Genetic and phenotypic spectrum associated with IFIH1 gain-of-function

Citation for published version:
Rice, GI, Park, S, Gavazzi, F, Adang, LA, Ayuk, LA, Van Eyck, L, Seabra, L, Barrea, C, Battini, R, Belot, A, Berg, S, Billette de Villemeur, T, Bley, AE, Blumkin, L, Boespflug-Tanguy, O, Briggs, TA, Brimble, E, Dale, RC, Darin, N, Debray, F-G, De Giorgis, V, Denecke, J, Dounmar, D, Drake Af Hagelsrum, G, Eleftheriou, D, Estienne, M, Fazzi, E, Feillet, F, Galli, J, Hartog, N, Harvengt, J, Heron, B, Heron, D, Kelly, DA, Lev, D, Levrat, V, Livingston, JH, Marti, I, Mignot, C, Mochel, F, Nougues, M-C, Oppermann, I, Pérez-Dueñas, B, Popp, B, Rodero, MP, Rodriguez, D, Saletti, V, Sharpe, C, Tonduti, D, Vadlamani, G, Van Haren, K, Tomas Vila, M, Vogt, J, Wassmer, E, Wiedemann, A, Wilson, CJ, Zerem, A, Zweier, C, Zuberi, SM, Orcesi, S, Vanderver, AL, Hur, S & Crow, YJ 2020, 'Genetic and phenotypic spectrum associated with IFIH1 gain-of-function', Human Mutation. https://doi.org/10.1002/humu.23975

Digital Object Identifier (DOI):
10.1002/humu.23975

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Human Mutation

Publisher Rights Statement:
Attribution 4.0 International (CC BY 4.0)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Genetic and phenotypic spectrum associated with IFIH1 gain-of-function

Gillian I. Rice1, Sehoon Park2,3, Francesco Gavazzi4, Laura A. Adang4, Lovelene A. Ayuk5, Lien Van Eyck6, Luis Seabra6, Christophe Barrea7, Roberta Battini8,9, Alexandre Belot10,11, Stefan Berg12, Thierry Billette de Villemeur13, Annette E. Bley14, Lubov Blumkin15,16, Odile Boespflug-Tanguy17,18, Tracy A. Briggs1,19, Elise Brimble20, Russell C. Dale21, Niklas Darin22,23, François-Guillaume Debray24, Valentina De Giorgis25, Jonas Denecke26, Diane Doummar26, Gunilla Drake af Hagelsrum27, Despina Eleftheriou28, Margherita Estienne29, Elisa Fazzi30,31, François Feillet32, Jessica Galli30,31, Nicholas Hartog33, Julie Harvengt34, Bénédicte Heron35, Delphine Heron36, Diedre A. Kelly37, Dorit Lev16,38, Virginie Levrat39, John H. Livingston40, Itxaso Marti41, Cyril Mignot42, Fanny Mochel43, Marie-Christine Nougues44, Ilena Oppermann4, Belén Pérez-Dueñas45, Bernt Popp46, Mathieu P. Rodero6, Diana Rodriguez47,48, Veronica Saletti49, Cia Sharpe50, Davide Tonduti51, Gayatri Vadlamani40, Keith Van Haren20, Miguel Tomas Vila52, Julie Vogt53, Evangeline Wassmer54, Arnaud Wiedemann32, Callum J. Wilson55, Ayelet Zerem15,16, Christiane Zweier46, Sameer M. Zuberi56,57, Simona Orcesi25,58, Adeline L. Vanderver4, Sun Hur2,3, Yanick J. Crow6,59,60

1Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
2Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
3Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts
4Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
5Paediatric Department, Dumfries and Galloway Royal Infirmary, Cargenbridge, United Kingdom
6Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Paris, France
7Department of Neuropaediatrics, CHU & University of Liège, Liège, Belgium
8Department Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
9IRCCS Fondazione Stella Maris, Pisa, Italy
10Université de Lyon, INSERM U1111, CIRI, Lyon, France
11Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
© 2020 The Authors. Human Mutation published by Wiley Periodicals, Inc.
1 | INTRODUCTION

In 2014, heterozygous gain-of-function mutations in IFIH1 were reported to cause a spectrum of neuroimmune phenotypes including classical Aicardi–Goutières syndrome (AGS; Oda et al., 2014; Rice et al., 2014). IFIH1 encodes interferon-induced helicase C domain-containing protein 1 (IFIH1; also known as melanoma differentiation associated gene 5 protein: MDA5) which senses viral double-stranded (ds) RNA in the cytosol, leading to the induction of a type I interferon-mediated antiviral response. Consequent to Mendelian determined gain-of-function, it is suggested that IFIH1 inappropriately senses self-derived nucleic acid as viral, leading to an autoinflammatory state classified as a type I interferonopathy (Ahmad et al., 2018; Crow & Manel, 2015). In 2015, a p.Arg822Gln substitution in IFIH1 was shown to cause Singleton Merten syndrome (SMS), an autosomal dominant trait variably characterized by a deforming arthropathy, abnormal tooth development and cardiac valve calcification, again in association with enhanced type I interferon signaling (Rutsch et al., 2015). Although it was initially considered that SMS was a distinct, mutation-specific disorder, subsequent reports indicate that SMS and the neuroinflammatory phenotypes seen in the context of IFIH1 gain-of-function constitute part of the same disease spectrum (Buers, Rice, Crow, & Rutsch, 2017; Burszttein et al., 2015).

