HOLOMORPHIC BUNDLES ON THE BLOWN-UP PLANE AND THE BAR CONSTRUCTION

JOÃO PAULO SANTOS

Abstract. Let X_q denote a simply connected positive definite four-manifold with $b_2 = q$, let $\mathcal{M}_k X_q$ denote the moduli space of based $SU(r)$ instantons on X_q with second Chern class $c_2 = k$ and let $\mathcal{M}_k X_q = \coprod_{k} \mathcal{M}_k$. We show that, for $k = 1, 2$ we have homotopy equivalences between $\mathcal{M}_k(X_p \# X_q)$, the degree k component of $\text{Bar}(\mathcal{M}_k X_p, \mathcal{M}_k S^4, \mathcal{M}_k X_q)$ and the degree k component of $\text{Bar}(\mathcal{M}_k S^4, (\mathcal{M}_k S^4)^{p+q}, (\mathcal{M}_k S^2)^{p+q})$. A similar result holds in the limit when $c_2 \rightarrow \infty$: we have $\mathcal{M}_\infty(X_p \# X_q) \simeq \text{Bar}(\mathcal{M}_\infty X_p, \mathcal{M}_\infty S^4, \mathcal{M}_\infty X_q) \simeq \text{Bar}(\mathcal{M}_\infty S^4, (\mathcal{M}_\infty S^4)^{p+q}, (\mathcal{M}_\infty S^2)^{p+q})$.

1. Introduction

In this paper we will study the moduli space of holomorphic bundles over a rational surface with vanishing first Chern class, trivialized on a rational curve. Through the Kobayashi-Hitchin correspondence, this space is isomorphic to the moduli space of based instantons over a positive definite simply connected closed four-manifold (see [3], [9]). Let $\mathcal{M}_k X_q$ be the moduli space of based instantons over a positive definite simply connected closed rational surface with vanishing first Chern class, trivialized on a rational curve.

Let $\mathcal{M}_k X_q$ denote the moduli space of based instantons over a positive definite simply connected closed four-manifold (see [3], [9]). Let $\mathcal{M}_k X_q = \coprod_{k} \mathcal{M}_k$. We show that, for $k = 1, 2$ we have homotopy equivalences between $\mathcal{M}_k(X_p \# X_q)$, the degree k component of $\text{Bar}(\mathcal{M}_k X_p, \mathcal{M}_k S^4, \mathcal{M}_k X_q)$ and the degree k component of $\text{Bar}(\mathcal{M}_k S^4, (\mathcal{M}_k S^4)^{p+q}, (\mathcal{M}_k S^2)^{p+q})$. A similar result holds in the limit when $c_2 \rightarrow \infty$: we have $\mathcal{M}_\infty(X_p \# X_q) \simeq \text{Bar}(\mathcal{M}_\infty X_p, \mathcal{M}_\infty S^4, \mathcal{M}_\infty X_q) \simeq \text{Bar}(\mathcal{M}_\infty S^4, (\mathcal{M}_\infty S^4)^{p+q}, (\mathcal{M}_\infty S^2)^{p+q})$.

Theorem 1.1. Let $I = \{x_1, \ldots, x_q\} \subset \mathbb{C}^2$. Then:

1. The map $\mathbb{R} \times \prod_{x_i} \mathcal{M}_{x_i} \rightarrow \mathcal{M}_I$ induces a map $\pi_{1, I} : \mathcal{M}_J \rightarrow \mathcal{M}_I$. Write $\mathcal{M}_J = \prod_{x_i} \mathcal{M}_{x_i}$ where \mathcal{M}_{x_i} denotes the component with second Chern class k. For $k = 1, 2$ we obtain a description of the moduli space \mathcal{M}_I in terms of the moduli spaces \mathcal{M}_0 and \mathcal{M}_{x_i}, with $x_i \in I$: Let $\mathcal{M}_{x_i} = \mathcal{M}_{x_i}$ for $k \leq 2$ and $\mathcal{M}_{x_i} = \mathcal{M}_{x_i}$ for $k > 2$, and let $\mathcal{M}_I = \prod_{x_i} \mathcal{M}_{x_i}$. Then, using results in [13] we construct degree preserving maps $\mathbb{H} : \mathcal{M}_I \times \prod_{x_i} \mathcal{M}_{x_i} \rightarrow \mathcal{M}_I$ for any disjoint finite sets $I_1, \ldots, I_n \subset \mathbb{C}^2$. These maps are compatible with pullback and give rise, in a standard way, to bar constructions $\text{Bar}(\mathcal{M}_I, \mathcal{M}_0, \mathcal{M}_J)$ and $\text{Bar}(\mathcal{M}_0, \mathcal{M}_I, \mathcal{M}_I, \mathcal{M}_x)$ (where $I = \{x_1, \ldots, x_q\}$).

2. If $I = J \cup K$, with $J \cap K = \emptyset$, then the map $\mathbb{R} \times \prod_{x_i} \mathcal{M}_{x_i} \rightarrow \mathcal{M}_I$ induces a map $\text{Bar}(\mathcal{M}_I, \mathcal{M}_0, \mathcal{M}_0, \mathcal{M}_x)$ which is a homotopy equivalence in the degree $k = 1, 2$ components.

There is an analogous result to Theorem 1.1 in the limit when $k \rightarrow \infty$. In [16], Taubes described, for $k' > k$, gluing maps $\mathcal{M}_{k', k} \rightarrow \mathcal{M}_{k, k}$ and showed that, in the limit when $k \rightarrow \infty$, there are homotopy equivalences $\mathcal{M}_{k, \infty} \simeq \text{Map}_*(\#_{n} \mathbb{P}^2, BSU(r))$. In particular, $\mathcal{M}_{k, \infty} \simeq \Omega^4 BSU(r)$.

1
Theorem 1.2. The map #_{n}P^2 \to (\bigvee_{n}P^2) \vee S^4, obtained by pinching n copies of S^3 induces a map

$$\text{Bar}\left(\mathcal{M}_{\emptyset, \infty}^{\emptyset}, \prod_{x \in I} \mathcal{M}_{\emptyset, \infty}^{\emptyset}, \prod_{x \in I} \mathcal{M}_{c, \infty}^{c}\right) \to \mathcal{M}_{I, \infty}^{r}$$

which is a homotopy equivalence.

Direct sum with a trivial rank $r' - r$ bundle induces a map $\mathcal{M}_{I}^{r} \to \mathcal{M}_{I}^{r'}$ and we let $\mathcal{M}_{I}^{r} = \text{colim} \mathcal{M}_{I}^{r}$. In [7], [12], [1] it was shown that we have homotopy equivalences $\mathcal{M}_{I}^{\infty} \simeq \prod_{k} BU(k)$ and $\mathcal{M}_{I}^{\infty} \simeq \prod_{k} BU(k) \times BU(k)$ (with $x \in \mathbb{C}^2$). Combining the maps $\pi_{I,I}$ with Whitney sum allows us to define, for each $I \subset \mathbb{C}^2$, a bar construction, which we denote by:

$$\|B_I\| = \text{Bar}\left(\|M_\emptyset\|, \prod_{x \in I} \|M_\emptyset\|, \prod_{x \in I} \|M_x\|\right),$$

and a map: $h_I: \|B_I\| \to M_I$. The second Chern class of the bundles gives a grading of the spaces $\|B_I\|$ and we write $\|B_{I,k}\|, h_{I,k}$ for the degree k components. For the $k = 1, 2$ components, in the limit when $r \to \infty$ the maps $\|B_I\|$ become Whitney sum so Theorem 1.2 implies that $h_{I,1}$ and $h_{I,2}$ are homotopy equivalences.

Conjecture 1.3. The map $h_I: \|B_I\| \to M_I$ is a homotopy equivalence.

For each k, it is enough to check the conjecture for finite sets I with $\# I \leq k$:

Theorem 1.4. If, for every finite set $J \subset I$ with $\# J \leq k$, the map $h_{I,k}$ is a homotopy equivalence, then $h_{I,k}$ is a homotopy equivalence.

The paper is organized as follows: In section 2 we describe the moduli spaces \mathcal{M}_{I}^{r} and show that in the limit when $r \to \infty$ they have the structure of E_{∞}-spaces. In sections 3 and 4 we describe the bar constructions in the limit when $r \to \infty$ and show that, for disjoint finite sets I and J we have (see Theorem 1.4):

$$\text{Bar}(\|B_I\|, \|B_J\|) \simeq \|B_{I,J}\|.$$ \hspace{1cm} (1)

Assuming Conjecture 1.3 holds, it will follow that $\mathcal{M}_{I,J} \simeq \text{Bar}(\mathcal{M}_I, \mathcal{M}_J)$. Also, from the finite rank version of equation (1) we see that parts (1) and (2) of Theorem 1.4 are equivalent. In section 5 we prove Theorem 1.4. This theorem is a consequence of the following fact: $\mathcal{M}_{I,k}$ is the colimit of $\mathcal{M}_{J,k}$ taken over the subsets $J \subset I$ with $\# J \leq k$. Theorem 1.4 together with equation (1), imply Theorem 1.4 for $k = 1$. In section 6 we prove Theorem 1.4 for $k = 2$ and use it to show that $h_{I,2}$ is a homotopy equivalence. In section 7 we prove Theorem 1.2. In the appendix we prove some results needed in section 6 using the monad descriptions of holomorphic bundles introduced in [5], [6].

2. Moduli spaces of holomorphic bundles

In this section we give the moduli space of holomorphic bundles the structure of an algebra over the linear isometries operad.

Definition 2.1. Let V be a complex hermitian vector space of dimension r and let $E \to \mathbb{P}_I^2$ be a rank r smooth complex vector bundle with first Chern class $c_1(E) = 0$. A holomorphic structure on E is a semi-connection $\partial_E : \Omega^0(E) \to \Omega^{0,1}(E)$ satisfying the integrability condition $\partial_E^2 = 0$. Let $C(I, E, V)$ be the space of pairs (∂_E, ϕ) where ∂_E is a holomorphic structure on E holomorphically trivial on L_∞.
and φ : E|_{L\infty} → V × L\infty is a holomorphic trivialization. We define \(M(I, E, V) = C(I, E, V)/\text{Aut}(E) \).

In [8], it was shown that:

Proposition 2.1. The group Aut(E) of smooth bundle automorphisms of E acts freely on C(I, E, V) and the quotient has the structure of a finite dimensional Hausdorff complex analytic space.

Proposition 2.2. Let \(E_1, E_2 \to \tilde{\mathbb{P}}^2 \) be two isomorphic smooth complex vector bundles. Then there is a canonical isomorphism \(M(I, E_1, V) \cong M(I, E_2, V) \).

Proof. Given an isomorphism \(\psi : E_1 \to E_2 \) define a map \(\psi_\ast : C(I, E_1, V) \to C(I, E_2, V) \) by \(\psi_\ast(\partial, \phi) = (\psi \circ \partial \circ \psi^{-1}, \phi \circ \psi^{-1}) \). This map descends to the quotient to give a homeomorphism \(M(I, E_1, V) \to M(I, E_2, V) \) which is independent of the choice of isomorphism \(\psi \). □

Since the isomorphism class of \(E \) is completely determined by \(c_2(E) = k \) and \(\text{rk} E = \dim V \), we will use the notation \(M(I, E, V) = M^V_{I,k} \).

Definition 2.2. Let \(M^V_I = \prod_{k=0}^\infty M^V_{I,k} \). We also define the following maps:

1. Let \(\omega : C(I, E_1, V_1) \times C(I, E_2, V_2) \to C(I, E_1 \oplus E_2, V_1 \oplus V_2) \) be the map defined by \(\omega((\partial_1, \phi_1), (\partial_2, \phi_2)) = (\partial_1 + \partial_2, \phi_1 + \phi_2) \). This map descends to the quotient to give a map \(\omega : M^V_I \times M^V_J \to M^V_{I \oplus J} \).

2. Given finite sets \(J \subset I \subset \mathbb{C}^2 \), let \(\pi_{\ast,J} : \tilde{\mathbb{P}}^2 \to \tilde{\mathbb{P}}^2_J \) be the blowup of \(\tilde{\mathbb{P}}^2 \) along \(I \setminus J \). Then pullback of holomorphic bundles induces a map \(\pi_{\ast,J}^\ast : C(J, E, V) \to C(I, \pi_{\ast,J}^\ast E, V) \). This map descends to the quotient to give a map \(\pi_{\ast,J}^\ast : M^V_I \to M^V_J \).

3. Let \(\alpha : V \to W \) be an isometry. Let \(\epsilon_\alpha \) be the trivial bundle over \(\tilde{\mathbb{P}}^2 \) with fiber \(\alpha(V)^\perp \subset W \) and denote by \(\bar{\partial} \) the canonical holomorphic structure on \(\epsilon_\alpha \). We define the map \(C\alpha : C(I, E, V) \to C(I, E \oplus \epsilon_\alpha, W) \) by sending \((\bar{\partial}_E, \phi) \) to \((\bar{\partial}_E + \bar{\partial}, (\alpha \circ \phi) \oplus 1) \). This map descends to the quotient to give a map \(M\alpha : M^V_I \to M^V_J \).

Lemma 2.3. The map \(M\alpha \) is a closed embedding.

Proof. It follows easily from the monad description of \(M^V_I \) in [11]. □

Lemma 2.4. The assignement \(\alpha \mapsto M\alpha \) defines a continuous map between the space of linear isometries \(\mathcal{L}(V, W) \) from \(V \) to \(W \) and the space of maps \(\text{Map}(M^V_I, M^W_J) \).

Proof. We divide the proof into two steps:

1. When \(\dim V = \dim W \), \(C\alpha \) is the map \((\bar{\partial}_E, \phi) \mapsto (\bar{\partial}_E, \alpha \circ \phi) \) and the result is clear.

