Free Inclinations for Trans-Neptunian Objects in the Main Kuiper Belt

Yukun Huang (黄宇坤)1 ©, Brett Gladman1 ©, and Kathryn Volk2 ©

1 Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
2 Lunar and Planetary Laboratory, 1629 E University Boulevard, Tucson, AZ 85721, USA

Received 2021 December 22; revised 2022 February 10; accepted 2022 February 14; published 2022 April 6

Abstract

There is a complex inclination structure present in the trans-Neptunian object (TNO) orbital distribution in the main classical-belt region (between orbital semimajor axes of 39 and 48 au). The long-term gravitational effects of the giant planets make TNO orbits precess, but nonresonant objects maintain a nearly constant “free” inclination (I_{free}) with respect to a local forced precession pole. Because of the likely cosmogonic importance of the distribution of this quantity, we tabulate free inclinations for all main-belt TNOs, each individually computed using barycentric orbital elements with respect to each object’s local forcing pole. We show that the simplest method, based on the Laplace–Lagrange secular theory, is unable to give correct forcing poles for objects near the ν_{18} secular resonance, resulting in poorly conserved I_{free} values in much of the main belt. We thus instead implemented an averaged Hamiltonian to obtain the expected nodal precession for each TNO, yielding significantly more accurate free inclinations for nonresonant objects. For the vast majority (96%) of classical-belt TNOs, these I_{free} values are conserved to $< 1^\circ$ over 4 Gyr numerical simulations, demonstrating the advantage of using this well-conserved quantity in studies of the TNO population and its primordial inclination profile; our computed distributions only reinforce the idea of a very coplanar surviving “cold” primordial population, overlain by a large I-width implanted “hot” population.

Unified Astronomy Thesaurus concepts: Trans-Neptunian objects (1705); Kuiper belt (893); Classical Kuiper belt objects (250); Celestial mechanics (211)

Supporting material: machine-readable table, tar.gz file

1. Introduction

The outer region of our solar system beyond Neptune (trans-Neptunian space) hosts a large swarm of icy bodies that are planetesimals left over after the planet formation era. They contain valuable information about the solar system’s distant past. Over the past two decades, there is a growing consensus that current trans-Neptunian objects (TNOs) may have accreted from different regions in the protoplanetary disk: the cold population likely formed locally around $a \approx 44$ au and has not experienced significant subsequent dynamical excitation or collisional evolution, whereas the hot population likely formed closer to the Sun ($a < 30$ au) and was implanted at the current locations during the late stages of planet formation. These two populations are mixed in the main Kuiper Belt ($42 \lesssim a \lesssim 47$ au) radially and vertically, with the inclination being a rough proxy to separate them (see Gladman & Volk 2021 for a detailed review).

Brown (2001) first fit the inclination distribution of all classical TNOs (i.e., main-belt TNOs not in mean-motion resonances with Neptune) using a functional form of $\sin I$ multiplied by a sum of two Gaussians consisting of a cold component (of width $\sim 2^\circ$2) and a hot component ($\sim 17^\circ$). Levison & Stern (2001) noticed the observed cold population lacks large objects, which was later further confirmed by several independent Kuiper Belt surveys showing the cold population has a significantly steeper absolute magnitude (H) distribution than that of the hot population (Bernstein et al. 2004; Elliot et al. 2005; Fraser et al. 2010; Petit et al. 2011; Kavelaars et al. 2021). The perihelion distance distribution of the cold population is more confined than those of the hot one (Pett et al. 2011). The cold classicals are also known to have a higher abundance of binary TNOs (see, e.g., Noll et al. 2020), especially those with comparable sizes. Furthermore, a statistically significant correlation between the color and inclination of the classical objects has been observed, with low-inclination objects more likely to be red and high-inclination objects likely to be more neutral in color (Doressoundiram et al. 2002; Trujillo & Brown 2002; Doressoundiram et al. 2008; Peixinho et al. 2008). High-precision colors from optical and near-infrared observations have demonstrated that the cold classicals have different surface properties from the hot members (Pike et al. 2017; Schwamb et al. 2019; Müller et al. 2020; Fernández-Valenzuela et al. 2021). All of these properties are consistent with the two populations having distinct formation histories. As a result, the orbital distributions, especially the inclination distributions, of the two populations shed light upon their dynamical past and deserve detailed investigation with the most recent sample.

A common practice in TNO research is to split the classical TNOs into hot and cold populations with a simple inclination cut to facilitate, for example, physical property studies of the two populations or comparisons between observationally derived population estimates and those from dynamical models. For example, Bernstein et al. (2004), Petit et al. (2011), and Fraser et al. (2014) all used a cut of $I < 5^\circ$ in ecliptic inclination to identify a dominantly cold population, while Peixinho et al. (2008) used 12°. The ecliptic I, however, varies over time as an artifact of the reference frame choice: A TNO’s orbit precesses around its local forcing pole with a fixed I_{free} and a constant frequency, the result of which, in ecliptic space, is a nonconstant precession (sometimes not even a precession but a confined oscillation in the longitude of ascending node Ω) with varying I.
is that this component split is only sensible in this semimajor axis range (objects that might have low inclinations at other semimajor axes are best interpreted as the low-I tail of the implanted hot component’s inclination distribution); we thus confine ourselves to the main-belt objects in this work. In Section 2.1, we describe how we selected the observed TNOs to include in our analysis. Section 2.2 describes our approach to calculating free inclinations (with more details given in the Appendix), and Section 2.3 demonstrates that the newly calculated free inclinations are a better-conserved quantity than those calculated using linear theory.

