Survival rates of adult and juvenile gyrfalcons in Iceland: estimates and drivers (#55344)

First revision

Guidance from your Editor

Please submit by **8 Sep 2021** for the benefit of the authors.

Structure and Criteria
Please read the 'Structure and Criteria' page for general guidance.

Custom checks
Make sure you include the custom checks shown below, in your review.

Raw data check
Review the raw data.

Image check
Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files
Download and review all files from the materials page.

| 1 Tracked changes manuscript(s) |
| 1 Rebuttal letter(s) |
| 2 Figure file(s) |
| 1 Latex file(s) |
| 1 Other file(s) |

Custom checks

Field study
Have you checked the authors field study permits?
Are the field study permits appropriate?
Structure and Criteria

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:

1. **BASIC REPORTING**
2. **EXPERIMENTAL DESIGN**
3. **VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING
- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
- Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#).
- Discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN
- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS
- Impact and novelty not assessed. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
Standout reviewing tips

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Give specific suggestions on how to improve the manuscript

Example

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

Comment on language and grammar issues

Example

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

Organize by importance of the issues, and number your points

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

Please provide constructive criticism, and avoid personal opinions

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

Comment on strengths (as well as weaknesses) of the manuscript

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.
Survival rates of adult and juvenile gyrfalcons in Iceland: estimates and drivers

Frédéric Barraquand 1, 2, Ólafur K. Nielsen 3

1 Institute of Mathematics of Bordeaux, CNRS, Talence, France
2 Integrative and Theoretical Ecology, Labex COTE, University of Bordeaux, Pessac, France
3 Icelandic Institute of Natural History, Garðabær, Iceland

Corresponding Author: Frédéric Barraquand
Email address: frederic.barraquand@u-bordeaux.fr

Knowledge of survival rates and their potential covariation with environmental drivers, for both adults and juveniles, is paramount to forecast the population dynamics of long-lived animals. Long-lived bird and mammal populations are indeed very sensitive to change in survival rates, especially for adults. Here we report the first survival estimates for the Icelandic gyrfalcon (Falco rusticolus) obtained by capture-mark-recapture methods. We use a mark-recapture-recovery model combining both live and dead encounters into a unified analysis, in a Bayesian framework. Annual survival was estimated at 0.83 for adults and 0.40 for juveniles. Positive effects of main prey density on juvenile survival (5% increase in survival from min to max density) were possible though not likely. Weather effects on juvenile survival were even less likely. The variability in observed lifespan suggests that adult birds could suffer from human-induced alteration of survival rates.
Survival rates of adult and juvenile gyrfalcons in Iceland: estimates and drivers

Frédéric Barraquand¹,²,* and Ólafur K. Nielsen³

¹Institute of Mathematics of Bordeaux, CNRS, Talence, France
²Integrative and Theoretical Ecology, LabEx COTE, University of Bordeaux, Pessac, France
³Icelandic Institute of Natural History, Garðabær, Iceland

ABSTRACT

Knowledge of survival rates and their potential covariation with environmental drivers, for both adults and juveniles, is paramount to forecast the population dynamics of long-lived animals. Long-lived bird and mammal populations are indeed very sensitive to change in survival rates, especially for adults. Here we report the first survival estimates for the Icelandic gyrfalcon (Falco rusticolus) obtained by capture-mark-recapture methods. We use a mark-recapture-recovery model combining both live and dead encounters into a unified analysis, in a Bayesian framework. Annual survival was estimated at 0.83 for adults and 0.40 for juveniles. Positive effects of main prey density on juvenile survival (5% increase in survival from min to max density) were possible though not likely. Weather effects on juvenile survival were even less likely. The variability in observed lifespan suggests that adult birds could suffer from human-induced alteration of survival rates.

Keywords: gyrfalcon; survival; Iceland; capture-recapture; mark-recovery.

INTRODUCTION

Determining survival rates of animals is a prerequisite for building projections of their demographic trajectories. There is a broad variation in survival rates of birds, with many large birds being long-lived (Sæther, 1989), which then creates a large sensitivity of the long-term growth rate and population persistence to adult survival rates (Sæther and Bakke, 2000). This makes the knowledge of adult survival rates key to predicting population conservation status in long-lived birds (Monzón and Friedenberg, 2018). Juvenile survival rates are usually lower and more variable than adult survival rates in long-lived animals, since variation in vital rates critical to population growth is usually selected against (Sæther and Bakke, 2000; Gaillard and Yoccoz, 2003). This makes the characterization of mean juvenile survival and its possible dependence on covariates important for understanding year-to-year population dynamics.

