ORIGINAL ARTICLE

Phenotypes and genotypes in non-consanguineous and consanguineous primary microcephaly: High incidence of epilepsy

Sarah Duerinckx1 | Julie Désir2 | Camille Perazzolo1 | Cindy Badoer3 |
Valérie Jacquemin1 | Julie Soblet3,4 | Isabelle Maystadt2 | Yusuf Tunca5 |
Bettina Blaumeiser6 | Berten Ceulemans6 | Winnie Courtens7 | François-Guillaume Debray |
Guillaume Debray7 | Anne Destree2 | Koenraad Devriendt8 | Anna Jansen9 |
Kathelyn Keymolen9 | Damien Lederer2 | Bart Loeyes6 | Marije Meuwissen6 |
Stéphanie Moortgat2 | Geert Mortier6 | Marie-Cécile Nassogne10 | Tayeb Sekhara11 |
Rudy Van Coster12 | Jenny Van Den Ende6 | Nathalie Van der Aa6 | Hilde Van Esch8 |
Olivier Vanakker12 | Helene Verhelst12 | Catheline Vilain3,4 | Sarah Weckhuysen6 |
Sandrine Passemard13 | Alain Verloes13 | Alec Aeby4 | Nicolas Deconinck4 |
Patrick Van Bogaert14 | Isabelle Pirson1 | Marc Abramowicz1,15

1Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire, Université Libre de Bruxelles, Brussels, Belgium
2Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
3Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
4Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles, Brussels, Belgium
5Department of Medical Genetics, Gülhane Faculty of Medicine & Gülhane Training and Research Hospital, University of Health Sciences Turkey, Ankara, Turkey
6University and University Hospital of Antwerp, Antwerp, Belgium
7Centre Hospitalier Universitaire de Liège, Liège, Belgium
8Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
9Universitair Ziekenhuis Brussel (UZ Brussel), Centrum Medische Genetica, Universiteit Brussel (VUB), Brussels, Belgium
10Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
11Centre Hospitalier CHIREC, Brussels, Belgium
12Universitair Ziekenhuis Gent, Ghent, Belgium
13Department of Genetics, APHP, Robert Debré University Hospital, Paris, France
14Department of Pediatrics, Centre Hospitalier Universitaire d’Angers, France
15Department of Genetic Medicine and Development, University of Geneva, Genève, Switzerland

Isabelle Pirson and Marc Abramowicz share senior authorship.
INTRODUCTION

Microcephaly is a clinical condition referring to a small head size. It is assessed by measuring the occipitofrontal circumference (OFC) (Rollins et al., 2010). The OFC is a surrogate for brain volume, microcephaly reflecting a small brain, mostly a small neocortex (Cox et al., 2006). Most subjects with an OFC smaller than 3 standard deviations (SDs) below the mean for sex and age, have intellectual deficiency, and some of them present with additional neurological deficits like epilepsy or paresis (Létard et al., 2018). The prevalence of such additional deficits remains unclear and no systematic study of epilepsy in microcephaly has been reported.

Recognized causes of microcephaly are very heterogeneous. Hundreds of syndromes have been described with microcephaly as a feature. Microcephaly can be attributed to environmental causes (e.g., infections, teratogens, perinatal hypoxia, hypoglycemia) or genetic causes. Primary microcephaly (PM) refers to a prenatal defect of brain volume development, and secondary microcephaly consists of progressive atrophy of an initially normal brain, usually starting after birth (Woods & Basto, 2014). In spite of some overlap, these two groups are fairly separated, with distinct patterns of brain growth deceleration (Boonsawat et al., 2019; Shaheen et al., 2019). PM is divided into syndromic and non-syndromic. Patients with primary, non-syndromic microcephaly typically present with a mild phenotype consisting of mild to a moderate intellectual disability only. The relatively high recurrence risk in siblings of an affected child, and the high rate of consanguinity in these families, indicate that a large proportion of cases is inherited as autosomal recessive. This phenotype is referred to as microcephaly primary hereditary (MCPH). The MCPH brain is small but its architecture is well conserved (Woods & Basto, 2014). Genetic heterogeneity in MCPH is striking, with 27 genes reported so far, 24 of which show autosomal recessive inheritance (Table S1). Additionally, RRP7A was recently associated with MCPH in a consanguineous Pakistani family (Farooq et al., 2020). Many of the MCPH proteins are recruited at the centrosome (Vertii et al., 2016) or cilium, or act in cell-cycle dynamics, and are expressed during corticogenesis (Zaqout et al., 2017). Some syndromes associate microcephaly with short stature and/or dysostoses, for example, Seckel syndrome or microcephalic osteodysplastic primordial dwarfs, or with congenital diabetes (Duerinckx & Abramowicz, 2018). The large
genetic heterogeneity of PM and rarity of many pathogenic variants make gene prioritization and variant interpretation difficult.

PM has mostly been studied in highly consanguineous populations. Studies conducted in consanguineous families of Pakistani (Gul et al., 2006; Roberts et al., 2002; Sajid Hussain et al., 2013) and Iranian origin (Darvish et al., 2010) reported ASPM pathogenic variants as the most prevalent cause of MCPH, followed by WDR62. A later study in a mainly consanguineous population used Mendeliose or exome sequencing combined with autozygosity mapping, and found pathogenic variants in PM genes in 24% of the patients, ASPM being the most prevalent disease-causing gene (Shaheen et al., 2019). All these studies tested consanguineous families of Middle Eastern origin, and it is not clear whether their results can be extrapolated to other, or non-consanguineous, populations (Verloes et al., 1993). A few studies in non-consanguineous patients reported a large genetic heterogeneity, with a few variants in ASPM and none in WDR62, but were limited by small numbers (Boonsawat et al., 2019; Rump et al., 2016).

A few studies reported epilepsy to be associated with PM (Bhat et al., 2011; Dohrn & Bolaños, 2019; Nardello et al., 2018; Passemard et al., 2009; Rodríguez et al., 2019; Shen et al., 2005; Zombor et al., 2019). These patients were described to have generalized tonic-clonic seizures that were controlled with antiepileptic drugs (AED) (Bhat et al., 2011; Passemard et al., 2009). In the present study, we describe the clinical features of a large cohort of PM patients, 40 consanguineous and 129 non-consanguineous. We report the pathogenic variants identified, including 11 novel pathogenic variants. We provide detailed clinical information on all probands in which a molecular cause was identified with a special focus on epilepsy and identify three novel candidate genes.

2 | PATIENTS AND METHODS

2.1 | Patients

One-hundred and sixty-nine unrelated probands were referred for investigation of PM to our genetic center between 2001 and 2018. Inclusion criteria consisted of an OFC smaller than 2 SD below age- and sex-related mean at birth or smaller than 3 SD after one year of age, based on established growth charts (Rollins et al., 2010), and no evidence of perinatal infection or substance use in the mother, nor maternal phenylketonuria. Inclusion and exclusion criteria are listed in Table S2. Clinical information was obtained through the referring geneticist or child neurologist. Peripheral blood from the patients and their parents was collected for DNA extraction and genetic analysis.

2.2 | Molecular analysis

Successive analyses were performed in a strategy that evolved over the study period: standard karyotyping or comparative genomic hybridization (CGH), Sanger sequencing of ASPM and WDR62 (after microsatellite and/or 11K SNP microarray genotyping in consanguineous families), and later next-generation sequencing consisting of a 14-gene panel by capture, than exome sequencing of the proband and targeted analysis. The affected sib’s exome was sequenced in 5 families and the unaffected parents’ exome was sequenced in 11 other families.

Patients’ DNA samples from the exome cohort were enriched for exonic sequences and patients’ DNA samples from the gene panel cohort were enriched for exonic sequences of 14 PM genes (ASPM, KNL1, CDKRAP2, CENPJ, CEP135, CEP152, MCPH1, ORC1, ORC4, ORC6, PCNT, STIL, TRMT10A, and WDR62). For exome sequencing, the DNA capture kit and the sequencing platform varied according to the time of the analysis. The different sequencing platforms were Beijing Genomics Institute, China (Illumina HiSeq2000), AROS applied biotechnology, Denmark (Illumina HiSeq 2000), and BRIGHTcore Brussels Interuniversity Genomics High Throughput core, Brussels, Belgium (Illumina HiSeq 1500). The DNA capture kits used were Illumina TruSeq Exome Target, NimbleGen SeqCap EZ v3, NimbleGen SeqCap EZ v5, Agilent SureSelect All Exon v1, and Agilent SureSelect All Exon v5. For the gene panel cohort, exonic sequences were enriched using SeqCap EZ Choice NimbleGen Roche, and sequencing was performed on a MiSeq Illumina sequencer at the molecular genetic laboratory of Erasme Hospital, Brussels, Belgium. For gene panel and exome sequencing, all the raw sequences were aligned to the reference genome GRCh37 using BWA algorithm version 0.7.12 (Li & Durbin, 2009), duplicated reads were then marked using Picard version v1.119 (https://broadinstitute.github.io/picard/), alignment quality was improved using the GATK (DePristo et al., 2011) realigner, and base recalibrator version 3.3, and finally, variants were called using GATK Haplotype Caller version 3.3. The resulting variant set was annotated using SnpEff v4.1 (Cingolani et al., 2012), dbNSFP 2.8 (Liu et al., 2011), and filtered using the Highlander software (https://sites.uclouvain.be/highlander/).

