Utility of the narrow-band imaging international colorectal endoscopic classification for optical diagnosis of colorectal polyp histology in clinical practice: a retrospective study

Yasuhiko Hamada1*, Kyosuke Tanaka2, Masaki Katsurahara2, Noriyuki Horiki2, Reiko Yamada1, Tomomi Yamada3 and Yoshiyuki Takei1

Abstract

Background: Narrow-band imaging (NBI) highlights the surface structures and vessels of colorectal polyps and is useful for determining the polyp histology. The narrow-band imaging international colorectal endoscopic (NICE) classification is a diagnostic tool for determining colorectal polyp histology based on NBI without optical magnification. In this study, we aimed to investigate the value of each type of the NICE classification for determining colorectal polyp histology using endoscopy data accumulated in a clinical setting.

Methods: Endoscopy data for 534 colorectal polyps (316 patients) treated at our facility were retrospectively analyzed. First, we investigated the diagnostic performance of each type of the NICE classification for the optical diagnosis of colorectal polyp histology. The procedures were performed by experienced endoscopists using high-definition colonoscopy without optical magnification. Second, inter-observer and intra-observer agreements were assessed after providing experts and non-experts with a short lecture on the NICE classification. Using 50 fine NBI images of colorectal polyps without optical magnification, the inter-observer and intra-observer agreements between five experts and five non-experts were assessed.

Results: The sensitivity, specificity, and accuracy values were 86.0%, 99.6%, and 98.5% for NICE type 1 lesions; 99.2%, 85.2%, and 97.8% for NICE type 2 lesions; and 81.8%, 99.6%, and 99.3% for NICE type 3 lesions, respectively. The inter-observer and intra-observer agreements ranged from substantial to excellent for both experts and non-experts.

Conclusions: The NICE classification had good diagnostic ability in terms of determining the polyp histology and demonstrated a high level of reproducibility among experts and non-experts. Thus, the NICE classification is a useful clinical tool that can be used without optical magnification.

Keywords: Colonoscopy, Colorectal polyp, Narrow-band imaging, NICE classification, Optical diagnosis

*Correspondence: y-hamada@clin.medic.mie-u.ac.jp
1 Department of Gastroenterology and Hepatology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
Full list of author information is available at the end of the article
Background

Colorectal cancer is one of the most frequently encountered malignancies and a common cause of cancer-related death in both men and women [1]. Colonoscopy with the removal of neoplastic polyps has been reported as an effective strategy for preventing deaths from colorectal cancer [2]. Colorectal polyps are routinely sent for pathological evaluation because pathological diagnosis is reliable for determining the appropriate interval until the next surveillance colonoscopy [3]. However, pathological evaluation via endoscopic biopsy or resection may cause adverse events, such as bleeding or perforation, and can incur high medical costs. If optical diagnosis via endoscopy can produce a diagnostic outcome equivalent to that of pathological evaluation, unnecessary removal of colorectal polyps may be avoided with significant reduction in medical costs.

Narrow-band imaging (NBI) is a diagnostic tool for visualizing the vessels and surface patterns of colorectal polyps. Developed in 1999, NBI has been reported to provide valuable information regarding the histology of polyps detected during colonoscopy [4]. Since then, many studies have reported the efficacy of NBI-assisted optical diagnosis of colorectal polyp histology [5–7]. Moreover, NBI-assisted optical diagnosis may enable immediate determination of the appropriate surveillance interval with reduction in the risk of adverse events and health care expenditure [8–10]. In Japan, several magnifying NBI classifications have been developed for use in clinical practice [11–14]. However, magnifying colonoscopy is not widely used globally [15, 16]. Therefore, there has been a need for a novel NBI classification that does not require optical magnification.

The Narrow-band imaging International Colorectal Endoscopic (NICE) classification, devised by the Colon Tumor NBI Interest Group, uses the color, vessels, and surface patterns of polyps to classify endoscopic findings without optical magnification (Fig. 1) [17–19]. This is the first NBI classification that can be used without optical magnification and is simplified for the ease of use. Previous studies have reported that the NICE classification is helpful for NBI-assisted optical diagnosis of colorectal polyp histology [6, 18, 20–28]. However, most of these studies were conducted to investigate the diagnostic outcomes of optical diagnosis for differentiating between neoplastic and non-neoplastic colorectal lesions. In

Type 1	Type 2	Type 3	
Color	Same or lighter than background	Brown relative to background (verify color arises from vessels)	Brown to dark brown relative to background; sometimes patchy white areas
Vessels	None, or isolated lacy vessels may be present coursing across the lesion	Brown vessels surrounding white structures	Has area(s) of disrupted or missing vessels
Surface pattern	Dark or white spots of uniform size, or homogeneous absence of pattern	Oval, tubular, or branched white structures surrounded by brown vessels	Amorphous or absent surface pattern
Most likely pathology	Hyperplastic/sessile serrated polyp	Adenoma	Deep submucosal invasive cancer
Endoscopic image			
Treatment	Follow-up	Endoscopic resection	Surgical resection

