Electronic Supporting Information

The Role of the Fused Ring in Bicyclic Triazolium Organocatalysts: Kinetic, X-ray and DFT Insights

Jiayun Zhu, a Inmaculada Moreno, a,b Peter Quinn, a Dmitry S. Yufit, a Lijuan Song, c Claire M. Young, d Zhuan Duan, d Andrew R. Tyler, e Paul G. Waddell, e Michael J. Hall, e Michael R. Probert, e Andrew D. Smith d,* and AnnMarie C. O’Donoghue a,*

a Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
b Dpto. de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla - La Mancha, Avda. Camilo José Cela s/N, 13071 Ciudad Real, Spain
c School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
d EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
e Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

Corresponding Author Email Addresses: annmarieodonoghue@durham.ac.uk; ads10@st-andrews.ac.uk
Table of Contents

S1. Experimental .. 3

S1.1 General Instrumentation .. 3

S1.2 Materials ... 4

S1.3 Syntheses of Triazolium Tetrafluoroborate Salts .. 4

S1.4 Deuterium Exchange and pK_a Measurements ... 9

S1.5 Hammett Analysis of Protofugalities (k_{oo}) .. 39

S1.6 Single-crystal X-ray Crystallography ... 41

S1.7 Synthetic ^1^H and ^1^3^C NMR Spectra for New Triazolium Salts 63

S1.8 Synthetic ^1^H NMR Spectra for Known Triazolium Salts ... 70

S2. DFT Calculations ... 77

S2.1 Conformation Search and Total Energies ... 77

S2.2 Coordinates of Triazolium salts ... 88

S2.3 Coordinates of Carbenes ... 153

S2.4 Summary of Bond Lengths, Bond Angles, and Dihedral Angles from Computational Analysis .. 216

S2.5 Computational Analysis of Conformational Changes in Fused Ring 233

S2.6 NBO analysis ... 240

S3. References ... 241
S1. Experimental

S1.1 General Instrumentation

NMR: NMR samples were prepared in deuterated chloroform and deuterium oxide. NMR spectra were recorded on Oxford Varian Unity Inova 300 and 500 MHz, Varian Unity 300 MHz, and Bruker Ultrashield 400 MHz NMR spectrometers. 1H and 13C NMR chemical shifts in CDCl$_3$ are reported relative to CHCl$_3$ at 7.27 ppm and 77.0 ppm respectively. In D$_2$O, 1H NMR chemical shifts are reported relative to HOD at 4.67 ppm. Coupling constants (J) are reported in Hz. Multiplicities are indicated by: br s (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet).

Mass spectrometry: (m/z) data were acquired by electrospray ionisation (ESI). Low resolution ESI MS was carried out on a Waters Micromass ZQ4000 spectrometer and low resolution EI and CI MS was carried out on a Micromass Quattro II spectrometer. High resolution ESI and ESI MS was carried out on a Finnigan MAT 900 XLT or a Finnigan MAT 95 XP; a Thermofisher LTQ Orbitrap XL spectrometer was also used to obtain high resolution ESI MS for accurate mass determination but also provided fragmentation data for the characterisation of samples. Values are quoted as a ratio of mass to charge in Daltons.

Melting points: Melting points were determined using an electrothermal 9100 melting point apparatus.
S1.2 Materials

Deuterium oxide-d$_2$ (99.9 atom % D), deuterium chloride (35 wt %, 99 atom % D) were purchased from Goss Scientific Instruments Ltd. Chloroform-d$_1$ (99.8 atom % D) was purchased from Apollo Scientific, and Euriso-top. Unless stated, all other chemicals were reagent grade and used without further purification. Reactions involving air or moisture sensitive reagents were performed under an argon atmosphere using oven-dried glassware. Solvents were dried prior to use using an Innovative Technology Inc. solvent purification system.

S1.3 Syntheses of Triazolium Tetrafluoroborate Salts

Triazolium tetrafluoroborate salts 7a-d, 7g, 7i-k, 8b, 8i, 8k, and 9b, 9k were synthesized according to literature procedures, with all physical and spectroscopic data in agreement with the literatureS1.

Triazolium tetrafluoroborate salts 7e, 7f, 7h, 8a, 8c, 9a, and 9c were not reported previously; the syntheses of these compounds were adapted from the same literature procedures used aboveS1, with their physical and spectroscopic data presented in the following sections.
General procedure for the preparation of Triazolium tetrafluoroborate salts 7e, 7f, 7h, 8a, 8c, 9a, and 9c:

Scheme S1. General synthetic procedure for triazolium salts 7e, 7f, 7h, 8a, 8c, 9a, and 9c.

Trimethyloxonium tetrafluoroborate (1.1 equiv; S1) was added to a solution of the relevant lactam (1 equiv; S2 (n=1) for 7e, 7f, 7h; S2 (n=2) for 8a, 8c; S2 (n=3) for 9a, 9c) in dichloromethane (30 mL per 1.00g lactam) and stirred for 24 h at r.t. under an inert atmosphere. The appropriate aryl hydrazine (1 equiv; S3) was added to the reaction mixture and stirred for a further 48 h at r.t. under an inert atmosphere to form the corresponding amidrazone (S4). The solvent was removed under reduced pressure, and the residue dissolved in triethylorthoformate (5 mL per 1 g; S5), and the reaction mixture was refluxed for 24 to 48 hours. Solvent was removed and the triazolium salts (S6) were purified by recrystallisation from DCM/Diethyl ether or MeOH/Diethyl ether.

X-ray diffraction structural analysis was performed for all 20 triazolium salts 7a-k, 8a-c, j, k and 9a-c, k and is reported in Section S1.6. The crystal structures of 7a, 7b, 7g, and 7k were previously reported but were re-determined by us for consistency in structural analysis across the full series.
Synthesis of 2-(3-chlorophenyl)-6,7-dihydro-5H-pyrrolo[2,1-c]triazol-2-ium tetrafluoroborate 7e

Triazolium tetrafluoroborate 7e was obtained as a pale yellow solid (3.83 g, 83 %); mp = 188-190 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.76 (s, 1H), 8.10 – 8.00 (m, 1H), 7.92 – 7.86 (m, 1H), 7.76 – 7.69 (m, 2H), 4.49 – 4.31 (m, 2H), 3.22 (dd, J = 8.2, 7.1 Hz, 2H), 2.84 – 2.66 (m, 2H); ¹³C{¹H} NMR (101 MHz, DMSO-d₆) δ 163.6, 139.5, 137.1, 134.8, 132.5, 130.8, 121.1, 119.9, 47.5, 27.1, 21.7.; HRMS (ESI) m/z: [M–BF₄]⁺ Calculated for C₁₁H₁₁N₃Cl 220.0642; Found 220.0638.

Synthesis of 2-(4-trifluoromethylphenyl)-6,7-dihydro-5H-pyrrolo[2,1-c]triazol-2-ium tetrafluoroborate 7f

Triazolium tetrafluoroborate 7f was obtained as a white solid (1.02 g, 72 %); mp = 216-218 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 10.84 (s, 1H), 8.28 – 7.99 (m, 4H), 4.44 (dd, J = 8.1, 6.6 Hz, 2H), 3.24 (dd, J = 8.2, 7.2 Hz, 2H), 2.83 – 2.70 (m, 2H). ¹³C{¹H} NMR (101 MHz, DMSO) δ 163.8, 139.7, 138.9, 131.2, 130.9, 130.5, 130.2, 128.1, 128.1, 128.1, 128.0, 125.4, 122.7, 121.9, 47.6, 27.1, 21.7. HRMS (ES⁺): [M–BF₄]⁺ C₁₂H₁₁N₃F₃ requires: 254.0905, found: 254.0903.

Synthesis of 2-(2,4,6-triisopropylphenyl)-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium chloride 7h

Triazolium tetrafluoroborate 7h was obtained as a pale yellow powder (0.45 g, 29 %); mp = 142-145 °C; ¹H NMR (700 MHz, DMSO-d₆) δ 10.37 (s, 1H), 7.27 (s, 2H), 4.44 (t, J = 7.4 Hz, 2H), 3.18 (t, J = 7.7 Hz, 2H), 2.98 (p, J = 6.9 Hz, 1H), 2.73 (p, J = 7.6 Hz, 2H), 2.37 (h, J =
6.7 Hz, 2H), 1.23 (d, J = 6.9 Hz, 6H), 1.14 (d, J = 6.8 Hz, 6H), 1.08 (d, J = 6.8 Hz, 6H);

\(^{13}\text{C}\{1\text{H}\} \text{NMR (176 MHz, DMSO-d}_6\} \delta 163.6, 153.1, 146.0, 142.2, 129.8, 122.6, 47.8, 34.2, 28.1, 26.7, 24.4, 24.2, 24.1, 21.9.}; \text{HRMS (ESI) } m/z: [M–BF}_4]^+ \text{ Calculated for } C_{20}H_{30}N_3 312.2440; \text{ Found 312.2433.}

Synthesis of 2-(4-methoxyphenyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyridin-2-ium tetrafluoroborate 8a

Triazolium tetrafluoroborate 8a was obtained as a white solid (1.05 g, 65%). mp = 190-192 °C;

\(^1\text{H NMR (400 MHz, Chloroform-d) } \delta 10.07 (s, 1H), 7.82 – 7.74 (m, 2H), 7.06 – 6.99 (m, 2H), 4.55 (t, J = 5.8 Hz, 2H), 3.88 (s, 3H), 3.13 (t, J = 6.2 Hz, 2H), 2.20 – 2.06 (m, 4H); \text{; } \text{^{13}\text{C}\{1\text{H}\} \text{NMR (101 MHz, Chloroform-d) } \delta 161.3, 152.9, 138.8, 126.9, 122.3, 115.3, 55.7, 46.2, 21.4, 21.2, 18.8.}; m/z (ES+): 230 ([M–BF}_4]^+, 100%). \text{HRMS (ESI) } m/z: [M–BF}_4]^+ \text{ Calculated for } C_{13}H_{16}N_3O 230.1293; \text{ Found 230.1290.}

Synthesis of 2-(4-fluorophenyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyridin-2-ium tetrafluoroborate 8c

Triazolium tetrafluoroborate 8c was obtained as a white solid (0.90 g, 49%). mp = 108-109 °C;

\(^1\text{H NMR (400 MHz, Chloroform-d) } \delta 9.99 (s, 1H), 7.89 – 7.76 (m, 2H), 7.26 – 7.13 (m, 2H), 4.48 (t, J = 5.7 Hz, 2H), 3.10 (t, J = 6.0 Hz, 2H), 2.11 (qd, J = 6.8, 6.2, 3.8 Hz, 4H); \text{; } \text{^{13}\text{C}\{1\text{H}\} \text{NMR (101 MHz, Chloroform-d) } \delta 164.6, 162.1, 153.2, 139.7, 131.3, 131.2, 123.2, 123.1, 117.2, 117.0, 46.1, 21.4, 21.0, 18.6.}; m/z (ES+): 304 ([M–BF}_4]^+, 100%). \text{HRMS (ESI) } m/z: [M–BF}_4]^+ \text{ Calculated for } C_{13}H_{16}N_3F 218.1094; \text{ Found 218.1093.}
Synthesis of 2-(4-methoxyphenyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-2-ium tetrafluoroborate 9a

Triazolium tetrafluoroborate 9a was obtained as an off-white powder (0.73 g, 22%). mp = 148-152 °C; 1H NMR (400 MHz, Chloroform-d) δ 10.09 (s, 1H), 7.84 – 7.73 (m, 2H), 7.08 – 6.99 (m, 2H), 4.56 (s, 2H), 3.88 (s, 3H), 3.26 – 3.05 (m, 2H), 2.02 (s, 4H), 1.90 (s, 2H); 13C {1H} NMR (101 MHz, Chloroform-d) δ 161.1, 158.4, 140.0, 127.9, 122.3, 115.2, 55.7, 49.6, 29.7, 27.4, 26.1, 24.5.; m/z (ES+): 244 ([M–BF$_4]^+$, 100%). HRMS (ESI) m/z: [M–BF$_4]^+$ Calculated for C$_{14}$H$_{18}$N$_3$O 244.1437; Found 244.1442.

Synthesis of 2-(4-fluorophenyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-2-ium tetrafluoroborate 9c

Triazolium tetrafluoroborate 9c was obtained as a white solid (0.342 g, 11%). mp = 118-122 °C; 1H NMR (400 MHz, Chloroform-d) δ 10.03 (s, 1H), 7.96 – 7.77 (m, 2H), 7.27 – 7.10 (m, 2H), 4.52 (t, $J = 4.1$ Hz, 2H), 3.29 – 3.05 (m, 2H), 1.99 (dt, $J = 5.6$, 2.7 Hz, 6H); 13C {1H} NMR (101 MHz, Chloroform-d) δ 164.6, 162.1, 158.6, 140.9, 131.1, 131.0, 123.1, 123.0, 117.3, 117.0, 49.8, 29.6, 27.2, 26.1, 24.4.; HRMS (ESI) m/z: [M–BF$_4]^+$ Calculated for C$_{13}$H$_{15}$N$_3$F 232.1250; Found 232.1252.
S1.4 Deuterium Exchange and pKₐ Measurements

S1.4.1 Preparation of Solutions

The deuterium exchange reactions were monitored by ¹H NMR spectroscopy in D₂O solution, with the pD values of all the experiment in between 0.59 – 3.50. The solution pD values were controlled by DCl or acetic acid buffer, and the internal standard, tetramethylammonium deuteriosulfate, were used to monitor the potential decomposition of the triazolium salts. KCl was used to control the ionic strength, I = 1.0.

S1.4.2 Measurement of pD in D₂O Solution and Determination of [DO⁻]

The pH values of buffer solutions were determined at 25 °C using a MeterLabTM PHM 290 pH-Stat Controller equipped with a radiometer (pH 1.68 - 4.00 @ 25 °C) combination electrode, that could be standardised between pH 1.68 – 4.00 to encompass the pH of the buffer solution. All the solutions were incubated in a thermostated water bath with temperature at 25 ± 0.1 °C.

The pD (± 0.03) was calculated by adding 0.4 to the observed reading of the pH meter in the D₂O solution. The concentration of deuteroxide, [DO⁻] (M), was calculated using Eq s1, where $K_w = 10^{-14.87}$ M² is the ion product of D₂O at 25 °C. The apparent activity coefficient of deuteroxide ion, $\gamma_{DO} = 0.73$, was determined from the measured pH of solutions of known [OH⁻] in water at I = 1.0 (KCl) at 25 °C, with the assumption that $\gamma_{DO} = \gamma_{HO}$. For these measurements, the pH apparatus was standardized at 7.00 and at 12.47 with calcium hydroxide that was saturated at 21 °C. The pD values for each experiment were recorded at the beginning and end of reactions, and were found to be constant within error (± 0.03).
\[[DO^-] = \frac{(10^{pD-pKW})}{y_{DO}} \]

\[(s1)\]

S1.4.3 NMR Parameters

\(^1H \) NMR spectra of triazolium ions 7-9 were recorded on either Varian 400 or Oxford Varian Inova 500 MHz spectrometers. Spectra were run with 32 transients and a relaxation delay of 20 sec, sweep width of 8298.76 Hz, acquisition time of 4 sec and a 90° pulse angle. The total running time for each spectrum equals to 12 min 48 sec. The \(^1H \) NMR spectral baselines were subject to a first-order drift correction before integration of the peak areas.

S1.4.4 Determination of Rate Constants for Deuteroxide-Catalyzed Exchange in Water

Deuterium exchange reactions were monitored in buffered D\(_2\)O solutions for triazolium salts 7a-c, 7k, 8a-c, 8k, 9a-c, 9k. A deuterium exchange study of 7a-c, 7k has been previously reported by us as part of a larger study,\(^{54}\) however, these experiments were repeated herein to demonstrate reproducibility and for consistency in analysis. Hydrogen-deuterium exchange of the C(3)-H results in a decrease of the singlet due to the C(3)-H of triazolium salts at ~10 ppm relative to the broad triplet at 3.3 ppm due to the methyl hydrogens of internal standard, tetramethylammonium deuterosulphate. Substrate and product peak areas were compared with the peak of internal standard to confirm that no parallel reactions including hydrolysis or decomposition of triazolium salt substrates were occurring under our conditions. Values for the fraction of remaining substrate could be calculated using Eq s2 by comparing the intergrated areas of the singlet due to the C(3)-H \((A_{C(3)-H})\) with those of the internal standard.
The observed first order rate constant for deuterium exchange, k_{ex} (s$^{-1}$), at a given pD could be obtained as the slope of a semilogarithmic plot of the fraction of remaining substrate against time according to Eq s3. For triazolium salts 7a-c, 8a-c, 9a-c, good linear fits of log k_{ex} – pD data to Eq 2 are observed whereas data for pentafluorophenyl triazolium salts 7k, 8k and 9k instead show excellent fits to Eq 3 (main manuscript).

\[
f(s) = \frac{(A_{C(3)-H}/A_{\text{std}})_{t}}{(A_{C(3)-H}/A_{\text{std}})_{0}}
\]

\[
\ln f(s) = -k_{\text{ex}}t
\]

S1.4.4.1 Representative 1H NMR Spectral Overlays of C(3)-H/D Exchange

For triazolium salts 7-9a, 7-9b, 7-9c and 7-9k, representative 1H NMR spectral overlays are presented below showing the progress of C(3)-H/D exchange at one pD value in each case. For a given N-aryl substituent (e.g. N-Ar = 4-methoxyphenyl for 7-9a), the closely similar pD values are chosen for the representative spectral overlays to enable a comparison of the effect of fused ring size on the progress of C(3)-H/D exchange.
Figure S1. Representative 1H NMR spectra at 400MHz of triazolium salt 7a (10mM, pD 1.78), obtained during exchange of C(3)-H (s, 9.99 ppm) for deuterium in D$_2$O at 25 ºC and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]
Figure S2. Representative 1H NMR spectra at 400MHz of triazolium salt 8a (10mM, pD 1.78), obtained during exchange of C(3)-H (s, 10 ppm) for deuterium in D$_2$O at 25 ºC and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]
Figure S3. Representative 1H NMR spectra at 400MHz of triazolium salt $9a$ (10mM, pD 1.79), obtained during exchange of C(3)-H (s, 10 ppm) for deuterium in D$_2$O at 25 °C and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]
Figure S4. Representative 1H NMR spectra at 400MHz of triazolium salt 7b (10mM, pD 1.77), obtained during exchange of C(3)-H (s, 10.1 ppm) for deuterium in D$_2$O at 25 °C and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]
Figure S5. Representative 1H NMR spectra at 400MHz of triazolium salt 8b (10mM, pD 1.69), obtained during exchange of C(3)-H (s, 10.1 ppm) for deuterium in D$_2$O at 25 °C and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]
Figure S6. Representative 1H NMR spectra at 400MHz of triazolium salt 9b (10mM, pD 1.73), obtained during exchange of C(3)-H (s, 10.2 ppm) for deuterium in D$_2$O at 25 ºC and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]
Figure S7. Representative 1H NMR spectra at 400MHz of triazolium salt 7c (10mM, pD 1.77), obtained during exchange of C(3)-H (s, 10.1 ppm) for deuterium in D$_2$O at 25 °C and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]
Figure S8. Representative 1H NMR spectra at 400MHz of triazolium salt 8c (10mM, pD 2.29), obtained during exchange of C(3)-H (s, 10.1 ppm) for deuterium in D$_2$O at 25 °C and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]
Figure S9. Representative 1H NMR spectra at 400MHz of triazolium salt 9c (10mM, pD 1.99), obtained during exchange of C(3)-H (s, 10.1 ppm) for deuterium in D$_2$O at 25 °C and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]
Figure S10. Representative 1H NMR spectra at 400MHz of triazolium salt 7k (10mM, pD 1.58), obtained during exchange of C(3)-H (s, 10 ppm) for deuterium in D$_2$O at 25 °C and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]
Figure S11. Representative 1H NMR spectra at 400MHz of triazolium salt $8k$ (10mM, pD 1.58), obtained during exchange of C(3)-H (s, 10 ppm) for deuterium in D$_2$O at 25 °C and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]
Figure S12. Representative 1H NMR spectra at 400MHz of triazolium salt 9k (10mM, pD 1.56), obtained during exchange of C(3)-H (s, 10 ppm) for deuterium in D$_2$O at 25 °C and I = 1.0 M (KCl). [Internal standard, tetramethylammonium deuteriosulfate (s, 3.17 ppm)]

S1.4.4.2 Semilogarithmic Plots of $f(s)$ versus Time

For triazolium salts 7-9a, 7-9b, 7-9c and 7-9k, all semilogarithmic plots of the fraction of unexchanged substrate ($f(s)$) versus time at different pD values are included below. The observed first order rate constant for deuterium exchange, k_{ex} (s$^{-1}$), at a given pD could be obtained as the slope of the semilogarithmic plot of the fraction of remaining substrate against time according to Eq s3.
Figure S13. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 7a in solutions of DCl in D$_2$O at 25 °C and I = 1.0 M (KCl).

Figure S14. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 8a in solutions of DCl in D$_2$O at 25 °C and I = 1.0 M (KCl).
Figure S15. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 9a in solutions of DCl in D2O at 25 ºC and I = 1.0 M (KCl).

\[y = -1.37E-07x + 5.18E-04 \]
\[R^2 = 0.999 \]
\[y = -3.51E-07x + 1.20E-02 \]
\[R^2 = 0.992 \]
\[y = -8.66E-07x + 9.99E-03 \]
\[R^2 = 0.988 \]
\[y = -2.70E-06x - 5.17E-01 \]
\[R^2 = 0.998 \]
\[y = -7.62E-06x + 4.87E-03 \]
\[R^2 = 0.997 \]
\[y = -3.06E-05x + 6.75E-03 \]
\[R^2 = 0.999 \]
\[y = -9.70E-05x - 3.05E-03 \]
\[R^2 = 0.999 \]

Figure S16. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 7b in solutions of DCl in D2O at 25 ºC and I = 1.0 M (KCl).

\[y = -5.99E-07x - 1.94E-03 \]
\[R^2 = 0.999 \]
\[y = -1.31E-06x - 3.20E-04 \]
\[R^2 = 0.982 \]
\[y = -3.01E-06x + 1.35E-03 \]
\[R^2 = 0.999 \]
\[y = -6.68E-06x + 1.45E-03 \]
\[R^2 = 0.999 \]
\[y = -1.33E-05x - 9.72E-03 \]
\[R^2 = 0.999 \]
\[y = -2.36E-05x + 2.25E-02 \]
\[R^2 = 0.999 \]
\[y = -4.01E-05x + 5.65E-02 \]
\[R^2 = 0.999 \]
\[y = -5.14E-05x - 3.44E-02 \]
\[R^2 = 0.999 \]
Figure S17. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 8b in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

Figure S18. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 9b in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).
Figure S19. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 7c in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

Figure S20. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 8c in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).
Figure S21. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 9c in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

Figure S22. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 7k in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).
Figure S23. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 8k in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

Figure S24. Semilogarithmic plots of the fraction of unexchanged substrate against time for the deuterium exchange reaction of 9k in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).
S1.4.4.3 Log $k_{ex} - pD$ Profiles for 7a-c, 8a-c and 9a-c

For triazolium salts 7a-c, 8a-c and 9a-c, good linear fits of log $k_{ex} - pD$ data to Eq 2 (main manuscript) are observed. The log $k_{ex} - pD$ profiles are included below for 7-9a, 7-9b and 7-9c showing fits to Eq 2 (Figures S25-27, respectively).

Figure S25. Plot of log k_{ex} against pD for the C(3)-H/D exchange reaction of triazolium salt 7-9a in solutions of DCl in D$_2$O at 25 °C and I = 1.0 M (KCl).
Figure S26. Plot of $\log k_{ex}$ against pD for the C(3)-H/D exchange reaction of triazolium salt 7-9b in solutions of DCl in D$_2$O at 25 °C and I = 1.0 M (KCl).

![Graph](image)

- Fitting with slope fixed = 1
 - $y = x - 6.90$ \(R^2 = 0.999 \)
 - $y = x - 7.15$ \(R^2 = 0.996 \)
 - $y = x - 7.18$ \(R^2 = 0.996 \)

- Fitting without restriction
 - $y = 0.99x - 6.89$ \(R^2 = 0.999 \)
 - $y = 1.03x - 7.20$ \(R^2 = 0.997 \)
 - $y = 1.02x - 7.21$ \(R^2 = 0.997 \)

Figure S27. Plot of $\log k_{ex}$ against pD for the C(3)-H/D exchange reaction of triazolium salt 7-9c in solutions of DCl in D$_2$O at 25 °C and I = 1.0 M (KCl).

![Graph](image)

- Fitting with slope fixed = 1
 - $y = x - 6.80$ \(R^2 = 0.992 \)
 - $y = x - 7.04$ \(R^2 = 0.993 \)
 - $y = x - 7.04$ \(R^2 = 0.996 \)

- Fitting without restriction
 - $y = 1.06x - 6.89$ \(R^2 = 0.995 \)
 - $y = 1.05x - 7.12$ \(R^2 = 0.995 \)
 - $y = 1.06x - 7.13$ \(R^2 = 0.999 \)

S1.4.4.4 Log k_{ex} – pD Profiles for 7k, 8k and 9k

Log k_{ex} – pD data for pentafluorophenyl triazolium salts 7k, 8k and 9k do not fit to Eq 2 and instead show excellent fits to Eq 3 (main manuscript). The log k_{ex} – pD profiles are included...
below for 7k, 8k and 9k showing fits to equation 3 (solid lines). The altered dependence of k_{ex} on pD as the pD decreases is consistent with the onset of alternative pathways for deuterium exchange, which we have discussed in detail previously.54-55 The most likely mechanistic explanation, as discussed previously for 7k,54 is a pathway via N(1)-deuteration at lower pD values allowing for hydrogen-deuterium exchange of the N(1)-deuterated dicationic triazolium salt (Scheme S2).

Figure S28. Plot of log k_{ex} against pD for the H/D exchange reaction of triazolium salt 7-9k in solutions of DCl in D\textsubscript{2}O at 25 °C and I = 1.0 M (KCl).

\begin{align*}
K_{aN1}^{Dk} &= 0.35 \text{ M} \\
K_{aN1}^{Dk} &= 7.37 \times 10^{8} \text{ M}^{-1}\text{s}^{-1} \\
k_{D0}^{k} &= 7.37 \times 10^{8} \text{ M}^{-1}\text{s}^{-1} \\
k_{D0}^{k} &= 4.04 \times 10^{9} \text{ M}^{-1}\text{s}^{-1} \\
K_{aN1}^{Dk} &= 0.55 \text{ M} \\
k_{D0}^{k} &= 7.87 \times 10^{9} \text{ M}^{-1}\text{s}^{-1} \\
k_{D0}^{k} &= 4.16 \times 10^{9} \text{ M}^{-1}\text{s}^{-1} \\
K_{aN1}^{Dk} &= 0.352 \text{ M} \\
k_{D0}^{k} &= 7.87 \times 10^{9} \text{ M}^{-1}\text{s}^{-1} \\
k_{D0}^{k} &= 4.16 \times 10^{9} \text{ M}^{-1}\text{s}^{-1}
\end{align*}
Scheme S2. Mechanisms of C(3)-H/D exchange for 7k, 8k and 9k (tetrafluorborate counterion excluded for clarity).

S1.4.4.5 Reaction Data, First Order Rate Constants for Exchange (k_{ex}, s$^{-1}$) and Second Order Rate Constants for Exchange (k_{DO}, M$^{-1}$s$^{-1}$)

Table S1. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 7a for deuterium in solutions of DCl in D$_2$O at 25 °C and I = 1.0 M (KCl).

pD	[DO$^-$], M	k_{ex}, s$^{-1}$	k_{DO}, M$^{-1}$s$^{-1}$
0.73	9.92×10^{-15}	3.19×10^{-7}	
1.00	1.85×10^{-14}	8.72×10^{-7}	
1.27	3.44×10^{-14}	1.77×10^{-6}	
1.78	1.11×10^{-13}	4.65×10^{-6}	4.55×10^{-7}b
2.20	2.93×10^{-13}	1.50×10^{-5}	
3.00	1.85×10^{-12}	5.91×10^{-5}	
3.43	4.97×10^{-12}	1.89×10^{-4}	

aFirst order rate constants for C(3)-H/D exchange (k_{ex}, s$^{-1}$) were obtained as the slopes of plots shown in Figure S13. bThe second-order rate constant (k_{DO}, M$^{-1}$s$^{-1}$) was obtained from the fit of log k_{ex} – pD data to Eq 2 (Figure S25).
Table S2. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 8a for deuterium in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

pD	[DO⁻], M	kex, s⁻¹^a	kDO, M⁻¹s⁻¹^b
0.70	9.26 × 10⁻¹⁵	1.54 × 10⁻⁷	
1.00	1.85 × 10⁻¹⁴	3.72 × 10⁻⁷	
1.27	3.44 × 10⁻¹⁴	9.35 × 10⁻⁷	
1.78	1.11 × 10⁻¹³	2.52 × 10⁻⁶	2.11 × 10⁷
2.21	2.99 × 10⁻¹³	8.50 × 10⁻⁶	
3.02	1.93 × 10⁻¹²	3.26 × 10⁻⁵	
3.40	4.64 × 10⁻¹²	1.02 × 10⁻⁴	

^aFirst order rate constants for C(3)-H/D exchange (kex, s⁻¹) were obtained as the slopes of plots shown in Figure S14. ^bThe second-order rate constant (kDO, M⁻¹s⁻¹) was obtained from the fit of log kex – pD data to Eq 2 (Figure S25).

Table S3. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 9a for deuterium in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

pD	[DO⁻], M	kex, s⁻¹^a	kDO, M⁻¹s⁻¹^b
0.72	9.70 × 10⁻¹⁵	1.37 × 10⁻⁷	
1.02	1.93 × 10⁻¹⁴	3.51 × 10⁻⁷	
1.27	3.44 × 10⁻¹⁴	8.66 × 10⁻⁷	
1.79	1.14 × 10⁻¹³	2.69 × 10⁻⁶	2.01 × 10⁷
2.20	2.93 × 10⁻¹³	7.62 × 10⁻⁶	
3.00	1.85 × 10⁻¹²	3.06 × 10⁻⁵	
3.50	5.84 × 10⁻¹²	9.70 × 10⁻⁵	

^aFirst order rate constants for C(3)-H/D exchange (kex, s⁻¹) were obtained as the slopes of plots shown in Figure S15. ^bThe second-order rate constant (kDO, M⁻¹s⁻¹) was obtained from the fit of log kex – pD data to Eq 2 (Figure S25).
Table S4. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 7b for deuterium in solutions of DC1 in D2O at 25 ºC and I = 1.0 M (KCl).

pD	[DO−], M	k_{ex}, s-1a	k_{DO}, M-1s-1
0.66	8.45 \times 10-15	5.99 \times 107	
1.01	1.89 \times 10-14	1.31 \times 106	
1.38	4.43 \times 10-14	3.01 \times 106	
1.77	1.09 \times 10-13	6.68 \times 106	6.99 \times 107 b
2.05	2.07 \times 10-13	1.33 \times 105	
2.26	3.36 \times 10-13	2.36 \times 105	
2.50	5.84 \times 10-13	4.01 \times 105	
2.58	7.03 \times 10-13	4.90 \times 105	

aFirst order rate constants for C(3)-H/D exchange (k_{ex}, s-1) were obtained as the slopes of plots shown in Figure S16. bThe second-order rate constant (k_{DO}, M-1s-1) was obtained from the fit of log k_{ex} – pD data to Eq 2 (Figure S26).

