Isopods parasites infection on commercial fishes of Parangipettai waters, southeast coast of India

Palanivel Bharadhirajan*, Sambantham Murugan, Alagarsamy Sakhivel, Periyasamy Selvakumar

CAS in Marine Biology, Faculty of Marine Science, Anna University, Parangipettai-608 502, Tamil Nadu–India

ABSTRACT

Objective: To examine the effect of six different isopods from five different food fish species.

Methods: The specimens were collected directly from the trawlers landed at Parangipettai coast during the year of 2012 (January–December). Isopods were removed from the body surface and buccal cavities of the fish hosts and immediately preserved in 70% ethanol. Data regarding the prevalence of isopod parasites was calculated and site of attachment.

Results: During the study period, 310 fishes were collected and examined for parasites infection, and it includes five different species. Among the examined fishes, 106 fish were infected among the total number of 120 collected parasites. The occurrence of isopod infection in all the infected fishes was 34.19%. The occurrence of *Liza parsia* was 25%, *Thryssa dussumieri* was 36%, *Sardinella albella* was 17.5%, and *Otolithes cuvieri* was 65%. The maximum isopoda parasite infected noticed *Otolithes cuvieri* and minimum value was recorded in *Sardinella albella*.

Conclusions: This is the new host for the parasite *Nerocila phaeopleura* in *Liza parsia*. Thus parasitic attack the growth and normal function of the fishes will suffer and lead to economic loss or the marketability may reduce then. In along the lifespan, the host population was may be affected by the parasitic outbreak.

KEYWORDS

Food fishes, Isopod parasite, Cymothoids, *Nerocila phaeopleura*

1. Introduction

Parasite diseases pose great problem in the culture and captive maintenance of marine water fishes[1]. Among marine fish parasites, nearly 25% are crustaceans, mainly represented by copepod, brachiura and isopod[2]. Marine isopods play an important role in the food web, in particular in removing decaying material from natural or altered environments and they also represent an important factor of economic unbalance[3]. They occur in marine, estuarine and freshwater habitats, especially in the near–shore coastal environment[4]. They occur on fish host on the outer body or fins, in the mouth, gill chambers, or nostrils, or occasionally in self–made pockets in the flesh of their hosts[3]. Isopods cause significant economic losses to fisheries by killing, stunting, or damaging these fishes. They can also kill or impair immature fishes so that they do not survive[2]. Isopod crustaceans are part of the greatest fish ectoparasite group and are easy to identify due to their size, morphological aspects and because they are easily found on the outer part of fish bodies[7]. According to the marine species of the order, Isopods are classified into 12 suborders among which the suborder Cymothoida includes 29 families. Among the families of the suborder Cymothoida, the family Cymothoidae included 43 genera and 358 species[8]. Most of the fish species are infested by cymothoid isopods position on the host (buccal, gill, burrowing or external), and general body shapes have long influenced interpretation of the relationships of cymothoid genera[8].

Nerocila is a large genus of the family Cymothoidae including at least 65 species living attached on the skin or on the fins of fishes. *Nerocila phaeopleura* (N. phaeopleura),
all the appendages are highly modified to hold the body surface and tearing the body muscles of host fish strongly[10]. As already reported by Bruce NL[11], several species are morphologically highly variable and their identification is often difficult. The variability was particularly studied in Nerocila armata and Nerocila orbignyi (N. orbignyi) [12], Nerocila excisa[13], Nerocila sundaca[14], Nerocila acuminate[15], Nerocila arres, and Nerocila kisra[16], and N. orbignyi, Nerocila monodi, and N. phaeopleura[11]. Several parasitic isopods from Parangipettai like cymothoids from different food fishes via: Chirocentrus dorab, Sardinella longiceps, Sardinella sidensis, Sardinella brachysoma, Dussumieria acuta, Thryssa dussumieri (T. dussumieri), Thryssa mystax and Scomberomorus guttatus[17]. Further observed an infection by Cymothoa indica on the spot tail needlefish Strongylura strongylura[18]. Many works have been done on isopods parasites infection potential of different marine fishes whereas no attempt has made of in the case of fishes. Hence, the present study deals with the isopods parasites infection on selected commercial fishes of Parangipettai coastal waters, southeast coast of India.

