ENOMORPHISM ALGEBRAS OF HYPERELLIPTIC JACOBIANS AND FINITE PROJECTIVE LINES

ARSEN ELKIN AND YURI G. ZARHIN

1. Statement of results

Let K be a field with char(K) $\neq 2$. Let us fix an algebraic closure K_a of K. If X is an abelian variety of positive dimension over K_a then we write $\text{End}(X)$ for the ring of all its K_a-endomorphisms and $\text{End}^0(X)$ for the corresponding (semisimple finite-dimensional) \mathbb{Q}-algebra $\text{End}(X) \otimes \mathbb{Q}$. We write $\text{End}_K(X)$ for the ring of all K-endomorphisms of X and $\text{End}^0_K(X)$ for the corresponding (semisimple finite-dimensional) \mathbb{Q}-algebra $\text{End}_K(X) \otimes \mathbb{Q}$. The absolute Galois group $\text{Gal}(K)$ of K acts on $\text{End}(X)$ (and therefore on $\text{End}^0(X)$) by ring (resp. algebra) automorphisms and

$$\text{End}_K(X) = \text{End}(X)^{\text{Gal}(K)}, \quad \text{End}^0_K(X) = \text{End}^0(X)^{\text{Gal}(K)},$$

since every endomorphism of X is defined over a finite separable extension of K.

If n is a positive integer that is not divisible by char(K) then we write X_n for the kernel of multiplication by n in $X(K_a)$. It is well-known [21] that X_n is a free $\mathbb{Z}/n\mathbb{Z}$-module of rank $2\dim(X)$. In particular, if $n = \ell$ is a prime then X_ℓ is an \mathbb{F}_ℓ-vector space of dimension $2\dim(X)$.

If X is defined over K then X_n is a Galois submodule in $X(K_a)$. It is known that all points of X_n are defined over a finite separable extension of K. We write $\bar{\rho}_{n,X,K} : \text{Gal}(K) \to \text{Aut}_{\mathbb{Z}/n\mathbb{Z}}(X_n)$ for the corresponding homomorphism defining the structure of the Galois module on X_n,

$$\tilde{G}_{n,X,K} \subset \text{Aut}_{\mathbb{Z}/n\mathbb{Z}}(X_n)$$

for its image $\bar{\rho}_{n,X,K}(\text{Gal}(K))$ and $K(X_n)$ for the field of definition of all points of X_n. Clearly, $K(X_n)$ is a finite Galois extension of K with Galois group $\text{Gal}(K(X_n)/K) = \tilde{G}_{n,X,K}$. If $n = \ell$ then we get a natural faithful linear representation

$$\tilde{G}_{\ell,X,K} \subset \text{Aut}_{\mathbb{F}_\ell}(X_\ell)$$

of $\tilde{G}_{\ell,X,K}$ in the \mathbb{F}_ℓ-vector space X_ℓ. Recall [29] that all endomorphisms of X are defined over $K(X_4)$; this gives rise to the natural homomorphism

$$\kappa_{X,4} : \tilde{G}_{4,X,K} \to \text{Aut}(\text{End}^0(X))$$

and $\text{End}^0_K(X)$ coincides with the subalgebra $\text{End}^0(X)^{\tilde{G}_{4,X,K}}$ of $\tilde{G}_{4,X,K}$-invariants [38, Sect. 1].

Let $f(x) \in K[x]$ be a polynomial of degree $n \geq 3$ without multiple roots. Let $\mathfrak{R}_f \subset K_a$ be the n-element set of roots of f. Then $K(\mathfrak{R}_f)$ is the splitting field of f and $\text{Gal}(f) := \text{Aut}(K(\mathfrak{R}_f)/K)$ is the Galois group of f (over K). One may view $\text{Gal}(f)$ as a group of permutations of \mathfrak{R}_f; it is transitive if and only if $f(x)$ is irreducible.
Let us consider the hyperelliptic curve \(C_f : y^2 = f(x) \) and its Jacobian \(J(C_f) \). It is well-known [33] that \(J(C_f) \) is a \(\left\lfloor \frac{n+1}{2} \right\rfloor \)-dimensional abelian variety defined over \(K \). The aim of this paper is to study \(\text{End}^0(J(C_f)) \), assuming that \(n = q + 1 \) where \(q \) is a power of a prime \(p \) and \(\text{Gal}(f) = \text{PSL}_2(\mathbb{F}_q) \) acts via fractional-linear transformations on \(\mathbb{P}_f \) identified with the projective line \(\mathbb{P}^1(\mathbb{F}_q) \). It follows from results of [32, 35, 37] that for every \(q \) in all characteristics there exist \(K \) and \(f \) with \(\text{End}^0(J(C_f)) = \mathbb{Q} \). On the other hand, it is known that \(\text{End}^0(J(C_f)) = \mathbb{Q} \) \([32, 33, 39]\) if \(p = 2 \) and \(q \geq 8 \). (It is also true for \(q = 4 \) if one assumes that \(\text{char}(K) \neq 3 \) [37].) However, if \(q = 5 \) then there are examples where \(\text{End}^0(J(C_f)) \) is a (real) quadratic field (even in characteristic zero) \([4, 11, 31, 7]\).

Our main result is the following statement.

Theorem 1.1. Let us assume that \(\text{char}(K) = 0 \). Suppose that \(n = q + 1 \) where \(q \geq 5 \) is a prime power that is congruent to \(\pm 3 \) modulo 8. Suppose that \(f(x) \) is irreducible and \(\text{Gal}(f) \cong \text{PSL}_2(\mathbb{F}_q) \). Then one of the following two conditions holds:

(i) \(\text{End}^0(J(C_f)) = \mathbb{Q} \) or a quadratic field. In particular, \(J(C_f) \) is an absolutely simple abelian variety.

(ii) \(q \) is congruent to 3 modulo 8 and \(J(C_f) \) is \(K_n \)-isogenous to a self-product of an elliptic curve with complex multiplication by \(\mathbb{Q}(\sqrt{-q}) \).

Remark 1.2. It follows from results of [14] (see also [28], [25]) that if the case (ii) of Theorem 1.1 holds then \(J(C_f) \) is isomorphic over \(K_n \) to a product of mutually isogenous elliptic curves with complex multiplication by \(\mathbb{Q}(\sqrt{-q}) \).

The paper is organized as follows. Section 2 contains auxiliary results about endomorphism algebras of abelian varieties. In Section 3 we prove the main result. In Section 4 (and Section 5) we prove the absolute simplicity of \(J(C_f) \) when \(q \geq 11 \) is congruent to 3 modulo 8 and \(K = \mathbb{Q} \). Section 6 contains examples.

2. Endomorphism Algebras of Abelian Varieties

Remark 2.1. Recall [8] (see also [34, p. 199]) that a surjective homomorphism of finite groups \(\pi : G_1 \rightarrow G \) is called a minimal cover if no proper subgroup of \(G_1 \) maps onto \(G \). If \(H \) is a normal subgroup of \(G_1 \) that lies in \(\ker(\pi) \) then the induced surjection \(G_1/H \rightarrow G \) is also a minimal cover.

(i) If a surjection \(G_2 \rightarrow G_1 \) is also a minimal cover then one may easily check that the composition \(G_2 \rightarrow G \) is surjective and a minimal cover.

(ii) Clearly, if \(G \) is simple then every proper normal subgroup in \(G_1 \) lies in \(\ker(\pi) \).

(iii) If \(G \) is perfect then its universal central extension is a minimal cover [30].

(iv) If \(G' \rightarrow G \) is an arbitrary surjective homomorphism of finite groups then there always exists a subgroup \(H \subset G' \) such that \(H \rightarrow G \) is surjective and a minimal cover. Clearly, if \(G \) is perfect then \(H \) is also perfect.