Table S5. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 8b for deuterium in solutions of DC1 in D2O at 25 ºC and I = 1.0 M (KCl).

pD	[DO−], M	k_{ex}, s-1a	k_{DO}, M-1s-1
0.61	7.53 \times 10-15	2.78 \times 107	
0.98	1.76 \times 10-14	6.69 \times 107	
1.41	4.75 \times 10-14	1.57 \times 106	
1.69	9.05 \times 10-14	3.69 \times 106	3.43 \times 107 b
2.05	2.07 \times 10-13	7.33 \times 106	
2.21	2.99 \times 10-13	1.29 \times 105	
2.45	5.21 \times 10-13	2.15 \times 105	

aFirst order rate constants for C(3)-H/D exchange (k_{ex}, s-1) were obtained as the slopes of plots shown in Figure S17. bThe second-order rate constant (k_{DO}, M-1s-1) was obtained from the fit of log k_{ex} – pD data to Eq 2 (Figure S26).
Table S6. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 9b for deuterium in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

pD	[DO⁻], M	\(k_{ex}, s^{-1} \)	\(k_{DO}, M^{-1}s^{-1} \)
0.59	\(7.18 \times 10^{-15} \)	2.61 \(\times 10^{-7} \)	
1.01	\(1.89 \times 10^{-14} \)	6.52 \(\times 10^{-7} \)	
1.41	\(4.74 \times 10^{-14} \)	1.55 \(\times 10^{6} \)	
1.73	\(9.92 \times 10^{-14} \)	3.50 \(\times 10^{6} \)	3.29 \(\times 10^{7} \)^b
2.05	\(2.07 \times 10^{-13} \)	6.74 \(\times 10^{6} \)	
2.29	\(3.60 \times 10^{-13} \)	1.29 \(\times 10^{5} \)	
2.40	\(4.64 \times 10^{-13} \)	2.02 \(\times 10^{5} \)	
2.58	\(7.03 \times 10^{-13} \)	3.01 \(\times 10^{5} \)	

^a First order rate constants for C(3)-H/D exchange (\(k_{ex}, s^{-1} \)) were obtained as the slopes of plots shown in Figure S18. ^b The second-order rate constant (\(k_{DO}, M^{-1}s^{-1} \)) was obtained from the fit of log \(k_{ex} \) – pD data to Eq 2 (Figure S26).

Table S7. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 7c for deuterium in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

pD	[DO⁻], M	\(k_{ex}, s^{-1} \)	\(k_{DO}, M^{-1}s^{-1} \)
0.77	\(1.09 \times 10^{-14} \)	6.94 \(\times 10^{7} \)	
1.03	\(1.98 \times 10^{-14} \)	1.70 \(\times 10^{6} \)	
1.34	\(4.04 \times 10^{-14} \)	3.84 \(\times 10^{6} \)	
1.71	\(9.47 \times 10^{-14} \)	8.75 \(\times 10^{6} \)	8.97 \(\times 10^{7} \)^b
2.00	\(1.85 \times 10^{-13} \)	1.74 \(\times 10^{5} \)	
2.27	\(3.44 \times 10^{-13} \)	3.03 \(\times 10^{5} \)	
2.44	\(5.09 \times 10^{-13} \)	4.58 \(\times 10^{5} \)	

^a First order rate constants for C(3)-H/D exchange (\(k_{ex}, s^{-1} \)) were obtained as the slopes of plots shown in Figure S19. ^b The second-order rate constant (\(k_{DO}, M^{-1}s^{-1} \)) was obtained from the fit of log \(k_{ex} \) – pD data to Eq 2 (Figure S27).
Table S8. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 8c for deuterium in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

pD	[DO⁻], M	\(k_{\text{ex}}, \text{s}^{-1}\)^{a}	\(k_{\text{DO}}, \text{M}^{-1}\text{s}^{-1}\)
0.66	\(8.44 \times 10^{-15}\)	\(3.24 \times 10^{-7}\)	\(4.01 \times 10^{-7}\)
1.01	\(1.89 \times 10^{-14}\)	\(8.82 \times 10^{-7}\)	\(2.10 \times 10^{-6}\)
1.35	\(4.13 \times 10^{-14}\)	\(2.09 \times 10^{-6}\)	\(9.75 \times 10^{-6}\)
1.67	\(8.64 \times 10^{-14}\)	\(4.93 \times 10^{-6}\)	\(5.00 \times 10^{-7}\)^{b}
1.97	\(1.72 \times 10^{-13}\)	\(9.75 \times 10^{-6}\)	\(9.75 \times 10^{-6}\)
2.29	\(3.60 \times 10^{-13}\)	\(1.74 \times 10^{-5}\)	\(2.10 \times 10^{-6}\)
2.48	\(5.58 \times 10^{-13}\)	\(2.71 \times 10^{-5}\)	\(9.75 \times 10^{-6}\)

\(^{a}\)First order rate constants for C(3)-H/D exchange (\(k_{\text{ex}}, \text{s}^{-1}\)) were obtained as the slopes of plots shown in Figure S20. \(^{b}\)The second-order rate constant (\(k_{\text{DO}}, \text{M}^{-1}\text{s}^{-1}\)) was obtained from the fit of log \(k_{\text{ex}} - pD\) data to Eq 2 (Figure S27).

Table S9. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 9c for deuterium in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

pD	[DO⁻], M	\(k_{\text{ex}}, \text{s}^{-1}\)^{a}	\(k_{\text{DO}}, \text{M}^{-1}\text{s}^{-1}\)
0.72	\(9.70 \times 10^{-15}\)	\(4.01 \times 10^{-7}\)	\(4.39 \times 10^{-7}\)^{b}
1.00	\(1.85 \times 10^{-14}\)	\(8.40 \times 10^{-7}\)	\(2.10 \times 10^{-6}\)
1.34	\(4.04 \times 10^{-14}\)	\(2.10 \times 10^{-6}\)	\(4.67 \times 10^{-6}\)
1.68	\(8.84 \times 10^{-14}\)	\(4.67 \times 10^{-6}\)	\(4.67 \times 10^{-6}\)
1.99	\(1.80 \times 10^{-13}\)	\(9.17 \times 10^{-6}\)	\(2.80 \times 10^{-5}\)
2.45	\(5.20 \times 10^{-13}\)	\(2.80 \times 10^{-5}\)	\(2.80 \times 10^{-5}\)

\(^{a}\)First order rate constants for C(3)-H/D exchange (\(k_{\text{ex}}, \text{s}^{-1}\)) were obtained as the slopes of plots shown in Figure S21. \(^{b}\)The second-order rate constant (\(k_{\text{DO}}, \text{M}^{-1}\text{s}^{-1}\)) was obtained from the fit of log \(k_{\text{ex}} - pD\) data to Eq 2 (Figure S27).
Table S10. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 7k for deuterium in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

pD	[DO⁻], M	kₑ, s⁻¹	Results of Fitting to Eq 3
0.48	5.58 x 10⁻¹⁵	3.62 x 10⁻⁵	
0.67	8.64 x 10⁻¹⁵	5.16 x 10⁻⁵	
0.93	1.57 x 10⁻¹⁴	5.82 x 10⁻⁵	k₉D = 3.52 x 10⁸ M⁻¹s⁻¹ b
1.32	3.86 x 10⁻¹⁴	7.34 x 10⁻⁵	k′₉D = 1.38 x 10¹⁰ M⁻¹s⁻¹ c
1.58	7.03 x 10⁻¹⁴	8.83 x 10⁻⁵	k₉N₁ = 0.35 M d
1.76	1.06 x 10⁻¹³	1.09 x 10⁻⁴	
2.39	4.53 x 10⁻¹³	2.29 x 10⁻⁴	

a First order rate constants for C(3)-H/D exchange (kₑ, s⁻¹) were obtained as the slopes of plots shown in Figure S22. *b* The second-order rate constant (k₉D, M⁻¹s⁻¹) was obtained from the fit of log kₑ - pD data to Eq 3 (Figure S28). *c* Values of k′₉D (M⁻¹s⁻¹) obtained by fitting log kₑ - pD data to equation 3 (Figure S28). *d* Values of KₙN₁ (M) obtained by fitting log kₑ - pD data to equation 3 (Figure S28).

Table S11. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 8k for deuterium in solutions of DCl in D₂O at 25 °C and I = 1.0 M (KCl).

pD	[DO⁻], M	kₑ, s⁻¹	Results of Fitting to Eq 3
0.45	5.21 x 10⁻¹⁵	1.69 x 10⁻⁵	
0.67	8.64 x 10⁻¹⁵	2.27 x 10⁻⁵	
0.99	1.81 x 10⁻¹⁴	2.85 x 10⁻⁵	k₉D = 4.16 x 10⁸ M⁻¹s⁻¹ b
1.35	4.13 x 10⁻¹⁴	4.10 x 10⁻⁵	k′₉D = 7.87 x 10⁹ M⁻¹s⁻¹ c
1.60	7.36 x 10⁻¹⁴	5.28 x 10⁻⁵	KₙN₁ = 0.55 M d
1.78	1.11 x 10⁻¹³	6.91 x 10⁻⁵	
2.31	3.77 x 10⁻¹³	1.87 x 10⁻⁴	

a First order rate constants for C(3)-H/D exchange (kₑ, s⁻¹) were obtained as the slopes of plots shown in Figure S23. *b* The second-order rate constant (k₉D, M⁻¹s⁻¹) was obtained from the fit of log kₑ - pD data to Eq 3 (Figure S28). *c* Values of k′₉D (M⁻¹s⁻¹) obtained by fitting log kₑ - pD data to equation 3 (Figure S28). *d* Values of KₙN₁ (M) obtained by fitting log kₑ - pD data to equation 3 (Figure S28).
Table S12. First and second-order rate constants for exchange of the C(3)-H of triazolium salt 9k for deuterium in solutions of DCl in D$_2$O at 25 °C and I = 1.0 M (KCl).

pD	[DO$^-$], M	\(k_{ex}, \text{s}^{-1}\)	Results of Fitting to Eq 3
0.45	5.21 x 10^{-15}	1.75 x 10^{-5}	\(k_{DO} = 4.04 \times 10^8 \text{M}^{-1}\text{s}^{-1}\) b
0.66	8.45 x 10^{-15}	2.30 x 10^{-5}	\(k_{DO}' = 7.37 \times 10^9 \text{M}^{-1}\text{s}^{-1}\) c
0.94	1.61 x 10^{-14}	3.01 x 10^{-5}	\(K_{aN1} = 0.46 \text{M}\) d
1.35	4.13 x 10^{-14}	4.01 x 10^{-5}	
1.60	7.36 x 10^{-14}	5.61 x 10^{-5}	
1.78	1.11 x 10^{-13}	7.32 x 10^{-5}	
2.36	4.23 x 10^{-13}	2.00 x 10^{-4}	

*First order rate constants for C(3)-H/D exchange (\(k_{ex}, \text{s}^{-1}\)) were obtained as the slopes of plots shown in Figure S24. *The second-order rate constant (\(k_{DO}, \text{M}^{-1}\text{s}^{-1}\)) was obtained from the fit of log \(k_{ex} - pD\) data to Eq 3 (Figure S28). *Values of \(k_{DO}' (\text{M}^{-1}\text{s}^{-1})\) obtained by fitting log \(k_{ex} - pD\) data to equation 3 (Figure S28). *Values of \(K_{aN1} (\text{M})\) obtained by fitting log \(k_{ex} - pD\) data to equation 3 (Figure S28).

S1.5 Hammett Analysis of Protofugalities (\(k_{DO}\)).

Figure S29. Semilogarithmic plots of log \(k_{DO}\) against Hammett substituent constant, \(\sigma\), for triazolium salts 7a-c, 7k (■); 8a-c, 8k (●); 9a-c, 9k (▲).

\[y = 0.650x + 7.87 \]
\[R^2 = 0.996 \]

\[y = 0.653x + 7.66 \]
\[R^2 = 0.997 \]

\[y = 0.674x + 7.62 \]
\[R^2 = 0.992 \]
Table S13. Hammett substituent constants, σ

Substituent	σ
4-MeO	-0.27
H	0
4-F	0.06
4-Br	0.23
3-Cl	0.37
4-CF$_3$	0.54
2,6-Di-MeO	-0.54b
2,4,6-Tri-'Pr	-0.45b
2,4,6-Tri-Me	-0.51b
2,4,6-Tri-Cl	0.69b
F$_5$	1.50c

aTaken from Hansch, Leo and Taft.$^{56, 60}$

bFor the purpose of ordering of ortho-substituted examples in Figure 3, we have assumed an additive substituent effect in the absence of available literature N-aryl substituent constants.57

cBased on Taft’s Hammett σ value.58
S1.6 Single-crystal X-ray Crystallography.

The crystal structures of 7a, 7b, 7g and 7k have been reported previously (the CCDC codes are ISOXEU [1], ISOXIY [1], LEBMIQ [2] and ISOXOE [1] respectively) but re-determination of these structures was deemed to be necessary for consistency in analysis. The X-ray single crystal data for compounds 7a, 7c, 7d, 7e, 7f, 7g, 7j, 7ja, 7k, 8a, 8b, 8c, 8i, 9a and 9k have been collected on a Bruker D8Venture (Photon100 CMOS detector, IμS-microsource, focusing mirrors) 3-circle diffractometer. The data for compounds 7h and 9c were collected on an Oxford Diffraction, Gemini-Ultra 4-circle diffractometer (Atlas CCD detector, fine-focus sealed tube, graphite monochromator). The data for compound 8k were collected on a Bruker D8Venture (Photon 2 CMOS detector, IμS-microsource, focusing mirrors) 3-circle diffractometer. The data for compound 7i were collected on an Agilent XCalibur 4-circle diffractometer (Sapphire-3 CCD detector, fine-focus sealed tube, graphite monochromator); for compound 7b on a Bruker D8Venture (Photon III MM C7 CPAD detector, IμS microsource, focusing mirrors) 3-circle diffractometer; for compound 9b on a Bruker D8Venture (Photon III MM C14 CPAD detector, IμS III microsource, focusing mirrors) 3-circle diffractometer and for compound 8a on a Bruker D8Venture (Photon II CPAD detector, fine-focus sealed tube, focusing mirrors) 3-circle diffractometer.

The sources with λ CuKα = 1.54184 Å radiation were used for compounds 7h, 8k, 9b and 9c; in all other cases λMoKα radiation (λ = 0.71073Å) was used. The temperature on the crystals (150.0(2)K for compounds 7h, 8k and 9c; 120.0(2)K for all other compounds) was maintained by Oxford Cryosystems CryostreamPlus open-flow N2 cooling devices. Corresponding instrument’s software was used for cell refinement, data collection, data reduction and empirical absorption correction. All structures were solved by either direct or intrinsic phase methods and refined by full-matrix least squares on F² for all data using Olex2 [3] and
SHELXTL [4] software. All non-disordered non-hydrogen atoms were refined in anisotropic approximation, the hydrogen atoms in most of the structures were placed in the calculated positions and refined in riding mode. Several structures (7b, 7c, 7g, 7i, 7k, 8c and 9b) contain disordered fragments (usually BF₄⁻ anions). Various appropriate constrains and restrains were used in refinement of these fragments. Two polymorphs of the compound 7j were found in different available samples. Crystal data and parameters of refinement are listed in Tables S14-16. Crystallographic data for the structures have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications CCDC 2124937-2124950; 2124952-2124958.

S1.6.1 Analysis of Triazolium Salts 7h, 8k and 9c via Encapsulated Nanodroplet Crystallisation (ENaCt)/Single Crystal X-ray Diffraction

The growth of single crystals of 7h, 8k and 9c, suitable for single crystal X-ray diffraction analysis was performed via a modified high-throughput Encapsulated Nanodroplet Crystallisation (ENaCt) approach.¹⁹ Stock solutions of 7h, 8k and 9c were prepared in DMSO and DMF, droplets of which (50 nL) were then dispensed via an STP Labtech Mosquito liquid-handling robot into 96 well glass plates (SWISSCI LCP Modular, 100 µm spacer) containing an appropriate crystallization oil (50-300 nL of PDMSO, FC40, FYR or mineral oil). Experiments were performed with or without the addition of a secondary solvent (25-250 nL of H₂O, toluene, butanol, chlorobenzene or 2-methyl-2,4-pentanediol (MPD)). The plates were sealed with a glass cover slip, allowed to stand at room temperature in the dark and assessed visually and by cross-polarized light microscopy for crystal growth every few days. After 7 days, wells containing crystals were opened and suitable crystals of 7h, 8k and 9c selected for single crystal X-ray analysis. Specific ENaCt crystallisation conditions for each molecule are
given below: 7h 50 nL DMF (33 mg/mL) in 200 nL of FYR; 8k 50 nL DMSO (50 mg/mL), 100 nL 2-methyl-2,4-pentanediol (MPD) in 200 nL of FYR; 9c 50 nL DMSO (50 mg/mL) in 150 nL of FC40.
S1.6.2 Crystal Data and Structure Refinement Parameters

Table S14. Crystal data and structure refinement parameters.

Compound	7a	7b	7c	7d	7e	7f	7g
Empirical formula	$C_{12}H_{14}N_3OBF_4$	$C_{11}H_{12}BF_4N_3$	$C_{11}H_{11}FN_3BF_4$	$C_{11}H_{11}BrN_3BF_4$	$C_{11}H_{11}N_3ClBF_4$	$C_{12}H_{11}F_3N_3BF_4$	$C_{12}H_{16}N_3O_2BF_4$
Formula weight	303.07	273.05	291.04	351.95	307.49	341.05	333.10
Temperature/K	120.0	120.0	120.0	120.0	120.0	120.0	120.0
Crystal system	orthorhombic	orthorhombic	orthorhombic	monoclinic	monoclinic	monoclinic	orthorhombic
Space group	Iba2	$P2_1_2_1$	Pbca	$P2_1/n$	$P2_1/c$	$P2_1/n$	Pbca
a/Å	10.614(3)	6.7732(3)	7.8707(4)	7.0877(3)	9.0461(9)	7.0168(4)	10.5264(4)
b/Å	34.391(11)	10.5577(4)	29.0299(14)	12.1656(5)	8.0475(8)	12.7166(7)	13.0742(4)
c/Å	7.410(2)	17.0417(7)	29.0299(14)	15.7597(7)	9.3668(4)	10.1332(2)	21.4933(7)
α/°	90	90	90	90	90	90	90
β/°	90	90	90	90	90	90	90
γ/°	90	90	90	90	90	90	90
Volume/Å³	2704.8(15)	1218.64(9)	2498.4(2)	1336.71(10)	1279.1(2)	1410.32(14)	2958.00(17)
Z	8	4	8	4	4	4	8
$ρ_{calc}$/g/cm³	1.489	1.488	1.547	1.749	1.597	1.606	1.496
μ/mm⁻¹	0.133	0.133	0.146	3.114	0.162	0.134	
F(000)	1248.0	560.0	1184.0	696.0	624.0	688.0	1376.0
Radiation	MoKα						
Reflections collected	17438	15661	35825	28802	25412	26012	43211
Independent refl. R[int]	2953, 0.1164, 0.0349	3538, 0.0439	3321, 0.0378	3866, 0.0287	3398, 0.0598	3236, 0.0633	3924, 0.0445
Data/restraints/parameters	2953/1/192	3538/10/185	3321/28/241	3866/0/181	3398/0/225	3236/15/248	3924/0/252
Goodness-of-fit on F²	1.003	1.031	1.035	1.036	1.025	1.045	1.025
Final R₁ [I≥2σ (I)]	0.0583	0.0514	0.0488	0.0213	0.0462	0.0618	0.0391
Final wR₂ [all data]	0.1317	0.1167	0.1272	0.0567	0.1213	0.1560	0.0997
Largest diff. peak/hole,eÅ⁻³	0.27/-0.23	0.23/-0.21	0.43/-0.35	0.51/-0.36	0.51/-0.61	1.19/-0.63	0.28/-0.23
Flack parameter	0.2(8)	0.0(4)	n/a	n/a	n/a	n/a	n/a
Compound	7h	7i	7j	7ja	7k	8a	8b
-----------	----	----	----	------	----	----	----
Empirical formula	C_{20}H_{32}ClN_{3}O_{1.48}	C_{14}H_{18}N_{2}BF_{4}	C_{11}H_{8}Cl_{3}N_{3}BF_{4}	C_{11}H_{9}Cl_{3}N_{3}BF_{4}	C_{11}H_{9}Cl_{3}N_{3}BF_{4}	C_{13}H_{18}N_{2}OB_{4}	C_{12}H_{14}N_{2}BF_{4}
Formula weight	374.58	315.12	376.37	376.37	363.01	317.10	287.07
Temperature/K	150.0	120.0	120.0	120.0	120.0	120.0	120.0
Crystal system	triclinic	monoclinic	monoclinic	orthorhombic	monoclinic	orthorhombic	orthorhombic
Space group	P-1	P2/n	P2/n	Pca2_{1}	Pca2_{1}	Pca2_{1}	Pca2_{1}
a/Å	8.0473(4)	9.4928(6)	9.6158(5)	12.2618(8)	12.0073(9)	10.7585(10)	11.0268(10)
b/Å	8.4438(4)	7.8963(3)	7.9497(5)	6.9776(5)	7.6843(8)	7.5490(7)	7.5490(7)
c/Å	16.4764(9)	20.5873(12)	19.1105(11)	34.736(2)	10.7857(11)	7.4206(7)	7.4206(7)
α/°	77.912(4)	90.00	90.00	90	90	90	90
β/°	83.956(4)	94.597(5)	91.871(2)	90	90	90	90
γ/°	83.405(4)	90.00	90.00	90	90	90	90
Volume/Å³	1083.69(10)	1538.22(14)	1460.08(15)	2971.9(3)	665.93(12)	1438.4(2)	1313.5(2)
Z	2	4	4	8	2	4	4
\(\rho_{calculated}/g/cm^3\)	1.148	1.361	1.712	1.682	1.810	1.464	1.452
\(\mu/mm^{-1}\)	1.666	0.115	0.668	0.656	0.198	0.129	0.127
F(000)	406.0	656.0	752.0	1504.0	360.0	656.0	592.0
Radiation	CuKα	MoKα	MoKα	MoKα	MoKα	MoKα	MoKα
Reflections collected	14921	20156	22432	30024	9298	18591	16998
Independent refl. R_{int}	3826, 0.0572	3525, 0.0931	4060, 0.0277	7055, 0.0712	3197, 0.0483	3141, 0.0767	2858, 0.0767
Data/restraints/parameters	3826/195/256	3525/28/214	4060/0/235	7055/1/397	3197/7/216	3141/1/200	2858/1/181
Goodness-of-fit on F²	1.028	1.047	1.050	1.039	1.031	1.029	1.007
Final R_{1} [I≥2σ (I)]	0.0447	0.0684	0.0259	0.0619	0.0485	0.0464	0.0430
Final wR_{2} [all data]	0.1170	0.2134	0.0668	0.1246	0.1174	0.1006	0.0937
Largest diff. peak/hole, eÅ⁻³	0.25/-0.22	0.43/-0.28	0.39/-0.36	0.51/-0.42	0.35/-0.36	0.19/-0.23	0.17/-0.19
Flack parameter	n/a	n/a	n/a	0.05(5)	0.2(4)	-0.4(6)	-0.1(6)
Table S16. Crystal data and structure refinement parameters (cont.)

Compound	8c	8i	8k	9a	9b	9c	9k
Empirical formula	C_{12}H_{13}FN_{3}BF_{4}	C_{15}H_{20}N_{3}BF_{4}	C_{12}H_{9}F_{2}N_{3}BF_{4}	C_{14}H_{16}N_{3}OBF_{4}	C_{13}H_{16}N_{3}BF_{4}	C_{13}H_{15}N_{3}BF_{5}	C_{13}H_{11}F_{3}N_{3}BF_{4}
Formula weight	305.06	329.15	377.03	331.12	301.10	319.09	391.06
Temperature/K	120.0	120.0	150.0	120.0	120.0	120.0	120.0
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic	monoclinic	orthorhombic	monoclinic
Space group	Pca2\(_1\)	Pbca	Pca2\(_1\)	Pna2\(_1\)	C2/c	Pbca	P2\(_1\)/n
a/Å	11.4598(16)	10.6066(9)	22.5508(6)	14.4005(8)	11.7102(7)	11.2304(4)	7.5945(3)
b/Å	15.4396(19)	7.7396(7)	8.2325(2)	11.7102(7)	11.2304(4)	7.5945(3)	7.5945(3)
c/Å	7.5533(10)	39.222(3)	7.8305(2)	17.9974(10)	7.7571(3)	32.2135(9)	23.1992(10)
α/°	90	90	90	90	90	90	90
β/°	90	90	90	90	90	90	90
γ/°	90	90	90	90	90	90	90
Volume/Å\(^3\)	1336.4(3)	3219.8(5)	1453.73(6)	3035.0(3)	5689.8(4)	2876.41(13)	3025.4(2)
Z	4	8	4	8	16	8	8
\(\rho_{cak},g/cm^3\)	1.516	1.358	1.723	1.449	1.406	1.474	1.717
\(\mu,\text{mm}^{-1}\)	0.140	0.113	1.686	0.126	1.049	1.176	0.181
F(000)	624.0	1376.0	752.0	1376.0	2496.0	1312.0	1568.0
Radiation	MoK\(\alpha\)	MoK\(\alpha\)	CuK\(\alpha\)	MoK\(\alpha\)	CuK\(\alpha\)	CuK\(\alpha\)	MoK\(\alpha\)
Reflections collected	15307	33230	12774	41084	38152	16278	45266
Independent refl. R_int	2914, 0.0542	3332, 0.1113	2631, 0.0304	6971, 0.0663	5466, 0.1207	2540, 0.0427	8048, 0.0506
Data/restraints/parameters	2914/29/187	3332/0/209	2631/1/227	6971/1/417	5466/39/407	2540/0/200	8048/0/557
Goodness-of-fit on F^2	1.030	1.049	1.075	1.014	1.027	1.036	1.032
Final R1 indexes	0.0873	0.0672	0.0292	0.0508	0.0795	0.0335	0.0480
Final wR2 [all data]	0.2537	0.1434	0.0801	0.1221	0.2394	0.0880	0.1110
Largest diff. peak/hole, e Å\(^{-3}\)	0.60/-0.65	0.32/-0.30	0.28/-0.18	0.44/-0.26	0.30/-0.29	0.23/-0.22	0.45/-0.44
Flack parameter	0.5(4)	n/a	0.45(16)	0.4(3)	n/a	n/a	n/a
S1.6.3 ORTEP Diagrams for X-ray Crystal Structures

Figure S30. ORTEP of 7a showing thermal ellipsoids at the 50% probability level.

Figure S31. ORTEP of 7b showing thermal ellipsoids at the 50% probability level.
Figure S32. ORTEP of 7c showing thermal ellipsoids at the 50% probability level.

Figure S33. ORTEP of 7d showing thermal ellipsoids at the 50% probability level.
Figure S34. ORTEP of 7e showing thermal ellipsoids at the 50% probability level.

Figure S35. ORTEP of 7f showing thermal ellipsoids at the 50% probability level.
Figure S36. ORTEP of 7g showing thermal ellipsoids at the 50% probability level.

Figure S37. ORTEP of 7h showing thermal ellipsoids at the 50% probability level.
Figure S38. ORTEP of 7i showing thermal ellipsoids at the 50% probability level.

Figure S39. ORTEP of 7j showing thermal ellipsoids at the 50% probability level.
Figure S40. ORTEP of 7ja showing thermal ellipsoids at the 50% probability level.

Figure S41. ORTEP of 7k showing thermal ellipsoids at the 50% probability level.
Figure S42. ORTEP of 8a showing thermal ellipsoids at the 50% probability level.

Figure S43. ORTEP of 8b showing thermal ellipsoids at the 50% probability level.
Figure S44. ORTEP of 8c showing thermal ellipsoids at the 50% probability level.

Figure S45. ORTEP of 8i showing thermal ellipsoids at the 50% probability level.
Figure S46. ORTEP of 8k showing thermal ellipsoids at the 50% probability level.

Figure S47. ORTEP of 9a showing thermal ellipsoids at the 50% probability level.
Figure S48. ORTEP of 9b showing thermal ellipsoids at the 50% probability level.

Figure S49. ORTEP of 9c showing thermal ellipsoids at the 50% probability level.
Figure S50. ORTEP of 9k showing thermal ellipsoids at the 50% probability level.
S1.6.4 Summary of Bond Lengths, Bond Angles, and Dihedral Angles

Table S17. Structural data for individual triazolium salts 7a-k (n=1) obtained from single crystal X-ray diffraction measurements.

![Structure Diagram](image)

Backbone Bond Length	7a	7b	7c	7d	7e	7f	7g	7h	7i	7j	7k
N1N2	1.38	1.38	1.38	1.38	1.39	1.39	1.39	1.39	1.39	1.38	1.38
N1C3	1.32	1.33	1.33	1.33	1.32	1.32	1.31	1.32	1.32	1.31	1.31
C1N4	1.33	1.33	1.32	1.33	1.32	1.32	1.33	1.33	1.33	1.32	1.32
N1C5	1.36	1.37	1.36	1.37	1.37	1.35	1.36	1.35	1.35	1.35	1.36
C1C1	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.31	1.30	1.30	1.30
C2C8	1.47	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.50
N1C1	1.46	1.48	1.47	1.48	1.48	1.47	1.47	1.48	1.47	1.47	1.47
N1C7	1.43	1.43	1.43	1.43	1.43	1.45	1.44	1.43	1.43	1.43	1.43
C1C6	1.39	1.39	1.39	1.39	1.38	1.39	1.40	1.38	1.39	1.38	1.38
C1C8	1.37	1.39	1.39	1.39	1.39	1.40	1.39	1.39	1.38	1.38	1.38

C-H Bond Length											
C1H1	0.95	0.95	0.95	0.95	0.90	0.93	0.96	0.95	0.95	0.91	0.95
C1H2	0.99	0.99	0.97	0.99	0.95	0.93	0.99	0.99	0.99	0.92	0.99
C1H3	0.99	0.99	0.99	0.99	0.94	0.97	0.99	0.99	0.99	0.93	0.99

H-H Distance											
H1H2	3.06	3.09	3.04	3.08	3.02	2.99	3.12	3.12	3.08	3.04	3.07
H1H3	3.30	3.33	3.23	3.34	3.24	3.24	3.32	3.28	3.34	3.22	3.32

Bond Angles											
C2N1N3	102.8	103.2	103.0	102.9	102.5	102.7	102.6	102.5	102.8	103.2	102.3
N1N3C3	112.3	111.8	111.6	111.8	112.2	111.8	112.0	112.0	111.4	111.3	112.5
N1C5N4	105.6	105.9	106.2	105.9	105.9	106.2	106.0	106.4	106.3	106.4	105.9
C2N6C5	107.5	107.5	107.7	107.5	107.3	107.4	106.8	107.6	107.4	107.2	107.2
N2C3N4	111.8	111.6	111.6	111.9	111.9	112.0	112.0	112.2	111.9	111.6	112.1
C2C3N4	110.7	110.3	110.9	110.9	110.9	110.7	110.9	110.3	111.2	110.2	109.6
C5N1C4	114.6	113.5	113.6	113.6	113.5	113.5	114.2	113.4	113.4	114.1	

Torsion Angles											
H1C3*C4H2	44.4	41.7	46.3	42.3	46.0	40.7	43.6	45.5	41.9	43.9	42.9
H1C3*C5H1	68.4	71.0	68.1	70.4	67.9	72.5	68.8	67.1	70.9	70.4	69.6
N1N2*C3C3	16.1	19.9	25.2	3.8	73.7	4.1	76.6	91.2	79.9	2.8	62.1
N1N2*C5C5	163.9	160.5	155.2	177.4	105.6	175.7	102.3	88.6	97.9	177.0	122.9

SI-58
Table S18. Structural data for individual triazolium salts 8a-c, i, k (n=2) and 9a-c, k (n=3) obtained from single crystal X-ray diffraction measurements.

