Studies on the Biology of *Hypogeococcus pungens* (sensu stricto) (Hemiptera: Pseudococcidae) in Argentina to Aid the Identification of the Mealybug Pest of Cactaceae in Puerto Rico

M. B. Aguirre,1,2 H. Diaz-Soltero,3 L. E. Claps,4 A. Saracho Bottero,4 S. Triapitsyn,5 E. Hasson,6 and G. A. Logarzo1

1FuEDEI, Simón Bolívar 1559, Hurlingham, Buenos Aires, Argentina (redbell_@hotmail.com; glogarzo@fuedei.org), 2Corresponding author, e-mail: redbell_@hotmail.com, 3U.S. Department of Agriculture, 1400 Independence Ave, SW 1154 South Building, Washington, DC 20250 (e-mail: hilda.diaz-soltero@aphis.usda.gov), 4Instituto Superior de Entomología “Dr. Abraham Willink” (INSUE) Miguel Lillo 205, 4000 S. M. de Tucumán, Argentina (e-mail: luciaclap@gmail.com; andrea_saracho1308@hotmail.com), 5Entomology Research Museum, Department of Entomology, University of California, Riverside, CA 92521, USA, and 6Department of Ecología Genética Y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. 2, C1428 EHA Buenos Aires, Argentina (estebanhasson@yahoo.com.ar)

Subject Editor: Takumasa Kondo

Received 28 October 2015; Accepted 16 May 2016

Abstract

Hypogeococcus pungens Granara de Willink, sensu stricto, is a serious pest of cacti in Puerto Rico threatening many Caribbean islands. A classical biological control program for *H. pungens* was initiated for Puerto Rico in 2010 with a survey for natural enemies of *H. pungens* in its native range of Argentina. Biological differences were observed between populations of *H. pungens* sampled on Amaranthaceae and Cactaceae. Molecular studies suggested that *H. pungens* populations from different host plant families are likely a complex of species. Our objective was to study the biology of *H. pungens* sensu stricto on specimens collected in the same locality and host plant as the holotype [Tucumán Province, Argentina; *Alternanthera pungens* Kunth (Amaranthaceae)].

We were interested in the reproductive biology of females, longevity and survival of adults, the effect of temperature on the development, and nymph performance (survival and development) on five Cactaceae species. We found that *H. pungens* s.s. showed marked biological differences from the populations collected on Cactaceae and exported to Australia for the biological control of the cactus *Harrisia* spp. The main differences were the presence of deuterotoky parthenogenesis and the fact that *H. pungens* did not attack Cactaceae in the laboratory. Our results provide biological evidence that *H. pungens* is a species complex. We propose that the population introduced to Australia is neither *Hypogeococcus festerianus* Lizer y Trelles nor *H. pungens*, but an undescribed species with three circuli, and that the *Hypogeococcus* pest of cacti in Puerto Rico is not *H. pungens*.

Key words: Biological control; species complex; host race; *Alternanthera*, cacti

Hypogeococcus pungens Granara de Willink (Hemiptera: Pseudococcidae) is native to South America and was described from specimens collected on *Alternanthera pungens* Kunth (Amaranthaceae) in Tucumán Province, Argentina (Granara de Willink 1981). The host range of this mealybug includes species of Cactaceae, Amaranthaceae, and Portulacaceae (Ben-Dov 1994, Claps and de Haro 2001, Hodges and Hodges 2009). Nymphs and females suck photosynthates with their stylet-sheath mouthparts (Fausto-Cisneros 1995). As a result, plants suffer direct and indirect damages (Milonas and Kózar 2008), often manifest as malformations and galls in cacti (McFadyen 1979, Carrera-Martínez et al. 2015).

