Characterization and mapping of plant communities at Hennequin Point, King George Island, Antarctica

Filipe de C. Victoria,1 Margéli P. de Albuquerque,1 Antonio B. Pereira,1 Felipe N.B. Simas,2 Adriano A. Spielmann3 & Carlos E.G.R. Schaefer2

1 National Institute of Antarctic Science and Technology for Environmental Research, Federal University of Pampa, São Gabriel 97300, Brazil
2 Soil Department, Federal University of Viçosa, Av. Peter Henry Rolfs s/n, Campus Universitário, Viçosa 36570, Minas Gerais, Brazil
3 Botany Laboratory, Biology Department, Federal University of Mato Grosso do Sul, Cuiabá 79070, Mato Grosso do Sul, Brazil

Keywords
Plant communities mapping; lichens; mosses; flowering plants; Antarctic.

Abstract
King George Island is the largest island and the principal area used for research bases in Antarctica. Argentina, Brazil, Chile, China, Poland, Russia, South Korea and Uruguay have permanent open bases on this island. Other countries have seasonal summer stations on different parts of this island, which demonstrates that human impact is strong on King George Island relative to other areas in the maritime and continental Antarctica. The objective of this work was to present a phytosociological approach for ice-free areas of Hennequin Point, eastern coast of Admiralty Bay, King George Island. The study started with the classification and description of the plant communities based primarily on phytosociological and biodiversity data. The area was mapped using an Astech Promark II® DGPS, yielding sub-metric precision after post-processing with software. The plant communities were described as follows: (1) lichen and moss cushion formation; (2) moss carpet formation; (3) fellfield formation; (4) grass and cushion chamaephyte formation; and (5) Deschampsia Antarctica lichen formation. Characterizations and distributions of the plant communities are presented on a map at a scale of 1:5000. The plant communities found at Hennequin Point, in general, differ from those found in other areas of the Admiralty Bay region, probably because of the concentration of skua nests in the area and the relief singularities. We conclude by highlighting the importance of the study of plant species found in the ice-free areas of the Antarctic with respect to environmental monitoring and for evaluating global climate and environmental changes.

The Antarctic flora is composed mainly of bryophytes and lichen species adapted to short summers and low temperatures (Putzke & Pereira 2001). Such climatic conditions inhibit the reproductive cycle, limiting the diversity and the gene pool, especially for flowering plants (Pereira & Putzke 1994; Vincent 2000). The Antarctic hair grass (Deschampsia antarctica Desv.) and the Antarctic pearlwort (Colobanthus quitensis [Kunth.] Bartl.) are the only native angiosperms growing in Antarctica, but are restricted to the maritime Antarctica, which experience a shorter daylight period, warmer temperatures and higher water availability in comparison to continental Antarctica.

Several studies, such as those by Bednarek-Ochyra et al. (2000), Ochyra et al. (2008), Putzke & Pereira (2001), Redón (1985) and Øvstedal & Lewis-Smith (2001), have contributed to a fairly good understanding of the species composition and structure of the plant and lichen communities in ice-free areas of the maritime Antarctica. However, there are very few maps showing the spatial distribution of such communities. Based on satellite images, Furmanczyk & Ochyra (1982) produced a map of moss distribution for the south-western shore of Admiralty Bay, King George Island. Although this has been very useful in orientating botanic studies in this area, the broad mapping scale limits its practical use in...
monitoring and ecological studies. Victoria et al. (2009) produced a finer scale map of the moss communities in the south-west of Admiralty Bay for monitoring the succession of plant communities colonizing this area.

High-resolution vegetation mapping is critical for a better understanding of the impacts of environmental factors that control vegetation development, allowing for the future monitoring of these communities. The extremely dynamic aspect of geomorphic surfaces and related soils under periglacial and paraglacial conditions results in a high variation in plant communities within the scale of a metre. Differences in species composition can be found within a small area (Victoria et al. 2009) due the heterogeneity in terrain, microtopography, substrate type and soil chemistry in small ice-free areas. This makes map scale a very important factor to be considered when producing a cartographic base for future monitoring studies.

The maritime Antarctic zone is characterized by higher mean air temperatures and water availability than continental Antarctica. According to data sets from 1982 to 2002, acquired at the Brazilian Comandante Ferraz Station (Setzer et al. 2004), the mean air temperature varies from \(-6.4^\circ C\) in July to \(2.3^\circ C\) in February. Positive air temperatures occur from November until March. Mean annual precipitation is 366.7 mm rainfall equivalent, falling as snow and rain. During the last decade, there has been an increase in mean annual temperature of 0.2–0.6°C, contributing significantly to the retreat of glaciers over this period in the Admiralty Bay region (Rakusa-Suszczewski et al. 1993).

