Fulvestrant 500 mg Versus Anastrozole 1 mg for the First-Line Treatment of Advanced Breast Cancer: Overall Survival Analysis From the Phase II FIRST Study

Matthew J. Ellis, Antonio Llombart-Cussac, David Feltl, John A. Dewar, Marek Jasiówka, Nicola Hewson, Yuri Rukazenkov, and John F.R. Robertson

ABSTRACT

Purpose
To compare overall survival (OS) for fulvestrant 500 mg versus anastrozole as first-line endocrine therapy for advanced breast cancer.

Patients and Methods
The Fulvestrant First-Line Study Comparing Endocrine Treatments (FIRST) was a phase II, randomized, open-label, multicenter trial. Postmenopausal women with estrogen receptor–positive, locally advanced/metastatic breast cancer who had no previous therapy for advanced disease received either fulvestrant 500 mg (days 0, 14, 28, and every 28 days thereafter) or anastrozole 1 mg (daily). The primary end point (clinical benefit rate [72.5% and 67.0%]) and a follow-up analysis (median time to progression [23.4 months and 13.1 months]) have been reported previously for fulvestrant 500 mg and anastrozole, respectively. Subsequently, the protocol was amended to assess OS by unadjusted log-rank test after approximately 65% of patients had died. Treatment effect on OS across several subgroups was examined. Tolerability was evaluated by adverse event monitoring.

Results
In total, 205 patients were randomly assigned (fulvestrant 500 mg, n = 102; anastrozole, n = 103). At data cutoff, 61.8% (fulvestrant 500 mg, n = 63) and 71.8% (anastrozole, n = 74) had died. The hazard ratio (95% CI) for OS with fulvestrant 500 mg versus anastrozole was 0.70 (0.50 to 0.98; median OS, 54.1 months v 48.4 months). Treatment effects seemed generally consistent across the subgroups analyzed. No new safety issues were observed.

Conclusion
There are several limitations of this OS analysis, including that it was not planned in the original protocol but instead was added after time-to-progression results were analyzed, and that not all patients participated in additional OS follow-up. However, the present results suggest fulvestrant 500 mg extends OS versus anastrozole. This finding now awaits prospective confirmation in the larger phase III FALCON (Fulvestrant and Anastrozole Compared in Hormonal Therapy Naive Advanced Breast Cancer) trial (ClinicalTrials.gov identifier: NCT01602380).

INTRODUCTION

Tamoxifen and third-generation aromatase inhibitors (AIs), such as anastrozole, exemestane, and letrozole are established first-line endocrine therapies for the treatment of postmenopausal women with estrogen receptor (ER)–positive, advanced breast cancer.1,2 Given the high prevalence of resistance to AI therapy, multiple treatment options with distinct mechanisms of action are desirable.3

Fulvestrant, a 17β-estradiol analog, is a selective ER antagonist that suppresses estrogen signaling by binding to ER and inducing a conformational change.5,6 Dimerization is subsequently blocked, triggering accelerated degradation and downregulation of the ER protein.5 Fulvestrant exhibits lack of cross-reactivity with tamoxifen. Consequently, patients whose disease progresses on fulvestrant may retain sensitivity to treatment with further endocrine therapies.7,8 The clinical efficacy of fulvestrant
was initially demonstrated in two phase III trials that compared fulvestrant 250 mg per month with anastrozole 1 mg daily as a second-line therapy for advanced breast cancer. A combined analysis of these trials demonstrated that time to progression (TTP) with fulvestrant 250 mg was noninferior to anastrozole.

Fulvestrant 250 mg was not proven to be superior to tamoxifen in a double-blind, randomized trial. This finding was unexpected given the superior efficacy of anastrozole and fulvestrant 250 mg as second-line therapy. Pharmacokinetic modeling, as well as observations made during early clinical studies, suggested the efficacy of fulvestrant could be improved with use of a higher dose, which led to the development of a dosage regimen of fulvestrant 500 mg, including a loading dose component to reduce the time to reach steady-state plasma levels. Subsequently, the phase III Comparison of Faslodex in Recurrent or Metastatic Breast Cancer (CONFIRM) trial found that fulvestrant 500 mg was associated with improved progression-free survival (PFS) and overall survival (OS) compared with the 250-mg dose in patients who experienced disease recurrence or progression after previous endocrine therapy.

