Chemical composition and protective effect of *Juniperus sabina* L. essential oil against CCl₄ induced hepatotoxicity

Maged S. Abdel-Kader, Gamal A. Soliman, Mohammed H. Alqarni, Abubaker M. Hamad, Ahmed I. Foudah, Saleh I. Alqasoumi

A R T I C L E I N F O

Article info

- Received 23 May 2019
- Accepted 10 July 2019
- Available online 15 July 2019

Keywords:

Juniperus sabina
Hepatoprotective
Essential oil
Biochemical parameters
Electron microscope

A B S T R A C T

The hepatoprotective activity of the total extract of *Juniperus sabina* L. against CCl₄ induced toxicity in experimental animals was previously reported and indicated promising results. Essential oil of *J. Sabina* was prepared by hydrodistillation method. Components of the oil were identified by comparison of GC-MS and retention indexes with reported data. The hepatoprotective effect of the essential oil against CCl₄ induced toxicity was studied using male Wistar rats and silymarin at 10 mg/kg p.o as standard drug. The protective effect was evaluated via serum biochemical parameters such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyltranspeptidase (GGT), and total bilirubin as well as tissue parameters including non-protein sulfhydryl components (Alqasoumi and Abdel-Kader, 2012; Alqasoumi et al., 2010). Other studies were concerned with the effect of the geographical source on the oil chemical composition (Adams et al., 2010). Study of *J. phoenicea* and *J. procera* for the search of hepatoprotective secondary metabolites resulted in the identification of hinokiflavone, 4-epi-abietol, sugiol as the most active components (Alqasoumi and Abdel-Kader, 2012; Alqasoumi et al., 2013).

We previously reported on the hepatoprotective effect of *J. sabina* total extract of the aerial part against CCl₄ induced toxicity in rats (Abdel-Kader et al., 2016). In the current study we investigated the chemical composition and hepatoprotective effect of the essential oil obtained from the green branches of *J. sabina*.

1. Introduction

Essential oils are highly concentrated mixtures of saturated and unsaturated hydrocarbons, alcohols, aldehydes, esters, ethers, ketones, oxides, phenols and terpenes (Schiller and Schiller, 1994; Wildwood, 1996). Essential oils are of great importance in therapeutic and cosmetic uses (Evans, 2000). Essential oils obtained from different parts or exudates of the plants are the main therapeutic agents in aromatherapy (Dunning, 2013). Few studies were conducted on the chemical composition and biological activity of *Juniperus sabina* L. essential oil. Essential oils obtained from fruits and leaves of *J. sabina* were proved to possess inhibitory activity against protein glycation and oxidative stress (Asgary et al., 2013). Essential oil from berries and branches of *J. sabina* composed mainly of sabinenone and α-pinene showed antioxidant (Emami et al., 2009) and weak antimicrobial activities (Asili et al., 2010). Other studies were concerned with the effect of the geographical source on the oil chemical composition (Adams et al., 2006). Study of *J. phoenicea* and *J. procera* for the search of hepatoprotective secondary metabolites resulted in the identification of hinokiflavone, 4-epi-abietol, sugiol as the most active components (Alqasoumi and Abdel-Kader, 2012; Alqasoumi et al., 2013).

We previously reported on the hepatoprotective effect of *J. sabina* total extract of the aerial part against CCl₄ induced toxicity in rats (Abdel-Kader et al., 2016). In the current study we investigated the chemical composition and hepatoprotective effect of the essential oil obtained from the green branches of *J. sabina*.
2. Materials and methods

2.1. Plant materials

Aerial parts of Juniperus sabina L. (Cupressaceae) were described earlier (Abdel-Kader, 2016).

2.2. Preparation of the oil

The dried aerial parts of J. sabina (0.5 kg) were subjected to hydrodistillation for 8 h using a Clevenger apparatus with 5 L rounded-bottomed flask. The condensate was extracted with ether. The ether extract was dehydrated over anhydrous sodium sulfate and evaporated to obtain the essential oil. The yield of the oil was 0.5% w/w.

