Co-infection of *Wolbachia* and *Spiroplasma* in spider mite *Tetranychus truncatus* increases male fitness

Kang Xie, Yi-Jia Lu, Kun Yang, Shi-Mei Huo and Xiao-Yue Hong

Department of Entomology, Nanjing Agricultural University, Nanjing, China

Abstract *Wolbachia* and *Spiroplasma* are intracellular bacteria that are of great interest to entomologists, because of their ability to alter insect host biology in multiple ways. In the spider mite *Tetranychus truncatus*, co-infection of *Wolbachia* and *Spiroplasma* can induce cytoplasmic incompatibility (CI) and fitness costs; however, little is known about the effect of co-infection at the genetic level and the molecular mechanisms underlying CI. In this study, we explored the influence of the two symbionts on male mite host fitness and used RNA sequencing to generate the transcriptomes of *T. truncatus* with four different types of infection. In total, we found symbiont-infected lines had a higher hatch proportion than the uninfected line, and the development time of the uninfected line was longer than that of the other lines. Co-infection changed the expression of many genes related to digestion, detoxification, reproduction, immunity and oxidation reduction. Our results indicate that co-infection of *Wolbachia* and *Spiroplasma* confers multiple effects on their hosts, and helps illuminate the complex interactions between endosymbionts and arthropods.

Key words co-infection; development time; *Spiroplasma*; *Tetranychus truncatus*; transcriptome; *Wolbachia*

Introduction

Wolbachia is an intracellular bacterium which infects a large number of terrestrial arthropods (Zug & Hammerstein, 2012) and is famous for modulating host reproduction via induction of mechanisms that enhance its spread in insect host populations, including feminization, male killing, parthenogenesis and cytoplasmic incompatibility (CI) (Werren et al., 2008). Furthermore, *Wolbachia* also has positive effects on host fitness (Zug & Hammerstein, 2015). *Spiroplasma* is a Gram-positive, wall-less, helical bacteria that widely infects arthropods (Tully et al., 1983; Williamson et al., 1998; Gasparich et al., 2004). Some *Spiroplasma* strains are known to induce male killing in several insects, such as fruit flies, ladybird beetles, small brown planthoppers and butterflies (Williamson et al., 1999; Jiggins et al., 2000; Sanada et al., 2013; Tinsley & Majerus, 2006). In addition, many researchers found that *Spiroplasma* is a mutualistic symbiont that protects hosts against parasitoid wasps (Xie et al., 2010), nematodes (Jaenike et al., 2010; Jaenike & Brekke, 2011) and fungal pathogens (Scarborough et al., 2005).

Many studies have been performed to elucidate how symbiont infection influences host biology. A deubiquitylating enzyme encoded by *Wolbachia* was identified to induce CI (Beckmann et al., 2017). In *Drosophila melanogaster*, prophage WO genes cifA and cifB establish and enhance CI (LePage et al., 2017). In *Aedes aegypti* and *Anopheles gambiae*, it was observed that *Wolbachia* produced striking upregulation of many immune genes and inhibited pathogen development (Kambris et al., 2009; Kambris et al., 2010). In *D. melanogaster*, Harumoto and Lemaître (2018) identified a protein from *Spiroplasma*, SpAID, the expression of which induced male killing. In *Drosophila*, a ribosome-inactivating protein encoded by *Spiroplasma* was proven to protect hosts against parasitic...
wasps and nematodes (Hamilton et al., 2016; Ballinger & Perlman, 2017). However, the biological effects of symbionts on hosts are always determined by host and/or symbiont genotype (Leonardo & Muiru, 2003), and it is necessary to study additional invertebrate systems to reveal the potential mechanisms of reproduction and fitness changes induced by endosymbiont co-infection.

Tetranychus truncatus is a polyphagous agricultural pest that feeds on more than 60 plant species (Bolland et al., 1998) and has become a dominant pest in China in recent years (Zhang et al., 2018). Field investigation of *T. truncatus* has shown that co-infection of *Wolbachia* and *Spiroplasma* was frequent in nature (Zhang et al., 2018). Our previous results showed that double infection of *Wolbachia* and *Spiroplasma* induced CI in *T. truncatus* (Zhang et al., 2018). A general explanation of CI is given by the “modification–rescue model”, in which one strain of *Wolbachia* both modifies sperm during spermatogenesis and “rescues” function to avoid embryonic development disruption (Werren, 1996; Hosokawa et al., 2010). In this model, males play the “modification” role. Although a previous study found that co-infection could confer fitness benefits to their hosts as well as induce CI, little is known about the effect of co-infection at the genetic level and the underlying molecular mechanisms of CI (Werren et al., 2008).

