Constraints on neutrino mass in the scenario of vacuum energy interacting with cold dark matter after Planck 2018

Hai-Li Li¹, Jing-Fei Zhang¹ and Xin Zhang¹,²,³,*

¹ College of Sciences & Ministry of Education’s Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110819, China
² Center for High Energy Physics, Peking University, Beijing 100080, China
³ Center for Gravitation and Cosmology, Yangzhou University, Yangzhou 225009, China

E-mail: zhangxin@mail.neu.edu.cn

Received 15 July 2020
Accepted for publication 4 August 2020
Published 12 November 2020

Abstract

In this work, we investigate the constraints on the total neutrino mass in the scenario of vacuum energy interacting with cold dark matter (abbreviated as ΛCDM) by using the latest cosmological observations. We consider four typical interaction forms, i.e. \(Q = \beta H \rho_c \), \(Q = \beta H_0 \rho_c \), and \(Q = \beta H_0 \rho_c \), in the ΛCDM scenario. To avoid the large-scale instability problem in interacting dark energy models, we employ the extended parameterized post-Friedmann method for interacting dark energy to calculate the perturbation evolution of dark energy in these models. The observational data used in this work include the cosmic microwave background (CMB) measurements from the Planck 2018 data release, the baryon acoustic oscillation (BAO) data, the type Ia supernovae (SN) observation (Pantheon compilation), and the 2019 local distance ladder measurement of the Hubble constant \(H_0 \) from the Hubble Space Telescope. We find that, compared with those in the ΛCDM+\(\sum m_\nu \) model, the constrains on \(\sum m_\nu \) are looser in the four ΛCDM+\(\sum m_\nu \) models. When considering the three mass hierarchies of neutrinos, the constraints on \(\sum m_\nu \) are tightest in the degenerate hierarchy case and loosest in the inverted hierarchy case. In addition, in the four ΛCDM+\(\sum m_\nu \) models, the values of coupling parameter \(\beta \) are larger using the CMB+BAO+SN+\(H_0 \) data combination than that using the CMB+BAO+SN data combination, and \(\beta > 0 \) is favored at more than 1σ level when using CMB+BAO+SN+\(H_0 \) data combination. The issue of the \(H_0 \) tension is also discussed in this paper. We find that, compared with the ΛCDM+\(\sum m_\nu \) model, the \(H_0 \) tension can be alleviated in the ΛCDM+\(\sum m_\nu \) model to some extent.

Keywords: total neutrino mass, neutrino mass hierarchies, interacting dark energy, Hubble tension, cosmological observations

(Some figures may appear in colour only in the online journal)

1. Introduction

The phenomenon of neutrino oscillation indicates that neutrinos have nonzero masses and there are mass splittings between different neutrino species [1, 2]. The neutrino oscillation experiments can provide the information about the squared mass differences between the neutrino mass eigenstates. Specifically, the solar and reactor experiments give the result of \(\Delta m_{21}^2 \approx 7.5 \times 10^{-5} \) eV², and the atmospheric and accelerator beam experiments give the result of \(|\Delta m_{31}^2| \approx 2.5 \times 10^{-3} \) eV² [2, 3]. Therefore, we can get two possible mass hierarchies of the neutrino mass spectrum, i.e. the normal hierarchy (NH) with \(m_1 < m_2 \ll m_3 \) and the inverted hierarchy (IH) with \(m_3 \ll m_1 < m_2 \), where \(m_1, m_2, m_3 \),
and m_1 denote the masses of neutrinos for the three mass eigenstates. However, the absolute masses of neutrinos are still unknown.

In principle, laboratory experiments of particle physics can directly measure the absolute masses of neutrinos, but these experiments have always been facing great challenges [4–12]. Compared with these particle physics experiments, cosmological observations are more prone to be capable of measuring the absolute masses of neutrinos [13–15], since massive neutrinos can leave rich signatures on the cosmic microwave background (CMB) anisotropies and the large-scale structure (LSS) formation at different epochs of the cosmic evolution [16]. Thus, we can extract useful information on neutrinos from these available cosmological observations.

Recently, the issue of cosmological constraints on the total neutrino mass with the consideration of mass hierarchy using the latest observational data has been discussed in [17]. In [17], the authors discussed the constraints on neutrino mass in several typical dark energy (DE) models, e.g. the Λ cold dark matter (ΛCDM), wCDM, Chevallier–Polarski–Linder (CPL), and holographic dark HDE (HDE) models. It was found that, compared to the ΛCDM+$\sum m_i$ model, larger neutrino masses are favored in the wCDM+$\sum m_i$ and CPL+$\sum m_i$ models, and the most stringent upper limits are obtained in the HDE+$\sum m_i$ model. Moreover, in [17], it was also confirmed that the NH case is more favored by current cosmological observations than the IH case. For more recent studies on constraining the total neutrino mass by using cosmological observations, see e.g. [18–69].

Furthermore, the impacts of interaction between DE and cold dark matter (CDM) on constraining neutrino mass have also been considered. For example, in the scenario of vacuum energy interacting with cold dark matter, which is abbreviated as the IΛCDM scenario in this work, the constraint on $\sum m_i$ becomes $\sum m_i < 0.10$ eV (2σ) for $Q = \beta H_\rho c$, $\sum m_i < 0.20$ eV (2σ) for $Q = \beta H_\rho$ [70], and $\sum m_i < 0.214$ eV (2σ) for $Q = \beta H_\rho$ [71]. When the mass hierarchies of neutrinos are considered in the IΛCDM model [72, 73], the results showed that the degenerate hierarchy (DH) case gives the smallest upper limit of the neutrino mass and the NH case is more favored over the IH case.

In the present work, we will revisit the constraints on the total neutrino mass in the IΛCDM scenario after the Planck 2018 data release. We will consider more forms of interaction term Q, and also adopt the mass hierarchies of neutrinos in this work.

In the so-called ‘interacting dark energy’ (IDE) scenario, some direct, nongravitational coupling between DE and dark matter is assumed and its cosmological consequences have been widely studied [74–114]. Theoretically speaking, the consideration of such an interaction is helpful in solving the cosmic coincidence problem [76–87, 89], but actually what is more important is to detect such an interaction using the cosmological observations. The impacts of interactions between DE and dark matter on the CMB [89, 106] and LSS [75, 83, 87, 90, 101, 106] have been studied in-depth.

In this paper, we only consider the simplest class of models in the IDE scenario, i.e. the IΛCDM models, in which the vacuum energy with $w = −1$ serves as DE. In this scenario, the energy conservation equations of the vacuum energy and the cold dark matter satisfy

$$\rho_{de} = Q, \quad (1)$$
$$\dot{\rho}_c = -3H\rho_c - Q, \quad (2)$$

where ρ_{de} and ρ_c represent the densities of DE (namely, vacuum energy) and cold dark matter, respectively, H is the Hubble parameter, the dot represents the derivative with respect to the cosmic time t, and Q is the energy transfer rate. Usually, the form of Q is assumed to be proportional to the density of DE or dark matter, i.e. $Q = \beta H\rho_{de}$ or $Q = \beta H\rho_c$, where the appearance of H is only for mathematical convenience. In the research area of IDE, another perspective is to consider $Q = \beta H_0\rho_{de}$ or $Q = \beta H_0\rho_c$ [86], where the appearance of H_0 is only for a dimensional consideration. From equations (1) and (2), it is known that $\beta > 0$ means cold dark matter decaying into DE, $\beta < 0$ means DE decaying into cold dark matter, and $\beta = 0$ indicates no interaction between vacuum energy and cold dark matter.

