A determinant involving Ramanujan sums and So’s conjecture

Jan-Christoph Schlage-Puchta

Abstract. We compute the determinant of a matrix containing Ramanujan sums associated to the divisors of an integer n, and use this computation to prove a weak version of So’s conjecture on circulant graphs with integral spectrum.

Mathematics Subject Classification. Primary 11A25; Secondary 05C25, 20K01.

Keywords. Ramanujan sums, Determinant, Spectrum of a graph.

1. Introduction and results. For integers n, m, define the Ramanujan sum
\[c(m, n) = \sum_{(h, n) = 1} e^{2\pi i \frac{hm}{n}} = \mu \left(\frac{n}{(n, m)} \right) \frac{\varphi(n)}{\varphi \left(\frac{n}{(n, m)} \right)}. \]
Here μ denotes the Möbius function, φ Euler’s function, and (n, m) is the greatest common divisor of n and m. Later $\tau(n)$ denotes the number of divisors of n.

Ramanujan sums occur naturally in various problems involving discrete Fourier transforms. Here we only want to stress the relation to arithmetic functions, as described in the book by Schwarz and Spilker [2].

Denote by $D(n)$ the set of divisors of n. In this note, we compute the determinant of the matrix $C_n = (c(d, t))_{d, t \in D(n)}$. We prove the following.

Theorem 1. We have $\det C_n = \pm n^{\frac{\tau(n)}{2}}$.

Note that as we did not specify an order for the divisors, the determinant is only determined up to a sign. From Theorem 1, we immediately obtain the following.

Corollary 2. For every n, we have that the matrix C_n is invertible.
While the calculation of determinants involving arithmetic functions is an area of some activity going back to Smith’s computation [3] of \(\det((i, j))_{i,j=1}^n \), the main reason that we are interested in this matrix comes from its connection to certain Cayley graphs. Let \(S = \{a_1, \ldots, a_k\} \subseteq \{0, 1, 2, \ldots, \lfloor \frac{n}{2} \rfloor\} \) be a generating system of \(\mathbb{Z}/n\mathbb{Z} \), and \(G \) the Cayley graph of \(\mathbb{Z}/n\mathbb{Z} \) with respect to \(\pm S \). So [4] showed that \(G \) has integral spectrum if and only if there exists a set \(T \subseteq D(n) \) such that \(S = \{i : (i, n) \in T\} \). He conjectured that the spectrum of \(G \) determines \(n \) and \(S \). The multi-set of eigenvalues of \(G \) is \(\left(\sum_{d \in S} c(\ell, \frac{n}{d})\right)^n_{\ell=1} \). As a weakening of So’s conjecture, Sander and Sander [1] conjectured that if \(S \) is a set of divisors of \(n \), then the vector \(\left(\sum_{d \in S} c(\ell, \frac{n}{d})\right)^n_{\ell=1} \) determines \(S \). As \(c(\ell, \frac{n}{d}) \) depends only on \((\ell, n) \), this is equivalent to the statement that the restriction of \(C_n \) to \(\{0, 1\}^{\tau(n)} \) is injective.

We conclude that Corollary 2 implies the following.

Corollary 3. If \(S \) is a set of divisors of the integer \(n \), then the vector \(\left(\sum_{d \in S} c(\ell, \frac{n}{d})\right)^n_{\ell=1} \) determines \(S \).

The same result has been obtained independently by Mönius (unpublished).

The function that maps a divisor set \(S \) to the multi-set of eigenvalues of the associated Cayley graph can be seen as the composition of the map sending \(S \) to the spectral vector and the forgetful map interpreting the vector as a multi-set. So by Corollary 3, So’s conjecture is equivalent to the question when the second map is injective. Here we use Corollary 3 to prove the following. As an abbreviation, we put \(L(n) = \exp((\log n)^{2/3} \log \log n) \).

Proposition 4.

1. Suppose that \(n \) has no pair of distinct divisors \(t_1, t_2 \) such that \(\varphi(n/t_1) \leq \varphi(n/t_2) < 2 \) with the possible exception of \(t_1 = n, t_2 = n/2 \). Then So’s conjecture holds for \(n \).
2. So’s conjecture holds for almost all integers \(n \) such that \(n \) has no prime divisor \(< L(n) \).