The field inclusion \(K(X_2) \subset K(X_4) \) induces a natural surjection [38, Sect. 1]

\[\tau_{2,X} : \tilde{G}_{4,X,K} \rightarrow \tilde{G}_{2,X,K}. \]

Definition 2.2. We say that \(K \) is 2-balanced with respect to \(X \) if \(\tau_{2,X} \) is a minimal cover.
Remark 2.3. Clearly, there always exists a subgroup \(H \subset \tilde{G}_{2,X,K} \) such that \(H \rightarrow \tilde{G}_{2,X,K} \) is surjective and a minimal cover. Let us put \(L = K(X_4)^H \). Clearly, \(K \subset L \subset K(X_4) \), \(L \cap K(X_2) = K \) and \(L \) is a maximal overfield of \(K \) that enjoys these properties. It is also clear that \(K(X_2) \subset L(X_2) \), \(L(X_4) = K(X_4) \), \(H = \tilde{G}_{4,X,L} \), \(\tilde{G}_{2,X,L} = \tilde{G}_{2,X,K} \) and \(L \) is 2-balanced with respect to \(X \).

The following assertion (and its proof) is (are) inspired by Theorem 1.6 of [38] (and its proof).

Theorem 2.4. Suppose that \(E := \text{End}^0_K(X) \) is a field that contains the center \(C \) of \(\text{End}^0_K(X) \). Let \(C_{X,K} \) be the centralizer of \(\text{End}^0_K(X) \) in \(\text{End}^0(X) \). Then:

(i) \(C_{X,K} \) is a central simple \(E \)-subalgebra in \(\text{End}^0(X) \). In addition, the centralizer of \(C_{X,K} \) in \(\text{End}^0(X) \) coincides with \(E = \text{End}^0_K(X) \) and

\[
\dim_E(C_{X,K}) = \frac{\dim_C(\text{End}^0(X))}{[E : C]^2}.
\]

(ii) Assume that \(K \) is 2-balanced with respect to \(X \) and \(\tilde{G}_{2,X,K} \) is a non-abelian simple group. If \(\text{End}^0(X) \neq E \) (i.e., not all endomorphisms of \(X \) are defined over \(K \)) then there exist a finite perfect group \(\Pi \subset C_{X,K}^* \) and a surjective homomorphism \(\Pi \rightarrow \tilde{G}_{2,X,K} \) that is a minimal cover. In addition, the induced homomorphism

\[
E[\Pi] \rightarrow C_{X,K}
\]

is surjective, i.e., \(C_{X,K} \) is isomorphic to a direct summand of the group algebra \(E[\Pi] \).

Proof. Since \(E \) is a field, \(C \) is a subfield of \(E \) and therefore \(\text{End}^0(X) \) is a central simple \(C \)-algebra. Now the assertion (i) follows from Theorem 2 of Sect. 10.2 in Chapter VIII of [5].

Now let us prove the assertion (ii).

Recall that there is the homomorphism

\[
k_{X,4} : \tilde{G}_{4,X,K} \rightarrow \text{Aut}(\text{End}^0(X))
\]

such that

\[
\text{End}^0(X)\tilde{G}_{4,X,K} = \text{End}^0_K(X) = E \subset C.
\]

This implies that

\[
k_{X,4}(\tilde{G}_{4,X,K}) \subset \text{Aut}_E(\text{End}^0(X)) \subset \text{Aut}_C(\text{End}^0(X))
\]

and we get a homomorphism

\[
k_E : \tilde{G}_{4,X,K} \rightarrow \text{Aut}_E(C_{X,K})
\]

such that

\[
C_{X,K}^{\tilde{G}_{4,X,K}} = E.
\]
Assume that \(E = C_{X,K} \), i.e., \(E \) coincides with its own centralizer in \(\text{End}^0(X) \). It follows from the Skolem-Noether theorem that \(\text{Aut}_C(\text{End}^0(X)) = \text{End}^0(X)^*/C^* \). This implies that the group
\[
\text{Aut}_E(\text{End}^0(X)) = C_{X,K}^*/C^* = E^*/C^*
\]
is commutative. It follows that \(\kappa_{X,4}(\hat{G}_{4,X,K}) \) is commutative. Since \(\hat{G}_{4,X,K} \) is perfect, \(\kappa_{X,4}(\hat{G}_{4,X,K}) \) is perfect commutative and therefore trivial, i.e., \(\text{End}^0(X) = \text{End}^0_K(X) \).

Assume that \(E \neq C_{X,K} \). This means that the group \(\Gamma := \kappa_E(\hat{G}_{4,X,K}) \) is not \(\{1\} \), i.e., \(\ker(\kappa_E) \neq \hat{G}_{4,X,K} \). Clearly, \(\Gamma \) is a finite perfect subgroup of \(\text{Aut}_E(C_{X,K}) \).

The minimality of \(\tau_{2,X} \) and the simplicity of \(\hat{G}_{2,X,K} \) imply the existence of a minimal cover
\[
\Gamma \to \hat{G}_{2,X,K},
\]
thanks to Remark 2.1.

Since \(C_{X,K} \) is a central simple \(E \)-algebra, all its automorphisms are inner, i.e., \(\text{Aut}_E(C_{X,K}) = C_{X,K}^*/E^* \). Let \(\Delta \to \Gamma \) be the universal central extension of \(\Gamma \). It is well-known [30, Ch. 2, Sect. 9] that \(\Delta \) is a finite perfect group. The universality property implies that \(\Delta \to \Gamma \) is a minimal cover and the inclusion map \(\Gamma \subseteq C_{X,K}^*/E^* \) lifts (uniquely) to a homomorphism \(\pi : \Delta \to C_{X,K}^* \). Clearly, \(\ker(\pi) \) lies in the kernel of \(\Delta \to \Gamma \) and we get a minimal cover
\[
\pi(\Delta) \cong \Delta/\ker(\pi) \to \Gamma,
\]
thanks to Remark 2.1. Taking the compositions of minimal covers \(\pi(\Delta) \to \Gamma \) and \(\Gamma \to \hat{G}_{2,X,K} \), we obtain a minimal cover \(\pi(\Delta) \to \hat{G}_{2,X,K} \). If we put
\[
\Pi := \pi(\Delta) \subseteq C_{X,K}^*,
\]
then we get a minimal cover
\[
\Pi \to \hat{G}_{2,X,K}.
\]
The equality (1) means that the centralizer of \(\pi(\Delta) = \Pi \) in \(C_{X,K} \) coincides with \(E \). It follows that if \(E[\Pi] \) is the group \(E \)-algebra of \(\Pi \) then the inclusion \(\Pi \subseteq C_{X,K}^* \) induces the \(E \)-algebra homomorphism \(\omega : E[\Pi] \to C_{X,K} \) such that the centralizer of its image in \(C_{X,K} \) coincides with \(E \).

We claim that \(\omega(E[\Pi]) = C_{X,K} \) and therefore \(C_{X,K} \) is isomorphic to a direct summand of \(E[\Pi] \). This claim follows easily from the next lemma that was proven in [38, Lemma 1.7]

Lemma 2.5. Let \(F \) be a field of characteristic zero, \(T \) a semisimple finite-dimensional \(F \)-algebra, \(S \) a finite-dimensional central simple \(F \)-algebra, \(\beta : T \to S \) an \(F \)-algebra homomorphism that sends 1 to 1. Suppose that the centralizer of the image \(\beta(T) \) in \(S \) coincides with the center \(F \). Then \(\beta \) is surjective, i.e., \(\beta(T) = S \).

\[\square \]

Theorem 2.6. Suppose that \(\text{End}^0(X) \) is a simple \(\mathbb{Q} \)-algebra, \(\hat{G}_{2,X,K} \) is a simple non-abelian group, whose order is not a divisor of \(2 \dim(X) \) and \(\text{End}_K \hat{G}_{2,X,K}(X_2) \cong \mathbb{F}_4 \).

Then the center \(C \) of \(\text{End}^0(X) \) is either \(\mathbb{Q} \) or a quadratic field. In addition, there exists a finite separable field extension \(L/K \) such that \(\hat{G}_{2,X,L} = \hat{G}_{2,X,K} \), the map \(\tau_{2,X} : \hat{G}_{4,X,L} \to \hat{G}_{2,X,L} \) is surjective and a minimal cover, the \(\mathbb{Q} \)-algebra
Definition 2.7. We say that a group is trivially, i.e., $C \subseteq L$. Theorem 2.4 (to follow): Suppose also that $\tilde{G}_{2,X,K}$ is a minimal cover. In addition, the induced homomorphism

$$E[\Pi] \rightarrow C_{X,L}$$

is surjective, i.e., $C_{X,L}$ is isomorphic to a direct summand of the group algebra $E[\Pi]$.

