Global sensitivity analysis of bulk properties of an atomic nucleus

Andreas Ekström¹ and Gaute Hagen²,³

¹Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
²Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
³Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

(Dated: December 29, 2021)

We perform a global sensitivity analysis of the binding energy and the charge radius of the nucleus 16O to identify the most influential low-energy constants in the next-to-next-to-leading order chiral Hamiltonian with two- and three-nucleon forces. For this purpose we develop a subspace-projected coupled-cluster method using eigenvector continuation [Frame D. et al., Phys. Rev. Lett. 121, 032501 (2018)]. With this method we compute the binding energy and charge radius of 16O at more than one million different values of the 16 low-energy constants in one hour on a standard laptop. For relatively small subspace projections, the root-mean-square error is about 1% compared to full space coupled-cluster results. We find that 58(1)% of the variance in the energy can be apportioned to a single contact-term in the 3S_1-wave, whereas the radius depends sensitively on several low-energy constants and their higher-order correlations. The results identify the most important parameters for describing nuclear saturation, and help prioritize efforts for uncertainty reduction of theoretical predictions. The achieved acceleration opens up for an array of computational statistics analyses of the underlying description of the strong nuclear interaction in nuclei across the Segré chart.

Introduction.- How do properties of atomic nuclei depend on the underlying interaction between protons and neutrons? Recent ab initio computations of nuclei [1–10] have revealed that observables such as binding energies, radii, spectra, and decay probabilities are very sensitive to the values of the low-energy constants (LECs) in chiral Hamiltonian models with two- and three-nucleon forces [17–19]. Certain interaction models work better than others, but only for selected types of observables and in limited regions of the Segré chart. It is not clear why. The NNLO$_{sat}$ interaction [20] reproduces experimental binding energies and charge radii for nuclei up to mass A ≈ 50 [4, 7, 8, 10, 12, 15], while the 1.8/2.0 (EM) interaction [21, 22] reproduces binding energies and low-lying energy spectra up to mass A ≈ 100 [4, 7, 8, 10, 12, 15] while radii are underestimated.

To improve theoretical predictions requires rigorous uncertainty quantification and sensitivity analyses that are grounded in the description of the underlying nuclear Hamiltonian. Unfortunately, the number of model samples required for statistical computing increases exponentially with the number of uncertain LECs. A global sensitivity analysis of the ground-state energy and charge radius 16O, based on a realistic next-to-next-to-leading order (NNLO) chiral Hamiltonian with 16 LECs, requires more than one million model evaluations. Similar numbers can be expected for Markov Chain Monte Carlo sampling of Bayesian marginalization end evidence integrals [23,24]. Clearly, this is not feasible given the computational cost of existing state-of-the-art ab initio many-body methods applied to medium-mass and heavy nuclei.

In this Letter we solve this problem by utilizing eigenvector continuation [20] to develop a subspace-projected coupled-cluster (SP-CC) method as a fast and accurate approximation to the corresponding full-space coupled-cluster (CC) method [27–33]. The SP-CC method generalizes the eigenvector-continuation formalism in Ref. [34] to non-Hermitian problems and enables accelerated computation of nuclear observables across the Segré chart for any target value $\tilde{\alpha}_0$ of the LECs in the underlying Hamiltonian. See Fig. 1 for a demonstration of the SP-CC method applied to 16O and the variation of a single LEC (details are given below). We will use SP-CC to analyze the description of the 16O ground-state energy and charge radius across a large domain of relevant LECs. This way we can for the first time clearly identify the LECs that have the biggest impact on binding energy and radius predictions, which in turn impacts saturation properties of nuclear matter [5,55,56].

