Enhanced Photovoltaic Properties in Sb$_2$S$_3$ Planar Heterojunction Solar Cell with a Fast Selenylation Approach

Kun Wang1,2, Jiang Cheng1,2, Xin Yang1,2, Rong Hu2, Lijuan Fu1, Jiang Huang1, Junsheng Yu1,2 and Lu Li2

Abstract

Poor thermostability of Sb$_2$S$_3$ in vacuum hinders the possibility of achieving high-quality crystalline films. In order to enhance the photovoltaic properties of Sb$_2$S$_3$ planar heterojunction solar cells, a selenylation-based post-treatment approach has been employed. Selenylation performed over 15 min on the Sb$_2$S$_3$ film resulted in an enhancement in the conversion efficiency from ~ 0.01 to 2.20%. Effect of the selenylation on the evolution of morphology, crystal structure, composition distributions, and photovoltaic behavior has been investigated. The variation in the energy levels of Sb$_2$S$_3$/CdS junction has also been discussed. Results show that selenylation not only enhanced the crystallinity of Sb$_2$S$_3$ film but also provided a suitable energy level which facilitated charge transport from absorber to the buffer layer.

Keywords: Antimony chalcogenide, Sb$_2$S$_3$ solar cell, Selenylation, Energy level, Thermal evaporation

Background

Inorganic thin film solar cells have received much attention owing to the advantages of being low cost and lightweight as compared to their silicon counterparts [1, 2]. They are chemically and physically stable in air in contrast to organic and organic–inorganic hybrid perovskite solar cells and have achieved very long operating lifetimes under practical settings [3–5]. Among them, copper indium gallium selenide (CIGS)-based and cadmium telluride (CdTe)-based solar cells are promising and have realized a conversion efficiency of 21.7% and 19.6% [6, 7], respectively. In recent years, another candidate material Cu$_2$ZnSn$_{1-x}$Se$_x$ (CZTSSe) has been investigated as it is earth-abundant and has an environment-friendly composition [8, 9]. Although an impressive conversion efficiency of 12.6% has been achieved by a hydrazine-based solution process, this compound encountered complexities in terms of phase and defect control [10]. Additionally, the toxicity of hydrazine has seriously limited its further application [11–13]. Recently, binary antimony sulfide (Sb$_2$S$_3$) has gained importance as a thin film solar cell application, owing to its earth abundance, low cost, and the relatively low toxic composition of Sb and S elements [14, 15].

Sb$_2$S$_3$ exhibits a tunable energy bandgap (1.1–1.7 eV) when S elements are partly or completely replaced by Se, suggesting good designability of Sb$_2$S$_3$ for photovoltaic device preparation [16–18]. To date, various approaches have been reported to fabricate Sb$_2$S$_3$ absorber layers. Sb$_2$S$_3$-sensitized inorganic–organic heterojunction solar cells exhibit a high solar energy harvesting ability and have demonstrated conversion efficiency of 7.5% [19]. However, the device fabrication is complicated, and the lifetime of organic hole transporting materials is low. In comparison, planar heterojunction solar cells are advantageous in terms of simplified absorber preparation as well as device fabrication. Both physical vapor-deposited and solution-processed Sb$_2$S$_3$ films have been previously applied in planar heterojunction solar cell fabrication. All-inorganic Sb$_2$S$_3$ planar heterojunction devices with a simple structure of FTO/n-type buffer layer/Sb$_2$S$_3$/electrode have achieved a power conversion efficiency (PCE) of 1.27–4.17% [20–24]. Vacuum-based film deposition methods like magnetron sputtering are convenient to operate and provide accurate thickness control, reproducibility, and smooth surface building. Due to these advantages,
they have been widely applied in industrial manufacturing of CIGS and CdTe solar cells. Sb$_2$S$_3$ has a low melting point (550 °C) and high vapor pressure, favoring thermal evaporation instead of magnetron sputtering. However, Sb$_2$S$_3$ exhibits a poor thermostability in vacuum resulting in significant deviations in the composition [25], and the tendency for surface oxidation. Currently, component preserving rapid thermal evaporation (RTP) has been employed in the fabrication of all-inorganic Sb$_2$S$_3$ solar cells having achieved a maximum PCE of 4.17% [23]. Compared with the rapid thermal evaporation technique, regular thermal evaporation has some advantages in terms of providing accurate thickness and variable morphology control. Also, the substrate rotation is easier to realize and beneficial for uniform preparation of large-area thin film specimen. Since the distance between substrate and source is greater, the required evaporation power is lower than rapid evaporation. This ensures that the source has less thermal effect on the substrate during evaporation process. It consumes less material and has better prospect in flexible solar cell fabrication. However, this approach has some limitations that need to be addressed. To avoid decomposition and surface oxidation, Sb$_2$S$_3$ films can only be prepared at a low substrate temperature (~200 °C) by regular thermal evaporation. However, the low substrate temperature resulted in poor crystallinity of the films, which was not suitable for the preparation of efficient photovoltaic devices.

