Transarterial Chemoembolization in Combination with Local Therapies for Hepatocellular Carcinoma: A Meta-Analysis

Mingheng Liao, Jiwei Huang, Tao Zhang, Hong Wu

Department of Hepato-Biliary-Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Abstract

Background: In previous randomized trials, transarterial chemoembolization (TACE) has shown an improvement of survival rate in hepatocellular carcinoma (HCC) when combined with radiofrequency ablation (RFA), percutaneous ethanol injection (PEI) or other therapies. The aim of this meta-analysis was to evaluate the effectiveness of combination therapy of TACE with RFA, PEI, radiotherapy (RT), three-dimensional conformal radiation therapy (3D-CRT) or High-Intensity Focused Ultrasound (HIFU).

Methods: Randomized or nonrandomized studies comparing TACE combined with RFA, PEI, RT, 3D-CRT or HIFU with TACE alone for HCC were included. Meta-analysis was performed using a fix-effects model in RCTs and a random-effects model among the observational studies.

Results: 10 randomized trials and 18 observational studies matched the selection criteria, including 2497 patients (682 in RCTs, 1815 in non-RCTs). Meta-analysis of RCTs showed that the combination of TACE and PEI ((RR) 1-year=1.10, 95%CI=0.99-1.22, p=0.073; (RR) 3-year=2.32, 95%CI=1.52-3.53, p<0.001), TACE+RT ((RR) 1-year=1.37, 95%CI=1.11-1.70, p=0.004; (RR) 3-year=2.32, 95%CI=1.44-3.75, p=0.001) were associated with higher survival rates. The results of observational studies were in good consistency with that of RCTs. Furthermore, TACE plus 3D-CRT ((RR) 1-year=1.22, 95%CI=1.06-1.41, p=0.005; (RR) 3-year=2.05, 95%CI=1.48-2.84, p<0.001) and TACE plus HIFU ((RR) 1-year=1.16, 95%CI=1.01-1.33, p=0.033; (RR) 3-year=1.66, 95%CI=1.12-2.45, p=0.011) have introduced marked survival benefit when pooling results from observational studies.

Conclusions: This meta-analysis demonstrated that TACE combined with local treatments, especially PEI, HIFU or 3D-CRT could improve the overall survival status than performing TACE alone. Importantly, these results need to be validated in further high-quality clinical trials.

Citation: Liao M, Huang J, Zhang T, Wu H (2013) Transarterial Chemoembolization in Combination with Local Therapies for Hepatocellular Carcinoma: A Meta-Analysis. PLoS ONE 8(7): e68453. doi:10.1371/journal.pone.0068453

Introduction

Liver cancer is the sixth most common cancer worldwide, and the incidence is still increasing. Surgical resection with complete tumor removal might be favorable in noncirrhotic patients with hepatocellular carcinoma (HCC), while transarterial chemoembolization (TACE) represents an effective treatment option for unresectable, intermediate stage HCC[1]. While the magnitude of the benefit was relatively small, TACE introduces tumor necrosis which could maintain a local tumor control, prevent tumor progression and improve survival[2].

In the 1990s, Kato has observed that the outcome of a new therapy containing both TACE and percutaneous ethanol injection (PEI) was better than performing TACE or PEI alone [3], revealing that the combination of TACE and other local therapies may have several theoretical advantages. Thus, more clinical trials were conducted to evaluate the effectiveness of TACE added another local treatment, such as radiofrequency ablation (RFA), radiotherapy (RT), three-dimensional conformal radiation therapy (3D-CRT) or high-intensity focused ultrasound (HIFU). However, the outcomes of the previous clinical trials were still confounding.

Therefore, this meta-analysis was aimed to investigate whether a combination of local therapies and TACE could improve the overall survival of HCC patients.
Materials and Methods

The process of the meta-analysis was performed according to the Cochrane Collaboration recommendations[4]. The analysis results were reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement[5].

