Aldosterone nongenomically induces angiotensin II receptor dimerization in rat kidney: role of mineralocorticoid receptor and NADPH oxidase

Kittisak Sinphitukkul1, Krissanapong Manotham2, Somchai Eiam-Ong3, Somchit Eiam-Ong4

1Graduate Division, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
2Molecular and Cell Biology Unit, Department of Medicine, Lerdlin General Hospital, Bangkok, Thailand
3Department of Medicine, Division of Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
4Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Submitted: 30 March 2017
Accepted: 1 June 2017

Arch Med Sci 2019; 15 (6): 1589–1598
DOI: https://doi.org/10.5114/aoms.2019.87135
Copyright © 2019 Termedia & Banach

Abstract

Introduction: Previous in vitro studies demonstrated that aldosterone nongenomically induces transglutaminase (TG) and reactive oxygen species (ROS), which enhanced angiotensin II receptor (ATR) dimerization. There are no in vivo data in the kidney.

Material and methods: Male Wistar rats were intraperitoneally injected with normal saline solution, or aldosterone (Aldo: 150 μg/kg BW); or received pretreatment with eplerenone (mineralocorticoid receptor (MR) blocker, Ep. + Aldo), or with apocynin (nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, Apo. + Aldo) 30 min before aldosterone. Thirty minutes after aldosterone injection, protein abundances of dimeric and monomeric forms of AT1R and AT2R, and protein abundances and localizations of TG2 and p47phox, a cytosolic subunit of NADPH oxidase, were determined by Western blot analysis and immunohistochemistry, respectively.

Results: Protein abundances of dimeric forms of AT1R and AT2R were enhanced by 170% and 70%, respectively. Apocynin could block dimeric forms of both receptors while eplerenone inhibited only AT2R. Monomeric protein levels of both receptors were maintained. Aldosterone significantly enhanced TG2 and p47phox protein abundances, which were blunted by eplerenone or apocynin. Aldosterone stimulated p47phox protein expression in both the cortex and the medulla while TG2 was induced mostly in the medulla. Eplerenone or apocynin normalized the immunoreactivity of both TG2 and p47phox.

Conclusions: This is the first in vivo study demonstrating that aldosterone nongenomically increases renal TG2 and p47phox protein expression and then activates AT1R and AT2R dimerizations. Aldosterone-stimulated AT1R and AT2R dimerizations are mediated through activation of NADPH oxidase. Aldosterone-induced AT2R dimer formation is an MR-independent pathway, whereas the formation of AT1R dimer is modulated in an MR-dependent manner.

Key words: aldosterone, angiotensin II receptor dimerization, mineralocorticoid receptor, NADPH oxidase, nongenomic action, rat kidney.
Introduction

Aldosterone, the final component of the renin-angiotensin-aldosterone system, plays an essential role in regulation of blood pressure by maintaining electrolyte and water homeostasis [1, 2]. The classical role of aldosterone occurs via a genomic mechanism [3]. The aldosterone-mineralocorticoid receptor (MR) complex will bind to its hormone-responsive elements within the nucleus and promotes the expression of target genes [3]. At present, several examinations on aldosterone have turned to nongenomic actions which present a rapid onset (≤30 min) [4–7].

A previous in vitro study has revealed the nongenomic action of aldosterone in enhancing the formation of angiotensin II type 1 receptor (AT1R) dimerization [8]. AT1R dimerization is essential for functional consequences of G-protein activation of various physiologic conditions [9, 10]. Moreover, increased AT1R dimerization plays a contributory role in pathologic conditions including hypertension and atherosclerosis [11]. In cultured mouse mesenteric arterioles, aldosterone nongenomically stimulates the activity of intracellular transglutaminase 2 (TG2), resulting in enhanced AT1R dimerization [8]. TG2 is a catalytic enzyme which catalyzes post-translational modification of proteins by covalent bond formation between free amine groups [12]. Besides TG2, elevation of reactive oxygen species (ROS) has been shown to enhance AT1R dimerization in human embryonic kidney (HEK) cells [13]. In cultured porcine proximal tubular cells, aldosterone nongenomically activates NADPH oxidase by translocating p47phox from the cytosolic compartment to bind its membranous subunit at the plasma membrane and then generates ROS production [14]. In addition, it has been demonstrated that ROS rapidly stimulates TG2 activity in cultured Swiss 3T3 fibroblast cells [15]. Taken together, it appears that MR, TG2, NADPH oxidase, p47phox, and ROS might play important roles in the nongenomic action of aldosterone on AT1R dimerization. Despite the above in vitro evidence, there are no available data. Moreover, no in vivo data are available regarding the nongenomic action of aldosterone on angiotensin II type 2 receptor (AT2R) dimerization.

