Research Article

Tasneem Maqsood, Tayyaba Munawar, Yamin Bibi, Ahmad El Askary, Amal F. Gharib, Tariq E. Elmissbah, Basem H. Elesawy, Abdul Qayyum*

Study of plant resources with ethnomedicinal relevance from district Bagh, Azad Jammu and Kashmir, Pakistan

https://doi.org/10.1515/chem-2022-0129 received December 10, 2021; accepted January 26, 2022

Abstract: An ethnomedicinal expedition was conducted to collect and record indigenous knowledge about the use of medicinal plants by local inhabitants of four villages (Chittra, Topi, Pandi, and Kalri) of district Bagh, Azad Jammu and Kashmir. Ethnomedicinal data were obtained from 60 randomly selected local inhabitants of the study area through semi-structured questionnaires and interviews. These data were analyzed quantitatively through different ethnobotanical indices including family importance value, relative frequency of citation, use value (UV), fidelity level (FL), informant consensus factor (ICF), and Jaccard index (JI). Our study reported 69 medicinal plants belonging to 39 families. Rosaceae (9 species) was a dominant family of the study area. Herb (54.83%) was dominant growth form of plants used for medicinal purpose. Leaves contributed maximum usage (44.29%) for curing diseases. Decoction (23 records) was most used mode of utilization. Relative frequency of citation and UV ranged from 0.03–0.85 and 0.05–1.17, respectively. There were 4 plant species with 100% FL. Highest ICF (0.88%) was found for gastrointestinal diseases. By comparing results with previous study, JI ranged from 0.54 to 24.43%. Our results found that there were 18 plant species not reported with ethnomedicinal aspect in previous studies from district Bagh region. The research of this study concludes that the area is rich with medicinal plants and the local inhabitant of this area still prefer medicinal plants over allopathic medicines for treating different ailments. Comparative analysis has shown some novel uses of plant species which may be due to cultural differences of the study area. However, awareness and pharmacological study are needed to conserve and unveil pharmaceutically important plants.

Keywords: Chittra, diseases, ethnomedicine, Kalri, medicinal plants, Pandi, Topi

1 Introduction

Plants are considered indispensable for sustenance of life because rural communities belonging to different countries use local plants for different purposes. Plants not only provide food, shelter, and oxygen to human beings but are also pivotal source of chemicals used in various drugs [1]. Medicinally important plants are considered as a main source of medicine for majority of population inhabited in rural areas. To gather information about medicinal plants, interest was prevailing in all ancient civilizations. Ethnobotany correlates the medicinal use of plants by local inhabitants of an area. Ethnobotanical study of an area reflects the awareness among local inhabitants about medicinal usage and application of plants against diseases. World Health Organization estimated that 80% of population in developing countries depend on herbal medication for fulfilling their health care necessities. Almost all plants have active constituents effective for diseases but some plants are much rich with these chemicals and are preferred for disease treatment [2]. These phytochemicals include b-amyrin, stigmasterol, luteolin, arachidic acid, palmitic acid, flavonoids, etc. [3].

It is estimated that out of 4,22,000 flowering plants, 35,000–70,000 plant species are being used for herbal medication throughout the world [4]. It is stated in previous studies that about 25% of allopathic drugs are
being produced from plants or byproducts extracted from plants. These drugs are more preferred than synthetic ones because of fewer side effects, low cost, and easy accessibility. This can be explained by comparing the medicinal plant Salix alba with synthetic drug, aspirin. It is confirmed by different studies that bark of Salix alba is effective against side effects caused by aspirin [5]. Pakistan is bestowed with variety of medicinal plants due to its different climatic and soil conditions. Traditional Unani medicine system is practiced by large population of Pakistan. This Unani medicinal practice largely relies on medicinal plants. A total of 6,000 flowering plants are present in Pakistan, from these around 400–600 plants are considered as medicinally important [6]. It is also noteworthy that about 80% of total angiospermic plants of Pakistan are present in western and northern mountainous regions of Pakistan. In 1950s, 84% of Pakistan’s population was dependent on medicinal flora for treating various diseases, but due to rapid change in lifestyle and modernization, now the use of medicinal plants is restricted to remote areas [7]. Azad Jammu and Kashmir (AJK) is a state that lies in the foothills of Himalayas between 33–36° latitude and 73–75° longitude. This area is comprised of 13,297 km² [8]. This area is rich with plant diversity because of rivers, springs, streams, and grasslands. The number of medicinal plants are restricted in this area. The people of this area have significant knowledge about the use of medicinal plants but this knowledge about usage of medicinal plants is decreasing with death of aged people. So, a proper attention is needed to conserve these natural resources before the information related to important medicinal plants species is lost forever.

Previously, few studies had been conducted about the traditional use of medicinal plants from AJK [9–11] and district Bagh. Safeer et al. [12] reported 34 medicinal plant species from moist temperate Himalayas of district Bagh. Amjad et al. [13] documented 150 plants used for medicinal purpose by the people of Harigal, district Bagh, AJK. Qureshi et al. [14] reported 33 medicinal plants from Sudhan Gali and Ganga Chotti hills, district Bagh. However, no previous ethnobotanical research is found of these study areas in district Bagh. Our hypothesis behind this research was that there would be difference in ethnobotanical knowledge of plants among people of these areas due to different cultures. The aims of this study were: (i) To explore the medicinal plants from four villages (Chittra, Topi, Pandi, and Kalri) of district Bagh, AJK. (ii) To analyze the information with quantitative ethnobotanical indices. (iii) To compare the ethnobotanical information with previous studies reported from district Bagh.

2 Materials and methods

2.1 Study area

Present study has been conducted in four villages (Chittra, Topi, Pandi, and Kalri) of district Bagh, AJK. This area is located in western Himalayas region (Figure 1). Bagh district, as indicated by its name (garden) is one of the greenest sites of AJK. Average annual precipitation is 1,500 mm. Temperature ranges from 21 to 40°C in summer and about 2°C during winter. Various ethnic groups including Rajput, Sudhan, Gujar, Jat, and Malhial live in this area. Most common languages are Gojri, Kashmiri, Hindko, and Pahari. Its vegetation falls in subtropical as well as moist temperate regions [15].

2.2 Data collection

Current Survey is conducted directly by interacting with the native people through interviews as well as by group discussions following the method as in ref. [16]. For recording information, questionnaires were distributed among local people particularly herbalists (Hakeems) and old age people who are usually more acquainted with medicinal plants uses. The questionnaire was designed following Edward et al. [17] methodology.

2.3 Collection, identification, and preservation of plants

During the entire survey, plants were collected from diverse localities. Collected plants were placed in old newspapers for drying. Collected samples were identified by using flora of Pakistan. Each collected sample was dumped in the herbarium of PMAS – Arid Agriculture University, Rawalpindi.

2.4 Data analysis

Quantitative data analysis was done by using following ethnobotanical indices.

2.4.1 Family importance value (FIV)

FIV tells us about most frequently used family by the aboriginal people in the study area. It was calculated by the following formula [18].
Figure 1: Map of study area.
FIV = \frac{\text{FC}}{N} \times 100.

Here N is total number of informants and FC is the frequency citation of plant families.

2.4.2 Relative frequency of citation (RFC)

The RFC of medicinally important plants in the study area was calculated by using the following formula:

\[\text{RFC} = \frac{\text{FC}}{N} \quad (0 < \text{RFC} < 1), \]

where “FC” indicates the number of participants that report the use of specific species and N indicates the total informants who are involved in the study [19].

2.4.3 Use value (UV)

UV of plant species was calculated by using the following formula [20].

\[\text{UV} = \frac{\sum U_i}{N}, \]

where “\(\sum U_i\)” is the sum of all uses mentioned by each informant. N indicates the total number of participants.