Search Strategy

The database of MEDLINE, EMBASE, the Cochrane Library, and Chinese BioMedical Literature Database (CBM) were searched with the following medical subject headings (MeSH): “hepatocellular carcinoma”, “chemoembolization”, “clinical trials”. All the above MeSH terms were exploded. Free text words were searched combined with additional keywords: “liver tumor”, “liver cell carcinoma”, “transarterial chemoembolization”, “retrospective studies”. No language limitation or other restrictions such as research design was imposed. The search included literature published until December 2012 with no lower date limit. The computer search was supplemented with manual searches for references of included studies.
Selection Process and Data Abstraction
For the study selection, article titles and abstracts were reviewed first, then full-text were obtained to assess study eligibility. Each study was evaluated and classified by two independent investigators (Liao, MH and Wu, H). Any disagreement among reviewers was resolved by discussion. The article full-text were extracted to fulfill a predefined data table which contains the characteristics of patients, tumors and outcomes.

Including and Excluding Criteria
Studies were included in the analysis if: (1) they were randomized controlled trials, or observational studies comparing TACE combined other supplement therapy with TACE alone; (2) there were no evidence for extrahepatic metastasis before the first TACE process; (3) overall survival was assessed as an outcome measure of the effect of the treatment. If studies were duplicates, the one with complete data was included.

Studies were excluded if they received surgery or if they were published only in abstract form. Conference proceedings or abstracts were included only if they have sufficient follow-up and clarified no surgical intervention.

Quality Assessment
The risk of bias in RCTs was assessed following Cochrane recommendations, considering random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data and selective reporting [6]. Each category was assessed as low, unclear or high risk of bias and summarized in a table with a plus, question mark or minus, respectively.

Observational studies were assessed by the Newcastle-Ottawa Quality Assessment Scale (NOS)[7]. This score assesses studies according to the selection of patients in the exposed and the non-exposed group, comparability of the two groups, and outcome of the single studies. A study can be rated 0-9 stars based on these criteria while 6 stars or above was considered high quality in previous studies and was included in this review.

Publication bias was evaluated by funnel plots and Egger’s regression[4].

Statistical Analyses
The meta-analysis of RCTs and observational studies were conducted separately. The studies were divided into five subgroups according to the five different combined therapies; meanwhile, separate meta-analysis was conducted within the subgroups. In all analyses, we expressed results for treatment outcomes as relative risk (RR) with 95% confidence intervals (CIs). We used the Cochrane’s Q statistic to assess heterogeneity between studies. We used a fixed-effect model for calculations of RCTs unless there was a significant heterogeneity. Among observational studies, results were obtained using a random-effects statistical model, because of the considerable clinical heterogeneity. Additionally, the underlying relationship between study features and clinical heterogeneity was intended to be revealed through a meta-regression analysis. Begg's funnel plots and Egger's regression asymmetry test was used to examine potential publication bias. For all analyses, P<0.05 was considered statistically significant. Statistical analyses were performed with the software programs Review Manager (Version 5.2), and Stata (Version 12.0, Stata Corp LP, College Station, TX, USA).
The number of patients in each control arm ranging from 22 to 170. The mean age was 42.9, the percentage of men ranged from 60.9% [3] to 93.3% [26], and the proportion of liver function below Child-Pugh A ranged from 0% [31] to 72.4% [25]. Data of the hepatic tumors were provided in different aspects. The number of tumors (solitary versus multiple) were also apparent for the number of patients lost in follow-up was reported in 23/28 articles, the diameter of tumors varied from <3cm [28] to >10cm [32–34], the infiltration of portal vein thrombus was mentioned in some studies, while hepatitis status was mostly described.

Quality Assessment
The quality assessment of RCTs were performed using Cochrane Collaboration's tool. The most obvious risk of bias in the RCTs was the blinding procedure. However, blinding techniques were hardly feasible because of the different treatment procedure and the associated adverse effects. Meanwhile, all RCTs had no adequate description of allocation concealment, thus the risk of bias is apparent. Moreover, the tumor feature was hardly comparable, introducing an unclear risk of selection bias. Risk of attrition bias was not presented across studies. The overall risk of all types of bias in the RCTs was generally low to unclear (Figure 2).

The heterogeneity among the observational studies was considerable. The most typical methodological flaw was a risk of selection bias. The tumor number and size had significant differences between groups, and only a few studies reported the portal vein infiltration [3,18,20,30–34]. Attrition bias was also apparent for the number of patients lost in follow-up was only partly concerned. Reporting bias was not so obvious since we choose the survival rate as the outcome measure (Table 2).

Table 1. The characteristics of randomized trials included in the meta-analysis.

