HEIGHT ESTIMATES FOR H-SURFACES IN THE WARPED PRODUCT $\mathbb{M} \times f \mathbb{R}$

ABIGAIL FOLHA, CARLOS PEÑAFIEL, AND WALCY SANTOS

Abstract. In this article, we consider compact surfaces Σ having constant mean curvature H (H-surfaces) whose boundary $\Gamma = \partial \Sigma \subset \mathbb{M}_0 = \mathbb{M} \times f \{0\}$ is transversal to the slice \mathbb{M}_0 of the warped product $\mathbb{M} \times f \mathbb{R}$, here \mathbb{M} denotes a Hadamard surface. We obtain height estimate for a such surface Σ having positive constant mean curvature involving the area of a part of Σ above of \mathbb{M}_0 and the volume it bounds. Also we give general conditions for the existence of rotationally-invariant topological spheres having positive constant mean curvature H in the warped product $\mathbb{H} \times f \mathbb{R}$, where \mathbb{H} denotes the hyperbolic disc. Finally we present a non-trivial example of such spheres.

1. Introduction

It is a classical result that a compact graph with positive constant mean curvature H in the Euclidean three-dimensional space \mathbb{R}^3 and boundary on a plane can reach at most a height $1/H$ from this plane. Actually, this estimate is optimal because it is attained by the hemisphere of radius $1/H$, this classical result was proved in [6]. More recently, in [1], the authors have obtained height estimates for compact embedded surfaces with positive constant mean curvature in a Riemannian product space $\mathbb{M} \times \mathbb{R}$ (here \mathbb{M} denotes a Riemannian surface without boundary) and boundary on a slice. In particular, they have obtained optimal height estimate for the homogeneous space $\mathbb{H} \times \mathbb{R}$ (here \mathbb{H} denotes the complete connected simply connected hyperbolic disc having constant curvature $\kappa_g = -1$). The existence of height estimates for surfaces in a 3-dimensional ambient space reveals, in general, important properties on the geometric behaviour of these surfaces as well as existence and uniqueness results.

On the other hand, in [3], the authors have obtained height estimates for positive constant mean curvature, compact embedded surfaces in the product space $\mathbb{M}^2 \times \mathbb{R}$, whose boundary lies in a slice \mathbb{M}^2_0, here \mathbb{M}^2 denotes a Hadamard surfaces. They have obtained a relation between the height, the area above this slice and the volume it bounds. They were inspired by [7]. In this article, we generalize this height estimate for the warped product $\mathbb{M} \times f \mathbb{R}$. We obtain the following estimate.

Theorem 1.1. Let \mathbb{M} be a Hadamard surface whose sectional curvature $K(\mathbb{M})$ satisfies $K(\mathbb{M}) \leq -\kappa \leq 0$ and let Σ be a compact H-surface embedded in the warped product $\mathbb{M} \times f \mathbb{R}$, with boundary belonging to the slice $\mathbb{M}_0 = \mathbb{M} \times f \{0\}$ and transverse to \mathbb{M}_0. If h denotes the height of Σ_1 with respect to \mathbb{M}_0, we have that

$$h \leq \frac{HF A^+}{2\pi} - \kappa \frac{Vol(U_1)}{4\pi},$$

where F, A^+ and U_1 are defined in Section 3. The equality holds if, and only if, $K(\mathbb{M}) \equiv -\kappa$ inside U_1 and Σ is foliated by circles. Moreover if equality holds, then f is constant on B.

Also, we focus our attention in the study of existence of rotationally-invariant spheres, which are compact and embedded in the warped product $\mathbb{H} \times f \mathbb{R}$, having positive constant mean curvature H. We give conditions to the existence of such spheres (see Theorem 4.5) and we present a non-trivial warping function f, whose associated warped product $\mathbb{M} \times f \mathbb{R}$ admits constant mean curvature, embedded, compact spheres, see Corollary 4.6.

2000 Mathematics Subject Classification. Primary 53C42; Secondary 53C30.
This article is organized as follows. In Section 2, we collect some results which are used along this work. In Section 3 we establish our main result, the height estimate. In Section 4 we study the mean curvature equation for surfaces immersed in $\mathbb{M} \times_f \mathbb{R}$. On the other hand, we give conditions to the existence of rotationally invariant topological spheres in the warped product $\mathbb{H} \times_f \mathbb{R}$ having positive constant mean curvature. We conclude this section constructing an example of such a topological sphere.

2. Preliminaries

Let \mathbb{M} be a Hadamard surface, that is, a complete, simply connected, two dimensional Riemannian manifold, whose sectional curvature $K(\mathbb{M})$ satisfies $K(\mathbb{M}) \leq -\kappa \leq 0$, for some constant $\kappa \geq 0$. We denote by \mathbb{R} the set of real numbers. On a tri-dimensional Riemannian product $\mathbb{M} \times \mathbb{R}$ we consider the canonical projections $\pi_1 : \mathbb{M} \times \mathbb{R} \rightarrow \mathbb{M}$ and $\pi_2 : \mathbb{M} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $\pi_1(p,t) = p$ and $\pi_2(p,t) = t$ respectively.