Proof. Choose a field L as in Remark 2.3. Then $\tilde{G}_{2,X,L} = \tilde{G}_{2,X,K}$, the map

$$\tau_{2,X} : \tilde{G}_{4,X,L} \rightarrow \tilde{G}_{2,X,L} = \tilde{G}_{2,X,K}$$

is surjective and a minimal cover. We have

$$\text{End}_{L}(X) \otimes \mathbb{Z}/2\mathbb{Z} \hookrightarrow \text{End}_{\text{Gal}(L)}(X_2) = \text{End}_{\tilde{G}_{2,X,L}}(X_2) = \mathbb{F}_4.$$

It follows that the rank of the free \mathbb{Z}-module $\text{End}_{L}(X)$ is 1 or 2; Lemma 1.3 of [38] implies that $\text{End}_{L}(X)$ has no zero divisors. This implies that $\text{End}^0_{L}(X) = \text{End}_{L}(X) \otimes \mathbb{Q}$ is a division algebra of \mathbb{Q}-dimension 1 or 2. This means that $E = \text{End}^0_{L}(X)$ is either \mathbb{Q} or a quadratic field.

Recall that the center C of $\text{End}^0_{L}(X)$ is a number field, whose degree $|C : \mathbb{Q}|$ divides $2\text{dim}(X)$. The group $\tilde{G}_{4,X,L}$ acts via automorphisms on C and

$$C^{\tilde{G}_{4,X,L}} = C \cap \text{End}^0_{L}(X)$$

is either \mathbb{Q} or a quadratic field. Since $\tilde{G}_{2,X,L} = \tilde{G}_{2,X,K}$ has no normal subgroups of index dividing $2\text{dim}(X)$, the same is true for $\tilde{G}_{4,X,L}$ and therefore $\tilde{G}_{4,X,L}$ acts on C trivially, i.e., $C \subseteq \text{End}^0_{L}(X)$. In order to finish the proof, one has only to apply Theorem 2.4 (to L instead of K).

THEOREM 2.8. Let us assume that $\text{char}(K) = 0$. Suppose that $\text{End}^0_{L}(X)$ is a simple \mathbb{Q}-algebra with the center C. Suppose that $\tilde{G}_{2,X,K}$ is a simple non-abelian group, whose order is not a divisor of $2\text{dim}(X)$ and $\text{End}_{\tilde{G}_{2,X,K}}(X_2) \cong \mathbb{F}_4$. Assume, in addition, that $\tilde{G}_{2,X,K}$ is a known simple group that is not FTKL-exceptional. Suppose also that $\text{dim}(X)$ coincides with the smallest positive integers d such that $\tilde{G}_{2,X,K}$ is isomorphic to a subgroup of $\text{PGL}(d, \mathbb{C})$. Then:

(i) The center C of $\text{End}^0_{L}(X)$ is either \mathbb{Q} or quadratic field.

(ii) Either $\text{End}^0_{L}(X) = C$ or the following conditions hold:
(1) There exists a finite algebraic field extension \(L/K \) such that \(\tilde{G}_{2,X,L} = \tilde{G}_{2,X,K} \); the overfield \(L \) is 2-balanced with respect to \(X \), the algebra \(E := \text{End}_{k}^{0}(X) \) is either \(\mathbb{Q} \) or a quadratic field, \(C = E \) and the following conditions hold.

There exist a finite perfect group \(\Pi \subset \text{End}^{0}(X)^{+} \) and a surjective homomorphism \(\Pi \to \tilde{G}_{2,X,K} \) that is a minimal cover and a central extension. In addition, the induced homomorphism

\[
E[\Pi] \to \text{End}^{0}(X)
\]

is surjective, i.e., \(\text{End}^{0}(X) \) is isomorphic to a direct summand of the group algebra \(E[\Pi] \).

(2) If \(C = \mathbb{Q} \) then \(X \) enjoys one of the following two properties:

(a) \(X \) is isogenous over \(K_{a} \) to a self-product of an elliptic curve without complex multiplication.

(b) \(\dim(X) \) is even and \(X \) is isogenous over \(K_{a} \) to a self-product of an abelian surface \(Y \) such that \(\text{End}^{0}(Y) \) is an indefinite quaternion \(\mathbb{Q} \)-algebra.

(3) If \(C \neq \mathbb{Q} \) then \(C \) is an imaginary quadratic field and \(X \) is isogenous over \(K_{a} \) to a self-product of an elliptic curve with complex multiplication by \(C \).

Proof. Using Theorem 2.6 and replacing if necessary \(K \) by its suitable extension, we may assume that \(K \) is 2-balanced with respect to \(X \), the algebra \(E := \text{End}_{k}^{0}(X) \) is either \(\mathbb{Q} \) or a quadratic field, \(C \subset E \) and the following conditions hold.

Either \(\text{End}^{0}(X) = E \) or there exist a finite perfect group \(\Pi \subset C_{X,K}^{2} \) and a surjective homomorphism \(\Pi \to \tilde{G}_{2,X,K} \) that is a minimal cover and such that the induced homomorphism

\[
E[\Pi] \to C_{X,K}
\]

is surjective, i.e., \(C_{X,K} \) is isomorphic to a direct summand of the group algebra \(E[\Pi] \). (Here as above \(C_{X,K} \) is the centralizer of \(E \) in \(\text{End}^{0}(X) \)).

Assume that \(\text{End}^{0}(X) \neq E \). We are going to prove that \(\Pi \to \tilde{G}_{2,X,K} \) is a central extension, using results of Feit-Tits and Kleidman-Liebeck [8, 15]. Without loss of generality we may assume that there is a field embedding \(K_{a} \to \mathbb{C} \) and consider \(X \) as complex abelian variety. Let \(t_{X} \) be the Lie algebra of \(X \) that is a \(\dim(X) \)-dimensional complex vector space. By functoriality, this gives us the embeddings

\[
j : \text{End}^{0}(X) \to \text{End}_{\mathbb{C}}(t_{X}) \cong M_{\dim(X)}(\mathbb{C}),
\]

\[
j : \text{End}^{0}(X)^{*} \to \text{Aut}_{\mathbb{C}}(t_{X}) \cong \text{GL}(\dim(X), \mathbb{C}).
\]

Clearly, only central elements of \(\Pi \) go to scalars under \(j \). It follow that there exists a central subgroup \(Z \) in \(\Pi \) such that \(j(Z) \) consists of scalars and \(\Pi/Z \to \text{PGL}(\dim(X), \mathbb{C}) \). The simplicity of \(\tilde{G}_{2,X,K} \) implies that \(Z \) lies in the kernel of \(\Pi \to \tilde{G}_{2,X,K} \) and the induced map \(\Pi/Z \to \tilde{G}_{2,X,K} \) is a central extension of \(\tilde{G}_{2,X,K} \). Since \(\Pi \) is a central extension of \(\Pi/Z \), it follows from Theorem on p. 1092 of [8] and Theorem 3 on p. 316 of [15] that \(\Pi/Z \to \tilde{G}_{2,X,K} \) is a central extension of \(\tilde{G}_{2,X,K} \). Since \(\Pi \) is a central extension of \(\Pi/Z \), it follows [30] that \(\Pi \) is a central extension of \(\tilde{G}_{2,X,K} \).

