Forward–Backward algorithms for stochastic Nash equilibrium seeking in restricted cocoercive and strictly monotone games

Barbara Franci and Sergio Grammatico

Abstract—We study stochastic Nash equilibrium problems with expected valued cost functions whose pseudogradient satisfies restricted monotonicity properties which hold only with respect to the solution. We propose a forward-backward algorithm and prove its convergence under restricted cocoercivity and restricted strict monotonicity of the pseudogradient mapping. To approximate the expected value, we use either a finite number of samples and a vanishing step size or an increasing number of samples with a constant step. Numerical simulations show that our proposed algorithm might be faster than the available algorithms.

I. INTRODUCTION

In 1950, John Nash came up with the idea of what we now call Nash equilibrium [1], a situation where none of the agents involved can improve its performance, given the actions of the other agents. Since then, the interest on the topic has only been rising [2], [3], [4], [5], [6], [7]. In a Nash equilibrium problem (NEP), a number of agents interact to minimize their cost function, taking into consideration also the actions of the others. A natural extension of this problem is to include some uncertainty, leading to stochastic NEPs (SNEPs). As an example, one can consider the energy market where the companies do not know the demand in advance [8] or an application related to machine learning. In fact, in Generative Adversarial Nets [9], two neural network compete against each other in a two-players game, with expected valued cost functions whose pseudogradient mapping. To approximate the expected value, we use either a finite number of samples and a vanishing step size or an increasing number of samples with a constant step. Numerical simulations show that our proposed algorithm might be faster than the available algorithms.

The authors are in the Delft Center for System and Control, TU Delft, The Netherlands. E-mail addresses: \{b.franci-1, s.grammatico\}@tudelft.nl.

This work was partially supported by NWO under research projects OMEGA (613.001.702) and P2P-TALES (647.003.003), and by the ERC under research project COSMOS (802348).

The classic SFB is known to converge for strongly monotone [22], [23] or cocoercive mappings [16]. The main result of this paper is to show that cocoercivity only with respect to the solution is sufficient to obtain convergence. Specifically, our contributions are the following.
The SFB algorithm converges to a SNE when the pseudogradient mapping is restricted cocoercive, using the SA scheme with only one sample of the random variable, which is a computationally light approximation.

The convergence result holds also if the pseudogradient is restricted strictly monotone.

We propose an algorithm that is distributed and, since it allows for a vanishing step size sequence, no coordination among the agents is necessary.

We show convergence in the case of nonsmooth cost functions, thus extending some known results to a more general case.

Instead of one sample of the random variable, taking a higher and time-varying number of realizations can be considered and convergence is still guaranteed.

We remark that considering restricted properties is important for instance when a limited amount of information is available to the agents. In fact, in partial decision information generalized (S)NEPs, the properties of the operators involved hold only at the solution, even when the pseudogradient mapping is strongly monotone [24, 25]. In this case, having a restricted property applies not only to cocoercivity but also to monotonicity [24, 26]. Thus, all other algorithms in Table I cannot be directly applied.

A. Notation and preliminaries

We use Standing Assumptions to postulate technical conditions that implicitly hold throughout the paper while Assumptions are postulated only when explicitly called.

\(\mathbb{R} \) denotes the set of real numbers and \(\mathbb{R} = \mathbb{R} \cup \{ \pm \infty \} \).

\(\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \) denotes the standard inner product and \(\| \cdot \| \) represents the associated Euclidean norm. Given \(N \) vectors \(x_1, \ldots, x_N \in \mathbb{R}^n \), \(x = \text{col}(x_1, \ldots, x_N) = [x_1^\top, \ldots, x_N^\top]^\top \).

The set of fixed points of \(F \) is \(\text{fix}(F) := \{ x \in \mathbb{R}^n \mid x \in F(x) \} \). For a closed set \(C \subseteq \mathbb{R}^n \), the mapping \(\text{proj}_C : \mathbb{R}^n \rightarrow C \) denotes the projection onto \(C \), i.e., \(\text{proj}_C(x) = \arg\min_{y \in C} \| y - x \| \). The residual mapping is, in general, defined as \(\text{res}(x^k) = \| x^k - \text{proj}_C(x^k - F(x^k)) \| \).