2. Materials and methods

The specimens were collected directly from the trawlers landed at Parangipettai (Lat 11°29' N; 79°46' E southeast coast of India) from January–December, 2012 (Figure 1). A total of 5 commercial food fishes infected with isopod at Parangipettai landing center. They were brought in the laboratory for further study. Isopods were removed from the body surface and buccal cavities of the fish hosts and immediately preserved in 70% ethanol. The total length of the fish hosts and isopods was measured and all measurements were in millimeters. Mouth parts and appendages were carefully dissected using dissecting needles and forceps. Host nomenclature and fish taxonomy are according to Fish Base[19]. Data regarding the total length, with weight and sex of host fish were recorded.

3. Results

A total number of 310 fishes were collected and examined for parasites infection. It includes five different food species. Among the examined fishes, 106 fish were infected among the total number of 120 collected parasites. The prevalence of isopod parasites was calculated (Table 1). The measurements of the fish hosts and isopods are shown in Figure 2.

![Figure 2](image)

Figure 2. The isopods parasites infected in marine fishes at different body parts.

The total prevalence of isopod infection in four different fishes was 34.19%. The prevalence of Liza parsia (L. parsia), T. dussumieri, Sardinella albella (S. albella) and Otolithes cuvieri (O. cuvieri) was 25.00%, 36.00%, 17.50% and 65.00%. The maximum isopod parasites infected noticed in O. cuvieri and minimum value was recorded in S. albella (Table 1).

The study period was noticed N. phaeopleura maximum attached only body surface of S. albella, T. dussumieri and L. parsia. The Cymothoa sp. was attached by gill and baccual cavity of O. cuvieri fish (Table 2). The total of infection Nerocila sp. was 17.41% and Cymothoa sp. 16.77%.

![Figure 1](image)

Figure 1. Map shows the study area.

Table 1

Name of host	No. of examined	No. of infection fish	Prevalence (%)
L. parsia	60	15	25.00
T. dussumieri	70	18	26.00
S. albella	120	21	17.50
O. cuvieri	80	52	65.00
Total	310	106	34.19

Table 2

Host	Parasites Species	Site of attachment
Liza parsia	N. phaeopleura	Body surface (Caudal pedangel)
T. dussumieri	N. phaeopleura	Body surface (Nearby pectoral fin)
S. albella	N. phaeopleura	Body surface (Nearby pectoral fin)
O. cuvieri	Cymothoa bosi	Gill (inside of 1st gill arch)
	Cymothoa crenita	Gill, Baccual cavity

Palanivel Bharadhirajan et al./Asian Pac J Trop Dis 2014; 4(Suppl 1): S268–S272
4. Discussion

Parasitic isopods are likely the dominant group of crustacean ectoparasite of fish in tropical seas\cite{20}. Recently the parasites have been recognized as an important component of global biodiversity and research efforts directed and documented towards the parasitic species diversity has increased\cite{21}. Parasites affected fish health, growth, behavior, fecundity and mortality and also regulate host population dynamics and their community structure\cite{22}. These parasites are blood-feeding. Several species settle in the buccal cavity of fish, others live in the gill chamber or on the body surface including the fins. Their life cycle involves only one host (Holoxenic cycle). Parasites can substantially alter host fitness by negatively affecting physiological, behavioural and morphological traits\cite{23}. Isopods associate with many species of commercially important fishes around the world and cause significant economic losses to fisheries by killing, stunting, or damaging these fishes\cite{24}. The cymothoid isopods are potentially economically important parasites as they have been shown to cause detrimental effects on fish in captivity including growth inhibition, anaemia and death in smaller fish\cite{25}. Like most isopods, cymothoids are considered to feed principally on host blood, but they may consume the mucus, epithelium and subcutaneous tissues of their hosts\cite{26}.