Here, we explored the effects of the two symbionts (*Wolbachia* and *Spiroplasma*) on male mite host fitness and compared gene expression profiles among four types of males from different symbiont-infected lines, including doubly infected (Iws), singly *Wolbachia*-infected (Iw), singly *Spiroplasma*-infected (Is) and uninfected (U) lines. We found that symbiont-infected lines had a higher hatch proportion than the uninfected line, and the developmental time of the uninfected line was longer relative to the other lines. Co-infection changed the expression of many genes, including genes related to digestion detoxification, reproduction, immunity and oxidation reduction. Our results indicate that co-infection of *Wolbachia* and *Spiroplasma* confers multiple effects on their hosts and helps elucidate the complex interactions between endosymbionts and arthropods.

Materials and methods

Mite rearing and sample collection

Tetranychus truncatus were collected from different sites in Shenyang, Liaoning Province, China. Mites were reared on leaves of kidney bean (*Phaseolus vulgaris* L.) at 25 ± 1°C, 60% relative humidity and under 16 : 8 L : D conditions. Three lines, Iws, Iw and Is, were established as previously described (Zhang et al., 2018). The U line was established by treating the Is line with tetracycline solution (0.1%, w/v) for three generations, and maintaining them in a mass-rearing environment without antibiotic for seven generations before use to avoid potential side effects of antibiotic treatment.

To rule out the effects of host genetic background, females from the Iws, Iw and Is lines were allowed to mate with the males from the U line, and the female offspring continued to mate with males from the U line on new leaf disks. The above-mentioned process was continued for seven generations until identical nuclear backgrounds were obtained. Then, spider mites were cultivated for five generations before experiments.

To ensure experiment accuracy, we checked the symbiont-infected states using polymerase chain reaction (PCR).

Hatchability assay

The effect of symbionts on male mite hatchability was assessed. For each line, a single 1-day-old adult virgin female was placed on a leaf disk and allowed to oviposit for 5 days. Each line used 36 leaf disks. To calculate hatch proportion, the eggs on the leaf disks were checked daily. Data were first tested for normality (Kolmogorov–Smirnov test) and homogeneity of group variances (Levene’s test). When the data were normally distributed, they were analyzed with a one-way analysis of variance with post-hoc Tukey Honestly Significant Difference analysis for multiple comparisons. When the data did not follow a normal distribution, Kruskal–Wallis test with Bonferroni correction were used for multiple comparisons. All statistical analyses were done on SPSS 19.0 (IBM, Armonk, NY, USA).

Development assay

To test whether symbiont infection influenced normal male development, we measured development time. For each line, approximately 150 3-day-old adult virgin females were placed on a leaf disk and allowed to oviposit for 3 h (3-day-old adult virgin females were in the active ovipositing state; it increased the possibility of obtaining more eggs in a relative short period). Then, the females were removed and eggs were left. The eggs on the leaf disks were checked at 8:00, 16:00, and 22:00 hours every day to determine whether males underwent eclosion. Observed adult males were picked out and the number...
of adult males recorded. Development time was considered the time which from an egg was laid to adulthood. The differences of development time were analyzed using the Kruskal–Wallis test with Bonferroni correction. All statistical analyses were done on SPSS 19.0.

Library preparation and RNA sequencing

One-day-old adult virgin males of the four lines were then collected. Samples were stored in liquid nitrogen for subsequent RNA isolation.

Total RNA was extracted with the Trizol protocol according to manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA) for a total of 12 independent samples with three biological replicates per treatment. RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA). Libraries were generated using NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA) following the manufacturer’s recommendations, and index codes were added to attribute sequences to each sample. The complementary DNA (cDNA) library was then sequenced using Illumina Hiseq X Ten (Illumina, San Diego, CA, USA), and paired-end reads were generated.

Quality control

Raw data (raw reads) in fastq format were first processed through in-house perl scripts. In this step, clean data (clean reads) were obtained by removing reads that contained adapters, reads that contained poly-N, and low-quality reads from raw data. Simultaneously, Q20, Q30, GC-content and sequence duplication levels of the clean data were calculated. All downstream analyses were conducted with high-quality clean data.

