Decoupling of diffusion from structural relaxation and spatial heterogeneity in a supercooled simple liquid

Mikhail Dzugutov, Sergei I. Simdyankin, Fredrik H. M. Zetterling

Department of Numerical Analysis,
Royal Institute of Technology, SE-100 44 Stockholm, Sweden

(Dated: March 22, 2022)

Abstract

We report a molecular dynamics simulation of a supercooled simple monatomic glass-forming liquid. It is found that the onset of the supercooled regime results in formation of distinct domains of slow diffusion which are confined to the long-lived icosahedrally structured clusters associated with deeper minima in the energy landscape. As these domains, possessing a low-dimensional geometry, grow with cooling and percolate below T_c, the critical temperature of the mode coupling theory, a sharp slowing down of the structural relaxation relative to diffusion is observed. It is concluded that this latter anomaly cannot be accounted for by the spatial variation in atomic mobility; instead, we explain it as a direct result of the configuration-space constraints imposed by the transient structural correlations. We also conjecture that the observed tendency for low-dimensional clustering may be regarded as a possible mechanism of fragility.

PACS numbers: 64.70.Pf
Fragile liquids\cite{1}, having been cooled below a characteristic temperature, T_A, which is typically close to the melting point, undergo a transition to the supercooled dynamics regime with super-Arrhenius slowing down and stretched exponential relaxation. Mode-coupling theory \cite{2} appears only to be successful in interpreting early stages of supercooled dynamics. Further cooling results in a fundamental transformation of the liquid state that has not yet been comprehended in terms of theoretical models \cite{3}. This transformation is manifested by three principal phenomena observed in the vicinity of the glass transition point T_g: (i) the liquid undergoes a structural transformation shifting to the area of its energy landscape with deeper minima \cite{4} (ii) a long-range slowly relaxing spatial heterogeneity arises\cite{5} that is observed as formation of structurally\cite{5} and dynamically\cite{6} distinct long-lived domains (iii) a new type of liquid dynamics develops where the structural relaxation becomes retarded relative to the translational diffusion, thus breaking the Stokes-Einstein relation \cite{8}. It appears sensible to ask whether these three observations represent different aspects of the same phenomenon, and, if so, what is its primary mechanism.

Here, we address these questions in a molecular dynamics simulation examining the structural and dynamical aspects of a simple monatomic liquid in a strongly supercooled equilibrium state. The model comprises 16000 particles interacting via a pair potential \cite{9} designed to favour icosahedral order in the first coordination shell. In this way, the liquid imitates the structure of simple metallic glass-formers \cite{10}. Sufficiently long relaxation under supercooling transforms it into a dodecagonal quasicrystal \cite{11}; but, due to its exceeding complexity, this transformation can be delayed, keeping the liquid in a metastable supercooled state on a time-scale that allows us to explore its essential dynamical properties \cite{12}. The potential and all the quantities computed here are expressed in terms of the Lennard-Jones reduced units. We cool the liquid towards the glass transition at a constant density $\rho = 0.85$ in a step-wise manner, equilibrating it at each temperature point.

The temperature variation of the self-diffusion coefficient is shown in Fig. 1a. A clear transition to the supercooled dynamics regime marked by the onset of super-Arrhenius behaviour occurs at $T_A = 0.8$. This is accompanied by a pronounced stretched-exponential relaxation \cite{12}. We analyse the energy landscape transformation under cooling by performing the steepest descent energy minimization of the instantaneous liquid configurations \cite{13} producing the so-called inherent structure (IS) configurations \cite{14}. In spite of the dramatic drop of diffusivity between $T = 1$ and $T = 0.3$, the respective IS radial distribution functions
FIG. 1: (a) Open circles: temperature variation of the diffusion coefficient D. Deviation from the Arrhenius behaviour is observed around $T = 0.8$. Solid line is a fit of the equation: $D = A(T - T_c)\gamma$ which yields the value of the mode-coupling theory critical temperature $T_c = 0.39$. Chain-dashed line is the fit of Vogel-Fulcher-Tamman law: $D = D_0 \exp(BT_0/(T - T_0))$, with $T_0 = 0.17$ and $B = 9.14$. Parameter B is an indicator of the liquid’s fragility \[1\]. (b) Radial distribution functions for two IS configurations. Solid line: $T = 0.3$; dashed line: $T = 1.0$.

shown in Fig.1b indicate only a marginal change of the local order. Nevertheless, the IS energy (Fig. 2a), remaining almost constant at higher temperatures, decreases as the liquid is cooled below T_A. A similar effect was observed in a supercooled two-component Lennard-Jones liquid \[4\].

