Biodegradable and biocompatible exceedingly small magnetic iron oxide nanoparticles for T_1-weighted magnetic resonance imaging of tumors

Xuanyi Lu1†, Huimin Zhou2†, Zhiyu Liang3, Jie Feng3, Yudie Lu1, Lin Huang1, Xiaozhong Qiu2*, Yikai Xu3* and Zheyu Shen1,2,3*

Abstract

Magnetic resonance imaging (MRI) has been widely using in clinical diagnosis, and contrast agents (CAs) can improve the sensitivity MRI. To overcome the problems of commercial Gd chelates-based T_1 CAs, commercial magnetic iron oxide nanoparticles (MIONs)-based T_2 CAs, and reported exceedingly small MIONs (ES-MIONs)-based T_1 CAs, in this study, a facile co-precipitation method was developed to synthesize biodegradable and biocompatible ES-MIONs with excellent water-dispersibility using poly (aspartic acid) (PASP) as a stabilizer for T_1-weighted MRI of tumors. After optimization of the synthesis conditions, the final obtained ES-MION9 with 3.7 nm of diameter has a high r_1 value ($7.0 \pm 0.4 \text{ mM}^{-1} \text{ s}^{-1}$) and a low r_2/r_1 ratio (4.9 ± 0.6) at 3.0 T. The ES-MION9 has excellent water dispersibility because of the excessive –COOH from the stabilizer PASP. The pharmacokinetics and biodistribution of ES-MION9 in vivo demonstrate the better tumor targetability and MRI time window of ES-MION9 than commercial Gd chelates. T_1-weighted MR images of aqueous solutions, cells and tumor-bearing mice at 3.0 T or 7.0 T demonstrate that our ES-MION9 has a stronger capability of enhancing the MRI contrast comparing with the commercial Gd chelates. The MTT assay, live/dead staining of cells, and H&E-staining indicate the non-toxicity and biosafety of our ES-MION9. Consequently, the biodegradable and biocompatible ES-MION9 with excellent water-dispersibility is an ideal T_1-weighted CAs with promising translational possibility to compete with the commercial Gd chelates.

Keywords: Magnetic resonance imaging (MRI), Contrast agents (CAs), Exceedingly small magnetic iron oxide nanoparticles (ES-MIONs), Poly (aspartic acid) (PASP), Biodegradable

Introduction

Magnetic resonance imaging (MRI) has been widely using in clinical diagnosis and prognosis observation to distinguish lesions from normal tissues, especially for the diagnosis of tumors, because of its obvious superiorities, including high soft tissue contrast, high spatial resolution, non-invasion and non-radiation [1–4]. Contrast agents (CAs) play an indispensable role to enhance the sensitivity of MRI. T_1-weighted CAs (i.e., positive CAs) can shorten the proton's longitudinal relaxation time (T_1) to produce brighter images, while T_2-weighted CAs (i.e.,...
negative CAs) can shorten proton’s transverse relaxation time (T_2) to generate darker images [5–8]. Currently, most clinical T_1 CAs are gadolinium (Gd) chelates, including Magnevist (Gd-DTPA), Gadavist (Gd-DO3A-Butriol), Dotarem (Gd-DOTA), Eovist (Gd-EOB-DTPA), Omniscan (Gd-DTPA-BMA), and so on [9–12]. However, the U.S. food and drug administration (FDA) has warned that the Gd chelates tend to cause nephrogenic system fibrosis and cerebral deposition [13–15]. In addition, the T_1 imaging capability of the commercial Gd chelates is not strong due to their small longitudinal relaxivity (r_1, ~ 4 mM$^{-1}$ s$^{-1}$) [16].

In order to overcome the problems of Gd chelates, increasing studies have been focusing on magnetic iron oxide nanoparticles (MIONs) due to their excellent biocompatibility [17–20]. Actually, MIONs were first used as T_2-weighted CAs for examination of human liver in 1994 [21]. Several types of MIONs, such as Supravist, Feridex, and Rsovist, were developed and used as T_2 CAs for MRI of human diseases in the 2000s [22]. However, these MION agents are not used in clinic anymore due to the following problems. (1) The MION agents produce darker MR images that are not conducive to the clinician’s diagnosis for diseases [23]. (2) Slow body clearance and long blood circulation lead to long waiting time for patients. (3) The high magnetic moment of MIONs can result in susceptibility artifacts. (4) The long echo time (TE) and repetition time (TR) result in long processing time of clinical MRI examinations. (5) Eovist, a liver-specific T_1 contrast agent, was approved in 2008, and used to replace the MIONs-based T_2 CAs.

