Evidence of a dynamically evolving Galactic warp

E. Poggio1, R. Drimmel1, R. Andrae2, C. A. L. Bailer-Jones2, M. Fouesneau2, M. G. Lattanzi1, R. L. Smart1, & A. Spagna1

1Osservatorio Astrofisico di Torino, Istituto Nazionale di Astrofisica (INAF), I-10025 Pino Torinese, Italy
2Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany

In a cosmological setting the disc of a galaxy is expected to continuously experience gravitational torques and perturbations from a variety of sources, which can cause the disc to wobble, flare and warp1,2. Specifically, the study of galactic warps and their dynamical nature can potentially reveal key information on the formation history of galaxies and the mass distribution of their halos. Our Milky Way presents a unique case study for galactic warps, thanks to detailed knowledge of its stellar distribution and kinematics. Using a simple model of how the warp’s orientation is changing with time, we here measure for the first time the precession rate of the Milky Way’s warp using 12 million giant stars from \textit{Gaia} Data Release 23, finding that it is precessing at $10.46 \pm 0.03_{\text{stat}} \pm 2.72_{\text{syst}}$ km s$^{-1}$ kpc$^{-1}$ in the direction of Galactic rotation, about one third the angular rotation velocity at the Sun’s position in the Galaxy. The direction and magnitude of the warps precession rate favour the scenario that the warp is the result of a recent or ongoing encounter with a satellite galaxy, rather than the relic of the ancient assembly history of the Galaxy.
Main

The Galactic warp is a large-scale distortion of the outer disc with respect to the inner disc, bearing witness that the disc of our Galaxy may be subject to external torques. Proposed mechanisms include torques from a misalignment of the disc’s rotation axis with respect to the principle axis of a non-spherical halo4,5, or from accreted matter in the halo acquired during late infall6,7, or from nearby, interacting satellite galaxies and their consequent tides8,9. However, the cause and dynamical nature of the warp of our Galaxy has remained unclear due to a lack of kinematic constraints. Recent works using \textit{Gaia} data have revealed the kinematic signature of the Galactic warp10–14, while the geometry of the warp has been mapped on large-scales using Cepheids as tracers15,16. In this contribution we quantitatively analyse the warp kinematic signature using a simple kinematic model, with the purpose of constraining the possible mechanisms responsible for the warp of the Milky Way.

The dataset for this study is the giant sample from the second \textit{Gaia} Data Release (\textit{Gaia} DR2) presented in our previous work13, selected via a probabilistic approach based on astrometry and photometry from \textit{Gaia} DR2 and 2MASS17. The sample contains 12,616,068 giant stars with apparent magnitude $G < 15.5$, and within 20° from the galactic plane ($b = 0^\circ$). For each star we use \textit{Gaia} DR2 galactic coordinates l and b, the parallax ϖ, and the component of the proper motion perpendicular to the galactic plane μ_b, derived from \textit{Gaia}’s astrometry (see Methods). We only consider μ_b as the Galactic warp primarily manifests itself kinematically as systematic motions perpendicular to the Galactic plane18. We also construct the covariance matrix Σ_{ϖ,μ_b}, which includes the astrometric uncertainties on ϖ and μ_b, together with their correlation ρ_{ϖ,μ_b}, neglecting the uncertainties in the coordinates (l, b). An overview of our dataset is provided in Figure 1.

The geometry of the warp can be simply described as a sinusoidal vertical displacement with respect to galactic azimuth, with an amplitude that gradually increases with galactocentric radius (see Figure 2). The line along which the vertical displacement is zero is referred to as the line-of-nodes, which is seen to be initially straight in the warps of external galaxies19. For a static warp geometry, the systematic vertical motions of the stars are expected only in the outer warped portions of the disc, in proportion to the warp amplitude, where stars must oscillate vertically as they rotate about the center of the Galaxy to maintain the geometry of the warp.

As a first attempt to quantify the evolution of the warp we assume that the warp shape is constant, but consider the possibility that the orientation of the warp changes with time. In general there are two possible generic models. One is to consider that the warp rotates rigidly about an axis coincident with the vertical axis of the inner disc, whose orientation remains fixed. Such a model would describe the case where only the outer disc is somehow vertically perturbed, as might be expected from an interaction with a satellite galaxy, while the inner galaxy remains relatively unperturbed. A second possibility is that the entire inner disc, while remaining flat thanks to its

*We use bold font for vectors and matrices.
own self-gravity, is precessing about some axis not coincident with the normal axis of the inner
disc, due to a constant external torque, much like an inclined spinning top. This kinematic model
would apply to those warp models invoking long-acting torques from a misaligned non-spherical
halos or from a tilted outer torus of mass. In both cases the changing warp geometry can be simply
described as a change in the direction of its line-of-nodes, parametrized by an angular rate \(\omega \),
traditionally referred to as the “warp precession rate”, a term inherited from tilted-ring models of
galactic warps\(^4\). When the parameter \(\omega \) is constant with respect to Galactocentric radius \(R \) and
\(\omega > 0 \), the line-of-nodes remains straight and warp rigidly “precesses” in the same (prograde)
direction as Galactic rotation. As approximately 90\% of our sample lies within \(R \lesssim 4.5 \) disc scale
lengths, that is, within a radius where differential precession is not expected\(^7\), we adopt here a
single value for \(\omega \). For both of these kinematic models, the systematic vertical velocities resulting
from Galactic rotation under the changing warp geometry are modulated with respect to those
expected for a static warp, in proportion to \(\omega \) (see Methods). However, as discussed further below,
the expected warp precession rates of discs from models of non-spherical halos and tilted outer tori
are very small, leading to imperceptibly small vertical motions in the inner disc, and thus consistent
with a static warp model with \(\omega = 0 \) given our uncertainties. For this reason we adopt a kinematic
warp model of the first type, with a fixed orientation of the inner disc. See Methods for further
details.