2.3. GC/MS analysis

The GC/MS analyses was carried out on Gas chromatography Mass spectrometer SHIMAZU model 2010 plus equipped with flam ionization detector (FID). Mass spectrometer model MS-2010-Ultra equipped with electron multiplier detector and Quadruple system analyzer. Auto injector model Aoc-20i. GC, injector and detector temperature were set at 220–290 °C respectively. Column temperature was programmed from 60 to 220 °C at a rate of 4 °C/min, lower temperature held for 10 mins, 220 °C to 290 °C at rate of 5 °C/min. Carrier gas: Helium at a flow rate of 1.5 mL/min. Column: Rtx 5MS, crossbond 5% diphenyl, 95% dimethyl polysiloxane. Sample volume 1.0 mL and split ratio was set at 40:1. The mass analyzer was scanned from \(m/z \) 35–450 at a scan rate of (3.46) s⁻¹.

The peak identity was confirmed by comparing their mass spectra against commercial (Wiley GC/MS Library, MassFinder 3 Library) (Zaghloul et al., 1989; McLafferty and Stauffer, 1989).

2.4. GC analysis

GC spectrum obtained under same conditions as the above mentioned conditions was used for identification of peaks by comparison of their relative retention index (RRI) to a series of n-alkanes. The quantitative estimation of each compound was carried out based on computerized area measurement (Table 1).

2.5. Animals

Male Wistar albino rats (160–180 g) of similar age (8–10 weeks) and Swiss albino mice of either sex (25–30 g), provided by the Experimental Animal Care Center, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, KSA, were used. The animals were kept under controlled temperature (22 ± 2 °C), humidity (55%) and light/dark conditions (12/12 h). The animals were provided with Purina chow and free access to drinking water ad libitum (Alqasoumi et al., 2009). The experimental and procedures were approved by the Ethical Committee at Prince Sattam Bin Abdulaziz University.

2.6. LD₅₀ determination

Acute oral toxicity of the essential oil was evaluated in Swiss albino mice. Thirty animals were equally divided into five groups (\(n = 6 \)) per sex. Group 1 was kept as control, treated with 1% Tween 80. Other groups received the oil as suspension in Tween 80 at doses of 0.8, 1.6, 3.2 and 6.4 mL/kg by intraperitoneal injection. Animals were observed for symptoms of toxicity for 24 h and at the end of the experiment. The number of mortality in each group were counted. LD₅₀ were calculated using Karber’s method (1931).

2.7. Hepatoprotective activity

Rats were divided into four groups and four subgroups five animals each. Group I received 1% Tween 80 in normal saline and was kept as a control. Groups II–IX received 1.25 mL of CCl₄ in liquid paraffin (1:1) per 1 Kg body weight intraperitoneally. Group II received only CCl₄ treatment. Group III was treated with 10 mg/kg p.o. (20.7 μ mole/kg) of silymarin (Sigma-Aldrich, St. Louis, MO, USA) (Abdel-Kader et al., 2016). Groups IV was divided into four sub groups IVa- IVd treated with 50, 100, 150 and 200 mg/kg of J. sabina essential oil. Treatment started 5 days prior to CCl₄ administration and continued till the end of the experiment. After 48 h, following CCl₄ administration the animals were sacrificed under ether anesthesia. Blood samples were obtained by heart puncture and the serum was separated for biochemical parameters measurements. The livers were immediately removed and representative pieces were immersed in10% formalin for fixation necessary for histopathological study.

2.7.1. Determination of enzyme levels

Serum glutamate oxaloacetate transaminase Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyltranspeptidase (GGT), (ALP) and total bilirubin were determined following the reported methods.
(Edwards and Bouchier, 1991). The enzyme activities were measured by Reflotron® diagnostic strips (Roche, Basel, Switzerland) and Reflotron® Plus instrument (Roche, Basel, Switzerland).

2.7.2. Determination of tissue parameters

Non-protein sulphydryl groups (NP-SH) were measured following Sedlak and Lindsay method (1968). Livers were cooled in ice bath. Weight of 200 mg of liver tissues was homogenized in 8 mL of 0.02 M ethylenediaminetetraacetic acid (EDTA). Aliquots of 5 mL of the homogenate were mixed with 15 mL test tubes with 4 mL of distilled water and 1 mL of 50% trichloroacetic acid (TCA). To precipitate protein, the tubes were shaken for 10–15 min at intervals and centrifuged at 3000 rpm for 15 min. Two mL of the resultant supernatants were mixed with 4 mL of 0.4 M Tris buffer, pH 8.9 and 0.1 mL of 0.01 M TCA. To precipitate protein, the tubes were shaken for 10–15 min at intervals and centrifuged at 3000 rpm for 15 min. Two mL of the resultant supernatants were mixed with 4 mL of 0.4 M Tris buffer, pH 8.9 and 0.1 mL of 0.01 M DTNB [5,5'-dithio-bis-(2-nitrobenzoic acid)] and the mixtures were shaken. Five minutes after the addition of DTNB, the absorbance values were measured at 412 nm and compared with blank with no homogenate (Table 3).

