. Reinhard M, Erlandsen EJ, Randers E. Biological variation of cystatin C and creatinine. Scand J Clin Lab Invest 2009;69:831–836.
124. John GT, Fleming JJ, Talaulikar GS, et al. Measurement of renal function in kidney donors using serum cystatin C and beta(2)-microglobulin. Ann Clin Biochem 2003;40:656–658.

125. Preiss DJ, Godber IM, Lamb EJ, et al. The influence of a cooked-meat meal on estimated glomerular filtration rate. Ann Clin Biochem 2007;44:35–42.

126. Sunde K, Nilsen T, Flodin M. Performance characteristics of a cystatin C immunoassay with avian antibodies. Ups J Med Sci 2007;112:21–37.

127. Gislefoss RE, Grimsrud TK, Morkrid L. Stability of selected serum proteins after long-term storage in the Janus Serum Bank. Clin Chem Lab Med 2009;47:596–603.

128. Braun JP, Lefebvre HP, Watson ADJ. Creatinine in the dog: A review. Vet Clin Pathol 2003;32:162–179.

129. O’Connor WJ, Summerrill RA. The effect of a meal of meat on glomerular filtration rate in dogs at normal urine flows. J Physiol 1976;256:81–91.

130. Mojmíříková OA, Abbelda N, George S. Evaluation of serum cystatin C and chromogranin A as markers of nephropathy in patients with type 2 diabetes mellitus. Scand J Clin Lab Invest 2000;60:483–489.

131. Harmoinen AP, Kouri TT, Wirta OR, et al. Evaluation of plasma cystatin C as a marker for glomerular filtration rate in patients with type 2 diabetes. Clin Nephrol 1999;52:363–370.

132. Mussap M, Dalla Vestra M, Fioretto P, et al. Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Kidney Int 2002;61:1453–1461.

133. Oddoze C, Morange S, Portugal H, et al. Cystatin C is not more sensitive than creatinine for detecting early renal impairment in patients with diabetes. Am J Kidney Dis 2001;38:310–316.

134. Herget-Rosenthal S, Marggraf G, Husing J, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int 2004;66:1115–1122.

135. Herget-Rosenthal S, Poppen D, Husing J, et al. Prognostic value of tubular proteinuria and enzymuria in nonoliguric acute tubular necrosis. Clin Chem 2004;50:552–558.

136. Ahlstrom A, Tallgren M, Peltonen S, et al. Evolution and predictive power of serum cystatin C in acute renal failure. Clin Nephrol 2004;62:344–350.

137. Royakkers A, Korevaar JC, van Suijlen JDE, et al. Serum and urine cystatin C are poor biomarkers for acute kidney injury and renal replacement therapy. Intensive Care Med 2011;37:493–501.

138. Soto K, Coelho S, Rodrigues B, et al. Cystatin C as a marker of acute kidney injury in the emergency department. Clin J Am Soc Nephrol 2010;5:1745–1754.

139. Coca SG, Yalavarthy R, Concajo J, et al. Biomarkers for the diagnosis and risk stratification of acute kidney injury: A systematic review. Kidney Int 2008;73:1008–1016.

140. Honore PM, Joannes-Boyau O, Boer W. The early biomarker of acute kidney injury: In search of the Holy Grail. Intensive Care Med 2007;33:1866–1868.

141. van Hoek I, Daminet S. Interactions between thyroid and kidney function in pathological conditions of these organ systems: A review. Gen Comp Endocrinol 2009;160:205–215.

142. Ford HC, Lim WC, Chisnall WN, et al. Renal function and electrolyte levels in hyperthyroidism: Urinary protein excretion and the plasma concentrations of urea, creatinine, uric acid, hydrogen ion and electrolytes. Clin Endocrinol 1989;30:293–301.

143. Kreisman SH, Hennessey JV. Consistent reversible elevations of serum creatinine levels in severe hypothyroidism. Arch Intern Med 1989;149:79–82.

144. Gommeren K, van Hoek I, Lefebvre HP, et al. Effect of thyroxine supplementation on glomerular filtration rate in hypothyroid dogs. J Vet Intern Med 2009;23:844–849.

145. Fricker M, Wiesli P, Brandle M, et al. Impact of thyroid dysfunction on serum cystatin C. Kidney Int 2003;63:1944–1947.

146. Jayagopal V, Keevil BG, Atkin SL, et al. Paradoxical changes in cystatin C and serum creatinine in patients with hypothyroidism. Clin Chem 2003;49:680–681.

147. Wiesli P, Schweger B, Spinac GA, et al. Serum cystatin C is sensitive to small changes in thyroid function. Clin Chim Acta 2003;338:87–90.

148. Manetti L, Bardini E, Genovesi M, et al. Thyroid function differently affects serum cystatin C and creatinine concentrations. J Endocrinol Invest 2005;28:346–349.

149. Schmitt R, Bachmann S. Impact of thyroid dysfunction on serum cystatin C. Kidney Int 2003;64:1139–1140.

150. den Hollander JG, Wulcan RW, Mantel MJ, et al. Is cystatin C a marker of glomerular filtration rate in thyroid dysfunction? Clin Chem 2003;49:1558–1559.