2.3 | Sanger sequencing

PCR primers were designed for exons and flanking intronic sequences using the EoxonPrimer software (http://ihg.helmholtz-muenchen.de/ihg/EoxonPrimer.html). All exons and flanking intronic regions of the candidate genes were sequenced by the Sanger method using the Big Dye Terminator cycle sequencing kit v2 (Applied Biosystems), and analyzed
on a 3130 Genetic Analyzer sequencing machine (Applied Biosystems). Sequences were analyzed in silico for variants using Blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

The PCR primers used for the VPS13B deletion encompassed respectively exon36 (PCRa, Forward: GAGATATA TCATGGTCAGGATCC, Reverse: CACAAACACAGAAAT GTCCCTCATC), exon43 (PCRB, Forward: GCCAGAGCCT GCCAAAAC, Reverse: GTGCAGAAGAATGAAATCCCC), and the border of the deletion (PCRc, Forward: GATGGGCA AGTGAAGAGAGGA, Reverse: ACAGGCACACAAGTGAC AGAA).

2.4 Exome sequencing variant classification

ACMG guidelines (Richards et al., 2015) were followed for variant pathogenicity classification. Variants were filtered for quality criteria (pass GATK (DePristo et al., 2011) standard filter, read depth ≥10), allelic frequency (based on the maximum minor allele frequency found in GnomAD Karczewski et al., 2020) and for functional impact (nonsynonymous or splice junction effect, using snpeff_effect from SnpEff Cingolani et al., 2012). The selected variants in known PM genes were classified as Pathogenic (class 5) or Likely Pathogenic (class 4) according to the ACMG guidelines (Richards et al., 2015), and we considered variants of unknown significance in interesting candidate genes, that is, genes not yet associated with human microcephaly. We looked for homozygous, compound heterozygous, and de novo variants in both consanguineous and non-consanguineous families. Familial segregation was checked using Sanger sequencing in order to demonstrate trans configuration in the autosomal recessive cases and de novo inheritance in the autosomal dominant cases. All variants reported in this manuscript have been submitted to the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/), ClinVar accession SCV001481940 to SCV001481968).

2.5 Cohort and diagnostic workflow description

One-hundred and sixty-nine unrelated PM probands were studied, among whom 40 (24%) were born to consanguineous parents. The ethnic origin of the patients was mostly Western European, but some originated from Northern Africa (mainly Morocco), Turkey or the Middle East (mostly in the consanguineous families). The preliminary step of microarray identified a pathogenic CNV in one patient. The 168 remaining patients underwent a diagnostic workflow that is represented in Figure 1a. A first step consisted of genotyping consanguineous patients for homozygosity mapping using microsatellite analysis and/or SNP arrays, followed by Sanger sequencing of ASPM or WDR62 when the locus was found homozygous, or direct ASPM and WDR62 Sanger sequencing in non-consanguineous patients. This approach identified the causal genotype in 17 patients (10%). Of the remaining 151 patients, 60 received gene panel sequencing including 14 PM genes, 32 exome sequencing, and no further analysis was performed in 59, mostly because the patients were lost to follow-up. Gene panel sequencing identified a conclusive cause in 9 patients (15%), and exome sequencing in 11 patients (34%). The exome analysis furthermore identified qualifying variants in candidate genes in four patients (13%), see Figure 1a.

3 RESULTS

3.1 A molecular diagnosis is identified in 67% of consanguineous and 9% of non-consanguineous patients

In 38 patients, including 27 consanguineous and 11 non-consanguineous patients, a molecular cause of PM could be established. In particular, exome sequencing led to a diagnosis in 9 of 20 consanguineous patients (45%) and 2 of 12 non-consanguineous patients (17%). In five consanguineous families, the exome from an affected sib was sequenced in addition to the exome from the proband. A molecular cause of PM could be established in three of these five families (60%).

The distribution of the molecular causes found in the 38 patients is represented in Figure 1b. MCPH genes were incurred in 29 patients (76%), and other PM genes in 8 patients (21%). A CNV was identified in one patient (3%), referred early in our study with a normal standard karyotype. In the overall cohort, the most prevalent gene was ASPM in 10 patients (26%), followed by WDR62 in 7 patients (18%). The more commonly mutated genes in the consanguineous cohort were ASPM (26%), KNLI (aka. CASC5) (19%), and MCPH1 (11%), and in the non-consanguineous cohort WDR62 (45%), ASPM (27%), and CEP152 (18%), as shown respectively in Figure 1c.1 and 1c.2.

Patients with ASPM pathogenic variants had homozygous (seven patients, 70%) or compound heterozygous (three patients, 30%) variants. The patients with WDR62 pathogenic variants had homozygous (three patients, 43%) or compound heterozygous (four patients, 57%) variants. Pathogenic variant types in our cohort were mostly nonsense, frameshift, and missense, while some splicing variants, a 2-exons deletion and a CNV were also identified (Table 1). Among the consanguineous patients, 26 (96%) carried a homozygous pathogenic variant, 1 (4%) a disease-causing de novo CNV, and none carried a compound heterozygous pathogenic variant. Among the non-consanguineous patients, nine (82%) carried
a compound heterozygous pathogenic variant, one (9%) a homozygous variant, and one (9%) a de novo pathogenic variant in a gene following autosomal dominant inheritance. In the overall cohort, pathogenic variants in 36 of the 38 patients (95%) were thus identified in autosomal recessive genes.

3.2 Novel pathogenic variants

Eleven pathogenic variants identified in this study were novel, including a CNV, a 2-exons deletion, four frameshift variants, one nonsense variant, two missense variants, and two splicing variants. They affected CEP152, MCPH1, VPS13B, and WDR62 and are listed in Table 2.

A de novo deletion at 1q21.1 (arr 1q21.1(144757160x2, 144943150-146377870x1,146418803x2)dn) was considered pathogenic in one patient. Other CNVs in this region were already associated with a variable neurodevelopmental phenotype, frequently including microcephaly (Mefford et al., 2008).

A large homozygous intragenic deletion encompassing exons 42 and 43 of VPS13B was found in a patient with a subtle phenotype a posteriori consistent with Cohen syndrome (PM, fluctuating neutropenia, long eyelashes, truncal obesity, retinal dystrophy, joint hyperlaxity). Familial segregation and the exact position of the deletion were confirmed by PCR and Sanger sequencing (Figure S1).

A frameshift variant in CEP152, c.3249del p.(Val1084CysfsTer7) was found in one patient. Three novel variants of MCPH1 were found, with splicing (c.322-1G>C), frameshift (c.321dup p.(Arg108ThrfsTer2)) and missense (c.64G>A p.(Glu22Lys)) effects. Finally, five novel variants were found in WDR62, with frameshift (c.3469_3470del p.(Ala1157CysfsTer5) and c.3383_3401del p.(Ser1128TrpfsTer164)), nonsense (c.4345C>T p.(Gln1449Ter)), missense (c.1526C>T p.(Ser509Leu)), and splicing (c.1043+3A>G p.?) effects.