Type I interferonopathy associated IFIH1 mutations are either absent from control databases, or only present at very low frequency. However, we have noted previously that in silico algorithms are not always reliable in differentiating IFIH1 disease-causing variants from benign polymorphisms (Ruaud et al., 2018). Such difficulty in assigning molecular pathogenicity is compounded by marked variability in disease expression, sometimes even within the same family, and the observation of complete non-penetrance in certain pedigrees (Rice et al., 2014). Given this background, we considered it important to provide an update of our experience of sequencing individuals for pathogenic IFIH1 mutations associated with a type I interferonopathy state. In total, we describe molecular and clinical data relating to 74 individuals from 51 families, identifying 27 likely pathogenic mutations that cluster close to the ATP binding region of the protein. Our data confirm variable expression and non-penetrance as important characteristics of these mutant genotypes, and the consistent association with enhanced type I interferon signaling as assessed by interferon-stimulated gene (ISG) expression, referred to as the interferon score.

2 | MATERIALS AND METHODS

2.1 | Subjects

Patients were ascertained through direct contact and/or collaborating physicians across clinical research laboratories in the UK and France (Crow), the USA (Vanderver), and Italy (Orcesi). The study was approved by the Leeds (East) Research Ethics Committee (10/H1307/132), the Comité de Protection des Personnes (ID-RCB/EUDRACT: 2014-A01017-40), IRB study protocol (Myelin Disorders Bioregistry Project: IRB# 14-011236) and the local ethics committee of the IRCCS Mondino Foundation, Pavia, Italy (3549/2009 of 30/9/2009 and 11/12/2009;
Amino acid substitutions were considered as pathogenic mutations when they were seen in the context of a neuroimmune/autoinflammatory state (including AGS, a spastic-dystonic syndrome, nonsyndromic spastic paraparesis or SMS), and when two or more of the following applied: observation of the same variant in an unrelated family; de novo occurrence; documented increase in ISG expression; in vitro data consistent with IFIH1 gain-of-function.

2.2 Mutational analysis

Mutations were identified on a variety of next-generation sequencing platforms. Where Sanger sequencing was undertaken, primers were designed to amplify the coding exons of IFIH1, with mutation annotation based on the reference cDNA sequence NM_002168.2. Variants were assessed using the in silico programs SIFT (http://sift.jcvi.org), Polyphen2 (http://genetics.bwh.harvard.edu/pph2/), and CADD (https://cadd.gs.washington.edu), summarized in VarCards (http://varcards.biols.ac.cn/). Population allele frequencies were obtained from the gnomAD database (http://gnomad.broadinstitute.org).

2.3 Protein modeling

Molecular graphics figures were generated with PyMOL (Schrödinger) using the PDB coordinates (4GL2).

2.4 Interferon score

Interferon scores were calculated on the basis of the expression of ISGs according to previously published protocols. In brief, this involved either a quantitative reverse transcription-polymerase chain reaction (qPCR) analysis using TaqMan probes (Crow laboratory: Rice et al., 2013), or testing on a Nanostring platform (Vandervar laboratory: Adang et al., 2018+). In the former, the relative abundance of IFI27 (Hs01086370_m1), IFI44L (Hs00199115_m1), IFIT1 (Hs00356631_g1), ISG15 (Hs00192713_m1), RSAD2 (Hs01057264_m1), and SIGLEC1 (Hs00988063_m1) transcripts was normalized to the expression levels of Hprt1 (Hs03929096_g1) and 18s (Hs99999901_s1). The median fold change of the six genes, compared to the median of 29 previously collected healthy controls, was then used to create an interferon score for each individual, with an abnormal interferon score being defined as greater than +2 standard deviations above the mean of the control group that is 2.466. Alternatively, the copy number of mRNA transcripts of the six ISGs listed above, and four housekeeping genes (ALAS1, HPRT1, TBP, and TUBB), was quantified using a Nanostring nCounter™ Digital Analyzer. The raw copy number of mRNA transcripts of each ISG was standardized using the geometric mean of the four housekeeping genes for each individual, and the six-gene interferon signature for each individual calculated using the median of the Z scores, with the result considered positive if ≥1.96 (>98th centile; one tail analysis).

2.5 Interferon reporter assay

The pFLAG-CMV4 plasmid encoding IFIH1 has been described elsewhere (Rice et al., 2014). Indicated mutations were introduced using Phusion HiFi DNA polymerase. HEK 293T cells (ATCC) were maintained in 48-well plates in DMEM (Cellgro) supplemented with 10% fetal bovine serum and 1% L-glutamine. At 80% confluence, cells were cotransfected with pFLAGCMV4 plasmids encoding wild-type or mutant IFIH1 (5 ng, unless indicated otherwise), interferon β (IFNβ) promoter-driven firefly luciferase reporter plasmid (100 ng), and a constitutively expressed Renilla luciferase reporter plasmid (pRL-TK, 10 ng), by using Lipofectamine 2000 (Life Technologies) according to the manufacturer’s protocol. The medium was changed 6 hr after transfection, and cells were subsequently incubated for 18 hr with or without stimulation with poly(I–C) (500 ng; InvivoGen) using Lipofectamine 2000. Cells were lysed with Passive Lysis Buffer (Promega), and IFNβ promoter activity was measured using a Dual-Luciferase Reporter Assay (Promega) and a Synergy 2 plate reader (BioTek). Firefly luciferase activity was normalized to Renilla luciferase activity. Each experiment was performed in triplicate and data are presented as mean ± standard mean of error. Statistical significance was determined by two-tailed, unpaired Student’s t-test with * , **, and *** indicating p values <.05, <.01, and <.001, respectively. Expression levels of individual constructs were tested by western blot analysis.