Because there are no ideal products in clinic, MRI CAs have been one of the research hotspots for a long time. The recently emerging ES-MIONs (< 5.0 nm) with high r_1 and low transversal relaxivity (r_2) can be used as T_1 CAs without concerns of nephrotoxicity and cerebral deposition [24–26]. Therefore, ES-MIONs can surmount drawbacks of the above-mentioned Gd chelates and MIONs. Kim et al. reported uniform ES-MIONs prepared by a method of thermal decomposition in 2011, which has low r_2 value [27]. However, the ES-MIONs synthesized in oil phase are not soluble in water and need further hydrophilic functionalization on their surfaces, which severely limits their clinical applications. To solve this problem, we previously synthesized ES-MIONs with stabilization of poly (acrylic acid) (PAA) in aqueous phase by co-precipitation method [23]. The synthesized ES-MIONs can be easily dispersed in water, and the dispersion can be kept at room temperature for several months without any precipitation. However, the used stabilizer PAA is not biodegradable in human physiological environment.

In this study, a facile co-precipitation method was developed to synthesize biodegradable and biocompatible ES-MIONs (< 5.0 nm) with excellent water-dispersibility for T_1-weighted MRI of tumors. As shown in Scheme 1A, biodegradable poly (aspartic acid) (sodium salt, PASP) first react with Fe^{3+} and Fe^{2+} to form PASP-Fe chelate, which can further react with ammonia solution producing biodegradable and biocompatible ES-MIONs via co-precipitation. The reaction equation generating Fe_3O_4 is shown in Scheme 1B. Due to the enrichment of carboxyl groups in the surface, the negatively charged ES-MIONs have excellent water-dispersibility. Because the amide bonds of PASP are biodegradable in human physiological environment, PASP can be used as an excellent candidate as the stabilizer for the synthesis of ES-MIONs. The PASP cannot be replaced with other poly(amino acids) because they are either less water-soluble than PASP, or positively charged. Because the r_1 value (7.0 mM$^{-1}$ s$^{-1}$) is much higher than that of commercial Gd chelates (~ 4 mM$^{-1}$ s$^{-1}$) and the iron is one of the essential elements in the human body, the obtained ES-MIONs are

Scheme 1: Schematic illustration of synthesis process (A) and reaction equation (B) for the ES-MIONs.
biocompatible and have huge potential to be used as \(T_1 \) MRI CAs, surpassing the commercial Gd chelates.

Results and discussion

Synthesis and characterization of ES-MIONs

The ES-MIONs were synthesized by a method of coprecipitation, and reaction conditions were optimized to obtain high quality ES-MIONs with high \(r_1 \) and \(r_2/r_1 \) (Additional file 1: Table S1). PASP was used as a stabilizer for the ES-MIONs preparation, which gives the obtained ES-MIONs excellent water dispersibility. Four concentrations of PASP solutions were used for synthesis of ES-MION1-4. The Fe concentration of ES-MIONs was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES), and the ES-MION2 has the largest Fe recovery of 96.6% (Additional file 1: Table S1). \(T_1 \) and \(T_2 \) relaxation rates (3.0 T) versus Fe concentration for ES-MION1-4 are shown in Fig. 1A, B. The \(r_1 \) and \(r_2 \) values are obtained from the linear line slopes, which are summarized in Fig. 1E and Additional file 1: Table S1. The ES-MION2 has a \(r_1 \) value of 1.6 mM\(^{-1}\) s\(^{-1}\) and \(r_2/r_1 \) ratio of 8.8. Though the \(r_1 \) of ES-MION3, 4 is larger than ES-MION2, the \(r_2 \) values of ES-MION3, 4 are also much higher than that of ES-MION2, which are not good for \(T_1 \) imaging. The \(r_2/r_1 \) value of ES-MION1 is lower than that of ES-MION2, but the \(r_1 \) value is also lower than that of ES-MION2. Therefore, 2.0 mg/mL of PASP solution was considered as the optimal concentration for the synthesis of ES-MIONs.

Furthermore, 0.5–8.0% of ammonia solutions were used to synthesize ES-MION5-8, whose \(T_1 \) and \(T_2 \) relaxation rates (3.0 T) as a function of Fe concentration are shown in Fig. 1C, D. As shown in Fig. 1F and Additional file 1: Table S1, the \(r_1 \) and \(r_2/r_1 \) of ES-MION6 are comparable to those of ES-MION5, but much better than ES-MION 7, 8. Therefore, 4.0% of ammonia solution was chosen as the optimal condition.

In addition, based on the optimized conditions for ES-MION6 synthesis, the concentration of PASP and iron precursors (FeCl\(_3\) plus FeSO\(_4\)) were all decreased to synthesize ES-MION9-11. From Fig. 1C, D, F and Additional file 1: Table S1, it can be found that ES-MION9 has a highest \(r_1 \) value of 7.0 ± 0.4 mM\(^{-1}\) s\(^{-1}\) (3.0 T) and a lowest \(r_2/r_1 \) value of 4.9 ± 0.6 (3.0 T) compared with ES-MION6, 10, 11. According to Eq. (1) [28], the signal intensity of MRI is depended on gradient intensity (M\(_{b0}\)), echo time (TE), repetition time (TR), flip Angle (\(\alpha \)), \(R_2^* \), \(R_1 \). The factors of \(M_{b0} \), TE, TR, and \(\alpha \) could be regulated by MRI scanners, while \(R_2^* \) and \(R_1 \) depend on contrast agents. The \(R_2^* \) can be considered a valid \(R_2 \) and is always greater than or equal to \(R_2 \). It can be concluded that the \(T_1 \) MRI signal intensity is proportional to \(r_1 \) value, but inversely proportional to \(r_2/r_1 \) ratio.

