Curcumin blocks high glucose-induced podocyte injury via RIPK3-dependent pathway

Hyunsoo Chung1†, Seong-Woo Lee2,3†, Miri Hyun2†, So Young Kim2, Hyeon Gyu Cho1, Eun Soo Lee4,5, Jeong Suk Kang2,6, Choon Hee Chung4,5, Eun Young Lee1,2,3,6*

1 College of Medicine, Soonchunhyang University, Cheonan, Korea
2 Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
3 BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
4 Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
5 Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju, Korea
6 Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea
† These authors contributed equally to this work as co-first authors.

* Correspondence:
Eun Young Lee, MD, PhD
eylee@sch.ac.kr

Keywords: diabetic nephropathy, curcumin, necroptosis, RIPK3, antioxidant
Supplementary Figure 1. Cytotoxic concentration of curcumin. Podocytes were treated with curcumin at indicated concentrations for 24 h. Cell viability was determined by MTT assay. Doses ranging from 100 to 200 μM caused decrement of cell viability. *, $p < 0.05$.