The main objective of this work is the first characterization and fine-scale mapping of the plant communities colonizing Hennequin Point, along the eastern coast of Admiralty Bay, King George Island (62° 03’ 40”–62° 05’ 40” S and 58° 23’ 30”–58° 24’ 30” W; Fig. 1). By helping in the monitoring studies of plant communities in the area, this will aid the evaluation of the environmental impacts that are occurring with the expansion of ice-free areas in Antarctica.

![Fig. 1 Studied area. (a) Antarctica, with an arrow pointing to the location of the South Shetland Islands, (b) King George Island, with ice-free areas indicated in grey, and (c) the study area of Hennequin Point, in Admiralty Bay.](image-url)
Methods

During the 2004/05 austral summer, a detailed mapping and characterization of plant communities was carried out on Henneguin Point, on the eastern coast of Admiralty Bay (Fig. 1). The area studied comprises approximately 3.06 km² of ice-free terrain and is composed of tholeitic basalt, andesites and volcanic tuffs, with a north-east–south-west axis of 3.6 km. The area studied is less than 1 km wide. The relief ranges from 0 to more than 300 m a.s.l.

Phytosociological surveys were undertaken using the quadrat method of Braun-Blanquet (1964), using 25 × 25 cm quadrats launched randomly (in a total of 206 quadrats sampled) for recording the frequency and coverage degree of each species identified. The selection of the sites was subjectively based on the extent of vegetation cover and its diversity, which was previously evaluated by assessing its physiognomy and location. The percentage frequency and cover were determined as proposed by Gimingham & Lewis-Smith (1970) and Lewis-Smith (1972). To assess the importance of each species identified in the surveys, an index of ecological significance (IES) was calculated (Lara & Mazimpaka 1998). Statistical analyses were applied, using the software EstimateS 8.2, to obtain the phytosociological parameters (diversity, maximum diversity and equability) for each plant formation described (Chao 2004; Colwell 2004). The Shannon index was applied to estimate diversity and its index of equability. To illustrate the importance of the species in the total sampling, the index of ecological importance was used (Lara & Mazimpaka 1998), which combines the parameters of abundance (coverage and frequency), described as $$I_{ES} = F(1+C)$$, where $$F$$ is the relative frequency of the species in the area or habitat and is generated by the number of occurrences ($$x$$) divided by the total number of samples considered ($$n$$): $$F = 100x/n$$; and $$C$$ is the average coverage of the species in the samples, calculated as $$C = \Sigma(c_i)/x$$, where $$c_i$$ is the class of coverage and $$x$$ is the number of sampling dots in which the species occur. These equations are similar to those used by Braun-Blanquet (1964).

Plant communities were mapped in the field using an Ashtech Promark II® DGPS (Ashtech OEM, Sunnyvale, CA, USA), which yields sub-metric precision after post-processing with the Astech Solutions® software, referenced to the active global positioning system station of Comandante Ferraz Station. This map was overlaid and adjusted with a high-resolution IKONOS satellite image, acquired in the summer of 2008, generating the final map presented here at a scale of 1:10 000.

The description and classification of the plant communities were based on Lewis-Smith & Gimingham (1976), Pereira & Putzke (1994) and Redón (1985). The identification of bryophytes was based on Ochyra et al. (2008) and the lichens on Øvstedal & Lewis-Smith (2001), Olech (1996) and Spielmann & Pereira (2012). In the cases of some Bryum species, there has been a change in genus allocation and the names follow the recent literature (Spence 2005, 2007). The species names were updated based on the names in databases available on the internet, such as W3Tropicos (www.tropicos.org) for mosses and Index Fungorum (www.indexfungorum. org) for lichens. All species and survey data are available at the Federal University of Pampa Herbaria, Campus São Gabriel.

The place-names presented in this work follow the official nomenclature presented by Simões (2004).

Results and discussion

The terrestrial plant communities of the maritime Antarctica can be generically divided into two basic types: (1) those comprising only cryptogams and (2) those comprising both cryptogams and phanerogams, as suggested by Longton (1967, 1979) and adopted by Victoria et al. (2004) for the area near the Polish Arctowski Station, on the western coast of Admiralty Bay. At Henneguin Point, in 206 quadrats launched we mapped six different plant communities (three cryptogamic and three mixed cryptogamic–phanerogamic) covering approximately 17.4% (0.542 km²) of the studied ice-free area. A list of plants and lichen found in the samples is presented in Table 1. The main characteristics of the mapped communities (area, dominant species and terrain) are summarized in Table 2. Fellfield communities occur in recently deglaciated areas (Fig. 2) and these are also discussed.

