Cervical and systemic innate immunity predictors of HIV risk linked to genital herpes acquisition and time from HSV-2 seroconversion

Yashini Govender,1,2 Charles S Morrison,3 Pai-Lien Chen,3 Xiaoming Gao,3 Hideki Yamamoto,1 Tsungai Chipato,4 Sharon Anderson,5 Robert Barbieri,1,2 Robert Salata,6 Gustavo F Doncel,5,7 Raina Nakova Fichorova

ABSTRACT

Objectives To examine innate immunity predictors of HIV-1 acquisition as biomarkers of HSV-2 risk and biological basis for epidemiologically established HIV-1 predisposition in HSV-2 infected women.

Methods We analysed longitudinal samples from HIV-1 negative visits of 1019 women before and after HSV-2 acquisition. We measured cervical and serum biomarkers of inflammation and immune activation previously linked to HIV-1 risk. Protein levels were Box-Cox transformed and ORs for HSV-2 acquisition were calculated based on top quartile or below/above median levels for all HSV-2 negative visits. Bivariate analysis determined the likelihood of HSV-2 acquisition by biomarker levels preceding infection. Linear mixed-effects models evaluated if biomarkers differed by HSV-2 status defined as negative, incident or established infections with an established infection cut-off starting at 6 months.

Results In the cervical compartment, two biomarkers of HIV-1 risk (low SLPI and high BD-2) also predicted HSV-2 acquisition. In addition, HSV-2 acquisition was associated with IL-1β, IL-6, IL-8, MIP-3α, ICAM-1 and VEGF when below median levels. Systemic immunity predictors of HSV-2 acquisition were high sCD14 and IL-6, with highest odds when concomitantly increased (OR=2.23, 1.49–3.35). Concomitant systemic and mucosal predictors of HSV-2 acquisition risk included (1) serum top quartile sCD14 with cervical low SLPI, VEGF and ICAM-1, or high BD-2; (2) serum high IL-6 with cervical low VEGF and ICAM-1, SLPI, IL-1β and IL-6; and (3) serum low C reactive protein with cervical high BD-2 (the only combination also predictive of HIV-1 acquisition). Most cervical biomarkers were decreased after HSV-2 acquisition compared with the HSV-2 negative visits, with incident infections associated with a larger number of suppressed cervical biomarkers and lower serum IL-6 levels compared with established infections.

Conclusions A combination of systemic immunoinflammatory and cervical immunosuppressed states predicts HSV-2 acquisition. A persistently suppressed innate immunity during incident HSV-2 infection may add to the increased HIV-1 susceptibility.

WHAT IS ALREADY KNOWN ON THIS TOPIC

⇒ Genital herpes is a common risk factor for HIV acquisition, yet it is unknown if baseline patterns of mucosal and/or systemic innate immunity dysregulation are shared among and predispose to both viral infections.

WHAT THIS STUDY ADDS

⇒ This study identifies for the first time both shared and divergent innate immunity predictors of HSV-2 and HIV-1 infection. It is first to show differences in both cervical and systemic innate immunity mediators that may underlie the higher risk of HIV acquisition in recent compared with established HSV-2 infections.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

⇒ By identifying molecular predictors of HSV-2 risk, this study provides targets and clinical safety endpoints for the development of preventive products.

INTRODUCTION

The significance of herpes simplex virus-2 (HSV-2) as a risk factor for HIV is driven by the high HSV-2 prevalence worldwide and in the Sub-Saharan HIV epicentre (estimated 39.3%–83.3% in South African women).1 Women and men infected with HSV-2 have estimated 3-fold higher HIV acquisition.2 A 3.2-fold and 4.6-fold increased risk of HIV acquisition was associated with HSV-2 among 4500 Ugandan and Zimbabwean women, respectively.3 The same study found greater HIV acquisition with recent (within 3–21 months from a negative test) compared with prevalent HSV-2 infections in both Uganda (4.6-fold vs 2.8-fold) and Zimbabwe (8.6-fold vs 4.4-fold). These data are supported by findings of greater frequency and severity of clinically active herpes episodes after recent HSV-2 infections, which cause breaches in the epithelial layer and influx of activated immune cells, providing HIV with access to target cells.4,5 The possibility of HSV-2-initiated clinical or subclinical mucosal inflammation and innate immunity imbalance6 has been proposed as additional mechanism linking these viral infections but needed validation in a large clinical study.

Biomarkers of innate immunity predicted HIV-1 risk in the Hormonal Contraceptive and Risk of HIV (HC-HIV) cohort—one of the largest prospective studies examining the role of HC in HIV acquisition.7,8 In the largest prospective studies examining the role of HC in HIV acquisition...
acquisition among African women. Both mucosal and systemic immunity imbalances contributed to the HIV risk and aberrant cervical immunity preceded other sexually transmitted infections including HSV-2. It remained unknown whether the imbalance predisposing to HSV-2 is limited to the cervical compartment or extends to the systemic circulation and whether HSV-2 in turn may alter both mucosal and peripheral innate immunity to contribute to HIV-1 risk. We hypothesised that (1) aberrant systemic immunity concomitantly with altered cervical immunity precedes and predisposes to HSV-2 infection, (2) HSV-2 infection changes cervical and systemic innate immunity, and (3) these changes may depend on the duration of HSV-2 infection which may add to the biological explanation of the greater HIV acquisition risk in incident vs established HSV-2 infections. To address these gaps, we analysed longitudinal specimens collected by the HC-HIV study and designed analysis models based on (1) HSV-2 status by visit (negative, incident or established) and (2) HSV-2 status by participant (remained negative or HSV-2 seroconverted).

