Dynamic Analysis Model of Rubber Bearing Based on Geometric Nonlinearity

Zhi Dan LIN, Xin LI

City Institute, Dalian Univ. of Tech., Dalian, Liaoning, 116600, China
Email: zhidanlin@sina.com

Abstract. According to the rubber bearing, the mathematical model of rubber bearing based on geometric nonlinearity is established by using Hamilton's principle. Based on the assumption of homogeneous column, the dynamics model is investigated considering the cross section rotated and the influence of the shear deformation and axial pressure. Finally, the geometric nonlinearity governing equation and boundary conditions of the rubber bearing is deduced.

1 Introduction
The key issues of isolation technology is to install flexible device on the base or upper part of building structure to extend the natural vibration period of isolation system, so as to avoid the relatively concentrated frequency of seismic energy and reduce the seismic response of superstructure. The laminated rubber bearing is the key component in the isolated building. The horizontal and vertical mechanical properties and stability of the laminated rubber bearing is researched [1-5]. But all the research based on the basic mechanics model of static and it is larger difference from the mechanical model in dynamic finite element analysis and experimental research. Therefore, it is necessary to study a dynamic model for the rubber bearing.

2 Governing Differential Equation
As shown in figure 2, considering that the total height of the isolation system is H with laminated rubber seismic isolation bearing on the top, the laminated structure consisting of steel plates and rubber sheets is simplified as equivalent, continuous and uniform columns. Meanwhile, considering the influence of bend deformation and shear deformation, the cross section is \(A_r \); the diameter is \(d \); equivalent density is \(\rho_r \); modified bend elastic modulus is \(E_r \); shear modulus is \(G_r \); moment of inertia of cross section is \(I_r \). The lower part is reinforced concrete column, to which the seismic isolation bearing is connected at the height of h. The cross section is \(A_c \); equivalent density is \(\rho_c \); elastic modulus is \(E_c \); shear modulus is \(G_c \) and moment of inertia of cross section is \(I_c \). The other side \(y = 0 \) is connected to the foundation.
2.1 Displacement Field
The centre line of homogeneous column [6-10] is y-axis and the symmetry axis of cross section is x-axis, according to first-class shear deformation beam theory, the displacement fields are listed as below:

\[
\begin{align*}
U_y &= u(y,t) - x\varphi(y,t) \\
U_x &= v(y,t)
\end{align*}
\]
(1)

In the equation, \(u\) and \(v\) refer to the vertical and horizontal displacement on the column centre line, respectively; \(\varphi\) refers to the normal angle of cross section after deformation.

2.2 Nonlinear Geometric Equation
Based on the displacement fields mentioned above, under the framework of limited deformation, the nonlinear geometric equation can be obtained as below:

\[
\begin{align*}
\varepsilon_y &= \frac{\partial u}{\partial y} + \frac{1}{2} \left(\frac{\partial v}{\partial y} \right)^2 - x \frac{\partial \varphi}{\partial y} \\
\gamma_{yx} &= \frac{\partial v}{\partial y} - \varphi
\end{align*}
\]
(2)

2.3 Constitutive Equation
It can be seen from the beam theory that as for homogeneous column, if linear and isotropic elastic materials are assumed, the constitutive equation is:

\[
\begin{align*}
\sigma_y &= E \varepsilon_y, \quad \tau_{yx} = G \gamma_{yx}, \quad G = \frac{E}{2(1 + \mu)}
\end{align*}
\]
(3)

In the equation, \(E\) refers to the modified bend elastic modulus of laminated rubber bearing; \(G\) refers to shear modulus; \(\mu\) refers to Poisson ratio.

