Genesis of high-Ni olivine phenocrysts of the Dali picrites in the Central Emeishan large igneous province

Wen-Chang Cai¹, Zhao-Chong Zhang¹, Jiang Zhu¹,², M. Santosh¹,³ and Rong-Hao Pan¹

¹State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China; ²Yunnan Institute of Geological Sciences, Kunming, 650051, China and ³Department of Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia

Abstract

The Emeishan large igneous province (ELIP) in SW China is considered to be a typical mantle-plume-derived LIP. The picrites formed at relatively high temperatures in the ELIP, providing one of the important lines of argument for the role of mantle plume. Here we report trace-element data on olivine phenocrysts in the Dali picrites from the ELIP. The olivines are Ni-rich, and characterized by high (>1.4) 100×Mn/Fe value and low (<13) 10 000×Zn/Fe value, indicating a peridotite-dominated source. Since the olivine–melt Ni partition coefficient (K\text{DNi/melt}) will decrease at high temperatures and pressures, the picrites derived from peridotite melting at high pressure, and that crystallized olivines at lower pressure, can generate high concentrations of Ni in olivine phenocrysts, excluding the necessity of a metasomatic pyroxenite contribution. Based on the Al-in-olivine thermometer, olivine crystallization temperature and mantle potential temperature (T\text{p}) were calculated at c. 1491°C and c. 1559°C, respectively. Our results are c. 200°C higher than that of the normal asthenospheric mantle, and are consistent with the role of a mantle thermal plume for the ELIP.

1. Introduction

Large igneous provinces (LIPs) are characterized by voluminous volcanic sequences (>10⁵ km²; >10⁶ km³) erupting over a short period of time (1–5 Ma), and their formation is generally related to mantle plumes (Richards et al. 1989; Campbell & Griffins, 1990; Chung & Jahn, 1995; Campbell, 2005). The association of picrites with LIPs provide one of the important lines of evidence in favour of a relatively high-temperature plume source (He et al. 2003; Hanski et al. 2004; Ali et al. 2005; Campbell, 2005, 2007; Zhang et al. 2006; Shellnutt, 2014; Santosh et al. 2018; Condie & Puetz, 2019). However, some recent studies suggested that the source of the Emeishan large igneous province (ELIP) picrites involved variable proportions of pyroxenite or eclogites (Kamenetsky et al. 2012; Yu et al. 2014, 2017; Liu et al. 2017; Zhu et al. 2018). The presence of eclogites or pyroxenite in the mantle source region can lead to overestimates in temperature as the thermometers assume a peridotite-dominated source (e.g. olivine–liquid equilibrium for primary magmas produced by melting of fertile peridotite; Zhang et al. 2006; Herzberg, 2011; Shellnutt & Pham, 2018). One of the important challenges is therefore to clarify whether the mantle source of ELIP picrite is dominated by peridotite or pyroxenite.

As one of the earliest crystallized minerals from typical mantle-derived magmas, the composition of olivine phenocrysts with high Fo values (atomic 100×Mg/(Mg + Fe)) can provide important information on the primary magma. Recent studies suggest that some trace elements (such as Mn and Zn) in olivine from pyroxenite-derived and peridotite-derived melts have two distinct trends (Le Roux et al. 2010; Howarth & Harris, 2017) and can therefore be used to distinguish pyroxenite components in the mantle source region. Some studies recorded picritic rocks in the inner zone of the ELIP (Hanski et al. 2010; Kamenetsky et al. 2012; Yu et al. 2017; Yao et al. 2019), which were thought to have formed at relatively high temperatures (Xu et al. 2001; Zhang et al. 2004, 2006; Shellnutt & Pham, 2018). However, some other studies suggested that the picrites were derived from a metasomatized pyroxenite-bearing mantle source (Kamenetsky et al. 2012; Yu et al. 2017). The role of high-temperature primary magmas in the ELIP therefore remains contentious. In this paper, we investigate this aspect based on petrology and mineral chemistry of olivine phenocrysts from Dali picrite in the inner zone of the ELIP, with a view to evaluate the nature of the mantle source and the conditions of melting.
2. Geological setting

The ELIP is mainly located in the western part of the Yangtze craton in SW China (Fig. 1). Its southwestern margin is bounded by the Ailaoshan–Red River Fault, and the northwestern boundary is traditionally thought to be the Longmenshan–Xiaojinhe Fault. The volcanic successions in the ELIP trend N–S with a rhombic shape and cover an area of more than 2.5×10^5 km2, with a total erupted volume of more than 3×10^5 km3 (Xu et al. 2001, 2004; Ali et al. 2005, 2010). The thickness of the volcanic sequence ranges from c. 5000 m to several hundred metres, with the thickest zone located near the Lijiang and Binchuan sections in the western part of the ELIP and the thinnest area located in the eastern part of the ELIP (Xu et al. 2004; Song et al. 2001, 2004; Xiao et al. 2003, 2004; Zhang et al. 2006). The ELIP comprises a succession of tholeiites, with minor picritic and rhyolitic/trachytic lava flows. Many mafic-ultramafic intrusions are exposed in a belt extending along the Panzhihua–Xichang region in the SW part of the ELIP, and some of these intrusions host giant Fe-Ti-V oxide and Ni-Cu-PGE sulphide deposits (Shellnutt, 2014). Previous studies have indicated that the main phase of magmatism took place at c. 260 Ma over a short duration of 1 Ma (Zhou et al. 2002; He et al. 2007; Shellnutt et al. 2008, 2012; Zhong et al. 2009, 2011, 2014; Sun et al. 2010; Xu et al. 2010; Jerram et al. 2016).

