REVIEW

Nanoparticles in the clinic: An update

Aaron C. Anselmo1 | Samir Mitragotri2

1Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
2John A Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute of Biologically Inspired Engineering, Cambridge, Massachusetts

Abstract
Nanoparticle drug delivery systems have been used in the clinic since the early 1990’s. Since that time, the field of nanomedicine has evolved alongside growing technological needs to improve the delivery of various therapeutic functions. Over these past decades, newer generations of nanoparticles have emerged that are capable of performing additional delivery functions that can enable treatment via new therapeutic modalities. In the current clinical landscape, many of these new generation nanoparticles have reached clinical trials and have been approved for various indications. In the first issue of Bioengineering & Translational Medicine in 2016, we reviewed the history, current clinical landscape, and clinical challenges of nanoparticle delivery systems. Here, we provide a 3 year update on the current clinical landscape of nanoparticle drug delivery systems and highlight newly approved nanomedicines, provide a status update on previous clinical trials, and highlight new technologies that have recently entered the clinic.

KEYWORDS
clinic, clinical translation, clinical trials, drug delivery, nanomedicine, nanoparticles, translational medicine

1 | INTRODUCTION

The nanomedicine landscape continues to rapidly evolve driven by newly developed delivery strategies, new technologies, new treatment modalities, new drug approvals, and even clinical failures of current drugs. In 2016, we published a review article on the current clinical landscape of therapeutic nanoparticles, which highlighted over 25 Food and Drug Administration (FDA) or European Medicines Agency (EMA) approved nanomedicines and over 45 other nanoparticle technologies that were not FDA/EMA approved but were currently being evaluated in ongoing clinical trials. That article also featured discussions on different nanoparticle types, their applications, their advantages as compared to free drugs, and their potential. We also discussed many of the biological issues (i.e., biodistribution, biological barrier breaching, and treating heterogeneous diseases), technological issues (i.e., scale-up limitations, parameter optimization, and predicting efficacy), and clinical challenges that have limited the translation of nanoparticles. In these past 3 years, since that article was published, two intravenously administered nanoparticles have been FDA and EMA approved, one intratumoral administered nanoparticle received European market approval (CE Mark), over 75 new trials have begun for the previously highlighted nonapproved nanoparticles, and over 15 new nanoparticle technologies have entered clinical trials. In this 3-year update, we highlight these new clinical approvals, trials, and technologies to provide an updated snapshot on the current clinical landscape of nanoparticles in 2019.

2 | NEW APPROVALS

Since our previous article, three nanomedicines have been approved: Patisiran/ONPATTRO, VYXEOS, and NBTXR3/Hensify. VYXEOS is a
combination chemotherapy nanoparticle, developed and marketed by Jazz Pharmaceuticals, that encapsulates a synergistic molar ratio of cytarabine to daunorubicin of 5:1 and received FDA approval for the treatment of acute myeloid leukemia in August of 2017.2,3 VYXEOS are 100 nm bilamellar liposomes where the lipid membrane consists of desaturated phosphatidylcholine:distearylphosphatidylglycerol:cholesterol (72:21:7 ratio)5. In the pivotal efficacy study (NCT01696084), VYXEOS provided a significant (p value = 0.005) improvement in overall survival of 9.6 months as compared to 5.9 months in the free drug control.2,3 Importantly, this trial also showed that VYXEOS provided improved efficacy at a lower cumulative daunorubicin and cytarabine dose as compared to free drug counterparts.6 Since 2016, the number of clinical trials of VYXEOS has increased from 7 to 21 with the most recent trials investigating the use of VYXEOS in additional patient populations (e.g., children; NCT03826992) and leukemias (e.g., lymphoblastic leukemias; NCT03575325). Unlike other approved nanoparticles for cancer treatment, VYXEOS delivers two drugs in a synergistic ratio. Delivery of the synergistic combination of daunorubicin and cytarabine is enabled by the nanoparticle platform since the encapsulated ratio of drugs is able to both interact with target cells upon release. In the contrasting case of free drugs, each drug exhibits distinct pharmacokinetic profiles and are metabolized at different rates; as such, delivery of synergistic combinations of free drugs to target cells must also consider and counteract these biological processes. Product sales for VYXEOS were $100.8 million in 2018.7 As the first clinically approved nanoparticle to deliver a synergistic combination of free drugs, VYXEOS can pave the way for new combination nanoparticle formulations that leverage widely-utilized combination chemotherapy regimens from the clinic.8,9

Patisiran/ONPATTRO is an siRNA-delivering lipid-based nanoparticle developed and marketed by Alnylam, for the silencing of a specific gene responsible for expression of transthyretin, which can cause hereditary transthyretin amyloidosis.10 Patisiran/ONPATTRO lipid nanoparticles consist of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl-4-(dimethylamino) butanoate (DLin-MC3-DMA) plus cholesterol, 1,2-distearyl-sn-glycero-3-phosphocholine and \(\alpha\)-(3-{[1,2-di(myristyloxy)propanoxy]-carbonylamino}propyl)-\(\alpha\)-methoxy polyoxyethylene (PEG\textsubscript{2000}-C-DMG).11 Patisiran/ONPATTRO was approved by the FDA in August of 201812 and was the first clinically approved example of an RNAi therapy-delivering nanoparticle administered intravenously. Importantly, Patisiran/ONPATTRO is also the first FDA approved RNAi therapeutic in general,12 independent of the nanoparticle delivery vehicle. Approval of the first RNAi therapeutic was a major milestone in the biotech industry and considering that the delivery vehicle was a nanoparticle, approval of Patisiran/ONPATTRO was also a major milestone for nanomedicines. In the Phase III efficacy study (NCT01960348), 56% of patients receiving Patisiran/ONPATTRO exhibited improvements in modified Neuropathy Impairment Score-7 as compared to 4% receiving the placebo.10 Moreover, serum transthyretin decreased by over 70% in patients receiving Patisiran/ONPATTRO as compared to less than 20% in patients receiving the placebo.10 Global net revenues for Patisiran/ONPATTRO were $121.1 million in 2018 with over 200 patients in Europe and the United States receiving treatment.13

As the first clinically approved siRNA/RNAi therapeutic, Patisiran/ONPATTRO demonstrates how nanoparticles can be used to enable the delivery, and in this case approval, of highly challenging therapeutics to humans.

