Structures of radial spokes and associated complexes important for ciliary motility

Miao Gui1, Meisheng Ma2, Erica Sze-Tu1, Xiangli Wang2, Fujiet Koh1,8, Ellen D. Zhong3,4, Bonnie Berger4,5, Joseph H. Davis3,6, Susan K. Dutcher7, Rui Zhang2,8 and Alan Brown1✉

In motile cilia, a mechanoregulatory network is responsible for converting the action of thousands of dynein motors bound to doublet microtubules into a single propulsive waveform. Here, we use two complementary cryo-EM strategies to determine structures of the major mechanoregulators that bind ciliary doublet microtubules in Chlamydomonas reinhardtii. We determine structures of isolated radial spoke RS1 and the microtubule-bound RS1, RS2 and the nexin–dynein regulatory complex (N-DRC). From these structures, we identify and build atomic models for 30 proteins, including 23 radial-spoke subunits. We reveal how mechanoregulatory complexes dock to doublet microtubules with regular 96-nm periodicity and communicate with one another. Additionally, we observe a direct and dynamically coupled association between RS2 and the dynein motor inner dynein arm subform c (IDAc), providing a molecular basis for the control of motor activity by mechanical signals. These structures advance our understanding of the role of mechanoregulation in defining the ciliary waveform.

Motile cilia (also known as flagella) beat rhythmically to produce a driving force for locomotion or fluid flow. Single-cell eukaryotes, like the model organism Chlamydomonas reinhardtii and the pathogen that cause malaria, trypanosomiasis and giardiasis, use their flagella for swimming, mating, host invasion, survival and pathology. In multicellular organisms, most ciliated cells, with the notable exception of spermatozoa, are not free swimming but instead line epithelial surfaces and generate fluid flow by producing metachronal waves. In humans, cilia-driven fluid flow clears the airways of trapped pathogens, circulates cerebrospinal fluid in the brain and determines the left–right axis of the body plane in the embryonic node.

Central to all motile cilia is the axoneme, a highly patterned geometric arrangement of microtubules, dynein motors and mechanoregulatory complexes. The axoneme of most motile cilia consists of nine doublet microtubules arranged in a circle around a central pair (CP) of singlet microtubules (Fig. 1a). Attached to the doublet microtubules are two rows of dynein motors, the outer dynein arms (ODAs) and the inner dynein arms (IDAs), with complementary functions. The ODAs provide much of the power output, whereas the IDAs define the waveform. The regular beating pattern of cilia requires the spatial and temporal inhibition of these dynein motors by a mechanical feedback loop involving the CP and mechanoregulatory complexes that are periodically bound to doublet microtubules called radial spokes and the N-DRC. The N-DRC converts the action of the dynein motors into microtubule bending, and radial spokes ensure the dyneins function together to form a regular waveform. In the absence of radial spokes, cilia are either paralyzed or have an irregular beat despite having active dynein.

The arrangement of these mechanoregulatory complexes within the axoneme has been characterized at nanometer resolution by electron cryotomography (cryo-ET) and subtomogram averaging. Radial spokes are 40-nm-long T-shaped complexes that repeat in pairs or triplets within the 96-nm repeat of the axoneme, depending on the organism. Each radial spoke can be conceptually divided into a microtubule-associated base, a narrow stalk, a V-shaped neck and a distal spoke head. In the model organism C. reinhardtii, there are two full-length radial spokes (RS1 and RS2) separated by 32 nm and a shorter complex (RS3S) that binds 24 nm from RS2. The N-DRC occupies a site between RS2 and RS3S.

The exact composition of these complexes is unknown, with 11 N-DRC subunits and at least 20 radial spoke proteins (RSPs) described. High-resolution structural information is required to reveal the individual components, the detailed organization, and molecular mechanisms of this mechanoregulatory network, and to understand how mutations within mechanoregulators cause ciliopathies including primary ciliary dyskinesia and male infertility.

Results

Structures of radial spokes on doublet microtubules. We previously determined the structure of a doublet microtubule from Chlamydomonas by single-particle cryo-EM. Although the doublet microtubules copurified with attached radial spokes and the N-DRC (Extended Data Fig. 1a), density for these complexes were largely absent from the final reconstruction due to on-doublet flexibility.

To overcome this flexibility, we developed a processing strategy (Extended Data Fig. 1) that allowed us to obtain on-doublet structures to various resolutions of RS1, RS2, RS3S, N-DRC, IDAc and the CCDC39–CCDC40 coiled coil (CCDC39–40; Table 1, Fig. 1b, and Extended Data Figs. 2 and 3). The maps were of sufficient quality to build atomic models for the microtubule-associated regions of all complexes except RS3S (Table 1, Extended Data Fig. 4 and
A separate strategy (described below) was used to determine the structure of the radial spoke head (Fig. 1c). The combination of these two strategies provides a near-complete atomic model of radial spokes and their associated complexes attached to doublet microtubules (Fig. 1d).

Periodic docking of mechanoregulators to doublet microtubules. Previous structural and genetic studies had demonstrated that CCDC39−40 guides the placement of radial spokes along doublet microtubules21–23, but how it does so was not clear. Our structures show that the strict 96-nm periodicity and regular 32-nm spacing of the two radial spokes are determined by molecular adaptors that ‘read’ the sequence of the CCDC39−40 coiled coil at the base of each radial spoke (Fig. 1a). For RS1, this adaptor is flagellar-associated protein (FAP) 253 (FAP253), and for RS2, it is FAP91. Consistent with each spoke having a different adaptor, microRNA-mediated knockdown of FAP91 leads to the selective loss of RS2 (ref. 24). Despite their functional equivalence, FAP91 and FAP253 bind differently to CCDC39−40. FAP253 interacts through a small interface dominated by salt bridges (Fig. 2b,c), whereas FAP91 forms an extended, hydrophobic triple helix with CCDC39−40 (Fig. 2d). The docking mechanism for the N-DRC is more complicated and involves FAP91, a heterodimer of DRC1 and DRC2 and a homodimer of DRC4 (Fig. 2a and Extended Data).
Fig. 4c). However, the principle of reading specific sequences within the CCDC39−40 coiled coil is the same. As FAP91 spans the 12-nm length between RS2 and the N-DRC and is also proposed to connect RS2 and RS3S as part of the calmodulin and spoke-associated complex (CSC)25, it occupies, together with CCDC39−40, a privileged position to relay signals between mechanoregulators. The N-DRC is connected to the ODAs via the outer–inner dynein linkers 26, generating a network by which mechanoregulatory signals from the radial spokes could be propagated throughout the axoneme.

Our on-doublet structures show that RS1 and RS2 have identical spoke heads (Extended Data Fig. 1d) but differ in the composition and copy numbers of subunits in their stalks (Supplementary Table 2). The stalk of RS1 contains four homodimers of LC8 (RSP22) and a single copy of an armadillo-repeat protein, RSP14 (Fig. 1b). In contrast, the stalk of RS2 has an appendage of two additional LC8 homodimers, a curved leucine-rich-repeat protein that we identify as RSP15, and RSP8, a structural homolog of RSP14 (Fig. 1b). Even FAP207, which is present in both stalks and acts as a microtubule-binding strut, has distinct structural arrangements and interacts with different protofilaments: A02 for RS1 and A03 for RS2 (Fig. 2e,f). The unique compositions of the stalks explain the gross morphological differences seen via cryo-ET13,14.