2. We assume \(\dim W > \dim V \). Fix \(\alpha_0 \in \mathcal{L}(V, W) \); we will show continuity at \(\alpha_0 \). Let \(V_0 = \alpha_0(V)^\perp \) and let \(\rho : \mathcal{L}(V \oplus V_0, W) \to \mathcal{L}(V, W) \) be the principal bundle map adjoint to the canonical inclusion \(i : V \to V \oplus V_0 \). Let \(\theta \) be a local section of \(\rho \) on a neighbourhood \(U \) of \(\alpha_0 \). Given \(\alpha \in U \), the restriction of \(\theta(\alpha) \) to \(V_0 \) gives an isomorphism \(\theta(\alpha)|_{V_0} : V_0 \to \alpha(V)^\perp \) which induces an
isomorphism of holomorphic bundles $\psi_\alpha : E \oplus \epsilon_{\alpha_0} \to E \oplus \epsilon_\alpha$. We have the commutative diagram:

$$
\begin{array}{ccc}
C(I, E, V) & \xrightarrow{C_\theta} & C(I, E \oplus \epsilon_{\alpha_0}, V \oplus V_0) \\
\downarrow C_\alpha & & \downarrow C_\theta(\alpha) \\
C(I, E \oplus \epsilon_\alpha, W) & \xrightarrow{\psi_\alpha} & C(I, E \oplus \epsilon_{\alpha_0}, W)
\end{array}
$$

and hence, the map $\alpha \mapsto M_I$ is given, on the neighbourhood U of α_0, by the composition

$$
\mathcal{L}(V, W) \xrightarrow{\theta} \mathcal{L}(V \oplus V_0, W) \xrightarrow{M_I} \text{Map}(\mathcal{M}_I^{V \oplus V_0}, \mathcal{M}_I^W) \\
\xrightarrow{\text{Map}(\mathcal{M}_I^V, \mathcal{M}_I^W)} \text{Map}(\mathcal{M}_I^V, \mathcal{M}_I^W)
$$

where the last map is induced by the canonical inclusion $i : V \to V \oplus V_0$. The result then follows because, by Step 1, the middle map M_I is continuous since $\dim(V \oplus V_0) = \dim W$.

Using the terminology of [11], the pair (\mathcal{M}_I, ω) is an L^*-functor. That is:

Proposition 2.5. Let L^* denote the graded category whose objects are the finite dimensional complex hermitian vector spaces and whose morphisms are the linear isometries. Let $\oplus : L^* \times L^* \to L^*$ be the direct sum functor. Then the assignements $V \mapsto \mathcal{M}_I^V$ and $\alpha \mapsto \mathcal{M}_I^\alpha$ define a continuous functor \mathcal{M}_I from L^* to Top and $\omega : \mathcal{M}_I \times \mathcal{M}_I \to \mathcal{M}_I \circ \oplus$ is a natural transformation satisfying $\omega(x, *) = x$, where $* \in \mathcal{M}_I$ is the basepoint.

Proof. We’ve already shown in Lemma 2.4 that the functor is continuous. The other statements are straightforward. \qed

Proposition 2.6. Let L denote the category whose objects are the finite or countably infinite hermitian vector spaces and whose morphisms are the isometries. Then \mathcal{M}_I extends to a functor $\mathcal{M}_I : L \to \text{Top}$ and ω extends to a natural transformation $\mathcal{M}_I \circ \oplus$.

Proof. We can extend \mathcal{M}_I to infinite dimensional vector spaces W by letting $\mathcal{M}_I^W = \text{colim} \mathcal{M}_I^V$ where the colimit is taken over the finite dimensional subspaces $V \subset W$. See [11]. \qed

Now let \mathbb{H} be a countably infinite complex hermitian vector space which we call the universe.

Proposition 2.7. Let $\mathcal{L}^{\mathbb{H}}$ be the complex linear isometries operad over \mathbb{H}. Then ω induces an $\mathcal{L}^{\mathbb{H}}$-algebra structure on $\mathcal{M}_I^{\mathbb{H}}$. Furthermore, a morphism of universes $\alpha : \mathbb{H}_1 \to \mathbb{H}_2$ induces a map of $\mathcal{L}^{\mathbb{H}}$-algebras $\mathcal{M}_I^{\mathbb{H}_1} \to \mathcal{M}_I^{\mathbb{H}_2}$ which is a homeomorphism when α is an isomorphism.

Proof. See [11]. \qed

For $J \subset I$, the map π^*_J passes to the colimit to give a map $\pi^*_J : \mathcal{M}_I^{\mathbb{H}} \to \mathcal{M}_J^{\mathbb{H}}$.

Proposition 2.8. Let \mathcal{C} be the category of finite subsets of \mathbb{C}^2 with morphisms the inclusions. Then the assignements $I \mapsto \mathcal{M}_I^{\mathbb{H}}$ and $(J \subset I) \mapsto \pi^*_J$ define a functor between \mathcal{C} and the category of $\mathcal{L}^{\mathbb{H}}$-spaces.
Then we can easily check that \(\pi^*_I \) is a natural transformation between the functors \(\mathcal{M}_I \) and \(\mathcal{M}_J \) which commutes with \(\omega \). The result follows. \(\square \)

Remark 2.3. For \(J \subset I \), \(\mathcal{M}^E_I \) is a module over the \(\mathcal{L}^E \)-algebra \(\mathcal{M}^E_J \). The structure is induced by the map \(\pi^*_I : \mathcal{M}^E_I \rightarrow \mathcal{M}^E_J \) and the \(\mathcal{L}^E \)-algebra structure on \(\mathcal{M}^E_J \).

3. The bar construction

Let \(\mathcal{P} \) be an \(E_\infty \) operad and let \(A \) be a \(\mathcal{P} \)-algebra. We begin by generalizing the notion of a module \(M \) over \(A \). We start with a module \(\mathcal{P}_M \) over \(\mathcal{P} \) with the spaces \(\mathcal{P}_M(n) \) modeled on \(\operatorname{Map}(M \times A^n, M) \cong \operatorname{Map}(A^n, \operatorname{End}(M)) \). Besides the usual maps \(\circ_i : \mathcal{P}_M(k) \times \mathcal{P}(j) \rightarrow \mathcal{P}_M(k+j) \), composition on \(\operatorname{End}(M) \) gives \(\mathcal{P}_M \) the structure of a graded associative monoid.

Definition 3.1. Let \(\mathcal{P} \) be an \(E_\infty \) operad with composition \(\gamma(\theta; \theta_1, \ldots, \theta_k) = \theta \circ (\theta_1, \ldots, \theta_k) \) and unit \(1 \in \mathcal{P}(1) \). Then:

1. A monoidal module \(\mathcal{P}_M \) over \(\mathcal{P} \) is an \(E_\infty \) module over \(\mathcal{P} \) such that \(\bigoplus_n \mathcal{P}_M(n) \) is a graded associative monoid with unit \(1_M \in \mathcal{P}_M(0) \); that is, we have continuous maps

\[
\gamma_M : \mathcal{P}_M(k) \times \mathcal{P}_M(j_k) \times \mathcal{P}_M(j_1) \times \cdots \times \mathcal{P}_M(j_0) \rightarrow \mathcal{P}_M(j_0 + \cdots + j_k),
\]

which we represented by \(\gamma_M(\theta; \theta_0, \theta_1, \ldots, \theta_k) = \theta \circ_M (\theta_0, \theta_1, \ldots, \theta_k) \), satisfying the associativity relation

\[
\theta \circ_M (\theta_0 \circ_M (\theta_{00}, \theta_{01}, \ldots, \theta_{0k_0}), \theta_1 \circ_M (\theta_{11}, \ldots, \theta_{1k_1}), \ldots, \theta_j \circ_M (\theta_{jk_j}))
\]

and the unit relation \(1_M = \theta \circ_M (1, 1, \ldots, 1) = \theta \).

A morphism of operads \((\psi_M, \psi) : (\mathcal{P}_M, \mathcal{P}) \rightarrow (\mathcal{P}_M', \mathcal{P}) \) is a collection of continuous maps \(\mathcal{P}_M(k) \rightarrow \mathcal{P}_M'(k) \) and \(\mathcal{P}_M(k) \rightarrow \mathcal{P}_M(k) \) such that \(\psi \) is a morphism of operads and \((\psi_M \theta, \varphi_M \theta, \ldots, \varphi_M \theta) = \psi_M (\theta \circ_M (\theta_0, \theta_1, \ldots, \theta_k)) \).

2. A \(\mathcal{P}_M \)-module over a \(\mathcal{P} \)-algebra \(A \) is a topological space \(M \) together with maps \(\mathcal{P}_M(k) \times M \times A^k \rightarrow M \) such that the following diagram is commutative:

\[
\begin{array}{ccc}
(M \times A^{k_0}) \times A^{k_1} \times \cdots \times A^{k_k} = M \times A^k & \xrightarrow{\theta_0 \times \theta_1 \cdots \times \theta_k} & M \\
\downarrow \theta_0 \times \theta_1 \cdots \times \theta_k & & \downarrow \theta_0(\theta_0, \theta_1, \ldots, \theta_k) \\
M & \xrightarrow{\theta} & M
\end{array}
\]

A morphism of pairs \((f_M, f) : (M_1, A_1) \rightarrow (M_2, A_2) \) is a pair of maps \((f_M, f) \) such that \(f : A_1 \rightarrow A_2 \) is a map of \(\mathcal{P} \)-algebras and \(f_M : M_1 \rightarrow M_2 \) is a continuous map such that, for any \(\theta \in \mathcal{P}_M(k) \) we have \(f_M (\theta(m, a_1, \ldots, a_k)) = \theta(f_M(m), f(a_1), \ldots, f(a_k)) \).

We are interested in the following examples:

Example 3.2. Let \(\mathcal{P} \) be an \(E_\infty \)-operad and, for each \(n \geq 0 \), let \(\mathcal{P}_+ (n) = \mathcal{P}(n+1) \). Then \(\mathcal{P}_+ \) is a monoidal module over \(\mathcal{P} \) and the \(\mathcal{P}_+ \)-modules over a \(\mathcal{P} \)-algebra \(A \) are the modules over \(A \).
Example 3.3. Given countably infinite complex hermitian vector spaces V and W, let \mathcal{L} be the linear isometries operad over V and let $\mathcal{L}_{M}(n) = \mathcal{L}(W \oplus V^n, W)$. Then \mathcal{L}_{M} is a monoidal module over \mathcal{L}. Notice that, when $V = W$, we have $\mathcal{L}_{M} = \mathcal{L}_{+}$.

We now define the bar construction.

Definition 3.4. (1) Given an E_{∞} operad \mathcal{P} and monoidal modules $\mathcal{P}_{L}, \mathcal{P}_{R}$ over \mathcal{P}, we call $(\mathcal{P}_{L}, \mathcal{P}, \mathcal{P}_{R})$ an operad triple. A morphism of triples $(\mathcal{P}_{L1}, \mathcal{P}_{1}, \mathcal{P}_{R1}) \to (\mathcal{P}_{L2}, \mathcal{P}_{2}, \mathcal{P}_{R2})$ is a triple $(\psi_{L}, \psi, \psi_{R})$ such that $(\psi_{L}, \psi): (\mathcal{P}_{L1}, \mathcal{P}_{1}) \to (\mathcal{P}_{L2}, \mathcal{P}_{2})$ and $(\psi_{R}, \psi): (\mathcal{P}_{R1}, \mathcal{P}_{1}) \to (\mathcal{P}_{R2}, \mathcal{P}_{2})$ are morphisms of pairs.

(2) Let Δ be the simplicial category. Given an operad triple $\mathcal{P} = (\mathcal{P}_{L}, \mathcal{P}, \mathcal{P}_{R})$, let $\Delta(\mathcal{P})$ be the category with the same objects as Δ and whose morphisms are defined as follows: For each morphism $\mu \in \Delta(m, n)$ let

$$\Delta(\mathcal{P})(\mu) = \mathcal{P}_{L}(\mu_{0}) \times \prod_{\alpha = 1}^{m} \mathcal{P}(\mu_{\alpha} - \mu_{\alpha-1}) \times \mathcal{P}_{R}(n - \mu_{m});$$

Then, the space of morphisms is defined to be

$$\Delta(\mathcal{P})(m, n) = \coprod_{\mu \in \Delta(m, n)} \Delta(\mathcal{P})(\mu).$$

Composition of morphisms: $\Delta(\mathcal{P})(\mu) \times \Delta(\mathcal{P})(\nu) \to \Delta(\mathcal{P})(\nu \circ \mu)$ is done using the operad data:

$$\gamma_{L}: \mathcal{P}_{L}(\mu_{0}) \times \mathcal{P}_{L}(\nu_{0}) \times \prod_{\beta = 1}^{\mu_{0}} \mathcal{P}(\nu_{\beta} - \nu_{\beta-1}) \to \mathcal{P}_{L}(\nu_{\mu_{0}});$$

$$\gamma: \mathcal{P}(\mu_{\alpha} - \mu_{\alpha-1}) \times \prod_{\beta = \mu_{\alpha-1} + 1}^{\mu_{\alpha}} \mathcal{P}(\nu_{\beta} - \nu_{\beta-1}) \to \mathcal{P}(\nu_{\mu_{\alpha}} - \nu_{\mu_{\alpha-1}});$$

$$\gamma_{R}: \mathcal{P}_{R}(n - \mu_{m}) \times \mathcal{P}_{R}(p - \nu_{n}) \times \prod_{\beta = \mu_{m} + 1}^{n} \mathcal{P}(\nu_{\beta} - \nu_{\beta-1}) \to \mathcal{P}_{R}(p - \nu_{\mu_{m}}).$$

From the associativity of the operad data it is straightforward to prove that this composition law is associative.

(3) Given spaces X_{L}, X and X_{R}, we say (X_{L}, X, X_{R}) is a \mathcal{P}-triple if X is a \mathcal{P}-algebra and X_{L}, X_{R} are respectively \mathcal{P}_{L} and \mathcal{P}_{R}-modules over X. A morphism of \mathcal{P}-triples $(X_{L1}, X_{1}, X_{R1}) \to (X_{L2}, X_{2}, X_{R2})$ is a triple (f_{L}, f, f_{R}) where $(f_{L}, f): (X_{L1}, X_{1}) \to (X_{L2}, X_{2})$ and $(f_{R}, f): (X_{R1}, X_{1}) \to (X_{R2}, X_{2})$ are maps of pairs.

(4) Given a \mathcal{P}-triple $X = (X_{L}, X, X_{R})$, let $\mathfrak{B}(X): \Delta(\mathcal{P})_{op} \to \text{Top}$ be the functor defined on objects by the assignment

$$n \mapsto X_{L} \times X^{n} \times X_{R}$$

and defined on morphisms as follows: Given $\mu \in \Delta(m, n)$ and $f \in \Delta(\mathcal{P})(\mu)$ we can write

$$X_{L} \times X^{n} \times X_{R} = (X_{L} \times X^{\mu_{0}}) \times \left(\prod_{\alpha = 1}^{n} X^{\mu_{\alpha} - \mu_{\alpha-1}} \right) \times (X^{n-\mu_{m}} \times X_{R}).$$
Then the maps
\[\mathcal{P}_L(\mu_0) \times X_L \times X^{\mu_0} \to X_L \]
\[\mathcal{P}(\mu_0 - \mu_{a-1}) \times X^{\mu_a - \mu_{a-1}} \to X \]
\[\mathcal{P}_R(n - \mu_m) \times X^{n - \mu_m} \times X_R \to X_R \]
induce the desired map \(X_L \times X^n \times X_R \to X_L \times X^n \times X_R \).

