Overweight and obesity in mothers and risk of preterm birth and low birth weight infants: systematic review and meta-analyses

Sarah D McDonald, associate professor,1 Zhen Han, associate professor,2 Sohail Mulla, student,3 Joseph Beyene, associate professor and senior scientist4 on behalf of the Knowledge Synthesis Group

ABSTRACT

Objective To determine the relation between overweight and obesity in mothers and preterm birth and low birth weight in singleton pregnancies in developed and developing countries.

Design Systematic review and meta-analyses.

Data sources Medline and Embase from their inceptions, and reference lists of identified articles.

Study selection Studies including a reference group of women with normal body mass index that assessed the effect of overweight and obesity on two primary outcomes: preterm birth (before 37 weeks) and low birth weight (<2500 g).

Data extraction Two assessors independently reviewed titles, abstracts, and full articles, extracted data using a piloted data collection form, and assessed quality.

Data synthesis 84 studies (64 cohort and 20 case-control) were included, totalling 1 095 834 women. Although the overall risk of preterm birth was similar in overweight and obese women and women of normal weight, the risk of induced preterm birth was increased in overweight and obese women (relative risk 1.30, 95% confidence interval 1.23 to 1.37). Although overall the risk of having an infant of low birth weight was decreased in overweight and obese women (0.84, 0.75 to 0.95), the decrease was greater in developing countries than in developed countries (0.58, 0.47 to 0.71 v 0.90, 0.79 to 1.01). After accounting for publication bias, the apparent protective effect of overweight and obesity on low birth weight disappeared with the addition of imputed "missing" studies (0.95, 0.85 to 1.07), whereas the risk of preterm birth appeared significantly higher in overweight and obese women (1.24, 1.13 to 1.37).

Conclusions Overweight and obese women have increased risks of preterm birth and induced preterm birth and, after accounting for publication bias, appeared to have increased risks of preterm birth overall. The beneficial effects of maternal overweight and obesity on low birth weight were greater in developing countries and disappeared after accounting for publication bias.

INTRODUCTION

The continuum of overweight and obesity is now the most common complication of pregnancy in many developed and some developing countries. In the United Kingdom, 33% of pregnant women are overweight or obese.1 In the United States, 12% to 38% of pregnant women are overweight and 11% to 40% are obese. In India, 8% of pregnant women are obese and 26% are overweight and in China, 16% are overweight or obese.6

Preterm birth is the leading cause of neonatal mortality and morbidity and childhood morbidity7 followed by low birth weight.8 Whether maternal overweight and obesity is associated with increased, decreased, or neutral risks11 of preterm birth has been debated in the literature, with the uncertainty reflected in the American College of Obstetrics and Gynecology Committee opinion on obesity in pregnancy.12 Even low birth weight, which is typically thought to be reduced in infants of overweight and obese women, is sometimes associated with neutral risks.2 To accurately risk stratify a pregnancy at the first antenatal visit, as is standard, it is important to know the effect of overweight and obesity in mothers on preterm birth and low birth weight. We therefore undertook a systematic, comprehensive, and unbiased accumulation and summary of the available evidence from all study designs with a reference group of normal weight women to determine the direction and magnitude of the association of maternal overweight and obesity with preterm birth and low birth weight in singleton pregnancies in developed and developing countries.

METHODS

We carried out a systematic review and meta-analyses in accordance with the Meta-analysis Of Observational Studies in Epidemiology consensus statement.13

With the help of a librarian we searched Medline (1950 to 2 January 2009) and Embase (1980 to 2 January 2009), using individual comprehensive search strategies. This study was part of a constellation of systematic reviews examining maternal anthropometry and preterm birth and low birth weight (see search strategy in web extra appendix 1). Additional eligible studies were sought by reviewing the reference lists of identified articles.
Study eligibility criteria
For the constellation of systematic reviews examining maternal anthropology, we included randomised trials, cohort studies, and case-control studies if one or more of the following maternal anthropology variables was assessed as an exposure variable: body mass index (=assessed before pregnancy, during pregnancy or postpartum), weight*, gestational weight gain, attained weight, or height*; and one or more of the following outcomes was assessed: preterm birth (<37 weeks, 32-36 weeks, and <32 weeks) and low birth weight (<2500 g), very low birth weight (<1500 g), and extremely low birth weight (<1000 g). Studies were restricted to those in English. For this particular systematic review of maternal overweight and obesity, we included studies with any body mass index definition of overweight and obese or very obese, whether from self report, objective measurement, medical charts, or databases.

We excluded duplicate publications, studies published only as abstracts, those involving fewer than 10 patients, and those that examined outcomes in multiples unless stratification was done for singleton versus twin outcomes.

Outcome measures
Our primary outcomes were preterm birth (before 37 weeks) and low birth weight (<2500 g) in singletons. Where possible we subdivided preterm birth into spontaneous and induced. Secondary outcomes were late preterm birth (32-36 weeks) and moderate preterm birth (before 32 weeks), and very low birth weight (<1500 g) and extremely low birth weight (<1000 g).

We also reported the following outcomes for studies that met the above inclusion criteria and mentioned intrauterine growth restriction (defined as birth weight <10% for gestational age), birth weight (grams), and gestational age at birth (weeks).

Study and data collection processes
Two assessors (two of ZH, SDM, and SM) independently reviewed titles and abstracts of all identified citations. The full text article was retrieved if either reviewer considered the citation potentially relevant. Two reviewers (two of ZH, SDM and SM) independently evaluated each full text article. Disagreements were settled by discussion and consensus, with a third person as an adjudicator.

From full text articles and using a piloted data collection form, two reviewers independently extracted data on country of origin, years of study, study design, characteristics of participants, outcomes, and information on bias. We included information available from the publications. Inconsistencies were checked and resolved through the consensus process.

Data synthesis
We used Review Manager, version 5.0 (Cochrane Collaboration), for statistical analyses. For cohort studies we used relative risks to meta-analyse crude and separately, adjusted, dichotomous data, whereas for case-control studies we used odds ratios to pool crude and separately, matched or adjusted dichotomous data. Continuous data were analysed using a mean difference. Weighting of the studies in the meta-analyses was calculated on the basis of the inverse variance of the study. The random effects model was chosen because it accounts for both random variability and the variability in effects among the studies as we expected a degree of clinical and statistical heterogeneity among the studies, which were all observational. Crude, matched, and adjusted data were initially pooled separately and then matched or adjusted data were pooled together. Where required and when the incidence of the outcome was rare, to be able to pool data, adjusted relative risks were calculated from adjusted odds ratios. As is typical in meta-analyses, we did not adjust for multiple analyses. We focused on the combined results of overweight, obese, and very obese; however, where possible we also separately reported results for each individually in the summary tables. Clinical heterogeneity was evaluated. We calculated the I2 value to measure heterogeneity. An I2 value represents the percentage of total variation across studies due to heterogeneity rather than due to chance. Values of 25%, 50%, and 75% have been regarded as representing low, moderate, and high heterogeneity.

Sensitivity analyses were planned a priori using a few chosen groups to examine the effects of level of material wellbeing (developed v developing countries), study quality (see web extra appendix 2), youth [adolescence v adulthood], and race. Three post hoc sensitivity analyses were carried out (see web extra appendix 3) to examine the effects of self reported compared with measured body mass index; body
Table 1 | Characteristics of cohort studies included in systematic review and meta-analyses of preterm birth and low birth weight in overweight and obese women compared with women of normal weight