The picritic lavas mainly occur in the central ELIP such as those in the Dali and Binchuan districts, and these areas are considered to represent the centre of the mantle plume (Zhang et al. 2006; Hanski et al. 2010; Kamenetsky et al. 2012; Li et al. 2015; Ren et al. 2017; Wu et al. 2018). The samples of Dali picrite for this study were collected from a road-cut section c. 20 km NE of Dali City (25° 40′ 48″ N; 100° 21′ 14″ E), the occurrence of which was reported by Hanski et al. (2010) and Ren et al. (2017). The picrites occur in the bottom part of the Emeishan basaltic sequence (Fig. 2a). A newly opened quarry from where the basalts and picrites are mined exposes fresh outcrops, where the picrites are easily distinguished from their darker colour compared with the associated basalt flows.

Most of the picrites are porphyritic (with 20–40 vol% phenocrysts), and the dominant phenocryst is olivine (c. 80 vol% of the phenocrysts) with minor clinopyroxene. The olivine phenocrysts are subhedral to euhedral, generally ranging from 0.2 to 2 mm across with the largest grains up to 4 mm in diameter. Some olivine crystals are altered to serpentine along the rims and cracks, but their cores remain unaltered. Minor euhedral to subhedral Cr-spinel grains occur within the olivine phenocrysts (Fig. 2c). The groundmass consists predominantly of microcrystalline–cryptocrystalline olivine, anhedral clinopyroxene and small

Fig. 1. (Colour online) Simplified regional geological map of the Emeishan large igneous province showing the concentric zones (dashed grey line), volcanic and intrusive rocks, and sampling location (modified after Kamenetsky et al. 2012; Wu et al. 2018).
plagioclase crystals. Some Cr-spinels and Fe-Ti oxide minerals occur in the groundmass.

The basalts are porphyritic (with 15–40 vol% phenocrysts), and plagioclase is the dominant phenocryst (~80–90 vol% of the phenocrysts; Fig. 2d) with minor clinopyroxene (~10–20 vol% of the phenocrysts). The groundmass consists predominantly of microcrystalline plagioclase, anhedral clinopyroxene, some basaltic glass and a small amount of magnetite and Fe-Ti oxide.

3. Analytical methods

Polished thin-sections of picrite samples were prepared for the analysis. The olivine phenocrysts selected for analysis show little alteration with no zoning. The unaltered Cr-spinel inclusions without any fractures were selected for analysis.

Major and minor elements in olivines and Cr-spinels were analysed using an EPMA-1720 electron microprobe at the EPMA Laboratory, Institute of Earth Sciences, China University of Geosciences, Beijing (CUGB). For most elements, the accelerating voltage was 15 kV, beam current 20 nA and beam diameter 1 μm, with the on-peak counting time set for 10 s per element and 5 s for background. The Al element was analysed using a 60 s peak counting time and the background was set for 30 s. The standard samples are natural minerals and synthetic oxides produced by SPI Supplies of the United States of America. The precision is better than 1% for most major and minor elements.

Trace-element concentrations of olivine were determined by laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) using a Photon Machines Analyte HE 193 nm ArF Excimer laser ablation system. The analyses were carried out at the Mineral Geochemistry Lab, Ore Deposit and Exploration Centre (ODEC), Hefei University of Technology, China. In this study, the ablation protocol employed a spot of 30 μm diameter at 8 Hz with an energy of ~4 J cm⁻² fluence. Each spot was measured for 40 s, and each spot analysis was followed by a blank scan for 20 s. Helium was used as the carrier gas and argon was used as the makeup gas, and they were mixed via a T-connector before entering the ICP (Ning et al. 2017; Wang et al. 2017). Reference materials GSE-1G, GSD-1G, BCR-2G and SRM-612 were used as external standards, and they were measured every 10–12 spot analyses to check reproducibility through the analytical session. Off-line selection and the integration of background and analytical signals, and time-drift correction and quantitative calibration, were performed with ICP-MS Data Cal (Liu et al. 2008). The precision for most trace elements in each spot was better than 10%.

4. Mineral chemistry of olivine and Cr-spinel

The major elements and some minor elements (Ni, Mn and Al) were analysed by EPMA, and all the analytical spots were on fresh core regions of the grains (online Supplementary Table S1a, available at http://journals.cambridge.org/geo). The olivine phenocrysts show Fo values of 82.1–93.3. The grains with low Fo values (Fo < 85) are relatively small in size compared with those with high Fo values (Fo > 85). Most olivine grains with high Fo values show 0.2–0.4 mm diameter with a few cracks, whereas those grains with low Fo values are mainly 0.1–0.2 mm in diameter.

Generally, the content of NiO (0.25–0.51 wt%) shows a positive correlation with the Fo values, whereas the MnO content displays a negative correlation with the Fo values (0.11–0.32 wt%). The CaO concentration is relatively high, ranging from 0.25 to 0.46 wt%, with no correlation with the olivine Fo values. The Al₂O₃ content in olivine ranges from 0.03 to 0.11 wt%. All the olivine phenocrysts of the Dali picrites contain >0.25 wt% CaO content, and exhibit no kinked band. We infer that they were crystallized from magma and are not mantle xenocrysts, and can therefore be used as an indicator of the primary melt.

