A discrete form of the Beckman-Quarles theorem for two-dimensional strictly convex normed spaces

Apoloniusz Tyszka

version of October 8, 2000

Abstract

Let X be a real normed vector space and $\dim X \geq 2$. Let $\rho > 0$ be a fixed real number. We prove that if $x, y \in X$ and $||x - y||/\rho$ is a rational number then there exists a finite set $\{x, y\} \subseteq S_{xy} \subseteq X$ with the following property: for each strictly convex Y of dimension 2 each map from S_{xy} to Y preserving the distance ρ preserves the distance between x and y. It implies that each map from X to Y that preserves the distance ρ is an isometry.

Let \mathbb{Q} denote the field of rational numbers. All vector spaces mentioned in this article are assumed to be real. A normed vector space E is called strictly convex ([5]), if for each pair a, b of nonzero elements in E such that $||a + b|| = ||a|| + ||b||$, it follows that $a = \gamma b$ for some $\gamma > 0$. It is known ([15]) that two-dimensional strictly convex normed spaces satisfy the following condition (\ast):

(\ast) for any $a \neq b$ on line L and any c, d on the same side of L, if $||a - c|| = ||a - d||$ and $||b - c|| = ||b - d||$, then $c = d$.

Conversely ([15]), for any two-dimensional normed space the condition (\ast) implies that the space is strictly convex.
The classical Beckman-Quarles theorem states that any map from \mathbb{R}^n to \mathbb{R}^n ($2 \leq n < \infty$) preserving unit distance is an isometry, see [1], [2] and [6]. Various unanswered questions and counterexamples concerning the Beckman-Quarles theorem and isometries are discussed by Ciesielski and Rassias [4]. For more open problems and new results on isometric mappings the reader is referred to [7]-[13]. The Theorem below may be viewed as a discrete form of the Beckman-Quarles theorem for two-dimensional strictly convex normed spaces.

Theorem. Let X and Y be normed vector spaces such that $\dim X \geq \dim Y = 2$ and Y is strictly convex. Let $\rho > 0$ be a fixed real number.

1. If $x, y \in X$ and $||x - y||/\rho$ is a rational number then there exists a finite set $S_{xy} \subseteq X$ containing x and y such that each injective map $f : S_{xy} \to Y$ preserving the distance ρ preserves the distance between x and y.

2. If $x, y \in X$ and $\varepsilon > 0$ then there exists a finite set $T_{xy}(\varepsilon) \subseteq X$ containing x and y such that each injective map $f : T_{xy}(\varepsilon) \to Y$ preserving the distance ρ preserves the distance between x and y to within ε i.e.

$$||f(x) - f(y)|| - ||x - y|| \leq \varepsilon.$$

3. Let $X = \mathbb{R}^n$ ($2 \leq n < \infty$) be equipped with euclidean norm. Then the assumption of injectivity is unnecessary in items 1 and 2.

4. More generally (cf. item 3), for each normed space X the assumption of injectivity is unnecessary in items 1 and 2.

Proof of item 1. Let D denote the set of all non-negative numbers d with the following property (**):

(**) if $x, y \in X$ and $||x - y|| = d$ then there exists a finite set $S_{xy} \subseteq X$ such that $x, y \in S_{xy}$ and any injective map $f : S_{xy} \to Y$ that preserves the distance ρ also preserves the distance between x and y.

Obviously $0, \rho \in D$. We first prove that if $d \in D$, then $2 \cdot d \in D$. Assume that $d \in D$, $d > 0$, $x, y \in X$, $\|x - y\| = 2 \cdot d$. Using the notation of Figure 1

\[
\begin{align*}
\|x - y\| &= 2 \cdot d \\
 z &:= \frac{x + y}{2} \\
\|x - z\| &= \|x - y\| = \|z - y\| = d \\
x_1 := y_1 + (z - x)
\end{align*}
\]

we show that

\[
S_{xy} := S_{xz} \cup S_{zy} \cup S_{y_1x_1} \cup S_{x_1y_1} \cup S_{zx_1} \cup S_{zy_1} \cup S_{yx_1}
\]

satisfies the condition (**). Let an injective $f : S_{xy} \rightarrow Y$ preserves the distance ρ. By the injectivity of f: $f(x) \neq f(x_1)$ and $f(y) \neq f(y_1)$. According to (*): $f(y_1) - f(x_1) = f(x) - f(z)$ and $f(y_1) - f(x_1) = f(z) - f(y)$. Hence $f(x) - f(z) = f(z) - f(y)$. Therefore $\|f(x) - f(y)\| = 2 \cdot \|f(x) - f(z)\| = 2 \cdot \|x - z\| = 2 \cdot d = \|x - y\|$.