Thus, the synthesis conditions of ES-MION9 should be optimal to obtain a high \(T_1 \) MRI capability with a high \(r_1 \) and low \(r_2/r_1 \).

\[
\text{Signal intensity} = M_{b0} \sin(\alpha) \left(\frac{1 - e^{-TR/T_1}}{1 - \cos(\alpha) \cdot e^{-TR/T_1}} \right) e^{-R_2^*TE} e^{-R_2^*TR}
\]

(1)

Besides, Fe recoveries of ES-MION1-11 tested by ICP-OES are all above 85%, indicating high utilization rates of raw materials and low cost for ES-MIONs synthesis, which are beneficial for clinical transformation.

According to previous reports, Fe\(_3\)O\(_4\) nanoparticles with size below 5.0 nm can be used as \(T_1 \) CAs [24]. Furthermore, Fe\(_3\)O\(_4\) nanoparticles with large particle size are easily taken up by the spleen and liver, which seriously affects tumor images. The images of transmission electron microscopy (TEM, Fig. 2A–K) indicate our ES-MION1-11 have excellent water dispersibility. It is found from the TEM images (Fig. 2A–D) and size distributions (Additional file 1: Fig. S1A–D) measured from TEM images that the concentration of PASP has a large influence on the sizes of ES-MIONs. The sizes of ES-MION1-4 are respectively 2.7, 2.5, 6.0 and 8.0 nm, whose \(r_1 \) is 1.0, 2.0, 4.7, and 5.4 mM\(^{-1}\) s\(^{-1}\), and the \(r_2/r_1 \) is 1.9, 7.0, 19.0, and 28.3. These results demonstrate that Fe\(_3\)O\(_4\) nanoparticles with size below 5.0 nm have potential as \(T_1 \) CAs, while those with size larger than 5.0 nm can be only utilized as \(T_2 \) CAs due to the high \(r_2/r_1 \) ratios. Figure 2E–K and Additional file 1: Fig. S1E–K show that both the concentration of ammonia solution and the whole concentrations of feeding materials have a slight influence on the size of ES-MIONs. The relations between the particle size and \(r_1 \) value (or \(r_2/r_1 \) ratio) (Fig. 2L) show that the best particle size is 3.7 nm (ES-MION9).

Three batches of ES-MION9 were synthesized and the \(T_1/T_2 \) relaxation rates were determined by a 3.0 T (Additional file 1: Fig. S2) and 7.0 T MRI scanner (Additional file 1: Fig. S3), whose similar \(r_1 \) and \(r_2 \) data for different batches demonstrate the good repeatability for ES-MION9 synthesis. At 3.0 T, the ES-MION9 has a larger \(r_1 \) (7.0 ± 0.4 mM\(^{-1}\) s\(^{-1}\)) than Gadavist (4.9 ± 0.1 mM\(^{-1}\) s\(^{-1}\)), indicating a stronger \(T_1 \) MRI capability of our ES-MION9.

The related \(T_1 \)-weighted MR images (3.0 T) of ES-MION1-11 are shown in Additional file 1: Figs. S4A, S5A, and S6A. The corresponding SNR and ΔSNR values were calculated according to Eqs. (2) and (3) [29, 30], and shown in Additional file 1: Figs. S4B, S5B, and S6B, which reinforce that the signal intensities of MR images increase with the increase of Fe concentration with a strong concentration gradient dependence, showing good \(T_1 \)-weighted MR capabilities of ES-MION1-11.
Fig. 1

A – D T_1 relaxation rate ($1/T_1$) (A, C) or T_2 relaxation rate ($1/T_2$) (B, D) plotted versus C_{Fe} for ES-MION1-11.

E, F The r_1 or r_2/r_1 of the ES-MION1-4 (E) or ES-MION5-8 (F) as a function of C_{PASP} or $C_{NH3\cdotH2O}$. The magnetic field is 3.0 T.
It is obvious that the ΔSNR value of ES-MION9 is the maximum up to 5500% when the Fe concentration of is 1.0 mM (Additional file 1: Fig. S6B), which further demonstrate 3.7 nm is the best diameter of ES-MIONs for T_1 MRI.