With regard to the minor- and trace-element concentrations in the core of the olivine phenocrysts (analysed by LA-ICP-MS), the Ni concentration ranges from 2563 to 3897 ppm (0.32–0.49 wt% NiO) and shows a positive correlation with the Fo values (Fig. 3). The CaO concentration ranges from 0.25 to 0.50 wt%. MnO content ranges from 0.11 to 0.22 wt% (Fig. 4), whereas the Zn concentration range is 49.8–120.9 ppm, showing a positive Zn–Mn correlation (Fig. 5a; online Supplementary Table S2, available at http://journals.cambridge.org/geo). In addition, the olivine contains 115.6–171.1 ppm Co, 5.8–21.1 ppm V and 4.4–8.9 ppm Sc. However, most rare earth elements (REEs), especially light REEs (LREEs), are present in quantities lower than the detection limits. Although some minor elements such as Ni and Mn were analysed by both EPMA and LA-ICP-MS, we discuss the LA-ICP-MS data as it is of greater precision.
The Cr no. (atomic Cr/(Cr + Al)) of Cr-spinel ranges from 0.570 to 0.685 (online Supplementary Table S1b). The content of TiO₂ is in the range of 0.4–1.8 wt%, and total iron as FeO (FeO*) is 19.5–29.2 wt%. The MgO contents vary from 9.7 to 14.3 wt%, and the Al₂O₃ values range from 16.4 to 20.8 wt%.

5. Discussion

5.a. Origin of high-Ni olivine

The Ni content of primitive mantle is estimated as 1960 ppm, which is similar to that of the depleted peridotite (McDonough & Sun, 1995; Herzberg et al. 2013), whereas the Ni concentration of olivine in mantle peridotite ranges from 2800 to 3100 ppm (Ionov, 2007; Herzberg et al. 2013, 2016). However, the olivine phenocrysts in Dali picrites, especially those grains with high Fo values, have much higher Ni concentration (with Ni concentration up to c. 3900 ppm, Hanski et al. 2010; Yu et al. 2017) than those from mid-ocean ridge basalts (MORBs) or mantle peridotite (Fig. 3). The excess Ni in olivine can result from the following processes. (1) The core–mantle interaction can produce a less-degassed Ni-rich source, and this source continues adding into the mantle plume, which finally formed picrites with high Ni content (Herzberg et al. 2013, 2016). (2) The silica-rich melts formed from recycled crust might interact with mantle peridotite to form a secondary olivine-poor pyroxenite source. Magmas derived from such metasomatic pyroxenite source would therefore contain higher Ni content than those derived from peridotite source (Sobolev et al. 2005, 2007; Herzberg, 2006; Foley et al. 2011, 2013). (3) Higher melting temperature and pressure would decrease the partition coefficient of Ni between olivine and melts (K_{D Ni}^{pl/melt}); this will

Fig. 2. (Colour online) (a) Picritic lava showing sharp contact with basalt in the Dali geological section. (b) Olivine and clinopyroxene phenocrysts in Dali picrite (cross-polarized light). (c) Small Cr-spinel grains included by olivine phenocryst (plane-polarized light). (d) Plagioclase phenocrysts in those basalts that coexist with Dali picrites (cross-polarized light).

Fig. 4. (Colour online) The forsterite (Fo) values versus MnO concentrations in olivine phenocrysts. Dali picrite data analysed by LA-ICP-MS; errors on measurements are smaller than the symbols. Olivine MORB and Hawaii data from Sobolev et al. (2005, 2007) and the previously measured olivine Dali picrite data are from Hanski et al. (2010) and Yu et al. (2017).
result in a higher Ni concentration in primary melt, and the olivine crystallizing from this melt will have higher Ni content (Niu et al. 2011; Putirka et al. 2011; Matzen et al. 2013, 2017).

Olivine with high Ni content has also been recognized in other LIPs. The picrites in Baffin Island and West Greenland also have olivine phenocrystals containing high Ni concentration (c. 3800 ppm) (Sobolev et al. 2007; Herzberg et al. 2013), even 20% higher than the modern MORB source (2800–3100 ppm) (Ionov, 2007). These picrites are characterized by elevated $^{3}\text{He}/^{4}\text{He}$ ratios (Starkey et al. 2009). Picrites from Baffin Island and West Greenland show $^{3}\text{He}/^{4}\text{He}$ values up to 50 times the atmospheric value. Herzberg et al. (2013) proposed that a less-degassed mantle reservoir formed by core–mantle interaction near the core–mantle boundary contains high $^{3}\text{He}/^{4}\text{He}$, and they correlated the elevated $^{3}\text{He}/^{4}\text{He}$ associated with high Ni concentration to the less-degassed Ni-rich material from core–mantle boundary that was added to the mantle source region. For the ELIP, however, picrites from Dali, Binhuan and Lijiang area generally have higher Os concentration and slightly lower Re concentration than many other ocean island picrites, although the $^{187}\text{Os}/^{188}\text{Os}$ ratios are obviously lower than the mantle value with negative γOs values (Chen et al. 2007; Xu et al. 2007; Zhang et al. 2008; Li et al. 2010; Hao et al. 2011), which are distinctly different from the Siberia LIP picrites that display relatively positive γOs values. The Os isotopic compositions of the picrites in the ELIP therefore suggest no major input from the core–mantle boundary to the source region.

