The 256 kb mitochondrial genome of *Clavaria fumosa* is the largest among phylum Basidiomycota and is rich in introns and intronic ORFs

Xu Wang¹, Yajie Wang¹, Wen Yao¹, Jinwen Shen¹, Mingyue Chen¹, Ming Gao¹, Jiening Ren¹, Qiang Li²* and Na Liu¹*

Abstract
In the present study, the complete mitogenome of *Clavaria fumosa*, was sequenced, assembled, and compared. The complete mitogenome of *C. fumosa* is 256,807 bp in length and is the largest mitogenomes among all Basidiomycota mitogenomes reported. Comparative mitogenomic analysis indicated that the *C. fumosa* mitogenome contained the most introns and intronic ORFs among all fungal mitogenomes. Large intergenic regions, intronic regions, accumulation of repeat sequences and plasmid-derived genes together promoted the size expansion of the *C. fumosa* mitogenome. In addition, the *rps3* gene was found subjected to positive selection between some Agaricales species. We found frequent intron gain/loss events in Agaricales mitogenomes, and four novel intron classes were detected in the *C. fumosa* mitogenome. Large-scale gene rearrangements were found occurred in Agaricales species and the *C. fumosa* mitogenome had a unique gene arrangement which differed from other Agaricales species. Phylogenetic analysis for 76 Basidiomycetes based on combined mitochondrial gene sets indicated that mitochondrial genes could be used as effective molecular markers for reconstructing evolution of Basidiomycota. The study served as the first report on the mitogenomes of the family Clavariaceae, which will promote the understanding of the genetics, evolution and taxonomy of *C. fumosa* and related species.

Keywords: Agaricales, Mitochondrial genome, Intron, Evolution, Phylogenetic analysis

Introduction
Clavaria fumosa, belonging to the family Clavariaceae and the order Agaricales, is a mushroom-forming fungus with dark basidiomata (Kautmanova et al. 2012b). Species of the family Clavariaceae produce simple clubs, coralloid, lamellate-stipitate, hydnoid and resupinate sporocarps (Birkebak et al. 2013). Morphological classification of Clavariaceae species was mostly based on spore characters and presence or absence of clamps (Kautmanova et al. 2012a, b). Compared with other species of Agaricales, Clavariaceae species have few morphological characteristics for taxonomy, which made it difficult to classify or identify species or subspecies from the family Clavariaceae accurately. The introduction of molecular markers, including LSU nrDNA, RNA polymerase II second largest subunit (*rpb2*), nuclear ribosomal 28S, and internal transcribed spacer region (ITS) has promoted the revision of taxonomic concept and phylogeny of Clavariaceae species (Birkebak et al. 2016; Dentinger and McLaughlin 2006; Kautmanova et al. 2012a; Olariaga et al. 2015).

Mitogenome was believed acquired from alphaproteobacteria by eukaryotic ancestors through endosymbiosis
(Lang et al. 1999; Munoz-Gomez et al. 2017). In the long-term evolution, mitogenome has been used as a molecular marker to reflect the phylogeny and evolutionary status of fungi (Cameron 2014; Carpi et al. 2016; Fourie et al. 2018; Li et al. 2018c). In addition, the genome organization, content, structure, tRNA gene, repeat sequence, gene arrangement, and also the intron information provided abundant information for understanding the origin and evolution of fungi (Adams et al. 2002; Aguileta et al. 2014; Beaudet et al. 2013; Wang et al. 2020). It was reported that the mitogenome of fungi had a moderate evolution rate, which was between plants (the lowest) and animals (the highest) (Aguileta et al. 2014). Despite large variations in mitochondrial content (Li et al. 2019e; Sandor et al. 2018), most fungal species contained a set of core protein coding genes (PCGs), which included atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4l, nad5, nad6, and rps3 (Li et al. 2018b, 2019b). The mitogenome of fungi contains various types of introns. As mobile genetic elements in mitogenome, introns could significantly alter the organization and size of fungal mitogenomes. Intron in fungal mitogenome could be divided into different position classes (Pcls) based on their precise insertion position in the coding region of host genes (Férandon et al. 2010). Homologous introns usually belong to the same Pcl and have high sequence similarities. Introns belonging to different Pcls are considered non-homologous and have low sequence similarities. Compared with millions of Basidiomycota species in nature, the number of available Basidiomycota mitogenomes is very limited (less than 120 Basidiomycota mitogenomes available in national center for biotechnology information database), even far less than its counterparts in the phylum Basidiomycota – only 30 species (Valach et al. 2014) and MITOS (Bernt et al. 2013), both based on the genetic code 4. PCGs were then modified or predicted using the NCBI Open Reading Frame Finder (https://www.ncbi.nlm.nih.gov/orffinder), and further annotated by BLASTP searches against the NCBI non-redundant protein sequence database (Blesaw and Wootton 1990). The exonater2.2 (Slater and Birney 2005) software was used to verify intron-exon borders of PCGs. tRNA genes in the C. fumosa mitogenome were also predicted with tRNAscan-SE v1.3.1 (Lowe and Chan 2016). Graphical map of the mitogenome of C. fumosa was drawn with OGDraw v1.2 (Lohse et al. 2013).