2.4 Control Equation
In order to deduce the motion differential equation, boundary conditions and initial condition that
displacement, u, v and φ, of geometric nonlinear elastic homogeneous column structure satisfy, Hamilton variation principle is applied. In satisfying geometric nonlinear equation, displacement and boundary conditions and enabling all the possible displacement of designated motion at the initial and termination moment, the actual displacement, u, v and φ, make the functional select stationary values.

$$\Pi = \int_0^T H dt = \int_0^T -(U - W - T) dt$$ \hspace{1cm} (4)

In the equation, $H = -(U - W - T)$ refers to Hamilton function and T refers to kinetic energy of the structure; $U=U_1+U_2$ refers to strain energy and U_1 and U_2 refer to the strain energy raised by normal strain and shear strain respectively; W refers to the work applied by horizontal external load and axial force.

$$T = \int_0^H \frac{1}{2} \rho \left\{ A, \left(\frac{\partial u}{\partial t} \right)^2 + \left(\frac{\partial v}{\partial t} \right)^2 \right\} + I, \left(\frac{\partial \varphi}{\partial t} \right)^2 \right\} dy$$ \hspace{1cm} (5)

In the equation, the second term is the kinetic energy of rotation, $I, = \int_A x^2 dA$, it is the moment of inertia.

The strain energy includes two part, that is tension-compression strain energy and the shear strain energy. The strain energy density is:

$$W_i = \int_0^H \sigma_i d\varepsilon_i = \int_0^H E_i \varepsilon_i d\varepsilon_i = \frac{1}{2} E_i \varepsilon_i^2$$ \hspace{1cm} (6)

$$W_s = \kappa, \int_0^H \tau_{xy} d\gamma_{xy} = \kappa, \int_0^H G_{xy} \gamma_{xy} d\gamma_{xy} = \frac{1}{2} \kappa, G_{xy} \gamma_{xy}^2$$ \hspace{1cm} (7)

In the equation, κ, γ is the shear correction factor, it represent to modify the assumption of the shear strain is constant in the cross section [11]. And it is related to the cross section shape and the poisson ratio.

Rectangular section: $\kappa, = \frac{10(1+\mu)}{12 + 11\mu}$

Circular section: $\kappa, = \frac{6(1+\mu)}{7 + 6\mu}$ \hspace{1cm} (8)

circular ring section: $\kappa, = \frac{6(1+\mu)(1+m^2)^2}{(7 + 6\mu)(1+m^2)^2 + (20 + 12\mu)m^2}$, $m = r_{max} / r_{outer}$;

So,

$$U_1 = \int_A \int_0^H W_i d y d A = \int_A \int_0^H \frac{1}{2} E_i \varepsilon_i^2 d y d A$$

$$= \int_A \int_0^H \frac{1}{2} E_i, \left(\frac{\partial u}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial v}{\partial y} \right)^2 - \frac{1}{4} \left(\frac{\partial \varphi}{\partial y} \right)^2 d y d A$$

$$= \frac{1}{2} E_i A, \int_0^H \left\{ \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\partial u}{\partial y} \left(\frac{\partial v}{\partial y} \right)^2 + \frac{1}{4} \left(\frac{\partial v}{\partial y} \right)^4 \right\} dy + \frac{1}{2} E_i I, \int_0^H \left(\frac{\partial \varphi}{\partial y} \right)^2 dy$$

$$= U_{11} + U_{12}$$

And,
\(U_2 = \iiint A W_z \text{d}y \text{d}A = \iiint A \frac{1}{2} \kappa_s G_s \gamma^{zz} \text{d}y \text{d}A \)
\begin{align}
= & \iiint A \frac{1}{2} \kappa_s G_s \left(\frac{\partial \varphi}{\partial y} \right)^2 \text{d}y \text{d}A \\
= & \frac{1}{2} \kappa_s G_s A \int_0^H \left(\frac{\partial \varphi}{\partial y} \right)^2 \text{d}y \\
\end{align}

The work of external force includes distribution force and the known force at the end, that is:

\(W = \int_0^H (p u + q v) \text{d}y + \frac{P}{2} \int_0^H \left(\frac{\partial \varphi}{\partial y} \right)^2 \text{d}y + P u(H) + Q v(H) + M \varphi(H) \)

In the equation, \(P, Q_t \) and \(M_t \) are the force and moment at \(y=H \) respectively.