The biology of *H. pungens* is not well known. The only observations were made by McFadyen (1979) on a population collected on Cactaceae for the biological control of invasive cacti in Australia. They are bisexual and ovoviviparous. Potential fecundity ranges between 80 and 100 eggs, preoviposition period is around 20 d, and females lay 2–4 nymphs per day over 35 d in contrast to other mealybugs, such as *Dactylopius* spp. on *Opuntia* spp, *H. pungens* causes no immediate damage to mature tissue (McFadyen 1979).
Hypogeococcus pungens is an effective biological control agent of invasive cacti in Australia and South Africa (Julien and Griffiths 1999). In 1975, this species was released in Australia to control Harrisia martini (Labouret), Harrisia tortuosa (Forbes) Britton and Rose, and Harrisia bonplandii (Parmentier) Britton and Rose. The mealybug established immediately, and caused severe damage and control on all the target weeds, except for Acanthocereus tetragonus (L.) Hummelink, in which the control was partial (Julien and Griffiths 1999, McFadyen 2012). In 1983, H. pungens was released in South Africa to control Cereus jamacaru de Candolle and H. martini (Julien and Griffiths 1999, Zimmermann and Pérez Sandi y Cuen 2010). In both countries, the control was successful, and since H. pungens was released, it has not been found in other family than Cactaceae (Zimmermann and Pérez Sandi y Cuen 2010, McFadyen 2012).

At present, H. pungens is a serious pest of native and endemic columnar cacti (species of cacti with cylindrical growth) and epiphytic cacti in Puerto Rico (Zimmermann and Pérez Sandi y Cuen 2010, Carrera-Martínez et al. 2015) and a threat to native cacti in Florida, Barbados, other Caribbean islands, and Hawaii (Williams and Granara de Willink 1992, German-Ramirez et al. 2014). In its native range, this species does not cause the same level of damage, probably due to the regulatory effect of the rich complex of natural enemies (McFadyen 1979, Claps and de Haro 2001).

This species has been reported from South America, Australia, South Africa, Italy, Spain, Saint Thomas in the U.S. Virgin Islands, Barbados, United States (Florida, California, and Hawaii), and Puerto Rico (McFadyen and Tomley 1978, 1981, Tomley and McFadyen 1984, Hosking et al. 1988, Moran and Zimmermann 1991, Halbert 1996, Klein 1999, Mazzeo et al. 2008, Hodges and Hodges 2009, Zimmermann and Pérez Sandi y Cuen 2010, Beltrá and Soto 2011). Although it is not known how H. pungens colonized areas where it was not deliberately released, it is suspected that it was introduced via the trade of ornamental cacti (Zimmermann and Pérez Sandi y Cuen 2010).

Due to the extensive damage caused by H. pungens on native cacti in Puerto Rico, the United States Department of Agriculture (USDA) and the Fundación para el Estudio de Especies Invasivas (FuDEI) initiated a classical biological control program. A survey of the natural enemies of H. pungens in its native range (Argentina) on Cactaceae and Amaranthaceae was initiated in November 2010 (Triapitsyn et al. 2014). Observations on the biology of H. pungens collected and reared on Amaranthaceae showed some differences with those collected and reared on Cactaceae (Aguirre 2012). For example, H. pungens feeds mainly on roots of Amaranthaceae and stems, flowers, buds, and fruits of Cactaceae. We decided to establish a colony of H. pungens on Cactaceae with populations collected from Amaranthaceae with several techniques but all failed to establish a culture (Aguirre 2012). Molecular studies conducted with specimens identified as H. pungens collected on different host plants in several countries suggested the presence of host races or cryptic species (de León et al. 2012).

The objective of this research was to study the biology of H. pungens sensu stricto, and gather information needed to solve the taxonomic identity of this species. Reproductive biology (fecundity, pre-reproductive and reproductive periods, and mode of reproduction), adult longevity, and effect of temperature on the development and survival of nymphs were studied using specimens from the type locality and the original host plant (Trancas, Tucumán, Argentina; A. pungens). Survival and development of nymphs on five potential Cactaceae host species was also studied.

Materials and Methods

The studies were conducted at FuDEI, Hurlingham, Argentina, between January 2011 and March 2013. An H. pungens colony was established with specimens collected in Trancas, Tucumán, Argentina (26°14'12.2"S, 65°16'26.4"W), on the recorded host plant of the type specimen, A. pungens (Granara de Willink 1981). For the remainder of this article, these H. pungens specimens will be referred to as H. pungens sensu stricto. The colony was maintained in the laboratory on potted plants of one of its natural host Alternanthera paronychioides, Saint-Hilaire (Amaranthaceae). A. pungens was not used as the host plant because it was difficult to grow under laboratory conditions.

