Deep probing of the photospheric sunspot penumbra: no evidence for magnetic field-free gaps

J.M. Borrero1, A. Asensio Ramos2,3, M. Collados2,3, R. Schlichenmaier1, H. Balthasar4, M. Franz1, R. Rezaei1,2,3, C. Kiess1, D. Orozco Suárez2,3, A. Pastor2,3, T. Berkefeld1, O. von der Lühe1, D. Schmidt1, W. Schmidt1, M. Sigwarth1, D. Soltau1, R. Volkmer1, T. Waldmann1, C. Denker4, A. Hofmann4, J. Staude4, K.G. Strassmeier1, A. Feller5, A. Lage5, S.K. Solanki6,8, M. Sobotka7, and H. Nicklas6

1 Kiepenheuer-Institut für Sonnenphysik, Schüneckstr. 6, D-79110, Freiburg, Germany
2 Instituto de Astrofísica de Canarias, Avd. Vía Láctea s/n, E-38205, La Laguna, Spain
3 Departamento de Astrofísica, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain
4 Leibniz Institute for Astrophysics Potsdam, An der Sternwarte 16, D-14482, Potsdam, Germany
5 Max Planck Institut für Sonnensystemforschung, Karmarschstraße 16, 37191 Göttingen, Germany
6 Georg-August-Universität Göttingen, Faculty of Physics, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
7 Astronomical Institute, Academy of Sciences of the Czech Republic, Na国情fta 298, 25165 Ondřejov, Czech Republic
8 School of Space Research, Kyung Hee University, 446-701, Yongin, Republic of Korea

ABSTRACT

Context. Some models for the topology of the magnetic field in sunspot penumbrae predict the existence of field-free or dynamically weak-field regions in the deep photosphere. Aims. To confirm or rule out the existence of weak-field regions in the deepest photospheric layers of the penumbra. Methods. The magnetic field at log \(\tau_5 = 0 \) is investigated by means of inversions of spectropolarimetric data of two different sunspots located very close to disk center with a spatial resolution of approximately 0.4-0.45′. The data have been recorded using the GRIS instrument attached to the 1.5-meters GREGOR solar telescope at El Teide observatory. It includes three Fe i lines around 1565 nm, whose sensitivity to the magnetic field peaks at half a pressure-scale-height deeper than the sensitivity of the widely used Fe i spectral line pair at 630 nm. Prior to the inversion, the data is corrected for the effects of scattered light using a deconvolution method with several point spread functions. Results. At log \(\tau_5 = 0 \) we find no evidence for the existence of regions with dynamically weak (\(B < 500 \) Gauss) magnetic fields in sunspot penumbrae. This result is much more reliable than previous investigations done with Fe i lines at 630 nm. Moreover, the result is independent of the number of nodes employed in the inversion, and also independent of the point spread function used to deconvolve the data, and does not depend on the amount of straylight (i.e. wide-angle scattered light) considered.

Key words. Sun: sunspots – Sun: magnetic fields – Sun: infrared – Sun: photosphere

1. Introduction

The last decade has been witness to an unprecedented advance in our knowledge of sunspot penumbrae. Owing to the improvement in instrumentation, data analysis methods and realism of numerical simulations, an unified picture for the topology of the penumbral magnetic and velocity fields has begun to emerge. The foundations of this picture rest on the so-called spine/intraspine structure of the sunspot penumbra, first mentioned by Lites et al. (1993), whereby regions of strong and somewhat vertical magnetic fields (i.e. spines) alternate horizontally with regions of weaker and more inclined field lines that harbor the Evershed flow (i.e. intraspines). At low spatial resolution (≈ 1′), the intraspines are identified with penumbral filaments. At the same time, Solanki & Montavoni (1993) established that these two distinct components also interlace vertically, thereby explaining the asymmetries in the observed circular polarization profiles (Stokes V). It was later found that the vertical and horizontal interlacing of these two components implies that the magnetic field in the spines wraps around the intraspines (Borrero et al. 2008), with the latter remaining unchanged at all radial distances from the sunspot’s center (Borrero et al. 2005, 2006; Tiwari et al. 2013) and the former being nothing but the extension of the umbral field into the penumbra (Tiwari et al. 2013). It has also been confirmed that the Evershed flow can reach supersonic and super-Alfvénic values, not only on the outer penumbra (Borrero et al. 2005, van Noort et al. 2013), but also close to the umbra (del Toro Iniesta et al. 2001, Bellot Rubio et al. 2004) and has a strong upwelling component at the inner penumbra that turns into a downflowing component at larger radial distances (Franz & Schlichenmaier 2009, 2013; Tiwari et al. 2013). Finally, there is strong evidence for an additional component of the velocity field in intraspines that appears as convective upflows along the center of the intraspines that turns into downflows at the filaments’ edges (Zakraharov et al. 2008, Joshi et al. 2011; Scharmer et al. 2011; Tiwari et al. 2013). These downflows seem capable of dragging the magnetic field lines and turning them back
into the solar surface (Ruiz Cobo & Asensio Ramos 2013; Scharmer et al. 2013).

In spite of this emerging unified picture, a number of controversies persist. One of them pertains to the strength of the convective upflows/downflows at the intraspines’ center/edges. Tiwari et al. (2013; Esteban Pozuelo et al. 2013) found an average speed for this convective velocity pattern of about 200 m s\(^{-1}\). Although they are ubiquitous, their strength does not seem capable of sustaining the radiative cooling of the penumbra, which amounts to about 70% of the quiet-Sun brightness. However, Scharmer et al. (2013) find an rms convective velocity of 1.2 km s\(^{-1}\) at the intraspines’ center/edges, hence strong enough to explain the penumbral brightness. The latter result agrees well with numerical simulations of sunspot penumbras (Rempel 2012). On the other hand, the pattern of upflows/downflows at the heads/tails, respectively, at the penumbral intraspines is easily discernible (Franz & Schlichenmaier 2009; Ichimoto 2011; [Franz & Schlichenmaier 2013] and harbors plasma flows of several km s\(^{-1}\), albeit occupying only a small fraction of the penumbral area. Which one of these two aforementioned convective modes accounts for the energy transfer in the penumbra is unclear from an observational point of view, although the scale is starting to tip in favor of the former.

Another remaining controversy concerns the strength of the magnetic field inside intraspines, where convection takes place. Scharmer & Spruit (2008) and Spruit & Scharmer (2006) originally proposed that they would be field-free, thereby coining the term field-free gap. However, most observational evidence points towards a magnetic field strength of at least 1 kG (Borrero et al. 2008; Borrero & Solanki 2010; Puschmann et al. 2010; Tiwari et al. 2013; 2015). Three-dimensional magnetohydrodynamic simulations of penumbral fine structure also yield magnetic field values of the order of 1-1.5 kG inside penumbral intraspines (Rempel 2012) irrespective of the boundary conditions and grid resolution. Spruit et al. (2010) interpreted the striations seen perpendicular to the penumbral filaments in high-resolution continuum images as a consequence of fluting instability, and established an upper limit of B \(\leq 300\) Gauss for the magnetic field inside intraspines. This redefines field-free to mean instead dynamically weak magnetic fields, where the magnetic pressure is smaller than the kinematic pressure. We note however that this interpretation has been challenged by Bharti et al. (2012), who argued that the same striations can be produced by the sideways swaying motions of the intraspines even if these harbor strong magnetic fields (B \(\geq 1000\) Gauss).

The limited observational evidence in favor of strong convective motions perpendicular to the penumbral filaments, and almost complete lack of evidence for weak magnetic fields in penumbral intraspines has been traditionally ascribed to: (a) the insufficient spatial resolution of the spectropolarimetric observations (see Sect. 3.2 Scharmer & Henriques 2012); (b) the smearing effects of straylight that are incorrectly dealt with by two-component inversions employing variable filling factors (see Sect. 2.2 in Scharmer et al. 2013); and (c) the impossibility to probe layers located deep enough to detect them (see Sect. 5.4 in Spruit et al. 2010). In this work we will address these issues by employing spectropolarimetric observations of the Fe i spectral lines at 1565 nm recorded with the GRIS instrument at the GREGOR Telescope. The spatial resolution is comparable to that of the Hinode/SP instrument and 2.5 times better than previous investigations carried out with these spectral lines. In addition, the lines observed by GRIS are much more sensitive to magnetic fields at the continuum-forming layer (i.e. log \(\tau_\lambda = 0\)) than their counterparts at 630 nm. Finally, we will account for the straylight within the instrument by performing a deconvolution of the observations employing principal component analysis (PCA) and different point spread functions (PSFs). We expect that with these new data and analysis techniques we will be able to settle, in either direction, the dispute about the strength of the magnetic field in penumbral intraspines (e.g. filaments). A study of the convective velocity field will be presented elsewhere.