Method.— Following Ref. [34] we start by representing the chiral Hamiltonian at NNLO $H(\tilde{\alpha})$ as a linear combination with respect to all the LECs $\tilde{\alpha}$; i.e. $H(\tilde{\alpha}) = \sum_{i=0}^{N_{LEC}=16} \alpha_i h_i$, with the zeroth term given by $h_0 = t_{kin} + V_0$ and $\alpha_0 = 1$. Here t_{kin} is the intrinsic kinetic energy and V_0 denotes a constant potential term. The analytical form of the NNLO Hamiltonian is identical to the one of NNLO$_{sat}$ [20], which means that for a particular value $\tilde{\alpha} = \tilde{\alpha}_*$ the Hamiltonian $H(\tilde{\alpha}_*)$ will reproduce the binding energy and radius predictions of NNLO$_{sat}$. The SP-CC Hamiltonian for a target value $\tilde{\alpha} = \tilde{\alpha}_0$ is constructed by projecting $H(\tilde{\alpha}_0)$ onto the subspace spanned by CC wavefunctions obtained at N_{sub} different values for $\tilde{\alpha}$. SP-CC is a controlled approximation to the full-space CC method, and allows for rapid and accurate solutions to the many-nucleon problem necessary for statistical computing. In this Letter we use the CC method in the singles- and doubles approximation (CCSD).

The workhorse of the CC method is the similar-
ity transformed Hamiltonian \(\overline{H}(\tilde{\alpha}) = e^{-T(\tilde{\alpha})}H(\tilde{\alpha})e^{T(\tilde{\alpha})}\), where in the CCSD approximation the cluster operator is truncated at one-particle-one-hole and two-particle-two-hole excitations, i.e. \(T(\tilde{\alpha}) = T_1(\tilde{\alpha}) + T_2(\tilde{\alpha})\). For clarity, we have indicated the implicit dependence on \(\tilde{\alpha}\). The CCSD similarity transformation is non-unitary and renders \(\overline{H}(\tilde{\alpha})\) non-Hermitian, and we thus introduce \(N_{\text{sub}}\) bi-orthogonal left and right CC ground-states,

\[
\langle \tilde{\Psi} | = \langle \Phi_0 | (1 + \Lambda \tilde{\alpha}) e^{-T(\tilde{\alpha})}, \ | \Psi \rangle = e^{T(\tilde{\alpha})} | \Phi_0 \rangle. \tag{1}
\]

Here \(\Lambda(\tilde{\alpha}) = \Lambda_1(\tilde{\alpha}) + \Lambda_2(\tilde{\alpha})\) is a linear expansion in one-particle-one-hole and two-particle-two-hole de-excitation operators, and we have bi-orthonormality according to \(\langle \Psi | \Omega \rangle = 1\). For notational simplicity we will from here on omit the explicit \(\tilde{\alpha}\) dependence in the (de)-excitation operators and set \(T(\tilde{\alpha}) = T\) and \(\Lambda(\tilde{\alpha}) = \Lambda\), respectively. The reference state \(| \Phi_0 \rangle\) is built from harmonic oscillator single-particle states, and we solve the CCSD equations in a model-space comprising 11 major oscillator shells with a frequency \(\hbar \Omega = 16\) MeV. The matrix-elements of the three-nucleon interaction that enters the Hamiltonian are truncated by the energy cut \(E_{3\text{max}} \leq 14\). The CCSD result for \(^{16}\text{O}\) with NNLOsat in this model-space is \(-118.76\) MeV, which is within 1 MeV of the converged CCSD value using a Hartree-Fock basis.

Using the \(N_{\text{sub}}\) different CCSD ground-state vectors in Eq. (1), the matrix elements of the target Hamiltonian in the subspace and the corresponding norm matrix are given by,

\[
\langle \tilde{\Psi} | H(\tilde{\alpha}_0) | \Psi \rangle = \langle \Phi_0 | (1 + \Lambda') e^{-T'} H(\tilde{\alpha}_0) e^{T'} | \Phi_0 \rangle = \langle \Phi_0 | (1 + \Lambda') e^{X} \overline{H}(\tilde{\alpha}_0) | \Phi_0 \rangle, \tag{2}
\]

\[
\langle \tilde{\Psi} | \Psi \rangle = \langle \Phi_0 | (1 + \Lambda') e^{X} | \Phi_0 \rangle, \tag{3}
\]

