Biomass and carbon storage in an age-sequence of *Acacia mangium* plantation forests in Southeastern region, Vietnam

Levan Cuong (Cuong, L.)¹,², Buimanh Hung (Hung, B.)², Bolanle-Ojo Oluwasanmi Tope (Bolanle-Ojo, O.T.)¹,³, Xiaoniu Xu (Xu, X.)¹,⁴, Nguyenminh Thanh (Thanh, N.)²,⁴, Lak Chai (Chai, L.)¹, Nebiyou Legesse (Legesse, N.)¹, Jingjing Wang (Wang, J.)¹, Buivan Thang (Thang, B.)¹,²

¹School of Forestry & Landscape Architecture, Anhui Agriculture University, Hefei 230036, Anhui, China. ²Faculty of Forestry, Vietnam National University of Forestry, Hanoi 100000, Vietnam. ³Forestry Research Institute of Nigeria, P.M.B. 5054, Ibadan, Nigeria.

Abstract

Aim of study: The major objective of this study was to estimate the biomass increment and carbon (C) storage of the main ecosystem components in an age-sequence of three *Acacia mangium* plantation stands.

Area of study: Chang Riec Historical - Cultural Forest, Southeastern region, Vietnam.

Material and methods: In order to assess the biomass of different tree components, 36 trees with diameter at breast height ranging from 13.38 to 22.87 cm were harvested from the different aged stands. Biomasses of understory (shrubs and herbs), and litter were also determined. Carbon storage in the trees and understory biomass, litter, and mineral soil (0-50 cm) were determined by analyzing the C content of each compartment.

Main results: The biomass in trees, understory vegetation, litter, and ecosystem increased with stand age. Soil C represented 61.99% of the total, aboveground tree biomass C made up 26.73%, belowground tree biomass C accounted for 7.01%, and litter comprised 2.96%, whereas only a small amount (1.30%) was associated with understory vegetation. The average C content of total tree biomass was higher than those of understory and litter. Soil organic C stock in the top 50 cm depth in 4-, 7- and 11-year-old stands of *A. mangium* were 86.86, 126.88 and 140.94 Mg C ha⁻¹ respectively. Soil C concentration decreased continually with increasing soil depth. Total C storage of three planted forests ranged from 131.36 to 255.86 Mg C ha⁻¹, of which 56.09 - 67.61% of C storage was in the soil and 26.88 - 40.40% in the trees.

Research highlights: These results suggest that *A. mangium* is a promising afforestation tree species with fast growing, high biomass accumulation and high C sequestration potential.

Keywords: *Acacia mangium* plantations; Biomass; Ecosystem carbon storage; Age-sequence; Vietnam.

Abbreviations used: SOC (soil organic carbon); DBH (diameter at breast height); H (height); Dm (stand mean diameter); Cₚ (soil carbon stocks); SBD (soil bulk density); Sd (soil depth); AGB (aboveground tree biomass); BGB (belowground tree biomass); TB (total tree biomass, including aboveground and belowground biomass); VAGB (understory vegetation aboveground biomass); VBGB (understory vegetation belowground biomass); TVB (total understory vegetation biomass); AGBC (aboveground tree biomass carbon stock); BGBC (belowground tree biomass carbon stock); TBC (total tree biomass carbon stock, including aboveground and belowground biomass C stock); VAGC (understory vegetation aboveground biomass carbon stock); VBGC (understory vegetation belowground biomass carbon stock); TVC (total understory vegetation carbon stock).

Authors’ contributions: Conceived and designed the experiment: Xu, X., Thanh, N., and Cuong, L.; Performed the experiment and drew the site map: Cuong, L., Hung, B., and Thang, B.; Analyzed the data: Cuong, L., Bolanle-Ojo, O.T., Chai, L., Legesse, N., and Wang, J.; Drafting of the manuscript: Cuong, L.; Editing and discussing the manuscript: Hung, B., and Bolanle-Ojo, O.T.; Critical revision and editing: Xu, X. and Thanh, N. The authors read and approved the final manuscript.

Citation: Cuong, L., Hung, B., Bolanle-Ojo, O.T., Xu, X., Thanh, N., Chai, L., Legesse, N., and Wang, J., Thang, B. (2020). Biomass and carbon storage in an age-sequence of *Acacia mangium* plantation forests in Southeastern region, Vietnam. Forest Systems, Volume 29, Issue 2, e009. https://doi.org/10.5424/fs/2020292-16685.

Received: 11 Mar 2020 **Accepted:** 10 Aug 2020

Copyright © 2020 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC-by 4.0) License.

Funding agencies/institutions

Funding agencies/institutions	Project / Grant
Chinese Government Doctoral Scholarship Foundation	2017GZ025473

Competing interests: The authors have declared that no competing interests exist.

Correspondence should be addressed to Xiaoniu Xu: xnxu2007@ahau.edu.cn
Introduction

Emissions of CO₂ and other GHG have been increasing during the past century (IPCC, 2007); hence, posing environmental issues (Xu et al., 2007; Cheng et al., 2015), and leading to concerns of climate change and their mitigation strategies. Sequestering carbon (C) through forests is considered as a mitigation path for climate change (Dixon et al., 1994; Lal, 2005; Pan et al., 2011). Forests can maintain C balance via their substantial amount of C sequestration (Fan et al., 1998; Houghton, 2007; Pugh et al., 2019). Forests ecosystem have an irreplaceable role in minimizing accumulation of atmospheric CO₂ and maintaining global climate stability (Fang et al., 2001; Härkönen et al., 2011).

The global total amount of C in soil and vegetation is about 1912.2 Pg C, of which soil C content is 2.8 times higher than the amount of C stored in vegetation biomass (Scharlemann et al., 2014), showing the importance of soil in C sink. Tropical forests play a crucial role in driving the global C cycle (Zelazowski et al., 2011; Ngo et al., 2013). The accurate estimation of C storage in forest soils over time can help to understand the amount of C removed from the atmosphere through plants (Eglin et al., 2011).

According to FAO (2016), plantation forests cover an area of 291 million hectares and accounts for 7% of the global forest area. Planted forests are regarded as effective tools for countering climate change due to their ability to absorb C and they also play an increasingly important role in regulating climate in the future (Canadell et al., 2007). China has the largest forest plantation area in the world (~ 69 million hectares) (Xu et al., 2010). Most of these plantations are still immature and indicate a significant potential for C sequestration (Huang et al., 2012). Xu et al. (2007) revealed that the C sink function of vegetation in Chinese forests mainly came from the contribution of plantations. Thus, strengthening relevant studies on C stocks in plantations will have an extremely important guiding role in predicting and maintaining the long-term productivity of the system and minimizing atmospheric CO₂ concentration accumulation.

Biomass equations will be a key part of future C measurements and assessments in addressing the issues of climate change as biomass is a crucial component in determining forest C stocks and accumulation rates (Temesgen et al., 2015). The DBH is a commonly used variable in allometric equations because it has a close relationship with biomass and is easy and correctly identified (Brown, 1997; Brown et al., 1989; Snowdon et al., 2000; Phuong, 2011). Although some authors have shown that the inclusion of H in biomass allometries compared to the only use of DBH, substantially improves biomass assessment (Chave et al., 2005; Hunter et al., 2013). The accurate determination H in closed canopy forests is often challenging because it is difficult to decipher between adjacent trees and the tree to be measured (Chave et al., 2014). As a result, current methods to assess H result in estimates with high degrees of random and systematic error.