Different phenomenological models of IΛCDM can be built by assuming different forms of Q. In this work, we will collect the popular forms of Q in the current literature and then focus on the impacts of different forms of Q on constraining the total neutrino mass after the Planck 2018 data release. We will consider the four typical forms of Q: $Q = \beta H_0\rho_{de}$, $Q = \beta H_0\rho_c$, $Q = \beta H_0\rho_{de}$ and $Q = \beta H_0\rho_c$. The mass hierarchies of neutrinos are also considered in this work.

In addition, we also wish to see whether some hint of the existence of nonzero interaction can be found in these IΛCDM models by using the latest observational data.

This paper is organized as follows. In section 2, we introduce the cosmological observations used in this work and briefly describe the analysis method. In section 3, we report the constraint results and then make some relevant discussions. The issue of H_0 tension will also be discussed in this section. Conclusion is given in section 4.

2. Method and data

In the IΛCDM model, there are seven basic cosmological parameters $(\omega_b, \omega_c, 100\theta_{MC}, \tau, n_s, \ln(10^9\Omega_\Lambda), \beta)$, where ω_b is the present density of baryons, ω_c is the present density of cold dark matter, θ_{MC} is the ratio between the sound horizon and the angular diameter distance at the decoupling epoch, τ is the Thomson scattering optical depth to reionization, n_s is the scalar spectral index, A_s is the amplitude of primordial scalar perturbation power spectrum, and β is the dimensionless coupling constant describing the coupling strength between vacuum energy and dark matter.

For the IΛCDM model there is a problem of early-time perturbation instability, because in the IDE models, the cosmological perturbations of DE will be divergent in a part of the parameter space, which ruins the IDE cosmology in the perturbation level. The origin of the difficulty is that we know little about the nature of DE, so we do not know how to treat the spread of sounds in DE fluid which has a negative equation of state. To overcome the problem of perturbation
instability, in 2014, Yun-He Li, Jing-Fei Zhang, and Xin
Zhang established an effective theoretical framework for IDE
cosmology based on the extended version of the parameterized
post-Friedmann (PPF) approach, which can safely calculate the cosmological perturbations in the whole para-
meter space of an IDE model. About the extended PPF
method, see [115–119], and the original PPF method is introduced in [120, 121]. In this work, we will employ
the extended PPF method [115–119] to calculate the cosmological perturbations in the ΛCDM model.

We use the modified version of the publicly available
Markov-chain Monte Carlo package CosmoMC [122] to constrain the neutrino mass and other cosmological parameters. We monitor the convergence of the generated MCMC chains by using the Gelman-Rubin parameter R [123], requiring R < 1 < 0.1 for our MCMC chains to be consid-
ered as converged. When considering the neutrino mass splitting, we should note the following rules. For the NH case, the neutrino mass spectrum is

\[
(m_1, m_2, m_3) = (m_1, \sqrt{m_1^2 + \Delta m_{12}^2}, \sqrt{m_1^2 + |\Delta m_{13}^2|}),
\]

where \(m_1\) is a free parameter; for the IH case, the neutrino mass spectrum is

\[
(m_1, m_2, m_3) = (\sqrt{m_1^2 + \Delta m_{12}^2}, \sqrt{m_1^2 + \Delta m_{13}^2} + \Delta m_{21}^2, m_3),
\]

where \(m_1\) is a free parameter; for comparison, the DH case is also considered, in which the neutrino mass spectrum is

\[
m_1 = m_2 = m_3 = m,
\]

where \(m\) is a free parameter. Since we have two values of squared mass differences, \(\Delta m_{12}^2 = 7.5 \times 10^{-5} \text{ eV}^2\) and \(\Delta m_{13}^2 = 2.5 \times 10^{-3} \text{ eV}^2\) [2, 3], the lower limits of NH and

IH can be derived by setting the smallest mass be zero. Thus, the input lower bounds of \(\sum m_\nu\) are 0.06 eV for the NH case, 0.10 eV for the IH case, and 0 eV for the DH case, respectively.

The current observational data sets we used in this paper include CMB, BAO, SN and \(H_0\). For the CMB data, we use the Planck TT, TE, EE spectra at \(\ell > 30\), the low-\(\ell\) temperature Commander likelihood, and the low-\(\ell\) SimAll EE likelihood, from the Planck 2018 data release [124]. For the BAO data, we consider the measurements from 6dFGS (\(\Delta eff = 0.106\)) [125], SDSS-MGS (\(\Delta eff = 0.15\)) [126], and BOSS DR12 (\(\Delta eff = 0.38, 0.51\), and 0.61) [127]. For the SN data, we employ the latest Pantheon sample, which is comprised of 1048 data points from the Pantheon compilation [128]. For the \(H_0\) data, we use the 2019 local distance ladder measurement of the Hubble constant \(H_0 = 74.03 \pm 1.42 \text{ km s}^{-1} \text{ Mpc}^{-1}\) from the Hubble Space Telescope [129]. In our analysis, we will use two data com-
binations, i.e. CMB+BAO+SN and CMB+BAO+SN+\(H_0\) to
cr

Data	CMB+BAO+SN	CMB+BAO+SN+\(H_0\)
Model	\(\Lambda \text{CDM} + \sum m_\nu\)	\(\Lambda \text{CDM} + \sum m_\nu\)
\(\Omega_m\)	0.3126 \pm 0.0063	0.3105 \pm 0.0060
\(H_0\)	67.48 \pm 0.47	67.26 \pm 0.45
\(\sigma_8\)	0.801^{+0.011}_{-0.008}	0.793^{+0.010}_{-0.008}
\(\sum m_\nu\)	<0.156	<0.185
\(\Delta CDM + \sum m_\nu\)	0.3097 \pm 0.0063	0.3097 \pm 0.0063
\(\Lambda \text{CDM} + \sum m_\nu\)	0.3044 \pm 0.0056	0.3069 \pm 0.0056
\(\Lambda \text{CDM} + \sum m_\nu\)	0.3044 \pm 0.0056	0.3069 \pm 0.0056
\(\Lambda \text{CDM} + \sum m_\nu\)	0.3044 \pm 0.0056	0.3069 \pm 0.0056
\(\Lambda \text{CDM} + \sum m_\nu\)	0.3044 \pm 0.0056	0.3069 \pm 0.0056
\(\Lambda \text{CDM} + \sum m_\nu\)	0.3044 \pm 0.0056	0.3069 \pm 0.0056
\(\Lambda \text{CDM} + \sum m_\nu\)	0.3044 \pm 0.0056	0.3069 \pm 0.0056
\(\Lambda \text{CDM} + \sum m_\nu\)	0.3044 \pm 0.0056	0.3069 \pm 0.0056
\(\Lambda \text{CDM} + \sum m_\nu\)	0.3044 \pm 0.0056	0.3069 \pm 0.0056