Post-treatments including vacuum annealing and selenization for thermally evaporated Sb$_2$S$_3$ have been considered. In this study, rapid thermal processing technique has been utilized for the thermal treatment. Photovoltaic properties of Sb$_2$S$_3$ planar heterojunction device showed a considerable enhancement after several minutes of selenization. Processing conditions and the effect on the crystal structure and surface morphology were investigated. The formation of gradient composition, evolution of energy levels, and electronic behavior in device has also been discussed in detail. After the optimization of the technique, the PCE of planar photovoltaic devices showed a satisfactory improvement from ~0.01 to 2.20%.

Methods/Experimental

A superstrate device structure (FTO (SnO$_2$:F)/CdS/ Sb$_2$S$_3$/Au) was applied for the Sb$_2$S$_3$ films solar cells. FTO-coated glass (Pilkington, Toledo, USA) with a sheet resistance of 7 Ω/□ was used as the bottom electrode to collect electrons. A CdS buffer layer with a thickness of 90 nm was deposited on the FTO glass using the chemical bath deposition (CBD) method [26]. Sb$_2$S$_3$ films were thermally evaporated using Sb$_2$S$_3$ powder (aladin, 99.9%, Aladdin) at less than 5 × 10$^{-4}$ Pa when the substrate temperature was kept at 175 °C, and then cooled down to room temperature naturally. The sample was then transferred into a two-zone RTP furnace at 103 Pa in protective N$_2$ atmosphere. Excess selenium powder was placed in a quartz boat in the low temperature zone (350 °C) whereas the sample was placed in the high temperature zone (400 °C). Subsequently, 60-nm Au electrode was deposited on the surface of absorber layer using DC magnetron sputtering.

Current density–voltage (J–V) characteristics were measured using a Keithley 2400 unit under an AM 1.5 (100 W/cm2) xenon lamp illumination (Newport 94043A). External quantum efficiency (EQE) of Sb$_2$S$_3$(Se) thin films were obtained using an integrated measurements system (Beijing SOFN 7-SCSpecIII). The crystal structure and composition were characterized by X-ray diffraction (XRD, Bruker D8). Optical property was characterized by ultraviolet–visible near infrared transmission spectroscopy (UV-Vis, Agilent Cary5000). Ultraviolet photoelectron spectroscopy (UPS, Thermo ESCALAB 250Xi) was used to determine the energy levels of the important photovoltaic layers. Surface morphology of Sb$_2$S$_3$(Se) films growth on CdS was characterized by scanning electron microscopy (SEM, FEI Helios Nanolab 600i). Carrier transporting behavior was investigated by electrochemical impedance spectrum (EIS) under a suitable open-circuit voltage.