In this contribution, the warp precession rate \(\omega \) is statistically inferred from the data assum-
ing a model for the spatial and kinematic distribution of the giant stars in the Galaxy, taking into
account the selection function of our sample, as well as a model for the measurement errors (the de-
tails are given in the Methods section). The inference is performed using the measured \((l, b, \varpi, \mu_b)\),
and marginalizing over the unknown \textit{true} heliocentric distance \(r \) and proper motion \(\mu'_b \). This proce-
dure is done for three different but similar models of the warp geometry, two recently presented by
Chen et al\(^{15}\) based on a sample of Cepheids, and another by Yusifov\(^{20}\) using pulsars (see Methods
section for their details). We obtain, respectively, 9.86, 10.25, and 11.26 \(\text{km s}^{-1} \text{kpc}^{-1} \), indicat-
ing that the warp is precessing in the direction of Galactic rotation, at approximately one third
of the angular velocity of the Galaxy at the location of the Sun. We find a statistical uncertainty
of 0.03 \(\text{km s}^{-1} \text{kpc}^{-1} \) for all three geometrical warp models. This uncertainty is quite small in
part due to the large size of our dataset, and in part because in our evaluation of the pdf of \(\omega \) all
other parameters are fixed (assumed known). The additional systematic uncertainties introduced
by our uncertain knowledge of the Galaxy, including the warp geometry, are estimated by varying
the most relevant parameters by their uncertainties and/or assuming different values available in
the literature, and finding the resulting change in the estimated precession rate \(\omega \) (see Methods for
a detailed discussion). Our final estimate of the warp precession rate is:

\[
\omega = 10.46 \pm 0.03_{\text{stat}} \pm 2.72_{\text{syst}} \text{ km s}^{-1} \text{kpc}^{-1},
\]

where the value of \(\omega \) is the average of the values quoted above for the three different adopted warp
geometries. We can therefore exclude a static, non-precessing warp model at a level of more than
3 \(\sigma \). In the case of a rigidly precessing warp geometry, the warp corotation radius is beyond 16 kpc
(see Figure 3). For comparison, the pattern speed of the Galactic bar has been constrained to be
43 ± 9 km s$^{-1}$ kpc$^{-1}$, while that of the spiral pattern has been estimated to be between 17 and 28 km s$^{-1}$ kpc$^{-1}$ assuming the classical density wave theory22.

To provide a visual confirmation that our model reproduces the observed data reasonably well, we construct kinematic maps for the observed median proper motion μ_b (Figure 4A) and the one predicted by our model (Figure 4B), using the individual distances for this sample as presented in our previous work13, and verify that the most significant features in the map of observed proper motions are reproduced by our model. The blue region at the centre of the plots is the reflex of the solar motion, apparent as a systematic shift of the median proper motion toward negative values, which becomes progressively less important with increasing heliocentric distance. At galactic longitudes $l \approx 70^\circ, 240^\circ$ and 260° we observe some regions with systematic positive μ_b, primarily caused by the combined effect of differential Galactic rotation and solar motion on μ_b for galactic latitudes $|b| > 0^\circ$ and the uneven sampling above/below the galactic plane due to foreground extinction (see Figure 1). These features can be reproduced reasonably well when the median galactic latitude of the stars in a cell is taken into account. Finally, the warp kinematic signal is the orange region extending from $l \approx 120^\circ$ to $l \approx 210^\circ$, which has also been observed in the derived vertical velocities V_Z13,23,24 and the proper motions μ_b corrected for the solar motion14. This kinematic signature cannot be reproduced by a long-lived static warp ($\omega = 0$, Figure 4C), nor by a flat disc model ($V_Z = 0$, Figure 4D).

Our measurement of a significant prograde precession rate confirms that the Galactic warp is evolving with time, as already suggested by recent studies15,25, and can be compared with the expectations of the warp mechanisms that have been proposed to date. Theoretical and numerical studies of misaligned non-spherical halo potentials find that the direction of the precession is determined by the shape of the halo potential, a prograde precession rate indicating that the halo is prolate or prolate-like rather than an oblate4,5,26,27. Recent works indicate that the Galactic stellar halo is dominated by the debris of an ancient major merging event with a massive dwarf galaxy (i.e. Gaia Enceladus28 or the “Sausage” galaxy29), leading to a flattened triaxial (oblate-like) halo30, which should produce a retrograde warp precession. However, the magnitude of our measured precession rate significantly exceeds all predictions from models involving torques from both prolate-like or oblate-like halo potentials, as well as those produced by a misaligned outer torus of later accreted material$^{5–7,27}$: typical precession periods from such models are approximately between 4 and 40 Gyr, corresponding to warp precession rates between 1.5 and 0.1 km s$^{-1}$ kpc$^{-1}$. Given our uncertainties, such small precession rates would be consistent with a static warp model. Whether such models can reproduce significantly larger precession rates under realistic assumptions should be explored in the future.

The comparison with models available in the literature to date thus suggests that the magnitude of the warp precession rate is more consistent with the warp being a more transient response seen in the outer disc, rather than a slowly evolving structure from a misaligned non-spherical potential. Indeed, a recent interaction with a satellite galaxy could cause a more significant response of the outer Galactic disc9. In this scenario our long-lived precessing warp model should not be
taken as describing the global systematic vertical motions of the disc, but rather it provides a local approximation for the response of the outer Galactic disc to a recent perturbation, over the portion of the Milky Way disc covered by our dataset. Nevertheless, our results suggests that external forces from interacting satellite galaxies are playing a significant and ongoing role in shaping the outer disc of the Milky Way.
Figure 1: Overview of the adopted dataset. Sky-projection of the star counts (top), showing that the majority of the sample is concentrated in the Galactic plane. Extinction features caused by foreground dust clouds are clearly visible as under-dense regions. In these directions, where extinction limits the viewing distance, the median parallax ϖ is typically larger (middle). The median proper motion μ_b on the sky (bottom) shows an alternate positive/negative pattern above and below the galactic plane, caused by the combination of differential Galactic rotation and solar motion.
Figure 2: **Three-dimensional representation of the precessing warp model.** The Sun’s position is shown by the dot, the Galactic center by the black cross, and the direction of Galactic rotation by the arrow. The angle between the warp’s line-of-nodes (bold solid line) and the Sun’s azimuth ($\phi = 0^\circ$, dashed line) is the warp phase angle ϕ_w at the present time.
Figure 3: **Comparison of the warp precession rate** ω **and the angular speed of the Galaxy**, given by $\Omega(R) = \frac{V_C(R)}{R}$, where $V_C(R)$ is the circular velocity (see Methods). The dashed vertical line shows the position of the Sun (R_\odot), while the shaded area shows range of uncertainty on ω (random plus systematic). The warp corotation radius (i.e. where the black and the red line cross) for a rigidly precessing model is at ≈ 20 kpc, with an uncertainty range from 16 to 25 kpc.
Figure 4: **Maps of observed** μ_b, in galactocentric coordinates. The location of the Sun is shown by the black star at $(X,Y)=(8.122$ kpc, 0 kpc). The map of the data (A) have been constructed using cells of 400 pc width, showing only the cells with more than 500 stars per cell, where stars are placed using the distances from our previous work13. For each cell in (X,Y), map (A) shows the median observed μ_b, while the other maps shows the predicted μ_b given the median galactic longitude, latitude and heliocentric distance of the corresponding cell as seen in the data for: the precessing warp (B) model with $\omega = 10.46$ km s$^{-1}$ kpc$^{-1}$, a warp model with no precession (C), and a flat disc model (D). Distances are used here for illustrative purposes only; the analysis presented in this contribution is performed in the space of the observables, as discussed in the text.
Methods

