INTRODUCTION

It is generally recognized that poor solubility of drugs is one of the most frequently encountered difficulties in the field of formulation scheme. Low solubility and subsequent unsatisfactory dissolution rate often compromise oral bioavailability7. There are most therapeutic agents used to produce systemic effects by oral route that are the preferred way of administration owing to its several advantages and high patient compliance compared to other routes. However, poorly water-soluble drugs, when administered orally, have been shown to be slowly and unpredictably absorbed since their bioavailability is largely dependent on the dissolution process in gastrointestinal tract5. The bioavailability of many poorly water-soluble drugs is limited by their dissolution rates, which are in turn controlled by the surface area that they present for dissolution3.

It is one of the major challenges to synthesize any new molecule, which is pharmacologically active for the researchers and pharmaceutical companies4. It may be necessary to increase the dose of a poorly soluble drug to obtain the efficiency required5. Although pharmaceuticals have been able to overcome difficulties with very slightly soluble drugs, those with aqueous solubility of less than 0.1 mg/ml present some unique challenges. These strategies include using solubilization and surfactants, the use of polymorphic/amorphous drug forms, the reduction of drug particle size, the complexation and the formation of solid drug dispersions8.

The Biopharmaceutical Classification System (BCS) The Biopharmaceutical classification system classifies drugs into four categories (Table 1), depending on their solubility and permeability characteristics7.

Parameters affecting the dissolution of Class II Factors important to dissolution can be identified from the following modification of the Noyes–Whitney equation1:

\[\frac{dc}{dt} = \frac{DAk}{Vh} (Cs - Cb) \]

Where
- A - Surface area of the drug
- D - Diffusion coefficient of the drug
- h - Effective boundary layer thickness
- Cs - Saturation concentration of the drug under the local gastrointestinal condition
- V - Volume of the fluid available to dissolve the drug
- Kw/o - Water/oil partition coefficient of drug
water insoluble solid drugs in a suitable nonvolatile solvent, in to dry, nonadherent, free flowing and compressible powder admixtures by blending with selected carrier and coating material.

iii. Liquid medication
The term “Liquid medication” includes liquid lipophilic drugs and drug suspensions or solutions of solid water insoluble drugs in a suitable nonvolatile system.

iv. Liquisolid microsystem
The term “Liquisolid microsystem” refers to capsules prepared by the process described under “Liquisolid technique” combined with the inclusion of an additive, e.g. polyvinylpyrrolidone (PVP), in the liquid medication.

v. Carrier material
The term “Carrier material” refers to a preferably porous material possessing sufficient absorption properties, which contributes in liquid absorption.

vi. Coating material
The term “Coating material” refers to a material possessing fine and highly adsorptive particles, such as various types of which contribute in covering the wet carrier particles and displaying a dry looking powder by adsorbing any excess liquid.

vii. Flowable liquid retention potential (Φ-value)
The term “Flowable liquid retention potential” of a powder material describes its ability to retain a specific amount of liquid while maintaining good flow properties. The Φ-value is defined as the maximum weight of liquid that can be retained per unit weight of the powder material in order to produce an acceptably flowing liquid/powder admixture.

Classification of Liquisolid system
A) Based on liquid medication
 a) Powdered drug solution
 b) Powdered drug suspension
 c) Powdered liquid drugs

B) Based on formulation technique
 a) Liquisolid Compacts
 b) Liquisolid Microsystems

Theoretical aspects of Liquisolid technique
In studies made by Spireas et al., in fundamental concerning flow and compression issues have been addressed with the use of the new formulation mathematical model of Liquisolid systems, which is based on the flowable (Φ-value) and compressible (Ψ-number) liquid retention potentials of the constituent powders. According to the above stated theories, the carrier and coating powder materials can retain only certain amounts of liquid while maintaining acceptable flow and compression properties. Depending on the excipient ratio (R) of the powder substrate given by equation-

\[R = \frac{Q}{q} \]