For the measurement of MDA level, aliquots from liver homogenate were incubated with shaking at 37 °C for 3 h, mixed with 1 mL of 10% aqueous TCA and centrifuged at 800 rpm for 10 min. From the supernatants, 1 mL from each was mixed with 1 mL distilled water and heated for 10 min on boiling water bath. Mixture were cooled, mixed with 1 mL distilled water and the absorbance values were measured at 535 nm. The content of MDA (Table 3) (nmol/g wet tissue) was estimated from the calibration curve of MDA solution (Urteil et al., 1967).

For the determination of the TP, portions of the homogenate were mixed with 0.7 mL Lowry’s solution and kept at room temperature for 20 min in dark then 0.1 mL of diluted Folin’s reagent were added. Mixtures were kept for 30 min at room temperature away from light. The absorbance values then measured at 750 nm (Table 3) (Lowry et al., 1951).

2.8. Statistical Analysis

Analysis of variance (ANOVA) test was used to judge whether the difference between groups is significant or not. Non paired samples such as control and CCl4-treated group were compared for significance using Dunnette’s test (Woolson and Clarke, 2002). All the reported values are presented as mean ± S.E.

2.9. Histopathology

The livers samples were dehydrated, cleared and infiltrated by immersion in increasing concentrations of ethanol (70–100%), xylene (3 times, 1 h each) followed by paraffin wax (4 times, 1 h each). The tissues were oriented by hot forceps in moulds and then stained with methyl blue, dehydrated, cleared and mounted sections in DPX (Hamad and Ahmed, 2016). The sections (3 μm) were made using rotary microtome (Leitz 1512) and placed onto clean slides. The slides were drained vertically for several minutes and placed onto a warming table at 37–40 °C (Prophet et al., 1994).

2.9.1. Mayer’s hematoxylin stain

The slides were stained in Mayer’s hematoxylin solution for 15 min after deparaffinization and hydration. The slides were then washed in lukewarm running tap water for 15 min then immersed in 80% ethyl alcohol for two minutes and counterstained in eosin–phloxine solution for 2 min. The slides were then washed with 95% ethyl alcohol, absolute ethyl alcohol, and xylene (2 min each) and finally mounted in resins medium.

2.9.2. Periodic acid Schiff – Hematoxylin (PAS-H) to study PAS-positive materials

D Deparaffinized liver sections were immersed in 1% periodic acid for 10 min, washed with distilled water for 2 min, immersed in Schiff reagent (Product 191203S, BDH Laboratory Supplies, Poole, England) for 10 min, and then washed under running tap water for 10 min. The nuclei were counterstained with Harris’s hematoxylin for 2 min, differentiated in acid alcohol 2 dips, rinsed with tap water 2 dips, and blued in running tap water for 10 min, dehydrated, cleared, and a coverslip mounted with DPX (Product 03600, Loba Chemie Pvt. Ltd., Mumbai, India) (Hamad and Ahmed, 2018).

2.9.3. Masson trichrome technique for connective tissue fibers demonstration (mainly collagen)

Deparaffinized liver sections were stained with Weigert’s iron hematoxylin for 10 min, washed with water, stained in an acid fuchsin solution for 5 min, rinsed rapidly in water, differentiated in 1% phosphomolybdic acid for about 5 min, dehydrated and counterstained with methyl blue, dehydrated, cleared and mounted sections in DPX (Hamad and Ahmed, 2016).

Table 2

Effect of J. sabina oil on the serum levels of liver injury markers in CCl4-intoxicated rats.

