Investigation of Antimicrobial Effect of Berberine on Ciprofloxacin and Imipenem Resistance Acinetobacter baumannii Isolated from Hamadan Hospitals

Hassan Mahmoudi1,2, Nayreh Zare Fahim1, Mohammad Yousef Alikhani2, Leili Shokoohizadeh2*

1. Students Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
2. Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

10.30699/ijmm.14.1.44

ABSTRACT

Background: Acinetobacter baumannii is one of the causes of nosocomial infections, especially in the intensive care unit. The emergence of multidrug-resistant strains of A. baumannii has caused many problems. One of the ways to handle the phenomenon of antibiotic resistance is the use of herbal medicines and their derivatives in place of or in combination with antibiotics. The aim of this study was to investigate the effect of inhibitory effects of berberine as a barberry derivative on clinical isolates of A. baumannii, resistant to ciprofloxacin and imipenem in Hamadan hospitals.

Materials & Methods: In this study, 70 clinical isolates of A. baumannii were identified and diagnosed using conventional microbiology. Resistance of isolates was detected against imipenem and ciprofloxacin by disk diffusion and broth microdilution method. Minimum inhibitory concentration (MIC) of berberine as well as its combined effect with antibiotics were performed using broth microdilution method.

Results: The results of this study showed that more than 90% of isolates are resistant to ciprofloxacin and imipenem. Imipenem and ciprofloxacin MICs were determined from 8 to 28 and 4 to 32 μg / mL, respectively. The berberine decreased the imipenem and ciprofloxacin MIC from zero to two fold and zero to one-fold, respectively.

Conclusion: High level resistance to imipenem and ciprofloxacin among A.baumannii isolates is cause of concern. Berberin, in combination with imipenem and ciprofloxacin, reduces MIC to a proper level, which can be used as an effective agent to reduce antibiotic resistance in bacteria.

Keywords: Acinetobacter baumannii, Ciprofloxacin, Imipenem, Berberine

Introduction

Acinetobacter baumannii, is a crucial opportunistic bacterium and common cause of various nosocomial infections such as pneumonia, bacteremia, surgical wound infections, secondary meningitis, and urinary tract infections. One of the problems with A. baumannii is the emergence of multidrug resistance (MDR) strains (1). Different mechanisms cause antibiotic resistance of A. baumannii, including the production of beta-lactamase enzymes, aminoglycoside-modifying enzymes, and increased expression of efflux pumps. One way to deal with the antibiotic resistance in bacteria is to use medicinal herbs instead of antibiotics. Among the benefits of using medicinal herbs are fewer side effects as well as
Reduced risk of resistance to these compounds. Many studies have investigated the therapeutic and useful effects of medicinal plants and their derivatives on bacteria. Berberine has antibacterial properties against many bacteria, including *Escherichia coli*, *Brucella abortus*, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, and some fungi. Berberine, as a plant derivative, is a natural alkaloid found in the roots, and rhizomes of Barberry (*Berberis vulgaris*) and studies have shown that it has therapeutic and antioxidant properties (2, 3). Given the importance of treatment for nosocomial infections caused by *A. baumannii*, the availability of *Barberry vulgaris* and its oral and therapeutic use, this study aimed to evaluate the antibacterial effect of berberine on imipenem and ciprofloxacin-resistant isolates of *A. baumannii*.

Material and Methods

Collection of Clinical Isolates

This research was approved by the Ethics Committee in Research of Hamadan University of Medical Sciences under the specific code of ID IR.UMSHA.REC.1397.238. A total of 70 clinical isolates of *A. baumannii* were collected from sputum, bronchoalveolar lavage, and endotracheal aspirate specimens of patients admitted to ICU for nine months in 2018, from three educational hospitals of Hamadan University of Medical Sciences. *A. baumannii* isolates were detected using various biochemical and microbiological tests (4).

Antimicrobial Susceptibility of Acinetobacter baumannii Isolates to Berberine

Berberine was prepared as berberine hydrochloride powder (Sigma Co., Germany). Berberine solution was made in a 1 mg/mL initial solution in dimethyl sulfoxide (DMSO). Ten microliters of this solution were inoculated on Blank paper disks and then placed on a fresh culture of *A. baumannii* comparable to 0.5 McFarland standard, and incubated at 37°C for 24 h and the effect of berberine was investigated as growth inhibition zones around disks (5).

