TITLE
Uncovering an allosteric mode of action for a selective inhibitor of human Bloom syndrome protein

SHORT TITLE
An allosteric inhibitor of human BLM

AUTHORS
X. Chen¹, Y. Ali², C.E.L. Fisher¹, R. Arribas-Bosacoma³, M.B. Rajasekaran², G. Williams², S. Walker², J.R. Booth², J.J.R. Hudson², S.M. Roe³, L. H. Pearl¹, S. E. Ward²,⁴, F. M. G. Pearl³, A.W. Oliver¹

AFFILIATIONS
1. Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, BN1 9RQ, United Kingdom.
2. Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, BN1 9QJ, United Kingdom.
3. School of Life Sciences, University of Sussex, Falmer, BN1 9QG, United Kingdom.
4. Medicines Discovery Institute, Park Place, Cardiff University, Cardiff, CF10 3AT, United Kingdom.

*wards10@cardiff.ac.uk, f.pearl@sussex.ac.uk or antony.oliver@sussex.ac.uk

ABSTRACT
BLM (Bloom syndrome protein) is a RECQ-family helicase involved in the dissolution of complex DNA structures and repair intermediates. Synthetic lethality analysis implicates BLM as a promising target in a range of cancers with defects in the DNA damage response, however selective small molecule inhibitors of defined mechanism are currently lacking. Here we identify and characterise a specific inhibitor of BLM’s ATPase-coupled DNA helicase activity, by allosteric trapping of a DNA-bound translocation intermediate. Crystallographic structures of BLM-DNA-ADP-inhibitor complexes identify a hitherto unknown interdomain interface, whose opening and closing are integral to translocation of ssDNA, and which provides a highly selective pocket for drug discovery. Comparison with structures of other RECQ helicases provides a model for branch migration of Holliday junctions by BLM.
INTRODUCTION

RECCQ helicases catalyse the unwinding of duplex DNA with 3’ to 5’ directionality, driven by energy liberated by ATP-hydrolysis. As well as simple DNA duplexes, the various members of the RECCQ helicase family (BLM, WRN, RECCQ1, RECCQ4 and RECCQ5 in humans) are able to unwind DNA within a range of complex DNA structures and DNA repair intermediates, including: forks, bubbles, triple helices, displacement (D)-loops, G-quadruplexes, and 3 or 4-way Holliday junctions (extensively reviewed in1,2).

RECCQ-helicases are strongly implicated in the maintenance of genomic integrity, principally through their participation in the homologous recombination (HR) pathway for repair of DNA double-strand breaks and restart of collapsed or blocked replication forks (reviewed in1,3), but also have roles in toleration of microsatellite instability4,5 and sister chromatid decatenation6. Defects in RECCQ-family members are responsible for rare genetic diseases displaying substantial genomic instability and cancer predisposition7. Loss of function of WRN underlies the complex progeria Werner Syndrome; defects in BLM underlie Bloom Syndrome, which is characterised by growth retardation and immunodeficiency; and defects in RECCQ4 are associated with Rothmund-Thompson syndrome, which displays growth retardation, skeletal abnormalities and premature ageing.

A number of experimental and computational studies have implicated RECCQ helicases – primarily BLM and WRN - as potential targets for cancer therapy, due to the synthetic lethality of their silencing or downregulation with genetic defects inherent in a range of different cancers4,5,8-12. Despite the therapeutic opportunities this presents, no drugs targeting RECCQ helicases have yet been licensed, although potential leads have been reported13-15.

Here we determine the mode of action for two reported inhibitors of BLM – ML21613,14 and a substituted benzamide (compound 2). While ML216 appears to act, at least in part, through direct DNA binding and has poor specificity, we find that 2 and derivatives thereof are highly specific binders of a defined BLM-DNA complex. Crystallographic analysis of the BLM-DNA-2 complex identifies a novel allosteric binding site and reveals a distinctive conformational step in the helicase mechanism, that can be trapped by small-molecules. These data pave the way for the development of allosteric inhibitors of BLM helicase with the potential to generate trapped and highly cytotoxic BLM-DNA complexes.
RESULTS

Compound identification and screening

A series of compounds that targeted the helicase activity of human BLM were identified in a quantitative high-throughput screen (qHTS)14, where the results were made publicly available from the PubChem data repository [https://pubchem.ncbi.nlm.nih.gov/bioassay/2528].

Filtering the 627 reported active compounds for preferential physicochemical properties (e.g. Lipinski’s rule of five) and excluding those with potential pan-assay interference activity (PAINS) allowed us to group the compounds into several distinct clusters according to chemical similarity. The inhibitory activity of exemplars from each cluster were tested in a fluorescence-based DNA unwinding assay14 against recombinant human BLM-HD (HD = helicase domain; amino acids 636-1298). However, only a single compound produced an IC\textsubscript{50} lower than 10 µM (compound 1, IC\textsubscript{50} = 4.0 µM; Fig.1A).

We synthesised and purified 6 close analogues of this compound with the aim of generating preliminary structure-activity relationship data and confirmed their inhibitory activity in the unwinding assay (Materials and Methods). Compounds 2 to 6 inhibited the 3’ \rightarrow 5’ helicase activity of recombinant human BLM-HD with IC\textsubscript{50} values ranging from 2.2 to \~60 µM, whereas 7 did not inhibit BLM-HD over the concentration range tested (Fig. 1A and S1, Table 1). An IC\textsubscript{50} of 4 µM was determined for ML216, a compound reported to be a semi-selective inhibitor of human BLM13,14, which was included as a positive control (Fig. 1A).

In a malachite green-based assay that measures ATP turnover, we observed robust stimulation of hydrolysis by BLM-HD when the protein was incubated with a short single-stranded 20-base oligonucleotide (Fig. 1B). Here, we determined IC\textsubscript{50} values ranging from 3.2 to \~50 µM for each of our active analogues and 4.4 µM for ML216 (Fig. 1E and S1, Table 1). Whilst the values of IC\textsubscript{50} obtained in our orthogonal assay did not agree in absolute value with those determined in the first, it ranked each analogue with a similar order of potency.

Biophysical analysis of compound binding

We could readily observe changes in fluorescence, indicative of binding, upon titration of both ADP and ATP-\gammaS into BLM-HD using microscale thermophoresis (MST, Fig. S2A). We could not however observe any interaction for our most potent compound 2.

In the absence of biophysical evidence for binding, we sought to confirm that 2 wasn’t just a false positive generated by interference with the fluorescent readout of the unwinding assay. An alternative gel-based assay allowed direct visualisation of the conversion of a forked DNA-
duplex into its component single-stranded oligonucleotides via the helicase activity of BLM-HD (Fig. 2A). Titration of 2 clearly inhibited production of the single-stranded DNA product in a dose-dependent manner, with a calculated IC$_{50}$ of 1.8 µM (Fig. 2B).

Mode of Inhibition: DNA-interaction

Another potential false positive could be generated by compounds that bind directly to DNA, thus preventing BLM-HD from productively engaging with its substrate. To test this hypothesis, we used a commercial DNA-unwinding assay that utilises recombinant Topoisomerase I (Topo I) to relax a supercoiled plasmid. Compounds that intercalate or bind to the major or minor groove of the plasmid DNA prevent relaxation.

At the manufacturer’s recommended concentration of 200 µM, the positive control m-Amsacrine (mAMSA) strongly inhibited relaxation of the supercoiled plasmid. In contrast, no effect was observed with 2 at the same concentration. However, partial inhibition of relaxation could be observed for a reaction containing ML216 (Fig. 2C). To confirm this observation, we purchased ML216 from an alternative commercial supplier (ML216-A) and also resynthesized and purified the compound in-house (ML216-B; Materials and Methods). In both cases, a similar level of inhibition was observed when the compounds were included in the relaxation assay, indicating that that this was both a real and reproducible effect (Fig. 2C).

To explore further the possibility that ML216 might interact directly with DNA, we tested its ability to displace SYBR Green II (SG2) from a DNA substrate in a dye displacement assay16,17. When SG2 binds to DNA, a concomitant increase in its fluorescence can be measured. If an added compound can compete with the dye for binding to the DNA, a corresponding decrease in the fluorescent signal is observed. We titrated ML216 into a forked-50mer dsDNA substrate, that had been pre-incubated with SG2, observing a clear time- and dose-dependent displacement of the dye, indicating that ML216 can directly interact with a DNA substrate (Fig. 2D).

Mode of Inhibition: ATP-competitive

With confidence that 2 was, in fact, a bona fide inhibitor of BLM, we repeated the unwinding assay in the presence a 10-fold higher concentration of ATP to examine if the compound was directly competitive with nucleotide binding to the active site of the enzyme. As the resulting IC$_{50}$ value was identical to that previously determined, it ruled out this mode of inhibition, and suggested that the compound bound elsewhere (Fig. S2B).
Mode of Inhibition: Non-competitive

ATP-turnover experiments, under Michaelis-Menten conditions, allowed us to generate a Lineweaver-Burk plot with data taken from DNA substrate titrations in the presence of 0, 5 and 10 μM of 2. The resultant plot indicated a non-competitive (allosteric) mode of inhibition for 2 (Fig. 2E). With this information, we postulated that 2 might only bind to BLM-HD when it was engaged with a DNA substrate. We therefore revisited MST, first confirming the interaction of BLM-HD with single-stranded DNA oligonucleotides 15 and 20 bases in length (Fig. 2F). We next titrated 2 into the two pre-formed BLM-HD/ssDNA complexes. This time changes in fluorescent signal could be detected, confirming our hypothesis, with dissociation constants of 1.7 and 2.6 μM determined for the interaction with the 15mer and 20mer respectively (Fig. 2G).

Mode of Binding: \(BLM-HD^{ΔWHD}\)

We created the expression construct BLM-HD\(^{ΔWHD}\) to remove the conformationally flexible Winged Helix domain (WH) that requires the presence of either a stabilising nanobody, or interaction with a large DNA substrate to facilitate crystallogenesis\(^{18,19}\) replacing it with a short poly-(glycine/serine) linker that serves to connect the Zinc-binding domain (Zinc) directly to the Helicase and RNAse C-terminal domain (HRDC, Fig. 3A). In validation of this approach, we were able to crystallise the protein in complex with ADP and magnesium co-factor, and to determine its structure at a resolution of 1.53 Å; a significant increase in resolution over structures previously deposited in the PDB (4CDG, 2.8 Å; 4CGZ, 3.2 Å; 4O3M, 2.3 Å; see Table S1).

Superposition of the structures of BLM-HD (PDB: 4CDG) and BLM-HD\(^{ΔWHD}\) produces a rmsd of 0.86 Å over 2450 atom positions (D1 + D2 + Zn; PyMOL), indicating the overall conformation and geometry of the two recombinant proteins is highly similar, despite deletion of the WH domain (Fig. S3A). Furthermore, BLM-HD\(^{ΔWHD}\) binds both ssDNA-15mer and 2 with a similar affinity to that of BLM-HD (Fig. S3B).

Crystal structure of \(BLM-HD^{ΔWHD}\) in complex with compound 2 and ssDNA

We crystallised 2 in complex with BLM-HD\(^{ΔWHD}\), ADP/magnesium co-factor, and ssDNA-15mer (liganded complex); determining its structure at a resolution of 3.0 Å (Table S1). The complex crystallised in space group P1, with 6 molecules of BLM-HD\(^{ΔWHD}\) and associated ligands forming the asymmetric unit. Interestingly, the co-crystallised ssDNA-15mer helped drive formation of the crystal lattice, due to its partial self-complementary at the 5’ end (\(5' - \text{CGTAC-}3'\)) that serves to form four consecutive base pairs between two oligonucleotides.
Compound 2 sits in a small pocket found on the opposite face of the protein to that which binds nucleotide (Fig. 3B, 3B inset), and integrates amino acid side chains from both the D1 and D2 subdomains of the helicase core, as well as several from the Zn-binding domain. The oxygen of the amino group at the centre of the compound is hydrogen-bonded to the side chain of Asn1022, whilst the nitrogen of the same moiety is in hydrogen-bonding distance to both the backbone oxygen and side chain of Ser801. The side chains of His805 and Thr1018 stack up against, and provide Van der Waals contacts to, the central ring system of the 3-amino-4,5-dimethylbenzenesulfonamide pendant group as part of a pocket lined by the side chains of residues Asp806, His1014, Thr1015, His1019 (Fig. 3C). The nitrogen of the sulfonamide group is hydrogen-bonded to the side chain of Asp840, which itself is bonded to the side chain of His805. The 2-methyl-thiazole moiety of 2 sits against the surface of the alpha-helix containing Gly972 and is sandwiched by additional packing interactions with the side chains of Gln802 and Glu971. The side chains Thr832 and His798 also contribute to this section of the binding pocket, which is ‘capped’ by Gln975. The central benzene ring of 2 is also contacted by the side chains of Gln802 and Glu971.

Reconfiguration of the Aromatic-Rich Loop

The aromatic-rich loop (ARL) is a highly conserved motif in RecQ helicases that serves as a molecular ‘sensor’, detecting binding of single-stranded DNA and coupling it to structural rearrangements that enable ATP hydrolysis20,21. In our high-resolution structure of BLM-HDAWHD, the ARL is disordered and is not visible in electron-density maps (Fig. 4A). By contrast, it can be fully modelled in the liganded complex, but its conformation is distinct from that observed in PDB entries 4CDG and 4CGZ where the single-stranded extension of bound nucleic acid substrates does not extend across to the D1 domain (Fig. 4B and S4A).