Results and Discussion

The schematic of the entire device fabrication procedure is shown in Fig. 1a. Each sample comprised of eight cells with a 4-mm2 active area that was tested under the same condition. Typical J–V characters of untreated, vacuum-annealed (A) and selenized (S) Sb$_2$S$_3$ are shown in Fig. 1b and their corresponding performance is summarized in Table 1. Untreated Sb$_2$S$_3$ device showed a low average PCE < 0.01% with an open-circuit voltage (V_{OC}) of 0.31 V and a short current density (J_{SC}) of 0.14 mA/cm2. After a 10-min vacuum annealing step, a minor improvement was obtained with $J_{SC} = 0.66$ mA/cm2 and a PCE = 0.08%. In contrast, selenized devices showed a significant enhancement in both V_{OC} and J_{SC} as compared to the untreated device with $J_{SC} = 7.80$ mA/cm2 and PCE = 1.57%. The best performance of device with a maximum PCE = 2.20% and a $J_{SC} = 9.04$ mA/cm2 was obtained when the selenization time was increased to 15 min. Increasing the selenization time beyond 15 min did not bring a further improvement of performance. For a selenization time of 20 min, the average PCE decreased to 0.61% due to the degeneration of both V_{OC} and J_{SC}. Further extension of selenization time beyond 30 min resulted in a poor yield. EQE of the devices with the selenization effect is shown in Fig. 1c, where it is evident that the spectral response of the treated devices is significantly higher as compared to the untreated devices. This trend is well consistent with J–V
characteristics of devices. Devices selenized for 15 min have the highest EQE, indicating a good spectral response in the visible range. EQE peaks also show gradual red shift, and the spectral response ranges become wider with increasing selenization time. For the devices selenized for 20 min, a much wider EQE range from 350 to 400 nm is observed, which can be attributed to the composition change near p-n junction in the Se atmosphere annealing.

XRD analysis was used to determine the overall crystal structure of the films under annealing and selenization treatment. As shown in Fig. 2a, untreated Sb$_2$S$_3$ films showed weak and indistinct XRD peaks indicative of low crystallinity, which explains the poor PCE with the low J_{SC}. Vacuum-annealed and selenized films showed better crystallinity with distinguishable diffraction peaks, which was approximately matched to orthorhombic Sb$_2$S$_3$ (JCPDS NO. 15-0861). All diffraction peaks of selenized films gradually shifted to smaller 2θ angle as the selenization time increased. From the magnified (120) diffraction peaks shown in Fig. 2b, the 2θ value of Sb$_2$S$_3$ was found to be 17.50°, which shifted to 16.95° after a 15-min selenization time. The diffraction patterns tend to match the standard Sb$_2$Se$_3$ PDF card (JCPDS NO. 73-0393). Hence, it can be concluded that there was an increase in the lattice constant after selenization, where smaller S atoms (1.84 Å) were partly replaced by larger Se atoms (1.98 Å).

Further selenization (20 min) was observed to bring about a minor shift in the (120) XRD from 16.95° to 16.90°. We deduced that the replacement reaction rate decreased rapidly in the selenization process. The untreated film exhibited an amorphous textured surface, and the small-sized grains on the surface became more prominent when the film was vacuum annealed to 400 °C. A 15-min selenization treatment led to the formation of micron-sized large grains, indicating selenization can effectively promote the growth of grains which is consistent with XRD results. The compact surface hindered the replacement diffusion of Se, thus decreasing the reaction rate rapidly. The film selenized for 20 min showed large grains with distinct edges in the SEM image in Fig. 3. However, some bulges (red ellipse in Fig. 3d) can be observed on the surface that were responsible for the poor contact between absorber and the buffer layer. Accordingly, the 20-min selenized device exhibits a poor J_{SC} with a high series

![Fig. 1 Device fabrication and photovoltaic performance. a Schematic diagram of the fabrication of selenized Sb$_2$S$_3$ photovoltaic devices. b J-V characteristics under illumination. c EQE of Sb$_2$S$_3$ photovoltaic devices under different treatment conditions](image)

