Local cohomology properties of direct summands

Luis Núñez-Betancourt

October 25, 2021

Abstract

In this article, we prove that if $R \to S$ is a homomorphism of Noetherian rings that splits, then for every $i \geq 0$ and ideal $I \subset R$, $\text{Ass}_R H^i_I(R)$ is finite when $\text{Ass}_S H^i_{IS}(S)$ is finite. In addition, if S is a Cohen-Macaulay ring that is finitely generated as an R-module, such that all the Bass numbers of $H^i_{IS}(S)$, as an S-module, are finite, then all the Bass numbers of $H^i_I(R)$, as an R-module, are finite. Moreover, we show these results for a larger class a functors introduced by Lyubeznik [6]. As a consequence, we exhibit a Gorenstein F-regular UFD of positive characteristic that is not a direct summand, not even a pure subring, of any regular ring.

1 Introduction

Throughout this article all rings are commutative Noetherian with unity. Let R denote a ring. If M is an R-module and $I \subset R$ is an ideal, we denote the i-th local cohomology of M with support in I by $H^i_I(M)$. If I is generated by the elements $f_1, \ldots, f_\ell \in R$, these cohomology groups can be computed by the Čech complex,

$$0 \to M \to \bigoplus_j M_{f_j} \to \cdots \to M_{f_1 \cdots f_\ell} \to 0.$$

The structure of these modules has been widely studied by several authors. Among the results obtained, one encounters the following finiteness properties for certain regular rings:

(1) the set of associated primes of $H^i_I(R)$ is finite;

(2) the Bass numbers of $H^i_I(R)$ are finite;

(3) $\text{inj.dim} H^i_I(R) \leq \dim \text{Supp} H^i_I(R)$.

Huneke and Sharp proved those properties for characteristic $p > 0$ [4]. Lyubeznik showed them for regular local rings of equal characteristic zero and finitely generated regular algebras over a field of characteristic zero [6].

These properties have been proved for a larger family of functors introduced by Lyubeznik [6]. If $Z \subset \text{Spec}(R)$ is a closed subset and M is an R-module, we denote by $H^i_Z(R)$ the i-th local cohomology module of M with support in Z. We notice that $H^i_Z(R) = H^i_I(R)$, where $Z = \mathcal{V}(I) = \{P \in \text{Spec}(R) : I \subset P\}$. For two closed subsets of $\text{Spec}(R)$, $Z_1 \subset Z_2$, there is a long exact sequence of functors

$$
\ldots \to H^i_{Z_1} \to H^i_{Z_2} \to H^i_{Z_1/Z_2} \to \ldots
$$

We denote by \mathcal{T} any functor of the form $\mathcal{T} = \mathcal{T}_1 \circ \cdots \circ \mathcal{T}_t$, where every functor \mathcal{T}_j is either H^i_Z for some closed subset Z of $\text{Spec}(R)$ or the kernel, image or cokernel of some morphism in the previous long exact sequence for some closed subsets Z_1, Z_2 of $\text{Spec}(R)$.

Our aim in this manuscript is to prove the finiteness properties (1) and (2) for direct summands. We need to make some observations before we are able to state our theorems precisely. Let $R \to S$ be a homomorphism of Noetherian rings. For an ideal $I \subset R$, we have two functors associated with it, $H^i_I(-) : R\text{-mod} \to R\text{-mod}$ and $H^i_{IS}(-) : S\text{-mod} \to S\text{-mod}$, which are naturally isomorphic when we restrict them to S-modules. Moreover, for two ideals of R, $I_2 \subset I_1$, the natural morphism $H^i_{I_1}(-) \to H^i_{I_2}(-)$ is the same as the natural morphism $H^i_{I_1S}(-) \to H^i_{I_2S}(-)$ when we restrict the functors to S-modules. Thus, their kernel, cokernel and image are naturally isomorphic as S-modules. Hence, every functor \mathcal{T} for R is a functor of the same type for S when we restrict it to S-modules.

As per the previous discussion, for an S-module, M, we will make no distinction in the notation or meaning of $\mathcal{T}(M)$ whether it is induced by ideals of R or their extensions to S and, therefore, by the corresponding closed subsets of their respective spectra. Now, we are ready to state our main results.