2. Observations

The observations employed in this work were taken with the 1.5-meter GREGOR telescope (Schmidt et al. 2012) located at the Spanish Observatory of El Teide. Our targets were two active regions: NOAA 12045 and the leading spot in NOAA 12049. They were observed on April 24th, 2014 between UT 9:56 and 10:10, and on May 3rd, 2014 between UT 14:05 and 14:26, respectively.

GREGOR’s Infrared Spectrograph (GRIS; Collados et al. 2012) coupled to the Tenerife Infrared Polarimeter (TIP2; Collados 2007) was used to record the Stokes vector I\(^{\text{obs}}\)(\(\lambda\)) = (I, Q, U, V) across a 4 nm wide wavelength region around 1565 nm and with a wavelength sampling of \(\delta_\lambda \approx 40\) mA pixel\(^{-1}\). This wavelength region was therefore sampled with about 1000 spectral points, out of which we selected a 2.4 nm wide region with \(N_\lambda = 600\) spectral points that includes three Fe i spectral lines (see Table 1). The large Landé factors and wavelengths of these lines ensure a high sensitivity to the magnetic field.

In addition, the sensitivity of these spectral lines to the different physical parameters, in particular the magnetic field strength, peaks at an optical depth five times larger than in the case of the widely used Fe i lines at 630 nm. This is a consequence the \(\Pi^{-}\) opacity having a minimum at 1640 nm (Chandrasekhar & Breen 1940), which makes the Sun more transparent at these wavelengths compared to the visible range, and due to the large excitation potential of these spectral lines, which require large temperatures (i.e. deep photospheric layers) to populate the energy levels involved in the electronic transition. More details will be provided in Section 5.2.

The effective Landé factors in Table 1 have been obtained under the assumption of LS coupling. This is valid for the Fe i spectral lines at 1564.8 nm and 1566.2 nm. The spectral line Fe i at 1565.2 nm is better described under JK coupling. However, following Bellot Rubio et al. (2000) we consider it to be a normal Zeeman triplet with an effective Landé factor of \(g_{\text{eff}} = 1.45\).

During the observing time the solar image rotated, as a consequence of GREGOR’s altitude-azimuthal mount (Volkmer et al. 2012), by about 5.6° and 14.7° for NOAA 12045 and NOAA 12049, respectively. This was sufficiently
Borrero et al.: Deep-probing of sunspot penumbra: no evidence for field-free gaps

Table 1. Atomic parameters of the observed spectral lines. λ_0 is the central laboratory wavelength of each spectral line. σ and α represent the cross-section (in units of Bohr’s radius squared a_0^2) and velocity parameter of the atom undergoing the transition, respectively, for collisions with neutral atoms under the ABO theory (Anstee & O’Mara 1995; Barklem & O’Mara 1997; Barklem et al. 1998).

Ion	λ_0 [Å]	χ_{low} [eV]	log(gf)	Elec.conf°	σ	α	g_{eff}
Fe i	15648.515	5.426	−0.669°	$D_1 - D_3$	975°	0.229°	3.0
Fe i	15652.874	6.246	−0.995°	$7D_5 - 5D_{15} f[3.5]_0$	142°	0.330°	1.45
Fe i	15662.018	5.830	0.190°	$5P_3 - 5F_4$	119°	0.240°	1.5

Notes. * Values taken from Nave et al. (1994). † Values taken from Borrero et al. (2003). ‡ Values taken from Bloomfield et al. (2007).

small not to heavily distort the continuum images reconstructed from the individual slit positions. The GREGOR Adaptive Optics System (GAOS; Berkefeld et al. 2012) worked throughout the entire scans (see Sections 4.1.2 and 4.2). We note that the Fried parameter r_0 scales as $\lambda_0^{5/6}$ and therefore the size of the isoplanatic patches is about 2.5 times larger at 1565 nm than at 630 nm, thereby allowing the AO to perform much better (e.g. compensating seeing and optical aberrations) at larger wavelengths.

Normalized continuum intensity images from the observed active regions are presented in Figure 1. The contrast of the continuum intensity in the granulation, yielding a spatial resolution of about 0.4-0.45″.

By correlating our images with simultaneous HMI/SDO full-disk continuum images, we estimate that the sunspots’ centers were located at coordinates $(x,y) = (125′′, -300′′)$ and $(x,y) = (73′′, -83′′)$ (measured from disk center), for NOAA 12045 and NOAA 12049 respectively. These values correspond to heliocentric angles of $\Theta = 20.5°$ ($\mu = 0.936$) and $\Theta = 6.5°$ ($\mu = 0.993$). The image scale is also estimated by correlating the images with HMI data, yielding $\delta_x = 0.135′′$ pixel$^{-1}$ and $\delta_y = 0.136′′$ pixels$^{-1}$ along the x and y axis, respectively. The sizes of the scanned regions are 60 \times 27 arcsec2 (top panel in Figure 1) and 53 \times 45 arcsec2 (bottom panel in Figure 1). The width of the spectrograph’s slit was set to 0.27′′ (i.e. twice the scanning step).

The data have been treated with dark current subtraction, flat-field correction, fringe removal (see Franz et al. 2016, for more details) as well as polarimetrically calibrated (see Collados et al.; in preparation), yielding a noise level of about $\sigma_y \approx \sigma_u \approx \sigma_v \approx 10^{-3}$ in units of the quiet Sun continuum intensity. These values were achieved with 30 ms exposures per accumulation and a total of five accumulations per modulation step. The wavelength calibration of the data was performed under the assumption that the averaged quiet-Sun intensity spectral line profiles, obtained as the mean $I(\lambda)$ inside the blue rectangles in Figure 1, are located at the central laboratory wavelength position λ_0 (see Table 1) but shifted by -535 m s$^{-1}$ to account for the convective blueshift in the observed spectral lines as determined from the Fourier Transform Spectrometer (FTS; Livingston & Wallace 1991). After the aforementioned standard calibrations, the data were corrected for spectral scattered light within the spectograph (Section 3), and for the smearing effects introduced by the telescope PSF (Section 4.1).

3. Spectral profile: veil correction

Prior to the analysis of the recorded data we have estimated GRIS’s spectral profile employing a similar procedure as the one described in Bianda et al. (1998), Allende Prieto et al. (2004), Cabrera Solana et al. (2007). We first obtained a GRIS-simulated average quiet-Sun intensity profile $I_{qs}^{\text{sim}}(\lambda)$ by convolving FTS data with a wavelength profile $t(\lambda)$ that mimics the effects of GRIS’s spectral profile:

$$I_{qs}^{\text{sim}}(\lambda) = I_{fts}(\lambda) \ast t(\lambda) .$$

In principle $t(\lambda)$ can be approximated by a Gaussian function $g(\lambda, \sigma)$, where σ refers to the width of spectral profile. However, a Gaussian profile decays rapidly with wavelength, thereby neglecting the possible effect of extended wings in the spectral profile. These wings can be interpreted as spectral scattered-light or spectral veil, that mixes information coming from far-away wavelengths. As a first approximation one can consider this spectral veil to be wavelength independent and proportional to the continuum intensity, in which case Equation (1) becomes:

$$I_{qs}^{\text{sim}}(\lambda, \sigma, \nu) = (1 - \nu)I_{fts}(\lambda) \ast g(\lambda, \sigma) + \nu I_{cts} ,$$

where $I_{cts} = I_{fts}(\lambda_c)$ is the continuum intensity in FTS data and ν is the fraction of spectral scattered-light. Next, we create an array of simulated averaged quiet-Sun intensity profiles through Eq. (2) $I_{qs}^{\text{sim}}(\lambda)$, employing different values of σ and ν. Each of these is then compared, via a χ^2 merit-function, with the observed (i.e. by GRIS) average quiet-Sun intensity profile $I_{qs}^{\text{obs}}(\lambda)$ that is obtained by averaging the intensity profiles in the quiet-Sun region denoted by the blue-dashed rectangles in each map in Figure 1.

$$\chi^2(\sigma, \nu) = \sum_{k=1}^{N_k} \left[I_{qs}^{\text{sim}}(\lambda_k, \sigma, \nu) - I_{qs}^{\text{obs}}(\lambda_k) \right]^2 ,$$

where N_k is the number of spectral lines.
where the index \(k = 1, \ldots, N_p \) runs for all wavelengths observed by GRIS across a particular spectral line. We note that, since GRIS’s spectral sampling (\(\approx 40 \text{ mÅ}^{-1} \)) is coarser than that of FTS (\(\approx 23 \text{ mÅ}^{-1} \)), \(I_{\text{sim}}(x, y, \lambda) \) must be re-interpolated to GRIS’s wavelength grid before Equation 3 can be evaluated. Figure 2 (top panel) shows the \(x^2 \) surface as a function of \(x \) and \(\nu \) that results from the comparison of \(I_{\text{sim}}(x, y, \lambda) \) and \(I_{\text{obs}}(x, y, \lambda) \) for the Fe I spectral line located at 1564.8 nm (see Table 1). The minimum of this surface is attained for \(\sigma = 70 \text{ mÅ} \) and \(\nu = 0.12 \) (12% of spectral veil). This value of \(\sigma \) corresponds to a FWHM for the spectral transmission of \(g(\nu, \sigma) \) of approximately 165 mÅ (cf. [38]). Same values are obtained for both sunspots in Fig. 1. Figure 2 (bottom panel) compares the original FTS intensity profile \(I_{\text{obs}}(\lambda) \) (crosses), the simulated quiet-Sun profile \(I_{\text{qs}}(\lambda) \) (solid lines) obtained through Eq. 2 with the aforementioned values of \(\sigma \) and \(\nu \), as well as GRIS’s observed quiet-Sun profile \(I_{\text{qs}}(\lambda) \) in NOAA 12049 (filled circles). As it can be seen \(I_{\text{obs}}(\lambda) \) and \(I_{\text{qs}}(\lambda) \) are extremely similar as guaranteed by the small value of \(\chi^2 \) achieved (top panel in Figure 2).