The most important species (IES > 50) is Sanionia uncinata, as also reported for other ice-free areas in the Admiralty Bay region (Furmanczyk & Ochyra 1982; Ochyra 1998; Victoria et al. 2009). The most important lichens are Usnea aurantiaca-atra, followed by Ochrolechia frigida, which is associated with Andreaea spp., notably Andreaea gainii, the second most important moss species recorded in the area. Other species, with their importance values, are summarized in Table 3, while the plant formations are illustrated in Fig. 2 and their diversity status is summarized in Table 4.
Table 1

Plant and lichen species of Hennequin Point, King George Island, Antarctica. (Table continues next page.)

Bryophyta	
Amblystegiaceae	
Sanionia uncinata (Hedw.) Loeske	
Warnstorfia sarmentosa (Wahlenb.) Hedenäs	
Andreaeaceae	
Andreaea depressinervis Card.	
Andreaea gainii Card.	
Andreaea regularis Müll. Hal.	
Bartramiaceae	
Bartramia patens Brid.	
Conostomum magellanicum Sull.	
Brachytheciaceae	
Brachythecium austrosalebrosum (Mu¨ ll. Hall.) Paris	
Bryaceae	
Bryum orbiculatifolium Card. & Broth.	
Pohlia cruda (Hedw.) Lindb.	
Ptychostomum archangelicum (Bruch & Schimp.) J.R. Spence	
Ptychostomum pseudotriquetrum (Hedw.) J.R. Spence & H.P. Ramsay ex Holyoak & N. Pedersen	
Dicranaceae	
Chorisodontium aciphyllum (Hook. f. & Wilson) Broth.	
Ditrichaceae	
Ceratodon purpureus (Hedw.) Brid.	
Grimmiaceae	
Mesia uliginosa Hedw.	
Polytrichaceae	
Polytrichastrum alpinum (Hedw.) G.L. Smith	
Pottiaceae	
Bucklandiella sudetica (Funck) Bednarek-Ochyra & Ochyra	
Schistidium antarctici (Card.) L.I. Savicz & Smirnova	
Hypnaceae	
Hypnum revolutum (Mitt.) Lindb.	
Meesiaceae	
Mesia uliginosa Hedw.	
Polytrichaceae	
Polytrichastrum alpinum (Hedw.) G.L. Smith	
Pottiaceae	
Hennediella antarctica (Ángstr.) Ochyra & Matteri	
Hennediella heimii (Hedw.) R.H. Zander	
Syntrichia dissitifolia (Herzog & Groll) J. Heinrichs	
Syntrichia regularis Müll. Hal.	
Seligeraceae	
Dircaouisia brevipes (Müll. Hall.) Card.	
Dircaouisia crispa (Hedw.) Milde	
Marchantiophyta	
Anthelliaceae	
Anthelia juratzkana (Limpr.) Trevis.	
Cephaloziaceae	
Cephalodia badia (Gottschel) Steph.	
Cephaloziellaceae	
Cephaloziella varians (Gottschel) Steph.	
Geocalycaceae	
Chiloscyphus dissipitifolius (Hedw.) J. Heinrichs	
Lepidodictyaceae	
Hygrothecium ventralis (Mitt.) Grolle	
Anastrophyllaceae	
Barbilophozia hatcheri (A. Evans.) Loeske	
Jungermanniaceae	
Lophozia excisa (Dicks.) Dumort.	
Algae	
Prasiola crispa (Lightfoot) Kutzing.	
Phanerogams	
Colobanthus quitensis (Kunth) Bartl	
Deschampsia antarctica (Desv.)	
Lichenized and lichenicolous fungi	
Acarospora macrocyclos Vain.	
Amandinea peternanii (Hue) Matzer, H. Mayrhofer & Scheid.	
Bacidia stipata Lamb	
Buellia anisomera Vain.	
Buellia russa (Hue) Darb.	
Calioptera athallina Darb.	
Calioptera cirrochrooides (Vain.) Zahlbr.	
Calioptera citrina (Hoffm.) Th. Fr.	
Calioptera regalis (Vain.) Zahlbr.	
Candelaria murrayi (Dodge) Poelt	
Cetraria aculeata (Schreb.) Fr.	
Cladonia squamosa (Hoffm.)	
Cystocoleus ebeneus (Dillwyn) Whithaites	
Haematomma erythroma (Nyl.) Zahlbr.	
Himantormia lugubris (Hue) Lamb	
Huxa cerussata (Hue) C.W. Dodge & G.E. Baker	
Huxa coralligera (Hue) C.W. Dodge & G.E. Baker	
Hypogymnia lugubris (Pers.) Krog	
Lecanora bialmontii (Vain.) Zahlbr.	
Lecanora phyliscella (Darb.) Hertel	
Lepidium puberulum Hue	
Mastodia tesselata (Hook.f. & Harv.) Hook.f. & Harvey	
Micarea assimilata (Nyl.) Coppins (=Lecidea assimilata Nyl.)	
Microgaena antarctica Lamb	
Ochrolechia frigida (Sw.) Lyngé	
Ochrolechia parella (L.) A. Massal.	
Pannaria hookeri (Borrer ex Sm.) Nyl.	
Parmelia saxatilis (L.) Ach.	
Physcia caesia (Hoffm.) Fünnr.	
Physcia dubia (Hoffm.) Lettau	
Physconia muscigena (Ach.) Poelt	
Placopsis contortuplicata Lamb	
Porpidia albocaerulescens (Wulfen) Hertel et Knoph	
Porpidia crustulata (Ach.) Hertel et knoph	
Pseudopseudephue pubescens (L.) Choisy	
Psoroma hyphorum (Vahl) Gray	
Ramalina terebrata Hook et Tayl.	
Rhizocarpon geographicum (L.) DC.	
Rhizocarpon polycarpon (Hepp) Th. Fr.	

