Simultaneous detection of 37 *Lactobacillus* species using a real-time PCR assay based on whole-genome sequence analysis

CURRENT STATUS: UNDER REVISION

Eiseul Kim
Kyung Hee University - Global Campus

Seung-Min Yang
Kyung Hee University - Global Campus

Bora Lim
Kyung Hee University - Global Campus

Si Hong Park
Oregon State University

Bryna Rackerby
Oregon State University

Hae-Yeong Kim
hykim@khu.ac.kr
Kyung Hee University
Corresponding Author

DOI:
10.21203/rs.2.20588/v1

SUBJECT AREAS
General Microbiology

KEYWORDS
Lactobacillus, real-time PCR, comparative genomics, probiotic product, 16S rRNA gene, species-specific primer
Abstract

Background

Lactobacillus species are used as probiotics and play an important role in fermented food production. However, use of 16S rRNA gene sequences as standard markers for the differentiation of *Lactobacillus* species offers a very limited scope, as several species of *Lactobacillus* share similar 16S rRNA gene sequences. In this study, we developed a rapid and accurate method based on comparative genomic analysis for the simultaneous identification of 37 *Lactobacillus* species that are commonly used in probiotics and fermented foods.

Results

To select species-specific sequences or genes, a total of 143 *Lactobacillus* complete genome sequences were compared using Python scripts. In 14 out of 37 species, species-specific sequences could not be found due to the similarity of the 16S–23S rRNA gene. Selected unique genes were obtained using comparative genomic analysis and all genes were confirmed to be specific for 52,478,804 genomes via *in silico* analysis; they were found not to be strain-specific, but to exist in all strains of the same species. Species-specific primer pairs were designed from the selected 16S–23S rRNA gene sequences or unique genes of species. The specificity of the species-specific primer pairs was confirmed using reference strains, and the accuracy and efficiency of the real-time polymerase chain reaction (PCR) with the standard curve were confirmed. The real-time PCR method developed in this study is able to accurately differentiate species that were not distinguishable using the 16S rRNA gene alone. This Real-time PCR method was designed to detect 37 *Lactobacillus* species in a single reaction. The developed method was then applied in the monitoring of 19 probiotics and 12 dairy products. The applied tests confirmed that the species detected in 17 products matched those indicated on their
labels, whereas the remaining products contained species other than those appearing on the label.

Conclusions

The method developed in this study is able to rapidly and accurately distinguish different species of *Lactobacillus*, and can be used to monitor specific *Lactobacillus* species in foods such as probiotics and dairy products.

Background

Lactobacillus is a Gram-positive, non-spore-forming, rod-shaped, catalase-negative genus of bacteria that often grows best under microaerophilic conditions. *Lactobacillus* belongs to the family *Lactobacillaceae* and consists of 170 species and 17 subspecies [1]. Human and animal gastrointestinal tracts harbor a variety of *Lactobacillus* species, including *L. plantarum*, *L. rhamnosus*, *L. fermentum*, and *L. casei* [1], while species such as *L. gasseri*, *L. vaginalis*, *L. crispatus*, *L. iners*, and *L. jensenii* are known to exist in the vagina [2]. They have a high tolerance to acidic environments and are typically used as starter cultures for fermented foods such as kimchi, yogurt, and cheese [1]. *Bifidobacterium* and *Lactobacillus* species are among the most commercially used lactic acid bacteria (LAB) in probiotic products [3]. In particular, *L. acidophilus*, *L. casei*, *L. rhamnosus*, *L. plantarum*, and *L. paracasei* are often used in probiotic products in combination with other *Lactobacillus* species.

Probiotics are gut health promoting bacteria that are generally recognized as safe and are known to provide beneficial effects on host health [4, 5]. In recent years, the probiotic product market has expanded proportionately with an increased interest in gut health [6, 7]. Despite the widespread use of probiotic products to improve human health, there is increasing concern among consumers regarding the quality and the label claims of commercial probiotic products [3]. In terms of functionality and safety, it is very important
that probiotic products contain well-documented probiotic strains that are accurately displayed on the label. However, reports have shown that the LAB species present in some commercial probiotic products do not match those represented on the label [8–10].

The traditional methods used to study microbial communities, such as morphological and physiological characteristics, protein profiling, carbohydrate fermentation patterns, and counts on selective media, are time-consuming and often produce ambiguous outcomes [11, 12]. To achieve the reliable and rapid identification of bacterial species, molecular methods such as 16S rRNA gene sequencing, metagenome sequencing, and denaturing gradient gel electrophoresis (DGGE) have been increasingly applied. 16S rRNA sequencing is commonly used for bacterial identification, including the identification of *Lactobacillus* species [13–15]. Metagenome sequencing and DGGE based on 16S rRNA gene sequences are useful analytical methods for investigating complex microbial communities without previous isolation of individual bacteria [16–18]. However, 16S rRNA gene sequences in many *Lactobacillus* species are too similar to be readily distinguished. In particular, closely related species within the *L. acidophilus* group (*L. acidophilus*, *L. gallinarum*, and *L. helveticus*), the *L. casei* group (*L. casei*, *L. paracasei*, and *L. rhamnosus*), the *L. plantarum* group (*L. plantarum*, *L. paraplantarum*, and *L. pentosus*), and the *L. sakei* group (*L. sakei*, *L. curvatus*, and *L. graminis*) are notoriously difficult to distinguish by 16S rRNA gene sequences [19, 20]. For example, the 16S rRNA gene sequence of the *L. casei* group and that of the *L. sakei* group have more than 98.7% similarity between species [19, 20].

