An Update on Oligosaccharides and Their Esters from Traditional Chinese Medicines: Chemical Structures and Biological Activities

Xiang-Yang Chen, Ru-Feng Wang, and Bin Liu

School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China

Correspondence should be addressed to Bin Liu; liubiny67@163.com

Received 18 July 2014; Revised 25 November 2014; Accepted 2 January 2015

Academic Editor: Yong Jiang

Copyright © 2015 Xiang-Yang Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A great number of naturally occurring oligosaccharides and oligosaccharide esters have been isolated from traditional Chinese medicinal plants, which are used widely in Asia and show prominent curative effects in the prevention and treatment of kinds of diseases. Numerous in vitro and in vivo experiments have revealed that oligosaccharides and their esters exhibited various activities, including antioxidant, antidepressant, cytotoxic, antineoplastic, anti-inflammatory, neuroprotective, cerebral protective, antidiabetic, plant growth-regulatory, and immunopotentiating activities. This review summarizes the investigations on the distribution, chemical structures, and bioactivities of natural oligosaccharides and their esters from traditional Chinese medicines between 2003 and 2013.

1. Introduction

Oligosaccharides and their esters, a significant group of phytochemical compounds, are widely distributed in the roots, rhizomes, stems, barks, leaves, aerial, and whole parts of medicinal plants. They not only serve as the energy storage components, but also play a vital role in the treatment of diseases. Before 2003, there have been a number of reviews and reports in respect to the isolation and structure elucidation of oligosaccharides and their esters from Chinese medicinal plants [1–3], but few biological activities such as cancer chemopreventive, and protein kinase C inhibitory activities had been reported [4–6]. With the development of isolation and identification techniques [7–11], a larger number of oligosaccharides and their esters have been endlessly identified from traditional Chinese medicines in the past decades. These compounds have a wide variety of structure types because of the assembly of different monosaccharide units, the combination of various linking styles and the existence of kinds of substituents. And more promising biological activities associated with some of the oligosaccharides and their esters have been discovered. In vitro and in vivo investigations have demonstrated that they displayed antioxidant, antidepressant, anti-inflammatory, neuroprotective, cerebral protective, antidiabetic, cytotoxic, antineoplastic, plant growth-regulatory, and immunopotentiating activities, and so forth. This review aims to provide a systemic summary of the studies on the distribution, chemical structures and biological activities of naturally occurring oligosaccharides and their esters from traditional Chinese medicines in the past decades. Among these compounds, the number of oligosaccharide esters is much greater than that of oligosaccharides, and the disaccharide esters are a very valuable source of active compounds. This information may help readers understand the structure characteristics and therapeutic indications of oligosaccharides and their esters from traditional Chinese medicines and offer clues to the development of new drugs.

2. Chemical Structures

Phytochemical investigations of traditional Chinese medicines have shown that many botanical families, including Polygalaceae, Liliaceae, Asteraceae, Polygonaceae, Smilacaceae, Scrophulariaceae, Asclepiadaceae, Arecaceae,
Orobanchaceae, Acanthaceae, Rosaceae, Musaceae, Spargan-
iaceae, Leguminosae, Equisetaceae, Boraginaceae, Iridaceae,
Alismataceae, Lamiaceae, Araliaceae, Rubiaceae, Oleaceae,
Apocynaceae, Caryophyllaceae, Aspleniaceae and Trilliaceae,
are rich in oligosaccharides and their esters. Oligosaccharides
show diversified structures because of the type and the
number of monosaccharides, as well as the position of
glycosidic bonds. And oligosaccharide esters also
display distinctive structural diversity largely owing to the
number, type, and position of O-substituent units, including
phenylpropanoid groups (e.g., coumaroyl, feruloyl, caffeoyl,
sinapoyl, 3,4,5-trimethoxycinnamoyl, and cinnamoyl),
benzoyl, p-methoxybenzoyl, and p-hydroxybenzoyl groups
(Figure 2). Moreover, the double bonds of phenylpropanoid
groups possess trans and cis isomeric forms, of which the
trans forms widely exist in nature. Hence, according to
the number of monosaccharides and the characteristics of
chemical structures, these oligosaccharide esters could be
categorized into 7 large groups.

2.1. Oligosaccharides. All compounds of this group (Table 1
and Figure 1) merely consist of various monosaccharides
without O-substituents. In addition to the well-known
sucrose, β-D-glucopyranosyl(1 → 2)-β-D-glucopyranoside
(1) was isolated from Camptosorus sibiricus [12]. The
oligosaccharides of raffinose (3), stachyose (19), and
verbascose (21), all of which belong to the Raffinose family,
possess one, two or three galactopyranosyl units linked to
sucrose and have been found in the rhizomes and roots of
Alisma orientalis [13], Lycopus lucidus [14], Rehmannia
glutinosa [15, 16], Salvia miltiorrhiza [17], and Scrophularia
ningpoensis [18]. Manninotriose (4) and verbascotetraose (5)
consisting of galactopyranosyl units and a glucopyranosyl
unit have been isolated from Alisma orientalis [13].

Five oligosaccharides comprising 1-kestose (6), nystose
(7), 1-β-Fructofuranosynystose (8), hexascarabide (9), and
heptasaccharide (10) consisting of fructofuranose and glu-
copyranose have been isolated from the aerial parts and roots
of Gynura divaricata subsp. formosana [19], Morinda offici-
nalis [20–22], Saussurea lappa [23], and Aralia cordata [24].
Two water-soluble oligosaccharides (11, 12) composed of two
or three types of monosaccharides including glucopyranose,
fructopyranose, and fructofuranose have been obtained from
the whole plants of Blumea riparia [25, 26].

Besides, malt-o-oligosaccharides (17, n = 0–8) consist-
ing of α-D-glucopyranosyl residues assembled by (1 → 4)-
linkages and inulo-oligosaccharides (18, n = 1–3) consisting of
only fructosyl residues formed by (2 → 1)-linkages have been
found in the roots of Panax ginseng [27, 28] and Morinda
officinalis [20], respectively. Three noteworthy oligosaccha-
rides (2, 13, 14) formed by α-D-glucopyranosyl units with
(1 → 6)-linkages and a (1 → 4)-linkage have been found in the
roots of Panax ginseng [28]. And two linear oligosaccharides
termed heptasaccharide (15) and octasaccharide (16) consist-
ing of glucose and mannose monomers were identified from
the rhizomes of Paris polyphylla var. yunnanensis [29, 30].
A pentasaccharide, stellarioside (20) consisting of a raffinose
backbone with two galactosyl residues bound to the fructosyl
and glucosyl moieties was identified from the stems of
Stellaria media [31].

Oligosaccharides (Table 1) are composed of seven kinds of
deoxyhexoses including cymaropyranose, canaropyra-
nose, digitoxopyranose, oleandropyranose, digitalopyranose,
cymaropyranurolactone, and oleandronic acid-δ-lactone.
Oleandronic acid-δ-lactone exhibits the boat and chair con-
formations. The hydroxyl, methyl, and acetyl groups are
located at the equatorial (e) and axial (a) bonds in the chair
conformation of deoxyhexoses. These oligosaccharides were
isolated from the traditional Chinese medicines including the
roots of Periploca forrestii, the root barks of P. sepium, the
stems of P. calophylla, and the barks of Parabarrium huatingii.

2.2. Oligosaccharide Esters

2.2.1. Phenylpropanoid-Derived Disaccharide Esters. Phenyl-
propanoid-derived disaccharide esters (Table 2 and Figure 3)
account for a considerable proportion of oligosaccharide
esters and mainly possess a core of sucrose carrying a
varying number of O-substituents, includingphenyl-
propanoid groups, acetyl, benzoyl, p-methoxybenzoyl, and
p-hydroxybenzoyl groups. Phenylpropanoid substituents are
just present at 1′, 3′, 4′, 6′ positions of β-D-fructofuranosyl
unit in compounds 35–97, whereas they appear at 2, 3, 4,
6 positions of α-D-glucopyranosyl moiety in compounds
98–101. Moreover, compounds 76–97 are mainly esterified
with acetyl groups along with a phenylpropanoyl substi-
tuent, coumaroyl, feruloyl, or 3,4,5-trimethoxycinnamoyl
group. Interestingly, the phenylpropanoid substituents are
only attached to the 3′ position of sucrose. The two
sugar rings of compounds 102–128 both possess phenyl-
propanoid substituents. These oligosaccharide esters have
been found in the roots and rhizomes of Polygala tricornis,
P. tenuifolia, Fagopyrum tataricum, Scrophularia ningpoensis,
Cynanchum amplexicaule, Smilax riparia, Paris polyphylla
var. yunnanensis, Smilacis glabrae, Fagopyrum dibotrys,
and Sparganium stoloniferum, the underground parts of Tri-
lium kamtschaticum, the stems of Polygonum sachalinensis,
P. cuspidatum, P. hydropiper, Smilax china, and Calamus
quisquetinervius, the aerial parts of Polygala sibirica, Smilax
bracteata, Heterosmilax erythrantha, and Musella lasiocarpa,
the leaves of Persicaria hydropiper and Polygonum hydropiper,
the whole plants of Bidens parviflora and Polygala hongkon-
gensis, and the flower buds of Prunus mume.