Given a proper, lower semi-continuous, convex function \(g \), the subdifferential is the operator \(\partial g(x) := \{ u \in \Omega \mid (\forall y \in \Omega) : (y - x, u) + g(x) \leq g(y) \} \). The proximal operator is defined as \(\text{prox}_u(v) := \arg\min_{y \in \Omega} \{ g(u) + \frac{1}{2} \| u - v \|^2 \} = J_{\partial g}(v) \). \(\iota_C(x) \) is the indicator function of the set \(C \), i.e., \(\iota_C(x) = 1 \) if \(x \in C \) and \(\iota_C(x) = 0 \) otherwise. The set-valued mapping \(N_C : \mathbb{R}^n \rightarrow \mathbb{R}^n \) denotes the normal cone operator for the set \(C \), i.e., \(N_C(x) = \emptyset \) if \(x \notin C \), \(\{ v \in \mathbb{R}^n \mid \sup_{u \in C} v^\top (x - u) \leq 0 \} \) otherwise.

We now recall some basic properties of operators [2]. A mapping \(F : \text{dom}(F) \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^n \) is: (strictly) monotone if for all \(x, y \in \text{dom}(F) \) \((x \neq y) \), \(F(x) - F(y) = F(x) - F(y) \geq 0 \); \(\beta \)-coercive with \(\beta > 0 \), if for all \(x, y \in \text{dom}(F) \) \((F(x) - F(y), x - y) \geq \beta \| F(x) - F(y) \| \); firmly non expansive if for all \(x, y \in \text{dom}(F) \) \(\| F(x) - F(y) \| \leq \| x - y \| \); \(\beta \)-Lipschitz continuous, if \(\| F(x) - F(y) \| \leq \beta \| x - y \| \); \(\ell \)-Lipschitz continuous if \(\| F(x) - F(y) \| \leq \ell \| x - y \| \).

In this section we describe the stochastic Nash equilibrium problem (SNEP). We consider a set \(\mathcal{I} = \{ 1, \ldots, N \} \) of noncooperative agents who interact with the aim of minimizing their cost function. Each of them has a decision variable \(x_i \in \Omega_i \subseteq \mathbb{R}^n_i \) where \(\Omega_i \) indicates the local feasible set of agent \(i \in \mathcal{I} \). Let us set \(n = \sum_{i \in \mathcal{I}} n_i \) and \(x = \text{col}(x_1, \ldots, x_N) \in \Omega = \Omega_1 \times \ldots \times \Omega_N \subseteq \mathbb{R}^n \). The cost function of agent \(i \) is defined as

\[
J_i(x_i, x_{-i}) := E_i \left[f_i(x_i, x_{-i}, \xi(\omega)) \right] + g_i(x_i),
\]

where \(x_{-i} = \{ x_j \mid j \neq i \} \) collects the decision variable of all the other agents. Let \((\Xi, F, P) \) be the probability space and \(\Xi = \Xi_1 \times \ldots \Xi_N \). Then, \(\xi : \Xi \rightarrow \mathbb{R}^d \) is a random variable and \(E_\xi \) is the mathematical expectation with respect to the distribution of \(\xi_i \) for all \(i \in \mathcal{I} \).

Standing Assumption 1: For each \(i \in \mathcal{I} \) and \(x_{-i} \in \mathcal{X}_{-i} \), the function \(f_i(\cdot, x_{-i}) \) is convex and continuously differentiable. For each \(i \in \mathcal{I} \) and for each \(\xi \in \Xi \), the function \(f_i(\cdot, x_{-i}, \xi) \) is convex, \(\ell_i \)-Lipschitz continuous, and continuously differentiable. The function \(f_i(x_i, x_{-i}, \cdot) \) is measurable and for each \(x_{-i} \) and the Lipschitz constant \(\ell_i(x_{-i}, \cdot) \) is integrable in \(\xi \).

The cost function in (1) is given by the sum of a smooth part, i.e., the expected value of the measurable function \(f_i : \mathbb{R}^n \times \mathbb{R}^d \rightarrow \mathbb{R} \), and a non-smooth part, given by the function \(g_i : \mathbb{R}^n \rightarrow \mathbb{R} \). The latter may represent some local constraints via an indicator function, \(g_i = \iota_{\Omega_i} \) or some penalty function to enforce a desired behavior.