In this study, we designed species-specific primer pairs targeting the 16S–23S rRNA gene and species-unique genes, and developed a detection method for 37 *Lactobacillus* species by a single reaction of real-time polymerase chain reaction (PCR). The developed real-time PCR assay was successfully applied to commercial probiotics and dairy products. We have also confirmed that this assay has the ability to determine the composition of
Lactobacillus species present in a product, as well as the presence of species not stated on the label.

Results

Selection of species-specific sequences and primer designs

The species-specific primer pairs of 37 Lactobacillus were designed from unique gene or 16S–23S rRNA region (Table 1). The similarities of the 16S–23S rRNA regions among Lactobacillus species were verified in silico and 23 Lactobacillus species were distinguished with each primer pair designed in the 16S–23S region. Some Lactobacillus species are difficult to distinguish using the 16S–23S rRNA region alone due to the small number of single-nucleotide polymorphisms. Therefore, unique genes of 14 Lactobacillus species were obtained using comparative genomics (Table 2). A membrane protein was found in four L. acidipiscis genomes, but was not present in other species of Lactobacillus. Adenylosuccinate lyase and leucine-rich repeat protein were detected as the specific genes in L. amylovorus and L. parabuchneri, respectively. In L. paraplantarum, L. plantarum, L. pentosus, and L. helveticus, MFS (Major Facilitator Superfamily)-type transporter YcnB, LPXTG-motif cell wall anchor domain protein, GHKL domain-containing protein, and decarboxylate/amino acid:cation Na\(^+\)/H\(^+\) symporter family protein were detected as the specific genes to each respective species. We also confirmed the specificity of unique genes using BLAST. The unique genes did not match any of the 52,478,804 sequences found in the NCBI database outside of the target species (Table 3). However, some genomes of L. casei contained unique genes of L. paracasei. The presence of unique genes in some, but not all, L. casei strains suggests that the genome information given for the strains is incorrect. These L. casei strains were found to be more similar in the 16S rRNA gene to L. paracasei than to the L. casei described in a previous
study [21]. Also, one genome of *L. gallinarum* contained a unique gene of *L. helveticus*. To clarify the problem of *L. gallinarum* strain, we further performed a genomic analysis of *L. helveticus* and *L. gallinarum*. The result showed that a *L. gallinarum* strain containing a unique gene of *L. helveticus* was more similar to other strains of *L. helveticus* (Fig. 1).

Specificity of designed primer pairs

To confirm whether primer pairs were species-specific for the identification of each *Lactobacillus* species, conventional PCR assays were performed with 37 *Lactobacillus* reference strains. For each of the primer pairs, the amplification product was exclusive to each target strain with a high specificity. The results of the conventional PCR assays confirmed 100% specificity for all *Lactobacillus* species.

Specificity and accuracy of the developed real-time PCR assay

The accuracy and efficiency of the real-time PCR assay were validated using the template DNA of the *Lactobacillus* reference species. All primer pairs exhibited a linear relationship over the range of 0.005 to 50 ng. The slopes for the specific primer pairs of *L. acetotolerans*, *L. casei*, *L. parabuchneri*, and *L. lindneri* were −3.209, −3.284, −3.207, and −3.595, respectively, and the R^2 values were 1, 0.999, 1, and 0.985, respectively (Fig. 2). The R^2 and slope values of the remaining primer pairs are shown in Table 4.

The specificities of all 37 *Lactobacillus* reference strains were evaluated for each species-specific primer pair. A non-template was used as a negative control, and the template DNA of 37 *Lactobacillus* reference stains was used as a positive control for each primer pair. All genomic DNA from *Lactobacillus* species yielded detectable amplicon signals for each primer pair, whereas none of the non-target *Lactobacillus* species generated any signals at all (Fig. 3). The C_T ranges were 9.0 to 15.0 for each *Lactobacillus* species (Table 5). Thus, all primer pairs were considered specific for the detection of an individual *Lactobacillus*.
species. To verify the accuracy of the assay, a primer pair targeting the 16S rRNA gene was used as an IPC; the amplification of the target region was observed within the C_t value range of 5.7 to 9.1 for all tested Lactobacillus species.

Application of the developed real-time PCR assay in probiotics and dairy products

The real-time PCR assay was applied to identify Lactobacillus species from commercial probiotics and dairy products. A total of 31 products were evaluated using the real-time PCR assay we have developed, and the assay results were compared with the probiotic label claims. Probiotic products were tagged as P1 to P19, whereas dairy products were designated as D1 to D12. As a result of the validation process, 17 products were confirmed to match their label claims (Table 6). However, the label claims of four products (P14, P15, P17, and P18) identified L. helveticus but contained L. acidophilus, and three products (P14, P15, and P17) contained L. paracasei instead of the L. casei indicated on the label. In one product (P16), we detected additional Lactobacillus species that were not listed on the label. We were also able to identify the Lactobacillus species from products labeled with the compound LAB. Our real-time PCR results confirmed that these products contained either L. acidophilus and L. delbrueckii or L. paracasei and L. helveticus.

Discussion

A variety of methods have been used to identify LAB in foods or in the environment. The most representative method is a conventional method consisting of phenotypic and biochemical tests, which have limitations in accuracy among isolates possessing similar physiological specificities and fermentation profiles at the species level [22, 23]. To overcome these difficulties, several genotype-based methods such as DGGE and metagenome sequencing have been developed [23]. In addition, metagenome sequencing based on the 16S rRNA gene is a common approach in investigating microbial communities
but is limited to distinguishing similar species [24]. Because metagenome sequencing remains a time-consuming process and requires specialized equipment and techniques, it is unsuitable for analyzing a large number of samples. To combat this, we have developed a real-time PCR assay that can rapidly and easily analyze *Lactobacillus* communities in fermented foods and potentially environmental samples.

