Molecular Phylogeny of the Acanthocephala (Class Palaeacanthocephala) with a Paraphyletic Assemblage of the Orders Polymorphida and Echinorhynchida

Lisa Verweyen1, Sven Klimpel1,*, Harry W. Palm2

1 Biodiversity and Climate Research Centre (BiK-F), Medical Biodiversity and Parasitology; Senckenberg Gesellschaft für Naturforschung (SGN); Goethe-University (GO), Institute for Ecology, Evolution and Diversity, Frankfurt/Main, Germany; 2 Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany

Abstract

Acanthocephalans are attractive candidates as model organisms for studying the ecology and co-evolutionary history of parasitic life cycles in the marine ecosystem. Adding to earlier molecular analyses of this taxon, a total of 36 acanthocephalans belonging to the classes Archiacanthocephala (3 species), Eoacanthocephala (3 species), Palaeacanthocephala (29 species), Polycanthocephala (1 species) and Rotifera as outgroup (3 species) were analyzed by using Bayesian Inference and Maximum Likelihood analyses of nuclear 18S rDNA sequence. This data set included three re-collected and six newly collected taxa, Bolbosoma vasculosum from Lepturaanthus savala, Filisoma rizalimum from Scatophagus argus, Rhadinorhynchus pristis from Gymnopus serpens, R. lintoni from Selar crumenophthalmus, Serrasentis sagitifer from Johnius coitor, and Southwellina hispida from Epinephelus coioides, representing 5 new host and 3 new locality records. The resulting trees suggest a paraphyletic arrangement of the Echinorhynchida and Polymorphida inside the Palaeacanthocephala. This questions the placement of the genera Serrasentis and Gorgorhynchoides within the Echinorhynchida and not the Polymorphida, necessitating further insights into the systematic position of these taxa based on morphology.

Introduction

The endoparasitic phylum Acanthocephala Kohlreuther, 1771 consists of about 1,150 species, belonging to 125 genera [1] and 19 families [2]. They are characterized by an evertable proboscis as the attachment organ, sexual dimorphism, males with cement glands and an uterine bell in females. Unique is the syndermatic tegument, placing the acanthocephalans, also confirmed by molecular studies, sister to the Rotifera [3,5]. Recent classifications distinguish the four classes Archiacanthocephala, Eoacanthocephala, Palaeacanthocephala and Polycanthocephala [2,6–10], with a majority of 62.7% of the species primarily infecting aquatic teleost fish. The oldest molecular data of the Acanthocephala were based on a single acanthocephalan taxon used as an outgroup to estimate the phylogenetic position of the Chaetognatha amongst the Metazoa [11]. The first molecular phylogenetic analyses inside the Acanthocephala [12] confirmed the major taxonomic grouping of the traditional classifications. There, Palaeacanthocephala placed close to the Eoacanthocephala, with the Archiacanthocephala being the most basal taxon. The bird parasitic Archiacanthocephala and Eoacanthocephala (parasites of fish, amphibians and reptiles) appeared on different branches on the resulting rDNA tree [13,14], indicating independent evolution. Furthermore, the phylogenetic analyses suggested very complex evolutionary and taxonomic relationships among the species [12]. With their relatively small number of species, a conserved two-host (arthropod–vertebrate) life cycle, and corroborated phylogenetic relationships to a free-living sister group (the Rotifera), the acanthocephalans are attractive candidates as model organisms for studying the ecology and co-evolutionary history of parasitic life cycles in marine ecosystem. However, with many genera having only a single representative, few researchers collected specimens for molecular studies. With poor representation especially of marine taxa, the phylogenetic relationships within this interesting phylum are far from getting resolved.

Most previous analyses of acanthocephalan phylogenetic relationships have been based exclusively on nuclear small subunit (SSU) ribosomal DNA (rDNA). This highly conserved region is best suited for an analysis of the upper level phylogeny. García-Valera and Nadler [4,9] analyzed a total of 21 acanthocephalan species, including 3 Archiacanthocephala, 2 Eoacanthocephala, 15 Palaeacanthocephala and 1 Polycanthocephala. The purpose of the present study was to add new sequence data especially of marine fish parasitic taxa, providing a better resolution inside the Palaeacanthocephala. This is a prerequisite for a better understanding of this taxon, also enabling a better taxonomic placement.
and morphological identification of the species within this group. Marine acanthocephalans from different sources were collected, morphologically identified, and analyzed for the nearly complete 18S rDNA. Five of these species have not been included in molecular phylogenetic analyses before (Bolbosoma vasculosum, Filisoma rizalinum, Rhadinorhynchus prists, R. lintoni and Serrasentis sagitifer). The available sequence data of 29 Palaeacanthocephala, 3 Esacanthocephala, 3 Archiacanthocephala, a single Polyacanthocephala, and three from Rotifera as outgroup were analyzed by Bayesian Inference and Maximum Likelihood. Implications for the phylogeny of the marine acanthocephalans are discussed.