Excipient ratio (R) is the fraction of the weights of the carrier (Q) and coating (q) materials present in the formulation. An acceptably flowing and compressible Liquisolid system can be prepared only if a maximum liquid load on the carrier material is not exceeded. Such a characteristic amount of liquid is termed the liquid load factor (Lc) and defined as the weight ratio of

Table 1: Physical and physiological factors important to drug dissolution

Parameter	Physical factor	Physiological factor
Surface area	Particle size	Native surfactants
Diffusion coefficient	Molecular size	Viscosity of the
Boundary	-	Luminal contents
Layer thickness	-	Motility patterns,
Solubility	Hydrophilicity	pH, buffer capacity,
Concentration of drug	Crystal structure	bile, food components
Volume of GI contents	-	Permeability
the liquid medication (W) and carrier powder (Q) in the system, i.e.:

\[L_d = \frac{W}{Q} \]

The terms ‘acceptably flowing’ and ‘acceptably compressible’ imply preselected and desirable levels of flow and compaction which must be possessed by the final liquid: powder admixtures. Essentially, the acceptable flow and compaction characteristics of this system are ensured in a way, built in during their manufacturing process via the Φ-value and Ψ-number concepts.

Table 2: Uniformity of weight

Dosage form	Average weight	% Deviation
Uncoated and film coated tablets	80 mg or less	10
> 80 mg and less than 250 mg	7.5	
250 mg or more	5	

For powder substrate consisting of a certain carrier and coating powders mixed at various powder excipient ratios (R), there are specific maximum liquid load factors (L_f) which must be employed in order to produce acceptably flowing Liquisolid systems. Such liquid load factors based upon the Φ-value and Ψ-value can be calculated based upon following equations,

1. Based upon the Φ-value the optimum liquid load factor (Ψ_Lf) can be derived by using,

\[\Psi_{L_d} = \Phi + \psi (1/R) \]

Where,
\[\Phi \] - Flowable retention potential for carrier material. \[\psi \] - Flowable retention potential for coating material. \[R \] - Excipient ratio.

2. Similarly based upon the Ψ-value: optimum liquid load (Ψ_Lf) factor can be derived from,

\[\Psi_{L_d} = \Psi + \psi (1/R) \]

Where,
\[\Psi \] - Compressible retention potential for carrier material. \[\psi \] - Compressible retention potential for coating material. \[R \] - Excipient ratio.

For a liquid medication incorporated into a given powder substrate consisting of certain carrier and coating materials (e.g. microcrystalline cellulose and silica) blended at a specific excipient ratio (R), there exists an optimum liquid load factor, \(L_0 \), required to produce acceptably flowing and, simultaneously, acceptably compressible Liquisolid preparations. The LO value required at a given powder excipient ratio for any system is equal to either its \(\Psi_{L_d} \) or \(\Psi_{L_d} \) value, whichever is less; thus:

\[LO = \Psi_{L_d} \]

When, \(\Psi_{L_d} \) \(\leq \) \(\Psi_{L_d} \)

Or \(\Psi_{L_d} \) \(> \) \(\Psi_{L_d} \)

Optimum liquid load factor of a given excipient ratio system is established, the appropriate quantities of carrier (Q_d) and coating (q_d) powder materials required to convert a given amount of liquid medication (W) into an acceptably flowing and compressible Liquisolid system, may be calculated as follows:

\[Q_d = \frac{W}{L_0} \]

The minimum carrier quantity (Q_min) and maximum coating quantity (q_max) required to produce an acceptably flowing and compressible Liquisolid compacts unit possessing minimum weight (U_min) and containing W of liquid may assessed using following relation,

\[Q_{min} = \frac{W}{L_{max}} \]

\[q_{max} = \frac{Q_{min}}{R_{max}} \]

