Dynamically Aggregating Diverse Information

Annie Liang1 \quad Xiaosheng Mu2 \quad Vasilis Syrgkanis3

1Northwestern \quad 2Princeton \quad 3Microsoft Research

Simons Institute
Introduction

how should an agent acquire information over time given

- limited resources, and
- access to multiple kinds of information?
Introduction

how should an agent acquire information over time given

- limited resources, and
- access to multiple kinds of information?

examples:

- mayor wants to learn the COVID incidence rate in city, allocates limited number of tests across neighborhoods
Introduction

how should an agent acquire information over time given
- limited resources, and
- access to multiple kinds of information?

examples:
- mayor wants to learn the COVID incidence rate in city, allocates limited number of tests across neighborhoods
- news reader wants to learn the unknown cost of a proposed policy, allocates time across different (biased) news sources
This Talk

- model of the dynamic information acquisition problem

- main result: optimal information acquisition strategy can be exactly characterized and has an easily describable structure

- tractability of the model lends itself to application

- characterization can be used to derive new results in three settings motivated by particular economic questions
Model
unknown attributes \((\theta_1, \ldots, \theta_K) \sim \mathcal{N}(\mu, \Sigma)\)

- e.g. each “attribute” is the COVID incidence rate in a specific neighborhood
- attributes may be correlated
- learn about \(\theta_i\) by observing diffusion process \(X^t_i\) (more soon)
unknown attributes \((\theta_1, \ldots, \theta_K) \sim N(\mu, \Sigma)\)

- e.g. each “attribute” is the COVID incidence rate in a specific neighborhood
- attributes may be correlated
- learn about \(\theta_i\) by observing diffusion process \(X_i^t\) (more soon)

payoff-relevant state: \(\omega = \sum_{k=1}^{K} \alpha_k \theta_k\)

- e.g. aggregate COVID incidence rate in city
- assume weights \(\alpha_k\) are known
Attention Allocation

at each \(t \in \mathbb{R}_+ \), allocate budget of resources across attributes:

- choose \((\beta_1^t, \ldots, \beta_K^t)\) subject to \(\beta_1^t + \cdots + \beta_K^t = 1\)
- diffusion processes evolve as
 \[
 dX_i^t = \beta_i^t \cdot \theta_i \cdot dt + \sqrt{\beta_i^t} \cdot dB_i^t
 \]
 where \(B_i\) are independent standard Brownian motions.
- more resources \(\Rightarrow\) more precise information
Attention Allocation

at each $t \in \mathbb{R}_+$, allocate budget of resources across attributes:

- choose $(\beta_1^t, \ldots, \beta_K^t)$ subject to $\beta_1^t + \cdots + \beta_K^t = 1$
- diffusion processes evolve as
 \[
 dX_i^t = \beta_i^t \cdot \theta_i \cdot dt + \sqrt{\beta_i^t} \cdot dB_i^t
 \]
 where B_i are independent standard Brownian motions.
- more resources \Rightarrow more precise information

discrete-time analogue: at each time $t \in \mathbb{Z}_+$, choose attention vector $(\beta_1(t), \ldots, \beta_K(t))$ summing to 1, and observe

\[
\theta_i + \mathcal{N} \left(0, \frac{1}{\beta_i(t)} \right) \quad \text{for each } i = 1, \ldots, K
\]
Decision Problem

- observe complete path of each process

- at each time t the history is $\{X_i \leq t\}_{i=1}^{K}$
 - **information acquisition strategy** S: map from histories into an attention vector
 - **stopping rule** τ: map from history into decision of whether to stop sampling

- at endogenously chosen end time τ, take action $a \in A$ and receive $u(a, \omega, \tau)$
Related Literature

- not a multi-armed bandit problem (Gittins, 1979)
Related Literature

- **not** a multi-armed bandit problem (Gittins, 1979)
- but related to “best-arm identification” when $K = 2$ (Bubeck et al. (‘09); Russo (‘16))
- Frazier et al. (‘08) show that the myopic “knowledge gradient policy” is optimal for two arms with independent payoffs