2.1. Dynamical Classification of TNOs

We began by downloading the most recent sample of main-belt TNOs from the JPL Small-Body Database.\(^8\) We constrained the heliocentric semimajor axis \(a\) to the range of \((39.4, 47.7)\) au and the \(1\sigma\) uncertainty in \(a\) to \(\delta a < 0.1\) au. We also added two additional TNOs to the sample: 486958 Arrokoth (2014 MU\(_{69}\)), the target TNO visited by the New Horizons spacecraft on 2019 January 1 (Stern et al. 2019) whose orbit-fit accuracy is not accurately reflected in JPL’s database, and 2005 JY\(_{185}\), an OSSOS object whose \(a\) uncertainty given by JPL is slightly above the 0.1 au but for which our own estimate is \(\delta a \approx 0.05\) au (Bannister et al. 2018). This resulted in 2018 objects being selected.

The JPL Small-Body Database provides orbital elements in the heliocentric IAU76/J2000 ecliptic reference frame. However, for the study of TNO dynamics, barycentric orbital elements are preferable to heliocentric ones. TNOs are relatively far away from the Sun, and the small wobbling of the Sun’s position under planetary perturbations (mainly from the giant planets) leads to variation of TNO heliocentric orbital elements on timescales of each giant planet’s orbital period (Gladman & Volk 2021). The barycenter of the solar system, on the other hand, is far more stable in the eyes of TNOs. As a result, orbital elements in this paper and the appended table are all barycentric elements.

These TNOs are distributed across the whole main classical belt, starting from the 3/2 Neptunian mean-motion resonance \((a = 39.4\) au\) and ending at the 2/1 resonance \((47.7\) au\). Several low-order resonances are also embedded in the main belt, the most important of which are the 5/3 (42.3 au), the 7/4 (43.7 au), and the 9/5 (44.6 au). We classified the 2018 TNOs in our sample according to their current dynamical state (Gladman et al. 2008), separating the classical TNOs from the resonant objects and the scattering objects (note that by definition detached objects have \(a > 47.7\) au, therefore they cannot be in this sample). To do this, we integrated the best-fit orbit for each TNO forward 10 Myr in time under the influence of the Sun and the four giant planets. We used the MERCURIUS algorithm within the REBOUND orbital integration software package (Rein & Liu 2012); this algorithm uses REBOUND’s WHFAST symplectic integrator (Rein & Tamayo 2015) for the majority of time steps and the adaptive step-size IAS15 integrator (Rein & Spiegel 2015) to resolve close encounters between test particles and planets. We used a base time step of 0.25 yr and an output interval of 1000 yr for these integrations.

After the integration, the TNO classification was carried out manually: Each particle’s \(a\), eccentricity \((e)\), and critical angle for the closest resonance \((\varphi)\) are plotted. A human operator then decided to tag it as scattering \((a\) alters more than 1 au\), resonant

\(^8\) https://ssd.jpl.nasa.gov/sbdb_query.cgi, retrieved on 2021 October 5.
(φ ceases to circulate at any moment in the 10 Myr integration), or classical (for a nonscattering and nonresonant particle). Although recent papers have described TNO classification using automatic pipelines (Khain et al. 2020) or machine-learning algorithms (Smullen & Volk 2020), we decided to do the job manually as the sample was not too large and this remains the most accurate method. Our criterion for resonant objects is quite loose; this is motivated by the fact that even a brief interaction with a mean-motion resonance can significantly alter (see Section 2.3). For the resonant identification, we searched through resonances \(ij \) with \(i = 1 \ldots 20 \) and \(j = 1 \ldots 20 \) in the \(a \) range of (39.4, 47.7) au, which includes 23 distinct resonances with the 20:11 being the highest-order one.

Among the sample of 2018 objects we integrated and classified, 66% (1332/2018) are classical, 31% (622/2018) are resonant, and only 3% (64/2018) are scattering. These percentages have biases and should not be interpreted as the intrinsic or cosmogonic dynamical distribution in this semimajor axis range.\(^4\) Note that our TNO classification is conducted with the purpose of better presenting our results in the next section; it should not be treated as the “definitive” classification for these objects because we are not considering orbital uncertainties by integrating clone orbits.

2.2. Free Inclination with the Correct Precession Rate

In Laplace–Lagrange secular theory, the barycentric inclination vector (also called the orbit pole) of a TNO (typically measured from the ecliptic plane) constantly rotates around its local precession pole under the perturbations of planets. When perturbed by a single planet, an object’s forcing pole is constant and simply perpendicular to the planet’s orbital plane. However, when perturbed by multiple planets, the local forcing pole constantly changes with time. The time-dependent location of the forcing pole is predicted by the Laplace–Lagrange secular theory (see the Appendix), which gives the rectangular components of the forcing pole \((q = I \cos \Omega, p = I \sin \Omega)\) at any given semimajor axis induced by the orbits of all giant planets. Chiang & Choi (2008) showed that in the main classical belt, the forcing poles at various semimajor axes form a line in \((q, p)\) space, rotating around the location of the solar system’s invariable pole with a 1.9 Myr period. As the semimajor axis goes to infinity (although in practice needs only \(a > 45 \) au), the forcing pole approaches the invariable plane pole and is therefore fixed.

A TNO’s current osculating orbital inclination is a sum of this locally forced inclination and its free inclination (also sometimes called the “proper” inclination). By calculating and then subtracting the forced pole from an object’s ecliptic inclination, the resultant free-inclination vector components are obtained. The magnitude of the free-inclination vector is \(I_{\text{free}} \), and the phase provides the free ascending node \(\Omega_{\text{free}} \). In Figure 1 we illustrate the geometric relationship between the ecliptic (orange) inclination, the forced pole (red), and the free (blue) inclination in the rectangular \((q, p)\) space. We also recommend the nonexpert reader to Gladman & Volk’s (2021) Figure 1 and their supplemental video for more details.