Transcriptome assembly and gene functional annotation

Because there is no reference genome available for *T. truncatus*, a de novo transcriptome was built with Trinity v2.4.0 (Grabherr et al., 2011), with min_kmer_cov set to 2 and all other parameters set to default. Gene function was annotated based on the following databases: Nr (National Center for Biotechnology Information [NCBI] non-redundant protein sequences); Nt (NCBI non-redundant nucleotide sequences); Pfam (Protein family); EuKaryotic Orthologous Groups (KOG); Swiss-Prot (a manually annotated and reviewed protein sequence database); KO (Kyoto Encyclopedia of Genes and Genomes [KEGG] Ortholog database); GO (Gene Ontology).

Quantification of gene expression levels

Gene expression levels were estimated by RSEM (Li & Dewey, 2011) for each sample. Clean data were mapped back onto the assembled transcriptome, and read count for each gene was obtained from the mapping results.

Differential expression analysis

Differential expression analysis of two conditions/groups was performed using the DESeq2 1.6.3 (Love et al., 2014). The P-values were adjusted using
Table 1 Summary of sequencing results.

Sample name	Iws (%)	Iw (%)	Is (%)	U (%)
Raw reads	53428652	52031996	54450407	50926184
Clean reads	52453167	51200051	53717187	49889247
Total mapped	46903947 (89.42)	45414792 (88.70)	48057361 (89.46)	44151453 (88.50)
Total unigenes	58015			
Median length	2408			
N50	5456			
N90	1731			
Larger than 2 kb	32384			

Iws, doubly infected line; Iw, singly Wolbachia-infected line; Is, singly Spiroplasma-infected line; U, uninfected line.

the Benjamini and Hochberg (1995) method. Genes with an adjusted P-value <0.05, as determined by DESeq2, were considered differentially expressed.

Enrichment analysis of differentially expressed genes (DEGs)

GO enrichment analysis of the DEGs was implemented by the GOseq R packages based Wallenius non-central hyper-geometric distribution (Young et al., 2010), which can adjust for gene length bias in DEGs. KEGG (Kanehisa et al., 2007) is a database resource for understanding high-level functions and utilities of a biological system, such as a cell, organism or ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies (http://www.genome.jp/kegg/). KOBAS (Mao et al., 2005) was used to test the statistical enrichment of DEGs in KEGG pathways.

Quantitative real-time PCR

To estimate the results of RNA sequence (RNA-Seq) analysis, the expression levels of arbitrarily selected genes were measured by quantitative real-time PCR (qPCR). The primer sequences are summarized in Table S1. Total RNA was extracted with the Trizol protocol. cDNA was synthesized according to the manufacturer’s instructions (Takara, Kusatsu, Japan). qPCRs were performed on the Applied Bio-systems 7500 Real-Time PCR System with the qPCR SYBR Green Master Mix (Yeasen, China). Each sample was analyzed in triplicate in a 20-μL total reaction volume that contained 0.4 μL (10 μmol/L) of each primer, 7.2 μL ddH2O, 10 μL SYBR Green and 2 μL diluted cDNA. The concentration of cDNA was too high for qPCR, so we diluted cDNA 5-fold by adding ddH2O in order to get a viable cycle threshold (Ct) value. The relative expression levels were calculated using the $2^{-\Delta\Delta Ct}$ method (Livak & Schmittgen, 2001).
Results

Wolbachia and Spiroplasma have diverse effects on host hatchability

The effects of Wolbachia and Spiroplasma on host hatchability were measured. As shown in Figure 1, the hatch proportion of uninfected males (0.8654 ± 0.0268) is significantly lower than doubly infected males (Iws: 0.9747 ± 0.0052) (P < 0.001), singly Wolbachia-infected males (Iw: 0.9384 ± 0.0249) (P < 0.001) and singly Spiroplasma-infected males (Is: 0.9227 ± 0.0246) (P < 0.05). There was no significant difference between hatch proportions of symbiont-infected males.

Co-infection shortened host developmental rate

The development times of males from different lines are presented in Figure 2. Doubly infected males reached adulthood (9.71 ± 0.028) significantly earlier than singly Wolbachia-infected males (9.89 ± 0.043) (P < 0.05). Additionally, uninfected males (10.13 ± 0.046) developed significantly slower than males of other lines (Is: 9.80 ± 0.034) (P < 0.001).

