Impact of rs361072 in the Phosphoinositide 3-kinase p110β Gene on Whole Body Glucose Metabolism and Subunit Protein Expression in Skeletal Muscle

Short title: PIK3CB rs361072 and Insulin Sensitivity

Rasmus Ribel-Madsen¹, Pernille Poulsen¹, Johan Holmkvist², Brynjulf Mortensen¹, Niels Grarup², Martin Friedrichsen¹,³, Torben Jørgensen⁴,⁵, Torsten Lauritzen⁶, Jørgen F.P. Wojtaszewski⁷, Oluf Pedersen²,³,⁸ Torben Hansen²,⁹, and Allan Vaag¹,¹⁰

¹Steno Diabetes Center, Gentofte, Denmark
²Hagedorn Research Institute, Gentofte, Denmark
³Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
⁴Research Centre for Prevention and Health, Glostrup Hospital, Copenhagen, Denmark
⁵Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
⁶Department of General Practice, Institute of Public Health, Aarhus University, Aarhus, Denmark
⁷Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
⁸Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
⁹Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
¹⁰University Hospital MAS, Lund University, Malmo, Sweden

Corresponding author:
Rasmus Ribel-Madsen,
Email: RRMa@steno.dk

Submitted 12 September 2009 and accepted 18 January 2010.

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective. Phosphoinositide 3-kinase (PI3K) is a major effector in insulin signaling. rs361072, located in the promoter of the gene (PIK3CB) for the p110β subunit, has previously been found associated with HOMA-IR in obese subjects. The aim was to investigate the influence of rs361072 on in vivo glucose metabolism, skeletal muscle PI3K subunit protein levels, and type 2 diabetes.

Research Design And Methods. The functional role of rs361072 was studied in 196 Danish healthy adult twins. Peripheral and hepatic insulin sensitivity was assessed by a euglycemic-hyperinsulinemic clamp. Basal and insulin-stimulated biopsies were taken from the vastus lateralis muscle, and tissue p110β and p85α proteins were measured by Western blotting. The genetic association with type 2 diabetes and quantitative metabolic traits was investigated in 9,316 Danes with glucose tolerance ranging from normal to overt type 2 diabetes.

Results. While hepatic insulin resistance was similar in the fasting state, carriers of the minor G allele had lower hepatic glucose output (per-allele effect: −16%, \(P_{\text{add}}=0.004 \)) during high physiological insulin infusion. rs361072 did not associate with insulin-stimulated peripheral glucose disposal despite a decreased muscle p85α:p110β protein ratio (\(P_{\text{add}}=0.03 \)) in G allele carriers. No association with HOMA-IR or type 2 diabetes (OR=1.07, \(P=0.12 \)) was identified, and obesity did not interact with rs361072 on these traits.

Conclusion. Our study suggests that the minor G allele of PIK3CB rs361072 associates with decreased muscle p85α:p110β ratio and lower hepatic glucose production at high plasma insulin levels. However, no impact on type 2 diabetes prevalence was found.
The phosphoinositide 3-kinase (PI3K) is a key effector in the insulin signaling pathway, mediating among others GLUT-4 translocation to the cell membrane in skeletal muscle and suppressing hepatic glucose production (HGP). The enzyme consists of regulatory p85 and catalytic p110 subunits existing in different isoforms. In cultured fibroblasts the quantity of p85 exceeds p110 (1). Free p85 is thought to compete with the p85:p110 complex for phosphotyrosine sites on insulin receptor substrate 1 (IRS-1). Furthermore, p85 may activate phosphatase and tensin homolog (PTEN), thereby attenuating insulin signaling (2). The balance between p85 and p110 subunits therefore seems to be critical for signaling through the PI3K pathway (1;3). Hence, gene variants altering transcriptional activity or protein function may affect insulin sensitivity. We have previously shown that an amino acid substitution (Met326Ile) in the p85α subunit was associated with reduced glucose disappearance in homozygous healthy Caucasians (4). rs361072 is a single-nucleotide polymorphism (SNP) located at position –359 in the promoter of PIK3CB, the gene encoding the p110β subunit. This promoter region contains a motif for the GATA family of transcription factors. Accordingly, the minor G variant associates with enhanced transcriptional activity as evidenced by increased p110β mRNA and protein levels in leukocytes (5). In Caucasians, the G allele is common with a frequency of 48%. Recent studies involving 3,366 French children showed that G allele carriers were protected from obesity-related insulin resistance measured as homeostasis model assessment for insulin resistance (HOMA-IR) (5;6). The effect was smaller in 1,139 obese French adults (7), and in 295 normal-weight Finnish adults rs361072 did not associate with insulin sensitivity (8).