METHODS
Study population and visits
BioSpecimens from 5193 HIV-negative visits by 1275 women were available from the HC-HIV study. Infections within 6 months (180 days) after first becoming HSV-2 seropositive were considered incident while those >6 months after a visit with confirmed positive seroconversion were considered established. The biological rationale for choosing the 6-month cut-off was based on observations of more HSV shedding within the first 6 months after acquisition and decreased clinical reactivation over time expected to be associated with changes in immunity. To investigate our hypotheses, we defined two population models within our cohort. Model 1 was based on HSV-2 infection status at the study visits grouped into (1) HSV-2 negative, (2) incident HSV-2 and (3) established HSV-2. Model 2 was defined by HSV-2 acquisition status as (1) remaining negative throughout the study with a minimum of two HSV-2 seronegative visits and (2) seroconverted during the study. The median number of visits was 2 for women remaining HSV-2 negative, and 3 for women with incident and established HSV-2 infections.

To accurately categorise visits as HSV-2 negative, incident, or established infection by the aforementioned criteria, we excluded (1) all HSV-2 negative less than 12 weeks apart from a prior or follow-up serology test (including baseline <12 weeks from study exit), (2) all visits preceding seroconversion by <12 weeks thus eliminating uncertainty of whether a woman could have been infected but not yet developed detectable antibodies and (3) all visits seropositive at baseline or <6 months from baseline as in both cases categorisation as incident or established would not be certain. We identified 3116 visits from 1019 women (413 Ugandan and 606 Zimbabwean) who met our inclusion criteria and infection definitions.

Laboratory diagnosis
HSV-2 status was determined by a type-specific serological IgG antibody assay (Focus Technologies, Cypress, California, USA) as described. C. trachomatis (CT) and N. gonorrhoeae (NG) were diagnosed by PCR; T. vaginalis (TV) and Candida by wet mount. Abnormal microbiota and bacterial vaginosis (BV) were assessed by Nugent scoring. HIV status was determined by ELISA and confirmed by PCR.

Biomarker measurement
Cervical swabs were processed as described. Ten cervical biomarkers (interleukin (IL)–1β, IL-6, IL-8, IL-1 receptor antagonist (IL-1RA), RANTES, MIP-3α, VEGF, soluble leukocyte cytotoxic inhibitor (SLPI), beta defensin (BD)2 and intercellular adhesion molecule (ICAM)-1) and four serum biomarkers (IL-6, IL-7, CRP and soluble (s)CD14) were measured as described in detail. These biomarkers and their combinations were chosen for their proven role in vaginal innate immunity, reliable detection and established role as predictors of other STIs and HIV-1 acquisition in the Ugandan and Zimbabwean cohorts.

Statistical analyses
We compared participants’ baseline characteristics by HSV-2 status (HSV-2 negative visits, HSV-2 incident visits and HSV-2 established visits) using joint χ² tests via the generalised estimating equation model and the Freeman–Halton test if numbers of visits were less than 5. Participants providing at least one biospecimen and participants with both unpaired and paired bio (had both cervical and serum biomarkers) were included. Because immunity biomarker levels do not follow Gaussian distribution, concentrations were normalised using Box-Cox power transformation. Serum samples were analysed in one batch. Cervical biospecimens were analysed in two assay batches 4 years apart and data were harmonised for batch variation as previously described.

Generalised linear mixed-effects models evaluated if levels of systemic and cervical immune mediators differ among HSV-2 negative, incident or established visits and adjusted for covariates. Bivariate analysis determined the OR of HSV-2 seroconversion with individual/grouped biomarker levels activated or suppressed at the quarterly visit prior to the incident visit. The categorisation into high (activated) or low (suppressed) and grouped analysis replicated cut-off rationale and biomarker combinations previously examined as predictors of HIV-1 acquisition. A Spearman rank-order test showed weak correlations between and within anatomical compartments (online supplemental table 1) supporting the choice of assessing categorically individual and combined biomarkers based on the biological rationale described previously. P values <0.05 were considered significant. Statistical analyses were performed using SAS V.9.4 (SAS Institute, Cary, NC, USA).

RESULTS
This analysis included data from 3116 HIV-1 negative visits from Zimbabwe (64%) and Uganda (36%) of which 1505 were HSV-2 negative (48.3%), 633 were HSV-2 incident (20.3%) and 978 were HSV-2 established (31.4%) visits (online supplemental table 2). Most visits (59%) were from women 18–24 years old. Visits were equally distributed by DMPA, COCs and no-method use. Few visits were from pregnant (8%) or breastfeeding women (15%). Almost a third of visits (28%) were from women with BV and 11% had candidiasis while chlamydia (2%), gonorrhoea (2%) and trichomoniasis (3%) were rare.

HSV-2 negative visits were more likely from Zimbabwe (66%) and from younger women (66%). The majority of HSV-2 negative visits were contributed by women who remained HSV-2 negative (77%) while the remainder were collected from HSV-2 seroconverters at least 3 months prior to the incident visit. Incident visits were more likely from younger women (61%) while established visits more likely from older women (52%), from...
Zimbabwe (70%) and with BV (30%) (online supplemental table 2).

Cervical and systemic biomarkers preceding and predicting HSV-2 acquisition

To determine whether systemic immunity may contribute to the risk of HSV-2 acquisition, either independently or in conjunction with altered cervical immunity, we first measured individual cervical and systemic biomarkers at the 3-month visit preceding HSV-2 seroconversion. Then we assessed whether inflammatory or immunosuppressive status concomitant at both systemic and cervical sites predisposed to HSV-2.

