A Positive Solution for a Nonlocal Schrödinger Equation

Yongchao Zhang* and Gaosheng Zhu†

Abstract

We provide an existence result of radially symmetric, positive, classical solutions for a nonlinear Schrödinger equation driven by the infinitesimal generator of a rotationally invariant Lévy process.

Key Words: nonlocal Schrödinger equation; positive solution; mountain pass theorem.

Mathematics Subject Classification (2010): 35A01; 35A15; 35J60.

1 Introduction

The purpose of this paper is to provide an existence result of radially symmetric, positive, classical solutions for the following problem,

\[
\begin{aligned}
-2Au + \lambda u &= |u|^{p-2}u \\
&\quad u \in H^1(\mathbb{R}^N),
\end{aligned}
\]

where \(\lambda > 0, 2 \leq N \leq 6, 2 < p < 2^* \) with \(2^* := +\infty \) if \(N = 2 \) and \(2^* := 2N/(N-2) \) if \(N > 2 \), and \(A \) is the infinitesimal generator of a rotationally invariant Lévy process.

Example 1.1. Consider the infinitesimal generator \(A \) of a Lévy process with jumps of normal distribution.

\[
Au(x) := \frac{1}{2}\Delta u(x) + \frac{1}{2} \int_{\mathbb{R}^N} (u(x+y) + u(x-y) - 2u(x)) \varphi(y)dy,
\]

where \(\varphi(y) := (2\pi)^{-N/2} \exp(-|y|^2/2). \)

A basic motivation for the study of the problem (1.1) is the well known nonlinear Schrödinger equation driven by the infinitesimal generator of a Brownian motion,

\[
-\Delta u + \lambda u = |u|^{p-2}u.
\]

Many authors investigated Equation (1.2) (see [2, 4, 9, 10] etc.).

Note that the Brownian motion is a special rotationally invariant stable Lévy process. It is natural to consider the following equation,

\[
(-\Delta)^{\alpha/2} u + \lambda u = |u|^{p-2}u,
\]

*School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Taishan Road #143, Qinhuangdao, China, 066004. E-mail: ldfwq@163.com.

†School of Science, Tianjin University, Weijin Road #92, Tianjin, China, 300072. E-mail: gaozsm@163.com.
where $0 < \alpha \leq 2$, since $-(-\Delta)^{\alpha/2}$ is the infinitesimal generator of a rotationally invariant stable Lévy process with index α. Equation (1.3) has been studied by many authors (see [5–8] etc.).

Naturally, we consider the following (nonlocal) Schrödinger equation,

$$-2Au + \lambda u = |u|^{p-2}u, \quad (1.4)$$

where A is the infinitesimal generator of a rotationally invariant Lévy process. In the present paper, we assume that the Lévy process is of N dimensions, where $2 \leq N \leq 6$, with nondegenerate diffusion terms and a finite Lévy measure.

Equation (1.4) also arises from looking for the standing waves of the following Schrödinger equation,

$$i\frac{\partial \psi}{\partial t} - 2A\psi = |\psi|^{p-2}\psi.$$

Before stating the main result of the present paper, let us make some comments on the operators $-(-\Delta)^{\alpha/2}$ and A. If $0 < \alpha < 2$, then the Lévy processes generated by $-(-\Delta)^{\alpha/2}$ are pure jump processes; in other words, these processes do not contain any diffusion term. In fact, the corresponding characteristics of them are given by $(0, 0, \mu)$ with

$$\mu(dx) = \frac{K(\alpha)dx}{|x|^{N+\alpha}} \text{ for some positive constant } K(\alpha).$$

Consequently, the Lévy measure μ is not finite. For the operator A, the corresponding characteristics are given by $(0, aI, \nu)$ for some positive number a and some finite rotationally invariant Lévy measure ν. Therefore, $-(-\Delta)^{\alpha/2}$ does not cover operators of type A and vice versa; besides, Equation (1.4) is an extension of Equation (1.2).

Now we state the main result as follows.

Theorem 1.2. (1) Any weak solution of the problem (1.1) in $H^1(\mathbb{R}^N)$ is a C^2 continuous function.

(2) There exists a radially symmetric, positive, classical solution of problem (1.1).

(3) The values of any positive solution of the problem (1.1) at maximum points are not less than λ^{p-2}.

The rest of the paper is organized as follows. In Section 2 we present some preliminaries. The proof of Theorem 1.2 will be given in Section 3.