The long-lived precessing warp model In general, the geometric shape of the Galactic warp can be modelled as a vertical displacement of the Galactic disc in Galactocentric cylindrical coordinates \((R, \phi, z)\), where \(\phi\) is taken in the direction of Galactic rotation:

\[
 z_w(R, \phi) = h_w(R) \sin (\phi - \phi_w) ,
\]

where \(\phi_w\) is the phase angle of the warp defining the galactic azimuth of the warp’s line-of-nodes, the line along which \(z_w = 0\) (see Figure 2), and \(h_w(R)\) is a height function specifying the maximum amplitude of the warp with respect to galactocentric radius \(R\) (see Equation 13 below). In this work we will consider three recent but similar models of the warp geometry, two recently presented by Chen et al\(^{15}\) based on a sample of Cepheids, and another by Yusifov\(^{20}\) using pulsars (the details are given in Table 1). Treating our Galaxy as a collisionless system\(^{31}\), the average stellar vertical velocity \(V_z(R, \phi)\) can be derived by applying the collisionless Boltzmann equation to a warped disc (Equation 2) and taking the 0\(^{th}\) moment, obtaining

\[
 V_z(R, \phi) = \left(\frac{V_\phi R}{R} - \omega \right) h_w(R) \cos (\phi - \phi_w) ,
\]

where \(V_\phi\) is the mean azimuthal velocity, and the warp phase angle \(\phi_w\) increases at a constant angular rate \(\omega\), that is \(\phi_w(t) = \phi_{0,w} + \omega t\), with \(\phi_{0,w}\) being the current azimuth of the line-of-nodes. The variable \(\omega\) is called “warp precession rate”.

The statistical inference To infer the warp precession rate \(\omega\), we calculate the likelihood of our dataset given the model and the uncertainties by marginalizing over the true unknown quantities, namely the true heliocentric distance \(r\) and the true proper motion \(\mu'_b\). As discussed below, the model parameters (collected into the symbol \(\Theta_{Gal}\)) are maintained fixed, while \(\omega\) is the free parameter that must be estimated. Assuming that the galactic coordinates \((l, b)\) are noise-free quantities, the likelihood of the \(i^{th}\) star of our sample can be written for a given value of the warp precession rate \(\omega\):

\[
 p_i(\varpi, \mu_b | l, b, \Sigma_{\varpi, \mu_b}, \Theta_{Gal}, \omega) = \int \int p_i(\varpi, \mu_b | \Sigma_{\varpi, \mu_b}, r, \mu'_b) p_i(r, \mu'_b | l, b, \Theta_{Gal}, \omega) \, d\mu'_b \, dr ,
\]

which represents the probability of a star at \((l, b)\) to have a measured \(\varpi\) and \(\mu_b\) according to the measurement model \(p_i(\varpi, \mu_b | \Sigma_{\varpi, \mu_b}, r, \mu'_b)\) and the model of the Galaxy \(p_i(r, \mu'_b | l, b, \Theta_{Gal}, \omega)\), which includes the noise-free spatial and kinematic distribution of the giant stars in the Galaxy, as well as the modeled selection function of our sample. (The details are given in the following sections.) Once the likelihood is obtained for each star, we can calculate the likelihood of the dataset as

\[
 p(\{\varpi, \mu_b\}_N | l, b, \Sigma_{\varpi, \mu_b}, \Theta_{Gal}, \omega) = \Pi_i^N p_i(\varpi, \mu_b | l, b, \Sigma_{\varpi, \mu_b}, \Theta_{Gal}, \omega) ,
\]

for a given \(\omega\), where the product is over the \(N\) stars of our sample, assuming that each star’s data is an independent draw from a parent distribution given by our model. Repeating the above
procedure over a range of values of ω, we find the likelihood of our dataset as a function of ω, which is proportional to the posterior probability distribution function (pdf) of ω given our dataset if a uniform prior is assumed.