RNA-Seq data processing

Four transcriptome libraries (Iws, Iw, Is and U) were constructed, and each contained 50–54 million reads. A total of 58,015 unigenes were generated from 193,528,396 bp, with a median sequence length of 2408 bp and an N50 of 5468 bp. Over 32,000 unigenes were larger than 2 kb in size (Table 1). Because of the lack of a T. truncatus reference genome, all unigenes were annotated from the Nr (33,827), Nt (11,648), KO (21,307), SwissProt (34,170), PFAM (36,542), GO (36,868) and KOG (24,304) databases (Fig 3). As shown in Figure 4, the vast majority of putative homologous genes were annotated to T. urticae by the Nr database, which was consistent with what we expected.
In total, 661 genes were downregulated and 508 were upregulated in Iws versus U (Fig. 5); 473 genes were downregulated and 546 were upregulated in Iws versus Is (Fig. 6); and 596 genes were downregulated and 514 were upregulated in Iws versus Iw (Fig. 7).

GO analysis

The gene functions of DEGs were annotated using the GO database, and here we list terms which were the most significant enrichment of DEGs in Iws compared with the other three lines. In Iws versus U, DEGs were most enriched in the biological process (BP) categories of amide biosynthetic process and ribosome biogenesis (Fig. 8). In Iws versus Is and Iws versus Iw, fusion of virus membrane with host plasma membrane and membrane fusion involved in viral entry into host cells were the most significant enrichment BP terms. Periplasmic space was the strongest enriched term in the cellular component category in all three comparisons. Additionally, amine dehydrogenase activity and oxidoreductase activity, acting on the CH-NH2 group of donors were the most significant enrichment terms associated with the molecular function category in all three comparisons (Figs. 8, 9, 10).
Fig. 10 Gene Ontology enrichment analysis of differentially expressed genes between doubly infected (Iws) and singly Spiroplasma-infected (Is) lines.

Fig. 11 The 20 most enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways based on differentially expressed genes between doubly infected (Iws) and uninfected (U) lines. The x-axis shows the rich factor. The y-axis shows the pathway name. The point size represents the number of genes enriched in a particular pathway. Degree of enrichment is more significant for larger rich factor values and smaller q values.
KEGG pathway analysis

In Iws versus U, KEGG pathway analysis showed that DEGs were involved in 277 different pathways, mainly including those related to ribosomes and glycolysis/gluconeogenesis (Fig. 11). In Iws versus Is, DEGs were involved in 260 different pathways, mainly including linoleic acid metabolism and arachidonic acid metabolism (Fig. 12). In Iws versus Iw, genes were involved in 263 different pathways, mainly including those related to the phosphatidylinositol signaling system and inositol phosphate metabolism (Fig. 13).

DEGs of interest

Co-infection of Wolbachia and Spiroplasma changed the expression of many more genes compared with other types of symbiont infection (Table 2).

The polyphagy of T. truncatus could be attributed to powerful detoxification functions, such as having a series of detoxifying enzymes, including cytochrome P450 monooxygenases (CYPs), glutathione S-transferase, ABC transporter, carboxylesterase and multidrug resistance-associated protein. Co-infection of the two symbionts had different degrees of influence on the expression of these genes in a host. For CYP genes, six genes significantly changed in Iws, including four downregulated and two upregulated genes. Four genes that encode glutathione-S-transferase were downregulated (three genes were downregulated compared with Is, and one gene was downregulated compared with U). Additionally, for two genes that encode ABC transporters, one gene was upregulated and one gene was downregulated. Moreover, one carboxylesterase gene was downregulated. Many genes that encode multidrug resistance-associated protein dramatically changed, including five downregulated and six upregulated genes. Several other genes were
also downregulated, including those that encode phosphatase, canalicular multispecific organic anion transporter and P-glycoprotein. Lipocalins are a family of proteins which transport small hydrophobic molecules. We found that the majority of genes which encode apolipoprotein D were downregulated and only one was upregulated. Several genes associated with larval molt were upregulated. There were several genes related to histone coding and histone modification (Cluster-1760.0, Cluster-6764.36412, Cluster-11188.0, Cluster-6764.8724, Cluster-6764.43656); four of five of these genes were downregulated. We also observed downregulation of three genes related to vitellogenin. Two genes, Cluster-6764.21118 and Cluster-6764.22958, which participate in cuticle biosynthesis, were downregulated. Moreover, it is noteworthy that the genes that encode DNA topoisomerase 2-alpha, which are essential for proper segregation of daughter chromosomes during mitosis and meiosis, were all substantially upregulated.

qPCR validation

Ten DEGs were arbitrarily picked to confirm sequencing data accuracy (Fig. 14). We examined the expression of these genes in an arbitrary comparison. The differences in expression of all genes except Cluster-6764.13646 were consistent with RNA-Seq results. These results support the reliability of the RNA-Seq data.

