P-Resolutions of Cyclic Quotients from the Toric Viewpoint

Klaus Altmann
Institut für reine Mathematik, Humboldt-Universität zu Berlin
Ziegelstraße 13A, D-10099 Berlin, Germany.
E-mail: altmann@mathematik.hu-berlin.de

1 Introduction

(1.1) The break through in deformation theory of (two-dimensional) quotient singularities Y was Kollár/Shepherd-Barron’s discovery of the one-to-one correspondence between so-called P-resolutions, on the one hand, and components of the versal base space, on the other hand (cf. [KS], Theorem (3.9)). It generalizes the fact that all deformations admitting a simultaneous (RDP-) resolution form one single component, the Artin component.

According to definition (3.8) in [KS], P-resolutions are partial resolutions $\pi : \tilde{Y} \to Y$ such that

- the canonical divisor $K_{\tilde{Y}|Y}$ is ample relative to π (a minimality condition) and
- \tilde{Y} contains only mild singularities of a certain type (so-called T-singularities).

Despite their definition as those quotient singularities admitting a \mathbb{Q}-Gorenstein one-parameter smoothing ([KS], (3.7)), there are at least three further descriptions of the class of T-singularities: An explicit list of their defining group actions on \mathbb{A}^2 ([KS], (3.10)), an inductive procedure to construct their resolution graphs ([KS], (3.11)), and a characterization using toric language ([Al], (7.3)).

The latter one starts with the observation that affine, two-dimensional toric varieties (given by some rational, polyhedral cone $\sigma \subseteq \mathbb{R}^2$) provide exactly the two-dimensional cyclic quotient singularities. Then, T-singularities come from cones over rational intervals of integer length placed in height one (i.e. contained in the affine line $(\bullet, 1) \subseteq \mathbb{R}^2$).
If the affine interval is of length \(\mu + 1 \), then the corresponding T-singularity will have Milnor number \(\mu \) (on the \(Q \)-Gorenstein one-parameter smoothing).

(1.2) In [Ch] and [St] Christophersen and Stevens gave a combinatorial description of all P-resolutions for two-dimensional, cyclic quotient singularities. Using an inductive construction method (going through different cyclic quotients with step-by-step increasing multiplicity) they have shown that there is a one-to-one correspondence between P-resolutions, on the one hand, and certain integer tuples \((k_2, \ldots, k_{e-1})\) yielding zero if expanded as a (negative) continued fraction (cf. (1.2)), on the other hand.

The aim of the present paper is to provide an elementary, direct method for constructing the P-resolutions of a cyclic quotient singularity (i.e. a two-dimensional toric variety) \(Y_\sigma \). Given a chain \((k_2, \ldots, k_{e-1})\) representing zero, we will give a straight description of the corresponding polyhedral subdivision of \(\sigma \). (In particular, the bijection between those 0-chains and P-resolutions will be proved again by a different method.)

2 Cyclic Quotient Singularities

In the following we want to remind the reader of basic notions concerning continued fractions and cyclic quotients. It should be considered a good chance to fix notations. References are [Od] (§1.6) or the first sections in [Ch] and [St], respectively.

(2.1) **Definition:** To integers \(c_1, \ldots, c_r \in \mathbb{Z} \) we will assign the continued fraction \([c_1, \ldots, c_r] \in Q\), if the following inductive procedure makes sense (i.e. if no division by 0 occurs):

- \([c_r] := c_r\)
- \([c_1, \ldots, c_r] := c_1 - 1/[c_i+1, \ldots, c_r]\).

If \(c_i \geq 2 \) for \(i = 1, \ldots, r \), then \([c_1, \ldots, c_r]\) is always defined and yields a rational number greater than 1. Moreover, all these numbers may be represented by those continued fractions in a unique way.

(2.2) Let \(n \geq 2 \) be an integer and \(q \in (\mathbb{Z}/n\mathbb{Z})^* \) be represented by an integer between 0 and \(n \). These data provide a group action of \(\mathbb{Z}/n\mathbb{Z} \) on \(\mathbb{C}^2 \) via the matrix \[
\begin{pmatrix}
\xi & 0 \\
0 & \xi^q
\end{pmatrix}
\] (with \(\xi \) a primitive \(n \)-th root of unity). The quotient is denoted by \(Y(n, q) \).
In toric language, $Y(n, q)$ equals the variety Y_σ assigned to the polyhedral cone $\sigma := \langle (1, 0); (-q, n) \rangle \subseteq \mathbb{R}^2$. $(Y_\sigma$ is defined as $\text{Spec} \mathcal{O}[\sigma^\vee \cap \mathbb{Z}^2]$ with $\sigma^\vee := \{ r \in (\mathbb{R}^2)^* | r \geq 0 \text{ on } \sigma \} = \langle [0, 1]; [n, q] \rangle \subseteq (\mathbb{R}^2)^* \cong \mathbb{R}^2$.)