The aims of the present study were to investigate the functional role of PIK3CB rs361072 in metabolically well-characterized Danish adult twins and to examine the association of rs361072 with type 2 diabetes and quantitative metabolic traits in a population-based sample of adult Danes. In addition, we aimed to investigate the potential interaction of the p85α (PIK3R1) Met326Ile variant with rs361072 on insulin sensitivity.

RESEARCH DESIGN AND METHODS

In vivo metabolism and heritability were investigated in 196 monozygotic (MZ; n=108), and same-sex dizygotic (DZ; n=88) Danish twins without known type 2 diabetes, previously described in detail (9). Subjects were identified having normal glucose tolerance (NGT; n=172), impaired glucose tolerance (IGT; n=21) and screen-detected type 2 diabetes (n=3) according to WHO criteria (10). Type 2 diabetes-related quantitative traits were investigated in 5,750 subjects from the Danish population-based Inter99 cohort (11) including individuals with NGT (n=4,275), impaired glucose tolerance (IGT; n=650) and screen-detected type 2 diabetes (n=235) according to WHO criteria. Subjects with known type 2 diabetes (n=114) were excluded from analyses of quantitative traits. The genetic association with type 2 diabetes was assessed in a case-control material including all unrelated type 2 diabetes cases and healthy control individuals from the Inter99 sample (cases n=313, controls n=4,275), confirmed type 2 diabetic subjects from the ADDITION Denmark screening study samples (cases n=1,577) (12), and type 2 diabetic patients and glucose tolerant individuals recruited from the outpatient clinic at Steno Diabetes Center (cases n=1,494, controls n=495). All study
participants had provided informed written consent, and the study was approved by the regional Ethical Committees and conducted in accordance with the principles of the Helsinki Declaration II.

Clinical examination. All subjects underwent measures of height and weight for calculation of BMI, and a WHO-defined and standardized oral glucose tolerance test (OGTT) was conducted in subjects without known type 2 diabetes. In addition, the twins underwent a dual-energy X-ray absorptiometry scan with measurement of total body fat percentage, a 2-hour (40 mU·m⁻²·min⁻¹) euglycemic-hyperinsulinemic clamp, and an intravenous glucose tolerance test (IVGTT) (9). Biopsies were excised from the vastus lateralis muscle (n=184) during the basal and insulin-stimulated states (13). Plasma glucose and serum insulin were measured as previously described (9). The hepatic insulin resistance index was calculated as basal HGP · fasting serum insulin, and HOMA-IR as fasting serum insulin (pmol/l) · fasting plasma glucose (mmol/l) / 22.5. OGTT-derived indices for acute insulin response (BIGTT-AIR) and insulin sensitivity (BIGTT-SI) were calculated as described previously (14).

Muscle protein expression. p85α and p110β contents were determined by Western blotting described in the online appendix which can be found at http://diabetes.diabetesjournals.org.

Statistical methods. Statistical analyses were performed using R version 2.7.2 (available at http://www.r-project.org) and SAS version 9.1 (SAS Institute, Cary, NC). Heritability (h²), giving the proportion of the total variation of a trait attributable to genetic variation, was calculated from the intra-class correlations of MZ and DZ twins (h²=2(rMZ−rDZ)) (15). Linear models, assuming an additive allele effect, were used to test for associations of genotypes with quantitative traits. Adjustment for twin zygosity and pair status was performed using the SAS “proc mixed”. If not otherwise stated, P values (P_add) are adjusted for sex, age, and body fat percentage (BMI in singletons). Interaction analyses compared a two-SNP additive model with a model including additive SNP interaction. Statistical significance was defined as P<0.05. Results are presented as mean±SD, and odds ratios (OR) are reported with 95% CI.

