Remarks on the semi-classical Hohenberg–Kohn functional

Brendan Pass

Department of Mathematical and Statistical Sciences, 632 CAB, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.
E-mail: pass@ualberta.ca

Received 7 November 2012, in final form 19 July 2013
Published 22 August 2013
Online at stacks.iop.org/Non/26/2731

Recommended by J-P Eckmann

Abstract

In this paper, we study an optimal transportation problem arising in density functional theory. We derive an upper bound on the semi-classical Hohenberg–Kohn functional derived by Cotar et al (in preparation) which can be computed in a straightforward way for a given single particle density. This complements a lower bound derived by the aforementioned authors. We also show that for radially symmetric densities the optimal transportation problem arising in the semi-classical Hohenberg–Kohn functional can be reduced to a one-dimensional problem. This yields a simple new proof of the explicit solution to the optimal transport problem for two particles found in Cotar et al (2013 Commun. Pure Appl. Math. 66 548–99). For more particles, we use our result to demonstrate two new qualitative facts: first, that the solution can concentrate on higher dimensional submanifolds and second that the solution can be non-unique, even with an additional symmetry constraint imposed.

Mathematics Subject Classification: 81Q20, 49N99, 49S99 and 49K30

1. Introduction

In this paper, we study a multi-marginal optimal transportation problem arising in density functional theory (DFT) in condensed matter physics. Optimal transportation is the general problem of coupling two (or, in our case, N) probability measures together as efficiently as possible, relative to a given cost function c. This is a rapidly expanding area of mathematical research, with many diverse applications; recent progress is described in the books by Villani [27, 28].

To precisely formulate our problem, fix a probability measure ρ on \mathbb{R}^d (the most physically relevant case being $d = 3$). Let $\Pi(\rho)$ be the set of all probability measures ρ_N on \mathbb{R}^{dN} whose
marginals are all \(\rho \); that is, \((\pi_i)_\# \rho_N = \rho\) for \(i = 1, 2, \ldots, N \), where \(\pi_i : \mathbb{R}^d N \to \mathbb{R}^d \) is the \(i \)th canonical projection. We then define
\[
C_N(\rho_N) := \int_{\mathbb{R}^d} \sum_{i,j \neq j} \frac{1}{|x_i - x_j|} \, d\rho_N
\]
and
\[
E_N[\rho] := \inf_{\rho_N \in \Pi(\rho)} C_N(\rho_N). \tag{1}
\]

Readers familiar with optimal transportation will recognize this as the multi-marginal Monge–Kantorovich optimal transportation problem, with equal marginals \(\rho \) and cost function
\[
c(x_1, x_2, \ldots, x_N) := \sum_{i \neq j} \frac{1}{|x_i - x_j|},
\]
which we will refer to as the Coulomb cost.

DFT is a modelling method used by physicists and chemists to understand electron correlations. It was originally proposed by Hohenberg et al [14, 17]; see [10, 19] for a detailed introduction. The Hohenberg–Kohn functional plays a central role here. Imagine a system of \(N \) electrons, interacting via the Coulomb potential. Given a prescribed single particle density \(\rho \), this functional returns the minimum energy among all \(n \)-particle wave functions \(\psi \) whose single particle density is \(\rho \). The Hohenberg–Kohn functional is given by:
\[
F_{HK}[\rho] := \inf_{\psi \to \rho} \left(\frac{\hbar}{2m_e} \int_{\mathbb{R}^d} \sum_{i=1}^N |\nabla_x \psi|^2 \, d\rho_N(x_1, x_2, \ldots, x_N) + \binom{N}{2} \int_{\mathbb{R}^d} \frac{1}{|x_1 - x_2|} \, d\rho_2(x_1, x_2) \right).
\]

Here, \(\hbar \) is Planck’s constant over \(2\pi \) and \(m_e \) is the mass of an electron. The notation \(\psi \to \rho \) means that \(\rho \) is the single particle density corresponding to the wave function \(\psi \), and \(\rho_N \) and \(\rho_2 \) are the \(N \) and two particle densities corresponding to \(\psi \), respectively. The first term is the quantum mechanical kinetic energy while the second is the Coulomb interaction energy. Numerically, this expression is unwieldy for large \(N \), as the complexity of minimizing over the space of \(N \) particle wave function grows exponentially in \(N \). It turns out that the kinetic energy term can be dealt with relatively easily (see [7] for details); one of the major goals of DFT is to approximate the interaction energy of two electrons by a function of the single particle density \(\rho \).

Two recent papers by Cotar et al [7, 8], as well as a paper by Buttazzo et al [2], have revealed interesting connections between this problem and optimal transportation\(^1\). Of particular interest to us in the present work, the work in [8] showed that in the semi-classical limit, \(\hbar \to 0 \), the Hohenberg–Kohn functional reduces to \(E_N \). In particular, contributions from the kinetic energy vanish and the antisymmetry property associated with \(N \)-body wave functions reduces to symmetry of the measure \(\rho_N \) in the arguments \((x_1, x_2, \ldots, x_N)\). In fact, given any measure \(\rho_N \in \Pi(\rho) \), we have \(C_N(\rho_N) = C_N(\hat{\rho}_N) \), where \(\hat{\rho}_N \) is the symmetrization of \(\rho_N \); that is, for all Borel \(A \subseteq \mathbb{R}^{Nd} \)
\[
\hat{\rho}_N(A) = \frac{1}{N!} \sum_{\sigma \in S_N} \rho_N(\{(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(N)} : (x_1, x_2, \ldots, x_N) \in A\}),
\]
where \(S_N \) is the permutation group on \(N \) symbols. Therefore, when computing \(E_N[\rho] \), we can neglect the symmetry condition entirely.

Optimal transportation problems with two marginals (i.e., \(N = 2 \)) with a variety of different cost functions have been studied extensively, including results in [2, 7] on the Coulomb cost; see, for example [1, 3, 11, 13], or, for a detailed overview and
\(^1\) In fact, these connections were already implicitly present in the physics literature, but without rigorous justification [25, 26].
extensive bibliography, see [27, 28]. However, relatively little is known about optimal transportation problems with more than two marginals, except in certain special cases [5, 6, 12, 16, 18, 21–24].

In particular, despite its importance in DFT, to this point very little is known about the structure of minimizers of C_N for $N > 2$, or the minimal values $E_N[\rho]$. The main goal of this note is to contribute to this problem.

