Molecular Mechanism of Acrylamide Neurotoxicity: Lessons Learned from Organic Chemistry

Richard M. LoPachin¹ and Terrence Gavin²

¹Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA; ²Department of Chemistry, Iona College, New Rochelle, New York, USA

BACKGROUND: Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function.

OBJECTIVES: In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles.

METHODS: In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission.

DISCUSSION: ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress.

CONCLUSIONS: These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins.

KEY WORDS: HSAB theory, oxidative stress, protein adducts, soft electrophile, toxic axonopathy, type-2 alkenes, α,β-unsaturated carbonyl derivatives. Environ Health Perspect 120:1650–1657 (2012). http://dx.doi.org/10.1289/ehp.1205432 [Online 11 October 2012]

Acrylamide (ACR) is a water-soluble alkene used in the production of polymers and gels that have various commercial applications. For example, polyacrylamide preparations are used in the cosmetic, paper, and textile industries; in ore processing; and as soil conditioners and flocculants for wastewater treatment (Friedman 2003; Smith and Oehme 1991; Tilson 1979). Coincidental with the burgeoning industrial use of ACR monomer in the 1950s, it was quickly realized that cumulative neurotoxicity characterized by ataxia, skeletal muscle weakness, cognitive impairment, and numbness of the extremities was a potential outcome of occupational exposure (Deng et al. 1993; Garland and Patterson 1967; He et al. 1989; reviewed by Friedman 2003; Smith and Oehme, 1991; Spencer and Schaumburg 1974a; Tilson 1979). Early research involving laboratory animals showed that exposure to ACR monomer produced a neurotoxicity syndrome that resembled the neurological symptoms of human intoxication (reviewed by LoPachin and Lehning 1994; Spencer and Schaumburg 1974b; Tilson 1979). Early research involving laboratory animals showed that exposure to ACR monomer produced a neurotoxicity syndrome that resembled the neurological symptoms of human intoxication (reviewed by LoPachin and Lehning 1994; Spencer and Schaumburg 1974b; Tilson 1979). Morphological studies conducted during the late 1960s and early 1970s suggested that both human and experimental ACR neurotoxicities were associated with cerebellar Purkinje cell death and degeneration of distal axons and nerve terminals in the peripheral and central nervous systems (PNS and CNS, respectively) (reviewed by LoPachin 2004; LoPachin and Lehning 1994; LoPachin et al. 2003). In addition to characteristic neurotoxicity in adult humans and animals, there is more recent experimental evidence, albeit controversial, that prenatal and perinatal exposure of rodent pups to ACR causes neurodevelopmental toxicity (e.g., Friedman et al. 1999; Garey and Paule 2010; Takahashi et al. 2009). Whereas the majority of research indicates selective targeting of nervous tissue, rodent studies have also suggested that ACR causes reproductive toxicity [e.g., decreased litter size, DNA strand breaks (Tyl et al. 2000)] and an increased incidence of certain tumors [e.g., mammary gland fibroadenomas in female rats, tunica vaginalis mesotheliomas in male rats (Friedman et al. 1995; Johnson et al. 1986)]. However, to date, there is little evidence that these experimental non-neurotoxic consequences have human relevance (Haber et al. 2009; Mucci et al. 2003; Rice 2005).

Thus, the majority of evidence suggests that ACR exposure across broad daily dose-rates causes selective neurotoxicity in humans and laboratory animals. The early morphological descriptions of ACR neuropathy provided a framework for subsequent research that attempted to decipher the molecular mechanisms of neurotoxicity (reviewed by Friedman 2003; Howland 1985; Miller and Spencer 1985; LoPachin and Lehning 1994; Tilson 1979). Although many putative mechanisms and sites of ACR action were tested, for example, inhibition of Na⁺/K⁺-ATPase and the resulting reverse operation of the axolemmal Na⁺/Ca²⁺-exchanger (LoPachin and Lehning 1994), reduced fast axonal transport (Stickles et al. 2002) and inactivation of enzymes involved in neuronal energy production (Spencer et al. 1979), the identification of a necessary and sufficient neurotoxic process remained elusive. However, these early hypotheses were not developed within the framework that xenobiotics can produce toxicity by interacting directly with specific sites on cellular macromolecules (e.g., enzymes) and that this interaction is dictated by the chemical nature of the toxicant (Cohen et al. 1997; Coles 1984–1985; Hinson and Roberts 1992; see also Liebler 2008; LoPachin and DeCaprio 2005). Therefore, by understanding toxicant chemistry, plausible molecular-level sites and mechanisms of action can be predicted. In this review, we discuss the chemical nature of ACR (a soft electrophile) and how this determines the corresponding sites of protein adduction (soft nucleophilic sulfhydryl thioliates on cysteine residues). Basic recognition of the chemistry of toxicant–target reactions has led the development and testing of a rational mechanistic hypothesis of ACR neurotoxicity (see below). Although this review focuses on ACR, the proposed algorithm is broadly applicable to many different classes of chemical neurotoxicants, for example, heavy metals, quinones, and unsaturated aldehyde derivatives. In the following section, we provide a brief historical overview of ACR neurotoxicity in humans and laboratory animals.

Address correspondence to R.M. LoPachin, Department of Anesthesiology, Montefiore Medical Center, 111 E. 210th St., Bronx, New York 10467 USA. Telephone: (718) 921-5054. Fax: (718) 515-4902. E-mail: richard.lopachin@einstein.yu.edu

This research was supported by grants RO1 ES03830-25 and RO1 ES07912-11 from the National Institute of Environmental Health Sciences, National Institutes of Health.

The authors declare that they have no actual or potential competing financial interests.