Structures with a high degree of structural similarity to the liganded complex were identified with PDBsFold22. The search produced PDB entries 6CRM and 4TMU, with Q-scores of 0.47 and 0.46 respectively, which both describe structures of the catalytic core of
Cronobacter sakazakii
RecQ helicase (CsRecQ) in complex with different DNA substrates20,23. Comparison, in each case, reveals a close to identical conformation of the ARL to that observed in our liganded complex, as well as nucleic acid interactions that include the D1 domain (Fig. S4B and C).
For CsRecQ, Manthei et al. described concerted movements of residues Phe158 and Arg159, within the ARL to interact with the 3'-single-stranded extension of their co-crystallised DNA substrate\(^2\); in our liganded complex the equivalent residues undergo a similar transition (Phe807 and Arg808 respectively). We observe that Phe158 moves to make base-stacking interactions with G8 and A9 of the bound ssDNA-15mer. By comparison to 4CDG, we also see that Arg808 switches from interacting with Asp806 of the ARL to the backbone oxygen of Pro715 and the side chain of Glu768 (Fig. 4A and 4B). Notably, mutation of residues equivalent to Arg808 or Glu768 in EcRecQ (Arg159 and Glu124) have been shown to perturb enzyme function\(^{20,21}\). Interestingly, in BLM, Asp806 is ‘freed’ to interact with the side chain of His1029, a residue within the Zn-binding domain (Fig. 4B).

In their 2017 paper, Newman et al., proposed a general mechanism for the helicase activity of human RECQ5 (hsRECQ5) based on their analyses of the available crystal structures for RecQ-family helicases; indicating that 4TMU best represents a ‘pre-ATP hydrolysis’ conformational state\(^4\). In their structure of unliganded (apo) hsRECQ5 they report a polar contact between Gln345 and His160 of the ARL, which is subsequently broken as a result of binding to ATP, serving to free the ARL to interact productively with the single-stranded 3’-overhang of a bound DNA substrate. Importantly, they showed that mutation of glutamine 345 to alanine (Q345A) prevents stimulation of ATPase activity by binding to DNA, but does not perturb the basal rate of hydrolysis\(^4\). The importance of this particular residue is perhaps more apparent in \textit{E. coli} RecQ, where mutation of the equivalent glutamine (Q322A) essentially ablates all ATPase capability\(^20\). Notably, in our liganded structure, the equivalent residues (Gln975 and His798 respectively) form part of the binding pocket for \textit{HRDC} (Fig. 3C, right and 4A).

HRDC from parked to DNA-engagement

The HRDC (Helicase and RNase D C-terminal domain) was originally identified as a putative nucleic-acid binding motif in both BLM and WRN (Werner syndrome helicase) and named in part for its similarity to a domain found at the C-terminus of \textit{E. coli} RNase D\(^{25}\). However, only very weak ssDNA binding (\(K_d \sim 100 \mu\text{M}\)) has been reported for this domain in isolation\(^{26}\).

In their paper describing the crystal structure of BLM in complex with DNA, Newman et al. observe that the HDRC domain packs against a shallow cleft formed between the D1 and D2 domains of the helicase core, with the interface between the different modules being highly polar in nature. Their follow-on small angle X-ray scattering experiments also indicate that the HRDC domain of BLM is free to disassociate and re-bind to the helicase core\(^{18}\). In our high-resolution crystal structure of BLM-HD\(^{\Delta \text{WHD}}\) we observe the same ‘parked’ interaction for the
HRDC, even in the absence of the WHD (Fig. S3A), but in our liganded structure we see that the HRDC domain swings across the face of the core helicase fold (Fig. 5A) to make a series of polar interactions with the ssDNA-15mer, which is presented on the surface of the D1 domain of a second protomer within the asymmetric unit (Fig. 3B and 5B).

The side chains of HRDC residues Asn1242 and His1236, contained within the ‘hydrophobic 3_10 helix’^26, are hydrogen-bonded to the O4 group of the T12 base and the N3 of the G11 base, respectively. The side chain of Phe1238 is also involved in an edge to ring-stacking interaction with the G11 base. Each of these interactions is consistent with chemical shift changes previously observed in HSQC spectra - as a result of titrating ssDNA into 15N-labelled BLM-HRDC^26 – suggesting that the observed interactions have biological relevance, and that our structure represents the first to capture HRDC interactions with ssDNA. Furthermore, amino acids residues Lys1227, Tyr1237, Thr1243, and Asn1239 are also in close proximity to the bound DNA (Fig. 5B) and could be expected to undergo changes in chemical environment upon interaction; again consistent with the reported perturbations in HSQC spectra^26. Asn1239 might also be expected to pick up an additional contact with the 5'-phosphate of a subsequent nucleotide in an extended substrate.

Selectivity profile

With a robust molecular understanding for the binding mode for 2, we next examined if the compound displayed selectivity for members of the RecQ-helicase family. In our ATP-turnover assay we saw no inhibition of recombinant helicase domains (HD) from human WRN, human RecQ5 or the unrelated E. coli helicase UvrD over the concentration range tested, whilst at higher concentrations inhibitory effects started to appear against human RecQ1. In contrast, ML216 robustly inhibited all four RecQ-family helicases tested and at higher concentrations also affected UvrD; in line with, and in support of, our observation that ML216 is non-specific and elicits at least part of its inhibitory effect by binding directly to DNA (Fig. 6A).

Whilst compound solubility prevented generation of a complete inhibition curve for UvrD and thus a robust estimate of IC_{50}, the estimated Hill coefficient (nH) was close to 1 — in contrast to those calculated for titrations of ML216 against the RecQ helicases, which were generally steeper (ranging from 1.8 to 4.3), again suggesting that instead of a forming a 1:1 protein to inhibitor complex, there is in fact, a more complex (possibly mixed) mode of binding for this compound to this class of enzymes.
Conformational trapping

As binding of 2 has no direct effect on the ability of BLM-HDΔWHD to bind either ssDNA or nucleotide, we hypothesised that it might act to ‘lock’ the helicase into a conformational state where DNA substrates remain bound but cannot be unwound. In support of this idea, we undertook MST assays with a labelled single-stranded oligonucleotide in the both the presence and absence of 2. Here, we observed a clear concentration-dependent decrease in K_d in the FP experiment when 2 was added, consistent with a decrease in the off-rate for DNA-binding, supporting our hypothesis that the compound acts to ‘trap’ BLM in its interaction with ssDNA (Fig. 6B).

DISCUSSION

Allosteric binding site

Compound 2 binds to a small pocket — hereinafter referred to as the allosteric binding site (ABS) — which is generated transitorily as part of the set of conformational changes that BLM undergoes during its catalytic cycle; relative movements of the D1 and D2 domains with respect to each other, upon interaction with nucleotide and DNA substrates, have previously been described by Newman et al.24 Only when the D1 domain of BLM interacts with single-stranded DNA is the ARL in the correct conformation to permit compound binding, as then the side chain of Trp803 is repositioned and no longer occludes/fills the ABS (Fig. 4A, B).

Gyimesi et al. determined that the rate-limiting step for the unwinding activity of BLM is a structural transition between two ADP-bound states, which they suggest leads directly to ‘stepping’ along the single-stranded region of bound DNA substrates. They describe a so-called ‘open’ state where ADP can freely dissociate from the enzyme, and a ‘closed’ state that interconverts slowly to the open state in order to release ADP.27 They also note that conversion between these states is accelerated in the presence of ssDNA.

Taken as a whole, our experimental data would be consistent with the notion of 2 acting to ‘trap’ or stabilise the ‘closed’ state, preventing conversion to the ‘open’ state, ADP release and thus DNA unwinding. Furthermore, compounds bound stably to the ABS should also sterically prevent the ARL from reverting to its initial conformation / structurally disordered state found at the beginning of the catalytic cycle (Fig. 4A, B).

However, this is perhaps at odds with the description of PDB entry 4TMU (CsRecQ, Fig. S4), to which our liganded complex is the most similar, as an example of the pre-ATP hydrolysis step of the RecQ-family helicase catalytic cycle24. A possible explanation, still consistent with our demonstration of ‘trapping’, is that binding of 2 prevents the changes that normally result
as a consequence of ATP-hydrolysis and phosphate-release, keeping the enzyme in an apparent pre-hydrolysis conformation. More detailed kinetic analyses will be required to distinguish between these mode-of-action models.

Selectivity through Helical Hairpin interactions

Several different regions of BLM interact with 2 when it is bound to the ABS, including amino acids from helicase motifs I and III, plus a short region just upstream of motif IV\[^{28,29}\] (pre-motif IV, Fig. 7). Unsurprisingly, the amino acid sequence identity of each region across the RecQ-family is extremely high, and do not therefore provide a facile explanation for the observed selectivity of 2 (Fig. 6A). In particular, two of the amino acid side chains involved in hydrogen bonds with 2 are absolutely conserved in identity (motif I, Ser801; motif III, Asp840, Figure 3C and 7). Likewise, amino acids within these motifs involved in hydrophobic contacts with 2 are also highly conserved in identity/chemical property. However, the third hydrogen bonding interaction (made by Asn1022 to 2) and its position within the ‘Helical Hairpin’ of the Zn-binding domain provides some insight, as both the length and amino acid composition of this loop is highly divergent across the RecQ-family and absent from RecQ4 (Fig. 7). There is no obvious consensus for any of the residues, in equivalent positions to those in BLM, involved in compound interaction. This observation provides a plausible route, though the addition or alteration of chemical groups to the core scaffold of 2, for generating potent and highly selective inhibitors for the individual members of the RecQ-family of helicases.

Speculative model for the involvement of the HRDC in unwinding DNA substrates

During model building and evaluation of our liganded structure, we found that the nucleic-acid interactions made by the different sub-domains of BLM-HD\[^{\Delta WHD}\] explain how the HRDC might contribute to the ability of BLM to unwind different types of DNA substrate — incorporating information taken from our own structure, as well as that for the interaction of the WHD with dsDNA from PDB entry 4CGZ (Fig. 7B).

Simple superposition of the two structures results in a clash of the HRDC (in our structure) with the WHD, however this is readily resolved by a small horizontal translation of the HRDC (roughly equivalent to adding an additional nucleotide to the single-stranded portion of the bound DNA substrate). We also note that, in our liganded structure, the polarity of the single-stranded DNA interacting with the HRDC is opposite to that of our model but with the understanding that is actually dictated by the packing arrangement of the molecules that serve to generate the crystal lattice; on examination, each of the observed HRDC interactions is fully compatible with binding to ssDNA in either orientation.
However, using the trajectories for each of the bound DNA substrates as positional markers allows generation of a model for unwinding of a simple DNA duplex. The double-stranded portion of the substrate is held in place through the previously described set of interactions with the WHD domain18. The β-hairpin of the WH serves to separate the DNA duplex, with one strand ‘actively’ engaged with the D1/D2 domains of the helicase core and the Helical Hairpin of the Zn-binding domain. The second ‘inactive’ strand passes along the opposite face of the WH β-hairpin, to subsequently interact with the HRDC domain, potentially acting to prevent reversion and re-annealing of the DNA duplex. The relatively poor binding affinity of the HRDC for ssDNA is compatible with this model, as it would allow iterative release and recapture of the ‘inactive’ strand as the DNA substrate is unwound.

A model for how BLM might unwind a Holliday Junction has previously been reported30, but this treats the HRDC domain as a static object, leaving it in the ‘parked’ position and making no interactions with nucleic acid. Data published subsequent to this paper has indicated that the HDRC plays a more fundamental role, for example the charge-reversal mutation N1239D to has been shown to ablate interaction of the HRDC with both ssDNA and a Holliday junction substrate26. The HRDC has also been reported to confer DNA-structure specificity to BLM, with Lys1270 playing a role in mediating interactions with DNA and for efficient dissolution of double-Holliday junction substrates \textit{in vitro} 31. Consistent with this, our structural data reveals that both Asn1239 and Lys1270 of the HDRC are poised to interact with a section of single-stranded DNA just one to two nucleotides longer than that captured in our crystal lattice (Fig. 5B). Finally, our model also suggests the existence of a transient direct interaction between the WHD and the HRDC.

Compound 2 itself, is unlikely to be suitable as a therapeutic agent, due to its poor ability to penetrate the cell membrane of mammalian cells (data not shown). However, as the first described \textit{bona fide} selective allosteric inhibitor of human BLM, the understanding of its mode of action will aid ongoing efforts to develop molecules targeting this class of enzymes for the treatment of human disease.
MATERIALS AND METHODS

Compound synthesis and purification

Details for synthesis and purification of compounds is provided in supplementary information.

Expression constructs

Synthetic genes, codon-optimised for expression in *E. coli*, were purchased from GeneArt [ThermoFisher Scientific, Loughborough, UK]. With the exception of RECQ5 (see below) the coding sequence was subcloned into an in-house modified pET-17b vector at the NdeI and EcoRI sites of the multiple cloning site.

