Ferroptosis in viral infection: the unexplored possibility

Mao-peng Wang¹, Banda Joshua¹, Ning-yi Jin², Shou-wen Du³ and Chang Li²

Virus-induced cell death has long been thought of as a double-edged sword in the inhibition or exacerbation of viral infections. The vital role of iron, an essential element for various enzymes in the maintenance of cellular physiology and efficient viral replication, places it at the crossroads and makes it a micronutrient of competition between the viruses and the host. Viruses can interrupt iron uptake and the antioxidant response system, while others can utilize iron transporter proteins as receptors. Interestingly, the unavailability of iron facilitates certain viral infections and causes cell death characterized by lipid peroxide accumulation and malfunction of the antioxidant system. In this review, we discuss how iron uptake, regulation and metabolism, including the redistribution of iron in the host defense system during viral infection, can induce ferroptosis. Fenton reactions, a central characteristic of ferroptosis, are caused by the increased iron content in the cell. Therefore, viral infections that increase cellular iron content or intestinal iron absorption are likely to cause ferroptosis. In addition, we discuss the hijacking of the iron regulatory pathway and the antioxidant response, both of which are typical in viral infections. Understanding the potential signaling mechanisms of ferroptosis in viral infections will aid in the development of new therapeutic agents.

Keywords: viral infections; cell death; ferroptosis; iron; antioxidant response

Acta Pharmacologica Sinica (2022) 43:1905–1915; https://doi.org/10.1038/s41401-021-00814-1

INTRODUCTION

The incidences of emerging and re-emerging viral infections have surged despite the tremendous progress in preventing and controlling infectious diseases and the biomedical field for the past two decades. The occurrence of epidemics and pandemics, such as the Ebola virus [1], influenza virus [2], middle east respiratory syndrome coronavirus (MERS-CoV) [3], severe acute respiratory syndrome coronavirus (SARS-CoV) [4], and SARS-CoV-2 [5] has posed a significant threat to humans. Several animal viruses, such as African swine fever virus [6], have significant economic loss. Virus infections have been shown to trigger cell death via various mechanisms, depending on the viral species, however elucidating the causes and effects can be difficult [7–9]. Cell death can be a double-edged sword during pathogenic infections [10, 11]. On the one hand, virus-associated cell death can help to prevent additional infection, while on the other hand, it contributes to the progression of many infections [10, 12–14]. On another facet, viral infection can lead to cell death due to viral activities within infected cells [15, 16], and the escape of viral progeny can cause cell death [15, 17]. It is noteworthy that some viruses encode proteins to inhibit cell death and facilitate their proliferation [7, 8].

Iron is an essential element for many enzymes in the cell. These enzymes include but are not limited to DNA primase, DNA helicases, ribonucleotide reductase, and ATPase [18], which are necessary for DNA expression. The unavailability of iron compromises multiple cellular functions, including genome replications [19]. The vital role of iron in cellular physiology maintenance and efficient viral genome replication places iron at the crossroads and makes it a competing chemical between the pathogen and the host [20, 21]. During infections, the immune response fortifies its defense in which iron is withheld from pathogens [22, 23]. However, various viral species have been found to interrupt iron uptake and the antioxidant response system [21], while others utilize iron transporter proteins as receptors (see Table 1). Interestingly, an increase in iron concentration facilitates ferroptosis.

Ferroptosis is a regulated cell death pathway that heavily depends on iron-mediated lipid free radical formation and accumulation [24, 25]. These actions can be inhibited by the enzyme glutathione peroxidase 4 (GPX4) and the antioxidant glutathione (GSH). Interruption of the cellular process that leads to ferroptosis can inhibit its occurrence [24–26]. Therefore, this interruption can serve as a therapeutic method to manipulate cells by either increasing their survivability or inducing death in infection conditions. Here, we review how iron uptake, regulations, and metabolism, including the redistribution of iron in the host defense system during viral infection, can induce ferroptosis. Described herein also is the inhibition of the antioxidant response during infections, emphasizing GSH and GPX4 as these are identified major inhibitors of ferroptosis.

FERROPTOSIS

Ferroptosis, as proposed by the Nomenclature Committee on Cell Death (NCCD), is a mechanism of cell death resulting from oxidative perturbations of the intracellular microenvironment, which is under

¹Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Chashan University Town, Wenzhou 325000, China; ºResearch Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China and ²Department of Infectious Diseases, The 2nd Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, Shenzhen 518020, China

Correspondence: Shou-wen Du (du-guhong@163.com) or Chang Li (lichang78@163.com)

Received: 1 July 2021 Accepted: 1 November 2021
Published online: 6 December 2021
constitutive regulation by GPX4 [25], which is heavily marked by iron driven lipid peroxidation (Fig. 1) and lipotoxicity accumulation due to Fenton reactions and failure of the antioxidant defense to inhibit or terminate the pathway. Dixon et al. [24] observed that ferroptosis is distinct from other forms of cell death in many facets. Morphologically, it is marked by small mitochondria with a higher membrane density, reduced or absent mitochondrial crista, and raptured out membranes [24, 27]. These changes may be controlled by the BH3-interacting domain death antagonist (BID) and BCL2-binding component 3 (PUMA) [28, 29]. Reportedly, the cell nucleus during ferroptosis does not change in size [30] but can be electron-lucent [31]. Biochemically, ferroptosis is marked by the depletion of GSH and reduced GPX4 activity and lipotoxicity [27]. Genetical changes that may alter iron homeostasis and facilitate lipid peroxidation, the two main features of ferroptosis, are also involved. However, it is worth noting that the process is regulated by multiple genes associated with iron uptake, lipotoxicity, and antioxidation responses. (Further reading on genes that regulate ferroptosis [24, 32–37]).

IRON UPTAKE

Stable iron homeostasis is vital for cell function and survival. Iron in the body can be acquired by absorption in the intestine or...
Ferrous is transported into the cell via the TfR1 receptor protein. Oxidase.

Intestines are a major source of iron. Iron uptake in the intestine involves haem iron transporter HEPH, DMT1, FPN1, and TfR1. From the degradation of erythrocytes, intestinal iron uptake and transferrin receptor protein 1, DMT1 divalent metal transporter, FPT ferroportin, CYDRB1 Cytochrome B participate in glutaminolysis. GSH can be inhibited by downstream metabolites of glutaminolysis. An increase of iron or inhibition of GSH/GPX4 results in ferroptosis. TfR1 Transferrin receptor protein 1, DMT1 divalent metal transporter, FPT ferroportin, CYDRB1 Cytochrome B.