This paper features two main contributions. The first is the construction of a measure $\rho_N \in \pi(\rho)$; the immediately yields an upper bound on $E_N[\rho]$, which can be calculated explicitly from the density ρ. When $d = 1$, we suspect that this measure is optimal and prove this in a special case, although we leave the general case open. In higher dimensions, our measure couples every line through the origin to itself, using the aforementioned 1-dimensional construction. A lower bound on $E_N[\rho]$ was identified in [7]; precisely, $E_N[\rho] \geq \binom{N}{2} E_2[\rho] = \frac{2(N^2-1)}{2} E_2[\rho].$

For radially symmetric measures when $N = 2$, Cotar et al were able to construct the optimal measure explicitly and therefore calculate $E_2[\rho]$. Therefore, in this case, we have a lower bound which can be calculated and therefore can be compared to the upper bound we derive. For one particularly simple ρ we do this. We note that when $N = 2$ and ρ is radially symmetric, our construction coincides with the explicit solution in [7]. For larger N, it is not generally the optimal measure.

This may be useful to physicists and chemists, as the explicit construction can be used as a starting point for constructing approximations to the Hohenberg–Kohn functional. In fact, as is emphasized in [7], the fundamental goal of DFT is to approximate the electron interaction energy (which depends on the two particle density) by a functional of the single particle density. Our upper bound, which can be explicitly calculated from the single particle density ρ, could be a good starting point for more sophisticated approximations.

Note that as product measure $\otimes_{i=1}^N \rho$ is clearly in $\Pi(\rho)$, one can easily obtain an alternative upper bound on $E_N[\rho]$: $E_N[\rho] \leq \frac{N}{2} \int_{\mathbb{R}^{2d}} \frac{1}{|x-y|} \, d\rho(x) \, d\rho(y).$ In fact, in [9], it is shown that in the limit as $N \to \infty$, this bound becomes exact, in the sense that $\frac{1}{N} E_N[\rho] \to \int_{\mathbb{R}^{2d}} \frac{1}{|x-y|} \, d\rho(x) \, d\rho(y).$

Therefore, for large N, we expect our bound to be no better than the bound derived from product measure. On the other hand, we provide evidence that our bound is better than the product measure bound for small N (see remark 2.3.3); in the explicit example we compute, our bound is tighter for $N \leq 7$.

Our second contribution concerns radially symmetric measures. In this case, we show that the problem can be reduced to a one-dimensional optimal transport problem with a certain effective cost function derived from the Coulomb cost (but not equal to it). This has two immediate applications. First, we use this result to provide a new proof of the optimality of a construction in [2, 7] for two marginals, which is considerably simpler than the original proof. Secondly, we show that this reduction implies that for more marginals the support of the optimizer can be more than d-dimensional and be non-unique (even with the additional
symmetry constraint. This stands in stark contrast to the two marginal case, where solutions are known to be unique and concentrated on the graphs of functions over x_1 and so are essentially d-dimensional. Similar phenomena, have, however, been observed in multi-marginal problems for other cost functions [5, 22]. Let us note that non-uniqueness of minimizers of CN is also ready present in the $d = 1$ case when $N > 2$ (see remark 2.1.3) and is perhaps not too surprising. On the other hand, we found the fact that there can be more than one minimizer which is symmetric in the arguments (x_1, x_2, \ldots, x_N) surprising; from a physical standpoint symmetric measures ρ_N represent the semi-classical limits of single particle densities arising from wave functions.

Aside from these direct applications, this reduction result should be useful in deriving numerical methods to evaluate the Hohenberg–Kohn functional, as it reduces an optimization problem over measures on \mathbb{R}^{Nd} to a problem over measures on \mathbb{R}^N.

The idea that the optimizer should come from aligning the radial densities optimally, and positioning the particles on fixed spheres to minimize the Coulomb interaction is implicit in the physics literature [25], but has not been made rigorous until now. In particular, the explicit construction in the $N = 2$ case, though present in [25, 26], was not proven to be optimal until the work in [2, 7], by a fairly complicated proof, relying on a general theorem guaranteeing the existence and uniqueness of Monge type solutions. Our proof here, essentially making rigorous the intuition in [25], is much simpler. On the other hand, the non-uniqueness we find for larger N does not seem to have been anticipated at all.

The next section is devoted to the derivation of our upper bound on $E_N[\rho]$. In section 3, we restrict our attention to the radially symmetric case and show that the problem can be reduced to an optimal transportation problem with one-dimensional marginals.

2. An upper bound on $E_N[\rho]$

Here we construct a measure $\rho_N \in \Pi(\rho)$, yielding an upper bound on $E_N[\rho]$. We do this by coupling every line through the origin to itself, via a 1-dimensional coupling described below.

2.1. The one-dimensional problem

In this subsection, we consider (3) when $d = 1$. We construct a measure $\rho_N \in \Pi(\rho)$ which we suspect, but do not prove, attains the minimum in (3). Given a probability measure ρ on \mathbb{R}, we divide the real line \mathbb{R} into N subintervals, each with equal mass. Our measure will then couple together mass from distinct intervals in each of the N copies of \mathbb{R}. This construction ensures that all of the electrons remain isolated from each other and generalizes the one-dimensional construction in [7] in the radially symmetric case when $N = 2$. This construction is essentially the same as the ones in [2, 26], but its use in constructing an upper bound for non-radial densities is, to the best of my knowledge, new.

Set $r^0 = -\infty$. Now define r^i recursively by

$$r^i = \sup \left\{ t^i : \rho(r^{i-1}, t^i) \leq \frac{1}{N} \right\},$$

for $i = 1, 2, 3, \ldots, N - 1$. Set $r^N = \infty$. Assuming ρ is absolutely continuous with respect to Lebesgue measure, this yields N subintervals of \mathbb{R}, $I^i = [r^{i-1}, r^i]$, each with $\rho(I^i) = \frac{1}{N}$.

Define $F^i : I^1 \to I^i$ implicitly by

$$\rho(r^{i-1}, F^i(t)) = \rho(-\infty, t).$$

Then, letting ρ' be ρ restricted to I^i, we have $F^i_* \rho^1 = \rho'$ by construction. It is also worth noting that each F^i is an increasing function, and that F^1 is the identity function, $F^1(t) = t$.
Now, we can extend $F^i : \mathbb{R} \to \mathbb{R}$ as follows: take the image $F^i(I^i)$ to be I^i, (here addition is modulo N, so that, for example, $I^{N+1} = I^1$). $F^i : I^i \to I^{i+1}$ is defined implicitly by

$$\rho(r^{i+1} - r^i, F^i(t)) = \rho(r^{i+1}, t).$$

It then clear that $(F^i)|_{\rho} = \rho$. Setting $F = (F^1, F^2, \ldots, F^N)$, the measure $\rho_N := F_\# \rho$ is in $\Pi(\rho)$.