Sequence analysis of the C. fumosa mitogenome

The DNASTAR Lasergene v7.1 (http://www.dnastar.com/) was used to calculate base compositions of the C. fumosa mitogenome and other Agaricales mitogenomes. Strand asymmetries of the Agaricales mitogenomes tested were calculated based on the following formulas: AT skew = [A - T] / [A + T], and GC skew = [G - C] / [G + C]. Sequence Manipulation Suite (Stothard 2000) was used to analyze codon usage within the C. fumosa

Materials and methods

Mitogenome sequencing, assembly and annotations

The fruiting bodies of C. fumosa were obtained from the Collection Center of Chengdu University (NO. SLZ096). We used a Fungal DNA Kit D3390-00 (Omega Bio-Tek, Norcross, GA, USA) to extract total genomic DNA of the C. fumosa fruiting bodies. A NEB Next Ultra II DNA Library Prep Kit (NEB, Beijing, China) was used to construct sequencing libraries with insert size of 200 bp and read length of 150 bp. Whole genomic sequencing (WGS) of C. fumosa was performed using an Illumina HiSeq 2500 Platform (Illumina, San Diego, CA, USA). Approximate 20 Gb of raw data was obtained through WGS, and then a series of quality control steps were performed to generate clean reads from the raw sequencing data, which included removing adapter reads by the AdapterRemoval v 2 (Schubert et al. 2016), and filtering low-quality sequences using our own compiling pipeline. The SPAdes 3.9.0 software (Bankevich et al. 2012) was used to assemble the mitogenome of C. fumosa using the clean reads we obtained. The MITObim V1.9 (Hahn et al. 2013) software was used to fill gaps between contigs we obtained in previous steps. The obtained complete mitogenome of C. fumosa was annotated according to our previously described methods (Li et al. 2018d, 2020b). Briefly, we initially annotated the protein-coding genes (PCGs), rRNA genes, tRNA genes and introns of the C. fumosa mitogenome using Mannot (Valach et al. 2014) and MITOS (Bernt et al. 2013), both based on the genetic code 4. PCGs were then modified or predicted using the NCBI Open Reading Frame Finder (https://www.ncbi.nlm.nih.gov/orffinder), and further annotated by BLASTP searches against the NCBI non-redundant protein sequence database (Blesaw and Wootton 1990). The exonater2.2 (Slater and Birney 2005) software was used to verify intron-exon borders of PCGs. tRNA genes in the C. fumosa mitogenome were also predicted with tRNAscan-SE v1.3.1 (Lowe and Chan 2016). Graphical map of the mitogenome of C. fumosa was drawn with OGDraw v1.2 (Lohse et al. 2013).
mitogenome, based on the genetic code 4. The non-synonymous substitution rates (Ka) and synonymous substitution rates (Ks) for core PCGs in the C. fumosa mitogenome and other Agaricales mitogenomes reported were calculated using the DnaSP v6.10.01 (Rozas et al. 2017). The genetic distances between each pair of the 15 core PCGs were calculated using MEGA v6.06 (Caspersmeyer 2016) based on the Kimura-2-parameter (K2P) substitution model.

Repetitive element analysis
We conducted BLASTN searches (Chen et al. 2015) of the C. fumosa mitogenome against itself to identify if there were intra-genomic duplications of large fragments or interspersed repeats throughout the mitogenome, using an E-value of < 10^-10 as a threshold. Tandem repeats (> 10 bp) within the C. fumosa mitogenome were detected using the Tandem Repeats Finder (Benson 1999) with default parameters. Repeated sequences in the mitogenome of C. fumosa were also detected by REPuter to identify forward (direct), reverse, complemented, and palindromic (revere complemented) repeats (Kurtz et al. 2001). To identify whether there was natural gene segments transferred between the C. fumosa mitogenome and its nuclear genome, we conducted BLASTN searches of the mitogenome against the published nuclear genome (CVRD00000000.1).

Comparative mitogenomic analysis and intron analysis
Comparative mitogenomic analysis was conducted to assess conservation and variations between the reported Agaricales mitogenomes in mitogenome sizes, GC content, base composition, gene arrangement, start and stop codon, gene and intron numbers. Introns of cox1 genes of the 22 Agaricales mitogenomes were classified into different position classes (Pcls) according to the method described by Férandon et al. (2010). Each Pcl was constituted by introns inserted at the same position in the coding region of the cox1 gene. The same Pcl from different species usually has a high sequence similarity and contains orthologous intronic ORF.