With this, it is now possible to subtract the effect of the spectral veil from the observed intensity profiles at every pixel \((x, y)\) in the entire field-of-view and obtain corrected profiles, \(I_{\text{cor}}(x, y, \lambda) \), by simply applying:

\[
I_{\text{cor}}(x, y, \lambda) = [1 - \nu]^{-1}I_{\text{obs}}(x, y, \lambda) - \nu I_{\text{qs}}(x, y) \quad . \quad (4)
\]

At this point a number of clarifications are in order. The first one is that the correction for spectral veil affects only the intensity profiles since the continuum polarization is zero \(Q_{c}\text{obs}(x, y) = U_{c}\text{obs}(x, y) = V_{c}\text{obs}(x, y) = 0 \) everywhere, making \(Q_{\text{cor}} = Q_{\text{obs}} \) (and likewise for \(U \) and \(V \)). In the following sections we will not deal anymore with \(I_{\text{obs}}(x, y, \lambda) \) but instead will consider only the veil-corrected Stokes vector \(I_{\text{cor}}(x, y, \lambda) \). However, for the sake of simplicity we will continue to refer to it as \(I_{\text{obs}}(x, y, \lambda) \).

Finally it must be borne in mind that by applying Eq. 4 here we are only correcting for the spectral veil. The rest of the spectrograph’s profile, namely the Gaussian profile \(g(\lambda, \sigma) \) in Eq. 2 (with \(\sigma = 70 \text{ mÅ} \)), will be considered at a later step in the analysis (Sect. 4.3).

4. Analysis

4.1. Spatial Point Spread Function

Seeing, scattered light and diffraction effects cause the observed Stokes vector to differ from the one emitted at a point \((x, y)\) on the solar surface. Their effect can be quantified via the point spread function (PSF) of the optical system \(P(x, y) \) which smears out the original signal:

\[
I_{\text{PSF}}(x, y, \lambda) = \int \int I_{\text{PSF}}^{\text{sim}}(x', y', \lambda) P(x - x', y - y') \, dx' \, dy' \quad . \quad (5)
\]

The above equation indicates that some percentage of the signal from points \((x', y')\) with \(x' \neq x \) and \(y' \neq y \), will contaminate the Stokes vector at the location \((x, y)\). Cleaning the observed signal from this effect has been traditionally limited to data from space-borne instrumentation where the optical system has a well-defined \(P(x, y) \) function that can be calculated, sometimes even analytically, for all sorts of instruments ([39]; [40]; [41]; [42]; [43]; [44]; [45]; [46]). From the ground the situation becomes more complicated, as the time-varying seeing imposes strong limits as to how fast the observations must be carried out in order to be corrected. In this case \(P(x, y) \) must be determined empirically via reconstruction techniques such as Speckle-reconstruction ([47]; [48] Multi-Object Multi-Frame Blind Deconvolution ([49]; [50]; [51]; [52]; [53]; [54]). For these reasons, in ground-based observations, the aforementioned procedure has been limited to high-throughput filter-based spectropolarimeters ([55]; [56]; [57]; [58]; [59]; [60]; [61]; [62]; [63]). While in principle these techniques should deliver diffraction limited observations, recently [64] and [65] have argued that high-altitude seeing remains uncorrected.

Nowadays, high-order adaptive optics allow us to obtain spectropolarimetric data from slit-based instruments that are stable enough, during acquisition, so as to attempt to decontaminate \(I_{\text{PSF}} \) and retrieve \(I_{\text{PSF}} \) (Eq. 5). The issue remains however as to how to obtain a PSF that represents the optical system, including seeing, in ground-based long-slit spectrographs ([66]; [67]). Although the AO-system can correct most of the low- and mid-order optical aberrations, it cannot correct all of them. Moreover the correction weakens for regions away from the AO lockpoint. Consequently the observations are never completely diffraction limited and hence the difficulties in having a good knowledge of \(P(x, y) \). We will therefore resort to indirect means to obtain a meaningful PSF that can be employed to isolate the solar signal. Let us first assume, for simplicity, that the PSF can be described by two different Gaussian functions corresponding to narrow- “n” and wide- “w” angles contributions, respectively:

\[
P(x, y) = p_n g_n(x, y, \sigma_n) + p_w g_w(x, y, \sigma_w) \quad , \quad (6)
\]

where \(\sigma_n \) and \(\sigma_w \) correspond to the distances, in seconds of arc, in which each Gaussian contributes with \(\approx 68.2 \% \) of its power. \(p_n \) and \(p_w \) denote the relative contribution from narrow and wide angles respectively. We note that \(P(x, y) \), \(g_w \), and \(g_n \) are normalized to unity, and that \(p_w + p_n = 1 \).

4.1.1. Estimation of \(p_w \) and \(\sigma_w \)

For sunspots not far from disk center there is always a region, located within the umbra, where the magnetic field is aligned with the observer’s line-of-sight. To locate these regions within the observed FOV we have selected those pixels in Fig. 1 where \(I_p/I_{\text{ps}} < 0.7 \) and where the maximum of the total linear polarization \(|Q^2 + U^2|^{1/2} \leq 5 \times 10^{-3} \) is reached. In total there are about 60 pixels inside the umbra of each sunspot that fulfill these conditions. They are marked in Fig. 1 with green crosses. We refer to the location of these pixels as \((x^*, y^*)\).

Let us also remember that, whenever a magnetic field is aligned with the observer’s line-of-sight, the intensity
profile $I(\lambda)$ of a normal Zeeman triplet ($J_l = 0 \rightarrow J_a = 1$ or vice-versa) presents two (and only two) distinct absorption features according to the selection rule $\Delta M = \pm 1$ for the Zeeman effect (del Toro Iniesta 2003). Each of these two absorption features is shifted with respect to the central wavelength by an amount that is proportional to $g_{\text{eff}} B \Delta M$, where B is the modulus of the magnetic field. If the separation between these two components is sufficiently large, they appear as two unblended spectral lines, and therefore the observed intensity at the central wavelength must be very close to the continuum intensity: $I(\lambda^1) \approx I_c = I(\lambda_e)$. To ensure that these conditions are met we will use the intensity profile of Fe I 1564.8 nm because this is the spectral line in our observations with the largest Landé factor (see Table 1) and the only one featuring a normal Zeeman triplet. We note that λ^1 does not necessarily correspond to the central laboratory wavelength λ_0. Instead it is defined as the wavelength located half the way between the two absorption features with $\Delta M = \pm 1$.

Interestingly, the profiles selected above and located at (x^*, y^*) do exhibit a small absorption feature at λ^1. As the magnetic field is mostly aligned with the observer’s line-of-sight in those pixels, the absorption feature at λ^1 is unlikely to be produced by the magnetic field (unshifted $\Delta M = 0$ component of the Zeeman pattern). Instead, it must arise from an absorption profile unaffected by the magnetic field (i.e. penumbra and quiet-Sun surrounding both sunspots). In order to determine how far this contribution comes from and how much there is, we calculate a new intensity profile at each of the selected pixels $I(x^*, y^*)$ in the following way:

$$\tilde{I}(x^*, y^*, \lambda) = \int \int g_w(x-x^*, y-y^*, \sigma_w) T^{\text{obs}}(x, y, \lambda) \, dx \, dy$$

(7)

where g_w was defined in Eq. 3. Next, we calculate the difference between the continuum intensity at the location (x^*, y^*), that is $I_c^{\text{obs}}(x^*, y^*)$, and $p_w \tilde{I}(x^*, y^*, \lambda^1)$ for different values of p_w and σ_w. Since the bulk of the contribution to the absorption feature observed at λ^1 is ascribed to the penumbra and granulation and these are located about $10^\prime\prime$ away from (x^*, y^*), then $\sigma_w \geq 10^\prime\prime$. The results are presented in Figure 3 for the two sunspots in our dataset. As it can be seen the intensity at the central wavelength position becomes comparable to the continuum intensity, $I^{\text{obs}}(\lambda^1) \approx I_c^{\text{obs}}$, for $p_w \approx 0.2 - 0.3$. This indicates that the absorption feature seen at λ^1 in those pixels, where the magnetic field is aligned with the observer’s line-of-sight, (x^*, y^*), can be explained with a 20-30 % straylight contamination coming from outside the umbra. Unfortunately the exact distance cannot be reliably determined since the same values of p_w are obtained for three different values of σ_w. As a compromise we will adopt $\sigma_w = 20^\prime\prime$ and $p_w = 0.2$. It should be noted however that the smaller σ_w the larger must p_w be in order to explain the absorption feature seen at λ^1. This happens because $\tilde{I}(x^*, y^*, \lambda)$ does not include a strong absorption at λ^1 for small values of σ_w, as g_w (see Eq. 4) mainly includes contributions from the neighborhood of (x^*, y^*) (i.e. sunspot umbra).

