The spreading frontiers of avian-human influenza described by the free boundary

LEI ChengXia¹, KIM KwangIk² & LIN ZhiGui¹,∗

¹School of Mathematical Science, Yangzhou University, Yangzhou 225002, China;
²Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea

Email: leichengxia001@163.com, kimki@postech.ac.kr, zglin68@hotmail.com

Received October 30, 2012; accepted April 7, 2013; published online May 27, 2013

Abstract In this paper, a reaction-diffusion system is proposed to investigate avian-human influenza. Two free boundaries are introduced to describe the spreading frontiers of the avian influenza. The basic reproduction numbers \(R_0^F(t) \) and \(R_0^{HF}(t) \) are defined for the bird with the avian influenza and for the human with the mutant avian influenza of the free boundary problem, respectively. Properties of these two time-dependent basic reproduction numbers are obtained. Sufficient conditions both for spreading and for vanishing of the avian influenza are given. It is shown that if \(R_0^F(0) < 1 \) and the initial number of the infected birds is small, the avian influenza vanishes in the bird world. Furthermore, if \(R_0^F(0) < 1 \) and \(R_0^{HF}(0) < 1 \), the avian influenza vanishes in the bird and human worlds. In the case that \(R_0^F(0) < 1 \) and \(R_0^{HF}(0) > 1 \), spreading of the mutant avian influenza in the human world is possible. It is also shown that if \(R_0^F(t_0) \geq 1 \) for any \(t_0 \geq 0 \), the avian influenza spreads in the bird world.

Keywords reaction-diffusion system, avian-human influenza, free boundary, spreading frontiers

MSC(2010) 35K57, 92D30

1 Introduction

In history, epidemic diseases swept through countries and made people suffer from big disasters. The plague flourished four times in Europe, and it killed more than 15 percent population in the affected areas each time [2,6]. In 6th century, the first outbreak caused about half of European people dead; the second outbreak occurred in 1346–1350 and the rate of the mortality was 33.33%, the third outbreak killed \(\frac{1}{4} \) population of London in 1665–1666. The last happened in 1720–1722, the death rate was very high, which resulted in half population dead in Marseilles [2]. The prevalent of the disease usually leads the population declined sharply. Beside the Black Death, there are many contagious diseases, such as smallpox, malaria, yellow fever and so on.

At present, about half of the world’s population is threatened with different infectious diseases [5]. Today the WHO (World Health Organization) claims that the infectious diseases are still hostile in the human world. From now on, people should be cautious about the diseases and scientists should contribute themselves to eradicate epidemic diseases. Recently, great attention has been paid to study the contagious diseases. In early 20th century, mathematical models have been constructed to study the dynamics of
infectious diseases, see the book [21] and references therein. To explore the pattern of the plague in London
and the pest in Mumbai, Kermack and McKendrick constructed the well-known SIR compartment model
in 1927 (see [9]), and the SIS compartment model [10] was introduced by them in 1932. The readers
can see some related work in [15]. To understand the epidemiology of some infectious diseases, other
compartment models were formulated, for example, the SI compartment model [19], which is constructed
by the assumption that the individual cannot recover from the disease. This model is appropriate for the
diseases such as herpes and HIV. If the individual first goes through a exposed period before becoming
to the infectious, this can be described by the SEI compartment model (see [27] for example). The SIRS
compartment model [20] supposes that the recovered individual has the temporary immunity.

In this paper, we use the SI and SIR models to describe the avian influenza spreading in the bird
world and the human world, respectively. Avian influenza (AI) or “bird flu” is an infectious viral disease
of birds. AI viruses are divided into high pathogenicity and low pathogenicity. The highly pathogenic
avian influenza (HPAI) was first identified as a serious disease of poultry by an Italian scientist, Edoardo
Perroncito, in 1878 (see [3]). It was reported that the 1918 pandemic is most possibly caused by avian
influenza [26], and the pandemic is now estimated to have killed 50–100 million people [22,26].

As we know, most avian influenza viruses do not infect humans, however, some highly pathogenic
viruses, such as H5N1, can result in high death rates (up to 100 percent mortality within 48 hours [16])
in some poultry species and cause severe disease and death in humans. The H5N1 virus first infected
humans in 1997 during a poultry outbreak in Hong Kong, China. After that, infection to human of avian
influenza occurred successively [8]. The widespread spreading of H5N1 virus led several hundreds human
to infection, many human to death and the economy to have serious impact. Continuing outbreaks of
highly pathogenic avian influenza across the world, threatens to be more widespread than the SARS
occurred in 2003 (see [24]). It is known from the WHO that avian influenza has now caused 359 human
infections (As of 15 August 2012), with an approximate 50 percent mortality rate. Fortunately, there is
still no data support that avian influenza can be propagated among humans [25].

Recently Iwami et al. [8] proposed an avian-human influenza epidemic model to interpret the mutation
process of avian influenza:

\[
\begin{align*}
\dot{X}(t) &= c - bX - \omega XY, \\
\dot{Y}(t) &= \omega XY - (b + m)Y, \\
\dot{S}(t) &= \lambda - \mu S - (\beta_1 Y + \beta_2 H)S, \\
\dot{B}(t) &= \beta_1 SY - (\mu + d + \varepsilon)B, \\
\dot{H}(t) &= \beta_2 SH + \varepsilon B - (\mu + \alpha + \gamma)H, \\
\dot{R}(t) &= \gamma H - \mu R,
\end{align*}
\]

(1.1)

where the first two equations form the SI model, which describes the bird system, no recovered bird exists
since the highly pathogenic viruses have high death rates. X and Y are the population of the susceptible
birds and the infective birds, respectively. The last four equations are SIR model for humans, S, B, H and
R denote, respectively, the population of the susceptible humans, infected with avian influenza, infected
with mutant avian influenza and recovered humans from mutant avian influenza. The reproductive
number \(r_0 = \frac{c\omega}{b(b + m)} \) in the bird system and the reproductive number \(R_0 = \frac{\beta_2 \lambda}{\mu(\mu + \alpha + \gamma)} \) in the human
system are defined. The authors showed that when \(r_0 \leq 1 \) and \(R_0 > 1 \), the human-endemic equilibrium
(i.e., the boundary equilibrium)

\[E_h := (X_0, 0, \tilde{S}, 0, \tilde{H}, \tilde{R}) \]

is global asymptotically stable, while if \(r_0 > 1 \), the full-endemic equilibrium (i.e., the interior equilibrium)

\[E_+ := (X^*, Y^*, S^*, B^*, H^*, R^*) \]

is global asymptotically stable. In other words, mutant avian influenza spreads in the human world in
the above two cases.
Considering spatial spreading and time delay, Kim et al. [12] introduced diffusion terms and extended the system (1.1) to the following reaction diffusion system:

\[
\begin{align*}
X_t - D_1 \Delta X &= c - bX - \omega XY, \\
Y_t - D_1 \Delta Y &= \omega XY - (b + m)Y, \\
S_t - D_2 \Delta S &= \lambda - \mu S - S \int_{\Omega} \int_{-\infty}^{t} K(x, y, t - s)(\beta_1 Y + \beta_2 H)(s, y)dsdy, \\
B_t - D_2 \Delta B &= \beta_1 S \int_{\Omega} \int_{-\infty}^{t} K(x, y, t - s)Y(s, y)dsdy - (\mu + d + \varepsilon)B, \\
H_t - D_2 \Delta H &= \beta_2 S \int_{\Omega} \int_{-\infty}^{t} K(x, y, t - s)H(s, y)dsdy + \varepsilon B - (\mu + \alpha + \gamma)H, \\
R_t - D_2 \Delta R &= \gamma H - \mu R,
\end{align*}
\]

for \(t > 0, \ x \in \Omega \). The system (1.2) with a no-flow boundary condition is discussed, and the basic reproductive numbers \(r_0 \) and \(R_0 \) are defined the same as those in [8]. They concluded that the disease-free equilibrium \(E_0 := \left(c/b, 0, \lambda/\mu, 0, 0, 0 \right) \) is locally asymptotically stable if \(r_0 < 1 \) and \(R_0 < 1 \); and the human-endemic equilibrium \(E_\ast \) is locally asymptotically stable if \(r_0 < 1 \) and \(R_0 > 1 \); while \(r_0 > 1 \) the full-endemic equilibrium \(E^+ \) is locally asymptotically stable. Furthermore, they proved the disease-free equilibrium \(E_0 \) is globally asymptotically stable when \(r_0 < 1 \) and \(R_0 < 1 \).

It is known that the solution to System (1.2) with Dirichlet or Neumann boundary condition in a bounded domain is always positive for any time \(t > 0 \) no matter what the nonnegative nontrivial initial date is. It means that the avian influenza spreads to the whole area immediately even when the infectious is confined to a small part of the area at the beginning. It does not match the observed fact that the avian influenza always spreads gradually. To describe the gradual progress of avian influenza spreading, we are attempting to consider an avian-human influenza model with free boundaries, which describe the spreading frontiers of the virus. In the next section, a mathematical model of the free boundary in both the bird world and the human world is constructed first.

In Section 3, we give the local existence and uniqueness of the solution to Problem (2.4), then prove that the right free boundary \(x = h(t) \) is increasing and the left boundary \(x = g(t) \) is decreasing. Finally, we conclude that the solution to (2.4) is global and unique.

Section 4 is devoted to the basic reproduction numbers \(r_0^F(t) \) for avian influenza in the bird system with free boundary and \(R_0^F(t) \) for the mutant avian influenza in the human system with free boundary. It is shown that \(r_0^F(t) \) and \(R_0^F(t) \) are strictly increasing with respect to \(t \). Moreover, if \(\lim_{t \to \infty} (h(t) - g(t)) = \infty \), then \(\lim_{t \to \infty} r_0^F(t) = r_0 \) and \(\lim_{t \to \infty} R_0^F(t) = R_0 \), where \(r_0 := \frac{b_0}{d_0 + \gamma_0} \) is the basic reproduction number for avian influenza in the bird system (4.1), and \(R_0 := \frac{b_0}{d_0 + \gamma_0} \) is the basic reproduction number for the mutant avian influenza in the human system (4.1).

Sections 5–7 deal with the asymptotic behaviors of the free boundaries and the solution. In Section 5, we first prove that the free boundaries \(x = h(t) \) and \(x = g(t) \) are either finite or infinite at the same time. Then we show that if \(r_0^F(0) < 1 \) and \(\|B_{10}(x)\|_{C([-h_0, h_0])} \) is sufficiently small, we have \(h_\infty - g_\infty < \infty \) and \(\lim_{t \to \infty} \|B_i(\cdot, t)\|_{C([-g(t), g(t)])} = 0 \), i.e., the avian influenza vanishes in the bird world. Finally by constructing suitable upper solution to problem (2.4), we give the sufficient conditions for the avian influenza to vanish in the bird and human worlds, i.e., if \(r_0^F(0) < 1 \), \(R_0^F(0) < 1 \) and the initial infected data are small enough, then \(h_\infty - g_\infty < \infty \) and the solution decays gradually toward zero.