To obtain in vivo data, the present study was conducted in the rat kidneys 30 min following treatment with normal saline solution, or aldosterone; or receiving pretreatment with eplerenone (MR blocker) or with apocynin (NADPH oxidase inhibitor) 30 min before aldosterone injection. Western blot analysis was performed to measure protein abundances of dimeric and monomeric forms of AT1R and AT2R as well as TG2 and p47phox. Immunohistochemistry was performed for localization of TG2 and p47phox proteins.

Material and methods

Experimental design

Male Wistar rats weighing 200–240 g (National Laboratory Animal Center, Mahidol University, Nakornpathom, Thailand) were given conventional housing and diet. All animal protocols were approved by the Ethics Committee of Research, Chulalongkorn University (Permit number IRB 7/57). Serum creatinine of each rat should be <1 mg/dl [16, 17]. The rats were divided into four groups (n = 8/group): sham (normal saline solution; NSS: 0.5 ml/kg BW by intraperitoneal injection, i.p.); Aldo (aldosterone 150 μg/kg BW, diluted in NSS, i.p.; Sigma, St. Louis, MO, USA); or pretreatment with eplerenone (MR blocker; 15 mg/kg BW; diluted in dimethyl sulfoxide, i.p.; Sigma; Ep. + Aldo) or with apocynin (NADPH oxidase inhibitor; 5 mg/kg, diluted in NSS, i.p.; Sigma; Apo. + Aldo) 30 min before aldosterone injection [16–19]. We used this aldosterone dose as previously performed in the studies of nongenomic action of aldosterone on the protein expression of upstream/downstream mediators [6, 16, 17]. Therefore, in the present investigation, we further examined the effect of this dose on protein expression of ATR dimerization, TG2, and p47phox.

On the date of the experiment, 30 min following injection of NSS or aldosterone, the rats were anesthetized with thiopental (100 mg/kg BW, i.p.). Kidneys were removed, and a half of each kidney was fixed in liquid nitrogen and then stored at −80°C until use for measurement of dimeric and monomeric forms of ATRs (AT1R and AT2R), TG2, and p47phox protein abundances by Western blot analysis. The other half of renal tissue was fixed in 10% paraformaldehyde for localization of TG2 and p47phox proteins by immunohistochemistry.

Western blot analysis

The renal tissue samples were homogenized on ice with a homogenizer (T25 Basic, IKA, Selangor, Malaysia) in homogenizing buffer ([20 mM Tris-HCl; pH 7.5, 2 mM MgCl2, 0.2 M sucrose, and 5% (v/v) protease inhibitor cocktail (Sigma)]. To get rid of crude debris, the kidney homogenates were centrifuged at 4,000 g (Sorvall Legend X1R, Thermo Fisher Scientific, Rockford, IL, USA) for 20 min at 4°C. To harvest plasma membrane, the supernatant was further centrifuged at 17,000 g for 20 min at 4°C [20]. The pellet was dissolved in buffer. Total protein concentration was measured with Bradford protein assay reagent (Pierce, Rockford, IL, USA) following the manufacturer’s protocol. The measurement of protein abundance was performed as previously described [6, 16, 17]. Proteins were resolved on 8% sodium dodecyl...
sulfate polyacrylamide gel electrophoresis for AT, R, AT, R (dimeric and monomeric forms), TG2, p47phox, β-actin, and blotted onto nitrocellulose membrane (Bio-Rad Laboratories, Hercules, CA, USA). The membranes were incubated with primary monoclonal antibody to AT, R (1E10-1A9: sc-81671; 1: 200; Santa Cruz Biotechnology, Dallas, TX, USA), AT, R (C-18: sc-7420; 1: 300; Santa Cruz Biotechnology), TG2 (TG100: MA5-12915; 1: 1,000; Thermo Fisher Scientific), p47phox (D-10: sc-17845; 1: 250; Santa Cruz Biotechnology), or to β-actin (C4: sc-47778; 1: 2,000; Santa Cruz Biotechnology), followed by the respective horseradish peroxidase-linked secondary antibody (Bio-Rad Laboratories). Immunoreactive proteins were detected by chemiluminescence detection (SuperSignal West Pico kit; Pierce) and documented by using a Molecular imager ChemiDoc XRS system (Bio-Rad Laboratories). Relative protein levels of AT, R and AT, R (dimeric and monomeric forms), TG2, and p47phox in each sample were presented as a percentage of the control normalized to its β-actin content.

