Draft Genome Sequence of the Marine Pathogen *Vibrio coralliilyticus* RE22

Edward Spinard  
Linda Kessner  
Marta Gomez-Chiarri  
*University of Rhode Island*, gomezchi@uri.edu  
D. C. Rowley  
*University of Rhode Island*, drowley@uri.edu  
David R. Nelson  
*University of Rhode Island*, dnelson@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/cmb_facpubs

Citation/Publisher Attribution  
Spinard E, Kessner L, Gomez-Chiarri M, Rowley DC, Nelson DR. (2015). Draft Genome Sequence of the Marine Pathogen Vibrio coralliilyticus RE22. *Genome Announcements, 3*(6), e01432-15. Available at: http://dx.doi.org/10.1128/genomeA.01432-15

This Article is brought to you for free and open access by the Cell and Molecular Biology at DigitalCommons@URI. It has been accepted for inclusion in Cell and Molecular Biology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Draft Genome Sequence of the Marine Pathogen *Vibrio coralliilyticus* RE22

Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 License.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/cmb_facpubs/25
**Draft Genome Sequence of the Marine Pathogen *Vibrio coralliilyticus* RE22**

Edward Spinard,* a Linda Kessner,* a Marta Gomez-Chiarri,* a David C. Rowley,† b David R. Nelson*a

Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA; Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, USA; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA

*Vibrio coralliilyticus* RE22 is a causative agent of vibriosis in larval bivalves. We report here the draft genome sequence of *V. coralliilyticus* RE22 and describe additional virulence factors that may provide insight into its mechanism of pathogenicity.

Received 14 October 2015  Accepted 16 October 2015  Published 3 December 2015

**Citation** Spinard E, Kessner L, Gomez-Chiarri M, Rowley DC, Nelson DR. 2015. Draft genome sequence of the marine pathogen *Vibrio coralliilyticus* RE22. Genome Announc 3(6):e01432-15. doi:10.1128/genomeA.01432-15.

**Copyright** © 2015 Spinard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

**Address** correspondence to David R. Nelson, dnelson@uri.edu.

---

*Vibrio coralliilyticus* RE22 (formerly *Vibrio tubiashii* RE22) is a marine pathogen and a causative agent of vibriosis in larval bivalves (1). The disease is characterized by high mortality rates leading to a severe loss of production in shellfish hatcheries (2–4). Currently, only two proteases (VtpA and VtpB) and one hemolysin (VthA) have been characterized in RE22 (5–7). To better understand the mechanisms of pathogenicity, it is necessary to discover additional potential virulence factors. Here, we announce the draft genome sequence of *V. coralliilyticus* RE22 and selectively describe some potential virulence factors.

*V. coralliilyticus* RE22Sm (a spontaneous mutant resistant to streptomycin) was grown overnight in yeast-peptone broth supplemented with 3% NaCl (YP30) at 27°C in a shaking water bath. Genomic DNA was isolated using the Wizard genomic DNA purification kit (Promega), according to the manufacturer’s instructions, except DNA was resuspended into 100 μl of a 2 mM Tris–HCl (pH 8) solution. DNA was sequenced at the Rhode Island Genomics Sequencing Center, Kingston, RI, using an Illumina MiSeq Sequencer. Reads were trimmed using the CLC Genomics Workbench (version 8.0.1) for quality, ambiguous base pairs, adapters, duplicates, and size, resulting in 7,602,646 paired-end and mate-paired reads averaging 235.84 bp in size. The reads were assembled using the de novo assembly algorithm of CLC Genomics Workbench and SPAdes genomic assembler (version 3.1.1) (8). Contigs with an average coverage of >110 reads were joined using the CLC Microbial Genome Finishing module using *V. coralliilyticus* OCN014 as a reference genome. In total, the draft genome is composed of five contigs. Three contigs totaling 3.46 Mbp and having an average G+C content of 50% correspond to chromosome 1 of *V. coralliilyticus* OCN014. The complete chromosome 2 is represented by one 1.90-Mbp contig with a G+C content of 45%. A megaplasmid is represented by another 0.32-Mbp contig with a G+C content of 50%. The draft genome was annotated using Rapid Annotations using Subsystems Technology (RAST) and resulted in 5,234 open reading frames (9–11).

The genome of *V. coralliilyticus* RE22 encodes two extracellular metalloproteases besides those encoded by the previously described vtpA and vtpB genes. One protease shows similarity to the Epp protease in *Vibrio anguillarum* (12), while the other contains a domain conserved in the M4 family of metalloproteases (13–17). In addition to *vthA*, three putative hemolysin/cytolysin genes were discovered. A putative MARTX toxin operon encoding three type 1 secretion system (T1SS) transport proteins, a MARTX toxin, and a hypothetical protein is on the megaplasmid. Unlike typical MARTX toxin gene clusters, the transporter genes are not transcribed divergently from the MARTX toxin (18). Instead, they seem to be in the MARTX operon, upstream of the MARTX toxin gene. Unlike most MARTX toxin gene clusters, no rtxC (acyltransferase) is present in the operon. Additional putative hemolysins include a phospholipase/hemolysin located on chromosome 2 that shows similarity to *plp* in *V. anguillarum* (19) and a hemolysin annotated as *hlyA* located on chromosome 1 that shows similarity to *vah1* in *V. anguillarum* (20).

