The novel phosphodiesterase 9A inhibitor BI 409306 increases cyclic guanosine monophosphate levels in the brain, promotes synaptic plasticity and enhances memory function in rodents

Holger Rosenbrock, Riccardo Giovannini, Gerhard Schänzle, Eliza Koros, Frank Runge, Holger Fuchs, Anelise Marti, Klaus G. Reymann, Ulrich H. Schröder, Ernesto Fedele, Cornelia Dorner-Ciossek

The Journal of Pharmacology and Experimental Therapeutics
Supplementary Figure S1 Concentration-activity curve for inhibition of PDE9A by BI 409306 determined by a SPA

Data are expressed as mean (±SD). N=8 dilutions from 4 experiments.

PDE9A, phosphodiesterase 9A; SD, standard deviation; SPA, scintillation proximity assay
Supplementary Table S1

Potency and selectivity of BI 409306 for non-PDE targets

Target pathway	Target	Inhibition of binding^a with BI 409306 10 µM
Acetylcholine	M₁ receptor	<50 %
Acetylcholine	M₂ receptor	<50 %
Acetylcholine	M₃ receptor	<50 %
Acetylcholine	M₄ receptor	<50 %
Acetylcholine	M₅ receptor	<50 %
Acetylcholine	nAChR	<50 %
Acetylcholine	α₁ nAChR (bungarotoxin)	<50 %
Acetylcholine	α₄β₂ nAChR (cytisine)	<50 %
Acetylcholine	α₇ nAChR (bungarotoxin)	<50 %
Acetylcholine	α₇ nAChR (methyllycaconitine)	<50 %
Acetylcholine	Choline transporter	<50 %
Adenosine	A₁ receptor	<50 %
Adenosine	A_{2a} receptor	<50 %
Adenosine	A₃ receptor	<50 %
Androgen	Androgen receptor (testosterone)	<50 %
Bradykinin	B₁ receptor	<50 %
Bradykinin	B₂ receptor	<50 %
Calcium channel	L-Type VGCC (benzothiazepine)	<50 %
Calcium channel	L-Type VGCC (dihydropyridine)	<50 %
Calcium channel	N-Type VGCC	<50 %
Cannabinoid	CB₁ receptor	<50 %
Cannabinoid	CB₂ receptor	<50 %
Dopamine	D₁ receptor	<50 %
Dopamine	D₂ receptor long splice variant	<50 %
Dopamine	D₂ receptor short splice variant	<50 %
Dopamine	D₃ receptor	<50 %
Dopamine	D_{4.2} receptor variant	<50 %
Dopamine	D_{4.4} receptor variant	<50 %
Dopamine	D_{4.7} receptor variant	<50 %
Dopamine	D₅ receptor	<50 %
Dopamine	Dopamine transporter	<50 %
Endothelin	ET_a receptor	<50 %
Endothelin	ET_b receptor	<50 %
Estrogen	ER_α receptor	<50 %
GABA	GABA_A receptor (flunitrazepam)	<50 %
GABA	GABA_A receptor (muscimol)	<50 %
GABA	Hippocampal GABA_A receptor (Ro-15-1788)	<50 %
GABA	Cerebellar GABA_A receptor (Ro-15-1788)	<50 %
GABA	GABA_A receptor (TBOB)	<50 %
GABA	GABA_A receptor (TBPS)	<50 %
GABA	GABA_B receptor (non-selective)	<50 %
GABA	GABA_B1a receptor subunit	<50 %
GABA	GABA_B1b receptor subunit	<50 %
GABA	GABA transporter	<50 %
Glucocorticoid	Glucocorticoid receptor	<50 %
Glutamate	Kainate receptor	<50 %
Glutamate	NMDA receptor (agonism)	<50 %
Compound	Receptor/Transporter	% Inhibition
-------------------	--------------------------------------	-------------
Glutamate	NMDA receptor (glycine)	<50 %
Glutamate	NMDA receptor (phencyclidine)	<50 %
Glutamate	NMDA receptor (polyamine)	<50 %
Glycine	Strychnine-sensitive receptor	<50 %
Glycine	Glycine transporter	<50 %
G-protein coupled receptor	GPR103 receptor	<50 %
Histamine	H₁ receptor	<50 %
Histamine	H₂ receptor	<50 %
Histamine	H₃ receptor	<50 %
Imidazoline	I₂ receptor (central)	<50 %
Leukotriene	CysLT₁ receptor	<50 %
Melatonin	MT₁ receptor	<50 %
Monoamine	Monoamine transporter	<50 %
Neuropeptide Y	Y₁ receptor	<50 %
Neuropeptide Y	Y₂ receptor	<50 %
Norepinephrine	α₁a receptor	<50 %
Norepinephrine	α₁b receptor	<50 %
Norepinephrine	α₁d receptor	<50 %
Norepinephrine	α₂a receptor	<50 %
Norepinephrine	β₁ receptor	<50 %
Norepinephrine	β₂ receptor	<50 %
Norepinephrine	Norepinephrine transporter	<50 %
Opioid	δ receptor	<50 %
Opioid	κ receptor	<50 %
Opioid	μ receptor	<50 %
Phorbol ester	Phorbol ester	<50 %
Platelet activating factor	Platelet activating factor	<50 %
Potassium channel	K_{ATP} channel	<50 %
Potassium channel	hERG channel	<50 %
Prostanoid	EP4 receptor	<50 %
Purinergic	P_{₂x} receptor	<50 %
Purinergic	P_{₂y} receptor	<50 %
Phosphodiesterase	Phosphodiesterase (rolipram)	<50 %
Serotonin	5-HT_{₁a} receptor	<50 %
Serotonin	5-HT_{₁b} receptor	<50 %
Serotonin	5-HT_{₂a} receptor	<50 %
Serotonin	5-HT_{₂b} receptor	<50 %
Serotonin	5-HT_{₂c} receptor	<50 %
Serotonin	5-HT_₃ receptor	<50 %
Serotonin	5-HT_₄ receptor	<50 %
Serotonin	5-HT_{₅a} receptor	<50 %
Serotonin	5-HT_₆ receptor	<50 %
Serotonin	Serotonin transporter	<50 %
Sigma	σ₁ receptor	<50 %
Sigma	σ₂ receptor	<50 %
Sodium channel	Receptor site 2	<50 %
Tachykinin	NK₁ receptor	<50 %
Thyroid hormone	Thyroid hormone	<50 %

*aInhibition of binding of the endogenous ligand, or the drug or ligand shown in brackets.

5-HT, 5-hydroxytryptamine; A, adenosine; B, bradykinin; CB, cannabinoid; CysLT, cysteinyl leukotriene; D, dopamine; EP, prostaglandin E; ER, estrogen receptor; ET, endothelin;
GABA, γ-aminobutyric acid; GPR103, G-protein coupled receptor 103; H, histamine; hERG, human ether-a-go-go-related gene; I, imidazoline; K_{ATP}, ATP-sensitive potassium channel; M, muscarinic; MT, melatonin; nAChR, nicotinic acetylcholine receptor; NK, neurokinin; NMDA, N-methyl-D-aspartate; P, purine; PDE, phosphodiesterase; VGCC, voltage-gated calcium channel