In Section 6, we investigate the case that \(r_0^F(0) < 1 \) and

\[
R_0^F(0) \geq 1 + \frac{M}{D_h(\frac{b_0}{d_0 + \gamma_0})^2 + (d_\gamma + \gamma_h)}.
\]

In this situation, the mutant avian influenza transmits in the human. In Section 7, we show that if \(r_0^F(t_0) \geq 1 \) for any \(t_0 \geq 0 \), the avian influenza spreads in the bird world. Furthermore, we demonstrate that if \(r_0^F(0) < 1 < r_0 \) and \(B_{10}(x) \) is big enough, then

\[
h_\infty - g_\infty = \infty \quad \text{and} \quad \liminf_{t \to +\infty} \|B_i(\cdot, t)\|_{C([-g(t), g(t)])} > 0.
\]
In other words, the avian influenza can spread in the whole area even that \(r_b^F(0) < 1 \). A short discussion is given in Section 8.

2 Model formulation

We consider a general avian-human model and classify the birds and humans as the following categories:

- Susceptible birds \(B_s(t) \), infected birds \(B_i(t) \) with avian influenza;
- Susceptible humans \(H_s(t) \), infected humans \(H_i(t) \) with avian influenza, infected humans \(H_m(t) \) with mutant avian influenza and recovered ones \(H_r(t) \) from mutant avian influenza.

Here, we assume that all birds infected with avian influenza are dead or remain infected and can be never recovered. Then the bird system can be described by SI model. But the human infected with mutant avian influenza can be cured, then the person has immunity against avian influenza virus in all his/her life. So we can use the ODE model to represent the human world. If we do not consider the spatial spreading of the virus, an ODE model reads

\[
\begin{aligned}
\frac{dB_s}{dt} &= N_bG(B_s, B_i) - \frac{\beta_h B_s B_i}{N_b} - d_b B_s, \\
\frac{dB_i}{dt} &= \frac{\beta_h B_s B_i}{N_b} - d_b B_i, \\
\frac{dH_s}{dt} &= r_h N_h - \frac{\beta_a B_i H_s}{N_h} - \frac{\beta_m H_m H_s}{N_h} - d_h H_s, \\
\frac{dH_a}{dt} &= \frac{\beta_a B_i H_s}{N_h} - \left(d_h + \epsilon_h\right) H_a, \\
\frac{dH_m}{dt} &= \frac{\beta_m H_s H_m}{N_h} + \epsilon_h H_a - \left(d_h + \gamma_h\right) H_m, \\
\frac{dH_r}{dt} &= \gamma_h H_m - d_h H_r,
\end{aligned}
\]

(2.1)

where \(G(B_s, B_i) \) is the per capita reproduction rate of the adult birds which can be taken as \(r_b \left(1 - \frac{B_s + B_i}{K_b}\right) \), or simply a constant \(r_b \); \(d_b \) and \(d_h \) are the death rates with the bird and the human; \(\beta_a, \beta_b \) and \(\beta_m \) denote the contact rates of the virus from infected bird with avian influenza to human, infected bird to bird and infected human with mutant avian influenza to human, respectively; \(r_h \) is the birth rate of human; \(\gamma_h \) denotes the recover rate of human from the mutant avian influenza virus; \(\epsilon_h \) is the mutant rate with the avian influenza virus. \(N_b \) and \(N_h \) denote the total numbers of the bird and the human, respectively.

In general, the individual disperses randomly in the habitat. Therefore, we consider not only the individual’s activity in temporal dimension, but also the distribution of the individual in the spatial and the dynamic characteristic of the avian influenza. To describe the diffusion of the disease, we introduce the spatial diffusion terms. We start with one-dimensional case: \(-\infty < x < \infty \), thus an extended version of the avian-human model can be described by

\[
\begin{aligned}
\frac{\partial B_s}{\partial t} - D_b \frac{\partial^2 B_s}{\partial x^2} &= N_b G(B_s, B_i) - \frac{\beta_h B_s B_i}{N_b} - d_b B_s, \\
\frac{\partial B_i}{\partial t} - D_b \frac{\partial^2 B_i}{\partial x^2} &= \frac{\beta_h B_s B_i}{N_b} - d_b B_i, \\
\frac{\partial H_s}{\partial t} - D_h \frac{\partial^2 H_s}{\partial x^2} &= r_h N_h - \frac{\beta_a B_i H_s}{N_h} - \frac{\beta_m H_m H_s}{N_h} - d_h H_s, \\
\frac{\partial H_a}{\partial t} - D_h \frac{\partial^2 H_a}{\partial x^2} &= \frac{\beta_a B_i H_s}{N_h} - \left(d_h + \epsilon_h\right) H_a, \\
\frac{\partial H_m}{\partial t} - D_h \frac{\partial^2 H_m}{\partial x^2} &= \frac{\beta_m H_s H_m}{N_h} + \epsilon_h H_a - \left(d_h + \gamma_h\right) H_m, \\
\frac{\partial H_r}{\partial t} - D_h \frac{\partial^2 H_r}{\partial x^2} &= \gamma_h H_m - d_h H_r,
\end{aligned}
\]

(2.2)
for $-\infty < x < \infty$ and $t > 0$, where D_b and D_h are positive diffusion coefficients for the birds and humans, respectively.

For simplicity, we take $G(B_s, B_i) = r_b$, and let $r_b = d_b, r_h = d_h$. In other words, we assume the total number of birds and that of humans remain constant. Let $N^*_b = B_s + B_i$ and $N^*_h = H_s + H_a + H_m + H_r$. Then (2.2) becomes

$$\begin{align*}
\frac{\partial B_i}{\partial t} - D_b \frac{\partial^2 B_i}{\partial x^2} &= \frac{\beta_b(N^*_b - B_i)B_i}{N^*_b} - d_b B_i, \\
\frac{\partial H_a}{\partial t} - D_h \frac{\partial^2 H_a}{\partial x^2} &= \frac{\beta_a B_i(N^*_h - H_a - H_m - H_r)}{N^*_h} - (d_h + \varepsilon_h)H_a, \\
\frac{\partial H_m}{\partial t} - D_h \frac{\partial^2 H_m}{\partial x^2} &= \frac{\beta_m(N^*_h - H_a - H_m - H_r)H_m}{N^*_h} + \varepsilon_h H_a - (d_h + \gamma_h)H_m, \\
\frac{\partial H_r}{\partial t} - D_h \frac{\partial^2 H_r}{\partial x^2} &= \gamma_h H_m - d_h H_r, \\
\end{align*}$$

(2.3)

for $-\infty < x < \infty$ and $t > 0$.

This research is devoted to the transmission of avian influenza. Despite the infected is limited in a small district, the avian influenza can spread in the whole habitat immediately. Obviously, it cannot be used to describe the real spreading of the avian influenza virus. We now use the free boundary to describe the spreading frontier of the disease. Assume that the birds and humans migrate in the whole habitat ($-\infty, \infty$), and some birds are infected in $g(t) < x < h(t)$, there is only the susceptible birds or humans on the rest part. The right spreading frontier is represented by the free boundary $x = h(t)$. Assume that $h(t)$ grows at a rate that is proportional to the population gradient at the frontier [7, 11, 17, 18, 28]. Then the conditions on the right frontier (free boundary) is

$$B_i(h(t), t) = 0, \quad -\mu D_b \frac{\partial B_i}{\partial x}(h(t), t) = h'(t).$$

Similarly, the conditions on the left frontier (free boundary) is

$$B_i(g(t), t) = 0, \quad -\mu D_b \frac{\partial B_i}{\partial x}(g(t), t) = g'(t).$$

In such a case, we have the problem for $B_i(x, t), H_a(x, t), H_m(x, t)$ and $H_r(x, t)$ with free boundaries $x = g(t)$ and $x = h(t)$ such that

$$\begin{align*}
\frac{\partial B_i}{\partial t} - D_b \frac{\partial^2 B_i}{\partial x^2} &= \frac{\beta_b(N^*_b - B_i)B_i}{N^*_b} - d_b B_i, \\
\frac{\partial H_a}{\partial t} - D_h \frac{\partial^2 H_a}{\partial x^2} &= \frac{\beta_a B_i(N^*_h - H_a - H_m - H_r)}{N^*_h} - (d_h + \varepsilon_h)H_a, \\
\frac{\partial H_m}{\partial t} - D_h \frac{\partial^2 H_m}{\partial x^2} &= \frac{\beta_m(N^*_h - H_a - H_m - H_r)H_m}{N^*_h} + \varepsilon_h H_a - (d_h + \gamma_h)H_m, \\
\frac{\partial H_r}{\partial t} - D_h \frac{\partial^2 H_r}{\partial x^2} &= \gamma_h H_m - d_h H_r, \\
\end{align*}$$

(2.4)

$$\begin{align*}
B_i(x, t) &= H_a = H_m = H_r = 0, \quad g(t) < x < h(t), \quad t > 0, \\
B_i(x, t) &= H_a = H_m = H_r = 0, \quad x = g(t) \text{ or } x = h(t), \quad t > 0, \\
g(0) &= -h_0, \quad g'(t) = -\mu D_b \frac{\partial B_i}{\partial x}(g(t), t), \quad t > 0, \\
h(0) &= h_0, \quad h'(t) = -\mu D_b \frac{\partial B_i}{\partial x}(h(t), t), \quad t > 0, \\
B_i(x, 0) &= B_{i0}(x), \quad H_a(x, 0) = H_{a0}(x), \quad -h_0 \leq x \leq h_0, \\
H_m(x, 0) &= H_{m0}(x), \quad H_r(x, 0) = H_{r0}(x), \quad -h_0 \leq x \leq h_0, \\
\end{align*}$$

where $x = g(t)$ and $x = h(t)$ are the moving left and right boundaries to be determined, h_0 and μ are
positive constants, and the initial functions B_{i0}, H_{a0}, H_{m0} and H_{r0} are nonnegative and satisfy
\[
\begin{align*}
B_{i0}(x) & \in C^2([-h_0,h_0]), \quad B_{i0}(\pm h_0) = 0 \text{ and } 0 < B_{i0}(x), \quad x \in (-h_0,h_0), \\
H_{a0}(x), H_{m0}(x), H_{r0}(x) & \in C^2([-h_0,h_0]), \\
H_{a0}(\pm h_0) = H_{m0}(\pm h_0) = H_{r0}(\pm h_0) = 0, \\
0 & \leq H_{a0}(x), \quad H_{m0}(x), H_{r0}(x), \quad x \in (-h_0,h_0) .
\end{align*}
\] (2.5)

Noting that the first equation of the system (2.4) is independent of the last three equations, we can consider the bird system as the following:
\[
\begin{align*}
\frac{\partial B_i}{\partial t} - D_b \frac{\partial^2 B_i}{\partial x^2} &= \frac{\beta_b (N_b^* - B_i) B_i}{N_b^*} - d_b B_i, & g(t) < x < h(t), & t > 0, \\
B_i(g(t), t) &= B_i(h(t), t) = 0, & t > 0, \\
g(0) &= -h_0, \quad g'(t) = -\mu D_b \frac{\partial B_i}{\partial x}(g(t), t), & t > 0, \\
h(0) &= h_0, \quad h'(t) = -\mu D_b \frac{\partial B_i}{\partial x}(h(t), t), & t > 0, \\
B_i(x, 0) &= B_{i0}(x), & -h_0 \leq x \leq h_0.
\end{align*}
\] (2.6)

In the rest part, we will consider (2.4) and (2.6), then give the properties of the solution and the free boundaries.

3 Existence and uniqueness

In this section, a contraction mapping argument is used to show the local existence and uniqueness of the solution to (2.4). Then we use standard methods (such as Hopf Lemma, the maximum principle) to derive the estimates of the solution and present the global existence and uniqueness of the solution. First, the following local existence result can be proved by the contraction mapping argument as in [4].

