Figure S1. Two groups of ERα-bound enhancers that respond differentially to E2 were confirmed in separate data sets. Related to Figure 1.

(A). Workflow of identifying ERα-bound enhancers that produce eRNAs differentially expressed upon E2 treatment.
(B). ERα binding intensities at E2-downregulated (Down) and E2-upregulated (Up) enhancer regions in the presence of vehicle (Veh.) or E2 using an independent ChIP-Seq data (GSE24166) (Tsai et al., 2010).
(C). Scatter plot showing the log$_2$[fold change] (log$_2$FC) of expression of the defined eRNAs under E2 and vehicle treatment conditions (E2/Veh.) in an independent GRO-Seq data (GSE59532) (Franco et al., 2015).
Figure S2. E2-repressed eRNAs control the expression of cognate mRNAs in a specific manner. Related to Figure 2.

(A). The Integrative Genomics Viewer (IGV) of GRO-Seq, ChIP-Seq and DNase-Seq (DNase) at genomic loci of \textit{TM4SF1} and \textit{EFEMP1}. Sense (S)- and antisense (AS)-strand information was indicated. Enhancers of \textit{TM4SF1} (Enh1-3) and \textit{EFEMP1} (Enh) were highlighted. The genome-wide sequencing data sets included in this figure are: GSE45822 (GRO-Seq) (Li et al., 2013), GSE45822 (H3K27ac) (Li et al., 2013), GSE40129 (H3K4me1) (Theodorou et al., 2013), GSE33216 (DNase) (He et al., 2012), GSE45822 (Pol II) (Li et al., 2013), E-TABM-828 (ERα) (Schmidt et al., 2010) and GSE26831 (FOXA1) (Kong et al., 2011).

(B). Expression of mRNA, pre-mRNA and eRNA of \textit{EFEMP1} in MCF-7 and ZR-75-1 cells at different time points upon 100 nM E2 treatment. The forward primer for detecting \textit{EFEMP1} mRNA is aligned across the junction between exon 1 and 2, and the reverse primer targets sequence in exon 3. Both primers for detecting pre-mRNA \textit{EFEMP1} are located in intron 2.

(C). Expression of antisense (AS)-strand eRNA and mRNA of \textit{TM4SF1} and \textit{EFEMP1} in MCF-7 cells after knocking down the specified antisense (AS)-strand eRNAs. Data were normalized to mRNA levels of \textit{GAPDH}.

(D). Expression of \textit{COMMD2} mRNA upon knockdown of sense (S)-strand eRNAs of \textit{TM4SF1} and \textit{EFEMP1}. Data were normalized to conditions with control siRNA (siCtrl) transfection.

Data in (B)-(D) are presented as mean ± SD with three biological and technical replicates. \(P\)-values in (B) and (C) were calculated by Student’s t-test. *, \(P < 0.05\); **, \(P < 0.001\); ***, \(P < 0.005\); NS, not significant.

(E). The chromatin structure around \textit{TM4SF1} gene is specially organized so that the enhancers have distinct functions.
The Integrative Genomics Viewer (IGV) of ChIA-PET, ChIP-Seq and GRO-Seq at genomic locus of *TM4SF1* gene. Sense (S)- and antisense (AS)-strand information was indicated. Data that were generated under vehicle (Veh.) or estradiol (E2) treatment condition were also specified. Promoter (pro.) and enhancers of *TM4SF1* (Enh1-3) were highlighted. Pol II or CTCF-mediated chromatin interactions that involve *TM4SF1* Enh2 were marked in green, otherwise in red. The genome-wide sequencing data sets included in this figure are: GSE33664 (Pol II ChIA-PET) (Li et al., 2012), GSE39495 (CTCF ChIA-PET) (Consortium, 2012), E-TABM-828 (CTCF, STAG1 and RAD21 ChIP-Seq) (Schmidt et al., 2010), GSE45822 (H3K27ac) (Li et al., 2013), GSE40129 (H3K4me1) (Theodorou et al., 2013), GSE45822 (Pol II) (Li et al., 2013), GSE45822 (GRO-Seq) (Li et al., 2013).
Figure S3. ERα signaling is essential for E2-induced transcriptional silencing of target eRNAs and associated mRNAs. Related to Figure 2.