Results

Species identification and data set

All collected acanthocephalans (Table 1) were identified to species level by using morphological characters and existing keys [2,7,15–19,28–30]. Of the resulting host-parasite combinations, Filisoma rizalinum and Rhadinorhynchus lintoni are new host and locality records. We have sequenced nearly the complete 18S rRNA gene, using cloning techniques to obtain strong sequencing signals for the entire gene (Figure 1). Identical sequences that represent different host or geographic isolates of a particular species were only included once in the phylogenetic analyses. They, however, provide molecular information on the host specificity and zoogeography of the studied acanthocephalan species. The SSU rDNA sequences were newly generated for 13 taxa and added to the published data set (GenBank). Analyses of this dataset (excluding sites containing gaps) of 40 taxa in Bayesian Inference had considerable similarity to the Maximum Likelihood result. Using this model the phylogenetic tree of the phylum Acanthocephala (Figure 2) is subdivided into four classes and the Rotifera as outgroup. The tree begins with the Archiacanthocephala as the earliest divergent clade, followed by the Polyacanthocephala and the Esacanthocephala as sistertaxa, and the Palaeacanthocephala as the most derived clade. The Palaeacanthocephala show the highest diversity inside the class, presenting the orders Echinorhynchida and Polymorphida in a paraphyletic arrangement. All analyses support the current hypothesis separating four classes [(Eoacanthocephala, Polyacanthocephala) Palaeacanthocephala] (Archiacanthocephala), (Rotifera], by Maximum-Likelihood trees and Bayesian Inference.

Defining morphological characters of the Archiacanthocephala and Polyacanthocephala are proboscis hooks in spirals, a single ligament sac in the females, and 8 cement glands in the males. The second clade consists of the Polyacanthocephala sister to the Eoacanthocephala. The Polyacanthocephala with the single genus Polyacanthorhynchus have 2 distinct ligament sacs in the females, and 2 elongate pyriform to tubular cement glands with giant nuclei in the males. The Eoacanthocephala with the representative Neoechinorhynchus are characterized by 2 ligament sacs in the females and a single cement gland in the males. The Palaeacanthocephala separate into the order Echinorhynchida as the original and the Polymorphida as the more derived taxon. The Echinorhynchida have an aspinosed trunk and a short neck. The cement glands of the males are divided into 2 or more compact or tubular lobes, and the females have eggs with polar prolongations of the middle shell. The final hosts are marine or aquatic fishes. The earliest divergent clade of the Echinorhynchida includes Koronacantha, Pseudoleptorhynchoidea and Leptorhynchoidea, which belong to the families Illosentitidae and Rhdinorhynchoidea. Koronacantha has an elongate proboscis with a heavy cuticular coating, cuticular body spines, genital spines are present in both sexes, the males have 8 cement glands, and the heavy, strongly recurved hooks in the shape of an inverted apostrophe with roots that are simple but exaggerated in size with a small hook. Pseudoleptorhynchoidea and Leptorhynchoidea have both, a cylindrical aspinose trunk, a cylindrical and elongated proboscis, and the males have 8 tubular cement glands. The next echinorhynchid taxon, Transvena annulospinosa, appears separate from the other 2 major clades. Transvena can be distinguished from all other Acanthocephala genera by having a combination of a single ring of small spines on its trunk near or at the junction between the neck and the trunk, and hooks which decrease in length from the apex to the base of the proboscis. The males have 2 pyriform or tubular cement glands. The next echinorhynchid clades lacks the 2 genera Serrasentis and Gorgorhynchoidea (members of the echinorhynchids based on traditional classifications) (cp. Figures 3C,D), which appear in the polymorphclad (Figure 2). Echinorhynchus is separated from the genera Acanthocephaloidae, Acanthocephala, and Filisoma, that form a sister group to Rhadinorhynchus and Pomphorhynchus. All these acanthocephalans are characterized by a slender cylindrical proboscis with many alternating longitudinal rows of homeomorphic hooks, the lack of surface hooks, and 4–6 cement glands in the males. The.