Definition 2.1. Suppose \mathbb{M} is a Hadamard surface endowed with Riemannian metric $g_\mathbb{M}$ and as usual, the real line \mathbb{R} is endowed with the canonical metric $g_0 = dt^2$. Let $f : \mathbb{M} \rightarrow \mathbb{R}$ be a smooth real function. The warped product $\mathbb{M} \times_f \mathbb{R}$ is the product manifold $\mathbb{M} \times \mathbb{R}$ endowed with metric

$$g = \pi_1^*(g_\mathbb{M}) + (e^f \circ \pi_1)^2 \pi_2^*(g_0).$$

Explicitly, if v is a tangent vector to $\mathbb{M} \times_f \mathbb{R}$ at (p,t), then

$$g(v,v) = g_\mathbb{M}(d\pi_1(v),d\pi_1(v)) + e^{2f(p)}g_0(d\pi_2(v),d\pi_2(v)).$$

As usual \mathbb{M} is called the base of the warped product $\mathbb{M} \times_f \mathbb{R}$, \mathbb{R} the fiber and f the warping function.

Note that

(i) For each t, the map $\pi_1|_{(\mathbb{M} \times_f \{t\})}$ is an isometry onto \mathbb{M}.

(ii) For each p, the map $\pi_2|_{\{p\} \times \mathbb{R}}$ is a positive homothety onto \mathbb{R} with scale factor $e^{-f(p)}$.

(iii) For each $(p,t) \in \mathbb{M} \times_f \mathbb{R}$, the slice $\mathbb{M} \times_f \{t\}$ and the fiber $\{p\} \times_f \mathbb{R}$ are orthogonal at (p,t).

We denote by $\mathcal{L}(\mathbb{M}) \subset \chi(\mathbb{M} \times_f \mathbb{R})$ and by $\mathcal{L}(\mathbb{R}) \subset \chi(\mathbb{M} \times_f \mathbb{R})$ the set of all lifts of vector fields of $\chi(\mathbb{M})$ and of $\chi(\mathbb{R})$ respectively. Let $\xi = \text{lift}(\partial t)$, where ∂t denotes a unit tangent vector field to the real line \mathbb{R}. By abuse of notation, we will use the same notation for a vector field and for its lifting. Sometimes we will use the over-bar to emphasize the lift of a vector field. We say that a vector field $X \in \chi(\mathbb{M} \times_f \mathbb{R})$ is vertical if X is a non-zero multiple of ξ. If $g(X,\xi) = 0$, X is said to be horizontal. For a vector field $Z \in \chi(\mathbb{M} \times_f \mathbb{R})$, we denote $\|Z\| := g(Z,Z)^{1/2}$.

We denote by $\nabla, \nabla^\mathbb{R}, \nabla$ the Levi-Civita connection of \mathbb{M}, \mathbb{R} and $\mathbb{M} \times_f \mathbb{R}$ respectively. A straightforward computation gives the following lemma. See [8].

Lemma 2.2. On $\mathbb{M} \times_f \mathbb{R}$, if $X,Y \in \mathcal{L}(\mathbb{M})$ and $V,W \in \mathcal{L}(\mathbb{R})$, then

1. $\nabla_X Y \in \mathcal{L}(\mathbb{M})$ is the lift of $\nabla_X Y$ on \mathbb{M}, that is, $\nabla_X Y = \nabla_X^\mathbb{M} Y$.

2. $\nabla_X V = \nabla_V X = (Xf) V$.

3. $\nabla_W V = -g(V,W)\text{grad}(f) + \nabla_W^\mathbb{R} V$.

As an immediate consequence of Lemma 2.2, the vertical field ξ is a Killing vector field.

In this section we recall some important results which will be used in the proof of the main theorem.
2.1. **Coarea Formula.** Let h be a proper smooth real function defined on a Riemannian manifold (M, g). Then the set of critical values of h is a null set of \mathbb{R} and the set O of regular values is an open subset of \mathbb{R}. For $t \in O$, $h^{-1}(t)$ is a compact hypersurface of M, and the gradient vector $\text{grad}(h)(q)$, $h(q) = t$, is perpendicular to $h^{-1}(t)$. Now, we set

$$\Omega_t = \{ p \in M ; h(p) > t \}, \quad V_t := \text{vol}(\Omega_t)$$

$$\Gamma_t = \{ p \in M ; h(p) = t \}, \quad A_t := \text{vol}_{n-1} (\Gamma_t)$$

See [?, Theorem 5.8]

Theorem 2.3 (Coarea Formula). The map $t \mapsto V_t$ is of class C^∞ at a regular value t of h such that $V_t < +\infty$, and

$$V_t' = - \int_{\Gamma_t} \| \text{grad}(h) \|^{-1} d\nu_{g_t}$$

where g_t is the induced metric on Γ_t from g and $V'(t) = \frac{dV}{dt}(t)$.

2.2. **The Flux Formula.** Let U be a bounded domain in a Riemannian three manifold M, whose boundary, ∂U, consists of a smooth connected surface Σ, and the union Q of finitely many smooth, compact and connected surfaces. The closed surface ∂U is piecewise-smooth and smooth except perhaps on $\partial \Sigma = \partial Q$. Let

- n = the outward-pointing unit normal vector field on ∂U,
- $n_\Sigma = $ the restriction of n to Σ,
- $n_Q = $ the restriction of n to Q,
- $n_1 = $ the outward-pointing unit conormal to Σ along $\partial \Sigma$.

Suppose Y is a vector field defined on a region of M that contains U. It was proved in [5, Proposition 3] the following Flux Theorem.

Theorem 2.4 (Flux Theorem). If Y is a Killing vector field on M and Σ is a surface having constant mean curvature $H = g(\vec{H}, n)$. Then

$$\int_{\partial \Sigma} Y \cdot n_1 + H \int_{Q} Y \cdot n_Q = 0$$

where Q, n_1 and Σ are as defined above.

