Aortic Mural Thrombus Associated with Congenital Protein C Deficiency in an Elderly Patient

Kazuki Ueda¹, Eriko Morishita², Hironaga Shiraki³, Shunzo Matsuoka³ and Shinsaku Imashuku⁴

¹Department of Internal Medicine, Uji-Tokushukai Medical Center, Kyoto, Japan
²Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
³Department of Cardiovascular Medicine, Uji-Tokushukai Medical Center, Kyoto, Japan
⁴Department of Laboratory Medicine, Uji-Tokushukai Medical Center, Kyoto, Japan

Key words: Aortic mural thrombosis, Protein C deficiency, Congenital thrombophilia

Introduction

Thrombophilia increases the risk of venous thrombosis, but is rarely responsible for aortic thrombosis. Aortic mural thrombus (AMT) may be associated with a protein C deficiency. However, it is necessary to determine whether the protein C deficiency is congenital/hereditary or secondary/acquired (consumption of protein C during the process of thrombus formation). This study describes a 77-year-old Japanese woman with incidentally diagnosed AMT, who had a protein C deficiency (activity 54%, antigen 42%). Sequencing of the protein C gene revealed a heterozygous mutation of c.1268delG, p.Gly423Valfs82 in exon 9, indicating a congenital protein C deficiency. These findings indicate that very late onset AMT can occur in an adult with congenital protein C deficiency.

Case Report

A 77-year-old Japanese woman was hospitalized for nausea/vomiting resulting from strangulation ileus caused by ileal adhesion to the bladder diverticulum. Computed tomography angiography (CTA) on admission incidentally revealed AMT in the descending aorta. Regarding the characteristics of AMT, the size (diameter) of AMT site was 30–32 mm while that of the proximal and distal part of descending aorta was measured 30 mm each. Thorough examination ruled out the possibility of aneurysm; however, we noted some evidence of mild atherosclerosis (Fig. 1). At the age of 68 years, she had been treated for acute heart failure due to aortic and mitral valve regurgitations, but CTA was not performed at that time. Therefore, it was unclear whether her AMT was acute or chronic.
Her systolic blood pressure had been controlled and maintained at around 120 mmHg with use of calcium antagonist/angiotensin II receptor blocker. Her family history (including her mother, three siblings, two children, and two grandchildren) showed no evidence of thrombo-embolic episodes, except for her father who died of brain infarct in his 40s. Her pregnancy/parity history was uneventful, and she had no history of coronary heart disease, thrombo-embolic episodes, bleeding tendencies, any malignancies, diabetes mellitus, or collagen disease. Laboratory data on admission were as follows: White blood cell count, 9,900/µL; hemoglobin (Hb), 13.9 g/dL; platelet count, 147,000/µL; serum C-reactive protein, 0.02 mg/dL; creatine kinase-MB, 19 IU/L; aspartate aminotransferase, 16 U/L; alanine aminotransferase, 15 U/L; lactate dehydrogenase, 233 U/L; total protein, 7.4 g/dL; albumin, 4.2 g/dL; blood urea nitrogen, 22.8 mg/dL; creatinine, 0.70 mg/dL; triglyceride, 172 mg/dL; LDL-cholesterol, 76 mg/dL; HDL-cholesterol, 62 mg/dL; blood glucose, 132 mg/dL; HbA1C, 5.7%; and troponin, <0.03 ng/mL. The patient’s coagulation/fibrinolysis and thrombophilia-related data are summarized in Table 1. As shown, the patient had elevated levels of fibrin degradation product (FDP), D-dimer, and thrombin-antithrombin complex (TAT), indicating her hypercoagulable or thrombophilic condition. Assays of protein C showed 54% activity and 42% antigen relative to normal, indicating that her AMT was associated with a protein C deficiency. To determine if this deficiency was congenital, we sequenced her protein C gene. All interventions were in accordance with the Declaration of Helsinki; the study was approved by the Institutional Review Boards of Ujitokushukai Medical Center and Kanazawa University Graduate School of Medical Science. The patient provided written informed consent. The sequencing results identified a heterozygous mutation of c.1268delG, p.Gly423Valfs8 in exon 9 of the protein C gene, according to the current nomenclature. This mutation was originally described as protein C-Nagoya9, which is relatively common in Japan9. Thus, this patient with a congenital protein C deficiency developed AMT very late in life.