Cistanoside F (129) has been found in the stems of
Cistanthe tubulosa [80] and C. sinensis [81], the barks of Pau-
lownia tomentosa var. tomentosa [82], and the aerial parts
of Acanthus ilicifolius [83]. Cistanoside I (130) has also
been isolated from the stems of the Cistanthe plants [84].
Both of them are composed of glucosyl and rhamnosyl
groups connected by a 1 → 3 glycosidic bond. In addition,
6,6′-sucrose ester of (1α,2x3,β,4β)-3,4-bis(4-hydroxy-
phenyl)-1,2-cyclobutanedicarboxylic acid (131) with a bis(4-
hydroxyphenyl) cyclobutanedicarboxyl group as the acyl unit
in the molecule structure was isolated from the whole plants
of Bidens parviflora [61].
No.	Name	R₁	R₂	R₃	R₄	R₅	R₆	Source	Parts	Reference	
22	Perifosaccharide A	OH(e)	OCH₃(e)	H	OH(e)	OH	A	Periploca forrestii	Roots	[32]	
23	Perifosaccharide B	OH(e)	OCH₃(a)	H	OH(e)	OH	A	Periploca forrestii	Roots	[32]	
24	Perifosaccharide C	OH(e)	OCH₃(e)	H	OH(e)	OCH₃	A	Periploca forrestii	Roots	[32]	
25	Perifosaccharide D	OAc(e)	OCH₃(e)	H	OH(e)	OH	A	Periploca forrestii	Roots	[32]	
26	Perisaccharide A	OH(a)	OCH₃(e)	OAc	OH(e)	OCH₃	A	Periploca sepium	Root barks	[33]	
27	Perisaccharide B	OAc(e)	OCH₃(a)	H	OH(e)	OH	A	Periploca sepium	Periploca calophylla	Root barks	[33, 34]
28	Perisaccharide C	OH(a)	OCH₃(e)	OAc	OCH₃(a)	OH	A	Periploca sepium	Root barks	[33]	
29	Perisaccharide D	OAc(e)	OCH₃(a)	H	OH(e)	OCH₃	A	Periploca calophylla	stems	[34]	
30	Perisesaccharide B	OH(a)	OCH₃(e)	OAc	OH(e)	OCH₃	C	Periploca sepium	Root barks	[35]	
31	Perisesaccharide C	OH(a)	OCH₃(e)	OH	OCH₃(a)	OCH₃	C	Periploca sepium	Root barks	[35]	
32	Perisesaccharide D	OH(a)	OCH₃(e)	OH	OCH₃(a)	OH	C	Periploca sepium	Root barks	[35]	
33	Perisesaccharide E	OH(a)	OCH₃(e)	OAc	OH(e)	OH	C	Periploca sepium	Root barks	[35]	
34	Cymaropyranurolactone	OH(a)	OCH₃(e)	OH	OCH₃(e)	OCH₃	B	Parabarium huatingii	Barks	[36]	

See Scheme 1.
2.2.4. Phenylpropanoid-Derived Trisaccharide Esters. In this group, all oligosaccharides including glucopyranose, fructofuranose, and rhapnopyranose with different types of fatty acid residues which attach to the 6 or 6′ position of sucrose. These fatty acids include oleandric acid, palmitic acid, linolenic acid, myristic acid, hexadeca-7,10,13-trienoic acid, and hexadeca-7,10-dienoic acid. The above sucrose fatty acid esters have been found in the rhizomes of Astragalus membranaceus and the roots of Equisetum hiemale.

2.2.5. Phenylpropanoid-Derived Tetrasaccharide Esters. Phenylpropanoid-derived tetrasaccharide esters (Table 5) consisting of three glucopyranosyl units and a fructofuranosyl unit have been isolated from the roots of Polygala tenuifolia. The nonsugar moieties of these oligosaccharides include coumaroyl, feruloyl, sinapoyl, and benzoyl groups, respectively.

2.2.6. Phenylpropanoid-Derived Pentasaccharide Esters. As shown in Table 6, oligosaccharide esters (160–179) possessing a skeleton of five sugar residues have been isolated from the roots of Polygala tenuifolia. The sugar residues are composed of two types of monosaccharides including fructofuranose and glucopyranose, which are esterified with acetyl, benzoyl, rhamnose-substituted/nonsubstituted coumaroyl, and rhamnose-substituted/nonsubstituted feruloyl groups. Other than that, a structure-complex oligosaccharide polymer shown in Figure 5, polygalajaponicose I (180), consisting of a pentasaccharide backbone esterified with feruloyl, coumaroyl, rhamnosyl-coumaroyl, acetyl, and benzoyl groups has been obtained from the roots of P. japonica [90].

2.2.7. Others. Polygalatenosides A–C (181–183) (Figure 6) containing a galactosyl unit and a polygalolinosyl unit esterified with benzoyl groups at 3, 4 and 6 positions have been found in the roots of Polygala tenuifolia [91]. Three sucrose esters, including polygalatenoside D (190), telephiose F (191), and 6-O-benzylsucrose (192), possess one benzoyl group, two benzoyl groups, and a p-methoxybenzoyl group, respectively. They were isolated from the roots of P. tenuifolia [91], the whole plants of P. telephioide (92), and the roots of P. tricorin (37). Six trisaccharide esters, named telephiose A–E and G (184–189) with substituents of acetyl and benzoyl groups, were isolated from the whole plants of P. telephioide [92, 93]. Moreover, a trisaccharide ester (193), pubescenside A from the flowers of Syringa pubescens, possesses a fatty acid residue [94].

3. Biological Activities of Oligosaccharides and Their Esters

The oligosaccharides and oligosaccharide esters from Chinese medicinal plants are important products with diversified structures, which have triggered an increasing number of studies carried out on the isolated compounds. And thus diverse pharmacological activities have been proved. Among the isolated compounds, oligosaccharides, phenylpropanoid-derived disaccharide esters and trisaccharide esters, fatty acid-derived disaccharide esters, and others from the families Polygonaceae, Asclepiadaceae, Rubiaceae, Polyalaceae, Liliaceae, Smilacaceae, Arecaceae, Orobancheaceae, Scrophulariaceae, Acanthaceae, Rosaceae, Sparganiaceae, Leguminosae, and Equisetaceae have shown significant pharmacological activities including antioxidant,
Figure 1: Continued.
Figure 1

D: benzoyl E: \(p \)-methoxybenzoyl F: \(p \)-hydroxybenzoyl G: coumaroyl

I: feruloyl J: caffeoyl K: sinapoyl

L: 3,4,5-trimethoxycinnamoyl M: cinnamoyl

Figure 2
Number	Name	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	Source	Parts	Reference
35	Sibiricose A_6	H	H	H	H	K	H	H	H	Polygala tricornis	Roots	[37–40]
	3'-O-Feruloylsucrose/Sibiricose A_5	H	H	H	H	I	H	H	H	Polygala tenuifolia	Root barks	
36	Glomeratose A	H	H	H	H	L	H	H	H	Polygala tricornis	Underground parts	[38–42]
37	Lapathoside D	H	H	H	H	G	G	H	H	Polygonum sachalinense	Roots	[37]
38	Glomeratose A	H	H	H	H	I	I	H	H	Trillium kamtschaticum	Stems	[43]
	Tenuifoliside A	F	H	H	H	L	H	H	H	Trillium kamtschaticum	Underground parts	
39	Helonioside A	H	H	H	H	I	I	H	H	Smilax bracteata	Aerial parts	[41, 44, 45]
40	Helonioside B	Ac	H	H	H	I	I	H	H	Smilax riparia	Stems	[44, 46–48]
41	Parispolyside F	H	H	H	H	G	I	H	H	Paris Polyphylla var. yunnanensis	Rhizomes	[49, 50]
42	Hydropiperoside	H	H	H	H	G	G	H	G	Polygonum sachalinense	Stems	[43, 51, 52]
43	Tricornose B	D	Ac	H	H	L	H	H	H	Persicaria hydropiper	Leaves	
44	Tenuifoliside A	F	H	H	H	L	H	H	H	Polygala tricornis	Roots	[37]
45	Tatariside A	Ac	H	H	H	Ac	G	G	H	Polygala tenuifolia	Whole plants	[38, 40, 53–56]
46	Tatariside E	H	H	H	H	Ac	G	H	Ac	Fagopyrum tataricum	Stems	[57]
47	Tatariside G	H	H	H	H	I	G	H	G	Fagopyrum tataricum	Roots	[57]
48	Smiglaside A	Ac	Ac	H	Ac	I	I	H	I	Smilax riparia	Roots and rhizomes	
49	Smiglaside B	Ac	H	H	Ac	I	I	H	I	Smilax riparia	Roots and rhizomes	
50	Smiglaside E	Ac	H	H	Ac	I	I	H	G	Smilax china	Stems	[46]
51	Smilaside A	Ac	Ac	H	Ac	I	I	H	G	Smilax china	Stems	[46]
52	Smilaside B	H	H	H	Ac	I	I	H	H	Smilax china	Stems	[46]
53	Smilaside C	H	H	H	H	I	I	H	G	Smilax china	Stems	[46]
54	Smilaside D	H	H	H	H	I	I	Ac	G	Smilax china	Stems	[46]
Table 2: Continued.