(5) We define the bar construction by taking the homotopy colimit:
\[\text{Bar}(X_L, X, X_R) = \| \mathcal{B}(X) \| = \text{hocolim}_{\Delta(\mathcal{P})^m} \mathcal{B}(X). \]

3.1. Maps from the bar construction

We now wish to define maps \(\| \mathcal{B}(X) \| \to Y \) for some space \(Y \). The idea is to replace \(Y \) with a homotopically equivalent space. We will need, for each \(k \geq 0 \), spaces \(\mathcal{P}(k) \) modeled on \(\text{Map}(X_L \times X^k \times X_R, Y) \).

Definition 3.5. Let \(\mathcal{P} = (\mathcal{P}_L, \mathcal{P}, \mathcal{P}_R) \) be an operad triple. A module \(\widetilde{\mathcal{P}} \) over \(\mathcal{P} \) is a collection of contractible based spaces \(\mathcal{P}(n) \), one for each \(n \geq 0 \), together with continuous maps
\[\gamma : \mathcal{P}(k) \times \mathcal{P}_L(j_L) \times \mathcal{P}_R(j_R) \to \mathcal{P}(j) \]
for \(j = j_L + j_1 + \ldots + j_k + j_R \)

which we represent by \(\gamma(\theta; \theta_L, \theta_1, \ldots, \theta_k, \theta_R) \), satisfying the associativity relation
\[\tilde{\theta}(\theta_L \circ_{M} (\theta_{L0} \ldots, \theta_{L_k}), \ldots, \theta_R) = \tilde{\theta}(\theta_{L0} \ldots, \theta_{L_k}, \theta_{R0} \ldots, \theta_{R_k}) \]

We call \((\mathcal{P}, \mathcal{P})\) an operad 4-tuple. Given a \(\mathcal{P} \)-triple \(X = (X_L, X, X_R) \) and a space \(Y \), we say that \((X; Y) \) is a \((\mathcal{P}; Y) \) 4-tuple if there are, for each \(k \), maps \(\mathcal{P}(k) \times X_L \times X \times X_R \to Y \) such that the following diagram commutes:
\[\begin{array}{ccc}
\mathcal{P}(k) \times X_L \times X \times X_R & \xrightarrow{\hat{\gamma}(\theta_L, \theta_1, \ldots, \theta_k, \theta_R)} & Y \\
\mathcal{P}(k) \times X_L \times X \times X_R & \xrightarrow{\gamma(\theta_L, \theta_1, \ldots, \theta_k, \theta_R)} & Y \\
\end{array} \]

We are interested in the following example:

Example 3.6. Given countably infinite complex hermitian vector spaces \(V, W_1, W_2 \) and \(U \), let \(\mathcal{L} \) be the linear isometries operad over \(V \) and let \(\mathcal{L}_i(n) = \mathcal{L}(W_i \oplus V^n, W_i) \), for \(i = 1, 2 \) (see Example 3.3). Also let \(\mathcal{L}(n) = \mathcal{L}(W_1 \oplus V^n \oplus W_2, U) \). Then \((\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_2)\) is an operad 4-tuple. Note that, when \(W_2 = V \) and \(W_1 = U \), we have \(\mathcal{L}_2 = \mathcal{L}_+ \) and \(\mathcal{L} = \mathcal{L}_1^+ \).

We now define a space homotopically equivalent to \(Y \).

Definition 3.7. Let \(\tilde{\Delta} \) denote the category whose objects are the sets \([n] = \{0, 1, \ldots, n\} \subset \mathbb{Z}\) plus the empty set and whose morphisms are the order preserving maps. We denote the emptyset by \([-1] \in \tilde{\Delta} \). Let \(\Delta \subset \tilde{\Delta} \) be the simplicial category.
(1) Given an operad 4-tuple \((\mathcal{P}; \tilde{\mathcal{P}}) = (\mathcal{P}_L, \mathcal{P}_R; \tilde{\mathcal{P}})\), we define a category \(\tilde{\Delta}(\mathcal{P}; \tilde{\mathcal{P}})\) equivalent to \(\tilde{\Delta}\) as follows: For \(m, n \neq [-1]\), the spaces of morphisms coincide with those of \(\Delta(\mathcal{P})\). For \(m = -1\) we let \(\tilde{\Delta}(\mathcal{P}; \tilde{\mathcal{P}})(-1, n) = \tilde{\mathcal{P}}(n)\). Given \(\mu \in \Delta(m, n)\), composition of morphisms
\[
\tilde{\Delta}(\mathcal{P}; \tilde{\mathcal{P}})(-1, m) \times \Delta(\mathcal{P})(\mu) \to \tilde{\Delta}(\mathcal{P}; \tilde{\mathcal{P}})(-1, n)
\]
is done using the operad data:
\[
\tilde{\gamma}: \tilde{\mathcal{P}}(m) \times \mathcal{P}_L(\mu_0) \times \prod_{a=1}^{m} \mathcal{P}(\mu_a - \mu_{a-1}) \times \mathcal{P}_R(n - \mu_m) \to \tilde{\mathcal{P}}(n).
\]

(2) Given a \((\mathcal{P}; \tilde{\mathcal{P}})\) 4-tuple of spaces \((X, \tilde{X}) = (X_L, X, X_R; \tilde{Y})\), let \(\mathfrak{B}(X, \tilde{X}) = \tilde{\Delta}(\mathcal{P}; \tilde{\mathcal{P}})^{op} \to \text{Top}\) be the functor extending \(\mathfrak{B}(X)\), sending the object \([-1]\) to \(Y\) and defined on morphisms by the map
\[
\tilde{\mathcal{P}}(n) \times X_L \times X^n \times X_R \to Y.
\]
We let \(\|\mathfrak{B}(X, \tilde{X})\| = \text{hcolim}\limits_{\Delta(\mathcal{P}; \tilde{\mathcal{P}})} \mathfrak{B}(X, \tilde{X})\).

Proposition 3.1. Let \((\mathcal{P}; \tilde{\mathcal{P}}) = (\mathcal{P}_L, \mathcal{P}_R; \tilde{\mathcal{P}})\) be an operad 4-tuple and let \((X, \tilde{X}) = (X_L, X, X_R; \tilde{Y})\) be a \((\mathcal{P}; \tilde{\mathcal{P}})\) 4-tuple of spaces. Then the inclusion \([-1] \to \tilde{\Delta}\) induces a map \(Y \to \|\mathfrak{B}(X, \tilde{X})\|\) which is a homotopy equivalence.

Proof. It is enough to observe that \([-1]\) is an initial object. \(\square\)

Definition 3.8. We represent by \(h_X, \tilde{h}_X: \|\mathfrak{B}(X)\| \to Y\) the map in \(\text{hTop}\) induced by the diagram:
\[
\|\mathfrak{B}(X, X, X_R)\| \xrightarrow{\tilde{h}_X} \|\mathfrak{B}(X, X, X_R; \tilde{Y})\| \xleftarrow{h_X} Y.
\]

Proposition 3.2. Let \(\mathcal{P}_L\) be a monoidal module over an operad \(\mathcal{P}\) and let \(X_L\) be a \(\mathcal{P}_L\)-module over a \(\mathcal{P}\)-algebra \(\tilde{X}\). Let \(\mathcal{P}_{L+}(n) = \mathcal{P}_L(n+1)\). Then \((\mathcal{P}_L, \mathcal{P}_R; \mathcal{P}_{L+})\) is an operad 4-tuple, \((X_L, X, X; X_L)\) is a \((\mathcal{P}_L, \mathcal{P}_R; \mathcal{P}_{L+})\) 4-tuple and the map \(h_{X, X}\): \(\|\mathfrak{B}(X, X; X)\| \to X_L\) is a homotopy equivalence.

Before we prove Proposition 3.2 we need to prove some lemmas. The identity \(X_L \times X^n \times X = X_L \times X^{n+1}\) leads us to make the following definition:

Definition 3.9. We represent by \(\Delta\) and \(\tilde{\Delta}\) the categories whose objects are the same as the objects of \(\Delta\) (with \(\emptyset = [-1]\)) and such that \(\Delta(m, n) \subset \Delta(m+1, n+1)\) is the set of order preserving maps \(\mu: \{0, \ldots, m+1\} \to \{0, \ldots, n+1\}\) with \(\mu(m+1) = n+1\), and \(\Delta(m, n)\) is the set of order preserving maps \(\tilde{\mu}: \{-1, 0, \ldots, m+1\} \to \{-1, 0, \ldots, n+1\}\) with \(\tilde{\mu}(m+1) = n+1\) and \(\tilde{\mu}(-1) = -1\).

Remark 3.10. The categories \(\Delta\) and \(\tilde{\Delta}\) are subcategories of \(\Delta\) since we can extend any morphism \([m] \to [n]\) uniquely to a morphism \([m+1] \to [n+1]\) by sending \(m+1\) to \(n+1\). In a similar way, \(\Delta\) is a subcategory of \(\tilde{\Delta}\). Also observe that, for \(m \neq -1\), restriction gives an isomorphism of sets \(\Delta(m, n) \cong \Delta(m+1, n+1)\).

Lemma 3.3. The object \([-1]\) is an initial (and final) object of both \(\Delta\) and \(\tilde{\Delta}\) and the inclusion functors \(F: \Delta^{op} \to \Delta^{op}\) and \(F: \tilde{\Delta}^{op} \to \tilde{\Delta}^{op}\) are cofinal.
Definition 3.11. We denote by $\overline{\Delta}(\mathcal{P}_L, \mathcal{P})$ the topological category equivalent to Δ whose morphisms are defined as follows: for each $\mu \in \Delta(m+1, n+1)$ let

$$\overline{\Delta}_\mu(\mathcal{P}_L, \mathcal{P}) = \mathcal{P}_L(\mu_0) \times \prod_{\alpha=1}^{m+1} \mathcal{P}(\mu_\alpha - \mu_{\alpha-1})$$

and define $\overline{\Delta}(\mathcal{P}_L, \mathcal{P})(m,n) = \coprod_{\mu \in \Delta(m,n)} \overline{\Delta}_\mu(\mathcal{P}_L, \mathcal{P})$.

Notice that, for $\mu_m \leq n$, we have $\mathcal{P}_+(n-\mu_m) = \mathcal{P}(\mu_{m+1}-\mu_m)$ hence $\Delta(\mathcal{P}_L, \mathcal{P}, \mathcal{P}_+)$ and $\Delta(\mathcal{P}_L, \mathcal{P}; \mathcal{P}_+, \mathcal{P}_{L+})$ are canonically subcategories of $\overline{\Delta}(\mathcal{P}_L, \mathcal{P})$.

Lemma 3.4. The functor $\overline{\mathcal{B}}(X_L, X, X; X_L)$ can be extended to a functor $\overline{\mathcal{B}}(X_L, X) : \overline{\Delta}(\mathcal{P}_L, \mathcal{P})^{op} \to \text{Top}$.

Proof. Given $\mu \in \Delta(m+1, n+1)$ with $\mu_{m+1} = n+1$ the map

$$X_L \times X^{n+1} = X_L \times X^{\mu_0} \times \prod_{\alpha=1}^{m+1} X^{\mu_\alpha - \mu_{\alpha-1}} \to X_L \times X^{m+1}$$

is induced by the maps

$$\mathcal{P}_L(\mu_0) \times X_L \times X^{\mu_0} \to X_L$$

$$\mathcal{P}(\mu_\alpha - \mu_{\alpha-1}) \times X^{\mu_\alpha - \mu_{\alpha-1}} \to X$$

Proposition 3.2 is now a direct consequence of the following lemma:

Lemma 3.5. We have a commutative diagram

$$\begin{array}{ccc}
\|\mathcal{B}(X_L, X, X)\| & \longrightarrow & \|\overline{\mathcal{B}}(X_L, X)\|
\downarrow & & \downarrow [-1]
\|\overline{\mathcal{B}}(X_L, X; X_L)\| & \longrightarrow & X_L
\end{array}$$

where every map is a homotopy equivalence.

Proof. It is enough to show that the inclusion functor $\Delta^{op}(\mathcal{P}_L, \mathcal{P}, \mathcal{P}_+) \to \overline{\Delta}^{op}(\mathcal{P}_L, \mathcal{P})$ and the functors $\ast \to \overline{\Delta}^{op}(\mathcal{P}_L, \mathcal{P}; \mathcal{P}_{L+})$ and $\ast \to \overline{\Delta}^{op}(\mathcal{P}_L, \mathcal{P})$ which send \ast to
[-1] are cofinal. This follows from the commutative diagrams

\[
\begin{array}{ccc}
\Delta^{op}(\mathcal{P}_L, \mathcal{P}_+; \mathcal{P}_L) & \xrightarrow{\alpha} & \Delta^{op} \\
\downarrow & & \downarrow \\
\Delta^{op}(\mathcal{P}_L, \mathcal{P}) & \xrightarrow{\alpha} & \Delta^{op}
\end{array}
\]

(and a similar diagram for \(\Delta^{op}(\mathcal{P}_L, \mathcal{P}_+; \mathcal{P}_L)\)) where the horizontal maps are equivalences of categories and the right vertical map is cofinal.

\(\square\)

4. The space \(\|\mathfrak{B}_I\|\)

Recall that \(\mathcal{L}^{\mathbb{H}}\) denotes the linear isometries operad on a countably infinite complex hermitian vector space \(\mathbb{H}\), which we call a universe.

Definition 4.1. Given a finite set \(I \subset \mathbb{C}^2\) let \(\mathbb{H}^I = \bigoplus_{x \in I} \mathbb{H}\) and, for each non-negative integer \(n\), let

\[
\mathcal{L}^{\mathbb{H}}_I(n) = \mathcal{L}(\mathbb{H} \oplus (\mathbb{H}^I)^n, \mathbb{H}), \quad \mathcal{L}^{\mathbb{H}, I}(n) = \prod_{x \in I} \mathcal{L}^{\mathbb{H}}(n).
\]

Also, let \(\mathcal{L}^{\mathbb{H}}_+ (n) = \mathcal{L}^{\mathbb{H}}_I(n + 1)\) and \(\mathcal{L}^{\mathbb{H}, I}_+ (n) = \mathcal{L}^{\mathbb{H}, I}_I(n + 1)\).

In Example 3.9 we observed that \((\mathcal{L}^{\mathbb{H}}_I, \mathcal{L}^{\mathbb{H}, I}_I, \mathcal{L}^{\mathbb{H}}_+; \mathcal{L}^{\mathbb{H}, I}_+I)\) is an operad 4-tuple. Since \(\mathcal{L}^{\mathbb{H}, I}\) sits inside \(\mathcal{L}^{\mathbb{H}}\) as the subspace of bloc diagonal matrices, \((\mathcal{L}^{\mathbb{H}}_I, \mathcal{L}^{\mathbb{H}, I}_I, \mathcal{L}^{\mathbb{H}, I}_+; \mathcal{L}^{\mathbb{H}, I}_+I)\) is also an operad 4-tuple.