Theorem 1.1. Let $R \to S$ be a homomorphism of Noetherian rings that splits. Suppose that $\text{Ass}_S\mathcal{T}(S)$ is finite for a functor \mathcal{T} induced by extension of ideals of R. Then, $\text{Ass}_R\mathcal{T}(R)$ is finite. In particular, $\text{Ass}_RH^i_I(R)$ is finite for every ideal $I \subset R$, if $\text{Ass}_S H^i_I(S)$ is finite.

Theorem 1.2. Let $R \to S$ be a homomorphism of Noetherian rings that splits. Suppose that S is a Cohen-Macaulay ring such that all the Bass numbers of $\mathcal{T}(S)$, as an S-module, are finite for a functor \mathcal{T} induced by
extension of ideals of R. If S is a finitely generated R-module, then all the Bass numbers of $\mathcal{T}(R)$, as an R-module, are finite. In particular, for every ideal $I \subset R$ the Bass numbers of $H^I_1(R)$ are finite, if the Bass numbers of $H^I_1(S)$ are finite.

The first theorem holds when S is a polynomial ring over a field and R is the invariant ring of an action of a linearly reductive group over S. It also holds when $R \subset K[x_1, \ldots, x_n]$ is an integrally closed ring that is finitely generated as a K-algebra by monomials. This is because such a ring is a direct summand of a possibly different polynomial ring (cf. Proposition 1 and Lemma 1 in [2]).

We would like to mention another case in which an inclusion splits. This is when $R \to S$ is a module finite extension of rings containing a field of characteristic zero such that S has finite projective dimension as an R-module. Moreover, such a splitting exists when Koh’s conjecture holds (cf. [5, 9, 1]). Therefore, if Koh’s conjecture applies to $R \to S$ and $\mathcal{T}(S)$ has finite associated primes or finite Bass numbers, so does $\mathcal{T}(R)$.

We point out that property (3) does not hold for direct summands of regular rings, even in the finite extension case. A counterexample is $R = K[x^3, x^2y, xy^2, y^3] \subset S = K[x, y]$, where S is the polynomial ring in two variables with coefficients in a field K. The splitting of the inclusion is the map $\theta : S \to R$ defined in the monomials by $\theta(x^\alpha y^\beta) = x^\alpha y^\beta$ if $\alpha + \beta \in 3\mathbb{Z}$ and as zero otherwise. We have that the dimension of $\text{Supp}(H^2_{(x^3,x^2y,xy^2,y^3)}(R))$ is zero, but it is not an injective module, because R is not a Gorenstein ring, since $R/(x^3,y^3)R$ has a two dimensional socle.

The manuscript is organized as follows. In section 2, we prove Theorem 1.1 and we show some consequences. In particular, we exhibit a Gorenstein F-regular UFD of positive characteristic that is not a direct summand, not even a pure subring, of any regular ring. In section 3, we give a proof for Theorem 1.2.

2 Associated Primes

Lemma 2.1. Let $R \to S$ be an injective homomorphism of Noetherian rings, and let M be an S-module. Then, $\text{Ass}_R M \subset \{Q \cap R : Q \in \text{Ass}_S M\}$.

Proof. Let $P \in \text{Ass}_R M$ and $u \in M$ be such that $\text{Ann}_R u = P$. We have that $(\text{Ann}_S u) \cap R = P$. Let Q_1, \ldots, Q_t denote the minimal primes of $\text{Ann}_S u$. We obtain that

$$P = \sqrt{P} = \sqrt{\text{Ann}_S u \cap R} = (\cap_j Q_j) \cap R = \cap_j (Q_j \cap R),$$
so, there exists a Q_j such that $P = Q_j \cap R$. Since Q_j is a minimal prime for Ann_{S^u}, we have that $Q_j \in \text{Ass}_S M$ and the result follows.

Definition 2.1. We say that a homomorphism of Noetherian rings $R \to S$ is pure if $M = M \otimes_R R \to M \otimes_R S$ is injective for every R-module M. We also say that R is a pure subring of S.

Proposition 2.1 (Cor. 6.6 in [3]). Suppose that $R \to S$ is a pure homeomorphism of Noetherian rings and that \mathcal{S} is a complex of R-modules. Then, the induced map $j : H^i(\mathcal{S}) \to H^i(\mathcal{S} \otimes_R S)$ is injective.

