RESEARCH ARTICLE

Attitude and preventive practices towards COVID-19 disease and the impact of awareness training on knowledge of the disease among correctional officers [version 2; peer review: 2 approved]

Johnson Okoro 1, Ambrose Ekeroku 2, Benedicta Nweze 3, Tobechukwu Odionye 3, Joel Nkire 3, Martins Onuoha 4, Chinenye Ezeonwuka 5, Jude Owoh 6

1 Nigerian Correctional Service, Enugu, Enugu State, Nigeria
2 Carmelite Prisoners Interest Organization, Enugu, Enugu State, Nigeria
3 Federal Neuropsychiatric Hospital, Enugu, Enugu State, Nigeria
4 Nigerian Correctional Service, Yola, Adamawa, Nigeria
5 Project Development Institute, Enugu, Enugu State, Nigeria
6 Biological Sciences, Quinnipiac University, Connecticut, CT, United States

First published: 06 Aug 2020, 2:51
https://doi.org/10.35241/emeraldopenres.13839.1
Latest published: 21 Jan 2022, 2:51
https://doi.org/10.35241/emeraldopenres.13839.2

Abstract
COVID-19 remains a public health emergency of international concern. Efforts at the global and national levels are being made to control its spread. The Nigerian Correctional Service is also proactive in the fight against the disease by organizing COVID-19 awareness training for correctional officers. We conducted a pre- and post-test assessment of COVID-19 knowledge among correctional officers in Enugu State Command to determine the impact of awareness training on their knowledge level. The study also assessed correctional officers' attitude and preventive practices towards the disease. The mean knowledge score was 19.34 out of 25, and the awareness training significantly improved the participants' COVID-19 knowledge. We found a significant moderate, positive correlation between knowledge and attitude/practice, and a significantly higher knowledge level among those with higher educational qualifications. Regular hand washing with soap and water (87.9%), wearing face masks (84.4%), and social distancing (83%) were practiced by the majority of the participants. The majority of the participants (53.2%) received COVID-19 information from multiple sources including the Nigeria Centre for Disease Control and the World Health Organization.

Keywords
COVID-19, Knowledge, Attitude, Practice, Correctional officers
Introduction
COVID-19 is a novel viral disease discovered in Wuhan, Hubei Province, China in 2019 and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Chen et al., 2020). The index cases of the disease were as a result of animal to human transmission. However, human-to-human transmission from respiratory droplets and contact with contaminated surfaces has been implicated in subsequent cases (Adhikari et al., 2020; Hassan et al., 2020; Li et al., 2020).

The symptoms of this highly contagious disease include dry cough, fever, anosmia (loss of smell), weakness, headache, body pains, vomiting, sore throat, and respiratory difficulty, and the onset of symptoms ranges from 1–14 days (Ahmed, 2020; Wang et al., 2020). Some infected individuals may remain asymptomatic (without symptoms) after contracting the virus (Lee et al., 2020; Oran & Topol, 2020), whereas among the symptomatic cases, the majority of them are mild or moderate (Bi et al., 2020; Chang et al., 2020), with about 10% being severe (Bi et al., 2020; Chang et al., 2020).

While all age groups can equally contract the virus, the elderly are more vulnerable. Other vulnerability factors are obesity, underlying medical conditions such as diabetes mellitus, systemic hypertension and other cardiac pathologies, and immune-compromising diseases such as HIV infection (Ahmed, 2020; Chen et al., 2020; Guan et al., 2020; Huang et al., 2020; Zhang et al., 2020; Zhou et al., 2020). Similarly, mortality rate has been reported to be higher among these categories of people (Guan et al., 2020; Zhang et al., 2020).

Considering that there was no treatment or vaccine available against the disease during the early period of its outbreak (Ahmed, 2020), preventive measures appeared to be the only scientific evidence available to curtail the high spread and mortality associated with it. These measures included practices such as regular hand washing with soap and water, the use of alcohol-base hand sanitizer, wearing face masks in public places, avoiding crowded places, and maintaining social distancing (Chu et al., 2020; WHO advice for the public).

The level of knowledge of a disease condition is associated with attitude towards the disease, and these interact to substantially affect the practices and measures aimed at controlling it (Ayinde et al., 2020; Choi & Yang, 2010; Hung, 2003; Yap et al., 2010; Zhong et al., 2020). One study in Pakistan that examined medical students’ knowledge, perceptions, and behavioral intentions towards the H1N1 influenza observed that inadequate knowledge and a negative attitude are associated with poor compliance with practices designed to prevent the spread of the disease (Hussain et al., 2012). In other studies, it was also found that adequate knowledge propels individuals to comply with practices and measures that promote good health (Aziz et al., 2018; Rahman & Sathi, 2020).