The Fulvestrant First-Line Study Comparing Endocrine Treatments (FIRST) was a phase II, randomized, open-label, multicenter trial that also used the fulvestrant 500-mg dose regimen, comparing efficacy and safety with anastrozole in the first-line setting. The primary end point of clinical benefit rate was noninferior for fulvestrant 500 mg compared with anastrozole, with both treatments demonstrating similar, well-tolerated safety profiles. A follow-up analysis, performed because only 35.6% of patients experienced disease progression at the time of the primary analysis, reported a hazard ratio (HR) of TTP for fulvestrant 500 mg versus anastrozole of 0.66 with a 95% CI of 0.47 to 0.92 (P = .01; median TTP, 23.4 months vs 13.1 months). No additional safety issues were reported. Given the improvement in TTP observed during fulvestrant 500 mg treatment compared with anastrozole in this phase II trial, a subsequent protocol amendment was made to address whether this apparent extension in disease control would translate into an improvement in OS.

Study Design and Participants

FIRST was a phase II, randomized, open-label, multicenter, parallel-group trial comparing fulvestrant 500 mg with anastrozole 1 mg. Postmenopausal women with ER-positive locally advanced or metastatic breast cancer who had not received any previous systemic therapy for locally advanced or metastatic disease were included. Patients were permitted to have received previous endocrine therapy for early disease, providing this had been completed more than 12 months before random assignment. This trial was conducted in accordance with the Declaration of Helsinki, was consistent with the International Conference on Harmonisation–Good Clinical Practice guidelines, and is registered with ClinicalTrials.gov. All patients provided written informed consent. Full details of this trial have been reported previously.

Random Assignment and Procedures

Eligible patients were randomly assigned sequentially 1:1 to either fulvestrant 500 mg (administered intramuscularly on days 0, 14, 28, and every 28 days thereafter) or anastrozole 1 mg (administered orally once per day). The data cutoff for the primary analysis was 6 months after the last patient was randomly assigned. On disease progression or after data cutoff for the primary analysis, all patients entered a follow-up phase after a protocol amendment for an analysis of TTP. The TTP follow-up required a questionnaire to be completed for each patient 12 months after the patient entered the follow-up phase and every 12 months thereafter for patients continuing to receive randomized treatment. After the TTP analysis was performed, a further protocol amendment was developed to enter patients into an optional follow-up phase to establish OS. To ensure sufficient maturity, the OS analysis was planned for when approximately 65% of patients had died. Patients who did not contribute additional data to the follow-up extension were right-censored at the last known date they were alive, and their data until this point were included in the analysis. Sites were invited to request written consent from patients for the collection of additional data. Patients were contacted every 3 months until the first of the following events: death, patient withdrawal, data cutoff was reached, or the patient was lost to follow-up. Patients with a last known survival status of alive were contacted within 2 weeks of data cutoff to ensure they were still alive.

Outcomes

The primary study end point was clinical benefit rate; secondary end points included objective response rate, TTP, duration of clinical benefit, and duration of response. These primary and secondary end points have been reported previously.

The follow-up analysis assessed OS, defined as the time from being randomly assigned to death from any cause. A log-rank test (unadjusted model with treatment factor only) was performed for the primary analysis of OS. HRs with 95% CIs were used to compare fulvestrant 500 mg with anastrozole; no adjustments were made for multiplicity. A statistical significance level of .05 was used to indicate a difference in OS between the treatment groups. For patients for whom follow-up responses could not be obtained, data were censored at the date the patient was last known to be alive.