Backbone Bond Length	8a	8b	8c	8i	8k	9a	9b	9c	9k
N=N^2	1.38	1.38	1.37	1.38	1.38	1.37	1.38	1.37	1.38
N=C^3	1.32	1.31	1.31	1.34	1.32	1.31	1.32	1.31	1.32
C=N^4	1.34	1.33	1.33	1.33	1.33	1.32	1.33	1.32	1.33
N=C^5	1.36	1.37	1.37	1.36	1.37	1.37	1.38	1.37	1.37
C=N^1	1.31	1.30	1.32	1.30	1.31	1.31	1.31	1.31	1.31
C=O	1.49	1.49	1.48	1.49	1.49	1.48	1.48	1.48	1.49
N=C^a	1.47	1.47	1.47	1.47	1.49	1.48	1.48	1.47	1.48
N=C^c	1.43	1.44	1.44	1.44	1.43	1.43	1.43	1.43	1.43
C=C^b	1.39	1.38	1.39	1.39	1.38	1.38	1.39	1.39	1.38
C=C^c	1.38	1.39	1.38	1.39	1.38	1.38	1.39	1.39	1.38

C-H Bond Length									
C=H^1	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.93	0.93
C=H^2	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.97	0.95
C=H^3	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.97	0.99

H-H Distance									
H=H^2	2.72	2.76	2.77	2.77	2.76	2.51	2.51	2.50	2.45
H=H^3	3.14	3.10	3.10	3.06	3.07	3.43	3.40	3.36	3.31

Bond Angles									
C=N=N^2	103.5	103.5	103.4	103.2	103.2	104.3	104.2	104.3	103.5
N=N^3=N^3	111.4	111.4	112.3	111.4	112.0	111.1	110.5	110.0	111.6
N=N=C^4	106.6	107.1	106.6	107.2	106.5	107.4	107.8	107.4	106.9
C=N=N^5	107.0	106.2	107.4	106.7	107.2	106.8	106.9	106.5	107.2
N=N^6=C^6	111.5	111.7	110.3	111.5	111.1	110.4	110.7	110.8	110.8
C=C=O^6	122.9	121.8	122.7	121.8	121.9	123.5	124.5	124.5	124.3
C=N=C^a	126.0	125.8	124.3	126.1	125.7	127.6	127.2	127.9	127.7

Torsion Angles									
H=3*C=H^2	35.1	37.4	38.4	41.3	39.0	0.6	1.3	2.6	2.4
H=3*C=H^3	74.1	71.7	70.4	68.1	70.1	107.5	105.6	103.9	104.3
N=2=C=3	21.7	32.1	21.0	72.9	65.0	44.3	21.0	17.0	73.8
N=N^2=C=3	157.3	147.3	158.4	105.7	119.3	135.3	159.5	163.3	105.9
Table S19. Summary of average bond angles and distances of triazolium salts 7a-k (n=1); 8a-c, 8i, 8k (n=2); 9a-c, 9k (n=3) and corresponding standard deviations obtained from single crystal X-ray structural analysis. Data highlighted in purple is included in Table 2 in the main text.

Backbone Bond Length	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
N^1N^2	1.38	0.00	1.38	0.00	1.38	0.01	-0.01	0.00	
N^2C^3	1.32	0.01	1.31	0.01	1.32	0.01	-0.01	0.00	
C^1N^4	1.33	0.00	1.33	0.00	1.33	0.00	0.01	0.00	
N^4C^5	1.36	0.01	1.36	0.00	1.37	0.00	0.00	0.00	
C^5N^1	1.30	0.00	1.31	0.01	1.31	0.00	0.01	0.00	
C^5C^6	1.49	0.01	1.49	0.01	1.48	0.01	0.00	0.00	
N^4C^9	1.47	0.01	1.47	0.01	1.48	0.00	0.00	0.00	
N^7C^7	1.43	0.01	1.43	0.01	1.43	0.00	0.00	0.00	
C^7C^8	1.39	0.01	1.39	0.01	1.38	0.01	0.00	-0.01	
C^7C^6	1.39	0.01	1.38	0.01	1.38	0.00	0.00	0.00	

C-H Bond Length									
C^1H^1	0.94	0.02	0.95	0.00	0.94	0.01	0.01	-0.01	
C^4H^2	0.97	0.03	0.99	0.00	0.97	0.02	0.02	-0.02	
C^7H^3	0.98	0.02	0.99	0.00	0.99	0.01	0.01	0.00	

H-H Distance									
H^1H^2	3.06	0.04	2.76	0.02	2.49	0.03	-0.31	-0.26	
H^1H^3	3.29	0.05	3.09	0.03	3.37	0.05	-0.19	0.28	

Bond Angles									
C^3N^1N^2	102.8	0.3	103.3	0.1	104.1	0.4	0.6	0.7	
N^1N^3C^3	111.9	0.4	111.7	0.4	110.8	0.7	-0.2	-0.9	
N^2C^4N^4	106.1	0.3	106.8	0.3	107.4	0.3	0.8	0.6	
C^5N^4C^5	107.4	0.2	106.9	0.5	106.9	0.3	-0.5	0.0	
N^4C^5N^1	111.9	0.2	111.3	0.6	110.7	0.2	-0.6	-0.6	
C^6C^7N^4	110.6	0.5	122.2	0.5	124.2	0.5	11.6	2.0	
C^3N^4C^6	113.7	0.4	125.6	0.7	127.6	0.3	11.8	2.0	

Torsion Angles									
H^1C^3*C^6H^2	43.6	1.9	38.2	2.3	1.7	0.9	-5.4	-36.5	
H^1C^3*C^6H^2	69.6	1.6	70.9	2.2	105.3	1.6	1.3	34.4	
N^1N^2*C^7C^8	41.2	34.8	42.5	24.7	39.0	26.1	1.38	-3.54	
N^1N^2*C^7C^8	139.1	35.1	137.6	23.8	141.0	26.5	-1.46	3.39	
Table S20. Summary of average* bond angles and distances of triazolium salts 7a-c, k (n=1); 8a-c, 8k (n=2); 9a-c, 9k (n=3) and corresponding standard deviations (SD) obtained from single crystal X-ray structural analysis.

*Averages calculated using only data for the 12 triazolium salts used for C(3)-H/D exchange studies. These average values and trends are in excellent agreement with data in Table S19 as expected given the small standard deviations.

Backbone Bond Length	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)
N1N2	1.38	0.00	1.38	0.00	1.38	0.01
N2C3	1.32	0.01	1.31	0.01	1.32	0.01
C3N4	1.33	0.01	1.33	0.00	1.33	0.00
N4C5	1.36	0.00	1.36	0.01	1.37	0.00
C5N1	1.30	0.00	1.31	0.01	1.31	0.00
C5C6	1.49	0.01	1.49	0.01	1.48	0.01
N5C7	1.47	0.01	1.47	0.01	1.48	0.00
N5C8	1.43	0.00	1.43	0.01	1.43	0.00
C5C8	1.39	0.01	1.39	0.01	1.38	0.01
C5C9	1.38	0.01	1.38	0.00	1.38	0.00
C-H Bond Length						
C3H1	0.95	0.00	0.95	0.00	0.94	0.01
C3H2	0.98	0.01	0.99	0.00	0.97	0.02
C3H3	0.99	0.00	0.99	0.00	0.99	0.01
H-H Distance						
H3H2	3.07	0.02	2.75	0.02	2.49	0.03
H3H3	3.29	0.04	3.10	0.03	3.37	0.05
Bond Angles						
C3N3N2	102.8	0.4	103.4	0.1	104.1	0.4
N3N2C3	112.1	0.4	111.8	0.4	110.8	0.7
N2C3N4	105.9	0.2	106.7	0.3	107.4	0.3
C3N4C5	107.5	0.2	106.9	0.5	106.9	0.3
N4C5N1	111.8	0.3	111.2	0.6	110.7	0.2
C5C5N4	110.4	0.6	122.3	0.5	124.2	0.5
C5N4C6	114.0	0.5	125.4	0.8	127.6	0.3
Torsion Angles

	H1C3*C6H2	H1C3*C6H1	N1N2*C6C5	N1N2*C6C6
	43.8	2.0	37.5	1.7
	69.3	1.3	71.6	1.8
	150.6	18.8	145.6	18.2
	30.8	21.2	35.0	20.7
			39.0	26.1
			141.0	26.5
S1.7 Synthetic \(^1\)H and \(^{13}\)C\{H\} NMR Spectra for New Triazolium Salts

7e
DMSO-d$_6$
1H 700 MHz

DMSO-d$_6$
13C{1H} 176 MHz
CDCl$_3$-d_1
1H 400 MHz

CDCl$_3$-d_1
13C{1H} 101 MHz
S1.8 Synthetic 1H NMR Spectra for Known Triazolium Salts

7a

D$_2$O-$_d_2$

1H 400 MHz

7b

D$_2$O-$_d_2$

1H 400 MHz
D$_2$O-d_2
1H 400 MHz

D$_2$O-d_2
1H 400 MHz
9k

CDCl₃-d₆

1H 400 MHz

BF₄⁻
S2. DFT Calculations

All the DFT calculations were performed using Gaussian 09 on the Durham University Hamilton HPC.S10 The level of theory used for determining conformations for each molecule was B3LYP/6-31+g(d,p) for initial global minimima searches with subsequent structural refinement by B3LYP and M062X/6-311++g (d,p) unless stated otherwise, using redundant internal coordinates, with solvent water being modelled using an implicit polarisable continuum model (PCM).S11 Gaussian NBO version 3.1 (within the Gaussian 09 package) was used for natural bond analysis (NBO) calculations.S12 The imaginary frequencies of all the molecules were observed to be zero.

S2.1 Conformation Search and Total Energies

The conformations of molecules were obtained by optimizing structures with different dihedral angles between N1N2 and C1Ce. The resulting structures and the corresponding energies (Hartrees) for different conformers are listed below. Only one structure is presented for conformations of the same energy. The structural differences between conformers are small.
S2.1.1 Triazolium Salts

7a

7b

7c

7d

7e
7f

-927.578205

7g

-819.580078

7h

-944.381175

7i

-708.483613
-708.483616
S2.1.2 Carbene

7’a

7’b

7’c

7’d
$8'$b

$8'$c

$8'$i

$8'$k

SI-86
S2.2 Coordinates of Triazolium salts

7a (B3LYP)

```
O                  4.77379700    0.41104900    -0.10491600
N                  -0.77315800    0.00387600    -0.06778400
N                 -1.54293200    1.03797600    0.41556400
N                 -2.79399200   -0.63793700    -0.29134900
C                 -1.52909000   -1.00402800   -0.50582100
H                 -1.17725800   -1.91805800    -0.95262600
C                 -2.76843100    0.61378000    0.25838500
C                 -4.14932100    1.12716500    0.48785800
H                 -4.38901300    1.87664600   -0.27122000
H                 -4.26307900    1.59030400    1.46693700
C                 -5.00282600   -0.16532800    0.32324300
H                 -5.96336200    0.03675800   -0.14636700
H                 -5.18797500   -0.60686500    1.30287300
C                 -4.16064100   -1.14768100   -0.53126200
H                 -4.23891400   -2.18365900   -0.20998000
H                 -4.37296700   -1.07685800   -1.59818400
C                 0.65729300    0.08157600   -0.05533700
C                 1.40668600   -1.01083100    0.36413500
H                 0.91979000   -1.91239400    0.71543400
C                 2.79820700   -0.94046400    0.35285300
```
	X	Y	Z
H	3.36822000	-1.79652600	0.68433100
C	3.43074700	0.23652800	-0.06360200
C	2.65884300	1.33729000	-0.47027300
H	3.16236800	2.24058800	-0.79129800
C	1.27756400	1.26214400	-0.47104600
H	0.68149200	2.10530100	-0.79518600
C	5.62588900	-0.67089800	0.29117900
H	5.47250100	-1.54413200	-0.34819600
H	5.45693600	-0.93948200	1.33718800
H	6.64193400	-0.30294300	0.16873900

M062X

	X	Y	Z
O	4.75436900	0.41668300	-0.09537400
N	-0.77146900	0.00283500	-0.06518700
N	-1.53285800	1.04363800	0.37850200
N	-2.77998100	-0.64346200	-0.28297300
C	-1.51860300	-1.01490800	-0.47769500
H	-1.15839900	-1.94188000	-0.89347700
C	-2.75473900	0.62069600	0.22941800
C	-4.13785600	1.13684500	0.43714300
H	-4.38461500	1.83010900	-0.36997100
H	-4.24847000	1.65426700	1.38740100
C	-4.96800700	-0.16977100	0.35342800
H	-5.95365300	-0.00409200	-0.07433600
H	-5.08791300	-0.58675600	1.35319100
----	--------	--------	--------
C	-4.14539000	-1.15230900	-0.50849400
H	-4.21952700	-2.18708600	-0.18527400
H	-4.36705800	-1.07438400	-1.57236700
C	0.65760900	0.08119700	-0.05154800
C	1.40272100	-1.01937700	0.33586700
H	0.91443900	-1.92942100	0.66350600
C	2.79239100	-0.94680900	0.32385900
H	3.36463900	-1.81181400	0.62782500
C	3.41715700	0.24136800	-0.05819200
C	2.64597200	1.35109700	-0.43069200
H	3.15231200	2.26243800	-0.72270700
C	1.26791700	1.27360000	-0.43403500
H	0.66410300	2.12190900	-0.73061400
C	5.58338100	-0.67826800	0.27588600
H	5.42011900	-1.53101700	-0.38764600
H	5.39798700	-0.97162000	1.31202200
H	6.60592000	-0.32535600	0.17336700

SI-90
7b (B3LYP)

![Structure of 7b](image-url)

Atom	X	Y	Z
N	0.08613000	0.06190100	0.02057800
N	-0.65230700	-1.02355400	0.43186400
N	-1.95113200	0.65032000	-0.18821800
C	-0.69869500	1.07265200	-0.35799200
H	-0.37429000	2.02224700	-0.74802100
C	-1.88953900	-0.62882000	0.29321200
C	-3.25499000	-1.17578700	0.53554200
H	-3.46309700	-1.17535000	1.60888200
H	-3.36334200	-2.19617900	0.17093100
C	-4.14794800	-0.15631100	-0.23294800
H	-5.09895000	0.01213200	0.26818700
H	-4.35221000	-0.53431100	-1.23514400
C	-3.33174400	1.15805400	-0.33652900
H	-3.44455300	1.66998600	-1.28936000
H	-3.53214400	1.85220300	0.47980100
C	1.52058400	0.01840600	0.00995600
C	2.24022700	1.13516000	0.42889100
H	1.72961500	2.01730900	0.79481300
C	3.63194800	1.08800900	0.39198000
H	4.20223000	1.94989900	0.71603400
C	4.28470800	-0.06588700	-0.03980300
Element	X	Y	Z
---------	----------	----------	----------
C	3.54592600	-1.17953400	-0.44127100
H	4.05123700	-2.07665800	-0.77755800
C	2.15458400	-1.14383200	-0.42352000
H	1.56888200	-1.99539300	-0.74377200
H	5.36741100	-0.09922900	-0.05946900

M062X

Element	X	Y	Z
N	0.08247600	0.06673000	0.03663200
N	-0.64632600	-1.02524500	0.40410400
N	-1.94404300	0.66061100	-0.15526000
C	-0.69610600	1.08799000	-0.30609500
H	-0.36596600	2.05022400	-0.66233700
C	-1.88035600	-0.63224900	0.27890400
C	-3.24714500	-1.18518200	0.49702700
H	-3.46905300	-1.18030100	1.56642800
H	-3.34541700	-2.20228200	0.12475100
C	-4.11666900	-0.16340100	-0.28003900
H	-5.09759600	-0.03238800	0.16997300
H	-4.24680300	-0.50706900	-1.30614200
C	-3.32462200	1.16219300	-0.28658800
H	-3.43099900	1.73396600	-1.20445600
H	-3.54153400	1.79141500	0.57611500
C	1.51497500	0.02144600	0.01598100
C	2.23512100	1.15161500	0.38081900
Element	X	Y	Z
---------	------------	------------	------------
H	1.72875400	2.04880700	0.71531400
C	3.62357600	1.09799700	0.33308400
H	4.19936900	1.97090600	0.61398200
C	4.26712400	-0.07353500	-0.05371500
C	3.52388200	-1.19937900	-0.39992900
H	4.02428000	-2.11149400	-0.70003300
C	2.13551400	-1.15861700	-0.37302500
H	1.53938200	-2.01862800	-0.64958500
H	5.34907800	-0.11110600	-0.08088700
7c (B3LYP)

N 0.33370600 -0.04402800 0.04626000
N 1.06509400 1.04031400 -0.38172100
N 2.37410600 -0.60812800 0.28442500
C 1.12456200 -1.03635600 0.45906700
H 0.80531900 -1.98234800 0.86221600
C 2.30458400 0.66234300 -0.21909500
C 3.66623700 1.23924800 -0.40726900
H 3.86427800 1.96795000 0.38338300
H 3.77419500 1.74401800 -1.36620700
C 4.56954300 -0.02347700 -0.27864100
H 5.51495400 0.19967300 0.21155300
H 4.78446000 -0.42028700 -1.27123700
C 3.75748000 -1.07024000 0.52728900
H 3.88167900 -2.08990600 0.17054400
H 3.95080600 -1.02888200 1.59928300
C -1.09917100 -0.02488800 0.01256000
C -1.78916400 -1.13807500 -0.46200300
H -1.25632700 -2.00283400 -0.83645200
C -3.18056300 -1.12147200 -0.47155900
H -3.74839900 -1.96779500 -0.83503800
C -3.83112500 0.01730900 -0.02339300

SI-94
	X	Y	Z
C	-3.15581500	1.13846000	0.43686900
H	-3.70719700	2.00472400	0.77833100
C	-1.76621400	1.11436800	0.45894500
H	-1.20761200	1.96627200	0.82292500
F	-5.18540300	0.03877700	-0.03985300

M062X

	X	Y	Z
N	0.33512500	-0.04486300	0.04539400
N	1.05674600	1.04452100	-0.34406800
N	2.36439000	-0.61277800	0.27560800
C	1.11903200	-1.04567900	0.43235900
H	0.79307100	-2.00291200	0.80620500
C	2.29296500	0.66860600	-0.18998900
C	3.65578000	1.24842000	-0.35752200
H	3.86341500	1.91876600	0.47940700
H	3.75617000	1.80707300	-1.28520600
C	4.53810000	-0.02577500	-0.31258000
H	5.51162100	0.16366000	0.13262700
H	4.68499600	-0.40006600	-1.32555600
C	3.74727400	-1.07234000	0.50279900
H	3.86787000	-2.09091700	0.14429100
H	3.95111600	-1.02256300	1.57183300
C	-1.09586300	-0.02645500	0.01084100
C	-1.78104200	-1.15288600	-0.42527300
---	---	---	---
H	-1.24578800	-2.02811200	-0.77225700
C	-3.16950000	-1.13468800	-0.43281600
H	-3.74309800	-1.99028200	-0.76407800
C	-3.81583000	0.01839200	-0.02455300
C	-3.14068800	1.15266600	0.39494600
H	-3.69512000	2.02956900	0.70259700
C	-1.75413700	1.12757500	0.41770000
H	-1.18743300	1.98851200	0.74785500
F	-5.15857700	0.04134500	-0.04130200
7d (B3LYP)

N -1.50113000 0.08407000 0.03221400
N -2.22537300 -1.01486000 0.43353200
N -3.54508900 0.64167300 -0.18951000
C -2.29912500 1.08458300 -0.34863800
H -1.98751200 2.04093900 -0.73298100
C -3.46723400 -0.63883300 0.28735400
C -4.82562200 -1.20797300 0.51674800
H -5.04230400 -1.21312600 1.58839900
H -4.91442800 -2.22911700 0.14902900
C -5.72791500 -0.20060400 -0.25673000
H -6.68641800 -0.05008200 0.23563900
H -5.91578900 -0.57800900 -1.2623400
C -4.93288400 1.12752300 -0.34714200
H -5.04566000 1.64242900 -1.29835400
H -5.15113200 1.81401000 0.47105400
C -0.06857700 0.05765700 0.03005500
C 0.58216800 -1.10014700 -0.38865400
H 0.01237800 -1.96328500 -0.70583900
C 1.97245400 -1.13102500 -0.40038500
H 2.48974300 -2.02351300 -0.72551200
C 2.68238400 -0.00067900 -0.00178500

SI-97
C 2.03213500 1.15595100 0.41844000
H 2.59361600 2.02316500 0.73848500
C 0.64059000 1.18213800 0.44369200
H 0.12630700 2.06541600 0.80071700
Br 4.59691700 -0.04218800 -0.02599100

M062X

N -1.49531600 0.08831300 0.04944700
N -2.20947000 -1.01732300 0.40529300
N -3.52861400 0.65017100 -0.15958200
C -2.28739900 1.09890500 -0.29683400
H -1.97071700 2.06830900 -0.64613300
C -3.44822200 -0.64382900 0.26994600
C -4.80771400 -1.21931000 0.47365700
H -5.03839700 -1.22200900 1.54123200
H -4.88623700 -2.23642600 0.09677500
C -5.68676900 -0.20835000 -0.30683600
H -6.67305800 -0.09426000 0.13594400
H -5.80348100 -0.55013400 -1.33511900
C -4.91623900 1.12977700 -0.30186800
H -5.02304700 1.70321500 -1.21865500
H -5.15065100 1.75216300 0.56115000
C -0.06456300 0.06210300 0.04186000
C 0.57573900 -1.11260600 -0.32970600

SI-98
Element	X	Y	Z
H	-0.00272700	-1.98517600	-0.60374300
C	1.96307200	-1.14564900	-0.34625900
H	2.48198000	-2.05083200	-0.63213300
C	2.67380100	-0.00125900	-0.00173700
C	2.02977600	1.17173300	0.37118400
H	2.59792300	2.04926900	0.64953000
C	0.64142900	1.20150100	0.40324600
H	0.12800100	2.09870400	0.72579200
Br	4.56962100	-0.04511500	-0.03430500
7e (B3LYP)

\[
\begin{align*}
 &N &-0.59942900 & 0.35076300 & 0.05761900 \\
 &N &-1.14202500 & -0.79585700 & 0.58992100 \\
 &N &-2.69616800 & 0.50757300 & -0.28147400 \\
 &C &-1.53894900 & 1.13763200 & -0.47309700 \\
 &H &-1.37841100 & 2.07522600 & -0.97706100 \\
 &C &-2.42203500 & -0.66596900 & 0.36785900 \\
 &C &-3.67232200 & -1.42670800 & 0.64952800 \\
 &H &-3.92669900 & -1.32875200 & 1.70833900 \\
 &H &-3.57198300 & -2.48703700 & 0.42268000 \\
 &C &-4.70110600 & -0.70117700 & -0.26798700 \\
 &H &-5.68904600 & -0.65308000 & 0.18524300 \\
 &H &-4.78491500 & -1.23543400 & -1.21479000 \\
 &C &-4.13850800 & 0.71977900 & -0.52870400 \\
 &H &-4.29811800 & 1.07503600 & -1.54386000 \\
 &H &-4.50265600 & 1.46158800 & 0.18225600 \\
 &C &0.81464900 & 0.58033000 & 0.09413700 \\
 &C &1.29754600 & 1.86670000 & 0.31731800 \\
 &H &0.62105400 & 2.69195100 & 0.49818800 \\
 &C &2.67519600 & 2.06841100 & 0.33000700 \\
 &H &3.06853200 & 3.06206100 & 0.50344200 \\
\end{align*}
\]
Atom	X	Y	Z
C	3.55352600	1.00383100	0.14334700
C	3.03381300	-0.27148500	-0.06271600
C	1.66507900	-0.50608000	-0.09683600
H	1.26745800	-1.49621500	-0.26864000
Cl	4.13134700	-1.62322000	-0.29757200
H	4.62390200	1.16047000	0.16333100

M062X

Atom	X	Y	Z
N	-0.59968100	0.35599300	0.06918800
N	-1.12820500	-0.79825600	0.56566000
N	-2.68783200	0.51983100	-0.25277100
C	-1.53738400	1.15634900	-0.42998800
H	-1.37696100	2.11169300	-0.90271400
C	-2.40573800	-0.66915500	0.35794000
C	-3.65432300	-1.43876700	0.62060600
H	-3.92236900	-1.33440300	1.67430300
H	-3.54330900	-2.49619700	0.39206400
C	-4.66127600	-0.71335000	-0.30826100
H	-5.66890600	-0.71252500	0.09950700
H	-4.67891300	-1.20817200	-1.27922500
C	-4.13048700	0.72594800	-0.48252100
H	-4.29772600	1.14027600	-1.47285800
H	-4.50060700	1.41151100	0.27905000
C	0.81319400	0.58347200	0.09446100

SI-101
C 1.29537300 1.86912200 0.29595100
H 0.61833200 2.69597100 0.46897400
C 2.67135700 2.06603000 0.29796200
H 3.06961900 3.06035500 0.45352200
C 3.54193000 0.99716800 0.12189700
C 3.01851500 -0.27718300 -0.06235100
C 1.65176700 -0.50823500 -0.08549100
H 1.24661500 -1.49947400 -0.23854800
Cl 4.10194700 -1.62394000 -0.28250800
H 4.61358900 1.14657000 0.13278300
7f (B3LYP)

N -1.43454200 0.09553100 0.03368300
N -2.15040700 -1.02485600 0.38779700
N -3.48229900 0.64983800 -0.15534800
C -2.24123300 1.10795100 -0.29839700
H -1.93956900 2.08280900 -0.64180900
C -3.39464400 -0.65081400 0.26410300
C -4.74867400 -1.23749700 0.47309100
H -4.96261400 -1.28565900 1.54426400
H -4.83151100 -2.24398700 0.06589000
C -5.65823200 -0.20567400 -0.25817500
H -6.61923900 -0.08513400 0.23744100
H -5.83954600 -0.54028500 -1.28005500
C -4.87439200 1.13157800 -0.28770900
H -4.99290300 1.69025100 -1.21306700
H -5.09572400 1.77642400 0.56296500
C -0.00250200 0.07177500 0.01921600
C 0.64265400 -1.10403600 -0.35640200
H 0.06806500 -1.97767100 -0.63110000
C 2.03115300 -1.13159100 -0.37796100
H 2.54227900 -2.03852500 -0.67289000
C 2.75634500 0.01138900 -0.03761200
C 2.09828900 1.18195800 0.33841600
H 2.65952400 2.06557200 0.61170000
C 0.70886400 1.21445700 0.37596200
H 0.19963200 2.11372100 0.69654500
C 4.25995500 -0.04073500 -0.02032100
F 4.73662200 -0.46647400 1.18024300
F 4.82115900 1.16760200 -0.24732100
F 4.75520300 -0.88931300 -0.94937600

M062X

N -1.42878500 0.09396800 0.04403500
N -2.13765600 -1.01888400 0.38844500
N -3.46423600 0.65281700 -0.14637800
C -2.22631400 1.10743700 -0.28394300
H -1.91565200 2.08286800 -0.62189300
C -3.37776800 -0.64713300 0.26623200
C -4.73443500 -1.22869400 0.47052800
H -4.95899800 -1.24391400 1.53930400
H -4.81197800 -2.24172800 0.08266600
C -5.62042600 -0.21142200 -0.29362300
H -6.60483400 -0.10568500 0.15532700
H -5.74117700 -0.54120200 -1.32534100
C -4.85440800 1.12914100 -0.27633000
H -4.96714600 1.71326400 -1.18559800
Atom	X	Y	Z
H	-5.08634800	1.74035800	0.59526900
C	0.00171600	0.06891400	0.02557300
C	0.63558300	-1.11163700	-0.33869000
H	0.05221700	-1.98409700	-0.60064900
C	2.02208700	-1.14098200	-0.36454200
H	2.53762300	-2.04922200	-0.64939000
C	2.74108300	0.00480800	-0.04012200
C	2.09398000	1.18023000	0.32461800
H	2.66344500	2.06368100	0.58449300
C	0.70747100	1.21519400	0.36780600
H	0.19480900	2.11560000	0.68116600
C	4.24188500	-0.04196800	-0.02362700
F	4.71549000	-0.35481700	1.19663400
F	4.78649400	1.13702900	-0.35445200
F	4.72802200	-0.95871900	-0.87122100
7g (B3LYP)

\[\text{N} \quad -0.35075300 \quad -0.03309100 \quad 0.04184500 \\
\text{N} \quad -1.09160500 \quad -0.02664900 \quad -1.12347000 \\
\text{N} \quad -2.38594900 \quad -0.08594500 \quad 0.66695900 \\
\text{C} \quad -1.13353600 \quad -0.07216700 \quad 1.11782800 \\
\text{H} \quad -0.80064200 \quad -0.08268100 \quad 2.14201800 \\
\text{C} \quad -2.32640500 \quad -0.06179500 \quad -0.70227200 \\
\text{C} \quad -3.69412100 \quad -0.10819500 \quad -1.29577400 \\
\text{H} \quad -3.88616600 \quad -1.10969100 \quad -1.68999800 \\
\text{H} \quad -3.81781900 \quad 0.60464800 \quad -2.10968400 \\
\text{C} \quad -4.58965100 \quad 0.21433100 \quad -0.06270900 \\
\text{H} \quad -5.53236600 \quad -0.32838400 \quad -0.08929500 \\
\text{H} \quad -4.81053800 \quad 1.28202600 \quad -0.04214800 \\
\text{C} \quad -3.76454300 \quad -0.16299200 \quad 1.19452000 \\
\text{H} \quad -3.88979700 \quad 0.52827900 \quad 2.02450200 \\
\text{H} \quad -3.94671400 \quad -1.18264200 \quad 1.53449700 \\
\text{C} \quad 1.07823400 \quad 0.00772200 \quad 0.01877600 \\
\text{C} \quad 1.79462400 \quad -1.19980800 \quad -0.00621000 \\
\text{C} \quad 3.19167900 \quad -1.15467300 \quad -0.04034000 \\
\text{H} \quad 3.77616000 \quad -2.06296600 \quad -0.05793500 \\
\text{C} \quad 3.82721800 \quad 0.08435900 \quad -0.05295000 \\
\text{C} \quad 3.12362500 \quad 1.28593400 \quad -0.03148400 \\
\]
C	-4.56043200	0.23904300	-0.05834200
H	-5.52586100	-0.25973100	-0.09172900
H	-4.72595000	1.31558700	-0.01896300
C	-3.75158500	-0.19443500	1.18377900
H	-3.87392200	0.46397000	2.03947800
H	-3.93988400	-1.22747800	1.47437000
C	1.07422600	0.00843100	0.01882300
C	1.78603100	-1.19461900	-0.00876500
C	3.18019300	-1.14792300	-0.04053600
H	3.76875700	-2.05374000	-0.05907300
C	3.80830900	0.09233000	-0.04981100
C	3.10524400	1.29168400	-0.02755700
H	3.63730100	2.23174500	-0.03632600
C	1.71091200	1.25267700	0.00510300
H	4.89091500	0.12571900	-0.07506200
O	1.04272500	-2.31475900	0.00223600
O	0.90086900	2.32536600	0.03032500
C	1.72665400	-3.56588700	-0.01126800
H	2.36291900	-3.66548000	0.87050400
H	0.95065200	-4.32602900	0.00650600
H	2.32390600	-3.66739500	-0.91971000
C	1.50786100	3.61562900	0.02764900
H	2.09532700	3.76212500	-0.88106800
H	0.68735300	4.32706200	0.05443200
H	2.13946500	3.74546800	0.90890500
7h (B3LYP)

![Chemical Structure](image)

Atom	X	Y	Z
N	-1.27531800	-0.04804900	0.04704300
N	-2.00925300	-0.1191200	-1.11845300
N	-3.31258200	-0.16844600	0.66369200
C	-2.06351400	-0.08108100	1.11993900
H	-1.73812300	-0.03794400	2.14571300
C	-3.24568900	-0.19470600	-0.70370800
C	-4.60551300	-0.32665800	-1.30207200
H	-4.74937600	-1.35166800	-1.65430800
H	-4.75494200	0.34487100	-2.14613700
C	-5.52229000	0.00657200	-0.08775400
H	-6.44101100	-0.57635500	-0.09731100
H	-5.78814900	1.06389500	-0.11138400
C	-4.69024500	-0.28472800	1.18752800
H	-4.85066100	0.43297400	1.98848300
H	-4.83012400	-1.29702000	1.56700400
C	0.16802100	0.06161800	0.02421100
C	0.92771700	-1.12101000	0.00906100
C	2.31589500	-0.98108600	-0.00471000
H	2.92637100	-1.87645900	-0.01221700
C	2.93913500	0.27018800	-0.00973100
	X	Y	Z
---	---------	---------	---------
C	5.07051000	-0.21230200	-1.29517900
H	6.15172300	-0.04823200	-1.30814400
H	4.89626400	-1.29110400	-1.34647400
H	4.64739800	0.24170900	-2.19513300
C	5.08877700	-0.21107300	1.24473400
H	6.17004100	-0.04676000	1.24230200
H	4.67843800	0.24351600	2.15031500
H	4.91554600	-1.28987500	1.29931600