Notation: Just to distinguish between \mathbb{R}^2 and its dual $(\mathbb{R}^2)^*$, we will denote these vector spaces by $N_{\mathbb{R}}$ and $M_{\mathbb{R}}$, respectively. (Hence, $\sigma \subseteq N_{\mathbb{R}}$ and $\sigma^\vee \subseteq M_{\mathbb{R}}$.) Elements of $N_{\mathbb{R}} \cong \mathbb{R}^2$ are written in paranthesis; elements of $M_{\mathbb{R}} \cong \mathbb{R}^2$ are written in brackets. The natural pairing between $N_{\mathbb{R}}$ and $M_{\mathbb{R}}$ is denoted by \langle , \rangle which should not be mixed up with the symbol indicating the generators of a cone. Finally, all these remarks apply for the lattices $N \cong \mathbb{Z}^2$ and $M \cong \mathbb{Z}^2$, too.

Let n, q as before. We may write $n/(n-q)$ and n/q (both are greater than 1) as continued fractions

$$n/(n-q) = [a_2, \ldots, a_{e-1}] \quad \text{and} \quad n/q = [b_1, \ldots, b_r] \quad (a_i, b_j \geq 2).$$

The a_i’s and the b_j’s are mutually related by Riemenschneider’s point diagram (cf. [R]).

Take the convex hull of $(\sigma^\vee \cap M) \setminus \{0\}$ and denote by w^1, w^2, \ldots, w^e the lattice points on its compact edges. If ordered the right way, we obtain $w^1 = [0, 1]$ and $w^e = [n, q]$ for the first and the last point, respectively.

Then, $E := \{ w^1, \ldots, w^e \}$ is the minimal generating set (the so-called Hilbert basis) of the semigroup $\sigma^\vee \cap M$. These point are related to our first continued fraction by

$$w^{i-1} + w^{i+1} = a_i w^i \quad (i = 2, \ldots, e-1).$$

Remark: The surjection $N^E \rightarrow \sigma^\vee \cap M$ provides a minimal embedding of Y_σ. In particular, e equals its embedding dimension.

In a similar manner we can define $v^0, \ldots, v^{r+1} \in \sigma \cap N$ in the original cone; now we have $v^0 = (1, 0)$, $v^{r+1} = (-q, n)$, and the relation to the continued fractions is $v^{j-1} + v^{j+1} = b_j v^j$ (for $j = 1, \ldots, r$).
Drawing rays through the origin and each point v^j, respectively, provides a polyhedral subdivision Σ of σ. The corresponding toric variety Y_Σ is a resolution of our singularity Y_σ. The numbers $-b_j$ equal the self intersection numbers of the exceptional divisors; since $b_j \geq 2$, the resolution is the minimal one.

3 The Maximal Resolution

(3.1) **Definition:** ([KS], (3.12)) For a resolution $\pi: \tilde{Y} \to Y$ we may write $K_{\tilde{Y}|Y} := K_{\tilde{Y}} - \pi^*K_Y = \sum_j (\alpha_j - 1)E_j$ (E_j denote the exceptional divisors, $\alpha_j \in \mathbb{Q}$). Then, π will be called maximal, if it is maximal with respect to the property $0 < \alpha_j < 1$.

The maximal resolution is uniquely determined and dominates all the P-resolutions. Hence, for our purpose, it is more important than the minimal one. It can be constructed from the minimal resolution by successive blowing up of points $E_i \cap E_j$ with $\alpha_i + \alpha_j \geq 0$ (cf. Lemma (3.13) and Lemma (3.14) in [KS]).

(3.2) **Proposition:** The maximal resolution of Y_σ is toric. It can be obtained by drawing rays through 0 and all interior lattice points (i.e. $\in \mathbb{N}$) of the triangle $\Delta := \text{conv}(0, v^0, v^{r+1})$, respectively.