Exploratory subgroup analyses were conducted using the log-rank test to compare OS for the following prespecified patient subgroups: less than 65 years of age versus 65 years of age or greater; post positive for both ER and progesterone receptor versus positive for both ER and progesterone receptor; no visceral involvement versus visceral involvement; no previous chemotherapy versus previous adjuvant chemotherapy; no measurable disease versus measurable disease; and no previous endocrine therapy versus previous endocrine therapy.

Two sensitivity analyses were performed to examine any potential impact of nonparticipation on OS results: a Kaplan-Meier OS analysis was performed in which the censoring indicator was reversed; and baseline covariates were assessed for patients censored greater than 3 months before data cutoff and for those censored 3 months or less before data cutoff, which corresponds to patients who did not participate in the OS follow-up and to those who did, respectively.

Tolerability was assessed by serious adverse event (SAE) monitoring. All SAEs were coded in compliance with the Medical Dictionary for Regulatory Activities and recorded in an internal AstraZeneca database for evaluation. SAEs were monitored for up to 8 weeks after the last dose of fulvestrant 500 mg or for 30 days after the last dose of anastrozole.

In total, 205 patients were randomly assigned to receive fulvestrant 500 mg (n = 102) or anastrozole 1 mg (n = 103) at 62 centers in nine countries (Brazil, Bulgaria, the Czech Republic, France, Italy, Poland, Spain, the United Kingdom, and the United States).

Baseline characteristics and patient demographics were similar between the treatment groups as reported previously. The proportion of patients who had not received previous endocrine treatment for early disease was similar for the fulvestrant 500 mg and anastrozole treatment groups (71.6% and 77.7% of patients at baseline, respectively). Of those that did, almost all had received tamoxifen exclusively. Of the 205 randomly assigned patients, 35 (16 in the fulvestrant 500 mg group and 19 in the anastrozole group) did not participate in
the OS follow-up phase and were censored at the date they were last known to be alive; for these patients, data until this time are included in the OS analysis, and thus all patients contributed data to the analysis. The majority of the nonparticipating patients (n = 20) did not contribute additional data because they attended centers that declined to contribute to the OS follow-up phase. An additional 15 individual patients from nine participating centers did not consent to follow-up. No patients participating in the OS phase were lost to follow-up, and the survival status at data cutoff was known for all patients consenting to the OS follow-up.

Efficacy

At the time of the follow-up analysis for OS, 63 of 102 patients in the fulvestrant 500 mg group (61.8%) and 74 of 103 patients in the anastrozole group (71.8%) were known to have died (Fig 1). The primary analysis of OS was improved in the fulvestrant 500 mg group compared with anastrozole 1 mg; the HR was 0.70 (95% CI, 0.50 to 0.98; log-rank test \(P = .04 \); median OS, 54.1 months vs 48.4 months; Fig 2). The HR for fulvestrant 500 mg versus anastrozole was found to be generally consistent across all subgroup analyses (Fig 3). At 3 years, 64% (fulvestrant 500 mg) and 58% (anastrozole) of patients were event free; at 5 years, the equivalent values were 47% and 38%.

Sensitivity Analyses

There were no important differences between the treatment groups in time to censoring (data not shown). Furthermore, when key baseline covariates for patients censored within the last 3 months before data cutoff and for those censored more than 3 months before data cutoff were summarized, there were no important differences between treatment groups, indicating that the results were not caused by differences between patients who did and did not consent to OS follow-up (Table 1).

Safety

The occurrence of SAEs during the main study period and the follow-up period combined is detailed in Table 2. The majority of SAEs were considered by the investigator to be unrelated to the treatment. Two SAEs considered to be treatment related were documented (one case of hypertension and one case of pulmonary embolism, both in the fulvestrant 500 mg treatment group).

