FTO, Type 2 Diabetes, and Weight Gain Throughout Adult Life

A Meta-Analysis of 41,504 Subjects From the Scandinavian HUNT, MDC, and MPP Studies

Jens K. Hertel,1,2 Stefan Johansson,1,2 Emily Sonestedt,3,4 Anna Jonsson,5 Rolv T. Lie,6 Carl G. P. Platou,7,8 Peter M. Nilsson,9 Gull Rukh,4 Kristian Midtønnell,7 Kristian Hveem,7 Olle Melander,10 Leif Groop,5,11 Valeriya Lyssenko,5 Anders Molven12,13 Marju Orho-Melander,4 and Pål R. Njølstad1,14

OBJECTIVE—FTO is the most important polygene identified for obesity. We aimed to investigate whether a variant in FTO affects type 2 diabetes risk entirely through its effect on BMI and how FTO influences BMI across adult life span.

RESEARCH DESIGN AND METHODS—Through regression models, we assessed the relationship between the FTO single nucleotide polymorphisms rs9939609, type 2 diabetes, and BMI across life span in subjects from the Norwegian population-based HUNT study using cross-sectional and longitudinal perspectives.

For replication and meta-analysis, we used data from the Malmö Diet and Cancer (MDC) and Malmö Preventive Project (MPP) cohorts, comprising a total sample of 41,504 Scandinavians.

RESULTS—The meta-analysis revealed a highly significant association for rs9939609 with both type 2 diabetes (OR 1.13; P = 4.5 × 10⁻¹⁰) and the risk to develop incident type 2 diabetes (OR 1.16; P = 3.2 × 10⁻⁸). The associations remained also after correction for BMI and other anthropometric measures. Furthermore, we confirmed the strong effect on BMI (0.28 kg/m² per risk allele; P = 2.0 × 10⁻²⁰), with no heterogeneity between different age-groups. We found no differences in change of BMI over time according to rs9939609 risk alleles, neither overall (ΔBMI = 0.0 [–0.05, 0.05]) nor in any individual age stratum, indicating no further weight gain attributable to FTO genotype in adults.

CONCLUSIONS—We have identified that a variant in FTO alters type 2 diabetes risk partly independent of its observed effect on BMI. The additional weight gain as a result of the FTO risk variant seems to occur before adulthood, and the BMI difference remains stable thereafter.

Genomewide association studies (GWAS) have identified a strong correlation between BMI and FTO single nucleotide polymorphisms (SNPs) (1–4), which have been extensively reproduced in different study populations (reviewed in 5). The FTO risk variants are also associated with obesity-related traits (6–8). However, these effects appear to be secondary to weight increase because the associations are attenuated after adjusting for BMI (2). In contrast, we and others have found that the association with type 2 diabetes may not be completely mediated through BMI, because it remains significant after BMI correction (9). This indicates that the relationship between sequence variation in FTO and type 2 diabetes is not fully mediated through BMI or that BMI in some populations does not reveal accurate estimates of the effect of FTO on adiposity.

Various studies have investigated the effect of FTO variants on BMI and weight in a longitudinal perspective (10–18) but with diverging results. With access to extensive data from three large Scandinavian populations, through a meta-analysis approach using both cross-sectional and longitudinal data, we aimed to investigate whether the FTO risk allele affects type 2 diabetes risk after correction for BMI and whether it influences weight gain during adult life.

RESEARCH DESIGN AND METHODS

Definition of cohorts. We studied HUNT2, a subset (aged ≥20) of a Norwegian population-based health survey (Nord-Tromsø Health Study) (19). Our material comprised 1,740 diabetic individuals (1,543 with type 2 diabetes) and 3,856 population-based control subjects drawn from the same study population. We also had access to data on diabetes status, weight, and height from HUNT1 (1985) for 4,625 of the 5,596 subjects in HUNT2 (1995), i.e., 10-year follow-up. During these 10 years, 1,089 individuals developed type 2 diabetes. Diagnosis of diabetes was self-reported or identified by standard tests if random glucose was >7.0 mmol/L.

