Management of a rare presentation of Vogt-Koyanagi-Harada disease in human immunodeficiency virus/acquired immunodeficiency disease syndrome patient

D Priya, S Sudharshan, Jyotirmay Biswas

Vogt-Koyanagi-Harada (VKH), a multisystem autoimmune bilateral panuveitis with systemic manifestations, is uncommon in immunocompromised patients such as human immunodeficiency virus (HIV)/acquired immunodeficiency disease syndrome (AIDS). We report a rare presentation of VKH in a 45-year-old HIV-positive female on highly active antiretroviral therapy (HAART) who presented with a history of recurrent panuveitis. A diagnosis of probable VKH was made based on ocular and systemic signs and symptoms. She was treated with topical and systemic steroids with close monitoring of CD4 counts and viral loads. After inflammation control, complicated cataract was managed surgically under perioperative steroid cover. VKH in HIV/AIDS has not been reported earlier. This case shows that significant inflammation...
can be seen even in HIV/AIDS patients on HAART with VKH in spite of moderate CD4 counts. Management is a challenge considering the systemic risks with long-term use of steroids.

Key words: Acquired immunodeficiency disease syndrome, cataract surgery, complicated cataract, human immunodeficiency virus, Vogt-Koyanagi-Harada

Vogt-Koyanagi-Harada (VKH),[1,2] a bilateral granulomatous panuveitis with various systemic manifestations, is relatively uncommon even in immunocompetent individuals, and its occurrence in immunocompromised patients such as human immunodeficiency virus (HIV)/acquired immunodeficiency disease syndrome (AIDS) has not been reported. Here, we are reporting a rare presentation of VKH in a patient with HIV/AIDS, its course, and challenges in medical and surgical management.

Case Report

A 45-year-old Indian female presented to us with a history of recurrent redness of both eyes and gradual diminution of vision associated with headache and gradual changes in skin pigmentation since the previous 2 years. She was treated as bilateral panuveitis with topical steroids elsewhere. She was known HIV positive since 10 years and was on highly active antiretroviral therapy (HAART) (etavirenz 600 mg, lamivudine 300 mg, and tenofovir 300 mg). Her nadir CD4 counts were 87 cells/μl and CD4 count at the time of presentation was 170 cells/μl. General physical examination showed vitiliginous patches over face, back, and upper and lower limbs [Fig. 1a and b].

Her best-corrected visual acuity (BCVA) was hand movements in the right eye and 6/60 in the left eye. Anterior segment examination revealed active anterior segment inflammation with complicated cataract in both eyes with corneal edema in the right eye [Fig. 2a and b]. Applanation tonometry revealed an intraocular pressure (IOP) of 50 mmHg in the right eye and 10 mmHg in the left. Gonioscopy showed synechial angle closure in the right and narrow angles in the left eye. Ultrasound B-scan of both eyes showed attached retina with other evidences of vitreous inflammation and choroidal thickness 2.1 mm in the right eye and 1.9 mm in the left eye.

Secondary angle closure glaucoma was treated with yttrium-aluminum-garnet (YAG) peripheral iridotomy in both eyes, and patient was started on antiglaucoma medications (AGM). Post-YAG, dilated fundus evaluation revealed a panuveitis with sunset glow fundus. The patient underwent tests to rule out other possible causes of panuveitis such as chest X-ray, Mantoux tests ELISA toxoplasma, syphilis, cryptococci, and serum angiotensin-converting enzyme which were all within normal limits. A diagnosis of probable VKH was made in our patient. Significantly, our patient had intense inflammation even with moderate CD4 counts.

Discussion

A diagnosis of probable VKH was made in our patient according to revised diagnostic criteria of VKH.[3,4] Our patient had ocular features suggestive of the same and was on chronic reactivation phase. VKH, a multisystem autoimmune bilateral panuveitis, is uncommon in immunocompromised patients such as HIV/AIDS.

VKH reflects autoimmunity against melanocytes.[5,6] Studies show that predominant infiltrating cell in the choroid is T lymphocyte with a larger proportion of helper cell (CD4+) than cytotoxic cells (CD8+) along with Class II major histocompatibility complex molecules. The infiltrating CD4+ T cells recognize human melanocyte antigens. Furthermore, cytokines such as interleukin-7 (IL-7), IL-21, and IL-23 stimulate CD4+ T lymphocyte to produce IL-17, which in turn leads to the development of uveitis in VKH. The triggering factor for this process is still unknown.

HIV mainly targets CD4 T lymphocytes, which are necessary to initiate immune response.[6] A decline in CD4 counts leads to progressive immune deficiency, mainly cell-mediated immunity. A possible hypothesis is that there could have been an immune dysfunction since they seem to be acting on similar cell lines. It might be just a coincidental occurrence of VKH in a patient with HIV/AIDS. Even this is a rare occurrence of an immune-based disease in an immunocompromised individual and significant as it poses a therapeutic challenge considering the need for long-term use of systemic steroids and/or immunomodulators.