DISCUSSION

This study reports improved OS with fulvestrant 500 mg treatment compared with anastrozole in the first-line setting for ER-positive...
advanced breast cancer, with an approximately 30% reduction in mortality risk. The previously reported improvements in TTP have translated into an improvement in OS of approximately 6 months with fulvestrant 500 mg (54.1 months) compared with anastrozole (48.4 months). This OS advantage is consistent with the OS benefit for fulvestrant 500 mg versus 250 mg in the second-line setting in the CONFIRM trial.15 The effect of fulvestrant 500 mg on OS was generally consistent across all prespecified subgroups (Fig 3). Furthermore, no new safety or tolerability issues were reported from the OS follow-up phase of this study, consistent with previously reported safety data.16,17

The improved OS with fulvestrant 500 mg (54.1 months) relative to anastrozole (48.4 months) was observed although the median OS for the anastrozole group in this study was higher than has previously been reported. For example, OS of 39.2 months was reported for anastrozole as first-line endocrine therapy for advanced breast cancer.

Table 1. Baseline Covariates and Subgroups by Patients Censored \(\geq 3 \) Months and \(\leq 3 \) Months Before DCO

Subgroup	Censored \(> 3 \) Months Before DCO	Censored \(\leq 3 \) Months Before DCO		
	Fulvestrant 500 mg (n = 16)	Anastrozole 1 mg (n = 19)	Fulvestrant 500 mg (n = 23)	Anastrozole 1 mg (n = 10)
Age, years				
< 65	5 (31.3)	7 (36.8)	11 (47.8)	4 (40.0)
\(\geq 65 \)	11 (68.8)	12 (63.2)	12 (62.2)	6 (60.0)
Receptor status at diagnosis				
Not both ER+ and PgR+	6 (37.5)	5 (26.3)	4 (17.4)	2 (20.0)
Both ER+ and PgR+	10 (62.5)	14 (73.7)	19 (82.6)	8 (80.0)
Visceral involvement				
No	9 (56.3)	11 (57.9)	16 (69.6)	8 (80.0)
Yes	7 (43.8)	8 (42.1)	7 (30.4)	2 (20.0)
Previous chemotherapy				
No	11 (68.8)	13 (68.4)	19 (82.6)	8 (80.0)
Yes	5 (31.3)	6 (31.6)	4 (17.4)	2 (20.0)
Measurable disease at diagnosis				
No	1 (6.3)	3 (15.8)	1 (4.3)	0
Yes	15 (93.8)	16 (84.2)	22 (95.7)	10 (100.0)
Previous endocrine therapy				
No	11 (68.8)	13 (68.4)	18 (78.3)	8 (80.0)
Yes	5 (31.3)	6 (31.6)	5 (21.7)	2 (20.0)

Abbreviations: DCO, data cutoff; ER+, estrogen receptor–positive; PgR+, progesterone receptor–positive.
proportion, and often a majority, of endocrine therapy–naïve patients with ER-positive breast cancer have contained a substantial ing countries, metastatic disease at presentation is a significant prob-
numerically substantial patient population, given the high disease common in countries with advanced health care, but represents a exposure to hormone replacement therapy.

The role of fulvestrant 500 mg as first-line therapy will be further defined by the ongoing phase III, double-blind FALCON (Fulvestrant and Anastrozole Compared in Hormonal Therapy Naïve Advanced Breast Cancer) trial (ClinicalTrials.gov identifier: NCT01602380). The FALCON trial will assess the efficacy of fulvestrant 500 mg versus anastrozole in women with locally advanced or metastatic breast cancer with strict definitions of endocrine therapy–naïve disease, including restrictions on exposure to hormone replacement therapy.

Endocrine therapy–naïve advanced breast cancer is relatively uncommon in countries with advanced health care, but represents a numerically substantial patient population, given the high disease prevalence. Furthermore, in unscreened populations and in developing countries, metastatic disease at presentation is a significant problem. Recent clinical trials reporting on first-line endocrine therapy in patients with ER-positive breast cancer have contained a substantial proportion, and often a majority, of endocrine therapy–naïve patients.19,22–24 In FIRST, previous endocrine therapy had been received by 29 (28.4%) of the patients treated with fulvestrant 500 mg and 23 (22.3%) of the anastrozole-treated patients. Of these 52 pa-
tients, only 3 had received AI previously (2 in the anastrozole group and 1 in the fulvestrant 500 mg group); the remainder had received adjuvant tamoxifen. Therefore, AI resistance resulting from previous AI exposure cannot account for the observed OS difference. Indeed, hypothetically, previous exposure to tamoxifen may bias against fulvestrant as both agents are in the same therapeutic class. Upon disease progression, pa-
tients were treated according to the standard of care, and therefore, there could potentially be imbalances between the two treatment groups that could have affected the OS analysis. However, response to subsequent therapies (systemic chemotherapy or endocrine therapy) has previously been shown to be similar between the treatment groups, demonstrating that patients with disease progression on fulvestrant retain sensitivity to subsequent treatments.17 Differential second-line response, therefore, is also an unlikely explanation for the observed OS effect.