Standing Assumption 2: For each \(i \in \mathcal{I} \), the function \(g_i \) in (1) is lower semicontinuous and convex and \(\text{dom}(g_i) = \Omega_i \) is nonempty, compact and convex.

Each agent \(i \in \mathcal{I} \) aims at solving its local optimization problem

\[
\forall i \in \mathcal{I} : \min_{x_i \in \Omega_i} J_i(x_i, x_{-i}),
\]

given the decision variable of the other agents \(x_{-i} \). Specifically, the goal is to reach a stochastic Nash equilibrium (SNE), namely, a situation where none of the agents can further decrease its cost function given the decision variables of the others. Formally, a SNE is a collective decision \(x^* \) such that for all \(i \in \mathcal{I} \)

\[
J_i(x_i^*, x_{-i}^*) \leq \inf \{ J_i(y, x_{-i}^*) \mid y \in \Omega_i \}.
\]

Since the SNE correspond to the solutions of a suitable variational problem [2, Proposition 1.4.2], let us define the stochastic variational inequality (SVI) associated to the game in (2). First, let us introduce the pseudogradient mapping

\[
F(x) = \text{col}(\langle E[\nabla_x f_i(x_i, x_{-i}, \xi) \rangle \rangle_{\xi \in \mathcal{X}}),
\]

\[1\text{From now on, we use } \xi \text{ instead of } \xi(\omega) \text{ and } \Xi \text{ instead of } E_\xi.\]
where we exchange the expected value and the gradient symbol as a consequence of Standing Assumption 1 [7, Lemma 3.4]. Then, the associated SVI reads as
\[
\langle F(x^*), x - x^* \rangle + \sum_{i \in I} \{ g_i(x_i) - g_i(x_i^*) \} \geq 0, \forall x \in \Omega. \tag{4}
\]
and the stochastic variational equilibrium (v-SNE) of game in (2) is defined as the solution of the SVI(\(\Omega, F, G\)) in (4) where \(F\) is described in (3) and \(G(x) = \partial g_1(x_1) \times \cdots \times \partial g_N(x_N)\).

III. DISTRIBUTED STOCHASTIC FORWARD-BACKWARD ALGORITHM

In this section, we report the assumption for convergence of our proposed algorithm and conclude with our main result. The iterations of the distributed forward-backward (FB) algorithm are presented in Algorithm 1.

We note that without cocoercivity, the FB algorithm may end in cycling behaviors and never reach a solution [27, 11, 28]. Remarkably, it is sufficient for convergence that cocoercivity holds only with respect to the solution.

Since the expected value pseudogradient may be hard or impossible to compute in closed form, we estimate \(F\) in (3) using a stochastic approximation (SA) scheme, i.e., we take only one realization of the random variable \(\xi\):
\[
\hat{F}(x^k, \xi^k) = F_{SA}(x^k, \xi^k)
= \text{col} \left\{ \nabla_{x_1} f_1(x^k, \xi^k_1), \ldots, \nabla_{x_N} f_N(x^k, \xi^k_N) \right\},
\tag{5}
\]
where \(\xi^k = (\xi^k_1, \ldots, \xi^k_N)\) is a collection of i.i.d. random variables. Since we take an approximation, let the stochastic error be indicated with
\[
e^k = F_{SA}(x^k, \xi^k) - F(x^k).
\]
Then, we suppose that the approximation is unbiased.

Assumption 2: For all \(k \geq 0\), \(E\left[e^k \mid \mathcal{F}^k\right] = 0\) a.s..

Besides the zero mean, one should also consider some conditions on the variance of the error. Specifically, we postulate an assumption on the step size sequence to control the error [6], [29].

Assumption 3: The step size sequence \((\gamma_k)_{k \in \mathbb{N}}\) is such that
\[
\sum_{k=0}^{\infty} \gamma_k = \infty, \quad \sum_{k=0}^{\infty} \gamma_k^2 < \infty \quad \text{and} \quad \sum_{k=0}^{\infty} \gamma_k^2 E \left[\|e^k\|^2 \mid \mathcal{F}^k \right] < \infty.
\]

Assumption 4: The step size sequence \((\gamma_k)_{k \in \mathbb{N}}\) is such that, for all \(k\), \(\gamma_k \leq 2\beta\) where \(\beta\) is the cocoercivity constant of \(F\) as in Assumption 1.