Phylogenetic analysis
In order to investigate the phylogenetic position of the C. fumosa mitogenome in the phylum Basidiomycota, we constructed a phylogenetic tree of 76 Basidiomycota species based on the combined mitochondrial gene set (15 core PCGs + 2 rRNA genes) according to our previously described methods (Li et al. 2018d). **Annulohypoxylon stygium** (Deng et al. 2018), from the Ascomycota phylum, was used as the outgroup. Individual mitochondrial gene was first aligned using the MAFFT v7.037 software (Katoh et al. 2017). Then the SequenceMatrix v1.7.8 (Vaidya et al. 2011) software was used to concatenate the aligned mitochondrial genes into a combined mitochondrial gene set. A preliminary partition homogeneity test was conducted to detect potential phylogenetic conflicts between different genes. PartitionFinder 2.1.1 (Lanfear et al. 2017) was used to determine best-fit models of evolution and partitioning schemes for the mitochondrial gene set. Both bayesian inference (BI) and maximum likelihood (ML) methods were used to construct the phylogenetic tree. MrBayes v3.2.6 (Ronquist et al. 2012) was used for the BI analysis, and RAxML v 8.0.0 (Stamatakis 2014) was used to perform the ML analysis.

Data availability
The complete mitogenome of C. fumosa was deposited in the GenBank database under the accession number MT114157.

Results

Characterization and PCGs of the C. fumosa mitogenome
The mitogenome of C. fumosa was composed of circular DNA molecules with a size of 256,807 bp (Fig. 1). The GC content of the C. fumosa mitogenome was 19.74%. Both the AT skew and GC skew of the C. fumosa mitogenome were positive (Table S1). A total of 121 PCGs were detected in the C. fumosa mitogenome, including 46 non-intronic PCGs and 60 intronic ORFs. These 46 non-intronic PCGs contained 15 core PCGs and 31 non-conserved PCGs (Table S2). Non-conserved PCGs in the C. fumosa mitogenome included 8 DNA polymerases, 8 RNA polymerases, and 15 proteins with unknown functions. A total of 64 introns were detected in the C. fumosa mitogenome, 56 of which belonged to the group I, 2 belonged to the group II, with the remaining 6 introns containing unknown types. The intronic ORFs in the C. fumosa mitogenome mainly encoded GIY-YIG endonucleases and LAGLIDAG endonucleases.

RNA genes and mitogenome compositions
We detected two rRNA genes in the mitogenome of C. fumosa, including the small subunit ribosomal RNA (rns), and the large subunit ribosomal RNA (rnl) (Table S2). Thirty-eight tRNA genes were detected in the mitogenome of C. fumosa, which were folded into classical cloverleaf structures (Fig. S1). The C. fumosa mitogenome contained 2 tRNAs with different anticodons coding for cysteine, phenylalanine, serine, arginine, leucine, 4 tRNAs with different anticodons coding for Aspartate, and 5 tRNAs with different anticodons coding for Isoleucine. The mitogenome of C. fumosa also contained 2 tRNAs with the same anticodons coding for glutamate and asparagine, and 3 tRNAs with the same anticodons coding for lysine and methionine. The length of individual tRNA gene ranged from 70 bp to 86 bp,
which was mainly due to variations of the extra arm. Of all the 161 genes detected, 125 genes were located on the direct strand and 36 genes were on the reverse strand. Intergenic region accounted for the largest proportion of the *C. fumosa* mitogenome, comprising 38.13% of the total mitogenome, indicating that the *C. fumosa* mitogenome had a loose structure (Fig. 2). A total of 93,365 bp of intronic sequences were detected in the *C. fumosa* mitogenome, which was the second largest part (36.36%) of the *C. fumosa* mitogenome. Protein coding regions accounted for 22.22% of the *C. fumosa* mitogenome and RNA coding region for 3.29%.
Codon usage analysis
ATG was the most commonly used start codon in the core PCGs of the 22 Agricales species tested, except in the cox1, nad1 and nad6 genes, which also used GTG and TTG as start codons (Table S3). TAA was most commonly used as stop codon in core PCGs of the 22 Agaricales species, followed by TAG. Most of the core PCGs in the C. fumosa mitogenome used ATG as the start codon, with an exception of the nad6 gene. The atp9 and nad1 genes of the C. fumosa mitogenome used TAG as stop codons.

Codon usage analysis indicated that the most frequently used codons in the mitogenome of C. fumosa were AAA (for lysine; Lys), TTT (for phenylalanine; Phe), TTA (for leucine; Leu), ATT (for isoleucine; Ile) and AAT (for asparagine; Asn) (Fig. 3). The high frequency of A and T used in codons contributed to the high AT content of the C. fumosa mitogenome (80.26%).

Repeat elements in the C. fumosa mitogenome
A total of 178 repetitive sequences were detected in the mitogenome of C. fumosa through BLASTN searches of the mitogenome against itself (Table S4). The size of these repetitive sequences ranged from 42 bp to 1302 bp, with nucleotide similarities ranging from 71.22 to 100%. The longest repetitive sequences were located in the first intron of the nad6 gene, and also in the third intron of the cox2 gene. A total of 98,181 bp repetitive sequences were detected in the C. fumosa mitogenome, which accounted for 38.23% of the whole mitogenome.

