Leptogenesis and residual CP symmetry

Peng Chen,a Gui-Jun Dinga and Stephen F. Kingb

aDepartment of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
bPhysics and Astronomy, University of Southampton, Southampton, SO17 1BJ, U.K.

E-mail: pche@mail.ustc.edu.cn, dinggj@ustc.edu.cn, king@soton.ac.uk

ABSTRACT: We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z_2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S_4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

KEYWORDS: CP violation, Discrete Symmetries, Neutrino Physics

ArXiv ePrint: 1602.03873
1 Introduction

The origin of matter-antimatter asymmetry in the Universe is a puzzling and unexplained phenomenon. Although Sakharov discovered that CP violation is a necessary condition for explaining the matter-antimatter asymmetry of the Universe [1], the observed quark CP violation is insufficient for this purpose [2]. However, neutrino mass and mixing [3–5] provides a new and viable source of CP violation. Since the leptonic reactor angle is quite sizeable, it is possible that leptonic CP violation could be observed in the not-too-distant future through neutrino oscillations. Indeed, a first tentative hint for a value of the CP-violating phase $\delta_{\text{CP}} \sim -\pi/2$ has been reported in global fits [6–8].

Perhaps the simplest and most elegant origin of small neutrino mass is the seesaw mechanism, in which the observed smallness of neutrino masses is due to the heaviness of right-handed (RH) Majorana neutrinos [9–12]. The seesaw mechanism also provides an attractive mechanism for understanding the matter-antimatter asymmetry of the Universe, namely leptogenesis [13]. The idea is that out-of-equilibrium decays of RH neutrinos in the early Universe, combined with CP violation of the Yukawa couplings, lead to a lepton asymmetry which can be subsequently converted into a baryon asymmetry via sphaleron processes. Thermal leptogenesis in particular is an attractive and minimal mechanism to generate the Baryon Asymmetry of the Universe (BAU) which, normalised to the entropy density, is $Y_B = (0.87 \pm 0.01) \times 10^{-10}$ [14–17]. In the simplest case, the lightest of the RH neutrinos are produced by thermal scattering, and subsequently decay out-of-equilibrium, violating both lepton number and CP symmetry, satisfying all of the Sakharov constraints.
The large lepton mixing angles motivate the use of discrete flavour symmetries, and this approach has been widely explored (see e.g. [3–5] for recent reviews). The basic idea is that there is a finite, non-Abelian flavour symmetry G_f at some high energy scale, with matter falling into irreducible representations. The group G_f is then broken down to different residual subgroups G_ν and G_l in the neutrino and charged lepton sectors respectively. The PMNS matrix is determined by the mismatch of the embedding of the residual subgroups G_ν and G_l into the flavour symmetry group G_f.

There are three possible implementations of flavour symmetries, known as “direct”, “semi-direct” and “indirect” [3–5]. In the “direct” approach, all the low energy residual symmetry of the neutrino mass matrix is a subgroup of G_f such that both mixing angles and Dirac phase would be predicted to be some constant values. However it is found that this scheme requires a rather large group [18–21], and the only viable mixing pattern is the trimaximal mixing, with δ_{CP} being conserved. In the “semi-direct” approach, the symmetry of the neutrino mass matrix is typically Z_2 for Majorana neutrinos, which constrains only the second column of the PMNS matrix to be $(1, 1, 1)^T/\sqrt{3}$, and the reactor angle θ_{13} can be accommodated with a small discrete group such as S_4. In the “indirect” approach, the flavour symmetry is completely broken such that the observed neutrino flavour symmetry emerges indirectly as an accidental symmetry.\footnote{For a discussion of leptogenesis in the “indirect” approach see e.g. [22].}

In order to constrain CP phases, one may extend the approach to include generalized CP as a symmetry [23, 24]. This leads to a more predictive theory in which not only the mixing angles but also the CP phases only depend on one single real parameter [23]. The generalized CP symmetry was previously explored for continuous gauge groups [25–29], as well as for $\mu - \tau$ reflection symmetry [30–35] which predicts a maximal Dirac phase together with maximal atmospheric mixing. Non-maximal atmospheric mixing and non-maximal CP violation can be obtained from a simple extension [36].

It is nontrivial to give a consistent definition of generalized CP transformations in the presence of discrete flavour symmetry, certain consistency condition must be fulfilled [24, 37]. The relationship between neutrino mixing and CP symmetry has been clarified [38–40], and the master formula to reconstruct the PMNS matrix from any given remnant CP transformation has been derived [38, 39]. The phenomenological predictions and model building of combining discrete flavour symmetry with generalized CP have already been studied for a number of groups in the literature, e.g. A_4 [41], S_4 [23, 42–46], A_5 [47–50], $\Delta(27)$ [51–53], $\Delta(48)$ [54, 55], $\Delta(96)$ [56] and the infinite series of finite groups $\Delta(3n^2)$ [57, 58], $\Delta(6n^2)$ [57, 59, 60] and $D_{9n,3n}^{(1)}$ [61].

In this paper we discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis in which both charged lepton and RH neutrino mass matrices are diagonal, we analyse the case of two general residual CP symmetries in the neutrino sector [38, 39] which corresponds to all possible semi-direct models based on a preserved Z_2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We
systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is always tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S_4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

In the present work, we focus on non-supersymmetric flavored leptogenesis. It is interesting to extend our findings to the supersymmetric version \[62-65\]. The contributions of the supersymmetric partners of both RH neutrinos and SM fields should be included. In the supersymmetric case, the flavored CP asymmetries would not be changed significantly with respect to the values obtained within the standard model. However, some important differences would arise. For example, the temperature window would become $(1 + \tan^2 \beta) \times 10^9 \,\text{GeV} \leq T \sim M_1 \leq (1 + \tan^2 \beta) \times 10^{12} \,\text{GeV}$ in which the τ Yukawa coupling is in equilibrium, where $\tan \beta$ refers to the ratio of the vacuum expectation values of the two Higgs fields. The relation between the baryon asymmetry and the lepton flavor asymmetries would be modified due to the presence of two Higgs fields. Moreover, one would need to consider the possible overproduction gravitinos and the resulting strong bounds on the reheating temperatures. Some other subtle features also appear and need to be considered carefully \[65\]. In the non-supersymmetric case discussed here, we simply assume $10^9 \,\text{GeV} \leq M_1 \leq 10^{12} \,\text{GeV}$, so that only the interactions mediated by the τ Yukawa coupling are in equilibrium.

The layout of the remainder of the paper is as follows. In section 2 we briefly review the typical scenario of leptogenesis from the lightest RH neutrino decay, and we present a summary of the results for the lepton asymmetry ϵ_α, the washout mass parameter \tilde{m}_α and the analytical approximations to the baryon asymmetry which are used in our analysis. In section 3 the case of two residual CP transformations in the neutrino sector is studied. The lepton mixing angles and CP violating phases are determined in terms of a single real parameter θ in this case, and we find that the R-matrix only depend on one parameter η. A generic parametrization for the residual CP transformations and the R-matrix is presented. We comment that all the leptogenesis CP asymmetries would be vanishing if there are three or four residual CP transformations. In section 4, as an application of our formalism, the predictions for the leptogenesis are studied in the case that the two residual CP transformations originate from the breaking of the generalized CP symmetry compatible with the S_4 flavour symmetry. We summarize our main results in section 5. In appendix A the consequence of residual flavour symmetry on leptogenesis is discussed. In the case that the residual flavour symmetry of the neutrino sector is Z_2, only one column of the mixing matrix turns out to be determined, the R-matrix would be block diagonal and it depends on two real parameters. In this case, the total CP asymmetry ϵ_1 is generically nonzero, and therefore unflavoured leptogenesis could be feasible. On the other hand, if the full Klein group is preserved in the neutrino sector, the R-matrix would
be constrained to be permutation matrix with entries ±1. As a result, the CP asymmetry
\(\epsilon_\alpha \) is vanishing. This conclusion is independent of the explicit form of the residual
flavour symmetry transformations. In appendix B we show that our general results hold true no
matter whether the RH neutrino mass matrix is diagonal or not in a model.

2 Basic aspects of leptogenesis

We will consider the classic example of leptogenesis from the lightest RH neutrino \(N_1 \) (the
so-called \(N_1 \) leptogenesis) in the type-I seesaw model [9–12]. Without loss of generality, we
will choose to work in the basis where both the heavy neutrinos \(N_i \) and the charged leptons
mass terms are diagonal. Then the most general gauge invariant Lagrangian relevant to
lepton masses and flavour mixing can be written as

\[
- \mathcal{L} = y_\alpha \bar{L}_\alpha H l_{\alpha R} + \lambda_{\alpha R} \bar{N}_{\alpha R} \bar{H}^\dagger L_\alpha + \frac{1}{2} M_i \bar{N}_{i R} N_i^R + h.c.,
\]

where \(M_i \) are the Majorana masses of the RH neutrinos, \(L_\alpha \) and \(l_{\alpha R} \) denote respectively
the left-handed (LH) lepton doublet and RH lepton singlet fields of flavour \(\alpha = e, \mu, \tau \)
with \(L_\alpha = \left(\nu_{\alpha L}, l_{\alpha L} \right)^T \), \(\bar{H} = i \sigma_2 H^* \) and \(H = (H^+, H^0)^T \) is the Higgs
doublet field whose neutral component has a vacuum expectation equal to \(v = 174 \text{ GeV} \). At energies
below the heavy Majorana neutrino mass scale \(M_1 \), the heavy Majorana neutrino fields are integrated
out and after the breaking of the electroweak symmetry, a Majorana mass term for the
LH flavour neutrinos is generated, and the effective light neutrino mass matrix is of the
following form:

\[
m_\nu = v^2 \lambda^T M^{-1} \lambda = U^* m U^\dagger,
\]

where \(U \) is the PMNS matrix, \(M \equiv \text{diag}(M_1, M_2, M_3) \) and \(m \equiv \text{diag}(m_1, m_2, m_3) \). The CP
asymmetry generated in the \(N_1 \) decay process \(N_1 \rightarrow l_\alpha + H, \alpha = e, \mu, \tau \) process is given
by [66–70]

\[
\epsilon_\alpha \equiv \frac{\Gamma(N_1 \rightarrow H l_\alpha) - \Gamma(N_1 \rightarrow \bar{H} l_\alpha)}{\sum_\alpha \left(\Gamma(N_1 \rightarrow H l_\alpha) + \Gamma(N_1 \rightarrow \bar{H} l_\alpha) \right)}
= \frac{1}{8\pi (\lambda \lambda^\dagger)_{11}} \sum_{j \neq 1} \left\{ \text{Im} \left[(\lambda \lambda^\dagger)_{1j} \lambda_{1a} \lambda_{j a} \right] g(x_j) + \text{Im} \left[(\lambda \lambda^\dagger)_{j1} \lambda_{1a} \lambda_{j a} \right] \frac{1}{1 - x_j} \right\},
\]

where \(x_j \equiv M_j^2 / M_1^2 \), and the loop function is

\[
g(x) = \sqrt{x} \left[\frac{1}{1 - x} + 1 - (1 + x) \ln \left(\frac{1 + x}{x} \right) \right] \equiv \sqrt{x} + f(x).
\]

The part proportional to \(f(x) \) is the contribution from the one-loop vertex corrections,
and the the rest is the contribution from the self-energy corrections. We assume that the
heavy Majorana neutrinos \(N_i \) have a hierarchical mass spectrum, \(M_{2,3} \gg M_1 \) which implies
\(x_{2,3} \gg 1 \). In the limit \(x \gg 1 \), \(g(x) \) can be expanded into

\[
g(x) = \frac{3}{2} x^{-1/2} - \frac{5}{6} x^{-3/2} + \mathcal{O}(x^{-5/2}), \quad \text{for } x \gg 1.
\]
As a result, the asymmetry parameter ϵ_α approximately is

$$\epsilon_\alpha \simeq -\frac{3}{16\pi} \sum_{j \neq 1} \frac{M_j \text{Im}[\lambda\lambda^*]_{1j} \lambda_{1\alpha}^* \lambda_{j\alpha}}{M_j}. \quad (2.7)$$

In order to exploit the connection between the CP violating parameters in leptogenesis and the low energy CP violating phases in the PMNS matrix, we shall use the well-known Casas-Ibarra parametrization [71] of the neutrino Yukawa matrix:

$$\lambda = \frac{1}{v} \sqrt{MR} \sqrt{m} U^\dagger, \quad (2.8)$$

where R is a generic complex orthogonal matrix satisfying $RR^T = R^T R = 1$. Then the flavoured CP asymmetry can be expressed as [70, 72–76]

$$\epsilon_\alpha = -\frac{3M_1}{16\pi v^2} \frac{\text{Im} \left(\sum_{ij} \sqrt{m_i m_j} m_{ij} R_{1i} R_{1j} U_{ai}^* U_{aj} \right)}{\sum_j m_j \left| R_{1j} \right|^2}. \quad (2.9)$$

Solving the Boltzmann equations for each flavour, one finds that the lepton asymmetry Y_α (normalized to the entropy s) in flavour α is [68, 69, 77]

$$Y_\alpha \simeq \frac{\epsilon_\alpha}{g_* \eta(\tilde{m}_\alpha)}, \quad (2.10)$$

where g_* is the number of relativistic degrees of freedom in the thermal bath, and $g_* = 106.75$ in the SM. The washout mass \tilde{m}_α parameterizes the decay rate of N_1 to the leptons of flavour α with

$$\tilde{m}_\alpha = \frac{|\lambda_{1\alpha}|^2 v^2}{M_1} = \left| \sum_j m_j^{1/2} R_{1j} U_{aj}^* \right|^2. \quad (2.11)$$