Can be applied using colonoscopes with or without optical (zoom) magnification; "These structures (regular or irregular) may represent the pits and the epithelium of crypt opening; "Type 2 consists of Vienna classification type 3, 4 and superficial 5 (all adenoma with either low- or high-grade dysplasia, or with superficial submucosal carcinoma). The presence of high-grade dysplasia or superficial submucosal carcinoma may be suggested by an irregular vessels or surface pattern and is often associated atypical morphology (e.g., depressed area).

Fig. 1 Narrow-band imaging International colorectal endoscopic classification
contrast, there has been limited research on the diagnostic performance of each type of the NICE classification, and the findings were widely discrepant between the studies; the diagnostic accuracy of the NICE type 1, 2, and 3 was in the range of 36.5–92.6%, 80.0–90.7%, and 42.1–96.8%, respectively [16, 25, 29]. Thus, further analyses of data obtained in a clinical setting are required to determine the clinical value of each type of the NICE classification in NBI-assisted optical diagnosis of colorectal polyp histology.

This study aimed to determine the value of the NICE classification in NBI-assisted optical diagnosis of colorectal polyp histology by analyzing endoscopy data accumulated at our facility in a clinical setting. First, we evaluated the diagnostic performance of each type of the NICE classification for determining polyp histology, including the differentiation of neoplastic and non-neoplastic colorectal lesions. Second, we evaluated the reproducibility of the NICE classification for NBI images of colorectal polyps among both experts and non-experts.

Methods
Study design
This retrospective single-center study included 543 colorectal lesions (318 patients) with complete data, previously categorized using non-magnifying NBI observation according to the NICE classification. The details of these lesions were accumulated in the endoscopy database at our facility between April 2011 and March 2013. After the exclusion of nine lesions (two patients) that were pathologically diagnosed to be an inflammatory polyp, colitis, or a submucosal lesion, data for 534 colorectal lesions (316 patients) were available for the analysis (Fig. 2). The study was approved by the local ethics committee and conducted in accordance with the ethical standards of the Declaration of Helsinki. The ethics committee approved the use of an opt-out method of obtaining consent, and accordingly, informed consent was obtained via an opt-out option on the website of our facility.

Diagnostic performance of the NICE classification for determining colorectal polyp histology
During the study period, all colonoscopies were performed by any of the six experienced endoscopists, each of whom had performed more than 3000 colonoscopies and had experience in using magnifying NBI for optical diagnosis but limited experience in using the NICE classification. Non-magnified NBI images were obtained using a high-definition colonoscope (CF-H260AZI, CF-Q260AI, PCF-Q260AZI, or PCF-Q260AI) combined with a standard video processor (EVIS LUCERA...
After intubation of the cecum, the colonic mucosa was evaluated under white light during the withdrawal of the colonoscope. All polyps detected were documented for size, location, and morphology. Polyp size was estimated by comparison with the span of open biopsy forceps, sheath of the polypectomy snare, or diameter of an open snare placed against the polyp. Polyps were assigned to the cecum, ascending colon including the hepatic flexure, transverse colon including the splenic flexure, descending colon, sigmoid colon, or rectum. The Paris Classification System for Superficial Neoplastic Lesions in the Digestive Tract was used to define polyp morphology [30]. Each polyp identified under white light was further evaluated using NBI without optical magnification and immediately categorized as type 1, 2, or 3 according to the NICE classification. All polyps were removed using endoscopic forceps/snare or surgical resection, and the resected specimens were sent for pathological evaluation. The pathological diagnosis was made according to the World Health Organization criteria by two experienced pathologists. Based on the pathological characteristics, each lesion was identified as a hyperplastic polyp (HP), sessile serrated polyp (SSP), low-grade dysplasia (LGD), high-grade dysplasia (HGD; intramucosal cancer), superficial submucosal invasive carcinoma (SM-s; < 1000 µm of submucosal invasion), or deep submucosal invasive carcinoma (SM-d; ≥ 1000 µm of submucosal invasion).

