The three different regimes in coulombic friction

Azzouz Dermoune1, Daoud Ounaissi2 and Nadji Rahmania3

1Dermoune Azzouz, Cité scientifique, France
2Daoud Ounaissi, Cité scientifique, France
3Nadji Rahmania, Cité scientifique, France

E-mail: Azzouz.Dermoune@univ-lille1.fr, daoud.ounaissi@ed.univ-lille1.fr, nadji.rahmania@univ-lille1.fr

Abstract. de Gennes identified three regimes in the phenomenon of the Langevin equation which includes Coulombic friction. Here we extend and precise this phenomenon to a constant external force.

Keywords: Brownian motion, Coulombic Friction, Langevin equation.

1. Introduction

P-G de Gennes3 studied the Langevin equation under the influence of a dry friction force modelled by the equation

\[dv = -\frac{1}{2}\Delta \text{sgn}(v)dt + \sqrt{D}dB, \]

the dry friction force with threshold force \(\Delta > 0 \), and \(D > 0 \) is the diffusion coefficient. Here \(B \) is the standard Brownian motion, and \(\text{sgn}(v) = 1 \) if \(v > 0 \), and \(\text{sgn}(v) = -1 \) if \(v < 0 \). Comparing the magnitude of \(\alpha, \Delta \) and \(D \) de Gennes3 identified three different regimes: viscous, partly stuck and stuck.

Later Touchette et al.7 extended de Gennes work by calculating the time-dependent propagator of the Langevin equation

\[dv = -\frac{1}{2}[\alpha v - a + \Delta \text{sgn}(v)]dt + \sqrt{D}dB, \quad (1) \]

which includes a constant external force \(a \in \mathbb{R} \).

In this paper, we precise and extend de Gennes’s work to the Langevin equation (1) and find again the result of Touchette et al.7 using the trivariate density of Brownian motion, its local and occupation times.

† Corresponding author: Azzouz.Dermoune@univ-lille1.fr
2. The three different regimes in coulombic friction

If \(v(t) \) is solution of (1), then \(v(T_D) \) satisfies the equation

\[
dv = -\frac{1}{2D} [\alpha v - a + \Delta \text{sgn}(v)] dt + dB.
\]

(2)

It follows that for large time \(T \) the PDF of the velocity \(v(T_D) \) is approximated by the stationary PDF

\[
\frac{1}{Z} \exp \left[-\frac{1}{\nu} \left(\frac{(v - y)^2}{2\tau} + |v| \right) \right],
\]

where

\[
Z = \frac{1}{2\nu} \left[\exp\left(\frac{\tau - 2y}{2\nu} \right) G\left(\frac{\tau - y}{\sqrt{\nu \tau}} \right) + \exp\left(\frac{\tau + 2y}{2\nu} \right) G\left(\frac{\tau + y}{\sqrt{\nu \tau}} \right) \right]
\]

is the partition function i.e. the normalization constant. Here and the sequel

\[
G(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{v^2}{2} \right) dv,
\]

\[
\nu = \frac{D}{\Delta}, \quad \tau = \frac{\Delta}{\alpha}, \quad y = \frac{a}{\alpha}.
\]

We say that the stochastic process \((V_D : D > 0) \) defined in some probability space \((\Omega, \mathcal{F}, \mathbb{P}) \) converges in probability distribution as \(D \to 0 \) to the PDF \(f \) if for each couple \(l < r \) of real numbers

\[
\mathbb{P}(l \leq V_D \leq r) \to \int_{l}^{r} f(v) dv, \quad \text{as} \quad D \to 0.
\]

Now we can announce our result.

1) Stuck regime. If \(|a| < \Delta\), then the velocity \(v(T_D) \to 0 \) as \(D \to 0 \). More precisely \(\frac{1}{\nu} v(T_D) \) converges in distribution as \(D \to 0 \) to the PDF

\[
\frac{1 - y^2}{2} \exp \left[-|v|(1 - \text{sgn}(v)|y|) \right].
\]

Observe that if the constant force \(a = 0 \), then \(y = 0 \) and the limit is

\[
\frac{1}{2} \exp(-|v|).
\]

2) Partly stuck regime. If \(|a| = \Delta\), then the velocity \(v(T_D) \to 0 \) as \(D \to 0 \). More precisely we distinguish two cases.