Study (period)	Population	Setting	Self report or measured	When recorded	Definition of exposure (high BMI)	No of women	
Abernathy 2007 (1987-97)	All women who delivered live or stillborn infants ≥500 g	University of California, San Diego Medical Center, USA	Self report	30-39.9	NR	NR	
Adams 1995 (1987-90)	Black and white enlisted service women who delivered live or stillborn singletons at or after 20 weeks’ gestation	Four army medical centres, USA	NR	≥26.0	67	1419	
Ancel 1999 (1994-7)	Exposed: all consecutive single preterm births at 22-36 weeks. Unexposed: randomly selected 1 of every 10 consecutive term (≥37 weeks) single births. Sample included live and stillborn infants from 15 European countries	Measured NR	≥29.8	(≥18.3-29.8)	728	11 328	
Baeten 2001 (1992-6)	Nulliparous women who delivered live singletons	Washington State, USA	Self report NR	≥25	27 353	50 378	
Barros 1996 (18 months)	Consecutive women who delivered live singleton at level 2 facility or for last four months of study at level 3 facility (teaching hospital)	Hospital de Familicão and Hospital de S João, Porto, Portugal	Self report	548 hours of birth	≥25	951	2158
Berkowitz 1998 (1986-96)	Women who delivered singletons; one pregnancy was randomly selected for women who had more than one eligible pregnancy	Mount Sinai Hospital, New York City, USA	NR	≥26.0	754	1668	
Bhattacharya 2007 (1976-2005)	All primigravid women who delivered singletons after 24 weeks’ gestation in Aberdeen city and district	Aberdeen maternity neonatal databank, UK	Measured Before pregnancy	≥25	7323	14 076	
Bianco 1998 (1988-95)	Morbidly obese women and non-obese women aged 20-34 with singletons	Mount Sinai Medical Centre, Toronto, Canada	Self report NR	≥35 (≥19-27)	613	11 313	
Bindlev 2001 (1994-6)	Outpatient women at first antenatal visit	Patan Hospital, Kathmandu, Nepal	NR	≥24	313	661	
Callaway 2006 (1998-2002)	Women with singletons booked for antenatal care	Mater Mother’s Hospital, south Brisbane, Australia	Measured	≤12 weeks’ gestation	≥25	4809	6443
Clausen 2006 (1995-7)	Women of Norwegian ancestry with an appointment for ultrasound screening	Akers Hospital, covered 14 of 23 districts from Oslo, Norway	NR	17-9 weeks’ gestation	≥25	690	2183
Cogwell 1995 (1990-1)	Women on low income at high nutritional risk enrolled in supplemental food programme with single, live, term infants; one infant selected from women who delivered more than one baby in 1990’s	Eight states in USA	Self report NR	≥26.0	19 732	33 809	
Cnattingius 1998 (1992-3)	Women born in Sweden, Denmark, Norway, Finland, or Iceland with information on prepregnancy BMI, who delivered singletons registered in Swedish medical birth register	Sweden	Self report	First antenatal visit	≥25	697	2313
De 2007 (1996-2004)	Women who initiated prenatal care ≥0 weeks’ gestation, were aged ≥18, could speak and read English, planned to carry pregnancy to term, and were to deliver at one of two hospitals	Swedish Medical Center, Seattle, or Tacoma General Hospital, Washington, USA	Self report NR	≥25	634	1450	
Dietz 2006 (1996-2001)	Women with singleton births from pregnancy risk assessment monitoring system	21 states in USA	Self report NR	=26.0	33 582	59 088	
Drul 2008 (2006)	Women with singletons and complete baseline maternal clinical information and pertinent outcome data	University of Udine, Italy	Self report NR	≥25	153	533	
Dubois 2006 (1998-2002)	Random sample of children born in public health districts during 1998	Quebec, Canada	Self report NR	≥25	568	1253	
Frederik 2006 (1994-2004)	English speaking women aged ≥18, who planned to deliver at one of two hospitals and were at ≥20 weeks’ gestation at enrolment	Swedish Medical Center, Seattle, or Tacoma General Hospital, Washington, USA	Self report Before pregnancy	≥26	649	1629	
Gardosi 2000 (1988-95)	Consecutive women with singleton live births	Hospital, Birmingham, UK	Measured	First antenatal visit	≥29.4 (≥20.1-29.4)	2372	15 964
Gilboa 2008 (1981-9)	White or black women with liveborn infants at 25-40 weeks; exposed: randomly selected, without birth defects or pregestational diabetes	District of Columbia, Northern Virginia, Maryland, USA	Self report NR	≥25	687	2218	
Goldenberg 1998 (1992-4)	Women selected to reflect population by race and parity and identified at ≤24 weeks’ gestation	National Institute of Child Health and Human Development Maternal Fetal Medicine Network, 10 centres in USA	NR	≥26	1037	1251	
Haas 2005 (May 2001 to July 2002)	Women who delivered singletons, participated in Project WISH, and received prenatal care at a practice or clinic associated with the delivery hospitals and planned to deliver at one of these hospitals; were aged ≥18 at recruitment; spoke English, Spanish, or Cantonese; sought prenatal care ≥6 weeks’ gestation; and could be contacted by telephone	Six delivery hospitals in San Francisco Bay area, California, USA	Self report	First antenatal visit ≥0 weeks	≥25	702	863
Hauger 2008 (2003-6)	Women with pregnancies ending in live birth or fetal death, at ≥22 weeks’ gestation or birth weight ≥500 g	10 public hospitals in Buenos Aires city and province, Argentina	Self report	First antenatal visit	≥25	12 327	29 644
Hendler 2005 (1992-4)	Women with maternal height and prepregnancy weight available	10 medical centres in USA	NR	≥30 (≥130)	597	2313	
Study (period)	Population	Setting	Body mass index (BMI)	No of women			
---------------	------------	---------	-----------------------	-------------			
Hickey 199735 (1982-6)	All women on low income who registered for prenatal care	Five clinical centres: California, Illinois, Ohio, Tennessee, Alabama, USA	Self report or measured	2775 6943			
Hulsey 200536 (1998-9)	Women with live singleton with birth weight ≥2500 g	South Carolina, USA	NR NR	26 27 236 45 916			
Jensen 200321 (1992-6)	Women with oral glucose tolerance test who delivered first pregnancy in one of four hospitals	Four hospitals in Copenhagen, Denmark	NR NR	225 1365 1094			
Johnson 199738 (1987-9)	All women with singleton live births who delivered ≥28 weeks and received prenatal care	Shands Hospital, Gainesville, Florida, USA	Self report	First antenatal visit	26	815 2621	
Kim 200542 (2001-4)	Women with singleton pregnancy at 20-42 weeks who had had obstetric ultrasound and were admitted to one of the included hospitals	Nine institutions in Korea	Self report	NR	225 171 1112		
Kumari 200122 (1996-8)	Women who attended antenatal clinic, weighing ≥290 kg during first 12 weeks of pregnancy	Al-Mafraq Hospital, Abu Dhabi, Safrany Arab Emirates	NR NR	≥20 (r 22-28)	188 300		
Lawoyn 199937 (1968)	Randomly selected gravid women at first antenatal clinic visit with the first 6 weeks of pregnancy	Randomly select cases form of citywide, Ibadan, Nigeria	Measured	NR	225 268 109		
Leung 20085 (1995-2005)	Ethnically Chinese women with singleton pregnancy who presented ≥20 weeks' gestation and gave birth ≥22 completed weeks	University obstetric unit, Hong Kong, China	NR NR	≥25	4633 22 041		
Lumme 199938 (1985-6)	Women with singleton pregnancies	Northern Finland	NR NR	≥25	1592 6433		
Maddah 200544 (Jun 2002 to May 2003)	Women who attended one of six health centres randomly selected from total 12 centres in city	Six health centres, Rash, Iran	Measured	NR	≥26	82 414	
Merlina 200629 (1996-2004)	All women delivering live or stillborn infant ≥20 weeks	One medical centre, university, Cleveland, USA	Measured	NR	≥25	957 1374	
Mobasheri 20065 (2004-5)	Women who regularly attended two urban and rural centres for prenatal care	Gorgan, Iran	Self report	NR	≥26	108 161	
Monaghan 200140 (1992-5)	All pregnant women in two hospitals, with last menstrual period between 25 Dec 1992 and 23 Jul 1994	Dnipropetrovsk region of Kyiv and Dnipropetrovskhitz, Ukraine	Measured	NR	≥25	474 1387	
Nohr 200725 (1996-2002)	Women with singletons who accepted invitation and signed consent form for Danish National Birth Cohort	Danish National Birth Cohort, Denmark	Self report	Early pregnancy	≥25	23 695 57 923	
Ogbonna 200745 (1998-9)	Women living in urban centres near hospital and delivering at university affiliated hospital	Harare Maternity Hospital, Harare, Zimbabwe	Measured	Post partum, before discharge	≥24.6	234 117	
Ogungbemi 199842 (1990-5)	Consecutive black women on low income who registered for prenatal care in first trimester, who delivered singleton ≥37 weeks	Western Alabama, USA	Self report	First antenatal visit	≥26	281 223	
Panahande 200725 (2003-8)	Women who delivered after 38 weeks who were cared for at one of seven health centres randomly selected from 13 centres	Seven local health centres (rural region), Gullah, Iran	NR NR	≥26	223 219		
Panaretto* 200646 (2000-3)	All women with singletons presenting to Townsville Aboriginal and Islanders Health Service for antenatal care	Townsville Hospital, tertiary referral centre for North Queensland, Australia	Self report	First antenatal visit	≥25	NR NR	
Rahman 199028 (NR)	Exposed: 300 consecutive obstetric patients with BMI ≥30. Unexposed: equivalent number with BMI 20-27	NR (assumed Trinidad, West Indies)	NR NR	≥30 (r 20-27)	290 299		
Ray 200125 (1993-8)	First pregnancy in all consecutive women with singletons and with pregestational or gestational diabetes	Women's College Hospital, Toronto, Canada	NR NR	≥25	275 218		
Rode 200544 (1998-2001)	Women in Copenhagen first trimester study, who registered ≤15 weeks, who had a singleton cephalic delivery ≥37 weeks	Three hospitals in Copenhagen, Denmark	Self report	NR	≥25	1742 6350	
Rode 200747 (Nov 1996 to Oct 1998)	Women with singleton, term pregnancies aged ≥18, fluent in Danish, without alcohol or drug misuse, and answered questionnaire at 12-18 and 37 weeks	University hospital in Copenhagen, Denmark	Self report	12-18 wks	≥26	562 1531	
Roman 200782 (2001-5)	Exposed: all obese women (pregnancy BMI ≥30) after 22 weeks. Unexposed: normal weight (pregnancy BMI 18.5-25)	Sph-Reunion Hospital, Sph Union, France	Self report	First antenatal visit	≥30	2050 2066	
Roman 200823 (1994-2004)	Women who received prenatal care and delivered vaginally or by caesarean section during labour	Medical University of South Carolina, Charleston, USA	Measured	At delivery	≥25	5393 1556	
Ronnenberg 20035 (NR)	Full time employed textile workers, newly married, nulliparous, aged 20-34, with permission to have a child	Anqing, China	Measured	NR	19.8-26	272 146	
Sahu 20067 (2005-6)	Women from all socioeconomic levels with singleton pregnancies	Queen Mary's Hospital, King George's Medical University, Lucknow, India	NR NR	≥25	129 205		
Salihu* 20085 (1989-97)	Women at 20-44 weeks with live births	Missouri, USA	Self report	First visit	≥30 (r 18.9-24.5)	NR NR	
Savitz 200537 (Aug 1995 to Feb 2001)	Women who came to participating clinic before 30 weeks' gestation with singleton pregnancy, had access to telephone, were able to communicate in English, and planned to continue care and deliver at study hospital	University of North Carolina Hospitals, Wake County Human Services, and Wake Area Health Education Centre in central North Carolina, USA	Self report	24-29 weeks	≥26	852 1102	
mass index assessed before pregnancy, during pregnancy, or post partum; and using exact cut-offs for body mass index with a reference body mass index of 20-25 versus those with cut-offs close to this.

Quality assessment
Two reviewers (two of ZH, SDM, and SM) independently assessed study quality using a predefined evaluation of six types of biases: selection, exposure, outcome, confounding, analytical, and attrition (see web extra appendix 2). This bias assessment tool has been described in other reviews undertaken by our group on determinants of preterm birth and low birth weight.17

To deal with publication bias we showed results without imputation as well as with imputation: the latter using Duval and Tweedie’s trim and fill method for estimating and adjusting for the number and outcomes of missing studies in a meta-analysis18 19—that is, to adjust for any observed publication bias. A priori we decided to carry out the trim and fill analyses for outcomes with at least 10 studies as there were concerns of reliability for outcomes with fewer studies. We used the generic inverse variance method to calculate study specific weights. These analyses were done using the R statistical and programming software, version 2.9.0. (R Foundation for Statistical Computing, Vienna, Austria).

RESULTS
Overall, 6283 non-duplicated titles and abstracts were identified (fig 1). After the screening process, 503 articles were failure to report outcomes of interest and study design. 52 articles were identified from reference lists, yielding a total of 555 full text articles for review. The most common reasons for exclusion were failure to report outcomes of interest and study design. 52 articles were identified from reference lists, yielding a total of 555 full text articles for review. The most common reasons for exclusion were failure to report outcomes of interest and study design. 52 articles were identified from reference lists, yielding a total of 555 full text articles for review. The most common reasons for exclusion were failure to report outcomes of interest and study design.

Eighty four studies were included: 64 cohort studies2-6 9-11 20-75 (58 with pooled data) and 20 case-control studies76-95 (19 with pooled data), totalling at least some studies did not report the number of patients.
Table 2: Characteristics of case-control studies included in systematic review and meta-analyses of preterm birth and low birth weight in overweight and obese women compared with women of normal weight