M062X

	X	Y	Z
N	-1.26729600	-0.06340600	0.04074000
N	-1.99164900	-0.10412300	-1.11553700
N	-3.29093900	-0.20570300	0.65808400
C	-2.04495000	-0.12714500	1.11300600
H	-1.70921000	-0.10962000	2.13782900
C	-3.22485000	-0.19408800	-0.70597200
C	-4.58635000	-0.31354700	-1.30199500
H	-4.73573200	-1.33872500	-1.64772100
H	-4.73080400	0.36233000	-2.14166900
C	-5.48483700	0.02411800	-0.08448600
H	-6.42844400	-0.51509900	-0.10849200
H	-5.69457700	1.09363100	-0.07553800
C	-4.66613600	-0.34144300	1.17276900
H	-4.82238200	0.33317400	2.01003700

SI-111
H -4.81070500 -1.37380600 1.48947300
C 0.16988800 0.05898900 0.01907200
C 0.93394000 -1.11339000 -0.00267800
C 2.31732000 -0.96189200 -0.01194800
H 2.93851900 -1.85187300 -0.02150300
C 2.92292900 0.29575300 -0.00933700
C 2.11304400 1.42880200 -0.00434100
H 2.58012300 2.40859400 -0.00796500
C 0.72094000 1.34183700 0.00539100
C 0.31664700 -2.49996900 -0.00917600
H -0.77006700 -2.40146200 -0.06025400
C -0.12518600 2.60187400 0.00316400
H -1.17958600 2.31682800 -0.02672900
C 4.43267100 0.42534800 -0.01588400
H 4.66610400 1.49435400 -0.01177600
C 0.65808100 -3.25146600 1.28310000
H 1.73631500 -3.41188500 1.36525800
H 0.32851900 -2.69452200 2.16317100
H 0.16931400 -4.22815000 1.28848300
C 0.76009600 -3.29368500 -1.24349600
H 0.51125200 -2.76077000 -2.16354500
H 1.83828000 -3.47137700 -1.23087200
H 0.26004300 -4.26448000 -1.26002400
C 0.10314000 3.41283900 1.28400000
H -0.12203700 2.81846100 2.17239300
H	1.14089100	3.74915300	1.35167700	
H	-0.53903200	4.29633900	1.28726400	
C	0.15545400	3.44650500	-1.24499800	
H	1.19090100	3.79575300	-1.25798800	
H	-0.02374600	2.87228600	-2.15647600	
H	-0.49530400	4.32360000	-1.25510700	
C	5.03704800	-0.18903400	-1.28369100	
H	6.11812000	-0.03310200	-1.29887400	
H	4.85248400	-1.26617500	-1.32052400	
H	4.61067900	0.26081900	-2.18278500	
C	5.04856200	-0.20147100	1.24023200	
H	6.12971300	-0.04547300	1.24729900	
H	4.63031700	0.23919000	2.14768200	
H	4.86453700	-1.27899000	1.26787200	
7i (B3LYP)

![Chemical Structure Image]

N 0.48241800 0.03273600 0.05075900
N 1.21936300 -0.00626800 -1.11526200
N 2.52332700 0.07253400 0.66533500
C 1.27191800 0.08330000 1.12209800
H 0.94575400 0.11882500 2.14809200
C 2.45757000 0.02218700 -0.70161000
C 3.82265900 0.04073700 -1.30242400
H 4.02370000 1.03174500 -1.71811700
H 3.93405700 -0.68991600 -2.10221600
C 4.72052400 -0.26692700 -0.06720800
H 5.66856400 0.26551900 -2.10842300
H 4.93063900 -1.33620100 -0.02687600
C 3.90504400 0.14291000 1.18616100
H 4.02536000 -0.53462600 2.02810000
H 4.10011500 1.16634100 1.50708200
C -0.96284600 0.00951100 0.02823600
C -1.64761700 1.23111500 -0.01191700
C -3.04251700 1.17819500 -0.04133600
H -3.59774200 2.10953800 -0.07631700
C -3.73665000 -0.03485600 -0.03389300
C -3.00456200 -1.22554300 -0.00665100

SI-114
H -3.53033800 -2.17445900 -0.01338100
C -1.60909200 -1.23375100 0.02346800
C -0.92373000 2.55456200 -0.02167800
H -0.42278200 2.74360100 0.93257500
H -0.16200400 2.59252600 -0.80421600
H -1.62699700 3.36947700 -0.19354100
C -0.84250300 -2.53254000 0.04687200
H -0.13533200 -2.59608500 -0.78412900
H -0.26957100 -2.64470800 0.97203700
H -1.52680300 -3.37790800 -0.02506700
C -5.24481900 -0.05896000 -0.03260000
H -5.62860900 -0.95118400 -0.53129600
H -5.62690700 -0.06675800 0.99378800
H -5.65712900 0.82161200 -0.52903000

M062X

N 0.47751900 0.05676300 0.04133900
N 1.20467300 -0.14587700 -1.09743500
N 2.50629200 0.18012600 0.64719700
C 1.25841200 0.25632700 1.09492500
H 0.92290900 0.43099600 2.10504700
C 2.43978800 -0.06271800 -0.69555100
C 3.80656300 -0.13302600 -1.28718100
H 4.02326000 0.80840600 -1.79685600

SI-115
H	-5.59701100	-0.01952800	1.00698300
H	-5.64346200	0.73286100	-0.58708700
7j (B3LYP)

![Chemical Structure](image)

Atom	X	Y	Z
N	0.87186	0.03821	0.05898
N	1.59446	0.02737	-1.11679
N	2.91154	0.06020	0.65822
C	1.66987	0.06052	1.12925
H	1.35109	0.06965	2.15852
C	2.83428	0.04394	-0.71186
C	4.19365	0.07182	-1.32295
H	4.39487	1.07318	-1.71280
H	4.29296	-0.63703	-2.14348
C	5.10016	-0.27366	-0.10421
H	6.05137	0.25308	-0.14139
H	5.30230	-1.34507	-0.09271
C	4.30045	0.11156	1.16661
H	4.42356	-0.58542	1.99185
H	4.50148	1.12704	1.50778
C	-0.55505	0.01345	0.04189
C	-1.28272	1.20897	0.01596
C	-2.67115	1.19544	-0.01477
H	-3.22659	2.12212	-0.03072
C	-3.32348	-0.03294	-0.02525
C	-2.63049	-1.23882	-0.00743
	X	Y	Z
---	-----	-----	--------
H	-3.15449500	-2.18375200	-0.01764400
C	-1.24237000	-1.20579200	0.02412800
Cl	-0.45001100	2.73904300	0.02446000
Cl	-5.07010000	-0.06179500	-0.06159000
Cl	-0.35875000	-2.70674400	0.04475000

M062X

	X	Y	Z
N	0.86324300	0.06437500	0.06017700
N	1.57396400	0.05823100	-1.10716500
N	2.89188200	0.06922300	0.65815000
C	1.65481100	0.07295100	1.12898000
H	1.32948600	0.07396400	2.15777300
C	2.81119000	0.06436300	-0.70901200
C	4.17156300	0.08630900	-1.31735000
H	4.39128600	1.09969500	-1.66033700
H	4.25637200	-0.59448000	-2.16109600
C	5.05487700	-0.32124900	-0.11005400
H	6.03624300	0.14513500	-0.14468600
H	5.18310100	-1.40351700	-0.10467100
C	4.28084600	0.10364700	1.15655500
H	4.39459900	-0.58005700	1.99312600
H	4.50204600	1.12345700	1.46935000
C	-0.55976400	0.02672500	0.04485100
C	-1.29218000	1.21210700	0.01784900
	X	Y	Z
---	-----------	-----------	-----------
C	-2.67744300	1.18217600	-0.01418200
H	-3.24635800	2.10156000	-0.03044300
C	-3.31092500	-0.05347600	-0.02573800
C	-2.60698600	-1.25066000	-0.00915500
H	-3.12141700	-2.20166300	-0.02205500
C	-1.22257300	-1.19917700	0.02366800
Cl	-0.46476200	2.72894600	0.02705500
Cl	-5.04329300	-0.10327900	-0.06266400
Cl	-0.30661900	-2.66385600	0.04187000
7k (B3LYP)

```
N  -0.91321700  -0.03901700  0.06481800
N  -1.63543900  -0.01031900  -1.11283600
N  -2.95131800  -0.07275900  0.66400800
C  -1.71243000  -0.07907600  1.13650800
H  -1.39310400  -0.10429900  2.16558000
C  -2.87413000  -0.03456500  -0.70710500
C  -4.23358300  -0.05371900  -1.31780400
H  -4.43295000  -1.04888600  -1.72408400
H  -4.33323500  0.66842100  -2.12661600
C  -5.14058500  0.27062000  -0.09363400
H  -6.09066300  -0.25742500  -0.13965500
H  -5.34466300  1.34125800  -0.06453500
C  -4.34113800  -0.13406900  1.17097300
H  -4.46442200  0.54894600  2.00768300
H  -4.53933300  -1.15564600  1.49500700
C  0.50873700  -0.01504700  0.04838100
C  1.19240400  1.19959500  0.03437300
C  2.57902800  1.22605300  -0.00154100
C  3.28869200  0.03064600  -0.02921500
C  2.61849800  -1.18757200  -0.02050300
```
C	1.23171700	-1.20654600	0.01516600	
F	4.61734900	0.05290100	-0.06183900	
F	3.23095600	2.38875100	-0.00912600	
F	0.51677300	2.34699900	0.05994300	
F	0.59335700	-2.37542200	0.02077200	
F	3.30766700	-2.32829700	-0.04740600	

M062X

N	-0.90998000	-0.04560900	0.06229000	
N	-1.62353400	-0.01724900	-1.10512500	
N	-2.93668400	-0.07752900	0.66347500	
C	-1.70170300	-0.08443700	1.13343600	
H	-1.37518800	-0.10796600	2.16157100	
C	-2.85894600	-0.04062000	-0.70447200	
C	-4.22000000	-0.06304600	-1.31094700	
H	-4.42499800	-1.06758900	-1.68675900	
H	-4.31507400	0.64339500	-2.13230200	
C	-5.10862800	0.29574500	-0.09188600	
H	-6.07913000	-0.19186300	-0.13612300	
H	-5.26160500	1.37417700	-0.06077000	
C	-4.32420000	-0.14163100	1.16427400	
H	-4.44447800	0.52444800	2.01402000	
H	-4.52782700	-1.17048700	1.45834500	
C	0.50941100	-0.01894500	0.04706600	

SI-122
Element	Distance1	Distance2	Distance3
C	1.18128100	1.19598500	0.03236000
C	2.56398500	1.22720000	-0.00082200
C	3.27365600	0.03602500	-0.02734400
C	2.61142300	-1.18231000	-0.01973000
C	1.22846000	-1.20656800	0.01344900
F	4.59302500	0.06216100	-0.05925100
F	3.20877500	2.38306100	-0.00830000
F	0.50134700	2.32938900	0.05553200
F	0.59400000	-2.36619900	0.01714400
F	3.30188100	-2.31127800	-0.04676500
8a (B3LYP)

\[
\begin{array}{c}
\text{N} & 0.43202900 & -0.00941200 & -0.03428800 \\
\text{N} & 1.20274900 & 1.05127400 & 0.35848000 \\
\text{N} & 2.46373300 & -0.67103600 & -0.20289000 \\
\text{C} & 1.18952400 & -1.04144800 & -0.38204800 \\
\text{H} & 0.84697900 & -1.98963600 & -0.76004900 \\
\text{C} & 2.43891600 & 0.62964900 & 0.24657500 \\
\text{C} & -0.99804000 & 0.07458100 & -0.03916100 \\
\text{C} & -1.75657600 & -1.00722100 & 0.39134000 \\
\text{C} & -3.14744100 & -0.93122200 & 0.36408600 \\
\text{C} & -3.77082300 & 0.24050200 & -0.08008400 \\
\text{C} & -2.98980900 & 1.33027300 & -0.49800600 \\
\text{C} & -1.60874600 & 1.24966100 & -0.48281600 \\
\text{C} & 3.68842500 & -1.45281900 & -0.50834400 \\
\text{H} & 3.80060400 & -1.46293600 & -1.59385300 \\
\text{H} & 3.52724000 & -2.47203700 & -0.16070000 \\
\text{C} & 3.68386300 & 1.38358700 & 0.57393800 \\
\text{H} & 3.56555000 & 2.41847300 & 0.24887500 \\
\text{H} & 3.79007900 & 1.40056100 & 1.66381800 \\
\text{C} & 4.91311300 & 0.71641000 & -0.06608700 \\
\text{H} & 4.93333600 & 0.92751400 & -1.14010600 \\
\text{H} & 5.81666000 & 1.15119100 & 0.36349200 \\
\end{array}
\]
Element	X	Y	Z
C	4.89350800	-0.79971400	0.16626400
H	4.87706600	-1.01390100	1.23942500
H	5.79279300	-1.26440700	-0.24211900
H	-1.27911800	-1.90493300	0.76464600
H	-3.72425700	-1.77895500	0.70503400
H	-3.48576000	2.22997200	-0.84021000
H	-1.00575800	2.08447700	-0.81513200
O	-5.11280800	0.41966800	-0.13805400
C	-5.97314000	-0.65175200	0.26858500
H	-6.98645600	-0.28217800	0.12951800
H	-5.81694000	-1.53680700	-0.35363300
H	-5.81577300	-0.90243600	1.32085100

M062X

Element	X	Y	Z
N	0.43251800	-0.01093400	-0.02242200
N	1.19505500	1.04628700	0.35356100
N	2.45199000	-0.67179500	-0.19612200
C	1.18228100	-1.04387500	-0.36380300
H	0.83384700	-1.99626400	-0.73015900
C	2.42745400	0.62863200	0.24118600
C	-0.99626200	0.07369300	-0.03086100
C	-1.75124600	-1.01360300	0.37428000
C	-3.14022700	-0.93545600	0.34151200
C	-3.75469000	0.24461400	-0.08042600

SI-125
Element	X	Y	Z
C	-2.97355400	1.34078400	-0.47110600
C	-1.59579500	1.25804600	-0.45277300
C	3.67082800	-1.45557300	-0.49368800
H	3.78708900	-1.46904900	-1.57814100
H	3.50581500	-2.47018100	-0.13605600
C	3.67185300	1.38737900	0.55276600
H	3.54475000	2.41708500	0.21847300
H	3.78979400	1.40508000	1.64008900
C	4.88340100	0.71123000	-0.09781700
H	4.87380500	0.88866200	-1.17727900
H	5.79493600	1.15744400	0.29864200
C	4.86524200	-0.79279400	0.17952800
H	4.82853200	-0.97376200	1.25756200
H	5.76777400	-1.26886500	-0.20432700
H	-1.27323700	-1.91748100	0.73267600
H	-3.72026100	-1.78993500	0.66005600
H	-3.47144400	2.24633400	-0.79414100
H	-0.98413200	2.09593100	-0.76221800
O	-5.09066100	0.42401800	-0.14101400
C	-5.92931100	-0.65540400	0.25320200
H	-6.94887700	-0.30148100	0.12714200
H	-5.76188500	-1.52911600	-0.38144200
H	-5.75801600	-0.91749100	1.30011500
8b (B3LYP)

\[
\text{N} & -0.41365400 & -0.05554900 & -0.00990800 \\
\text{N} & 0.32623900 & 1.04474100 & 0.32695000 \\
\text{N} & 1.63456700 & -0.65615600 & -0.19043600 \\
\text{C} & 0.37222900 & -1.07585000 & -0.32981200 \\
\text{H} & 0.05560800 & -2.04950600 & -0.66343800 \\
\text{C} & 1.57361900 & 0.66003700 & 0.21117400 \\
\text{C} & -1.84820100 & 0.01893700 & 0.00246800 \\
\text{C} & -2.55613900 & -1.12904400 & 0.45737300 \\
\text{C} & -3.94842000 & -1.08760200 & 0.44254500 \\
\text{C} & -4.61305200 & 0.05411700 & -0.00335100 \\
\text{C} & -3.88539300 & 1.16132000 & -0.44105300 \\
\text{C} & -2.49378300 & 1.13128000 & -0.44525000 \\
\text{C} & 2.88047800 & -1.40788300 & -0.48674200 \\
\text{H} & 2.98235300 & -1.44459200 & -1.57268500 \\
\text{H} & 2.75339900 & -2.42125800 & -0.10935100 \\
\text{C} & 2.79782100 & 1.46272000 & 0.49819300 \\
\text{H} & 2.64600100 & 2.48078900 & 0.13614300 \\
\text{H} & 2.91047200 & 1.52341700 & 1.58591600 \\
\text{C} & 4.04278200 & 0.80955500 & -0.12604700 \\
\text{H} & 4.05181600 & 0.98418100 & -1.20655300 \\
\text{H} & 4.93501600 & 1.28512700 & 0.28338200
\]
Atom	X	Y	Z
C	4.06954800	-0.69781200	0.15738600
H	4.06588100	-0.87662200	1.23704000
H	4.97969400	-1.14897700	-0.24196200
H	-2.03712000	-2.00134000	0.83505200
H	-4.50971100	-1.94425900	0.79489400
H	-4.39964800	2.04932000	-0.78782600
H	-1.91671900	1.97799500	-0.79259700
H	-5.69604600	0.08308600	-0.00554500

M062X

Atom	X	Y	Z
N	-0.40785000	-0.05889900	-0.00079400
N	0.32272600	1.03817100	0.31918700
N	1.62944000	-0.65841700	-0.17989000
C	0.37218900	-1.08018500	-0.31052100
H	0.05207700	-2.05848200	-0.63185900
C	1.56663400	0.65812900	0.20586700
C	-1.84067200	-0.02151500	0.00601500
C	-2.54687900	-1.14170500	0.42391500
C	-3.93632300	-1.09531200	0.40319900
C	-4.59313600	0.05970600	-0.01015900
C	-3.86283600	1.17631100	-0.40967300
C	-2.47407100	1.14256900	-0.40910200
C	2.87097900	-1.41206200	-0.46230700
H	2.97756400	-1.46006400	-1.54680500

SI-128
	X	Y	Z
H	2.74165800	-2.41790900	-0.06743000
C	2.78853900	1.46824700	0.47369200
H	2.62570800	2.47897100	0.09940300
H	2.91434500	1.53365100	1.55840500
C	4.01612000	0.80540500	-0.16019700
H	3.99319500	0.93948400	-1.24560900
H	4.91561100	1.29563200	0.21081500
C	4.04790700	-0.68640300	0.17552600
H	4.02388000	-0.82649300	1.25996200
H	4.96261800	-1.14804100	-0.19698700
H	-2.02875200	-2.02443000	0.77852500
H	-4.50242500	-1.96033700	0.72511100
H	-4.37386200	2.07566700	-0.72978200
H	-1.88696200	1.99543500	-0.72448700
H	-5.67556200	0.09183500	-0.01632000
8c (B3LYP)

\[
\begin{align*}
\text{N} & \quad 0.00026000 \quad 0.06341700 \quad -0.01339300 \\
\text{N} & \quad -0.73400400 \quad -1.03661700 \quad 0.33705800 \\
\text{N} & \quad -2.05025600 \quad 0.65259300 \quad -0.19885900 \\
\text{C} & \quad -0.79032900 \quad 1.07646800 \quad -0.34504500 \\
\text{H} & \quad -0.47817200 \quad 2.04759400 \quad -0.69042400 \\
\text{C} & \quad -1.98321000 \quad -0.65886500 \quad 0.21741200 \\
\text{C} & \quad 1.43298000 \quad 0.03250000 \quad 0.00058700 \\
\text{C} & \quad 2.13825100 \quad 1.13669300 \quad 0.47397200 \\
\text{C} & \quad 3.52933200 \quad 1.10870000 \quad 0.46457300 \\
\text{C} & \quad 4.16487800 \quad -0.03187700 \quad -0.00040600 \\
\text{C} & \quad 3.47426400 \quad -1.14397200 \quad -0.45928800 \\
\text{C} & \quad 2.08461400 \quad -1.10860300 \quad -0.46279900 \\
\text{C} & \quad -3.30005600 \quad 1.39635400 \quad -0.49992600 \\
\text{H} & \quad -3.40405200 \quad 1.42205100 \quad -1.58594500 \\
\text{H} & \quad -3.17619500 \quad 2.41378800 \quad -0.13253100 \\
\text{C} & \quad -3.20350300 \quad -1.46410600 \quad 0.51351700 \\
\text{H} & \quad -3.04755700 \quad -2.48483000 \quad 0.16080800 \\
\text{H} & \quad -3.31423000 \quad -1.51507400 \quad 1.60192700 \\
\text{C} & \quad -4.45216600 \quad -0.82230000 \quad -0.11511200 \\
\text{H} & \quad -4.46232000 \quad -1.00775900 \quad -1.19381200 \\
\text{H} & \quad -5.34164000 \quad -1.29754100 \quad 0.30063000
\end{align*}
\]
Element	X	Y	Z
C	-4.48477700	0.68761400	0.15351000
H	-4.47984800	0.87721500	1.23132800
H	-5.39752900	1.13101300	-0.24855900
F	5.51915000	-0.06431300	-0.00167700
H	1.61899300	2.00320900	0.86335600
H	4.10864300	1.94780300	0.82664000
H	4.01372200	-2.01261700	-0.81348100
H	1.51417900	-1.95342300	-0.82448800

M062X

Element	X	Y	Z
N	-0.00331800	0.06694900	-0.00366100
N	-0.72818400	-1.02973100	0.33085100
N	-2.04291700	0.65430300	-0.18988100
C	-0.78801000	1.08043000	-0.32707800
H	-0.47213600	2.05591900	-0.66128600
C	-1.97392700	-0.65701300	0.21248500
C	1.42776500	0.03587200	0.00578200
C	2.13033500	1.14987300	0.44607800
C	3.51841900	1.11818900	0.43103900
C	4.14738200	-0.03476300	-0.00410900
C	3.45464900	-1.15634100	-0.42849600
C	2.06813200	-1.11804000	-0.42838200
C	-3.28830700	1.39919500	-0.47953800
H	-3.39656300	1.43345000	-1.56433600
Element	X	Y	Z
---------	---------	---------	---------
H	-3.16248200	2.41025400	-0.09708100
C	-3.19191700	-1.46935000	0.49110500
H	-3.02498000	-2.48366800	0.12853400
H	-3.31572500	-1.52255000	1.57670100
C	-4.42340900	-0.81937700	-0.14853700
H	-4.40224900	-0.96684300	-1.23223000
H	-5.32001700	-1.30876400	0.23043900
C	-4.46102200	0.67625500	0.16900000
H	-4.43609700	0.82994800	1.25156900
H	-5.37823900	1.12934700	-0.20782000
F	5.48996300	-0.07037200	-0.00932300
H	1.61067100	2.02546700	0.81503900
H	4.10529000	1.96360700	0.76512200
H	3.99538600	-2.03410000	-0.75737300
H	1.48787200	-1.96894300	-0.76063800
8i (B3LYP)

\[
\begin{array}{cccc}
\text{N} & 0.18034000 & 0.01431800 & 0.05749400 \\
\text{N} & 0.91853600 & -0.20506500 & -1.07734000 \\
\text{N} & 2.23208000 & 0.13575100 & 0.66502900 \\
\text{C} & 0.97014800 & 0.21587900 & 1.10136500 \\
\text{H} & 0.64990200 & 0.40291600 & 2.11315600 \\
\text{C} & 2.16682900 & -0.12736700 & -0.68679800 \\
\text{C} & -1.26553400 & 0.00830800 & 0.03183300 \\
\text{C} & -1.93545900 & 1.22940300 & -0.11102600 \\
\text{C} & -3.33155400 & 1.18951400 & -0.14171000 \\
\text{C} & -4.03908500 & -0.01066800 & -0.03931700 \\
\text{C} & -3.32020100 & -1.20348500 & 0.08934900 \\
\text{C} & -1.92564300 & -1.22444600 & 0.12746100 \\
\text{C} & 3.48197900 & 0.23238300 & 1.46180300 \\
\text{H} & 3.58999700 & -0.70819500 & 2.00450700 \\
\text{H} & 3.35716300 & 1.04211300 & 2.17901100 \\
\text{C} & 3.38937400 & -0.25691100 & -1.53303500 \\
\text{H} & 3.23503200 & -1.05923500 & -2.25630100 \\
\text{H} & 3.50076300 & 0.67110200 & -2.10372100 \\
\text{C} & 4.63714500 & -0.49554100 & -0.66587900 \\
\text{H} & 4.64852200 & -1.52933500 & -0.30623600 \\
\text{H} & 5.52760800 & -0.36011300 & -1.28118900 \\
\end{array}
\]
C 4.66546100 0.46918500 0.52574600
H 4.65449100 1.50425000 0.17016600
H 5.57928400 0.33658600 1.10766100
C -1.17296100 -2.52440100 0.26339600
H -0.51072400 -2.69396700 -0.58966700
H -0.55291200 -2.53815900 1.16437500
H -1.86908600 -3.36094200 0.32368100
C -1.19776500 2.54048300 -0.22499700
H -0.71183500 2.80923400 0.71784200
H -0.42256500 2.50383200 -0.99435500
H -1.89021900 3.34276500 -0.48002900
C -5.54747400 -0.02162900 -0.04489600
H -5.93585600 -0.89734700 -0.56941500
H -5.93465100 -0.05651100 0.97891900
H -5.95043700 0.87460500 -0.51986300
H -3.85649000 -2.14397400 0.16008700
H -3.87573000 2.12109800 -0.25467800

M062X

N 0.17755000 0.00954000 0.06042600
N 0.90407200 -0.21754400 -1.06556700
N 2.21859800 0.13642300 0.66297700
C 0.96212400 0.22019800 1.10014300
H 0.63771100 0.41818000 2.11027200
C 2.14982000 -0.13604800 -0.68231800
C	-1.26419600	0.00755200	0.03676700	
C	-1.92191300	1.22686800	-0.11212600	
C	-3.31517700	1.19314100	-0.14499400	
C	-4.02040600	-0.00469100	-0.03966500	
C	-3.30944500	-1.19940200	0.09443200	
C	-1.91898800	-1.22126000	0.13469700	
C	3.46560400	0.24464700	1.45257000	
H	3.58706800	-0.69677300	1.98999900	
H	3.33468600	1.05416200	2.16809000	
C	3.36908400	-0.27200500	-1.52981500	
H	3.20868100	-1.07709900	-2.24687000	
H	3.48366900	0.65659800	-2.09660100	
C	4.60428500	-0.50840300	-0.65452900	
H	4.59344900	-1.52961900	-0.26232400	
H	5.49930500	-0.40332000	-1.26700400	
C	4.63140200	0.48848400	0.50443300	
H	4.58662300	1.51139100	0.11949900	
H	5.55286100	0.39164500	1.07892000	
C	-1.14782400	-2.50567800	0.27473500	
H	-0.47476200	-2.65290000	-0.57301900	
H	-0.53812300	-2.50139700	1.18186500	
H	-1.82938400	-3.35336000	0.32613000	
C	-1.15940700	2.51902700	-0.23175500	
H	-0.67820300	2.77991700	0.71438900	
H	-0.37868400	2.44752600	-0.99243000	
	x	y	z	
---	-----	-----	-----	
H	-1.83189000	3.33161800	-0.50242700	
C	-5.52588300	-0.01729900	-0.05405400	
H	-5.90267600	-0.84673500	-0.65456400	
H	-5.91338600	-0.14241900	0.96046200	
H	-5.92451800	0.91497300	-0.45443900	
H	-3.85069200	-2.13738700	0.16676300	
H	-3.85775700	2.12527500	-0.26268900	
8k (B3LYP)

![Chemical Structure](image)

Atom	X-Coordinate	Y-Coordinate	Z-Coordinate
N	-0.62053500	-0.00957700	0.07415500
N	-1.34547600	0.21755200	-1.06959500
N	-2.66872200	-0.13728300	0.66715100
C	-1.41814900	-0.22017400	1.11709100
H	-1.10234300	-0.41346800	2.12973400
C	-2.59380300	0.13568400	-0.68675300
C	0.80165800	-0.00688100	0.05251000
C	1.50751300	-1.20325500	-0.05875000
C	2.89451500	-1.20119200	-0.09666600
C	3.58139700	0.00581000	-0.03363900
C	2.88816800	1.20671200	0.06990800
C	1.50152900	1.19676100	0.11179100
C	-3.92980700	-0.24089000	1.45133000
H	-4.04266100	0.69894900	1.99377700
H	-3.80811200	-1.05243400	2.16666300
C	-3.80925600	0.26705700	-1.54127600
H	-3.64984000	1.07387000	-2.25821000
H	-3.90942800	-0.65864500	-2.11769400
C	-5.06568300	0.49490400	-0.68396200
H	-5.08570200	1.52655200	-0.31920400
Element	X	Y	Z
---------	------	------	------
H	-5.94854900	0.35815500	-1.30950800
C	-5.10118200	-0.47751200	0.50094500
H	-5.08258600	-1.51052500	0.14027200
H	-6.02056800	-0.35156500	1.07533300
F	4.91026800	0.01187900	-0.07062000
F	3.56756300	-2.34739400	-0.19739300
F	0.85282700	-2.36133600	-0.12747700
F	0.84126100	2.34842100	0.21660100
F	3.55602700	2.35866700	0.13240900

M062X

Element	X	Y	Z
N	-0.61954700	-0.03231800	0.06750400
N	-1.33541200	0.58032200	-0.91499100
N	-2.65669200	-0.37017300	0.56944900
C	-1.41179200	-0.60275600	0.96369700
H	-1.09801600	-1.14314200	1.84374600
C	-2.58036100	0.36610400	-0.59367500
C	0.79861300	-0.02100200	0.04893400
C	1.50855200	-1.19742900	-0.14949300
C	2.89179600	-1.18035300	-0.18422900
C	3.56464800	0.02158300	-0.03137300
C	2.86381700	1.20281900	0.16058100
C	1.48163000	1.17859100	0.20267900
C	-3.91099100	-0.75005500	1.26234500

SI-138
Atoms	X	Y	Z
H	-4.03018600	-0.06127400	2.09936400
H	-3.78248100	-1.76258500	1.63984600
C	-3.79469700	0.78896800	-1.34659400
H	-3.63044100	1.79318500	-1.73708300
H	-3.90242900	0.11497700	-2.20150400
C	-5.03470000	0.70612500	-0.45029100
H	-5.02683700	1.52588200	0.27375900
H	-5.92485900	0.82341000	-1.06743900
C	-5.07156200	-0.63457400	0.28411000
H	-5.03208000	-1.45768800	-0.43478000
H	-5.99460100	-0.73861700	0.85474300
F	4.88431100	0.04241000	-0.06759200
F	3.57076100	-2.30116500	-0.37082200
F	0.86501600	-2.34274200	-0.30928900
F	0.81353700	2.30218400	0.39969900
F	3.51901600	2.34296900	0.31194400
9a (B3LYP)