The efficiency factor $\eta(\tilde{m}_\alpha)$ accounts for the washing out of the lepton asymmetry Y_α due to the inverse decay and lepton number violating scattering. The leptogenesis takes place at temperatures $T \sim M_1$. For $M_1 > 10^{12}$ GeV, the interactions mediated by all the three charged lepton Yukawa are out of equilibrium, and consequently all lepton flavours are indistinguishable. Summing over all flavours, one finds

$$\epsilon_1 = \sum_\alpha \epsilon_\alpha = -\frac{3M_1}{16\pi v^2} \frac{x^2 \text{Im}(R_{1i}^2)}{\sum_j m_j \left| R_{1j} \right|^2}, \quad (2.12)$$

The final baryon asymmetry is proportional to ϵ_1. For 10^9 GeV $\leq M_1 \leq 10^{12}$ GeV, only the interactions mediated by the τ Yukawa coupling are in equilibrium and the final baryon asymmetry is well approximated by [68, 72]

$$Y_B \simeq -\frac{12}{37} g_* \left[\epsilon_2 \eta \left(\frac{417}{589} \tilde{m}_2 \right) + \epsilon_\tau \eta \left(\frac{390}{589} \tilde{m}_\tau \right) \right], \quad (2.13)$$

where $\epsilon_2 = \epsilon_e + \epsilon_\mu$, $\tilde{m}_2 = \tilde{m}_e + \tilde{m}_\mu$, and

$$\eta(\tilde{m}_\alpha) \simeq \left[\left(\frac{\tilde{m}_\alpha}{8.25 \times 10^{-3} \text{eV}} \right)^{-1} + \left(\frac{0.2 \times 10^{-3} \text{eV}}{\tilde{m}_\alpha} \right)^{-1.16} \right]^{-1}. \quad (2.14)$$
For a heavy Majorana mass $M_1 < 10^9$ GeV, both τ and μ Yukawa couplings are in equilibrium such that all the three flavour can be resolved, and the final value of the baryon asymmetry can be estimated via [68].

$$Y_B \simeq \frac{12}{37} g^* \left[\epsilon_\tau \eta \left(\frac{151}{179} \tilde{m}_\tau \right) + \epsilon_\mu \eta \left(\frac{344}{537} \tilde{m}_\mu \right) + \epsilon_\tau \eta \left(\frac{344}{537} \tilde{m}_\tau \right) \right],$$

(2.15)

Generally the predicted baryon asymmetry would be too small to account for the observed value in this scenario.

3 Leptogenesis and residual CP

We suppose that both the neutrino Yukawa coupling λ and the RH neutrino mass matrix M are invariant under the following two residual CP transformations:

$$\begin{align*}
\text{CP}_1 : \ & \nu_L \rightarrow i X_{\nu 1} \gamma_0 \nu_L^\dagger, \quad N_R \rightarrow i \tilde{X}_{N1} \gamma_0 N_R^\dagger, \\
\text{CP}_2 : \ & \nu_L \rightarrow i X_{\nu 2} \gamma_0 \nu_L^\dagger, \quad N_R \rightarrow i \tilde{X}_{N2} \gamma_0 N_R^\dagger
\end{align*}$$

(3.1)

with $X_{\nu 1} \neq X_{\nu 2}$ and $\tilde{X}_{N1} \neq \tilde{X}_{N2}$. As a consequence, λ and M have to fulfill

$$\begin{align*}
\tilde{X}_{N1}^\dagger \lambda X_{\nu 1}^* = \lambda^*, \quad \tilde{X}_{N1}^\dagger M \tilde{X}_{N1}^* = M^*, \\
\tilde{X}_{N2}^\dagger \lambda X_{\nu 2}^* = \lambda^*, \quad \tilde{X}_{N2}^\dagger M \tilde{X}_{N2}^* = M^*.
\end{align*}$$

(3.2a, 3.2b)

Since the RH neutrino mass matrix M is chosen to be diagonal for convenience, the residual CP transformations \tilde{X}_{R1} and \tilde{X}_{R2} must be diagonal with entries $+1$ or -1. i.e.,

$$\tilde{X}_{N1}, \tilde{X}_{N2} = \text{diag}(\pm 1, \pm 1, \pm 1),$$

(3.3)

From eq. (3.2a) and eq. (3.2b), we can find that the light neutrino mass matrix m_ν satisfies

$$X_{\nu 1}^T m_\nu X_{\nu 1} = m_{\nu 1}^*, \quad X_{\nu 2}^T m_\nu X_{\nu 2} = m_{\nu 2}^*.$$

(3.4)

The constraint on the PMNS matrix U can be obtained by substituting $m_\nu = U^* m U^\dagger$ into eq. (3.4), we have

$$\begin{align*}
(U^\dagger X_{\nu 1} U^*)^T m (U^\dagger X_{\nu 1} U^*)^T = m, \\
(U^\dagger X_{\nu 2} U^*)^T m (U^\dagger X_{\nu 2} U^*)^T = m.
\end{align*}$$

(3.5)

Since the three light neutrino masses are not degenerate $m_1 \neq m_2 \neq m_3$, the following equalities have to be satisfied

$$U^\dagger X_{\nu 1} U^* = \tilde{X}_{\nu 1}, \quad U^\dagger X_{\nu 2} U^* = \tilde{X}_{\nu 2},$$

(3.6)

where

$$\begin{align*}
\tilde{X}_{\nu 1}, \tilde{X}_{\nu 2} = \text{diag}(\pm 1, \pm 1, \pm 1).
\end{align*}$$

(3.7)
Obviously both residual CP transformations $X_{\nu 1}$ and $X_{\nu 2}$ are symmetric matrices. In this scenario, a residual Z_2 flavour symmetry is generated by the postulated residual CP transformations, and its nontrivial element is

$$G_{\nu} = X_{\nu 1} X_{\nu 1}^* = X_{\nu 2} X_{\nu 2}^* = U \widehat{X}_{\nu 1} \widehat{X}_{\nu 2} U^\dagger,$$

(3.8)

with

$$G_{\nu}^T m_{\nu} G_{\nu} = m_{\nu}, \quad G_{\nu}^2 = 1.$$

(3.9)

It is easy to check that the restricted consistency condition between the residual flavour and CP symmetries is fulfilled:

$$X_{\nu 1} G_{\nu}^* X_{\nu 1}^\dagger = G_{\nu}, \quad X_{\nu 2} G_{\nu}^* X_{\nu 2}^\dagger = G_{\nu}.$$

(3.10)

Only column of the mixing matrix U would be fixed by G_{ν}, it can always be set to be real by redefining the charged lepton fields, and its most general parametrization is

$$v_1 = \begin{pmatrix} \cos \varphi \\ \sin \varphi \cos \phi \\ \sin \varphi \sin \phi \end{pmatrix},$$

(3.11)

which leads to

$$G_{\nu} = 2v_1 v_1^T - 1,$$

(3.12)

where we choose $\det(G_{\nu}) = 1$. As shown in refs. [38, 39], $X_{\nu 1}$ and $X_{\nu 2}$ can be parameterized as

$$X_{\nu 1} = e^{i\kappa_1} v_1 v_1^T + e^{i\kappa_2} v_2 v_2^T + e^{i\kappa_3} v_3 v_3^T, \quad X_{\nu 2} = e^{i\kappa_1} v_1 v_1^T - e^{i\kappa_2} v_2 v_2^T - e^{i\kappa_3} v_3 v_3^T,$$

(3.13)

where $\kappa_{1,2,3}$ are real parameters, and both v_2 and v_3 are orthonormal to v_1 with

$$v_2 = \begin{pmatrix} \sin \varphi \cos \rho \\ -\sin \phi \sin \rho - \cos \varphi \cos \phi \cos \rho \\ \cos \phi \sin \rho - \cos \varphi \sin \phi \cos \rho \end{pmatrix}, \quad v_3 = \begin{pmatrix} \sin \varphi \sin \rho \\ \sin \phi \cos \rho - \cos \varphi \cos \phi \sin \rho \\ -\cos \phi \cos \rho - \cos \varphi \sin \phi \sin \rho \end{pmatrix}.$$

(3.14)

Solving the constraint of eq. (3.6) imposed by $X_{\nu 1}$ and $X_{\nu 2}$, we can find that the mixing matrix U is determined to be [38, 39]

$$U = (v_1, v_2, v_3) \text{diag} \begin{pmatrix} e^{i\kappa_1/2}, e^{i\kappa_2/2}, e^{i\kappa_3/2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix} P_{\nu} \widehat{X}_{\nu 1}^{-1/2},$$

(3.15)

where θ is a real free parameter, $\widehat{X}_{\nu 1}^{-1/2}$ is the CP parity of the neutrino states and it renders the neutrino mass m positive definite. P_{ν} is a generic permutation matrix satisfying

$$\widehat{X}_{\nu 1} \widehat{X}_{\nu 2} = P_{\nu}^T \text{diag} (1, -1, -1) P_{\nu}.$$

(3.16)
Since the ordering of the light neutrino masses cannot be predicted in the present approach, the three columns of U can be permuted by P. Note that there are totally six 3×3 permutation matrices:

\[
\begin{align*}
P_{123} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & P_{132} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, & P_{213} &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \\
P_{231} &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, & P_{312} &= \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, & P_{321} &= \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.
\end{align*}
\] (3.17)

Furthermore, the Casas-Ibarra parametrization in eq. (2.8) yields

\[
R = vM^{-\frac{1}{2}}\lambda U m^{-\frac{1}{2}}.
\] (3.18)

With the symmetry properties of λ and U, it is straightforward to find that the residual CP transformations impose the following constraints on the orthogonal matrix R,

\[
\tilde{X}_{\nu_1} R^* \tilde{X}_{\nu_1} = R, \quad \tilde{X}_{\nu_2} R^* \tilde{X}_{\nu_2} = R.
\] (3.19)

Note that similar constraint on the R-matrix was found from the requirement of CP invariance in previous work [72, 78]. From eq. (3.19), we can obtain

\[
R = \tilde{X}_{\nu_1} \tilde{X}_{\nu_2} R \tilde{X}_{\nu_1} \tilde{X}_{\nu_2}.
\] (3.20)

For convenience, we denote

\[
\tilde{X}_{\nu_1} \tilde{X}_{\nu_2} = P_N^T \text{diag}(1, -1, -1) P_N,
\] (3.21)

where P_N is a permutation matrix. Then eq. (3.20) gives rise to

\[
P_N R P^T_\nu = \text{diag} (1, -1, -1) P_N R P^T_\nu \text{diag} (1, -1, -1).
\] (3.22)

Therefore the (12), (13), (21) and (31) entries of $P_N R P^T_\nu$ should be vanishing, i.e.

\[
P_N R P^T_\nu = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix},
\] (3.23)

where the notation “\times” denotes a nonzero matrix element. It is remarkable that the orthogonal matrix R has four zero elements independent of the concrete form of the imposed two residual CP transformations. Once the permutation matrices P_N and P_ν are fixed, the position of zero elements can be determined. Furthermore, taking the determinant of the both sides of $R = \tilde{X}_{\nu_1} R^* \tilde{X}_{\nu_1}$, we obtain $\text{det}(\tilde{X}_{\nu_1} \tilde{X}_{\nu_1}) = 1$. Because eq. (3.19) is invariant
under the transformation $\hat{X}_{N1} \rightarrow -\hat{X}_{N1}$ and $\hat{X}_{\nu1} \rightarrow -\hat{X}_{\nu1}$, it is sufficient to consider the following values of \hat{X}_{N1} and $\hat{X}_{\nu1}$,

$$\text{diag}(1, 1, 1), \quad \text{diag}(1, -1, -1), \quad \text{diag}(-1, 1, -1), \quad \text{diag}(-1, -1, 1). \quad (3.24)$$

The explicit forms of R for all possible values of \hat{X}_{N1} and $\hat{X}_{\nu1}$ are collected in Table 1. Notice that the same results would be obtained if we consider the constraint $R = \hat{X}_{N2} R^* \hat{X}_{\nu2}$ instead. The most important thing is that the R-matrix only depends on a single real parameter η in the present approach.