There are significant limitations to this report. The sample size was relatively small, and the OS analysis was not specified in the original protocol but was added as a hypothesis in a protocol amendment after TTP results were known. Furthermore, 35 patients did not contribute additional data to the OS follow-up; the decision not to participate in the extended follow-up for OS was made solely by the patient or participating center and was known at the start of the OS follow-up and before the data were collected and analyzed. Data from these patients until the time of censoring were included in the OS analysis, and similar censoring patterns were seen in the two treatment groups. The sensitivity analyses support the main findings, that is, the differences in OS between treatment arms were unrelated to differences in censoring patterns. All-cause mortality was used to determine OS in this analysis because it is regarded as the most unbiased and objective end point used in oncology.25 This point is partic-

Table 2. Incidence of SAEs and Deaths
SAE

Any SAE
Any SAE related to death
Any SAE with outcome other than death
Any causally related SAE
Most commonly reported (≥ two patients) SAEs
Atrial fibrillation
Cardiac failure
Death
Decreased appetite
Dehydration
Dyspnea
Femur fracture
Neuralgia
Transient ischemic attack

Abbreviation: SAE, serious adverse event.

In conclusion, we report that fulvestrant 500 mg may be associ-
ated with improved OS versus anastrozole in the first-line setting for ER-positive advanced breast cancer. To our knowledge, this repre-
sects the first time an endocrine monotherapy has demonstrated
improved efficacy compared with a third-generation AI. The phase III FALCON trial may provide confirmation for these OS results; until then, the findings reported here should be regarded as preliminary, but clinically relevant.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at www.jco.org.