In terms of producing compacts of realistic unit size, the practical substance of the Liquisolid formulation desired to be prepared may be assessed by predicting unit dose weight \(U_d \) using equation. This can be done as long as weight W of the liquid medication (to be included in a single Liquisolid formulation) and the desired excipient ratio (R) of the formulation have been selected leading to the determination of the required optimum load factor (L_0). The minimum possible unit dose weight (U_min) which can be produced by the carrier: coating system may also be predicted using equation, having selected the weight W of the liquid medication (per unit dose) and having determined the minimum excipient ratio (R_min) of the powder system and its corresponding maximum load factor L_max required to yield a Flowable and compressible Liquisolid system.

\[U_{LO} = W + W (1 + 1/R) (LO) \]

\[U_{min} = W + W (1 + 1/R_{min}) (1 / L_{max}) \]

Powdered solution technology

A more recent technique, entitled “powdered solution technology”, has been applied to prepare water soluble or water insoluble drugs into rapid release or sustained release solid dosage forms. The concept of powdered solutions enables one to convert drug solutions or liquid drugs into acceptably flowing powders by a simple admixture with selected powder excipients.

Method of Preparation of Liquisolid system

The preparation of Liquisolid system is based on different equations.

i. **Selection and preparation of drug solution:** If a solid water-insoluble drug is formulated, the drug is dissolved or suspended in a non-volatile solvent or vehicle. (\(\% \) w/w concentration).

ii. **Selection of Carrier and Coating materials:** The carrier and coating materials to be incorporated in the Liquisolid formulation are selected on the basis of, the characteristic excipient or carrier: coating ratio R_{min} (w/w) and the Flowable liquid retention potential (Φ-value) and compressible liquid retention potential (Ψ-value) are determined by using Liquisolid flowability test (LSF) and Liquisolid compressibility test (LSC) respectively.

iii. **The desired excipient or carrier:** coating ratio R, where \(R > R_{min} \) of the carrier: coating combination to be included in the liquisolid system is selected. If minimum unit dose weight (U_{min}) is desired, the excipient ratio of the formulation must be selected to be equal to R_{min} which is the characteristic minimum excipient ratio of the carrier: coating system used.
iv. Selected amounts (W) of the resulting hot liquid medications were incorporated into calculated quantities of carrier and coating materials.

v. Determination of Liquid load factor: The optimum liquid load factor (LO) required yielding an acceptable flowing and compressible Liquisolid system is assessed by using different equations19.

Mixing process
The mixing procedure was conducted in three stages. During the first stage, the system was blended at an approximate mixing rate of one rpm in order to consistently distribute the liquid medication into the powder. In the second stage, the liquid/powder admixture was equally spread as a uniform layer on the surface of the mortar. In the third stage, the powder was scraped off the mortar surfaces by means of an aluminum spatula, and then blended with a calculated quantity of the disintegrant or binder for another thirty seconds, producing the final liquisolid formulation to be compressed20.

Figure 1: Method of preparation of liquisolid compacts

Mechanism involved in designing of Liquisolid system
Liquisolid hypothesis that, if a liquid is incorporated into a material which has a porous surface and closely matted fibers in its interior, e.g., cellulose, both absorption and adsorption take place. The liquid is initially absorbed in the interior of the particles by its internal structure and after the saturation of process, adsorption of the liquid onto the internal and external surfaces of the porous carrier particle occurs. It represents the generalized “total liquid retention potential” or “holding capacity” of the sorbent. The coating material, which possesses high adsorptive properties and large specific surface area, gives the Liquisolid system the desirable flow characteristics21.

Advantages of Liquisolid technique
1. A great number of slightly and very slightly water soluble and practically water insoluble drugs can be formulated in to Liquisolid system. Production cost of Liquisolid system is lower than that of soft gelatin capsule, as production of Liquisolid system is similar to that of conventional tablets22.

2. Optimized sustained release Liquisolid tablets or capsules of water-insoluble drugs reveal surprisingly constant dissolution rates compared to conventional expensive tablets.