Discussion

It is necessary to differentiate AMT from subacute or chronic aortic dissection10 using imaging methods such as CTA, magnetic resonance angiography and, if possible, transesophageal echocardiography. In addition, hemodynamic stability should be evaluated. Our patient was incidentally diagnosed with AMT by CTA, in association with determination of stable hemodynamics. Because of her age, it was likely that AMT was associated with mild atherosclerosis, not with a healthy aorta. Nevertheless, her thrombophilic condition resulting from congenital protein C deficiency may have played a major role.

A limited number of reports are available to date about the aortic thrombus associated with deficiencies in protein C or protein S in adults1,4-6,11. Causes of protein C and protein S deficiency were not clearly stated in all these reports. It was thought that the clinical persistence of protein C deficiency after surgical removal of thrombi may suggest a genetic impairment rather than consumption. Congenital protein C deficiency was mentioned in 2 reports; in a 49-year-old man with an arterial thrombosis11 as well as in a 54-year-old man presented with a mobile aortic
In determining the treatment of AMT in this patient, we were hesitant to perform surgery intervention because of her stable hemodynamics and lack of symptoms. However, surgical intervention is recommended in patients with persistent thrombi and recurrent embolisms. We also discussed the administration of direct oral anticoagulants; however, it is currently not adaptive for aortic thrombosis. As a result, we chose a close follow-up without any medication.

In summary, the aorta should be included in the organs at risk in patients with thrombophilic conditions. The pathogenesis of aortic thrombus must be carefully evaluated, even in elderly patients. Genetic studies are required if AMT is associated with a protein C deficiency.

To date, few molecular genetic studies have assessed for protein C deficiencies in adult patients with AMT. Our patient was incidentally diagnosed with an aortic thrombus in association with an isolated protein C deficiency, without episodes of embolism in the central nervous system or heart. No other risk factors for AMT development were found. Genetic sequencing made us possible to directly confirm that her protein C deficiency was congenital.

Regarding the late onset of congenital disease, one example is familial hemophagocytic lymphohistiocytosis (FHL), for which many late onset cases were described including a case of a 62-year-old patient. In FHL, gene mutation types (missense/nonsense) as well as various environmental factors are assumed to play a role in its disease manifestation. In congenital protein C deficiency, data were limited and only a few late onset case reports have been found as mentioned above. Thus, it remains unknown why patients develop the disease at different ages and in different blood vessels (venous or aortic). In analogy with FHL, various factors such as surgical stress, infection, dehydration, or atherosclerosis (as noted in this case) could be responsible for the development of thrombosis with underlying congenital protein C deficiency.

In determining the treatment of AMT in this patient, we were hesitant to perform surgery intervention because of her stable hemodynamics and lack of symptoms. However, surgical intervention is recommended in patients with persistent thrombi and recurrent embolisms. We also discussed the administration of direct oral anticoagulants; however, it is currently not adaptive for aortic thrombosis. As a result, we chose a close follow-up without any medication.

In summary, the aorta should be included in the organs at risk in patients with thrombophilic conditions. The pathogenesis of aortic thrombus must be carefully evaluated, even in elderly patients. Genetic studies are required if AMT is associated with a protein C deficiency.