In theory, the free inclination of a nonresonant, nonscattering object is constant over time. The conservation of \(I_{\text{free}} \) at 38.6 au and at 43 au for 4 Gyr has been verified by numerical integrations (Chiang & Choi 2008). However, we find that near the \(\nu_6 \) secular resonance at \(a = 40.5 \) au, the \(I_{\text{free}} \) of TNOs calculated by the linear theory are not conserved even over our much shorter 10 Myr integrations. Figure 2 shows the barycentric ecliptic \(a \) and \(I \)

Column name	Unit	Description
\(a (\text{au}) \)	au	Semimajor axis of the nominal orbit
\(e (\text{e}) \)	Eccentricity	
\(I_{(\text{inc})} (\text{deg}) \)	Inclination	
\(\Omega (\text{Omega}) (\text{deg}) \)	Longitude of ascending node	
\(\omega (\text{omega}) (\text{deg}) \)	Argument of perihelion	
\(M (\text{M}) (\text{deg}) \)	Mean anomaly	
\(d (\text{dist}) (\text{au}) \)	Distance from the barycenter	
\(H (\text{H}) (\text{mag}) \)	Absolute magnitude	
\(\text{RESO} \)	Dynamics flag: −1 for scattering, 0 for nonresonant/classical, > 0 for the exactly resonant ratio (e.g., “74” stands for the 7/4 mean-motion resonance with Neptune)	
\(I_{\text{free}}(\text{Ifree}) (\text{deg}) \)	Free inclination, computed via double averaging	
\(I_{\text{free}} \text{ range} (\text{IFreeRange}) (\text{deg}) \)	Free-inclination range over 10 Myr integration time	
\(q_{\text{forced}} (\text{qForced}) (\text{deg}) \)	\(q \) component of the forcing pole: \(q_{\text{forced}} = I_{\text{forced}} \cos(\Omega_{\text{forced}}) \)	
\(p_{\text{forced}} (\text{pForced}) (\text{deg}) \)	\(p \) component of the forcing pole: \(p_{\text{forced}} = I_{\text{forced}} \sin(\Omega_{\text{forced}}) \)	
OSSOS++	OSSOS++ internal designation (“x” for non-OSSOS++ objects)	
DES	DES Y6 data line number (“x” for non-DES objects)	
ID	ID downloaded from the JPL Small-Body Database: for a numbered TNO, ID is “a” followed by its number; for an unnumbered TNO, ID is “b” followed by its compact provisional designation	
Name	Full name; designation in brackets	

Notes. The first six orbital elements and the distance are barycentric and in the IAU76/J2000 ecliptic reference frame, referring to epoch JD 2,459,400.5. Both the \(I_{\text{free}} \) and \(I_{\text{forced}} \) ranges are independent of the choice of reference frame. The absolute magnitude \(H \), id, and full name were directly retrieved from JPL on 2021 October 5; these values could change as the Minor Planet Center receives additional observations. An interactive version of this table is also available online at https://yukunhuang.com/.

(This table is available in its entirety in machine-readable form.)
evolutions of 2014 QU_510 as well as its \(\dot{I}_{\text{free}} \) calculated by the linear theory (red dotted curve). To compute the linear secular \(\dot{I}_{\text{free}} \) evolution of this object over our simulation, we recalculate the eigenmodes of the solar system at each time output, based on the constantly evolving orbits of the four giant planets (using the method described in Murray & Dermott 1999) and use those to determine 2014 QU_510’s forced plane and thus free inclination. As shown in Figure 2, the linear theory \(\dot{I}_{\text{free}} \) of this object is not conserved at all; its amplitude even exceeds the variation of its oscillating ecliptic inclination.

The varying \(\dot{I}_{\text{free}} \) computed from linear theory near \(a = 40.5 \) au demonstrates that the forcing pole is not correctly predicted near the secular resonance. The reason for this failure is that in linear theory, the expected precession rate \((\dot{B} \text{ in the Appendix}) \) of a TNO is only a function of its semimajor axis. The real nodal precession rate, however, also depends on the object’s eccentricity and inclination. Ignoring high-order terms in \(e \) and \(I \) produces an inaccurate precession rate, resulting in the incorrect determination of its forcing pole. This effect is particularly strong near a secular resonance, due to the fact that the term \(B - f_j \) (where \(f_j \) is an eigenfrequency) exists in the denominator of the forcing-pole expression (Equation (A3)).

To get the correct \(\dot{I}_{\text{free}} \), especially near the \(\nu_{18} \), we adopt a semianalytical method to recalculate the correct precession rate at every time step. It is based on numerically averaging the TNO’s Hamiltonian over two “fast angles” (called the “double-average” method hereafter; see Morbidelli 2002 for references). Simply put, the double-average method (developed in Appendix A.2) calculates the precession rate as a function of \(a, e, I, \) and \(\omega \), instead of just \(a \) as in the linear theory. As a result, the method produces a rate closer to the TNO’s true precession rate, and thus a more accurate forcing pole and a better-conserved free inclination. Taking the object from Figure 2 as an example, the linear theory predicts a nodal rate of \(-0^0.63 \) yr\(^{-1}\), which is very close to the \(\dot{\nu}_8 = -0^0.68 \) yr\(^{-1}\) inclination eigenfrequency of the solar system (Brouwer & van Woerkom 1950). In contrast, the real precession rate according to numerical integration is only \(-0^0.206 \) yr\(^{-1}\), which is much closer to what the double-average method predicts (a rate varying between \(-0^0.19 \) yr\(^{-1}\) to \(-0^0.21 \) yr\(^{-1}\) as the orbit evolves). The \(\sim 40^0 \) inclination makes the TNO precess slower than a planar orbit of the same \(a \), pulling itself away from the \(\nu_{18} \) secular resonance despite being near \(a = 40.5 \) au. Obviously, the double-average method provides a more accurate precession rate, resulting in a much better conserved \(\dot{I}_{\text{free}} \) for the TNO (red solid line in Figure 2). The details of the method are described in Appendix A.2.
2.3. Results