A 7.0 T of MRI scanner was also used to double confirm the T_1-weighted MRI contrast of ES-MION9 solutions at various concentrations compared with pure water (Additional file 1: Fig. S7A). The corresponding ΔSNR values (Additional file 1: Fig. S7B) also show a strong concentration gradient dependence, indicating a strong MRI capability at 7.0 T.

The ES-MION9 HR-TEM image is presented in Additional file 1: Fig. S8A. The lattice planes of 311 and 220 can be confirmed by the 0.51 and 0.301 nm of interplanar distances [31], indicating a crystalline structure of ES-MION9. The characteristic peaks of O and Fe can be found in the EDS (Additional file 1: Fig. S8B), demonstrating the component of iron oxide for ES-MION9 [32]. To further demonstrate the successful synthesis of Fe$_3$O$_4$ nanoparticles, the X-ray photoelectron spectroscopy (XPS) of ES-MION9 is performed in Additional file 1: Fig. S8C. The primary peaks at 723.8 and 710.3 eV correspond to the energy of Fe 2p3/2 and Fe 2p1/2 [33, 34], indicating the Fe$_3$O$_4$ component of our ES-MION9

$$SNR = \frac{SI_{\text{mean}}}{SD_{\text{noise}}}$$ \hspace{1cm} (2)

$$\Delta SNR = \frac{(SNR_{\text{sample}} - SNR_{\text{control}})}{SNR_{\text{control}}} \times 100\%$$ \hspace{1cm} (3)
[23]. Additional file 1: Fig. S8D shows the XRD of ES-MION9. Four characteristic peaks (2θ ≈ 30.0°, 35.2°, 42.8°, and 53.0°) match with the indices [(220), (311), (400), and (511)]. The crystal structure of ES-MION9 matches the pristine of Fe3O4, demonstrating the high crystalline purity of our ES-MION9. The field dependent magnetization curve (Additional file 1: Fig. S8E) indicates the ES-MION9 is superparamagnetic with 16.0 emu/g of saturation magnetization (M_s). All these results indicate that the ES-MION9 we synthesized is superparamagnetic Fe3O4 nanocrystals.

Because the M_s values of ES-MIONs increase with the increasing particle sizes [28], the small M_s value of ES-MION9 indicates its small particle size. In Eq. (4), the r is the magnetic core radius and M_s is the saturation magnetization. According to Eq. (4), both the extremely small particle size (3.7 nm) and small M_s (16.0 emu/g) lead to a very low r_2, which results in a very low r_2/r_1. Therefore, our exceedingly small ES-MION9 can be used as T_1 CA.

\[
\frac{1}{T_2} = \frac{(256\pi^2 \gamma^2 / 405)V^*M_s^2 r^2}{D(1 + L/r)}
\]

(4)

The high r_1 value of ES-MION9 is mainly due to the following two reasons: (1) ES-MION9 has a small particle size (3.7 nm), which gives ES-MION9 a larger specific surface area. In accordance with the mechanism of inner-sphere, larger specific surface area means there are more naked iron on ES-MION9 surfaces, which can fully interacts with hydrogen protons in H2O molecules, resulting in a high r_1 value. (2) There are excessive carboxyl groups on ES-MION9 surfaces, and these carboxyl groups are derived from PASP, which greatly improves the water dispersion of ES-MION9. This leads to more H2O in the inner sphere that can interact with the naked iron on the ES-MION9 surface, which causes a large number of bound H2O (q) and mole fraction of H2O coordinated to Fe (P_m) in Eq. (5) [16]. The large q and P_m result in a large r_1 value for ES-MION9.

Fig. 3 A T_1-weighted MR images of ES-MION9 solutions (C_{Fe} = 1.0 mM) and commercial Gadavist solutions (C_{Gd} = 1.0 mM) compared with pure water (control). Magnetic field = 3.0 T. TE = 8.3 ms, TR = 200 ms. B ΔSNR of the MR images of ES-MION9 and Gadavist solutions, which is measured by the Image J. ***P < 0.001
The T_1/T_2 relaxation rate ($1/T_1$, or $1/T_2$) is plotted versus concentration for contrast agents, and the r_1 and r_2 values are calculated from the slopes of the corresponding fitting lines. T_1 CAs increase signal intensity of T_1 images by shortening the longitudinal relaxation time (T_1) of protons, which leads to high r_1 values. The Fe_3O_4 nanoparticles with size below 5.0 nm have low T_1 images by shortening the longitudinal relaxation time (T_1) of protons, which leads to high r_1 values. The Fe_3O_4 nanoparticles with size below 5.0 nm have low T_1 images by shortening the longitudinal relaxation time (T_1) of protons, which leads to high r_1 values. The Fe_3O_4 nanoparticles with size below 5.0 nm have low T_1 images by shortening the longitudinal relaxation time (T_1) of protons, which leads to high r_1 values. The Fe_3O_4 nanoparticles with size below 5.0 nm have low T_1 images by shortening the longitudinal relaxation time (T_1) of protons, which leads to high r_1 values.