Received 4 May 2012; accepted 24 September 2012.
ACR Neurotoxicity: Evolving Neurobiological Concepts of the Distal Axonopathy

Daily exposure of laboratory animals (rodents, rabbits, primates, dogs, cats, and guinea pigs) to a broad range of ACR dose-rates (0.5–50 mg/kg/day) is associated with neurochemical deficits that resemble human neurotoxicity. Our early research was based on the contemporary concept that ACR produced central–peripheral distal axon degeneration and, accordingly, we focused on possible axonal sites of action (e.g., axolemmal Na+/K+-ATPase (Lehning et al. 1998; LoPachin et al. 1992, 1993, 2002b; reviewed by LoPachin and Lehning 1994)). However, results from quantitative morphometric studies of the peripheral nerve suggested that axon degeneration was an epiphenomenon specifically related to lower ACR dose-rates (Lehning et al. 1998; LoPachin et al. 1992, 2000). Silver stain analyses of CNS tissue from ACR-intoxicated rats subsequently confirmed this dose-rate phenomenon (Lehning et al. 2002a, 2002b, 2003; however, see Bowyer et al. 2009) and showed that regardless of exposure level, ACR intoxication was associated with selective nerve terminal degeneration in broad CNS regions. Therefore, these findings, in conjunction with data from earlier morphological, electrophysiological, and neurochemical studies (reviewed by LoPachin et al. 2002b) provided observational evidence that ACR disrupted neurotransmission. Accordingly, we proposed that nerve terminals were a primary site of ACR action and that neurotoxicity was a consequence of impaired synaptic transmission in the PNS and CNS (LoPachin 2004; LoPachin et al. 2003). In formulating possible molecular mechanisms of presynaptic toxicity, we considered the fact that ACR was an electrophile that might produce neurotoxicity by binding to nucleophilic cysteine sites on proteins (Cavins and Friedman 1968; Friedman et al. 1965). In support of this possibility, it was recognized that the activities of many nerve terminal proteins were regulated by the ionization of specific cysteine sulphhydryl groups to highly reactive thiolates (Kiss 2000; Lipton et al. 2002; LoPachin and Barber 2006). We therefore hypothesized that ACR adduction of these regulatory residues might cause presynaptic toxicity, although some contemporary research did not support this idea (e.g., Martenson et al. 1995). Nonetheless, ensuing studies showed that ACR disrupted presynaptic neurotransmitter release, membrane re-uptake and vesicular storage by selectively forming adducts with cysteine residues on specific proteins involved in these processes, for example, N-ethylmaleimide (NEM)–sensitive factor (release), the dopamine membrane transporter (re-uptake) and the vesicular monoamine transporter (vesicular storage) (Barber and LoPachin 2004; Barber et al. 2007; LoPachin et al. 2004, 2006, 2007a, 2007b). Experimental evidence that ACR did not alter protein synthesis, energy production, or axonal transport indicated that presynaptic toxicity was a direct toxicant effect (reviewed by LoPachin and Lehning 1994). Whereas these data implied a central role for cysteine adduction in ACR neurotoxicity, it was not clear how such adduct formation might cause protein dysfunction and why nerve terminals were selectively vulnerable to the effects of protein adduction. This latter concern was particularly germane because most proteins contain at least one cysteine residue (Jones 2010) and ACR has been reported to form adducts with a variety of neuronal and non-neuronal proteins (e.g., Barber et al. 2007; LoPachin et al. 2004). As a consequence, it could not be assumed that adduct formation at a given cysteine residue had toxicological relevance. In the next section we discuss the adduct chemistry of ACR and show how this chemistry is related to the production of nerve terminal toxicity.

ACR Adduct Chemistry: Covalent Interactions with Biological Nucleophiles

ACR is a three-carbon α,β–unsaturated carboxylic acid derivative and is a member of a large chemical class known as type-2 alkenes (LoPachin et al. 2007a). Members of this class are characterized by a conjugated system formed when an electron-withdrawing group (e.g., the carboxyl group) is linked to an alkene carbon (Figure 1). The pi electrons in these conjugated systems are highly polarizable (mobile), and the carbonyl group of ACR withdraws electron density from the alkene to form an electron deficient (electrophilic) site at the β-carbon. As an electrophile, ACR, like many xenobiotic chemicals and/or their metabolites, causes cytotoxicity by forming covalent bonds with electron-rich (nucleophilic) residues on biological macromolecules (e.g., enzymes, DNA) (Hinson and Roberts 1992; LoPachin et al. 2012; Schwobel et al. 2011). Because ACR is an amide derivative, it does not undergo Schiff base formation with nucleophiles, but can form Michael-type adducts with nucleophiles via second-order addition reactions to the β-carbon. Electrophiles do not react arbitrarily with nucleophiles. Instead, these interactions exhibit a significant degree of selectivity as predicted by the hard and soft, acids and bases (HSAB) theory of Pearson (1990). Accordingly, electrophilic and nucleophilic molecules are classified as being either soft (relatively polarizable) or hard (relatively non-polarizable) and, based on this principle, toxic electrophiles will react selectively with biological targets of comparable softness or hardness. The unsaturated carbonyl structure of ACR is a soft electrophile that will preferentially form Michael-type adducts with soft nucleophiles, which in biological systems are sulphhydryl side-chains on cysteine residues. In contrast, although nitrogen groups on lysine (ε-amino groups) and histidine (imidazole ring) residues are also nucleophilic, these are harder sites and are therefore less favored targets for ACR adduction (see below).

The relative softness or hardness of an electrophile can be determined from the respective energies of the outermost frontier molecular orbitals (FMOs). Because small molecule FMO energies can be calculated using various quantum mechanical models, HSAB parameters such as softness (σ) and hardness (η) of an electrophile are readily computed. With respect to covalent reactions, relative softness (σ) reflects the ease with which electron redistribution

![Figure 1. Line structures for several conjugated α,β–unsaturated carboxyl derivatives of the type-2 alkene chemical class. For each chemical, the electrophilic index (ε) is provided and the full chemical name is indicated in the parentheses.](image-url)
occurs during adduct (covalent bond) formation. Thus, the softer the electrophile (larger σ value), the faster it will accept electron density from a donating nucleophile. The values of σ and η also can be used in an algorithm to calculate the electrophilic index (ω) of a toxicant, the magnitude of which reflects the relative propensity of the electrophile to form an adduct with a given nucleophile (LoPachin et al. 2012; Schwebel et al. 2011). Indeed, substantial evidence suggests that σ and ω are determinants of the chemical reactions that mediate electrophile toxicity (LoPachin et al. 2012; Schultz et al. 2005, 2006; Schwobel et al. 2011). Whereas this is true for the majority of type-2 alkenes, the corresponding values were only qualitatively related to the second-order rate constants (k_2) for type-2 alkenes addition of cysteine sulfhydryl groups and to the respective magnitudes of in vitro synaptosomal dysfunction [toxic potency or half maximal inhibitory concentration (IC$_{50}$)] (LoPachin et al. 2007a, 2007b, 2009a, 2009b). This lack of correspondence is due to the slower than predicted reaction rate for 4-hydroxy-2-nonenal (HNE), that is, in the absence of HNE, the type-2 alkene ω values in Table 1 are closely correlated to the corresponding k_2 values ($r^2 = 0.92$; see LoPachin et al. 2007b). The slower adduct reaction is attributable to steric hindrance imposed by the bulky ($-\text{CH}_2\text{H}_3$) alkyl tail of HNE (Friedman and Wall 1966). Such discrepancies are expected because the HSAB algorithms incorporate electronic components but not three-dimensional features of chemical structure that can influence the toxicological outcome. Nonetheless, it is evident that ACR is a relatively weak electrophile (low ω value) that slowly forms adducts with cysteine residues (slow second-order reaction rate; Table 1).

