Distribution of *Anodonta (Sinanodonta) woodiana* (Rea, 1834) in inland waters of Serbia

Momir Paunovic1*, Bela Csányi2, Vladica Simić3, Bojana Stojanović1 and Predrag Cakić1

1Institute for Biological Research, 142 despota Stefana Blvd, 11060 Belgrade, Serbia, E-mail: mpaunovic@ibiss.bg.ac.yu
2Environmental Protection and Water Management Research Institute (VITUKI Kht), Budapest, Hungary
3Institute of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
*Corresponding author

Received 17 July 2006; accepted in revised form 9 August 2006

Abstract

Aquatic biotopes are, due to their unique features, among the most disposed ecosystems to bioinvasions. Serbian waters are not an exception, with an increasing colonization by allochthonous organisms observed there during the last few decades. Non-indigenous aquatic species were found among plants, vertebrates and invertebrates. One of the most invasive aquatic macroinvertebrate species found in the region is the Chinese pond mussel *Anodonta (Sinanodonta) woodiana* (Rea, 1834). The species is dispersed along lowland rivers, associated wetlands and manmade canals. Heavily modified and artificial aquatic habitats, with high silting rates, were found to be especially suitable for population by *A. woodiana*. A mass occurrence of Chinese mussel was observed among these habitats, particularly where bottom substrata were characterised by the domination of silt-clay.

Key words: *Anodonta (Sinanodonta) woodiana*, biological invasions, Chinese pond mussel, non-indigenous species, Serbia

Introduction

The Chinese pond mussel, (the Eastern Asiatic freshwater clam or swan-mussel) *Anodonta (Sinanodonta) woodiana* (Rea, 1834) (Bivalvia: Unionida: Unionidae) originates from Eastern Asia (Watters 1997). Recently, it was discovered far outside its natural areal, in several European countries - Hungary, (Petró 1984), Romania (Sárákány-Kiss 1986), France (Girardi and Ledoux 1989), Slovakia (Košel 1995), Czech Republic (Beran 1997), Austria (Reischutz 1998), Poland (Bohme 1998), Ukraine (Urishient and Korniushin 2001), Italy (Manganelli et al. 1998, Lodde at al. 2005), Germany (Glöer and Zeitlter 2005), as well as outside of Europe - some Indonesian islands, the Dominican Republic and Costa Rica (Watters 1997).

Rapid spread, frequent findings and mass occurrence of *A. woodiana* were reported from several recipient areas in the Danube Basin - Slovakia (Halgoš 1999), Hungary (VITUKI 2001) and Serbia (Paunovic et al. 2005a). Recently, the species has been reported as frequent along the Middle Danube (ICPDR 2002).

The aim of this paper is to present the current distribution of Chinese pond mussels in Serbian waters. Investigations on the distribution of Chinese pond mussel should be continued, due to the invasive character of *A. woodiana*, its mass occurrence in the region, as well as possible impact to the autochthonous bivalves via competition (Essl and Rabitch 2002).
Materials and Methods

Special attention has been focused on collecting data on the distribution of non-native fauna within Serbian waters during macroinvertebrate surveys performed in the period 1998-2006. These investigations comprehended trans-boundary rivers (sectors of the Danube which are shared with Croatia and Romania), as well as the bordering region with Hungary (the Danube and the Tisza River). Along with other information, datasets on the distribution of *A. woodiana* were gathered during these surveys.

Benthic samples were collected by various techniques - benthic hand nets, hydraulic polyp sampler, Van Veen (0.027 m²) and Eckman (0.0225 m²) grabs and benthological dredge. Diving was also performed to collect mussels. The mussels were gathered in periods of low water conditions at depths between 0.4 and 7 m.

The coordinates of the sampling points were measured by GPS ("Garmin Etrex") and charted by using ArcView software (map 1:300,000, system WGS_1984).

For some sampling sites, the abundance of mussels has been evaluated by collecting and counting individuals within randomly selected square areas of 0.5 m² by diving. A diver sampled all mussel specimens from chosen quadrant and removed it to the shore for identification.