RESULTS

Association of PIK3CB rs361072 with in vivo metabolism and type 2 diabetes. No differences were identified in BMI, body fat percentage, serum insulin and plasma glucose among the PIK3CB rs361072 genotype groups (Tables 1 and 2). In the Inter99 sample, rs361072 was associated with 30 min post OGTT plasma glucose with subjects carrying the GG alleles having the lowest value, whereas 2-hour plasma glucose was similar. In the twins, the G allele was associated with enhanced insulin-suppression of HGP, but not with basal HGP or hepatic insulin resistance index. In addition, rs361072 was not associated with insulin-stimulated glucose disposal (Rd) in the twins or indices of insulin sensitivity in the Inter99 sample. Further stratification of the Inter99 population in lean (BMI<25 kg/m²), overweight (25
kg/m² ≤ BMI ≤ 30 kg/m²) and obese (BMI > 30 kg/m²) subjects did not change the result ($P_{add} > 0.6$), and no interaction of BMI with rs361072 on HOMA-IR ($P = 0.9$) or BIGTT-SI ($P = 0.5$) was evident. No association was found between rs361072 and Dq. In the case-control study rs361072 was not associated with type 2 diabetes (Table 3).

Interaction of PIK3R1 rs3730089 with PIK3CB rs361072. PIK3R1 rs3730089 did not associate with any glucose metabolic trait in the twin sample, whereas the minor A allele was associated with improved HOMA-IR and BIGTT-SI in Inter99 subjects (Suppl. tables 1 and 2 in the online appendix which is available at http://diabetes.diabetesjournals.org). rs3730089 did not interact with rs361072 on HOMA-IR ($P = 0.7$) or BIGTT-SI ($P = 0.3$).

Association of PIK3CB rs361072 with muscle PI3K protein. The intra-class correlation coefficients for insulin-stimulated p85α were $r_{MZ} = 0.70$ and $r_{DZ} = 0.57$ giving a heritability of $h^2 = 0.25$. The similar values for insulin-stimulated p110β were $r_{MZ} = 0.44$ and $r_{DZ} = 0.28$, $h^2 = 0.33$. rs361072 did not associate with p110β protein levels, but carriers of the G allele had decreased p85α and a lower p85α:p110β protein ratio at insulin-stimulated conditions (Table 4). PIK3R1 rs3730089 did not associate with p85α and p110β protein levels or their ratio (Suppl. table 3). Insulin-stimulated p85α ($P = 0.4$), p110β ($P = 0.8$) or p85α:p110β ($P = 0.4$) were not associated with R_d.

DISCUSSION

Applying the euglycemic-hyperinsulinemic clamp we demonstrate that the minor G allele of PIK3CB rs361072 associates with enhanced suppression of HGP and decreased p85α:p110β protein ratio in skeletal muscle during insulin infusion. However, in the large-scale case-control study we were unable to demonstrate any association of the G allele with type 2 diabetes.

Previous studies have shown that the G allele of rs361072 associates with improved HOMA-IR in obese subjects (5-7), but not with insulin-stimulated glucose disposal in normal-weight adults (8). Therefore, a role of rs361072 in the development of type 2 diabetes in only obese individuals has been proposed (5). Our present data, however, do not suggest obesity to determine genotype penetrance in adults. The discrepancy between studies using surrogate versus clamp measures of insulin sensitivity may also be explained by the fact that HOMA-IR is influenced predominantly by hepatic insulin resistance (16). Therefore, we examined the association of rs361072 with hepatic insulin sensitivity measured by a euglycemic-hyperinsulinemic clamp at physiological plasma insulin levels. The G allele was associated with a decrease in HGP of 16% during insulin infusion, independent of age and obesity, whereas no influence of rs361072 was seen on hepatic insulin resistance index, indicating a negligible role of genotype at fasting conditions. Given a more pronounced effect of rs361072 at high plasma insulin levels, it could explain the lack of association with HOMA-IR in our study of 5,635 middle-aged Danes. However, the G allele was associated with lower 30 min post OGTT plasma glucose. At this time point plasma insulin peaks, and the glucose- and insulin-mediated suppression of HGP has been shown to reach its maximum (17). Therefore an improved suppression of HGP in G allele carriers might contribute to the decrease in 30 min plasma glucose. Our data do not suggest a role of rs361072 in the regulation of peripheral insulin sensitivity.