The weak electrophilic character of ACR seems inconsistent with the well-documented ability of this chemical to cause significant neurotoxicity. However, the second-order reaction rate for the formation of ACR-cysteine adducts is governed not only by the relative concentrations of each reactant but also by the electrophilicity of the electron acceptor (ACR, see above) and the relative nucleophilicity of the electron donor (cysteine sulfhydryl group). Thus, the nucleophilic strength of the sulfhydryl group can affect the energy of the transition state for adduct formation and hence the magnitude of the corresponding rate constant (k_2). As indicated above, soft electrophiles such as ACR preferentially react with soft nucleophiles. The softness of a nucleophile reflects its relative ability to rapidly transfer electron density to the electrophile. In aqueous environments, sulfhydryl groups on cysteine residues exist in a pH-dependent equilibrium that determines the respective concentrations of the protonated thiol (RSH) and non-protonated thiolate (RS$^-$) forms. Corresponding calculations of nucleophilic softness (δ; Table 2) indicate that the thiolate is substantially softer than the thiol. The side chain nitrogen nucleophiles of histidine and lysine residues, as well as the protonated ϵ-amino group nitrogen of lysine, are also harder moieties than the sulfhydryl thiolate (Table 2). Based on the HSAB premise of soft–soft interactions, these data identify the sulfhydryl thiolate state of cysteine residues as the preferred target of ACR. The extent to which a given nucleophile will react with ACR can be predicted by calculating the nucleophilicity index (ω). This HSAB-derived parameter utilizes the hardness (η) and chemical potential (μ) of both ACR (electrophile) and possible nucleophilic amino acid targets (LoPachin et al. 2008a, 2012). The significantly lower ω values for the harder nucleophiles (Table 2) indicate that ACR targets soft cysteine thiolate sites. This type of calculation also demonstrates that, relative to ACR, acrolein is a softer and more electrophilic type-2 alkene that reacts much faster with sulfhydryl thiolates (Table 2). The thiolate predilection of ACR and other type-2 alkenes based on HSAB calculations has been experimentally confirmed using proteomic and in chemico approaches (Cavins and Friedman 1968; Friedman et al. 1965; LoPachin et al. 2007a, 2007b, 2009a; Martyniuk et al. 2011).

Table 1. Calculated HSAB and experimental parameters for conjugated type-2 alkenes and nonconjugated analogs.

Type-2 alkene	$\sigma \times 10^{-3}/eV$	ω/eV	$\log k_2$	Uptake ($\log IC_{50}$)
Acrone	0.37	3.57	2.59	−4.28
NEM	0.40	4.73	6.53	−4.33
MVK	0.38	3.18	2.04	−3.48
HNE	0.39	3.78	0.93	−3.40
Crotonaldehyde	0.38	3.38	ND	ND
MA	0.31	2.76	−1.89	−0.34
ACR	0.34	2.62	−1.80	−0.36
EMA	0.32	2.68	ND	ND
Nonconjugated	0.26	2.26	ND	ND
Propanal	0.27	1.63	−	−
Allyl alcohol	0.27	2.26	−	−

Abbreviations: EMA, ethyl methacrylate; MA, methyl acrylate; MVK, methylvinyl ketone; ND, not determined.

For each compound, respective lowest and highest molecular orbital energies (E_{LUMO} and E_{HOMO}, respectively) were obtained from ground state equilibrium geometries with density functional theory calculations DFT BLYP-6-31G in vacuum from 6-31G* initial geometries and were used to calculate softness (δ) as described by LoPachin et al. (2012).

**Second-order reaction rates (k_2) were determined for type-2 alkene reactions with L-cysteine at pH 7.4. Inhibition of synaptosomal membrane tritiated dopamine [(3H)-DA] uptake was determined in striatal synaptosomes exposed to type-2 alkenes (LoPachin et al. 2007a, 2007b).

Table 2. Interactions with type-2 alkenes with potential amino acid target: calculated HSAB parameters.

Residue	Side chain group	$\sigma \times 10^{-3}/eV$	$\omega \times 10^{-3} eV$ (relative)	Acrone $\omega \times 10^{-3} eV$ (relative)
CYS (−1)	−CH$_2$S	0.38	146 (1.00)	266 (1.00)
LYS (0)	−(CH$_2$)$_4$NH$_2$	0.28	56.6 (0.39)	126 (0.47)
HIS (0)	−CH$_3$	0.31	48.5 (0.33)	114 (0.43)
CYS (0)	−CH$_2$SH	0.28	40.0 (0.27)	98.4 (0.37)
LYS (+1)	−(CH$_2$)$_4$NH$_2$	0.21	35.3 (0.24)	90.0 (0.34)