PCR is generally considered to be a rapid, sensitive, and time-saving method for the detection of bacterial species [25–27]. The accuracy of PCR is determined by the specificity of the primer pairs used. The 16S rRNA gene is considered a marker gene for bacterial genotypic analysis and is useful for the accurate identification of bacteria [12, 28]. Studies focusing on the identification of *Lactobacillus* have mainly used PCR-based molecular analysis by primer pair targeting variable regions of the 16S rRNA gene sequences [23, 29]. However, for closely related species such as the members of the *L. casei*, *L. sakei*, *L. plantarum*, and *L. acidophilus* groups, each of which has a 16S rRNA gene similarity of more than 98% [30–32], only species-specific PCR primer pairs could sufficiently differentiate species.

To overcome the limitations of the 16S rRNA gene, we developed 37 *Lactobacillus* species-specific primer pairs based on 16S–23S rRNA gene analysis and comparative genome analysis. Species-specific primer pairs were designed to have a small amplicon size (~260 bp) to increase amplification efficiency and detect *Lactobacillus* species present in processed foods. The specificities of the species-specific primer pairs were confirmed using the 37 *Lactobacillus* species, and amplification was observed only in the target species DNA without any cross-reactivity. Also, it was confirmed that species such as the *L. casei* group, *L. acidophilus* group, and *L. plantarum* group, which are not distinguished by the conventional identification method, were differentiable using the species-specific primer pairs. According to the CODEX guidelines, the slope values of −3.1 to −3.6 are
considered to indicate a high PCR efficiency. The coefficient value of determination should be at least 0.98 to be considered viable data [33]. Therefore, these results demonstrate that the developed real-time PCR assay provides high accuracy and efficiency.

The developed real-time PCR assay was used to assess probiotics and dairy products. Using this assay, 17 products were determined to contain the *Lactobacillus* species advertised on the label. In the remaining products, the species indicated on the labels were either replaced with or contaminated by another species. For example, *L. acidophilus* was replaced by *L. helveticus* and *L. casei* was replaced by *L. paracasei* in four probiotic products. Though these products were produced by different companies, the same strains were identified. As described above, *L. acidophilus* belongs to the same group as *L. helveticus*, and *L. casei* belongs to the same group as *L. paracasei*. The likely reason a label names species other than the one detected is misidentification [20, 34]. In one product, additional *Lactobacillus* species that were not indicated on the label were detected by real-time PCR. These were detected at much higher C\(_t\) values than the *Lactobacillus* species indicated on the label, suggesting that such strains were only present in low concentrations [35]. We were also able to accurately identify the species contained in products labeled compound LAB. In all of these products, we detected *L. acidophilus* and *L. delbrueckii* or *L. helveticus* and *L. paracasei*. These results confirm that our real-time PCR assay can detect all species of *Lactobacillus* contained in these products.

Many researchers have provided evidence that the advertised contents of commercial probiotic products containing LAB are significantly different from the actual contents [25, 34]. Lewis et al. (2016) reported that only one of the 16 commercial probiotic products corresponded exactly with the *Bifidobacterium* species claimed on the label [5]. In addition, some products are inconsistent from one lot to another. These results indicate
inadequate that quality control for these products.

Conclusion

In this study, we developed specific primer pairs using comparative genomics to identify *Lactobacillus* accurately and rapidly at the species level, then applied this technology in a real-time PCR assay that can detect 37 *Lactobacillus* species in a single reaction. The developed real-time PCR method was able to accurately discriminate species that were not distinguishable by the conventional identification method. To verify the developed real-time PCR assay, we compared the label claims of probiotics and dairy products with the *Lactobacillus* species detected using the real-time PCR method. The real-time PCR assay that we have developed was successfully applied to commercial probiotic and dairy products, and showed that some products did not accurately match the *Lactobacillus* species listed on their labels. Thus, this assay will be helpful for monitoring the reliability of commercial probiotic and dairy product labels. In addition to its application in probiotic products, the assay can be applied to identify *Lactobacillus* communities in various food or environmental samples.

Methods

Bacterial strains and probiotic and dairy products

The *Lactobacillus* reference strains were obtained from the Korean Collection for Type Cultures (KCTC; Daejeon, South Korea; https://kctc.kribb.re.kr/) and the Korean Agricultural Culture Collection (KACC; Jeonju, South Korea; http://genebank.rda.go.kr/) (Table 7). All reference strains were cultured in Lactobacilli MRS Broth (Difco, Becton & Dickinson, Sparks, MD, USA) at 30°C for 48 h under anaerobic conditions. The probiotic and dairy products tested in this study were obtained from various markets around the world (South Korea, United States, and Canada). The samples used in this study included
19 probiotic products (10 capsule-form pharmaceuticals and 9 powder-form food supplements) and 12 dairy products manufactured by 19 different companies. All products were labeled with bacterial species or LAB compounds.

DNA extraction

All *Lactobacillus* reference strains were grown in MRS broth at 30°C for 48 h under anaerobic conditions. The cultured cells were harvested by centrifugation at 13,600 × g for 5 min, after which the supernatant was removed. Genomic DNA was extracted using a bacterial genomic DNA extraction kit (Intron Biotechnology, Seongnam, South Korea) according to the manufacturer’s instructions. Total genomic DNA from the probiotic and dairy products was extracted using a DNeasy® Blood & Tissue Kit (Qiagen, Hilden, Germany) according to the method described in a previous study [36]. DNA concentration and purity were determined by absorbance using a MaestroNano® spectrophotometer (Maestrogen, Las Vegas, NV, USA).