Acacia mangium Willd. is a fast-growing tree species native to parts of Australia, Papua New Guinea and Indonesia. It has been widely cultivated in Southeast Asia, Tropical America and many African countries in large-scales (Forss et al., 1996; Ren & Yu, 2008; Herdiyanti & Sulistyawati, 2009; Koutika & Richardson, 2019) mainly due to its fast growth, drought tolerance, adaptation to different soil types and pH, good wood quality for timber and energy production (NRC, 1983). These attributes make A. mangium a candidate tree species for afforestation or reforestation programs. A. mangium was introduced into Vietnam in 1980 (Turnbull et al., 1998) and it’s now one of the most important afforestation tree species in some of the eight important forestry-ecological regions and Southeastern region in Vietnam (MARDa, 2014). It plays an important role in the national and regional ecosystem C cycles because its plantation area is over 600,000 hectares, accounting for approximately 16% of the total plantations in Vietnam (MARDb, 2014). These plantations are predominantly established on agricultural lands and degraded forest lands, and these are managed on a rotational length of 5–12 years for the production of both pulps and timbers (MARDb, 2014). A. mangium was an excellent afforestation tree species with fast growing, high yielding and high comprehensive utilization of whole trees. Besides producing woods for industries, A. mangium plantations also have role in providing environmental service such as felling negative effects on C cycle through the uptake and storage of C. Thus, there is need for accurate information regarding the C storage in A. mangium planted forests. Although numerous studies have been conducted in A. mangium plantations; growth and wood properties (Dhamodaran & Chacko, 1999), biomass and productivity (Ren & Yu, 2008), allometric biomass equations and C sequestration (Hai et al., 2009; Herdiyanti & Sulistyawati, 2009; Ilyas, 2013), microbial activity in litter and soil (Bini et al., 2013), soil nutrients (Lee et al., 2015), biological nitrogen fixation (Paula et al., 2015), soil C storage (Thanh & Cuong, 2017), benefits and its negative impacts on biodiversity (Koutika & Richardson, 2019). However, the biomass and C sequestration of A. mangium plantations in Southeastern region of Vietnam are largely unknown, which is critical to predict the responses of regional and global C balance to future climate change. Hence, the present study investigated the changes in biomass and C storage in A. mangium plantations across three different ages in Southeastern region, Vietnam. Specifically, the focuses of this study were: (i) to quantify the biomass of the ecosystem compartments across an age-sequence.
Materials and methods

Study site

This study was carried out in Chang Riec Historical - Cultural Forest (11°00′30″ to 11°35′13″N and 106°00′00″ to 106°07′10″E), Tayninh Province, Vietnam (Fig. 1). The location has two distinct seasons: the dry season from December to April and the rainy season from May to November. The mean annual temperature is 26.9°C, with the maximum of 35.2°C between April and May and the lowest 21°C from December to February. The mean annual rainfall is 1967 mm with average rainy days of 155. Annual mean humidity is 78.3%, and monthly mean of sunshine is 181-277 hours (IBST, 2009). The terrain in the study area is relatively flat, elevation of 28-53 m a.s.l. with slopes of 3-5°. The soil type is grey brown, developed on ancient alluvium rocks, and soil depth over 100 cm. They are loam in texture with pH (H₂O) of 5.10-5.23. The clay, silt, and sand contents are 12.76, 46.06, and 41.19%, respectively. The predominant planted forests of the area comprise A. mangium Willd., Acacia hybrid (Acacia auriculiformis A. Cunn. ex Benth. × A. mangium Willd.), Hopea sp., Dipterocarpus obtusifolius Teijsm. ex Miq., and Tectona grandis L.f. plantation forests. These plantations accounted for over 39.3% of the total forest area. A. mangium occupied approximately 20% of all plantations in this area and plays a crucial role in pulp and timber production. Our site includes a chronosequence A. mangium stands with ages of 4-, 7-, and 11-year-old. All the stands were the first rotation and no fertilization was applied. They were established in agricultural lands after the clear-harvesting of previous Cassava (Manihot esculenta Crantz). The initial planting density was 4 m × 2.5 m, and thinning operations were done once, twice, and three times for the 4-, 7-, and 11-year-old plantations, respectively. Stand density decreases as the stand age increases due to thinning operation carried out on the plantations. The DBH and H tend to increase with stand age (Table 1). Seed provenance from Dongnai Province was used in raising the seedlings of A. mangium used for the plantations. The diversity and abundance as well as growth of understory vegetation were well developed, especially for the 7- and 11-year-old plantations. The dominant species of shrub and herb layers in these plantations were Mallotus apelta (Lour.) Müll. Arg., Tetracera scandens (L.) Merr., Chromolaena odorata (L.) R.M. King & H. Rob., Saccharum arundinaceum (Retz.), Mimosa pudica var. tetandra (Willd.) DC., Chrysopogon aciculatus (Retz.) Trin., Maesa perlarius (Lour.) Merr., Lygodium microphyllum (Cav.) R. Br., Dryopteris parasitica (L.) Kuntze, Helicteres angustifolia var. obtusa (Wall. ex Kurz) Pierre, and Cynodon dactylon (L.) Pers.

Figure 1. Study sites. Maps of Vietnam (left) and Chang Riec Historical - Cultural Forest (right).
sample plots (40 m × 25 m) were established in each A. mangium stand. All the sampling plots were 500 - 800 m apart (Fig. 1). The DBH (cm) of trees in each plot with DBH ≥5 cm were measured by using a diameter tape accuracy of 1 mm and their heights (H, m) were determined using a Blume-Leiss altimeter. Canopy closure was determined by using a specific smartphone application (Gap Light Analysis Mobile Application software), and 10 points were measured in each plot (Table 1). Three standard trees were chosen based on the mean DBH (Dm) and logged from each sampling plot for biomass determination, using the segmenting method (Hai et al., 2009; Phuong & Hai, 2011; Ngoan & Chung, 2018). A total of 36 trees were harvested (Table 2). The sample trees were divided into four biomass components (stem, branches, leaves, and BGB). The fresh weights of all compartments were measured in situ, and samples of every components in each sample tree were collected for moisture content and C concentration analysis. The root biomass was collected through total excavation, extending radially out from the trunk and downwards to soil layer until no roots were visible. The ratio of different biomass components were computed to analyze changes of relative biomass partitioning with stand age.

In this study, the DBH was used as a predictive variable. The relationships between dry biomass and DBH were tested using linear and nonlinear functions. According to Parresol (1999), biomass data normally exhibit heteroscedasticity. Consequently, biomass data was log-transformed and fitted as linear models to correct the heteroscedasticity of variance. The White’s test (White, 1980) was also applied to check variance homogeneity of biomass models (Table 3). It is common that a correction factor (CF) would be used to correct for the systematic bias introduced by the anti-log transformation to obtain the expected biomass in original scale when a log-model was fitted to the biomass data (CF = exp (SEE²/2)) (Baskerville, 1972). However, other studies found that anti-log transformation tended to overestimate biomass if the CF is applied, and suggested that the CF may be omitted if the bias (B) from anti-log was relatively small compared to the overall variation in the estimate of biomass (B = ((CF−1)/CF)×100) (Madgwick & Satoo, 1975; Zianis et al., 2011). In the present study, the CF values of all biomass equations were less than 1.009. The B values were also rather small ranging from 0.2 to 0.89% (Table 3). Therefore, the CF was not essential for the species in this study. The best biomass equations were selected based on various goodness-of-fit statistics namely the coefficient of determination (R²), the Akaike information criterion (AIC), the root mean squared error (RMSE), and the standard error of estimation (SEE). We also accounted for the significance of the regression (p value) and the significance of parameters. Equations with higher R², smaller AIC, RMSE, SEE, and significant parameters and p value (p<0.05) were selected as the best-fitted biomass allometric equations (Akaike, 1974; Adam & Ju-

Table 1. Basic characteristics of Acacia mangium plantations in Chang Riec Historical - Cultural Forest, Southeastern region, Vietnam

Stand age (years)	Stand area (ha)	Mean DBH (cm)	Mean H (m)	Stand density (tree-ha⁻¹)	Canopy density	Elevation (m a.s.l.)	Soil depth (cm)
4	2.6	13.78 ± 0.38a	14.72 ± 0.17a	888 ± 30a	0.83 ± 0.01a	38	>100
7	2.2	17.94 ± 0.86b	17.29 ± 0.56b	728 ± 22b	0.81 ± 0.01b	40	>100
11	3.6	21.78 ± 0.85c	18.60 ± 0.21c	610 ± 29c	0.79 ± 0.03b	40	>100

Values shown as mean ± standard deviation (SD). The different lower-case letters in a column indicate significant difference at p<0.05 (one-way ANOVA and LSD test). DBH, diameter at breast height; H, height; BGB, belowground tree biomass; TB, total tree biomass.