The Malmö Diet and Cancer (MDC) cohort (20) with baseline examinations from 1991 to 1996 consisted of 28,449 individuals. All men born between 1923 and 1945 and all women born between 1923 and 1950 from Malmö were included.
invited. Diabetes diagnosis at baseline was self-reported or diagnosed if fasting plasma glucose was ≥ 7.0 mmol/L.

In the Malmo Preventive Project (MPP) cohort (21), 33,346 subjects from Malmo participated in a health screening. Men were included from 1974 to 1990, and women were included from 1980 to 1992. Eligible participants (25,000) were invited to a rescreening visit during 2002–2006. Of those invited, 16,061 nondiabetic subjects, 2,063 of whom developed type 2 diabetes during follow-up, were included in the current study. Diabetes diagnosis was taken from patient records or if fasting plasma glucose was ≥ 7.0 mmol/L.

The clinical characteristics of individuals from the three cohorts are shown in Table 1.

RESULTS

Relationship among FTO, type 2 diabetes, and obesity-related quantitative traits across life span in HUNT. After correction for age and sex, we observed a strong association with type 2 diabetes for rs9939609 in HUNT2. This association remained significant after correction for BMI (OR 1.19 [95%CI 1.09–1.19]; $P=4.5 \times 10^{-8}$) and remained significant after BMI correction (OR 1.10 [95%CI 1.00–1.17]; $P=1.0 \times 10^{-4}$). The meta-analysis demonstrated that the association between rs9939609 and type 2 diabetes was strong after adjustment for age and sex (OR 1.13 [95%CI 1.08–1.19]; $P=4.5 \times 10^{-8}$) and remained significant after BMI correction (OR 1.09 [95%CI 1.04–1.15]; $P=1.2 \times 10^{-4}$; Fig. 2A and B). Correction for waist-to-hip ratio or waist circumference instead of BMI did not change the results (Supplementary Fig. 2A–C). To further elucidate whether rs9939609 exerts an effect on type 2 diabetes independently of BMI, we evaluated the risk to develop incident type 2 diabetes according to FTO genotype during follow-up. As shown in Supplementary Fig. 3A–C, the association remained similar for incident type 2 diabetes after correction for sex and baseline age and BMI (OR 1.12 [95%CI 1.05–1.18]; $P=1.1 \times 10^{-4}$) and after correction also for ΔBMI (OR 1.11 [95%CI 1.05–1.18]; $P=1.5 \times 10^{-4}$).

The meta-analysis of the FTO-associated allele-wise effect on BMI using cross-sectional data confirmed the strong effect of the FTO SNP on BMI (0.28 kg/m² per risk allele [$P=2.0 \times 10^{-18}$]; Fig. 2A). Furthermore, we detected no heterogeneity in the effect sizes for the FTO risk allele between the different age groups (Fig. 2B). Finally, Fig. 3 shows the linear regression summary results between rs9939609 and ΔBMI for all HUNT and MPP individuals for whom longitudinal data were available. There was no significant difference in ΔBMI according to overall number of rs9939609 risk alleles (ΔBMI = 0.0 [–0.05, 0.05]) or in any individual age stratum (Fig. 3B). Hence, the FTO-associated effect on BMI seems to establish relatively early in life, and the relative BMI difference remains stable across adult life.