Citation: Polar Research 2013, 32, 19261, http://dx.doi.org/10.3402/polar.v32i0.19261
Cryptogamic communities

Lichen–moss cushion formation

This mixed community occurs mainly on moraines, rocky protalus and talus deposits as well as on rock outcrops which border the several escarpments on Hennequin Point. It is composed mainly of epilithic lichens that grow on rock surfaces and are tolerant of exposure to strong winds and dry mineral soils. Twenty-seven species were found in this formation ($E = 0.69; H' = 0.98$). *Usnea antarctica,* *U. aurantiaco-atra,* *Rhizocarpon geographicum,* *Cladonia* spp. and *Sphaerophorus globosus* are abundant in this habitat. Close to skua (*Catharacta* spp.) nests, *Haematoma erythromma* and *Calepia* and *Xanthoria* spp. prevail. On the borders of the escarpments *Leptogium menziesii* and *Placopsis contortuplicata* are common on gravel. Moss cushions of *Schistidium antarcticum* and *Andreaea gainii* (often associated with epiphytic *Ochrolechia frigida*) occupy more protected and wetter microenvironments occurring between the rock fragments, possibly where late-lying snow lies.

This is the most extensive/widespread community type in the studied area, accounting for approximately 28% of the vegetated area. Protalus and talus habitats are very frequent geo-environments in the study area. As shown by Allison & Lewis-Smith (1973) and Longton (1982), epilithic lichens have an important role in mineral bioweathering through the release of organic chelates capable of chemically altering the underlying rocks.

Moss carpet formation

This community occurs on the marine terraces of Hennequin Point (Fig. 2), with stable hydromorphic cryosols. Twenty-eight species were recorded in this formation ($E = 0.63; H' = 0.91$), with thick moss carpets of *S. uncinata* being the predominant species. Four similar

Table 1

Community type	Common species	Geomorphological characteristics
Lichen–moss cushion formation	*Usnea antarctica* Du Rietz, *Usnea aurantiaco-atra* (Jacq.) Bory, *Andreaea gainii* Cardot, *Ochrolechia frigida* (Sw.) Lyng	Rock outcrops, and coarse fragments on moraine, talus and protalus deposits
	Rhizocarpon geographicum (L.) DC.	
Moss carpet formation	*Sanionia uncinata* (Hedw.) Loeske, *Rhizocarpon geographicum* (L.) DC.	Uplifted marine terraces
Fruticose and crustose lichen formation	*Usnea aurantiaco-atra* (Jacq.) Bory, *Mastodia tessellata* (Hooker f. & Harvey), *Hooker f. & Harvey*, *Lecanaria brialmontii* (Vainio) Zahlbr.	Rock outcrops on the seashore, with strong influence of seabird droppings
Fellfield communities	*Psychromyces pseudotriquetrum* (Hedw.) J.R. Spence & H.P. Ramsay, *Psilothamnus pollescens* (Schleich. ex Schwägr.), *J.R. Spence*, *Hennediella heimii* (Hedw.) R.H. Zander	Recently deglaciated terrains such as fluvial-lacustrine plains and uplifted plateaus and cryoplanation surfaces
Grass and cushion chamaephyte Formation	*Deschampsia antarctica* Desv., *Colobanthus quitensis* (Kunth.) Bartl.	Shallow soil developed on the surface of basalt dyke; strongly influenced by *Larus dominicanus* colonies.
	Sanionia uncinata (Hedw.) Loeske, *Hennediella heimii* (Hedw.) R.H. Zander	

Table 2

Community type	Common species	Geomorphological characteristics
Lichen–moss cushion formation	*Deschampsia antarctica* Desv., *Colobanthus quitensis* (Kunth.) Bartl.	Shallow soil developed on the surface of basalt dyke; strongly influenced by *Larus dominicanus* colonies.
	Sanionia uncinata (Hedw.) Loeske, *Hennediella heimii* (Hedw.) R.H. Zander	Stable protalus and talus deposits with pockets of organic-rich soil.
Fig. 2 Spatial distribution of plant communities at Hennequin Point, King George Island.