Number	Name	R₁	R₂	R₃	R₄	R₅	R₆	R₇	R₈	Source	Parts	Reference
55	Smilaside E	Ac	H	H	H	I	I	H	G	Smilax bracteata	Aerial parts	[44, 46]
56	Smilaside F	Ac	H	H	Ac	G	I	H	G	Smilax china	Stems	[46]
57	Smilaside G	H	H	H	H	G	I	H	G	Smilax bracteata	Aerial parts	[44, 58]
58	Smilaside H	H	H	H	Ac	G	I	H	G	Smilax bracteata	Aerial parts	[44]
59	Smilaside I	Ac	H	H	H	G	I	H	G	Smilax bracteata	Aerial parts	[44]
60	Smilaside J	H	H	H	H	G	I	H	I	Smilax bracteata	Aerial parts	[44, 58]
61	Smilaside K	H	H	H	Ac	I	I	H	G	Smilax bracteata	Aerial parts	[44]
62	Smilaside L	H	H	H	H	I	I	H	I	Smilax bracteata	Aerial parts	[44, 58]
63	Smilaside M	Ac	H	H	Ac	Cis-feruloyl	I	H	H	Smilax riparia	Roots and rhizomes	[59]
64	Smilaside N	Ac	H	H	Ac	I	Cis-feruloyl	H	H	Smilax riparia	Roots and rhizomes	[59]
65	Smilaside P	H	H	H	Ac	I	I	H	I	Smilax riparia	Roots and rhizomes	[47]
66	5',4',6'--Tri-feruloylsucrose	H	H	H	H	I	I	I	H	Smilax riparia	Rhizomes and roots	[60]
67	6'-O-Coumaroylsucrose	H	H	H	H	H	G	H	H	Bidens parviflora	Whole plants	[61]
68	1'-O-Coumaroyl-6'-O-feruloylsucrose	H	H	H	H	H	I	H	G	Smilax bracteata	Aerial parts	[44]
69	4-O-Benzoyl-3',3,4,5-trimethoxycinnamoylsucrose	H	D	H	H	L	H	H	H	Polygala tricornis	Roots	[37]
70	6-O-Benzoyl-3',3,4,5-trimethoxycinnamoylsucrose	D	H	H	L	H	H	H	H	Polygala tricornis	Roots	[37]
71	6-O-Benzoyl-3',3,4,5-sinapoylsucrose	D	H	H	K	H	H	H	H	Polygala tricornis	Roots	[37]
72	6-O-p-Methoxybenzoyl-3',3,4,5-trimethoxycinnamoylsucrose	E	H	H	L	H	H	H	H	Polygala tenuifolia	Roots	[56]
73	2,6-Di-acetyl-3',6'-di-feruloylsucrose	Ac	H	H	Ac	I	I	H	H	Smilax china	Stems	[46-48, 59]
74	2,6-Di-acetyl-3',6'-cis-feruloyl-6'-trans-feruloylsucrose	Ac	H	H	Ac	Cis-feruloy	I	H	H	Smilax riparia	Roots and rhizomes	[59]
Number	Name	R₁	R₂	R₃	R₄	R₅	R₆	R₇	R₈	Source	Parts	Reference
--------	------	----	----	----	----	----	----	----	----	--------	-------	------------
75	2,6-Di-acetyl-3'-O-trans-feruloyl-6'-cis-feruloylsucrose	Ac	H	H	Ac	I	Cis-feruloyl	H	H	*Smilax riparia*	Roots and rhizomes	[59]
76	Regaloside A	Ac	H	H	H	I	H	H	H	*Trillium kamtschaticum*	Underground parts	[41]
77	Tricosorne A	Ac	H	H	H	L	H	H	H	*Polygala tricornis*	Flower buds	[37]
78	Mumeose A	H	H	Ac	G	H	H	H	H	*Prunus mume*	Flower buds	[62, 63]
79	Mumeose B	Ac	H	Ac	H	G	H	H	H	*Prunus mume*	Flower buds	[62, 63]
80	Mumeose C	Ac	H	Ac	Ac	G	H	H	H	*Prunus mume*	Flower buds	[62, 63]
81	Mumeose D	Ac	Ac	Ac	Ac	G	H	H	Ac	*Prunus mume*	Flower buds	[62, 63]
82	Mumeose E	Ac	Ac	Ac	Ac	Cis-coumaroyl	H	H	Ac	*Prunus mume*	Flower buds	[62, 63]
83	Mumeose F	Ac	Ac	Ac	H	G	H	H	H	*Prunus mume*	Flower buds	[63]
84	Mumeose G	Ac	H	Ac	H	G	H	Ac	H	*Prunus mume*	Flower buds	[63]
85	Mumeose H	H	H	Ac	Ac	G	H	Ac	H	*Prunus mume*	Flower buds	[63]
86	Mumeose I	Ac	Ac	Ac	Ac	G	H	Ac	H	*Prunus mume*	Flower buds	[63]
87	Mumeose J	Ac	Ac	Ac	Ac	G	H	Ac	Ac	*Prunus mume*	Flower buds	[63]
88	Mumeose K	H	H	Ac	Ac	G	H	Ac	H	*Prunus mume*	Flower buds	[64]
89	Mumeose L	Ac	H	Ac	Ac	G	H	Ac	H	*Prunus mume*	Flower buds	[64]
90	Mumeose M	Ac	Ac	Ac	H	G	H	Ac	Ac	*Prunus mume*	Flower buds	[64]
91	Mumeose N	Ac	Ac	Ac	H	G	Ac	Ac	H	*Prunus mume*	Flower buds	[64]
92	Mumeose O	Ac	Ac	Ac	H	G	Ac	Ac	Ac	*Prunus mume*	Flower buds	[64]
93	Mumeose P	Ac	Ac	Ac	Ac	G	H	H	Ac	*Musella lasiocarpa*	Aerial parts	[65]
94	Sibirioside A	H	H	H	H	H	H	H	H	*Musella lasiocarpa*	Aerial parts	[65]
95	1',2,3,4,6-O-Penta-acetyl-3'-O-trans-coumaroylsucrose	Ac	Ac	Ac	Ac	Cis-coumaroyl	H	H	Ac	*Musella lasiocarpa*	Aerial parts	[65]
96	1',2,3,4,6-O-Penta-acetyl-3'-O-cis-coumaroylsucrose	Ac	Ac	Ac	Ac	Cis-coumaroyl	H	H	Ac	*Musella lasiocarpa*	Aerial parts	[65]
97	1',2,3,6-O-Tetra-acetyl-3'-O-cis-feruloylsucrose	Ac	H	Ac	Ac	Cis-feruloyl	H	H	Ac	*Sparganium stoloniferum*	Rhizomes	[66]
98	1',2,4,6-O-Tetra-acetyl-3'-O-trans-feruloylsucrose	Ac	Ac	Ac	Ac	H	H	H	Ac	*Sparganium stoloniferum*	Rhizomes	[66]
99	Sibricose A₁	M	H	H	H	H	H	H	H	*Scrophularia ningpoensis*	Roots	[67]
100	6-O-Caffeoylsucrose	K	H	H	H	H	H	H	H	*Scrophularia ningpoensis*	Roots	[68]
101	Acreteside	J	H	H	H	H	H	H	H	*Scrophularia ningpoensis*	Roots	[68]
Number	Name	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	Source	Parts	Reference
--------	-----------------------	-------	-------	-------	-------	-------	-------	-------	-------	--------------------------	-----------	--------------
102	Tenuifoliside B	F	H	H	H	K	H	H	H	*Polygala tenuifolia*	Roots	[42, 56]
103	Tenuifoliside C	K	H	H	H	L	H	H	H	*Polygala tenuifolia*	Roots	[37, 42, 56]
104	Heterosmilasides	H	H	I	H	H	I	H	H	*Heterosmilax*	Aerial parts	[48]
105	Quiquesetinerviuside A	H	I	H	H	I	I	H	H	*Calamus quiquesetinervius*	Stems	[70]
106	Quiquesetinerviuside B	Ac	I	H	H	I	I	H	H	*Calamus quiquesetinervius*	Stems	[70]
107	Quiquesetinerviuside C	H	I	H	Ac	I	I	H	H	*Calamus quiquesetinervius*	Stems	[70]
108	Quiquesetinerviuside D	Ac	G	H	H	I	I	H	H	*Calamus quiquesetinervius*	Stems	[70]
109	Quiquesetinerviuside E	H	G	H	Ac	I	I	H	H	*Calamus quiquesetinervius*	Stems	[70]
110	Vanicoside A	I	H	H	Ac	G	G	H	G	*Polygonum cuspidatum*	Stems	[51, 52, 71, 72]
										Polygonum hydropiper	Leaves	[51, 52, 71, 72]
										Polygonum sachalinensis	Rhizomes	[51, 52, 71, 72]
111	Vanicoside B	I	H	H	H	G	G	H	G	*Polygonum cuspidatum*	Stems	[43, 51, 52, 71, 72]
										Polygonum hydropiper	Leaves	[51]
										Polygonum sachalinensis	Stems and leaves	[72]
114	Lapathoside A	I	H	H	H	G	G	H	I	*Polygonum cuspidatum*	Stems	[51, 73]
115	Lapathoside C	I	H	H	H	G	G	H	H	*Polygonum sachalinensis*	Stems	[43, 52]
116	Diboside A	G	H	H	H	G	I	H	G	*Fagopyrum dibotrys*	Roots	[43, 57]
117	Hidropiperoside A	I	H	H	H	G	H	G	G	*Polygonum hydropiper*	Stems and leaves	[72]
118	Hidropiperoside B	I	H	H	Ac	G	G	H	I	*Polygonum hydropiper*	Stems and leaves	[72]
119	Tatariside B	I	H	H	Ac	G	G	H	Ac	*Fagopyrum tataricum*	Roots	[57]
Table 2: Continued.