Study	Arms	Patients n.Gender (male)/(A/B/C)	Tumor size (mean±SD, cm)	Number of tumor (1/>2)	1-year survival/3-year survival
Zhao et al. [8]	TACE+3D-CRT	49/32	all<6	N.R.	82% / 43%
Liu et al. [9]	TACE	47/28	47/0/0	55%	15%
Bartolozzi et al. [10]	TACE+PEI	26/19	14/12/0	18/8	100% / 72.2%
Becker et al. [11]	TACE+PEI	27/20	11/16/0	5.09±1.36	92.6% / 43.4%
Xu et al. [12]	TACE+PEI	23/19	all > 5	40/38	74.4% / 16.3%
Yamamoto et al. [13]	TACE+PEI	50/42	17/3/10	N.R.	22/28
Yang et al. [14]	TACE+RFA	24/18	11/5/1	6.8±0.6	5/19
Leng et al. [15]	TACE+RT	36/29	N.R.	34/5	74.8% / 40.4%
Wang et al. [16]	TACE+RT	20/18	N.R.	34/5	61.3% / 19.8%
Wang et al. [17]	TACE+RT	54/43	all>2	49/5	76.5% / 42.1%

N.R., not reported

Results

Description of the studies
The literature search yielded a total of 1910 studies. After reviewing the titles and abstracts, there were 113 studies left for the quality assessment. The full-texts had been carefully evaluated, 22 studies were excluded for involving other interventions, 26 for surgical intervention, 24 for interventions other than TACE alone in the control arm, 6 for high-risk of bias [35–40], 1 retracted after publication [41], 1 duplicate article published in local language [42] and 5 for insufficient follow-up [40,43–46]. There were 10 randomized controlled trials, 11 prospective and 7 retrospective observational studies fulfilled the inclusion criteria and were chosen to be reviewed (Figure 1). The main characteristics of randomized trials (Table 1) and observational studies (Table 2) were listed.

Ten RCTs were published between 1995 and 2008, originated from Japan [13], Italy [10], Germany [11] and China [8,9,12,14–17]. A total of 682 patients, which had been randomized into combined and monotherapy, were included. In the treat arm, transarterial chemoembolization (TACE) was combined with radiofrequency ablation (RFA), percutaneous ethanol injection (PEI), radiotherapy (RT), three-dimensional conformal radiation therapy (3D-CRT) or high-intensity focused ultrasound (HIFU). While in the control arm, the treatment is TACE alone. Totally 1815 patients were included in eighteen prospective and retrospective observational studies. Among those, 833 patients were in the treat arm with combined therapies, compared with 982 patients who received monotherapy.
Table 2. The characteristics of observational studies included in the meta-analysis.

Study	NOS	Arms	Patients n.	Child-Pugh Class (A/B/C)	Tumor size (mean±SD, cm)	Portal vein thrombus	1-year survival	3-year survival
Lan et al.[18]	*****	TACE+3D-CRT	42	N.R.	All > 3cm	12	57.1%	28.2%
		TACE	60			14	61.7%	10.7%
Li et al.[19]	****	TACE+3D-CRT	41	27/14/0	All > 3cm	N.R.	73.2%	41.9%
		TACE	41	23/18/0			54.8%	12.8%
Liu et al.[20]	*****	TACE+3D-CRT	54	40/14/0	n=15 > 10cm	10	66.5%	37.4%
		TACE	60	43/17/0	n=16 > 10cm	11	53.9%	17.8%
Shang et al.[21]	*****	TACE+3D-CRT	40	N.R.	All<6cm	N.R.	78%	34%
		TACE	36				50%	18%
Zeng et al.[22]	*****	TACE+3D-CRT	54	44/10/0	n=44 > 5cm	N.R.	71.5%	24%
		TACE	149	114/35/0	n=128 > 5cm		59.6%	11.1%
Li et al.[23]	*****	TACE+HIFU	38	34/4/0	9.3±2.2	N.R.	71.1%	N.R.
		TACE	30	27/3/0			46.7%	
Peng et al.[24]	*****	TACE+HIFU	20	N.R.	n=14 > 10cm	N.R.	65%	N.R.
		TACE	32	n=21 > 10cm			62.5%	
Ye et al.[25]	*****	TACE+HIFU	56	15/35/6	n=37 > 5cm	9	82.3%	39.2%
		TACE	50	14/31/5	n=39 > 5cm	8	68%	21.3%
Zhang et al.[26]	*****	TACE+HIFU	55	29/48/28	Mean 4.5cm	N.R.	80%	47.3%
		TACE	50				74%	30%
Greten et al.[27]	*****	TACE+PEI	52	N.R.	N.R.	N.R.	92%	12.2%
		TACE	49				54%	33.6%
Kamada et al.[28]	*****	TACE+PEI	32	11/21/0	2.2±0.5	N.R.	90%	65%
Kato et al.[3]	**	TACE	37	10/27/0	2.4±0.6	N.R.	86%	44%
Lubienski et al.[29]	*****	TACE+PEI	22	17/5/0	7.09	N.R.	50.7%	8.5%
Qu et al.[30]	*****	TACE+PEI	142	53/83/6	9.6	76	62%	N.R.
Cheng et al.[31]	****	TACE	170	63/107/0	9.0	89	34.1%	
Guo et al.[32]	***	TACE	16	16/0/0	8.6±4.1	2	82.3%	N.R.
Shim et al.[33]	****	TACE	89	74/15/0	All > 5cm	14	64%	28.6%
Song et al.[34]	****	TACE	35	32/3/0	9.5	10	32.3%	
		TACE	28	11/17/0	9.2±3.6	8	72.4%	39.6%

