Antimicrobial Potential of *Sonneratia alba* and *Sonneratia caseolaris* against Shrimp Pathogens

Dian Yuni Pratiwi1*

1Department of Fisheries, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Indonesia.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJFAR/2021/v12i430239

Editor(s):
(1) Dr. Luis Enrique Ibarra Morales, State University of Sonora, Sonora, Mexico.

Reviewers:
(1) Sushan Chowhan, Bangladesh Institute of Nuclear Agriculture, Bangladesh.
(2) Shoaibe Hossain Talukder Shefat, Bangladesh.

Complete Peer review History: http://www.sdiarticle4.com/review-history/68795

Received 16 March 2021
Accepted 26 May 2021
Published 02 June 2021

ABSTRACT

Disease is one of the obstacles in shrimp farming. Many countries have experienced economic losses due to disease in shrimp caused by microbes. Many strategies are being used to overcome the problem such as antibiotics, formalin, probiotics, prebiotics, synbiotics, and others. However, the use antibiotics in long term can cause negative effects. So that, the development of potential new natural compounds is required to overcome this problem. This review article aims to explain the nutritional content, bioactive compounds, antimicrobial potential, and the effect of *S. alba* and *S. caseolaris* on shrimp survival. *Sonneratia alba* and *Sonneratia caseolaris* are plants that have many bioactive compounds such as alkaloids, flavonoids, terpenoids, and phenolics. They have also been shown to inhibit the growth of bacteria such as *Vibrio harveyi*, *Escherichia coli*, *Staphylococcus aureus*, *Saprolegnia* sp., and others. Application of *S. alba* and *S. caseolaris* can also increase the survival rate of infected shrimps. *S. alba* and *S. caseolaris* have the potential to be used as antimicrobial agents and can be used to protect shrimp from microbial pathogens.

Keywords: *Sonneratia alba*; *sonneratia caseolaris*; antimicrobial; survival rate.

1. INTRODUCTION

Shrimp is a popular seafood commodity among global communities. Based on data from Research and Markets [1], the number of shrimps being traded reaches 8.12 million tons in 2021. Demand for shrimp is estimated to continue to increase and reach a value of US $
24.1 billion with a volume reaching 10.7 million in 2026. The major countries that produce shrimp are China, India, Vietnam, and Indonesia. While the United States is the largest consumer. Two of the most popular and produced shrimp commodities are *Penaeus monodon* and *Litopenaeus vannamei*. In Indonesia, *L. vannamei* is the main export commodity compared to other fishery commodities. In 2011, shrimp exports contributed around USD 1.5 billion, while fish exports amounted to 1 billion and seaweed was 0.2 billion [2].

However, shrimp farming also has various obstacles. One of the obstacles is the presence of diseases caused by bacteria or viruses such as white feces disease (WFD), white spot syndrome virus (WSSV), epizootic ulcerative syndrome (EUS), and acute hepatopancreatic necrosis disease (AHPND). Disease attack on shrimp production has caused economic losses in various countries. During 2010-2017, the economic loss on Mahachai Market, Thailand was estimated at USD 7.38 billion. The economic losses due to AHPND in VietNam's Mekong Delta in 2015 were estimated at more than USD 26 million, and the WSSV resulted in loss of more than USD 11 million [3].

White feces disease (WFD) is caused by bacteria from the genus *Vibrio* such as *V. parahaemolyticus*, *V. fluvialis*, *V. vulnificus*, *V. mimicus*, *V. alginolyticus*, *V. cholera* [4] and *V. Harveyi* [5]. This disease can cause mortality in *L. vannamei* shrimp as much as 30% [4]. Symptoms of this disease are discoloration of hepatopancreas and white feces, floating on the water surface, and white intestine [5]. White spot syndrome virus (WSSV) has caused mass mortality in the shrimp culture industry. This virus can cause white spots on the carapace, loose cuticles, decreased feed intake [6], weakness, pale hepatopancreas, unstable swimming, and redness of the abdomen [7]. Acute hepatopancreatic necrosis disease can cause the death of 100% of postlarvae shrimp in the pond within 20-30 days. The symptoms that arise in shrimp infected with these bacteria are empty intestine, atrophy, and pale hepatopancreas [8].