Identification of *Lactobacillus* species-specific regions and primer designs

In total, 143 complete genome sequences of 37 different *Lactobacillus* species were obtained from the National Center for Biotechnology Information (NCBI; ftp://ftp.ncbi.nlm.nih.gov/genomes/) database (Additional file 1: Table S1). The 16S–23S rRNA regions, including the intergenic spacer regions, of 143 strains were extracted from the *Lactobacillus* complete genomes using a script written in the Python language, and the extracted regions were aligned using the Geneious program ver. 11.1.2 (Biomatters Limited, Auckland, New Zealand). According to the alignment results, primer pairs were designed on the basis of species-specific sequences in the 16S–23S rRNA gene. Some *Lactobacillus* species are difficult to distinguish at the species level because of the high degree of similarity in their 16S-23S rRNA gene sequences. For these species, we have developed species-specific primer pairs from unique genes that exist only in the target
species obtained through comparative genomic analysis.

The genome sequences of target species were blasted against the complete genome of target species using the UBLAST function of USEARCH program ver. 9.0 [37], with 80% cutoff identity. The genes that showed a significant match with the genomes of all target species were considered as core genes of target species. Those genes were then blasted against all of the Lactobacillus complete genomes except the target species using the UBLAST function of USEARCH program (ver. 9.0) with default parameter settings of 50% cutoff identity [37]. Genes that found no match to all genomes of the non-target species were identified as potential unique genes. The identified potential unique genes were verified using the Basic Local Alignment Search Tool (BLAST) for 52,478,804 sequences including Lactobacillus genomes. Genes found only in the target species were determined to be unique genes, and species-specific primer pairs were designed from these genes. To verify the presence of genomic DNA from Lactobacillus species, primer pairs were designed from the conserved regions of 37 Lactobacillus species in the 16S rRNA gene sequence and used as an internal positive control (IPC). All primer pairs were designed using Primer Designer (Scientific and Educational Software, Durham, NC, USA) and synthesized by Bionics Co. Ltd. (Seoul, South Korea).

Specificity of species-specific primer pairs

PCR assays were performed to confirm the specificity of the designed species-specific primer pairs. The specificity was evaluated using 37 Lactobacillus reference strains. PCR products were amplified using the following conditions in a thermocycler (Astec, Fukuoka, Japan): 94°C for 10 min, followed by 30 cycles of 94°C for 30 s, 60°C for 30 s, 72°C for 30 s, and 72°C for 5 min. The 25 µL reaction mixtures contained 20 ng of template DNA of a Lactobacillus reference strain, 0.5 unit of Taq DNA polymerase (TaKaRa BIO Inc., Tokyo, Japan), and species-specific primer pairs. The optimal concentration of each species-
specific primer pair obtained from the experiments is shown in Table 1. The amplification products were confirmed by electrophoresis on a 2% agarose gel, and the product bands were visualized under a UV transilluminator (Vilber Lourmat, Marne La Vallee, France).

Development of real-time PCR assay

The real-time PCR assays were performed on the 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) using the following conditions: 95°C for 2 min, followed by 30 cycles of 95°C for 5 s and 60°C for 30 s. The melting curve data were generated using one cycle of 95°C for 15 s, 60°C for 1 min, 95°C for 30 s, and 60°C for 15 s. The amplification mixture with a final volume of 20 µL for real-time PCR assays included 2X LeGene SB-Green Real-Time PCR Master Mix (LeGene Biosciences, San Diego, CA, USA), template DNA, and species-specific primer pairs at optimal concentrations shown in Table 1. To evaluate the analytical accuracy of the real-time PCR assay, a standard curve was constructed using serial dilutions (50 to 0.005 ng) of genomic DNA from *Lactobacillus* reference strains in triplicate. The specificities of the species-specific primer pairs were tested using 20 ng of DNA extracted from 37 *Lactobacillus* reference strains. Real-time PCR amplifications of IPC were also confirmed with 37 *Lactobacillus* reference strains. The results of the real-time PCR were confirmed using 7500 Software V2.3 (Applied Biosystems).

Application of the developed real-time PCR assay in probiotic and dairy products

We designed a validation test to detect 37 *Lactobacillus* species with real-time PCR in a single reaction using primer pairs. Each well of a reaction plate contained each primer pair and IPC for the simultaneous detection of 37 *Lactobacillus* species. Briefly, 20 ng of product DNA and 2X Master Mix (LeGene Biosciences) were added to each well of the reaction plate containing species-specific primers. Then, real-time PCR was performed in the 7500 Real-Time PCR system (Applied Biosystems). The real-time PCR conditions were
similar to those described in “Development of real-time PCR assay” section.

Declarations

Acknowledgments

Not applicable.

Authors’ contributions

EK, SMY, BL, SHP, and HYK designed this study. EK, SMY, BL, and HYK performed experiments, analyzed data and wrote the manuscript. SHP, BR, and HK reviewed and edited the manuscript. All authors read and approved the final manuscript.

Funding

This work was funded by the Strategic Initiative for Microbiomes in Agriculture and Food, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea (grant number 918005-4).

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

References

1. Goldstein EJC, Tyrrell KL, Citron DM. Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis. 2015;60:S98–S107.
2. Jespers V, Menten J, Smet H, Poradosú S, Abdellati S, Verhelst R, et al. Quantification of bacterial species of the vaginal microbiome in different groups of women, using nucleic acid amplification tests. BMC Microbiol. 2012;12:1–10.

3. Masco L, Huys G, De Brandt E, Temmerman R, Swings J. Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. Int J Food Microbiol. 2005;102:221–230.

4. Sanders ME, Huis in't Veld J. Bringing a probiotic-containing functional food to the market: microbiological, product, regulatory and labeling issues. Antonie Van Leeuwenhoek. 1999;76:293–315.

5. Lewis ZT, Shani G, Masarweh CF, Popovic M, Frese SA, Sela DA, et al. Validating bifidobacterial species and subspecies identity in commercial probiotic products. Pediatr Res. 2016;79:445–452.

