Quasiclassical Eilenberger approach to the vortex state in pnictide superconductors

P. Belova1,2, M. Safonchik1,3, K. B. Traito1, E. Lähderanta1

1 Lappeenranta University of Technology, P.O.Box 20, FI-53851, Lappeenranta, Finland
2 Petrozavodsk State University, Lenin str. 33, RU-185640, Petrozavodsk, Russia
3 A. F. Ioffe Physico-Technical Institute, St. Petersburg, 194021, Russia

E-mail: Polina.Belova@lut.fi

Abstract. Quasiclassical Eilenberger equations are solved for s^\pm-wave superconductors in the mixed state. This symmetry has been proposed for multiband superconductors as pnictides. This mechanism can be realized because of Umklapp scattering between the electron and the hole Fermi surface pockets resulting in opposite sign of pairing gap in these pockets. The applicability of the phenomenological Hao-Clem theory is investigated. Magnetic, temperature and impurity scattering rate dependencies of vortex core size are calculated. It is found that the accuracy of the effective London model gets better with the presence of the impurity scattering and even near the second critical field it is below 6%. The model with the parameters of intraband and interband impurity scattering, describing well superfluid density in BaFe_2As_2, is also considered.

The discoveries of the superconductivity in the layered FeP [1] and FeAs [2] systems have ignited tremendous research activities for understanding of the superconductivity in Fe pnictides. The superconducting transition temperature T_c of electron-doped $\text{LaFeAsO}_{1-x}\text{F}_x$ ("1111") reaches 43 K under pressure [3], and $\text{NdFeAsO}_{1-x}\text{F}_x$ and $\text{SmFeAsO}_{1-x}\text{F}_x$ show T_c higher than 40 K at ambient pressure [4]. BaFe_2As_2 ("122") also shows superconductivity by hole doping with the highest T_c of 38 K in $(\text{Ba},\text{K})\text{Fe}_2\text{As}_2$ [5] and by electron doping with the highest T_c of 25 K in $\text{Ba}(\text{Fe},\text{Co})_2\text{As}_2$ [6]. Stoichiometric iron pnictides such as LiFeAs or NaFeAs ("111") are also interesting because they become superconducting without doping [7]. These Fe pnictides commonly have the FeAs layers, where the Fe ions form a square lattice and each Fe ion is tetrahedrally coordinated by four As ions.

One key feature for understanding the origin of the high critical temperature and the pairing mechanism in superconductors is the symmetry of the order parameter. For iron pnictides, one of the attractive idea is that antiferromagnetic spin fluctuations mediate interband pairing. The sign of the Umklapp scattering between the electron and the hole Fermi surface, which is responsible for the superconducting pairing, is positive and the order parameter is fully gapped but changes sign between different Fermi sheets [8]. This situation is referred to as the extended s^\pm symmetry. Using an s^\pm model for the superconducting gap, a good explanation of experimental results on penetration depth in electron-doped and hole-doped BaFe_2As_2 pnictides has been obtained [9, 10]. In this model the Fermi surface is approximated by two cylindrical pockets centered at Γ (hole) and M (electron) points of the Fermi surface, i.e. two dimensional limit of five-band model is proposed. Recently, strong evidence of the s^\pm symmetry in iron pnictides has been found by scanning tunneling microscopic measurements [11]. In spite of...
success of s^\pm model, there are some indications, e.g. weak sensitivity of T_c to the impurity concentration [12], that a conventional s-wave state without sign reversal (so called s_{++}-wave state) is also possible candidate for iron pnictides. It has been proposed that the moderate electron-phonon interaction due to Fe-ion oscillation can induce the critical orbital fluctuation, without being prohibited by the Coulomb interaction. These fluctuations give rise to the strong pairing interactions for the s_{++}-wave superconductivity [13].