Structure and assembly of a radial spoke

Neither spoke head could be resolved beyond 4.6-Å resolution using our on-doublet strategy (Extended Data Fig. 2a). Therefore, to generate maps sufficient for model building, we salt stripped radial spokes from doublet microtubules and imaged them separately (Fig. 1a and Extended Data Fig. 5). This strategy resolved the structure of a complete radial spoke.

Table 1 | Cryo-EM data collection, refinement and validation statistics

Data collection and processing	Composite map of isolated RS1 stalk-IDac-N-DRC/DMT (EMD-22481, PDB 7JU4)	Composite map of RS2 stalk (EMD-22480, PDB 7JTS)	On-doublet RS1 stalk (EMD-22482)	On-doublet RS2 stalk (EMD-22483)	On-doublet RSP1 dimer (EMD-22486)
Magnification	81,000	81,000	81,000	81,000	81,000
Voltage (kV)	300	300	300	300	300
Electron exposure (e−/Å²)	60.0	38.9	38.9	38.9	38.9
Defocus range (μm)	−1.1 to −2.4	−1.0 to −3.5	−1.0 to −3.5	−1.0 to −3.5	−1.0 to −3.5
Pixel size (Å)	1.09	1.403	1.403	1.403	1.403
Symmetry imposed	C1	C1	C1	C1	C1
Initial particle images (no.)	2,320,543	202,168	202,168	202,168	202,168
Final particle images (no.)	221,836	202,168	143,514	95,932	121,492
Map resolution range (Å)	3.2–3.7b	3.4–4.1	6.1	5.3	4.6
FSC threshold	0.143	0.143	0.143	0.143	0.143
Refinement					
Map sharpening B factor (Å²)	−74 to −32b	−139 to −50	−100	−127	−160
Model composition					
Nonhydrogen atoms	72,807	133,504	6,801	–	–
Protein	9,516	17,032	1,377	–	–
Ligand	4 PO₄	14 GDP, 14 GTP, 14 Mg, 1 ATP	–	–	–
B factors (Å²)					
Protein	30.8	61.56	17.62	–	–
Ligand	50.0	51.4	–	–	–
R.m.s. deviations					
Bond lengths (Å)	0.005	0.005	0.005	–	–
Bond angles (°)	1.058	1.048	1.364	–	–
Validation					
MolProbity score	1.69	2.07	2.0	–	–
Clashscore	9.18	14.77	9.26	–	–
Poor rotamers (%)	0.51	0.04	0	–	–
Ramachandran plot					
Favored (%)	96.78	94.2	91.44	–	–
Allowed (%)	3.22	5.8	8.04	–	–
Disallowed (%)	0	0	0.52	–	–

bRefers to the number of 96-nm particles. """"Ranges correspond to the values of the individual maps prior to merging to form the composite map.
spoke to 3.2- to 3.7-Å resolution (Fig. 1c and Extended Data Fig. 6), allowing modeling of the spoke head and neck (Fig. 1d, Table 1, and Supplementary Tables 1 and 2). Unexpectedly, comparison of the structure with the on-doublet stalks revealed that the isolated radial spoke corresponded to RS1 only (Extended Data Fig. 7). The electrostatic docking mechanism for RS1 (Fig. 2c) may explain its selective extraction by high salt. Consistent with RS1 being stripped more easily from doublet microtubules than RS2, in silico analysis revealed that ~30% of doublet microtubule particles that have RS2 lack RS1 (Extended Data Fig. 1).

The spoke head consists of two symmetric lobes, as shown at lower resolution by cryo-ET13 and single-particle cryo-EM27. Each lobe contains an RSP9 homodimer, heterodimers of RSP4–RSP6 and RSP2–RSP23, and single copies of RSP1, RSP3, RSP5 and RSP10 (Fig. 3a). The two lobes are dimerized exclusively through a homodimer of RSP16, a member of the HSP40 family of chaperones28 (Fig. 3b). Spoke head dimerization is apparently important for waveform formation, as RSP16 knockdown causes abnormal motility in \textit{Chlamydomonas}29, and mutations in its human ortholog are associated with ciliopathies30 (Supplementary Table 3). Within the axoneme, the spoke heads interact with the repetitive projections of the CP31,32. The spoke head surface that faces these projections is flat, slightly concave and remarkably electronegative, especially at its core (Fig. 3c). This unexpected charge distribution...
Fig. 3 | Structure of the radial spoke head. a, View of the top of the radial spoke head. Composite map colored by subunit. b, Two views of the radial spoke head. The two symmetric lobes of the spoke head (colored different shades of blue) are dimerized by a homodimer of RSP16 and flanked by the α-helices of RSP3. The symmetric spoke head sits on a V-shaped asymmetric neck containing FAP198, FAP385, RSP12 and the N-terminal domains of RSP16. c, Atomic model of the radial spoke head colored by electrostatic potential. d, Atomic model of the radial spokes docked into an isosurface rendering of the subtomogram average of the Chlamydomonas axoneme (EMD-6872). The two radial spokes interact through the N-terminal domains (NTDs) of RSP1. Inset shows the model of the on-doublet interaction between the NTDs of RSP1 from RS1 and RS2.

suggests a model in which electrostatics govern the interactions between radial spokes and the CP.

As the spoke heads of RS1 and RS2 are identical13 (Extended Data Fig. 1d), isolated RS1 also describes the spoke head of RS2. Docking the model into the subtomogram average of the Chlamydomonas axoneme (EMD-6872)33 reveals that the spoke heads of RS1 and RS2 are connected by the distal β-sandwich domains of RSP1 (Fig. 3d). This bridge could be resolved to ~6 Å resolution by focused refinement of the connection between RS1 and RS2 in our on-doublet structures (Extended Data Fig. 1b). The distance between the centers of the two spoke heads matches the 32-nm spacing between their bases, ensuring that the stalks are parallel to each other and that the flat surface of the conjoined spoke heads is parallel to the microtubule surface (Fig. 1d). Tomograms of axonemes from other species15 reveal that although interactions between spoke heads are universal, the pairings are organism specific. In humans, RS2 interacts with RS3 but not RS1. Consistent with this lack of interaction between RS1 and RS2, the human RSP1 ortholog (RSPH1) does not have the β-sandwich domains of Chlamydomonas RSP1.

Interactions between RSP3 and radial spoke proteins. Previous work has shown that most of the spoke head subunits (with the notable exception of RSP16) preassemble together in the cytoplasm28,34–36, whereas the stalk proteins RSP8 and LC8 do not35,36 (Supplementary Table 2). This physical separation suggests that the stalk and spoke head assemble independently and come together in the cilium (Extended Data Fig. 8). Our structural data here suggest that RSP3, which spans the entire 40-nm length of the radial spoke37 and is present in the precursor38,39, plays a key role in uniting the spoke head and stalk (Fig. 4).

The extended N terminus of RSP3 interacts with multiple copies of the LC8 homodimers, as shown biochemically40, through β-strand addition (Fig. 4b,c). The avidity provided by this multivalent association may provide the basis for the stability of the mature complex. Consistent with a role in radial-spoke assembly, RSP3 provides localization signals for a variety of homo- and heterodimers (including RSP7–RSP11, RSP2–RSP23, RSP4–RSP6, FAP385–FAP385) (Fig. 4a). Each dimer forms a four-helix bundle that recognizes amphipathic sequences within the long α-helix of RSP3. The four-helix bundle of RSP7–RSP11 belongs to the RIIa dimerization/docking domain family, first identified in regulatory subunits of cAMP-dependent protein kinase A (PKA), which may explain previous observations that PKA can bind radial spokes in vitro41.