The inhibition of iron export and/or the increase in uptake promotes ferroptosis. Processes that increase free iron content in the cell, such as ferritinophagy, which is the degradation of ferritin leading to the release of iron into the cytosolic labile iron pool, promote iron accumulation and is reported to induce ferroptosis [43] (Fig.1).

ZRT/IRT-like proteins have also been identified as transporters of Fe2+ that are not bound to transferrin [38, 39]. While inside the cell, Fe3+ is encapsulated in the acidic endosome, where it is reduced back to Fe2+ by the six-transmembrane epithelial antigen of the prostate 3 (STEAP3), which also facilitates TfR1 dependent iron uptake [40] or stored in ferritin [41]. From here, the iron is then released into the cytoplasm via ferroportin (FPT), an iron efflux pump that can oxidize Fe2+ to Fe3+ [42].

The inhibition of iron export and/or the increase in uptake promotes ferroptosis. Processes that increase free iron content in the cell, such as ferritinophagy, which is the degradation of ferritin leading to the release of iron into the cytosolic labile iron pool, promote iron accumulation and is reported to induce ferroptosis [43] (Fig.1). Ras mutation also causes ferroptosis by increasing the expression of TfR1 while reducing the expression of ferritin [44]. The degradation of organelles that have high deposits of iron, such as lysosomes [45] and mitochondria [46], can also cause cytosolic iron increase and thereby leading to ferroptosis (Box 1). The accumulated iron can react with lipids forming lipid reactive species while inhibition of iron accumulation in the cell attenuates ferroptosis [24, 47, 48].

LIPID PEROXIDATION

Iron-mediated lipid peroxidation occurs mainly using the polyunsaturated fatty acids (PUFA), which are susceptible to peroxidation due to their acyl tail. PUFA phospholipids can be generated by the enzymes Acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT). LPCAT is also responsible for PUFA activation and remodeling into transmembrane lipid [49, 50]. Aside from this, PUFA can also be obtained from dietary sources or synthesized by the enzyme acetyl CoA carboxylase. These phospholipids require esterification from the degradation of erythrocytes. Intestinal iron uptake involves haem iron transporter HEPH, DMT1, FPN1, and TfR1. Intestines are a major source of iron. Iron uptake in the intestine is heavily influenced by the microbiota and is absorbed in Fe2+. Ferrous is transported into the cell via the TfR1 receptor protein.
PUFAs (Fig.1), a chain reaction that produces lipid peroxides starts lipid peroxidation [51, 55]. Lipid peroxidation can also occur in the [24]. Aside from this, iron is a cofactor of enzymes that catalyze reacts with H2O2 (Fenton reaction), producing OH− depletion of PE and other PUFAs [53]. When iron in the cytoplasm oxygenated PE then functions as death signals and causes the depletion of PE and other PUFAs [53]. When iron in the cytoplasm reacts with H2O2 (Fenton reaction), producing OH−, which attacks PUFAs (Fig. 1), a chain reaction that produces lipid peroxides starts [24]. Aside from this, iron is a cofactor of enzymes that catalyze lipid peroxidation [51, 55]. Lipid peroxidation can also occur in the lysosome [43] as well as the mitochondrial [56] (Box 1).

ANTIOXIDANTS
The suppression of GPX4 activity leaves lipid peroxidation unchecked and facilitates ferroptosis, achieved by RSL3/5, ML162, ML210 DPsIs, and FIN02, etc., which can interfere with the GPX4 [26, 27, 47]. GPX4 activity can also be inhibited by buthionine sulfoximine (BSO), which terminates the synthesis of GSH [27], and FIN56, which causes a short supply of selenocysteine tRNA by inhibiting the melanovate pathways, attenuates GPX4 synthesis [57, 58]. FIN56, together with acetyl-CoA carboxylase, can also degrade GPX4 [52]. The melanovate pathway is likely to play a role in the inhibition of ferroptosis due to its production of ferrostatin and liproxstatin, which reduces lipotoxicity [26, 47]. The downregulation of GPX4 has been shown to increase cell sensitivity to ferroptosis [44]. Other molecules known to induce ferroptosis via direct or indirect induction are artesunate, lanperisone, and acetaminophen [59, 60]. The voltage-dependent ion channel proteins 1 and 3 (VDAC1/3) of the outer membrane of the mitochondria can cause the exhaustion of cysteine and, therefore, may likely cause cysteine deprivation [30]. Gao et al. reported the mitochondria as an antagonist of antioxidants in ferroptosis [56].

VIRUSES, IRON METABOLISM AND FERROPTOSIS
Iron regulation and viral infection
Hepcidin, a key protein to regulate systematic iron homeostasis, binds to the iron transporting protein ferroportin causing its internalization and degradation (Fig. 2), resulting in an increase in the cytoplasmic iron and a negative regulatory effect on iron uptake [61, 62]. Degradation of ferroportin can facilitate viral genome transcription as observed in HIV-1 [63]. The expression of hepcidin is modulated by the increase in iron availability due to intestinal absorption or the release from macrophages iron recycling, a cellular increase of iron stores, inflammation, or infection. Many viral infections have shown an inverse relationship between the increase in cellular iron endosomes and hepcidin upregulation [64]. An increase of hepcidin is accompanied by high ferritin, thereby storing iron in an inactive state. The cell is deprived of iron and is protected from further infection and the production of free radicals [65].