Table 2. Descriptive statistics (minimum and maximum values) for 36 sampling trees of Acacia mangium tree species

Stand age (years)	Variable	DBH (cm)	H (m)	Stem (kg)	Branches (kg)	Leaves (kg)	BGB (kg)	TB (kg)
4	Range	13.38 - 14.27	14.3 - 14.90	39.67 - 49.48	9.80 - 16.03	3.53 - 5.44	17.13 - 22.10	71.42 - 92.43
7	Range	17.07 - 19.06	16.4 - 18.90	101.41 - 117.87	29.72 - 43.67	5.54 - 8.94	42.40 - 51.98	179.64 - 222.33
11	Range	20.76 - 22.87	18.6 - 19.20	169.22 - 201.25	78.30 - 101.32	10.49 - 16.67	52.90 - 63.06	318.92 - 376.14

DBH, diameter at breast height; H, height; BGB, belowground tree biomass; TB, total tree biomass.
where: \(C_r \), plant C stocks (Mg·ha\(^{-1}\)); \(B \), plant dry biomass (Mg·ha\(^{-1}\)); \(P_c \), plant biomass C concentration (%).

It should be noted that organic C in soil is usually only calculated as organic C that exists in organic materials with a diameter (<2 mm) (IPCC, 2003; Deng \textit{et al.}, 2017; Thanh \& Cuong, 2017), so \(C_{st} \) was calculated following the equation:

\[
C_{st} = SOC \times SBD \times S_d \times 10^{-1}
\]

where: \(Cst \) soil C stocks (Mg·ha\(^{-1}\)); \(SOC \), soil organic C concentration (g·kg\(^{-1}\)); \(SBD \), soil bulk density (g·cm\(^{-3}\)); and \(S_d \), soil depth (cm).

Statistical analysis

One-way analysis of variance (ANOVA) followed by the least significant difference and then the (LSD) test was used to detect the mean difference in biomass and C stocks among different stand ages. In ANOVA, assumptions of normality and homogeneity of variances were tested with significance level at \(p<0.05 \) confidence interval. Due to the focus of this study on analyzing allometric relationships between tree component biomass and \(DBH \) across stand ages, additivity of the biomass equation was not considered (Zianis \& Mencuccini, 2004; Yang \textit{et al.}, 2019). Statistical analysis of data and regression analysis for developing allometric equations were conducted using SPSS 25.0 software package (IBM Corp, 2017).

Results

Allometric biomass models for biomass of \textit{A. mangium} plantations

The allometric equations using power functions (stem, branches, \(BGB \), and \(TB \)) and exponential function (leaves) correlating biomass were established for the various components with \(DBH \) (Table 3 and Fig. 2). The allometric equations that were developed interpreted over 92% of the variability for the tree compartments \(p<0.001 \). The equations were most fitted for the \(AGB \) and \(TB \) among the various tree components \(p<0.001 \). The parameters of the equations varied with tree biomass compartments.

Biomass distribution in different components of \textit{A. mangium} plantations

With increasing stand age, the biomass of most \textit{A. mangium} tree components increased, including \(AGB \),
Table 3. Biomass equations for tree components across three Acacia mangium stands

Tree Component	Equation form	a (SE)	b (SE)	White’s test (p)	R²	SEE	AIC	RMSE	CF	B	p(a)	p(b)
Stem	Power	0.015	3.072	0.142 0.980	0.086	93.645	12.063	1.004	0.398	<0.001	<0.001	
Branches	Power	0.0002	4.219	0.186 0.984	0.106	67.771	5.879	1.006	0.596	<0.001	<0.001	
Leaves	Exponential	0.634	0.138	0.183 0.956	0.101	-6.571	0.746	1.005	0.498	<0.001	<0.001	
AGB Power	0.010	3.321	0.056	0.988	0.070	101.127	14.850	1.002	0.200	<0.001	<0.001	
BGB Power	0.041	2.386	0.701	0.926	0.132	67.154	5.779	1.009	0.892	<0.005	<0.001	
TB Power	0.023	3.130	0.064	0.988	0.068	106.684	17.328	1.002	0.200	<0.001	<0.001	

Equation is expressed as $Y_i = a \times DBH^b$ (Power) or $Y_i = a \times e^{b \times DBH}$ (Exponential); i, biomass of each tree component (kg); DBH, diameter at breast height; a and b are the equation parameters. All allometric equations were statistically significant at $p<0.001$. AGB, aboveground tree biomass (kg); BGB, belowground tree biomass (kg); TB, total tree biomass (kg); SE, standard error of estimation (kg); R², coefficient of determination; SEE, standard error of estimation (kg); AIC, Akaike information criterion; RMSE, root mean squared error (kg); CF, (correction factor) = $\exp(SE^2/2)$; B (percent bias) = $((CF-1)/CF)\times100$; n = 36 per component.

Levan Cuong, Buimanh Hung, Bolanle-Ojo Oluwasanmi Tope et al. Forest Systems August 2020 • Volume 29 • Issue 2 • e009

stem, branches, BGB, and TB (Table 4). The AGB ranged from 55.08 to 175.17 Mg·ha⁻¹ in the different aged stands and BGB from 17.64 to 35.40 Mg·ha⁻¹. There was a significant difference in TB between 11-, 7-, and 4-year-old stands ($p<0.05$), with the highest values in the 11-year-old stand (210.57 Mg·ha⁻¹), and the lowest in the 4-year-old stand (72.72 Mg·ha⁻¹). Foliage biomass increased gradually with age, with values of 3.98, 5.11, and 8.03 Mg·ha⁻¹ in the 4-, 7-, and 11-year-old stands. The overall biomass of the ecosystem increased significantly with stand age ($p<0.05$). The litter biomass ranged from 11.43 Mg·ha⁻¹ in the 4-year-old stand to 13.29 Mg·ha⁻¹ in the 11-year-old stand, and did not differ between the different stands ($p>0.05$). There were significant differences in the biomass of each tree component among the stands with the exception of the foliage biomass between 4- and 7-year-old stands ($p<0.05$). For the 4- and 7-year-old stands, the biomass decreased as stem > BGB > branches > leaves. However, for the 11-year-old stand, biomass decline was in the order as stem > branches > BGB > leaves (Fig. 3a). In the understory vegetation, the $VAGB$, VGB, and TVB were significantly different in different ages ($p<0.05$), indicating similar trends of increasing with stand age (Table 4). The TVB was the highest (5.99 Mg·ha⁻¹) in 11-year-old stand and the lowest (4.86 Mg·ha⁻¹) in 4-year-old stand. The stem amounted to the largest contribution to TB regardless of stand age, accounting for 54.66%, 54.96%, and 53.57% of TB for the 4-, 7-, and 11-year-old stands, respectively. The ratio of BGB and foliage biomass to TB decreased with increasing stand age. Conversely, the contribution of branch biomass to TB increased with stand age (Fig. 3a). The BGB/AGB ratio was 0.32, 0.31 and 0.2 for 4-, 7-, and 11-year-old stands, respectively (Table 4). The proportions of TB of A. mangium...
Biomass and carbon storage of *Acacia mangium* plantation forests in Vietnam

Carbon concentration and accumulation in biomass

The C contents of different components (tree, understory, and litter) were summarized in Table 5. There were no significant differences in C concentration in the tree \((p>0.05)\), understory \((p>0.05)\), and litter \((p>0.05)\) layer with the exception of shrubs (stem plus branches), aboveground herbs, and twigs of litter. Generally, trees had the highest C content while the understory had the lowest. The C concentration varied from 46.72% to 48.63% among components within individual trees. The highest and lowest C content in each stand was recorded for the stem and BGB, respectively. The mean C concentration of total tree was 47.97%. The C contents of aboveground components of the shrub and herb layers in all three stands were accounted for total ecosystem biomass were 81.70%, 89.34% and 91.61%, respectively, for the three stands (Fig. 3b).