RS2 and IDAc are physically coupled. At the base of RS2 attached to FAP207, we identified density corresponding to the single-headed dynein IDAc (Fig. 5a). Within this density, we could unambiguously place globular actin and p28 homodimer, both known auxiliary subunits of IDAc42,43. Additional α-helices within the density may correspond to the tail of the IDAc heavy chain, which crosslinks with p28 (ref. 41).

Density resembling IDAc is also seen at the base of RS1 in the subtomogram average of the Chlamydomonas axoneme31 (Fig. 5b,c). This density corresponds to IDAa, which, like IDAc, copurifies with p28 (ref. 32) and actin44. Docking our atomic model of IDAc into the subtomogram average of IDAa shows that p28 of IDAa
Interactions between RSP3 and radial spoke proteins. a. Left, atomic model of RS1 with its two molecules of RSP3 colored green. Colored boxes indicate the binding sites on RSP3 of five different dimers. The partially boxed proximal region of the stalk is shown in detail in b. Right, atomic models of the interactions between RSP3 and different dimers. The sequence alignment shows amphipathic helices of RSP3 with hydrophobic residues recognized by the various dimers colored red. The four-helix bundle of RSP7–RSP11 belongs to the RIIa dimerization/docking domain, and the four-helix bundles of RSP4–RSP6, RSP2–RSP23, RSP385–RSP385 and the unassigned dimer belong to Dpy-30 domain (which has an additional helix at the N-terminus as compared with the RIIa dimerization/docking domain). b. Left, orthogonal views of the interactions of RSP3 and FAP253 with the LC8 homodimers in RS1. Other subunits have been omitted for clarity. Right, a schematic showing the resolved LC8-binding motifs of FAP253 and RSP3. c. Orthogonal views of the interactions between RSP3 and the LC8 homodimers in RS2. An unassigned protein (pink) also interacts with the β-edges of LC8. Other subunits have been omitted for clarity.

Regulation by mechanical and chemical signals. EM has shown that radial spokes tilt as the cilium bends. In straight sections of the axoneme, the radial spokes are parallel to one another and perpendicular to the doublet microtubule, whereas in bent sections, their stalks are obliquely aligned with the microtubules. As this bend-dependent conformational change may be an important regulatory mechanism, we used a neural network (Methods) to analyze the flexibility of isolated RS1. The neural network identified one major movement: a tilting of the spoke head at the neck by 17° relative to the stalk in the direction of the microtubule axis (Fig. 6a and Supplementary Movie 1). This same tilting motion (22°) was also identified via multibody analysis, in which the stalk and spoke head were considered as separate bodies (Extended Data Fig. 9a). Multibody analysis of the on-doublet RS1 and RS2 revealed that tilting of the spoke head remains a major motion, even when the radial spokes are attached to doublet microtubules and each other (Extended Data Fig. 9b,c). Furthermore, we identified that both stalks tilt relative to the doublet microtubule surface by 5–10° in the same direction as the spoke head tilt (Fig. 6b and Extended Data Fig. 9d). Thus, radial spokes appear to have two hinges of motion: one at the neck and one at the base. Together, these could account for the maximum 33° tilt angle observed in bent regions of the cilium in electron micrographs. Importantly, our analysis also reveals that movement of IDAc is coupled to the tilt of RS2 (Fig. 6b). The ability of radial spokes to tilt when bound to doublet microtubules, and the coupling of this movement to the dynein motors, potentially provides a mechanism whereby changes in the orientation of radial spokes could alter the orientation and/or conformations of dynein motors.

We identify calmodulin (RSP20), a Ca2+-responsive protein, at the proposed interface between RS1 and IDAa bound to an IQ motif of FAP253 (Fig. 5d and Extended Data Fig. 10a). Comparison to previous structures of calmodulin bound to IQ motifs revealed that FAP253–bound calmodulin is in an apo state, consistent with our use of a calcium-selective chelator during purification. A Ca2+-dependent conformational switch in the FAP253-bound calmodulin structure could therefore modulate ciliary motility by affecting the RS1–IDAa interaction. This may be one mechanism by which calcium can directly alter the waveform of isolated axonemes in vitro. Other mechanisms, such as calcium...
regulation of the calmodulin-like LC4 subunit of the ODA, may directly affect dynein behavior49.

Other chemical signals, including redox status40 and cyclic nucleotides47, are also proposed to regulate ciliary motility48. Two of the identified RSPs (FAP198 in the neck and RSP5 in the spoke head) are associated with redox sensitivity. RSP5 is a member of the aldo-keto reductase family of NAD(P)H-dependent oxidoreductases49, and FAP198 has an N-terminal domain that resembles the redox-sensitive heme-binding domain of cytochrome b5 (Supplementary Fig. 1). However, our structures show that RSP5 has neither the substrate-binding pocket nor the conserved catalytic tetrad of functional aldo-keto reductases (Extended Data Fig. 10d) and that FAP198 occludes its own heme-binding pocket (Extended Data Fig. 10e). FAP198 also probably renders RSP12, a putative peptidyl-prolyl cis-trans isomerase, inactive (Extended Data Fig. 10f). We therefore conclude that FAP198, RSP5 and RSP12 play only structural roles in the mature radial spoke. The link between radial spokes and nucleotide-mediated regulation of ciliary motility is more evident. We identify two probable binding sites for nucleotides in the spoke head: in the cyclic-nucleotide-binding GAF domain of RSP2 and the conserved binding site of the nucleoside diphosphate kinase domain of RSP23. Both domains contain density consistent with nucleotide ligands, although we cannot unambiguously identify the nucleotide present (Extended Data Fig. 10g,h). The ability to integrate chemical and mechanical cues may explain the complexity of radial spokes.

Discussion

From our structural information, we propose a model for the mechanoregulation of ciliary motility (Fig. 6c). Consistent with the asymmetric nature of the dynein inhibition8, we favor a model in which the mechanoregulatory signal originates at the asymmetric CP and is communicated to the dynein arms through radial spokes37,48,50. We show that for IDAc, this relay mechanism can be direct, and that changes in the tilt angle of radial spokes can change the orientation of the dynein tail (Fig. 6b). In this way, the radial spokes could act as mechanical levers to physically reposition the dynein motors away from neighboring doublet microtubules and therefore inhibit dynein activities during the ciliary beat. IDAc is particularly important for force production under viscous load51, suggesting that the dynamics of the RS2-IDAc pair may be sensitive to physical stresses. Interestingly, we identify differences in how IDAa and IDAc dock to radial spokes (Fig. 5), suggesting that even similar IDAs have distinct regulatory mechanisms as well as distinct mechanical properties48.

How are signals relayed between the CP and the radial spoke? In straight sections of the axoneme, the electrostatic charge of the radial spoke heads of the CP. As the axoneme bends, it is expected that the CP projections move closer to and potentially collide with a subset of the spoke heads37. Although it has been proposed that this contact triggers the mechanical signal that is propagated through the radial spoke52, a collision-based model does not explain our new finding that the spoke head is
forces. Confirmation of the role of electrostatics in ciliary motility will require high-resolution structures of CP projections and three-dimensional visualization of their interactions with radial spokes as the cilium bends.