Now notice that \(t_{X} \) carries a natural structure of \(E \otimes_{\mathbb{Q}} \mathbb{C} \)-module. Assume that \(E \neq \mathbb{Q} \); i.e., \(E \) is a quadratic field. Let \(\sigma, \tau : E \to \mathbb{C} \) be the two different embeddings
of E into \mathbb{C}. Then

$$E \otimes_{\mathbb{Q}} \mathbb{C} = \mathbb{C}_\sigma \oplus \mathbb{C}_\tau$$

with

$$\mathbb{C}_\sigma = E \otimes_{E, \sigma} \mathbb{C} = \mathbb{C}, \quad \mathbb{C}_\tau = E \otimes_{E, \tau} \mathbb{C} = \mathbb{C}$$

and t_X splits into a direct sum

$$t_X = \mathbb{C}_\sigma t_X \oplus \mathbb{C}_\tau t_X.$$

Suppose that both $\mathbb{C}_\sigma t_X$ and $\mathbb{C}_\tau t_X$ do not vanish. Then the \mathbb{C}-dimension d_σ of non-zero $\mathbb{C}_\sigma t_X$ is strictly less than $\dim(X)$. Clearly, $\mathbb{C}_\sigma t_X$ is $C_{X,K}$-stable and we get a nontrivial homomorphism

$$C_{X,K} \to \text{End}_\mathbb{C}(\mathbb{C}_\sigma t_X) \cong M_{d_\sigma}(\mathbb{C})$$

that must be an embedding in light of the simplicity of $C_{X,K}$. This gives us an embedding

$$C_{X,K}^* \to \text{Aut}_\mathbb{C}(\mathbb{C}_\sigma t_X) \cong \text{GL}(d_\sigma, \mathbb{C}).$$

One may easily check that all the elements of Π that go to scalars in $\text{Aut}_\mathbb{C}(\mathbb{C}_\sigma t_X)$ constitute a central subgroup Z_σ that lies in the kernel of $\Pi \to \tilde{G}_{2,X,K}$. This gives us a central extension $\Pi/Z_\sigma \to \tilde{G}_{2,X,K}$ that is a minimal cover and an embedding $\Pi/Z_\sigma \hookrightarrow \text{Aut}_\mathbb{C}(\mathbb{C}_\sigma t_X) \cong \text{GL}(d_\sigma, \mathbb{C})$. Since $d_\sigma < \dim(X)$, Theorem on p. 1092 of [8] and Theorem 3 on p. 316 of [15] provide us with a contradiction. It follows that either $\mathbb{C}_\sigma t_X$ or $\mathbb{C}_\tau t_X$ does vanish. We may assume that $\mathbb{C}_\tau t_X = 0$. This means that each $e \in E$ acts on t_X as multiplication by complex number $\sigma(e)$, i.e., $j(E)$ consists of scalars. Recall that the exponential map identifies $X(\mathbb{C})$ with the complex torus t_X/Λ where Λ is a discrete lattice of rank $2\dim(X)$. In addition, Λ is $j(\text{End}_K(X))$-stable where $\text{End}_K(X)$ is an order in the quadratic field $\text{End}_K(X)$. Now the discreteness of Λ implies that E cannot be real and therefore is an imaginary quadratic field. It follows easily that X is isogenous over \mathbb{C} to a self-product of an elliptic curve with complex multiplication by E. In particular, $E = \mathbb{C}$ and $C_{X,K} = \text{End}^0(X)$.

Now let us assume that $E = \mathbb{Q}$. Then $C_{X,K} = \text{End}^0(X)$. Let Y be an absolutely simple abelian variety such that X is isogenous to a self-product Y^r for some positive integer r with $r \mid \dim(X)$. Then $\text{End}^0(Y) \cong M_r(\text{End}^0(Y))$. In particular, the center of the division algebra $\text{End}^0(Y)$ is \mathbb{Q}. It follows from Albert’s classification [21] that $\text{End}^0(Y)$ is either \mathbb{Q} or a quaternion \mathbb{Q}-algebra.

If $\text{End}^0(Y) = \mathbb{Q}$ then $\text{End}^0(X) \cong M_r(\mathbb{Q})$ and $\Pi/Z \hookrightarrow \text{PGL}(r, \mathbb{Q}) \subset \text{PGL}(r, \mathbb{C})$. It follows that $r = \dim(X)$, i.e. Y is an elliptic curve without complex multiplication.

Suppose that $\text{End}^0(Y)$ is a quaternion \mathbb{Q}-algebra. Since $\dim(Y) = \dim(X)/r$ and we live in characteristic zero, $2r$ divides $\dim(X)$. Clearly,

$$\text{End}^0(Y) \subset \text{End}^0(Y) \otimes_{\mathbb{Q}} \mathbb{C} \cong M_2(\mathbb{C})$$

and therefore

$$\text{End}^0(X) \cong M_r(\text{End}^0(Y)) \hookrightarrow M_{2r}(\mathbb{C}).$$

This implies that $\Pi \hookrightarrow \text{GL}(2r, \mathbb{C})$. It follows that $2r = \dim(X)$, i.e., $\dim(Y) = 2$. It follows from the classification of endomorphism algebras of abelian surfaces [22, Sect. 6] that $\text{End}^0(Y)$ is an indefinite quaternion \mathbb{Q}-algebra. \square
Let us assume that \(\text{char}(K) = 0 \). Suppose that \(\text{End}^0(X) \) is a simple \(\mathbb{Q} \)-algebra. Suppose that \(d := \dim(X) = (q - 1)/2 \) where \(q \geq 5 \) is an odd prime power. Suppose that \(\widetilde{G}_{2, X, K} \cong \text{PSL}_2(\mathbb{F}_q) \) and \(\text{End}_{\widetilde{G}_{2, X, K}}(X_2) \cong \mathbb{F}_4 \). Then one of the following two conditions holds:

(i) \(\text{End}^0(X) = \mathbb{Q} \) or a quadratic field. In particular, \(X \) is an absolutely simple abelian variety.

(ii) \(q \) is congruent to 3 modulo 4 and \(X \) is \(K \)-isogenous to a self-product of an elliptic curve with complex multiplication by \(\mathbb{Q}(\sqrt{-1}) \).

Proof. It is well-known [10, Sect. 4.15] that \(\text{SL}_2(\mathbb{F}_q) \) is the universal central extension of \(\text{PSL}_2(\mathbb{F}_q) \) and therefore every projective representation of \(\text{PSL}_2(\mathbb{F}_q) \) lifts to a linear representation of \(\text{SL}_2(\mathbb{F}_q) \). The well-known list of irreducible representations of \(\text{SL}_2(\mathbb{F}_q) \) over complex numbers [6, Sect. 38] tells us that the smallest degree of a nontrivial representation of \(\text{SL}_2(\mathbb{F}_q) \) is \((q - 1)/2 = d \). This implies that we are in position to apply Theorem 2.8. In particular, \(C \) is either \(\mathbb{Q} \) or a quadratic field.

We may and will assume that \(\text{End}^0(X) \neq C \).

We need to rule out the following possibilities:

1. \(\dim(X) \) is even and \(X \) is isogenous over \(K \) to a self-product of an abelian surface \(Y \) such that \(\text{End}^0(Y) \) is an indefinite quaternion \(\mathbb{Q} \)-algebra. In particular, \(\text{End}^0(X) \) is a \(d^2 \)-dimensional central simple \(\mathbb{Q} \)-algebra.

2. \(q \) is congruent to 1 modulo 4 and \(X \) is isogenous over \(K \) to a self-product of an elliptic curve with complex multiplication. In particular, \(\text{End}^0(X) \) is a \(d^2 \)-dimensional central simple algebra over the imaginary quadratic field \(C \) unramified at \(\infty \).

3. \(X \) is isogenous over \(K \) to a self-product of an elliptic curve without complex multiplication. In particular, \(\text{End}^0(X) \) is a \(d^2 \)-dimensional central simple \(\mathbb{Q} \)-algebra.

By Theorem 2.8, there exist a finite perfect group \(\Pi \) and a minimal central cover \(\Pi \to \text{PSL}_2(\mathbb{F}_q) \) such that \(\text{End}^0(X) \) is a quotient of the group algebra \(E[\Pi] \) where \(E = C \) is either \(\mathbb{Q} \) or an imaginary quadratic field. It follows easily that \(\Pi = \text{PSL}_2(\mathbb{F}_q) \) or \(\text{SL}_2(\mathbb{F}_q) \), so we may always view \(\text{End}^0(X) \) as a simple quotient (direct summand) \(D \) of \(E[\text{SL}_2(\mathbb{F}_q)] \). By Theorem 2.8, \(\text{End}^0(X) \) is a central simple \(E \)-algebra of dimension \(d^2 \).