2 Some Preliminaries

This section serves as a preparation for the proof of Theorem 1.2. First, we state a compact embedding result. Second, a regularity result will be proved. Finally, we investigate the sign of solutions for a modified version of Equation (1.4).

Define

$$H^1_{O(N)}(\mathbb{R}^N) := \{ u \in H^1(\mathbb{R}^N) : u = gu, \ g \in O(N) \},$$

where $gu := u \circ g^{-1}$.

Then we have the following lemma.
Lemma 2.1 ([13, p.18, Corollary 1.26]). The following embedding is compact,

\[H^{1}_{O(N)}(\mathbb{R}^N) \hookrightarrow L^{p}(\mathbb{R}^N), \; 2 < p < 2^{*}. \]

Lemma 2.2. If \(u \) is a weak solution of the equation

\[-2Au + \lambda u = (u^{+})^{p-1}\]

in \(H^{1}(\mathbb{R}^N) \), then \(u \in C^{2}(\mathbb{R}^N) \).

Proof. 1. Note that the symbol \(\sigma_{A} \) of \(A \) is given by

\[\sigma_{A}(\xi) = -\frac{a}{2}|\xi|^{2} + \int_{\mathbb{R}^N}[\cos(\xi \cdot x) - 1]\nu(dx), \]

where \(a \) is a positive number and \(\nu \) is a finite \(O(N) \)-invariant Lévy measure (see [1, p.128, Exercise 2.4.23 and pp.163-164, Theorem 3.3.3]).

Let \(A_{2} \) be the operator with the symbol

\[\sigma_{A_{2}}(\xi) = -\frac{a}{2}|\xi|^{2}, \]

and \(A_{0} \) be the operator with the symbol

\[\sigma_{A_{0}}(\xi) = \int_{\mathbb{R}^N}[\cos(\xi \cdot x) - 1]\nu(dx). \]

Then we have

\[-2A_{2}u = h(\cdot)(1 + |u|), \]

where

\[h(x) := \frac{2A_{0}u(x) + (u^{+}(x))^{p-1} - \lambda u(x)}{1 + |u(x)|} \quad \text{for } x \in \mathbb{R}^N. \]

2. For any \(u \in H^{1}(\mathbb{R}^N) \), we have

\[\int_{\mathbb{R}^N}(1 + |\xi|^{2}) \left(\int_{\mathbb{R}^N}[\cos(\xi \cdot x) - 1]\nu(dx) \right)^{2} |\hat{u}(\xi)|^{2}d\xi < \infty, \tag{2.1} \]

where “\(\hat{\cdot} \)” denotes the Fourier transformation.

Thus \(A_{0} : H^{1}(\mathbb{R}^N) \rightarrow H^{1}(\mathbb{R}^N) \) is a bounded operator thanks to (2.1).

Furthermore, it follows that \(h \in L^{N/2}_{\text{loc}}(\mathbb{R}^N) \). Consequently, we have \(u \in L^{q}_{\text{loc}}(\mathbb{R}^N) \) for any \(q \in [1, +\infty) \) by Brézis-Kato theorem (see, for example, [12, p.270, B.3 Lemma]). Then, by the ellipticity of operator \(A \), we find \(u \in W^{2,q}_{\text{loc}}(\mathbb{R}^N) \) for any \(q \in [1, +\infty) \). Now Sobolev embedding theorem implies \(u \in C^{1}_{\text{loc}}(\mathbb{R}^N) \). Finally, also by the ellipticity of operator \(A \), it follows that \(u \in C^{2}(\mathbb{R}^N) \). \qed

Lemma 2.3. If \(u \in C^{2}(\mathbb{R}^N) \cap H^{1}(\mathbb{R}^N) \) is a nontrivial solution of the equation

\[-2Au + \lambda u = (u^{+})^{p-1}, \]

then \(u > 0 \).
Proof. 1. First we have

\[\int \int (u(x) - u(x + y))(u^{-}(x) - u^{-}(x + y))\nu(dy)dx \]

where we have used

\[\mathbb{R}^{2} = \{x : u(x) \geq 0\} \times \{y : u(y) \geq 0\} \cup \{x : u(x) \geq 0\} \times \{y : u(y) < 0\} \]

\[\cup \{x : u(x) < 0\} \times \{y : u(y) \geq 0\} \cup \{x : u(x) < 0\} \times \{y : u(y) < 0\} \]

for the inequality.