We applied both the linear theory and the double-average method to the calculation of \(I_{\text{free}} \) for each of the nonscattering TNOs in our sample. Figure 3’s upper panel shows the double-averaging \(I_{\text{free}} \) as a function of \(a \). To illustrate the conservation of \(I_{\text{free}} \) over 10 Myr timescales, the bottom panel shows the variation, \(I_{\text{free}} \) range \(\equiv \max(I_{\text{free}}) - \min(I_{\text{free}}) \), over the integration for both methods. The \(I_{\text{free}} \) range values show that, as expected, near the \(\nu_{18} \) resonance at 40.5 au, the linear theory fails to produce a well-conserved \(I_{\text{free}} \) (red crosses in Figure 3), whereas even near the secular resonance our method (blue dots) provides free inclinations that are as well conserved as for the rest of main-belt classicals. The vast majority of classicals have \(I_{\text{free}} \) conserved to better than 1°, although this is not the case for resonant objects (orange dots) and a handful of near-resonant objects. Because the averaging method does not take into account the Hamiltonian’s resonant terms, it cannot predict the correct nodal precession rate for objects affected by the mean-motion commensurabilities. As a result, TNOs near and in the 3/2 and the 5/3 resonances have a significantly large \(I_{\text{free}} \) range (bottom panel of Figure 3). The 7/4 resonance, however, hosts TNOs with both large and small \(I_{\text{free}} \) ranges; the latter group is all objects with relatively small eccentricities (\(e < 0.15 \)) and the vast majority have \(I_{\text{free}} < 10^\circ \). Higher-order resonances in the main belt seem to have no clear effect on the object’s \(I_{\text{free}} \) range, presumably due to their relatively weak strength.

Figure 3’s lower panel aligns with our expectations: Classical TNOs not affected by resonant dynamics generally have very small \(I_{\text{free}} \) variations, while resonant TNOs (especially those in strong, low-order resonances) have significantly large \(I_{\text{free}} \) ranges. In other words, in Figure 3’s upper panel, only for the classical objects (blue dots) can \(I_{\text{free}} \) be trusted to be cosmogonically relevant.

Figure 3. Upper panel: our computed values of current \(I_{\text{free}} \) for each TNO as a function of its barycentric semimajor axis \(a \) (note the log scale on the y-axis). Resonant objects are shown in orange and classical TNOs in blue, with light blue and dark blue denoting classical TNOs with \(I_{\text{free}} < 4^\circ \) and \(I_{\text{free}} > 4^\circ \), respectively. The dashed curves in the lower-left portion of the plot give the center of the \(\nu_8 \) (black) and \(\nu_{18} \) (gray) secular resonances, with curves on the left being \(e = 0 \) and those on the right being \(e = 0.1 \) (see text). Bottom panel: the range in calculated \(I_{\text{free}} \) values (log scale) over our 10 Myr integrations as a function of \(a \). For objects with \(a \approx 39.7-42.5 \) au, the proximity of the \(\nu_{18} \) secular resonance results in the TNO’s expected precession rate being dramatically incorrect, resulting in widely varying values of \(I_{\text{free}} \) when calculated using the linear theory (red crosses). When the nodal precession rate for nonresonant TNOs is corrected (using the double-average method), well-preserved free inclinations are obtained for the classical TNOs (blue dots); resonant TNOs (orange dots) can have highly variable values for their calculated \(I_{\text{free}} \) even with the double-average method because the resonant dynamics are not accounted for.
If we limit our scope only to the classical TNOs in the \(I_{\text{free}} - a \) distribution, there are a few things worth pointing out:

1. Almost every classical TNO between the 3/2 and the 5/3 Neptunian resonances has \(I_{\text{free}} \) larger than 10\(^\circ\), due to the presence of \(\nu_5 \) and \(\nu_{15} \) secular resonances in the low-\(I \) region. The \(\nu_5 \) resonance will excite eccentricities for lower-\(I \) orbits to Neptune crossing, resulting in TNO removal. We computed the positions of these resonances (gray and black dashed curves) by iteratively converging (for a given \(e \)) to the resonant secular frequency (\(g_8 \) or \(f_8 \)) by varying \(I_{\text{free}} \); the \(e = 0.1 \) curve is very similar to those shown in Knežević et al. (1991) and Morbidelli (2002).

2. The 8/5 resonance might be viewed as surprisingly devoid of TNOs, leaving a semimajor axis gap in the hot population at \(a = 41.2 \) au. We integrated five of the 8/5 resonant objects to 4 Gyr; none of them survive for the age of the solar system, with a median dynamical lifetime of only 700 Myr. None of the real objects are thus deeply embedded and stabilized by the mean-motion resonance for the age of the solar system. Given that the nearby third-order 7/4 resonance does not deplete on this same timescale (even at large \(I_{\text{free}} \)), this contrast seems puzzling. It is plausible that the proximity to the two secular resonances is contributing to this instability but may instead imply something about capture into this resonance out of the abundant ancient scattering population.

3. There is a few-degree-wide sparsely populated region in the free-inclination distribution (sitting just above \(I_{\text{free}} = 4^\circ \)) in the semimajor axis range between the 5/3 and the 7/4 resonances in the main belt. This “gap” is nearly devoid of TNOs and exists only in the \(I_{\text{free}} \) space; it would be completely hidden if one were to plot the distribution using ecliptic \(I \). This explains why Van Laerhoven et al. (2019) found isolating \(I_{\text{free}} < 4^\circ \) to be an excellent way to reduce contamination between hot and cold, minimizing interlopers when measuring the width of the cold population’s inclination distribution. We expand upon this in the Discussion section.