Adult and juvenile survival rates of gyrfalcons (Falco rusticolus) are currently unknown, despite an otherwise good knowledge of abundance and reproduction trends at the circumpolar scale (Franke et al., 2020), gene flow (Johnson et al., 2007; Booms et al., 2011), and diet as well as functional and numerical responses to changing prey density (Nielsen, 1999, 2011). Indeed, this species population status is quantified with the number of territorial pairs and reproduction
status (Franke et al., 2020, and refs. therein). This absence of knowledge of survival rates is slightly surprising, as the gyrfalcon is a large iconic bird of prey, the largest of all extant falcons. Here, we estimate survival rates of adults and juvenile gyrfalcons in North-East (NE) Iceland with a Mark-Recapture-Recovery model, using both mark-recovery (dead recoveries) and capture-mark-recapture or -resighting data (live recoveries) collected over the period 1973-2019.

MATERIAL AND METHODS

Gyrfalcons have been ringed in Iceland since 1939, with few captures before 1973. We therefore use data from 1816 capture histories from 1973 to 2019, including 293 recaptured individuals (either dead or alive), represented graphically in Fig. 1. Most have been ringed as nestlings, before 2011 only with engraved stainless steel rings and since then, also with engraved colour rings. In the 1990s, 24 territorial adults were trapped for ringing. EURING procedures were followed. As can be seen in Fig. 1, most recaptures are dead recoveries (only 75 re-sightings or live recaptures have occurred, with 246 dead recoveries; note that some individuals have had multiple recaptures). There have been a few more live recoveries in early and recent years, which is especially visible for young adults. We excluded data from 103 juvenile and adult birds that were released into the wild after rehabilitation and 5 nestlings that were marked with improperly sized rings. Gyrfalcon monitoring is done by ÓKN as project 2862 at the Icelandic Institute of Natural History (IINH).

The capture-recapture model used here is a multistate Mark-Recapture-Recovery model, following a long tradition of combining information of the various capture processes (live capture, dead recovery, resighting) to provide more robust estimates of survival probabilities (Lebreton et al., 1995; Catchpole et al., 1998; Lebreton et al., 1999). Our formulation is inspired by Kéry and Schaub (2011) but has a slightly different model structure. The model is formulated as a state-space model, more specifically as a Hidden Markov Model (see e.g. Kéry and Schaub, 2011; McClintock et al., 2020, for pedagogical expositions). It comprises therefore both a hidden state process, which models how the true states of bird individuals transition between years (transition matrix Γ), and an observation process which models how the true, hidden individual state of a bird translates into noisy human observations of that bird individual (observation matrix O).

We develop the specifics of the model below.

We consider three observed states (denoted here L: seen or captured alive; D: recovered dead; U: neither seen, captured nor recovered) and three hidden states (1: alive; 2: recently dead; 3: long dead). In hidden state 1, live individuals can be observed, either through re-sighting...
Figure 1. Observed capture histories of gyrfalcons (*Falco rusticolus*) ringed in Iceland (1973-2019), with the state sequence for individuals ringed (1-blue: live capture or resighting; 2-black: dead recovery; 3-white: neither seen nor recovered).
or recapture, both of which are represented by observed state L, with probability p. State 1 individuals can also remain unseen (observed state U) with probability $1 - p$. In hidden state 2, birds are recently dead but exist as carcasses, which is made possible by the cold climate of Iceland. State 2 is pivotal to our model since dead recoveries (observed state D) can only occur when the individual is in process state 2, occurring yearly with probability r. State 2 individuals can also be unobserved (U state) with probability $1 - r$. In hidden state 3, dead birds are no longer present in observable form, and therefore state 3 gives observed state U with probability 1. These relationships are encoded in the observation submodel, given by the observation probability matrix

$$O(t) = \begin{pmatrix} 1 & 2 & 3 \\ L & p & 0 & 0 \\ D & 0 & r & 0 \\ U & 1 - p & 1 - r & 1 \end{pmatrix}$$ \hspace{1cm} (1)$$

which quantifies the so-called emission distribution of the hidden Markov model.