Treatment	V_{OC} (V)	J_{SC} (mA/cm2)	FF (%)	PCE (%)	R_s (Ω cm2)	R_{sh} (Ω cm2)
Untreated	0.31 ± 0.02	0.14 ± 0.05	24.08 ± 2.55	≤ 0.01	1893	1721
Annealed 10 min	0.33 ± 0.02	0.66 ± 0.19	39.01 ± 1.73	0.08 ± 0.02	245	1978
Selenized 10 min	0.47 ± 0.03	7.80 ± 0.33	42.45 ± 0.86	1.57 ± 0.06	20	186
Selenized 15 min	0.52 ± 0.02	8.78 ± 0.26	46.35 ± 1.13	2.13 ± 0.07	15	188
Selenized 20 min	0.30 ± 0.07	5.13 ± 0.49	38.72 ± 3.28	0.61 ± 0.26	41	224
Fig. 2 Crystal structure characterization of Sb$_2$S$_3$(Se) films. a XRD patterns of the Sb$_2$S$_3$ films under various treatment conditions. b Enlarged (120) XRD peaks of the same films as in a.

Fig. 3 Top-view SEM images of Sb$_2$S$_3$ films under various treatment conditions. a Untreated. b Vacuum annealed. c Selenized for 15 min. d Selenized for 20 min.
resistance \((R_s) \) as shown in Table 1. Further, prolonging the selenization time resulted in bulges evolving into cracks and short-circuiting the device.

To investigate the treatment effect on Sb\(_2\)S\(_3\) energy level, the absorption spectrum from 500 to 1100 nm was measured by UV-Vis spectroscopy. As shown in Fig. 4a, both vacuum-annealed and selenized films show improved optical absorption. The absorbance profile showed a gradually increasing and long wave absorption edge with a continuous red shift as the selenization time increased. This indicates that the selenization process decreases the energy gaps. Since Sb\(_2\)S\(_3\) is a direct band gap semiconductor, the band gap \((E_g) \) can be calculated by the Tauc formula [27]:

\[
\alpha = (A/h\nu) \times (h\nu-E_g)^{1/2}
\]

where \(A \) is a constant, \(h \) is the Planck’s constant, and \(\nu \) is the frequency of the incident photon. \(E_g \) was determined from the linear fit of \((\alpha h\nu)^2 \) versus \((h\nu) \), as shown in Fig. 4b. \(E_g \) of untreated Sb\(_2\)S\(_3\) film is 2.03 eV which decreased to 1.60 eV after annealing. The \(E_g \) gradually decreased to 1.44 eV as the selenization time increased to 20 min. To verify this, photoluminescence (PL) spectrum of films excited by a 325-nm laser was carried out. As shown in Fig. 4c, the PL peak of Sb\(_2\)S\(_3\) was observed at 772 nm (1.61 eV) with a very small Stokes shift (0.01 eV), which is consistent with the optical band gap. Interestingly, PL spectrum of Sb\(_2\)S\(_3\) selenized for 15 min splits into two peaks, one of which is located at 765 nm (1.62 eV) and the other located at 948 nm (1.31 eV). The 765-nm PL peak is very close to Sb\(_2\)S\(_3\) peak (772 nm), implying that the composition deep within the Sb\(_2\)S\(_3\) film remains virtually unchanged after 15 min of selenization. To study the energy level as well as carrier transport properties of photovoltaic devices, UPS analysis of Sb\(_2\)Se\(_3\), Sb\(_2\)S\(_3\), and CdS was carried out as shown in Fig. 4c–f. The energy level conduction band minimum \((E_C) \) and valence band maximum \((E_V) \) was determined as listed in Table 2. In accordance with the XRD and PL results, a replacement diffusion model is proposed, in which a substantial proportion of S in the surface is replaced by Se while the composition near p-n junction remains as Sb\(_2\)S\(_3\). The energy levels can be represented as shown in Fig. 4h. A group of selenized Sb\(_2\)S\(_3\) devices is shown in Fig. 4i. Compared with vacuum-annealed Sb\(_2\)S\(_3\)/CdS device, selenized device had a satisfactory built-in electrical field at the p-n junction due to the favorable \(E_g \) of Sb\(_2\)S\(_3\) (1.61 eV) which provided a higher \(V_{OC} \) than Sb\(_2\)Se\(_3\) \((E_g = 1.2 \) eV\) [28, 29]. Due to the gradient distribution of composition, selenized Sb\(_2\)S\(_3\) showed a continuous \(E_g \) varying from −5.37 to −5.08 eV and a lower barrier for photogenerated holes.