Remark 2.1.1 (Local optimality of ρ_N). Note that the measure ρ_N is concentrated on the union of sets of the form $P^i = I^i \times I^{i+1} \times \ldots \times I^{i+N-1}$, for $i = 1, 2, \ldots, N$ (here, as above, the indices j in I^i should be understood modulo N). Note that $\frac{\partial^2}{\partial x^2} c(x) < 0$ for all $i \neq j$.

Now, consider the optimal transportation problem on P^i, with marginals $\rho^i, \rho^{i+1}, \ldots, \rho^{i+N-1}$. A theorem of Carlier [6], rediscovered in [20], demonstrates that the measure $\rho_N |_{\rho} = F_\# \rho$, above is the optimal measure.

We suspect that ρ_N is optimal, but do not prove this in general. Below, we prove this is the special case where ρ is uniform measure on $[0, 1]$; a similar argument for the $N = 3$ case was worked out in [2].

Theorem 2.1.2. Suppose ρ is uniform measure on $[0, 1]$. Then ρ_N is optimal.

Proof. For uniform ρ, the interval I^i is equal to $[(i-1)/N, i/N]$. Define a continuous function $u : [0, 1] \to \mathbb{R}$ as follows. Set $u(0) = 0$. For $x \in I^i$, set

$$u(x) = \sum_{j < i} -N^2 \frac{(i-j)^2}{(i-j)^2} + \sum_{j > i} N^2 \frac{(i-j)^2}{(i-j)^2}.$$

Note that this implies $\frac{\partial u}{\partial x}(x)$ is constant on I^i, and that $\frac{\partial^2 u}{\partial x^2}(x)$ is non-increasing, so that u is piecewise linear and concave.

We will now show that $c(x_1, x_2, \ldots, x_N) - \sum_{i=1}^N u(x_i)$ attains its minimum value at every point in the support $\text{spt}(\rho_N)$ of ρ_N. This will imply the desired result, as for any measure $\gamma \in \Pi(\rho)$ we have

$$\int_{\mathbb{R}^N} c(x_1, x_2, \ldots, x_N) d\gamma = \int_{\mathbb{R}^N} \left[c(x_1, x_2, \ldots, x_N) - \sum_{i=1}^N u(x_i) + \sum_{i=1}^N u(x_i) \right] d\gamma$$

$$\geq M + \sum_{i=1}^N \int_{\mathbb{R}} u(x) d\rho(x)$$

with equality when $\gamma = \rho_N$ (here M is the minimum value of $c(x_1, x_2, \ldots, x_N) - \sum_{i=1}^N u(x_i)$).

Consider the set

$$S = \bigcup_{\sigma} \{ (F^{\sigma(1)}(x), F^{\sigma(2)}(x), \ldots, F^{\sigma(N)}(x)) | x \in [0, 1] \},$$

where the union is over all permutations σ on $1, 2, \ldots, N$. Note that $\text{spt}(\rho_N)$ is contained in S. It is straightforward to see that $c(x_1, x_2, \ldots, x_N) - \sum_{i=1}^N u(x_i)$ is constant on S; we now show that any point where this function is minimized must belong to S, which will yield the desired result.

As $c = \infty$ whenever $x_i = x_j$ for any $i \neq j$, the minimum of this function must be attained at some point where $x_i \neq x_j$ for all $i \neq j$, i.e., at some point where c is smooth. We must therefore have $\frac{\partial c}{\partial x_i}(x_1, x_2, \ldots, x_N) = \frac{\partial u}{\partial x_i}(x_i) = 0$ for all i. We will show that this implies $(x_1, \ldots, x_N) \in S$.

First of all note that, for \((x_1, x_2, \ldots, x_N) \in S\), a straightforward calculation confirms that \(\frac{\partial c}{\partial x_j} (x_1, x_2, \ldots, x_N) - \frac{du}{dx}(x_j) = 0\) for all \(j\).

Now, choose a point \((x_1, x_2, \ldots, x_N)\) such that \(\frac{\partial c}{\partial x_j} (x_1, x_2, \ldots, x_N) - \frac{du}{dx}(x_j) = 0\) for all \(j\) and assume, without loss of generality, that \(x_1 < x_2 < \cdots < x_N\). By the pigeon hole principle, we have that \(x_i \in I_i\) for at least one fixed \(i\). Now, note that for fixed \(y_i = x_i\), the function \(c(y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_N) \rightarrow c\) is strictly convex on the region \(\{(y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_N) : y_j < y_{j+1} \forall j = 1, 2, \ldots, N\}\) and so there is only one point \((y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_N)\) in this region where \(\frac{\partial c}{\partial x_j} (x_1, x_2, \ldots, x_N) - \frac{du}{dx}(x_j) = 0\) for all \(j\) and so we must have \(x_j = (j-i) + x_i\), which means \((x_1, x_2, \ldots, x_N) \in S\), as desired.

Remark 2.1.3 (Non-uniqueness of the optimal measure). It is interesting to note that the optimal measure in this case is not unique for \(N > 2\). Indeed, note that \(\tilde{\rho}_N\) is not symmetric; its symmetrization \(\tilde{\rho}_N\) is therefore another optimizer. However, \(\tilde{\rho}_N\) is the unique symmetric optimizer. In the next section, we will see that in higher dimensions, there can in fact be more than one symmetric optimizer.

2.2. An upper bound in higher dimensions

We now construct our measure, by essentially coupling each line through the origin with the same line in each of the other copies of \(\mathbb{R}^d\). This coupling is done via the one-dimensional construction above.

It will be convenient to work in polar-like coordinates, as \(\mathbb{R}^d\) is the (almost disjoint) union of lines through the origin. Note that, neglecting the origin, \(\mathbb{R}^d = \mathbb{R} \times \mathbb{P}^{d-1}\), where \(\mathbb{P}^{d-1}\) denotes \(n-1\) dimensional projective space. Let \(r \in \mathbb{R}\) and \(\theta \in \mathbb{P}^{d-1}\) represent the angular coordinates. Note that fixing \(\theta\) corresponds to fixing a line through the origin. Now, expressing the density \(\rho(r, \theta)\) in these coordinates, we have, by Fubini’s theorem,

\[
1 = \int_{\mathbb{P}^{d-1}} \left(\int_{\mathbb{R}} \rho(r, \theta) \, dr \right) d\theta
\]

and so \(r \mapsto \rho(r, \theta)\) is integrable for almost all \(\theta\). For each fixed \(\theta\), and \(m = 1, 2, \ldots, N\) let \(r \mapsto F^m(r, \theta)\) be the optimal map obtained in the previous section, coupling the density \(r \mapsto \rho(r, \theta)\) to itself. For \(m = 1, 2, 3, \ldots, N\), define \(T^m(r, \theta) = (F^m(r, \theta), \theta)\).