Complexation
Inclusion complexes are formed by the insertion of the nonpolar region of one molecule into the cavity of molecule or group of molecule. Cyclodextrins (CDs) used as complexation agents. The natural and most employed cyclodextrins are crystalline, homogeneous, non-hygroscopic substances. They are biocompatible, non-toxic in a wide range of concentration, relatively inexpensive and produced naturally by enzyme degradation of starch23. The most notable feature of cyclodextrins is their ability to form solid inclusion complexes. Complex formation is a dimensional fit between host cavity and guest molecule. The lipophilic cavity of cyclodextrin molecules provides a microenvironment into which appropriately sized non-polar moieties can enter to form inclusion complexes. No covalent bonds are broken or formed during formation of the inclusion complex24.

Kneading method
It is one of the methods used in formation of complex between drug and β- cyclodextrin25.

Synergism effect
Synergistic effect of nonvolatile solvents like PEG-400 and cyclodextrin may have effect on the solubility of drug. Beta cyclodextrin was used as a type of cyclodextrins, PEG-400 used in an attempt to improve the aqueous solubility of drug. The aqueous solubility of a drug improved significantly by the addition of PEG-400 and β- cyclodextrin. The theoretical solubility was calculated by adding the solubilities in the individual systems. The observed solubility value was higher than the theoretical values. The effect of synergism was significant in 5% to 50% PEG-400 containing beta cyclodextrin26.

Bioavailability
Bioavailability is defined as the rate and extent (amount) of absorption of unchanged drug from its dosage form. It is one of the important parameter to achieve desired concentration of drug in systemic circulation for pharmacological response to be shown. A drug with poor bioavailability is one with poor aqueous solubility, slow dissolution rate in biological fluids, poor stability of dissolved drug at physiological pH, poor permeation through biomembrane, extensive presystemic metabolism. Poorly water soluble drugs often require high doses in order to reach therapeutic plasma concentrations after oral administration. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities27.

Techniques for improving bioavailability
There are various techniques available to improve the solubility of poorly soluble drugs. Some of the methods to improve the solubility includes Physical modifications Chemical Modifications formulation based novel drug delivery system and inhibition of P-glycoprotein efflux. Inhibition of P-glycoprotein efflux by using P-glycoprotein inhibitors, surfactants, dendrimers28. To improve the systemic availability of the drug is to deliver it by alternative routes of administration such as parenteral, nasal, vaginal, rectal or transdermal. However, improvement of the oral bioavailability of the drug is the most realistic
approach, as it is the most preferred and convenient route of administration.29

FORMULATION OF LIQUISOLID SYSTEM

Preparation of complex with beta cyclodextrin

Kneading method

Preparation of complex of drug with beta cyclodextrin done by:

First the cyclodextrin is added to the mortar; further small quantity of 50% ethanol is added while triturating to get slurry like consistency. Then slowly drug is incorporated into the slurry and trituration is further continued for 30 minutes. Slurry is then air dried at 25°C for 1 hrs, pulverized and passed through sieve No. 80 and stored.30

Solubility studies of complex and synergism effect with different ratios

The complex of drug and beta cyclodextrin Complex was taken in different mass ratios, after that complex was taken in liquid vehicle for studying the synergism effect.

Determination of angle of slide for various excipients

Ten gram of powder excipients were weighed accurately and placed at one end of an aluminum metal plate with a polished surface. This end was raised gradually until the plate made an angle with the horizontal at which the powder was about to slide. This angle θ represented the angle of slide. It was taken as a measure for the flow characters of powders. An angle of slide corresponding to 33° corresponded to optimal flow properties.