Both novel missense variants (MCPH1 p.(Glu22Lys) and WDR62 p.(Ser509Leu)) were classified as likely pathogenic variants (class 4) according to the ACMG guidelines, with two moderate and three supporting criteria. Both variants occurred in a functional domain of the protein (MCPH1 BRCT1 domain and WDR62 WD40 repeat domain) (PM1 criterion). MCPH1 BRCT1 domain is
Patient ID	Sex	Ethnicity	Consanguinity	Gene	OMIM Number	RefSeq identifier	Transcript	Protein	Class	Phenotype	OFC at birth (SD)	Weight at birth (SD)	Length at birth (SD)	Age at last evaluation	Reference if previously reported MRI findings					
#1	M	Morocco	same village	ASPM	#605481	NM_018136.4	c.1012C>T	p.(R338*)	HC	PM	−2.5	−3	−3	17y	No SON- IQ 67 (5y6m)					
#2	M	Turkey	yes	AP4M1	#602296	NM_004722.3	c.1012C>T	p.(R338*)	HC	PM, progressive spasticity	−3.5	−2.5	−2.5	5y2m	Controlled with VPA and LTG. severe ID (BSID-III 5m at age 95m; no words at age 8y)					
#3	M	Caucasian	no	ASPM	#605481	NM_018136.4	c.2389C>T	p.(R797*)	PF	PM, pyramidal syndrome	−6	median	median	3y	No DQ 42 (3y11m)					
#4	F	1 affected and terminated pregnancy	Turkey	ASPM	#605481	NM_018136.4	c.9841A>T	p.(R3281*)	PF	NA	NA	NA	NA	9y	−10	−1.5	−0.5	No NA		
#5	M	1 affected sister	Belgium	ASPM	#605481	NM_018136.4	c.1932del	p.(R645Sfs*7)	PF	PM	−3									
#6	M	3 affected sibs	Turkey	ASPM	#605481	NM_018136.4	c.1366G>T	p.(E456*)	PF	NA	NA	NA	NA	20y	−8	−1.5	−1	No NA		
#7	M	1 affected sib	Turkey	ASPM	#605481	NM_018136.4	c.6513dup	p.(Y2172Sfs*?)	PF	PM, closed fontanelles before birth	−2									
#8	F	Morocco	yes	ASPM	#605481	NM_018136.4	c.8700_8702delinsCC	p.(K2900Nfs*38)	PF	PM	−2									
#9	M	1 uncle affected, 1 affected and terminated pregnancy	Turkey	ASPM	#605481	NM_018136.4	c.1631_1635del	p.(Y544Sfs*9)	PF	PM	NA									
#10	F	1 affected brother	Morocco	ASPM	#605481	NM_018136.4	c.4195dup	p.(T1399Nfs*20)	PF	PM	−3.5									
#11	F	Caucasian	no	ASPM	#605481	NM_018136.4	c.4250_4251del	p.(Y1417*)	PF	PM	−3.5									
Patient ID	Sex	Family	Ethnicity	Consanguinity	Gene	#OMIM Number	RefSeq identifier	Transcript	Protein Class	Phenotype	Weigth at birth (SD)	OFC at birth (SD)	Weigth at last evaluation	Heigth at birth (SD)	Age at last evaluation	OFC at age last evaluation (SD)	Weigth at age last evaluation (SD)	Length at age last evaluation (SD)	Age at last evaluation	MRI findings
------------	-----	--------	-----------	--------------	------	--------------	-----------------	-------------	--------------	-----------	---------------------	----------------	--------------------------	----------------	---------------------	--------------------------------	------------------	--------------------------	----------------	-------------
#1 M	Morocco	same village	arr 1q21.1	144757160x2, 144943150-146377870x1, 146418803x2	dn	HC	PM	−2.5	−3	−3	17y	−2.5	−1	−1.5	No	SON-QIQ 67 (5y6m) (SON-R)				
#2 M	Turkey	yes															Duerinckx et al. (2017)			
#3 M	Caucasian	no																		
#4 F	1 affected and terminated pregnancy	Turkey	yes																	
#5 M	1 affected sister	Belgium	no																	
#6 M	3 affected sibs	Turkey	yes																	
#7 M	1 affected sib	Turkey	yes																	
#8 F	Morocco	yes																		
#9 M	1 uncle affected, 1 affected and terminated pregnancy	Turkey	yes																	
#10 F	1 affected brother	Morocco	yes																	
#11 F	Caucasian	no																		

(Continues)
Patient ID	Sex	Ethnicity	Family	Consanguinity	Gene	OMIM Number	RefSeq identifier	Transcript	Protein	Class	Phenotype	
#12	M	Portugal	same village		ASPM	#605481	NM_018136.4	c.7782_7783del/ c.7782_7783del	p.(K2595Fs*6)	PF	PM	−2.5
#13	M	Morocco	yes		KNLI	#609713	NM_170589.4	c.6123G>A/ c.6123G>A	p.(M2041I)	PF	PM, short stature	NA
#14	M	Morocco	1 affected brother	yes	KNLI	#609713	NM_170589.4	c.6123G>A/ c.6123G>A	p.(M2041I)	PF	PM, short stature	−2.5
#15	F	Morocco	yes		KNLI	#609713	NM_170589.4	c.6123G>A/ c.6123G>A	p.(M2041I)	PF	PM	−3.5
#16	M	Morocco	3 affected sibs	yes	KNLI	#609713	NM_170589.4	c.6123G>A/ c.6123G>A	p.(M2041I)	PF	PM, short stature	−2.5
#17	F	Morocco	1 affected sister	yes	KNLI	#609713	NM_170589.4	c.6123G>A/ c.6123G>A	p.(M2041I)	PF	severe PM, short stature	NA
#18	F	Morocco	yes		CDK5RAP2	#608201	NM_018249.5	c.1376del/ c.1376del	p.(N459Fs*7)	PF	PM	−2
#19	F	Morocco	1 affected sister	yes	CDK5RAP2	#608201	NM_018249.5	c.1376del/ c.1376del	p.(N459Fs*7)	PF	PM, café au lait spots	−2
#20	M	Belgium	1 affected sister	no	CEP152	#613529	NM_001194998.1	c.2878T>C/ c.2959C>T	p.(W960R)/ p.(R987*)	HC	PM	−2
#21	M	Caucasian	no		CEP152	#613529	NM_001194998.1	c.2878T>C/ c.3249del	p.(W960R)/ p.(V1084Fs*7)	HC	PM	−3
#22	F	Turkey	yes		ERCC8	#609412	NM_000182.3	c.295_297delinsTG/ c.295_297delinsTG	p.(R99Cfs*26)	PF	Cockayne syndrome	−1
#23	F	Belgium	yes		MCPH1	#607117	NM_024596.3	c.322-1G>C/ c.322-1G>C	p.?	PF	PM	−3
#24	M	Morocco	yes		MCPH1	#607117	NM_024596.3	c.321dup/ c.321dup	p.(R108Thr*2)	PF	PM	−2.5
#25	F	Turkey	yes		MCPH1	#607117	NM_024596.3	c.64G>A/ c.64G>A	p.(E22K)	HC	PM	−5
Weight at birth (SD)	Length at birth (SD)	Age at last evaluation	OFC (SD)	Weigh (SD)	Height (SD)	Epilepsy	ID evaluation	Reference if previously reported	Reference if variant previously reported	MRI findings		
---------------------	---------------------	------------------------	---------	-----------	------------	----------	---------------	----------------------------------	--	-------------		
−1	−1	16y	−4	−2.5	−3.5	No	NA	Létard et al. (2018)	moderate to severe ID	Suspicion of dysplasia		
NA	NA	19y	−7	−2	−3.5	No	moderate to severe ID	Duerinckx et al. (2020) panel #60	Genin et al. (2012)	NA		
median	−0.5	9y	−7	+1	−0.5	No	severe ID (speaks several words, cognitive developmental index 18m at age 3y10m Mc Carthy developmental scale)	Genin et al. (2012) (patient #51)	NA	No abnormality		
−1	−2	5y	−6	median	−1	No	severe ID (began to speak at 45y, at 12y not able to wash herself, recognizes some letters, count to 5)	Genin et al. (2012) (patient #Y1)	Small cerebellum hemispheres			
+0.5	NA	18y	−8	−3	−2.5	No	IQ 35 (Terman-Merill)	Jamieson et al. (1999); Genin et al. (2012) (patient #E1)	Simplified pattern			
NA	NA	19y	−8	−2	−3.5	Generalized, tonic-clonic. From age 24y. Controlled with LEV, TPM, and CBZ.	Duerinckx et al. (2020) (exome #28)	Genin et al. (2012)	Slight cerebral and cerebellar atrophy, ACC, colpocephaly			
median	median	4m	−4	−2	−1.5	No	borderline	Duerinckx et al. (2020) (panel #59)	Mild under-development of frontal lobe			
−2	−1	12y	−5.5	−1	−1.5	No	moderate ID	Duerinckx et al. (2020)	Extreme microcephaly			
median	median	22y	−6.5	−1.5	−1	No	IQ 60 (Mc Carthy)	Duerinckx et al. (2020) (exome #21)	c.2059C>T Guernsey et al. (2010)	NA		
−1	−1.5	3y6m	−4	NA	+1	No	IQ 87	c.2878T>C Duerinckx et al. (2020)	No abnormality			
−0.5	−0.5	11y	−6	−3	−6	Generalized, tonic-clonic. From age 22m. Controlled with VPA.	severe ID	Duerinckx et al. (2020) (exome #3)	Rump et al. (2016)	NA		
median	−1	13y	−5.5	+0.5	−1	No	severe ID	Duerinckx et al. (2020)	Enlarged ventricles, delayed myelination			
−1	−3	15y	−9	−2.5	−4.5	No	IQ<42 (Terman-Merill)	Simplified pattern				
−2	−3	6y	−6	−1	−0.5	No	IQ 63 (WPPSI-R)	Simplified pattern, multiple grey matter ectopias, cyst of the Rathke pouch				