**Nucleotide sequence accession numbers.** This whole-genome shotgun project has been deposited in DDBJ/ENA/GenBank under the accession no. LGLS00000000. The version described in this paper is the first version, LGLS01000000.

**ACKNOWLEDGMENTS**

This work was supported by an award from the Rhode Island Science and Technology Council to D.R.N. and D.C.R. This research is based in part upon work conducted using the Rhode Island Genomics and Sequencing Center, which is supported in part by the National Science Foundation under EPSCoR grants no. 0554548 and EPS-1004057. The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

We thank Ralph Elston and Hiroaki Hasegawa for providing us with the *V. coralliilyticus* RE22 strain.

**REFERENCES**

1. Wilson B, Muihead A, Bazanella M, Huyte-Stauffer C, Vezzulli L, Bourne DG. 2013. An improved detection and quantification method for the coral pathogen *Vibrio coralliilyticus*. PLoS One 8:e81800. http://dx.doi.org/10.1371/journal.pone.0081800.
2. Estes R, Friedman C, Elston R, Herwig R. 2004. Pathogenicity testing of shellfish hatchery bacterial isolates on Pacific oyster *Crassostrea gigas* larvae. Dis Aquat Org 58:223–230. http://dx.doi.org/10.3354/dao058223.
3. Elston R, Hasegawa H, Humphrey K, Polyaik I, Häse C. 2008. Re-
emergence of *Vibrio tubiashii* in bivalve shellfish aquaculture: severity, environmental drivers, geographic extent and management. Dis Aquat Org 82:119–134. http://dx.doi.org/10.3354/dao01982.

4. Sindermann CJ, Lightner DV. 1988. Disease diagnosis and control in North American marine aquaculture, 2nd ed. Elsevier, Amsterdam, The Netherlands.

5. Hasegawa H, Hase CC. 2009. TetR-type transcriptional regulator VtpR functions as a global regulator in *Vibrio tubiashii*. Appl Environ Microbiol 75:7602–7609. http://dx.doi.org/10.1128/AEM.01016-09.

6. Hasegawa H, Lind EL, Boin MA, Hase CC. 2008. The extracellular metalloprotease of *Vibrio tubiashii* is a major virulence factor for pacific oyster (*Crassostrea gigas*) larvae. Appl Environ Microbiol 74:4101–4110. http://dx.doi.org/10.1128/AEM.00061-08.

7. Hasegawa H, Hase CC. 2009. The extracellular metalloprotease of *Vibrio tubiashii* directly inhibits its extracellular haemolysin. Microbiology 155: 2296–2305. http://dx.doi.org/10.1099/mic.0.028605-0.

8. Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, Pevzner PA, Pham S, Prasczyk J, Pyshkin A, Sirotkin A, Sirotkin Y, Stepniewska K, Czajkowska S, Wong A, Zenkevitch O, Birney E, Oates K, Durbin R, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, Pevzner PA, Pham S, Prasczyk J, Pyshkin A, Sirotkin A, Sirotkin Y, Stepniewska K, Czajkowska S, Wong A, Zenkevitch O, Birney E, Oates K, Durbin R, 2014. mini-metagenomes from chimeric MDA products. J Comput Biol 21:714–737. http://dx.doi.org/10.1089/cmb.2013.0084.

9. Aziz RK, Bartels D, Best AA, DeJongh M, D’Souza M, Disz T, Edwards RA, Formsm A K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, Paarmann D, Paase N, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Willke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:57. http://dx.doi.org/10.1186/1471-2164-9-57.

10. Bretin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA III, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. http://dx.doi.org/10.1038/srep08365.

11. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. http://dx.doi.org/10.1093/nar/gkt1226.

12. Varina M, Denkin SM, Staroscik AM, Nelson DR. 2008. Identification and characterization of Epp, the secreted processing protease for the *Vibrio anguillarum* EmpA metalloprotease. J Bacteriol 190:6589–6597. http://dx.doi.org/10.1128/JB.00535-08.

13. Adekoya OA, Sylte I. 2009. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Chem Biol Drug Des 73:7–16. http://dx.doi.org/10.1111/j.1747-0285.2008.00757.x.

14. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Feng JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DJ, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullikovand M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:D205–D210. http://dx.doi.org/10.1093/nar/gkn845.

15. Marchler-Bauer A, Bryant SH. 2004. CD-search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331. http://dx.doi.org/10.1093/nar/gkh454.

16. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DJ, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH. 2015. CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226. http://dx.doi.org/10.1093/nar/gku1221.

17. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Feng JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DJ, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullikovand M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH. 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229. http://dx.doi.org/10.1093/nar/gkq1189.

18. Satchell KF. 2007. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect Immun 75:5079–5084. http://dx.doi.org/10.1128/IAI.00525-07.

19. Li L, Mou X, Nelson DR. 2013. Characterization of Plp, a phosphatidylcholine-specific phospholipase and hemolysin of *Vibrio anguillarum*. BMC Microbiol 13:271. http://dx.doi.org/10.1186/1471-2180-13-271.

20. Rock JL, Nelson DR. 2006. Identification and characterization of a hemolysin gene cluster in *Vibrio anguillarum*. Infect Immun 74:2777–2786. http://dx.doi.org/10.1128/IAI.74.5.2777-2786.2006.