2.4.4 Fidelity level (FL)

FL was used to find out the species domination over other species for curing specific complaints [21]. It is commonly calculated by the use of following formula.

\[\text{FL} = \frac{N_p}{N} \times 100, \]

where \(N_p\) demonstrates the number of those contributors that specify the use of species for particular illness category and N designates number of those informers that use them for any type of disease category.

2.4.5 Informant consensus factor (ICF)

In order to categorize the most reliable medicinal plants for those diseases that are considered to be most frequent in the area, ICF was used by the following formula [22].

\[\text{ICF} = \frac{\text{Nur} - \text{Nt}}{\text{Nur} - 1}, \]

where Nur represents the number of use reports of a specific plant for a particular ailment and Nt indicates the total species that are used by all participants for this ailment category.

2.4.6 Jaccard Index (JI)

JI was used for comparing the reported research species with the previous data published from adjoining areas, at regional and global level. This was done by analyzing the quoted plant species as well as their medicinal uses with previous published articles by using the following formula:

\[\text{JI} = c \times 100/a + b - c. \]

Here “c” is the number of plants common to study area and previously published article, while “a” is the number of plant species reported in previously published article, and “b” is the number of plant species reported from study area [23].

3 Results and discussion

3.1 Qualitative ethnobotany

3.1.1 Demographic of informants

Data related to ethnomedicinal plants was recorded from 60 inhabitants through interview as well as by the use of questionnaires and group discussion. With regards to gender, 68.33% female and 31.67% male participants were involved for giving ethnomedicinal information. Much information was collected from the females of study area because it was much easier due to same gender rather than from the males. Our study results were also in agreement with refs. [24,25]. Similarly, 3.33% herbalists (Hakeems) and 96.67% other native people contributed in this survey. Age data showed that majority of informants were in the age range of 55–80 years (56.67%). It was followed by 35–50 years (30%), and above 80 were 13.33% (Figure 2). Mostly old age people prefer use of herbal medicines over allopathic drugs.

3.1.2 Diversity of medicinal plants

Present study showed that a total of 69 plant species belonging to 39 families were being used by local inhabitants of district Bagh, AJK. Four different growth forms having medicinal values were recorded from study area. It was found that 54.83% plant species are herbs. Other plant species were trees (24.53%), shrubs (17.31%), and climbers (4.33%) (Figure 3). Maximum use of herbs for
medicinal purposes was due to more abundance and easily accessibility of these plants in study area. Our results also corroborate with the results of refs [26,27].

3.1.3 Plant parts used and mode of utilization

Plant parts used for medicinal purpose in the study area includes leaves, seeds, roots, branches, fruits, cones, flowers, and plant exudates. Leaves were most frequently used plant part for preparation of medicines with 44.29%. It was followed by whole plant (34.29%), fruits (27.14%), barks (11.43%), roots (11.42%), seeds (10%), branches and plant exudates (8.57%), and cones and flowers (2.86%) (Figure 4). Leaves showed maximum usage percentage (44.29%) for treatment of different ailments. Umair et al. [28] and Ajaib et al. [9] showed similar results regarding usage of plant parts against disease treatment in their studies. Leaves are the main photosynthetic organ containing high level of secondary metabolites, essential oils, and phytochemicals. These metabolites are very useful against various disorders [29,30]. It is also noted that the confiscation of roots and whole plants may have destructive effects on existence and regeneration of plants. So, the use of leaves against diseases is advantageous for sustainability of local flora [31]. Plant parts with maximum usage percentages by traditional healers can be further investigated for phytochemical screening of important medicinal constituents in these parts. This can also help in confirmation of authentic information regarding medicinal uses of plant parts suggested by indigenous people or traditional healers.

Local inhabitants use different mode of utilization including decoction, plant extract, powder, juice, and paste. The most common usage forms were decoction (23 records), plant extract (17 records), powder (14 records), juice (10 records), and paste (7 records) (Figure 5). The most common mode of utilization for medicinal purpose was decoction with 23 records. It was also reported in literature that therapists mostly used medicinal plants in the form of decoction [32,33].

Decoction is also most frequently used mode of utilization in Pakistan for herbal medicines [34]. The use of medicinal plants in the form of decoction is preferred because it can be easily made by using water, tea, soup, or milk [35]. Decoction is usually made by mixing two or three different plant parts or plant species. This phenomenon of making decoction with more than one plant part is of great value among traditional healers.
showed that highest UV containing species in the study area were *Berberis lyceum* (1.17), *Mentha longifolia* (1.17), *Bergenia ciliata* (1.13), *Zanthoxylum armatum* (1.13), *Viola odorata* (1.03), *Persicaria amplexicaulis* (1.02), *Diospyros lotus* (0.98), *Melia azedarach* L. (0.98), *Taraxacum officinale* (0.98), *Solanum nigrum* (0.97), *Punica granatum* (0.97), *Amaranthus viridis* (0.93), and *Juglans regia* (0.88) (Table 1).

Highest RFC for *Berberis lyceum* Royle (0.85) shows that this plant is very familiar among people of study area and most of the people know about its medicinal values and usage. UV was used to find out the relative importance of plant species among traditional healers according to their usage. This technique helps in authentication of different uses of plant species among number of people [39]. In present investigation UV ranges from 0.05–1.17. Our results of highest RFC and UV values for *Berberis lyceum* also corroborate with the findings of ref. [40]. Local people use this plant against various diseases like mouth and teeth problems, diabetes, rheumatic pain, dysentery, constipation, blood diseases, respiratory problems, flu, and jaundice. UV is not constant for a plant species among different areas or even within same area. Its value goes on changing over time. For example, highest UV was reported for *Mentha longifolia* (1.05) and *Olea europaea* (1.02) from the tehsil Harighal [13] of same district Bagh. High UV of *Berberis lyceum* shows that it is very important among the people of district Bagh for healing various diseases. Lowest UV was 0.08 for *Stellaria media* L. Low UV does not mean that this plant is of low medicinal components or of less importance but it can be due to the fact that people are less familiar with this plant and its usage in particular area [41].

3.2 Quantitative ethnobotany

3.2.1 FIV

Ethnomedicinal flora showed that the most represented family was Rosaceae contributing (22.5%) followed by Asteraceae (20%), Lamiaceae, Polygonaceae, Moraceae, and Mimosaceae (7.5% each), Ebenaceae, Solanaceae, Pinaceae, Amaranthaceae, Convolvulaceae, Fagaceae, and Apiaceae (5% each) followed by other families (2.5%) (Table 1). Highest FIV was reported for family Rosaceae (22.5%). This is due to the abundance of this family in the study area. These results were analogous with the findings of refs [37,38].