(Continues)
Patient ID	Sex	Ethnicity	Family	Consanguinity	Gene	Gene #OMIM	RefSeq identifier	Transcript	Protein	Class	Phenotype	OFC at birth (SD)	Weight at birth (SD)	Length at birth (SD)	Age at last evaluation	Epilepsy ID evaluation	Reference if previously reported	Reference if variant previously reported	MRI findings	Reference ID & Evaluation		
#26	F	Turkey	yes		PNKP	#605610	NM_007254.3	c.1253_1269dup/c.1253_1269dup	p.(T424Gfs*49)	PF	PM	median	0.0	0.0	0.0	0.0	0.0	Duerinckx et al. (2018)	NA	Atrophy of the corpus callosum and cerebellum, abnormal signals in the supratentorial white matter		
#27	F	Morocco	yes		RTTN	#610436	NM_173630.3	c.2953A>G/c.2953A>G	p.(R985G)	PF	PM	−4.5	−2	−3	5	−11	−5	−5	NA	Shen et al. (2010)	Micro-lissencephaly, ACC	
#28	F	Morocco	yes	1 affected brother	TRAPPc9	#611966	NM_031466.7	c.533T>C/c.533T>C	p.(L178P)	HC	PM	NA	−2	−0.5	4	−4	−2	Generalized, tonic-clonic.	From age 8y.	Controlled with VPA.	Duerinckx et al. (2018)	Atrophy of the corpus callosum and cerebellum, abnormal signals in the supratentorial white matter
#29	F	Morocco	yes	2 affected sibs	TRMT10A	#616013	NM_152292.4	c.379C>G/c.379C>T	p.(R127*)	HC	PM	−1	−2	−0.5	26	−4	−5	NA	Igoillo-Esteve et al. (2013); Duerinckx et al. (2020) (exome #6)	No abnormality		
#30	M	Belgium	no		TUBA1A	#602529	NM_006009.3	c.5G>A/wildtype	p.(R2H)	PF	PM	−2	−1	−1	0	0	Generalized, tonic-clonic.	From age 2y.	Refractory, under VPA and CMZ + gamma-globulins.	Gardner et al., 2018	Partial ACC, partial agenesis of the vermis, occipital white matter abnormalities	
#31	M	Belgium	yes	1 affected brother	VPS13B	#607817	NM_007254.3	del 8128bp (ex42-43)	p.?	PF	PM	−2	−2	−0.5	13	−5	−0.5	NA	Ruaud et al. (in preparation)	c.1531G>A	Nicholas et al. (2010)	Lissencephaly, pachygyria
#32	M	Caucasian	no		WDR62	#613583	NM_001083961.1	c.1531G>A/c.4345C>T	p.(D511N)/p.(Q1449*)	HC	PM	−2	−2	−1	13	−5	−1	NA	Ruaud et al. (in preparation)	No abnormality		
#33	F	Belgium	no		WDR62	#613583	NM_001083961.1	c.1531G>A/c.3469_3470del	p.(D511N)/p.(A1157Cfs*5)	PF	PM	−2	−2	−1	13	−2	−1	NA	Borderline No abnormality			
#34	M	Turkey	yes		WDR62	#613583	NM_001083961.1	c.1526C>T/c.1526C>T	p.(S509L)	HC	PM	NA	−0.5	−2	13	−5	−0.5	NA	Duerinckx et al. (2018)	No abnormality		
#35	M	Belgium	no		WDR62	#613583	NM_001083961.1	c.1043+3A>G/c.1043+3A>G	p.?	PF	PM	+0.5	−2	−2	0	−2	−2	NA	Borderline No abnormality			

Table 1 (Continued)
Patient ID	Sex	Family	Ethnicity	Consanguinity	Gene	#OMIM Number	RefSeq identifier	Transcript	Protein Class	Phenotype	OFC at birth (SD)	Weight at birth (SD)	Length at evaluation	Age at last evaluation	OFC (SD)	Weight (SD)	Heigth (SD)	Epilepsy	Reference if previously reported	Reference if variant previously reported	MRI findings		
#26	F	Turkey	yes		PNKP	#605610	NM_007254.3	c.1253_1269dup/c.1253_1269dup	p.(T424Gfs*49)	PF PM, median	NA	NA	−7.5	4y	−11	−5	−5	No	DQ 30	(dypmt age 6m at age 1y9m), no speech	Shen et al. (2010)	NA	
#27	F	Morocco	yes		RTTN	#610436	NM_173630.3	c.2953A>G/c.2953A>G	p.(R985G)	PF PM, short stature, spastic quadriparesia	−4.5	−2	−3	5y	−11	−5	−5	No	DQ 30	Micro-lissencephaly, ACC	Grandone et al. (2016)	Micro-lissencephaly, ACC	
#28	F	Morocco	yes	1 affected brother	TRAPPC9	#611966	NM_031466.7	c.533T>C/c.533T>C	p.(L178P)	HC PM, hyperkinesia	NA	NA	NA	13y	−4	−1	−2	Generalized, tonic-clonic. From age 8y. Controlled with VPA.	Duerinckx et al. (2018)	No abnormality			
#29	F	Morocco	yes	2 affected sibs	TRMT10A	#616013	NM_152292.4	c.379C>T/c.379C>T	p.(R127*)	HC PM, young onset diabetes, short stature	NA	NA	NA	26y	−4	NA	−3	Generalized, tonic-clonic. From age 8y. Controlled with VPA.	Duerinckx et al., l., 2020 (exome #6)	No abnormality			
#30	M	Belgium	no		TUBA1A	#602529	NM_006009.3	c.5G>A/wildtype	p.(R2H)	PF PM, axial hypotonia, visual abnormalities	−1	−0.5 median	4y6m	−1	−2	Generalized, tonic-clonic. From age 23m. Controlled with LTG and TPM.	Nicholas et al. (2010)	Lissencephaly, pachygyria					
#31	M	Belgium	yes	1 affected brother	VPS13B	#607817	del 8128bp (ex42-43)	NA	NA	NA	15y5m	−4	−1	NA	6y	−4	+1	−0.5	No	NA	Ruaud et al. (in preparation)	Nicholas et al. (2010)	Lissencephaly, pachygyria
#32	M	Caucasian	no		WDR62	#613583	NM_001083961.1	c.1531G>A/c.3469_3470del	p.(D511N)/p.(A1157Cfs*5)	HC PM	−2	−2	26y	−5	−2	+0.5	Generalized, tonic-clonic. From age 2y. Refractory, under VPA and CMZ +gamma-globulins.	c.1531G>A	Nicholas et al. (2010)	Lissencephaly, pachygyria			
#33	F	Belgium	no		WDR62	#613583	NM_001083961.1	c.1531G>A/c.3469_3470del	p.(D511N)/p.(A1157Cfs*5)	HC PM	−2	−1	6y	−4	+1	−0.5	No	NA	Ruaud et al. (in preparation)	Nicholas et al. (2010)	No abnormality		
#34	M	Turkey	yes		WDR62	#613583	NM_001083961.1	c.1526C>T/c.1526C>T	p.(S509L)	HC PM	NA	NA	NA	13y	−5	−0.5	−1	Generalized, tonic-clonic. From age 23m. Controlled with LTG and TPM.	Duerinckx et al. (2018)	No abnormality			
#35	M	Belgium	no		WDR62	#613583	NM_001083961.1	c.1043+3A>G/c.1043+3A>G	p.?	PF PM	+0.5	13y	−2.5	+1.5	+1.5	Combined Generalized and Focal, tonic-clonic sz, and non-motor focal sz. From age 12y. Partially controlled with 3 AED’s.	NA	No abnormality					

(Continues)
TABLE 1 (Continued)

Patient ID	Sex	Family	Ethnicity	Consanguinity	Gene #	OMIM Number	RefSeq identifier	Transcript	Protein	Class	Phenotype	OFC at birth (SD)
#36	M	Belgium	no		WDR62	#613583	NM_001083961.1	c.1043+3A>G/ c.3383_3401del	p.?/p.(S1128Wfs*164)	PF	severe PM, hearing deficiency	−3.5
#37	F	1 affected sister	Belgium	no	WDR62	#613583	NM_001083961.1	c.1521G>A/ c.2788C>T	p.(L507=)/p.(Q930*)	PF	PM	−2
#38	F	Belgium	yes		WDR62	#613583	NM_001083961.1	c.3936dup/ c.3936dup	p.(V1313Rfs*18)	PF	PM	−2.5

Note: The variant descriptions follow HGVS recommendations. Variant class: PF, pathogenic found; HC, high candidate. OFC z-scores (SD, standard deviation) according to reference curves (Rollins et al., 2010). Height, length, and weight z-scores (SD) according to the World Health Organization reference curves. Sz, seizures. AED, anti-epileptic drugs: CBZ, Clobazam; CMZ, Carbamazepine; LEV, Levetiracetam; LTG, Lamotrigine; OXC, Oxcarbazepine; TPM, Topiramate; VPA, Valproate. DEE, developmental and epileptic encephalopathy. ID, intellectual deficiency. MRI, magnetic resonance imaging. ACC, agenesis of the corpus callosum.

important for the centrosomal localization of the protein (Pulvers et al., 2015). WDR62 WD40 repeat domain is important for protein–protein interactions, and almost half of WDR62 pathogenic variants are located in the WD40 protein domains (Ruaud et al., submitted). Both MCHP1 and WDR62 variants were absent from the GnomAD database (PM2 criterion) and were predicted to be disease causing by Mutation Taster algorithm (http://www.mutationtaster.org) (PP3 criterion). In both MCHP1 and WDR62 genes, missense variants are a common mechanism of disease (PP2 criterion). Both families were consanguineous, and family histories were specific for a disease with a single genetic etiology (PP4 criterion).

3.3 | Clinical characteristics in patients with identified variants: high incidence of epilepsy

The 38 patients with an identified molecular cause of PM are reported in Table 1, along with detailed clinical information. The median age at the last evaluation was 12 years (mean: 12.0, range: 0.3–28). The OFC at birth and at last evaluation is represented in Figure 2, showing the progression of microcephaly over time in affected children in terms of SDs below the norm in all patients (mean OFC at birth, −2.5 SD; mean OFC at last evaluation, −5.5 SD; p-value from Student’s paired t test <.001). Short stature, defined as a height at last evaluation lower than 2 SD below the age and sex-related mean, was present in 12 patients. Intellectual deficiency was always present, ranging from mild to severe.