BLM-HD, BLM-HD^{WHD}: pAWO-STREP-3C; a pET-17b expression vector modified to encode an N-terminal human rhinovirus 3C-protease (HRV-3C) cleavable StrepII-affinity tag. BLM-HD encodes amino acids 636-1298 of human BLM (UniProt ID: BLM_HUMAN), whereas BLM-HD^{WHD} encodes amino acids 636-1074 and 1231-1298.

RECQ1-HD: pAWO-His-TRX-3C; a pET-17b expression vector modified to encode an N-terminal His₆-tagged *E. coli* Thioredoxin HRV-3C cleavable affinity/solubility tag. RECQ1-HD encodes amino acids 49-616 of human RECQ1 (Uniprot ID: RECQ1_HUMAN).

WRN-HD: pAWO-His-SUMO-3C; a pET-17b expression vector modified to encode an N-terminal His₆-tagged *S. cerevisiae* Smt3 (SUMO) HRV-3C cleavable affinity/solubility tag. WRN-HD encodes amino acids 481-1521 of human WRN (Uniprot ID: WRN_HUMAN).

RECQ5-HD: The expression construct pNIC28-Bsa4-RecQL5 was obtained from the Structural Genomics Consortium, Oxford [see https://www.thesgc.org/tep/RECQL5 for full details]. RECQ5-HD encodes amino acids 11-526 of human RECQ5 (Uniprot ID: RECQ5_HUMAN).

Expression and purification

BLM-HD, BLM-HD^{WHD}

E. coli strain BL21(DE3) [Promega, Southampton, UK] was transformed with the required expression plasmid. A ‘starter’ culture was generated by inoculating a 250 ml glass Erlenmeyer flask with 100 ml of Turbo-broth [Molecular Dimensions, Sheffield, UK] supplemented with 50 µg/ml ampicillin. The culture was allowed to grow in an orbital-shaking incubator set at 37°C, 220 rpm, until the absorbance at 600 nm reached 1.5. The culture was then stored at 4°C until the following day. 12 ml of the ‘starter’ culture was used to inoculate
a 2 L Erlenmeyer containing 1 L of Turbo-broth supplemented with antibiotic as before. The culture was grown until the absorbance at 600 nm reached 1.5, when the flask containing the culture was placed on ice for a period of 30 minutes. During this time, the incubator temperature was reduced to 20°C. After incubation on ice, isopropyl-β-D-thiogalactoside (IPTG) was added to a final concentration of 0.4 mM, to induce protein expression. The flask was then returned to the incubator, and the culture allowed to grow overnight at the reduced temperature of 20°C. Cells were harvested by centrifugation after a period of 16 hours. The resultant cell pellet was stored at -20°C until required.

The cell pellet arising from 2 L of culture was resuspended, on ice, in 25 ml of Buffer A (50 mM HEPES-NaOH, pH 7.5, 1 M NaCl, 0.5 mM TCEP, 0.5 mM EDTA) supplemented with a protease inhibitor tablet [cOmplete EDTA-free Protease Inhibitor Cocktail Tablet; Roche, Burgess Hill, UK]. The cells were lysed by sonication and insoluble material removed by centrifugation. The resultant supernatant was applied to a 5ml Strep-Tactin Superflow Plus Cartridge [Qiagen, Manchester, UK], pre-equilibrated with Buffer A. Unbound material was application of 10 column volumes (CV) of Buffer A (50 ml). Retained proteins were then eluted from the column by application of 5 CV of Buffer B (Buffer A supplemented with 5 mM desthiobiotin). Fractions containing the required protein were identified by SDS-PAGE, pooled, and then concentrated to a final volume of 2.5 ml using centrifugal concentrators [Vivaspin 20, 5000 MWCO; Sartorius Stedim Biotech GmBH, Goettingen, Germany]. After overnight cleavage of the affinity tag with human rhinovirus 3C-protease, the sample was diluted to reduce the NaCl concentration to below 250 mM. This was applied to a 5 ml HiTrap Heparin HP cartridge [GE Healthcare Life Sciences, Little Chalfont, UK], pre-equilibrated in Buffer C [50 mM HEPES-NaOH, pH 7.5, 250 mM NaCl, 0.5 mM TCEP, 0.5 mM EDTA].

Unbound material was removed by washing the column with 10 CV of buffer C. A linear NaCl gradient starting at a concentration of 250 mM and ending at 2000 mM, over 50 CV, was applied to the column. Fractions containing the desired recombinant protein were identified, pooled and concentrated as before. The concentrated sample was then applied to an HiLoad 26/600 Superdex 200 size exclusion chromatography column [GE Healthcare] pre-equilibrated in Buffer D [20 mM HEPES-NaOH pH7.5, 250 mM NaCl, 0.5 mM TCEP]. Again, fractions containing the desired recombinant protein were identified, pooled and concentrated, then flash-frozen in aliquots in liquid nitrogen and stored at -80°C until required.

RecQ1-HD, RecQ5-HD, WRN-HD

Expression and purification of RecQ1-HD, RecQ5-HD and WRN-HD were achieved using procedures similar to that used for BLM-HD, but with initial capture achieved using an IMAC
column. Samples were applied to a HiTrap 5 ml TALON Crude column [GE Healthcare] pre-
equilibrated in Buffer A [50 mM HEPES-NaOH pH 7.5, 500 mM NaCl, 0.5 mM TCEP, 10 mM
imidazole]. The column was washed with 5 column volumes of Buffer A, with retained protein
eluted by the addition of 5 CV of Buffer B (50 mM HEPES-NaOH pH 7.5, 500 mM NaCl, 0.5
mM TCEP, 300 mM imidazole). Affinity/solubility tags were removed by incubation with either
HRV-3C (RecQ1, WRN) or TEV protease (RecQ5).

UvrD
Purified recombinant E. coli UvrD was kindly provided by Dr. Mohan Rajasekaran (Sussex
Drug Discovery Centre, University of Sussex, UK).

REAGENTS

Solutions
Mg-ATP = 50 mM MgCl$_2$, 50 mM ATP
Mg-ADP = 50 mM MgCl$_2$, 50 mM ADP

Oligonucleotides
Reverse-phase purified oligonucleotides were purchased from either Kaneka Eurogentec S.A.
(Seraing, Belgium) or Eurofins Genomics Germany GmbH (Ebersberg, Germany).

ssDNA-15mer: 5′−CGTACCCGATGTGTT−3′
ssDNA-20mer: 5′−CGTACCCGATGGTTCGTTC−3′

Forked-50mer:
A: 5′−XGAACGAACACATCGGGTACGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT−3′
B: 5′−TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCGTACCCGATGTGTTTGY−3′

Where X and Y are the following modifications:
Unwinding assay; X = BHQ2 (Black Hole Quencher 2), Y = TAMRA (tetramethylrhodamine)
Gel-based assay; X = none; Y = TAMRA
Dye-displacement assay; X = none; Y = none

FORK-A and FORK-B were annealed at a concentration of 200 µM using a slow-cooling cycle
programmed into a PCR thermal cycler, in a buffer containing 20 mM HEPES-NaOH pH 7.5,
50 mM NaCl and 1 mM MgCl$_2$.
Commercially sourced ML216

ML216 was purchased from Merck KGaA (Darmstadt, Germany), product code: SML0661. ML216-A was purchased from Cayman Chemical (Ann Arbor, Michigan USA), product code: 15186.

BIOCHEMICAL ASSAYS

Fluorescence-based DNA unwinding assay

Methodology is based on that previously reported by Rosenthal et al. Briefly, assays were carried out in 384-well black plates, with measurements taken at emission and excitation wavelengths of 540 and 590 nm respectively, in a PHERAstar multimode plate reader [BMG Labtech]. Assay buffer: 50 mM Tris-HCl pH 8.0, 50 mM NaCl, 2 mM MgCl$_2$, 0.01% v/v Tween-20, 2.5 µg/ml poly(dI-dC), 1 mM DTT.

28 µl of BLM-HD (at 0.535 nM in assay buffer) was pre-incubated with 2 µl of compound (2 mM stock dissolved in 100% v/v DMSO, over a range of final concentrations up to 100 µM) for a period for 15 minutes at room temperature. Next, 10 µl of substrate (40 nM forked-50mer dsDNA and 2000 µM Mg-ATP) was added, then incubated for a further 20 minutes at room temperature, before the final fluorescent intensity for each well was measured.

Assay conditions (compounds 2 to 7 and ML216): 0.375 nM BLM-HD, 10 nM annealed DNA substrate, 500 µM Mg-ATP in a reaction volume of 40 µl over a 20-minute incubation period.

Data for compound 1 are taken from an earlier iteration of the assay and were measured used the conditions: 3.75 nM BLM-HD, 75 nM annealed DNA substrate, 120 µM Mg-ATP in a reaction volume of 40 µl over a 20-minute incubation period.

Malachite-Green ATP turnover assay

Assay uses the PiColorLock Gold Phosphate Detection System from Innova Bioscience following the manufacturer’s recommended protocol. Briefly, assays were carried out in 96-well clear flat-bottomed plates, with absorbance measurements taken at a wavelength of 630 nm in a CLARIOstar multimode plate reader [BMG Labtech]. Assay buffer: 50 mM Tris-HCl pH 7.5, 50 mM NaCl, 2 mM MgCl$_2$, 0.05% v/v Tween-20, 0.5 mM TCEP.

165 µl of BLM-HD and ssDNA-20mer (at a concentration of 2.4 nM and 121 nM, respectively) was pre-incubated with 10 µl of compound (2 mM stock dissolved in 100% v/v DMSO, over a range of final concentrations up to 100 µM) for a period of 15 minutes at room temperature. Next, 25 µl of Mg-ATP substrate (at 16 mM) was added. After 20 minutes, reactions were
stopped by the addition of 50 µl Gold mix (a 100:1 ratio of PiColorLock:Accelerator reagents).

After 2 minutes, 20 µl of stabiliser solution was added to each well. After a further 30 minutes absorbance measurements were taken.

Assay conditions: 2 nM BLM-HD, 100 nM ssDNA-20mer and 2 mM Mg-ATP in a reaction volume of 200 µL over a 20-minute incubation period.

Gel-based assay

Assay buffer: 50 mM Tris-HCl pH 8.0, 50 mM NaCl, 2 mM MgCl₂, 0.01% v/v Tween-20, 2.5 µg/ml poly(dI-dC), 1 mM DTT. 28 µl of BLM-HD (at a concentration of 2.9 nM) was pre-incubated with 2 µl of compound (2 mM stock dissolved in 100 % v/v DMSO, over a range of concentrations up to 100 µM) for a period of 15 minutes at room temperature. Next, 10 µl of substrate (300 nM forked-50mer dsDNA and 4.8 mM Mg-ATP) were added. After 10 minutes, reactions were terminated by the addition of 1 x loading dye (6 x solution: 10 mM Tris-HCl pH 7.5, 0.03% w/v bromophenol blue, 60% v/v glycerol, 60 mM EDTA). The samples were then loaded onto a 15% native gel (29:1 acrylamide:bis-acrylamide, 0.5 x TBE), separated by electrophoresis, and then visualized using a FLA-1500 fluorimager [Fujifilm, Bedford, UK]. The intensity of each species on the gel was quantified using the analysis tools provided in the software package Fiji²².

Topoisomerase I DNA-unwinding assay

Assay uses the DNA Unwinding Assay Kit from Inspiralis (Norwich, UK) following the manufacturer’s recommended protocol. Resultant samples were applied to a 1% w/v agarose gel (in 1 x TAE buffer), separated by electrophoresis, stained with ethidium bromide, and then visualised with a UV-transilluminator / digital gel documentation system.

Dye-displacement assay

Fluorescence intensity was measured in a CLARIOstar multi-mode plate reader [BMG Labtech] with excitation and emission wavelengths of 485 nm and 520 nm respectively, in 384-well black plates. 28 µl of forked-50mer dsDNA (at a final concentration of 800 nM) was pre-incubated with 10 µl of SYBR Green II (1:200 dilution) for a period of 20 minutes at room temperature. 2 µl of compound (1 mM stock dissolved in 100 % v/v DMSO, over a range of final concentrations up to 50 µM) was then added. Measurements were taken after incubation times of 20, 45 and 60 minutes. Assay buffer: 50 mM Tris-HCl pH 8.0, 50 mM NaCl, 2 mM MgCl₂, 0.01% v/v Tween-20, 1 mM DTT.
Assay conditions: 800 nM annealed DNA substrate and 1:800 SYBR Green II in a reaction volume of 40 µL over a 20-minute incubation period.

BIOPHYSICAL ASSAYS

Microscale thermophoresis (MST)

Experiments were performed in a Monolith NT.115 instrument from NanoTemper Technologies GmbH (München, Germany). Purified recombinant protein was labelled using a Monolith NT RED-Maleimide Protein Labelling Kit supplied by the manufacturer, following the recommended protocol. 19 µl of BLM-HD (at a final concentration of 75 nM) was mixed with 1 µl of the required 'ligand' solution (ssDNA and / or compound) and incubated for 15 minutes at room temperature, before being transferred to 'premium' capillaries for measurement. Experiments were performed at a temperature of 25 °C, with settings of 20% excitation power, 20% MST power. Assay buffer: 50 mM Tris-HCl pH 7.5, 100 mM NaCl, 2 mM MgCl₂, 0.05% v/v Tween-20, 0.5 mM TCEP.