Among the currently over twenty known type 2 diabetes susceptibility genes most affect β-cell function, whereas few including IRS1 associate predominantly with insulin resistance (18). The genetic
contribution to insulin resistance may be masked by the influence of environmental factors or by the ability of healthy β-cells to compensate (19). As reported previously (7) PIK3CB rs361072 was not associated with type 2 diabetes, even in obese subjects, despite of its association with HGP. This could be explained by the fact that the suppressing effect of the G allele on HGP is evident at high physiological plasma insulin levels only, and that the variant does not affect insulin secretion.

Heritability estimates demonstrated a genetic contribution to variance of 25–33% for p85α and p110β protein levels suggesting a major role of environmental factors in their regulation in skeletal muscle. Accordingly, we did not find an association of rs361072 with p110β muscle protein. Thus, an additional GATA binding site, created by the G variant, may not be sufficient to alter gene expression to a degree that is measurable at the protein level. Surprisingly, subjects homozygous for the A allele had an increase of p85α and a higher p85α:p110β ratio during insulin infusion than GG subjects. Several studies have shown that p110 and p85 are co-regulated, and p85 levels may change more dynamically than those of p110 (20;21). Therefore, the p110β variant could possibly play a role in the regulation of p85α expression. A high p85:p110 ratio has been shown to associate with insulin resistance (22), and p85 has been found up-regulated in patients with type 2 diabetes (23). We failed to demonstrate an association between muscle p85α:p110β ratio and insulin-stimulated glucose disposal; it is speculated, however, that the improved hepatic insulin sensitivity in G allele carriers might relate to the hepatic p85α:p110β ratio.

Our previous in vitro study of the p85α Met326Ile substitution (rs3730089) showed that the minor A allele was associated with significantly decreased p85α expression in yeast, whereas the decrease was modest in brown preadipocytes (24). Theoretically, a slight reduction in p85α in A allele carriers could explain the improved insulin sensitivity found in the Inter99 sample. However, in skeletal muscle p85α levels were similar among the genotypes, and as shown previously (25), the variant was not associated with peripheral insulin sensitivity as measured by a euglycemic-hyperinsulinemic clamp. Even though both rs361072 and rs3730089 showed some association with insulin sensitivity they did not interact.

In conclusion, we demonstrate that the minor G allele of the common PIK3CB rs361072 associates with improved hepatic, but not peripheral insulin sensitivity or type 2 diabetes. The variant does not influence p110β muscle protein expression but may indirectly play a role in the regulation of p85α subunit expression.

ACKNOWLEDGMENTS

We thank the subjects for their participation in the study. The study was supported by grants from The Danish Council for Strategic Research, The EXGENESIS 6th Frame Work EU Programme, The Danish Diabetes Association, The Novo Nordisk Foundation, The Danish Agency for Science, Technology and Innovation, grant no. 271-06-0539, The Danish Council for Medical Research, and The Medical Swedish Research Council (J.H.). The Inter99 study was initiated by T. Jørgensen (principal investigator [PI]), K. Borch-Johnsen (PI for the diabetes part), T. Thomsen, and H. Ibsen. The present steering group comprises T. Jørgensen (PI), K. Borch-Johnsen (co-PI), and C. Pisinger.
REFERENCES

1. Ueki,K, Fruman,DA, Brachmann,SM, Tseng,YH, Cantley,LC, Kahn,CR: Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol Cell Biol 22:965-977, 2002

2. Taniguchi,CM, Tran,TT, Kondo,T, Luo,J, Ueki,K, Cantley,LC, Kahn,CR: Phosphoinositide 3-kinase regulatory subunit p85alpha suppresses insulin action via positive regulation of PTEN. Proc Natl Acad Sci U S A 103:12093-12097, 2006

3. Brachmann,SM, Ueki,K, Engelman,JA, Kahn,RC, Cantley,LC: Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol Cell Biol 25:1596-1607, 2005

4. Hansen,T, Andersen,CB, Echwald,SM, Urhammer,SA, Clausen,JO, Vestergaard,H, Owens,D, Hansen,L, Pedersen,O: Identification of a common amino acid polymorphism in the p85alpha regulatory subunit of phosphatidylinositol 3-kinase: effects on glucose disappearance constant, glucose effectiveness, and the insulin sensitivity index. Diabetes 46:494-501, 1997

