Good signal reception depends on a reliable communication link. However, as the signal travels through the communication medium, several factors affect the quality of the signal at the receiver. In Ku band digital satellite transmission, rain is the major cause of link impairment. Global rain rate and rain attenuation prediction models have been developed to predict rain rate and rain attenuation at various locations. These models have not been applied and tested with measured data to determine their prediction accuracy in the Ghanaian tropical region. In this paper, the Moupfouma and International Telecommunication Union Recommendation (ITU-R) rain rate models were applied and compared with measured local 1-minute data for Kumasi. The result was used to select an appropriate prediction model to be applied to all 22 synoptic stations across Ghana. The ITU-R rain attenuation model was then used to predict the rain attenuation for Ghana. The values obtained were used to develop a rain rate and rain attenuation geographical map for Ghana using the inverse-distance weighting method and ArcGIS software. As Ghana migrates from analogue to digital satellite television broadcasting, it is
imperative to investigate the effect of rain on the signal. This will serve as a tool for system
designers to determine the appropriate effective isotropic radiated power (EIRP) and receiver
characteristics for Ghana.

References

1. Ajayi, G.O. (Ed.), (1996). Handbook on radio propagation related to satellite
communications in tropical and subtropical countries, Trieste, Italy, URSI Standing Committee
on Developing Countries and International Center for Theoretical Physics.
2. Emiliani, L. D., Agudelo, J., Gutierrez, E., Restrepo, J., Fradique-Mendez, C., (2004).
Development of rain- attenuation and rain-rate maps for satellite system design in the Ku and
Ka bands in Colombia. IEEE Antenna Propag. Mag. 46 (6), 54-68.
3. Ippolito J. Louis (1986), Radiowave Propagation in Satellite Communications, Van
Nostrand Reinhold Company, New York.
4. Ippolito J. Louis, Satellite Communications Systems Engineering (2008), John Wiley and
Sons Ltd, New York, ISBN 978-0-470-72527-6 (HB)
5. ITU-R Recommendation 837-5,6, (2012), Characteristics of Precipitation for Propagation
Modelling, Geneva.
6. ITU-R Recommendation 838-3, (2005), “Specific attenuation model for rain use in
prediction methods”
7. ITU-R Recommendation P. 841-4 (2005), Conversion of annual statistics to worst-month
statistics, Geneva.
8. ITU-R Recommendation P.618-8 (2003). “Propagation data and prediction methods
required for the design of earth-space telecommunication systems”, International
Telecommunications Union, Geneva, April 2003.
9. Moupfouma, F.,1985, Feb. Model of rainfall-rate distribution for radio system design. In:
IEEE Proceedings, vol. 132, Pt. H, No. 1, pp. 39-43.
10. Nkruhama, F., et al. (2014) Rainfall Variability over Ghana: Model versus Rain Gauge
Observation, International Journal of Geosciences, 5, 673-683.
11. Ojo, J. S., Ajewole, M. O., Emiliani, L. D., (2009). One-minute rain rate contour maps for
communication system planning in a tropical country: Nigeria. IEEE Antennas Propag. Mag. 5,
207-223.
12. Ojo, J. S., Omotosho, T. V., (2013). Comparison of 1-min rain rate derived from TRMM
satellite data and rain guage data for microwave applications in Nigeria. J. Atmos. Sol. Terr.
Phy. 102, 17-25.
13. W. L. Pritchard and J.A. Sciulli (1986), Satellite Communication Systems Engineering,
Prentice-Hall, Englewood Cliffs, NJ.

Index Terms

Computer Science Signal Processing
Keywords

Rain rate, rain attenuation, Ku band.