More so, availability of information, the source of information and demographic variables such as gender and educational level have a great effect on people’s knowledge, behavioral response and compliance towards the necessary preventive measures against a disease outbreak (Ahmed et al., 2020; Al-Hazmi et al., 2018; Ayinde et al., 2020; Erfani et al., 2020; Olum et al., 2020; Tandi et al., 2018; Zhong et al., 2020).

Knowledge of the COVID-19 disease has been acquired through several channels, with different social media platforms and the internet dominating as the major sources of information of this novel disease (Abdelhafiz et al., 2020; Ahmed et al., 2020; Alzoubi et al., 2020; Huynh et al., 2020). Studies have documented robust evidence that people who obtained their information through professional and scientific institutions or personnel have a positive attitude and higher confidence about the disease condition than those who obtained information from informal sources such as friends and relatives (Tandi et al., 2018).

Given that adequate knowledge and a positive attitude towards COVID-19 among correctional officers is essential in effective control and prevention of disease outbreak in the prison population, the appropriate steps in this regard should entail an assessment of their knowledge, attitude and practice towards the COVID-19 pandemic. To this end, the Nigerian Correctional Service and the Carmelite Prisoners’ Interest Organization (CAPIO) organized a three-day awareness training to educate all correctional officers in Enugu State Command. The awareness education was delivered by a team led by a medical doctor and covered several areas including case identification, and infection prevention and control. While correctional officers’ knowledge, attitude and preventive practices towards COVID-19 were assessed before the commencement of the training, knowledge level was also evaluated after the training to determine the impact of the training on the participants.

Therefore, our study was guided by the following objectives:

1. To determine the baseline knowledge level, attitude and preventive practices of correctional officers towards COVID-19
2. To evaluate the impact of COVID-19 awareness training on their knowledge level
3. To assess the association between socio-demographic characteristics, and attitude and knowledge at baseline
4. To assess the correlation between knowledge, attitude and practice

Methods
Ethical considerations
Permission to carry out this study among correctional officers was obtained from the Nigerian Correctional Service with
reference number ES/EP.124/Vol.11/30, which was approved on 4th June, 2020. Formal ethical approval was not obtained because the study design was of low risk nature, in which the only foreseeable risk on the participants was the time they spent filling the forms, and this is in line with the Nigerian Code of Health Research Ethics.

The objectives of the study were explained to the participants before the commencement of the awareness training. They were made to understand that participation in the study was voluntary. It was further explained to them that they could withdraw from the study at any stage even after giving consent, and that such withdrawal or not giving consent would not in any way stop them from attending the training. Thereafter, verbal and written consent were taken.

Study design and setting
This was an interventional study with a pretest and post-test assessment to evaluate the impact of COVID-19 awareness training among all correctional officers of Enugu State Command. Enugu State Command of the Nigerian Correctional Services has three lock-up custodial centers situated in Enugu metropolis, Oji andNsukka. This was a three-day training that was held on 8th, 11th and 12th of June, 2020; with each day dedicated to one lock-up center such that officers ofNsukka, Enugu, and Oji custodial centers were trained on 8th, 11th, and 12th of June 2020, respectively. The awareness program was organized by the Nigerian Correctional Service and the Carmelite Prisoners’ Interest Organization (CAPIO). This program was facilitated by the consultant psychiatrist and head of the medical department of the Nigerian Correctional Service, Enugu State Command, other mental health professionals (psychiatrists and psychologists) and research experts from the CAPIO. The topics addressed during the training comprised: symptoms of COVID-19, epidemiology and risk factors of COVID-19, disease transmission, and guidelines and preventive measures against it. Correctional officers of the three correctional facilities inNsukka, Oji, and Enugu metropolis were involved. Each of these custodial centers has a lecture hall where the program was conducted.

Participants
Of the 156 correctional officers from the three lock-up custodial centers that were trained, 141 of them completed the pretest assessment while 134 completed the post-test assessment. The post-test participation was reduced by 15 as some of the participants were recalled by the prison authority to their sensitive security duty post; hence, they were not present at the end of the training during which the post-test questionnaire was delivered.

Inclusion criteria
Those working in the three lock-up custodial centers that received the awareness training and gave consent to participate.

Exclusion criteria
Staff who came late for the training missed the lecture; hence, they were excluded from the study.

Variables
The independent variables were the socio-demographic variables while the dependent variables were COVID-19 knowledge and attitude.