Now we give \((\mathcal{M}_0, \prod_{x \in I} \mathcal{M}_0, \prod_{x \in I} \mathcal{M}_x, \mathfrak{M}_I)\) the structure of a \((\mathcal{L}^{\mathbb{H}}_I, \mathcal{L}^{\mathbb{H}, I}_I, \mathcal{L}^{\mathbb{H}, I}_+; \mathcal{L}^{\mathbb{H}, I}_+I)\)-4-tuple. The spaces \(\prod_{x \in I} \mathcal{M}_0\) and \(\prod_{x \in I} \mathcal{M}_x\) are \(\mathcal{L}^{\mathbb{H}, I}\)-algebras and the pullback maps \(\pi_{0,x} : \mathcal{M}_0 \to \mathcal{M}_x\) make \(\prod \mathcal{M}_x\) into a \(\mathcal{L}^{\mathbb{H}, I}_+\)-module over \(\prod \mathcal{M}_0\). Also, \(\mathcal{M}_0\) is a \(\mathcal{L}^{\mathbb{H}}\)-module over \(\prod \mathcal{M}_0\). Finally, given \(f \in \mathcal{L}^{\mathbb{H}}_I(n)\) we have a map:

\[
\mathcal{M}_0 \times (\prod \mathcal{M}_0)^n \times (\prod \mathcal{M}_0) \xrightarrow{\pi} \mathfrak{M}_I \times (\prod \mathcal{M}_I)^n \times (\prod \mathcal{M}_I) = \mathfrak{M}_I \times (\prod \mathcal{M}_I)^{n + 1} \xrightarrow{f} \mathfrak{M}_I.
\]

Definition 4.2. We write:

\[
\overline{\Delta}^{\mathbb{H}}_I = \overline{\Delta}(\mathcal{L}^{\mathbb{H}}_I, \mathcal{L}^{\mathbb{H}, I}_I, \mathcal{L}^{\mathbb{H}, I}_+; \mathcal{L}^{\mathbb{H}, I}_+I); \quad \overline{\mathfrak{B}}^{\mathbb{H}}_I = \overline{\mathfrak{B}}(\mathcal{M}_0, \prod_{x \in I} \mathcal{M}_0, \prod_{x \in I} \mathcal{M}_x, \mathfrak{M}_I);
\]

\[
\Delta^{\mathbb{H}}_I = \Delta(\mathcal{L}^{\mathbb{H}}_I, \mathcal{L}^{\mathbb{H}, I}_I, \mathcal{L}^{\mathbb{H}, I}_+; \mathcal{L}^{\mathbb{H}, I}_+I); \quad \mathfrak{B}^{\mathbb{H}}_I = \mathfrak{B}(\mathcal{M}_0, \prod_{x \in I} \mathcal{M}_0, \prod_{x \in I} \mathcal{M}_x).
\]

We represent the map of Definition 4.3 by \(h_I : \|\mathfrak{B}^{\mathbb{H}}_I\| \to \|\mathcal{M}_0\|^I\).

Now Proposition 4.2 tells us that:

Proposition 4.1. The maps \(h_0, h_\times\) are homotopy equivalences.

Given finite sets \(J \subset I \subset \mathbb{C}^2\), the projection \(\mathcal{L}^{\mathbb{H}, I}(n) \to \mathcal{L}^{\mathbb{H}, J}(n)\) and the map \(\mathcal{L}^{\mathbb{H}}_I(n) \to \mathcal{L}^{\mathbb{H}}_J(n)\) adjoint to the inclusion \(\mathbb{H} \oplus (\mathbb{H}^I)^n \to \mathbb{H} \oplus (\mathbb{H}^J)^n\) induce equivalences of categories \(\Delta_i : \Delta^{\mathbb{H}}_I \to \Delta^{\mathbb{H}}_J\) and \(\Delta_\times : \Delta^{\mathbb{H}}_I \to \Delta^{\mathbb{H}}_{J}\), and hence homotopy equivalences \(\Delta_i : \|\Delta^{\mathbb{H}}_I\mathfrak{B}_J\| \to \|\mathfrak{B}_J\|\) and \(\Delta_\times : \|\Delta^{\mathbb{H}}_I\mathfrak{B}_J\| \to \|\mathfrak{B}_J\|\). The inclusions of based spaces:

\[
\prod_{x \in J} \mathcal{M}_0 \to \mathcal{M}_0, \quad \prod_{x \in J} \mathcal{M}_x \to \mathcal{M}_x, \quad \prod_{x \in J} \mathcal{M}_x \to \prod_{x \in J} \mathcal{M}_x,
\]
together with the pullback map $\pi^*_{J,I}: \mathcal{M}_J \to \mathcal{M}_I$ induce maps $\tilde{\mathcal{B}}_i: \|\tilde{\Delta}^*_{J,I}\|\to\|\tilde{\mathcal{B}}_i\|$ and $\mathcal{B}_i: \|\Delta^*_{J,I}\|\to\|\mathcal{B}_i\|$.

Proposition 4.2. Let \mathcal{C} denote the category of finite subsets of \mathbb{C}^2 with morphisms the inclusions. Given a morphism $i: J \to I$, let $\|\Delta_i\|^{-1}$, $\|\tilde{\Delta}_i\|^{-1}$ denote the homotopy inverses of the maps $\|\Delta_i\|$ and $\|\tilde{\Delta}_i\|$ in the homotopy category $h\text{Top}$. Then:

1. The assignements $I \mapsto \|\mathcal{B}_i\|$ and $(i: J \to I) \mapsto \|\mathcal{B}_i\| \circ \|\Delta_i\|^{-1}$ define a functor $\|\mathcal{B}\|: \mathcal{C} \to h\text{Top}$.

2. The assignements $I \mapsto \|\tilde{\mathcal{B}}_i\|$ and $(i: J \to I) \mapsto \|\tilde{\mathcal{B}}_i\| \circ \|\tilde{\Delta}_i\|^{-1}$ define a functor $\|\tilde{\mathcal{B}}\|: \mathcal{C} \to h\text{Top}$.

3. The assignements $I \mapsto \mathcal{M}_I$ and $(i: J \to I) \mapsto \pi^*_{J,I}$ define a functor $\mathcal{M}: \mathcal{C} \to h\text{Top}$ and the maps $h_i: \|\mathcal{B}_i\| \to \|\tilde{\mathcal{B}}_i\|$ define a natural transformation between the functors $\|\mathcal{B}\|, \|\tilde{\mathcal{B}}\| : \mathcal{C} \to h\text{Top}$.

Proof. Given finite sets $I, J, K \subset \mathbb{C}^2$ and inclusions $i: I \to J$ and $j: J \to K$, we need to show that

$$
\|\mathcal{B}_{joi}\| \circ \|\Delta_{joi}\|^{-1} = (\|\mathcal{B}_j\| \circ \|\Delta_j\|^{-1}) \circ (\|\mathcal{B}_i\| \circ \|\Delta_i\|^{-1}).
$$

We have $\Delta_{joi} = \Delta_i \circ \Delta_j$ and, for each non-negative integer n, we have $\mathcal{B}_{i0j}(n) = \mathcal{B}_i(n) \circ \mathcal{B}_j(n)$. We then have a commutative diagram:

```
\[
\begin{array}{ccc}
\text{hcolim} \mathcal{B}_I & \xrightarrow{\Delta_i} & \text{hcolim} \Delta^* \mathcal{B}_I \\
& \xleftarrow{\Delta_{joi}} & \text{hcolim} \Delta^* \mathcal{B}_J \\
& \xrightarrow{\Delta_j} & \text{hcolim} \Delta^* \mathcal{B}_J
\end{array}
\]
```

which concludes the proof of (1). The proof of (2) is completely analogous. To prove (3) it is enough to observe that, given $i: J \to I$, we have a commutative diagram:

```
\[
\begin{array}{ccc}
\|\mathcal{B}_I\| & \xrightarrow{\text{hcolim}} & \|\tilde{\mathcal{B}}_i\| \\
& \xleftarrow{\|\Delta^*_{J,I}\|} & \|\tilde{\mathcal{B}}_i\| \\
& & \|\mathcal{B}_J\|
\end{array}
\]
```

Remark 4.3. If we consider only subsets of a fixed I we can get a functor to Top instead of $h\text{Top}$. For each $J \subset I$ we replace the functors \mathcal{B}_j by the functors $\Delta^*_{J,I}$: $\Delta_I \to \text{Top}$ where $j: J \to I$ is the unique morphism, and given a morphism $i: J_1 \to J_2$, the natural transformation $\mathcal{B}_i: \Delta^*_{J_1} \to \Delta^*_{J_2}$ induces a natural transformation $\|\mathcal{B}_i\|: \|\Delta^*_{J_1}\| \to \|\Delta^*_{J_2}\|$.
The functor is defined.

Objects are the subsets of I, geometric realization gives a functor $C_I \to \text{Top}$. We will come back to this construction in section 5.

We will now show that $\|\mathfrak{B}_f\|$ and $\|\mathfrak{B}_I\|$ are \mathcal{L}_+-modules over \mathfrak{M}_0.

Proposition 4.3. An isometry $\alpha : \mathbb{H}_1 \to \mathbb{H}_2$ induces homotopy equivalences $\|\mathfrak{B}_f^{\mathbb{H}_1}\| \simeq \|\mathfrak{B}_f^{\mathbb{H}_2}\|$ and $\|\mathfrak{B}_I^{\mathbb{H}_1}\| \simeq \|\mathfrak{B}_I^{\mathbb{H}_2}\|$ which are homeomorphisms if α is an isomorphism.

Proof. The isomorphism α induces a map of operads $\mathcal{L}^{\mathbb{H}_1} \to \mathcal{L}^{\mathbb{H}_2}$ and, for any $J \in \mathfrak{C}$, homotopy equivalences $\mathfrak{M}_I^{\mathbb{H}_1} \to \mathfrak{M}_I^{\mathbb{H}_2}$. Thus, we get an equivalence of categories $\Delta_\alpha : \Delta_I^{\mathbb{H}_1} \to \Delta_I^{\mathbb{H}_2}$ and a weak equivalence of functors $\mathfrak{B}_\alpha : \Delta_\alpha^* \mathfrak{B}_I^{\mathbb{H}_2} \to \mathfrak{B}_I^{\mathbb{H}_1}$. Thus we have homotopy equivalences

$$\|\mathfrak{B}_f^{\mathbb{H}_1}\| \xrightarrow{\|\mathfrak{B}_\alpha\|} \|\Delta_\alpha^* \mathfrak{B}_I^{\mathbb{H}_1}\| \xrightarrow{\|\Delta_\alpha\|} \|\mathfrak{B}_f^{\mathbb{H}_2}\|$$

which concludes the proof for \mathfrak{B}_f. The proof for $\tilde{\mathfrak{B}}_f$ is completely analogous. □

Given universes $\mathbb{H}_0, \mathbb{H}_1$, we have canonical operad maps $i_j : \mathcal{L}^{\mathbb{H}_j} \to \mathcal{L}^{\mathbb{H}_0 \otimes \mathbb{H}_1}$ (with $j = 0, 1$): the map i_0 maps $f \in \mathcal{L}^{\mathbb{H}_0}(n)$ to the isometry $\alpha \otimes 1 : (\mathbb{H}_0^n) \otimes \mathbb{H}_1 \to \mathbb{H}_0 \otimes \mathbb{H}_1$ and similarly for i_1. If X is a $\mathcal{L}^{\mathbb{H}_0 \otimes \mathbb{H}_1}$-space, then each i_j gives X the structure of a $\mathcal{L}^{\mathbb{H}_j}$-space.

Proposition 4.4. Let $\mathbb{H}_0, \mathbb{H}_1$ be universes, let $\mathbb{H} = \mathbb{H}_0 \otimes \mathbb{H}_1$ and let $i_j : \mathcal{L}^{\mathbb{H}_j} \to \mathcal{L}^{\mathbb{H}}$ be the canonical map of operads. Then $\|i_j^* \mathfrak{B}_I^{\mathbb{H}}\|$ and $\|i_j^* \mathfrak{B}_f^{\mathbb{H}}\|$ are $\mathcal{L}_+^{\mathbb{H}_j}$-modules over the $\mathcal{L}_+^{\mathbb{H}_0}$-algebra $\mathfrak{M}_0^{\mathbb{H}}$.

Proof. Given $f \in \mathcal{L}^{\mathbb{H}_j}(n)$ the map $(\mathfrak{M}_0^{\mathbb{H}})^n \times \|i_j^* \mathfrak{B}_I^{\mathbb{H}}\| \to \|i_j^* \mathfrak{B}_f^{\mathbb{H}}\|$ will be defined by the natural transformation $(\mathfrak{M}_0^{\mathbb{H}})^n \times i_j^* \mathfrak{B}_I^{\mathbb{H}} \to i_j^* \mathfrak{B}_f^{\mathbb{H}}$ given by the maps:

$$(\mathfrak{M}_0^{\mathbb{H}})^n \times \mathfrak{B}_I^{\mathbb{H}}(m) = (\mathfrak{M}_0^{\mathbb{H}})^{n+1} \times \left(\prod \mathfrak{M}_0^{\mathbb{H}} \right)^{m} \times \left(\prod \mathfrak{M}_0^{\mathbb{H}} \right) \xrightarrow{f} \mathfrak{M}_f^{\mathbb{H}} \times \left(\prod \mathfrak{M}_0^{\mathbb{H}} \right)^{m} \times \left(\prod \mathfrak{M}_0^{\mathbb{H}} \right) = \mathfrak{B}_f^{\mathbb{H}}(m) \quad (m \neq -1)$$

$$(\mathfrak{M}_0^{\mathbb{H}})^n \times \mathfrak{B}_I^{\mathbb{H}}(-1) = (\mathfrak{M}_0^{\mathbb{H}})^{n} \times \mathfrak{M}_f \xrightarrow{\pi_\delta, i} (\mathfrak{M}_I^{\mathbb{H}})^{n+1} \xrightarrow{f} \mathfrak{M}_f^{\mathbb{H}} \xrightarrow{\pi_\delta} \mathfrak{B}_f^{\mathbb{H}}(-1)$$

The fact that this is a natural transformation follows from the commutativity of the following diagram, where $f \in \mathcal{L}^{\mathbb{H}_j}(n+1)$ and $g \in \mathcal{L}^{\mathbb{H}_j}(k+1)$:

$$\begin{array}{ccc}
(\mathfrak{M}_0^{\mathbb{H}})^n \times \mathfrak{M}_f^{\mathbb{H}} \times (\mathfrak{M}_0^{\mathbb{H}})^k & \xrightarrow{\alpha(f) \times 1} & (\mathfrak{M}_0^{\mathbb{H}})^n \times (\mathfrak{M}_0^{\mathbb{H}})^k \\
\downarrow 1 \times i_i(g) & & \downarrow i_i(g) \\
(\mathfrak{M}_0^{\mathbb{H}})^n \times \mathfrak{M}_f^{\mathbb{H}} & \xrightarrow{\alpha(f)} & \mathfrak{M}_f^{\mathbb{H}}
\end{array}$$

The structure on $(\|i_j^* \mathfrak{B}_I^{\mathbb{H}}\|, \mathfrak{M}_0^{\mathbb{H}})$ is obtained by restriction of the structure on $(\|i_j^* \mathfrak{B}_f^{\mathbb{H}}\|, \mathfrak{M}_0^{\mathbb{H}})$. □

In the next theorem we use the notation $\mathfrak{B}^{\mathbb{H}}(\cdots)$ to indicate in which universe the functor is defined.
Theorem 4.5. Let $I, J \subset \mathbb{C}^2$ be finite disjoint sets. Fix universes \aleph_I, \aleph_0 and let $H = \aleph_I \otimes \aleph_0$. Let $i : \mathcal{L}_{\aleph_I} \to \mathcal{L}_H$ be the canonical operad map. Then, on $h\text{Top}$, we have a commutative diagram:

$$
\begin{array}{c}
\|B^{H^s}(\|i^*B^H_I\|, \|B^H_J\|)\| \xrightarrow{\simeq} \|B^{H^s}(M^H_I, M^H_J)\| \quad \xrightarrow{\simeq} \|B^{H^s}(M^H_I, M^H_J, M^H_J)\| \\
\|B^H_{I,J}\| \xrightarrow{h_{I,J}} M^H_{I,J}
\end{array}
$$

where the left vertical map is a homotopy equivalence and the top horizontal map is the map induced by h_I and h_J.