Proof: We have to keep track of the rational numbers α_j. Hence, we will show how they can be “seen” in an arbitrary toric resolution of Y_σ. Let $\Sigma < \sigma$ be a subdivision generated by one-dimensional rays through the points $u^0, \ldots, u^{s+1} \in \sigma \cap \mathbb{N}$. (In particular, $u^0 = v^0 = (1, 0)$ and $u^{s+1} = v^{r+1} = (-q, n)$; moreover, for the minimal resolution we would have $s = r$ and $u^j = v^j$ ($j = 0, \ldots, r+1$).) Denote by c_1, \ldots, c_s the integers given by the relations

$$u^{j-1} + u^{j+1} = c_j u^j \quad (j = 1, \ldots, s).$$
(In particular, \(c_j = b_j\) for the minimal resolution again.)

As usual, the numbers \(-c_j\) equal the self intersection numbers of the exceptional divisors \(E_j\) in \(Y_\Sigma\): Indeed, \(D := \sum_i u^i E_i\) is a principal divisor (if you do not like coefficients \(u^i\) from \(N\), evaluate them by arbitrary elements of \(M\)); hence,

\[
0 = E_j \cdot D = E_j \cdot (w^{j-1}E_{j-1} + w^jE_j + w^{j+1}E_{j+1}) = w^{j-1} + (E_j)^2 w^j + w^{j+1} = (c_j + (E_j)^2) \cdot w^j \quad (j = 1, \ldots, s).
\]

On the other hand, we can use the projection formula to obtain

\[
-2 = 2g(E_j) - 2 = K_{\tilde{Y}_Y} \cdot E_j + (E_j)^2 = \sum_i (\alpha_i - 1) (E_i \cdot E_j) + (E_j)^2 = (\alpha_{j-1} - 1) + (\alpha_j - 1) (E_j)^2 + (\alpha_{j+1} - 1) + (E_j)^2,
\]

hence

\[
\alpha_{j-1} + \alpha_{j+1} = c_j \alpha_j \quad (j = 1, \ldots, s; \ \alpha_0, \alpha_{s+1} := 1).
\]

Looking at the definition of the \(c_j\)'s (via relations among the lattice points \(u^i\)), there has to be some \(R \in M_R\) such that

\[
\alpha_j = \langle u^j, R \rangle \quad (j = 0, \ldots, s + 1).
\]

The conditions \(\langle u^0, R \rangle = \alpha_0 = 1\) and \(\langle u^{s+1}, R \rangle = \alpha_{s+1} = 1\) determine \(R\) uniquely. Now, we can see that \(\alpha_j\) measures exactly the quotient between the length of the line segment \(0u^j\), on the one hand, and the length of the \(\Delta\)-part of the line through \(0\) and \(u^j\), on the other hand. In particular, \(\alpha_j < 1\) if and only if \(u^j\) sits below the line connecting \(u^0\) and \(u^{s+1}\).

![Diagram](image)

This explains how to construct the maximal resolution: Start with the minimal one and continue subdividing each small cone \(\langle u^j, u^{j+1} \rangle\) into \(\langle u^j, u^j + u^{j+1} \rangle \cup \langle u^j + u^{j+1}, u^{j+1} \rangle\) as long as it contains interior lattice points below the line \([R = 1]\), i.e.
Corollary: Every P-resolution is toric.

Proof: P-resolutions are obtained by blowing down curves in the maximal resolution.

(3.3) Example: We take the example $Y(19, 7)$ from [KS], (3.15). Since

$$\sigma = \langle (1, 0), (-7, 19) \rangle,$$

the interior of Δ is given by the three inequalities

$$y > 0, \quad 19x + 7y > 0, \quad \text{and} \quad 19x + 8y < 19 \quad \text{corresponding to} \quad R = [1, 8/19].$$

The only primitive (i.e. generating rays) lattice points contained in int Δ are

$$u^1 = (0, 1), \quad u^2 = (-1, 4), \quad u^3 = (-2, 7), \quad u^4 = (-1, 3), \quad u^5 = (-5, 14), \quad u^6 = (-4, 11).$$

They provide the maximal resolution. The corresponding α’s can be obtained by taking the scalar product with $R = [1, 8/19]$, i.e. they are $8/19, 13/19, 18/19, 5/19, 17/19, \text{and} \ 12/19$.

The minimal resolution uses only the rays through $u^1 = (0, 1), \ u^4 = (-1, 3), \ \text{and} \ u^6 = (-4, 11)$, respectively.