Contrary to this, research in chronic hepatitis C viral (CHCV) infection reports differently as hepcidin is downregulated instead of upregulated [66]. This dysregulation causes the systematic increase of ferritin in the blood and transferrin saturation, which has been attributed as a major contributing factor to the accumulation of iron in hepatic cells during CHCV infection, the progression of the infection as well as its resistance to treatment [66–68]. Iron released into circulation via ferroportin during recycling can cause serum iron overload [69, 70]. The host response to viral infection by redistributing iron makes it prone to co-infection by other pathogens. Joann and the team reported the subsequent association between HIV-induced iron redistribution and tuberculosis [71]. High cellular iron concentration can induce hepcidin expression. Possibly, virally infected cells experience increased iron uptake before the hepcidin expression is elevated, and viruses have been known to produce proteins that target regulatory proteins of iron metabolism, such as TR1 (Fig. 2), which has been reported in HIV infections but is not investigated in other viral infections [72–74]. Certain viruses have also been found to hijack cells that are actively taking in iron [21]. Ameglio and the team reported the downregulation of ferritin two days post-infection due to viral replication in HeLa-derived cells RD, C8166, and HeLa-T4-6c [75]. The team also suggested that this possibly causes iron toxicity. On the contrary, in a surveying study on COVID-19 patients, it was observed that there was a high concentration of serum ferritin in patients who had pronounced inflammatory responses [76]. However, ferritin may serve as a source of iron, while some viral protein may scavenge iron or interfere with hepcidin activity [77] (Fig. 2). Iron scavenging and toxicity have been elucidated in

Fig. 2 Viruses, iron, and iron receptors. Iron transport proteins such as TR1 and DMT1 serve as receptors of many viruses. TR1 and DMT1 are upregulated by a viral infection, causing increased iron uptake. Iron-bound in ferritin is scavenged by viruses via viral-induced ferritin degradation or disruption. Viral activity causes hepcidin expression, which inhibits iron export and leads to excessive cellular iron. These eventually cause cell death via ferroptosis. TR1 Transferrin receptor protein 1, DMT1 divalent metal transporter, FPT ferroportin, CYDRB1 Cytochrome B Reductase 1.

Antioxidants
The suppression of GPX4 activity leaves lipid peroxidation unchecked and facilitates ferroptosis, achieved by RSL3/5, ML162, ML210 DPsIs, and FIN02, etc., which can interfere with the GPX4 [26, 27, 47]. GPX4 activity can also be inhibited by buthionine sulfoximine (BSO), which terminates the synthesis of GSH [27], and FIN56, which causes a short supply of selenocysteine tRNA by inhibiting the melanovate pathways, attenuates GPX4 synthesis [57, 58]. FIN56, together with acetyl-CoA carboxylase, can also degrade GPX4 [52]. The melanovate pathway is likely to play a role in the inhibition of ferroptosis due to its production of ferrostatin and liproxstatin, which reduces lipotoxicity [26, 47]. The downregulation of GPX4 has been shown to increase cell sensitivity to ferroptosis [44]. Other molecules known to induce ferroptosis via direct or indirect induction are artesunate, lanperisone, and acetaminophen [59, 60]. The voltage-dependent ion channel proteins 1 and 3 (VDAC1/3) of the outer membrane of the mitochondria can cause the exhaustion of cysteine and, therefore, may likely cause cysteine deprivation [30]. Gao et al. reported the mitochondria as an antagonist of antioxidants in ferroptosis [56].

Antioxidants
The suppression of GPX4 activity leaves lipid peroxidation unchecked and facilitates ferroptosis, achieved by RSL3/5, ML162, ML210 DPsIs, and FIN02, etc., which can interfere with the GPX4 [26, 27, 47]. GPX4 activity can also be inhibited by buthionine sulfoximine (BSO), which terminates the synthesis of GSH [27], and FIN56, which causes a short supply of selenocysteine tRNA by inhibiting the melanovate pathways, attenuates GPX4 synthesis [57, 58]. FIN56, together with acetyl-CoA carboxylase, can also degrade GPX4 [52]. The melanovate pathway is likely to play a role in the inhibition of ferroptosis due to its production of ferrostatin and liproxstatin, which reduces lipotoxicity [26, 47]. The downregulation of GPX4 has been shown to increase cell sensitivity to ferroptosis [44]. Other molecules known to induce ferroptosis via direct or indirect induction are artesunate, lanperisone, and acetaminophen [59, 60]. The voltage-dependent ion channel proteins 1 and 3 (VDAC1/3) of the outer membrane of the mitochondria can cause the exhaustion of cysteine and, therefore, may likely cause cysteine deprivation [30]. Gao et al. reported the mitochondria as an antagonist of antioxidants in ferroptosis [56].

Viruses, Iron Metabolism and Ferroptosis
Iron regulation and viral infection
Hepcidin, a key protein to regulate systematic iron homeostasis, binds to the iron transporting protein ferroportin causing its
bacterial infections but are not highly investigated in viral infection [77–79], further suggesting the need to investigate iron uptake and ferritin in various viral infections prior to and post increased hepcidin expression. The accumulation of cellular iron due to viral infection can cause Fenton reactions and finally ferroptosis. (Further reading on Viruses and Iron [22, 80–87]).

Inhibition of viral infection depending on iron
In mammals, blood hosts an abundant supply of iron. This iron is either free or binds to haeme. Iron can regulate the replication of numerous viral infections in different organisms. In humans, iron inhibits the replication of the hepatitis C virus by suppressing viral RNA and protein expression via inhibiting the nonstructural protein 5B (NS5B) polymerase [88]. Ferric-containing salts such as ferric ammonium citrate (FAC) have also been shown to inhibit other viruses, including Influenza A virus, Zika virus, EV-71, HIV [89]. However, this inhibition depends not just on the iron contained in the salt but also on the citrate. Organisms that acquire nutrition from other organisms via blood meals obtain most of their iron from these blood meals. Mosquitoes are one kind of such an organism, and Zhu and coworkers found that the prevalence of dengue virus in the mosquito was regulated by the host serum iron [90]. The host serum iron was utilized by the iron metabolism pathway of the mosquitoes to inhibit viral ROS generation, thereby reducing viral infectivity. (Further reading on viruses and iron metabolism proteins [77, 91–95]).

Iron receptors and transport proteins usage by viruses
Iron receptors on cells of different organisms have also been known to serve as entry points of viruses (Table 1, Fig. 2). The natural resistance-associated macrophage protein (NRAMP), a common iron receptor in Drosophila and A. aegypti was found to be the serve receptor of Sindbis virus, and its downregulation due to iron supplements resulted in the inhibition of the viral replication in a research study by Hitoshi and the team [96]. TfR1 in mammals has also been identified as receptors of several viral species, including but not limited to New World hemorrhagic fever viruses, Machupo virus, Junin virus, Canine Parvovirus, Mouse mammary tumor virus [91, 97]. Some viruses like the coxsackievirus B3 tend to facilitate the expression of proteins involved in cellular iron uptake, such as metallothionein 1/3 and DMT1 upon early days of infections [81].