Proposition 2.2.1. \(T^m\) pushes \(\rho\) to itself.

Proof. Note that \(T^m\) is clearly bijective almost everywhere and it is smooth almost everywhere, as \(F^m\) is smooth on the interior of each interval \(I^j\). The derivative of \(T^m\), in \((r, \theta)\) coordinates, is (in block form):

\[
DT^m(r, \theta) = \begin{bmatrix}
D_r F^m(r, \theta) & D_\theta F^m(r, \theta) \\
0 & I
\end{bmatrix}
\]

The determinant of this upper triangular matrix is \(D_r F^m(r, \theta) = \frac{\rho(r, \theta)}{\rho(F^m(r, \theta), \theta)} = \frac{\rho(r, \theta)}{(T^m)^\#(\rho)}\), as \(F^m(r, \theta)\) pushes forward the density \(\rho(r, \theta)\) to itself, for fixed \(\theta\). By the change of variables formula, \((T^m)^\#(\rho) = \rho\).
Now set
\[\rho_N = (T_1, T_2, T_3, \ldots, T_N)_{\#} \rho. \] (2)
By the preceding proposition, this yields a measure on \((\mathbb{R}^d)^N\) whose marginals are all \(\rho\); that is, an element of \(\Pi(\rho)\). We immediately obtain

Corollary 2.2.2. For the \(\rho_N\) defined in equation (2), we have:
\[E_N(\rho) \leq C_N(\rho_N) = \int_{\mathbb{R}^{Nd}} \sum_{i \neq j} \frac{1}{|x_i - x_j|} \, d\rho_N(x_1, x_2, \ldots, x_N) \]
\[= \int_{\mathbb{R}^d} \sum_{i \neq j} \frac{1}{|T_i(x) - T_j(x)|} \, d\rho(x) \]

Remark 2.2.3. For measures which are not too spread out in the angular directions, we suspect our construction is nearly optimal. Indeed, in the limit where the support of \(\rho\) is a single line through the origin, the problem (3) reduces to the one-dimensional problem addressed in section 2.1. On the other hand, our construction is far from optimal for measures which are not spread out in the radial direction. Consider the limit when \(\rho\) is concentrated at a single radius \(r\). In this case, the one dimensional ‘densities’ \(r \mapsto \rho(r, \theta)\) are each the sum of two Dirac masses; therefore, our construction yields an infinite total energy when \(N > 2\) and is thus far from optimal.

Remark 2.2.4. It is clear that one would obtain an analogous result to corollary 2.2.2 if the Coulombic cost \(\sum_{i \neq j} |x_i - x_j|\) were replaced by any other cost function \(c(x_1, \ldots, x_N)\); that is,
\[\inf_{\rho_N \in \Pi(\rho)} \int_{\mathbb{R}^{Nd}} c(x_1, \ldots, x_N) \, d\rho_N(x_1, x_2, \ldots, x_N) \leq \int_{\mathbb{R}^d} c(x, T_2(x), \ldots, T_N(x)) \, d\rho(x). \] (3)
One can only expect the bound to be reasonably tight if the measure \(\rho_N\) defined in (2) is fairly close to optimal. We expect this to be the case, for example, when \(c(x_1, \ldots, x_N) = \sum_{i \neq j} g_{ij}(|x_i - x_j|)\), where the \(g_{ij} : (0, \infty) \rightarrow \mathbb{R}\) are decreasing and convex, in which case the local optimality in remark 2.1.1 applies.

2.3. Example: uniform radial density

When \(N = 2\) and \(\rho\) is radially symmetric, Cotar et al showed that the \(\rho_N\) constructed above is in fact the optimizer in (3); that is, \(E_2[\rho] = C_2(\rho_N)\) [7]. They also noted that, for general \(N\), \(E_2\) yields a lower bound on \(E_N\): \(E_N[\rho] \geq \left(\frac{N}{2}\right)E_2[\rho] = \frac{N(N-1)}{2}E_2[\rho]\). For radially symmetric measure, then, we now have both an upper and lower bound on \(E_N\) which can be calculated explicitly. Below, we compare these two bounds for a simple, radially symmetric \(\rho\).

Proposition 2.3.1. Suppose that \(\rho\) is the radial symmetric density given by \(\rho(r) = \frac{1}{2} \chi_{[-1,1]}\). Then \(E_2[\rho] = 1 \) and \(C_N[\rho_N] = -\frac{N^2}{2} + N + \frac{N^2}{2} \left(\sum_{n=1}^{N-1} \frac{1}{n}\right)\), where \(\rho_N\) is as in (2).

Remark 2.3.2. Note that \(\sum_{n=1}^{N-1} \frac{1}{n} \leq 1 + \ln(N - 1)\). Thus, we have
\[E_N[\rho] \leq C_N(\rho) \leq \frac{N}{2} + \frac{N^2\ln(N - 1)}{2}. \]
On the other hand,
\[E_N[\rho] \geq \left(\frac{N}{2}\right)E_2[\rho] = \frac{N(N-1)}{2}. \]
The ratio of the upper to lower bound, then, is roughly logarithmic in \(N\).
Remark 2.3.3. We also have the alternative bound on \(E_N[\rho] \) arising from product measure. In rectangular coordinates when \(d = 3 \), our density here corresponds to \(\rho(x) = \frac{1}{4\pi |x|^2} \) for \(|x| \leq 1 \) and \(\rho(x) = 0 \) otherwise, and this bound becomes

\[
E_N[\rho] \leq \left(\frac{N}{2} \right) \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} d\rho(x) d\rho(y) = \int_{|x| \leq 1} \int_{|y| \leq 1} \frac{1}{|x-y|} \frac{1}{4\pi |x|^2} \frac{1}{4\pi |y|^2} dx dy.
\]

A straightforward calculation, using Newton’s Shell theorem as in [4], yields \(\int_{|x| \leq 1} \int_{|y| \leq 1} \frac{1}{|x-y|} \frac{1}{4\pi |x|^2} \frac{1}{4\pi |y|^2} dx dy = 2 \). One can then easily check by direct calculation that our bound from (2) is an improvement on the product measure bound for \(N \leq 7 \); that is,

\[
-\frac{N^2}{2} + \frac{N}{2} + \frac{N^2}{2} \left(\sum_{n=1}^{N-1} \frac{1}{n} \right) < 2 \left(\frac{N}{2} \right) = N(N-1)
\]

for \(N \leq 7 \). It is also worth noting that in this example, we have \(E_2[\rho] = \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} d\rho(x) d\rho(y) \).