DISCUSSION

To our knowledge, this is the largest study investigating the effect of FTO sequence variants on type 2 diabetes and BMI across the whole range of adult ages and in a longitudinal perspective. In 41,504 Scandinavians, we demonstrate that a common variant of FTO does not mediate type 2 diabetes risk entirely through its influence on BMI. Although our findings are comparable with some earlier studies (25–27), they contrast previous results reported in most populations studied to date, including Europeans (1–3,8). Reasons for the diverging results could be differences in selection or recruitment of cases and controls between studies, differences in undetected key effects at early age, or population-specific environmental factors that may interact with the way FTO works to influence the risk of type 2 diabetes. In an attempt to capture the complex relationship between FTO, BMI, and type 2 diabetes during the life course, we performed an analysis on incident type 2 diabetes. The results remained similar in...
TABLE 1

Clinical characteristics of the individuals from the three different cohorts

Cohort	Type 2 diabetes	No type 2 diabetes
N	N	N
All	N	N
HUNT	N	N
MPP	N	N
MDC	N	N

Data are presented as means ± SD. Data presented for the HUNT and MPP cohorts are follow-up measures unless otherwise stated. All data presented for the MDC cohort are baseline measures as a result of no available follow-up measures. Only nonfasting glucose measures were available for participants in the HUNT cohort.

Diabetes

Characteristic	HUNT	MPP	MDC
N	1,543	2,054	13,876
Age (years)	72.0	67.9	56.7
Follow-up time (years)	10.0	12.0	17.8
BMI baseline (kg/m²)	26.8	29.5	25.6
Waist-to-hip ratio	0.86	0.9	0.85
Waist circumference (cm)	90.3	95.8	88.2
Serum triglycerides (mmol/L)	2.0	2.5	1.8
Serum cholesterol (mmol/L)	6.1	6.2	6.1
Serum HDL (mmol/L)	1.3	1.6	1.4
Fasting plasma glucose (mmol/L)	6.8	9.6	5.7

Data

Characteristic	HUNT	MPP	MDC
N	4,053	2,054	13,876
Age (years)	72.0	67.9	56.7
Follow-up time (years)	23.5	24.5	23.4
BMI baseline (kg/m²)	26.8	29.5	27.1
Waist-to-hip ratio	0.86	0.9	0.92
Waist circumference (cm)	90.3	95.8	94.8
Serum triglycerides (mmol/L)	2.0	2.5	1.8
Serum cholesterol (mmol/L)	6.1	6.2	6.1
Serum HDL (mmol/L)	1.3	1.6	1.4
Fasting plasma glucose (mmol/L)	6.8	9.6	5.7

MDC

Characteristic	N	N	
N	19,258		
Age (years)	57.6		
Follow-up time (years)	6.5		
BMI baseline (kg/m²)	25.7		
Waist-to-hip ratio	0.85		
Waist circumference (cm)	83.2		
Serum triglycerides (mmol/L)	2.0	2.5	1.8
Serum cholesterol (mmol/L)	6.1	6.2	6.1
Serum HDL (mmol/L)	1.3	1.6	1.4
Fasting plasma glucose (mmol/L)	6.8	9.6	5.7
the longitudinal study both when we controlled for BMI at baseline (before diabetes was diagnosed), ΔBMI, or waist circumference and/or waist-to-hip ratio as covariates in the regression analyses. None of the covariates alone or in combination with BMI changed our results notably. FTO still conferred an increased risk for type 2 diabetes.