Individually altered biomarkers

In bivariate modelling, 5 of the 10 cervical and 2 of the 4 systemic biomarkers were individually associated with subsequent HSV-2 acquisition. Higher odds were found with cervical high BD-2 (OR=1.45, 95% CI 1.09 to 1.93, p=0.01), low SLPI (OR=1.50, 95% CI 1.13 to 2.00, p<0.01) or low ICAM-1 (OR=1.41, 95% CI 1.06 to 1.88, p=0.02). Lower odds of HSV-2 acquisition were found with cervical high IL-6 or high MIP-3α (OR=0.75, 95% CI 0.65 to 1.00, p<0.05). Systemic markers associated with subsequent HSV-2 acquisition included high sCD14 (OR=1.93, 95% CI 1.34 to 2.78, p<0.001) and IL-6 (OR=1.53, 95% CI 1.09 to 2.14, p=0.01) (table 1).

Concomitantly altered biomarkers within each anatomical compartment

We assessed the predictive value of combined biomarkers within the same anatomical compartment. In cervical secretions, concomitant high IL-1β and IL-6 (OR=0.58, 95% CI 0.42 to 0.80, p=0.001) or IL-8 and MIP-3α (OR=0.68, 95% CI 0.50 to 0.92, p=0.01) indicated decreased risk while low ICAM-1 and VEGF (OR=1.47, 95% CI 1.08 to 2.00, p=0.01) increased risk of HSV-2 acquisition. Within the systemic circulation, increased HSV-2 acquisition risk was associated with the combinations of high sCD14 and IL-6 (OR=2.23, 95% CI 1.49 to 3.35, p<0.001) or high sCD14, IL-6 and IL-7 (OR=1.73, 95% CI 1.05 to 2.86, p=0.03) (table 1).

Combined cervical and systemic biomarkers

We found additional significant predictive patterns when we combined concomitantly aberrant cervical and systemic biomarkers. High systemic sCD14 in combination with either low cervical SLPI (OR=1.85, 95% CI 1.09 to 3.12, p=0.02) or high cervical BD-2 (OR=2.18, 95% CI 1.26 to 3.75, p=0.005) or low cervical VEGF and ICAM-1 (OR=2.02, 95% CI 1.04 to 3.90, p=0.04) conveyed higher odds of HSV-2 acquisition at the subsequent visit. High systemic IL-6 in combination with low cervical VEGF and ICAM-1 (OR=1.94, 95% CI 1.16 to 3.23, p=0.01) or with low cervical SLPI (OR=1.65, 95% CI 1.08 to 2.53, p=0.02) was associated with increased HSV-2 acquisition. High systemic IL-6 in combination with high cervical IL-1β and IL-6 was associated with decreased HSV-2 acquisition (OR=0.44, 95% CI 0.24 to 0.83, p=0.01). Low systemic CRP in combination with high cervical BD-2 (OR=1.82, 95% CI 1.20 to 2.76, p=0.005) was associated with increased HSV-2 acquisition (figure 1 and online supplemental table 3).

We next contrasted the HSV-2 to HIV-1 immune predictors previously identified in the same cohort by the same statistical method.7 8 In the cervical compartment (figure 2A), high hBD-2 predicted both HSV-2 and HIV-1 acquisition, while high RANTES or low IL-1RA predicted HIV-1 acquisition only and low SLPI, ICAM-1 or high MIP-3α or IL-6 predicted HSV-2 acquisition. Different patterns of grouped proinflammatory (IL-1β and IL-6 or IL-8 and MIP-3α) or suppressed antiviral (ICAM-1 and VEGF) cervical immunity preceded and predicted HIV-1 and HSV-2 seroconversion (figure 2B). At the systemic level, low CRP predicted HIV-1 while high sCD14 predicted HSV-2 acquisition (figure 2C). A pattern of low serum CRP combined with high cervical BD-2 was a shared predictor of HIV-1 and HSV-2 acquisition (figure 2C).

Differences in cervical and systemic immunity by HSV-2 incident and established infection status

Analysis adjusted for relevant covariates confirmed our hypotheses that HSV-2 infection changes cervical and systemic innate immunity, and that incident and established infections differentially influence these changes. We found lower levels of 7/10 cervical biomarkers in HSV-2 incident visits compared with HSV-2 negative visits contributed by all women throughout the study. Significant differences included lower SLPI, IL-1RA, Table 1

Category	Biomarker	Samples	OR (95% CI)	P value
Cervical	BD2†	677/1365	1.45 (1.09 to 1.93)	0.012
SLPI†	661/1366	1.50 (1.13 to 2.00)	0.006	
IL-1RA†	669/1366	1.18 (0.89 to 1.57)	0.256	
IL-1β†	697/1366	0.83 (0.62 to 1.10)	0.200	
IL-6†	696/1366	0.75 (0.56 to 1.00)	0.048	
IL-8†	716/1366	0.78 (0.58 to 1.03)	0.082	
MIP-3α†	696/1366	0.75 (0.56 to 1.00)	0.048	
RANTES†	690/1366	1.07 (0.81 to 1.43)	0.628	
ICAM-1†	672/1366	1.41 (1.06 to 1.88)	0.018	
VEGF†	648/1366	1.07 (0.81 to 1.43)	0.630	
IL-1β†, IL-6†	509/1366	0.58 (0.42 to 0.80)	0.001	
IL-8†, MIP-3α†	535/1366	0.68 (0.50 to 0.92)	0.012	
ICAM-1†, VEGF§	366/1366	1.47 (1.08 to 2.00)	0.013	
Serum	sCD14†	192/787	1.93 (1.34 to 2.78)	<0.001
CRP†	391/787	1.14 (0.82 to 1.59)	0.429	
IL-6†	391/787	1.53 (1.09 to 2.14)	0.014	
IL-7†	392/787	1.17 (0.84 to 1.63)	0.366	
IL-6†, IL-7†	231/787	1.32 (0.92 to 1.88)	0.130	
sCD14†, IL-6†	130/787	2.23 (1.49 to 3.35)	<0.001	
sCD14†, IL-7†	80/787	1.73 (1.05 to 2.86)	0.033	

† indicates levels above and † below median of all 1505 HSV-2 negative study visits for all biomarkers except sCD14 where † indicates levels above top quartile.‡ORs and 95% CIs estimate likelihood of subsequent HSV-2 acquisition with biomarker levels at the HSV-2 negative visit either below or above median/top quartile. Bold values indicate significance at p<0.05. BD2, Beta defensin 2; CD, cluster of differentiation; CI, Confidence interval; CRP, C reactive protein; HSV, herpes simplex virus; ICAM, Intercellular Adhesion Molecule; IL, interleukin; IL-1RA, interleukin 1 receptor antagonist; MIP, macrophage inflammatory protein; OR, Odds ratio; RANTES, Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted; SLPI, secretory leukocyte protease inhibitor; VEGF, vascular endothelial growth factor.

