Possible repair mechanism for hydrocarbon-based ionomers following damage by radical attack

Author Names:
Tym de Wild, a,b,=,* Tamas Nemeth, a,b,= Tom M. Nolte, a,b,d Thomas J. Schmidt, c,*** Thomas Nauser, b Lorenz Gubler a,z,**

Affiliation(s):
a Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
b Laboratory of Inorganic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
c Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
d Current address: Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands

= These authors contributed equally to this work.
* Electrochemical Society Student Member
** Electrochemical Society Member
*** Electrochemical Society Fellow
z Corresponding Author: lorenz.gubler@psi.ch

Supporting Information

Table of contents:
1. General
2. Pulse radiolysis measurements
3. Calibration of [Ce(III)] and [Ce(IV)] determinations
4. Stopped-flow measurements
5. Rate of polymer attack \(r_{\text{HO}} \)
6. Determination of model parameters
1. General

Cerium(IV) sulfate anhydrous 97% (Alfa Aesar), Cerium(III) sulfate anhydrous 99.99% (Sigma Aldrich), hydrogen peroxide 30% w/v (Fischer Scientific), sulfuric acid 95% (Fischer Scientific), potassium persulfate were used as received. Potassium phosphate buffer (KPi) was prepared from potassium phosphate dibasic and potassium phosphate monobasic. Ultra-pure water was provided by a Milli-Q or Evoqua Ultra Clear UV Plus water purification system.

Pulse radiolysis study: Experiments were carried out with the 2 MeV Febetron 705 accelerator of ETH. The equipment delivered <50 ns pulses of 2–100 Gy, with 1 Gy = 1 J/kg. Absolute doses were determined by KSCN dosimetry, based on $G = 6.13$ and $\epsilon_{472} = 7.580 \, \text{M}^{-1}\text{cm}^{-1}$, where the radical chemical yield G refers to number of species created per 100 eV absorbed dose and $G = 1$ is equal to 0.1036 µmol generated species per 1 J/kg = 1 Gy absorbed energy. Samples were gas saturated in Schlenk-tubes sealed with rubber septa which were repeatedly evacuated to 10 mbar and refilled (a minimum of 3 repeats) with the desired gas. The solutions then were transferred to a gas-tight syringe (10 ml, Hamilton, SampleLock, Bonaduz, Switzerland), which was connected to the 6 cm quartz irradiation-cell (Hellma, Mülhausen, Germany) via a syringe pump. Acidic pH was established with H_2SO_4 (95-97%). Experiments were carried out at 24°C, 25°C, 37°C, 47°C, 62°C and 70°C, respectively. Temperature in the cell was controlled by a Lauda e100 thermostat.

UV/Vis measurements: UV/vis measurements were performed using a Cary 4000 UV/Vis spectrophotometer (Varian, Palo Alto, USA) in dual beam mode and was used to measure the absorption spectra of Ce(III) sulfate and Ce(IV) sulfate species in 0.1 M sulfuric acid. The extinction coefficients were determined using Beer-Lambert’s law.
2. Pulse radiolysis supporting information

Table S1. Initial radical reactions during pulse radiolysis.

Species	Reaction	k (M$^{-1}$s$^{-1}$)	Conc (mM)	k' (s$^{-1}$)	Reaction
OH$^\bullet$	$\text{S}_2\text{O}_8^{2-} + \text{HO}^\bullet \rightarrow \text{S}_2\text{O}_8^{\bullet} + \text{HO}^-$	$1.2 \cdot 10^7$	100	$1.2 \cdot 10^6$	A-93
	$\text{S}_2\text{O}_8^{2-} + \text{HO}^\bullet \rightarrow \text{S}_2\text{O}_8^{\bullet} + \text{HO}^-$	$1.2 \cdot 10^7$	10	$1.2 \cdot 10^5$	A-93
	$\text{P} + \text{HO}^\bullet \rightarrow \text{P-OH}$	$2.8 \cdot 10^{10}$	1	$2.8 \cdot 10^7$	14
$e_{(\text{aq})}^-$	$e_{(\text{aq})}^- + \text{H}^+ \rightarrow \text{H}^\bullet$	$2 \cdot 10^{10}$	1	$2 \cdot 10^7$	A-35
	$e_{(\text{aq})}^- + \text{H}^+ \rightarrow \text{H}^\bullet$	$2 \cdot 10^{10}$	10	$2 \cdot 10^8$	A-35
	$e_{(\text{aq})}^- + \text{H}^+ \rightarrow \text{H}^\bullet$	$2 \cdot 10^{10}$	100	$2 \cdot 10^9$	A-35
	$\text{S}_2\text{O}_8^{2-} + e_{(\text{aq})}^- \rightarrow \text{SO}_4^{\bullet^-} + \text{SO}_4^{2-}$	$1.2 \cdot 10^{10}$	10	$1.2 \cdot 10^8$	A-25
	$\text{S}_2\text{O}_8^{2-} + e_{(\text{aq})}^- \rightarrow \text{SO}_4^{\bullet^-} + \text{SO}_4^{2-}$	$1.2 \cdot 10^{10}$	100	$1.2 \cdot 10^9$	A-25
	$\text{N}_2\text{O} + \text{H}_2\text{O} + e_{(\text{aq})}^- \rightarrow \text{N}_2 + \text{HO}^\bullet + \text{HO}^-$	$9 \cdot 10^9$	24.8	$2.2 \cdot 10^8$	A-45
H$^\bullet$	$\text{S}_2\text{O}_8^{2-} + \text{H}^\bullet \rightarrow \text{SO}_4^{\bullet^+} + \text{SO}_4^{2-} + \text{H}^+$	$1.4 \cdot 10^7$	10	$1.4 \cdot 10^5$	A-56
	$\text{P} + \text{H}^\bullet \rightarrow \text{P-H}$	$1.95 \cdot 10^{10}$	1	$1.95 \cdot 10^7$	A-67
SO$_4^{\bullet^-}$	$\text{P} + \text{SO}_4^{\bullet^-} \rightarrow \text{P-H}^\bullet + \text{SO}_4^{2-}$	$9 \cdot 10^8$	1	$9 \cdot 10^5$	78