Measurement
Our study used a self-reported questionnaire (Okoro et al., 2020d) which was divided into two sections and was administered before and after the awareness training. The first section covered the participants’ socio-demographic characteristics, while the second section was about knowledge, attitude, and practices towards COVID-19 disease. The socio-demographic section contained questions about age, educational level, gender and sources of COVID-19 information. Knowledge related questions were guided by the surveys of previous studies (Abdelhaliz et al., 2020; Olum et al., 2020), as well as information from the World Health Organization health topics on coronavirus. A total of 25 questions covering four domains of symptoms, prevention, epidemiology and transmission were used to assess the participants’ knowledge of COVID-19. The options were “yes,” “no,” or “I don’t know.” For every correct answer, one point was assigned; while a wrong or I don’t know response attracted zero points. Therefore, the total knowledge score ranged from 0–25, where a higher score was indicative of a greater knowledge of the disease.

The four attitude and four practice related questions were adaptations of previous studies (Olum et al., 2020; Rahman & Sathi, 2020; Zhong et al., 2020). Participants were asked to choose a “yes,” “no” or “yes” response to the practice questions. Zero points were assigned to a non-practice and one point to each preventive practice. Hence, the total practice score ranged from zero to four, with a higher score indicating greater compliance with preventive practices. Participants were asked to choose “yes,” “no” or “not sure” to the attitude questions. Zero points were assigned to a “no” or “not sure” response, while one point was assigned to a “yes” response. A higher score indicates a positive attitude while a lower score indicates a negative attitude.

All the questionnaires used in this study were in English language.

Data processing
A frequency check was run on the obtained data to check for any missing data. The distribution of the continuous data was checked using the Kolmogorov-Smirnov test. Age, pretest knowledge, and post-test knowledge data were normally distributed (P>0.05). Therefore, parametric statistical tools were used for the analyses.

Statistical analyses
The IBM Statistical Package for Social Sciences (IBM SPSS) statistical software, version 20 was used for analyses. A paired t-test was used to summarize the pretest and post-test knowledge level of the participants. Partial correlation statistics was employed to test the correlation between knowledge level and practice, while controlling for attitude. Test of association was further done using an independent t-test, chi-squared
test, and ANOVA where appropriate. Statistical significance was set at P < 0.05.

Results

Table 1 shows the socio-demographic characteristics of the participants and their associations with attitude.

A total of 141 participants completed the pretest assessment. The majority of them were males (111, 78.7%) and had tertiary education (101, 71.6%) with a mean age of 39.28±9.18 (Okoro et al., 2020b). More than half of the participants (75, 55.2%) reported that their major source of information was from the WHO website or the Nigeria Center for Disease Control (NCDC). Among those who believed that there are confirmed cases of COVID-19 in Nigeria, 43 (31.6%), 18 (13.2%) and 75 (55.2%) received their information from the WHO website or NCDC website/text messages; social media/friends; and multiple sources, respectively. The association between information source and belief that there are cases in Nigeria, those who believed that there are cases in other parts of the world, and those who believed that the world will win the fight against the virus.

Table 2 shows the association between knowledge and socio-demographic characteristics. Higher educational qualification was significantly associated with a higher knowledge of the disease. Other demographic characteristics showed no significant association with knowledge.

Table 3 shows the baseline knowledge level of the participants in four domains, namely symptoms, preventive measures, means of spread, and epidemiology. The total knowledge score ranged from 9 to 25, with a mean of 19.34±3.72. Knowledge about the preventive practices were very high, such that almost all the participants 140 (99.3%) correctly answered that regular hand washing with soap and water is a way of preventing the disease. Similarly, 136 (96.5%), 136 (96.5%), and 134 (95.0%) agreed that avoiding crowded places, wearing face masks when leaving home, and the use of alcohol base hand sanitizers, respectively, are ways of preventing the disease. The lowest level of knowledge was for questions on the presence of a vaccine/drug, eating of wild animals as a possible source of the disease, and loss of smell as a symptom, in which the respective figures were 66 (46.8%), 78 (55.3%), and 56 (39.7%).

Table 4 shows a repeated-measures t-test which found that participants’ mean score on COVID-19 knowledge after the training (23.07±2.20) was higher than the mean score before the training (19.50±3.66). This difference was significant, t(133) = -12.68, p < 0.001.

As shown in Table 5, a partial correlation was run to determine the relationship between COVID-19 knowledge and preventive practices towards it, while controlling for attitude. There was a weak partial correlation between knowledge (19.34±3.72) and practice (2.96±1.06) while controlling for

Table 1. Socio-demographic characteristics of the participants (N=141).