The aim of our paper is to apply quasiclassical Eilenberger approach to the vortex state of stoichiometric and nonstoichiometric iron pnictides considering s^\pm and s_{++} pairing symmetries as presumable states [9] and to calculate magnetic coherence length ξ_b [14, 15]. As described in Ref. [16], ξ_b is important for the description of the muon spin rotation (μSR) experiments and can be directly measured. On theoretical ground, the magnetic coherence length can be found from the fitting of the calculated magnetic field distribution $h_{EGL}(r)$ to the Eilenberger - Ginzburg-Landau field distribution $h_{EGL}(r)$ [14, 15]

$$h_{EGL}(r) = \frac{\phi_0}{S} \sum_G \frac{F(G)e^{iGr}}{1 + \lambda_s^2G^2},$$

where $F(G) = uK_1(u)$, $K_1(u)$ is the modified Bessel function, $u = \xi_bG$, G is a reciprocal lattice vector and S is the area of the vortex lattice unit cell. It is important to note that ξ_b in Eq. (1) is obtained from solving the Eilenberger equations and doesn’t coincide with the variational parameter ξ_v (analytical Ginzburg-Landau (AGL) model), ”improved” analytical GL solution [17] or numerical GL solution [18]. We will call the obtained field distribution as an Eilenberger - Ginzburg-Landau field distribution $h_{EGL}(r)$. Using the GL type of the field distribution does not mean direct connection to the GL theory and it is taken as a reasonable starting point of the investigation similar to the empirical approach to the problem [16, 19]. In Eq. (1) $\lambda(T)$ is calculated in Ref. [9]

$$\frac{\lambda_L^2}{\lambda_s^2(T)} = 2\pi T \sum_{\omega_n > 0} \frac{\Delta_n^2}{\eta_n(\Delta_n^2 + \omega_n^2)^{3/2}}, \quad \eta_n = 1 + 2\pi \frac{\Gamma_0 + \Gamma_\pi}{\sqrt{\Delta_n^2 + \omega_n^2}}.$$

where λ_L is the London penetration depth at $T = 0$ K in the absence of the impurities. Here, $\Delta_n = \Delta(T) - 4\pi\Gamma_\pi\Delta_n/\sqrt{\Delta_n^2 + \omega_n^2}$ for the s^\pm pairing and $\Delta_n = \Delta(T)$ for the s_{++} pairing symmetry. The order parameter $\Delta(T)$ is determined by the selfconsistent equation

$$\Delta(T) = 2\pi T \sum_{0 < \omega_n < \omega_c} \frac{V^{SC}\Delta_n}{\sqrt{\Delta_n^2 + \omega_n^2}}.$$

With the Riccati transformation of the Eilenberger equations quasiclassical Green functions f and g can be parameterized via functions a and b [20]

$$\tilde{f} = \frac{2a}{1 + ab}, \quad f = \frac{2b}{1 + ab}, \quad g = \frac{1 - ab}{1 + ab},$$

satisfying the nonlinear Riccati equations. In Born approximation for impurity scattering we have

$$u \cdot \nabla a = -a[2(\omega_n + G) + iu \cdot A] + (\Delta + F) - a^2(\Delta^* + F^*),$$

$$u \cdot \nabla b = b[2(\omega_n + G) + iu \cdot A] - (\Delta^* + F^*) + b^2(\Delta + F),$$

$$u \cdot \nabla \tilde{f} = \frac{2a}{1 + ab}[2(\omega_n + G) + iu \cdot A] - \frac{a}{1 + ab}(\Delta + F) + a^2(\Delta^* + F^*),$$

$$u \cdot \nabla \tilde{g} = \frac{2b}{1 + ab}[2(\omega_n + G) + iu \cdot A] - \frac{b}{1 + ab}(\Delta + F) - b^2(\Delta^* + F^*),$$

$$u \cdot \nabla F = \frac{1}{1 + ab}(\Delta + F - a^2(\Delta^* + F^*) - b^2(\Delta^* + F^*)),$$