Ecosystem components	4	7	11
Stem	39.75 ± 2.11^a	78.9 ± 1.42^b	112.8 ± 1.53^c
Branches	11.35 ± 1.64^a	25.17 ± 2.71^b	54.34 ± 3.2^c
Leaves	3.98 ± 0.44^a	5.11 ± 0.84^a	8.03 ± 0.88^a
Tree component			
AGB	55.08 ± 3.98^a	109.18 ± 4.44^b	175.17 ± 5.11^c
BGB	17.64 ± 0.68^a	34.38 ± 1.43^b	35.40 ± 1.87^b
BGB/AGB	0.32	0.31	0.20
Understory vegetation			
VAGB	4.05 ± 0.05^a	4.31 ± 0.05^b	4.80 ± 0.11^a
TVB	4.86 ± 0.06^a	5.23 ± 0.05^b	5.99 ± 0.12^a
Litter	11.43 ± 0.91^a	11.9 ± 0.55^a	13.29 ± 1.16^b
Total ecosystem	89.01 ± 5.11^a	160.69 ± 6.06^b	229.85 ± 7.36^c

Means in a row followed by different lower-case letters are significantly different at \(p<0.05\) (one-way ANOVA and LSD test). AGB, aboveground tree biomass; BGB, belowground tree biomass; TB, total tree biomass; VAGB, understory vegetation aboveground biomass; TVB, understory vegetation belowground biomass. The values shown as mean ± standard deviation (SD).

Figure 3. Biomass percentage distribution of tree individual components (a) and ecosystem components (b) in the 4-, 7-, and 11-year-old *Acacia mangium* plantations. BGB, belowground tree biomass; TVB, total understory vegetation biomass; TB, total tree biomass.
higher than those of their belowground components. The mean C contents of shrubs, herbs, and litter were 44.80, 43.17%, and 44.45%, respectively.

The AGBC averaged was 26.29 Mg-C ha⁻¹, 52.81 Mg-C ha⁻¹, and 84.98 Mg-C ha⁻¹ in the 4-, 7-, and 11-year stands, respectively. The BGBC increased with stand age, from 8.24 Mg-C ha⁻¹ at the 4-year-old stand to 16.40 and 16.54 Mg-C ha⁻¹ at the 7- and 11-year-old stands, representing 23.86%, 23.70%, 16.29% of the TBC in the three aged stand (Table 6). Except for the foliar biomass C between 4- and 7-year-old plantations, significant differences were observed in the biomass C of each tree component at different stand ages (p<0.05). Stem biomass C contributed more to TBC than the other tree components. The ratio of each component to TBC indicated a similar pattern to the ratio of each component to TB (Fig. 4a). Most of the C in the biomass was stored in the TB, and litter, while only a small amount was stored in understory vegetation (Fig. 4b). The total biomass C in trees, understory, and litter increased with stand age. The TBC was 34.53, 69.21, and 101.52 Mg-C ha⁻¹ for the 4-, 7-, and 11-year-old plantations, corresponding to an annual rate of biomass C accumulation of 8.63, 11.56, and 8.08 Mg-C ha⁻¹ year⁻¹ (Table 6).

Carbon concentration and storage in soil

The SOC concentration was reduced significantly with increasing soil depth in all three stands (p<0.05; Fig. 5a). The SOC content of the upper 0-10 cm soil layer was the highest in all three stands, and the values for each stand were 12.70, 20.08, and 21.90 g·kg⁻¹, respectively. The SOC content of the four sampled soil layers (0-10 cm, 10-20 cm, 20-30 cm, and 30-50 cm) increased significantly with increasing stand age (p<0.05). Figure 5b describes trends in the soil layer C stock across the A. mangium stand age-sequence. The Cst in the 30-50 cm soil layer followed an increasing trend with stand age (p<0.05, Fig. 5b). Although Cst in the three soil layers (0-10 cm, 10-20 cm, and 20-30 cm) increased with age, the relationship was not significant. The Cst found in the 0-50 cm soil layer was 86.86, 126.88, and 140.94 Mg-C ha⁻¹ in the 4-, 7-, and 11-year-old stands, respectively. More than 60% of soil C was stored within 0-30 cm soil layer of each stand (Fig. 5b).

Carbon storage in the plantation ecosystem

Mean total ecosystem C stock of 128.47, 203.77, and 251.27 Mg-C ha⁻¹ were observed in the 4-, 7-, and 11-year-old plantations (Table 6). The total ecosystem C stock increased with stand age, and there were significant differences in the ecosystem C storage (p<0.05). The C stock fractions across the three stands was in the Cst in the 30-50 cm soil layer followed an increasing trend with stand age (p<0.05, Fig. 5b). Although Cst in the three soil layers (0-10 cm, 10-20 cm, and 20-30 cm) increased with age, the relationship was not significant. The Cst found in the 0-50 cm soil layer was 86.86, 126.88, and 140.94 Mg-C ha⁻¹ in the 4-, 7-, and 11-year-old stands, respectively. More than 60% of soil C was stored within 0-30 cm soil layer of each stand (Fig. 5b).

Ecosystem components	Stand age (years)	4	7	11	Mean Value
Tree component					
(n=36)					
Stem		47.91 ± 0.84a	48.57 ± 0.49a	48.63 ± 1.06a	48.37 ± 0.80a
Branches		47.08 ± 0.41a	47.81 ± 0.64b	48.25 ± 0.51b	47.71 ± 0.52
Leaves		47.88 ± 0.45a	48.11 ± 0.76a	48.51 ± 0.76a	48.17 ± 0.66
BGBC		46.72 ± 0.62a	47.68 ± 0.66a	46.73 ± 0.53a	47.05 ± 0.61
Shrub (stem plus branches)		45.30 ± 0.55a	46.01 ± 0.41a	47.22 ± 0.34a	46.17 ± 0.43
Shrub leaves		45.09 ± 0.29a	45.97 ± 0.44b	46.22 ± 0.63b	45.76 ± 0.45
Shrub roots		42.83 ± 0.20a	41.98 ± 0.39a	42.60 ± 0.56ab	42.47 ± 0.38
Aboveground herbs		43.16 ± 0.31a	43.82 ± 0.57b	45.21 ± 0.21a	44.06 ± 0.36
Belowground herbs		41.86 ± 0.14a	42.16 ± 0.52a	42.78 ± 0.33a	42.27 ± 0.33
Litter (n=60)					
Leaves plus sexual organs		43.98 ± 0.73a	45.59 ± 0.22b	46.27 ± 0.83b	45.28 ± 0.59
Twigs		42.04 ± 0.62a	43.83 ± 0.56b	44.99 ± 0.71c	43.62 ± 0.63

Means in a row followed by different lower-case letters are significantly different at p<0.05 (one-way ANOVA and LSD test). BGBC, belowground tree biomass. The values shown as mean ± standard deviation (SD); n = total number of samples by component analysed.
Discussion

Biomass C of *A. mangium* stands at different ages

Stand age plays an important role in the distribution of biomass and C (Xie et al., 2016; Justine et al., 2017; Zhang et al., 2019). Results of this study show that the biomass and C of *A. mangium* in both above-ground and belowground parts increased significantly with increasing stand age. Similar results were reported in previous studies (e.g. Hai et al., 2009; He et al., 2009; Cao et al., 2012; Justine et al., 2015; Zhang et al., 2018). Furthermore, the accumulation rate of TBC was much higher in 4- and 7-year-old plantations than

Ecosystem components	Stand age (years)	4	7	11
Stem	19.04 ± 0.84a	38.32 ± 0.48b	54.86 ± 1.55c	
Branches	5.35 ± 0.81a	12.04 ± 1.37b	26.22 ± 1.62c	
Leaves	1.91 ± 0.22a	2.46 ± 0.40a	3.90 ± 0.41b	
Tree component				
*A*BC	26.29 ± 1.73a	52.81 ± 2.20b	84.98 ± 2.23c	
*B*BC	8.24 ± 0.35a	16.40 ± 0.78b	16.54± 0.84a	
*BGBC/ A*BC	0.31	0.31	0.19	
Understory vegetation				
VAGC	1.80 ± 0.02a	1.95 ± 0.03b	2.22 ± 0.05c	
VBGU	0.35 ± 0.01a	0.39 ± 0.01b	0.51 ± 0.01c	
TVC	2.15 ± 0.02a	2.34 ± 0.03b	2.73 ± 0.06c	
Litter	4.93 ± 0.33a	5.34 ± 0.23a	6.08 ± 0.50b	
Soil C stock	86.86 ± 2.62a	126.88 ± 1.78b	140.94 ± 2.56c	
Total ecosystem	128.47 ± 2.52a	203.77 ± 2.46b	251.27 ± 2.73c	