A total of 233 tandem repeats were detected in the mitogenome of C. fumosa, which accounted for 4.64% of the whole mitogenome (Table S5). The longest tandem sequence in the C. fumosa mitogenome was 207 bp, which was located in the intergenic region between neighboring genes trnM and orf517. About 78.97% tandem repeat sequences in the mitogenome of C. fumosa were repeated 2–5 times, and the highest copy number detected was 90 in the C. fumosa mitogenome. We also identified 21 forward, 4 palindromic and 25 reverse repeats in the C. fumosa mitogenome though REPuter (Table S6), which accounted for 2.61% of the whole mitogenome.

We also conducted BlastN searches of the mitogenome of C. fumosa against its nuclear genome to detect if there was any gene fragment that naturally transferred between the mitochondrial and nuclear genomes. A total of 471 aligned fragments were detected between the mitochondrial and nuclear genomes of C. fumosa (Table S7). The aligned fragments ranged from 70 bp to 1154 bp and the nucleotide similarities of the aligned fragments ranged from 72.92 to 100%. The largest aligned fragment was located in the first intron region and the second exon region of the nad2 gene. The second largest aligned fragment was found located in the sixth intron of the rnl gene, with a length of 1057 bp. A total of 112,991 bp aligned fragments were detected in the C. fumosa mitogenomes, which indicated that natural gene fragment transfer events may have occurred between mitochondrial and nuclear genomes of C. fumosa.
Genetic distance and evolutionary rates of core PCGs

In the present study, we calculated the genetic distance and substitution rates between 22 Agaricales species reported. The mean K2P genetic distance of the rps3 gene was the highest among the 15 core PCGs we detected, followed by the nad6 gene, which showed that the two genes differentiated largely between Agaricales species in the evolutionary process (Fig. 4). The lowest mean genetic distance was observed in the nad4L gene, indicating this gene highly conservative between the 22 Agaricales species. The highest non-synonymous substitution rate (Ka) was detected in the rps3 gene, followed by in the nad6 gene, among the 15 core PCGs we detected. The nad4L gene was found to be the largest host gene of Agaricales species, containing 41.52% of the total introns. So in this study, we focused on the dynamic changes of cox1 gene in Agaricales.

Intron dynamics of cox1 gene in Agaricales

In this study, we detected 342 introns in the 22 Agaricales species, with each species containing 0 to 64 introns (Table S1). Large variations of intron number in Agaricales species indicated that intron gain/loss events have occurred in the evolution of Agaricales species. The cox1 gene was found to be the largest host gene of Agaricales species, containing 41.52% of the total introns. So in this study, we focused on the dynamic changes of cox1 gene in Agaricales.

Of the 142 introns detected in cox1 gene, 140 belonged to the group I and the other 2 belonged to the group II (Fig. 5). Group I introns in cox1 genes of the 22 Agaricales species were classified into different Pcls and named alphabetically according to the method described by Férandon et al. (2010). A total of 32 Pcls were
detected in Agaricales group I introns, including 5 novel Pcls, which were not reported before. Pcl K was the most widely distributed Pcl in Agaricales, which was distributed in 13 of the 22 Agaricales species. Followed by the Pcl AI, it could be detected in 11 of the 22 Agaricales mitogenomes. However, some Pcls were considered as rare Pcls in Agaricales, including Pcls B, H, U, Z, and AG, which were only distributed in one of the 22 Agaricales species. However, these rare Pcls were detected in mitogenomes of distant species from other taxons, such as Rhizopogon vinicolor (Li et al. 2019a) and Rhizophydium sp. 136 (Férandon et al. 2010), indicating possible horizontal gene transfer occurred in evolution. The mitogenome of C. fumosa contained 4 novel Pcls never detected before, indicating the C. fumosa mitogenome contained high diversity of introns. Further studies are needed to reveal the origin and evolution of these novel introns in the C. fumosa mitogenome.

Comparative mitogenome and gene arrangement analyses
Comparative mitogenome analysis indicated that the 256,807 bp mitogenome of C. fumosa was the largest among the 22 Agaricales mitogenomes detected (Table S1). The size of the C. fumosa mitogenome was 1.90–6.05 times larger than that of other Agaricales species, indicating that the C. fumosa mitogenome has experienced a huge size expansion in evolution. The GC content of the C. fumosa mitogenome was the third lowest among all Agaricales species detected, which was only higher than Flammulina velutipes (16.54%) (Yoon et al. 2012) and Hygrophorus russula (19.13%) (Li et al. 2019d), and far lower than the average GC content of Agaricales (26.00%). Among the 22 Agaricales species we detected, 12 species had positive AT skews, while the remaining 10 species contained negative
AT skews. Nineteen out of the 22 Agaricales species had positive GC skews. Each Agaricales species contained 15–121 PCGs, and the C. fumosa mitogenome had the most PCGs (121), including the most number of intronic ORFs (60) in Agaricales. The C. fumosa also contained the largest number of introns, followed by Agaricus bisporus (Férandon et al. 2010), and they were also the two species with the largest mitogenome size in Agaricales. All the Agaricales species contained two rRNA genes. In addition, 24–38 tRNA genes were detected in the 22 Agaricales species. The arrangements of 15 core PCGs and 2 rRNA genes from 22 Agaricales species were detected in this study. We found that the gene arrangement of Agaricales species varied greatly (Fig. 6). Large-scale gene rearrangements were also observed between species from the same genus, including Laccaria (Li et al. 2020c), Lyophyllum (Li et al. 2019c) and Armilaria (Kolesnikova et al. 2019). Identical gene arrangements were only observed between two species from the Montiophthora genus (Costa et al. 2012; Formighieri et al. 2008) and between Pleurotus eringii and P. ostratus from the Pleurotus genus (Li et al. 2018a).