Cultivators prevent disease attacks in various ways, namely formalin, antibiotics [9] probiotics, prebiotics, synbiotics [10]. Formalin has been proved that effective for controlling WSSV in water [11]. However, giving antibiotics in large doses, and long term can cause resistance to pathogens. Antibiotics can also accumulate in the body of shrimp [9]. Therefore, the search for alternative natural materials to prevent and treat various pathogens that cause shrimp disease needs to be done.

Sonnerratia alba and *S. caseolaris* are natural ingredients that have potential as antibacterial and antiviral. Both of these plants live in the mangrove ecosystem. Both of these plants contain various bioactive compounds such as phenolic compounds, saponins, tannins and steroids [12-13]. This article aims to describe the content of the compounds in various parts of *S. alba* and *S. caseolaris* and their potential as antimicrobials as a prevention of disease infection in shrimp.

2. CHEMICAL COMPOSITION OF *Sonnerratia alba*

Sonnerratia alba is an evergreen tree that is classified as a true mangrove plant. Its height can reach 15 m with a trunk diameter of 30-40 cm. Brown bark. Leaves about 5-12 cm long, and 4-8 cm wide. The flowers are white and bisexual. Globular green fruit surrounded by sepalas [14-15]. *S. alba* is surrounded by thick and numerous pneumatophores [16].

Various useful chemical compounds are contained in various parts of *S. alba*. The bark has been shown to contain phenolic compounds with a lactone ring [17], triterpenoids [18]. The leaves contain saponins, tannins, phenols [19], and steroids [12]. The fruit contains phenolic compounds, flavonoids, triterpenoids, tannins, steroids [20]. *S. alba* fruit is known to contain 0.93 mg/g protein, 14.9 mg/100 g of total sugar, 40 mg/100 grams of vitamin C, and 52.78%, 0.063 mg/g of Mn, 0.72 mg/g of Zn, and 0.51 mg/g of Fe [21]. Young *S. alba* fruit contains 8.735% protein, 1.44% fat, and 74.12% carbohydrate. The old *S. alba* fruit contains 8.34% protein, 1.54% fat, and 75.1% carbohydrate [22]. Table 1 shows the various chemical compounds in various parts of the *S. alba* plant.

3. CHEMICAL COMPOSITION OF *Sonnerratia caseolaris*

Sonnerratia caseolaris is also an evergreen tree that is included in true mangroves. It can reach 20 m in height with a trunk diameter of 30 cm. This plant also has pneumatophores or aerial roots. It has red flowers with green sepalas. The fruit is round and contains a lot of seeds [26].
Sonneratia caseolaris fruit is known to contain 46.58 mg/100 grams of total sugar, 187.46 mg/100 grams of vitamin C, and 52.78% protein [27]. Another study conducted by Dari et al (2020) [28] showed that S. caseolaris fruit juice contained 0.67% carbohydrate, 0.28% protein, 0.06% ash content, 0.32% fiber, and 15% vitamin C levels. S. caseolaris fruit juice was also proven to have 90.19% antioxidant activity. The ethanol extract of the fruit contains saponins, sapogenins, terpenoids, flavonoids, tannins, and polyphenols [13]. Meanwhile, the acetate extract contains flavonoids, saponins, tannins, and phenolics. In the ethanol extract found alkaloids, saponins, and phenolics [29]. The leaves of Sonneratia caseolaris contain alkaloids, flavonoids, tannins, phenolics, steroids, triterpenoids [30], saponins [31]. The stem contains steroids [31]. The methanol extract of the bark is proven to contain saponins, tannins, flavonoids, alkaloids, steroids [32]. Table 2 shows the various chemical compounds in various parts of the S. caseolaris.

4. ANTIBACTERIAL POTENTIAL OF Sonneratia alba AND Sonneratia caseolaris

With various secondary metabolite contents, these two types of mangroves trees have the potential to be used as antimicrobials that fight various disease-causing pathogens in shrimp and other pathogenic bacteria. Flavonoids contained in these two types of mangroves are known to inhibit bacteria by damaging the permeability of bacterial cell walls, binding to functional cell proteins and bacterial DNA so that growth does not occur [34], inhibits cell wall formation, cell membrane formation, and respiration [35]. The phenolic mechanism in inhibiting bacteria is to damage cell membranes, cell nucleus leakage, and damage cell content [34]. The mechanism of terpenoids in inhibiting bacteria is by causing membrane disruption [36]. Alkaloids can inhibit the bacterial nucleic acid synthesis and bacterial cell division [37]. Saponins can reduce cell surface tension thereby increasing cell permeability and leakage of cells [38]. Tannins can inhibit bacterial growth by inhibiting extracellular microbial enzymes and inhibiting the oxidative phosphorylation process [39].