To show how the resonant dynamics affects \(I_{\text{free}} \), we plot (Figure 4) the orbital evolution of an object (119956 = 2002 PA\(_{149} \)) trapped in the 7/4 resonance with moderate \(e \approx 0.17 \) and a nearby cold classical TNO (2015 GH\(_{59} \)). Despite maintaining a relatively low ecliptic inclination, the resonant object’s calculated free inclination is extremely variable (right panel of Figure 4) because the assumptions underlying the linear secular or the double-average \(I_{\text{free}} \) calculation are not valid for resonant objects; this highlights why we needed to classify our TNO sample prior to determining free inclinations. In contrast, the classical TNO in the left panel of Figure 4 demonstrates why \(I_{\text{free}} \) is superior to the ecliptic inclination in separating objects into cold versus hot populations: 2015 GH\(_{59} \) is an object with a 5°3 ecliptic inclination currently, which would place it in the hot population according to most ecliptic-inclination cuts. In addition, the 10 Myr average of its ecliptic inclination is 4°4, still above a typical 4° cut. However, our calculation shows its free inclination is only 3°69 with a range of 0°25, which keeps it always below a 4° cut and thus always a cold object.

We demonstrated above the conservatism of \(I_{\text{free}} \) for classical objects over 10 Myr timescales. But what one truly cares about is whether \(I_{\text{free}} \) is stable for the age of the solar system. In other words, will the current \(I_{\text{free}} \) of classical TNOs reflect their \(I_{\text{free}} \) ~4 billion years ago, at the end of the giant-planet formation and migration/transport to their present-day orbits? To answer this, we extended the numerical integrations of the observed objects for 4 Gyr and plotted the surviving particles’ \(\Delta I_{\text{free}} \) (the absolute difference between each object’s current \(I_{\text{free}} \) and that at 4 Gyr) in Figure 5. The vast majority of classical TNOs, no matter what their current inclinations are, have \(\Delta I_{\text{free}} < 1^\circ \). The very few outliers are mainly distributed around major mean-motion resonances, indicating some occasional interactions with the resonances during the 4 Gyr evolution in which the secular conservation is lost. Figure 5 thus shows that the \(I_{\text{free}} \) distribution we compute today for the classical TNOs can be taken to be representative of the primordial distribution.

Last but not least, we also explored the idea of whether the (easily calculated) mean ecliptic inclination from numerical integrations can serve as a good proxy for \(I_{\text{free}} \). We find that for
classical TNOs whose $I_{\text{free}} > 4^\circ$, the mean ecliptic inclination over 10 Myr is a good approximation of I_{free}, with the median absolute difference being only 0.7°. However, in the cold population ($I_{\text{free}} < 4^\circ$), the median absolute difference is 0.76°, which renders the mean ecliptic inclination a low-quality estimate of the free inclination for this population (see the example discussed above from Figure 4). Moreover, we point out that if one intended to study the main belt’s inclination distribution through the mean ecliptic inclination, this averaging would result in all objects with I_{free} smaller than the local forced inclination being assigned a mean ecliptic inclination of roughly the forced value of about 2°; the distribution of very-low-I_{free} objects would be completely erased. These same arguments apply if one tried to use the invariable plane as the reference (rather than the ecliptic); the cold population’s median absolute inclination difference is still 0.5°. It is thus superior to use the I_{free} computed by the double average to study the main belt’s inclination distribution.

3. Discussion

In summary, the free-inclination distribution we have computed for the main belt (Figure 3) illustrates several points:

1. The innermost boundary of the cold population at $a \approx 42$ au is being set by the existence of the secular resonances. The absence of low-I TNOs here does not imply that the cold belt did not exist here before the giant planets finished formation and migration. How and when these secular resonances reached their current location is a subject of much speculation (e.g., Batygin et al. 2011; Dawson & Murray-Clay 2012; Gladman et al. 2012; Nesvorný 2018; Baguet et al. 2019, and references therein).

2. The double-averaging method removes the apparent forced-inclination singularities that occur in the linear secular theory. If one wished to study the secular effects of additional planets on the ancient or current structure of the solar system (e.g., Volk & Malhotra 2017; Batygin et al. 2019), this method is to be preferred to estimate the inclination perturbations produced by the planet.

3. The preservation of the I_{free} calculated via this method over 4 Gyr allows us to study the ancient inclination structure of the belt (that is, the structure existing at the end of the planet formation epoch). This reinforces the idea that there was a cold ($I_{\text{free}} < 4^\circ$) population present at that time that (at least in the $a < 44.5$ au region of the main belt) is well separated from the presumably implanted hot population.

4. The main-belt TNO population clearly has multiple superposed components (see Brown 2001 and citations to it), and, because there is evidence that these components have different physical properties due to different formation locations, there needs to be some way to easily separate observed TNOs for spectrophotometric studies. Due to the narrow width of the cold component, TNOs with large ecliptic inclinations (larger than 10°, say) will almost all be from the hot component with very few interlopers. At small inclinations, the majority of the TNOs will be from the cold population, with the interloper fraction depending on the component I distributions and relative populations. The often-used 5° cut in ecliptic inclination to separate the cold and hot components was proposed by Bernstein et al. (2004), although no justification for that particular value was given. Here we have demonstrated the superiority of using a cut in I_{free} to isolate the hot and cold populations. Van Laerhoven et al. (2019) found that the cold population is tightly confined (in I_{free}) around the local forcing pole; this is especially true in the inner part of the main belt, where they found the cold population has an inclination width of just $\approx 1.8^\circ$. Figure 6 shows histograms of the ecliptic and free inclination for the nonresonant main-belt TNOs in this work. The low-I peak in the free-inclination histogram is sharper than in the ecliptic histogram, and there is a noticeable dropoff in the observed population at $I_{\text{free}} = 4^\circ$ (roughly twice the cold population’s inclination width). We note that observational biases are not accounted for in Figure 6, though they were accounted for in Van Laerhoven et al.’s (2019) analysis of the cold population’s inclination width. Based on that inclination width and our analysis here, we suggest that $I_{\text{free}} < 4^\circ$ is a reasonable choice when using a simple cut to separate the hot and cold populations in the main TNO belt.

