Tobias Lee Johnson
College of Staten Island, 1S-225
tobias.johnson@csi.cuny.edu
2800 Victory Blvd.
Staten Island, NY 10314

EMPLOYMENT AND EDUCATION

Assistant Professor, College of Staten Island (CUNY)
Fall 2017–

NSF Postdoctoral Fellow
New York University; sponsored by Gérard Ben Arous
Fall 2016–Spring 2017

University of Southern California; sponsored by Larry Goldstein
Fall 2014–Spring 2016

Ph.D. in Mathematics, University of Washington
Advised by Ioana Dumitriu and Soumik Pal
Fall 2008–Spring 2014

RESEARCH

Interests:
probability theory and combinatorics, with a focus on discrete random structures, interacting particle systems, and statistical physics; Stein’s method

Papers:

21. *Particle density in diffusion-limited annihilating systems*, with Matthew Junge, Hanbaek Lyu, and David Sivakoff.
Submitted. arXiv:2005.06018

2022
20. *Diffusion-limited annihilating systems and the increasing convex order*, with Riti Bahl, Philip Barnet, and Matthew Junge.
Electron. J. Probab., 27 (2022), no. 84, 1–19. arXiv:2104.12797

19. *Concentration inequalities from monotone couplings for graphs, walks, trees and branching processes*, with Erol Peköz.
Stochastic Process. Appl., 152 (2022), 1–31. arXiv:2108.02101

18. *Continuous phase transitions on Galton–Watson trees*, with Christopher Hoffman and Matthew Junge.
Combin. Probab. Comput., 31(2):184–367, 2022. arXiv:2007.13864

2020
17. *Random tree recursions: which fixed points correspond to tangible sets of trees?*, with Moumanti Podder and Fiona Skerman.
Random Structures Algorithms, 56(3):796–837, 2020. arXiv:1808.03019

2019
16. *Cover time for the frog model on trees*, with Christopher Hoffman and Matthew Junge.
Forum Math. Sigma, 7, e41 1–49, 2019. arXiv:1802.03428

15. *Infection spread for the frog model on trees*, with Christopher Hoffman and Matthew Junge.
Electron. J. Probab., 24 (2019), no. 112, 1–29. arXiv:1710.05884

14. *Sensitivity of the frog model to initial conditions*, with Leonardo T. Rolla.
Electron. Commun. Probab., 24 (2019), no. 29, 1–9. arXiv:1809.03082

2018
13. *Stochastic orders and the frog model*, with Matthew Junge.
Ann. Inst. H. Poincaré Probab. Statist., 54(2):1013–1030, 2018. arXiv:1602.04411

12. *Bounds to the normal for proximity region graphs*, with Larry Goldstein and Raphaël Lachièze-Rey.
Stochastic Process. Appl., 128(4):1208–1237, 2018. arXiv:1510.09188

11. *Size biased couplings and the spectral gap for random regular graphs*, with Nicholas Cook and Larry Goldstein.
Ann. Probab., 46(1):72–125, 2018. arXiv:1510.06013

2017
10. *Recurrence and transience for the frog model on trees*, with Christopher Hoffman and Matthew Junge.
Ann. Probab., 45(5):2826–2854, 2017. arXiv:1404.6238

9. *Local limit of the fixed point forest*, with Anne Schilling and Erik Slivken.
Electron. J. Probab., 22 (2017), no. 18, 1–26. arXiv:1605.09777

2016
8. *The critical density for the frog model is the degree of the tree*, with Matthew Junge.
Electron. Commun. Probab., 21 (2016), no. 82, 1–12. arXiv:1607.07914

7. *From transience to recurrence with Poisson tree frogs*, with Christopher Hoffman and Matthew Junge.
Ann. Appl. Probab., 26(3):1620–1635, 2016. arXiv:1501.05874

6. *The Marčenko-Pastur law for sparse random bipartite biregular graphs*, with Ioana Dumitriu.
Random Structures Algorithms, 48(2):313–340, 2016. arXiv:1304.4907
2015 5. Exchangeable pairs, switchings, and random regular graphs.
 Electron. J. Combin., 22(1):P1.33, 2015. [arXiv:1112.0704].

4. Quantitative small subgraph conditioning, with Elliot Paquette.
 Unpublished. [arXiv:1307.4858]

2014 3. Cycles and eigenvalues of sequentially growing random regular graphs, with Soumik Pal.
 Ann. Probab., 42(4):1396–1437, 2014. [arXiv:1203.1113].

2013 2. Functional limit theorems for random regular graphs, with Ioana Dumitriu, Soumik Pal, and Elliot Paquette.
 Probab. Theory Related Fields, 156(3–4):921–975, 2013. [arXiv:1109.4094].

2009 1. On universal cycles for multisets, with Glenn Hurlbert and Joshua Zahl.
 Discrete Math., 309(8):5321-5327, 2009. [arXiv:math/0701488].