Treatment	AST (U/L)	ALT (U/L)	GGT(U/L)	ALP(U/L)	Bilirubin(mg/dl)
Control	113.00 ± 4.08	31.45 ± 2.05	4.10 ± 0.17	357.00 ± 18.49	0.55 ± 0.02
CCl₄	296.75 ± 7.72²	225.25 ± 12.45²	15.02 ± 0.33²	596.50 ± 11.54²	2.93 ± 0.07²
Silymarin	139.00 ± 7.16²	77.62 ± 16.46²	6.50 ± 0.30²	411.50 ± 25.10²	1.04 ± 0.12²
50 mg/kg	283.75 ± 7.49²	218.00 ± 8.79³	14.22 ± 0.42²	542.00 ± 7.22³	6.54 ± 0.59³
100 mg/kg	280.25 ± 6.12²	184.75 ± 8.75²	13.40 ± 0.31²	533.25 ± 9.10²	2.44 ± 0.02³
150 mg/kg	237.50 ± 8.30²	152.75 ± 6.53²	11.30 ± 0.31²	485.00 ± 7.71²	2.00 ± 0.19²
200 mg/kg	188.00 ± 9.03²	129.75 ± 4.78²	10.43 ± 0.31²	446.75 ± 7.57²	1.37 ± 0.06²

All values represent mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ANOVA, followed by Dunnett’s multiple comparison test.

a As compared with Control group.

b As compared with CCl4 only group.

Table 3

Effect of J. sabina oil on MDA, NP-SH and Total protein in liver tissue of CCl₄-intoxicated rats.

Treatment	MDA (nmol/g)	NP-SH (nmol/g)	TP (g/l)
Control	1.11 ± 0.05	4.80 ± 0.11	114.37 ± 2.82
CCl₄	6.95 ± 0.59²	2.19 ± 0.20²	52.09 ± 2.65²
Silymarin	2.26 ± 0.18²	4.14 ± 0.15²	99.99 ± 3.70²
50 mg/kg	5.69 ± 0.24³	2.35 ± 0.20³	57.48 ± 2.18³
100 mg/kg	4.17 ± 0.04⁴	2.85 ± 0.20⁴	67.66 ± 2.99⁴
150 mg/kg	3.09 ± 0.09⁵	3.31 ± 0.13⁵	78.44 ± 3.43⁵
200 mg/kg	1.79 ± 0.27⁶	4.67 ± 0.43⁶	83.83 ± 4.88⁶

All values represent mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ANOVA, followed by Dunnett’s multiple comparison test.

a As compared with Control group.

b As compared with CCl4 only group.
3. Results and discussion

The facts that total extract of \textit{J. sabina} showed marked hepatoprotective activity (Abdekl-Kader, 2016) and that essential oils are highly concentrated mixtures of low molecular weight diverse secondary metabolites (Schiller and Schiller, 1994; Wildwood, 1996) initiate the study of the plant essential oil chemical composition and hepatoprotective effect.

Combination of GC-MS and GC analyses of the essential oil of \textit{J. sabina} enable the identification of 36 components representing 97.07% of the oil components. Hydrocarbons represent the major components of the oil as their percentage was 77.14. Sabineene represents 55.820% of the oil components followed by \(\alpha\)-pinene (5.210%). Total alcohols represent 9.01% of the oil with the major alcohol citronellol 1.040%. Acetate esters represent 3.84% out of them linalyl acetate represents 2.21%. Caryophyllene oxide represents 1.48% while the total oxides representing 3.07% of the oil. Ketones represent the least component in the oil with total percentage of 2.03 of which pinocarvone represents 0.83% of the oil. Monoterpenes derivatives were the major components of the oil representing 76.24% while sesquiterpenes derivatives represents 19.76%. Only one fatty acid; dodecanoic acid was detected in the oil (Table 1).

The induction of hepatotoxicity using CCl\(_4\) cause severe disturbances of calcium homeostasis leading to necrotic cell death (Weber et al., 2003). Significant increase of transaminases (ALT and ALP) and alkaline phosphatase (ALP) levels was due to hepatocytes damage (Zafar and Ali, 1998). Severe jaundice was diagnosed via elevated levels of serum bilirubin (Table 2) (Lin et al., 1997).

The standard drug silymarin at a dose of 10 mg/kg (20.7 \textmu mol/kg) provides protective effect mediated via; scavenging the free radicals, increase the intracellular concentration of GSH, enhancement of the cellular membrane permeability, stimulation of protein synthesis leading to regeneration of liver cells (Saller et al., 2007; Dehmlow et al., 1996). These effects resulted in normalization of the biochemical and tissue parameters (Tables 2 and 3).