We can now state our main result.

Theorem 1: Let Assumptions 1-4 hold. Then, the sequence \((x^k)_{k \in \mathbb{N}}\) generated by Algorithm 1 with approximation \(\hat{F} = F_{SA}\) as in (5), converges to a v-SNE of the game in (2).

Proof: See Appendix III.

IV. CONVERGENCE WITH DIFFERENT HYPOTHESIS

Convergence of Algorithm 1 can be proven also using different monotonicity properties for the pseudogradient or with a different approximation scheme.

A. Restricted strictly monotone pseudogradient

The cocoercivity in Assumption 1 can be replaced with restricted strict monotonicity to prove convergence, a case that we analyze in this subsection.

Assumption 5: \(F\) is restricted strictly monotone at \(x^* \in \text{SOL}(\Omega, F, G)\).

When Assumption 5 holds, if a solution exists [2, Corollary 2.2.5], then it is also unique [2, Theorem 2.3.3].

Remark 2: A cocoercive mapping is not necessarily strictly monotone and, vice versa, a strictly monotone mapping is not necessarily cocoercive.

We suppose \(F\) to be restricted Lipschitz continuous but we remark that it is not necessary to know the actual value of the Lipschitz constant since it does not affect the parameters involved in the algorithm. This is very practical, since, in general, the Lipschitz constant is not easy to compute.

Assumption 6: \(F\) is restricted Lipschitz continuous at \(x^* \in \text{SOL}(\Omega, F, G)\).

We can now state our convergence result.

Theorem 2: Let Assumptions 2, 3, 5, 6 hold. Then, the sequence \((x^k)_{k \in \mathbb{N}}\) generated by Algorithm 1 with approximation \(\hat{F} = F_{SA}\) as in (5), converges a.s. to a v-SNE of the game in (2).

Proof: See Appendix III.

Remark 3: A similar result can be found in [29] for strictly monotone, Lipschitz continuous pseudogradient mappings on the whole feasible set, not just with respect to the solution. Moreover Theorem 2 extends that result to the case of nonsmooth cost functions.

B. Different approximation schemes

Instead of taking only one sample per iteration, let us consider the possibility of having more, even changing at each iteration. Hence, let us consider to have \(S^k\) samples of the random variable \(\xi\), called the batch size, and to be able to compute an approximation of \(F(x, \xi)\) of the form
\[
\hat{F}(x, \xi) = F_{VR}(x, \xi)
= \text{col} \left(\frac{1}{S^k} \sum_{t=1}^{S^k} \nabla_{x_1} f_1(x, \xi^{(t)}_1), \ldots, \nabla_{x_N} f_N(x, \xi^{(t)}_N) \right),
\tag{6}
\]
where \(\xi^{(t)} = (\xi^{(t)}_1, \ldots, \xi^{(t)}_N)\) is a collection of i.i.d. random variables generated by Algorithm 1, with approximation \(\hat{F} = F_{SA}\) as in (5), converges a.s. to a v-SNE of the game in (2).

Proof: See Appendix III.
where $\xi = \text{col}(\xi_1^{(t)}, \ldots, \xi_N^{(t)})$, for all $t = 1, \ldots, S^k$, $\xi_i^{(t)} = \text{col}(\xi_i^{(t)}, \ldots, \xi_i^{(T)})$ and ξ is an i.i.d. sequence of random variables. Approximations of the form (6), where a certain number of samples is available, are common, for instance, in generative adversarial networks [10], [11]. The subscript VR in equation (6) stands for variance reduction, which is a consequence of taking an increasing batch size.

Assumption 7: The batch size sequence $(S^k)_{k \geq 1}$ is such that, for some $c, k_0, a > 0$, $S^k \geq c(k + k_0)^{a+1}$. This assumption implies that $1/S^k$ is summable, which is a standard assumption in this case. It is often used in combination with the assumption of uniform bounded variance [17], [15], [16].