![Fig. 4 Energy level analysis of Sb\(_2\)S\(_3\)(Se) solar cells. a Ultraviolet–visible near infrared transmission spectroscopy (b) variation of \((\alpha h\nu)^2\) as a function of the photon energy \((h\nu)\) of Sb\(_2\)S\(_3\) films under different treatment conditions. c PL spectrum of vacuum prepared Sb\(_2\)S\(_3\), Sb\(_2\)S\(_3\)(Se), and Sb\(_2\)Se\(_3\) films. UPS spectra of d Sb\(_2\)Se\(_3\), e Sb\(_2\)S\(_3\), and f CdS. g Model of composition distribution and h energy levels along vertical depth of selenized Sb\(_2\)S\(_3\) film. i An image of selenized Sb\(_2\)S\(_3\) devices sample](image)
positive carrier transport from p-n junction vicinity to the anode. Accordingly, a considerable improvement of JSC was realized, resulting in a higher PCE.

To validate the selenization effect on the electronic behavior in the photovoltaic device, electrochemical impedance measurements were carried out, as shown in Fig. 5 along with simulations. For the planar heterojunction device, testing curves obey a semi-circular profile. Resistance-constant phase element (R-CPE) series equivalent electrical circuit model was applied to simulate the test results [30–32]. Series resistance R1 represents all factors that affect photogenerated carrier transport to electrodes, mainly the carrier transport resistance of photovoltaic films and electrodes. In this study, interface effect on resistance between Au and absorber is negligible due to the ohmic contact, and the major differences arise due to the absorber being treated under different conditions. Accordingly, R1 value is only related to positive carrier transport from absorber to Au electrode. The shunt pair R2 and CPE1 are associated with the interface between absorber and CdS buffer layer. CPE can be defined by the capacitance (CPE-T) and a non-homogeneity constant (CPE-P). All computed parameters from the fitted plot are listed in Table 3. There is no noticeable difference of CPE-T between the tested samples, and the value is in the 0.94–0.96 range, indicating all the devices could be treated as ideal capacitors with ideal interfaces. The magnitude of R1 was observed to be largely dependent on the treatment conditions. For the untreated device, \(R_1 = 519.8 \times 10^{-3} \text{ \Omega cm}^2 \), which decreased to \(10.0 \times 10^{-3} \text{ \Omega cm}^2 \) after a vacuum annealing process. For the device selenized for 15 min, the minimum \(R_1 \) of \(0.4 \times 10^{-3} \text{ \Omega cm}^2 \) was determined. The decreasing of \(R_1 \) indicates vacuum annealing or selenization facilitated charge transport from absorber to the buffer layer. For the device selenized for 15 min, \(R_1 \) increased to \(815.5 \times 10^{-3} \text{ \Omega cm}^2 \) with a lower CPE-T of 0.84 \(\times 10^{-7} \text{ F cm}^{-2} \). The degradation was likely caused by poor interface contact between bulged absorber and the CdS buffer layer.

Conclusions

The selenization approach enhanced the crystallinity of Sb2S3 film and resulted in an improvement in the photovoltaic performance of device. Selenized Sb2S3 films exhibit a gradient composition distribution due to the partial replacement of S atoms by Se atoms in near surface while the bulk composition remains virtually unchanged. Thus, selenized film showed a consecutive Sb2S3/Sb2S3(Se)/Sb2Se3 structure that decreased the potential barrier for photogenerated positive carrier transport from the p-n junction vicinity to the anode. The optimal selenization conditions involves maintaining Se at 350 °C and Sb2S3 at 400 °C, with a selenization time of approximately 15 min. Excessive selenization time tends to introduce some bulges leading to a poor interface contact between absorber and CdS buffer layer, resulting in a poor performance and yield.