![Figure 2: Mechanism representing formulation of liquisolid system](image)

PRECOMPRESSION STUDY

Flow properties of the Liquisolid system

Flow properties of the Liquisolid systems were estimated by determining the angle of repose, Carr’s Compressibility index (CCI), and Hausner’s ratio (HR)31. Angle of repose was measured according to the fixed funnel and free standing cone method. A funnel with the end of the stem cut perpendicular to the axis of symmetry is secured with its tip 2 cm height, H, above a graph paper placed on a flat horizontal surface. The powders were carefully poured through the funnel until the apex of the conical pile so formed just reaches the tip of the funnel. The radius of heap was calculated and tangent of the angle of repose was given by:

$$\theta = \tan^{-1}(H/R)$$

Where, θ is the angle of repose, H is height of pile and R is radius of pile.

The Bulk density and Tap densities were determined for the calculation of Hausner’s ratio (HR) and Carr’s Compressibility Index. (CCI).It was determined by following equation,

$$CCI = \frac{TD- BD}{BD} \times 100$$

$$HR = \frac{TD}{BD}$$

Where, TD and BD are tapped density and bulk density respectively.

POST COMPRESSION STUDY

Evaluation of liquisolid compacts

Weight variation test

Twenty tablets from each formulation were selected at random and average weight was determined. Then the individual tablets were weighed and were compared with average weight32,33. Not more than 2 of individual weight deviate by more than percentage (Table 2), while none deviates by more than twice that percentage.

Hardness test

After preparation of matrices, primary micromeritic properties are measured like, Tablet thickness, diameter, weight and hardness. Thickness and diameter is measured by using Vernier Caliper, hardness is determined by using Monsanto hardness tester. Tablet hardness is defined as the force required breaking a tablet in a diametric compression force34. It is also known as tablet crushing strength. The hardness tester used in the study was Monsanto Hardness Tester, which applies the force to the tablet diametrically with the help of an in built spring. The tester was initially adjusted to zero.
Diameter and thickness
Diameter and thickness was performed by using digital vernier caliper. Results for all the batches of liquisolid compacts were reported.

Friability test
Friability test is performed to assess the effect of friction and shock that may often cause tablet to chip, cap, or break. Friabilator was used for the purpose. Compressed tablets should not lose more than 1% of their weight. It is the phenomenon whereby tablet surfaces are damaged and/or show evidence of lamination or breakage when subjected to mechanical shock or attrition. The friability of tablets was determined by using Friabilator. It is expressed in percentage (%). Ten tablets were initially weighed \(W_{\text{initial}} \) and transferred into Friabilator. The Friabilator was operated at 25 rpm for 4 minutes or run up to 100 revolutions. The tablets were weighed again \(W_{\text{final}} \). The percentage friability was then calculated by,

\[
F = \frac{W_{\text{initial}} - W_{\text{final}}}{W_{\text{initial}}} \times 100
\]

In vitro dissolution study
The various compacts were subjected to dissolution test using USP Type II Apparatus.

Differential Scanning Calorimetry (DSC)
Thermograms of the samples were recorded on a DSC. Thermal behavior of the samples was investigated under a scanning rate of 10°C/min, covering a temperature range of 30–300°C.

Powder-X Ray Diffraction (P-XRD)
X-ray diffractograms of liquisolid formulations were performed by using Philips Analytical. The cross section of samples was exposed to X-ray radiation.

FTIR Study
FTIR is an important tool to analyze the purity of the drug. FTIR spectrum shows the fundamental peaks corresponding to the chemical nature of the drug and excipients. FTIR studies were carried out in order to determine any possible interaction among drug and other excipients; it was carried out by FTIR spectrophotometer.

IN VIVO STUDIES

In-vivo studies of solid formulations
Bioavailability studies of prepared solid formulations
The bioavailability studies were performed for the prepared formulation containing herbal inhibitors like piperine. Female rabbit was selected as experimental model having weight 1.5 to 2.5 kg. The blood serum concentration of drug was determined along with AUC, \(C_{\text{max}} \), and \(T_{\text{max}} \). The parameters were selected for the experimental work:
The sample for dose was prepared with gum acacia suspension for required animal dose. Prepared solid formulation of physical mixture was administered as a single oral dose to rabbit through oral feeding needle and 2 ml of water was again given over the dose. The blood sample of rabbit was collected via ear marginal vein puncture, for that 1ml insulin syringe was used. 1 ml blood sample was collected while in each withdrawal.