(A). Expression of mRNA and eRNA of TM4SF1 and EFEMP1 in ZR-75-1 cells upon treatment with ethanol (Veh., gray bars), 1 nM estradiol (E2, orange bars) for 3 hrs, or 1 nM estradiol and 1 µM fulvestrant for 3 hrs (E2+Ful., green bars). Data were normalized to mRNA levels of GAPDH.

(B and C). Expression of eRNA and mRNA of four extra E2-repressed genes upon the treatment as described in (A) in MCF-7 (B) and ZR-75-1 (C) cells. Data were normalized to mRNA levels of GAPDH.

* P < 0.05; ** P < 0.001; NS, not significant.

(D and E). E2-repressed eRNAs are required for E2-induced transcriptional silencing. Expression of eRNA (indicated by the white and gray bars) and mRNA (represented by the blue and light pink bars) of TM4SF1 and EFEMP1 upon knockdown of specified eRNAs using locked nucleic acid (LNA) probes (D) or siRNA (E) in the absence (Veh.) or presence (E2) of 100 nM estradiol for 3 hrs. Data were normalized to mRNA levels of GAPDH. * P < 0.01; ** P < 0.001; NS, not significant.

Data are presented as mean ± SD with three biological and technical replicates. Statistical significance was calculated by Student’s t-test.
Figure S4. E2-repressed eRNAs play important roles in maintaining functional chromatin environment. Related to Figure 3.

(A). Agarose gel image showing PCR products of 3C ligation assays.
(B). Sanger sequencing results of 3C ligation products between TM4SF1 promoter and different regions around TM4SF1 Enh3.
(C). ERα binding at the enhancer regions of indicated genes in MCF-7 cells treated with 100 nM E2 for indicated lengths of time.
(D). Bar plot showing percentages of E2-upregulated (E2-Up Enh) and E2-downregulated enhancers (E2-Down Enh) that show detectable ERα binding intensities at different time points after E2 treatment in a separate ERα ChIP-Seq data (GSE62789) (Honkela et al., 2015).
(E). ERα-targeted ChIP at MYC enhancer (MYC Enh) after knocking down TM4SF1 eRNA1 at different time points upon 100 nM E2 treatment in MCF-7 cells.

Data in (C) and (E) are presented as mean ± SD with three biological and technical replicates.
Figure S5. E2-induced ERα binding at E2-downregulated enhancers is particularly dependent on RNA integrity. Related to Figure 4.

(A). Cumulative distribution of ERα binding intensity at E2-upregulated (E2-Up Enh) and E2-downregulated enhancers (E2-Down Enh) before (-) and after (+) RNase treatment in the absence (Veh.) or presence of E2. The fold change of ERα peak intensities was log2-transformed (log2FC).

(B). RAD21-targeted ChIP at E2-upregulated (E2-Up Enh) or E2-downregulated enhancers (E2-Down Enh) in MCF-7 cells. Cells were treated with (+) or without (-) 100 nM E2 for 30 min in the presence or absence of RNase. NC, negative controls using promoters of PPIA and KIAA0066 as binding sites. Data are presented as mean + SD with three biological and technical replicates.
Figure S6. DNA-binding domain (DBD) of ERα plays an essential role in binding with E2-repressed eRNAs. Related to Figure 5.
(A and B). Schematic diagram illustrating the protein structures of wild-type ERα and various truncations (A) and their protein levels after replacing the endogenous ERα in MCF-7 cells (B). ΔAF1, deletion of activation function 1; ΔAF2, deletion of activation function 2; ΔDBD, deletion of DNA-binding domain; ΔHinge, deletion of hinge region; LBD, ligand-binding domain; NLS, nuclear localization signal. The corresponding residues of each domain or deleted parts are numbered.

(C and D). Expression of TM4SF1 and EFEMP1 mRNAs (C) or levels of eRNAs of four additional genes (D) in MCF-7 cells expressing empty vector (Vec), wild-type ERα (WT) or its truncated mutants in the absence (-) or presence (+) of 100 nM E2 for 3 hrs. Data were normalized to corresponding vehicle (-E2) condition. p values denoted differences between Veh and E2 (n=3; Student’s t-test).