Proof. The proof is essentially the observation that

$$
\text{Bar}(\text{Bar}(\prod_{x \in I} M_x, \prod_{x \in I} M_0, M_0), M_0, \text{Bar}(M_0, \prod_{x \in I} M_0, \prod_{x \in I} M_x)) \simeq \text{Bar}(\prod_{x \in I,J} M_x, \prod_{x \in I,J} M_0, M_0)
$$

The strategy of the proof is to define functors $\mathfrak{F}_0, \mathfrak{F}_1, \mathfrak{F}_2, \mathfrak{F}_3$ in such a way that we get a commutative diagram in hTop:

$$
\begin{array}{c}
\|B(\|B_I\|, M_0, \|B_J\|)\| \xrightarrow{g_0} \|\mathfrak{F}_0\| \xrightarrow{\simeq} \|\mathfrak{F}_1\| \xrightarrow{\simeq} \|\mathfrak{F}_1\| \xrightarrow{d \simeq} \|\mathfrak{F}_1\| \\
\|B(\|\mathfrak{F}_I\|, M_0, \|\mathfrak{F}_J\|)\| \xrightarrow{g_2} \|\mathfrak{F}_2\| \xrightarrow{\simeq} \|\mathfrak{F}_3\| \xrightarrow{\simeq} \|\mathfrak{F}_3\| \xrightarrow{d \simeq} \|\mathfrak{F}_3\| \\
\|B(M_I, M_0, M_J)\| \xrightarrow{g_3} \|\mathfrak{F}_4\| \xrightarrow{\simeq} \|\mathfrak{F}_4\| \xrightarrow{\simeq} \|\mathfrak{F}_4\| \xrightarrow{\simeq} \|\mathfrak{F}_4\|
\end{array}
$$

The result will then immediately follow.

We begin by defining a category C_2 topologically equivalent to $\Delta \times \Delta \times \Delta$ and a functor $\mathfrak{F}_2 : C_2^{\text{op}} \to \text{Top}$. The objects of C_2 are the triples of integers (n_I, n, n_J) with $n_I, n_J \geq -1$ and $n \geq 0$ and, on objects, $\mathfrak{F}(n_I, n, n_J) = \mathfrak{B}_2(n_I) \times (\mathfrak{B}_2)^n \times \mathfrak{B}_2(n_J)$.

Given morphisms $\mu_I \in \Delta(m_I, n_I), \mu \in \Delta(m, n)$ and $\mu_J \in \Delta(m_J, n_J)$, we let

$$
C_2(\mu_I, \mu, \mu_J)
= \left(\prod_{a=1}^{m_I+1} \mathcal{L}(\mu_{I,a} - \mu_{I,a-1}) \right) \times \mathcal{L}(1 + \mu_0 + \mu_{I,0}) \times \left(\prod_{a=1}^{m} \mathcal{L}(\mu_a - \mu_{a-1}) \right)
\times \mathcal{L}(1 + n - \mu_m + \mu_{J,0}) \times \left(\prod_{a=1}^{m_J+1} \mathcal{L}(\mu_{J,a} - \mu_{J,a-1}) \right),
$$

where the left vertical map is a homotopy equivalence and the top horizontal map is the map induced by h_I and h_J. The result will then immediately follow.
The functor \mathfrak{F} and define the morphisms in C by

$$C_2((m_1, m_2), (n_1, n_2)) = \prod_{\mu_1, \mu_2} C_2(\mu_1, \mu_2).$$

The functor \mathfrak{F} is defined on morphisms in the obvious way. Let $C_0 \subset C_2$ be the full subcategory whose objects are the triples of non-negative integers. We define the functor \mathfrak{F}_0 as the restriction of \mathfrak{F} to C_0^{op}; then the inclusion $C_0 \subset C_2$ induces a map $\mathfrak{F}_0 \to \mathfrak{F}_2$.

We now define the usual equivalences g_0 and g_2. Let $\Delta_{H} = \Delta(L_{+}^{H}, L_{+}^{H}, L_{+}^{H})$ and consider the functor $F: \Delta_{H} \times \Delta_{I} \times \Delta_{I} \to C_2$ which is the identity on objects and is induced on morphisms by the canonical maps $i: L_{+}^{H} \to L_{+}^{H}$ and $i_0: L_{+}^{H} \to L_{+}^{H}$, and the maps $L^{H}(1 + a) \times L^{H}(1 + b) \to L^{H}(1 + a + b)$ which we now define: using matrix notation, the image of a pair of isometries

$$[f_0, g_0] : H_0 \oplus H_0 \to H_0, \quad [g_{I,J}, h_{I,J}] : H_{I,J} \oplus H_{I,J} \to H_{I,J}$$

is the isometry

$$[f_0 \otimes 1, g_0 \otimes g_{I,J}, 1 \otimes h_{I,J}] : H_0 \oplus H_0 \oplus H_0 \to H.$$

Now, a direct verification shows that

$$h\text{colim} \mathfrak{F}_0 = \mathfrak{B}^{H_0}([i^*\mathfrak{B}^{H_0}], [i^*\mathfrak{B}^{H_0}], [i^*\mathfrak{B}^{H_0}]),$$

and since F is an equivalence of categories, we get

$$h\text{colim} \mathfrak{F}_2 \simeq \mathfrak{F}_2$$

and

$$h\text{colim} \mathfrak{F}_2 \simeq \mathfrak{F}_2$$

Let $1_{h_0} F^* \mathfrak{F}_2 = \text{Bar}(F^* \mathfrak{F}_2, \Delta_{H} \times \Delta_{I} \times \Delta_{I}, \Delta_{H} \times \Delta_{I} \times \Delta_{I}, \Delta_{I} \times \Delta_{I})$ denote Segal’s pushdown. Then we have a commutative diagram in Top:

$$\begin{array}{ccc}
\mathfrak{B}^{H_0}([i^*\mathfrak{B}^{H_0}], [i^*\mathfrak{B}^{H_0}], [i^*\mathfrak{B}^{H_0}]) & \simeq & h\text{colim} \mathfrak{F}_2 \\
\|i_0\| & \Rightarrow & 1_{h_0} F^* \mathfrak{F}_2 \\
\mathfrak{B}^{H_0}([i^*\mathfrak{B}^{H_0}], [i^*\mathfrak{B}^{H_0}], [i^*\mathfrak{B}^{H_0}]) & \simeq & h\text{colim} \mathfrak{F}_2 \\
\end{array}$$

where the vertical maps are induced by the functor $\Delta_{H} \to C_2$ which sends n to $(-1, n, -1)$. The map g_0 is constructed in a completely analogous way.

We now define the functors $\mathfrak{F}_3, \mathfrak{H}_3$ and \mathfrak{I}_3. Let \mathcal{C}_3 be the category topologically equivalent to $\Delta \times \Delta \times \Delta$ (see Definition [33]) with objects the triples (m_1, m_2, m_3) of integers with $m_1, m_2, m_3 \geq -1$. The category \mathcal{C}_3 coincides with C_2 when $m \neq -1$.

Given morphisms $\mu_l \in \tilde{\Delta}(m_l, n_l)$, $\mu \in \tilde{\Delta}(-1, n)$ and $\mu_J \in \tilde{\Delta}(m_J, n_J)$, we let
\[
\tilde{C}_3(\mu_l, \mu_J) = \left(\prod_{\alpha=1}^{m_l+1} \mathcal{L}(\mu_{l,\alpha} - \mu_{l,\alpha-1}) \right) \times \mathcal{L}(2+n+\mu_{I,0}+\mu_{J,0}) \times \left(\prod_{\alpha=1}^{m_J+1} \mathcal{L}(\mu_{J,\alpha} - \mu_{J,\alpha-1}) \right)
\]
and define $\tilde{C}_3((m_l, -1, m_J), (n_l, n, n_J)) = \prod \tilde{C}_3(\mu_l, \mu_J)$. We define the categories \tilde{C}_1 and C_3 by the pullback diagrams

\[
\[
\begin{array}{c}
\tilde{C}_1 \\ \downarrow \\
\tilde{\Delta}_{IJ} \\
\end{array} \quad \begin{array}{c}
\Delta \times \Delta \times \Delta \\
\downarrow \\
\tilde{\Delta} \times \tilde{\Delta} \times \tilde{\Delta} \\
\end{array} \quad \begin{array}{c}
C_3 \\ \downarrow \\
\tilde{\Delta}_{IJ} \\
\end{array}
\]
\]

and we let $C_1 = \tilde{C}_1 \cap C_3$. We will now construct functors $\tilde{\mathfrak{f}}_1 : \tilde{C}_1^{\text{op}} \to \text{Top}$ and $\mathfrak{f}_3 : C_3^{\text{op}} \to \text{Top}$. On objects:

\[
\mathfrak{f}_3(n_l, -1, n_J) = \begin{cases}
\{ \mathfrak{B}_{l,I}(n_l) \times (\prod_{l \in J} \mathfrak{m}_{l,J}^{\mathfrak{B}})^{n_J} \times (\prod_{l \in J} \mathfrak{B}_{l,J}^{\mathfrak{g}})^{n_J} \}, & \text{if } n_J \neq -1; \\
(\prod_{l \in I} \mathfrak{B}_{l,I}^{\mathfrak{g}}) \times (\prod_{l \in J} \mathfrak{B}_{l,J}^{\mathfrak{g}}) \times \mathfrak{B}_{I,J}^{\mathfrak{g}}(n_J), & \text{if } n_J \neq -1;
\end{cases}
\]

and $\mathfrak{f}_3(-1, -1, -1) = \mathfrak{B}_{I,J}^{\mathfrak{g}}$; the functor $\tilde{\mathfrak{f}}_1$ coincides with \mathfrak{f}_1 (on objects) whenever it is defined. The functors are defined on morphisms on the usual way. We also define $\tilde{\mathfrak{f}}_1$ as the restriction of \mathfrak{f}_3 to C_1^{op} (which coincides with the restriction of $\tilde{\mathfrak{f}}_1$ to C_1^{op}). Since, by Lemma 4.1, the inclusions $\Delta \to \tilde{\Delta}$ and $\tilde{\Delta} \to \Delta$ are cofinal, it follows that the inclusions $C_0 \to \tilde{C}_1$ and $C_1 \to \tilde{C}_1$ are also cofinal and hence the maps $\|\tilde{\mathfrak{f}}_0\| \to \|\tilde{\mathfrak{f}}_1\|$ and $\|\mathfrak{f}_3\| \to \|\tilde{\mathfrak{f}}_1\|$ are homotopy equivalences.

We now define a diagonal functor $d : \Delta_{IJ} \to C_3$, given on objects by $n \mapsto (n, -1, n)$; to define d on morphisms just observe that, for any $\mu \in \tilde{\Delta}(m, n)$, the spaces of morphisms $\Delta_{IJ}(\mu)$ and $C_3(\mu, 1, \mu)$ are canonicly homeomorphic. Now, direct inspection shows that $\mathfrak{B}_{I,J} = d^* \mathfrak{f}_3$. Restricting d we get a functor $d : \Delta_{IJ} \to \tilde{\mathfrak{f}}_1$ and also have $\mathfrak{B}_{I,J} = d^* \tilde{\mathfrak{f}}_1$. We claim that the map $\|d^* \tilde{\mathfrak{f}}_3\| \xrightarrow{\text{diag}} \|\tilde{\mathfrak{f}}_1\|$ induced by d and the inclusion $\tilde{\mathfrak{f}}_1 \to \tilde{\mathfrak{f}}_1$ is a homotopy equivalence. This will follow from the commutative diagram:

\[
\[
\begin{array}{c}
\Delta_{IJ} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\Delta \quad \Delta \quad \Delta \quad \Delta \\
\end{array} \quad \begin{array}{c}
\Delta \times \Delta \\
\downarrow \quad \downarrow \quad \downarrow \\
\Delta \times \Delta \\
\end{array} \quad \begin{array}{c}
\tilde{\mathfrak{f}}_1 \\
\downarrow \\
\text{Top} \\
\end{array}
\]
\]

Since the bottom arrows are cofinal and the vertical arrows are equivalences, it follows that d is cofinal and hence $\|d^* \tilde{\mathfrak{f}}_3\| \xrightarrow{\text{diag}} \|\tilde{\mathfrak{f}}_1\|$ is a homotopy equivalence. □

5. Proof of Theorem 1.4

For each $n \in \tilde{\Delta}_{J}$ and $J \in \mathfrak{C}$, the topological space $\mathfrak{B}_J(n)$ is naturally graded as a product of graded spaces, and given a morphism $f \in \tilde{\Delta}(m, n)$, the induced map $\mathfrak{B}_J(n) \to \mathfrak{B}_J(m)$ preserves the grading. Denote by $\mathfrak{B}_{J,k} : \tilde{\Delta}_J \to \text{Top}$ the functor
obtained by taking the degree k component of \mathcal{B}_J. The objective of this section is to prove Theorem 1.4.