Antimicrobial Susceptibility Testing

Antimicrobial susceptibility of *A. baumannii* isolates to imipenem (10 µg) and ciprofloxacin (5 µg) (Mast Co., UK) was determined, by disk diffusion method according to Clinical & Laboratory Standards Institute (CLSI 2017).

Determination of MICs of Berberine and Imipenem and Ciprofloxacin

Minimum Inhibitory Concentration (MIC) of imipenem and ciprofloxacin was determined by broth micro-dilution method in 96-well microplates according to standard CLSI protocol (6). Dilution serials of 0.125 µg/mL to 256 µg/mL were prepared from berberine, imipenem, and ciprofloxacin. 100 µL of bacterial suspension was added to the wells. The microplates were then incubated at 37°C for 24 h. Standard strains of *P. aeruginosa* ATCC 27853 and *E. coli* ATCC 25922 were used as control strains.

Results

Frequency of *A. baumannii* Isolates

In this study, 70 (28.1%) *A. baumannii* isolates were isolated from 249 positive cultures of respiratory tracts of patients in ICUs. The highest rate of isolation of *A. baumannii* was from endotracheal aspirate samples (57.14%, n=40) and the lowest rate was from Bronchoalveolar Lavage samples (17.14%, n=12).

Ciprofloxacin and Imipenem Resistance Rates

Antibiogram results showed that high level resistance to ciprofloxacin and imipenem; 97.4% and 94.7%, respectively.

Imipenem and Ciprofloxacin MICs

Minimum Inhibitory Concentration (MIC) was determined for all clinical isolates (70 isolates) resistant to imipenem and ciprofloxacin by broth microdilution. The MIC values of the strains were committed from 8 to 28 µg/mL. Results showed 94.7% of clinical isolates were resistant to imipenem. MIC values of ciprofloxacin-resistant isolates were 4 to 32 µg/mL and 97.4% of isolates were resistant to ciprofloxacin (Table 1).

Antibacterial Effect of Berberine

The antibacterial effect of berberine was evaluated by the disk diffusion method, and the mean inhibition zone around the berberine disks showed the antibacterial effect of berberine on *A. baumannii* isolates.

MIC of Imipenem in Combination with Berberine

The MIC of Berberine and imipenem alone and in combination with berberine (50% imipenem and 50% berberine) was performed on imipenem-resistant strains by broth microdilution method. The combination of berberine and imipenem reduced the MIC levels of imipenem in (60%, n=42) of isolates and decreased the MIC between zero to 2-fold (Table 2).

MIC of Ciprofloxacin in Combination with Berberine

The MIC of Berberine and ciprofloxacin alone and in combination (50% berberine and 50% ciprofloxacin) were determined by broth microdilution on ciprofloxacin-resistant isolates. The combination of berberine and ciprofloxacin decreased the MIC levels of ciprofloxacin in (31.4%, n=22) *A. baumannii* isolates and decreased the MIC between zero to 1-fold (Table 3).
Antimicrobial Effect of Berberine on Acinetobacter baumannii

Table 1. Frequency MICs (µg/mL) of imipenem and ciprofloxacin of Acinetobacter baumannii isolates

MIC (µg/mL)	2	4	8	16	32	64	128
Imipenem	-	-	5 (7.14%)	2 (2.8)	35 (50)	12 (17.1)	16 (22.8)
Ciprofloxacin	-	31 (44.2)	10 (14.2)	17 (24.2)	12 (17.1)	-	-

Table 2. MIC levels of imipenem in combination with berberine

MIC Imipenem (µg/mL)	MIC Berberine (µg/mL)	MIC Imipenem + Berberine	decrease MIC Imipenem+ Berberine	No(%) Frequency
8	0.5	1	0-1	5(7.1)
16	1	2	0-1	2(2.8)
32	1	4	0-1	35(50)
64	4	8	0-1	12(17.1)
128	8	16	0-2	16 (22.8)

Table 3. MIC levels of ciprofloxacin in combination with berberine

| MIC Ciprofloxacin (µg/mL) | MIC Berberine (µg/mL) | MIC Ciprofloxacin + Berberine | MIC decrease Ciprofloxacin+ Berberine | Frequency No(%) |
|--------------------------|-----------------------|-------------------------------|--------------------------------------|----------------|}
4	2	2	0-1	10(14.2)
8	4	2	0-1	17(24.2)
16	8	8	0-1	31(44.2)
32	16	16	0-1	12(17.44)

Discussion

In the present study, 70 (28.1%) of cultures of respiratory tract samples were positive for A. baumannii. Similarly, Ebrahimi et al. reported that A. baumannii isolates were the most common (35%, n=56) bacterial pathogen isolated from respiratory tract samples collected from ICUs in Arak hospitals (10).