NBTXR3/Hensify is a 50 nm crystalline hafnium oxide nanoparticle with negatively charged phosphate coating, developed and marketed by Nanobiotix.14 NBTXR3/Hensify enhances external radiotherapy via a physical mode of action that relies on hafnium's natural radioenhancing properties.14,15 Specifically, the interaction between ionizing radiation and hafnium facilitates a higher energy deposit as compared to ionizing radiation without hafnium interaction; this results in the generation of significantly more electrons and increases radiation-mediated cell death from standard radiation oncology procedures.14,15 NBTXR3/Hensify received CE Mark approval in April of 2019 for the treatment of locally advanced soft tissue sarcoma.16 Since our previous article, the number of clinical trials of NBTXR3/Hensify has increased from 1 to 8. While NBTXR3/Hensify is approved for intratumoral administration, clinical trials had investigated it for intra-arterial administration (NCT01946867). The newest trials are only investigating NBTXR3/Hensify for intratumoral injections, but have expanded their indications to include treatment of prostate cancer (NCT02805894) and lung cancer with combined immunotherapy (NCT03589339). The reasoning for including immunotherapy with NBTXR3/Hensify treatment builds on preclinical data that demonstrated improved efficacy of immunotherapies following NBTXR3/Hensify treatment, stemming from an increased antitumor immune response.17,18 Since the mechanism of action of NBTXR3/Hensify is unique and unlike other approved nanoparticles or therapeutics, NBTXR3/Hensify may represent the next-generation of nanoparticle therapeutics; specifically, nanoparticle therapeutics that can provide therapeutic benefits in a complementary and possibly synergistic way to standard therapeutic modalities. Table 1, which previously listed FDA/EMA approved nanomedicines as of 2016, is now updated to include these recently approved nanoparticles.

3 | UPDATE ON PREVIOUS TRIALS

In our previous article, over 45 different nonapproved nanoparticles (liposomes, polymeric, micelles, albumin-bound nanoparticles, and inorganic nanoparticles) were listed as active in a total of over 80 different clinical trials (mostly for the treatment of various cancers but also radiation exposure, arthritis, pneumonia, amyloidosis, hepatitis, and fibrosis). Of these 80 trials, 28 have since been completed with 12 being terminated early. Of the 45 different nanoparticles, seven possessed targeting functionality, and six offered stimuli-responsive functions (e.g., thermal ablation in response to near-infrared light, thermosensitive liposomes). Three of these nanoparticles, as mentioned above, have received FDA, EMA, or CE Mark approval. Here, we have updated our previous table to reflect the current status of each of these technologies to include new clinical trials and updates on previous trials. Seventy-five new trials exist for the previously highlighted nanoparticles. Of these 75 new trials, 14 are for VYXEOS, 8 are for Patisiran/ONPATTRO, and 6 are for NBTXR3/
Table 1: Updated clinically approved nanoparticle therapies and diagnostics, grouped by their broad indication

Name	Particle type/drug	Approved application/indication	Approval (year)	Investigated application/indication	Updates on number of studies on ClinicalTrials.gov identifier
New approvals since 2016					
VYXEOS	Liposomal formulation of cytarabine:daunorubicin (5:1M ratio)	Acute myeloid leukemia	FDA (2017)	Various leukemias	2016: VYXEOS: 7, 2019: VYXEOS: 21
CPX-351 (Jazz Pharmaceuticals)			EMA (2018)		
ONPATTRO Patisiran ALN-TTR02 (Alnylam Pharmaceuticals)	Lipid nanoparticle RNAi for the knockdown of disease-causing TTR protein	Transthyretin (TTR)-mediated amyloidosis	FDA (2018)	Transthyretin (TTR)-mediated amyloidosis	2016: 3, 2019: 11
NBTXR3 Hensify (Nanobiotic)	Hafnium oxide nanoparticles stimulated with external radiation to enhance tumor cell death via electron production	Locally advanced squamous cell carcinoma	CE Mark (2019)	Locally advanced soft tissue sarcoma	2016: 1 (an additional trial was listed as completed at the time), 2019: 8
Cancer nanoparticle medicines					
Doxil Caelyx (Janssen)	Liposomal doxorubicin (PEGylated)	Ovarian cancer (secondary to platinum based therapies), HIV-associated Kaposi’s sarcoma (secondary to chemotherapy), Multiple myeloma (secondary)	FDA (1995)	Various cancers including: solid malignancies, ovarian, breast, leukemia, lymphomas, prostate, metastatic, or liver	2016: Doxil: 166, CAELYX: 90, 2019: Doxil: 182, CAELYX: 109
DaunoXome (Galen)	Liposomal daunorubicin (non-PEGylated)	HIV-associated Kaposi’s sarcoma (primary)	FDA (1996)	Various leukemias	2016: DaunoXome: 32, 2019: DaunoXome: 15
Myocet (Teva UK)	Liposomal doxorubicin (non-PEGylated)	Treatment of metastatic breast cancer (primary)	EMA (2000)	Various cancers including: breast, lymphoma, or ovarian	2016: Myocet: 32, 2019: Myocet: 35
Abraxane (Celgene)	Albumin-particle bound paclitaxel	Advanced non-small cell lung cancer (surgery or radiation is not an option), Metastatic breast cancer (secondary), Metastatic pancreatic cancer (primary)	FDA (2005)	Various cancers including: solid malignancies, breast, lymphomas, bladder, lung, pancreatic, head and neck, prostate, melanoma, or liver	2016: Abraxane: 295, 2019: Abraxane: 432

(Continues)
Name	Particle type/drug	Approved application/indication	Approval (year)	Investigated application/indication	Updates on number of studies on ClinicalTrials.gov identifier
Marqibo (Spectrum)	Liposomal vincristine (non-PEGylated)	Philadelphia chromosome-negative acute lymphoblastic leukemia (tertiary)	FDA (2012)	Various cancers including: lymphoma, brain, leukemia, or melanoma	2016: Marqibo: 23, 2019: Marqibo: 28
MEPACT (Millennium)	Liposomal mifamurtide (non-PEGylated)	Treatment for osteosarcoma (primary following surgery)	EMA (2009)	Osteosarcomas	2016: MEPACT: 4 (3 active/recruiting), 2019: MEPACT: 9 (3 active/recruiting)
Onivyde MM-398 (Merrimack)	Liposomal irinotecan (PEGylated)	Metastatic pancreatic cancer (secondary)	FDA (2015)	Various cancers including: solid malignancies, breast, pancreatic, sarcomas, or brain	2016: MM-398/Onivyde: 7 (6 active/recruiting), 2019: MM-398/Onivyde: 38 (26 active/recruiting)