Theorem 3.1. For any given $B_{i0}, H_{a0}, H_{m0}, H_{r0}$ satisfying (2.5) and any $\alpha \in (0, 1)$, there exists a positive number T such that (2.4) admits a unique solution
\[
(B_i, H_a, H_m, H_r; h, g) \in [C^{1+\alpha, (1+\alpha)/2}(\mathbb{T}_T)]^4 \times [C^{1+\alpha/2}([0, T])]^2 ;
\]
moreover,
\[
\|h\|_{C^{1+\alpha/2}([0,T])} + \|g\|_{C^{1+\alpha/2}([0,T])} \leq C_1 ,
\]
\[
\|B_i\|_{C^{1+\alpha, (1+\alpha)/2}(\mathbb{T}_T)} + \|H_a\|_{C^{1+\alpha, (1+\alpha)/2}(\mathbb{T}_T)} \leq C_1 ,
\]
\[
\|H_m\|_{C^{1+\alpha, (1+\alpha)/2}(\mathbb{T}_T)} + \|H_r\|_{C^{1+\alpha, (1+\alpha)/2}(\mathbb{T}_T)} \leq C_1 ,
\]
where $D_T = \{(x, t) \in \mathbb{R}^2 : x \in (g(t), h(t)), t \in (0, T)\}$, C_1 and T only depend on h_0, α, $\|B_{i0}\|_{C^2([-h_0,h_0])}$, $\|H_{a0}\|_{C^2([-h_0,h_0])}$, $\|H_{m0}\|_{C^2([-h_0,h_0])}$ and $\|H_{r0}\|_{C^2([-h_0,h_0])}$.

According to (2.5) and the equation of B_i in $(g(t), h(t)) \times [0, T_0)$, it follows from the strong maximum principle that $B_i(x, t) > 0$, for $g(t) < x < h(t)$, $0 < t < T_0$. By using maximum principle, it is easy to see that $0 \leq B_i \leq N_b^*$, $0 \leq H_a, H_m, H_r \leq N_h^*$ in $[g(t), h(t)] \times (0, T_0)$ as long as the solution exists for $t \in [0, T_0)$.

To explain that the local solution to (2.4) can be extended to all $t > 0$, we need the following lemma to show the free boundaries for problem (2.4) are strictly monotonous.

Lemma 3.2. Assume $(B_i, H_a, H_m, H_r; h, g)$ is a solution to (2.4) defined for $t \in (0, T_0)$ for some $T_0 \in (0, +\infty]$. Then there exists a constant C_2 independent of T_0 such that
\[
0 < -g'(t), \quad h'(t) \leq C_2, \quad \text{for } t \in (0, T_0).
\]
Proof. Using the Hopf lemma to the equation of B_i at $x = g(t)$ and $x = h(t)$ yields that
\[
\frac{\partial B_i}{\partial x}(g(t), t) > 0 \quad \text{and} \quad \frac{\partial B_i}{\partial x}(h(t), t) < 0, \quad \text{for} \ 0 < t < T_0.
\]
Hence, $g'(t) < 0$ and $h'(t) > 0$ for $t \in (0, T_0)$ by using the free boundary conditions in (2.4).

It remains to show that $-g'(t), h'(t) \leq C_2$ for $t \in (0, T_0)$ and some C_2 independent of T_0.

Inspired by [7], define
\[
B(x, t) = N^*_b[2M(h(t) - x) - M^2(h(t) - x)^2].
\]

We choose
\[
M = \max \left\{ \sqrt{\frac{\beta_h}{2D_h} \frac{4\|B_0\|_{C^1([-h_0, h_0])}}{3N^*_b}} \right\},
\]
then it follows from the proof of [7, Lemma 2.2] that $0 < -g'(t), h'(t) \leq C_2$ for $t \in (0, T_0)$ with $C_2 = 2\mu D_h MN^*_b$.

Theorem 3.3. For any $t \in (0, \infty)$, the solution to (2.4) exists and is unique.

Proof. It follows from the uniqueness of the solution that there is a number T_{max} such that $[0, T_{\text{max}})$ is the maximal time interval in which the solution exists. Now, we show that $T_{\text{max}} = \infty$ by the contradiction argument.

Assume that $T_{\text{max}} < \infty$. By Lemma 3.2, there exists C_2 independent of T_{max} such that
\[
0 \leq B_i(x, t) \leq N^*_b, \quad (x, t) \in [g(t), h(t)] \times [0, T_{\text{max}}),
\]
\[
h_0 < -g'(t), h(t) \leq h_0 + C_2t, \quad 0 < -g'(t), h'(t) \leq C_2, \quad t \in (0, T_{\text{max}}),
\]
\[
0 \leq H_a(x, t), H_m(x, t), H_r(x, t) \leq N^*_h, \quad (x, t) \in [g(t), h(t)] \times [0, T_{\text{max}}).
\]

We now fix $\delta_0 \in (0, T_{\text{max}})$ and $M > T_{\text{max}}$. By standard parabolic regularity, we can find $C_3 > 0$ depending only on $\delta_0, M, N^*_b, N^*_h$ and C_2 such that
\[
\|B_i(\cdot, t)\|_{C^2([g(t), h(t)])}, \quad \|H_a(\cdot, t)\|_{C^2([g(t), h(t)])} \leq C_3,
\]
\[
\|H_m(\cdot, t)\|_{C^2([g(t), h(t)])}, \quad \|H_r(\cdot, t)\|_{C^2([g(t), h(t)])} \leq C_3,
\]
for $t \in [\delta_0, T_{\text{max}})$. It then follows from Theorem 3.1 that there exists a $\tau > 0$ depending only on N^*_b, N^*_h and C_i ($i = 2, 3$) such that the solution to (2.4) with initial time $T_{\text{max}} - \tau/2$ can be extended uniquely to the time $T_{\text{max}} - \tau/2 + \tau$. Then this contradicts with the assumption. The proof is complete. \qed

4 Basic reproduction numbers

In this section, we denote the basic reproduction numbers for different systems and present their properties which will be used in the sequel.

Now we study the full system (2.3). The corresponding ODE system is governed by
\[
\begin{align*}
\frac{d}{dt}B_i &= \frac{\beta_h(N^*_b - B_i)B_i}{N^*_b} - \delta_h B_i, \\
\frac{d}{dt}H_a &= \frac{\beta_a B_i(N^*_b - H_a - H_m - H_r)}{N^*_h} - (\delta_h + \epsilon_h)H_a, \\
\frac{d}{dt}H_m &= \frac{\beta_m(N^*_h - H_a - H_m - H_r)H_m}{N^*_h} + \epsilon_h H_a - (\delta_h + \gamma_h)H_m, \\
\frac{d}{dt}H_r &= \gamma_h H_m - \delta_h H_r.
\end{align*}
\]

Similarly to that in [8], the basic reproduction number r_0 of the bird and the basic reproduction number R_0 for mutant avian influenza in the human world are represented by
\[
r_0 = \frac{\beta_h}{\delta_h}, \quad R_0 = \frac{\beta_m}{\delta_h + \gamma_h}.
\]
It is easy to see that System (4.1) has three equilibria. The disease-free equilibrium (DFE) \((0, 0, 0, 0)\) always exists. There exists the human-endemic equilibrium (HEE) \((0, 0, H_m, H_r)\) if \(R_0 > 1\), while if \(r_0 > 1\), the full-endemic equilibrium (FEE) \((B^*_i, H^*_a, H^*_m, H^*_r)\) exists uniquely, where

\[
\begin{align*}
\bar{H}_m &= \frac{\beta_m - (d_h + \gamma_h)}{\beta_m (d_h + \gamma_h)} d_h N_h^*, \\
\bar{H}_r &= \frac{\gamma_h}{d_h} \bar{H}_m, \\
B^*_i &= \left(1 - \frac{d_h}{\beta_h} \right) N_h^*, \\
H^*_a &= \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \\
H^*_m &= \frac{\beta_a B^*_i [d_h N_h^* - (d_h + \gamma_h) H^*_m]}{d_h [\beta_a B^*_i + (d_h + \gamma_h) N_h^*]}, \\
H^*_r &= \frac{\gamma_h}{d_h} H^*_m, \\
a &= -\beta_m (d_h + \varepsilon_h)(d_h + \gamma_h), \\
c &= \beta_\varepsilon dh B^*_i N_h^*, \\
b &= (d_h + \gamma_h)[d_h N_h^*(\beta_m - d_h - \gamma_h) - \beta_a B^*_i(d_h + \gamma_h)].
\end{align*}
\]

According to [8, Theorem 3.2], if \(r_0 < 1\) and \(R_0 < 1\), then DFE is locally asymptotically stable; the HEE is locally asymptotically stable if \(r_0 < 1\) and \(R_0 > 1\), and if \(r_0 > 1\), the FEE is locally asymptotically stable.

If the environment \(\Omega\) is heterogeneous and the boundary of region \(\Omega\) is hostile to the population for living (see [23]), then the corresponding system is given by

\[
\begin{align*}
\frac{\partial B_i}{\partial t} - D_b \Delta B_i &= \frac{\beta_b (N_h^* - B_i) B_i}{N_h^*} - d_h B_i, \quad x \in \Omega, \quad t > 0, \\
\frac{\partial H_a}{\partial t} - D_h \Delta H_a &= \frac{\beta_b B_i (N_h^* - H_a - H_m - H_r)}{N_h^*} - (d_h + \varepsilon_h) H_a, \quad x \in \Omega, \quad t > 0, \\
\frac{\partial H_m}{\partial t} - D_h \Delta H_m &= \frac{\beta_m (N_h^* - H_a - H_m - H_r) H_m}{N_h^*} + \varepsilon_h H_a - (d_h + \gamma_h) H_m, \quad x \in \Omega, \quad t > 0, \\
\frac{\partial H_r}{\partial t} - D_h \Delta H_r &= \gamma_h H_m - d_h H_r, \quad x \in \Omega, \quad t > 0, \\
B_i(x, t) &= H_a(x, t) = H_m(x, t) = H_r(x, t) = 0, \quad x \in \partial \Omega, \quad t > 0.
\end{align*}
\]

Let us introduce the basic reproduction numbers for the bird \(r_0^D(\Omega)\) and the mutant human \(R_0^D(\Omega)\), respectively, as follows:

\[
\begin{align*}
\hat{r}_0^D &= \hat{r}_0^D(\Omega) = \sup_{\phi \in H^1(l(\Omega)), \phi \neq 0} \left\{ \frac{\int_{\Omega} \beta_b \phi^2 dx}{\int_{\Omega} (D_h |\nabla \phi|^2 + d_b \phi^2) dx} \right\}, \\
\hat{R}_0^D &= \hat{R}_0^D(\Omega) = \sup_{\phi \in H^1(l(\Omega)), \phi \neq 0} \left\{ \frac{\int_{\Omega} \beta_m \phi^2 dx}{\int_{\Omega} (D_h |\nabla \phi|^2 + (d_h + \gamma_h) \phi^2) dx} \right\}.
\end{align*}
\]

Then we can have the similar result to [1, Lemma 2.3(a)].

Lemma 4.1. \(r_0^D\) and \(R_0^D\) are positive and monotonically decreasing functions of \(D_b, D_h\), respectively.

