Epistaxe como complicação de tratamento com cânula nasal de alto fluxo em adultos

Epistaxis as a complication of high-flow nasal cannula therapy in adults

AO EDITOR

INTRODUÇÃO

A cânula nasal de alto fluxo (CNAF) surgiu como um valioso tratamento para pacientes adultos com insuficiência respiratória aguda\(^\text{1,2}\) ou para uso na prevenção de falha após a extubação.\(^\text{3,4}\) Atualmente, esse tratamento faz parte das recomendações de diretrizes para o manejo de pacientes portadores da doença pelo coronavírus 2019 (COVID-19).\(^\text{5}\) O uso de CNAF fornece gás umidificado e aquecido em um fluxo elevado que pode exceder a demanda inspiratória do paciente, contribuindo para alívio da sensação de falta de ar.\(^\text{6}\) Ela promove uma lavagem do espaço nasofaríngeo, criando uma reserva faríngea para subsequente inspiração de ar fresco.\(^\text{7}\) Esses mecanismos resultam em melhora da oxigenação e diminuição do trabalho respiratório.\(^\text{8}\) Raramente se têm publicadas complicações clínicas do tratamento com CNAF.\(^\text{9}\) Alguns estudos descreveram queixas leves, como sensação de calor, odor desagradável ou desconforto torácico.\(^\text{9}\) Epistaxe é um evento adverso raramente associado com o uso de CNAF em crianças,\(^\text{10}\) entretanto a epistaxe relacionada à CNAF em pacientes adultos só foi relatada em um caso, com uso de fluxo acima do recomendado (65L/minuto).\(^\text{11}\) Relatamos aqui sete casos de epistaxe observada em uma série de 70 pacientes adultos tratados com CNAF.

MÉTODOS

Análise retrospectiva de uma série de casos que incluiu todos os pacientes adultos tratados com CNAF na unidade de terapia intensiva (UTI) no período de 1 ano (entre setembro de 2017 e outubro de 2018). As indicações para uso da CNAF foram suporte a pacientes com insuficiência respiratória aguda ou prevenção de falha após extubação. O estudo foi aprovado pelo Comitê de Ética em Pesquisa da BP-A Beneficência Portuguesa de São Paulo. A aplicação da CNAF foi realizada com uso do equipamento Precision Flow\(^\text{R}\) (Vapotherm, Inc, Exeter, NH), utilizando cânulas nasais de pequeno porte, com tamanhos entre 2,7mm e 4,8mm. O fluxo foi iniciado com 30L/minuto com ajustes até 40L/minuto, com o objetivo de aliviar o desconforto respiratório. A fração inspirada de oxigênio (FiO\(_{2}\)) foi ajustada para manter uma saturação periférica de oxigênio acima de 92%. A temperatura foi ajustada entre 35°C e 37°C. Os dados foram obtidos a partir dos prontuários eletrônicos dos pacientes. Colhemos os dados referentes às seguintes variáveis na admissão: idade, sexo, diagnóstico principal, comorbidades, gravidade da doença segundo o Simplified Acute Physiology Score 3 (SAPS 3), Sequential Organ Failure Assessment (SOFA) e tipo de insuficiência respiratória aguda (hipoxêmica ou hipercápnica). Com relação ao início do tratamento com CNAF, foram obtidos os dados a seguir: características respiratórias (proporção entre a saturação periférica de oxigênio - Sp\(_{O2}\) - e a FiO\(_{2}\), frequência respiratória e...
índice ROX - uma proporção entre SpO₂/FiO₂ e frequência respiratória], as configurações da CNAF (FiO₂, fluxo e temperatura) e os resultados de exames laboratoriais selecionados (tempo de tromboplastina parcial ativada – TTPa –, tempo de protrombina - TP - e plaquetas). Foram também colhidos dados referentes aos seguintes desfechos clínicos durante a permanência na UTI: epistaxe, falha da CNAF, mortalidade e tempo de permanência.