The principal issue that we address in this study concerns the effect that the energy landscape transformation as indicated by the reduction of IS energy has on the liquid dynamics. In this context, we investigate two dynamical anomalies mentioned above: spatial variation in atomic mobility and breaking the Stokes-Einstein relation. It is intuitively clear that the former must be intimately connected with the structural heterogeneity. It was suggested \[15\] that a liquid approaching T_g develops extensive domains of distinct structure based on the energy-favoured local order incompatible with periodicity, which is apparently icosahedral
in the present case. A detailed investigation of the evolution of icosahedral order in this system under cooling can be found elsewhere \[9, 13\]; its results essential for the present analysis are shown in Fig. 2. The number of icosahedrally coordinated atoms, Fig. 2b, remains almost temperature-independent for \(T > T_A\), and grows rapidly with cooling below \(T_A\). This clearly correlates with the behaviour of the IS energy in Fig. 2a, indicating that the lower-energy minima in the energy landscape that the liquid occupies in the supercooled state are associated with icosahedral order.

Fig. 2c shows the temperature variation of the maximum size of continuous aggregations of connected icosahedra (it is assumed that two icosahedra sharing at least 3 atoms are connected). These low-energy configurations possess a higher mechanical stability than other configurations arising in the liquid. The pattern in Fig. 2c is consistent with those shown in Figs. 2a and 2b. The cluster size remains temperature-independent above \(T_A\) and grows rapidly with cooling below \(T_A\), diverging around \(T_c\) where connected icosahedra form a percolating network. We also note that the onset of percolation reduces the temperature variations of both the number of icosahedra and the IS energy.

The growth of a continuous bulk aggregation of icosahedrally coordinated atoms in a flat 3D space is limited by the rapidly increasing strain energy caused by geometric frustration. Here, the unlimited size of the icosahedral clusters is a result of low-dimensional growth. An example demonstrating this tendency - a cluster of 716 atoms detected at \(T = 0.45\) - is shown in Fig. 2d. The icosahedral clusters with low-dimensional geometry were observed in the global energy-minima analysis of this system \[16\]. This analysis also demonstrated that the effect of low-dimensional icosahedral aggregation is destroyed by a variation of the pair potential \[17\]. It is worth noting that although icosahedral coordination was found to be ubiquitous for the energy-minima clusters of the Lennard-Jones system \[18\], in agreement with an earlier study \[19\], these clusters demonstrate a distinctly bulk pattern of aggregation.

This structural heterogeneity is accompanied by the dynamical heterogeneity. In Fig. 3, the mean-square displacement (MSD) for the atoms initially situated inside the icosahedral domains is compared with that for the initially external atoms with non-icosahedral environments. As the domain size grows under cooling, the latter group of atoms becomes increasingly more mobile than the former one. These results are consistent with earlier observations associating low mobility domains in supercooled liquids with lower energy \[20\] and higher degree of local ordering \[21\].
FIG. 2: (a) Temperature variation of the IS energy, per atom. (b) Temperature variation of the relative number of atoms with icosahedral coordination (we assume two atoms separated by a distance of less than 1.5 to be neighbours) (c) Temperature variation of the maximum size of cluster of interconnected icosahedra. The error bars in plots (a)-(c), as estimated from 3 independent runs, are of order of the dots size (d) The largest icosahedral cluster detected at $T = 0.45$ comprising 716 atoms. Note that its size exceeds the range of structural correlations as estimated from Fig. 1b.

FIG. 3: The impact of the structural heterogeneity on diffusion. Dashed lines and solid lines denote, respectively, mean-square displacement calculated for the atoms that were icosahedrally coordinated at the initial moment of time, and for those with non-icosahedral environment. (a) $T = 1.0$, (b) $T = 0.45$, and (c) $T = 0.3$.

Next, we investigate the relation between diffusion and structural relaxation. The rate of ergodicity-restoring structural relaxation can be assessed by comparing the time-average of a local variable with its ensemble-average \cite{22, 23}. If u_i is the potential energy of atom i,

\begin{align*}
\text{Mean square displacement} & = \frac{1}{N} \sum_{i=1}^{N} (x_i(t) - x_i(0))^2 \\
\text{Time} & = 0, 1, 2, 3, \ldots
\end{align*}
FIG. 4: (a) Ω_u^{-1} as a function of mean-square displacement. Ω_u is defined by Eq. 1 (b) Temperature variation of D_u/D. The latter is obtained as the slope in asymptotically linear variation of Ω^{-1} as a function of mean-square displacement. Note that at $T = 0.3$ the system is apparently non-equilibrated.