 → we consider many correlated unknowns that are aggregated to a one-dimensional payoff-relevant state
Related Literature

- not a multi-armed bandit problem (Gittins, 1979)
 - but related to “best-arm identification” when $K = 2$ (Bubeck et al. (‘09); Russo (‘16))
 - Frazier et al. (‘08) show that the myopic “knowledge gradient policy” is optimal for two arms with independent payoffs

 ➔ we consider many correlated unknowns that are aggregated to a one-dimensional payoff-relevant state

- dynamic learning from fixed set of signals:
 - Fudenberg et al. (‘18), Che and Mierendorff (‘19); Mayskaya (‘19); Gossner et al. (‘20); Azevedo et al. (‘20)
 ➔ we allow many signals with flexible correlation

Related Literature

- not a multi-armed bandit problem (Gittins, 1979)
 - but related to “best-arm identification” when $K = 2$ (Bubeck et al. ('09); Russo ('16))
 - Frazier et al. ('08) show that the myopic “knowledge gradient policy” is optimal for two arms with independent payoffs
 → we consider many correlated unknowns that are aggregated to a one-dimensional payoff-relevant state

- dynamic learning from fixed set of signals:
 - Fudenberg et al. ('18), Che and Mierendorff ('19); Mayskaya ('19); Gossner et al. ('20); Azevedo et al. ('20)
 → we allow many signals with flexible correlation
 - Callender ('11); Garfagnini and Strulovici ('16); Bardhi ('20)
 → we have a finite number of attributes and noisy observations
Main Results:

Characterization of the Optimal Information Acquisition Strategy

Thm 1: result for $K = 2$
Thm 2: result for $K > 2$
Case of $K = 2$

- two attributes
 \[
 \begin{pmatrix}
 \theta_1 \\
 \theta_2
 \end{pmatrix}
 \sim \mathcal{N}
 \left(
 \begin{pmatrix}
 \mu_1 \\
 \mu_2
 \end{pmatrix},
 \begin{pmatrix}
 \Sigma_{11} & \Sigma_{12} \\
 \Sigma_{21} & \Sigma_{22}
 \end{pmatrix}
 \right)
 \]

- payoff-relevant state is $\omega = \alpha_1 \theta_1 + \alpha_2 \theta_2$, where each $\alpha_i > 0$
Case of $K = 2$

- two attributes
 $\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \right)$

- payoff-relevant state is $\omega = \alpha_1 \theta_1 + \alpha_2 \theta_2$, where each $\alpha_i > 0$

- define $\text{cov}_i := \text{Cov}(\omega, \theta_i) = \alpha_i \Sigma_{ii} + \alpha_j \Sigma_{ji}$ for each $i = 1, 2$

Assumption ("Attributes are Not Too Negatively Correlated")

$\text{cov}_1 + \text{cov}_2 = \alpha_1 \Sigma_{11} + \alpha_2 \Sigma_{12} + \alpha_1 \Sigma_{21} + \alpha_2 \Sigma_{22} \geq 0$
Case of $K = 2$

- two attributes

 \[
 \begin{pmatrix}
 \theta_1 \\
 \theta_2
 \end{pmatrix}
 \sim \mathcal{N}
 \left(
 \begin{pmatrix}
 \mu_1 \\
 \mu_2
 \end{pmatrix},
 \begin{pmatrix}
 \Sigma_{11} & \Sigma_{12} \\
 \Sigma_{21} & \Sigma_{22}
 \end{pmatrix}
 \right)
 \]

- payoff-relevant state is $\omega = \alpha_1 \theta_1 + \alpha_2 \theta_2$, where each $\alpha_i > 0$

- define $\text{cov}_i := \text{Cov}(\omega, \theta_i) = \alpha_i \Sigma_{ii} + \alpha_j \Sigma_{ji}$ for each $i = 1, 2$