From Figure 2, the previous step and the property that defines strictly convex normed spaces it is clear that if $d \in D$, then all distances $k \cdot d$ (k a positive integer) belong to D.

\[
\begin{align*}
\|x - y\| &= k \cdot d \\
S_{xy} &= \cup \{S_{ab} : a, b \in \{w_0, w_1, ..., w_k\}, \|a - b\| = d \lor \|a - b\| = 2 \cdot d\}
\end{align*}
\]

From Figure 3, the previous step and the property that defines strictly convex normed spaces it is clear that if $d \in D$, then all distances d/k (k a
positive integer) belong to \(D \). Hence \(D/\rho := \{d/\rho : d \in D \} \supseteq Q \cap [0, \infty) \).

This completes the proof of item 1.

\[\tilde{y} \]
\[(k - 1) \cdot d \]
\[d \]
\[y \]
\[z \]

\[\tilde{x} \]
\[(k - 1) \cdot d \]
\[d \]
\[x \]

Figure 3

\[||x - y|| = d/k \]
\[\tilde{x} := x + (k - 1)(x - z) \]
\[\tilde{y} := y + (k - 1)(y - z) \]
\[\tilde{x} - \tilde{y} = x - y + (k - 1)((x - z) - (y - z)) = k(x - y) \]
\[S_{xy} = S_{\tilde{xy}} \cup S_{xz} \cup S_{xz} \cup S_{yx} \cup S_{yz} \cup S_{yz} \]

Proof of item 2. It follows from Figure 4.

\[x \]
\[y \]

Figure 4

\[|x - z|/\rho, |z - y|/\rho \in Q \cap [0, \infty), |z - y| \leq \varepsilon/2 \]

\[T_{xy}(\varepsilon) = S_{xz} \cup S_{zy} \]

Proof of item 3. In proofs of items 1 and 2 the assumption of injectivity is necessary only in the first step for distances \(2 \cdot d, d \in D \). Let \(X = \mathbb{R}^n \) \((2 \leq n < \infty)\) be equipped with euclidean norm and \(D \) is defined without the assumption of injectivity. Let \(d \in D, d > 0 \). We need to prove that \(2 \cdot d \in D \). Let us see at configuration from Figure 5 below, all segments have the length \(d \).
Assume that \(f : S_{xy} \rightarrow Y \) preserves the distance \(\rho \). It is sufficient to prove that \(f(x) \neq f(x_1) \) and similarly \(f(y) \neq f(y_1) \). Suppose, on the contrary, that \(f(x) = f(x_1) \), the proof of \(f(y) \neq f(y_1) \) is similar. Hence four points: \(f(\bar{x}), \ f(z_y), \ f(\bar{y}_1), \ f(x_1) \) have the distance \(d \) from each other. We prove that it is impossible in two-dimensional strictly convex normed spaces. Suppose, on the contrary, that \(a_1, a_2, a_3, a_4 \in Y \) and \(||a_1 - a_2|| = ||a_1 - a_3|| = ||a_1 - a_4|| = ||a_2 - a_3|| = ||a_2 - a_4|| = ||a_3 - a_4|| = d > 0 \). Let us consider the segment
exists a unique h. Obviously the following function is continuous. We have:

For each $x, y \in X$, $x \neq y$ there exist points forming the configuration from Figure 5 where all segments have the length $||x - y||/2$. Let us consider $x, y \in X$, $x \neq y$. We choose two-dimensional subspace $\bar{X} \subseteq X$ containing x and y.