If the silica-rich melt derived from recycled crust reacts with peridotite, an olivine-free pyroxenite source can be generated that would produce magmas with high Ni concentration (Sobolev et al. 2005). Olivine crystallizing from such a magma will generally be characterized by high Ni concentration and low Mn/Fe. The Mn, Fe and Zn in olivine mostly occur as divalent elements and their ionic radii is close to that of Mg$^{2+}$ (De Hoog et al. 2010); they therefore behave similarly in the olivine–melt system. Since Mn, Fe and Zn have similar olivine–melt partition coefficients (0.89, 1.1 and 1.09, respectively; Foley et al. 2013; Howarth & Harris, 2017), their ratios are relatively constant during partial melting or fractional crystallization. The ratios of these melts could therefore well constrain the nature of their mantle source (Sobolev et al. 2007; Herzberg, 2011; Foley et al. 2013; Herzberg et al. 2016). Experimental studies show that the olivine crystallized from melts derived from pyroxenite have 100\timesMn/Fe values of 1.05–1.35, whereas those in melts derived from peridotite source show higher 100\timesMn/Fe values (>1.5) (Sobolev et al. 2007; Foley et al. 2013). The Dali picrites have olivine phenocrysts with higher Mn content compared with those of Karoo or Hawaii, and show a similar trend to the Mn content of MORB (Fig. 4). Additionally, the high 100\timesMn/Fe ratios (1.43–1.73) of olivine in Dali picrites are consistent with those olivines crystallized from melts derived from peridotite (Fig. 5b). This evidence indicates that the primary magma of the Dali picrites was more likely derived from a peridotite-dominated source.

Sobolev et al. (2007) suggested that the percentage of metasomatic pyroxenite (X_{pyx}) in the mantle source could be calculated based on the Mn/Fe values of the olivine phenocrysts. The equation was proposed as: $X_{\text{pyx}} = 3.48–[2.071\times(100\times\text{Mn/Fe})]$. Combined with the trace-element data from LA-ICP-MS analysis (online Supplementary Table S2), we calculate an average X_{pyx} in the Dali picrite mantle source of 22.6% (Fig. 6). For comparison, Sobolev et al. (2007) suggested an average X_{pyx} value of 17% for MORBs. However, the data for olivine in MORB reported by these authors spans a somewhat larger range in X_{pyx} values, which show a similar range to the Dali picrites (Fig. 6); this suggests that the mantle source of Dali picrites is not pyroxenite dominated. It is notable that high pressure may increase the partitioning of Mn between olivine and melts ($K_{D\text{Mn}}$) (Matzen et al. 2017). Our calculation of X_{pyx} using the method of Sobolev et al. (2007) is therefore very likely to be flawed.
will decrease and result in less Ni left in residual olivine. As the melts rise to a shallower level or even to the sub-surface, the partition coefficient of Ni between olivine and melts ($K_{D,Ni}^{mol/melt}$) will increase due to the decreasing pressure. This may result in higher Ni concentrations in olivine phenocrysts, which are even higher than those in residual olivine in mantle (Li & Ripley, 2010; Niu et al. 2011; Matzen et al. 2013, 2017).

Matzen et al. (2013) presented results from experimental work which allowed them to investigate the effects of temperature (T) and pressure (P) on $K_{D,Ni}^{mol/melt}$, independent of substantial changes in liquid composition. The partition coefficient of Ni between olivine and melts is described by the equation:

$$\ln (K_{D,Ni}^{mol/\text{liq}}) = \left[\left(-\Delta H_{\text{Tref}, \text{ref}/\text{liq}} \right) / (RT) \right] + \left(\Delta S_{\text{Tref}, \text{ref}/\text{liq}} / R \right) - \ln [X(\text{MgO})^{\text{liq}} / X(\text{MgSiO}_3)^{\text{ld}}]$$

where $-\Delta H_{\text{Tref}, \text{ref}/\text{liq}}/R$ and $\Delta S_{\text{Tref}, \text{ref}/\text{liq}}/R$ are constants independent of pressure and temperature, and T is the olivine liquidus temperature in degrees Kelvin. Putirka et al. (2018) reproduced the calibration data ($n=17$) with a standard error of estimate of ± 1.3 with an R^2 of 0.82, using the high-precision work of Matzen et al. (2013). The above equation can be simplified to:

$$K_{D,Ni}^{mol/\text{liq}} = e^{(3349/T)-0.79}$$

where the olivine liquidus temperature T is in degrees Celsius. From a rough estimate of the source region pressure via the inversion of lanthanide REE data and olivine–melt equilibrium, the pressure at the start of melting is estimated as 4 GPa (Xu et al. 2001; Zhang et al. 2003, 2006). Tao et al. (2015) used the olivine and clinopyroxene composition in ELIP picrites to determine the P-T condition when magma crystallization occurred, and reported that the olivine phenocrysts crystallized at a pressure of 1 GPa. As we calculate later in Section 5.b, the olivines in Dali picrites crystallized at a temperature of $1491 ^\circ C$, and the mantle potential temperature T_p is $1560 ^\circ C$. When these temperature estimates are introduced into the simplified equation above, the resulting Ni partition coefficient $K_{D,Ni}^{mol/melt}$ is 3.8 and 4.3 for melting and crystallizing, respectively. The Ni content of melts derived from peridotite is defined as:

$$Ni_{\text{melt}} = 2.9594 \times \text{MgO}_{\text{melt}}^{1.859}$$

where Ni is in ppm and MgO in wt%, provided by Niu et al. (2011).