In the present study, totally isopod infection in all infected fishes were 34.19%. The occurrence of *L. parsia* was 25%, *T. dussumieri* was 36%, *S. albella* was 17.5% and *O. cuvieri* was 65%. The total of infection affected by *Nerocila* sp. was 17.41% and *Cymothoa* sp. was 16.77%. The *Livoneca redimanni* affected the Brazilian coastal waters the prevalence was 5.9%\cite{27}. The *Anilocra nemipteri*, its fish host at Lizard Island, Great Barrier Reef, prevalence of it was 4.3%\cite{28}. A low prevalence of 14% and a prevalence in *Cymothoa* sp. have been found in Seagara Anakan lagoon\cite{29}. The overall prevalence reached 8.74%. A maximum prevalence was observed in *Nerocila depressa* parasitizing *Sardinella gibbosa* \((P=12.5\%\) and a minimum prevalence in *Nerocila sundaita* parasitizing *Ilisha melastoma* \((P=3.84\%\)\cite{30}. The isopod parasite *Ceratothoa aenestroides* was found in gillhead sea bream from Astakos at a prevalence of 31.2%\cite{31}. The result of the present study clearly shows that the isopod infected fishes is higher and lower than the previously reports. Hence it could be concluded that the maximum isopoda parasite infected noticed in *O. cuvieri* and minimum was recorded in *S. albella*.

Main factors determining the fish parasite fauna as well as intensity and prevalence of infection in marine environments were studied\cite{32}. Significantly it showed that a number of Cymothoida, including *N. orbignyi* and *Nerocila biwitata* are specific in their choice of host, whereas other genera are less specific\cite{33}. In the present study, the maximum affected was *Nerocila* sp. (17.41%) and minimum was *Cymothoa* sp. (16.77%). *Nerocila* sp. was affected by three different fishes and *Cymothoa* sp. was affected only by one fish. So *Nerocila* sp. was dominated and two genera of parasites could be similarly. *N. phaeopleura* which is being host specific, would thus seem to fit in with an apparently generic characteristic and it seems reasonable to assume that *Sardinella gibbosa* is the major host of the species in the South China sea.

Isopods associated with fishes are relatively poorly studied or even surveyed in many parts of the world\cite{34}. The information regarding cymothoid fauna of marine fishes from the Indian coasts is scanty\cite{17}. Most of the studies were from the east coast of Indial\cite{35,36}. The first records of *Nerocila depressa* were found attached to the bodies of *S. albella* from the estuarine coastal region of Trat Province, Thailand\cite{37}. *N. phaeopleura* isopod recorded for the first time from the marine fish *Rastrelliger kanagurta* from Parangipettai coast\cite{38}. In the present study, three different fishes (*S. albella*, *T. dussumieri* and *L. parsia*) were added as a new host for this parasite.

The study period was noticed *N. phaeopleura* maximum attached only body surface of *L. parsia*, *T. dussumieri* and *S. albella*. The *Cymothoa* sp. was attached in gill and buccal cavity of *O. cuvieri* and other fishes. The parasites *Cymothoa indica* mostly attach with buccal region and the branchial chamber of the (host fish) first gill arch\cite{25}. Probably all species of cymothoids are protandrous hermaphrodites, with the male larvae settling out of the plankton onto the mouth, body surface, body cavity, or gills of their host\cite{39}. The parasites occupy the entire branchial chamber of the host may produce pressure on the gill surface and thus affecting the efficiency of respiration. Although, the infestation may cause immediate death, it will affected the normal growth of the host fishes particularly degeneration of sexual organs. They may lead to economic loss of fishes. In general parasitic infection of fin and shell fishes mainly depend upon host factors such as age, size, sex, maturity, stage, behavior, feeding and breeding, life cycle and particularly factors\cite{40}.

