Hemifacial spasm (HFS) is due to the vascular compression of the facial nerve at its root exit zone (REZ). Microvascular decompression (MVD) of the facial nerve near the REZ is an effective and curative treatment for HFS. In MVD for HFS, intraoperative neurophysiological monitoring (IONM) has two purposes. The first purpose is to prevent injury to neural structures such as the vestibulocochlear nerve and facial nerve during MVD surgery, which is possible through IONM of brainstem auditory evoked potentials and facial nerve electromyography (EMG). The second purpose is the unique feature of MVD for HFS, which is to assess and optimize the effectiveness of the vascular decompression. The purpose is achieved mainly through monitoring of abnormal facial nerve EMG that is called as lateral spread response (LSR) and is also partially possible through Z-L response, facial F-wave, and facial motor evoked potentials. Through IONM mentioned above, MVD can be developed as a more safe and effective treatment for HFS.

Keywords: Hemifacial spasm, Microvascular decompression surgery, Intraoperative neurophysiological monitoring
제2가지의 유용성이 있다. 첫째로 IONM 점검 통해 MVD 시행 중 발생할 수 있는 신경계 손상을 막을 수 있다. 전경의신경 (vestibulocochlear nerve, CN VIII)이 얼굴신경 REZ에서 얼굴신경과 인접해 있기 때문에, HFS에 대한 MVD 중에 CN VIII 이 손상될 위험이 높다. 그러므로, 논의기각유발전위(brains- stem auditory evoked potentials, BAEPs) 검사를 이용하여 수술 중 정각신경영역을 감시할 때, CN VIII 손상으로 인한 수술 후 정각 소실(postoperative hearing loss)을 막을 수 있다. 또한, 수술 중 얼굴근육의 근도도(electromyography, EMG) 검사를 통해서도, 수술 중 발생하는 얼굴신경의 손상을 감지할 수 있다. 두번째로 IONM 점검을 통해 HFS에 대한 MVD의 성공률을 높일 수 있다. HFS에서는 측면전파반응(lateral spread response, LSR)이라는 특정적인 전기생리학적 이상소견이 관찰된다. 이는 하나의 얼굴신경 분지가 자극하였을 때 그 신경에 서 자극받는 근육뿐 아니라, 같은 쪽 얼굴의 다른 얼굴신경 분지로부터 자극받는 근육에서도 전기적 반응이 관찰되는 것이다. HFS에 대한 MVD 중, LSR가 소실되면, 혹은 LSR의 전폭이 감소될 경우, 얼굴신경을 압박하던 문제의 혈관(offending vessel)에 대한 감압이 적절하게 이루어진 것을 의미한다. 그러므로, 이 LSR를 이용하여 HFS를 유발시킨 문제의 혈관을 확인하여 MVD의 정확도를 높이고, 성공률을 향상시킬 수 있다. 그 외에도 Z-L 반응(Z-L response), 얼굴신경 F 파(facial F-waves) 및 얼굴 신경 운동 유발 전위(facial motor evoked potentials) 검사 등이 HFS에 대한 MVD의 정확도 및 안정성에 기여하는 것 으로 알려져 있다.

본문에서는 HFS에서 사용되는 대표적인 IONM 방법인 BAEPs, LSR을 중심으로 기술하고, 그 외 Z-L 반응, 얼굴신경 F 파 및 얼굴 신경 운동 유발 전위 검사에 대해서도 소개하였다.

수술 중 신경계감시

- **뇌줄기 청각유발전위(brainsstem auditory evoked potentials)**

 HFS에 대한 MVD를 시행할 때, 가장 심각한 합병증은 CN VIII의 손상으로 인한 수술 후 정각 소실이다. CN VIII 손상은 MVD 중 다음과 같은 여러 가지 이유로 발생할 수 있다: 소뇌 뒤 탕막(cerebellar retraction) 중 CN VIII의 탕막에 의한 손상, 신경-혈관 감압 중 혈관 연속(vasospasm)으로 인한 혈류 손상, 수술 중 기계적 혹은 얼 상손, 삽입된 테플론 패드(Teflon pad)의 압박 등[8]. MVD 중 수술 후 정각 소실 발생률은 과거 연구에서 BAEPs 이용한 IONM 검사를 시행하지 않은 경우, 7.7%에서 20%까지 보고되었다[3]. 하지만, BAEPs를 이용한 IONM 검사가 도입된 이후, 수술 후 정각 소실은 2%이하로 크게 감소하였고, 현재는 BAEPs를 이용한 IONM은 HFS에 대한 MVD 시행시 필수적인 검사로 여겨지고 있다[6,9].