CRYSTALLOGRAPHY

BLM-HD^{WHD} / ADP

Prior to setting up of crystallisation screens BLM-HD^{WHD} at a concentration of 15 mg/ml was combined with glycerol (100% v/v) and Mg-ADP (50 mM) to produce final concentrations of 10% v/v and 2 mM respectively. 150 nl of the prepared complex was combined with 150 nl of crystallisation reagent in MRC2 sitting drop vapour diffusion experiments against a reservoir volume of 50 µl. Crystals were obtained in condition A8 of the Morpheus HT-96 screen (0.06 M divalents, 37.5% Buffer System 2 and 37.5% Precipitant Mix 4; Molecular Dimensions [Sheffield, UK] at 4°C after a period of approximately 1 week.

Divalent = 0.3M magnesium chloride, 0.3M calcium chloride

Buffer system 2 = 1M sodium HEPES, MOPS (acid) pH 7.5

75% Precipitant Mix 4 = 25% w/v MPD, 25% v/v PEG1000, 25% w/v PEG 3350

Cryoprotection for data collection was achieved by stepwise soaking of crystals in buffers containing increasing amounts of ethylene glycol, to a final concentration of 20% (v/v).

Diffraction data to a resolution of 1.53 Angstrom were collected from a single crystal, on beamline I04 at the Diamond Light Source (Didcot, UK). Crystals were in space group P2₁ with one molecule of BLM-HD^{WHD} plus associated ligands forming the asymmetric unit.

BLM-HD^{WHD} / ADP / ssDNA-15mer / compound 2
BLM-HD\textminus HDD\textminus WHD was mixed with ssDNA-15mer at a 1:1.2 molar ratio (protein:DNA) to produce a final concentration of 15 mg/ml with respect to protein. Compound 2 was then added to a final concentration of 3 mM (from a stock at 100 mM in 100% v/v DMSO) and incubated with the protein:DNA complex overnight at 4°C. Prior to setting up crystallisation trials the complex was combined with glycerol (100% v/v) and Mg-ADP (50mM) to produce final concentrations of 10% v/v and 2 mM respectively. 150 nl of the prepared complex was combined with 150 nl of crystallisation reagent in MRC2 sitting drop vapour diffusion experiments against a reservoir volume of 50 µl. Crystals were obtained in condition C9 of the Morpheus HT-96 screen (0.09 M NPS, 0.1M Buffer System, 30% Precipitant Mix 1, Molecular Dimensions) at 4°C after a period of approximately 1 week.

NPS = 0.3 M sodium nitrate, 0.3 M sodium phosphate dibasic, 0.3 M ammonium sulphate
Buffer System 1 = 1.0 M imidazole, MES monohydrate (acid) pH 6.5
60% Precipitant Mix 1 = 40% v/v PEG 500 MME, 20% w/v PEG 20000

Cryoprotection for data collection was achieved by stepwise soaking of crystals in buffers containing increasing amounts of ethylene glycol, to a final concentration of 20% (v/v). Diffraction data to a resolution of 3.0 Ångstrom were collected from a single crystal, on beamline I03 at the Diamond Light Source (Didcot, UK). Crystals were in space group P1 with six molecules of BLM-HD\textminus HDD\textminus WHD plus associated ligands forming the asymmetric unit.

Data processing and model building

Diffraction data were automatically processed at the synchrotron by the xia2 pipeline33, using software packages DIALS34,35 or XDS 36 and Aimless37. For BLM-HD\textminus HDD\textminus WHD/ADP, coordinates corresponding to the helicase domain were extracted from PDB entry 4O3M and provided as a search model for molecular replacement using Phaser38. For BLM-HD\textminus HDD\textminus WHD/ADP/ssDNA-15mer/compound 2, the rebuilt and refined coordinates for BLM-HD\textminus HDD\textminus WHD were used as the search model. Initial models were extended and improved by iterative rounds of building in Coot39 and refinement in either PHENIX40 or BUSTER41 to produce the final deposited models. Crystallisation and refinement statistics are provided in Supplementary Table 1.
Data plotting and analysis

All experimental data were plotted and analysed using GraphPad Prism.

REFERENCES

1. Croteau, D.L., Popuri, V., Opresko, P.L. & Bohr, V.A. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 83, 519-52 (2014).

2. Wu, Y. Unwinding and rewinding: double faces of helicase? J Nucleic Acids 2012, 140601 (2012).

3. Urban, V., Dobrovolna, J. & Janscak, P. Distinct functions of human RecQ helicases during DNA replication. Biophys Chem 225, 20-26 (2017).

4. Chan, E.M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551-556 (2019).

5. Lieb, S. et al. Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells. Elife 8(2019).

6. Chan, K.L., North, P.S. & Hickson, I.D. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J 26, 3397-409 (2007).

7. Bernstein, K.A., Gangloff, S. & Rothstein, R. The RecQ DNA helicases in DNA repair. Annu Rev Genet 44, 393-417 (2010).

8. Pearl, L.H., Schierz, A.C., Ward, S.E., Al-Lazikani, B. & Pearl, F.M. Therapeutic opportunities within the DNA damage response. Nat Rev Cancer 15, 166-80 (2015).

9. Aggarwal, M. & Brosh, R.M., Jr. Hitting the bull's eye: novel directed cancer therapy through helicase-targeted synthetic lethality. J Cell Biochem 106, 758-63 (2009).

10. Wang, H. et al. BLM prevents instability of structure-forming DNA sequences at common fragile sites. PLoS Genet 14, e1007816 (2018).

11. Behan, F.M. et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568, 511-516 (2019).

12. Kategaya, L., Perumal, S.K., Hager, J.H. & Belmont, L.D. Werner Syndrome Helicase Is Required for the Survival of Cancer Cells with Microsatellite Instability. iScience 13, 488-497 (2019).

13. Nguyen, G.H. et al. A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem Biol 20, 55-62 (2013).

14. Rosenthal, A.S. et al. Discovery of ML216, a Small Molecule Inhibitor of Bloom (BLM) Helicase. in Probe Reports from the NIH Molecular Libraries Program (Bethesda (MD), 2010).

15. Yin, Q.K. et al. Discovery of Isaindigotone Derivatives as Novel Bloom's Syndrome Protein (BLM) Helicase Inhibitors That Disrupt the BLM/DNA Interactions and Regulate the Homologous Recombination Repair. J Med Chem 62, 3147-3162 (2019).

16. Del Villar-Guerra, R., Gray, R.D., Trent, J.O. & Chaires, J.B. A rapid fluorescent indicator displacement assay and principal component/cluster data analysis for determination of ligand-nucleic acid structural selectivity. Nucleic Acids Res 46, e41 (2018).

17. Tse, W.C. & Boger, D.L. A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Acc Chem Res 37, 61-9 (2004).
18. Newman, J.A. et al. Crystal structure of the Bloom's syndrome helicase indicates a role for the HRDC domain in conformational changes. *Nucleic Acids Res* 43, 5221-35 (2015).
19. Swan, M.K. et al. Structure of human Bloom's syndrome helicase in complex with ADP and duplex DNA. *Acta Crystallogr D Biol Crystallogr* 70, 1465-75 (2014).
20. Manthei, K.A., Hill, M.C., Burke, J.E., Butcher, S.E. & Keck, J.L. Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicas. *Proc Natl Acad Sci U S A* 112, 4292-7 (2015).
21. Zittel, M.C. & Keck, J.L. Coupling DNA-binding and ATP hydrolysis in Escherichia coli RecQ: role of a highly conserved aromatic-rich sequence. *Nucleic Acids Res* 33, 6982-91 (2005).
22. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. *Acta Crystallogr D Biol Crystallogr* 60, 2256-68 (2004).
23. Voter, A.F., Qiu, Y., Tippana, R., Myong, S. & Keck, J.L. A guanine-flipping and sequestration mechanism for G-quadruplex unwinding by RecQ helicases. *Nat Commun* 9, 4201 (2018).
24. Newman, J.A., Aitkenhead, H., Savitsky, P. & Gileadi, O. Insights into the RecQ helicase mechanism revealed by the structure of the helicase domain of human RECQL5. *Nucleic Acids Res* 45, 4231-4243 (2017).
25. Morozov, V., Mushegian, A.R., Koonin, E.V. & Bork, P. A putative nucleic acid-binding domain in Bloom's and Werner's syndrome helicases. *Trends Biochem Sci* 22, 417-8 (1997).
26. Kim, Y.M. & Choi, B.S. Structure and function of the regulatory HRDC domain from human Bloom syndrome protein. *Nucleic Acids Res* 38, 7764-77 (2010).
27. Gyimesi, M., Sarlos, K. & Kovacs, M. Processive translocation mechanism of the human Bloom's syndrome helicase along single-stranded DNA. *Nucleic Acids Res* 38, 4404-14 (2010).
28. Gorbalenya, A.E. & Koonin, E.V. Helicases - Amino-Acid-Sequence Comparisons and Structure-Function-Relationships. *Current Opinion in Structural Biology* 3, 419-429 (1993).
29. Hall, M.C. & Matson, S.W. Helicase motifs: the engine that powers DNA unwinding. *Mol Microbiol* 34, 867-77 (1999).
30. Kitano, K. Structural mechanisms of human RecQ helicases WRN and BLM. *Front Genet* 5, 366 (2014).
31. Wu, L. et al. The HRDC domain of BLM is required for the dissolution of double Holliday junctions. *EMBO J* 24, 2679-87 (2005).
32. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. *Nat Methods* 9, 676-82 (2012).
33. Winter, G., Lobley, C.M. & Prince, S.M. Decision making in xia2. *Acta Crystallogr D Biol Crystallogr* 69, 1260-73 (2013).
34. Beilsten-Edmands, J. et al. Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling. *Acta Crystallogr D Struct Biol* 76, 385-399 (2020).
35. Winter, G. et al. DIALS: implementation and evaluation of a new integration package. *Acta Crystallogr D Struct Biol* 74, 85-97 (2018).
36. Kabsch, W. Xds. *Acta Crystallogr D Biol Crystallogr* 66, 125-32 (2010).
37. Winn, M.D. et al. Overview of the CCP4 suite and current developments. *Acta Crystallogr D Biol Crystallogr* **67**, 235-42 (2011).

38. McCoy, A.J. et al. Phaser crystallographic software. *J Appl Crystallogr* **40**, 658-674 (2007).

39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr* **60**, 2126-32 (2004).

40. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877 (2019).

41. Bricogne, G. et al. BUSTER version 2.10.3. *Global Phasing Ltd., Cambridge, UK* (2020).

42. GraphPad Prism, v. *GraphPad Software Inc., La Jolla, CA, USA*.

43. Laskowski, R.A. & Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. *J Chem Inf Model* **51**, 2778-86 (2011).

44. Rosenthal, A.S. et al. Synthesis and SAR studies of 5-(pyridin-4-yl)-1,3,4-thiadiazol-2-amine derivatives as potent inhibitors of Bloom helicase. *Bioorg Med Chem Lett* **23**, 5660-6 (2013).

45. Schrödinger, L. The PyMOL Molecular Graphics System, Version 2.0.

46. PDBsum. https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html.

ACKNOWLEDGMENTS

General: We thank Will Pearce (Sussex Drug Discovery Centre) for discussions relating to assay development. We are also grateful to the Diamond Light Source Ltd., Didcot, UK for access to synchrotron radiation.

Funding: This work was supported by funding from: Chinese Scholarship Council (XC and FGMP), Wellcome Trust 110578/Z/15/Z (SEW), Cancer Research UK Programme Grant C302/A24386 (LHP and AWO).

Competing Interests: The authors declare no competing interests.

Author Contributions: Conceptualisation: SEW, LHP, FGMP, AWO; Methodology: GW, SW, JJRH, AWO; Investigation: XC, YA, CELF, RA-B, JRB, SMR, SEW, LHP, FGMP, AWO; Writing — Original Draft: AWO; Writing — Review and Editing: XC, LHP, AWO; Visualisation: AWO; Supervision: GW, SW, SEW, FGMP, AWO; Funding Acquisition: XC, FGMP, SEW, LHP, AWO.