respectively. Here we also introduced \(e^{X} = e^{-T'+T}\), and \(\overline{H}(\tilde{\alpha}_0)\) is the similarity transformed target Hamiltonian. The left ground-state \(\langle \tilde{\Psi} | = \langle \Phi_0 | (1 + \Lambda') e^{-T'}\) is obtained from \(H(\tilde{\alpha'})\), and the right ground-state \(e^{T'} | \Phi_0 \rangle\) is obtained from \(H(\tilde{\alpha})\), respectively. We can now solve the generalized non-Hermitian \(N_{\text{sub}} \times N_{\text{sub}}\) eigenvalue problem for the SP-CC target Hamiltonian to obtain the ground-state energy and wavefunction in the subspace. With the SP-CC wavefunction we can also calculate the expectation value of any subspace-projected operator with matrix elements \(\langle \tilde{\Psi} | O | \Psi \rangle\). Equations (2) and (3) can be evaluated using Wick’s theorem and closed form algebraic expressions are given in the Supplementary Material. Note that in general the reference states for the \(N_{\text{sub}}\) different subspace CC wavefunctions in Eq. (1) are non-orthogonal. This is a non-trivial case and would require the generalized Wick’s theorem \([37, 38]\) in order to provide the matrix elements of the SP-CC Hamiltonian and the norm matrix.

Results. – The SP-CC predictions for the energy and charge radius in \(^{16}\text{O}\) as a function of the LEC \(C_{1S0}\) in the Hamiltonian are shown in Fig. 1. Using \(N_{\text{sub}} = 5\) exact CCSD ground-state vectors, from a small region of \(C_{1S0}\) values, points 1-5 in Fig. 1 the SP-CC method extrapolates to the exact CCSD results across a large \(C_{1S0}\) range. With \(N_{\text{sub}} = 3\) CCSD vectors, points 1-3 in Fig. 1 the radius extrapolation deteriorates far away from the exact solutions, while the energy predictions remain more accurate.

We now move to the challenging case where all 16 LECs at NNLO can vary. In the following we analyze two SP-CC Hamiltonians based on \(N_{\text{sub}} = 64\) and \(N_{\text{sub}} = 128\) CCSD ground-state vectors, referred to as SP-CC(64) and SP-CC(128), respectively. The ground-state vectors are obtained at \(N_{\text{sub}}\) points in a domain of LEC values that surrounds the nominal LEC values of NNLOsat within \(\pm 20\%\) relative variation. This domain spans a rather large interval of ground-state energies and charge radii in \(^{16}\text{O}\). The three-nucleon contact-LEC \(c_E \approx 0.0395\) in NNLOsat is small compared to the values of the remaining 15 LECs, we therefore scaled \(c_E\) with a factor of 20. In accordance with observation, we also constrained the leading-order isospin-breaking \(^{1}S_{0}\) LECs (\(C\)) to exhibit small isospin-breaking. We draw \(N_{\text{sub}}\) values for \(\tilde{\alpha}\) using a space-filling latin hypercube design and solve for the exact CCSD wavefunction at each point. We have verified that the SP-CC(64) and SP-CC(128) Hamiltoni-
We use SP-CC(64) and global sensitivity analysis (GSA) to analyze how the \textit{ab initio} predictions for the energy and charge radius in 16O explicitly depend on the LECs in the NNLO nuclear interaction. GSA is a very powerful, although computationally demanding, method for learning how much each unknown model parameter contributes to the uncertainty in a model prediction [39]. As opposed to an uncertainty analysis, which addresses the question of how uncertain the prediction itself is. With SP-CC we can carry out the large amount of model evaluations that is required to extract statistically significant GSA results. In the following, we treat the ground-state energy or radius of 16O as an output $Y = f(\vec{\alpha})$ of a model f, given here by the SP-CC(64) Hamiltonian and its eigendecomposition. In the GSA we decompose the total variance $\text{Var}[Y]$ as

$$\text{Var}[Y] = \sum_{i=1}^{N_{\text{LEC}}} V_i + \sum_{i<j}^{N_{\text{LEC}}} V_{ij} + \ldots,$$

where the partial variances are given by

$$V_i = \text{Var}[E_{\tilde{\alpha} \sim (\alpha_i)} | Y | \alpha_i]$$

$$V_{ij} = \text{Var}[E_{\tilde{\alpha} \sim (\alpha_i, \alpha_j)} | Y | \alpha_i, \alpha_j] - V_i - V_j$$