Variables	Those that believe there are cases in Nigeria	Those that believe there are cases in the world	Those that believe there will be successful control	Those that believe there will be victory									
	n(%)	x²	p										
Gender													
F(n=30)				M(n=111)									
	27(19.9)	4.64	0.07	28(20.7)	0.54	0.61	29(22)	0.82	0.69	26(21)	0.06	0.76	
Source													
W/N(n=44)				Sf(n=22)									
	43(31.6)	16.74	<0.01	41(30.4)	3.54	0.17	42(32.1)	0.66	0.72	40(32.3)	1.14	0.56	
	18(13.2)			74(54.8)				18(14.5)			18(14.5)		
	75(55.2)			74(54.8)				66(53.2)			66(53.2)		
Education													
pry(n=9)				sec(n=31)									
	7(5.1)	9.91	0.01	7(5.2)	0.62	0.02	7(5.3)	3.35	0.19	12.96	0.01		
	30(22.1)	3.01		30(22.1)				29(22.1)			29(22.1)		
	99(72.8)			98(72.6)				95(72.5)			95(72.5)		
Age (yrs)													
39.28±9.18	0.23	0.82	0.61	0.55	-0.06	0.95	-0.55	0.58					

n=number, F=female, M=male, W/N=WHO/NCDC, sf=social media/friends, xple=multiple, pry=primary, sec=secondary, 3rd=tertiary, yrs=years, x²=chi-squared test, p=p-value.
Table 2. Association between knowledge and demographic characteristics.

	Frequency	Knowledge score	t/F	p-value
Gender				
Female	30	19.50±3.57	0.264	0.792
Male	111	19.30±3.78		
Education				
Primary	9	14.22±3.90	15.891	<0.001
Secondary	31	18.03±8.2		
Tertiary	101	20.20±3.19		
Source of information				
WHO	7	18.86±4.14		
NCDC	37	19.62±2.86	1.580	0.197
Sf	22	17.82±4.69		
Multiple	75	19.69±3.71		
Age (years)				
30 and below	18	18.56±4.00	0.910	0.405
31–40	65	19.15±3.68		
above 40	58	19.79±3.69		

SF=social media/friend, NCDC=Nigeria Center for Disease Control, WHO=World Health Organization.

Table 3. Baseline knowledge of COVID-19 among participants (N=141).

COVID-19 knowledge items	No/I don't know n (%)	Yes n (%)
Symptoms include		
Fever	11(7.8)	130(92.2)
Cough	17(12.1)	124(87.9)
Weakness	54(38.3)	87(61.7)
Body pain and headache	42(29.8)	99(70.2)
Breathing difficulty	51(36.2)	90(63.8)
Sore throat	52(36.9)	89(63.1)
Vomiting	29(20.6)	112(79.4)
Loss of smell (anosmia)	85(60.3)	56(39.7)
Preventive measures include		
Regular hand washing with soap and water	1 (0.7)	140(99.3)
Use of alcohol-based hand sanitizer	7 (5.0)	134(95.0)
Avoiding going to crowded places	5(3.5)	136(96.5)
Wearing a face mask in public places	5(3.5)	136(96.5)
Coughing into bent elbow or tissue and immediately discarding it	15(10.6)	126(89.4)
Keeping distance of at least 1 meter from people	10(7.1)	131(92.9)

Table 3. Baseline knowledge of COVID-19 among participants (N=141).

COVID-19 knowledge items	No/I don't know n (%)	Yes n (%)
Symptoms include		
Fever	11(7.8)	130(92.2)
Cough	17(12.1)	124(87.9)
Weakness	54(38.3)	87(61.7)
Body pain and headache	42(29.8)	99(70.2)
Breathing difficulty	51(36.2)	90(63.8)
Sore throat	52(36.9)	89(63.1)
Vomiting	29(20.6)	112(79.4)
Loss of smell (anosmia)	85(60.3)	56(39.7)
Preventive measures include		
Regular hand washing with soap and water	1 (0.7)	140(99.3)
Use of alcohol-based hand sanitizer	7 (5.0)	134(95.0)
Avoiding going to crowded places	5(3.5)	136(96.5)
Wearing a face mask in public places	5(3.5)	136(96.5)
Coughing into bent elbow or tissue and immediately discarding it	15(10.6)	126(89.4)
Keeping distance of at least 1 meter from people	10(7.1)	131(92.9)

COVID-19 knowledge items	No/I don't know n (%)	Yes n (%)
Quarantining new inmates for 14 days	23(16.3)	118(83.7)
Quarantining close contacts of a confirmed case	10(7.1)	131(92.9)
Isolating and treating confirmed cases	21(14.9)	120(85.1)

It can be spread by

	No/I don't know n (%)	Yes n (%)
Eating wild animals	63(44.7)	78(55.3)
Respiratory droplets	39(27.7)	102(72.3)
Touching contaminated surfaces and touching the mouth/eyes/nose	27(19.1)	114(80.9)

Epidemiology includes

	No/I don't know n (%)	Yes n (%)
Most cases are not severe	70(49.6)	71(50.4)
Old age and underlying medical conditions like Diabetes and HIV are risk factors	30(21.3)	111(78.7)
Children and adults can equally be infected	42(29.8)	99(70.2)
Symptom onset is from 1–14 days	28(19.9)	113(80.1)
There is a known vaccine or drug for treating it	75(53.2)	66(46.8)

Total score

	No/I don't know n (%)	Yes n (%)
Min-Max	9–25	19.34±3.72
Table 4. Pretest and post-test knowledge score.