How sequence variation in FTO could possibly affect type 2 diabetes risk in other forms than through increased adiposity remains elusive. No associations have been reported between FTO SNPs and glucose tolerance or insulin sensitivity. A link between SNPs in FTO and altered lipid profiles has been suggested (6,9), but we could not confirm this in our meta-analysis (Supplementary Table 2). It has been suggested that rs9939609 affects the primary allelic FTO transcript levels (28), and correlations have been observed in peripheral tissues between BMI of tissue donors and FTO mRNA expression levels (29). It is noteworthy that three recent FTO expression studies support a potential role in type 2 diabetes independently of BMI. One study found no association between FTO expression and BMI in islet cells (30). Another study reported an inverse correlation between FTO mRNA and glucose in mice after correction for body weight (31). Finally, a third study found an increase of FTO mRNA and protein levels in muscle from type 2 diabetic patients compared with healthy lean control subjects or BMI-matched obese non-diabetic individuals (32). The latter also suggests that increased FTO expression in type 2 diabetic patients contributes to reduced mitochondria oxidative capacities, lipid accumulation, and oxidative stress, all associated with type 2 diabetes. It is also possible that the rs9939609 SNP (or a SNP in strong LD) affects another gene in the region, which has the potential to alter type 2 diabetes risk independently of BMI (33).
The association between *FTO* sequence variants and BMI is not established at birth (2,34) but seems to evolve gradually before adulthood (2,35,36). It is not clear how *FTO* genotype affects BMI after adolescence and develops during the life course (10–18), although a recent longitudinal Finnish study suggests that the effect may continue into adulthood since they found an association between rs9939609 and BMI at age 31, which could not be explained by the BMI at age 14 (18). Using cross-sectional and longitudinal designs, we identified in the three Scandinavian populations that the relative difference in mean BMI among individuals with different rs9939609 genotypes remains surprisingly stable across all adult ages. Hence, because our study primarily comprised individuals that were above 30 years of age (98.7%), current evidence suggests that the *FTO* variant increases BMI in the first 2 to

FIG. 2. Meta-analysis plot of the *FTO*-associated allele–wise effect on BMI using cross-sectional data. The results included in the meta-analysis are from regression analysis adjusted for age, sex, and diabetes status. The weighting (% weight) represents the inverse variance of each study’s effect estimator. A: Meta-analysis plot comprising all 41,504 individuals. No heterogeneity between the cohorts was detected ($P = 0.242$), and the overall allelic effect was estimated to 0.28 kg/m². B: Meta-analysis plot comprising all 41,504 individuals stratified on 10-year-age strata. No heterogeneity between the subgroups was detected ($P = 0.378$). Moderate heterogeneity was, however, observed in two of the subgroups.

Cohort	N	Effect (95% CI)	% Weight
HUNT	5,596	0.27 (0.11, 0.43)	10.35
MPP	15,930	0.24 (0.17, 0.31)	50.48
MDC	19,978	0.33 (0.25, 0.42)	39.17
Overall ($f^2 = 29.6\%, p = 0.242$)		0.28 (0.23, 0.33)	100.00

Test for overall effect: $Z = 10.64, P = 2.0 \times 10^{-26}$

Effect (unit change in BMI per risk allele)
-0.6

Cohort	Effect (95% CI)	% Weight
Age 20–29	0.62 (−0.05, 1.30)	0.56
HUNT	−0.04 (−0.67, 0.58)	0.63
MPP	0.27 (−0.19, 0.73)	1.19
Subtotal ($f^2 = 50.0\%, p = 0.158$)		
Age 30–39	0.07 (−0.41, 0.54)	1.15
HUNT	0.33 (0.20, 0.47)	14.21
MPP	0.31 (0.19, 0.44)	19.35
Subtotal ($f^2 = 11.4\%, p = 0.288$)		
Age 40–49	0.33 (−0.15, 0.81)	1.11
HUNT	0.22 (0.13, 0.31)	28.53
MPP	0.26 (0.10, 0.41)	10.77
Subtotal ($f^2 = 7.1\%, p = 0.341$)		
Age 50–59	0.54 (0.12, 0.98)	1.42
HUNT	0.50 (0.27, 0.73)	7.80
MPP	0.44 (0.30, 0.58)	12.68
Subtotal ($f^2 = 59.1\%, p = 0.087$)		
Age 60–69	0.54 (0.12, 0.98)	1.42
HUNT	0.44 (0.30, 0.58)	12.68
MPP	0.36 (0.26, 0.47)	21.70
Subtotal ($f^2 = 0.0\%, p = 0.679$)		
Age 70–79	0.09 (−0.27, 0.44)	2.05
HUNT	0.18 (−0.19, 0.06)	0.56
MPP	0.26 (0.09, 0.42)	9.54
Subtotal ($f^2 = 0.0\%, p = 0.431$)		
Age 80–89	0.45 (0.26, 0.65)	2.70
HUNT	0.45 (0.26, 0.65)	2.70
MPP	0.45 (0.26, 0.65)	2.70
Subtotal ($f^2 = 0.0\%, p = . . .$)		
Heterogeneity between groups: $p = 0.378$		
Overall ($f^2 = 16.6\%, p = 0.264$)	0.28 (0.23, 0.33)	100.00
3 decades of life, and from then on the BMI difference between the genotypes becomes more or less constant throughout life. Nevertheless, it remains to be seen whether other relevant factors such as diet and physical activity may interact and modify the susceptibility to obesity by the FTO variants during the life course (37–39).