$$u \cdot \nabla G = \frac{1}{1 + ab}(\alpha + \beta(\omega_n - a\Delta^* - b\Delta^*) + iu \cdot A - \Gamma_\pi G - \Gamma_0 G - \Gamma_\pi \alpha_{out}).$$
where $\omega_n = \pi T(2n + 1)$, $G = 2\pi \langle g \rangle (\Gamma_0 + \Gamma_\pi) \equiv 2\pi \langle g \rangle \Gamma^s$, $F = 2\pi \langle f \rangle (\Gamma_0 - \Gamma_\pi)$ for s^\pm pairing symmetry and $F = 2\pi \langle f \rangle \Gamma^s$ for the s_{++} pairing symmetry. Here, $\Gamma_0 = \pi n_i N_F |u_0|^2$ and $\Gamma_\pi = \pi n_i N_F |u_\pi|^2$ are the intra- and interband impurity scattering rates, respectively ($u_{0,\pi}$ are impurity scattering amplitudes with correspondingly small, or close to $\pi = (\pi, \pi)$, momentum transfer) and \mathbf{u} is a unit vector of the Fermi velocity. The FLL create the anisotropy of the electron spectrum. Therefore the impurity renormalization correction in Eq. (5) and (6), averaged over Fermi surface, can be reduced to averages over the polar angle θ, i.e. $\langle \ldots \rangle = (1/2\pi) \int \ldots d\theta$. To take into account the influence of screening the vector potential $\mathbf{A}(\mathbf{r})$ in Eqs. (5) and (6) is obtained from the equation $\nabla \times \nabla \times \mathbf{A}_E = \frac{4}{c^2} \mathbf{J}$, where the supercurrent $\mathbf{J}(\mathbf{r})$ is given in terms of $g(\omega_n, \theta, \mathbf{r})$

\[
\mathbf{J}(\mathbf{r}) = 2\pi T \sum_{\omega_n > 0} \int_0^{2\pi} \frac{d\theta}{2\pi} \mathbf{\hat{k}} g(\omega_n, \theta, \mathbf{r}).
\]

Here \mathbf{A} and \mathbf{J} are measured in units of $\phi_0/2\pi \xi_0$ and $2ev_FN_0T_c$, respectively. The self-consistent condition for the pairing potential $\Delta(\mathbf{r})$ is given by

\[
\Delta(\mathbf{r}) = V^{SC} 2\pi T \sum_{\omega_n > 0} \int_0^{2\pi} \frac{d\theta}{2\pi} f(\omega_n, \theta, \mathbf{r}),
\]

where V^{SC} is the coupling constant and ω_c is the ultraviolet cutoff determining T_{c0} [15].

All over this paper the energy, the temperature and the length are measured in units of T_{c0} and the coherence length $\xi_0 = v_F/T_{c0}$, where v_F is the Fermi velocity. The magnetic field \mathbf{h} is given in units of $\phi_0/2\pi \xi_0$. The impurity scattering rates are in units of $2\pi T_{c0}$. In calculations the ratio $\kappa = \lambda_{T0}/\xi_0 = 10$ is used. It corresponds to $\kappa_{GL} = 43.3$ [20]. To obtain the quasiclassical Green function, the Riccati equations [Eq. (5, 6)] are solved by the Fast Fourier Transform (FFT) method for triangular FLL [15]. This method is reasonable for dense FLL discussed in this paper. In high field the pinning effects are weak and they are not considered in our paper. To study high field regime we should calculate upper critical field $B_{c2}(T)$. It can be found from the similarity of the considered model to the model of spin-flip superconductors [21].

Solid lines in Fig. 1 demonstrate magnetic field dependence $\xi_v(B)$ in reduced units for superconductors with impurity scattering at $T/T_{c0} = 0.5$ with $\Gamma_0 = \Gamma_\pi = 0; \Gamma_0 = 3, \Gamma_\pi = 0.03$ and $\Gamma_0 = 0.5, \Gamma_\pi = 0.01$. Dash line demonstrates the result of the AGL theory for $\xi_v[22]$

\[
\xi_v = \xi_{c2}(\sqrt{2} - 0.75) (1 + b^4)^{1/2}[1 - 2b(1-b)^2]^{1/2},
\]