Survival rates

One-year survival. In meta-analysis of randomized controlled trials, there was no marked heterogeneity in each subgroup, thus the fixed-effects model was chosen to pool the result. There was only one RCT included in TACE+RFA, TACE +HIFU, and TACE+3D-CRT subgroup. Data showed the combination of TACE+RT was associated with a higher one-year survival rate compared with TACE alone (RR: 1.37, 95% CI: 1.11-1.70; p=0.004), while the survival benefit of TACE+PEI (RR: 1.10, 95% CI: 0.99-1.22; p=0.073) was relatively small (Figure 3). A random-effect model yielded that TACE+3D-CRT (RR: 1.22, 95% CI: 1.06-1.41; p=0.005), TACE+HIFU (RR: 1.16, 95% CI: 1.01-1.33; p=0.033), and TACE+RT (RR: 1.48, 95% CI: 1.22-1.79; p<0.001) had significant survival benefits, especially the TACE plus PEI combination represented a more significant improvement of one-year survival (RR: 1.61, 95% CI: 1.12-2.33; p<0.001) (Figure 4).

Comparing the combined therapy with TACE alone in terms of overall survival rates. A Meta-analysis of one-year survival. B Meta-analysis of three-year survival.

Logistic regression analysis was taken to identify potential sources of heterogeneity among the studies. Under univariate logistic regression, higher percentage of portal vein thrombosis was found to be associated with a worse survival (P<0.05).
While gender, Child-Pugh class, Hepatitis and other study characteristics showed little relationship (Table 3).

Three-year survival. Data for three-year survival rate were reported in 8 RCTs and 12 observational studies. Meta-analysis of RCTs indicated that combined therapies, especially the additional PEI (RR: 2.32, 95% CI: 1.52-3.53; p<0.001) and RT (RR: 2.32, 95% CI: 1.44-3.75; p=0.001) significantly improved the three-year survival compared with TACE alone (Figure 3). A random-effect model yielded a similar result from the observational studies, furthermore, it also showed TACE +HIFU (RR: 1.66, 95% CI: 1.12-2.45; p=0.011) and 3D-CRT treatment (RR: 2.05, 95% CI: 1.48-2.84; p<0.001) were associated with higher three-year survival. However, the
Figure 4. Meta-analysis of observational studies. Comparing the combined therapy with TACE alone in terms of overall survival rates. A Meta-analysis of one-year survival. B Meta-analysis of three-year survival.

doi: 10.1371/journal.pone.0068453.g004
researches of TACE+RFA/TACE were inadequate to obtain a comment (Figure 4).