In summary, we have replicated that a common variant in the FTO gene alters type 2 diabetes risk but find that this association is partly independent of the effect on BMI. Our data further demonstrate that the weight gain as a result of the FTO risk variant occurs during youth and that the BMI difference according to the FTO genotype persists at the same level throughout life, setting the threshold for BMI.

ACKNOWLEDGMENTS

The HUNT study was supported in part by funds from the University of Bergen, Haukeland University Hospital, Helse Vest, Innovest, and the Research Council of Norway. Genotyping was in part provided by the CIGENE technology platform (Ås, Norway), which is supported by the Functional Genomics Programme (FUGE) of the Research Council of Norway. The Nord-Trøndelag Health Study (HUNT) is a collaboration between the HUNT Research Center at the Norwegian University of Science and Technology, Levanger, the Norwegian Institute for Public Health, and the Nord-Trøndelag County Council. The diabetes part of HUNT was partly supported by funds from

FIG. 3. Meta-analysis plot of the FTO-associated effect on BMI differences using longitudinal data from the HUNT and MPP study. The results included in the meta-analysis are from regression analysis adjusted for age, sex, and diabetes status. The weighting (%weight) represents the inverse variance of each study's effect estimator. A: Meta-analysis plot comprising all 20,464 individuals with follow-up data on BMI. No heterogeneity between the cohorts was detected \((P = 0.892) \), and the overall allelic effect for the FTO SNP on BMI difference over a period of time was estimated to 0 kg/m\(^2\). B: Meta-analysis plot comprising all 20,464 individuals stratified on 10-year-age strata. Each age stratum reflects the age at baseline. No heterogeneity between the subgroups was detected \((P = 0.967) \). Moderate heterogeneity was, however, observed in two of the subgroups.
GlaxoSmithKline Norway and the Norwegian Diabetes Association. The MDC study was supported by project grants from the Swedish Research Council, the European Foundation for the Study of Diabetes, the Novo Nordisk and Albert Pälsson Foundations, a Linnaeus grant to the Lund University Diabetes Centre, and the Knut and Alice Wallenberg Foundation. The MPP study was supported by grants from the Swedish Research Council (including Linneå grant 31475113580), the Heart and Lung Foundation, the Diabetes Research Society, a Nordic Center of Excellence Grant in Disease Genetics, the Diabetes Program at the Lund University, the European Foundation for the Study of Diabetes, the Pålsson Foundation, the Cragford Foundation, the Novo Nordisk Foundation, the European Network of Genomic and Genetic Epidemiology, and the Wallenberg Foundation.

No potential conflicts of interest relevant to this article were reported.

J.K.H. and S.J. designed the study, wrote the manuscript, researched data, contributed to the discussion, and reviewed the manuscript. E.S. and A.J. researched data and reviewed and edited the manuscript. R.T.L. contributed to the discussion and reviewed and edited the manuscript. C.G.P.P. researched data and contributed to discussion. P.M.N. contributed to the discussion and reviewed and edited the manuscript. G.R. researched data. K.M. researched data and reviewed and edited the manuscript. K.H. researched data, contributed to the discussion, and reviewed and edited the manuscript. O.M. reviewed and edited the manuscript. L.G. contributed to the discussion and reviewed and edited the manuscript. V.L. researched data and reviewed and edited the manuscript. A.M. designed the study, contributed to the discussion, and reviewed and edited the manuscript. M.O.-M. researched data and reviewed and edited the manuscript. P.R.N. designed study, contributed to the discussion, and reviewed and edited the manuscript.