4 P-Resolutions

(4.1) In this section we will speak about partial toric resolutions $\pi : Y_\Sigma \to Y_\sigma$.

Nevertheless, we use the same notation as we did for the maximal resolution: The fan Σ subdividing σ is generated by rays through $u^0, \ldots, u^s \in \sigma \cap N$; each ray u^j corresponds to an exceptional divisor $E_j \subseteq Y_\Sigma$. However, since $u^{j-1} + u^{j+1}$ need not to be a multiple of u^j, the numbers c_j do not make sense anymore.

Lemma: ([Re], (4.3)) For $K := K_{Y_\Sigma}$ or $K := K_{Y_\Sigma | Y_\sigma}$ the intersection number $(E_j \cdot K)$ is positive, zero, or negative, if the line segments $\overline{u^{j-1}u^j}$ and $\overline{u^ju^{j+1}}$ form a strict concave, flat, or strict convex “roof” over the two cones, respectively.

\[\begin{align*}
\text{Diagram:} & \quad (E_j \cdot K) > 0 \\
\text{Diagram:} & \quad (E_j \cdot K) = 0 \\
\text{Diagram:} & \quad (E_j \cdot K) < 0
\end{align*} \]
Proof: Using $K := K_{Y_2} = - \sum_{i=0}^{s+1} E_i$ (cf. (2.1)) we have

$$(E_j \cdot K) = -(E_j \cdot E_{j-1}) - (E_j)^2 - (E_j \cdot E_{j+1}).$$

On the other hand, as in the proof of Proposition (3.2), we know that

$$0 = (E_j \cdot E_{j-1}) u^{i-1} + (E_j)^2 u^i + (E_j \cdot E_{j+1}) u^{i+1}.$$

Combining both formulas yields the final result

$$(E_j \cdot K) u^j = (E_j \cdot E_{j-1}) (u^{i-1} - u^i) + (E_j \cdot E_{j+1}) (u^{i+1} - u^i).$$

$$\blacksquare$$

Remark: The previous lemma together with Proposition (3.2) illustrate again the fact that all P-resolutions (and we just need the fact that the canonical divisor is relatively ample) are dominated by the maximal resolution.

(4.2) In [Ch] Christophersen has defined the set

$$K_{e-2} := \{(k_2, \ldots, k_{e-1}) \in \mathbb{N}^{e-2} \mid [k_2, \ldots, k_{e-1}] \text{ is well defined and yields } 0 \}$$

of chains representing zero. To every such chain there are assigned non-negative integers q_1, \ldots, q_e characterized by the following mutually equivalent properties:

- $q_1 = 0$, $q_2 = 1$, and $q_{i-1} + q_{i+1} = k_i q_i$ ($i = 2, \ldots, e-1$);
- $q_{e-1} = 1$, $q_e = 0$, and $q_{i-1} + q_{i+1} = k_i q_i$ ($i = 2, \ldots, e-1$);
- $q_e = 0$ and $[k_i, \ldots, k_{e-1}] = q_{i-1}/q_i$ with $\gcd(q_{i-1}, q_i) = 1$ ($i = 2, \ldots, e-1$).

(The two latter properties do not even use the fact that the continued fraction $[k_2, \ldots, k_{e-1}]$ yields zero.)

Remark: The elements of K_{e-2} correspond one-to-one to triangulations of a (regular) $(e-1)$-gon with vertices $P_2, \ldots, P_{e-1}, P_*$. Then, the numbers k_i tell how many triangles are attached to P_i. The numbers q_i have an easy meaning in this language, too.

Finally, for a given Y_σ with embedding dimension e, Christophersen defines

$$K(Y_\sigma) := \{(k_2, \ldots, k_{e-1}) \in K_{e-2} \mid k_i \leq a_i \} .$$

Theorem: Each P-resolution of Y_σ (i.e. the corresponding subdivision Σ of σ) is given by some $k \in K(Y_\sigma)$ in the following way:

(1) Σ is built from the rays that are orthogonal to $w^i/q_i - w^{i-1}/q_{i-1} \in M_\mathbb{R}$ (for $i = 3, \ldots, e-1$). In some sense, if the occurring divisions by zero are interpreted well,
\(\Sigma \) may be seen as dual to the Newton boundary generated by \(w^i/q_i \in \sigma^i \) \((i = 1, \ldots, e)\).