a) If we consider only the event \(av(T_D) < 0 \), then

\[
\frac{1}{\nu} v(T_D) \to 2 \exp(-2|v|) \mathbf{1}_{[av<0]} \quad \text{as} \quad D \to 0.
\]

b) If we consider only the event \(av(T_D) > 0 \), then

\[
\frac{1}{\nu} v(T_D) \to 2 \frac{\sqrt{2\pi \tau}}{\sqrt{v^2}} \exp(-\frac{v^2}{2\tau}) \mathbf{1}_{[av>0]} \quad \text{as} \quad D \to 0.
\]

Moreover the probability of the event \(av(T_D) > 0 \) tends to 1 as \(D \to 0 \). Hence \(\frac{1}{\nu} v(T_D) \) converges to \(\frac{2}{\sqrt{2\pi \tau}} \exp(-\frac{v^2}{2\tau}) \mathbf{1}_{[av>0]} \).

3) Viscous regime. If \(|a| > \Delta\) then as \(D \to 0 \) the velocity \(v(T_D) \) becomes Gaussian with the mean \((y - \text{sgn}(y)\tau) \) and the variance \(\nu \tau \). More precisely, we have

\[
\frac{v(T_D) - (y - \text{sgn}(y)\tau)}{\sqrt{\nu}} \to \frac{1}{\sqrt{2\pi \tau}} \exp(-\frac{v^2}{2\tau}).
\]
Observe that the asymptotic mean $y - sgn(y)\tau$ is the minimizer of the potential $v \to \frac{(v-y)^2}{2\tau} + |v| := U(v)$.

![Figure 1](image-url)

Figure 1. Three scenarios of the stuck regime with $y = 0, 0.4, 0.9$, partly stuck regime with $y = 1$ and $\tau = 1$ and viscous regime with $y = 3$ and $\tau = 1$.

The proof was done in a general case in [4]. For the sake of completeness we recall it. It is sufficient to show the case $a \geq 0$ i.e. $y \geq 0$.

3. **Proof**

3.1. **Stuck regime**

We observe that the potential U attains its minimum $\frac{y^2}{2\tau}$ at $v = 0$. We have

$$
\mathbb{P}(l \leq \frac{v(T_D)}{\nu} \leq r) = \frac{\int_{\nu}^{\nu} \exp(-\frac{U(v)}{\nu})dv}{\int_{-\infty}^{+\infty} \exp(-\frac{U(v)}{\nu})dv}.
$$

Multiplying the denominator and the nominator by $\exp(\frac{y^2}{2\nu})$, and using the change of variable $\frac{v}{\nu}$ we have

$$
\mathbb{P}(l \leq \frac{v(T_D)}{\nu} \leq r) = \frac{\int_{\nu}^{\nu} \exp \left[-|v|(1 - sgn(v))\frac{y}{\tau} - \sqrt{\nu}\frac{y^2}{2\tau}\right] dv}{\int_{-\infty}^{+\infty} \exp \left[-|v|(1 - sgn(v))\frac{y}{\tau} - \sqrt{\nu}\frac{y^2}{2\tau}\right] dv}.
$$
The latter converges to
\[\frac{\int^r_l \exp \left(-|v|(1 - \text{sgn}(v)\frac{\nu}{2}) \right) dv}{\int^{+\infty}_{-\infty} \exp \left[-|v|(1 - \text{sgn}(v)\frac{\nu}{2}) \right] dv} \]
as \(\nu \to 0 \), which achieves the proof of the stuck regime.

3.2. Partly stuck regime

a) We are going to prove for each \(l < r \leq 0 \) that
\[\mathbb{P}(l \leq v(T_D) \leq r | v(T_D < 0) \to \int_l^r 2 \exp(2v)dv. \]
We have
\[\mathbb{P}(l \leq v(T_D) \leq r | v(T_D < 0) = \frac{\int_{\nu}^r \exp \left[-\frac{1}{\nu}(v + \frac{(v-\tau)^2}{2\tau}) \right] dv}{\int_{-\infty}^0 \exp \left[-\frac{1}{\nu}(\nu + \frac{(\nu-\tau)^2}{2\tau}) \right] dv}. \]
Multiplying the denominator and the nominator by \(\exp(\tau^2\nu) \), and using the change of variable \(\frac{v}{\nu} \) we obtain
\[\frac{\int_l^r \exp \left(2v - \sqrt{v^2/\nu} \right) dv}{\int_{-\infty}^0 \exp \left(2v - \sqrt{v^2/\nu} \right) dv}. \]
The latter converges to
\[\frac{\int_l^r \exp(2v)dv}{\int_{-\infty}^0 \exp(2v)dv} \]
as \(\nu \to 0 \), which achieves the proof of the part 1.