Inter-observer and intra-observer agreements by experts and non-experts
We assessed the inter-observer and intra-observer agreements among experts and non-experts to determine the validity and usefulness of this classification after providing a short lecture on the NICE classification. We prepared a set of fine typical NBI images of colorectal polyps of various NICE types for this evaluation. All images were required to be of sufficient clarity to be able to evaluate their color, vessels, and surface pattern and taken with color mode grade 3 and structure enhancement grade A8. After applying these criteria, non-magnified NBI images for 50 of the 534 lesions were selected for the agreement study. Of these 50 lesions, 10 were HP/SSP (type 1), 31 were LGD/HGD/SM-s (type 2), and 9 were SM-d (type 3). The NBI images of these lesions were arranged in random order. In accordance with the NICE classification, five experts who had performed >3000 colonoscopies but had limited experience using the NICE classification and five non-experts (medical students) determined the type of NICE classification for the lesions identified using the NBI images twice, with a 2-week interval between the evaluations. All observers received a 30-min explanation outlining the concept of the NICE classification before the first evaluation. All observers were blinded to the pathological diagnosis and classification of the lesion. At the second evaluation, they were blinded to the results of their first evaluation.

Statistical analysis
We evaluated the diagnostic performance (sensitivity, specificity, positive predictive value [PPV], negative predictive value [NPV], and accuracy) of each type of the NICE classification. Diagnostic performance was also assessed according to whether the polyp measured <10 mm or ≥10 mm. Inter-observer and intra-observer agreements were analyzed using Cohen’s kappa statistic. Multiple comparisons of the kappa value between pairs of observers were conducted as a measure of the inter-observer agreement; 10 pairs could be made when a pair was chosen among five observers in each group, and they were compared. The kappa values for each group are presented as the mean, median, and range. The strength of agreement based on the kappa value was defined as follows: poor, ≤0.20; fair, 0.21–0.40; moderate, 0.41–0.60; substantial, 0.61–0.80; or excellent, 0.81–1.0. Fisher’s exact test was used to compare the diagnostic outcomes between polyps measuring <10 mm and those measuring ≥10 mm. All statistical analyses were performed using SPSS version 24 (IBM Corp., Armonk, NY, USA) and EZR version 1.27 (Saitama Medical Center, Jichi Medical University, Japan) [31]. All statistical analyses were two-sided, and P values <0.05 were considered statistically significant.

Table 1 Patients characteristics of the study cohort

Description	n
Patients, n	316
Median age, years (range)	69 (28–98)
Sex, male, n (%)	225 (71.2)
Indication for colonoscopy, n (%)	
Polyp surveillance	77 (24.4)
Endoscopic resection	69 (21.8)
FIT positive	69 (21.8)
Screening	28 (8.9)
PET positive	20 (6.3)
Hematochezia	14 (4.4)
Anemia	12 (3.8)
Change of bowel habit	12 (3.8)
Tumor marker elevation	5 (1.6)
Others	10 (3.2)

FIT fecal immunochemical test, PET positron emission tomography
Results
Patients and polyp characteristics in the study cohort
The patient characteristics are summarized in Table 1. The median age was 69 (range 28–98) years. Of the total 316 patients included, 225 (71.2%) were male. The indication for colonoscopy was polyp surveillance in 77 patients (24.4%), endoscopic resection in 69 (21.8%), positivity of a fecal immunochemical test in 69 (21.8%), screening in 28 (8.9%), and positivity on positron emission tomography in 20 (6.3%).

The polyp characteristics are summarized in Table 2. The median size was 6 (range 1–100) mm. In total, 237 lesions (44.4%) were in the right colon, 237 (44.4%) in the left colon, and 60 (11.2%) in the rectum. Pathological evaluation revealed that 491 (92.0%) were neoplastic polyps (LGD/HGD/SM-s/SM-d).

Relationship between the NICE classification and polyp histology
The relationship between the NICE classification and polyp histology stratified by the polyp size is presented in Table 3. Independent of size, 39 lesions were diagnosed as NICE type 1 and 37 (94.8%) were HP/SSP; of 484 lesions diagnosed as NICE type 2, 476 (98.3%) were LDG/HGD/SM-s; and of 11 lesions diagnosed as NICE type 3 and 9 (81.8%) were SM-d.

Diagnostic performance
The diagnostic performance for each NICE classification type when stratified by polyp size is presented in Table 4. The sensitivity, specificity, PPV, NPV, and accuracy were 86.0%, 99.6%, 94.9%, 98.8%, and 98.5% for NICE type 1; 99.2%, 85.2%, 98.3%, 92.0%, and 97.8% for NICE type 2;

Table 2 Polyp characteristics of the study cohort

Lesions, n	534
Median size, mm (range)	6 (1–100)
Morphology n (%)	
Ip	36 (6.7)
Is, Is + IIC	424 (79.4)
Iia, Iia + IIC	71 (13.3)
IIC	3 (0.6)
Location, n (%)	
Right colon (cecum to transverse colon)	237 (44.4)
Left colon (descending colon to sigmoid colon)	237 (44.4)
Rectum	60 (11.2)
Pathological diagnosis, n (%)	
HP/SSP	43 (8.0)
LDG	427 (80.0)
HGD	48 (9.0)
SM-s	5 (0.9)
SM-d	11 (2.1)