Theorem 1.4. If, for every $J \subset I$ with $\# J \leq k$, the map $h_{I,k}$ is a homotopy equivalence, then $h_{I,k}$ is a homotopy equivalence.

We first need the following result, which was proven in [13]:

Lemma 5.1. Let $\mathcal{C}_{I,k}$ be the full subcategory of \mathcal{C} whose objects are the subsets $J \subset I$ with $\# J \leq k$ and let $\mathcal{M}_k: \mathcal{C} \to \text{Top}$ denote the degree k component of the functor \mathcal{M}. Then the restriction of \mathcal{M}_k to $\mathcal{C}_{I,k}$ is homeomorphic to the nerve of an open cover of $\mathcal{M}_{I,k}$.

We now turn to the proof of Theorem 1.4.

Proof. It is enough to show that the map $\| \mathcal{B}_{I,k} \| \to \| \mathcal{B}_{I,k} \|$ is a homotopy equivalence. For each morphism $j: J \to I$, it will be convenient to replace the functor \mathcal{B}_J with the functor $\Delta_J^*: \mathcal{B}_J: \Delta_I \to \text{Top}$. Let $\Delta^*_J \mathcal{B}_k: \Delta_I^* \mathcal{C}_{I,k} \to \text{Top}$ be the functor defined on objects by $\Delta^*_J \mathcal{B}_k(n,J) = \Delta^*_J \mathcal{B}_{I,k}(n)$; given morphisms $i: (J_1,j_1) \to (J_2,j_2)$ and $f \in \Delta_I(m,n)$, we define $\Delta^*_J \mathcal{B}(f,i)$ by the commutative diagram:

\[
\begin{array}{ccc}
\Delta^*_J \mathcal{B}_{I,k}(n) & \xrightarrow{f} & \Delta^*_J \mathcal{B}_{I,k}(m) \\
i & \downarrow & \downarrow i \\
\Delta^*_J \mathcal{B}_{J,k}(n) & \xrightarrow{f} & \Delta^*_J \mathcal{B}_{J,k}(m)
\end{array}
\]

We define the functor $\Delta^*_J \mathcal{B}: \Delta_I^* \mathcal{C}_{I,k} \to \text{Top}$ by restricting $\Delta^*_J \mathcal{B}_k$. We claim that the maps

(2) \[\mathcal{hcolim} \left(\frac{\mathcal{B}_k}{\Delta_I^* \mathcal{C}_{I,k}} \right) \cong \mathcal{hcolim} \frac{\mathcal{B}_k}{\Delta^*_J \mathcal{B}_k}, \]

(2) \[\mathcal{hcolim} \left(\frac{\mathcal{B}_k}{\Delta_I^* \mathcal{C}_{I,k}} \right) \cong \mathcal{hcolim} \frac{\mathcal{B}_k}{\Delta^*_J \mathcal{B}_k} \]

induced by the maps $\Delta^*_J \mathcal{B}_{I,k} \to \mathcal{B}_{I,k}$ are homotopical equivalences; the theorem will follow since we then have a commutative diagram:

\[
\begin{array}{ccc}
\mathcal{hcolim} \frac{\mathcal{B}_k}{\Delta_I^* \mathcal{C}_{I,k}} & \rightarrow & \mathcal{hcolim} \frac{\mathcal{B}_k}{\Delta^*_J \mathcal{B}_k} \\
\downarrow \cong & \downarrow \cong \\
\| \mathcal{B}_{I,k} \| & \rightarrow & \| \mathcal{B}_{I,k} \|
\end{array}
\]

and by hypothesis the top horizontal map is a homotopy equivalence. We first prove that the map in equation (2) is a homotopy equivalence. It is enough to show that $\mathcal{hcolim}_{\Delta_I^* \mathcal{C}_{I,k}} \Delta^*_J \mathcal{B}_k \cong \mathcal{B}_{I,k}$ which we now prove. Let $\mathbb{Z}_k \subset \mathbb{Z} \times \mathbb{Z}^{(n+1)}$ be the subset of tuples of non-negative integers whose sum is k. We write an element $k \in \mathbb{Z}_k$ as $k = (k_0, (k_{\alpha x})_{\alpha=0,\ldots,n})$. Then, for $n \geq 0$ we have $\mathcal{B}_{I,k}(n) = \prod_{k} \mathcal{B}_{I,k}(n)$ where

\[
\mathcal{B}_{I,k}(n) = \mathcal{M}_{k_0,k_0} \times \left(\prod_{x \in I} \mathcal{M}_{0,k_{\alpha x}} \right) \times \left(\prod_{x \in I} \mathcal{M}_{x,k_{\alpha x}} \right).
\]
Let \(\text{supp} \ k \subset I \) be the set of points such that there is an \(\alpha \) for which \(k_{\alpha x} > 0 \). If we let
\[
\mathcal{B}_{j,k}(n) = \begin{cases}
\mathcal{B}_k(n), & \text{if } \text{supp} \ k \subset J; \\
\emptyset, & \text{if } \text{supp} \ k \not\subset J,
\end{cases}
\]
then \(\mathcal{B}_{J,k}(n) \cong \coprod_k \mathcal{B}_{j,k}(n) \) and under this isomorphism the map \(\mathcal{B}_{J,k}(n) \to \mathcal{B}_{I,k}(n) \) corresponds to inclusion. If \(\mathcal{E}_{I,k} \subset \mathcal{E}_{J,k} \) denotes the full subcategory whose objects \(J \) satisfy \(\text{supp} \ k \subset J \), then
\[
\left(\text{hcolim} \Delta^* \mathcal{B}_k \right)(n) \cong \prod_{k \in \mathbb{Z}_+} \text{hcolim} \mathcal{B}_{j,k}(n) \cong \coprod_k B \mathcal{E}_{I,k} \times \mathcal{B}_{J,k}(n) \cong \mathcal{B}_{I,k}(n)
\]
because \(\mathcal{E}_{I,k} \) has an initial element, namely: \(\text{supp} \ k \). To complete the proof we need to show that the map in equation (21) is a homotopy equivalence. We just need to show that \(\left(\text{hcolim} \mathcal{E}_{I,k} \Delta^* \mathcal{B}_k \right)(-1) \cong \mathcal{B}_{I,k}(-1) \). This immediately follows from Lemma 5.1.

6. The case \(k = 2 \)

6.1. Proof of Theorem 1.1 Let \(V \) be a finite dimensional complex hermitian vector space. Let \(M^V_I = \coprod_k M^V_{I,k} \) where \(M^V_{I,k} = M^V_{I \cup J} \) for \(k \leq 2 \) and \(M^V_{I,k} = * \) for \(k > 2 \).

Proposition 6.1. Let \(I_1, \ldots, I_n \subset \mathbb{C}^2 \) be finite disjoint sets and write \(I = (I_1, \ldots, I_k) \) and \(I = \bigcup_i I_i \). Then there are maps \(\boxtimes_I : M^V_{I_1} \times \cdots \times M^V_{I_n} \to M^V_I \) such that:

1. Given any \(J = (J_1, \ldots, J_k) \) with \(J_i \subset I_i \), for any \(i \), we have \(\pi_{I,J} \circ \boxtimes_I = \boxtimes_J \circ (\pi_{J_1,I_1} \times \cdots \times \pi_{J_k,I_k}) \) (where \(J = \bigcup_i J_i \)).
2. For any \(f \in \mathcal{L}^I(m) \) we have a commutative diagram:
\[
\begin{array}{ccc}
\prod M^V_{I_i} & \boxtimes_I & M^V_I \\
	imes f & \downarrow & \downarrow f \\
\prod M^V_{I_i} & \boxtimes_I & M^V_I
\end{array}
\]
3. Let \(i : V \to V^m \) be inclusion onto the \(i \)-th component, let \(\omega \) be the map induced by Whitney sum. Then we have a commutative diagram:
\[
\begin{array}{ccc}
\prod M^V_{I_i} & \xrightarrow{\omega} & M^V_{I_i} \\
\downarrow \Pi i & & \downarrow \Pi i \\
\prod M^V_{I_i} & \xrightarrow{\omega} & M^V_{I_i}
\end{array}
\]

Proof. To define \(\boxtimes_I \) it is enough to construct maps \(\mathcal{M}^V_{I_1,1} \times \mathcal{M}^V_{I_2,1} \to \mathcal{M}^V_{I_1 \cup I_2,2} \) and using Lemma 5.1 we can reduce to the case where \(I_1 \) and \(I_2 \) are either empty or have only one element. The proposition now follows from Proposition 5.1 in the appendix.

For each finite set \(I \subset \mathbb{C}^2 \) we have a simplicial space \(B^V_I : \Delta^\text{op} \to \text{Top} \) with \(B^V_I(n) = M^V_{I_0} \times (\prod_{x \in I} M^V_x)^n \times (\prod_{x \in I} M^V_x) \) and a map from its geometric realization: \(h : |B^V_I| \to M^V_I \) induced by the maps of Proposition 6.1. We can now prove Theorem 1.1.
Theorem 1.1. Let $I = \{x_1, \ldots, x_q\} \subset \mathbb{C}^2$. Then:

1. The map $\mathbb{P}_{\emptyset, x_1, \ldots, x_q} : M^V_\emptyset \times (\prod_i M^V_{x_i}) \to M^V_I$ induces a map $h_M : |B^V_I| \to M^V_I$ which is a homotopy equivalence in the $k = 1, 2$ components.

2. If $I = J \cup K$, with $J \cap K = \emptyset$, then the map $\mathbb{P}_{J,K} : M^V_J \times M^V_K \to M^V_I$ induces

Proof. Assume $I = J \cup K$ with $J \cap K = \emptyset$. Then, by the same arguments as in the proof of Theorem 1.3 we have a commutative diagram:

$$
\begin{array}{ccc}
\text{Bar}(|B^V_J|, M^V_\emptyset, |B^V_K|) & \xrightarrow{\simeq} & \text{Bar}(M^V_J, M^V_\emptyset, M^V_K) \\
|B^V_I| & \xrightarrow{\simeq} & M^V_I
\end{array}
$$

where the left vertical map is a homotopy equivalence. It follows that part (2) of the theorem is a consequence of part (1), which we now prove. Let $M^V_k : \mathcal{C} \to \text{Top}$ be the functor defined on objects by $M^V_k(I) = M^V_{I,k}$ and defined on morphisms by pullback. Also, let $B^V_k : \mathcal{C} \times \Delta^{op} \to \text{Top}$ be the functor defined on objects by $B^V_k(n, J) = B^V_I(n)$. The same arguments as in the proof of Theorem 1.4 show that we have a commutative diagram:

$$
\begin{array}{ccc}
hcolim_{I,k} B^V_{I,k} & \xrightarrow{\simeq} & \colim_{I,k} M^V_{I,k} \\
|B^V_{I,k}| & \xrightarrow{\simeq} & M^V_{I,k}
\end{array}
$$

Thus, for $k = 1$ we only need to consider the trivial case when $I = \{x\}$, and for $k = 2$, we only need to consider the case when $I = \{x, y\} \subset \mathbb{C}^2$ which we now analyze. Now consider diagram (3) in the case where $J = \{x\}$ and $K = \{y\}$ and hence $I = \{x, y\}$. The maps $|B^V_{I,k}| \to M^V_I$ are trivially homotopy equivalences hence the top horizontal map is a homotopy equivalence. Thus we only have to show that the right vertical map in diagram (3) is a homotopy equivalence. The maps $\pi^*_{x,y}$, $\pi^*_{y,x}$ and the maps of Proposition 6.1.1 are open embeddings (see [13]) and their images form an open cover of $\mathcal{O}_{I,2}$ (see Proposition A.3 and [13], section 4). It is then a direct verification that the simplicial space $B^V_{I,2}$ is homeomorphic to the nerve of this open cover. Is follows that we have a homotopy equivalence $|B^V_{I,2}| \simeq M^V_{I,2}$, which concludes the proof of the theorem.

Taking the limit when $\dim V \to \infty$ we can now prove:

Theorem 6.2. Let \mathbb{H} be a countably infinite complex hermitian vector space. Then the map $h_{I,2} : \|\mathbb{H}_{I,2}\| \to \mathcal{O}_{I,2}$ is a homotopy equivalence.

Proof. The maps in Proposition 6.1.1 pass to the colimit to define maps $\mathbb{H}_I : M^H_I \times \cdots \times M^H_{I,n} \to M^H_{I,2}$. We need to see how these maps are related with the action of the linear isometries operad \mathcal{L}^H. Let $i_{\alpha} : \mathbb{H} \to \mathbb{H}^n$ be inclusion onto the α-th component. Let \mathcal{P} be the operad where $\mathcal{P}(n)$ is the space of complex linear maps $f : \mathbb{H}^n \to \mathbb{H}$ such that $f \circ i_{\alpha}$ is an isometry for all $\alpha = 1, \ldots, n$, with operad data
given by composition. Clearly \mathcal{P} contains the linear isometries operad \mathcal{L}. We fix basepoints $* \in \mathcal{P}(n)$ given in matrix notation by

$$* = [\begin{array}{ccc} 1 & \cdots & 1 \end{array}] : \mathbb{H}^n \to \mathbb{H}.$$

For any $f \in \mathcal{P}(n)$ and each $\alpha = 1, \ldots, n$, let $f_\alpha = f \circ \iota_\alpha$. Given finite disjoint sets J_1, \ldots, J_n we define a map $\boxplus_{J,f}$ as the composition:

$$(4) \quad \boxplus_{J,f} : \prod_{\alpha=1}^n M_{J_\alpha}^\mathbb{H} \prod_{\alpha=1}^n M_{J_\alpha}^\mathbb{H} \to \prod_{\alpha=1}^n M_{J_\alpha}^\mathbb{H}.$$

Note that, for $f = *$, we have $\boxplus_{J,f} = \boxplus_J$. The maps $\boxplus_{J,f}$ are compatible with the operad data in the following sense: Let j_1, \ldots, j_n be non-negative integers and let $j = \sum j_i$; let $f \in \mathcal{P}(n)$ and $g_i \in \mathcal{P}(j_i)$; consider finite disjoint sets J_α, with $\alpha = 1, \ldots, j$ and for each $i = 1, \ldots, n$, let $s_i = j_1 + \cdots + j_i$ and let:

$$J_i = (J_{s_i-1+1}, \ldots, J_{s_i}), \quad K_i = \bigcup_{\alpha=s_{i-1}+1}^{s_i} J_\alpha \quad (i = 1, \ldots, n);$$

also, let:

$$J = (J_1, \ldots, J_j), \quad K = (K_1, \ldots, K_n), \quad \sum_{i=1}^n K_i = \bigcup_{\alpha=1}^n J_\alpha.$$