Several studies have shown that S. alba leaves can inhibit the growth of Staphylococcus aureus, Escherichia coli, Vibrio harveyi, Aeromonas hydrophila, and Saprolegnia sp. [40], and Salmonella sp. [41]. The fruit of S. caseolaris is known to inhibit the growth of E.coli, V. Cholerae, S.typhimurium, Bacillus subtilis [42]. while the leaf methanol extract can inhibit Shigella dysenteriae, Enterobacter cloacae, Klebsiella pneumonia, Enterobacter sakazaki, E. brevis, Chryseobacterium indologenes. Stenotrophomas maltophilia, A. hydrophila [43]. Table 3 shows S. alba inhibition zone and Table 4 shows the S. caseolaris inhibition zone against various bacteria.

5. THE EFFECT OF Sonneratia alba AND Sonneratia caseolaris AGAINST BACTERIAL INFECTION ON SHRIMP

Application of S. caseolaris to shrimp has been shown to increase the survival rate in shrimp infected with disease-causing bacteria. Arifuddin et al. [46] conducted a study by injecting hydroquinone extracted from S. caseolaris into the Penaeus monodon muscle. Shrimp were infected by V. harveyi at two test times, namely the day before hydroquinone administration and 7 days after hydroquinone administration. The results showed that the survival rate of shrimp given hydroquinone extract S. caseolaris was higher than the control. The total number of V. harveyi bacteria in the shrimp body increased the day after infection by bacteria, but the number of bacteria decreased after being given hydroquinone extract from S. caseolaris. Similar results were obtained in the study of Maryani et al. [47] which examined the effect of S. caseolaris calyx and fruit extracts on V. harveyi infection in P. monodon shrimp. Application of S. caseolaris petal and fruit extracts can increase the survival rate of shrimp. The administration of this extract also increases the resistance of shrimp after infected by bacteria V. harveyi and decreasing of bacteria level in the body of shrimp.

Application 20 ppm of S. alba fruit extract to giant tiger prawn postlarvae through a feed of Artemia salina can increase the survival rate in shrimp infected with V. harveyi. The survival rate reached 78.33% [34]. Freshwater ethanol extract, and saline water of S. alba can also inhibit the growth of Saprolegnia sp in shrimp. This can be seen based on the survival rate value of shrimp given S. alba higher than control [48].
Table 1. Compound content in various parts of *S. alba*

Part of Plant	Solvent	Bioactive compound	Reference
Leaf	Methanol	Phenolics, saponins, tannins, and steroids	[12]
	Ethyl acetate	Phenolics, tannins, steroids	
	N-hexane	Steroids	
Leaf	Methanol	Lupeol (1), Oleanic acid (2), β-Sitosterol (3), β-stigmasterol (4), and Sitost-4-en-3-one	[23]
Leaf	Dichloromethane	Ursolic acid, squalene	[24]
Leaf	Ethanol	Saponins, tannins, Phenolics	[19]
Leaf	Water	Tannins, phenolics	
Fruit	Methanol	Alkaloids, flavonoids, phenolics, tannins, steroids	[25]
Fruit	N-hexane	Phenolics, flavonoids, steroids, triterpenoids	[20]
Fruit	Ethyl acetate	Phenolic, flavonoids, tannins, triterpenoids	
Fruit	Water	Phenolics, flavonoids, tannins, steroids	
Fruit	Methanol	Phenolics, flavonoids, tannins, steroids	
Fruit	Dichloromethane	Oleanolic acid, ursolic acid (1b), α-amyrin cinnamate, β-amyrin cinnamate, β-sitosterol, and stigmasterol.	[24]
Bark	Methanol	Phenolic with lactone rings	[17]
Bark	N-hexane, ethyl acetate and Methanol	3β-hydroxy-lup-9(11),12–diene, 28-oic acid, lupeol, lupan-3β-ol (3)	[18]