We optimized our reaction conditions to make sure our main products are ^\bullet P-OH, reaction (1), and P^\bullet, reaction (7).
Figure S1. Dose-normalized kinetic traces for the reaction between PAMSS-14’600 cation radical and Ce(III), N=3-5, taken at λ = 560 nm, in irradiated (dose of ca. 21–37 Gy) argon saturated 10 mM K2S2O8 solutions that contained 1 mM H2SO4, 0.1 mM PAMSS-14600 and 0.2mM Ce(III) (blue), 0.3 mM PAMSS-14600 and 0.6 mM Ce(III) (red), 1 mM PAMSS-14600 and 2 mM Ce(III) (black) recorded at 24°C (Top left), 47°C (Top right) and 70°C (Bottom).
Figure S2. Dose-normalized kinetic traces for the self-decay of PAMSS-14’600 cation radical, N=3, taken at \(\lambda = 560 \) nm, in irradiated (dose of ca. 10–29 Gy) argon saturated 10 mM K$_2$S$_2$O$_8$ solutions that contained 1 mM H$_2$SO$_4$, 0.1 mM PAMSS-14600 at 24°C (blue), 47°C (red) or 70°C (black). Traces were normalized to the maximum absorbance of each trace.

Figure S3. Pseudo-first-order rate constants for the reaction of 0.1, 0.3, 1 mM PAMSS-14’600 cation radical with 0.2, 0.6 and 2 mM Ce(III) as a function of concentration at 24 °C (blue), 47 °C (red) and at 70 °C (black) in irradiated (dose of ca. 20–40 Gy) argon saturated 10 mM K$_2$S$_2$O$_8$ solutions that contained 1 mM H$_2$SO$_4$, recorded at \(\lambda = 560 \) nm.
For the purpose of obtaining the rate constants of self-decay of the HO-adduct at different temperatures, kinetic traces detected at 320 nm were recorded for $T = 25^\circ\text{C}, 37^\circ\text{C}$ and 62°C at pH=7 (Figure S4). Neutral pH was chosen for shifting the protolysis equilibrium towards the HO-adduct.

Figure S4. Dose-normalized kinetic traces for the self-decay of PAMSS-14’600 HO-adduct, $N=3$, taken at $\lambda = 320$ nm, in irradiated (dose of ca. 9–16 Gy) argon or N$_2$O saturated solutions that contained 0.1 mM KPi buffer and 0.1 mM PAMSS-14600 at 25°C (blue), 37°C (red) or 62°C (black). Traces were normalized to the maximum absorbance of each trace.
Figure S5. Left panel: Arrhenius plot of the decay of PAMSS$^+$ in the absence (top) and in the presence of Ce(III) (bottom), estimated experimentally. Right panel: Arrhenius plot of the decay of HO-adduct in the absence of O$_2$, estimated experimentally.
3. Calibration of \([\text{Ce(III)}]\) and \([\text{Ce(IV)}]\) determinations

Figure S6. Absorption spectra of \(\text{Ce}_2(\text{SO}_4)_3\) in 0.1 M \(\text{H}_2\text{SO}_4\)