1. **검사 방법**

 BAEPs는 운용 신호를 생성하는 트랜스듀서에 100 msec의 전기 펌프를 전달하여 발생하는 클릭 자극에 의해 유발된다. 자극 세기는 명확한 BAEPs를 생성하기에 충분히 높게 설정해야 하지만, 정각 손상을 일으킬 정도로 높게 설정할 수 없다. 일반적으로 100 dB sound pressure level (SPL) 또는 60-70 dB hearing level (HL)의 자극세기가 이용되고, 교차반응(crossover responses)을 막기 위해 검사를 할 때 반대측 귀에는 검사측 귀 보다 30-40 dB 정도 낮은 60 dB SPL 또는 30-35 dB HL의 백색소음(white noise)을 적용한다[10]. 자극 방식은 트랜스듀서 다이어프램의 초기 움직임에 따라 움푹(condensation)과 흐석 (rarefaction)이라는 2가지 방식이 가능하며, IONM에서 자극 잠금을 최소화하는 것이 중요하다. 운동과 흐석을 변가 시오는 교대극성(alternating polarity)자극 방식이 선호된다.

우리가 일반적으로 신경생리감시에서 사용하는 BAEPs는 한 번의 자극으로 얻어진 하나의 BAEP 파형이 아니라, 여러 번의 자극으로 얻어진 복수의 BAEP 파형을 합쳐서 얻어진 것이다. 그 때문에, 반응 가능한 BAEPs를 얻을 때, 검사자가 조작할 수 있는 주요한 변수 2 가지가 있는데, 이는 자극빈도(stimulus rate)와 평균화횟수(averaging trials)이다. 2006년 미국임상신 경생리학회(American Clinical Neurophysiology Society, ACNS)는 BAEPs 검사를 시행할 때[10], Hz 이상의 자극은 BAEPs 파형의 전폭을 감소시킬 우려가 있어서 8-10 Hz의 자극을 권장하였다[11,12]. 또한 ACNS에서는 해석 가능하고 재현성 있는 BAEPs를 얻기 위해, 1000-4000회의 높은 평균화 횟수가 필요하다고 제시하였다. 만일 하나의 해석가능한 BAEPs를 얻는다면, 10 Hz의 자극빈도와 1000회의 평균화횟수를 적용한다면, 한번의 BAEPs의 파형을 얻는데 100초의 시간이 소요 된다. 외래검사와 같이 절반의 유료를 확인하기 위해 시행하는 검사라면, 오래 시간이 걸려도 정확한 파형을 얻는 것이 보다 좋 은 감사방법이다. 하지만, IONM에서는 수술 중 발생할 수 있는 신경손상 유무를 빠르고 확실하게 해석하고 이를 막아야 하기 때문에, 상대적으로 오래 시간이 걸려도 이는 유용한 감사방법이라고 말하기 어렵다. 해석가능한 BAEPs를 얻는데 상대적으로 오래 시간이 걸릴 경우, 이는 신경손상 여부를 빠르게 판단하여 정각 소실을 막을 수 있는 첫장기를 높일 가능성이 있기 때문이다(그림 1). 하지만, 과거와 달리 IONM 장비의 발전으로 신호-음은 비(signal to noise ratio)가 개선되었고, 고빈도(high frequency) 자극이 가능할 뿐 아니라, 고빈도 자극으로 발생하는 신호에 광범위하게 기계가 개선되었다. 실제로, 2016년 저자를 포함한 국내 연구진은 43.9 Hz의 자극빈도와 400회의 평균화 횟수를 적용하였을 때, 신뢰할 수 있는 BAEPs를 자주적으로 얻는 것이 가능한 것으 로 제시하였고, 하나의 해석 가능한 BAEPs 얻는데 걸리는 시간 은 10초 미만으로 단축시켰다[13]. 더 나아가, BAEPs 측정의 세
로운 방식을 적용하였을 때, 이전 방식과 비교시에 수술 후 청력 소실을 크게 감소시킬 수 있음을 증명하였다. (4.02% vs 0.39%, p=0.002) (Table 1)

Fig. 1. Example of consecutive IONM of the BAEPs using a stimulation rate of 10 Hz/sec and 1000 averaging times: (A) First BAEPs showing minimal wave V change; (B) Second BAEPs showing a slight change in wave V (the latency of wave V was delayed by 0.70 msec with a minimal decrease in the amplitude); (C) Third BAEPs showing that the wave V latency was delayed by 1.44 msec and the wave V amplitude decreased by about 70%; IONM: Intraoperative neurophysiological monitoring; BAEPs: Brainstem auditory evoked potentials

Gray line: Baseline BAEPs; Black line: Obtained BAEPs.