Abbreviations

- A: Annealed; CBD: Chemical bath deposition; CIGS: Copper indium gallium selenide; CZTSSe: Cu2ZnSnS3; EIS: Electrochemical impedance spectrum; EQE: External quantum efficiency; FTO: (SnO2:F); JSC: Short current density; J-V: Current density–voltage; PCE: Power conversion efficiency; PL: Photoluminescence; R-CPE: Resistance-constant phase element; RTP: Rapid thermal processing; S: Selenized; SEM: Scanning electron microscopy; UPS: Ultraviolet photoelectron spectroscopy; UV-Vis: Ultraviolet–visible near infrared transmission spectroscopy; VOC: Open-circuit voltage; XRD: X-ray diffraction

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61505018, 51503022, 21603020, and 21703124), Chongqing Science & Technology Commission (Grant Nos. cstc2015jcyjA50036, cstc2016jcyjA50001 and cstc2016jcyjQ0367), Basic and Frontier Research Program of Chongqing Municipality (cstc2016jcyjA0451), the research project for Chongqing University.

Table 2 Energy band information calculated from UPS spectra

Materials	E_F (eV)	VBM (eV)	Ws (eV)	E_C (eV)	E_V (eV)
CdS	2.40	1.87	4.70	−4.17	−6.57
Sb2Se3	1.21	0.52	4.45	−3.76	−5.08
Sb2S3	1.61	1.02	4.35	−3.76	−5.37

Table 3 Calculation result of equivalent circuit parameters from the fitted impedance spectrum

Absorber	R1 (10^3 \text{ \Omega cm}^2)	CPE1-T (10^{-7} \text{ F cm}^{-2})	CPE1-P (\text{F cm}^{-2})	R2 (\text{ \Omega cm}^2)
Untreated	519.8	1.38	0.96	26,666
Annealed 10 min	1.00	1.86	0.94	2358
Selenized 15 min	0.4	1.74	0.95	405.3
Selenized 20 min	815.5	0.84	0.94	426.3

Fig. 5 Impedance spectra of Sb2S3 under various treatment conditions measured in the dark, inset showing the overall narrowing diagram and equivalent circuit.
of Arts and Sciences (No. x2016xc16), and the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (No. klf201507).

Availability of Data and Materials
All data are fully available without restriction.

Authors’ Contributions
KW carried out the experiments. KW and JC designed the experiments and prepared the manuscript. JC gave materials and equipment supporting. RH, XY, and JH participated in the work to analyze the data. LF helped to prepare the samples. LL and JY helped to revise the manuscript. All authors read and approved the final manuscript.

Ethics Approval and Consent to Participate
Approved the final manuscript.

Consent for Publication
Not applicable

Competing Interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People’s Republic of China.
2-Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Research Institute for New Material and Technology, Chongqing University of Arts and Sciences, Chongqing 402160, People’s Republic of China.
3-Institute of Arts and Sciences, Chongqing University of Arts and Sciences, Chongqing 402160, People’s Republic of China.