Table 1. Newly collected acanthocephalans.

Species	Host	Source
Bolbosoma vasculosum	Leptocrantus savala	Java, Indonesia
Pomphorhynchus laevis	Platichthys flesus	Baltic Sea
Pomphorhynchus laevis	Rutilus rutilus	Lippe River, NRW, Germany
Echinorhynchus gadi	Gadus morhua	Baltic Sea
Echinorhynchus gadi	Macrourus berglax	Irminger Sea, Greenland
Echinorhynchus gadi	Platichthys flesus	Baltic Sea
Filisoma rizalinum	Scatophagus argus	Java, Indonesia
Rhadinorhynchus prists	Gymnopus serpens	Java, Indonesia
Rhadinorhynchus lintoni	Selar crumenophthalmus	Oahu, Hawaii
Serrasentis sagitifer	Johnius coitor	Java, Indonesia
Southwellina hispida	Epinephalus cooides	Java, Indonesia

Some species with identical sequence data have been collected from different hosts. doi:10.1371/journal.pone.0026285.t001
The genus *Plagiorhynchus* contains two echinorhynchid genera *Serrasentis* and *Gorgorhynchoides*. The most basal genus is the polymorphid *Plagiorhynchus cylindraceus*, followed by a clade with the two echinorhynchid genera *Serrasentis* and *Gorgorhynchoides*. The second clade of the Palaeacanthocephala consists of the *Polymorphida*, including the two echinorhynchid genera *Serrasentis* and *Gorgorhynchoides*. The most basal genus is the polymorphid *Plagiorhynchus cylindraceus* followed by a clade with the two echinorhynchid genera *Serrasentis* and *Gorgorhynchoides*. The echinorhynchid genera *Serrasentis* and *Gorgorhynchoides* appear sister to the most derived monophyletic clade within the Palaeacanthocephala, within the polymorphids (Figure 2). According to morphology they demonstrate some polymorphid morphological characters, such as the spinose trunk and the rather globular, short calviform proboscis with longitudinal rows of variable numbers of hooks. While in *Gorgorhynchoides* the presence of trunk spines is limited to the anterior portion, *Serrasentis* has a trunk with unique ventral transverse rows of spines which are fused to form a comb-like structure (Figures 3C, D). The males have 6 clubbed cement glands (*G. bullocki*), and 4 elongate pyriform cement glands (*S. sagittifer*), which leads to the assignment into the Echinorhynchida based on morphology. Both genera occur mainly in fishes, rarely in amphibia, and in reptiles. The most derived genera within the present phylogenetic analyses belong to the Polymorphida, with the genera *Arhythmorhynchus* and *Southwellina* sister to *Polymorphus*, *Pseudocorynosoma*, *Bolbosoma*, and *Corynosoma*. While *Arhythmorhynchus* is characterized by an extremely long slender, anterior swollen trunk covered with a single field of spines, an usually enlarged cylindrical proboscis with greatly enlarged ventral hooks in the middle, and 2 (or 4) cement glands in the males, the genus *Southwellina* has a short trunk with spines that are arranged in 2 fields, and 4 tubular cement glands. Both parasitize birds as final hosts. *Bolbosoma* and *Corynosoma* are characterized by a small to medium sized body with a clubbed trunk, anteriorly swollen and armed with numerous regularly arranged spines. *Bolbosoma* is formed in the shape of a bulb, and is armed with spines that form 2 complete rings (see Figure 3F). The proboscis is calviform or conical, followed by a short neck, and the males have 2 tubular long cement glands. The trunk of *Corynosoma* is flattened on one side and forms a fore and a hind trunk. The spines are arranged within a single field, the proboscis is cylindrical, also followed by a short neck, and males have 6 pyriform or rarely tubular cement glands. Both genera use amphipods as intermediate, fishes as paratenic, and marine mammals as final hosts. *Polymorphus* and *Pseudocorynosoma* both show a spindle-shaped body armed with spines that are arranged in a single field, and a cylindrical or ovoid proboscis. *Polymorphus* has a small anterior spinose trunk, a cylindrical proboscis increasing in size proximally, a distinct neck region, and 4 tubular cement glands in the males. They prefer aquatic or semi aquatic birds, occasionally mammals, as final hosts. *Pseudocorynosoma* has a spindle-shaped body with a slight constriction, separating the fore and the hind trunk. Numerous spines that cover the most anterior part of the fore trunk are symmetrically distributed on the ventral and dorsal sides. In addition, a single field of spines is surrounding the genital pore. The proboscis has a slightly swollen region, followed by a truncated cone-shaped neck.
Table 2. Acanthocephala and Rotifera specimen information and GenBank accession numbers.