Assumption 8: For all $x \in \Omega$ and for some $\sigma > 0$

$$
E \left[\|F_{\text{SA}}(x, \cdot) - F(x)\|^2 \right] \leq \sigma^2 \quad (7)
$$

Remark 4: It follows from Assumptions 7 and 8 [16, Lemma 6] that for all $k \in \mathbb{N}$ and some $c > 0$

$$
E \left[\|e^k\|^2 |F^k| \right] \leq \frac{c \sigma^2}{S^k} \text{ a.s.}
$$

Then, using again cocoercivity, we have the following result.

Theorem 3: Let Assumptions 1, 2, 4, 7 and 8 hold. Then, the sequence $(x^k)_{k \in \mathbb{N}}$ generated by Algorithm 1 with approximation $F = F_{VR}$ as in (6) converges to a v-SNE of the game in (2).

Proof: It follows from [16, Theorem 1].

Remark 5: In SNEPs, under cocoercivity, we can have convergence either with one sample of the random variable and a vanishing step size sequence (Theorem 1) or with an increasing number of samples and a fixed step (Theorem 3). However, if we include coupling constraints, i.e., we consider a generalized SNEP, Theorem 1 does not hold anymore [16].

Corollary 1: If Assumptions 1, 2, 4 hold. Then, the sequence generated by Algorithm 1 with approximation $F = F_{VR}$ as in (6) converges to a v-SNE of the game in (2).

Remark 6: Since we take a vanishing step size (Assumption 4), in the case of Corollary 1, the batch size sequence should not be increasing, that is, we can take a constant number of realizations at every iteration.

V. NUMERICAL SIMULATIONS

A. Comparative example

We consider a two-player game with pseudogradient mapping $F(x) = E[F(x)]$, where

$$
F(x) = \begin{bmatrix} 1 & \xi_1 \\ \xi_2 & 1000 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.
$$

The random variables ξ_1 and ξ_2 are chosen to have mean 1 and 1000 respectively, hence, $F(x)$ is cocoercive. The decision variables are bounded, i.e., $-\theta \leq x_i \leq \theta$ for $i = 1, 2$ where $\theta = 1000$. We compare our SFB with the algorithms mentioned in Table 1 whose iterations in compact form are reported next. The extragradient (SEG) [18] involves two projection steps:

$$
y^k = \text{proj}_\Omega[x^k - \gamma_k F_{\text{SA}}(x^k, \xi^k)]
$$

$$
x^{k+1} = \text{proj}_\Omega[x^k - \gamma_k F_{\text{SA}}(y^k, \eta^k)].
$$

![Fig. 1. Distance from the solution.](image1)

![Fig. 2. Computational time.](image2)

The Tikhonov regularization (TIK) reads

$$
x^{k+1} = \text{proj}_\Omega[x^k - \gamma_k (F_{\text{SA}}(x^k, \xi^k) + \epsilon^k x^k)]
$$

where ϵ^k is the regularization parameter, chosen according to [6, Lemma 4]. The regularized smoothed stochastic approximation scheme (RSSA) has a similar iteration, but the pseudogradient depends on $z^k \in \mathbb{R}^n$, a uniform random variable over the ball centered at the origin with radius $\delta^k \to 0$ [14, Lemma 5]:

$$
x^{k+1} = \text{proj}_\Omega[x^k - \gamma_k (F_{\text{SA}}(x^k + z^k, \xi^k) + \eta^k x^k)].
$$

Lastly, the stochastic projected reflected gradient (SPRG) [19] exploits the last second iterate in the update:

$$
x^{k+1} = \text{proj}_\Omega[x_k - \gamma_k F_{\text{SA}}(2x_k - x_{k-1}, \xi^k)].
$$

The step size is chosen according to $\gamma_k = (1000 + k)^{-1}$. We evaluate the performance by measuring the residual of the iterates, i.e., $\text{res}(x^k) = \|x^k - \text{proj}_\Omega(x^k - F(x^k))\|$ which is zero if and only if x^k is a solution. For the sake of a
fair comparison, we run the algorithms 100 times and take the average performance. To smooth the oscillatory behavior caused by the random variable, we average each iteration over a time window of 50 iterations. As one can see form Figure 1 and 2, the SFB shows faster convergence both in terms of number of iterations and computational cost. Our numerical experience also suggests that sometimes the SPRG is faster with smaller feasible sets (i.e., smaller θ).