For each amino acid nucleophile, HSAB parameters were calculated on the basis of selected ionization states (in parentheses). Data show that the sulfhydryl thiolate state is a significantly softer (ω) nucleophile than either the corresponding thiol state or the other amino acid residues such as histidine or lysine. This characteristic indicates that the thiolate state will react selectively with comparably soft electrophiles such as acrolein. The nucleophilic index (ω), which reflects the propensity of adduct formation, indicates that the sulfhydryl thiolate state is the preferential target of the type-2 alkenes. Relative to the thiolate state (1.00), thiol groups and the lysine and histidine residues are substantially less competitive targets for type-2 alkenes adduct formation (mean relative value, 0.35).
formation at Cys280 inhibits mitochondrial SIRT3 (SIRT3) activity (Fritz et al. 2011). However, it is unclear why these specific residues were targeted and, because the functional importance of these cysteines is not known, the toxicological relevance of this adduct formation is uncertain. The preceding discussion suggests that such targeting might reflect the interaction of these type-2 alkenes with the highly nucleophilic sulphydryl thiolate state of cysteine residues. However, the pK_d values of the sulphydryl side chain is approximately 8.4 and therefore, at intracellular pH ranges (7.0–7.4), these groups exist mostly in the non-nucleophilic thiol state (Table 2). Nonetheless, sulphydryl thiolate groups can be found in cysteine-centered catalytic triads and other microenvironments that significantly reduce side chain pK_d values. The ionization of these sulphydryl groups, and therefore the corresponding nucleophilicity, is determined by proton shuffling that occurs among basic (histidine, arginine, lysine) and acidic (aspartate, glutamate) amino acid residues that are brought into proximity via the tertiary structure of the protein, for example, the arginine-cysteine-aspartate motif of methionine adenosyl-transferase (Gutteridge and Thornton 2005; LoPachin and Barber 2006). Thus, although the majority of sulphydryl groups in proteins exist primarily (> 90%) in the nonreactive thiol state; those present in catalytic triads are ionized to a much greater extent and, consequently, will react significantly faster with electrophiles. This concept is exemplified by the ryanodine-responsive calcium-release channel of skeletal muscle, where 1 of 50 cysteine residues is reactive because of its presence in a catalytic triad (Sun et al. 2001). Cysteine catalytic triads are often located within the active sites of many critical nerve terminal enzymes (e.g., NEM-sensitive factor, vesicular monoamine transporter). The highly nucleophilic sulphydryl thiolate sites regulate enzyme activity by acting as acceptors for redox modulators such as nitric oxide (NO) or by playing a direct role in corresponding catalytic activity (reviewed by Jones 2010; LoPachin and Barber 2006; Winterbourn and Hampton 2008). Thus, it should be evident that adduction of the triad sulphydryl thiolate will have substantial implications for protein function and subsequent presynaptic toxicity (see below).

To investigate the possibility that ACR targeted cysteine residues in catalytic triads, we (Martyniuk et al. 2011) determined the effects of selected type-2 alkenes on the activity of recombinant human erythrocyte glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which contains a regulatory cysteine-centered (Cys152) catalytic triad (Thomas et al. 1995). Consistent with HSAB concepts, the softness (\(\sigma\)) and electrophilicity (\(\omega\)) values for ACR and the other type-2 alkenes tested [acrolein, methylvinyl ketone (MVK)] were related to the corresponding second-order rate constants (\(k_2\)) and reaction rate of GAPDH inhibition (Table 3). Tandem mass spectrometry was used to quantify the adduct formation associated with graded concentrations of ACR. Results indicated that lower in vitro concentrations of ACR inhibited GAPDH activity by selectively forming adducts with Cys152 in the active site of this enzyme, whereas at higher concentrations ACR also reacted with Cys156 and Cys247. Calculations using the PROPKA program (Jensen Research Group, Copenhagen, Denmark) revealed a p\(K_d\) of 6.03 for Cys152, whereas the p\(K_d\) values for Cys156 and Cys247 were higher. Furthermore, we found that GAPDH inhibition by the selected type-2 alkenes was pH-dependent, which also indicated thiolate mediation. These data suggest that Cys152 of GAPDH exists in a p\(K_d\)-lowering microenvironment and that ACR inhibited enzyme function by preferentially forming irreversible Michael-type adducts with this highly nucleophilic sulphydryl thiolate site. In general, cysteine thiolates contained within catalytic triads function as acceptors for electrophilic mediators of redox signaling (e.g., NO, hydrogen peroxide (\(H_2O_2\)) and, therefore, ACR adduction of these sites might impair protein function by disrupting this redox modulatory signaling (LoPachin et al. 2008b, 2009a, 2009b).

Table 3. Type-2 alkene HSAB and kinetic parameters for interactions with GAPDH.

Electrophile*	\(\sigma(\times 10^{-2}eV)\)	\(\omega(eV)\)	\(\log k_2\)	\(\log K_d\)
Acrolein**	371	3.82	4.250	-4.419
MVK	363	3.38	3.885	-4.220
ACR	315	2.61	0.502	-0.607

*HSAB (\(\sigma, \omega\)) and kinetic parameters (\(k_2, K_d\)) were calculated as described by Martyniuk et al. (2012). **Based on the HSAB parameters, acrolein and MVK are significantly softer and more reactive electrophiles than ACR (i.e., larger values of \(\sigma\) and \(\omega\), respectively). The rank orders of respective \(\sigma\) and \(\omega\) values for each type-2 alkene were closely correlated to the corresponding rate constants (\(k_2\); \(r^2 = 0.9998\) and 0.9935, respectively) and relative potencies (\(K_d\); \(r^2 = 0.9926\) and 0.9904, respectively) for inhibition of GAPDH activity.
acrolein, ethyl acrylate, and related unsaturated aldehydes (i.e., MVK) are significant components of air pollution, automobile exhaust, and smoke from cigarette, wood, and coal combustion (Andrews and Clary 1986; Biesi 1994; Farooq et al. 2008; Feron et al. 1991; Fujjoka and Shibamoto 2006; Stevens and Maier 2008; Tucek et al. 2002; Woodruff et al. 2007). At least 36 different unsaturated aldehydes (mostly type-2 alkenes) have been found in the U.S. water supply, often at levels exceeding maximal recommended concentrations. In fact, with the exception of heavy metals, aldehydes are considered to be the major contaminants in drinking water (reviewed by Andrews and Clary 1986; Biesi 1994; Conklin et al. 2010; Farooq et al. 2008; Feron et al. 1991; Tucek et al. 2002). There is experimental evidence that the toxic consequences of environmental exposure are mediated by type-2 alkenes (Andre et al. 2008; Danielsen et al. 2011; Facchinetti et al. 2007; Moretto et al. 2009). Finally, over 300 type-2 alkenes are natural constituents (e.g., acrolein, crotonaldehyde) of various foods and additional carbonyl, aldehyde, and ketone derivatives are produced during cooking fats, oils, and sugars. Based on dietary consumption alone, it is estimated that the α,β-unsaturated aldehyde burden in humans is nearly 200 μg/kg-body wt/day (Conklin et al. 2010; Wang et al. 2008).