HP hyperplastic polyp, SSP sessile serrated polyp, LGD low-grade dysplasia, HGD high-grade dysplasia, SM-s superficial submucosal invasive carcinoma (< 1000 mm), SM-d deep submucosal invasive carcinoma (≥ 1000 mm)

Table 3 Relationship between each type in the NICE classification and polyp histology stratified by polyp size

Type of classification	n	Histological findings, n (%)				
		HP/SSP	LGD	HGD	SM-s	SM-d
Type 1	<10 mm	28				
		26 (92.9)	2 (7.1)	0 (0.0)	0 (0.0)	0 (0.0)
	≥10 mm	11				
		11 (100.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	All size	39				
		37 (94.8)	2 (5.2)	0 (0.0)	0 (0.0)	0 (0.0)
Type 2	<10 mm	337				
		6 (1.8)	324 (96.1)	6 (1.8)	1 (0.3)	0 (0.0)
	≥10 mm	147				
		0 (0.0)	101 (68.7)	41 (27.9)	3 (2.0)	2 (1.4)
	All size	484				
		6 (1.3)	425 (87.8)	47 (9.7)	4 (0.8)	2 (0.4)
Type 3	<10 mm	3				
		0 (0.0)	0 (0.0)	0 (0.0)	1 (33.3)	2 (66.7)
	≥10 mm	8				
		0 (0.0)	0 (0.0)	0 (0.0)	1 (12.5)	7 (87.5)
	All size	11				
		0 (0.0)	0 (0.0)	0 (0.0)	2 (18.2)	9 (81.8)
Total	534					
		43 (8.0)	427 (80.0)	47 (8.8)	6 (1.1)	11 (2.1)

Surrounded by dotted line: most like histology of each type in the NICE classification

NICE classification Narrow-band imaging international colorectal endoscopic classification, HP hyperplastic polyp, SSP sessile serrated polyp, LGD low-grade dysplasia, HGD high-grade dysplasia, SM-s superficial submucosal invasive carcinoma (< 1000 mm), SM-d deep submucosal invasive carcinoma (≥ 1000 mm)
and 81.8%, 99.6%, 81.8%, 99.6%, and 99.3% for NICE type 3, respectively. Neoplastic lesions (NICE type 2/3) could be determined with a sensitivity, specificity, PPV, NPV, and accuracy of 99.6%, 86.0%, 98.8%, 94.9%, and 98.5%, respectively. After stratification by polyp size, the sensitivity, specificity, PPV, NPV, and accuracy of diagnosis of each type did not differ significantly according to whether the polyp measured < 10 mm or ≥ 10 mm.

Discussion

Two major findings of this study were as follows: First, this study demonstrated a good diagnostic outcome of each type of the NICE classification for determining polyp histology by evaluating the endoscopy data accumulated in a clinical setting. The sensitivity, specificity, PPV, NPV, and accuracy for diagnosing each NICE type did not differ significantly according to the polyp size. Second, there were good inter-observer and intra-observer agreements between non-experts as well as experts, confirming the reproducibility of the NICE classification.

The NICE classification had a specificity, NPV, and accuracy of > 90% for the diagnosis of type 1 and 3 lesions. These findings indicate that NICE types 1 and 3 are definite indicators of the most likely histology with significant diagnostic outcomes. Therefore, the NICE classification is useful for identifying polyps that do not need to be removed and those that warrant surgical resection [18, 19, 28]. For a diagnosis of NICE type

Table 4 Diagnostic performance of each type in the NICE classification stratified by polyp size