* Gomez et al. Sex Transm Infect 2023;99:311–316. doi:10.1136/sextrans-2022-055458

Sex Transm Infect: first published as 10.1136/sextrans-2022-055458 on 14 September 2022. Downloaded from http://sti.bmj.com/ on August 9, 2023 by guest. Protected by copyright.
IL-1β, IL-6, IL-8, MIP-3α and VEGF (table 2). In contrast, HSV-2 established visits had lower levels of 5/10 cervical mediators including SLPI, IL-6, IL-8 and VEGF and adding significantly lower BD-2 (p<0.01) compared with the HSV-2 negative visits. In a direct comparison of incident versus established visits, women with incident infections had lower levels of cervical IL-1β and MIP-3α, but also lower systemic IL-6 compared with women with established HSV-2 infections (p<0.01).

DISCUSSION

This study provides evidence that while imbalances in some cervical innate immunity mediators may precede and predict both HIV-1 and HSV-2 infection, the two viral infections can be distinguished by antecedent patterns derived from both the mucosal and peripheral immune compartments, suggesting both common and divergent mechanisms of antiviral defence. Moreover, we show that HSV-2 infection not only changes innate immunity parameters previously associated with HIV risk but that the changes occurring within 6 months of HSV-2 infection differ from those observed later. These differences shed light on potential mechanisms, underlying epidemiological findings of a greater HIV acquisition risk with more recent HSV-2 infection. IL-8 (alone or combined with VEGF), predicts incident HSV-2 infection. BD-2 was the only upregulated marker preceding HSV-2 acquisition. In contrast to the permissive immunosuppressed status at the cervix, the systemic circulation displayed immunoinflammatory activation (serum sCD14↑, IL-6↑ or concomitant increase of both) to be predictive of HSV-2 acquisition.

SLPI is an antimicrobial protein with anti-inflammatory properties and has been shown to inhibit both HSV-215 and HIV-1 infection, which is consistent with our results of cervical SLPI being predictive of both HSV-2 (reported here) and HIV-1 acquisition (reported previously). BD-2 is also an antimicrobial peptide and is part of the protective host responses to infection of the vaginal mucosa. However, BD-2 also has chemotactic activity which may increase recruitment of HIV target cells to mucosal sites thereby facilitating viral transmission, which may explain why higher BD2 was associated with risk of HIV acquisition. Other studies (reviewed in) suggest that the role of both alpha and beta defensins in viral infection may be more complex in vivo and may be altered by other factors in...
the female genital tract such as the microbiome and STIs. It is possible that high cervical BD-2 is a consequence of an underlying undiagnosed microbiotic shift or asymptomatic STI.

Systemic immunity can be functionally distinct from mucosal immunity in the female genital tract such as the microbiome and STIs. It is possible that high systemic BD-2 may not directly affect HSV-2 pathogenesis at the mucosal site but could be indicative of an underlying unmeasured exposure, disease or condition that may independently increase susceptibility to HSV-2. sCD14 is a marker for monocyte activation and microbial translocation from the mucosal surface to the systemic circulation and may be a sign of mucosal damage.26 Bacterial endotoxins and inflammatory cytokines such as IL-6 can induce the release of sCD14 in the circulation.27 Considering this biological link between IL-6 and sCD14, it is not unexpected that their serum levels show the same direction of association.

The combination of systemic CRP↓ and cervical BD-2↑, associated with HSV-2 risk in this study, was also found to precede HIV-1 acquisition.7,8 CRP is primarily produced in the liver but also by lymphocytes and other cell types and low CRP may interfere with its important part in innate antiviral immune responses including complement activation.28

We have further demonstrated suppressed innate immunity with differences between women with incident and established HSV-2 infections. Women with incident infections had lower levels of seven cervical markers (SLPI, IL-1RA, IL-1β, IL-6, IL-8, MIP-3α and VEGF) while women with established infections had lower levels of four of these seven markers and lower cervical BD-2 compared with HSV-2 negative visits. In a direct comparison with established infections, women with incident infections had lower levels of cervical IL-1β and MIP-3α (an anti-HIV microbicide29) and lower systemic IL-6. The lower serum IL-6 previously found predictive of HIV-1 acquisition3 offered one plausible biological link between higher risk for HIV-1 with incident than established HSV-2 infections. The overall immunosuppressed state may also contribute to higher HIV susceptibility among both incident and prevalent infections compared with HSV-2 negative women.

Our study has several important strengths. We followed over a thousand women with roughly equal-sized groups of women with incident or established HSV-2 infections and women remaining HSV-2 negative. We were able to analyse large numbers of participants with matched cervical and serum specimens thus allowing us to examine the relative and combined contributions of immune factors from each of these anatomical compartments. HSV-2 infection was measured at each 12-week visit providing us with accurate information about the timing of incident infections and accurately identifying the three HSV-status groups. For the HSV-2 infection status model, we adjusted for relevant confounders thus strengthening associations between the biomarkers and incident versus established infections. In the model predictive of HSV-2 acquisition, we did not control for behavioural and demographic factors as evidence3 from this cohort suggested that the immune markers were more proximate to HSV-2 infection and thus control for antecedent variables was inappropriate. In addition, all biomarkers were measured at the same accredited laboratory with methods previously validated for technical accuracy and clinical content.3 A limitation of the dataset is that not all women contributed both HSV incident and established visits, precluding comparisons where all women served as their own controls. Future validation studies should be conducted in ethnically and racially diverse populations and larger groups of pregnant women.