4. Data Release

The purpose of this work is to provide tabulated barycentric orbit elements and I_{free} for the currently observed main classical-belt TNOs as a resource for studies comparing the hot and cold populations. We do this in Table 1. We identify each TNO in our sample by their primary minor-planet designation, but we also include OSSOS++ and DES designations for objects that appear in either survey so that one could more easily use the survey simulators of those surveys for quantitative debiasing. The absolute magnitude H in Table 1 is taken from the JPL Small-Body Database; we note that these H values use approximate color transformations and should not be used with the survey simulators mentioned above as they are not linked to a specific filter.

In addition, to help the reader quickly estimate the correct I_{free} for future TNOs, we provide Table 2, in which the forcing-pole components (q, p) are precomputed in a four-dimensional (a, e, I, ω) grid. We also provide a Python script to read the file and find the closest data point for any given orbit, which the reader can then use to estimate the I_{free} that would be given by the double-average method. However, it is important to note that this simplified approach of evaluating I_{free} can only be trusted if the TNO (1) is a nonresonant and nonscattering object within the given orbital ranges, (2) stays away from the ν_{18} secular resonance (in other words, the forcing pole is relatively small), and (3) has an ecliptic inclination computed before the year 2100. We have tested the file and confirmed that for TNOs...
that meet these three requirements, this script yields I_{free} to a precision of $\sim 0.2^\circ$ compared to that computed by the precise double averaging.

With accurate values of I_{free} and the knowledge of a cleaner separation between hot and cold populations with a 4° boundary in this variable, one can use our tabulated I_{free} values to reduce the occurrence of cross-contamination between the two groups in photometric and spectroscopic studies of those populations, the goal of which is to constrain primordial TNO surface properties. Lastly, we provide a rapid method allowing anyone to easily estimate the correct I_{free} for future TNO discoveries in the main Kuiper Belt.

We thank J.-M. Petit for valuable discussions, P. H. Bernardinelli for providing us the DES Y6 data, and an anonymous referee for helpful improvements. Y.H. acknowledges support from China Scholarship Council (grant 201906210046) and the Edwin S. H. Leong International Leadership Fund, B.G. acknowledges Canadian funding support from NSERC, and K.V. acknowledges support from NSF (grant AST-1824869) and NASA (grants 80NSSC19K0785 and 80NSSC21K0376). This work used High Performance Computing (HPC) resources supported by the University of Arizona TRIF, UITS, and Research, Innovation, and Impact (RII) and maintained by the UArizona Research Technologies department.

Appendix
Free-inclination Algorithm

A.1. Laplace–Lagrange Secular Theory

The motions of the planets in the solar system are a nonintegrable N-body problem. With suitable assumptions, it is possible to express the long-term variations of the orbits of the solar system bodies in an analytical form. A widely used solution is derived by Brouwer & van Woerkom (1950), where 10 frequencies for the $e-\Omega$ solution and eight frequencies for the $I-\Omega$ solution are given. We denote them by the eigenfrequencies g_1-g_{10} and f_1-f_8 of the solar system. Here, we recapture the secular perturbation theory for test particles and give the explicit equations for calculating their I_{free} (see Section 7 of Murray & Dermott 1999).

The orbital variations of TNOs are strongly influenced by perturbations from the planets. To study this, we start by transforming the orbital elements to the coordinates:

\[
q = I \cos \Omega, \quad p = I \sin \Omega,
\]

where I is the oscillating orbital inclination and Ω is the oscillating longitude of ascending node in some chosen reference frame. With the computed eigenfrequencies and eigenmodes of the planetary motions, it is possible to write down the solutions for small-body inclinations in the new (q, p) coordinates:

\[
q = I_{\text{free}} \cos (Bt + \gamma) + q_{\text{forced}}(t),
\]

\[
p = I_{\text{free}} \sin (Bt + \gamma) + p_{\text{forced}}(t),
\]

where I_{free} is the free inclination, and q_{forced} and p_{forced} are components of the forcing poles imposed by planetary perturbations. In the present work, only the four giant planets are taken into account, so the resulting forced terms are given by

\[
q_{\text{forced}}(t) = -\sum_{j=5}^{8} \frac{\mu_j}{B - f_j} \cos (f_j t + \gamma_j),
\]

\[
p_{\text{forced}}(t) = -\sum_{j=5}^{8} \frac{\mu_j}{B - f_j} \sin (f_j t + \gamma_j),
\]

where j denotes the index of the inclination eigenfrequencies/ eigenvectors (f_j and γ_j) below of the solar system, and B denotes the expected precession rate of the small body’s node. In Laplace–Lagrange secular theory, B is the summation of precession rates contributed by each planet (B_j), which depend on both the planetary and the small body’s semimajor axes (a_i and a). Note that the term $B - f_j$ appears in the denominators of both equations; when the expected precession rate B approaches any solar system eigenfrequency f_j (or g_j for the eccentricity frequency), the forced vector would diverge, which corresponds to the secular resonance. The inclination secular resonance sends the TNO into a large-I oscillation, while the eccentricity one will destabilize the object by boosting its orbital eccentricity to planet-crossing values.
For TNOs in the main belt (where \(\alpha_j = a_j/a < 1 \) always holds), \(B, B_j \), and \(\mu_j \) are given by

\[
B_j = \frac{1}{4} \frac{m_j}{m_\odot} \alpha_j^3 \beta_j \left(\frac{1}{2} \right) (\alpha_j),
\]

\[
B = -\sum_{j=8}^{30} B_j,
\]

\[
\mu_j = \sum_{j=8}^{30} B_j l_j,
\]

(A4)

where \(m_\odot \) is the solar mass, \(m_j \) is the mass of the \(j \)th planet, and \(n \) is the mean motion of the small body, \(\beta_j \left(\frac{1}{2} \right) (\alpha_j) \) is the Laplace coefficient. The Laplace–Lagrange secular theory predicts a nodal precession rate for each TNO, under the assumption that both the planets and the TNOs have near-circular and planar orbits. As a result, the forced inclination \(I_{\text{forced}} \) and the longitude of ascending node \(\Omega_{\text{forced}} \) are both functions of the semimajor axis only.