Study (period)	Population	Setting	Self report or measured	When recorded	Body mass index	No of women
Al-Eissa 2014⁷⁸ (one year, date NR)	Live births (birth weight appropriate for gestational age) identified over one year period. Cases: women who delivered preterm infants at 20-37 weeks. Controls: women who delivered infants at 37-42 weeks	King Khalid University Hospital, Riyadh, Saudi Arabia	NR	NR	118	118
Begum 2003⁷⁷ (1995)	Women with spontaneous labour who delivered at >=7 weeks. Controls: women who delivered >37 weeks	Tertiary hospital, northern India	NR	NR	94	88
Cato 2007⁷⁸ (1997-2001)	All women with preterm births (spontaneous onset or premature rupture of membranes). Controls: randomly chosen women delivered > 37 weeks, with first blood sample <15 weeks. Both groups: uncomplicated pregnancies	USA	NR	NR	90	199
Conti 1998⁷⁹ (1994-5)	Cases: consecutive women who delivered premature infants (<37 weeks) with low birth weight (1000-2500 g). Controls: women who delivered infants <2500 g.	Major teaching hospital, Sydney, New South Wales, Australia	Self report	During pregnancy	54	86
de Haas 1991⁸⁰ (1989-9)	Women who delivered live singletons at 20-37 weeks, with delivery preceded by spontaneous labour or rupture of membrane without induction for maternal or fetal indications	Griffiths and Women’s Hospital, Boston, Massachusetts, USA	Measured	NR	114	232
Delgado-Rodriguez 1998⁸¹ (1990-3)	Women with live births <2500 g, living in referral area of hospital. Controls: women who delivered singletons <2500 g.	University of Granada Hospital, Granada, Spain	Self report (from chart)	NR	240	374
Dhar 2003⁸² (1999)	Pregnant women who delivered liveborn babies; every third pregnant woman at maternal-child health training institute	Public maternity hospital, Dhaka, Bangladesh	Measured	NR	27	167
Gosselin¹⁹ (1985-1990)	Women aged 15-45 who delivered singletons (with spontaneous onset of labour) and consented to be interviewed. Cases: women who delivered preterm. Controls: women who delivered >39 weeks	University of Chicago and University of Iowa Hospitals, USA	Self report	NR	368	368
Hashim²⁰ (1997-2001)	Randomly selected postpartum women within 24 hours after delivery (at >37 weeks’ gestation). Cases: women who delivered infants <2500 g. Controls: women who delivered infants >2500 g.	El-Shemaya Maternity and Children Hospital, Riyadh, Saudi Arabia	Self report	NR	250	250
Hediger 1995²¹ (Oct 1990 to Nov 1993)	Every third participant enrolled in larger study to prenatal care under same protocol. Women were recruited within one month of entry to have real time and Doppler ultrasound scan for research purposes at 32 weeks	Urban clinic in Camden, New Jersey, USA	Self report	First antenatal visit	46	244
Karim 1997²² (NR)	Women living within four identified sections of Mirpur area with no immediate plans to move from current address, aged 17-35 on date of interview	One hospital: mother and child clinic in Mirpur area of Dhaka, India	Self report	Immediately after birth	51	196
Lawoyin 1997²³ (NR)	Consecutive women for whom complete information was available. Cases: women who gave birth to infants <2500 g. Controls: Women who gave birth to babies <2500 g.	Armed Forces Hospital, Tabuk, northwest Saudi Arabia	Measured	During pregnancy	50	478
Le 2007²⁴ (Jul to Dec 2006)	Women who gave birth to singleton live infant, with normal mental health and ability to communicate and had >20 teeth. Controls: random sampling	Thai Nguyen General Hospital, Thai Nguyen, Thailand	Measured	After birth	130	260
Melamed 2008²⁵ (1996-2004)	All women followed from conception to delivery with type 1 or type 2 diabetes and no diabetes. Cases: women with preterm birth. Controls: women with term deliveries (note called cohort by authors but data extracted for this was case-control)	Rabin Medical Centre, Tel Aviv, Israel	NR	NR	119	329
Mohsen 2009²⁶ (2006)	Pregnant women at delivery and their full term (gestational age 37-42 weeks) newborns. Women without hypertension, diabetes, pregnancy toxemia, antepartum haemorrhage, or any medical or obstetric problems, with normal vaginal delivery	Al-Mataria Teaching Hospital, Riyadh, Saudi Arabia	Assumed measured	Post partum	24	30
Ojh 2007²⁷ (2004-5)	Women who delivered at term. Cases: women who delivered low birth weight infants. Controls: women who delivered infants of normal birth weight.	Paroaraksh Shree Panch Indra laxmi Devi Maternity Hospital, Thapathali, Nepal	Measured	Post partum	154	154
Piliphat 2008²⁸ (1999-2002)	Participants of Project Viva, women with live infants and who were medically insured	One of eight Harvard Vanguard Medical Associates Centers, eastern Massachusetts, USA	Self report	Before pregnancy	105	1530
Yoge 2007²⁹ (1995-9)	Women with singletons and gestational diabetes first diagnosed in the current pregnancy	1 Hospital: San Antonio Texas, USA	Measured	Before pregnancy	163	1363
Xue 2008³⁰ (2001-2)	White nurses who were cancer free and whose mother reported their birth weight, lived with spouse, received prenatal care, and had singleton pregnancies without pre-eclampsia or eclampsia.	Nurses’ Health Study and Nurses’ Health Study II US	Self report	Post partum	1810	30 051
Zeitlin³¹ (2005-9)	Women who delivered live or stillbirth singletons. Cases: women who delivered between 22 and 36 weeks. Controls: every 10th woman who delivered ≥37 weeks	17 European countries (Czech Republic, Finland, France, Germany, Greece, Hungary, Ireland, Italy, the Netherlands, Poland, Romania, Russia, Scotland, Slovenia, Spain, Sweden, and Turkey)	NR	NR	4707	7821

Total: 8714 | 44 338

NR=not reported. *Non-pooled study. †Pooled studies with dichotomous data.
Preterm birth

It was most commonly at the first antenatal visit. The majority of the studies assessed body mass index, although developing countries were also represented. Most studies did not report the timing of weight in cohort studies. BMI originated predominantly from developed countries, although overweight and obese women having a relative risk of 1.15 (1.04 to 1.27), 1.56 (1.42 to 1.71), and 1.71 (1.50 to 1.94), respectively. The risk of spontaneous preterm birth 1.095 834 women (fig 1, tables 1 and 2). The studies originated predominantly from developed countries, although developing countries were also represented. The majority of the studies assessed body mass index by self report. Most studies did not report the timing of body mass index assessment, although when reported it was most commonly at the first antenatal visit.

Preterm birth

In the pooled cohort studies the overall risk of preterm birth before 37 weeks did not differ significantly among overweight or obese women with singleton pregnancies (relative risk 1.06, 0.87 to 1.30, 38 studies, fig 2) compared with women of normal weight (table 3). However, among overweight and obese women the risk of induced preterm birth was increased (1.30, 1.23 to 1.37, five studies, fig 3). The heavier the woman, the higher the risk of induced preterm birth before 37 weeks, with overweight, obese, and very obese women having a relative risk of 1.15 (1.04 to 1.27), 1.56 (1.42 to 1.71), and 1.71 (1.50 to 1.94), respectively. The risk of spontaneous preterm birth

Table 1: Summary of studies on the risk of preterm birth before 37 weeks in overweight and obese women compared with women of normal weight in cohort studies. BMI=body mass index

Study	Higher BMI	Lower BMI		
	No of events	Total	No of events	Total
Adams 1995	16	67	159	1419
Ancel 1999	353	728	4434	11 328
Baeten 2001	1659	26 868	2642	49 321
Barros 1996	45	951	105	2158
Berkowitz 1998	466	754	1027	1668
Bhattacharya 2007	848	7323	1537	14 076
Bianco 1998	62	613	933	11 313
Bondevik 2001	13	313	40	661
Callaway 2006	352	4809	431	6443
Clausen 2006	29	690	87	2183
De 2007	65	634	119	1450
Dietz 2006	8804	33 582	13 786	59 088
Drif 2008	35	153	46	533
Gardosi 2000	173	2372	1056	15 946
Gilboa 2008	40	687	114	2218
Goldenberg 1998	69	1037	129	2511
Haas 2005	63	702	58	863
Hauger 2008	1130	12 327	10	99
Hendler 2005	37	597	259	2313
Hickey 1997	204	2775	521	6943
Jensen 2003	40	1365	27	1094
Kim 2005	18	171	66	1112
Leung 2008	344	4633	1392	22 041
Lumme 1995	83	1592	259	6433
Merlino 2006	86	957	149	1374
Monaghan 2001	20	474	53	1387
Nohr 2007	1146	23 595	2607	57 923
Rahman 1990	8	290	20	299
Ray 2001	77	275	61	218
Ray 2001	77	275	61	218
Ronnenberg 2003	20	272	10	146
Sahu 2007	7	129	8	205
Savitz 2005	142	852	131	1102
Scholl 1989	62	378	194	1164
Sebire 2001	6235	110 290	9819	176 923
Siega-Riz 1996	51	1227	108	2626
Smith 2007	3602	28 612	4977	9551
Yekta 2006	6	100	8	140
Yoge 2005	156	1529	226	4861
Total (95% CI)	274 998	480 091	100 000	1 065 871

Test for heterogeneity: $\chi^2=0.37, \chi^2=5917.35, df=38, P<0.001, \chi^2=99%$

Test for overall effect: z=0.57, P=0.57

Fig 2: Forest plot of risk of preterm birth before 37 weeks in overweight and obese women compared with women of normal weight in cohort studies. BMI=body mass index

1095 834 women (fig 1, tables 1 and 2). The studies originated predominantly from developed countries, although developing countries were also represented. The majority of the studies assessed body mass index by self report. Most studies did not report the timing of body mass index assessment, although when reported it was most commonly at the first antenatal visit.
did not differ (0.93, 0.85 to 1.01, 15 studies). Heterogeneity ranged from 0 to 99%, with most studies in the moderate to high range.

Overweight and obese women had an increased risk of preterm birth before 33 weeks (crude relative risk 1.26, 95% confidence interval 1.14 to 1.39). The heavier the woman, the higher the risk of early preterm birth, with overweight, obese, and very obese women having a relative risk of 1.16 (1.05 to 1.29), 1.45 (1.23 to 1.71), and 1.82 (1.48 to 2.24), respectively.

Table 3 | Summary table of preterm birth outcomes in cohort studies of overweight and obese women compared with women of normal weight

Outcomes	Total No of studies	No of studies	Relative risk* (95% CI)	I² (%)	No of studies	Relative risk* (95% CI)	I² (%)
All births <37 weeks:§	40	38	1.06 (0.87 to 1.30)‡	99	4	1.02 (0.68 to 1.54)§	77
Overweight only	27	27	1.03 (0.98 to 1.07)	48	7	0.95 (0.85 to 1.06)	79
Obese only	3	3	1.10 (0.99 to 1.21)	84	1	1.17 (1.02 to 1.35) NA	
Very obese only	6	5	1.22 (0.86 to 1.72)	96	4	1.21 (0.84 to 1.74)	68
Spontaneous births <37 weeks:	15	15	0.93 (0.85 to 1.01)‡	70	1	2.20 (1.20 to 4.38)§ NA	
Overweight	10	10	0.92 (0.87 to 0.97)	0	4	0.94 (0.80 to 1.10)	45
Obese	2	2	0.88 (0.74 to 1.04)	64	2	1.04 (0.92 to 1.17)	94
Very obese	2	2	0.87 (0.70 to 1.07)	0	2	0.95 (0.67 to 1.33)	57
Induced births <37 weeks:	5	5	1.30 (1.23 to 1.37)‡	0	2	1.30 (0.70 to 2.43)§	44
Overweight	3	3	1.15 (1.04 to 1.27)	29	2	1.03 (0.72 to 1.48)	37
Obese	1	1	1.56 (1.42 to 1.71) NA		1	0.84 (0.71 to 0.98) NA	
Very obese	1	1	1.71 (1.50 to 1.94) NA		1	1.82 (1.47 to 2.26) NA	
Births 32-36 weeks:§	4	4	1.15 (0.95 to 1.38)‡	86	1	2.16 (1.13 to 4.12)§ NA	
Overweight	2	2	0.98 (0.94 to 1.03)	0	1	1.21 (0.90 to 1.62) NA	
Obese	2	2	0.99 (0.95 to 1.03)	0	0	NA	
Very obese	2	2	1.03 (0.97 to 1.09)	0	1	2.05 (1.14 to 3.70) NA	
Births <33 weeks:§	12	11	1.24 (1.14 to 1.39)‡	76	2	1.23 (0.87 to 1.72)§	0
Overweight	7	7	1.16 (1.05 to 1.29)	65	4	1.08 (0.79 to 1.50) 90	
Obese	3	3	1.45 (1.23 to 1.71)	57	2	1.49 (0.89 to 2.50) 74	
Very obese	3	3	1.82 (1.48 to 2.24)	24	2	2.02 (1.24 to 3.29) 0	

NA=not applicable;
*Calculated using random effects, inverse variance.
†Spontaneous, induced, and unspecified.
‡Represents pooled relative risk for each of individual rows below and also includes risk in studies that did not stratify by overweight, obese, and very obese, but rather presented combined risk.
§Represents pooled relative risk for studies that originally examined all women with a high body mass index as one group rather than subdividing into overweight, obese, and very obese, as we believe it is methodologically incorrect to pool adjusted risks for overweight women with adjusted risks for obese women within one study. For this reason, the total number of studies for each outcome in adjusted or matched data column is sometimes lower than the number of studies in following rows.
birth before 37 weeks was 2.29, 95% confidence interval 1.20 to 4.38).

The results of six cohort studies, not included in the meta-analysis (the format of the data did not permit pooling) generally supported the pooled data. One study showed an increased risk of preterm birth before 37 weeks in overweight and obese women and another showed a slight decreased risk. Similar to the pooled data, there were decreases in spontaneous preterm birth before 37 weeks and increases in the risk of induced preterm birth before 37 weeks.

Preterm births

Birth before 37 weeks: 7 6 -0.33 (-1.19 to 0.53) 86 1 -0.70 (-2.23 to 0.83) NA
Spontaneous birth 4 0 -0.90 (-1.77 to -0.02) 82 0 NA NA
Preterm birth <33 weeks 2 2 0.72 (2.16 to 0.73) 0 0 NA NA

Low birth weight

Low birth weight (<2500 g) 8 7 -1.15 (-1.87 to -0.44) 84 1 -1.20 (-1.85 to -0.55) NA
Intrauterine growth restriction§ 2 1 -1.70 (-2.64 to -0.76) NA 1 -0.60 (-2.42 to 1.22) NA

NA= not applicable.