Means in a row followed by different lower-case letters are significantly different at p<0.05 (one-way ANOVA and LSD test). *A*BC, aboveground tree biomass carbon stock; *B*BC, belowground tree biomass carbon stock; TBC, total tree biomass carbon stock; VAGC, understory vegetation aboveground carbon stock; VBGU, understory vegetation belowground carbon stock; TVC, total understory vegetation carbon stock. The values shown as mean ± standard deviation (SD).
in 11-year-old plantation. The highest accumulation rate of \(TBC \) was found in the 4-7-year-old (11.56 Mg C ha\(^{-1}\)), in line with previous studies for \(A.\) mangium forests (Hai et al., 2009; He et al., 2009), demonstrating a fast biomass C accumulation of trees in this stage. The mean \(TBC \) of 68.4 Mg C ha\(^{-1}\) in this study was much greater than those reported for 4-12-year-old \(A.\) mangium plantations (39.8 Mg C ha\(^{-1}\)) and 2-12-year-old \(A.\) auriculiformis forests (21.5 Mg C ha\(^{-1}\)) in Vietnam conducted by Hai et al. (2009), and Acacia plantations of less than 6 to over 16 years (57.3 Mg C ha\(^{-1}\) in the Pearl River Delta region of Southern China (Zhang et al., 2018), slightly lower than that the 71.5 Mg C ha\(^{-1}\) in 4-11-year-old \(A.\) mangium forests in Guangxi Province of China (He et al., 2009), but within the range of 34.4-85.6 and 44.8-118.2 Mg C ha\(^{-1}\) reported for Asian and Global forests (FAO, 2010). The different rate of accumulated biomass C stock could be attributable to the effect of climatic conditions, plant species, stand age, stand density, biomass, soil nutrient, and water availability (Herdiyanti & Sulistyawati, 2009; Lee et al., 2015; Zribi et al., 2016). Our data demonstrated that the \(A.\) mangium plantation in Southeastern region can accumulate large amounts of biomass C in both aboveground and belowground parts. Moreover, fertilization was not done in these plantations. This suggests that \(A.\) mangium can grow well in soils without fertilization, has great biomass C accumulation potentials in this region.

The present study illustrated changes in biomass and C partitioning with plantation age. We observed an increase in C accumulation in branches along with a decrease in \(BGB \) and foliage while relatively stable in ratio of stem biomass C to \(TBC \). This result was in accordance with findings for \(A.\) auriculiformis (Hai et al., 2009) and Cunninghamia lanceolata (Xie et al., 2016). This allocation pattern may be interpreted by the strategies that trees use to survive during stand development. The fractions of \(BGB \) and leaves in early stages of growth are crucial for the survival of young seedlings and the likelihood that they survive to the next developmental stage. With the development, tree foliar biomass productivity no longer increases, resulting in declined demand for water and nutrient supply from BGB (Vanninen et al., 1996). On the contrary, Hai et al. (2009) reported that the fraction of biomass C stored in stem of \(A.\) mangium increased during 4-12 years, while the proportion of biomass C stored in branches, leaves, and \(BGB \) decreased. He et al. (2009) found an increase in the stem biomass C partitioning along with a decrease in branch and foliar biomass C partitioning for \(A.\) mangium stands. The biomass C partitioning into different components can be affected by both biological and environmental conditions. Particularly, in the tree crown, which is characterized spread and lengths of branches, is

Figure 5. Distribution patterns of the carbon concentration (a) and carbon stock (b) at different depths of the soil profile for 4-, 7-, and 11-year-old of \(A.\) mangium plantations. Different uppercase and lower-case letters are significantly different between soil layers (p<0.05), respectively (error bars show the SD).

Figure 6. Percentage distribution of ecosystem carbon storage in \(A.\) mangium plantations of three different ages. \(TVC \), total understory vegetation biomass carbon stock; \(TBC \), total tree biomass carbon stock.
partly associated with aerial growing space, the branch biomass C proportion might be expected to reflect the stand density. For instance, differences of stand density in the 11-year-old plantation (610 tree·ha⁻¹) used in the current study and Hai et al.’s 12-year-old plantation (825 tree·ha⁻¹), and He et al.’s 11-year-old plantation (775 tree·ha⁻¹) might interpret the different allocation patterns with age.

In this study, decline in the BGB/AGB ratio with age might be related to root rot and death in the older trees resulting to alleviated BGB and therefore greater BGB/AGB ratio in the younger than in the other stands. The BGB/AGB ratio average value of 0.28 observed here is within the range of 0.28-0.31 and 0.20-0.33 reported in the Asian and Global forests (FAO, 2010) but higher than the values of 0.23, 0.24, and 0.17 reported for A. mangium plantations by Qin et al. (2007), Ren & Yu (2008), and Hai et al. (2009), respectively. These different values might arise due to the BGB/AGB ratio dependent on forest age (Peichl & Arain, 2006; Xie et al., 2016), tree species (Hai et al., 2009; Ruiz-Peinado et al., 2012), and vegetation category (Mokany et al., 2006). Nevertheless, the BGB accounted for approximately one-quarter of the TB in this chronosequence study, which emphasizes the importance of BGB in the accurate estimation of the biomass and C of A. mangium planted forests.

Understory vegetation plays a crucial role in stabilizing the ecosystem and sequestering CO₂ (Xu et al., 2000), but their biomass C stock account only approximately 1.09-1.67% (median 1.30%) of the total ecosystem C stock in the A. mangium plantations (Fig. 6), which represents a relatively small proportion in the ecosystem. Gao et al. (2014) demonstrated that absence of the computation for understory vegetation could lead to underestimation of C sequestration capacity. Previous studies found that the biomass C storage in understory vegetation did not show a clear changing trend with stand age (Cheng et al., 2014; Deng et al., 2017; Yue et al., 2018; Zhang et al., 2019). In this study, however, the C stock of the understory vegetation increased with stand age, which was in accordance with the results of He et al. (2009) and Zhang et al. (2018). The distinction in species ecological characteristics, light, and nutrients probably contributed to this difference (Abdallah & Chaieb, 2012). Perhaps in the other previous studies that understory biomass C storage did not clearly increase with stand age was due to the more intense competition for light and nutrients. Our results indicated that the C stock in understory were dependent on stand age.

We found that the biomass C storage of the litter increased with stand age, which was consistent with results from previous studies (Deng et al., 2017; Zhang et al., 2018). In contrast, other investigations found that the litter C stock did not correspond clearly to stand age (Ming et al., 2014; Yue et al., 2018). In general, litter C stock is determined by the balance between litter input and decomposition, hence any elements impacting the amount of input and decomposition rate would influence the litter C storage. The lower quantity of C stored in litter in the 4-year-old stand development was due to decreased leaves, branches, and understory biomass standing in the period. In the present study, it was also found that the C stock of the litter in each stand is greater than that of the total understory vegetation, with the largest proportion of 3.8% in the 4-year-old stand, demonstrating that forest litter should be regarded as an important component in plantation ecosystems.

Carbon concentration

A factor of 50% is commonly used for biomass - C conversion (Brown, 1997; IPCC, 2003). However, it was showed that the C content of different plant compartments might be either above or below 50% (e.g. Thomas & Martin, 2012; Cheng et al., 2014; Zhang et al., 2019). The mean C concentration of total tree of 47.97% in this study is within the range of 40.15-55.87% and 45.54-49.45% reported for the same tree species (Hai et al., 2009; He et al., 2009) but lower than that for A. auriculiformis (49.32%), A. hybrid (51.22%), and Eucalyptus urophylla (53.11%) (Hai et al., 2009). Previous investigations indicated that the C concentrations of planted forests are closely associated with their sample chemical compositions, tree components, wood type, geographical location, climate, and soil conditions (Bert & Danjon, 2006; He et al., 2013). Hence, all of these factors must be taken into account when assessing C contents under different edaphic and climatic conditions. The mean C concentrations of shrubs, herbs, and litter were lower than 45%. Thus, using a coefficient of 50% may result to large errors in up-scaling of C pool. For example, assuming 50% C content for understory in the 7-year-old plantation and for litter in the 11-year-old plantation would result in a difference of 2.62 Mg·ha⁻¹ (11.75%) and 6.65 Mg·ha⁻¹ (9.29%), respectively. Therefore, we suggest that a component-specific C content value for individual compartments is suitable for assessing forest C pool among all stands.