REFERENCES

1. Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 2007;39:724–726
2. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007;316:889–894
3. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007;316:1341–1345
4. Scuteri A, Sanna S, Chen WM, et al. Genome-wide association study identifies a variant associated with type 2 diabetes risk in African-Americans in the ARIC study. PLoS ONE 2010;5:e10521
5. Fawcett KA, Barroso JL. The genetics of obesity: FTO leads the way. Trends Genet 2007;23:1115
6. Al-Attar SA, Pollex RL, Ban NR, et al. Association between the FTO rs9939609 polymorphism and the metabolic syndrome in a non-Caucasian multi-ethnic sample. Cardiovasc Diabetol 2008;7:5
7. Barber TM, Bennett AJ, Groves CJ, et al. Association of variants in the fat mass and obesity-associated (FTO) gene with poly cystic ovary syndrome. Diabetesologia 2008;51:1153–1158
8. Freathy RM, Timpson NJ, Lawlor DA, et al. Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes 2008;57:1419–1426
9. Hertel JK, Johannsson S, Raedler H, et al. Genetic analysis of recently identified type 2 diabetes loci in 1,638 unsselected patients with type 2 diabetes and 1,558 control participants from a Norwegian population-based cohort (the HUNT study). Diabetesologia 2008;51:971–977
10. Hunt SC, Stone S, Xin Y, et al. Association of the FTO gene with BMI. Obesity (Silver Spring) 2008;16:902–904
11. Jess T, Zimmermann E, Krüng SI, et al. Impact on weight dynamics and general growth of the common FTO rs9939609: a longitudinal Danish cohort study. Int J Obes (Lond) 2008;32:1398–1394
12. Marvelle AF, Lange LA, Qin L, Ashlar LS, Mohlke KL. Association of FTO with obesity-related traits in the Cebu Longitudinal Health and Nutrition Survey (CLHNS) Cohort. Diabetes 2008;57:1987–1991
13. Qi L, Kang K, Zhang C, et al. Fat-mass-and-activity-associated (FTO) gene variant is associated with obesity: longitudinal analyses in two cohort studies and functional test. Diabetes 2008;57:3145–3151
14. Tabara Y, Osawa H, Guo H, et al. Prognostic significance of FTO genotype in the development of obesity in Japanese: the J-SHIPP study. Int J Obes (Lond) 2009;33:1243–1248
15. Wangensteen OJ, Egeland T, Akselsen H, Holmen J, Undlien D, Rettersbol L. FTO genotype and Weight Gain in Obese and Normal Weight Adults From a Norwegian Population Based Cohort (the HUNT Study). Exp Clin Endocrinol Diabetes 2010;118:649–652
16. Jacobsson JA, Råsäva U, Akselsen T, Lannfelt L, Schiöth HB, Fredriksson R. The common FTO variant rs9939609 is not associated with BMI in a longitudinal study on a cohort of Swedish men born 1920-1924. BMC Med Genet 2009;10:121
17. Luan J, Kerner B, Zhao JH, et al. A multilevel linear mixed model of the association between candidate genes and weight and body mass index using the Framingham longitudinal family data. BMC Proc 2009;3(Suppl. 7):S115
18. Kaakinen M, Läära E, Pousta A, et al. Life-course analysis of a fat mass and obesity-associated (FTO) gene variant and body mass index in the Northern Finland Birth Cohort 1966 using structural equation modeling. Am J Epidemiol 2010;172:653–665
19. Holmen J, Midttjø PL, Kruger Ø, et al. The Nord-Trendelag Health Study 1995-97 (HUNT2): objectives, contents, methods and participation. Nor Epidemiol 2003;13:19–32
20. Berglund G, Elmstahl S, Janson L, Larsson SA. The Malmö Diet and Cancer Study. Design and feasibility. J Intern Med 1995;233:45–51