Drug administration and sampling
The animals were required to be kept on standard supplemented diet and water for one week prior to experiment and maintained on it thereafter. For study, albino rabbits were randomly assigned to four groups on body weight basis. Group 1 was serving as normal control (water), Group 2 was serving as positive control (standard drug), group 3 and 4 was treated with the liquisolid formulation and experiment was repeated for study by keeping washout period between of 8 days. The steps involved in drug administration and sampling as, shown in Figure 3.

Procedure for animal experimental work
The parameters were selected for the experimental work:
The sample for dose was prepared with gum acacia suspension for required animal dose. Prepared solid formulation of physical mixture was administered as a single oral dose to rabbit through oral feeding needle and 2 ml of water was again given over the dose. The blood sample of rabbit was collected via ear marginal vein puncture, for that 1ml insulin syringe was used. 1 ml blood sample was collected while in each withdrawal.

IN VIVO STUDIES

In-vivo studies of solid formulations
Bioavailability studies of prepared solid formulations
The bioavailability studies were performed for the prepared formulation containing herbal inhibitors like piperine. Female rabbit was selected as experimental model having weight 1.5 to 2.5 kg. The blood serum concentration of drug was determined along with AUC, \(C_{\text{max}} \), and \(T_{\text{max}} \). The parameters were selected for the experimental work:
The sample for dose was prepared with gum acacia suspension for required animal dose. Prepared solid formulation of physical mixture was administered as a single oral dose to rabbit through oral feeding needle and 2 ml of water was again given over the dose. The blood sample of rabbit was collected via ear marginal vein puncture, for that 1ml insulin syringe was used. 1 ml blood sample was collected while in each withdrawal.

Blood sample processing
1. The collected blood sample was processed through centrifugation at 5000 rpm for 15 min.
2. Supernatant clear serum sample was separated with the help of micropipette in graduated plastic tube having cap.
3. The volume of serum sample was further diluted up to 1 ml with optimized mobile phase i.e. methanol: water (80:20 v/v).
4. Precipitation of proteins was separated by again centrifugation with 5000 rpm for 15 min. The obtained supernatant was separated with the help of microcentrifuge.
5. The clear supernatant was again filtered with 0.42 micron Whatman syringe filter and finally used the HPLC analysis using DAD detector.

STABILITY STUDY

Stability testing of drug products begins as a part of drug discovery and ends with the demise of the compound or commercial product. FDA and ICH specifies the guidelines for stability testing of new drug products, as a technical requirement for the registration of pharmaceuticals for human use. The formulation were wrapped in aluminum foil, and then placed in amber colored bottle.

CONCLUSION

Liquisolid technique can be optimized for the production of immediate release of drug. Simplicity, low cost and capability of industrial production are some of the advantages of this technique. The complex of drug and beta cyclodextrin was successfully prepared by kneading method. Complex was taken which shows synergetic effect and enhances solubility drug. The results showed that maximum drug can be incorporated with dissolution enhancement compared with conventional formulation. Hence, this liquisolid technique with two way approach of solubility and bioavailability enhancement may found as key aspect in oral formulations. Liquisolid technique can successfully be employed to enhance the solubility and dissolution properties.