Soil organic C in A. mangium plantations

Among the three plantation development stages of this study, the soil C concentration was the highest in the surface soil layer (0-10 cm) and indicated a decreasing trend with depth (Fig. 5a). Soil organic matter is the dominant source of soil C and is greater in topsoil (Du et al., 2015). The C concentrations of the top soil layers (0-10 cm, 10-20 cm, and 20-30 cm), and the deep layer (30-50 cm) significantly increased with stand age, probably due to the increasing litter productivity in older stands (Ming
et al., 2014; Thanh & Cuong, 2017). This finding contributes to interpret the increase C stocks in belowground as stands age.

Although changes in C_{st} following afforestation and stand age have been widely reported in previous studies, there still exist great deals of controversies concerning the effects of stand age on C_{st} level. Some studies reported no significant increase in C_{st} with stand age (Uri et al., 2012; Yue et al., 2018). Some studies have shown an increasing C_{st} in the early period after afforestation followed by a gradual decrease with age increment (Noh et al., 2010; Du et al., 2015; Zhang et al., 2019). Some studies indicated a decrease in C_{st} at the early age and then gradually increased with age (Chen et al., 2013; Wang et al., 2013). These discrepancies may be due in part to how much other influencing factors, such as climate, soil characteristics, forest type, forest management, litter input, root metabolism, and previous land use, which could overshadow the effect of stand age (Jandl et al., 2007; Zeng et al., 2013; Thanh & Cuong, 2017). We found C_{st} in the mineral soil layer increased with plantation age. Previous studies about C_{st} with stand age reported same results as our study (Hai et al., 2009; He et al., 2009; Cheng et al., 2015; Deng et al., 2017; Thanh & Cuong, 2017). The increase in C_{st} with stand age might be due to a larger accumulation of organic matter in older stands (BGB and litter). Additionally, 0-50 cm soil layer C_{st} accounted for the largest proportion of ecosystem C reservoirs, particularly the C_{st} in the upper 0-30 cm layer. Approximately 60.37% to 63.33% of C_{st} in the 0-50 cm range of soil was stored in the 0-30 cm range, where soils can be disturbed by human disturbances. Therefore, this study suggests that protection of organic C in the topsoil from disturbances of planted forests is important for improving C sequestration. The soil C values in the upper 0-30 were much greater than those for the C_{st} stored in $A. \text{mangium}$ and $A. \text{auriculiformis}$ planted forests across all age classes described by Hai et al. (2009) for the 0-30 cm upper mineral soil horizon profile.

Ecosystem C storage in $A.\text{mangium}$ plantations

The results suggested that age plays a crucial role in affecting the overall ecosystem C stock and can provide insight into C sequestration (Cheng et al., 2014; Justine et al., 2015). Total ecosystem C stock in the 11-year-old plantation was twice the amount of the 4-year-old plantation, illustrating a large C sequestration potential during $A. \text{mangium}$ development. Fractions of ecosystem C stocks in the three stands were in the order of soil layer > tree layer > litter layer > understory layer. It was observed that soil and tree biomass were the main C pools across all stand ages, accounting for 95.74% of C storage in the ecosystem, which is congruent with previous studies (He et al., 2009; Li et al., 2013; Ming et al., 2014; Du et al., 2015). This highlights the importance of including accurate assess of C_{st} in ecosystem C accounting.

Conclusions

The results of the present study indicated the first complete and thorough assessments of changes in biomass compartments and their C content and C stock of ecosystem compartments for $A. \text{mangium}$ forests in an age-sequence (from 4- to 11-year-old plantations) in Southeastern region, Vietnam. The biomass of each component of the tree could be predicted from an allometric equation using DBH as the independent variable. Tree, understory, litter, and ecosystem biomass increased with stand age. The highest C concentration was observed in tree stem while the lowest was recorded in the tree BGB. The use of component-specific C content values other than a fixed factor of 0.5 to convert biomass to C storage is required in order to more precisely evaluate the forest C storage. Soil C content increased significantly with increasing stand age, and the SOC concentration decreased continually with increasing soil depth. Carbon stocks across the 0-50 cm soil depth increased with stand age. Trees and mineral soil were two dominant C pools in the age-sequence. Most increases in C stocks in belowground and total ecosystems were attributable to increases in SOC and tree biomass. Our findings suggest that $A. \text{mangium}$ species was a fast-growing afforestation tree species with high potential biomass C sequestration. Therefore, it can facilitate the management of the forest as a C sink.

Acknowledgements

The authors would like to thank the Chang Riec Historical - Cultural Forest for providing information and allowing us to collect the data. We are grateful for Dr. M. Pardos and two anonymous Reviewers for their constructive comments and suggestions. We are thankful to Associate Professor Tran Thi Thu Ha and Dr. Nguyen Thanh Tuan for their comments on improving our manuscript. We also thank to Dr. Dinh Mai Van and the researchers of the Centre of Forestry Research and Climate Change at the Vietnam National University of Forestry for experiments analysis work.

References

Abdallah F, Chaieb M, 2012. The influence of trees on nutrients, water, light availability and understory vegetation in an arid environment. Appl Veg
Brown S, Gillespie AJR, Lugo AE, 1989. Biomass estimation of tropical trees. Glob Chang Biol 20(10): 3177-3190. https://doi.org/10.1111/gcb.12629
Chen GS, Yang ZJ, Gao R, Xie JS, Guo JF, Huang ZQ, Yang YS, 2013. Carbon storage in a chronosequence of Chinese fir plantations in Southern China. For Ecol Manag 300(15): 68-76. https://doi.org/10.1016/j.foreco.2012.07.046
Cheng J, Benny KGT, Bin F, Fushan L, Like Z, Xinqing L, 2015. Biomass accumulation and carbon sequestration in an age-sequence of Zanthoxylum bungeanum plantations under the Grain for Green Program in karst regions, Guizhou Province. Agri For Meteorol 203: 88-95. https://doi.org/10.1016/j.agrformet.2015.01.004
Cheng X, Han H, Kang F, Song Y, Liu K, 2014. Variation in biomass and carbon storage by stand age in pine (Pinus tabuliformis) planted ecosystem in Mt. Taiyue, Shanxi, China. J Plant Interact 9(1): 521-528. https://doi.org/10.1080/17429145.2013.862360
Deng L, Han QS, Zhang C, Tang ZS, Shangguan ZP, 2017. Aboveground and belowground ecosystem biomass accumulation and carbon sequestration with Caragana korshinskii Kom plantation development. Land Degrad Dev 28(3): 906-917. https://doi.org/10.1002/ldr.2642
Dhamodaran TK, Chacko KC, 1999. Growth and wood characteristics of Acacia mangium grown in Kerala. Research Report No.174, Kerala Forest Research Institute, Pecchi; p. 60.
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J, 1994. Carbon Pools and Flux of Global Forest Ecosystems. Science 263(5144): 185-190. https://doi.org/10.1126/science.263.5144.185
Du H, Zeng F, Peng W, Wang K, Zhang H, Liu L, Song T, 2015. Carbon storage in a Eucalyptus plantation chronosequence in Southern China. Forests 6(6): 1763-1778. https://doi.org/10.3390/f6061763
Eglin T, Ciais P, Shi LP, Barré P, Smith P, 2011. Overview on Response of Global Soil Carbon Pools to Climate and Land-Use Changes. In: Sauer T.J. et al. (eds): Sustaining Soil Productivity in Response to Global Climate Change: 183-199. https://doi.org/10.1002/9780470960257.ch13
Fan S, Gloor M, Mahlman J, Paacala S, Sarmiento J, Takahashi T, Tans P, 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282(5388): 442-446. https://doi.org/10.1126/science.282.5388.442
Fang J, Chen A, Peng C, Zhao S, Ci L, 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292(5525): 2320-2322. https://doi.org/10.1126/science.1058629
FAO, 2010. Global Forest Resources Assessment, Main Report; FAO Forestry Paper 163; FAO: Rome, Italy.