Epilepsy was noted in 13 patients (34%). The type of epilepsy was generalized, with tonic-clonic seizures in most cases (11 patients), and combined generalized and focal in 2 patients. The age at onset ranged between 3 months and 24 years. Severity was highly variable, from controlled with one AED to refractory. The presence of epilepsy was not evenly distributed among the different genes. In the 10 patients with ASPM pathogenic variants, only 2 (20%) had epilepsy. In seven patients with WDR62 pathogenic variants, four (57%) had epilepsy. The other patients with epilepsy had pathogenic variants in AP4M1, KNL1 (1 out of 5 patients), ERCC8, PNKP, TRAPPC9, TRMT10A, and TUBA1A.

Brain MRI findings included disorders of neuronal migration with simplified gyral pattern, lissencephaly/pachygyria, and focal cortical dysplasia, agenesis of the corpus callosum, enlarged ventricles, delayed myelination, white matter abnormalities, and hypoplastic cerebellum hemispheres or vermis.

3.4 | Candidate genes

In 4 of the 21 patients in whom exome sequencing did not reveal pathogenic variants in known PM genes, we identified qualifying variants in novel candidate genes. These variants
and their main pathogenicity characteristics are listed in Table S3, and the alignments are shown in Figure S2.

A homozygous missense variant in *IGF2BP3* (OMIM #608359, NM_001083961.1, c.3936dup) was found in a consanguineous Iranian patient with PM and short stature, and in his affected sister. The variant that occurred in exon 8 of 15 was absent from GnomAD (Karczewski et al., 2020) and was predicted to be deleterious with a CADD score (Kircher et al., 2014) of 26.1. Threonine 308 is highly conserved among species, UCSC alignments of 100 vertebrates (https://genome.ucsc.edu/) showed the presence of a Threonine in all species at this position. *IGF2BP3* was predicted to be extremely intolerant to variation by GnomAD, z score=2.12 (Karczewski et al., 2020). Sanger sequencing confirmed homozygosity of the mutation in the two probands and heterozygosity in both parents. The Thr308 is located in the middle of the second K homology domain of the protein. K homology domains are important for RNA binding and include nucleic acid recognition motifs (Valverde et al., 2008). IGF2BP3 binds to the 5'UTR of the insulin-like growth factor 2 (IGF2) leader 3 mRNA. Mouse *imp3* was identified as an ortholog of human *IGF2BP3*. Imp3 expression level in mouse brain was the highest from E10 till E18 during the period of neuroepithelial cells proliferation. P19 cells transfected with flag-tagged imp3 failed to differentiate into neurons in response to retinoic acid and remained undifferentiated neural progenitor cells. A partial rescue was observed with igf2 (Mori et al., 2001). Furthermore, *IGF2BP3* is a stress granule-related protein that was predicted to bind to Zika Virus RNA (https://www.biorxiv.org/content/10.1101/412577v1.full.pdf). *IGF2BP3* was also shown to be upregulated in patients with a neurodevelopmental phenotype and pathogenic variants in *HNRPNR* genes (Duijkers et al., 2019). *HNRPNR* genes encode proteins involved in the spliceosome C complex. An alteration of *HNRPNR* seems to affect stress granules disassembly after exposure to oxidative stress (Duijkers et al., 2019). *IGF2BP3* pathogenic variants could thus lead to a microcephaly phenotype either by altering the timing of the switch from proliferative to neurogenic divisions or through a higher sensitivity of neural progenitors to oxidative stress and increased apoptosis.

Compound heterozygous variants in *DNAH2* (OMIM #603333) were discovered in PM probands from two different families, originating from Turkey and Russia, and in one proband of an in-house hydrocephalus cohort (NM_020877.2, c.730C>T, p.(Arg244Trp)/c.5732G>C, p.(Gly1911Ala); c.1786C>T, p.(Arg596Ter)/c.3236A>G, p.(Asp1079Gly); c.1033C>A, p.(Pro345Thr)/c.11374G>A, p.(Val3792Ile)). These six variants all had an allelic frequency lower than 0.05% in GnomAD (Lek et al., 2016), and were predicted to be deleterious with a CADD score (Kircher et al., 2014) ranging from 12.22 to 28.9. *DNAH2* encodes a heavy chain of axonal dynein. Axonal dynein heavy chains are multisubunit microtubule-dependent motor ATPase complexes providing the driving force for ciliary and flagellar motility (Chapelin et al., 1997). *DNAH2* biallelic variants were recently
associated with multiple morphological abnormalities of the sperm flagella (Li et al., 2019),
dnah2 homozygous knockout mice from the International Mouse Phenotyping Consortium (https://www.mousephenotype.org) showed male infertility, and several studies in animal models and in humans have already established a link between ciliary defects and hydrocephalus (Kousi & Katsanis, 2016). However, the mouse knockdown of another axonal dynein gene, Left–right dynein, resulted in abnormal segregation of sister chromatids, suggesting that axonal dynein may play a role in mitotic spindles positioning for cell division (Arai et al., 2015; Armakolas & Klar, 2007), providing a mechanistic link with microcephaly.

Finally, a de novo variant in a novel gene was identified in one of our probands with extreme PM. We queried GeneMatcher and got connected with two additional, unrelated probands from other countries with the exact same variant, and a strikingly similar phenotype (further studies are in progress).

We report on a large PM patient cohort, with a total of 169 unrelated PM patients. Our cohort is mostly non-consanguineous.
(76%), with 40 PM patients (24%) being consanguineous. Most studies published so far reported only consanguineous families (Darvish et al., 2010; Gul et al., 2006; Roberts et al., 2002; Sajid Hussain et al., 2013; Shaheen et al., 2019), or were restricted to a small number of patients (Boonsawat et al., 2019; Rump et al., 2016).

Our diagnostic workflow consisted of successive steps from routine chromosome analysis to gene panel or exome sequencing, and allowed for the identification of a genetic cause in 38 patients. The diagnostic rate was much higher in consanguineous (67%) than in non-consanguineous patients (9%). This could be explained by different factors. First, consanguinity itself increases the chance for autosomal recessive, genetic disorders. The portion of non-genetic causes is thus expected to be higher in non-consanguineous, singleton cases. Furthermore, consanguineous families were larger in our sample, so there was often more than one affected child (see Table 1), further increasing the likelihood of a genetic cause, and facilitating variant filtration. Third, genetic heterogeneity could be even larger in non-consanguineous populations. The two previously published microcephaly cohorts in non-consanguineous populations, indeed, showed a higher diversity of PM genes involved. Fourth, our strategy of only sequencing the proband in most cases did not allow us to systematically identify de novo dominant variants in novel candidate genes. And last, there might be a higher proportion of digenic or oligogenic causes in non-consanguineous populations (Duerinckx et al., 2020).

Among the 38 patients in whom a molecular diagnosis was identified, 11 novel pathogenic variants were identified. In the overall cohort, ASPM was the most frequently mutated gene, followed by WDR62, as described in previous studies. In non-consanguineous patients, however, WDR62 was the most prevalent gene. After ASPM and WDR62, the genes harboring most pathogenic variants in our cohort were KNL1 and MCPH1. KNL1 is over-represented in the consanguineous subgroup of our cohort as compared to other reports. This may reflect a patient recruitment bias, as all KNL1 patients originated from the Rif region in Morocco, or better awareness of the importance of this gene, which was historically included early in our gene panel.

While our custom-capture gene panel was limited to 14 genes, it covered the most prevalent ones and identified the majority of PM patients with a coding mutation. Indeed, exome sequencing of panel-negative patients did not reveal another prevalent gene, that is, a gene found mutated in a significant subset of patients. Most of the other genes found by whole-exome sequencing were very heterogeneous and identified in a single patient.

We provide detailed clinical information about the 38 patients reported with a molecular diagnosis, including birth term, OFC, weight, and length at birth and at last evaluation, epilepsy phenotype, intellectual deficiency evaluation, and brain MRI findings. This clinical information is crucial to improve genetic counseling in families. Indeed, phenotypic comparison between patients is needed to identify the molecular causes of PM in new families and to refine the prognosis.

We show a deceleration pattern of the OFC as already observed in previous studies (Boonsawat et al., 2019; Létard et al., 2018; Nasser et al., 2020; Shaheen et al., 2019), suggesting pre- and postnatal roles for PM genes. We also observed an overlap between PM and primordial dwarfism, with several of our PM patients presenting with short stature, as already described (Shaheen et al., 2019; Verloes et al., 1993). We confirmed the presence of associated features previously reported in the literature for specific genes: short stature in patients with KNL1 pathogenic variants (Genin et al., 2012; Saadi et al., 2016), developmental, and epileptic encephalopathy with early-onset refractory seizures in patients with PNKP pathogenic variants (Shen et al., 2010), short stature, and profound microcephaly with very abnormal gyration in patients with RTTN pathogenic variants (Cavallin et al., 2018; Grandone et al., 2016; Shamseldin, et al., 2015; Stoffus et al., 2018), agenesis of the corpus callosum and of the cerebellar vermis in patients with TUBA1A pathogenic variants (Gardner et al., 2018; Hebebrand et al., 2019; Romaniello et al., 2018). We previously reported that AP4M1 pathogenic variants are associated with progressive spasticity and short stature (Duerinckx et al., 2017), and that TRAPPC9 pathogenic variants are associated with severe intellectual deficiency and abnormalities of the corpus callosum (Duerinckx et al., 2018).