3. Results and discussion

In this section, we report the constraint results of cosmological parameters for these \(\Lambda \text{CDM} + \sum m_\nu\) models. The fitting results are listed in table 1 for the \(\Lambda \text{CDM} + \sum m_\nu\) model and tables 2–5 and figures 1–4 for the four \(\Lambda \text{CDM} + \sum m_\nu\) models. For convenience, the \(\Lambda \text{CDM}\) models with the interaction terms \(Q = \beta H_0 \rho_c\), \(Q = \beta H_0\), and \(Q = \beta H_0\) are denoted as ’\(\Lambda \text{CDM1}\)’, ’\(\Lambda \text{CDM2}\)’, ’\(\Lambda \text{CDM3}\)’, and ’\(\Lambda \text{CDM4}\)’, respectively. In these tables, we show the best fit values with \(\pm 1\sigma\) errors of the cosmological parameters, but for the total neutrino mass \(\sum m_\nu\), which cannot be well constrained, the 2\(\sigma\) upper limits are given.
Table 3. Fitting results for the ΛCDM+$\sum m_\nu$ ($Q = \beta H_0$) model by using the CMB+BAO+SN and CMB+BAO+SN+H_0 data combinations, respectively. Here, H_0 and $\sum m_\nu$ are in units of km s$^{-1}$ Mpc$^{-1}$ and eV, respectively.

Data	CMB+BAO+SN	CMB+BAO+SN+H_0								
Model	Ω_m	H_0	β	σ_8	$\sum m_\nu$	Ω_m	H_0	β	σ_8	$\sum m_\nu$
ΛCDM+$\sum m_\nu$	0.3085 ± 0.0080	67.83 ± 0.64	0.0014 ± 0.0012	0.800 ± 0.012	<0.190	0.2953 ± 0.0071	68.92 ± 0.60	0.0024 ± 0.0012	0.815 ± 0.013	<0.170
ΩCDM+$\sum m_\nu$	0.3092 ± 0.0081	67.74 ± 0.65	0.0014 ± 0.0012	0.800 ± 0.012	<0.223	0.2960 ± 0.0071	68.83 ± 0.60	0.0028 ± 0.0012	0.809 ± 0.013	<0.202
ΩCDM+$\sum m_\nu$	0.3077 ± 0.0081	67.92 ± 0.65	0.0005 ± 0.0013	0.814 ± 0.014	<0.149	0.2960 ± 0.0071	69.01 ± 0.60	0.0019 ± 0.0012	0.824 ± 0.014	<0.126

Table 4. Fitting results for the ΛCDM3+$\sum m_\nu$ ($Q = \beta H_0$) model by using the CMB+BAO+SN and CMB+BAO+SN+H_0 data combinations, respectively. Here, H_0 and $\sum m_\nu$ are in units of km s$^{-1}$ Mpc$^{-1}$ and eV, respectively.

Data	CMB+BAO+SN	CMB+BAO+SN+H_0								
Model	Ω_m	H_0	β	σ_8	$\sum m_\nu$	Ω_m	H_0	β	σ_8	$\sum m_\nu$
ΛCDM+$\sum m_\nu$	0.287 ± 0.036	68.03 ± 0.81	0.14 ± 0.16	0.886 ± 0.099	<0.179	0.223 ± 0.032	69.57 ± 0.72	0.37 ± 0.13	1.072 ± 0.095	<0.166
ΩCDM+$\sum m_\nu$	0.276 ± 0.035	67.96 ± 0.80	0.18 ± 0.16	0.899 ± 0.072	<0.208	0.217 ± 0.033	69.50 ± 0.74	0.40 ± 0.14	1.071 ± 0.10	<0.198
ΩCDM+$\sum m_\nu$	0.291 ± 0.036	68.10 ± 0.83	0.06 ± 0.17	0.868 ± 0.068	<0.140	0.233 ± 0.032	69.60 ± 0.74	0.31 ± 0.14	1.036 ± 0.091	<0.128

Table 5. Fitting results for the ΛCDM4+$\sum m_\nu$ ($Q = \beta H_0$) model by using the CMB+BAO+SN and CMB+BAO+SN+H_0 data combinations, respectively. Here, H_0 and $\sum m_\nu$ are in units of km s$^{-1}$ Mpc$^{-1}$ and eV, respectively.

Data	CMB+BAO+SN	CMB+BAO+SN+H_0								
Model	Ω_m	H_0	β	σ_8	$\sum m_\nu$	Ω_m	H_0	β	σ_8	$\sum m_\nu$
ΛCDM+$\sum m_\nu$	0.299 ± 0.016	68.05 ± 0.80	0.043 ± 0.047	0.814 ± 0.019	<0.202	0.272 ± 0.013	69.58 ± 0.72	0.111 ± 0.043	0.840 ± 0.019	<0.202
ΩCDM+$\sum m_\nu$	0.297 ± 0.016	68.07 ± 0.82	0.058 ± 0.048	0.812 ± 0.019	<0.235	0.269 ± 0.013	69.58 ± 0.73	0.128 ± 0.043	0.837 ± 0.019	<0.239
ΩCDM+$\sum m_\nu$	0.303 ± 0.016	68.07 ± 0.81	0.024 ± 0.047	0.820 ± 0.020	<0.156	0.275 ± 0.013	69.58 ± 0.72	0.092 ± 0.044	0.845 ± 0.019	<0.162

Figure 1. Observational constraints (68.3% and 95.4% confidence level) on the ΛCDM1+$\sum m_\nu$ ($Q = \beta H_0$) model by using the CMB+BAO+SN (left) and CMB+BAO+SN+H_0 (right) data combinations, respectively.
3.1. Neutrino mass

Firstly, we use the CMB + BAO data combination to constrain these models. In the ΛCDM + $\sum m_\nu$ model, we obtain $\sum m_\nu < 0.156$ eV for the NH case, $\sum m_\nu < 0.185$ eV for the IH case, and $\sum m_\nu < 0.123$ eV for the DH case, as shown table 1. In the ΛCDM1 + $\sum m_\nu$ model, the constraint results are $\sum m_\nu < 0.187$ eV for the NH case, $\sum m_\nu < 0.218$ eV for the IH case, and $\sum m_\nu < 0.151$ eV for the DH case (see table 2); in the ΛCDM2 + $\sum m_\nu$ model, the results are $\sum m_\nu < 0.190$ eV for the NH case, $\sum m_\nu < 0.223$ eV for the IH case, and $\sum m_\nu < 0.149$ eV for the DH case (see table 3); in the ΛCDM3 + $\sum m_\nu$ model, we get $\sum m_\nu < 0.179$ eV for the NH case, $\sum m_\nu < 0.208$ eV for the
IH case, and $\sum m_\nu < 0.140 \text{ eV}$ for the DH case (see table 4); in the ΛCDM+$\sum m_\nu$ model, the constraint results become $\sum m_\nu < 0.202 \text{ eV}$ for the NH case, $\sum m_\nu < 0.235 \text{ eV}$ for the IH case, and $\sum m_\nu < 0.156 \text{ eV}$ for the DH case (see table 5). We find that, the constraint results of $\sum m_\nu$ are looser in the four ΛCDM+$\sum m_\nu$ models than those in the ΛCDM+$\sum m_\nu$ model. When considering the three mass hierarchies, we find that the constraint results of $\sum m_\nu$ are tighter in the DH case and looser in the IH case (see the left panels in figures 1–4); actually this is mainly because in the NH and IH cases there are lower limits for the total neutrino mass.