The stretching vibration peak of $\text{Fe}–\text{O}$ at 604.5 cm$^{-1}$ can be seen from the FT-IR of ES-MION9, but not in the FT-IR of ES-MION9. These results prove the successful synthesis of Fe$_3$O$_4$ [38]. Additional file 1: Fig. S12 presents the curves of thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) for ES-MION9. As the temperature increases, the mass of ES-MION9 decreases, and becomes stable at 37.8% of remaining mass. This is similar to 40.1% of Fe$_3$O$_4$ loading content for ES-MION9 measured by ICP. This result further demonstrates the existence of PASP on the ES-MION9 surface.

Cellular uptake, cytotoxicity assay and T_1-weighted imaging of cells

To evaluate the biosafety of ES-MION9, its cytotoxicity was examined by thiazolyl blue tetrazolium bromide (MTT) assay on MCF-7 cells (human breast cancer cells) and 4T1 cells (mouse breast cancer cells). Figure 4A, B shows that when the Fe concentration of ES-MION9 reaches 0.8 mM, the cell viability of MCF-7 cells and 4T1 cells was higher than 95.0%. This result indicates that ES-MION9 is almost not cytotoxic due to its biocompatible components (i.e., Fe$_3$O$_4$ and PASP). Although Gd$^{3+}$ can cause nephrogenic systemic fibrosis and can be deposited in the human brain and body [39], Fig. 4A, B shows that the Gadavist is also non-toxic at the Gd concentration of 0.8 mM. That’s because Gd$^{3+}$ leads to long-term toxicity, which cannot be revealed in the short-term MTT assay.

To further demonstrate the non-cytotoxicity of ES-MION9, live/dead cytotoxicity analysis was used to evaluate the toxicity of ES-MION9 to 4T1 cells and MCF-7 cells (Additional file 1: Figs. S13, S14). The PBS treated cells were used as a control. Green dots represent live cells and red dots represent dead cells. Obviously, almost no dead cells are found for ES-MION9-treated 4T1 cells and MCF-7 cells, showing good biosafety of ES-MION9.

Figure 4C shows the LSCM images of 4T1 cells treated with ES-MION9. The uptake of ES-MION9 by 4T1 cells was further investigated by flow cytometry. After 2 h of co-incubation with 4T1 cells, the fluorescence intensity (Additional file 1: Fig. S15A, B) of R6G-labeled ES-MION9 was almost two orders of magnitude higher than that of the control group with a statistical P value smaller than 0.001, indicating that ES-MION9 is easily taken up by 4T1 cells. The results of flow cytometry are consistent with the LSCM results. In addition, the T_1-weighted MR images (7.0 T) (Additional file 1: Fig. S16) show that ES-MION9-treated tumor cells have much stronger MR signals compared to the control groups, and the MR signal also increases with the increase of incubation time from 1.0 to 2.0 h. These results demonstrate the excellent MR imaging capability of our ES-MION9 at the cellular level.
In vivo MR imaging

MRI can be used for soft tissue imaging, especially for tumor diagnosis. MR contrast agents can improve the signal-to-noise ratio and sensitivity of MRI. We tested the imaging ability of ES-MION9 in 4T1 tumor-bearing mice. 4T1 cells were seeded subcutaneously into BALB/c mice to build 4T1 tumor models. The commercial Gadavist and our ES-MION9 were i.v. injected into the 4T1 tumor-bearing mice for MR imaging (Fig. 5A, B). It can be seen from the MR images that after the administration of Gadavist or ES-MION9, the tumor becomes brighter than that of control (pre-injection), and reaches the brightest at 30 min or 3.0 h post-injection, respectively. MR images of different slices were obtained at each time point, and the brightest one of different slices at each time point was selected to characterize the MR imaging capabilities. Because the contrast difference between tumor and normal tissue is usually hard to be identified by the naked eyes, the signal changes in tumors at various time points after the administration of contrast agents are quantified using ΔSNR as shown in Fig. 5C, D, which is calculated according to the Eq. (6):
The ΔSNR value is up to 93.4% at 3.0 h after administration of ES-MION9 (Fig. 5D), which is significantly larger than that of the tumor at 30 min post-injection of Gadavist (57.2%, Fig. 5C). The above results demonstrate that our ES-MION9 can be utilized as a stronger MRI CAs compared with the clinically used Gd chelates.

Pharmacokinetics, biodistribution and biosafety evaluation in vivo

To verify that our ES-MION9 is more biocompatible and safer than Gadavist, the pharmacokinetics, biodistribution and biosafety were evaluated in vivo. Figure 5E shows that the blood half-life of ES-MION9 is about 2.3 h due to the small nanoparticle size (3.7 nm). The best time window for MRI in clinic is close to the half-life (10–15 min) of commercial Gd chelates, which is a little bit tight for MRI after administration of the Gd chelates [40]. The slightly longer half-life of our ES-MION9 overcomes the limited MRI time window problem of commercial Gd chelates.