and $\text{Var}[E_{\tilde{\alpha} \sim (\alpha_i)} | Y | \alpha_i]$ denotes the variance of the conditional expectation of Y, and $\tilde{\alpha} \sim (\alpha_i)$ denotes the set of all LECs excluding α_i, and correspondingly for the second-order term. The variance integrals are evaluated using quasi Monte Carlo (MC) sampling and we extract a 95% confidence interval of the final result via bootstrap with 100 re-samples [40]. The first- and second-order sensitivity indices are defined as

$$S_i = \frac{V_i}{\text{Var}[Y]}, S_{ij} = \frac{V_{ij}}{\text{Var}[Y]}.$$

The first-order sensitivity, S_i, is often referred to as the main effect. It apportions the total variance in the model output to an individual model parameter α_i. The higher-order indices, e.g. S_{ij}, appportion the variance in the model output to the combination of parameters α_i and α_j. The number of higher-order indices grow exponentially with the number of parameters in the model. Fortunately, it is possible to compute the sum of all sensitivity indices for each α_i, i.e. $S_{T_i} = S_i + S_{ij} + S_{ijk} + \ldots$. This is referred to as the total effect, and it quantifies the total sensitivity of $\text{Var}[Y]$ to parameter α_i including all of its higher-order parameter combinations [41]. We always have that $S_{T_i} \geq S_i$, and equality for purely additive models. In this analysis, we do not calibrate the model to reproduce data. We study the behavior and response of the model itself, and assume all LECs to be independent of each other and uniformly distributed. In future studies one could draw LECs from a Bayesian posterior distribution.
We have developed the SP-CC method for evaluating nuclear observables at different values of the LECs in chiral Hamiltonians at unprecedented speed. With a modest number of subspace vectors, $N_{\text{sub}} = 64$, we reached 1% accuracy relative to exact CCSD solutions. From a GSA we conclude that the variance of the ground-state energy in 16O is additive in all LECs of the NNLO chiral Hamiltonian, and that the charge radius depends sensitively on the combination of several LECs. The SP-CC method enables sophisticated statistical computation in $ab\text{ initio}$ nuclear theory to reveal which new data would best reduce the uncertainty in Hamiltonian models and for understanding how properties of atomic nuclei depend on the underlying interaction between protons and neutrons. The stability of 16O with respect to breakup into 4He clusters is a relevant example. The SP-CC method also enables straightforward computation of derivatives with respect to the LECs using e.g. algorithmic differentiation. SP-CC Hamiltonians occupy very little disk space, and can easily be shared within the nuclear community.

We thank Michael Grosskopf, Sebastian König, Dean
Lee, Titus Morris, and Thomas Papenbrock for fruitful discussions. G. H. acknowledges the hospitality of Chalmers University of Technology where most of this work was carried out. This work was supported by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant agreement No. 758027), the Office of Nuclear Physics, U.S. Department of Energy, under grants desc0018223 (NUCLEI SciDAC-4 collaboration) and by the Field Work Proposal ERKBP72 at Oak Ridge National Laboratory (ORNL). Computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located at ORNL, which is supported by the Office of Science of the Department of Energy under Contract No. DE-AC05-00OR22725.

[1] H. Hergert, S. K. Bogner, T. D. Morris, S. Binder, A. Calci, J. Langhammer, and R. Roth, “Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes,” Phys. Rev. C 90, 041302 (2014).

[2] S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T. A. Lähde, T. Luu, and U.-G. Meißner, “Ab initio alpha–alpha scattering,” Nature 528, 111–114 (2015).

[3] M. Rosenbusch, P. Ascher, D. Atanasov, C. Barbieri, D. Beck, K. Blaum, C. Bohrmann, M. Breitenfeld, R. B. Cakirli, A. Cipollone, S. George, F. Herfurth, M. Kowalska, S. Kreim, D. Lunney, V. Manea, P. Navrátíl, D. Neidherr, L. Schweikhard, and K. Zuber, “Probing the n = 32 shell closure below the magic proton number z = 20: Mass measurements of the exotic isotopes $^{52,53}\text{K}$,” Phys. Rev. Lett. 114, 202501 (2015).