2.3. **Isoperimetric Inequality for Surfaces.** Let M be a two-dimensional C^2-manifold endowed with a C^2-Riemannian metric. We say that M is a generalized surface if the metric in M is allowed to degenerate at isolated points; such points are called singularities of the metric.

Theorem 2.5 (Theorem 1.2,[2]). [Isoperimetric Inequality] Let M be a generalized surface. Let D be a simply connected domain in M with area A and bounded by a closed piecewise C^1-curve Γ with length L. Let K be the Gaussian curvature and K_0 be an arbitrary real number. Assume that in a neighborhood of a singular point, K is bounded above. Then

$$L^2 \geq 4\pi A \left(1 - \frac{1}{2\pi} \int_D (K - K_0) dM - \frac{K_0 A}{4\pi} \right),$$

equality holds if, and only if, $K \equiv K_0$ in D and D is a geodesic disc.
3. The main result

Let Σ be a compact H-surface embedded in $\mathbb{M} \times_f \mathbb{R}$ with boundary belonging to $\mathbb{M}_0 = \mathbb{M} \times_f \{0\}$. Let Γ be the boundary of Σ, $\Gamma = \partial \Sigma$, and assume Σ is transverse to \mathbb{M}_0 along Γ.

We denote by Σ^+ and Σ^- the intersection of Σ with half-space above and below of \mathbb{M}_0 respectively. There is a connected component of Σ^+ or Σ^- that contains Γ. Without loss of generality, we can assume that $\Gamma \subset \Sigma^+$. We call Σ_1 the connected component of Σ^+ that contains Γ.

Let $\hat{\Sigma}_1$ be the symmetry of Σ_1 with respect to \mathbb{M}_0. So $\hat{\Sigma}_1 \cup \Sigma_1$ is a compact embedded surface with no boundary, with corners along $\partial \Sigma_1$; this surface bounds a domain U in $\mathbb{M} \times_f \mathbb{R}$. Let U_1 the intersection of U with the half-space above \mathbb{M}_0. Thus U_1 is a bounded domain in $\mathbb{M} \times_f \mathbb{R}$, whose boundary ∂U_1 consist of the smooth connected surface Σ_1 and the union Ω of finitely smooth, compact and connected surfaces in \mathbb{M}_0. Let A^+ be denote the area of Σ_1.

Recall, we have considered the projections $\pi_1 : \mathbb{M} \times_f \mathbb{R} \to \mathbb{M}^2$ and $\pi_2 : \mathbb{M} \times_f \mathbb{R} \to \mathbb{R}$ given by $\pi_1(p,t) = p$ and $\pi_2(p,t) = t$ respectively. Let $B = \pi_1(\Sigma_1)$ be the projection on \mathbb{M} of Σ, since f is smooth, we denote by

$$\tilde{F} = \sup_{p \in B} \left(e^{-2f} \right) \quad \text{and} \quad F = \tilde{F} \cdot \sup_{p \in B} \left(e^f \right).$$

Under these notations, we have the following theorem.

Theorem 3.1. Let \mathbb{M} be a Hadamard surface whose sectional curvature $K(\mathbb{M})$ satisfies $K(\mathbb{M}) \leq -\kappa \leq 0$ and let Σ be a compact H-surface embedded in the warped product $\mathbb{M} \times_f \mathbb{R}$, with boundary belonging to the slice $\mathbb{M}_0 = \mathbb{M} \times_f \{0\}$ and transverse to \mathbb{M}_0. If h denotes the height of Σ_1 with respect to \mathbb{M}_0, we have that

$$h \leq \frac{HFA^+}{2\pi} - \kappa \frac{\text{Vol}(U_1)}{4\pi}.$$ \hfill \left(3.1\right)

where F, A^+ and U_1 are as defined above. The equality holds if, and only if, $K(\mathbb{M}) \equiv -\kappa$ inside U_1 and Σ is foliated by circles. Moreover if equality holds, then f is constant on B.

Proof. We consider the unit normal N of Σ_1 pointing inside of U_1. Let \hat{H} the mean curvature vector of Σ_1 and we are supposing that the mean curvature function $H = g(\hat{H}, N) > 0$ is a positive constant. We denote by $h : \Sigma^+ \to \mathbb{R}$ the height function of Σ, that is, $h(p) = \pi_2(p)$ and $h_1 = h|_{\Sigma_1}$.

In order to estimate the function h_1, let $A(t)$ be the area of $\Sigma_t = \{ p \in \Sigma_1; h_1(p) \geq t \}$ and $\Gamma_t = \{ p \in \Sigma_1; h_1(p) = t \}$. Then, by the Co-area Formula

$$A'(t) = -\int_{\Gamma_t} \frac{1}{||\text{grad}_f(h_1)||} dv_{\Sigma_t}, \quad t \in O,$$

where O is the set of all regular values of Σ_1. And we denote by $L(t)$ the length of the planar curve $\Gamma(t)$, so by the Schwartz inequality

$$L^2(t) \leq \int_{\Gamma(t)} ||\text{grad}_f(h_1)|| dv_t \int_{\Gamma(t)} \frac{1}{||\text{grad}_f(h_1)||} dv_t = -A'(t) \int_{\Gamma(t)} ||\text{grad}_f(h_1)|| dv_t, \quad t \in O.$$ \hfill \left(3.2\right)