Then, we consider the data combination involving the latest local measurement of the Hubble constant H_0 to constrain these models. By using the CMB+BAO+SN+H$_0$ data combination, we find that the constraint results of $\sum m_\nu$ are looser in the four ΛCDM+$\sum m_\nu$ models than those in the ΛCDM+$\sum m_\nu$ model, and when considering the three mass hierarchies, the constraint results of $\sum m_\nu$ are tightest in the DH case and looser in the IH case. These conclusions are consistent with the case using the CMB+BAO+SN data combination. Additionally, we also find that the constraints on $\sum m_\nu$ become slightly tighter for using CMB+BAO+SN+H$_0$ than CMB+BAO+SN.

3.2. Coupling parameter

In this subsection, we discuss the fitting results of the coupling parameter β in these four ΛCDM+$\sum m_\nu$ models by using the CMB+BAO+SN and CMB+BAO+SN+H$_0$ data combinations, respectively.

First, we constrain the ΛCDM1+$\sum m_\nu$ model (see table 2) using the CMB+BAO+SN data combination, and we obtain $\beta = 0.10^{+0.10}_{-0.11}$ for the NH case, $\beta = 0.13 \pm 0.11$ for the IH case, and $\beta = 0.07^{+0.10}_{-0.11}$ for the DH case. It is shown that a positive value of β is favored and $\beta > 0$ is at the 0.91σ, 1.18σ, and 0.64σ levels for the three mass hierarchy cases, respectively. Furthermore, we constrain this model by using the CMB+BAO+SN+H$_0$ data combination, and we obtain $\beta = 0.257^{+0.089}_{-0.097}$ for the NH case, $\beta = 0.286 \pm 0.098$ for the IH case, and $\beta = 0.215 \pm 0.099$ for the DH case. Now, $\beta > 0$ is obtained at the 2.65σ, 2.92σ, and 2.17σ levels, respectively. This indicates that cold dark matter decaying into DE is favored when using the CMB+BAO+SN+H$_0$ data combination.

For the ΛCDM2+$\sum m_\nu$ model (see table 3), we obtain $\beta = 0.0011^{+0.0011}_{-0.0013}$ for the NH case, $\beta = 0.0014^{+0.0013}_{-0.0011}$ for the IH case, and $\beta = 0.0005 \pm 0.0013$ for the DH case, by using the CMB+BAO+SN data combination. Thus, $\beta > 0$ is favored at the 0.92σ, 1.08σ, and 0.38σ levels, respectively. When using the CMB+BAO+SN+H$_0$ data combination, we obtain $\beta = 0.0024 \pm 0.0012$ for the NH case, $\beta = 0.0028 \pm 0.0012$ for the IH case, and $\beta = 0.0019 \pm 0.0012$ for the DH case, which indicates that a positive value of β can be detected at the 2.00σ, 2.33σ, and 1.58σ levels, respectively.

As for the ΛCDM3+$\sum m_\nu$ model (see table 4), we obtain $\beta = 0.14 \pm 0.16$ for the NH case, $\beta = 0.18 \pm 0.16$ for the IH case, and $\beta = 0.08^{+0.17}_{-0.15}$ for the DH case, by using the CMB+BAO+SN data combination. Therefore, the positive values of β are favored and $\beta > 0$ is preferred at the 0.88σ, 1.13σ, and 0.50σ levels, respectively. When using the CMB+BAO+SN+H$_0$ data combination, we obtain $\beta = 0.37^{+0.11}_{-0.14}$ for the NH case, $\beta = 0.40 \pm 0.14$ for the IH case, and $\beta = 0.31 \pm 0.14$ for the DH case, respectively. And $\beta > 0$ is detected at the 2.64σ, 2.90σ, and 2.21σ levels, respectively, which indicates cold dark matter decaying into DE.

Finally, we show the constraint results of ΛCDM4+$\sum m_\nu$ model (see table 5). We obtain $\beta = 0.043 \pm 0.047$ for the NH case, $\beta = 0.058^{+0.047}_{-0.048}$ for the IH case, and $\beta = 0.024^{+0.047}_{-0.048}$ for the DH case, by using the CMB+BAO+SN+H$_0$ data combination. So, a positive value of β is favored and $\beta > 0$ is at the 0.91σ, 1.21σ, and 0.50σ levels, respectively. When using the CMB+BAO+SN+H$_0$ data combination, we obtain $\beta = 0.111 \pm 0.043$ for the NH case, $\beta = 0.128 \pm 0.043$ for the IH case, and $\beta = 0.092 \pm 0.044$ for the DH case. Now, $\beta > 0$ is preferred at the 2.58σ, 2.98σ, and 2.09σ levels, respectively. The conclusion is the same as the above three cases, i.e. cold dark matter decaying into DE is supported by the CMB+BAO+SN+H$_0$ data combination.

In summary, for all the ΛCDM+$\sum m_\nu$ models considered in this paper, the values of β are greater by using the CMB+BAO+SN+H$_0$ data combination than using CMB+BAO+SN data combination. We can also intuitively obtain this conclusion by comparing the left and right panels of figures 1–4. Additionally, when using CMB+BAO+SN+H$_0$ data combination, $\beta > 0$ is favored at more than 1σ level in all the ΛCDM+$\sum m_\nu$ models, which indicates that cold dark matter decaying into DE is supported in these models.

3.3. The H_0 tension

In this subsection, we discuss the issue of H_0 tension between the Planck observation of the CMB power spectra and the local measurement based on the method of distance ladder. In the ΛCDM scenario, $\beta > 0$ (in the convention defined in this work) leads to the vacuum energy behaving as an effective phantom, and thus a larger cosmic expansion rate compared with ΛCDM can be obtained. We therefore can use this scenario to discuss the issue of relaxing the Hubble tension. The detailed fitting results are given in tables 1–5 and figures 5–7.