Phylogenetic analysis
An identical and well-supported phylogenetic tree for 76 Basidiomycota species was obtained using both Bayesian inference (BI) and Maximum likelihood (ML) methods based on the combined mitochondrial gene set (Fig. 7). We found all the major clades within the phylogenetic tree had good supported values (BPP ≥0.97; BS ≥98). The 76 Basidiomycota species could be divided into 14 major clades in the phylogenetic tree, corresponding to the orders Agaricales, Boletales, Russulales, Polyporales, Hymenochaetales, Cantharellales, Pucciniiales, Tremellales, Trichosporonales, Microbotryales, Sporidiobolales, Microstromatales, Ustilaginales, and Tilletiales (Table S8). The 22 Agaricales species could be divided into four major groups, wherein the first comprised two species, C. fumosa and Hygrophorus russula (Li et al. 2019d), the second group comprised four species from the Pleurotus genus (Li et al. 2018a). The results indicated that the C. fumosa mitogenome exhibited a close evolutionary relationship with Hygrophorus russula.

Discussion
Size expansion of the C. fumosa mitogenome
In this study, we obtained the complete mitogenome of C. fumosa. The 256,807 bp mitogenome of C. fumosa was the second largest among all reported fungal mitogenomes, which was only lower than that of Morchella importuna (272,238 bp) (Liu et al. 2019) from the phylum Ascomycota. The mitogenome of C. fumosa was the largest among all Basidiomycota mitogenomes.
reported, which was 20.96 kb larger than the previously reported largest mitogenome of Basidiomycota, *Rhizoctonia solani* (235,849 bp) (Losada et al. 2014). Several factors were considered closely related to the expansion of the *C. fumosa* mitogenome. Firstly, the mitogenome of *C. fumosa* contained a relatively loose structure (Ye et al. 2020), which was considered to be the main factors leading to the size expansion of the *C. fumosa* mitogenome. In addition, the *C. fumosa* mitogenome contained the largest number of introns and intronic ORFs among all fungal mitogenomes published, and the large number of introns and intronic ORFs was also one of the main factors leading to the increase of the size of *C. fumosa* mitogenome. A total of 38.23% of repeat sequences and 16 plasmid-derived genes (DNA polymerases and RNA polymerases) were detected in the *C. fumosa* mitogenome, which also promoted the expansion of the *C. fumosa* mitogenome. In conclusion, large intergenic regions, intronic regions, accumulation of repeat sequences and plasmid-derived genes together promoted the *C. fumosa* mitogenome become the largest mitogenome among Basidiomycota species.

Variations of gene content in Agaricales mitogenomes

According to the second parity rule, as long as there is no mutation or selection bias, each base in the

Fig. 6 Mitochondrial gene arrangement analyses of 22 Agaricales species. All genes are shown in order of occurrence in the mitochondrial genome, starting from *cox1*. Fifteen core protein coding genes and two rRNA genes were included in the gene arrangement analysis. The phylogenetic positions of 22 Agaricales species were established using the Bayesian inference (BI) method and Maximum Likelihood (ML) method based on concatenated mitochondrial genes. Species and NCBI accession number used for gene arrangement analysis in the present study are listed in Supplementary Table S1.

Gene rearrangements in Agaricales species

The arrangement of mitochondrial genes could provide reference information for understanding the origin and evolution of fungal species (Beaudet et al. 2013; Sankoff et al. 1992). Among the 22 Agaricales species we tested, only two species from the *Moniliophthora* genus and two species from the *Pleurotus* genus had identical gene arrangements, indicating their close phylogenetic relationships. However, large-scale gene rearrangements were observed in species from different genera, even within the same genera, indicating that the mitochondrial gene arrangement of Agaricales species had high variability. Gene arrangement analysis indicated that gene shifts and inversions occurred in the mitogenome of *C. fumosa*, which made the *C. fumosa* mitogenome have a unique gene arrangement in Agaricales species. Mitochondrial gene rearrangement has been widely studied in animals, and several models have been proposed to reveal the mechanism of gene rearrangement in animals, such as the tandem duplication-random loss (TDLR) (Xia et al. 2016) and duplication and nonrandom loss model (Lavrov et al. 2002). Compared with animals, fungal gene arrangements have larger variations and rearrangements occur on a larger scale (Aguileta et al. 2014). Gene rearrangements in fungi have been less studied, and the mechanism of mitochondrial gene rearrangement in fungi was still unknown. The mechanism of large-scale rearrangement in Agaricales species needs to be further studied to understand the evolution of fungi.
Fig. 7 Molecular phylogeny of 76 Basidiomycota species based on Bayesian inference (BI) and Maximum likelihood (ML) analysis of 15 protein coding genes and two rRNA genes. Support values are Bayesian posterior probabilities (before slash) and bootstrap (BS) values (after slash). The asterisk indicates that the BPP value is 1 and the BS value is 100 of the branch. Species and NCBI accession numbers for mitogenomes used in the phylogenetic analysis are provided in Supplementary Table S8.
complementary DNA strand exists at approximately equal frequencies (Chen et al. 2014). However, frequent GC skews and AT skews were observed in mitogenomes of Agaricales species. The presence of AT or GC skews on the same DNA strand from different species indicated that mitogenomes of different species underwent different mutations or environmental selection. In addition, we observed that the potential positive selection of nad3 and rps3 genes occurred between different Agaricales species. Different Agaricales species have different growth media, different environmental conditions and different life styles. The results showed that the two genes may have been subjected to strong pressure of positive selection in the process of environmental adaptation of different mushrooms.