Table 2. Compound content in various parts of *S. caseolaris*

Part of Plant	Solvent	Bioactive compound	Reference
Fruit	Ethanol	Saponins, sapogenins, terpenoids, flavonoids, tannins, polyphenols	[13]
Fruit	Acetate	Flavonoids, saponins, tannins, and phenolics.	[30]
Fruit	Ethanol	Alkaloids, saponins, and phenolic	[29]
Leaf	Ethanol	Alkaloid, flavonoid, tannins, phenolic, steroid, triterpenoid	[30]
Leaf	Ethanol	Saponins	[31]
Stem	Ethanol	Steroids	[31]
Bark	Methanol	Saponins, tannins, flavonoids, alkaloids, steroids	[32]
Bark	Ethyl acetate	Flavonoids	[33]
Table 3. Inhibition zone of *S. alba* extract to microbe

Bacterial strains	Extract	Concentration	Inhibition zone (mm)	Reference
Vibrio harveyi	Ethanol	1000 ppm	12.67	[40]
V. harveyi	Water	1000 ppm	10.67	[40]
V. harveyi	Seawater	1000 ppm	12.33	[40]
Staphylococcus aureus	Ethanol	1000 ppm	13.00	[40]
S. aureus	Water	1000 ppm	11.67	[40]
S. aureus	Seawater	1000 ppm	12.33	[40]
S. aureus	Ethyl acetate	100%	35.6	[41]
S. aureus	Methanol	1.5 mg	12.5	[44]
Escherichia coli	Ethanol	1000 ppm	12.67	[40]
E. coli	Water	1000 ppm	11.00	[40]
E. coli	Seawater	1000 ppm	12.33	[40]
E. coli	Ethyl acetate	100%	36.2	[41]
E. coli	Methanol	1.5 mg	17.5	[44]
Saprolegnia sp.	Ethanol	1000 ppm	12.00	[40]
Saprolegnia sp.	Water	1000 ppm	11.33	[40]
Saprolegnia sp.	Seawater	1000 ppm	11.67	[40]
Aeromonas hydrophila	Ethanol	1000 ppm	13.00	[40]
S. aureus	Ethanol	1000 ppm	11.67	[40]
S. aureus	Water	1000 ppm	11.00	[40]
S. aureus	Seawater	1000 ppm	12.33	[40]
S. aureus	Ethyl acetate	100%	36.2	[41]
S. aureus	Methanol	1.5 mg	17.5	[44]
Escherichia coli	Ethanol	1000 ppm	12.67	[40]
E. coli	Water	1000 ppm	11.00	[40]
E. coli	Seawater	1000 ppm	12.33	[40]
E. coli	Ethyl acetate	100%	36.2	[41]
E. coli	Methanol	1.5 mg	17.5	[44]
Saprolegnia sp.	Ethanol	1000 ppm	12.00	[40]
Saprolegnia sp.	Water	1000 ppm	11.33	[40]
Saprolegnia sp.	Seawater	1000 ppm	11.67	[40]
Aeromonas hydrophila	Ethanol	1000 ppm	13.00	[40]
S. aureus	Ethanol	1000 ppm	11.67	[40]
S. aureus	Water	1000 ppm	11.00	[40]
S. aureus	Seawater	1000 ppm	12.33	[40]
S. aureus	Ethyl acetate	100%	36.2	[41]
S. aureus	Methanol	1.5 mg	17.5	[44]
Escherichia coli	Ethanol	1000 ppm	12.67	[40]
E. coli	Water	1000 ppm	11.00	[40]
E. coli	Seawater	1000 ppm	12.33	[40]
E. coli	Ethyl acetate	100%	36.2	[41]
E. coli	Methanol	1.5 mg	17.5	[44]
Saprolegnia sp.	Ethanol	1000 ppm	12.00	[40]
Saprolegnia sp.	Water	1000 ppm	11.33	[40]
Saprolegnia sp.	Seawater	1000 ppm	11.67	[40]

6. CONCLUSION

In conclusion, *Sonneratia alba* and *Sonneratia caseolaris* contains a lot of nutrition and bioactive compounds such as protein, carbohydrate, alkaloid, flavonoid, tannins, terpenoid, saponin, phenolic, and steroid. They can inhibit the growth of bacterial strains. *Sonneratia alba* and *Sonneratia caseolaris* can also increase the survival rate of shrimps. So, these plants may be an excellent source to develop antibacterial agents to prevent and cure pathogenic diseases in shrimp.