where ξ_{c2} is determined from the relation $B_{c2} = \Phi_0/2\pi \xi_{c2}^2$ (in our units $\xi_{c2} = 1/\sqrt{B_{c2}}$). This dependence with ξ_{c2} as a fitting parameter is used often for the description of the μSR experimental results [16, 19]. As can be seen from Fig. 1 (a) the magnetic field dependence of ξ_v/ξ_{c2} is nonuniversal because it depends not only from B/B_{c2} (as in the AGL theory, dash line in Fig. 1 (a)), but also on interband and intraband impurity scattering parameters. In the case when, $\Gamma_0 = \Gamma_\pi = 0$, the results are the same for s^\pm and s_{++} pairing symmetries. We mark this curve as “clean” one. In this figure is considered the case $\Gamma_0 \gg \Gamma_\pi$ and the value of ξ_v is reduced considerably in comparison with clean case. One can compare the observed behavior with that in s_{++} pairing model. In s_{++} pairing symmetry the intraband and interband scattering rates act in similar way and ξ_v/ξ_{c2} decreases always with impurity scattering. In contrast, in s^\pm model $\xi_v/\xi_{c2}(B/B_{c2})$ dependences show different behavior with Γ_π: ξ_v/ξ_{c2} increases with Γ_π at $B/B_{c2} < 0.8$ and decreases at higher fields, i.e. the curves are getting more flat. A crossing point appears in the dependences $\xi_v/\xi_{c2}(B/B_{c2})$ for s^\pm and s_{++} pairing. This can be explained by the fact that in superconductors without interband pair breaking the increasing in high field is
Figure 1. (a) The magnetic field dependence of ξ_h/ξ_{c2} for superconductors with impurity scattering. Dashed line demonstrates the result of the AGL theory for ξ_c from Eq. 9. Solid lines represent our solution of Eilenberger equations at $T/T_0 = 0.5$ for the “clean” case ($\Gamma_0 = \Gamma_\pi = 0$) and s^\pm model ($\Gamma_0 = 0.5$, $\Gamma_\pi = 0.04$ and $\Gamma_0 = 3$, $\Gamma_\pi = 0.03$). Dotted lines show result for s_{++} model ($\Gamma^* = 0.5$ and $\Gamma^* = 3$). (b) Magnetic field dependence of mean square deviation of the h_{EGL} distribution from the Eilenberger distribution normalized by the variance of the Eilenberger distribution, ε, for $T/T_0 = 0.5$ for the “clean” case, $\Gamma_0 = 3$, $\Gamma_\pi = 0.03$ and $\Gamma_0 = 0.5$, $\Gamma_\pi = 0.04$ for the s^\pm model.

connected with field-dependent pair breaking under approaching to the upper critical field. We also calculate magnetic field dependence of mean square deviation of the h_{EGL} distribution of the magnetic field from the Eilenberger distribution normalized by the variance of the Eilenberger distribution $\varepsilon = \sqrt{(h_E - h_{\text{EGL}})^2 / (h_E - B)^2}$, where average over unit vortex cell. Fig. 1 (b) demonstrates $\varepsilon(B)$ dependence for $T/T_0 = 0.5$ at $\Gamma_0 = 0$, $\Gamma_\pi = 0$; $\Gamma_0 = 3$, $\Gamma_\pi = 0.03$ and $\Gamma_0 = 0.5$, $\Gamma_\pi = 0.04$. It can be seen from this figure that accuracy of effective London model getting worse with increasing magnetic field, but in superconductors with impurity scattering the accuracy is below 6% even near the second critical field (Fig. 1 (b)).