151. Kotajima N, Yanagawa Y, Aoki T, et al. Influence of thyroid hormones and transforming growth factor-beta1 on cystatin C concentrations. J Int Med Res 2010;38:1365–1373.

152. Shlipak MG, Sarnak MJ, Katz R, et al. Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 2005;352:2049–2060.

153. Shlipak MG, Katz R, Fried LF, et al. Cystatin-C and mortality in elderly persons with heart failure. J Am Coll Cardiol 2005;45:268–271.

154. Larsson A, Helmersson J, Hansson LO, et al. Increased serum cystatin C is associated with increased mortality in elderly men. Scand J Clin Lab Invest 2005;65:301–305.

155. Koenig W, Twardella D, Brenner H, et al. Plasma concentrations of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events: More than simply a marker of glomerular filtration rate. Clin Chem 2005;51:321–327.

156. Hawley-Nelson P, Roop DR, Cheng CK, et al. Molecular cloning of mouse epidermal cystatin A and detection of regulated expression in differentiation and tumorigenesis. Mol Carcinog 1988;1:202–211.

157. Sloane BF, Moin K, Krepela E, et al. Cathepsin B and its endogenous inhibitors – The role in tumor malignancy. Cancer Metastasis Rev 1990;9:333–352.

158. Kolar Z, Jarvinen M, Negrini R. Demonstration of proteinase inhibitors cystatin A, B and C in breast cancer and in cell lines MCF-7 and ZR-75-1. Neoplasma 1989;36:185–191.

159. Sokol JP, Neil JR, Schiemann BJ, et al. The use of cystatin C to inhibit epithelial-mesenchymal transition and morphological transformation stimulated by transforming growth factor-beta. Breast Cancer Res 2005;7:R844–R853.

160. Sokol JP, Schiemann WP. Cystatin C antagonizes transforming growth factor signaling in normal and cancer cells. Mol Cancer Res 2004;2:183–195.

161. Strojan P, Svetic B, Smid L, et al. Serum cystatin C in patients with head and neck carcinoma. Clin Chim Acta 2004;344:155–161.

162. Demirtas S, Akan O, Can M, et al. Cystatin C can be affected by nonrenal factors: A preliminary study on leukemia. Clin Biochem 2006;39:115–118.

163. Mojmíříková OA, Marouf R, Abbelda N, et al. Serum concentration of cystatin C is not affected by cellular proliferation in patients with proliferative haematological disorders. Ann Clin Biochem 2002;39:308–310.

164. Mussap M, Plebani M. Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci 2004;41:467–550.

165. Xu Y, Schnorrer P, Proietto A, et al. IL-10 controls cystatin C synthesis and blood concentration in response to inflammation. Scand J Clin Lab Invest 2005;65:1016–1021.
kidney disease: The health, aging, and body composition study. Kidney Int 2007;71:239–244.

167. Stevens LA, Schmid CH, Greene T, et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int 2009;75:652–660.

168. Bjarnadottir M, Grubb A, Olafsson I. Promoter-mediated, dexamethasone-induced increase in cystatin C production by HeLa cells. Scand J Clin Lab Invest 1995;55:617–623.

169. Bokenkamp A, van Wijk JAE, Lentze MJ, et al. Effect of corticosteroid therapy on serum cystatin C and beta(2)-microglobulin concentrations. Clin Chem 2002;48:1123–1126.

170. Risch L, Herklotz R, Blumberg A, et al. Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem 2001;47:2055–2059.

171. Pasa S, Kilic N, Atasoy A, et al. Serum cystatin C concentration as a marker of acute renal dysfunction in critically ill dogs. J Anim Vet Adv 2008;7:1410–1412.

172. Fried LF, Biggs ML, Shlipak MG, et al. Association of kidney function with incident hip fracture in older adults. J Am Soc Nephrol 2007;18:282–286.

173. de Scally MP, Leisewitz AL, Lobetti RG, et al. The elevated serum urea: Creatinine ratio in canine babesiosis in South Africa is not of renal origin. J S Afr Vet Assoc-Tydskr Suid-Afri Vet Ver 2006;77:175–178.

174. Poli A, Abramo F, Mancianti F, et al. Renal involvement in canine Leishmaniasis – A light-microscopic, immunohistochemical and electron-microscopic study. Nephron 1991;57:444–452.

175. El-Shafey EM, El-Nagar GF, Selim MF, et al. Is serum cystatin C an accurate endogenous marker of glomerular filtration rate for detection of early renal impairment in patients with type 2 diabetes mellitus? Ren Fail 2009;31:355–359.

176. Jepson RE, Slater L, Nash S, et al. Evaluation of cystatin C as a marker of GFR in hyperthyroid cats. J Vet Intern Med 2006;20:740.

177. Bokenkamp A, Domanetzki M, Zinck R, et al. Reference values for cystatin C serum concentrations in children. Pediatr Nephrol 1998;12:125–129.