	Mean±S.D	Mean±S.D	t-test	df	p-value	95% C.I
						lower
Pretest	19.5±3.66					upper
Post-test	23.07±2.20				<0.001	-4.13 -3.02
Paired differences	-3.57±3.26	-12.68	133			

Table 5. Correlation between COVID-19 knowledge and preventive practices towards it.

Control variables	Practice correlation significance (2-tailed) df	Knowledge correlation significance (2-tailed) df	Attitude correlation significance (2-tailed) df
none	Practice	Knowledge	Attitude
	1.000	.375	.489
	0	139	0
		1.000	
		139	
		.441	1.000
		139	0
attitude	Practice	Knowledge	Attitude
	1.000	.203	.203
	0	139	138
		.016	
		0	
		1.000	
		138	

*= Zero-order correlations.

A majority (83, 58.9%) reported avoiding crowded places and 119 (84.4%) reported wearing a face mask. When asked about respiratory hygiene, 124 (87.9%) regularly washed their hands with soap and water or coughed into their bent elbows or a tissue. Finally, 117 (83.0%) maintained distance of at least 1 meter when in public places.

Figure 1 shows the assessment of preventive practices toward COVID-19 which was done using (1) avoidance of crowded places, (2) wearing of face masks, (3) regular hand washing with soap and water and coughing into bent elbow or tissue and immediately disposing of it and (4) keeping a social distance of at least 1 meter from people.

Figure 2 shows the assessment of attitude toward COVID-19, which found that 124 (87.9%) believed there are cases of COVID-19 in Nigeria; 120 (85.1) believed there are cases in other parts of the world; 107 (75.9) believed there will be successful control of the virus, and 111 (78.7) believed that the entire globe will win the battle against the disease.

attitude 3.28 ± 1.11). However, zero-order correlations showed that there was a statistically significant, moderate, positive correlation between knowledge and practice ($r(139) = 0.375$, $n = 141$, $p < .001$), indicating that attitude had influence in controlling for the relationship between knowledge and practice.
Discussion
COVID-19 disease has affected the general population across the globe. The vulnerability risk is higher among the elderly, those with underlying medical pathologies such as diabetes mellitus, obesity, asthma, and systemic hypertension. Low immunity and immune-compromising conditions also increase the morbidity and mortality (Guan et al., 2020; Zhang et al., 2020).

Given that the prison population is associated with poor access to drugs and health services, and other immune-compromising factors, efforts are being made by the entire world, including Nigeria, to prevent and/or reduce the spread of COVID-19 among prison inmates. These efforts include the COVID-19 awareness training organized by the authority of Nigerian Correctional Service. Our study presents the results of the preventive practices and impact of awareness training on COVID-19 knowledge among correctional officers. This is the first COVID-19 awareness intervention study carried out in Nigeria among correctional officers.

Knowledge about the symptoms, spread, prevention and epidemiology of COVID-19
Our study revealed a high overall knowledge about the disease among the participants, which reflects the findings of previous studies in Egypt and Jordan (Abdelhafiz et al., 2020; Alzoubi et al., 2020). It has been documented that people who received information about a disease from organized health institutions have better knowledge of the disease than those who obtained information from friends and other informal settings (Tandi et al., 2018). Most of our participants received COVID-19
information from organized health institutions (NCDC) and multiple sources which include this institution; this may explain the high knowledge level of COVID-19 among them. Nevertheless, the specific question that assessed loss of smell (anosmia) as a symptom of the disease was correctly answered by less than half of the participants. The poor knowledge regarding this specific question may be explained by several factors including the fact that at the time of the study, evidence of loss of smell as a symptom was a recent emergence. This may be further supported by the fact that social media and other informal sources of information erroneously circulated information about the effectiveness of some medicinal products, unapproved by the WHO or any drug regulatory body, against the disease.

A little below half of the participants believed that there was vaccine against the disease even when there was none available at the time of the study. Between the time of conducting this study and now, a lot have changed about the disease. One of these changes is that vaccines are now available and the awareness is high (Uzochukwu et al., 2021).

We found that the awareness training significantly improved the participants’ knowledge about COVID-19 as there was significant evidence that participants had greater knowledge after the awareness training than before.