Adverse effect

Most studies reported no serious side effects. The most common adverse effects were the postembolization syndrome: fever, mild nausea and mild abdominal pain, and were usually self-limited. Mild elevation of serum aminotransferase level (ALT or AST) or total bilirubin (TB) was reported mainly in PEI intervention [11,47,48], they were transient and patients recovered in a short time. In addition, radiotherapies showed more side effects such as leukocyte count decline [8,17,21] or total bilirubin level rise [20,21,34]. Especially, the increased level of TB in TACE+RT subgroup has a statistically significance when compared with TACE alone [49]. Lastly, four studies reported the development of radiation-induced liver disease [18,31,33,39], but no difference was found between the intervention and control arms.

Publication bias

The Begg’s and the Egger’s test for one-year and three-survival did not show any evidence of publication bias (Figure S1).

Discussion

Transarterial chemoembolization has been used as a palliative tool in neoadjuvant therapy, in bridging therapy before transplantation, and even as an alternative to resection [50–52]. While previous meta-analysis showed that the combination of TACE and RFA, RT or PEI was associated with higher survival rates [49,53–57], on closer examination there are some potential methodological issues. The main problems may be referred to the heterogeneity of observational studies which were counted in pooling the results. Also, there was a potential risk of bias for clinical performance when different interventions were provided in the control arm. Since having addressed the above issues, several attempts were taken to improve the methodological quality and strength of evidence. Our meta-analysis was performed separately among RCTs and observational studies. Secondly, as previous studies had already proved that different chemotherapeutic drugs or embolization methods may have the similar effect [58–60], the control arm was limited to TACE only. Through the above measures, the combination therapies, including PEI, RFA, RT, 3D-CRT and HIFU, were methodologically comparable.

Our meta-analysis demonstrated that several combination therapies, mainly TACE+PEI, TACE+HIFU, TACE+RT, TACE+3D-CRT, and TACE+RFA were more beneficial than taking TACE alone among multinodular or unresectable HCC patients. Additionally, this was in consistent with previous clinical trials comparing TACE+RFA with RFA [41,61–63], TACE+PEI with PEI [45,64], or TACE+RT with RT [65]. In a word, the present studies indicate that these multimodal therapies bring more survival benefit than TACE or local therapy alone. Though observational studies observed the survival improvement in TACE+HIFU/TACE, however, the extent of improvement was rather small in the RCT. Meanwhile, the researches of TACE+RFA/TACE were inadequate to obtain a comment, thus further well-organized randomized trials were needed to confirm these findings. Moreover, meta-regression suggests that portal vein thrombus was related to a worse survival, but the impact of other factors such as gender, liver function or hepatitis was not significant in this study.

Most adverse effects were mild and transient, but radiotherapy for the treatment of HCC aroused concerning because of the irradiation of the normal liver tissue during a whole-liver radiation. Compared with traditional radiotherapy, 3D-CRT allowed us to conduct a more targeted radiation, and minimized the toxicity. These advantages facilitated the technical improvement. We found the trend that all included studies before the year 2000 chose RT, but studies after 2003 mostly adopted 3D-CRT. At last, though most included studies confirmed there was no serious adverse effect and the acute liver failure was so rare, the safety of the combined therapies was still one of the most concerned aspects and needs to be further evaluated.

This study may have several possible limitations. The Cochrane Library’s tool was used to assess the risk of bias of RCTs, suggested that there were higher risks for selection bias, performance bias or reporting bias among the included trials. The risk of bias was rather prominent in the randomization process. However, the blinding or the allocation concealment was hardly possible in the clinical practice. Moreover, the meta-analysis was performed using summary data, but the different characteristics of HCC patients were closely related to the survival and treatment outcome. A more practical comparison of survival should be achieved with a meta-analysis of individual patient data. Heterogeneity of observational studies was apparent. Though the sample size of the included studies was almost adequate, the inconsistency among these studies was not surprising. The potential biases may be referred to the selection of patients, the microvascular infiltration, tumor number and size, and different stage of liver function.
In conclusion, the combination of TACE and another local therapy including PEI, HIFU, or 3D-CRT could offer a more effective treatment for intermediate or advanced HCC patients than TACE alone. Importantly, these results need to be validated in further high-quality clinical trials.