Uveitis in HIV patients without any obvious clinical ocular opportunistic infections (OIs) could be drug induced, immune recovery, or HIV per se, which is a diagnosis of exclusion.[7] There was no clinical evidence of any ocular OI or immune recovery uveitis[8,9] in our patient. Significantly, our patient had intense inflammation even with moderate CD4 counts.

Vitiliginous patches have also been described in patients with HIV without uveitis due to possible mechanism of destruction of melanocytes by autoimmune-mediated mechanism due to release of protein from dying CD4 cells.[10] In our patient, the depigmentation was seen as part of a convalescent phase of VKH along with sunset glow fundus.

Our patient was a known case of HIV/AIDS on antiretroviral therapy who developed ocular and systemic inflammatory features very characteristic of VKH. Considering that the patient at presentation was in Stage III immunosuppression,[11] with CD4 counts of 170 cells/μl, it was interesting to note that she presented with significant inflammation with VKH which is a unique feature. This possibly indicates that in such scenario of noninfective uveitic entities in patients with HIV/AIDS, the inflammatory response resembles the underlying uveitic
entity in spite of moderate CD4 counts or systemic status of the patient. Hence, the challenges lie not only in the identification of the disease but also in the judicious use of steroids in the management by close monitoring of CD4 counts, viral loads, and systemic status of the individual under care of a HIV care physician. A disease like VKH may need long-term steroids and/or immunomodulatory therapy and is known for its recurrences. Medline search did not reveal any report of VKH in a patient with HIV/AIDS, and to our knowledge, this is the first case of VKH in HIV patient being reported. Interestingly, our patient had significant inflammation during the course of the disease and during postoperative stage in spite of moderate CD4 counts. This case represents an uncommon/rare manifestation of an autoimmune disease occurring in a HIV/AIDS patient with significant inflammation in spite of moderate CD4 counts.

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Moorthy RS, Inomata H, Rao NA. Vogt-Koyanagi-Harada syndrome. Surv Ophthamlol 1995;39:265-92.
2. Read RW. Vogt-Koyanagi-Harada disease. Ophthalmol Clin North Am 2002;15:333-41, vii.
3. Read RW, Holland GN, Rao NA, Tabbara KF, Ohno S, Arellanes-Garcia L, et al. Revised diagnostic criteria for Vogt-Koyanagi-Harada disease: Report of an international committee on nomenclature. Am J Ophthalmol 2001;131:647-52.
4. da Silva FT, Damico FM, Marin ML, Goldberg AC,
Antiretinal antibody-proven autoimmune retinopathy

Sharanya Abraham, S Sudharshan, Muna Bhende, Sudha K Ganesh, Sriram Gopal

A young female presented with bilateral subacute onset of progressive decrease in night vision and reduced peripheral field of vision. The short duration and rapid progression of symptoms along with the lack of family history of night blindness prompted a diagnosis of autoimmune retinopathy (AIR). Fundus fluorescein angiography, optical coherence tomography, visual fields, and electroretinogram were suggestive of AIR. A differential diagnosis of retinitis pigmentosa (RP) was also made. Antiretinal autoantibodies were detected in the blood sample. Treatment was with oral steroids and subsequently oral immunosuppressive agents. Visual acuity was maintained, fundus examination reverted to normal, and investigations repeated at every visit were stable with improvement in visual fields. Our case suggests that AIR, if diagnosed early and treated appropriately, may have a good outcome and should be considered in patients with an atypical presentation of RP.

Key words: Antiretinal antibodies, autoimmune retinopathy, immunosuppressive agents, steroids, visual fields

Autoimmune retinopathy (AIR) is an immunologic process that involves aberrant recognition of retinal antigens as autoantigens, leading to retinal degeneration. It includes a spectrum of rare autoimmune diseases including "paraneoplastic AIR," such as cancer-associated retinopathy, melanoma-associated retinopathy, and bilateral diffuse uveal melanocytic proliferation; and a larger group of AIRs that share similar clinical and immunologic features without an underlying malignancy termed "presumed nonparaneoplastic AIR" (npAIR).

There is rapidly progressive, bilateral, painless visual deterioration. The clinical challenge lies in their rare incidence, dissociation between symptoms and signs, difficult access to investigations that support diagnosis, and the absence of an evidence-based treatment. Onset is acute or subacute,

Sankara Nethralaya, Chennai, 1
Athreya Retinal Centre, Trichy, Tamil Nadu, India

Correspondence to:
Dr. S Sudharshan, Sankara Nethralaya, No 18/41, College Road, Nungambakkam, Chennai - 600 006, Tamil Nadu, India.
E-mail: drdharshan@gmail.com

Manuscript received: 04.11.16; Revision accepted: 24.04.17

Cite this article as: Abraham S, Sudharshan S, Bhende M, Ganesh SK, Gopal S. Antiretinal antibody-proven autoimmune retinopathy. Indian J Ophthalmol 2017;65:416-20.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Access this article online
Quick Response Code:
Website: www.ijo.in
DOI: 10.4103/ijo.IJO_838_16
PMID: ***

Figure 1: Color fundus photograph showing normal discs, attenuated vessels, retinal pigment epithelial mottling, and suspicion of cystoid macular edema