Data and materials availability: Coordinates and structures factors have been deposited in the Protein Data Bank (PDB) with accession codes 7AUC and 7AUD.
Figure 1

A

IC$_{50}$ = 4.0 µM
95% CI; 3.5 - 4.6 µM
nH = -1.4

ML216

IC$_{50}$ = 4.0 µM
95% CI; 3.7 - 4.3 µM
nH = -4.3

B

IC$_{50}$ = 3.2 µM
95% CI; 2.3 - 4.0 µM
nH = -1.2

C

IC$_{50}$ = 4.4 µM
95% CI; 4.0 - 4.8 µM
nH = -3.1
Figure 1. Inhibition of BLM helicase unwinding activity

(A, left) Chemical drawings for compounds 1, 2 and ML216. (A, right) Dose response curves from fluorescence-based DNA unwinding assays with BLM-HD. Experimental data were fitted with a four parameter, log(inhibitor) vs. response model with variable slope. Calculated values for IC$_{50}$, Hill slope (n_H) and 95% confidence intervals (95% CI) are given in each case. (B) Turnover of ATP by BLM-HD, as measured by a malachite-green end-point assay, is strongly stimulated in the presence of a 20-base single-stranded oligonucleotide. (C) Dose response curves from ATP-turnover assays with BLM-HD. Data were fitted as for (A). In each case data points are the mean of 3 technical replicates, with error bars representing one standard deviation (1 SD).
Figure 2

A

B

C

D

E

F

G

Figure 2

A

dsDNA

ssDNA

[compound], µM

0

0.1

0.5

1

5

10

25

50

100

B

% activity

100

80

60

40

20

0

Log10 [compound], µM

-1

0

1

2

IC₅₀ = 1.8 µM

95% CI; 1.5 - 2.2 µM

nH = -1.3

C

Topo I:

controls

M

water

DMSO

mAMSA

ML216

ML216-A

ML216-B

2

relaxed

supercoiled

D

% fluorescence (SYBR Green II)

100

80

60

40

20

0

Log₁₀ [compound], µM

-0.5

0

0.5

1

1.5

2

ML216

20

45

60

E

1 / [DNA], nM

2.0

1.5

1.0

0.5

0

1 / Velocity, x 10⁻³

-1

-0.5

0

1

2

F

BLM-HD + ssDNA

- 15mer

- 20mer

Kₐ = 1.6 µM

Kₐ = 0.5 µM

95% CI: 1.1 - 1.7 µM

95% CI: 0.4 - 0.6 µM

G

BLM-HD + ssDNA + 2

- 15mer

- 20mer

Kₐ = 1.7 µM

Kₐ = 2.6 µM

95% CI: 0.7 - 2.8 µM

95% CI: 1.8 - 4.5 µM

Figure 2

- dsDNA
- ssDNA
- 0
- 0.1
- 0.5
- 1
- 5
- 10
- 25
- 50
- 100
- [compound], µM

- % activity
- 100
- 80
- 60
- 40
- 20
- 0
- Log₁₀ [compound], µM
- -1
- 0
- 1
- 2
- IC₅₀ = 1.8 µM
- 95% CI; 1.5 - 2.2 µM
- nH = -1.3

- controls
- M
- water
- DMSO
- mAMSA
- ML216
- ML216-A
- ML216-B
- 2
- relaxed
- supercoiled

- % fluorescence (SYBR Green II)
- 100
- 80
- 60
- 40
- 20
- 0
- Log₁₀ [compound], µM
- -0.5
- 0
- 0.5
- 1
- 1.5
- 2
- ML216
- 20
- 45
- 60

- 1 / [DNA], nM
- 2.0
- 1.5
- 1.0
- 0.5
- 0
- 1 / Velocity, x 10⁻³
- -1
- -0.5
- 0
- 1
- 2

- BLM-HD + ssDNA
- 15mer
- 20mer
- Kₐ = 1.6 µM
- Kₐ = 0.5 µM
- 95% CI: 1.1 - 1.7 µM
- 95% CI: 0.4 - 0.6 µM

- BLM-HD + ssDNA + 2
- 15mer
- 20mer
- Kₐ = 1.7 µM
- Kₐ = 2.6 µM
- 95% CI: 0.7 - 2.8 µM
- 95% CI: 1.8 - 4.5 µM

- % bound
- 100
- 80
- 60
- 40
- 20
- 0
- Log₁₀ [ssDNA], µM
- -3
- -2
- -1
- 0
- 1
- 2

- Log₁₀ [2], µM
- -1
- 0
- 1
- 2
Figure 2. DNA interaction assays

(A) Titration of BLM-HD with 2 prevents the unwinding of a forked-50mer dsDNA substrate into its component strands, as judged by native gel electrophoresis. (B) Quantification of inhibitory activity by 2 in the gel-based activity assay. Experimental data were fitted with a four parameter, log(inhibitor) vs. response model with variable slope. Calculated values for IC_{50}, nH and 95% CI are given in each case. (C) Representative results from a Topoisomerase I (Topo I) DNA-unwinding assay. M = molecular mass maker; DMSO = buffer supplemented with dimethyl sulfoxide control; mAMSA = mAmsacrine; ML216, ML216-A, ML216B = refer to the three independent sources of the compound as described in the main text of the manuscript (D) Dose response curves from SYBR-Green II dye displacement assays, using a forked-50mer DNA duplex incubated with ML216 for a period of 20 (open circles), 45 (filled circles) and 60 minutes (crossed circles). Fitted lines are intended as visual aids only. (E) Lineweaver-Burk plot for data generated at three compound concentrations (0, 5 and 10 µM) in a colourimetric ATP turnover assay. Linear regression produces an intercept of all data on the X-axis indicating that 2 is a non-competitive inhibitor (i.e. same K_m, altered V_{max} parameter). (F, G) Binding isotherms for binding of BLM-HD to ssDNA-15mer and -20mer, or to compound 2 in the presence of either oligonucleotide, as determined by microscale thermophoresis (MST). Experimental data were fitted with a one-site, specific binding model. Values for K_d and 95% CI are given in each case. For all plots, data represent the mean of three technical replicates with error bars representing 1 SD.
Figure 3

A

N-terminal extension	Helicase Core	RQC
	638	
	857	
	993	
	1068	
	1192	
	1290	
	1417	C-term

BLM-HD

D1	D2	Zn	WH	HRDC

BLM-HDΔWHD

D1	D2	Zn	HRDC

B

C

hydrophobic contact
hydrogen bond
Figure 3. Structural overview of BLM-HD_{\text{AWHD}} in complex with compound 2

(A) Schematic representation of the domain composition and respective amino acid boundaries for full-length human BLM and the two expression constructs used in this study BLM-HD and BLM-HD_{\text{AWHD}}. D1 and D2 = domains 1 and 2 of the helicase core; Zn = zinc-binding domain; WH = winged-helix; HRDC = Helicase and RNaseD C-terminal domain; RQC = RecQ C-terminal domain. (B and B inset) Molecular secondary structure cartoon highlighting components of a ‘pseudo-symmetrical’ dimer found in the asymmetric unit of BLM-HD_{\text{AWHD}}/Mg-ADP/2/ssDNA crystals, driven by partial complementarity of the single-stranded 15mer oligonucleotide at its 5’ end (DNA1 and DNA2, coloured orange and cyan respectively). Compound 2 (yellow-coloured spheres) binds to a small pocket found on the opposite side to that which binds nucleotide (grey-coloured spheres). (C, left) Molecular cartoon representation highlighting interactions made between 2 and BLM-HD_{\text{AWHD}}. Key amino acid residues are labelled and shown in stick representation, with carbon atoms coloured according to the schematic shown in panel A. Compound 2 is shown in stick representation, with carbon atoms coloured yellow. Potential hydrogen bonds are indicated by black dotted lines. (C, right) Modified LIGPLOT+ diagram of protein-compound interactions. See associated key for additional detail.
Figure 4

A

BLM-HDΔWHD

4CGZ

Liganded Complex

Disordered ARL

D1; Motifs I, IA and II
D2; ARL
D2; Motif IV
Zn; 'Helical Hairpin'
Mg²⁺
Water; Mg²⁺ coordination

BLM-HDΔWHD

ADP

Lys695
Ser696

Thr691
Arg979
Arg982

His1019

Glu796

Disordered ARL

D1; Motifs I, IA and II
D2; ARL
D2; Motif IV
Zn; 'Helical Hairpin'
Mg²⁺
Water; Mg²⁺ coordination

4CGZ

ADP

Lys695
Ser696

Thr691
Arg979
Arg982

His1019

Glu796

Disordered ARL

D1; Motifs I, IA and II
D2; ARL
D2; Motif IV
Zn; 'Helical Hairpin'
Mg²⁺
Water; Mg²⁺ coordination

Liganded Complex

ADP

Lys695
Ser696

Thr691
Arg979
Arg982

His1019

Glu796

Disordered ARL

D1; Motifs I, IA and II
D2; ARL
D2; Motif IV
Zn; 'Helical Hairpin'
Mg²⁺
Water; Mg²⁺ coordination
Figure 4. Structural transitions around the aromatic rich loop

(A) Molecular secondary structure cartoons for the region surrounding the aromatic rich loop (ARL) of BLM-HD\(^{WHD}\) (top), PDB entry 4CGZ; BLM-HD in complex with DNA (middle) and liganded complex; BLM-HD\(^{WHD}\) in complex with ADP, ssDNA-15mer and 2 (bottom). The side chains for key amino acid residues are shown in stick representation, with carbon atoms coloured according to their respective domains (see associated key). Bound ADP and 2 are also shown in stick representation, with carbon atoms coloured grey and yellow respectively.

(B) Expanded and rotated view highlighting the interactions made between the ARL and ssDNA-15mer oligonucleotide (cartoon coloured cyan) in the liganded complex, also showing the relative position of compound 2. Potential hydrogens bonds are represented by black dotted lines.
Figure 5

A

‘parked’

‘engaged’

HRDC

HRDC

DNA1

DNA2

3_10 helix

B

HRDC
D1
ARL

Phe807
T10

A9
G11

C7
G8

T12
T14

Trp803
Arg808
Thr766
Lys769
Lys1270

Arg775
Thr766
Lys773
Asn1242

His1236
Phe1238

Asp1264

Lys1237
Thr1243
Asn1239

Arg717
Thr717
Lys769

Asp1264

Arg775
Thr766
Lys773
Asn1242

His1236
Phe1238

Asp1264

Arg775
Thr766
Lys773
Asn1242

Asp1264

Arg775
Thr766
Lys773
Asn1242
Figure 5. Repositioning of the HRDC domain

(A) Molecular surface representation of BLM-HD\(^{\Delta\text{WHD}}\) (left) and the liganded complex (right) highlighting the relative positions of the HRDC domain (cylindrical helices coloured in pink). The HRDC moves from a ‘parked’ position located on one side of the helicase core, to an ‘engaged’ position on the other side in order to interact with the bound ssDNA-15mer. The N-terminus of the first HRDC alpha-helix is extended at the by ~ 6 aa, relative to the ‘parked’ position (as indicated by an arrow). (B) Molecular secondary structure cartoon highlighting interactions made by the HRDC to the bound ssDNA-15mer oligonucleotide. Side chains for key amino acid residues are shown in stick representation, with carbon atoms coloured according to their respective domains (see associated key). The bound ssDNA-15mer oligonucleotide is involved in interactions with both the D1 domain (carbon atoms coloured green) and the HRDC (carbon atoms coloured pink). Bound oligonucleotide is shown in stick representation, with carbon atoms coloured cyan.
Figure 6

A

RECQ1-HD

Log$_{10}$[2], µM

% activity

100
80
60
40
20
0

-1
0
1
2

ML216

IC$_{50}$ = 4.1 µM
95% CI; 3.9 - 4.4 µM
nH = -3.7

Log$_{10}$[ML216], µM

% activity

100
80
60
40
20
0

-1
0
1
2

RECQ5-HD

WRN-HD

UvrD

% activity

100
80
60
40
20
0

-1
0
1
2

B

[2], µM K$_a$, nM 95% CI, nM

0 94 79 - 109

1.5 56 50 - 62

15 33 29 - 37

% bound

100
80
60
40
20
0

-3
-2
-1
0
1

Log$_{10}$[BLM-HD], µM
Figure 6. Selectivity profile of compound 2

(A) Dose response curves from ATP-turnover assays for titration of compounds 2 and ML216 against purified recombinant BLM-HD, WRN-HD, RecQ1-HD, RecQ5-HD and UvrD respectively. Calculated values for IC$_{50}$, nH and 95% CI are given in each case. (B) MST-derived binding isotherms for the interaction of BLM-HD with ssDNA-20mer in the presence of increasing concentrations of 2. Calculated values for K_d and 95% CI are given in each case. For all plots, data represent the mean of three technical replicates with error bars representing 1 SD.
Figure 7

A

motif I / ARL	motif III
BLM 734-IDEAHCVSQWHDFR-808	829-LTATANPRVQKD-840
WRN 667-VDEAHCSQWHDFR-681	702-LTATASSSRE-713
RECQ1 218-VDEVHCCSQWHDFR-232	253-LTATATHVLT-264
RECQ5 156-VDEAHCVSQWHDFR-170	191-LTATAPQVQED-202
cons IDEaHC. .#WHDFR	LTATAT...

pre-motif VI

|
| BLM 966-LPKSVEGYYQ-975 |
| WRN 843-APKDMESYYQ-850 |
| RECQ1 391-MSKSMENYYQ-400 |
| RECQ5 336-IAKSMAGYYQ-345 |
| **cons** ..KsmegYYQ |

Zn / helical hairpin

|
| 1004-LIMME-kdg---NHHTRETHFNFL-1023 |
| 879-LLT-ir-===NEKFRLYKLKM-896 |
| 429-MV---men--------VGQQL-440 |
| 378-EVAKL-gekrgna-SDKATIMAP-399 |
| lv-------n...r......l |

- **α** high consensus
- **K** isoleucine or leucine (I/L)
- **r** low consensus
- **#** glutamic acid or glutamine (E/Q)

Annotations

- **hydrophobic contact**
- **hydrogen bond**
- **unwinding**
- **D1** WH
- **D2** WH
- **HRDC** WH
- **Zn-containing** WH
- **Zn**

This preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Figure 7. Compound selectivity / Speculative model