The respective measure for a system of N atoms is:

$$\Omega_u(t) = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{1}{t} \int_{0}^{t} u_i(s) ds - \langle u_i \rangle \right]^2$$ (1)

where $\langle \rangle$ denotes the ensemble average. This measure decays with time \[23\] as:

$$\Omega_u(t) = \Omega_0/D_0 t$$ (2)

where D_u is a constant, and $\tau = D_u^{-1}$ can be regarded as characteristic relaxation time. Fig. 4(b) shows the temperature variation of D_u/D (the latter was estimated from the slope of asymptotically linear variation of Ω_u^{-1} as a function of MSD, Fig. 4(a)) It remains constant in the stable liquid domain and decreases rapidly as the liquid is cooled below T_A. The steepest variation of D_u/D occurs around T_c; a tendency for saturation observed in the T_g area possibly indicates that the system remains non-equilibrated. This pattern is thus perfectly consistent with the temperature variations of the IS energy and the domain structure shown in Fig. 2.

Two distinct aspects of dynamical heterogeneity are commonly discussed in relation with breaking the Stokes-Einstein relation \[24\]. One model \[25\] explains the latter anomaly as
a direct result of the existence of spatial domains with distinctly different rate of atomic mobility. It conjectures that the translational diffusion is mostly confined to the “fast” domains, while the structural relaxation (viscosity) is controlled by the reduced mobility in the “slow” domains; at the same time, the dynamics in each separate domain is assumed to be adequately described by the Stokes-Einstein relation [8]. We note that although the spatial variation in atomic mobility is found in the present study, Fig. 3, the scale of this effect is by more than an order of magnitude smaller than that of the relaxation-diffusion decoupling in Fig. 4. This observation clearly demonstrates that even in the domains with lowest atomic mobility diffusion becomes strongly enhanced with respect to structural relaxation, which is obviously inconsistent with the above model.

Another aspect of dynamical heterogeneity that has been conjectured to explain the Stokes-Einstein breaking is dynamical cooperativity [26]. We present here some arguments in favour of this conjecture. First, we have to understand why diffusivity and the rate of structural relaxation remain universally connected in the stable liquid state. Let us consider a coarse-grained configuration-space trajectory of a liquid system with with a certain finite value of MSD per an elementary step. We assume that the relaxation process of a stable liquid represents a random walk in the configuration space constrained by the ensemble-averaged structural correlations. This assumption implies that as a result of an elementary step the system can, with equal probability, be found in any available configuration space point within the indicated MSD range from its initial position (availability implies that the configuration is allowed by the equilibrium ensemble-averaged structural correlations) [27]. It is clear that the ratio of the average number of available configurations that the system can access in a relaxation step with a fixed MSD to the total number of available configurations remains constant within the domain of stable liquid state where the above assumption is assumed to be valid. On the other hand, this ratio can be regarded as a measure of the relaxation rate if time is expressed in terms of MSD.

Next, we assume that the relaxation process is additionally constrained by time-limited correlations complementary to the ensemble-average equilibrium structural correlations. These additional correlations are characteristic of the supercooled liquid state; they can be observed both as positional correlations in the form of a transient domain structure discussed above and as a long-range dynamical cooperativity [28]. In this case, the system in its elementary relaxation step cannot access all the available configuration points within
the respective MSD range. As a result, diffusion becomes enhanced with respect to the structural relaxation. The magnitude of this effect is apparently controlled by the scale of the described time-limited complementary correlations. Indeed, the dramatic decrease of D_u/D in Fig. 4. clearly correlates with the divergence of the correlation length associated with cluster percolation at $T = T_c$ (Fig. 2c).

In conclusion, the results presented here connect the profound change in the liquid’s behaviour at $1.2 T_o \approx T_c$ to the transformation of its residence area on the energy landscape. The coherently structured domains associated with low-energy minima which are occupied in the supercooled regime represent free-energy barriers dividing the phase-space into components [29]. In this landscape, the ergodicity restoring relaxation is facilitated by strongly correlated atomic motions [30] which, as we have shown, are inefficient in exploring the configuration space. We note that the percolation of icosahedral order observed here resembles the picture of rigidity percolation in bonded glass-formers [31]. An interesting question that can be addressed in a separate study is whether this percolation occurs at the same temperature as the percolation transition for the higher-mobility domains which too was found around T_c [20]. Another remark concerns a possible connection between the domain geometry and fragility. The latter is related to the steepness of the slowing down of structural relaxation relative to diffusion shown in Fig.4 which is concluded to be controlled by the domain growth rate. The low-dimensional domain geometry avoids the inherent geometric frustration that limits the bulk growth of domain structure and, in this way, facilitates rapid increase of the domain size. Therefore, it could conceivably be regarded as a generic feature of the fragile glass-formers. Indeed, structurally and dynamically distinct low-dimensional domains have been found in a supercooled two-component Lennard-Jones liquid [9, 19].

