Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration?

Ozen, Ilknur; Boix, Jordi; Paul-Visse, Gesine

Published in:
Clinical and Translational Medicine

DOI:
10.1186/2001-1326-1-30

2012

Citation for published version (APA):
Ozen, I., Boix, J., & Paul-Visse, G. (2012). Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration? Clinical and Translational Medicine, 1(1), [30]. https://doi.org/10.1186/2001-1326-1-30

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration?

Ilknur Özen1, Jordi Boix1 and Gesine Paul1,2*

Abstract

Perivascular adult stem cells have been isolated from several tissues, including the adult human brain. They have unique signatures resembling both pericytes and mesenchymal stem cells. Understanding the nature of these cells in their specific vascular niches is important to determine their clinical potential as a new adult stem cell source. Indeed, they have promising features in vitro in terms of multipotency, immunomodulation and secretion of growth factors and cytokines. However, their in vivo function is less known as yet. Recent emerging data show a crucial role of perivascular mesenchymal stem cells in tissue homeostasis and repair. Furthermore, these cells may play an important role in adult stem cell niche regulation and in neurodegeneration. Here we review the recent literature on perivascular mesenchymal stem cells, discuss their different in vitro functions and highlight especially the specific properties of brain-derived perivascular mesenchymal stem cells. We summarize current evidence that suggests an important in vivo function of these cells in terms of their regenerative potential that may indicate a new target cell for endogenous tissue regeneration and repair.

Keywords: Pericytes, Mesenchymal stem cells, Perivascular niche, Neuroregeneration

Review

Adult stem cells

Adult stem cells (ASCs) are found in almost all organs of the postnatal human body. They reside in the perivascular niche, a specific microenvironment that allows ASCs to retain their multi-lineage potential and self-renewal capacity [1,2]. The perivascular niche consists of ASCs, neighbouring cells and extracellular matrix [1,3,4].

Adult stem cells are a source for organ-specific cell replacement during the normal cell turnover or under pathological conditions [5,6]. These stem cells often remain dormant until they are activated by the body’s need to maintain tissues, or in response to disease or tissue injury. Some ASC types, such as hematopoietic stem cells (HSCs) or enteric stem cells, have a high proliferation rate, whereas in other organs, ASCs only divide under certain conditions, stimulated by injury for example.

Mesenchymal stem cells

One ASC type that has specifically attracted attention during the past years are mesenchymal stem cells (MSCs) [7-12]. Friedenstein and co-workers [13] were the first to describe MSCs, originally termed mesenchymal stromal cells, as a rare population of plastic-adherent cells that could be isolated from the bone marrow but was different from HSCs [13]. Mesenchymal stem cells are isolated by adherence to plastic, possess a high proliferative potential and are characterized by the expression of a panel of surface markers [14] and their capacity to differentiate along mesodermal lineages such as osteoblasts,

* Correspondence: gesine.paul@med.lu.se
1Department of Clinical Sciences, Translational Neurology, Lund University, Wallenberg Neuroscience Center, Lund 22184, Sweden
2Department of Neurology, Scania University Hospital, Lund 22185, Sweden

© 2012 Özen et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
chondrocytes and adipocytes [15]. They have gained interest because they are not only multipotent, they also support hematopoiesis [16-18], are immunomodulatory [19-23] and have an intriguing pro-regenerative capacity due to the secretion of different growth factors and mitogens [12,23].

Mesenchymal stem cells reside in the perivascular niche
Interestingly, sources for MSCs are not restricted to the bone marrow. Indeed, MSCs have been isolated from several tissues in different species [7,10] but also from different human tissues and organs [24-26] including bone marrow [27], dental pulp [27,28], adipose tissue [29], umbilical cord Wharton’s jelly [30], placenta [31] and recently also from the adult human brain [32]. Importantly, these MSCs are located in the perivascular niche and exhibit similarities to pericytes in terms of phenotype, gene expression and differentiation capacity [25,26,32].

Evidence, that MSCs and pericytes are biologically related had remained indirect for a long time, but a more systematic analysis of their association has only recently been made [25,26,33,34]. Now it has been shown that MSCs may reside in the perivascular compartment and have characteristics identical to a subclass of pericytes [10,24-26,32,34]. However, pericytes around capillaries are suggested not to be the only ancestors of MSC’s [33]. Adventitial cells that reside around larger vessels also natively express MSC surface markers [35,36].