Assumption ("Attributes are Not Too Negatively Correlated")

\[
\text{cov}_1 + \text{cov}_2 = \alpha_1 \Sigma_{11} + \alpha_2 \Sigma_{12} + \alpha_1 \Sigma_{21} + \alpha_2 \Sigma_{22} \geq 0
\]

sufficient conditions:

\[
\alpha_1 = \alpha_2
\]
Case of $K = 2$

- two attributes
 \[
 \begin{pmatrix}
 \theta_1 \\
 \theta_2
 \end{pmatrix}
 \sim \mathcal{N}
 \left(
 \begin{pmatrix}
 \mu_1 \\
 \mu_2
 \end{pmatrix},
 \begin{pmatrix}
 \Sigma_{11} & \Sigma_{12} \\
 \Sigma_{21} & \Sigma_{22}
 \end{pmatrix}
 \right)
 \]

- payoff-relevant state is $\omega = \alpha_1 \theta_1 + \alpha_2 \theta_2$, where each $\alpha_i > 0$

- define $\text{cov}_i := \text{Cov}(\omega, \theta_i) = \alpha_i \Sigma_{ii} + \alpha_j \Sigma_{ji}$ for each $i = 1, 2$

Assumption ("Attributes are Not Too Negatively Correlated")

\[
\text{cov}_1 + \text{cov}_2 = \alpha_1 \Sigma_{11} + \alpha_2 \Sigma_{12} + \alpha_1 \Sigma_{21} + \alpha_2 \Sigma_{22} \geq 0
\]

sufficient conditions:

\[
\alpha_1 = \alpha_2 \quad \Sigma_{12} = \Sigma_{21} \geq 0
\]
Case of $K = 2$

- two attributes

 $\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \right)$

- payoff-relevant state is $\omega = \alpha_1 \theta_1 + \alpha_2 \theta_2$, where each $\alpha_i > 0$

- define $\text{cov}_i := \text{Cov}(\omega, \theta_i) = \alpha_i \Sigma_{ii} + \alpha_j \Sigma_{ji}$ for each $i = 1, 2$

Assumption ("Attributes are Not Too Negatively Correlated")

$\text{cov}_1 + \text{cov}_2 = \alpha_1 \Sigma_{11} + \alpha_2 \Sigma_{12} + \alpha_1 \Sigma_{21} + \alpha_2 \Sigma_{22} \geq 0$

sufficient conditions:

$\alpha_1 = \alpha_2 \quad \Sigma_{12} = \Sigma_{21} \geq 0 \quad \Sigma_{11} = \Sigma_{22}$
Optimal Attention Allocation Strategy

Theorem

Wlog let $\text{cov}_1 \geq \text{cov}_2$. Define

$$t_1 = \frac{\text{cov}_1 - \text{cov}_2}{\alpha_2 \text{det}(\Sigma)}.$$
Theorem

Wlog let $\text{cov}_1 \geq \text{cov}_2$. Define

$$t_1 = \frac{\text{cov}_1 - \text{cov}_2}{\alpha_2 \det(\Sigma)}.$$

The optimal attention strategy has two stages:
Optimal Attention Allocation Strategy

Theorem

Wlog let $\text{cov}_1 \geq \text{cov}_2$. Define

$$t_1 = \frac{\text{cov}_1 - \text{cov}_2}{\alpha_2 \det(\Sigma)}.$$

The optimal attention strategy has two stages:

1. At times $t \leq t_1$, DM allocates all attention to attribute 1.
Theorem

Wlog let $cov_1 \geq cov_2$. Define

$$t_1 = \frac{cov_1 - cov_2}{\alpha_2 \det(\Sigma)}.$$

The optimal attention strategy has two stages:

1. *At times $t \leq t_1$, DM allocates all attention to attribute 1.*
2. *At times $t > t_1$, DM allocates attention in the constant fraction*

$$\left(\beta_1^t, \beta_2^t\right) = \left(\frac{\alpha_1}{\alpha_1 + \alpha_2}, \frac{\alpha_2}{\alpha_1 + \alpha_2}\right).$$
Example 1: Independent Attributes

\[
\begin{pmatrix}
\theta_1 \\
\theta_2
\end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix}
\mu_1 \\
\mu_2
\end{pmatrix}, \begin{pmatrix}
6 & 0 \\
0 & 1
\end{pmatrix}\right)
\]

- payoff-relevant state is \(\theta_1 + \theta_2\)

- then optimally:
 - phase 1: put all attention on learning about \(\theta_1\)
 - at time \(t = 5/6\), posterior covariance matrix is \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)
 - after, split attention equally
Example 2: Correlated Attributes

\[
\begin{pmatrix}
\theta_1 \\
\theta_2
\end{pmatrix}
\sim \mathcal{N}
\left(
\begin{pmatrix}
\mu_1 \\
\mu_2
\end{pmatrix},
\begin{pmatrix}
6 & 2 \\
2 & 1
\end{pmatrix}
\right)
\]

- payoff-relevant state is \(\theta_1 + \theta_2 \)

then optimally:

- phase 1: put all attention on learning about \(\theta_1 \)
- at \(t = 5/2 \), posterior covariance is

\[
\begin{pmatrix}
3/8 & 1/8 \\
1/8 & 3/8
\end{pmatrix}
\]

- after, split attention equally
$K > 2$ Attributes

Three different sufficient conditions (only need one):

- **Assumption 1**: (Perpetual Substitutes.) Σ^{-1} has negative off-diagonal entries.

- **Assumption 2**: (Perpetual Complements.) Σ has negative off-diagonal entries and $\text{Cov}(\theta_i, \omega) \geq 0$ for each attribute i.

- **Assumption 3**: (Diagonal Dominance.) Σ^{-1} is diagonally-dominant: $[\Sigma^{-1}]_{ii} \geq \sum_{j \neq i} |[\Sigma^{-1}]_{ij}| \forall i$.
$K > 2$ Attributes

Three different sufficient conditions (only need one):

- **Assumption 1:** (Perpetual Substitutes.) Σ^{-1} has negative off-diagonal entries.

 the partial correlation between any pair of attributes (controlling for all other attributes) is positive

- **Assumption 2:** (Perpetual Complements.) Σ has negative off-diagonal entries and $\text{Cov}(\theta_i, \omega) \geq 0$ for each attribute i.

- **Assumption 3:** (Diagonal Dominance.) Σ^{-1} is diagonally-dominant: $[\Sigma^{-1}]_{ii} \geq \sum_{j \neq i} |[\Sigma^{-1}]_{ij}| \ \forall \ i$.

$K > 2$ Attributes

Three different sufficient conditions (only need one):

- **Assumption 1:** (Perpetual Substitutes.) Σ^{-1} has negative off-diagonal entries.

 the partial correlation between any pair of attributes (controlling for all other attributes) is positive

- **Assumption 2:** (Perpetual Complements.) Σ has negative off-diagonal entries and $\text{Cov}(\theta_i, \omega) \geq 0$ for each attribute i.

 prior covariances are mildly negative

- **Assumption 3:** (Diagonal Dominance.) Σ^{-1} is diagonally-dominant: $[\Sigma^{-1}]_{ii} \geq \sum_{j \neq i} |[\Sigma^{-1}]_{ij}| \ \forall \ i.$

 covariance matrix is not too far from identity
$K > 2$ Attributes

Three different sufficient conditions (only need one):

- **Assumption 1:** (Perpetual Substitutes.) Σ^{-1} has negative off-diagonal entries.

 the partial correlation between any pair of attributes (controlling for all other attributes) is positive

- **Assumption 2:** (Perpetual Complements.) Σ has negative off-diagonal entries and $\text{Cov}(\theta_i, \omega) \geq 0$ for each attribute i.