3.2.2 RFC and UV

RFC value of plant species tells us about the importance of plant species among informants citing its use for medicinal purpose. Highest RFC values were calculated for *Berberis lyceum* (0.85), *Mentha longifolia* (0.80), *Zanthoxylum armatum* (0.75), *Bergenia ciliata* (0.72), *Viola odorata* (0.63), *Taraxacum officinale* (0.58), *Solanum nigrum* (0.55), *Melia azedarach* (0.53), *Punica granatum* (0.52), *Diospyros lotus* (0.50), *Persicaria amplexicaulis* (0.47), *Amaranthus viridis* (0.43), and *Achyranthes aspera* (0.42) (Table 1). Our results

Figure 5: Mode of utilization of medicinal plants.

because it is richer with medicinal constituents as compared to single part [36].
Plant family	Plant species/ Voucher no.	Local name	Plant part used	FIV	RFC	UV	Medicinal uses	Previous reports
Amaranthaceae	*Amaranthus viridis* L./ Tas 01	Ganiyar	Whole plant	5	0.43	0.93	Roots are used against menstrual irregularity. Leaves are used for constipation and weight loss. Herb juice is used against diarrhea and skin diseases. Leaves are used against insect bite.	1Δ, 2Δ, 3Δ, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ
Apiaceae	*Achyrante aspera* wall./ Tas 02	Puthkanda	Whole plant	0.42	0.8		Plant has carminative property and is used in chattiness. Leaves are cooked as vegetable. Fruits are used against fever, cough, ulcer, asthma and for skin allergies.	1Δ, 2Δ, 3Δ, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ
	Coriandrum sativum L./ Tas 04	Dhania	Leaves and seeds	0.20	0.33		Leaves are used for fever, asthma and nervous ailments. Seeds are sedative and tonic. Sap latex is used for warts treatment.	1©, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©, 13©, 14©, 15©, 16©, 17©, 18©
	Anethum graveolens L./ Tas 03	Soya	Whole plant	0.12	0.25		Leaves are cooked as vegetable. Fruits are useful for joint pain. Plant has jaundice. Roots are used against stomach problem, and bleeding gums.	1Δ, 2Δ, 3Δ, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ
Araceae	*Arisaema jacoquemontii* Blume/Tas 06	Hathpees	Fruits and rhizome	2.5	0.10	0.1	Dried rhizome is used in numerous mental and nervous ailments.	1©, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©, 13©, 14©, 15©, 16©, 17©, 18©
Araliaceae	*Hedera nepalensis* K.Kosh./ Tas 05	Batkail	Leaves and fruits	2.5	0.10	0.13	Leaves are used to cure diabetes. Its fruits are helpful for joint pain. Leaves provide relief from toothache, stomach problem, and bleeding gums.	1Δ, 2Δ, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©, 13©, 14©, 15©, 16©, 17©, 18©
Asteraceae	*Achillea millefolium* L./ Tas 07	Kansi	Leaves and roots	2.5	0.25	0.5	Roots are used for fever. Roots are used against kidney, liver diseases, constipation, and stomach problems. Leaves cure jaundice.	1Δ, 2Δ, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©, 13©, 14©, 15©, 16©, 17©, 18©
	Taraxacum officinale Weber./ Tas 12	Hand	Leaves and roots	0.58	0.98		Plant is considered as tonic. Stems are sedative and tonic. Sap latex is used for warts treatment.	1©, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©, 13©, 14©, 15©, 16©, 17©, 18©
	Gerbera gossypina (Royle) Beauverd/ Tas 08	Paproola	Whole plant	0.08	0.08		Roots decocation is used in curing fever. Leaves are effective against constipation. Used to treat diabetes.	1Δ, 2Δ, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©, 13©, 14©, 15©, 16©, 17©, 18©
	Sonchus oleraceus (L.) L./ Tas 09	Dudhi	Stem, leaves, and latex	0.12	0.17		Stems are sedative and tonic. Sap latex is used for warts treatment.	1©, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©, 13©, 14©, 15©, 16©, 17©, 18©
	Cichorium intybus L./ Tas 10	Kasni	Whole plant	0.38	0.52		Stems are used for treatment of boils and abscesses.	1©, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©, 13©, 14©, 15©, 16©, 17©, 18©
	Artemisia vulgaris L./ Tas 14	Chouo	Leaves	0.05	0.05		Leaves are used for treatment of boils and abscesses.	1©, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©, 13©, 14©, 15©, 16©, 17©, 18©

(Continued)
Plant family	Plant species/ Voucher no.	Local name	Plant part used	FIV	RFC	UV	Medicinal uses	Previous reports
Buxaceae	*Sarcococca saligna* Müll.Arg./Tas 16	Nazroon	Branches	2.5	0.05	0.05	Leaves are useful for stomach acidity. Seed oil is effective ear painkiller	1,2,3,6,7,8,9,10,11,12,13,14,15,16,17,18Δ
Cannabinaceae	*Cannabis sativa* L./Tas 17	Bhang	Whole plant	2.5	0.38	0.73	Useful for jaundice and stomach heat. Flowers are valuable in regulating menstrual cycle	1,2,3©,4,5,6,7©,8©,9©,10,11,12,13,14,15,16,17,18Δ
Caprifoliaceae	*Viburnum tinus* D.Don/ Tash 19	Gush	Fruits and Leaves	2.5	0.35	0.85	Fruits cure constipation and whooping cough. Leaves treat menorrhagia	1,2,3©,4,5,6,7©,8©,9©,10,11,12,13,14,15,16,17,18Δ
Caryophyllaceae	*Stellaria media* L./Tas 18	Ladroo	Whole plant	2.5	0.08	0.08	Plant is very effective for menstrual distress	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18Δ
Convolvulaceae	*Cuscuta reflexa* Roxb./Tas 20	Neela tari	Whole plant	5	0.30	0.78	Plant is also considered as anti-lice, anti-anemic, and anti-pyretic	1,2,3©,4,5,6,7©,8©,9©,10,11,12,13,14,15,16,17,18Δ
Dryopteridaceae	*Dryopteris ramosa* (C.Hope) C./Tas 22	Langeri	Leaves	2.5	0.10	0.13	Leaves are used to treat constipation and ulcer	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18Δ
Ebenaceae	*Diospyros lotus* L./Tas 23	Amlook	Fruits	5	0.50	0.98	Fruits are used for curing fever, high blood pressure, and constipation	1,2,3©,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18Δ
Euphorbiaceae	*Euphorbia hirta* L./Tas 25	Dodhal	Whole plant	2.5	0.23	0.33	Plant is used against diarrhea and constipation	1,2,3©,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18Δ
Fabaceae	*Medicago polymorpha* L./Tas 27	Maina	Whole plant	2.5	0.03	0.05	Plant is useful against constipation and other digestive complications	1,2,3©,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18Δ
Fagaceae	*Indigofera heterantha* Wall. ex Brandis/Tas 26	Jhand	Leaves	5	0.15	0.2	Leaves are used against skin allergy and are also given to cattle for curing dysentery	1,2,3©,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18Δ
Table 1: Continued