We now prove proposition 2.3.1.

Proof. For all \(x \), we have one \(F^m(x) \) in each interval \(I^i \). Note that, if \(F^m(x) \in I^i \) and \(F^m(x) \in I^j \), we have \(|F^m(x) - F^m(x)| = \frac{2|x-j|}{N} \). We then have:

\[
\sum_{m \neq n} \frac{1}{|F^m(x) - F^n(x)|} = \sum_{i \neq j} \frac{N}{2|i-j|}.
\]

It is straightforward to calculate that there are \(N-1 \) pairs \((i, j)\) where \(|i-j| = 1 \), \(N-2 \) pairs where \(|i-j| = 2 \), etc, ending in one pair where \(|i-j| = N-1 \). Thus the above is equal to

\[
\sum_{i \neq j} \frac{N}{2|i-j|} = \frac{N}{2} \left(\frac{N-1}{1} + \frac{N-2}{2} + \cdots + \frac{1}{N-1} \right)
\]

\[
= \frac{N}{2} \left((N-1)^2 + \frac{N}{2} + \frac{N}{3} + \frac{N}{4} + \cdots + \frac{N}{N-1} - (N-1) \right)
\]

\[
= \frac{N}{2} \left(\frac{N}{2} + \frac{N}{3} + \frac{N}{4} + \cdots + \frac{N}{N-1} - (N-1) \right)
\]

\[
= \frac{N^2}{2} \left(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{N-1} \right) - \frac{N}{2}(N-1)
\]

\[
= \frac{N^2}{2} \sum_{n=1}^{N-1} \frac{1}{n} + \frac{N}{2} - \frac{N^2}{2}.
\]

Integrating the constant function \(\sum_{m \neq n} \frac{1}{|F^m(x) - F^n(x)|} \) against uniform measure on \([-1, 1]\) now yields the desired result. \(\square \)

3. Reduction to a one-dimensional problem for radially symmetric measures

We show in this section that, for radially symmetric measures, the problem can actually be reduced to an optimal transport problem with 1-dimensional marginals. Although we are primarily interested in the Coulomb cost, we formulate the results in this section for general radially symmetric costs; that is costs \(c : \mathbb{R}^d \rightarrow \mathbb{R} \) such that \(c(x_1, x_2, \ldots, x_N) = c(A(x_1), A(x_2), \ldots, A(x_N)) \) for all matrices \(A \) in the orthogonal group \(O(d) \). As our main application is to DFT, we will continue to work with a common marginal \(\rho \), although an analogue of theorem 3.0.1 below can be proved for a multi-marginal problem with distinct
Remarks on the semi-classical Hohenberg–Kohn functional

radially symmetric marginals, in the same way. Note that a similar construction was developed for the special case of the determinant cost function by Carlier and Nazaret [5].

The general multi-marginal Monge–Kantorovich problem is

$$\inf_{\rho_N \in \Pi(\rho)} \int_{\mathbb{R}^N} c(x_1, x_2, \ldots, x_N) \, d\rho_N;$$

(4)

note that when

$$c(x_1, x_2, \ldots, x_N) = \sum_{i \neq j} \frac{1}{|x_i - x_j|}$$

is the Coulomb cost, this is exactly problem (3).

We will assume throughout this section that

$$\int_{\mathbb{R}^d} c(x_1, x_2, \ldots, x_N) \, d\rho_1(x_1) \, d\rho_2(x_2) \cdots d\rho_N(x_N) < \infty,$$

which, as is well known, will ensure the existence of an optimizer in (4).

Set

$$h(r_1, r_2, \ldots, r_N) = \inf_{|x_1|=r_1, |x_2|=r_2, \ldots, |x_N|=r_N} c(x_1, x_2, \ldots, x_N).$$

(5)

Note that in this section, we will work in polar coordinates rather than the polar-like coordinates used earlier. That is, we will identify $\mathbb{R}^d \approx [0, \infty) \times S^{d-1}$. For an absolutely continuous ρ, radial symmetry simply means that the density $\rho(r, \theta) \, dr \, d\theta$ is independent of θ.

For each fixed $\vec{r} = (r_1, r_2, \ldots, r_N) \in (0, \infty)^N$, fix

$$(x_1, x_2, \ldots, x_N) = (x_1(\vec{r}), x_2(\vec{r}), \ldots, x_N(\vec{r}))$$

attaining the infimum in (5); note that for any rotation $A \in SO(d)$,

$$(A(x_1), A(x_2), \ldots, A(x_N))$$

attains the infimum as well. Take $S_r = \{ x \in \mathbb{R}^d : |x| = r \}$. Now let ν be Haar measure on the rotation group $SO(d)$ and let $\nu^{r_1, r_2, \ldots, r_N} = G_* \nu$, where

$$G : SO(d) \to S_{r_1} \times S_{r_2} \times \ldots \times S_{r_N}$$

is defined by $G(A) = (A(x_1), A(x_2), \ldots, A(x_N))$. Then $\nu^{r_1, r_2, \ldots, r_N}$ is a probability measure on $S_{r_1} \times S_{r_2} \times \ldots \times S_{r_N}$ with uniform marginals.

Then consider the optimal transportation problem with one-dimensional marginals $\mu := \rho(r) \, dr$ and cost function h; that is, minimize

$$\int_{\mathbb{R}^N} h(r_1, r_2, \ldots, r_N) \, d\gamma(r_1, \ldots, r_N)$$

(6)

among measures γ on $(0, \infty)^N$ whose 1-dimensional marginals are all μ. Note that, modulo a multiplicative constant, μ is the pushforward of ρ under the map $x \mapsto |x|$.

Let γ be an optimizer in (6) (existence is guaranteed by standard results in optimal transport theory) and set

$$\rho_N(x_1, x_2, \ldots, x_N) = \rho_N(r_1, r_2, \ldots, r_N, \theta_1, \theta_2, \ldots, \theta_N)$$

$$=: \gamma(r_1, r_2, \ldots, r_N) \otimes \gamma^{r_1, r_2, \ldots, r_N}(\theta_1, \theta_2, \ldots, \theta_N).$$

(7)

Theorem 3.0.1. Assume that the cost c and the marginal ρ are radially symmetric. Then the ρ_N defined in (7) is optimal for (4).