Pericytes
Pericytes are a heterogeneous cell population in the vascular niche [37], that line the abluminal side of endothelial cells in the perivascular space and are embedded within a shared basement membrane [38,39]. They span the entire microvasculature. The phenotypic identification of pericytes is rather difficult due to the lack of one specific pericyte marker. Therefore, besides their location, a panel of different markers is usually used to identify pericytes [38,40-42].

This diversity in pericyte marker expression may be due to differences in tissue location, vessel size or embryonic origin. It is generally proposed that pericytes are either mesodermal or neural crest-derived [43,44], depending on their location in any given organ. In addition to their multiple embryonic origins, pericytes may develop from several adult cell types [38,42,45]. In the resting stage, pericytes are quiescent slow-cycling cells [46]. Once isolated from different tissues, pericytes have the capacity to proliferate and differentiate into different cell types in vitro.

Perivascular mesenchymal stem cells - a novel stem cell in the human brain
For many decades, the adult brain, in contrast to other tissues, was thought to not be capable of regeneration. However, it is now widely accepted that the adult human brain contains neural progenitors [47-53]. In the brain, adult neural stem cells are also found in specialized vascular niches, mainly in the neurogenic zones, the subventricular zone and the subgranular zone of the dentate gyrus [54-57]. In these vascular niches, the neural stem cells contact the vasculature at the sites that lack astrocyte endfeet and pericyte coverage [58].

Neural progenitor cells could also be derived from a variety of adult brain regions other than the known neurogenic zones [49,52,59,60]. Human adult progenitor cells isolated from non-neurogenic regions multiply in vitro and give rise to cells with the characteristics of neurons, astrocytes, and oligodendrocytes [59,61,62].

Analyzing human brain tissue from biopsies and temporal lobectomies, we have identified a novel adult stem cell with mesenchymal characteristics located around small blood vessels in the human brain that is different from the previously described neural stem and/or progenitor cells [32]. These perivascular cells expressing mesenchymal (CD105, CD13) and pericyte markers (PDGFR-β) are mainly located at vascular branching points. Some of the pericytes co-expressing MSC markers are proliferating cells. Isolated cells were further purified by fluorescence-activated cell sorting (FACS), gating them positively for CD105, CD13, and negatively for the hematopoietic marker CD45 and the endothelial marker CD31. The expanded purified cells exhibited a marker signature for both MSCs and pericytes in vitro (CD73, CD90, CD13, CD106, CD49d, PDGFR-β, RGS5, α-SMA, NG2). Cells were negative for hematopoietic, endothelial, and glial markers. Most importantly, the isolated cells did not express any of the neural progenitor markers that are typical for adult neural stem cells (CD133, SOX1, NGN2, Pax6 and Musashi) (Table 1).

Isolated perivascular MSCs from the adult human brain undergo self-renewal in vitro and give rise to single-cell-derived clones that are indistinguishable from polyclonal perivascular MSCs in terms of adherence, morphology, proliferation, and surface antigen expression. Surprisingly, the capacity of these brain-derived perivascular MSCs was far superior to our initial expectations (Figure 1). Single-cell-derived clones gave rise to adipocytes, chondroblasts and osteoblast when exposed to the appropriate inductive signals, a feature that had been described for both MSC [15,25] and pericytes [26,63-66].

Most interestingly, when isolated perivascular MSCs were exposed to glial induction medium, the cells differentiated into oligodendrocytes or astrocytes, pericyte-specific antigens were downregulated and cells expressed glial fibrillary acidic protein (GFAP).
Mesenchymal stem cells in vitro have shown several interesting features such as multipotentiality, immunomodulation, and pro-regenerative capacities [9,12,15]. Due to these properties, MSCs have become one of the most promising ASC types and are currently being tested in several clinical trials. Indeed, MSCs are explored as a treatment for Crohn’s disease [67-70], for acute graft versus host reaction [71-73], myocardial infarct [74-76], limb ischemia [77,78], osteogenesis imperfecta [79-81], and for neurological disorders such as stroke [82-84], cerebral palsy [85], amyotrophic lateral sclerosis [86,87] and multiple sclerosis [88-91]. A current search gives a total of 298 clinical studies using different sources of MSCs and mesenchymal stromal cells (www.clinicaltrials.gov). In most of these clinical trials, MSCs are used in an autologous and allogenic ex vivo transplantation setting for repair.

Akin to MSCs, pericytes have been reported to be able to differentiate into osteoblasts [25,63,64], chondrocytes, adipocytes [25,65,66], muscle cells [25,92], but also neuroectodermal lineages [32,93].