Number	Name	R₁	R₂	R₃	R₄	R₅	R₆	R₇	Source	Parts	Reference
120	Tatariside C	I	Ac	H	Ac	G	G	H	Ac	Roots	[57]
121	Tatariside D	G	H	H	Ac	G	I	H	H	Roots	[57]
122	Tatariside F	G	H	H	H	I	I	H	G	Roots	[57]
123	3',6'-O-Di-sinapoylsucrose	K	H	H	H	K	H	H	H	Root barks	[37–39, 41, 53–56, 69, 74]
124	6,6'-O-Di-coumaroylsucrose	G	H	H	H	G	G	H	H	Whole plants	[61]
125	1',3',6'-O-Tri-coumaroyl-6-feruloylsucrose	I	H	H	H	G	G	H	G	Roots	[75, 76]
126	3',6'-O-Di-coumaroyl-1',6'-O-di-feruloylsucrose	I	H	H	H	G	G	H	I	Roots	[75, 76]
127	3'-O-Coumaroyl-1',6'-O-tri-feruloylsucrose	I	H	H	H	I	G	H	I	Roots	[75, 76]
128	1',3',6'-6-O-Tetra-feruloylsucrose	I	H	H	H	I	I	H	I	Roots	[75, 76]

See Scheme 2.
antidepressant, cytotoxic, antineoplastic, anti-inflammatory, antidiabetic, plant growth-regulatory, neuroprotective, and cerebral protective activities. Lignan-derived disaccharide esters, phenylpropanoid-derived tetrasaccharide esters, and pentasaccharide esters with biological activities have not been reported. Aside from the isolated constituents, oligosaccharide esters with biological activities have not been identified from medicinal plants by using different kinds of assay methods, which include DPPH radical scavenging assay, hydroxyl radical scavenging assay, superoxide anion scavenging assay, and ABTS radical scavenging method [96].

3.1. Antioxidant Activity. The adverse effects of oxidative stress proposed to play significant roles in the pathogenesis of cardiovascular diseases, atherosclerosis, hypertension, cancer, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, ischemia/reperfusion injury, and ageing have become an inevitable and serious issue [95, 96]. Scientists have thus made great efforts to explore antioxidants from medicinal plants by using different kinds of assay methods, which include DPPH radical scavenging assay, hydroxyl radical scavenging assay, superoxide anion scavenging assay, and ABTS radical scavenging method [96].

Lapathosides C and D, hydropiperoside, vanicoside B, hidropiperosides A and B, lapathoside A, and diboside A were isolated from the Polygonum, Persicaria, and Fagopyrum genera belonging to the Polygonaceae family. The DPPH test revealed that free radical-scavenging activity of the isolated compounds termed lapathoside C (115), hydropiperoside (42), vanicoside B (111), and lapathoside D (38) increased in turn, and lapathoside D exhibited strongest scavenging ability with an IC₅₀ of 0.088 μM [43]. Hidropiperosides A and B (117, 118) were reported to show obvious antioxidant response to DPPH radicals with the SC₅₀ values of 23.4 and 26.7 μg/mL, respectively, while vanicoside E moderately exhibited the same activity with a SC₅₀ value of 49.0 μg/mL [72]. Lapathoside A (114) and diboside A (116) just showed lower antioxidant activities with the SC₅₀ values of 199.48 and 165.52 μM, respectively [73].

Smiglasides A and B, smilaside P, 2,6-di-acetyl-3’,6’-di-feruloylsucrose, helonioside B, smilasides G–L, and heterosmilaside were isolated from the Heterosmilax and Smilax genera. Compared with ascorbic acid (IC₅₀ 143.52 μM) used as positive control, smiglasides A and B, and smilaside P (48, 49, 65) (IC₅₀ 339.58, 330.66 and 314.49 μM, resp.) showed higher antioxidant activities than 2,6-di-acetyl-3’,6’-di-feruloylsucrose (73) and helonioside B (40) (IC₅₀ 631.66 and 518.27 μM, resp.) [47]. Additionally, Nhiem et al. reported that helonioside B, heterosmilaside (104), and 2,6-di-acetyl-3’,6’-di-feruloylsucrose exhibited important DPPH radical scavenging activities with the SC₅₀ values of 9.1, 12.7 and 8.7 μg/mL, respectively [48]. Compared with smilasides G–I (57–59) (ED₅₀ 68.5–79.4 μM), smilasides J–L (60–62) showed higher radical scavenging activities with an ED₅₀ value of 26.7–32.7 μM [44].

Five quikesetinerviuisides A–E (105–109) isolated from the Calamus genus showed weak DPPH scavenging activities (IC₅₀ 60.4–101.8 μM) but exhibited better hydroxyl radical scavenging activities (IC₅₀ 3.6–8.4 μM). Moreover, quikesetinerviuiside C showed superoxide anion scavenging activity with an IC₅₀ value of about 184.3 μM [70]. Liu et al. investigated the antioxidant capacity of 3’,6-O-di-sinapoylsucrose (DISS) (123) by using the accelerated senescence-prone, short-lived mice (SAMP) in vivo. The analyses indicated that the activities of antioxidant enzymes of SOD and glutathione peroxidase ascended obviously in SAMP mice when amended with DISS 50 mg/kg. Moreover, DISS could downregulate and even restore the level of malondialdehyde in SAMP model group [97].

From the above studies, it can be concluded that oligosaccharide esters with antioxidant activities have been identified in the Polygonaceae, Lilaceae, Smilacaceae, and Aracaceae families. The results of the antioxidant assays show that the increased number of phenolic hydroxyl groups and acetyl groups could produce higher antioxidant activity. Fan et al. indicated that the increased number of phenylpropenoid groups was not beneficial to free radical scavenging activity [43]. Zhang et al. pointed out that oligosaccharide esters with feruloyl groups exhibited better antioxidant activities than those with coumaroyl groups [44].
Table 3: Fatty acid-derived disaccharide esters.

Number	Name	R₁	R₂	Source	Parts	Reference
132	6'-O-Linoleylsucrose	H	O	Astragalus membranaceus	Roots	[77]
133	6'-O-Palmitoylsucrose	H	P	Astragalus membranaceus	Roots	[77]
134	6-O-Palmitoylsucrose	P	H	Astragalus membranaceus	Roots	[77]
135	6'-O-Linolenoylsucrose	H	N	Astragalus membranaceus	Aerial parts	[77, 78]
136	6-O-Linoleylsucrose	O	H	Astragalus membranaceus	Roots	[77]
137	6-O-Myristoylsucrose	Q	H	Astragalus membranaceus	Roots	[77]
138	6-O-[(7Z,10Z,13Z)-Hexadeca-7,10,13-trienoyl]sucrose	H	R	Equisetum hiemale	Aerial parts	[78]
139	6-O-[(7Z,10Z)-Hexadeca-7,10-dienoyl]sucrose	H	S	Equisetum hiemale	Aerial parts	[78]

See Scheme 3.

3.2. Antidepressant Activity. The oligosaccharides obtained from the Morinda genus not only show specific antidepressant and antistress activities but also have no suppression or excitatory effects on central nervous system as well. What is more, they can be taken orally with little toxicity [21]. The inulin-type hexasaccharide (IHS) (9) from Morinda officinalis obviously exhibited cytoprotective activity, which contributed to the antidepressant effect, not only by providing the PC12 with protection against Cort-induced lesion with IHS 0.625 and 1.25 \(\mu \)M, but also by reducing the Cort-induced \([Ca^{2+}]_o \) overloading with IHS 2.5 and 10 \(\mu \)M. IHS 5 and 10 \(\mu \)M upregulated the nerve growth factor mRNA expression in Cort-induced PC12 cells [22]. Polygalatenosides A (181) and B (182) were isolated from the Polygala genus. They significantly inhibited the isotope-labeled RTI-55 binding to norepinephrine transporter protein with the IC\(_{50}\) values of 30.0 and 6.04 \(\mu \)M, respectively [91].

DISS and tenuifoliside A were isolated from the Polygala and Cynanchum genera. Liu et al. investigated the antidepressant effect of YZ ethanol extract based on the tail suspension test (TST) and forced swimming test (FST), which are the ease-of-use and widely-accepted models for estimating antidepressant activities in mice. The results indicated that YZ-50 fraction at a dose of 200 mg/kg was able to significantly decrease the immobility time in TST. Furthermore, YZ-50 possessed ability to inhibit corticosterone-induced injury of human neuroblastoma SH-SY5Y cells. What is more, DISS (123) and tenuifoliside A (44), two major compounds of YZ-50 fraction, showed effective protective response to the lesion in SY5Y cells [53]. The antidepressant-like effect of DISS at
Figure 4

Table 4: Phenylpropanoid-derived trisaccharide esters.

Number	Name	R₁	R₂	R₃	R₄	R₅	R₆	R₇	Source	Parts	Reference
146	Tricornose C	K	H	H	H	H	L	H	Polygala tricornis	Roots	[37]
147	Tricornose D	K	H	H	H	L	H	H	Polygala tricornis	Roots	[37]
148	Tricornose E	K	H	H	H	K	L	H	Polygala tricornis	Roots	[37]
149	Tricornose F	K	H	H	I	L	H	H	Polygala tricornis	Roots	[37]

See Scheme 4.

Table 4: Phenylpropanoid-derived trisaccharide esters.