b) We have, for \(0 < l < r \),
\[\mathbb{P}(l \leq v(T_D) \leq r | v(T_D > 0) = \frac{\int_{\sqrt{\nu}}^r \exp \left[\frac{-1}{\nu}(v + \frac{(v-\tau)^2}{2\tau}) \right] dv}{\int_{\sqrt{\nu}}^{+\infty} \exp \left[\frac{-1}{\nu}(v + \frac{(v-\tau)^2}{2\tau}) \right] dv}. \]
Multiplying the denominator and the nominator by \(\exp(-\sqrt{\nu}) \) and using the change of variable \(\frac{v}{\sqrt{\nu}} \) we get the proof of the first part of b).

For the second part we use the same proof and show that \(\mathbb{P}(av(T_D) > 0) \to 1 \) as \(D \to 0 \).

3.3. Viscous regime

The main tool of the proof is the following well known result see e.g. [1].

Lemma: Let \(H \) be any measurable map such that
\[\int_{-\infty}^{+\infty} \exp(-H(v))dv < +\infty \]
and
\[\inf \{H(v) : |v - v_0| \geq \delta \} > H(v_0) \]
for some \(v_0 \) and \(\delta > 0 \). Then for any \(\gamma > 0 \),
\[
\nu^{-\gamma} \int_{|v-v_0|\geq \delta} \exp \left[-\frac{1}{\nu}(H(v) - H(v_0)) \right] dv \to 0
\]
as \(\nu \to 0 \).

Now, let us apply this lemma with \(H(v) = U(v) \) and \(v_0 = y - \tau \) the minimizer of \(U \). We have, for \(l < r \),
\[
P(l \leq \frac{v(T_D) - (y - \tau)}{\sqrt{\nu}} \leq r) = \frac{\int_{l}^{r} \exp \left(-\frac{1}{2\nu}(v-(y-\tau))^2 \right) dv}{\int_{-\infty}^{+\infty} \exp(-\frac{1}{2\nu}U(v)) dv}.
\]
We have for \(v > 0 \), that
\[
U(v) - U(y - \tau) = \frac{(v - (y - \tau))^2}{2\tau}.
\]
If \(l > -\infty \), then for small \(\nu \), we have
\[
\int_{l}^{r} \exp \left[-\frac{1}{\nu}(U(v) - U(y - \tau)) \right] \frac{dv}{\sqrt{\nu}} = \int_{l}^{r} \exp \left[-\frac{1}{2\nu}(v-(y-\tau))^2 \right] \frac{dv}{\sqrt{\nu}}
\]
and then
\[
P(l \leq \frac{v(T_D) - (y - \tau)}{\sqrt{\nu}} \leq r) = \int_{l}^{r} \exp(-\frac{v^2}{2\tau}) dv.
\]
If \(l = -\infty \), then
\[
\int_{-\infty}^{r} \exp \left[-\frac{1}{\nu}(U(v) - U(y - \tau)) \right] \frac{dv}{\sqrt{\nu}} = (1) + (2),
\]
where
\[
(1) = \int_{|v|<0} \exp \left[-\frac{1}{\nu}(U(v) - U(y - \tau)) \right] \frac{dv}{\sqrt{\nu}} \to 0,
\]
\[
(2) = \int_{[0\leq v \leq \sqrt{\nu}+(y-\tau)]} \exp \left[-\frac{1}{\nu}(U(v) - U(y - \tau)) \right] \frac{dv}{\sqrt{\nu}}.
\]
From Lemma (3.3) the term (1) converges to 0. By the change of variable \(z = \frac{v-(y-\tau)}{\sqrt{\nu}} \), the term (2)
\[
(2) = \int_{[-\frac{(y-\tau)}{\sqrt{\nu}} \leq z \leq r]} \exp(-\frac{z^2}{2\tau}) dz
\]
converges to \(\int_{-\infty}^{\infty} \exp(-\frac{z^2}{2\tau}) dz \). By taking \(r = +\infty \), we get
\[
\int_{-\infty}^{+\infty} \exp \left[-\frac{1}{\nu}(U(v) - U(y - \tau)) \right] \frac{dv}{\sqrt{\nu}} \to \int_{-\infty}^{+\infty} \exp(-\frac{z^2}{2\tau}) dz,
\]
and then
\[
P(l \leq \frac{v(T_D) - (y - \tau)}{\sqrt{\nu}} \leq r) \to \int_{l}^{r} \exp(-\frac{v^2}{2\tau}) \frac{dv}{\sqrt{2\pi \tau}},
\]
which achieves the proof.
4. Time-dependent propagator