[4] G. Hagen, A. Ekström, C. Forssén, G. R. Jansen, W. Nazarewicz, T. Papenbrock, K. A. Wendt, S. Bacca, N. Barnea, B. Carlsson, C. Drischler, K. Hebler, M. Jhorth-Jensen, M. Miorelli, G. Orlandini, A. Schwenk, and J. Simonis, “Neutron and weak-charge distributions of the ^{48}Ca nucleus,” Nature Phys. 12, 186 (2016).

[5] R. F. García Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörlershäuser, T. Papenbrock, J. Papuga, A. Schwenk, J. Simonis, K. A. Wendt, and D. T. Yordanov, “Unexpectedly large charge radii of neutron-rich calcium isotopes,” Nature Physics (2016).

[6] V. Lapoux, V. Somà, C. Barbieri, H. Hergert, J. D. Holt, and S. R. Strober, “Radii and binding energies in oxygen isotopes: A challenge for nuclear forces,” Phys. Rev. Lett. 117, 052501 (2016).

[7] G. Hagen, G. R. Jansen, and T. Papenbrock, “Structure of ^{78}Ni from first-principles computations,” Phys. Rev. Lett. 117, 172501 (2016).

[8] J. Simonis, S. R. Stroberk, K. Hebler, J. D. Holt, and A. Schwenk, “Saturation with chiral interactions and consequences for finite nuclei,” Phys. Rev. C 96, 014303 (2017).

[9] T. Duguet, V. Somà, S. Lecluse, C. Barbieri, and P. Navrátíl, “Ab initio calculation of the potential bubble nucleus ^{34}Si,” Phys. Rev. C 95, 034319 (2017).

[10] T. D. Morris, J. Simonis, S. R. Strober, C. Stumpf, G. Hagen, J. D. Holt, G. R. Jansen, T. Papenbrock, R. Roth, and A. Schwenk, “Structure of the lightest tin isotopes,” Phys. Rev. Lett. 120, 152503 (2018).

[11] Bing-Nan Lu, Ning Li, Serdar Elhatisari, Dean Lee, Evgeny Epelbaum, and Ulf-G. Meiner, “Essential elements for nuclear binding,” Physics Letters B 797, 134863 (2019).

[12] H. N. Liu, A. Obertelli, P. Doornenbal, C. A. Bertulani, G. Hagen, J. D. Holt, G. R. Jansen, T. D. Morris, A. Schwenk, R. Strober, N. Achiou, H. Baba, F. Browne, D. Calvet, F. Château, S. Chen, N. Chiga, A. Corsi, M. L. Cortés, A. Delbart, J.-M. Gheller, A. Giganon, A. Gillibert, C. Hillaire, T. Isobe, T. Kobayashi, Y. Kubota, V. Lapoux, T. Motobayashi, I. Murray, H. Otsu, V. Panin, N. Paul, W. Rodriguez, H. Sakurai, M. Sasano, D. Steppenbeck, L. Stuih, Y. Sun, Y. Togano, T. Uesaka, K. Wimmer, K. Yoneda, O. Aktas, T. Aumann, L. X. Chung, F. Flaviginy, S. Franchoo, I. Gašparič, R.-B. Gerst, J. Gibelin, K. I. Hahn, D. Kim, T. Kowai, Y. Kondo, P. Koseglov, J. Lee, C. Lehr, B. D. Linh, T. Lokotko, M. MacCormich, K. Moschner, T. Nakamura, S. Y. Park, D. Rossi, E. Sahin, D. Sohler, P.-A. Söderström, S. Takeuchi, H. Törnqvist, V. Vaquer, W. Wagner, S. Wang, V. Werner, X. Xu, H. Yamada, D. Yan, Z. Yang, M. Yasuda, and L. Zanetti, “How robust is the n = 34 subshell closure? first spectroscopy of ^{52}Ar,” Phys. Rev. Lett. 122, 072502 (2019).