Adam N, Jusoh I, 2018. Allometric model for predicting aboveground biomass and carbon stock of Acacia plantations in Sarawak, Malaysia. Bioresources 13(4): 7381-7394. https://doi.org/10.15376/biores.13.4.7381-7394
Akaike H, 1974. A new look at the statistical model identification. IEEE Trans Automat Contr 19(6):716-723. https://doi.org/10.1109/TAC.1974.1100705
Baskerville G, 1972. Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2: 49-53. https://doi.org/10.1139/x72-009
Bert D, Danjon F, 2006. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For Ecol Manage 222(1-3): 279-295. https://doi.org/10.1016/j.foreco.2005.10.030
Bini D, Santos CAD, Bouillet JP, Gonçalves JLD, Cardoso EJB, 2013. Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: Evolution of soil and litter microbial and chemical attributes during early stages of plant development. Appl Soil Ecol 63: 57-66. https://doi.org/10.1016/j.apsoil.2012.09.012
Blake GR, Hartge KH, 1986. Bulk density. In: Klute A (ed) Methods of soil analysis part 1: physical and mineralogical methods, 2nd edn. Am Soc Agron, Madison, pp. 363-375. https://doi.org/10.2136/sssabookser5.1.2ed.c13
Brown S, 1997. Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134, Rome, Italy.
Brown S, Gillespie AJR, Lugo AE, 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Sci 35(4): 881-902.
Canadell JG, Kirschbaum MUF, Kurz WA, Sanz MJ, Schlamadinger B, Yamagata Y, 2007. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ Sci Policy 10(4): 370-384. https://doi.org/10.1016/j.envsci.2007.01.009
Cao J, Wang X, Tian Y, Wen Z, Zha T, 2012. Pattern of carbon allocation across three different stages of stand development of a Chinese pine (Pinus tabuliformis) forest. Ecol Res 27(5): 883-892. https://doi.org/10.1007/s11284-012-0965-1
Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Föster H, Fromard F, Higuchi N, Kira T et al., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99. https://doi.org/10.1007/s00442-005-0100-x
Chave J, Rêjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside, PM, Goodman RC et al., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20(10): 3177-3190. https://doi.org/10.1111/gcb.12629
He Y, Qin L, Li Z, Liang X, Shao M, Tan L, 2013. Carbon storage in a semi-arid temperate region of Northwest China. Ann Forest Sci 71(4): 427-435. https://doi.org/10.1007/s13595-013-0355-z

Hai VD, Trieu DT, Tiep NH, Bich NV, Duong DT, 2009. Research on carbon sequestration potential and commercial value of some major types of plantation forests in Vietnam. Final Project Report No. VAFS2009; Vietnamese Academy of Forest Sciences: Hanoi, Vietnam; p. 190.

Härkönen S, Lehtonen A, Eerikäinen K, Peltoniemi M, Mäkelä A, 2011. Estimating forest carbon fluxes for large regions based on process-based modelling, NFI data and Landsat satellite images. For Ecol Manag 262(12): 2364-2377. https://doi.org/10.1016/j.foreco.2011.08.035

He B, Liu YH, Yu HG, Qin WM, Wei SH, Cai SW, 2009. Carbon density and storage of Acacia mangium plantation ecosystem in Nanning, Guang Xi. Scientia Silvae Sinicae 45(2): 6-11.

He Y, Qin L, Li Z, Liang X, Shao M, Tan L, 2013. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For Ecol Manag 295: 193-198. https://doi.org/10.1016/j.foreco.2013.01.020

Herdiyanti I, Sulistyawati E, 2009. Carbon stocks in Acacia mangium Willd. stands of different ages. In: Kanakaraju D, Kalu M, Ipor I, Lim CK, Lim PT, Roslan HA, Esa Y, Razali A, Ho WS, Mohamad S et al., editors. Proceedings of Conference on Natural Resources through Innovation and Technology, 3-5 August 2009; Sarawak, Malaysia. Kota Samarahan, Malaysia: Universiti Malaysia Sarawak, pp. 679-685.

Houghton RA, 2007. Balancing the Global Carbon Budget. Annu Rev Earth Pl Sc 35(1): 313-347. https://doi.org/10.1146/annurev.earth.35.031306.140057

Huang L, Liu J, Shao Q, Xu X, 2012. Carbon sequestration by forestation across China: Past, present, and future. Renew Sust Energ Rev 16(2): 1291-1299. https://doi.org/10.1016/j.rser.2011.10.004

Hunter MO, Keller M, Vitoria D, Morton DC, 2013. Tree height and tropical forest biomass estimation. Biogeosciences 10: 8385-8399. https://doi.org/10.5194/bg-10-8385-2013

IBM Corp., 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.

IBST, 2009. Vietnam Building Code Natural Physical & Climatic Data for Construction. QCVN 02:2009/BXD. Institute for Building Science and Technology (IBST), Vietnam.

Ilyas S, 2013. Allometric equation and carbon sequestration of Acacia mangium Willd. in coal mining reclamation areas. Civil and Environmental Research 3(1): 8-16.

IPCC, 2003. Good practice guidance for land use, land use change and forestry, Kanagawa, Japan, The intergovernmental panel on climate change national greenhouse gas inventories programme.

IPCC, 2007. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds). Cambridge University Press, Cambridge, United Kingdom and New York, USA.

Jandl R, Lindner M, Vesterdal L, Bauwens B, Barritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA, 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137(3-4): 253-268. https://doi.org/10.1016/j.geoderma.2006.09.003

Justine MF, Yang W, Wu F, Tan B, Khan MN, Zhao Y, 2015. Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests 6(10): 3665-3682. https://doi.org/10.3390/f6103665

Justine MF, Yang W, Wu F, Khan MN, 2017. Dynamics of biomass and carbon sequestration across a chronosequence of Masson pine plantations. J Geophys Res-Bioge 122(3): 578-591. https://doi.org/10.1002/2016JG003619

Koutika LS, Richardson DM, 2019. Acacia mangium Willd: benefits and threats associated with its increasing use around the world. For Ecosyst 6: 2. https://doi.org/10.1186/s40663-019-0159-1

Lal R, 2005. Forest soils and carbon sequestration. For Ecol Manag 220(1-3): 242-258. https://doi.org/10.1016/j.foreco.2005.08.015

Lee KL, Ong KH, King PJH, Chubo JK, Su DSA, 2015. Stand productivity, carbon content, and soil nutrients in different stand ages of Acacia mangium in Sarawak, Malaysia. Turk J Agric For 39(1): 154-161. https://doi.org/10.3906/tar-1404-20

Li C, Zha T, Liu J, Jia X, 2013. Carbon and nitrogen distribution across a chronosequence of secondary laurel-bark pine in China. Forest Chron 89(2): 192-198. https://doi.org/10.1016/j.foreco.2013.01.020

Madjwick HAI, Satoo T, 1975. On estimating the aboveground weights of tree stands. Ecology 56(6): 1446-1450. https://doi.org/10.2307/1934713
MARD, 2014a. Promulgating a list of main tree species for planting production forests and a list of major tree species for afforestation according to forestry-ecological regions. No. 4961/QD-BNN-TCLN. Ministry of Agriculture and Rural Development (MARD), Hanoi, Vietnam.

MARD, 2014b. Promulgation of the state of National forests. No. 3322/QD-BNN-TCLN. Ministry of Agriculture and Rural Development (MARD), Hanoi, Vietnam.

Ming A, Jia H, Zhao J, Tao Y, Li Y, 2014. Aboveground and belowground carbon stocks in an Indigenous tree (Mytilaria laosensis) plantation chronosequence in Subtropical China. Plos One 9(10): e109730. https://doi.org/10.1371/journal.pone.0109730

Mokany K, Raison RI, Prokushkin AS, 2006. Critical analysis of root:shoot ratios in terrestrial biomes. Glob Chang Biol 12(1): 84-96. https://doi.org/10.1111/j.1365-2486.2005.001043.x

Nelson DW, Sommers LE, 1982. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis, Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA. pp. 539-579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29

Ngoan TT, Chung NT, 2018. Aboveground biomass of Acacia auriculiformis × Acacia mangium plantations in Dongnai Province. J Forest Sci Technol 6: 61-68.