Immunohistochemical study

Detection of protein localization was performed as previously described [6, 16, 17]. Paraffin-embedded kidney sections were cut into 4 μm thick slices. The slides were deparaffinized and endogenous peroxidase was blocked by treatment with 3% H2O2. The sections were incubated with the primary antibody TG2 (1: 20,000; Thermo Fisher Scientific), or p47phox (1: 150; Santa Cruz Biotechnology) at 4°C overnight, followed by the respective horseradish peroxidase-linked secondary antibody (Bio-Rad Laboratories), then reacted with 3,3’-diaminobenzidine solution (Sigma). Three pathologists independently scored the staining intensity on a semi-quantitative five-tiered grading scale from 0 to 4 (0 = negative; 1 = trace; 2 = weak; 3 = moderate; 4 = strong) as previously described [6, 16, 17].

Statistical analysis

Results of renal AT, R and AT, R (dimeric and monomeric forms), TG2, and p47phox protein abundances were expressed as mean ± SD. Statistical differences between the groups were assessed by ANOVA (analysis of variance) with post-hoc comparison by Tukey’s test where appropriate. A p-value < 0.05 was considered statistically significant. Statistical tests were analyzed using the SPSS program version 22.0 (IBM Corp. Chicago, IL, USA). The median staining intensity (score) of renal TG2 and p47phox protein expression was presented as previously described [6, 16, 17].

Results

Aldosterone enhances renal ATRs dimer protein abundances

The protein levels of AT, R and AT, R were assessed by Western blot analysis (Figure 1). Aldosterone enhanced protein abundances of dimeric forms of AT, R (100 kDa) and AT, R (80 kDa) from sham (100%) to be 278 ± 7% and 175 ± 9%, respectively (p < 0.001). Apocynin could block aldosterone-induced dimeric protein abundances of both AT, R (105 ± 4%, p = 0.12) and AT, R (103 ± 5%, p = 0.57). Eplerenone had an inhibitory effect only
on dimeric forms of AT_R protein (108 ±6%, p = 0.23). The dimeric protein levels of AT_R were still enhanced to be 276 ±8% (p < 0.001) in the presence of MR blocker. Aldosterone did not alter protein levels of monomeric forms of AT_R (50 kDa) or AT_R (41 kDa) (data not shown).

Aldosterone stimulates renal transglutaminase 2 (TG2) and p47phox protein abundances

The protein levels of TG2 (78 kDa) and p47phox (47 kDa) in the rat kidney were measured by Western blot analysis (Figure 2). Aldosterone significantly elevated protein abundances of TG2 and p47phox from sham (100%) to be 165 ±8% and 218 ±11%, respectively (p < 0.001). Both eplerenone and apocynin, when each was used, completely abolished the effect of aldosterone-induced TG2 and p47phox from sham (100%) to 165 ±8%, 218 ±11%, respectively (p < 0.001). Both eplerenone and apocynin, when each was used, completely abolished the effect of aldosterone-induced TG2 and p47phox from sham (100%) to 165 ±8%, 218 ±11%, respectively (p < 0.001).