Then it follows that

\[(-2Au, -u^{-})_{L^{2}} = a\|\nabla u^{-}\|_{L^{2}} - \int \int (u(x) - u(x + y))(u^{-}(x) - u^{-}(x + y))\nu(dy)dx \geq 0. \]

Therefore, in light of \((-2Au, -u^{-})_{L^{2}} + \lambda\|u^{-}\|_{L^{2}}^{2} = 0\), we have \(u^{-} = 0\), which implies \(u \geq 0\).

2. Rewrite the equation \(-2Au + \lambda u = (u^{+})^{p-1}\) as

\[-2A_{2}u + (\lambda + 2\nu(\mathbb{R}^{N}))u = (u^{+})^{p-1} + 2 \int_{\mathbb{R}^{N}} u(y)\nu(dy). \]

Then we find that

\[-2A_{2}u + (\lambda + 2\nu(\mathbb{R}^{N}))u \geq 0. \]

It follows from the strong maximum principle that \(u > 0\).

Corollary 2.4. Assume that \(u \in C^{2}(\mathbb{R}^{N}) \cap H^{1}(\mathbb{R}^{N})\) is a nontrivial solution of the equation \(-2Au + \lambda u = (u^{+})^{p-1}\). If \(x_{0} \in \mathbb{R}^{N}\) is a maximum point of the function \(u\), then \(u(x_{0}) \geq \lambda^{\frac{1}{p-2}}\).

Proof. 1. Since \(x_{0}\) is a maximum point of the function \(u\), we have \(\Delta u(x_{0}) \leq 0\).

2. Note that Lemma 2.3 implies \(u(x_{0}) > 0\). It follows from the positive maximum principle (see, for example, [11, p.283, (1.5) proposition] or [1, p.181, Theorem 3.5.2]) that \(A_{0}u(x_{0}) \leq 0\). This and \(\Delta u(x_{0}) \leq 0\) imply \(Au(x_{0}) \leq 0\). Therefore,

\[u(x_{0})^{p-1} - \lambda u(x_{0}) = -2Au(x_{0}) \geq 0. \]

So the inequality \(u(x_{0}) \geq \lambda^{\frac{1}{p-2}}\) holds.

3 Proof of Theorem 1.2

In this section, we provide a proof of Theorem 1.2 via the mountain pass theorem.

Observe that the operator \(-A\) is positively self-adjoint (see [1, p.178, Theorem 3.4.10 and p.190, Theorem 3.6.1]). We define a new inner product on \(H^{1}(\mathbb{R}^{N})\) by

\[(v, w) := (-2Av, w)_{L^{2}} + \lambda(v, w)_{L^{2}} \text{ for any } v, w \in C_{0}^{\infty}(\mathbb{R}^{N}), \]

and denote the induced norm of it by \(\| \cdot \|\). Since the operator \(-A_{0}\) is also positively self-adjoint, it follows from \(A = A_{2} + A_{0}\) and (2.1) that the norm \(\| \cdot \|\) is equivalent to \(\| \cdot \|_{H^{1}}\).
Define a functional $E : H^1(\mathbb{R}^N) \to \mathbb{R}$ by
\[
E(u) := \frac{1}{2} \|u\|^2 - \frac{1}{p} \int_{\mathbb{R}^N} (u^+(x))^p \, dx.
\]
Then it follows from [13, p.11, Corollary 1.13] that $E \in C^2(H^1(\mathbb{R}^N), \mathbb{R})$. In addition, the critical points of the functional E are weak solutions of the equation $-2Au + \lambda u = (u^+)^{p-1}$ in $H^1(\mathbb{R}^N)$, and vice versa.

Lemma 3.1. The functional E is $O(N)$-invariant.

Proof. We only need to prove that the norm $\| \cdot \|$ is $O(N)$-invariant.

Note that the symbol σ_A of A is given by
\[
\sigma_A(\xi) = -\frac{a}{2} |\xi|^2 + \int_{\mathbb{R}^N} [\cos(\xi \cdot x) - 1] \nu(dx),
\]
where a is a positive number and ν is a finite $O(N)$-invariant Lévy measure (see [1, p.128, Exercise 2.4.23 and pp.163-164, Theorem 3.3.3]). We find the symbol σ_A of A is $O(N)$-invariant.