Supporting Information

Checklist S1. Prism Checklist. (DOC)

Figure S1. The funnel plot for one-year and three-survival. A Funnel plot of one-year did not show any evidence of publication bias. B Funnel plot of three-year did not show any evidence of publication bias. (TIF)

Table S1. The characteristics of observational studies included in the meta-analysis. (DOCX)

Author Contributions

Conceived and designed the experiments: ML HW. Performed the experiments: ML HW. Analyzed the data: JH TZ. Contributed reagents/materials/analysis tools: ML HW. Wrote the manuscript: ML JH.

References

1. Rahbari NN, Mehrabi A, Mollberg NM, Müller SA, Koch M et al. (2011) Hepatocellular carcinoma: current management and perspectives for the future. Ann Surg 253: 453-469. doi:10.1097/SLA.0b013e31820d644f. PubMed: 21263310.
2. Cammá C, Scheeps F, Orlando A, Albanese M, Shahied L et al. (2002) Transarterial chemoembolization for unresectable hepatocellular carcinoma: meta-analysis of randomized controlled trials. Radiology 224: 47-54. doi:10.1148/radiol.2241011262. PubMed: 12091681.
3. Kato T, Saito Y, Nixe M, Ishiguro J, Ogoshi K (1994) Combination therapy of transcatheter chemoembolization and percutaneous ethanol injection therapy for unresectable hepatocellular carcinoma. Cancer Chemother Pharmacol 33 Suppl: S115-S118. doi:10.1007/BF00566681. PubMed: 8137469.
4. Higgins JPT, Green S (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. Available: www.cochrane-handbook.org. Accessed: March 2011.
5. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8: 336-341. doi:10.1016/j.ijsu.2010.02.007. PubMed: 20171303
6. Higgins JP, Altman DG, Gøtzsche PC, Juni P, Moher D et al. (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343: d5928. doi:10.1136/bmj.d5928. PubMed: 22008217.
7. Wells G, Shea B, O’Connell D, Peterson J, Welch V et al. (2011) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available: http://www.ohri.ca/programs/clinicalepidemiology/oxford.asp. Accessed: 12 April 2011.
8. Zhao MH, Lang FP, Jiang QA, Ma JJ, Song YX (2006) Three-dimensional conformal radiotherapy combined with transcatheter arterial chemoembolization for inoperable primary liver cancer. Chin J Radiat Oncol 15: 39-41.
9. Liu J (2008) Efficacy of transcatheter arterial chemoembolization combined with high intensity focused ultrasound in treatment of hepatocellular carcinoma. Chin J Med 8: 7333-7334.
10. Bartolozzi C, Lencioni R, Caramella D, Vignali C, Cioni R et al. (1995) Treatment of large HCC: transcatheter arterial chemoembolization combined with percutaneous ethanol injection versus repeated transcatheter arterial chemoembolization. Radiology 197: 812-818. PubMed: 7480761.
11. Becker G, Soezzen T, Olschewski M, Laubenberger J, Blum HE et al. (2005) Combined TACE and PEI for palliative treatment of unresectable hepatocellular carcinoma. World J Gastroenterol 11: 6104-6109. PubMed: 16273634.
12. Xu GH, Wen HC, Li ZW, Wu HX, Cheng ZZ et al. (2002) Evaluation of hepatic chemoembolization and percutaneous ethanol injection in the treatment of primary liver cancer. Chin Radiol 21: 66-68.
13. Yamamoto K, Masuzawa M, Kato M, Kurosawa K, Kaneko A et al. (1997) Evaluation of combined therapy with chemoembolization and ethanol injection for advanced hepatocellular carcinoma. Semin Oncol 24: S6-50-S6-55. PubMed: 9151917.
14. Yang P, Liang MH, Zhang YX, Shen BZ (2008) Clinical application of a combination therapy of Lentinan, multi-electrode RFA and TACE in HCC. Adv Ther 25: 787-794. doi:10.1007/s12325-008-0079-x. PubMed: 18670743.