 prior covariances are mildly negative

- **Assumption 3:** (Diagonal Dominance.) Σ^{-1} is diagonally-dominant: $[\Sigma^{-1}]_{ii} \geq \sum_{j \neq i} |[\Sigma^{-1}]_{ij}| \ \forall \ i$.

 covariance matrix is not too far from identity
Under any of the preceding assumptions, there exist times

\[0 = t_0 < t_1 < \cdots < t_m = +\infty \]

and nested sets

\[\emptyset \subsetneq B_1 \subsetneq \cdots \subsetneq B_m = \{1, \ldots, K\}, \]

such that an optimal information acquisition strategy is described by a deterministic path of attention allocations.
Theorem

Under any of the preceding assumptions, there exist times

\[0 = t_0 < t_1 < \cdots < t_m = +\infty \]

and nested sets

\[\emptyset \subsetneq B_1 \subsetneq \cdots \subsetneq B_m = \{1, \ldots, K\}, \]

such that an optimal information acquisition strategy is described by a deterministic path of attention allocations.

At each stage \([t_{k-1}, t_k)\):

- the optimal attention level is constant
- and supported on the sources in \(B_k\).
Theorem

Under any of the preceding assumptions, there exist times

\[0 = t_0 < t_1 < \cdots < t_m = +\infty \]

and nested sets

\[\emptyset \subsetneq B_1 \subsetneq \cdots \subsetneq B_m = \{1, \ldots, K\}, \]

such that an optimal information acquisition strategy is described by a deterministic path of attention allocations.

At each stage \([t_{k-1}, t_k)\):

- the optimal attention level is constant
- and supported on the sources in \(B_k\).

At the final stage, attention is proportional to the weight vector \(\alpha\).
Theorem

Under any of the preceding assumptions, there exist times

\[0 = t_0 < t_1 < \cdots < t_m = +\infty \]

and nested sets

\[\emptyset \subsetneq B_1 \subsetneq \cdots \subsetneq B_m = \{1, \ldots, K\}, \]

such that an optimal information acquisition strategy is described by a deterministic path of attention allocations.

At each stage \([t_{k-1}, t_k)\):

- the optimal attention level is constant
- and supported on the sources in \(B_k\).

At the final stage, attention is proportional to the weight vector \(\alpha\).

- full path can be computed from \(\alpha\) and \(\Sigma\) (see paper)
Properties of the Solution

The optimal attention allocation strategy is:

- history-independent (can map out full path from \(t = 0 \))
- independent of the stopping rule
 - don’t have to solve for stopping rule and information acquisition strategy jointly
- robust across decision problems
Explanation of Results
Static Problem

one-time budget of \(t \) total tests

\[
\begin{align*}
\text{Testing Center 1} & & \text{Testing Center 2} \\
\theta_1 & & \theta_2 \\
\text{Testing Center 3} & \\
\theta_3
\end{align*}
\]

posterior variance of \(\omega \) can be written as a function \(V(q_1, q_2, q_3) \)

static problem: choose \(q_1, q_2, q_3 \in \mathbb{R}_+ \) to minimize \(V(q_1, q_2, q_3) \)

subject to \(q_1 + q_2 + q_3 \leq t \)
Static Problem

one-time budget of t total tests

Testing Center 1
\[
\theta_1
\]
optimally allocate $q_1^*(t)$ tests

Testing Center 2
\[
\theta_2
\]
optimally allocate $q_2^*(t)$ test

Testing Center 3
\[
\theta_3
\]
optimally allocate $q_3^*(t)$ tests

posterior variance of ω can be written as a function $V(q_1, q_2, q_3)$

static problem: choose $q_1, q_2, q_3 \in \mathbb{R}_+$ to minimize $V(q_1, q_2, q_3)$ subject to $q_1 + q_2 + q_3 \leq t$
Exogenous End Time $T = 100$