In conclusion, we have resolved the structures of some of the key regulators of ciliary motility in atomic detail. We have identified and built models for 23 RSPs, three subunits of N-DRC, two subunits of IDAc, and the CCDC39–40 molecular ruler (Supplementary Table 1). We discovered the molecular identity of RSP15 and revealed that FAP91, FAP198, FAP207, FAP253 and FAP385 are bona fide RSPs. Many of these proteins, including the novel RSPs, are conserved across species—orthologs of RSP15 and FAP198 have been identified by MS in radial spokes isolated from Ciona intestinalis— and are associated with human ciliopathies (Supplementary Table 3). From our structural and dynamic information, we propose an ‘electrostatic’ model of mechanoregulation, which reconciles the electro-negative spoke heads, the intrinsic ability of radial spokes to tilt and the coupled movement of radial spokes and IDAs. In addition, we have identified a pathway by which calcium could regulate the transmission of mechanosignals. Our structures represent a step forward in understanding the regulatory mechanisms of ciliary motility.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41594-020-00530-0.

Received: 17 June 2020; Accepted: 28 September 2020; Published online: 14 December 2020

References
1. Ginger, M. L., Portman, N. & McKean, P. G. Swimming with protists: perception, motility and flagellum assembly. Nat. Rev. Microbiol. 6, 838–850 (2008).
2. Bustamante-Marín, X. M. & Ostrowski, L. E. Cilia and mucociliary clearance. Cold Spring Harb. Perspect. Biol. 9, a028241 (2017).
3. Lyons, R. A., Saridogan, E. & Djahanbakhch, O. The reproductive significance of human fallopian tube cilia. Hum. Reprod. Update 12, 563–572 (2006).
4. Faubel, R., Westendorf, C., Bodenschatz, E. & Eichele, G. Cilia-based flow network in the brain ventricles. Science 353, 176–178 (2016).
5. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).
6. Ishikawa, T. Axoneme structure from motile cilia. Cold Spring Harb. Perspect. Biol. 9, a028076 (2017).
7. Brokaw, C. J. & Kamiya, R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil. Cytoskeleton 8, 68–75 (1987).
8. Lin, J. & Nicastro, D. Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 360, eaar1968 (2018).
9. Heuser, T., Raytchev, M., Krell, J., Porter, E. M. & Nicastro, D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J. Cell Biol. 187, 921–933 (2009).
10. Bower, R. et al. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. *Mol. Biol. Cell* **24**, 1134–1152 (2013).

11. Luck, D., Piperno, G., Ramanis, Z. & Huang, B. Flagellar mutants of *Chlamydomonas*: studies of radial spoke-defective strains by dikaryon and revertant analysis. *Proc. Natl Acad. Sci. USA* **74**, 3456–3460 (1977).

12. Smith, E. F. & Sale, W. S. Regulation of dynein-driven microtubule sliding by the radial spokes in flagella. *Science* **257**, 1557–1559 (1992).

13. Pigino, G. et al. Cryoelectron tomography of radial spokes in cilia and flagella. *J. Cell Biol.* **195**, 673–687 (2011).

14. Barber, C. F., Heuser, T., Carbajal González, B. I., Botchkarev, V. V. & Heuser, J. E. Substructure of inner dynein arms, radial spoke positional changes accompanying microtubule sliding. *Mol. Biol. Cell* **13**, 656–664 (2013).

15. Lin, J. et al. Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. *Nat. Commun.* **5**, 5727 (2014).

16. Lin, J. et al. Building blocks of the nixin-dynein regulatory complex in *Chlamydomonas* flagella. *J. Biol. Chem.* **286**, 29175–29191 (2011).

17. Piperno, G., Huang, B. & Luck, D. J. Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of *Chlamydomonas reinhardtii*. *Proc. Natl Acad. Sci. USA* **74**, 1600–1604 (1977).

18. Piperno, G., Huang, B., Ramanis, Z. & Luck, D. J. Radial spokes of *Chlamydomonas* flagella: polypeptide composition and phosphorylation of stalk components. *J. Cell Biol.* **88**, 73–79 (1981).

19. Yang, P., Diener, D. R., Rosenbaum, J. L. & Sale, W. S. Localization of calmodulin and dynein light chain L8 in radial flagellar spokes. *J. Cell Biol.* **153**, 1315–1326 (2001).

20. Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. *Cell* **103**, 653–664 (1999).

21. Ma, M. et al. Structure of the decorated ciliary doublet microtubule. *Cell* **179**, 999–922.e12 (2019).

22. Oda, T., Yanagisawa, H., Kamiya, R. & Kikkawa, M. Cilia and flagella. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. *Science* **346**, 857–860 (2014).

23. Lin, H. et al. A NIMA-related kinase suppresses the flagellar instability associated with the loss of multiple axonemal structures. *PloS Genet.* **11**, e1005508 (2015).

24. Dynek, E. E., Heuser, T., Nicastro, D. & Smith, E. F. The CSC is required for complete radial spoke assembly and wild-type ciliary motility. *Mol. Biol. Cell* **22**, 2520–2531 (2011).

25. Urbanska, P. et al. The CSC proteins FAP61 and FAP251 build the basal substructures of radial spoke 3 in cilia. *Mol. Biol. Cell* **26**, 1463–1475 (2015).

26. Oda, T., Yagi, T., Yanagisawa, H. & Kikkawa, M. Identification of the outer-inner dynein linker as a hub controller for axonemal dynein activities. *Curr. Biol.* **23**, 656–664 (2013).

27. Poghosyan, E. et al. The structure and symmetry of radial spoke protein complex in *Chlamydomonas* flagella. *J. Cell. Sci.* **133**, jcs245233 (2020).

28. Yang, C., Compton, M. M. & Yang, P. Dimeric novel HSP40 is incorporated into the radial spoke complex during the assembly process in flagella. *Mol. Biol. Cell* **16**, 637–648 (2005).

29. Zhu, X. et al. The roles of a flagellar HSP40 ensuring rhythmic beating. *Mol. Biol. Cell* **30**, 228–241 (2019).

30. El Khouri, E. et al. Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. *Am. J. Hum. Genet.* **99**, 489–500 (2016).

31. Warner, F. D. & Satir, P. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. *J. Cell Biol.* **63**, 35–63 (1974).

32. Goodenough, U. W. & Heuser, J. E. Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella. *J. Cell Biol.* **10**, 2008–2018 (1985).

33. Kubo, T., Hou, Y., Cochran, D. A., Witman, G. B. & Oda, T. A microtubule-dynein tethering complex regulates the axonemal inner dynein f(I). *Mol. Biol. Cell** **29**, 1060–1074 (2018).
Methods

Chlamydomonas reinhardtii culture. We used wild-type C. reinhardtii cells (strain CC-125) as the source for doublet microtubules and wild-type Chlamydomonas cells (strain CC-1690) as the source from which to isolate radial spokes. Both strains were obtained from the Chlamydomonas Resource Center at the University of Minnesota.

For doublet microtubule preparation, Chlamydomonas cells were spread onto five Tris-Acetate-Phosphate (TAP) agar plates at a starting density of 8 x 10⁶ cells per plate and grown for 2 d at 25 °C to reach a final density of 1.28 x 10⁶ cells per plate. Cells from the five plates were resuspended in 80 ml of M-NT medium³ and incubated at 25 °C for 2 h to allow flagellar assembly. For radial spoke preparation, Chlamydomonas cells (strain CC-1690) were grown in TAP medium at room temperature for 4–5 d and were harvested before the eighth light hour of a 12 h light–12 h dark cycle at a concentration of ~3.5 x 10⁶ cells ml⁻¹.

Flagella isolation and radial spoke purification. Flagella were isolated following a modified version of a published protocol⁴, as described in detail in Supplementary Note 1. Radial spoke purification from isolated flagella is also described in Supplementary Note 1.