3.3. Cytotoxic and Antineoplastic Activities. Smilasides A–F and P, smiglasides A and B, smilaside P, and helonioside A were isolated from the *Smilax*, *Trillium*, and *Paris* genera. Kuo et al. obtained smilasides A–F ([51–56]) and evaluated their cytotoxicity against human tumor cell lines comprising human oral epithelium carcinoma (KB), human cervical carcinoma (Hela), human colon tumor (DLD-1), human breast adenocarcinoma (MCF-7), human lung carcinoma (A-549), and human medulloblastoma (Med) cells by MTT assay. Experimental data indicated that all but smilaside C showed cytotoxicity against three to six human tumor cell lines (ED₅₀ = 5.1–13.0 μg/mL), and smilasides D–F (ED₅₀ = 2.7–5.0 μg/mL) displayed strong cytotoxic activities against DLD-1 cells [46]. Wang et al. reported the antitumor constituents of

the doses of 5, 10, and 20 mg/kg was also tested in chronically mild stressed rats. DISS was able to exhibit antidepressant activity by upregulating the expression of noradrenergic-regulated plasticity genes including cell adhesion molecule L1, brain-derived neurotrophic factor, laminin, and cAMP response element binding protein factor in hippocampus [98]. DISS improved the reward reaction by increasing sucrose intake and obviously decreased the levels of serum cortisol, adrenocorticotropic hormone, and corticotropin-releasing factor. Further, DISS played an enhanced role in the expression of mineralocorticoid receptor, together with glucocorticoid receptor mRNA [99].
Table 5: Phenylpropanoid-derived tetrasaccharide esters.

Number	Name	R₁	R₂	R₃	Source	Parts	Reference
154	Tricornose G	K	H	K	Polygala tricornis	Roots	[37]
155	Tricornose H	K	K	K	Polygala tricornis	Roots	[37]
156	Tricornose I	K	K	L	Polygala tricornis	Roots	[37]
157	Tricornose J	K	I	L	Polygala tricornis	Roots	[37]
158	Tricornose K	K	I	K	Polygala tricornis	Roots	[37]
159	Tricornose L	K	G	K	Polygala tricornis	Roots	[37]

See Scheme 5.

Smilax riparia, including smiglasides A (48) and B (49), 2,6-di-acetyl-3',6'-di-feruloylsucrose (73), helonioside B (40), and smilaside P (65). Only smiglasides A and B, and smilaside P exhibited cytotoxicity against human tumor cell lines with different inhibitory concentrations comparing with cisplatin and paclitaxel as positive controls [47]. Helonioside A (39) exhibited higher cytotoxicity with the increase of concentration (0.1-100 μg/mL) [45]. Tatarisides A–G (45, 119–121, 46, 122, 47) and diboside A (116) from the *Fagopyrum* genus exerted cytotoxic activities against different human cell lines, and the cytotoxicity of tatariside C was the most remarkable with the IC₅₀ values ranging from 6.44 to 7.49 μg/mL [57].

1',2,3,6-O-Tetra-acetyl-3'-O-cis-feruloylsucrose (95) from the *Sparganium* plants exhibited extremely weak cytotoxicity against the growth of mice Lung Adenocarcinoma 795 cell lines with an IC₅₀ value of 116 μg/mL [66]. SnS-2, oligosaccharides mixture, including raffinose (3), stachyose (19), and verbascose (21) from the roots of *Scrophularia ningpoensis*, had antitumor activity against the growth of Lewis pulmonary carcinoma cells transplanted into mice [18].

Disaccharide esters and oligosaccharides mixture from the Liliaceae, Polygonaceae, Sparganiaceae, and Scrophulariaceae families showed effective cytotoxic and antineoplastic activities. The study results indicated that feruloyl and acetyl groups play an important role in mediating cytotoxicity, which seems to be related to the substitution position of feruloyl groups. The feruloyl groups at C-6 or C-1' are vital for cytotoxicity. In addition, the increased number of acetyl groups could induce higher tumoricidal activity.
Table 6: Phenylpropanoid-derived pentasaccharide esters.

Number	Name	\(R_1\)	\(R_2\)	\(R_3\)	\(R_4\)	\(R_5\)	\(R_6\)	Source	Parts	Reference
160	Tenuifoliose A	G	D	I	Ac	Ac	Ac	Polygala tenuifolia	Roots	[38, 42]
161	Tenuifoliose B	G	D	I	H	Ac	Ac	Polygala tenuifolia	Roots	[42]
162	Tenuifoliose C	G	D	I	H	H	H	Polygala tenuifolia	Roots	[42]
163	Tenuifoliose D	G	D	U	Ac	Ac	Ac	Polygala tenuifolia	Roots	[42]
164	Tenuifoliose E	G	D	U	Ac	H	Ac	Polygala tenuifolia	Roots	[42]
165	Tenuifoliose F	G	D	G	Ac	Ac	Ac	Polygala tenuifolia	Roots	[38, 42, 79]
166	Tenuifoliose G	G	D	G	Ac	H	Ac	Polygala tenuifolia	Roots	[42, 79]
167	Tenuifoliose H	G	D	G	H	Ac	Ac	Polygala tenuifolia	Roots	[42]
168	Tenuifoliose I	G	D	G	H	H	Ac	Polygala tenuifolia	Roots	[42]
169	Tenuifoliose J	G	D	T	Ac	Ac	Ac	Polygala tenuifolia	Roots	[42]
170	Tenuifoliose K	G	D	T	Ac	H	Ac	Polygala tenuifolia	Roots	[42, 79]
171	Tenuifoliose L	I	D	I	Ac	Ac	Ac	Polygala tenuifolia	Roots	[42]
172	Tenuifoliose M	I	D	I	H	Ac	Ac	Polygala tenuifolia	Roots	[42]
173	Tenuifoliose N	I	D	I	H	H	Ac	Polygala tenuifolia	Roots	[42]
174	Tenuifoliose O	I	D	T	Ac	H	Ac	Polygala tenuifolia	Roots	[42]
175	Tenuifoliose P	I	D	T	H	Ac	Ac	Polygala tenuifolia	Roots	[79]
176	Tenuifoliose Q	G	D	G	H	H	H	Polygala tenuifolia	Roots	[42]
177	Tenuifoliose R	G	D	I	H	H	H	Polygala tenuifolia	Roots	[42]
178	Tenuifoliose S	G	D	U	Ac	H	Ac	Polygala tenuifolia	Roots	[42]
179	Tenuifoliose T	I	D	I	H	H	H	Polygala tenuifolia	Roots	[42]

See Scheme 6.

3.4. Anti-Inflammatory Activity. Inflammation, an important basic pathological process, is a defense response of biopsy with vascular system to damage stimuli such as pathogens, impaired cells and tissues, and physical and chemical factors. However, if the process of inflammatory response cannot end normally when cell debris and pathogens were cleared, the biological defence response will become causative factor and bring about many diseases, such as diabetes, cardiovascular diseases, metabolic syndrome, and cancer [100, 101].

Tenuifoliside A (44) from the *Polygala* genus exhibited strong anti-inflammatory effect not only by suppressing the production of NO, but also by reducing the production of iNOS, prostaglandin E2, cyclooxygenase-2, and proinflammatory cytokines through the inhibition of the mitogen-activated protein kinases pathway and NF-\(\kappa \)-B pathway [102].

The anti-inflammatory activities of quiquesetinerviusides D (108) and E (109) from the *Calamus* genus were evaluated in RAW 264.7 cells. Both of them showed significant inhibitory effects against the production of LPS-stimulated NO with the IC\(_{50}\) values of 9.0–29.5 \(\mu\)M [70].

Six disaccharide fatty acid esters (132–137) were isolated from the *Astragalus* and *Equisetum* genera. The anti-inflammatory effects of these isolated compounds have also been documented. The activation of NF-\(\kappa \)-B could upregulate the expression of proinflammatory cytokines inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-\(\alpha \)). The NF-\(\kappa \)-B inhibitory activities of compounds 132–137 were tested in HepG2 cells stimulated with TNF-\(\alpha \). All of these compounds could significantly restrain TNF-\(\alpha \)-induced NF-\(\kappa \)-B transcriptional activities with the IC\(_{50}\) values of 4.4–24.7 \(\mu\)M. Li et al. pointed out that olefinic bonds and the length of the fatty acid moiety contributed to the NF-\(\kappa \)-B inhibitory activity. Furthermore, the inhibition increased significantly with the increase of the number of olefinic bonds on the aliphatic moiety [77]. These results may provide a scientific basis for the development of new anti-inflammatory agents.

3.5. Neuroprotective and Cerebral Protective Activities. As we all know, glutamate works as a major excitatory amino acid neurotransmitter in the mammalian central nervous system.
3.6. Antidiabetic Activity. Diabetes mellitus, a chronic debilitating metabolic disease, is characterized by high blood glucose content and comprises three types termed type I, type II, and gestational diabetes [106]. Stachyose (19) extract (a part) from *Rehmannia glutinosa* obviously exhibited the activity of downregulating fasting plasma glucose level and partially keeping from hyperglycemia induced by adrenaline and glucose without obvious dose-dependent effect. Other than that, *in vivo* tests in rats induced by alloxan revealed that stachyose extract at the dose of 200 mg/kg significantly decreased blood-sugar level [15].

Diboside A, lapathosides C and D, vanicosides A and B, and hydropiperoside were isolated from the *Fagopyrum, Polygonum*, and *Persicaria* genera belonging to the Polygonaceae family. Diboside A (116) could potentially inhibit α-amylase activity with an IC$_{50}$ of 26.9 μM and thus retard the starch digestion rate, which is helpful for diabetic individuals in controlling blood sugar level [107]. Lapathoside D (38) exerted stronger activity of α-glucosidase inhibition with an IC$_{50}$ value of 0.113 mM than acarbose which was chosen as a positive drug for the treatment of type II diabetes [43]. Vanicoside B (111) was reported to have higher β-glucosidase inhibitory activity with an IC$_{50}$ of 59.9 μM because of the acetyl moiety of the latter possibly decreasing inhibitory activity of vanicoside A [71].