Discussion

It is common in nature for multiple endosymbionts to infect the same host (Duron et al., 2008). Co-infection with Wolbachia and Spiroplasma could have various effects
Table 2 Subset of identified differentially expressed genes.

Gene category	Gene ID	Description	log$_2$ (Fold Change)	
		Iws vs U	Iws vs I	Iws vs Iw
Digestion or detoxification	Cluster-6764.35608	Acetylcholinesterase-like precursor	-3.9453 -3.8502 -3.5378	
	Cluster-6764.37341	Acetylcholinesterase-like precursor	-9.4156 -6.594 -	
	Cluster-6764.37224	Acetylcholinesterase-1	-11.407 14.79 -	
	Cluster-6764.39802	Cholinesterase	-11.212 11.31 -	
	Cluster-6764.39792	Cholinesterase	-7.1257 7.5336 -	
	Cluster-6764.39797	Cholinesterase	-8.309 6.5407 -	
	Cluster-6764.39798	Cholinesterase	-7.3991 7.4976 -	
	Cluster-6764.4172	Cholinesterase	-7.1807 7.2838 -	
	Cluster-6764.39800	Cholinesterase	-16.297 16.394 -	
	Cluster-6764.23573	Multidrug resistance-associated protein 1	22.075 22.171 -	
	Cluster-6764.6902	Multidrug resistance-associated protein 1	-6.7113 - 6.0865	
	Cluster-6764.32781	Multidrug resistance-associated protein 4	8.8705 -	
	Cluster-6764.19713	Multidrug resistance-associated protein 1	-3.8554 -	
	Cluster-6764.25271	Multidrug resistance-associated protein 1	-6.3218 -	
	Cluster-6764.18981	Multidrug resistance-associated protein 1	4.4568 -	
	Cluster-6764.34008	Multidrug resistance-associated protein 1	3.3699 2.3407	
	Cluster-6764.5965	Multidrug resistance-associated protein 4	-1.6863 -	
	Cluster-6764.19020	Multidrug resistance-associated protein 1	-6.7381	
	Cluster-6764.8855	Multidrug resistance-associated protein 4	4.4642	
	Cluster-6764.4892	Multidrug resistance-associated protein 4	1.9779	
	Cluster-6764.13758	Canalicular multispecific organic anion transporter 1	-4.7031	
	Cluster-6764.22981	Canalicular multispecific organic anion transporter 2	-1.2515	
	Cluster-6764.8292	UDP-glucosyltransferase YdhE	-5.8003 -	
	Cluster-6764.28542	UDP-glucosyltransferase YjiC	8.2717 5.8864 -	
	Cluster-6764.31354	UDP-glucosyltransferase YjiC	-6.7652 -	
	Cluster-6764.17582	UDP-glucosyltransferase YjiC	6.852 -	
	Cluster-6764.17581	UDP-glucosyltransferase YjiC	1.6587	
	Cluster-6764.37988	UDP-glucosyltransferase YjiC	-6.3608 -	
	Cluster-6764.28477	UDP-glucose:glycoprotein glucosyltransferase 1	10.187	
	Cluster-6764.10305	UDP-glucosyltransferase YjiC	-1.7827	
	Cluster-6764.37989	UDP-glucosyltransferases	-2.5221	
	Cluster-6764.19594	UDP-glucosyltransferase YojK	-4.7457	