COMPETING INTERESTS

Author has declared that no competing interests exist.
REFERENCES

1. Anonymous. Global Shrimp Market Outlook. Expert Market Research; 2021. Accessed 8 Mei 2021. Available: https://www.expertmarketresearch.com/reports/shrimp-market.

2. Halim D, Juarri. Indonesia’s Aquaculture Industry. Ipsos Business Consulting; 2016. Accessed 8 Mei 2021. Available: https://www.ipsos.com/sites/default/files/2016-08/indonesia-aquaculture-industry.pdf.

3. Shin AP, Pratoomyot J, Griffiths D, Trong TQ, Vu NT, Jiravanichpaisal P et al. Asian Shrimp Production and The Economic Costs of Disease. Asian Fisheries Science. 2018;31(5):29-58.

4. Saraswati E, Wijaya AS. Antibacterial activities of Physalis angulata Herb Extract on White Feces Diseases (WFD) in Litopenaeus vannamei shrimp vannamei. The 1st International Conference on Fisheries and Marine Science IOP Conf. Series: Earth and Environmental Science. 2019;236:012103.

5. Sumini, Kusdarwati R. The Discovery of Vibrio harveyi on Litopenaeus vannamei Infected White Feces Disease in Situbondo, East Java. Jurnal Perikanan Universitas Gadjah Mada. 2020; 22(1):9-18.

6. Sangama heswaran AP, Jeyaseelan MJP. White Spot Viral Disease in Penaeid Shrimp. NAGA. 2001;24(3-4):16-22.

7. Wahjuningrum D, Sholeh SH, Nuryati S. Pencegahan Infeksi Virus White Spot Syndrome Virus (WSSV) pada Udang Windu Penaeus monodon dengan Cairan Ekstrak Pohon Mangrove (CEPM) Avicennia sp. dan Sonneratia sp. Jurnal akuatika Indonesia. Indonesia. 2006;5(1):65-75.

8. Li P, Kinch LN, Ray A, Dalia AB, Cong Q, Nunan LM, et al. Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires. Appl Environ Microbiol. 2017;83(13):e00737-17. DOI: 10.1128/AEM.00737-17.

9. Yanti MEG, Herliany NE, Negara BFSP, Utami MAF. Deteksi molekuler white spot syndrome virus (wssv) pada udang vannamei (Litopenaeus vannamei) di PT. Pratwi; AJFAR, 12(4): 7-14, 2021; Article no.AJFAR.68795

Hasfam inti Sentosa. Jurnal Enggano. 2017; 2(2):156-169.

10. Arisa II, Widanarni W, Yuhana M, Muchlisin ZA, Muhammod A. The application of probiotics, prebiotics and synbiotics to enhance the immune responses of vannamei shrimp (Litopenaeus vannamei) to Vibrio harveyi infection. AACL Bioflux. 2015; 8(5):772-778.

11. Suwanannahong S, Chuchird N, Limsuwon C. Efficacy of Formalin for the Control of White Spot Syndrome Virus Infection in Black Tiger Shrimp (Penaeus monodon). Agriculture and Natural Resources. 2005;39(1):145-148.

12. Gazali M, Nurjanah, Ukhy N, Nurdin M, Zuriati. Skrining Senyawa Bioaktif Daun Perepat (Sonneratia alba j.e. smith) sebagai Antioksidan Asal Pesisir Kuala Bubon Aceh Barat JPHPI. Indonesia. 2020; 23(2).

13. Jariyah, Widjanarka SB, Yuniarta, Estiasih T. Phytochemical and Acute Toxicity Studies of Ethanol Extract from Pedada (Sonneratia caseolaris) Fruit Flour (PFF). International Journal on Advance Science Engineering Information Technology. 2015;5(2):2088-5334.

14. Pucccio P, Beltramini M. Sonneratia alba; 2021. Accessed 8 Mei 2021. Available:https://www.monaconatureencyclopedia.com/sonneratia-alba/?lang=en.

15. Sarno, Suwignyo RA, Dahlar Z, Munandar, Ridho MR, Aminasih N, et al. Short Communication: The phenology of Sonneratia alba J. Smith in Berbak and Sembilang National Park, South Sumatra, Indonesia. Biodiversitas. 2017;18(3):909-915.