(A) The observed selectivity of compound 2 appears to arise from interactions made with amino acids of the Zn-binding domain ‘Helical Hairpin’ that are poorly conserved (or absent) from the other RecQ-family helicases. For each multiple amino acid sequence alignment shown, highly conserved amino acids are coloured in red. Those conserved in at least two RecQ family members (low consensus) are coloured blue. Amino acids residues of human BLM involved in interactions with 2 are additionally highlighted. Please see associated key for additional information. (B) A speculative model for how the HRDC domain may contribute to the unwinding of a DNA duplex or a Holliday junction (inset) via transient interactions with the passive or ‘inactive’ strand. See associated key for additional details.
#	Chemical Drawing	Unwinding IC₅₀ [95% CI]; µM	Turnover IC₅₀ [95% CI]; µM
2	![Chemical Drawing](image1.png)	2.2 [1.7 – 2.7]	3.2 [2.3 – 4.0]
3	![Chemical Drawing](image2.png)	3.5 [2.4 – 5.2]	5.3 [4.7 – 6.1]
4	![Chemical Drawing](image3.png)	6.6 [3.4 – 12.7]	11.2 [8.3 – 15.3]
5	![Chemical Drawing](image4.png)	12.8 [4.5 – 36.8]	47.86 [18.28 – 180.7]
6	![Chemical Drawing](image5.png)	56.9 [25.4 – 171.3]	40.94 [15.9 – 139.8]
7	![Chemical Drawing](image6.png)	No inhibition	No inhibition
ML216	![Chemical Drawing](image7.png)	4.0 [3.7 – 4.3]	4.4 [4.0 – 4.8]

Table 1. Summary of inhibition data for seven exemplars from the identified compound series. IC₅₀ values were determined by fitting of experimental data to log (inhibitor) vs response models provided in GraphPad Prism. Data for the unwinding assay correspond to three technical replicates from a single experiment. For the ATP-turnover assay data correspond to at least two independent experiments, each containing three technical replicates.
SUPPLEMENTARY MATERIALS

Synthetic Preparation of Test Molecules

All reactions were conducted under an atmosphere of nitrogen unless otherwise stated. Anhydrous solvents were used as purchased or were purified under nitrogen as follows using activated molecular sieves. Thin layer chromatography was performed on glass plates pre-coated with Merck silica gel 60 F254. Visualisation was achieved with U.V. fluorescence (254 nm) or by staining with a phosphomolybdic acid dip or a potassium permanganate dip. Flash column chromatography was carried out using pre-packed columns filled with Aldrich silica gel (40-63 µm) on an ISCO Combiflash Rf, or a Biotage Isolera Prime. Proton nuclear magnetic resonance spectra were recorded at 500 MHz on a Varian 500 spectrometer (at 30 °C), using residual isotopic solvent (CHCl$_3$, δH = 7.27 ppm, DMSO δH = 2.50 ppm, 3.33 ppm (H$_2$O)) as an internal reference. Chemical shifts are quoted in parts per million (ppm). Coupling constants (J) are recorded in Hertz (Hz). Carbon nuclear magnetic resonance spectra were recorded at 125 MHz on a Varian 500 spectrometer and are proton decoupled, using residual isotopic solvent (CHCl$_3$, δC = 77.00 ppm, DMSO δC = 39.52 ppm) as an internal reference. Carbon spectra assignments are supported by HSQC and DEPT editing and chemical shifts (δC) are quoted in ppm. Infrared spectra were recorded on a Perkin Elmer FT-IR One spectrometer as either an evaporated film or liquid film on sodium chloride plates. Absorption maxima are reported in wave numbers (cm$^{-1}$). Only significant absorptions are presented in the data, with key stretches identified in brackets. LCMS data was recorded on a Waters 2695 HPLC using a Waters 2487 UV detector and a Thermo LCQ ESI-MS. Samples were eluted through a Phenomenex Lunar 3µ C18 50 mm × 4.6 mm column, using acetonitrile and water acidified by 0.01% formic acid in three methods: method 1 (3:7 to 7:3 acetonitrile and water over 7 minutes), method 2 (3:7 to 7:3 acetonitrile and water over 4 minutes) and method 3 (19:1 to 1:19 acetonitrile and water over 10 minutes), High resolution mass spectrometry (HRMS) spectra were recorded on Bruker Daltonics Apex III ESI-MS, with an Apollo ESI probe using a methanol spray. Only molecular ions, fractions from molecular ions and other major peaks are reported as mass/charge (m/z) ratios.

N-(2-methyl-5-sulfamoyl-phenyl)-4-(2-methylthiazol-4-yl)benzamide (1)

Methyl 4-(2-bromoacetyl)benzoate

A solution of methyl 4-acetylbenzoate (1.00 g, 5.61 mmol) and p-toluenesulfonic acid monohydrate (54 mg, 0.28 mmol) in acetonitrile (30 mL) was treated with N-bromosuccinimide (0.99 g, 5.61 mmol) and the reaction mixture heated to 80 °C for 16 h. The solvent was removed under reduced pressure. The crude product was taken up in saturated aq. NaHCO$_3$ (15 mL) and extracted with ethyl acetate (3 × 15 mL). The combined organic components were then washed with brine (15 mL), dried over MgSO$_4$, filtered and concentrated under reduced pressure.
pressure. The crude product was purified by column chromatography (silica 24 g, 0 to 10% ethyl acetate in petroleum ether) to yield the desired compound as a light yellow solid (1.12 g, 70%). Rf 0.66 (petroleum ether:ethyl acetate, 9:1); 1H-NMR (500 MHz, DMSO-d6) δ 8.14 – 8.01 (m, 4H, H-2, H-3), 4.98 (s, 2H, COCH₂Br), 3.89 (s, 3H, COOCH₃).

Methyl 4-(2-methylthiazol-4-yl)benzoate

To methyl 4-(2-bromoacetyl)benzoate (2.12 g, 8.23 mmol) in N,N-dimethylformamide (30 mL) was added thioacetamide (931 mg, 12.4 mmol) and the reaction mixture stirred at ambient temperature for 16 h. Upon completion, water was added to the reaction mixture. The resulting precipitate was collected by vacuum filtration and dried under reduced pressure to afford the desired compound as a white solid (1.48 g, 73%). m.p. 223–225 °C; 1H-NMR (500 MHz, DMSO-d6) δ 8.14 (s, 1H, H-6), 8.08 (d, J 8.2, 2H, H-2), 8.01 (d, J 8.2, 2H, H-3), 3.87 (s, OCH₃), 2.73 (s, CH₃); 13C-NMR (126 MHz, DMSO-d6) δ 166.5 (CO), 166.4 (C-8), 153.0 (C-5), 138.9 (C-4), 130.2 (C-2), 129.1 (C-1), 126.5 (C-3), 116.8 (C-6), 52.5 (OCH₃), 19.4 (CH₃); IR (neat, νₘₐₓ, cm⁻¹) 3106, 2943, 1713, 1606, 1436, 1409, 1270, 1170; LCMS (LCQ) Rt = 2.9 min (method 2), m/z (ESI+) 234.2 [M+H]+; HRMS m/z (ESI): calcd. for C₁₂H₁₁NO₂S [M+H]+ 234.0583, found 234.0583.

4-(2-Methylthiazol-4-yl)benzoic acid

To methyl 4-(2-methylthiazol-4-yl)benzoate (1.46 g, 6.26 mmol) in methanol (24 mL) and water (8 mL) was added sodium hydroxide (502 mg, 12.5 mmol) and the reaction mixture stirred at an ambient temperature for 16 h. Upon completion, the reaction mixture was acidified to pH of 2-3 using 2 M aq. hydrochloric acid solution. The resulting precipitate was collected by vacuum filtration and dried under reduced pressure to afford the desired acid as a white solid (1.21 g, 84%). m.p. 250–252 °C; 1H-NMR (500 MHz, DMSO-d6) δ 8.10 (s, 1H, H-6), 8.05 (d, J 8.2, 2H, H-3), 7.99 (d, J 8.1, 2H, H-2), 2.73 (s, 3H, CH₃); 13C-NMR (126 MHz, DMSO-d6) δ 167.5 (CO), 166.4 (C-8), 153.2 (C-5), 138.5 (c-4), 130.3 (C-2), 126.4 (C-3), 116.5 (C-6), 19.4 (12-CH3). Quaternary 5-C not visible; IR (neat, νₘₐₓ, cm⁻¹) 2826, 1667, 1608, 1573, 1421, 1290, 1169; 256 LCMS (LCQ) Rt = 0.6 min (method 1), m/z (ESI+) 220.2 [M+H]+; HRMS m/z (ESI): calcd. for C₁₂H₁₁NO₂S [M+H]+ 220.0427, found 220.0428.

N-(2-methyl-5-sulfonylamino-phenyl)-4-(2-methylthiazol-4-yl)benzamide (1)

To 4-(2-methylthiazol-4-yl)benzoic acid (120 mg, 0.55 mmol), HBTU ([2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyllumium hexafluorophosphate] (153 mg, 0.66 mmol), N,N-diisopropylethylamine (191 µL, 1.09 mmol) in N,N-dimethylformamide (2 mL) was added 3-amino-4-methylbenzenesulfonylamine (102 mg, 0.55 mmol). The reaction mixture was stirred at ambient temperature for 16 h. Upon completion, the solvent was removed under reduced pressure. The crude product was taken up in ethyl acetate (5 mL), washed with saturated aq. NaHCO₃ (4 mL), brine (4 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica 12 g, 0 to 55% ethyl acetate in petroleum ether) to yield the desired compound as a yellow solid (1.12 g, 84%). m.p. 250–252 °C; 1H-NMR (500 MHz, DMSO-d6) δ 8.10 (s, 1H, H-6), 8.05 (d, J 8.2, 2H, H-3), 7.99 (d, J 8.1, 2H, H-2), 2.73 (s, 3H, CH₃); 13C-NMR (126 MHz, DMSO-d6) δ 167.5 (CO), 166.4 (C-8), 153.2 (C-5), 138.5 (c-4), 130.3 (C-2), 126.4 (C-3), 116.5 (C-6), 19.4 (12-CH₃). Quaternary 5-C not visible; IR (neat, νₘₐₓ, cm⁻¹) 2826, 1667, 1608, 1573, 1421, 1290, 1169; 256 LCMS (LCQ) Rt = 0.6 min (method 1), m/z (ESI+) 220.2 [M+H]+; HRMS m/z (ESI): calcd. for C₁₂H₁₁NO₂S [M+H]+ 220.0427, found 220.0428.
acetate in petroleum ether) and further purified by column chromatography (amino silica 4 g, 0 to 5% methanol in dichloromethane) to yield the desired amide 1 as a white solid (15 mg, 7%). Rf 0.14 (petroleum ether:ethyl acetate 9:11); m.p. 261–263 °C; 1H-NMR (500 MHz, DMSO-d6) δ 10.11 (s, 1H, CONH), 8.15 – 8.09 (m, 3H, H-3, H-6), 8.06 (d, J 8.2, 2H, H-2), 7.87 (s, 1H, H-6'), 7.62 (d, J 8.0, 1H, H-4'), 7.48 (d, J 8.0, 1H, H9'), 7.34 (s, 2H, SO2NH2), 2.75 (s, 3H, 8-CH3), 2.32 (s, 3H, 2'-CH3); 13C-NMR (126 MHz, DMSO-d6) δ 166.4 (CO), 165.5 (C-8), 153.3 (C-5), 142.5 (C-5'), 138.3 (C-1), 137.6 (C-2'), 137.2 (C-2'), 133.6 (C-4), 131.2 (C-3'), 128.75 (C-2), 126.3 (C3), 124.1 (C-6'), 123.4 (C-4'), 116.1 (C-6), 19.4 (8-CH3), 18.44 (2'-CH3); IR (neat, \nu_{\text{max}}, \text{cm}^{-1}) 3258, 2923, 1630, 1572, 255 1516, 1444, 1403, 1304, 1154; LCMS (LCQ) Rt = 2.7 min (method 1), m/z (ESI+) 388.1 [M+H]+; HRMS m/z (ESI): calcd. for C18H17N3O5S2 [M+H]+ 388.6847, found 388.6850.