We also found that there was a significant moderate, positive correlation between knowledge and attitude. Preventive practices also showed significant moderate, positive correlation with knowledge. A similar relationship was documented in Bangladesh and China (Rahman & Sathi, 2020; Zhong et al., 2020). These associations can be linked to the fact that the wide media coverage of the disease covers aspects of knowledge, attitude, and preventive practices about the disease.

Educational qualification was the only socio-demographic characteristic associated with knowledge and those with higher educational qualifications had more knowledge about the disease, which echoes previous reports in Iran and Nigeria (Erfani et al., 2020; Okoro et al., 2020a). However, age, source of information, and gender showed no significant relationship with knowledge in our study. Given the wide publicity and awareness of the disease across all ages and gender, it is therefore unsurprising to find no significant relationship between these demographic characteristics and knowledge of COVID-19.

Attitudes towards the preventive measures of COVID-19

Our participants generally had a positive attitude towards COVID-19. Similarly, responses to each of the four questions asked to evaluate attitude towards COVID-19 showed that more than four-fifths of the participants believed that there are confirmed cases of the disease in Nigeria, with a similar result being reported about the presence of confirmed cases in other parts of the globe. Three-quarters of the participants believed that the disease will be successfully controlled, and a little above that believed that the world will win the fight against the disease. These results are in accordance with the findings of previous studies in Malaysia and China, in which a positive attitude was reported (Azlan et al., 2020; Zhong et al., 2020), but differ from the findings in Bangladesh where most of the participants had a negative attitude (Rahman & Sathi, 2020).

The association between attitude and socio-demographic factors in our study revealed that the belief that there are confirmed cases in Nigeria is significantly associated with the source of information and educational qualification. Furthermore, agreement that there are confirmed cases of COVID-19 in other parts of the world, and that the world will win the fight against the disease showed significant association with educational qualification. This agrees with the findings in China (Zhong et al., 2020), in which a higher educational qualification was associated with a positive attitude. However, unlike the earlier studies, our study showed no significant association between attitude and age or gender.

Preventive practices towards the disease

Our study also found an overall high level of preventive practice towards the disease. This reflects the right measures to prevent the spread of the disease and includes wearing face masks, hand washing, avoiding crowded places, and keeping a distance of at least 1 meter away from people.

Avoidance of crowded places was practiced by 58.9% of the participants. The corresponding figures for those that wore face masks, regularly washed their hands, and maintained a 1 meter distance from people were 84.4%, 87.9%, and 83%, respectively. These findings are in consonance with the results in Uganda (Olum et al., 2020).

Additionally, the practice of hand washing in our study was similar to findings of a Malaysian study (Azlan et al., 2020), while that of wearing a face mask in public places agrees with a Chinese study (Zhong et al., 2020).

Considering the findings of our study, there is a need to improve correctional officers’ knowledge via awareness programs, which will further impact positively on their attitude and practices towards the disease. Therefore, these underscore the importance of the Nigerian Correctional Services organizing a nation-wide awareness program for all correctional officers. Furthermore, the poor preventive practice with respect to avoiding crowded places highlights the need for government to enforce stringent measures that will regulate gathering in public places such as markets and even workplaces.

Limitation

This study was conducted when COVID-19 was relatively a new disease and when the scientific community and the entire world knew little or nothing about it. Presently, there is advanced knowledge of the disease including the availability of various types of COVID-19 vaccines. Similarly, the disease is now well represented in all countries of the world. Hence, some of the concerns this study sought to address (for example, the questions about the availability of COVID-19 vaccine and the
one about the presence of confirmed cases of COVID-19 in Nigeria) are now invalid.

Conclusion
Our study revealed a high level of knowledge, practices and attitude among correctional officers towards COVID-19. Such observations reflect the efforts made by the Nigerian Correctional Service, and the government to sensitize the general population about COVID-19. The findings of this study can be a guide for awareness programs among correctional officers for effective containment of the disease.

Data availability
Underlying data
Figshare: CSV data on Attitude and preventive practices towards COVID-19 disease and the impact of awareness training on knowledge of the disease among correctional officers. csv. https://doi.org/10.6084/m9.figshare.12728192.v1 (Okoro et al., 2020b)