2. 경계 기준 (Warning criteria)

BAEPs의 IONM을 사용할 때, BAEPs의 여러 파형 중 주로 파형 V이 이용된다. 이는 파형 V이 중간뇌(midbrain)에서 얻어진 파형 없에도 불구하고, 다른 파형에 비해 상대적으로 진폭이 크고
분명하며, 또한 수술 중 적용되는 마취에 대해서도 상대적으로 영향을 덜 받기 때문이다. 지난 40년간 BAEPs를 이용한 IONM 적용 사례 중, VMD 중 수술 후 정력 소실을 예방할 수 있다는 분명한 증가점이 많이 있었다. 하지만, 여전히 수술 후 정력 소실을 예측하는 BAEPs의 경계 기준(Warning criteria)에 대한 합의가 이루어지지 않았다[14]. 과거, Polo 등은 파형 V의 잠복기가 0.6 msec 연장되는 것이 수술 후 정력 소실과 연관성이 높다고 제시하였다[15]. Grundy 등은 wave V의 잠복기가 1.5 msec 연장될 경우를 경계 기준으로 사용해야한다고 제시하였다[16]. 반대로, Hataway와 Møller 등은 파형 V의 잠복기가 연장된 경우에도 정력 V의 진폭 감소와 동반되고, 수술 후 정력 소실을 보였던 환자에서 파형 V 진폭 감소가 잠복기 연장보다 보다 유용한 차이를 보였으며, 파형 V의 진폭 감소가 보다 유용한 경계 기준이라고 주장하였다[17]. 최근, Thirumala 등은 파형 V의 잠복기 연장 혹은 진폭의 감소보다는 파형 V가 일시적 혹은 영구적으로 소실된 경우가 수술 후 정력 소실과 직접적인 연관성이 있다고 보고하였다[18]. 그들은 파형 V의 잠복기 5 msec 연장 혹은 진폭의 50% 감소를 보인 환자 중 10.2%. 일시적인 파형 소실을 보인 환자 중 25%. 그리고 영구적인 소실을 보인 환자 중 60%가 정력 소실로 이어졌다고 보고하였다. 위와 같이 과거 유용한 경계 기준에 대한 많은 연구가 있음을에도 불구하고, 이에 대한 공통된 기준이 부재하였다. 여전히 많은 연구자들은 경험적으로 2회 연속 BAEPs 상 파형 V의 잠복기 Imec 연장 혹은 진폭 50% 감소를 알람 기준으로 사용하였다[11,12].

하지만, 부정확한 경계 기준은 매우 심각한 문제이다. 경계 기준이 부정확할 경우, 이를 확인하고 조정하기 위해 불필요하게 수술시간이 지연되고, 더 나아가 불필요한 조작으로 수술 중 혈형증을 유도할 우려가 있기 때문이다. 이에 대해 국내에서도 수술 후 정력 소실과 연관된 경계 기준을 확립하기 위해, 932명의 HFS 환자를 대상으로 시행된 MVD 중 기록된 BAEPs와 수술 후 정력 소실과의 연관성을 분석하였다. 그들은 해석가능한 하나의 BAEPs로 얻기 위해 43.9 Hz 자극 빈도와 400회의 평균값을 수술시에 약 9.1초 간에 BAEPs 파형을 얻었고, 이를 적용했을 경우 932명의 환자 중 11명(1.2%)의 환자에서 수술 후 정력 소실이 관찰되었다[13]. 수술 중 BAEPs의 최대 변화를 기준으로 분석하였을 때, 파형 V의 영구적인 소실을 보인 환자 11명이었는데, 이중 6명(54.5%)이 수술 후 정력 소실을 보였고, 파형 V의 일시적인 소실을 보인 환자 27명 중 25명(74.1%). 그리고 파형 V의 잠복기 1msec 연장 혹은 진폭 50% 감소를 보인 환자 96명 중 25명(2.0%)의 환자가 정력 소실로 이어졌다(Table 2) [19]. 반면, 파형 V의 진폭 감소 없이 잠복기만 1msec 이상 연장된 환자는 총 194명이었는데, 모두 수술 후 정력 소실로 이어지지 않았다. 이상이 이 중 30명의 환자는 2msec 이상의 잠복기 연장으로 보였고, 모든 환자가 수술 후 정력 소실로 이어지지 않았다. 그들은 MVD 중 수술 후 정력 소실을 예측하기 위한 BAEPs 경계 기준의 탐색을 계획하였고, 파형 V의 영구적인 소실은 99.4%의 높은 특이도를 보였고, 일시적인 소실은 96.7%, 진폭 50% 감소를 동반한 잠복기 1msec 연장은 86.5%의 특이도를 보였다. 이런 연구 결과를 바탕으로, 그들은 현재 통용되고 있는 파형 V의 잠복기 1msec 이상 연장 혹은 진폭 50% 이상 감소의 알람 기준은 수술 후 정력 소실을 예방하는 데 부적절하다고 주장하였다. 그리고, 더 나아가 MVD 중 수술 후 정력 소실을 예방하기 위한 경계 기준에 대해 다음과 같은 “단계적 등급(Sliding scale)”이 보다 적절하다고 제안하였다(Table 3). 1) 관찰 경후 (Observation sign): 파형 V의 진폭 50% 감소 없이 잠복기만 1msec 이상 연장; 2) 경계 경후 (Warning sign): 파형 V의 진폭 50% 이상 감소와 함께, 잠복기 1msec 이상 연장; 3) 위험 경후(Critical sign): 파형 V의 소실, MVD 수술 중 관찰 경후(observation sign)가 관찰될 경우, 검사자는 이를 점도의에게 바로 알리며, 점도의가 이에 반응하여 교정하기 위해 조치를 취하지 않는다. 하지만 경계 경후 (Warning sign) 혹은 위험 경후(Critical sign)가 발생시에는 검사자가 이를 바로 점도의에게 전달하고, 점도의는 이에 반응하여, 진행 중인 수술을 중단하고, 이를 교정하기 위해 조치를 취하는 것을 제안하였다.