Type of classification	Sensitivity (%) (95% CI)	Specificity (%) (95% CI)	PPV (%) (95% CI)	NPV (%) (95% CI)	Accuracy (%) (95% CI)
Type 1					
< 10 mm	81.2 (63.6–92.8)	99.4 (97.9–99.9)	92.9 (76.5–99.1)	98.2 (96.2–99.3)	97.8 (95.8–99.1)
≥ 10 mm	100.0 (61.5–100.0)	100.0 (96.5–100.0)	100.0 (61.5–100.0)	100.0 (96.5–100.0)	100.0 (96.7–100.0)
All size	86.0 (72.1–94.7)	99.6 (98.5–100.0)	94.9 (82.7–99.4)	98.8 (97.4–99.6)	98.5 (97.1–99.4)
Type 2					
< 10 mm	99.1 (97.4–99.8)	82.4 (65.5–93.2)	98.2 (96.2–99.3)	90.3 (74.2–98.0)	97.6 (95.4–98.9)
≥ 10 mm	99.3 (96.2–100.0)	90.0 (68.3–98.8)	98.6 (95.2–99.8)	94.7 (74.0–99.9)	98.2 (94.8–99.6)
All size	99.2 (97.9–99.8)	85.2 (72.9–93.4)	98.3 (96.8–99.3)	92.0 (80.8–97.8)	97.8 (96.1–98.8)
Type 3					
< 10 mm	100.0 (9.4–100.0)	99.7 (98.5–100.0)	66.7 (9.4–99.2)	100.0 (98.5–100.0)	99.7 (98.5–100.0)
≥ 10 mm	77.8 (40.0–97.2)	99.4 (96.5–100.0)	87.5 (47.3–99.7)	98.7 (95.5–99.8)	98.2 (94.8–99.6)
All size	81.8 (48.2–97.7)	99.6 (98.6–100.0)	81.8 (48.2–97.7)	99.6 (98.6–100.0)	99.3 (98.1–99.8)

Determination of neoplastic polyp (Type 2/3)

Type of classification	Sensitivity (%) (95% CI)	Specificity (%) (95% CI)	PPV (%) (95% CI)	NPV (%) (95% CI)	Accuracy (%) (95% CI)
< 10 mm	99.4 (97.9–99.9)	81.2 (63.6–92.8)	98.2 (96.2–99.3)	92.9 (76.5–99.1)	97.8 (95.8–99.1)
≥ 10 mm	100.0 (96.5–100.0)	100.0 (61.5–100.0)	100.0 (96.5–100.0)	100.0 (96.5–100.0)	100.0 (96.7–100.0)
All size	99.6 (98.5–100.0)	86.0 (72.1–94.7)	98.8 (97.4–99.6)	94.9 (82.7–99.4)	98.5 (97.1–99.4)

The sensitivity, specificity, PPV, NPV, and accuracy of each type do not differ significantly between polyp sized < 10 mm and ≥ 10 mm.

NICE classification: narrow-band imaging international colorectal endoscopic classification, CI: confidence interval, PPV: positive predictive value, NPV: negative predictive value.

Table 5 Inter-observer and intra-observer agreements of experts and non-experts for the NICE classification

Kappa value	Average	Median	Range
Inter-observer agreement			
Experts	0.86	0.86	0.76–0.93
Non-experts	0.59	0.62	0.47–0.63
Intra-observer agreement			
Experts	0.82	0.83	0.68–0.90
Non-experts	0.63	0.63	0.54–0.70

Observers were experienced with > 3000 colonoscopies

Observers were medical students

NICE classification: Narrow-band imaging international colorectal endoscopic classification
excellent diagnostic outcomes in NBI-assisted opti-

ting to this study's diagnostic outcomes. Conse-

sequently, we assessed the inter-observer and intra-

observer agreements using 50 NBI images without optical mag-

nification after providing experts and non-experts a

lecture demonstrating the use of this classification. The global acceptance of NBI-assisted optical diagnosis in

clinical practice will require a simple, standardized NBI

classification that can be easily understood and applied

by non-experts and experts. The NICE classification was
developed with the guiding principles of simplicity and

ease of use in mind. In the present study, good agreement

was demonstrated among both non-experts and experts.

Therefore, the NICE classification can be accepted glob-

ally and used by endoscopists with different experience

evels.

Several studies have reported that NBI with optical

magnification enables endoscopists to accurately deter-

mine colorectal polyp histology. A meta-analysis of 27

studies on NBI magnification reported that the pooled

sensitivity, specificity, PPV, and NPV for predicting neoplastic polyps were 95.8%, 85.8%, 92.9%, and 91.5%, respec-

tively [32]. These values are not significantly different from those obtained in our study. Furthermore, the

use of optical zoom magnifying colonoscopes is not yet

widespread globally in clinical practice [15, 16]. There-

fore, using the NICE classification without optical magni-

fication might be more convenient and practical for
determining colorectal polyp histology [23].

There remains an unanswered question in this study.

A recent study has highlighted NBI features that may

be used to distinguish SSP from HP; the characteristic

NBI findings for SSP include the red cap sign, a cloud-

like surface, dilated and branched vessels, and expanded

crypt openings [33]. When combined with these findings,

the NICE classification may improve our ability to diag-

nose SSPs. However, the present study was performed

using data obtained before these characteristic find-
ings of SSP were recognized, and endoscopists were not

asked to classify type 1 lesions as HP or SSP. Therefore,
it is not possible to conclude the diagnostic performance

of the NICE classification for SSP based on our current

findings.

This study has some limitations. First, it had a single-
center design. Second, it did not include a control group,
such as NBI or chroendooscopy with optical magnifi-
cation. Therefore, to provide solid evidence for the value

of the NICE classification, studies that include a control
group and a larger number of individuals are required.