Furthermore, we find that the non-vanishing element of R is either real or pure imaginary. As a consequence, the total lepton asymmetry ϵ_1 in eq. (2.12) would be vanishing in our scenario, i.e.

$$\epsilon_1 = \epsilon_e + \epsilon_\mu + \epsilon_\tau = 0. \quad (3.25)$$

This is to say, the leptogenesis can not proceed at high energy scale $T \sim M_1 > 10^{12}$ GeV. Hence we shall be concerned with the temperatures 10^9 GeV $\leq T \sim M_1 \leq 10^{12}$ GeV in the present work. From eqs. (2.9), (2.11) we can see that only the first row of R is relevant to ϵ_α, \tilde{m}_α and therefore Y_B. There can only be one or two nonzero elements in each row and each column of R, as shown in eq. (3.23). For the case that only one of R_{11}, R_{12} and R_{13} is nonvanishing, the asymmetry parameter ϵ_α would be zero $\epsilon_\alpha = 0$ and consequently it is not viable. If two elements among R_{11}, R_{12} and R_{13} are nonvanishing, depending on the values of P_ν, we could have three possible cases named as C_{12}, C_{13} and C_{23},

$$C_{12} : R = \begin{pmatrix} \times & 0 & \ldots \\ \times & \times & \ldots \\ \ldots & \ldots & \ldots \end{pmatrix}, \quad C_{13} : R = \begin{pmatrix} \times & \times & \ldots \\ \times & \times & \ldots \\ \ldots & \ldots & \ldots \end{pmatrix}, \quad C_{23} : R = \begin{pmatrix} 0 & \times & \ldots \\ \times & \times & \ldots \\ \ldots & \ldots & \ldots \end{pmatrix}. \quad (3.26)$$

For $P_\nu = P_{312}$ or P_{321}, the case C_{12} stands out. For $P_\nu = P_{213}, P_{231}$, it is C_{13}. The R-matrix would be of the form C_{23} in the case of $P_\nu = P_{123}, P_{132}$. In order to facilitate the discussions in the following, we would like to separate the CP parity matrices \tilde{X}_{N1} and $\tilde{X}_{\nu1}$ explicitly in both R and U, and define

$$U' \equiv U \hat{X}_{\nu1}^{1/2}, \quad R' \equiv \hat{X}_{N1}^{1/2} R \hat{X}_{\nu1}^{1/2}, \quad K_j \equiv (\hat{X}_{N1})_{11} (\hat{X}_{\nu1})_{jj}. \quad (3.27)$$

Then R' would be a block diagonal real matrix, the value of K_j is $+1$ or -1, and U' is given by

$$U' = (v_1, v_2, v_3) \text{diag} \left(e^{i \kappa_1/2}, e^{i \kappa_2/2}, e^{i \kappa_3/2} \right) \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix} P_\nu. \quad (3.28)$$

The asymmetry ϵ_α and the washout mass \tilde{m}_α can be written as

$$\epsilon_\alpha = -\frac{3M_1}{16\pi v^2} \text{Im} \left(\sum_{i,j} \sqrt{m_i m_j} m_j R'_{1i} R'_{1j} U''_{ai} U''_{aj} K_j \right), \quad (3.29)$$

$$\tilde{m}_\alpha = \left| \sum_j m_j^{1/2} R'_{1j} U''_{a j} \right|^2. \quad (3.30)$$
$P_N\hat{X}_{N1}P_N^T$	$P_\nu \hat{X}_{\nu1}P_\nu^T$	$P_NRP_\nu^T$
diag(1, 1, 1)	diag(1, 1, 1)	$\begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \cos \eta & \sin \eta \\ 0 & -\sin \eta & \cos \eta \end{pmatrix}$
diag(1, 1, 1)	diag(1, -1, -1)	\(\times\)
diag(1, 1, 1)	diag(-1, 1, -1)	\(\times\)
diag(1, 1, 1)	diag(-1, -1, 1)	\(\times\)
diag(-1, 1, -1)	diag(1, 1, 1)	\(\times\)
diag(-1, -1, 1)	diag(1, -1, -1)	$\begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \cosh \eta & i \sinh \eta \\ 0 & -i \sinh \eta & \cosh \eta \end{pmatrix}$
diag(-1, 1, -1)	diag(-1, -1, 1)	$\begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & i \sinh \eta & \cosh \eta \\ 0 & \cosh \eta & -i \sinh \eta \end{pmatrix}$
diag(-1, -1, 1)	diag(1, 1, 1)	\(\times\)
diag(-1, -1, 1)	diag(1, -1, -1)	\(\times\)
diag(-1, 1, -1)	diag(-1, -1, 1)	$\begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & i \sinh \eta & \cosh \eta \\ 0 & \cosh \eta & -i \sinh \eta \end{pmatrix}$
diag(-1, -1, 1)	diag(-1, -1, 1)	$\begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \cosh \eta & i \sinh \eta \\ 0 & -i \sinh \eta & \cosh \eta \end{pmatrix}$

Table 1. The explicit form of R-matrix for different possible values \hat{X}_{N1} and $\hat{X}_{\nu1}$, where η is a real free parameter.
For each interesting case \(C_{ab} \) shown in eq. (3.26) with \(ab = 12, 13 \) and 23, we find both \(\epsilon_a \) and \(\tilde{m}_a \) take a rather simple form

\[
\epsilon_a = \frac{3M_1}{16\pi v^2} W_{ab} I_{ab}^0, \quad (3.31)
\]

\[
\tilde{m}_a = \left| \frac{m_a^{1/2} R'_{1a} R'_{1b} (m_a K_a - m_b K_b)}{m_a (R'_{1a})^2 + m_b (R'_{1b})^2} \right|^2, \quad (3.32)
\]

where

\[
W_{ab} = \frac{\sqrt{m_a m_b R'_{1a} R'_{1b} (m_a K_a - m_b K_b)}}{m_a (R'_{1a})^2 + m_b (R'_{1b})^2}, \quad I_{ab}^0 = \text{Im}(U_{ab} U_{ab}^*). \quad (3.33)
\]

Notice that the lepton asymmetry \(\epsilon_a \) are closely related to the lower energy CP phases. The observation of CP violation in future neutrino oscillation and neutrinoless double decay experiments would imply the existence of a baryon asymmetry. For all the three cases C12, C13 and C23 and all possible values of \(K_1, K_2 \) and \(K_3 \), we list the parametrization of the first column of \(R' \) and corresponding expressions of \(W_{12}, W_{13} \) and \(W_{23} \) in table 2. For the residual CP transformations \(X_{1e1}, X_{1e2} \) in eq. (3.13) and the resulting lepton mixing matrix \(U \) given by eq. (3.15), the analytical expressions of the rephase invariant \(I_{ab}^\mu \) for different cases are summarized in table 3. It is surprising that we have

\[
I_{ab}^0 = \pm J_1, \quad I_{ab}^\mu = \pm J_2, \quad I_{ab}^\tau = \pm J_3, \quad (3.34)
\]

with \(ab = 12, 13, 23 \). The “+” and “−” signs in eq. (3.34) depend on the value of the permutation matrix \(P_\nu \). The parameters \(J_{1,2,3} \) are given by

\[
J_1 = \frac{1}{2} \sin 2\rho \sin^2 \varphi \sin \frac{\kappa_2 - \kappa_3}{2},
J_2 = \frac{1}{8} \left[(2 \cos 2\varphi \cos^2 \phi + 3 \cos 2\phi - 1) \sin 2\rho - 4 \cos 2\rho \cos \varphi \sin 2\phi \right] \sin \frac{\kappa_2 - \kappa_3}{2},
J_3 = \frac{1}{8} \left[(2 \cos 2\varphi \sin^2 \phi - 3 \cos 2\phi - 1) \sin 2\rho + 4 \cos 2\rho \cos \varphi \sin 2\phi \right] \sin \frac{\kappa_2 - \kappa_3}{2}. \quad (3.35)
\]

We see that all the rephase invariants are proportional to \(\sin \frac{\kappa_2 - \kappa_3}{2} \) such that the asymmetry parameter \(\epsilon_a \) vanishing \(\epsilon_a = 0 \) in the case of \(\kappa_2 = \kappa_3 \). Moreover, it is notable that all these rephase invariants are completely fixed by the imposed residual CP transformations, and the free parameter \(\theta \) is not involved. Nevertheless, the washout mass \(\tilde{m}_a \) depends on \(\theta \) whose value can be determined by the measured values of the reactor angle \(\theta_{13} \). Once the residual CP transformations are specified, i.e. inputting the values of the parameters \(\varphi, \phi, \rho, \kappa_1, \kappa_2 \) and \(\kappa_3 \), the predictions for \(\epsilon_a \) and \(\tilde{m}_a \) can be straightforwardly extracted from eq. (3.31) and eq. (3.32). Before studying some specific examples in section 4, we would like to perform a most general discussion in which \(U' \) is parameterized as [79]:

\[
U' = \begin{pmatrix}
 c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_C P} \\
-s_{12} c_{23} - c_{12} s_{13} s_{23} e^{i \delta_C P} & c_{12} c_{23} - s_{12} s_{13} s_{23} e^{i \delta_C P} & c_{13} s_{23} \\
 s_{12} s_{23} - c_{12} s_{13} c_{23} e^{i \delta_C P} & -c_{12} s_{23} - s_{12} s_{13} c_{23} e^{i \delta_C P} & c_{13} c_{23}
\end{pmatrix} \text{diag}(1, e^{i \frac{\theta_{12}}{2}}, e^{i \frac{\theta_{13}}{2}}),
\]

(3.36)
In the three interesting cases diers from $R_{11} \neq R_{11}'$, $R_{12} \neq R_{12}'$, and $R_{13} \neq R_{13}'$ depending on the values of c_{ij} and s_{ij}. Consequently $W_{ab} = m_{ab} \sin \theta_{ab}$. Notice that the neutrino mixing matrix U differs from U^\dagger in the inclusion of the CP parity matrix \tilde{X}_{ν}. Consequently α_{21} and α_{31} here may be distinct from the usually called Majorana phases by π depending on the values of K_1, K_2, and K_3. Now we proceed to consider the three cases C_{12}, C_{13} and C_{23} in turn.

- **Case C_{12}**

The asymmetry parameter ϵ_a is predicted to be
\[
\epsilon_e = \frac{3M_1}{16\pi^2} W_{12} c_{12} s_{12} c_{13}^2 \sin \frac{\alpha_{21}}{2},
\]
\[
\epsilon_{\mu} = -\frac{3M_1}{16\pi^2} W_{12} \left[c_{12} s_{12} \sin \frac{\alpha_{21}}{2} \left(s_{23} - s_{13}^2 \right) \right.
\]
\[\left. - c_{23} s_{13} s_{23} \left(s_{12}^2 \sin \left(\delta_{CP} + \frac{\alpha_{21}}{2} \right) + c_{12}^2 \sin \left(\delta_{CP} - \frac{\alpha_{21}}{2} \right) \right) \right],
\]
\[
\epsilon_{\tau} = -\frac{3M_1}{16\pi^2} W_{12} \left[c_{12} s_{12} \sin \frac{\alpha_{21}}{2} \left(s_{23} - c_{23} s_{13}^2 \right)
\right.
\]
\[\left. + c_{23} s_{13} s_{23} \left(s_{12}^2 \sin \left(\delta_{CP} + \frac{\alpha_{21}}{2} \right) + c_{12}^2 \sin \left(\delta_{CP} - \frac{\alpha_{21}}{2} \right) \right) \right].
\]

The washout mass \tilde{m}_{a} is
\[
\tilde{m}_a = \left| \sqrt{m_1} R_{11}' c_{12} c_{13} + \sqrt{m_2} R_{12}' \frac{m_{12}}{m_{11}} s_{12} c_{13} \right|^2.
\]

\begin{table}
Case C_{ab}	(K_1, K_2, K_3)	$(R_{11}', R_{12}', R_{13}')$	W_{ab}
$a = 1, b = 2$	$(+, +, \pm)$	$(\cos \theta, \sin \theta, 0)$	$\frac{\sqrt{m_1 m_2} (m_1 - m_2) \sin \theta \cos \theta}{m_1 \cos^2 \theta + m_2 \sin^2 \theta}$
	$(+, -, \pm)$	$(\cosh \theta, \sinh \theta, 0)$	$\frac{\sqrt{m_1 m_2} (m_1 + m_2) \sinh \theta \cosh \theta}{m_1 \cosh^2 \theta + m_2 \sinh^2 \theta}$
	$(-, +, \pm)$	$(\sinh \theta, \cosh \theta, 0)$	$-\frac{\sqrt{m_1 m_2} (m_1 + m_2) \sinh \theta \cosh \theta}{m_1 \sinh^2 \theta + m_2 \cosh^2 \theta}$
$a = 1, b = 3$	$(+, +, +)$	$(\cos \theta, 0, \sin \theta)$	$\frac{\sqrt{m_1 m_2} (m_1 - m_3) \sin \theta \cos \theta}{m_1 \cos^2 \theta + m_3 \sin^2 \theta}$
	$(+, +, -)$	$(\cosh \theta, 0, \sin \theta)$	$\frac{\sqrt{m_1 m_2} (m_1 + m_3) \sinh \theta \cosh \theta}{m_1 \cosh^2 \theta + m_3 \sinh^2 \theta}$
	$(-, +, +)$	$(\sinh \theta, 0, \cosh \theta)$	$-\frac{\sqrt{m_1 m_2} (m_1 + m_3) \sinh \theta \cosh \theta}{m_1 \sinh^2 \theta + m_3 \cosh^2 \theta}$
$a = 2, b = 3$	$(+, +, +)$	$(0, \cos \theta, \sin \theta)$	$\frac{\sqrt{m_2 m_3} (m_2 - m_3) \sin \theta \cos \theta}{m_2 \cos^2 \theta + m_3 \sin^2 \theta}$
	$(+, +, -)$	$(0, \cosh \theta, \sin \theta)$	$\frac{\sqrt{m_2 m_3} (m_2 + m_3) \sinh \theta \cosh \theta}{m_2 \cosh^2 \theta + m_3 \sinh^2 \theta}$
	$(+, -, +)$	$(0, \sinh \theta, \cosh \theta)$	$-\frac{\sqrt{m_2 m_3} (m_2 + m_3) \sinh \theta \cosh \theta}{m_2 \sinh^2 \theta + m_3 \cosh^2 \theta}$

Table 2. The parametrization of the first column of R' and the corresponding predictions for W_{12}, W_{13} and W_{23} in the three interesting cases C_{12}, C_{13} and C_{23}.\]
Table 3. The analytical expressions of the rephase invariants I_{ab}^α for all the three cases C_{12}, C_{13} and C_{23}, where J_1, J_2 and J_3 are given in eq. (3.35).

Case	$P_\nu = P_{312}$	$P_\nu = P_{321}$
C_{12}	$P_\nu = P_{213}$	$P_\nu = P_{231}$
C_{13}	$P_\nu = P_{213}$	$P_\nu = P_{231}$
C_{23}	$P_\nu = P_{213}$	$P_\nu = P_{231}$

We see that both ϵ_α and \tilde{m}_α are dependent on the CP-violating phases δ_{CP} and α_{21} while α_{31} is not involved. We display the contour regions of Y_B/Y_B^{obs} in the $\alpha_{21} - \eta$ plane in figure 1. We see that the observed baryon asymmetry can be generated except for $(K_1, K_2) = (+, +)$. In figure 2, the values of Y_B/Y_B^{obs} with respect to the parameter η are plotted for some representative values of $\alpha_{21} = -\pi, -\pi/2, 0, \pi/2$ and π.