N -0.12376500 0.07485700 -0.17074700
N -0.89371900 -0.98040900 -0.57814100
N -2.14669000 0.79063900 -0.17169400
C -0.87867600 1.13493600 0.08327800
H -0.53952500 2.09010800 0.44700200
C -2.12491800 -0.52880700 -0.57381500
C 1.29974100 -0.04186700 -0.05593500
C 2.11646700 0.98402000 -0.51530300
C 3.49952300 0.87881800 -0.38353500
C 4.05716000 -0.26762100 0.19388700
C 3.21854100 -1.30204900 0.64016000
C 1.84452800 -1.19118300 0.52088000
C -3.33459300 1.66269600 -0.02508400
H -3.75578700 1.80882200 -1.02181500
H -2.96079700 2.62326300 0.32499200
C -3.33105900 -1.32152000 -0.93832600
H -3.77413600 -0.89425200 -1.84522800
H -2.97947300 -2.32130200 -1.19569000
C -4.39408600 -1.39869100 0.17782100
H -3.92020200 -1.73207500 1.10711000
H -5.10052800 -2.18172500 -0.10895400
C 2.10286800 0.98971300 -0.50090200
C 3.48262500 0.88614800 -0.35303100
C 4.03170100 -0.27466400 0.19416900
C 3.19476300 -1.32572500 0.59314600
C 1.82507000 -1.21639700 0.46068100
C -3.32382100 1.65412500 -0.05428100
H -3.78193400 1.75304600 -1.04052400
H -2.95172700 2.63105200 0.24879200
C -3.34031800 -1.30405200 -0.93329400
H -3.81904800 -0.85143600 -1.80805000
H -3.00000000 -2.29787200 -1.22359900
C -4.34101200 -1.39024600 0.23095100
H -3.81311000 -1.69760700 1.13919600
H -5.04802600 -2.18662300 -0.00880200
C -4.30453600 1.09455000 0.96988000
H -3.75881100 0.84625600 1.88548200
H -4.98758400 1.91001300 1.21796200
C -5.12690500 -0.10250800 0.48605100
H -5.89089800 -0.31095200 1.23858500
H -5.66008400 0.17923400 -0.42907100
H 1.17005100 -2.01777000 0.77811400
H 3.64223200 -2.21667200 1.01519500
H 4.10703100 1.70497800 -0.68082800
H 1.67554000 1.87662600 -0.95353600
O 5.35372600 -0.47636000 0.37387800
	C	6.24778300	0.55953500	-0.01523400
H	7.24481000	0.19588700	0.21831700	
H	6.17034800	0.75685300	-1.08721200	
H	6.04945500	1.47530600	0.54684700	
9b (B3LYP)

	X	Y	Z
N	-0.70596300	-0.02346800	-0.17686600
N	0.02942100	1.11237000	0.02189400
N	1.33478600	-0.57796800	-0.53690100
C	0.07900900	-1.03752900	-0.51652900
H	-0.23565600	-2.04054600	-0.74971900
C	1.27165500	0.76076000	-0.20481700
C	-2.13267000	-0.02298800	-0.01876300
C	-2.85649400	1.07746000	-0.47215900
C	-4.24083500	1.07338900	-0.32647300
C	-4.88511900	-0.01880800	0.25569800
C	-4.14301700	-1.11041600	0.70465000
C	-2.75568600	-1.11616100	0.57859400
C	2.54835100	-1.36082100	-0.86979500
H	2.95435300	-0.95027200	-1.79679900
H	2.20787400	-2.37493500	-1.07171200
C	2.45191700	1.66126100	-0.09845900
H	2.89652200	1.77929900	-1.09332200
H	2.07100500	2.63900200	0.19860200
C	3.52270600	1.17614300	0.90031500
H	3.04857400	0.95809100	1.86313800
H	4.20189100	2.01504100	1.07182900
C 3.58614500 -1.34816200 0.25340500
H 3.10412400 -1.64557400 1.19053100
H 4.30427900 -2.13586100 0.00899300
C 4.35060500 -0.02807800 0.43021700
H 5.14763600 -0.19770300 1.15974300
H 4.84837300 0.22489600 -0.51373800
H -2.17440800 -1.94780400 0.95684400
H -4.63824800 -1.95465600 1.16841300
H -4.81537100 1.92250600 -0.67604000
H -2.34489500 1.91253800 -0.93208200
H -5.96316300 -0.01684700 0.36312200

M062X

N -0.69378000 -0.01598800 -0.19503800
N 0.03253000 1.11446500 -0.00735300
N 1.33302400 -0.56832700 -0.56514300
C 0.08375800 -1.02939700 -0.53499100
H -0.23525300 -2.03417600 -0.76249600
C 1.26966700 0.76557400 -0.23754500
C -2.11704900 -0.02073400 -0.02531000
C -2.83875200 1.09057200 -0.44086300
C -4.21881800 1.08115400 -0.28018100
C -4.85433400 -0.02620600 0.27612300
C -4.11004600 -1.12817100 0.68605300

SI-145
Atom	X	Y	Z
C	-2.726743	-1.129602	0.546344
C	2.550986	-1.339232	-0.879908
H	2.990253	-0.898260	-1.777234
H	2.217276	-2.346835	-1.121463
C	2.457708	1.651336	-0.128166
H	2.937011	1.724180	-1.110242
H	2.082785	2.642101	0.128014
C	3.470302	1.164355	0.920773
H	2.944970	0.941868	1.854881
H	4.145571	1.996462	1.128610
C	3.535424	-1.347623	0.284553
H	3.001968	-1.626328	1.198635
H	4.250320	-2.146978	0.077146
C	4.305833	-0.040387	0.483289
H	5.074936	-0.214149	1.239393
H	4.832624	0.207003	-0.445285
H	-2.136818	-1.968851	0.894388
H	-4.600501	-1.984591	1.131183
H	-4.797966	1.939406	-0.597336
H	-2.326526	1.935847	-0.882086
H	-5.930694	-0.027590	0.395598
9c (B3LYP)

\[
\begin{array}{cccc}
N & -0.29922000 & -0.02198900 & -0.20997700 \\
N & 0.43219000 & 1.11205100 & 0.01425700 \\
N & 1.74626900 & -0.57059400 & -0.54816400 \\
C & 0.49103200 & -1.03132000 & -0.55191500 \\
H & 0.18016100 & -2.03131300 & -0.80297400 \\
C & 1.67763700 & 0.76393400 & -0.19997200 \\
C & -1.72602900 & -0.02281300 & -0.07065400 \\
C & -2.44809200 & 1.06368900 & -0.56044200 \\
C & -3.83257700 & 1.06951300 & -0.43516300 \\
C & -4.44848800 & -0.01713600 & 0.16824100 \\
C & -3.74256100 & -1.10334500 & 0.66084100 \\
C & -2.35567300 & -1.10059800 & 0.54754600 \\
C & 2.96543300 & -1.34839600 & -0.87345300 \\
H & 3.38518200 & -0.92442400 & -1.78821500 \\
H & 2.62841600 & -2.35959100 & -1.09495200 \\
C & 2.85615400 & 1.66251100 & -0.06305500 \\
H & 3.31753600 & 1.79238200 & -1.04867000 \\
H & 2.47072300 & 2.63667100 & 0.23982000 \\
C & 3.90936400 & 1.16340200 & 0.94759000 \\
H & 3.41841700 & 0.93179300 & 1.89874100 \\
H & 4.58514400 & 1.99989000 & 1.14263500
\end{array}
\]
C 3.98511800 -1.35161000 0.26624100
H 3.48807600 -1.66298000 1.19088500
H 4.70757600 -2.13536500 0.02192300
C 4.74575600 -0.03397800 0.47507700
H 5.52983900 -0.21381600 1.21610400
H 5.26015700 0.23244900 -0.45613100
F -5.79805900 -0.01381500 0.28586000
H -1.78057000 -1.92237300 0.95444000
H -4.26365900 -1.92342200 1.13703300
H -4.42541900 1.89560200 -0.80550600
H -1.93616700 1.88943500 -1.03597500

M062X

N -0.28950000 -0.01358700 -0.22968200
N 0.43296800 1.11448300 -0.01369600
N 1.74261400 -0.56001700 -0.57569300
C 0.49352600 -1.02198700 -0.57216200
H 0.17854200 -2.02355300 -0.81891300
C 1.67366000 0.76922500 -0.23010000
C -1.71340000 -0.01915500 -0.08108300
C -2.43295800 1.07886400 -0.53546200
C -3.81331600 1.08003900 -0.39744000
C -4.42162700 -0.02215300 0.17987200
C -3.71350100 -1.11961200 0.63600100
	X	Y	Z
C	-2.33055600	-1.11282400	0.51173300
C	2.96577800	-1.32604300	-0.88334800
H	3.41873500	-0.87109700	-1.76677500
H	2.63608000	-2.32970100	-1.14592900
C	2.85954300	1.65296800	-0.08706400
H	3.35543400	1.74091900	-1.05951600
H	2.48023300	2.63960100	0.17839100
C	3.85355400	1.14860700	0.97153500
H	3.31145100	0.90941800	1.89183200
H	4.52383000	1.97767200	1.20580400
C	3.93200200	-1.35244400	0.29599600
H	3.38468600	-1.64631000	1.19705800
H	4.65080200	-2.14781000	0.08675800
C	4.69774400	-0.04791200	0.52824800
H	5.45461000	-0.23323700	1.29389000
H	5.23953400	0.21513600	-0.38729800
F	-5.75836900	-0.02217300	0.30890900
H	-1.74666900	-1.94233100	0.89062800
H	-4.23380500	-1.95003900	1.09470200
H	-4.41383600	1.91419600	-0.73579900
H	-1.91956900	1.91511100	-0.99186900
9k (B3LYP)

N -0.34688500 -0.22488200 -0.05750700
N -1.07547600 -0.18199500 1.10528300
N -2.38557200 -0.48316900 -0.65163400
C -1.13866900 -0.40262800 -1.11039500
H -0.82259800 -0.46633800 -2.13894400
C -2.31771600 -0.34303800 0.72620900
C 1.06848200 -0.08299000 -0.04475200
C 1.88803000 -1.20802500 0.02855400
C 3.26857100 -1.07241300 0.05592600
C 3.83444700 0.19695400 0.01871500
C 3.02741400 1.32732500 -0.04653700
C 1.64775100 1.18420900 -0.07510900
C -3.60631900 -0.68076400 -1.47319800
H -4.01913300 -1.65544100 -1.20635000
H -3.26694400 -0.73111700 -2.50622100
C -3.49430400 -0.35799600 1.63714600
H -3.94284700 -1.35765400 1.61532800
H -3.10646200 -0.20434900 2.64474400
C -4.56163600 0.70619200 1.30479200
H -4.08351900 1.68838100 1.22912700
H -5.23705700 0.75438600 2.16243900
C -4.63002500 0.43881700 -1.28592900
H -4.13797000 1.40491800 -1.43897500
H -5.35028600 0.32418700 -2.10078000
C -5.39281800 0.42149700 0.04680600
H -6.18545100 1.17264900 -0.01317400
H -5.89618900 -0.54633800 0.15879100
F 3.58086800 2.53958400 -0.08175600
F 0.87820600 2.26929900 -0.13841300
F 5.15673400 0.33153400 0.04463800
F 4.05076000 -2.15000700 0.12065000
F 1.34951400 -2.42550100 0.06906300

M062X

N -0.34938000 -0.22876100 0.04803200
N -1.07605800 0.29982100 1.07080600
N -2.36985700 -0.73972200 -0.37784300
C -1.12716900 -0.85115200 -0.82624900
H -0.80361100 -1.34722100 -1.72869100
C -2.31029600 -0.01936700 0.79844700
C 1.06094200 -0.08942400 0.00498800
C 1.88103200 -1.19560700 0.18081600
C 3.25721900 -1.05615800 0.14617400
C 3.81259000 0.19848300 -0.05145100
	x	y	z
C	3.00136300	1.31096500	-0.21684900
C	1.62637700	1.16412700	-0.19033700
C	-3.59056800	-1.26448100	-1.02321300
H	-4.02964200	-1.98853700	-0.33401400
H	-3.25595500	-1.79531300	-1.91255800
C	-3.50100100	0.34417300	1.60934500
H	-3.97474800	-0.57652200	1.96632300
H	-3.12845100	0.88173100	2.48103600
C	-4.51880400	1.19860900	0.83528400
H	-3.99959900	2.03070600	0.34965300
H	-5.19663900	1.63475700	1.57128600
C	-4.56938600	-0.15054800	-1.37523700
H	-4.03237400	0.64154900	-1.90608800
H	-5.27974100	-0.58166100	-2.08425800
C	-5.34736500	0.42159800	-0.18839700
H	-6.11609900	1.09025200	-0.58222700
H	-5.87406100	-0.39419600	0.31956700
F	3.54415900	2.50257100	-0.41100400
F	0.85160800	2.22130300	-0.36173800
F	5.12534900	0.33479200	-0.08695100
F	4.04123600	-2.11041800	0.30586800
F	1.34969000	-2.39071600	0.38194400
S2.3 Coordinates of Carbenes

7a (B3LYP)

```
\begin{align*}
\text{O} & \quad -4.75960800 \quad 0.46185500 \quad -0.11844500 \\
\text{N} & \quad 0.80000900 \quad -0.07760100 \quad 0.00518900 \\
\text{N} & \quad 1.56136100 \quad 1.05231100 \quad 0.34494200 \\
\text{N} & \quad 2.78115600 \quad -0.71466300 \quad -0.13502300 \\
\text{C} & \quad 1.51728200 \quad -1.19192900 \quad -0.30128200 \\
\text{C} & \quad 2.77512600 \quad 0.60216600 \quad 0.24466600 \\
\text{C} & \quad 4.16268400 \quad 1.11424900 \quad 0.45170800 \\
\text{H} & \quad 4.38013900 \quad 1.17925500 \quad 1.52209500 \\
\text{H} & \quad 4.32075800 \quad 2.10182300 \quad 0.01869100 \\
\text{C} & \quad 5.01123400 \quad 0.00584100 \quad -0.24025100 \\
\text{H} & \quad 5.96513700 \quad -0.15661800 \quad 0.25959500 \\
\text{H} & \quad 5.21614100 \quad 0.29834200 \quad -1.27178700 \\
\text{C} & \quad 4.13427500 \quad -1.27333300 \quad -0.23306000 \\
\text{H} & \quad 4.24096800 \quad -1.87079900 \quad -1.13705100 \\
\text{H} & \quad 4.33148000 \quad -1.90583000 \quad 0.63536700 \\
\text{C} & \quad -0.62163200 \quad 0.03735600 \quad -0.01186100 \\
\text{C} & \quad -1.41745600 \quad -1.07349700 \quad 0.25428700 \\
\text{H} & \quad -0.95151100 \quad -2.02110700 \quad 0.48968700 \\
\text{C} & \quad -2.80856400 \quad -0.97307100 \quad 0.21943100 \\
\text{H} & \quad -3.40132300 \quad -1.85248300 \quad 0.42997400 \\
\end{align*}
```
C -3.41178300 0.25495500 -0.06784300
C -2.60745900 1.37330500 -0.32241700
H -3.08194600 2.32163600 -0.54493300
C -1.22452100 1.26592000 -0.29996300
H -0.60906000 2.13155900 -0.50487400
C -5.63030500 -0.64358700 0.13360000
H -5.48469200 -1.03910100 1.14296100
H -5.47929600 -1.44076000 -0.60010500
H -6.64089700 -0.25134200 0.04008800

M062X

O -4.74043100 0.46468300 -0.11198500
N 0.79860700 -0.07415400 0.02005300
N 1.55139700 1.05158800 0.32141800
N 2.76607600 -0.71960000 -0.10846600
C 1.50480600 -1.19926700 -0.25676500
C 2.76204300 0.60346900 0.23197300
C 4.15225000 1.11576300 0.41618800
H 4.38215000 1.17400300 1.48295700
H 4.30243700 2.10036300 -0.02252500
C 4.97662600 0.00413200 -0.28456700
H 5.95595200 -0.13439300 0.16879100
H 5.11715800 0.26901300 -1.33340400
C 4.11587500 -1.27591000 -0.19627800

SI-154
Element	X	Y	Z
H	4.20947200	-1.91933300	-1.06853500
H	4.32878100	-1.85413000	0.70454900
C	-0.62111500	0.04184900	-0.00053300
C	-1.41201000	-1.07374200	0.23493300
H	-0.94198100	-2.02502100	0.44732800
C	-2.80074700	-0.97282800	0.19776200
H	-3.39382000	-1.85734600	0.38529800
C	-3.39869300	0.26001100	-0.06194100
C	-2.59665000	1.38227900	-0.28716000
H	-3.07504800	2.33316600	-0.48836100
C	-1.21677000	1.27559300	-0.26243600
H	-0.59673300	2.14303300	-0.44618400
C	-5.58640600	-0.65539700	0.09938200
H	-5.43599900	-1.07810700	1.09630900
H	-5.41238000	-1.42565600	-0.65677800
H	-6.60420500	-0.28361100	0.01206100
7b (B3LYP)

```
N  0.065377  -0.108851  -0.022624
N -0.659667  1.071396  -0.254975
N -1.935287 -0.689546  0.083326
C -0.689934 -1.221896  0.192498
C -1.886343  0.655419  -0.182755
C -3.256609  1.229383  -0.333052
H  3.476030  1.396273  -1.391856
H  3.378342  2.179369  0.186906
C -4.139903  0.093503  0.264863
H  5.098885  0.006165  -0.243824
H  4.334467  0.302929  1.318295
C  3.306329 -1.208957  0.144612
H  3.428187 -1.875658  0.996708
H  3.527905 -1.760453  -0.771707
C  1.489445 -0.046135  -0.004103
C  2.238156 -1.207837  -0.213593
H  1.728755 -2.143978  -0.397531
C  3.628881 -1.144995  -0.183231
H  4.204162 -2.049209  -0.346189
C  4.280119  0.068568  0.042075
C  3.525344  1.223718  0.241265
```
H 4.01870800 2.17262200 0.41826600
C 2.13241800 1.17284400 0.22279200
H 1.54535400 2.06648200 0.38319300
H 5.36278700 0.11277400 0.05942900

M062X

N 0.06104300 -0.10817800 -0.02889800
N -0.65241100 1.05866300 -0.26435600
N -1.92791600 -0.68917200 0.07812300
C -0.68620600 -1.22170600 0.19072300
C -1.87717600 0.65005400 -0.19268500
C -3.24833800 1.21973700 -0.34595000
H -3.47595900 1.34037500 -1.40799300
H -3.36355700 2.18550200 0.14221000
C -4.11077500 0.10330500 0.29861900
H -5.09537600 0.02378700 -0.15733800
H -4.23928500 0.31731500 1.36054400
C -3.29735600 -1.20028000 0.13941100
H -3.41387800 -1.88636200 0.97549300
H -3.53012500 -1.72086700 -0.79105800
C 1.48320700 -0.04568800 -0.00529300
C 2.22705500 -1.20578700 -0.21284100
H 1.71531600 -2.14050600 -0.39897300
C 3.61491200 -1.14133600 -0.17972800
element	x	y	z
H	4.19109300	-2.04442300	-0.34255100
C	4.26250300	0.07073800	0.04710200
C	3.50893000	1.22327500	0.24531200
H	4.00155500	2.17174200	0.42363400
C	2.11874300	1.17191200	0.22386500
H	1.52768200	2.06327500	0.38430100
H	5.34452500	0.11562400	0.06644000
7c (B3LYP)

\[
\begin{array}{ccc}
\text{N} & 0.35890500 & 0.11632800 -0.02519100 \\
\text{N} & 1.07669500 & -1.06719900 -0.26123800 \\
\text{N} & 2.36163400 & 0.68514900 0.08749400 \\
\text{C} & 1.11913400 & 1.22437300 0.19649500 \\
\text{C} & 2.30579300 & -0.65839500 -0.18399500 \\
\text{C} & 3.67298200 & -1.23970400 -0.33299600 \\
\text{H} & 3.89372200 & -1.40428100 -1.39187800 \\
\text{H} & 3.78779800 & -2.19216200 0.18400100 \\
\text{C} & 4.56140400 & -0.11100600 0.27091000 \\
\text{H} & 5.52185600 & -0.02721900 -0.23558600 \\
\text{H} & 4.75263200 & -0.32543000 1.32394100 \\
\text{C} & 3.73555000 & 1.19659700 0.15379600 \\
\text{H} & 3.85914400 & 1.85930900 1.00873100 \\
\text{H} & 3.96204200 & 1.75032500 -0.75994900 \\
\text{C} & -1.06424300 & 0.06157500 -0.01121800 \\
\text{C} & -1.80621800 & 1.22635700 -0.22570000 \\
\text{H} & -1.29418100 & 2.16045900 -0.41046300 \\
\text{C} & -3.19697400 & 1.18080600 -0.20025600 \\
\text{H} & -3.78810100 & 2.07288600 -0.36483300 \\
\text{C} & -3.81923500 & -0.03649100 0.02642400 \\
\text{C} & -3.10704500 & -1.20571700 0.23187700 \\
\end{array}
\]
Element	X	Y	Z
H	-3.62842100	-2.13828100	0.40729600
C	-1.71486000	-1.15288100	0.21655300
H	-1.13603100	-2.05068000	0.38105700
F	-5.18098100	-0.08421500	0.04432100

M062X

Element	X	Y	Z
N	0.36088500	0.11705500	-0.03464000
N	1.06716900	-1.05085200	-0.28401700
N	2.35189500	0.68428500	0.08830200
C	1.11274800	1.22267500	0.20459800
C	2.29430300	-0.65062100	-0.20142100
C	3.66253100	-1.22676900	-0.35640900
H	3.89427700	-1.33383700	-1.41899700
H	3.76924900	-2.19998600	0.11874100
C	4.52877700	-0.12502200	0.30795200
H	5.51585500	-0.04505600	-0.14250600
H	4.65118500	-0.35503800	1.36722900
C	3.72425000	1.18587800	0.16404000
H	3.84045100	1.85830000	1.01120700
H	3.96500200	1.71915200	-0.75709700
C	-1.06061600	0.06195800	-0.01637000
C	-1.79810800	1.22279000	-0.23943300
H	-1.28342600	2.15363600	-0.43531800
C	-3.18584300	1.17552900	-0.20914400
Element	X	Y	Z
---------	------------	------------	------------
H	-3.78218400	2.06254000	-0.38114100
C	-3.80387300	-0.03865200	0.03123900
C	-3.09160600	-1.20354400	0.24497100
H	-3.61533000	-2.13241600	0.43105400
C	-1.70259900	-1.14956400	0.22469700
H	-1.11816600	-2.04287600	0.39686700
F	-5.15292700	-0.08730900	0.05490300
7d (B3LYP)

Atoms	X	Y	Z
N	1.53476600	0.11563700	-0.04084900
N	2.24470900	-1.09577900	-0.03896400
N	3.54216500	0.68172800	-0.04471600
C	2.30579900	1.24088300	-0.04738800
C	3.47613100	-0.68907300	-0.04477100
C	4.83897600	-1.29789500	-0.07344000
H	5.05765700	-1.67032900	-1.07871900
H	4.94725300	-2.13022600	0.62157400
C	5.73555700	-0.07805800	0.29525400
H	6.69757700	-0.10449500	-0.21438800
H	5.92272400	-0.07847400	1.37060600
C	4.92039100	1.18535400	-0.08462500
H	5.05048900	2.00728600	0.61732100
H	5.14865600	1.53908700	-1.09232600
C	0.11268400	0.07702100	-0.02466000
C	-0.61778400	1.26927400	-0.00876900
H	-0.09687000	2.21645300	-0.00702600
C	-2.00839700	1.23635300	0.00488400
H	-2.56804400	2.16262200	0.01733900
C	-2.66386500	0.00820700	0.00301600
C	-1.94994200	-1.18409100	-0.01251100

SI-162
Atom	X	Y	Z
H	-2.46285500	-2.13703000	-0.01398100
C	-0.55706000	-1.14847100	-0.02675400
H	0.00588100	-2.07052200	-0.03924800
Br	-4.58596800	-0.03892900	0.02311800

M062X

Atom	X	Y	Z
N	1.52918100	0.11474500	-0.04521600
N	2.22817800	-1.08392400	-0.07145100
N	3.52522200	0.68128000	-0.03648200
C	2.29293300	1.24092300	-0.02509900
C	3.45727800	-0.68479100	-0.06840600
C	4.82093000	-1.28974600	-0.11042300
H	5.04878200	-1.60240500	-1.13245700
H	4.92097700	-2.15310000	0.54437900
C	5.69775700	-0.08707000	0.32692200
H	6.68268900	-0.10324100	-0.13477500
H	5.82465900	-0.11088900	1.41006400
C	4.90134500	1.17832900	-0.06235000
H	5.02554100	1.99850000	0.64127500
H	5.14097600	1.52388300	-1.06929400
C	0.10872800	0.07639300	-0.02653200
C	-0.61606200	1.26775100	-0.03573300
H	-0.09258900	2.21352700	-0.05623000
C	-2.00357900	1.23345700	-0.01934800
	x	y	z
---	-------	-------	-------
H	-2.56826500	2.15677600	-0.02660300
C	-2.65610600	0.00698600	0.00496300
C	-1.94397400	-1.18342700	0.01414500
H	-2.46063600	-2.13424800	0.03407500
C	-0.55400800	-1.14791000	-0.00119900
H	0.01274000	-2.06798100	0.00639500
Br	-4.55841100	-0.03916900	0.02495900
7e (B3LYP)

N 0.63065200 0.38495400 -0.03559600
N 1.10755100 -0.93567200 -0.04426700
N 2.70713300 0.57574800 -0.04584700
C 1.59416600 1.35124100 -0.03937300
C 2.39224400 -0.76030200 -0.05359100
C 3.62097400 -1.60733500 -0.09027000
H 3.76505200 -2.00820700 -1.09804500
H 3.57676600 -2.44890300 0.60057900
C 4.72635900 -0.57381500 0.28102800
H 5.66518400 -0.77203900 -0.23398800
H 4.91501400 -0.61580900 1.35524700
C 4.15407300 0.81997100 -0.08682800
H 4.43299900 1.59862800 0.62102800
H 4.44092800 1.13447800 -1.09257600
C -0.77411400 0.60711100 -0.01116100
C -1.27781500 1.91157500 0.01186900
H -0.59295500 2.74729800 0.01282000
C -2.65321300 2.11451100 0.03360600
H -3.04167700 3.12586900 0.05142100
C -3.54292500 1.03968200 0.03355900

SI-165
C -3.01387200 -0.24469800 0.01070500
C -1.64503900 -0.48532600 -0.01184500
H -1.25663400 -1.49232000 -0.02933600
Cl -4.11141500 -1.62812700 0.01033400
H -4.61300000 1.19825400 0.05094500

M062X

N 0.63058700 0.37337300 -0.02732000
N 1.10317600 -0.92490300 0.10410800
N 2.69316600 0.56279300 -0.13955000
C 1.58144200 1.33390800 -0.18661900
C 2.38270900 -0.75925800 0.02689400
C 3.61428800 -1.60179200 0.04927200
H 3.73833500 -2.08946600 -0.92078700
H 3.58753400 -2.36964100 0.81991600
C 4.70867400 -0.52974000 0.29245100
H 5.65399400 -0.78851700 -0.17957600
H 4.87639500 -0.42481200 1.36520200
C 4.13326300 0.79251000 -0.26231500
H 4.43164600 1.66691200 0.31184400
H 4.38553900 0.94465600 -1.31299400
C -0.77138900 0.59800800 0.01288200
C -1.26526300 1.89900200 0.10238900
H -0.57489000 2.72931300 0.14891700

SI-166
Element	X	Y	Z
C	-2.63774700	2.10478400	0.13124900
H	-3.02364300	3.11435800	0.20117200
C	-3.52724600	1.03525500	0.07942100
C	-3.00446500	-0.24645200	-0.00391100
C	-1.63892300	-0.49001000	-0.04027800
H	-1.25405800	-1.49708500	-0.10963800
Cl	-4.09788100	-1.61023300	-0.07048600
H	-4.59742600	1.19210800	0.10492400
7f (B3LYP)

N 1.46476000 -0.11304300 0.02960300
N 2.17765600 1.09754100 0.04681400
N 3.47027400 -0.68468000 0.04129900
C 2.23479500 -1.24145400 0.02812300
C 3.40723900 0.68757600 0.05688900
C 4.77132700 1.29206000 0.10172900
H 4.98401400 1.65080400 1.11322800
H 4.88559400 2.13312000 -0.58164500
C 5.66724500 0.07487200 -0.27678300
H 6.62653600 0.09338300 0.23824200
H 5.85999500 0.08760300 -1.35104900
C 4.84774600 -1.19109000 0.08415100
H 4.98035700 -2.00570800 -0.62569700
H 5.06853500 -1.55577900 1.08952700
C 0.04651500 -0.07278500 0.00505100
C -0.62019700 1.15506400 -0.01399000
H -0.05352800 2.07443800 -0.01328300
C -2.01019300 1.18744600 -0.03581200
H -2.51901100 2.14263000 -0.05286700
C -2.74076800 -0.00002200 -0.04327700
C -2.07132300 -1.22688600 -0.02316700
Atom	X	Y	Z
H	-2.62879100	-2.15527400	-0.03045900
C	-0.68474100	-1.26658300	-0.00024700
H	-0.16237400	-2.21240700	0.01169800
C	-4.23822700	0.03211200	-0.01381600
F	-4.73456300	-0.08781900	1.25172800
F	-4.79446700	-0.97898600	-0.72618500
F	-4.74726500	1.18531600	-0.50718800

M062X

Atom	X	Y	Z
N	-1.46030700	0.11191000	0.04047300
N	-2.16173400	-1.08602900	0.06935800
N	-3.45491800	0.68309500	0.04100300
C	-2.22351300	1.24082100	0.02395600
C	-3.38937600	-0.68427500	0.07221900
C	-4.75412600	-1.28590500	0.11937700
H	-4.97860700	-1.59689100	1.14267400
H	-4.85811500	-2.14977200	-0.53406600
C	-5.62995600	-0.08172600	-0.31573300
H	-6.61359000	-0.09625900	0.14869800
H	-5.75977700	-0.10523100	-1.39851700
C	-4.83050900	1.18216000	0.07172900
H	-4.95533100	2.00313200	-0.63077000
H	-5.06575700	1.52708600	1.07986000
C	-0.04299500	0.07303900	0.01457000

SI-169
	X	Y	Z
C	0.61694200	-1.15399600	-0.01764300
H	0.04662000	-2.07142400	-0.02500400
C	2.00461400	-1.18502200	-0.04390100
H	2.51964900	-2.13737300	-0.07377900
C	2.72611800	0.00286500	-0.04223500
C	2.06472100	1.22775500	-0.00786600
H	2.62814500	2.15294800	-0.00861700
C	0.68010200	1.26717900	0.01964800
H	0.15345700	2.21069600	0.04244200
C	4.22175200	-0.03146400	-0.01801000
F	4.71168600	-0.02350000	1.23921600
F	4.76542200	1.02872300	-0.63786900
F	4.71837700	-1.13059400	-0.60750600
7g (B3LYP)
H -3.63067500 2.22951200 0.05971100
C -1.70368700 1.24693100 -0.01406000
H -4.89614700 0.12449500 0.10389500
O -1.04985600 -2.33503000 -0.03732000
O -0.90724900 2.34498700 -0.03801400
C -1.74106600 -3.58843600 -0.01417600
H -2.39006800 -3.69597300 -0.88718800
H -0.96492000 -4.35021900 -0.04144000
H -2.32828300 -3.69730700 0.90139400
C -1.51951700 3.63878700 -0.01319200
H -2.09905900 3.78261600 0.90248200
H -0.69761300 4.35100900 -0.03935000
H -2.16040300 3.78767900 -0.88612800

M062X

N 0.37945400 -0.04537800 -0.09641300
N 1.08752100 -0.06528400 1.09918900
N 2.36707900 -0.08899300 -0.68035000
C 1.12247800 -0.06124400 -1.22641500
C 2.31328800 -0.09549500 0.68575000
C 3.68382000 -0.15939000 1.27637300
H 3.89246000 -1.18001900 1.60643800
H 3.81117500 0.50969500 2.12511600
C 4.55675800 0.23408500 0.05604600
H
5.53085200 -0.25045700 0.06918300
H
4.70960600 1.31421300 0.05792700
C
3.73541000 -0.15896500 -1.19207900
H
3.86902800 0.52545600 -2.02712100
H
3.94816500 -1.17767100 -1.52106400
C
-1.03952600 0.00739000 -0.04490500
C
-1.77377100 -1.18283100 -0.01254800
C
-3.16901200 -1.13140700 0.03806400
H
-3.76184900 -2.03450100 0.06031300
C
-3.79413400 0.10941200 0.06155500
C
-3.07868500 1.30057900 0.03714100
H
-3.60297300 2.24494900 0.05935700
C
-1.68352800 1.24849200 -0.01306300
H
-4.87625200 0.14963800 0.10115100
O
-1.05076500 -2.32255200 -0.03605300
O
-0.87852000 2.33195800 -0.03610400
C
-1.75867000 -3.55595300 -0.01236400
H
-2.41328600 -3.64545300 -0.88249300
H
-1.00047400 -4.33411500 -0.04409500
H
-2.34471800 -3.65057500 0.90490300
C
-1.49359800 3.61412600 -0.01394200
H
-2.07206900 3.75254900 0.90261900
H
-0.67994700 4.33403400 -0.04477800
H
-2.13879900 3.75178300 -0.88486000
7h (B3LYP)