It remains to be answered whether and to what extent these described in vitro properties reflect the in vivo function of perivascular MSCs as these properties might be altered upon isolation and culture in vitro.

Multipotentiality in vivo

In vivo studies are rare due to the ambiguity in markers, but there is some promising evidence that suggest that pericytes may serve as an in vivo source of stem or progenitor cells for adult tissue repair [94,95]. Under pathological conditions, a tissue-specific differentiation capacity of pericytes has been observed. Pericytes differentiate into adipocytes during fat tissue injury [29,96], into chondroblasts and bone after bone injury [64] and are the progenitors of Leydig cells of the testis [97]. Genetic lineage tracing reveals that pericytes form odontoblasts during tooth growth and damage in vivo [46]. They also contribute to myocytes in skeletal muscle during development and repair [98] and are more frequent in muscles of myopathic patients compared to controls [99]. Furthermore, pericytes are progenitors of follicular dendritic cells in lymphoid follicles [100], they are the origin of myofibroblasts in kidney fibrosis [101], and at least a subtype of pericytes contributes to scar formation in the spinal cord [102]. Resident perivascular MSC give rise to myofibroblasts following lens injury and contribute to fibrogenesis in human lung allografts [103,104] (for summary see Table 2).

Immunomodulation

Besides their ability to differentiate into cell types from different lineages, isolated MSCs also have an immunomodulatory role [12,21-23].

Furthermore, upon neuronal induction, the same perivascular MSC clones downregulated mRNA for pericyte markers (α-SMA, Nestin, RGS5, NG2 and PDGFR-β) and upregulated mRNA for neuronal transcription factors (NeuroD1, Pax6, Tbr1, Tbr2) and neuronal markers (DCX, TuJ1) and consistently expressed neuron-specific proteins (DCX; HuC/D, Map2, TuJ1, NSE). A proportion of neurons expressed the synaptic marker PSD95 and GABA A-receptor, indicating a more mature neuronal phenotype. Cells exhibited typical electrophysiological features of immature neurons, consistent with the slow maturation of human neurons.

Thus, perivascular MSCs have a broader stem cell potential than classical neural stem cells. Moreover, perivascular MSCs are not restricted to a certain perivascular niche in neurogenic regions but could be easily isolated from non-neurogenic regions in the brain. Thus, the perivascular MSC is a novel, unique population distinct from the neural stem cells in the adult brain that has both neuroectodermal and mesodermal differentiation capacity in vitro. This differentiation capacity was retained in long-term proliferating cultures.

The most intriguing question to be answered now is obviously which role these cells play for disease and repair in vivo and whether this reflects their in vitro potential.

Regenerative potential of perivascular mesenchymal stem cells

Perivascular MSCs possess both MSC and pericyte features. Both cell types have been described to have different properties that may play a role in regeneration.

Table 1 Marker expression of perivascular MSC isolated from the adult human brain

POSITIVE EXPRESSION	NO EXPRESSION	
Pericyte Markers	Neural/ glial progenitor markers	
PDGFR-β	PAX6	CD133
RGS5	A2B5	SOX1
α-SMA	S100b	Musashi
NG2	GLAST	Neurogenin2
Nestin	GFAP	TuJ1
Kir6.1	O4	Doublecortin
Mesenchymal Markers	Endothelial markers	
CD105	CD31	
CD13	CD34	
CD73	Hematopoietic markers	
CD90	CD45	
CD166	CD56	
CD49d	Macrophage/microglia markers	
CD29	CD14	
CD11b		

For further reading, see [Özen et al. Clinical and Translational Medicine 2012, 1:30](http://www.clintransmed.com/content/1/1/30)
They have been shown to have an inhibitory effect on lymphocytes [105,106], on B-cells [107], dendritic cells [108] and natural killer cells [109,110]. Furthermore, MSCs modulate the inflammatory response of microglial cells, resident immunocompetent cells in the brain [111]. Mesenchymal stem cells hereby inhibit the expression and release of inflammatory molecules and stress-associated proteins and change microglial cells from a detrimental to a more neuroprotective phenotype [112]. Thus, these immunomodulatory features of MSCs may have an indirect neuroprotective effect [113]. Mesenchymal stem cells lead to amelioration in

![Figure 1](http://www.clintransmed.com/content/1/1/30)

Figure 1 The adult human brain vascular niche contains a novel progenitor with multi-lineage capacity that appears to represent both MSCs and pericytes. These progenitor cells give rise to both neuronal lineage (astrocyte, oligodendrocytes, and neurons) and mesodermal lineage (adipocytes, chondroblasts, and osteoblasts) at the clonal level.