Therefore, for any $\varphi \in C_0^\infty(\mathbb{R}^N)$ and $g \in O(N)$, we have
\[
\|g\varphi\|^2 = (-2A(g\varphi), g\varphi)_{L^2} + \lambda \|g\varphi\|^2_{L^2}
= (-2\sigma_A \cdot \hat{g\varphi}, \hat{g\varphi})_{L^2} + \lambda \|g\varphi\|^2_{L^2}
= (-2g^{-1}\sigma_A \cdot \hat{\varphi}, \hat{\varphi})_{L^2} + \lambda \|\varphi\|^2_{L^2}
= (-2\sigma_A \cdot \hat{\varphi}, \hat{\varphi})_{L^2} + \lambda \|\varphi\|^2_{L^2} = \|\varphi\|^2,
\]
which implies that the norm $\| \cdot \|$ is $O(N)$-invariant. \qed

We need the following Lemma 3.2 in the verification of the PS condition for the functional E restricted to $H^1_{O(N)}(\mathbb{R}^N)$.

Lemma 3.2 ([13, p.134, Theorem A.4]). Assume that $1 \leq p < \infty$, $1 \leq q < \infty$, and $g \in C(\mathbb{R}^N)$ such that
\[
|g(u)| \leq c |u|^{p/q} \text{ for some constant } c.
\]
Then the operator $L : L^p(\mathbb{R}^N) \to L^q(\mathbb{R}^N)$ defined by $u \mapsto g(u)$ is continuous.

Lemma 3.3 (The PS condition for the functional E restricted to $H^1_{O(N)}(\mathbb{R}^N)$). Any sequence $\{u_n\}_{n \in \mathbb{N}} \in H^1_{O(N)}(\mathbb{R}^N)$ such that
\[
d := \sup_{n \in \mathbb{N}} \{E(u_n)\} < \infty, \quad E'(u_n) \to 0 \text{ as } n \to \infty
\]
contains a convergent subsequence.

Proof. The proof is the same as that of [13, p.15, Lemma 1.20].

1. For n large enough, we have
\[
d + \|u_n\| \geq E(u_n) - \frac{1}{p} \langle E'(u_n), u_n \rangle = \left(\frac{1}{2} - \frac{1}{p}\right) \|u_n\|^2.
\]
It follows that \(\{u_n\}_{n \in \mathbb{N}} \) is bounded in \(H^1_{O(N)}(\mathbb{R}^N) \) since \(p > 2 \).

2. Without loss of generality, we assume that \(u_n \rightharpoonup u \) in \(H^1_{O(N)}(\mathbb{R}^N) \). Then it follows from Lemma 2.1 that \(u_n \to u \) in \(L^p(\mathbb{R}^N) \). Consequently, by Lemma 3.2, we have \((u_n^+)^{p-1} \to (u^+)^{p-1} \) in \(L^q(\mathbb{R}^N) \), where \(q := p/(p - 1) \).

Note that

\[
\|u_n - u\|^2 = (E'(u_n) - E'(u), u_n - u) + \int_{\mathbb{R}^N} (u_n^+(x)^{p-1} - u^+(x)^{p-1})(u_n(x) - u(x))dx.
\]

(3.1)

For the first term of the right hand side of the above equality, we see that

\((E'(u_n) - E'(u), u_n - u) \to 0 \) as \(n \to \infty \),

since \(E'(u_n) \to 0 \) as \(n \to \infty \) and \(\{u_n\}_{n \in \mathbb{N}} \) is bounded in \(H^1_{O(N)}(\mathbb{R}^N) \).

And for the second term, it follows from Hölder inequality that

\[
\int_{\mathbb{R}^N} (u_n^+(x)^{p-1} - u^+(x)^{p-1})(u_n(x) - u(x))dx \leq \|u_n^+(x)^{p-1} - u^+(x)^{p-1}\|_{L^p}\|u_n(x) - u(x)\|_{L^p} \to 0 \text{ as } n \to \infty,
\]

because \(u_n \to u \) in \(L^p(\mathbb{R}^N) \) and \((u_n^+)^{p-1} \to (u^+)^{p-1} \) in \(L^q(\mathbb{R}^N) \).

Therefore, \(u_n \to u \) in \(H^1_{O(N)}(\mathbb{R}^N) \) as \(n \to \infty \) by (3.1).

Now we are at the position to give a proof of Theorem 1.2.