Let us consider the composition

\[
\mathbb{Q}[\text{SL}_2(\mathbb{F}_q)] \subset E[\text{SL}_2(\mathbb{F}_q)] \twoheadrightarrow \text{End}^0(X).
\]

Let \(D \) be the simple direct summand of \(\mathbb{Q}[\text{SL}_2(\mathbb{F}_q)] \), whose image in the simple \(\mathbb{Q} \)-algebra \(\text{End}^0(X) \) is not zero. We write \(B \subset \text{End}^0(X) \) for the image of \(D \): it is a \(\mathbb{Q} \)-subalgebra isomorphic to \(D \). The induced map \(D \to \text{End}^0(X) \) is injective, because \(D \) is a simple \(\mathbb{Q} \)-algebra. On the other hand, \(D_E = D \otimes \mathbb{Q} E \) is a direct summand of \(E[\text{SL}_2(\mathbb{F}_q)] \) and the image of \(D_E \to \text{End}^0(X) \) is a non-zero ideal of \(\text{End}^0(X) \). Since \(\text{End}^0(X) \) is simple, \(D_E \to \text{End}^0(X) \) is surjective. In particular, \(B \) generates \(\text{End}^0(X) \) as \(E \)-vector space and the center of \(D \) embeds into the center \(E \) of \(\text{End}^0(X) \). This implies that the center of \(D \) is either \(\mathbb{Q} \) or isomorphic to \(E \).

In addition, if the center of \(D \) is isomorphic to \(E \) then \(B \) contains \(E \), i.e., \(B \) is a \(E \)-vector subspace of \(\text{End}^0(X) \) and therefore coincides with \(\text{End}^0(X) \): this implies that \(\text{End}^0(X) \cong D \).
Assume that the center of \(D \) is isomorphic to \(E \). Then \(\text{End}^0(X) \cong D \) and therefore \(D \) is a central simple \(\mathbb{E} \)-algebra of dimension \(d^2 \). This means that the simple direct summand \(D \) of \(\mathbb{R}[\text{SL}_2(\mathbb{F}_{q})] \) corresponds to an irreducible (complex) character of \(\text{SL}_2(\mathbb{F}_{q}) \) of degree \(d \) as in Lemma 24.7 of [6]. These simple direct summands are described explicitly in [13, 9]. In particular, if \(q \) is congruent to 1 modulo 4 but is not a square then the center of \(D \) is a real quadratic field \(\mathbb{Q}(\sqrt{q}) \), which is not the case. This implies that \(q \) is congruent to 3 modulo 4: in this case the center of \(D \) is an imaginary quadratic field \(\mathbb{Q}(\sqrt{-q}) \) and therefore \(E = \mathbb{Q}(\sqrt{-q}) \). It follows from Theorem 2.8 that \(X \) is \(K_{\alpha} \)-isogenous to a self-product of an elliptic curve with complex multiplication by \(\mathbb{Q}(\sqrt{-q}) \).

Now assume that the center of \(D \) is not isomorphic to \(E \). Then it must be \(\mathbb{Q} \), i.e., \(D \) is a central simple \(\mathbb{Q} \)-algebra. It follows that \(D_E \) is a central simple \(\mathbb{E} \)-algebra and therefore the surjective homomorphism \(D_E \rightarrow \text{End}^0(X) \) is injective. It follows that \(D_E \cong \text{End}^0(X) \); in particular, the central simple \(\mathbb{Q} \)-algebra \(D \) has \(\mathbb{Q} \)-dimension \(d^2 \). As above, this means that the simple direct summand \(D \) corresponds to an irreducible (complex) character of \(\text{SL}_2(\mathbb{F}_{q}) \) of degree \(d \). Since the center of \(D \) is \(\mathbb{Q} \), it follows from results of [13, 9] that \(q \) is a square, which is not the case. This ends the proof.

3. Hyperelliptic Jacobians

Suppose that \(f(x) \in K[x] \) is a polynomial of degree \(n \geq 5 \) without multiple roots. Let \(\mathfrak{R}_f \subset K_a \) be the set of roots of \(f \). Clearly, \(\mathfrak{R}_f \) consists of \(n \) elements. Let \(K(\mathfrak{R}_f) \subset K_a \) be the splitting field of \(f \). Clearly, \(K(\mathfrak{R}_f)/K \) is a Galois extension and we write \(\text{Gal}(f) \) for its Galois group \(\text{Gal}(K(\mathfrak{R}_f)/K) \). By definition, \(\text{Gal}(K(\mathfrak{R}_f)/K) \) permutes elements of \(\mathfrak{R}_f \); further we identify \(\text{Gal}(f) \) with the corresponding subgroup of \(\text{Perm}(\mathfrak{R}_f) \), where \(\text{Perm}(\mathfrak{R}_f) \) is the group of permutations of \(\mathfrak{R}_f \).

We write \(\mathbb{F}_{2}^{\mathfrak{R}_f} \) for the \(n \)-dimensional \(\mathbb{F}_2 \)-vector space of maps \(h : \mathfrak{R}_f \rightarrow \mathbb{F}_2 \). The space \(\mathbb{F}_{2}^{\mathfrak{R}_f} \) is provided with a natural action of \(\text{Perm}(\mathfrak{R}_f) \) defined as follows. Each \(s \in \text{Perm}(\mathfrak{R}_f) \) sends a map \(h : \mathfrak{R}_f \rightarrow \mathbb{F}_2 \) to \(sh : \alpha \mapsto h(s^{-1}(\alpha)) \). The permutation module \(\mathbb{F}_{2}^{\mathfrak{R}_f} \) contains the \(\text{Perm}(\mathfrak{R}_f) \)-stable hyperplane

\[
(\mathbb{F}_{2}^{\mathfrak{R}_f})^0 = \{ h : \mathfrak{R}_f \rightarrow \mathbb{F}_2 \mid \sum_{\alpha \in \mathfrak{R}_f} h(\alpha) = 0 \}
\]

and the \(\text{Perm}(\mathfrak{R}_f) \)-invariant line \(\mathbb{F}_2 \cdot 1_{\mathfrak{R}_f} \) where \(1_{\mathfrak{R}_f} \) is the constant function 1. Clearly, \((\mathbb{F}_{2}^{\mathfrak{R}_f})^0 \) contains \(\mathbb{F}_2 \cdot 1_{\mathfrak{R}_f} \) if and only if \(n \) is even.

If \(n \) is even then let us define the \(\text{Gal}(f) \) module \(Q_{\mathfrak{R}_f} := (\mathbb{F}_{2}^{\mathfrak{R}_f})^0/(\mathbb{F}_{2} \cdot 1_{\mathfrak{R}_f}) \). If \(n \) is odd then let us put \(Q_{\mathfrak{R}_f} := (\mathbb{F}_{2}^{\mathfrak{R}_f})^0 \). If \(n \neq 4 \) the natural representation of \(\text{Gal}(f) \) is faithful, because in this case the natural homomorphism \(\text{Perm}(\mathfrak{R}_f) \rightarrow \text{Aut}_{\mathbb{F}_2}(Q_{\mathfrak{R}_f}) \) is injective.

The canonical surjection \(\text{Gal}(K) \twoheadrightarrow \text{Gal}(K(\mathfrak{R}_f)/K) = \text{Gal}(f) \) provides \(Q_{\mathfrak{R}_f} \) with a natural structure of \(\text{Gal}(K) \)-module. It is well-known that the \(\text{Gal}(K) \) modules \(J(C_f)_2 \) and \(Q_{\mathfrak{R}_f} \) are isomorphic (see for instance [23, 24, 33]). It follows easily that \(K(J(C_f)_2) = K(\mathfrak{R}_f) \) and \(G_{2,J(C_f)_2,K} = \text{Gal}(f) \).