Third, the confidence level of optical diagnosis could not

be assessed because the data analyzed were obtained re-

trospectively from information accumulated in clinical

practice. Fourth, we did not remove all type 1 lesions
during colonoscopy, which may have introduced a degree

of sampling bias. The data analyzed were obtained in

a clinical setting, and type 1 lesions diagnosed as HP in

2, the NPV and accuracy were > 90%, but the specific-

ity was 85.2%. This may be because NICE type 2 lesions

show various pathological features, ranging from LGD
to SM-s. However, optical diagnosis is important for dif-

terentiation between LGD/HGD/SM-s and SM-d lesions

in clinical practice to determine the appropriate thera-

peutic strategy. The NICE classification will allow us to
distinguish between LGD/HGD/SM-s lesions, which

can be treated curatively via endoscopic resection, and

SM-d lesions, which require surgical resection. Further-

more, the specificity, NPV, and accuracy for the diagno-
sis of NICE type 2/3 were 86.0%, 94.9% and 98.5%, respec-
tively, which indicates that the NICE classification has

good diagnostic performance for determining neoplastic

polyps. Based on these results, the NICE classification

can be considered a useful tool for determining the most

likely histology of colorectal polyps in clinical practice.

These results are mostly superior to those of previous

studies that investigated the application of each type of
the NICE classification [16, 25, 29]. There are two likely
reasons for the differences in the findings between these

studies and our study. First, the diagnostic outcomes

using the NICE classification were investigated based

on examination by endoscopists skilled in NBI-assisted

optical diagnostic systems. Although these endoscopists

had limited experience in using the NICE classification

before participating in this study, they had an experience

of using magnifying NBI routinely, such as the Hiroshima

classification [11] or Sano classification [12]. The NICE

classification is similar to these classifications regarding

the diagnostic strategy using the color, vessels, or sur-

face patterns of colorectal polyps. Thus, the endoscopists

might also be skilled in the NBI-assisted diagnostic strat-

ey of the NICE classification. Wang et al. have reported

that a group of highly experienced endoscopists who

had routinely used magnifying NBI for > 5 years showed

excellent diagnostic outcomes in NBI-assisted optical
diagnosis using the NICE classification; the sensi-
tivity, specificity, and accuracy were as follows: 84.6%, 94.9%, and 93.9% in type 1, 91.4%, 86.3%, and 90.7% in
type 2, 91.7%, 97.0%, and 96.8% in type 3, respectively

[16]. Second, the characteristics of the lesions may have

influenced the diagnostic outcomes of our study. The

percentages of HP/SSP (8.0%) and SM-d (2.1%) lesions

in the present study were small. The data used had been
obtained in a clinical setting; therefore, type 1 lesions

in the rectosigmoid colon diagnosed as HP were not

removed, and SM-d lesions are rarely encountered during

routine colonoscopy in clinical practice. Consequently,

almost all lesions were classified as NICE 2 type, contrib-

uting to this study's diagnostic outcomes.

To ensure the generalizability of the NICE classifica-
tion, we assessed the inter-observer and intra-observer
the rectosigmoid colon were not removed. Our study focused on the resected lesions, and unresectable lesions could not be evaluated. Therefore, it is likely that sampling biases resulted in a low percentage of type 1 lesions, thereby influencing the results of this study. Finally, the data used in this study were accumulated between 2011 and 2013, and more recent data could not be used. However, all procedures were performed using a high-definition colonoscope combined with a standard video processor, similar to the equipment used in more recent studies. Therefore, the diagnostic outcomes of the NICE classification documented in this study can be considered to be almost equivalent to those reported in any investigations using more recent data.

Conclusions
This study found that the use of the NICE classification provided good diagnostic outcomes when determining colorectal polyp histology in a clinical setting, regardless of the polyp size. Furthermore, it demonstrated favorable reproducibility by non-experts as well as by experts. The NICE classification is practical for use without magnifying colonoscopy because it is simple and easy to apply and has high accuracy for diagnosis and therapeutic decision-making.

Abbreviations
NBI: Narrow-band imaging; NICE: Narrow-band imaging international colorectal endoscopic; HP: Hyperplastic polyp; SSP: Sessile serrated polyp; LGD: Low-grade dysplasia; HGD: High-grade dysplasia; SM-d: Superficial submucosal invasive carcinoma; SM-d: Deep submucosal invasive carcinoma; PPV: Positive predictive value; NPV: Negative predictive value.

Acknowledgements
The authors thank the medical staff members of the Department of Endoscopy, Mie University Hospital, for their contributions to this work. We would like to also thank Editage (www.editage.com) for English language editing.