The variational expression of the kinetic energy, strain energy and the work of external force are:

\[
\delta T = \rho \int_0^H \left\{ A \left[\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial t} \delta u \right) + \frac{\partial}{\partial t} \left(\frac{\partial v}{\partial t} \delta v \right) \right] + I, \frac{\partial}{\partial t} \left(\frac{\partial \varphi}{\partial \varphi} \delta \varphi \right) \right\} \text{d}y \\
- \rho \int_0^H \left\{ A \left(\frac{\partial^2 u}{\partial t^2} \delta u + \frac{\partial^2 v}{\partial t^2} \delta v \right) + I, \frac{\partial^2 \varphi}{\partial t^2} \delta \varphi \right\} \text{d}y \\
\delta U_{11} = \frac{1}{2} E A \int_0^H \left(\frac{\partial}{\partial y} \left(2 \frac{\partial u}{\partial y} + \left(\frac{\partial v}{\partial y} \right)^2 \right) \delta u \right) \text{d}y + \frac{1}{2} E A \int_0^H \left(\frac{\partial}{\partial y} \left[2 \left(\frac{\partial u}{\partial y} + \left(\frac{\partial v}{\partial y} \right)^2 \right) \delta v \right] \right) \text{d}y \\
- \frac{1}{2} E A \int_0^H \left(\frac{\partial}{\partial y} \left(2 \frac{\partial u}{\partial y} + \left(\frac{\partial v}{\partial y} \right)^2 \right) \right) \delta u \text{d}y - \frac{1}{2} E A \int_0^H \left(\frac{\partial}{\partial y} \left[2 \left(\frac{\partial u}{\partial y} + \left(\frac{\partial v}{\partial y} \right)^2 \right) \right] \delta v \right) \text{d}y \\
\delta U_{12} = \frac{1}{2} E A \int_0^H \left(\frac{\partial}{\partial y} \left(2 \frac{\partial \varphi}{\partial y} \delta \varphi \right) \right) \text{d}y - \frac{1}{2} E A \int_0^H \left(\frac{\partial}{\partial y} \left(2 \frac{\partial \varphi}{\partial y} \right) \right) \delta \varphi \text{d}y \\
\]