N 1.29816600 -0.04780500 -0.10594300
N 2.00493500 -0.10231100 1.10959500
N 3.30274700 -0.17850000 -0.66630200
C 2.06091000 -0.09549600 -1.22494300
C 3.23598800 -0.18569300 0.70229000
C 4.59536700 -0.31001000 1.31079200
H 4.74925100 -1.33093700 1.67301700
H 4.74986000 0.36837400 2.14965200
C 5.51337300 0.01158000 0.09399900
H 6.44257800 -0.55624800 0.11540700
H 5.76630400 1.07354000 0.10246900
C 4.67457800 -0.30665500 -1.17092000
H 4.85226100 0.38939500 -1.98921900
H 4.83804400 -1.32512700 -1.53042300
C -0.13580700 0.06114700 -0.06207500
C -0.90881900 -1.11443000 -0.03933500
C -2.29846400 -0.98060600 0.00143900
H -2.90704900 -1.87808200 0.01545300
C -2.92511100 0.26841200 0.02657000
C -2.12033700 1.40776800 0.01080600

SI-174
	X	Y	Z
H	-2.59739700	2.38228800	0.03094300
C	-0.72372100	1.33618500	-0.03001000
C	-0.28155600	-2.50444000	-0.05872700
H	0.80220700	-2.38182000	-0.08000800
C	0.10159500	2.61793100	-0.04269800
H	1.15552100	2.33622900	-0.06007900
C	-4.44191400	0.39371600	0.06937100
H	-4.67108900	1.46450300	0.09953700
C	-0.67514700	-3.28811600	-1.32505100
H	-1.75187800	-3.47772900	-1.36115800
H	-0.39783900	-2.74219100	-2.23061000
H	-0.16555100	-4.25599500	-1.34299200
C	-0.62591700	-3.30115300	1.21371900
H	-0.31521900	-2.76416700	2.11380300
H	-1.70017000	-3.49298900	1.28896900
H	-0.11490500	-4.26838900	1.20253000
C	-0.16945400	3.45162400	-1.30910200
H	0.02827300	2.87109100	-2.21401900
H	-1.20779600	3.79365300	-1.34776500
H	0.47438500	4.33596600	-1.32552100
C	-0.12655200	3.45389300	1.23070500
H	-1.16004700	3.80523900	1.30105200
H	0.09380500	2.87275700	2.13001800
H	0.52441200	4.33311400	1.22679400
C	-5.03673800	-0.24121100	1.33974300

SI-175
Atom	x	y	z
H	-6.11772800	-0.07747500	1.37656000
H	-4.86238400	-1.32105900	1.36424000
H	-4.59689000	0.19188800	2.24216000
C	-5.10176000	-0.18363800	-1.19687300
H	-6.18274100	-0.02113000	-1.17116600
H	-4.70814200	0.29148200	-2.09971800
H	-4.92759300	-1.26072100	-1.27956000

M062X

Atom	x	y	z
N	-1.28995800	-0.06240200	0.08912500
N	-1.98843800	-0.08415700	-1.11033000
N	-3.27856500	-0.21712300	0.65574800
C	-2.03789700	-0.14400300	1.21171800
C	-3.21629500	-0.18428200	-0.70788900
C	-4.57827700	-0.29506400	-1.31117300
H	-4.73751900	-1.31489200	-1.66984000
H	-4.72989200	0.38990500	-2.14307600
C	-5.47584000	0.02636700	-0.08773600
H	-6.42729700	-0.50025600	-0.12088200
H	-5.67601600	1.09845400	-0.06221600
C	-4.64555700	-0.36322800	1.15552000
H	-4.81532800	0.29064400	2.00830300
H	-4.81320800	-1.39936600	1.45477000
C	0.13749500	0.05912600	0.04387400

SI-176
Element	X	Y	Z
C	0.913861	-1.106769	0.012343
C	2.298981	-0.962517	-0.015925
H	2.917714	-1.854911	-0.030839
C	2.909510	0.292444	-0.023811
C	2.099101	1.424641	-0.006650
H	2.567120	2.404676	-0.015366
C	0.706035	1.335593	0.024306
C	0.293025	-2.491887	0.023869
H	-0.791714	-2.379306	-0.026730
C	-0.137677	2.597260	0.045104
H	-1.189444	2.303404	0.037960
C	4.420009	0.419866	-0.050700
H	4.654908	1.488930	-0.055482
C	0.627889	-3.224871	1.328325
H	1.706124	-3.384543	1.418397
H	0.294602	-2.651800	2.196595
H	0.138641	-4.201678	1.350071
C	0.733212	-3.311577	-1.194277
H	0.490732	-2.793567	-2.124842
H	1.810264	-3.497812	-1.178052
H	0.226709	-4.279685	-1.196770
C	0.115512	3.401785	1.325241
H	-0.093051	2.800770	2.213321
H	1.155060	3.737131	1.376181
H	-0.525466	4.286474	1.348433
C 0.11641600 3.45289100 -1.20110300
H 1.15150900 3.80325000 -1.23417300
H -0.08045300 2.88536700 -2.11348500
H -0.53426400 4.33065100 -1.19404500
C 5.01057300 -0.20165700 -1.32142600
H 6.09226200 -0.05013800 -1.35020400
H 4.82136500 -1.27833000 -1.35106800
H 4.57556500 0.24483000 -2.21821000
C 5.05336800 -0.19994000 1.20020000
H 6.13519400 -0.04672000 1.19350400
H 4.64722300 0.24610800 2.11063600
H 4.86677300 -1.27688400 1.23644300
7i (B3LYP)

![Chemical Structure of 7i](Image)

Atom	X	Y	Z
N	-0.50531800	0.03898800	-0.10695100
N	-1.21660000	0.01945100	1.10788800
N	-2.51224700	0.06270700	-0.67120200
C	-1.26652800	0.06884100	-1.22650700
C	-2.44880000	0.03874900	0.69788000
C	-3.81456500	0.06673700	1.30417600
H	-4.02891800	1.06645200	1.69376400
H	-3.93107300	-0.64240400	2.12355300
C	-4.71004800	-0.27461500	0.07597000
H	-5.66978500	0.23936000	0.10838600
H	-4.90308700	-1.34891600	0.05633700
C	-3.88790500	0.12267500	-1.17756100
H	-4.02283600	-0.56263600	-2.01295100
H	-4.10997800	1.13817000	-1.51338600
C	0.93082900	0.01203500	-0.06400800
C	1.58874500	-1.22573300	-0.04897000
C	2.98572200	-1.22506700	-0.00473200
H	3.50893600	-2.17621400	0.00211400
C	3.72236100	-0.03807000	0.02917300
C	3.02826500	1.17486600	0.01251800
H	3.58487800	2.10669300	0.03317400
C 1.63235400 1.22550100 -0.03053300
C 0.82058000 -2.52355900 -0.08781800
H 0.13604200 -2.60671700 0.76070400
H 0.21531900 -2.59838700 -0.99561800
H 1.50245900 -3.37454400 -0.06071300
C 5.22989400 0.06489000 0.10952600
H 5.56351400 0.05666700 1.15291000
H 5.63725400 -0.96463100 -0.35656700
H 5.67001500 0.80657800 -0.38015200
C 0.91037000 2.55009200 -0.04867300
H 0.31823300 2.66571500 -0.96079700
H 0.21953700 2.63879200 0.79414900
H 1.62099900 3.37595900 0.00431200

M062X

N -0.50054600 0.06644300 -0.09643000
N -1.19971800 -0.10259000 1.09261300
N -2.49493000 0.15762500 -0.65596400
C -1.25282800 0.23373000 -1.20634800
C -2.43023900 -0.03498100 0.69510700
C -3.79681400 -0.08405600 1.29617600
H -4.02198300 0.87477300 1.76962000
H -3.90500700 -0.86927500 2.04188200
C -4.67079700 -0.31656200 0.03634600

SI-180
	X	Y	Z
H	-5.65623900	0.13611900	0.12507900
H	-4.79737100	-1.38902300	-0.11915900
C	-3.86884300	0.27438700	-1.14426600
H	-3.99591000	-0.28020600	-2.07155500
H	-4.10409000	1.32607700	-1.31732300
C	0.93111400	0.02545600	-0.05829800
C	1.56647300	-1.21645100	-0.08967400
C	2.96006000	-1.23638900	-0.04884500
H	3.47420700	-2.19220900	-0.07811000
C	3.70535100	-0.05974900	0.02359100
C	3.03013500	1.16098500	0.05123600
H	3.59988800	2.08395200	0.10351000
C	1.63834200	1.22704200	0.01591200
C	0.76181000	-2.48518800	-0.17827300
H	0.08270000	-2.57559500	0.67265900
H	0.14773600	-2.48952500	-1.08247200
H	1.41633600	-3.35611700	-0.19685600
C	5.20978900	-0.10327500	0.09833100
H	5.54212000	-0.04826400	1.13873300
H	5.59871400	-1.02947900	-0.32644900
H	5.65464100	0.73879500	-0.43415600
C	0.91174500	2.54489400	0.04758400
H	0.37720700	2.71411000	-0.89026500
H	0.16969400	2.56116200	0.84935800
H	1.61192900	3.36530300	0.20249500

SI-181
7j (B3LYP)

\[
\begin{array}{cccc}
N & -0.89825800 & 0.04415000 & -0.10010600 \\
N & -1.60484000 & 0.04013900 & 1.11827100 \\
N & -2.89676900 & 0.05781900 & -0.66807800 \\
C & -1.65678900 & 0.05697100 & -1.22594900 \\
C & -2.83453000 & 0.05256500 & 0.70406600 \\
C & -4.20045300 & 0.08365100 & 1.30771300 \\
H & -4.41763600 & 1.08892600 & 1.68066300 \\
H & -4.31293400 & -0.61257600 & 2.13835500 \\
C & -5.09312900 & -0.28095100 & 0.08421800 \\
H & -6.05560800 & 0.22788900 & 0.10966700 \\
H & -5.27931800 & -1.35650300 & 0.07992100 \\
C & -4.27428900 & 0.10421300 & -1.17481100 \\
H & -4.40395600 & -0.59261200 & -2.00010700 \\
H & -4.49920700 & 1.11456200 & -1.52283500 \\
C & 0.51960500 & 0.01649400 & -0.06163500 \\
C & 1.26487400 & 1.20177600 & -0.03193500 \\
C & 2.65454800 & 1.19131600 & 0.00784000 \\
H & 3.21020300 & 2.11794600 & 0.02593000 \\
C & 3.30546300 & -0.03628900 & 0.02435400 \\
C & 2.60866600 & -1.23844400 & 0.00387200 \\
H & 3.12879600 & -2.18556200 & 0.01881000 \\
\end{array}
\]
C 1.21964400 -1.19619000 -0.03657600
Cl 0.44497000 2.74505500 -0.04777400
Cl 5.05741300 -0.06918900 0.07261200
Cl 0.34156200 -2.70689500 -0.05936700

M062X

N -0.88983400 0.07536500 -0.09634900
N -1.58431400 0.04555800 1.10736700
N -2.87608700 0.08507800 -0.66642600
C -1.64001100 0.10028500 -1.22455100
C -2.81241800 0.05679200 0.70101700
C -4.17939400 0.06478800 1.30122000
H -4.41586100 1.07146300 1.65422600
H -4.27792600 -0.62590700 2.13616400
C -5.04754100 -0.32940600 0.07778600
H -6.03822300 0.11887300 0.11108600
H -5.16064300 -1.41414300 0.05313300
C -4.25180000 0.12535700 -1.16543900
H -4.36837200 -0.53872100 -2.01898000
H -4.49765300 1.14617700 -1.46228400
C 0.52385800 0.03263500 -0.05852600
C 1.27651000 1.20608800 -0.02647900
C 2.66301500 1.17588600 0.01066500
H 3.23415800 2.09390700 0.03034700
C	3.29295500	-0.06012200	0.02311800	
C	2.58232600	-1.25184300	0.00168300	
H	3.09106300	-2.20594700	0.01458700	
C	1.19727000	-1.18839800	-0.03719200	
Cl	0.46597500	2.73788600	-0.03463500	
Cl	5.02985000	-0.11755700	0.06706000	
Cl	0.28396800	-2.66033400	-0.06479200	
7k (B3LYP)

N 0.93789200 -0.08694300 -0.07610000
N 1.65059600 0.44353400 1.01905300
N 2.93274800 -0.35844000 -0.58724400
C 1.69371300 -0.59456900 -1.08876600
C 2.87707800 0.24525700 0.64680600
C 4.24530500 0.47366700 1.19925500
H 4.46028700 -0.26988700 1.97226000
H 4.36241200 1.46175400 1.64329800
C 5.13357600 0.26452100 -0.06305600
H 6.09430700 -0.18699300 0.17961500
H 5.32302000 1.22964800 -0.53626200
C 4.30882300 -0.62748300 -1.02597600
H 4.43673700 -0.36163500 -2.07368500
H 4.52793500 -1.68947800 -0.89812200
C -0.47407600 -0.04239600 -0.04923000
C -1.15295300 1.17303700 -0.13091700
C -2.53907600 1.22729000 -0.09552200
C -3.27130700 0.05213300 0.01348700
C -2.61568200 -1.16919600 0.09289700
C -1.22797700 -1.20920700 0.07024300

SI-185
F -4.60476700 0.09740200 0.04132200
F -3.17247400 2.40213800 -0.18008900
F -0.46943100 2.31429700 -0.26317800
F -0.62189200 -2.39568600 0.17437300
F -3.32231300 -2.29912700 0.20619500

M062X

N 0.93567000 -0.11809300 -0.04729300
N 1.63922500 0.55947000 0.94485100
N 2.91759000 -0.45662200 -0.52355000
C 1.68219500 -0.76545200 -0.98204400
C 2.86282800 0.31685500 0.60700600
C 4.23304600 0.62756600 1.11010300
H 4.46720400 -0.02642500 1.95356500
H 4.33882300 1.66057200 1.43483200
C 5.09450700 0.28592300 -0.13321400
H 6.08453200 -0.07559200 0.13572200
H 5.20792200 1.18056500 -0.74706200
C 4.29143200 -0.77095500 -0.92243300
H 4.40558400 -0.68358500 -2.00056400
H 4.53147700 -1.78917800 -0.61252500
C -0.47218300 -0.05964200 -0.03171300
C -1.12897000 1.16089500 -0.13752700
C -2.51053100 1.23315700 -0.11522100

SI-186
C	-3.25614600	0.07180900	0.00179700
C	-2.61957700	-1.15352200	0.10296400
C	-1.23604800	-1.21330200	0.09560900
F	-4.57979500	0.13331600	0.01613100
F	-3.12360400	2.40609900	-0.22069700
F	-0.43284500	2.28124500	-0.28348900
F	-0.65116500	-2.39698200	0.22405200
F	-3.33773000	-2.26363800	0.22467100
8a (B3LYP)

N 0.45610500 -0.06478100 -0.03238800
N 1.21543000 1.06232700 0.26723700
N 2.45007800 -0.70887400 -0.15757800
C 1.17347500 -1.17674600 -0.31025400
C 2.44123500 0.62880700 0.18007000
C -0.96654000 0.04312600 -0.03277400
C -1.75360400 -1.06542800 0.26569400
C -3.14552000 -0.97142000 0.24637800
C -3.75774700 0.24778600 -0.05898200
C -2.96151100 1.36407100 -0.34648600
C -1.57796800 1.26313400 -0.33805300
C 3.67327900 -1.48591900 -0.41666800
H 3.80074600 -1.56909900 -1.49968000
H 3.52360700 -2.48828900 -0.01611500
C 3.69008800 1.40843900 0.44737600
H 3.58075900 2.41799500 0.04612200
H 3.80596700 1.50961500 1.53248700
C 4.91945100 0.69368100 -0.13717400
H 4.93874000 0.81726300 -1.22553500
H 5.82747700 1.15755200 0.25355900
C 4.88783100 -0.80044300 0.20952400
H 4.86387300 -0.92566600 1.29770200
H 5.78901400 -1.30082000 -0.15213900
H -1.28043300 -2.00591300 0.51484900
H -3.73168400 -1.84863800 0.48284000
H -3.44293500 2.30559700 -0.58260400
H -0.96862500 2.12696500 -0.56753600
O -5.10681300 0.44804900 -0.09714700
C -5.96994900 -0.65521400 0.18812200
H -6.98318800 -0.26865800 0.09962000
H -5.82514500 -1.46648500 -0.53123200
H -5.81008200 -1.02976600 1.20330100

M062X

N 0.45680800 -0.06165300 -0.02540000
N 1.20782200 1.05830400 0.25226700
N 2.43775600 -0.70975400 -0.14657000
C 1.16457400 -1.17933500 -0.28829700
C 2.43012900 0.62739500 0.16948300
C -0.96378000 0.04693400 -0.02598100
C -1.74578600 -1.06743300 0.24147700
C -3.13542200 -0.97239000 0.22357100
C -3.74200100 0.25323200 -0.04967100
C -2.94815100 1.37454900 -0.30762100
C -1.56775700 1.27360800 -0.30089600
Symbol	X	Y	Z
C	3.65475400	-1.49277400	-0.38546400
H	3.78699900	-1.59465700	-1.46555500
H	3.49990000	-2.48417000	0.03825200
C	3.67789800	1.41296600	0.41264100
H	3.55855600	2.41292100	-0.00600100
H	3.80663700	1.52468800	1.49385000
C	4.88904600	0.68305700	-0.17615500
H	4.87549900	0.76059800	-1.26809300
H	5.80537300	1.15966000	0.17369600
C	4.85883400	-0.79118700	0.23070800
H	4.81320500	-0.86973000	1.32189400
H	5.76307700	-1.30525300	-0.09833800
H	-1.26838300	-2.01253900	0.46477700
H	-3.72231500	-1.85521800	0.43683200
H	-3.43367700	2.31950500	-0.51921600
H	-0.95357000	2.13972400	-0.50935700
O	-5.08498800	0.45224200	-0.08241300
C	-5.92378100	-0.66799900	0.15534100
H	-6.94406700	-0.30144100	0.07527100
H	-5.75571800	-1.44821600	-0.59189400
H	-5.75966200	-1.07582500	1.15630200
8b (B3LYP)

\[
\begin{align*}
\text{N} & : 0.39609600, -0.10808500, -0.00207300 \\
\text{N} & : -0.33087900, 1.06772300, 0.15847800 \\
\text{N} & : -1.61535700, -0.70065200, -0.09895900 \\
\text{C} & : -0.35489600, -1.22326600, -0.16383500 \\
\text{C} & : -1.56802700, 0.66540500, 0.09558700 \\
\text{C} & : 1.82076100, -0.04669100, 0.00037800 \\
\text{C} & : 2.46741400, 1.15829000, -0.28259400 \\
\text{C} & : 3.86048500, 1.20831700, -0.28275100 \\
\text{C} & : 4.61105600, 0.06575000, -0.00885500 \\
\text{C} & : 3.95570400, -1.13375600, 0.27291900 \\
\text{C} & : 2.56464200, -1.19504200, 0.28496200 \\
\text{C} & : -2.86112200, -1.48415100, -0.14999800 \\
\text{H} & : -2.99364500, -1.97451300, 0.81845900 \\
\text{H} & : -2.73779700, -2.25828800, -0.90697600 \\
\text{C} & : -2.79434300, 1.51935900, 0.17154000 \\
\text{H} & : -2.65445000, 2.28905800, 0.93320900 \\
\text{H} & : -2.90853900, 2.03905800, -0.78654100 \\
\text{C} & : -4.04338400, 0.66574600, 0.44639800 \\
\text{H} & : -4.05976800, 0.35775000, 1.49758900 \\
\text{H} & : -4.93771100, 1.26841900, 0.27571200 \\
\text{C} & : -4.05354300, -0.57661500, -0.45264700
\end{align*}
\]
M062X

N 0.38970800 -0.10824800 -0.00137100
N -0.32636500 1.05716300 0.15895800
N -1.61062200 -0.69868900 -0.10101700
C -0.35457900 -1.22293900 -0.16627700
C -1.56072300 0.66162300 0.09533100
C 1.81242200 -0.04737800 -0.00002000
C 2.45163900 1.15437100 -0.29242500
C 3.84192800 1.20552800 -0.29180600
C 4.59089600 0.06768100 -0.00803800
C 3.93923200 -1.12856300 0.28234600
C 2.55091300 -1.19201100 0.29351900
C -2.85253900 -1.47740100 -0.16470800
H -2.99316300 -1.97016600 0.80049300
H -2.72424500 -2.24334500 -0.92826500
C -2.78374500 1.51611200 0.18174600
	H	H	C	H	H	C	H	H	H	H	H	H	H		
	-2.63333000	2.28217900	0.94320600	-2.90875200	2.02851800	-0.77729300	-4.01697900	0.65316500	0.46653800	-4.00238000	0.31397400	1.50734400	-4.91803200	1.25237000	0.33140700
	-2.90875200	2.02851800	-0.77729300	-4.00238000	0.31397400	1.50734400	-4.91803200	1.25237000	0.33140700	-4.03106200	-0.55935800	-0.46491500	-3.98264500	-0.22347700	-1.50592100
	-4.01697900	0.65316500	0.46653800	-4.00238000	0.31397400	1.50734400	-4.91803200	1.25237000	0.33140700	-4.03106200	-0.55935800	-0.46491500	-3.98264500	-0.22347700	-1.50592100
	-4.00238000	0.31397400	1.50734400	-4.91803200	1.25237000	0.33140700	-3.98264500	-0.22347700	-1.50592100	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300
	-4.91803200	1.25237000	0.33140700	-3.98264500	-0.22347700	-1.50592100	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300
	-4.03106200	-0.55935800	-0.46491500	-3.98264500	-0.22347700	-1.50592100	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300
	-3.98264500	-0.22347700	-1.50592100	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300
	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300	-4.95269300	-1.13087500	-0.34645300
	1.86259800	2.03287800	-0.51885700	4.33888700	2.14095000	-0.51969800	4.51276900	-2.01866900	0.51232900	2.03440400	-2.11305000	0.52834300	5.67311000	0.11215700	-0.01036900
8c (B3LYP)

```
N  0.02152000  -0.11655300  -0.00789300
N  0.74161500  1.05578100   0.19977200
N  2.03514200  -0.69690000  -0.11512100
C  0.77737800  -1.22058300  -0.21491400
C  1.98083400  0.66117500   0.12731900
C  -1.40209500  -0.06236100  -0.00172700
C  -2.14046800  -1.22506700   0.23350100
C  -3.53150600  -1.17962400   0.22651200
C  -4.15631700  0.03562700  -0.00364300
C  -3.44737700  1.20296200  -0.22982000
C  -2.05511300  1.15014400  -0.23188000
C  3.28430800  -1.44614100  -0.33112400
H  3.40582400  -1.60025400  -1.40689000
H  3.17374900  -2.42234200   0.14027300
C  3.20271700  1.50200900   0.32302900
H  3.05313400  2.47463900  -0.14992800
H  3.32224600  1.68671300   1.39657500
C  4.45295900   0.79046100  -0.21987700
H  4.46069100   0.83586200  -1.31442500
H  5.34604100  1.31323000   0.12833500
C  4.47714700  -0.67480800   0.23342000
```

SI-194
Atom	X	Y	Z
H	4.46452500	-0.72250300	1.32795300
H	5.39322700	-1.16777300	-0.09966200
F	-5.51853000	0.08339100	-0.00368700
H	-1.62548900	-2.15717300	0.42023900
H	-4.12057000	-2.06983700	0.40755600
H	-3.97129000	2.13373800	-0.40697300
H	-1.47807000	2.04612700	-0.41195700

M062X

Atom	X	Y	Z
N	-0.02548600	-0.11862100	0.00391700
N	-0.73415700	1.03909100	-0.22622000
N	-2.02806500	-0.69358600	0.12651400
C	-0.77460100	-1.21744000	0.23671600
C	-1.97080700	0.65325600	-0.14505900
C	1.39626000	-0.06450200	-0.00003300
C	2.12985000	-1.21993100	-0.25906400
C	3.51797100	-1.17185500	-0.25013500
C	4.13867200	0.03767600	0.00611000
C	3.42955500	1.19745000	0.25611700
C	2.04057000	1.14249400	0.25614600
C	-3.27360600	-1.43466700	0.35424400
H	-3.39918000	-1.56319000	1.43225500
H	-3.16138800	-2.41828400	-0.09976500
C	-3.18883500	1.49359200	-0.35154900
Atom	X-Position	Y-Position	Z-Position
------	------------	------------	------------
H	-3.02709000	2.47508000	0.09554400
H	-3.32156500	1.64272500	-1.42770100
C	-4.42252500	0.79326100	0.22596000
H	-4.39617500	0.83525600	1.31962900
H	-5.32208900	1.31696800	-0.09902500
C	-4.45421300	-0.66719000	-0.22749700
H	-4.42213700	-0.71328200	-1.32093500
H	-5.37480300	-1.15543500	0.09540700
F	5.48785300	0.08732400	0.00805600
H	1.61207500	-2.14645900	-0.46711900
H	4.11244300	-2.05395200	-0.45143700
H	3.95593400	2.12251700	0.45336000
H	1.45750500	2.03108700	0.45585800
8i (B3LYP)

N -0.20046000 0.01692800 -0.11398000
N -0.91734600 -0.13726700 1.07243200
N -2.21665100 0.09814100 -0.68901500
C -0.95434700 0.16007200 -1.22059900
C -2.15864000 -0.08305300 0.67732300
C 1.23608700 0.00950700 -0.06385900
C 1.91916200 1.22750300 0.05046800
C 3.31606400 1.19314200 0.10348500
C 4.02708800 -0.00796400 0.04956200
C 3.30692200 -1.20175200 -0.05495300
C 1.91134100 -1.21864300 -0.11367100
C -3.46674500 0.12946200 -1.46539500
H -3.59567100 -0.84529300 -1.94450300
H -3.35532600 0.87837500 -2.24930900
C -3.37999900 -0.15186800 1.54057800
H -3.23144500 -0.90076700 2.32116700
H -3.49826200 0.81331300 2.04601400
C -4.63224000 -0.44834200 0.69907700
H -4.64199100 -1.50374900 0.40518500
H -5.52457600 -0.27692500 1.30470600
C -4.65703500 0.43369100 -0.55527100
Atom	X	Y	Z
H	-4.64010300	1.48972600	-0.26345600
H	-5.57538700	0.27188600	-1.12433900
C	1.16080500	-2.52223900	-0.22891300
H	0.48744500	-2.67063000	0.61962400
H	0.54579200	-2.54610000	-1.13290500
H	1.85465200	-3.36311400	-0.26530500
C	1.17948400	2.54094500	0.11426800
H	0.62119300	2.72531200	-0.80785100
H	0.45560600	2.55196500	0.93351000
H	1.87600500	3.36721700	0.26247500
C	5.53662300	-0.01870400	0.07924300
H	5.91716400	-0.87516900	0.64085200
H	5.94487700	-0.08784000	-0.93482500
H	5.93240100	0.89292400	0.53140700
H	3.84285000	-2.14525100	-0.09090200
H	3.85854300	2.12897000	0.19433600

M062X

Atom	X	Y	Z															
N	-0.19803800	0.02127600	-0.11398400															
N	-0.90168400	-0.18831100	1.05318400															
N	-2.20298200	0.12935500	-0.68146300															
C	-0.94591800	0.21843900	-1.21245200															
C	-2.14109900	-0.11557500	0.66925300															
C	1.23408900	0.01299900	-0.06562600															
	C	H	H	H	H													
---	--------	--------	--------	--------	--------													
	5.51452000	-0.02605900	0.08677500	5.88102700	-0.85064500	0.70070000	5.92113200	-0.15945200	-0.91936500	5.90989100	0.90821700	0.48684400	3.82973500	-2.14202100	-0.13329200	3.84744300	2.12422900	0.23708700
8k (B3LYP)

N -0.64330200 0.05129900 -0.09935900
N -1.35725100 -0.48597400 0.97424300
N -2.64900600 0.32640600 -0.61912300
C -1.39462500 0.55917800 -1.10391100
C -2.59441200 -0.29752700 0.61443500
C 0.76949700 0.02884400 -0.05962700
C 1.50245300 1.20174200 0.11441200
C 2.89035000 1.18293100 0.15022800
C 3.56637500 -0.02356800 0.02670800
C 2.85470000 -1.20491600 -0.13817400
C 1.46813000 -1.17139600 -0.18354200
C -3.90114600 0.61353600 -1.34248300
H -4.02752000 -0.15107000 -2.11356700
H -3.78623200 1.57797700 -1.83597700
C -3.81728900 -0.64183500 1.40489100
H -3.67001100 -1.60501400 1.89701400
H -3.93087000 0.10602100 2.19760500
C -5.06899600 -0.64175300 0.51240800
H -5.08243300 -1.54266600 -0.11048700
H -5.96010400 -0.67505100 1.14232500
C -5.09054400 0.60369400 -0.38260200
H -5.07283600 1.50563300 0.23902900
H -6.00770600 0.63906600 -0.97470600
F 4.90003800 -0.04839200 0.06543600
F 3.57746100 2.31825900 0.31612900
F 0.87519900 2.37291700 0.25915200
F 0.80341300 -2.31688500 -0.36561900
F 3.50807400 -2.36485100 -0.26488000

M062X

N -0.64310400 0.07830000 -0.07883000
N -1.34857400 -0.60298400 0.89381700
N -2.63627500 0.41918500 -0.56211800
C -1.38639800 0.72298700 -1.00511000
C -2.58224300 -0.37147900 0.56583600
C 0.76577300 0.04386800 -0.04591900
C 1.50630600 1.20400300 0.14198200
C 2.89052100 1.16809000 0.16651500
C 3.54989200 -0.04039100 0.01856300
C 2.82705900 -1.20834600 -0.16048800
C 1.44468700 -1.15930900 -0.19644800
C -3.88257000 0.80443500 -1.23732300
H -4.00999800 0.15296700 -2.10510700
H -3.76530900 1.82900500 -1.58679200
Element	X	Y	Z	\(d\)
C	-3.80378400	-0.83252100	1.29256300	
H	-3.64540300	-1.85182600	1.64593000	
H	-3.93276300	-0.19669800	2.17394200	
C	-5.03580100	-0.71773300	0.38997100	
H	-5.01092000	-1.50120100	-0.37424800	
H	-5.93611900	-0.87141400	0.98558900	
C	-5.06208700	0.65425000	-0.28515700	
H	-5.02474000	1.44035700	0.47599200	
H	-5.98273300	0.79101500	-0.85404400	
F	4.87396900	-0.07976600	0.04841200	
F	3.58699100	2.28400700	0.34642200	
F	0.89746800	2.36989700	0.31433900	
F	0.76917500	-2.28369800	-0.39739900	
F	3.46301100	-2.36386500	-0.31191400	
9a (B3LYP)