The superfluidity density in pnictides shows often a power law dependence with exponent approximately equal to two at low temperatures [9, 10]. This law was explained by s^\pm model with parameters $\Gamma_0 = 3$ and $\Gamma_\pi = 0.04 - 0.06$. Fig. 2 (a) shows $\xi_\mathrm{h}/\xi_{c2}(B/B_{c2})$ dependence with $\Gamma_0 = 3$ and $\Gamma_\pi = 0.06$ at different temperatures. All curves demonstrate growing behavior with values much less that one in whole field range, i.e. they are under the AGL curve of ξ_c. This shows strong effect of interband scattering. The inset to Fig. 2 (a) presents $\xi_\mathrm{h}/\xi_{c2}(B/B_{c2})$ results for $\Gamma_0 = 3$, $\Gamma_\pi = 0.06$ (s^\pm pairing) and $\Gamma^* = 3$ (s_{++} pairing) at $T/T_0 = 0.15$. This type of the behavior is cut off by the impurity pair breaking and introducing characteristic field B^*. The field dependence by the substitution $B/B_{c2} \rightarrow (B + B^*(\Gamma_\pi))/B_{c2}(\Gamma_\pi)$. There is additional low-field crossing point between s^\pm and s_{++} curves in this low-temperature case comparing with $T/T_0 = 0.5$ (Fig. 1 (a)). It can be explained by the restoration of the Usadel dirty limit behavior (where $\Gamma \gg 1$ and monotonously decreasing $\xi_\mathrm{h}(B)$ is expected [20, 23]) which is not realized for s^\pm symmetry due to the pair breaking there. Opposite, slowly increasing $\xi_\mathrm{h}/\xi_{c2}(B/B_{c2})$ function is obtained for s^\pm case in low-field range (Fig. 2 (a) main plot). It can be explained by the field-dependent splitting of the low-energy spectrum of bound state in the vortex core similar to the case of the surface bound states in d-wave superconductors [24]. The same effect is realized for extended state in high-field (for $B/B_{c2} > 0.5$ in Fig. 2 (a)).
Figure 2. (a) The magnetic field dependence of coherence length ξ_h with different temperatures T_c/T_{c0} for $\Gamma_0 = 3$, $\Gamma_\pi = 0.06$. The inset shows the magnetic field dependence of ξ_h/ξ_{c2} for s^\pm model ($\Gamma_0 = 3$, $\Gamma_\pi = 0.06$) and s_{++} model ($\Gamma^* = 3$, dotted line) at $T_c/T_{c0} = 0.15$. (b) The interband scattering Γ_π dependence of ξ_h/ξ_{c2} at different temperatures T_c/T_{c0} (intraband scattering $\Gamma_0 = 3$ and $B = 5$) for the s^\pm pairing.

Figure 3. The magnetic field dependence of coherence length at $T_c/T_{c0} = 0.5$ with the similar values of intraband Γ_0 and interband Γ_π scattering Γ ($\Gamma = 0$ for "clean" case and $\Gamma = 0.02, 0.03, 0.04$ for the s^\pm pairing). Dotted line shows result for s_{++} model ($\Gamma^* = 0.5$).

Study of the field dependence $\xi_h/\xi_{c2}(B/B_{c2})$ can clarify the both branches [25] of the energetic spectrum of the mixed state which can not be done in the phenomenological GL theory. Thus, the field-dependent suppression of ξ_h/ξ_{c2} is expected in s^\pm model in comparison to s_{++} one in nonstoichiometric iron pnictides with high Γ_π (like doped 122 compounds). Also nonmonotonous $\xi_h/\xi_{c2}(\Gamma_\pi)$ dependence is possible in general as is shown in Fig. 2 (b).

We also study the case of weak intraband scattering. This case can be realized in stoichiometric pnictides such as $LiFeAs$. Fig. 3 presents the ξ_h/ξ_{c2} magnetic field dependence with scattering parameters $\Gamma_0 = \Gamma_\pi = \Gamma$ equal to 0, 0.02, 0.03 and 0.04. Dotted line shows the result for s_{++} model ($\Gamma^* = 0.5$). The $\xi_h(B)$ dependence shifts upward from the "clean" curve and have higher values in s^\pm model. In contrast, ξ_h/ξ_{c2} curve shifts downward with impurity...
scattering in s_{++} model. The high values of ξ_h observed in μSR measurements in $LiFeAs$ [7] supports the s^\pm pairing.

To conclude, Eilenberger equations have been solved in the mixed state for superconductors with s^\pm pairing symmetry. This symmetry is proposed to realize in iron pnictide superconductors. Effects of interband (Γ_0) and intraband (Γ_π) impurity scattering on coherence length ξ_h are investigated. It is found that $\xi_h/\xi_{c2}(B/B_{c2})$ dependence is nonuniversal and different from the GL theory prediction. In the case of intraband scattering ξ_h/ξ_{c2} decreases with Γ_0. The effects of interband scattering on ξ_h depends on Γ_0. The predictions for $\xi_h/\xi_{c2}(B/B_{c2})$ for doped 122 compounds (nonstoichiometric iron pnictides), where $\Gamma_0 \gg \Gamma_\pi$, are done. These dependencies demonstrate growing behavior defined by Γ_0 with values much less that one in whole field range, i.e. they are under the ”clean” ($\Gamma_0 = \Gamma_\pi = 0$) curve. In the case of weak impurity scattering, $\Gamma_0 = \Gamma_\pi \ll 1$, the ξ_h/ξ_{c2} dependence shifts upward from the ”clean” curve. This case can be realized in stoichiometric 111 compounds. A comparison with s_{++} pairing model is done. Opposite tendencies with interband scattering for $\xi_h/\xi_{c2}(B/B_{c2})$ dependences are found for s^\pm and s_{++} models for stoichiometric and nonstoichiometric iron pnictides. The predictions can be tested by μSR experiments.