In the outer medulla, aldosterone elevated the intensity score in all studied areas (Figure 3 A). The expression was grade 1 (trace) in the glomerulus, whereas the intensity was grade 4 (strong) in the peritubular capillary (Pcap). The immunostaining was moderately diffuse in the proximal convoluted tubule (PCT). No staining was noted in the distal convoluted tubule (DCT) or cortical collecting duct (CCD). Aldosterone did not alter the intensity score in these areas (Figure 3 B). Interestingly, aldosterone induced the translocation of TG2 protein expression from the cytosol to the luminal membrane of PCTs. Eplerenone or apocynin pretreatment could blunt the effect induced by aldosterone (Figures 3 C, D). The staining in the PCT returned to the same pattern as the sham.

In the outer medulla, aldosterone elevated the intensity score in all studied areas (Figure 3 F). Eplerenone or apocynin could lessen the immunoreactivity induced by aldosterone in the thick ascending limb of Henle’s loop (TALH), vasa recta (VR) and thin limb of Henle’s loop (TLH) (Figures 3 G, H). The expression in the medullary collecting duct (MCD) remained. In the inner medulla, aldosterone enhanced the immunoreactivity in all studied regions (Figure 3 J). Both eplerenone and apocynin, when each was used, could inhibit the effect of aldosterone on TG2 expression (Figures 3 K, L; Table I).

Renal TG2 protein expression is activated by aldosterone

Protein expression of TG2 in the cortex of sham is shown in Figure 3 A and Table I. The expression was grade 1 (trace) in the glomerulus, whereas the intensity was grade 4 (strong) in the peritubular capillary (Pcap). The immunostaining was moderately diffuse in the proximal convoluted tubule (PCT). No staining was noted in the distal convoluted tubule (DCT) or cortical collecting duct (CCD). Aldosterone did not alter the intensity score in these areas (Figure 3 B). Interestingly, aldosterone induced the translocation of TG2 protein expression from the cytosol to the luminal membrane of PCTs. Eplerenone or apocynin pretreatment could blunt the effect induced by aldosterone (Figures 3 C, D). The staining in the PCT returned to the same pattern as the sham.

In the outer medulla, aldosterone elevated the intensity score in all studied areas (Figure 3 F). Eplerenone or apocynin could lessen the immunoreactivity induced by aldosterone in the thick ascending limb of Henle’s loop (TALH), vasa recta (VR) and thin limb of Henle’s loop (TLH) (Figures 3 G, H). The expression in the medullary collecting duct (MCD) remained. In the inner medulla, aldosterone enhanced the immunoreactivity in all studied regions (Figure 3 J). Both eplerenone and apocynin, when each was used, could inhibit the effect of aldosterone on TG2 expression (Figures 3 K, L; Table I).

Renal p47phox protein expression is induced by aldosterone

As shown in Figure 4 and Table I, the immunostaining of p47phox protein was obvious at the basolateral membrane of the renal tubules in both the cortex and the medulla. Furthermore, the expression was also well noted in the renal vasculature. In the cortex (Figure 4 B), aldosterone markedly enhanced the expression to be strong in the glomerulus, PCT, DCT and Pcap while the intensity in the CCD was grade 3 (moderate). Pretreatment with apocynin showed a greater inhibitory effect than eplerenone on aldosterone-induced p47phox expression (Figures 4 D, C respectively).

In the outer medulla, aldosterone elevated the intensity score in TALH and TLH (Figure 4 F). Eplerenone or apocynin could decrease the immunoreactivity in both areas (Figures 4 G, H). The expression in the MCD and VR remained. In the inner medulla, aldosterone enhanced the immunoreactivity in all studied regions (Figure 4 J). Eplerenone pretreatment had a greater blocking effect than apocynin (Figures 4 K, L; Table I).