The first statement generalizes the result by Sander and Sander [1] who proved So’s conjecture if \(n \) is a prime power.

2. Proofs. We prove Theorem 1 by induction over the number of prime divisors of \(n \). For \(n = 1 \), we have \(C_1 = (1) \). Now let \(n, a \) be positive integers, \(p \) a prime number which does not divide \(n \), we shall compute \(\det C_{p^a n} \). Let \(d_1, \ldots, d_k \) be the divisors of \(n \). We order the divisors of \(p^a n \) as

\[
d_1, d_2, \ldots, d_k; pd_1, pd_2, \ldots, pd_k; p^2 d_1, \ldots, p^2 d_k; \ldots; p^a d_1, \ldots, p^a d_k.
\]

Then \(C_{p^a n} \) can be written as an \((a + 1) \times (a + 1)\) block matrix

\[
\begin{pmatrix}
A_{00} & A_{01} & \ldots & A_{0a} \\
A_{10} & A_{11} & \ldots & A_{1a} \\
\vdots & \vdots & \ddots & \vdots \\
A_{a0} & A_{a1} & \ldots & A_{aa}
\end{pmatrix},
\]
where
\[A_{ij} = \left(\mu \left(\frac{p^i d_{iv}}{(p^i d_{iv}, p^i d_{iu})} \right) \frac{\phi(p^i d_{iv})}{\phi \left(\frac{p^i d_{iv}}{(p^i d_{iv}, p^i d_{iu})} \right)} \right)^k_{\nu, \mu = 1} \].

We now compute \(A_{ij} \). It is clear that \(A_{00} = C_n \). If \(j \geq i + 2 \), then \(p^2 \) divides \(\frac{p^i d_{iv}}{(p^i d_{iv}, p^i d_{iu})} \), thus, \(A_{ij} = 0 \).

If \(j = i + 1 \), then
\[
\mu \left(\frac{p^i d_{iv}}{(p^i d_{iv}, p^i d_{iu})} \right) \frac{\phi(p^i d_{iv})}{\phi \left(\frac{p^i d_{iv}}{(p^i d_{iv}, p^i d_{iu})} \right)} = \mu \left(\frac{d_{iv}}{(d_{iv}, d_{iu})} \right) \frac{p^{j-1}(p-1)\phi(d_{iv})}{(p-1)\phi \left(\frac{d_{iv}}{(d_{iv}, d_{iu})} \right)}
= -p^{j-1} \mu \left(\frac{d_{iv}}{(d_{iv}, d_{iu})} \right) \frac{\phi(d_{iv})}{\phi \left(\frac{d_{iv}}{(d_{iv}, d_{iu})} \right)},
\]
and therefore \(A_{ji} = -p^{j-1} A_{00} \).

If \(j \leq i \), then
\[
\mu \left(\frac{p^i d_{iv}}{(p^i d_{iv}, p^i d_{iu})} \right) \frac{\phi(p^i d_{iv})}{\phi \left(\frac{p^i d_{iv}}{(p^i d_{iv}, p^i d_{iu})} \right)} = \mu \left(\frac{d_{iv}}{(d_{iv}, d_{iu})} \right) \frac{p^{j-1}(p-1)\phi(d_{iv})}{(p-1)\phi \left(\frac{d_{iv}}{(d_{iv}, d_{iu})} \right)},
\]
that is, \(A_{ji} = (p-1)p^{j-1} A_{00} \). We conclude that up to a permutation of the rows and columns \(C_{p^n n} \) equals
\[
\begin{pmatrix}
C_n & -C_n & 0 & 0 & \ldots & 0 \\
C_n & (p-1)C_n & -pC_n & 0 & \ldots & 0 \\
C_n & (p-1)C_n & p(p-1)C_n & -p^2C_n & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
C_n & (p-1)C_n & p(p-1)C_n & p^2(p-1)C_n & \ldots & -p^{a-1}C_n \\
C_n & (p-1)C_n & p(p-1)C_n & p^2(p-1)C_n & \ldots & p^{a-1}(p-1)C_n
\end{pmatrix}.
\]