N 0.15038300 -0.15706700 -0.20786200
N 0.82135800 1.05070200 -0.07040300
N 2.17867900 -0.62727700 -0.49985600
C 0.94464400 -1.21938500 -0.47461000
C 2.07121700 0.72865600 -0.25908000
C -1.26993700 -0.17965800 -0.07514100
C -2.02150700 0.95374200 -0.37011700
C -3.41226600 0.93308900 -0.24915200
C -4.05853300 -0.23548800 0.16170000
C -3.29733100 -1.37450000 0.45817700
C -1.91550800 -1.34624900 0.34834800
C 3.43061600 -1.34922200 -0.76260700
H 3.85467500 -0.98547000 -1.70396800
H 3.14086000 -2.38838000 -0.90969200
C 3.21522000 1.68564400 -0.20283600
H 3.67894100 1.75146000 -1.19477100
H 2.79730400 2.66950900 0.01635100
C 4.29184300 1.32442300 0.84141600
H 3.81152700 1.15516700 1.81177200
H 4.93689300 2.19947500 0.96281400
C 4.45572000 -1.23273800 0.36885300
Atom	X	Y	Z
H	3.96797300	-1.48048000	1.31845700
H	5.20921900	-2.00722100	0.19408900
C	5.17165900	0.12208000	0.47273000
H	5.96245100	0.03294300	1.22437700
H	5.67727800	0.32951200	-0.47905200
H	-1.33074800	-2.22397100	0.58921100
H	-3.80455400	-2.27413200	0.78591500
H	-3.97022200	1.82851200	-0.48553300
H	-1.52479200	1.85759000	-0.69646000
O	-5.40946500	-0.36408600	0.30660700
C	-6.23737700	0.76643100	0.02378400
H	-7.25856600	0.43865800	0.20723800
H	-5.99951500	1.60536600	0.68419600
H	-6.13671700	1.07870000	-1.01974800

\textbf{M062X}

Atom	X	Y	Z
N	0.15673800	-0.15847400	-0.21858100
N	0.81653700	1.04315300	-0.11369600
N	2.17186900	-0.63188500	-0.50769400
C	0.94499200	-1.22698200	-0.46330700
C	2.06217200	0.72225600	-0.29758500
C	-1.26146000	-0.18171900	-0.08499300
C	-2.00531200	0.96050800	-0.34032300
C	-3.39410800	0.93902900	-0.21721200

SI-205
C -4.03753300 -0.23953500 0.15470700
C -3.28111700 -1.38807200 0.41075200
C -1.90295000 -1.36021900 0.29937900
C 3.43005300 -1.33839900 -0.74404800
H 3.88077800 -0.95048700 -1.66274200
H 3.15449100 -2.37750200 -0.91534700
C 3.21279600 1.66729600 -0.25967300
H 3.71086700 1.66549700 -1.23592100
H 2.80000700 2.66478100 -0.1065600
C 4.23464400 1.33326100 0.83893600
H 3.70814500 1.17561000 1.78614400
H 4.87381300 2.20882900 0.97475800
C 4.40558700 -1.21985100 0.42438200
H 3.87059700 -1.43993500 1.35431800
H 5.15775600 -2.00268300 0.29663300
C 5.12393400 0.12813700 0.52604900
H 5.88759200 0.05127000 1.3045100
H 5.65615700 0.31538900 -0.41434100
H -1.31585100 -2.24438400 0.50995400
H -3.79461800 -2.29437500 0.70824600
H -3.95045700 1.84324900 -0.42234500
H -1.50361700 1.87207200 -0.63678300
O -5.38219100 -0.36713100 0.29803500
C -6.18080700 0.78408000 0.07040000
H -7.20885800 0.47695500 0.24545800
	H			
H	-5.91579300	1.58704700	0.76352300	
H	-6.07484800	1.13743200	-0.95880100	
9b (B3LYP)

Element	X	Y	Z
N	-0.690749	-0.093669	-0.177242
N	0.033617	1.09007	-0.123826
N	1.31148	-0.66978	-0.460923
C	0.056545	-1.20508	-0.383938
C	1.26505	0.70309	-0.303862
C	-2.10812	-0.04819	-0.027124
C	-2.78956	1.15936	-0.195127
C	-4.17584	1.19343	-0.051948
C	-4.88673	0.03329	0.251592
C	-4.19689	-1.16851	0.417742
C	-2.81159	-1.21491	0.285571
C	2.52890	-1.46067	-0.686985
H	2.95826	-1.17522	-1.652511
H	2.19292	-2.49327	-0.765824
C	2.44982	1.61018	-0.319776
H	2.90419	1.59052	-1.317909
H	2.07746	2.62357	-0.161665
C	3.52096	1.26947	0.736950
H	3.04441	1.18335	1.719834
H	4.20462	2.12159	0.796638
C	3.56906	-1.31730	0.427506
---	------	------	------
H	3.08023900	-1.48236600	1.39437000
H	4.28631700	-2.13379000	0.29745600
C	4.34424000	0.00869200	0.43936200
H	5.13758900	-0.06723200	1.18971500
H	4.84908600	0.13283600	-0.52718800
H	-2.27172000	-2.14199700	0.42152800
H	-4.73689400	-2.07685700	0.65964000
H	-4.69909300	2.13360600	-0.18414600
H	-2.23747600	2.05730400	-0.43531000
H	-5.96459600	0.06445300	0.35951300

M062X

N	-0.67908600	-0.09395700	-0.18371600
N	0.03383700	1.08152700	-0.13716900
N	1.30968000	-0.66544700	-0.48166400
C	0.06148900	-1.20514300	-0.39522200
C	1.26073200	0.70033900	-0.32418400
C	-2.09383400	-0.04973900	-0.02864500
C	-2.76884000	1.15725200	-0.19202300
C	-4.15174200	1.19236000	-0.04270000
C	-4.86010300	0.03420600	0.26148600
C	-4.17322300	-1.16676600	0.42198500
C	-2.79124800	-1.21554800	0.28344500
C	2.53302400	-1.43539600	-0.70612700
$9c$ (B3LYP)

\begin{align*}
\text{N} & \quad -0.28053300 \quad -0.09690200 \quad -0.20587900 \\
\text{N} & \quad 0.43844900 \quad 1.08835000 \quad -0.12588600 \\
\text{N} & \quad 1.72609100 \quad -0.66328500 \quad -0.47009400 \\
\text{C} & \quad 0.47171700 \quad -1.20333900 \quad -0.41811800 \\
\text{C} & \quad 1.67351700 \quad 0.70715500 \quad -0.29493100 \\
\text{C} & \quad -1.69859900 \quad -0.05705900 \quad -0.07484400 \\
\text{C} & \quad -2.38501700 \quad 1.14136200 \quad -0.28098700 \\
\text{C} & \quad -3.77243400 \quad 1.17979100 \quad -0.15844200 \\
\text{C} & \quad -4.44409100 \quad 0.01243600 \quad 0.16141400 \\
\text{C} & \quad -3.78583100 \quad -1.18894200 \quad 0.37015600 \\
\text{C} & \quad -2.39902000 \quad -1.21989600 \quad 0.25677000 \\
\text{C} & \quad 2.94870700 \quad 1.44760300 \quad -0.69215700 \\
\text{H} & \quad 3.38820700 \quad -1.14803100 \quad -1.64877700 \\
\text{H} & \quad 2.61680500 \quad -2.48001200 \quad -0.78864300 \\
\text{C} & \quad 2.85526200 \quad 1.61815400 \quad -0.28319200 \\
\text{H} & \quad 3.32147100 \quad 1.61460900 \quad -1.27602700 \\
\text{H} & \quad 2.47747400 \quad 2.62789000 \quad -0.11492600 \\
\text{C} & \quad 3.91488900 \quad 1.26566600 \quad 0.78117000 \\
\text{H} & \quad 3.42687600 \quad 1.16403800 \quad 1.75703900 \\
\text{H} & \quad 4.59439800 \quad 2.11905800 \quad 0.86112000 \\
\text{C} & \quad 3.97530700 \quad -1.31615300 \quad 0.43624100
\end{align*}
Element	X	Y	Z
H	3.47604300	-1.49625300	1.39504200
H	4.69670400	-2.12846800	0.30312100
C	4.74582200	0.01196800	0.47531400
H	5.53087300	-0.07185800	1.23350000
H	5.26115000	0.15128400	-0.48359400
F	-5.80184400	0.04585600	0.27847600
H	-1.85815100	-2.14097400	0.42352800
H	-4.34528500	-2.07986800	0.62620500
H	-4.32154100	2.09964300	-0.31519300
H	-1.83783700	2.03785500	-0.53602100

M062X

Element	X	Y	Z
N	-0.27113100	-0.09643600	-0.21442900
N	0.43622000	1.08055400	-0.13984800
N	1.72239300	-0.65757700	-0.49228200
C	0.47461700	-1.20238100	-0.43189700
C	1.66714500	0.70549800	-0.31515600
C	-1.68703800	-0.05847200	-0.07925500
C	-2.36772800	1.13883700	-0.28226300
C	-3.75156400	1.17774100	-0.15385100
C	-4.42082500	0.01224100	0.16800300
C	-3.76372100	-1.18804900	0.37210500
C	-2.38045200	-1.22060400	0.25286500
C	2.95120700	-1.42028500	-0.71244500

SI-212
X	Y	Z
3.41405300	-1.07422900	-1.64163400
2.63277900	-2.45119000	-0.85637400
2.85406800	1.60483300	-0.29978100
3.35027400	1.55996000	-1.27586200
2.48093000	2.62091000	-0.16962300
3.86235400	1.25529600	0.80633400
3.33084200	1.13883100	1.75666300
4.53514900	2.10809000	0.92308000
3.93394000	-1.31122200	0.45071700
3.39459500	-1.48932200	1.38710000
4.65531600	-2.12487300	0.33928800
4.70375500	0.01020700	0.51918100
5.46665700	-0.07804900	1.29714500
5.23906600	0.15550000	-0.42679200
-5.76476700	0.04606800	0.29162500
-1.83624600	-2.14057800	0.41686000
-4.32677900	-2.07607300	0.62991700
-4.30412100	2.09588200	-0.30706500
-1.81652200	2.03298300	-0.53876800
9k (B3LYP)

N 0.36854000 -0.15558200 0.19776200
N 1.07756100 -0.71780600 -0.86271500
N 2.36936700 -0.08092300 0.80890600
C 1.12003900 0.25452100 1.24648900
C 2.31177700 -0.65918400 -0.44883700
C -1.03777300 -0.04749000 0.10168400
C -1.84762400 -1.17899100 0.18887800
C -3.22866800 -1.08525000 0.08985200
C -3.82162500 0.15739400 -0.09363900
C -3.03359200 1.29734800 -0.18166300
C -1.65231300 1.18858700 -0.09177000
C 3.59654200 0.14258600 1.58864200
H 4.03434500 -0.82953700 1.83520700
H 3.26779900 0.60430500 2.51809000
C 3.49281400 -1.12913000 -1.23123900
H 3.95996800 -1.96999700 -0.70447900
H 3.11283500 -1.51941000 -2.17658000
C 4.54734600 -0.03539000 -1.49516600
H 4.05471300 0.84746600 -1.91772300
H 5.22248000 -0.41349400 -2.26818400
C 4.62197800 1.03161000 0.87915100
H 4.12297100 1.94246500 0.52963500
H 5.34592600 1.34392200 1.63810000
C 5.38575400 0.36364300 -0.27325100
H 6.16982300 1.05070000 -0.60669800
H 5.90163200 -0.52549900 0.11092000
F -3.60747100 2.49127900 -0.36501600
F -0.91459900 2.29752500 -0.20165600
F -5.14915700 0.25601500 -0.18435100
F -3.99017300 -2.18066300 0.18209000
F -1.29734300 -2.38107500 0.38662700

M062X

N 0.37328300 -0.14442400 0.24494300
N 1.06790200 -0.88321500 -0.69081500
N 2.36385000 0.03485600 0.82581200
C 1.12322900 0.44787700 1.20233000
C 2.29979500 -0.75444600 -0.30285200
C -1.02727300 -0.04188000 0.12659400
C -1.83176700 -1.17055000 0.22837100
C -3.20660600 -1.08089600 0.09916900
C -3.79552300 0.15281100 -0.12462800
C -3.01023400 1.28874600 -0.22416000
C -1.63440200 1.18578200 -0.10707100
S2.4 Summary of Bond Lengths, Bond Angles, and Dihedral Angles from Computational Analysis

S2.4.1 Summary for Triazolium Computational Analysis
Table S21. Computational structural data for individual triazolium salts 7a-k (n=1) obtained from DFT optimized structures (B3LYP, n=1).

![Chemical structure](image)

Backbone Bond Length	7a	7b	7c	7d	7e	7f	7g	7h	7i	7j	7k
N°N²	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38
N²C³	1.33	1.33	1.33	1.34	1.34	1.33	1.33	1.33	1.33	1.33	1.34
C°N⁴	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33
N⁴C⁵	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
C°N⁶	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.30
C°C⁷	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49
N²C⁸	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48
C⁹C⁹	1.43	1.44	1.43	1.43	1.43	1.43	1.43	1.45	1.45	1.43	1.42
C°C¹⁰	1.39	1.39	1.39	1.39	1.39	1.39	1.40	1.40	1.40	1.40	1.39
C²C¹¹	1.40	1.39	1.39	1.39	1.39	1.39	1.40	1.40	1.40	1.40	1.39

C-H Bond Length	7a	7b	7c	7d	7e	7f	7g	7h	7i	7j	7k
C°H¹	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
C²H²	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
C³H³	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09

H-H Distance	7a	7b	7c	7d	7e	7f	7g	7h	7i	7j	7k
H°H¹	3.16	3.14	3.16	3.14	3.14	3.13	3.15	3.15	3.15	3.15	3.14
H²H²	3.37	3.39	3.37	3.39	3.39	3.39	3.39	3.39	3.39	3.39	3.38

Bond Angles	7a	7b	7c	7d	7e	7f	7g	7h	7i	7j	7k
C°N²N²	103.8	103.8	103.7	103.8	103.8	103.7	103.8	103.8	103.5	103.4	103.4
N²N²C²	111.5	111.5	111.5	111.5	111.6	111.5	111.5	111.4	111.4	111.7	111.8
N²C⁴N⁴	106.1	106.0	106.0	106.0	106.0	106.0	106.0	106.0	106.3	106.3	106.3
C°N⁴C⁵	107.3	107.4	107.4	107.4	107.4	107.5	107.3	107.3	107.6	107.6	107.7
N⁴C⁶N¹	111.3	111.3	111.3	111.3	111.2	111.2	111.3	111.2	111.3	111.3	111.4
C⁶C⁷N⁴	111.1	111.0	111.1	111.0	111.0	110.9	111.0	111.0	111.0	110.9	110.9
C⁷N⁸C⁹	113.5	113.5	113.5	113.4	113.4	113.4	113.4	113.4	113.5	113.3	113.3

Torsion Angles	7a	7b	7c	7d	7e	7f	7g	7h	7i	7j	7k
H°C¹*C¹*H²	43.1	40.0	42.9	39.9	40.1	39.6	41.3	41.4	41.4	41.2	41.1
H²C²*C²*H¹	68.7	71.8	69.0	71.9	71.7	72.2	70.6	70.5	70.4	70.7	70.7
N²N²*C²*C³	44.7	40.7	44.4	39.8	37.5	34.6	38.4	39.0	38.7	38.4	37.7
N²N²*C²*C³	135.4	139.4	135.7	140.2	142.4	145.5	90.7	90.4	91.1	90.3	90.8
Table S22. Computational structural data for individual triazolium salts 8a-c, i, k (n=2) and 9a-c, k (n=3) obtained from DFT optimized structures (B3LYP, n=2 and 3).

![Diagram of triazolium salt]

Backbone Bond Length	8a	8b	8c	8i	8k	9a	9b	9c	9k
N²N³	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
N²C³	1.33	1.33	1.33	1.32	1.33	1.33	1.33	1.33	1.33
C³N⁴	1.34	1.34	1.34	1.34	1.33	1.34	1.34	1.34	1.33
N²C⁵	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.39
C³N¹	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31
C⁴C⁶	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49
N³C⁶	1.48	1.48	1.49	1.49	1.48	1.48	1.48	1.48	1.48
N²C⁷	1.43	1.44	1.43	1.45	1.42	1.43	1.44	1.43	1.42
C⁵C⁸	1.40	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39
C⁶C⁹	1.39	1.39	1.39	1.40	1.39	1.39	1.39	1.39	1.39

C-H Bond Length	8a	8b	8c	8i	8k	9a	9b	9c	9k
C²H¹	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
C²H²	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
C³H¹	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09

H-H Distance	8a	8b	8c	8i	8k	9a	9b	9c	9k
H¹H²	3.11	3.12	3.12	3.14	3.15	3.55	3.53	3.53	3.54
H¹H¹	2.79	2.78	2.78	2.78	2.78	2.48	2.49	2.49	2.49

Bond Angles	8a	8b	8c	8i	8k	9a	9b	9c	9k
C²N²N³	104.9	104.9	104.9	104.9	104.5	105.2	105.2	105.1	104.7
N²N²C³	110.9	110.9	111.0	110.8	111.3	110.7	110.7	110.8	111.0
N²C²N⁴	107.0	107.0	107.0	107.2	106.8	107.3	107.3	107.2	107.0
C²N²C⁵	106.7	106.8	106.8	106.7	107.0	106.7	106.7	106.7	106.9
N²C²N¹	110.4	110.4	110.4	110.4	110.5	110.2	110.2	110.2	110.3
C⁴C⁶N⁴	122.3	122.3	122.3	122.3	122.3	124.6	124.6	124.6	124.6
C⁵N²C⁹	125.4	125.4	125.4	125.3	125.1	127.2	127.1	127.1	127.1

Torsion Angles	8a	8b	8c	8i	8k	9a	9b	9c	9k
H¹C²*C²H²	39.9	39.1	39.3	37.9	37.7	1.0	1.6	1.5	0.6
H¹C²*C²H¹	69.1	69.9	69.8	71.2	71.5	106.4	104.0	104.0	104.9
N²N²*C³C⁵	40.7	38.9	40.4	84.0	82.1	43.0	39.5	41.7	86.1
N²N²*C³C⁹	139.5	141.2	139.6	94.9	96.4	137.1	140.6	138.2	92.4

SI-218
Table S23. Computational structural data for individual triazolium salts 7a-k (n=1) obtained from DFT optimized structures (M062X, n=1).

![Diagram of triazolium salt structure]

Backbone Bond Length	7a	7b	7c	7d	7e	7f	7g	7h	7i	7j	7k
N1N2^2	1.36	1.36	1.36	1.36	1.36	1.36	1.37	1.36	1.37	1.37	1.37
N1C3	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33
C3N4	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.32	1.32
N1C5	1.36	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
C5N1	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
C5C6	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49
N1C8	1.47	1.47	1.47	1.48	1.48	1.48	1.47	1.47	1.48	1.48	1.48
N1C7	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.44	1.44	1.42	1.42
C7C8	1.38	1.39	1.39	1.39	1.39	1.39	1.40	1.39	1.39	1.39	1.39
C7C9	1.39	1.39	1.39	1.39	1.39	1.39	1.40	1.39	1.39	1.39	1.39

C-H Bond Length	7a	7b	7c	7d	7e	7f	7g	7h	7i	7j	7k
C1H1	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
C4H2	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
C6H3	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09

H-H Distance	7a	7b	7c	7d	7e	7f	7g	7h	7i	7j	7k
H1-H2	3.15	3.13	3.15	3.13	3.13	3.12	3.14	3.15	3.14	3.14	3.14
H1-H3	3.39	3.42	3.39	3.42	3.41	3.41	3.41	3.42	3.41	3.41	3.40

Bond Angles	7a	7b	7c	7d	7e	7f	7g	7h	7i	7j	7k
C1N1N2^2	103.8	103.8	103.8	103.8	103.8	103.7	103.8	103.8	103.5	103.4	
N1N2C3	111.8	111.8	111.9	111.9	111.9	111.9	111.9	111.9	111.8	112.1	112.1
N2C3N4	105.9	105.9	105.9	105.9	105.8	105.8	106.0	106.0	106.1	105.7	105.6
C3N4C5	107.2	107.3	107.3	107.3	107.4	107.4	107.2	107.2	107.5	107.6	
N4C4N1	111.2	111.2	111.2	111.2	111.1	111.1	111.2	111.1	111.2	111.2	111.2
C6N4C7	110.8	110.8	110.8	110.8	110.8	110.7	110.8	110.7	110.7	110.7	110.7
C7N4N5	113.2	113.2	113.2	113.2	113.1	113.2	113.3	113.2	113.2	113.1	113.1

Torsion Angles	7a	7b	7c	7d	7e	7f	7g	7h	7i	7j	7k
H1C3*C4H2	41.4	38.2	41.3	38.3	38.6	38.3	40.0	39.9	39.4	39.6	39.9
H1C3*C6H3	70.9	74.1	71.1	74.1	73.7	74.0	72.4	72.4	73.0	72.8	72.4
N1N2*C7C3	41.2	35.9	40.6	35.0	34.7	33.5	87.6	88.8	81.8	88.1	87.6
N1N2*C7C5	138.9	144.2	139.4	144.9	145.2	146.5	91.4	90.5	97.0	90.3	90.8
Table S24. Computational structural data for individual triazolium salts 8a-c, i, k (n=2) and 9a-c, k (n=3) obtained from DFT optimized structures (M062X, n=2 and 3).

![Triazolium salt structure](image)

Backbone Bond Length	8a	8b	8c	8i	8k	9a	9b	9c	9k
N1N2	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
N2C3	1.32	1.32	1.32	1.32	1.33	1.32	1.32	1.32	1.33
C3N4	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33
N3C5	1.37	1.37	1.37	1.37	1.38	1.37	1.38	1.38	1.38
C5N1	1.31	1.31	1.31	1.31	1.30	1.31	1.31	1.31	1.30
C6C8	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49
N4C6	1.48	1.48	1.48	1.48	1.48	1.47	1.48	1.48	1.48
N5C7	1.43	1.43	1.43	1.44	1.42	1.43	1.43	1.43	1.42
C7C8	1.39	1.39	1.39	1.40	1.39	1.38	1.39	1.39	1.39
C8C9	1.38	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39

C-H Bond Length	8a	8b	8c	8i	8k	9a	9b	9c	9k
C5H1	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
C6H2	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
C7H3	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09

H-H Distance	8a	8b	8c	8i	8k	9a	9b	9c	9k
H0H1	2.78	2.77	2.77	2.77	2.76	2.50	2.50	2.50	2.50
H0H2	3.12	3.12	3.12	3.16	3.14	3.58	3.57	3.57	3.57

Bond Angles	8a	8b	8c	8i	8k	9a	9b	9c	9k
C5N1N2	104.9	104.9	104.9	104.9	104.5	105.1	105.1	105.1	104.7
N1N2C3	111.2	111.2	111.3	111.2	111.6	111.1	111.1	111.1	111.4
N2C3N4	106.8	106.8	106.8	107.0	106.5	107.0	107.0	107.0	106.7
C3N4C5	106.7	106.7	106.8	106.6	107.0	106.7	106.7	106.7	107.0
N4C5N1	110.3	110.3	110.3	110.3	110.4	110.2	110.2	110.2	110.3
C5C7N1	122.3	122.3	122.3	122.2	122.2	124.1	124.0	124.0	123.9
C7C8N9	125.5	125.5	125.5	125.4	125.3	126.6	126.6	126.6	126.4

Torsion Angles	8a	8b	8c	8i	8k	9a	9b	9c	9k
H0C5*C0H2	39.8	39.4	39.5	37.3	37.8	3.0	0.8	0.9	2.0
H0C5*C0H3	69.7	70.0	70.0	72.2	71.8	108.9	106.8	106.9	108.1
N1N2C0C8	38.7	36.2	38.0	83.7	65.8	40.4	37.7	40.0	67.5
N1N2C0C8	141.4	143.8	141.9	94.9	112.8	140.0	142.3	139.8	111.3
Table S25. Summary of average bond angles and distances of triazolium salts 7a-k (n=1); 8a-c, 8i, 8k (n=2); 9a-c, 9k (n=3) and corresponding standard deviations obtained from from DFT calculation (B3LYP).

![Diagram of molecule]

Backbone Bond Length	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
N1N2	1.38	0.00	1.37	0.00	1.37	0.00	-0.01	0	
N2C3	1.33	0.00	1.33	0.00	1.33	0.00	-0.01	0	
C4N4	1.33	0.00	1.34	0.00	1.34	0.00	0.01	0	
N4C5	1.37	0.00	1.38	0.00	1.38	0.00	0.01	0	
C6N4	1.31	0.00	1.31	0.00	1.31	0.00	0.00	0	
C6C8	1.49	0.00	1.49	0.00	1.49	0.00	0.00	0	
N8C8	1.48	0.00	1.49	0.00	1.48	0.00	0.01	0	
N8C7	1.43	0.01	1.43	0.01	1.43	0.01	0.00	0	
C6C8	1.40	0.01	1.40	0.00	1.39	0.00	0.00	0	
C6C8	1.40	0.01	1.39	0.00	1.39	0.00	0.00	0	

C-H Bond Length	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
C1H1	1.08	0.00	1.08	0.00	1.08	0.00	0.00	0	0.00
C2H1	1.09	0.00	1.09	0.00	1.09	0.00	0.00	0	0.00
C3H1	1.09	0.00	1.09	0.00	1.09	0.00	0.00	0	0.00

H-H Distance	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3			
H1H2	3.15	0.01	3.13	0.01	3.54	0.01	-0.02	0.41
H1H3	3.38	0.01	2.78	0.00	2.49	0.00	-0.60	-0.30

Bond Angles	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3			
C5N1N2	103.7	0.1	104.8	0.2	105.1	0.2	1.1	0.25
N3N1C3	111.5	0.1	111.0	0.2	110.8	0.2	-0.55	-0.18
N3C2N4	106.1	0.2	107.0	0.2	107.2	0.1	0.94	0.2
C3N4C5	107.4	0.1	106.8	0.1	106.7	0.1	-0.63	-0.07
N3C4N1	111.3	0.0	110.4	0.1	110.2	0.1	-0.86	-0.21
C6C2N4	111.0	0.1	122.3	0.0	124.6	0.0	11.27	2.32
C5N4C6	113.4	0.1	125.3	0.1	127.1	0.0	11.9	1.82

Torsion Angles	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3			
H1C1C4H2	41.1	1.2	38.8	1.0	1.2	0.5	-2.31	-37.59
H1C1C4C6	70.7	1.2	70.3	1.0	104.8	1.1	-0.44	34.53
N1N2C2C3	62.1	25.2	57.2	23.6	52.6	22.4	-4.89	-4.65
N1N2C2C6	117.4	25.8	122.3	24.4	127.1	23.1	4.88	4.78
Table S26. Summary of average bond angles and distances of triazolium salts 7a-k (n=1); 8a-c, 8i, 8k (n=2); 9a-c, 9k (n=3) and corresponding standard deviations obtained from from DFT calculation (M062X).

![Diagram of triazolium salt]

Backbone Bond Length	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
N N²	1.36	0.00	1.36	0.00	1.36	0.00	-0.01	0	
N C³	1.33	0.00	1.33	0.00	1.33	0.00	0	0	
C² N⁴	1.33	0.00	1.33	0.00	1.33	0.00	0.01	0	
N C⁵	1.37	0.00	1.37	0.00	1.37	0.00	0	0	
C² N⁶	1.37	0.00	1.37	0.00	1.37	0.00	0.01	0	
C² C⁶	1.49	0.00	1.49	0.00	1.49	0.00	0	0	
N C⁷	1.47	0.00	1.47	0.00	1.47	0.00	0.01	0	
N C⁸	1.47	0.00	1.47	0.00	1.47	0.00	0	0	
C² C⁸	1.39	0.00	1.39	0.00	1.39	0.00	0	0	

C-H Bond Length	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
C¹ H¹	1.08	0.00	1.08	0.00	1.08	0.00	0.00	0.00	
C² H²	1.09	0.00	1.09	0.00	1.09	0.00	0.00	0.00	
C² H³	1.09	0.00	1.09	0.00	1.09	0.00	0.00	0.00	

H-H Distance	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
H¹ H²	3.14	0.01	2.77	0.01	2.50	0.00	-0.37	-0.27	
H¹ H³	3.41	0.01	3.13	0.02	3.57	0.01	-0.28	0.44	

Bond Angles	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
C⁴ N⁵ N²	103.7	1.0	104.8	0.2	105.0	0.2	1.08	0.16	
N² N⁶ C³	111.9	0.1	111.3	0.1	111.2	0.2	-0.6	-0.14	
N² C⁴ N⁵	105.9	0.1	106.8	0.2	106.9	0.1	0.92	0.12	
C⁴ N⁶ C⁵	107.3	0.1	106.8	0.1	106.8	0.1	-0.56	0	
N² C⁵ N¹	111.2	0.0	110.3	0.0	110.2	0.1	-0.84	-0.13	
C⁶ N⁷ C⁴	110.8	0.1	122.3	0.0	124.0	0.1	11.49	1.73	
C⁷ N⁸ C¹⁰	113.2	0.0	125.4	0.1	126.5	0.1	12.24	1.1	

Torsion Angles	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
H¹ C² C⁶ H²	39.5	1.1	38.8	1.1	1.6	1.0	-0.78	-37.11	
H¹ C² C⁶ H³	72.8	1.1	70.7	1.2	107.7	1.0	-2.07	36.96	
N² N⁶ C⁴ C⁵	59.5	26.3	52.5	21.3	46.4	14.1	-7.05	-6.08	
N² N⁶ C⁴ C⁵	119.9	26.9	127.0	22.1	133.4	14.7	7.05	6.4	
Table S27. Summary of average* bond angles and distances of triazolium salts 7a-c, k (n=1); 8a-c, 8k (n=2); 9a-c, 9k (n=3) and corresponding standard deviations (SD) obtained from DFT calculation (M062X).

*Averages calculated using only data for the 12 triazolium salts related to C(3)-H/D exchange studies. These average values and trends are in excellent agreement with data in Table S30 as expected given the small standard deviations.

Backbone Bond Length	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)
N1N2	1.36	0.00	1.36	0.00	1.36	0.00
N2C3	1.33	0.00	1.32	0.00	1.32	0.00
CN4	1.33	0.01	1.33	0.00	1.33	0.00
N2C3	1.37	0.00	1.37	0.00	1.38	0.00
CN4	1.30	0.00	1.31	0.00	1.31	0.00
C3C0	1.49	0.00	1.49	0.00	1.49	0.00
N2C6	1.47	0.00	1.48	0.00	1.48	0.00
N2C7	1.43	0.01	1.43	0.01	1.43	0.01
C5C0	1.39	0.00	1.39	0.00	1.39	0.00
C5C8	1.39	0.00	1.39	0.00	1.39	0.00

C-H Bond Length
C3H1
C5H2
C5H3

H-H Distance
H1H2
H1H3

Bond Angles
C3N1N2
N1N2C3
N2C3N4
C3N4C3
N2C3N1
C5C3N4
C5N4C0
Torsion Angles

H1C3*C0H2
H1C3*C0H3
N1N2*C3C6
N1N2*C3C6
Summary for Triazolylidene Computational Analysis

Table S28. Computational structural data for individual triazolylidenes 7'a-k (n=1) obtained from DFT optimized structures (B3LYP, n=1).

![Diagram of triazolylidene structure](image)

Backbone Bond Length	7'a	7'b	7'c	7'd	7'e	7'f	7'g	7'h	7'i	7'j	7'k
N1N2	1.40	1.40	1.40	1.40	1.40	1.41	1.41	1.41	1.41	1.41	1.41
N2C3	1.36	1.36	1.36	1.36	1.37	1.37	1.35	1.36	1.36	1.36	1.36
C1N4	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
N2C5	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
C1N1	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
C2C6	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47
N2C7	1.43	1.43	1.42	1.42	1.42	1.42	1.44	1.44	1.42	1.42	1.41
C1C8	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.39
C1C9	1.39	1.40	1.40	1.40	1.40	1.40	1.41	1.40	1.40	1.40	1.39

C-H Bond Length	7'a	7'b	7'c	7'd	7'e	7'f	7'g	7'h	7'i	7'j	7'k
C1H2	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
C1H3	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09

C-H Distance	7'a	7'b	7'c	7'd	7'e	7'f	7'g	7'h	7'i	7'j	7'k
C1H2	2.93	2.93	2.93	2.93	2.93	2.92	2.93	2.93	2.94	2.93	2.92
C1H3	3.05	3.05	3.05	3.04	3.04	3.04	3.05	3.05	3.05	3.05	3.04

Bond Angles	7'a	7'b	7'c	7'd	7'e	7'f	7'g	7'h	7'i	7'j	7'k
C1N2N2	102.1	102.1	102.0	102.1	102.1	102.1	101.9	102.0	101.9	101.5	101.4
N2C3N3	115.3	115.2	115.3	115.2	115.2	115.2	115.5	115.4	115.4	115.9	115.9
N2C4N4	100.1	100.1	100.0	100.1	100.1	100.0	100.1	100.2	100.2	99.7	99.6
C1N5C5	111.5	111.5	111.6	111.6	111.6	111.6	111.4	111.4	111.4	111.6	111.8
N2C6N6	111.0	111.0	111.0	111.0	111.0	111.0	111.1	111.1	111.1	111.2	111.3
C6C7N7	111.3	111.3	111.3	111.3	111.3	111.2	111.3	111.3	111.2	111.2	111.2
C1N8C9	112.9	112.9	112.9	112.8	112.8	112.8	112.9	112.9	112.9	112.8	112.7

Torsion Angles	7'a	7'b	7'c	7'd	7'e	7'f	7'g	7'h	7'i	7'j	7'k
C1N2C4H2	52.3	52.6	52.6	52.3	52.4	52.2	52.3	52.2	52.3	52.2	52.1
C1N2C4H3	83.6	83.3	83.3	83.5	83.4	83.6	83.7	83.6	83.7	83.8	83.8
N2C5C6	29.0	20.8	21.3	0.9	0.7	0.6	89.5	89.5	88.7	88.9	68.1
N1N2C4C5	151.2	159.2	158.8	179.2	179.3	179.4	89.8	89.9	90.9	90.3	111.4
Table S29. Computational structural data for individual triazolylidenes 8'a-c, i, k (n=2) and 9'a-c, k (n=3) obtained from DFT optimized structures (B3LYP, n=2 and 3).