Mass-spectrometry analysis. The fraction from the monoQ elution corresponding to RS1 was denatured with SDS-loading buffer and loaded onto a 4–20% precast polyacrylamide gel (Bio-Rad). The gel was run for 3 min and then silver stained. The band was cut and sent for MS analysis at the Taplin Mass Spectrometry Facility at Harvard Medical School. The annotated MS data are provided as Supplementary Data 1. MS analysis of the doublet microtubule sample is reported in ref. 10.

Negative-stain microscopy. Four microliters of purified RS1 at a concentration of 0.03 mg ml⁻¹ was applied onto a glow-discharged carbon grid (Electron Microscopy Sciences, Inc.). After 1 min of adsorption, the grid was blotted with filter paper to remove excess sample, immediately washed twice with 4 µl of 1.5% uranyl formate solution and incubated with 4 µl of 1.5% uranyl formate solution for an additional 1 min. The grid was then further blotted with filter paper to remove the uranyl formate solution, air dried at room temperature, and examined with a Tecnai T12 electron microscope (Thermo Fisher Scientific) equipped with a LaB6 filament and operated at 120-kV acceleration voltage, using a nominal magnification of x52,000 at a pixel size of 2.13 Å. Images were recorded using a Gatan 4 k x 4 k CCD camera with an exposure of 20–30 electrons per Å⁻². The defocus for data acquisition was set to between −1 µm and −3 µm. RELION-3.0 (ref. 10) was used for all image processing steps. Firstly, ~500 particles were picked manually and subjected to two-dimensional (2D) classification. Good classes were selected and used as references to automatically pick particles from all micrographs. A total of 3,293 particles were picked from 54 micrographs, and three rounds of reference-free 2D classification were performed to select good particles. These particles were used to generate an initial three-dimensional (3D) density map using RELION-3.0 and for a round of 3D refinement in which the initial model was used as a reference.

Cryo-EM sample preparation. Doublet microtubules. Cryo-EM grids of doublet microtubules were prepared as described previously⁶⁻⁷.

Isolated RS1. Cryo-EM grids of isolated radial spokes were prepared using a Nitrogen-Cooled Dark IV (Gatan) equipped with a C100 (Thermo Fisher Scientific) and a BioQuantum K3 Imaging Filter (Gatan) at the Washington University in St. Louis Center for Cellular Imaging (WUCCI). All movies were recorded with a K2 Summit direct electron detector (Gatan) in counting mode, with an exposure rate of 8.5 electrons per pixel per second on the detector camera. The images were recorded at a nominal magnification of x81,000, corresponding to a calibrated pixel size of 1.403 Å. A total exposure time of 9 s, corresponding to a total dose of 38.9 electrons per Å⁻² on the specimen, was fractionated into 30 movie frames. A defocus range of ~1.0 to −3.5 µm was set during data acquisition. The data were collected automatically using EPU software (Thermo Fisher Scientific).

Isolated RS2. Images of purified RS2 were acquired on a Titan Krios microscope at the Harvard Cryo-EM Center for Structural Biology operating at an acceleration voltage of 300 kV and equipped with a BioQuantum K3 Imaging Filter (slit width 25 eV) and a K3 direct electron detector (Gatan). Images were recorded at a defocus range of ~1.0 to −2.4 µm with a nominal magnification of x81,000, corresponding to a calibrated pixel size of 1.09 Å. This pixel size was calibrated based on the density map of the on-doublet RS1 spoke head obtained from the Titan Krios at the WUCCI. Each image was dose fractionated into 50 movie frames at a total exposure time of 2.5 s and a frame exposure time of 0.05 s, resulting in a total dose of ~60 electrons per Å⁻². SerialEM was used for data collection⁸.

Image processing. On doublet complexes. The data were initially processed following the scheme described in ref. 1. Briefly, segments of the doublet microtubules were first extracted as nonoverlapping 8-nm particles and classified into six classes using Class3D in RELION-3.1. One class, corresponding to the 48-Å repeat of the doublet microtubule, was arbitrarily selected and further classified into two classes, with each class corresponding to one-half of the 96-Å repeat. Particles from one of the classes (referred to as 96-nm particles) were used for further processing. In the next step, during particle re-extraction in RELION-3.1, the coordinates of the 96-nm particles were shifted so that the feature of interest (for example, RS1 spoke head or stalk, RS2 spoke head or stalk, RS1–RS1 interface, RS2D, IDAc or N-DRC base plate or lobe) was centered in the 3D reconstruction from these particles (Extended Data Fig. 1b). When possible, a smaller box size (256 or 384 instead of 512 pixels) was used to speed up data processing. In total, ~202,000 center-shifted 96-nm particles, with the doublet microtubule signal subtracted, were used to compute the structure of various 96-nm repeat features (Table 1). This is approximately double the number of particles from our previous report⁹. Subsequent 3D classification was performed using Class3D in RELION-3.1 to select a more homogeneous subset of particles for further refinement. For the RS1 and RS2 spoke stalk base plates, the microtubule signal was helpful for image alignment and was therefore not subtracted from the raw particle images, and a customized soft-edged binary mask covering protofilaments A01–A03 was used during refinement. After post-processing in RELION-3.1, all maps were resolved to between 3.4 and 6.3 Å, except for the distal lobe of N-DRC and RS2S, which were resolved to 7.0–Å and 14.4–Å resolution, respectively (Extended Data Fig. 2a). The HSU refinement using positively stained particles did not improve the resolution or map quality.

To generate a composite map for model building and refinement, the maps of the RS2 stalk, IDAc, N-DRC base plate and the microtubule protofilaments to which they are attached were aligned using the ‘fit in map’ command in Chimera¹⁰ by maximizing the overlapped density between these maps. These maps were then merged using the ‘vop maximum’ command in Chimera. The 6.1–Å map of the proximal region of the RS1 stalk was not included in the composite map due to its lower resolution than that of surrounding maps.

Isolated RS1. A total of 14,391 movie stacks were motion corrected and electron-dose weighted using MotionCor2 (ref. 11). The CTF parameters were estimated from the motion-corrected micrographs using CTFFIND4 (ref. 12). A total of 12,331 micrographs were selected for further processing based on visual inspection of the micrographs and their corresponding power spectra. Particles were automatically selected using CzyOLO or Laplacian-of-Gaussian picker implemented in RELION-3.0. All subsequent 2D and 3D analyses were performed using RELION-3.0 or RELION-3.1.

A total of 256,239 particles were selected after several rounds of 2D classification from 2,320,543 autopicked particles. Because most 2D classes centered at the head of the radial spoke, we recentered the particles using a similar strategy as in ref. 1. Another round of 2D classification was performed to check that recentering had worked. The data were then subjected to 3D classification. The density map generated with the negative-stain data was low-pass filtered to 30 Å and used as the initial model; 221,836 particles were selected after 3D classification for model building and refinement. After refinement, CTF refinement and Bayesian polishing was performed, followed by another 3D refinement, yielding a 3.7–Å density ‘consensus’ map (Extended Data Fig. 5g).

To further improve the density map, several rounds of multibody refinement⁶, signal subtraction, and recentering were performed (Extended Data Fig. 5g). First, we did a multibody refinement with two masks, one that covered the spoke head and one that covered the neck and stalk. Signal subtraction was then performed and a multibody corresponding to each body was recentered and reoptimized with a smaller box size of 480 pixels instead of 560 pixels for the consensus refinement. Masks with a soft edge of 6 pixels surrounding the two bodies were used for both multibody refinement and signal subtraction. The signal-subtracted particles were centered on projections of the mass center of the maps. Individual 3D refinements were then performed on the spoke head and the neck and stalk. Because the spoke head has twofold rotational symmetry, C2 symmetry was imposed during refinement, yielding a 3.2–Å density map. To improve the density of the extended domains of the spoke head, we used symmetry expansion⁶, subtracted the density of half of the spoke head, performed a 3D classification to select 311,578 good particles from the 443,672 symmetry-expanded particles and applied local masks during refinement. To further improve the density for the neck, we allowed D2 symmetry instead of D1, and the RSP1 density yielded a 3.6–Å density map.