16. Osing KA, Jordonero MAP, Sason PD, Guihawan JQ, Amparado RF. Species composition and diversity in a natural and reforested mangrove forests in Panguil Bay, Mindanano, Philippines. Journal of Biodiversity and Environmental Sciences. 2019;15(3):88-102.

17. Herawati N. Identifikasi Senyawa Bioaktif Tumbuhan Mangrove Sonneratia alba. Jurnal Chemica, Indonesia. 2011;12(2):54 – 58.

18. Harizon, Pujiastuti B, Kurnia D, Shionoc Y, and Supratman U Antibacterial Triterpenoids from the Bark of Sonneratia alba (Lythraceae). Natural Product Communications. 2015;10 (2).
19. Sahoo G, Mulla NSS, Ansar ZA, Mohandass C. Antibacterial Activity of Mangrove Leaf Extracts against Human Pathogens. Indian Journal of Pharmaceutical Sciences. 2012;74(4):348–351.

20. Wonggo D, Berhimpon S, Kurnia D, Dotulong V. Antioxidant Activities of Mangrove Fruit (Sonneratia alba) taken from Wori Village, North Sulawesi, Indonesia. International Journal of ChemTech Research. 2017;10(12):284-290.

21. Analuddin K, Septiana A, Nasaruddin, Sabilu Y, Sharma S. Mangrove Fruit Bioprospecting: Nutritional and Antioxidant Potential as a Food Source for Coastal Communities in the Rawa Aopa Watumohai National Park, Southeast Sulawesi, Indonesia. International Journal of Fruit Science. 2019;19(4):423–436.

22. Ardisyah PR, Wonggo D, Dotulong V, Damongilala LJ, Harikedua SD, Mentang F et al. Proksimat Pada Tepung Buah Mangrove Sonneratia alba. Media Teknologi Hasil Perikanan. 2020;8(3):82–87

23. Asad S, Hamiduzzaman MD, Azam Atmz, Ahsan M, Masud MM. Lupeol, oleanic acid & steroids from sonneratia alba j.e. Sm (sonneratiaceae) and antioxidant, antibacterial & cytotoxic activities of its extracts. IJARPB. 2013;3(4):1-10.

24. Ragasa Y, Ebajo GD, De Los Reyes MM, Mandia EH, Brkljaca R, Urban S. Triterpenes and Sterols from Sonneratia alba Consolacion. International Journal of Current Pharmaceutical Review and Research. 2015;6(6):256-261.

25. Paputungan Z, Wonggo D, Kaseger BE. Uji Fitokimia dan Aktivitas Antioksidan dari Buah Mangrove Sonneratia alba di Desa Nunuk Kecamatan Pinolosian Kabupaten Bolaang Mongondow Selatan. Jurnal Media Teknologi Hasil Perikanan. 2017;5(3).

26. Anonymous. Sonneratia caseolaris (L) Engl; 2021. Accessed 8 Mei 2021. Available: https://www.nparks.gov.sg/florafaunaweb/flora/3/3/3343

27. Basyuni M, Siagian YS, Wati R, Putri LAP, Yusraini E, Lesmana L. Fruit nutrition content, hedonic test, and processed products of pidada (Sonneratia caseolaris). 2nd International Conference on Natural Products and Bioresource Sciences, IOP Conf. Series: Earth and Environmental Science. 2019; 251:012042.

28. Dari DW, Ananda M, Junita D. Karakteristik Kimia Sari Buah Pedada (Sonneratia caseolaris) Selama Penyimpanan. Jurnal Teknologi Pertanian Andalas. 2020;24(2).

29. Pagarra, Halifah and Hartati, Hartati and Rachmawaty, Rachmawaty and Hala, Yusminah and Rahman, Roshanida A. Phytochemical Screening and Antimicrobial Activity from Sonneratia caseolaris Fruit Extract. Materials Science Forum. 2019;967(1):28-33.

30. Latief M, Muhaimin. The Characterization of Active Compound of Pedada Magrove Plants (Sonneratia caseolaris). Journal of Chemical Natural Resources. 2019;01(01).

31. Srinengri HA, Yuniarti. Identifikasi Kandungan Fitokimia Tumbuhan Pidada (Sonneratia caseolaris) Dari Hutan Mangrove. Jurnal Sylva Scientiae, Indonesia. 2019; 2(4).