In a study by El-Saed et al., 2013 in Saudi Arabia, 457 cultures were collected from the respiratory tract of ICU patients, the most common isolate was A. baumannii (26.5%, n=121). These results indicated a high prevalence of A. baumannii in ICUs (9).

In the present study, the results of disk diffusion and broth microdilution tests showed high-level resistance (more than 90%) to ciprofloxacin and imipenem antibiotics. In a study conducted in Turkey, resistance to piperacillin, piperacillin-tazobactam, ciprofloxacin and ceftazidime were 100%, 92.4%, 83.3%, and 74.2%, respectively, and high levels of resistance to other antibiotics were detected (15). Consistent with our study in the study of Vazirizadeh et al., the rates of antibiotic resistance to ciprofloxacin, and imipenem were 96% and 98%, respectively, in Isfahan hospitals (16).

In our study, berberine was found to be active on A. baumannii and inhibition zone was observed around the disks containing berberine and berberine in combination with imipenem and ciprofloxacin reduced the MIC of these antibiotics. Consistent with the present study, in 2017, Aghayan et al. showed that palmatine and berberine had decreased the MIC and MBC levels of ciprofloxacin in ciprofloxacin-resistant
isolates of *P. aeruginosa* and there was no significant difference between the effect of palmatine and berberine (17).

In a study by Musumeci et al. from Italy, the bactericidal effect of the methanolic extract of Barberry (*Berberis aetnensis*) on *S. aureus* was investigated. The results showed that MIC decreased considerably when using the combination of extract and antibiotic compared to ciprofloxacin alone and the plant extract. Barberry and ciprofloxacin antibiotics showed a synergistic effect (18).

In 2014, Wojtyczka et al. in Poland reported the antimicrobial effect as well as the synergistic effect of berberine and some of antibiotics on coagulase-negative Staphylococci including *Staphylococcus epidermidis, Staphylococcus capitis, Staphylococcus gallinarum, Staphylococcus hominis* and *Staphylococcus intermedius* (19).

The results of this study and other studies showed that berberine has antibacterial properties and can be used as a cheap and available source for therapeutic use in some bacterial infections. In other words, berberine can be considered as a suitable alternative or supplement to synthetic antibiotics against *A. baumannii* isolates.

Conclusion

The findings of this study showed the antibacterial effects of berberine, and that it can increase the effectiveness of antibiotics against imipenem and ciprofloxacin-resistant isolates of *A. baumannii*. Berberine can be used in the future by optimizing the methods for the treatment of infectious diseases caused by *A. baumannii*.

Acknowledgment

This article is taken from a student research project No. 9704192213 approved by the Student Research Committee of Hamadan University of Medical Sciences. The authors of this article would like to extend their gratitude to Hamadan University of Medical Sciences for their financial support as well as to the staff of intensive care units in Besat, Sina and, Shahid Beheshti hospitals in Hamadan.

Conflict of Interest

Authors declared no conflict of interests.
چکیده
زمینه و اهداف: استنوتوبکتر بومانی یکی از عوامل ایجاد عفونت‌های بیمارستانی به‌خصوص در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌های بازیافتی یا ترکیبی با آنها از نظر مقاومت و همتای مقابله با پدیده مقاوم بودند. مقاومت آنتی‌بیوتیکی استفاده از روز و درخت مسیری، به وسیله کاهش مقاومت بتاین‌ها، می‌تواند به‌عنوان یکی از مشکلات زیادی به‌نگهداری از اتیوکوکونامی به‌عنوان یکی از مشکلات موجود در بخش مرافقت‌های ورژنیک شیمیایی از جمله‌ای است که انتخاب روش‌‌
رمزهای گیاه زرشک (بربرین ولگاریس) یافت می‌شود و مطالعات نشان داده که درای خواص درمانی و آنتی اکسیدانی است. خاصیت ایکزوتیک ارزی از ترکیباتی می‌باشد که در این مطالعه فرآیند تجزیه آزمایشات به صورت سه‌گروه در دمای 37 درجه سلسیوس به مدت 24 ساعت انجام گرفت. نمونه‌های مورد بررسی در این تحقیق از سه مرکز درمانی دانشگاه علوم پزشکی همدان (بیمارستان بعثت، بیمارستان شهید بهشتی و بیمارستان سینا) جمع‌آوری شدند. نمونه‌های باکتری‌ای در مطالعات قبلی گزارش شده‌اند. نمونه‌های باکتری‌ای شامل پنیم، سپرفلوکساسین و ایمی متعلق به سرده سیپروفلوکساسین و مایکروقیستس است و به صورت تجربی می‌باشد. میکروب‌شناسی پزشکی ایران سال 14 شماره 1 15% و تعسیف 2/5