For the neck and stalk, 3D classification with a local mask on the neck was performed after refinement. Selected particles were used for subsequent refinement.
refinement, with a local mask of the neck applied, yielding a 3.6-Å density map. A similar strategy was used to improve the lower part of the stalk. The composite map for the complete isolated radial spoke was generated using the ‘vop maximum’ command in Chimera. This is described for the on-doublet complexes. Briefly, three improved maps within the local masks of each asymmetric unit were combined with the central part of the C2 map, constituting the spoke head map. The local maps for the neck and the lower part of the stalk were combined with the central part of the overall neck and stalk map, constituting the complete neck and stalk map. Then the two maps were aligned with the consensus map and combined, generating the complete density map of the isolated radial spoke.

Analysis of RS1 dynamics by deep neural networks. Cryo-DRGN (v0.0.19 (ref. 65)) models were trained on single-particle images of isolated RS1 downsampled to an image size of 256×256 (2.40625 Å per pixel), with their corresponding poses assigned from a consensus reconstruction in RELION. All reconstructions used a 1024×3 (nodes per layer × layer) fully connected architecture for the encoder and decoder networks. The latent variable dimension was 10. Training was performed in minibatches of eight images using the Adam optimizer and a learning rate of 0.0001. The particle list from the initial stack of 221,836 images was randomly split into two halves of 110,918 particles, which were then processed separately. A cryo-DRGN model was trained on each half-stack for 50 epochs. Based on an analysis of the latent space, an interactive lasso tool was used to select particles corresponding to the full complex, resulting in 55,110 and 53,976 particles for each half-stack, respectively. Excluded regions in the latent space corresponded to component variability in the spoke head dimer and particle images with edge artifacts. The observed heterogeneity was reproducible across replicate runs with different training hyperparameters (not shown). For the final reconstruction, a cryo-DRGN model was trained on 98,177 particle images from the filtered half-stacks for 50 epochs. After training, a continuous trajectory depicting the spoke head tilting was produced by generating ten structures along the first principle component of the latent space data manifold at equally spaced points between the 5th and 95th percentile PC1 values.

Analysis of radial spoke dynamics by multibody analysis. On-doublet complexes. RELION-3.1 was used to perform multibody analysis (ref. 58). To analyze the on-doublet movement between the spoke head and stalk regions of RS1 and RS2, we started from a consensus refinement that was focused on the spoke head and used two generous masks that separately covered the spoke head and stalk. To analyze the movement between the stalk of RS1 and the doublet microtubule, we started from a consensus refinement that focused on the stalk and used two masks covering the RS1 stalk and doublet microtubule. To analyze the movements between the stalk of RS2, IDAc and the doublet microtubule, we used three masks covering each different region. The results were analyzed using ‘relion_flex_analyse’. Movements from the top three eigenvectors were examined.

Isolated RS1. After a consensus 3D refinement of isolated RS1, two masks were applied during multibody analysis. One mask covered the spoke head, and the other covered the neck and stalk. The results were analyzed using ‘relion_flex_analyse’. Movements from the top three eigenvectors were examined.

Model building. All model building was performed in Coot (ref. 60). Model building of the proximal regions of the stalks used the on-doublet maps of RS1 (EMD-22480) and RS2 (EMD-22481). Model building of the neck and spoke head used the composite map of isolated RS1 (EMD-22475). Interpretation of the on-doublet microtubule maps started with fitting of the model of the Chlamydomonas doublet microtubule (PDB 6U42 (ref. 61)). An accurate model of the CCDC39–40 coiled coil was then built. The RSPs were identified within the maps using one or more of the following strategies: (1) manual fold recognition, (2) automated density-guided fold recognition, (3) secondary structure assignment, (4) de novo sequence assignment, (5) prior knowledge and (6) bioinformatic prediction (details in Supplementary Note 1). How each protein was identified, and the accuracy and completeness of the resulting models are summarized in Supplementary Table 1. FAPs are numbered according to ref. 61.

Refinement. Atomic models for individual subunits were refined during model building using real-space refinement in Coot with torsion, planar peptide and Ramachandran restraints applied (ref. 60). After model building, the subunits were combined into three separate PDB files corresponding to (1) isolated RS1 (PDB 7T7K), (2) on-doublet RS2 stalk–N–DRC base plate–IDAc (PDB 7TU4), and (3) on-doublet RS1 stalk (PDB 7TJS). These atomic models were then refined into their corresponding composite maps using Phenix.real_space_refine v1.18.2-3874 (ref. 62). Secondary structure, Ramachandran and rotamer restraints were applied during refinement of the models of isolated RS1 (resolution cutoff 3.7 Å) and the on-doublet RS2 stalk–N–DRC base plate–IDAc (resolution cutoff 4.1 Å). A round of manual model correction in Coot was performed between rounds of real-space refinement in Phenix. The final refinement was performed for two or three macro-cycles with strategies of ‘minimization_global’ and ‘local_grid_search’. The model of the on-doublet RS1 stalk was refined using rigid-body fitting only in Phenix, as the resolution of the map was 6.1 Å. The quality of the refined models was analyzed using MolProbity (ref. 64), with their statistics reported in Table 1.

Figures. Figures were generated using ChimeraX (ref. 63), ChimeraX or PyMOL (http://www.pymol.org). Maps colored by local resolution were generated using RELION 3.1 (ref. 65).

Software used in the project by members of the Brown laboratory was installed and configured by SBGrid (ref. 66).

Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.

Data availability
Composite cryo-EM maps and atomic models have been deposited in the Electron Microscopy Data Bank (EMDB) and wwPDB, respectively, under accession codes EMD-22475 and PDB 7TTK (isolated RS1) and EMD-22481 and PDB 7JU4 (on-doublet RS2 stalk/IDAc/N-DRC). Constituent maps and the masks that were applied during reconstruction are associated with these depositions as additional files. Cryo-EM maps have been deposited under accession codes EMD-22480 (on-doublet RS1 stalk), with associated atomic model PDB 7TS (EMD-22482 (on-doublet RS1 spoke head), EMD-22483 (on-doublet RS2 spoke head) and EMD-22486 (on-doublet RSPI dimer).

Code availability
Code used for the initial separation of singlet and doublet microtubules is available on request from Rui Zhang (zhangrui@wustl.edu).

