Supporting information

High rate hybrid MnO$_2$@CNT fabric anode for Li-ion batteries: properties and lithium storage mechanism study by in situ synchrotron X-ray scattering

Moumita Rana,a Venkata Sai Avvaru,a,b Nicola Boaretto,a,c Víctor A. de la Peña O’Shea,c
Rebeca Marcilla,d Vinodkumar Etacheri*$_a$ and Juan J. Vilatela*$_a$

aIMDEA Materials, Eric Kandel 2, 28906 Getafe, Madrid, Spain
bFaculty of Science, Autonoma University of Madrid, C/ Francisco Tomás y Valiente, 7, Madrid 28049, Spain
cPhotoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Parque Tecnológico de Móstoles, 28935 Móstoles, Madrid, Spain
dElectrochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Parque Tecnológico de Móstoles, 28935 Móstoles, Madrid, Spain

* vinodkumar.etacheri@imdea.org, juanjose.vilatela@imdea.org
Figure S1. FESEM images of MnO$_2$@CNTF hybrid at different magnifications, showing uniform coating of hierarchical MnO$_2$ nanoflowers. The preoxidized CNTF allows the uniform growth of MnO$_2$ as can be seen in (c) and (f). Inset pictures in (a) show the flexible nature of the macroscopic samples.
Figure S2. FESEM images of (a,b) pristine CNT fibers veils and (c,d) MnO$_2$ nanoflowers on pristine CNTF showing non-uniform oxide coverage on CNT bundles.

Figure S3. (a) Electron dispersive X-ray spectrum of MnO$_2$@CNTF hybrid. (b) BET isotherm of MnO$_2$@CNT hybrid.
Figure S4. Comparison of (a) TGA and (b) DTA curves of MnO$_2$/CNTF hybrid with pristine CNTF in aerial atmosphere.

Figure S5. (a) First two cyclic voltammograms of pristine CNT at a scan rate of 0.1 mV/s. (b) First three voltage profiles of MnO$_2$@CNTF for charge-discharge process at a current density of 25 mA/g. (c) Fitting of Cunn-Donway (equation 1) at 2V during anodic scan (R-Square = 0.92). (d) Comparison of rating for this material and literature data (from table ST1).
Figure S6. Rate profiles of (a) MnO$_2$@CNT with 43% MnO$_2$ loading and (b) commercial MnO$_2$ at current densities of 25 mA/g to 5 A/g. (c) voltage profiles of commercial MnO$_2$ at different current densities.

Table ST1. Comparison of specific capacitance values of Li-ion battery anodes with MnO$_2$@CNTF hybrid.