Species	Family	Host	18S-rDNA	Length bp	Aligned
Acanthocephaloides propinquus	Arythmacanthidae	Gobius bucchichii	AY830149	1727	1657
Acanthocephalus dirus	Echinorhynchidae	Asselus aquaticus	AY830151	1724	1654
Acanthocephalus lucii	Echinorhynchidae	Perca fluviatilis	AY830152	1725	1655
Azythmorynchus brevis	Polymorphidae	Necticorax necticorax	AF064812	1784	1694
Bolbosoma vasculosum	Polymorphidae	Lepturacanthus savala	this study	1739	1653
Corynosoma enhydrí	Polymorphidae	Enhydra lutris	AF001837	1747	1651
Corynosoma magdalení	Polymorphidae	Phoca hispida botnica	EU267803	1722	1653
Echinorhynchus gadi	Echinorhynchidae	Macrourus berglax	this study	1745	1659
Echinorhynchus truttae	Echinorhynchidae	Thymallus thymallus	AY830156	1729	1659
Filisoma bucerium	Cavisomidae	Kyphosus elegans	AF064814	1744	1655
Filisoma rizalimum	Neoechinorhynchidae	Scataphagus argus	this study	1741	1652
Florodesintis magilis	Neoechinorhynchidae	Mugil cephalus	AF064811	1760	1668
gargarhynchoides bullocki	Rhadinorhynchidae	Euderer plumieri	AY830154	1720	1651
Koranacantha mexicana	Illiosentidae	Pomadasys leuciscus	AY830157	1688	1665
Koranacantha pectinaria	Illiosentidae	Microlepidotus brevipinnis	AF092433	1761	1673
Leptorhynchoides thecatus	Rhadinorhynchidae	Lepomis cyanallus	AF001840	1758	1663
Macracanthorhynchus ingens	Oligacanthorhynchida	Ploxyon lotor	AF001844	1765	1669
Moniliformis moniliformis	Moniliformidae	Rattus rattus	Z19562	1769	1668
Neoechinorhynchus crassus	Neoechinorhynchidae	Catosomus commersoni	AF001842	1773	1677
Neoechinorhynchus saginata	Neoechinorhynchidae	not applicable	AY830150	1745	1675
Oligacanthorhynchus tortuosa	Oligacanthorhynchida	Didelphis virginiana	AF064817	1767	1671
Platinumchus crassus	Polymorphidae	Armadillidium vulgare	AF001839	1745	1649
Polyacanthorhynchus caballero	Polyacanthorhynchida	Caiman yacare	AF388660	2176	2090
Polyacanthorhynchus almani	Polymorphidae	Enhydra lutris	AF001838	1745	1649
Polyacanthorhynchus minutus	Polymorphidae	Gammaurus pulex	EU267806	1720	1651
Pomphorhynchus leavis	Pomphorhynchidae	Rutillus rutillus	this study	1742	1656
Pomphorhynchus thereticollis	Pomphorhynchidae	Gammaurus pulex	AY423347	1662	1656
Pseudeorhynchus anatirina	Polyphagidae	Bucephala albeola	EU267801	1723	1654
Pseudeorhynchus constrictum	Polyphagidae	Anas cygnem	EU267800	1723	1654
Pseudeorhynchus amothei	Polyphagidae	Ariopsis guatemalensis	EU090950	1748	1663
Rhadinorhynchus lontoni	Rhadinorhynchidae	Seler crumenophthalmus	this study	1740	1653
Rhadinorhynchus pristis	Rhadinorhynchidae	Gephyrus serpens	this study	1744	1656
Serrasentis sagittifer	Rhadinorhynchidae	Platyccephalus arenarius	this study	1741	1654
Southwelliana hispida	Polymorphidae	Tigrisoma mexicanum	EU267807	1730	1661
Southwelliana hispida	Polymorphidae	Epinephelus cooides	this study	1747	1661
Transvena annulospinosa	Transvenidae	Anampses neoguinaicus	AY830153	1693	1656
Rotifera	Asplanchna sieboldi	Asplanchnidae	Free-living	1728	1663
Brachionus patulus	Branchionidae	Free-living	AF154568	1745	1656
Lecane bulla	Lecanidae	Free-living	AF154566	1733	1668

doi:10.1371/journal.pone.0028285.t002

Table 3. Tree statistics for rDNA data set.