Cell origin	Markers	Experimental model	Differentiated cell type	Reference
Vascular progenitor	Nestin	Chemical ablation in testis	Leydig cells	[97]
Pericyte	Alkaline Phosphatase	Muscle injury	Myoblast/satellite cell	[98]
Vascular pericyte	Stro-1	Bone injury	Chondroblast/osteoblast	[64]
Pericyte	NG2	Dental injury	Odontoblast	[46]
Type A pericyte	Glast	Spinal cord injury	Scar tissue/Fibroblast	[102]
Pericyte	PPARγ	Genetic fate mapping	White Adipocyte	[29]
Pericyte	Foxd1 PDGFR-β	Kidney Injury	Myofibroblast	[101]
Perivascular progenitor	PDGFR-β	Genetic fate mapping	Follicular dendritic cell	[100]
multiple sclerosis through inhibition of the pathogenic immune response and the release of neuroprotective molecules [22]. They have also been shown to suppress ischemia-induced inflammation [114]. The neuroprotective effect of MSCs in stroke was also mediated via a change in resident microglia to a more neuroprotective type [115]. Furthermore, in a model of Parkinson’s disease, dopaminergic cell death that was induced by activated microglia could be prevented by grafting MSCs [116]. Similar results, demonstrating decreased activation of astrocytes and microglia by MSCs vary between tissues or whether these cells are biologically equivalent will need to be systematically evaluated. The diversity of pericytes is largely unexplored, but there are indications that pericytes in the brain may have specific potential and functions [119,123,125-127]. The brain is one of the most vascularized organs and pericytes have a higher density in the brain, and the brain has a lower endothelial/pericyte ratio compared to other organs [38]. Consistent with their higher density, pericytes appear to act as a key modulator of the neurovascular unit in the brain [123]. Neurovascular pericytes regulate the blood brain barrier [123,126], capillary flow, angiogenesis [128] and immune responses [37,39,41,129,130]. Minor disturbances in the blood vessels can compromise neuronal performance because of the importance of the vasculature for neuronal homeostasis, delivery of oxygen and nutrients, removal of metabolic waste and preservation of the neuronal microenvironment [131]. This is reflected in the fact that vascular damage in pericyte-deficient mice precedes neuronal damage and neurodegeneration, suggesting that neurodegeneration may develop secondary to disturbances in cerebral vascular homeostasis [127]. Thus, microvascular dysfunction due to pericyte degeneration may initiate neurodegenerative changes [123]. Resident perivascular MSCs may thus regulate the local ASC niche. Another hypothesis could be that pericytes respond to injury by tissue-specific differentiation as evident from other organs (Table 2). Pericytes have been shown to migrate in response to traumatic brain injury [132]. Recent studies that have isolated brain pericytes indicate that the differentiation potential of brain-derived pericytes in vitro extends beyond the mesodermal lineage to the neuroectodermal lineage [32,93]. This may at least partially reflect their inherent differentiation potential and could, in analogy to emerging studies in other tissues, possibly indicate their in vivo capacity.

However, the role that is played by these cells in brain development and repair remains most speculative and yet, represents one of the most fascinating questions to be raised. It now remains to be shown whether perivascular MSCs/pericyte resident in the brain have similar or equal functional characteristics in vivo, supporting the stem cell niche and controlling stem cell proliferation and differentiation. This could place resident perivascular MSCs in a crucial position for contributing to brain disease and regeneration, as much pathology has been associated with a dysregulation of the stem cell niche.

We believe that the properties of these cells observed in other tissues may also apply to the brain. Thus, from a therapeutic perspective, resident MSCs emerge as an extremely promising target or agent for tissue regeneration.

Do perivascular mesenchymal stem cells/pericytes play a role in brain repair?

Whether the properties and functions of perivascular MSCs vary between tissues or whether these cells are...
Conclusion

In a time when the world’s population is aging, the health burden of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease but also conditions such as stroke is constantly increasing. To manage the larger number of patients and the connected health costs, brain research will have to direct a sharp focus towards developing neurorestorative and neuroprotective treatments.