The safety of the oil was accessed via LD\(_{50}\) determination following Karber’s method (1931). The LD\(_{50}\) of the oil was 3.4325 mg/kg. For the hepatoprotective effect four doses were used 50, 100, 150 and 200 mg/kg. The essential oil showed dose dependent hepatoprotective effect. The effect was comparable with that of silymarin at the highest dose used at 200 mg/kg. The protective effect was accessed via the measurement of biochemical and tissue parameters as well as histopathological study. The effect of \textit{J. sabina} essential oil at 200 mg/kg on reducing the levels of aspartate amino transferase (AST), alanine aminotransferase (ALT), gamma glutamyl transpeptidase (GGT), alkaline phosphatase (ALP) and total bilirubin (36.64, 43.39, 30.44, 25.10, 53.11 % respectively) was less than the effect observed in the group of animals treated with silymarin (53.15, 65.53, 56.73, 31.01 and 64.27 % respectively) (Table 2). Tissue parameters such as MDA, NP-SH and total proteins were also measured as a sign for hepatocytes recovery. MDA is the final product of unsaturated fatty acid peroxidation and is markedly increased in the group treated with CCl\(_4\). Treatment with \textit{J. sabina} essential oil at 200 mg/kg resulted in better decrease in the level of MDA (1.79 ± 0.27 nmol/g) toward the normal level (1.11 ± 0.05 nmol/g) than silymarin (2.26 ± 0.18 nmol/g). The level of NP-SH groups in the normal control group was 4.80 ± 0.11 nmol/g and significantly decreased to 2.19 ± 0.20 nmol/g by CCl\(_4\). Treatment with 200 mg/kg of \textit{J. sabina} essential oil significantly (p < 0.001) restored the level of NP-SH (4.67 ± 0.43 nmol/g) closer to the normal level than silymarin (4.14 ± 0.15 nmol/g).

Histopathological study was conducted using Mayer’s hematoxylin stain, Masson trichrome technique and Periodic Acid Schiff – Hematoxylin (PAS-H) on light microscope (Fig. 1). Masson trichrome stain collagen with blue colour and give an indication about fibrosis due to liver injury. Using PAS-H confirms the presence of glycogen in the liver cells (Krishna, 2013). Tissue specimens were also examined by electron microscopy (Fig. 2). Liver cells of the CCl\(_4\) treated group showed degenerative liver tissue, necrosis with complete occlusion of the blood vessels (b-i), large amount of collagen fibers with the blue colour (b-ii), and absence of PAS positive materials indicating injured poor functioning capacity of hepatocytes (b-iii). Electron microscope pictures (Fig. 2) showed marked degeneration, necrosis and vacuolization of hepatocytes (b-i). The nuclei showed clumps of chromatin materials (b-ii) and abnormal pattern of dissociated Golgi apparatus (b-iii). Treatment with Silymarin prior to CCl\(_4\) provided clear evidence of healing and regaining microanatomical architecture of liver tissue (Fig. 1). However, some veins still suffering from hyperemia and partial occlusion (c-i), reduced amount of collagen fibers (c-ii) and very few amounts of PAS positive materials were observed (c-iii). Electron microscopy (Fig. 2) showed restored cellular and nuclear membranes with decreased vacuolization and presence of fat droplets (c-i), regaining many normal nuclei without clumps (c-ii), normal cytoplasms with normal Golgi apparatus and very few small fat droplets are present in the cytoplasm (c-iii).

Liver cells of CCl\(_4\) and 150 mg/kg \textit{J. sabina} essential oil treated group (Fig. 1) showed partial healing of central veins (d-i), moderate amount of collagen fibers (d-ii), and moderate amount of PAS...
positive materials (d-iii) indicating partial healing. Treatment with CCl4 and 200 mg/kg J. sabina essential oil resulted in complete recovery of liver cells (e). Electron microscopy for liver specimen of animals treated with of CCl4 and 150 mg/kg J. sabina essential oil (Fig. 2) showed partial recovery indicated by some degeneration, necroses (d-i), regaining intact nuclear membrane but still some uneven distribution of chromatin material in the nucleus (d-ii), partial degenerated pattern of Golgi apparatus, weak cytoplasmic production and very few fat materials but no fat droplets (d-iii). Liver cells of CCl4 and 200 mg/kg J. sabina essential oil treated group showed almost normal appearance of nucleus, functioning cytoplasm and fat materials (e-i), very high improvement and healing activity by regaining intact nuclear membrane and even distribution of chromatin material in the nucleus (d-ii). The cytoplasm shows normal pattern of Golgi apparatus and very few fat materials with complete absence of fat droplets.