3 RESULTS

3.1 Molecular data

We collected data on 74 individuals from 51 families, identifying 27 distinct mutations in total (Figure 1; Table 1). Fourteen mutations were recorded in a single proband, seven in more than one individual belonging to a single family, and six in more than one family. Of these six recurrent mutations, the p.Arg720Gln, p.Arg779Cys, and p.Arg779His substitutions were observed most frequently (6, 8, and 10 times, respectively). Twenty-two mutations were recorded to have occurred de novo in at least one individual, whilst four mutations were only ascertained in familial cases demonstrating autosomal dominant transmission (two mutations, p.Ala489Thr and p.Gly495Arg, were transmitted from a father in whom the mutation arose de novo). Three mutations, p Thr331Arg, p.Arg779Cys, and p.Arg779His substitutions, were documented to have occurred both de novo, in association with severe, AGS-like, neurological disease, and in families with transmission across two or more generations.

For six putative mutations (p.Gly389Arg; p.Asn449Lys; p.Ile583Val; p.Ile803Phe; p.Asp848GlU; p.Ile956Val), in silico predictions using both SIFT and Polyphen2 suggested that the substitutions were benign, with relatively poor evolutionary conservation (Figure S1). However, all of these variants were novel (i.e., not recorded in gnomAD), and assays of interferon signaling (ISG expression and in vitro testing) indicate that they represent pathogenic mutations conferring gain-of-function (Table S1; Figure S2). Of note, four of these variants were seen in the context of a spastic paraparesis phenotype with no or minimal cognitive impairment.
Clinical nonpenetrance was observed in three of these families (the other three variants arising in the proband de novo).

3.2 Clinical phenotype

Consistent with previous data, we observed a spectrum of phenotypes in our cohort, encompassing classical AGS, less easily defined rapid neuroregression, a spastic-dystonic syndrome, spastic paraparesis, SMS, and clinical nonpenetration (Figure 2; Table 2; Table S2). A single individual, AGS2222, experienced neonatal hepatitis and then developed chronic fibrotic liver disease in the absence of any other clinical features (note that this same variant was seen in another proband, AGS735, presenting with neuroregression at age 1 year). Unequivocal episodes of rapid neuroregression were noted in at least 20 patients, in seven of whom an acute loss of skills occurred after the age of 1 year on a background of completely normal development. Recognition/onset of symptoms was frequently later in patients with a spastic paraparesis phenotype, with one patient experiencing the development of lower limb spasticity beginning at 13 years of age (AGS531_P4). Ten individuals were reported as asymptomatic mutation carriers, across five mutations (p.Gly389Arg, p.Arg779Cys, p.Arg779His, p.Asp848Glu, and p.Ile956Val), with seven aged over 50 years.

3.3 Interferon status

Where tested, all mutations (i.e., 26 of 27) were associated with increased expression of ISGs in peripheral blood (Table 1). Samples were unavailable for the single patient carrying the p.Glu773Gln substitution. This variant is not recorded in gnomAD, occurring de novo in the context of a phenotype compatible with IFIH1 upregulation, and conferring a gain-of-function in our in vitro assay (Figure S2). Considering all (51) mutation-positive individuals tested for ISG expression in the Crow laboratory (given that a direct comparison of results across laboratories is not possible), 109 of 117 values were positive (Table S3; Figure S3). Only one clinically symptomatic patient (AGS2154_1) demonstrated a negative interferon signature (on two of three occasions tested). The phenotype, in this case, was unusual; a child with white matter disease confined to the right cerebral hemisphere on MRI and no abnormal neurological signs on examination, having presented at age 8 years with headaches. We leave open the possibility that these two normal results, and three normal results from his mother, might be due to technical artifact, given that the samples had been stored for many months before testing. Sixteen samples from seven clinically nonpenetrant subjects exhibited an upregulation of interferon signaling, with two asymptomatic mutation carriers demonstrating normal interferon signatures (each tested on three occasions).

3.4 Modeling of IFIH1 gain-of-function mutations

Modeling of the 27 mutations described here showed that most residues cluster near the ATP binding site within the helicase domain.
cDNA change	Protein change	Families (de novo inheritance; or, number of symptomatic and non-penetrant individuals where familial)	Associated phenotypes (’/’ within family); (’/’ between families)	Upregulation of interferon signalling	Assessment by interferon reporter assay	gnomAD	SIFT	Polyphen2	CADD score	Var-cards
c.992C>G	p.Thr331Arg	AGS674 (de novo); AGS1972 (2;0)	AGS-SMS; SMS	Yes	Yes (de Carvalho et al., 2017)	Novel	Deleterious 0	Probably damaging 1000	29.7	22:23
c.992C>T	p.Thr331Ile	AGS1938 (3;0)	SMS	Yes	Yes (de Carvalho et al., 2017)	Novel	Deleterious 0	Probably damaging 1000	31	22:23
c.1009A>G	p.Arg337Gly	AGS237 (de novo)	NR	Yes	Yes (Rice et al., 2014)	Novel	Tolerated 012	Probably damaging 1000	26.8	17:23
c.1165G>A	p.Gly389Arg	AGS848 (2;1)	AGS/SP/CNP	Yes	Yes (this paper)	Novel	Tolerated 088	Benign 0.108	5.325	01:23
c.1178A>T	p.Asp393Val	AGS626 (de novo)	NR	Yes	Yes (Rice et al., 2014)	Novel	Deleterious 001	Probably damaging 0.998	28.6	16:23
c.1178A>C	p.Asp393Ala	AGS2586 (de novo)	AGS	Yes	No	Novel	Deleterious 003	Possibly damaging 0.913	24.8	12:23
c.1331A>G	p.Glu444Gly	AGS2669 (de novo)	AGS	Yes	Yes (this paper)	Novel	Deleterious 0	Probably damaging 1	31	23:23
c.1347C>G	p.Asn449Lys	AGS1001 (de novo)	SP	Yes	Yes (this paper)	Novel	Tolerated 064	Benign 0.163	13.91	03:23
c.1465G>A	p.Ala489Thr	AGS755 (3;0)	CLL/AGS-SMS/SM5	Yes	Yes (Bursztejn et al., 2015)	Novel	Deleterious 0	Probably damaging 1000	32	21:23
c.1483G>A	p.Gly495Arg	AGS524 (2;0)	SP-LLD/SP	Yes	Yes (Rice et al., 2014)	Novel	Deleterious 001	Probably damaging 0.982	23.3	14:23
c.1747A>G	p.Ile583Val	AGS2369 (de novo)	AGS	Yes	Yes (this paper)	Novel	Tolerated 048	Benign 0.000	0.573	5:23
c.2156C>T	p.Ala719Val	Hm_1 (de novo)	AGS	Yes	No	Novel	Tolerated 007	Possibly damaging 0.949	27.1	09:23
c.2159G>A	p.Arg720Gln	AGS102 (de novo); AGS647 (de novo); AGS1504 (de novo); AGS2422 (NPDT); AGS2548 (de novo); LD_0982.0 (de novo)	AGS; SP	Yes	Yes (Rice et al., 2014)	Novel	Deleterious 0	Probably damaging 0.992	34	17:23