In general, parasitic infection of fishes mainly depends upon host factors such as age, size, sex, maturity, stage, behaviour, feeding and breeding, lifecycle, physico–chemical and particularly environment factors. The negative impact of parasites on host’s growth and survival has been demonstrated for several parasite–host systems, both in aquaculture and in natural populations\cite{41}. However, host parasite relationships are generally very complex and difficult to clarify. With the exception of cases of mass mortalities caused by outbreaks of parasites, assessment of
the effects of parasite infection in natural fish populations is particularly difficult because of the presence of predators or scavengers which rapidly remove moribund or dead fish. The current investigated for the isopods parasitic infection is a commercial food fishes. This is the new host for the parasite *N. phaeopleura* in *L. parsia*. Thus parasitic affected the growth and normal function of the fishes will suffer and lead to economic loss or the marketability may reduce then. In long run, the population of the host may be affected by the parasitic outbreak.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

This work was supported by MoES project (Ref. No. 36/OOIS/SIBER/07) for providing financial support and Director of the Centre of Advanced Study in Marine Biology, Annamalai University for the provided constant encouragement and facilities.

Comments

Background

Parasitic infection of fishes with isopods constitutes a major problem in fish industry and causes a significant economic losses to fishers which includes killing, stunting and damaging of these fishes. These parasites occur on the outer body of fishes including fins, mouth and gill chambers.

Research frontiers

The aim of the study is to investigate the effect of six isopods from five different food fish species. The prevalence of isopod infection was 34.19%. The maximum rate of infection with *O. cuvieri* and the lowest with *S. albella* were studied.

Related reports

Parasitic infection poses a major problem in water fishes and the crustaceans constitute about 25% of these parasites which include copepod, brachiura and isopod (Mehlhorn, 1988; Eiras et al., 2000). Host nomenclature and fish taxonomy are according to Froese and Pauly, 2010. Data were depend on total length, weight and sex of host fish.

Innovations & breakthroughs

This study showed the importance of parasitic infection of fishes with isopods which is 34.19%. The parasites will effect on the growth and normal function of the fishes which lead to economic loss and ultimately effect on the fishes population.

Applications

The study will be a guide for other researchers in the future in their study on parasitic infections of fishes specially in the field of epidemiology, prevention and control of these diseases. Meanwhile, it indicates the economic importance of these diseases on the economy of the country.

Peer review

In general, it is a good study which shows the importance of infection of fishes with isopods in southeast coast of India. The authors investigate the prevalence of isopods in marine water fishes and the effect of this infection on the normal growth of the host.

References

[1] Mehlhorn H, Bunnag D. Parasitology in focus: facts and trends. Berlin, Germany: Springer-Verlag; 1988, p. 924.

[2] Eiras JC, Pavanelli GC, Takemoto RM. Doenças de Peixes. *Profilaxia, diagnóstico e tratamento*. Parana: Editorada Universidad Estadual de Maringa; 2000, p. 264. Portuguese.

[3] Espinosa-Pérez MC, Hendrickx ME. A new species of *Exosphaeroma* Stebbing (Crustacea: Isopoda: Sphaeromatidae) from the Pacific coast of Mexico. *Proc Biol Soc Wash* 2001; 114(3): 640–648.

[4] Sullivan M, Stimmelmayr R. Cymothoid isopods on coral reef fishes in the near shore marine environment of St. Kitts, Lesser Antilles. In: Proceedings of the 11th International Coral Reef Symposium; 2008: Ft. Lauderdale, Florida: Nova Southeastern University; 2008: 7–11.

[5] Hoffman GL. *Parasites of North American freshwater fishes*. 2nd ed. New York, USA: Cornell University Press; 1998, p. 325.

[6] Bunkley-Williams L, Williams EH Jr, Bashirullah AKM. Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii). *Rev Biol Trop* 2006; 54: 175–188.