- Case C_{13}

In this case, ϵ_α and \tilde{m}_α are of the following forms:

$$
\epsilon_\alpha = \frac{3M_1}{16\pi v^2} W_{13} c_{12} c_{13} s_{13} \sin \left(\frac{\alpha_{31}}{2} - \delta_{CP} \right),
$$

$$
\epsilon_\mu = -\frac{3M_1}{16\pi v^2} W_{13} c_{13} s_{23} \left[c_{12} s_{13} s_{23} \sin \left(\frac{\alpha_{31}}{2} - \delta_{CP} \right) + s_{12} c_{23} \sin \frac{\alpha_{31}}{2} \right],
$$

$$
\epsilon_\tau = -\frac{3M_1}{16\pi v^2} W_{13} c_{13} c_{23} \left[c_{12} s_{13} c_{23} \sin \left(\frac{\alpha_{31}}{2} - \delta_{CP} \right) - s_{12} s_{23} \sin \frac{\alpha_{31}}{2} \right],
$$

$$
\tilde{m}_c = \sqrt{m_1} R'_{11} c_{12} c_{13} + \sqrt{m_3} R'_{13} \left(\frac{i(\alpha_{31} - 2\delta_{CP})}{2} \right) s_{13},
$$

$$
\tilde{m}_\mu = \sqrt{m_1} R'_{11} \left(s_{12} c_{23} + e^{i\delta_{CP}} c_{12} s_{13} s_{23} \right) - \sqrt{m_3} R'_{13} \left(\frac{i\alpha_{31}}{2} c_{13} s_{23} \right),
$$

$$
\tilde{m}_\tau = \sqrt{m_1} R'_{11} \left(s_{12} s_{23} - e^{i\delta_{CP}} c_{12} s_{13} c_{23} \right) + \sqrt{m_3} R'_{13} \left(\frac{i\alpha_{31}}{2} c_{13} c_{23} \right),
$$

(3.39)

which are functions of δ_{CP} and α_{31}. We show the contour regions of Y_B/Y_B^{obs} in the plane α_{31} versus η in figure 3. As can be seen, the measured value of Y_B can be
Figure 1. The contour plots of Y_B/Y_B^{obs} in the plane α_{21} versus η for the case C_{12}, where we take $M_1 = 5 \times 10^{11}$ GeV, the lightest neutrino mass m_1 (or m_3) = 0.01 eV, and the Dirac phase $\delta_{CP} = -\pi/2$. The neutrino oscillation parameters θ_{12}, θ_{13}, θ_{23}, Δm^2_{21} and Δm^2_{31} (or Δm^2_{32}) are fixed at their best fit values [6]. The dashed line represents the experimentally observed values of the baryon asymmetry $Y_B^{\text{obs}} = 8.66 \times 10^{-11}$ [16, 17]. Note that the realistic value of Y_B can not be obtained in the case of $(K_1, K_2) = (+, +)$.

reproduced except the case of NH with $(K_1, K_3) = (-, +)$. The variation of Y_B/Y_B^{obs} with η for the representative values $\alpha_{31} = -\pi, -\pi/2, 0, \pi/2$ and π are plotted in figure 4.

• Case C_{23}

In this case, we find that both ϵ_α and \tilde{m}_α depend on δ_{CP} and $\alpha_{21} - \alpha_{31}$ as follows

$$
\epsilon_\alpha = -\frac{3 M_1}{16 \pi v^2} W_{23} s_{12} c_{13} s_{13} \sin \left(\frac{\alpha_{21} - \alpha_{31}}{2} + \delta_{CP} \right),
$$

$$
\epsilon_\mu = \frac{3 M_1}{16 \pi v^2} W_{23} c_{13} s_{23} \left[s_{12} s_{13} s_{23} \sin \left(\frac{\alpha_{21} - \alpha_{31}}{2} + \delta_{CP} \right) - c_{12} c_{23} \sin \frac{\alpha_{21} - \alpha_{31}}{2} \right],
$$

$$
\epsilon_\tau = \frac{3 M_1}{16 \pi v^2} W_{23} c_{13} c_{23} \left[s_{12} s_{13} c_{23} \sin \left(\frac{\alpha_{21} - \alpha_{31}}{2} + \delta_{CP} \right) + c_{12} c_{23} \sin \frac{\alpha_{21} - \alpha_{31}}{2} \right],
$$

$$
\tilde{m}_e = \left| \sqrt{m_2} R'_{12} s_{12} c_{13} + \sqrt{m_3} R'_{13} e^{-i(\alpha_{21} - \alpha_{31})} s_{13} \right|^2,
$$

$$
\tilde{m}_\mu = \left| \sqrt{m_2} R'_{12} \left(c_{12} c_{23} - e^{i\delta_{CP}} s_{12} s_{13} s_{23} \right) + \sqrt{m_3} R'_{13} e^{-i(\alpha_{21} - \alpha_{31})} c_{13} s_{23} \right|^2,
$$

$$
\tilde{m}_\tau = \left| \sqrt{m_2} R'_{12} \left(c_{12} s_{23} + e^{i\delta_{CP}} s_{12} s_{13} c_{23} \right) - \sqrt{m_3} R'_{13} e^{-i(\alpha_{21} - \alpha_{31})} c_{13} c_{23} \right|^2. \quad (3.40)
$$
Figure 2. Predictions for Y_B/Y_B^{obs} as a function of η for the case C_{12}, where we take $M_1 = 5 \times 10^{11}$ GeV, the lightest neutrino mass $m_1 (or m_3) = 0.01 \text{eV}$, and the Dirac phase $\delta_{\text{CP}} = -\pi/2$. The neutrino oscillation parameters θ_{12}, θ_{13}, θ_{23}, Δm^2_{21} and Δm^2_{31} (or Δm^2_{42}) are fixed at their best fit values [6]. The red dotted, blue long dashed, yellow solid, green dash-dotted and purple dash-dot-dotted lines correspond to $\alpha_{21} = -\pi$, $-\pi/2$, 0, $\pi/2$ and π respectively. The experimental observed value Y_B^{obs} is represented by the horizontal dashed line.

We show the contour regions of Y_B/Y_B^{obs} in the plane $\alpha_{21} - \alpha_{31}$ versus η in figure 5. As can be seen, the measured value of Y_B can be reproduced for appropriate values of η and $\alpha_{21} - \alpha_{31}$ except for the case of NH with $(K_2, K_3) = (-, +)$ and IH with $(K_2, K_3) = (+, -)$. The variation of Y_B/Y_B^{obs} with η for the representative values $\alpha_{21} - \alpha_{31} = -\pi$, $-\pi/2$, 0, $\pi/2$ and π are plotted in figure 6.

In the end of this section, we shall comment on the scenario that three or four residual CP transformations are preserved at low energy scale. Notice that the effective light neutrino mass m_e admits at most four remnant CP transformations and only three of them are independent [38, 39]. In this case, a Klein four residual flavour symmetry would be generated by the assumed residual CP transformations, and the lepton mixing matrix including the Majorana phases can be completely fixed up to permutations of rows and columns [39]. As a result, the R-matrix would be a permutation matrix with nonzero element equal to ± 1, and the flavoured CP asymmetry ϵ_α would vanish, as shown in appendix A.2.
Figure 3. The contour plots of Y_B/Y_B^{obs} in the $\alpha_{31}-\eta$ plane for the case C_{13}, where we take $M_1 = 5 \times 10^{11}$ GeV, the lightest neutrino mass m_1 (or m_3) = 0.01 eV, and the Dirac phase $\delta_{CP} = -\pi/2$. The neutrino oscillation parameters $\theta_{12}, \theta_{13}, \theta_{23}, \Delta m^2_{21}$ and Δm^2_{31} (or Δm^2_{32}) are fixed at their best fit values [6]. The dashed line represents the experimentally observed values of the baryon asymmetry $Y_B^{\text{obs}} = 8.66 \times 10^{-11}$ [16, 17]. Note that the realistic value of Y_B can not be obtained in the case of NH neutrino mass spectrum with $(K_1, K_3) = (-, +)$.

4 Examples in S_4 flavour symmetry and CP

As a benchmark example and a further check to our general results in section 3, we shall study the case that the postulated two remnant CP transformations arise from the breaking of the generalized CP symmetry compatible with the S_4 group. Moreover, we assume that the S_4 flavour symmetry is broken down to an abelian subgroup G_l in the charged lepton sector, and the charged lepton mass matrix can be taken to be diagonal by properly choosing the basis. All possible lepton mixing patterns originating from this type of symmetry breaking patterns have been exploited [23, 42, 43, 45, 46], five phenomenologically viable cases are found, and concrete flavour models in which the breaking of S_4 and CP symmetry is achieved dynamically have been constructed [42, 43, 45, 46].

We shall adopt the conventions and notations of ref. [42] for the S_4 group. All the 24 elements of S_4 group can be generated by three generators S, T and U which fulfill the following relations:

$$S^2 = T^3 = U^2 = (ST)^3 = (SU)^2 = (TU)^2 = (STU)^4 = 1. \tag{4.1}$$

The group S_4 admits five irreducible representations: $1, 1', 2, 3$ and $3'$, where each repre-
Figure 4. Predictions for Y_B/Y_B^{obs} as a function of η for the case C_{13}, where we take $M_1 = 5 \times 10^{11}$ GeV, the lightest neutrino mass $m_1 (or m_3) = 0.01$ eV, and the Dirac phase $\delta_{CP} = -\pi/2$. The neutrino oscillation parameters θ_{12}, θ_{13}, θ_{23}, Δm^2_{21} and Δm^2_{31} (or Δm^2_{23}) are fixed at their best fit values [6]. The red dotted, blue long dashed, yellow solid, green dash-dotted and purple dash-dot-dotted lines correspond to $\alpha_{31} = -\pi$, $-\pi/2$, 0, $\pi/2$ and π respectively. The experimental observed value Y_B^{obs} is represented by the horizontal dashed line.

The presentation is labelled by its dimension. For the triplet representation $\mathbf{3}$, the representation matrices of the three generators are given by

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{4i\pi/3} & 0 \\ 0 & 0 & e^{2i\pi/3} \end{pmatrix}, \quad U = - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad (4.2)$$

where the abstract group element and its representation matrix are denoted by the same notation for simplicity. For the representation $\mathbf{3}'$, the generators U is simply opposite in sign with respect to that in the $\mathbf{3}$. We assign the three generations of left-handed leptons to the three dimensional representation $\mathbf{3}$, and $\mathbf{3}'$ would lead to the results for both flavour mixing and leptogenesis. Systematical and comprehensive studies have revealed that there are five possible cases which can accommodate the experimental measured values of the lepton mixing angles for certain values of the parameter θ. The corresponding residual symmetries are summarized in table 4. In the following, we shall apply the general formalism of section 3 to discuss the predictions for leptogenesis in each case.

- 17 -
Figure 5. The contour plots of Y_B/Y_B^{obs} in the plane $\alpha_{21} - \alpha_{31}$ versus η for the case C_{23}, where we take $M_1 = 5 \times 10^{11}$ GeV, the lightest neutrino mass $m_1 (or m_3) = 0.01$ eV, and the Dirac phase $\delta_{\text{CP}} = -\pi/2$. The neutrino oscillation parameters θ_{12}, θ_{13}, θ_{23}, Δm_{21}^2 and Δm_{31}^2 (or Δm_{32}^2) are fixed at their best fit values [6]. The dashed line represents the experimentally observed values of the baryon asymmetry $Y_B^{obs} = 8.66 \times 10^{-11}$ [16, 17]. Note that the realistic value of Y_B can not be obtained in the case of NH with $(K_2, K_3) = (-, +)$ and IH with $(K_2, K_3) = (+, -)$.

G_i	$(X_{\nu 1}, X_{\nu 2})$
(i)	Z_3^T
(ii)	(U, SU)
(iii)	$(1, SU)$
(iv)	(U, S)
(v)	$Z_4^{TST^2U}$

Table 4. The residual symmetries of the five phenomenologically interesting cases within S_4 flavour symmetry and CP. Here Z_3^T and $Z_4^{TST^2U}$ denote the Z_3 and Z_4 subgroups of S_4 generated by T and TST^2U respectively. All three mixing angles can be in accordance with experimental data in these cases.
Figure 6. Predictions for Y_B/Y_B^{obs} as a function of η for the case C_{23}, where we take $M_1 = 5 \times 10^{11}$ GeV, the lightest neutrino mass m_1 (or m_3) = 0.01eV, and the Dirac phase $\delta_{CP} = -\pi/2$. The neutrino oscillation parameters θ_{12}, θ_{13}, θ_{23}, Δm^2_{21} and Δm^2_{31} (or Δm^2_{32}) are fixed at their best fit values [6]. The red dotted, blue long dashed, yellow solid, green dash-dotted and purple dash-dot-dotted lines correspond to $\alpha_{21} - \alpha_{31} = -\pi$, $-\pi/2$, 0, $\pi/2$ and π respectively. The experimental observed value Y_B^{obs} is represented by the horizontal dashed line.