In table 1, we show the constraint results of the ΛCDM+$\sum m_\nu$ model by using the CMB+BAO+SN data combination. We obtain $H_0 = 67.48 \pm 0.47 \text{ km s}^{-1} \text{ Mpc}^{-1}$ for the NH case, $H_0 = 67.26 \pm 0.45 \text{ km s}^{-1} \text{ Mpc}^{-1}$ for the IH case, and $H_0 = 67.75 \pm 0.49 \text{ km s}^{-1} \text{ Mpc}^{-1}$ for the DH case, which are 4.38σ, 4.54σ, and 4.18σ lower than the direct measurement of the Hubble constant ($H_0 = 74.03 \pm 1.42 \text{ km s}^{-1} \text{ Mpc}^{-1}$). So, we investigate whether the H_0 tension can be solved or relieved in the IDE scenario. In tables 2–5, we show the constraint results of the ΛCDM1+$\sum m_\nu$, ΛCDM2+$\sum m_\nu$, ΛCDM3+$\sum m_\nu$, and ΛCDM4+$\sum m_\nu$ models from the CMB+BAO+SN data combination. In the ΛCDM1+$\sum m_\nu$ model, we obtain $H_0 = 68.08 \pm 0.81 \text{ km s}^{-1} \text{ Mpc}^{-1}$ for the NH case, $H_0 = 68.08^{+0.83}_{-0.82} \text{ km s}^{-1} \text{ Mpc}^{-1}$ for the IH case, and $H_0 = 68.14 \pm 0.83 \text{ km s}^{-1} \text{ Mpc}^{-1}$ for the DH case; in the ΛCDM2+$\sum m_\nu$ model, we obtain $H_0 = 67.83 \pm 0.64 \text{ km s}^{-1} \text{ Mpc}^{-1}$ for
For the IH case, and $H_{0} = 67.96\pm0.80\,\text{km s}^{-1}\,\text{Mpc}^{-1}$ for the DH case; in the ΛCDM$\,\Lambda$ model, we obtain $H_{0} = 68.03\pm0.81\,\text{km s}^{-1}\,\text{Mpc}^{-1}$ for the NH case, $H_{0} = 67.96\pm0.79\,\text{km s}^{-1}\,\text{Mpc}^{-1}$ for the IH case, and $H_{0} = 68.10\pm0.83\,\text{km s}^{-1}\,\text{Mpc}^{-1}$ for the DH case. For these cases, the tensions with the Hubble constant direct measurement are at the 3.64σ level, 3.62σ level, 3.58σ level, 3.98σ level, 4.03σ level, 3.91σ level, 3.67σ level, 3.74σ level, 3.61σ level, 3.67σ level, 3.62σ level, and 3.65σ level, respectively.

Then, we show the constraint results of these models by using the CMB + BAO + SN data combination (see tables 1–5). In the ΛCDM$\,\Lambda$ model, we obtain $H_{0} = 68.11\pm0.43\,\text{km s}^{-1}\,\text{Mpc}^{-1}$ for the NH case, $H_{0} = 67.88\pm0.43\,\text{km s}^{-1}\,\text{Mpc}^{-1}$ for the IH case, and $H_{0} = 68.40\pm0.44\,\text{km s}^{-1}\,\text{Mpc}^{-1}$ for the DH case, which indicates that the tensions with the Hubble constant direct measurement are at the 3.99σ level 4.14σ level and 3.79σ level, respectively. In the IΛCDM$\,\Lambda$ model, we obtain $H_{0} = 69.64\pm0.72\,\text{km s}^{-1}$.
Mpc$^{-1}$ for the NH case, $H_0 = 69.62^{+0.73}_{-0.72}$ km s$^{-1}$ Mpc$^{-1}$ for the IH case, and $H_0 = 69.67^{+0.74}_{-0.73}$ km s$^{-1}$ Mpc$^{-1}$ for the DH case; in the ΛCDM+$\sum m_\nu$ model, we obtain $H_0 = 68.92 \pm 0.60$ km s$^{-1}$ Mpc$^{-1}$ for the NH case, $H_0 = 68.83^{+0.61}_{-0.60}$ km s$^{-1}$ Mpc$^{-1}$ for the IH case, and $H_0 = 69.01^{+0.66}_{-0.63}$ km s$^{-1}$ Mpc$^{-1}$ for the DH case; in the ΛCDM+$\sum m_\nu$ model, we obtain $H_0 = 69.57 \pm 0.72$ km s$^{-1}$ Mpc$^{-1}$ for the NH case, $H_0 = 69.50 \pm 0.74$ km s$^{-1}$ Mpc$^{-1}$ for the IH case, and $H_0 = 69.63^{+0.73}_{-0.72}$ km s$^{-1}$ Mpc$^{-1}$ for the DH case; in the ΛCDM+$\sum m_\nu$ model, we obtain $H_0 = 69.58 \pm 0.72$ km s$^{-1}$ Mpc$^{-1}$ for the NH case, $H_0 = 69.58 \pm 0.73$ km s$^{-1}$ Mpc$^{-1}$ for the IH case, and $H_0 = 69.58^{+0.73}_{-0.72}$ km s$^{-1}$ Mpc$^{-1}$ for the DH case. The tensions with the Hubble constant direct measurement are at the 2.75σ level, 2.75σ level, 2.72σ level, 3.31σ level, 3.36σ level, 3.25σ level, 2.80σ level, 2.83σ level, 2.76σ level, 2.80σ level, 2.79σ level, and 2.80σ level, respectively.

From the above constraint results, we find that compared with the ΛCDM+$\sum m_\nu$ model, the H_0 tension can indeed be relieved in the ΛCDM+$\sum m_\nu$ model. From figures 5, 6 we can clearly see that for whichever neutrino mass hierarchy case, the fitting values of H_0 in the ΛCDM+$\sum m_\nu$ models (here, we take ΛCDM+$\sum m_\nu$ with $Q = \beta H_0 \rho_c$ as an example) are always much larger than those in the ΛCDM+$\sum m_\nu$ model. We also find that, the CMB+BAO+SN+H_0 data combination (about 2.7−3.4σ level) is slightly more effective in relieving the H_0 tension than the CMB+BAO+SN data combination (about 3.6−4.0σ level), due to the employment of the H_0 prior in the data combination. To visually display the result, we also take the ΛCDM1+$\sum m_\nu$ model as an example to give this result in figure 7. From these figures, we can clearly see that for whichever hierarchy of the neutrino mass spectrum, the values of H_0 are always much larger when adding the H_0 data in a cosmological fit. Certainly, the H_0 tension problem only can be alleviated to some extent in these cases, but cannot be truly solved. For the issue of H_0 tension, further exploration is needed.

4. Conclusion

In this work, we have investigated the constraints on the total neutrino mass in the scenario of vacuum energy interacting with cold dark matter by using the latest cosmological observations. We consider four typical models, i.e., ΛCDM1+$\sum m_\nu$ ($Q = \beta H_0 \rho_c$) model, ΛCDM2+$\sum m_\nu$ ($Q = \beta H_0 \rho_c$) model, ΛCDM3+$\sum m_\nu$ ($Q = \beta H_0 \rho_c$) model, and ΛCDM4+$\sum m_\nu$ ($Q = \beta H_0 \rho_c$) model. For the three-generation neutrinos, we consider the NH, IH, and DH cases. We employ the extended version of the PPF approach to calculate the perturbation of DE in the IDE cosmology. We use the Planck 2018 CMB data, the BAO measurements, the SN data of Pantheon compilation, and the local measurement of the Hubble constant H_0 from the Hubble Space Telescope to constrain these models.