We now add the first block column to the second, then the second to the third, and continue in this way. We find that
\[
\det C_{p^n n} = \pm \det \begin{pmatrix}
C_n & 0 & 0 & 0 & \ldots & 0 \\
C_n & pC_n & 0 & 0 & \ldots & 0 \\
C_n & pC_n & p^2C_n & 0 & \ldots & 0 \\
C_n & pC_n & p^2C_n & p^3C_n & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
C_n & pC_n & p^2C_n & p^3C_n & \ldots & 0 \\
C_n & pC_n & p^2C_n & p^3C_n & \ldots & p^aC_n
\end{pmatrix}
= \pm p^{\frac{a(a+1)}{2} \tau(n)} (\det C_n)^{a+1}.
\]

By our inductive hypothesis, we obtain
\[
|\det C_{p^n n}| = p^{\frac{a(a+1)}{2} \tau(n)} n^{\frac{a(a+1)}{2}(a+1)} = (p^a n)^{\frac{a(a+1)\tau(n)}{2}} = (p^a n)^{\frac{\tau(p^n n)}{2}},
\]
and the proof of Theorem 1 is complete.
As the proofs of Corollary 2 and 3 are obvious, we now turn to the proof of Proposition 4. Suppose there are two different spectral vectors \(v_1, v_2 \) associated to the divisor sets \(S_1, S_2 \) which are mapped to the same multi-set. Then there is some integer \(x \) such that \(v_1 \) and \(v_2 \) have the same number of entries equal to \(x \), but there exists some index \(i \) such that the \(i \)-th entry of \(v_1 \) is equal to \(x \), while the \(i \)-th entry of \(v_2 \) is not equal to \(x \). As the level sets of \(v_1, v_2 \) are unions of sets of the form \(\{ t : (i, t) = n \} \) for some divisor \(t \) of \(n \), we obtain that there are two non-empty sets \(T_1, T_2 \) of divisors of \(n \) such that \(T_1 \neq T_2 \), \(\sum_{t \in T_1} \varphi(n/t) = \sum_{t \in T_2} \varphi(n/t) \), and \(\sum_{d \in S_1} c(t_1, \frac{n}{d}) = \sum_{d \in S_2} c(t_2, \frac{n}{d}) \) for all \(t_1 \in T_1, t_2 \in T_2 \).

We now show that under the condition in Proposition 4(1) this cannot happen. Suppose first that \(n \in T_1 \). We have \(c(n, n/d) = \varphi(n/d) \geq c(n/t, n/d) \) for all \(t \), together with the fact that \(\sum_{d \in S_1} \varphi(n/d) = \sum_{d \in S_2} \varphi(n/d) \) we obtain that \(\sum_{d \in S_1} c(n, n/d) = \sum_{d \in S_2} c(n, n/d) \) implies \((n/d, n/t) = n/d \) for all \(d \in S_2 \). In other words, we have \(t|d \) for all \(d \in S_2 \). But this contradicts the assumption that \(S_2 \) is a generating system of \(\mathbb{Z}/n\mathbb{Z} \).

If \(n \) is not in \(T_1 \), let \(t_0 \in T_1 \Delta T_2 \) be minimal. As \(T_1 \) and \(T_2 \) are different, the symmetric difference is non-empty, that is, \(t_0 \) certainly exists. Without loss, we may assume that \(t_0 \in T_1 \), and we have

\[
0 = \sum_{t \in T_1} \varphi(n/t) - \sum_{t \in T_2} \varphi(n/t) \geq \varphi(n/t_0) - \sum_{t \in T_1 \cup T_2} \varphi(n/t) \\
\geq \varphi(n/t_0) - \frac{\varphi(n/t_0)}{2} - \frac{\varphi(n/t_0)}{4} - \ldots - \frac{\varphi(n/t_0)}{2^{\tau(n)}} > 0,
\]

which is impossible. Hence, the first part of the proposition follows.