VIRUSES, IRON RICH ORGANELLE, AND FERROPTOSIS
Viral activities such as viral gene expression, host-virus triggered signaling, virus-physiological stress, among others, can destroy organelles of the host. The destruction of cellular organelles that abundant house iron-containing or iron-requiring proteins such as lysosome and mitochondria results in releasing the iron into the cytosol. The organelle contents are likely to participate in ferroptosis or infection progression (Fig. 3).

The mitochondria
The mitochondrion possesses a high iron content, as is required in the ATP synthesis during the electron transporting process. Exogenous factors, including viral infections, have been known to induce loss of mitochondrial membrane potential (MMP) [98, 99]. MMP can cause leakage of many mitochondrial contents, which may disrupt many cellular processes. Although there is no research showing the link between viral infection and the release of mitochondrial iron, recent findings suggest that this is likely to occur when the mitochondria membrane integrity is jeopardized [100, 101]. Investigations in this area may provide new therapeutic targets and further understand why viral infections are worsened in older people. Iron uptake by the mitochondria increases with age, and this may cause iron overload [46]. Reportedly iron overload causes leakage of mitochondrial oxidants and ROS [102]. Mitochondrial ROS has been known to inhibit hepcidin transcription, leading to iron accumulation [100, 103]. Iron can then participate in lipid peroxidation and eventually cause ferroptosis cell death. Notably, in some viral infections, mitochondrial damage seems to be inhibited [100]. Alternatively, with the depletion of GSH and the inactivity of GPX4, 12/15-lipoxygenase (12/15-LOX) can be activated in the mitochondria to oxidize PUFAs [55, 104, 105]. Activated 12/15-LOX has been reported to oxidize mitochondria membrane lipids in neuronal cells [105], which causes the accumulation of lipid peroxides in the mitochondrial membrane. 12/15-LOX activation has also been known to increase mitochondrial iron content via its inhibition of the CDGSiron-sulfur domain 1 (CISD1) [105, 106]. CISD1 plays a key role in lipid peroxidation, or the lysosome/mitochondria lipid ROS causes ferroptosis.ROS Reactive oxygen species, CISD1 CDGSH Iron Sulfur Domain 1, LOX Lysyl Oxidase, LAMP Lysosomal Associated Membrane Protein, TCA cycle tricarboxylic acid cycle, ETC Electron Transport Chain, RSV Respiratory Syncytial Virus.
role in the modulation of iron uptake by the mitochondria, and its loss of function increases iron content [107, 108]. This iron can cause Fenton reactions in the mitochondria or be released in an event where the mitochondria membrane integrity is jeopardized. Yuan et al. reported that the inhibition of CISD1 contributes to mitochondrial lipid peroxidation and eventually ferroptosis [109]. Certain viruses hijack the mitochondria to evade the mitochondrial antiviral signaling and replication [110], and this may cause hyperpolarization, which can impair the antioxidant activity, leading to the dysregulation of iron metabolism. Lysosomal permeabilization can induce or participate in multiple cell death mechanisms, including but not limited to lysosomal dependent cell death, necrosis, necroptosis, and apoptosis [117]. Other viruses have been known to induce lysosome permeabilization, although the mechanism remains unclear [115].

VIRUSES, ANTIOXIDANTS, AND FERROPTOSIS

System-xc- antiport and cysteine

The cysteine can be prevented from entering the cell by blocking or inhibiting the cysteine/glutamate antiporter system-xc or preventing the participation of cysteine in GSH formation. Inducers of ferroptosis include but are not limited to glutamate, erastin sulfasalazine, and sorafenib. These molecules can directly interfere with the activity of system xc” thereby interrupting the supply of cysteine and consequently damages the endoplasmic reticulum [24, 118, 119]. The supply of cysteine is essential in the synthesis of GSH [120]. Jiang L and Sato have reported P53’s ability to repress cysteine absorption via the downregulation of SLC7A11, a key active component of the system-xc” [121, 122]. This process is, however, dependent on the presence of ROS-induced stress [123]. System-xc” functions involve the influx of glutamate in the cytosol and the efflux of glutamate into the extracellular space [124]. The released glutamate represents the principal source of extracellular glutamate in brain regions and causes excitotoxicity implicated in several neuronal diseases [125, 126]. Certain viruses such as the Japanese encephalitis virus have been known to enhance the system-xc” activity and therefore facilitate neuronal damage, but this also has been found to reduce oxidative stress in the cells [127]. Research by Dai and coworkers reported reducing intracellular GSH and inducing viral lytic gene expression following the inhibition of system-xc” in PEL cells infected with the Kaposi’s sarcoma-associated herpesvirus (KSHV) [128]. In the same research, it was suggested that the inhibitors of system-xc” can prevent PEL tumor progression. The inhibition of the antiporter results in the reduction of GSH synthesis, GPX activity and weakens the antioxidant defense. There is limited knowledge on the role and state of system-xc” antiport in viral infection. However, current data suggest that inhibiting the antiport can facilitate ferroptosis. Suggestively as most viruses incorporate...
cell death by ferroptosis due to the accumulation of lipid-free radicals or lipid peroxides. Some studies found that GPX4 expression, together with other selenoproteins, was reduced due to HIV infection [141], which may require further investigation into other viruses. On top of this, ROS molecules produced during viral-induced inflammation may facilitate ferroptosis. Interestingly, some viruses can encode GPX4 in their genome, as observed in the human dermatotropic poxvirus [142]. GPX4 is not only essential in the antioxidant mechanism but also the immune system (Box 2).

CONCLUSION AND PERSPECTIVES

Viruses are no strangers to hijacking and disrupting multi-cellular processes to favor their proliferation, which can have unfavorable consequences on host cells and lead to cell death. Various mechanisms of cell death have been observed in many viral infections. A recently described mechanism of cell death, ferroptosis, is likely to be among the forms of cell death during viral infections. Common features of ferroptosis, such as reduced cysteine and consequently reduced GSH, reduced GPX4 activity, and increased cellular iron availability, among others, have been found to occur in viral infections, suggesting the possible occurrence of ferroptosis, especially when occurring together with dysregulated cell metabolism. However, it is noteworthy that the induction and process may differ from one virus to another, and some viruses may not cause ferroptosis. Iron is essential for viral replication, which may be the reason for the viral usage of iron transporters as receptors, while the underlying mechanism that viruses interrupt iron metabolism remains elusive.