تعیین حساسیت به آنتی‌بیوتیک‌های ایمی نامی و سپرفلوکساسین

معنای حساسیت ضد میکروبی و یا مقاومت ایزوله‌های استندئوتاکتریونی ایمی نامی (100 میکروگرم) و سپرفلوکساسین (5 میکروگرم) تهیه شده و با استفاده از تست کشوری Mast و ایزوله‌ها به دستگاه دیسک تخت شکل جهانی در دمای 37 درجه سلسیوس به مدت 24 ساعت کشت داده و پس از یک شب به روش میکرو پلیت استفاده گردید. سپس محلول بربرین با غلظت نیم مک فارلند (µg/mL) تهیه شد و سپس برای تعیین حساسیت به سه گروه کشوری Mast و ایزوله‌ها به دستگاه دیسک تخت شکل جهانی در دمای 37 درجه سلسیوس به مدت 24 ساعت کشت داده و پس از یک شب به روش میکرو پلیت استفاده گردید.

MANOVA نشان داد که دارای خواص درمانی و آنتی اکسیدانی است. خاصیت ایکزوتیک ارزی از ترکیباتی می‌باشد که در این مطالعه فرآیند تجزیه آزمایشات به صورت سه‌گروه در دمای 37 درجه سلسیوس به مدت 24 ساعت انجام گرفت. نمونه‌های مورد بررسی در این تحقیق از سه مرکز درمانی دانشگاه علوم پزشکی همدان (بیمارستان بعثت، بیمارستان شهید بهشتی و بیمارستان سینا) جمع‌آوری شدند. نمونه‌های باکتری‌ای در مطالعات قبلی گزارش شده‌اند. نمونه‌های باکتری‌ای شامل پنیم، سپرفلوکساسین و ایمی متعلق به سرده سیپروفلوکساسین و مایکروقیستس است و به صورت تجربی می‌باشد. میکروب‌شناسی پزشکی ایران سال 14 شماره 1 15% و تعسیف 2/5

تعیین حساسیت به آنتی‌بیوتیک‌های ایمی نامی و سپرفلوکساسین

معنای حساسیت ضد میکروبی و یا مقاومت ایزوله‌های استندئوتاکتریونی ایمی نامی (100 میکروگرم) و سپرفلوکساسین (5 میکروگرم) تهیه شده و با استفاده از تست کشوری Mast و ایزوله‌ها به دستگاه دیسک تخت شکل جهانی در دمای 37 درجه سلسیوس به مدت 24 ساعت کشت داده و پس از یک شب به روش میکرو پلیت استفاده گردید. سپس محلول بربرین با غلظت نیم مک فارلند (µg/mL) تهیه شد و سپس برای تعیین حساسیت به سه گروه کشوری Mast و ایزوله‌ها به دستگاه دیسک تخت شکل جهانی در دمای 37 درجه سلسیوس به مدت 24 ساعت کشت داده و پس از یک شب به روش میکرو پلیت استفاده گردید.
اینگه‌ها
فراوانی ایزوله‌های بالینی اسینتو‌باکتریوماتیک در این مطالعه از میان ۲۴۹ کشت مشت که از مجاری تنفسی بیماران بستری در بخش ICU بیمارستان هاوسی شهر همدان جمع‌آوری شد (۱۷/۱۸) این اسینتو‌باکتری موجب جداسازی شد که بخش‌نمونه میزان میکروب ایزوله‌های اسینتو‌باکتریوماتیک بالینی از آسپیره اندوتراشیال (۳۲/۰) و کمترین میزان آن در اولار برکتولوئس (۱۲/۳) بود.