B. Influence of the variance

Let us now suppose to have 3 players with pseudogradient mapping $\mathcal{F}(x) = E[F(x)]$ where $F(x) = Fx$ and $F \in \mathbb{R}^3$ is a randomly generated positive definite matrix. The uncertainty affects the elements on the antidiagonal which are iteratively drawn from a normal distribution with fixed mean, equal to the corresponding entry in $\mathcal{F}(x)$ and different variances. The plot in Figure 3 shows, depending on the variance, the average number of iteration (over 10 simulations) at which the residual reach a precision of order 10^{-1} (blue) and 10^{-2} (red).

VI. CONCLUSION

The stochastic forward-backward algorithm can be applied to stochastic Nash equilibrium problems with restricted monotonicity properties and nonsmooth cost functions. Specifically, convergence to a stochastic Nash equilibrium holds when the pseudogradient mapping is restricted cocoercive or restricted strictly monotone with respect to the solution. To estimate the expected value mapping one can use both the stochastic approximation with only one sample or with variance reduction.

APPENDIX I

AUXILIARY RESULTS

Given the probability space $(\Xi, \mathcal{F}, \mathbb{P})$, let us recall some results on sequences of random variables.

First, let us define the filtration $\mathcal{F} = \{\mathcal{F}_k\}$, that is, a family of σ-algebras such that $\mathcal{F}_0 = \sigma(X_0)$, for all $k \geq 1$, $\mathcal{F}_k = \sigma(X_0, \xi_1, \xi_2, \ldots, \xi_k)$ and $\mathcal{F}_k \subseteq \mathcal{F}_{k+1}$ for all $k \geq 0$.

The Robbins–Siegmund Lemma is widely used in literature to prove a.s. convergence of sequences of random variables.

Lemma 1 (Robbins–Siegmund Lemma, [30]): Let $\mathcal{F} = (\mathcal{F}_k)_{k \in \mathbb{N}}$ be a filtration. Let $(\alpha_k)_{k \in \mathbb{N}}, (\theta^k)_{k \in \mathbb{N}}, (\eta^k)_{k \in \mathbb{N}}$ and $(\chi^k)_{k \in \mathbb{N}}$ be non negative sequences such that $\sum \eta^k < \infty$, $\sum \chi^k < \infty$ and let

$$\forall k \in \mathbb{N}, \quad \mathbb{E}[\alpha_k | \mathcal{F}_k] + \theta^k \leq (1 + \chi^k) \alpha_k + \eta^k \quad \text{a.s.}$$

Then $\sum \theta^k < \infty$ and $(\alpha_k)_{k \in \mathbb{N}}$ converges a.s. to a non negative random variable.

Let us also define the residual as $\text{res}(x^k) = \|x^k - \text{prox}_g(x^k - F(x^k))\|$. By [2, Proposition 1.5.8] it holds that $\text{res}(x^*) = 0$ if and only if $x^* \in \text{SOL}(\mathcal{A}, F, G)$ and that $x^* \in \text{SOL}(\mathcal{A}, F, G)$ if and only if $x^* = \text{prox}_g(x^* - \alpha F(x^*))$.

APPENDIX II

Proof of Theorem I

Proof: We start by using nonexpansiveness of the projection:

$$\|x^{k+1} - x^*\|^2 \leq \|x^k - x^*\|^2 + \gamma \|\epsilon^k\|^2 + 2\gamma (x^k - x^*, \epsilon^k) - \|x^k - x^{k+1}\|^2$$

By using Young’s inequality with $\zeta > 0$, i.e.,

$$2\langle x^k - x^{k+1}, \hat{F}(x^k) - F(x^*) \rangle \leq \frac{1}{\zeta} \|x^k - x^{k+1}\|^2 + \zeta \|\hat{F}(x^k) - F(x^*)\|^2 + 2\zeta \|\hat{F}(x^k) - F(x^*)\| \|\epsilon^k\|^2 + \frac{1}{\zeta} \|\epsilon^k\|^2$$

and by using cocoercivity of \hat{F} we obtain

$$\|x^{k+1} - x^*\|^2 \leq \|x^k - x^*\|^2 + \zeta \|\hat{F}(x^k) - F(x^*)\|^2 + 2\gamma \zeta \|x^k - x^*, \epsilon^k\|^2 + 2\zeta \|\hat{F}(x^k) - F(x^*)\|^2$$