References
56. Sager, R. & Granick, S. Nutritional control of sexuality in Chlamydomonas reinhardtii. J. Gen. Physiol. 37, 729–742 (1954).
57. Craige, B., Brown, J. M. & Witman, G. B. Isolation of Chlamydomonas flagella. Curr. Protoc. Cell Biol. 59, 3.41.1–3.41.9 (2013).
58. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, 163 (2018).
59. Schorb, M., Haberbosch, I., Hagen, W. H. J., Schwab, Y. & Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).
60. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
61. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
62. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. Struct. Biol. 192, 216–221 (2015).
63. Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218–13 (2019).
64. Zhang, K. et al. Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169, 1303–1314.e18 (2017).
65. Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife 7, 1485 (2018).
66. Scheres, S. H. W. In Methods in Enzymology Vol 579 (Ed. Crowther, R. A.) 125–157 (Elsevier, 2016).
67. Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous structures from cryo-electron micrographs using neural networks. Preprint at bioRxiv https://doi.org/10.1101/2020.03.27.003871 (2020).
68. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
69. Pazour, G. J., Agrin, N., Leszyk, J. & Witman, G. B. Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 170, 103–113 (2005).
70. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct. Biol. 74, 531–544 (2018).
71. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
72. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
73. Morin, A. et al. Collaboration gets the most out of software. Elife 2, e01566 (2013).
74. Lechtreck, K. F., Mengoni, I., Okivie, B. & Hilderhoff, K. B. In vivo analyses of radial spoke transport, assembly, repair and maintenance. Cytoskeleton (Hoboken) 75, 352–362 (2018).
75. Scoble, J. et al. Crystal structure and comparative functional analyses of a Mycobacterium αketo reductase. J. Mol. Biol. 398, 26–39 (2010).
76. Hirano, Y., Kimura, S. & Tamada, T. High-resolution crystal structures of the solubilized domain of porcine cytochrome b5. *Acta Crystallogr. D Biol. Crystallogr.* **71**, 1572–1581 (2015).

77. Gamble, T. R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. *Cell* **87**, 1285–1294 (1996).

78. Martinez, S. E. et al. Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: modes of ligand binding and dimerization. *Proc. Natl Acad. Sci. USA* **102**, 3082–3087 (2005).

Acknowledgements

Cryo-EM data were collected at the Washington University in St. Louis Center for Cellular Imaging (WUCCI) and the Harvard Cryo-Electron Microscopy Center for Structural Biology. We thank J. Fitzpatrick, M. Rau, S. Sterling and R. Walsh for microscopy support; R. Tomaino for MS analysis; and T. Walton for comments. M.G. is supported by a BCMP-Merck postdoctoral fellowship. B.B. is supported by NIH grant R01-GM081871. J.H.D. is supported by NIH grant R00-AG050749. B.B. and J.H.D. are supported by the MIT J-Clinic for Machine Learning and Health. S.K.D. is supported by NIGMS grant R35-GM131909. Research in the Brown laboratory is supported by the E. Matilda Ziegler Foundation for the Blind, the Smith Family Foundation and the Pew Charitable Trusts.

Author contributions

M.G., M.M., E.S.-T. and F.K. prepared samples; M.G., M.M. X.W. and R.Z. collected and processed cryo-EM data; M.G. and A.B. built the atomic models; E.D.Z., B.B. and J.H.D. developed cryoDRGN and performed dynamics analysis; and M.G. and R.Z. performed multibody analysis. S.K.D., R.Z. and A.B. supervised the research. R.Z. and A.B. wrote the manuscript with input from all authors.

Competing interests

The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41594-020-00530-0.

Supplementary information is available for this paper at https://doi.org/10.1038/s41594-020-00530-0.

Correspondence and requests for materials

Correspondence and requests for materials should be addressed to R.Z. or A.B.

Peer review information

Inês Chen was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | Data collection and processing for the on-doublet complexes. a, Section of an electron micrograph showing radial spokes (marked with an asterisk) bound to a doublet microtubule in vitreous ice. b, Processing scheme used to generate reconstructions of complexes bound to doublet microtubules (DMT, gray). To resolve various structural features with 96-nm periodicity (RS1 spoke head/stalk, RS2 spoke head/stalk, RSP1-RSP1 interface, RS3S, IDAc, or N-DRC baseplate/lobe), it was necessary to use a combination of tubulin signal subtraction (TSS), shifting the center (SC) of coordinates to the feature of interest, focused refinement (FR) and 3D classification without alignment (3C). When possible, the box size was reduced (RB) to 256 or 384 instead of 512 pixels to facilitate data processing. c, Angular distribution of the particle views used for reconstruction of on-doublet RS2. Similar distributions were obtained for on-doublet RS1. The height of the cylinders, colored from blue to red, represents the number of particles. The final density map of RS2 is shown in gray. d, Superimposition of the on-doublet RS1 and RS2 spoke heads confirms that they have identical structure.
Extended Data Fig. 2 | Global and local resolution of on-doublet complexes. a, Fourier shell correlation (FSC) curves calculated between masked independent half maps for on-doublet structures. Left panel, FSC curves are shown for focused refinements of the RS1 spoke head and stalk, RS2 spoke head and stalk, and the RS1-RS1 dimer. Right panel, FSC curves for the base of RS1, the RS2-IDAc complex, IDAc, and the N-DRC baseplate. The nominal resolution was estimated using the FSC = 0.143 criterion (dashed line).
b, Density maps for on-doublet structures colored by local resolution. Only the maps used for model building are shown. The local resolution is colored from 3 to 7 Å.
Extended Data Fig. 3 | Map quality. Examples of map density for all 30 non-tubulin proteins identified in this study. The first 19 proteins show density from isolated R51 contoured at 0.009-0.013. The remaining 11 proteins (starting from RSP8) show density from on-doublet maps contoured at 0.020-0.031. Landmark residues are labeled. Note that the sidechains of RSP20 (calmodulin) and RSP8 are not well resolved and are truncated in the deposited model.
Extended Data Fig. 4 | Single-particle cryo-EM maps docked into a subtomogram average of the axoneme. a, Two views showing the single-particle cryo-EM maps of RS1, RS2, RS3S, N-DRC, and IDAc docked into the subtomogram average of the 96-nm repeat of the Chlamydomonas axoneme (EMD-6872). The subtomogram average is shown as a gray isosurface. b, Zoom-in view showing the map of RS3S. Density for RS3S is recovered in 25% of the particles following 3D classification (Extended Data Fig. 1b). RS3S interacts with two molecular staples of unknown identity. c, Zoom-in view showing the model and map for the N-DRC baseplate. Three N-DRC subunits (DRC1, DRC2, and DRC4) can be unambiguously identified. FAP91 interacts with all three.
Extended Data Fig. 5 | Data collection and processing for isolated RS1. a, Chromatogram showing the elution of RS1 from an anion-exchange column using a KCl gradient. The peak fraction containing RS1 is highlighted and elutes at ~0.7 M KCl. b, Silver-stained SDS-PAGE gel showing the purity of isolated RS1 following anion-exchange chromatography. The molecular weights of markers (in kDa) are indicated on the left. The result of mass spectrometry analysis of this sample is given in Supplementary Data 1. c, Section of a negative-stain electron micrograph showing homogeneous and monodisperse radial spokes. d, Selected two-dimensional class averages of particles selected from negative-stain electron micrographs. e, Section of an electron micrograph showing radial spokes in vitreous ice. Particles showing the characteristic T-shaped projection of radial spokes are circled. f, Selected two-dimensional class averages of radial spokes showing well defined spoke heads but nebulous density for the stalk consistent with flexibility at the neck. g, Schematic showing the processing of the isolated RS1 data. Following a consensus refinement, the spoke head and stalk were independently refined. The twofold rotational symmetry of the spoke head was exploited to improve the map quality. Further masked refinement was used to improve the flexible projections of the spoke head and the base and neck of the stalk. These individual maps were recombined to generate a final composite cryo-EM map. h, Angular distribution of the particle views used for the consensus reconstruction of isolated RS1. The height of the cylinders, colored from blue to red, represents the number of particles. The final density map of RS1 is shown in gray.
Extended Data Fig. 6 | Global and local resolution of isolated RS1. **a**, FSC curves calculated between masked independent half maps for isolated RS1. Left panel, FSC curves are shown for the consensus refinement of isolated RS1, focused refinement of the stalk, and focused refinement of the spoke head after applying C2 symmetry. Right panel, FSC curves for focused refinements of three subdomains of a single lobe of the RS1 spoke head. The colors of the curves match the masks used in Extended Data Fig. 5g. The nominal resolution was estimated using the FSC=0.143 criterion (dashed line). **b**, Density maps for the consensus refinement of isolated RS1 and various focused refinements colored by local resolution. The local resolution is colored from 3 to 7 Å.
Extended Data Fig. 7 | The stalks of RS1 and RS2. a, The stalk of the isolated radial spoke is consistent with the on-doublet stalk of RS1 only. FAP253, RSP14, and calmodulin are present in the stalk of RS1 but not RS2. RSP8, RSP15, and an unidentified ubiquitin (Ub)-like domain are present in the stalk of RS2 but not RS1. LC8, FAP207, and RSP3 are common to both RS1 and RS2 but adopt different conformations. The RSP7/11 heterodimer is similar in both radial spokes. b, RSP14 and RSP8 are structurally similar armadillo proteins present in different radial spokes. Left, RSP14 was identified in the stalk of RS1 based on well-defined sidechain density. Middle, the model of RSP14 is incompatible with the density of the armadillo protein in RS2, indicating that they are different proteins with similar folds. Right, a model for RSP8 built into the RS2 density. c, Superposition of the atomic models for RSP8 and RSP14.
Extended Data Fig. 8 | Model of radial spoke assembly. Proposed model of radial spoke assembly. Monomeric spoke head lobes, comprising RSP1-7 and RSP9-12, assemble in the cell body before being imported into the cilium by intraflagellar transport (IFT). In the cilium, the axonemal doublet microtubules are bound by the CCDC39–40 coiled coil. Specific sequences within the coiled coil are recognized by molecular adaptors FAP253 and FAP91 that establish the binding sites for rS1 and rS2. These molecular adaptors recruit LC8 and FAP207, although the arrangement of these elements is different in the two stalks. RSP3 in the precursor binds the LC8 multimers (Fig. 4b), helping dock the spoke head lobe onto the preassembled stalks. Two lobes can bind a single stalk. Binding of RSP16 is presumably a relatively late step that dimerizes the lobes. At a similar time, RS-specific proteins bind; RSP14 to RS1 and RSP8 to RS2.
Extended Data Fig. 9 | Dynamics of radial spokes by multi-body analysis. a, Multi-body analysis of isolated RS1. Left, the contributions of all eigenvectors to the variance. The first eigenvector accounts for 37% of all variability. Inset, the unimodal histogram of amplitudes along the first eigenvector indicates continuous motion. Right, the density maps at the extremes and middle show the same tilting of the spoke head relative to the stalk as observed by the neural-network approach in Fig. 6a. b, Multi-body analysis of on-doublet RS1 shows the same direction of spoke head tilt as isolated RS1. c, Multi-body analysis of on-doublet RS2 shows that the spoke heads of both radial spokes tilt in similar directions to similar extents. d, Multi-body analysis of the movement of the RS1 stalk with respect to the doublet microtubule (DMT) surface.
Extended Data Fig. 10 | Potential chemical modulation of radial spokes.