The model of the Galaxy Our assumed model of the Galaxy is specifically designed to include the properties of the adopted dataset, which is expected to contain mostly thin disc giant stars. Treating our sample as a simple stellar population, we can write

$$p_i(r, \mu'_b \mid l, b, \Theta_{Gal}, \omega) = p_i(\mu'_b \mid l, b, r, \Theta_{KIN}, \omega) p_i(r \mid l, b, \Theta_{SP}, \Theta_{CMD}) ,$$

where $p_i(\mu'_b \mid l, b, r, \Theta_{KIN}, \omega)$ is the probability density function for the true proper motion μ'_b for a given true position (l, b, r) according to the kinematic model Θ_{KIN}, and $p_i(r \mid l, b, \Theta_{SP}, \Theta_{CMD})$ is the expected probability density function of the heliocentric distance r in the direction (l, b) according to the assumed spatial model Θ_{SP}, taking into account the spatial observational effects due to the selection function of our sample, collected in the symbol Θ_{CMD} (all these terms are described in the following). Our separation of the Galaxy model into a kinematic and spatial component in Equation 6 permits us to solve analytically the integral over μ'_b in Equation 4 for a given position (l, b, r) in the Galaxy, while the one over heliocentric distance r is calculated numerically via Monte Carlo integration. For a star at (l, b), the probability density function (pdf) of r along the line-of-sight can be written as

$$p(r \mid l, b, \Theta_{SP}, \Theta_{CMD}) = p(r \mid l, b, \Theta_{SP}) S(r \mid \Theta_{CMD})$$

which is composed of the pdf of r, $p(r \mid l, b, \Theta_{SP})$, given the assumed model of the spatial distribution of stars in the Galaxy (see next section), and the term $S(r \mid \Theta_{CMD})$, namely the selection function specifying the fraction of stars that can be observed at r, according to the modelled distribution of stars in color-magnitude space, our selection criteria and the completeness of our sample, captured collectively by the symbol Θ_{CMD}. We clarify that $S(r \mid \Theta_{CMD})$ is not a pdf, as discussed in the following.

The selection function For a magnitude-limited sample, the fraction of observable objects decreases as a function of heliocentric distance r. To reproduce this observational effect, we need a model for the luminosity function $\Phi(M_G)$, where M_G is the absolute magnitude in the G band. In order to take into account extinction, we instead consider the distribution of stars with respect to the absolute magnitude uncorrected for extinction in the G band, $f_{AV}(M_G)$, where $M_G \equiv (M_G + A_G)$, A_G being the extinction in the G band. The subscript A_V reminds us that this distribution depends on the amount of extinction, which we parameterize with A_V, since our adopted extinction map specifies the extinction in the V band. We derive $f_{AV}(M_G)$ by first constructing the distribution of stars in color-magnitude space (i.e. a Hess diagram) from the PARSEC isochrones, assuming a constant star formation rate, the canonical two-part power law Kroupa initial mass function corrected for unresolved binaries, and solar metallicity, for a given value of A_V. Finally, the distribution of stars in observed colour space is modified by applying the selection criteria of our sample (see Poggio et al), i.e. by setting to zero the parts of the distribution not satisfying the adopted colour-colour cuts. Using this procedure we construct a suite of “luminosity” functions.
Figure 5: The cumulative luminosity function for $M_G = M_G + A_G$, obtained by applying to our modelled colour-magnitude diagram (see text) the color-color cuts performed to select our sample13 for different values of extinction.

Figure 6: The completeness of the dataset as a function of apparent magnitude G.

$f_{AV}(M_G)$ for different values of A_V. For computational convenience, from each $f_{AV}(M_G)$ we derive the cumulative distribution function:

$$F_{AV}(M_G) = \frac{\int_{-\infty}^{M_G} f_{AV}(M_G') dM_G'}{\int_{-\infty}^{+\infty} f_{AV}(M_G') dM_G'},$$

where the prime indicates the variable of integration. (See Figure 5.)

Finally, we include in our model the completeness of our dataset, which was extracted from a combined Gaia DR2\cap 2MASS catalogue13. The completeness of this catalogue is evaluated by assuming that GaiaDR2 and 2MASS are independent samples of the sky, that is, that the completeness $C_j(G_j)$ of the DR2\cap 2MASS for the j^{th} magnitude bin G_j is approximately equal to $N_{GT}^2/N_G N_T$, where N_G and N_T are the counts of DR2 and 2MASS sources in the G_j bin, and N_{GT} the number of sources in both DR2 and 2MASS in the same G_j bin. (See Drimmel et al for details.) By definition, the completeness $C_j(G_j)$ lies between 0 and 1 (see Figure 6).
Thus, for a given position \((l, b, r)\), we recover the extinction in the V band, \(A_V\), from the adopted extinction map\(^{32}\), which in turn allows us to choose an appropriate \(f_{A_V}(\mathcal{M}_G)\) that takes into account our selection criteria. Finally, the fraction of stars at \(r\) that are observable within our apparent magnitude limits \((5 < G < 15.5)\) is found by integrating \(f_{A_V}(\mathcal{M}_G)\) modulated by the completeness of our sample over the appropriate range of \(\mathcal{M}_G(G, r) = G - 5 \log_{10} r + 5\), similar to Astraatmadja & Bailer-Jones\(^{35}\) and Bailer-Jones\(^{40}\):

\[
S(r | \Theta_{CMD}) = \int_{G=5}^{15.5} C(G) f_{A_V}(\mathcal{M}_G(G, r)) dG \approx \sum_j C_j I_j \tag{9}
\]

where the sum is over apparent magnitude bins of width \(\Delta G = 0.5\) magnitude in \(G\), and

\[
I_j = \int_{M_G^j}^{M_G^{j+1}} f_{A_V}(\mathcal{M}_G) d\mathcal{M}_G = F_{A_V}(\mathcal{M}_G^j) - F_{A_V}(\mathcal{M}_G^j), \tag{10}
\]

where \(\mathcal{M}_G^j = G_j \pm \Delta G/2 - 5 \log_{10} r + 5\) are the upper/lower limits of the \(j^{th}\) magnitude bin.

The spatial model For a given direction \((l, b)\), the probability of a star to be at a *true* distance \(r\) is proportional to the stellar density \(\rho\) predicted by our spatial model \(\Theta_{SP}\), so that we can write \(p_i(r | l, b, \Theta_{SP}) \propto r^2 \rho(r | l, b, \Theta_{SP})\), where the term \(r^2\) takes volume effects into account. We now move from heliocentric \((l, b, r)\) to Galactocentric coordinates \((R, \phi, z)\), which are convenient for describing our Galactic model. The stellar density is modelled as an exponential disc

\[
\rho(R, \phi, z) = \rho_0 e^{-(R-R_\odot)/L_R} e^{-(|z-z_\odot|/h_z(R))}, \tag{11}
\]

with scale length \(L_R\) and scale height

\[
h_z(R) = h_z(R_\odot) e^{(R-R_\odot)/h_f}, \tag{12}
\]

which increases as a function of \(R\) because of the disc flaring. Meanwhile the Galactic disc is warped according to Equation 2, where the height function \(h_w(R)\) is the given by:

\[
h_w(R) = h_{0,w} (R - R_w)^{\alpha_w} \tag{13}
\]

for \(R > R_w\) and zero otherwise, and the parameters \(h_{0,w}\) and \(\alpha_w\) modulating the magnitude and the rate at which the warp amplitude increases with galactocentric radius. Several parametrizations are available in literature\(^{15,16,20,41-44}\). We here focus on the three spatial warp models collected in Table 1. The remaining spatial parameters of the Galaxy model are reported in Table 2.