Intron dynamics of Agaricales mitogenomes
Most of the Basidiomycota introns were found belonged to the group I, while cox1 gene was considered as the largest host gene of group I introns. On average, more than 40% of fungal introns were found harboring in the cox1 gene. In this study, the dynamic changes of introns in the cox1 gene of 22 Agaricales species were analyzed, and we found that intron gain/loss events occurred in the mitogenome of Agaricales. In addition, Pcl K and Al were found to be the most common homologous introns in the order Agaricales, while Pcls B, H, U, Z, and AG only existed in one of the Agaricales 22 species. The rare introns in the order Agaricales have been detected in some distant species, such as Rhizopogon vinicolor (Li et al. 2019a) and Rhizophydiun sp. 136 (Férandon et al. 2010), indicating potential horizontal gene transfer events. The cox1 gene of C. fumosa contained the largest number of introns among the 22 Agaricales species, while four novel Pcls were detected in the cox1 gene of C. fumosa. Intron considered as an important genetic element in the mitogenome of fungi (Burke 1988; Gomes et al. 2018), and its dynamic changes can significantly affect the organization and size of the mitogenome of fungi (Hamari et al. 2002; Himmelstrand et al. 2014). The origin and evolution of the novel Pcls needed to be further analyzed to understand the evolution of the C. fumosa mitogenome.

Phylogenetic analysis of Basidiomycota
Just like C. fumosa, many Basidiomycota species have few morphological characteristics, and some of morphological characteristics are easy to overlap, which makes it difficult to classify species accurately only according to morphology. Mitochondrial core PCGs and rRNA genes were considered as a powerful tool to analyze the phylogeny of species because of its unique advantages (Paquin et al. 1997; Wang et al. 2018). As more and more mitogenomes of Basidiomycota are sequenced, it will be helpful to reveal the phylogenetic relationships of Basidiomycota species. In this study, we obtained a phylogenetic tree of 76 Basidiomycota species with high support value based on the combined mitochondrial gene set. More than two-thirds of Basidiomycota mitogenomes available in the NCBI database were included for phylogenetic analysis in this study. The results showed that mitochondrial core PCGs and rRNA genes were effective molecular markers to analyze the phylogenetic relationships of Basidiomycota. More mitogenomes of Basidiomycota are needed for reconstructing evolution of Basidiomycota.

Conclusion
In this study, the mitogenome of C. fumosa was sequenced, assembled and compared. The mitogenome of C. fumosa was the largest among all Basidiomycota mitogenomes reported. Large intergenic regions, intronic regions, accumulation of repeat sequences and plasmid-derived genes together promoted the size expansion of the C. fumosa mitogenome. Comparative mitogenome analysis indicated the number of PCGs, base compositions, gene contents and tRNA genes varied between the 22 Agaricales mitogenomes tested. In addition, we found that the rps3 gene was subjected to strong pressure of positive selection between some Agaricales species. The C. fumosa mitogenome had a unique gene order among Agaricales species, and large-scale gene rearrangements occurred between Agaricales species. Intron loss/gain and horizontal gene transfer events occurred in introns of cox1 genes in Agaricales, which promoted the organization and size variations of Agaricales mitogenomes. Phylogenetic analysis indicated that mitochondrial genes were reliable molecular markers to analyze the phylogenetic relationships of Basidiomycota. This study served as the first report on the mitogenome from the family Clavariaceae, which will promote the understanding of the genetics, evolution and taxonomy of C. fumosa and related species.

Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.1186/s43008-020-00047-7.

Additional file 1: Figure S1. Putative secondary structures of tRNA genes in the mitochondrial genome of Clavaria fumosa. All genes are shown in order of occurrence in the mitogenome of C. fumosa, starting from trnF.