Let \(\lambda_\alpha\) be the first eigenvalue of

\[
\begin{align*}
-D_b \Delta \varphi &= \beta_b \varphi - d_b \varphi + \lambda \varphi, \quad x \in \Omega, \\
\varphi(x) &= 0, \quad x \in \partial \Omega,
\end{align*}
\]

and \(\lambda_{R_0}\) be the first eigenvalue of

\[
\begin{align*}
-D_h \Delta \phi &= \beta_m \phi - (d_h + \gamma_h) \phi + \lambda \phi, \quad x \in \Omega, \\
\phi(x) &= 0, \quad x \in \partial \Omega.
\end{align*}
\]

Furthermore, its corresponding eigenfunctions \(\varphi_{\lambda_\alpha}\) and \(\phi_{\lambda_{R_0}}\) can be chosen to be positive on \(\Omega\).
Obviously, λ_{r_0} and λ_{R_0} can be given by variational characterization,
\[\lambda_{r_0} = \inf \left\{ \int_\Omega [D_b|\nabla \varphi|^2 + (d_b - \beta_b)\varphi^2] : \varphi \in H^1_0(\Omega) \text{ and } \int_\Omega \varphi^2 = 1 \right\},\]
\[\lambda_{R_0} = \inf \left\{ \int_\Omega [D_b|\nabla \phi|^2 + (d_h + \gamma_h - \beta_m)\phi^2] : \phi \in H^1_0(\Omega) \text{ and } \int_\Omega \phi^2 = 1 \right\}.

Lemma 4.2. The following properties hold:
(i) $r_0^D < 1$ (i.e., $r_0^D < 0$) if and only if $\lambda_{r_0} > 0$ (i.e., $\lambda_{r_0} < 0$);
(ii) $R_0^D < 1$ (i.e., $R_0^D < 0$) if and only if $\lambda_{R_0} > 0$ (i.e., $\lambda_{R_0} < 0$).

Proof. One can directly verify this statement (see [1, Lemma 2.3(d)]).

Note that β_b, β_m, d_b, d_h and γ_h are constants. Direct calculations show
\[r_0^D(\Omega) = \frac{\beta_b}{\lambda(\Omega)D_b + d_b} \quad \text{and} \quad R_0^D(\Omega) = \frac{\beta_m}{\lambda(\Omega)D_h + (d_h + \gamma_h)},\]
where $\lambda(\Omega)$ is the principal eigenvalue of the following eigenvalue problem:
\[
\begin{cases}
-\Delta \psi = \lambda \psi, & x \in \Omega, \\
\psi(x) = 0, & x \in \partial\Omega.
\end{cases}
\]
(4.5)

It is well known that $\lambda(\Omega)$ is a strictly decreasing continuous function and that
\[
\lim_{|\Omega| \to 0^+} \lambda(\Omega) = +\infty \quad \text{and} \quad \lim_{|\Omega| \to +\infty} \lambda(\Omega) = 0.
\]

From the direct calculations, the following lemma holds.

Lemma 4.3. (i) $r_0^D \to r_0$ as $D_b \to 0$ and $r_0^D \to 0$ as $D_b \to \infty$;
(ii) $R_0^D \to R_0$ as $D_h \to 0$ and $R_0^D \to 0$ as $D_h \to \infty$;
(iii) If $\Omega = (-h_0, h_0)$, then
\[r_0^D((-h_0, h_0)) = \frac{\beta_b}{D_b(\frac{\pi}{2h_0})^2 + d_b}, \quad R_0^D((-h_0, h_0)) = \frac{\beta_m}{D_h(\frac{\pi}{2h_0})^2 + (d_h + \gamma_h)};\]
(iv) Let B_ρ be a ball with radius ρ. Then $r_0^D(B_\rho)$ and $R_0^D(B_\rho)$ are strictly monotonically increasing function of ρ. That is to say, $r_0^D(B_{\rho_1}) < r_0^D(B_{\rho_2})$, $R_0^D(B_{\rho_1}) < R_0^D(B_{\rho_2})$ if $\rho_1 < \rho_2$.

By the free boundary problem (2.4), we know that the domain $(g(t), h(t))$ is changing with respect to t. Thus the basic reproduction number is a function with t. Now, we define the basic reproduction numbers $r_0^F(t)$ and $R_0^F(t)$ for the free boundary problem (2.4) by
\[r_0^F(t) = r_0^D((g(t), h(t))) = \frac{\beta_b}{D_b \lambda(g(t), h(t)) + d_b}, \quad R_0^F(t) = R_0^D((g(t), h(t))) = \frac{\beta_m}{D_h \lambda(g(t), h(t)) + (d_h + \gamma_h)}.

Lemma 4.4. $r_0^F(t)$ and $R_0^F(t)$ are strictly monotonically increasing function of t. Moreover, if $h(t) - g(t) \to \infty$ as $t \to +\infty$, then $r_0^F(t) \to r_0$, $R_0^F(t) \to R_0$, respectively.

Proof. This conclusion follows directly from Lemmas 3.2 and 4.3.

5 Vanishing of the avian influenza

In this section, we will consider the vanishing of the avian influenza in the bird and in the human world. First, we show that the double free boundary frontiers $x = g(t)$ and $x = h(t)$ are either finite or infinite at the same time.
Theorem 5.1. Suppose that \((B_t, H_a, H_m, H_r; h, g)\) is a solution to (2.4) defined for \(x \in [g(t), h(t)]\) and \(t \in [0, \infty)\). Then we have

\[-2h_0 < g(t) + h(t) < 2h_0, \quad \text{for } t \in [0, +\infty).\]

Proof. For small \(t > 0\), we have \(g(t) + h(t) > -2h_0\) by the continuity. Define

\[T = \sup\{\tau : g(t) + h(t) > -2h_0, \quad \text{for all } t \in [0, \tau]\}.\]

Now, we show that \(T = \infty\) by the contradiction argument. Assume that there exists \(T\) with \(0 < T < \infty\) such that

\[g(t) + h(t) > -2h_0, \quad \text{for } t \in [0, T), \quad g(T) + h(T) = -2h_0.\]

Furthermore, we get

\[g'(T) + h'(T) \leq 0. \quad \tag{5.1}\]

Define

\[B(x, t) = B_i(x, t) - B_i(-x - 2h_0, t), \quad \text{for } x \in [g(t), -h_0] \text{ and } t \in [0, T].\]

Direct calculation shows that

\[B_t - D_b B_{xx} = C(x, t)B, \quad \text{for } g(t) < x < -h_0, \quad 0 < t \leq T.\]

Noting that \(C(x, t) \in L^\infty\) and

\[B(-h_0, t) = 0, \quad B(g(t), t) \leq 0, \quad \text{for } 0 < t < T,\]

then by using the comparison principle, we obtain

\[B(x, t) \leq 0, \quad \text{for } (x, t) \in [g(t), -h_0] \times (0, T].\]

Applying the strong maximum principle gives that

\[B(x, t) < 0, \quad \text{for } (x, t) \in (g(t), -h_0) \times (0, T].\]

However,

\[B(g(T), T) = B_i(g(T), T) - B_i(h(T), T) = 0.\]

By the Hopf lemma, we have \(B_x(g(T), T) < 0\). Moreover,

\[B_x(g(T), T) = \frac{\partial B_i}{\partial x}(g(T), T) + \frac{\partial B_i}{\partial x}(h(T), T) = -\frac{g'(T) + h'(T)}{\mu D_b}.\]

Then we have

\[g'(T) + h'(T) > 0,\]

which is a contradiction to (5.1). Hence we have shown

\[g(t) + h(t) > -2h_0, \quad \text{for all } t \geq 0,\]

and \(g(t) + h(t) < 2h_0\) for all \(t \geq 0\) can be proven by the same argument.

\(\square\)

It follows from Lemma 3.2 that \(-g(t), h(t)\) are monotonic increasing and there exist \(-g_\infty, h_\infty \in (0, +\infty]\) such that \(\lim_{t \to +\infty} g(t) = g_\infty\) and \(\lim_{t \to +\infty} h(t) = h_\infty\).

Lemma 5.2. If \(h_\infty - g_\infty < \infty\), then \(\lim_{t \to +\infty} ||B_i(\cdot, t)||_{C([g(t), h(t)])} = 0.\)
Proof. Suppose \(\limsup_{t \to +\infty} \| B_i(\cdot, t) \|_{C(\{(g(t), h(t)) = \sigma > 0 \text{ by contradiction. Then there exists a sequence } (x_n, t_n) \text{ in } (g(t), h(t)) \times (0, \infty) \text{ such that } B_i(x_n, t_n) \geq \sigma \text{ for all } n \in \mathbb{N}, \text{ and } t_n \to \infty \text{ as } n \to +\infty. \n\)

Noting that \(-\infty < g_\infty < g(t_n) < x_n < h(t_n) < h_\infty < \infty \), there exists a subsequence \(\{x_{n_k}\} \) such that \(x_{n_k} \to x_0 \) and \(x_0 \in (g_\infty, h_\infty) \). Without loss of generality, we take \(x_n \to x_0 \) as \(n \to \infty \).

Define
\[
B_n(x, t) = B_i(x, t_n + t), \quad \text{for } x \in (g(t_n + t), h(t_n + t)), \quad t \in (-t_n, \infty).
\]

It follows from the regularity of the parabolic equation that \(\{B_n\} \) has a subsequence \(\{B_{n_i}\} \) such that \(B_{n_i} \to \bar{B} \) as \(i \to \infty \), where \(\bar{B} \) satisfies
\[
\bar{B}_t - D_b \bar{B}_{xx} = \frac{\beta_b \bar{B}(N_b^* - \bar{B})}{N_b^*} - d_b \bar{B}, \quad \text{for } g_\infty < x < h_\infty, \quad t \in (-\infty, +\infty).
\]

Moreover, \(\bar{B}(x_0, 0) \geq \frac{\sigma}{2} \), and thus we can get
\[
\bar{B}(x, t) > 0, \quad \text{for } (x, t) \in (g_\infty, h_\infty) \times (-\infty, +\infty).
\]

Applying the Hopf lemma yields that there exists \(\epsilon > 0 \) such that \(\bar{B}_x(h_\infty, 0) \leq -\epsilon \).

It follows from Theorem 3.1 and Lemma 3.2 that \(-g(t) \) and \(h(t) \) are monotonically increasing and bounded. By the standard \(L^p \) theory and the Sobolev imbedding theorem (see [13]), for any \(0 < \alpha < 1 \), there exists a constant \(C \) which depends on \(\alpha, h_0 \), \(\|B_i\|_{C^{1+\alpha}([-h_0, h_0])} \), \(g_\infty \) and \(h_\infty \) such that
\[
\|B_i\|_{C^{1+\alpha}([-h_0, h_0])} \leq C.
\]

On the other hand, since \(h(t) \) is bounded, we have \(h'(t) \to 0 \) as \(t \to +\infty \). So \(\frac{\partial B_i}{\partial x}(h(t_n), t_n) \to 0 \) as \(n \to +\infty \) by the free boundary condition.

Noting that \(\|B_i\|_{C^{1+\alpha}([-h_0, h_0])} \leq C \), we have
\[
\frac{\partial B_i}{\partial x}(h(t_n), t_n) = (B_{n_i})(h(t_n), 0) \to \bar{B}_x(h_\infty, 0) \quad \text{as } n \to +\infty.
\]

This is a contradiction to \(\bar{B}_x(h_\infty, 0) \leq -\epsilon \). Hence, \(\lim_{t \to +\infty} \| B_i(\cdot, t) \|_{C(\{(g(t), h(t)) \})} = 0 \).

Lemma 5.2 implies the following result.

Corollary 5.3. If \(\lim \inf_{t \to +\infty} \| B_i(\cdot, t) \|_{C(\{(g(t), h(t)) \})} > 0 \), then \(h_\infty - g_\infty = \infty \).