Let us put \(X = J(C_f) \) and \(G := G_{2,X,K} \). Then \(G \cong \text{Gal}(f) \), and the \(G \)-modules \(X_2 \) and \(Q_{\mathfrak{R}_f} \) are isomorphic. We freely interchange these two modules throughout this section.
Example 3.1. Suppose that $n = q + 1$ where $q \geq 5$ is a power of an odd prime p. Suppose that $\text{Gal}(f) = \text{PSL}_2(\mathbb{F}_q)$. Assume that that $f(x)$ is irreducible, i.e., $\text{Gal}(f) = \text{PSL}_2(\mathbb{F}_q)$ acts transitively on the $(q + 1)$-element set \mathcal{R}_f. If $\beta \in \mathcal{R}_f$, then its stabilizer $\text{Gal}(\beta)$ is a subgroup of index $q + 1$ and therefore contains a Sylow p-subgroup of $\text{PSL}_2(\mathbb{F}_q)$. It follows from the classification of subgroups of $\text{PSL}_2(\mathbb{F}_q)$ [30, Theorem 6.25 on page 412] and explicit description of its Sylow p-subgroup and their normalizers [12, p. 191–192] that $\text{Gal}(\beta)$ is isomorphic to a power of an absolutely simple abelian variety.

Assume, in addition that q is congruent to $±3$ modulo 8. Then it is known [20] that

$$\text{End}_{\text{Gal}(f)}(Q_{\mathcal{R}_f}) = \mathbb{F}_4.$$

Theorem 3.2. Suppose that $\text{char}(K) \neq 2$ and $n = q + 1$ where $q \geq 5$ is a prime power that is congruent to $±3$ modulo 8. Suppose that $\text{Gal}(f) = \text{PSL}_2(\mathbb{F}_q)$ acts doubly transitively on \mathcal{R}_f (where \mathcal{R}_f is identified with the projective line $\mathbb{P}^1(\mathbb{F}_q)$). Then $\text{End}^0(J(C_f))$ is a simple \mathbb{Q}-algebra, i.e., $J(C_f)$ is either absolutely simple or isogenous to a power of an absolutely simple abelian variety.

Proof. See [38, Theorem 3.10].

Proof of Theorem 1.1. The result follows from Theorem 2.9 combined with Example 3.1 and Theorem 3.2. □

4. Criteria for Absolute Simplicity

Sometimes, it is possible to rule out the second outcome of Theorem 1.1. First, recall Goursat’s lemma [16, p. 75]:

Lemma 4.1. Let G_1 and G_2 be finite groups, and H a subgroup of $G_1 \times G_2$ such that the restrictions $p_1 : H \to G_1$ and $p_2 : H \to G_2$ of the projection maps are surjective. Let H_1 and H_2 be the normal subgroups of G_1 and G_2, respectively, such the groups $H_1 \times \{1\}$ and $\{1\} \times H_2$ are kernels of p_2 and p_1, respectively. Then there exist an isomorphism $\gamma : G_1/H_1 \cong G_1/H_2$ such that H coincides with the preimage in $G_1 \times G_2$ of the graph of γ in $G_1/H_1 \times G_2/H_2$.

Example 4.2. Let G_1 be a finite simple group and G_2 be a finite group that does not admit G_1 as a quotient. If H is a subgroup of $G_1 \times G_2$ that satisfies the conditions of Goursat’s lemma, then $H = G_1 \times G_2$.

Indeed, since G_1 is simple, $H_1 = \{1\}$ or G_1. We have $H_1 \neq \{1\}$, since otherwise $G_1/H_1 \cong G_1$ and no quotient of G_2 is isomorphic to G_1. Therefore, $H_1 = G_1$, $G_1/H_1 \cong G_2/H_2 = \{1\}$, and $H_2 = G_2$. Since $G_1/H_1 \times G_2/H_2$ is a trivial group, the graph of γ coincides with $G_1/H_1 \times G_2/H_2$, and its preimage H coincides with $G_1 \times G_2$.

Theorem 4.3. Let K be a field of characteristic zero. Suppose that $f(x) \in K[x]$ is a polynomial of degree $n \geq 5$ without multiple roots. Let us consider the hyperelliptic curve $C_f : y^2 = f(x)$ and its jacobian $J(C_f)$. Suppose that $h(x) \in K[x]$ is an irreducible cubic polynomial and let us consider the elliptic curve $Y : y^2 = h(x)$.

Let us assume that $f(x)$ and $h(x)$ enjoy the following properties:
(1) \(\text{Gal}(K(\mathfrak{R}_f)/K) = \text{PSL}_2(\mathbb{F}_q) \) for some odd prime \(q \equiv 3 \mod 8 \) with \(n = q + 1 \), and \(\text{Gal}(K(\mathfrak{R}_f)/K) \) acts doubly transitively on \(\mathfrak{R}_f \) (where \(\mathfrak{R}_f \) is identified with the projective line \(\mathbb{P}^1(\mathbb{F}_q) \));

(2) \(\text{Gal}(K(\mathfrak{R}_h)/K) = S_3 \).

Then \(\text{Hom}(J(C_f), Y) = 0 \) and \(\text{Hom}(Y, J(C_f)) = 0 \). In particular, \(J(C_f) \) is not \(K_a \)-isogenous to a self-product of \(Y \).

Proof. First, we prove that \(K(\mathfrak{R}_f) \) and \(K(\mathfrak{R}_h) \) are linearly disjoint over \(K \). Let us put \(G_1 := \text{Gal}(K(\mathfrak{R}_f)/K) \), \(G_2 := \text{Gal}(K(\mathfrak{R}_h)/K) \), and \(H := \text{Gal}(K(\mathfrak{R}_f, \mathfrak{R}_h)/K) \), the Galois group of the compositum of \(K(\mathfrak{R}_f) \) and \(K(\mathfrak{R}_h) \) over \(K \). By Theorem 1.14 of [16], \(H \) can be considered to be a subgroup of \(G_1 \times G_2 \), where the Galois restriction maps coincide with restrictions of projection maps \(p_i : G_1 \times G_2 \to G_i \), with \(i = 1, 2 \), to \(H \). It follows from Example 4.2 that \(H \cong G_1 \times G_2 \), and \(K(\mathfrak{R}_f) \) and \(K(\mathfrak{R}_h) \) are linearly disjoint over \(K \). The equalities \(\text{Hom}(J(C_f), Y) = 0 \) and \(\text{Hom}(Y, J(C_f)) = 0 \) follow from the definitions (s) and (p3) and Theorem 2.5 of [36]. Since for any positive integer \(r \) we have \(\text{Hom}(J(C_f), Y^r) = \prod_{i=1}^r \text{Hom}(J(C_f), Y) \), we conclude that \(\text{Hom}(J(C_f), Y^r) = 0 \). \(\square \)

The following assertion will be proven in Section 5.

Theorem 4.4. Let \(p > 3 \) be a prime such that \(p \equiv 3 \mod 8 \). Let us put \(\omega = \frac{-1 + \sqrt{-p}}{2} \) and let \(\mathcal{O} = \mathbb{Z} + \mathbb{Z}\omega \) be the ring of integers in \(\mathbb{Q}(\sqrt{-p}) \). Let \(\mathcal{O}_2 = \mathbb{Z} + 2\mathcal{O} \) be the order of conductor 2 in \(\mathbb{Q}(\sqrt{-p}) \).

(i) The principal ideal (2) is prime in \(\mathcal{O} \).

(ii) Let \(b \) be a proper fractional \(\mathcal{O}_2 \)-ideal in \(\mathbb{Q}(\sqrt{-p}) \) and \(a = \mathcal{O}b \) be the \(\mathcal{O} \)-ideal generated by \(b \). Then \(b \) contains \(2a \) as a subgroup of index 2 and \(a \) contains \(b \) as a subgroup of index 2.

(iii) Let \(a \) be a fractional \(\mathcal{O} \)-ideal in \(\mathbb{Q}(\sqrt{-p}) \). If \(b \) is a subgroup of index 2 in \(a \) then it is a proper \(\mathcal{O}_2 \)-ideal in \(\mathbb{Q}(\sqrt{-p}) \), i.e.,

\[\mathcal{O}_2 = \{ z \in \mathbb{Q}(\sqrt{-p}) \mid zb \subset b \} \]

in addition, \(a = \mathcal{O}b \). There are exactly three index 2 subgroups in \(a \); they are mutually non-isomorphic as \(\mathcal{O}_2 \)-ideals.

(iv) If \(h \) is the class number of \(\mathbb{Q}(\sqrt{-p}) \) then \(3h \) is the number of classes of proper \(\mathcal{O}_2 \)-ideals.