Fujimoto et al. investigated the inhibitory effects of mumeoses F–O (83–92) from the *Prunus* genus on aldose reductase and discovered that caffeoyl groups are crucial for the inhibitory effect on aldose reductase. And thus, mumeoses F, G, H, J, K, L, M and N (IC$_{50}$ = 22–77 μM), with a coumaroyl group and acetyl groups, inhibited moderately aldose reductase from reducing glucose to sorbitol, which is associated with the chronic complications of diabetes [63, 64].

3.7. Elicitors and Regulators. Oligosaccharides are quite propitious for encoding biological information because of diverse monosaccharide units and complex molecular structures and they are therefore first described as biological system and plays a crucial role in several physiological processes [103]. However, the accumulation of glutamate induces diverse acute and chronic neurodegenerative diseases, such as epilepsy, ischemic stroke, and Parkinson’s disease, as well as Alzheimer’s disease [104]. DISS (123) isolated from the *Polygala* genus exhibited neuroprotective effect against glutamate-induced SH-SY5Y neuronal cell damage. The in vitro test demonstrated that DISS (0.6, 6 and 60 μmol/L) played a critical role in increasing cell viability, controlling lactate dehydrogenase and attenuated apoptosis ranging from 1.95% to 2.58% [105].

Tenuifoliside B (102) from the *Polygala* genus was able to significantly shorten the coma time of KCN-induced anoxia mice at the doses of 3 and 10 mg/kg, and it played an important role in ameliorating the scopolamine-induced impairment of performance in passive avoidance task in rats and enhancing the tremors induced by oxotremorine in mice. These results together demonstrated that tenuifoliside B possessed cognitive improving and cerebral protective effects [56].
signals in plants [108]. Oligosaccharides from the cell wall fragments of plants and fungi are powerful signal molecules, such as the elicitors of plant defence response and the regulators of plant growth, and they are capable of exerting biological activities at exceedingly low concentrations [109]. Heptasaccharide (HS) (15) and octasaccharide (OS) (16) isolated from the Paris genus possessed plant growth-regulatory activities [29, 30]. The two oligosaccharides significantly promoted the proliferation of Paris polyphylla var. yunnanensis roots at the doses of 2.5–20 mg/L. The octasaccharide had the most obvious effect on the growth of Panax japonicus var. major hairy roots at a dose of 30 mg/L, while the other had the most positive effect on saponin accumulation of Panax japonicus var. major hairy roots at a dose of 10 mg/L.
Similarly, Zhou et al. evaluated the stimulating effects of HS and OS on the root growth and saponin production of Panax ginseng hairy roots, which were induced from the plant roots infected with Agrobacterium rhizogenes strain A4. The results showed that there was a maximum effect on the hairy roots growth and saponin accumulation on day 10. Compared with control group, the root biomass dry weight was increased by more than 1.7-fold while the total saponin content of roots increased by more than 1-fold when these two oligosaccharides were added to the hairy root at a dose of 30 mg/L [30]. The above data illustrate that HS and OS could serve as the plant growth-regulators not only in their original species but also in others.

3.8. Immunopotentiating Activity. Macrophages are important targets of investigations on cytaphagy, cellular immunity, and molecular immunology. Therefore, they are deemed to play a vital role in host defense comprising phagocytosis, proteolytic processing, pathogenic agent, apoptosis, cytokines production, and foreign antigens presentation [110]. The water-extracted oligosaccharides from Panax ginseng (WGOS) exhibited better immunopotentiating activity by increasing phagocytic function of macrophages and promoting NO, TNF-α and reactive oxygen species production [110]. In addition, Wan et al. have obtained maltoligosaccharides (17, n = 3–8) and three oligosaccharides (2, 13, 14) from the Panax ginseng roots. The in vitro bioassay pointed out that WGOS could serve as efficacious stimulators of B and T lymphocytes [28]. These studies provided enlightenment that the mixture of oligosaccharides from Chinese herbal medicine exhibits significant effect on immune system.

3.9. Others. Acetylcholinesterase (AChE) inhibitors show good therapeutic effects on myasthenia gravis, glaucoma, and Alzheimer's disease through reversible enzyme inhibition so as to increase the accumulation of acetylcholine in the synapse and then promote and prolong the function of acetylcholine. Vanicoside B (III) showed AChE inhibitory activity with an IC₅₀ of 0.062 mM, while hydropiperoside (42), and lapathosides C (115) and D (38) just exhibited weak enzyme inhibitory activity [43].

Wang et al. has explored low molecular mass carbohydrate polymer from Panax ginseng roots and obtained 30% ethanol elution (PGO) which included peptides and oligosaccharides (17, n = 0–5) identified as maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose. Pharmacological experiments revealed that PGO could significantly enhance the memory in scopolamine-induced memory deficit rats [27].

Cistanoside F (129) and kankanose (150) were isolated from the Cistanche, Paulownia, and Acanthus genera. Pharmacological experiments showed that cistanoside F and kankanose significantly exhibited vasorelaxant effects on the noradrenaline-induced contraction of thoracic aorta from rats [80].

4. Conclusion

Traditional Chinese medicine from natural kingdom plays an indelible role in the treatment of human diseases, and it has aroused the attention of those who have engaged in medicinal pharmaceutical chemistry. Therefore, scientists have made great contributions day after day to investigate the valid chemicals from traditional Chinese medicines. In the past decades, about 193 oligosaccharides and their esters have been identified from traditional Chinese medicinal plants. On the one hand, only a few oligosaccharides and their mixtures were investigated and just exhibited antidepressant, antineoplastic, antidiabetic, plant growth-regulatory, immunopotentiating, and enhanced memory activities. More exploratory work is still needed to excavate biological and pharmacological activities of oligosaccharides. On the other hand, oligosaccharide esters exhibited multi-advantageous activities. Bioassays have revealed that antioxidant, cytotoxic, antineoplastic, and anti-inflammatory activities are the most notable bioactivities. Of course, to search for the natural products with these activities is a hotpot in the contemporary drug research. Oligosaccharide esters provide a vast treasure trove for medical researchers. After considering the current studies, it should be taken as future directions to make more mechanism of action studies and clinical trials to further evaluate its potential as new drugs. Moreover, the structure-activity relationships discussed in this review will provide reference information for further exploring their relationships and continually discovering the new bioactive oligosaccharide esters.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] X. D. Yang, L. J. Zhang, B. Liang, L. Z. Xu, and S. L. Yang, “Oligosaccharide esters isolated from plants of Polygalaceae,” Chinese Traditional and Herbal Drugs, vol. 33, no. 10, pp. 954–958, 2002.

[2] N. Ogwuru and M. Adamczeski, “Bioactive natural products derived from Polygonum species of plants: their structures and mechanisms of action,” Studies in Natural Products Chemistry, vol. 22, pp. 607–642, 2000.

[3] S. Kobayashi, T. Miyase, and H. Noguchi, “Polyphenolic glycosides and oligosaccharide multiesters from the roots of Polygonum dalmaisiana,” Journal of Natural Products, vol. 65, no. 3, pp. 319–328, 2002.

[4] M. Takasaki, S. Kuroki, M. Kozuka, and T. Konoshima, “New phenylpropanoid esters of sucrose from Polygonum lapathifolium,” Journal of Natural Products, vol. 64, no. 10, pp. 1305–1308, 2001.

[5] M. L. Zimmermann and A. T. Sneden, “Vanicosides A and B, protein kinase C inhibitors from Polygonum pensylvanicum,” Journal of Natural Products, vol. 57, no. 2, pp. 236–242, 1994.

[6] M. Takasaki, T. Konoshima, S. Kuroki, H. Tokuda, and H. Nishino, “Cancer chemopreventive activity of phenylpropanoid
esters of sucrose, vanicoside B and lapathoside A, from Polygonum lapathifolium,” Cancer Letters, vol. 173, no. 2, pp. 133–138, 2001.

[7] Q. Fu, T. Liang, Z. Y. Li et al., “Separation of carbohydrates using hydrophilic interaction liquid chromatography,” Carbohydrate Research, vol. 379, pp. 13–17, 2013.

[8] M. F. Mrozek, D. Zhang, and D. Ben-Amotz, “Oligosaccharide identification and mixture quantification using Raman spectroscopy and chemometric analysis,” Carbohydrate Research, vol. 339, no. 1, pp. 141–145, 2004.

[9] G. S. Armstrong and B. Bendia, “High-resolution four-dimensional carbon-correlated 1H-1H ROESY experiments employing isotags and the filter diagonalization method for effective assignment of glycosidic linkages in oligosaccharides,” Journal of Magnetic Resonance, vol. 181, no. 1, pp. 79–88, 2006.

[10] G. S. Armstrong, V. A. Mandelshtam, A. J. Shaka, and B. Bendia, “Rapid high-resolution four-dimensional NMR spectroscopy using the filter diagonalization method and its advantages for detailed structural elucidation of oligosaccharides,” Journal of Magnetic Resonance, vol. 173, no. 1, pp. 160–168, 2005.