The procedure described above is illustrated, for one of the pixels referred to as (x^*, y^*), in Figure 4. This figure depicts the observed Stokes profiles I^{obs} in black lines. As it can be seen Stokes I (upper-left panel) has a small absorption feature at a wavelength $\lambda^1 \approx 1564.85$ [nm] located in between the two σ-components of the Zeeman pattern. The very small observed Q (bottom-left) and U (bottom-right) profiles, along with the large circular polarization signals (Stokes V; top-right), implies the magnetic field in this pixel is mostly aligned with the observer’s line-of-sight. In red lines we show the contribution from the surrounding penumbra and quiet-Sun I as calculated through Eq. 4 assuming that about 68 % of the wide-angle scattered light comes from a distance, around the considered pixel, of $20^\prime\prime$: $\sigma_w = 20^\prime\prime$. Blue lines show the umbral profile in the same pixel after removing $p_w I$ from I^{obs} using $p_w = 0.2$ and renormalizing using $(1 - p_w)$. The resulting Stokes I profile (blue lines in top-left panel) does no longer feature the absorption at λ^1 (i.e. where the unshifted $\Delta M = 0$ would appear). Indeed, at this wavelength the observed intensity is the same as the continuum intensity.

It is important to mention at this point that the absorption feature seen at λ^1 could also be caused by unidentified molecular blends that are common in the umbra at near-IR wavelengths, left-over fringes, and even by the magnetic field not being fully aligned with the observer’s line-of-sight. It could also appear as a combination of all the above. Because we have assumed only one origin, the values for p_w obtained in this section should be considered only as an upper limit of the real amount of wide-angle scattered light present in our observations.

4.1.2. Estimation of p_w and σ_w

Once p_w is known, it is straightforward to determine p_n as $p_n = 1 - p_w = 0.8$. The width of the narrow-angle PSF, σ_n, is determined by performing a slit-scan of the pinhole array while it is inserted into the light-path at the third focal point along the optical path (i.e. before the spectrograph’s slit). By fitting the shape of the light curve at the pinhole discontinuity, a value of 3.2 pixels on the CCD was determined. Considering the values for the image scale given in Sect. 2 this yields $\sigma_n = 0.18^\prime\prime$, corresponding to a FWHM of 0.43" and very similar to the spatial resolution estimated from the power spectrum of the granulation (Sect. 2). This value is larger than the theoretical diffraction-limited FWHM of $\approx 0.27^\prime\prime$. While we have not investigated in detail the reason for this worse-than-ideal performance we can point to a number of possible sources such as high-altitude seeing (Scharmer & Henriques 2012; Löfdahl & Scharmer 2012), width of the spectrograph’s slit, and slightly off-focus spectrograph.

4.2. PCA expansion and deconvolution

Now that we have empirically estimated the PSF of the optical system $P(x, y)$ we can attempt to retrieve I^{sun} by deconvolving I^{obs} through Eq. 5. One possibility would be to deconvolve individual two-dimensional monochromatic images (e.g. $I^{\text{obs}}(x, y, \lambda)$) for $k = 1, \ldots, N_{\lambda} = 600$ and likewise for Q, U, and V. However, this approach neglects the

1. This number includes only the primary mirror. A slightly larger value is obtained if the cetral obscuration and spiders from the secondary mirror are included.
information contained in the wavelength dependence of the Stokes parameters. This is important because this information allows to reduce the influence of the noise in the deconvolution process. Currently there are two methods that take advantage of this wavelength dependence. The first one, referred to as spatially-coupled inversions (van Noort 2012), uses the radiative transfer equation for polarized light to exploit the wavelength dependence of the Stokes vector during the deconvolution process (Riethmüller et al. 2013; van Noort et al. 2013; Lagg et al. 2014; Tiwari et al. 2015). This method has the advantage that it remains to be proven that both methods give the same results when applied to the same data. However, that it remains to be proven that both methods give the same results when applied to the same data. Hence we follow Ruiz Cobo & Asensio Ramos (2013) and Quintero Noda et al. (2015) and expand, each of the four components of the Stokes vector (I^{obs} and I^{sun}) over the entire field of view in Figure 4 in a set of orthonormal eigen-vectors $\phi(\lambda)$ such that:

$$I^{\text{obs}}_m(x, y, \lambda) = \sum_{n=1}^{N_\lambda} C^{\text{obs}}_{m,n}(x,y) \phi_{m,n}(\lambda) \approx \sum_{n=1}^{N^{\text{pca}}_\lambda} C^{\text{obs}}_{m,n}(x,y) \phi_{m,n}(\lambda).$$

(8)

$$I^{\text{sun}}_m(x, y, \lambda) = \sum_{n=1}^{N_\lambda} C^{\text{sun}}_{m,n}(x,y) \phi_{m,n}(\lambda) \approx \sum_{n=1}^{N^{\text{pca}}_\lambda} C^{\text{sun}}_{m,n}(x,y) \phi_{m,n}(\lambda),$$

(9)

where the index $m = 1, \ldots, 4$ corresponds to any of the four components of the Stokes vector, I, \ldots, V, respectively, and the index $n = 1, \ldots, N_\lambda$ runs for the total number of observed wavelengths (see Sect. 2) on the upper part of the above equations. The summation over index n is truncated to N^{pca}_λ, hence the approximate symbol, in the lower part of the equations. This will be explained later. We note the implicit assumption that the same set of n-eigen-vectors $\phi_{m,n}(\lambda)$ can be used to expand the m-th component of both the observed and solar Stokes vector. The PCA analysis provides a method to calculate the eigen-vectors ϕ and eigen-values C by diagonalizing (i.e., via the Singular Value Decomposition method) the matrix of the observed Stokes profiles (Quintero Noda et al. 2015) or, equivalently, the correlation matrix of the observed Stokes profiles (Skumanich & López Aristó 2002; Casini et al. 2013). Once these have been obtained, we substitute Eqs. 8 and 9 into Eq. 5:

$$\sum_{n=1}^{N_\lambda} C^{\text{obs}}_{m,n}(x,y) \phi_{m,n}(\lambda) \approx \sum_{n=1}^{N^{\text{pca}}_\lambda} \left[\int \int C^{\text{sun}}_{m,n}(x',y') P(x-x',y-y') dx' dy' \right] \phi_{m,n}(\lambda).$$

(10)

Since $\phi_{m,n}$ are orthogonal, Eq. 10 must hold independently for each of the N_λ eigenvalues:

$$C^{\text{obs}}_{m,n}(x,y) = \int \int C^{\text{sun}}_{m,n}(x',y') P(x-x',y-y') dx' dy',$$

(11)

which shows that the original problem of convolution/deconvolution of the Stokes vector (Eq. 5) has been narrowed down to determining the coefficients $C_{m,n}(x,y)$ of the expansion. Since the number of coefficients is equal to the number of observed wavelengths for all four Stokes parameters, $m \times n = 4N_\lambda$, applying Eq. 11 or Eq. 5 is, in principle, equivalent and requires the same effort. Interestingly, only a small number of eigenvectors provide useful information about the Stokes profiles. This implies that we can truncate the expansions in Eqs. 8 and Eqs. 9 (lower part of these equations) to a much smaller number of coefficients $n = 1, \ldots, N^{\text{pca}}_\lambda ||N_\lambda|$. The truncation provides an approximation to the m-th component of the Stokes vector $I^{\text{pca}}_m(\lambda)$ (hereafter referred to as PCA-reconstructed Stokes profile) that differs by an amount $O_m(\lambda)$ from the observed one $I^{\text{obs}}_m(\lambda)$:

$$O_m(x,y,\lambda) = \|I^{\text{pca}}_m(x,y,\lambda) - I^{\text{obs}}_m(x,y,\lambda)\|.$$

(12)

The above equation provides a tool to determine where the expansion (Eqs. 8, 9) must be truncated or, equivalently, a way to determine N^{pca}_λ. This is done by adding new eigenvectors until the mean (spatial and spectral) difference between the PCA-reconstructed and observed Stokes profile is at the level of the noise in the observations:

$$\sigma_m^2 \approx (N_x N_y N_\lambda)^{-2} \sum_{i,j,k} O_m(x_i, y_j, \lambda_k)^2,$$