100 total tests

Testing Center 1

θ_1

100 tests

Testing Center 2

θ_2

0 tests

Testing Center 3

θ_3

0 tests
Exogenous End Time $T = 101$

101 total tests

Testing Center 1

θ_1

1 test

Testing Center 2

θ_2

50 tests

Testing Center 3

θ_3

50 tests
Exogenous End Time $T = 101$

101 total tests

- Testing Center 1
 - θ_1
 - 1 test

- Testing Center 2
 - θ_2
 - 50 tests

- Testing Center 3
 - θ_3
 - 50 tests

DM faces intertemporal tradeoffs: must choose between better information for a decision at time $t = 100$ versus $t = 101$
Key Idea: Uniformly Optimal Strategies

- Iff $q^*(t)$ is increasing in each of its coordinates, possible to achieve $q^*(t)$ at every t along a single sampling strategy.
Key Idea: Uniformly Optimal Strategies

- Iff $q^*(t)$ is increasing in each of its coordinates, possible to achieve $q^*(t)$ at every t along a single sampling strategy.

- Call such a strategy **uniformly optimal**.
 - minimizes posterior variance at every moment
 - **lemma**: best for all decision problems
Key Idea: Uniformly Optimal Strategies

- Iff $q^*(t)$ is increasing in each of its coordinates, possible to achieve $q^*(t)$ at every t along a single sampling strategy.

- Call such a strategy **uniformly optimal**.
 - minimizes posterior variance at every moment
 - **lemma**: best for all decision problems

- Our different sufficient conditions on the prior guarantee that $q^*(t)$ is increasing in t
When Does a Uniformly Optimal Strategy Exist?

- When is $q^*(t)$ increasing in t?
When Does a Uniformly Optimal Strategy Exist?

- When is \(q^*(t) \) increasing in \(t \)?

- Analogy with a classic consumer demand theory problem:
 - Utility function \(U(q_1, \ldots, q_K) \) over consumption of \(q_k \) units of each of \(K \) goods
 - Let \(D(p, w) \) denote consumer’s demand subject to budget constraint \(p \cdot q \leq w \).
 - Demand is **normal** if each coordinate of \(D(p, w) \) increases with income \(w \).
When Does a Uniformly Optimal Strategy Exist?

- When is $q^*(t)$ increasing in t?

- Analogy with a classic consumer demand theory problem:
 - Utility function $U(q_1, \ldots, q_K)$ over consumption of q_k units of each of K goods
 - Let $D(p, w)$ denote consumer’s demand subject to budget constraint $p \cdot q \leq w$.
 - Demand is **normal** if each coordinate of $D(p, w)$ increases with income w.

- Let $U = -V$, $p = (1, 1, \ldots, 1)'$, and $w = t$. Then normality of demand is equivalent to monotonicity of $q^*(t)$.
When Does a Uniformly Optimal Strategy Exist?

- When is $q^*(t)$ increasing in t?

- Analogy with a classic consumer demand theory problem:
 - Utility function $U(q_1, \ldots, q_K)$ over consumption of q_k units of each of K goods
 - Let $D(p, w)$ denote consumer’s demand subject to budget constraint $p \cdot q \leq w$.
 - Demand is **normal** if each coordinate of $D(p, w)$ increases with income w.

- Let $U = -V$, $p = (1, 1, \ldots, 1)'$, and $w = t$. Then normality of demand is equivalent to monotonicity of $q^*(t)$.

- Our condition “Perpetual Complementarity” is directly related to a sufficient condition for normality of demand.
When Does a Uniformly Optimal Strategy Exist?

- When is \(q^*(t) \) increasing in \(t \)?

- Analogy with a classic consumer demand theory problem:
 - Utility function \(U(q_1, \ldots, q_K) \) over consumption of \(q_k \) units of each of \(K \) goods
 - Let \(D(p, w) \) denote consumer’s demand subject to budget constraint \(p \cdot q \leq w \)
 - Demand is **normal** if each coordinate of \(D(p, w) \) increases with income \(w \).