Gut which serves as a major site for dietary iron uptake and a site for iron regulation by hepcidin, and the role of microbiota in iron uptake during viral infections may also provide new insights. Certain viruses target intestinal enterocytes as primary cells of infection. Advances in understanding the mechanism of ferroptosis and discovering new inducers have revealed the role of metabolites and cellular organelles in ferroptosis. Viruses have been known to disrupt cell metabolism and organelles, leading to conditions that may favor ferroptosis. Further investigations in cellular metabolism during viral infections and how it may facilitate ferroptosis can also provide a new understanding. An increased focus on how ferroptosis occurs in viral infections and understanding the role of microbiota in iron uptake during viral infections may lead to discovering new therapeutic targets.

Furthermore, therapeutics of iron metabolism may serve as potential drugs to inhibit viral infection exacerbation caused by cell death. Currently, there are many types of medicines regulating ferroptosis by enzyme inhibition, iron chelation and redox response [143]. Canonical antioxidants, like butylated hydroxytoluene or vitamin E, are recognized as both modulators of ferroptosis and supplements fighting against SARS-CoV-2, HSV, HIV, etc. [144–146]. Among these iron-dependent drugs, most of them variously show antiviral activity for certain viral species. However, the precise antiviral mechanism still need further investigations to provide significant research data. Increasing discoveries prove that ferrous-reactive endoperoxides like artemisinin, arterolane, and artefenomel also have an antiviral function [147–149]. The pharmacological intervention of the ferroptosis pathway indicates promising therapeutics for virus infection prevention and control. The decipherment of the regulatory process of ferroptosis is still critical and can ultimately facilitate the development of new antiviral drugs.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China [No.31802224]; Jilin University Science and Technology Innovative Research Team

Box 2 GPX4 in antiviral innate immunity

While GPX4 function has been mainly attributed to reducing oxidized molecules, it is noteworthy that GPX4 also plays a role in the innate immune system. Research by Matsushita and the team reported that the absence of GPX4 in antigen-specific T cells (CD8⁺ and CD4⁺) altered the physiological response of the T cells [192]. This alternation was manifested in the form of the failure to expand and protect from acute lymphocytic choriomeningitis virus (LCMV). GPX4 was therefore found to be crucial in the expansion of the T cell and the protection of viral and parasitic infections. Notably, GPX4 is required for T cell survival under noninflammatory conditions [192]. However, the requirement for survivability may differ among the subsets of T cells. GPX4 deficient T cells died via ferroptosis, and this prevented immunity to infection by LCMV. Returning normal functionality and increased survivability were observed in cells under lipid peroxyl stress after treatment with Vitamin E [192]. Vitamin E is known to be an inhibitor of ferroptosis due to its antioxidant activity and has been shown to improve cell survival in GPX4 deficient cells [192, 193]. GPX4 also indirectly activates the stimulator-of-interferon genes (STING), which is important in sensing foreign nucleic acid material in the cytoplasm. This activation is achieved by maintaining the redox state of the cell. Jia et al. reported the carbonylation of STING in HSV, which was facilitated by GPX4 deficiency and is inhibited by GPX4 [194]. In the same experiment, the inhibition of STING by GPX4 reduced HSV infection. The role that GPX4 plays in the immune system is not well elaborated and may require further investigation. There is supporting evidence that low levels of GPX4 can exacerbate infections by enhancing cell death and altering the function of the T cells. (Further reading on GPX4 in the immune system [194–197]).

Cysteine in their protein, it is likely to occur that the antitop can maintain its function during viral infection, yet the antioxidant response is jeopardized.

Glutathione and GPX4

Glutathione (GSH), a molecule that plays a key role in the cellular response to ROS and their elimination. It is formed by glutamate-cysteine synthetase by covalently combining cysteine and glutamate. In this process, cysteine is the rate-limiting reactant, and its absence reduces the cells’ capability to respond to ROS effects [120, 129] (Fig. 4). Cysteine enters the cell via the system xc-. GSH often detoxifies hydrogen peroxide (H₂O₂), which is often involved in many reactions that produce ROS, including Fenton reactions. Enzymes of the GPX family then use GSH as a substrate to reduce H₂O₂ into water producing a hydroxyl (OH⁻) molecule, which oxidizes GSH and forms GSSG. GSSG is not an antioxidant and requires to be reduced to GSH to function as an antioxidant, achieved by using NADPH as a cofactor, and the enzymes glutathione reductase (GSR) catalyzes the reaction, which yields GSH and NAD⁺ [120, 129, 130]. Unfortunately, the oxidation and reduction of GSH can produce excess free radicals that damage molecules (via oxidation) that play critical roles in cellular homeostasis [131].

ROS in a cell can have beneficial functions as signal molecules in immune response [132]. Different viruses may have various ways by which they can induce ROS and lead to its accumulation. These ROS targeting antioxidant defense proteins are often inclusive of the GPX family of enzymes [133]. Morris et al. reported low cellular GSH in macrophages with an increased concentration of GSSG in HIV infection [134] (see Table 1), and a higher concentration of free radicals, pro-inflammatory cytokines were observed. Aside from the ROS oxidation of GSH to form GSSG, the production of pro-inflammatory cytokines such as IL-1 can cause the depletion of cysteine concentration in the cell [135]. Cysteine depletion can also be attributed to the excessive and rapid incorporation of cysteine in the viral genome RNA proteins, which have several cysteine amino acids containing domains, which occurs mainly during viral replication and contributes to a decrease in GSH [136, 137]. In response to the inflammation and depletion of cysteine, key enzymes in the synthesis of GSH are downregulated [138–140], which impairs the antioxidant function of GSH and its availability, leading to cellular loss of GPX4 function. As established earlier, GPX4 is identified as a key enzyme in response to lipid peroxidation and an inhibitor of ferroptosis. The lack of GSH will cause GPX4 inactivity, and this, therefore, can promote...
The authors declare no competing interests.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