(13)

where N_x and N_y are the total number of spatial points along the x and y directions, respectively. σ_m refers to the noise in the m-th component of the Stokes vector. All these values have been provided in, or can be obtained from, Sect. 2. Table 2 presents the optimum values of N^{pca}_m obtained through the application of the two above equations. We note that the number of coefficients needed to properly reproduce the observed Stokes vector is larger for NOAA 12045 than for NOAA 12049. The reason for this is that NOAA 12049 is very close to disk center ($\Theta = 6.5^\circ$) and therefore there is very little difference between the observed Stokes profiles on the center-side and limb-side of the penumbra. At larger heliocentric angles (NOAA 12045; $\Theta = 20.5^\circ$) this is not the case anymore. Moreover, for the latter sunspot the limb-side penumbra displays highly asymmetric three-lobe Stokes profiles similar to those in Borrero et al. (2004, 2005). This is undoubtedly a sign of two distinct polarities present in the resolution element and it explains the larger number of coefficients needed to reproduce I^{obs} in NOAA 12045.
The deconvolution of the PCA coefficients $C_{m,n}$ for $m = 1, ..., 4$ and $n = 1, ..., N_m^{\text{pca}}$, that is obtaining $C_{m,n}^{\text{sun}}$ from $C_{m,n}^{\text{obs}}$ and the known PSF through Eq. (11) is done by applying 10 iterations of a Lucy-Richardson-like algorithm (Richardson 1972; Lucy 1974) while apodizing the data on the 5\% outermost region of the observed field-of-view for each sunspot. More details about this procedure can be found in (Quintero Noda et al. 2015). After the $C_{m,n}^{\text{sun}}$ have been obtained, I^{sun} can be reconstructed via Eq. (9) but truncating the summation at N_m^{pca} from Table 2 instead of at N_3. This yields $I^{\text{sun}}(x,y,\lambda)$. As a demonstration of the deconvolution process we present, in Figure 5, a comparison between the total circular (top panels) and linear polarization (lower panels), V_{tan} and L_{tot}, in NOAA 12049 obtained from the originally observed Stokes profiles I^{obs} (left) and the deconvolved Stokes profiles I^{sun} using a truncated PCA expansion (≈ symbols in Eqs. [8] [9]). V_{tot} and L_{tot} are obtained as the wavelength integral of $\| V(\lambda) \|$ and $\sqrt{Q^2(\lambda) + U^2(\lambda)}$, respectively. At high frequencies (narrow-angle scattered light), where the information can be efficiently recovered. Therefore, we can consider that, after the deconvolution, the spatial resolution is given by the width of the narrow-angle Gaussian: $\sigma_n = 0.18^\circ$ (Sect. 4.1.2). This value is also supported by the power spectra of the granulation (see Sect. 2).

4.3. Inversion of Stokes profiles

We now apply the SIR inversion code (Stokes Inversion based on Response Functions; Ruiz Cobo & del Toro Iniesta 1992) to $I^{\text{sun}}(\lambda)$ in order to infer the kinematic, thermodynamics and magnetic properties of the solar atmosphere in the region within by the red rectangles in Fig. 11. The inversion code employs an initial guess model for the solar atmosphere as a function of the continuum optical-depth at a reference wavelength of 500 nm, $\log \tau_0$, referred to as $M_0(\log \tau_0)$, to solve the radiative transfer equation and obtain a synthetic Stokes vector $I^{\text{syn}}(\lambda)$. This synthetic Stokes vector is then compared with the real one $I^{\text{sun}}(\lambda)$ via a χ^2-merit function. The initial model is then perturbed, $M_1 = M_0 + \delta M$ so as to minimize the χ^2-merit-function. To that end, the perturbation δM is obtained via a Levenberg-Marquardt algorithm (Press et al. 1986) and Singular Value Decomposition method (Golub & Kahan 1965). The perturbations are introduced at specific $\log \tau_0$ positions called nodes, with the final optical-depth dependence $\delta M(\log \tau_0)$ being obtained by interpolating between the nodes. The perturbative process is repeated until a minimum in χ^2 is reached. The resulting atmospheric model could be taken as representative of the physical conditions of the solar plasma, however, due to the dependence of the results from the initial guess model, we have repeated the inversion procedure ten different times employing random initial models M_0. The one that yields the best χ^2 is the one adopted as the final solution.

The process described above must be applied independently to each (x,y) pixel contained in the red rectangles in Fig. 11. Once this is done we obtain $M(x,y,\log \tau_0)$, which consists of the three-dimensional distribution of the line-of-sight-velocity v_{los}, temperature T, magnetic field strength B, inclination of the magnetic field with respect to the observer’s line of sight γ, and finally the azimuth of the magnetic field on the plane perpendicular to the observer’s line-of-sight ψ.

Our inversions were carried out with three nodes in T and two nodes in $v_{\text{los}}, B, \gamma$, and ψ, respectively. This adds up to a total of 10 free parameters that are used to fit at each spatial pixel (x,y), the solar Stokes vector $I^{\text{sun}}(\lambda)$ containing 4 $N_\lambda = 2400$ data points. The node selection will stay the same until Section 5.3, where a more complex situation will be considered. When constructing the χ^2-merit-function that measures the difference between the synthetic $I^{\text{syn}}(\lambda)$ and solar $I^{\text{sun}}(\lambda)$ Stokes vector, the polarization profiles Q, U and V were given twice the statistical weight of I. This is done because Stokes I is more affected by unidentified molecular blends and left-over fringes that are not fully corrected during data reduction (see Sect. 2). We note at that each iteration step and before being compared with I^{sun}, the synthetic Stokes vector I^{syn} was convolved with a Gaussian profile with $\sigma = 70$ mÅ. This is done to include the effects of the spectograph’s profile $g(\lambda, \sigma)$ that remained unaccounted for after the removal of the spectral veil (see Sect. 3). We emphasize that we employ only one component during the inversion. No non-magnetic component is used to model the straylight because this was already accounted for in the deconvolution (Sect. 4.2).

Figure 5 shows an example of the observed after PCA deconvolution (filled circles) and best-fit (solid lines) Stokes profiles in the three observed spectral lines. This is the result for a pixel that corresponds to a penumbral intrasun in NOAA 12049 (black square in Fig. 8). Owing to the fact that less weight was given to the intensity during the inversion (because of blends and left-over fringes) the fits in Stokes I are always of less quality than in Q, U, V. Since the selected pixel is located in a intrasun, Stokes V features several lobes. Despite using only linear gradients (i.e. two nodes in $v_{\text{los}}, B, \gamma$, and ψ), the inversion does a reasonable job in fitting these multi-lobed circular polarization signals. Outside the intrasuns, Stokes V regains it regular shape and the quality of the fits improves significantly.

The three dimensional distribution of the kinematic and thermodynamics parameters provided by the inversion will be discussed in a future paper. In this work we will focus only on the magnetic field. The radiative transfer equation allows us to determine the magnetic field in spherical coordinates in the observer’s reference frame: $B = (B_r, B_\theta, B_z)$. Instead, it is more useful to analyze the magnetic field in cylindrical coordinates in the local reference frame: $B = (B_r, B_\theta, B_z)$, where B_z corresponds to the direction perpendicular to the solar surface, and B_r and B_θ are the magnetic field components in polar coordinates on the plane parallel to the solar surface with origin at the sunspots’ center. To this end we have employed the methods described by (Borrero et al. 2008) and (Borrero & Ichimoto).
Borrero et al.: Deep-probing of sunspot penumbra: no evidence for field-free gaps

Fig. 5. Comparison between the total circular (top) and linear (bottom) polarization using the original observed Stokes vector I_{obs} (left) and the deconvolved Stokes vector I_{sun} (right) after truncating the PCA expansion. The frame around the deconvolved maps (better seen on the upper-right panel) appears as a consequence of apodization before deconvolution.

(2011) to convert from the observer’s to the local reference frame. This method solves the 180°-ambiguity in the azimuth of the magnetic field vector by choosing, at each pixel (x, y) on the solar surface, either ψ or $\psi + \pi$ so that the magnetic field becomes as radial as possible. This yields $B_r(x, y, \log \tau_5)$, $B_\theta(x, y, \log \tau_5)$ and $B_z(x, y, \log \tau_5)$.

5. Results and discussion

5.1. Field-free gaps and return flux

Figures 7 and 8 show the maps, at an optical depth of $\log \tau_5 = 0$, of the magnetic field strength B (left) and the vertical component of the magnetic field B_z in the local reference frame (right) in the regions denoted by the red rectangles in Fig. 1 for NOAA 12045 and 12049, respectively. In these plots the black arrows denote the projection of the magnetic field \mathbf{B} onto the solar surface (B_r, B_θ). The length of each arrow is proportional to $\sqrt{B_r^2 + B_\theta^2}$. For better visualization we show the vectors only every other pixel both in the vertical and horizontal directions. White contours on the B maps (left) enclose those regions where $B \leq 500$ Gauss, while on the B_z maps (right) they enclose regions where $B_z \leq 0$ (i.e. magnetic field lines returning to the solar surface).