To give the sufficient conditions for the avian influenza to vanish, we first give the definition of the upper and lower solutions to the bird system, then give the comparison principle.

Definition 5.4. Suppose that \(T \in (0, \infty), \quad \overline{\mathbf{g}, \mathbf{h}} \in C^1([0, T]), \quad \overline{B_i} \in C^{2, 1}((\mathbf{g}, \mathbf{h}) \times (0, T]) \cap C((\mathbf{g}, \mathbf{h}) \times [0, T]), \) and

\[
\begin{cases}
\frac{\partial \overline{B_i}}{\partial t} - D_b \frac{\partial^2 \overline{B_i}}{\partial x^2} \geq \frac{\beta_b \overline{B_i}(N_b^* - \overline{B_i})}{N_b^*} - d_b \overline{B_i}, & \mathbf{g} < x < \mathbf{h}, \quad t > 0, \\
\overline{B_i}(x, t) = 0, & x = \mathbf{g} \text{ or } \mathbf{h}, \quad t > 0, \\
\overline{B_i}(0) \geq -h_0, & \overline{B_i}(t) \geq -\mu D_b \frac{\partial \overline{B_i}}{\partial x}(\overline{B_i}(t), t), \quad t > 0, \\
\overline{B_i}(T) \geq B_0 = \overline{B_i}(x, 0), & -h_0 \leq x \leq h_0.
\end{cases}
\]

Then we call \((\overline{B_i}; \overline{\mathbf{g}, \mathbf{h}}) \in [C^{2, 1}((\mathbf{g}, \mathbf{h}) \times (0, T]) \cap C((\mathbf{g}, \mathbf{h}) \times [0, T])] \times [C^1([0, T])] \times [C^1([0, T])] \times [C^1([0, T])] \times [C^1([0, T])] \) is an upper solution to the bird system (2.6).

Remark 5.5. We can give the lower solution \((\underline{B_i}; \underline{\mathbf{g}, \mathbf{h}}) \in [C^{2, 1}((\mathbf{g}, \mathbf{h}) \times (0, T]) \cap C((\mathbf{g}, \mathbf{h}) \times [0, T])] \times [C^1([0, T])] \times [C^1([0, T])] \) to the bird system (2.6) by reversing the inequalities in (5.2).

Next, we give the comparison principle. The proof is almost the same as [7, Lemma 3.5].
Lemma 5.6. Let \((B_1; \overline{y}, \underline{y})\) and \((B_2; g, \underline{h})\) be the upper and lower solution to the bird system with the free boundary, respectively. Then the solution \((B_i; g, \underline{h})\) to (2.6) satisfies
\[
\underline{h} \leq h(t) \leq \overline{h}(t), \quad \underline{g} \leq g(t) \leq \overline{g}(t), \quad t \in (0, T],
\]
\[
B_i(x, t) \leq \overline{B}_i(x, t), \quad (x, t) \in (g(t), h(t)) \times (0, T],
\]
\[
\underline{B}_i(x, t) \leq B_i(x, t), \quad (x, t) \in (\underline{g}(t), \underline{h}(t)) \times (0, T].
\]

Now, we give the sufficient condition for the avian influenza to vanish in the bird world.

Theorem 5.7. Assume that \(r_0^D(0)(:= r_0^D((-h_0, h_0))) < 1\). Then
\[
h_0 - g_0 \to 0 \quad \text{and} \quad \lim_{t \to +\infty} \|B_i(\cdot, t)\|_{C((g(t), h(t)))} = 0,
\]
if \(\|B_0(x)\|_{C((h_0, h_0))}\) is sufficiently small.

Proof. We construct suitable upper solution to the bird system. Since \(r_0^D((-h_0, h_0)) < 1\), we then have that the first eigenvalue \(\lambda_{r_0} > 0\) by Lemma 4.2(i) and its corresponding eigenfunction \(\varphi(x) > 0\) such that (4.3) holds in \(\Omega = (-h_0, h_0)\). Therefore, we can choose a sufficiently small \(\delta\) such that \(\delta(1+\delta)^2 + [(1+\delta)^2 - 1](\beta_b - d_b) \leq \lambda_{r_0}^*\).

Inspired by [7], we define
\[
\sigma(t) = h_0 \left(1 + \delta - \frac{\delta}{2} e^{-\delta t}\right), \quad t \geq 0,
\]
\[
\overline{B}_i(x, t) = \varepsilon e^{-\delta t} \varphi(x/\sigma(t)), \quad -\sigma(t) \leq x \leq \sigma(t), \quad t \geq 0,
\]
where \(0 < \varepsilon \leq -\frac{\delta^2 h_0}{2\mu D h \varphi(h_0)}\). Direct computations yield that
\[
\frac{\partial \overline{B}_i}{\partial t} - D_b \frac{\partial^2 \overline{B}_i}{\partial x^2} = \frac{\beta_b(N_b^* - \overline{B}_i)}{N_b^*} + d_b \overline{B}_i - \sigma \overline{B}_i \frac{\partial^2 \sigma / \sigma - \varepsilon e^{-\delta t} \varphi'}{\sigma^2} + \frac{h_0^2}{\sigma^2} (\beta_b - d_b) \overline{B}_i + \lambda_{r_0} \overline{B}_i
\]
\[
- \beta_b \overline{B}_i + \frac{\beta_b}{N_b} \overline{B}_i + d_b \overline{B}_i
\]
\[
\geq \overline{B}_i \left[- \delta + (\beta_b - d_b) \left(\frac{h_0^2}{\sigma^2} - 1\right) + \frac{h_0^2}{\sigma^2} \lambda_{r_0}\right]
\]
\[
\geq 0,
\]
for all \(-\sigma(t) < x < \sigma(t)\) and \(t > 0\).

It is easy to see that
\[
-(\overline{B}_i)_{xx}(-\sigma(t), t) = -\frac{h_0}{\sigma(t)} e^{-\delta t} \varphi'(h_0),
\]
\[
-(\overline{B}_i)_{xx}(\sigma(t), t) = -\frac{h_0}{\sigma(t)} e^{-\delta t} \varphi'(h_0) \quad \text{and} \quad \varphi'(t) = \frac{\delta^2 h_0}{2} e^{-\delta t}.
\]

But since \(-\varphi'(-h_0) = \varphi'(h_0)\), we get
\[
\varphi'(t) \geq -\mu D_b (\overline{B}_i)_{xx}(\sigma(t), t) = -\mu D_b \frac{h_0}{\sigma(t)} e^{-\delta t} \varphi'(h_0), \quad \text{for } t > 0,
\]
\[
-\sigma'(t) \leq -\mu D_b (\overline{B}_i)_{xx}(-\sigma(t), t) = -\mu D_b \frac{h_0}{\sigma(t)} e^{-\delta t} \varphi'(-h_0), \quad \text{for } t > 0.
\]

Therefore, we have
\[
\begin{cases}
\frac{\partial \overline{B}_i}{\partial t} - D_b \frac{\partial^2 \overline{B}_i}{\partial x^2} \geq \frac{\beta_b(N_b^* - \overline{B}_i)}{N_b^*} - d_b \overline{B}_i, \quad -\sigma(t) < x < \sigma(t), \quad t > 0, \\
\overline{B}_i(-\sigma(t), t) = \overline{B}_i(\sigma(t), t) = 0, \quad t > 0, \\
-\sigma(0) < -h_0, \quad -\sigma'(t) \leq -\mu D_b \frac{\partial \overline{B}_i}{\partial x}(-\sigma(t), t), \quad t > 0, \\
\sigma(0) > h_0, \quad \sigma'(t) \geq -\mu D_b \frac{\partial \overline{B}_i}{\partial x}(\sigma(t), t), \quad t > 0.
\end{cases}
\]
Assume that \(\|B_{i0}(x)\|_{C([-h_0,h_0])} \) is sufficiently small so that \(B_{i0} \leq \varepsilon \varphi \left(\frac{h_0}{1+\gamma_h} \right) \), then \(B_{i0} \leq \overline{B}_i(x,0) \) for \(-h_0 \leq x \leq h_0 \). Using Lemma 5.6 gives that
\[
g(t) \geq -\sigma(t) \quad \text{and} \quad h(t) \leq \sigma(t), \quad \text{for } t > 0.
\]
Hence,
\[
h_\infty - g_\infty \leq \lim_{t \to \infty} 2\sigma(t) = 2h_0(1+\delta) < \infty.
\]
It follows from Lemma 5.2 that \(\lim_{t \to +\infty} \|B_i(\cdot,t)\|_{C([g(t),h(t)])} = 0. \)

The following comparison principle for the full system can be obtained similarly to [7, Lemma 3.5].

Lemma 5.8. Suppose that the upper solution \((\overline{B}_i, \overline{H}_a, \overline{H}_m, \overline{H}_r, \overline{\varphi}) \in [C^2(1(D_{1T}) \cap C(D_{1T})]^4 \times [C^1([0,T])]^2 \) and the lower solution \((\underline{B}_i, \underline{H}_a, \underline{H}_m, \underline{H}_r; \underline{\varphi}, \underline{h}) \in [C^2(1(D_{2T}) \cap C(D_{2T})]^4 \times [C^1([0,T])]^2 \) satisfy

\[
\begin{align*}
\frac{\partial \overline{B}_i}{\partial t} - D_0 \frac{\partial^2 \overline{B}_i}{\partial x^2} &\geq \frac{\beta_i(N_i^* - \overline{B}_i)}{N_i^*} - d_i \overline{B}_i, & \overline{g}(t) < x < \overline{h}(t), & \quad t > 0, \\
\frac{\partial \overline{B}_i}{\partial t} - D_0 \frac{\partial^2 \overline{B}_i}{\partial x^2} &\leq \frac{\beta_i(N_i^* - \overline{B}_i)}{N_i^*} - d_i \overline{B}_i, & \overline{N}(t) < x < h(t), & \quad t > 0, \\
\frac{\partial \overline{H}_a}{\partial t} - D_0 \frac{\partial^2 \overline{H}_a}{\partial x^2} &\geq -\frac{\beta_a(N_a^* - \overline{H}_a - \overline{H}_m - \overline{H}_r)}{N_a^*} \overline{h}(t), & \overline{g}(t) < x < \overline{h}(t), & \quad t > 0, \\
\frac{\partial \overline{H}_m}{\partial t} - D_0 \frac{\partial^2 \overline{H}_m}{\partial x^2} &\geq -\frac{\beta_m(N_m^* - \overline{H}_m - \overline{H}_m - \overline{H}_m)}{N_m^*} \overline{h}(t), & \overline{g}(t) < x < \overline{h}(t), & \quad t > 0, \\
\frac{\partial \overline{H}_m}{\partial t} - D_0 \frac{\partial^2 \overline{H}_m}{\partial x^2} &\geq -\frac{\beta_m(N_m^* - \overline{H}_m - \overline{H}_m - \overline{H}_m)}{N_m^*} \overline{h}(t), & \overline{g}(t) < x < \overline{h}(t), & \quad t > 0,
\end{align*}
\]
and when \(t = 0 \) and \(-h_0 \leq x \leq h_0 \), the initial functions satisfy
\[
\begin{align*}
\overline{\varphi}(0) &\leq -h_0 \leq \underline{g}(0), & \underline{h}(0) \leq h_0 \leq \overline{h}(0), \\
\overline{B}_i(x,0) &\leq \overline{B}_i(x,0), & \overline{H}_a(x,0) \leq \underline{H}_a(x,0), \\
\overline{H}_m(x,0) &\leq \overline{H}_m(x,0), & \overline{H}_r(x,0) \leq \underline{H}_r(x,0).
\end{align*}
\]
Suppose, next, that when \(t > 0 \), \((\overline{B}_i, \overline{H}_a, \overline{H}_m, \overline{H}_r) \) and \((\underline{B}_i, \underline{H}_a, \underline{H}_m, \underline{H}_r) \) satisfy, respectively,
\[
\overline{B}_i(x,t) \geq 0, \quad \overline{H}_a(x,t) \geq 0, \quad \overline{H}_m(x,t) \geq 0, \quad \overline{H}_r(x,t) \geq 0
\]
on the boundary \(x = \overline{\varphi}(t) \) or on the boundary \(x = \overline{\varphi}(t) \), and
\[
\overline{B}_i(x,t) = 0, \quad \overline{H}_a(x,t) = 0, \quad \overline{H}_m(x,t) = 0, \quad \overline{H}_r(x,t) = 0,
\]
for \(x \leq \underline{g}(t) \) or \(x \geq \overline{h}(t) \). Suppose, furthermore, that for any \(t > 0 \), \(\overline{g}, \overline{\varphi}, \underline{h} \) and \(\overline{h} \) satisfy
\[
g'(t) \leq -\mu D_b \frac{\partial \overline{B}_i}{\partial x}(\overline{g}(t),t), \quad \overline{g}(t) \leq -\mu D_b \frac{\partial \overline{B}_i}{\partial x}(\overline{g}(t),t),
\]
\[h'(t) \leq -\mu D_h \frac{\partial B_i}{\partial x}(h(t), t), \quad \overline{m}(t) \geq -\mu D_h \frac{\partial \overline{B}_i}{\partial x}(h(t), t). \]