Iron-replacement nanoparticle therapies

Name	Particle type/drug	Approved application/indication	Approval (year)	Investigated application/indication	Updates on number of studies on ClinicalTrials.gov identifier
CosmoFer INFeD Ferrisat (Pharmacosmos)	Iron dextran colloid	Iron deficient anemia	FDA (1992) Some of Europe	Iron deficient anemia	2016: INFeD: 6 (1 recruiting), 2019: INFeD: 9
DexFerrum DexIron (American Regent)	Iron dextran colloid	Iron deficient anemia	FDA (1996)	Iron deficient anemia	2016: DexFerrum: 6, 2019: DexFerrum: 9
Ferrlecit (Sanofi)	Iron gluconate colloid	Iron replacement for anemia treatment in patients with chronic kidney disease	FDA (1999)	Iron deficient anemia	2016: Ferrlecit: 13 (2 recruiting), 2019: Ferrlecit: 20 (0 recruiting)
Venofer (American Regent)	Iron sucrose colloid	Iron replacement for anemia treatment in patients with chronic kidney disease	FDA (2000)	Iron deficient anemia Following autologous stem cell transplantation	2016: Venofer: 44, 2019: Venofer: 60
Feraheme Ferumoxytol (AMAG Rienso Takeda)	Iron polyglucose sorbitol carboxymethylether colloid	Iron deficiency in patients with chronic kidney disease	FDA (2009)	Iron deficient anemia Imaging: brain metastases, lymph node metastases, neuroinflammation in epilepsy, head and neck cancer, myocardial infarction, or multiple sclerosis	2016: Ferumoxytol: 57 (6 recruiting/active for anemia treatment; 22 recruiting/active for imaging applications), 2019: Ferumoxytol: 84 (6 recruiting/active for anemia treatment; 22 recruiting/active for imaging applications)

(Continues)
Name	Particle type/drug	Approved application/indication	Approval (year)	Investigated application/indication	Updates on number of studies on ClinicalTrials.gov identifier
Injectafer	Iron carboxymaltose colloid	Iron deficient anemia	FDA (2013)	Iron deficient anemia	2016: Ferinject: 70, Injectafer: 8, 2019: Ferinject: 79, Injectafer: 24
Ferinject (Vifor)					
Monofer (Pharmacosmos)	10% iron isomaltoside 1,000 colloid	Treating iron deficiency and anemia when oral methods do not work or when iron delivery is required immediately	Some of Europe	Iron deficient anemia	2016: Monofer: 22 (3 active/recruiting), 2019: Monofer: 22 (11 active/recruiting)
Diafer (Pharmacosmos)	5% iron isomaltoside 1,000 colloid	Iron deficient anemia	Some of Europe	Iron deficient anemia	2016: Diafer: 1 recruiting, 2019: Diafer: 1 completed
Nano/microparticle imaging agents					
Definity (Lantheus Medical Imaging)	Perflutren lipid microspheres	Ultrasound contrast agent	FDA (2001)	Ultrasound enhancement for: liver or breast or intraocular or pancreatic tumors, pulmonary diseases, heart function, transcranial injuries, strokes, or liver cirrhosis	2016: Definity: 58, 2019: Definity: 87
Feridex I.V. (AMAG)	Iron dextran colloid	Imaging of liver lesions	FDA (1996)	N/A: No current studies	2016: Endorem: 4, Feridex: 2, No current active or recruiting studies, 2019: Endorem: 4, Feridex: 2, No current active or recruiting studies
Endorem			Discontinued (2008)		
Optison (GE Healthcare)	Human serum albumin stabilized perflutren microspheres	Ultrasound contrast agent	FDA (1997)	Ultrasound enhancement for: lymph node, renal cell carcinoma, myocardial infarction, pulmonary transit times, or heart transplant rejections	2016: Optison: 11 currently active or recruiting studies, 2019: Optison: 30 (6 active)
SonoVue (Bracco Imaging)	Phospholipid stabilized microbubble	Ultrasound contrast agent	EMA (2001)	Ultrasound enhancement for: liver neoplasms, prostate or breast or pancreatic cancer, or coronary/pulmonary disease	2016: SonoVue: 43, 2019: SonoVue: 72

(Continues)
Name	Particle type/drug	Approved application/indication	Approval (year)	Investigated application/indication	Updates on number of studies on ClinicalTrials.gov identifier
Resovist (Bayer Schering Pharma) Cliavist	Iron carboxydextran colloid	Imaging of liver lesions	Some of Europe Discontinued (2009)	N/A No current studies	2016: 2 studies mention Resovist: No current active or recruiting studies 2019: 2 studies mention Resovist: No current active or recruiting studies
Ferumoxtran-10 Combidx Sinerem (AMAG)	Iron dextran colloid	Imaging lymph node metastases	Only available in Holland	Imaging lymph node metastases	2016: Ferumoxtran-10:11 (1 active) 2019: Ferumoxtran-10:24 (1 active; 6 recruiting)
Nanoparticle vaccines					
Epaxal (Crucell)	Liposome with hepatitis A virus	Hepatitis A vaccine	Some of Europe (discontinued)	Safety and immunogenicity of hepatitis A vaccine	2016: Epaxal: 6 (1 recruiting) 2019: Epaxal: 6 (0 recruiting)
Inflexal V (Crucell)	Liposome with trivalent-influenza	Influenza vaccine	Some of Europe (discontinued)	Safety and immunogenicity of influenza vaccine	2016: Inflexal V: 14 (all completed) 2019: Inflexal V: 14 (all completed)
Particle anesthetics					
Diprivan	Liposomal propofol	Induction and maintenance of sedation or anesthesia	FDA (1989)	General anesthesia in specific situations: morbidly obese patients, open heart surgery, or spinal surgery	2016: Diprivan: 110 2016: Diprivan: 162
Nanoparticles for fungal treatments					
AmBisome (Gilead Sciences)	Liposomal amphotericin B	Cryptococcal meningitis in HIV-infected patients Aspergillus, Candida and/or Cryptococcus species infections (secondary) Visceral leishmaniasis parasite in immunocompromised patients	FDA (1997) Most of Europe	Preventing or treating invasive fungal infections	2016: AmBisome: 50 2019: AmBisome: 57
Nanoparticles for macular degeneration					
Visudyne (Bausch and Lomb)	Liposomal verteporfin	Treatment of subfoveal choroidal neovascularization from age-related macular degeneration, pathologic, or ocular histoplasmosis	FDA (2000) EMA (2000)	Macular degeneration	2016: Visudyne: 52 2016: Visudyne: 60