(Continues)
cDNA change	Protein change	Families (de novo inheritance; or, number of symptomatic and non-penetrant individuals where familial)	Associated phenotypes (‘/’ within family); (‘;’ between families)	Upregulation of interferon signalling	Assessment by interferon reporter assay	gnomAD	SIFT	Polyphen2	CADD score	Var-cards
c.2317G>C	p.Glu773Gln	AGS2399 (de novo)	NR	NA	Yes (this paper)	Novel	Tolerated 0.27	Possibly damaging 0.743	24.8	13:23
c.2335C>T	p.Arg779Cys	AGS376 (NPDT); AGS723 (NPDT); AGS1004 (de novo); AGS1156 (de novo); AGS2154 (1:1); AGS2180 (de novo); AGS2507 (de novo); LD_1030.0 (de novo)	AGS; LLD; SP; ICC; NR; unilateral white matter disease/CNP; AGS	Yes	Yes (Rice et al., 2014)	Novel	Deleterious 0.01	Probably damaging 1.000	34	21:23
c.2336G>A	p.Arg779His	AGS163 (de novo); AGS259 (3:2); AGS1351 (de novo); AGS1509 (de novo); AGS2177 (1:2); Berg_1 (de novo); Orc_0098 (de novo); LD_1199.0 (de novo); LD_1381 (3:1); LD_1585.0 (de novo)	AGS; CNP; NR; SP	Yes	Yes (Rice et al., 2014)	1/244230	Tolerated 0.05	Probably damaging 0.994	28.9	19:23
c.2336G>T	p.Arg779Leu	LD_1067.0 (de novo)	AGS	Yes	No	Novel	Tolerated 0.06	Probably damaging 1.000	35	21:23
c.2342G>A	p.Gly781Glu	LD_0940.0 (de novo); LD_0943.0 (de novo)	NR; SP	Yes	No	Novel	Deleterious 0	Probably damaging 1.000	32	19:23
c.2404A>G	p.Asn802Asp	AGS2662 (de novo)	NR	Yes	No	Novel	Tolerated 0.22	Probably damaging 1.000	28.1	18:23
c.2407A>T	p.Ile803Phe	LD_1488.0 (de novo)	AGS	Yes	Yes (this paper)	Novel	Tolerated 0.24	Benign 0.043	11.8	04:23
c.2465G>A	p.Arg822Gln	AGS1514 (de novo)	SD-ICC	Yes	Yes (Rutsch et al., 2015)	6/244096	Deleterious 0	Probably damaging 1.000	35	23:23
c.2471G>A	p.Arg824Lys	AGS735 (de novo); AGS2222 (de novo)	NR; Isolated liver disease	Yes	No	Novel	Deleterious 0	Probably damaging 1.000	34	22:23
c.2486C>G	p.Thr829Ser	AGS1290 (2 siblings and NPDT)	AGS	Yes	No	Novel	Tolerated 0.73	Possibly damaging 0.512	16.61	12:23
c.2544T>G	p.Asp848Glu	AGS531 (3:2)	SP; ICC/CNP	Yes	Yes (Ruaud et al., 2018)	Novel	Tolerated 0.4	Benign 0.004	10.08	02:23
Three mutations, p.Ileu583Val, p.Ileu956Val, and p.Leu979Trp, were the only residues not situated in the cluster (colored cyan; only p.Ileu583Val and p.Leu979Val are shown since residue p.Ileu956 is disordered in the crystal structure). Within this main cluster, residues can be further categorized into three groups: those at the ATP binding pocket (magenta spheres), those in the double stranded RNA (dsRNA) binding surface (colored blue) and those not directly involved in either ATP or RNA binding (colored green). Three published mutations (p.Leu372phe; p.Ala452Thr; p.Glu813Asp; Table S4) not ascertained in our cohort are also located within the main cluster (colored orange), further supporting the importance of this region in the regulation of IFIH1 signaling activity.

DISCUSSION

Here we present data on 74 individuals, 41 previously unreported, from 51 families, with a putative gain-of-function mutation in IFIH1. Consistent with previous descriptions, we observed a spectrum of phenotypes, encompassing AGS, spastic-dystonia, spastic paraparesis, SMS and clinical nonpenetration. Phenotypic variability was common, both in the context of familial inheritance and mutations seen recurrently across families so that no obvious genotype-phenotype correlations could be ascertained.