Then we have:

$$(5) \quad \boxplus_{J,f \circ \prod_{i} g_i} = \boxplus_{K,f} \circ \prod_{i=1}^n \boxplus_{J_i,g_i}.$$

To prove this last statement, let $\iota_\alpha : \mathbb{H} \to \mathbb{H}^{j_i}$ (with $\alpha = 1, \ldots, j$) be inclusion into the $\alpha - s_{\alpha - 1}$ component and let $f_i = f \circ \iota_i$ and $g_i = g_i \circ \iota_\alpha$. Equation (5) then follows from the commutativity of the following diagram (the lower triangle is commutative by Proposition 6.1):

Let $q = \# I$, let $\mathcal{P}_I(n) = \mathcal{P}(1+q n)$, $\mathcal{P}_I^I(n) = \prod I \mathcal{P}(n)$ and $\mathcal{P}_I^+ = \mathcal{P}_I^I(n+1)$ (compare with Definition 4.11). Then we can define a functor $\mathcal{F}_I : \Delta(\mathcal{P}_I, \mathcal{P}_I^+, \mathcal{P}_I^I) \to \text{Top}$ by letting $\mathcal{F}_I(n) = M_{\mathbb{H}}^{\mathcal{P}_I(n)} \times (\prod M_{\mathbb{H}}^{\mathcal{P}_I})^{n} \times (\prod M_{\mathbb{H}}^{\mathcal{P}_I^I})$ and defining the morphisms using the maps $\boxplus_{J,f}$ in equation (4). The inclusion of operads $\mathcal{L}_{\mathbb{H}} \subset \mathcal{P}$ induces an equivalence of categories $\Delta_I \to \Delta(\mathcal{P}_I, \mathcal{P}_I^+, \mathcal{P}_I^I)$. For $f \in \mathcal{L}_{\mathbb{H}}(n) \subset \mathcal{P}(n)$ we have
the commutative diagram (see Proposition [6.1]):

\[
\begin{array}{c}
\prod_{\alpha=1}^{n} M_{f_\alpha}^{\#} \xrightarrow{\prod f} \prod_{\alpha=1}^{n} M_{f_\alpha}^{\#} \\
\oplus \circ \circ \overset{*}{\xrightarrow{\prod}} \\
M_{f}^{\#} \xrightarrow{f} M_{f}^{\#}
\end{array}
\]

so the restriction of \(F_I \) to \(\Delta_I \) is precisely \(\mathfrak{B}_I \). To finish the proof we observe that the inclusion of the base point in \(\mathcal{P}(n) \) induces an equivalence of categories \(\Delta \rightarrow \Delta(\mathcal{P}_I, \mathcal{P}_I^n, \mathcal{P}_I^+) \) and the restriction of \(F_I \) to \(\Delta \) equals the simplicial space \(B_I \). The functor \(F_I \) extends to a functor \(\tilde{F}_I : \Delta(\mathcal{P}_I, \mathcal{P}_I^n, \mathcal{P}_I^+) \rightarrow \mathcal{P}(n) \) and \(B_I \) extends to a functor \(B_I : \Delta \rightarrow \mathcal{P}(n) \) by letting \(B_I(-1) = B_I(-1) = \mathfrak{M}_I \), and we have a commutative diagram

\[
\begin{array}{c}
\mathfrak{B}_I \xrightarrow{\sim} \tilde{F}_I \xrightarrow{\sim} B_I \\
\mathfrak{B}_I \xrightarrow{\sim} \tilde{F}_I \xrightarrow{\sim} B_I
\end{array}
\]

which completes the proof.

7. The Limit When \(k \rightarrow \infty \)

In this section we will prove Theorem [1.2]. The moduli space \(\mathfrak{M}_k \) over the blowup of \(\mathbb{P}^2 \) at \(n \) points is isomorphic to the moduli space \(\mathfrak{M}_{\text{qst}} \) of based instantons over a connected sum \(\#_n \mathbb{P}^2 \) of \(n \) copies of \(\mathbb{P}^2 \) (see [3], [9]). In [15], [16] Taubes introduced, for \(k' > k \), a map \(\mathfrak{M}_k \rightarrow \mathfrak{M}_{k'} \) and showed that, by taking the colimit when \(k \rightarrow \infty \), we get a homotopy equivalence \(\mathfrak{M}_{\text{qst}} \simeq \text{Map}_* \left(\#_n \mathbb{P}^2, BSU(V) \right) \).

In this section \(I \) denotes the unit interval: \(I = [0, 1] \subset \mathbb{R} \). Given a based topological space \((X, *) \) let \(\mathcal{M}_* X \) represent the space of compactly supported maps \(f : [0, +\infty) \times I^3 \rightarrow X \) such that \(f(t, x) = * \) whenever \(x \in \partial I^3 \).

1. Using Moore loops, we identify \(\Omega^4 X \) with the subspace of maps \(f \in \mathcal{M}_* X \) such that \(f(0, x) = * \) for any \(x \in I^3 \).

2. Let \(H : I^3 \rightarrow S^2 \) be the composition of the projection \(I^3 \rightarrow I^3 / \partial I^3 \) with the Hopf map. We identify \(\text{Map}_* (\mathbb{P}^2, X) \) with the subspace of maps \(f \in \mathcal{M}_* X \) whose restriction to \(0 \times I^3 \) factors through \(H \). Restriction to \(0 \times I^3 \) induces a map \(\rho : \text{Map}_* (\mathbb{P}^2, X) \rightarrow \Omega^2 X \).

3. Let \(x = (x_1, x_2, x_3) \in I^3 \). We identify \(\text{Map}_* (\#_n \mathbb{P}^2, X) \) with the subspace of maps \(f \in \mathcal{M}_* X \) such that:

 (a) \(f(0, i/n, x_2, x_3) = * \) for \(i = 0, \ldots, n \) and any \(x_2, x_3 \in I \);

 (b) for each \(i = 1, \ldots, n \), the restriction of \(f \) to \(0 \times [(i-1)/n, i/n] \times I^2 \) factors through \(H : I^3 \rightarrow S^2 \).

We have a map \(\rho = (\rho_1, \ldots, \rho_n) : \text{Map}_* (\#_n \mathbb{P}^2, X) \rightarrow (\Omega^2 X)^n \) whose components \(\rho_i \) are induced by restriction to \(0 \times [(i-1)/n, i/n] \times I^2 \), for \(i = 1, \ldots, n \).

We will now give \((\Omega^4 X)^n \) the structure of an associative monoid and define actions of \((\Omega^4 X)^n \) on \((\text{Map}_* (\mathbb{P}^2, X))^n \) and \(\Omega^4 X \).
(4) First we define a right action of $\Omega^4 X$ on $\mathcal{M}_s X$. Given a function $f \in \mathcal{M}_s X$ we let s_f be the infimum of the set of $t \in [0, +\infty)$ such that $f(s, x) = *$ for any $s \geq t$ and any $x \in F^3$. Then, given $g \in \Omega^4 X$ we define $f \cdot g \in \mathcal{M}_s X$ by:

$$f \cdot g(t, x) = \begin{cases} f(t, x), & \text{if } t \leq s_f; \\ g(t - s_f, x), & \text{if } t > s_f. \end{cases}$$

Clearly, $(f \cdot g_1) \cdot g_2 = f \cdot (g_1 \cdot g_2)$. This action preserves the subspaces $\Omega^4 X$, $\text{Map}_s(\mathbb{P}^2, X)$ and $\text{Map}_s(\#_n \mathbb{P}^2, X)$. Since $(\mathcal{M}_s X)^n \cong \mathcal{M}_s (X^n)$, we get an associative product on $(\Omega^4 X)^n$ and a right action of $(\Omega^4 X)^n$ on $(\mathcal{M}_s X)^n$.

(5) We now define a map ω: $(\mathcal{M}_s X)^n \rightarrow \mathcal{M}_s X$ by concatenation in the second variable. Given $f = (f_1, \ldots, f_n) \in (\mathcal{M}_s X)^n$, for each $i = 1, \ldots, n$ and $x_1 \in [(i-1)/n, i/n]$, we let $\omega(f)(t, x_1, x_2, x_3) = f_i(t, nx_1 - i + 1, x_2, x_3)$. Then, given $f \in (\mathcal{M}_s X)^n$ and $g \in (\Omega^4 X)^n$, we have $\omega(f \cdot g) = \omega(f) \cdot \omega(g)$. The map ω restricts to define maps $(\Omega^4 X)^n \rightarrow \Omega^4 X$ and $\text{Map}_s(\mathbb{P}^2, X)^n \rightarrow \text{Map}_s(\#_n \mathbb{P}^2, X)$. We define a left action of $(\Omega^4 X)^n$ on $\Omega^4 X$ by $g \cdot f = \omega(g) \cdot f$.

Consider the bar construction $\text{Bar}((\text{Map}_s(\mathbb{P}^2, X))^n, (\Omega^4 X)^n, \Omega^4 X)$ induced by the actions in (4) and (5).

Theorem 1.2 The maps $\text{Bar}((\text{Map}_s(\mathbb{P}^2, X))^n, (\Omega^4 X)^n, \Omega^4 X)$ sending (f, f_1, \ldots, f_k, h) to $\omega(f \cdot f_1 \cdots f_k) \cdot h$ induce a map

$h: \text{Bar}((\text{Map}_s(\mathbb{P}^2, X))^n, (\Omega^4 X)^n, \Omega^4 X) \rightarrow \text{Map}_s(\#_n \mathbb{P}^2, X)$

which is a homotopy equivalence.

Proof. We have a commutative diagram:

$$
\begin{array}{ccc}
\text{Bar}((\Omega^4 X)^n, (\Omega^4 X)^n, \Omega^4 X) & \xrightarrow{\rho} & (\Omega^4 X)^n \\
\downarrow{\mu} & & \downarrow{\mu} \\
\text{Bar}((\text{Map}_s(\mathbb{P}^2, X))^n, (\Omega^4 X)^n, \Omega^4 X) & \xrightarrow{h} & \text{Map}_s(\#_n \mathbb{P}^2, X)
\end{array}
$$

The maps ι are inclusions and the maps ρ, ρ are the ones defined above in [2] and [3]. The right vertical maps are induced by the cofibration $S^2 \rightarrow \mathbb{P}^2 \rightarrow S^1$, and hence they form a fibration. Since the top row is a homotopy equivalence, to finish the proof we only have to show that the left vertical maps form a fibration sequence. The map $\rho = \rho \circ h$ is induced by the restriction map $\rho: \text{Map}_s(\mathbb{P}^2, X) \rightarrow \Omega^2 X$ and hence, from Corollary 11.6 in [10] we see that the homotopy fiber of $\rho \circ h$ is $\text{Bar}(F^n, (\Omega^4 X)^n, \Omega^4 X)$, where F is the homotopy fiber of the map $\text{Map}_s(\mathbb{P}^2, X) \rightarrow \Omega^2 X$. Since the inclusion $\Omega^4 X \rightarrow F$ is a homotopic equivalence, it follows from Proposition A.1 in [14] that the map

$\text{Bar}((\Omega^4 X)^n, (\Omega^4 X)^n, \Omega^4 X) \rightarrow \text{Bar}(F^n, (\Omega^4 X)^n, \Omega^4 X)$

is a homotopic equivalence. This concludes the proof. \qed
Appendix A. Monads

In this appendix we describe the maps introduced in Proposition 6.1 and prove their properties. Fix \(I = \{x, y\} \subset \mathbb{C}^2 \). Let \(V \) be a finite dimensional complex hermitian vector space. We will need the monad description of the moduli spaces \(M_{\text{reg}}^{V,k} \) and \(M_{\text{reg}}^{V,k} \equiv M_{\text{reg}}^{V,k} \), introduced in [5], [6], which we briefly review here.

Let \(W_0, W_1 \) be complex vector spaces of dimension \(k \). Let \(R \) be the space of 4-tuples \((a_1, a_2, b, c) \) where \(a_i \in \text{End}(W_i), b \in \text{Hom}(V, W_1) \) and \(c \in \text{Hom}(W_1, V) \), obeying the integrability condition \(|a_1| + |a_2| + b + c = 0 \). Let \(R' \) be the space of 5-tuples \((a_1', a_2', b', c', d') \) where \(a_1' \in \text{Hom}(W_1, W_0), b' \in \text{Hom}(V, W_0) \) and \(c' \in \text{Hom}(W_1, V) \), such that \(a_1'(W_1) + a_2'(W_1) + b'(V) = 0 \), obeying the integrability condition \(a_1'a_2 - a_2a_1 + b'c' = 0 \). The groups \(GL(W_1) \) and \(GL(W_0) \times GL(W_1) \) act by composition on \(R \) and \(R' \), respectively. A 4-tuple \((a_1, a_2, b, c) \in R \) is called nondegenerate if, for any subspace \(U_i \subset W_i \), we have:

\[
\text{Im } b \subset U_1 \text{ and } a_i(U_i) \subset U_1 \text{ for } (i = 1, 2) \Rightarrow U_1 = W_1, \\
U_1 \subset \ker c \text{ and } a_i(U_i) \subset U_1 \text{ for } (i = 1, 2) \Rightarrow U_1 = \emptyset.
\]

A 5-tuple \((a_1', a_2', b', c', d') \in R' \) is called nondegenerate if, for any subspaces \(U_0 \subset W_0 \) and \(U_1 \subset W_1 \) such that \(\dim U_0 = \dim U_1 \), we have:

\[
\text{Im } b' \subset U_0 \text{ and } d'(U_0) \subset U_1 \text{ and } a_i'(U_i) \subset U_0 \text{ for } (i = 1, 2) \Rightarrow U_1 = W_1, \text{ for } (i = 1, 2), \\
U_1 \subset \ker d' \text{ and } d'(U_0) \subset U_1 \text{ and } a_i'(U_i) \subset U_0 \text{ for } (i = 1, 2) \Rightarrow U_1 = \emptyset.
\]

Let \(R_{\text{reg}}, R'_{\text{reg}} \) denote the subspaces of nondegenerate configurations.

Theorem (Donaldson [5], King [6]). The actions of \(GL(W_1) \) and \(GL(W_0) \times GL(W_1) \) on \(R_{\text{reg}} \) and \(R'_{\text{reg}} \) respectively are free and we have isomorphisms

\[
R_{\text{reg}}/GL(W_1) \cong M_{\text{reg}}^{V,k}, \quad R'_{\text{reg}}/(GL(W_0) \times GL(W_1)) \cong M_{\text{reg}}^{V,k} \cong M_{\text{reg}}^{V,k}.
\]

Furthermore, the algebraic quotients \(R_{\text{reg}}/GL(W_1), R'_{\text{reg}}/(GL(W_0) \times GL(W_1)) \) are isomorphic to the Donaldson-Uhlenbeck completions \(\overline{M}_{\text{reg}}^{V,k}, \overline{M}_{\text{reg}}^{V,k} \) of \(M_{\text{reg}}^{V,k} \) respectively.