We write \(j \) for the classical modular function [17, Ch. 3, Sect. 3].

Corollary 4.5. Let \(p \) be a prime such that \(p \equiv 3 \mod 8 \). Let \(q \geq 11 \) be an odd power of \(p \). (In particular, \(q \equiv p \equiv 3 \mod 8 \).) Let us put

\[\omega := \frac{-1 + \sqrt{-p}}{2}, \ \alpha := j(\omega) \in \mathbb{C}, \ K := \mathbb{Q}(j(\omega)) \subset \mathbb{C}. \]

Suppose that \(f(x) \in K[x] \) is an irreducible polynomial of degree \(q + 1 \) such that \(\text{Gal}(f/K) = \text{PSL}_2(\mathbb{F}_q) \) acts doubly transitively on \(\mathfrak{R}_f \) (where \(\mathfrak{R}_f \) is identified with the projective line \(\mathbb{P}^1(\mathbb{F}_q) \)).

Then \(J(C_f) \) is an absolutely simple abelian variety, and \(\text{End}^0(J(C_f)) = \mathbb{Q} \) or a quadratic field.
Theorem 4.8. Let \(p \) be a prime such that \(p \equiv 3 \mod 8 \). Let \(q \geq 11 \) be an odd power of \(p \). (In particular, \(q \equiv p \equiv 3 \mod 8 \).) Suppose that \(f(x) \in \mathbb{Q}[x] \) is an irreducible polynomial of degree \(q + 1 \) such that \(\text{Gal}(f/\mathbb{Q}) = \text{PSL}_2(\mathbb{F}_q) \) acts doubly transitively on \(\mathcal{R}_f \) (where \(\mathcal{R}_f \) is identified with the projective line \(\mathbb{P}^1(\mathbb{F}_q) \)).

Then \(J(C_f) \) is an absolutely simple abelian variety, and \(\text{End}^0(J(C_f)) = \mathbb{Q} \) or a quadratic field.
Proof. Let us put
\[\omega := \frac{-1 + \sqrt{-p}}{2}, \quad \alpha := j(\omega) \in \mathbb{C}, \quad K := \mathbb{Q}(j(\omega)) \subset \mathbb{C}. \]
Since simple non-abelian \(\text{PSL}_2(\mathbb{F}_q) \) does not have a subgroup of index 2,
\[\text{Gal}(f/\mathbb{Q}) = \text{PSL}_2(\mathbb{F}_q) = \text{Gal}(f/\mathbb{Q}(\sqrt{-p})). \]
Since \(\text{PSL}_2(\mathbb{F}_q) \) is perfect and \(K\mathbb{Q}(\sqrt{-p}) = \mathbb{Q}(\sqrt{-p})(j(\omega)) \) is abelian over \(\mathbb{Q}(\sqrt{-p}) \),
\[\text{Gal}(f/\mathbb{Q}) = \text{PSL}_2(\mathbb{F}_q) = \text{Gal}(f/K\mathbb{Q}(\sqrt{-p})). \]
Since \(\text{Gal}(f/K\mathbb{Q}(\sqrt{-p})) \subset \text{Gal}(f/K) \subset \text{Gal}(f/\mathbb{Q}) \),
we conclude that
\[\text{Gal}(f/K) = \text{Gal}(f/\mathbb{Q}) = \text{PSL}_2(\mathbb{F}_q) \]
aracts doubly transitively on \(\mathfrak{A}_f \). In order to finish the proof, one has only to apply Corollary 4.5. □

5. Proof of Theorem 4.4

There is a positive integer \(k \) such that \(p = 8k+3 \). It follows that \(\omega^2 + \omega + (2k+1) = 0 \). This implies that the 4-element algebra \(O/2O \) contains a subalgebra isomorphic to the finite field \(\mathbb{F}_4 \) and therefore coincides with \(\mathbb{F}_4 \). This means that (2) is prime in \(O \). So, this proves (i).

Suppose that \(b \) is a proper \(O_2 \)-ideal in \(\mathbb{Q}(\sqrt{-p}) \) and \(a := O_b \). Clearly, \(2a \subset b \subset a \). Since \(a \) and \(2a \) are \(O \)-ideals, \(b \) does coincide neither with \(a \) nor with \(2a \). Since \(2a \) has index 4 in \(a \), the group \(b \) has index 2 in \(a \) and \(2a \) has index 2 in \(b \). This proves (ii).

Now, suppose that \(a \) is a fractional \(O \)-ideal in \(\mathbb{Q}(\sqrt{-p}) \) and a subgroup \(b \subset \mathbb{Q}(\sqrt{-p}) \) satisfies \(2a \subset b \subset a \). If \(b \) is an \(O \)-ideal then the unique factorization of \(O \)-ideals and the fact that (2) is prime imply that either \(b = a \) or \(b = 2a \). So, if \(b \) has index 2 in \(a \), it is neither \(a \) nor \(2a \) and therefore is not an \(O \)-ideal.

On the other hand, it is clear that \(O_b \subset a \) and \(2O_b \subset 2a \subset b \) and therefore \(b \) is a proper \(O_2 \)-ideal. This proves the first assertion of (iii). We have \(b \subset O_b \subset Oa = a \) but \(b \neq O_b \). Since the index of \(b \) in \(a \) is 2, we conclude that \(O_b = a \). This proves the second assertion of (iii).

Since \(a \) is a free commutative group of rank 2, it contains exactly three subgroups of index 2. Let \(b_1 \) and \(b_2 \) be two distinct subgroups of index 2 in \(a \). We have
\[O_{b_1} = a = O_{b_2}. \]
Suppose that \(b_1 \) and \(b_2 \) are isomorphic as \(O_2 \)-ideals. This means that there exists a non-zero \(\lambda \in \mathbb{Q}(\sqrt{-p}) \) such that \(\lambda b_1 = b_2 \). It follows that \(\lambda a = a \) and therefore \(\lambda \) is a unit in \(O \). Since \(p > 3 \), we have \(\lambda = \pm 1 \) and therefore \(b_2 = b_1 \). This proves the last assertion of (iii).

The assertion (iv) follows easily from (ii) and (iii). (It is also a special case of Exercise 11 in Sect. 7 of Ch. II in [2] and of Exercise 4.12 in Section 4.4 of [27]).
6. Examples

Example 6.1. Let S be a transcendental over \mathbb{Q}, $T = 2^83^5/(11S^2 + 1)$, and put

$$f_{11,S}(x) := (x^3 - 66x - 108)^4$$

$$- 9T(11x^5 - 44x^4 - 1573x^3 + 1892x^2 + 57358x + 103763)$$

$$- 3T^2(x - 11).$$

According to Table 10 of the Appendix in [19], $\text{Gal}(f_{11,S}/\mathbb{Q}(S)) = \text{PSL}_2(\mathbb{F}_{11})$. It can be verified using MAGMA [3] that when $s = m/n$ for any nonzero integers $-5 \leq m, n \leq 5$, then $\text{Gal}(f_{11,s}/\mathbb{Q}) = \text{PSL}_2(\mathbb{F}_{11})$. Consider the hyperelliptic curve

$$C_{11,s} : y^2 = f_{11,s}(x)$$

over \mathbb{Q} by any one of these s. By Theorem 4.8 the 5-dimensional abelian variety $J(C_{11,s})$ is absolutely simple. For example, if we put $s = 1$, then we obtain a hyperelliptic curve

$$C_{11,1} : y^2 = x^{12} - 264x^{10} - 1232x^9 + 26136x^8 + 243936x^7 - 580800x^6$$

$$- 16612992x^5 - 54104688x^4 + 310712512x^3 + 2391092352x^2$$

$$+ 4956865152x + 504489216$$

over \mathbb{Q} with $J(C_{11,1})$ absolutely simple.