6. Stanton C, Gardiner G, Meehan H, Collins K, Fitzgerald G, Lynch PB. Market potential for probiotics. Am J Clin Nutr. 2001;73:476S–483S.

7. Temmerman R, Scheirlinck I, Huys G, Swings J. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2003;69:220–226.

8. Yeung PSM, Sanders ME, Kitts CL, Cano R, Tong PS. Species-specific identification of commercial probiotic strains. J Dairy Sci. 2002;85:1039–1051.

9. Weese JS. Evaluation of deficiencies in labeling of commercial probiotics. Can Vet J. 2003;44:982–983.

10. Kwon HS, Yang E H, Yeon SW, Kang BH, Kim TY. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiol Lett 2004;239:267–275.
11. Dickson EM, Riggio MP, Macpherson L. A novel species-specific PCR assay for identifying Lactobacillus fermentum. J Med Microbiol. 2005;54:299-303.

12. Lee CM, Sieo CC, Wong CMV L, Abdullah N, Ho YW. Sequence analysis of 16S rRNA gene and 16S-23S rRNA gene intergenic spacer region for differentiation of probiotics Lactobacillus strains isolated from the gastrointestinal tract of chicken. Ann Microbiol. 2008;58:133-140.

13. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol. 1994;44:846-849.

14. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev. 1996;60:407-438.

15. O’Sullivan DJ. Methods for analysis of the intestinal microflora. Curr Issues Intest Microbiol. 2000;1:39-50.

16. Fasoli S, Marzotto M, Rizzotti L, Rossi F, DellaGlio F, Torriani S. Bacterial composition of commercial probiotic products as evaluated by PCR-DGGE analysis. Int J Food Microbiol. 2003;82:59-70.

17. Hong Y, Yang HS, Li J, Han SK, Chang HC, Kim HY. Identification of lactic acid bacteria in salted Chinese cabbage by SDS-PAGE and PCR-DGGE. J Sci Food Agric. 2014;94:296-300.

18. De Filippis F, Parente E, Zotta T, Ercolini D. A comparison of bioinformatic approaches for 16S rRNA gene profiling of food bacterial microbiota. Int J Food Microbiol. 2018;265:9-17.

19. Huang CH, Liou JS, Huang L, Watanabe K. Developing novel species-specific DNA markers for PCR-based species identification of the Lactobacillus sakei group. Lett Appl Microbiol. 2017;66:138-144.
20. Huang CH, Huang L. Rapid species- and subspecies-specific level classification and identification of Lactobacillus casei group members using MALDI Biotyper combined with ClinProTools. J Dairy Sci. 2018;101:979-991.

21. Kang J, Chung WH, Lim TJ, Whon TW, Lim S, Nam YD. Complete genome sequence of Lactobacillus casei LC5, a potential probiotics for atopic dermatitis. Front Immunol. 2017;8:413.

22. Mohania D, Nagpal R, Kumar M, Bhardwaj A, Yadav M, Jain S, et al. Molecular approaches for identification and characterization of lactic acid bacteria. J Dig Dis. 2008;9:190-198.

23. Karapetsas A, Vavoulidis E, Galanis A, Sandaltzopoulos R, Kourkoutas Y. Rapid detection and identification of probiotic Lactobacillus casei ATCC 393 by multiplex PCR. J Mol Microbiol Biotechnol. 2010;18:156-161.

24. Lawley B, Munro K, Hughes A, Hodgkinson AJ, Prosser CG, Lowry D, et al. Differentiation of Bifidobacterium longum subspecies longum and infantis by quantitative PCR using functional gene targets. PeerJ. 2017;5:e3375.

25. Youn SY, Ji GE, Han YR, Park MS. Development of strain-specific primers for identification of Bifidobacterium bifidum BGN4. J Microbiol Biotechnol. 2017;27:909-915.

26. Cho Y, Kim E, Han SK, Yang SM, Kim MJ, Kim HJ, et al. Rapid identification of Vibrio species isolated from the southern coastal regions of Korea by MALDI-TOF mass spectrometry and comparison of MALDI sample preparation methods. J Microbiol Biotechnol. 2017;27:1593-1601.

27. Kim MJ, Kim HY. Development of a fast duplex real-time PCR assay for simultaneous detection of chicken and pigeon in raw and heat-treated meats. Food Control. 2018;85:1-5.
28. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143-169.

29. Teanpaisan R, Dahlén G. Use of polymerase chain reaction techniques and sodium dodecyl sulfate-polyacrylamide gel electrophoresis for differentiation of oral Lactobacillus species. Oral Microbiol Immunol. 2006;21:79-83.

30. Koort J, Vandamme P, Schillinger U, Holzapfel W, Björkroth J. Lactobacillus curvatus subsp. melibiosus is a later synonym of Lactobacillus sakei subsp. carnosus. Int J Syst Evol Microbiol. 2004;54:1621-1626.

31. Berthier F, Ehrlich SD. Rapid species identification within two groups of closely related lactobacilli using PCR primers that target the 16S/23S rRNA spacer region. FEMS Microbiol Lett. 1998;161:97-106.

32. Huang CH, Chang MT, Huang L, Chu WS. The dnaJ gene as a molecular discriminator to differentiate among species and strain within the Lactobacillus casei group. Mol Cell Probes. 2015;29:479-484.

33. Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, et al. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol. 2014;37:115-126.

34. Patro JN, Ramachandran P, Barnaba T, Mammel MK, Lewis JL, Elkins CA. Culture-independent metagenomic surveillance of commercially available probiotics with high-throughput next-generation sequencing. mSphere. 2016;1:1-12.

35. Caraguel CGB, Stryhn H, Gagné N, Dohoo IR, Hammell KL. Selection of a cutoff value for real-time polymerase chain reaction results to fit a diagnostic purpose: analytical and epidemiologic approaches. J Vet Diagn Invest. 2011;23:2-15.