Plant family	Plant species/ Voucher no.	Local name	Plant part used	FIV	RFC	UV	Medicinal uses	Previous reports
Juglandaceae	Quercus incana Roxb./Tas 28	Rein	Bark	0.05	0.05		Bark is very helpful for treating joint pain. It also has a cooling effect	1Δ, 2Δ, 3Δ, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10©, 11Δ, 12Δ, 1-3Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ
	Juglans regia L./Tas 29	Akhroot	Fruits and bark	2.5	0.45	0.88	Fruit reduces high blood pressure. Bark is used for teeth and gums	1Δ, 2Δ, 3Δ, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 1-3Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ
Lamiaceae	Mentha longifolia (L.) L./Tas 30	Poodina	Whole plant	7.5	0.80	1.17	Helpful for diarrhea, stomach problem, rheumatic pain, dysentery, and vomiting	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11Δ, 12Δ, 13©, 14©, 15Δ, 16Δ, 17Δ, 18Δ
	Otostegia limbata (Benth.) Boiss./Tas 32	Chita jand	Leaves	0.07	0.15		Boiled leaves extract is useful for mouth ulcers, fever, and skin infections	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ
	Mentha longifolia (L.) Huds./Tas 31	Bareena	Whole plant	0.67	1.12		Leaves are used for vomiting, diarrhea, and blood purification	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11Δ, 12Δ, 13©, 14©, 15Δ, 16Δ, 17Δ, 18Δ
	Punica granatum L./Tas 33	Daaroo	Whole plant	2.5	0.52	0.97	Fruits are edible and are used for blood purification, eradication of cough, and dysentery	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11Δ, 1-2©, 13©, 14©, 15©, 16Δ, 17Δ, 18Δ
Lathyraceae	Malvastrum coromandelianum L./Tas 34	Lafa	Leaves	2.5	0.10	0.13	Leaves are used to cure diabetes	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11Δ, 12Δ, 1-3©, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ
Malvaceae	Malvastrum coromandelianum L./Tas 34	Lafa	Leaves	2.5	0.10	0.13	Leaves are used to cure diabetes	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11Δ, 12Δ, 1-3©, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ
	Melia azedarach L./Tas 35	Dherak	Leaves, fruits, and seeds	2.5	0.53	0.98	Fresh leaves can be used as a blood purifier and to reduce mouth swelling	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11Δ, 12©, 13©, 14©, 15©, 16Δ, 17©, 18©
Meliaceae	Morus nigra L./Tas 36	Kala toot	Fruits	7.5	0.15	0.32	Fruit is used against anemia and also for sore throat	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©,-13©, 14©, 15Δ, 16Δ, 17Δ, 18Δ
	Acacia nilotica Wild./Tas 37	Kiker	Leaves and bark	0.12	0.2		Bark is used for painful throat and also against toothache	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©,-13©, 14©, 15Δ, 16Δ, 17Δ, 18Δ
Mimosaceae	Ficus palmata Forssk./Tas 38	Phagwari	Milky secretions and fruits	7.5	0.33	0.63	Fruits are used as blood purification and for quick wound healing	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11Δ, 12Δ,-13©, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ
	Conyza Canadensis (L.) Cronq./Tas 39	Chhi booti	Whole plant	0.05	0.05		Plant is used against flatulence and other stomach disorders	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11Δ, 12©,-13©, 14©, 15Δ, 16Δ, 17Δ, 18Δ
	Morus alba L./Tas 40	Safed toot	Roots	0.28	0.65		Roots are effective for toothache and cough	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11©, 12©,-13©, 14©, 15Δ, 16©, 17©, 18Δ
Myrsinaceae	Myrsine africana L./Tas 41	Gogal	Leaves	2.5	0.08	0.12	Leaves help in the treatment of liver diseases like jaundice	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11Δ, 12Δ,-13©, 14©, 15Δ, 16Δ, 17Δ, 18Δ
Myrtaceae	Eucalyptus camaldulensis Dehnh./Tas 42	Safaida	Leaf and bark	2.5	0.12	0.2	Young shoots and leaves give momentary relief in cough	1Δ, 2©, 3©, 4©, 5©, 6©, 7©, 8©, 9©, 10©, 11Δ, 12©,-13©, 14©, 15Δ, 16Δ, 17Δ, 18Δ

Continued...
Table 1: Continued

Plant family	Plant species/ Voucher no.	Local name	Plant part used	FIV	RFC	UV	Medicinal uses	Previous reports
Oleaceae	*Olea ferruginea* Royle/Tas 43	Kao	Leaves and bark	2.5	0.25	0.3	Helpful for gonorrhea and toothache	1Δ,2Δ,4Δ,5Δ,6©,7Δ,8Δ,9©,10©,11Δ,12Δ,13Δ,14Δ,15Δ,16Δ,17Δ,18Δ
Oxalidaceae	*Oxalis corniculata* L./Tas 44	Khattahulla	Whole plant	2.5	0.15	0.22	Plant is helpful in curing jaundice and stomach acidity	1Δ,2Δ,4Δ,5Δ,6Δ,7Δ,8©,9,10,11Δ,12Δ,13Δ,14Δ,15Δ,16Δ,17Δ,18Δ
Papilionaceae	*Mellotis indica* (L.)/Tas 45	Singi	Leaves and seeds	2.5	0.12	0.15	Leaves are rubbed on skin to cure eczema. Seeds are effective against diarrhea	1Δ,2Δ,3Δ,4Δ,5Δ,6Δ,7Δ,8Δ,9Δ,10Δ,11Δ,12Δ,13Δ,14Δ,15Δ,16Δ,17Δ,18Δ
Pinaceae	*Pinus roxburghii* Sarg./Tas 46	Chir	Cones and resin	5	0.08	0.12	Resin is usually used against tumors and bleeding from wounds. Cones are used to cure diabetes	1Δ,2Δ,3Δ,4Δ,5Δ,6Δ,7Δ,8©,9,10©,11Δ,12Δ,13Δ,14Δ,15Δ,16Δ,17Δ,18Δ
Plantaginaceae	*Plantago lanceolata* L./Tas 48	Butti	Whole plant	2.5	0.13	0.25	Acts as a cooling agent for stomach. Leaves are useful for wound sores and swollen surfaces	1Δ,2©,3©,4Δ,5Δ,6Δ,7Δ,8©,9,10Δ,11Δ,12Δ,13Δ,14©,15©,16Δ,17Δ,18Δ
Poaceae	*Cynodon dactylon* (L.) Pers./Tas 49	Khabal grass	Whole plant	2.5	0.10	0.17	Fresh plant paste is useful for healing of fracture and against dysentery	1©,2©,3©,4Δ,5Δ,6©,7Δ,8Δ,9©,10,11Δ,12©,13Δ,14©,15©,16Δ,17Δ,18Δ
Polygonaceae	*Rumex hestatus* D.Don./Tas 50	Chukheery	Leaves	7.5	0.47	1.02	Leaves are used for treating jaundice and bleeding wounds	1©,2©,3©,4Δ,5©,6Δ,7©,8©,9,10©,11Δ,12©,13©,14©,15©,16Δ,17Δ,18Δ
	Persicaria amplexicaulis (D Don) Ronse Dec./Tas 51	Masloon	Leaves and rhizome	0.47	1.02	Dried rhizome is used to cure backache and joints pain. Herbal tea of leaves is useful for stomach ulcers, flu, and bleeding gums	1©,2©,3©,4Δ,5©,6Δ,7©,8©,9©,10,11Δ,12©,13©,14©,15©,16Δ,17Δ,18Δ	
	Polygonum aviculare L./Tas 52	Darubra	Whole plant	0.08	0.12	Leaves are used for eliminating kidney stones	1©,2©,3©,4Δ,5©,6©,7©,8©,9©,10,11Δ,12©,13©,14©,15©,16Δ,17Δ,18Δ	
Pteridaceae	*Adiantum capillus-veneris* Tas 53	Kakwai	Leaves	2.5	0.37	0.75	Leaves are used to treat hepatic problem, stomach acidity, and relieve fever	1©,2©,3©,4Δ,5©,6©,7©,8©,9©,10,11Δ,12©,13©,14©,15©,16Δ,17Δ,18Δ
Rosaceae	*Prunus armeniaca* L./Tas 54	Khobani	Fruits	22.5	0.15	0.15	Fruits are used against constipation	1©,2©,3©,4Δ,5©,6©,7©,8©,9©,10,11Δ,12©,13©,14©,15©,16©,17©,18©
	Prunus domestica L./Tas 55	Aroha	Fruits and gums	0.18	0.12	Fruits and gums	1©,2©,3©,4Δ,5©,6©,7©,8©,9©,10,11©,12©,13©,14©,15©,16Δ,17Δ,18Δ	
	Prunus persica (L.) Batsch/Tas 57	Aaroon	Fruits	0.22	0.47	Fruit is eaten by diabetic patients	1©,2©,3©,4Δ,5©,6©,7©,8©,9©,10,11©,12©,13©,14©,15©,16Δ,17Δ,18Δ	