The kinematic model The kinematic term \(p_i(\mu_b^l | l, b, r, \Theta_{KIN}, \omega)\) in Equation 6 predicts the probability of a star at \((l, b, r)\) to have a *true* proper motion \(\mu_b^l\) according to our kinematic model \(\Theta_{KIN}\) and warp precession \(\omega\). Table 2 shows the kinematic parameters adopted in this work. Approximating the local velocity distribution as a velocity ellipsoid, one can show that

\[
p_i(\mu_b^l | l, b, r, \Theta_{KIN}, \omega) = \frac{1}{\sqrt{2\pi\sigma_{\mu_b^l}}} e^{-\frac{1}{2} \left(\frac{\mu_b^l - \mu_b^{l'}}{\sigma_{\mu_b^l}}\right)^2}, \tag{14}
\]
where the mean value μ_b' is determined by the mean stellar velocities (ν_R, ν_ϕ, ν_Z) in a given position (l, b, r), together with the solar velocity with respect to the Galactic Center

$$\mu_b' = \frac{0.2104}{r} \left[(\nu_Z - \nu_{Z,\odot}) \cos b + (\nu_R - \nu_{R,\odot}) \sin b \cos (l + \phi) - (\nu_\phi - \nu_{\phi,\odot}) \sin b \sin (l + \phi) \right],$$

while the intrinsic dispersion in the proper motions σ_{μ_b}' is given by the intrinsic velocity dispersions and their correlations

$$\sigma_{\mu_b}' = \frac{0.2104}{r} \sqrt{\sigma_{V_Z}^2 \cos^2 b + \sin^2 b \left[\sigma_{V_R}^2 \cos^2 (l + \phi) + \sin^2 (l + \phi) (\sigma_{V_\phi}^2 + 2 \nu_R \nu_Z \cos (l + \phi)) \right]}$$

which are described in the following. The velocity dispersions exponentially decrease as a function of R with a scale length L_σ, e.g. $\sigma_R(R) = \sigma_{R,0} \exp \left(-(R - R_{\odot})/L_\sigma \right)$, whereas the covariance $\nu_R \nu_Z$ is characterised by the tilt angle α_{tilt} of the velocity ellipsoid

$$\nu_R \nu_Z = \frac{\sigma_R^2 - \sigma_Z^2}{2} \tan(2\alpha_{tilt}) ,$$

where we adopt $\alpha_{tilt} = -0.9 \arctan(|z|/R_{\odot}) - 0.01^{45}$, which is close to the case of alignment with the Galactocentric spherical coordinate system. The mean azimuthal velocity is taken as $\nu_\phi(R) = V_C(R) - V_A(R)$, where $V_C(R) = 229 - 1.7 (R - R_{\odot})$ km/s46 is the mean circular velocity, and $V_A(R)$ is the asymmetric drift31

$$V_A(R) = \frac{\sigma_R^2(R)}{2V_C(R)} \left[\frac{\sigma_R^2(R)}{\sigma_R^2(R)} - 1 + R \left(\frac{1}{L_R} + \frac{2}{L_\sigma} \right) - \frac{R}{\sigma_R^2(R)} \frac{\partial \nu_R \nu_Z}{\partial z} \right].$$

According to our simple model, there is no net radial motion, i.e. $\nu_R = 0$ and no vertex deviation. Finally, the warping of the disc along the z-coordinate (see Equations 2 and 13) induces the systematic vertical velocity ν_Z described by equation 3. Thus, the warp manifests itself as a modulation of the mean vertical velocities with respect to ϕ and R. As expected, setting $\omega = 0$ in Equation 3 recovers the vertical velocities for a static warp model18.

The measurement model The term $p_i(\varpi, \mu_b | \Sigma_{\varpi,\mu_b}, r, \mu_b')$ in Equation 4 models the noise of the measurement process for the astrometric observables (ϖ, μ_b) of the ith star of the catalogue. As reported in the text, we assume that the uncertainties on the position (l, b) are insignificant compared to those of the astrometric quantities ϖ and μ_b, so that the non-trivial elements of the astrometric covariance matrix Σ_{ϖ,μ_b} are

$$\Sigma_{\varpi,\mu_b} = \begin{pmatrix} \sigma_{\varpi}^2 & \rho_{\varpi \mu_b} \sigma_{\varpi} \sigma_{\mu_b} \\ \rho_{\varpi \mu_b} \sigma_{\varpi} \sigma_{\mu_b} & \sigma_{\mu_b}^2 \end{pmatrix},$$

which is constructed using the uncertainty on the measured parallax σ_{ϖ} and proper motion σ_{μ_b}, together with their correlation $\rho_{\varpi \mu_b}$. Since the covariance matrix was provided for each *Gaia* DR2 source in equatorial (ICRS) coordinates, we converted it into galactic coordinates using the rotation matrix from the IAU SOFA Software Collection53, according to the procedure described in Section
Table 1: Shape parametrizations of the three geometrical warp models adopted in this work, following Equation 2 and 13. The radius R_w was scaled to account for different assumptions about the Sun - Galactic center distance in this work and in the considered papers.

Source	R_w (kpc)	α_w	$h_{0,w}$ (kpc)	ϕ_w (°)
Chen et al., linear model15	9.06	1	0.148	17.4
Chen et al., power-law model15	7.55	1.33	0.06	17.5
Yusifov20	6.21	1.4	0.037	14.5

Table 2: Spatial and kinematic parameters adopted in this work.