According to the olivine–bulk-rock equilibrium and melt inclusions data, previous studies suggested that the primary melt of the Dali picrites had MgO content of $20–23$ wt% (Li et al. 2012, 2014; Ren et al. 2017). When we use the primary melt MgO content in the equation above, the Ni content is $776–1006$ ppm. The Dali picrites melted at high pressure (c. 4 GPa), adiabatically ascended to the near-surface environment at low pressure (c. 1 GPa) and started to crystallize olivine. In this case, the Ni partition coefficient $K_{D,Ni}^{mol/melt}$ is 3.4. In order to crystallize olivine with c. 3900 ppm Ni concentration, there should be at least c. 907 ppm Ni in the melt. This is consistent with the calculated Ni concentration in the primary melt of Dali picrite, suggesting that it is possible for the Dali picrite melt to crystallize high-Ni olivines. In other words, the Dali picrites were produced by partial melting of a peridotite source. We therefore propose that the high concentration of Ni in olivine in the Dali picrites might be attributed to the relatively low $K_{D,Ni}^{mol/melt}$ during peridotite partial melting at conditions of high temperature.
and high pressure, which resulted in enrichment of the primitive magmas with Ni, and the high K/DNi[melt] when the deep mantle-derived magma rose to a shallower environment of lower temperature and pressure, which resulted in crystallization of those Ni-rich olivines. There is therefore no need for eclogite or pyroxenite in the generation of Dali picrites.

5.5b. Estimation of mantle potential temperature

Based on the temperature-dependent behaviour of Al between coexisting olivine and Cr-spinel, the newly established Al-in-olivine thermometer proposed by Wan et al. (2008) and Coogan et al. (2014) can be used to estimate the olivine crystallization temperature. Compared with the traditional olivine–melt equilibrium thermometer, Al-in-olivine thermometer has the advantage of being independent of crystallization pressure, parental melt composition, oxygen fugacity and water content (Wan et al. 2008; Coogan et al. 2014). In addition, Al is expected to diffuse much more slowly through the olivine lattice than Mg and Fe, so the initial composition of the olivine-spinel pair is preserved (Spandler & O’Neill, 2010). It is therefore much more useful and convenient for us to determine the crystallization temperature of olivines in Dali picrites. The experimental results provided by Wan et al. (2008) and Coogan et al. (2014) suggested a restricted range for this thermometer; only Cr-spinel with Cr no. of 0–0.69 (Cr/(Cr + Al), mol) can be used for a reliable result from the Al-in-ol thermometer. The spinels in this study exhibit Cr no. values in the range of 0.570–0.685, all within the calibration range of the thermometer. We can therefore use these olivine and Cr-spinel composition data to estimate the crystallization temperature of olivines (°C), and the thermometer calibration equation is expressed:

\[
T_{\text{ol}} - T_{\text{pl}} = 273.15 + 10000 \left[-0.575 + (0.884 \times \text{Cr no.}) - 0.897 \times \ln \left(\frac{Al_{2}O_{3}}{Al_{2}O_{3}} \right) \right].
\]

The calculated temperature for Dali picrites ranges from 1221 to 1491°C (by EPMA data, online Supplementary Table S1c). Accordingly, we also calculated the uncertainty of the thermometer by error propagation, and the calculated 2σ error ranged from ±57 to ±65°C (online Supplementary Table S1c). The maximum crystallization temperature is estimated as 1491 ± 65°C (Fig. 7), which constrains the liquidus temperature to \(T_{\text{ol}} - T_{\text{pl}} \geq 1491°C\). When compared with olivine crystallization temperatures reported from other plume-related settings, such as continental flood basalts or other LIPs, the hottest Dali olivine–spinel crystallization temperatures are c. 50°C higher than the maximum olivine crystallization temperatures for ELIP samples from Yongsheng, Binchuan and Dali estimated by Xu & Liu (2016) (1440 ± 63°C). The samples of Dali picrite for this study were collected from a road-cut section located close to the Dali sections where Xu & Liu (2016) collected their samples, and the higher crystallization temperature estimated in Dali picrites might be attributed to their higher Fo value of the host olivine than the samples of Xu & Liu (2016). For comparison, the highest Dali picrite olivine crystallization temperature is 1491°C, which is similar to the highest olivine crystallization temperature estimated for Karoo, Madagascar and Etendeka, but about 100°C higher than those estimated for Iceland and SE Greenland (Coogan et al. 2014; Heinenon et al. 2015; Xu & Liu, 2016; Matthews et al. 2016; Jennings et al. 2019; Table 1). This temperature is about 200°C higher than the maximum crystallization temperature of MORB (1270°C) calculated by the same thermometer (Coogan et al. 2014), and provides robust evidence for a pronounced thermal anomaly in the mantle source of the Dali picrites.