21. Nilsson P, Berghund G. Prevention of cardiovascular disease and diabetes: lessons from the Malmö Preventive Project. J Intern Med 2002;250:455–462
22. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am Hum Genet 2007;81:559–575
23. Harris R, Bradbur M, Deeks J, et al. METAN: stata module for fixed and random effects meta-analysis. In Statistical Software Components S19798. Chestnut Hill, MA, Boston College Department of Economics, Revised 19 May 2009
24. Mügge R, Morris AP. GWAMA: software for genome-wise association meta-analysis. BMC Bioinformatics 2010;11:288
25. Sanghera DK, Ortega L, Han S, et al. Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs. PLoS ONE (Pro12Ala), IGF2BP2, TCF7L2 and PTO variants confer a significant risk. BMC Med Genet 2008;9:59
26. Bressler J, Kao WH, Pankow JS, Boerwinkle E. Risk of type 2 diabetes and obesity is differentially associated with variation in FTO in whites and African-Americans in the ARIC study. PLoS ONE 2010;5:e10521
27. Yajnik CS, Janipalli CS, Bhaskar S, et al. PTO gene variants are strongly associated with type 2 diabetes in South Asian Indians. Diabetologia 2009;52:247–252
28. Berulava T, Horsthemke B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur J Hum Genet 2010;18:1054–1056
29. Zabena C, Gonzalez-Sanchez JL, Martinez-Larrad MT, et al. The FTO obesity gene. Genotyping and gene expression analysis in morbidly obese patients. Obes Surg 2009;19:87–95
30. Kirkpatrick CL, Marchetti P, Purrello F, et al. Type 2 diabetes susceptibility gene expression in normal or diabetic sorted human alpha and beta cells: correlations with age or BMI of islet donors. PLoS ONE 2010;5:e11053
31. Poritsanos NJ, Lew PS, Mizzono TM. Relationship between blood glucose levels and hepatic Fto mRNA expression in mice. Biochem Biophys Res Commun 2010;400:713–717
32. Bravard A, Lefai E, Meugnier E, et al. FTO is increased in muscle during type 2 diabetes, and its overexpression in myotubes alters insulin signaling, enhances lipogenesis and ROS production, and induces mitochondrial dysfunction. Diabetes 2011;60:258–268
33. Ragvin A, Moro E, Fredman D, et al. Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and INSR. Proc Natl Acad Sci USA 2010;107:775–780
34. López-Bermijo A, Petry CJ, Díaz M, et al. The association between the FTO gene and fat mass in humans develops by the postnatal age of two weeks. J Clin Endocrinol Metab 2008;93:1501–1505
35. Hakanen M, Raitakari OT, Lehtimäki T, et al. FTO genotype is associated with body mass index after the age of seven years but not with energy intake or leisure-time physical activity. J Clin Endocrinol Metab 2009;94:1281–1287
36. Rzehak P, Scherag A, Grallert H, et al.; GINI and LISA Study Group. Associations between BMI and the FTO gene are age dependent: results from the GINI and LISA birth cohort studies up to age 6 years. Obes Facts 2010;3:173–180

37. Sonestedt E, Roos C, Gullberg B, Ericson U, Wirfält E, Orho-Melander M. Fat and carbohydrate intake modify the association between genetic variation in the FTO genotype and obesity. Am J Clin Nutr 2009;90:1418–1425

38. Vimaleswaran KS, Li S, Zhao JH, et al. Physical activity attenuates the body mass index-increasing influence of genetic variation in the FTO gene. Am J Clin Nutr 2009;90:425–428

39. Andreasen CH, Stender-Petersen KL, Mogensen MS, et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes 2008;57:95–101