(E). Immunoprecipitation (IP) efficiency of RIP assay using anti-HA beads in MCF-7 cells. The replacement system was the same as illustrated in (A and B), and cells were treated with 100 nM E2 treatment for 5 min. Arrowhead, IgG heavy chain.

(F). Schematic diagram of full-length ERα (WT) and various GST-tagged fragments (Fr-1, -2 and -3). The amino acid numbers of each protein domain were shown.

Data are presented as mean ± SD with three biological and technical replicates. P-values were calculated by Student’s t-test. *, P < 0.05; **, P < 0.01; ***, P < 0.001; NS, not significant.
Figure S7. DNA-binding domain (DBD) of ERα is required for indirect chromatin binding of ERα at E2-downregulated enhancers, which is mediated by E2-repressed eRNAs. Related to Figure 5.

(A). Aggregate plots of ERα peak signals at E2-upregulated (E2-Up Enh) or E2-downregulated enhancers (E2-Down Enh) in anti-HA-targeted ChIP-Seq in MCF-7 cells treated with 100 nM E2 for 30 min. WT, wild type; ΔDBD, DNA-binding domain deletion; ΔAF2, activation function 2 deletion.

(B). Cytoplasmic extracts (CE) and nuclear extracts (NE) of MCF-7 cells expressing wild-type ERα (WT) or DBD-deletion mutant (ΔDBD) in the absence (-) or presence (+) of 100 nM E2 for 30 min.

(C). Heat map of E2-dependent expression of E2-activated and E2-repressed coding genes in MCF-7 cells expressing control vector (Vec), wild-type ERα (WT) or DBD-deletion mutant (ΔDBD). Cells were treated with 100 nM E2 for 6 hrs.

(D). Aggregate plot of binding signals of wild-type ERα (WT) or P-Box mutant (P-Box) at E2-upregulated (E2-Up Enh) and E2-downregulated enhancers (E2-Down Enh) in MCF-7 cells that were kept in regular culturing medium.

(E). Immunoprecipitation (IP) efficiency of RIP assay using anti-FLAG antibody in MCF-7 cells expressing inducible wild-type ERα (WT) or P-Box mutant (P-Box). Cells were treated with 100 nM E2 for 5 min and proteins were induced by 2 µg/ml doxycycline (DOX) overnight. Arrowhead, IgG band.
Figure S8. E2-repressed eRNAs assist ERα in its interaction with KDM2A, which leads to association between RNA Pol II and NEDD4. Related to Figure 6.

(A). Immunoprecipitation (IP) of NEDD4 in MCF-7 cells treated with vehicle (Veh.) or 100 nM E2 for 3 hrs.
(B). Agarose gel image showing PCR products that were amplified to contain enhancer regions of FOXC1 (FOXC1 Enh) and TM4SF1 (TM4SF1 Enh1) (left panel) or in vitro transcribed eRNAs of FOXC1 (FOXC1 eRNA) and TM4SF1 (TM4SF1 eRNA1) (right panel). 1 kb DNA ladder was marked.
Supplemental Tables

Table S1. siRNA and LNA sequences. Related to Figure 2, Figure S2, and Figure S3.

Names	5'-3' Sequences
siTM4SF1 eRNA1-AS_F	GAGAAAAGGGAGUUUGAGAUCUUUU
siTM4SF1 eRNA1-AS_R	UAGCAACUCACCCUUUCUGUU
siTM4SF1 eRNA1-S_F	UGAGAGUUGCUGAAGUCAUAUU
siTM4SF1 eRNA1-S_R	UAUGACUUCAGCUCUCAUU
siTM4SF1 eRNA2-AS_F	GAGGGGCAUGGAGGUUAUU
siTM4SF1 eRNA2-AS_R	UAUAACCUCAUUGCCCCUCUU
siTM4SF1 eRNA2-S_F	UCCCAAGUCCCGCUGUAUU
siTM4SF1 eRNA2-S_R	UUUACCGGCGACUCUGGGAUU
siTM4SF1 eRNA3-AS_F	GGGCUUAUGCUCUAACCAAAUU
siTM4SF1 eRNA3-AS_R	AAUGACUGACUCUCAACCAAU
siTM4SF1 eRNA3-S_F	GGACCAGAGAGAGGAGGGAUU
siTM4SF1 eRNA3-S_R	AAAGUCUGCGAGAGAGGGAUU
siEFEMP1 eRNA-AS_F	GGCUGAAGAGGAUCAAAAUU
siEFEMP1 eRNA-AS_R	UUUUGGAGGGAUAAGCCCCUU
siEFEMP1 eRNA-S_F	GGACAGAGUGAGAGGGAUU
siEFEMP1 eRNA-S_R	UAUCUCUACUCUGUCCUU
LNA-TM4SF1-eRNA1	ATTTAAAAAGTGTCGT
LNA-TM4SF1-eRNA3	CTGACTAGGTATGCT
LNA-EFEMP1-eRNA	TTAGTGCTGTCGAGTG
LNA-negative control	AACACGTCTATACGC
Table S2. Primers for RT-qPCR and RIP-qPCR. Related to Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure S2, Figure S3, and Figure S6.