In the next few years, the focus will be on studying the in vivo function of the newly discovered perivascular stem cells in the brain. Evidence from in vitro work and in vivo observations in other tissues gives hope that these perivascular stem cells may play a key role for regeneration of the brain in response to trauma, injury or degeneration. The aim is to control and enhance any pro-regenerative capacities of these cells by delivering therapies targeted at stimulating the cells to relocate to sites of injury or damage.

To understand and harness the reparative potential of ASCs in the brain will be key in setting the course for future research on neurodegeneration and neurorestoration.

Abbreviations

ASCs: Adult Stem Cells; MSCs: Mesenchymal Stem Cells; HSCs: Hematopoietic Stem Cells; CD105: Endoglin cell membrane glycoprotein; CD13: Cluster differentiation marker; PDGFRβ: Platelet-Derived Growth Factor Receptor beta; FACs: Fluorescence-Activated Cell Sorting; CD45: Leukocyte common antigen; CD31: Pan-endothelial marker; CD73: Ecto-5’-nucleotidase (NT5E); GPI-anchored purine enzyme expressed on the surface of human T and B lymphocytes; CD90: Thy1.2 target; CD106: Vascular cell adhesion protein 1 (VCAM-1); CD49d: Alpha subunit of integrin alphabeta1; RGS: Regulator of G-protein Signalling; α-SMA: Alpha Smooth Muscle Actin; NG2: Chondroitin Sulfate Proteoglycan; SOX1: Sox gene 1; NSE: Neuron-specific Enolase; PSD95: Postsynaptic Density Protein 95; Kir6.1: Potassium channel subunit; Map2: Microtubule-associated protein 2; DCX: Doublecortin; Tuj1: Neuronal class III beta-tubulin; HuC/D: Anti human neuronal protein HuC/D; NGN2: Neurogenin 2; CD133: Prominin 1; DCAMKL1: Cell adhesion molecule (N-CAM); CD14: Cluster of differentiation 14, cell surface; CD166: Activated leukocyte cell adhesion molecule; CD56: Neural cell adhesion molecule (N-CAM); CD10: pan-HL-A; CD11c: myeloid/monocytic; CD177: monocyte/M1 macrophage; CD138: plasma cell; CD194: CCR6 receptor; CD197: CCR7 receptor; CD200: CD200 receptor; CD209: DC-SIGN receptor; CD210: DEC-205 receptor; CD230: c-kit receptor; CD244: NKG2D receptor; CD274: programmed death receptor 1 (PD-1); CD276: programmed death receptor 2 (PD-L2); CD34: Single chain transmembrane glycoprotein selectively expressed on human lymphoid and myeloid hematopoietic progenitors cells; CD166: Activated leukocyte cell adhesion molecule; CD56: Neural cell adhesion molecule (N-CAM); CD14: Cluster of differentiation 14, cell surface receptor and differentiation marker; CD11b: Macrophage antigen 1 (Mac-1); Sca1: Mesenchymal/stromal stem cell marker; PPARγ: Peroxisome proliferator-activated receptor gamma; FoxD1: Forkhead box transcription factor 1.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

IÖ, JB and GP wrote the manuscript. GP made the design for Figure 1. IÖ contributed the tables and figure legends. All authors read and approved the final manuscript.

Acknowledgements

We thank Alexandra Maria Lee for help with proofreading the manuscript and Edward Visse for assistance with drawing Figure 1.

Our work is supported by the Swedish Medical Research Council, the Ånés Foundation, and J.B. is supported by a grant from the European Union (FP7).