36. Volk H, Piskernik S, Kurinčič M, Klančnik A, Toplak N, Jeršek B. Evaluation of different methods for DNA extraction from milk. J Food Nutr Res. 2014;53:97-104.
37. Edgar RC. Search and clustering orders of magnitude faster than BLAST.

Bioinformatics. 2010;26:2460-1.

Tables

Table 1. Information of primer pairs designed for this study

Species	Target gene	Primer name	Sequence (5¢–3¢)
IPC^a	16S–23S region	IPC-F	CAA CGC GAA GAA CCT⁺
		IPC-R	CCA ACA TCT CAA CGA⁺
L. gasseri	16S–23S region	Gasseri-F	TCA AGA GCT GTT AAG⁺
		Gasseri-R	CTA TCG CTT CAA GTG⁺
L. rhamnosus	16S–23S region	Rhamnosus-F	GCC GAT CGT TGA CGT⁺
		Rhamnosus-R	CAG CGG TTA TGC GAT⁺
L. brevis	16S–23S region	Brevis-F	GGG CAA CGA AGC AAG⁺
		Brevis-R	TTC CAA TCG TGT GCA⁺
L. sakei	16S–23S region	Sakei-F	TCG AAC GCA CTC TCG⁺
		Sakei-R	CGA AAC CAT CTT TCA⁺
L. johnsonii	16S–23S region	Johnsonii-F	AGA GAG AAA CTC AAC⁺
		Johnsonii-R	CCT TCA TTA ACC TTA A⁺
L. jensenii	16S–23S region	Jensenii-F	AGT TCT TCG GAA TGG⁺
		Jensenii-R	GCC GCC TTT TAA ACT T⁺
L. fermentum	Unique gene	Fermentum-F	GAC CAG CGC ACC AAG⁺
		Fermentum-R	AGC GTA GCG TTC GTG⁺
L. plantarum	Unique gene	Plantarum-F	GCT GGC AAT GCC ATC⁺
		Plantarum-R	TCT CAA CGG TTG CTG⁺
L. paracasei	Unique gene	Paracasei-F	CAA TGC CGT GGT TGT⁺
		Paracasei-R	GCC AAT CAC CGC ATT⁺
L. paraplantarum	Unique gene	Paraplantarum-F	TTA TTC AAG CCG TCG⁺
		Paraplantarum-R	TCG CTG GTG CTA ATG⁺
L. casei	Unique gene	Casei-F	CCA CAA TCC TTG GCT⁺
		Casei-R	GCT TGA GGC GAT TGT⁺
L. curvatus	16S–23S region	Curvatus-F	ACT CTC ATT GAA TTA⁺
		Curvatus-R	CCC GTG TTG GTA CTA⁺
L. acidophilus	16S–23S region	Acidophilus-F	CCT TTC TAA GGA AGC⁺
		Acidophilus-R	ACG CTT GGT ATT CCA⁺
L. salivarius	16S–23S region	Salivarius-F	TAC ACC GAA TGC TTG⁺
		Salivarius-R	AGG ATC ATG CGA TCC⁺
L. reuteri	16S–23S region	Reuteri-F	GAT TGA CGA TGG ATC
L. coryniformis	16S–23S region	Coryniformis-F	CAT CCC AGA GTG ATA
L. farciminis	Unique gene	Farciminis-F	ACG AAT CCG GCA GTCA
L. zymae	16S–23S region	Zymae-F	TCG GCA GTG TGA CAT
L. pentosus	Unique gene	Pentosus-F	GGG GTA TCG ATT CGA
L. crustorum	16S–23S region	Crustorum-F	CAA TTG CGC TCT TTC
L. mucosae	16S–23S region	Mucosae-F	GCT AAA GCA AGC GCA
L. buchneri	16S–23S region	Buchneri-F	CAA GTC GAA CGC GTC
L. helveticus	Unique gene	Helveticus-F	CTA CTT CGC AGG CGT
L. amylovorus	Unique gene	Amylovorus-F	CAA GCA CGA TTG GCA
L. heilongjiangensis	16S–23S region	Heilongjiangensis-F	GCT TCA TGA ATC GGA
L. parabuchneri	Unique gene	Parabuchneri-F	TAA ACT ACG ATG ATG
L. acidipiscis	Unique gene	Acidipiscis-F	TCC AAG TCC GAC ACC
L. sanfranciscensis	Unique gene	Sanfranciscensis-F	TGG AAC TGA TAC GCG
L. ruminis	16S–23S region	Ruminis-F	GGC CAA TTC CTC CAA
L. agilis	16S–23S region	Agilis-F	CAT AAA CAT CAT GCG
L. delbrueckii	16S–23S region	Delbrueckii-F	CAT GTG CAG ACA TGC
L. amylophilus	16S–23S region	Amylophilus-F	CTC TGA AGT GCC ATG
L. kunkeei	16S–23S region	Kunkeei-F	GAA CGA CTT CAC AAG
L. amylophilus	16S–23S region	Amylophilus-R	CGC CAT CTT TCA AAC
Species	Region	Forward Primer	Reverse Primer
------------------------	--------------	-------------------------	------------------------
L. acetotolerans	16S–23S	Acetotolerans-F	Acetotolerans-R
	region	GAT TAC CTT CGG GTA T	TCA TGT GAT CTC TCC T
L. lindneri	Unique gene	Lindneri-F	Lindneri-R
		CGG CGT TCT CGA GGA	CAT CCG GCG TCC TTC T
L. gallinarum	Unique gene	Gallinarum-F	Gallinarum-R
		AAC TGG CGG TTA TCG A	CAC AGC AGG AAC CAT T
L. amylyticus	16S–23S	Amylyticus-F	Amylyticus-R
	region	TTC GGT AGT GAC GTT T	TCA AGC AAG TGC CAT C

^aIPC, internal positive control.