References
Abdelhafiz AS, Mohammed Z, Ibrahim ME, et al.: Knowledge, Perceptions, and Attitude of Egyptians Towards the Novel Coronavirus Disease (COVID-19). J Community Health. 2020; 45(5): 881-890. PubMed Abstract | Publisher Full Text | Free Full Text
Adhikari SP, Meng S, Wu Y, et al.: Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020; 9(1): 29. PubMed Abstract | Publisher Full Text | Free Full Text
Ahmed N, Shakoor M, Vohra F, et al.: Knowledge, Awareness and Practice of Health care Professionals amid SARS-CoV-2, Coronavirus Disease Outbreak. Pak J Med Sci. 2020; 36(COVID-19-S4): 549-556. PubMed Abstract | Publisher Full Text | Free Full Text
Ahmed SS: The Coronavirus Disease 2019 (COVID-19): A Review. J Adv Med Res. 2020; 38(4): 1–9. Publisher Full Text
Al-Hazmi AG, Gosaidi I, Sornily A, et al.: Knowledge, attitude and practice of secondary schools and university students toward Middle East Respiratory Syndrome epidemic in Saudi Arabia: A cross-sectional study. Saudi J Biol Sci. 2018; 25(3): 572–577. Publisher Full Text
Alzoubi H, Alnawasheh N, Al-Murayyin A, et al.: COVID-19 - Knowledge, Attitude and Practice among Medical and Non-Medical University Students in Jordan. J Pure Appl Microbiol. 2020; 14(17): 1–24. Publisher Full Text
Aynride Q, Usman AB, Posi A, et al.: A Cross-Sectional Study on Oyo State Health Care Workers Knowledge, Attitude and Practice regarding Corona Virus Disease 2019(COVID-19). Adv Infect Dis. 2020; 10: 6–11. Publisher Full Text
Aziz MM, Abd El-Megeed HS, Abd Elatif MAM: Pre-travel health seeking practices of Umrah pilgrims departing from Assiut International Airport, Egypt. Travel Med Infect Dis. 2018; 23: 72–76. PubMed Abstract | Publisher Full Text
Azlan AA, Hamzah MR, Sern TJ, et al.: Public knowledge, attitudes and practices towards COVID-19: A cross-sectional study in Malaysia. PLoS One. 2020; 15(5): e0233668. PubMed Abstract | Publisher Full Text | Free Full Text
Bi Q, Wu Y, Mei S, et al.: Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020; 20(8): 911–919. PubMed Abstract | Publisher Full Text | Free Full Text
Chang MC, Park YK, Kim BO, et al.: Risk factors for disease progression in COVID-19 patients. BMC Infect Dis. 2020; 20(1): 445. PubMed Abstract | Publisher Full Text | Free Full Text
Chen N, Zhou M, Dong X, et al.: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223): 507–13. PubMed Abstract | Publisher Full Text | Free Full Text
Choi JS, Yang YM: Perceived Knowledge, Attitude, and Compliance with Preventive Behavior on Influenza A (H1N1) by University Students. J Korean Acad Adult Nurs. 2010; 22(3): 250–259. Reference Source
Chu DK, Aki EA, Duda S, et al.: Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020; 395(10242): 1973–1987. PubMed Abstract | Publisher Full Text | Free Full Text
Erfani A, Shahriariad R, Ranjbar K, et al.: Knowledge, Attitude and Practice toward the Novel Coronavirus (COVID-19) Outbreak: A Population-Based Survey in Iran. (Preprint). Bull World Health Organ. 2020. Publisher Full Text
Guan W, Ni ZY, Hu Y, et al.: Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382(11): 1708–1720. PubMed Abstract | Publisher Full Text | Free Full Text
Publisher Full Text
Hassan SA, Sheikh FNA, Jamal S, et al.: Coronavirus (COVID-19): A Review of Clinical Features, Diagnosis, and Treatment. Currres. 2020; 12(3): e7355. PubMed Abstract | Publisher Full Text | Free Full Text
Huang C, Wang Y, Li X, et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. PubMed Abstract | Publisher Full Text | Free Full Text
Publisher Full Text
Hungr LS: The SARS epidemic in Hong Kong: What lessons have we learned? J R Soc Med. 2003; 96(6): 374–378. PubMed Abstract | Publisher Full Text | Free Full Text
Publisher Full Text
Hussain SA, Hussain FA: Medical students’ knowledge, perceptions, and behavioral intentions towards the H1N1 influenza, swine flu, in Pakistan: A brief report. Am J Infect Control. 2012; 40(11): e11–13. PubMed Abstract | Publisher Full Text | Free Full Text
Publisher Full Text
Huynh G, Nguyen TNI, Tran VK, et al.: Knowledge and attitude toward COVID-19 among healthcare workers at District 2 Hospital, Ho Chi Minh City. Asian Pac J Trop Med. 2020; 13(5): 260–265. Publisher Full Text
Publisher Full Text
Lee YH, Hong CM, Kim DH, et al.: Clinical course of asymptomatic and mildly symptomatic patients with Coronavirus disease admitted to community treatment centers, South Korea. Emerg Infect Dis. 2020; 26(10): 2346–2352. PubMed Abstract | Publisher Full Text | Free Full Text
Publisher Full Text
Li Q, Guan X, Wu F, et al.: Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020; 382(13): 1199–1207. PubMed Abstract | Publisher Full Text | Free Full Text
Publisher Full Text
Okoro J, Odiyo T, Nweze B, et al.: COVID-19 pandemic, psychological response to quarantine, and knowledge of the disease among inmates in a Nigerian custodial center [version 1; peer review: 2 approved with
Open Peer Review