For the second statement of the proposition, we show that almost all integers \(n \), which have no prime divisor \(p < L(n) \), satisfy the assumption of the first statement. Denote by \(P^{-}(n) \) the smallest prime divisor of \(n \), and let \(\Phi(x, y) \) be the number of integers \(n \leq x \) such that \(P^{-}(n) \leq y \). The following is well known, see e.g. [5, chapter III.6.2] for much more precise results.

Lemma 5. There exist positive constants \(c_1, c_2 \) such that for all real numbers \(x, y \) satisfying \(2 \leq y \leq \frac{x}{2} \), we have

\[
c_1 \frac{x}{\log y} \leq \Phi(x, y) \leq c_2 \frac{x}{\log y}.
\]

We now show that for almost all integers \(n \) satisfying \(P^{-}(n) \geq L(n) \), there do not exist divisors \(d_1 \neq d_2 \) of \(n \) such that \(\varphi(d_1) \leq \varphi(d_2) < 2 \varphi(d_1) \).

If \(P^{-}(n) \geq L(n) \), then for every divisor \(d \) of \(n \), we have

\[
\frac{\varphi(d)}{d} \geq \left(1 - \frac{1}{L(n)} \right)^{\omega(d)} \geq \left(1 - \frac{1}{L(n)} \right)^{\frac{\log n}{\log 2}} = 1 + o(1),
\]

it suffices to estimate the number of integers without small prime divisors, which have divisors \(d_1, d_2 \) with \(d_1 < d_2 < 3d_1 \). To do so, we estimate the number of triplets \((n, d_1, d_2) \), where \(n \in [x, 2x] \), \(P^{-}(n) > L(n) \), and \(d_1, d_2 \) are divisors satisfying \(d_1 < d_2 < 3d_1 \).
Put \(y = L(x) \). Then the number of triplets is bounded above by
\[
\sum_{k \geq 0} \sum_{d_1, d_2 \in [2^k y, 6 \cdot 2^k y], \ d_1 \neq d_2} |\{n \leq x : P^-(n) \geq y, [d_1, d_2]|n\}| \\
= \sum_{k \geq 0} \sum_{d_1, d_2 \in [2^k y, 6 \cdot 2^k y], \ d_1 \neq d_2} \Phi \left(\frac{x}{[d_1, d_2]}, y \right) \ll \frac{x}{\log y} \sum_{k \geq 0} \sum_{d_1, d_2 \in [2^k y, 6 \cdot 2^k y], \ d_1 \neq d_2} \frac{1}{[d_1, d_2]}.
\]
Introducing \(t \) as the greatest common divisor of \(d_1 \) and \(d_2 \), this quantity becomes
\[
\frac{x}{\log y} \sum_{k \geq 0} \sum_{t : P^-(t) \geq y} \sum_{d_1', d_2' \in [\frac{2^k y}{t}, 6 \cdot 2^k y], \ d_1' \neq d_2'} \frac{1}{td_1'd_2'} \\
\ll \frac{x}{\log^3 y} \sum_{k=0}^{\log x} \sum_{t : P^-(t) \geq y} \frac{1}{t} \ll \frac{x}{\log^2 x} \log^4 y = o \left(\frac{x}{\log y} \right),
\]
and the proof is complete.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Sander, J.W., Sander, T.: On So’s conjecture for integral circulant graphs. Appl. Anal. Discrete Math. 9, 59–72 (2015)

[2] Schwarz, W., Spilker, J.: Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties. London Mathematical Society Lecture Note Series, 184. Cambridge University Press, Cambridge (1994)

[3] Smith, H.J.S.: On the value of a certain arithmetical determinant. Proc. London Math. Soc. 7 (1875/76), 208–212
[4] So, W.: Integral circulant graphs. Discrete Math. 306, 153–158 (2006)
[5] Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory. Translated from the second French edition (1995) by C.B. Thomas. Cambridge Studies in Advanced Mathematics, 46. Cambridge University Press, Cambridge (1995)

JAN-CHRISTOPH SCHLAGE-PUCHTA
Mathematical Institute
Rostock University
Ulmenstraße 69, Haus 3
18057 Rostock
Germany
e-mail: jan-christoph.schlage-puchta@uni-rostock.de

Received: 12 February 2021
Revised: 9 June 2021
Accepted: 24 June 2021.