Gene Names	5'-3' Sequences
GAPDH_F	TGCACCAACCAACTGCTTAGC
GAPDH_R	GCCATGGACTGTCATGAG
TM4SF1_F	CACAATGTGCTGGGTTCAG
TM4SF1_R	TATGTCTTGATTCCTCGGC
EFEMP1_F	GCCGCACAGGTATTTTGGCT
EFEMP1_R	TGTCCTGTGACCTGACCAGC
COMMD2_F	TGCTGGTTTAATCTGTTGCCT
COMMD2_R	CGATTTCTGAGTGAATTGGA
TM4SF1-premRNA_F	TACACCTTTGCCAGCACTGA
TM4SF1-premRNA_R	AAACACTGGCTAGGTTGG
EFEMP1-premRNA_F	CCTGGACTCCTACCAATG
EFEMP1-premRNA_R	AGGCCACTTACTTGAGAATGC
TM4SF1_eRNA1-S_F	TCTATGACTCTAGCTCAAAGA
TM4SF1_eRNA1-S_R	CTTGGAGAATGTCTACAAG
TM4SF1_eRNA1-AS_F	AGTGGTACTATGGGAACCC
TM4SF1_eRNA1-AS_R	ACGATTTGGGGCAGAGTA
TM4SF1_eRNA2-S_F	TCTCACTCAAACACAAACTGGC
TM4SF1_eRNA2-S_R	ATTTTTACGGCCAGACTCTGG
TM4SF1_eRNA2-AS_F	CTTAAGCAGGTCCTCAGAG
TM4SF1_eRNA2-AS_R	CAGCAGAGAGAGTGCCTCA
TM4SF1_eRNA3-S_F	GTCAGGTAGGAACTGCAGACT
TM4SF1_eRNA3-S_R	ACCAAAACATAGCTCTACCTCA
TM4SF1_eRNA3-AS_F	AGGAGTAGCCGTGGTAAAGG
TM4SF1_eRNA3-AS_R	GGAGGAGATGTGGTCACCAA
EFEMP1_eRNA-S_F	AGGAAATCCCGAGCCGCTTCA
EFEMP1_eRNA-S_R	CCACCAGAAATCTGCAAGT
EFEMP1_eRNA-AS_F	TGAGGACTGGGCTTAAATGC
EFEMP1_eRNA-AS_R	GAGGGAGATGTGGTCACCAGA
PGLYRP2_eRNA_F	GCACTCGTGATCCAGATTTGA
PGLYRP2_eRNA_R	GCTGTGCAATGACTGCAAC
ZDHHC22_eRNA_F	TGCAGCTCCTTGCAATCTT
ZDHHC22_eRNA_R	AAGCAGCAGTTCCTGCTTG
SEMA3G_eRNA_F	CACTGAGGGTGACCTTTC
SEMA3G_eRNA_R	CTGTGTATTGTACTAAATGGACTG
KCNC1_eRNA_F	CAGAGTGAGAGTAGCTGGT
KCNC1_eRNA_R	GTAGGTCCTCGGAGATAG
SYT8_eRNA_F	GAGGATGATCTATGCAGGAT
SYT8_eRNA_R	CTGGGTGGCAAGGAGAT