Table 3 Most important species found in the phytosociological survey at Hennequin Point.

Species	Number of quadrats	f^b (%)	IES c
Sanionia uncinata (Hedw.) Loeske	148	71.84	211.7
Usnea aurantiacoatra (Jacq.) Bory	53	25.7	34.91
Andreaea gainii Card.	51	24.75	32.57
Ochrolechia frigida (Sw.) Lymge	36	17.47	21.38
Usnea antarctica Du Rietz	34	16.5	22.2
Ptychostomum pseudotriquetrum (Hedw.) J.R. Spence & H.P. Ramsay ex Holyoak & N. Pedersen	30	14.5	16.97
Ptychostomum pallescens (Schleich. ex Schwägr.) J.R. Spence	27	13.1	15.00
Polytrichastrum alpinum (Hedw.) G. L. Sm.	22	10.68	11.97
Deschampsia antarctica Desv.	19	9.22	10.05
Polytrichum juniperinum Hedw.	18	8.73	9.56
Lecania brialmontii (Vainio) Zahibr.	16	7.76	8.37
Bryum orbiculatifolium Cardot & Broth.	15	7.28	8.07
Buellia russa (Hue) Darb.	14	6.80	7.42
Hennediella heimii (Hedw.) R.H. Zander	11	5.33	5.62
Mastodia tesselata (Hooker f. & Harvey) Hooker f. & Harvey	11	5.33	5.62
Synchitria magellanica (Mont.) R.H. Zander	10	4.85	5.02
Leptogium menziesii Mont.	9	4.36	4.59
Rhizocarpon geographicum (L.) DC.	8	3.88	4.05

aNumber of quadrats in which the species was recorded.
bSpecies frequency in 206 quadrats.
cIndex of ecological significance (IES) in the total sampling.
areas, amounting to approximately 17% of the vegetated area, were mapped.

In the northernmost part of the ice-free area, there are two elongated raised beaches in the early stage of colonization by moss carpets. The stands are discontinuous and the dominant moss rather sparse (Fig. 2). These narrow marine terraces undergo a continuous sedimentation process due to the proximity of upland scree slope deposits. Hence, solifluction is high and widespread and inhibits the establishment of a continuous carpet of moss, and the cryoturbic action separates the graded material into stone and soil polygons or circles. However, larger marine terraces, close to the Ecuador Refuge, possess the largest and best developed stands of this plant community, forming extensive continuous carpets composed of S. uncinata often in association with hydric species, such as Brachythecium austrosalebrosum and Warnstorfiella sarnentosa. Soil stability and greater isolation from the downward movement of mineral debris appears to be a determining factor for the development of these closed stands.

As observed in other areas of Admiralty Bay (Fumarzycky & Ochyra 1982; Ochyra 1998; Victoria et al. 2004), the establishment of these communities is strongly related to water supply. There are numerous small meltwater ponds and several larger lakes (Fig. 2). The chemical composition of the species found in these formations is strongly correlated with meltwater chemistry (Simas et al. 2008), suggesting that they may be potential indicators of melting water and ecosystems in future monitoring.

Fellfields communities

Although this is the largest community mapped, occupying approximately 44% of the vegetated area, the vegetation is not continuous, and these plant communities represent a successional stage of development that precedes the establishment of more developed and complex communities. These communities occur on recently deglaciated areas and on low-lying terraces as well as on the higher plateau. The more stable surface conditions and abundant water supply along meltwater channels allow relatively rapid plant colonization. Mats of cyanobacteria (i.e., Nostoc commune, Phormidium spp.) and algae Prasiola crispa are frequent in waterlogged areas, with occasional Psychotomum pseudotiquetrum and Psychotomum pallescens, as well as Henneidiella heimii in wet areas, frequently forming vegetation stripes along the meltwater channels. Andreaea gainii and some crustose lichens grow in drier, slightly higher ground.