Now we drop the coefficient $\frac{1}{2}$ in (1) and we discuss the calculation of the time-dependent propagator of

$$dv = -[\alpha v + a + \Delta \text{sgn}(v)]dt + \sqrt{D}dB.$$

Using the equality of the laws or the probability distributions of $(\sqrt{DB}(t))$ and $(B(t))$, we derive that

$$\text{Law}(v^{\alpha,a,\Delta,D}(t)) = \text{Law}(v^{\alpha,D,a,\Delta,D}(t)).$$

Hence the propagators $p^{\alpha,a,\Delta,D}(v, t \mid v_0, 0)$ and $p^{\alpha,D,a,\Delta,D}(v, t \mid v_0, 0)$ respectively of $v^{\alpha,a,\Delta,D}(t)$ and $v^{\alpha,D,a,\Delta,D}(t)$ satisfy the relation

$$p^{\alpha,a,\Delta,D}(v, t \mid v_0, 0) = p^{\alpha,D,a,\Delta,D}(v, D(t) \mid v_0, 0).$$

Hence, it sufficient to study the case $D = 1$.

5. Time-dependent propagator for $\alpha = a = 0$ using local occupation time

We denote by \mathbb{P} and \mathbb{P}_{v_0} the probability distribution respectively of the trajectories $s \in [0, t] \to v(s)$ of the solution of (1) and the Brownian motion starting from v_0.

Under the probability distribution

$$\exp \left(-\Delta \int_0^t \text{sgn}(B_s)dB_s - \frac{t\Delta^2}{2} \right) d\mathbb{P}_{v_0} := f_{\text{sgn}}(B) d\mathbb{P}_{v_0}$$

the process $(B(s) : s \in [0, t])$ is solution of the equation

$$dv = -\Delta \text{sgn}(v)dt + dB, \quad v(0) = v_0.$$

We simplify the stochastic integral $\int_0^t \text{sgn}(B_s)dB_s$ using Tanaka formula [6]

$$|B_t| = |v_0| + \int_0^t \text{sgn}(B_s)dB_s + 2L_t.$$

Here the local time

$$L_t = \lim_{\varepsilon \to 0} \frac{1}{4\varepsilon} \int_0^t 1_{|B_s| \leq \varepsilon} ds$$

$$= \frac{1}{2} \int_0^t \delta(B_s)ds.$$

It follows that

$$-\int_0^t \text{sgn}(B_s)dB_s = |v_0| - |B_t| + 2L_t.$$

Now,

$$f_{\text{sgn}}(B) = \exp \left(\Delta(|v_0| - |B_t| + 2L_t) - \frac{t\Delta^2}{2} \right).$$

The densities of $v(t)$ and the Brownian motion $B(t)$ are related by

$$p(v, t \mid v_0) = \mathbb{E}_{v_0} \left[\delta(B_t - v) \exp(\Delta(|v_0| - |B_t| + 2L_t) - \frac{t\Delta^2}{2}) \right].$$

The latter formula is also known as path integral representation [2]. Hence the law of the solution $v(t)$ is given by the law of (B_t, L_t).