Transition between the hidden states from one year to the next (using the calendar year) is modelled as a Markov chain, using the transition matrix of the hidden state submodel. The hidden state Markov chain is given by the following transition matrix

$$\Gamma(t) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & s_1(t) & 1 - s_1(t) & 0 \\ 2 & 0 & \eta & 1 - \eta \\ 3 & 0 & 0 & 1 \end{pmatrix}$$ \hspace{1cm} (2)$$

where we have highlighted the temporal dependence of s_i since it can depend on covariates.

Quickly summarized, live birds survive from one year to the next with probability s_1 for juveniles and s_2 for adults, while carcasses may survive with probability η from one year to the next (a probability that is typically very low). Our models included two stages, adult and juveniles, and it is considered that an individual is becoming an adult after two years of age (i.e., birds of age 3 and above are considered adults from the perspective of survival estimation).
Adult survival rates in these birds are unlikely to react to covariates since adults can rely for their own survival on a varied diet (Nielsen and Cade, 1990b). Moreover, as adults stay on their territories all through the year, they should have intimate knowledge of prey availability and distribution, as well as access to winter roost sites (Nielsen and Cade, 1990a). However, inexperienced juvenile birds might have a survival rate that fluctuates over the years, depending on the abundance of the main prey (rock ptarmigan, *Lagopus muta*) and weather variables.

We therefore considered three different models for the juvenile survival rate:

- Model A with constant juvenile survival rate s_1
- Model B with $s_1(t) = \text{logistic}(\mu_1 + \beta_1 x_{1,t})$ with $x_{1,t} =$ ptarmigan abundance for year t
- Model C with $s_1(t) = \text{logistic}(\mu_1 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \beta_3 x_{3,t})$ with $x_{2,t} =$ winter temperature and $x_{3,t} =$ winter log-precipitation for year t.

We additionally considered model S - a ‘silly’ model - which assumes that juveniles and adults do not differ, for the sole purpose of checking that model selection was performing correctly.

These models are motivated by previous studies showing effects of ptarmigan abundance on gyrfalcon dynamics (Barraquand and Nielsen, 2018) with very weak and uncertain weather effects. That said, previous studies were focused on reproductive densities dynamics and not directly on vital rates, which creates potential for more direct weather effects here, since we know that conditions in the first spring (hatching) and subsequent winter of young gyrfalcons are probably important to their survival (Nielsen, 2011).

Ptarmigan abundance was calculated as the spatially averaged mean ptarmigan density index of the year as in Barraquand and Nielsen (2018). The two weather variables considered were temperature and log-precipitation, constructed monthly as in Barraquand and Nielsen (2018) by averaging over weather stations in NE Iceland; the only difference here is that we further averaged these variables over the period from October to March, this period being thought to be critical for juvenile survival. The covariates were standardized to allow for comparison, their means and SDs are given in Table S1.

We used weakly informative priors (e.g., $\beta_i \sim \mathcal{N}(0,1)$) for regression coefficients, uniform priors $\mathcal{U}(0,1)$ for live survival probabilities, and $\mathcal{U}(0,0.5)$ for detection probabilities and η that were known from preliminary trials to be much smaller. A second set of more informative priors (Beta priors) was considered in additional analyses (see code folder [now in Github, later at Zenodo]) for robustness. The empirical support for the models was evaluated using Bayes factors, using the R package *bridgesampling* (Gronau et al., 2017). We also used PSIS-LOO (Vehtari...
et al., 2017) to compare model predictive abilities. For a guide to Bayesian model comparison, see Hooten and Hobbs (2015).

Models have been fitted in Stan (Carpenter et al., 2017) within R (R Core Team, 2017; Stan Development Team and others, 2018) using the Forward algorithm for Hidden Markov Models (McClintock et al., 2020), which helps to increase speed (Yackulic et al., 2020) and convergence. Similar estimates have been found computing the full latent states of the model (i.e., probability densities for the state of each individual at each moment in time) using JAGS for the simplest model without covariates, but these converged poorly. All models were run for 1000 iterations after a warm-up of 1000 iterations and 3 chains, convergence was considered fine as $0.999 < \hat{R} < 1.001$.

Code and data can be found at https://github.com/fbarraquand/Gyrfalcon_CMR and [Zenodo ref. to be added before publication]. For models B and C, data on gyrfalcon capture histories was truncated, excluding data before 1981 (i.e., birds marked before that date were excluded) because all our covariates were only measured post-1980. This removed only 7 birds that were recaptured or recovered.