[11] H.-M. Tseng, S. Gattolin, J. Pritchard, H. J. Newbury, and D. A. Barrett, “Analysis of mono-, di- and oligosaccharides by CE using a two-stage derivatization method and LIF detection,” Electrophoresis, vol. 30, no. 8, pp. 1399–1405, 2009.

[12] N. Li, X. Li, B. L. Hou, and D. L. Meng, “New disaccharides from Camptosorus sibiricus Rupr,” Natural Product Research, vol. 22, no. 15, pp. 1379–1383, 2008.

[13] Z. Zhang, D. Wang, Y. Zhao, H. Gao, Y.-H. Hu, and J.-F. Hu, “Fructose-derived carbohydrates from Alisma orientalis," Natural Product Research, vol. 23, no. 11, pp. 1013–1020, 2009.

[14] X. Yang, Y. Zhao, N. He, and K. D. Croft, “Isolation, characterization, and immunological effects of α-galacto-oligosaccharides from a new source, the herb Lycopus lucidus Turcz," Journal of Agricultural and Food Chemistry, vol. 58, no. 14, pp. 8253–8258, 2010.

[15] R. X. Zhang, Z. P. Jia et al., “Stachyose extract from Rehmannia glutinosa Libosch. to lower plasma glucose in normal and diabetic rats by oral administration," Pharmazie, vol. 59, no. 7, pp. 552–556, 2004.

[16] R. Zhang, Y. Zhao, Y. Sun, X. Lu, and X. Yang, “Isolation, characterization, and hepatoprotective effects of the raffinose family oligosaccharides from Rehmannia glutinosa libosch," Journal of Agricultural and Food Chemistry, vol. 61, no. 32, pp. 7786–7793, 2013.

[17] H. Li, F. Song, Z. Zheng, Z. Liu, and S. Liu, “Characterization of saccharides and phenolic acids in the Chinese herb Tanshen by ESI-FT-ICR-MS and HPLC," Journal of Mass Spectrometry, vol. 43, no. 11, pp. 1545–1552, 2008.

[18] J. E. Deng, J. Zhang, X. M. Chen, W. Ke, and G. Y. Tian, “Studies on the physicochemical properties, structure and antitumor activity of an oligosaccharide homologue Sn2-3 from the root of Scrophularia ningpoensis Hemsl," Chinese Journal of Chemistry, vol. 22, no. 5, pp. 492–497, 2004.

[19] S. C. Chou, L. M. Chuang, and S. S. Lee, “Hypoglycemic constituents of gymura divaricata subsp. formosana," Natural Product Communications, vol. 7, no. 2, pp. 221–222, 2012.

[20] F. Feng, L.-L. Wang, X.-P. Lai, Y.-B. Li, Z.-M. Cao, and Y.-J. Zhou, “Study on oligosaccharides from Morinda officinalis," Journal of Chinese Medicinal Materials, vol. 35, no. 8, pp. 1259–1262, 2012.

[21] Y. F. Li, Z. H. Gong, M. Yang, Y. M. Zhao, and Z. P. Luo, “Inhibition of the oligosaccharides extracted from Morinda officinalis, a Chinese traditional herbal medicine, on the corticosterone induced apoptosis in PC12 cells," Life Sciences, vol. 72, no. 8, pp. 933–942, 2003.

[22] Y.-F. Li, Y.-Q. Liu, M. Yang et al., “The cytoprotective effect of inulin-type hexasaccharide extracted from Morinda officinalis on PC12 cells against the lesion induced by corticosterone," Life Sciences, vol. 74, no. 15, pp. 1531–1538, 2004.

[23] D. N. Olenenkov, L. M. Tankhaeva, and A. V. Rokhin, “Glucofructans from Saussurea lappa roots," Chemistry of Natural Compounds, vol. 47, no. 3, pp. 339–342, 2011.

[24] S. K. Hyun, H. A. Jung, B. S. Min, J. H. Jung, and J. S. Choi, “Isolation of phenolics, nucleosides, saccharides and an alkaloid from the root of Aralia cordata," Natural Products Science, vol. 16, no. 1, pp. 20–25, 2010.

[25] Z. J. Xu, C. W. Lin, and M. F. Liao, “Structure analysis of a new oligosaccharides BROS from Blumea riparia," Chinese Journal of Organic Chemistry, vol. 31, no. 11, pp. 1811–1819, 2011.

[26] Z. J. Xu, C. W. Lin, and Y. Shi, “Isolation and structure determination of a new oligosaccharide from Blumea riparia," Journal of Medicinal Plants Research, vol. 5, no. 14, pp. 2956–2962, 2011.

[27] Y. Wang, R. Z. Jiang, G. R. Li et al., “Structural and enhanced memory activity studies of extracts from Panax ginseng root," Food Chemistry, vol. 119, no. 3, pp. 969–973, 2010.

[28] D. Wan, L. Jiao, H. Yang, and S. Liu, “Structural characterization and immunological activities of the water-soluble oligosaccharides isolated from the Panax ginseng roots," Planta, vol. 235, no. 6, pp. 1289–1297, 2012.

[29] L. G. Zhou, C. Z. Yang, J. Q. Li, S. L. Wang, and J. Y. Wu, “Heptasaccharide and octasaccharide isolated from Paris polyphylla var. yunnanensis and their plant growth-regulatory activity," Plant Science, vol. 165, no. 3, pp. 571–575, 2003.

[30] L. G. Zhou, X. D. Cao, R. F. Zhang, Y. L. Peng, S. J. Zhao, and J. Y. Wu, “Stimulation of saponin production in Panax ginseng hairy roots by two oligosaccharides from Paris polyphylla var. yunnanensis," Biotechnology Letters, vol. 29, no. 4, pp. 631–634, 2007.

[31] M. Vanhaecke, W. van den Ende, E. Lescrinier, and N. Dyubankova, “Isolation and characterization of a pentasaccharide from Stellaria media," Journal of Natural Products, vol. 71, no. 11, pp. 1833–1836, 2008.

[32] J. Feng and W. Zhao, “Complete 1H and 13C NMR assignments of four new oligosaccharides and two new glycosides from Periploca forrestii," Magnetic Resonance in Chemistry, vol. 47, no. 8, pp. 701–705, 2009.

[33] J. Q. Feng, R. J. Zhang, Y. Zhou et al., “Immunosuppressive pregnancy glycosides from Periploca sepium and Periploca forrestii," Phytochemistry, vol. 69, no. 15, pp. 2716–2723, 2008.

[34] X. H. Long, R. Xu, Y. H. Zhang, X. H. Tan, and Q. Y. Sun, “A new oligosaccharide from Periploca calophylla," Zhongguo Zhongyao Zazhi, vol. 37, no. 2, pp. 226–229, 2012.

[35] L. Wang, Z.-Q. Yin, Y. Wang, X.-Q. Zhang, Y.-L. Li, and W.-C. Ye, “Perisesaccharides A-E, new oligosaccharides from the root barks of Periploca sepium," Planta Medica, vol. 76, no. 9, pp. 909–915, 2010.

[36] T. Lei, L. Zhang, H.-Y. Jiang, Y. Hu, A.-H. Hong, and Y.-Z. Cen, “A new pregnane glycoside and oligosaccharide from Parabarium huatingii," Journal of Asian Natural Products Research, vol. 13, no. 11, pp. 1030–1035, 2011.

[37] J. Li, Y. Jiang, and P. F. Tu, “Tricorones A-L, oligosaccharide multi-esters from the roots of Polygala tricornis," Journal of Natural Products, vol. 68, no. 5, pp. 739–744, 2005.
Evidence-Based Complementary and Alternative Medicine

H. Chen, Y. Z. Zhou, L. Qiao et al., “Two new compounds from Cynanchum ampeloprasum,” Journal of Natural Products Research, vol. 10, no. 3, pp. 248–251, 2008.

C.-L. Chang, L.-J. Zhang, R. Y. Chen et al., “Antioxidant and anti-inflammatory phenylpropanoid derivatives from Calamus quinquetrinervius,” Journal of Natural Products, vol. 73, no. 9, pp. 1482–1488, 2010.

Y. Kawai, H. Kumagai, H. Kurihara, K. Yamazaki, R. Sawano, and N. Inoue, “β-Glucosidase inhibitory activities of phenylpropanoid glycosides, vanicoside A and B from Polygonum sacchalinense rhizome,” Fitoterapia, vol. 77, no. 6, pp. 456–459, 2006.

P. V. Kiem, N. X. Nhu, N. X. Cuong et al., “New phenylpropanoid esters of sucrose from Polygonum hydropiper and their antioxidant activity,” Archives of Pharmacal Research, vol. 31, no. 11, pp. 1477–1482, 2008.

K. J. Wang, Y. J. Zhang, and C. R. Yang, “Antioxidant phenolic constituents from Fagopyrum dibotrys,” Journal of Ethnopharmacology, vol. 99, no. 2, pp. 259–264, 2005.

N. Cho, J. Huh, H. Yang et al., “Chemical constituents of Polygala tenuifolia roots and their inhibitory activity on lipopolysaccharide-induced nitric oxide production in BV2 microglia,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 27, no. 1, pp. 1–4, 2012.

Q. Ren, C. S. Wu, and J. L. Zhang, “Use of on-line stop-flow heart-cutting two-dimensional high performance liquid chromatography for simultaneous determination of 12 major constituents in tartary buckwheat (Fagopyrum tataricum Gaertn.),” Journal of Chromatography A, vol. 1304, pp. 257–262, 2013.