5. Le Stunff,C, Dechartres,A, Mariot,V, Lotton,C, Trainor,C, Del Giudice,ME, Meyre,D, Bieche,I, Laurendeau,I, Froguel,P, Zelenika,D, Fallin,D, Lathrop,M, Romeo,PH, Bouguerons,P: Association analysis indicates that a variant GATA-binding site in the PIK3CB promoter is a Cis-acting expression quantitative trait locus for this gene and attenuates insulin resistance in obese children. Diabetes 57:494-502, 2008

6. Le Stunff,C, Dechartres,A, Del Giudice,ME, Froguel,P, Bouguerons,P: A single-nucleotide polymorphism in the p110beta gene promoter is associated with partial protection from insulin resistance in severely obese adolescents. J Clin Endocrinol Metab 93:212-215, 2008

7. Clement,K, Le,SC, Meirhaeghe,A, Dechartres,A, Ferrieres,J, Basdevant,A, Boitard,C, Amouyel,P, Bouguerons,P: In obese and non-obese adults, the cis-regulatory rs361072 promoter variant of PIK3CB is associated with insulin resistance not with type 2 diabetes. Mol Genet Metab 96:129-132, 2009

8. Kossila,M, Pihlajamaki,J, Karkkainen,P, Miettinen,R, Kekalainen,P, Vauhkonen,I, Yla-Herttuala,S, Laakso,M: Promoter polymorphisms -359T/C and -303A/G of the catalytic subunit p110beta gene of human phosphatidylinositol 3-kinase are not associated with insulin secretion or insulin sensitivity in finnish subjects. Diabetes Care 26:179-182, 2003

9. Poulsen,P, Levin,K, Petersen,I, Christensen,K, Beck-Nielsen,H, Vaag,A: Heritability of insulin secretion, peripheral and hepatic insulin action, and intracellular glucose partitioning in young and old Danish twins. Diabetes 54:275-283, 2005

10. Alberti,KG, Zimet,PZ: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539-553, 1998

11. Jorgensen,T, Borch-Johnsen,K, Thomsen,TF, Ibsen,H, Glumer,C, Pisinger,C: A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99. Eur J Cardiovasc Prev Rehabil 10:377-386, 2003

12. Lauritzen,T, Griffin,S, Borch-Johnsen,K, Wareham,NJ, Wollenbuttel,BH, Rutten,G: The ADDITION study: proposed trial of the cost-effectiveness of an intensive multifactorial intervention on morbidity and mortality among people with Type 2 diabetes detected by screening. Int J Obes Relat Metab Disord 24 Suppl 3:S6-11, 2000
13. Poulsen, P., Wojtaszewski, J.F., Petersen, I., Christensen, K., Richter, E.A., Beck-Nielsen, H., Vaag, A.: Impact of genetic versus environmental factors on the control of muscle glycogen synthase activation in twins. *Diabetes* 54:1289-1296, 2005

14. Hansen, T., Drivsholm, T., Urhammer, S.A., Palacios, R.T., Volund, A., Borch-Johnsen, K., Pedersen, O.: The BIGTT test: a novel test for simultaneous measurement of pancreatic beta-cell function, insulin sensitivity, and glucose tolerance. *Diabetes Care* 30:257-262, 2007

15. Neale MC, Cardon LR: Data preparation. In *Methodology for Genetic Studies og Twins and Families*. Neale MC, Maes HHM, Eds. Dordrecht, The Netherlands, Kluwer Academic Publishers, 1992, p. 35-53

16. Tripathy, D., Almgren, P., Tuomi, T., Groop, L.: Contribution of insulin-stimulated glucose uptake and basal hepatic insulin sensitivity to surrogate measures of insulin sensitivity. *Diabetes Care* 27:2204-2210, 2004

17. Basu, R., Dalla, M.C., Campioni, M., Basu, A., Klee, G., Toffolo, G., Cobelli, C., Rizza, R.A.: Effects of age and sex on postprandial glucose metabolism: differences in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction. *Diabetes* 55:2001-2014, 2006