To define the maps of Proposition 6.1 it will be convenient to replace the spaces \(M_{\text{reg}}^{V,k}, M_{\text{reg}}^{V,k} \) by the following homeomorphic subspaces: fix a positive real number \(\delta < \|x - y\| \) and let

\[
M_{x,1}^{V,\delta} = M_{y,1}^{V,\delta} = \left\{ [a_1', a_2', d', b', c'] \in M_{x,1}^{V} : |d'a'_1| < \delta \right\}, \\
M_{0,1}^{V,\delta} = \left\{ [a_1, a_2, b, c] \in M_{0,1}^{V} : |a_1| < \delta \right\}.
\]

Proposition A.1. There are homeomorphisms \(M_{0,1}^{V,\delta} \cong M_{0,1}^{V} \) and \(M_{x,1}^{V,\delta} \cong M_{x,1}^{V} \).

Proof. It is clear that \(M_{0,1}^{V,\delta} \cong M_{0,1}^{V} \). Let \(\phi: [0, +\infty) \to [0, \delta] \) be given by \(\phi(r) = \delta/(1 + r) \) and let \(\psi: [0, \delta] \to [0, +\infty) \) be given by \(\psi(r) = 1/(\delta - r) \). Then \(z\phi(|z|) : \mathbb{C} \to B_\delta(0) \) is an homeomorphism with inverse \(z\phi(|z|) \). It follows that the map \([a_1, a_2, d, b, c] \mapsto [\phi(da_1)]a_1, a_2, d, b, c \) is a homeomorphism \(M_{x,1}^{V} \to M_{x,1}^{V,\delta} \) with inverse \([a_1, a_2, d, b, c] \mapsto [\psi(da_1)]a_1, a_2, d, b, c \).

Proposition A.2. Let \(V_1, V_2 \) be finite dimensional complex hermitian vector spaces and let \(J \subset \mathbb{C}^2 \) be either \(\emptyset \) or \(\{x\} \) (analogous results are valid for \(J = \{y\} \)).
(1) Given a linear isometry $\alpha : V_1 \rightarrow V_2$, with dual $\alpha^* : V_2 \rightarrow V_1$, the induced map $\alpha : M^V_{\delta} \rightarrow M^V_{\delta}$ is given by

$$\begin{align*}
[a_1, a_2, b, c] &\mapsto [a_1, a_2, b \circ \alpha^*, \alpha \circ c] \quad (J = \emptyset) \\
[a_1, a_2, d, b, c] &\mapsto [a_1, a_2, d \circ \alpha^*, \alpha \circ c] \quad (J = \{x\})
\end{align*}$$

In particular, the map α takes the subspaces $M^V_{\delta} \subset M^V_{\delta}$ to M^V_{δ}.

(2) Whitney sum $\omega : M^V_{\delta} \times M^V_{\delta} \rightarrow M^V_{\delta}$ is induced by direct sum:

$$\begin{align*}
\omega([a_1, a_2, b, c], [a_1', a_2', b', c']) &\mapsto [a_1 \oplus a_1', a_2 \oplus a_2', b \oplus b', c \oplus c'] \quad J = \emptyset \\
\omega([a_1, a_2, d, b, c], [a_1', a_2', d', b', c']) &\mapsto [a_1 \oplus a_1', a_2 \oplus a_2', d \oplus d', b \oplus b', c \oplus c'] \quad J = \{x\}
\end{align*}$$

(3) The pullback map $\pi^{V}_{\delta} : M^V_{\delta} \rightarrow M^V_{\{x\}}$ is given as follows: fix any isomorphism $d : W_0 \rightarrow W_1$; then

$$\pi^{V}_{\delta}(a_1, a_2, b, c) = [d^{-1}a_1, d^{-1}a_2, d, d^{-1}b, c].$$

In particular, the map α takes the subspace $M^V_{\delta} \subset M^V_{\delta}$ to M^V_{δ}.

Proof. Statements (1) and (2) easily follow from the way a holomorphic bundle is construct from a 5-tuple (a_1, a_2, d, b, c) (see [3] or [2], Theorem 3.2). For statement (3) see [2], Lemma 4.1. \hfill \square

As it would be expected, the pullback map does not depend on the choice of isomorphism d. We will usually identify W_0 with W_1 so that we can take $d = 1$.

Definition A.1. Fix points $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{C}^2. Let $\boxtimes_{\delta, \emptyset} : M^V_{\delta} \times M^V_{\delta} \rightarrow M^V_{\delta}$ be the map given by

$$[a_1', a_2', b', c'] \boxtimes_{\delta, \emptyset} [a_1'', a_2'', b'', c''] = \left[\begin{array}{c}
0 \\
0
\end{array} \right] \oplus [a_1', a_2', b', c'] \boxplus [a_1'', a_2'', b'', c'']$$

Let $\boxtimes_{x, \emptyset} : M^V_{\delta} \times M^V_{\delta} \rightarrow M^V_{x, 2}$ be the map given by (where $z = y - x$):

$$[a_1', a_2', b', c'] \boxplus [a_1'', a_2'', b'', c''] = \left[\begin{array}{c}
0 \\
0
\end{array} \right] \oplus [a_1', a_2', b', c'] \boxplus [a_1'', a_2'', b'', c'']$$

We also define $\boxtimes_{\emptyset, y} : M^V_{\delta} \times M^V_{\delta} \rightarrow M^V_{y, 2}$ by setting $\boxtimes_{\emptyset, y} = \boxtimes_{-x, \emptyset}$.

A straightforward computation shows that $\pi^{V}_{\emptyset, x} \circ \boxtimes_{\emptyset, \emptyset} = \boxtimes_{x, \emptyset} \circ (\pi^{V}_{\emptyset, x} \times 1)$ and similarly for $\boxtimes_{\emptyset, y}$. We now show that there is a map $\boxtimes_{x, y} : M^V_{\delta} \times M^V_{\delta} \rightarrow M^V_{x, 2}$ which extends $\boxtimes_{x, \emptyset}, \boxtimes_{\emptyset, y}$ in the following sense:

Proposition A.3. There is an open embedding $\boxtimes_{x, y} : M^V_{\delta} \times M^V_{\delta} \rightarrow M^V_{x, 2}$ such that, for any $m_x \in M^V_{\delta}$, $m_y \in M^V_{\delta}$ and $m_y \in M^V_{\delta}$ we have $m_x \boxtimes_{x, y} (\pi^{V}_{\emptyset, y} m_y) = \pi^{V}_{\emptyset, x} (m_x \boxtimes_{x, \emptyset} m_y)$ and $\pi^{V}_{\emptyset, y} m_y = \pi^{V}_{\emptyset, x} (m_x \boxtimes_{x, \emptyset} m_y)$.
Proof. The proof follows the same lines as the proof of proposition 4.9 in [13]. We
sketch the proof here, referring to [13] for more details. The maps \(\oplus_{x,y}, \oplus_{y,0} \) can be
extended to the Donaldson-Uhlenbeck completion \(\mathcal{M}_V \) of the moduli spaces.
The same argument as in the proof of Proposition 4.5 in [13] shows that these extended
maps are embeddings. Let \(\pi_x : \mathbb{P}^2_x \to \mathbb{P}^2, \pi_{y,y} : \mathbb{P}^2_y \to \mathbb{P}^2 \) be the blowup at \(y \), and
let \(\pi_{y,I} : \mathbb{P}^2_I \to \mathbb{P}^2, \pi_{y,x} : \mathbb{P}^2_x \to \mathbb{P}^2 \) be the blowup at \(x \). Taking the direct image of
the bundles we get maps
\[
(\pi_{x,I})_* : \mathcal{M}^V_{I,2} \to \mathcal{M}^V_{x,2} \quad \text{and} \quad (\pi_{y,I})_* : \mathcal{M}^V_{y,2} \to \mathcal{M}^V_{y,2}.
\]
Given \(m_x \in \mathcal{M}^V_{x,1}, m_y \in \mathcal{M}^V_{y,1} \), we define \(m_x \oplus_{x,y} m_y \) as the unique solution of the
system of equations
\[
(\pi_{x,I})_*(m_x \oplus_{x,y} m_y) = m_x \oplus_{x,0} (\pi_{0,y})_* m_y
\]
\[
(\pi_{y,I})_*(m_x \oplus_{x,y} m_y) = (\pi_{0,x})_* m_x \oplus_{0,y} m_y.
\]
If \(m_y \in \text{Im} \pi_{y,I} \) or \(m_x \in \text{Im} \pi_{x,y}^* \), we can solve the equations and get
\[
m_x \oplus_{x,y} \pi_{0,y}^* m = \pi_{x,I}^*(m_x \oplus_{x,y} m), \quad \pi_{0,x}^* m \oplus_{x,y} m_y = \pi_{y,I}^*(m \oplus_{x,y} m_y).
\]
Otherwise, \((\pi_{x,I})_*(m_x \oplus_{x,y} m_y) \in \mathcal{M}^V_{x,2} \) is the ideal instanton determined by \(m_x \in \mathcal{M}^V_{x,1} \)
and a delta at \(y \), and \((\pi_{y,I})_*(m_x \oplus_{x,y} m_y) \in \mathcal{M}^V_{y,2} \) is the ideal instanton determined by \(m_y \in \mathcal{M}^V_{y,1} \)
and a delta at \(x \). By proposition 4.3 in [13], this completely determines \(m_x \oplus_{x,y} m_y \). Proposition 4.8 in [13]
shows that the image of \(\oplus_{x,y} \) is open. Continuity of \(\oplus_{x,y} \) is proven exactly as in [13], Proposition 4.9. Continuity
of the inverse follows easily from the fact that \(\oplus_{x,0} \) and \(\oplus_{0,y} \) are embeddings. \(\square \)

Proposition A.4. Let \(I \subset \{x,y\} \), let \(I_1 = I - \{y\} \) and \(I_2 = I - \{x\} \), and let \(I = (I_1,I_2) \). Let \(V, V' \) be finite dimensional complex hermitian vector spaces.

1. Given finite sets \(J_1 \subset I_1 \) and \(J_2 \subset I_2 \), we have:
\[
\pi^*_{J_1} \circ \oplus_J = \oplus_{I_1} \circ (\pi^*_{J_1,I_1} \times \pi^*_{J_2,I_2})
\]
(\(\oplus_J = (J_1,J_2) \) and \(J = J_1 \cup J_2 \)).

2. Given a linear isometry \(\alpha : V \to V' \), the following diagram is commutative:
\[
\begin{array}{ccc}
\mathcal{M}^V_{J_1,1} \times \mathcal{M}^V_{J_2,1} & \overset{\oplus_{I_1}}{\longrightarrow} & \mathcal{M}^V_{I_1,2} \\
\downarrow{\alpha \times \alpha} & & \downarrow{\alpha} \\
\mathcal{M}^{V',\delta}_{J_1,1} \times \mathcal{M}^{V',\delta}_{J_2,1} & \overset{\oplus_{I_1}}{\longrightarrow} & \mathcal{M}^{V',\delta}_{I_1,2}
\end{array}
\]

3. Let \(\iota : V \to V \oplus V' \), \(\iota' : V' \to V \oplus V' \) be the canonical inclusions. Then the
Whitney sum map \(\omega \) equals the composition:
\[
\mathcal{M}^V_{I_1,1} \times \mathcal{M}^{V',\delta}_{I_2,1} \overset{\iota \times \iota'}{\longrightarrow} \mathcal{M}^{V \oplus V',\delta}_{I_1,1} \times \mathcal{M}^{V \oplus V',\delta}_{I_2,1} \overset{\oplus_{I_1}}{\longrightarrow} \mathcal{M}^{V \oplus V'}_{I_1,2}
\]

Proof. For \(I = \emptyset, \{x\} \) or \(\{y\} \) the proof is a direct computation. The results extend
to the case where \(I = \{x,y\} \) by continuity, since \(\pi^*_{0,x} \mathcal{M}^{V,\delta}_{0,1} \) and \(\pi^*_{0,y} \mathcal{M}^{V,\delta}_{0,1} \) are dense
in \(\mathcal{M}^{V,\delta}_{x,1} \) and \(\mathcal{M}^{V,\delta}_{y,1} \), respectively. \(\square \)
Aknowledgements. The author would like to thank Gustavo Granja for inumerous fruitful discussions.

REFERENCES

1. J. Bryan and M. Sanders, The rank stable topology of instantons of $\mathbb{C}P^2$, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3763–3768.
2. , Instantons on S^4 and $\mathbb{C}P^2$, rank stabilization, and Bott periodicity, Topology 39 (2000), no. 2, 331–352.
3. N. Buchdahl, Instantons on $n\mathbb{C}P^2$, J. Differential Geom. 37 (1993), no. 3, 669–687.
4. , Monads and bundles on rational surfaces, Rocky Mountain J. Math. 34 (2004), no. 2, 513–540.
5. S. Donaldson, Instantons and geometric invariant theory, Comm. Math. Phys. 93 (1984), no. 4, 453–460.
6. A. King, Instantons and holomorphic bundles on the blown-up plane, Ph.D. thesis, Worcester College, Oxford, 1989.
7. F. Kirwan, Geometric invariant theory and the Atiyah-Jones conjecture, The Sophus Lie Memorial Conference (Oslo, 1992), Scand. Univ. Press, Oslo, 1994, pp. 161–186.
8. M. Lübke, The analytic moduli space of framed vector bundles, J. Reine Angew. Math. 441 (1993), 45–59.
9. A. Matuschke, On framed instanton bundles and their deformations, Math. Nachr. 211 (2000), 109–126.
10. J.P. May, Geometry of iterated loop spaces, Lecture notes in mathematics, Springer, 1972.
11. P. May, E_∞ ring spaces and E_∞ ring spectra, Springer-Verlag, Berlin, 1977, With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave, Lecture Notes in Mathematics, Vol. 577.
12. M. Sanders, Classifying spaces and Dirac operators coupled to instantons, Trans. Amer. Math. Soc. 347 (1995), no. 10, 4037–4072.
13. J. Santos, Framed holomorphic bundles on rational surfaces, J. Reine Angew. Math. 589 (2005), 129–158.
14. Graeme Segal, Categories and cohomology theories., Topology 13 (1974), 293–312 (English).
15. C. Taubes, Self-dual connections on 4-manifolds with indefinite intersection matrix, J. Differential Geom. 19 (1984), no. 2, 517–560.
16. , The stable topology of self-dual moduli spaces, J. Differential Geom. 29 (1989), no. 1, 163–230.

Instituto Superior Técnico