REFERENCES

1. Cardoso F, Costa A, Norton L, et al: ESO-ESMO 2nd International Consensus Guidelines for advanced breast cancer (ABC2). Ann Oncol 25:1871-1888, 2014
2. Cardoso F, Costa A, Norton L, et al: ESO-ESMO 2nd International Consensus Guidelines for advanced breast cancer (ABC2). Breast J 23:489-502, 2017
3. Burstein HJ, Ternin S, Anderson H, et al: Adjuvant endocrine therapy for women with hormone receptor–positive breast cancer: American Society of Clinical Oncology Clinical Practice Guide- line Focused Update. J Clin Oncol 32:2255-2269, 2014
4. Ma CX, Reintert T, Chmielewska I, et al: Mechanisms of aromatase inhibitor resistance. Nat Rev Cancer 15:261-275, 2015
5. Wakeling AE, Dukes M, Bowler J: A potent specific pure antiestrogen with clinical potential. Cancer Res 51:3867-3873, 1991
6. Wakeling AE: Similarities and distinctions in the mode of action of different classes of antiestrogens. Endocr Relat Cancer 7:17-28, 2000
7. Osborne CK, Wakeling A, Nicholson RI: Fulvestrant: An oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer 90:S2-S6, 2004 (supp 1)
8. Robertson JFR, Howell A, Gorbunova VA, et al: Sensitivity to further endocrine therapy is retained following progression on first-line fulvestrant. Breast Cancer Res Treat 92:169-174, 2005
9. Osborne CK, Pippen J, Jones SE, et al: Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: Results of a North American trial. J Clin Oncol 20:3386-3395, 2002
10. Howell A, Robertson JFR, Quaresma Albano J, et al: Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J Clin Oncol 20:3396-3403, 2002
11. Robertson JFR, Osborne CK, Howell A, et al: Fulvestrant versus anastrozole for the treatment of advanced breast cancer in postmenopausal women: A prospective combined analysis of two multicenter trials. Cancer 98:229-238, 2003
12. Howell A, Robertson JFR, Abram P, et al: Comparison of fulvestrant versus tamoxifen for the treatment of advanced breast cancer in postmenopausal women previously untreated with endocrine therapy: A multinational, double-blind, randomized trial. J Clin Oncol 22:1605-1613, 2004
13. Howell A, Cuzick J, Baum M, et al: Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365:60-62, 2005
14. Di Leo A, Jerusalem G, Petruzelka L, et al: Results of the CONFIRM Phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor–positive advanced breast cancer. J Clin Oncol 28:4594-4600, 2010
15. Di Leo A, Jerusalem G, Petruzelka L, et al: Final overall survival: Fulvestrant 500mg vs 250mg in the randomized CONFIRM trial. J Natl Cancer Inst 106:djt337, 2014
16. Robertson JF, Llombart-Cussac A, Rolski J, et al: Activity of fulvestrant 500 mg versus anastrozole 1 mg as first-line treatment for advanced breast cancer: Results from the FIRST study. J Clin Oncol 27:4530-4535, 2009
17. Robertson JF, Lindemann J, Llombart-Cussac A, et al: Fulvestrant 500 mg versus anastrozole 1 mg for the first-line treatment of advanced breast cancer: Follow-up analysis from the randomized ‘FIRST’ study. Breast Cancer Res Treat 136:503-511, 2012
18. Nabholz JM, Bonneterre J, Buzdar A, et al: Anastrozole (Arimidex) versus tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: Survival analysis and updated safety results. Eur J Cancer 39:1684-1689, 2003
19. Mehta RS, Barlow WE, Albain KS, et al: Combination anastrozole and fulvestrant in metastatic breast cancer. N Engl J Med 367:435-444, 2012
20. Mouridsen H, Gershovanovich M, Sun Y, et al: Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: Analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol 21:2101-2109, 2003
21. Paridaens RJ, D’rioy LY, Beex LV, et al: Phase III study comparing exemestane with tamoxifen as first-line hormonal treatment of metastatic breast cancer in postmenopausal women: The European Organisation for Research and Treatment of Cancer Breast Cancer Cooperative Group. J Clin Oncol 26:4892-4899, 2008
22. Bergh J, Jönnsson PE, Lidbrink EK, et al: FACT: An open-label randomized phase III study of fulvestrant and anastrozole in combination compared with anastrozole alone as first-line therapy for patients with receptor-positive postmenopausal breast cancer. J Clin Oncol 30:1919-1926, 2012
23. Finn RS, Crown JP, Lang I, et al: The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor–positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): A randomised phase 2 study. Lancet Oncol 16:25-35, 2015
24. Martin M, Lobli S, Von Minckwitz G, et al: Phase III trial evaluating the addition of bevacizumab to endocrine therapy as first-line treatment for advanced breast cancer: The Letrozole/Fulvestrant and Avastin (LEA) study. J Clin Oncol 33:1045-1052, 2015
25. Saad ED, Buyse M: Overall survival: Patient outcome, therapeutic objective, clinical trial end point, or public health measure? J Clin Oncol 30:1750-1754, 2012
26. Turner NC, Ro J, Andre F, et al: Palbociclib in hormone receptor–positive advanced breast cancer. N Engl J Med, 2015
27. Wardell SE, Ellis MJ, Alley HM, et al: Efficacy of SERD/ER/ERβ hybrid-CDK4/6 inhibitor combinations in models of endocrine therapy resistant breast cancer. Clin Cancer Res 10.1158/1078-0432.CCR-15-0380 [epub ahead of print May 19, 2015]