Spatial parameters	Adopted value	Source
Sun - Galactic center distance	$R_\odot = 8.122 \pm 0.31$ kpc	47
Height of the Sun above $z = 0$	$z_\odot = 20.8 \pm 0.3$ pc	48
Thin disc scale length	$L_R = 2.6 \pm 0.5$ kpc	21
Thin disc scale height at R_\odot	$h_z(R_\odot) = 300 \pm 50$ pc	21
Flare characteristic radius	$h_{fl} = 23.0$ kpc	49

Kinematic parameters	Adopted value	Source		
Rotation curve velocity at R_\odot	$V_C(R) = (229.0 \pm 0.2) - (1.7 \pm 0.1)(R - R_\odot)$	46		
Tilt of the velocity ellipsoid	$\alpha_{tilt} = -(0.90 \pm 0.04)\tan(z	/R_\odot) - (0.010 \pm 0.005)$	45
Solar velocity	$(V_{R,\odot}, V_{\phi,\odot}, V_{Z,\odot}) = (-12.9, 245.6, 7.78) \pm (3.0, 1.4, 0.09)$ km s$^{-1}$	50		
Velocity dispersion ratio	$\sigma_{\phi}(R)/\sigma_R(R) = 0.5 \pm 0.3$	51		
Old thin disc velocity dispersion	$(\sigma_{(R,0)}, \sigma_{(Z,0)}) = (35, 25) \pm (5, 5)$ km s$^{-1}$	21		
Velocity dispersion scale length	$L_\sigma = 2L_R$	52		
1.5 of “The Hipparcos and Tycho Catalogues”. The obtained covariance matrix uniquely defines the bivariate gaussian
\[
p_i(\varpi, \mu_b | \Sigma_{\varpi, \mu_b}, r, \mu_b') = \frac{1}{2\pi \sigma_{\varpi} \sigma_{\mu_b} \sqrt{1 - \rho_{\varpi, \mu_b}^2}} e^{-\frac{1}{2} \left[\frac{\Delta_{\varpi}^2 - 2 \rho_{\varpi, \mu_b} \Delta_{\varpi} \Delta_{\mu_b} \sigma_{\varpi} \sigma_{\mu_b} + \Delta_{\mu_b}^2}{(1 - \rho_{\varpi, \mu_b}^2) \sigma_{\varpi}^2} \right]},
\]
with \(\Delta_{\mu_b} = \mu_b' - \mu_b\) and \(\Delta_{\varpi} = 1/r + \varpi_0 - \varpi\), where \(\varpi_0\) is the systematic zeropoint offset of the Gaia DR2 parallaxes. Unfortunately, no unique \(\varpi_0\) is universally valid for all Gaia DR2 stars, as it likely depends on magnitude, position and, possibly, color. Numerous estimates are available in literature, and repeating the procedure to estimate \(\varpi_0 = -0.05\) mas, and discuss the impact of the assumed \(\varpi_0\) on our results (see below). To take into account the additional uncertainties introduced by the variation of the systematic errors on small angular scales, we inflate the parallax and proper motion uncertainties \(\sigma_\varpi, \sigma_{\mu_b}\) with respect to the formal uncertainties \(\bar{\sigma}_\varpi, \bar{\sigma}_{\mu_b}\) obtained from the Gaia DR2 catalogue
\[
\sigma_{\varpi} = \sqrt{k^2 \bar{\sigma}_{\varpi}^2 + \sigma_{\varpi, syst}^2},
\]
and similarly for \(\sigma_{\mu_b}\), assuming \(k = 1.1\), \(\sigma_{\varpi, syst} = 0.043\) mas and \(\sigma_{\mu_b, syst} = 0.066\) mas/yr, as suggested by Lindegren† for the stars with \(G > 13\), which applies to most of the stars in our dataset.

Systematic uncertainties on the warp precession rate We here discuss the impact of the systematic uncertainties introduced by our uncertain knowledge of the Galaxy. As seen in Equation 3, there is an intimate connection between the adopted geometrical model of the warp and the corresponding kinematic signature. In particular, the warp precession \(\omega\) and the spatial amplitude of the warp have similar effects on the kinematics, as they both modulate the amplitude of the signal in the mean vertical velocities. Between the three different warp geometries considered, we find the range of derived warp precession rates to be 1.40 km s\(^{-1}\) kpc\(^{-1}\). Other parameters of our model \(\Theta_{\text{Gal}}\) also influence our measurement of the warp precession rate, and their impact is estimated by varying each parameter by their uncertainties and/or assuming different values available in the literature, and repeating the procedure to estimate \(\omega\) (see Main), again for each of the three assumed warp geometries. We find that the most relevant contributions to the uncertainty of \(\omega\) are the velocity dispersion at the Sun \(\sigma_{(R,0)}, \sigma_{(Z,0)}\), causing a variation in \(\omega\) of 0.81 km s\(^{-1}\) kpc\(^{-1}\), and the circular velocity at the Solar circle \(V_C(R_\odot)\), whose variation from 217\(^{60}\) to 240\(^{61}\) km/s results in a variation of 1.55 km s\(^{-1}\) kpc\(^{-1}\) in \(\omega\). Moreover, by varying the modelled systematic parallax zero-point error \(\varpi_0\) (see above) between -0.03 and -0.08 mas we find a difference of 1.54 km s\(^{-1}\) kpc\(^{-1}\) in the estimated \(\omega\). By summing in quadrature the uncertainties just mentioned above, we obtain the systematic uncertainty 2.72 km s\(^{-1}\) kpc\(^{-1}\), which is reported in Equation 1. As a final test, we also performed the analysis with the faint \((G > 13)\) sources only, in order to check that the spin of the bright reference frame of Gaia DR2\(^{62}\) does not significantly affect our final estimate of warp precession rate.