RESULTADOS

Nesse período, 70 pacientes foram tratados com CNAF (Tabela 1), sendo que sete deles (10%) desenvolveram epistaxe durante o uso de CNAF. A idade mediana foi de 67 anos, e 40% dos pacientes eram do sexo feminino. A CNAF foi indicada como suporte para insuficiência respiratória aguda em 84% dos casos. A distribuição dos diagnósticos foi aparentemente distinta entre os pacientes com e sem epistaxe (p = 0,02), sendo menor a prevalência de pneumonia e maior a de sepse não pulmonar entre os pacientes com epistaxe. O SAPS 3 médio foi de 53,9 (desvio-padrão - DP - de 16,8); o SOFA foi de 9,2 (DP de 1,7), e 14 pacientes (20%) utilizaram vasopressores, sem diferenças estatisticamente significantes quanto a essas variáveis. Não ocorreram diferenças estatisticamente significantes entre os pacientes com e sem epistaxe com relação à contagem de plaquetas e os níveis de TTPa, embora o nível de Razão Normalizada Internacional (RNI) fosse ligeiramente mais baixo entre os pacientes com epistaxe (1,2 versus 1,3; p = 0,03). Não se

Tabela 1 - Características na admissão à unidade de terapia intensiva de todos os pacientes com utilização de cânula nasal de alto fluxo que tiveram ou não epistaxe

Variável	Total N = 70	Epistaxe n = 7	Sem epistaxe n = 63	Valor de p
Idade (anos)				
	67 [58,2 - 80]	80 [58 - 84]	66 [58,5 - 78]	0,445
Feminino	28 (40)	4 (57,1)	24 (38,1)	0,426
Indicação da CNAF				0,587
Insuficiência respiratória aguda	59 (84,3)	7 (100)	52 (82,5)	
Prevenção de falha após extubação	11 (15,7)	0 (0)	11 (17,5)	
Diagnóstico				0,02
Pneumonia	32 (45,7)	0 (0)	32 (50,8)	
Sepse não pulmonar	11 (15,7)	3 (42,9)	8 (12,7)	
Edema pulmonar cardiogênico	7 (10)	1 (14,3)	6 (9,5)	
Embolia pulmonar	4 (5,7)	1 (14,3)	3 (4,8)	
Pós-operatório de abdome	3 (4,3)	0 (0)	3 (4,8)	
Pós-operatório cardiovascular	10 (14,3)	1 (14,3)	9 (14,3)	
Comorbidades				
DPOC	7 (10)	0 (0)	7 (11,1)	1
AVC	10 (14,3)	1 (14,3)	9 (14,3)	1
Insuficiência renal crônica	14 (20)	5 (71,4)	9 (14,3)	0,003
Hepatopatia	4 (5,7)	1 (14,3)	3 (4,8)	0,35
Insuficiência cardíaca	7 (10)	2 (28,6)	5 (7,9)	0,142
Neoplasias hematológicas	9 (12,9)	0 (0)	9 (14,3)	0,583
Tumor sólido	23 (32,9)	3 (42,9)	20 (31,7)	0,676
Uso de vasopressores	14 (20)	3 (42,9)	11 (17,5)	0,137
SAPS3*	53,9 ± 16,8	61 ± 17	53,2 ± 16,7	0,244
SOFA†	9,2 ± 1,7	9,1 ± 1,1	9,2 ± 1,8	0,945
Plaquetas	142 [81,8 - 222,5]	133 [47 - 143,5]	148 [84,5 - 226]	0,313
RNI	1,3 [1,2 - 1,4]	1,2 [1,1 - 1,2]	1,3 [1,2 - 1,4]	0,026
TTPa	32 [28,5 - 38,5]	34 [30,9 - 40]	31,8 [28,4 - 38]	0,776