† Calculated using random effects, Mantel Haenszel.

Table 5: Risk of poor perinatal outcomes in case-control studies of overweight and obese women compared with women of normal weight

Outcome*	Pooled crude data	Pooled matched data				
	No of studies	Odds ratio (95% CI)	I² (%)	No of studies	Odds ratio (95% CI)	I² (%)
Preterm birth <37 weeks	2	1.16 (0.99 to 1.37)	0	2	1.08 (0.39 to 2.95)	89
Spontaneous preterm birth <37 weeks	1	1.00 (0.18 to 5.53)	NA	1	1.79 (1.13 to 2.84)	NA
Low birth weight (<2500 g)	1	0.51 (0.36 to 0.74)	NA	0	NA	NA

NA= not applicable.

* No values for induced preterm births before 37 weeks, births 32-36 weeks, and births before 32 weeks; birth weights of 1500-2500 g, <1500 g, or <1000 g; intrauterine growth restriction; mean birth weight; and gestational age at delivery.

† Calculated using random effects, Mantel Haenszel.
obese women compared with women of normal weight (adjusted odds ratios 1.4, 95% confidence interval 0.9 to 2.14 and 0.3, 0.1 to 1.0).21

In the seven pooled case-control studies women with low birth weight singletons had a lower maternal body mass index than women with singletons of appropriate weight in both the crude data (−1.15 body mass index units, 95% confidence interval −1.20, −0.06 weeks, 95% confidence interval −2.64 to −0.76; table 4). The single case-control study that dichotomised body mass index into high versus reference also found a decreased risk of infants with low birth weight among mothers with a high body mass index (odds ratio 0.51, 95% confidence interval 0.36 to 0.74; table 5).

Other outcomes
In the pooled cohort studies, overweight and obese women had a lower risk of infants with intrauterine growth restriction than women of normal weight (crude relative risk 0.79, 0.72 to 0.88, table 6), and infants with higher mean birth weights by 70.8 g (54.4 g to 87.2 g) despite shorter mean gestations (by −0.06 weeks, 95% confidence interval −0.12 weeks to −0.01 weeks).

One case-control study reported that women with singletons showing intrauterine growth restriction had a lower mean body mass index than women with infants of normal growth (−1.70 body mass index units, 95% confidence interval −2.64 to −0.76; table 4). A priori defined sensitivity analyses for preterm birth
Many of the categories in the sensitivity analyses had few studies, limiting our power to draw conclusions. In developing countries, the risk of preterm birth in overweight and obese women were similar to those of women in developed countries (relative risk 0.83, 95% confidence interval 0.61 to 1.12 and 1.09, 0.87 to 1.36; table 7).

No studies were of low quality. There was no significant increase in preterm birth among adolescents compared with adults (0.98, 0.76 to 1.28, one study, and 1.09, 0.95 to 1.25, four studies). Only one study reported on ethnicity; the risk of preterm birth was
not significantly increased in overweight and obese black women (0.84, 0.69 to 1.03) or white women (1.03, 0.77 to 1.38).

A priori defined sensitivity analyses for low birth weight The decreased risk of low birth weight in overweight and obese women compared with women of normal weight in developing countries was greater than in developed countries (0.58, 0.47 to 0.71, 11 studies v 0.90, 0.79 to 1.01, 20 studies; table 8). In developing countries, the heavier the woman the smaller the risk of having an infant of low birth weight: relative risks for overweight, obese, and very obese women were, respectively, 0.88 (0.64 to 1.23), 0.39 (0.11 to 1.34), and 0.29 (0.10 to 0.89).

Only one study was of low quality, limiting conclusions on the effect of study quality. Overweight and obese adolescents but not adults were at a decreased risk of having an infant of low birth weight (0.76, 0.63 to 0.92 v 1.08, 0.82 to 1.42).

No studies specified whether their population was white and therefore the effect of ethnicity on low birth weight could not be examined.

Quality assessment Quality assessment (tables 9 and 10) was based on the evaluation of six types of bias. Selection bias was unlikely as women with high and normal body mass indices were usually drawn from the same populations, whereas exposure bias was possible given that weight was self reported in most studies.

Little bias was present in our outcomes as they had standard definitions and were objectively measured—for example, low birth weight was always defined as birth weight <2500 g.

Confounding variables that might explain part or all of the relation between overweight and obesity and preterm birth and low birth weight were incompletely dealt with in several ways: by exclusion, by matching, by comparison of some variables and determining that

Table 6	Risk of low birth weight and other perinatal outcomes in cohort studies of overweight and obese women compared with women of normal weight					
Outcome	**Total**	**No of studies**	**Pooled crude data**	**Pooled matched data**		
			No of studies	**Relative risk* (95% CI) I 2 (%)**	**No of studies**	**Relative risk* (95% CI) I 2 (%)**
All low birth weight (<2500 g):‡	31	28	0.84 (0.75 to 0.95)‡	81	0.70 (0.53 to 0.93) 20	
Overweight	21	21	0.92 (0.80 to 1.05)	73	1.00 (0.85 to 1.19) 0	
Obese	4	4	0.63 (0.34 to 1.19)	92	0.71 (0.38 to 1.33) NA	
Very obese	6	5	0.81 (0.42 to 1.53)	88	0.30 (0.09 to 1.01) NA	
Moderately low birth weight (1500-2500 g):§	1	1	0.99 (0.93 to 1.05)‡	NA	0	
Overweight	1	1	1.06 (0.95 to 1.13) NA	1	0.95 (0.64 to 1.41) NA	
Very low birth weight (<1500 g):¶	2	2	1.61 (1.42 to 1.82)‡	0	0 NA	
Overweight	1	1	1.42 (1.18 to 1.70) NA	1	1.54 (1.22 to 1.94) NA	
Very obese	1	1	1.54 (0.75 to 3.15) NA	0	0 NA	
Extremely low birth weight (<1000 g):**	11	9	0.99 (0.72 to 1.30) NA	58	0	
Overweight	7	7	1.43 (1.05 to 1.95) NA	1	1.55 (0.99 to 2.44) NA	
Very obese	1	1	1.98 (1.36 to 2.89) NA	1	2.80 (1.72 to 4.57) NA	
Intrauterine growth restriction**:	7	7	0.79 (0.73 to 0.86) 34	2	0.69 (0.63 to 0.76) 0	
Overweight	1	1	1.01 (0.77 to 1.30) NA	0	0 NA	
Very obese	3	2	0.81 (0.61 to 1.08)	0	1.06 (0.18 to 6.31) NA	
Mean difference in birth weight (g):	10	9	70.8 (54.5 to 87.2)‡	89	172.0 (137.1 to 206.9) NA	
Overweight	7	7	68.2 (50.0 to 86.4) 92	0	0 NA	
Obese	1	1	25.0 (41.2 to 91.2) NA	0	0 NA	
Very obese	2	2	49.9 (~30.5 to 130.4) 62	0	0 NA	
Mean difference in gestational age at delivery (weeks):	6	5	−0.06 (~0.12 to ~0.01)‡	0	1 0.00 (~0.14 to 0.14) NA	
Overweight	3	3	−0.08 (~0.16 to 0.00)	0	0 NA	
Obese	1	1	0.10 (~0.13 to 0.33) NA	0	0 NA	
Very obese	2	2	−0.05 (~0.18 to 0.08)	0	0 NA	

*Calculated using random effects, inverse variance. Total number of studies for each outcome are sometimes lower than number of studies in following rows (for explanation see footnote to table 3).
†Of all babies, including those of low birth weight at term and preterm.
‡Represents pooled relative risk for each of individual.
§No values for obese and very obese women.
¶No values for obese women.
**Less than 10% for gestational age.
NA=not applicable.
they were not significantly different between the exposed and unexposed women, and by using multiple regression to control for some variables that were significantly different between the two groups. Most studies assessed some confounding variables, but none addressed all. Many studies did not calculate a sample size or power calculation. Attrition bias was rare given that follow-up occurred during the hospital admission for birth.

Trim and fill analyses
The trim and fill analysis of preterm birth before 37 weeks suggested that nine studies were “missing” from the initially meta-analysed relative risk of 1.06 (95% confidence interval 0.87 to 1.30); when the nine studies were imputed yielding a risk based on a total of 49 studies, the risk of preterm birth before 37 weeks was significantly higher in overweight and obese women than normal weight women (1.24, 1.13 to 1.37, see web extra appendix 4). The trim and fill analysis resulted in no additional imputed studies for preterm birth before 32 weeks (with the original studies showing an increased risk in overweight or obese mothers). The risk of spontaneous preterm birth in overweight or obese women was similar with four additional imputed studies (0.89, 0.81 to 0.97). After accounting for publication bias, the apparent protective effect of overweight or obesity on low birth weight disappeared with the addition of nine imputed studies, yielding an overall risk based on 40 studies (0.95, 0.85 to 1.07, see web extra appendix 4).

DISCUSSION
In this systematic review and meta-analyses, we determined that overweight and obese women have an increased risk of a preterm birth before 32 weeks, induced preterm birth before 37 weeks, and, accounting for publication bias, preterm birth before 37 weeks overall. The beneficial effects of overweight or obesity on low birth weight were greater in developing countries.

Table 7 | Sensitivity analyses for preterm birth in cohort studies of overweight and obese women compared with women of normal weight

Outcomes	All studies	Overweight	Obese	Very obese								
	No of studies* (No of women)	Relative risk† (95% CI)	I²	NA	No of studies* (No of women)	Relative risk† (95% CI)	I²	NA	No of studies* (No of women)	Relative risk† (95% CI)	I²	NA
Developed countries‡	31 (728) to 366	1.09 (0.87 to 1.36)	99	22 (699)	1.03 (0.98 to 1.07)	57	3 (193)	1.10 (0.99 to 1.21)	84	5 (201)	1.22 (0.86 to 1.72)	96
Developing countries‡	8 (18 578) to 111	0.83 (0.61 to 1.12)	32	5 (12 591)	1.05 (0.80 to 1.36)	0	0	NA	NA	1 (488)	0.10 (0.01 to 0.75)	NA
Low quality studies	0	NA	0	NA	0	NA	0	NA	NA	0	NA	NA
Other quality studies	40 (845) to 165	1.13 (1.01 to 1.26)	97	27 (712)	1.03 (0.98 to 1.07)	48	3 (193)	1.10 (0.99 to 1.21)	84	6 (201)	1.14 (0.80 to 1.62)	95
Adolescence	4 (154)	0.98 (0.76 to 1.28)	NA	0	NA	NA	0	NA	NA	0	NA	NA
Adults	4 (24 146)	1.09 (0.95 to 1.25)	15	2 (2269)	0.92 (0.65 to 1.30)	0	0	NA	NA	1 (11 926)	1.23 (0.96 to 1.57)	NA
Black women	1 (4300)	0.84 (0.69 to 1.03)	NA	0	NA	NA	0	NA	NA	0	NA	NA
White women	1 (3495)	1.03 (0.77 to 1.38)	NA	0	NA	NA	0	NA	NA	0	NA	NA

Body mass index

	All studies	Overweight	Obese	Very obese								
	No of studies* (No of women)	Relative risk† (95% CI)	I²	NA	No of studies* (No of women)	Relative risk† (95% CI)	I²	NA	No of studies* (No of women)	Relative risk† (95% CI)	I²	NA
Self reported	16 (306) to 500	1.11 (1.04 to 1.18)	56	9 (151)	1.07 (1.03 to 1.10)	0	1 (72 998)	1.13 (1.10 to 1.17)	NA	2 (77 758)	1.24 (1.19 to 1.29)	96
Measured	8 (476) to 645	1.22 (0.87 to 1.72)	99	6 (432)	0.97 (0.94 to 0.99)	0	2 (127 755)	1.08 (0.90 to 1.30)	85	3 (123 727)	1.23 (0.58 to 2.65)	NA
Prepregnancy	28 (347) to 010	1.11 (1.04 to 1.19)	81	20 (259)	1.06 (1.01 to 1.10)	19	1 (72 998)	1.13 (1.10 to 1.17)	NA	3 (84 449)	1.24 (1.19 to 1.29)	95
During pregnancy	10 (494) to 457	1.13 (0.81 to 1.56)	99	6 (450)	0.97 (0.94 to 1.00)	8	2 (127 755)	1.08 (0.90 to 1.30)	85	3 (117 524)	0.77 (0.29 to 2.03)	524
Post partum	0	NA	0	NA	0	NA	0	NA	NA	0	NA	NA

Cut-off values:

- 20-25, 25-30: 9 (441 974) to 0.94 (0.53 to 1.65) to 100 | 9 (504 179) | 0.99 (0.96 to 1.03) | 32 | 2 (127 755) | 1.08 (0.90 to 1.30) | 85 | 3 (123 727) | 1.23 (0.58 to 2.65) | 96 |
- Close to 20-25, 25-30: 25 (267 008) to 0.97 (0.85 to 1.09) | 91 | 18 (208 317) | 1.06 (0.99 to 1.08) | 27 | 1 (72 998) | 1.13 (1.10 to 1.17) | NA | 1 (65 832) | 1.24 (1.19 to 1.29) | NA |
- Not close to 20-25, 25-30: 6 (52 088) | 1.12 (0.83 to 1.51) | 92 | 0 | NA | NA | 0 | NA | NA | 2 (124 414) | 0.43 (0.03 to 5.19) | 84 |

No studies were of low quality. NA= not applicable.