Potted test plants were established 3 mo before the experiment to standardize the growth of the plants. Plants were collected in Hurlingham, Buenos Aires, Argentina, transported to the laboratory, and transplanted in pots (50 ml) with standard soil (blend of organic materials, sand, and perlite) in a greenhouse under irrigation. All plants were grown at room temperature (25 ± 4°C), at 60–80% RH with natural photoperiod.

When the potted plants reached 20 cm in height, they were infested by transferring gravid females placed individually on leaves and stems. To deny access to undesirable mealybug specimens (mealybugs of the same and different species) and natural enemies, each infested plant was placed inside a cylindrical plastic cage (13 cm diameter by 23 cm height). To vent the cages, the lid had a hole (6-cm diameter) covered with a mesh fabric. The cages were maintained in rearing chambers at 25°C, 60–80% RH, and a photoperiod of 16:8 (L:D) h. All experiments were conducted under these conditions except when specified otherwise.

All study (nymphs and adults) was conducted under dissecting microscope (40×), and measurements were made with a 2-mm micrometer.

Reproductive Biology

Potential, Realized Fecundity and Sex Ratio

Potential fecundity was estimated by counting the number of mature and immature oocytes produced per female (n= 24). Fed and mated females collected from the laboratory colony were fixed in 96% EtOH, approx. 2 wk after their emergence and before they began producing nymphs. Females were not killed and dissected immediately after adult emergence due to the fragility of egg chorion. Female body length was also measured.

Realized fecundity, or the number of nymphs produced per female, was studied on 12 mated gravid females (0–48 h old) reared individually on A. paronychioides. Each female was monitored every 3 d to record the number of nymphs produced until female death. The sex ratio was estimated on the offspring of all females which were reared until the third instar when sex could be determined (n= 317 nymphs).

Pre-Reproductive and Reproductive Periods

Eleven gravid females (48 h old) were transferred individually to A. paronychioides. The pre-reproductive period was the number of days between adult emergence and the birth of the first nymph. The reproductive period was the number of days between the first and the last nymphs produced. Mealybugs were checked every 3 d to record the number of nymphs produced until female death.
Parthenogenesis

In order to verify the occurrence of parthenogenesis in *H. pungens*, first instars were placed individually on a potted *A. paronychioides* plant until the third-instar. Plants with a male nymph were discarded. Plants with a female nymph were kept and checked every other day until adult emergence. Parthenogenesis was confirmed when an unfertilized female produced viable offspring that reached the adult stage. The number of parthenogenetic nymphs produced for each unmated female (*n* = 10) was counted every 3 d. Nymphs were followed until they reached adulthood. Survival, developmental time, and sex ratio of parthenogenetic offspring were recorded.

Adult Longevity and Survival

Adult longevity was estimated based on the observations of 12 females and 19 males. Adults (<24 h old and mated) were checked every 2 d (females) or every day (males) until their death. The individuals used in this test were obtained from the first-instar nymphs placed individually on *A. paronychioides* and monitored until they reached adulthood.

Nymphal Survival and Development

In order to study the effect of temperature on the development and survival of immature stages, first-instar nymphs were reared at three constant temperatures (20°C, 27°C, and 30°C). For each temperature treatment, a total of 12 nymphs (0–24 h old) were placed on *A. paronychioides*. The nymphs were examined every 3 d until adult emergence. Six replications were carried out for each temperature. The results were modeled and the survival curves were compared. The lower development threshold (δ) and the thermal constant (K) (number of degree-days needed for full development) were estimated using the temperature summation model, based on the assumption that a straight line was a useful approximation of the relationship between temperature (t) and rate of development (1/y, where y = time of development) (Andrewartha and Birch 1954). The thermal constant was $K = \frac{y_i}{t_i - \delta}$, where y_i represents the number of days required to complete development at temperature t_i, and δ is the temperature found by extrapolation of the regression, with t and 1/y as independent and dependent variables, respectively.

Nymphal Survival and Development on Different Host Plants

Nymphal survival and development were assessed on five cacti hosts (four from Argentina and one from the Caribbean): *Hylocereus undatus* (Haw), Britton and Rose (Zimmermann and Pérez Sandí y Cuen 2010), *Monvillea cavendishii* (Monv.) Britton and Rose (McFadyen 1979), *H. bonplandii*, *Harrisia pomanensis* (F.A.C. Webber ex K. Schum) Britton and Rose (McFadyen 2012), and *Cleistocactus baumannii* (Lemaire) Lemaire (Williams and Granara de Willink 1992, McFadyen 2012) (Table 1). Nymphal survival and development on cacti were compared with those on *A. paronychioides*, used as a control host plant. Nymphal survival and development time were recorded on each host plant.