32. Munira S, Islam A, Islam S, Koly SF, Nesa L and Muhit A. Phytochemical Screening and Comparative Antioxidant Activities of Fractions Isolated from Sonneratia caseolaris (Linn.) Bark Extracts Mst. European Journal of Medicinal Plants. 2019;28(4):1-9.

33. Hasmila I, Danial M, Herawati N. Isolasi dan Identifikasi Senyawa Metabolit Sekunder Ekstrak Etil Asetat Kulit Batang Mangrove Pedada (Sonneratia caseolaris). Jurnal Chemica. 2019;20(1) :45 – 53.

34. Cahyadi J, Satriani GI, Gusman E, Weliyadi Y, Sabri. Skrining Fitokimia Ekstrak Buah Mangrove (sonneratia alba) Sebagai Bioenrichment Pakan Alami Artemia salina. Jurnal Borneo Saintek. Indonesia. 2018; 1(93).

35. Naqvi SAR, Nadeem S, Komal S, Naqvi SAA, Mubarak MS, Qureshi SY et.al. Antioxidants: Natural Antibiotics, 1st ed. London : IntechOpen; 2019.

36. Paiva PMG, Napoleão TH, Santos NDL, Correia MTS, Navarro DMAF, LCBB. Coelho Plant compounds with Aedes aegypti larvicidal activity and other biological properties. M.-T. Liong (Ed.), Bioprocess Sciences and Technology. New York : Nova Science Publishers Inc; 2011.

37. Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids [published correction appears in Int J Antimicrob Agents.
38. Lorent JH, Quetin-Leclercq J, Mingeot-Leclercq. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org Biomol Chem. 2014;12(44):8803-8822.

39. Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 1991;30(12):3875-3883.

40. Saptiani G, Asikin AN, Ardhan F, Hardi EH. Mangrove plants species from Delta Mahakam, Indonesia with antimicrobial potency. Biodiversitas. 2018;19(2).

41. Manuhutu D, Saimima NA. Potensi Ekstrak Daun Mangrove (Sonneratia alba) sebagai Antibakteri Terhadap Salmonella, Staphylococcus aureus, dan Escherichia coli. Biopendix. Indonesia. 2021;7(2):71-79.

42. Thuoc DV, Mai NTN, Ha LTV, Hung LD, Tra DH, Hung NK, Hung NP. Evaluation of Antibacterial, Antioxidant and Antiobese Activities of the Fruit Juice of Crabapple Mangrove Sonneratia caseolaris (Linn.) International Journal of Agricultural Sciences and Natural Resources. 2018;5(2):25-29.

43. Laith AA, Najiah M, Zain SM, Effendi SHM. Antimicrobial activities of Selected mangrove Plants on Fish Pathogenic Bacteria. Journal of Animal and Veterinary Advances. 2012;11(2):234-240.

44. Saad S, Taher M, Susanti D, Qaralleh H, Awang AF. In vitro antimicrobial activity of mangrove plant Sonneratia alba. Asian Pac J Trop Biomed. 2012;2(6):427-429. DOI:10.1016/S2221-1691(12)60069-0

45. Ahmad I, Ambarwati NSS, Lukman A, Masruhim MA, Rijai L, Mun'im A. In vitro Antimicrobial Activity Evaluation of Mangrove Fruit (Sonneratia caseolaris L.) Extract. Pharmacognosy Journal. 2018;10 (3).

46. Arifuddin, Sukenda, Dana D. Manfaat Bahan Aktif Hidrokuinon dari Buah Sonneratia caseolaris untuk Mengendalikan Infeksi Buatan Vibrio harveyi Pada Udang Windu, Penaeus monodon. Jurnal Akuakultur Indonesia, Indonesia. 2004;3(1):29-35.

47. Maryani, Dana S, Sukenda. Peranan Ekstrak Kelopak dan Buah Mangrove Sonneratia caseolaris terhadap Infeksi Bakteri Vibrio harveyi Pada Udang Windu (Penaeus monodon fab.) Jurnal Akuakultur Indonesia, Indonesia. 2002;1(3):129-138.

48. Saptiani G, Asikin AN, Ardhani F. Sonneratia alba Extract Protects the Post Larvae of Tiger Shrimp Penaeus monodon against Vibrio harveyi and Saprolegnia sp. E3S Web of Conferences. 2020;147:01004.

© 2021 Pratiwi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/68795