Received: 22 October 2012 Accepted: 20 November 2012 Published: 23 November 2012

References

1. Wurms A, Palmer T, Gage F: Neuroscience. Cellular interactions in the stem cell niche. Science 2004, 304:1253–1255.
2. Goldman SA, Chen Z: Perivascular instruction of cell genesis and fate in the adult brain. Nat Neurosci 2011, 14:1382–1389.
3. Diaz-Flores L Jr, Madrid JF, Valladares F, Alvarez-Arguelles H, Diaz-Flores L: Adult stem and transit-amplifying cell location. Histol Histopathol 2006, 21:995–1007.
4. Nikolaova G, Strilk B, Lammeert E: The vascular niche and its basement membrane. Trends Cell Biol 2007, 17:19–25.
5. Korbling M, Estrov Z: Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med 2003, 349:570–582.
6. Slack JM: Stem cells in epithelial tissues. Science 2000, 287:1431–1433.
7. Bianco P, Robey PG, Simmons PJ: Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008, 2:313–319.
8. Nombela-Arrieta C, Ritz J, Silberstein LE: The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 2011, 12:126–131.
9. Diez-Balboa K, Wuchter P, Besser O, Franke W, Becker M, Otter A, Pacher M, Ma N, Stamm C, Huter H, Muller A, Ho AD: Mesenchymal stromal cells (MSCs): science and fiction. J Mol Med (Berl) 2010, 88:773–782.
10. da Silva Meirelles L, Caplan AI, Nardi NB: In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008, 26:287–299.
11. Caplan AI: Why are MSCs therapeutic? New data: new insight. J Pathol 2009, 217:318–324.
12. Caplan AI, Corea D: The MSC: an injury drugstore. Cell Stem Cell 2011, 8:11–15.
13. Friedenstein AJ, Chailakhjan RK, Lalykina KS: Bone-marrow haematopoietic-stem-cell niches. Blood 1970, 35:393–403.
14. Dominici M, Le Blanc K, Mueller I, Saper-Cortonbach I, Marinis F, Krause D, Dears R, Keating P, Prockop D, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cell. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8:315–317.
15. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Maranh DK: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284:143–147.
16. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Miyawaki A, Enikolopov G, Finestra PS: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010, 466:829–834.
17. Wilson A, Trump A: Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006, 6:93–106.
18. Kiel MJ, Morrison SJ: Maintaining hematopoietic stem cells in the vascular niche. Immunity 2006, 25:862–864.
19. Le Blanc K, Pittenger MF: Mesenchymal stem cells: progress toward promise. Cytotherapy 2005, 7:36–45.
20. Di Nicola M, Carlo-Stella C, Magni M, Longoni PD, Matteucci P, Gianni S, Gianni AM: Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002, 99:3838–3843.
21. Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate alloimmune immune cell responses. Blood 2005, 105:1815–1822.
22. Uccelli A, Moretta L, Pietrova V: Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008, 8:726–736.
23. Singer NG, Caplan AI: Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 2011, 6:457–478.
24. da Silva Merelles L, Chagastelles PC, Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006, 119:2204–2213.
25. Crisan M, Yap S, Castella L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Noroote C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B: A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008, 3:301–313.
26. Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana LM, Freitas MC, Neder L, Santos AR, Perez LC, Jamur MC, Zago MA: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 2008, 36:642–654.

27. Shi S, Gronthos S: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003, 18:696–704.

28. Seo BM, Miura M, Gronthos S, Utsumi M, Sudo T, Ikeda K, Akutsu S, Sato K, Shimizu T, Tsuchiya K, et al: Isolation and expansion of bone marrow mesenchymal stem cells. Stem Cells Dev 2008, 17:1283–1291.

29. Nakao K, Nishikawa S: Stem cell niche and the niche concept of stem cells. Cell Stem Cell 2007, 1:423–434.

30. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE: Human umbilical cord perivascular (HUCPV) cells: a source of multipotent mesenchymal progenitors. Stem Cells 2005, 23:202–229.

31. Robin B, Bollerot K, Manders S, Haak D, Cervantes C, Aerts R, Schetter D, Bollerot K, Mendes S, Haak E, Crisan M, Cerisoli F, Lauw I, Kaimakis P, Jorna R, Vermeulen M, Vasallo P, Diaz-Flores L Jr: Brain pericytes: emerging concepts and pathological perspectives, problems, and promises. Cell Mol Neurobiol 2011, 31:193–211.

32. Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana LM, Freitas MC, Neder L, Santos AR, Perez LC, Jamur MC, Zago MA: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 2008, 36:642–654.

33. Armulik A, Genove G, Betsholtz C: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 2008, 36:642–654.
71. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Rembecker M, Dini G, Egeler RM, Baracalupo A, Fibbe W, Ringden O. Mesenchymal stem cells for treatment of steroid-resistant, severe acute graft-versus-host disease: a phase II study. Lancet 2008, 372:1579–1586.

72. Le Blanc K, Rasmussen LS, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Chen CP, Lee YJ, Chiu ST, Shyu WC, Lee MY, Huang SP, Li H. Song H, Song BW, Cha MJ, Choi IG, Hwang KC. Are mural cells guardians of stemness?: From pluri- to multipotency via vascular pericytes. Circulation 2012, 128:32–43.

73. Kuzmina LA, Petinati NA, Parovichnikova EN, Lubimova LS, Gribanova EO, Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Chen CP, Lee YJ, Chiu ST, Shyu WC, Lee MY, Huang SP, Li H: Function of mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 2011, 12:62.

74. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, irsto S. Neovascularization of osseous myocardium by bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001, 7:430–436.

75. Chen CP, Lee YJ, Chu ST, Shyu WC, Lee MY, Huang SP, Li H. The application of stem cells in the treatment of ischemic diseases. Histol Histopathol 2006, 21:1209–1216.

76. Song H, Song BW, Cha MJ, Choi IG, Hwang KC: Multipotent mesenchymal stromal cells for the prophylaxis of acute graft-versus-host disease—a phase II study. Stem Cells Int 2012, 2012:628313.

77. Liew A, O’Brien T. Therapeutic potential for mesenchymal stem cells in critical limb ischemia. Stem Cell Res Ther 2012, 3:28.

78. Lasala GP, Silva JA, Minguell JJ. Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product. J Thorac Cardiovasc Surg 2010, 144:377–382.

79. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann TJ, Veronesi E, Dominici M, Iwamoto M, Horwitz EM: Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002, 99:8932–8937.

80. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999, 5:309–313.

81. Otsuru S, Gordon PL, Shimono K, Jethva R, Marino R, Phillips CL, Hofmann TJ, Veronesi E, Dominici M, Iwamoto M, Horwitz EM: Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood 2012, 120:1933–1941.

82. Bang OY, Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY: Intravenous administration of auto serum-expanded mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther 2012, 12:882–895.

83. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gemori JM, Kassi L, Bafle JW, Petropu P, Ben-Hur T, Abramov Y, Slavin S: Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010, 67:1178–1194.

84. Connick P, Kolappan M, Patani R, Scott MA, Crowley C, He XL, Richardson K, Baber K, Webbert DJ, Wheeler-Kingshott CA, Tozer DJ, Samson RS, Thomas DI, Du MQ, Luan SL, Michell AW, Altmann DR, Thompson AJ, Miller DH, Compston A, Chandran S. The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 2011, 12:62.

85. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Gavelis BG, Messina G, Morosetti R, Li S, Bellichi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cosso G: Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 2007, 9:255–267.

86. Dore-Duffy P, Katayev A, Wang X, Van Buren E: CNS microvascular pericytes exhibit multipotent stem cell activity. J Cereb Blood Flow Metab 2006, 26:613–624.

87. Pouatt B: Are mural cells guardians of stemness?: From pluri- to multipotency via vascular pericytes. Circulation 2012, 128:12–13.

88. Chen CW, Montelatici C, Crisan M, Cordeli M, Huard J, Lazzari L, Pouatt B: Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine Growth Factor Rev 2009, 20:429–434.

89. Lee JS, Hong JM, Moon GJ, Campion DR: Response of pericytes to thermal lesion in the inguinal fat pad of 10-day-old rats. Acta Anat (Basel) 1982, 114:41–57.

90. Davidoff MS, Middendorff R, Enikolopov G, Riethmacher D, Holstein AF, Muller D: Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 2004, 167:935–944.

91. Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Giglia MG, Messina G, Morosetti R, Li S, Bellichi M, Peretti G, Chamberlin JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cosso G: Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2011, 2:499.

92. Diaz-Manera J, Gallardo E, de Luna N, Navas M, Soria L, Garibaldi M, Rojas Garcia R, Tonlorenz R, Cosso G, I1 Ila 1: The increase of pericyte population in human neuromuscular disorders supports their role in muscle regeneration in vivo. J Pathol 2011, 225:544–553.

93. Krautler NJ, Kana V, Krianc D, Tian Y, Perera D, Lennm D, Schwarz P, Armulik A, Browning JL, Tallquist M, Buch T, Oliveira-Martins JB, Zhu C, Hermann M, Wagner U, Brink R, Heikenwalder M, Aguzzi A: Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 2012, 150:194–206.

94. Humpheys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valeriut MS, McMahon AP, Duffield JS. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010, 176:85–97.

95. Gortz C, Dias DO, Tomlin N, Barbacid M, Shulpyakov O, Frisen J: A pericyte origin of spinal cord scar tissue. Science 2011, 333:282–284.

96. Badii L, Murray S, Liu LX, Walker NM, Flint A, Wadhwa A, Chan KM, Toews GB, Pinsky DJ, Martinez FJ, Larina VN: Mesenchymal stromal cells in bronchoalveolar lavage as predictors of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2011, 183:1062–1070.