BAEPs	이전 방식*	현재 방식†	p value
자극 빈도 (Stimulus rate)	26.9 Hz	43.9 Hz	
평균주파수 (Averaging trials)	1000-2000 회	400 회	
1회 BAEPs 얻는데 걸리는 시간	약 37.1 - 74.3 초	약 9.1 초	
파형 V의 경계 기준 (Warning criteria)	1ms latency prolongation or a 50% decrease in amplitude	50% decrease in amplitude	

*protocol used in our previous study (Jo KW et al. Acta Neurochir (Wien) 2011;153:1023-1030).
†protocol used in our recent study (Joo BE et al. J Neurosurg 2016 Nov;125(5):1061-1067).
Table 2. Comparison of Postoperative Hearing Loss According to the Maximal Changes of BAEPs

Groups	Maximal change of BAEPs (wave V)	Patients n (%)	Postoperative hearing loss n (%)	p value
A	No change	596 (63.9)	1 (0.1)	
B	Only latency prolongation (≥ 1ms)	194 (20.8)	0	
C	Only amplitude decrement (≥ 50%)	8 (0.9)	0	
D	Latency prolongation (≥ 1ms)	96 (10.3)	2 (2.0)	< 0.001
	With amplitude decrement (≥ 50%)			
E	Transient loss	27 (2.9)	2 (7.4)	
F	Permanent loss	11 (1.2)	6 (54.5)	

Group A: no significant changes, Group B: greatest latency prolongation greater than 1 ms without amplitude reduction greater than 50%, Group C: amplitude reduction greater than 50% without greatest latency prolongation greater than 1 ms, Group D: greatest latency prolongation greater than 1.0 ms and amplitude reduction greater than 50%; Group E: transient loss of wave V; and Group F: Permanent loss of wave V.

Table 3. The Sliding Scale of Warning Criteria of BAEPs

Name	BAEPs change	Measures
관찰 정후(Observation sign)	Latency prolongation (≥ 1ms) Without amplitude decrement (≥ 50%)	Notification & No surgical corrective measures
경계 정후(Warning sign)	Latency prolongation (≥ 1ms) With amplitude decrement (≥ 50%)	Notification & Rapid surgical corrective measures
위험 정후(Critical sign)	Wave V loss	Notification & Rapid surgical corrective measures

얼굴신경 근전도(Facial nerve Electromyography)

1. 측면전파반응(Lateral spread response: LSR)

LSR은 하나의 얼굴신경 분지를 자극하였을 때, 그 신경에서 지배하는 근육 뿐 아니라, 같은 쪽 얼굴의 다른 얼굴신경 분지로부터 자극받는 근육에서 유발되는 파형을 말한다. 이는 HFS의 일종으로 특정적인 전기생리학적 이상을 반영하고, HFS를 대상으로 한 기존의 많은 연구에서 MVD 중 LSR의 소실은 offending vessel의 적절한 감압 및 수술 후 좋은 예후와 연관성이 높다고 알려져 있다 [20,21]. 이런 이유로, HFS에 대한 MVD 중 LSR의 소실 혹은 분지의 감소는 얼굴신경에 대한 offending vessel의 적절한 감압이 이루어졌음을 나타내는 지표로 사용되고 있다 [21-24]. 하지만, 몇몇 환자들은 MVD 중 offending vessel 감압 체크 후에 이미 LSR이 소실되거나, 혹은 offending vessel을 충분히 감압했을에도, LSR이 사라지지 않고 지속되는 경우가 있음을 보고하였고, 이런 이유로 적절한 감압이 이루어졌음을 의미하는 지표로서 LSR의 실제적인 가치에 대해 여전히 논란이 있다 [21,25,26].