REFERENCES

1. Aulton ME. Pharmaceutics: The science of dosage form design, 2nd edition, London: Churchill Livingstone 2002, 113-138.
2. Bajaj H, Bish S, Yadav M, Singh V. Bioavailability enhancement. Int J Pharma Bio Sci 2011; 2(2), 19-23.
3. Briggs AR. Process for preparing powder blends. Patent US 3721725, 1973.
4. Pinnamaneni S, Das NG, Das SK. Formulation approaches for orally administered lipophilic drugs. Pharmazie 2002; 57, 291-300. https://doi.org/10.1002/1520-6017(200008)89:3<967::AID-JPS1>3.0.CO;2-R
5. Mehta MU. AAPS/FDA biopharmaceutics classification system: implementation challenges and extension opportunities. September 2002, Arlington, VA, 25-27. https://doi.org/10.1208/s12248-008-9040-9
6. Anidong GL, Lennerna SH, Shah VP, Crison JR. A theoretical basis for a biopharmaceutical drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995; 12, 413-420. https://doi.org/10.1023/a:1016212804288
7. Blagden N, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Del Rev 2007; 59(30), 617-630. https://doi.org/10.1016/j.addr.2007.05.011
8. Noyes AA, Whitney WR. The rate of dissolution of solid substances in their own solutions. J Am Chem Soc 1987; 19, 930-934. https://doi.org/10.1021/ja02086a003
9. Thakkar H, Patel B. Techniques for oral bioavailability enhancement of drugs. Int J Pharm Sci Rev Res 2010; 4(3) 203.
10. Spireas SS. Liquisolid systems and methods of preparing same. 2000 United State Patent no 6,633,339, July 23, 2002.
11. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev 1998; 2045-2076. https://doi.org/10.1021/cr97002sp
12. Erem M, Bochet B, Murat S, Dominique B, Hincale A. Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins. Int J Pharm 2003; 251,143-153. https://doi.org/10.1016/S0378-5173(02)00593-8
13. Nandi I, Bateson M, Bari M, Joshi H. Synergistic effect of peg-400 and cyclodextrin to enhance solubility of progesterone. AAPS Pharm Sci Tech 2003; 4(1):2003-04 https://doi.org/10.1080/p040101
14. Chauniel JC. Micronization: a method of improving the bioavailability of poorly soluble drugs. Methods Find Exp Clin Pharmacol 1998; 20(3); 211-5, 1998. PMID: 9646283
15. Sing A, Duggal S. Piperine –advances in pharmacology. Int J Pharm Sci Nanotech 2009; 2 (3): 17-22.
16. Steele DF, Tohyn MJ. Staniforth JN. The mechanical properties of compact of microcrystalline cellulose and silicified microcrystalline cellulose. Int J Pharm 2000; 200, 67. https://doi.org/10.1016/S0378-5173(00)00345-4
17. Kohr SH, Bankar GS, Kumar V. Comparative evaluation of powder and mechanical properties of low crystallinity cellulose, microcrystalline cellulose and powdered cellulose. Int J Pharm 2002; 232: 69-80. https://doi.org/10.1016/S0378-5173(01)00909-7
18. Khaleed KA. Formulation and evaluation of hydrochlorothiazide Liquisolid tablets. Saudi Pharm J 1988; 6; 39–49.
19. Kappl SG. Processing factors in development of solid solution formulation of itraconazole for enhancement of drug dissolution and bioavailability. Int J Pharm 2001; 229, 193–203.https://doi.org/10.1016/S0378-5173(01)00867-5
20. Ansel HC, Allen LV, Popovich NG. Pharmaceutical dosage forms and drug delivery systems. Lippincott Williams and Wilkins, Philadelphia, 1997; 609-612.
21. Indrayanto G, Mugihardjo A, Handayani R. Compatibility study between famotidine and some excipients using differential scanning calorimetry. Drug Dev Ind Pharm 1994; 20 (5): 911-920. https://doi.org/10.3109/03696999409038340
22. Patel H, Bhat RS, Balamuralidhara V, Kumar. Comparison of stability testing requirements of ICH with other International Regulatory Agencies. Pharmatimes 2011; 43(9): 21-24.