Results and Discussion

We are presenting the findings of *A. woodiana* (Figure 1) on 44 sampling stations in Serbia. Georeferenced records are reviewed in Annex and mapped on Figure 2. Our investigations indicated that Chinese pond mussel is well adapted to large lowland rivers in Serbia. The distribution is limited to the northern, lowland part of the country. The species has been found along entire Serbian stretches of the Danube and the Tisza River (Figure 2, Annex). *A. woodiana* has also been recorded in the downstream sectors of the Sava and Velika Morava Rivers (Figure 2, Annex), as well as in the armband of the Sava River, Cukaricki rukavac (Figure 2, Annex, Record No. 42).

According to Csányi et al. (2005) the Chinese pond mussel has a dense population in the Danube River, at the inflowing stretch of the Iron Gate Reservoir. Our investigations confirmed that...
statement. Abundant population of *A. woodiana* was observed at section between r.km 1077 and 1081 (Annex, Records No. 21, 22 and 26).

In addition, we found abundant populations on other sampling stations along the Danube (Figure 2, Annex, Records No. 10, 13, 19, 30 and 32), as well as in the main tributaries - the Tisza (Figure 2, Annex, Record No.35), the Sava (Figure 2, Annex, Record No.42) and the Velika Morava (Figure 2, Annex, Record No. 43). Mass occurrence has been observed at the Begej River (large tributary of the Tisza River, near to the confluence to the Tisza - Figure 2 and 3, Annex, Record No. 40).

![Sampling sites for Anodonta woodiana in Serbia](image)

Figure 2. Sampling sites for *Anodonta woodiana* in Serbia

During our investigations, the Chinese pond mussel was observed within habitats with a predominantly silt-clay substrate, together with native mussel species - *Unio pictorum* (Linnaeus, 1758), *U. crassus* (Philipson, 1788), *U. tumidus* (Philipsson, 1788), *Pseudanodonta complanata* (Romässler, 1835) and *Anodonta anatina* (Linnaeus, 1758), as well as other molluscan species - *Viviparus acerosus* (Bourguignat, 1862) and *Viviparus viviparus* (Linnaeus, 1758). In some cases, *A. woodiana* was found to be the dominant mussel (Figure 2, Annex, Records No. 10, 26, 40, 42 and 43). Thus, at the Velika Morava River (Figure 2, Annex, Record No. 43) *A. woodiana* was found together with *U. pictorum* in a ratio of 5:1 specimens, respectively. During the 2003 Tisza expedition (August 25-29), we had the opportunity to count mussels along the bank region of the Begej River due to an extremely low water level (Figure 2, Annex, Record No. 40). At this location, an abundant population of *A. woodiana* was observed, with a mean number of six individuals per square meter; compared to all other mussel taxa confirmed, *A. woodiana* dominated by a 2:1 ratio (Figure 3). Observed domination of *A. woodiana* in comparison with native mussel taxa infers that Chinese pond mussel could have an impact on autochthonous bivalves via competition (Essl and Rabitch 2002).
Figure 3. Mussels recorded in the bank region of the Begej River, near to the confluence to the Tisza River (26.08.03, record No. 40) - photos taken during extremely low water conditions (photo by M. Paunovic)

The introduction and spread of the Chinese pond mussel seems to be closely correlated with the introduction of the Grass Carp *Ctenopharyngodon idella* (Valenciennes, 1844), the Prussian Carp *Carassius auratus gibelio* Bloch, 1783, the Silver Carp *Hypophthalmichthys molitrix* (Valenciennes, 1844) and the Bighead Carp *Arstichthys nobilis* Richardson, 1844 from China and other Far East countries into Serbian waters and neighboring regions. These species, belonging to the so-called Chinese complex, were introduced into Serbian waters in the sixties and mid-seventies (Cakic and Hristic 1987) of the XX century, which suggests that the Chinese pond mussel was introduced at the same time. Rapid spread and mass occurrence of *A. woodiana* have been reported from several recipient areas in the Danube Basin - Slovakia (Halgoš 1999), Hungary (VITUKI 2001) and Serbia (Paunovic et al. 2005a). Stefek et al. (2004) reported that, since 1999, *A. woodiana* has been expanding from the Danube River to other larger rivers in Slovakia. Our investigations indicated a similar trend - the Chinese pond mussel has been found in the downstream stretches of the Sava and the Velika Morava River, which suggests that it has spreads to those rivers from the Danube. With regard to the Tisza River, the situation is not as clear, because the Chinese pond mussel has been found 419km upstream of its confluence with the Danube at Kiskőre Reservoir - Hungarian part of the Tisza River (Csányi 2002). This situation could indicate that *A. woodiana* has expanded into the Tisza River not only from the Danube River, but also from other sources in the Middle Stretch - via the introduction of fish species from China and Far East.