Proof. It is easy to see that the marginals of ρ_N are all ρ. Now, the Kantorovich duality theorem [15] and the optimality of γ imply the existence of functions $u_1, \ldots, u_N : (0, \infty) \to \mathbb{R}$
such that $h(r_1, \ldots, r_N) - \sum_{i=1}^{N} u_i(r_i) \geq 0$ with equality when $(r_1, \ldots, r_N) \in spt(\tilde{\gamma})$. We then have, for all x_1, x_2, \ldots, x_N

$$c(x_1, \ldots, x_N) - \sum_{i=1}^{N} u_i(|x_i|) \geq h(|x_1|, \ldots, |x_N|) - \sum_{i=1}^{N} u_i(|x_i|) \geq 0$$

with equality when x_1, \ldots, x_N attain the infimum in (5), and $|x_1|, \ldots, |x_N| \in spt(\tilde{\gamma})$. We then have, for all x_1, x_2, \ldots, x_N

$$c(x_1, \ldots, x_N) - \sum_{i=1}^{N} u_i(|x_i|) \geq h(|x_1|, \ldots, |x_N|) - \sum_{i=1}^{N} u_i(|x_i|) \geq 0$$

with equality when x_1, \ldots, x_N attain the infimum in (5), and $|x_1|, \ldots, |x_N| \in spt(\tilde{\gamma})$. Now, integrating with respect to any $\tilde{\rho}_N \in \Pi(\rho)$, we get

$$\int_{\mathbb{R}^d} c(x_1, \ldots, x_N) \, d\tilde{\rho}_N \geq \sum_{i=1}^{N} \int_{\mathbb{R}^{2d}} u_i(|x_i|) \, d\tilde{\rho}_N(x_1, x_2, \ldots, c_N) = \sum_{i=1}^{N} \int_{\mathbb{R}^d} u_i(|x_i|) \, d\rho(x_i)$$

Now, noting that we have equality for $\tilde{\rho}_N = \rho_N$ and the right hand side is independent of $\tilde{\rho}_N \in \Pi(\rho)$ yields the desired result. □

3.1. The two marginal case

As a consequence of theorem 3.0.1, we obtain an easy proof of the following result, already implicit in [26] (without rigorous justification) and also present in [2, 7] (with more complicated proofs).

Corollary 3.1.1. Assume $N = 2$ and $c(x_1, x_2) = g(|x_1 - x_2|)$ where $g : (0, \infty) \to \mathbb{R}$ is decreasing and $g''(y) > 0$ for all y. Then, whenever $\rho = \rho(r)$ is absolutely continuous and radially symmetric, the solution to (4) is unique and is concentrated on the graph of the function $x \mapsto -\frac{1}{|x|}f(|x|)$, where $f : (0, \infty) \mapsto (0, \infty)$ is defined implicitly by

$$\int_{r}^{\infty} \rho(s) \, ds = \int_{0}^{f(r)} \rho(s) \, ds.$$ (8)

Note that, in particular, the conditions on g apply to the Coulomb cost.

Proof. It is easy to see that the minimum in (5) is uniquely attained at antipodal points $x_2 = -\frac{r_2}{r_1} x_1$ and so $h(r_1, r_2) = g(r_1 + r_2)$. Noting that $\frac{\partial h}{\partial r_1 r_2} = g''(r_1 + r_2) > 0$, a classical result in optimal transportation implies that the unique minimizer for the reduced problem (6) is concentrated on the graph of a decreasing function, $r_2 = f(r_1)$. As there is exactly one decreasing function pushing the measure μ to itself (namely (8)), this implies the desired result. □

3.2. The multi-marginal case

Finally, we use proposition 3.0.1 to assert two new qualitative facts about the $N \geq 3$ case. First, we show that the solution may be concentrated on a set with dimension greater than d (note that Monge type solutions, and their symmetrizations, would have dimension d). This fact is somewhat surprising, as remarks in [25] (see the discussion at the end of section 2) seem to indicate that finding optimizers with higher dimensional supports is unlikely. Secondly, the solution may be non-unique, even with an additional symmetry condition imposed; that is, there can be more than one minimizer in (3) which is symmetric in the arguments (x_1, x_2, \ldots, x_N).

Our results in these directions (propositions 3.2.1 and 3.2.4) rely on certain assumptions on the structure on the support of the minimizers. For the Coulomb cost, we suspect that these conditions hold generically, at least when the number of electrons is large. Below
(Lemma 3.2.2) we provide an explicit example of a marginal ρ for which the optimizer satisfies the conditions in Proposition 3.2.1. Numerical calculations in [25] suggest that the conditions in both Propositions 3.2.1 and 3.2.4 hold for other marginals (see Remark 3.2.5).

Proposition 3.2.1. Suppose $N \geq 3$ and $d \geq 3$. Let c be radially symmetric and ρ be an absolutely continuous, radially symmetric measure. Assume that for some optimizer γ

\[
\text{Proof. Choose an absolutely continuous, radially symmetric marginal } \mu \text{ as in the hypothesis; without loss of generality, assume } x_1(\vec{r}) \text{ and } x_2(\vec{r}) \text{ are not co-linear. Now, it is easy to check that the set}
\]

\[
\{A(x_2(\vec{r})) : A \in SO(d), \quad A(x_1(\vec{r})) = x_1(\vec{r})\}
\]

is $(d - 2)$-dimensional. Therefore, the set

\[
\{(A(x_1(\vec{r})), A(x_2(\vec{r})), \ldots, A(x_N(\vec{r}))) : A \in SO(d), \quad A(x_1(\vec{r})) = x_1(\vec{r})\}
\]

is at least $(d - 2)$-dimensional.

To summarize, this implies that for each $x_1 \in \mathbb{R}^d$ with radius $|x_1| = r \in I$, there is a $(d - 2)$-dimensional set of points

\[
\{(x_1, A(x_2), \ldots, A(x_N)) : A \in SO(d), A(x_1) = x_1\}
\]

in the support of the optimizer; the result follows. \(\square\)

We suspect that the condition on the non-co-linearity of the optimally coupled vectors x_1, x_2, \ldots, x_N is generically true. Below, we prove that this condition holds for the Coulomb cost for a specific example marginal ρ.

Lemma 3.2.2. Let $N \geq 3$ and fix $r_1, r_2, \ldots, r_N \in [1 - \epsilon, 1 + \epsilon]$. Suppose $x_1, x_2, \ldots, x_N \in \text{argmin}_{|x_i| = r_i} \sum_{i \neq j} \frac{1}{|x_i - x_j|}$. Then, for ϵ sufficiently small, and any distinct i, j, k, x_i, x_j, x_k are not co-linear.