On the other hand, we can decompose the vertical Killing field ξ in the tangent and normal projections over the surface Σ. That is, we can write

$$\xi = T + vN$$

here T is the tangent projection of ξ and $v = g(\xi, N)$ is the normal component of ξ over Σ. Notice that $\xi = e^{2f} \text{grad}_f(h)$, it follows that

$$T = e^{2f} \text{grad}_f(h_1)$$

\hfill \left(3.3\right)

\hfill \left(3.4\right)
which implies \(\| \text{grad}(h_1) \| = e^{-2f} \| T \| \) and by definition of \(\tilde{F} \) the inequality (3.2) becomes

\[
L^2(t) \leq -\tilde{F}A'(t) \int_{\Gamma(t)} \| T \| ds, \quad t \in O.
\]

Furthermore

\[
\| T \|^2 = g(\eta^t, \xi)^2
\]

where \(\eta^t \) is the inner conormal of \(\Sigma_t \) along \(\partial \Sigma_t \). Since \(\Sigma_t \) is above the plane \(\mathbb{M}_0 \) we have \(g(\eta^t, \xi) \geq 0 \) and therefore \(\| T \| = g(\eta^t, \xi) \). Once here, from (3.5), we obtain

\[
L^2(t) \leq -\tilde{F}A'(t) \int_{\Gamma(t)} g(\eta^t, \xi) ds, \quad t \in O.
\]

Let \(N_{\Sigma_t}, N_{\Omega_t} \) be the unit normal fields to \(\Sigma_t \) and \(\Omega_t \), respectively, that point inside \(U(t) \). Denote by \(\eta^t \) the unit conormal to \(\Sigma_t \) along \(\partial \Sigma_t \), pointing inside \(\Sigma_t \). Finally assume that \(\Sigma_t \) is a compact surface with constant mean curvature \(H = g(\tilde{H}, N_{\Sigma_t}) > 0 \). Let \(Y \) be a Killing vector field in \(\mathbb{M} \times_f \mathbb{R} \). Then by the Flux Formula

\[
\int_{\partial \Sigma_t} g(Y, \eta^t) = 2H \int_{\Omega_{\Omega_t}} g(Y, N_{\Omega_t})
\]

taking \(Y = \xi \) in (3.8), we have

\[
\int_{\Gamma(t)} g(\xi, \eta^t) \leq 2H \cdot \sup_{p \in B} \left(e^f \right) \cdot \| \Omega(t) \|
\]

where \(\| \Omega(t) \| \) is the area of the planar region \(\Omega(t) \). Thus if we substitute in (3.7), we obtain

\[
L^2(t) \leq -2HF\tilde{F}A'(t)\|\Omega(t)\|, \quad \text{for almost every } t \geq 0, \quad t \in O.
\]

Using the Isoperimetric Inequality for Surfaces, it was proved in [3]

\[
L^2(t) \geq 4\pi\|\Omega(t)\| + \kappa \| \Omega \|^2
\]

From (3.9) and (3.10), we obtain

\[
4\pi\|\Omega(t)\| + \kappa \| \Omega \|^2 \leq -2HF\tilde{F}A'(t)\|\Omega(t)\|
\]

\[
\|\Omega(t)\| \left(4\pi + \kappa \| \Omega \| \right) + 2HF\tilde{F}A'(t) \leq 0
\]

(3.11)

\[
4\pi + \kappa \| \Omega \| + 2HF\tilde{F}A'(t) \leq 0
\]

By integrating inequality (3.11) from 0 to \(h = \max_{p \in \Sigma} h_1(p) \geq 0 \), we obtain

\[
4\pi h + 2HF(A(h) - A(0)) + \kappa Vol(U_1) \leq 0
\]

therefore

\[
A^+ = A(0) \geq \frac{2\pi h}{HF} + \frac{\kappa Vol(U_1)}{2HF}
\]

which is equivalent o inequality (3.1).

If the equality holds, then all the above inequalities become equalities. In particular, by Isoperimetric Inequality for Surfaces Theorem, \(\Gamma(t) \) is the boundary of a geodesic disc in \(\mathbb{M} \times_f \{ t \} \), for every \(t \geq 0 \), and \(K(\mathbb{M})(p) \equiv -\kappa \) for all \(p \in U \).

On the other hand, if equality holds on (3.1), the inequality (3.5) is a equality which implies that \(e^{-2f} \equiv \tilde{F} \) and then the warping function \(f \) is constant on \(B \).

\[\square \]

We have the following consequences.
Corollary 3.2. Let Σ be a compact, without boundary, embedded surface in the warped product $M \times_f R$, having constant mean curvature $H > 0$ and area A. Let U be the compact domain bounded by Σ, then Σ lies in a horizontal slab having height less than $\frac{HF \cdot A}{\pi} - \frac{\kappa \cdot \text{Vol}(U)}{2\pi}$, where F is defined in the previous theorem. Moreover, one has equality if, and only if, $K(M) \equiv \kappa$ inside U and Σ is foliated by circles.

Corollary 3.3. Let Σ be a compact, embedded surface in the warped product $M \times_f R$, having constant mean curvature $H > 0$ with boundary in the slice $M_0 = M \times_f \{0\}$ and transverse to M_0. Then

$$\kappa \frac{\text{Vol}(U_1)}{4\pi} \leq \frac{HF \cdot A^+}{2\pi}$$

where F, A^+ and U_1 are defined in the previous theorem.