5.1. Density of Brownian motion and its local time

Set $\Gamma_t = \int_0^t 1[B_s \geq 0]ds$, and

$$h(s, v) = \frac{|v|}{\sqrt{2\pi s^3}} \exp(-\frac{v^2}{2s}), \quad s > 0, v \in \mathbb{R}.$$

Karatzas and Shreve [3] have calculated the probability density $\mathbb{P}_{v_0}(B_t \in db, L_t \in dl, \Gamma_t \in d\tau) := p_t(dv, dl, d\tau | v_0)$ of (B_t, L_t, Γ_t) as follows. For $v_0 \geq 0$ we have

$$\mathbb{P}_{v_0}(B_t \in db, L_t \in dl, \Gamma_t \in d\tau) = 2h(\tau, l + v_0)h(t - \tau, l - b)dbdl, \quad b < 0,$$

$$\mathbb{P}_{v_0}(B_t \in db, L_t \in dl, \Gamma_t \in d\tau) = 2h(t - \tau, l)h(\tau, l + b + v_0)dbdl, \quad b > 0,$$

$$\mathbb{P}_{v_0}(B_t \in db, L_t = 0, \Gamma_t = t) = \omega(v_0, b, t), \quad b > 0, v_0 \geq 0,$$

where

$$\omega(v_0, b, t) = \gamma_t(b - v_0) - \gamma_t(b + v_0),$$

$$\gamma_t(u) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2t}).$$

We derive the joint distribution of (B_t, L_t) under \mathbb{P}_{v_0} with $v_0 \geq 0$:

$$\mathbb{P}_{v_0}(B_t \in db, L_t \in dl) = \frac{2}{\sqrt{2\pi t^3}} \exp\left(-\frac{(2l + v_0 - b)^2}{2t}\right) dbdl, \quad b < 0, l > 0,$$

$$\mathbb{P}_{v_0}(B_t \in db, L_t \in dl) = \frac{2}{\sqrt{2\pi t^3}} \exp\left(-\frac{(2l + v_0 + b)^2}{2t}\right) dbdl + \omega(v_0, b, t)\delta(l), \quad b > 0, l \geq 0.$$

Now, we calculate the density of the solution $[3]$ as follows. If $v < 0$, then

$$p(v, t | v_0) = \mathbb{E}_{v_0} \left[\delta(B(t) - v) \exp\left(\Delta(v_0 - |B_t| + 2L_t) - \frac{t\Delta^2}{2}\right) \right]$$

$$:= \exp\left(\Delta(v_0 + v) - \frac{t\Delta^2}{2}\right) \mathbb{E}_{v_0} [\delta(B(t) - v) \exp(2\Delta L_t)]$$

$$= 2 \exp\left(\Delta(v_0 + v) - \frac{t\Delta^2}{2}\right) \int_0^{+\infty} \frac{2l - v_0}{\sqrt{2\pi t^3}} \exp(2\Delta l - \frac{(2l - v_0)^2}{2t}) dl$$

$$= \exp(\Delta(v_0 + v) - \frac{t\Delta^2}{2}) \frac{1}{\sqrt{2\pi t^3}} \exp\left(-\frac{(v_0 - v)^2}{2t}\right) + \Delta \int_0^{+\infty} \exp(\Delta l - \frac{(l + v_0 - v)^2}{2t}) \frac{dl}{\sqrt{2\pi t^3}}$$

After some calculation we obtain

$$\int_0^{+\infty} \exp(\Delta l - \frac{(l + v_0 - v)^2}{2t}) \frac{dl}{\sqrt{2\pi t^3}} = \exp(\frac{\Delta^2 t}{2}) \exp(\Delta(v - v_0)) F\left(\frac{v - v_0 + \Delta t}{\sqrt{t}}\right),$$

where $F(v) = \int_{-\infty}^v \frac{\exp\left(-\frac{u^2}{2}\right)}{\sqrt{2\pi}} du$. Finally for $v_0 \geq 0, v < 0$, we have