First case: the norm induced on \bar{X} is strictly convex. Obviously \bar{X} is isomorphic to \mathbb{R}^2 as a linear space. Let us consider \mathbb{R}^2 with a strictly convex norm $|| \cdot ||$. It suffices to prove that for each $a, b \in \mathbb{R}^2$ satisfying $||a|| = ||b|| = ||a - b|| = d > 0$ there exist $\tilde{a}, \tilde{b} \in \mathbb{R}^2$ satisfying $||\tilde{a}|| = ||\tilde{b}|| = ||\tilde{a} - \tilde{b}|| = ||(\tilde{a} + \tilde{b}) - (a + b)|| = d$. We fix $a = (a_x, a_y)$ and $b = (b_x, b_y)$. Let $S := \{x \in \mathbb{R}^2 : ||x|| = d\}$. According to (*) for each $u = (u_x, u_y) \in S$ there exists a unique $h(u) = (h(u)_x, h(u)_y) \in S$ such that $||u - h(u)|| = d$ and

$$\det \begin{bmatrix} u_x & u_y \\ h(u)_x & h(u)_y \end{bmatrix} \cdot \det \begin{bmatrix} a_x & a_y \\ b_x & b_y \end{bmatrix} > 0.$$

Obviously $h(a) = b$. The mapping $h : S \to S$ is continuous. For each $u \in S$ $h(-u) = -h(u)$ and $||u + h(u)|| = ||2u - (u - h(u))|| \geq ||2u|| - ||u - h(u)|| = d$. The following function

$$S \ni x \mapsto ||x + h(x) - a - h(a)|| \in [0, \infty)$$

is continuous. We have:

$$g(a) = 0,$$

$$g(-a) = ||-a + h(-a) - a - h(a)|| = 2 \cdot ||a + h(a)|| \geq 2 \cdot d.$$

Since g is continuous there exists $\tilde{a} \in S$ such that $g(\tilde{a}) = d$. From this \tilde{a} and $\tilde{b} := h(\tilde{a})$ satisfy $||\tilde{a}|| = ||\tilde{b}|| = ||\tilde{a} - \tilde{b}|| = ||(\tilde{a} + \tilde{b}) - (a + b)|| = d$. This
A completes the proof of item 4 in the case where the norm induced on \(\tilde{X} \) is strictly convex.

Second case: we assume only that \(\| \| \) is a norm on \(\tilde{X} \). The graph \(\Gamma \) from Figure 5 (11 vertices, 19 edges) has the following matrix representation:

	\(v_0 \)	\(v_1 \)	\(v_2 \)	\(v_3 \)	\(v_4 \)	\(v_5 \)	\(v_6 \)	\(v_7 \)	\(v_8 \)	\(v_9 \)	\(v_{10} \)
\(v_0 := x \)	0	0	1	1	0	0	0	1	0	0	0
\(v_1 := y \)	0	0	1	0	1	0	1	0	0	0	0
\(v_2 := \frac{x+y}{2} \)	1	1	0	0	1	0	0	1	0	0	0
\(v_3 := \tilde{x} \)	1	0	0	0	0	0	0	1	0	1	0
\(v_4 := x_1 \)	0	1	1	0	0	0	0	1	1	0	1
\(v_5 := \tilde{x}_1 \)	0	0	0	0	0	0	1	1	0	1	0
\(v_6 := \tilde{y} \)	0	1	0	0	0	1	0	0	0	1	0
\(v_7 := y_1 \)	1	0	1	0	1	1	0	0	0	1	0
\(v_8 := y_1 \)	0	0	0	1	1	0	0	0	0	0	1
\(v_9 := z_x \)	0	0	0	0	0	1	1	1	0	0	0
\(v_{10} := z_y \)	0	0	0	1	1	0	0	0	1	0	0

Let \(u_0 := v_0 = x, u_1 := v_1 = y, u_2 := v_2 = \frac{x+y}{2} \). We define the following function \(\psi \):

\[\tilde{X}^8 \ni (u_3, ..., u_{10}) \xrightarrow{\psi} (\| u_i - u_j \| : 0 \leq i < j \leq 10, (v_i, v_j) \in \Gamma) \in \mathbb{R}^{19}. \]

The image of \(\psi \) is a closed subset of \(\mathbb{R}^{19} \). For each \(\epsilon > 0 \) and each bounded \(B \subseteq \tilde{X} \) the norm \(\| \| \) may be approximate on \(B \) with \(\epsilon \)-accuracy by a strictly convex norm on \(\tilde{X} \). Therefore according to the first case for each \(x, y \in X, x \neq y \) and each \(\epsilon > 0 \) there exist points forming the configuration from Figure 5 where all segments have \(\| \| \)-lengths belonging to the interval \((\| x-y \| / 2 - \epsilon, \| x-y \| / 2 + \epsilon) \). Therefore:

\((\| x-y \| / 2, ..., \| x-y \| / 2) \in \overline{\psi(\tilde{X}^8)} \) (the closure of \(\psi(\tilde{X}^8) \)).
Since $\psi(\tilde{X}^8)$ is closed we conclude that
\[
(\|x - y\|/2, ..., \|x - y\|/2) \in \psi(\tilde{X}^8).
\]
This completes the proof of item 4.