1) 검사 방법

일반적으로 LSR을 기록할 때, 자극 전극은 눈 바깥가장자리에서 약 3 cm 떨어진 부위의 얼굴신경의 이마신경(frontal branch) 혹은 림프신경(zygomatic branch)에 삽입하고, 자극의 방향은 뇌줄기를 향하도록 음극(Cathode)이 양극(Anode)보다 보다 근위부에 위치하게 한다 [1,2]. 자극의 세기는 5-25 mA로 설정하고, 자극 지속시간은 0.3-0.5 msec 정도로 적용되며, 기록 전극은 입둘레근(orbicularis oris muscle) 혹은 탃�골근육(mentalis muscle)에 삽입하여 측정한다. 위와 같이 얼굴신경의 왼쪽 분지(upper branch)의 아래쪽 분지(lower branch)를 자극해도 LSR이 유발될 수 있는데, 아래쪽 분지를 자극할 경우에는, 복 신경(buccal branch) 혹은 턱 가장자리 신경(mandibular marginal branch)에서 자극 전극을 두고, 이마근(frontal muscle) 혹은 눈를 둘레근(orbicularis oculi muscle)으로써 LSR 측정이 가능하다. 사망이었던 얼굴 신경의 분지의 자유로운 양극의 위치가 적합한 것으로 알려져 있다 [27,28]. 그러므로, 환자들 간의 얼굴신경 분지의 해부학적 변이를 고려하여, 얼굴신경 분지를 보다 정확하게 자극할 때, LSR 또한 보다 정확하게 얻을 수 있다. 국내의 자극 전극은 이를 확인하기 위해, 수술 전 외래 검사실에서 LSR 측정하여 LSR이 가장 잘 유발되는 얼굴 신경 분지의 위치를 확인하여, 얼굴신경 분지를 지도화(mapping)하였다. 이를 과정하여 IONM을 시행하였을 때, LSR의 효율이 보다 높일 수 있다고 발표하였다 [29]. 또한, 그들은 자극의 방향을 복귀하기로 양극이 양극보다 보다 원위부로시행하였다(Fig 2). 자극 방향을 이와 같이 반대로 시행하여 복 근육활성전위(Compound muscle action potential)를 확인하면서 얼굴신경분지를 적절하게 자극할 수 있었고, LSR의 효율 또한 높일 수 있었다고 보고하였다.

2) 임상적 적용

LSR를 이용한 IONM은 offending vessel을 확인하고, 암변

https://doi.org/10.18214/jend.2020.22.1.1
신경에 대해 offending vessel의 충분한 감압이 이루어졌는지 확인하는 유용성 검사 방법이다. 일부 저자는 LSR의 완전히 사라지지 않는다는 해도, LSR의 집족이 감압 전보다 감소하는 것도 좋은 예후와 연관이 있다고 보고하였다. 또한, 다른 일부 연구자들은 HFS의 호전과 연관된 장기적인 예후(long-term outcome)과 MVD의 소실과는 연관성이 적어, LSR의 효용성에 대해 의문을 제기하였다. 그들은 MVD를 시행한 72명의 HFS 환자를 분석하였는데, 이 중 40명이 LSR이 소실되었지만, 회복할 때 5명은 경미한 HFS가 지속되었고, 이 중 4명은 6개월 후 추적시에도 증상이 지속되었다고 보고하였다. Thirumala 등도 MVD로 LSR이 소실된 예후의 연구가 있었지만, 일부 환자에서는 LSR이 소실되지 않아도 장기적으로 추적하였을 때, HFS가 호전될 수 있다고 제시하며, MVD 후 LSR 소실과 장기적인 예후와는 연관성이 적다고 보고하였다.

이런 증례 LSR(residual LSR)는 HFS의 병리 기전 중 얼굴신경의 과장진성(hyperexcitability)를 포함하는 중추성 기전(central mechanism)을 뛰어넘는 증상이다. MVD를 통해 얼굴신경에 대한 offending vessel의 직접적인 압박 문제를 해결하였지만, 얼굴 신경의 변성된 과장진성이 정상화되는데 수 개월 혹은 수 년의 시간이 걸리므로, 그 기간 동안 일부 환자에서 잔류 LSR이 관찰되고, HFS 증상이 관찰될 수 있는 것으로 생각된다. 그러나, MVD로 offending vessel을 확인하고, 충분한 감압이 이루어졌는지 알아보는 지표로 LSR를 활용하고, MVD 후은 offending vessel의 변화(소실 혹은 잔류)를 해석할 때, 검사를 밀도의 간에 긴밀하게 소통하며, 충분한 감압을 이루어 가는 것이 중요하다고 생각된다.

2. Z-L 반응(Z-L response)

Z-L 반응(ZLR)은 HFS에 MVD 수술을 할 때, LSR과 더불어 offending vessel을 확인 및 감압 여부를 확인하는 검사방법으로, 이는 offending vessel의 벽을 전기로 자극할 때 유발되는 반응이다. ZLR은 REZ에 위치한 offending vessel의 벽을 자극하여, 인접한 얼굴신경이 함께 자극되어 유발되는 근이도 반응이기 때문에 offending vessel의 감압이 성공적으로 이루어졌을 경우, 바로 소실된다. 일부 저자들은 ZLR은 offending vessel의 소실이 성공적으로 이루어졌을 경우, 바로 소실된다. 일부 저자들은 ZLR은 offending vessel의 소실이 성공적으로 이루어졌을 경우, 바로 소실된다. 일부 저자들은 ZLR은 offending vessel의 소실이 성공적으로 이루어졌을 경우, 바로 소실된다. 일부 저자들은 ZLR은 offending vessel의 소실이 성공적으로 이루어졌을 경우, 바로 소실된다. 일부 저자들은 ZLR은 offending vessel의 소실이 성공적으로 이루어졌을 경우, 바로 소실된다. 일부 저자들은 ZLR은 offending vessel의 소실이 성공적으로 이루어졌을 경우, 바로 소실된다. 일부 저자들은 ZLR은 offending vessel의 소실이 성공적으로 이루어졌을 경우, 바로 소실된다. 일부 저자들은 ZLR은 offending vessel의 소실이 성공적으로 이루어졌을 경우, 바로 소실된다. 일부 저자들은 ZLR은 offending vessel의 소실이 성공적으로 이루어졌을 경우, 바로 소실된다.
한계가 있을 경우, MVD 시 ZLR를 병합하면, offending vessel 를 보다 확실하게 확인하고, 감압을 시행할 수 있게 된다.