Note: Newly approved nanoparticles are separately listed in the first rows. Modified with permission from Reference 1. Abbreviations: EMA, European Medicines Agency; FDA, Food and Drug Administration.
Name (company)	Particle type/drug	Investigated application/indication	ClinicalTrials.gov identifiers (phase)	Updates since 2016
Liposomes (cancer)				
PROMITIL (Lipomedix Pharmaceuticals)	PEGylated liposomal mitomycin-C	Solid tumors	2016: NCT01705002 (Ph I): Completed 2019 additions: NCT03823989 (Ph Ib): Recruiting	1 new trial 1 trial completed
ThermoDox® (Celsion)	Lyso-thermosensitive liposomal doxorubicin	Temperature-triggered doxorubicin release: Breast cancer recurrence at chest wall (microwave hyperthermia) Hepatocellular carcinoma (radiofrequency ablation) Liver tumors (mild hyperthermia) Refractory solid tumors (magnetic resonance high intensity focused ultrasound)	2016: NCT02536183 (Ph I): Recruiting NCT00826085 (Ph I/II): Completed NCT02112656 (Ph III): Completed NCT02181075 (Ph I): Completed 2019 additions: NCT03749850 (Ph I): Not yet recruiting	1 new trial 3 trials completed NCT02181075 (Ph I): Published results highlight how ThermoDox in combination with externally induced mild hyperthermia increase intratumoral concentration of dox by 3.7 times as compared to ThermoDox without hyperthermia induction.
VYXEOS CPX-351 (Celator Pharmaceuticals)	Liposomal formulation of cytarabine: daunorubicin (5:1M ratio)	Leukemias	2016: NCT01804101 (not provided) NCT02286726 (Ph II) NCT02019069 (Ph II) NCT01943682 (Ph I) NCT02269579 (Ph II) NCT02533115 (Ph IV) NCT01696084 (Ph III) 2019 additions: 21 Total studies	Received FDA approval in 2017 and EMA approval in 2018 13 new trials
Oncoprex (Genprex)	FUS1 (TUSC2) encapsulated liposome	Lung cancer	2016: NCT01455389 (Ph I/II): Active, not recruiting	0 new trials
Halaven E7389-LF (Eisai)	Liposomal eribulin mesylate	Solid tumors	2016: NCT01945710 (Ph I): Completed 2019 additions: NCT03207627 (Ph I): Recruiting	1 new trial 1 trial completed
Mitoxantrone hydrochloride liposome (CSPC ZhongQi Pharmaceutical Technology)	Mitoxantrone liposome	Lymphoma and breast cancer	2016: NCT02131688 (Ph I): Unknown NCT02596373 (Ph II): Recruiting NCT02597387 (Ph II): Recruiting NCT02595242 (Ph I): Withdrawn	1 new trial 1 trial withdrawn 1 trial terminated

(Continues)
Name (company)	Particle type/drug	Investigated application/indication	ClinicalTrials.gov identifiers (phase)	Updates since 2016
JVRS-100 (Ph I): Terminated (only one subject enrolled in 1.5 years)	Cationic liposome incorporating plasmid DNA complex for immune system stimulation	Leukemia	NCT02597153 (Ph II): Completed	0 new trials
			NCT03776279 (Ph I): Recruiting	1 trial completed
Lipocurc (SignPath Pharma)	Liposomal curcumin	Solid tumors	NCT00860522 (Ph I): Completed	0 new trials
			NCT02138955 (Ph I/II): Unknown	1 trial changed to unknown status
LiPlaCis (LiPlasome Pharma)	Liposomal formulated cisplatin with specific degradation-controlled drug release via phospholipase A2 (PLA2)	Advanced or refractory tumors	NCT01861496 (Ph I): Recruiting	0 new trials
MM-302 (Merrimack Pharmaceuticals)	HER2-targeted liposomal doxorubicin (PEGylated)	Breast cancer	NCT01304797 (Ph I): Unknown	1 new trial that was withdrawn
			NCT02213744 (Ph II/III): Terminated (felt not to show benefit over control over DMC and confirmed via futility analysis)	1 trial terminated
			NCT02735798 (Ph I): Withdrawn (the study was not started due to the sponsor choosing to not fund the trial)	1 trial changed to unknown status
				Merrimack halted the phase II study of MM-302 (NCT02213744) due to it being unlikely that MM-302 would demonstrate benefits over the control comparison.
			Merrimack published results for NCT01304797 where data suggested that a tracer nanoparticle could be used to select for patients that exhibit enhanced EPR effect as a means to screen for patients who would likely respond favorably to nanomedicines.	
LIPUSU® (Nanjing Luye Sike Pharmaceutical Co., Ltd.)	Paclitaxel liposome	Advanced solid tumors, or gastric, breast cancer	NCT01994031 (Ph IV): Unknown	1 new trial
			NCT02142790 (Ph IV): Unknown	
			NCT02163291 (Ph II): Unknown	
			NCT02142010 (not provided): Unknown	
			NCT02996214 (Ph IV): Not yet recruiting	

Liposomes (gene therapy: Cancer)

Name (company)	Particle type/drug	Investigated application/indication	ClinicalTrials.gov identifiers (phase)	Updates since 2016
TKM-080301 (Arbutus Biopharma)	Lipid particle targeting polo-like kinase 1 (PLK1) for delivery of siRNA	Hepatocellular carcinoma	NCT02191878 (Ph I/II): Completed	0 new trials
				1 trial completed
siRNA-EphA2-DOPC	siRNA liposome for EphA2 knockdown	Solid tumors	NCT01591356 (Ph I): Recruiting	0 new trials