Additional file 2: Table S1. Comparison on mitochondrial genomes among 22 Agaricales species. Table S2. Characterization of the mitochondrial genome of Clavaria fumosa. Table S3. Start and stop codon analyses of 15 core protein-coding genes in 22 Agaricales species. Table S4. Local BLAST analysis of the Clavaria fumosa mitochondrial against itself. Table S5. Tandem repeats detected in the mitochondrial genome of Clavaria fumosa using the online program Tandem Repeats Finder. Table S6. Distribution of repeat loci in the mitochondrial genome of Clavaria fumosa searched by REPuter. Table S7. Local BLAST searches between the mitochondrial and the nuclear genomes of Clavaria fumosa.
Table S8. Species, and GenBank accession number used for phylogenetic analysis in this study.

Abbreviations
mitogenome: Mitochondrial genome; BI: Bayesian inference; ML: Maximum likelihood; PCG: Protein-coding gene; Pcls: Position classes; Ks: Synonymous substitution rates; Ka: Nonsynonymous substitution rates

Acknowledgements
Not applicable.

Adherence to national and international regulations
Not applicable.

Authors’ contributions
Conceived and designed experiments: QL, X. W, and N.L. Analyzed the data: Y.W., W.Y., J.S., JR., and M.C. Wrote the paper: QL, and X.W. The author(s) read and approved the final manuscript.

Funding
This work was supported by Project of Natural Science Foundation of Henan Province of China (202300410202), Henan Educational Department of China (18A180015, 18A210017), Sci-Tech Project of Henan Province, China (182102110278), and Sci-Tech Innovation Fund of Henan Agricultural University (KJCX20191A16).

Availability of data and materials
All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 August 2020 Accepted: 22 October 2020

Published online: 14 November 2020

References
Adams KL, Qi YL, Stoumouter M, Palmer JD (2002) Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proceedings of the National Academy of Sciences of the United States of America 99(15):9905–9912. https://doi.org/10.1073/pnas.042694899
Aguiar G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, Gabaldon T (2014) High variability of mitochondrial gene order among fungi. Genome Biology and Evolution 6(2):451–465. https://doi.org/10.1093/gbe/evu028
Bankievich A, Norkus S, Antipov D, Gussevich AA, Dvorkin M, Kulkov AS, Lesin VM, Nikolenko SI, Pham S, Prijibelski AD, Pyskin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology 19(5):453–477. https://doi.org/10.1089/cmb.2012.0201
Beaudet D, Terrat Y, Halary S, de la Providencia IE, Hijri M (2013) Mitochondrial genome rearrangements in glomus species triggered by homologous recombination between distinct mtDNA haplotypes. Genome Biology and Evolution 5(9):1628–1643. https://doi.org/10.1093/gbe/evt120
Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27(2):573–580
Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69(2):313–319. https://doi.org/10.1016/j.ympev.2012.08.023
Birkebak JM, Adamcik S, Looney BP, Matheny PB (2016) Multilocus phylogenetic reconstruction of the Clavariaceae (Agaricales) reveals polyphyly of agaricoid members. Mycologia 108(5):860–868. https://doi.org/10.3852/15-370