(Continued)
Plant family	Plant species/ Voucher no.	Local name	Plant part used	FIV	RFC	UV	Medicinal uses	Previous reports
Rutaceae	*Pyrus communis* L./ Tas 62	Nashpaati	Fruits	2.5	0.85	1.17	Fruits are laxative and used for curing diarrhea	1\(\Delta\), 2\(\Delta\), 3\(\Delta\), 4\(\Delta\), 5\(\Delta\), 6\(\Delta\), 7\(\Delta\), 8\(\Delta\), 9\(\Delta\), 10\(\Delta\), 11\(\Delta\), 12\(\Delta\), 13\(\Delta\), 14\(\Delta\), 15\(\Delta\), 16\(\Delta\), 17\(\Delta\), 18\(\Delta\)
	Berberis lyceum Royle./ Tas 63	Sumbal	Bark, roots, fruits	2.5	0.85	1.17	Bark powder cures mouth boils. Fruits are laxative. Roots are used for joint pain and toothache	1\(\Delta\), 2\(\Delta\), 3\(\Delta\), 4\(\Delta\), 5\(\Delta\), 6\(\Delta\), 7\(\Delta\), 8\(\Delta\), 9\(\Delta\), 10\(\Delta\), 11\(\Delta\), 12\(\Delta\), 13\(\Delta\), 14\(\Delta\), 15\(\Delta\), 16\(\Delta\), 17\(\Delta\), 18\(\Delta\)
Saxifragaceae	*Bergenia ciliata* (Haw.) Sternb./ Tas 64	Zakhm-e-Hayat	Leaves and roots	2.5	0.72	1.13	Cures diabetes, fever, cough, joint pain, and inflammation in body	1\(\Delta\), 2\(\Delta\), 3\(\Delta\), 4\(\Delta\), 5\(\Delta\), 6\(\Delta\), 7\(\Delta\), 8\(\Delta\), 9\(\Delta\), 10\(\Delta\), 11\(\Delta\), 12\(\Delta\), 13\(\Delta\), 14\(\Delta\), 15\(\Delta\), 16\(\Delta\), 17\(\Delta\), 18\(\Delta\)
Simaroubaceae	*Ailanthus altissima* (Mill.) Swingle./ Tas 65	Drawia	Leaves	2.5	0.10	0.1	Young leaves act as blood purifier	1\(\Delta\), 2\(\Delta\), 3\(\Delta\), 4\(\Delta\), 5\(\Delta\), 6\(\Delta\), 7\(\Delta\), 8\(\Delta\), 9\(\Delta\), 10\(\Delta\), 11\(\Delta\), 12\(\Delta\), 13\(\Delta\), 14\(\Delta\), 15\(\Delta\), 16\(\Delta\), 17\(\Delta\), 18\(\Delta\)
Solanaceae	*Solanum nigrum* L./ Tas 66	Kachmach	Whole plant	5	0.55	0.97	Plant extract is used for asthma, skin burn, malaria, and fever	1\(\Delta\), 2\(\Delta\), 3\(\Delta\), 4\(\Delta\), 5\(\Delta\), 6\(\Delta\), 7\(\Delta\), 8\(\Delta\), 9\(\Delta\), 10\(\Delta\), 11\(\Delta\), 12\(\Delta\), 13\(\Delta\), 14\(\Delta\), 15\(\Delta\), 16\(\Delta\), 17\(\Delta\), 18\(\Delta\)
	Capsicum frutescens L./ Tas 67	Marchi	Fruits	0.07	0.07		Fruits are used in order to improve digestion	1\(\Delta\), 2\(\Delta\), 3\(\Delta\), 4\(\Delta\), 5\(\Delta\), 6\(\Delta\), 7\(\Delta\), 8\(\Delta\), 9\(\Delta\), 10\(\Delta\), 11\(\Delta\), 12\(\Delta\), 13\(\Delta\), 14\(\Delta\), 15\(\Delta\), 16\(\Delta\), 17\(\Delta\), 18\(\Delta\)
Urticaceae	*Urtica dioica* L./ Tas 68	Kiayari	Whole plant	2.5	0.12	0.18	Roots are useful to enhance milk excretion	1\(\Delta\), 2\(\Delta\), 3\(\Delta\), 4\(\Delta\), 5\(\Delta\), 6\(\Delta\), 7\(\Delta\), 8\(\Delta\), 9\(\Delta\), 10\(\Delta\), 11\(\Delta\), 12\(\Delta\), 13\(\Delta\), 14\(\Delta\), 15\(\Delta\), 16\(\Delta\), 17\(\Delta\), 18\(\Delta\)
Violaceae	*Viola odorata* L./ Tas 69	Banafsha	Whole plant, flower, and roots	2.5	0.63	1.03	Whole plant is used to cure fever, cough, lung infection, constipation, and asthma	1\(\Delta\), 2\(\Delta\), 3\(\Delta\), 4\(\Delta\), 5\(\Delta\), 6\(\Delta\), 7\(\Delta\), 8\(\Delta\), 9\(\Delta\), 10\(\Delta\), 11\(\Delta\), 12\(\Delta\), 13\(\Delta\), 14\(\Delta\), 15\(\Delta\), 16\(\Delta\), 17\(\Delta\), 18\(\Delta\)

RFC = relative frequency of citation; UV = use value; FIV = family importance Value; (⊙) = similar use to previous report; (●) = dissimilar use to previous reports; (Δ) = use not reported in previous report; bold text explains preferred use of plant species; 1 = [45], 2 = [34], 3 = [46], 4 = [47], 5 = [48], 6 = [10], 7 = [49], 8 = [50], 9 = [51], 10 = [29], 11 = [39], 12 = [52], 13 = [53], 14 = [54], 15 = [55], 16 = [56], 17 = [57], 18 = [43].
FL can also be checked further for pharmacological purposes [44].

3.2.4 ICF

Our result showed that medicinal plants were used for treating 14 different ailment categories. ICF value ranged from 0.67 to 0.88%. Maximum ICF (0.88%) was obtained for gastrointestinal diseases. It was followed by respiratory disorders (0.87%), sexual disease (0.86%), and antiodote (0.85%). Lowest ICF value was calculated for kidney disorders (0.67%) (Figure 6). ICF value tells us about the cultural consistency of plant uses against specific diseases. Our study reported that most of the plant species were used for gastrointestinal diseases. Most common plant species used for gastrointestinal diseases include Diospyros lotus, Ficus palma, Amaranthus viridis, Morus alba, Viburnum opilfolium, Cichorium intybus, Mentha longifolia, Cannabis sativa, Persicaria amplexicaulis, and Zanthoxylum armatum. Our results for highest ICF value were also in agreement with the results of refs [45,46]. Gastrointestinal disorder was followed by respiratory disorder including Viola odorata, Anethum graveolens, Diospyros lotus, Adiantum capillus-veneris, Viburnum opilfolium, Cichorium intybus, Eucalyptus camaldulensis, and Persicaria amplexicaulis. High value for ICF shows high level of homogeneity among the informant consent regarding use of medicinal plants against specific disease [47]. Low ICF value shows that less number of people agreed for using specific plant against specific disease. Low ICF value may be due to the fact that people do not want to share their information with others, hence showing less consent regarding use of a plant against a disease [48].