*Crude and matched data were pooled for sensitivity analyses.
†Calculated using random effects, inverse variance.
‡Assigned according to Central Intelligence Agency16 criteria. Zeitlin95 included 17 European countries that comprised both developed and developing countries and hence was not included in sensitivity analyses for developing and developed countries.

ONLINE FIRST | bmj.com

BMJ: first published as 10.1136/bmj.c3428 on 20 July 2010. Downloaded from http://www.bmj.com/ on 19 July 2023 by guest. Protected by copyright.
countries than developed countries and disappeared after accounting for publication bias.

This systematic review tackles the uncertainty reflected in guidelines from both the American College of Obstetrics and Gynecology and the Institutes of Medicine on the relation between overweight and obesity in mothers and preterm birth. The 1990 Institutes of Medicine guidelines focused predominantly on problems with birth weight because of the ease of measurement and acknowledged a dearth of information on obese women in particular and on preterm birth in general. The significant increase in induced preterm birth in overweight and obese women may account for the trend towards a decrease in spontaneous preterm birth.

Comparison with other studies
To our knowledge this is the first comprehensive systematic review on the effect of maternal overweight or obesity on preterm birth and low birth weight. Two previous studies have tackled a limited portion of the literature. A systematic review on spontaneous preterm birth found no association with maternal

Table 8: Sensitivity analyses for low birth weight in cohort studies of overweight and obese women compared with women of normal weight

Outcomes	All studies	Overweight	Obese	Very obese
	No of studies* (No of women)			
Developed countries‡	20 (291) 806	15 (221) 318	1 (186) 0	3 (22 766)
Developing countries‡	11 (4710)	6 (1549)	0	1 (186) 0
Low quality studies	1 (150)	0	NA	0
Remaineder studies	30 (298 366)	21 (222 867)	4 (22 952)	6 (32 979)
Adolescents	2 (6364)	1 (4305)	NA	1 (3671)
Adults	3 (14 515)	1 (1708)	0	0
Black women§	1 (504)	1 (301)	0	0
Infant born at term	4 (10 580)	3 (8260)	1 (301)	6 (32 979)
Infant born at term and preterm	28 (289 478)	18 (214 607)	4 (22 952)	6 (32 979)
Post partum	1 (351)	1 (239)	0	0

Body mass index

Self reported	17 (177 230)	12 (131) 837	1 (3671)	2 (15 420)
Measured	4 (29 076)	4 (24 094)	4 (22 766)	4 (17 071)
Prepregnancy	24 (271 847)	17 (200 246)	3 (7018)	5 (18 746)
During pregnancy	4 (25 579)	3 (22 382)	1 (15 934)	1 (14 233)
Post partum	1 (351)	1 (239)	0	0

Cut-off values:

- **20-25, 25-30**
 - 5 (110 404) 1.02 (0.88 to 1.19) 69 3 (78 291) 1.08 (0.73 to 1.61) 81 2 (16 120) 0.79 (0.30 to 2.04) 63 2 (14 360) 1.06 (0.19 to 5.88) 48
 - Close to 20-25, 25-30
 - 22 (167 456) 0.74 (0.62 to 0.88) 84 17 (136 928) 0.87 (0.73 to 1.03) 75 2 (6832) 0.53 (0.26 to 1.09) 88 2 (6205) 0.47 (0.32 to 0.70) 31
 - Not close to 20-25, 25-30
 - 4 (20 656) 0.95 (0.58 to 1.56) 60 1 (7648) 1.06 (0.55 to 2.02) NA 0 NA 12 (4141) 0.67 (0.18 to 2.45) 78

NA = not applicable.

*Crude and matched data were pooled for sensitivity analyses.
†Calculated using random effects, inverse variance.
‡Assigned according to Central Intelligence Agency criteria and Zeitlin included 16 European countries that comprised both developed and developing countries and hence was not included in sensitivity analyses for developing and developed countries.
§No values for white women.
Table 9 | Quality assessment based on evaluation of bias in cohort studies of preterm birth and low birth weight in overweight and obese women compared with women of normal weight