Discussion

To our knowledge, these are the first in vivo data simultaneously demonstrating that the renal protein abundances of dimeric forms of AT_R and AT_R are enhanced 30 min following aldosterone administration (Figure 1). AT_R dimerization is important for functional consequences of G-protein activation [9]. Previous studies regarding AT_R found that AT_R dimerization influences receptor activation mechanisms including agonist/antagonist affinity, efficacy, trafficking, and specificity of signal transduction mediators [9, 10]. Under physiologic conditions, AT_R dimerization promoted sodium reabsorption in microdissected rat proximal tubule by stimulating Na⁺-ATPase activity [10]. In pathologic conditions, an increased AT_R dimerization was reported in monocytes isolated from hypertensive patients [11]. Moreover, monocytes of ApoE knockout mice exhibit high AT_R dimer levels which cause atherosclerosis [11]. Indeed, elevation of AT_R dimerization was found in the renal cortex from a preeclampsia rat model [21].

In the present study, aldosterone enhanced AT_R dimers but did not alter AT_R monomers. A previous study in vascular smooth muscle cells also showed that aldosterone increases AT_R dimers while the monomers are unchanged [8]. No data of AT_R dimerization related to aldosterone were reported in that study. The mechanism of this phenomenon remains to be established. ATRs belong to the seven membrane classes of G-protein-coupled receptors (GPCRs) which can dimerize in the endoplasmic reticulum (ER) [22]. A recent study in HEK cells demonstrated that corticotropin-releasing factor receptor type 1, a member of GPCRs, is assembled as dimers in the ER and transported to the plasma membrane [23]. Therefore, it is likely that aldosterone might enhance both AT_R
Figure 3. Representative immunohistochemical staining micrographs of renal TG2 protein expression in the cortex (A–D), the outer medulla (E–H), and the inner medulla (I–L) from sham (A, E, I), Aldo (B, F, J), Ep. + Aldo (C, G, K), and Apo. + Aldo (D, H, L). Original magnification 400× (A–D) and 200× (E–L).
Table I. Median staining intensity (score) of renal TG2 and p47phox protein expressions

Parameter	Median staining intensity (score)							
	TG2	p47phox						
	Sham	Aldo	Ep. + Aldo	Apo. + Aldo	Sham	Aldo	Ep. + Aldo	Apo. + Aldo
Cortex:								
Glomerulus	1	1	1	1	2	4	2	1
PCT	3	3	3	3	2	4	3	2
DCT	0	0	0	0	2	4	3	2
CCD	0	0	0	0	1	3	1	1
Pcap	4	4	4	4	2	4	3	2
Outer medulla:								
TALH	0	1	0	0	1	2	1	1
MCD	0	1	1	1	1	1	1	1
VR	3	4	3	1	4	4	4	4
tLH	2	3	2	1	1	3	2	1
Inner medulla:								
MCD	3	4	2	3	1	4	1	3
VR	2	3	2	2	3	4	3	3
tLH	1	3	1	1	2	4	2	3

Staining intensity: 0 = negative, no reactivity; 1 = trace, faint or pale brown staining with less membrane reactivity; 2 = weak, light brown staining with incomplete membrane reactivity; 3 = moderate, shaded of brown staining of intermediate darkness with usually almost complete membrane reactivity; 4 = strong, dark brown to black staining with usually complete membrane pattern, producing a thick outline of the cell [6, 16, 17]. PCT – proximal convoluted tubule, DCT – distal convoluted tubule, CCD – cortical collecting duct, Pcap – peritubular capillary, TALH – thick ascending limb of Henle’s loop, MCD – medullary collecting duct, VR – vasa recta, tLH – thin limb of Henle’s loop.
Figure 4. Representative immunohistochemical staining micrographs of renal p47phox protein expression in the cortex (A–D), the outer medulla (E–H), and the inner medulla (I–L) from sham (A, E, I), Aldo (B, F, J), Ep. + Aldo (C, G, K), and Apo. + Aldo (D, H, L). Original magnification 400× (A–D) and 200× (E–L).
and AT_{1R} dimerizations within the ER and these dimers are transported to the plasma membrane, resulting in unchanged monomers.