(Continues)
Gene category	Gene ID	Description	log2 (Fold Change)		
			Iws vs U	Iws vs Is	Iws vs Iw
Lipocalins	Cluster-6764.39035	Apolipoprotein D	−3.7197	−4.2719	−
	Cluster-6764.21793	Apolipoprotein D	−1.4002	−	−
	Cluster-6764.7749	Apolipoprotein D	−7.2849	−	−
	Cluster-6764.20038	Apolipoprotein D	−	−9.2612	−9.1475
	Cluster-6764.30554	Apolipoprotein D	−	−	5.8735
	Cluster-6764.4653	Apolipoprotein D	−	−	−6.3934
Reproduction	Cluster-1760.0	Histone variant H2A.Z	−6.1468	−	−
	Cluster-6764.36412	Histone deacetylase complex subunit	1.1359	−	−
	Cluster-11188.0	Histone H3.3	−7.39	−	−
	Cluster-6764.8724	Histone-lysine N-methyltransferase	−	−7.3224	−
	Cluster-6764.43656	Histone-lysine N-methyltransferase	−	−3.06	−3.3232
	Cluster-6764.31921	Histone-lysine N-methyltransferase	−	−	2.5072
	Cluster-6764.12902	Integrin beta pat-3	−	−	−1.1589
	Cluster-6764.12904	Integrin beta pat-3	−	−	1.0747
	Cluster-6764.23516	Cyclin-G-associated kinase	2.1506	−	−
	Cluster-6764.24423	DNA topoisomerase 2-alpha	14.238	14.334	14.391
	Cluster-6764.19985	DNA topoisomerase 2-alpha	13.197	13.294	13.351
	Cluster-6764.22770	DNA topoisomerase 2-alpha	12.187	−	−
	Cluster-6764.16349	DNA topoisomerase 2-alpha	−	−1.9319	−2.0822
	Cluster-6764.21733	DNA topoisomerase 2-alpha	−	−1.7772	−2.1526
	Cluster-6764.23918	Ecdysone-inducible protein E75	−	−	1.8406
	Cluster-6764.31632	Ecdysone-induced protein 78C	−	1.1858	1.2414

(Continues)
Gene category	Gene ID	Description	log$_2$ (Fold Change)
Immunity	Cluster-6764.16214	Serine/threonine-protein kinase pelle	9.4517 9.5598 –
	Cluster-6764.24389	Nuclear factor-kappa-B p100 subunit	11.588 11.688 –
	Cluster-6764.34859	Nuclear factor-kappa-B p105 subunit	7.7836 – –
	Cluster-6764.24390	Nuclear factor-kappa-B p100 subunit	11.605 11.701 –
	Cluster-6764.10026	Nuclear factor-kappa-B p105 subunit	–8.0926 –8.0389 –8.5413
	Cluster-6764.11921	JAK/STAT pathway ortholog of Dm stat92E	4.5353 – –
	Cluster-6764.11909	JAK/STAT pathway ortholog of Dm stat92E	4.8424 – –
	Cluster-6764.11905	JAK/STAT pathway ortholog of Dm stat92E	5.5734 – –
	Cluster-6764.32494	Toll-like receptor Tollo	– 1.2988 –
Oxidation reduction process	Cluster-6764.39632	Dual oxidase 2	– – 6.662
	Cluster-6764.32305	Dual oxidase maturation factor 2	– – 9.3804
	Cluster-6764.32307	Dual oxidase maturation factor 2	– – 7.7968
	Cluster-4417.0	Peroxidase	–5.8252 – –
	Cluster-6764.38953	Peroxidase	– – 2.0365
	Cluster-6764.25509	Short-chain dehydrogenase	– –9.4161 –9.4985
	Cluster-6764.25508	Short-chain dehydrogenase	– –8.7428 –8.4418
	Cluster-599.1	Ferritin, heavy subunit	–7.1255 – –
	Cluster-8341.0	Ferritin, middle subunit	–7.3421 – –
Structural constituent of cuticle	Cluster-6764.21118	Adult-specific rigid cuticular protein 15.7	–2.7772 –2.5967 –2.3873
	Cluster-6764.22958	Adult-specific rigid cuticular protein 15.7	–2.1123 –2.326 –2.1123

Iws, doubly infected line; Iw, singly Wolbachia-infected line; Is, singly Spiroplasma-infected line; U, uninfected line.
on host reproduction and fitness. Because the effects of symbionts on host biology differ among host and/or symbiont genotypes (Serbus et al., 2008), it is necessary to study additional invertebrate systems to reveal the potential mechanisms of reproduction and fitness changes induced by symbiont co-infection. In addition, a common CI defect is a delay in the breakdown of the male nuclear envelope, which results in paternal chromosome mis-segregation during the first mitosis (Tram & Sullivan, 2002; Tram et al., 2006; Gebiola et al., 2017). Additionally, increased male age can dramatically decrease the strength of CI (Kittayapong et al., 2002; Reynolds & Hoffmann, 2002). Therefore, we collected 1-day-old adult virgin males for the transcriptome analysis in this study.