We thank C.A. Angell, S.R. Elliott and D.J. Wales for valuable comments. We used VMD software [32]. This study was supported by Swedish Research Council (VR).

[1] C. A. Angell, J. Non-Cryst. Solids 131-133, 13 (1991).
[2] W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).
[3] M. D. Ediger, C. A. Angell, S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).
[4] S. Sastry, P. G. Debenedetti, F. H. Stillinger, Nature 393, 554 (1998).
[5] H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999).
[6] E. Weeks, J. C. Crocker, A. Levitt, A. Schofield, D. A. Weitz, Science 287, 627 (2000).
[7] W. Kob et al., Phys. Rev. Lett. 80, 2338 (1998)
[8] F. R. Blackburn, C.-Y. Wang, M. D. Ediger, J. Phys. Chem. 100, 18249 (1996); I. Chang, H. Sillescu, J. Phys. Chem. B 101, 8794 (1997); A. Mukherjee, S. Bhattacharyya and B. Bagchi, J. Chem. Phys. 116, 4577 (2002)
[9] M. Dzugutov, Phys. Rev. A 46, R2984 (1992).
[10] J. Hafner, From Hamiltonians to phase diagrams (Springer-Verlag, Berlin, 1988).
[11] M. Dzugutov, Phys. Rev. Lett. 70, 2924 (1993).
[12] M. Dzugutov, Europhys. Lett. 26, 533 (1994).
[13] F. Zetterling, M. Dzugutov, and S. Simdyankin, Journ. Non-Cryst. Solids 293-295, 39 (2001).
[14] F. H. Stillinger, T. A. Weber, Science 225, 983 (1984).
[15] T. R. Kirkpatrick, D. Thirumalai, P. G. Wolynes, Phys. Rev. A 40, 1045 (1989); E. W. Fischer, E. Donth, W. Steffen, Phys. Rev. Lett. 68, 2344 (1992); D. Kivelson, S. A. Kivelson, X. Zhao, Z. Nussinov, G. Tarjus, Physica A 219, 27 (1995).
[16] J.P.K. Doye, D.J. Wales, and S.I. Simdyankin Faraday Discuss., 118, 159 (2001).
[17] J.P.K. Doye and D.J. Wales, Phys. Rev. Lett., 86, 5719-5722 (2001)
[18] D.J. Wales and J.P.K. Doye, J. Phys. Chem. A, 101, 5111 (1997)
[19] H. Jonsson, H. C. Andersen, Phys. Rev. Lett. 60, 2295 (1988).
[20] C. Donati, S. Glotzer, P. Poole, W. Kob and S. Plimpton, Phys. Rev. E 60, 3107 (1999)
[21] M. Hurley and P. Harrowell, Phys. Rev. E 52, 1694 (1995)
[22] S. K. Ma, Statistical mechanics, (World Scientific, Singapore, 1990).
[23] R. D. Mountain, D. Thirumalai, J. Phys. Chem. 93, 6975 (1989).
[24] M. Cicerone, F. Blackburn, and M. Ediger, J. Chem. Phys., 102, 471 (1995)
[25] F. Stillinger and J.Hodgdon, Phys.Rev. E 50, 2064 (1994); M. Cicerone and M. Ediger, J. Chem. Phys. 104, 7210 (1996)
[26] F. Fujara, B. Geil, H. Sillescu and G. Fleischer, Z. Phys. B 88 195 (1992)
[27] M. Dzugutov, Phys. Rev. E, 65, 032501 (2002); M. Dzugutov, Nature 381, 137 (1996);
[28] R. G. Palmer, D. L. Stein, P. W. Anderson, Phys. Rev. Lett. 53, 958 (1984); C. Bennemann, C. Donati, J. Baschnagel, S. Glotzer, Nature 399, 246 (1999).
[29] R. G. Palmer, Adv. Phys. 31, 669 (1982).
[30] A. Barrat, S. Franz, G. Parisi, J. Phys. A: Math. Gen. 30, 5593, (1997); K. Fuchisaki, K. Kawasaki, J. Phys. Soc. Japan 67, 2158 (1998); T. Schroeder, S. Sastry, J. Dyre and S. Glotzer, J. Chem. Phys 112, 9834 (2000)

[31] J. C. Phillips, M. F. Thorpe, Sol. State Commun. 53, 699 (1985); C. A. Angell, B. E. Richards, V. Velikov, J. Phys.: Condens. Matter 11, A75 (1999).

[32] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996).