1) 검사 방법

기록전극은 눈-columns, 입-columns 근육 그리고 턱-columns 근육에 삽입 한다. 자극전극은 두개방위 순수에서 사용되는 비침습적 정신형 전극(concentric electrode)을 사용하고, 양극방식(bi-polar mode)의 자극이 가능하도록 한다. 얼굴신경에서 offending vessel을 감압하기 전에, 자극전극을 REZ의 접촉부위의 5mm 안에 해당하는 offending vessel에 위치시키고, 전기저항(1-2mA, 0.2msec)을 약 3 Hz 속도로 자극할 때, 해당 얼굴신경문 지에서 자세받는 근육에서 근전도 파형이 유발된다. Offending vessel을 확인하고, 완전히 감압할 때까지, 위의 작업을 반복하 고, offending vessel에 대한 충분한 감압이 이루어지면, ZLR 은 턱 이상 유발되지 않게 된다.

2) 임상적 적용

ZLR은 앞서 언급했듯이 LSR를 활용하기 어려울 경우 매우 유용한 검사방법이다. Zheng 등은 LSR과 ZLR을 병합해서 시행할 경우, LSR만 단독으로 사용하는 것보다 유용하다고 제안 하였다. 또한, ZLR은 offending vessel이 2개 이상의 여러 개가 이상될 때, offending vessel을 확인하는 데, 특히 유용하다. 그러나, ZLR은 사용할 때, 몇 가지 주의가 필요하다. ZLR은 offending vessel을 자극한 뒤, 인접한 얼굴신경으로 전기저항이 전달되어 유발되는 반응이 때문이다. REZ의 HFS 방위 위치의 에도 offending vessel과 얼굴신경의 접촉이 있다면, ZLR은 유 발될 수 있다[36]. 예를 들어, REZ의 접촉부위 뿐 아니라, offending vessel의 점부 위와 얼굴신경의 점부위의 접촉이 있을 경우, offending vessel의 충분한 감압이 이루어지고, LSR이 소실되어도, ZLR은 사라지지 않고 지속될 수 있다.

얼굴신경 F 파(Facial F-wave)

얼굴신경 F 파 검사는 얼굴 신경을 전기저항 했을 때, 뇌줄기 방위로 전달된 자극이 얼굴신경까지 전달된 후, 다시 반대방향으로 얼굴신경으로 통해 전달되어 발생하는 지연성 근전도 파형이다. F 파 활동은 운동신경의 흡수분을 나타내는 지표로 알려져 있고[37], 얼굴신경을 자극하였을 때는 얼굴신경핵으로 포함하여 얼굴신경의 흡수분을 기록할 수 있는 것으로 알려져 있다. 실제 HFS 환자에는 얼굴신경 F 파 검사 시행할 때, MVD 시행 전에는 증상이 있는 쪽에서 증상이 없는 쪽보다 F파가 더 자주 유발되었고, MVD 시행 후 유의한 차이를 사라지는 것이 보고되었다[38]. 얼굴신경 F파 검사를 시행할 때는 직접적으로 유발되는 외과 격자를 방지하기 위해, 기록 근 근력 턱 근육 (mentalis muscle)에 삽입하고, 자극 전극은 뿐 가장자리 신경 (mandibular marginal branch)의 발달 부위에 위치시켜 유발 한다.

얼굴운동 유발전위(Facial motor evoked potentials: Facial MEP)

혼히 시행되지만, 경우에 전기저항(transcranial electric stimulation)을 통해 얻어진 얼굴운동유발전위(facial MEP)을 이용하여 MVD 후의 얼굴신경의 기능적 손상을 측정할 수 있다. HFS 환자에서 얼굴신경의 과방진성으로 인해 경우 개개기저극을 시행할 때, 방진에서 facial MEP의 전폭과 지 속시간이 비방진과 비교시 현저한 약간이 있고, facial MEP를 유 발하기 위해 역시(threshold) 또한 감소되어 있다고 보고 되었다[39, 40]. 또한, MVD를 통해 offending vessel의 감압을 시행한 경우, facial MEP의 전폭 및 지속시간이 유의하게 감소된다 고 보고 되었다.