We find that, compared with the ΛCDM+$\sum m_\nu$ model, these four ΛCDM+$\sum m_\nu$ models can provide a much looser constraint on the total neutrino mass $\sum m_\nu$. When considering the three mass hierarchies, the upper limits on $\sum m_\nu$ are smallest in the DH case and largest in the IH case. We also find that, the constraints on $\sum m_\nu$ are slightly tighter by using CMB+BAO+SN+H_0 than using CMB+BAO+SN. In addition, in all the ΛCDM+$\sum m_\nu$ models considered in this paper, the fit values of β are greater using the CMB+BAO+SN+H_0 data combination than using the CMB+BAO+SN data combination, and $\beta > 0$ is favored at more than 1σ level in all the ΛCDM+$\sum m_\nu$ models when using the CMB+BAO+SN+H_0 data combination, implying the preference of cold dark matter decaying into DE. In addition, we also find that, compared with the ΛCDM+$\sum m_\nu$ model, the H_0 tension can be alleviated to some extent in the ΛCDM+$\sum m_\nu$ models.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11975072, 11875102, 11835009, and 11690021), the Liaoning Revitalization Talents Program (Grant No. XLYC1905011), the Fundamental Research Funds for the Central Universities (Grant No. N2005030), and the Top-Notch Young Talents Program of China (W02070050).

References

[1] Lesgourgues J and Pastor S 2006 Massive neutrinos and cosmology Phys. Rep. 429 307
[2] Olive K A et al (Particle Data Group) 2014 Review of particle physics Chin. Phys. C 38 090001
[3] Xing Z Z 2020 Flavor structures of charged fermions and massive neutrinos Phys. Rep. 854 1
[4] Ospowicz A et al (KATRIN Collaboration) 2001 KATRIN: a Next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of Intent arXiv:hep-ex/0109033
[5] Klapdor-Kleingrothaus H V and Sarkar U 2001 Implications of observed neutrinoless double beta decay Mod. Phys. Lett. A 16 2469
[6] Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chklovets O 2004 Search for neutrinoless double beta decay with enriched Ge-76 in Gran Sasso 1990–2003 Phys. Lett. B 586 198
[7] Kraus C et al 2005 Final results from phase II of the Mainz neutrino mass search in tritium beta decay Eur. Phys. J. C 40 447
[8] Otten E W and Weinheimer C 2008 Neutrino mass limit from tritium beta decay Rep. Prog. Phys. 71 086201
[9] Wolf J and (KATRIN Collaboration) 2010 The KATRIN neutrino mass experiment Nucl. Instrum. Methods A 623 442
[10] Huang G y and Zhou S 2016 Discriminating between thermal and nonthermal cosmic relic neutrinos through an annual modulation at PTOLEMY Phys. Rev. D 94 116009
[11] Zhang J and Zhang X 2018 Gravitational clustering of cosmic relic neutrinos in the Milky Way Nat. Commun. 9 1833
[12] Betts S et al 2013 Development of a relic neutrino detection experiment at PTOLEMY: princeton tritium observatory for light early-universe, massive-neutrino yield arXiv:1307. 4738 [astro-ph.IM]
[13] Valle J W F 2005 Neutrino masses and oscillations AIP Conf. Proc. 805 128
Commun. Theor. Phys. 72 (2020) 125401

[14] Hannestad S 2010 Neutrino physics from precision cosmology Prog. Part. Nucl. Phys. 65 185
[15] Lesgourgues J and Pastor S 2012 Neutrino mass from Cosmology Adv. High Energy Phys. 2012 608515
[16] Abazajian K N et al (Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee Collaboration) 2015 Neutrino physics from the cosmic microwave background and large scale structure Astropart. Phys. 63 66
[17] Zhang M, Zhang J F and Zhang X 2020 Impacts of dark energy on constraining neutrino mass after Planck 2018 arXiv:2005.04647 [astro-ph.CO]
[18] Hu W, Eisenstein D J and Tegmark M 1998 Weighing neutrinos with galaxy surveys Phys. Rev. Lett. 80 5255
[19] Reid B A, Verde L, Jimenez R and Mena O 2010 Robust neutrino constraints by combining low redshift observations with the CMB J. Cosmol. Astropart. Phys. JCAP01 (2010)003
[20] Thomas S A, Abdalla F B and Lahav O 2010 Upper bound of 0.28 eV on the neutrino masses from the largest photometric redshift survey Phys. Rev. Lett. 105 031301
[21] Carbone C, Verde L, Wang Y and Cimatti A 2011 Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys J. Cosmol. Astropart. Phys. JCAP03(2011)030
[22] Li H and Zhang X 2012 Constraining dynamical dark energy with a divergence-free parametrization in the presence of spatial curvature and massive neutrinos Phys. Lett. B 713 160
[23] Wang X, Meng X L, Zhang T J, Shan H, Gong Y, Tao C, Chen X and Huang Y F 2012 Observational constraints on cosmic neutrinos and dark energy revisited J. Cosmol. Astropart. Phys. JCAP11(2012)018
[24] Li Y H, Wang S, Li X D and Zhang X 2013 Holographic dark energy in a universe with spatial curvature and massive neutrinos: a full Markov chain Monte Carlo exploration J. Cosmol. Astropart. Phys. JCAP02(2013)033
[25] Audren B, Lesgourgues J, Bird S, Haehnelt M G and Viel M 2013 Neutrino masses and cosmological parameters from a Euclid-like survey: Markov chain Monte Carlo forecasts including theoretical errors J. Cosmol. Astropart. Phys. JCAP01(2013)026
[26] Rieler-Schrense S, Parkinson D and Davis T M 2014 Combining Planck data with large scale structure information gives a strong neutrino mass constraint Phys. Rev. D 89 103505
[27] Font-Ribera A, McDonald P, Mostek N, Reid B A, Seo H J and Slosar A 2014 DESI and other dark energy experiments in the era of neutrino mass measurements J. Cosmol. Astropart. Phys. JCAP04(2014)023
[28] Zhang J F, Li Y H and Zhang X 2015 Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2 Phys. Lett. B 740 359
[29] Zhang J F, Li Y H and Zhang X 2014 Cosmological constraints on neutrinos after BICEP2 Eur. Phys. J. C 74 2954
[30] Zhang J F, Geng J J and Zhang X 2014 Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints J. Cosmol. Astropart. Phys. JCAP04(2014)044
[31] Palanque-Delabrouille N et al 2015 Constraint on neutrino masses from SDSS-III/BOSS Lyα forest and other cosmological probes J. Cosmol. Astropart. Phys. JCAP02 (2015)045
[32] Geng C Q, Lee C C and Shen J L 2015 Matter power spectra in viable f(R) gravity models with massive neutrinos Phys. Lett. B 740 285
[33] Li Y H, Zhang J F and Zhang X 2015 Probing f(R) cosmology with sterile neutrinos via measurements of scale-dependent growth rate of structure Phys. Lett. B 744 213
[34] Ade P A R et al (Planck Collaboration) 2016 Planck 2015 results: XIII. Cosmological parameters Astron. Astrophys. 594 A13
[35] Zhang J F, Zhao M M, Li Y H and Zhang X 2015 Neutrinos in the holographic dark energy model: constraints from latest measurements of expansion history and growth of structure J. Cosmol. Astropart. Phys. JCAP04(2015)038
[36] Geng C Q, Lee C C, Myrzakulov R, Sami M and Sarkidias E N 2016 Observational constraints on varying neutrino-mass cosmology J. Cosmol. Astropart. Phys. JCAP01(2016)049
[37] Chen Y and Xu L 2016 Galaxy clustering, CMB and supernova data constraints on cCDM model with massive neutrinos Phys. Lett. B 752 66
[38] Allison R, Caucau P, Calabrese E, Dunkley J and Louis T 2015 Towards a cosmological neutrino mass detection Phys. Rev. D 92 123535
[39] Cuesta A J, Niro V and Verde L 2016 Neutrino mass limits: robust information from the power spectrum of galaxy surveys Phys. Dark Univ. 13 77
[40] Chen Y, Ratra B, Biesiada M, Li S and Zhu Z H 2016 Constraints on non-flat cosmologies with massive neutrinos after Planck 2015 Astrophys. J. 829 61
[41] Moresco M, Jimenez R, Verde L, Cimatti A, Pozzetti L, Maraston C and Thomas D 2016 Constraining the time evolution of dark energy, curvature and neutrino properties with cosmic chronometers J. Cosmol. Astropart. Phys. JCAP12(2016)039
[42] Lu J, Liu M, Wu Y, Wang Y and Yang W 2016 Cosmic constraint on massive neutrinos in viable f(R) gravity with producing ΛCDM background expansion Eur. Phys. J. C 76 679
[43] Kumar S and Nunes R C 2016 Probing the interaction between dark matter and dark energy in the presence of massive neutrinos Phys. Rev. D 94 123511
[44] Xu L and Huang Q G 2018 Detecting the neutrinos mass hierarchy from cosmological data Sci. China Phys. Mech. Astron. 61 039521
[45] Vagnozzi S, Giussarma E, Mena O, Freese K, Gerbino M, Ho S and Lattanzi M 2017 Unveiling ν secrets with cosmological data: neutrino masses and mass hierarchy Phys. Rev. D 96 123503
[46] Zhang X 2017 Weighing neutrinos in dynamical dark energy models Sci. China Phys. Mech. Astron. 60 060431
[47] Lorenz C S, Calabrese E and Alonso D 2017 Distinguishing between neutrinos and time-varying dark energy through cosmic time Phys. Rev. D 96 043510
[48] Zhao M M, Zhang J F and Zhang X 2018 Measuring growth index in a universe with massive neutrinos: a revisit of the general relativity test with the latest observations Phys. Lett. B 779 473
[49] Vagnozzi S, Dhawan S, Gerbino M, Freese K, Goobar A and Mena O 2018 Constraints on the sum of the neutrino masses in dynamical dark energy models with |w(z)| ≤ 1 lighter than those obtained in ΛCDM arXiv:1801.08553 [astro-ph.CO]
[50] Wang L F, Zhang X N, Zhang J F and Zhang X 2018 Impacts of gravitational-wave standard siren observation of the Einstein telescope on weighing neutrinos in cosmology Phys. Lett. B 782 87
[51] Li E K, Zhang H, Du M, Zhou Z H and Xu L 2018 Probing the neutrino mass hierarchy beyond ΛCDM model J. Cosmol. Astropart. Phys. JCAP08(2018)042
[52] Wang S, Wang Y F and Xia D M 2018 Constraints on the sum of neutrino masses using cosmological data including the latest extended baryon oscillation spectroscopic survey DR14 quasar sample Chin. Phys. C 42 065103
[53] Feng L, Zhang J F and Zhang X 2019 Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter Phys. Dark Univ. 23 100261