The most noticeable pattern in these figures is the very well-known spine/intraspine penumbral structure (Lites et al. 1993) described in Sect. 1: regions of strong and vertical magnetic fields (spines) interlaced with weaker and more horizontal magnetic fields (intraspines).
The regions where the magnetic field strength is smaller than 500 Gauss represent only 0.5 % and 0.2 % of the total area in Figures 7 (left) and 8 (left), respectively. These areas would be even smaller if we had employed a 300 Gauss limit found by Spruit et al. (2010). At close inspection we notice that these tiny regions where the magnetic field is below 500 Gauss correspond to pixels in the outer penumbra where granules enter into the sunspot. A clear example of this can be found in the white contours on the left panel of Fig. 8 at position \((x \approx 8.4", \ y \approx 3.7")\). One can see that this region corresponds to a bright granule in the outer penumbra inside the red rectangle in the bottom panel of Fig. 1 at position \((x \approx 53", \ y \approx 17")\). These results rule out the existence, at an optical depth of \(\log \tau_5 = 0\), of dynamically weak magnetic fields (cf. Scharmer 2008; Spruit et al. 2010), and even more strongly so, the presence of field-free gaps in the deep photospheric layers of the penumbra (Spruit & Scharmer 2006; Scharmer & Spruit 2006). This is in agreement with previous results obtained from Hinode/SP data (Borrero & Solanki 2008; Puschmann et al. 2014; Ruiz Cobo & Asensio Ramos 2013; Tiwari et al. 2013, 2015) and SST/CRISP data (Scharmer et al. 2008b; Scharmer & Henriques 2012; Scharmer et al. 2013). However, it must be borne in mind that the information at \(\log \tau_5 = 0\) provided by the spectral lines employed in this work (Sect. 2; see also Table 1) is much more reliable than the information, at the same optical depth, provided by the spectral lines (Fe I line pair at 630 nm) employed in the aforementioned investigations (see Section 5.2). Finally, it is worth mentioning that the results for NOAA 12049 are of particular importance because this sunspot is located very close to disk-center, thereby allowing us to probe slightly deeper photospheric layers than NOAA 12045.

The presence of field-free gaps or dynamically weak magnetic fields in the penumbra had been previously ruled out (Mathew et al. 2003; Borrero et al. 2004; Bellot Rubio et al. 2004; Borrero et al. 2005; Cabrera Solana et al. 2008) from observations of the same deep-forming Fe I spectral lines around 1565 nm used in this work (see Table 1). However, those older investigations were carried out with data at relatively low spatial resolution (1 arcsec) and without accounting for wide-angle scattered light.

Regions where \(B_z < 0\) represent 19.6 % and 3.0 %, respectively, of the total area in the right panels of Figs. 7 and 8. The much larger region of magnetic flux return in NOAA 12045 is probably due to the presence of a nearby plage with opposite polarity magnetic fields outside the sunspot. This also shortens the radial extension of the penumbra on the limb side of NOAA 12045 as compared to 12049. These numbers do not fully agree with the values given by Ruiz Cobo & Asensio Ramos (2013) who found that, at \(\log \tau_5 = 0\), about 28 % of the penumbra harbors magnetic field lines returning into the solar sur-
face. An additional difference between our result and those from Ruiz Cobo & Asensio Ramos (2013) and Scharmer et al. (2013) is that the regions of return flux detected here enclose also the central core of the intraspots, not only their lateral boundaries (see left panels in Figs. [7] and [8]).

The discrepancy in the results might have several sources. One the one hand, as already mentioned by Ruiz Cobo & Asensio Ramos (2013); see also Sect. 5.2, B$_2$ at log $\tau_5 = 0$ is not very well constrained by spectropolarimetric observations of the Fe i spectral lines at 630 nm (Hinode/SP and SST/CRISP). From this point of view our results at this optical depth are to be preferred. On the other hand, as we will show later (see Sect. 5.3), our results on B_2 are heavily dependent on the amount (Eq. [8]; Sect. 4.1) of scattered light, p_w, employed in the PSF. Since our knowledge of GRIS/GREGOR PSF is very limited (Sect. [9]) compared to Hinode/SP (Suematsu et al. 2008; Danilovic et al. 2008; van Noort 2012), the 28% of return-flux area provided by Ruiz Cobo & Asensio Ramos (2013) could be considered as being more reliable. Given that both sets of data have their shortcomings we think that the total amount of return flux present in the penumbra and its spatial distribution is still open to debate. More investigations need to be carried out on this subject before a more definite answer can be given.

5.2. How deep are we probing?

Throughout this paper we have stated several times that the Fe i spectral lines at 1565 nm employed in this work provide more reliable information about the deep photospheric layers than the commonly used Fe i spectral lines at 630 nm. In Sect. [2] we ascribed this to the lower H^- opacity at 1565 nm than at 630 nm, plus the larger excitation potential of the former spectral lines compared to the latter. However this is only a qualitative explanation. In this section we will provide a more quantitative one.

To that end we have determined the depth of the optical depth unity level as a function of wavelength $z(\tau_5 = 1)$ for different atmospheric models: granular model from Borrero & Belot Rubio (2002), hot and cool umbral models from Collados et al. (1994), and finally the spatially-averaged penumbral model obtained from the inversions of NOAA 12049 described in Sect. [3]. The results are shown in Figure [9].

All curves in this figure have been shifted vertically so that $z(\tau_5 = 1) = 0$ for a wavelength of 500 nm. As expected, all curves follow the opacity due to the bound-bound and bound-free transitions of the H_i ion (Chandrasekhar & Breen 1946), but each is modulated by the density and temperature of the different models. The height difference between the continuum level $\tau_5 = 1$ or log $\tau_5 = 0$ at 630 nm and 1565 nm is -36 km (granular model; red curve), -62 km (cool-large umbra; green curve) and -71 km (hot-small umbra; blue curve), and -75 km (average penumbra; black curve), meaning that the continuum level is formed some 60-70 km deeper (i.e. half a pressure-scale height) at 1565 nm than at 630 nm in sunspots but only about 30 km deeper in the quiet-Sun.

However, the height of formation of the continuum level tells only part of the story. We must also consider the formation of the spectral lines themselves, which depends on their excitation potential, oscillator strength, and electronic configuration. This can be achieved by means of the so-called response functions $R(\log \tau_5, \lambda)$ (del Toro Iniesta 2003).

We have calculated the response functions of the spectral lines at 1565 nm (Table [1]) and at 630 nm using the average penumbral model previously mentioned. The contribution from each of the four Stokes parameters has been taken into account following the method described in Borrero et al. (2014). Figure [10] presents the wavelength-integrated response functions to the magnetic field strength B (top-left), magnetic field inclination with respect to the observer’s line-of-sight γ (top-right), temperature T (bottom-left), and line-of-sight velocity v_{ls} (bottom-right). These figures demonstrate that the near-infrared (NIR) spectral lines at 1565 observed by GRIS at the GREGOR telescope and employed in this work are much more sensitive to the magnetic field B at log $\tau_5 = 0$ compared to their peak-sensitivity (red curves on the top-left panel) than the visible spectral lines at 630 nm observed by Hinode/SP and the CRISP instrument at the SST telescope (blue curves on the top-left panel). In particular, the response function to B in the infrared lines at log $\tau_5 = 0$ is about 70% of its maximum value, whereas this number decreases to 25% for the spectral lines in the visible. Moreover, the information on the magnetic field conveyed by the 630 nm lines is spread over a much larger range of optical depths, making it more difficult to isolate the information at log $\tau_5 = 0$ as compared to the NIR lines, whose contribution comes from a much narrower range. This suggests that the results obtained at log $\tau_5 = 0$ from the inversion of the Fe i lines at 630 nm, in particular inversions carried out with two nodes Scharmer et al. (2013), tend to be an extrapolation towards deeper layers from the results between log $\tau_5 = [-2, -1]$. In addition, the peak contribution is much closer to log $\tau_5 = 0$ in the NIR spectral lines than in the visible ones, with the center-of-gravity of R being located at log $\tau_5 \approx -1.3$ and at log $\tau_5 \approx -0.6$, respectively. This implies that the information about the magnetic field strength B comes from an optical depth of about $10^{-0.6}/10^{-1.3} \approx 5$ times larger in the case of the NIR spectral lines employed in this work.