Sr. No.	Material (crystal structure)	Specific capacity (mAh/g)	Current density (mA/g)	reference
1.	MnO$_x$@CNT	1153	25 mA/g	This work
		955	50 mA/g	
		882	100 mA/g	
		838	200 mA/g	
		783	500 mA/g	
		722	1 A/g	
		650	2 A/g	
		519	5 A/g	
		344	10 A/g	
2.	MnO/Carbon Nanopeapods	463	5 A/g	[1]
3.	MnO$_2$/Carbon Nanotube Array	500	50 mA/g	[2]
4.	putty-like MnO$_2$/CNT	796	500 mA/g	[3]
		236	10 A/g	
5.	MnO$_2$/Conjugated Polymer/Graphene	948	50 mA/g	[4]
		698	400 mA/g	
6.	Nanoflaky MnO$_2$/carbon nanotube	820	200 mA/g	[5]
---	---	---	---	
	Mn$_2$O$_4$/C nanospheres	1237	200 mA/g	
		425	4 A/g	
7.			[6]	
	MnO$_2$ nanorods	1075	100 mA/g	
		489	1 A/g	
8.			[7]	
	Graphene-Wrapped MnO$_2$–Graphene Nanoribbons	890	100 mA/g	
		550	1 A/g	
9.			[8]	
	monodisperse α-Mn2O3 octahedra	791	100 mA/g	
		435	3200 mA/g	
10.			[9]	
	Thin Film of Graphene-MnO$_2$ Nanotube	495	100 mA/g	
		208	1.6 A/g	
11.			[10]	
	Mn$_3$O$_4$–Graphene	810	40 mA/g	
		390	1.6 A/g	
12.			[11]	
	Graphene/Ni$_2$P	599	100 mA/g	
		260	5 A/g	
13.			[12]	
	Mesoporous Co$_3$O$_4$	1033	100 mA/g	
		622	5 A/g	
14.			[13]	
	MnO/C	1165	0.3 A/g	
		580	3 A/g	
15.			[14]	
	Mesoporous Dual Carbon Armored MnO Nanoparticles	865	100 mA/g	
		425	2 A/g	
16.			[15]	
	Mn3O4 Nanoparticles on Hollow Carbon Nanofiber	835	200 mA/g	
		528	2 A/g	
17.			[16]	
	(TMO = CoO, Ni$_2$O$_3$, Mn$_3$O$_4$) NPs Encapsulated into B/N Co-Doped Graphitic Nanotubes	For CoO 1554	96 mA /g	
		410	1.75 A /g	
18.			[17]	
	Hollow C sphere with open pore encapsulated MnO$_2$ nanosheets	780.4	500 mA/g	
		398	5 A /g	
19.			[18]	
	3D δ-MnO$_2$ nanostructure	905	0.1 A/g	
20.			[19]	
	Sample Description	Capacity (mAh/g)	Current (mA/g)	Ref.
---	--	------------------	----------------	------
21.	coaxial MnO$_2$/CNTs nanocomposite	271	1 A/g	
		1064	0.1 A/g	
		474	1.6 A/g	[20]
22.	Nanoflake δ-MnO$_2$ deposited on carbon nanotubes-graphene-Ni foam scaffolds	500	4 A/g	[21]
23.	nanostructured MnO$_2$	1095	100 mA/g	[22]
		464	2 A/g	
24.	MoS$_2$-on-MXene Heterostructures	646	100 mA/g	[23]
		182	2 A/g	
		90	5 A/g	
25.	Urchin-like α-Fe$_2$O$_3$/MnO$_2$ hierarchical hollow composite microspheres	716	0.2 A/g	[24]
		413	1 A/g	
Figure S7. (a) Digital image of the set-up for the operando synchrotron SAXS/ WAXS measurements and the customized cell with free-standing working electrode. (b, c) Consumption of lithium during in situ synchrotron charge-discharge process corresponding to galvanostatic profiles shown in Figure 4.
Table ST2: Details of the crystallographic analysis of in situ WAXS measurement.