Acute regression was noted in almost one-third of symptomatic mutation carriers, occurring after the age of 1 year in seven patients demonstrating completely normal development to that time. Beyond acute regression, a slower onset of disease, and subsequent progression, was seen in patients demonstrating a spastic paraparesis phenotype. Together with the observation of clinical nonpenetration (10: 13.5% of 74 mutation-positive individuals in our series), with seven individuals identified to be apparently disease-free beyond the age of 50 years, these data suggest the importance of additive genetic factors and/or environmental triggers in determining phenotypic status. Although we did not formally record neuroimaging features in our cohort, white matter disease and intracranial calcification were observed frequently. Such imaging characteristics can be seen in the absence of overt neurological signs (see Bursztejn et al., 2015 and de Carvalho et al., 2017). Conversely, significant neurological disease, most typically spastic paraparesis, can occur in the context of normal brain and spinal imaging (e.g., the father in family AGSS24).

| cDNA change | Protein change | Families (de novo inheritance; or, number of individuals where familial) | Associated phenotypes and classification ("/") within family ("/") between families) | Upregulation of interferon signaling reporter assay | gnomAD | SIFT | Polyphen2 | CADD score | Varcards | 44.12% | 14.71% | 20.59% | 10.29% | 10.29% |
|-------------|----------------|--|---|---|-----|------|---------|----------|---------|---------|--------|--------|--------|--------|--------|
| c.2561T>A | p.Met854Lys | AGS2081 (de novo) | AGS2; AGS/SMS | Yes | No | Novel| Tolerated| 0.77 | 26.6 | 0.01 | 0.77 | 0.01 | 0.77 | 0.01 |
| c.2866A>G | p.Ile956Val | AGS1430 (2:1) | AGS2; ICC/CNP | Yes | Yes | Yes (this paper) | Yes (this paper) | 0.004 | 3.576 | 26.6 | 0.004 | 3.576 | 26.6 | 0.004 |
| c.2936T>G | p.Leu979Trp | LD_1346.0 (de novo) | AGS2; AGS | Yes | Yes | Yes (this paper) | Yes (this paper) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |

Note: IFIH1 mutation annotation based on the reference complementary DNA sequence NM_022168.2. Upregulation of interferon signaling reporter assay. gnomAD, Polyphen2, and CADD score for deleterious predictions. Varcards, Polyphen2, and CADD score for deleterious predictions.

FIGURE 2 Overview of phenotypes observed in the IFIH1-mutation-positive cohort. Classification of 68 of 74 individuals according to phenotype. For clarity, six individuals displaying characteristics difficult to classify were omitted from this analysis (Figure 3). Three mutations, p.Ileu583Val, p.Ileu956Val, and p.Leu979Trp were the only residues not situated in the cluster (colored cyan; only p.Ileu583Val and p.Leu979Trp are shown since residue p.Ileu956 is disordered in the crystal structure). Within this main cluster, residues can be further categorized into three groups: those at the ATP binding pocket (magenta spheres), those in the double stranded RNA (dsRNA) binding surface (colored blue) and those not directly involved in either ATP or RNA binding (colored green). Three published mutations (p.Leu372phe; p.Ala452Thr; p.Glu813Asp; Table S4) not ascertained in our cohort are also located within the main cluster (colored orange), further supporting the importance of this region in the regulation of IFIH1 signaling activity.
Family	Individual	Sex	cDNA	Protein	Inheritance (number of mutation-positive individuals)	Previously reported (reference)	Clinical phenotype	Status at last contact (age in years)
AGS102	P1	M	c.2159G>A	p.Arg720Gln	De novo	Rice et al. (2014)	AGS	Deceased (2)
AGS163	P1	M	c.2336G>A	p.Arg779His	De novo	Rice et al. (2014)	AGS	Alive (13)
AGS237	P1	M	c.1009A>G	p.Arg337Gly	De novo	Rice et al. 2014; Adang et al. 2018	Neuroregression and SD starting at age 15 months	Deceased (16)
AGS259	P1	M	c.2336G>A	p.Arg779His	Familial (3)	Rice et al. (2014)	AGS	Alive (13)
P2 (father of P1)	M						Clinical nonpenetrant	Alive (54)
P3 (mother of P2)	F						Clinical nonpenetrant	Deceased (84)
AGS376	P1	M	c.2335C>T	p.Arg779Cys	No parental testing	Rice et al. (2014)	AGS with LLĐ	Deceased (3)
AGS524	P1	F	c.1483G>A	p.Gly495Arg	Familial (2)(shown to have occurred de novo in P2)	Rice et al. (2014); Hacohen et al. 2015; Crow et al. 2015; McLellan et al. 2018	SP with LLĐ and AQP4 + TM	Alive (10)
P2 (father of P1)	M						Pure SP	Alive (39)
AGS531	P1	F	c.2544T>G	p.Asp848Glu	Familial (5)	Ruaud et al. (2018)	SP with ICC	Alive (13)
P2 (brother of P1)	M						Clinical nonpenetrant	Alive (13)
P3 (father of P1 and P2)	M						SP with ICC	Alive (40)
P4 (brother of P3)	M						SP with ICC	Alive (38)
P5 (father of P3 and P4)	M						Clinically non-penetrant	Alive (66)
AGS626	P1	M	c.1178A>T	p.Asp393Val	De novo	Rice et al. (2014)	Neuroregression and SD starting at 13 months	Alive (13)
AGS647	P1	M	c.2159G>A	p.Arg720Gln	De novo	Rice et al. (2014)	AGS	Alive (2)
AGS674	P1	M	c.992C>G	p.Thr331Arg	De novo	Unreported	SP-SMS overlap	Alive (14)
AGS723	P1	F	c.2335C>T	p.Arg779Cys	Mother negative; no paternal DNA	Unreported	SP with ICC	Alive (19)
AGS735	P1	M	c.2471G>A	p.Arg824Lys	De novo	Galli et al. 2018	Neuroregression and SD starting at 12 months	Alive (19)
AGS755	P1	M	c.1465G>A	p.Ala489Thr	Familial (3)	Bursztejn et al. (2015)	CLL	Alive (4)
P2 (brother of P1)	M						AGS-SMS overlap	Alive (3)
P3 (father of P1 and P2)	M						SMS-like	Alive (41)
AGS848	P1	M	c.1165G>A	p.Gly389Arg	Familial (3)	Unreported	AGS	Alive (8)
P2 (father of P1)	M						SP	Alive (42)
P3 (maternal grandmother of P2)	F						Clinically nonpenetrant	Alive (84)
AGS1001	P1	M	c.1347C>G	p.Asn449Lys	De novo	Unreported	SP	Alive (19)