As for the mantle potential temperature (\(T_P\)), there is a simple method for evaluating \(T_P\) of a peridotite source from the olivine crystallization temperature. It is generally considered that progressively ascending melts are nearly adiabatic before olivine begins to crystallize. Because of the enthalpy of melting and adiabatic cooling, \(T_P\) should be higher than the maximum crystallization temperature. In order to calculate \(T_P\) of the Dali picrites, a temperature correction for melt generation and adiabatic cooling is required (Putirka et al. 2007; Herzberg & Asimow, 2015; Matthews et al. 2016; Jennings et al. 2019). Putirka et al. (2007) and Herzberg & Asimow (2015) assumed a simple two-step approach to calculate the mantle potential temperature from the crystallization temperature: first, correct back to the liquidus temperature at 1 atm along an adiabat, then correct the temperature which dropped through melting and crystallizing at 1 atm.

The water content of magma also needs to be taken into consideration, due to its potential effect on the \(T_P\) calculation. As reported by Liu et al. (2017), the \(H_2O\) contents in Dali picrites were calculated to be 2–4 wt% based on the study on

Type	Province	Fo	\(T(°C)\)
MORB	–	89	1270
Iceland	–	90.7	1399
LIP	ELIP (Dali picrites in this study)	89.4	1491
	ELIP (reported by Xu & Liu, 2016)	88.3	1440
	Karoo	91.7	1481
	Etendeka	92.9	1511
	Madagascar	91.8	1485
	Gorgona	91.7	1434
	SE Greenland	89.8	1353
	Baffin Island	90.8	1408

![Fig. 7. (Colour online) Results of Al-in-olivine thermometry for the Dali picrites shown in olivine Fo versus \(T(°C)\). Estimated 2σ errors for the temperatures are shown (see Section 5.5b).](image-url)
clinopyroxene–melt equilibrium. However, considering that the crystallization of olivine and spinel usually occurs earlier than that of clinopyroxene, an increase of H$_2$O in the residual melts can be expected, and the reported H$_2$O contents might be an overestimate. As our samples lack other hydrous primary minerals (e.g. amphibole, mica) and the basalts coexisting with Dali picrites (Fig. 2a) contain large amounts of plagioclase phenocrysts (Fig. 2d), we propose that the water content of our Dali picrite samples was probably relatively low.

Based on experimental data, Herzberg & Asimow (2015) defined the effect of pressure on increasing olivine liquidus temperature as:

$$T_{ol/\text{liq}} = T(1)_{ol/\text{liq}} - 54P + 2P^2$$

where $T_{ol/\text{liq}}$ (°C) is the olivine liquidus temperature at a pressure of 1 atm and $T(1)_{ol/\text{liq}}$ (°C) is the olivine liquidus temperature at pressure P in gigapascals. Tao et al. (2015) suggested that the olivine crystallization pressure is c. 1 GPa, and the liquidus temperature $T(1)_{ol/\text{liq}}$ is constrained to ≥ 1491°C, resulting in $T_{ol/\text{liq}} \geq 1439$°C. The mantle potential temperature T_p is related to the olivine liquid temperature at 1 atm ($T_{ol/\text{liq}}$) along the solidus line by the equation (Herzberg & Asimow, 2015):

$$T_p = 1.049 \times T_{ol/\text{liq}}^2 - [0.00019 \times (T_{ol/\text{liq}}^2)]^2 + [1.487 \times 10^{-7} \times (T_{ol/\text{liq}})]^3.$$

Using $T_{ol/\text{liq}}$ in the above equation, we obtain a T_p of 1559°C. We also consider the uncertainty of the crystallization temperature in the calculation, yielding a propagating uncertainty in T_p of c. $+95$°/−90°C. We therefore infer that the mantle potential temperature of the Dali picrites is ≥ 1559°/−95°/90°C, which is consistent with previous studies (c. 1620°C; Zhang et al. 2006). For comparison, Matthews et al. (2016) used a similar method to calculate a T_p of 1480 ÷37/−30°C for the Iceland mantle plume and 1318 ÷44/–32°C for the MORB from the olivine–spinel crystallization temperatures. The mantle potential temperature of the Dali picrites is c. 200°C higher than that of normal MORB, and is therefore consistent with a plume-head origin (even if our method represents a simplification and neglects the uncertainty in water content, oxygen fugacity and the melt fractions). The mantle potential temperature T_p is definitely higher than the olivine crystallization temperature, and $T^{ol/sp}$ = 1491°C is still much higher than the mantle potential temperature of the normal MORB T_p(MORB) = 1318 ÷44/–32°C.

6. Conclusions

1. The trace-element data of primitive olivine in Dali picrites are consistent with a peridotite-dominated source for the primary magma.
2. The high Ni content in olivine phenocrysts can be explained by the relatively low k_pNi$_{ol/\text{melt}}$ during partial melting in the deep mantle and the high k_pNi$_{ol/\text{melt}}$ during crystallization in the relatively shallow level. This model suggests that a significant contribution from a metasomatic pyroxenite to the formation of high-Ni olivine is not a prerequisite.
3. Based on the Al-in-olivine thermometer, we compute the maximum olivine crystallization temperature $T^{ol/sp}$ of 1491 ± 65°C. Since the Dali picrite was derived from a peridotite-dominated source, the estimated mantle potential temperature T_p is ≥ 1559°/−95°/90°C, which is c. 200°C higher than the mantle potential temperature of the MORB, confirming the role of a mantle plume.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/S0016756820001053

Acknowledgements. This study was financially supported by the National Key Research and Development Program of China (2016YFC0600502) and the National Natural Science Foundation of China (4176134086) as well as the 111 Project (B18048). We are grateful to Fang-Yue Wang and Qin Li for their assistance with LA-ICP-MS analysis and to Jing-Wu Yi for his assistance with EPMA analysis. We thank reviewer Rong Xu, an anonymous reviewer and editor Kathryn Goodenough for their constructive comments and useful suggestions.