This study is the first to demonstrate that aldosterone-induced AT_{1R} dimerization occurs via an MR-independent pathway while aldosterone-induced AT_{2R} dimerization is dependent on the MR pathway (Figure 1). Regardless of the MR pathway dependence or not, the enhancements of AT_{1R} and AT_{2R} dimerizations were suppressed by apocynin (Figure 1), indicating the mechanistic role of NADPH oxidase in stimulating dimerization of both ATRs.

As stated earlier, previous in vitro studies in various tissues suggested that there might be an interrelationship among NADPH oxidase, p47phox, ROS, and TG2 in contributing to the nongenomic stimulating action of aldosterone on AT_{1R} dimerization. In support of this contention, the present study illustrates that aldosterone rapidly stimulates TG2 and p47phox, both of which are inhibited by apocynin (Figure 2). Therefore, in the MR-independent pathway, aldosterone might activate ROS via NADPH oxidase and then stimulate both TG2 and AT_{1R} dimerization in the kidney.

Regarding the mechanism of AT_{1R} dimerization, in the present study, aldosterone elevated TG2 protein abundance via MR (Figure 2). A previous study reported that TG2 mediates cross-linking of AT_{1R} into oligomers in HEK cells [24]. However, TG2-induced AT_{1R} dimerization has not been shown in any studies. It is likely that aldosterone activates TG2 and then stimulates AT_{1R} dimerization. One attractive effect of aldosterone on AT_{1R} dimerization is enhancing ROS, since translocation of p47phox into the plasma membrane represents activation of NADPH oxidase and then leads to generation of ROS [25, 26]. The present study is the first to demonstrate that the nongenomic action of aldosterone on AT_{1R} dimerization elevates plasma membrane protein abundance of p47phox by an MR-dependent mechanism (Figure 2). A former study reported that aldosterone nongenomically reduces cytosolic p47phox but the effect of plasma membrane p47phox on AT_{1R} dimerization was not examined [14]. Our data showed that aldosterone-induced AT_{1R} dimerization is abolished by apocynin (Figure 1). The results suggest that aldosterone-induced ROS production from activation of NADPH oxidase has a potential role in AT_{1R} dimerization.

Immunohistochemistry studies revealed that TG2 in the sham group showed weak and diffuse immunostaining in glomeruli and tubules (Figures 3 A, E, I). Previous studies in normal rat kidney also revealed the similar baseline regional distribution of TG2 protein as in the present investigation [27, 28]. In the present study, aldosterone stimulated the expression of TG2 mostly in the medulla area (Figures 3 F, J). Although the expression levels were
Aldosterone nongenomically induces angiotensin II receptor dimerization in rat kidney: role of mineralocorticoid receptor and NADPH oxidase

not altered in the cortex, aldosterone nongenomically translocated the TG2 protein from the cytosol to the luminal membrane while eplerenone or apocynin could normalize the immunoreactivity (Figures 3 A–D). A previous study demonstrated that both AT1R and AT2R are highly abundant in the luminal membrane of renal tubular cells, for example in the proximal tubules and medullary TALH [29, 30]. As such, aldosterone-induced TG2 might play a significant role in dimerization of AT1R or AT2R to regulate ion transport in the renal tubules. Moreover, the prominent TG2 expression was present in Pcap and VR by aldosterone (Table I). This implies some important effects of TG2 on these renal vascular functions. Of note, enhanced TG2 expression in the kidney has been related to the development of kidney diseases. TG2 protein abundance, activity, and expression were enhanced in the puromycin aminonucleoside-injection-induced experimental rat model of focal segmental glomerulosclerosis, subtotal nephrectomy-induced renal fibrosis, IgA nephropathy, and the rat renal transplantation model of chronic allograft nephropathy [27, 28, 31, 32]. Furthermore, TG inhibition could ameliorate experimental diabetic nephropathy, reduce fibrosis and preserve function in experimental chronic kidney disease [33–36].