Study	Selection bias	Exposure bias	Outcome assessment bias	Confounding factor bias*	Analytical bias	Attrition bias	Overall likelihood of bias
Abenhaim† 2007††	Low	Low	Low	Minimal. Adjusted for age, parity, smoking, diabetes	Low	Minimal	Low
Adams 1995‡	Minimal	Minimal	NR	Low. Assessed but not different: parity, smoking, race, sex of infant, marital status. Adjusted for medical centre	NR	Minimal	Low
Ancel 1999§§	Minimal	Minimal	Minimal	Low. Adjusted for county of residence. Assessed, but not different: NR. Confounders assessed, different, and not controlled for: age, education, social class, smoker, previous preterm birth, marital status, previous abortion	NR	Minimal	Low
Baeten 2001††	Low	Minimal	Low	Minimal. Adjusted for age, education, smoking, pre-eclampsia, insurance, marital status	NR	Minimal	Low
Barros 1996§‡§	Low	Minimal	Minimal	NA (primary exposure not anthropometry)	Low	Moderate	Low
Berkowitz 1998‡‡	Low	Low	Low	Minimal. Adjusted for age, smoking, insurance, drug use, birth place, clinic service, prenatal care began >12 weeks. Assessed, but not different: in vitro fertilisation. Confounders assessed, different, and not controlled for: clinic service, prenatal care began >12 weeks	NR	Low	Low
Bhattacharya 2007†	Low	Low	Minimal	Minimal. Adjusted for sociodemographic characteristics, year of delivery, gestational hypertension and pre-eclampsia, induced labour. Assessed, but not different: age, husband's social class, diabetes. Confounders assessed, different, and not controlled for: booking week, height, married or cohabiting, smoking	Low	Minimal	Low
Bianco 1998§	Low	Low	Low	Low. Assessed, but not different: age. Confounders assessed, different, and not controlled for parity, education, hypertension, diabetes, substance misuse, race, marital status, clinical service	Low	Minimal	Low
Bondanvik 2001‡	Low	Minimal	Minimal	NA (primary exposure not anthropometry)	NR	Minimal	Low
Callaway 2006‡‡	Low	Minimal	Minimal	Minimal. Adjusted for age, parity, education, smoking, race	Low	Minimal	Low
Clausen 2006†	Low	NR	Minimal	Minimal. Adjusted for low birth weight, age, parity, education, smoking, Oslo east, living alone. For preterm birth: parity, smoking, living alone	Low	NR	Low
Cogswell 1995‡	Low	Minimal	Minimal	Minimal. Adjusted for age, sex of the infant, gestational age, maternal height, parity, smoking, total weight gain, height, mother living with father	Moderate	Minimal	Moderate
Cnattingius† 1998‡	Minimal	Low	Minimal	Minimal. Adjusted for age, parity, education, smoking, total weight gain, height, mother living with father	Low	Minimal	Low
De 2007‡‡	Low	Minimal	Minimal	NA (primary exposure not anthropometry)	Low	Minimal	Low
Dietz 2006‡‡	Minimal	Low	Minimal	Minimal. Adjusted for parity, race, marital status, Medicaid recipient	Low	Minimal	Low
Driul 2008††	Low	Low	Low	Moderate (potential confounders not assessed by original study)†	NR	Minimal	Moderate
Dubois 2006‡‡	Minimal	Minimal	Minimal	Low. Matched for age, gestational age	Low	Low	Low
Frederick 2006‡‡	Low	Minimal	Minimal	Minimal. Matched for age, education, smoking, pre-eclampsia, gestational diabetes, race, marital status, preterm birth, sex of infant	Low	Low	Low
Gardosi 2000‡†	Low	Minimal	NR	Minimal. Adjusted for age, smoking, weight at first visit, race, history of abortion, alcohol use	Low	Minimal	Low
Gilboa 2008‡‡	Low	Minimal	Minimal	Minimal. Adjusted for age, parity, education, smoking, pre-eclampsia, alcohol use, race of infant, sex of infant	Low	Minimal	Low
Goldenberg 1998††	Minimal	NR	Minimal	Minimal. Assessed, but not different: age, previous abortion, education, smoker, pelvic pressure, drug or alcohol use, urinary tract infection, most medical complication, dilation and curettage	Low	Low	Low
Haas 2005‡‡	Minimal	Minimal	Minimal	Minimal. Adjusted for age, country of birth, race/ethnicity, level of education, parity, site of care, body mass index, before pregnancy: physical function, depressive symptoms, chronic health conditions, level of exercise, and smoking status, during pregnancy: smoking status, physical function, depressive symptoms, use of illicit drugs, eclampsia or pre-eclampsia, gestational diabetes, other pregnancy complications, and inadequate prenatal care	Low	Minimal	Low
Hauger 2008‡‡	Minimal	Minimal	NR	Minimal. Adjusted for age, parity, smoking, pre-eclampsia, diabetes, gestational diabetes, hypertension, caesarean section, number of prenatal visits	Moderate	Minimal	Low
Hendler 2005†‡	Minimal	Minimal	NR	Minimal. Adjusted for age, smoking, ethnicity, pre-pregnancy body mass index, previous preterm birth	Minimal	Minimal	Low
Hickey 1997‡‡	High	Minimal	NR	Minimal. Adjusted for age, parity, education, smoking, previous preterm birth last birth, height	Moderate	Minimal	Moderate
Hulsey 2005‡‡	Low	Minimal	Minimal	Minimal. Adjusted for hypertension, ethnicity, diabetes, use of prenatal care, including women's, infants, and children's (special supplemental food programme for women, infants, and children) participation, intention of pregnancy	Low	Minimal	Low
Jensen 2003‡†	Minimal	Low	Minimal	Minimal. Adjusted for age, parity, smoking, gestational diabetes, race, clinical centre, weight gain, gestational age	NR	Minimal	Low
Johnson 1992‡‡	Minimal	Minimal	Minimal	Minimal. Matched for ethnicity, marriage, tobacco, alcohol, drugs, parity, sex of fetus	Low	Minimal	Low
Study	Selection bias	Exposure bias	Outcome assessment bias	Confounding factor biasa	Analytical bias	Attrition bias	Overall likelihood of bias
------------------	----------------	---------------	-------------------------	-------------------------------	----------------	----------------	--------------------------
Kim 200547	Minimal	Minimal	Minimal	Minimal. Adjusted for nulliparous women: income, passive smoking, body mass index, vaginal bleeding, coffee drinking, drug misuse. For multiparous women: vaginal bleeding, alcohol misuse, previous spontaneous abortion, previous preterm delivery, previous pre-eclampsia, drug misuse, housework	Low	Minimal	Low
Kumari 200172	Low	Low	Minimal	Minimal. Matched for age, parity. Confounders assessed, different, and not controlled for: pregnancy induced hypertension, diabetes, gestational diabetes	Low	Low	Low
Lawoyin 1992	Low	Minimal	Minimal	Moderate (potential confounders not assessed by original study)a	NR	Low	Moderate
Leung 20088	Low	Low	Low	Minimal. Adjusted for age, parity, diabetes, year delivered, previous caesarean section, gestational age at booking	Low	Low	Low
Lumme 199538	Minimal	Minimal	NR	Minimal. Adjusted for age, parity, education, smoking, race	Low	Low	Low
Maddah 200544	Moderate	Minimal	NR	Moderate (potential confounders not assessed by original study)a	Moderate	Minimal	Moderate
Merlino 200659	Low	Low	Low	Minimal. Assessed, but not different: preterm birth, gestational age. Confounders assessed, different, and not controlled for age	High	Minimal	Moderate
Mobasheri 200749	Low	Minimal	NR	Low. Assessed, but not different: working status. Confounders assessed, different, and not controlled for education	Low	Minimal	Low
Monaghan 200110	Minimal	Minimal	Minimal	Minimal. Adjusted for age, placental complications, pre-existing hypertension, gestational diabetes, gestational age, weight gain >10 kg	NR	Minimal	Low
Nohr 200723	Minimal	Minimal	Low	Minimal. Adjusted for age, parity, social-occupational status, mother's height, alcohol use, smoking	Low	Low	Low
Ogbonna 200721	Low	Minimal	Minimal	Minimal. Adjusted for age, parity, education, marital status, gravidity, human immunodeficiency virus, malaria infection, multivitamin use	NR	Low	Low
Ogunyemi 199842	Low	Minimal	NR	Minimal. Adjusted for body mass index, neonatal intensive care, previous low birth weight suspect. Adjusted for previous cesarean, previous fetal death, asthma, caesarean delivery, vomiting, pre-eclampsia, hypertension	Low	Low	Low
Panahande 200775	Low	Minimal	Minimal	Minimal. Adjusted for age, parity, education, working status, pregnancy body mass index, height	Low	Low	Low
Panaretto$^+$ 200655	Low	Minimal	Low	Low. Assessed, but not different: for preterm birth: hypertension, interval between pregnancies. For low birth weight: drug use. For small for gestational age: drug use, age	Low	Low	Low
Rahaman 199056	Low	NR	NR	Minimal. Assessed, but not different: pre-eclampsia, hypertension, medical complication, diabetes. Confounders assessed, different, and not controlled for: age, gestational age	Low	Minimal	Moderate
Ray 200120	Low	Minimal	Low	Minimal. Adjusted for diabetes class, age, parity, hypertension, previous preterm birth, history of caesarean section or uterine surgery, history of neonatal death or stillbirth, net weight gain during pregnancy	Low	Low	Low
Rode 200544	Minimal	NR	Low	Moderate. Adjusted for pre-eclampsia	NR	Minimal	Moderate
Rode 200751	Low	Minimal	Minimal	Minimal. Assessed, but not different: marital status, alcohol intake, caffeine intake, gestational age	Low	Low	Low
Roman 200762	Low	Minimal	Low	Minimal. Matched for age, parity, Assessed, but not different: fetal malformation, pregnancy termination. Confounders assessed, different, and not controlled for: pre-eclampsia, pregnancy induced hypertension, diabetes, gestational diabetes, hypertension, race	Low	Low	Low
Roman 20087	Low	Minimal	NR	Minimal. Adjusted for age, parity, race, insurance, prenatal care	NR	Low	Low
Ronnenberg 200345	Low	Minimal	Minimal	Minimal. Adjusted for age, education, sex of infant, height, work stress, maternal exposure to dust or noise or passive smoking	Low	NR	Low
Sahu 20077	Low	Minimal	NR	Low. Assessed, but not different: sex of fetus. Confounders assessed, different, and not controlled for: gestational diabetes, pregnancy induced hypertension, anemia	Low	Low	Low
Saliu10 20088	Minimal	Minimal	Minimal	Minimal. Matched for age, parity, education, smoking, year delivery, race, marital status, adequacy of prenatal care, gender of infant, maternal height, weight gain. Confounders assessed, different, and not controlled for: hypertension, anemia, pre-eclampsia, diabetes, placental abruption, placenta previa	Low	Low	Low
Savitz 20057	Minimal	Minimal	NR	Minimal. Adjusted for age, parity, education, smoking, race, previous preterm birth, marital status, poverty index	Low	Minimal	Low
Sayers$^+$ 199773	Low	Minimal	Minimal	Minimal. Adjusted for smoking, male infant, aboriginal ancestor	Moderate	Minimal	Low
Scholl 198976	Low	Minimal	Minimal	Minimal. Adjusted for low birth weight, intrauterine growth restriction, age, weight gain adequacy, smoking, ethnicity; for preterm birth: age, weight gain adequacy, previous preterm birth, adequacy of prenatal care. Assessed, but not different: clinical pay status, parity	Low	Low	Low
Sebire 200143	Minimal	Low	Low	Minimal. Matched for age, parity, smoking, pre-eclampsia, pre-existing diabetes, gestational diabetes, race, hypertension	Moderate	Minimal	Low
Siega-Riz 199642	Low	Minimal	NR	Moderate. Confounders assessed, different, and not controlled for: education, hypertension, smoking, marital status, race	Low	Minimal	Moderate
Study	Selection bias	Exposure bias	Outcome assessment bias	Confounding factor bias*	Analytical bias	Attrition bias	Overall likelihood of bias
-----------------------	----------------	---------------	-------------------------	--------------------------	----------------	---------------	---------------------------
Smith† 2006	Minimal	Low	Low	Low (because assumed). Assessed, but not different: age, Confounders assessed, different, and not controlled for (assumed from table 2) a fetoprotein, human chorionic gonadotropin, smoking, previous miscarriage, marital status, previous therapeutic abortions	Low	Minimal	Low
Smith 2007†	Minimal	Low	Minimal	Minimal. Adjusted for age, parity, smoking, marital status, maternal height, deprivation category, previous spontaneous early pregnancy losses, and therapeutic abortions	Minimal	Low	Low
Sukalich 2006	Minimal	Low	Low	Minimal. Assessed, but not different: age, smoking, diabetes, previous caesarean section. Confounders assessed, different, and not controlled for: parity, hypertension, medical, maternal weight gain, race	Low	Minimal	Low
Tsukamoto 2007	Minimal	Minimal	Minimal	Minimal. Adjusted for age, parity, maternal weight gain. Assessed, but not different: pregnancy induced hypertension. Confounders assessed, different, and not controlled for: gestational diabetes	Low	Minimal	Low
Yaacob 2002	Low	Minimal	Minimal	Low. Matched for age, parity. Assessed, but not different: hypertension, gestational diabetes	High	NR	High
Yekta 2006	Low	Minimal	NR	Minimal. Adjusted for age, parity, education	Low	Minimal	Low
Yoge 2005	Low	Minimal	NR	Moderate (potential confounders not assessed by original study)*	Low	Minimal	Moderate
Zhou 1997	Low	Minimal	Minimal	Moderate (confounders not assessed)*	Moderate	Low	Moderate

NR = not reported; NA = not applicable.

*Assessment of confounding factor bias was done by evaluation of each studies’ assessment of potential confounders by four methods: adjustment with regression, matching, assessment of potential confounders on univariate analyses that were found to be not significantly different between groups, and assessment of potential confounders on univariate analyses that were different between groups and not controlled for.

†Although these were cohort studies, data within manuscript were also presented in format that allowed pooling with data from case-control studies; however, data are listed only in tables with cohort studies.

anthropometry (likelihood ratio 0.96, 95% confidence interval 0.66 to 1.40).98 However, the quality assessment of studies was limited and several large studies have been published since the literature search ended in 2002. A World Health Organization study meta-analysed 25 datasets identified by researchers attending a 1990 conference but lacked the literature search that is the standard basis of a systematic review.99 Compared with women with higher body mass indices (>75% quartile), women in the lower fourth (<25%) had an increased risk of low birth weight (odds ratio 1.8, 95% confidence interval 1.7 to 2.0) and preterm birth (1.3, 1.1 to 1.4).

Strengths and limitations of the review

The strengths of our meta-analysis include the thoroughness with which the outcomes of preterm birth and low birth weight were assessed (preterm birth was examined before 37 weeks, 32-36 weeks, and before 32 weeks, overall as well as spontaneous and induced, and besides low birth weight we examined very low birth weight and extremely low birth weight). We explored the effect of gradations in maternal body mass index (overweight, obese, and very obese), carried out an extensive quality assessment, and investigated heterogeneity with sensitivity analyses. We compared the results of crude, matched or adjusted, data to try to determine if the observed perinatal risks were due to body mass index independently or were explained by confounding factors. Finally, we robustly assessed bias using the trim and fill method.

Limitations of this systematic review include potential residual confounding by factors that might account for the observed association between obesity and perinatal outcomes, which were not adjusted for in some or all of the original studies, such as smoking or low socio-economic status. Gestational weight gain, which was not taken into account by most of the studies, can influence outcomes such as preterm birth and low birth weight. However, prepregnancy body mass index is the strongest predictor of outcomes, not gestational weight gain.100 Moreover, it is useful to be able to predict a woman’s risk of preterm birth or having an infant of low birth weight on the basis of information available at the start of the pregnancy such as prepregnancy body mass index.

We pooled data based on the original studies’ definitions of overweight, obese, and very obese, as have other meta-analyses.101 This overcomes the problem of varying cut-offs between studies and allows the cut-offs to be appropriate to the specific population. Thus, in the normal, overweight, obese, and very obese categories, body mass index ranged from 18.3 to 29.8, 24.6 to 30.0, 29.0 to 40.0, and ≥34.9 to ≥40.0, respectively.

Using population specific cut-offs for body mass index is an established practice in other areas of medicine, including using lower body mass index cut-offs for obesity in Asian than white populations since lower cut-offs have been associated with increased risks of cardiovascular disease.102

Future research is needed to try to determine why overweight and obese women are at risk of preterm birth, and to determine effective methods of weight loss in women of childbearing age before pregnancy.

Conclusions and implications

In conclusion, overweight and obese women have higher risks of preterm birth before 32 weeks and induced preterm birth before 37 weeks, and accounting for publication bias, possible preterm birth before
37 weeks overall. Unlike many causes of preterm birth, maternal overweight and obesity represent a potentially preventable cause of the leading source of neonatal mortality and morbidity and morbidity through childhood. In low birth weight were higher in developing countries than developed countries and disappeared when publication bias was taken into account. Clinicians need to be aware that overweight or obesity in women is not protective against having infants of low birth weight and should consider surveillance when indicated. Ideally, overweight or obese women should have prepregnancy counselling so that they are informed of their perinatal risks and can try to optimise their weight before pregnancy.