Material	Crystal phase (ICSD- reference number)	Peak position in q (Å⁻¹)	Lattice Plane	Ref.
MnO₂	Crystal system: Hexagonal Space group: P6₃/mmc a (Å): 2.829 b (Å): 2.829 c (Å): 4.410 Alpha (°): 90.0000 Beta (°): 90.0000 Gamma (°): 120 ICSD-76430, PDF 00-030-820	2.55	(100)	25
		2.92	(101)	
		3.8	(102)	
		4.42	(210)	
		5.12	(103)	
Mn₂O₃	Crystal system: Orthorhombic Space group: P b c a a (Å): 9.4120 b (Å): 9.4180 c (Å): 9.4230 Alpha (°): 90.0000 Beta (°): 90.0000 Gamma (°): 90.0000 Reference code: 98-002-4342 ICSD:24342, ICDD:00-024-0508 PDF code: 00-024-0508	2.42	(230)	26
		2.79	(114)	
		3.96	(244)	
		4.73	(435)	
		4.87	(336)	
MnO	Crystal system: Cubic Space group: F m -3 m a (Å): 4.4880 b (Å): 4.4880 c (Å): 4.4880 Alpha (°): 90.0000 Beta (°): 90.0000 Gamma (°): 90.0000 PANICSD:98-065-7312 ICSD:657312	2.45	(111)	27
		2.82	(002)	
		3.99	(113)	
		4.66	(222)	
		4.85	(004)	
LiMnO₂	Crystal system: Orthorhombic Space group: P m m n a (Å): 2.8050 b (Å): 4.5810 c (Å): 5.7490 Alpha (°): 90.0000 Beta (°): 90.0000 Gamma (°): 90.0000 Reference code: 98-008-1050 ICSD: 81050	2.54	(012)	28
		2.95	(021)	
		4.17	(113)	
		4.91	(104)	
		5.12	(114)	
Crystal system: Cubic	Crystal system: Tetragonal	Crystal system: Cubic		
----------------------	-----------------------------	----------------------		
Space group: I -4 3 m	Space group: I 41/a m d	Space group: F m -3 m		
a (Å): 8.9050	a (Å): 5.6720	a (Å): 4.6890		
b (Å): 8.9050	b (Å): 5.6720	b (Å): 4.6890		
c (Å): 8.9050	c (Å): 9.1820	c (Å): 4.6890		
Alpha (°): 90.0000	Alpha (°): 90.0000	Alpha (°): 90.0000		
Beta (°): 90.0000	Beta (°): 90.0000	Beta (°): 90.0000		
Gamma (°): 90.0000	Gamma (°): 90.0000	Gamma (°): 90.0000		
ICSD:164349, PANICSD:98-016-4349	ICSD:62047, PANICSD:98-006-2047	ICSD:642216, PANICSD:98-064-2216		
2.62 (123)	2.33 (013)	2.32 (111)		
2.83 (004)	2.73 (004)	2.67 (002)		
2.99 (114)	3.77 (132)	3.79 (022)		
3.31 (233)	4.23 (244)	4.44 (113)		
4.98 (055)	4.88 (444)	4.64 (222)		
Figure S8. (a, b) WAXS pattern of electrochemically cycled MnO$_2$/CNTF hybrid after 60 cycles. The vertical blue and red bars indicate the simulated XRD pattern of ε-MnO$_2$ and LiMnO$_2$ respectively. (c) Raman spectrum of electrochemically cycled sample after 60 cycles.
Figure S9. Convoluted XPS spectra of Mn3s recorded for (a) pristine MnO$_2$@CNTF, (b) sample at 0V after first lithiation and (c) sample at 3V after first delithiation.
Figure S10. (a, b) FESEM images of the MnO$_2$@CNTF hybrid after lithiation and delithiation process. (c) HAADF and (d-h) corresponding EDS elemental mapping images for (d) carbon, (e) manganese, (f) oxygen, (g) phosphorus and (h) fluorine.

Figure S11. Comparison of the electrochemical impedance spectra (EIS) of MnO$_2$@CNTF before and after electrochemical cycling. Inset shows the equivalent circuit model. The fitting parameter are listed in table ST1.
Table ST3: Fitting parameters for the EIS spectra of MnO$_2$@CNTF before and after potential cycling.

Parameters	Before electrochemical cycling	After electrochemical cycling
R1 (equivalent series resistance)	11.16 Ohm	11.71 Ohm
Q2 (double layer capacitance)	13.69e-6 F.sa(a - 1)	11.76e-6 F.sa(a - 1)
R2 (charge transfer resistance)	217.7 Ohm	118.1 Ohm

Figure S12. TEM images of the sample after CD process.
Figure S13. (a) Rate profile and (b) corresponding voltage profiles of commercial MnO2-C@Cu at different current densities. The specific capacity values are normalized with respect to the total electrode weight. (c) A plot of weight saving factor at different current densities.
References:

[1] H. Jiang, Y. Hu, S. Guo, C. Yan, P. S. Lee and C. Li, *ACS Nano*, 2014, 8, 6038–6046.

[2] A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda and P. M. Ajayan, *Nano Lett.*, 2009, 9, 1002–1006.

[3] L. Shen, Q. Dong, G. Zhu, Z. Dai, Y. Zhang, W. Wang and X. Dong, *Adv. Mater. Interfaces*, 2018, 5, 1800362.

[4] C. X. Guo, M. Wang, T. Chen, X. W. Lou and C. M. Li, *Adv. Energy Mater.*, 2011, 1, 736–741.

[5] H. Xia, M. Lai and L. Lu, *J. Mater. Chem.*, 2010, 20, 6896–6902.

[6] K. Liu, F. Zou, Y. Sun, Z. Yu, X. Liu, L. Zhou, Y. Xia, B. D. Vogt and Y. Zhu, *J. Power Sources*, 2018, 395, 92–97.