† https://www.cosmos.esa.int/documents/29201/1770596/Lindegren_GaiaDR2_Astrometry_extended.pdf/1ebddb25-f010-6437-cb14-0e360e2d9f09
References

1. Binney, J. WARPS. *Annual Review of Astron. Astrophys.* **30**, 51–74 (1992).

2. Sellwood, J. A. *Dynamics of Disks and Warps*. Springer Science+Business Media, Dordrecht, vol. 5, 923 (2013).

3. Gaia Collaboration *et al.* Gaia Data Release 2. Summary of the contents and survey properties. *Astron. Astrophys.* **616**, A1 (2018). 1804.09365.

4. Sparke, L. S. & Casertano, S. A model for persistent galactic WARPS. *Mon. Not. R. Astron. Soc.* **234**, 873–898 (1988).

5. Dubinski, J. & Chakrabarty, D. Warps and Bars from the External Tidal Torques of Tumbling Dark Halos. *Astrophys. J.* **703**, 2068–2081 (2009). 0908.0168.

6. Jiang, I.-G. & Binney, J. WARPS and cosmic infall. *Mon. Not. R. Astron. Soc.* **303**, L7–L10 (1999). astro-ph/9807161.

7. Shen, J. & Sellwood, J. A. Galactic warps induced by cosmic infall. *Mon. Not. R. Astron. Soc.* **370**, 2–14 (2006). astro-ph/0604529.

8. Weinberg, M. D. & Blitz, L. A Magellanic Origin for the Warp of the Galaxy. *Astrophys. J. Lett.* **641**, L33–L36 (2006). astro-ph/0601694.

9. Laporte, C. F. P., Minchev, I., Johnston, K. V. & Gómez, F. A. Footprints of the Sagittarius dwarf galaxy in the Gaia data set. *Mon. Not. R. Astron. Soc.* **485**, 3134–3152 (2019). 1808.00451.

10. Gaia Collaboration *et al.* Gaia Data Release 2. Mapping the Milky Way disc kinematics. *Astron. Astrophys.* **616**, A11 (2018). 1804.09380.

11. Liu, C., Tian, H.-J. & Wan, J.-C. The age-kinematical features in the Milky Way outer disk. In Gil de Paz, A., Knapen, J. H. & Lee, J. C. (eds.) *Formation and Evolution of Galaxy Outskirts*, vol. 321 of *IAU Symposium*, 6–9 (2017). 1702.02233.

12. Schönrich, R. & Dehnen, W. Warp, waves, and wrinkles in the Milky Way. *Mon. Not. R. Astron. Soc.* **478**, 3809–3824 (2018). 1712.06616.

13. Poggio, E. *et al.* The Galactic warp revealed by Gaia DR2 kinematics. *Mon. Not. R. Astron. Soc.* **481**, L21–L25 (2018). 1805.03171.

14. Romero-Gómez, M., Mateu, C., Aguilar, L., Figueras, F. & Castro-Ginard, A. Gaia kinematics reveal a complex lopsided and twisted Galactic disc warp. *arXiv e-prints* (2018). 1812.07576.

15. Chen, X. *et al.* An intuitive 3D map of the Galactic warp’s precession traced by classical Cepheids. *Nature Astronomy* (2019). 1902.00998.
16. Skowron, D. M. et al. A three-dimensional map of the Milky Way using classical Cepheid variable stars. *Science* **365**, 478–482 (2019). 1806.10653.

17. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). *Astron. J.* **131**, 1163–1183 (2006).

18. Poggio, E., Drimmel, R., Smart, R. L., Spagna, A. & Lattanzi, M. G. The kinematic signature of the Galactic warp in Gaia DR1. I. The Hipparcos subsample. *Astron. Astrophys.* **601**, A115 (2017). 1702.04556.

19. Briggs, F. H. Rules of behavior for galactic WARPS. *Astrophys. J.* **352**, 15–29 (1990).

20. Yusifov, I. Pulsars and the Warp of the Galaxy. In Uyaniker, B., Reich, W. & Wielebinski, R. (eds.) *The Magnetized Interstellar Medium*, 165–169 (2004). astro-ph/0405517.

21. Bland-Hawthorn, J. & Gerhard, O. The Galaxy in Context: Structural, Kinematic, and Integrated Properties. *Annual Review of Astron. Astrophys.* **54**, 529–596 (2016). 1602.07702.

22. Gerhard, O. Pattern speeds in the Milky Way. *Memorie della Societa Astronomica Italiana Supplementi* **18**, 185 (2011). 1003.2489.

23. Carrillo, I. et al. Kinematics with Gaia DR2: The Force of a Dwarf. *arXiv e-prints* (2019). 1903.01493.

24. López-Corredoira, M. & Sylos Labini, F. Gaia-DR2 extended kinematical maps . I. Method and application. *Astron. Astrophys.* **621**, A48 (2019). 1810.13436.

25. Amôres, E. B., Robin, A. C. & Reylé, C. Evolution over time of the Milky Way’s disc shape. *Astron. Astrophys.* **602**, A67 (2017). 1701.00475.

26. Ideta, M., Hozumi, S., Tsuchiya, T. & Takizawa, M. Time evolution of galactic warps in prolate haloes. *Mon. Not. R. Astron. Soc.* **311**, 733–740 (2000). astro-ph/9910030.

27. Jeon, M., Kim, S. S. & Ann, H. B. Galactic Warps in Triaxial Halos. *Astrophys. J.* **696**, 1899–1917 (2009). 0903.0214.

28. Helmi, A. et al. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. *Nature* **563**, 85–88 (2018). 1806.06038.

29. Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E. & Deason, A. J. Co-formation of the disc and the stellar halo. *Mon. Not. R. Astron. Soc.* **478**, 611–619 (2018). 1802.03414.

30. Iorio, G. & Belokurov, V. The shape of the Galactic halo with Gaia DR2 RR Lyrae. Anatomy of an ancient major merger. *Mon. Not. R. Astron. Soc.* **482**, 3868–3879 (2019). 1808.04370.

31. Binney, J. & Tremaine, S. *Galactic Dynamics: Second Edition* (Princeton University Press, 2008).
32. Drimmel, R., Cabrera-Lavers, A. & López-Corredoira, M. A three-dimensional Galactic extinction model. *Astron. Astrophys.* **409**, 205–215 (2003). astro-ph/0307273.