15. Leng ZQ, Liang ZY, Shi S, Hu ZX (2000) Comparison of treatment results of interventional therapy alone, radiotherapy alone, and combined interventional therapy plus radiotherapy for primary hepatic cancer. Chin J Radiat Oncol 9: 99-101.
16. Wang GM, Shen WM, Song MF (2000) Results of combined treatment with transcatheter hepatic arterial chemoembolization and whole-liver irradiation with the moving strip technique in unresectable hepatocellular carcinoma. Int J Clin Oncol 5: 380-385. doi:10.1007/PL00012067.
17. Wang XH, Li J, Gao K (2006) Radiotherapy combined with hepatic arterial chemoembolization in the treatment of 54 primary liver cancer. Shanxi Medical Journal 35: 461-2
18. Lan D, Gong X, Wei X (2005) The efficacy analysis of transcatheter hepatic arterial chemoembolization combined with radiotherapy for primary liver cancer Chin J Radiat Oncol 14: 152–153.
19. Li Y, Yan Y, Zhang HB, Guo ZW, Yan ZC et al. (2003) Three-dimensional conformal radiation combined with transcatheter arterial chemoembolization for unresectable primary liver cancer. Chin J Radiat Oncol 12: 30-32.
20. Liu MZ, Wang XS, Cai L, Gu MF, Liu H et al. (2005) External radiation and combined transcatheter arterial chemoembolization for unresectable primary liver cancer. Chin J Cancer 24: 82-86.
21. Shang Y, You GX, Xu HY, Chen MC (2007) Prospective randomized clinical study of transcatheter arterial chemoembolization, combined with three-dimensional conformal radiotherapy for primary liver cancer: An analysis of 40 cases. World Chin J Digestology 15: 3140-3142.
22. Zeng ZC, Tang ZY, Fan J, Zhou J, Qin LX et al. (2004) A comparison of chemoembolization combination with and without radiotherapy for unresectable hepatocellular carcinoma. Cancer J 10: 307-316. doi:10.1097/00130404-200409000-00008. PubMed: 15530260.
23. Li C, Wu P, Fan W, Huang J, Zhang F et al. (2009) Clinical effect of transcatheter arterial chemoembolization combined with high intensity focused ultrasound ablation in treatment of large hepatocellular carcinoma. Nati Med J China 89: 754-757.
24. Peng DW, Chen XZ, Zhou Y, Wang MQ, Huang SS et al. (2009) Effect of transcatheter arterial chemoembolization combined with ultrasound ablation on hepatocellular carcinoma at middle and advanced stages. China Trop Med 9: 1256-1257.
25. Ye X, Ge ZM, Fei XB, Wu K, Wang S et al. (2008) Clinical study of HiFU combined with transcatheter arterial chemoembolization in treatment of 56 cases of primary liver cancer. Cancer Res Clin 20: 268–271.
26. Zhang GX, Xiong LL, Yao SS, He CJ, Li Q et al. (2005) Clinical study on HiFU combined with transcatheter arterial chemoembolization in treat-ment of 105 cases with middle or advanced primary liver cancer. Chin J Ultrasound Med 21: 71-73.
27. Greten TF, Papendorf D, Bleck JS, Kirchhoff T, Wohlberedt T et al. (2005) Survival rate in patients with hepatocellular carcinoma: a retrospective analysis of 389 patients. Br J Cancer 92: 1962-1968. doi:10.1038/sj.bjc.6602590. PubMed: 15870713.
28. Kamada K, Kitamoto M, Aikata H, Kawakami Y, Kono H et al. (2002) Combination of transcatheter arterial chemoembolization using cisplatin-lipiodol suspension and percutaneous ethanol injection for treatment of advanced small hepatocellular carcinoma. Am J Surg 184: 284-290. doi:10.1016/S0002-9610(02)00933-9. PubMed: 12354601.
29. Lubinski A, Bitsch RG, Schemmer P, Grenacher L, Dux M et al. (2004) Long-term results of interventional treatment of large unresectable hepatocellular carcinoma (HCC): significant survival benefit from combined transcatheter arterial chemoembolization.
chemoembolization and percutaneous ethanol injection for treatment of hepatocellular carcinoma. Chin J Gastroenterol 9: 1697-1701. PubMed: 12918103.