A single gravid female (<48 h old) was placed individually on a stem section of cacti (13–20-cm long) or in a potted plant of *A. paronychioides*. All plants with the mealybug were introduced individually in a vented (7-cm diameter covered with mesh fabric) plastic cage of 20-cm diameter by 8-cm height in the case of Cactaceae, or into a cylindrical plastic cage of 13-cm diameter by 23-cm height in the case of Amaranthaceae. For each female–host plant combination, survival was calculated as the number of nymphs that reached the adult stage compared with the initial number of nymphs produced. In addition, the ability to produce viable offspring was tested for the adults (*F*1) obtained on each host plant species by allowing copulation and monitoring the containers for nymphs (*F*2) every 3 d for a period of 80 d. Each host plant species treatment was replicated five times.

Statistical Analyses

A linear regression model was developed between potential fecundity and female body size to determine the percentage of the variation in fecundity that was explained by female size. A Chi-square (χ^2) test was used to determine if the sex ratio of *F*1 deviated from 1:1. The survival curves were estimated according to the Kaplan–Meier method (Kaplan and Meier 1958). The survival curves were compared with Cox regression model (Cox 1972). Statistical analyses were performed using Info Stat, R version 2.15.1 (Di Rienzo et al. 2012). The statistical package R Commander of R was used to construct survival curves (Fox 2003). Results were reported as mean ± SD.

Results

Reproductive Biology

Potential, Realized Fecundity, and Sex Ratio

The potential fecundity of *H. pungens* was 43 ± 14 eggs/female, the average body length was 1.36 ± 0.28 mm, and 44% of the variation observed in the potential fecundity of females was explained by their body length (*F* = 17.26, df = 23, *P* = 0.0004; Fig. 1). The realized fecundity was 37 ± 8 individuals/female. The sex ratio of *H. pungens* was 1.5:1 (δ:γ) and was significantly female-biased ($X^2 = 11.7$, df = 1, *P* = 0.0006).

Pre-Reproductive and Reproductive Periods

The average pre-reproductive period was 30 ± 6 d, and the reproductive period was 44 ± 26 d. At 42 d from the beginning of the reproductive period, 67% of females had produced 100% of the nymphs. The number of nymphs produced every 24 h ranged between 3 and 14.

Parthenogenesis

Fifty percent of virgin females of *H. pungens* were able to produce offspring parthenogenetically; females showed deuterotoky parthenogenesis (unfertilized females produced females and males). Survival of the offspring of virgin females was 70% (*n* = 282), and was significantly female-biased (5:1 δ:γ; $\chi^2 = 73.8$, df = 1, *P* = 0.001).

Adult Longevity and Survival

Adult longevity was 85 ± 35 d for females and 4 ± 1 d for males. Females showed type I survival curves, characterized by high survival during early and middle life, followed by a rapid decline toward the end (Fig. 2). In the case of males, a type II curve was observed where a constant mortality rate was observed regardless of age (Fig. 3).
The lower developmental threshold of *H. pungens* nymphs was 12.8°C (Fig. 4), and 294 degree-days were needed to complete their development. Nymphs successfully completed their development between 20 and 30°C (Fig. 4). On the other hand, nymph survival was influenced by temperature (Wald Test = 7.04, df = 2, P = 0.03). At 20°C nymphal mortality was higher than at 27 or 30°C (Fig. 5). No significant differences in nymphal mortality were observed when reared at 27 or 30°C (P > 0.05).

Nymphal Rate of Development and Survival

The lower developmental threshold of *H. pungens* nymphs was 12.8°C (Fig. 4), and 294 degree-days were needed to complete their development. Nymphs successfully completed their development between 20 and 30°C (Fig. 4). On the other hand, nymph survival was influenced by temperature (Wald Test = 7.04, df = 2, P = 0.03). At 20°C nymphal mortality was higher than at 27 or 30°C (Fig. 5). No significant differences in nymphal mortality were observed when reared at 27 or 30°C (P > 0.05).