Human populations are therefore exposed to complex type-2 alkyne mixtures, the chemical composition and corresponding concentrations of which depend on several variables including geographical location, personal habits (diet, tobacco usage), and occupation (Biesi 1994; Farooq et al. 2008; Feron et al. 1991; Friedman 2003; Stevens and Maier 2008; Tucek et al. 2002; Woodruff et al. 2007). Of particular concern, research has shown that these environmental toxicants produce cell damage via a common molecular mechanism, that is, protein dysfunction through formation of Michael-type adducts with sulfhydryl groups on specific cysteine residues (e.g., Dalle-Donne et al. 2007; Doorn and Petersen 2003; LoPachin et al. 2007a, 2007b, 2009a, 2009b; Nerland et al. 2003; Martyniuk et al. 2011). Thus, although the environmental concentrations of any particular unsaturated compound might not be sufficient to cause toxicity, continuous low-level exposure to a mixture of type-2 alkenes might be toxicologically significant (Kamel and Hoppin 2004; LoPachin et al. 2008a, 2008b, 2009b).

In addition to the environmental prevalence of the type-2 alkenes, acrolein, HNE, 4-oxy-2-nonenal (ONE), and other members of this chemical class are produced endogenously during membrane lipid peroxidation associated with cellular oxidative stress. There is growing evidence that these endogenous type-2 alkenes play a pathogenic role in disease processes and traumatic tissue injuries that
have oxidative stress as a molecular etiology, for example, stroke, atherosclerosis, Alzheimer’s disease, spinal cord trauma, and diabetes (Butterfield et al. 2010; Grimrud et al. 2008; Hamann et al. 2008; Uchida 2003; Zarkovic 2003). Therefore, based on their common toxic mechanism, environmentally derived type-2 alkenes might act either synergistically or additively with endogenously generated unsaturated aldehydes. This interaction could amplify the extent of cellular damage and thereby accelerate development of the disease/injury process. That this idea has toxicological plausibility is suggested by epidemiological and experimental research indicating an association between environmental toxicant exposure (e.g., pesticides, heavy metals, industrial chemicals) and an increase in the incidence and severity of many human diseases (Brown et al. 2005, 2006; Grandjean and Landrigan 2006; Kamel and Hoppin 2004; Landrigan et al. 2005; O’Toole et al. 2008). With specific reference to environmental type-2 alkenes, research has shown that dietary consumption of acrolein exacerbates myocardial ischemic injury and atherosclerosis in mice by interacting with endogenous unsaturated aldehydes generated during ongoing oxidative stress (Conkin et al. 2010; Ismail et al. 2011; Luo et al. 2007; Srivastava et al. 2011; Wang et al. 2008). On the basis of these studies it has been proposed that chronic environmental exposure to unsaturated aldehydes is a significant risk factor for cardiovascular diseases (Luo et al. 2007; O’Toole et al. 2008; Wang et al. 2008). Similarly, we have suggested that environmental exposure to a mixture of weak type-2 alken electronophiles (e.g., ACR, methyl acrylate, ethyl methacrylate) could accelerate the progressive nerve terminal demise associated with Alzheimer’s disease (reviewed by LoPachin et al. 2008b, 2009b). In support of this, there is now considerable evidence that the Alzheimer’s disease pathogenic mechanism involves neuronal oxidative stress with subsequent generation of highly reactive type-2 alken derivatives including acrolein, HNE, and ONE (Ansari and Scheff 2010; Butterfield et al. 2010; Nam et al. 2010; Singh et al. 2010; Sultana and Butterfield 2010). Furthermore, evidence suggests that nerve terminal dysfunction in relevant brain regions precedes neurodegeneration and is a primary pathophysiological event in Alzheimer’s disease (reviewed by Coleman et al. 2004; Forero et al. 2006; Keating 2008; LoPachin et al. 2008a; Selkoe 2002). Thus, presynaptic dysfunction in Alzheimer’s disease could be mediated by both environmental and endogenous type-2 alkenes (e.g., Keller et al. 1997; LoPachin et al. 2007a, 2007b, 2009a; Morel et al. 2002; Pocernich et al. 2001). Along these lines, subchronic human exposure to environmental matrices that contain significant type-2 alken concentration such as air pollution (Calderon-Garciduenas et al. 2011; Chen and Schwartz 2009; Levesque et al. 2011) or cigarette smoke (Fujioaka and Shibamoto 2006; Smith et al. 2000; Werley et al. 2008) are associated with an increased incidence of neurodegenerative conditions (e.g., Almeida et al. 2008; Cataldo et al. 2010; Chen and Schwartz 2009; Juan et al. 2004; Levesque et al. 2011; Peters et al. 2008; Tucek et al. 2002). Whereas other toxicant classes in these complex matrices could contribute to the corresponding neuropathogenic processes, the type-2 alkenes are distinguished by their exogenous prevalence, their common toxic mechanism, and their endogenous role in oxidative stress (see above). Despite this growing evidence, the potential for toxic synergy among members of the type-2 alken class has largely gone unrecognized. As a result, risk assessment has been based on analyses of individual unsaturated carbonyls and their respective toxicities. However, from both a research and risk management perspective, future toxicological considerations should include the interactive potential of these chemicals.

Summary

Early studies of ACR neurotoxicity involved observational research designed to define cell-level sites of action, for example, axon versus nerve terminal. Subsequent research was directed toward determining corresponding molecular mechanisms and, accordingly, numerous mechanistic scenarios were proposed and subsequently tested. Nonetheless, whether the selected neurophysiological parameter tested was a rational and therefore toxicologically plausible target could not be determined because significant mechanistic ambiguity existed at the chemical and molecular levels. However, mechanistic investigations were significantly advanced by recognizing the specific electrochemical nature of ACR and understanding the implications of this electronic character on the selective nucleophile targeting that determines the corresponding covalent adduct chemistry. Thus, we realized that ACR was a soft electrophile that preferentially formed adducts with soft nucleophilic sites on macromolecules. This pointed to the soft, highly nucleophilic thiolate states of cysteine residues in protein catalytic triads as toxicologically relevant molecular targets. Because thiolate sulf-hydryl groups on proteins acted as regulatory acceptors for electrophilic mediators of redox signaling (e.g., NO), we ultimately provided evidence that ACR reduced neurotransmission at central and peripheral synapses by disrupting these signaling pathways. Also critical was the recognition that the relevant electronic characteristics defining the chemical basis for ACR toxicity were shared by other α,β-unsaturated carbonyl derivatives and possibly the entire type-2 alken chemical class. This is a potentially significant realization because the type-2 alkenes are a unique group of structurally related unsaturated carbonyl, aldehyde, and ketone derivatives that are well-documented environmental toxicants and/or endogenous mediators of disease/injury processes associated with cellular oxidative stress. Based on their demonstrated common mechanism of toxicity, we propose that environmental exposure to a mixture of type-2 alkenes could represent a significant health risk. Furthermore, these exogenously derived toxicants could interact synergistically with endogenous unsaturated aldehydes and thereby accelerate the onset and development of atherosclerosis, diabetes, Alzheimer’s disease, and other pathogenic conditions that have cellular oxidative stress as a molecular etiology. Thus, in this review we have described a relatively detailed mechanistic scenario for ACR neurotoxicity. This level of comprehension was achieved through understanding the principles of organic chemistry that govern the covalent interactions of electrophilic toxicants with their nucleophilic targets. Because many toxicants are electrophiles of varying softness and reactivity (e.g., methylmercury; α,β-unsaturated aldehydes (e.g., aceylonone, 2,5-hexanedione)) a similar approach could be used to identify rational nucleophilic targets on biological macromolecules.