Proposition 2.2. Let $R \to S$ be a pure homomorphism of Noetherian rings. Suppose that $\text{Ass}_S H^i_1(R)$ is finite for some ideal $I \subset R$ and $i \geq 0$. Then, $\text{Ass}_S H^i_{1S}(S)$ is finite.

Proof. Since $H^i_1(R) \to H^i_{1S}(S)$ is injective by Proposition 2.1, $\text{Ass}_R H^i_1(R) \subset \text{Ass}_R H^i_{1S}(S)$ and the result follows by Lemma 2.1.

Proof of Theorem 1.1. The splitting between R and S makes $\mathcal{I}(R)$ into a direct summand of $\mathcal{I}(S)$; in particular, $\mathcal{I}(R) \subset \mathcal{I}(S)$. Therefore, $\text{Ass}_R \mathcal{I}(R) \subset \text{Ass}_R \mathcal{I}(S)$ and the result follows by Lemma 2.1.

If R is a ring containing a field of characteristic $p > 0$, Theorem 1.1 gives a method for showing that R is not a direct summand of a regular ring. We used this method to prove that there exists a Gorenstein strongly F-regular UFD of characteristic $p > 0$ that is not a direct summand of any regular ring.

Theorem 2.1 (Thm. 5.4 in [8]). Let K be a field, and consider the hypersurface

$$R = \frac{K[r, s, t, u, v, w, x, y, z]}{(su^2x^2 + sv^2y^2 + tuxvy + rw^2z^2)}.$$

Then, R is a unique factorization domain for which the local cohomology module $H^3_{(x,y,z)}(R)$ has infinitely many associated prime ideals. This is preserved if R is replaced by the localization at its homogeneous maximal ideal. The hypersurface R has rational singularities if K has characteristic zero, and it is F-regular if K has positive characteristic.

Corollary 2.1. Let R be as in the previous theorem taking K of positive characteristic. Then, R is a Gorenstein F-regular UFD that is not a pure subring of any regular ring. In particular, R is not direct summand of any regular ring.
Proof. Since \(H^3_{(x,y,z)}(R) \) has infinitely many associated prime ideals, it cannot be a direct summand or pure subring of a regular ring by Theorem 1.1, Proposition 2.1 and finiteness properties of regular rings of positive characteristic (cf. [7]). □

Theorem 2.2 (Thm. 1 in [10]). Assume that \(S = K[x_1, \ldots, x_n] \) is a polynomial ring in \(n \) variables over a field \(K \) of characteristic \(p > 0 \). Suppose that \(I = (f_1, \ldots, f_s) \) is an ideal of \(S \) such that \(\sum_i \deg f_i < n \). Then \(\dim S/Q \geq n - \sum_i \deg f_i \) for all \(Q \in \text{Ass}_S H^i_I(S) \).

Corollary 2.2. Let \(S = K[x_1, \ldots, x_n] \) be a polynomial ring in \(n \) variables over a field \(K \) of characteristic \(p > 0 \). Let \(R \to S \) be a homomorphism of Noetherian rings that splits. Suppose that \(I = (f_1, \ldots, f_s) \) is an ideal of \(R \) such that \(\sum_i \deg f_i < \dim R \). If \(S \) is a finitely generated \(R \)-module, then \(\dim R/P \geq \dim R - \sum_i \deg f_i \) for all \(P \in \text{Ass}_R H^i_I(R) \).

Proof. Since \(H^i_I(\cdot) \) commutes with direct sum of \(R \)-modules, we have that a splitting of \(R \to S \) over \(R \) induces an splitting of \(H^i_I(R) \to H^i_I(S) \) over \(R \). Then, by Lemma 2.1 for any \(P \in \text{Ass}_R H^i_I(R) \subset \text{Ass}_R H^i_I(S) \) there exists \(Q \in \text{Ass}_R H^i_I(S) \) such that \(P = Q \cap R \) and then \(\dim R/P = \dim S/Q > n - \sum_i \deg f_i \), and the result follows. □

3 Bass Numbers

Lemma 3.1. Let \((R, m, K)\) be a local ring and \(M\) be an \(R\)-module. Then, the following are equivalent:

a) \(\dim_K(\text{Ext}^j_R(K, M)) \) is finite for all \(j \geq 0 \);

b) \(\text{length}(\text{Ext}^j_R(N, M)) \) is finite for every finite length module \(N\) for all \(j \geq 0 \);

c) there exists one module \(N\) of finite length such that \(\text{length}(\text{Ext}^j_R(N, M)) \) is finite for all \(j \geq 0 \).