This work was supported by the Finnish Cultural Foundation.

References

[1] Kamihara Y, Hiramats H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012
[2] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[3] Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M and Hosono H 2008 Nature (London) 453 376
[4] Chen G F, Li Z, DWu, GLi, ZHu W, Dong J, Zheng P, Luo J L and Wang N L 2008 Phys. Rev. Lett. 100 247002
[5] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 170006
[6] Selat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[7] Inosov D S, White J S, Evtushinsky D V, Morozov I V, Cameron A, Stockert U, Zabolotnyy V B, Kim T K, Kordyuk A A, Borisenko S V, Vorgas E M, Klingeler R, Park J T, Wurmehl S, Vasiliev A N, Behr G, Dewhurst C D and Hinkov V 2010 Phys. Rev. Lett. 104 187001
[8] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
[9] Vorontsov A B, Vavilov Y N and Kresin V Z 1995 Phys. Rev. B 52 12515(R)
[10] Martin C, Gordon R T, Tanatar M A, Kim H, Ni N, Bud’ko S L, Canfield P C, Luo H, Wen H H, Wang Z, Vorontsov A B, Kogan V G and Prozorov R 2009 Phys. Rev. B 80 020501(R)
[11] Hanaguri T, Naitaka S, Kuroki K and Takagi H 2010 Science 328 474
[12] Tanatar M A, Reid J P, Shakeripour H, Luo X G, Doiron-Leyraud N, Ni N, Bud’ko S L, Canfield P C, Prozorov R and Taillefer L 2010 Phys. Rev. Lett. 104 067002
[13] Kontani H and Onari S 2010 Phys. Rev. Lett. 104 157001
[14] Laiho R, Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[15] Martin C, Gordon R T, Tanatar M A, Kim H, Ni N, Bud’ko S L, Canfield P C, Luo H, Wen H H, Wang Z, Vorontsov A B, Kogan V G and Prozorov R 2009 Phys. Rev. B 80 020501(R)
[16] Kontani H and Onari S 2010 Phys. Rev. Lett. 104 157001
[17] Laiho R, Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[18] Martin C, Gordon R T, Tanatar M A, Kim H, Ni N, Bud’ko S L, Canfield P C, Luo H, Wen H H, Wang Z, Vorontsov A B, Kogan V G and Prozorov R 2009 Phys. Rev. B 80 020501(R)
[19] Hanaguri T, Naitaka S, Kuroki K and Takagi H 2010 Science 328 474
[20] Tanatar M A, Reid J P, Shakeripour H, Luo X G, Doiron-Leyraud N, Ni N, Bud’ko S L, Canfield P C, Prozorov R and Taillefer L 2010 Phys. Rev. Lett. 104 067002
[21] Kontani H and Onari S 2010 Phys. Rev. Lett. 104 157001
[22] Laiho R, Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[23] Martin C, Gordon R T, Tanatar M A, Kim H, Ni N, Bud’ko S L, Canfield P C, Luo H, Wen H H, Wang Z, Vorontsov A B, Kogan V G and Prozorov R 2009 Phys. Rev. B 80 020501(R)
[24] Hanaguri T, Naitaka S, Kuroki K and Takagi H 2010 Science 328 474
[25] Tanatar M A, Reid J P, Shakeripour H, Luo X G, Doiron-Leyraud N, Ni N, Bud’ko S L, Canfield P C, Prozorov R and Taillefer L 2010 Phys. Rev. Lett. 104 067002