For p47phox protein localization, immunostaining in the sham group was present in the glomeruli and renal vasculature in both the cortex and the medulla (Figures 4 A, E, I). This baseline regional distribution of p47phox protein is similar to previous studies in normal rat kidney [37–39]. Of interest, the present study shows more obvious staining at the basolateral membrane of renal tubules than those previously reported [37–39]. This discrepancy may be due to the more specific (monoclonal) p47phox antibody used in the present study. Aldosterone enhanced p47phox protein expression at the basolateral membrane in both the cortex and the medulla and this enhancement was normalized by eplerenone or apocynin (Figure 4). Interestingly, induction of renal p47phox protein expression has been implicated in some renal diseases such as diabetic nephropathy and nephrolithiasis [37, 38]. Deletion of p47phox could attenuate the progression of kidney fibrosis and reduce albuminuria in diabetic nephropathy and nondiabetes-mediated glomerular injury [40, 41].

In conclusion, to our knowledge, this is the first in vivo study demonstrating that aldosterone nongenomically increases renal TG2 and p47phox protein expression and then activates AT1R and AT2R dimerizations. Aldosterone-stimulated AT1R and AT2R dimerizations are mediated through activation of NADPH oxidase. Aldosterone-induced AT1R dimer formation is an MR-independent pathway, whereas the formation of AT1R dimer is modulated in an MR-dependent manner.

Acknowledgments

This study was supported by (1) the Royal Golden Jubilee Ph.D. scholarship (grant No. PHD/0104/2556) awarded to Mr. Kittisak Sinphitukkul by the Thailand Research Fund under the Office of the Prime Minister, the Royal Thai Government 2014, and (2) the 90th Anniversary of Chulalongkorn University Fund and Ratchadapiseksomphon Endowment Fund (No. 34 code: GCUGR1125572042D) by the Faculty of Medicine, Chulalongkorn University.

Conflict of interest

The authors declare no conflict of interest.