Proof. a) \(\Rightarrow \) b): Our proof will be by induction on \(h = \text{length}(N) \). If \(h = 1 \), then \(N = K \), and the proof follows from our assumption. We will assume that the statement is true for \(h \) and prove it when \(\text{length}(N) = h + 1 \). In this case, there is a short exact sequence \(0 \to K \to N \to N' \to 0 \), where \(N' \) has length \(h \). From the induced long exact sequence

\[\ldots \to \text{Ext}^{j-1}_R(N', M) \to \text{Ext}^j_R(K, M) \to \text{Ext}^j_R(N, M) \to \ldots, \]

5
we see that length(Ext^i_R(N, M)) is finite for all i ≥ 0.

b) ⇒ c): Clear.

c) ⇒ a): We will prove the contrapositive. Let j be the minimum non-negative integer such that dim_K(Ext^j_R(K, M)) is infinite. We claim that length(Ext^i_R(N, M)) < ∞ for i < j and length(Ext^j_R(N, M)) = ∞ for any module N of finite length. Our proof will be by induction on h = length(N).

If h = 1, then N = K and it follows from our choice of j. We will assume that this is true for h and prove it when length(N) = h + 1. We have a short exact sequence 0 → K → N → N' → 0, where N' has length h. From the induced long exact sequence

\[\cdots \rightarrow \text{Ext}^{j-1}_{R}(N', M) \rightarrow \text{Ext}^{j}_{R}(K, M) \rightarrow \text{Ext}^{j}_{R}(N, M) \rightarrow \cdots, \]

we have that length(Ext^i_R(N, M)) < ∞ for i < j and that the map

\[\text{Ext}^{j}_{R}(K, M)/\text{Im(Ext}^{j-1}_{R}(N', M)) \rightarrow \text{Ext}^{j}_{R}(N, M) \]

is injective. Therefore, length(Ext^j_R(N, M)) = ∞.

\[\square \]

Lemma 3.2. Let R → S be a pure homomorphism of Noetherian rings. Assume that S is a Cohen-Macaulay ring. If S is finitely generated as an R-module, then R is a Cohen-Macaulay ring.

Proof. Let P ⊂ R be a prime ideal. Let \(\underline{x} = x_1, \ldots, x_d \) denote a system of parameters of \(R_P \), where \(d = \dim(R_P) \). It suffices to show that \(H_i(\mathcal{K}(\underline{x}; R_P)) = 0 \) for \(i ≠ 0 \), where \(\mathcal{K} \) is the Koszul complex with respect to \(\underline{x} \). We notice that the natural inclusion \(R_P \rightarrow S_P \) is a pure homomorphism of rings. This induces an injective morphism of R-modules \(H_i(\mathcal{K}(\underline{x}; R_P)) \rightarrow H_i(\mathcal{K}(\underline{x}; S_P)) \) by Proposition 2.1. Thus, it is enough to show that \(H_i(\mathcal{K}(\underline{x}; S_P)) = 0 \) for \(i ≠ 0 \). Since \(S_P \) is a module finite extension of \(R_P \), we have that every maximal ideal \(Q \subset S_P \) contracts to \(PR_P \) and \(\underline{x} \) is a system of parameters for \(S_Q \). Then, \(H_i(\mathcal{K}(\underline{x}; S_Q)) = 0 \) for \(i ≠ 0 \) and every maximal ideal \(Q \subset S_P \). Hence, \(H_i(\mathcal{K}(\underline{x}; S_P)) = 0 \) for \(i ≠ 0 \) and the result follows.

\[\square \]

Proposition 3.1. Let R → S be a homomorphism of Noetherian rings that splits. Assume that S is a Cohen-Macaulay ring and S is finitely generated as an R-module. Let N be an R-module and M be an S-module. Let N → M be a morphism of R-modules that splits. If all the Bass numbers of M, as an S-module, are finite, then all the Bass numbers of N, as an R-module, are finite.
Proof. Since \(N \hookrightarrow M \) splits, we have that \(\text{Ext}^i_{R_P}(R_P/PR_P,N_P) \) is a direct summand of \(\text{Ext}^i_{R_P}(R_P/PR_P,M_P) \), so, we may assume that \(N = M \).