Proof. If x_i, x_j, x_k were co-linear, at least two of them, say x_i and x_j, would have to point in the same direction, in which case $|x_i - x_j| = |r_i - r_j| < 2\epsilon$. But then $c(x_1, x_2, \ldots, x_N) = \sum_{i \neq j} \frac{1}{|x_i - x_j|} > \frac{1}{|x_i - x_j|} > \frac{1}{\epsilon}$, which is a contradiction for small ϵ as other configurations clearly have lower total cost. \(\square\)

Corollary 3.2.3. Assume $N \geq 3$ and $d \geq 3$ and take $c(x_1, x_2, \ldots, x_N) = \sum_{i \neq j} \frac{1}{|x_i - x_j|}$. Then there exists a measure ρ on \mathbb{R}^d for which there is a measure ρ_N on \mathbb{R}^d, optimal in (4), whose support is at least $(2d - 2)$-dimensional.

Proof. Choose an absolutely continuous, radially symmetric marginal ρ, so that the corresponding measure $\mu := \rho(r) dr$ is concentrated around $r = 1$; precisely,

\[
\mu([r \in [1 - \epsilon, 1 + \epsilon]]) > 1 - \frac{1}{2N}.
\]
with \(\epsilon \) as in the previous lemma. Then for any measure \(\gamma \in \Pi(\mu) \), and any \(i = 1, 2, \ldots, N \), we have

\[
\gamma \left(\{ (r_1, r_2, \ldots, r_N) : r_i \notin [1 - \epsilon, 1 + \epsilon] \} \right) = \mu([1 - \epsilon, 1 + \epsilon]^C) < \frac{1}{2N}.
\]

Therefore,

\[
\gamma \left(\bigcup_{i=1}^{N} \{(r_1, r_2, \ldots, r_N) : r_i \notin [1 - \epsilon, 1 + \epsilon]\} \right) < \frac{1}{2}.
\]

Noting that the complement of \(\bigcup_{i=1}^{N} \{(r_1, r_2, \ldots, r_N) : r_i \notin [1 - \epsilon, 1 + \epsilon]\} \) is \([1 - \epsilon, 1 + \epsilon]^N\), this implies \(\gamma([1 - \epsilon, 1 + \epsilon]^N) > \frac{1}{2} \).

It follows that, for the optimal measure \(\gamma \) in (5), letting \(I \) be the projection of \([1 - \epsilon, 1 + \epsilon]^N \cap \text{spt}(\gamma)\) onto \([1 - \epsilon, 1 + \epsilon]\), we have \(\mu(I) > 0 \) and by absolute continuity, \(I \) has positive Lebesgue measure. By the preceding lemma, the condition in proposition 3.2.1 is satisfied, and therefore, the result follows.

The following proposition requires the additional assumption that the cost is symmetric in its arguments; that is, \(c(x_1, x_2, \ldots, x_N) = c(\sigma(x_1), \sigma(x_2), \ldots, \sigma(x_N)) \) for any permutation \(\sigma \) on \(1, 2, \ldots, N \). This condition is, of course, satisfied by the Coulomb cost.

Proposition 3.2.4. Suppose \(N \geq 3 \) and \(d \geq 2 \) and assume the cost \(c \) is both radially symmetric and symmetric in its arguments. Let the marginal \(\rho \) be radially symmetric, and assume that for some optimizer in (6) there is at least one point \(\vec{r} = (r_1, r_2, \ldots, r_N) \in \text{spt}(\gamma) \) for which the following two conditions hold:

1. The radii \(r_1, r_2, \ldots, r_N \) are distinct.
2. There exist \(x_1(\vec{r}), x_2(\vec{r}), \ldots, x_N(\vec{r}) \) minimizing (5) that span \(\mathbb{R}^d \).

Then there is more than one symmetric minimizer \(\rho_N \) in (4).

Note that the first condition seems to be generic for repulsive costs; it would be surprising if the optimizer coupled exclusively points with common radii together. The second condition cannot hold if the dimension \(d \) is larger than the number of electrons \(N \). In fact, for the Coulomb cost, it is straightforward, using Lagrange multipliers, to show that the minimizing vectors \(x_1(\vec{r}), x_2(\vec{r}), \ldots, x_N(\vec{r}) \) are linearly dependent, and so the first condition cannot hold when \(d = N \) either. Nonetheless, we suspect the second condition holds generically when \(d < N \).

Proof. Note that can choose the minimizers \((x_1(\vec{r}), x_2(\vec{r}), \ldots, x_N(\vec{r})) \) in (5) to be symmetric whenever the radii are distinct; that is, for any permutation \(\sigma \) on \(1, 2, \ldots, N \), we can assume

\[
x_{\sigma(i)}(r_{\sigma(i)}, r_{\sigma(1)}, \ldots, r_{\sigma(N)}).
\]

Now, the procedure above produces an optimal measure \(\rho_N \), defined by (7); note that we can find another minimizer \(\tilde{\rho}_{\vec{r}} \) simply by replacing in the procedure leading up to (7) Haar measure \(v \) on \(SO(d) \) with Haar measure on the whole orthogonal group \(O(d) \). Let \(\tilde{\rho}_{\vec{r}} \) and \(\tilde{\rho}_{\vec{r}} \) be the symmetrizations of \(\rho_N \) and \(\rho_N \), respectively. We need only to verify that \(\tilde{\rho}_{\vec{r}} \neq \tilde{\rho}_{\vec{r}} \). To do this, we will exhibit a point in the support of \(\tilde{\rho}_{\vec{r}} \) which is not in the support of \(\tilde{\rho}_{\vec{r}} \).

Choose \(\vec{r} = (r_1, r_2, \ldots, r_N) \in \text{spt}(\gamma) \) with distinct radii and \((x_1, x_2, \ldots, x_N) := (x_1(\vec{r}), x_2(\vec{r}), \ldots, x_N(\vec{r})) \in \text{spt}(\rho_N) \) which span \(\mathbb{R}^d \). It follows that for any \(\vec{A} \in O(d) \) such that \(\vec{A} \notin SO(d) \), we have

\[
(\vec{A}(x_1), \vec{A}(x_2), \ldots, \vec{A}(x_N)) \neq (A(x_1), A(x_2), \ldots, A(x_N))
\]
for all \(A \in SO(3) \) (as if \((\tilde{A}(x_1), \tilde{A}(x_2), \ldots, \tilde{A}(x_N)) = (A(x_1), A(x_2), \ldots, A(x_N)) \), then \(A = \tilde{A} \) by the span condition). It now follows that

\[
(\tilde{A}(x_1), \tilde{A}(x_2), \ldots, \tilde{A}(x_N)) \in spt(\tilde{\rho}_N) \subseteq spt(\tilde{\rho}_N)
\]