![Figure 6: ICF of disease categories.](image-url)
Table 3: JI comparison of present study with previous reports

Previous study	Total documented species in previous study	No. of plant species with similar use	No. of plant species with dissimilar use	No. of plant species common in both area	No. of plant species found only in aligned area	Species only in study area	% Of plants with similar use	% Of dissimilar uses	JI
From district Bagh									
Moist temperate Himalayas of district Bagh	34	5	8	13	21	57	14.71	23.53	14.44
Harighal district Bagh, AJK	150	22	21	43	114	33	14.67	14.00	24.43
Sudhan Gali and Ganga Chotti hills, district Bagh.	33	11	3	14	23	59	33.33	9.09	15.91
From AJK									
District Kotli AJK	38	1	3	4	35	66	2.63	7.89	3.88
Tattapani valley, AJK	70	6	13	19	47	48	8.57	18.57	15.83
Himalayan region, AJK	73	11	10	21	52	48	15.07	13.70	17.36
Toli peer	121	15	11	26	—	—	12.40	9.09	15.85
Jhelum valley	113	8	15	23	—	—	7.08	13.27	14.47
Sudhonti	58	3	6	9	49	60	5.17	10.34	7.63
From other regions of Pakistan									
District Buner	80	14	14	28	52	41	17.50	17.50	23.14
Rawalpindi, Punjab	92	4	2	5	87	64	4.35	2.17	3.21
Kadhi areas of Khushab	48	4	9	12	36	57	8.33	18.75	11.43
KPK	10	2	1	3	7	66	20.00	10.00	3.95
Mastung of Balochistan	102	12	9	21	81	48	11.76	8.82	14
Northern Pakistan	106	1	16	17	89	52	0.94	15.09	10.76
China	121	1	3	4	56	65	0.83	2.48	2.15
Northeast India	145	0	4	4	80	65	0.00	2.76	1.90
Rangamati district, Bangladesh	117	0	1	1	49	68	0.00	0.85	0.54
Plant species	New medicinal uses not reported in previous compared studies								
---------------	---								
Amarathus viridis L.	Leaves are used for constipation and weight loss								
Achyranthus aspera wall.	Herb juice is used against diarrhea								
Anethum graveolens L.	Fruits are used against fever, cough, ulcer, and for skin allergies								
Achillea millefolium L.	Leaves are used for relief from toothache and bleeding gums								
Taraxacum officinale Weber.	Roots are used against liver diseases, constipation, and stomach problems								
Gerbera gossypina (Royle) Beauverd	Plant is considered as tonic								
Sonchus oleraceus (L.) L.	Stems are sedative and tonic. Sap latex for warts treatment								
Cichorium intybus L.	Roots decoction is used in curing fever. Leaves are effective against constipation								
Parthenium hysterophorus L.	Used to treat diabetes								
Achillea millefolium L.	Leaves are used for relief from toothache and bleeding gums								
Sonchus oleraceus (L.) L.	Stems are sedative and tonic. Sap latex for warts treatment								
Cichorium intybus L.	Roots decoction is used in curing fever. Leaves are effective against constipation								
Parthenium hysterophorus L.	Used to treat diabetes								
Artemisia vulgaris L.	Leaves regulate menstrual cycle, also valuable for sleeplessness and anxiety								
Silybum marianum (L.)	Plant is useful for diabetes								
Brassica campestris L.	Leaves are sedative and tonic. Sap latex for warts treatment								
Sarcococca saligna (Müll) Arg.	This plant defends children from wicked eye								
Cannabis sativa L.	Flowers are valuable in regulating menstrual cycle								
Silibum marianum (L.)	Plant is useful for diabetes								
Diospyros lotus L.	Fruits are used for curing fever and high blood pressure								
Zanthoxylum armatum DC. Prodr	Young branches are used as miswak								
Euphorbia hirta L.	Plant is used against constipation								
Medicago polymorpha L.	Plant is useful against constipation								
Juglans regia L.	Fruit reduces high blood pressure								
Mentha longifolia (L) L.	Whole plant is helpful for diarrhea and rheumatic pain								
Oxalis corniculata L.	Plant is used against stomach disorders								
Malvastrum coromandelianum L	Leaves are rubbed on skin to cure eczema. Seeds are effective against diarrhea								
Pinus roxburghii Sarg.	Resin is usually used against tumors								
Pinus wallichiana A. B. Jackson	Resin is used for cough. Leaves are useful for dysentery								
Plantago lanceolata L.	Whole plant acts as a cooling agent for stomach. Leaves are useful for swollen surfaces								
Punica granatum L.	Leaves are used for treating bleeding wounds								
Pimpinella anisum L.	Leaves are used for eliminating kidney stones								
Ziziphus mauritiana L.	Leaves are used to treat hepatic problem, stomach acidity, and relieve fever								
Prunus domestica L.	Fruit is laxative and helpful in curing constipation								
Rhus verniciflua Thunb.	Resin is used for treating bleeding wounds								
Prunus persica (L.) Batsch	Gum treats backbone and joint pain. Fruit is eaten by diabetic patients								
Pisum sativum L.	Roots are used against boils and whooping cough								
Rosa brunonii Lindl.	Fruits are used for blood purification. Gulkand is very effective for digestive problems								
Pyrus communis L.	Fruits are laxative and are used for curing diarrhea								
Berberis lyceum Royle.	Fruits are laxative. Roots are used for joint pain								
Bergenia ciliate (Haw.) Sternb.	Cures diabetes, fever, cough, and inflammation in body								
Solanum nigrum L.	Plant extract is used for asthma, skin burn, and malaria								
Capsicum frutescens L.	Fruits are used in order to improve digestion								
Urtica dioica L.	Roots are useful to enhance milk excretion								
The results of our study were compared with 18 previous studies reported from neighboring areas of district Bagh as well as at regional and international level. By comparing results it is found that JI ranged from 0.54 to 24.43% (Table 3). Highest JI (26.43%) was found with the study reported from Harighal AJK [13]. Lowest JI (0.54%) was found for the study reported from district Rangamati, Bangladesh [49]. The range of similar and dissimilar uses with previous studies ranged from 0 to 33.33% and 0.85 to 23.53%. These similar and dissimilar uses are sorted out among the common plant species in the study area and previous reports. High level of similarity is due to same cultural, traditional values, vegetation, and geography among different areas [13,50]. While low similarity reflects that there is lesser exchange of information regarding use of medicinal plants with others. This may be due to large distance among two areas or limitations of cultural and traditional values.

By considering novelty, it was found that about 18 plant species are reported first time from district Bagh with their ethnomedicinal relevance. These species were not reported from district Bagh before. These plant species include Coriandrum sativum, Anethum graveolens, Cichorium intybus, Parthenium hysterophorus, Brassica campestris, Stellaria media, Dryopteris ramosa, Diospyros lotus, Quercus incana, Juglans regia, Myrsine africana, Melilotus indica, Persicaria amplexicaulis, Polygonum aviculare, Adiantum capillus-veneris, Rumex dentatus, Pyrus communis, and Capsicum frutescens. 21 plant species were found having different medicinal uses in the study reported in ref. [13] from Harighal district Bagh. These plant species with different medicinal uses include Amaranthus viridis, Gerbera gossypina, Sonchus oleraceus, Artemisia vulgaris, Silybum marianum, Sarcococca saligna, Malvastrum coromandelianum, Melia azedarach, Acacia nilotica, Ficus palnata, Conyza Canadensis, Eucalyptus camaldulensis, Olea ferruginea, Oxalis corniculata, Rumex hestatus, Prunus domestica, Prunus persica, Pyrus pashia, Berberis lyceum, Solanum nigrum, and Urtica dioica. Our results showed that 8 plant species were found with different medicinal uses in the study reported in ref. [12] from moist temperate Himalayas of district Bagh. These include Urtica dioica, Bergenia ciliata, Berberis lyceum, Fragaria nubicola, Rosa brunoni, Pirus wallichiana, Indigofera heterantha, and Sarcococca saligna. Similarly, 2 plant species Urtica dioica and Sarcococca saligna have different medicinal uses reported from the study area of Sudhan Gali and Ganga Chotti hills, district Bagh [14]. Plant species with new medicinal uses are shown in (Table 4) along with medicinal uses.

4 Conclusion

This study reported some useful medicinal plant species from district Bagh. From the results of study areas, it is concluded that people of study area still prefer native plants because of their low cost and accessibility. These areas are enriched with plant species having a lot of therapeutic uses and are important to cure a variety of human ailments. After comparative analysis, some plant species with novel medicinal uses are also found. These plants can be further investigated by pharmacological studies to confirm validity of medicinal uses. To conserve the plants of medicinal value of this study area, heavy grazing and medicinal plants devastation should be diminished or controlled in the area and the precious knowledge of medicinal plants should be transferred to new generation before it is lost forever.