[7] Thatcher VE. The isopod parasites of South American fishes. In: Salgado–Maldonado G, Garcia–Aldrete AN, Vidal–Martinez VM, editors. *Metazoan parasites in the neotropics: a systematic and ecological perspective*. Mexico: Universidad National Autonomic Mexico Press; 2000, p. 193–226.

[8] WoRMS. Search WoRMS. WoRMS; 2013. [Online] Available from: http://www.marinsspecies.org/about.php. [Accessed on March 12th 2013]

[9] Ravichandran S, Rameshkumar G, Balasubramanian T. Infestation of isopod parasites in commercial marine fishes. *J Parasit Dis*
[10] Rameshkumar G, Ravichandran S, Allayie SA. Study of the functional morphology of mouthparts of parasitic isopods of marine fishes. *Asian Pac J Trop Dis* 2013; 3(5): 127–132.

[11] Bruce NL. Australian species of *Nerocila* Leach, 1818, and *Creniola* n. gen. (Isopoda: Cymothoidae), crustacean parasites of marine fishes. *Rec Aust Mus*; 1987; 39: 355–412.

[12] Monod T. Sur quelques crustacés aquatiques d’Afrique (Cameroon et Congo). *Rev Zool Bot* 1931; 21: 1–36. French.

[13] Trilles JP. Sur quatre isopodes cymothoïdés du Pacifique (Nouvelle-Calédonie). *Cah ORSTOM Oceanogr* 1972; 10: 3–17. French.

[14] Bowman TE. Restoration of the subgenus *Emphylia* Koelbel for the parasitic isopod *Nerocila sundaica* Bleeker (Flabellifera, Cymothoidae). *Crustacean* 1978; 34: 33–44.

[15] Brusca RC. A monograph on the *Isopoda Cymothoidae* (Crustacea) of the eastern Pacific. *Zool J Linn Soc* 1981; 73: 117–199.

[16] Bowman TE, Tareen IU. *Cymothoidae* of fishes from Kuwait (Arabian Gulf) (Crustacea: Isopoda). Washington, USA: Smithsonian Institution Press; 1983.

[17] Veerappan N, Ravichandran S. Isopod parasites from marine fishes of Parangipettai coast [dissertation]. Tamil Nadu, India: Annamalai University; 2000.

[18] Rajkumar M, Santhanam P, Perumal R. Report on new host record of *Cymothoa indica* Schioele and Meinert (Crustacea: Isopoda) from Parangipettai coastal waters, east south coast of India. *J Aquat Biol* 2004; 19(2): 113–114.

[19] Froese R, Pauly D. FishBase: World Wide Web electronic publication. 2010. [Online] Available from: www.fishbase.org, version 07/2010. [Accessed on September 12th 2013]

[20] Kabata Z. Diseases caused by metazoans: crustaceans. In: Kinne O, editor. *Diseases of marine animals*. Hamburg, Germany: Biologische Anstalt Helgoland; 1984, p. 321–399.

[21] Poulin R, Morand S. *Parasite biodiversity*. Washington, USA: Smithsonian Institution Press; 2004.

[22] Marcogliese DJ. Parasites: small players with crucial roles in the ecological theatre. *Ecology Health* 2004; 1: 151–164.

[23] Wood CL, Byers JE, Cottingham KL, Altman I, Donahue MJ, Blakeslee AMH. Parasites alter community structure. *Proc Natl Acad Sci USA* 2007; 104: 9335–9339.

[24] Ravichandran S, Rameshkumar G, Trilles JP. New records of two parasitic cymothoids from Indian fishes. *J Parasit Dis* 2011; 35(2): 232–234.

[25] Ravi V, Rajkumar M. Effect of isopod parasite, *Cymothoa indica* on gobid fish, *Oxyurichthys microlepis* from Parangipettai coastal waters (South–east coast of India). *J Environ Biol* 2007; 28(2): 251–256.