T. truncatus is a polyphagous herbivore and has numerous genes related to detoxification. In our study, the expression of these specialized genes dramatically changed as a result of symbiont co-infection, which indicates that co-infection of *Wolbachia* and *Spiroplasma* affects *T. truncatus* feeding and digestion. We observed that 34 genes related to digestion and detoxification were differentially expressed in the Iws line, which indicates that the co-infection largely changed host detoxification ability. There were also remarkable changes in many genes which encode canalicular multispecific organic anion transporter and multidrug resistance-associated proteins. They are members of the ABCC subfamily. ABCC proteins have a series of functions, including ion transport, cell-surface receptor activity and translocating many kinds of substrates, such as drugs, cyclic nucleotides, endogenous compounds and their glutathione conjugates and glutathione (Dermauw et al., 2013). The majority of genes that encode cholinesterase were upregulated in Iws. Cholinesterase plays an important role in hydrolyzing both plant secondary metabolites, organophosphates and other pesticides (Ramsey et al., 2010). Many lipocalin genes were differentially expressed. Lipocalins are a family of proteins capable of binding to small hydrophobic molecules (Flower, 1996). In spider mites, they are likely to bind pesticides/allelochemicals, which results in sequestration of these toxic, generally hydrophobic compounds. Furthermore, we found that UDP-glycosyltransferases (UGTs), which catalyze the addition of the glycosyl group from a UTP-sugar to a small hydrophobic molecule, were strongly differentially expressed in Iws. One of the principle functions of insect UGTs is detoxification of ingested plant phenolics, which act as toxins, or insect deterrents (Ahmad & Hopkins, 1993).

In fact, for herbivores, the nutrient content provided by plant material is usually poor or unbalanced (Karban & Baldwin, 2007). The detoxification ability of herbivores enhances utilization of limited plant nutrition. In spider mites, nutritional status is related to host performance (Wermelinger et al., 1991). Our previous study showed that co-infection of *Wolbachia* and *Spiroplasma* could confer some fitness benefits to *T. truncatus* hosts, including shortened development time, and increased fecundity and hatchability, which can all contribute to the expansion of symbionts in host populations (Zhang et al., 2018). Hence, the detoxification ability of *T. truncatus* has an indirect impact on the spread of symbionts. We conclude that the strong detoxification ability of the doubly infected line was at least one reason why co-infection of *Wolbachia* and *Spiroplasma* is widespread in natural *T. truncatus* populations (Zhao et al., 2013; Zhang et al., 2016). However, the entirely different symbiont prevalence in the field (Zhu et al., 2018) probably reflects different levels of detoxification ability of various mite lines. For example, *Wolbachia* are largely present in the

C⃝2019 The Authors. *Insect Science* published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences, 27, 921–937
gnathostoma of spider mites (Zhao et al., 2013), and the function of *Wolbachia* is related to their localization, which favors the perspective that symbiont infection affects food digestion and detoxification. Further studies are needed to confirm the influence of symbionts on detoxification.

Some genes related to reproduction were differentially expressed as a result of co-infection. Two genes that encode a cuticle protein were downregulated in Iws. In the nematode *Brugia malayi*, *Wolbachia* removal resulted in downregulated transcripts involved in cuticle biosynthesis, which may reflect disruption of a normal embryogenic process (Ghedin et al., 2009). Moreover, two genes that encode integrin beta pat-3 were differentially expressed. During *Caenorhabditis elegans* development, pat-3 is essential for gonad morphogenesis, and pat-3 RNAi caused abnormal gonad formation and sterility (Lee et al., 2001; Lee et al., 2005; Xu et al., 2005). Substantial changes were observed in several genes associated with histone modifications and histone variants. These genes were found to participate in various cell division processes and development. Histone variant H2A.Z plays a critical role in early development, and H2A.Z RNAi results in defective chromosomal segregation (Faast et al., 2001; Rangasamy et al., 2004). Histone methylation is essential for meiosis, because it modulates the expressions of meiotic-related genes (Wang et al., 2017). Additionally, histone acetylation status has a substantial impact on meiosis during both spermatogenesis and oogenesis (Wang et al., 2017).