(Continues)
Name (company)	Particle type/drug	Investigated application/indication	ClinicalTrials.gov identifiers (phase)	Updates since 2016
PNT2258 (ProNAi Therapeutics)	Proprietary single-stranded DNAi (PNT100) encapsulated in lipid nanoparticles	Lymphomas	2016: NCT02378038 (Ph II): Terminated	0 new trials
			NCT02226965 (Ph II): Unknown	1 trial completed
			NCT01733238 (Ph II): Completed	1 trial terminated
			2016: NCT02378038 (Ph II): Terminated	1 trial changed to unknown status
			NCT02226965 (Ph II): Unknown	
			NCT01733238 (Ph II): Completed	
BP1001 (Bio-Path Holdings)	Growth factor receptor bound protein-2 (Grb-2) antisense oligonucleotide encapsulated in neutral liposomes	Leukemias	2016: NCT01159028 (Ph I): Active, not recruiting	2 new trials
			2019 additions: NCT02923986 (Ph I): Recruiting	
			NCT02781883 (Ph II): Recruiting	
DCR-MYC (Dicerna Pharmaceuticals)	DsiRNA lipid nanoparticle for NYC oncogene silencing	Solid tumors, multiple myeloma, lymphoma, or hepatocellular carcinoma	2016: NCT02110563 (Ph I): Terminated (sponsor decision)	0 new trials
			NCT02314052 (Ph I/II) terminated (sponsor decision)	2 trials terminated
			DCR-MYC development discontinued.	
Atu027 (Silence Therapeutics GmbH)	AtuRNAi liposomal formulation for PKN3 knockdown in vascular endothelium	Pancreatic cancer	2016: NCT01808638 (Ph I/II): Completed	0 new trials
			2016: NCT01808638 (Ph I/II): Completed	1 trial completed
SGT-53 (SynerGene Therapeutics)	Cationic liposome with anti-transferrin receptor antibody, encapsulating wildtype p53 sequence	Glioblastoma, solid tumors, or pancreatic cancer	2016: NCT02354547 (Ph I): Recruiting	1 new trial
			NCT02354547 (Ph I): Recruiting	1 trial completed
			NCT02340156 (Ph II): Recruiting	
			NCT00470613 (Ph I): Completed	
			2019 additions: NCT03554707 (Ph I): Not yet recruiting	
SGT-94 (SynerGene Therapeutics)	RB94 plasmid DNA in a liposome with anti-transferrin receptor antibody	Solid tumors	2016: NCT01517464 (Ph I): Completed	0 new trials
			2016: NCT01517464 (Ph I): Completed	1 trial completed
MRX34 (Mirna Therapeutics)	Double-stranded RNA mimic of miR-34 encapsulated in liposomes	Liver cancer	2016: NCT01829971 (Ph I): Terminated (five immune related serious adverse events)	1 new trial that was withdrawn
			2019 additions: NCT02862145 (Ph I): Withdrawn (5 immune related serious adverse events in phase 1 study)	1 trial terminated
			2016: NCT01829971 (Ph I): Terminated (five immune related serious adverse events)	
			2019 additions: NCT02862145 (Ph I): Withdrawn (5 immune related serious adverse events in phase 1 study)	
TargomiRs (EnGeneIC)	Anti-EGFR bispecific antibody minicells (bacteria derived nanoparticles) with a miR-16 based microRNA payload	Mesothelioma and non-small cell lung cancer	2016: NCT02369198 (Ph I): Completed	0 new trials
			2016: NCT02369198 (Ph I): Completed	1 trial completed
			NCT02369198 (Ph I): Published study demonstrates that TargomiRs were well-tolerated by refractory malignant pleural mesothelioma patients.	

(Continues)
Name (company)	Particle type/drug	Investigated application/indication	ClinicalTrials.gov identifiers (phase)	Updates since 2016
Liposomes (gene therapy: Other)				
ND-L02-s0201 (Nitto Denko)	siRNA lipid nanoparticle conjugated to vitamin A	Hepatic fibrosis and pulmonary fibrosis	2016: NCT02272459 (Ph I): Completed	3 new trials (2 completed)
			2019 additions: NCT01858935 (Ph I): Completed	1 trial completed
			NCT03241264 (Ph I): Completed	
			NCT03538301 (Ph II): Recruiting	
ARB-001467 TKM-HBV (Arbutus Biopharma)	Lipid particle containing three RNAi therapeutics that target three sites on the HBV genome	Hepatitis B	2016: NCT02631096 (Ph II): Completed	0 new trials
			2019 additions:	1 trial completed
ONPATTRO Patisiran ALN-TTR02 (Alnylam Pharmaceuticals)	Lipid nanoparticle RNAi for the knockdown of disease-causing TTR protein	Transthyretin (TTR)-mediated amyloidosis	2016: NCT02510261 (Ph III)	Received FDA and EMA approval in 2018
			NCT01961921 (Ph II) NCT01960348 (Ph III)	
			2019 additions:	
			11 total studies	
Liposomes (other)				
CAL02 (Combioxin SA)	Sphingomyelin and cholesterol liposomes for toxin neutralization	Pneumonia	2016: NCT02583373 (Ph I): Completed	0 new trials
			2019 additions:	1 trial completed
Nanocort (Enceladus in collaboration with sun pharma global)	Liposomal prednisolone (PEGylated)	Rheumatoid arthritis and hemodialysis fistula maturation	2016: NCT02495662 (Ph II): Terminated (slow inclusion) NCT02534896 (Ph III): Terminated	0 new trials
			2019 additions:	2 trials terminated
RGI-2001 (Regimmune)	Liposomal formulation of α-GalCer	Mitigating graft versus host disease following stem cell transplant	2016: NCT01379209 (Ph I/II): Unknown NCT04014790 (Ph II): Not yet recruiting	1 new trial
			2019 additions:	
Sonazoid	F-butane encapsulated in a lipid shell	Contrast enhanced ultrasound for imaging hepatocellular carcinoma, skeletal muscle perfusion, or for estimating portal hypertension	2016: NCT00822991 (not provided): Recruiting NCT02398266 (Ph II): Unknown NCT02188901 (not provided): Completed NCT02489045 (Ph IV): Recruiting	0 new trials
			2019 additions:	
Polymeric and micelles (cancer)				
AZD2811 (AstraZeneca with BIND Therapeutics)	Aurora B kinase inhibitor in BIND therapeutics polymer particle accurin platform	Advanced solid tumors	2016: NCT02579226 (Ph I): Recruiting NCT03366675 (Ph II): Terminated (early detection of the purpose of the study) NCT03217838 (Ph I): New, recruiting	2 new trials (1 terminated)