4. MEAN CURVATURE EQUATION

Let $\Omega \subset M$ be a domain and $u : \Omega \to R$ be a smooth function, The graph of u in $M \times_f R$ is the set

$$(4.1) \quad \Sigma_u = \{(p, u(p)) \in M \times_f R; p \in \Omega\}$$

Let \vec{H} denote the mean curvature vector field of Σ_u and we choose a unit normal vector field \vec{N} to Σ_u satisfying $g(\vec{N}, \xi) \leq 0$. Throughout this article a surface having constant mean curvature H will be called an H-surface. In order to obtain the mean curvature equation in the divergence form, we prove the next lemma.

Lemma 4.1. Let X be a vector field in $M \times_f R$

$$(4.2) \quad e^f \text{div}_f(X) = \text{div}_M(e^f d\pi_1(X)) + \xi \left(e^{-f} g(X, \xi)\right),$$

where div and div_M are the divergence on $M \times_f R$ and M, respectively.

Proof. Let $\{x_1, x_2\}$ be local coordinates for M, and $\{x_3 = t\}$ a local coordinate for R whose associated vectors fields are $\{\partial_{x_1}, \partial_{x_2}, \partial_{x_3}\}$. Their lifts to $M \times_f R$ are denoted by $\{\tilde{\partial}_{x_1}, \tilde{\partial}_{x_2}, \tilde{\partial}_{x_3} = \xi\}$, these are the associated vector field to the local coordinates $\{x_1, x_2, x_3\}$ of $M \times_f R$. Denoting by g^{ij} the coefficients of the inverse matrix of g and apply the definition of the divergence of a vector field X on $M \times_f R$ we obtain

$$\text{div}_f(X) = \frac{1}{\sqrt{\det g}} \sum_{i,j=1,2,3} \left(\partial_{x_i} \left(\sqrt{\det g} g^{ij} g(X, \tilde{\partial}_{x_j}) \right) \right)$$

$$= \frac{1}{e^f \sqrt{\det g_M}} \left(\sum_{i,j=1,2} \partial_{x_i} \left(e^f \sqrt{\det g_M} g^{ij} g_M(d\pi_1(X), \partial_{x_j}) \right) + \partial_{x_3} \left(e^{-f} \sqrt{\det g_M} g(X, \tilde{\partial}_{x_3}) \right) \right)$$

$$= \frac{1}{\sqrt{\det g_M}} \left(\sum_{i,j=1,2} \partial_{x_i} \left(\sqrt{\det g_M} g^{ij} g_M(d\pi_1(X), \partial_{x_j}) \right) + \partial_{x_3} \left(e^{-2f} \sqrt{\det g_M} g(X, \tilde{\partial}_{x_3}) \right) \right) +$$

$$+ \frac{1}{e^f \sqrt{\det g_M}} \left(\sqrt{\det g_M} \sum_{i,j=1,2} \partial_{x_i}(e^f) g_M(d\pi_1(X), \partial_{x_j}) g^{ij} \right)$$

$$= \text{div}_M(d\pi_1(X)) + \frac{1}{e^f} g_M \left(d\pi_1(X), \text{grad}_M(e^f) \right) + \partial_{x_3} \left(e^{-2f} g(X, \tilde{\partial}_{x_3}) \right).$$

The last equality follows from de definition of the gradient on M which is given by $\text{grad}_M(e^f) := \sum_{i=1,2} \partial_{x_i}(e^f) g^{ij}_M \partial_{x_j}$. Then,
\[e^f \text{div}_f(X) = \text{div}_M (e^f d\pi_1(X)) + \xi \left(e^{-f} g(X, \xi) \right). \]

Taking the equation (4.2) into account we obtain the following mean curvature equation for vertical graphs in \(M \times_f \mathbb{R} \).

Lemma 4.2. Let \(\Sigma_u \subset M \times_f \mathbb{R} \) be the vertical graph of a smooth function \(u : \Omega \subset M \to \mathbb{R} \) having mean curvature function \(H \). Then, \(u \) satisfies

\[
-2He^f = \text{div}_M \left(e^f \frac{\text{grad}_M u}{W} \right),
\]

where \(W^2 = e^{-2f} + ||\text{grad}_M u||^2 \).

Proof. We consider a smooth function \(u^* : M \times_f \mathbb{R} \to \mathbb{R} \) defined by \(u^*(x, y, t) = u(x, y) \). Set \(F(x, y, t) = u^*(x, y, t) - t \), therefore zero is a regular value of \(F \) and \(F^{-1}(0) = \Sigma_u \). It is well-known that the function \(H \) satisfies

\[
2H = -\text{div}_f \left(\frac{\text{grad}_f(F)}{||\text{grad}_f(F)||} \right),
\]

where \(\text{div}_f \) and \(\text{grad}_f \) denote the divergence and gradient in \(M \times_f \mathbb{R} \), respectively. Let \(X \) be a vector field on \(M \), we denote its lift to \(M \times_f \mathbb{R} \) by \(\tilde{X} \). We have,

\[
\text{grad}_f(F) = \text{grad}_M(u) - e^{-2f} \xi.
\]