Nymph Survival and Development on Different Host Plants

Nymph survival and development differed on *H. undatus*, *M. cavendishii*, and *H. bonplandii* (Table 1). On *H. undatus*, 25% of the initial 88 nymphs survived. Three females produced nymphs, but all F₁ offspring died before reaching the adult stage. The survival rate of the 94 nymphs reared on *M. cavendishii* was 10%; only 5 nymphs of the F₁ generation reached the adult stage, but they did not produce viable offspring. All but one nymph reared on *H. bonplandii* survived and developed to adulthood.
died between the first and second instar, living on average 12 ± 3 d (2–30 d). Only one nymph reached the adult stage and it failed to produce offspring. When nymphs were reared on

(m2), none of the 102 tested individuals were able to complete development; they lived an average of 14 ± 8 d (3–43 d) and died before reaching the third-instar stage. All 60 nymphs reared on

(McFadyen 1979). Females of

sensu stricto showed a facultative parthenogenesis by deuterotoky (Gavrilov and Kuznetsova 2007). In this type of reproduction, unfertilized females produce females and males; eggs may develop either with or without fertilization. Individuals that develop from unfertilized eggs restore diplody by fusion of the first haploid cleavage nuclei, resulting in complete homozygosity (Nur 1971, Gavrilov and Kuznetsova 2007, Ross et al. 2010). The biased sex ratio found in parthenogenetic reproduction is in agreement with Gavrilov and Trapeznikova (2007) who argued that in species with obligatory sexual reproduction the sex ratio must be close to 1:1, and that deviations from this ratio can point to the probable existence of a parthenogenetic reproduction.

Developmental rate of nymphs of

sensu stricto was greater than that reported by McFadyen (2012) for the nymphs of

breeding on Cactaceae. Nymphs of

sensu stricto did not complete their development below 12.8°C, and required 294 degree-days to complete development. Nymphs of

from Cactaceae have a lower temperature development threshold of 15.3°C, and need 424 degree-days to reach the adult stage (McFadyen 2012). Based on this data,

sensu stricto would have more generations per year than the populations studied by McFadyen (2012) from Cactaceae. Understanding the effects of temperature on the life history of a pest has important implications for its management because it affects the mass rearing of the pest and its natural enemies, and helps in selecting the most appropriate biological control agents, i.e., natural enemies with high intrinsic rates of increase relative to those of the target pest (Huffaker et al. 1976, Chong et al. 2003).

This study found that

sensu stricto did not complete its development and produce viable offspring on Cactaceae. The results of this study reinforced the idea of de León et al. (2012) that

is a complex of species. Our results, strongly supports the idea of McFadyen (2012) that the population introduced in Australia is not

, but we disagree that is

introduced into Australia for biological control purposes has three circuli (

has one circulus). We propose that it is a new species that share the three circuli with

, and the specificity on cactus with

. At present, additional biological, taxonomic, and molecular studies are being conducted with populations of

on different host plants and from different locations, including Argentina, Australia, and Caribbean Islands to clarify the identities of

complex components, in particular the pest species of Puerto Rico.
Acknowledgments

We thank Mariel Guala for her excellent technical assistance, Dario Ruiz and María Moore for help in collection of Pseudococcidae. Special thanks to Fabian Font from FFyB, Herbario Museo de Farmacobotánica Juan Domínguez, University of Buenos Aires for identifying the Cactaceae and Amarantaceae species used in this study. We also thank Ilya Gavrilov from the Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia and Cristina Hernández for advice in scale reproductive biology. Finally, we thank Arabella Buglioni, Laura Varone, Wilie Cabrera Walsh, Alejandro Sosa, and anonymous reviewers for thoughtful comments on the manuscript. This study was supported by the USDA Invasive Species Coordination Program in FY 14.

References Cited

Aguirre, M. B. 2012. Posible presencia de un complejo de especies o razas en Hypogeococcus pungens Granara de Willink (Hemiptera: Pseudococcidae). Tesis para obtener el grado de licenciada de la Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución.

Andrewartha, H. G., and L. C. Birch. 1954. The distribution and abundance of animals. University of Chicago Press, Chicago.

Beltrán, A., and A. Soto. 2011. New records of mealybugs (Hemiptera: Pseudococcidae) from Spain. Phytoreparatistica 39: 385–387.