a, Calmodulin binds the IQ motif of FAP253 at the base of Rs1. Below, sequence of FAP253 residues 400-430 showing the presence of an IQ motif (emboldened with motif-defining residues boxed).

b, Structural comparison of calmodulin bound to FAP253 with apo-calmodulin bound to an IQ motif from myosin V (PDB 2IX7)⁴².
c, Structural comparison of calmodulin bound to FAP253 with Ca²⁺-calmodulin bound to an IQ motif from myosin 5a (PDB 4ZLK)⁴².
d, The structure of RSP5 resembles an NADPH-dependent aldo-keto reductase domain (PDB 2WZM)⁴⁵. However, the NADPH binding site of RSP5 is absent and filled by two loops (residues 393-414 and 468-484 of RSP5).

e, The N-terminal domain of FAP198 closely resembles heme-binding cytochrome b5 (PDB 3X34)⁷⁶. However, no heme is observed bound to FAP198, and the putative heme-binding site is occluded by a loop of FAP198 (residues 89–95).
f, RSP12 structurally resembles cylophilin-type peptidyl-prolyl cis-trans isomerase (PDB 1AK4)⁷⁷. The putative substrate-binding site of RSP12 is occupied by a loop of FAP198 (residues 96–105), which positions a proline (P99) in the active site.
g, Atomic model of the GAF domain from RSP2 superposed with the model of a cAMP-bound GAF domain (PDB 1YKD)⁴⁷. Unexplained density in the RSP2 GAF domain (pink, contoured at 0.01) is observed in the cAMP binding pocket, but the resolution is insufficient to assign it as a cyclic nucleotide. The cAMP ligand from PDB 1YKD is shown for comparison.
h, Atomic model of RSP23 superposed with an active, ADP-bound nucleoside diphosphate kinase (NDK; PDB 4HR2). Many of the active site residues are conserved. Potential density for a bound nucleotide to RSP23 is observed in the on-doublet map of RSP1 (purple, contoured at 0.017) but not in the isolated RSP1 map. The ADP ligand from PDB 4HR2 is shown for comparison.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a Confirmed
- □ □ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- □ □ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- □ □ The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- □ □ A description of all covariates tested
- □ □ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- □ □ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- □ □ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 Give P values as exact values whenever suitable.
- □ □ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- □ □ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- □ □ Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about: availability of computer code

Data collection

EPID version 1.9.0.30REL (Thermo Fisher Scientific) and SerialEM

Data analysis

MotionCor2; Gctf; EOTF/IND4; APPION; EMAN1; FREALIGN v9; RELION-3.0; RELION-3.1; Blocres; Chimera v1.13; MOLREP v1.16.6; Coot v0.8; Coot v0.9; Phenix real space refine v1.18.2-3874, Phenix molprobity v1.18.2-3874; ChimeraX

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about: availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The composite map of isolated RS1 has been deposited to the EMDB with accession code EMD-22475. The composite map of RS2 stalk/DAc/N-DRK/DMT has been deposited with the accession code EMD-22481. The map of the on-doublet RS1 stalk has been deposited with the accession code EMD-22480. The map of the on-doublet RS1 spokehead has been deposited with the accession code EMD-22482. The map of the on-doublet RS2 spokehead has been deposited with the accession code EMD-22483. The map of the on-doublet RS1 dimer has been deposited with the accession code EMD-22486. For all composite maps, the constitute maps (and the masks used in their generation) have been deposited as auxiliary files in the main EMDB entry. The atomic model of isolated RS1 has been deposited to the PDB with the accession code 7JU4. The atomic model of the on-doublet RS1 stalk has been deposited to the PDB with the accession code 7JTS.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

- **Sample size**: No statistical methods were used to predetermine sample size. Sufficient cryo-EM data were collected to achieve adequate three-dimensional reconstructions.
- **Data exclusions**: The algorithms used for single particle image processing may down-weight or exclude particles as part of their refinement strategy.
- **Replication**: Processing data from different data collection sessions resulted in similar reconstructions, that were then combined for the final reconstruction.
- **Randomization**: For calculation of the Fourier Shell Correlation, cryo-EM particles were randomly split into two halves using the RELION software.
- **Blinding**: Investigators were not blinded to group allocation. It is not applicable to the studies reported.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	n/a
☒ Antibodies	☒ ChIP-seq
☒ Eukaryotic cell lines	☒ Flow cytometry
☒ Palaeontology and archaeology	☒ MRI-based neuroimaging
☒ Animals and other organisms	
☒ Human research participants	
☒ Clinical data	
☒ Dual use research of concern	