18. Rung, J., Cauchi, S., Albrectsen, A., Shen, L., Rocheleau, G., Cavalcanti-Proenca, C., Bacot, F., Balkau, B., Belisle, A., Borch-Johnsen, K., Charpentier, G., Dina, C., Durand, E., Elliott, P., Hadjadji, S., Jarvelin, M.R., Laitinen, J., Lauritzen, T., Marre, M., Mazur, A., Meyre, D., Montpetit, A., Pisinger, C., Posner, B., Poulsen, P., Pouta, A., Prentki, M., Ribel-Madsen, R., Ruokonen, A., Sandbaek, A., Serre, D., Tichet, J., Vaxillaire, M., Wojtaszewski, J.F., Vaag, A., Hansen, T., Polychronakos, C., Pedersen, O., Froget, P., Sladek, R.: Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. *Nat Genet* 41:1110-1115, 2009

19. O'Rahilly, S.: Human genetics illuminates the paths to metabolic disease. *Nature* 462:307-314, 2009

20. Fruman, D.A., Mauvais-Jarvis, F., Pollard, D.A., Yballe, C.M., Brazil, D., Bronson, R.T., Kahn, C.R., Cantley, L.C.: Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. *Nat Genet* 26:379-382, 2000

21. Ueki, K., Fruman, D.A., Yballe, C.M., Fasshauer, M., Klein, J., Asano, T., Cantley, L.C., Kahn, C.R.: Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. *J Biol Chem* 278:48453-48466, 2003

22. Cornier, M.A., Bessesen, D.H., Gurevich, I., Leitner, J.W., Dzainin, B.: Nutritional upregulation of p85alpha expression is an early molecular manifestation of insulin resistance. *Diabetologia* 49:748-754, 2006

23. Bandyopadhyay, G.K., Yu, J.G., Ofrecio, J., Olefsky, J.M.: Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. *Diabetes* 54:2351-2359, 2005

24. Almind, K., Delahaye, L., Hansen, T., Van, O.E., Pedersen, O., Kahn, C.R.: Characterization of the Met326Ile variant of phosphatidylinositol 3-kinase p85alpha. *Proc Natl Acad Sci U S A* 99:2124-2128, 2002

25. Hansen, L., Zethelius, B., Berglund, L., Reneland, R., Hansen, T., Berne, C., Lithell, H., Hemmings, B.A., Pedersen, O.: In vitro and in vivo studies of a naturally occurring variant of the human p85alpha regulatory subunit of the phosphoinositide 3-kinase: inhibition of protein kinase B and relationships with type 2 diabetes, insulin secretion, glucose disappearance constant, and insulin sensitivity. *Diabetes* 50:690-693, 2001
Table 1. Characteristics of twin subjects stratified according to PIK3CB rs361072 genotypes.

PIK3CB rs361072	AA	GA	GG	P_{add}
Genotype frequency	30.4%	45.6%	24.1%	.
n (male/female)	58 (23/35)	87 (42/45)	46 (30/16)	.
Age (years)	44.4±17.4	42.6±16.9	41.2±16.8	.
BMI (kg/m²)	24.5±3.7	25.6±4.1	24.8±3.7	0.6
Fat %	24.8±8.1	25.7±9.3	22.9±7.7	0.3
Fasting insulin (pmol/l)	33.2±17.7	36.6±20.4	34.7±17.6	0.9
30 min insulin (pmol/l)	287.7±129.0	347.4±203.2	334.1±169.9	0.2
120 min insulin (pmol/l)	192.4±193.9	177.2±106.8	154.8±91.0	0.5
Fasting glucose (mmol/l)	5.4±0.6	5.4±0.6	5.3±0.5	0.6
30 min glucose (mmol/l)	8.5±2.0	8.6±1.7	8.4±1.3	0.9
120 min glucose (mmol/l)	6.7±2.4	6.4±1.3	6.3±1.3	0.4
R_d clamp (mg·kg⁻¹·min⁻¹)	11.8±3.4	10.5±3.3	10.5±3.5	0.2
HGP clamp (mg·kg⁻¹·min⁻¹)	1.7±0.6	1.5±0.5	1.4±0.6	0.004
HGP basal (mg·kg⁻¹·min⁻¹)	3.1±0.4	3.1±0.5	2.9±0.4	0.3
Hepatic IR index	104.3±57.8	112.9±60.0	101.4±54.0	0.7
Association of PIK3CB rs361072 with quantitative traits is shown in 191 Danish twins. Data are presented as mean±SD. All P_{add} values are adjusted for sex, age, and twin pair and zygosity status. P_{add} values for plasma levels of glucose and insulin, and for metabolic rates and indices are additionally adjusted for body fat percentage. D_i: Disposition index, FFM: Fat-free body mass, HGP: Hepatic glucose production, IR: insulin resistance, R_d: Glucose disposal rate.				