To evaluate the biodistribution of ES-MION9 in vivo, the Fe contents in the heart, liver, spleen, lung, kidney and tumor of mice were measured at 0 h pre-injection and 12.0 h post-injection of ES-MION9, and the differences are shown in Fig. 5F. It is found the ES-MION9 accumulation inside tumors is very high compared with other normal tissues because of the enhanced permeability and retention (EPR) effect, which is the key reason for the highly enhanced MRI signal of tumors after ES-MION9 injection.

Additional file 1: Fig. S17 shows the representative optical microscopic pictures of the H&E-stained main organs from the normal mice without tumors (control), or that with i.v. injection of ES-MION9 \((C_{Fe} = 5.0 \text{ mg/kg}) \). Compared with controls, ES-MION9-treated mice showed no obvious pathological abnormalities in major organs (heart, liver, spleen, lung, and kidney), indicating that our ES-MION9 does not lead to systemic toxicity.

\[
\Delta \text{SNR} = \frac{(\text{SNR}_{\text{post}} - \text{SNR}_{\text{pre}})}{\text{SNR}_{\text{pre}}} \times 100\%
\] (6)
Conclusions
In summary, in order to surmount the problems of commercial Gd chelates-based T_1 CAs, commercial MIONs-based T_2 CAs, and reported ES-MIONs-based T_1 CAs, a facile method based on co-precipitation was developed to synthesize biodegradable and biocompatible ES-MIONs with excellent water-dispersibility for T_1 MRI of tumors using PASP as the stabilizer. After optimization of the synthesis conditions, the final obtained ES-MION9 with a diameter of 3.7 nm has a high r_1 (7.0 ± 0.4 mM$^{-1}$ s$^{-1}$) and a low r_2/r_1 (4.9 ± 0.6) at 3.0 T. The ES-MION9 has excellent water dispersibility due to the excessive carboxyl groups from PASP. The physical properties of ES-MION9 were further characterized by TEM, XRD, EDS, XPS, UV–vis, FT-IR, TGA, and magnetization curve. LSCM images and flow cytometry results prove the cellular uptake of ES-MION9 by endocytosis. The pharmacokinetics, and biodistribution of ES-MION9 in vivo demonstrate the better tumor targetability and MRI time window of ES-MION9 than commercial Gd chelates. T_1-weighted MR images of aqueous solutions, cells and tumor-bearing mice at 3.0 T or 7.0 T demonstrate that our ES-MION9 has a stronger MRI capability than the commercial Gd chelates. The MTT assay, live/dead staining of cells, and H&E-staining indicate the non-toxicity and biosafety of our ES-MION9. Consequently, the biodegradable and biocompatible ES-MION9 is excellent as a potential T_1-weighted CAs with promising translational possibility to compete with the commercial Gd chelates.

Materials and methods
Synthesis of ES-MIONs
In order to eliminate O_2, 20.0 mL and 0.5–4.0 mg mL$^{-1}$ of PASP ($M_r = 7000$) solution was first bubbled using N_2 for 60 min. After that, the solution was heated to 100 °C under reflux. A Fe solution (0.4 mL, 125.0–500.0 mM FeSO$_4$) was then rapidly charged into the above-mentioned PASP solution. Subsequently, NH$_3$$\cdotH_2$O (6.0 mL, 0.5–8.0%) was added under magnetic stirring. After 1.0 h, the reaction was stopped by cooling off. Finally, the synthesized ES-MIONs were purified via dialysis (Mw cut-off 8–14 kDa) in pure water for purification. An ICP-OES (ICAP PRO, Thermo Fisher Scientific, US) was used to determine the C_{Fe} of the ES-MIONs.

Synthesis of R6G@ES-MION9
At room temperature, 70.0 µL of Rhodamine 6G (100.0 µM) was added into 4.0 mL of ES-MION9 ($C_{Fe} = 2.8$ mM), and the mixture was magnetically stirred for 24.0 h. The prepared R6G@ES-MION9 solution was then centrifugally ultra-filtrated (Millipore, Mw cutoff 10 kDa) and washed utilizing ultrapure water for purification. Finally, the obtained R6G@ES-MION9 was resolved in ultrapure water (4.0 mL) and kept in 4.0 °C of refrigerator.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12951-022-01562-y.

Additional file 1. The online version contains supplementary material available at https://jnanobiotechnology.biomedcentral.com.

Acknowledgements
Not applicable.

Author contributions
XQ, YX, and ZS conceptualized the study; XL, HZ, ZL, JF, YL, and LH carried out the experiments, and analyzed data; XL and HZ performed statistical analyses, prepared the figures, and wrote the manuscript draft. XQ, YX, and ZS participated in manuscript reviewing. ZS secured the funding. All authors read and approved the final manuscript.