[7] J. Chen, Y. Wang, X. He, S. Xu, M. Fang, X. Zhao and Y. Shang, *Electrochim. Acta*, 2014, 142, 152–156.

[8] L. Li, A. O. Raji and J. M. Tour, *Adv. Mater.*, 2013, 25, 6298–6302.

[9] J. Henzie, V. Etacheri, M. Jahan, H. Rong, C. N. Hong and V. G. Pol, *J. Mater. Chem. A*, 2017, 5, 6079–6089.

[10] A. Yu, H. W. Park, A. Davies, D. C. Higgins, Z. Chen and X. Xiao, *J. Phys. Chem. Lett.*, 2011, 2, 1855–1860.

[11] H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J. T. Robinson, Y. Liang, Y. Cui and H. Dai, *J. Am. Chem. Soc.*, 2010, 132, 13978–13980.

[12] C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, *Adv. Mater.*, 2017, 29, 1604015.

[13] S. Zhu, J. Li, X. Deng, C. He, E. Liu, F. He, C. Shi and N. Zhao, *Adv. Funct. Mater.*, 2017, 27, 1605017.

[14] D. Sun, Y. Tang, D. Ye, J. Yan, H. Zhou and H. Wang, *ACS Appl. Mater. Interfaces*, 2017, 9, 5254–5262.

[15] W. Zhang, J. Li, J. Zhang, J. Sheng, T. He, M. Tian, Y. Zhao, C. Xie, L. Mai and S. Mu, *ACS Appl. Mater. Interfaces*, 2017, 9, 12680–12686.

[16] D. Zhang, G. Li, J. Fan, B. Li and L. Li, *Chem. – A Eur. J.*, 2018, 24, 9632–9638.

[17] H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang, H. Zhang, S. Gao, C. Qu, W. Guo and S. Guo, *Adv. Mater.*, 2018, 30, 1705441.

[18] J. Zang, J. Ye, H. Qian, Y. Lin, X. Zhang, M. Zheng and Q. Dong, *Electrochim. Acta*, 2018, 260, 783–788.

[19] A. A. Voskanyan, C.-K. Ho and K. Y. Chan, *J. Power Sources*, 2019, 421, 162–168.

[20] Y. Wu, X. Li, Q. Xiao, G. Lei, Z. Li and J. Guan, *J. Electroanal. Chem.*, 2019, 834, 161–166.

[21] X. Zhai, Z. Mao, G. Zhao, D. Rooney, N. Zhang and K. Sun, *J. Power Sources*, 2018, 402, 373–380.

[22] L. Zhang, J. Song, Y. Liu, X. Yuan and S. Guo, *J. Power Sources*, 2018, 379, 68–73.

[23] C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M. Zhao, P. Urbankowski, L. Miao, J. Jiang and Y. Gogotsi, *Angew. Chemie Int. Ed.*, 2018, 57, 1846–1850.
[24] D. Wang, Y. Wang, Q. Li, W. Guo, F. Zhang and S. Niu, J. Power Sources, 2018, 393, 186–192.

[25] Y. D. Kondrashev and A. I. Zaslavskii, Izv. Akad. Nauk SSSR, Seriya Fiz., 1951, 15, 179–186.

[26] R. Norrestam, Wroclaw, 2002, 1, 1–123.

[27] M. J. Radler, J. B. Cohen, G. P. Sykora, T. Mason, D. E. Ellis and J. Faber Jr, J. Phys. Chem. Solids, 1992, 53, 141–154.

[28] L. Croguennec, P. Deniard, R. Brec and A. Lecerf, J. Mater. Chem., 1995, 5, 1919–1925.

[29] A. C. Lawson, A. C. Larson, M. C. Aronson, S. Johnson, Z. Fisk, P. C. Canfield, J. D. Thompson and R. B. Von Dreele, J. Appl. Phys., 1994, 76, 7049–7051.

[30] W. I. F. David, M. M. Thackeray, P. G. Bruce and J. B. Goodenough, Mater. Res. Bull., 1984, 19, 99–106.

[31] T. W. D. Farley, W. Hayes, S. Hull, M. T. Hutchings and M. Vrtis, J. Phys. Condens. Matter, 1991, 3, 4761.