97. Walker JL, Zhai N, Zhang L, Bleaken BM, Wolff I, Gerhart J, George-Weinstein M, Menko AS: Unique precursors for the mesenchymal cells involved in injury response and fibrosis. Proc Natl Acad Sci U S A 2010, 107:1370–1375.

98. Glennie S, Soeroen I, Dyson PJ, Lam EW, Dazzi F: Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005, 105:2821–2827.

99. Le Blanc K, Ringden O: Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007, 262:509–525.

100. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappello V, Cazzanti F, Cossu G, Mangelini B, Pistoia V, Uccelli A: Human mesenchymal stem cells modulate B-cell functions. Blood 2006, 108:367–372.
108. Ramasamy R, Fazekasova H, EW L, Scei O, Lombardi G, Dazzi F: Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 2007,
83:6.

109. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L: Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006, 107:1484–1490.

110. Uccelli A, Pistoia V, Moretta L: Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 2007, 28:219–226.

111. Zhou C, Zhang C, Chi S, Xu Y, Teng J, Wang H, Song Y, Zhao R: Effects of human marrow stromal cells on activation of microglial cells and production of inflammatory factors induced by lipopolysaccharide. Brain Res 2009, 1269:23–30.

112. Giunti D, Parodi B, Usai C, Vergani L, Casazza S, Bruzzone S, Mancardi G, Uccelli A: Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells 2012, 30:2044–2053.

113. Saijo K, Glass CK: Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011, 11:775–787.

114. Suh HH, Hube B, Narins RH, Srinivas R, van der Bogt K, de Almeida PE, Ranshoff KJ, Kraft DL, Fajardo G, Ardigo D, Ranshoff J, Bernstein D, Fischbein NP, Robbins RC, Wu JC: In vivo functional and transcriptional profiling of bone marrow stem cells after transplantation into ischemic myocardium. Antioxidant and Thromb Vasc Biol 2012, 32:92–102.

115. Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, Prockop DJ: Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci U S A 2008, 105:14638–14643.

116. Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO, Lee PH: Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 2009, 57:13–23.

117. Stemmerger S, Jannig A, Stefanova N, Lepperdinger G, Reindl M, Wenning Gk: Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection. PloS One 2011, 6:e19808.

118. Park HJ, Bang G, Lee BR, Kim HO, Lee PH: Neuroprotective effect of human mesenchymal stem cells in an animal model of double toxin-induced multiple system atrophy parkinsonism. Cell Transplant 2011, 20:27–835.

119. Balabanov R, Beaumont T, Dore-Duffy P: Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J Neurosci Res 1999, 55:578–587.

120. Dumlovits BM, Herman IM: Microvascular remodeling and wound healing: a role for pericytes. Int J Biochem Cell Biol 2012, 44:1800–1812.

121. Zachariah MA, Cyster JG: Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 2010, 328:1129–1135.

122. Kovac A, Erickson MA, Banks WA: Brain microvascular pericytes are immunactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroimmunol 2011, 8:139.

123. Winkler EA, Bell RD, Zikovic BV: Central nervous system pericytes in health and disease. Nat Neurosci 2011, 14:1398–1405.

124. Paquet-Fièfield S, Schluter H, Lai A, Arteni T, Gangatirkar P, Blashki D, Koelmeyer R, Pouliot N, Palatsides M, Ellis S, Brouard N, Zannettino A, Saunders N, Thompson N, Li J, Kaur P: A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J Invest Dermatol 2009, 129:2595–2606.

125. Dore-Duffy P: Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 2008, 14:1581–1593.

126. Armulik A, Genove G, Mae M, Nitanciglou MH, Wallgard E, Nauedt C, He L, Norlin J, Lindblom P, Stittmatter K, Johansson BR, Betsholtz C: Pericytes regulate the blood–brain barrier. Nature 2010, 468:557–561.

127. Bell RD, Winkler EA, Sagare AP, Singh I, Lahimer B, Deane R, Zikovic BV: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neurobiol 2012, 68:409–427.

128. Gerhardt H, Betsholtz C: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003, 314:15–23.

129. Thomas WE: Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 1999, 31:42–57.

130. Balabanov R, Dore-Duffy P: Role of the CNS microvascular pericyte in the blood–brain barrier. J Neurosci Res 1998, 53:357–364.

131. Storkebaum E, Quaegebeur A, Vikkula M, Carmeliet P: Cerebrovascular disorders: molecular insights and therapeutic opportunities. Nat Rev Neurosci 2011, 14:390–397.

132. Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA: Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 2000, 60:55–69.