^bconc., concentration.

Table 2. Characteristics of unique genes to each species
Species	Gene name
L. sanfranciscensis	Acetyltransferase
L. acidipiscis	Membrane protein
L. fermentum	Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase
L. amylovorus	Adenylosuccinate lyase
L. pentosus	GHKL domain-containing protein
L. plantarum	LPXTG-motif cell wall anchor domain protein
L. helveticus	Dicarboxylate/amino acid:cation Na+/H+ symporter family protein
L. farcininis	DUF262 domain-containing protein
L. parabuchneri	Leucine-rich repeat protein
L. paraplantarum	MFS-type transporter YcnB
L. gallinarum	LacI family transcriptional regulator
L. casei	Putative truncated melibiose symporter
L. paracasei	Cation transport ATPase
L. lindneri	Accessory Sec system protein Asp2

Table 3. The BLASTN results of unique genes
Species	Description	Identity (%)	Target species match
L. sanfranciscensis	L. sanfranciscensis TMW 1.1304	99	L. sanfranciscensis
L. acidipiscis	L. acidipiscis strain ACA-DC 1533	99.58	L. acidipiscis
L. fermentum	L. fermentum strain B1 28	100	L. fermentum
L. amylovorus	L. amylovorus DSM 20531	100	L. amylovorus
L. pentosus	L. pentosus strain DSM 20314	100	L. pentosus
L. plantarum	L. plantarum strain IDCC3501	100	L. plantarum
L. helveticus	L. helveticus isolate NWC_2_3	100	L. helveticus
L. farcininis	L. farcininis KCTC 3681	100	L. farcininis
L. parabuchneri	L. parabuchneri strain FAM21731	99.97	L. parabuchneri
L. paraplantarum	L. paraplantarum strain DSM 10667	100	L. paraplantarum
L. gallinarum	L. gallinarum DSM 10532	100	L. gallinarum
L. casei	L. casei subsp. casei ATCC 393	100	L. casei
L. paracasei	L. paracasei ATCC 334	100	L. paracasei
L. lindneri	L. lindneri strain TMW 1.481	100	L. lindneri

Table 4. Slope, R^2, and efficiency of *Lactobacillus* reference strain in the real-time PCR assay

Species	Slope	R^2	Efficiency (%)
L. gasseri	-3.214	0.999	104.701
L. rhamnosus	-3.362	0.998	98.35
L. brevis	-3.444	1	95.158
L. sakei	-3.212	1	104.797
L. johnsonii	-3.214	0.999	104.701
L. jensenii	-3.328	0.996	99.764
L. fermentum	-3.56	0.995	90.955
L. plantarum	-3.221	0.995	104.396
L. paracasei	-3.305	0.98	100.694
Primer name	Detected species	Ct value	Tm (°C)
-------------------	---------------------------	----------	----------
L. paraplantarum	-3.256	0.998	102.822
L. casei	-3.284	0.999	101.612
L. curvatus	-3.485	0.999	93.617
L. acidophilus	-3.506	1	92.845
L. salivarius	-3.564	1	90.809
L. reuteri	-3.342	0.999	99.161
L. coryniformis	-3.217	0.989	104.578
L. farciminis	-3.386	0.991	97.39
L. zymae	-3.5	0.997	93.073
L. pentosus	-3.292	0.999	101.251
L. crustum	-3.438	0.999	95.366
L. mucosae	-3.478	0.986	93.886
L. buchneri	-3.411	0.993	96.424
L. helveticus	-3.230	0.998	103.98
L. amylovorus	-3.582	0.993	90.167
L. heilongjiangensis	-3.462	1	94.458
L. parabuchneri	-3.207	1	105.049
L. acidipiscis	-3.528	0.984	92.075
L. sanfranciscensis	-3.229	0.999	104.034
L. ruminis	-3.295	1	101.153
L. agilis	-3.508	1	92.795
L. delbrueckii	-3.31	0.999	100.479
L. amylophilus	-3.481	0.984	93.768
L. kunkeei	-3.571	0.998	90.568
L. acetotolerans	-3.209	1	104.92
L. lindneri	-3.559	0.982	90.972
L. gallinarum	-3.346	0.999	98.989
L. amylolyticus	-3.552	0.996	91.209

Table 5. Specificity results of the real-time PCR assay
| Name | Species | Accession 1 | Accession 2 | 11.258 | 79.329 | 5.762 | 85.319 | 11.139 | 82.441 | 6.450 | 84.193 | 6.583 | 81.378 | 4.260 | 88.582 | 10.715 | 82.027 | 12.012 | 80.746 | 10.884 | 82.306 | 10.739 | 82.513 | 13.832 | 82.686 | 12.383 | 79.308 | 14.905 | 81.806 | 9.142 | 83.439 | 13.638 | 84.793 | 10.678 | 80.465 | 7.546 | 82.568 | 11.603 | 84.268 | 12.467 | 82.012 | 11.598 | 83.109 | 11.606 | 82.206 | 12.087 | 79.059 | 11.256 | 82.037 | 11.922 | 81.205 | 9.377 | 81.604 | 10.743 | 81.566 | 10.273 | 79.814 | 9.724 | 82.341 | 11.758 | 82.095 | 8.621 | 83.114 | 10.943 | 82.733 | 8.542 | 83.217 | 11.912 | 82.031 | 12.910 | 79.917 | 10.132 | 78.138 | 11.694 | 83.460 |
Table 6. Results of application test of the developed real-time PCR assay to commercial probiotic and dairy products