میزان مقاومت آنتی‌بیوتیک‌های ایزوله‌های اسینتو باکتریوماتیک

نتایج آنتی‌بیوتیک‌های به روش دیسک دیفیوزن بر روی ۷۰ ایزوله بالینی اسینتو‌باکتریوماتیک نشان داد که میزان مقاومت آنتی‌بیوتیکی به سیپروفلوکساسین و ایمی‌پن توسط ۹۷/۴/۷٪ از است.

میزان میکروبیک MIC ایمی‌پن و سیپروفلوکساسین

ایزوله‌های بالینی اسینتو‌باکتریوماتیک به روش حساسیت بر اساس پروتکل استاندارد CLSI به میکروب‌ها نسبت گذاری شدند. سپس مقدار مکربر ایمی‌پن (۵۰/۰٪) در ظرفیت مشاهده شد (جدول ۲).

جدول ۱ نوزاد مقاوم (MIC) (µg/mL) ایمی‌پن و سیپروفلوکساسین از ایزوله‌های اسینتو‌باکتریوماتیک بالینی بر اساس تعداد و درصد

ایمی‌پن	سیپروفلوکساسین
۲۶/۸۸	۸۸/۴۷
۳۲/۸۸	۸۸/۴۷
۵۰/۸۸	۸۸/۴۷
۱۲/۸۸	۸۸/۴۷
۱۷/۸۸	۸۸/۴۷
۲۱/۸۸	۸۸/۴۷
۲۷/۸۸	۸۸/۴۷
۴۳/۸۸	۸۸/۴۷

۵۰
 Lịch trình باکتری بومی و ایزوله روتایک از خلط، های از آسپیره آندوتراشیال جدا شده است. در همین راستا، در مطالعه تهران، همکاران در سال 2015 در بخش ICU و همکاران در سال 2015 در بخش مراقبت های ویژه و بخش های جراحی جمع‌آوری شده است. در حال حاضر شاهد هستیم. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است، که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است، که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است، که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است، که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی نسبت به انتی‌بوتیک‌های مختلف در بیمارستان است. در حال حاضر شاهد (8) که افزایش روز افزون مقاومت دارویی N1
پیگیری بیشتری از آلودگی‌های گیاهی در بورس می‌باشد. در این مطالعه، بربرین به صورت ترکیب با ایمیکاسین و سیپروفلوکساسین اثری را بر کاهش مقاومت بیماری‌ها داشته است. در مطالعه حاضر میزان مقاومت این باکتری‌ها در مقایسه با استاندارد ملی، افزایش یافته است. این مشکل به دلیل افزایش شیوع آنتی‌بیوتیک‌های مقاوم‌شده منجر می‌شود.