[26] Ramdane Z, Bensouilah MA, Trilles JP. The Cymothoidae (Crustacea, Isopoda) parasites on marine fishes, from Algerian fauna. *Belg J Zool* 2007; 37(1): 67–74.

[27] dos Santos Costa EF, Chellappa S. New host record for *Lacionia redmanni* (Leach, 1818) (Isopoda: Cymothoidae) in the Brazilian coastal waters with aspects of host–parasite interaction. *Br J Oceanogr* 2010; 58: 73–77.

[28] Roche DG, Strong LE, SBlinning A. Prevalence of the parasitic cymothoid isopod *Anilocra nemiperti* on its fish host at Lizard Island, Great Barrier Reef. *Aust J Zool* 2013; 60: 330–333.

[29] Yuniar AT, Palm HW, Walter T. Crustacean fish parasites from Segara Anakan Lagoon, Java, Indonesia. *Parasitol Res* 2007; 100: 1193–1204.

[30] Trilles JP, Rameshkumar G, Ravichandran S. *Nerocila* species (Crustacea, Isopoda, Cymothoidae) from Indian marine fishes. *Parasitol Res* 2013; 112: 1273–1286.

[31] Vagianou S, Bitchava C, Yagnisi M, Athanassopoulou F. Estimation of seasonality and prevalence of the isopod parasite *Ceratothoa oestroides*, Risso, 1836, in Greece. *J Hell Vet Med Soc* 2009; 60(1): 14–25.

[32] Radhakrishnan S, Nair NB. Nature of crustacean infestation of fishes along the south–west coast of India; distribution, mode of attachment to the host tissue and incidence and intensity of infestation. *Acta Ichthyologica et Piscatoria* 1983; 13(2): 93–115.

[33] Romestand B, Trilles JP. Influence of the cymothoid isopods *Meinertia oestroides*, *Meinertia parrella*, and *Anilocra physodes* (Crustacea; parasites of fish) on the growth of hosts, *Boops boops* and *Pagellus erythrinus* (Sparidae) (author’s transl). *Z Parasitenkd* 1979; 59: 195–202.

[34] Bunkley–Williams L, Williams EH Jr. Isopods associated with fishes: a synopsis and corrections. *J Parasitol* 1998; 84: 893–896.

[35] Rameshkumar G, Ravichandran S. *Cymothoa indica* (Isopoda; Cymothoidae) and *Alitropus typus* (Isopoda; Aegidae) on freshwater fish *Tilapia mossambica* (Cichlidae) in Vellar estuary, Southeast coast of India. *Bioteam* 2010; 23(3): 67–70.

[36] Rameshkumar G, Ravichandran S, Trilles JP. Cymothoidae (Crustacea, Isopoda) from Indian fishes. *Acta Parasitol* 2011; 56: 78–91.

[37] Printraagoon C, Purivirojkul W. Prevalence of *Nerocila depressa* (Isopoda, Cymothoidae) on *Sardinella albella* from a Thai estuary. *J Sea Res* 2011; 65: 322–326.

[38] Rameshkumar G, Ravichandran S. New host record, *Rastrelliger kanagurta*, for *Nerocila paeaoleura* parasites (Crustacean, Isopoda, Cymothoidae). *Middle–East J Sci Res* 2010; 5(1): 54–56.

[39] Trilles JP, Ravichandran S, Rameshkumar G. *Catoessa bocci* (Crustacea, Isopoda, Cymothoidae) parasitic on *Carangoides malabaricus* (Pisces, Carangidae) from India. Taxonomy and host–parasite relationships. *Acta Parasitol* 2012; 57(2): 179–189.

[40] Ravichandran S, Rameshkumar G, Balasubramanian T. Infestation of isopod parasites in commercial marine fishes. *J Parasit Dis* 2010; 34(2): 97–98.

[41] Sindermann CJ. Effects of parasites on fish populations: practical considerations. *Int J Parasitol* 1987; 17: 371–382.