Then the solution \((B_i, H_a, H_m, H_r; g, h)\) to the free boundary problem (2.4) satisfies

\[B_i \leq \overline{B}_i, \quad H_a \leq \overline{H}_a, \quad H_m \leq \overline{H}_m, \quad H_r \leq \overline{H}_r, \]

for \(g(t) \leq x \leq h(t)\) and \(0 < t \leq T\),

\[B_i \geq \underline{B}_i, \quad H_a \geq \underline{H}_a, \quad H_m \geq \underline{H}_m, \quad H_r \geq \underline{H}_r, \]

for \(\underline{g}(t) \leq x \leq h(t)\) and \(0 < t \leq T\),

\[\underline{g}(t) \geq g(t) \geq \overline{g}(t), \quad \underline{h}(t) \leq h(t) \leq \overline{h}(t), \quad \text{in } [0, T], \]

where \(T \in (0, \infty)\), \(D_{1T} = (\overline{g}(t), \overline{h}(t)) \times (0, T)\) and \(D_{2T} = (\underline{g}(t), \underline{h}(t)) \times (0, T)\).

Theorem 5.9. Suppose that \(R_0^\xi(0) < 1\) and \(R_0^\zeta(0) := R_0^\alpha((-h_0, h_0)) < 1\), then

\[h_\infty - g_\infty \leq 0, \]

\[\lim_{t \to +\infty} \| B_i(\cdot, t) \|_{C([\underline{g}(t), h(t))]}, \quad \lim_{t \to +\infty} \| H_a(\cdot, t) \|_{C([\underline{g}(t), h(t))]}, \]

\[\lim_{t \to +\infty} \| H_m(\cdot, t) \|_{C([\underline{g}(t), h(t))]}, \quad \lim_{t \to +\infty} \| H_r(\cdot, t) \|_{C([\underline{g}(t), h(t))]}. \]

if \(\| B_i(x) \|_{C([-h_0, h_0])}, \quad \| H_0(x) \|_{C([-h_0, h_0])}, \quad \| H_m(x) \|_{C([-h_0, h_0])}\) and \(H_r(x) \|_{C([-h_0, h_0])}\) are small enough.

Proof. Since \(R_0^\alpha((-h_0, h_0)) < 1\), it follows from Lemma 4.2(ii) that \(\lambda_{R_0} > 0\) and there exists \(\phi(x) > 0\) satisfying (4.4) over \(\Omega = (-h_0, h_0)\). Since \(R_0^\xi(0) < 1\), we have \(h_\infty - g_\infty < \infty\) by Theorem 5.7.

Let the definition of \(\sigma(t)\) and \(\overline{B}_i\) be the same as those in Theorem 5.7. Now, we define

\[\overline{B}_a = \varepsilon_a \overline{B}_i, \quad \overline{B}_m = \varepsilon_m \overline{B}_m, \quad -\sigma(t) \leq x \leq \sigma(t), \quad t \geq 0, \]

\[\overline{B}_i = \overline{H}_a = \overline{H}_m = \overline{H}_r = 0, \quad -h(t) \leq x \leq h(t), \quad t \geq 0, \]

where

\[\varepsilon_a = \frac{8\beta_h h_0^2(1 + \delta)^2}{\pi^2 D_h - 4\delta(1 + \delta)^2 h_0^2}, \quad \varepsilon_m = \frac{8\gamma h_0^2(1 + \delta)^2}{\pi^2 D_h - 4\delta(1 + \delta)^2 h_0^2} \]

and \(\delta\) satisfies

\[\pi^2 D_h - 4\delta(1 + \delta)^2 h_0^2 \leq 0, \]

\[\delta(1 + \delta)^2 + [(1 + \delta)^2 - 1](\beta_h - d_b) \leq \lambda_{R_0}, \]

\[\delta(1 + \delta)^2 + [(1 + \delta)^2 - 1][\beta_m - (d_h + \gamma_h)] < \lambda_{R_0}. \]

Direct computations yield that

\[\frac{\partial \overline{B}_a}{\partial t} - D_h \frac{\partial^2 \overline{B}_a}{\partial x^2} - \frac{\beta_h \overline{B}_a (N_h^a - \overline{B}_a)}{N_h^a} + (d_h + \varepsilon_a) \overline{B}_a \]

\[= \varepsilon_a \overline{B}_a - \varepsilon_a D_h \frac{\partial^2 \overline{B}_a}{\partial x^2} + \frac{\beta_h \overline{B}_a (N_h^a - \overline{B}_a)}{N_h^a} + (d_h + \varepsilon_a) \overline{B}_a \]

\[\geq \varepsilon_a \frac{\partial \overline{B}_i}{\partial t} - \varepsilon_a D_h \frac{\partial^2 \overline{B}_i}{\partial x^2} - \beta_a \overline{B}_i \]

\[= -\varepsilon_a \delta \overline{B}_i - \varepsilon_a \frac{x h_0 \sigma(t)}{\sigma^2(t)} \varepsilon e^{-\delta t} \phi' \varepsilon \sigma(t) + D_h \varepsilon \frac{h_0^2}{\sigma^2(t)} \varepsilon e^{-\delta t} \phi'' - \beta_a \overline{B}_i \]

\[\geq \overline{B}_i \left[-\delta \varepsilon_a + \varepsilon_a \frac{D_h h_0^2}{\sigma^2(t)} (\beta_b - d_b + \lambda_{R_0} - \beta_a) \right] \geq 0, \]

\[\frac{\partial \overline{B}_m}{\partial t} - D_h \frac{\partial^2 \overline{B}_m}{\partial x^2} - \frac{\beta_m (N_h^m - \overline{B}_m) \overline{B}_m}{N_h^m} - \varepsilon_m \overline{B}_a + (d_h + \gamma_h) \overline{B}_m \]

\[= -\delta e^{-\delta t} \phi - \frac{x h_0 \sigma(t)}{\sigma^2(t)} e^{-\delta t} \phi' - D_h \frac{h_0^2}{\sigma^2(t)} e^{-\delta t} \phi'' \]
where we have used the fact that $\overline{H}_a = \varepsilon x \exp(-\delta t \varphi(x_0/\sigma(t))$ and ε is sufficiently small, and we also have

$$
\frac{\partial \overline{H}_r}{\partial t} - D_h \frac{\partial^2 \overline{H}_r}{\partial x^2} - \gamma_h \overline{H}_m + d_h \overline{H}_r
$$

$$
= -\delta \varepsilon x \exp(-\delta t \phi - \varepsilon x_0 \phi'(t)) \exp(-\delta t \phi' - \gamma_h \overline{H}_m + d_h \overline{H}_r
$$

$$
\geq \overline{H}_m \left\{ -\delta \varepsilon_r + \varepsilon_x \frac{h_0}{\sigma^2(t)} \beta_m - (d_h + \gamma_h) - h_h \right\} \geq 0.
$$

Then since $\|B_{i0}(x)\|_{C([-h_0,h_0])}$, $\|H_{i0}(x)\|_{C([-h_0,h_0])}$, $\|H_m(x)\|_{C([-h_0,h_0])}$ and $\|H_r(0)\|_{C([-h_0,h_0])}$ are small enough for $-h_0 < x < h_0$, we have

$$
B_{i0}(x) \leq \varepsilon \varphi \left(\frac{h_0}{1 + \delta/2} \right) \leq \overline{B}_{i0}(x,0), \quad H_{i0} \leq \varepsilon \varphi \left(\frac{h_0}{1 + \delta/2} \right) \leq \overline{H}_{i0}(x,0),
$$

$$
H_{m0} \leq \phi \left(\frac{h_0}{1 + \delta/2} \right) \leq \overline{H}_{m0}(x,0), \quad H_{r0} \leq \varepsilon \phi \left(\frac{h_0}{1 + \delta/2} \right) \leq \overline{H}_{r0}(x,0).
$$

Now, it follows from Lemma 5.8 that

$$
0 \leq B_i \leq \overline{B}_i, \quad 0 \leq H_a \leq \overline{H}_a, \quad 0 \leq H_m \leq \overline{H}_m, \quad 0 \leq H_r \leq \overline{H}_r,
$$

for $g(t) < x < h(t)$ and $0 < t \leq T$. Hence, we have

$$
\lim_{t \to +\infty} \|B_i(\cdot, t)\|_{C([g(t), h(t)])} = 0, \quad \lim_{t \to +\infty} \|H_a(\cdot, t)\|_{C([g(t), h(t)])} = 0,
$$

$$
\lim_{t \to +\infty} \|H_m(\cdot, t)\|_{C([g(t), h(t)])} = 0 \quad \text{and} \quad \lim_{t \to +\infty} \|H_r(\cdot, t)\|_{C([g(t), h(t)])} = 0.
$$

\section{Spreading in the human world}

Theorem 5.9 shows that if $r^F_0(0) < 1$ and $R_0^F(0) < 1$, avian influenza vanishes in the bird world and the human world for small initial infection. The following result shows that if $R_0^F(0)$ is big, the mutant avian influenza will spread in the human world.

Theorem 6.1. Assume that $r^F_0(0) < 1$ and $R_0^F(0) \geq 1 + \frac{\beta_h (2h^2 + (d_h + \gamma_h))}{(2h^2 + (d_h + \gamma_h))}$, where $M = \beta_m \max \left\{ \frac{\gamma_h}{2d_h}, 2 \frac{\gamma_h}{2d_h} \right\}$. Then $h_\infty - g_\infty < \infty$ and

$$
\lim_{t \to +\infty} \|B_i(\cdot, t)\|_{C([g(t), h(t)])} = 0, \quad \lim_{t \to +\infty} \|H_a(\cdot, t)\|_{C([g(t), h(t)])} = 0,
$$

$$
\liminf_{t \to +\infty} \|H_m(\cdot, t)\|_{C([g(t), h(t)])} > 0 \quad \text{and} \quad \liminf_{t \to +\infty} \|H_r(\cdot, t)\|_{C([g(t), h(t)])} > 0
$$

provided that $\|B_{i0}(x)\|_{C([-h_0,h_0])}$ and $\|H_{i0}(x)\|_{C([-h_0,h_0])}$ are small enough.