(Continues)
Family	Individual	Sex	cDNA	Protein	Inheritance (number of mutation-positive individuals)	Previously reported (reference)	Clinical phenotype	Status at last contact (age in years)
AGS1004	P1	F	c.2335C>T	p.Arg779Cys	De novo	Unreported	AGS (neuroregression with onset at age 8 months)	Alive (8)
AGS1156	P1	M	c.2335C>T	p.Arg779Cys	De novo	Kothur et al. 2018	AGS (neuroregression with onset at age 8 months)	Alive (5)
AGS1290	P1	M	c.2486C>G	p.Thr829Ser	2 affected (no parental DNA)	Unreported	AGS	Alive (6)
AGS1351	P1	M	c.2336G>A	p.Arg779His	De novo	Unreported	AGS	Alive (4)
AGS1430	P1	F	c.2866A>G	p.Le956Val	Familial (3)	Unreported	SP with ICC with onset at age 6 years	Alive (14)
AGS1504	P1	F	c.2159G>A	p.Arg720Gln	De novo	Unreported	AGS	Alive (10)
AGS1509	P1	M	c.2336G>A	p.Arg779His	De novo	Unreported	AGS	Alive (8)
AGS1514	P1	M	c.2465G>A	p.Arg822Gln	De novo	Buers et al. (2017)	SD with ICC	Alive (6)
AGS1938	P1	F	c.992C>T	p.Thr331Ile	Familial (3)	de Carvalho et al. (2017)	SMS	Alive (18)
AGS1972	P1	F	c.992C>G	p.Thr331Arg	Familial (2)	de Carvalho et al. (2017)	SMS	Alive (9)
AGS2081	P1	M	c.2561T>A	p.Met854LyS	De novo	Unreported	SP-SMS overlap	Alive (12)
AGS2154	P1	M	c.2335C>T	p.Arg779Cys	Familial (2)	Unreported	Unilateral white matter disease with normal development	Alive (13)
AGS2177	P1	M	c.2336G>A	p.Arg779His	Familial (3)	Neuroregression and SD starting at age 12 months	Alive (29)	
AGS2180	P1	F	c.2335C>T	p.Arg779Cys	De novo	Unreported	AGS	Alive (4)
AGS2222	P1	M	c.2471G>A	p.Arg824LyS	De novo	Unreported	Isolated liver disease	Alive (9)
AGS2369	P1	M	c.1747A>G	p.Ile583Val	De novo	Unreported	AGS	Alive (10)
Family	Individual	Sex	cDNA	Protein	Inheritance (number of mutation-positive individuals)	Previously reported (reference)	Clinical phenotype	Status at last contact (age in years)
------------	------------	-----	------	------------------------------	--	---------------------------------	---	--------------------------------------
AGS2399	P1	M	c.2317G>C	p.Glu773Gln	De novo	Unreported	Neuroregression and SD starting at age 16 months	Alive (8)
AGS2422	P1	F	c.2159G>A	p.Arg720Gln	No parental testing	Unreported	SP	Alive (38)
AGS2507	P1	F	c.2335C>T	p.Arg779Cys	De novo	Unreported	AGS	Alive (1)
AGS2548	P1	M	c.2159G>A	p.Arg720Gln	De novo	Unreported	AGS	Alive (3)
AGS2586	P1	M	c.1178A>C	p.Asp393Ala	De novo	Unreported	AGS-like with frank regression at age 21 months	Alive (3)
AGS2662 (LD_1640)	P1	F	c.2404A>G	p.Asn802Asp	De novo	Unreported	Neuroregression and SD starting at age 11 months	Alive (1)
AGS2669	P1	M	c.1331A>G	p.Glu444Gly	De novo	Unreported	AGS	Deceased (0.5)
Hm_1	P1	F	c.2156C>T	p.Ala719Val	De novo	Unreported	AGS	Alive (2)
Berg_1	P1	F	c.2336G>A	p.Arg779His	De novo	Unreported	Neuroregression and SD starting at age 9 months	Alive (7)
Orc_0098	P1	M	c.2336G>A	p.Arg779His	De novo	Unreported	AGS	Alive (4)
LD_09400	P1	M	c.2342G>A	p.Gly781Glu	De novo	Unreported	Neuroregression and SD starting at age 15 months	Alive (5)
LD_09430	P1	F	c.2342G>A	p.Gly781Glu	De novo	Unreported	SP	Alive (14)
LD_09820	P1	M	c.2159G>A	p.Arg720Gln	De novo	Adang et al. (2018); Case 2	AGS	Alive (9)
LD_10300	P1	F	c.2335C>T	p.Arg779Cys	De novo	Unreported	AGS	Alive (5)
LD_10670	P1	M	c.2336G>T	p.Arg779Leu	De novo	Unreported	AGS	Alive (8)
LD_11990	P1	F	c.2336G>A	p.Arg779His	De novo	Unreported	AGS	Alive (4)
LD_13460	P1	M	c.2936T>G	p.Leu979Trp	De novo	Adang et al. (2018); Case 3	AGS	Deceased (0.4)
LD_1381 (Hart)	P1	F	c.2336G>A	p.Arg779His	Familial (4)	Unreported	SP	Alive (4)
P2 (brother of P1)	M						SP	Alive (3)
P3 (father of P1 and P2)	M						SP	Alive (32)
P4 (father of P3)	M						Clinically nonpenetrant	Alive (68)
LD_14880	P1	F	c.2407A>T	p.Ile803Phe	De novo	Unreported	AGS	Alive (2)
LD_15850	P1	F	c.2336G>A	p.Arg779His	De novo	Unreported	AGS	Alive (5)