Recent international surveys (ICPDR 2002) indicated that the Chinese pond mussel is dispersing from the middle Danube to the upper and the lower stretches. The spread of non-indigenous species along the Danube (in both directions, upstream and downstream), as well as the expansion of neobiota from the Danube to its tributaries, indicates that the Danube River is an important invasion corridor (lower part of the so called “Southern Invasion Corridor” sensu Bij de Vaate et al. (2002)).

The growing colonization of allochthonous organisms in Serbian waters has already been
observed and aquatic alien species have been found among plants, vertebrates and invertebrates (literature review in Paunovic et al. 2004, 2005b). Large lowland rivers in the region of the Middle Danube are under particular pressure by neobiota (Cakic et al. 2004, Simonovic et al. 1998, 2001, Csániy 1999, Paunovic et al. 2004, 2005a, b; Paunovic 2004, Pavlovic et al. 2006). This has been confirmed by the distribution of *A. woodiana* in this research. Further, investigations on the distribution of *A. woodiana*, as well as on other aquatic neobiota in Serbia, are needed in order to provide effective prevention measures for the introduction and dispersal of invasive species.

Acknowledgements

We wish to acknowledge to the reviewer, Dr Frances Lucy, Institute of Technology Sligo, Ireland, for her time, useful comments and language improvements. Part of the material used in this work resulted from the European Commission 6th Framework Programs: Project No. 505428 AquaTerra and Integrated Project ALARM (contract GOCE-CT-2003-506675). This work is supported by the Ministry of Science and Environmental Protection, Project No. 505428 (GOCE) – FP6 EC Project, p 47. We would like to thank the Institute for Waters Protection and Water Management Research Institute (VITUKI Kht), p 125. Csániy B, Makovinska J and Paunovic M (2005) The aquatic macroinvertebrate community of the River Danube between (1942-795 rkm). AquaTerra Report - Project no. 505428 (GOCE) – FP6 EC Project, p 47. Essl F and Rabitch W (2002) Neobiota in Österreich. Umweltbundesamt, Wien, p 432. Girardi H and Ledoux JC (1990) Présence d *Anodonta woodiana* (Lea) en France (Mollusques, Lamellibranches, Unionidae) Bulletin Mensuel de la Société Linnéenne de Lyon 58: 186-290. Gliör P and Zeitlinger ML (2005) Kommentierte Artenliste der Süßwassermollusken. Deutschlands Malakologische Abhandlungen 23: 3-23. Halgø (1999) Mass occurrence of *Anodonta woodiana* (Lea, 1834) in Slovenia. Folia Faunistica Slovena, 4: 7. ICPDR (2002) Joint Danube Survey 13.08.- 19.09.2001. Technical Report of the International Commission for the Protection of the Danube River, p 261. Kotél V (1995) The first record of *Anodonta woodiana* (Mollusca, Bivalvia) in Slovakia Acta zoologica Universitatis Comenianae Bratislava 39: 3-7. Lodde A, Palmerini E and Castagnolo L (2005) *Anodonta woodiana* (Lea, 1834) (Mollusca, Bivalvia, Unionidae), a non-indigenous species wide-spread in Italy: Comparison of the biological cycle in native countries (far east) and in Italy (Modena Canals). Presented at IV International Congress of the European Malacological Societies, Naples, Italy 10-14 October 2005. Manganelli G, Bodon M, Favilli L, Castagnolo L and Giusti F (1998) Checklist delle specie della fauna d'Italia, molluschi terrestri e d'acqua dolce. Errata ed addenda, 1. Bolletino Malacologico 33(9-12): 151-156. Paunovic M (2004) Qualitative composition of the macroinvertebrate communities in the Serbian part of the Danube River. International Association for Danube Research 35: 349-354. Paunovic M, Cakic P, Hegedis A, Kolarевич J and Lenhardt M (2004) A report of *Eriocheir sinensis* (H. Milne Edwards, 1854) [Crustacea: Brachyura: Grapsidae] from the Serbian part of the Danube River. Hydrobiologia 529: 275-277. Paunovic M, Simic V, Jakovcev-Todorovic D and Stojanovic B (2005a) Results on macroinvertebrate community investigation in the Danube River in the sector upstream the Iron Gate (1083-1071 km). Archives of Biological Sciences, Belgrade, 57(1): 57-63. Paunovic M, Miljanovic B, Simic V, Cakic P, Djikanovic V, Jakovcev-Todorovic D, Stojanovic B and Veljkovic A (2005b) Distribution of non-indigenous tubificid worm *Branchiura sowerbiy* (Beddard, 1892) in Serbia. Biotechnology & Biotechnological Equipment 1: 53-56. Petró E (1984) Occurrence of *Anodonta woodiana* (Lea, 1834) (Bivalvia: Unionacea) in Hungary. Állatok közlemények, 71: 181-191.
Distribution of *Anodonta woodiana*