Table 10 | Quality assessment based on evaluation of bias in case-control studies of preterm birth and low birth weight in overweight and obese women compared with women of normal weight

Study	Selection bias	Exposure bias	Outcome assessment bias	Confounding factor bias*	Analytical bias	Attrition bias	Overall likelihood of bias	
Al-Eissa† 1994	Low	Minimal	NR	Minimal. Adjusted for age <20 years, previous preterm birth, previous low birth weight, mud house as dwelling, first or second degree relatives, non-relatives, previous spontaneous abortion, inadequate antepartum care, antepartum haemorrhage, interval between pregnancies <12 months, vaginal bleeding in first or second trimester	Low	Minimal	Low	
Begum 2003‡	Minimal	Minimal	NR	Minimal. Assessed, but not different: age, parity, previous preterm birth, gravidity, previous abortion. Confounders assessed, different, and not controlled: income, education	Low	Minimal	Low	
Cattov 2007§	Minimal	Minimal	Minimal	Moderate (confounders not assessed)*	Low	Minimal	Low	
Conti 1998§	Low	Minimal	Minimal	Minimal. Matched for age, parity, insurance	Low	Minimal	Low	
de Haas* 1991		Low	Minimal	Minimal	Minimal. Matched for age, delivery date, education, marital status, race	High	Low	Moderate
Delgado-Rodríguez 1998†	Low	Minimal	Minimal	Minimal. Assessed, but not different: age, parity, smoking. Confounders assessed, different, and not controlled: education, social class, pregnancy induced hypertension	Low	Minimal	Low	
Dhar 2003‡	Low	Minimal	Minimal	Minimal. Adjusted for age, parity, antenatal care, birth to conception interview, sex of new born, gestational age, hypertension, body mass index after delivery, weight, haemoglobin level, mean arm circumference, income, education, father's education, father's occupation	Low	Minimal	Low	
Gosselink* 1992‡	Low	Minimal	NR	Minimal. Matched for age, parity, race	NR	Minimal	Low	
Hashim* 2000‡	Low	Minimal	Minimal	Minimal. Assessed, but not different: parity, education, social class, antenatal visits, newborn sex, presence of household helper, occupation, consanguinity. Confounders assessed, different, and not controlled: age	Low	Minimal	Low	
Hediger 1995‡	Low	Minimal	Minimal	Minimal. Assessed, but not different: smoking, maternal height, prepregnancy body mass index, gestational age at delivery, medical recipient, primiparous women	Low	Minimal	Low	
Karim 1997‡	Moderate	Minimal	Minimal	Minimal. Adjusted for age, education, income. Assessed, but not different: parity, age of last surviving child, husband’s occupation, place of delivery. Confounders assessed, different, and not controlled: sex of child	Low	Minimal	Moderate	
Lawoyin 1997‡	Minimal	Minimal	Minimal	Low. Assessed, but not different: haemoglobin level	Low	Low	Low	
Le’ 2007‡	Low	Minimal	Low	NA (primary exposure not anthropometry)	Low	Minimal	Low	
Melamed 2008‡	Low	Minimal	Minimal	NA (primary exposure not anthropometry)	Low	Minimal	Low	
Mohsen 2007‡	Low	Minimal	Minimal	Moderate (confounders not assessed)*	Low	Minimal	Moderate	
Olha 2003‡	Low	Minimal	Minimal	Low. Matched for age, parity	NR	Minimal	Low	
Pitiphat 2008‡	Minimal	Minimal	Minimal	NA (primary exposure not anthropometry)	NR	Minimal	Low	
Yoge 2009‡	Low	Minimal	NR	NA (primary exposure not anthropometry)	Low	Minimal	Low	
Xue 2008‡	Low	Low	Low	Moderate (confounders not assessed)*	NR	Minimal	Moderate	
Zeitlin* 2001‡	Minimal	Minimal	Minimal	Minimal. Adjusted for obstetric history, marital status, body mass index <18.3 or >29.8, smoking in third trimester, age at completion of schooling	Low	Minimal	Low	

*Confounding factor bias was done by evaluation of each studies’ assessment of potential confounders by four methods (see footnote to table 9). †Non-pooled study.
The effect of overweight or obesity on risk of preterm birth is debated in the literature. Uncertainty is reflected in national guidelines, although it is widely believed that the risk of having an infant of low birth weight is decreased in overweight or obese women. The beneficial effects of overweight or obesity on low birth weight were greater in developing than developed countries and disappeared after accounting for publication bias. Overweight or obese women have increased risks of preterm birth before 32 weeks and before 37 weeks overall. The beneficial effects of overweight or obesity on low birth weight were greater in developing than developed countries and disappeared after accounting for publication bias. Overweight and obese women should be counselled before pregnancy on their perinatal risks, and appropriate surveillance should be considered during pregnancy.

We thank Elizabeth Uerley, chief librarian at The Hospital for Sick Children, Toronto, Canada, for her help in developing the search strategy. Members of Knowledge Synthesis Group on determinants of preterm birth/low birthweight: Prakash Shah, associate professor, Department of Paediatrics, Mount Sinai Hospital and Department of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada; Ame Ohlsson, professor emeritus, Department of Paediatrics, Mount Sinai Hospital and Departments of Paediatrics, Obstetrics and Gynecology, and Health Policy, Management and Evaluation, University of Toronto, Canada; Vibhuti Shah, associate professor, Department of Paediatrics, Mount Sinai Hospital and Department of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada; Kellie E Murphy, associate professor, Department of Obstetrics and Gynecology, Mount Sinai Hospital and University of Toronto, Canada; Sarah D McDonald, associate professor, Division of Maternal-Fetal Medicine, Departments of Obstetrics and Gynecology and Diagnostic Imaging, McMaster University, Hamilton, Canada; Eileen Hutton, associate professor, Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada; Christine Newburn-Cook, associate professor and associate dean of research, Faculty of Nursing, University of Alberta, Edmonton, Canada; Corinne Frick, adjunct professor, Faculty of Nursing, University of Calgary, Calgary, Canada; Evan Scott, associate professor, Dalhousie School of Public Health, University of Halifax, Halifax, Canada, and Joseph Beyene, associate professor and John D Cameron endowed chair in genetic epidemiology, McMaster University, Department of Clinical Epidemiology and Biostatistics.

Contributors: All authors conceived and designed the study, analysed and interpreted the data, critically revised the manuscript for important intellectual content, and approved the final versions. SDMcD had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. She drafted the manuscript and is guarantor.

Competing interests: All authors have completed the unified competing interest form and declare that: (1) this work was supported by a Canadian Institute of Health Research (CIHR) operating grant (No KRS 8624), that SDMcD is supported by a CIHR new investigator award, that ZH was supported by a state scholarship fund by the China Scholarship Council, and that JB is supported by a CIHR grant (No 843992); (2) SDMcD, ZH, SM, and JB have no relationships with any companies that might have an interest in the submitted work in the previous 3 years; (3) their spouses, partners, or children have no financial relationships that may be relevant to the submitted work; and (4) SDMcD, ZH, SM, and JB have no non-financial interests that may be relevant to the submitted work. CIHR and the China Scholarship Council had no role in analyses, writing of the report, interpretation of data or the decision to submit the manuscript.

Ethical approval: Not required.

Data sharing: No additional data available.

1 Heslehurst N, Ellis LJ, Simpson H, Batterham A, Wilkinson J, Summerbell CD. Trends in maternal obesity incidence rates, demographic predictors, and health inequalities in 36,821 women over a 15-year period. Bmj 2007;334:187-94.

2 Savitz DA, Dole N, Herrington AH, Kaczor D, Murphy J, Siega-Riz AM, et al. Should spontaneously and medically indicated preterm births be separated for studying aetiology? Paediatr Perinat Epidemiol 2005;19:97-105.

3 Roman H, Goffinet F, Hulsey TF, Newman R, Robillard PY, Hulsey TC. Maternal body mass index at delivery and risk of caesarean due to dystocia in low risk pregnancies. Acta Obstet Gynecol Scand 2008;87:163-70.

4 Sahlu HM, Lynch O, Ailo AP, Liu J. Obesity subtypes and risk of spontaneous versus medically indicated preterm birth in singletons and twins. Am J Epidemiol 2008;168:13-20.

5 Sahu MT, Agarwala A, Das V, Pandey A. Impact of maternal body mass index on obstetric outcome. J Obstet Gynaecol Res 2007;33:655-9.

6 Leung TY, Leung TN, Sahota DS, Chan OK, Chan LW, Fung TY, et al. Trends in maternal obesity and associated risks of adverse pregnancy outcomes in a population of Chinese women. Bmj 2008;115:629-37.

7 Liu S, Allen A, Fraser W. Fetal and infant health outcomes. Public Health Agency of Canada, 2008:123-32.

8 Branum AM, Schoendorf KC. Changing patterns of low birthweight and preterm birth in the United States, 1991-98. Paediatr Perinat Epidemiol 2002;16:8-15.

9 Adams MM, Samo AP, Harlass FE, Rawlings JS, Read JA. Risk factors for preterm delivery in a healthy cohort. Epidemiology 1995;6:525-32.

10 Goldberg RL, Iams JD, Mercer BM, Meis PJ, Moawad AH, Copper RL, et al. The preterm prediction study: the value of new vs standard risk factors in predicting early and all spontaneous preterm births. NICHD MFMU Network. Am J Public Health 1998;88:233-8.

11 Hauger MS, Gibbons L, Vik T, Belsheim M. Prepregnancy weight status and the risk of adverse pregnancy outcome. Acta Obstet Gynecol Scand 2008;87:953-9.

12 ACOG Committee. Obesity in pregnancy. Obstet Gynecol 2005;106(2):671-5.

13 Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama 2000;283:1967-82.

14 Devereaux PJ, Schunemann HN, Ravendran N, Bhandari M, Garg AX, Choi PT, et al. Comparison of mortality between private for-profit and private not-for-profit hemodialysis centers: a systematic review and meta-analysis. Jama 2002;288:2449-57.

15 Higgins JP, Thompson SG, Deeks J, Altman DG. Measuring inconsistency in meta-analyses. Bmj 2003;327:557-60.

16 CIA. Appendix B. International organizations and groups. World Factbook. 2008. www.cia.gov/library/publications/the-world-assessments/06-04.pdf.

17 McDonald SD, Han Z, Mulla S, Ohlsson A, Beyene J, Murphy KE. Preterm birth and low birth weight among in vitro fertilization singleton: a systematic review and meta-analyses. Eur J Obset Gynecol Rep Biol 2009;116:138-48.

18 Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biomometrics 2000;56:455-63.

19 Duval S, Tweedie R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc 2000;95:89-98.

20 Ray JG, Vermeulen MI, Shapiro JL, Keshohe AB. Maternal and neonatal outcomes in pregestational and gestational diabetes mellitus, and the influence of maternal obesity and weight gain: the DEPOSTIT study: Diabetes Endocrine Pregnancy Outcome Study in Toronto. J Obst Med 2001;34:376-5.

21 Jensen DM, Damm P, Sorensen B, Moisted-Pedersen L, Westergaard IG, Ovesen P, et al. Pregnancy outcome and prepregnancy body mass index in 2459 glucose-tolerant Danish women. Am J Obstet Gynecol 2003;189:239-44.

22 Kummari AS. Pregnancy outcome in women with morbid obesity. Int J Gynaecol Obstet 2001;73:101-7.

23 Nohe EA, Bech BH, Vaeh M, Rasmussen KM, Henriksen TB, Olsen J. Obesity, gestational weight gain and preterm birth: a study within the Danish National Birth Cohort. Paediatr Perinat Epidemiol 2007;21:14-.

24 Dietz PM, Callaghan WM, Cogswell ME, Morrow B, Ferre C, Schieve LA. Combined effects of prepregnancy body mass index and weight gain during pregnancy on the risk of preterm delivery. Epidemiology 2006;17:170-7.

25 Abenhaim HA, Kinch RA, Morin L, Benjamin A, Usher R. Effect of prepregnancy body mass index categories on obstetrical and neonatal outcomes. Arch Gynecol Obstet 2007;275:39-43.

26 Berkowtiz GS, Blackmore-Prince C, Lapinski RH, Savitz DA. Risk factors for preterm birth subtypes. Epidemiology 1998;9:729-85.
27 Bhattacharya S, Campbell DM, Liston WA, Bhattacharya S. Effect of body mass index on pregnancy outcomes in nulliparous women delivering singleton babies. BMC Public Health 2007; 7:1168.

28 Bondevik GT, Lie RT, Utstein M, Kvale G. Maternal hematological status and risk of low birth weight and preterm delivery in Nepal. Acta Obstet Gynecol Scand 2001; 80:402-8.

29 Callaway LK, Prins JB, Chang AM, McIntyre HD. The prevalence and impact of overweight and obesity in an Australian obstetric population. Med J Aust 2006; 184:56-9.