Authors’ contributions
YH contributed to the study’s conception and design. YH, KT, MK, NH, HY, and YT contributed to the data collection. TY contributed to the statistical analyses. The first draft of the manuscript was written by YH, and all the authors reviewed the previous versions of the manuscript. All authors read and approved the final manuscript.

Funding
The authors did not receive any funding.

Availability of data and materials
All data generated and analyzed during this study are included in this published article.

Declarations
Ethics approval and consent to participate
The study protocol was approved by the ethics committee of Mie University Hospital (approval number 2013-1334). The study was conducted ethically in accordance with the approved protocol and ethical guidelines of the Declaration of Helsinki. The ethics committee approved the use of an opt-out method of obtaining consent, and accordingly, informed consent was obtained via an opt-out option on the website of our facility.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Gastroenterology and Hepatology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan. 2 Department of Endoscopy, Mie University Hospital, Tsu, Japan. 3 Department of Medical Innovation, Osaka University Hospital, Suita, Japan.

Received: 18 March 2021 Accepted: 3 August 2021 Published online: 28 August 2021

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018. CA Cancer J Clin. 2018;68:394–424.
2. Zauber AG, Winawer SJ, O’Brien MJ, Lansdorp-Vogelaar I, van Ballegooijen M, Hankey BF, et al. Colonicoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med. 2012;366:667–96.
3. Rex DK, Boland CR, Dominitz JA, Gardielli FM, Johnson DA, Kaltenbach T, et al. Colorectal cancer screening: recommendations for physicians and patients from the U.S. multi-society task force on colorectal cancer. Gastrointest Endosc. 2017;86:18–33.
4. Machida H, Sano Y, Hamamoto Y, Muto M, Kozu T, Tajiri H, et al. Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study. Endoscopy. 2004;36:1094–8.
5. Rex DK. Narrow-band imaging without optical magnification for histologic analysis of polyps. Gastroenterology. 2009;136:1174–81.
6. Wallace MB, Crook JE, Coe S, Ussui K, Staggs E, Alansma C, et al. Accuracy of in vivo colorectal polyp discrimination by using dual-focus high-definition narrow-band imaging colonoscopy. Gastrointestinal Endosc. 2014;80:1072–87.
7. van de Wetering AJP, Meulien LW, Bogle RW, van der Zander QW, Reumkens A, Winkens B, et al. Optical-diagnosis of diminutive polyps in the Dutch bowel cancer screening program: Are we ready to start? Endosc Int Open. 2020;8:E257–65.
8. Ignjatovic A, East JE, Suzuki N, Vance M, Guenther T, Saunders BP. Optical diagnosis of small colorectal polyps at routine colonoscopy (Detect InSpect ChAracterise Resect and Discard; DISCARD trial): a prospective cohort study. Lancet Oncol. 2009;10:1171–8.
9. Paggi S, Rondonotti E, Amato A, Terruzzi V, Imperiali G, Mandelli G, et al. Resect and discard strategy in clinical practice: a prospective cohort study. Endoscopy. 2012;44:899–904.
10. Repaci A, Hassan C, Radaelli F, Occhipinti P, De Angelis C, Romeo F, et al. Accuracy of narrow-band imaging in predicting colorectal surveillance interval history and histology of distal diminutive polyps: results from a multicenter, prospective trial. Gastrointest Endosc. 2013;78:106–14.
11. Kanah O, Tanaka S, Oka S, Hirata M, Yoshida S, Chayama K. Narrow-band imaging magnification predicts the histology and invasion depth of colorectal tumors. Gastrointest Endosc. 2009;69(3 Pt 2):631–6.
12. Sano Y, Ikematsu T, Kuroki T, Katagiri A, Horimatsu T, et al. Meshed capillary vessels by use of narrow-band imaging for differential diagnosis of small colorectal polyps. Gastrointest Endosc. 2009;69:78–83.
13. Wada Y, Kudo SE, Kashida H, Inoue H, Yamamura F, et al. Diagnosis of colorectal lesions with the magnifying narrow-band imaging system. Gastrointest Endosc. 2009;70:522–31.
14. Saito S, Tajiri H, Ohyka T, Inoue H, Ikemiya M. The benefit of using narrow-band imaging systems for observation of capillary networks before determining of treatments for early colon cancer. Dig Endosc. 2011;23(Suppl 1):120–5.
15. Sumimoto K, Tanaka S, Shigeta K, Hirano D, Tamaru Y, Ninomiya Y, et al. Clinical impact and characteristics of the narrow-band imaging
16. Wang Y, Li WK, Wang YD, Liu KL, Wu J. Diagnostic performance of narrow-
band imaging international colorectal endoscopic and Japanese narrow-
band imaging expert team classification systems for colorectal cancer
and precancerous lesions. World J Gastroent Oncol. 2021;13:58–68

17. Tanaka S, Sano Y. Aim to unify the narrow band imaging (NBI) magnifying
classification for colorectal tumors: current status in Japan from a sum-
mary of the consensus symposium in the 79th annual meeting of the
Japan Gastroenterological Endoscopy Society. Dig Endosc. 2011;23(Suppl
1):151–9.