Setting \(W^2 = ||\text{grad}_f(F)||^2 = e^{-2f} + ||\text{grad}_M u||^2 \) and applying Lemma 4.1 in equation (4.4), we obtain

\[
2H e^f = -e^f \text{div}_f \left(e^f \frac{\text{grad}_M(u)}{W} \right)
\]

\[
= -\text{div}_M \left(e^f \frac{\text{grad}_M(u)}{W} \right) + \xi \left(e^{-f} g \left(\frac{e^{-2f} \xi}{W}, \xi \right) \right)
\]

\[
= -\text{div}_M \left(e^f \frac{\text{grad}_M(u)}{W} \right).
\]

\[\Box \]

4.1. **Some \(H \)-surfaces in \(\mathbb{H} \times_f \mathbb{R} \).** Now let us focus on the case \(M = \mathbb{H} \), where \(\mathbb{H} \) is the connected, simply connected two-dimensional Hyperbolic disc \(\mathbb{H} = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 < 1\} \) having constant curvature \(\kappa = -1 \). We consider coordinates \((\rho, \theta) \) in \(\mathbb{H} \), where \(\rho \) is the hyperbolic distance to the origin and \(\theta \) is the angle between a segment from the origin and the positive semi-axis \(x \). More precisely, we consider a parametrisation \(\varphi(\rho, \theta) = (\tanh(\rho/2) \cos \theta, \tanh(\rho/2) \sin \theta) \) from \((0, +\infty) \times [0, 2\pi) \) in the hyperbolic disc \(\mathbb{H} \). For simplicity, we treat properties of the surfaces \(\Sigma_u \) using the disc model \(\mathbb{H} \) or the slab \((0, +\infty) \times [0, 2\pi) \) (via the parametrisation \(\varphi \)). In these polar coordinates the metric on \(\mathbb{H} \) is given by

\[
g_\mathbb{H} = d\rho^2 + \sinh^2(\rho) \, d\theta^2
\]

Let \(u : \Omega \subset \mathbb{H} \to \mathbb{R} \) be a smooth function. A parametrization of the graph \(\Sigma_u \) given in (4.1) is

\[
\psi(\rho, \theta) = (\tanh(\rho/2) \cos \theta, \tanh(\rho/2) \sin \theta, u(\rho, \theta)),
\]

where \((\rho, \theta) \in \varphi^{-1}(\Omega) \). Under this notation, we have the next lemma.
A straightforward computation give us

\[-2H e^f = \frac{1}{\sinh \rho} \frac{\partial}{\partial \rho} \left[g_H \left(e^f \frac{\text{grad}_H u}{W}, \partial_\rho \right) \sinh \rho \right] + \frac{1}{\sinh^2 \rho} \frac{\partial}{\partial \theta} \left[g_H \left(e^f \frac{\text{grad}_H u}{W}, \partial_\theta \right) \right] \]

where \(f = f(\rho, \theta) \), \(W = e^{-2f} + \| \text{grad}_H u \|^2 \), and \(\frac{\partial}{\partial z} \) denotes the derivative with respect to \(z \).

Proof. From Lemma 4.5 and Divergence’s Theorem

\[-\int_{\Omega} 2H e^f dA = \int_{\Omega} \text{div} \left(e^f \frac{\text{grad}_H u}{W} \right) dA = \int_{\partial \Omega} g_H \left(e^f \frac{\text{grad}_H u}{W}, \eta \right) d\gamma \]

where \(\Omega \) is a domain with boundary \(\partial \Omega \) and \(\eta \) is the unit outer-conormal to \(\Omega \).

Let us consider the domain \(\Omega = [\rho_0, \rho_1] \times [\theta_0, \theta_1] \) in the \(\rho\theta \)-plane. Notice \(\partial \Omega = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4 \), where

- \(\gamma_1(s) = (s, \theta_0), \quad \rho_0 \leq s \leq \rho_1 \),
- \(\gamma_2(s) = (\rho_1, s), \quad \theta_0 \leq s \leq \theta_1 \),
- \(\gamma_3(s) = (\rho_1 - s, \theta_1), \quad 0 \leq s \leq \rho_1 - \rho_0 \),
- \(\gamma_4(s) = (\rho_0, \theta_1 - s), \quad 0 \leq s \leq \theta_1 - \theta_0 \).

Therefore

\[-2H e^f dA = \sum_{i=1}^{4} \int_{\gamma_i} g_H \left(e^f \frac{\text{grad}_H u}{W}, \eta_i \right) d\gamma \]

A straightforward computation give us

1. \(\int_{\gamma_1} g_H \left(e^f \frac{\text{grad}_H u}{W}, \eta_1 \right) d\gamma = -\int_{\rho_0}^{\rho_1} g_H \left(e^f \frac{\text{grad}_H u}{W}, \partial_\rho \right) (\rho, \theta_0) \frac{1}{\sinh \rho} d\rho \)
2. \(\int_{\gamma_2} g_H \left(e^f \frac{\text{grad}_H u}{W}, \eta_2 \right) d\gamma = \int_{\rho_0}^{\rho_1} g_H \left(e^f \frac{\text{grad}_H u}{W}, \partial_\rho \right) (\rho_1, \theta) \sinh \rho \frac{1}{\sinh \rho} d\rho \)
3. \(\int_{\gamma_3} g_H \left(e^f \frac{\text{grad}_H u}{W}, \eta_3 \right) d\gamma = \int_{\rho_0}^{\rho_1} g_H \left(e^f \frac{\text{grad}_H u}{W}, \partial_\rho \right) (\rho, \theta_1) \frac{1}{\sinh \rho} d\rho \)
4. \(\int_{\gamma_4} g_H \left(e^f \frac{\text{grad}_H u}{W}, \eta_4 \right) d\gamma = -\int_{\theta_0}^{\theta_1} g_H \left(e^f \frac{\text{grad}_H u}{W}, \partial_\theta \right) (\rho_0, \theta) \sinh \rho \frac{1}{\sinh \rho} d\theta \)