References

Ali JR, Fitton JG and Herzberg C (2010) Emeishan large igneous province (SW China) and the mantle-plume up-drowning hypothesis. Journal of the Geological Society 167, 953–99.

Ali JR, Thompson GM, Zhou MF and Song XY (2005) Emeishan large igneous province, SW China. Lithos 79, 475–89.

Campbell IH (2005) Large igneous provinces and the mantle plume hypothesis. Elements 1, 265–69.

Campbell IH (2007) Testing the plume theory. Chemical Geology 241, 153–76.

Campbell IH and Griffins RW (1990) Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters 99, 79–93.

Chen L, Zhi XC, Zhang ZC and Shim RD (2007) Preliminary study on Re-Os isotope geochemistry of picrites from Lijiang Area, Yunnan Province. Geological Journal of China Universities 13, 337–43 (in Chinese with English abstract).

Chung SL and Jahn BM (1995) Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian–Triassic boundary. Geology 23, 889–92.

Condle KC and Puetz SJ (2019) Time series analysis of mantle cycles Part II: the geologic record in zircons, large igneous provinces and mantle lithosphere. Geoscience Frontiers 10, 1327–36.

Coogan LA, Saunders AD and Wilson RN (2014) Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces. Chemical Geology 368, 1–10.

De Hoog JCM, Gall L and Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology 270, 196–215.

Foley SF, Jacob DE and O’Neill HSC (2011) Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas. Contributions to Mineralogy and Petrology 162, 1–20.

Foley SF, Prelevic D, Rehfeldt T and Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth and Planetary Science Letters 363, 181–91.

Hanski E, Kamenetsky VS, Luo ZY, Xu YG and Kuzmin DV (2010) Primitive magmas in the Emeishan Large Igneous Province, southwestern China and northern Vietnam. Lithos 119, 75–90.

Hanski E, Walker RJ, Huhma H, Polyakov GV, Balynkin PA, Trong HT and Thi PN (2004) Origin of the Perm-Triassic komatitites, northwestern Vietnam. Contributions to Mineralogy and Petrology 147, 453–69.

Hao YL, Huang QS, Zhang XR and Shi RD (2011) Re-Os isotopes of Dali picrite (Yunnan): new constraints on the formation of Emeishan Large Igneous Province, southwestern China and Vietnam. Earth and Planetary Science Letters 270, 2937–46 (in Chinese with English abstract).

He B, Xu YG, Chung SL, Xiao L and Wang Y (2003) Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters 213, 391–405.

He B, Xu YG, Huang XJ, Luo ZY, Shi YR, Yang QJ and Yu SY (2007) Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei
Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters 255, 306–23.

Heinonen JS, Jennings ES and Riley TR (2015) Crystallisation temperatures of the most Mg-rich magmas of the Karoo LIP on the basis of Al-in-olivine thermometry. Chemical Geology 411, 26–35.

Herzberg C (2006) Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444, 605–69.

Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. Journal of Petrology 52, 113–46.

Herzberg C and Asimow PD (2015) PRIMELT3 MEGA.XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidsus. Geochemistry, Geophysics, Geosystems 16, 563–78.

Herzberg C, Asimow PD, Ionov DA, Viditio C, Jackson MG and Geist D (2013) Nickel and helium evidence for melt above the core–mantle boundary. Nature 493, 393–97.

Herzberg C, Viditio C and Starkey NA (2016) Nickel-coabit contents of olivine record origins of mantle peridotite and related rocks. American Mineralogist 101, 1952–66.

Howarth GH and Harris C (2017) Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry. Earth and Planetary Science Letters 475, 143–51.

Humayun M, Qin LP and Norman MC (2004) Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91–94.

Ionov DA (2007) Compositional variations and heterogeneity in fertile lherzolitic mantle: peridotite xenoliths in basalts from Tariat, Mongolia. Contributions to Mineralogy and Petrology 154, 455–77.

Jennings ES, Gibson SA and MacLennan J (2019) Hot primary melts and mantle source for the Paraná-Etendeka flood basalt province: new constraints from Al-in-olivine thermometry. Chemical Geology 529, 119287.

Jerram DA, Widdowson M, Wignall PB, Lai XL, Bond DP and Torsvik TH (2016) Submarine palaeoenvironments during Emeishan flood basalt volcanism, SW China: implications for plume–lithosphere interaction during the Capitanian, middle Permian (‘end Guadalupian’) extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 441, 65–73.

Kamenetsky VS, Chung SL, Kamenetsky MB and Kuzmin DY (2012) Picrites from the Emeishan large igneous province, SW China: a compositional continuum in primitive magmas and their respective mantle sources. Journal of Petrology 53, 2095–113.

Le Roux V, Lee CT and Turner SJ (2010) Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle. Geochimica et Cosmochimica Acta 74, 2778–96.

Li C and Ripley EM (2010) The relative effects of composition and temperature on olivine-liquid Ni partitioning: statistical deconvolution and implications for petrogenetic modeling. Chemical Geology 275, 99–104.

Li HB, Zhang ZC, Ernst R, Lu LS, Santosh M, Zhang DY and Cheng ZG (2015) Giant radiating mafic dyke swarm of the Emeishan large igneous province, identifying the mantle plume centre. Lithos 257, 104–27.