[13] R Taniuchi, C Santamaria, P Doornenbal, A Obertelli, K Yoneda, G Authulet, H Baba, D Calvet, F Château, A Corsi, A Delbart, J.-M. Gheller, A Giliibert, J D Holt, T Isobe, V Lapoux, M Matsushita, J Menéndez, S Momiyama, T Motobayashi, M Niikura, F Nowacki, K Ogata, H Otsu, T Otsuka, C Péron, S Péru, A Peyaud, E C Pollacco, A Poves, J.-Y. Roussé, H Sakurai, A Schwenk, Y Shiga, J Simonis, S R Strober, S Takeuchi, Y Tsumoda, T Uesaka, H Wang, F Browne, L X Chung, Z Dombradi, S Franchoo, F Giacoppo, A Gottardo, K Hadyńska-Kl¸ek, Z Korkulu, S Koyama, Y Kubota, J Lee, M Lettmann, C Louchart, R Lozeva, K Matsui, T Miyazaki, S Nishimura, L Olivier, S Ota, Z Patel, E ahin, C Shand, P.-A. Söderström, I Stefan, D Steppenbeck, T Sumikama, D Suzuki, Z Vajta, W Werner, J Wu, and Z Y Xu, “^{78}Ni revealed as a doubly magic stronghold against nuclear deformation,” Nature Physics (2019), 10.1038/s41567-019-0450-7.

[14] P. Gysbers, G. Hagen, J. D. Holt, G. R. Jansen, T. D. Morris, P. Navrátíl, T. Papenbrock, S. Quaglioni, A. Schwenk, S. R. Strober, and K. A. Wendt, “Discrepancy between experimental and theoretical b-decay rates resolved from first principles,” Nature Physics (2019), 10.1038/s41567-019-0450-7.
in light and medium-mass nuclei,” arXiv e-prints, arXiv:1907.09790 (2019), arXiv:1907.09790 [nucl-th].

[17] U. Van Kolck, “Effective field theory of nuclear forces,” Prog. Part. Nucl. Phys. 43, 337 – 418 (1999).

[18] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, “Modern theory of nuclear forces,” Rev. Mod. Phys. 81, 1773–1825 (2009).

[19] R. Machleidt and D. R. Entem, “Chiral effective field theory and nuclear forces,” Phys. Rep. 503, 1 – 75 (2011).}

[20] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T. Papenbrock, B. D. Carlsson, C. Forssén, M. Hjorth-Jensen, P. Navrátil, and W. Nazarewicz, “Accurate nuclear radii and binding energies from a chiral interaction,” Phys. Rev. C 91, 051301 (2015).

[21] A. Nogga, S. K. Bogner, and A. Schwenk, “Low-momentum interaction in few-nucleon systems,” Phys. Rev. C 70, 061002 (2004).

[22] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A. Schwenk, “Improved nuclear matter calculations from chiral low-momentum interactions,” Phys. Rev. C 83, 031301 (2011).

[23] M.R. Schindler and D.R. Phillips, “Bayesian methods for parameter estimation in effective field theories,” Ann. Phys. 324, 682 – 708 (2009).

[24] S. Wesolsowski, N. Kico, R. J. Furnstahl, D. R. Phillips, and A. Thapa Liya, “Bayesian parameter estimation for effective field theories,” Journal of Physics G: Nuclear and Particle Physics 43, 074001 (2016).

[25] S. Wesolsowski, R. J. Furnstahl, J. A. Melendez, and D. R. Phillips, “Exploring bayesian parameter estimation for chiral effective field theory using nucleon–nucleon phase shifts,” Journal of Physics G: Nuclear and Particle Physics 46, 045102 (2019).

[26] Dillon Frame, Rongzheng He, Ilse Ipsen, Daniel Lee, Dean Lee, and Ermal Rrapaj, “Eigenvector continuation with subspace learning,” Phys. Rev. Lett. 121, 032501 (2018).

[27] P. Coester, “Bound states of a many-particle system,” Nucl. Phys. 7, 421 – 424 (1958).

[28] P. Coester and H. Kümmler, “Short-range correlations in nuclear wave functions,” Nucl. Phys. 17, 477 – 485 (1960).

[29] H. Kümmler, K. H. Liihrmann, and J. G. Zabolitzky, “Many-fermion theory in exp S- (or coupled cluster) form,” Phys. Rep. 36, 1 – 63 (1978).

[30] B. Mihaila and J. H. Heisenberg, “Microscopic Calculation of the Inclusive Electron Scattering Structure Function in 16O,” Phys. Rev. Lett. 84, 1403–1406 (2000).

[31] D. J. Dean and M. Hjorth-Jensen, “Coupled-cluster approach to nuclear physics,” Phys. Rev. C 69, 054320 (2004).