The soils are very similar to those found in other recent ice-free areas of Admiralty Bay, having a high salt concentration due to sea spray input and, to a lesser extent, mineral weathering (Simas et al. 2008). Despite this salt precipitation on the plants in these communities, their growth is, apparently, not affected. It is most likely that the rain or snowfall melt ameliorates the effect of the higher mineral concentrations (Kennedy 1995), such as salt ions and others injuries on the lichen species also (Cooper et al. 2001).

Fruticose and crustose lichen formation

This community occurs on small coastal rock outcrops strongly influenced by sea birds. The diversity status of this formation is similar to those for the moss carpet formation ($E = 0.55; H = 0.80$), but there are fewer species in the present formation (Table 4). Numerous lichens are abundant, notably Usnea aurantia-tatra, Caloplaca spp., Xanthoria elegans, Xanthoria candelaria, Physcia caesia, Haematomma erythromma, Ramalina terebrata, Mastodia tessellata, Lecania brialmontii and Buellia spp. It represents approximately 0.1% of the vegetated area.

Cryptogamic–phanerogamic communities

Grass and cushion chamaephyte formation

This community represents about 3% of the vegetated area and is associated mainly with kelp gull (Larus dominicanus) and skua (Catharacta spp.) colonies close to the sea. The vegetation occurs on basaltic dykes that interrupt the gravelly beaches and marine terraces. This formation shows the highest diversity status ($E = 0.77; H = 1.05$), probably because of the higher coverage found in this formation (Fig. 2). These areas are characterized by the conspicuous presence of Deschampsia antarctica and Colebantus quitensis associated with ornithocophrophilous lichens, such as Caloplaca spp., Carbonea sp., Ramalina terebrata, Xanthoria elegans, Parmelia saxatilis and Umbilicaria antarctica (less frequent). The grass is established on soil that is 20–30 cm deep and

Formation	R	E	H	H_{max}
Lichen-moss cushion formation	27	0.69	0.98	1.43
Moss carpet formation	28	0.63	0.91	1.44
Fruticose and crustose lichen formation	28	0.55	0.80	1.44
Grass and cushion chamaephyte formation	23	0.77	1.05	1.36
Deschampsia Antarctica-moss carpet subformation	11	0.47	0.48	1.04

Citation: Polar Research 2013, 32, 19261, http://dx.doi.org/10.3402/polar.v32i0.19261
enriched with nutrients from guano deposition, while the lichens are mostly crustose species, growing on the exposed bare rock and subjected to N and P-rich leachates.

In areas of fresh guano deposition, the soil is colonized initially by the foliose green alga _Prasiola crispa_. Similar communities, too small to be mapped, also occur around skua nests, on marine terraces, associated with _Sanionia uncinata_ carpets. _Hemidelia antarctica_ and _Polytrichum juniperinum_ occur in some sites within these communities, indicating a high tolerance of ornithogenic nutrient input, which is not shown by other _Pottiaceae_ and _Polytrichaceae_ in the maritime Antarctic region. The influence of bird activity on the development of the terrestrial ecosystems of Admiralty Bay and similar regions in the maritime Antarctica has been reported by several authors (Gimingham & Lewis-Smith 1970; Longton 1982; Pereira & Putzke 1994; Ochyra 1998; Putzke & Pereira 2001; Simas et al. 2007). The high nutrient input from guano deposition, especially N and P, create specific soil conditions which can enhance vegetation development, but also inhibit some nitrophobic plants (Simas et al. 2007), such as _Hemidelia heimii_.

Despite their rather localized occurrence, these communities are an important potential carbon sink due to the presence of the lignin-bearing phanerogams, _D. antarctica_ and _C. quitensis_. In contrast to the areas occupied by fellfield communities, the soils supporting these plants are more acidic and have much higher C, P and total N concentrations (Michel et al. 2006; Simas et al. 2007).

Deschampsia antarctica—moss–fruticose lichen subformation

This community is similar to the lichen–moss cushion cryptogamic community, but with the addition of _Deschampsia antarctica_, and comprises only 11 species (E = 0.47; H’ = 0.48). It occurs mainly on stable rocky protalus and talus deposits as well as on rock outcrops (where the grass occurs in rock crevices and on ledges), and represents 6.5% of the vegetated area. It is composed mainly of lichens which grow on rock surfaces and which tolerate very exposed and dry conditions. _Usnea antarctica_ and _U. australis-atra_ are the most common fruticose lichens. _Rhizocarpon geographicum, Parmelia saxatilis_ and _Physconia musciigena_ also occur. At the margins, _Leptogium menziesii_ and cushions of _Syntrichia magellanica_ and _Andreaea gainii_ are observed, growing in more protected and wetter microenvironments amongst the rock fragments. There are often small _Sanionia uncinata_ carpets and _Polytrichastrum alpinum_ colony shoots adjacent to skua nests in the proximity of the Ecuador Refuge.