N-(2,3-dimethyl-5-sulfamoyl-phenyl)-4-(2-methylthiazol-4-yl)benzamide (2)

To 4-(2-methylthiazol-4-yl)benzoic acid (120 mg, 0.55 mmol), HBTU (153 mg, 0.66 mmol), N,N-diisopropylethylamine (0.19 mL, 1.09 mmol) in N,N-dimethylformamide (3 mL) was added 3-amino-4,5-dimethylbenzenesulfonamide (110 mg, 0.55 mmol). The reaction mixture was stirred at ambient temperature for 16 h. Upon completion, the solvent was removed under reduced pressure. The crude product was taken up in ethyl acetate (5 mL), washed with saturated aq. NaHCO3 (4 mL), brine (4 mL), dried over MgSO4, filtered and concentrated under reduced pressure. The crude was purified by column chromatography (silica 12 g, 0 to 60% ethyl acetate in petroleum ether) to yield the desired amide 2 as a white solid (15 mg, 7%). Rf 0.12 (petroleum ether:ethyl acetate 1:1); m.p. 246–248 °C; 1H-NMR (500 MHz, DMSO-d6) δ 10.17 (s, 1H, CONH), 8.13 – 8.08 (m, 3H, H-3, H-6), 8.05 (d, J 8.4, 2H, H-2), 7.64 (d, J 1.9, 1H, H-4'), 7.54 (d, J 1.9, 1H, H-3'), 7.28 (s, 2H, SO2NH2), 2.74 (s, 3H, 8-CH3), 2.36 (s, 3H, 3'-CH3), 2.17 (s, 3H, 2'-CH3); 13C-NMR (126 MHz, DMSO-d6) δ 166.4 (CO), 165.5 (C-8), 153.3 (C-5), 141.6 (C-5'), 138.5 (C-1), 137.6 (ArC), 137.5 (ArC), 137.1 (ArC), 133.7 (C-4), 128.7 (C-2), 126.3 (C-3), 124.6 (C-6'), 122.3 (C-4'), 116.1 (C-6), 20.7 (3'-CH3), 19.4 (8-CH3), 15.0 (2'-CH3); IR (neat, \nu_{\text{max}}, \text{cm}^{-1}) 3258, 2923, 1630, 1572, 1516, 1444, 1403, 1304, 1154; LCMS (LCQ) Rt = 2.0 min (method 1), m/z (ESI+) 401.1 [M+H]+; HRMS m/z (ESI): calcd. for C19H19N3O5S2 [M+H]+ 401.0868, found 401.0866.

N-(3-hydroxy-2-methyl-phenyl)-4-(2-methylthiazol-4-yl)benzamide (3)

To 4-(2-methylthiazol-4-yl)benzoic acid (80 mg, 0.36 mmol) in dichloromethane (3 mL) was added oxalyl chloride (37 µL, 0.44 mmol) in a dropwise manner followed by the addition of a few drops of N,N-dimethylformamide (10 µL). The reaction mixture was stirred at ambient temperature for 16 h. The crude acyl chloride was then added to a stirred mixture of 3-amino-2-methylphenol (54 mg, 0.44 mmol), N,N-diisopropylethylamine (397 µL, 2.28 mmol) and
dichloromethane (1 mL) and stirred at ambient temperature for 2–16 h. The solvent was removed under reduced pressure. The crude product was taken up in saturated aq. NaHCO₃ (5 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic components were then washed with brine (10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude was purified by column chromatography (silica 12 g, 0 to 40% ethyl acetate in petroleum ether) to yield the desired amide 3 as a white solid (13 mg, 10%).

Methyl 4-methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzoate (4)

To 4-(2-methylthiazol-4-yl)benzoic acid (800 mg, 3.65 mmol) and methyl 3-aminomethylbenzoate (52 µL, 9.12 mmol) in tetrahydrofuran (15 mL) was added phosphorus trichloride (0.32 mL, 3.65 mmol). The reaction mixture was heated in a microwave reactor for 20 min at 150 °C. The crude product was taken up in saturated aq. NaHCO₃ (5 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic components were then washed with brine (10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude was purified by column chromatography (amino silica 12 g, 0 to 50% ethyl acetate in petroleum ether) to yield the desired amide 4 as a white solid (920 mg, 65%).

Rf 0.23 (petroleum ether:ethyl acetate 1:1); m.p. 179–181 °C; ¹H-NMR (500 MHz, DMSO-d₆) δ 10.03 (s, 1H, CONH), 8.14 – 8.07 (m, 3H, H-3, H-6), 8.05 (d, J 8.3, 2H, H-2), 8.00 (d, J 1.8 , 1H, H-6’), 7.76 (dd, J 7.9, 1.8 , 1H, H-4’), 7.44 (d, J 7.9, 1H, H-9’), 3.85 (s, 3H, OCH₃), 2.74 (s, 3H, 8-CH₃), 2.33 (s, 3H, 2’-CH₃); ¹³C-NMR (126 MHz, DMSO-d₆) δ 164.4 (CO), 165.6 (C-8), 153.3 (C-5), 140.0 (C-8'), 137.6 (C-1), 137.3 (C-7), 133.7 (C-4), 131.3 (C-3'), 128.8 (C-2), 128.1 (C-6'), 127.5 (C-5'), 126.9 (C-4'), 126.3 (C-3), 116.1 (C-6), 52.5 (OCH₃), 19.4 (8-CH₃), 18.6 (2'-CH₃). COO not visible; IR (neat, vₘₐₓ, cm⁻¹) 3256, 1726, 1643, 1523, 1432, 1296, 1171, 1110; LCMS (LCQ) Rt = 2.6 min (method 1), m/z (ESI⁺) 347.0827; HRMS (ESI): calcd. for C₁₆H₁₅NaN₂OS [M+Na]⁺ 347.0825, found 347.0827.

4-Methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzamide (5)

Methyl 4-methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzoate
To 4-(2-methylthiazol-4-yl)benzoic acid (800 mg, 3.65 mmol) and methyl 3-amino-4-methylbenzoate (52 µL, 9.12 mmol) in tetrahydrofuran (15 mL) was added phosphorus trichloride (0.32 mL, 3.65 mmol). The reaction mixture was heated in a microwave reactor for 20 min at 150 °C. The crude product was taken up in saturated aq. NaHCO₃ (5 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic components were then washed with brine (10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude was purified by column chromatography (amino silica 12 g, 0 to 50% ethyl acetate in petroleum ether) to yield the desired amide as a white solid (926 mg, 99%). m.p. 254 °C;

4-Methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzamide (5)

To methyl 4-methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzoate (920 mg, 2.51 mmol) in methanol (24 mL) was added 2 M aq. sodium hydroxide (12.6 mL, 25.1 mmol) and the mixture stirred at an ambient temperature for 16 h. The reaction mixture was then heated for 2 h at 50 °C. The solvent was removed under reduced pressure. The crude was taken up in water and the mixture was acidified to a pH of 2–3 with 2 M aq. hydrochloric acid solution. The resulting precipitate was collected by vacuum filtration and dried under reduced pressure to afford the desired acid as a white solid (926 mg, 99%). m.p. 254 °C; ¹H-NMR (500 MHz, DMSO-d6) δ 12.85 (s, 1H, COOH). 10.04 (s, 1H, CONH). 8.13 – 8.07 (m, 3H, H-3, H-6), 8.06 (d, J 8.3, 2H, H-2), 7.95 (d, J 1.7, 1H, H-6'), 7.74 (dd, J 7.9, 1.7, 1H, H-4'), 7.40 (d, J 7.9, 1H, H-3'), 2.74 (s, 3H, 8-CH₃); ¹³C-NMR (126 MHz, DMSO-d6) δ 167.4 (COOH). 166.4 (CONH). 154.4 (C-8), 153.3 (C-5), 139.5 (C-2'), 137.5 (C-1), 137.1 (C-1'), 133.8 (C-4), 131.1 (C-3'), 129.3 (C-5'), 128.7 (C-2), 127.8 (C-6'), 127.2 (C-4'), 126.3 (C-3), 116.01 (C-6), 19.4 (8-CH₃), 18.59 (2'-CH₃); IR (neat, v_max cm⁻¹) 2923, 1769, 1679, 1638, 1512, 1492, 1414, 1390, 1251, 1178; LCMS (LCQ) Rt = 3.6 min (method 1), m/z (ESI⁺) 375.0774, found 375.0774.

HRMS (ESI): calcd. for C₁₉H₁₄N₂NaO₃S [M+Na]^+ 389.0930, found 389.0931.
To 4- methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzoic acid (146) (100 mg, 0.28 mmol), EDCI (68 mg, 0.35 mmol), HOBt (54 mg, 0.35 mmol), N,N-diisopropylethylamine (100 μL, 0.57 mmol) in N,N-dimethylformamide (1 mL) was added 2 M ammonia in methanol (0.43 mL, 0.85 mmol). The reaction mixture was stirred at ambient temperature for 16 h. The solvent was removed under reduced pressure. The crude product was taken up in ethyl acetate (5 mL), washed with 1 M aq. hydrochloric acid solution. (4 mL), saturated aq. NaHCO₃ (4 mL), brine (4 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude was purified by column chromatography (amino silica 12 g, 0 to 5% methanol in dichloromethane) to yield the desired primary amide 5 as a white solid (39 mg, 37%). Rf 0.17 (dichloromethane:methanol 19:1); m.p. 215–217 °C; ¹H-NMR (500 MHz, DMSO-d6) δ 10.02 (s, 1H, CONH), 8.14 – 8.08 (m, 3H, H-3, H-6), 8.05 (d, J 8.5, 2H, H-2), 7.91 (s, 1H, 5'-CONHAB), 7.86 (d, J 1.8, 1H, H-6'), 7.70 (dd, J 7.9, 7.1, 1H, H-4'), 7.35 (d, J 7.9, 1H, H-3'), 7.27 (s, 1H, 5'-CONHAB), 2.74 (s, 3H, 8-CH₃), 2.28 (s, 3H, 2'-CH₃); ¹³C-NMR (126 MHz, DMSO-d6) δ 167.9 (CO), 166.4 (CO), 165.5 (C-3), 153.3 (C-5), 138.0 (C-2'), 137.5 (C-1), 136.8 (C-1'), 133.8 (C-4), 132.8 (C-5'), 130.6 (C-3'), 128.7 (C-2), 126.6 (C-6'), 126.3 (C-3), 125.6 (C-4), 116.0 (C-6), 19.4 (8-CH₃), 18.37 (2'-CH₃); IR (neat, ν_max, cm⁻¹) 3108, 1713, 1668, 1608, 1571, 1436, 1410, 1278; LCMS (LCQ) Rt =1.7 min (method 1), m/z (ESI+) 352.0 [M+H]^+; HRMS (ESI): calcd. for C_{18}H_{17}N_{3}O_{2}S [M+Na]^+ 374.0934, found 374.0933.

4-Methyl-3-((4-(2-methoxazol-4-yl)benzoyl)amino)benzamide (6)

Methyl 4-(2-bromoacetyl)benzoate (400 mg, 1.56 mmol) was stirred in neat acetamide (276 mg, 4.67 mmol) at 160 °C for 2 h. Water was added to the reaction mixture. The resulting precipitate was collected by vacuum filtration and dried under reduced pressure to afford the desired compound 191 as a brown solid (308 mg, 87%) which was carried forward without further purification. ¹H-NMR (500 MHz, DMSO-d6) δ 8.07 (s, 1H, H-6), 8.00 (d, J 8.2, 2H, H-3), 7.89 (d, J 8.1, 2H, H-2), 3.86 (s, 3H, OCH₃), 2.48 (s, 3H, 8-CH₃).

4-(2-Methoxazol-4-yl)benzoic acid

To methyl 4-(2-methoxazol-4-yl)benzoate (191) (279 mg, 1.2 mmol) in methanol (5 mL) and water (1.5 mL) was added sodium hydroxide (150 mg, 3.86 mmol) and the reaction mixture stirred at ambient temperature for 16 h. Upon completion, the reaction mixture was acidified to pH of 2-3 using 2 M aq. hydrochloric acid solution. The resulting precipitate was collected by vacuum filtration and dried under reduced pressure to afford the desired acid as a as a white solid (130 mg, 47%). ¹H-NMR (500 MHz, DMSO-d6) δ 8.56 (s, 1H, 11, H-6), 7.97 (d, J 8.0, 2H, H-3), 7.85 (d, J 8.0, 2H, H-2), 2.47 (s, 3H, 8-CH₃); LCMS (LCQ) Rt = 0.5 min (method 1), m/z (ESI+) 204.2 [M+H]^+.

4-Methyl-3-((4-(2-methoxazol-4-yl)benzoyl)amino)benzamide (6)
To 4-(2-methylthiazol-4-yl)benzoic acid (110 mg, 0.54 mmol) in dichloromethane (3 mL) was added oxalyl chloride (0.05 mL, 0.65 mmol) in a dropwise manner followed by N,N-
dimethylformamide (10 µL). The reaction mixture was stirred at ambient temperature for 16 h.

The crude acyl chloride was then added to a stirred mixture of 3-amino-4-methylbenzamide (98 mg, 0.65 mmol) followed by the addition of N,N-diisopropylethylamine (0.47 mL, 2.71 mmol). The reaction mixture was stirred at ambient temperature for 2-16 h. The solvent was removed under reduced pressure. The crude product was taken up in saturated aq. NaHCO₃ (5 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic components were then washed with brine (10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica 12 g, 0 to 5% methanol in dichloromethane) to yield the desired amide 6 as a white solid (55 mg, 29%). Rf 0.28 (dichloromethane:methanol 19:1); m.p. 260–262 °C; ¹H-NMR (500 MHz, DMSO-d6) δ 10.00 (s, 1H, CONH), 8.61 (s, 1H, H-6), 8.05 (d, J 8.1, 2H, H-3), 7.91 (d, J 8.4, 3H, H-2, 5'-CONHAB), 7.86 (s, 1H, H-6'), 7.70 (dd, J 7.9, 1.9, 1H, H-4'), 7.35 (d, J 7.9, 1H, H-3'), 7.27 (s, 1H, 5'-CONHAB) 2.28 (s, 3H, 2'-CH₃). 8-CH₃ under DMSO peak; ¹³C-NMR (126 MHz, DMSO-d6) δ 167.8 (CO), 165.4 (CO), 162.2 (C-8), 139.4 (C-5), 137.9 (C-2'), 136.8 (ArC), 136.3 (ArC), 134.6 (C-1), 133.8 (C-4), 132.8 (C-5'), 130.3 (C-3'), 128.7 (C-2'), 126.6 (C-6'), 125.5 (C-4'), 125.33 (C-3), 18.4 (8-CH₃), 14.0 (2'-CH₃); IR (neat, cm⁻¹) 3255, 1673, 1635, 1616, 1522, 1489, 1386, 1276, 1214; LCMS (LCQ) Rt =0.8 min (method 1), m/z (ESI+) 336.1 [M+H]⁺; HRMS (ESI): calcd. for C₁₉H₁₇N₃NaO₃ [M+Na]⁺ 358.1162, found 358.1150.