Name	Label claim	Detected species
P1	*L. plantarum*	*L. plantarum*
P2	*L. rhamnosus*	*L. rhamnosus*
P3	*L. acidophilus*	*L. acidophilus*
P4	*L. delbrueckii, L. paracasei*	*L. delbrueckii, L. paracasei*
P5	*L. acidophilus, L. rhamnosus*	*L. acidophilus, L. rhamnosus*
P6	*L. acidophilus, L. rhamnosus*	*L. acidophilus, L. rhamnosus*
P7	*L. acidophilus, L. delbrueckii*	*L. acidophilus, L. delbrueckii*
P8	*L. acidophilus, L. plantarum, L. reuteri*	*L. acidophilus, L. plantarum, L. reuteri*
P9	*L. acidophilus, L. plantarum, L. reuteri*	*L. acidophilus, L. plantarum, L. reuteri*
P10	*L. acidophilus, L. fermentum, L. plantarum*	*L. acidophilus, L. fermentum, L. plantarum*
P11	*L. acidophilus, L. brevis, L. casei, L. delbrueckii, L. paracasei, L. plantarum, L. salivarius*	*L. acidophilus, L. brevis, L. casei, L. delbrueckii, L. paracasei, L. plantarum, L. salivarius*
P12	*L. acidophilus, L. casei, L. gasseri, L. paracasei, L. plantarum, L. reuteri, L. rhamnosus*	*L. acidophilus, L. casei, L. gasseri, L. paracasei, L. plantarum, L. reuteri, L. rhamnosus*
P13	*L. rhamnosus*	*L. helveticus*
P14	*L. acidophilus, L. casei, L. rhamnosus*	*L. helveticus, L. rhamnosus*
P15	*L. acidophilus, L. casei, L. rhamnosus*	*L. helveticus, L. rhamnosus*
P16	*L. rhamnosus*	*L. helveticus*
P17	*L. acidophilus, L. casei, L. plantarum, L. rhamnosus*	*L. helveticus*
P18	*L. acidophilus, L. paracasei, L. rhamnosus, L. salivarius*	*L. helveticus*
P19	*L. delbrueckii, L. plantarum, LAB mixed powder*	*L. delbrueckii, L. plantarum, LAB mixed powder*
D1	*L. acidophilus, L. casei*	*L. acidophilus, L. casei*
D2	*L. delbrueckii, L. rhamnosus*	*L. delbrueckii, L. rhamnosus*
D3	*L. delbrueckii, L. rhamnosus*	*L. delbrueckii, L. rhamnosus*
D4	*L. delbrueckii, L. rhamnosus*	*L. delbrueckii, L. rhamnosus*
D5	*L. rhamnosus, LAB*	*L. rhamnosus, LAB*
D6	*LAB, probiotic LAB*	*LAB, probiotic LAB*
D7	*Compound LAB*	*Compound LAB*
D8	*LAB*	*LAB*
D9	*LAB*	*LAB*
D10	*LAB*	*LAB*
D11	*LAB*	*LAB*
D12	*LAB*	*LAB*

LAB, lactic acid bacteria.
Table 7. *Lactobacillus* reference strains used in this study

Species	Strain no.
L. gasseri	KCTC³ 3163
L. rhamnosus	KCTC 3237
L. brevis	KCTC 3498
L. sakei	KCTC 3603
L. johnsonii	KCTC 3801
L. jensenii	KCTC 5194
L. fermentum	KACC⁵ 11441
L. plantarum	KACC 11451
L. paracasei	KACC 12361
L. paraplantarum	KACC 12373
L. casei	KACC 12413
L. curvatus	KACC 12415
L. acidophilus	KACC 12419
L. salivarius	KCTC 3600
L. reuteri	KCTC 3594
L. coryniformis	KACC 12411
L. farcinis	KACC 12423
L. zymae	KACC 16349
L. pentosus	KACC 12428
L. crustorum	KACC 16344
L. mucosae	KACC 12381
L. buchneri	KACC 12416
L. helveticus	KACC 12418
L. amylovorus	KACC 12435
L. heilongjiangensis	KACC 18741
L. parabuchneri	KACC 12363
Species	Accession
----------------------	-----------
L. acidipiscis	KACC 12394
L. sanfranciscensis	KACC 12431
L. ruminis	KACC 12429
L. agilis	KACC 12433
L. delbrueckii	KACC 12420
L. amylphilus	KACC 11430
L. kunkeei	KACC 19371
L. acetotolerans	KACC 12447
L. lindneri	KACC 12445
L. gallinarum	KACC 12370
L. amylolyticus	KACC 12374

a KCTC, Korean Collection for Type Cultures.

b KACC, Korean Agricultural Culture Collection.

Figures
Figure 1

Pan-genome distribution across Lactobacillus gallinarum and L. helveticus. Each ring represents L. gallinarum and L. helveticus strain and each layer displays the pan-genome distribution. The blue and black rings represent the genomes of L. gallinarum and L. helveticus, respectively.
Examples of real-time PCR standard curves, amplification curves and melting curves: (A) L. acetotolerans standard curve between 50 and 0.005 ng ($y = -3.209x + 14.197$, $R^2 = 1$, left), amplification plot (middle) and melt curve (right); (B) L. casei standard curve ($y = -3.284x + 17.817$, $R^2 = 0.999$, left), amplification plot (middle), melt curve (right); (C) L. parabuchneri standard curve
Specificities of species-specific primer pairs against 37 Lactobacillus species: (A) specificity of L. acetotolerans specific primer pair, amplification curve: L. acetotolerans KACC 12447; (B) specificity of L. casei specific primer pair, amplification curve: L. casei KACC 12413; (C) specificity of L. parabuchneri specific primer pair, amplification curve: L. parabuchneri KACC 12363; and (D) specificity of L. lindneri specific primer pair, amplification curve: L. lindneri KACC 12445.
Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Additional file 1.xlsx