	Total characters	Uninformative-characters	Constant characters	Informative characters	CI	Tree length	-ln likelihood	Pinv	Gd
ML	2191	259	1224	708	0.547	2.866	16191.7480	0.1605	0.5669

Numbers of informative characters, consistency index (CI) and tree length refer to parsimony inference. Proportion of invariable sites (Pinv), shape of gamma distribution (Gd) and –ln Likelihood refer to Maximum Likelihood Inference.

doi:10.1371/journal.pone.0028285.t003
which is longer than wide [20,22]. The males show 4 or 6 tubular cement glands. *Pseudocorynosoma* is using waterfowls as definitive hosts and amphipods as intermediate hosts.

Discussion

The present study is the most detailed phylogenetic analyses of the Acanthocephala so far based on SSU rDNA, especially of the class Palaeacanthocephala. Earlier studies of acanthocephalans combining data sets of both, SSU and LSU (large subunit, already demonstrated similar results to the SSU alone [9]. Our data set adds to the most recent analyses of acanthocephalan relationships by Garey et al. [12] and García-Varela and Nadler [9]. We can support the notion that the acanthocephalans are monophyletic in origin, and separate into four distinct classes [2,8,9]. The Archiacanthocephala (Figure 2), parasites of birds and terrestrial vertebrates, are the earliest divergent lineage of acanthocephalans which utilize terrestrial vertebrates as intermediate hosts. More
derived follow the Polycanthocephalans as parasites of fishes and crocodiles, sister to the Eoacanthocephalans (in fish, amphibians and reptiles) from the aquatic environment. This result is consistent with the hypothesis that the Polycanthocephala represent a different class within the phylum Acanthocephala. The more derived Palaeacanthocephala, including the Echinorhynchida and Polymorphida, are arranged in a paraphyletic assemblage. Both orders demonstrate high morphological diver-

Figure 3. SEM (scanning electron microscope) micrographs of Palaeacanthocephala. (A) Proboscis of male Rhadinorhynchus pristis from Gymnopus serpens (Indonesia, Indian Ocean) armed with regular hooks a and basal hook annulus. (B) Praesoma of female R. lintoni from Selar crumenophthalmus (Hawaii, Pacific) with irregular arrangement of trunk hooks. (C) Praesoma of Gorgothynechoides golvanii from Platystechnus arenarius (Indonesia, Indian Ocean) regular arrangement of surface hooks. (D) Habitus of Serrasentis sagittifer from Platystechnus arenarius (Indonesia, Indian Ocean) with hooks transformed into strong plates arranged as combs. (E) Habitus of Pomphorhynchus laevis from Platichthys flesus (Baltic Sea) shows any trunk hooks on bulb, neck and trunk. (F) Praesoma of Bolbosoma vasculosum from Lepturacanthus savala (Indonesia, Indian Ocean) formed in the shape of a bulb, and armed with regular hooks which are arranged in two rings. Scale bars: A 400 μm, B, D, F, 200 μm, E 100 μm.
doi:10.1371/journal.pone.0028285.g003
The order Echinorhynchida infectsteleost fishes, occasionally amphibians and reptiles whereas the Polymorphida include parasites of reptiles (rarely), birds, and marine mammals. The Echinorhynchida so far separate into 10 families and 339 valid species. The Polymorphida include only three families and a total of 235 valid species (Centrorhynchidae with two genera and 75 species; Plagiorhynchidae with 3 subfamilies and 8 genera and 53 species; Polyopisthocotyleidae with 9 genera and 127 species). Consequently, these species rich taxa include 83 genera and 594 species of Acanthocephalans, mainly from the aquatic environment (Integrated Taxonomic Information System).