[32] R. J. Bartlett and M. Musial, “Coupled-cluster theory in quantum chemistry,” Rev. Mod. Phys. 79, 291–352 (2007).

[33] G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean, “Coupled-cluster computations of atomic nuclei,” Rep. Prog. Phys. 77, 096302 (2014).

[34] S. König, A. Ekström, K. Hebeler, D. Lee, and A. Schwenk, “Eigenvector Continuation as an Efficient and Accurate Emulator for Uncertainty Quantification,” arXiv e-prints, arXiv:1909.08446 (2019), arXiv:1909.08446 [nucl-th].

[35] A. Ekström, G. Hagen, T. D. Morris, T. Papenbrock, and P. D. Schwartz, “Delta isobars and nuclear saturation,” ArXiv e-prints (2017), arXiv:1707.09028 [nucl-th].

[36] C. Drischler, K. Hebeler, and A. Schwenk, “Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation,” Phys. Rev. Lett. 122, 042501 (2019).

[37] Carlos A. Jiménez-Hoyos, R. Rodríguez-Guzmán, and Gustavo E. Scuseria, “n-electron Slater determinants from nonunitary canonical transformations of fermion operators,” Phys. Rev. A 86, 052102 (2012).

[38] Felix Plasser, Matthias Ruckenbauer, Sebastian Mai, Markus Oppel, Philipp Marquetand, and Leticia Gonzalez, “Efficient and flexible computation of many-electron wave function overlaps,” Journal of Chemical Theory and Computation 12, 1207–1219 (2016), pMID: 26854874, https://doi.org/10.1021/acs.jctc.5b01148.

[39] I.M. Sobol, “Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates,” Mathematics and Computers in Simulation 55, 271 – 280 (2001) the Second IMACS Seminar on Monte Carlo Methods.

[40] Andrea Saltelli, Paola Annunziata, Ivan Azzini, Francesca Campolong, Marco Ratto, and Stefano Tarantola, “Variance based sensitivity analysis of model output design and estimator for the total sensitivity index,” Computer Physics Communications 181, 259 – 270 (2010).

[41] Yoshihito Homma and Andrea Saltelli, “Importance measures in global sensitivity analysis of nonlinear models,” Reliability Engineering and System Safety 52, 1 – 17 (1996).

[42] A. Gelman, J. B Carlin, H S Stern, D B Dunson, A Vehtari, and D B Rubin, Bayesian Data Analysis, Third Edition, Chapman Hall/CRC Texts in Statistical Science (Taylor Francis, 2013).

[43] J. D. McDonnell, N. Schunck, D. Higdon, J. Sarich, S. M. Wild, and W. Nazarewicz, “Uncertainty quantification for nuclear density functional theory and information content of new measurements,” Phys. Rev. Lett. 114, 122501 (2015).

[44] Léon Neufcourt, Yuchen Cao, Witold Nazarewicz, Erik Olsen, and Frederi Viens, “Neutron drip line in the ca region from bayesian model averaging,” Phys. Rev. Lett. 122, 062502 (2019).

[45] Ian Vernon, Michael Goldstein, and Richard G Bower, “Galaxy formation: a Bayesian uncertainty analysis,” Bayesian Analysis 5, 619 – 669 (2010).

[46] B. D. Carlsson, A. Ekström, C. Forssén, D. Fahlin Strömberg, G. R. Jansen, O. Lilja, M. Lindby, B. A. Mattsson, and K. A. Wendt, “Uncertainty analysis and order-by-order optimization of chiral nuclear interactions,” ArXiv e-prints (2015), arXiv:1506.02466 [nucl-th].

[47] L. Contessi, A. Lovato, F. Pederiva, A. Roggero, L. Strömberg, and P. D. Schwartz, “Ground-state properties of 4He and 16O extrapolated from lattice QCD with pionless eft,” Physics Letters B 772, 839 – 848 (2017).

[48] A. Bansal, S. Binder, A. Ekström, G. Hagen, G. R. Jansen, and T. Papenbrock, “Pion-less effective field theory for atomic nuclei and lattice nuclei,” Phys. Rev. C 98, 054301 (2018).