A2. Free Inclination with Double Average

As shown in the main text, the linear theory gives erroneous free inclinations for TNOs near the \(\nu_8 \) secular resonant and poorly conserved free inclinations for moderately inclined (\(I \sim 20^\circ \)) objects in the main classical belt. We therefore provide a more accurate way to calculate the expected precession rate \(B \) of a small body. This calculation is performed every output time step of the numerical integration, resulting in a better-measured forcing pole and thus a better-conserved \(I_{\text{free}} \).

Our method is based on numerically averaging the leading Hamiltonian over the two most quickly varying angles (called the “double-average method”), which avoids any truncation in powers of the small body’s eccentricity and inclination (Williams 1969). This approach has been commonly used in solar system studies (Henrard 1990; Morbidelli & Henrard 1991; Froeschlé & Morbidelli 1994; Michel & Froeschlé 1997), in order to compute the locations of secular resonances over a large range of \(e \) and \(I \). We summarize the major steps to obtain the correct precession rates (\(B \) and \(B_j \)) using the double-average method (see Michel & Froeschlé 1997 and chapter 8 of Morbidelli 2002 for more complete details).

One first introduces the canonical Delaunay variables:

\[
L = \sqrt{a}, \quad I = M, \quad G = \sqrt{a(1 - e^2)} \cos I, \quad h = \Omega,
\]

(A5)

where the semimajor axis \(a \), the eccentricity \(e \), the inclination \(I \), the argument of perihelion \(\omega \), the longitude of the ascending node \(\Omega \), and the mean anomaly \(M \) are the usual Keplerian orbital elements.

Assuming all the planets to be on coplanar circular orbits, the Hamiltonian of a TNO perturbed by the \(j \)th planet can be written as

\[
\mathcal{H} = -\frac{1}{2L^2} + m_j \mathcal{P}_j(L, G, H, L_j; l, g, h, l_j),
\]

(A6)

where \(\mathcal{H}_{\text{ kep}} \) is the integrable Keplerian motion of the TNO around the Sun and \(\mathcal{H}_{\text{sec}}^{(j)} \) accounts for the planetary perturbation by the \(j \)th planet, in which \(\mathcal{P}_j \) is the normalized term that only depends on orbital elements. Assuming the TNO is not trapped inside a mean-motion resonance, then the secular Hamiltonian \(\mathcal{H}_{\text{sec}}^{(j)} \) can be averaged over the two unrelated fast angles, \(I \) and \(l_j \) (a “double average”), which yields

\[
\mathcal{H}_{\text{sec}}^{(j)} = -m_j \mathcal{P}_j(G, H; g, h),
\]

(A7)

To write the averaged Hamiltonian in explicit form:

\[
\mathcal{H}_{\text{sec}}^{(j)} = -\frac{G}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} \left(\frac{1}{\| \Delta_j \|} - \frac{r \cdot s_j}{\| s_j \|^3} \right) dl_j,
\]

(A8)

in which the vectors \(r \) and \(s_j \) denote the heliocentric positions of the small body and of the \(j \)th planet, respectively, and \(\Delta_j = r - s_j \). Under the approximation that the eccentricities and inclinations of the planets are zero, one of the integrals can be analytically computed using the complete elliptic function of the first kind \(K \):

\[
\int_0^{2\pi} \left(\frac{1}{\| \Delta_j \|} - \frac{r \cdot s_j}{\| s_j \|^3} \right) dl_j
= \int_0^{2\pi} \frac{1}{\| \Delta_j \|} dl_j
= \frac{4}{\sqrt{r^2 + a_j^2}} \left(1 - \frac{\mu}{2} \right) K(\mu),
\]

(A9)

where

\[
\mu = \frac{4a_j \sqrt{x^2 + y^2}}{r^2 + a_j^2 + 2a_j \sqrt{x^2 + y^2}},
\]

(A10)

and \(x \) and \(y \) are the coordinates of \(r \)’s projection on the plane of the planetary orbit, with \(r = \| r \| \). It is worth noting that Equation (A9) has the physical interpretation of the potential from a homogeneous ring (averaging the Hamiltonian over a planet’s mean anomaly \(l_j \) is equivalent to spreading out the planetary mass on a circular ring of radius \(a_j \)). Combining Equation (A8) through (A10), we have

\[
\mathcal{H}_{\text{sec}}^{(j)} = -\frac{G}{\pi m_j} \int_0^{2\pi} \sqrt{1 - \frac{\mu/2}{r^2 + a_j^2}} K(\mu) dl_j,
\]

(A11)

where \(\mathcal{H}_{\text{sec}} \) is the Hamiltonian that accounts for the total planetary perturbations. The expected nodal precession rate contributed by each planet \(B \) and the total precession rate \(B \) can thus be obtained through numerical differentiation

\[
B_j = \frac{\partial \mathcal{H}_{\text{sec}}^{(j)}}{\partial h},
\]

(A12)

and the resulting \(B_j \) and \(B \) are not only functions of \(a \) and \(a_j \), but also functions of \(e \), \(I \), and \(\omega \). Replacing the nodal precession rates from Equations (A2) to (A4), we get the correct forcing pole and thus the correct free inclination for each TNO.