CONCLUSION

This study furthers understanding of HSV-2 acquisition and the complex link between HSV-2 and HIV-1 by providing clinical

Table 2 Differences in levels* of cervical and systemic biomarkers by HSV-2 infection status adjusted for covariates

Cervical biomarker†	No of specimens	HSV-2 status at the visit
	Incident (n=391) vs Established (n=383)	Incident (n=391) vs Established (n=383)
BD2	2530	**
SLPI	2532	✓§
IL-1RA	2532	**
IL-1β	2532	***†
IL-6	2532	***†
IL-8	2532	✓§
MIP-3α	2532	***†
RANTES	2532	✓§
ICAM-1	2532	✓§
VEGF	2532	✓§

Serum biomarker	No of specimens	HSV-2 status at the visit
	Incident (n=390) vs Established (n=361)	Incident (n=390) vs Established (n=361)
sCD14	1397	✓§
CRP	1397	✓§
IL-6	1396	✓§
IL-7	1396	✓§

* p<0.05.
† The generalised linear mixed-effects models of differences by cervical biomarkers are adjusted for country, age, 5-level hormonal variable (pregnant/breastfeeding/majority COC/majority DMPA/majority NH), unprotected sex acts, current sexually transmitted or reproductive tract infections (STIs/RTIs including BV, CT, NG and TV), vaginal drying and cleaning practices.
‡ The generalised linear mixed-effects models of differences by serum biomarkers are adjusted for country, age, 5-level hormonal variable (pregnant/breastfeeding/majority COC/majority DMPA/majority NH), and current sexually transmitted or reproductive tract infections (STIs/RTIs).
BD2, beta defensin 2; CO, cluster of differentiation; CRP, C reactive protein; HSV, herpes simplex virus; ICAM, intercellular adhesion molecule; IL, interleukin; IL-1RA, interleukin 1 receptor antagonist; MIP, macrophage inflammatory protein; RANTES, Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted; SLPI, secretory leukocyte protease inhibitor; VEGF, vascular endothelial growth factor.
Original research

evidence for divergent and shared mechanisms of vulnerability to viral infection. The identified molecular predictors of HSV-2 risk provide targets and clinical safety endpoints for the development of preventive products. The discovered systemic and mucosal immunity patterns distinguishing incident from established HSV-2 infection should be studied in relationship to viral load and shedding.

Correction notice This article has been corrected since it was first published. The open access licence has been updated to CC BY.

Handling editor Erica L Plummer

Acknowledgements The authors acknowledge the contributions of the study staff and participants in Zimbabwe and Uganda. The authors thank the following members of the Fichorova Laboratory, who contributed to this study by processing the cervical samples and performing all protein assays (listed in alphabetical order): Bi Yu Li, Bisaiyo Fashemi, Hadiemi Yamamoto, Huaiping Yuan, Noah Beatty, Olimpia Suciu, Raymond Wong, Ryan Murray, Tai Nguyen, Xienia Chepa-Lotrea, Yoshika Yamamoto and Yujin Lee.

Contributors Conceptualisation: RNF, CSM, P-LC, TC, RS and GFD. Data curation: RNF, P-LC, HY, TC and RS. Formal analysis: RNF, P-LC and XG. Funding acquisition: RNF and CSM. Methodology: RNF, CSM and P-LC. Supervision of immunological analysis and data integrity: RNF. Visualisation: RNF and YG. Writing: RNF, YG and CSM. Discussion of results, review and editing: all authors. All authors approved the final version. RNF is responsible for the overall content and as the guarantor accepts liability and responsibility arising from any reliance placed on the content. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on this content. This content has been supplied by the author(s).Ethics approval The study received approval from institutional review boards at FHI 360 and the Brigham and Women’s Hospital. The transfer of biospecimens was made available on reasonable request. All data are available on reasonable request. All data have been peer-reviewed. Open access licence has been updated to CC BY

Data availability statement Data are available on reasonable request. All data will be made available on reasonable request to be submitted to the corresponding author.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID ID Raina Nakova Fichorova http://orcid.org/0000-0002-9980-5735