We noted that epilepsy was much more prevalent in WDR62 patients than in ASPM patients. Epilepsy in WDR62 patients is generally considered as consistent with WDR62 mutations being often associated with brain malformations (Bhat et al., 2011). In our cohort, however, we did not observe systematic brain malformations on MRI in WDR62 patients with epilepsy.

Among the exome patients remaining without a molecular diagnosis, we identified some candidate genes for PM, including IGF2BP3 and DNAH2. Finding additional PM patients harboring variants in the same genes, and functional testing, will be required for further proof of pathogenicity.

In 16 individuals, exome sequencing did not reveal disease-causing variants. This could be explained by non-genetic causes, non-coding, for example, intronic variants, or non-Mendelian modes of inheritance. We, indeed, showed some evidence for oligogenic inheritance in PM, in particular, digenic inheritance among centrosomal genes, for example, double heterozygosity for CEP135 and WDR62 coding variants (Duerinckx et al., 2020).

Finally, our study shows the efficiency of a multi-steps diagnostic workflow in PM. Based on our observations and on the genetic heterogeneity of PM (Boonsawat et al., 2019; Rump et al., 2016; Shaheen et al., 2019), we suggest the
following diagnostic steps in all new patients with PM. First, microarray should be performed to exclude the presence of deleterious CNVs. Second, a gene panel (either captured or preferably exome-based) should be analyzed, focusing first on ASPM and WDR62, then on a larger neurodevelopmental gene panel, and eventually extended to the whole exome, which could lead to the discovery of novel candidate genes.

In conclusion, we report a very large PM patient cohort, provide detailed clinical information on all patients with a molecular diagnosis and widen the spectrum of known pathogenic variants in PM genes. Epilepsy was a frequently associated feature. Our findings will help to better manage PM patients, accelerate molecular diagnoses, and provide more detailed information for genetic counseling.

ACKNOWLEDGMENTS
We thank the staff of the ULB Center of Human Genetics for logistics and clinical support. We thank all the patients and families for their participation in this study.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHORS’ CONTRIBUTIONS
MA designed the study. SD analyzed the high throughput sequencing and clinical data. IP and MA supervised the whole study. JD, CB, VJ, and JS contributed to genetic and bioinformatic analyses. CP provided expert technical support. JD, IM, YT, BB, BC, WC, FGD, AD, KD, AJ, KK, DL, BL, MM, SM, GM, MCN, TS, RVC, JVDE, NVDA, HVE, OV, HV, CV, SW, SP, AV, AA, ND, and PVB recruited the patients and assessed their phenotypes. All co-authors contributed to writing the paper.

ETHICAL COMPLIANCE
All procedures complied with the ethical guidelines of Hôpital Erasme—Université Libre de Bruxelles, whose Ethics Committee approved our study under reference P2016/199 (Ethics Committee Erasme Hospital, OMO21). Informed consent was obtained from the patients’ representatives.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Sarah Duerinckx https://orcid.org/0000-0003-2919-0664
Isabelle Maystadt https://orcid.org/0000-0001-7170-8186
Stéphanie Moortgat https://orcid.org/0000-0002-4783-8674

Sandrine Passemand https://orcid.org/0000-0002-0242-4566
Isabelle Pirson https://orcid.org/0000-0002-9499-600X
Marc Abramowicz https://orcid.org/0000-0003-0623-8768

REFERENCES
Arai, E., Gotoh, M., Tian, Y., Sakamoto, H., Ono, M., Matsuda, A., Takahashi, Y., Miyata, S., Totsuka, H., Chiku, S., Komiymama, M., & Fujimoto, H. (2015). Alterations of the spindle checkpoint pathway in clinicopathologically aggressive Cpg island methylator phenotype clear cell renal cell carcinomas. International Journal of Cancer, 137, 2589–2606.

Armakolas, A., & Klar, A. J. S. (2007). Left-right dynein motor implicated in selective chromatid segregation in mouse cells. Science, 315, 100–101. https://doi.org/10.1126/science.1129429

Bhat, V., Girimaji, S. C., Mohan, G., Arvinda, H. R., Singhamar, P., Duvvari, M. R., & Kumar, A. (2011). Mutations in WDR62, encoding a centrosomal and nuclear protein, in Indian primary microcephaly families with cortical malformations. Clinical Genetics, 80, 532–540. https://doi.org/10.1111/j.1399-0004.2011.01686.x

Boonsawat, P., Joset, P., Steindl, K., Oneda, B., Gogoll, L., Azzarello-Burri, S., Sheth, F., Datar, C., Verma, I. C., Puri, R. D., Zollino, M., Bachmann-Gagescu, R., Niedrist, D., Papik, M., Figuerola-Silva, J., Masood, R., Zweier, M., Kraemer, D., Lincoln, S., … Rauch, A. (2019). Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genetics in Medicine, 21(9), 2043–2058. https://doi.org/10.1038/s41436-019-0464-7

Bond, J., Scott, S., Hampshire, D. J., Springell, K., Corry, P., Abramowicz, M. J., Mochida, G. H., Hennekam, R. C. M., Maher, E. R., Fyns, J.-P., Alswaid, A., Jafri, H., Rashid, Y., Mubaidin, A., Walsh, C. A., Roberts, E., & Woods, C. G. (2003). Protein-truncating mutations in ASPM cause variable reduction in brain size. American Journal of Human Genetics, 73, 1170–1177.

Cavallin, M., Bery, A., Maillard, C., Salomon, L. J., Bole, C., Reilly, M. L., Nitschê, P., Boddart, N., & Bahi-Buisson, N. (2018). Recurrent RTTN mutation leading to severe microcephaly, polymicrogyria and growth restriction. European Journal of Medical Genetics, 61, 755–758. https://doi.org/10.1016/j.ejmg.2018.08.001

Chapelin, C., Duriez, B., Magnino, F., Goossens, M., Escudier, E., & Amsellem, S. (1997). Isolation of several human axonemal dynein heavy chain genes: Genomic structure of the catalytic site, phylogenetic analysis and chromosomal assignment. FEBs Letters, 412, 325–330. https://doi.org/10.1016/S0167-4781(97)00800-4

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6, 80–92. https://doi.org/10.4161/fly.19695

Cox, J., Jackson, A. P., Bond, J., & Woods, C. G. (2006). What primary microcephaly can tell us about brain growth. Trends in Molecular Medicine, 12, 358–366. https://doi.org/10.1016/j.molmed.2006.06.006

Darvish, H., Esmaeilli-Nieh, S., Monajemi, G. B., Mohseni, M., Ghasemi-Firoozabadi, S., Abedini, S. S., Bahman, I., Jamali, P., Azimi, S., Mojahedi, F., Dehghan, A., Shafeegh, Y., Jankhah, A.,
Falih, M., Soltani Banavandi, M. J., Ghanie-Kakhi, M., Garshasbi, M., Rakhsani, F., Naghavi, A., ... Najmabadi, H. (2010). A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. *Journal of Medical Genetics, 47*, 823–828. https://doi.org/10.1136/jmg.2009.076398

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., ... Doganli, C., Keller, C., Mönnich, D., ... Larsen, L. A. (2020). RRP7A links primary microcephaly with antero-posterior gradient pre- and next-generation DNA sequencing data. *Nature Genetics, 43*, 491–498. https://doi.org/10.1038/ng.806

Desir, J., Abramowicz, M., & Tunca, Y. (2006). Novel mutations in prenatal diagnosis of primary microcephaly. *Prenatal Diagnosis, 26*, 989.

Desir, J., Cassart, M., David, P., Van Bogaert, P., & Abramowicz, M. (2008). Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient pre- and post-natally. *American Journal of Medical Genetics Part A, 146A*, 1439–1443.

Dohrn, M. F., & Bolaños, J. P. (2019). Does APC/CCDH1 control the human brain size?: An Editorial Highlight for “A novel human Cdh1 mutation impairs anaphase-promoting complex/cyclosome (APC/C) activity resulting in microcephaly, psychomotor retardation, and epilepsy” on page 103. *Journal of Neurochemistry, 151*, 8–10.

Duerinckx, S., & Abramowicz, M. (2018). The genetics of congenitally small brains. *Seminars in Cell & Developmental Biology, 76*, 76–85. https://doi.org/10.1016/j.semcdb.2017.09.015

Duerinckx, S., Jacquemin, V., Drunat, S., Vial, Y., Passemand, S., Perazzolo, C., Massart, A., Soblet, J., Racapé, J., Desmyter, L., Badoer, C., Papadimitriou, S., Le Borgne, Y.-A., Lefort, A., Libert, F., De Maertelaer, V., Rooman, M., Costagliola, S., Verloes, A., ... Abramowicz, M. (2020). Digenic inheritance of human primary microcephaly delineates centrosomal and non-centrosomal pathways. *Human Mutation, 41*, 512–524. https://doi.org/10.1002/humu.23948.