Li J, Wang XC, Ren ZY, Xu JF, He B and Xu YG (2014) Chemical heterogeneity of the Emeishan mantle plume: evidence from highly siderophile element abundances in picrites. Journal of Asian Earth Sciences 79, 191–205.

Li J, Xu JF, Suzuki K, He B, Xu YG and Ren ZY (2010) Os, Nd, Sr isotope and trace element geochemistry of the Muli picrites: insights into the mantle source of the Emeishan large igneous province. Lithos 119, 108–22.

Li YS, Zhang ZC and Nie BF (2012) An improved simple method for estimating primitive magma – a case for the picrites in the Lijiang area of Emeishan large igneous province. Geological Review 4, 633–59 (in Chinese with English abstract).

Liu J, Xia QK, Kuritani T, Hanks E and Yu HR (2017) Mantle hydration and the role of water in the generation of large igneous provinces. Nature Communications 8, 1–7.

Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C and Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LAICP-MS without applying an internal standard. Chemical Geology 257, 34–43.

Matthews S, Shorttle O and MacLennan J (2016) The temperature of the Icelandic mantle from olivine-spinel aluminium exchange thermometry. Geochemistry, Geophysics, Geosystems 17, 4725–52.

Matzen AK, Baker MB, Beckett JR and Stolper EM (2013) The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. Journal of Petrology 54, 2521–45.

Matzen AK, Wood BJ, Baker MB and Stolper EM (2017) The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts. Nature Geoscience 10, 530–35.

McDonough WF and Sun SS (1995) The composition of the Earth. Chemical Geology 120, 223–53.

Ning SY, Wang FY, Xue WD and Zhou TF (2017) Geochemistry of the Baoshan pluton in the Tongling region of the Lower Yangtze River Belt. Geochimica 46, 397–412 (in Chinese with English abstract).

Niu YL, Wilson M, Humphreys ER and O’Hara MJ (2011) The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications. Journal of Petrology 52, 1443–68.

Peate IU, Bryan SE, Wignall PB, Jerram DA and Ali JR (2011) Comment on ‘Paleokarst on the top of the Maokou Formation: further evidence for domal crustal uplift prior to the Emeishan flood volcanism’. Lithos 119, 1–9.

Putirka KD, Perfit M, Ryerson FJ and Jackson MG (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology 241, 177–206.

Putirka K, Ryerson FJ, Perfit M and Ridley WI (2011) Mineralogy and composition of the oceanic mantle. Journal of Petrology 52, 279–313.

Putirka K, Tao Y, Hari KR, Perfit MB, Jackson MG and Arevalo R (2018) The mantle source of thermal plumes: trace and minor elements in olivine and major oxides of primitive liquids (and why the olivine compositions don’t matter). American Mineralogist 103, 1253–70.

Ren ZY, Wu YD, Zhang L, Nichols AR, Hong LB, Zhang YH, Zhang Y, Liu JQ and Xu YG (2017) Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions. Geochimica et Cosmochimica Acta 208, 63–85.

Richards MA, Duncan RA and Courtillot VE (1989) Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107.

Santosh M, Hari KR, He XF, Han YS and Manu Prasanth MP (2018) Oldest lamproites from Peninsular India track the onset of Paleoproterozoic plume-induced rifting and the birth of large igneous province. Gondwana Research 55, 1–20.

Shellnutt JG (2014) The Emeishan large igneous province: a synthesis. Geoscience Frontiers 5, 369–94.

Shellnutt JG, Denysyn S and Mundil R (2012) Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Research 22, 118–26.

Shellnutt JG and Pham TT (2018) Mantle potential temperature estimates and primary melt compositions of some low-Ti Emeishan flood basalts. Frontiers in Earth Science 6, 1–10.

Shellnutt JG, Zhou MF, Yan DP and Wang YB (2008) Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma? Geological Magazine 145, 373–88.

Solobev AV, Hofmann AW, Kuzmin DV, Yazley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA and Garcia MO (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–17.

Solobev AV, Hofmann AW, Shellnutt JG, Denysyn S and Mundil R (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300 °C with some geochemical constraints of olivine-hosted melt inclusions. Gondwana Research 24, 94–107.

Song XY, Zhou MF, Cao ZM and Robinson PT (2018) Oldest meltrock from Peninsular India track the onset of Paleo-prototrozoic plume-induced rifting and the birth of large igneous province. Gondwana Research 55, 1–20.

Song XY, Zhou MF, Cao ZM, Wang YL and Li Y (2011) Coeval meltrock of the Karoo LIP on the basis of Al-in-olivine thermometry. Chemical Geology 306, 91–100.

Song XY, Zhou MF, Hou ZQ, Cao ZM and Robinson PT (2012) The relative effects of composition and temperature on olivine-liquid Ni partitioning: statistical deconvolution and implications for petrogenetic modeling. Chemical Geology 275, 99–104.

Spandler C and O’Neill HSC (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300 °C with some geochemical implications. Contributions to Mineralogy and Petrology 159, 791–818.

Starkey NA, Stuart FM, Elam RM, Fitton JG, Bau S and Larsen LM (2009) Helium isotopes in early Iceland plume picrites: constraints on the composition of high °He°He mantle. Earth and Planetary Science Letters 277, 91–100.