Figure S7. Absorption spectra of \(\text{CeSO}_4_2\) in 0.1 M \(\text{H}_2\text{SO}_4\)
Figure S8. Calibration curve: absorption maximum of Ce\(_2\)(SO\(_4\))\(_3\) as a function of concentration. 5 mM outlier excluded (marked red) from the linear fit. Extinction coefficient determined with Beer-Lambert’s law, \(\varepsilon = 0.66 \pm 0.01 \text{ mM}^{-1} \text{ cm}^{-1}\)

Figure S9. Calibration curve: absorption maximum of Ce(SO\(_4\))\(_2\) as a function of concentration. 0.5 mM outlier excluded (marked red) from the linear fit. Extinction coefficient determined with Beer-Lambert’s law, \(\varepsilon = 4.89 \pm 0.04 \text{ mM}^{-1} \text{ cm}^{-1}\)
4. Stopped-flow measurements

Figure S10. Kinetics trace of 0.3 mM H$_2$O$_2$ reacting with 0.03 mM Ce(IV) at 50 °C (black squares) with an exponential fit (red line). Initially the reaction of hydrogen peroxide with cerium(IV) can be seen by the first-order decay of the absorption signal followed by a slow increase. This secondary process is not studied in detail and is too slow to be reaction (6).
Figure S11. Observed first-order rate constant plotted as a function of Ce(IV) concentration at different temperatures (black = 10°C, blue = 25°C, red = 50°C, green = 74°C) where Ce(IV) was in a 10-fold excess to H₂O₂ (see Appendix B for the exact composition). The second-order rate constant is derived from the slope of the linear fit.

Table S2 Rate constants k_6 derived from the control measurements (H₂O₂ in excess).

Temperature (°C)	2nd order rate constant k_6 (10⁵ M⁻¹ s⁻¹)
10	1.3
25	2.5
50	6.7
75	9.2
Figure S12. Arrhenius plot of reaction (6), where the reaction rate was measured in Ce(IV) excess (black circles) and H$_2$O$_2$ excess (red squares). The high temperature point for H$_2$O$_2$ excess has been excluded in the fit due to noticeable thermal decomposition during the measurement (open square).
5. Rate of polymer attack r_{HO^\bullet}

We need to identify a reasonable value for the rate of radical formation r_{HO^\bullet} to be used in the model. We consider this rate to be equal to the rate of attack of aromatic units in the polymer because other reactions of HO$^\bullet$ are expected to be much slower.\(^9\) Although the relative effectiveness of damage mitigation is independent of r_{HO^\bullet} (cf. main text, equations 9 and 10), the value is important to estimate the concentration ratio of Ce(IV) to Ce(III), since only Ce(III) is the active repair agent. We can obtain a rough estimate of the rate of HO\(^\bullet\) formation from fluoride emission rate (FER) data from perfluoralkylsulfonic acid (PFSA) membranes. Under accelerated degradation (OCV hold) test conditions at temperatures in the range between 60 to 90°C, a fluoride emission rate in the range of 10^{-7} to 10^{-6} mol·cm$^{-2}$·h$^{-1}$ is measured.\(^10\) Considering two hydrogen fluoride (HF) molecules are emitted per attack of HO$^\bullet$, and using a membrane thickness of 50 µm, we obtain a rate of attack on the ionomer by HO$^\bullet$ in the range of $5\cdot10^{-6}$ to $5\cdot10^{-5}$ M·s$^{-1}$. However, in PFSA ionomer not all of the HO$^\bullet$ formed reacts with the polymer. Instead, a sizable fraction reacts with H$_2$ (at least near the anode side).\(^10\) If we estimate the probability of an attack of HO$^\bullet$ on the PFSA ionomer of 50%, the rate of formation of HO$^\bullet$ would be in the range of 10^{-5} to 10^{-4} M·s$^{-1}$. Radical formation in fuel cell membrane electrode assemblies (MEAs) is, to a large extent, governed by crossover of H$_2$ and O$_2$ through the membrane. In hydrocarbon based membranes, the gas permeability can be lower by a factor of 20 when compared to PFSA membranes.\(^11,\ 12\) Therefore, we estimate the rate of HO$^\bullet$ formation in a hydrocarbon-based MEA to be in the range of $5\cdot10^{-7}$ to $5\cdot10^{-6}$ M·s$^{-1}$. In our simulation, we use a value of $r_{\text{HO}^\bullet} = 10^{-6}$ M·s$^{-1}$, which represents a reasonable value for an OCV hold test. If we assume an attack of 10% of aromatic units to be fatal, this rate leads to a membrane lifetime of $\tau = 0.1 \cdot [P] / r_{\text{HO}^\bullet} \approx 280$ h. Sethuraman et al. measured a lifetime of a hydrocarbon based membrane in a fuel cell at 100°C and open circuit hold conditions of around 350 h.\(^11\)
6. Determination of model parameters

The model parameters \([P], [P-\text{SO}_3^-] = [\text{H}^+]\) and \([\text{H}_2\text{O}]\) are obtained as follows.