Herlyn et al. [14] for the first time described parabyphyly within the Palaeacanthocephala, indicating independent evolution within these widely distributed taxa. Similarly, molecular and morphological studies so far indicated that the family Rhadinorhynchidae is paraphyletic or polyphyletic, and that the genera should be reexamined and reclassified by using morphological, ecological, and molecular characters [9,21,22], in agreement with the cladistic studies by García-Varela and Nadler [9] and Herlyn et al. [23]. The present analyses place the two species Serrasentis sagittifer (Rhadinorhynchidae) and Gorgonychoides balocki (Rhadinorhynchidae), both Echinorhynchid to, into the Polymorphida. Neither species demonstrates any morphological similarity. Conspicuous are the trunk hooks of Serrasentis that are arranged within rows (combi-like), and the presence of four cement glands in the males, Gorgonychoidea has trunk hooks on its praesoma and six cement gland in the males (Gorgonychoidea golani from Platycephalus arenarius, Indonesia, Indian Ocean, see Figure 3). Most interesting is the position of the polymorphid Plagioryynchus cyndractus, which is arranged between the Echinorhynchida and Polymorphida. This species uses birds as final hosts. The cylindrical trunk also has anterior hooks around a small bulb, and the males have also six cement glands. According to traditional classifications, this result questions the relationship of Serrasentis and Gorgonychoidea to the other echinorhynchids. While only some echinorhynchid acanthocephalans have mainly irregularly arranged surface hooks on the trunk, the herewith recognized character of regularly arranged hooks on the trunk is one of the most common features within the polymorphids.

Recent morphological assessment led to incongruent conclusions, due to difficulties in finding morphological characters that distinguish taxa, and to the partly subjective character states that often lack homologies with the outgroup [21]. According to García-Valera and Nadler [9], many families have been diagnosed based on character combinations rather than shared derived features. For several species, only a single record exists, caused by difficulties in sampling especially from the marine environment and in confirming the life cycles experimentally [1]. Most previous molecular approaches include too few acanthocephalan sequences, owed to difficult and/or biased sampling, to allow more detailed conclusions on the phylectic status of the acanthocephalan subclades [12,14,24,25]. Nevertheless, with their relatively small number of species, a conserved two-host (arthropod–vertebrate) life cycle that involves paratenic hosts in the most derived clade, and the phylogenetic relationship to a free-living sister group, acanthocephalans are attractive candidates to model organisms for studying host-parasite co-evolution. For example, the species distribution within the host illustrates that fish and birds are the most widely used definitive hosts, followed by mammals. It is, however, interesting to note that the oldest group of vertebrates, the fish, is not utilized by significantly more species than the youngest groups, the birds and mammals [1], indicating expansive adaptive radiation in these newly explored host groups.

We are aware that the presented molecular phylogeny of the Acanthocephala is not yet comprehensive, and needs to be tested and validated by future studies. This requires further taxon sampling and ideally the inclusion of additional molecular markers. However, our data also demonstrate the preliminary nature of the acanthocephalan classification in general, especially of the derived echinorhynchids, the most common acanthocephalans in fish. We suggest that the current state of knowledge warrants the identification of further morphological characters for a better understanding of the acanthocephalan diversity, perhaps best driven by more in-depth molecular phylogegetic studies. This will enable the mapping of more morphological characters onto the molecular trees, and redefining the higher level classification of the Acanthocephala.

Acanthocephalans are attractive candidates as model organisms for studying the ecology and co-evolutionary history of parasitic life cycles in the marine ecosystem. However, the lack of phylogenetic studies and taxonomic identification of especially marine Acanthocephala prevents detailed comparison to other endoparasites. We do hope that our study will initiate future research on the species composition, zoogeography and evolution of the phylum Acanthocephala, allowing comparisons to be made on the ecology of this taxon and other species groups such as the nematodes and cestodes that have diversified under similar conditions.

Materials and Methods

Ethics statement

An approval by a review board institution or ethics committee was not necessary, because all the fish in the current study were obtained in different locations from fishermen selling fresh fish for consumption or were collected during regularly fishery cruises.

Collection of specimens

Acanthocephalan specimens were collected between 2001 and 2008 from their naturally infected vertebrate hosts (Table 1). The isolated parasites were washed in saline solution before fixation in 70% ethanol or absolute ethanol for molecular studies. The metasoma was used for molecular rDNA analyses, while the praesoma was processed for scanning electron microscopy (SEM). In other cases, the praesoma was stained in Mayer’s acetic carmine, mounted in Canada balsam and identified using the common keys and original papers [26–28]. Molecular vouchers or voucher specimens were deposited in The Natural History Museum Berlin. A list of taxa, their place of origin and deposition numbers is given in Table 1.