(Continues)
Name (company)	Particle type/drug	Investigated application/indication	ClinicalTrials.gov identifiers (phase)	Updates since 2016
BIND-014 (BIND Therapeutics)	PSMA targeted (via ACUPA) docetaxel PEG-PLGA or PLA–PEG particle	Prostate, metastatic, non-small cell lung, cervical, head and neck, or KRAS positive lung cancers	2016: NCT02479178 (Ph II): Terminated NCT02283320 (Ph II): Completed NCT01812746 (Ph II): Completed NCT021792479 (Ph II): Completed NCT01300533 (Ph I): Completed	0 new trials 4 trials completed Pfizer purchased BIND Therapeutics' bankruptcy assets July 2016.
31				
Cynviloq IG-001 (Sorrento)	Paclitaxel polymeric micelle nanoparticle	Breast cancer	2016: NCT02064829 (not provided): Completed	0 new trials 1 trial completed
Genexol-PM (Samyang Biopharmaceuticals)	Paclitaxel polymeric micelle nanoparticle	Head and neck or breast cancer	2016: NCT01689194 (Ph II): Unknown NCT02263495 (Ph II): Completed NCT00912639 (Ph IV): Unknown 2019 additions: NCT02739633 (Ph II): Recruiting NCT03008512 (Ph I): Recruiting	2 new trials 1 trial completed 1 trial changed to unknown status
NC-6004 Nanoplatin (Nanocarrier)	Polyamino acid, PEG, and cisplatin derivative micellar nanoparticle	Advanced solid tumors, lung, biliary, bladder, or pancreatic cancers	2016: NCT02240238 (Ph I/II): Active, not recruiting NCT02043288 (Ph III): Unknown 2019 additions: NCT03771820 (Ph II): Not yet recruiting NCT03109158 (Ph I): Completed NCT02817113 (Ph I): Unknown	3 new trials 1 trial changed to unknown status
NC-4016 DACH-Platin micelle (Nanocarrier)	Polyamino acid, PEG, and oxaliplatin micellar nanoparticle	Advanced solid tumors or lymphomas	2016: NCT01999491 (Ph I): Completed	0 new trials
NK105 (Nippon Kayaku)	Paclitaxel micelle	Breast cancer	2016: NCT01644890 (Ph III): Completed	0 new trials 1 trial completed
Docetaxel-PM DOPNP201 (Samyang Biopharmaceuticals)	Docetaxel micelle	Head and neck cancer and advanced solid tumors	2016: NCT02639858 (Ph II): Recruiting NCT02274610 (Ph I): Completed 2019 additions: NCT03585673 (Ph II): Recruiting	1 new trial 1 trial completed
CriPec (Cristal Therapeutics)	Docetaxel micelles	Solid tumors, ovarian cancer	2016: NCT02442531 (Ph I): Completed 2019 additions: NCT03712423 (Ph I): Recruiting NCT03742713 (Ph II): Recruiting	2 new trials 1 trial completed
CRLX101 (Cerulean)	Cycloexstrin-based nanoparticle-camptothecin conjugate	Ovarian, renal cell, small cell lung, or rectal cancers	2016: NCT02187302 (Ph II): Completed	9 new trials (1 terminated, 1 withdrawn, 5 completed) 2 previous trials completed
TABLE 2 (Continued)

Name (company)	Particle type/drug	Investigated application/indication	ClinicalTrials.gov identifiers (phase)	Updates since 2016
CRLX301 (Cerulan)	Cyclodextrin based nanoparticle-docetaxel conjugate	Dose escalation study in advanced solid tumors	NCT02010567 (Ph I/II): Active, not recruiting	2 previous trials terminated
			NCT02389985 (Ph I): Terminated (company decision)	NCT01803269 (Ph II): Terminated (due to lack of activity and slow accrual)
			NCT01652079 (Ph II): Completed 2019 additions:	
			NCT02769962 (Ph I): Recruiting NCT03531827 (Ph II): Recruiting	
			NCT02648711 (Ph I): Terminated (company decision)	
			NCT01380769 (Ph II): Completed NCT01612546 (Ph II): Completed NCT00333502 (Ph II): Completed NCT01625936 (Ph I): Completed NCT00753740 (Ph II): Withdrawn (poor trial recruitment) NCT00163319 (Ph III): Completed	
			2016: NCT02380677 (Ph I/II): Terminated (company decision)	0 new trials
				1 trial terminated
Polymeric and micelles (other)	RadProtect (Original BioMedicals)	PEG, iron, and amifostine micelle	Dose escalation and safety for acute radiation syndrome	0 new trials
		Transferrin-mediated chelation for amifostine release	NCT02587442 (Ph I): Unknown	
Albumin-bound (cancer)	ABI-009 (Aadi with Celgene)	Albumin bound rapamycin	Bladder cancer, PEComa, or pulmonary arterial hypertension	12 new trials (2 completed)
			NCT0209332 (Ph I/II): Recruiting NCT02587325 (Ph I): Recruiting NCT02494570 (Ph II): Active not recruiting 2019 additions: NCT03747328 (Ph II): Not yet recruiting NCT03657420 (Ph I): Not yet recruiting NCT03670030 (Ph II): Recruiting NCT03646240 (Ph I): Recruiting NCT03190174 (Ph I): Recruiting NCT00635284 (Ph I): Completed NCT03817515: Expanded access status: Available	
			NCT03439462 (Ph II): Recruiting NCT03463265 (Ph II): Recruiting	

(Continues)
TABLE 2 (Continued)