AUTHOR CONTRIBUTIONS

Conception and design: Matthew J. Ellis, John F.R. Robertson
Provision of study materials or patients: Matthew J. Ellis, John F.R. Robertson
Collection and assembly of data: Matthew J. Ellis, David Feldt, John F.R. Robertson
Data analysis and interpretation: Matthew J. Ellis, Antonio Llombart-Cussac, John A. Dewar, Marek Jasiówka, Nicola Hewson, Yuri Rukazenkov, John F.R. Robertson
Manuscript writing: All authors
Final approval of manuscript: All authors
Glossary Terms

Anastrozole: a third-generation nonsteroidal aromatase inhibitor that prevents the conversion of androgen to estrogen in the peripheral tissues in postmenopausal women. Because hormone-dependent breast cancer progresses with estrogen, anastrozole has been used in the treatment of breast cancer in postmenopausal women. See *aromatase inhibitors*.

Aromatase inhibitors: inhibitors used in treating breast cancer in postmenopausal women. Aromatase inhibitors inhibit the conversion of androgens to estrogens by the enzyme aromatase, thus depriving the tumor of estrogenic signals. Because of decreased production of estrogen, estrogen receptors, which are important in the progression of breast cancer, cannot be activated.

Estrogen receptor (ER): ligand-activated nuclear proteins, belonging to the class of nuclear receptors, present in many breast cancer cells that are important in the progression of hormone-dependent cancers. After binding, the receptor-ligand complex activates gene transcription. There are two types of estrogen receptors (ERα and ERβ). ERα is one of the most important proteins controlling breast cancer function. ERβ is present in much lower levels in breast cancer, and its function is uncertain. Estrogen receptor status guides therapeutic decisions in breast cancer.

Overall survival: the duration between random assignment and death.

Check Out the Latest Additions to ASCO’s Bookstore Today

Learn about the latest eLearning, self-assessment, maintenance of certification, CME-accredited, and patient education products offered by ASCO. New products are added each month at asco.org/store.
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Fulvestrant 500 mg Versus Anastrozole 1 mg for the First-Line Treatment of Advanced Breast Cancer: Overall Survival Analysis From the Phase II FIRST Study

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or jco.ascopubs.org/site/ifc.

Matthew J. Ellis
Employment: Bioclassifier
Leadership: Bioclassifier
Stock or Other Ownership: Bioclassifier
Consulting or Advisory Role: AstraZeneca, Pfizer, Novartis, Celgene
Patents, Royalties, Other Intellectual Property: Bioclassifier

Antonio Llombart-Cussac
Honoraria: Roche, Eli Lilly, Pfizer, Novartis, AstraZeneca
Consulting or Advisory Role: Roche, AstraZeneca, Pfizer
Research Funding: MedSIR

David Feltl
No relationship to disclose

John A. Dewar
No relationship to disclose

Marek Jasiówka
Honoraria: Roche, Amgen
Research Funding: AstraZeneca, Roche
Travel, Accommodations, Expenses: AstraZeneca, Roche, Janssen-Cilag

Nicola Hewson
Employment: AstraZeneca

Yuri Rukazenkov
Employment: AstraZeneca
Stock or Other Ownership: AstraZeneca

John F.R. Robertson
Leadership: Oncimmune
Stock or Other Ownership: Oncimmune
Honoraria: AstraZeneca, Bayer AG
Consulting or Advisory Role: AstraZeneca, Bayer AG, Oncimmune
Research Funding: AstraZeneca (Inst), Bayer AG (Inst), Oncimmune (Inst), Novartis (Inst)
Patents, Royalties, Other Intellectual Property: Oncimmune
Travel, Accommodations, Expenses: AstraZeneca, Bayer AG, Oncimmune, Novartis

Ellis et al

© 2015 by American Society of Clinical Oncology

JOURNAL OF CLINICAL ONCOLOGY

Downloaded from ascops.org by 37.152.202.229 on November 16, 2020 from 037.152.202.229
Copyright © 2020 American Society of Clinical Oncology. All rights reserved.
Acknowledgment

We thank Martin Bell, PhD, from Complete Medical Communications, who provided medical writing support, funded by AstraZeneca.