Nucleic acid isolation, polymerase chain reaction and sequencing

Genomic DNA was extracted from individual specimens using a commercial extraction kit (Peqlab, Erlangen). The region of nuclear rDNA was amplified using polymerase chain reaction (PCR). Nearly complete SSU rDNA (~1,800 bp) regions were amplified after Garey et al. [12] (94°C 4-min initial denaturing followed by 30 cycles: 94°C 30 s, 60°C 30 s, 72°C 90 s) using primers corresponding to conserved regions at the extreme ends of the 18S rRNA gene (5’-AGATTAAGCCCATGGCGTAAAG-3’ and 5’-TGATCCATTGGTTGCTACCTAC-3’), cloned into pCR®2.1-TOPO® vector (Invitrogen, Karlsruhe) and used to transform competent Escherichia coli (TOP 10, Invitrogen, Karlsruhe). Positive clones were identified by blue/white selection, and
target inserts of white colonies were confirmed by PCR of bacterial DNA extracts. Liquid cultures for minipreps were grown in Luria broth containing 50 μg/ml of ampicillin following plasmid purification on the next day (MBI Fermentas, St. Leon-Rot). Orientation of cloned inserts was controlled by restriction mapping using in 1% agarose gel (Figure 1). Both strands of the 18S rDNA were sequenced completely in both directions after Sanger et al. [29] by Seqlab (Gottingen) using M13 universal primers (forward (5′-GTAAAACGACGGCCAG-3′), reverse: 5′-CAGGAAACGCTATGAC-3′) of Invitrogen. Site polymorphisms were recorded only when both alternative nucleotide peaks were present in all sequence reactions representing both DNA strands. The sequences have been deposited in GenBank as given in Table 2.

Alignment and phylogenetic analyses of sequence data

Sequences of the 18S rRNA gene of 11 sampled host-parasite combinations (Table 1) were aligned together with those from GenBank (Table 2), and included a total of 3 outgroup (Rotifera, belonging to the two major classes) and 36 ingroup (Acanthocephala) taxa (Table 2), representing the classes Archiacanthocephala (with three of four orders: Moniliformida, Gigantorhynchida and Oligoacanthorhynchida), Eoacanthocephala (with one of two orders: Neoechinorhynchida) and Palaeacanthocephala (with two of two orders: Echinorhynhida and Polymorphida). The sequences were initially aligned using Clustal_X [30] and adjusted by eye. Based on these 40 sequences alignment had 2190 characters, 1920 were parsimony-informative. The complete alignment is available from the corresponding author upon request.

Phylogenetic trees were constructed using Bayesian Inference (BI) conducted with MrBayes v3.1.2 [31] and Maximum likelihood (ML) with PAUP* v4.0b10 [32]. For BI, likelihood settings were set to nst = 6, rates = gamma, the nucleotide substitution model of evolution was the general time reversible (GTR) model [33], with invariant sites (+I) and rate heterogeneity (+G) [34] suggested as the best fitting model by Modeltest version 3.8 [35] based on Akaika Information Criterion (AIC). Four chains (one cold, three heated temp = 0.2) were run for 1,000,000 generations and sampled every 100 generations, whereas the 40,000 generations were discarded as ‘burnin’. For the calculated consensus tree a value of 0.95% and higher was considered having good statistical support.

For ML analyses, the same model parameters were used and heuristic searches were preset by nearest-neighbor-interchange (NNI), branch swapping was performed until the topology remained unchanged. Bootstrapping with 100 replicates was performed and the results were plotted onto the best known likelihood tree. Based on dataset BI analyses phylogenetic tree were reconstructed by TreeGraph [36] (Figure 2).

Acknowledgments

We thank Sonja Kleineertz, Anika Rohde and Stefan Thiessen for providing samples. Two anonymous referees helped to significantly improve the manuscript.

Author Contributions

Conceived and designed the experiments: LV SK. Performed the experiments: LV SK. Contributed reagents/materials/analysis tools: LV SK HWP. Wrote the paper: LV SK HWP. Helped with collection of samples and organization of field work: HWP.