Using the last four expressions into equation (4.8), we obtain

\[-\int_{\Omega} 2H e^f dA = \int_{\Omega} \frac{1}{\sinh \rho} \frac{\partial}{\partial \rho} \left[g_H \left(e^f \frac{\text{grad}_H u}{W}, \sinh \rho \right) \right] + \frac{1}{\sinh^2 \rho} \frac{\partial}{\partial \theta} \left[g_H \left(e^f \frac{\text{grad}_H u}{W}, \sinh \rho \right) \right] dA \]

Once equation (4.9) holds for any such \(\Omega \) we complete the proof.

\[\square \]

4.2. Rotational spheres in \(\mathbb{H} \times f \mathbb{R} \). In this section we will construct rotationally-invariant spheres. In order to do that, the warping function \(f \) must depend only on \(\rho \) as well as the function \(u \), that is, \(f(\rho, \theta) \equiv f(\rho) \) and \(u(\rho, \theta) \equiv u(\rho) \).

Let \(I \) be an interval in the positive \(x \)-axis and \(u : I \rightarrow \mathbb{R} \) be a smooth function whose graph \(\Gamma_u \) lies in the \(xt \)-plane. Denote by \(\mathcal{G} \) the group of rotations around the origin of the hyperbolic disc \(\mathbb{H} \). The rotationally-invariant surface \(\Sigma_u \) obtained from \(\Gamma_u \) is the surface \(\Sigma_u = \mathcal{G} \Gamma_u \). We assume that \(\Sigma_u \)
has non-negative constant mean curvature H with respect to the pointing downwards unit normal vector field \overrightarrow{N} of Σ_ρ. In order to give the conditions to the existence of spheres in the warped product $\mathbb{H} \times_f \mathbb{R}$, we need the next definition.

Definition 4.4. Consider the warped product $\mathbb{H} \times_f \mathbb{R}$, with $f \equiv f(\rho)$. Let $H > 0$ be a positive constant and d a constant depending on H and f. We say the function $u = u(\rho)$ is an admissible solution if the following conditions hold

1. There exists an interval $[0, \rho_0]$, $\rho_0 < \infty$, such that the function
 \[
 G(\rho) = d - 2HF(\rho), \quad \text{with} \quad F_{\rho}(\rho) = e^{f(\rho)} \sinh \rho
 \]
 satisfies $G(0) = 0$, $G(\rho) > 0$ on $(0, \rho_0]$ and $G(\rho) < e^{f(\rho)} \sinh \rho$, on $(0, \rho_0]$. Where F_{ρ} denotes the derivative of the function F with respect to ρ.
2. The graph Γ_ρ of the function u is defined on $[0, \rho_0]$, $\rho_0 < \infty$ and is given by the ordinary differential equation (ODE)
 \[
 u_{\rho}(\rho) = \frac{G(\rho)}{e^{f(\rho)} \sqrt{e^{2f(\rho)} \sinh^2 \rho - G^2(\rho)}}
 \]
 which has zero derivative at $\rho = 0$, non-finite derivative at $q = (\rho_0, u(\rho_0))$ and finite geodesic curvature at the points p and q as long as the left side of equation (4.10) is well defined on $\rho = 0$.

Now we presented the main theorem of this section, the notation on Definition 4.4 will be used.

Theorem 4.5 (Rotational spheres). Let $f = f(\rho)$ be a warping function depending only on ρ. Suppose that for a positive constant $H > 0$ there exists a constant d (depending on H and f) and an admissible solution $u(\rho)$. Then there exists a rotational sphere S^H having constant mean curvature H, which is invariant by the group \mathcal{G} and up to vertical translations, is a bi-graph with respect to the slice $\mathbb{H}_0 = \mathbb{H} \times_f \{0\}$.

Proof. We have denoted by $\Sigma_u = \mathcal{G}_{\gamma_u}$ the rotationally-invariant surface which is a graph of a function $u(\rho, \theta) \equiv u(\rho)$. If Σ_u has non-negative constant mean curvature H with respect to the downwards pointing unit normal vector field \overrightarrow{N} then, by Lemma 4.3 the function u satisfies

\[
-2H e^{f} \sinh \rho = \frac{\partial}{\partial \rho} \left(e^{f} u_{\rho} \frac{u_{\rho}}{W} \sinh \rho \right)
\]
where $W^2 = e^{-2f} + u_{\rho}^2$. Recall that F, by Definition 4.4, satisfies the ODE $F_{\rho}(\rho) = e^{f(\rho)} \sinh \rho$. Intregating equation (4.11), we obtain

\[
d - 2H e^{f} F = \frac{e^{2f} u_{\rho}}{\sqrt{1 + (e^{f} u_{\rho})^2}} \sinh \rho
\]
where $d \in \mathbb{R}$ is a constant. Once we are assuming that there is an admissible solution, equation (4.12) is equivalent to

\[
u_{\rho}(\rho) = \pm \frac{d - 2HF}{e^{f} \sqrt{e^{2f} \sinh^2 \rho - (d - 2HF)^2}}
\]
The admissible solution u is a solution for equation (4.13). We can glue together the graph of the u with the graph of $-u$ in order to obtain the rotational sphere S^H. \qed
4.3. Examples of rotational spheres. Once rotationally-invariant spheres do not have to exists for every warping function \(f = f(\rho) \). To see that the set of admissible solutions is non-empty, we consider the non-trivial warping function \(f(\rho) \) given by

\[
 f(\rho) = \ln (2 \cosh(\rho))
\]