Conclusions

Overall, the plant communities of Hennequin Point are smaller in area than those mapped by Victoria (2005) on the western coast of Admiralty Bay. This may be due to the absence of penguin colonies, because the impact of penguin rookeries is regarded as a major factor linked to the occurrence and distribution of many plant and lichen species growing in maritime Antarctica (Longton 1982).

Floristically, the eastern and western shores of Admiralty Bay are similar, with several species present in both regions, but the abundance and frequency of species differs. On the western coast, _Sanionia uncinata_ and _Polytrichastrum alpinum_ are the most abundant moss species while on the eastern coast, although _S. uncinata_ is very abundant, _Polytrichaceae_ (_P. alpinum_ and _P. juniperinum_) are not as abundant as observed at the western coast. _Bryaceae_ and often _Pottiaceae_ are prevalent, especially in waterlogged areas. As in other areas of Admiralty Bay, _Pachystrum pseudotriquetrum_ and _Hemidelia heimii_ are widely distributed on marine terraces, reinforcing their preference for non-ornithogenic, alkaline, salt-rich substrates (Furmanczyk & Ochyra 1982; Ochyra 1998). However, _Syntrichia magellanica_ is more abundant in coastal sites around gull and skua nests and colonies.

The species of Grimmiaeae which, on the western coast, are restricted mostly to higher areas, are frequently present in lowland sites of the eastern coast. The native grass species occur in most plant communities, being most frequent in the grass and cushion chamaephyte formation, but are also present in other communities, especially those on marine terraces (_Deschampsia–moss–fruticose lichen subformation_).

The accuracy obtained from this survey will allow the monitoring of plant communities in ice-free areas from Hennequin Point. It may be possible to verify the increase or regression of the vegetation patches by overlaying the map generated in this study with further surveys.

Acknowledgements

This work was supported by the Brazilian Antarctic Program through the National Council for Research and Development (CNPq; process no. 574018/2008), the Research Foundation of the State of Rio de Janeiro.
(FAPERJ: process E-26/170.023/2008), the Ministry of the Environment (MMA), the Ministry of Science and Technology (MCT) and the Interministerial Commission for Sea Resources (CIRM), where the authors appreciate the financial and logistic support that was needed to fulfil this work.

References

Allison S.E. & Lewis-Smith R.I. 1973. The vegetation of Elephant Island, South Shetland Island. British Antarctic Survey Bulletin 33–34, 185–212.

Braun-Blanquet J. 1964. Plant sociology: the study of plant communities. New York: McGraw-Hill.

Chao A. 2004. Species richness estimation. In N. Balakrishnan et al. (eds.): Encyclopedia of statistical sciences. Pp. 7909–7916. New York: Wiley.

Colwell R.K. 2004. Estimates: statistical estimation of species richness and shared species from samples. Version 8.2. Accessed on the internet at http://purl.oclc.org/estimates on 19 September 2011.

Cooper E.J., Smith F.M. & Wookey P.A. 2001. Increased rainfall ameliorates the negative effect of trampling on the growth of High Arctic lichen. Symbiosis 31, 153–171.

Furmanczyk K. & Ochyra R. 1982. Plant communities of the Admiralty Bay (King George Island, South Shetland Islands, Antarctic). I. Jasnorszewski Gardens. Polish Polar Research 3, 25–39.

Gimmingham C.H. & Lewis-Smith R.I. 1970. Bryophyte and lichen communities in the maritime Antarctic. In R. Holdgate (ed.): Antarctic ecology. Pp. 752–785. London: Academic Press.

Kennedy A.D. 1995. Antarctic terrestrial ecosystem response to global environmental change. Annual Review of Ecology and Systematics 26, 683–704.

Lara F. & Mazimpaka V. 1998. Succession of epiphytic bryophytes in a Quercus pyrenaica forest from Spanish central range (Iberian Peninsula). Nova Hedwigia 67, 125–138.

Lewis-Smith R.I. & Gimmingham C.H. 1976. Classification of cryptogamic communities in the maritime Antarctic. British Antarctic Survey Bulletin 33–34, 89–122.

Longton R.E. 1982. Bryophyte vegetation in polar regions. In A.J.E. Smith (ed.): Bryophyte ecology. Pp. 123–165. London: Chapman and Hall.

Michel R.F.M., Schaefer C.E.G.R., Dias L.E., Simas F.N.B., Benites V.M. & Sá Mendonça E. 2006. Ornithogenic gelisols (cryosols) from maritime Antarctica: pedogenesis, vegetation and carbon studies. Soils Science Society of America Journal 70, 1370–1376.