Case (i): $\mathcal{G}_l = Z_3^T$ and $(X_{\nu 1}, X_{\nu 2}) = (1, S)$

In this case, the parameters φ, ϕ, ρ, κ_1, κ_2 and κ_3 are determined to be

$$
\varphi = \arccos \frac{1}{\sqrt{3}}, \quad \phi = \frac{\pi}{4}, \quad \rho = 0, \quad \kappa_1 = 0, \quad \kappa_2 = 0, \quad \kappa_3 = 0. \quad (4.3)
$$

The generated residual flavour symmetry is $G_\nu = X_{\nu 1}X^*_{\nu 2} = S$, and it fixes one column of the mixing matrix

$$
v_1 = \begin{pmatrix}
\cos \varphi \\
\sin \varphi \cos \phi \\
\sin \varphi \sin \phi
\end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}, \quad (4.4)
$$

which can only be the second column of the mixing matrix to be compatible with data [6]. Therefore the permutation matrix P_ν should be P_{213} or P_{231}, and in fact these two permutations lead to the same mixing pattern if a redefinition of the free parameter θ is taken into account. Substituting the parameter values of eq. (4.3) into the general expression
for mixing matrix in eq. (3.15), we obtain
\[U = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \cos \theta & \sqrt{2} & 2 \sin \theta \\ -\cos \theta - \sqrt{3} \sin \theta & \sqrt{2} & - \sin \theta + \sqrt{3} \cos \theta \\ -\cos \theta + \sqrt{3} \sin \theta & \sqrt{2} & - \sin \theta - \sqrt{3} \cos \theta \end{pmatrix} \tilde{X}_{\nu_1}^{-\frac{1}{2}}, \tag{4.5} \]
which gives rise to
\[
\sin \alpha_{21} = \sin \alpha_{31} = \sin \delta_{CP} = 0,
\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta, \quad \sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta}, \quad \sin^2 \theta_{23} = \frac{1}{2} - \frac{\sqrt{3} \sin 2\theta}{2(2 + \cos 2\theta)}. \tag{4.6} \]

The mixing matrix and mixing parameters exactly coincide with those of refs. [23, 42]. We see that all the three CP violating phases are conserved so that the rephasing invariants are zero,
\[I_{13}^\nu = I_{13}^\mu = I_{13} = 0. \tag{4.7} \]
The reason for the vanishing is because \(\kappa_2 = \kappa_3 \), as pointed out below eq. (3.35). Hence the leptogenesis CP asymmetries are also zero \(\epsilon_\nu = \epsilon_\mu = \epsilon_\tau = 0 \) and consequently the net baryon asymmetry can not be generated in this case except that the residual symmetries are further broken by higher order contributions. In general, if either \(X_{\nu_1} \) or \(X_{\nu_2} \) is an identity matrix in the charged lepton diagonal basis, \(\kappa_2 = \kappa_3 \) would be fulfilled so that the asymmetry parameter \(\epsilon_\alpha \) would vanish.

Case (ii): \(G_l = Z_3^T \) and \((X_{\nu 1}, X_{\nu 2}) = (U, SU) \)

For our parametrization of the residual CP transformations in eq. (3.13), we can choose the parameter values as,
\[\varphi = \arccos \frac{1}{\sqrt{3}}, \quad \phi = \frac{\pi}{4}, \quad \rho = 0, \quad \kappa_1 = \pi, \quad \kappa_2 = \pi, \quad \kappa_3 = 0. \tag{4.8} \]
Utilizing the master formula for the mixing matrix in eq. (3.15), we have
\[U = \frac{i}{\sqrt{6}} \begin{pmatrix} 2 \cos \theta & \sqrt{2} & 2 \sin \theta \\ -\cos \theta + i\sqrt{3} \sin \theta & \sqrt{2} & - \sin \theta - i\sqrt{3} \cos \theta \\ -\cos \theta - i\sqrt{3} \sin \theta & \sqrt{2} & - \sin \theta + i\sqrt{3} \cos \theta \end{pmatrix} \tilde{X}_{\nu_1}^{-\frac{1}{2}}, \tag{4.9} \]
where we have chosen \(P_\nu = P_{213} \) such that the \(R \)-matrix takes the form of \(C_{13} \). We can read out the mixing angles as well as CP violating phases:
\[
\sin \alpha_{21} = \sin \alpha_{31} = 0, \quad |\sin \delta_{CP}| = 1,
\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta, \quad \sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta}, \quad \sin^2 \theta_{23} = \frac{1}{2}. \tag{4.10} \]
Note that both atmospheric mixing angle \(\theta_{23} \) and Dirac CP phase \(\delta_{CP} \) are maximal in this case. Accordingly the rephase invariants are found to be
\[I_{13}^\nu = 0, \quad I_{13}^\mu = -\frac{1}{2\sqrt{3}}, \quad I_{13} = \frac{1}{2\sqrt{3}}. \tag{4.11} \]
which implies
\[\epsilon_e = 0, \quad \epsilon_\mu = -\epsilon_\tau. \]

For the washout parameter \(\tilde{m}_\alpha \), we find
\[\tilde{m}_e = \frac{1}{3} \left(m_1 R_{11}^2 + m_3 R_{13}^2 + (m_1 R_{11}^2 - m_3 R_{13}^2) \cos 2\theta + 2\sqrt{m_1 m_3} R_{11}' R_{13}' \sin 2\theta \right), \]
\[\tilde{m}_\mu = \frac{1}{6} \left[2 (m_1 R_{11}^2 + m_3 R_{13}^2) - (m_1 R_{11}^2 - m_3 R_{13}^2) \cos 2\theta - 2\sqrt{m_1 m_3} R_{11}' R_{13}' \sin 2\theta \right], \]
\[\tilde{m}_\tau = \frac{1}{6} \left[2 (m_1 R_{11}^2 + m_3 R_{13}^2) - (m_1 R_{11}^2 - m_3 R_{13}^2) \cos 2\theta - 2\sqrt{m_1 m_3} R_{11}' R_{13}' \sin 2\theta \right]. \]

The parametrization of \(R_{11}' \) and \(R_{13}' \) for different values of \(K_j \) is listed in table 2. We see \(R_{11}' R_{13}' \) is \(\cos \eta \sin \eta \) or \(\cosh \eta \sinh \eta \). If \(\eta \) and \(\theta \) are replaced by \(-\eta \) and \(-\theta \) respectively, the washout mass \(\tilde{m}_\alpha \) remains invariant, the CP asymmetry \(\epsilon_\alpha \) changes sign, and consequently the baryon asymmetry \(Y_B \) would change sign as well. For the measured values of the reactor angle \(\sin^2 \theta_{13} \approx 0.0218 \) [6], we find \(\theta = \pm 10.418^\circ \) and the solar mixing angle \(\sin^2 \theta_{12} \approx 0.341 \) which is within the 3\(\sigma \) range [6]. The predictions for \(Y_B \) as a function of \(\eta \) are plotted in figure 7. We see that the correct value of \(Y_B \) can be reproduced for certain values of \(\eta \) except in the case of NH with \((K_1, K_2, K_3) = (-, \pm, +) \).

Case (iii): \(G_l = Z_3^T \) and \((X_{\nu 1}, X_{\nu 2}) = (1, SU) \)

These two desired residual CP transformations can be reproduced for
\[\varphi = \arcsin \frac{1}{\sqrt{3}}, \quad \phi = \frac{5\pi}{4}, \quad \rho = 0, \quad \kappa_1 = 0, \quad \kappa_2 = 0, \quad \kappa_3 = 0. \]

One can check that one column of the mixing matrix takes the form \((2, -1, -1)^T/\sqrt{6}\) which is the first column of the tri-bimaximal mixing pattern. We find the lepton mixing matrix is
\[U = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 & \sqrt{2} \cos \theta & \sqrt{2} \sin \theta \\ -1 & \sqrt{2} \cos \theta + \sqrt{3} \sin \theta & \sqrt{2} \sin \theta - \sqrt{3} \cos \theta \\ -1 & \sqrt{2} \cos \theta - \sqrt{3} \sin \theta & \sqrt{2} \sin \theta + \sqrt{3} \cos \theta \end{pmatrix} \tilde{X}_{\nu 1}^{-1/3}, \]

where we take \(P_\nu = P_{123} = 1 \) in order to be in accordance with experimental data. The lepton mixing parameters can be straightforwardly extracted as
\[\sin \alpha_{21} = \sin \theta_{\mu} = \sin \delta_{CP} = 0, \]
\[\sin^2 \theta_{13} = \frac{1}{3} \sin^2 \theta, \quad \sin^2 \theta_{12} = \frac{\cos^2 \theta}{2 + \cos^2 \theta}, \quad \sin^2 \theta_{23} = \frac{1}{2} - \frac{\sqrt{6} \sin 2\theta}{5 + \cos 2\theta}. \]

This mixing pattern predicts both rephase invariant \(I_{23}^0 \) and CP asymmetry \(\epsilon_\alpha \) to be vanishing:
\[I_{23}^0 = I_{23}^+ = I_{23}^- = 0, \quad \epsilon_\mu = \epsilon_\tau = 0. \]

This is because the remnant CP transformation \(X_{\nu 1} \) is a unit matrix and consequently we have \(\kappa_2 = \kappa_3 = 0 \). As a result, although the experimentally measured values of the mixing angles can be accommodated, moderate subleading corrections are necessary in order to describe the baryon asymmetry.
Figure 7. The variation Y_B/Y_B^{obs} with respect to the parameter η in case (ii), where we choose $M_1 = 5 \times 10^{11} \text{GeV}$ and the lightest neutrino mass $m_1(\text{or } m_3) = 0.01\text{eV}$. The parameter θ is taken to $\theta = \pm 10.418^\circ$ in order to accommodate the measured value of θ_{13} [6]. The red solid, blue dotted, green dash-dotted lines correspond to $(K_1, K_2, K_3) = (+, +, +)$, $(-, +, -)$, and $(+, - ,+)$ respectively. The experimental observed value Y_B^{obs} is represented by the horizontal dashed line.

Case (iv): $G_1 = Z_3^T$ and $(X_{\nu 1}, X_{\nu 2}) = (U, S)$

In this case, the imposed residual CP transformations entail the values of $\varphi, \phi, \rho, \kappa_1, \kappa_2$ and κ_3 are

$$
\varphi = \arcsin \frac{1}{\sqrt{3}}, \quad \phi = \frac{5\pi}{4}, \quad \rho = 0, \quad \kappa_1 = \pi, \quad \kappa_2 = \pi, \quad \kappa_3 = 2\pi.
$$

(4.18)

Similar to previous case, one column of the mixing matrix is fixed to be $(2, -1, -1)^T/\sqrt{6}$
by the residual flavour symmetry $G_{\nu} = X_{\nu 1} X_{\nu 2} = SU$. We obtain the mixing pattern is

$$U = \frac{i}{\sqrt{6}} \begin{pmatrix} 2 \sqrt{2} \cos \theta & \sqrt{2} \sin \theta \\ -1 \sqrt{2} \cos \theta + i\sqrt{3} \sin \theta & \sqrt{2} \sin \theta - i \sqrt{3} \cos \theta \\ -1 \sqrt{2} \cos \theta - i\sqrt{3} \sin \theta & \sqrt{2} \sin \theta + i \sqrt{3} \cos \theta \end{pmatrix} \tilde{X}_{\nu 1}^{-\frac{1}{2}},$$

where $P_{\nu} = P_{123} = 1$ is taken. Therefore the R-matrix takes the form of C_{23} in which R_{12} and R_{13} are nonzero. The mixing parameters read as

$$\sin \alpha_{21} = \sin \alpha_{31} = 0, \quad |\sin \delta_{CP}| = 1,$$

$$\sin^2 \theta_{13} = \frac{1}{3} \sin^2 \theta, \quad \sin^2 \theta_{12} = \frac{\cos^2 \theta}{2 + \cos^2 \theta}, \quad \sin^2 \theta_{23} = \frac{1}{2}. \quad (4.20)$$

Note that both mixing matrix and mixing parameters are the same as those of refs. [23, 45]. We find that the rephasing invariant I_{23}^e is

$$I_{23}^e = 0, \quad I_{23}^\mu = \frac{1}{\sqrt{6}}, \quad I_{23}^\tau = -\frac{1}{\sqrt{6}}, \quad (4.21)$$

which gives rise to

$$\epsilon_e = 0, \quad \epsilon_{\mu} = -\epsilon_{\tau}. \quad (4.22)$$

The washout mass \tilde{m}_α is given by

$$\tilde{m}_e = \frac{1}{6} \left[m_2 R_{12}^2 + m_3 R_{13}^2 + (m_2 R_{12}^2 - m_3 R_{13}^2) \cos 2\theta + 2 \sqrt{m_2 m_3} R_{12}' R_{13}' \sin 2\theta \right],$$

$$\tilde{m}_\mu = \frac{1}{12} \left[5 (m_2 R_{12}^2 + m_3 R_{13}^2) - (m_2 R_{12}^2 - m_3 R_{13}^2) \cos 2\theta - 2 \sqrt{m_2 m_3} R_{12}' R_{13}' \sin 2\theta \right],$$

$$\tilde{m}_\tau = \frac{1}{12} \left[5 (m_2 R_{12}^2 + m_3 R_{13}^2) - (m_2 R_{12}^2 - m_3 R_{13}^2) \cos 2\theta - 2 \sqrt{m_2 m_3} R_{12}' R_{13}' \sin 2\theta \right]. \quad (4.23)$$

The best fit value of the reactor mixing angle $\sin^2 \theta_{13} \simeq 0.0218$ [6] leads to $\theta = \pm 14.817^\circ$. With this value, we get the solar angles $\sin^2 \theta_{12} \simeq 0.318$ which is compatible with the experimentally favored region [6]. The numerical results for the baryon asymmetry are displayed in figure 8. It is easy to see that the observed baryon asymmetry can be generated via leptogenesis except in the case of NH with $(K_1, K_2, K_3) = (\pm, -, +)$ and IH with $(K_1, K_2, K_3) = (\pm, +, -)$.