(2) The affine lines \([\langle \cdot, w^i \rangle = q_i] \) form the “roofs” of the \(\Sigma \)-cones. In particular, the (possibly degenerate) cones \(\tau^i \in \Sigma \) correspond to the elements \(w^1, \ldots, w^e \in E \) The “roof” over the cone \(\tau^i \) has length \(\ell_i := (a_i - k_i) q_i \) (the lattice structure \(M \subseteq M_{\mathbb{R}} \) induces a metric on rational lines). In particular, \(\tau^i \) is degenerated if and only if \(k_i = a_i \). The Milnor number of the T-singularity \(Y_{t^i} \) equals \((a_i - k_i - 1)\).

\[(4.3) \text{ Proof:} \] According to the notation introduced in (4.1), the fan \(\Sigma \) consists of (non-degenerate) cones \(\tau^j := \langle w^{j-1}, w^j \rangle \) with \(j = 1, \ldots, s + 1 \). (Except \(w^0 = (1, 0) \) and \(w^e = (-q, n) \), their generators \(w^j \) are primitive lattice points (i.e. \(\in N \)) contained in \(\text{int} \Delta \subseteq \sigma \).)

Step 1: For each \(\tau^j \) there are \(w \in E, d \in \mathbb{N} \) such that \(\langle w^{j-1}, w \rangle = \langle w^j, w \rangle = d \).

First, it is very clear that there are a primitive lattice point \(w \in M \) and a non-negative number \(d \in \mathbb{R}_{\geq 0} \) admitting the desired properties. Moreover, since \(w \in N \), \(d \) has to be an integer, and Reid’s Lemma (4.1) tells us that \(w \in \sigma' \). It remains to show that \(w \) belongs even to the Hilbert basis \(E \subseteq \sigma' \cap M \).

Denote by \(\ell \) the length of the line segment \(\overline{w^{j-1}w^j} \) on the “roof” line \([\langle \cdot, w \rangle = d]\).

Since \(\tau^j \) represents a T-singularity, we know from (7.3) of [A] (cf. [B]) of the present paper) that \(d|\ell \). In particular, \(\overline{w^{-1}w^j} \) contains the \(d \)-th multiple \(d \cdot u \) of some lattice point \(u \in \tau^j \cap M \) (w.l.o.g. not belonging to the boundary of \(\sigma \)). Hence, \(\langle u, w \rangle = 1 \) and \(u \in \text{int} \sigma \cap M \), and this implies \(w \in E \).

Step 2: Knowing that each of the cones \(\tau^1, \ldots, \tau^{s+1} \in \Sigma \) is assigned to some element \(w \in E \), a slight adaption of the notation (a renumbering) seems to be very useful: Let \(\tau^i := \langle w^{i-1}, w^i \rangle \) be the cone assigned to \(w^i \in E \), and denote by \(d_i, \ell_i \) the height and the length of its “roof” \(\overline{w^{i-1}w^i} \), respectively. Some of these cones might be degenerated, i.e. \(\ell_i = 0 \). This it at least true for the extremal \(\tau^1 \) and \(\tau^e \) coinciding with the two rays spanning \(\sigma \). Here we have even \(d_1 = d_e = 0 \); in particular \(w^0 = w^1 = (1, 0) \) and \(w^{e-1} = w^e = (-q, n) \).

Since \(d_i|\ell_i \), we may introduce integers \(k_i \leq a_i \) yielding \(\ell_i = (a_i - k_i) d_i \). For \(i = 2, \ldots, e - 1 \) they are even uniquely determined.

Step 3: Using the following three ingredients

(i) \(\langle w^{i-1}, w^i \rangle = \langle w^i, w^i \rangle = d_i \) \((i = 1, \ldots, e)\),

(ii) \(w^{i-1} + w^{i+1} = a_i w^i \) \((i = 2, \ldots, e - 1)\); cf. (2.3)), and

(iii) \(\langle w^i - w^{i-1}, w^{i-1} \rangle = \ell_i = (a_i - k_i) d_i \) (since \(\{w^{i-1}, w^i\} \) forms a \(\mathbb{Z} \)-basis of \(M \)),
we obtain

\[d_{i+1} + d_{i+1} = (a_i d_i + d_{i-1}) - (a_i d_i - d_{i+1}) \]
\[= (a_i d_i + (u^{i-1}, w^{i-1})) - (u^i, a_i w^i - w^{i+1}) \]
\[= a_i d_i + (u^{i-1}, w^{i-1}) - (u^i, w^{i-1}) \]
\[= a_i d_i + (u^{i-1} - u^i, w^{i-1}) \]
\[= a_i d_i - (a_i - k_i) d_i = k_i d_i \quad \text{(for } i = 2, \ldots, e-1). \]