References

1. Kennedy CR (2006) Ecology of the Acanthocephala. Cambridge University Press New York. pp 1–240.
2. Amin OM (1987) Key to the families and subfamilies of Acanthocephala, with erection of a new class (Polycanthonchophala) and a new order (Polycanthorhynchida). J Parasitol 73: 1216–1219.
3. Zrzavy J (2002) Gastrotricha and metazoan phylogeny. Zool Scr 32: 61–81.
4. García-Varela M, Nadler S (2006) Phylogenetic relationships among Syndermata inferred from nuclear and mitochondrial gene sequences. Mol Phy Evol 40: 61–72.
5. Wirth A, Herlyn H, Meyer A, Boell L, Bucher G, et al. (2008) EST based phylodynamics of Syndermata questions monophyly of Eurotatoria. BMC Evol Biol 345: 1–11.
6. Bullock WL (1969) Morphological features as tool and pitfall in acanthocephalan systematics. In: Schmidt GD, ed. Problems in systematic of parasites University Park Press Baltimore. pp 9–45.
7. Amin OM (1985) Classification. In: Crompton DWT, Nickol BB, eds. Biology of the Acanthocephala, Cambridge University Press, London. pp 27–72.
8. García-Varela M, Cummings MP, Perez-Ponce de León G, Gardner SL, Lacledean JP (2002) Phylogenetic analysis based on 18S ribosomal RNA gene sequences supports the existence of class Polyacanthocephala (Acanthocephala). Mol Phy Evol 23: 288–292.
9. García-Varela M, Nadler S (2005) Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences. Mol Phy Evol 40: 61–72.
10. Taraschewski H (2005) Acanthocephala (thorny or spiny-headed worms). In: Schmidt GD, ed. Problems in systematic of parasites University Park Press New York. pp 1–240.
11. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Mol Phy Evol 29: 170–179.
12. Shumlova H, Hasegawa M (1999) Multiple comparison of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16: 1114–1116.
13. Aznar FJ, Perez-Ponce de León G, Raga JA (2006) Status of Cephalura (Acanthocephala: Polymorphidae) based on anatomical, ecological, and phylogenetic evidence, with the erection of Proscephuroidea n. gen. J Parasitol 92: 548–64.
14. Monks S (2001) Phylogeny of the Acanthocephala based on morphological characters. Syst Parasitol 48: 81–115.
15. García-Varela M, González-Oliver A (2008) The systematic position of Lepthorhynchidae (Konislev, 1924) and Pseudoleptorhynchiidae (Salgado-Máldono, 1976), inferred from nuclear and mitochondrial DNA gene sequences. J Parasitol 94: 959–962.
16. Herlyn H, Marrina N, Ehlers U (2001) Organisation of the praeosoma of Paratenuisomus ambiguus (Van Cleave, 1921) (Acanthocephala: Esacanthocephala), with special reference to the lateral sense organs and musculature. Syst Parasitol 50: 105–116.
17. Girbet G, Distel DL, Polz M, Sterrer W, Wheeler W (2000) Triploblastic relationships with emphasis on the ascoceloms and the position of Gnathostomulida, Cyclophora, and Chaetognatha: a combined approach of 18S RNA sequences and morphology. Syst Biol 49: 539–562.
18. Welch BD (2005) Bayesian and maximum likelihood analyses of rotifer-acanthocephalan relationships. Hydrobiol 546: 47–54.
19. Yamaqai S (1963) Systema Helminthum, Volume V: Acanthocephala. Interscience Publishers John Wiley and Sons, New York. pp 1–423.
20. Golvan YJ (1969) Systematique des acanthocephales (Acanthocephala, Rudolphi 1801). L’ordre des Palaeacanthocephala Meyer 1931. La super famille des
Echinorhynchoidea (Cobbold 1876) Golvan et Houin, 1963. Série A, Zoologie 57. Mémioires du Muséum National d'Histoire Naturelle, Paris. pp 1–373.

28. Bhattacharya SB (2007) Handbook of Indian Acanthocephala. Zoological Survey of India, Kolkata. pp 1–226.

29. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. P Natl Acad Sci U S A 74: 5463–5467.

30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 24: 4876–4882.

31. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.

32. Swoford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland.

33. Rodrı´guez F, Oliver JF, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142: 485–501.

34. Yang Z (1994) Estimating the patterns of nucleotides substitution. J Mol Evol 39: 105–111.

35. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.

36. Stover BC, Müller KF (2010) TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BioMed Central Bioinformatics 11, 7.