REFERENCES

1. Olival KJ, Hayman DT. Filoviruses in bats: current knowledge and future directions. Viruses. 2014;6:1759–88.
2. Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature. 2009;459:931–9.
3. Memish ZA, Murali S, Kakuta S, Uchiyama Y, Nakano H. Identification of the hallmark of necroptosis and ferroptosis by transmission electron microscopy. Biochim Biophys Acta. 2020;2057:839–44.
4. Wang Y, Yang L, Zhang X, Cui W, Liu Y, Sun Q, et al. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep. 2019;20:e47563.
5. Ou Y, Wang SJ, Li D, Chu B, Gu W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA. 2016;113:68806–12.
6. Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, et al. Oxidized arachidonic acid regulates ferroptosis by blocking DPP4 Activity. Cell Rep. 2017;20:1692–704.
7. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63:173–84.
8. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh JH, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12:1425–8.
9. Lin CC, Mabe NW, Lin YT, Yang WH, Tang X, Hong L, et al. RIPK3 upregulation confers robust proliferation and collateral cytotoxic response on breast cancer cell death. Cell Death Differ. 2020;27:2234–47.
10. Gálvez-Peralta M, He L, Jorge-Nebert LF, Wang B, Miller ML, Eppert BL, et al. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero. PLoS One. 2012;7:e36055.
11. Zhao N, Gao J, Enns CA, Knutson MD. ZRTR1-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin. J Biol Chem. 2010;285:32141–49.
12. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, et al. Identification of a ferroreductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 2005;37:1264–9.
13. Bradley JM, Le Brun NE, Moore GR. Ferritins: furnishing proteins with iron. J Biol Chem. 2016;291:13–28.
14. Miller LD, Coffman LG, Chou JW, Black MA, Bergh J, D’Agostino R Jr, et al. An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res. 2011;71:6727–38.
15. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26:1021–32.
16. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15:234–45.
17. Ju X, Yan Y, Liu Q, Li N, Sheng M, Zhang L, et al. Neuraminidase of Influenza A virus binds lysosome-associated membrane proteins directly and induces lysosome rupture. J Virol. 2015;89:10347–58.
18. Gao X, Chuan M, Campana M, Marshall J, Zhou Z, Roberts AM, et al. Mitochondrial dysfunction may explain the cardiomyopathy of chronic iron overload. Free Radic Biol Med. 2010;49:401–7.
19. Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73:2195–209.
20. Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, et al. HSFB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015;34:6517–25.
21. Doll S, Pronten B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACs4L4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–8.
22. Hashidate-Yoshida T, Hayarama T, Hishikawa D, Morimoto R, Hamano F, Tokuoka SE, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91.
23. Neetemeier S, Jelinkov A, Laino V, Hoffmann L, Eisenbach I, Eying R, et al. BID links ferroptosis to mitochondrial cell death pathways. Redox Biol. 2017;12:558–70.
24. Hong SH, Lee DH, Lee YS, Jo MJ, Jeong YA, Kwon WT, et al. Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget. 2017;8:115164–78.
25. Yagoda N, von Rechenberg M, Zagariir E, Bauer AJ, Yang WS, Fridman DJ, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447:864–8.
26. Miyake S, Murali S, Kakuta S, Uchiyama Y, Nakano H. Identification of the hallmark of necroptosis and ferroptosis by transmission electron microscopy. Acta Pharmacologica Sinica (2022) 43:1905 – 1915
Ferroptosis in viral infection

MP Wang et al.

56. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, et al. Role of mito-
chondria in ferroptosis. Mol Cell. 2019;73:354–63 e3.
57. Warner GJ, Berry MJ, Moustafa ME, Carlson BA, Hatfield DF, Faust JR. Inhibition of
selenoprotein synthesis by selenocysteine tRNA[Ser]Sec lacking iso-
pentenyldiselenide. J Biol Chem. 2000;275:28110–9.
58. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehnbauer O, Guigó R, et al.
Characterization of mammalian selenoproteomes. Science. 2003;300:1439–43.
59. Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as
a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015;25:517–32.
60. Lorincz T, Jemnitz K, Kardon T, Mandl J, Szarka A. Ferroptosis is involved in
acetaminophen induced cell death. Pathol Oncol Res. 2015;21:1151–21.
61. McDermid JM, Hennig BJ, van der Sande M, Hill AV, Whittle HC, Jaye A, et al.
Molecular cloning of zebrafish ferroptostin1 identifies a conserved vertebrate iron exporter.
Nature. 2004;403:776–81.
62. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, et al. Novel
monoclonal iron-regulated transporter, IREG1, implicated in the basolateral
transfer of iron to the circulation. Mol Cell. 2000;5:299–309.
63. Merck JM, Hennig BJ, van der Sande M, Hill AV, Whittle HC, Jaye A, et al. Host
iron redistribution as a risk factor for incident tuberculosis in HIV infection: an
11-year retrospective cohort study. BMC Infect Dis. 2013;13:48.
64. Martin DN, Uprichard SL. Identification of candidate iron transporters from the
ZIP/ZRT gene families in the mosquito aedes aegypti. Front Physiol. 2018;9:380.
65. Martin DL, van der Sande M, Hill AV, Whittle HC, Jaye A, et al. Host iron redistribution as a risk factor for incident tuberculosis in HIV infection: an 11-year retrospective cohort study. BMC Infect Dis. 2013;13:48.
66. Armitage AE, Stacey AR, Giannoulisotou E, Marshall E, Sturges P, Chatha K, et al. Distinct patterns of hepcidin and iron regulation during HIV-1, HBV, and HCV infections. Proc Natl Acad Sci USA. 2014;111:12187–92.
67. Babiker ZO, Wingfield T, Galloway N, Snowden N, Ustianowski A. Extreme ele-
vation of ferritin and creatinine kinase in primary infection with HIV-1. Int J STD
AIDS. 2015;26:68–71.
68. Drakesmith H, Chen N, Ledermann H, Screean G, Townsend A, Xu XN. HIV-1 Nef
down-regulates the hemochromatosis protein HFE, manipulating cellular iron
homeostasis. Proc Natl Acad Sci USA. 2005;102:11017–22.
69. Fleck GW, Kolarz P, Lassmann H, Vogel U, Kornhuber J, Hauer J, et al. Characterization of human mitochondrial membrane protein that regulates oxidative capacity. Proc Natl Acad Sci USA. 2007;104:5318–23.
70. Saito K, Sasaki K, Hara Y. Mitochondrial dysfunction and iron regulatory proteins (IRP1 and IRP2) and ferritin in the brains of scrapie-infected mice. Neurosci Lett. 2007;424:158–63.
71. Filleeceen B, Pantopoulos K. Iron repression inhibits replication of hepatitis C virus in
permissive HuH-7.5.1 cells. J Hepatol. 2010;53:995–9.
72. Wang H, Li Z, Ji Y, Li J, Li L, Xia L, et al. Antiviral effects of ferric ammonium
citrate. Cell Discov. 2018;4:14.
73. Zhu Y, Long L, Nie K, Wiatatanaratrabun S, Sun P, Li Q, et al. Host serum iron modulates dengue virus acquisition by mosquitoes. Nat Microbiol. 2019;4:2405–15.
74. Boelaert JR, Weinberg GA, Weinberg ED. Altered iron metabolism in HIV infec-
tion: mechanisms, possible consequences, and proposals for management. Infect Agents Dis. 1996;5:36–46.
75. Wessling-Resnick M. Crossing the iron gate: why and how transferrin receptors mediate viral entry. Annu Rev Nutr. 2018;38:431–58.
76. Demogines A, Abraham J, Choe H, Fazan M, Sawyer SL. Dual-host-virus arms race shapes an essential housekeeping protein. PLoS Biol. 2013;11:e1001571.
77. Kim BH, Jun YC, Jin JK, Kim JI, Kim NH, Leibold EA, et al. Alteration of iron regulatory proteins (IRP1 and IRP2) and ferritin in the brains of scrapie-infected mice. Neurosci Lett. 2007;422:158–63.
78. Whitby PW, VanWagoner TM, Springer JM, Morton DJ, Seale TW, Stull TL. Bur-
coonial iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc Natl Acad Sci USA. 2002;99:2264–9.
79. Hino K, Nishina S, Sasaki K, Hara Y. Mitochondrial damage and iron metabolic
dysregulation in hepatitis C virus infection. Free Radic Biol Med. 2019;133:193–9.
80. Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, et al. Glutathione
dependent peroxiredoxin 4 exerts its antioxidant effects via reductive stress into 12/15-lipoxigenase
pathway. Cell Death Differ. 2008;15:1823–47.
81. Pallast S, Ariai K, Wang X, Lo EH, van Leyen K. 12/15-lipoxygenase targets
neuronal mitochondria under oxidative stress. J Neurochem. 2009;111:882–9.
82. Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and
contributor of ferroptosis. Biochem Biophys Res Commun. 2016;478:1338–43.
83. Wang H, Jiang Z, Lu Y, Li X, Chen B, Zhou W, et al. Knockdown of hepatic mitochondrial membrane transporter SLC25A10 alleviates liver injury in mice with acute hepatitis B. Hepatol. 2017;65:679–90.
84. Wang C, Wang Y, Li J, Cao Y, Wang B, Li X, et al. Antioxidant effects of ferric ammonium citrate. Cell Discov. 2018;4:14.
85. Karupiah G, Harris N. Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites. J Exp Med. 1995;181:2171–9.
86. Weinberg ED. Iron depletion: a defense against intracellular infection and neoplasia. Life Sci. 1992;50:1289–97.
114. Saithi P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol. 2009;10:623–35.