Ochyra R. 1998. The moss flora of King George Island Antarctica. Krakow: Polish Academy of Sciences.

Ochyra R., Lewis Smith R.I. & Bednarek-Ochyra H. 2008. The illustrated moss flora of Antarctica. Cambridge: Cambridge University Press.

Olech M. 1996. Human impact on terrestrial ecosystems in west Antarctica. Proceedings of the NIPR Symposium on Polar Biology 9, 299–306.

Øvstedal D.O. & Lewis-Smith R.I. 2001. Lichens of Antarctica and South Georgia—a guide to their identification and ecology. Cambridge: Cambridge University Press.

Pereira A.B. & Putzke J. 1994. Floristic composition of Stinker Point. Elephant Island, Antarctica. Korean Journal of Polar Research 5(2), 37–47.

Putzke J. & Pereira A.B. 2001. The Antarctic mosses with special reference to the Shetland Island. Canosas: Editora da Ulbra.

Rakusa-Suszczewski S., Mietus M. & Piasecki J. 1993. Weather and climate. In S. Rakusa-Suszczewski (ed.): The maritime Antarctic coastal ecosystem of Admiralty Bay. Pp. 19–25. Warsaw: Department of Antarctic Biology, Polish Academy of Sciences.

Redón J. 1985. Líquenes Antárticos. (Antarctic lichens.) Santiago de Chile: Chilean Antarctic Institute.

Setzer A.W., Romão M., Francelinio M.R., Schaefer C.E.G.R., Costa L.M. & Bremer U.F. 2004. Regime climático na Baía do Almirantado: relações com o ecossistema terrestre. (Climate regime in Admiralty Bay: relations with the terrestrial ecosystem.) In C.E.G.R. Schaefer et al. (eds.): Ecosistemas costeiros e monitoramento ambiental da Antártida Marítima–Baía do Almirantado, Ilha Rei George. (Coastal ecosystems and environmental monitoring of the maritime Antarctic—Admiralty Bay, King George Island.) Pp. 1–8. Viçosa: Federal University of Viçosa Editors.

Simas F.N.B., Schaefer C.E.G.R., Albuquerque Filho M.R., Francelinio M.R., Fernandes Filho E.I., Gilkes R.J. & Costa L.M. 2008. Genesis, properties and classification of cryosols from Admiralty Bay, maritime Antarctica. Geoderma (Amsterdam) 144, 116–122.

Simas F.N.B., Schaefer C.E.G.R., Albuquerque Filho M.R., Melo V.F., Michel R.F.M., Pereira V.V., Gomes M.R.M. & Costa L.M. 2007. Ornithogenic cryosols from maritime Antarctica: phosphatization as a soil forming process. Geoderma (Amsterdam) 138, 191–203.

Simões J.C., Aragony-Neto J. & Bremer U.F. 2004. Uso de mapas antárticos em publicações. (Use of antarctic maps in publications.) Pesquisa Antártica Brasileira 4, 191–197.

Spence J.R. 2005. New genera and combinations in Bryaceae (Bryales, Musci) for North America. Phytologia 87, 114–15.

Spence J.R. 2007. Nomenclatural changes in the Bryaceae (Bryales, Musci) for North America II. Phytologia 89, 110–114.

Spelmann A.A. & Pereira A.B. 2012. Lichens on the maritime Antarctica. Glàlia 4(3), 1–28.

Victoria F.C. 2005. Composição e distribuição das formações de muçúas nas áreas de degelo adjacentes a Baía do Almirantado, Ilha Rei George, Antártida. (Composition and distribution of moss formations in ice-free areas adjacent to Admiralty Bay, King George Island, Antarctica.) MSc thesis, National School of Tropical Botany/Research Institute Rio de Janeiro Botanical Garden.

Victoria F.C., Pereira A.B. & Costa D.P. 2004. Characterization of plant communities in ice-free areas adjoining the Plant communities at Hennequin Point, King George Island.
Polish Station H. Arctowski, Admiralty Bay, King George Island, Antarctic. Paper presented at the 5th Argentine and 1st Latin-American Symposium on Antarctic Research. 30 August–3 September, Buenos Aires.
Victoria F.C., Pereira A.B. & Costa D.P. 2009. Composition and distribution of moss formations in the ice-free areas adjoining the Arctowski region, Admiralty Bay, King George Island, Antarctica. *Iheringia Série Botânica* 64, 81–91.
Vincent W.F. 2000. Evolutionary origins of Antarctic microbiota: invasion selection and endemism. *Antarctic Science* 12, 374–385.