RESULTS

Model A allowed to estimate a probability of juvenile survival of 0.396 with 95% credible interval [0.341,0.452], and an adult survival probability of 0.830 [0.790, 0.867]. The probability of detection p was 0.020 [0.013, 0.029] for live birds and 0.139 [0.124, 0.156] for dead birds (i.e., probability of recovery r). The probability for a carcass to survive in the field for one year to the next was extremely low, 0.008 [0.000, 0.032].

We estimated using Model B the effect of ptarmigan density on juvenile survival, reproduced in Fig. 2 with credible intervals. A different parameterization $s_1 = \text{logistic}(−\gamma(x_1 − \mu_x))$ with informative priors, assuming the slope of the regression γ to be positive, tended to increase the mean survival (Supplementary Fig. S1). Because of the low consistency of the latter parameterization with the previous Model A estimates, we favoured the parameterization of Model B presented in Fig. 2. From the lowest to the highest ptarmigan densities, the increase in s_1 is slightly above 5%.

With Model C, we could compare the relative effects of ptarmigan density and weather variables on juvenile survival. It is shown in Table S1 and Fig. S2 that there could be positive effects of mean temperature (and more surprisingly, positive effects of precipitation).

We compared the models using Bayes factors (Table 1) which clearly favored model A (without the covariates), suggesting that if the ‘true model’ is included within the set of models compared,
Figure 2. Logistic regression of juvenile gyrfalcon survival (s_1). (A) s_1 as a function of ptarmigan abundance x_1. (B) Corresponding distribution of x_1. Standardized ptarmigan abundance of -1.43 (observed min) and 2.58 (observed max) were approximately 2.5 and 12.5 individuals km2, respectively.

that model would be model A. We also performed a comparison using cross-validation (PSIS-LOO) but the expected log predictive density did not differ substantially between models A, B and C (see Supporting Information), suggesting that these models have similar performances when compared in a predictive setup.

DISCUSSION

The mean adult survival rate of 0.83 was in line with similar estimates for other raptors (Newton et al., 2016; Hernández-Matías et al., 2011). Indeed, the regression of survival with body mass of Newton et al. (2016)’s meta-analysis, $Y = 0.437 + 0.052 \ln(x)$ with $x = 1400$ g predicts 0.81 as annual survival rate. This average adult survival rate corresponds to a mean duration of the
adult stage of 5.88 years, and thus an average lifespan given juvenile survival of 8 years. This suggests in turn substantial heterogeneity in lifespan between individuals (consistent with the geometric distribution of lifespans assumed here), since the oldest individual lived up to 16 years (more than the 12 years suggested by Booms et al. 2020) and three others to 15 and 14 years old. And it may well be that some individuals could live longer than that. Juvenile survival was estimated around 0.40, twice as low, which is in line with usual juvenile/adult survival ratios (Newton et al., 2016).

In general, survival probability estimates such as those presented here or in Newton et al. (2016) are apparent survival estimates, affected by departures from the population. The particular setup of the study may bring these numbers closer to true survival estimates though, but this requires some explanation. Most birds have been ringed in NE Iceland (1642 in NE Iceland and and 174 from other areas of Iceland), and clearly we would measure apparent survival if recovering only in NE Iceland. However, recoveries can occur outside NE Iceland. Indeed, for all birds ringed within the study area, 119 encounters are from outside the study area, and only 181 from within. Regarding the 23 encounters relating to birds ringed outside study area, 22 of the encounters took place outside the NE study area and only 1 inside. Because observations of ringed birds can come from all over Iceland, the probably of detection might not differ much between birds ringed in NE Iceland vs ringed in the rest of Iceland. Following this logic, survival probabilities should not be affected by this larger recapture area, so long as most juvenile birds stay within Iceland, as suggested by genetics data (Johnson et al., 2007) and recoveries of ringed birds. Patterns of movements within Iceland are largely due to juveniles: some degree of site fidelity is expected for adult gyrfalcons from territory data (Nielsen, 1991; Booms et al., 2011), but juveniles can often decide to settle in other regions.

To explain the substantial variation in observed lifespan between individuals mentioned above, we should therefore turn to other factors than movements. Another likely contributor to heterogeneity in lifespan may be human-induced mortality. Indeed human-induced mortality has been found to substantially lower survival rates in other raptors (e.g., León-Ortega et al., 2016). Approximately 1 in 4 recovered and x-rayed gyrfalcons (18 birds out of 68 examined) have embedded shotgun pellets. Although the species has been protected since 1940, we can

Table 1. Bayes factors comparing models B and C, A and B as well as A and S

Priors	BF_{BC}	BF_{AB}	BF_{AS}
Uniform	3.53911	22.26	1.69 × 10²⁷
Beta	3.55905	8.85789	3.85 × 10²⁷
therefore expect a substantial direct or indirect mortality due to shooting.