References

Abou-Donia MB, Abdel-Rahman AA, Kishk AM. 2000. Neurotoxicity of ethyl methacrylate in rats. J Toxicol Environ Health A 59:97–118. Almeida DP, Garrido DJ, Lauteenschläger NT, Hulse GK, Jamrozik K, Flicker L. 2008. Smoking is associated with reduced cortical regional grey matter density in brain regions associated with incipient Alzheimer disease. Am J Geriatr Psych 16:92–98. Andre E, Campi B, Materazzini, Trevisani S, Massi D, et al. 2008. Cigarette smoke-induced neurogenic inflammation is mediated by α,β-unsaturated aldehydes and the TRPA1 receptor in rodents. J Neurosci 31:2574–2582. Andrews LS, Clary J.J. 1986. Review of the toxicity of multifunctional acrylates. J Toxicol Environ Health 19:149–164. Ansari MA, Scheff SW. 2010. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neurophys Appl Neurol 69:155–167. Barber DS, Hunt JR, Ehrlich MF, Lehnig EJ, LoPachin RM. 2001. Metabolism, toxicokinetics and hemoglobin adduct formation in rat following subacute and chronic acrylamide dosing. Neurotoxicology 22:341–353. Barber DS, LePachin RM. 2004. Proteomic analysis of acrylamide-protein adduct formation in rat brain synaptosomes. Toxicol Appl Pharmacol 201(2):120–136. Barber DS, Stevens S, LoPachin RM. 2007. Proteomic analyses of rat striatal synaptosomes during acrylamide intoxication at a low dose-rate. Toxicol Sci 100:156–167. Bisesi MS. 1994. Esters. 3. Ethers of alkenic/acycloxyc acids and monooalcohols. In: Patty’s Industrial Hygiene and Toxicology (Clayton GD, Clayton FE, eds). Vol 11, 4th ed. New York:John Wiley and Sons, 2999–3007. Boon FE, deMall A, van der Voet H, van Donkergoed G, Brette M, van Klaveren JD. 2005. Calculations of dietary exposure to acrylamide. Mutat Res 580:143–155. Bowyer JF, Latendresse JR, Delongchamp RR, Warbritton AR, Thomas M, Divine B, et al. 2009. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water. Toxicol Appl Pharmacol 240:401–411.
Brown RC, Lockwood AH, Sonawane BR. 2005. Neurodegenerative disease: an overview of environmental risk factors. Environ Health Perspect 113:1290–1295.

Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS. 2006. Pesticides and Parkinson’s disease—is there a link? Environ Health Perspect 114:15–20.

Butcher DA, Bader Lange ML, Sultana R. 2010. Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochimica Biophys Acta 1797:181–203.

Cai J, Bhatnagar A, Pierce WM. 2009. Protein modification by acrolein: formation and stability of cysteine adducts. Chem Rev 109:2708–718.

Calkos N, Scheller RH. 1986. Synaptic vesicle biogenesis, docking, and degranulation: a molecular description. Physiol Rev 66:71–125.

Calderón-Garcidueñas L, Kavagnaugh M, Block D, Aangui L, Delgado-Chávez R, Torres-Jardón R, et al. 2011. Neuroinflammation, Alzheimer’s disease-associated pathology, and down-regulation of the prion-related protein in air pollution exposed children and young adults. J Alzheimer Dis 28:109–121.

Cataldo JK, Prochaska JJ, Glantz SA. 2010. Cigarette smoking is a risk factor for Alzheimer’s disease: an analysis controlling for tobacco industry affiliation. J Alzheimer Dis 19:485–490.

Cavins, JF, Friedman M. 1968. Specific modification of protein sulfhydryl groups with \(\gamma \)-ununsaturated compounds. J Biol Chem 243:543–564.

Chen JC, Schwartz J. 2009. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults. Neurotoxicology 30:231–239.

Crim, JF, Ulrich, LM, Hawk, AE, Boekelheide K, Pohl LR, Amouzadeh HR, et al. 2017. Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol 344:131–142.

Coleman P, Fedoroff J, Kurlan R. 2004. A focus on the synapse for neurotoxicity. Adv Exp Med Biol 533:139–150.

Curtis CE. 1933. Aldehyde functions upon modification by sulfhydryl reagents. J Biol Chem 98:561–570.

Deng H, He S, Zhang S. 1993. Quantitative measurements of vibrational frequencies and rovibrational energies of nerve cell damage in brainstem and spinal cord. Neurotoxicology 24:415–429.

Delgado-Chávez R, Torres-Jardón R, et al. 2011. Neuroinflammation and progression of Alzheimer’s disease. Biochimica Biophys Acta 1801:924–929.

Delmon PN, Sonawane B, Butler RN, Trasande L, Callan R, Droller D. 2005. Early environmental origins of neurodegenerative disease in later life. Environ Health Perspect 113:1290–1298.

Delmon PN, Sonawane B, Ross JS, LoPachin RM. 2002a. Acrylamide neurotoxicity. I. Spatiotemporal characteristics of nerve cell damage in cerebellum. Neurotoxicology 23:415–429.

Delmon PN, Balaban CD, Ross JF, Reid IA, LoPachin RM. 2002b. Acrylamide neurotoxicity. III. Spatiotemporal characteristics of nerve cell damage in forebrain. Neurotoxicology 24:125–136.

Delmon PN, Balaban CD, Ross JF, Reid IA, LoPachin RM. 2002c. Acrylamide neurotoxicity. I. Spatiotemporal characteristics of nerve cell damage in cerebellum. Neurotoxicology 23:397–414.