Table 2. Characteristics of Inter99 subjects stratified according to PIK3CB rs361072 genotypes.

PIK3CB rs361072	AA	GA	GG	P_{add}
Genotype frequency	28.6%	50.0%	21.4%	.
n (male/female)	1613 (824/789)	2816 (1400/1416)	1206 (584/622)	.
Age (years)	46.3±8.0	46.1±7.8	45.9±7.7	.
BMI (kg/m²)	26.2±4.5	26.2±4.6	26.1±4.5	0.7
Fasting insulin (pmol/l)	41.0±26.4	42.4±28.7	41.8±28.1	0.3
30 min insulin (pmol/l)	292.0±178.0	287.6±176.8	296.0±203.5	0.9
120 min insulin (pmol/l)	213.9±213.5	219.2±212.0	214.0	0.4
Fasting glucose (mmol/l)	5.6±0.9	5.5±0.8	5.5±0.7	0.2
30 min glucose (mmol/l)	8.8±1.9	8.7±1.9	8.6±1.8	0.001
120 min glucose (mmol/l)	6.2±2.2	6.2±2.1	6.2±2.0	0.6
HOMA-IR	10.4±7.7	10.7±8.4	10.4±7.6	0.5
BIGTT-SI	9.2±4.0	9.2±4.1	9.3±4.2	0.4
BIGTT-AIR	1805.4±934.9	1851.7±1124.2	1872.5±1072.3	0.1
D_i	1.7±1.1 · 10⁻⁷	1.8±1.0 · 10⁻⁷	1.7±1.5 · 10⁻⁷	0.9
Association of PIK3CB rs361072 with quantitative traits in 5,635 Danish subjects. Data are presented as mean±SD. All P_{add} values are adjusted for sex and age. P_{add} values for plasma levels of glucose and insulin, HOMA-IR, BIGTT-SI, and BIGTT-AIR are additionally adjusted for BMI. D_i: Disposition index, HOMA-IR: Homeostasis model assessment for insulin resistance, BIGTT-SI: Insulin sensitivity index, BIGTT-AIR: Acute insulin response index.				
Table 3. Association of PIK3CB rs361072 with type 2 diabetes.

SNP	Allele (minor / major)	Minor allele frequency (%)	Genotype	Genotype distribution	Odds ratio	
				Normal glucose tolerance	Type 2 diabetes	
PIK3CB rs361072	(G / A)	47	AA	1353 (28%)	940 (28%)	1.07 (0.96-1.09)
			GA	2375 (50%)	1673 (49%)	
			GG	1042 (22%)	771 (23%)	

Association with type 2 diabetes for individuals with BMI>30 kg/m²

SNP	Allele (minor / major)	Minor allele frequency (%)	Genotype	Genotype distribution	Odds ratio	
				Normal glucose tolerance	Type 2 diabetes	
PIK3CB rs361072	(G / A)	47	AA	163 (29%)	484 (28%)	1.11 (0.94-1.31)
			GA	283 (50%)	843 (49%)	
			GG	120 (21%)	385 (22%)	

Association study of rs361072 with type 2 diabetes involving 3,384 type 2 diabetes patients and 4,770 glucose-tolerant control participants. Odds ratios are shown with 95% CI for all subjects, and for the subgroup of obese subjects. P values are adjusted for sex, age, and BMI.

Table 4. p85α and p110β muscle proteins in twins stratified according to PIK3CB rs361072 genotypes.

PIK3CB rs361072	AA (AU)	GA (AU)	GG (AU)	P add
Basal p85α	762.7±194.9	686.3±226.0	670.2±201.9	0.1
Basal p110β	488.0±176.1	470.0±152.8	473.8±128.6	0.2
Basal p85α:p110β	1.74±0.69	1.59±0.73	1.48±0.59	0.06
Insulin p85α	801.1±260.4	692.3±223.9	624.1±184.0	0.02
Insulin p110β	510.7±200.2	495.3±196.1	489.7±161.6	0.8

Skeletal muscle protein quantities are shown in arbitrary units (AU) for 184 Danish twins. Data are presented as mean±SD. P add values are adjusted for sex, age, body fat percentage, and twin pair and zygosity status.