5.3. Dependence on the PSF used to deconvolve

In Sect. [3] we obtained a simple empirical PSF, $P(x, y)$, for the instrument GRIS attached to the GREGOR telescope. The PSF was modeled through a narrow- and a wide-angle Gaussian profile characterized by $\sigma_x, \sigma_y, \sigma_w, p_w$ parameters, respectively (Eq. [6]). The latter two parameters were rather uncertain, with possible values such as $\sigma_w \in [10^5, 30^5]$ and $p_w \in [0.2, 0.3]$. The results presented in Sect. [5] (see also Figs. [7] and [8]) were obtained with $p_w = 0.2$, $\sigma_w = 20^5$. Motivated by Schlichenmaier & Franz (2013) we want to investigate whether our results depend on the amount of scattered light p_w. We have therefore repeated the PCA deconvolution (Sect. [4]) and Stokes inversion (as described in Sect. [5]) using different PSF parameters. As a first experiment we have simply inverted veil-corrected but un-deconvolved raw data, that is, skip-

\[\text{This is the case for inversions carried with SIRRUZ Cob} & \text{ del Toro Iniesta 1999, or NICOLE (Socas-Navarro et al. 2013), but not SPINOR (Fritjiger et al. 1999) because the former two codes spread the number of nodes evenly in log τ_5 with the first two nodes being located at the top and bottom of the atmosphere. The latter, however, allows the user to choose their locations.} \]
Fig. 8. Magnetic field strength $B(x, y, \log \tau_5 = 0)$ (left) and vertical component of the magnetic field in the local reference frame $B_z(x, y, \log \tau_5 = 0)$ (right) in NOAA 12049 observed on May 3rd, 2014 at $\Theta = 6.5^\circ$. White contours on the left and right panels indicate regions where $B < 500$ Gauss and $B_z < 0$, respectively. Black arrows indicate the projection of the magnetic field vector B on the plane of the solar surface. This region corresponds to the red rectangle in Fig. 1 (bottom panel). This map was obtained from the inversion of the deconvolved data assuming $p_w = 0.2$ (20% wide-angle scattered light).

Table 3. Percentage of the analyzed penumbral area that harbors weak fields ($B < 500$ Gauss) or magnetic field lines returning into the solar surface ($B_z < 0$) for different PSF parameters.

Dataset	NOAA 12045 $B < 500$	$B_z < 0$	NOAA 12049 $B < 500$	$B_z < 0$
raw	0.1%	6.1%	0.0%	0.5%
$p_w = 0$	0.8%	11.9%	0.2%	0.3%
$p_w = 0.2, \sigma_w = 20^\circ$	0.5%	19.6%	0.2%	3.0%
$p_w = 0.4, \sigma_w = 10^\circ$	0.1%	31.6%	0.3%	12.7%

Table 4. Same as Table 3 but employing three nodes for v_los, B, γ, and ϕ instead of two nodes.

Dataset	NOAA 12045 $B < 500$	$B_z < 0$	NOAA 12049 $B < 500$	$B_z < 0$
raw	0.0%	6.0%	0.0%	0.5%
$p_w = 0$	0.3%	12.6%	0.5%	0.4%
$p_w = 0.2, \sigma_w = 20^\circ$	0.3%	27.8%	0.1%	2.3%
$p_w = 0.4, \sigma_w = 10^\circ$	0.1%	48.4%	0.2%	10.2%

5.4. Dependence on the number of nodes employed in the inversion

So far, the results presented in this paper were obtained employing, during the inversion process, three nodes in the temperature T, and two nodes in the line-of-sight velocity v_los, magnetic field strength B, inclination of the magnetic field with respect to the observer’s line-of-sight γ, and angle of the magnetic field in the plane perpendicular to the observer’s line-of-sight ψ (see Section 4.3). Using two nodes in the aforementioned physical parameters assumes that each of them varies linearly with the logarithm of the optical depth $a + b \cdot \log \tau_5$, with the slope b and zero crossing a being different for B, γ, etc. Depending on the sign of the slope this implies that a given physical parameter can either increase or decrease with height in the atmosphere. A slightly more realistic, albeit complex, situation would be to allow for three nodes instead of two (i.e. quadratic dependence of the physical parameters with $\log \tau_5$) and hence allowing them to first increase with height and then decrease, or vice-versa. To determine how our results depend on the choice.
of nodes we have repeated all inversions in Sect. 5.3 but employing three nodes in v_{los}, B, γ, and ϕ. Table 4 shows the percentage of the penumbral area harboring weak fields ($B < 500$ Gauss) and field lines returning to the solar surface ($B_z < 0$) employing three nodes. Comparing Table 4 with Table 3 we conclude that the size of flux-return areas significantly depend on whether each physical parameter is modeled with two or three nodes. The area of weak fields, however, are the same in both cases.

6. Conclusions

We have studied the magnetic field topology in the penumbra of two sunspots at the deepest layers of the solar photosphere. This was done through the inversion of the radiative transfer equation applied to spectropolarimetric data (i.e. full Stokes vector I) of three Fe I spectral lines at 1565 nm in order to retrieve the magnetic field B.

The estimated spatial resolution of the data employed in work is 0.4-0.45° and the noise level is 10^{-3}. Moreover, the observed spectral lines are better suited to study the magnetic field in the deep photosphere than the widely used Fe I spectral lines at 630 nm because, besides the Zeeman splitting being about three times larger than in the lines at 630 nm, the lines at 1565 nm convey information from deeper photospheric layers.

In order to account for the degradation of the data due to straylight (i.e. wide-angle scattered light) within the instrument, we have applied, prior to the inversion, a PCA deconvolution method using an empirical point spread function. Our results show no evidence for the presence of weak-field regions ($B < 500$), let alone of dynamically weak fields (Spruit et al. 2011) or field-free regions (Scharmer & Spruit 2006; Spruit & Scharmer 2006) in the deepest regions of the photosphere ($\log \tau_5 = 0$). This agrees with previous observational results, in particular with Borrero & Solanki (2008, 2010; Tiwari et al. 2013) and with three-dimensional MHD simulations of sunspot fine-structure (Rempel et al. 2009; Nordlund & Scharmer 2011; Rempel et al. 2012). These results are independent from the amount of straylight used in the PSF and independent of the inversion set-up (i.e. number of nodes). None of the aforementioned works can rule out the existence of field-free plasma deep beneath the sunspot. Indeed it is perfectly plausible that at some point underneath the sunspot (i.e. under the magneto-pause, Jahn & Schmidt 1994) normal field-free convection resumes. The question is wether this happens sufficiently close to $\log \tau_5 = 0$ so as to explain the penumbral brightness. This is precisely what our work rules out.

On the other hand, the amount of flux returning back into the solar surface ($B_z < 0$) within the penumbra is very dependent on the amount of straylight considered and, consequently, we shall refrain from drawing conclusions at this point.

In summary, we have addressed all major concerns raised by Spruit et al. (2010), Scharmer & Henriques (2012), and Scharmer et al. (2013): we have used high-spatial resolution observations (indeed the highest ever at 1565 nm) of spectropolarimetric data (Scharmer & Henriques 2012) that conveys very reliable information about the magnetic field in the deep Photosphere (Spruit et al. 2010). We have also deconvolved the data with several empirically determined PSFs, thereby allowing us to remove the need for the so-called non-magnetic filling factor (Scharmer et al. 2013). In all cases, no traces of regions with where $B \leq 500$ Gauss have been found at $\log \tau_5 = 0$.

Acknowledgements. The 1.5-meter GREGOR solar telescope was built by a German consortium under the leadership of the Kiepenheuer-Institut für Sonnenphysik in Freiburg with the Leibniz-Institut für Astrophysik Potsdam, the Institut für Astrophysik Göttingen, and the Max-Planck-Institut für Sonnensystemforschung in Göttingen as partners, and with contributions by the Instituto de Astrofísica de Canarias and the Astronomical Institute of the Academy of Sciences of the Czech Republic. We are very grateful to the engineering, operating and technical staff at the GREGOR Telescope: Andreas Fischer, Olivier Grassin, Roberto Simoes, Clements Halbgewachs, Thomas Kretzschmer, Thomas Sonner, Peter Calligari, Michael Wiessschädel, Frank Heidecke, Stefan Semeraro, and Oliver Wiloth. This research has made use of NASA’s Astrophysics Data System.