CNAF – cânula nasal de alto fluxo; DPOC – doença pulmonar obstrutiva crônica; AVC – acidente vascular cerebral; SAPS – Simplified Acute Physiology Score; SOFA – Sequential Organ Failure Assessment; RNI – Razão Normalizada Internacional; TTPa – tempo de tromboplastina parcial ativada. * Faixa entre zero e 217; escores mais altos indicam maior gravidade da doença e risco de mortalidade hospitalar; † faixa entre zero e 24; escores mais altos indicam maior gravidade das disfunções de órgãos em pacientes críticos e o risco de óbito hospitalar (por exemplo: escore de 10 prediz risco de mortalidade hospitalar de 50%). Resultados expressos como mediana [intervalo interquartil], n (%) ou média ± desvio-padrão.
observaram diferenças estatisticamente significantes entre os pacientes com e sem epistaxe com relação às configurações da CNAF (fluxo, temperatura e FiO₂) no início e no final do tratamento (Tabela 2). Também não se identificaram diferenças relativas à duração do tratamento com CNAF. Não se observaram diferenças estatisticamente significantes com relação à incidência de desfechos clínicos adversos (necessidade de ventilação mecânica, mortalidade na UTI e no hospital, assim como tempo de permanência na UTI e no hospital) entre os pacientes com e sem epistaxe (Tabela 3). Só em um paciente ocorreu epistaxe significante, com necessidade de dispositivo para controle (Rapid Rhino®). Em dois outros casos, utilizou-se epinefrina tópica. Em nenhum dos casos, houve necessidade de transfusão de hemoderivados.

DISCUSSÃO

Observou-se epistaxe como um evento adverso em sete de 70 pacientes tratados com utilização de CNAF. As razões para utilizar CNAF foram diversas e nenhuma das características basais dos pacientes se associou com a ocorrência de epistaxe. As configurações iniciais e finais da CNAF também não se associaram com ocorrência desse evento adverso. Entretanto, o número de eventos de epistaxe foi pequeno, de forma que este estudo teve um poder limitado para identificar fatores de risco. Além deste estudo, apenas a publicação de Velasco Sanz et al.(11) relatou ocorrência de epistaxe em um paciente adulto de uma série de 12 pacientes tratados com CNAF. Os autores atribuíram o evento adverso ao fluxo elevado (65L/minuto). Neste estudo, o fluxo máximo foi de 40L/minuto e não foi diferente entre os pacientes com ou sem epistaxe. Baudin et al.(10) relataram complicações associadas com a utilização da CNAF em um estudo observacional retrospectivo em crianças com doença crítica. Ocorreu epistaxe significante em apenas um paciente, sem a identificação de potenciais causas para a ocorrência desse evento adverso.

Cânulas nasais de pequeno porte promovem uma mais rápida purgação do espaço morto extratorácico com fluxos mais baixos do que com cânulas nasais de maior porte.(12) Isso ocorre pela menor configuração da ponta dos prongs, que aumenta a velocidade do gás. Uma possível explicação para a epistaxe seria o efeito de jato causado pela ponta da cânula, que poderia resultar em força de cisalhamento indevida sobre a mucosa da via aérea.

Este estudo teve diversas limitações. Primeiramente, relatou-se uma pequena série de casos com apenas sete episódios de pacientes que apresentaram esse desfecho. Assim, a precisão ao redor desta incidência é ampla. Além

Tabela 2 - Configurações iniciais e finais da cânula nasal de alto fluxo em todos os pacientes tratados que apresentaram ou não epistaxe

Variável	Total N = 70	Epistaxe n = 7	Sem epistaxe n = 63	Valor de p
Fluxo (L/minuto)				
Inicial	30 [24 - 40]	30 [22,5 - 30]	30 [24 - 40]	0,49
Final	25 [20 - 38,8]	20 [19 - 29]	25 [20 - 40]	0,23
Temperatura (°C)				
Inicial	36 [34,2 - 36]	36 [35,5 - 36]	35 [34 - 36]	0,20
Final	36 [34 - 36]	36 [34 - 36]	36 [34 - 36]	0,90
Fração inspirada de oxigênio				
Inicial	0,50 [0,40 - 0,75]	0,40 [0,40 - 0,55]	0,55 [0,40 - 0,75]	0,34
Final	0,40 [0,30 - 0,70]	0,50 [0,35 - 0,60]	0,40 [0,30 - 0,70]	0,98
Duração do uso de CNAF (dias)	2,5 [1 - 5]	4 [0,5 - 11,5]	2 [1 - 5]	0,59

CNAF - cânula nasal de alto fluxo. Resultados expressos como mediana [intervalo interquartil].