Name (company)	Particle type/drug	Investigated application/indication	ClinicalTrials.gov identifiers (phase)	Updates since 2016
ABI-011 (NantBioScience)	Albumin bound thiocolchicine analog (IDN 5405)	Solid tumors or lymphomas	2016: NCT02582827 (Ph I): Recruiting	0 new trials
Inorganic (cancer)				
AuroLase (Nanospectra Biosciences)	PEG-coated silica-gold nanoshells for near infrared light facilitated thermal ablation	Thermal ablation of solid primary and/or metastatic lung tumors	2016: NCT1679470 (not provided): Terminated 2019 additions: NCT02680535 (not provided): Recruiting NCT00848042 (not provided): Completed	2 new trials (1 completed) 1 trial terminated
NBTXR3 PEP503 (Nanobiotix)	Hafnium oxide nanoparticles stimulated with external radiation to enhance tumor cell death via electron production	Locally advanced squamous cell carcinoma	2016: NCT01946867 (Ph I): Unknown 2019 additions: NCT02771076 (Ph II): Unknown NCT02805894 (Ph III): Recruiting NCT03589393 (Ph III): Not yet recruiting NCT02379845 (Ph III): Active not recruiting NCT02901483 (Ph I): Recruiting NCT02465593 (Ph I): Recruiting	Received CE mark approval in 2019 6 new trials 1 trial changed to unknown status
Cornell Dots	Silica nanoparticles with a NIR fluorophore, PEG coating, and a 124I radiolabeled cRGDY targeting peptide	Imaging of melanoma and malignant brain tumors	2016: NCT01266096 (not provided): Active, not recruiting 2019 additions: NCT03456518 (Ph I): Recruiting NCT02106598 (Ph II): Recruiting	2 new trials
Magnablate	Iron nanoparticles	Thermal ablation for prostate cancer	2016: NCT02033447 (Ph I): Completed	0 new trials 1 trial completed

Note: These trials are grouped by particle type and indication. Modified with permission from Reference 1. Abbreviations: EMA, European Medicines Agency; FDA, Food and Drug Administration.
Name (company)	Particle type/drug	Investigated application/indication	Current ClinicalTrials.gov identifiers (phase)
Liposomes (cancer)			
MM-310 (Merrimack Pharmaceuticals)	Nanoliposomal encapsulated docetaxel and functionalized with antibodies targeted to the EphA2 receptor	Solid tumors	NCT03076372 (Ph I): Recruiting
EGFR(V)-EDV-Dox (EnGeneIC)	Bacterially derived minicell encapsulating doxorubicin	Recurrent glioblastoma	NCT02766699 (Ph I): Recruiting
Alprostadil liposome (CSPC ZhongQi Pharmaceutical Technology)	Alprostadil liposome	Safety and tolerability	NCT03669562 (Ph I): Recruiting
Liposomal Annamycin (Moleculin Biotech)	Liposomal Annamycin	Acute myeloid leukemia	NCT03388749 (Ph II): Recruiting; NCT03415039 (Ph II): Recruiting
FF-10831 (Fujifilm Pharmaceuticals)	Liposomal Gemcitabine	Advanced solid tumors	NCT03440450 (Ph I): Recruiting
Anti-EGFR-IL-dox (Swiss Group for Clinical Cancer Research; University Hospital, Basel, Switzerland)	Doxorubicin-loaded anti-EGFR immunoliposomes	Advanced triple negative EGFR positive breast cancer High grade gliomas	NCT02833766 (Ph II): Recruiting; NCT03603379 (Ph I): Recruiting
TLD-1/Talidox (InnoMedica)	A new formulation of liposomal doxorubicin	Advanced solid tumors	NCT03387917 (Ph I): Recruiting
NC-6300 (NanoCarrier)	Micelle encapsulated epirubicin	Advanced solid tumors or soft tissue sarcoma	NCT03168061 (Ph II): Recruiting
Liposomes (gene therapy: Cancer)			
MRT5201 (Translate Bio)	mRNA encapsulated in PEGylated liposomes	Ornithine transcarbamylase deficiency	NCT03767270 (Ph I): Not yet recruiting
Lipo-MERIT (Biontech RNA Pharmaceuticals)	Four naked ribonucleic acid (RNA)-drug products formulated with liposomes	Cancer vaccine for advanced melanoma	NCT02410733 (Ph I): Recruiting
Liposomes (immunotherapy: Cancer)			
IVAC_W_bre1_uID	Patient-specific liposome (specificity for antigen-expression on a patient’s tumor) complexed RNA	Triple negative breast cancer	NCT02316457 (Ph I): Recruiting
Liposomes (gene therapy: Vaccine)			
mRNA-1944 (Moderna)	Two mRNAs that encode heavy and light chains of anti-Chikungunya antibody formulated in Moderna’s proprietary lipid nanoparticle technology	Safety, tolerability, pharmacokinetics and pharmacodynamics towards the prevention of Chikungunya virus infection	NCT03829384 (Ph I): Recruiting
Micelles (cancer)			
MTL-CEBPA (Mina alpha)	Double stranded RNA formulated into SMARTICLES amphoteric liposomes	Advanced liver cancer	NCT02716012 (Ph I): Recruiting

(Continues)
Of particular note, CRLX101, a cyclodextrin-based nanoparticle-camptothecin conjugate, began nine new trials and ABI-009, albumin bound rapamycin, began 12 new trials. Table 2 summarizes these findings and additionally provides technical and clinical updates, when publicly available, for these clinically investigated nanoparticles.

NEW NANOPARTICLE TRIALS

Since 2016, our search revealed 18 new nanoparticles to have entered clinical trials. Of these 18 nanoparticles, 12 are liposomes and 17 are indicated for cancer (15 being for treatment and 2 for imaging). The lone non-cancer indication is mRNA-1944, which are two mRNAs encoding heavy and light chains of anti-Chikungunya antibody formulated in lipid nanoparticles, toward the prevention of Chikungunya virus infection. Table 3 summarizes these findings. It should be noted that other clinical trials investigating nanoparticles for the delivery of mRNA exist but since they are predominately delivered through intradermal or other routes of administration they will not be covered here. We point the reader to a recent review on mRNA delivery strategies where current clinical trials and delivery vehicles are a primary focus.19

CONCLUSIONS

Nanoparticle drug delivery systems offer many advantages over their free drug counterparts, can fundamentally change how therapeutics are delivered, and also enable the development of novel treatment modalities. This is demonstrated by the recent approvals of Patisiran/ONPATTRO (the first FDA approved RNAi therapeutic), VYXEOS (a nanoparticle capable of delivering synergistic ratios of two drugs), and NBTXR3/Hensify (a radio-enhancing nanoparticle that synergizes with standard of care radiation oncology treatments). On the other hand, nanoparticles also face unique challenges related to their biological, technological, and clinical limitations that must be addressed to achieve consistent clinical impact. These advantages and challenges were discussed in-depth in the 2016 review1 and in many other reviews.20-25 With the increasing numbers of nanoparticle clinical trials, including nanoparticle technologies that were in trials at the time of our previous article (Table 2) and those that have entered the clinic since then (Table 3), the interest and pursuit of successful nanoparticle technologies continues. Taken together with these recent approvals, the field of nanoparticle drug delivery continues to make breakthroughs that improve human health.