\textbf{Proof.} Let \overline{B}_i and $\sigma(t)$ be the same as those in Theorem 5.7, and $\overline{H}_a(x, t)$ is defined in Theorem 5.9. Let

$$
g(t) = -h_0, \quad h(t) = h_0, \quad B_i = 0,
$$

$$
\overline{g}(t) = -\sigma(t), \quad \overline{H}_i = \sigma(t), \quad \overline{H}_a = 0,
$$

$$
\overline{H}_m(x, t) = \delta_m \phi(x), \quad \overline{H}_r(x, t) = \frac{\gamma_h}{2(\beta_m + d_h)} \overline{H}_m(x, t), \quad \text{for} \quad -h_0 \leq x \leq h_0, \quad t \geq 0,
$$

$$
\overline{H}_m(x, t) = \delta_m \phi(x), \quad \overline{H}_r(x, t) = \frac{\gamma_h}{2(\beta_m + d_h)} \overline{H}_m(x, t), \quad \text{for} \quad -h_0 \leq x \leq h_0, \quad t \geq 0,
\[\Pi_{m}(x,t) = N^*_h, \quad \Pi_{r} = \frac{\beta_{m}\gamma_{h} - \lambda_{R_{0}}d_{h}}{2\beta_{m}d_{h}}N_{h}, \quad \text{for } -\sigma(t) \leq x \leq \sigma(t), \quad t \geq 0, \]

where \(\phi(x) > 0 \) and \(\lambda_{R_{0}} \leq -M \) satisfy (4.4) on \(\Omega = (-h_{0}, h_{0}) \). Without loss of generality, assume that \(H_{m_{0}}(x) > 0 \) and \(H_{r_{0}}(x) > 0 \) for \(x \in (-h_{0}, h_{0}) \), otherwise we replace the initial time 0 by any \(t_{0} > 0 \). Therefore, there exists \(\delta_{m} > 0 \) such that

\[\delta_{m} \leq \min_{x \in (-h_{0}, h_{0})} \left\{ \frac{H_{m_{0}}(x)}{\phi(x)}, \frac{2(\beta_{m} + d_{h})H_{r_{0}}(x)}{\gamma_{h}\phi(x)} \right\}. \]

Direct calculations give that

\[\frac{\partial \Pi_{i}}{\partial t} - D_{h}\frac{\partial^{2} \Pi_{i}}{\partial x^{2}} - \frac{\beta_{b}(N_{b}^* - \Pi_{i})}{N_{b}^*} + d_{b}\Pi_{i} \leq 0, \]

\[\frac{\partial \Pi_{a}}{\partial t} - D_{h}\frac{\partial^{2} \Pi_{a}}{\partial x^{2}} - \frac{\beta_{a}(N_{a}^* - \Pi_{a})}{N_{a}^*} + d_{h} + \varepsilon_{h}\Pi_{a} \leq 0. \]

According to Theorems 5.7 and 5.9, we have

\[\frac{\partial \Pi_{m}}{\partial t} - D_{h}\frac{\partial^{2} \Pi_{m}}{\partial x^{2}} - \frac{\beta_{m}(N_{m}^* - \Pi_{m} - \Pi_{r})}{N_{m}^*} - \varepsilon_{h}\Pi_{m} + (d_{h} + \varepsilon_{h})\Pi_{m} = \beta_{m}H_{m} - \varepsilon_{h}\Pi_{m} = \epsilon_{h}H_{m} + (d_{h} + \gamma_{h})H_{m} \geq 0, \]

\[\frac{\partial \Pi_{r}}{\partial t} - D_{h}\frac{\partial^{2} \Pi_{r}}{\partial x^{2}} - \gamma_{h}H_{m} + d_{h}\Pi_{r} = -\gamma_{h}N_{h}^* + \frac{\beta_{m}\gamma_{h} - \lambda_{R_{0}}d_{h}}{2\beta_{m}}N_{h}^* \geq 0. \]

Moreover,

\[\frac{\partial H_{m}}{\partial t} - D_{h}\frac{\partial^{2} H_{m}}{\partial x^{2}} - \gamma_{h}H_{m} + d_{h}H_{m} = \left[-\frac{\gamma_{h}(\beta_{m} + \gamma_{h} + 2d_{h})}{2(\beta_{m} + d_{h})} + \frac{\lambda_{R_{0}}\gamma_{h}}{2(\beta_{m} + d_{h})} \right] H_{m} < 0, \]

\[0 = (h_{0})' \leq -\mu D_{h}\frac{\partial B}{\partial x}(h_{0}, t), \quad t > 0, \]

\[0 = (-h_{0})' \geq -\mu D_{h}\frac{\partial B}{\partial x}(-h_{0}, t), \quad t > 0. \]

Considering the initial values, if \(\delta_{m} \) is sufficiently small, then we have

\[\delta_{m}\gamma_{h} \phi(x) \leq H_{m_{0}}(x) \leq H_{m}(x, 0), \quad \text{for } -h_{0} < x < h_{0}, \]

\[\frac{\delta_{m}\gamma_{h}}{2(\beta_{m} + d_{h})} \phi(x) \leq H_{r_{0}}(x) \leq H_{r}(x, 0), \quad \text{for } -h_{0} < x < h_{0}. \]
Combining the above results with Theorems 5.7 and 5.9, and applying Lemma 5.8 yield that
\[B_i \leq B_i = \varepsilon e^{-\delta t} \varphi(xh_0/\sigma(t)), \quad H_a \leq H_a = \varepsilon e^{-\delta t} \varphi(xh_0/\sigma(t)), \]
\[H_m \leq H_m(x, t) = N_h^*, \quad H_r \leq H_r = \frac{\beta_m \gamma_h - \lambda_{B_i} d_h}{2\beta_m d_h} N_h^*, \]
for \((x, t) \in (g(t), h(t)) \times (0, \infty),\) and
\[B_i \geq B_i = 0, \quad H_r \geq H_r = \frac{\gamma_h \delta_m}{2\beta_m + d_h} \phi, \quad \text{for } -h_0 < x < h_0, \quad t > 0, \]
\[H_a \geq H_a = 0, \quad H_m \geq H_m = \delta_m \phi(x), \quad \text{for } -h_0 < x < h_0, \quad t > 0. \]
Hence, we can get the conclusion that
\[\lim_{t \to +\infty} \| B_i(\cdot, t) \|_{C((g(t), h(t)))} = 0, \quad \lim_{t \to +\infty} \| H_a(\cdot, t) \|_{C((g(t), h(t)))} = 0, \]
\[\liminf_{t \to +\infty} \| H_m(\cdot, t) \|_{C((g(t), h(t)))} > 0, \quad \liminf_{t \to +\infty} \| H_r(\cdot, t) \|_{C((g(t), h(t)))} > 0. \]
Therefore, \(h_\infty - g_\infty < \infty\) by Theorem 5.7.

\section*{7 Spreading in the bird world}

In this section, we are considering the case that the avian influenza spreads in the bird world.

\textbf{Theorem 7.1.} If \(r^0_0(0) := r^0_0((-h_0, h_0)) \geq 1,\) then
\[h_\infty - g_\infty = \infty \quad \text{and} \quad \liminf_{t \to +\infty} \| B_i(\cdot, t) \|_{C((g(t), h(t)))} > 0. \]

\textbf{Proof.} In the case that \(r^0_0((-h_0, h_0)) > 1,\) we can get \(\lambda_{r_0} < 0\) by Lemma 4.2(i). Then we choose its corresponding eigenfunction \(\varphi > 0\) such that
\[\begin{cases} -D \Delta \varphi = \beta \varphi - d_0 \varphi + \lambda \varphi, & -h_0 < x < h_0, \\ \varphi(-h_0) = \varphi(h_0) = 0. \end{cases} \quad (7.1) \]

Now, we want to construct a lower solution to the bird system with the free boundary.

Defining
\[B_i(x, t) = \delta_1 \varphi(x), \quad \text{for } -h_0 \leq x \leq h_0, \quad t > 0, \]
we then have that
\[\frac{\partial B_i}{\partial t} - D_0 \frac{\partial^2 B_i}{\partial x^2} = \frac{\beta_0 (N_h^* - B_i) B_i}{N_h^*} + d_0 B_i \]
\[= -D_0 \delta_1 \varphi'' - \frac{\beta_0 (N_h^* - B_i) B_i}{N_h^*} + d_0 B_i \]
\[= \left(\lambda_{r_0} + \frac{\delta_1 \beta_0 \varphi}{N_h^*} \right) B_i \leq 0, \quad -h_0 \leq x \leq h_0, \quad t > 0, \]
if \(\delta_1\) is sufficiently small.

Moreover,
\[B_i(-h_0, t) = B_i(h_0, t) = 0, \]
\[0 = h_0' \leq -\mu D_0 \frac{\partial B_i}{\partial x}(h_0, t), \quad \text{for } t > 0, \]
\[0 = -h_0' \geq -\mu D_0 \frac{\partial B_i}{\partial x}(-h_0, t), \quad \text{for } t > 0. \]
Noting that δ_1 is small such that $B_i(x, 0) \leq B_i(0)$, we have $B_i(x, t) \geq B_i(0)$ for $(x, t) \in [-h_0, h_0] \times [0, \infty)$ by using Lemma 5.6. Thus $\liminf_{t \to +\infty} \|B_i(\cdot, t)\|_{C((-h_0, h_0))} \geq \delta_1 \varphi(x) > 0$ and it follows from Corollary 5.3 that $h_\infty - g_\infty = \infty$.

The other case $r_0^g(0) = 1$ can follow from the above. In fact, for any $T_0 > 0$, we have $g(T_0) < -h_0$ and $h(T_0) > h_0$ by Lemma 3.2. From Lemma 4.3(iv), we get $r_0^g((g(T_0), h(T_0))) > r_0^g(0) = 1$.

Following the proof of Theorem 7.1, we have the following result.

Corollary 7.2. For any $t_0 \in (0, +\infty)$, if $r_0^g(t_0) \geq 1$, then

$$h_\infty - g_\infty = \infty \quad \text{and} \quad \lim\inf_{t \to +\infty} \|B_i(\cdot, t)\|_{C((g(t), h(t)))} > 0.$$

Theorem 7.3. Assume that $r_0^g(0) := r_0^g((-h_0, h_0))) < 1 < r_0$. Then

$$h_\infty - g_\infty = \infty \quad \text{and} \quad \lim\inf_{t \to +\infty} \|B_i(\cdot, t)\|_{C((g(t), h(t)))} > 0,$$

if $\|B_i(0)\|_{C((-h_0, h_0))}$ is sufficiently large.