ORCID iDs

Yukun Huang (黄宇坤) @ https://orcid.org/0000-0003-1215-4130
Brett Gladman @ https://orcid.org/0000-0002-0283-2260
Kathryn Volk @ https://orcid.org/0000-0001-8736-236X
References

Adams, E. R., Gulbis, A. A. S., Elliot, J. L., et al. 2014, AJ, 148, 55
Baguett, D., Morbidelli, A., & Petit, J.-M. 2019, Icar, 334, 99
Bannister, M. T., Gladman, B. J., Kavelaars, J. J., et al. 2018, ApJS, 236, 18
Batygin, K., Adams, F. C., Brown, M. E., & Becker, J. C. 2019, PhR, 805, 1
Batygin, K., Brown, M. E., & Fraser, W. C. 2011, ApJ, 738, 13
Bernardinelli, P. H., Bernstein, G. M., Sako, M., et al. 2022, ApJS, 258, 41
Bernstein, G. M., Trilling, D. E., Allen, R. L., et al. 2004, AJ, 128, 1364
Brouwer, D., & van Woerkom, A. J. J. 1950, Astronomical Papers Prepared for
the Use of the American Ephemeris and Nautical Almanac, Vol. 13
(Washington, DC: US Government Printing Office), 81
Brown, M. E. 2001, AJ, 121, 2804
Brown, M. E., & Pan, M. 2004, AJ, 127, 2418
Chiang, E., & Choi, H. 2008, AJ, 136, 350
Dawson, R. I., & Murray-Clay, R. 2012, ApJ, 750, 43
Doressoundiram, A., Boehnhardt, H., Tegler, S. C., & Trujillo, C. 2008, The
Solar System Beyond Neptune (Tucson, AZ: Univ. Arizona Press), 91
Doressoundiram, A., Peixinho, N., Bergh, C. d., et al. 2002, AJ, 124, 2279
Elliot, J. L., Kern, S. D., Clancy, K. B., et al. 2005, AJ, 129, 1117
Fernández-Valenzuela, E., Pinilla-Alonso, N., Stansberry, J., et al. 2021, PSJ,
2, 10
Fraser, W. C., Brown, M. E., Morbidelli, A., Parker, A., & Batygin, K. 2014,
ApJ, 782, 100
Fraser, W. C., Brown, M. E., & Schwamb, M. E. 2010, Icar, 210, 944
Froeschle, C., & Morbidelli, A. 1994, in IAU Symp. 160, Asteroids, Comets,
Meteors 1993 (Cambridge: Cambridge Univ. Press), 189
Gladman, B., Lawler, S. M., Petit, J. M., et al. 2012, AJ, 144, 23
Gladman, B., Marsden, B. G., & Vanlaerhoven, C. 2008, The Solar System
Beyond Neptune (Tucson, AZ: Univ. of Arizona Press), 43
Gladman, B., & Volk, K. 2021, ARA&A, 59, 203
Henrard, J. 1990, CeMDA, 49, 43
Jones, R., Gladman, B., Petit, J.-M., et al. 2006, Icar, 185, 508
Kavelaars, J. J., Petit, J.-M., Gladman, B., et al. 2021, ApJS, 920, L28
Khain, T., Becker, J. C., Lin, H. W., et al. 2020, AJ, 159, 133
Knežević, Z., Milani, A., Farinella, P., Froeschle, C., & Froeschle, C. 1991,
Icar, 93, 316
Levison, H. F., & Stern, S. A. 2001, AJ, 121, 1730
Michel, P., & Froeschlé, C. 1997, Icar, 128, 230
Morbidelli, A. 2002, Modern Celestial Mechanics: Aspects of Solar System
Dynamics (London: Taylor and Francis)
Morbidelli, A., & Henrard, J. 1991, CeMDA, 51, 131
Müller, T., Lellouch, E., & Fornasier, S. 2020, Trans-Neptunian objects and
Centaurs at thermal wavelengths, The Trans-Neptunian Solar System
(Amsterdam: Elsevier), 153, doi:10.1016/b978-0-12-816490-7.00007-2
Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (Cambridge:
Cambridge Univ. Press)
Nesvorny, D. 2018, ARA&A, 56, 137
Noll, K. S., Grundy, W. M., Nesvorny, D., & Thirouin, A. 2020, in The Trans-
Neptunian Solar System, ed. D. Prialnik et al. (Amsterdam: Elsevier), 201
Peixinho, N., Lacerda, P., & Jewitt, D. 2008, AJ, 136, 1837
Petit, J. M., Kavelaars, J. J., Gladman, B. J., et al. 2011, AJ, 142, 131
Pike, R. E., Fraser, W. C., Schwamb, M. E., et al. 2017, AJ, 154, 101
Rein, H., & Liu, S.-F. 2012, A&A, 537, A128
Rein, H., & Spiegel, D. S. 2015, MNRAS, 446, 1424
Rein, H., & Tamayo, D. 2015, MNRAS, 452, 376
Schwamb, M. E., Fraser, W. C., Bannister, M. T., et al. 2019, ApJS, 243, 12
Smullen, R. A., & Volk, K. 2020, MNRAS, 497, 1391
Stern, S. A., Weaver, H. A., Spencer, J. R., et al. 2019, Sci, 364, eaaw9771
Trujillo, C. A., & Brown, M. E. 2002, ApJ, 566, L125
Van Laerhoven, C., Gladman, B., Volk, K., et al. 2019, AJ, 158, 49
Volk, K., & Malhotra, R. 2017, AJ, 154, 62
Williams, J. G. 1969, PhD thesis, University of California, Los Angeles