결론

HFS에 대해 MVD 시행할 때, CN VIII의 손상으로 인한 수술 후 정상 소실은 가장 심각한 합병증 중 하나였으나, BAEPs를 이용한 IONM으로 발생률을 크게 감소하게 되었다. IONM에 대한 경험과 지식이 증가하면서, 과거에 비해 수술 후 정상 소실을 보다 감소시키기 위한 BAEPs의 검사방법 및 경계기준들은 많이 변화가 있겠다. 또한, HFS의 특정적인 전기생리학적 반응인 LSR에 대해서도 검사 방법의 변화가 있었고, MVD 시행 후에도 지속되는 잔류 LSR의 의미에 대해서도 HFS의 병리기전과 함께 많은 첫차가 이루어졌다. 또한, LSR 뿐만 아니라, HFS의 offending vessel을 확인하거나 충분한 감압 여부 판단에 활용 할 수 있는 Z-L 반응이라는 검사방법이 개발되어 활용되고 있고, 얼굴신경의 과방진성을 평가할 수 있는 얼굴신경 F파 검 사와 얼굴운동유발전위의 유용성 또한 임증되어 활용되고 있다. 이런 다양한 IONM 검사방법과 의미에 대한 지식과 이해를 통해, HFS에 MVD 수술은 보다 안정하고, 효과적인 수술방법으로 발전해갈 수 있을 것이다.

ORCID

Byung-Euk Joo, https://orcid.org/0000-0003-3566-1194

References

I. Nielsen VK: Pathophysiology of hemifacial spasm: I. Ephaptic transmission and ectopic excitation. Neurology 1984: 34: 418-426
2. Moller AR, Jannetta PJ: Hemifacial spasm: results of electrophysiologic recording during microvascular decompression operations. Neurology 1985: 35: 969-974
3. Wilkins RH: Hemifacial spasm: a review. Surg Neurol 1991: 36: 251-277
4. Moller AR: Vascular compression of cranial nerves: II: pathophysiology. Neurol Res 1999: 21: 439-443
5. Moller AR, Jannetta PJ: Microvascular decompression in hemifacial spasm: intraoperative electrophysiological observations. Neurosurgery 1985: 16: 612-618
6. Barker FG, Jannetta PJ, Bissonette DJ, Shields PT, Larkins MV, Jho HD: Microvascular decompression for hemifacial spasm. J Neurosurg 1995: 82: 201-210
7. Sindou M, Mercier P: Microvascular decompression for hemifacial spasm: Surgical techniques and intraoperative monitoring. Neurochirurgie 2018: 64: 133-143
8. Legatt AD: Mechanisms of intraoperative brainstem auditory evoked potential changes. J Clin Neurophysiol 2002: 19: 396-408.
9. Acevedo JC, Sindou M, Fischer C, Vial C: Microvascular compression for the treatment of hemifacial spasm. Retrospective study of a consecutive series of 75 operated patients—electrophysiologic and anatomical surgical analysis. Stereotact Funct Neurosurg 1997: 68: 260-265
10. Legatt AD: Electrophysiology of Cranial Nerve Testing: Auditory Nerve. J Clin Neurophysiol 2018: 35: 25-38
11. American Clinical Neurophysiology S: Guideline 9C: Guidelines on short-latency auditory evoked potentials. J Clin Neurophysiol 2006: 23: 157-167
12. Martin WH, Stecker MM: ASNM position statement: intraoperative monitoring of auditory evoked potentials. J Clin Monit Comput 2008: 22: 75-85
13. Joo BE, Park SK, Cho KR, Kong DS, Seo DW, Park K: Real-time intraoperative monitoring of brainstem auditory evoked potentials during microvascular decompression for hemifacial spasm. J Neurosurg 2016: 125: 1061-1067
14. James ML, Husain AM: Brainstem auditory evoked potential monitoring: when is change in wave V significant? Neurology 2005: 65: 1551-1555
15. Polo G, Fischer C, Sindou MP, Marneffe V: Brainstem auditory evoked potential monitoring during microvascular decompression for hemifacial spasm: intraoperative brainstem auditory evoked potential changes and warning values to prevent hearing loss—prospective study in a consecutive series of 84 patients. Neurosurgery 2004: 54: 97-104; discussion 104
16. Grundy BL, Jannetta PJ, Procopio PT, Lina A, Boston JR, Doyle E: Intraoperative monitoring of brain-stem auditory evoked potentials. J Neurosurg 1982: 57: 674-681
17. Hatayama T, Moller AR: Correlation between latency and amplitude of peak V in the brainstem auditory evoked potentials: intraoperative recordings in microvascular decompression operations. Acta Neurochir (Wien) 1998: 140: 681-687
18. Thirumala PD, Carnovale G, Habeych ME, Crammond DJ, Balzer JR: Diagnostic accuracy of brainstem auditory evoked potentials during microvascular decompression. Neurology 2014: 83: 1747-1752
19. Park SK, Joo BE, Lee S, et al: The critical warning sign of real-time brainstem auditory evoked potentials during microvascular decompression for hemifacial spasm. Clin Neurophysiol 2018: 129: 1097-1102
20. Kong DS, Park K, Shin BG, Lee JA, Eum DO: Prognostic value of the lateral spread response for intraoperative electromyography monitoring of the facial musculature during microvascular decompression for hemifacial spasm. J Neurosurg 2007: 106: 384-387
21. Kim CH, Kong DS, Lee JA, Kwan P: The potential value of the disappearance of the lateral spread response during microvascular decompression for predicting the clinical outcome of hemifacial spasms: a prospective study. Neurosurgery 2010: 67: 1581-1587; discussion 1587
22. Huang BR, Chang CN, Hsu JC: Intraoperative electrophysiological monitoring in microvascular decompression for hemifacial spasm. J Clin Neurosci 2009: 16: 209-213
23. Sekula RF, Bhatia S, Frederickson AM, et al: Utility of intraoperative electromyography in microvascular decompression for hemifacial spasm: a meta-analysis. Neurosurg Focus 2009: 27: E10
24. Thirumala PD, Shah AC, Nikonow TN, et al: Microvascular decompression for hemifacial spasm: evaluating outcome prognosticators including the value of intraoperative lateral spread response monitoring and clinical characteristics in 293 patients. J Clin Neurophysiol 2011: 28: 56-66
25. Tobishima H, Hatayama T, Okkuma H: Relation between the persistence of an abnormal muscle response and the long-term clinical course after microvascular decompression for hemifacial spasm. Neurol Med Chir (Tokyo) 2014: 54: 474-482
26. Hatem J, Sindou M, Vial C: Intraoperative monitoring of facial EMG responses during microvascular decompression for hemifacial spasm. Prognostic value for long-term outcome: a study in a 33-patient series. Br J Neurosurg 2001: 15: 496-499
27. Katz AD, Catalano P: The clinical significance of the various anastomotic branches of the facial nerve. Report of 100 patients. Arch Otolaryngol Head Neck Surg 1987: 113: 959-962
28. Kopuz C, Turgut S, Yavuz S, Ilg1 S: Distribution of facial nerve in parotid gland: analysis of 50 cases. Okajimas Folia Anat Jpn 1994: 70: 295-299
29. Lee S, Park SK, Lee JA, et al: A new method for monitoring abnor-
mal muscle response in hemifacial spasm: A prospective study. Clin Neurophysiol 2018: 129: 1490-1495