GRANTS, HONORS, AND AWARDS

Grant Type	Institution/Details	Years
PSC-CUNY Grant	Award #62628-00 50	2019–2020
NSF Grant, Standard Grant, Probability	Award DMS-1811952	2018–2021
PSC-CUNY Grant	Award #61540-00 49	2018–2019
NSF Postdoctoral Fellow	University of Southern California and Courant Institute	2014–2017
ARCS Fellowship	ARCS Foundation, Seattle chapter	2008–2010
NSF VIGRE Graduate Fellowship	University of Washington	2008–2009

TALKS

Conference/Seminar	Institution/Details	Date
AMS Eastern Sectional	online	March 2021
Continuous phase transitions on Galton-Watson trees		
Northwestern University, Probability Seminar	Two-type diffusion-limited annihilating systems	February 2020
CUNY, Probability Seminar		October 2019
Two-type diffusion-limited annihilating systems		
CUNY, Graduate Student Colloquium		April 2019
The frog model and other processes in discrete probability		
AMS Eastern Sectional	Delaware	September 2018
Fixed points of random tree recursions		September 2018
University of Massachusetts Amherst, Discrete Math Seminar		
The frog model on trees		September 2018
City College, Colloquium		September 2018
The frog model on trees		
Indiana University, Probability Seminar		September 2018
Fixed points of recursive functions on Galton-Watson trees		
CINMPA School, Geometry and scaling of random structures, Buenos Aires		July 2018
Cover time for the frog model on trees		
Georgia Tech, Stochastics Seminar		February 2018
Cover time for the frog model on trees		September 2018
CUNY, Probability Seminar		October 2017
Size biased couplings and the spectral gap for random regular graphs		
Penn/ Temple, Probability Seminar		April 2017
Galton-Watson fixed points, tree automata, and interpretations		
University of Minnesota, Probability Seminar	Cover time for the frog model on trees	March 2017
NYU-ECNU (Shanghai), Probability Seminar	Cover time for the frog model on trees	March 2017
Columbia University, Probability Seminar	Cover time for the frog model on trees	February 2017
Galton-Watson fixed points, tree automata, and interpretations		
Duke University, Probability Seminar		February 2017
Galton-Watson fixed points, tree automata, and interpretations		
University of Chicago, Probability and Statistical Physics Seminar		February 2017
Galton-Watson fixed points, tree automata, and interpretations		
Purdue University, Probability Seminar		January 2017
Galton-Watson fixed points, tree automata, and interpretations		
Ohio State University, Combinatorics and Probability Seminar, December 2016
Galton-Watson fixed points, tree automata, and interpretations

Rutgers, Discrete Math Seminar, September 2016
The frog model on trees

Carnegie Mellon University, Algorithms, Combinatorics and Optimization Seminar, May 2016
Size biased couplings and the spectral gap for random regular graphs

Bay Area Discrete Math Day, UC Berkeley, April 2016
The frog model on trees

Simons Institute (Berkeley), Counting Program Seminar, April 2016
Nonexistent properties of Galton–Watson trees

Stanford University, Probability Seminar, March 2016
Size biased couplings and the spectral gap for random regular graphs

Cornell University, Oliver Club (Colloquium), March 2016
The frog model on trees

Courant Institute, Probability Seminar, March 2016
The frog model on trees

UT Austin, Random Structures Seminar, February 2016
Size biased couplings and the spectral gap for random regular graphs

UC Irvine, Probability Seminar, January 2016
Size biased couplings and the spectral gap for random regular graphs

Davis–Warwick Probability Workshop, UC Davis, December 2015
Size biased couplings and the spectral gap for random regular graphs

UCLA, Probability Seminar, October 2015
Size biased couplings and the spectral gap for random regular graphs

Yale University, Combinatorics and Probability Seminar, September 2015
The second eigenvalue of dense random regular graphs

Rutgers, Discrete Math Seminar, September 2015
The second eigenvalue of dense random regular graphs

Penn/ Temple, Probability Seminar, September 2015
The frog model on trees

CUNY, Probability Seminar, September 2015
The frog model on trees

Sherman Memorial Conference, Indiana University, May 2015
The frog model on trees

UC Davis, Mathematical Physics & Probability Seminar, May 2015
The frog model on trees

IMA, Postdoc Seminar, April 2015
The frog model on trees

Weizmann Institute, Geometric Functional Analysis & Probability Seminar, March 2015
The frog model on trees

UCLA, Probability Seminar, February 2015
Random matrices, random regular graphs, and Stein’s method

UC Irvine, Probability Seminar, February 2015
The frog model on trees

Southern California Probability Symposium, UCLA, December 2014
The frog model on trees

AMS Special Session on Random Matrices, Joint Meetings, Baltimore, January 2014
Random matrices and random regular graphs

University of Southern California, Probability Seminar, September 2013
Stein’s method and random regular graphs

Courant Institute, Probability Seminar, April 2012
Growing random regular graphs and the Gaussian free field

Professional Activities

- reviewer for ALEA, Annals of Probability, Communications on Pure and Applied Mathematics, Journal of Integer Sequences, Probability Theory and Related Fields, Random Structures and Algorithms, and Symposium on Discrete Algorithms
- reviewer for AMS MathSciNet
- organized USC’s Probability/Statistics Seminar
Teaching

Classes taught:

Course	Semester(s)
Probability (MTH 311, CSI)	Fall 2017, Fall 2018, Spring 2021
Statistics (MTH 214, CSI)	Fall 2017, Spring 2018, Fall 2019, Spring 2021
Calculus I (MTH 231, CSI)	Spring 2018, Fall 2019
Calculus II (MTH 232, CSI)	Fall 2020
Analysis (MATH 325, NYU)	Spring 2017
Math for Economics II (MATH 212, NYU)	Fall 2016
Business Calculus (MATH 118x, USC)	Fall 2014
Differential Equations (MATH 307, UW)	Winter 2014
Linear Algebra (MATH 308, UW)	Winter 2011, Summer 2011, Spring 2013
Calculus I (MATH 124, UW)	Summer 2010

Other teaching duties:

Duty	Semester(s)
Lead TA, University of Washington	Fall 2012–Spring 2013
Trained and supervised all first-year teaching assistants	
TA Mentor, University of Washington	Fall 2010, Fall 2011
Observed and advised first-year teaching assistants	
TA for calculus classes, University of Washington	Fall 2008, Spring 2009, Fall 2010, Fall 2011