[54] Zhao M M, Li Y H, Zhang J F and Zhang X 2017 Constraining neutrino mass and extra relativistic degrees of freedom in dynamical dark energy models using Planck 2015 data in combination with low-redshift cosmological probes: basic extensions to ΛCDM cosmology Mon. Not. R. Astron. Soc. 469 1713

[55] Zhang X 2016 Impacts of dark energy on weighing neutrinos after Planck 2015 Phys. Rev. D 93 083011

[56] Huang Q G, Wang K and Wang S 2016 Constraints on the neutrino mass and mass hierarchy from cosmological observations Eur. Phys. J. C 76 489

[57] Wang S, Wang Y F, Xia D M and Zhang X 2016 Impacts of dark energy on weighing neutrinos: mass hierarchies considered Phys. Rev. D 94 083519

[58] Vagnozzi S 2019 Cosmological searches for the neutrino mass scale and mass ordering arXiv:1907.08010 [astro-ph.CO]

[59] Vagnozzi S Weigh them all!—Cosmological searches for the neutrino mass scale and mass ordering

[60] Giusarma E, Gerbino M, Mena O, Vagnozzi S, Ho S and Freese K 2016 Improvement of cosmological neutrino mass bounds Phys. Rev. D 94 083522

[61] Gariazzo S, Archidiacono M, de Salas P F, Mena O, Ternes C A and Tórtola M 2018 Neutrino masses and their ordering: global data, priors and models J. Cosmol. Astropart. Phys. JCAP03(2018)011

[62] Liu Z and Miao H 2020 Neutrino mass and mass hierarchy in various dark energy arXiv:2002.05563 [astro-ph.CO]

[63] Roy Choudhury S and Choubey S 2018 Updated bounds on sum of Neutrino masses in various cosmological scenarios J. Cosmol. Astropart. Phys. JCAP09(2018)017

[64] Allahverdi R, Gao Y, Knockel B and Shalgar S 2017 Indirect signals from solar dark matter annihilation to long-lived right-handed neutrinos Phys. Rev. D 95 075001

[65] Han J, Wang R, Wang W and Wei X N 2017 Neutrino mass matrices with one texture equality and one vanishing neutrino mass Phys. Rev. D 96 075043

[66] Zhou X Y and He J H 2014 Weighing neutrinos in f(R) gravity in light of BICEP2 Commun. Theor. Phys. 62 102

[67] Huo Y, Li T, Liao Y, Nanopoulos D V and Qi Y 2012 Constraints on Neutrino velocities revisited Phys. Rev. D 85 043022

[68] Zhang J F, Wang B and Zhang X 2020 Forecast for weighing neutrinos in cosmology with SKA Sci. China Phys. Mech. Astron. 63 280411

[69] Diaz Rivero A, Miranda V and Dvorkin C 2019 Observable predictions for massive-neutrino cosmologies with model-independent dark energy Phys. Rev. D 100 063504

[70] Guo R Y, Li Y H, Zhang J F and Zhang X 2017 Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach J. Cosmol. Astropart. Phys. JCAP05 (2017)040

[71] Feng L, He D Z, Li H L, Zhang J F and Zhang X 2020 Constraints on active and sterile neutrinos in an interacting dark energy cosmology Sci. China Phys. Mech. Astron. 63 290404

[72] Guo R Y, Zhang J F and Zhang X 2018 Exploring neutrino mass and mass hierarchy in the scenario of vacuum energy interacting with cold dark matter Chin. Phys. C 42 095103

[73] Feng L, Li H L, Zhang J F and Zhang X 2020 Exploring neutrino mass and mass hierarchy in interacting dark energy models Sci. China Phys. Mech. Astron. 63 220401