Gene eRNA_F	Gene eRNA_R	
PGR_eRNA_F	GCAATTCAGGTCAGATGTCTAAAT	
PGR_eRNA_R	TGGTCTCTACAGTCTACAAGGT	
FOXN1_eRNA_F	AGGGAGTGTCTCTGGGAA	
FOXN1_eRNA_R	AGAGCAGCACTGACATCAC	
KCNK5_eRNA_F	GCCTTTTGATCTTTGGGTCTTC	
KCNK5_eRNA_R	CTGCTTTTCTCCCTCTGAAATA	
ENPP2_eRNA_F	CTGGACTCTTGCGCTTTTGAAGAG	
ENPP2_eRNA_R	ATTTCCACAGCAACCCTATG	
CT62_eRNA_F	CTGGATCAGACCAACGTGGA	
CT62_eRNA_R	AGGATCTGTTTGCTCTACTAAGAAT	
SMAD7_eRNA_F	TGGTCTCAAGTACCTGTT	
SMAD7_eRNA_R	TTTCCACAGGGAAGAGAAAA	
MYCB_eRNA_F	GCACAAGGCAAGCACACTGAT	
MYCB_eRNA_R	CTGCAGTCTGTTGTCATTT	
TTC9_eRNA_F	CAGAAAGGCAAGTTCAACAGAAG	
TTC9_eRNA_R	GTAGCATAAGCTATACAGAAAG	
SYDE2_eRNA_F	TGGGTTCAGAGTTACCTAG	
SYDE2_eRNA_R	TCTTCCACATCCAACCTTCTAC	
SPRY1_eRNA_F	GCAGAAGCGTCTAGAGAAAA	
SPRY1_eRNA_R	GGCAGGGAAAGGGTAAATAA	
CCNG2_eRNA_F	GTCTGGGGCAAGCTAATCTTCC	
CCNG2_eRNA_R	TTCTCTCCATAGGGCTTGA	
DSCR8_eRNA_F	CAGGACATGATTTGGGAGTAAGA	
DSCR8_eRNA_R	GACAGCCTAAGCTCAAGAAACC	
BMF_eRNA_F	CTAGGGACCCATCTCAGTCTCTAT	
BMF_eRNA_R	TCTGGACAATTAGCTGAGTAC	
KRT7_eRNA_F	CAGTCAGAGCCAATGTGTGTA	
KRT7_eRNA_R	ACCCTTGCAACACCTGAG	
GLCCI1_eRNA_F	GAAGGAGGCCTCAGTCTATTT	
GLCCI1_eRNA_R	CCAGGCTTCAGTGGCCATATT	
PAK2_eRNA_F	GTACTGGAGCGTCTCTACAATAC	
PAK2_eRNA_R	CCTCCCAAGACCCAACCTAAA	
WEE1_eRNA_F	AGTAATCTGAAAGCAACCAAGTT	
WEE1_eRNA_R	GGGTTAGTGACATACACAGGAAA	
ARM9_eRNA_F	GCATGGAGCTCAGTGGCAATA	
ARM9_eRNA_R	AGGCTACTTGTGCATGAATAA	
ZNF217_eRNA_F	GGAAGCAGAGAAGAGGGAAGGAGA	
ZNF217_eRNA_R	CTGTAACAGAGGCCACAGAC	
SALL4_eRNA_F	ATCTACGAGCAGAGAGAGA	
SALL4_eRNA_R	ATCTACGAGCAGAGAGAGA	
Gene	Forward	Reverse
--------------	-----------------	-----------------
PRLR_eRNA_F	CCCACGTTGCACTTCATCTCTA	
PRLR_eRNA_R	AGCAAACCTTCCATGCTCTGT	
TNFRSF11B_eRNA_F	ACAGACAGACAAAGCCCATT	
TNFRSF11B_eRNA_R	TTGGAACCTTGGAGAGGAAGCT	
ARID5B_eRNA_F	CCCATGGAGTGGCTATCCT	
ARID5B_eRNA_R	TGCCTGTTCATCTCTGCTGTG	
LYPD3_eRNA_F	AGCCCTGAAAAGAGGCTGA	
LYPD3_eRNA_R	GAGTGAGAGGTTAGCGCTGT	
TMEM116_eRNA_F	AAGGGTTGCACTTGCTATCCC	
TMEM116_eRNA_R	CAACAGTGCGTGATGCTTT	
CDYL2_F	GCCCCTCCGTTGAGAACT	
CDYL2_R	GCTTCCGTTTATGGAAGTCC	
CDYL2_eRNA_F	GTCTAGAGACACAGGGAGGC	
CDYL2_eRNA_R	TTCCTGTTCTGCTCTCTCG	
CD55_F	AGGCCGTACAAGTTTTCAC	
CD55_R	CCTTCTCGCCAGGATTTTCAC	
CD55_eRNA_F	GCTCCTCAAGTTTTCACCACT	
CD55_eRNA_R	AGAGATGTGACTGCAAGGCAA	
DCP2_F	AGAACAACACAGGATACCTCA	
DCP2_R	AGAAAAACGGAACATGACTGA	
DCP2_eRNA_F	TGGAAACCAACACTTCGAAT	
DCP2_eRNA_R	ACAGACTTGGCTGCACAGCTA	
PLEKHF2_F	CCGTCGGGGCTATTAGTGAAA	
PLEKHF2_R	TGACCAACGCTGCTCCAAAAACA	
PLEKHF2_eRNA_F	ACGTGAGGCAACAGAGGAT	
PLEKHF2_eRNA_R	GACAATCTGTCTGCGTGGCAGCC	
Table S3. Primers for 3C-qPCR. Related to Figure 3.