In particular, \(k_i \geq 0 \) (and even \(\geq 1 \) for \(e > 3 \)). Moreover, since \(\{w^{i-1}, w^i\} \)
forms a basis of \(M \) and \(u^{i-1} \in N \) is primitive, we have \(\gcd(d_{i-1}, d_i) = 1 \). Hence, \(d_i = q_i \) (both series of integers satisfy the second of the three properties mentioned in the beginning of \((4.2)\)). Finally, the third of these properties yields

\[[k_2, \ldots, k_{e-1}] = q_1/q_2 = d_1/d_2 = 0, \text{ i.e. } k \in K_{e-2}. \]

The reversed direction (i.e. the fact that each \(K(Y_\sigma) \)-element indeed yields a P-resolution) follows from the above calculations in a similar manner. \(\square \)

Remark: Subdividing each \(\tau_i \) further into \((a_i - k_i) \) equal cones (with “roof” length \(q_i \) each) yields the so-called M-resolution (cf. \([BC]\)) assigned to a P-resolution. It is defined to contain only \(T_0 \)-singularities (i.e. \(T \)-singularities with Milnor number 0); in exchange, \(K_{Y|Y'} \) does not need to be relatively ample anymore. This property is replaced by “relatively nef”.

Examples:

(1) The continued fraction \([1, 2, 2, \ldots, 2, 1]\) = 0 yields \(q_1 = q_e = 0 \) and \(q_i = 1 \) otherwise. In particular, the “roof” lines equal \([\langle \bullet, w^i \rangle = 1\) (for \(i = 2, \ldots, e-1) \) describing the RDP-resolution of \(Y_\sigma \). The assigned M-resolution equals the minimal resolution mentioned at the end of \((2.3)\).

(2) Let us return to Example \((3.3)\): The embedding dimension \(e \) of \(Y_\sigma \) is 6, the vector \((a_2, \ldots, a_{e-1})\) equals \((2, 3, 2, 3)\), and, except the trivial RDP element mentioned in \((1)\), \(K(Y_\sigma) \) contains only \((1, 3, 1, 2)\) and \((2, 2, 1, 3)\).

In both cases we already know that \(q_1 = q_6 = 0 \) and \(q_2 = q_5 = 1 \). The remaining values are given by the equation \(q_3/q_4 = [k_4, k_5]\), i.e. we obtain \(q_3 = 1, q_4 = 2 \) or \(q_3 = 2, q_4 = 3 \), respectively.

Hence, in case of \((1, 3, 1, 2)\) the fan \(\Sigma \) is given by the additional rays through \((0, 1)\) and \((-4, 11)\). For \(k = (2, 2, 1, 3) \) we need the only one through \((-1, 4)\).

References

[Al] Altmann, K.: Minkowski sums and homogeneous deformations of toric varieties. Tôhoku Math. J. 47 (1995), 151-184.

[BC] Behnke, K., Christophersen, J.A.: M-resolutions and deformations of quotient singularities. Amer. J. Math. 116, 881-903 (1994).
[Ch] Christophersen, J.A.: On the Components and Discriminant of the Versal Base Space of Cyclic Quotient Singularities. In: Singularity Theory and its Applications, Warwick 1989, Part I: Geometric Aspects of Singularities, pp. 81-92, Springer-Verlag Berlin Heidelberg, 1991 (LNM 1462).

[KS] Kollár, J., Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities. Invent. math. 91, 299-338 (1988).

[Od] Oda, T.: Convex bodies and algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3/15), Springer-Verlag, 1988.

[Re] Reid, M.: Decomposition of Toric Morphisms. In: Arithmetic and Geometry, papers dedicated to I.R. Shavarevich, ed. M. Artin and J. Tate, pp. 395-418, Birkhäuser 1983.

[Ri] Riemenschneider, O.: Deformationen von Quotientensingularitäten (nach zyklischen Gruppen). Math. Ann. 209 (1974), 211-248.

[St] Stevens, J.: On the versal deformation of cyclic quotient singularities. In: Singularity Theory and its Applications, Warwick 1989, Part I: Geometric Aspects of Singularities, pp. 302-319, Springer-Verlag Berlin Heidelberg, 1991 (LNM 1462).