Case (v): $G_l = Z_4^{TST^2U}$ and $(X_{\nu 1}, X_{\nu 2}) = (TST^2U, T^2)$

The residual subgroup $G_l = Z_4^{TST^2U}$ in the charged lepton sector implies that the combination $m_l m_l^\dagger$ is invariant under the transformation TST^2U, i.e.

$$(TST^2U)^\dagger m_l m_l^\dagger (TST^2U) = m_l m_l^\dagger, \quad (4.24)$$

from which we learn that TST^2U and $m_l m_l^\dagger$ are commutable. Therefore both of them are diagonalized by the same unitary matrix U_l as follows

$$U_l^\dagger m_l m_l^\dagger U_l = \text{diag}(m_e^2, m_\mu^2, m_\tau^2), \quad U_l^\dagger (TST^2U) U_l = \text{diag}(i, 1, -i), \quad (4.25)$$

The washout mass \tilde{m}_e is given by

$$\tilde{m}_e = \frac{1}{6} \left[m_2 R_{12}^2 + m_3 R_{13}^2 + (m_2 R_{12}^2 - m_3 R_{13}^2) \cos 2\theta + 2 \sqrt{m_2 m_3} R_{12}' R_{13}' \sin 2\theta \right],$$

$$\tilde{m}_\mu = \frac{1}{12} \left[5 (m_2 R_{12}^2 + m_3 R_{13}^2) - (m_2 R_{12}^2 - m_3 R_{13}^2) \cos 2\theta - 2 \sqrt{m_2 m_3} R_{12}' R_{13}' \sin 2\theta \right],$$

$$\tilde{m}_\tau = \frac{1}{12} \left[5 (m_2 R_{12}^2 + m_3 R_{13}^2) - (m_2 R_{12}^2 - m_3 R_{13}^2) \cos 2\theta - 2 \sqrt{m_2 m_3} R_{12}' R_{13}' \sin 2\theta \right]. \quad (4.23)$$

The best fit value of the reactor mixing angle $\sin^2 \theta_{13} \simeq 0.0218$ [6] leads to $\theta = \pm 14.817^\circ$. With this value, we get the solar angles $\sin^2 \theta_{12} \simeq 0.318$ which is compatible with the experimentally favored region [6]. The numerical results for the baryon asymmetry are displayed in figure 8. It is easy to see that the observed baryon asymmetry can be generated via leptogenesis except in the case of NH with $(K_1, K_2, K_3) = (\pm, -, +)$ and IH with $(K_1, K_2, K_3) = (\pm, +, -)$.
Figure 8. The variation Y_B/Y_{B}^{obs} with respect to the parameter η in case (iv), where we choose $M_1 = 5 \times 10^{11}$ GeV and the lightest neutrino mass m_1 (or m_3) = 0.01 eV. The parameter θ is taken to be $\theta = \pm 14.817^\circ$ in order to accommodate the measured value of θ_{13} [6]. The red solid, blue dotted, green dash-dotted lines correspond to $(K_1, K_2, K_3) = (\pm, +, +)$, $(\pm, +, -)$, and $(\pm, -, +)$ respectively. The experimental observed value Y_B^{obs} is represented by the horizontal dashed line.

Subsequently we perform a change of basis with the unitary matrix U_l to go to the charged lepton mass matrix diagonal basis. Then the residual CP transformations $X_{\nu 1}$ and $X_{\nu 2}$ are given by

$$ U_l = \frac{1}{2\sqrt{3}} \begin{pmatrix} 2e^{\frac{i\pi}{3}} & 2 & -2e^{-\frac{3i\pi}{4}} \\ -(1 - \sqrt{3})e^{\frac{i\pi}{4}} & 2 & (1 + \sqrt{3})e^{\frac{3i\pi}{4}} \\ -(1 + \sqrt{3})e^{\frac{i\pi}{4}} & 2 & (1 - \sqrt{3})e^{\frac{3i\pi}{4}} \end{pmatrix}. $$

Subsequently we perform a change of basis with the unitary matrix U_l to go to the charged lepton mass matrix diagonal basis. Then the residual CP transformations $X_{\nu 1}$ and $X_{\nu 2}$ are given by

$$ U_l = \frac{1}{2\sqrt{3}} \begin{pmatrix} 2e^{\frac{i\pi}{3}} & 2 & -2e^{-\frac{3i\pi}{4}} \\ -(1 - \sqrt{3})e^{\frac{i\pi}{4}} & 2 & (1 + \sqrt{3})e^{\frac{3i\pi}{4}} \\ -(1 + \sqrt{3})e^{\frac{i\pi}{4}} & 2 & (1 - \sqrt{3})e^{\frac{3i\pi}{4}} \end{pmatrix}. $$

Subsequently we perform a change of basis with the unitary matrix U_l to go to the charged lepton mass matrix diagonal basis. Then the residual CP transformations $X_{\nu 1}$ and $X_{\nu 2}$ are given by

$$ U_l = \frac{1}{2\sqrt{3}} \begin{pmatrix} 2e^{\frac{i\pi}{3}} & 2 & -2e^{-\frac{3i\pi}{4}} \\ -(1 - \sqrt{3})e^{\frac{i\pi}{4}} & 2 & (1 + \sqrt{3})e^{\frac{3i\pi}{4}} \\ -(1 + \sqrt{3})e^{\frac{i\pi}{4}} & 2 & (1 - \sqrt{3})e^{\frac{3i\pi}{4}} \end{pmatrix}. $$
become
\[
X'_{\nu_1} = U_l^\dagger X_{\nu_1} U_l^* = 1, \quad X'_{\nu_2} = U_l^\dagger X_{\nu_2} U_l^* = \frac{1}{2} \begin{pmatrix}
-1 & \sqrt{2} & 1 \\
\sqrt{2} & 0 & \sqrt{2} \\
1 & \sqrt{2} & -1
\end{pmatrix},
\] (4.27)
which yield
\[
\varphi = \frac{\pi}{3}, \quad \phi = \arcsin \frac{1}{\sqrt{3}}, \quad \rho = \arccos \frac{1}{\sqrt{3}}, \quad \kappa_1 = 0, \quad \kappa_2 = 0, \quad \kappa_3 = 0.
\] (4.28)

Using the predicted formula eq. (3.15) for the mixing matrix, we have
\[
U = \frac{1}{2} \begin{pmatrix}
\sin \theta + \sqrt{2} \cos \theta & \cos \theta - \sqrt{2} \sin \theta \\
-\sqrt{2} \sin \theta & \sqrt{2} & -\sqrt{2} \cos \theta \\
\sin \theta - \sqrt{2} \cos \theta & \cos \theta + \sqrt{2} \sin \theta
\end{pmatrix} \hat{X}_{\nu_1}^{-\frac{1}{2}}.
\] (4.29)

We see one column of the mixing matrix is \((1, \sqrt{2}, 1)^T / 2\) which should be the second column of the mixing matrix in order to accommodate the experimental data. Hence we take the permutation matrix \(P_{\nu} = P_{231}\). The mixing angles and CP violating phases are
\[
\sin \alpha_21 = \sin \alpha_{31} = \sin \delta_{CP} = 0, \quad \sin^2 \theta_{13} = \frac{1}{8} \left(3 - \cos 2\theta - 2\sqrt{2} \sin 2\theta\right),
\]
\[
\sin^2 \theta_{12} = \frac{2}{5 + \cos 2\theta + 2\sqrt{2} \sin 2\theta}, \quad \sin^2 \theta_{23} = \frac{4 \cos^2 \theta}{5 + \cos 2\theta + 2\sqrt{2} \sin 2\theta}.
\] (4.30)

Since \(\kappa_2 = \kappa_3\) is fulfilled in this case, both \(I_{13}^e\) and \(\epsilon_\alpha\) are vanishing,
\[
I_{13}^e = I_{13}^\mu = I_{13}^r = 0, \quad \epsilon_e = \epsilon_\mu = \epsilon_r = 0.
\] (4.31)

As a result, \(Y_B\) is predicted to be zero and the postulated residual symmetry should be broken by higher order contributions to make the leptogenesis viable.

5 Summary and conclusions

Baryogenesis via leptogenesis is a simple mechanism to explain the observed baryon asymmetry of the Universe. Leptogenesis is a natural outcome of the seesaw mechanism which provides a very elegant and attractive explanation of the smallness of the neutrino masses. In general there is no direct connection between the leptogenesis CP violating parameters and the low energy leptonic CP violating parameters (i.e. Dirac and Majorana phases) in the mixing matrix \([62, 80]\).

We have considered leptogenesis in the presence of a discrete flavour symmetry, which has been widely used to understand lepton mixing angles, extended to include CP symmetry in order to predict CP violating phases. In this approach, the lepton flavour mixing and CP phases are constrained by the residual discrete flavour and CP symmetries of the neutrino and charged lepton mass matrices. In this paper, we have shown that leptogenesis is similarly constrained by the residual discrete flavour and CP symmetries of the neutrino
and charged lepton sector, suitably extended to include three RH neutrinos as in the type-I seesaw mechanism.

We have shown that if two residual CP transformations (or equivalent a Z_2 flavour symmetry and a CP symmetry) are preserved in the neutrino sector, then the lepton mixing angles and CP violating phases are determined in terms of a real parameter θ, and the R-matrix in Casas-Ibarra parametrization depends on only a single real parameter η. We have presented the most general parametrization of the residual CP transformations and the R-matrix. We find that the CP asymmetry parameter ϵ_α is independent of the free parameter θ, and vanishes in the case of $\kappa_2 = \kappa_3$. In particular, the flavour CP asymmetries and the baryon asymmetry are due exclusively to the Dirac and Majorana CP phases in the mixing matrix U. As a result, observation of CP violation in neutrino oscillation and neutrinoless double beta decay would generically imply the existence of a nonvanishing baryon asymmetry.

Since the element of the R-matrix is constrained to be either real or purely imaginary by the residual CP transformation, the total lepton charge asymmetry $\epsilon_1 \equiv \epsilon_e + \epsilon_{\mu} + \epsilon_{\tau}$ is predicted to be zero. Therefore leptogenesis cannot proceed if it takes place at a temperature $T \sim M_1 > 10^{12}$ GeV. In the present paper, we are concerned with the interval of 10^{9} GeV $\leq M_1 \leq 10^{12}$ GeV such that the lepton flavour effects become relevant in leptogenesis. We have shown that the observed baryon asymmetry can be produced only for certain forms of the R-matrix. If there are three or four residual CP transformations in the neutrino sector, a Klein four remnant flavour symmetry can be generated by the residual CP transformations, and the CP asymmetry ϵ_α would be vanishing.

We emphasise that the formalism presented here is quite general, and independent of the dynamics responsible for achieving the assumed residual symmetry. Therefore the formalism may be applied to any theory in which there is some residual flavour and CP symmetry. In particular, once the residual CP transformations are specified, the predictions for the mixing matrix and the baryon asymmetry can be easily obtained by using our formula. As a example, we have applied the formalism to the case that the residual CP transformations arise from the breaking of the generalized CP symmetry compatible with the S_4 flavour symmetry group. We have demonstrated that the previous known results for the PMNS matrix and mixing parameters in previous literature are reproduced exactly. Moreover, we have shown that the correct size of the baryon asymmetry can be generated for two cases which predict maximal atmospheric mixing angle and maximal Dirac phase, whereas it is precisely zero in the other cases where low energy CP is conserved.

Acknowledgments

P.C. and G.J.D are supported by the National Natural Science Foundation of China under Grant Nos. 11275188, 11179007 and 11522546, and they are grateful to Cai-Chang Li for stimulating discussion. SK acknowledges support from the STFC Consolidated ST/J000396/1 grant and the European Union FP7 ITN-INVISIBLES (Marie Curie Actions, PITN- GA-2011- 289442). G.J.D. would like to thank the Physics and Astronomy at the University of Southampton for hospitality during his visit.
A Leptogenesis and flavour symmetry

In this section, we shall analyze the implications for the leptogenesis if only flavour symmetry (not CP symmetry) is imposed on the theory. We shall study two scenarios in which either a Z_2 or a Klein four residual flavour symmetry is preserved by the seesaw Lagrangian of eq. (2.1).