So,
\[
\delta U_1 = \delta U_{11} + \delta U_{12} \\
\delta U_2 = \frac{1}{2} \kappa_s G_s A \int_0^H \left(\frac{\partial}{\partial y} \left[2 \left(\frac{\partial v}{\partial y} - \varphi \right) \delta \varphi \right] \right) \text{d}y - \frac{1}{2} \kappa_s G_s A \int_0^H \left(\frac{\partial}{\partial y} \left[2 \left(\frac{\partial v}{\partial y} - \varphi \right) \right] \right) \delta v \text{d}y \\
- \frac{1}{2} \kappa_s G_s A \int_0^H \left(2 \left(\frac{\partial v}{\partial y} - \varphi \right) \delta \varphi \right) \text{d}y \\
\delta W = \int_0^H (p \delta u + q \delta v) \text{d}y + \frac{P}{2} \int_0^H \left(\frac{\partial v}{\partial y} \delta \left(\frac{\partial v}{\partial y} \right) \right) \text{d}y \\
+ P \delta u(H) + Q \delta v(H) + M \delta \varphi(H) \\
= \int_0^H (q - P \frac{\partial^2 v}{\partial y^2}) \delta v \text{d}y + P \int_0^H \left(\frac{\partial v}{\partial y} \delta \left(\frac{\partial v}{\partial y} \right) \right) \text{d}y \\
+ \int_0^H p \delta v + P \delta u + Q \delta v + M \delta \varphi(H) \\
\]
Eq. 12~Eq. 17 are substituted into equation \(\delta \Pi = 0 \). So,
\[
\delta \Pi = \int_0^T (\delta T + \delta W - \delta U) dt
\]
\[
= \rho \int_0^T \int_0^H \left[A_0 \left(\frac{\partial^2 u}{\partial t^2} \delta u + \frac{\partial v}{\partial t} \delta v \right) + I_1 \frac{\partial}{\partial t} \left(\frac{\partial^2 \phi}{\partial t^2} \delta \phi \right) \right] dy dt
- \rho \int_0^T \int_0^H \left[A_0 \left(\frac{\partial^2 u}{\partial t^2} \delta u + \frac{\partial^2 v}{\partial t^2} \delta v \right) + I_1 \frac{\partial}{\partial t} \left(\frac{\partial^2 \phi}{\partial t^2} \delta \phi \right) \right] dy dt
+ \int_0^T \int_0^H (q - p \frac{\partial^2 v}{\partial y^2}) \delta v dy dt + \int_0^T \int_0^H \left[\frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \delta \phi \right) \right] dy dt
+ \int_0^T \int_0^H p \delta u dy dt + \int_0^T \int_0^H (P \delta u(H) + Q \delta v(H) + M \delta \phi(H)) dt
\]
\[
- \int_0^T \int_0^H \left[\frac{\partial}{\partial y} \left(\frac{2}{\partial y^2} \right) \delta u \right] dy dt
- \int_0^T \int_0^H \left[\frac{\partial}{\partial y} \left(\frac{2}{\partial y^2} \right) \delta v \right] dy dt
+ \int_0^T \int_0^H \left[\frac{\partial}{\partial y} \left(\frac{2}{\partial y^2} \right) \delta \phi \right] dy dt
\]
\[
+ \int_0^T \int_0^H \left[\frac{\partial}{\partial y} \left(\frac{2}{\partial y^2} \right) \delta \phi \right] dy dt
= 0 \tag{18}
\]
Thus, the motion control equation of rubber bearing based on the geometric nonlinear is:
\[
\rho A \frac{\partial^2 u}{\partial t^2} - E_A \frac{\partial^2 u}{\partial y^2} - E_A \frac{\partial v}{\partial y} \frac{\partial^2 v}{\partial y^2} - p = 0 \tag{19}
\]
\[
\rho A \frac{\partial^2 v}{\partial t^2} + p \frac{\partial^2 v}{\partial y^2} - E_A \frac{\partial^2 u}{\partial y^2} - E_A \frac{\partial v}{\partial y} \frac{\partial^2 v}{\partial y^2} - \frac{3}{2} E_A \left(\frac{\partial^2 v}{\partial y^2} \right)^2 = 0 \tag{20}
\]
\[
-\kappa G A \left(\frac{\partial^2 v}{\partial y^2} \frac{\partial \phi}{\partial y} \right) - q = 0
\]
\[
\rho I \frac{\partial^2 \phi}{\partial t^2} - E_I \frac{\partial^2 \phi}{\partial y^2} - \kappa G A \left(\frac{\partial v}{\partial y} - \phi \right) = 0 \tag{21}
\]
It can be seen that these are coupled nonlinear partial differential equations with \(u, v \) and \(\phi \).

2.5 Boundary Conditions
Considering homogeneous column, the boundary virtual work equation is:
\[\frac{1}{2} E, A \int_0^H \left[\frac{\partial}{\partial y} \left[2 \frac{\partial u}{\partial y} \left(\frac{\partial v}{\partial y} \right)^2 \right] \right] dy + \frac{1}{2} E, A \int_0^H \left[\frac{\partial}{\partial y} \left[2 \frac{\partial u}{\partial y} \left(\frac{\partial v}{\partial y} \right)^3 \right] \right] dy + \frac{1}{2} E, I, \int_0^H \left[\frac{\partial}{\partial y} \left(\frac{\partial v}{\partial y} \delta \phi \right) \right] dy + \frac{1}{2} k, G, A, \int_0^H \left[\frac{\partial}{\partial y} \left(2 \frac{\partial v}{\partial y} - \delta \phi \right) \right] dy \]

\[- P \int_0^H \left[\frac{\partial}{\partial y} \left(\frac{\partial v}{\partial y} \delta \phi \right) \right] dy - P \delta u(H) - Q, \delta v(H) - M, \delta \phi(H) = 0 \]