Names	5'-3' Sequences
Anchor	CTGAATCATGGCAGCAGTTTCCCCCATGC
Region A	TGACAGGACACAGAGAGTTAGTCAAGGCA
Region B	AGAGAGTTCAATGACTTGCCCAGAATCCAG
Region C	CACGCTGAGGCTCCACTGACAAGTGCAAG
Region D	GCGAGATGTTCTTAGTGAGCAGCCAGGGA
GAPDH_3C_F	ACAGTCCATGACATCTGAC (Hagege et al., 2007)
GAPDH_3C_R	GCCTGCTTCACCACCTTCTTG (Hagege et al., 2007)
Table S4. Primers for ChIP-qPCR. Related to Figure 3, Figure 5, Figure 6, Figure S4, and Figure S5.

Names	5'-3' Sequences
TM4SF1_Enh1_F	CACCTAGACCTCATGGCCTC
TM4SF1_Enh1_R	TGCCATGTTGGACCTTTGACA
TM4SF1_Enh2_F	TGTGGCTTCTGAAGAGCTGA
TM4SF1_Enh2_R	CATGCCCTCCTTTTGACAC
TM4SF1_Enh3_F	GTCCAACATACTGCTGCAA
TM4SF1_Enh3_R	CCAGTGTGTGGTAGTGCAGCC
TM4SF1_pro_F	AACTGCAAAGTGTCCGAGAT
TM4SF1_pro_R	AGCTCTCAGATTGGAAAGCTGT
EFEMP1_Enh_F	TGGTTCTAAATGCCAGGGCCT
EFEMP1_Enh_R	CACAGCTGCAGGGATAGGAA
GAPDH_pro_F	TACTAGCGGTTTACCGGGC (Xu et al., 2012)
GAPDH_pro_R	TCGAACAGGAGAGCAGAGGCGA (Xu et al., 2012)
KIAA0066_F	CTAGGAGGTTGGAGGTAGG (Varambally et al., 2008)
KIAA0066_R	GCCCAAAACAGGAGTAATGA (Varambally et al., 2008)
PPIA_F	GCGTCTCCTCTGTTTATG
PPIA_R	GCAGTCTCCGTTTGTAGGAG
MYC_Enh_F	CCAGCTTTTCACCAACCACCT
MYC_Enh_R	GCAGGTGTCCTAGAGCATGA
FOXC1_Enh_F	GCCGATCAGAATGGCACAGGA
FOXC1_Enh_R	TAAAGATCGCAGTGGCCTTTT
CD55_Enh_F	TGAGGCTAGATAGGCACATTAC
CD55_Enh_R	CAGGCAACATTCTCCAGAAC
CDYL2_Enh_F	GAGCTGAGATTGGCACCACATTG
CDYL2_Enh_R	GGACACCACCTACCACATCT
DCP2_Enh_F	TGCCAAGCAGATGGTTAAGT
DCP2_Enh_F	CACAGGGAAGGCTGAAAAGA
PLEKHF2_Enh_F	CCTACCACGTTGCCAGACAAA
PLEKHF2_Enh_F	ATGGGTCTCAAAAGCACTGG