Duerinckx, S., Meuwissen, M., Perazzolo, C., Desmyter, L., Pirson, I., & Abramowicz, M. (2018). Phenotypes in siblings with homoygous mutations of TRAPPCK and/or MCPH1 support a bifunctional model of MCPH1. *Molecular Genetics & Genomic Medicine, 6*(4):660–665.

Duerinckx, S., Verhelst, H., Perazzolo, C., David, P., Desmyter, L., Pirson, I., & Abramowicz, M. (2017). Severe congenital microcephaly with AP4M1 mutation, a case report. *BMC Medical Genetics, 18*, 48.

Duijkers, F. A., McDonald, A., Janssens, G. E., Lezzerini, M., Jongejans, A., van Koningsbruggen, S., Leeuwenburgh-Pronk, W. G., Wlodarski, M. W., Mouton, S., Tran-Mau-Them, F., Thauvin-Robinet, C., Faire, L., Monaghan, K. G., Smol, T., Boute-Benejean, O., Ladda, R. L., Sell, S. L., Bruel, A.-L., Houtkooper, R. H., & Machnies, A. W. (2019). HNRNPR variants that impair homeobox gene expression drive developmental disorders in humans. *American Journal of Human Genetics, 104*, 1040–1059. https://doi.org/10.1016/j.ajhg.2019.03.024

Farooq, M., Lindbæk, L., Krogh, N., Doganli, C., Keller, C., Mönich, M., Goncalves, A. B., Sakthivel, S., Mang, Y., Fatima, A., Andersen, V. S., Hussain, M. S., Eiberg, H., Hansen, L., Kjaer, K. W., Gopalakrishnan, J., Pedersen, L. B., Mollgård, K., Nielsen, H., ... Larsen, L. A. (2020). RRP7A links primary microcephaly to dysfunction of ribosome biogenesis, resorption of primary cilia, and neurogenesis. *Nature Communications, 11*, 5816. https://doi.org/10.1038/s41467-020-19658-0

Gardner, J., Cushion, T., Niotakis, G., Olson, H., Grant, P., Scott, R., Stoodley, N., Cohen, J., Naidu, S., Attie-Bitach, T., Bonnieres, M., Boutaud, L., Encha-Razavi, F., Palmer-Smith, S., Mugalasha, H., Mullins, J., Pilz, D., & Fry, A. (2018). Clinical and Functional Characterization of the Recurrent TUBA1A p.(Arg2His) Mutation. *Brain Sciences, 8*(4), 145. https://doi.org/10.3390/brainsci8040145

Genin, A., Desir, J., Lambert, N., Biervliet, M., Van Der Aa, N., Pierquin, G., Killian, A., Tosi, M., Urbina, M., Lefort, A., Libert, F., Pirson, I., & Abramowicz, M. (2012). Kinetochore KMN network gene CASC5 mutated in primary microcephaly. *Human Molecular Genetics, 21*, 5306–5317. https://doi.org/10.1093/hmg/ddr386

Grantone, A., Torella, A., Santoro, C., Giugliano, T., Del Vecchio, B. F., Mutarelli, M., Cirillo, M., Cirillo, G., Plisuo, G., Caprio, C., Festa, A., & Marzuillo, P. (2016). Expanding the phenotype of RTTN variations: A new family with primary microcephaly, severe growth failure, brain malformations and dermatitis. *Clinical Genetics, 90*, 445–450.

Guernsey, D. L., Jiang, H., Hussin, J., Arnold, M., Bouyakdan, K., Perry, S., Babineau-Sturk, T., Beis, J., Dumas, N., Evans, S. C., Ferguson, M., Matsuoka, M., Macgillivray, C., Nightingale, M., Patry, L., Rideout, A. L., Thomas, A., Orr, A., Hoffmann, I., ... Samuels, M. E. (2010). Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. *American Journal of Human Genetics, 87*, 40–51.

Gul, A., Hassan, M. J., Mahmood, S., Chen, W., Rahman, S., Naseer, M. I., Dellefave, L., Muhammad, N., Raiq, M. A., Ansar, M., Chishti, M. S., Ali, G., Siddique, T., & Ahmad, W. (2006). Genetic studies of autosomal recessive primary microcephaly in 33 Pakistani families: Novel sequence variants in ASPM gene. *Neurogenetics, 7*, 105–110. https://doi.org/10.1007/s10048-006-0042-4

Hebebrand, M., Höffmeyer, U., Trollmann, R., Hehr, U., Uebe, S., Ekiçi, A. B., Kraus, C., Krumbiegel, M., Reis, A., Thiel, C. T., & Popp, B. (2019). The mutational and phenotypic spectrum of TUBA1A-associated tubulopathy. *Orphanet Journal of Rare Diseases, 14*, 38. https://doi.org/10.1186/s13023-019-1020-x

Igoilo-Esteve, M., Genin, A., Lambert, N., Desir, J., Pirson, I., Abdulkarim, B., Simions, N., Drielsma, A., Marselli, L., Marchetti, P., Vanderhaeghen, P., Eizirik, D. L., Wuyts, W., Julier, F., Chakera, A. J., Ellard, S., Hattersley, A. T., Abramowicz, M., & Cnop, M. (2013). tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. *PLoS Genetics, 9*, e1003888.

Jaimieson, C. R., Fryns, J. P., Jacobs, J., Mathijis, G., & Abramowicz, M. J. (2000). Primary autosomal recessive microcephaly: MCPH5 maps to 1q25-q32. *American Journal of Human Genetics, 67*, 1575–1577.

Jaimieson, C. R., Govaerts, C., & Abramowicz, M. J. (1999). Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. *American Journal of Human Genetics, 65*, 1465–1469.

Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alifóldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., ... MacArthur, D. G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. *Nature, 581*, 434–443. https://doi.org/10.1038/s41586-020-2308-7.
Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. *Nature Genetics*, 46, 310–315. https://doi.org/10.1038/ng.2892

Kousi, M., & Katsanis, N. (2016). The genetic basis of hydrocephalus. *Annual Review of Neuroscience*, 39, 409–435. https://doi.org/10.1146/annurev-neuro-070815-014023

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., O’Donnell-Luria, A. H., Ware, J. S., Hill, A. J., Cummings, B. B., Tukiainen, T., Birnbaum, D. P., Kosmicki, J. A., Duncan, L. E., Estrada, K., Zhao, F., Zou, J., Pierce-Hoffman, E., Berghout, J., … MacArthur, D. G. (2016). Analysis of protein-coding genetic variation in 60,706 humans. *Nature*, 536, 285–291. https://doi.org/10.1038/nature19057

Létard, P., Drunart, S., Vial, Y., Duerinckx, S., Ernault, A., Amram, D., Arpin, S., Bertoli, M., Busa, T., Ceulemans, B., Desir, J., & Doco-Fenzy, M. (2018). Autosomal recessive primary microcephaly due to ASPM mutations: An update. *Human Mutation*, 39, 319–332.

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics Oxf Engl*, 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Li, Y., Sha, Y., Wang, X., Ding, L., Liu, W., Ji, Z., Mei, L., Huang, X., Lin, S., Kong, S., Lu, J., & Qin, W. (2019). DNAH2 is a novel candidate gene associated with multiple morphological abnormalities of the sperm flagella. *Clinical Genetics*, 95, 590–600.

Liu, X., Jian, X., & Boerwinkle, E. (2011). dbNSFP: A lightweight database of human nonsynonymous snps and their functional predictions. *Human Mutation*, 32, 894–899. https://doi.org/10.1002/ humu.21517

Mefford, H. C., Sharp, A. J., Baker, C., Itsara, A., Jiang, Z., Buysse, K., Huang, S., Maloney, V. K., Crolla, J. A., Baralle, D., Collins, A., Mercer, C., Norga, K., de Ravel, T., Devriendt, K., Bongers, E., M. H. F., de Leeuw, N., Reardon, W., Gimelli, S., … Eichler, E. E. (2008). Recurrent rearrangements of chromosome 1q21.1 and is associated with the spindle pole and is mutated in human microcephaly with decreased cerebral circumference growth reference charts: Birth to 21 years. *Journal of Neurochemistry*, 107, 446–451. https://doi.org/10.1111/j.1399-0004.2012.01932.x

Mori, H., Sakakibara, S., Imai, T., Nakamura, Y., Iijima, T., Suzuki, A., Yuasa, Y., Takeda, M., & Okano, H. (2001). Expression of mouse igf2 mRNA-binding protein 3 and its implications for the developing central nervous system. *Journal of Neuroscience Research*, 64, 132–143. https://doi.org/10.1002/jnr.1060

Nardello, R., Fontana, A., Antonia, V., Beninati, A., Mangano, G. D., Stallone, M. C., & Mangano, S. (2018). A novel mutation of WDR62 gene associated with severe phenotype including intellectual disability and microcephaly. *European Journal of Medical Genetics*, 61, 744–754. https://doi.org/10.1016/j.ejmg.2018.07.012

Rollins, J. D., Collins, J. S., & Holden, K. R. (2010). United States head circumference growth reference charts: Birth to 21 years. *Journal of Pediatrics*, 156, 907–913.