Let us now note that

$$\text{res}(x^k)^2 \leq 2 \|x^k - x^{k+1}\|^2 + 2 \|\text{prox}(x^k - \gamma \hat{F}(x^k)), \xi^k) - \text{prox}(x^k - \gamma \hat{F}(x^k))\|^2$$

where the first equality follow by the definition of x^{k+1} and the last inequality follows from nonexpansivity of the projection. Then,

$$\|x^k - x^{k+1}\|^2 \geq \frac{1}{2} \text{res}(x^k)^2 - \gamma \|\epsilon^k\|^2$$
and equation (2) becomes

\[
\| x^{k+1} - x^* \|^2 \leq \| x^k - x^* \|^2 + \left(\zeta - \frac{1}{\zeta} + 1 \right) \gamma^2 \| k \|^2 + \\
\frac{1}{2} \left(\frac{1}{\zeta} - 1 \right) \text{res}(x^k))^2 + 2 \gamma_k (x^k - x^*, \epsilon_k) + \\
\left(\frac{\zeta}{\beta} - 2 \gamma_k \right) (x^k - x^*, F(x^k) - F(x^*)) + \\
+ 2 \zeta \gamma^2 (F^k - F(x^*), \epsilon_k)
\]

By taking the expected value we have that

\[
E\left[\| x^{k+1} - x^* \|^2 \mid F^k \right] \leq \| x^k - x^* \|^2 + \\
\left(\zeta - \frac{1}{\zeta} + 1 \right) \gamma^2 E \left[\| k \|^2 \mid F^k \right] + \frac{1}{2} \left(\frac{1}{\zeta} - 1 \right) \text{res}(x^k)^2.
\]

Finally, we apply Lemma 1 to conclude that \((x^k)_{k \in \mathbb{N}}\) is bounded, therefore it has at least one cluster point \(\bar{x}\). Since \(-\frac{1}{2} \text{res}(x^k)^2 < 0\), by Lemma 1 we have that \(\text{res}(x^k) \to 0\) as \(k \to 0\). This implies that \(\text{res}(\bar{x}) = 0\) that is, \(\bar{x}\) is a SGNE of the game in (2).

\section*{Appendix III

\section*{Proof of Theorem 2}

Proof: Similarly to [29, Proposition 1], using the nonexpansiveness of the proximal operator [20, Proposition 12.28] we have that

\[
E\left[\| x^{k+1} - x^* \|^2 \mid F^k \right] \leq \left(1 + \alpha_k^2 L^2 \right) \| x^k - x^* \|^2 + \\
+ \alpha_k^2 E \left[\| w^k \|^2 \mid F^k \right] - 2 \alpha_k (x^k - x^*, F(x^k) - F(x^*))
\]

Then, applying Lemma 1 we have that \(x^k\) is bounded and that it has at least one cluster point \(\bar{x}\). Moreover, we have that \(\langle x^k - x^*, F(x^k) - F(x^*) \rangle \to 0\) and that \(\langle \bar{x} - x^*, F(\bar{x}) - F(x^*) \rangle = 0\). Since Assumption 5 holds, \(\bar{x} = x^*\).

\section*{References}

[1] J. F. Nash et al., “Equilibrium points in n-person games,” Proceedings of the national academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.

[2] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and complementarity problems. Springer Science & Business Media, 2007.

[3] W. H. Sandholm, Population games and evolutionary dynamics. MIT press, 2010.

[4] L. Pavel, “Distributed gne seeking under partial-decision information over networks via a doubly-augmented operator splitting approach,” IEEE Transactions on Automatic Control, 2019.

[5] P. Yi and L. Pavel, “An operator splitting approach for distributed generalized Nash equilibrium computation,” Automatica, vol. 102, pp. 111–121, 2019.