REFERENCES
1 Tomene EA, Morrison CS, Chen P-L, et al. Prevalence of sexually transmitted infections and bacterial vaginosis among women in sub-Saharan Africa: an individual participant data meta-analysis of 18 HIV prevention studies. Plos Med 2018;15:e1002511.
2 Freeman EE, Weiss HA, Glynn JR, et al. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 2006;20:73–83.
3 Brown JM, Wald A, Hubbard A, et al. Incident and prevalent herpes simplex virus type 2 infection increases risk of HIV acquisition among women in Uganda and Zimbabwe. AIDS 2007;21:1515–23.
4 Ward H, Rinn M. Contribution of sexually transmitted infections to the sexual transmission of HIV. Curr Opin HIV AIDS 2010;5:305–10.
5 Thurman AR, Doncel GF. Herpes simplex virus and HIV: genital infection synergy and novel approaches to dual prevention. Int J STD AIDS 2012;23:613–9.
6 Thurman AR, Clark MR, Doncel GF. Multipurpose prevention technologies: biomedical tools to prevent HIV, HSV-2, and unintended pregnancies. Infect Dis Obstet Gynecol 2011;2011:1–10.
7 Morrison CS, Chen P-L, Yamamoto H, et al. Concomitant imbalances of systemic and mucosal immunity increase HIV acquisition risk. J Acquir Immune Defic Syndr 2020;84:85–91.
8 Fichorova RN, Morrison CS, Chen P-L, et al. Aberrant cervical innate immunity predicts onset of dysbiosis and sexually transmitted infections in women of reproductive age. PLoS One 2020;15:e0225153.
9 Wald A, Corey L, Cone R, et al. Frequent genital herpes simplex virus 2 shedding in immunocompetent women. Effect of acyclovir treatment. J Clin Invest 1997;99:1092–7.
10 Benedetti JK, Zeh J, Corey L. Clinical reactivation of genital herpes simplex virus infection decreases over time. Ann Intern Med 1999;131:14–20.
11 Fichorova RN, Chen P-L, Morrison CS, et al. The contribution of cervicovaginal infections to the immunomodulatory effects of hormonal contraception. mBio 2015;6:e00221–e00215.
12 Schwartz JL, Mauck C, Lai J-J, et al. Fourteen-day safety and acceptability study of 6% cellulose sulfate gel: a randomized double-blind phase I safety study. Contraception 2006;74:133–40.
13 Fichorova RN. Guiding the vaginal microbicide trials with biomarkers of inflammation. J Acquir Immune Defic Syndr 2004;37 Suppl 3:S184–S193–93.
14 Fakihoglu E, Wilson SS, Mesquita PMM, et al. Herpes simplex virus seronegatives subsequent leukocyte protease inhibitor: a novel immune evasion mechanism. J Virol 2008;82:9337–44.
15 John M, Keller MJ, Fam EH, et al. Cervicovaginal secretions contribute to innate resistance to herpes simplex virus infection. J Infect Dis 2005;192:1731–40.
16 Mcneely TB, Dealey M, Dripps DJ, et al. Secretory leukocyte protease inhibitor: a human salivary protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J Clin Invest 1995;96:456–64.
17 Wilson SS, Wiens ME, Smith JG. Antiviral mechanisms of human defensins. J Mol Biol 2013;425:4965–80.
18 Wilson SS, Wiens ME, Holly MK, et al. Defensins at the mucosal surface: latest insights into defensin-virus interactions. J Virol 2016;90:5216–8.
19 Pace BT, Lacker NA, Porter E, et al. The role of defensins in HIV pathogenesis. Mediators Inflamm 2017;2017:1–12.
20 Richter-Spuhler LE, Pattaccini L, Plews M, et al. Pre-Exposure prophylaxis differentially alters circulating and mucosal immune cell activation in herpes simplex virus type 2 seropositive women. AIDS 2019;33:2123–36.
21 Mason L, Passmore J-S, Liebenberg LJ, et al. Genital infection and the risk of HIV acquisition in women. Clin Infect Dis 2015;61:260–9.
22 Liebenberg LJ, Mason L, Arnold KB, et al. Genital-synthetic chemokine gradients and the risk of HIV acquisition in women. J Acquir Immune Defic Syndr 2017;74:318–25.
23 Scheller J, Chalais A, Schmidt-Arras D, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011;1813:878–88.
24 Tanaka T, Narazaki M, Kishimoto T, et al. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014;6:e016295.
25 Abd El-Maakoud AM, Khainy SA, Sharada HM, et al. Evaluation of pro-inflammatory cytokines in nutritionally stunted Egyptian children. Egyptian Pediatric Association Gazette 2017;65:80–4.
26 Redd AD, Dabiraei D, Bream JH, et al. Microbial translocation, the innate cytokine response, and HIV-1 disease progression in Africa. Proc Natl Acad Sci U S A 2009;106:6718–23.
27 Shive CL, Jiang W, Anthony DD, et al. Soluble CD14 is a nonspecific marker of monocyte activation. AIDS 2015;29:1263–5.
28 Sproston NR, Ashwood JR. Role of C-reactive protein at sites of inflammation and infection. Front Immunol 2018;9:754.
29 Ghosh M, Shen Z, Schaefer TM, et al. CCL20/MIP3alpha is a novel anti-HIV-1 molecule of the human female reproductive tract. Am J Reprod Immunol 2002;49:60–71.

Sex Transm Infect first published as 10.1136/sextrans-2022-055458 on 14 August 2022. Downloaded from http://sti.bmj.com/ on August 9, 2023 by guest. Protected by copyright.
Supplementary Table 1. Correlation between cervical and serum biomarkers as continuous variables adjusted by repeated measures among participants. The correlation matrix shows estimated Spearman rank-order correlation coefficients (top of the grid) with p-values (bottom of the grid) calculated by t-distributions. The coefficient indicates the degree of correlation which is ranked weak if a coefficient is between -0.2 and 0.2 and strong if <-0.7, >0.7). The p-value indicates the chance of zero correlation coefficient between two biomarkers.