ACKNOWLEDGMENTS

S.M. would like to acknowledge the National Institutes of Health for funding (1R01HL143806-01). A.C.A. would like to acknowledge support from the Carolina Center of Cancer Nanotechnology Excellence (C-CCNE) Pilot Grant Program supported by the National Institutes of Health NCI (5US4CA198999-04). The authors would like to acknowledge a recent publication describing the clinical evaluation of AuroLase (Nanospectra Biosciences) nanoparticles.33
REFERENCES

1. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10-29.
2. Krauss AC, Gao X, Li L, et al. FDA approval summary: (Daunorubicin and Cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. J Clin Cancer Res. 2019;25(9):2685-2690.
3. FDA News Release. FDA approves first treatment for certain types of poor-prognosis acute myeloid leukemia. 2017. http://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-certain-types-poor-prognosis-acute-myeloid-leukemia. Accessed August 3, 2019.
4. Feldman EJ, Lancet JE, Kolitz JE, et al. First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J Clin Oncol. 2011;29(8):779-985.
5. VYXEOS™ Prescription Drug Labeling. 2017. http://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209401s000lbl.pdf. Accessed August 3, 2019.
6. Banerjee K, Wang Q, Wang J, Gibbons J. CPX-351 exposure-response based on cumulative dose of cytarabine and daunorubicin in patients with newly diagnosed, treatment-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes. Am Soc Hematol-Gov. 2017;130:1360.
7. Jazz Pharmaceuticals Announces Full Year And Fourth Quarter 2018 Financial Results. 2019. https://investor.jazzpharma.com/news-releases/news-release-details/jazz-pharmaceuticals-announces-full-year-and-fourth-quarter-2018. Accessed August 20, 2019.
8. Devita VT Jr, Young RC, Canellos GP. Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer. 1975;35(1):98-110.
9. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643-8653.
10. Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Eng J Med. 2018;379(1):11-21.
11. Garber K. Alynlam launches era of RNAi drugs. Nat Biotechnol. 2018;36:777.
12. Mullard A. FDA approves landmark RNAi drug. Nat Rev Drug Discov. 2018;17:613.
13. Alynlam Pharmaceuticals Reports Fourth Quarter and Full Year 2018 Financial Results and Highlights Recent Period Activity. 2019. http://investors.alylnam.com/news-releases/news-release-details/alylnam-pharmaceuticals-reports-fourth-quarter-and-full-year-6. Accessed August 3, 2019.
14. Bonvalot S, Rutkowski PL, Thariat J, et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (act.InSarc): a multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019;20(8):1148-1159.
15. Bonvalot S, le Pechoux C, de Baere T, et al. First-in-human study testing a new Radioenhancer using nanoparticles (NBTXR3) activated by radiotherapy in patients with locally advanced soft tissue sarcomas. Clin Cancer Res. 2017;23(4):908-917.
16. Nanobiotix Press Release. Nanobiotix Announces First Ever Radioenhancer to Receive European Market Approval. 2019. http://www.nanobiotix.com/download/news_en/2019/PR_Nanobiotix_marquage_CE_04042019_VF.pdf. Accessed August 3, 2019.
17. Hu Y, Zhang P, Darmon A, et al. Abstract 3225: enhancement of anti-PD1 and anti-CTLA4 efficacy by NBTXR3 nanoparticles exposed to radiotherapy. Cancer Res. 2019;79(13 Suppl):3225-3225.
18. Rodriguez-Ruiz ME, Pilones K, Daviaud C, et al. Abstract 536: NBTXR3 potentiate cancer-cell intrinsic interferon beta response to radiotherapy. Cancer Res. 2019;79(13 Suppl):536-536.
19. Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27:710-728.
20. Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751.
21. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615-627.
22. Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93-102.
23. Li S-D, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496-504.
24. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20-37.
25. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941-951.
26. Lyon PC, Gray MD, Mannaris C, et al. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-Centre, open-label, phase 1 trial. Lancet Oncol. 2018;19(8):1027-1039.
27. Merrimack Press Release. Merrimack Stops the Phase 2 HERMOINE Trial of MM-302 in HER2-Positive Metastatic Breast Cancer Patients. 2016. http://investors.merrimack.com/news-releases/news-release-details/merrimack-stops-phase-2-hermoine-trial-mm-302-her2-positive. Accessed August 3, 2019.
28. Lee H. Shields AF, Siegel BA, et al. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res. 2017;23(15):4190-4202.
29. Dicerna Press Release. Dicerna Prioritizes Resources to Advance GalXC™ Product Candidates. 2016. http://investors dicerna.com/news-releases/news-release-details/dicerna-prioritizes-resources-advance-galxc-product-candidates. Accessed August 3, 2019.
30. van Zandwijk N, Pavlakis N, Kao SC, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18(10):1386-1396.
31. BIND Therapeutics Press Release. BIND Therapeutics Determines Pfizer’s $40 Million Bid Is Highest and Best in 363 Auction for Substantially All of BIND’s Assets. 2016 https://www.pfizer.com/sites/default/files/partnering/recent_partnership/BIND-winning-bid-release-072616-of-BIND’s-Assets_FINAL.pdf. Accessed August 3, 2019.
32. Sanoff HK, Moon DH, Moore DT, et al. Phase I/II trial of nano-camptothecin CRLX101 with capicitabine and radiotherapy as neoadjuvant treatment for locally advanced rectal cancer. Nanomedicine. 2019;18:189-195.
33. Rastinehad AR, Anastos H, Wajswol E, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proceedings of the National Academy of Sciences. 2019. https://doi.org/10.1073/pnas.1906929116

How to cite this article: Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med. 2019;4:e10143. https://doi.org/10.1002/btm2.10143