در این مطالعه، بیماری‌ها در مناطق مختلف جهان، از جمله ایران، شایع‌ترین بیماری‌ها هستند. این امر اشاره کننده از اهمیت بالینی بهترین روش بهترین دارویی شامل آمینوگلیکوزیدها و فلوروکینولون است. در این مطالعه، میزان مقاومت بیماری‌ها را در بستر بیمارستان‌های شهر تهران، مطالعه کرده‌اند. نتایج این مطالعه نشان داد که بیماری‌هایی که مقاوم به بربرین هستند، بهترین روش بهترین روش بهترین دارویی شامل آمینوگلیکوزیدها و فلوروکینولون است. در این مطالعه، میزان مقاومت بیماری‌ها را در بستر بیمارستان‌های شهر تهران، مطالعه کرده‌اند. نتایج این مطالعه نشان داد که بیماری‌هایی که مقاوم به بربرین هستند، بهترین روش بهترین دارویی شامل آمینوگلیکوزیدها و فلوروکینولون است. در این مطالعه، میزان مقاومت بیماری‌ها را در بستر بیمارستان‌های شهر تهران، مطالعه کرده‌اند. نتایج این مطالعه نشان داد که بیماری‌هایی که مقاوم به بربرین هستند، بهترین روش بهترین دارویی شامل آمینوگلیکوزیدها و فلوروکینولون است. در این مطالعه، میزان مقاومت بیماری‌ها را در بستر بیمارستان‌های شهر تهران، مطالعه کرده‌اند. نتایج این مطالعه نشان داد که بیماری‌هایی که مقاوم به بربرین هستند، بهترین روش بهترین دارویی شامل آمینوگلیکوزیدها و فلوروکینولون است. در این مطالعه، میزان مقاومت بیماری‌ها را در بستر بیمارستان‌های شهر تهران، مطالعه کرده‌اند. نتایج این مطالعه نشان داد که بیماری‌هایی که مقاوم به بربرین هستند، بهترین روش بهترین دارویی شامل آمینوگلیکوزیدها و فلوروکینولون است. در این مطالعه، میزان مقاومت بیماری‌ها را در بستر بیمارستان‌های شهر تهران، مطالعه کرده‌اند. نتایج این مطالعه نشان داد که بیماری‌هایی که مقاوم به بربرین هستند، بهترین روش بهترین دارویی شامل آمینوگلیکوزیدها و فلوروکینولون است. در این مطالعه، میزان مقاومت بیماری‌ها را در بستر بیمارستان‌های شهر تهران، مطالعه کرده‌اند. نتایج این مطالعه نشان داد که بیماری‌هایی که مقاوم به بربرین هستند، بهترین روش بهترین دارویی شامل آمینوگلیکوزیدها و فلوروکینولون است. در این مطالعه، میزان مقاومت بیماری‌ها را در بستر بیمارستان‌های شهر تهران، مطالعه کرده‌اند. نتایج این مطالعه نشان داد که بیماری‌هایی که مقاوم به بربرین هستند، بهترین روش بهترین دارویی شامل آمینوگلیکوزیدها و فلوروکینولون است. در این مطالعه، میزان مقاومت بیماری‌ها را در بستر بیمارستان‌های شهر تهران، مطالعه کرده‌اند. نتایج این مطالعه نشان داد که بیماری‌هایی که مقاوم به بربرین هستند، بهترین روش بهترین دارویی شامل آمینوگلیکوزیدها و فلوروکینولون است. در این مطالعه، میزان مقاومت بیماری‌ها را در بستر بیمارستان‌های شهر تهران، مطالعه کرده‌اند. نتایج این مطالعه نشان داد که بیماری‌هایی که مقاوم به برب
روش‌های استفاده از بربرین برای درمان بیماری‌های ناشی از عفونت‌های ناشی از سوپوستیوکریکر بیماری‌های استفاده نمود.

سپاس‌گزاری

این مقاله برگرفته از یک تحقیق حاضری‌دانشجویی به شماره 13971221114 مصوب در کمیته تحقیقات دانشجویی دانشگاه علوم پزشکی ایران انجام شده است. نوشته‌گان این مقاله از متن‌های صادق مقدمه‌ای درک‌کننده در کمیته اخلاق در صنعت پزشکی نیز نیاز دارند.

Referance

1. Navidinia M. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. Archives of Advanced in Bioscience. 2016;7(3):43-57.
2. Gao WW, Gopala L, Bheemanaboina RRY, Zhang GB, Li S, Zhou CH. Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumannii. European journal of medicinal chemistry. 2018;146:15-37. [DOI:10.1016/j.ejmech.2018.01.038] [PMID]
3. Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Applied microbiology and biotechnology. 2015;99(6):2533-48. [DOI:10.1007/s00253-015-6439-y] [PMID]
4. Winn WC, Allen SD, Janda WM, Koneman EW, Procop GW, Schreckenberger PC, et al. Taxonomy, biochemical characteristics and clinical significance of medically important nonfermenters. In: Darcy P, Peterson N, editors. Koneman's Colour Atlas and Textbook of Diagnostic Microbiology. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2006. pp. 353-5
5. Makvandi M, Shokohizadeh L. Antibacterial and Drug Synergistic Activities of Mentha longifolia Essential Oil Against Shigella flexneri and Shigella sonnei. Int J Enteric Pathog. 2017;5(3):92-5. [DOI:10.15171/ijep.2017.21]
6. Clinical and Laboratory Standards Institute [CLSI] CaL., Standards Institute. : Twenty seventh Informational Supplement M100eS27 CLSI.C Wayne P. Performance Standards for Antimicrobial Susceptibility
7. Oddo A, Thomsen TT, Kjelstrup S, Gorey C, Franzyk H, Frimodt-Møller N, et al. An amphiaphilic undecapeptide with all d-amino acids shows promising activity against colistin-resistant strains of acinetobacter baumannii and a dual mode of action. 2016;60(1):592-9. [DOI:10.1128/AAC.01966-15] [PMID] [PMCID]
8. Cherkauwi A, Emonet S, Renzi G, Schrenzel J. Characteristics of multidrug-resistant Acinetobacter baumannii strains isolated in Geneva during colonization or infection. Annals of clinical microbiology and antimicrobials. 2015;14:42. [DOI:10.1186/s12941-015-0103-3] [PMID] [PMCID]
9. El-Saed A, Balkhy HH, Al-Dorzi HM, Khan R, Rishu AH, Arabi YM. Acinetobacter is the most common pathogen associated with late-onset and recurrent ventilator-associated pneumonia in an adult intensive care unit in Saudi Arabia. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2013;17(9):e696-701. [DOI:10.1016/j.ijid.2013.02.004] [PMID]
10. Ebrahimi M, Khansari-nejad B, Ghaznavi-Rad E. High Frequency of Ventilator Associated Pneumonia Nosocomial Co-Infection Causedby Methicillin
Resistant Staphylococcus aureus and Carbapenem Resistant Acinetobacter baumannii in Intensive Care Unit. JOURNAL OF IRANIAN CLINICAL RESEARCH. 2015;1:67-71.