[74] Amendola L 2000 Coupled quintessence Phys. Rev. D 62 043511

[75] Amendola L and Tocchini-Valentini D 2002 Baryon bias and structure formation in an accelerating universe Phys. Rev. D 66 043528

[76] Comelli D, Pietroni M and Riotta A 2003 Dark energy and dark matter Phys. Lett. B 571 115

[77] Cai R G and Wang A 2005 Cosmology with interaction between phantom dark energy and dark matter and the coincidence problem J. Cosmol. Astropart. Phys. JCAP03 (2005)002

[78] Zhang X 2005 Coupled quintessence in a power-law case and the cosmic coincidence problem Mod. Phys. Lett. A 20 2575

[79] Zimdahl W 2005 Interacting dark energy and cosmological equations of state Int. J. Mod. Phys. D 14 2319

[80] Zhang X, Wu F Q and Zhang J 2006 A New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter J. Cosmol. Astropart. Phys. JCAP01 (2006)003

[81] Wang B, Zang J, Lin C Y, Abdalla E and Michelelli S 2007 Interacting dark energy and dark matter: observational constraints from cosmological parameters Nucl. Phys. B 778 69

[82] Guo Z K, Ohta N and Tsujikawa S 2007 Probing the coupling between dark components of the universe Phys. Rev. D 76 023508

[83] Bertolami O, Gil Pedro F and Le Delliou M 2007 Dark energy-dark matter interaction and the violation of the equivalence principle from the abell cluster A586 Phys. Lett. B 654 165

[84] Zhang J, Liu H and Zhang X 2008 Statefinder diagnosis for the interacting model of holographic dark energy Phys. Lett. B 659 26

[85] Boehmer C G, Caldera-Cabral G, Lazkoz R and Maartens R 2008 Dynamics of dark energy with a coupling to dark matter Phys. Rev. D 78 023505

[86] Valiviita J, Majerotto E and Maartens R 2008 Instability in interacting dark energy and dark matter fluids J. Cosmol. Astropart. Phys. JCAP07(2008)020

[87] He J H and Wang B 2008 Effects of the interaction between dark energy and dark matter on cosmological parameters J. Cosmol. Astropart. Phys. JCAP06(2008)010

[88] He J H, Wang B and Jing Y P 2009 Effects of dark sectors’ mutual interaction on the growth of structures J. Cosmol. Astropart. Phys. JCAP07(2009)030

[89] He J H, Wang B and Zhang P 2009 The Imprint of the interaction between dark sectors in large scale cosmic microwave background anisotropies Phys. Rev. D 80 063530

[90] Koyama K, Maartens R and Song Y S 2009 Velocities as a probe of dark sector interactions J. Cosmol. Astropart. Phys. JCAP10(2009)017

[91] Xia J Q 2009 Constraint on coupled dark energy models from observations Phys. Rev. D 80 103514

[92] Li M, Li X D, Wang S, Wang Y and Zhang X 2009 Probing interaction and spatial curvature in the holographic dark energy model J. Cosmol. Astropart. Phys. JCAP12 (2009)014

[93] Zhang L, Cui J, Zhang J and Zhang X 2010 Interacting model of new agegraphic dark energy: cosmological evolution and statefinder diagnostic Int. J. Mod. Phys. D 19 21

[94] Wei H 2011 Cosmological constraints on the sign-changeable interactions Commun. Theor. Phys. 56 972

[95] Li Y, Ma J, Cui J, Wang Z and Zhang X 2011 Interacting model of new agegraphic dark energy: observational constraints and age problem Sci. China Phys. Mech. Astron. 54 1367

[96] He J H, Wang B and Abdalla E 2011 Testing the interaction between dark energy and dark matter via latest observations Phys. Rev. D 83 063515
Zhang Z, Li S, Li X D, Zhang X and Li M 2012 Revisit of the van de Bruck C, Mifsud J and Morrice J 2017 Testing
Solà J 2016 Cosmological constant vis-a-vis dynamical
Solà Peracaula J, de Cruz Pérez J and Gómez-Valent A 2018 Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach
Li Y H, Zhang J F and Zhang X 2014 Revisit of the interacting model of new agegraphic dark energy
Cui J L, Yin L, Wang L F, Li Y H and Zhang X 2015 A closer look at interacting dark energy with statefinder hierarchy and growth rate of structure
Geng J J, Li Y H, Zhang J F and Zhang X 2015 Redshift drift exploration for interacting dark energy
Cui J L, Yin L, Wang L F, Li Y H and Zhang X 2015 Exploring the full agegraphic dark energy model after Planck 2015
Zhang J, Zhao L and Zhang X 2014 Revisiting the interacting model of holographic dark energy
Feng L and Zhang X 2016 Revisit of the interacting dark energy model: cosmological perturbations and observational constraints
Pourtsidou A and Tram T 2016 Reconciling CMB and observational signatures
Murgia R, Gariazzo S and Fornengo N 2016 Constraints on the coupling between dark energy and dark matter from CMB data
Wang B, Abdalla E, Astri-Barandela F and Pavon D 2016 Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures
Fang W, Hu W and Lewis A 2008 Crossing the phantom divide with parameterized post-Friedmann dark energy
Zhang X 2017 Probing the interaction between dark energy and dark matter with the parametrized post-Friedmann approach
Feng L, Li Y H, Yu F, Zhang J F and Zhang X 2018 Exploring interacting holographic dark energy in a perturbed universe with parameterized post-Friedmann approach
Li Y H, Zhang J F and Zhang X 2016 Testing models of vacuum energy interacting with cold dark matter
Hu W 2008 Parameterized post-Friedmann signatures of acceleration in the CMB
Dong W, Hu W and Lewis A 2008 Crossing the phantom divide with parameterized post-Friedmann dark energy
Lewis A and Bridle S 2002 Cosmological parameters from CMB and other data: a Monte Carlo approach
Gelman A and Rubin D B 1992 Inference from iterative simulation using multiple sequences
Aghanim N (Planck Collaboration) et al 2020 Planck 2018 results. VI. Cosmological parameters
Beutler F et al 2011 The 6dF galaxy survey: baryon acoustic oscillations and the local hubble constant
Ross A J, Samushia L, Howlett C, Percival W J, Barden A and Manera M 2015 The clustering of the SDSS DR7 main Galaxy sample C I A 4 per cent distance measure at z = 0.15 Mon. Not. R. Astron. Soc. 449 835
Alam S et al (BOSS Collaboration) 2017 The clustering of galaxies in the completed SDSS-III baryon oscillation spectroscopic survey: cosmological analysis of the DR12 galaxy sample Mon. Not. R. Astron. Soc. 461 3017
Scoccola D M et al 2018 The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample
Riess A G, Casertano S, Yuan W, Macri L M and Scoccola D 2019 Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond \(\Lambda \)CDM
Solà 2016 Cosmological constant vis-a-vis dynamical vacuum: bold challenging the \(\Lambda \)CDM Int. J. Mod. Phys. A 31 1630035
Kumar S and Nunes R C 2017 Echo of interactions in the dark sector Phys. Rev. D 96 103511