A representative ion exchange capacity (IEC) of sulfonated polyarylene type ionomers is 2 mmol/g, see for example reference\(^{13}\) In most cases, this leads to decent conductivities in the swollen state, but not to excessive water uptake and swelling. The concentration of sulfonate groups, \(P-\text{SO}_3^-\), and protons, \(\text{H}^+\), is the same, because they are derived from the dissociation of sulfonic acid \(P-\text{SO}_3\text{H}\). We assume a density of the polymer in the dry state of \(\rho_{\text{pol}} = 1.2 \text{ g/cm}^3\) and a mass based water uptake of \(s = m_w / m_{\text{pol}} = 40 \%\). We can then estimate, under the assumption of a zero excess volume of mixing, the water volume fraction \(\Phi_w\):\(^{14}\)

\[
\Phi_w = \frac{V_w}{V_w + V_{\text{pol}}} = \frac{s}{s + \frac{\rho_w}{\rho_{\text{pol}}}}
\]

and obtain 32 \%, where we have used \(\rho_w = 1.0 \text{ g/cm}^3\). The concentration of water in the membrane is then \([\text{H}_2\text{O}] = 0.32 \cdot 55 \text{ mol/L} \cong 20 \text{ M}\). Using these data, we obtain for the volumetric IEC of the membrane in the water swollen state a value of \(\sim 1.5 \text{ mmol/cm}^3\). This corresponds to \([P-\text{SO}_3^-]\) and \([\text{H}^+]\).

For the estimation of the concentration of aromatic units \([P]\) we assume the following composition of our generic polyaromatic ionomer:

\[
\text{Scheme S1}
\]

For an IEC of 2 mmol/g, which corresponds to an equivalent weight \(\text{EW}\) of 500 g/mol, we calculate \(n = 4.5\). Next, we calculate the molar volume \(\nu_{\text{tot}}\) of polymer with 1 mol of sulfonic acid groups and water:

\[
\nu_{\text{tot}} = \nu_{\text{pol}} + \nu_w = \left(\frac{1}{\rho_{\text{pol}}} + \frac{s}{\rho_w}\right) \cdot \text{EW}
\]

Inserting the values from above we obtain \(\nu_{\text{tot}} = 0.62 \text{ L/mol}\). Since we have \(4.5 + 1\) aromatic rings in the repeating unit, the concentration of aromatic units amounts to \([P] \cong 10 \text{ M}\).
REFERENCES

1. T. Nauser, G. Casi, W. H. Koppenol and C. Schöneich, J. Phys. Chem. B, 112, 15034 (2008).
2. R. H. Schuler, T. I. Balkas and J. H. Fendler, J. Phys. Chem., 74, 4497 (1970).
3. G. V. Buxton, G. A. Salmon and N. D. Wood, in Physico-Chemical Behaviour of Atmospheric Pollutants. Springer, G. A. G. Restelli Editor, Springer, Dordrecht (1990).
4. T. M. Nolte, T. Nauser and L. Gubler, Phys Chem Chem Phys, 22, 4516 (2020).
5. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988).
6. R. W. Matthews, H. A. Mahlmann and T. J. Sworski, J. Phys. Chem., 74, 2475 (1970).
7. N. Santschi and T. Nauser, ChemPhysChem, 18, 2973 (2017).
8. S. M. Dockheer, L. Gubler and W. H. Koppenol, Phys. Chem. Chem. Phys., 15, 4975 (2013).
9. L. Gubler and W. H. Koppenol, in The Chemistry of Membranes Used in Fuel Cells: Degradation and Stabilization, First Edition ed., S. Schlick Editor, p. 107, John Wiley & Sons (2018).
10. L. Gubler, S. M. Dockheer and W. H. Koppenol, J. Electrochem. Soc., 158, B755 (2011).
11. V. A. Sethuraman, J. W. Weidner, A. T. Haug and L. V. Protsailo, J. Electrochem. Soc., 155, B119 (2008).
12. S. Erbach, B. Pribyl, M. Klages, L. Spitthoff, K. Borah, S. Epple, L. Gubler, A. Pătru, M. Heinen and T. J. Schmidt, International Journal of Hydrogen Energy, 44, 12760 (2019).
13. D. S. Kim, Y. S. Kim, M. D. Guiver and B. S. Pivovar, J. Membr. Sci., 321, 199 (2008).
14. S. Balog, U. Gasser, K. Mortensen, H. B. youcef, L. Gubler and G. G. Scherer, J. Membr. Sci., 383, 50 (2011).