33. Shim SJ, Seong J, Han KH, Cho CY, Suh CO et al. (2005) Local radiotherapy as a complement to incomplete transcatheter arterial chemoembolization in locally advanced hepatocellular carcinoma. Liver Int 25: 1189-1196. doi: 10.1111/j.1478-3231.2005.01170.x. PubMed: 16343071.

34. Song SM, Kuang JR, Xiong K (2002) The efficacy of transcatheter arterial chemoembolization combined with or without radiotherapy for liver cancer. Chin J Clin Oncol 25: 141-142.

35. Xu J, Huang F, Lu B, Liang S (2006) Effect of high-intensity focused ultrasound combined with transcatheter arterial chemoembolization on 40 hepatocellular carcinoma at middle and advanced stage. Shandong Yi Wu Qiao 46: 22583584.

36. Zhou ZJ, Xu RD, Li WK, Zhuang WX, Lu LG et al. (2007) Transarterial oily chemoembolization combined with interstitial laser thermo therapy for treatment of hepatocellular carcinoma. Nan Fang Yi Ke Xue Bao 27: 1966-1968. PubMed: 19553675.

37. Zhao XL, Zhao ZJ, Zhou Q, Wang ZX, Li JY (2004) Combination of transcatheter arterial chemoembolization and percutaneous ethanol injection for treatment of huge unresectable hepatocellular carcinoma. Nan Fang Yi Ke Xue Bao 27: 505-506. PubMed: 15166161.

38. Wu PH, Li L, Zhang YM, Zhang FJ, Huang JH et al. (1998) Transcatheter arterial chemo-embolization combined with CT-guided percutaneous intratumoral injection of lipiodol-ethanol for the treatment of hepatocellular carcinoma. Chin J Diag 24: 353-357.

39. Wu DH, Zhi FC, Chen LH (2004) Evaluating the efficacy of transcatheter arterial chemoembolization combined with hypofractionated 3-dimensional conformal radiotherapy for hepatocellular carcinoma. Chin J Radiat Oncol 1: 138-142. PubMed: 15166161.

40. Li H, Qiu S (2008) Analysis of combination of hepatic arterial chemoembolization and percutaneous ethanol injection for treatment of primary liver cancer. J South East Univ (Med Sci Edi) 27: 368-370. PubMed: 18398079.

41. Cheng BJ, Jia CQ, Liu CT, Fan W, Wang QL et al. (2006) Chemoembolization combined with radiofrequency ablation for patients with hepatocellular carcinoma larger than 3 cm: a randomized controlled trial. JAMA 299: 1669-1677. doi: 10.1001/jama.299.14.1669. PubMed: 16598079.

42. Wang GM, Wu MF, Xu HY, Fei K, Shen WM et al. (1992) Transcatheter hepatic arterial chemoembolization plus whole-liver irradiation with the moving strip technique in the treatment of liver cancer. Chin J Radiat Oncol 1: 148-150.

43. Zhao ZG, Cao JM, Xu J (2006) Argon–heium cryoablation combined with transcatheter arterial chemoembolization for the treatment of primary hepatocellular carcinoma. J Interv Radiol 18: 661-663.

44. Song MJ, Park CH, Kim JD, Kim HY, Bae SH et al. (2011) Drug-eluting bead loaded with doxorubicin versus conventional Lipiodol-based transarterial chemoembolization in the treatment of hepatocellular carcinoma: a case-control study of Asian patients. Eur J Gastroenterol Hepatol 23: 521-527. doi: 10.1097/MEG.0b013e32834d6505. PubMed: 21682321.

45. Aligaiy HP, Deibert P, Olschewski M, Spamer C, Blum U et al. (1998) Survival benefit of patients with inoperable hepatocellular carcinoma treated by a combination of transarterial chemoembolization and percutaneous ethanol injection—a single-center analysis including 132 patients. Int J Cancer 79: 601-605. doi: 10.1002/(SICI)1097-0215(19981218)79:6<601·AID-IJC1>3.0.CO;2-A. PubMed: 9842968.

46. Jin C, Wu F, Wang Z, Chen W, Zhu H (2003) High intensity focused ultrasound combined with transcatheter arterial chemoembolization for advanced hepatocellular carcinoma. Chin J Oncol 25: 401-403.

47. Tanaka K, Okazaki H, Nakamura S, Endo O, Inoue S et al. (1991) Hepatocellular carcinoma: treatment with a combination therapy of transcatheter arterial embolization and percutaneous ethanol injection. Radiology 179: 713-717. PubMed: 1851313.
65. Xue HZ, Meng GD, Wang YW, Jiang QF (1995) Transcatheter arterial chemoembolization plus radiotherapy in the treatment of hepatocellular carcinoma. Chin J Radiat Oncol 4: 84-85.