From the lowest to the highest ptarmigan densities, the increase in juvenile survival rate is noticeable but barely above 5%, which does suggest a rather small effect of mean ptarmigan abundance. Model selection also indicated weak support for the model with the ptarmigan effect. This requires some explanation, given that ptarmigan is the gyrfalcon’s main prey. We are working here with individual-level CMR data but with population-level covariates that exhibit temporal variation. All spatial variation is therefore neglected: it might well be that some juveniles in ptarmigan-rich areas have better survival, we only measure here the effect of variation of ptarmigan abundance among years. Moreover, our ptarmigan index is for NE Iceland. Populations of ptarmigan within Iceland are not necessarily in synchrony; as juveniles from NE Iceland start dispersing during their first year of life, any spatial asynchrony should weaken the relationship between juvenile survival and our ptarmigan abundance index. Finally, this weak yet positive relationship between gyrfalcon juvenile survival and ptarmigan abundance might be due either to true survival variation among years or a slight emigration rate that is higher in ptarmigan-poor years; only movement studies may be able to resolve this ambiguity.

The survival rates and relationship with covariates estimated here represent what information one ought to incorporate into population models to forecast the future of the Icelandic gyrfalcon population. With the weak to nonexistent effects of ptarmigan abundance on juvenile survival estimated here, most effects of ptarmigan abundance on gyrfalcon dynamics that have been evidenced (Nielsen, 2011; Barraquand and Nielsen, 2018) likely occur due to the increased fecundity of gyrfalcons when ptarmigan are abundant. Weather effects on juvenile survival rates were not supported by model selection and the signs of the estimates were not always compatible with ecological logic. We therefore disregard those weather effects on juvenile survival. This will undoubtedly simplify future models of gyrfalcon population dynamics.

Acknowledgements

We thank the Bird Ringing Office of the Icelandic Institute of Natural History for access to the gyrfalcon ringing data. ÓKN’s work in NE Iceland 1981-1993 was funded by The Peregrine Fund, The National Geographic Society and The Icelandic Council of Science. Since 1994 the gyrfalcon studies have been part of his job obligations at the Icelandic Institute of Natural History. ÓKN thanks all the people that have worked with him in the field over the years and helped with gyrfalcon ringing. FB thanks Hiroki Itô and Bob Carpenter who translated Marc Kéry and Michael Schaub’s code into Stan, giving us a template to transition our Jags code much more easily to Stan. FB was partially funded by LabEx COTE (ANR-10-LABX-45). We thank both
referees for constructive criticism that prompted us to compare models more systematically.

REFERENCES

Barraquand, F. and Nielsen, Ó. K. (2018). Predator-prey feedback in a gyrfalcon-ptarmigan system. *Ecology and evolution*, 8(24):12425–12434.

Booms, T., Cade, T., and Clum, N. (2020). Gyrfalcon (*Falco rusticolus*), version 1.0. *Birds of the World (S. M. Billerman, Editor)*. Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.gyrfal.01 (accessed 8 November 2020).

Booms, T. L., Talbot, S. L., Sage, G. K., McCaffery, B. J., McCracken, K. G., and Schempf, P. F. (2011). Nest-site fidelity and dispersal of gyrfalcons estimated by noninvasive genetic sampling. *Condor*, 113(4):768–778.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic programming language. *Journal of statistical software*, 76(1).

Catchpole, E. A., Freeman, S. N., Morgan, B. J., and Harris, M. P. (1998). Integrated recovery/recapture data analysis. *Biometrics*, 54(1):33–46.

Franke, A., Falk, K., Hawkshaw, K., Ambrose, S., Anderson, D. L., Bente, P. J., Booms, T., Burnham, K. K., Ekenstedt, J., Fufachev, I., Ganusevich, S., Johansen, K., Johnson, J. A., Kharitonov, S., Koskimies, P., Kulikova, O., Lindberg, P., Lindström, B.-O., Mattox, W. G., McIntyre, C. L., Mechnikova, S., Mossop, D., Moller, S., Nielsen, Ó. K., Ollila, T., Östlyngen, A., Pokrovsky, I., Poole, K., Restani, M., Robinson, B. W., Rosenfield, R., Sokolov, A., Sokolov, V., Swem, T., and Vorkamp, K. (2020). Status and trends of circumpolar peregrine falcon and gyrfalcon populations. *Ambio*, 49(3):762–783.