Reischutz PL (1998) Vorschlag fur deutsche Namen der in Osterreich nachgewiesenen Schnecken- und Muschelarten. Nachrichtenblatt der Ersten orarberger Malakologischen Gesellschaft 6: 31-44

Sárkány-Kiss A (1986) *Anodonta woodiana* (Lea, 1834) a new species in Romania (Bivalvia: Unionacea). Travaux du Museum d'Histoire. Naturelle "G.Antipa", 28: 15-17

Simonovic P, Valkovic B and Paunovic M (1998) Round goby *Neogobius melanostomus*, a new Ponto-Caspian element for Yugoslavia. Folia Zoologica 47(4): 305-312

Simonovic P, Paunovic M and Popovic S (2001) Morphology, Feeding, and Reproduction of the Round Goby, *Neogobius melanostomus* (Pallas), in the Danube River Basin, Yugoslavia. Journal Great Lakes Research 27(3): 281-289

Stefek J, Nagel K-O and Vavr ova Lj (2004) Unionidae species in Slovakia in the future and today. Paper presented at the Fauna Carpathica Meeting 2004, Smolenice, Slovakia, 17-19.03.2004, Abstract Book: 37-38

Urishients VI and Korniushin AV (2001) The new species in the fauna of Ukraine *Sinanodonta woodiana* (Bivalvia, Unionidae), its diagnostics and possible ways of introduction. Vestnik zoologii 35: 79–84

VITUKI (2001) Second phase of surveying the environmental and natural damages, which were caused by the cyanide and heavy metal pollution accidents of Romanian sources in the Szamos and Tisza river systems. Final Report 712/3/488902, Compiled by Environmental Protection and Water Management Research Institute (VITUKI Kht), Institute for Water Pollution Control, Budapest. p. 43

Watters GT (1997) A synthesis and review of the expanding range of the Asian freshwater mussel *Anodonta woodiana* (Bivalvia: Unionidae) Veliger 40: 152-156