Proof. Let λ be the principle eigenvalue of the problem

$$\begin{cases}
-D_b \psi'' - \frac{1}{2} \psi' = \lambda \psi, & 0 < x < 1, \\
\psi'(0) = \psi(1) = 0,
\end{cases} \quad (7.2)$$

its corresponding eigenfunction ψ can be chosen positive in $[0, 1]$ and $\|\psi\|_{L^\infty([0,1])} = 1$. Then it satisfies that $\psi'(x) > 0$ in $[-1, 0)$ and $\psi'(x) < 0$ in $(0, 1]$. Now, if we extend ψ to be defined in $[-1, 1]$, then it satisfies

$$\begin{cases}
-D_b \Psi'' - \frac{\sgn(x)}{2} \Psi' = \lambda \Psi, & -1 < x < 1, \\
\Psi(-1) = \Psi(1) = 0.
\end{cases} \quad (7.3)$$

Since $r_0 > 1$ by assumption, it follows from Lemma 4.4 that $\lim_{T \to +\infty} r_0^g((-\sqrt{T}, \sqrt{T})) = r_0 > 1$ and there exists a large T^* such that $r_0^g((-\sqrt{T^*}, \sqrt{T^*})) > 1$. Now, let any $T > T^*$ and we want to construct a suitable lower solution $(B_i; g, h)$ to (2.6) for $0 \leq t \leq T$.

Define

$$g(t) = -\sqrt{t + \sigma}, \quad h(t) = \sqrt{t + \sigma}, \quad \text{for} \ t > 0,$$

$$B_i(x, t) = \frac{M}{(t + \sigma)^k} \Psi \left(\frac{x}{\sqrt{t + \sigma}} \right), \quad -\sqrt{t + \sigma} \leq x \leq \sqrt{t + \sigma}, \quad t \geq 0.$$

Let $0 < \sigma \leq \min\{1, h_0^2\}$ and $k > \lambda + d_b(T + 1)$. Direct computation yields

$$\begin{align*}
\frac{\partial B_i}{\partial t} - D_b \frac{\partial^2 B_i}{\partial x^2} - \frac{\beta_b(N_b^* - B_i)}{N_b^*} + d_b B_i & = -M(t + \sigma)^{-k-1} \left(D_b \Psi'' + \frac{x}{2\sqrt{t + \sigma}} \Psi' + k \Psi + \left[\frac{\beta_b(N_b^* - B_i)}{N_b^*} - d_b \right] (t + \sigma) \Psi \right) \\
& \leq -M(t + \sigma)^{-k-1} \left(D_b \Psi'' + \frac{\sgn(x)}{2} \Psi' + \lambda \Psi \right) = 0,
\end{align*}$$

for all $-\frac{1}{2} \leq x \leq h$ and $0 < t \leq T$. We now choose $M > -\frac{(T + 1)^k}{2\mu D_b \Psi(t)}$ sufficiently large such that

$$\begin{align*}
\Psi'(t) + \mu D_b (B_i)_x (\sqrt{t + \sigma}, t) & = \frac{1}{2\sqrt{t + \sigma}} + \frac{\mu D_b M}{(t + \sigma)^{k+1/2}} \Psi'(1) < 0, \\
\Psi'(t) + \mu D_b (B_i)_x (-\sqrt{t + \sigma}, t) & = -\frac{1}{2\sqrt{t + \sigma}} + \frac{\mu D_b M}{(t + \sigma)^{k+1/2}} \Psi'(-1) > 0.
\end{align*}$$
Then we obtain
\[
\begin{cases}
\frac{\partial B}{\partial t} - D_b \frac{\partial^2 B}{\partial x^2} \leq \beta_b(N_b - \frac{B}{B_i}) - d_B B, & |x| < \sqrt{t + \sigma}, \quad 0 < t \leq T, \\
B_i(g(t), t) = B_i(h(t), t) = 0, & 0 < t \leq T, \\
g(0) = -\sqrt{\sigma} \geq -h_0, \quad g'(t) \geq -\mu D_b \frac{\partial B}{\partial x}(g(t), t), & 0 < t \leq T, \\
h(0) = \sqrt{\sigma} \leq h_0, \quad h'(t) \leq -\mu D_b \frac{\partial B}{\partial x}(h(t), t), & 0 < t \leq T.
\end{cases}
\]
Noting that \(\|B_{10}(x)\|_{C([-h_0, h_0])}\) is sufficiently large, we get \(B_i(x, 0) = \frac{h_0}{\beta_b} \psi(\frac{x}{\sqrt{\sigma}}) \leq B_{10}(x)\) in \([-\sqrt{\sigma}, \sqrt{\sigma}]\).
By using Lemma 5.6, we get \(h(t) \geq h(T)\) and \(g(t) \leq g(T)\) in \([0, T]\). Then we have that \(h(T) \geq h(T) = \sqrt{T + \sigma} \geq \sqrt{T}\), and \(g(T) \leq g(T) = -\sqrt{T + \sigma} \leq -\sqrt{T}\). Therefore,
\[
r_0^F(T^*) = r_0^D((-g(T^*), h(T^*))) \geq r_0^D((-\sqrt{T^*}, \sqrt{T^*})) > 1,
\]
which together with Corollary 7.2 gives that \(h_{\infty} - g_{\infty} = \infty\) and \(\liminf_{t \to +\infty} \|B_i(\cdot, t)\|_{C([g(t), h(t)])} > 0\) \(\square\)

8 Discussion

Most prior work related to the disease transmitting has focused on the understanding of the disease dynamic in the fixed domain. There is almost no work which has investigated the characteristics of disease spreading in a moving area.

In this paper, we introduce two moving boundaries, which are called free boundaries, to describe the avian influenza virus transmitting in the habitat. The dynamical behaviors of the solution have been discussed. Two basic reproduction numbers \(r_0^F(t)\) and \(R_0^F(t)\) are given for the free boundary problem (2.4) in Section 4. The infected domain \((g(t), h(t))\) changes with \(t\), so the basic reproduction numbers depend on time \(t\). It has been shown that the two reproduction numbers \(r_0^F(t)\) and \(R_0^F(t)\) are monotonically increasing with respect to \(t\), and \(r_0^F(t)\) and \(R_0^F(t)\) approach to \(r_0\) and \(R_0\) as \(t \to \infty\), respectively, where \(r_0\) and \(R_0\) are the responding basic reproduction numbers of avian influenza in the homogeneous bird world and mutant avian influenza in the homogeneous world, respectively.

Recently, much work with the basic reproduction number has been done to study the diseases dynamic properties. The basic reproduction numbers are usually defined by constants. But our definition of the basic reproduction numbers are time-dependent, and thus \(r_0^F(t)\) and \(R_0^F(t)\) can be utilized to predict spreading or vanishing of the avian influenza virus.

The sufficient conditions are given to determine the transmission of the avian influenza virus. Our results show that spreading or vanishing of the avian influenza is not only related to the basic reproduction numbers \(r_0^F(t)\) and \(R_0^F(t)\), but the initial infection. If \(r_0^F(0) < 1\), \(R_0^F(0) < 1\) and the initial infection value is small, the avian influenza disease vanishes, i.e., \(h_{\infty} - g_{\infty} < \infty\),
\[
\lim_{t \to +\infty} \|B_i(\cdot, t)\|_C, \|H_a(\cdot, t)\|_C, \|H_m(\cdot, t)\|_C, \|H_r(\cdot, t)\|_C = (0, 0, 0, 0)
\]
uniformly for \(x \in [g(t), h(t)]\) (see Theorem 5.9). It is shown that the mutant avian influenza spreads in the human world if \(r_0^F(0) < 1\) and
\[
R_0^F(0) \geq 1 + \frac{M}{D_h(\frac{\sigma}{2h_0})^2 + (d_h + \gamma_h)}
\]
(see Theorem 6.1). If \(r_0^F(t_0) \geq 1\) for any \(t_0 > 0\), then the avian influenza transmits in the bird world (see Corollary 7.2).

Nowadays, epidemic models have attracted much attention [14], especially, avian influenza model. The study of our work tries to describe the spreading process of the disease, and encourages people to take good strategies to prevent the avian influenza virus from transmitting to human world. There are some work to do, for example, the spreading speed when spreading happens.
Acknowledgements The work was supported by National Natural Science Foundation of China (Grant No. 11071209), Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant No. 2010-0025700), and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No. 12KJD110008).

References

1 Allen L J S, Bolker B M, Lou Y, et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin Dyn Syst A, 2008, 21: 1–20
2 Brauer F, Castillo-Chavez C. Mathematical Models in Population Biology and Epidemiology. In: Tests in Applied Mathematics, vol. 40. New York: Springer, 2001
3 Capua I, Mutinelli F. A Colour Atlas and Text on Avian Influenza. Bologna: Papi Editore, 2001
4 Chen X F, Friedman A. A free boundary problem arising in a model of wound healing. SIAM J Math Anal, 2000, 32: 778–800
5 Daszak P, Cunningham A A, Hyatt A D. Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science, 2000, 287: 443–449
6 Drancourt M, Raoult D. Molecular insights into the history of plague. Microbes Infect, 2002, 4: 105–109
7 Du Y H, Lin Z G. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J Math Anal, 2010, 42: 377–405
8 Iwami S, Takeuchi Y, Liu X N. Avian-human influenza epidemic model. Math Biosci, 2007, 207: 1–25
9 Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics. Proc Roy Soc Ser A, 1927, 115: 700–721
10 Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics. Proc Roy Soc Ser A, 1932, 138: 55–83
11 Kim K I, Lin Z G, Ling Z. Global existence and blowup of solutions to a free boundary problem for mutualistic model. Sci China Math, 2010, 53: 2085–2095
12 Kim K I, Lin Z G, Zhang L. Avian-human influenza epidemic model with diffusion. Nonlinear Anal, 2010, 11: 313–322
13 Ladyzenskaja O A, Solonnikov V A, Ural’ceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence, RI: Amer Math Soc, 1968
14 Li H, Gatsonis C. Dynamic optimal strategy for monitoring disease recurrence. Sci China Math, 2012, 55: 1565–1582
15 Li J, Ma Z. Qualitative analyses of SIS epidemic model with vaccination and varying total population size. Math Comput Modelling, 2002, 35: 1235–1243
16 Liao Q Y, Lam W W T, Dang V T, et al. What causes H5N1 avian influenza? Lay perceptions of H5N1 aetiology in South East and East Asia. J Public Health, 2009, 31: 573–581
17 Lin Z G. A free boundary problem for a predator-prey model. Nonlinearity, 2007, 20: 1883–1892
18 Lin Z G. Introduction to Mathematical Ecology (in Chinese). Beijing: Science Press, 2013
19 Liu B, Duan Y, Luan S. Dynamic of an SI epidemic model with external effects in a polluted environment. Nonlinear Anal, 2012, 13: 27–38
20 Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population size. J Math Biol, 1992, 30: 693–716
21 Murray J D. Mathematical Biology II. New York: Springer, 2003
22 Obenauer J C, Denson J, Mehta P K, et al. Large-scale sequence analysis of avian influenza Isolates. Science, 2006, 311: 1576–1580
23 Okubo A, Levin S A. Diffusion and Ecological Problems: Modern Perspective. New York: Springer, 2001
24 Shaw K. The 2003 SARS outbreak and its impact on infection control practices. Public Health, 2006, 120: 8–14
25 Shinya K, Ebina M, Yamada S, et al. Avian flu: Influenza virus receptors in the human airway. Nature, 2006, 442: 345–346
26 Taubenberger J K, Reid A H, Lourens R M, et al. Molecular virology: Was the 1918 pandemic caused by a bird flu? Was the 1918 flu avian in origin? Nature, 2006, 440: E9–E10
27 Xiao X, Yao J S, Shao S H, et al. Particular symmetry in RNA sequence of SARS and the origin of SARS coronavirus. Int J Nonlin Sci Numer Simul, 2005, 6: 181–186
28 Zhou P, Lin Z G. Global fast and slow solutions of a localized problem with free boundary. Sci China Math, 2012, 55: 1937–1950