Acknowledgement: The authors acknowledge the support of Taif University Researchers Supporting Project number (TURSP-2020/127), Taif University, Taif, Saudi Arabia.

Funding information: This study was supported by Taif University Researchers Supporting Project number (TURSP-2020/127), Taif University, Taif, Saudi Arabia.

Author contributions: Y.B. and A.Q. conceived the idea. T.M. and T.M. conducted the experiment and collected the literature review. B.H.E. provided technical expertise to strengthen the basic idea. A.F.G. and T.E.E. helped in statistical analysis. A.E.A. and Y.B. proofread and provided intellectual guidance. All authors read the first draft, helped in revision, and approved the article. All authors have read and agreed to the published version of the manuscript.

Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Ethical approval: The authors confirm that study was reviewed and approved by an institutional review board of Pir Mehr Ali Shah-Arid Agriculture University, Rawalpindi, Pakistan (ethics committee) before the study began. The committee further approved that the study has no direct harmful impact on participants and biodiversity of area under investigation.

Data availability statement: Data available with the authors on request.
References

[1] Munawar T, Anwar K, Bibi Y, Ahmad F. "Brighamia insignis" an Hawaiian endangered species, current status and future prospects: a review. Proc Pak Acad Sci: B Life Environ Sci. 2021 Dec 3;58(2):17–22.

[2] Nazir N, Rahman A, Uddin F, Khan Khalil AA, Zahoor M, Nisar M, et al. Quantitative ethnomedicinal status and phytochemical analysis of berberis lyceum royle. Agronomy. 2021 Jan;11(1):130.

[3] Syed A, Benit N, Alyousef AA, Alqasim A, Arshad M. *In vitro* antibacterial, antioxidant potentials and cytotoxic activity of the leaves of Tridax procumbens. Saudi J Biol Sci. 2020 Feb 1;27(2):757–61.

[4] Farnsworth NR, Soejarto DD. Global importance of medicinal plants. Conserv Medicinal Plants. 1991 Jul 26;26:25–51.

[5] Mahdi JG. Medicinal potential of willow: a chemical perspective of aspirin discovery. J Saudi Chem Soc. 2010;14:317–22.

[6] Shinwari ZK, Qaiser M. Efforts on conservation and sustainable use of medicinal plants of Pakistan. Pak J Bot. 2011 Dec 1;43(1):5–10.

[7] Bano A, Ahmad M, Hadda TB, Saboor A, Sultana S, Zafar M, et al. Quantitative ethnomedicinal study of plants used in the Skardu valley at high altitude of Karakoram-Himalayan range, Pakistan. J Ethnobiol Ethnomed. 2014 Dec;10(1):1–8.

[8] Shaheen H, Awan SN, Khan RW, Khalid AR, Ahmed W, Chughtai FM. Variations in soil organic carbon stocks under different land-use categories in subtropical ecosystems of Kashmir. For Sci. 2021 Oct;67(5):525–36.

[9] Ajaib M, Ishaq M, Bhatti KH, Hussain I, Maqbool M, Hussain T, et al. Inventorization of traditional ethnobotanical uses of wild plants of Dawarian and Ratti Gali areas of District Neelum, Azad Jammu and Kashmir, Pakistan. PLoS one. 2021 Jul 29;16(7):e0255010.

[10] Mahmood A, Qureshi RA, Mahmood A, Sangi Y, Shaheen H, Ahmad I, et al. Ethnobotanical survey of common medicinal plants used by people of district Mirpur, AJK, Pakistan. J Medicinal Plants Res. 2011 Sep 16;5(18):4493–8.

[11] Safeera S, Qureshib R, Khalidib S, Anfare W. Ethnobotanical study on useful indigenous plants in Mahasheer National Park, AJK. J Coast Life Med. 2017;5(3):109–15.

[12] Safeer S, Sarwar R, Ubaid-ul-Hassan KS, Anwar SMF. Exploration of ethnomedicinal flora used against various human ailments in moist temperate Himalayas of district Bagh, Azad Jammu and Kashmir. Asian J Med Pharm Res. 2017;7(1):9–15.

[13] Amjad MS, Zahoor U, Bussmann RW, Altaf M, Gardazi SM, Abbasi AM. Ethnobotanical survey of the medicinal flora of Harighal, Azad Jammu and Kashmir, Pakistan. J Ethnobiol Ethnomed. 2020 Dec;16(1):1–28.

[14] Qureshi RA, Ghufran MA, Gilani SA, Sultana K, Ashraf M. Ethnobotanical studies of selected medicinal plants of Sudhan Gali and Ganga Chotti hills, district Bagh, Azad Kashmir. Pak J Bot. 2007 Dec 1;39(7):2275–83.

[15] Shaheen H, Shinwari ZK, Qureshi RA, Ullah Z. Indigenous plant resources and their utilization practices in village populations of Kashmir Himalayas. Pak J Bot. 2012 Apr 1;44(2):739–45.

[16] Martin GJ. Ethnobotany: a methods manual. Newyork Jork: Chapman y Hall; 1995.

[17] Edwards S, Nebel S, Heinrich M. Questionnaire surveys: methodological and epistemological problems for field-based ethnopharmacologists. J Ethnopharmacol. 2005;100(1–2):30–6.

[18] Rashid S, Ahmad M, Zafar M, Sultana S, Ayub M, Khan MA, et al. Ethnobotanical survey of medicinally important shrubs and trees of Himalayan region of Azad Jammu and Kashmir, Pakistan. J Ethnopharmacol. 2015 May 26;166:340–51.

[19] Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy) – An alpine ethnobotanical study. J Ethnopharmacol. 2013;145(2):517–29.

[20] Khan MS, Razaqz A. Ethnobotanical indices based ethnovegetative plant profile of Jabban hills, Malakand and Hindu Kush range, Pakistan. Pak J Bot. 2018 Oct 1;50(5):1899–905.

[21] Friedman J, Yaniv Z, Dafni A, Palewitch D. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. J Ethnopharmacol. 1986 Jun 1;16(2–3):275–87.

[22] Heinrich M, Ankli A, Frei B, Weimann C, Sticher O. Medicinal plants in Mexico: Healers’ consensus and cultural importance. Soc Sci & Med. 1998 Dec 1;47(11):1859–71.

[23] González-Tejero MR, Casares-Porcel M, Sánchez-Rojas CP, Ramiro-Gutiérrez JM, Molero-Mesa J, Pieroni A, et al. Medicinal plants in the Mediterranean area: synthesis of the results of the project Rubia. J Ethnopharmacol. 2008 Mar 5;116(2):341–57.

[24] Rafique Khan SM, Akhter T, Hussain M. Ethnoveterinary practice for the treatment of animal diseases in Neelum Valley, Kashmir Himalaya, Pakistan. PLoS one. 2021 Apr 30;16(4):e0250114.

[25] Birjees M, Ahmad M, Zafar M, Nawaz S, Jehanzeb S, Ullah F, et al. Traditional knowledge of wild medicinal plants used by the inhabitants of Garam Chashma valley, district Chitral, Pakistan. Acta Ecologica Sin. 2021 Jan 2. doi: 10.1016/j.chinaes.2020.12.006.

[26] Rana SK, Oli PS, Rana HK. Traditional botanical knowledge (TBK) on the use of medicinal plants in Sikles area. Nepal Asian J Plant Sci Res. 2015;5(11):8–15.

[27] Barkatullah IM, Rauf A, Hadda TB, Mubarak MS, Patel S. Quantitative ethnobotanical survey of medicinal flora thriving in Malakand Pass Hills, Khyber Pakhtunkhwa, Pakistan. J Ethnopharmacol. 2015;169:335–46.