Corollary. Let X and Y be normed vector spaces such that $\dim X \geq \dim Y = 2$ and Y is strictly convex. From item 2 of the Theorem follows that an injective map $f : X \to Y$ that preserves a fixed distance $\rho > 0$ is an isometry. According to item 4 of the Theorem the assumption of injectivity is unnecessary in the above statement.

Remark 1. The set S_{xy} constructed in the proof does not depend on Y.

Remark 2. Instead of injectivity in the Theorem and Corollary we may assume that
\[
\forall u, v \in \text{dom}(f)(\|u - v\|/\rho \in \mathbb{Q} \cap (0, \infty) \Rightarrow \|f(u) - f(v)\| \neq \|u - v\|/2)
\]
It follows from Figure 1.

Remark 3. W. Benz and H. Berens proved ([3], see also [2] and [10]) the following theorem: Let X and Y be normed vector spaces such that Y is strictly convex and such that the dimension of X is at least 2. Let $\rho > 0$ be a fixed real number and let $N > 1$ be a fixed integer. Suppose that $f : X \to Y$ is a mapping satisfying:
\[
\|a - b\| = \rho \Rightarrow \|f(a) - f(b)\| \leq \rho
\]
\[
\|a - b\| = N\rho \Rightarrow \|f(a) - f(b)\| \geq N\rho
\]
for all $a, b \in X$. Then f is an affine isometry.

Remark 4. A. Tyszka proved ([14]) the following theorem: if $x, y \in \mathbb{R}^n$ ($2 \leq n < \infty$) and $|x - y|$ is an algebraic number then there exists a finite set $S_{xy} \subseteq \mathbb{R}^n$ containing x and y such that each map from S_{xy} to \mathbb{R}^n preserving unit distance preserves the distance between x and y.
References

1. F. S. Beckman and D. A. Quarles Jr., On isometries of euclidean spaces, *Proc. Amer. Math. Soc.* 4 (1953), 810–815.

2. W. Benz, *Real geometries*, BI Wissenschaftsverlag, Mannheim, 1994.

3. W. Benz and H. Berens, A contribution to a theorem of Ulam and Mazur, *Aequationes Math.* 34 (1987), 61–63.

4. K. Ciesielski and Th. M. Rassias, On some properties of isometric mappings, *Facta Univ. Ser. Math. Inform.* 7 (1992), 107–115.

5. J. A. Clarkson, Uniformly convex spaces, *Trans. Amer. Math. Soc.* 40 (1936), 396–414.

6. U. Everling, Solution of the isometry problem stated by K. Ciesielski, *Math. Intelligencer*, 10 (1988), No.4, p.47.

7. B. Mielnik and Th. M. Rassias, On the Aleksandrov problem of conservative distances, *Proc. Amer. Math. Soc.* 116 (1992), 1115–1118.

8. Th. M. Rassias, Is a distance one preserving mapping between metric spaces always an isometry?, *Amer. Math. Monthly* 90 (1983), p.200.

9. Th. M. Rassias, Some remarks on isometric mappings, *Facta Univ. Ser. Math. Inform.* 2 (1987), 49–52.

10. Th. M. Rassias, Properties of isometries and approximate isometries, in ”Recent progress in inequalities” (ed. G. V. Milovanović), 341–379, Math. Appl. 430, Kluwer Acad. Publ., Dordrecht, 1998.

11. Th. M. Rassias, Properties of isometric mappings, *J. Math. Anal. Appl.* 235 (1999), 108–121.
12. Th. M. Rassias, Isometries and approximate isometries, *Int. J. Math. Math. Sci.*, to appear.

13. Th. M. Rassias and P. Šemrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, *Proc. Amer. Math. Soc.* 118 (1993), 919–925.

14. A. Tyszka, Discrete versions of the Beckman-Quarles theorem, *Aequationes Math.* 59 (2000), 124–133.

15. J. E. Valentine, Some implications of Euclid’s proposition 7, *Math. Japon.* 28 (1983), 421–425.

Technical Faculty
Hugo Kołłątaj University
Balicka 104, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl
Home page: http://www.cyf-kr.edu.pl/~rttyszka