Birkebak JM, Mayor JR, Ryberg KM, Matheny PB (2013) A systematic, morphological and ecological overview of the Clavariaceae (Agaricales). Mycologia 105(4):896–911. https://doi.org/10.3852/12-070
Bleasby AJ, Wootton JC (1990) Construction of validated, non-redundant composite protein sequence databases. Protein Engineering 3(3):153–159
Burke JMA (1988) Molecular genetics of group I introns: RNA structures and protein factors required for splicing—a review. Gene 73(2):273–294
Cameron SL (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology 59:95–117. https://doi.org/10.1146/annurev-ento-011613-162007
Carpi G, Kitchen A, Ratan A, Drautz-Moses DI, McGraw JI, Kazimirova M, Rizzoli A, Schuster SC (2016) Mitogenomes reveal diversity of the European Lyme borreliosis vector ticks ricinus in China. Molecular Phylogenetics and Evolution 101:194–202. https://doi.org/10.1016/j.ympev.2016.05.009
Caspermeyer J (2016) MEGA evolutionary software re-engineered to handle today’s big data demands. Molecular Biology and Evolution 33(7):1887. https://doi.org/10.1093/molbev/msw074
Chen H, Sun S, Norenburg JL, Sundberg P (2014) Mutation and selection cause codon usage and bias in mitochondrial genomes of ribbon worms (Nemertea). PLoS One 9(1):e85631. https://doi.org/10.1371/journal.pone.0085631
Chen Y, Ye W, Zhang Y, Xu Y (2015) High speed BLASTN: an accelerated MegaBLAST search tool. Nucleic Acids Research 43(16):7762–7768. https://doi.org/10.1093/nar/gkv324
Costa GG, Cabrera OG, Tiburcio RA, Medrano JF, Carazolle MF, Thomazella DP, Schuster SC, Carlson JE, Guilmain MU, Bailey BA, Miekowkowski P, Pereira GA, Meinhart DW (2012) The mitochondrial genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao. Fungal Biology 116(5):551–562. https://doi.org/10.1016/j.funbio.2012.01.008
Deng Y, Hisangi T, Li S, Lin L, Wang Q, Chen Q, Xie B, Ming R (2018) Comparison of the mitochondrial genome sequences of six Annuohyposphorium styloides isolates suggests short fragment insertions as a potential factor leading to larger genomic size. Frontiers in Microbiology 9:290. https://doi.org/10.3389/fmicb.2018.02079
Dentinger BT, McLaughlin DJ (2006) Reconstructing the Clavariaceae using nuclear large subunit rDNA sequences and a new species segregated from Clavaria. Mycologia 98(5):746–762. https://doi.org/10.3852/mycologia.98.5.746
Felandon C, Moukha S, Callac P, Benedetto JP, Castroviejo M, Barroso G (2010) The Agaricbus bisporus coxl gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group I introns. PLoS One 5(11):e14048. https://doi.org/10.1371/journal.pone.0014048
Formighieri EF, Tiburcio RA, Arras AE, Mediano FJ, Shimo H, Carels N, Goes-Neto A, Cotomacci C, Carazolle MF, Sardinha-Pinto N, Thomazella DP, Rincones J, Gramacho K, Goncalves MS, Moura Neto JP, Barbosa LV, Meinhardt LW, Cascardo JC, Pereira GA (2008) The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid. Mycological Research 112(Pt 10):1135–1156. https://doi.org/10.1016/j.mycres.2008.04.014
Fougie G, Van der Merve NA, Wingfield BD, Bogale M, Wingfield MJ, Steenkamp ET (2018) Mitochondrial introgression and interspecies recombination in the Fusarium fujikuroi species complex. IMA Fungus 9(1):331–335. https://doi.org/10.1556/AMicr.49.2002.2-3.22
Gomes F, Arantes TD, Femandes JL, Ferreira LC, Romero H, Bosco SMG, Oliveira MTB, Del Negro GMB, Theodoro RC (2018) Polymorphism in mitochondrial group I introns from Cryptococcus neoformans and Cryptococcus gattii genotypes and its association with drug susceptibility. Frontiers in Microbiology 9:298. https://doi.org/10.3389/fmicb.2018.00991.04
Hahn C, Bachmann L, Cheveux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Research 41(13):e129. https://doi.org/10.1093/nar/gkt371
Hamid Z, Juhasz A, Kevei F (2002) Role of mobile introns in mitochondrial genome diversity of fungi (a mini review). Acta Biologica et Immunologica Hungarica 50(2):331–335. https://doi.org/10.1556/Abiimm.50.2002.2-3.22
Himmelstrand K, Olson A, Brandstrom Durling M, Karlsson M, Stenlid J (2014) Intronic and plasmid-derived regions contribute to the large mitochondrial genome sizes of Agaricomycetes. Current Genetics 60(4):303–313. https://doi.org/10.1007/s00294-014-0436-z
Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics. https://doi.org/10.1093/bib/bbx010
Wang L, Zhang S, Li JH, Zhang YJ (2018) Mitochondrial genome, comparative analysis and evolutionary insights into the entomopathogenic fungus Hirsutella thompsonii. Environmental Microbiology 20(9):3393–3405. https://doi.org/10.1111/1462-2920.14379

Wang X, Song A, Wang F, Chen M, Li X, Li Q, Liu N (2020) The 206 kbp mitochondrial genome of Phanerochaete carnosa reveals dynamics of introns, accumulation of repeat sequences and plasmid-derived genes. International Journal of Biological Macromolecules 162:209–219. https://doi.org/10.1016/j.ijbiomac.2020.06.142

Wang Y, Zeng F, Hon CC, Zhang Y, Leung FC (2008) The mitochondrial genome of the Basidiomycete fungus P. ostreatus (oyster mushroom). FEMS Microbiology Letters 280(1):34–41. https://doi.org/10.1111/j.1574-6968.2007.01048.x

Xia Y, Zheng Y, Murphy RW, Zeng X (2016) Intraspecific rearrangement of mitochondrial genome suggests the prevalence of the tandem duplication-random loss (TDLR) mechanism in Quasipaa boulengeri. BMC Genomics 17(1):655. https://doi.org/10.1186/s12864-016-3399-7

Yang RH, Li Y, Li CH, Xu JP, Bao DP (2016) The complete mitochondrial genome of the Basidiomycete edible fungus Pleurotus eryngii. Mitochondrial DNA B 1:772–774. https://doi.org/10.1080/23802359.2016.1238755

Ye J, Cheng J, Ren Y, Liao W, Li Q (2020) The first mitochondrial genome for Geastrales (Sphaerobolus stellatus) reveals intron dynamics and large-scale gene rearrangements of Basidiomycota. Frontiers in Microbiology 11:1970. https://doi.org/10.3389/fmicb.2020.01970

Yoon H, You YH, Woo JR, Park YJ, Kong WS, Lee BM, Kim JG (2012) The mitochondrial genome of the white-rot fungus Flammulina velutipes. The Journal of General and Applied Microbiology 58(4):331–337

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.