Funding
This work was supported in part by the Guangzhou Key Research and Development Program of China (202103000094), Guangdong Provincial Natural Science Foundation of China (2021A151510605), Zhejiang Provincial Natural Science Foundation of China (LR19E030001), and National Natural Science Foundation of China (5176145021).

Availability of data and materials
All data associated with this study are present in the paper and/or the additional file.

Declarations

Ethics approval and consent to participate
All animal procedures were performed in accordance with the Guidelines for Care and Use of Laboratory Animals of Southern Medical University and approved by the Animal Ethics Committee of Southern Medical University.

Consent for publication
All authors agree to publish this manuscript.

Competing interests
The authors declare no competing financial interest.

Received: 7 June 2022 Accepted: 15 July 2022
Published online: 30 July 2022

References
1. Poon C, Gallo J, Joo J, Chang T, Ranobre-Lopez M, Chung EJ. Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. J Nanobiotechnol. 2018;16:1–11.
2. Kawano T, Murata M, Kang JJ, Piao JS, Narahara S, Hyodo F, Hamano N, Guo J, Oguri S, Ohuchida K. Ultrasensitive MRI detection of spontaneous pancreatic tumors with nanocage-based targeted contrast agent. Biomaterials. 2018;152:37–46.
3. Li X, Feng Q, Jiang X. Microfluidic synthesis of Gd-based nanoparticles for fast and ultralong MRI signals in the solid tumor. Adv Healthc Mater. 2019;8:1900672.
4. Zheng D, Yang K, Nie ZV. Engineering heterogeneity of precision nanoparticles for biomedical delivery and therapy. View. 2021;2:20200067.
5. Sitharaman B, Wilson LJ. Gadonanotubes as new high-performance MRI contrast agents. Int J Nanomed. 2006;1:291.
6. Wang Q, Liang Z, Li F, Lee J, Low LE, Ling D. Dynamically switchable magnetic resonance imaging contrast agents. Exploration. 2021;9:20210009.

7. Han Y, Zhou X, Qian Y, Hu H, Zhou Z, Liu X, Tang J, Sheny H. Hypoxia-targeting dendritic MRI contrast agent based on internally hydroxy dendrimer for tumor imaging. Biomaterials. 2019;23:139195.

8. Zhang M, Xing L, Ke H, He Y-L, Cui P-F, Zhu Y, Jiang G, Qiao J-R, Lu N, Chen H. MnO2-based nanoplatform serves as drug vehicle and MRI contrast agent for cancer theranostics. ACS Appl Mater Interfaces. 2017;9:11337–44.

9. Wang F, Bae K, Huang Z, Xue J. Two-photon graphene quantum dot modified CdO, nanocomposites as a dual-mode MRI contrast agent and cell labelling agent. NanoSicr Horiz. 2018;10:5642–9.

10. Haylor J, Dencauce A, Vickers M, Nutter F, Jestin G, Slater D, Iide JM, Morcos S. Nephrogenic gadolinium biodistribution and skin cellularity following a single injection of Omniscan in the rat. Invest Radiol. 2010;45:507–12.

11. Fidler J, Hough D. Hepatocyte-specific magnetic resonance Imaging contrast agents. Hepatology. 2011;53:678–82.

12. Ananta JS, Godin B, Sethi R, Moriggi L, Liu X, Serda RE, Krishnamurthy R, Muthupillai R, Bolskar RD, Helm L. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat Nanotechnol. 2010;5:815–21.

13. Xue X, Bo R, Qu H, X. A6, Xiao W, Y, Vapniaryk N, Lindstrom A, Wu H, Zhang D. A nephrotoxicity-free, iron-based contrast agent for magnetic resonance imaging of tumors. Biomaterials. 2020;257:120234.

14. Mendichovszky IA, Marks SD, Simcoek CM, Olsen OE. Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. Pediatr Radiol. 2008;38:489–96.

15. Lednev E, Karie S, Launay-Vacher V, Janus N, Deray G. Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency. Radiology. 2009;250:618.

16. Shen Z, Fan W, Yang Z, Liu Y, Bregadze VI, Mandal SK, Tung BC, Lin L, Liu T, Wang W. Exceedingly small gadolinium oxide nanoparticles with remarkable relaxivities for magnetic resonance imaging of tumors. Small. 2019;15:1903422.

17. Shu G, Chen M, Song J, Xu X, Lu C, Du Y, Xu M, Zhao Z, Zhu M, Fan K. Sialic acid-engineered mesoporous polys SOMO nanoparticles loaded with SPION and Fe3O4 as a novel therapeutic agent for T1/T2, dual-mode MRI-guided combined chemo-photothermal treatment of hepatic cancer. Bioact Mater. 2021;6:1423–35.

18. Zhao S, Yu X, Qian Y, Chen W, Sheny J. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics. 2020;10:6278.

19. Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21:2133–48.