4. Conclusion

The yield of the essential oil from the aerial parts of J. sabina was 0.5% w/w. GC-MS study of the oil enable the identification of 36 components representing 97.07% of the oil components. Sabinene was the major components of the oil representing 55.820% followed by β-pinene (5.210%). The LD50 of the oil found to be 3.4325 mg/kg. The essential oil showed dose dependent hepatoprotective effect. The effect was comparable with that of silymarin at the highest dose used 200 mg/ml. The effect of the oil on...
reducing the level of MDA toward the normal level and restoring NP-SH groups was superior to the effect observed with silymarin treatment. Light microscope pictures showed complete recovery of cells in the group treated with CCl4 and 200 mg/kg *J. sabina* essential oil. Similarly, electron microscope study revealed very high level of protection for the same group which received CCl4 and 200 mg/kg *J. sabina* essential oil. The fact that the LD50 is fifteen fold higher than the effective dose gives an indication about the safety of the essential oil for use.

Declaration of Competing Interest

The authors declare that; there is no conflict of interest.

Acknowledgement

The authors are thankful to Deanship of Scientific Research (DSR), Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia for providing the fund to carry out this study under research grants No. 6610/03/2018. Electron microscope pictures were taken at the Department of Pathology and Laboratory Medicine, Ministry of the National Guard - Health Affairs.

References

Abdel-Kader, M.S., Alanazi, M.T., Bin Saeedan, A.S., Al-Saikhan, F.I., Hamad, A.M., 2016. Hepatoprotective and nephroprotective activities of *Juniperus sabina* L. aerial parts. *J. Pharm. Pharmacogn. Res.* 5 (1), 29–39.
Adams, R.P., Nguyen, S., Liu, J., 2006. Geographic variation in the leaf essential oils of Juniperus sabina L. and J. sabina var. arenaria (E. H.Wilson) Farjon. J. Essent. Oil Res. 18 (5), 497–502.

Alqasoumi, S.I., Abdel-Kader, M.S., 2012. Terpenoids from Juniperus procera with hepatoprotective activity. Pak. J. Pharm. Sci. 25 (2), 81–88.

Alqasoumi, S.I., El Tahir, K.E.H., AlSheikh, A.M., Abdel-Kader, M.S., 2009. Hepatoprotective effect and safety studies of Juniperus phoenicea. Alex. J. Pharm. Sci. 23 (2), 81–88.

Asili, J., Emami, S.A., Rahimizadeh, M., Fazly-Bazzaz, B.S., Hassanzadeh, M.K., 2010. Chemical and antimicrobial studies of Juniperus sabina L. and Juniperus foetidissima Willd. essential oils. J. Essent. Oil Bear. Pl. 13 (1), 25–36.

Asgary, S., Sahebkar, A., Naderi, G.A., Ardekani, M.R.S., Kasher, T., Aslani, S., Airin, A., Emami, S.A., 2013. Essential oils from the fruits and leaves of Juniperus sabina possess inhibitory activity against protein glycation and oxidative stress: an in vitro phytochemical investigation. J. Essent. Oil Res. 25 (1), 70–77.

Crandall, R.K., 1966. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 25, 192–205.

Evans, W.C., 2000. Trease and Evans Pharmacognosy. WB Saunders Co, London.

Hamad, A.M., Ahmed, H.G., 2016. Association of connective tissue fibers with estrogen expression in breast lesions among Sudanese females. Int. J. Clin. Pathol. 1 (2), 97–102.

Hamad, A.M., Ahmed, H.G., 2018. Association of some carbohydrates with estrogen expression in breast lesions among Sudanese females. J. Histotechnol. 41 (1), 2–9.

Karber, G., 1931. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch. Expil. Pathol. Phar- makol 192, 480–483.

King, M., 2005. Role of Special Stains in Diagnostic Liver Pathology. Clinical Liver Disease 9 (S1), S8–S10.

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193, 265–275.

Luft, J.H., 1961. Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9, 409–414.

McAuffery, F.W., Stafford, D.B., 1989. The Wiley/NBS Registry of Mass Spectral Data. J Wiley and Sons, New York.

Wilde, C., 1996. The Encyclopedia of Aromatherapy. Healing Arts Press, Rochester.

Zaghloul, A.M., Abo El-fattah, H., Halih, A.F., 1989. Chemical investigation of the aerial parts of Anthemis helaphpina Del. Mans. J. Pharm. Sci. 5 (1), 23–33.