Thus,

\[\frac{1}{2} E, A \left[2 \frac{\partial u}{\partial y} + \left(\frac{\partial v}{\partial y} \right)^2 \right] \delta u \bigg|_0^H - P \delta u(H) \]

\[+ \left[\int_0^H \left[\frac{\partial}{\partial y} \left(2 \frac{\partial u}{\partial y} \left(\frac{\partial v}{\partial y} \right)^3 \right) \right] dy + \frac{1}{2} k, G, A, \left[\frac{\partial}{\partial y} \left(2 \frac{\partial v}{\partial y} - \delta \phi \right) \right] \right] \bigg|_0^H - Q, \delta v(H) \]

\[- M, \delta \phi(H) = 0 \]

Boundary conditions at \(y=H \) is:

\[\left\{ \begin{array}{l}
\frac{1}{2} E, A \left[2 \frac{\partial u}{\partial y} + \left(\frac{\partial v}{\partial y} \right)^2 \right] = P \\
\frac{1}{2} E, A \left[2 \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \left(\frac{\partial v}{\partial y} \right)^3 \right] + k, G, A, \left(\frac{\partial v}{\partial y} - \delta \phi \right) - P \frac{\partial v}{\partial y} = Q, \\
E, I, \frac{\partial \delta \phi}{\partial y} = M, \end{array} \right. \]

2.6 Initial Conditions

If homogeneous column remains in natural status when \(t<0 \), the following initial conditions can be satisfied when \(t\geq0 \):

\[\left. \begin{array}{l}
u |_{t=0} = 0, \quad \dot{u} |_{t=0} = 0; \\
v |_{t=0} = 0, \quad \dot{v} |_{t=0} = 0; \\
\phi |_{t=0} = 0, \quad \dot{\phi} |_{t=0} = 0; \end{array} \right. \]

It can be seen that, although the assumed material is linear, the end conditions of the force are nonlinear due to the influence of finite deformation. Therefore, the solution of the problem is difficult, and the numerical solution can only be solved by numerical method.

3 Conclusion

The seismic isolation technique has been widely applied in our country since 1990s. In the existing developed structure-control technology, basic seismic isolation is considered as a kind of structurally passive seismic control method, which has a simple concept, stable performance and cost effective. In
the paper, the mathematical model of rubber bearing based on geometric nonlinear is established by using Hamilton's principle. Based on the assumption of homogeneous column, the dynamics model is investigated considering the cross section rotated and the influence of the shear deformation and axial pressure. Finally, the geometric nonlinearity governing equation and boundary conditions of the rubber bearing is deduced. And it is obviously that the solution of the problem is difficult, and the numerical solution can only be solved by numerical method.

References
[1] Gent A N. Elastic stability of rubber compression springs[J]. J. Engineering Mechanics, 1964, 6: 318–326.
[2] Kelly J M. Tension buckling in multilayer elastomeric bearings[J]. Journal of Engineering Mechanics, 2003, 129: 1363-1368.
[3] Kelly J M. Earthquake resistant design with rubber[M]. Second ed., Spriger, London, 1997.
[4] Zhou X Y, Han M, Zeng D M, Ma D H. Horizontal Rigidity Coefficient of the Serial System of Rubber Bearing with Column[J]. Journal of Vibration Engineering, 1999, 12: 157-165.
[5] Zhou X Y, Han M, Zeng D M, Ma D H. Calculation method of lateral stiffness of combined rubber bearing and serial system of bearing with columns[J]. EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION, 1999, 19: 67-75.
[6] Schapery A E, Skala D P. Elastic stability of laminated elastomeric columns[J]. Int. J. of Solids and Struct., 1976,12: 401-417.
[7] Simo J C, Kelly J M. Finite element analysis of the stability of multilayer elastomeric bearings[J]. Engrg. Struct., 1984, 6: 162-174.
[8] Iizuka M. A macroscopic model for predicting large-deformation behaviors of laminated rubber bearings[J]. Engineering Structures, 2000, 22: 323-334.
[9] Ian Buckle, Satish Nagarajaiah, Keith Ferrell. Stability of Elastomeric Isolation Bearings: Experimental Study[J]. Journal of Structural Engineering, 2002, 128: 3-11.
[10] Koh C G, Kelly J M. A simple mechanical model for elastomeric isolation bearings[J]. Int. J. Mech., Sci., 1988, 30: 933-943.