![Diagram of a triazolylidene molecule]

Backbone Bond Length	8'a	8'b	8'c	8'i	8'k	9'a	9'b	9'c	9'k
N3N2	1.39	1.39	1.39	1.39	1.40	1.39	1.39	1.39	1.39
N3C3	1.35	1.35	1.35	1.35	1.35	1.35	1.36	1.35	1.35
C3N4	1.37	1.37	1.37	1.37	1.36	1.37	1.37	1.37	1.37
N3C5	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38
C3N4	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
C3C6	1.50	1.50	1.50	1.50	1.50	1.49	1.49	1.49	1.49
N4C6	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47
N3C6	1.43	1.43	1.42	1.44	1.41	1.43	1.43	1.42	1.41
C3C6	1.40	1.40	1.40	1.39	1.39	1.40	1.40	1.39	1.39
C3C6	1.39	1.40	1.40	1.39	1.40	1.40	1.40	1.39	1.39

C-H Bond Length	8'a	8'b	8'c	8'i	8'k	9'a	9'b	9'c	9'k
C3H2	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
C3H3	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09

C-H Distance
8'a
2.91
2.71

Bond Angles
8'a
103.3
114.9
101.0
110.7
110.2
122.9
124.1

Torsion Angles
8'a
82.3
42.0
28.8
151.4

SI-226
Table S30. Computational structural data for individual triazolylidenes 7'a-k (n=1) obtained from DFT optimized structures (M062X, n=1).

![Diagram of triazolylidene structure]

Backbone Bond Length	7'a	7'b	7'c	7'd	7'e	7'f	7'g	7'h	7'i	7'j	7'k
N=N^2	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39
N=C^3	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
C=N^4	1.36	1.36	1.36	1.35	1.35	1.35	1.36	1.36	1.36	1.36	1.35
N=C^5	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
C=N^1	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.30	1.29	1.29	1.29
C=C^6	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49
N=C^7	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46
C=C^8	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39
C=C^9	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39

C-H Bond Length	Bond Length	7'a	7'b	7'c	7'd	7'e	7'f	7'g	7'h	7'i	7'j	7'k
C-H^1	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
C-H^2	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09

C-H Distance	7'a	7'b	7'c	7'd	7'e	7'f	7'g	7'h	7'i	7'j	7'k
C-H^1	2.91	2.92	2.91	2.91	2.91	2.92	2.92	2.92	2.91	2.91	2.91
C-H^2	3.05	3.05	3.05	3.05	3.05	3.05	3.05	3.06	3.05	3.05	3.05

Bond Angles	7'a	7'b	7'c	7'd	7'e	7'f	7'g	7'h	7'i	7'j	7'k
C=N^2	102.2	102.2	102.2	102.3	102.2	102.2	102.0	102.1	102.1	101.7	101.6
N=N^2	115.8	115.7	115.8	115.6	115.7	115.6	116.0	116.0	116.0	116.4	116.4
N=C^3	99.7	99.7	99.6	99.7	99.7	99.7	99.7	99.7	99.7	99.3	99.2
C=N^4	111.5	111.5	111.6	111.6	111.6	111.6	111.4	111.4	111.4	111.6	111.8
N=C^5	110.8	110.8	110.8	110.8	110.8	110.9	110.9	110.9	110.9	111.0	111.1
C^6=C^7	111.1	111.1	111.1	111.1	111.1	111.1	111.1	111.1	111.1	111.0	111.0
C=N^8	112.7	112.7	112.7	112.7	112.7	112.6	112.7	112.7	112.7	112.6	112.5

Torsion Angles	7'a	7'b	7'c	7'd	7'e	7'f	7'g	7'h	7'i	7'j	7'k
C=N^2*C-H^1	50.6	50.6	50.7	50.7	50.6	50.7	50.7	50.6	50.5	50.4	50.4
C,N^2*C=H^2	85.4	85.3	85.3	85.2	85.3	85.3	85.3	85.4	85.4	85.6	85.7
N=N^2*C=C^5	25.9	21.0	22.5	1.6	10.5	1.7	89.4	88.3	83.4	87.5	60.2
N=N^2*C=C^8	154.4	159.0	157.6	178.3	169.6	178.4	90.0	91.3	96.3	91.8	119.5

 SI-227
Table S31.
Computational structural data for individual triazolyldenes 8'a-c, i, k (n=2) and 9'a-c, k (n=3) obtained from DFT optimized structures (M062X, n=2 and 3).

![Image of a chemical structure](image)

Backbone Bond Length	8'a	8'b	8'c	8'i	8'k	9'a	9'b	9'c	9'k
N'N2	1.38	1.38	1.38	1.38	1.37	1.38	1.38	1.38	1.38
N2C3	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
C'N4	1.36	1.36	1.36	1.37	1.36	1.36	1.36	1.36	1.36
N4C5	1.37	1.38	1.38	1.37	1.38	1.38	1.38	1.38	1.38
C'N1	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
C'C6	1.49	1.49	1.49	1.50	1.49	1.49	1.49	1.49	1.49
N4C6	1.47	1.47	1.47	1.47	1.47	1.47	1.46	1.46	1.46
N3C	1.42	1.42	1.42	1.43	1.41	1.42	1.42	1.42	1.42
C'C5	1.39	1.39	1.39	1.40	1.39	1.39	1.39	1.39	1.39
C'C	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39

C-H Bond Length	8'a	8'b	8'c	8'i	8'k	9'a	9'b	9'c	9'k
C'H2	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
C'H3	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09

C-H Distance	8'a	8'b	8'c	8'i	8'k	9'a	9'b	9'c	9'k
C'H2	2.70	2.69	2.69	2.69	2.69	2.53	2.53	2.53	2.53
C'H3	2.90	2.91	2.90	2.91	2.90	3.18	3.18	3.18	3.18

Bond Angles	8'a	8'b	8'c	8'i	8'k	9'a	9'b	9'c	9'k
C'N1N2	103.3	103.3	103.3	103.2	102.7	103.5	103.5	103.5	102.8
N2N3C4	115.3	115.2	115.3	115.5	115.9	115.2	115.1	115.2	115.8
N3C5N4	100.6	100.6	100.6	100.6	100.1	100.7	100.7	100.7	100.2
C'N4C5	110.7	110.7	110.7	110.6	111.0	110.7	110.7	110.7	111.0
N4C6N1	110.0	110.1	110.1	110.3	110.0	110.0	110.0	110.0	110.2
C'C5N4	123.0	123.0	123.0	122.9	122.9	124.6	124.6	124.6	124.4
C'N5C6	124.2	124.2	124.1	124.2	124.0	124.7	124.7	124.7	124.5

Torsion Angles	8'a	8'b	8'c	8'i	8'k	9'a	9'b	9'c	9'k
C'N1*C'H2	42.4	42.4	42.0	41.8	41.8	2.8	2.7	2.7	3.2
C'N1*C'H3	82.4	82.4	82.7	82.9	82.9	121.4	121.3	121.3	121.9
N2*C'C6	26.4	21.7	23.4	84.3	62.8	23.6	17.2	19.5	63.2
N3*N*C'C	153.8	158.3	156.6	94.7	117.0	156.6	162.9	160.6	116.2

SI-228
Table S32. Summary of average bond angles and distances of triazolylidenes 7′a-k (n=1); 8′a-c, i, k (n=2); 9′a-c, k (n=3) and corresponding standard deviations obtained from DFT calculation (B3LYP).

![Triazolylidene diagram]

Backbone Bond Length	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
N′N2	1.41	0.00	1.39	0.00	1.39	0.00	-0.01	0	0
N′C3	1.36	0.00	1.35	0.00	1.35	0.00	-0.01	0	0
C′N4	1.36	0.00	1.37	0.00	1.37	0.00	0.01	0	0
N′C5	1.37	0.00	1.38	0.00	1.38	0.00	0.01	0	0
C′N6	1.30	0.00	1.30	0.00	1.30	0.00	0.01	0	0
C′C8	1.49	0.00	1.50	0.00	1.49	0.00	0	0	0
N′C9	1.47	0.00	1.47	0.00	1.47	0.00	0	0	0
N′C7	1.42	0.01	1.43	0.01	1.42	0.01	0	0	0
C′C6	1.40	0.00	1.40	0.00	1.39	0.00	0	0	0
C′C4	1.40	0.00	1.40	0.00	1.40	0.00	0	0	0

C-H Bond Length	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
C′H2	1.09	0.00	1.09	0.00	1.09	0.00	0	0.00	0.00
C′H3	1.09	0.00	1.09	0.00	1.09	0.00	0	0.00	0.00

C-H Distance	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
C′H2	2.93	0.00	2.91	0.00	3.17	0.00	-0.02	0.25	
C′H3	3.05	0.00	2.70	0.00	2.52	0.00	-0.34	-0.18	

Bond Angles	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
C′N2′N3′	101.9	0.2	103.1	0.3	103.4	0.4	1.2	0.3	
N′N3′C3′	115.4	0.3	115.0	0.3	114.9	0.3	-0.4	-0.1	
N′C3′N4′	100.0	0.2	100.9	0.2	101.0	0.2	0.9	0.1	
C′N4′C5′	111.5	0.1	110.7	0.1	110.6	0.1	-0.8	-0.1	
N′C5′N6′	111.1	0.1	110.2	0.1	110.1	0.1	-0.8	-0.2	
C′C6′N4′	111.3	0.0	122.9	0.0	125.1	0.1	11.6	2.2	
C′N4′C6′	112.8	0.0	124.1	0.1	125.4	0.0	11.2	1.4	

Torsion Angles	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)	Differences of averaged values	n=1 vs n=2	n=2 vs n=3
C′N4′C′H2′	52.3	0.2	82.4	0.1	0.1	0.1	30.1	-82.3	
C′N4′C′H3′	83.6	0.2	42.0	0.1	118.4	0.1	-41.6	76.4	
N′N2′C′C′8′	45.3	39.5	45.5	30.5	34.1	25.6	0.2	-11.4	
N′N2′C′C′6′	134.5	39.8	134.3	30.9	145.9	25.9	-0.2	11.6	
Table S33. Summary of average bond angles and distances of triazolylidenes 7a-k (n=1); 8a-c, i, k (n=2); 9a-c, k (n=3) and corresponding standard deviations obtained from DFT calculation (M062X). Data highlighted in purple is included in Table 3 in the main text.

![Diagram](image)

Backbone Bond Length	Average \((n=1) \)	SD \((n=1) \)	Average \((n=2) \)	SD \((n=2) \)	Average \((n=3) \)	SD \((n=3) \)	Differences of averaged values	\(n=1 \) vs \(n=2 \)	\(n=2 \) vs \(n=3 \)
N1N2	1.39	0.00	1.38	0.00	1.38	0.00	-0.01	0	0
N2C3	1.36	0.00	1.35	0.00	1.35	0.00	-0.01	0	0
C3N4	1.36	0.00	1.36	0.00	1.36	0.00	0.01	0	0
N4C5	1.37	0.00	1.38	0.00	1.38	0.00	0.01	0	0
C5N1	1.29	0.00	1.30	0.00	1.30	0.00	0	0	0
C4C6	1.49	0.00	1.49	0.00	1.49	0.00	0	-0.01	0
N6C7	1.46	0.00	1.47	0.00	1.46	0.00	0	0	0
N7C8	1.42	0.01	1.42	0.01	1.42	0.01	0	0	0
C8C9	1.39	0.00	1.39	0.00	1.39	0.00	0	0	0
C9C10	1.39	0.00	1.39	0.00	1.39	0.00	0	0	0
C-H Bond Length									
C9H2	1.09	0.00	1.09	0.00	1.09	0.00	0.01	0.00	0.00
C9H3	1.09	0.00	1.09	0.00	1.09	0.00	0.00	0.00	0.00
C-H Distance									
C9H2	2.92	0.00	2.69	0.00	2.53	0.00	-0.22	-0.16	-0.28
C9H3	3.05	0.00	2.91	0.00	3.18	0.00	-0.14	0.28	-0.14
Bond Angles									
C3N1N2	102.1	0.2	103.2	0.3	103.3	0.3	1.1	0.2	0.1
N1N2C3	115.9	0.3	115.4	0.3	115.3	0.3	-0.5	0.1	-0.1
N2C3N4	99.6	0.2	100.5	0.2	100.6	0.3	0.9	0.1	0.1
C3N4C5	111.6	0.1	110.8	0.2	110.8	0.1	-0.8	0	0.1
N4C5N1	110.9	0.1	110.1	0.1	110.0	0.1	-0.8	0	0.1
C5C6N4	111.1	0.0	122.9	0.0	124.5	0.1	11.9	1.6	1.6
C9N1C8C9	112.7	0.1	124.1	0.1	124.7	0.1	11.5	0.5	0.5
Torsion Angles									
N1C3C9H2	50.6	0.1	42.1	0.3	29.0	0.3	-8.5	-39.2	-39.2
N1C3C9H3	85.4	0.1	82.6	0.2	121.5	0.3	-2.7	38.8	38.8
N1N2C3C4	44.7	37.1	43.7	28.3	30.9	21.7	-1.0	-12.9	-12.9
N1N2C3C4	135.1	37.4	136.1	28.8	149.1	22.1	1.0	13.0	13.0
Table S34. Summary of average* bond angles and distances of triazolylidenes 7'a-c, k (n=1); 8'a-c, k (n=2); 9'a-c, k (n=3) and corresponding standard deviations (SD) obtained from DFT calculation (M062X).

*Averages calculated using only data for the 12 triazolylidenes related to C(3)-H/D exchange studies. These average values and trends are in excellent agreement with data in Table S32 as expected given the small standard deviations.

Backbone Bond Length	Average (n=1)	SD (n=1)	Average (n=2)	SD (n=2)	Average (n=3)	SD (n=3)
N1N2	1.39	0.00	1.38	0.00	1.38	0.00
N1C3	1.36	0.00	1.35	0.00	1.35	0.00
C3N4	1.36	0.00	1.36	0.00	1.36	0.00
N4C5	1.37	0.00	1.38	0.00	1.38	0.00
C5N1	1.29	0.00	1.30	0.00	1.30	0.00
C5C6	1.49	0.00	1.49	0.00	1.49	0.00
N4C6	1.46	0.00	1.47	0.00	1.46	0.00
N5C7	1.42	0.01	1.42	0.01	1.42	0.01
C5C8	1.39	0.00	1.39	0.00	1.39	0.00
C5C9	1.39	0.00	1.39	0.00	1.39	0.00

C-H Bond Length						
C1H2	1.09	0.00	1.09	0.00	1.09	0.00
C1H3	1.09	0.00	1.09	0.00	1.09	0.00

C-H Distance						
C1H2	2.91	0.00	2.69	0.00	2.53	0.00
C1H3	3.05	0.00	2.90	0.00	3.18	0.00

Bond Angles						
C5N1N2	102.1	0.3	103.2	0.3	103.3	0.3
N1N2C3	115.9	0.3	115.4	0.3	115.3	0.3
N2C3N4	99.6	0.2	100.5	0.3	100.6	0.3
C3N4C5	111.6	0.1	110.8	0.1	110.8	0.1
N4C5N1	110.9	0.1	110.1	0.1	110.0	0.1
C5C8N4	111.1	0.0	122.9	0.0	124.5	0.1
C5N7C6	112.6	0.1	124.1	0.1	124.7	0.1
Torsion Angles						
---------------	---	---	---	---	---	
C\(^3\)N\(^1\)C\(^\alpha\)H\(^2\)	50.6	0.1	42.1	0.3	2.9	0.3
C\(^3\)N\(^1\)C\(^\alpha\)H\(^3\)	85.4	0.2	82.6	0.2	121.5	0.3
N\(^3\)N\(^2\)C\(^\beta\)	32.4	18.7	33.6	19.6	30.9	21.7
N\(^3\)N\(^2\)C\(^e\)	147.6	18.8	146.4	19.7	149.1	22.1
S2.5 Computational Analysis of Conformational Changes in Fused Ring

By fixing the torsion angle between H²Cα relative to C³H¹ for 7-9b and between H²Cα relative to C³N¹ for 7'-9'b, the energy increments caused by conformational changes in the fused ring in the vicinity of the carbenic position could be evaluated.

Table S35. Energy and conformer distribution of triazolium 7b obtained from DFT calculation (M062X).

Torsion Angle (°)	Eᵢ (a.u.)ᵃ	Torsion Angle Difference (°)ᵇ	Eᵅdiff (a.u.)ᶜ	Populational Ratio (%)ᵈ
26.0	-590.384464	-12.0	-0.000843	26.10
28.0	-590.384718	-10.0	-0.000589	39.12
30.0	-590.384926	-8.0	-0.000381	54.49
32.0	-590.385089	-6.0	-0.000218	70.65
34.0	-590.385207	-4.0	-1E-04	85.27
36.0	-590.385279	-2.0	-2.8E-05	95.64
38.0ᵃ	-590.385307	0.0	0	100.00
40.0	-590.38529	2.0	-1.7E-05	97.33
42.0	-590.385232	4.0	-7.5E-05	88.73
44.0	-590.385136	6.0	-0.000171	76.15
46.0	-590.385006	8.0	-0.000301	61.90
48.0	-590.384845	10.0	-0.000462	47.89
50.0	-590.384654	12.0	-0.000653	35.32
52.0	-590.384438	14.0	-0.000869	25.04

ᵃReference taken as torsion angle associated with minimum energy value. ᵇEnergy for each individual conformation obtained from DFT calculation (M062X). ᶜAngle Difference = Torsion angle – Reference. ᵈEᵅdiff = Eᵢ – Eᵞ. ⁵Populational ratio calculated using Boltzmann distribution.
Table S36

Energy and conformer distribution of triazolium 8b obtained from DFT calculation (M062X).

Torsion Angle (°)	E_i (a.u.)b	Torsion Angle Difference (°)c	E_{diff} (a.u.)d	Populational Ratio (%)f
26.0	-629.702606	-13.4	-0.000808	27.59
28.0	-629.702826	-11.4	-0.000588	39.18
30.0	-629.703013	-9.4	-0.000401	52.78
32.0	-629.703165	-7.4	-0.000249	67.25
34.0	-629.703282	-5.4	-0.00132	81.03
36.0	-629.703362	-3.4	-5.2E-05	92.05
38.0	-629.703405	-1.4	-9E-06	98.58
39.4a	-629.703414	0	0	100.00
40.0	-629.703412	0.6	-2E-06	99.68
42.0	-629.703383	2.6	-3.1E-05	95.18
44.0	-629.703317	4.6	-9.7E-05	85.68
46.0	-629.703215	6.6	-0.000199	72.82
48.0	-629.703081	8.6	-0.000333	58.82
50.0	-629.702913	10.6	-0.000501	45.00
52.0	-629.702717	12.6	-0.000697	32.93

aReference taken as torsion angle associated with minimum energy value. bEnergy for each individual conformation obtained from DFT calculation (M062X). cAngle Difference = Torsion angle – Reference. $^dE_{\text{diff}} = E_i - E_{\text{ref}}$. fPopulational ratio calculated using Boltzmann distribution.
Table S37. Energy and conformer distribution of triazolium 9b obtained from DFT calculation (M062X).

Torsion Angle (°)	E_i (a.u.)	Torsion Angle Difference (°)	E_{diff} (a.u.)	Populational Ratio (%)
-14.0	-669.007195	-14.8	-0.000935	22.54
-12.0	-669.007425	-12.8	-0.000705	32.51
-10.0	-669.007622	-10.8	-0.000508	44.51
-8.0	-669.007789	-8.8	-0.000341	58.08
-6.0	-669.007923	-6.8	-0.000207	71.90
-4.0	-669.008025	-4.8	-0.000105	84.59
-2.0	-669.008094	-2.8	-3.6E-05	94.42
0.0	-669.008127	-0.8	-3E-06	99.52
0.8	-669.00813	0.0	0	100.00
2.0	-669.008122	1.2	-8E-06	98.73
4.0	-669.008076	3.2	-5.4E-05	91.75
6.0	-669.007987	5.2	-0.000143	79.62
8.0	-669.007856	7.2	-0.000274	64.62
10.0	-669.007684	9.2	-0.000446	49.13
12.0	-669.007469	11.2	-0.000661	34.88

*Reference taken as torsion angle associated with minimum energy value. *aEnergy for each individual conformation obtained from DFT calculation (M062X). *bAngle Difference = Torsion angle – Reference. *cE_{diff} = $E_i – E_{ref}$. *dPopulational ratio calculated using Boltzmann distribution.
Table S38. Energy and conformer distribution of carbene 7b obtained from DFT calculation (M062X).

Torsion Angle (°)	E_i (a.u.)	Torsion Angle Difference (°)	E_{diff} (a.u.)	Populational Ratio (%)
26.0	-589.912786	-15.5	-0.001309	12.42
28.0	-589.913112	-13.5	-0.000983	20.88
30.0	-589.91339	-11.5	-0.000705	32.51
32.0	-589.913621	-9.5	-0.000474	46.98
34.0	-589.913805	-7.5	-0.00029	62.99
36.0	-589.913942	-5.5	-0.000153	78.36
38.0	-589.914034	-3.5	-6.1E-05	90.74
40.0	-589.914084	-1.5	-1.1E-05	98.26
41.5a	-589.914095	0.0	0	100.00
42.0	-589.914094	0.5	-1E-06	99.84
44.0	-589.914065	2.5	-3E-05	95.33
46.0	-589.913998	4.5	-9.7E-05	85.68
48.0	-589.913894	6.5	-0.000201	72.59
50.0	-589.913754	8.5	-0.000341	58.08
52.0	-589.913579	10.5	-0.000516	43.94

*a*Reference taken as torsion angle associated with minimum energy value. *b*Energy for each individual conformation obtained from DFT calculation (M062X). *c*Angle Difference = Torsion angle – Reference. *d*$E_{diff} = E_i - E_{ref}$. *e*Populational ratio calculated using Boltzmann distribution.
Table S39. Energy and conformer distribution of carbene 8bobtained from DFT calculation (M062X).

Torsion Angle (°)	E_i (a.u.)b	Torsion Angle Difference (°)c	E_{diff} (a.u.)d	Populational Ratio (%)e
22.0	-629.230307	-14.3	-0.000862	25.32
24.0	-629.230528	-12.3	-0.000641	36.01
26.0	-629.230717	-10.3	-0.000452	48.66
28.0	-629.230875	-8.3	-0.000294	62.59
30.0	-629.231	-6.3	-0.000169	76.39
32.0	-629.231091	-4.3	-7.8E-05	88.31
34.0	-629.231147	-2.3	-2.2E-05	96.55
36.0	-629.231169	-0.3	0	100.00
36.3	-629.231169	0	0	100.00
38.0	-629.231157	1.7	-1.2E-05	98.11
40.0	-629.231113	3.7	-5.6E-05	91.46
42.0	-629.231037	5.7	-0.000132	81.03
44.0	-629.230933	7.7	-0.000236	68.65
46.0	-629.230802	9.7	-0.000367	55.72
48.0	-629.230644	11.7	-0.000525	43.32

aReference taken as torsion angle associated with minimum energy value. bEnergy for each individual conformation obtained from DFT calculation (M062X). cAngle Difference = Torsion angle – Reference. d$E_{diff} = E_i – E_{ref}$. ePopulational ratio calculated using Boltzmann distribution.
Table S40. Energy and conformer distribution of carbene $9'b$ obtained from DFT calculation (M062X).

Torsion Angle (°)	E_i (a.u.)b	Torsion Angle Difference (°)c	E_{diff} (a.u.)d	Populational Ratio (%)e
-12.0	-668.535105	-14.3	-0.000942	22.29
-10.0	-668.535348	-12.3	-0.000699	32.83
-8.0	-668.535556	-10.3	-0.000491	45.73
-6.0	-668.535729	-8.3	-0.000318	60.24
-2.0	-668.535966	-4.3	-8.1E-05	87.89
0.0	-668.536026	-2.3	-2.1E-05	96.71
2.3	-668.536047	-1.7	0	100.00
4.0	-668.53603	1.7	-1.7E-05	97.33
6.0	-668.535974	3.7	-7.3E-05	89.02
8.0	-668.535878	5.7	-0.000169	76.39
10.0	-668.535742	7.7	-0.000305	61.50
12.0	-668.535564	9.7	-0.000483	46.31
14.0	-668.535343	11.7	-0.000704	32.57

aReference taken as torsion angle associated with minimum energy value. bEnergy for each individual conformation obtained from DFT calculation (M062X). cAngle Difference = Torsion angle – Reference. d\(E_{\text{diff}} = E_i – E_{\text{ref}}\). ePopulational ratio calculated using Boltzmann distribution.
Figure S51. Plots of populational ratio of triazolium salts 7-9b against torsion angle between CαH2 relative to C3H1.

Figure S52. Plots of populational ratio of carbenes 7'-9'b against torsion angle between CαH2 relative to C3N1.
Figure S53. Superimposed populational ratio of triazolium salts 7-9b and carbenes 7’-9’b against torsion angle differences using the data from Tables S35-S40.

S2.6 NBO analysis

For the para-fluorophenyl triazolium ion 7c (n=1), NBO analyses suggest that the C(3)-H bond contains 38.9% s-character and 61.0% p-character. The s-character occupancy changed to 38.7% in both 8c and 9c, and the p-character occupancy changed to 61.2% in both cases.
S3. References

(S1) (a) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. An efficient synthesis of achiral and chiral 1,2,4-triazolium salts: Bench stable precursors for N-heterocyclic carbenes. J. Org. Chem. 2005, 70, 5725. (b) Langdon, S. M.; Wilde, M. M.; Thai, K.; Gravel, M. Chemoselective N-heterocyclic carbene-catalyzed cross-benzenoid reactions: Importance of the fused ring in triazolium salts. J. Am. Chem. Soc. 2014, 136, 7539. (c) Samanta, R. C.; Maji, B.; De Sarkar, S.; Bergander, K.; Fröhlich, R.; Muck-Lichtenfeld, C.; Mayr, H.; Studer, A. Nucleophilic addition of enols and enamines to α, β-unsaturated acyl azoliums: Mechanistic studies. Angew. Chem., Int. Ed. 2012, 51, 5234. (d) Ling, K. B.; Smith, A. D. α-Aroyloxyaldehydes: scope and limitations as alternatives to α-haloaldehydes for NHC-catalysed redox transformations. Chem. Commun. 2011, 47, 373. (e) Suenaga, K.; Shimogawa, H.; Nakagawa, S.; Uemura, D. Catharsitoxins from the Chinese remedy qing lau. Tetrahedron Lett. 2001, 42, 7079. (f) Chiang, P.-C.; Kim, Y.; Bode, J. W. Catalytic amide formation with α′-hydroxyenones as acylating reagents. Chem. Commun. 2009, 4566. (g) Davidson, R. W.; Fuchter, M. J. Direct NHC-catalysed redox amidation using CO2 for traceless masking of amine nucleophiles. Chem. Commun. 2016, 52, 11638. (h) Thomson, J. E.; Campbell, C. D.; Concannon, C.; Duguet, N.; Rix, K.; Slawin, A. M.; Smith, A. D. Probing the efficiency of N-heterocyclic carbene promoted O- to C-carboxyl transfer of oxazolyl carbonates. J. Org. Chem. 2008, 73, 2784. (i) Thomson, J. E.; Rix, K.; Smith, A. D. Efficient N-heterocyclic carbene-catalyzed O- to C-acyl transfer. Org. Lett. 2006, 8, 3785. (j) Li, Z.; Li, X.; Cheng, J.-P. An acidity scale of triazolium-based NHC precursors in DMSO. J. Org. Chem. 2017, 82, 9675. (h) Schedler, M.; Fröhlich, R.; Daniluc, C. G.; Glorius, F. 2, 6-dimethoxyphenyl-substituted N-heterocyclic carbenes (NHCs): A family of highly electron-rich organocatalysts. Eur. J. Org. Chem. 2012, 22, 4164. (g) Campbell, C. D.; Collett, C. J.; Thomson, J. E.; Slawin, A. M.; Smith, A. D. Organic base effects in NHC promoted O-to C-carboxyl transfer; chemoselectivity profiles, mechanistic studies and domino catalysis. Org. Biomol. Chem. 2011, 9, 4205.

(S2) Glaseo, P. K.; Long, F. Use of glass electrodes to measure acidities in deuterium oxide1,2. J. Phys. Chem. 1960, 64, 188.

(S3) Covington, A.; Robinson, R.; Bates, R. G. Ionization constant of deuterium oxide from 5 to 50 deg. J. Phys. Chem. 1966, 70, 3820.

(S4) Massey, R. S.; Collett, C. J.; Lindsay, A. G.; Smith, A. D.; O'Donoghue, A. C. Proton transfer reactions of triazol-3-ylidenes: Kinetic acidities and carbon acid pKa values for twenty triazolium salts in aqueous solution. J. Am. Chem. Soc. 2012, 134, 20421.

(S5) (a) Tucker, D. E.; Quinn, P.; Massey, R. S.; Collett, C. J.; Jasiewicz, D. J.; Bramley, C. R.; Smith, A. D.; O’Donoghue, A. C. Proton transfer reactions of N-aryl triazolium salts: unusual ortho-substituent effects. J. Phys. Org. Chem. 2015, 28, 108. (b) Quinn, P.; Smith, M. S.; Zhu, J.; Hodgson, D. R.; O’Donoghue, A. C. Triazolium salt organocatalysis: mechanistic evaluation of unusual ortho-substituent effects on deprotonation. Catalysts 2021, 11, 1055.

(S6) Hansch, C.; Leo, A.; Taft, R. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165.

(S7) Charton, M. The application of the Hammett equation to ortho-substituted benzene reaction series. Can. J. Chem. 1960, 38, 2493.

(S8) Korenaga, T.; Kadowaki, K.; Ema, T.; Sakai, T. Reestimation of the Taft’s substituent constant of the pentafluorophenyl group. J. Org. Chem. 2004, 69, 7340.
Tyler, A. R.; RagbirSingh, R.; McMonagle, C. J.; Waddell, P. G.; Heaps, S. E.; Steed, J. W.; Thaw, P.; Hall, M. J.; Probert, M. R. Encapsulated nanodroplet crystallization of organic-soluble small molecules. Chem. 2020, 6, 1755.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Inc., Wallingford CT 2016.

(a) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. (b) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+ G basis set for first-row elements, Li–F. J. Comput. Chem. 1983, 4, 294. (c) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Phys. Chem. 1980, 72, 650. (d) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999. (e) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215. (f) Wang, Y.; Wei, D.; Zhang, W.; ChemCatChem. 2018, 10, 338.

Weinhold, F.; Carpenter, in The structure of small molecules and ions; Naaman, R.; Vager, Z. Plenum New York. 1988.