A.1 Z_2 residual flavour symmetry

Under the action of a generic Z_2 residual flavour symmetry, the neutrinos fields transforms as follows

$$\nu_L \rightarrow G_\nu \nu_L, \quad N_R \rightarrow \hat{G}_N N_R,$$

where both G_ν and \hat{G}_N are 3×3 unitary matrices with $G_\nu^2 = \hat{G}_N^2 = 1$. For the symmetry to hold, the Yukawa coupling matrix λ and the RH neutrino mass matrix M should fulfill

$$\hat{G}_N^\dagger \lambda G_\nu = \lambda, \quad \hat{G}_N^\dagger M \hat{G}_N = M.$$ \hspace{1cm} (A.2)

Since $M \equiv \operatorname{diag}(M_1, M_2, M_3)$ is diagonal with $M_1 \neq M_2 \neq M_3$, the symmetry transformation \hat{G}_N should be a diagonal matrix with entries ± 1, i.e.

$$\hat{G}_N = \operatorname{diag}(\pm 1, \pm 1, \pm 1).$$ \hspace{1cm} (A.3)

The effective light neutrino mass matrix m_ν is also invariant under the residual flavour symmetry transformation of eq. (A.1),

$$G_\nu^T m_\nu G_\nu = m_\nu,$$ \hspace{1cm} (A.4)

which leads to

$$U^\dagger G_\nu U = \hat{G}_\nu, \quad \text{with} \quad \hat{G}_\nu = \operatorname{diag}(\pm 1, \pm 1, \pm 1).$$ \hspace{1cm} (A.5)

From eq. (A.2) and eq. (A.5), we can derive that the R-matrix in the Casas-Ibarra parametrization has to satisfy

$$R = \hat{G}_N R \hat{G}_\nu.$$ \hspace{1cm} (A.6)

Most generally \hat{G}_N and \hat{G}_ν can be written as

$$\hat{G}_N = P_N^T \operatorname{diag}(1, -1, -1) P_N, \quad \hat{G}_\nu = P_\nu^T \operatorname{diag}(1, -1, -1) P_\nu,$$ \hspace{1cm} (A.7)

where P_N and P_ν are permutation matrices shown in eq. (3.17). Then eq. (A.6) implies that the R-matrix is block diagonal:

$$P_N R P_\nu^T = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix},$$ \hspace{1cm} (A.8)

Because R is an orthogonal matrix, consequently it can be generically parameterized as

$$P_N R P_\nu^T = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \cos(\eta_R + i \eta_I) & \sin(\eta_R + i \eta_I) \\ 0 & -\sin(\eta_R + i \eta_I) & \cos(\eta_R + i \eta_I) \end{pmatrix},$$ \hspace{1cm} (A.9)
where η_R and η_I are real, $\cos(\eta_R + i\eta_I) \equiv \cosh \eta_I \cos \eta_R - i \sinh \eta_I \sin \eta_R$, and $\sin(\eta_R + i\eta_I) \equiv \cosh \eta_I \sin \eta_R + i \sinh \eta_I \cos \eta_R$. This indicates that R-matrix would depend on two real parameters in the presence of a residual Z_2 flavour symmetry.

As regards the lepton mixing matrix U, from eq. (A.5), we know that only one column of U is fixed by the residual Z_2 flavour symmetry, it is exactly the eigenvector of G_ν with eigenvalues $+1$, and it can be parameterized as

$$v_1 = \begin{pmatrix} \cos \varphi \\ \sin \varphi \cos \phi \\ \sin \varphi \sin \phi \end{pmatrix},$$

where the phase of each element has been absorbed into the charged lepton fields. Accordingly G_ν is

$$G_\nu = 2v_1v_1^\dagger - 1. \quad (A.11)$$

The other two columns of the mixing matrix U are not constrained, and they can be obtained from any orthonormal pair of basis vectors v' and v'' in the plane orthogonal to v_1 by a unitary rotation. As a result, U is determined to be of the form

$$U = (v_1, v', v'') \begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & \cos \varphi e^{i\alpha_2} & \sin \varphi e^{i(\alpha_3 + \alpha_4)} \\ 0 & -\sin \varphi e^{i(\alpha_2 - \alpha_4)} & \cos \varphi e^{i\alpha_3} \end{pmatrix} P_\nu, \quad (A.12)$$

where

$$v' = \begin{pmatrix} \sin \varphi \\ -\cos \varphi \cos \phi \\ -\cos \varphi \sin \phi \end{pmatrix}, \quad v'' = \begin{pmatrix} 0 \\ \sin \phi \\ -\cos \phi \end{pmatrix}, \quad (A.13)$$

which have the properties $v_1^\dagger v' = v_1^\dagger v'' = v''^\dagger v'' = 0$. Notice that the Majorana CP violating phase can not be can not be predicted in this approach. If the values of ϕ and φ are input such that the residual flavour symmetry G_ν is fixed, one can straightforwardly calculate the asymmetry ϵ_α and the washout mass \tilde{m}_α by eq. (2.9) and eq. (2.11) respectively, and subsequently the baryon asymmetry Y_B can be determined. Obviously the present scenario is relatively less predictive than the residual CP scheme discussed in section 3. However, the totally CP asymmetry ϵ_1 is generically nonzero in this case such that the experimentally observed baryon asymmetry could possibly be generated even if $T > M_1 > 10^{12}$ GeV.

A.2 K_4 residual flavour symmetry

We proceed to consider the case that the residual flavour symmetry in the neutrino sector is the full Klein four group K_4, under which ν_L and N_R transform as

$$\text{Flavour}_1: \quad \nu_L \rightarrow G_{\nu_1} \nu_L, \quad N_R \rightarrow \tilde{G}_{N_1} N_R,$$

$$\text{Flavour}_2: \quad \nu_L \rightarrow G_{\nu_2} \nu_L, \quad N_R \rightarrow \tilde{G}_{N_2} N_R,$$

$$\text{Flavour}_3: \quad \nu_L \rightarrow G_{\nu_3} \nu_L, \quad N_R \rightarrow \tilde{G}_{N_3} N_R. \quad (A.14)$$
The transformations $G_{\nu 1}$, $G_{\nu 2}$ and $G_{\nu 3}$ as well as \hat{G}_{N1}, \hat{G}_{N2} and \hat{G}_{N3} generate a Klein group, consequently they satisfy the following conditions:

$$
\begin{align*}
G^2_{\nu i} &= 1, & G_{\nu i}G_{\nu j} &= G_{\nu j}G_{\nu i} = G_{\nu k}, \\
\hat{G}^2_{N1} &= 1, & \hat{G}_{N i}\hat{G}_{N j} &= \hat{G}_{N j}\hat{G}_{N i} = \hat{G}_{N k},
\end{align*}
$$

with $i \neq j \neq k$. \quad (A.15)

The invariance of λ, M and m_ν under the assumed flavour symmetry transformations in eq. (A.14) gives rise to

$$
\begin{align*}
\hat{G}^\dagger_{N1}\lambda G_{\nu 1} &= \lambda, & \hat{G}^\dagger_{N1}M\hat{G}^*_{N1} &= M, & G^T_{\nu 1}m_\nu G_{\nu 1} &= m_\nu, \\
\hat{G}^\dagger_{N2}\lambda G_{\nu 2} &= \lambda, & \hat{G}^\dagger_{N2}M\hat{G}^*_{N2} &= M, & G^T_{\nu 2}m_\nu G_{\nu 2} &= m_\nu, \\
\hat{G}^\dagger_{N3}\lambda G_{\nu 3} &= \lambda, & \hat{G}^\dagger_{N3}M\hat{G}^*_{N3} &= M, & G^T_{\nu 3}m_\nu G_{\nu 3} &= m_\nu.
\end{align*}
$$

It follows that all the three transformations $G_{\nu 1}$, $G_{\nu 2}$ and $G_{\nu 3}$ should be diagonalized by the mixing matrix U:

$$
U^\dagger G_{\nu i}U = \hat{G}_{\nu i}, \quad U^\dagger G_{\nu 2}U = \hat{G}_{\nu 2}, \quad U^\dagger G_{\nu 3}U = \hat{G}_{\nu 3}.
$$

(A.17)

In our working basis, $\hat{G}_{\nu 1}$, $\hat{G}_{\nu 2}$, $\hat{G}_{\nu 3}$ and \hat{G}_{N1}, \hat{G}_{N2}, \hat{G}_{N3} are all diagonal matrices with entries ± 1, and they can be conveniently written as

$$
\begin{align*}
\hat{G}_{\nu 1} &= P^T_{\nu} \text{diag}(1, -1, -1)P_{\nu}, & \hat{G}_{\nu 2} &= P^T_{\nu} \text{diag}(-1, 1, -1)P_{\nu}, & \hat{G}_{\nu 3} &= P^T_{\nu} \text{diag}(-1, -1, 1)P_{\nu}, \\
\hat{G}_{N1} &= P^T_{N} \text{diag}(1, -1, -1)P_{N}, & \hat{G}_{N2} &= P^T_{N} \text{diag}(-1, 1, -1)P_{N}, & \hat{G}_{N3} &= P^T_{N} \text{diag}(-1, -1, 1)P_{N},
\end{align*}
$$

(A.18)

where P_{ν} and P_{N} are generic permutation matrices. In the same fashion as previous section, we find that the R-matrix is subject to the following constraints,

$$
R = \hat{G}_{N1}R\hat{G}_{\nu 1}, \quad R = \hat{G}_{N2}R\hat{G}_{\nu 2}, \quad R = \hat{G}_{N3}R\hat{G}_{\nu 3},
$$

(A.19)

from which we can derive that the R-matrix has to be of the form

$$
P_{N}RP^T_{\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

(A.20)

This indicates that each row of R only has a unique nonvanishing element equal to ± 1 such that the asymmetry ϵ_α vanishes

$$
\epsilon_\alpha = 0.
$$

(A.21)

This result is independent of the detailed form of the residual K_4 flavour symmetry transformation. It is demonstrated that generally the leptogenesis CP asymmetries vanish in the limit of exact flavour symmetry \cite{81}. however, the flavour symmetry must be broken in practical model building. Here we show the CP asymmetry is still zero, provided a K_4 residual subgroup is preserved in the neutrino sector.

In the end, we would like to present a parametrization for the residual flavour symmetry transformations $G_{\nu 1}$, $G_{\nu 2}$ and $G_{\nu 3}$. Each $G_{\nu i}$ has a unique eigenvector with eigenvalue $+1$. Since $G_{\nu i}$ commutes with $G_{\nu j}$, v_i is orthogonal to v_j for $i \neq j$. As previously mentioned,
v_1 can be taken to be given by eq. (A.10), and then the remaining two vectors v_2 and v_3 can be expressed as

$$v_2 = v' \cos \zeta e^{i\beta_2} - v'' \sin \zeta e^{i(\beta_2 - \beta_4)}, \quad v_3 = v' \sin \zeta e^{i(\beta_3 + \beta_4)} + v'' \cos \zeta e^{i\beta_3},$$

which lead to

$$G_{\nu 1} = 2v_1 v_1^\dagger - 1, \quad G_{\nu 2} = 2v_2 v_2^\dagger - 1, \quad G_{\nu 3} = 2v_3 v_3^\dagger - 1.$$ \hspace{1cm} (A.23)

From eq. (A.17), we can see that the three vectors v_1, v_2 and v_3 compose the mixing matrix U up to permutations and phases of columns, i.e.

$$U = (v_1, v_2, v_3) \text{diag} (e^{\gamma_1}, e^{i\gamma_2}, e^{i\gamma_3}) P_y,$$ \hspace{1cm} (A.24)

where γ_1, γ_2 and γ_3 are arbitrary real parameters such that the Majorana phases can not be predicted as well in this setup. The lepton mixing matrix can be straightforwardly reconstructed via the formula eq. (A.24) for any given residual K_4 flavour symmetry.

B Basis independence

In the present paper, we work in the basis in which both the charged lepton mass matrix and the RH neutrino mass matrix are diagonal. This basis is very convenient to study leptogenesis, and it would be called “leptogenesis basis” in the following. However, in a specific model, generally the RH neutrino mass matrix is not diagonal although one can always choose appropriate basis to make the charged lepton mass matrix diagonal. In the following, we shall show that the general results reached in section 3 and appendix A remain true even if the RH neutrino mass matrix is not diagonal in a model basis.

After electroweak and flavour symmetry breaking, the Lagrangian for the lepton masses in a model can be generally written as

$$-\mathcal{L}^{\text{mod}} = y_L L H_\alpha R + \lambda^{\text{mod}}_\alpha N_R \tilde{H}^\dagger \tilde{L}_\alpha + \frac{1}{2} M^{\text{mod}}_{\alpha \beta} N_R N_R^c + h.c. .$$

We denote the unitary matrix that diagonalizes M^{mod} as U_N with $U_N^\dagger M^{\text{mod}} U_N^*= \text{diag}(M_1, M_2, M_3) \equiv M$. In the same fashion as section 3, we shall consider the case that two CP transformations are preserved by the above neutrino mass terms,

$$\text{CP}_1 : \nu_L \rightarrow iX_{\nu 1} \gamma_0 \nu_L^c, \quad N_R \rightarrow iX_{N_1} \gamma_0 N_R^c, $$ \hspace{1cm} (B.2a)

$$\text{CP}_2 : \nu_L \rightarrow iX_{\nu 2} \gamma_0 \nu_L^c, \quad N_R \rightarrow iX_{N_2} \gamma_0 N_R^c. $$ \hspace{1cm} (B.2b)

Note that X_{N1} and X_{N2} could be non-diagonal matrices as the RH neutrino mass matrix M^{mod} is not diagonal. The invariance of λ^{mod} and M^{mod} under the CP transformations of eq. (B.2) requires

$$X_{N1}^\dagger \lambda^{\text{mod}} X_{\nu 1} = (\lambda^{\text{mod}})^*, \quad X_{N1}^\dagger M^{\text{mod}} X_{N1}^* = (M^{\text{mod}})^*,$$ \hspace{1cm} (B.3a)

$$X_{N2}^\dagger \lambda^{\text{mod}} X_{\nu 2} = (\lambda^{\text{mod}})^*, \quad X_{N2}^\dagger M^{\text{mod}} X_{N2}^* = (M^{\text{mod}})^*.$$ \hspace{1cm} (B.3b)
From the invariant conditions of M^{mod}, one can derive the following relations:

$$U^T X^{\text{mod}}_1 U_N = \hat{X}_{N1}, \quad U^T X^{\text{mod}}_2 U_N = \hat{X}_{N2},$$

(B.4)

where $\hat{X}_{N1}, \hat{X}_{N2} = \text{diag}(\pm 1, \pm 1, \pm 1)$. We can go from the model basis to the leptogenesis basis by performing the unitary transformation $N_R \to U_N N_R$. Consequently the neutrino Yukawa coupling matrices in these two basis are related by

$$\lambda = U^\dagger_N \lambda^{\text{mod}}.$$

(B.5)

Using eq. (B.3) and eq. (B.4), it is straightforward to check that λ is subject to the following constraints

$$\hat{X}_{N1}^\dagger \lambda N_{\nu 1}^\ast = \lambda^\ast, \quad \hat{X}_{N2}^\dagger \lambda N_{\nu 2}^\ast = \lambda^\ast,$$

(B.6)

which is exactly the same as that of eq. (3.2). As a consequence, all the model independent results in section 3 are kept intact.