115. Aits S, Jaattela M. Lysosomal cell death at a glance. J Cell Sci. 2013;126:1905–16.

116. Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane permeabilization and cell death. Traffic. 2018;19:918–31.

117. Xiao J, Wang F, Gomez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Acta Pharmacol Sinica (2022) 43:1905 – 1915

118. Wilson D, Lim H, Wu Y, Huang T, Chou L, Yu T, et al. Lysosomal membrane permeabilization and GTPase functions in woolly hair disease. J Biol Chem. 2020;295:12704–14.

119. Catalanotto M, Pinna S, Ricci P, Corato A, Castello R, Papadimitriou P, et al. Lysosomal and autophagic response in HDPCs from LRD-FTLD patients. Brain. 2016;139:2539–56.

120. Laitt J, Flanagan MJ, Ayub K, Njar D, Kirkpatrick N, Prior K, et al. Lysosomal storage disease in the CNS: a review of the role of autophagy. Brain. 2019;142:2226–42.

121. Jiang L, Aktar W, Li H, Zhang L, Lu G, Wang J, et al. Lysosome biology and lysosomal membrane permeabilization: insights into disease pathologies. J Cell Biol. 2016;215:81–93.

122. Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999;274:11455–8.

123. Heid JA, Fink AAA. Knockdown of the slc1a2 (EAAT2) gene using a lentiviral vector drives multimodal necrotic cell death. Cell Death Dis. 2021;12:343–53.

124. Wu J, Wang X, Tzingounis AV, Danbolt NC, Larsson HP. EAAT2 (GLT-1; slc1a2) expression of the antioxidant sestrin 2 identified by transcriptomic analysis of Japanese encephalitis virus-infected SH-SYSY neuroblastoma cells. Virus Genes. 2019;59:630–42.

125. Dai L, Cao Y, Chen Y, Parsons C, Qin Z. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor suppression for KSHV/HIV-associated lymphoma. J Hematol Oncol. 2014;7:30.

126. de Groot JS, Sontheimer H. Glutamate and the biology of gliomas. Glia. 2011;59:1181–89.

127. Zhou Y, Wang X, Zheng Q, Li Y, Zhang J. Regulation of cystine-glutamate transporter expression in human immunodeficiency virus type 1 infected Jurkat cells. Antivir Res. 2015;122:105–14.

128. Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for cysteine ligase in the in vivo inflammatory response of macrophages. Free Radic Bio Med. 2017;108:311–21.

129. Matthias LJ, Yam PT, Jiang XM, Vandegraaff N, Li P, Poumbourios P, et al. Disruption of the expression level of 12/15 lipoxigenase and the related inflammatory factor (CCL5, CCL3) in respiratory syncytial virus infection in mice. Micro Pathog. 2017;109:209–13.

130. Kumar R, Nayak M, Sahoo GC, Pandey K, Sarkar MC, Ansari Y, et al. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J Infect Chemother. 2019;25:325–9.

131. Lin TY, Chu C, Chiu CH. Lactoferrin inhibits enterovirus 71 infection of human embryonal rhabdomyosarcoma cells in vitro. J Infect Dis. 2002;186:1161–4.

132. Fujita N, Takei Y. Hepatitis C virus and, hepatocellular carcinoma: iron reduction preaches the gospel for chronic hepatitis C. J Gastroenterol. 2007;42:923–6.

133. Polinovik A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect Dis. 2020;6:1558–62.

134. Wang J, Chen Y, Gao N, Wang Y, Tian Y, Wu J, et al. Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PLoS One. 2013;8:e55407.