30. Mooij JJ, Mustafa MK, van Weerden TW: Hemifacial spasm: intraoperative electromyographic monitoring as a guide for microvascular decompression. Neurosurgery 2001: 49: 1365-1370. discussion 1370

31. Shin JC, Chung UH, Kim YC, Park CI: Prospective study of microvascular decompression in hemifacial spasm. Neurosurgery 1997: 40: 730-734. discussion 734

32. Joo WI, Lee KJ, Park HK, Chough CK, Rha HK: Prognostic value of intra-operative lateral spread response monitoring during microvascular decompression in patients with hemifacial spasm. J Clin Neurosci 2008: 15: 1335-1339

33. Thirumala PD, Wang X, Shah A, et al: Clinical impact of residual lateral spread response monitoring after adequate microvascular decompression for hemifacial spasm: A retrospective analysis. Br J Neurosurg 2015: 29: 818-822

34. Yang M, Zheng X, Ying T, et al: Combined intraoperative monitoring of abnormal muscle response and Z-L response for hemifacial spasm with tandem compression type. Acta Neurochir (Wien) 2014: 156: 1161-1166. discussion 1166

35. Zheng X, Hong W, Tang Y, et al: Discovery of a new waveform for intraoperative monitoring of hemifacial spasms. Acta Neurochir (Wien) 2012: 154: 799-805

36. Son BC, Ko HC, Choi JG: Intraoperative monitoring of Z-L response (ZLR) and abnormal muscle response (AMR) during microvascular decompression for hemifacial spasm. Interpreting the role of ZLR. Acta Neurochir (Wien) 2018: 160: 963-970

37. Kimura J: Current understanding of F-wave physiology in the clinical domain. Suppl Clin Neurophysiol 2006: 59: 299-303

38. Ishikawa M, Ohira T, Namiki J, et al: Electrophysiological investigation of hemifacial spasm after microvascular decompression: F waves of the facial muscles, blink reflexes, and abnormal muscle responses. J Neurosurg 1997: 86: 654-661

39. Wilkinson MF, Kaufmann AM: Facial Motor Neuron Excitability in Hemifacial Spasm: A Facial MEP Study. Can J Neurol Sci 2014: 41: 239-245

40. Wilkinson MF, Kaufmann AM: Monitoring of facial muscle motor evoked potentials during microvascular decompression for hemifacial spasm: evidence of changes in motor neuron excitability. J Neurosurg 2005: 103: 64-69