Annex

Records of *Anodonta woodiana* in Serbia 1998-2006

Record No (Map Ref.)	Location (River, river-kilometer)	Record coordinates	Record date	Abundance	Collector
1	Danube River, 1367	45.5323, 19.0740	01.09.2001	01.09.2001	Csanyi and Paunovic
2	Danube River, 1300	45.2274, 19.3621	01.09.2001	Csanyi and Paunovic	
3	Danube River, 1260	no data, no data	24.08.1999	Csanyi	
4	Danube River, 1259	45.2267, 19.8395	02.09.2001	Csanyi and Paunovic	
5	Danube River, 1252	45.2617, 19.8871	02.09.2001	Csanyi and Paunovic	
6	Danube River, 1252	45.2594, 19.8934	28.08.2004	Csanyi and Paunovic	
7	Danube River, 1252	no data, no data	24.08.1999	Csanyi	
8	Danube River, 1200	45.0323, 20.3563	29.08.2004	1	Csanyi and Paunovic
9	Danube River, 1175	44.8715, 20.3741	15.06.1998	1	Paunovic
10	Danube River, 1171	44.8314, 20.4553	06.06.2002	7	Paunovic
11	Danube River, 1162	44.8315, 20.5569	06.06.2002	Paunovic	
12	Danube River, 1159	44.8430, 20.5633	30.08.2004	Csanyi and Paunovic	
13	Danube armlet, 1159	44.8395, 20.5889	06.06.1998	4	Paunovic
14	Danube River, 1154	no data, no data	25.08.1999	Csanyi	
Annex (continued)

Record No	Location (River, river-kilometer)	Record coordinates	Record date	Abundance	Collector
15	Danube River, 1151	44,8174, 20,6495	30.08.2004		Csanyi and Paunovic
16	Danube River, 1148	44,7990, 20,6356	18.05.1999		Paunovic
17	Danube River, 1126	44,6559, 20,8237	14.09.1998	4	Paunovic
18	Danube River, 1126	44,6611, 20,8148	13.05.1999		Paunovic
19	Danube River, 1107	44,7140, 20,9973	31.08.2004	7	Csanyi and Paunovic
20	Danube River, 1097	44,7373, 21,1252	31.08.2004		Csanyi and Paunovic
21	Danube River, 1081	44,7832, 21,2068	14.06.2000	6	Paunovic
22	Danube, 1077	44,8169, 21,3344	01.09.2004	5	Paunovic
23	Danube, 1077	no data, no data	26.08.1999		Csanyi
24	Danube, 1077	no data, no data	26.08.1999		Csanyi
25	Danube, 1077	44,8274, 21,3236	13.06.2000		Paunovic
26	Danube, 1078	44,8251, 21,3152	13.06.2000	7	Paunovic
27	Danube, 1078	44,8233, 21,3143	11.07.2002		Paunovic
28	Danube, 1077	44,8134, 21,3240	14.06.2000	3	Paunovic
29	Danube, 1076	44,8180, 21,3338	14.06.2000		Paunovic
30	Danube, 1071	44,7967, 21,3896	01.09.2004	9	Csanyi and Paunovic
31	Danube, 1040	44,6611, 21,6773	02.09.2004		Csanyi and Paunovic
32	Danube, 1040	44,6598, 21,6770	06.09.2001		Csanyi and Paunovic
33	Tisza, 10	45,1921, 20,3105	29.09.2001		Csanyi and Paunovic
34	Tisza, 10	45,1968, 20,3114	26.08.2003		Paunovic
35	Tisza, 0,5	45,2106, 20,3240	29.09.2001	7	Csanyi and Paunovic
36	Tisza, 69	45,5957, 20,1096	27.08.2003	2	Paunovic
37	Tisza, 72	45,5955, 20,0638	30.09.2001		Csanyi and Paunovic
38	Tisza, 120	45,9041, 20,1143	28.08.2003		Paunovic
39	Tisza, 155	46,1106, 20,0788	28.08.2003		Paunovic
40	Begej, 0,4	45,2102, 20,3209	26.08.2003	6	Paunovic
41	Sava, 8	44,7809, 20,3631	18.08.2003		Paunovic
42	Sava armlet, 4	44,7937, 20,4271	20.08.1997	7	Paunovic
43	Velika Morava	44,5860, 22,1275	08.07.2004	5	Paunovic
44	Danube River, 991	44,4666, 22,1576	12.06.2006		Stojanovic and Paunovic

*Full reference to the data: Paunovic M, Csányi B, Simic V, Stojanovic B and Cakic P (2006) Distribution of *Anodonta (Sinanodonta) woodiana* (Rea, 1834) in inland waters of Serbia. Aquatic Invasions 1(3): 154-160*