Cervical Biomarkers	Serum Biomarkers												
BD2	SLPI	IL-1RA	IL-1β	IL-6	IL-8	MIP-3α	RANTES	ICAM-1	VEGF	sCD14	CRP	IL-6	IL-7
BD2	0.0272	0.25733	0.19236	0.13071	0.2556	-0.205	-0.1403	0.15259	0.2556	-0.0105	-0.0473	-0.004	
SLPI	0.20374	0.30286	0.46381	0.44998	0.56425	0.0763	0.2796	0.39932	-0.1711	0.13425	-0.1447	-0.0591	
IL-1RA	0.34591	0.29607	0.24634	0.36045	0.1206	0.14265	0.39848	0.00271	0.00915	-0.00531	0.04161	0.0042	
IL-1β	0.52279	0.62527	0.1093	0.22328	0.5375	-0.1061	0.09958	-0.0095	0.02465	0.0012	0.16132	0.5149	
IL-6	0.69766	0.64149	0.10954	0.33106	0.62496	-0.1362	0.13037	-0.1042	-0.0417	0.0012	0.16412	0.2334	
IL-8	0.62738	0.04736	0.2064	0.65417	-0.1188	0.12726	-0.0727	-0.0024	0.0040	0.9077			
MIP-3α	0.11866	0.30956	0.49819	-0.109	0.11568	-0.111	-0.0135	0.0001	0.001	0.001	0.001	0.5149	
RANTES	0.53644	0.00471	0.00933	0.00402	0.0707	-0.0986							
ICAM-1	0.23479	0.0613	0.1135	0.0217	0.1247	-0.037							
VEGF	0.23479	0.0613	0.1135	0.0217	0.1247	-0.037							
sCD14	-0.0152	0.16132	0.09685	0.4613	-0.0001	<0.0001							
CRP	0.15961	0.09542	0.15961	0.09542	0.15961	0.09542							
IL-6	0.20992	0.0001	<0.0001	0.0001	<0.0001	0.0001							
IL-7	<0.0001	0.0001	<0.0001	0.0001	<0.0001	0.0001							
Supplementary Table 2. Characteristics of participant visits by HSV-2 status among HIV negative visits

Characteristics	HSV-2 negative visits (n=1505)	HSV-2 incident visits (n=633)	HSV-2 established visits (n=978)	Total visits (n=3116)	P-value
	n (%)	n (%)	n (%)	n (%)	
Site					
Uganda	518 (34.42)	318 (50.24)	294 (30.06)	1130 (36.26)	<.001
Zimbabwe	987 (65.58)	315 (49.76)	684 (69.94)	1986 (63.74)	<.001
Age at screening					
18-24	989 (65.71)	383 (60.51)	469 (47.96)	1841 (59.08)	<.001
25+	516 (34.29)	250 (39.49)	509 (52.04)	1275 (40.92)	<.001
HC group					
COC	535 (35.55)	230 (36.33)	398 (40.74)	1163 (37.34)	<.001
DMPA	545 (36.21)	179 (28.28)	280 (28.66)	1004 (32.23)	
NH	425 (28.24)	224 (35.39)	299 (30.6)	948 (30.43)	<.001
Currently pregnant					
	111 (7.4)	42 (6.68)	99 (10.16)	252 (8.12)	<.001
Currently Breastfeeding					
	243 (16.15)	98 (15.51)	118 (12.07)	459 (14.74)	<.001
2+ sexual partners					
	29 (1.93)	11 (1.74)	12 (1.23)	52 (1.67)	<.001
Current smoking					
	3 (0.2)	1 (0.16)	4 (0.41)	8 (0.26)	<.001
# unprotected acts					
15+	339 (22.52)	133 (21.01)	234 (23.93)	706 (22.66)	
8-14	390 (25.91)	181 (28.59)	237 (24.23)	808 (25.93)	
1-7	401 (26.64)	131 (20.7)	210 (21.47)	742 (23.81)	
0 or no sex act	375 (24.92)	188 (29.7)	297 (30.37)	860 (27.6)	<.001
Any RTI/STI					<.001
BV (Nugent score 7-10)	593 (40.9)	633 (100)	978 (100)	2204 (72)	<.001
Candidiasis	169 (11.3)	66 (10.59)	100 (10.49)	335 (10.91)	<.001
Chlamydia	32 (2.15)	19 (3.09)	10 (1.06)	61 (2)	<.001
Gonorrhea	33 (2.22)	19 (3.09)	13 (1.37)	65 (2.13)	<.001
Trichomonas	42 (2.83)	22 (3.57)	17 (1.81)	81 (2.66)	<.001

1 HSV-2 negative visits were contributed by 382 women remaining HSV-2 negative (1157 visits) and 334 women that HSV-2 seroconverted during the study contributed (348 negative visits occurring at least 3 months before the HSV-2 seroconversion visit).

2 The 633 visits defined as ‘HSV-2 incident visits’ were contributed by 334 women who passed inclusion criteria and included all available visits by these women that occurred at and <6 months (180 days) after the first HSV-2 positive test.

3 The 978 visits defined as ‘HSV-2 established’ were contributed by: 1) 303 women who were HSV-2 positive at enrollment (528 visits available at least 6 months from the enrollment visit), and 2) 334 women who acquired HSV-2 during the study (450 visits available at ≥ 6 months from the HSV-2 seroconversion visit).
Supplementary Table 3. Estimated odds ratios (OR) of HSV-2 acquisition for levels of concomitantly imbalanced systemic and cervical Immunity measured at the HSV-2 negative visits from individuals remaining HSV-2 negative and the HSV-2 seroconverters at the visit prior to the incident visit.