Romaniello, R., Arrigoni, F., Fry, A. E., Bassi, M. T., Rees, M. I., Bottig, R., Pilz, D. T., & Cushion, T. D. (2018). Tubulin genes and malformations of cortical development. *European Journal of Medical Genetics*, 61, 744–754. https://doi.org/10.1016/j.ejmg.2018.07.012

Rudau, L., Drunart, S., Elmaleh-Bergès, M., Ernault, A., Guilmin Crepon, S., El Ghaziou, V., Auvin, S., Verloes, A., Passemard, S., & the MCHP consortium. Neurological and developmental outcomes in WDR62 primary microcephaly. In preparation.

Rump, P., Jazayeri, O., van Dijk-Bos, K. J., Johannson, L. F., van Essen, A. J., Verheij, J. B. G. M., Veenstra-Kohl, N. E., Redeker, E. J. W., Mannens, M. M. A. M., Swertz, M. A., Alizadeh, B. Z., van Ravenswaaij-Arts, C. M. A., Sinke, R. J., & Sikkelma-Radatz, B. (2016). Whole-exome sequencing is a powerful approach for establishing the etiological diagnosis in patients with intellectual disability and microcephaly. *BMC Medical Genomics*, 9, 7. https://doi.org/10.1186/s12920-016-0167-8

Saadi, A., Verny, F., Siquer-Pernet, K., Bole-Feysoot, C., Nitschke, P., Munnich, A., Abada-Dendib, M., Chaouch, M., Abramowicz, M., & Colleaux, L. (2016). Refining the phenotype associated with CASC5 mutation. *Neurogenetics*, 17, 71–78. https://doi.org/10.1007/s10048-015-0468-7

Sajid Hussain, M., Marriam Bakhtiari, S., Farooq, M., Anjum, I., Janzen, E., Reza Toliat, M., Eiberg, H., Kjaer, K. W., Tommerup, N., Norgaard-Pedersen, A. A., Nürnberg, P., Baig, S. M., & Hansen, L. (2013). Genetic heterogeneity in Pakistani microcephaly families. *Clinical Genetics*, 83, 446–451. https://doi.org/10.1111/j.1399-0004.2012.01932.x

Shaheen, R., Maddirevula, S., Ewida, N., Alsahlia, S., Abdel-Salam, G. M. H., Zaki, M. S., Tala, S. A., Alhassam, A., Softah, A., Al-Owain, M., Alazami, A. M., Ahadel, B., Patel, N., Al-Sheddi, T., Burglen, L., Del Giudice, E., Guimiot, F., Hyon, C., Isidor, B., Megarbane, A., Moog, U., Odent, S., Hernandez, K., Pouveire, N., Scala, I., … Verloes, A. (2009). Expanding the clinical and neuroradiologic phenotype of primary microcephaly due to ASPM mutations. *Neurology*, 73, 962–969. https://doi.org/10.1212/WNL.0b013e3181b8799a

Pulvers, J. N., Journic, N., Araï, Y., & Nardelli, J. (2015). MCHP1: A window into brain development and evolution. *Front Cell Neurosci.*, 9, 92. https://doi.org/10.3389/fncel.2015.00092

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genetics in Medicine*, 17, 405–424. https://doi.org/10.1038/gim.2015.30

Roberts, E., Hampshire, D. J., Pattison, L., Springell, K., Jafari, H., Corry, P., Mannon, J., Rashid, Y., Crow, Y., Bond, J., & Woods, C. G. (2002). Autosomal recessive primary microcephaly: An analysis of locus heterogeneity and phenotypic variation. *Journal of Medical Genetics*, 39, 718–721. https://doi.org/10.1136/jmg.39.10.718

Rodriguez, C., Sánchez-Morán, I., Álvarez, S., Tirado, P., Fernández-Mayoralas, D. M., Calleja-Pérez, B., Almeida, Á., & Fernández-Jaén, A. (2019). A novel human Cdh1 mutation impairs anaphase promoting complex/cyclosome activity resulting in microcephaly, psychomotor retardation, and epilepsy. *Journal of Neurochemistry*, 151, 103–115. https://doi.org/10.1111/jnc.14828

Rollins, J. D., Collins, J. S., & Holden, K. R. (2010). United States head circumference growth reference charts: Birth to 21 years. *Journal of Pediatrics*, 156, 907–913.
Alomar, R., Alobeid, E., Ibrahim, N., Hashem, M., Abdulwahab, F., … Alkuraya, F. S. (2019). Genomic and phenotypic delineation of congenital microcephaly. *Genetics in Medicine, 21*, 545–552. https://doi.org/10.1038/s41436-018-0140-3

Shamseldin, H., Alazami, A. M., Manning, M., Hashem, A., Caluseiu, O., Tabarki, B., Esplin, E., Schelley, S., Innes, A. M., Parboosingh, J. S., Lamont, R., Majewski, J., Bernier, F. P., & Alkuraya, F. S. (2015). RTTN mutations cause primary microcephaly and primordial dwarfism in humans. *The American Journal of Human Genetics, 97*(6), 862–868. https://doi.org/10.1016/j.ajhg.2015.10.012

Shen, J., Eyaid, W., Mochida, G. H., Al-Moayyad, F., Bodell, A., Woods, C. G., & Walsh, C. A. (2005). ASPM mutations identified in patients with primary microcephaly and seizures. *Journal of Medical Genetics, 42*, 725–729. https://doi.org/10.1136/jmg.2004.027706

Shen, J., Gilmore, E. C., Marshall, C. A., Haddadin, M., Reynolds, J. J., Eyaid, W., Bodell, A., Barry, B., Gleason, D., Allen, K., Ganesh, V. S., Chang, B. S., Grix, A., Hill, R. S., Topcu, M., Caldecott, K. W., Barkovich, A. J., & Walsh, C. A. (2010). Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. *Nature Genetics, 42*, 245–249. https://doi.org/10.1038/ng.526

Stouffs, K., Moortgat, S., Vanderhasselt, T., Vandervore, L., Dica, A., Mathot, M., Keymolen, K., Seneca, S., Gheldof, A., De Meirleir, L., & Jansen, A. C. (2018). Biallelic mutations in RTTN are associated with microcephaly, short stature and a wide range of brain malformations. *European Journal of Medical Genetics, 61*, 733–737. https://doi.org/10.1016/j.ejmg.2018.06.001

Tan, C. A., del Gaudio, D., Dempsey, M. A., Arndt, K., Botes, S., Reeder, A., & Das, S. (2014). Analysis of ASPM in an ethnically diverse cohort of 400 patient samples: perspectives of the molecular diagnostic laboratory. *Clinical Genetics, 85*, 353–358.

Tuncu, Ya., Burucu, S., Parma, J., Akin, R., Desir, J., Baser, I., Ergun, A., & Abramowicz, M. (2006). Prenatal diagnosis of primary microcephaly in two consanguineous families by confrontation of morphometry with DNA data. *Prenatal Diagnosis, 26*, 449–453.

Valverde, R., Edwards, L., & Regan, L. (2008). Structure and function of KH domains. *FEBS Journal, 275*, 2712–2726. https://doi.org/10.1111/j.1742-4658.2008.06411.x

Verloes, A., Drunat, S., Gressens, P., & Passemard, S. (1993). Primary autosomal recessive microcephalies and seckel syndrome spectrum disorders. In R. A. Pagon, M. P. Adam, H. H. Ardinger, T. D. Bird, C. R. Dolan, C.-T. Fong, R. J. Smith, & K. Stephens (Eds.), *GeneReviews®*. University of Washington, Seattle.

Vertii, A., Hehnhly, H., & Doxsey, S. (2016). The centrosome, a multitalented renaissance organelle. *Cold Spring Harbor Perspectives in Biology, 8*(12), a025049. https://doi.org/10.1101/cshperspect.a025049

Woods, C. G., & Basto, R. (2014). Microcephaly. *Current Biology, 24*, R1109–R1111. https://doi.org/10.1016/j.cub.2014.09.063

Zaqout, S., Morris-Rosendahl, D., & Kaindl, A. M. (2017). Autosomal recessive primary microcephaly (MCPH): An update. *Neuropediatrics, 48*, 135–142. https://doi.org/10.1055/s-0037-1601448

Zombor, M., Kalmár, T., Nagy, N., Berényi, M., Teles, B., Maróti, Z., Brandau, O., & Sztriha, L. (2019). A novel WDR62 missense mutation in microcephaly with abnormal cortical architecture and review of the literature. *Journal of Applied Genetics, 60*, 151–162. https://doi.org/10.1007/s13353-019-00486-y

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the Supporting Information section.

How to cite this article: Duerinckx, S., Désir, J., Perazzolo, C., Badoer, C., Jacquemin, V., Soblet, J., Maystadt, I., Tunca, Y., Blaumeiser, B., Ceulemans, B., Courten, W., Debray, F.-G., Destree, A., Devriendt, K., Jansen, A., Keymolen, K., Lederer, D., Loeyes, B., Meuwissen, M., … Abramowicz, M. (2021). Phenotypes and genotypes in non-consanguineous and consanguineous primary microcephaly: High incidence of epilepsy. *Molecular Genetics & Genomic Medicine, 9*, e1768. https://doi.org/10.1002/mgg3.1768