Noh NJ, Son Y, Lee SK, Seo KW, Heo SJ, Yi MJ, Park PS, Kim RH, Son YM, Lee KH, 2010. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea. Sci. China Life Sci 53(7): 822-830. https://doi.org/10.1007/s11427-010-4018-0

NRC, 1983. National Research Council Mangium and other fast grow Acacias for the humid tropics, National Academic Press, Washington D.C, pp. 1-53.

Parresol BR, 1999. Assessing tree and stand biomass: a review with examples and critical considerations. Forest Sci 45(4): 573-593.

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG et al., 2011. A large and persistent carbon sink in the World’s forests. Science 333(6045): 988-993. https://doi.org/10.1126/science.1201609

Paula RR, Bouillet JP, Trivelin PCO, Zeller B, Moraes Gonçalves JL, Nouvellon Y, Bouvet JM, Plassard C, Laclau JP, 2015. Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol Biochem 91:99-108. https://doi.org/10.1016/j.soilbio.2015.08.017

Peichl M, Arain MA, 2006. Aboveground and belowground ecosystem biomass and carbon pools in an age-sequence of Temperate pine plantation forests. Agric For Meteorol 140(1-4): 51-63. https://doi.org/10.1016/j.agrformet.2006.08.004

Phuong VT, 2011. Biomass and carbon stocks of Pinus kesiya plantations in Hoangsu Phi district, Hagiang Province. Sci Technol J Agricul & Rural Develop 2: 89 - 93.

Phuong VT, Hai VD, 2011. Biomass structure of Pinus kesiya plantation in Lamdong Province. Vietnam J Forest Sci 2: 1812-1817.

Pugh TAM, Lindeskog M, Smith B, Poulter B, Arneth A, Haverd V, Calle L, 2019. Role of forest regrowth in global carbon sink dynamics. Proc Natl Acad Sci USA 116(10): 4382-4387. https://doi.org/10.1073/pnas.1810512116

Qin WM, He B, Yu HG, Chen WJ, 2007. Biomass productivity of Acacia mangium plantations of different age classes. J Northeast For Univ 35(1): 22-24.

Ren H, Yu Z, 2008. Biomass changes of an Acacia mangium plantation in Southern China. J Trop For Sci 2(2): 105-110.

Ruiz-Peinado R, Montero G, Rio M del, 2012. Biomass models to estimate carbon stocks for hardwood tree species. Forest Syst 21(1): 42-52 https://doi.org/10.5424/fs/2112211-02193

Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V, 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5(1): 81-91. https://doi.org/10.4155/cmt.13.77

Snowdon P, Eamus D, Gibbons P, Khanna H, Raison J, Kirschbaum M, 2000. Synthesis of allometrics review of root biomass and design of future woody biomass sampling strategies. National Carbon Accounting Technical Report No. 17. Australian Greenhouse Office, Canberra, Australia.

Temesgen H, Affleck D, Poudel K, Gray A, Sessions J, 2015. A review of the challenges and opportunities in estimating aboveground forest biomass using tree-level models. Scand J Forest Res 30(4): 326-335.

Thanh NM, Cuong LV, 2017. Carbon storage in soil under Acacia mangium forest cover in Yenbai city, Yenbai Province. Sci Technol J Agricul & Rural Develop 12: 120-124.

Thomas SC, Martin AR, 2012. Carbon content of tree tissues: A synthesis. Forests 3 (2): 332-352. https://doi.org/10.3390/f3020332

Turnbull JW, Midgley SJ, Cossalter C, 1998. Tropical Acacias planted in Asia: an overview. In: "Recent developments in Acacia planting", Turnbull JW,
Crompton HR, Pinyopusarerk K (eds.). Proceedings of an International Workshop held in Hanoi, Vietnam, 27-30 October 1997. Australian Centre for International Agricultural Research, Canberra, ACIAR Proceedings No.82, pp. 1-383.

Uri V, Varik M, Aosaar J, Kanal A, Kukumägi M, Lõhmus K, 2012. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For Ecol Manage 267: 117-126. https://doi.org/10.1016/j.foreco.2011.11.033

Vanninen P, Ylitalo H, Sievänen R, Mäkelä A, 1996. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10(4): 231-238. https://doi.org/10.1007/BF02185674

Wang F, Xu X, Zou B, Guo Z, Li Z, Zhu W, 2013. Biomass accumulation and carbon sequestration in four different aged Casuarina equisetifolia coastal shelterbelt plantations in South China. Plos One 8(10): e77449. https://doi.org/10.1371/journal.pone.0077449

White H, 1980. A Heteroscedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroscedasticity. Econometrica 48: 817-838. https://doi.org/10.2307/1912934

Xie XY, Cui J, Shi WT, Liu XJ, Tao X, Wang Q, Xu XN, 2016. Biomass partition and carbon storage of Cunninghamia lanceolata chronosequence plantations in Dabie Mountains in East China. Dendrobiology 76: 165-174. https://doi.org/10.1007/s10342-016-076-016

Xu C, Zhang W, Song G, 2000. Analysis on the understory herb characteristic of broadleaf Korean pine in Xiaoxing’an Mountain. Forest Sci Technol 25:4-6.

Xu W, Yin Y, Zhou S, 2007. Social and economic impacts of carbon sequestration and land use change on peasant households in rural China: A case study of Liping, Guizhou Province. J Environ Manage 85(3): 736-745. https://doi.org/10.1016/j.jenvman.2006.09.013

Xu B, Guo Z, Piao S, Fang J, 2010. Biomass carbon stocks in China's forests between 2000 and 2050: A prediction based on forest biomass-age relationships. Sci China Life Sci 53(7): 776-783. https://doi.org/10.1007/s11427-010-4030-4

Yang B, Xue W, Yu S, Zhou J, Zhang W, 2019. Effects of stand age on biomass allocation and allometry of Quercus acutissima in the Central Loess Plateau of China. Forests 10 (1):41. https://doi.org/10.3390/f10010041

Yue JW, Guan JH, Deng L, Zhang JG, Li G, Du S, 2018. Allocation pattern and accumulation potential of carbon stock in natural spruce forests in northwest China. PeerJ 6: e4859. https://doi.org/10.7717/peerj.4859

Zelazowski P, Malhi Y, Huntingford C, Sitch S, Fisher JB, 2011. Changes in the potential distribution of humid tropical forests on a warmer planet. Philos T R Soc A 369(1934): 137-160. https://doi.org/10.1098/rsta.2010.0238

Zeng Q, Wang SL, Zhang CM, Chao G, 2013. Carbon storage in evergreen broad-leaf forests in mid-subtropical region of China at four succession stages. J Forestry Res 24: 677-682. https://doi.org/10.1007/s11676-013-0404-3

Zhang H, Duan H, Song M, Guan D, 2018. The dynamics of carbon accumulation in Eucalyptus and Acacia plantations in the Pearl River delta region. Ann Forest Sci 75: 40. https://doi.org/10.1007/s13595-018-0717-7

Zhang X, Zhang X, Han H, Shi Z, Yang X, 2019. Biomass accumulation carbon sequestration in an age sequence of Mongolian pine plantations in Horqin Sandy Land, China. Forests 10(2): 197. https://doi.org/10.3390/f10020197

Zianis D, Mencuccini M, 2004. On simplifying allometric analyses of forest biomass. For Ecol Manag 187 (2):311-332. https://doi.org/10.1016/j.foreco.2003.07.007

Zianis D, Xanthopoulos G, Kalabokidis K, Kazakis G, Ghosn D, Roussou O, 2011. Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. Trees growing in North and South Aegean Islands, Greece. Eur J For Res 130(2): 145-160. https://doi.org/10.1007/s10342-010-0417-9

Zribi L, Chaar H, Khaledi A, Hanchi B, Mouillot F, Gharbi F, 2016. Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia. Forest Syst 25(2): e060. https://doi.org/10.5424/fs2016252-08062