Note: IFIH1 mutation annotation based on the reference complementary DNA sequence NM_022168.2.
Abbreviations: AGS, Aicardi–Goutières syndrome; CLL, Chilblain-like lesions; F, Female; ICC, intracranial calcification; LLD, Lupus-like disease; M, Male; SD, spastic dystonia; SP, spastic paraparesis; SMS: Singleton Merten syndrome; TM, transverse myelitis.
Despite documented clinical nonpenetrance in some cases, all putative IFIH1 gain-of-function substitutions are rare, with only two of the 30 discrete mutations described here and in previous reports recorded in gnomAD. Furthermore, all ascertained type I interferonopathy associated mutations are missense variants, likely conferring increased sensitivity to a self-derived nucleic acid. Although premature termination mutations in the helicase domain are seen in control populations as common polymorphisms, none has been associated with a type I interferonopathy phenotype, further supporting the role of nucleic acid binding by the helicase domain in disease pathogenesis. Substitutions of the arginine residues at positions 720 and 779 were seen in six and 19 probands, respectively, in our series. Given the focus of our laboratories on pediatric neurological disease, our data are likely to subject to ascertainment bias. Indeed, although only observed once by us, the p.Arg822Gln mutation has been reported in an additional five pedigrees demonstrating a classical SMS phenotype (Pettersson et al., 2017; Rutsch et al., 2015).

IFIH1 is a member of the retinoic acid-inducible gene I (RIG-I) receptor family (del Toro Duany, Wu, & Hur, 2015). Recognition of cytoplasmic viral dsRNA by IFIH1 induces filament assembly along the dsRNA axis, with the helicase domains and C terminal domain responsible for RNA recognition. Filament formation then induces oligomerization of the tandem CARD domains (2CARD) of IFIH1, leading to the interaction with mitochondrial MAVS and subsequent induction of interferon and other proinflammatory cytokines. IFIH1 filament stability is intrinsically regulated by ATP hydrolysis, which is stimulated upon dsRNA binding. Mutations that impair ATP hydrolysis generally increase filament stability and, often, but not always, confer gain-of-function signaling activity. The clustering of mutations that we ascertained, and of a further three unique published mutations, near the ATP binding region likely highlights common mechanisms, perhaps increasing RNA binding affinity or decreasing the efficiency of ATP hydrolysis and the rate of filament disassembly.

Summarizing, IFIH1 gain-of-function is associated with a spectrum of phenotypes, occurring due to de novo mutations or transmitted as an autosomal dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context, which can aid in the interpretation of identified sequence variants.

ACKNOWLEDGMENTS

Yanick J. Crow acknowledges The University of Maryland Brain and Tissue Bank of the NIH NeuroBioBank; Yanick J. Crow acknowledges the European Research Council (786142-E-T1IFNs), a state subsidy managed by the National Research Agency (France) under the "Investments for the Future" program bearing the reference ANR-10-IAHU-01 and the MSDAvenir fund (DEVO-DECODE Project). Tracy A. Briggs acknowledges the National Institute for Health Research (NIHR; NIHR MSDAvenir fund (DEVO-DECODE Project). Yanick J. Crow acknowledges The University of Maryland Brain and Tissue Bank of the NIH NeuroBioBank; Yanick J. Crow acknowledges the European Research Council (786142-E-T1IFNs), a state subsidy managed by the National Research Agency (France) under the "Investments for the Future" program bearing the reference ANR-10-IAHU-01 and the MSDAvenir fund (DEVO-DECODE Project). Tracy A. Briggs acknowledges the National Institute for Health Research (NIHR; NIHR MSDAvenir fund (DEVO-DECODE Project).
supported by the Kamens endowed chair for Translational Neurotherapeutics and the Myelin Disorders Bioregistry Project. Adeline L. Vanderver and Laura A. Adang acknowledge the CURE Pennsylvania Frontiers in Leukodystrophy grant and U01HD082806. Laura A. Adang also acknowledges the National Center for Advancing Translational Sciences of the National Institutes of Health under award number KL2TR001879. Lien Van Eyck received funding from Research Foundation Flanders (FWO).

CONFLICT OF INTERESTS

Y. J. Crow has undertaken consultancy work with Biogen on behalf of the University of Edinburgh.

DATA AVAILABILITY STATEMENT

Data available on request due to privacy/ethical restrictions. Identified variants submitted to ClinVar (Submission ID: SUB6667166; Organization ID: 507341).