18. Hewett DG, Kaltenbach TR, Sano Y, Tanaka S, Saunders BP, Ponchon T, et al.
Validation of a simple classification system for endoscopic diagnosis of
small colorectal polyps using narrow-band imaging. Gastroenterology.
2012;143:599–607.

19. Hayashi N, Tanaka S, Hewett DG, Kaltenbach TR, Sano Y, Ponchon T, et al.
Endoscopic prediction of deep submucosal invasive carcinoma: valida-
tion of the narrow-band imaging international colorectal endoscopic
(NICE) classification. Gastrointest Endosc. 2013;78:625–32.

20. Ladabaum U, Fioritto A, Mitani A, Desai M, Kim JP, Rex DK, et al. Real-time
optical biopsy of colon polyps with narrow band imaging in community
practice does not yet meet key thresholds for clinical decisions. Gastroen-
terology. 2013;144:81–91.

21. Seref Koksal A, Yildiz H, Taskiran I, Turhan N, Oztas E, Torun S, et al. Low
magnification narrow band imaging by inexperienced endoscopists
has a high accuracy in differentiation of colon polyp histology. Clin Res
Hepatol Gastroenterol. 2014;38:763–9.

22. Iwatate M, Sano Y, Hattori S, Sano W, Hasuike N, Ikumoto T, et al. Low
magnification narrow band imaging by inexperienced endoscopists
improves rates of high confidence optical diagnosis of colorectal polyps.
Endosc Int Open. 2015;3:E140–5.

23. Kim JJ, Hong KS, Kim JS, Jung HC. A randomized controlled clinical study
comparing the diagnostic accuracy of the histologic prediction for colo-
rectal polyps depending on the use of either magnified or nonmagnified
narrow band imaging. Clin Endosc. 2015;48:528–33.

24. Rees CJ, Rajasekhar PT, Wilson A, Close H, Rutter MD, Saunders BP, et al.
Narrow band imaging optical diagnosis of small colorectal polyps in
routine clinical practice: the detect inspect characterise resect and
discard 2 (DISCARD 2) study. Gut. 2017;66:887–95.

25. Patruni J, Okresa L, Ivecovic H, Rusterovic N. Diagnostic accuracy of NICE
classification system for optical recognition of predictive morphology of
colorectal polyps. Gastrointest Endosc Pract. 2018;2018:7531368.

26. Zhang QW, Zhang JJ, Yang AM, Sheng JQ, Liu YL, Li ZS, et al. Feasibility
of using narrow band imaging international colorectal endoscopic clas-
sification for diagnosing colorectal neoplasia in China: a multicenter pilot
observational study. J Dig Dis. 2020;21:88–97.

27. Sha J, Wang P, Sang N, Zhang H, Yang A, Chen L, et al. The value of three
narrow-band imaging model in the diagnosis of small colorectal polyps.
Sci Rep. 2020;10:22032.

28. Puig I, Lopez-Ceron M, Arnau A, Rosinol O, Cuatrecasas M, Herreros-de-
Tejada A, et al. Accuracy of the narrow-band imaging international colo-
rectal endoscopic classification system in identification of deep invasion
in colorectal polyps. Gastroenterology. 2019;156:75–87.

29. Cocomazzi F, Gentile M, Perri F, Bossa F, Merla A, Ippolito A, et al. Accuracy
and inter-observer agreement of the nice and kudo classifications of
superficial colonic lesions: a comparative study. Int J Colorectal Dis.
2021;36:1561–8.

30. Participants in the Paris Workshop. The Paris endoscopic classification of
superficial neoplastic lesions: esophagus, stomach and colon: Novem-
ber 30 to December 1, 2002. Gastrointest Endosc. 2003;58:S3–43.

31. Kanda Y. Investigation of the freely available easy-to-use software “EZR”
for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

32. Mason SE, Poynter L, Takats Z, Darzi A, Kinross JM. Optical technologies
for endoscopic real-time histologic assessment of colorectal polyps: a
meta-analysis. Am J Gastroenterol. 2019;114:1219–30.

33. Sano W, Hirata D, Teramoto A, Iwatate M, Hattori S, Fujita M, et al. Serrated
polyps of the colon and rectum: remove or not? World J Gastroenterol.
2020;26:2276–85.