11. El-Saed A, Balkhy HH, Al-Dorzi HM, Khan R, Rishu AH, Arabi YMJJID. Acinetobacter is the most common pathogen associated with late-onset and recurrent ventilator-associated pneumonia in an adult intensive care unit in Saudi Arabia. 2013;17(9):e696-e701. [DOI:10.1016/j.ijid.2013.02.004] [PMID] [PMCID]

12. Safari M, Mozaffari Nejad AS, Bahador A, Jafari R, Alihkhani MY. Prevalence of ESBL and MBL encoding genes in Acinetobacter baumannii strains isolated from patients of intensive care units (ICU). Saudi journal of biological sciences. 2015;22(4):424-9. [DOI:10.1016/j.sjbs.2015.01.004] [PMID] [PMCID]

13. Vahdani P, Yaghoubi T, Aminzadeh Z. Hospital acquired antibiotic-resistant Acinetobacter baumannii infections in a 400-bed hospital in Tehran, Iran. International journal of preventive medicine. 2011 Jul;2(3):127.

14. Shahcheraghi F, Abbaspalipour M, Feizabadi MM, Ebrahimipour GH, Akbari N. Isolation and genetic characterization of metallo-β-lactamase and carbapenemase producing strains of Acinetobacter baumannii from patients at Tehran hospitals. Iranian journal of microbiology. 2011 Jun;3(2):68.

15. Baran G, Erbay A, Bodur H, Öngürü P, Akırı E, Balaban N, Çevik MA. Risk factors for nosocomial imipenem-resistant Acinetobacter baumannii infections. International Journal of Infectious Diseases. 2008;12(1):16-21. [DOI:10.1016/j.ijid.2007.03.005] [PMID]

16. Vazirzadeh J, Behshood P, Heidari L, Ghajav H. Frequency of metallo-β-lactamase and antimicrobial resistance patterns of Acinetobacter baumannii in carbapenem-resistant isolates in intensive care units. Journal of Isfahan Medical School. 2015;32(312):2094-103.

17. Aghayan SS, Mogadam HK, Fazli M, Darban-Sarokhalil D, Khoramrooz SS, Jabalameli F, Yaslianifard S, Mirzaei M. The effects of berberine and palmatine on efflux pumps inhibition with different gene patterns in Pseudomonas Aeruginosa isolated from burn infections. Avicenna journal of medical biotechnology. 2017 Jan;9(1):2.

18. Musumeci R, Speciale A, Costanzo R, Annino A, Ragusa S, Rapisarda A, Pappalardo MS, Iauk L. Berberis aetnensis C. Presl. extracts: antimicrobial properties and interaction with ciprofloxacin. International journal of antimicrobial agents. 2003 Jul 1;22(1):48-53. [DOI:10.1016/S0924-8579(03)00085-2]

19. Wojtyczka R, Dziedzic A, Kępa M, Kubina R, Kabala-Dzik A, Mularz T, Idzik D. Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative Staphylococcus strains in vitro. Molecules. 2014;19(5):6583-96. [DOI:10.3390/molecules19056583] [PMID] [PMCID]