$$p(v, t | v_0) = \left(\exp(-\frac{t\Delta^2}{2}) \gamma_t(v_0 - v) \exp(\Delta(v_0 - v)) + F\left(\frac{v - v_0 + \Delta t}{\sqrt{t}}\right)\right) \Delta \exp(2\Delta v).$$
If \(v > 0 \), then
\[
p(v, t | v_0) = \mathbb{E}_{v_0} \left[\delta(B(t) - v) \exp \left(\Delta(v_0 - |B_0| + 2L_t) - \frac{t\Delta^2}{2} \right) \right]
\]
\[
= \exp \left(\Delta(v_0 - v) - \frac{t\Delta^2}{2} \right) \mathbb{E}_{v_0} \left[\delta(B(t) - v) \exp(2\Delta L_t) \right]
\]
\[
= \exp \left(\Delta(v_0 - v) - \frac{t\Delta^2}{2} \right) \left[2 \int_0^{+\infty} \frac{(2l + v + v_0)}{\sqrt{2t^3\pi}} \exp(2\Delta l - \frac{(2l + v + v_0)^2}{2t}) dl + \omega(v_0, v, t) \right]
\]
\[
= \exp(\Delta(v_0 - v) - \frac{t\Delta^2}{2}) \omega(v_0, v, t)
\]
\[
+ \exp(\Delta(v_0 - v) - \frac{t\Delta^2}{2}) \int_0^{+\infty} \frac{(l + v + v_0)}{\sqrt{2t^3\pi}} \exp(\Delta l - \frac{(l + v + v_0)^2}{2t}) dl
\]
\[
= \exp(\Delta(v_0 - v) - \frac{t\Delta^2}{2}) \omega(v_0, v, t) + \exp(\Delta(v_0 - v) - \frac{t\Delta^2}{2}) \left[\frac{1}{\sqrt{2t\pi}} \exp(-\frac{(v_0 + v)^2}{2t}) \right]
\]
\[
+ \Delta \int_0^{+\infty} \exp(\Delta l - \frac{(l + v + v_0)^2}{2t}) \frac{dl}{\sqrt{2t\pi}}
\]
\[
= \exp(\Delta(v_0 - v) - \frac{t\Delta^2}{2}) \omega(v_0, v, t) + \frac{1}{\sqrt{2t\pi}} \exp(-\frac{t\Delta^2}{2}) \exp(\Delta(v_0 - v)) \exp(-\frac{(v_0 + v)^2}{2t})
\]
\[
+ \Delta \exp(\Delta(v_0 - v) - \frac{t\Delta^2}{2}) \int_0^{+\infty} \exp(\Delta l - \frac{(l + v + v_0)^2}{2t}) \frac{dl}{\sqrt{2t\pi}}
\]

From some calculation we obtain
\[
\int_0^{+\infty} \exp(\Delta l - \frac{(l + v + v_0)^2}{2t}) \frac{dl}{\sqrt{2t\pi}} = \exp(\frac{\Delta^2 t}{2}) \exp(-\Delta(v + v_0)) F(\frac{\Delta t - (v + v_0)}{\sqrt{t}}).
\]

Finally if \(v > 0, v_0 \geq 0 \), then
\[
p(v, t | v_0) = \exp(\Delta(v_0 - v) - \frac{t\Delta^2}{2}) \omega(v_0, v, t) + \frac{1}{\sqrt{2t\pi}} \exp(\Delta(v_0 - v) - \frac{t\Delta^2}{2}) \exp(-\frac{(v_0 + v)^2}{2t})
\]
\[
+ \Delta \exp(-2\Delta v) F(\frac{\Delta t - (v + v_0)}{\sqrt{t}})
\]
\[
= \frac{1}{\sqrt{2t\pi}} \exp(\Delta(v_0 - v) - \frac{t\Delta^2}{2}) \exp(-\frac{(v_0 - v)^2}{2t}) + \Delta \exp(-2\Delta v) F(\frac{\Delta t - (v + v_0)}{\sqrt{t}})
\]
\[
= \left(\exp(\Delta(v_0 + v) - \frac{t\Delta^2}{2}) \gamma_t(v - v_0) + F(\frac{\Delta t - (v + v_0)}{\sqrt{t}}) \right) \Delta \exp(-2\Delta v).
\]

Finally we have for \(v, v_0 \in \mathbb{R} \), that
\[
p(v, t | v_0) = q(v, t | v_0) \exp(-2\Delta|v|)
\]

where
\[
q(v, t | v_0) = \Delta \left(\exp(\Delta(|v_0| + |v|) - \frac{t\Delta^2}{2}) \gamma_t(v - v_0) + F(\frac{\Delta t - (|v| + |v_0|)}{\sqrt{t}}) \right).
\]