Table 1. Coagulation/fibrinolysis and thrombophilia-related studies
PT (80-100) %
PT-INR (0.9-1.1)
APTT sec
APTT control sec
Fibrinogen (200-400) mg/dL
FDP (<2.5) µg/mL
D-dimer (<1.0) µg/mL
Total PAI-1 (<50) ng/mL
TAT (<4.0) ng/mL
PIC (<0.8) µg/mL
Factor II (66-118) %
Factor V (73-122) %
Factor VII (54-162) %

Abbreviations: TAT=thrombin-antithrombin complex, PIC=plasmin a2 plasmin inhibitor complex, PLg=plasminogen, ACL=anti-cardiolipin, LAC=lupus anticoagulant, ANA=anti-nuclear antibody, ANCA=anti-neutrophil cytoplasmic antibody. Values within bracket indicate references.
Protein C Deficiency-Related AMT

9) Sakata T, Kario K, Katayama Y, Matsuyama T, Kato H, Miyata T. Studies on congenital protein C deficiency in Japanese: prevalence, genetic analysis, and relevance to the onset of arterial occlusive diseases. Semin Thromb Hemost, 2000; 26: 11-16

10) Zurick AO, Ramaiah C. Aortic Mural Thrombus in Association with Occult Aortic Dissection. CASE (Phila), 2017; 1: 62-64

11) De Stefano V, Leone G, Micalizzi P, Teofili L, Falappa PG, Pollari G, Bizzi B. Arterial thrombosis as clinical manifestation of congenital protein C deficiency. Ann Hematol, 1991; 62: 180-183

12) Nagafuji K, Nonami A, Kumano T, Kikushige Y, Yoshimoto G, Takenaka K, Shimoda K, Ohga S, Yasukawa M, Horiuchi H, Ishii E, Harada M. Perforin gene mutations in adult-onset hemophagocytic lymphohistiocytosis. Haematologica, 2007; 92: 978-981

13) Zhang K, Jordan MB, Marsh RA, Johnson JA, Kissell D, Meller J, Villanueva J, Risma KA, Wei Q, Klein PS, Filippovich AH. Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood, 2011; 118: 5794-5798

14) Boufi M, Mameli A, Compes P, Hartung O, Alimi YS. Elective stent-graft treatment for the management of thoracic aorta mural thrombus. Eur J Vasc Endovasc Surg, 2014; 47: 335-341

4) Sanon S, Phung MK, Lentz R, Buja LM, Tung PP, McPherson DD, Fuentes F. Floating, non-occlusive, mobile aortic thrombus and splenic infarction associated with protein C deficiency. J Am Soc Echocardiogr, 2009; 22: 1419. e1-3

5) Hisatomi K, Yamada T, Odate T, Yamashita K. Intermittent coronary artery occlusion caused by a floating thrombus in the left coronary sinus of valsalva of a patient with a normal aorta and protein C deficiency. Ann Thorac Surg, 2011; 92: 1508-1510

6) Yagyu T, Naito M, Kumada M, Nakagawa T. Aortic Mural Thrombus in the Non-Atherosclerotic Aorta of Patients with Multiple Hypercoagulable Factors. Intern Med, 2019; 58: 381-385

7) Verma H, Meda N, Vora S, George RK, Tripathi RK. Contemporary management of symptomatic primary aortic mural thrombus. J Vasc Surg, 2014; 60: 1524-1534

8) Yamamoto K, Tanimoto M, Emi N, Matsushita T, Takamatsu J, Saito H. Impaired secretion of the elongated mutant of protein C (protein C-Nagoya). Molecular and cellular basis for hereditary protein C deficiency. J Clin Invest, 1992; 90: 2439-2446

3) Kumar N, Dogra N. An infant with aortoiliac thrombosis due to congenital protein C deficiency: anesthetic implications. J Clin Anesth, 2012; 24: 506-507

2) Sakata T, Kario K, Katayama Y, Matsuyama T, Kato H, Miyata T. Studies on congenital protein C deficiency in Japanese: prevalence, genetic analysis, and relevance to the onset of arterial occlusive diseases. Semin Thromb Hemost, 2000; 26: 11-16

1) Aortic arch thrombosis: analysis of thrombophilic risk factors and prognosis. Cardiol Young, 2014; 24: 33-39