Ben-Dov, Y. 1994. A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Pseudococcidae and Putoidea) with data on geographical distribution, host plants, biology and economic importance. Intercept Publications, Ltd., Andover, England.

Carrera-Martínez, R., L. Aponte-Diaz. J. Ruiz-Arocho, and D. A. Jenkins. 2015. Symptomatology of infestation by Hypogeococcus pungens: contrasts between host species. Haseltonia 21: 14–18.

Chong, J. H., R. D. Oetting, and M. W. Van Iersel. 2003. Temperature effects on the development, survival, and reproduction of the Madeira mealybug, Phenacoccus maidurensis Green (Hemiptera: Pseudococcidae), on chrysanthemum. Ann. Entomol. Soc. Am., 96: 539–543.

Claps, L. E., and M. E. de Haro. 2001. Coccióide (Insecta: Hemiptera) asociado con Cactaceae en Argentina. J. Prof. Assoc. Cactus Dev. 4: 77–83.

Cox, D. R. 1972. Regression models and life-tables. J. R. Stat. Soc. B. 34: 187–220.

de León, J., G. A. Logarzo, D. A. Jenkins, A. L. Roda, M. B. Aguirre, L. E. Claps, M. Sétamou, and M. González. 2012. Phylogeographic analysis of Harriasa cactus mealybug, Hypogeococcus pungens (Hemiptera: Pseudococcidae). In 66th Annual Meeting of the Subtropical Plant Science Society, February 29, 2012, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. Gonzalez, M. Tablada, and C. W. Robledo. 2012. InfoStat versión 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL: http://www.infoest.com.ar, last accessed June 2, 2016.

Fausto-Cisneros, V. 1995. Control de plagas agrícolas. 2da Edición. Editorial Full Print. Lima. Perú. 313p.

Fox, J. 2005. The R commander: a basic statistics graphical user interface to R. J. Stat. Softw. 14: 1–42.

Gavrilov, I. A., and I. V. Trapeznikova. 2007. Karyotipes and reproductive biology of some mealybugs (Insecta: Coccinea: Pseudococcidae). Comp. Cytogeten. 1: 139–148.

Gavrilov, I. A., and V. G. Kuznetsova. 2007. On some terms in scale insects cytogenetics and reproductive biology (Homoptera: Coccinea). Comp. Cytogeten. 1: 169–174.

German-Ramírez, E., M. T. K. Kairo, I. Stocks, M. Hasseb, and C. A. Serra. 2014. New record of Hypogeococcus pungens (Hemiptera: Pseudococcidae) in the Dominican Republic with comments on specific characters. Flor. Entomol. 97: 320–321.

Granara de Willink, M. C. 1981. Nueva especie de Hypogeococcus Rau de Tucumán, República Argentina (Homoptera: Pseudococcidae), Neotropica, 27: 61–65.

Halbert, S. E. 1996. Entomology section. Trilogy. 35: 2–4.

Hamon, A. B. 1984. A cactus mealybug, Hypogeococcus festerianus (Lizer y Trelles), in Florida (Homoptera: Coccoidea: Pseudococcidae). Entomology Circular, Division of Plant Industry, Florida Department of Agriculture and Consumer Services, No. 263. pp 2.

Hodges, A., and G. Hodges. 2009. Hypogeococcus pungens Granara de Willink (Insecta: Hemiptera: Pseudococcidae), a mealybug, EENY459. IFAS Extension, University of Florida. (http://edis.ifas.ufl.edu/pdfides/IN/ IN82700.pdf) (accessed: Feb. 20, 2016).

Hosking, J. R. E. McFadyen, and N. D. Murray. 1988. Distribution and biological control of cactus species in eastern Australia. Plant Protect. Q. 3: 115–123.

Huffaker, C. B., F. J. Simmonds, and J. E. Laing. 1976. The theoretical and empirical basis of biological control, pp. 41–78. In C. B. Huffaker and P. S. Messenger (eds.), Theory and practice of biological control. Academic Press, New York.

Julien, M.H., and M.W. Griffiths. 1999. Biological control of weeds. A world catalogue of agent and their target weeds, 4th edn. CAB Publishing, Wallingford.

Kaplan, E. L., and P. Meier. 1958. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc., 53: 457–481.