Delmon PN, Perspectives A, Dyer KF, Jortner BS, LoPachin RM. 1998. Biochemical and morphological characterization of axon degeneration in acrylamide peripheral neuropathy. Toxicol Appl Pharmacol 151:211–221.

Devate JS, Surace MJ, McDonald J, Block ML. 2011. Air pollution & the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates markers of neurodegenerative disease. J Neuroinflamm 8:105–115.

Diederich D. 2008. Protein damage by reactive electrophiles: targets and consequences. Chem Rev 108:117–128.

Dreher DL. 2000. Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol 16:19–49.

Lipton SA, Chio YB, Takahashi H, Zhang D, Weihong L, Godzik A, et al. 2002. Cysteine regulation of protein function as exemplified by NMDA-receptor modulation. Trends Neurosci 25:240–255.

LoPachin RM, 2004. The changing view of acrylamide neurotoxicity. Neurotoxicology 25:617–630.

LoPachin RM, Balaban CD, Ross JF. 2003. Acrylamide exopathy revisited. Toxicol Appl Pharmacol 188:135–153.

LoPachin RM, Barber DS. 2006. Synaptic cysteine sulfhydryl groups as targets of electrophilic neurotoxins. Toxicol Sci 94:240–255.

LoPachin RM, Barber DS, Gavin T. 2006a. Molecular mechanisms of the conjugated \(\gamma \)-ununsaturated carbonyl derivatives: relevance to neurotoxicity and neurodegenerative diseases. Toxicol Sci 104:229–249.

LoPachin RM, Barber DS, Gavin T. 2007a. Structure-toxicity analysis of type-2 alkenes: in vitro neurotoxicity. Toxicol Sci 93:163–166.

LoPachin RM, Castiglia CM, LoPachin RA, Saubermann AJ, Saubermann RJ. 2003. Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells. Brain Res 1028:239–248.

LoPachin RM, Castiglia CM, Saubermann AJ. 1992. Effects of acrylamide on elemental composition and water content of rat cerebral nerve. I. Myelinated axons. Toxicol Appl Pharmacol 113:25–34.

LoPachin RM, DeCaprio AP. 2005. Protein adduct formation as a molecular mechanism in neurotoxicity. Toxicol Sci 86:214–225.

LoPachin RM, Gavin T, Barber DS. 2008b. Type-2 alkenes mediate synaptotoxicity in neurodegenerative diseases. Neurotoxicology 29:871–882.

LoPachin RM, Gavin T, Balaban CD, Reeves DN. 2011. Evaluation of the Hard and Soft, Acids and Bases theory to toxicant–target interactions. Chem Res Toxicol 25:239–251.

LoPachin RM, Gavin T, Geohagen BC, Gavin T, He D, Das S. 2007a. Structure-toxicity analysis of type-2 alkenes: in vivo neurotoxicity. Toxicol Sci 93:163–166.

LoPachin RM, Castiglia CM, LoPachin RA, Saubermann AJ, Saubermann RJ. 1992. Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells. Brain Res 1028:239–248.

LoPachin RM, Castiglia CM, Saubermann AJ. 1992. Effects of acrylamide on elemental composition and water content of rat cerebral nerve. I. Myelinated axons. Toxicol Appl Pharmacol 113:25–34.

LoPachin RM, DeCaprio AP. 2005. Protein adduct formation as a molecular mechanism in neurotoxicity. Toxicol Sci 86:214–225.

LoPachin RM, Gavin T, Barber DS. 2008b. Type-2 alkenes mediate synaptotoxicity in neurodegenerative diseases. Neurotoxicology 29:871–882.

LoPachin RM, Gavin T, DeCaprio AP, Barber DS. 2012. Application of the Hard and Soft, Acids and Bases theory to toxicant–target interactions. Chem Res Toxicol 25:239–251.

LoPachin RM, Gavin T, Geohagen BC, Gavin T, He D, Das S. 2007a. Structure-toxicity analysis of type-2 alkenes: in vitro neurotoxicity. Toxicol Sci 93:163–166.

LoPachin RM, Castiglia CM, LoPachin RA, Saubermann AJ, Saubermann RJ. 1992. Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells. Brain Res 1028:239–248.

LoPachin RM, Castiglia CM, Saubermann AJ. 1992. Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells. Brain Res 1028:239–248.

LoPachin RM, Castiglia CM, Saubermann AJ. 1992. Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells. Brain Res 1028:239–248.

LoPachin RM, Castiglia CM, Saubermann AJ. 1992. Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells. Brain Res 1028:239–248.

LoPachin RM, Castiglia CM, Saubermann AJ. 1992. Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells. Brain Res 1028:239–248.

LoPachin RM, Castiglia CM, Saubermann AJ. 1992. Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells. Brain Res 1028:239–248.

LoPachin RM, Castiglia CM, Saubermann AJ. 1992. Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells. Brain Res 1028:239–248.

LoPachin RM, Castiglia CM, Saubermann AJ. 1992. Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells. Brain Res 1028:239–248.
LoPachin RM, Lehning EJ. 1994. Acrylamide-induced distal axon degeneration: a proposed mechanism of action. Neurotoxicology 15:247–260.

LoPachin RM, Lehning EJ, Opanashuk LA. 2000. Rate of neurotoxicant exposure determines morphologic manifestations of distal axonopathy. Toxicol Appl Pharmacol 167:75–86.

LoPachin RM, Lehning EJ, Ross JF, Reid M, Das S, Mansukhani S. 2002a. Neurological evaluation of toxic axonopathies in rats: acrylamide and 2,5-hexanediol. Neurotoxicology 23:39–50.

LoPachin RM, Ross JF, Lehning EJ. 2002b. Nerve terminals as the primary site of acrylamide action: a hypothesis. Neurotoxicology 23:43–59.

LoPachin RM, Schwarzar S, Southshuki S, Das S. 2004. In vivo and in vitro effects of acrylamide on synapticontal neurotransmitter uptake and release. Neurotoxicology 25:349–363.

Lu J, Hill BG, Gu Y, Cai J, Srivastava S, Bhatnagar A, et al. 2007. Mechanisms of acrylamide-induced myocardi al dysfunction: implications of environmental and endogenous aldehyde exposure. Am J Physiol Heart Circ Physiol 293:H3673–H3684.

Martenson CH, Sheets MP, Graham DG. 1995. In vitro acrylamide exposure alters growth cone morphology. Toxicol Appl Pharmacol 131:119–129.