Gaillard, J.-M. and Yoccoz, N. G. (2003). Temporal variation in survival of mammals: a case of environmental canalization? *Ecology*, 84(12):3294–3306.

Gronau, Q. F., Singmann, H., and Wagenmakers, E.-J. (2017). bridgesampling: An R package for estimating normalizing constants. *arXiv preprint arXiv:1710.08162*.

Hernández-Matías, A., Real, J., and Pradel, R. (2011). Quick methods for evaluating survival of age-characterizable long-lived territorial birds. *Journal of Wildlife Management*, 75(4):856–866.

Hooten, M. B. and Hobbs, N. T. (2015). A guide to bayesian model selection for ecologists. *Ecological Monographs*, 85(1):3–28.

Johnson, J. A., Burnham, K. K., Burnham, W. A., and Mindell, D. P. (2007). Genetic structure among continental and island populations of gyrfalcons. *Molecular Ecology*, 16(15):3145–3160.
Kéry, M. and Schaub, M. (2011). *Bayesian population analysis using WinBUGS: a hierarchical perspective*. Academic Press.

Lebreton, J.-D., Almeras, T., and Pradel, R. (1999). Competing events, mixtures of information and multistratum recapture models. *Bird Study*, 46(sup1):S39–S46.

Lebreton, J.-D., Morgan, B. J., Pradel, R., and Freeman, S. N. (1995). A simultaneous survival rate analysis of dead recovery and live recapture data. *Biometrics*, 51(4):1418–1428.

León-Ortega, M., del Mar Delgado, M., Martínez, J. E., Penteriani, V., and Calvo, J. F. (2016). Factors affecting survival in Mediterranean populations of the Eurasian eagle owl. *European Journal of Wildlife Research*, 62(6):643–651.

McClintock, B. T., Langrock, R., Gimenez, O., Cam, E., Borchers, D. L., Glennie, R., and Patterson, T. A. (2020). Uncovering ecological state dynamics with hidden markov models. *Ecology letters*, 23(12):1878–1903.

Monzón, J. D. and Friedenberg, N. A. (2018). Metrics of population status for long-lived territorial birds: A case study of golden eagle demography. *Biological Conservation*, 220:280–289.

Newton, I., McGrady, M. J., and Oli, M. K. (2016). A review of survival estimates for raptors and owls. *Ibis*, 158(2):227–248.

Nielsen, Ó. K. (1991). Age of first breeding and site fidelity of Gyrfalcons [In Icelandic with English summary]. *Nattúfræðingurinn*, 63:29–37.

Nielsen, Ó. K. (1999). Gyrfalcon predation on ptarmigan: numerical and functional responses. *Journal of Animal Ecology*, 68(5):1034–1050.

Nielsen, Ó. K. (2011). Gyrfalcon population and reproduction in relation to Rock Ptarmigan numbers in Iceland. In Watson, T., Cade, T. J., Fuller, M., Hunt, G., and Potapov, E., editors, *Gyrfalcons and ptarmigan in a changing world, Volume II*, pages 21–48. The Peregrine Fund, Boise, Idaho, USA.

Nielsen, Ó. K. and Cade, T. J. (1990a). Annual cycle of the Gyrfalcon in Iceland. *National Geographic Research*, 6(1):41–62.

Nielsen, Ó. K. and Cade, T. J. (1990b). Seasonal changes in food habits of Gyrfalcons in NE-Iceland. *Ornis Scandinavica*, 21(3):202–211.

R Core Team (2017). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.

Sæther, B.-E. (1989). Survival rates in relation to body weight in European birds. *Ornis Scandinavica*, 20(1):13–21.

Sæther, B.-E. and Bakke, Ø. (2000). Avian life history variation and contribution of demographic
traits to the population growth rate. *Ecology*, 81(3):642–653.

Stan Development Team and others (2018). RStan: the R Interface to Stan. R package version 2.17. 3.

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical bayesian model evaluation using leave-one-out cross-validation and waic. *Statistics and computing*, 27(5):1413–1432.

Yackulic, C. B., Dodrill, M., Dzul, M., Sanderlin, J. S., and Reid, J. A. (2020). A need for speed in Bayesian population models: a practical guide to marginalizing and recovering discrete latent states. *Ecological Applications*, page e02112.