30 Clausen T, Oyen N, Henriksen T. Pregnancy complications by overweight and residential area. A prospective study of an urban Norwegian cohort. Acta Obstet Gynecol Scand 2006; 85:526-33.

31 Drul L, Caccialuca G, Citossi A, Martina MD, Persessini L, Marchesoni D. Prepregnancy body mass index and adverse pregnancy outcomes. Arch Gynecol 2008; 278:23-6.

32 Dubois L, Girard M. Determinants of birthweight inequalities: a population-based study. Pediatr Int 2006; 48:470-8.

33 Gardosi J, Francis A. Early pregnancy predictors of preterm birth: the role of a prolonged menstruation-conception interval. BJOG 2000;107:288-37.

34 Gilboa SM, Correa A, Alverson CJ. Use of spline regression in an analysis of maternal weight gain and birth weight in South Carolina. South Med J 2005; 98:411-5.

35 Lawoyin TO, Oyediran AB. A prospective study on some factors which influence the delivery of low birth weight babies in a developing country. MJ Med Sci 1992; 21:33-9.

36 Hulsey TC, Neal D, Bondos SC, Hulsey T, Newman R. Maternal and newborn outcomes in overweight and obese women. Acta Obstet Gynecol Scand 2007; 86:565-71.

37 Hulsey TC, Neal D, Bondos SC, Hulsey T, Newman R. Maternal overweight and residential area. A prospective study of an urban population. BMJ 2007;3:288-37.

38 Hulsey TC, Nee D, Bondos SC, Hulsey T, Newman R. Maternal overweight and residential area. A prospective study of an urban population. BMJ 2007;3:288-37.

39 Hulsey TC, Nee D, Bondos SC, Hulsey T, Newman R. Maternal overweight and residential area. A prospective study of an urban population. BMJ 2007;3:288-37.

40 Hulsey TC, Nee D, Bondos SC, Hulsey T, Newman R. Maternal overweight and residential area. A prospective study of an urban population. BMJ 2007;3:288-37.

41 Ogbonna C, Woelk GB, Ning Y, Mudzamiri S, Mahomed K, et al. The Preterm Prediction Study: association between maternal body mass index and spontaneous and indicated preterm birth. Acta Obstet Gynecol 2005; 83:182-9.

42 Johnson WC, Longmate JA, Fentzen B. Excessive maternal weight gain and pregnancy outcome. Am J Obstet Gynecol 1992; 167:353-72.

43 Baeten JM, Bukiwa EA, Lambe M. Pregnancy complications and outcomes among overweight and obese nulliparous women. Am J Public Health 2001; 91:436-40.

44 Bianco AT, Smilney SW, Davis Y, Lopez S, Lapinski R, Lockwood CJ. Pregnancy outcome and weight gain recommendations for the morbidly obese woman. Obstet Gynecol 1998; 91:97-102.

45 Cnattingius S, Bergstrom R, Lipworth L, Kramer MS. Pregnancy weight and the risk of adverse pregnancy outcomes. N Engl J Med 1998; 338:147-52.

46 Ogungbemi D, Hulsett S, Leeper J. Risk A. Prepregnancy body mass index, weight gain during pregnancy, and perinatal outcome in a rural black population. J Matern Fetal Med 1998; 7:119-30.

47 Sebire NJ, Jolly M, Harris JP, Wadsorth L, Joffe M, Beard RW, et al. Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. Int J Obs Relat Materb Disord 2001; 25:1175-82.

48 Rode L, Nilas L, Wojdemann K, Tabor A. Obesity-related complications in Danish single cephalic term pregnancies. Obstet Gynecol 2005; 105:537-42.

49 Siega-Riz AM, Adair LS, Hibel CJ. Maternal underweight status and inadequate rate of weight gain during the third trimester of pregnancy increases the risk of preterm delivery. J Nutr 1996; 126:146-53.

50 Smith GCS, Shah I, Pell JP, Crossley JA, Dobbie R. Maternal obesity in early pregnancy and risk of spontaneous and elective preterm deliveries: a retrospective cohort study. Am J Public Health 2007; 97:157-62.

51 Sukalich S, Mingione MJ, Glantz JC. Obstetric outcomes in overweight and obese adolescents. Am J Obstet Gynecol 2006; 199:851-5.

52 Sukalich S, Mingione MJ, Glantz JC. Obstetric outcomes in overweight and obese adolescents. Am J Obstet Gynecol 2006; 199:851-5.

53 Tsukamoto H, Fukuoaka H, Inoue K, Koyasu M, Nagal Y, Takimoto H. Restricting weight gain during pregnancy in Japan: a controversial factor in reducing perinatal complications. Eur J Obstet Gynecol Reprod Biol 2007; 133:59-63.

54 Abu Yaacov S, Saad FA, Sharaara HA, Khalifa L, Manther AA, Rashed YA. The effect of obesity in pregnancy on perinatal outcome in Qatar. Qatar Medical Journal 2002; 11:32-5.

55 Yekta Z, Ayatollahi H, Porali R, Farzin A. The effect of pre-pregnancy body mass index and gestational weight gain on pregnancy outcomes in urban care settings in Urmia-Iran. BMC Pregnancy Childbirth 2006; 6:15.

56 Yoger Y, Langer O, Tsenkus EM, Rosen B. The association between glucose challenge test, obesity and pregnancy outcome in 6390 non-diabetic women. J Matern Fetal Neonatal Med 2005; 17:39-44.

57 Smith GC, Shah I, White IR, Pell JP, Crossley JA, Dobbie R. Maternal obesity and biochemical predictors of spontaneous preterm birth among nulliparous women: a systematic analysis in relation to the degree of prematurity. Int J Epidemiol 2006; 35:1169-77.

58 Sayers P, Powars R. Risk factors for aboriginal low birthweight, intrauterine growth retardation and preterm birth in the Darwin Health Region. Aust NZ J Public Health 2007; 31:254-30.

59 Scholl TO, Hediger ML, Salmon RW, Belsky DH, Ances IG. Influence of prepregnancy body mass index and weight gain during pregnancy on perinatal outcomes in urban care settings in Urmia-Iran. BMC Pregnancy Childbirth 2006; 6:15.

60 Adamou M, Benajoth D. Pregnancy outcome and weight gain recommendations for the morbidly obese woman. Obstet Gynecol 1998; 91:97-102.

61 Abu Yaacov S, Saad FA, Sharaara HA, Khalifa L, Manther AA, Rashed YA. The effect of obesity in pregnancy on perinatal outcome in Qatar. Qatar Medical Journal 2002; 11:32-5.

62 Smith GC, Shah I, White IR, Pell JP, Crossley JA, Dobbie R. Maternal obesity and biochemical predictors of spontaneous preterm birth among nulliparous women: a systematic analysis in relation to the degree of prematurity. Int J Epidemiol 2006; 35:1169-77.

63 Yoger Y, Langer O, Tsenkus EM, Rosen B. The association between glucose challenge test, obesity and pregnancy outcome in 6390 non-diabetic women. J Matern Fetal Neonatal Med 2005; 17:39-44.

64 Sayers P, Powars R. Risk factors for aboriginal low birthweight, intrauterine growth retardation and preterm birth in the Darwin Health Region. Aust NZ J Public Health 2007; 31:254-30.

65 Scholl TO, Hediger ML, Salmon RW, Belsky DH, Ances IG. Influence of prepregnancy body mass index and weight gain during pregnancy on perinatal outcomes in urban care settings in Urmia-Iran. BMC Pregnancy Childbirth 2006; 6:15.

66 Yoger Y, Langer O, Tsenkus EM, Rosen B. The association between glucose challenge test, obesity and pregnancy outcome in 6390 non-diabetic women. J Matern Fetal Neonatal Med 2005; 17:39-44.
81 Delgado-Rodriguez M, Perez-Iglesias R, Gomez-Olmedo M, Bueno-Cavanillas A, Galvez-Vargas R. Risk factors for low birth weight: results from a case-control study in southern Spain. Am J Phys Anthropol 1998;105:419-24.

82 Dhar B, Mowliath G, Kabir DM. Newborn anthropometry and its relationship with maternal factors. Bangladesh Med Res Councl Bull 2003;29:48-58.

83 Gosselink CA, Elango EE, Woolson RF, Moawad A, Long CR. Dietary habits, prepregnancy weight, and weight gain during pregnancy. Risk of preterm rupture of amniotic sac membranes. Acta Obstet Gynecol Scand 1992;71:425-38.

84 Hashim TJ, Moawed SA. The relation of low birth weight to psychosocial stress and maternal anthropometric measurements. Saudi Med J 2000;21:649-54.

85 Hediger ML, Scholl TO, Schall JJ, Miller LW, Fischer RL. Dietary habits, prepregnancy weight, and weight gain during pregnancy. Risk of preterm rupture of amniotic sac membranes. Am J Phys Anthropol 1998;105:419-24.

86 Karim E, Mascie-Taylor CG. The association between birthweight, sociodemographic variables and maternal anthropometry in an urban sample from Dhaka, Bangladesh. Ann Hum Biol 1997;24:387-401.

87 Lawoyin TO. The relationship between maternal weight gain in pregnancy, hemoglobin level, stature, antenatal attendance and low birth weight. Southeast Asian J Trop Med Public Health 1997;28:873-6.

88 Le HTT, Jareinpituk S, Kaewkungwal J, Pitiphat W. Increased risk of preterm birth among non-smoking, non-alcohol drinking women with maternal periodontitis. Southeast Asian J Trop Med Public Health 2007;38:886-93.

89 Melamed N, Chen R, Soiberman U, Ben-Haroush A, Hod M, Yogev Y. Spontaneous and indicated preterm delivery in pregestational diabetes mellitus: etiology and risk factors. Arch Gynecol Obstet 2008;278:129-34.

90 Mohsen MA, Wafay HA. Influence of maternal anthropometric measurements and serum biochemical nutritional indicators on fetal growth. J Med Sci 2007;7:1330-4.

91 Ojha N, Malli DS. Low birth weight at term: relationship with maternal anthropometry. JNMA J Nepal Med Assoc 2007;46:52-6.

92 Pitiphat W, Joshipura KJ, Gillman MW, Williams PL, Douglass CW, Rich-Edwards JW. Maternal periodontitis and adverse pregnancy outcomes. Community Dent Oral Epidemiol 2008;36:3-11.

93 Yogev Y, Langer O. Spontaneous preterm delivery and gestational diabetes: the impact of glycemic control. Arch Gynecol Obstet 2007;276:361-5.

94 Xue F, Willett WC, Bosnak MR, Forman MB, Michels KB. Parental characteristics as predictors of birthweight. Hum Reprod 2008;23:168-77.

95 Zeitlin JA, Ancel PY, Saurel-Cubizolles MJ, Papiernik E. Are risk factors the same for small for gestational age versus other preterm births? Am J Obstet Gynecol 2001;185:208-15.

96 Institute of Medicine. Nutrition during pregnancy. National Academies Press, 1990.

97 Institute of Medicine. Weight gain during pregnancy: reexamining the guidelines. National Academies Press, 2009.

98 Honest H, Bachmann LM, Ngai C, Gupta JK, Kleijnen J, Khan KS. The accuracy of maternal anthropometry measurements as predictor for spontaneous preterm birth—a systematic review. Eur J Obstet Gynecol Reprod Biol 2005;119:11-20.

99 Anon. A WHO collaborative study of maternal anthropometry and pregnancy outcomes. Int J Gynaecol Obstet 1997;57:1-15.

100 Nohr EA, Vaeth M, Baker J, Sorensen T, Olsen J, Rasmussen KM. Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy. Am J Clin Nutr 2008;87:1750-9.

101 Stothard KJ, Tennant PW, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 2009;301:636-50.

102 Li R, Lu W, jia J, Zhang S, Shi L, Li Y, et al. Relationships between indices of obesity and its cardiovascular comorbidities in a Chinese population. Circ J 2008;72:973-8.

Accepted: 7 April 2010