Martyniuk CJ, Fang B, Koomen JM, Gavlin T, Barber DS, LoPachin RM. 2011. Molecular mechanism of glycer aldehyde-3-phosphate dehydrogenase inactivation by α,β-unsaturated carbonyl derivatives. Chem Res Toxicol 24:2022–2031.

Miller MS, Spencer PS. 1985. The mechanisms of acrylamide oxidation. Ann Rev Pharmacol Toxicol 25:643–666.

Mor S, Starnes JS, Bruner EJ. 1994. Mechanism of covalent modification of glycer aldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett 348:223–227.

Moretta N, Facchini F, Southshuki T, Civelli M, Singh D, Patachnich R. 2009. α,β-Unsaturated aldehydes in contained in cigarette smoke elicit IL-8 release in pulmonary cells. Neurochem Int 34:223–227.

Moretta N, Patanchini F, Beati FM, Markeyes WR, Roberts LJ, et al. 2009. Effects of 4-hydroxy-2-nonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes. Neurochem Int 32:531–540.

Mucci LA, Dickman PW, Steinneck G, Adami HO, Augustsson K. 2003. Dietary acrylamide and cancer of the large bowel, kidney and lung cell. Mol Physiol Lung Cell Mol Physiol 296:L839–L848.

Mumford EA, Oehme FW. 1991. Acrylamide and polyacrylamide: a review. Environ Health Perspect 95:179–189.

Nerland DE, Cai J, Benz FW. 2003. Selective covalent binding of acrylonitrile to Cys 186 in rat liver carbonic anhydrase III and effects of acrylamide on synaptosomal neurotoxicity. Rev Environ Health 18:330–341.

Rozman KK, Klaassen CD. 2001. Absorption, distribution and excretion of toxicants. In: Toxicology: The Basic Science of Poisons (Klaassen CD, ed). New York:McGraw-Hill, 119–124.

Rudikovaaya A, Sim V, Shah AA, Feustel PJ, Jouondheul D, Mengin AA. 2010. Long-lasting inhibition of presynaptic metabolism and neurotransmitter release by protein S-nitrosylation. Free Radic Biol Med 49:757–769.

Sadah DN, Sharief MK, Howard RS. 1999. Occupational exposure to methyl mercaptane monomer induces generalized neuropathy in dental technician. Brit Dent J 186:380–381.

Schultz TW, Carlson RE, Cronin MTD, Hermens JLM, Johnson R, O’Brien PJ, et al. 2006. A conceptual framework for predicting the toxicity of reactive chemicals: modeling soft electrophilicity. SAR QSAR Environ Res 17:413–428.

Schultz TW, Netzeva TI, Roberts DW, Cronin MTD. 2005. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing α,β-ununsaturated chemicals. Chem Res Toxicol 18:330–341.

Schwobel JAH, Koleva YK, Enach SJ, Bajot F, Hewitt M, Maddick J, et al. 2011. Measurement and estimation of electrochemical activity for predictive toxicology. Chem Rev 111:252–2596.

Seldzio DJ. 2002. Alzheimer’s disease is a synaptic failure. Science 298:769–791.

Seppalainen AM, Rajaniemi R. 1984. Local neurotoxicity of methyl mercaptane among dental technicians. Am J Ind Med 5:471–477.

Sickles DJ. 2002. Alzheimer’s disease is a synaptic failure. Science 298:769–791.

Singh M, Nam ST, Arseneault M, Ramassamy C. 2010. Role of oxidative stress in cigarette smoke elicit IL-8 release in pulmonary cells. Neurochem Int 32:531–540.

Smith EA, Oehme FW. 1991. Acrylamide and polyacrylamide: a review. Environ Health Perspect 95:179–189.

Spencer PS, Schaumburg HH. 1974a. A review of acrylamide and its potential neurotoxicity. Neurotoxicology 5:501–507.

Spencer PS, Schaumburg HH. 1974b. A review of acrylamide and polyacrylamide: a review. Environ Health Perspect 95:179–189.

Sadoh DR, Sharief MK, Howard RS. 1999. Occupational exposure to methyl mercaptane monomer induces generalized neuropathy in dental technician. Brit Dent J 186:380–381.

Tilson HA. 1979. The neurotoxicity of acrylamide: an overview. Neurotox Sci 3:445–461.

Tornqvist M. 2005. Acrylamide in food: the discovery and its implications. In: Chemistry and Safety of Acrylamide in Food (Friedman M, Mottram D, eds). New York:Springer Science and Business Media, 1–19.

Tucek M, Tangerova J, Kollarova B. 2002. Effect of acrylamide on synaptosomal neurotoxicity evaluations of the electrically heated cigarette smoking system series K. Reg Toxicol Pharmacol 42:115–119.

Uchida K. 2003. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343.

Wang GW, Guo Y, Vondriska TM, Zhang J, Zhang S, Tsai LL, et al. 2008. Acrolein consumption exacerbates myocardial ischemic-reperfusion injury and blocks nitric oxide-induced PKCε signaling and cardioprotection. J Mol Cellular Cardiol 44:1006–1022.

Watson RS, Goo Y, Vondriska TM, Zhang J, Zhang S, Tsai LL, et al. 2008. Acrolein consumption exacerbates myocardial ischemic-reperfusion injury and blocks nitric oxide-induced PKCε signaling and cardioprotection. J Mol Cellular Cardiol 44:1006–1022.

Wang JS, Rice JM. 2005. The carcinogenicity of acrylamide. Mutat Res 575:587–597.

Tyr WL, Marr MC, Myers CB, Ross WP, Friedman MA. 2000. Relationship between acrylamide and reproductive and neurotoxicity in male rats. Reprod Toxicol 14:157–157.

Uchida K. 2003. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343.

Wang JS, Rice JM. 2005. The carcinogenicity of acrylamide. Mutat Res 575:587–597.

Tyr WL, Marr MC, Myers CB, Ross WP, Friedman MA. 2000. Relationship between acrylamide and reproductive and neurotoxicity in male rats. Reprod Toxicol 14:157–157.

Winterbourn CC, Hampton MB. 2008. Thiol chemistry and specific-ity in redox signaling. Free Radic Biol Med 45:549–561.

Zarkovic K. 2003. 4-Hydroxy-2-nonenal and neurodegenerative diseases. Mol Aspects Med 24:293–303.

Zhang L, Gavlin T, Barber D, LoPachin RM. 2011. Role of the NiR2-ARE pathway in acrylamide neurotoxicity. Toxicol Lett 205:1–7.