N-(6-methyl-2-pyridyl)-4-(2-methylthiazol-4-yl)benzamide (7)

To 4-(2-methylthiazol-4-yl)benzoic acid (80 mg, 0.36 mmol) in dichloromethane (3 mL) was added oxalyl chloride (37 µL, 0.44 mmol) in a dropwise manner followed by N,N-
dimethylformamide (10 µL). The reaction mixture was stirred at ambient temperature for 16 h.

The crude acyl chloride was then added to a stirred mixture of 2-amino-6-methylpyridine (40 mg, 0.36 mmol) followed by the addition of N,N-diisopropylethylamine (397 µL, 2.28 mmol). The reaction mixture was stirred at ambient temperature for 2-16 h. The solvent was removed under reduced pressure. The crude product was taken up in saturated aq. NaHCO₃ (5 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic components were then washed with brine (10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica 12 g, 0 to 45% ethyl acetate in petroleum ether) to yield the desired amide 7 as a colourless solid (54 mg, 45%). Rf 0.48 (petroleum ether:ethyl acetate 1:1); m.p. 195–197 °C; ¹H-NMR (500 MHz, DMSO-d6) 165.9, 157.0, 153.3, 152.0, 138.8, 137.6, 133.5, 129.1, 126.1, 119.5, 116.2, 112.1, 24.0, 19.4;
IR (neat, ν_{max}, cm$^{-1}$) 3314, 2923, 1539, 1522, 1290, 1169; LCMS (LCQ) Rt = 3.1 min
(method 1), m/z (ESI+) 310.1 [M+H]$^+$; HRMS (ESI): calcd. for C$_{17}$H$_{16}$N$_3$O$_2$ [M+H]$^+$ 310.1009, found 310.1012.

1-(4-Fluoro-3-(trifluoromethyl)phenyl)-3-(5-(4-pyridyl)-1,3,4-thiadiazol-2-yl)urea (ML216)44

Phenyl-5-(4-pyridyl)-1,3,4-thiadiazol-2-ylcarbamate

Sodium hydride (700 mg, 33.7 mmol) was slowly added to a suspension of 5-(4-pyridyl)-1,3,4-thiadiazol-2-yl-amine (2.00 g, 11.2 mmol) in tetrahydrofuran (40 mL) at 0 °C. The resulting reaction mixture was stirred at 0 °C for 2 h. Diphenyl carbonate (2.89 g, 13.5 mmol) was added and the reaction mixture was stirred at 0 °C for 30 min. The reaction mixture was warmed to ambient temperature and stirred overnight. Dichloromethane (40 mL) and brine (10 mL) was added to the reaction mixture and the solid precipitate was collected by filtration to yield the desired compound as a crystalline off-white solid (3.10 g, 93%). Rf 0.52 (dichloromethane:methanol 19:1); m.p. 278–280 °C; 1H-NMR (500 MHz, DMSO-d$_6$) δ 8.58 (d, J 4.9, 2H, H-2), 7.70 (d, J 4.9, 2H, H-3), 7.33 (t, J 7.6, 2H, H-15), 7.11 (t, J 7.4, 1H, H-17), 7.07 (d, J 7.7, 2H, H-16); 13C-NMR (126 MHz DMSO-d$_6$) δ = 174.7 (CO), 162.1 (ArC), 155.1 (ArC), 153.7 (C-14), 150.7 (C-2), 140.1 (ArC), 129.2 (C-15), 124.0 (C-17), 122.4 (C-16), 120.2 (C-3); IR (neat, ν_{max}, cm$^{-1}$) 3542, 3118, 2417, 1604, 1460, 1319, 1296, 1208; LCMS (LCQ) Rt = 1.8 min (method 2), m/z (ESI+) 299.03 [M+H]$^+$; HRMS (ESI): calcd. for C$_{14}$H$_{11}$N$_4$O$_2$S [M+H]$^+$ 299.0598, found 299.0597.

1-(4-Fluoro-3-(trifluoromethyl)phenyl)-3-(5-(4-pyridyl)-1,3,4-thiadiazol-2-yl)urea (ML216)

To a suspension of phenyl-(5-(4-pyridyl)-1,3,4-thiadiazol-2-yl)carbamate (150 mg, 0.50 mmol) in toluene (5 mL) was added 4-fluoro-3-(trifluoromethyl)aniline (65 µL, 0.50 mmol). The reaction mixture was heated in a microwave reactor at 150 °C for 30 min and the resulting suspension was cooled to room temperature. The reaction mixture was concentrated under reduced pressure. The resulting solid 223 was triturated with dichloromethane (5 mL) and further triturated with 5% methanol in dichloromethane (3 mL) to yield the desired compound ML216 as an orange solid (82 mg, 46%). 1H-NMR (500 MHz, DMSO-d$_6$) δ 11.61 (s, 1H, NH-urea), 9.52 (s, 1H, NH-urea), 8.73 (d, J 5.9, 2H, H-2), 8.06 (s, 1H, H15), 7.89 (d, J 5.3, 2H, H-3), 7.77 (s, 1H, H-19), 7.49 (t, J 9.7, 1H, H-18); LCMS (LCQ) Rt = 2.7 min (method 1), m/z (ESI+) 384.0 [M+H]+. 1H-NMR consistent with literature data44.

44
SUPPLEMENTARY TABLE 1. Statistics for data collection, phasing and refinement

	BLM-HD^{AWHD} + ADP	Liganded-BLM-HD^{AWHD}
Data collection		
Space group	P2₁	P1
Cell dimensions	a, b, c (Å)	54.28, 107.69, 55.20
	a, b, c (Å)	84.69, 111.60, 132.38
α, β, γ (°)	90.00, 109.31, 90.00	72.70, 80.13, 79.24
Wavelength	0.9780	0.9762
Resolution (Å)	51.23 – 1.53 (1.56 – 1.53)	125.37 – 2.97 (3.08 – 2.97)
Mn I / σd	12.7 (1.2)	7.8 (1.4)
Mn I, CC_{1/2}	1.00 (0.61)	0.99 (0.57)
Completeness (%)	98.3 (90.3)	98.0 (94.5)
Redundancy	1.9 (1.7)	2.6 (2.7)
Refinement		
Resolution (Å)	51.23 – 1.53 (1.56 – 1.53)	47.28 – 2.97 (3.07 – 2.96)
No. unique reflections	88464 (8096)	91661 (8892)
R_{work} / R_{free}	0.19 / 0.21	0.23 / 0.27
No. atoms		
Macromolecules	3870	24954
Ligands	65	427
Solvent	438	91
B-factors		
Wilson	32.58	77.77
ADP (mean)		
Macromolecules	31.00	95.79
Ligands	40.89	98.56
Solvent	45.69	53.65
R.m.s. deviations		
Bond lengths (Å)	0.014	0.006
Bond angles (°)	1.64	1.11
Molprobity		
All atom clashscore	2.44	7.42
Ramachandran		
Outliers	0.21 %	0.42 %
Allowed	1.65 %	3.72 %
Favoured	98.15 %	95.85 %

* values in parentheses are for the highest resolution shell
Figure S1

(Top) Chemical drawings for compounds 3 to 7. (Middle) Dose response curves from fluorescence-based DNA unwinding assays with BLM-HD. Data points are the mean of three technical replicates with error bars representing 1 SD. (Bottom) Dose response curves from ATP turnover assays with BLM-HD. Data points represent the mean from at least two individual experiments, each containing 3 technical replicates. Error bars represent the standard error of the mean (SEM). Experimental data were fitted with a four parameter, log(inhibitor) vs. response model with variable slope. Calculated values for IC_{50}, Hill slope (nH) and 95% confidence intervals (95% CI) are reported in Table 1. Data points excluded from fitting are coloured red.
Supplementary Figure 2

A

ADP

% bound

-1 0 1 2 3 4

Log$_{10}$ [nucleotide], µM

0 20 40 60 80 100

% bound

-1 0 1 2 3 4

Log$_{10}$ [nucleotide], µM

B

2

IC$_{50}$ = 2.2 µM

95% CI; 1.7 - 2.7 µM

nH = - 0.9

Log$_{10}$ [compound], µM

0 20 40 60 80 100

% activity

[ATP] = 0.5 mM

-1 0 1 2 3

Log$_{10}$ [compound], µM

-1 0 1 2 3

Log$_{10}$ [compound], µM

2

IC$_{50}$ = 2.2 µM

95% CI; 1.8 - 2.7 µM

nH = - 1.2

[ATP] = 5 mM
Figure S2

(A) Indicative binding isotherms for titrations of Mg-ADP and Mg-ATP$_2$S into BLM-HD as measured by MST. Fitted lines are intended as visual aids only, as the data only represent values from a single preliminary experiment. (B) Dose response curves from fluorescence-based DNA unwinding assays with BLM-HD, carried out at two different ATP concentrations. Experimental data were fitted with a four parameter, log(inhibitor) vs. response model with variable slope. Calculated values for IC$_{50}$, Hill slope (n_H) and 95% confidence intervals (95% CI) are given in each case. Data points represent the mean of 3 technical replicates, with error bars representing 1 SD.
Supplementary Figure 3

A

\[
\text{rmsd, Å} \quad \# \text{atoms}
\]

- \(\text{D1 + D2 + Zn} \) 0.86 2450
- \(\text{D1 + D2 + Zn + HRDC} \) 1.01 3120

B

- \(\text{BLM-HD}\Delta\text{WHD} \)
 - \(K_d = 1.6 \, \mu\text{M} \)
 - 95% CI: 1.3 - 2.0 \(\mu\text{M} \)

- \(\text{BLM-HD}\Delta\text{WHD} + \text{ssDNA 15mer} \)
 - \(K_d = 1.2 \, \mu\text{M} \)
 - 95% CI: 0.8 - 1.9 \(\mu\text{M} \)
Figure S3

(A) Superposition of the structures of BLM-HD (PDB: 4CDG) and BLM-HD$^{\Delta WHD}$ using PyMOL

Values for rmsd in Angstrom are shown, calculated over the indicated number of equivalent atoms. See associated key for details of colour scheme. (B) Isotherms for binding of BLM-HD$^{\Delta WHD}$ to (top) ssDNA-15mer and (bottom) compound 2 in the presence of ssDNA-15mer, as determined by MST. Values for K_d and 95% CI are given in each case. For all plots, data represent the mean of three technical replicates with error bars representing 1 SD.
Figure S4

Schematic summary of DNA-interactions made within the crystal lattice of the liganded complex (BLM-HD$^{\Delta WHD}$ + Mg-ADP + ssDNA-15mer + compound 2). Interaction network determined through by the PDBsum Generate webserver46. Green solid lines represent hydrophobic / stacking interactions. Black dotted lines represent potential hydrogen bonds.
Supplementary Figure 4

A. Diagrams of 4CDG, 4CGZ, and 4TMU structures showing key residues:
- 4CDG: Trp803, His805, Asp806, Phe807, Arg808, 795, 820
- 4CGZ: Trp803, His805, Asp806, Phe807, Arg808, 795, 820
- 4TMU: Trp154, His156, Asp157, Phe158, Arg159, 171, 820

B. Close-up view of residues His805/156, Asp806/157, Trp803/154, and Arg808/159.

C. Comparative structures of 4CGZ, 4O3M, and 4TMU showing D1, D2, Zn, WH, and HRDC labels.

Structure	BLM + 2	rmsd, Å	# atoms
4TMU	0.663	183	
6CRM	0.628	186	

The copyright holder for this version posted December 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Figure S5

(A) Molecular secondary structure cartoons showing selected amino acid side chains of the aromatic rich loop (ARL) region in PDB entries 4CDG and 4CGZ (BLM-HD) and 4TMU (Cronobacter sakazakii RecQ) to that reported here for liganded-BLM-HDΔWHD. Amino acid numbering is provided for the start and end of the region compared, with the identity of key residues also provided. (B) Superposition of the ARL in liganded-BLM-HDΔWHD (coloured orange) with those found in PDB entries 4TMU (cyan) and 6CR²³ (grey); which both represent structures of the catalytic core of C. sakazakii RecQ in complex with different DNA substrates. (C) Molecular cartoon representations of the helicase catalytic cores reported in PDB entries 4CGZ, 4O3M and 4TMU, highlighting their respective interactions with bound DNA substrates and comparing this to liganded-BLM-HDΔWHD. Additional details for the colour scheme can be found in the associated key.