135. Bridges CC, Hu M, Miyaochi S, Siddaramappa UN, Gnanapathy ME, Ignatowicz L, et al. Induction of cystine-glutamate transporter xct- by human immunodeficiency virus type 1 transactivator protein tat in retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2004;45:2006–14.

136. Madrid AJ, Berliner N. Pathogenesis and clinical implications of HIV-related anemia in 2013. Hematol Am Soc Hematol Educ Program. 2013;2013:377–81.

137. Duchemin JB, Paradkar PN. Iron availability affects West Nile virus infection in its mosquito vector. Virol J. 2017;14:103.

138. Gilmore MT, Silvi A, Ramezani M, Tashman A, Faghfihloo E, Rezaei F, et al. Evaluation of the expression level of 12/15 lipoxigenase and the related inflammatory factor (CCL5, CCL3) in respiratory syncytial virus infection in mice model. Micro Pathog. 2017;109:209–13.

139. Kumar R, Nayak M, Sahoo GC, Pandey K, Sarkar MC, Ansari Y, et al. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J Infect Chemother. 2019;25:325–9.

140. Nencioni L, Luvua A, Aquilano K, Ciriolo MR, Cozzolino F, Follito G, et al. Influenza A virus replication is dependent on an antioxidant pathway that involves GSH and Bcl-2. FASEB J. 2003;17:758–60.

141. van der Linden WA, Schulze CJ, Herbert AS, Krause TB, Wierchinska AA, Dye JM, et al. Cystine cathepsin inhibitors as anti-ebola agents. ACS Infect Dis. 2016;2:173–9.

142. Zhang HQ, Zhang JQ, Forman H. Down regulation of glutathione and glutamate cysteine in inflammatory response of macrophages. Free Radic Biol Med. 2018;128:313–5.

143. Zhang H, Zhou L, Yuen J, Birkner N, Leppert V, O’Day PA, et al. Delayed Nrf2-regulated antioxidant gene induction in response to silica nanoparticles. Free Radic Biol Med. 2017;108:311–3.

144. Shisler JL, Senkevich TG, Berry MJ, Moss B. Ultraviolet-induced cell death blocked by a selenoprotein from a human dermatotropic poxvirus. Science. 1998;279:107–25.
172. Martin DN, Uprichard SL. Identification of transferrin receptor 1 as a hepatitis C virus entry factor. Proc Natl Acad Sci USA. 2013;110:10777–82.

173. Zeltina A, Krumm SA, Sahin M, Struwe WB, Harlos K, Nunberg JH, et al. Convergent immunological solutions to Argentine hemorrhagic fever virus neutralization. Proc Natl Acad Sci USA. 2017;114:7031–6.

174. Zong M, Fofana I, Choe H. Human and host species transferrin receptor 1 use by North American Arenaviruses. J Virol. 2014;88:9418–28.

175. Radoshitzky SR, Longobardi LE, Kuhn JH, Retterer C, Dong L, Clester JC, et al. Machupo virus glycoprotein determinants for human transferrin receptor 1 binding and cell entry. PLoS One. 2011;6:e21398.

176. Rojek JM, Kunz S. Cell entry by human pathogenic arenaviruses. Cell Microbiol. 2008;10:828–35.

177. Fedeli C, Moreno H, Kunz S. Novel insights into cell entry of emerging human pathogenic arenaviruses. J Mol Biol. 2018;430:1839–52.

178. Rojek JM, Sanchez AB, Nguyen NT, de la Torre JC, Kunz S. Different mechanisms of cell entry by human-pathogenic Old World and New World arenaviruses. J Virol. 2008;82:7677–87.

179. Zhang S, Hu W, Yuan L, Yang Q. Transferrin receptor 1 is a supplementary receptor that assists transmissible gastroenteritis virus entry into porcine intestinal epithelium. Cell Commun Signal. 2018;16:69.

180. Ross SR, Schofield JJ, Farr CJ, Bucan M. Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proc Natl Acad Sci USA. 2002;99:12386–90.

181. Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP, Ross SR, et al. Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Cell Host Microbe. 2011;10:97–104.

182. Fang X, Wang H, Han D, Xie Y, Yang X, Wei J, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 2019;116:2672–80.

183. Torii S, Shintoku R, Kubota C, Yaegashi M, Torii R, Sasaki M, et al. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J. 2016;473:769–77.

184. Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D, et al. Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun. 2018;503:1550–6.

185. Radisky DC, Kaplan J. Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts. Biochem J. 1998;336(Pt 1):201–5.

186. Chen MS, Wang SF, Hsu CY, Yin PH, Yeh TS, Lee HC, et al. CHAC1 degradation of glutathione enhances cysteine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2alpha-ATF4 pathway. Oncotarget. 2017;8:114588–602.

187. Hoyer-Hansen M, Jaattela M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 2007;14:1576–82.

188. Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S, George JF, et al. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Ren Physiol. 2018;314:F702–14.

189. Song X, Xie Y, Kang R, Hou W, Sun X, Eppele MW, et al. FANC D2 protects against bone marrow injury from ferroptosis. Biochem Biophys Res Commun. 2016;480:443–9.

190. Galluzzi L, Bravo-San Pedro JM, Kroemer G. Ferroptosis in p53-dependent onclosuppression and organismal homeostasis. Cell Death Differ. 2015;22:1237–8.

191. Zhou L, Zhao B, Zhang L, Wang S, Dong D, Lv H, et al. Alterations in Cellular Iron Metabolism Provide More Therapeutic Opportunities for Cancer. Int J Mol Sci. 2018;19:1545.

192. Zhou L, Zhao B, Zhang L, Wang S, Dong D, Lv H, et al. Alterations in Cellular Iron Metabolism Provide More Therapeutic Opportunities for Cancer. Int J Mol Sci. 2018;19:1545.

193. Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 2018;24:97–108 e4.

194. Jia M, Qin D, Chai L, Yu Z, Wang W, et al. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat Immunol. 2020;21:727–35.

195. Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10:1203.

196. Shrimali RK, Irons RD, Carlson BA, Sano Y, Gladyshjev VN, Park JM, et al. Selenoproteins mediate T cell immunity through an antioxidant mechanism. J Biol Chem. 2008;283:20181–5.

197. Li C, Deng X, Xie X, Liu Y, Friedmann Angeli JP, Lai L. Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy. Front Pharmacol. 2018;9:1120.