Systemic + Cervical Biomarker Groups	#↑↓ / #Sample used	OR (95% CI)	P-value
Concomitant serum sCD14 ↑ + cervical ↑↓			
IL-1β↑, IL-6↑	48 / 703	0.39 (0.14, 1.11)	0.077
IL-8↑, MIP-3α↑	52 / 703	0.68 (0.30, 1.55)	0.360
VEGF↓, ICAM-1↓	47 / 703	2.02 (1.04, 3.90)	0.037
SLPI↓	84 / 703	1.85 (1.09, 3.12)	0.022
BD-2↑	72 / 702	2.18 (1.26, 3.75)	0.005
IL-1RA↓	67 / 703	1.34 (0.72, 2.46)	0.354
RANTES↑	87 / 703	1.30 (0.75, 2.25)	0.351
Concomitant serum CRP ↓ + cervical ↑↓			
IL-1β↑, IL-6↑	114 / 703	0.75 (0.43, 1.32)	0.322
IL-8↑, MIP-3α↑	125 / 703	1.15 (0.71, 1.88)	0.568
VEGF↓, ICAM-1↓	96 / 703	0.96 (0.55, 1.69)	0.892
SLPI↓	169 / 703	1.36 (0.89, 2.10)	0.156
BD-2↑	168 / 702	1.82 (1.20, 2.76)	0.005
IL-1RA↓	179 / 703	1.18 (0.77, 1.82)	0.446
RANTES↑	207 / 703	1.21 (0.80, 1.83)	0.357
Concomitant serum IL6 ↑ + cervical ↑↓			
IL-1β↑, IL-6↑	121 / 703	0.44 (0.24, 0.83)	0.012
IL-8↑, MIP-3α↑	132 / 703	0.88 (0.53, 1.45)	0.612
VEGF↓, ICAM-1↓	89 / 703	1.94 (1.16, 3.23)	0.011
SLPI↓	164 / 703	1.65 (1.08, 2.53)	0.020
BD-2↑	156 / 702	1.41 (0.91, 2.18)	0.125
IL-1RA↓	156 / 703	1.41 (0.91, 2.19)	0.123
RANTES↑	174 / 703	1.07 (0.69, 1.66)	0.766

1 † indicates activated (levels above median) and ↓ indicates suppressed (levels below median) immunity, with the exception of sCD14 which is activated if its concentration is above top quartile, for all HIV-1 and HSV-2 negative visits.

2 HSV-2 negative visits from individuals remaining HSV-2 negative and HSV-2 seroconverters at the visit prior to the incident visit.

3 Odds ratios (OR) and 95% confidence intervals (CI) estimated likelihood of HSV-2 seroconversion with biomarker levels activated/suppressed as indicated by arrows assessed concomitantly.
Маркери на маточно-цервикален и системен вроден имунитет предразполагащ към HIV-1 свързани с риска от придобиване на генитален херпес и с времетраенето след HSV-2 сероконверсия

Резюме

Цели: ДА се изследват маркери на вродения имунитет, които предричат риск от HIV-1, като прекурсори на генитален херпес и като биологична основа за епидемиологично установеното предразположение към HIV-1 при жени заразени с HSV-2.

Методи: Ние анализирахме серийни HIV-отрицателни серумни и маточно-цервикални проби от 1019 жени преди и след придобиване на генитален херпес. В тях измерихме биомаркери на възпаление и имунно активиране, по-рано свързани с риск от заразяване с HIV-1. Концентрациите им бяха трансформирани чрез Box-Cox и коefфициенти на риск от придобиване на HSV-2 бяха изчислени въз основа на вероятността от маркерни нива над медианата или в горния 25 процентов интервал спрямо всички HSV-2 отрицателни проби. Двувариантен анализ определи вероятността от придобиване на HSV-2 чрез нивата на биомаркерите преди инфекцията. Лиинейни статистически модели със смесени ефекти бяха приложени за установяване на разлики свързани с HSV-2 статуса, дефиниран като отрицателен, първа инфекция в първите 6 месеца на сероконверсия или статус на инфекция след шестия месец от сероконверсия.

Резултати: В цервикалните секрети два рискови биомаркера на HIV-1 (нисък SLPI и висок BD-2) предсказаха също придобиването на HSV-2. В допълнение, придобиването на HSV-2 беше свързано с ниски нива на IL-1β, IL-6, IL-8, MIP-3α, ICAM-1 и VEGF. Системно-имунни предиктори на HSV-2 инфекция бяха високите серумни нива на sCD14 и IL-6, свързани с най-висок риск при едновременно повишаване (OR=2.23, 1.49-3.35). Системно-мукозно съпътстващи предиктори на риск от придобиване на HSV-2 бяха: 1) висок серумен sCD14 комбиниран с ниски цервикални нива на SLPI, VEGF и ICAM-1 или с висок BD-2; 2) висок серумен IL-6 комбиниран с ниски цервикални нива на VEGF и ICAM-1, SLPI, или IL-1β и IL-6 и 3) нисък серумен CRP комбиниран с висок цервикален BD-2 (единствената комбинация, която също предсказва придобиването на HIV-1). Повечето цервикални биомаркери бяха понижени след придобиване на HSV-2 в сравнение с HSV-2 отрицателния статус, като пробите по-близо след първо заразяване (в 6-месечен
интервал) показаха по-голям брой подтиснати цервикални биомаркери и по-ниски серумни нива на IL-6 в сравнение с по-късните периоди на инфекция.

Заключения: Комбинацията от системно възпаление и маточно-цервикална имунна супресия предлазполага към HSV-2. Трайно подтиснатият вроден имунитет в първите 6 месеца след HSV-2 инфекция може да допринесе за повишена податливост към HIV-1 инфекция.

Ключови послания

Какво вече е известно по тази тема: Гениталният херпес е разпространен рисков фактор за заразяване с ХИВ, но не е известно дали едни и същи белези на лигавичния и/или системния вроден имунитет предхождат и предлазполагат към двете вирусни инфекции.

С какво допринася това проучване: Това проучване идентифицира за първи път както общ, така и диференциални вродено-имунни предиктори на HSV-2 и HIV-1 инфекции. То е първото, което показва разлики както в медиаторите на вродения имунитет на шийката на матката, така и в системния вроден имунитет, които могат да лежат в основата на по-високия риск от заразяване с ХИВ върху със скорочна първа инфекция с HSV-2 спрямо последващ по-късен период след серконверсия.

Как това проучване може да повлияе на науката, клиничната практика или политиката на здравеопазване: Чрез идентифициране на молекулярни предиктори на риска от HSV-2, това проучване предоставя лекарствени мишени и лабораторни критерии за клинична безопасност необходими за разработването на профилактични продукти.

Автор-кореспондент: Проф. Д-р Райна Фичорова rfichorova@bwh.harvard.edu