Current Peer Review Status:

Version 2

Reviewer Report 03 February 2022

https://doi.org/10.21956/emeraldopenres.15616.r27977

© 2022 Shankar P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

P. Ravi Shankar
IMU Centre for Education, International Medical University, Kuala Lumpur, Malaysia

The authors have responded to the comments and I am happy to approve this version.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: COVID-19, Knowledge, attitude, practice, education

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 23 November 2021

https://doi.org/10.21956/emeraldopenres.14918.r27874

© 2021 Shankar P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

P. Ravi Shankar
IMU Centre for Education, International Medical University, Kuala Lumpur, Malaysia

This is an important study on knowledge, attitude and practice regarding COVID-19 among correctional officers at a specific command in Nigeria before and after an educational intervention.
The manuscript is mostly well-written and presented. My suggestions for further improvement follow:

- The authors can use a structured abstract and present their findings in a more logical sequence.
- Methods section: Was the questionnaire pre-tested or assessed for ease of understanding before administration? I assume it was administered in English.
- The authors should provide more details about the training program. Who were the facilitators? What were the teaching-learning methods used? What topics were addressed?
- One of the problems with reviewing the manuscript in November 2021 is that many things have changed about the pandemic. The questions like there are cases in Nigeria and there are cases in the world do not seem very relevant now. Also, now we have vaccines and even drugs for treating the condition. The authors should address this limitation in any new version of the article and it would be useful to indicate that future versions of this study will engage with knowledge surrounding vaccines and other treatments developed since the original research was undertaken.
- The authors may have to provide an update about this article and the status of COVID-19 in Nigeria and especially among prisons in the country. A few new references can be added.
- They can provide the questionnaire used in the study as a supplementary file.
- The quality of written English is good.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Is the argument information presented in such a way that it can be understood by a non-academic audience?
Does the piece present solutions to actual real world challenges?
Not applicable

Is real-world evidence provided to support any conclusions made?
Yes

Could any solutions being offered be effectively implemented in practice?
Not applicable

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: COVID-19, Knowledge, attitude, practice, education

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 10 Jan 2022

Johnson Okoro, Nigerian Correctional Service, Enugu, Nigeria

The abstract has been rewritten in a structured way

Questionnaire was administered in English.

The program was facilitated by the consultant psychiatrist and head of the medical department of the Nigerian Correctional Service, Enugu State Command, other mental health professionals (psychiatrists and psychologists) and research experts from the CAPIO (Carmelite Prisoners Interest Organization).

The topics addressed during the training comprised: symptoms of COVID-19, epidemiology and risk factors of COVID-19, disease transmission, and guidelines and preventive measures against it.

It was an interactive teaching method.

When the study was conducted, all the questions contained in the questionnaire were relevant at that time. It is true that some of the items in the questionnaire appear to have lost relevance with the passage of time as you correctly noted. However, nothing can be done at the stage of analysis to correct this temporal loss of relevance. Except another study will have to be conducted, which is a part of recommendation for future research in this area.

All data in respect of this study are with Emerald (the publishing journal).

Thank you
Felix Bongomin
Gulu University, Gulu, Uganda

The present work evaluated the KAP on COVID-19 among correctional officers in Enugu state, Nigeria.

The manuscript would benefit from the following revisions:
1. "COVID-19 Disease" in the title and elsewhere in the manuscript should be revised to COVID-19, and the disease deleted.
2. The abstract lacks the number of study participants and basic demographic characteristics.
3. The Pre and post tests K assessment should be included in the abstract since it's one of the major objectives of the study.
4. The abstract has no conclusions.
5. Abstract should be organised in such a way that it flows (background, objectives, methods, results and conclusions, even though it is not structured).
6. Introduction. discovered in Wuhan is inappropriate -- first reported.
7. As a result of animal - to human transmission is not corrected... it's a speculation.
8. Table 4 can be substituted with "individual and box and whisker plot " to show a visual display of the K change pre and post tests.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Is the argument information presented in such a way that it can be understood by a non-academic audience?
Yes

Does the piece present solutions to actual real world challenges?
Yes

Is real-world evidence provided to support any conclusions made?
Yes

Could any solutions being offered be effectively implemented in practice?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Clinical Research, Epidemiology, Infectious Diseases

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.