20. Wang Z, Qiao R, Tang N, Lu Z, Wang H, Zhang S, Zhang J, Xue X, Huang Z, Zhang S, Zhang G. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance–guided focused ultrasound ablation of lung cancer. Biomaterials. 2017;127:25–35.

21. Cai Z, Wu C, Yang L, Wang D, A H. Assembly-controlled magnetic nanoparticle clusters as MRI contrast agents. ACS Biomater Sci Eng. 2020;6:2533–42.

22. Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-targeting contrast agent for MR imaging of the liver: properties, clinical development, and applications. Eur Radiol. 2003;13:1266–76.

23. Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, Zhang A, Liu Y, Song J, Liu J Z. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano. 2017;11:10992–1004.

24. Shen Z, Wu A, Chen X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm. 2014;11:1352–64.

25. Xiong C, Zhong X, Yang W, Majeed M, Wang J, Yu J, Hu J, Xu Z, Tan B, Zhang B, Yan W, Fe3O4 nanoparticles functionalized with polymer ligand for T1-weighted MRI in vitro and in vivo. Polymers. 2019;11:882.

26. Liu Y, Yang Z, Huang X, Yu G, Wang S, Zhou Z, Shen Z, Fan W, Liu Y, Davisson M. Glutathione-responsive self-assembled magnetic gold nanor -for enhanced tumor imaging and imaging-guided photothermal therapy. ACS Nano. 2018;12:8129–37.

27. Kim BH, Lee N, Kim H, An K, Park Y, Choi Y, Shin K, Lee Y, Kwon SG, Na HB. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc. 2011;133:12624–31.

28. Shin TH, Kim PK, Kang S, Cheong J, Kim S, Lim Y, Shin W, Jung JY, Lah JD, Choi BW. High-resolution T1 MRI via renally cleavable dextran nanoparti -cles with an iron oxide shell. Nat Biomed Eng. 2021;5:252–63.

29. Wei Z, Jiang Z, Pan C, Xia J, Xu K, Xue T, Yuan B, Akaku OU, Zhu C, Zhang G. Ten-gram-scale facile synthesis of organogadolinium complex nanoparticles for tumor diagnosis. Small. 2020;16:1906870.

30. Cai Y, Wang Y, Zhang T, Pan Y. Gadolinium-labeled ferritin nanoparticles as T1 contrast agents for magnetic resonance imaging of tumors. ACS Appl Nano Mater. 2020;3:8771–83.

31. Liang H, Wu X, Zhao G, Feng K, Ni K, Sun X. Renal clearable ultrasmall single-crystal Fe nanoparticles for highly selective and effective ferroptosis therapy and immunotherapy. J Am Chem Soc. 2021;143:15812–23.

32. Shen Z, Song J, Zhu Z, Yung BC, Aronova MA, Li Y, Daj F, Fan W, Liu Y, Li Z. Dotted core-shell nanoparticles for T1-weighted MRI of tumors. Adv Mater. 2018;30:303163.

33. Shen Y, Song B, Tang X, Liu L, Xue J. Ultrasmall Fe3O4 nanoparticles/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small. 2014;10:1536–43.

34. Zhang J, Wang K, Xu Q, Zhou Y, Cheng F, Guo S. Beyond yolk-shell nanoparticles. Fe3O4@FICE core-shell nanoparticles as yolk and carbon nanosphildes as shells for efficient lithium ion storage. ACS Nano. 2019;9:3369–76.

35. Lu Y, Xu YJ, Zhang GB, Ling D, Wang MQ, Zhou Y, YW YD, Wu T, Hackett MJ, Hys KB. Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates. Nat Biomed Eng. 2017;1:637–43.

36. Ling D, Park W, Park SJ, Ly Y, Kim KS, Hackett MJ, Kim BH, Yim H, Jeon YS, Na K. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc. 2014;136:5647–55.

37. Ahsan HM, Zhang X, Liu Y, Wang Y, Li Y, Li B, Wang J, Liu S. Stable cellular foams and oil powders derived from methylated microcrystalline cellul -ulose stabilized pickering emulsions. Food Hydrocoll. 2020;104:105742.

38. Xu S, Wang J, Wei Y, Zhao H, Tao T, Wang H, Wang Z, Du J, Wang J, Qian J. Interfaces. In situ one-pot synthesis of Fe2O3@BSA core-shell nanoparticles as enhanced T1-weighted magnetic resonance imagine contrast agents. ACS Appl Mater Interfaces. 2020;12:56701–11.

39. Attari H, Cao Y, Elmholt TD, Zhao Y, Prince MR. A systematic review of 639 patients with biopsy-confirmed nephrogenic systemic fibrosis. Radiology. 2019;292:376–86.

40. Huang CH, Nwe K, Al Zaki A, Brechbiel MW, Tsourkas A. Biodegradable polydubfluide dendrimer nanoclasts as MRI contrast agents. ACS Nano. 2012;6:9416–24.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.