Proof of Theorem 1.2. 1. Consider the functional \(E \) restricted to \(H^1_{O(N)}(\mathbb{R}^N) \). Thanks to Lemma 2.1 or Sobolev imbedding theorem, there is a positive constant \(c \) such that \(\|u\|_{L^p} \leq c\|u\| \) for any \(u \in H^1_{O(N)}(\mathbb{R}^N) \). Then it follows from the definition of the functional \(E \) that

\[
E(u) \geq \frac{1}{2}\|u\|^2 - \frac{c^p}{p}\|u\|^p.
\]

Setting \(r := \left(\frac{p}{4c^p} \right)^{\frac{1}{p-2}} \), we have

\[
\inf_{\|u\|=r} E(u) \geq \frac{1}{4} \left(\frac{p}{4c^p} \right)^{\frac{2}{p-2}} > 0.
\]

2. Set \(w(x) := \exp(-|x|^2) \). Then \(w(x) \in H^1_{O(N)}(\mathbb{R}^N) \) and for any \(t \in [0, +\infty) \),

\[
E(tw) = \frac{t^2}{2}\|w\|^2 - \frac{t^p}{p}\|w\|_{L^p}^p.
\]

Note that \(p > 2 \). We can take a positive number \(t \) such that \(t\|w\| > r \) and \(E(tw) < 0 \).

3. Now by the mountain pass theorem, there is a nontrivial critical point \(u \) of the functional \(E \) restricted to \(H^1_{O(N)}(\mathbb{R}^N) \). Note that the functional \(E \) is \(O(N) \)-invariant. Thanks to the principle of symmetric criticality (see, for example, [13, p.18, Theorem 1.28]), it follows that the point \(u \) is also a critical point of the functional \(E \). Consequently, the point \(u \) is a weak solution of the equation \(-2Au + \lambda u = (u^+)^{p-1} \) in \(H^1(\mathbb{R}^N) \).

4. Finally, Lemma 2.2 and Lemma 2.3 complete the proof.

\(\square \)
References

[1] David Applebaum, *Lévy processes and stochastic calculus (second edition)*, Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RU, UK8, 2009.

[2] Jaeyoung Byeon and Zhi-Qiang Wang, *Standing Waves with a Critical Frequency for Nonlinear Schrödinger Equations*, Arch. Rational Mech. Anal. 165 (2002), 295–316.

[3] Manuel del Pino and Patricio Felmer, *Semi-classical states of nonlinear Schrödinger equations: a variational reduction method*, Math. Ann. 324 (2002), 1–32.

[4] Manuel del Pino and Patricio L. Felmer, *Local mountain passes for semilinear elliptic problems in unbounded domains*, Calc. Var. 4 (1996), 121–137.

[5] Serena Dipierro, Giampiero Palatucci, and Enrico Valdinoci, *Existence and Symmetry Results for a Schrödinger Type Problem Involving the Fractional Laplacian*, http://arxiv.org/abs/1202.0576v1 (2012).

[6] Mouhamed Moustapha Fall and Enrico Valdinoci, *Uniqueness and nondegeneracy of positive solutions of \((-\Delta)^s u + u = u^p\) in \(\mathbb{R}^n\) when \(s\) is close to 1*, http://arxiv.org/abs/1301.4868v1 (2013).

[7] Mouhamed Moustapha Fall and Tobias Weth, *Nonexistence results for a class of fractional elliptic boundary value problems*, Journal of Functional Analysis 263 (2012), 2205–2227.

[8] Patricio Felmer, Alexander Quaas, and Jinggang Tan, *Positive solutions of the nonlinear Schrödinger equation with the fractional laplacian*, Proceedings of the Royal Society of Edinburgh 142A (2012), 1237–1262.

[9] Andreas Floer and Alan Weinstein, *Nonspreading Wave Packets for the Cubic Schrödinger Equation with a Bounded Potential*, Journal of Functional Analysis 69 (1986), 397–408.

[10] Louis Jeanjean and Kazunaga Tanaka, *A positive solution for a nonlinear Schrödinger equation on \(\mathbb{R}^n\)*, Indiana Univ. Math. J. 54 (2005), 443–464.

[11] Daniel Revuz and Marc Yor, *Continuous martingales and brownian motion (third edition)*, Springer, Berlin, 1999.

[12] Michael Struwe, *Variational methods (fourth edition)*, Springer, Berlin, 2008.

[13] Michel Willem, *Minimax theorems*, Birkhäuser, Boston, Basel, Berlin, 1996.