References

1. Connell JM, Davies E. The new biology of aldosterone. J Endocrinol 2005; 186: 1–20.
2. Aronow WS. Update of treatment of heart failure with reduction of left ventricular ejection fraction. Arch Med Sci Atheroscler Dis 2016; 1: e106–16.
3. Rozansky DJ. The role of aldosterone in renal sodium transport. Semin Nephrol 2006; 26: 173–81.
4. Thomas W, Harvey BJ. Mechanisms underlying rapid aldosterone effects in the kidney. Annu Rev Physiol 2011; 73: 335–57.
5. Winter C, Schulz N, Giebish G, Geibel JP, Wagner CA. Factor XIIIa transglutaminase crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis. J Physiol 2014; 306: F855–63.
6. Elam-Ong S, Sinphitukkul K, Manotham K, Elam-Ong S. Rapid action of aldosterone on protein expressions of protein kinase C alpha and alpha1 sodium potassium adenosine triphosphatase in rat kidney. J Steroids Hormon Sci 2017; 2017: 2975853.
7. Vinson GR, Coghlan JP. Expanding view of aldosterone action, with an emphasis on rapid action. Clin Exp Pharmacol Physiol 2010; 37: 410–6.
8. Yamada M, Kushibiki M, Osanai T, Tomita H, Okumura K. Vasoconstrictor effect of aldosterone via angiotensin II type 1 (AT1) receptor: possible role of AT1 receptor dimerization. Cardiovasc Res 2008; 79: 169–78.
9. Lyngso C, Erikstrup N, Hansen JL. Functional interactions between 7TM receptors in the renin-angiotensin system-dimerization or crosstalk? Mol Cell Endocrinol 2009; 302: 203–12.
10. Dias J, Ferrao FM, Axelband F, Carmona AK, Lara LS, Vieyra A. ANG-(3-4) inhibits renal Na+-ATPase in hypertensive rats through a mechanism that involves dissociation of ANG II receptors, heterodimers, and PKA. Am J Physiol 2014; 306: F855–63.
11. AbdAlla S, Lother H, Langer A, el Faramawy Y, Quitte-rer U. Factor XIIa transglutaminase crosslinks AT1, receptor dimers of monocytes at the onset of atherosclerosis. Cell 2004; 119: 343–54.
12. Eckert RL, Kaartinen MT, Nurminskaya M, et al. Transglu-taminase regulation of cell function. Physiol Rev 2014; 94: 383–417.
13. AbdAlla S, Lother H, el Massiery A, Quitte-rer U. Increased AT1 receptor heterodimers in preeclampsia mediate en-
hanced angiotensin II responsiveness. Nat Med 2001; 7: 1003-9.
14. Queisser N, Schupp N, Stopper H, Schinzel R, Oteiza PI. Aldosterone increases kidney tubule cell oxidants through calcium-mediated activation of NADPH oxidase and nitric oxide synthase. Free Radic Biol Med 2011; 51: 1996-2006.
15. Lee ZW, Kwon SM, Kim SW, Yi SJ, Kim YM, Ha KS. Activation of in situ tissue transglutaminase by intracellular reactive oxygen species. Biochem Biophys Res Commun 2003; 305: 633-40.
16. Sinphitukkul K, Eiam-Ong S, Manotham K, Eiam-Ong S. Rapid nongenomic effects of aldosterone on renal protein expressions of pEGFR and pERK1/2 in rat kidney. Am J Nephrol 2011; 33: 111-20.
17. Eiam-Ong S, Sinphitukkul K, Manotham K, Eiam-Ong S. Rapid nongenomic action of aldosterone on protein expressions of Hsp90(alpha and beta) and p-src in rat kidney. Biomed Res Int 2013; 2013: 346480.
18. Cook CS, Zhang L, Ames GB, Fischer J, Zhang J, Levin S. Single- and repeated-dose pharmacokinetics of eplerenone, a selective aldosterone receptor blocker, in rats. Xenobiotica 2003; 33: 305-21.
19. Kimura H, Liu S, Yamada S, et al. Rapid increase in serum lipid peroxide 4-hydroxynonenal (HNE) through monomer/dimer equilibrium of Hsp90 in early endo-toxemia. Free Radic Res 2005; 39: 845-51.
20. Fernandez-Llama P, Jimenez W, Bosch-Marce M, Arroyo V, Nielsen S, Knepper MA. Dysregulation of renal aquaporins and Na-CI cotransporter in CCl4-induced cirrhosis. Kidney Int 2000; 58: 216-28.
21. Anguloa-Robledo L, Reyes-Melchor PA, Bobadilla-Lugo RA, Pérez-Alvarez VM, López-Sánchez P. Renal angiotensin-II receptors expression changes in a model of preeclampsia. Hypertens Pregnancy 2007; 26: 151-61.
22. Devi LA. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol Sci 2001; 22: 532-7.
23. Teichmann A, Gibert A, Lampe A, et al. The specific expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 2002; 39: 269-74.
24. Miyata K, Rahman M, Shokoji T, et al. Aldosterone stimulates reactive oxygen species production through activation of NADPH oxidase in rat mesangial cells. J Am Soc Nephrol 2005; 16: 2906-12.
25. Liu S, Li Y, Zhao H, et al. Increase in extracellular cross-linking by tissue transglutaminase and reduction in expression of MMP-9 contribute differentially to focal segmental glomerulosclerosis in rats. Mol Cell Biochem 2006; 284: 9-17.
26. Johnson TS, Griffin M, Thomas GL, et al. The role of transglutaminase in the rat subtotal nephrectomy model of renal fibrosis. J Clin Invest 1997; 99: 2950-60.
27. Velez JC. The importance of the intrarenal renin-angiotensin system. Nat Clin Pract Nephrol 2009; 5: 89-100.
28. Asaba K, Tojo A, Onozato ML, et al. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 2005; 67: 1890-8.
29. Wang H, Chen X, Su Y, et al. p47 phox contributes to albuminuria and kidney fibrosis in mice. Kidney Int 2015; 87: 948-62.
30. Li CY, Deng YL, Sun BH. Effects of apocynin and losartan treatment on renal oxidative stress in a rat model of calcium oxalate nephrolithiasis. Int Urol Nephrol 2009; 41: 823-33.
31. Liu GC, Fang F, Zhou J, et al. Deletion of p47phox attenuates the progression of diabetic nephropathy and reduces the severity of diabetes in the Akita mouse. Diabetologia 2012; 55: 2522-32.