Tabela 3 - Desfechos clínicos de todos os pacientes em uso de cânula nasal de alto fluxo com e sem epistaxe

Variável	Total N = 70	Epistaxe n = 7	Sem epistaxe n = 63	Valor de p
Necessidade de ventilação mecânica após CNAF	33 (47,1)	3 (42,9)	30 (47,6)	1
Mortalidade na UTI	30 (42,9)	3 (42,9)	27 (42,9)	1
Tempo de permanência na UTI (dias)	12 [7 - 22]	21 [8 - 22]	12 [7 - 20,5]	0,92
Mortalidade hospitalar	40 [57,1]	4 [57,1]	36 [57,1]	1
Tempo de permanência no hospital (dias)	28,5 [16 - 48,5]	28 [15 - 33]	29 [16,5 - 49,5]	0,41

CNAF - cânula nasal de alto fluxo; UTI - unidade de terapia intensiva. Resultados expressos como n (%) ou mediana [intervalo interquartil].
Conclusão

A epistaxe é uma complicação possível durante a utilização de cânula nasal de alto fluxo. Na pequena amostra deste estudo, nenhuma característica dos pacientes ou da configuração da cânula nasal de alto fluxo se associou com epistaxe.

Referências

1. Azoulay E, Lemiale V, Mokart D, Nseir S, Argaud L, Pène F, et al. Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: the HIGH randomized clinical trial. JAMA. 2018;320(20):2099-107.
2. Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, Prat G, Boulain T, Morawiec E, Cottereau A, Devaquet J, Nseir S, Razazi K, Mira JP, Argaud L, Chakarjian JC, Ricard JD, Wittebole X, Chevalier S, Herbland A, Fartoukh M, Constantin JM, Tonnelier JM, Pierrot M, Mathonnet A, Béduneau G, Deléage-Métreau C, Richard JC, Brochard L, Robert R; FLORALI Study Group; REVA Network. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185-96.
3. Hernández G, Vaquero C, Colinas L, Cuena R, González P, Canabal A, et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA. 2016;315(15):1565-74.
4. Hernández G, Vaquero C, González P, Subia C, Frutos-Vivar F, Rialp G, et al. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients: a randomized clinical trial. JAMA. 2016;315(13):1354-61.
5. Alhazzani W, Moller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit Care Med. 2020;48(6):e440-e469.
6. Drake MG. High-flow nasal cannula oxygen in adults: an evidence-based assessment. Ann Am Thorac Soc. 2018;15(2):145-55.
7. Dysart K, Miller TL, Wolfson MR, Shaffer TH. Research in high flow therapy: mechanisms of action. Respir Med. 2009;103(10):1400-5.
8. Mauvié T, Alban L, Tumini C, Cambiagli B, Carlesso E, Taccone P, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med. 2017;43(10):1453-63.
9. Rochwerg B, Granton D, Wang DX, Helvi Y, Einav S, Frat JP, et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: a systematic review and meta-analysis. Intensive Care Med. 2019;45(6):563-72.
10. Baudin F, Gagnon S, Crulli B, Proulx F, Jouvet P, Emeriaud G. Modalities and complications associated with the use of high-flow nasal cannula: experience in a pediatric ICU. Respir Care. 2016;61(10):1305-10.
11. Velasco Sanz TR, Sánchez de la Ventana AB. [High-flow nasal cannula oxygen therapy in critical patients. Prospective study]. Enferm Intensiva. 2014;25(4):131-6. Spanish.
12. Miller TL, Saberi B, Saberi S. Computational fluid dynamics modeling of extrathoracic airway flush: evaluation of high flow nasal cannula design elements. J Pulm Respir Med. 2016;6(5):376.