33. Bressan, A. *et al.* PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. *Mon. Not. R. Astron. Soc.* **427**, 127–145 (2012). 1208.4498.

34. Chen, Y. *et al.* Improving PARSEC models for very low mass stars. *Mon. Not. R. Astron. Soc.* **444**, 2525–2543 (2014). 1409.0322.

35. Chen, Y. *et al.* PARSEC evolutionary tracks of massive stars up to 350 M_\odot at metallicities 0.0001 $\leq Z \leq 0.04$. *Mon. Not. R. Astron. Soc.* **452**, 1068–1080 (2015). 1506.01681.

36. Tang, J. *et al.* New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies. *Mon. Not. R. Astron. Soc.* **445**, 4287–4305 (2014). 1410.1745.

37. Kroupa, P. On the variation of the initial mass function. *Mon. Not. R. Astron. Soc.* **322**, 231–246 (2001). astro-ph/0009005.

38. Kroupa, P. The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems. *Science* **295**, 82–91 (2002). astro-ph/0201098.

39. Astraatmadja, T. L. & Bailer-Jones, C. A. L. Estimating Distances from Parallaxes. II. Performance of Bayesian Distance Estimators on a Gaia-like Catalogue. *Astrophys. J.* **832**, 137 (2016). 1609.03424.

40. Bailer-Jones, C. A. L. The completeness-corrected rate of stellar encounters with the Sun from the first Gaia data release. *Astron. Astrophys.* **609**, A8 (2018). 1708.08595.

41. Reylé, C., Marshall, D. J., Robin, A. C. & Schultheis, M. The Milky Way’s external disc constrained by 2MASS star counts. *Astron. Astrophys.* **495**, 819–826 (2009). 0812.3739.

42. Robin, A. C., Reylé, C. & Marshall, D. J. The Galactic warp as seen from 2MASS survey. *Astronomische Nachrichten* **329**, 1012 (2008).

43. Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M. & Picaud, S. Modelling the Galactic interstellar extinction distribution in three dimensions. *Astron. Astrophys.* **453**, 635–651 (2006). astro-ph/0604427.

44. Drimmel, R. & Spergel, D. N. Three-dimensional Structure of the Milky Way Disk: The Distribution of Stars and Dust beyond 0.35 R_\odot. *Astrophys. J.* **556**, 181–202 (2001). astro-ph/0101259.

45. Büdenbender, A., van de Ven, G. & Watkins, L. L. The tilt of the velocity ellipsoid in the Milky Way disc. *Mon. Not. R. Astron. Soc.* **452**, 956–968 (2015). 1407.4808.

46. Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. *Astrophys. J.* **871**, 120 (2019). 1810.09466.
47. Gravity Collaboration et al. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. *Astron. Astrophys.* **615**, L15 (2018). [1807.09409].

48. Bennett, M. & Bovy, J. Vertical waves in the solar neighbourhood in Gaia DR2. *Mon. Not. R. Astron. Soc.* **482**, 1417–1425 (2019). [1809.03507].

49. Sollima, A. et al. A Deep View of the Monoceros Ring in the Anticenter Direction: Clues of Its Extra-galactic Origin. *Astrophys. J. Lett.* **730**, L6 (2011). [1102.2137].

50. Drimmel, R. & Poggio, E. On the Solar Velocity. *Research Notes of the American Astronomical Society* **2**, 210 (2018).

51. Huang, Y. et al. The Milky Way’s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution. *Mon. Not. R. Astron. Soc.* **463**, 2623–2639 (2016). [1604.01216].

52. Binney, J. & Piffl, T. The distribution function of the Galaxy’s dark halo. *Mon. Not. R. Astron. Soc.* **454**, 3653–3663 (2015). [1509.06877].

53. Board, I. S. Iau sofa software collection. URL http://www.iausofa.org.

54. *The HIPPARCOS and TYCHO catalogues. Astrometric and photometric star catalogues derived from the ESA HIPPARCOS Space Astrometry Mission*, vol. 1200.

55. Lindegren, L. et al. Gaia Data Release 2. The astrometric solution. *Astron. Astrophys.* **616**, A2 (2018). [1804.09366].

56. Arenou, F. et al. Gaia Data Release 2. Catalogue validation. *Astron. Astrophys.* **616**, A17 (2018). [1804.09375].

57. Riess, A. G. et al. Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant. *Astrophys. J.* **861**, 126 (2018). [1804.10655].

58. Zinn, J. C., Pinsonneault, M. H., Huber, D. & Stello, D. Confirmation of the zero-point offset in Gaia Data Release 2 parallaxes using asteroseismology and APOGEE spectroscopy in the Kepler field. *arXiv e-prints* (2018). [1805.02650].

59. Schönrich, R., McMillan, P. & Eyer, L. Distances and parallax bias in Gaia DR2. *Mon. Not. R. Astron. Soc.* **487**, 3568–3580 (2019). [1902.02355].

60. Wegg, C., Gerhard, O. & Bieth, M. The gravitational force field of the Galaxy measured from the kinematics of RR Lyrae in Gaia. *Mon. Not. R. Astron. Soc.* **485**, 3296–3316 (2019). [1806.09635].

61. Reid, M. J. et al. Trigonometric Parallaxes of High Mass Star Forming Regions: The Structure and Kinematics of the Milky Way. *Astrophys. J.* **783**, 130 (2014). [1401.5377].
Acknowledgements E. Poggio and R. Drimmel thank S. Casertano for useful discussions. E. Poggio thanks B. Bucciarelli for providing the software for the propagation of astrometric covariances. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work was supported by ASI (Italian Space Agency) under contract 2018-24-HH.0. This work was funded in part by the DLR (German space agency) via grant 50 QG 1403.

Author contributions EP contributed to the sample preparation, analysed the data, performed most of the modelling, and wrote the manuscript together with RD. RD contributed to the model construction and interpretation of the results. RA, CALBJ, MF helped with the statistical inference and revised the text. MGL, RLS and AS contributed to the project planning and revised the text.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence and request for materials should be addressed to Eloisa Poggio (email: eloisa.poggio@inaf.it).