Let \(P \) be a fixed prime ideal of \(R \) and let \(K_P \) denote \(R_P/PR_P \). Since we want to show that \(\dim_{K_P}(\text{Ext}^i_{R_P}(K_P,M_P)) \) is finite, we may assume without loss of generality that \(R \) is local and \(P \) is its maximal ideal. Let \(\underline{x} = x_1, \ldots, x_n \) be a system of parameters for \(R \). Since \(R \) is Cohen-Macaulay by Lemma 3.2, we have that the Koszul complex, \(\mathcal{K}_R(\underline{x}) \), is a free resolution for \(R/I \), where \(I = (x_1, \ldots, x_n) \). We also have that for every maximal ideal \(Q \subset S \) lying over \(P \), \(\underline{x} \) is a system of parameters of \(S_Q \) because \(\dim R = \dim S_Q \) and \(S_Q/IS_Q \) is a zero dimensional ring. From the Cohen-Macaulayness of \(S \) and the previous fact, we have that the Koszul complex \(\mathcal{K}_S(\underline{x}) \) is a free resolution for \(S/IS \). Therefore, \(\text{Ext}^i_R(R/I,M) = H^i(\text{Hom}_R(\mathcal{K}_R(\underline{x}),M)) = H^i(\text{Hom}_S(\mathcal{K}_S(\underline{x}),M)) = \text{Ext}^i_S(S/IS,M) \). Since \(\text{Ext}^i_S(S/IS,M) = \oplus Q \text{Ext}^i_{S_Q}(S_Q/IS_Q,M_Q) \) has finite length as an \(S \)-module by Lemma 3.1, we have that \(\text{Ext}^i_R(R/I,M) \) has finite length as an \(R \)-module because \(S \) is finitely generated. Then, we have that \(\dim_{K_P}(\text{Ext}^i_{R_P}(K_P,M_P)) \) is finite by Lemma 3.1.

Proof of Theorem 1.2. The splitting between \(R \) and \(S \) induces a splitting between \(\mathcal{T}(R) \hookrightarrow \mathcal{T}(S) \). The rest follows from Proposition 3.1.

Acknowledgments

I would like to thank my advisor Mel Hochster for his valuable comments and suggestions. I also wish to thank Juan Felipe Perez-Vallejo for carefully reading this manuscript. I am grateful to the referee for her or his comments. Thanks are also due to the National Council of Science and Technology of Mexico by its support through grant 210916.

References

[1] R. Flórez, J.D. Vélez, Failure of splitting from module-finite extension rings. Beitrage Algebra Geom. 41 (2000), no. 2, 345-357.

[2] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318337.
[3] M. Hochster, J.L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Mathematics 13, 115–175 (1974).

[4] C. Huneke, R. Sharp, Bass numbers of local cohomology modules, Transactions of the American Mathematical Society, Vol. 339, No. 2, October 1993), pp. 765–779.

[5] J. H. Koh, The direct summand conjecture and behavior of codimension in graded extensions, Thesis, University of Michigan, 1983.

[6] G. Lyubeznik, Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra), Invent. Math. 113 (1993), no. 1, 41–55.

[7] G. Lyubeznik, F-modules: applications to local cohomology and D-modules in characteristic $p > 0$, J. Reine Angew. Math. 491 (1997), 65–130.

[8] A. Singh, I. Swanson, Associated primes of local cohomology modules and of Frobenius powers, Int. Math. Res. Not. 2004, no. 33, 1703–1733.

[9] J.D. Vélez, Splitting results in module-finite extension rings and Koh’s conjecture, J. Algebra 172 (1995), no. 2, 454-469.

[10] Y. Zhang, A property of local cohomology modules over polynomial rings, Proc. Amer. Math. Soc. 139 (2011), 125–128.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109–1043, USA.
Email address: luisnub@umich.edu