Example 6.2. If we define

$$f_{13,S}(x) := (x^2 + 36)(x^3 - x^2 + 35x - 27)^4$$

$$- 4T(7x^2 - 2x + 247)(x^2 + 39)^6/27$$

with $T = 1/(39S^2 + 1)$ then again [19] we have $\text{Gal}(f_{13,S}/\mathbb{Q}(S)) = \text{PSL}_2(\mathbb{F}_{13})$. Similarly, we checked using MAGMA that when $s = m/n$ for any nonzero integers $-5 \leq m, n \leq 5$, then $\text{Gal}(f_{13,s}/\mathbb{Q}) = \text{PSL}_2(\mathbb{F}_{13})$. If we define

$$C_{13,s} : y^2 = f_{13,s}(x)$$

over \mathbb{Q}, then by Theorem 2.8 the 6-dimensional abelian variety $J(C_{13,s})$ is absolutely simple. As an example, take $s = -1$ to get the hyperelliptic curve

$$C_{13,-1} : y^2 = 263/270x^{14} - 539/135x^{13} + 9451/54x^{12} - 10114/15x^{11}$$

$$+ 376363/30x^{10} - 45487x^9 + 891605/2x^8 - 1533844x^7$$

$$+ 15279043/2x^6 - 25943931x^5 + 391472991/10x^4$$

$$- 896502438/5x^3 - 780396201/2x^2 - 365687757/5x$$

$$- 31998670461/10$$

defined over \mathbb{Q} with $J(C_{13,-1})$ absolutely simple.

See [18] for other examples of irreducible polynomials over $\mathbb{Q}(T)$ of degrees $n = p + 1$ with $p = 11, 13, 19, 29, 37$, whose Galois groups are isomorphic to $\text{PSL}_2(\mathbb{F}_p)$. These polynomials can be used in a manner similar to that of Examples 6.1 and 6.2, in order to construct examples of absolutely simple abelian varieties over \mathbb{Q} of dimensions 5, 6, 9, 14, 18 respectively, whose endomorphism algebra is either \mathbb{Q} or a quadratic field.
References

[1] B. J. Birch, *Weber’s Class Invariants*. Mathematika 16 (1969), 283–294.
[2] Z. I. Borevich, I. R. Shafarevich, *Number Theory*, Third Edition, Moscow, Nauka, 1985.
[3] W. Bosma, J. Cannon, C. Playoust, *The Magma Algebra System I: The User Language*. J. Symb. Comp. 24 (1997), 235–265; http://magma.maths.usyd.edu.au/magma/.
[4] A. Brumer, *The Rank of \(J_0(N) \)*. Astérisque 228 (1995), 41–68.
[5] N. Bourbaki, *Algèbre*, Chapitre VIII, Hermann, Paris, 1958.
[6] L. Dornhoff, Group Representation Theory, Part A. Marcel Dekker, Inc., New York, 1972.
[7] A. Elkin, *Hyperelliptic jacobians with real multiplication*. J. Number Theory 117 (2006), 53–86.
[8] W. Feit, J. Tits, *Projective representations of minimum degree of group extensions*. Canad. J. Math. 30 (1978), 1092–1102.
[9] W. Feit, *The computations of some Schur indices*. Israel J. Math. 46 (1983), 274–300.
[10] D. Gorenstein, *Finite Simple Groups*, An Introduction to their classification, Plenum Press, New York and London, 1982.
[11] K. Hashimoto, *On Brumer’s family of RM-curves of genus two*. Tohoku Math. J. 52 (2000), 475–488.
[12] B. Huppert, *Endliche Gruppen I*. Springer-Verlag, Berlin Heidelberg New York, 1967.
[13] G. Janusz, *Simple components of \(\mathbb{Q}[SL(2,q)] \)*. Commun. Algebra 1 (1974), 1–22.
[14] T. Katsura, *On the structure of singular abelian varieties*. Proc. Japan Acad. 51 (1975), no. 4, 224–228.
[15] P. B. Kleidman, M. W. Liebeck, *On a theorem of Feit and Tits*. Proc. Amer. Math. Soc. 107 (1989), 315–322.
[16] S. Lang, *Algebra*, rev. 3rd ed., Springer-Verlag, New York, 2002.
[17] S. Lang, *Elliptic functions*, 2nd edition, Springer-Verlag, New York, 1987.
[18] G. Malle, *Polynome mit Galoisgruppen \(PGL_2(p) \) und \(PSL_2(p) \) über \(\mathbb{Q}(t) \).* Commun. Algebra 21 (1993), 511–526.
[19] G. Malle, B. H. Matzat, *Inverse Galois Theory*, Springer-Verlag, Berlin, 1999.
[20] B. Mortimer, *The modular permutation representations of the known doubly transitive groups*. Proc. London Math. Soc. (3) 41 (1980), 1–20.
[21] D. Mumford, *Abelian varieties*, 2nd edn, Oxford University Press, 1974.
[22] F. Oort, *Endomorphism algebras of abelian varieties*. In: Algebraic Geometry and Commutative Algebra in Honor of M. Nagata (Ed. H. Hijikata et al), Kinokuniya Cy, Tokyo 1988; Vol. II, pp. 469–502.
[23] B. Poonen, E. Schaefer, *Explicit descent for Jacobians of cyclic covers of the projective line*. J. reine angew. Math. 488 (1997), 141–188.
[24] E. Schaefer, *Computing a Selmer group of a Jacobian using functions on the curve*. Math. Ann. 310 (1998), 447–471.
[25] C. Schoen, *Produkte Abelscher Varietäten und Moduln über Ordnungen*. J. Reine Angew. Math. 429 (1992), 115–123.
[26] J.-P. Serre, *Complex Multiplication*. In: Algebraic Number Theory (J. Cassels, A. Fröhlich, eds.), Chapter XIII, pp. 292–296. Academic Press, 1967.
[27] G. Shimura, *Introduction to the Arithmetic Theory of Automorphic Functions*. Princeton University Press, 1971.
[28] T. Shioda, N. Mitani, *Singular abelian surfaces and binary quadratic forms*. In: Classification of Algebraic and Compact Complex Manifolds, Springer Lect. Notes in Math. 412 (1974), 259–287.
[29] A. Silverberg, *Fields of definition for homomorphisms of abelian varieties*. J. Pure Appl. Algebra 77 (1992), 253–262.
[30] M. Suzuki, *Group theory*. I. Springer-Verlag, Berlin-New York, 1982.
[31] J. Wilson, *Explicit moduli for curves of genus 2 with real multiplication by \(\mathbb{Q}(\sqrt{5}) \)*. Acta Arith. 93 (2000), 121–138.
[32] Yu. G. Zarhin, *Hyperelliptic jacobians without complex multiplication*. Math. Res. Letters 7 (2000), 123–132.
[33] Yu. G. Zarhin, *Hyperelliptic jacobians and modular representations*. In: Moduli of abelian varieties (eds. C. Faber, G. van der Geer and F. Oort). Progress in Math., vol. 195 (2001), Birkhäuser, pp. 473–490.
Yu. G. Zarhin, *Hyperelliptic Jacobians without Complex Multiplication, Doubly Transitive Permutation Groups and Projective Representations*. In: Algebraic Number Theory and Algebraic Geometry (Parshin Festschrift), Contemp. Math. **300** (2002), 195–210.

Yu. G. Zarhin, *Very simple 2-adic representations and hyperelliptic jacobians*. Moscow Math. J. **2** (2002), issue 2, 403-431.

Yu. G. Zarhin, *Homomorphisms of hyperelliptic Jacobians*. In: Number Theory, Algebra and Algebraic Geometry (Shafarevich Festschrift), Tr. Mat. Inst. Steklova **241** (2003), 90–104; Proc. Steklov Inst. Math. **241** 2003, 79–92.

Yu. G. Zarhin, *Non-supersingular hyperelliptic jacobians*. Bull. Soc. Math. France **132** (2004), 617–634

Yu. G. Zarhin, *Homomorphisms of abelian varieties*. In: Y. Aubry, G. Lachaud (ed.) Arithmetic, Geometry and Coding Theory (AGCT 2003), Séminaires et Congrès **11**, 189–215 (2005).

Yu. G. Zarhin, *Hyperelliptic jacobians without complex multiplication and Steinberg representations in positive characteristic*, arXiv:math.NT/0301177.

Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel

E-mail address: arsen@math.huji.ac.il

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

E-mail address: zarhin@math.psu.edu