Klein, H. 1999. Biological control of three cactaceae weeds, Perserka aculeata Miller, Harrisia martini (Labourt) Britton and Rose and Cereus jamacaru De Candole in South Africa. Afr. Entomol. Mem. 1: 3–14.

Mazzeo, G., P. Suma, and A. Russo. 2008. Scale insects on succulent plants in Southern Italy, pp. 149–152. In M. Branco, J.C. Franco, and C.J. Hodgson (eds), Proceedings of the XI International Symposium on Scale Insect Studies, Oeiras, Portugal, 24–27 September 2007. ISA Press, Lisbon, Portugal.

McFadyen, R. E. 1979. The cactus mealybug Hypogeococcus festerianus (Hemiptera: Pseudococcidae) as an agent for the biological control of Eriocephus martini (Cactaceae) in Australia. Entomaphaga 24: 281–287.

McFadyen, R. E. 2012. Harrisia (Eriocereus) martini (Labour.) Britton—Harrisia cactus Acanthobacter tetragonos (L.) Hummelín—sword pear, pp. 274–281. In M. Julien, R. McFadyen, and J. Cullen (eds), Biological control of weeds in Australia. CSIRO Publishing, Collingwood, Australia.

McFadyen, R. E., and A. J. Tomley. 1978. Preliminary indications of success in the biological control of the Harrisia cactus (Eriocereus martini Lab.) in Queensland. In Proceedings of the First Conference of the Australian Weed Science Society, National Science Centre, Parkville, Victoria, Australia. pp. 108–112.

McFadyen, R. E., and A. J. Tomley. 1981. Biological control of Harrisia cactus, Eriocereus martini, in Queensland by the mealybug Hypogeococcus festerianus, pp. 589–594. In E. S. Delfosse (ed.), Proceedings of the Fifth International Symposium on Biological Control of Weeds. CSIRO, Canberra, Australia.

Miller, D. R., and M. Kosztarab. 1979. Recent advances in the study of scale insects. Annu. Rev. Entomol. 24: 1–27.

Milonas, P. G., and F. Kózár. 2008. Check list of mealybugs (Homoptera: Pseudococcidae) in Greece: three new records. Hellenic Plant Protect. J. 3: 35–38.

Moran, V. C., and H. G. Zimmermann. 1991. Biological control of cactus weeds of minor importance in South Africa. Agric. Ecosyst. Environ. 37: 37–55.

Nur, U. 1971. Parthenogenesis in Coccids (Homoptera). Am. Zool. 11: 301–308.

Ross, L., I. Pen, and D. M. Shuker. 2010. Genomic conflict in scale insects: the causes and consequences of bizarre genetic systems. Biol. Rev. doi:10.1111/ j.1469-185X.2010.00127.x.

Suss, L., and P. Trematerra. 1986. Hypogeococcus festerianus (Lizer y Trelles), nocoio allo Cactaceae ornamentali in Leguria. Informatore Fitopatologico. 10: 43–46.

Tomley, A. J., and R. E. McFadyen. 1984. Biological control of Harrisia cactus, Eriocereus martini, in central Queensland by the mealybug, Hypogeococcus festerianus, nine years after release, pp. 843–847. In E. S. Delfosse (ed.), Proceedings of VI International Symposium of Biological Control of Weeds. Agriculture Canada, Vancouver.

Triapitsyn, S. V., G. A. Logarzo, M. B. Aguirre, and D. A. Aquino. 2014. Two new species of Anagyrus (Hymenoptera: Encyrtidae) from Argentina, parasitoids of Hypogeococcus spp. (Homoptera: Pseudococcidae), with taxonomic notes on some congeneric taxa. ZooTaxa. 3861: 201–230.
Williams, D. J. 1973. Two cactus-feeding mealybugs from Argentina (Homoptera, Coccoidea, Pseudococcidae). Bull. Entomol. Res. 62: 565–579.

Williams, D. J., and M. C. Granara de Willink. 1992. Mealybugs of Central and South America. CAB International, London, England.

Zimmermann, H. G., and M. Pérez Sandi y Cuen. 2010. La amenaza de los piojos harinosos Hypogeococcus pungens e Hypogeococcus festerianus (Hemiptera: Pseudococcidae) a las cactáceas mexicanas y del Caribe. Cactáceas Y Suculentas Mexicanas. 55: 4–17.