- Let \(U = -V \), \(p = (1, 1, \ldots, 1)' \), and \(w = t \). Then normality of demand is equivalent to monotonicity of \(q^*(t) \).

- Our condition “Perpetual Complementarity” is directly related to a sufficient condition for normality of demand.

- We exploit properties of \(U = -V \) to derive the others.
Structure of Uniformly Optimal Strategies

- The attention allocations β^t under the uniformly optimal strategy are simply the time derivatives of $q^*(t)$.
 - i.e. “greedy” optimization
Structure of Uniformly Optimal Strategies

- The attention allocations β^t under the uniformly optimal strategy are simply the time derivatives of $q^*(t)$.
 - i.e. “greedy” optimization

- At each stage, agent optimally divides attention among the set of attributes with highest marginal value for learning about ω.
Structure of Uniformly Optimal Strategies

- The attention allocations β^t under the uniformly optimal strategy are simply the time derivatives of $q^*(t)$.
 - i.e. “greedy” optimization

- At each stage, agent optimally divides attention among the set of attributes with highest marginal value for learning about ω.

- At each stage, the mixture maintains equivalence of marginal values of those attributes, but reduces it.
Structure of Uniformly Optimal Strategies

- The attention allocations β^t under the uniformly optimal strategy are simply the time derivatives of $q^*(t)$.
 - i.e. “greedy” optimization

- At each stage, agent optimally divides attention among the set of attributes with highest marginal value for learning about ω.

- At each stage, the mixture maintains equivalence of marginal values of those attributes, but reduces it.

- Eventually, some other attribute has the same marginal value and the agent expands his observation set to include it. Etc.
Application of Characterization

- Can apply characterizations to derive new results in settings motivated by particular economic questions.

- We illustrate this with three applications, where we use our main results to:
 - tractably introduce correlation in settings that have been previously studied under strong assumptions of independence.
 - derive results about other economic behaviors.
DM learns about unknown payoffs \((v_1, v_2) \sim \mathcal{N}(\mu, \Sigma)\) of two goods before making a choice.

Set \(\theta_1 = v_1\), \(\theta_2 = -v_2\), \(\omega = \theta_1 + \theta_2\) and observe that one of the sufficient conditions for \(K = 2\) is met \((\alpha_1 = \alpha_2)\).

So our main result yields the optimal information acquisition strategy.

Use this to generalize a result from Fudenberg et al. (‘18) regarding the relationship between choice speed and accuracy.
Summary of Application 2: Attention Manipulation

- Gossner et al. (‘21) study the dynamic implications of attention manipulation in a model with goods with independent payoffs.

- Diverting attention towards a specific good leads to
 - persistently higher cumulative attention devoted to that good
 - persistently lower cumulative attention to every other good

- We derive a complementary result in our setting, focusing on the role of correlation:
 - Gossner et al. (‘21)’s qualitative conclusion can in general fail with correlation
 - But extends under the “Perpetual Substitutes” condition identified earlier
Summary of Application 3: Biased News Sources

- Stylized game between a liberal and a conservative news source
 - Report on a common unknown (e.g., the fiscal cost of a policy proposal), but reporting is biased in opposite directions.
 - Sources choose the size of their bias and the precision of their reporting, and compete over readers’ attention.

- Apply our result to characterize equilibrium news provision in this model.

- Find that higher intrinsic incentives for bias not only lead to greater polarization in equilibrium, but also lead to less precise reporting.
Conclusion

- Information acquisition is a classic problem within economics, but relatively few dynamic models are simultaneously rich and tractable.

- We present a class of dynamic information acquisition problems whose solution can be explicitly characterized in closed form.

- Key restrictions:
 - Gaussian uncertainty
 - a one-dimensional payoff-relevant state
 - correlation across the unknowns that satisfies certain assumptions (e.g., if correlation is not too strong)

- Can accommodate generality in other aspects of the problem (e.g., the decision problem and the agent’s time preferences)

- The tractability of the solution and the flexibility of the environment open the door to interesting applications.
Thank You!