[28] Umair M, Altaf M, Abbasi AM. An ethnobotanical survey of indigenous medicinal plants in Haifazabad district, Punjab, Pakistan. PLoS one. 2017 Jun 2;12(6):e0177912.

[29] Majeed M, Bhatti KH, Amjad MS, Abbasi AM, Bussmann RW, Nawaz F, et al. Ethnoveterinary uses of Poaceae in Punjab, Pakistan. PLoS one. 2020 Nov 3;5(11):e0241705.

[30] Shah A, Rahim S. Ethnomedicinal uses of plants for the treatment of malaria in Soon Valley, Khushab, Pakistan. J Ethnopharmacol. 2017;200:84–106. pmid:28192202.

[31] Giday M, Asfaw Z, Elmqvist T, Woldu Z. An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia. J Ethnopharmacol. 2003 Mar 1;85(1):43–52.

[32] Farooq A, Amjad MS, Ahmad K, Altaf M, Umair M, Abbasi AM. Ethnobotanical knowledge of the rural communities of Dhirkot, Azad Jammu and Kashmir, Pakistan. J Ethnobiol Ethnomed. 2019 Dec;15(1):1–30.
Mussarat S, AbdEl-Salam NM, Tariq A, Wazir SM, Ullah R, Adnan M. Use of ethnomedicinal plants by the people living around Indus River. Evid Based Complement Alternat Med. 2014;212634. doi: 10.1155/2014/212634.

Jan HA, Wali S, Ahmad L, Jan S, Ahmad N, Ullah N. Ethnomedicinal survey of medicinal plants of Chinglai valley, Buner district, Pakistan. Eur J Integr Med. 2017 Aug 1;13:64–74.

Nademega P, Boussim JI, Nikiema JB, Poli F, Antognoni F. Medicinal plants in Baskoure, Kouintenga province, Burkina Faso: an ethnobotanical study. J Ethnopharmacol. 2011 Jan 27;133(2):378–95.

Zonyane S, Van Vuuren SF, Makunga NP. Pharmacological and phytochemical analysis of a medicinal plant mixture that is used as a traditional medicine in Western Cape. Paper presented at South Africa Association of Botanist 38th Annual Conference, 15–18 January 2012, Pretoria: University of Pretoria; 2012.

Zhang L, Zhang Y, Pei S, Geng Y, Wang C, Yuhua W. Ethnomedicinal survey of medicinal dietary plants used by the Naxi people in Lijiang Area, Northwest Yunnan, China. J Ethnobiol Ethnomed. 2015 Dec;11(1):1.

Sachdeva C, Kumar S, Kaushik NK. Exploration of anti-plasmodial activity of Prunus cerasoides Buch.-Ham. ex D. Don (family: Rosaceae) and its wood chromatographic fractions. Acta Parasitologica. 2021 Mar;66(1):205–12.

Phillips O, Gentry AH. The useful plants of Tambopata Peru: I. Statistical hypotheses tests with a new quantitative technique. Economic Bot. 1993;47:15–32.

Shaheen H, Qaseem MF, Amjad MS, Bruschi P. Exploration of ethnomedicinal knowledge among rural communities of Pearl Valley; Rawalakot, District Poonch, Azad Jammu and Kashmir. PLoS one. 2017 Sep 8;12(9):e0183956.

Aziz MA, Adnan M, Khan AH, Rehman AU, Jan R, Khan J. Ethnomedicinal survey of important plants practiced by indigenous community at Ladha subdivision, South Waziristan agency, Pakistan. J Ethnobiol Ethnomed. 2016 Dec;12(1):1–4.

Aziz MA, Adnan M, Khan AH, Shahat AA, Al-Said MS, Ullah R. Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand Agency, FATA, Pakistan. J Ethnobiol Ethnomed. 2018;14(1):2.

Shil S, Choudhury MD, Das S. Indigenous knowledge of medicinal plants used by the Reang tribe of Tripura state of India. J Ethnopharmacol. 2014 Feb 27;152(1):135–41.

Kayani S, Ahmad M, Zafar M, Sultana S, Khan MPZ, Ashraf MA, et al. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies–Abbottabad, Northern Pakistan. J Ethnopharmacol. 2014;156:47–60.

Ahmad M, Zafar M, Shahzadi N, Yaseen G, Murphy TM, Sultana S. Ethnobotanical importance of medicinal plants traded in herbal markets of Rawalpindi, Pakistan. J Herb Med. 2018 Mar 1;11:78–89.

Sargın SA, Akçicek E, Selvi S. An ethnobotanical study of medicinal plants used by the local people of Alaşehir (Manisa) in Turkey. J Ethnopharmacol. 2013 Dec 12;150(3):860–74.

Ahmed MJ, Akhtar T. Indigenous knowledge of the use of medicinal plants in Bheri, Muzaffarabad, Azad Kashmir, Pakistan. Eur J Integr Med. 2016 Aug 1;8(4):560–9.

Heinrich M, Edwards S, Moerman DE, Leoniti M. Ethnopharmacological field studies: a critical assessment of their conceptual basis and methods. J Ethnopharmacol. 2009 Jul 6;124(1):1–7.

Faruque MO, Feng G, Khan MN, Barlow JW, Ankhi UR, Hu S, et al. Qualitative and quantitative ethnobotanical study of the Pangkhua community in Bilachari Upazilla, Rangamati District, Bangladesh. J Ethnobiol Ethnomed. 2019 Dec;15(1):1–29.

Ahmad KS, Hamid A, Nawaz F, Hameed M, Ahmad F, Deng J, et al. Ethnopharmacological studies of indigenous plants in Kel village, Neelum valley, Azad Kashmir, Pakistan. J Ethnobiol Ethnomed. 2017 Dec;13(1):1–6.

Ajalib M, Khan Z, Khan NA, Wahab M. Ethnobotanical studies on useful shrubs of district Kotli, Azad Jammu and Kashmir, Pakistan. Pak J Bot. 2010 Jun 1;42(3):1407–15.

Azeem A, Zeb A, Umer S, Ali G, Khan Y. Ethnobotanical studies of Tatta Pani Valley, Kotli, Azad Jammu and Kashmir (AJK) Pakistan. J Medicinal Plants. 2020;8(3):14–20.

Amjad MS, Qaeem MF, Ahmad I, Khan SU, Chaudhari SK, Zahid Malik N, et al. Descriptive study of plant resources in the context of the ethnomedicinal relevance of indigenous flora: A case study from Toli Peer National Park, Azad Jammu and Kashmir, Pakistan. PLoS one. 2017 Feb 13;12(2):e0171896.

Awan AA, Akhtar T, Ahmad MJ, Murtaza G. Quantitative ethnobotany of medicinal plants uses in the Jehlum valley, Azad Kashmir, Pakistan. Acta Ecologica Sin. 2021 Apr 1;41(2):88–96.

Istilq M, Mahmood A, Maqbool M. Indigenous knowledge of medicinal plants from Sudhanoti district (AJK), Pakistan. J ethnopharmacology. 2015 Jun 20;168:201–7.

Qureshi R, Maqsood MU, Arshad MU, Chaudhry AK. Ethnomedicinal uses of plants by the people of Kadhri areas of Khushab, Punjab, Pakistan. Pak J Bot. 2011 Feb 1;43(1):121–33.

Khan N, Abbasi AM, Dastagir G, Nazir A, Shah GM, Shah MM, et al. Ethnobotanical and antimicrobial study of some selected medicinal plants used in Khyber Paktunkhwa (KPK) as a potential source to cure infectious diseases. BMC Complement Altern Med. 2014 Dec;14(1):1.