Now, it follows from the construction that the only points \(z_1, z_2, \ldots, z_N \) in the support of \(\rho_N \) with \(|z_i| = r_i \) for all \(i = 1, 2, \ldots, N \) are points of the form \((A(x_1), A(x_2), \ldots, A(x_N)) \) with \(A \in SO(d) \). The only points \(z_1, z_2, \ldots, z_N \) in the support of \(\tilde{\rho}_N \) with \(|z_i| = r_i \) are points of the form \((A(x_{\sigma(1)}(\tilde{r}_\sigma)), A(x_{\sigma(2)}(\tilde{r}_\sigma)), \ldots, A(x_{\sigma(N)}(\tilde{r}_\sigma))) \) with \(A \in SO(d) \), where \(\sigma \) is a permutation and

\[
\tilde{r}_\sigma = (r_{\sigma(1)}, r_{\sigma(2)}, \ldots, r_{\sigma(N)}).
\]

But as the minimizers \((x_1(\tilde{r}), x_2(\tilde{r}), \ldots, x_N(\tilde{r})) \) are symmetric,

\[
(A(x_{\sigma(1)}(\tilde{r}_\sigma)), A(x_{\sigma(2)}(\tilde{r}_\sigma)), \ldots, A(x_{\sigma(N)}(\tilde{r}_\sigma))) = (A(x_1), A(x_2), \ldots, A(x_N)),
\]

and so

\[
(\tilde{A}(x_1), \tilde{A}(x_2), \ldots, \tilde{A}(x_N)) \notin spt(\rho_N),
\]

from which the result follows. \(\square \)

Remark 3.2.5 (Numerical evidence in support of the hypotheses). In [25], the authors compute what they call co-motion functions. Using spherically symmetric densities \(\rho \) on \(\mathbb{R}^3 \) corresponding to the ground states of the Lithium atom \((N = 3) \) and Beryllium atom \((N = 4) \), they find functions \(f_i, i = 2, \ldots, N \), such that, in our notation, \(\gamma := (Id, f_2, \ldots, f_N) |_{\mu} \in \Pi(\mu) \). They also numerically construct potential functions \(v(x) \) and verify numerically that

\[
(x_1, x_2, \ldots, x_N) \mapsto \sum_{i \neq j}^{N} \frac{1}{|x_i - x_j|} - \sum_{i=1}^{N} v(x_i)
\]

is minimized at each point on the set \(\{ x, f_2(x), \ldots, f_N(x) \} \). This easily implies that, in our notation, \(\gamma \) is optimal in (6). They also compute the minimizing angles numerically, and one can readily verify from their calculations that:

1. For all \(x \), the radii in \(|x|, |f_2(x)|, \ldots, |f_N(x)| \) are all distinct.
2. For the Beryllium density with \(N = 4 \), the vectors \(x, f_2(x), f_3, f_4(x) \) span \(\mathbb{R}^3 \) for all \(x \).

Proposition 3.2.1 then implies that for these densities there are optimal measures \(\rho_N \) with at least \(2d - 2 = 4 \)-dimensional support, while proposition 3.2.4 implies that there is more than one symmetric optimal measure for the Beryllium density with \(N = 4 \).

Acknowledgments

The authors would like to thank Robert McCann for originally pointing out the work in [7] to me. The author is also grateful to both Robert and Codina Cotar for very interesting and useful discussions on this topic, and to Gero Friesecke for a very insightful explanation of the form of the semi-classical limit of the Hohenberg–Kohn functional.

The author is pleased to acknowledge the support of a University of Alberta start-up grant and a National Sciences and Engineering Research Council of Canada Discovery Grant.
References

[1] Brenier Y 1987 Decomposition polaire et rearrangement monotone des champs de vecteurs C.R. Acad. Sci. Paris Ser. I Math. 305 805–8
[2] Buttazzo G, De Pascale L and Gori-Giorgi P 2012 Optimal-transport formulation of electronic density-functional theory Phys. Rev. A 85 062502
[3] Caffarelli L 1996 Allocation maps with general cost functions Partial Differential Equations and Applications (Lecture Notes in Pure and Applied Mathematics vol 177) (New York: Dekker) pp 29–35
[4] Capet S and Friesecke G 2009 Minimum energy configurations of classical charges: large N asymptotics Appl. Math. Res. Express. 2009 47–73
[5] Carlier G and Nazaret B 2008 Optimal transportation for the determinant ESAIM Control Optim. Calc. Var. 14 678–98
[6] Carlier G 2003 On a class of multidimensional optimal transportation problems J. Convex Anal. 10 517–29 (www.heldermann-verlag.de/jca/jca10/jca0417.pdf)
[7] Cotar C, Friesecke G and Klüppelberg C 2013 Density functional theory and optimal transportation with Coulomb cost Commun. Pure Appl. Math. 66 548–99
[8] Cotar C, Friesecke G and Klüppelberg C 2013 Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg–Kohn functional, in preparation
[9] Cotar C, Friesecke G and Pass B 2013 Infinite-body optimal transport with Coulomb cost, arXiv:1307.6540
[10] Gangbo W and McCann R 1996 The geometry of optimal transportation Acta Math. 177 113–61
[11] Gangbo W and Świerch A 1998 Optimal maps for the multidimensional Monge–Kantorovich problem Commun. Pure Appl. Math. 51 23–45
[12] Gangbo W 1995 PhD Thesis Universite de Metz.
[13] Hohenberg P and Sham L J 1965 Self consistent equations including exchange and correlation effects Phys. Rev. A 140 1133–8
[14] Olkin I and Rachev S T 1993 Maximum submatrix traces for positive definite matrices SIAM J. Matrix Ana. Appl. 14 390–39
[15] Parr R G and Yang W 1995 Density Functional Theory of Atoms and Molecules (Oxford: Oxford University Press)
[16] Pass B 2011 PhD Thesis University of Toronto
[17] Pass B 2011 Uniqueness and monge solutions in the multimarginal optimal transportation problem SIAM J. Math. Anal. 43 2758–75
[18] Rüschendorf L and Uckelmann L 2002 On the n-coupling problem J. Multivariate Anal. 81 242–58
[19] Seidl M, Gori-Giorgi P and Savin A 2007 Strictly correlated electrons in density-functional theory: a general formulation with applications to spherical densities Phys. Rev. A 75 042511
[20] Villani C 2003 Topics in Optimal Transportation (Graduate Studies in Mathematics vol 58) (Providence, RI: American Mathematical Society)
[21] Villani C 2009 Optimal Transport: Old and New (Grundlehren der Mathematischen Wissenschaften vol 338) (New York: Springer)