Received: 7 May 2018 Accepted: 1 August 2018
Published online: 06 September 2018

References
1. Aberle AG (2009) Thin-film solar cells. Thin Solid Films 517:4706–4710
2. Gross F, Baert K, Beards T, Deckers J, Depauw V, El Daf O et al (2012) Crystalline thin-film silicon solar cells where crystalline quality meets thin-film processing. Progress in Photovoltaics Research & Applications 20:270–784
3. Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC (2016) Photovoltaic materials: present efficiencies and future challenges. Science 352:d4424
4. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2016) Solar cell efficiency tables (version 48): solar cell efficiency tables (version 48). Progress in Photovoltaics Research & Applications 24:905–913
5. Niu G, Guo X, Wang L (2014) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3:8970–8980
6. Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier TM et al (2015) Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Physica Status Solidi (RRL) - Rapid Research Letters 9:28–31
7. Martin A, Emery, Keith, Hishikawa, Yoshiihiro, Warta et al (2013) Solar cell efficiency tables (version 42). Progress in Photovoltaics Research & Applications 21:827–837
8. Winkler MT, Wang W, Gunawan O, Hovel HI, Todorov TK, Mitzi DB (2013) Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells. Energy Environ Sci 7:1029–1036
9. Li J, Wang H, Luo M, Tang J, Chen C, Liu W et al (2016) 10% Efficiency Cu2ZnSn(S,Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width. Sol Energy Mater Sol Cells 149:242–249
10. Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y et al (2014) Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater 4:7
11. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 5:103:15729–15735
12. Fthenakis V (2009) Sustainability of photovoltaics: the case for thin-film solar cells. Renew Sust Energ Rev 13:2746–2750
13. Wadia C, Alivisatos AP, Kammen DM (2009) Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ Sci Technol 43:2072–2077
14. Yang RX, Butler KT, Walsh A (2015) Assessment of hybrid organic-inorganic antimony sulfides for earth-abundant photovoltaic applications. J Phys Chem Lett 6:5009
15. Darga A, Mencaraglia D, Longeaud C, Savenije TJ, O’Regan B, Bourdais S et al (2013) On charge carrier recombination in Sb2S3 and its implication for the performance of solar cells. J Phys Chem C 117:20525–20530
16. Venaveli MT, Haber JA (2007) Structural and optical properties of amorphous and crystalline antimony sulfide thin-films. Thin Solid Films 515:771–776
17. Choi YC, Seok SI (2015) Efficient Sb2S3-sensitized solar cells via single-step deposition of Sb2S3 using SrSb-ratio-controlled SbCl5-thiourea complex solution. Adv Funct Mater 25:2892–2898
18. Mane RS, Lakshane CD (2003) Thickness-dependent properties of chemically deposited Sb2S3 thin films. Materials Chemistry & Physics 82:347–354
19. Choi YC, Lee DU, Noh JH, Kim EK, Seok SI (2014) Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv Funct Mater 24:3587–3592
20. Escorcia-Garcia J, Becerra D, Nair MTS, Nair PK (2014) Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation. Thin Solid Films 569:28–34
21. Yuan S, Deng H, Dong D, Yang X, Qiao K, Hu C et al (2016) Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth. Sol Energy Mater Sol Cells 157:887–893
22. Zimmermann E, Pfadler T, Kalt J, Dorman JA, Sommer D, Hahn G et al (2015) Toward high-efficiency solution-processed planar heterojunction Sb2S3 solar cells. Adv Sci 2:5
23. Yuan S, Deng H, Yang X, Hu C, Khan J, Ye W et al (2017) Post-surface selenium for high performance Sb2S3 planar thin film solar cells. ACS Photonics 4:2862–2870
24. Kondrotas R, Chen C, Tang J (2018) Sb2S3 solar cells. Joule 5:857–878
25. Osorio Mayon Y, White TP, Wang R, Yang Z, Catchpole KR (2016) Evaporated and solution deposited planar Sb2S3 solar cells: a comparison and its significance. Phys Status Solidi 213:108–113
26. Contreras MA, Romero MI, To B, Hasoon F, Noufi R, Ward S et al (2002) Optimization of CBD CdS process in high-efficiency CuIn(Ga)Se2-based solar cells. Thin Solid Films 403:204–211
27. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627–637
28. Yang B, Qin S, Xue DJ, Chen C, He YS, Niu D et al (2017) In situ sulfuration to generate Sb2Se3−xSx alloys films and their application for photovoltaics. Progress in Photovoltaics Research & Applications 25:113–122
29. Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J et al (2015) Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat Photonics 9:409–415
30. Paul Weiss T, Redinger A, Luckas J, Moulet M, Siebertt E (2013) Admittance spectroscopy in kesterite solar cells: defect signal or circuit response. Appl Phys Lett 102:512–519
31. Wang X, Li J, Liu W, Yang S, Zhu C, Chen T (2017) A fast chemical approach towards Sb2S3 film with a large grain size for high-performance planar heterojunction solar cells. Nanoscale 9:10
32. Song J, Zheng E, Wang XF, Tian W, Miyasaka T (2016) Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells. Sol Energy Mater Sol Cells 146:623–630