Q. Ren, C. S. Wu, Y. Ren, and J. L. Zhang, “Characterization and identification of the chemical constituents from tartary buckwheat (Fagopyrum tataricum Gaertn) by high performance liquid chromatography/photodiode array detector/linear ion trap FTICR hybrid mass spectrometry,” Food Chemistry, vol. 136, no. 3–4, pp. 1377–1389, 2013.

W. Li, Y. N. Sun, X. T. Yan et al., “NF-xB inhibitory activity of sucrose fatty acid esters and related constituents from Astragalus membranaceus,” Journal of Agricultural and Food Chemistry, vol. 61, no. 29, pp. 7081–7088, 2013.

J. T. Cheng, J. He, Y. Li et al., “Three new sucrose fatty acid esters from Equisetum hiemale L.,” Helvetica Chimica Acta, vol. 95, no. 7, pp. 1158–1163, 2012.

Y. Jiang and P.-F. Tu, “Tenuifoliose Q, a new oligosaccharide ester from the root of Polygala tenuifolia Willd,” Journal of Asian Natural Products Research, vol. 5, no. 4, pp. 279–283, 2003.

M. Yoshikawa, H. Matsuda, T. Morikawa, H. H. Xie, S. Nakamura, and O. Murakawa, “Phenylethanoid oligoglycosides and acylated oligosugars with vasorelaxant activity from Cistanthe tubulosa,” Bioorganic & Medicinal Chemistry, vol. 14, no. 22, pp. 7468–7475, 2006.

P.-F. Tu, H.-M. Shi, Z.-H. Song, Y. Jiang, and Y.-Y. Zhao, “Chemical constituents of Cistanche sinensis,” Journal of Asian Natural Products Research, vol. 9, no. 1, pp. 79–84, 2007.

C.-L. Si, Y.-Y. Lu, P.-P. Qin, R.-C. Sun, and Y.-H. Ni, “Phenolic extractives with chemotaxonomic significance from the bark of Paulownia tomentosa var. tomentosa,” BioResources, vol. 6, no. 4, pp. 5086–5098, 2011.

J. Wu, S. Zhang, Q. Xiao et al., “Phenylethanoid and alliﬁphatic alcohol glycosides from Acanthus ilicifolius,” Phytochemistry, vol. 63, no. 4, pp. 491–495, 2003.

Y. Jiang and P.-F. Tu, “Analysis of chemical constituents in Cistanthe species,” Journal of Chromatography A, vol. 1216, no. 11, pp. 1970–1979, 2009.

H. Otsuka, H. Kuwabara, and H. Hoshiyama, “Identiﬁcation of sucrose diesters of arylidihydroanthalene-type lignans from Trigonotis peduncularisand the nature of their ﬂuorescence,” Journal of Natural Products, vol. 71, no. 7, pp. 1178–1181, 2008.

M.-R. Suo, J.-S. Yang, and Q.-H. Liu, “Lignan oligosaccharide esters from Eritrichium rupestris,” Journal of Natural Products, vol. 69, no. 4, pp. 682–684, 2006.

P.-F. Tu, Z.-H. Song, H.-M. Shi, Y. Jiang, and Y.-Y. Zhao, “Phenylethanoid glycosides and oligosaccharide from the stem of Cistanthe tubulosa,” Helvetica Chimica Acta, vol. 89, no. 5, pp. 927–935, 2006.

M.-H. Shyr, T.-H. Tsai, and L.-C. Lin, “Rossicasins A, B and rosicaside F, three new phenylpropanoid glycosides from Boschniaia rossica,” Chemical and Pharmaceutical Bulletin, vol. 54, no. 2, pp. 252–254, 2006.

R. Fang, N. C. Veitch, G. C. Kite, M. J. R. Howes, E. A. Porter, and M. S. J. Simmonds, “Glycosylated constituents of Iris fulva and Iris brevicaulis,” Chemical & Pharmaceutical Bulletin, vol. 59, no. 1, pp. 124–128, 2011.

J. Fu, L. Zuo, J. Yang, R. Chen, and D. Zhang, “Oligosaccharide polyester and triterpenoid saponins from the roots of Polygala japonica,” Phytochemistry, vol. 69, no. 7, pp. 1617–1624, 2008.

M.-C. Cheng, C.-Y. Li, H.-C. Ko, F.-N. Ko, Y.-L. Lin, and T.-S. Wu, “Antidepressant principles of the roots of Polygala tenuifolia,” Journal of Natural Products, vol. 69, no. 9, pp. 1305–1309, 2006.

H. T. Chang and P. F. Tu, “New oligosaccharide esters and xanthone C-glucosides from Polygala telephioides,” Helvetica Chimica Acta, vol. 90, no. 5, pp. 944–950, 2007.

J. Li, L. Feng, J. Dai, R. Wang, and T. Nohara, “Chemical constituents from Polygala telephioides,” China Journal of Chinese Materia Medica, vol. 34, no. 4, pp. 402–405, 2009.

W.-P. Yin, T.-Z. Zhao, and H.-Y. Zhang, “A novel oligosaccharide ester from Syringa pubescens,” Journal of Asian Natural Products Research, vol. 10, no. 1, pp. 95–100, 2008.

M. Valkó, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” The International Journal of Biochemistry & Cell Biology, vol. 39, no. 1, pp. 44–84, 2007.

D. Krishniah, R. Sarbatly, and R. Nithyanandam, “A review of the antioxidant potential of medicinal plant species,” Food and Bioprocess Technology, vol. 89, no. 3, pp. 217–233, 2011.

P. Liu, Y. Hu, D.-H. Guo et al., “Antioxidant activity of oligosaccharide ester extracted from Polygala tenuifolia roots in senescence-accelerated mice,” Pharmaceutical Biology, vol. 48, no. 7, pp. 828–833, 2010.

Y. Hu, H.-B. Liao, G. Dai-Hong, P. Liu, Y.-Y. Wang, and K. Rahman, “Antidepressant-like effects of 3,6′-disinapoyl sucrose on hippocampal neuronal plasticity and neurotrophic signal pathway in chronically mild stressed rats,” Neurochemistry International, vol. 56, no. 3, pp. 461–465, 2010.

Y. Hu, H. B. O. Liao, P. Liu, D.-H. Guo, and K. Rahman, “A bioactive compound from Polygala tenuifolia regulates efﬁciency of chronic stress on hypothalamic-pituitary-adrenal axis,” Pharmacie, vol. 64, no. 9, pp. 605–608, 2009.

A. Jungbauer and S. Medjakovic, “Anti-inﬂammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome,” Maturitas, vol. 71, no. 3, pp. 227–239, 2012.
[101] Q. Xu, Y. Wang, S. Guo, Z. Shen, and L. Yang, “Anti-inflammatory and analgesic activity of aqueous extract of Flos populi,” *Journal of Ethnopharmacology*, vol. 152, no. 3, pp. 540–545, 2014.

[102] K. S. Kim, D. S. Lee, G. S. Bae et al., “The inhibition of JNK MAPK and NF-κB signaling by tenuifoliside A isolated from Polygala tenuifolia in lipopolysaccharide-induced macrophages is associated with its anti-inflammatory effect,” *European Journal of Pharmacology*, vol. 721, no. 1–3, pp. 267–276, 2013.

[103] J.-G. Lee, J.-M. Yon, C. Lin, A. Y. Jung, K. Y. Jung, and S.-Y. Nam, “Combined treatment with capsaicin and resveratrol enhances neuroprotection against glutamate-induced toxicity in mouse cerebral cortical neurons,” *Food and Chemical Toxicology*, vol. 50, no. 11, pp. 3877–3885, 2012.

[104] M. L. Jin, S. Y. Park, Y. H. Kim, J.-I. Oh, S. J. Lee, and G. Park, “The neuroprotective effects of cordycepin inhibit glutamate-induced oxidative and ER stress-associated apoptosis in hippocampal HT22 cells,” *NeuroToxicology*, vol. 41, pp. 102–111, 2014.

[105] P. Liu, Y. Hu, J. Li et al., “Protection of SH-SY5Y neuronal cells from glutamate-induced apoptosis by 3,6′-disinapoyl sucrose, a bioactive compound isolated from radix polygala,” *Journal of Biomedicine and Biotechnology*, vol. 2012, Article ID 728342, 5 pages, 2012.

[106] P.-B. Li, W.-L. Lin, Y.-G. Wang, W. Peng, X.-Y. Cai, and W.-W. Su, “Antidiabetic activities of oligosaccharides of Ophiopogonis japonicus in experimental type 2 diabetic rats,” *International Journal of Biological Macromolecules*, vol. 51, no. 5, pp. 749–755, 2012.

[107] T. Liu, Y. M. Yip, L. Song et al., “Inhibiting enzymatic starch digestion by the phenolic compound diboside A: a mechanistic and *in silico* study,” *Food Research International*, vol. 54, no. 1, pp. 595–600, 2013.

[108] F. Côté and M. G. Hahn, “Oligosaccharins: structures and signal transduction,” *Plant Molecular Biology*, vol. 26, no. 5, pp. 1379–1411, 1994.

[109] R. A. Creelman and J. E. Mullet, “Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression,” *Plant Cell*, vol. 9, no. 7, pp. 1211–1223, 1997.

[110] L. Jiao, D. Wan, X. Zhang, B. Li, H. Zhao, and S. Liu, “Characterization and immunostimulating effects on murine peritoneal macrophages of oligosaccharide isolated from Panax ginseng C.A. Meyer,” *Journal of Ethnopharmacology*, vol. 144, no. 3, pp. 490–496, 2012.