Observe that \(q(v, t | v_0) \) is symmetric, i.e. \(q(v, t | v_0) = q^\Delta(v_0, t | v) \). In the language of linear diffusion \(m(v) = \exp(-2\Delta|v|) \) is the speed measure of the linear diffusion \[3\].
6. The case $a \neq 0$

In this case the probability distribution \mathbb{P} of the solution

$$dv = -[\Delta sgn(v) + a]dt + dB, \quad v(0) = v_0,$$

is also absolutely continuous with respect to \mathbb{P}_{v_0} (the probability distribution of the Brownian motion starting from v_0). We have

$$\frac{d\mathbb{P}}{d\mathbb{P}_{v_0}}(B) = \exp\left(- \int_0^t (\Delta sgn(B_s) + a)dB_s - \frac{1}{2} \int_0^t (\Delta sgn(B_s) + a)^2ds\right).$$

After some calculation we have

$$- \int_0^t (\Delta sgn(B_s) + a)dB_s = \Delta(|v_0| - |B_t| + a(v_0 - B_t)) + 2\Delta L_t,$$

$$\int_0^t (\Delta sgn(B_s) + a)^2ds = (\Delta^2 + a^2)t + 2a\Delta(2\Gamma_t - t).$$

It follows that

$$p(v, t | v_0) = \exp\left[\Delta(|v_0| - |v| + a(v_0 - v)) - \frac{(\Delta - a)^2}{2} \right] \mathbb{E}_{v_0}[\delta(B_t - v) \exp(2\Delta L_t - 2a\Delta \Gamma_t)].$$

Then $p(v, t | v_0)$ is calculated using the trivariate probability distribution $p_t(db, dl, d\tau)$ of (B_t, L_t, Γ_t) as follows:

$$p(v, t | v_0) = \exp\left[\Delta(|v_0| - |v| + a(v_0 - v)) - \frac{(\Delta - a)^2}{2} \right] \int_0^\infty \int_0^t \exp(2\Delta(l - a\tau))p_t(v, dl, d\tau).$$

7. The general case

Similarly as above the density of the solution of

$$dv = -[\alpha v + \Delta sgn(v) + a]dt + dB, \quad v(0) = v_0,$$

is

$$p(v, t | v_0) = \exp\left[\Delta(|v_0| - |v| + a(v_0 - v)) - \frac{(\Delta - a)^2}{2} + \frac{\alpha t}{2} \right] \int_0^\infty \int_0^t \int_0^\infty \int_0^\infty \exp(2\Delta l - 2a\Delta \tau - \frac{\alpha^2}{2}b_2 - \alpha\Delta|b_1| - a\alpha b_1)p_t(v, dl, d\tau, db_1, d|b_1|, db_2),$$

where $p_t(db, dl, d\tau, db_1, d|b_1|, db_2)$ is the probability density of

$$(B_t, L_t, \Gamma_t, \int_0^t B_s ds, \int_0^t |B_s| ds, \int_0^t B_s^2 ds).$$

8. Conclusion

We have precised and extended the three different regimes of the Langevin equation which includes a viscous friction force, a Coulombic friction and a constant external force. Moreover we find again its time-dependent propagator using the density of Brownian motion, its local and occupation times.
References

[1] Athreya K-B and Hwang C-R 2010 Gibbs Measures asymptotics *Sankhya A*. 72 191–207
[2] Baule A, Cohen E-G-D and Touchette H 2010 A path integral approach to random motion with nonlinear friction *J. Phys. A: Math. Theor*. 43 1–12
[3] de Gennes P-G 2005 Brownian motion with dry friction, *J. Stat. Phys*. 119 953–62
[4] Dermoune A, Ounaissi D and Rahmania N 2014 Oscillation of adaptative Metropolis-Hasting and simulated annealing algorithms around penalized least squares estimator arXiv: 1403.4827
[5] Karatzas I and Shreve S 1984 Trivariate density of Brownian motion its local and occupation times with application to stochastic control *The Annals of Probability* 12 819–28
[6] Tanaka H 1963 Note on continuous additive functionals of the 1-dimensional Brownian path, *Z.Wahrscheinlichkeitstheorie und Verw.Gebiete*. 1 251–57.
[7] Touchette H, der Straeten E-V and Just W 2010 Brownian motion with dry friction: Fokker-Planck approach *J. Phys. A: Math. Theor*. 43