Then we proceed to discuss the case that the Lagrangian L^{mod} is invariant under the action of a residual Z_2 flavour symmetry transformation

$$\nu_L \to G_N \nu_L, \quad N_R \to G_N N_R,$$

(B.7)

with $G^2_\nu = G^2_N = 1$. Then λ^{mod} and M^{mod} must satisfy

$$G^\dagger_N \lambda^{\text{mod}} G_\nu = \lambda^{\text{mod}}, \quad G^\dagger_N M^{\text{mod}} G^\ast_N = M^{\text{mod}}.$$

(B.8)

It follows from the last equality that G^\dagger_N is diagonalized by U_N,

$$U_N G^\dagger_N U_N = \hat{G}_N, \quad \text{with} \quad \hat{G}_N = \text{diag}(\pm 1, \pm 1, \pm 1).$$

(B.9)

We can check that the crucial condition $\hat{G}^\dagger_N \lambda G_\nu = \lambda$ in eq. (A.2) is fulfilled as follows,

$$\hat{G}^\dagger_N \lambda G_\nu = \hat{G}^\dagger U_N^\dagger \lambda^{\text{mod}} G_\nu = U_N^\dagger G^\dagger_N \lambda^{\text{mod}} G_\nu = U_N^\dagger \lambda^{\text{mod}} = \lambda.$$

(B.10)

That is to say, the same constrain on λ is obtained even if the RH neutrino mass matrix is non-diagonal in a model. Therefore the consequences of residual flavour symmetry for leptogenesis found in appendix A remain true.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Sov. Phys. Usp. 34 (1991) 392 [JETP Lett. 5 (1967) 24] [Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32] [Usp. Fiz. Nauk 161 (1991) 61] [insPIRE].

[2] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [insPIRE].
[3] S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

[4] S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino mass and mixing: from theory to experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].

[5] S.F. King, Models of neutrino mass, mixing and CP-violation, J. Phys. G 42 (2015) 123001 [arXiv:1510.02091] [INSPIRE].

[6] M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].

[7] D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].

[8] F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].

[9] P. Minkowski, B → eγ at a rate of one out of 10^9 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

[10] T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, O. Sawada and A. Sugamoto eds., KEK, Japan (1979), pg. 95 [INSPIRE].

[11] P. Ramond, The family group in grand unified theories, invited talk given at conference C79-02-25, Palm Coast FL U.S.A. February 1979, pg. 265 [CALT-68-709] [hep-ph/9809459] [INSPIRE].

[12] M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Niewwenhuizen and D. Freedman eds., North Holland, Amsterdam The Netherlands (1979), pg. 315 [Conf. Proc. C 790927 (1979) 315] [PRINT-80-0576] [arXiv:1306.4669] [INSPIRE].

[13] M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

[14] P. Di Bari, An introduction to leptogenesis and neutrino properties, Contemp. Phys. 53 (2012) 315 [arXiv:1206.3168] [INSPIRE].

[15] S. Blanchet and P. Di Bari, The minimal scenario of leptogenesis, New J. Phys. 14 (2012) 125012 [arXiv:1211.0512] [INSPIRE].

[16] PLANCK collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

[17] R.H. Cyburt, B.D. Fields, K.A. Olive and T.-H. Yeh, Big bang nucleosynthesis: 2015, arXiv:1505.01076 [INSPIRE].

[18] M. Holthausen, K.S. Lim and M. Lindner, Lepton mixing patterns from a scan of finite discrete groups, Phys. Lett. B 721 (2013) 61 [arXiv:1212.2411] [INSPIRE].

[19] S.F. King, T. Neder and A.J. Stuart, Lepton mixing predictions from \(\Delta (6n^2)\) family symmetry, Phys. Lett. B 726 (2013) 312 [arXiv:1305.3200] [INSPIRE].

[20] R.M. Fonseca and W. Grimus, Classification of lepton mixing matrices from finite residual symmetries, JHEP 09 (2014) 033 [arXiv:1405.3678] [INSPIRE].

[21] C.-Y. Yao and G.-J. Ding, Lepton and quark mixing patterns from finite flavor symmetries, Phys. Rev. D 92 (2015) 096010 [arXiv:1505.03798] [INSPIRE].
[22] F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, *Leptogenesis in minimal predictive seesaw models*, JHEP 10 (2015) 104 [arXiv:1505.05504] [inSPIRE].

[23] F. Feruglio, C. Hagedorn and R. Ziegler, *Lepton mixing parameters from discrete and CP symmetries*, JHEP 07 (2013) 027 [arXiv:1211.5560] [inSPIRE].

[24] M. Holthausen, M. Lindner and M.A. Schmidt, *CP and discrete flavour symmetries*, JHEP 04 (2013) 122 [arXiv:1211.6953] [inSPIRE].

[25] G. Ecker, W. Grimus and W. Konetschny, *Quark mass matrices in left-right symmetric gauge theories*, Nucl. Phys. B 191 (1981) 465 [inSPIRE].

[26] G. Ecker, W. Grimus and H. Neufeld, *Spontaneous CP violation in left-right symmetric gauge theories*, Nucl. Phys. B 247 (1984) 70 [inSPIRE].

[27] G. Ecker, W. Grimus and H. Neufeld, *Automorphisms in gauge theories and the definition of CP and P*, Phys. Rept. 281 (1997) 239 [hep-ph/9506272] [inSPIRE].

[28] P.F. Harrison and W.G. Scott, *Symmetries and generalizations of tri-bimaximal neutrino mixing*, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [inSPIRE].

[29] W. Grimus and L. Lavoura, *A nonstandard CP transformation leading to maximal atmospheric neutrino mixing*, Phys. Lett. B 579 (2004) 113 [hep-ph/0305309] [inSPIRE].

[30] W. Grimus and L. Lavoura, *μ-τ interchange symmetry and lepton mixing*, Fortsch. Phys. 61 (2013) 535 [arXiv:1207.1678] [inSPIRE].

[31] P. Chen, C.-C. Li and G.-J. Ding, *Lepton flavour mixing and CP symmetry*, Phys. Rev. D 91 (2015) 033003 [arXiv:1412.8352] [inSPIRE].

[32] P. Chen, C.-Y. Yao and G.-J. Ding, *Neutrino mixing from CP symmetry*, Phys. Rev. D 92 (2015) 073002 [arXiv:1507.03419] [inSPIRE].

[33] L.L. Everett, T. Garon and A.J. Stuart, *A bottom-up approach to lepton flavor and CP symmetries*, JHEP 04 (2015) 069 [arXiv:1501.04336] [inSPIRE].

[34] G.-J. Ding, S.F. King and A.J. Stuart, *Generalised CP and A4 family symmetry*, JHEP 12 (2013) 006 [arXiv:1307.4212] [inSPIRE].
G.-J. Ding, S.F. King, C. Luhn and A.J. Stuart, *Spontaneous CP-violation from vacuum alignment in S_4 models of leptons*, JHEP 05 (2013) 084 [arXiv:1303.6180] [InSPIRE].

F. Feruglio, C. Hagedorn and R. Ziegler, *A realistic pattern of lepton mixing and masses from S_4 and CP*, Eur. Phys. J. C 74 (2014) 2753 [arXiv:1303.7178] [InSPIRE].

C. Luhn, *Trimonimal TM$_1$ neutrino mixing in S_4 with spontaneous CP-violation*, Nucl. Phys. B 875 (2013) 80 [arXiv:1306.2358] [InSPIRE].

F. Feruglio, C. Hagedorn and R. Ziegler, *A realistic pattern of lepton mixing and masses from S_4 and CP*, Eur. Phys. J. C 74 (2014) 2753 [arXiv:1303.7178] [InSPIRE].

C.-C. Li and G.-J. Ding, *Generalised CP and trimaximal TM_1 lepton mixing in S_4 family symmetry*, Nucl. Phys. B 881 (2014) [arXiv:1312.4401] [InSPIRE].

C.-C. Li and G.-J. Ding, *Generalised CP and trimaximal TM_1 lepton mixing in S_4 family symmetry and generalised CP*, Nucl. Phys. B 875 (2013) 80 [arXiv:1306.2358] [InSPIRE].

C.-C. Li and G.-J. Ding, *Lepton mixing in A_5 family symmetry*, Nucl. Phys. B 881 (2014) [arXiv:1312.5222] [InSPIRE].

F. Feruglio, C. Hagedorn and R. Ziegler, *A realistic pattern of lepton mixing and masses from S_4 and CP*, Eur. Phys. J. C 74 (2014) 2753 [arXiv:1303.7178] [InSPIRE].

P. Ballett, S. Pascoli and J. Turner, *Mixing angle and phase correlations from A_5 with generalized CP and their prospects for discovery*, Phys. Rev. D 92 (2015) 093008 [arXiv:1503.07543] [InSPIRE].

J. Turner, *Predictions for leptonic mixing angle correlations and nontrivial Dirac CP-violation from A_5 with generalized CP symmetry*, Phys. Rev. D 92 (2015) 116007 [arXiv:1507.06224] [InSPIRE].

G.C. Branco, J.M. Gerard and W. Grimus, *Geometrical T violation*, Phys. Lett. B 136 (1984) 383 [InSPIRE].

G.C. Branco, I. de Medeiros Varzielas and S.F. King, *Invariant approach to CP in unbroken $D(27)$*, Nucl. Phys. B 899 (2015) 14 [arXiv:1505.06165] [InSPIRE].

G.C. Branco, I. de Medeiros Varzielas and S.F. King, *Invariant approach to CP in family symmetry models*, Phys. Rev. D 92 (2015) 036007 [arXiv:1502.03105] [InSPIRE].

G.-J. Ding and Y.-L. Zhou, *Predicting lepton flavor mixing from $\Delta(48)$ and generalized CP symmetries*, Chin. Phys. C 39 (2015) 021001 [arXiv:1312.5222] [InSPIRE].

G.-J. Ding and Y.-L. Zhou, *Lepton mixing parameters from $\Delta(48)$ family symmetry and generalized CP*, JHEP 06 (2014) 023 [arXiv:1404.0592] [InSPIRE].

G.-J. Ding and S.F. King, *Generalized CP and $\Delta(96)$ family symmetry*, Phys. Rev. D 89 (2014) 093020 [arXiv:1403.5846] [InSPIRE].

G.-J. Ding and S.F. King, *Generalized CP and $\Delta(96)$ family symmetry*, Phys. Rev. D 89 (2014) 093020 [arXiv:1403.5846] [InSPIRE].

G.-J. Ding and S.F. King, *Generalized CP and $\Delta(96)$ family symmetry*, Phys. Rev. D 89 (2014) 093020 [arXiv:1403.5846] [InSPIRE].

C. Hagedorn, A. Meroni and E. Molinaro, *Lepton mixing from $\Delta(3n^2)$ and $\Delta(6n^2)$ and CP*, Nucl. Phys. B 891 (2015) 499 [arXiv:1408.7118] [InSPIRE].

G.-J. Ding and S.F. King, *Generalized CP and $\Delta(3n^2)$ family symmetry for semi-direct predictions of the PMNS matrix*, Phys. Rev. D 93 (2016) 025013 [arXiv:1510.03188] [InSPIRE].

S.F. King and T. Neder, *Lepton mixing predictions including Majorana phases from $\Delta(6n^2)$ flavour symmetry and generalised CP*, Phys. Lett. B 736 (2014) 308 [arXiv:1403.1758] [InSPIRE].

G.-J. Ding, S.F. King and T. Neder, *Generalised CP and $\Delta(6n^2)$ family symmetry in semi-direct models of leptons*, JHEP 12 (2014) 007 [arXiv:1409.8005] [InSPIRE].
C.-C. Li, C.-Y. Yao and G.-J. Ding, *Lepton mixing predictions from infinite group series $D^{(1)}_{3n,3n}$ with generalized CP*, arXiv:1601.06393 [SPIRE].

G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, *Towards a complete theory of thermal leptogenesis in the SM and MSSM*, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [SPIRE].

S. Antusch, S.F. King and A. Riotto, *Flavour-dependent leptogenesis with sequential dominance*, JCAP 11 (2006) 011 [hep-ph/0605281] [SPIRE].

S. Antusch and A.M. Teixeira, *Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis*, JCAP 02 (2007) 024 [hep-ph/0611232] [SPIRE].

C.S. Fong, M.C. Gonzalez-Garcia, E. Nardi and J. Racker, *Supersymmetric leptogenesis*, JCAP 12 (2010) 013 [arXiv:1009.0003] [SPIRE].

L. Covi, E. Roulet and F. Vissani, *CP violating decays in leptogenesis scenarios*, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [SPIRE].

T. Endoh, T. Morozumi and Z.-H. Xiong, *Primordial lepton family asymmetries in seesaw model*, Prog. Theor. Phys. 111 (2004) 123 [hep-ph/0308276] [SPIRE].

S. Pascoli, S.T. Petcov and A. Riotto, *Connecting low energy leptonic CP-violation to leptogenesis*, Phys. Rev. D 75 (2007) 083511 [hep-ph/0609125] [SPIRE].

G.C. Branco, R. Gonzalez Felipe and F.R. Joaquim, *A new bridge between leptonic CP-violation and leptogenesis*, Phys. Lett. B 645 (2007) 432 [hep-ph/0609297] [SPIRE].