23. Yadav AV, Shete AS, Dabke AP. Formulation and evaluation of orodispensible liquisolid compacts of aceclofenac. Indian J Pharm Educ 2010; 44; 227-235.
24. Hentschel CM, Alnaief M, Smironova I, Sakmann A, Leopold CS. Enhancement of griseofulvin release from liquisolid compacts. European J Pharm Biopharm 2012; 80:130–135. https://doi.org/10.1016/j.ejpb.2011.08.001
25. Sanka K, Poienti S, Mohd AB, Diwan PV. Improved oral delivery of clonazepam through liquisolid powder compact formulations: In-vitro and ex-vivo characterization. Powder Tech 2014; 256: 336-344. https://doi.org/10.1016/j.powtec.2014.02.026
26. Suliman AS, Anderson RJ, Elkordy AA. Norflexacin as a model hydrophobic drug with unique release from liquisolid formulations prepared with PEG 200 and Symperonic PL-61 non-volatile liquid vehicles. Powder Tech 2014; 257: 156-167. https://doi.org/10.1016/j.powtec.2014.02.048
27. Fahmy RH, Kassem MA. Enhancement of famotidine dissolution rate through liquisolid tablets formulation: in vitro and in vivo evaluation. Eur J Pharm Biopharm 2008, 69, 993-1003.https://doi.org/10.1016/j.ejpb.2008.02.017
28. Khanfar M, Salem MS, Kaddour F, et al. Preparation of sustained-release dosage form of Venlafaxine HCI using
liquisolid technique. Pharm Dev Technol 2014; 19:103–115.
29. El-Hammadi M, Awad N. Investigating the use of liquisolid compacts technique to minimize the influence of pH variations on loratadine release. AAPS Pharm Sci Tech. 2012; 13: 53-58. https://doi.org/10.1016/j.apsb.2012.07.005
30. Javadzadeh MR, Siahi S, Asnaashari, et al. An investigation of physicochemical properties of piroxicam liquisolid compacts. Pharm Dev Technol 2007; 12: 337-343. https://doi.org/10.1080/10837450701247574
31. Khan A, Iqbal Z, Shah Y, Ahmad L, Ismail, Ullah Z, Ullah A. Enhancement of dissolution rate of class II drugs (Hydrochlorothiazide); a comparative study of the two novel approaches; solid dispersion and liquisolid techniques. Saudi Pharm J 2015; 23: 650–657. https://doi.org/10.1016/j.jsps.2015.01.025
32. Kala NP, Shaikh MT, Shastri DH, Shelat PK. A review on liquisolid systems. J Drug Deliv Therap. 2014; 4(3): 25-31. https://doi.org/10.1016/j.jsps.2016.09.007
33. Chella N, Narra N, Rama RT. Preparation and characterization of liquisolid compacts for improved dissolution of telmisartan. J Drug Deliv 2014; 1-10. https://doi.org/10.1155/2014/692793
34. Karmarkar AB, Gonjari ID, Hosmani AH, et al. Dissolution rate enhancement of fenofibrate using liquisolid tablet technique. Lat Am J Pharm 2009; 28: 219-225.
35. Vranikova B, Gajdziok Vetchy D. Determination of flowable liquid retention potential of aluminometasilicate carrier for liquisolid systems preparation Pharm Dev Technol 2015; 20; 839-844. https://doi.org/10.3109/10837450.2014.926921
36. Chella N, Shastri N, Tadikonda RR. Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan. Acta Pharm Sin B 2012; 2: 502-508.https://doi.org/10.1016/j.apsb.2012.07.005
37. Nokhodchi A, Javadzadeh Y, Siahi-Shadbad MR, et al. The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts. J Pharm Sci 2005; 8: 18-25.
38. Javadzadeh Y, Siahi MR, Asnaashari S, Nokhodchi. (2007) A. An investigation of physicochemical properties of piroxicam liquisolid compacts. Pharm Dev Technol 2007; 12: 337-343.https://doi.org/10.1080/10837450701247574
39. Burra S, Yamsani M, Vobalaboina V. The Liquisolid technique: an overview. Brazilian J Pharm Sci 2011; 47(3): 475-485.https://doi.org/10.1590/S1984-82502011000300005