[6] J. Koshal, A. Nedic, and U. V. Shanbhag, “Regularized iterative stochastic approximation methods for stochastic variational inequality problems,” IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 594–609, 2013.

[7] U. Ravat and U. V. Shanbhag, “On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games,” SIAM Journal on Optimization, vol. 21, no. 3, pp. 1168–1199, 2011.

[8] R. Henrion and W. Römisch, “On m-stationary points for a stochastic equilibrium problem under equilibrium constraints in electricity spot market modeling,” Applications of Mathematics, vol. 52, no. 6, pp. 473–494, 2007.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems, 2014, pp. 2672–2680.

[10] B. Franci and S. Grammatico, “A game-theoretic approach for generative adversarial networks,” in 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020, pp. 1646–1651.

[11] G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien, “A variational inequality perspective on generative adversarial networks,” arXiv preprint arXiv:1802.10551, 2018.

[12] F. Facchinei, A. Fischer, and V. Piccialli, “On generalized Nash games and variational inequalities,” Operations Research Letters, vol. 35, no. 2, pp. 159–164, 2007.

[13] F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,” Annals of Operations Research, vol. 175, no. 1, pp. 177–211, 2010.

[14] Youssefian, A. Nedić, and U. V. Shanbhag, “On smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problems,” Mathematical Programming, vol. 165, no. 1, pp. 391–431, 2017.

[15] A. Jusem, A. Jofré, R. I. Oliveira, and P. Thompson, “Extragradient method with variance reduction for stochastic variational inequalities,” SIAM Journal on Optimization, vol. 27, no. 2, pp. 686–724, 2017.

[16] B. Franci and S. Grammatico, “A distributed forward-backward algorithm for stochastic generalized Nash equilibrium seeking,” IEEE Transactions on Automatic Control, 2020.

[17] R. Bot, P. Mertikopoulos, M. Staudigl, and P. Vuong, “Mini-batch forward-backward-forward methods for solving stochastic variational inequalities,” Stochastic Systems, 2020.

[18] A. Kannan and U. V. Shanbhag, “Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants,” Computational Optimization and Applications, vol. 74, no. 3, pp. 759–820, 2019.

[19] S. Cui and U. V. Shanbhag, “On the analysis of reflected gradient and splitting methods for monotone stochastic variational inequality problems,” in 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016, pp. 4510–4515.

[20] H. H. Bauschke, P. L. Combettes et al., Convex analysis and monotone operator theory in Hilbert spaces. Springer, 2011, vol. 408.

[21] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of mathematical statistics, pp. 400–407, 1951.

[22] B. Franci and S. Grammatico, “A dampened forward-backward algorithm for stochastic generalized Nash equilibrium seeking,” in 2020 European Control Conference (ECC). IEEE, 2020, pp. 1117–1122.

[23] V. Rosasco, S. Villa, and B. C. Vů, “Stochastic forward-backward splitting for monotone inclusions,” Journal of Optimization Theory and Applications, vol. 169, no. 2, pp. 388–406, 2016.

[24] D. Gajdov and L. Pavel, “Distributed gne seeking over networks in aggregative games with coupled constraints via forward-backward operator splitting,” in 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019, pp. 5020–5025.

[25] B. Franci and S. Grammatico, “Stochastic generalized Nash equilibrium seeking under partial-decision information,” arXiv preprint arXiv:2011.05357, 2020.

[26] M. Bianchi, G. Belgioioso, and S. Grammatico, “Fast generalized Nash equilibrium seeking under partial-decision information,” arXiv preprint arXiv:2003.09335, 2020.

[27] L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods for GANs do actually converge?“ arXiv preprint arXiv:1801.04406, 2018.

[28] S. Grammatico, “Comments on “distributed robust adaptive equilibrium computation for generalized convex games”[automatica 63 (2016) 82–91],” Automatica, vol. 97, pp. 186–188, 2018.

[29] J. Koshal, A. Nedić, and U. V. Shanbhag, “Single timescale regularized stochastic approximation schemes for monotone Nash games under uncertainty,” in 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010, pp. 231–236.

[30] H. Robbins and D. Siegmund, “A convergence theorem for non negative almost supermartingales and some applications,” in Optimizing methods in statistics. Elsevier, 1971, pp. 233–257.