ORCID

Gillian I. Rice https://orcid.org/0000-0002-4223-0571
Christiane Zweier https://orcid.org/0000-0001-8002-2020

REFERENCES

Adang, L. A., Frank, D. B., Gilani, A., Takanohashi, A., Ulrick, N., Collins, A., & Vanderver, A. L. (2018). Aicardi goutieres syndrome is associated with pulmonary hypertension. Molecular Genetics and Metabolism, 125(4), 351–358. https://doi.org/10.1016/j.ymgme.2018.09.004

Ahmad, S., Mu, X., Yang, F., Greenwald, E., Park, J. W., Jacob, E., & Hur, S. (2018). Breaching self-tolerance to alu duplex RNA underlies MDAS-mediated inflammation. Cell, 172(4), 797–810. https://doi.org/10.1016/j.cell.2017.12.016

Buers, I., Rice, G. I., Crow, Y. J., & Rutsch, F. (2017). MDAS-associated neuroinflammation and the Singleton-Merten syndrome: Two faces of the same type I interferonopathy spectrum. Journal of Interferon and Cytokine Research, 37(5), 214–219. https://doi.org/10.1089/jir.2017.0004

Burszttein, A. C., Briggs, T. A., del Toro Duany, Y., Anderson, B. H., O’Sullivan, J., Williams, S. G., & Crow, Y. J. (2015). Unusual cutaneous features associated with a heterozygous gain-of-function mutation in IFIH1: Overlap between Aicardi-Goutieres and Singleton-Merten syndromes. British Journal of Dermatology, 173(6), 1505–1513. https://doi.org/10.1111/bjd.14073

de Carvalho, L. M., Ngououm, G., Park, J. W., Ehmke, N., Deignesch, N., Kitabayashi, N., & Crow, Y. J. (2017). Musculoskeletal disease in MDAS-related type I interferonopathy: A Mendelian mimic of Jaccoud’s arthropathy. Arthritis Rheumatol, 69, 2081–2091. https://doi.org/10.1002/art.40179

Crow, Y. J., & Manel, N. (2015). Aicardi-Goutieres syndrome and the type I interferonopathies. Nature Reviews Immunology, 15(7), 429–440. https://doi.org/10.1038/nri3850

del Toro Duany, Y., Wu, B., & Hur, S. (2015). MDAS-filament, dynamics and disease. Curr Opin Virol, 12, 20–25. https://doi.org/10.1016/j.coviro.2015.01.011

Galli, J., Gavazzi, F., De Simone, M., Giliani, S., Garau, J., Valente, M., ... Fazzi, E. (2018). AG5 study group. Sine causae tetraparesis: A pilot study on its possible relationship with interferon signature analysis and Aicardi Goutieres syndrome related genes analysis. Medicine Baltimore, 97(52), e13893.

Haohen, Y., Zuberi, S., Vincent, A., Crow, Y.J., & Cordeiro, N. (2015). Neuromyelitis optica in a child with Aicardi-Goutieres syndrome. Neurology, 85, 381–383.

Kothur, K., Bandodkar, S., Chu, S., Wieneholt, L., Johnson, A., Barclay, P., ... Dale (2018). An open-label trial of JAK 1/2 blockade in progressive IFIH1-associated neuroinflammation. Neurology, 90, 289–291.

McLellan, K. E., Martin, N., Davidson, J. E., Cordeiro, N., Oates, B. D., Neven, B., ... Crow, Y. J. (2018). JAK 1/2 Blockade in MDAS Gain-of-Function. Journal Clinic Immunology, 38, 844–846.

Oda, H., Nakagawa, K., Abe, J., Awaya, T., Funabiki, M., Hijikata, A., & Heike, T. (2014). Aicardi-Goutieres syndrome is caused by IFIH1 mutations. American Journal of Human Genetics, 95(1), 121–125. https://doi.org/10.1016/j.ajhg.2014.06.007

Pettersson, M., Bergendal, B., Norderv, J., Nilsson, D., Anderlid, B. M., Nordgren, A., & Lindstrand, A. (2017). Further evidence for specific IFIH1 mutation as a cause of Singleton-Merten syndrome with phenotypic heterogeneity. American Journal of Medical Genetics. Part A, 173(5), 1396–1399. https://doi.org/10.1002/ajmg.a.38214

Popp, B., Ekici, A. B., Thiel, C. T., Hoyer, J., Wiesener, A., Kraus, C., ... Zweier, C. (2017). Exome Pool-Seq in neurodevelopmental disorders. European Journal Human Genetics, 25(12), 1364–1376.

Rice, G. I., Forte, G. M., Szyndzielowicz, M., Chase, D. S., Aeby, A., Abdelhamid, M. S., & Crow, Y. J. (2013). Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: A case-control study. Lancet Neurology, 12(11), 1159–1169. https://doi.org/10.1016/S1474-4422(13)70258-8

Rice, G. I., Del Toro Duany, Y., Jenkinson, E. M., Forte, G. M., Anderson, B. H., Ariau, G., & Crow, Y. J. (2014). Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nature Genetics, 46(5), 503–509. https://doi.org/10.1038/ng.2933

Ruaud, L., Rice, G. I., Cabrol, C., Piard, J., Rodero, M., van Eyk, L., ... Van Maldergem, L. (2018). Autosomal-dominant early-onset spastic paraparesis with brain calcification due to IFIH1 gain-of-function. Human Mutation, 39(8), 1076–1080. https://doi.org/10.1002/humu.23554

Rutsch, F., MacDougall, M., Lu, C., Buers, I., Mamaeva, O., Nitschke, Y., ... Hennekam, R. C. (2015). A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. American Journal of Human Genetics, 96(2), 275–282. https://doi.org/10.1016/j.ajhg.2014.12.014

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.