From Lemma 4.3, the function \(u \) which generates the rotationally-invariant surface \(\Sigma_u = \Phi \Gamma_u \) having constant mean curvature \(H \), satisfies

\[
 (4.14) - 2H \sinh(2\rho) = \partial_\rho \left(\frac{e^{2\rho} u_\rho}{\sqrt{1 + (e^\rho u_\rho)^2}} \sinh \rho \right)
\]

By integrating equation (4.14), we obtain

\[
 (4.15) u_\rho(\rho) = \pm \frac{d - H \cosh(2\rho)}{2 \cosh(\rho) \sqrt{\sinh^2(2\rho) - (d - H \cosh(2\rho))^2}}
\]

where \(d \in \mathbb{R} \). Once here, we have the next corollary.

Corollary 4.6. Consider the warping function \(f(\rho) = \ln (2 \cosh(\rho)), \) where \(\rho \geq 0 \) is the hyperbolic distance from the origin in the hyperbolic disk \(\mathbb{H} \). For each positive constant \(\rho > 1 \), there exists a rotational sphere \(S^H \), embedded in the warped product \(\mathbb{H} \times_f \mathbb{R} \) having constant mean curvature \(H \), which is invariant by the group \(\Phi \) and up to vertical translation, the sphere \(S^H \) is a bi-graph with respect to the slice \(\mathbb{H}_0 = \mathbb{H} \times_f \{0\} \).

Proof. For the product space \(\mathbb{H} \times \mathbb{R} \), it was proved in [10] (or [9]) the existence of an admissible solution which generates an embedded, compact, rotationally-invariant sphere \(S \) having constant mean curvature \(H \), for any constant satisfying \(2H > 1 \). If we denote by \(u_0 \) this admissible solution, then \(u_0 \) satisfies the ODE

\[
 (4.16) (u_0)_\rho(\rho) = \frac{(2H - 2H \cosh(\rho))}{\sqrt{\sinh^2(\rho) - (2H - 2H \cosh(\rho))^2}},
\]

here \(\rho \in [0, \rho_0] \), for some fixed \(\rho_0 > 0 \).

Take \(d = H \), for \(H > 1 \) in equation (4.15), following the same ideas presented in [10], we see that the solution of equation (4.15) is an admissible solution over an interval \([0, \rho_1]\) for some fixed \(\rho_1 > 0 \). Notice that, there exists constants \(m \) and \(M \) such that

\[
 (4.17) \frac{H - H \cosh(2\rho)}{m \sqrt{\sinh^2(2\rho) - (H - H \cosh(2\rho))^2}} \leq u \leq \frac{H - H \cosh(2\rho)}{M \sqrt{\sinh^2(2\rho) - (d - H \cosh(2\rho))^2}}
\]
in \([0, \rho_1]\). By Theorem 4.5, the admissible solution \(u \) generates the sphere \(S^H \).

\[\square\]

References

[1] Áledo, J., Espinar, J. and Gálvez, J. Height Estimates for Surfaces with Positive Constant Mean Curvature in \(M \times \mathbb{R} \). *Illinois J. Math.*, 52, 2008, no. 1, 203–211.

[2] Barbosa, L. and do Carmo, M. A Proof of a General Isoperimetric Inequality for Surfaces. *Math. Z.*, 162, 1978, no. 245–261.

[3] Claudemir, L. and Rosenberg, H. A relation between height, area, and volume for compact constant mean curvature surfaces in \(M^2 \times \mathbb{R} \). *Michigan Math. J.*, 61 (2012), no. 1, 123–131.

[4] Heinz, H. On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary. *Arch. Rational Mech. Anal.*, 35, 1969, no. 249–252.

[5] Hoffman, D., Lira, J. and Rosenberg, H. Constant Mean Curvature Surfaces in \(M^2 \times \mathbb{R} \). *Trans. Amer. Math. Soc.*, 358-2, 2006, no. 491–507.
[6] Leandro, C. and Rosenberg, H. A relation between height, area, and volume for compact constant mean curvature surfaces in $M^2 \times \mathbb{R}$. *The Michigan Mathematical Journal*, 61, 2012, no. 123–131.

[7] López, R. and Montiel, S. Constant mean curvature surfaces with planar boundary. *Duke Math. J.*, 3, 1996, no. 583–604.

[8] O’Neil, B. A Semi-Riemannian Gemetry. *Academic Press; 1 edition*, July 12, 1983

[9] Peñafiel, C. Invariant Surfaces in $\tilde{PSL}_2(\mathbb{R},\tau)$ and Applications, Bull. Braz. Math. Soc. (N.S.) 43(4) (2002), 545-578.

[10] Sa Earp, R. and Toubiana, E. Screw motion surfaces in $H^2 \times \mathbb{R}$ and $S^2 \times \mathbb{R}$. *Illinois J. Math.*, 49, 2005, no. 4, 1323–1362.

Universidade Federal Fluminense

E-mail address: abigailfolha@vm.uff.br

Universidade Federal de Rio de Janeiro

E-mail address: penafiel@im.ufrj.br

Universidade Federal de Rio de Janeiro

E-mail address: walcy@im.ufrj.br