References

Allende Prieto, C., Asplund, M., & Fabiani Bendicho, P. 2004, A&A, 423, 1109
Anstee, S. D. & O’Marra, B. J. 1995, MNRS, 276, 859
Asensio Ramos, A. & López Ariste, A. 2010, A&A, 518, A16
Barklem, P. S., O’Marra, B. J. 1997, MNRS, 290, 102
Barklem, P. S., O’Marra, B. J., & Ross, J. E. 1998, MNRS, 296, 1057
Beck, C., Rezaei, R., & Fabian, D. 2011, A&A, 535, A129
Bello González, N. & Kneer, F. 2008, A&A, 490, 265
Bellot Rubio, L. R., Balthasar, H., & Collados, M. 2004, A&A, 427, 319
Bellot Rubio, L. R., Collados, M., Ruiz Cobo, B., & Rodríguez Hidalgo, I. 2000, ApJ, 534, 889
Berklefel, T., Schmidt, D., Soltan, D., von der Lühe, O., & Heidecke, F. 2012, Astronomische Nachrichten, 333, 863
Bharti, L., Cameron, R. H., Rempel, M., Hirzberger, J., & Solanki, S. K. 2012, ApJ, 752, 126
Bienia, M., Solanki, S. K., & Stenflo, J. O. 1998, A&A, 331, 760
Bloomfield, D. S., Solanki, S. K., Lagg, A., Borrero, J. M., & Cally, P. S. 2007, A&A, 469, 1155
Borrero, J. M. & Bellot Rubio, L. R. 2002, A&A, 385, 1056
Borrero, J. M., Bellot Rubio, L. R., Bremel, P. S., & del Toro Iniesta, J. C. 2005, A&A, 440, 749
Borrero, J. M. & Ichimoto, K. 2011, Living Reviews in Solar Physics, 8, 4
Borrero, J. M., Lagg, A., Solanki, S. K., & Collados, M. 2005, A&A, 436, 332
Borrero, J. M., Lites, B. W., Lagg, A., Rezaei, R., & Rempel, M. 2014, A&A, 572, A54
Borrero, J. M., Lites, B. W., & Solanki, S. K. 2008, A&A, 481, L13
Borrero, J. M. & Solanki, S. K. 2008, ApJ, 687, 668
Borrero, J. M. & Solanki, S. K. 2010, ApJ, 709, 349
Borrero, J. M., Solanki, S. K., Bellot Rubio, L. R., Lagg, A., & Mathew, S. K. 2004, A&A, 422, 1093
Borrero, J. M., Solanki, S. K., Lagg, A., Socas-Navarro, H., & Lites, B. 2006, A&A, 450, 383
Cabrera Solana, D., Bellot Rubio, L. R., Beck, C., & Del Toro Iniesta, J. C. 2007, A&A, 475, 1067
Cabrera Solana, D., Bellot Rubio, L. R., Borrero, J. M., & Del Toro Iniesta, J. C. 2008, A&A, 477, 273
Casini, R., Asensio Ramos, A., Lites, B. W., & López Ariste, A. 2013, ApJ, 773, 180
Chandra Sekhar, S. & Breen, F. H. 1946, ApJ, 104, 430
Collados, M. 2007, in Modern solar facilities - advanced solar science, ed. F. Kneer, K. G. B. Puschmann, & A. D. Wittmann, 143
Collados, M., López, F., Páez, E., et al. 2012, Astronomische Nachrichten, 333, 872
Collados, M., Martinez Pillet, V., Ruiz Cobo, B., del Toro Iniesta, J. C., & Vazquez, M. 1994, A&A, 291, 622
Danilovic, S., Gandorfer, A., Lagg, A., et al. 2008, A&A, 484, L17
Del Moro, D., Stangalini, M., Viticchié, B., et al. 2010, Memorie della Società Astronomica Italiana Supplementi, 14, 180
del Toro Iniesta, J. C. 2003, Introduction to Spectropolarimetry (Cambridge, UK: Cambridge University Press, April 2003.)
del Toro Iniesta, J. C., Bellot Rubio, L. R., & Collados, M. 2001, ApJ, 568, L139
Esteban Pozuelo, S., Bellot Rubio, L. R., & de la Cruz Rodríguez, J. 2015, ApJ, 803, 93

Borrero et al.: Deep-probing of sunspot penumbra: no evidence for field-free gaps
Borrero et al.: Deep-probing of sunspot penumbra: no evidence for field-free gaps

Franz, M., Collados, M., & Bethge, C. e. a. 2016, A&A, this volume
Franz, M. & Schlichenmaier, R. 2009, A&A, 508, 1453
Franz, M. & Schlichenmaier, R. 2013, A&A, 550, A97
Frutiger, C., Solanki, S. K., Fligge, M., & Bruls, J. H. M. J. 1999, in Astrophysics and Space Science Library, Vol. 243, Polarization, ed. K. N. Nagendra & J. O. Stenflo, 281–290
Golub, G. & Kahan, W. 1965, SIAM Journal on Numerical Analysis, 2, 205
Ichimoto, K. 2010, in Magnetic Coupling between the Interior and Atmosphere of the Sun, ed. S. S. Hasan & R. J. Rutten, 186–192
Jahn, K. & Schmidt, H. U. 1994, A&A, 290, 295
Joshi, J., Pietarila, A., Hirzberger, J., et al. 2011, ApJ, 734, L18
Keller, C. U. & von der Luehe, O. 1992, A&A, 261, 321
Lagg, A., Solanki, S. K., von Noort, M., & Danilovic, S. 2014, A&A, 568, A60
Lites, B. W., Elmore, D. F., Seagraves, P., & Skumanich, A. P. 1993, ApJ, 418, 928
Livingston, W. & Wallace, L. 1991, N.S.O. Technical Report, 91, 001
Löfdahl, M. G. 2002, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4792, Image Reconstruction from Incomplete Data, ed. P. J. Bones, M. A. Fiddy, & R. P. Millane, 146–155
Löfdahl, M. G. 2002, in Magnetic Coupling between the Interior and Atmosphere of the Sun, ed. S. S. Hasan & R. J. Rutten, 186–192
Fig. 1. Continuum intensity I_c (at 1565 nm) of NOAA 12045 (top) and leading spot of NOAA 12049 (bottom) normalized to the quiet Sun continuum ($I_{c,qs}$) as observed with the GREGOR Infrared Spectrograph (GRIS) on April 24th, 2014 and May 3rd, 2015, respectively. The red squares denote the center of each sunspot: (x, y) = (125″, −309″) for NOAA 12045 and (x, y) = (73″, −83″) for NOAA 12049. The red arrow points towards the center of the solar disk. The areas enclosed by the blue-dashed rectangles have been used for calibration purposes (e.g. to calculate the normalization factor $I_{c,qs}$; see also Sect. 3), while the areas enclosed by the red-dashed rectangles indicate the regions that have been analyzed in our work (see Sects. 4.3 and 5). The scanning direction (i.e. direction of movement of the spectrograph’s slit) was from up to bottom along the y-axis.

Fig. 2. Top panel: χ^2-surface as a function of the parameters ν and σ defining the spectrograph’s profile (Eq. 2). This surface was obtained from the comparison between the observed (I_{qs}^{obs}) and simulated (I_{qs}^{sim}) quiet-Sun intensity profile of the Fe I line at 1564.8 nm. Bottom panel: FTS intensity profile of Fe I 1564.8 nm I_{fts} (crosses), simulated average quiet-Sun intensity profile obtained after applying the spectrograph’s profile to FTS data I_{qs}^{sim} (solid line), observed average quiet-Sun intensity profile from GRIS data I_{qs}^{obs} in NOAA 12049 (filled circles; see also blue-dashed rectangles in Fig. 1).
Fig. 3. Determination of the amount of stray light p_w (wide-angle contribution) by finding the value of p_w for which the intensity at central wavelength λ^{\dagger} in those pixels (x^{\star}, y^{\star}), where the magnetic field is aligned with the observer’s line-of-sight is equal to the continuum intensity. This occurs for $p_w = 0.2 - 0.3$ depending on the width σ_w of the Gaussian employed to mimic the effects of the straylight. The vertical error bars refer to the standard deviation in the determination of p_w using each of the pixels in (x^{\star}, y^{\star}).

Fig. 4. Example of the determination of σ_w and p_w via the removal of the π-component in the intensity profile (Stokes I; top-left panel) in a pixel where the magnetic field is aligned with the observer’s line-of-sight. Black lines represent the observed Stokes profiles I^{obs}. Red lines show the wide-angle contribution (i.e. scattered light) from the surrounding penumbra and quiet Sun, I. Blue lines represent the observed Stokes profiles after removing 20% of the wide-angle contribution. See text for details.

Fig. 6. Example of the observed (after PCA deconvolution; circled circles) and best-fit (solid lines) Stokes profiles resulting from the inversion (see Sect. 4.3) in a intrapinal pixel. From top to bottom: results for I, Q, U, and V. From left to right: results for Fe I 1565.85 nm, Fe I 1565.28 nm, and Fe I 1566.20 nm (see Table 1). The location of this particular pixel is indicated in Fig. 8 with a black square.
Fig. 9. Height where the continuum level $z(\tau_\lambda = 1)$ is formed, with respect to height at a wavelength of 500 nm, as a function of wavelength. The color curves indicate the different models employed: red (granular model), blue (hot-small umbral model), green (cool-large umbral model), black (penumbral model). The two vertical dashed lines are located at $\lambda = 630$ nm and $\lambda = 1565$ nm.

Fig. 10. Wavelength-integrated response function R as a function of the logarithm of the optical depth at a reference wavelength of 500 nm, $\log \tau_5$, to the magnetic field strength B (top left), magnetic field inclination with respect to the observer's line-of-sight γ (top right), temperature T (lower left), and line-of-sight velocity v_{los} (lower right). Red curves correspond to the integration over the observed spectral lines in this work (see Table 1), whereas the blue lines correspond to a wavelength integration over the Fe I line pair at 630 nm...