We observed differential expression of a gene that encodes cyclin-G-associated kinase (GAK). GAK is required for proper mitotic progression because GAK knockdown was shown to cause cell cycle arrest at metaphase (Shimizu et al., 2009). An obvious cytological defect of CI is a delay in chromosome condensation in male pronuclei at prometaphase. Here, we observed differential expression of genes that encode DNA topoisomerase II. DNA topoisomerase II may play a role in chromosome condensation during mitosis (Wang, 2002). Furthermore, it is worth noting that two genes that encode the nuclear receptors ecysgone-inducible protein E75 (E75) and ecysgone-induced protein 78C (E78) were upregulated in Iws compared with Iw. In *Tribolium castaneum*, E75 regulates male accessory gland development and accessory gland protein production, whereas E78 is associated with sperm production and transfer to females (Xu et al., 2012). In *Drosophila*, females with low levels of E78 expression experienced a notable decline in egg production and a low hatching rate compared with wild-type individuals (Ables et al., 2015). These genes also regulate larval molting and development time (Bialecki et al., 2002).

In males, development time was found to be inversely correlated with the strength of CI (Yamada et al., 2007). The spider mites we examined here that were co-infected with *Wolbachia* and *Spiroplasma* produced more eggs, and the development time of doubly infected males was relatively short compared with that of males infected with only *Wolbachia*, and only the Iws line induced CI. Further research is needed to determine the effect of co-infection on the expressions of the above genes in *T. truncatus*.

Some of the DEGs in the present study that are associated with the immune response were associated with co-infection. These include the genes for the nuclear factor-κB-like transcription factor Relish, a Janus-activated kinase/signal transducers and activators of transcription pathway ortholog of Dm stat92E, Toll-like receptor Tollo and pelle. Moreover, a few genes related to autophagy and apoptosis also dramatically changed (Table S2). We could not confirm that co-infection caused immune system activation, as we did not detect any antimicrobial peptide changes; therefore, further experiments are needed to determine if co-infection activates the immune system. Identifying immune response diversity among different hosts and/or endosymbiont genotypes will also help clarify the interactions between endosymbionts and their hosts.

Furthermore, we observed numerous DEGs related to oxidoreductase activity due to co-infection, such as the genes for dual oxidase, short-chain dehydrogenase and peroxidase, which are important to maintain redox homeostasis.

Conclusions

In summary, we demonstrated that symbiont infection could increase male mite hatchability and accelerate the development from egg to adult. We found that *Wolbachia* and *Spiroplasma* co-infection affected transcripts that encode proteins involved in various biological processes in *T. truncatus*, such as digestion and detoxification, reproduction, the immune system and redox processes.

Our study provides novel gene-based research on the effects of *Wolbachia* and *Spiroplasma* co-infection on arthropod hosts, and helps elucidate the complex interactions between symbionts and arthropods.

Acknowledgments

We sincerely thank Dr. Hai-Jian Huang, Dr. Xiao-Li Bing and Dr. Yu-Xi Zhu of the Department of Entomology, Nanjing Agricultural University (NIAU) for their valuable comments and corrections on the early version of the manuscript. We are also grateful to Dr. Xue Xia for
his kind help with the experiment. This study was supported in part by a grant-in-aid for Scientific Research (31672035, 31871976) from the National Natural Science Foundation of China.

Disclosure

The authors declare no conflict of interest.

References

Ables, E.T., Bois, K.E., Garcia, C.A. and Drummond-Barbosa, D. (2015) Ecdysone response gene E78 controls ovarian germline stem cell niche formation and follicle survival in Drosophila. Developmental Biology, 400(1), 33–42.

Ahmad, S.A. and Hopkins, T.L. (1993) β-Glucosyl transferase in larval tissues of the tobacco hornworm, Manduca sexta (L.). Insect Biochemistry and Molecular Biology, 23, 581–589.

Ballinger, M.J. and Perlman, S.J. (2017) Generality of toxins in defensive symbiosis: ribosome-inactivating proteins and defense against parasitic wasps in Drosophila. PLoS Pathogens, 13, e1006431.

Beckmann, J.F., Ronau, J.A. and Hochstrasser, M. (2017) A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nature Microbiology, 2(5), 17007.

Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289–300.

Bialecki, M., Shilton, A., Fichtenberg, C., Segraves, W.A. and Thummel, C.S. (2002) Loss of the ecdysteroid-inducible E75A orphan nuclear receptor uncouples molting from metamorphosis in Drosophila. Developmental Cell, 3, 209–220.

Bolland, H.R., Gutierrez, J. and Flechtman, C.H.W. (1998) World Catalogue of the Spider Mite Family (Acari: Tetranychidae), with References to Taxonomy, Synonymy, Host Plants and Distribution. Brill Academic press, Leiden.

Dermauw, W., Osborne, E.J., Clark, R.M., Grbić, M., Tirry, L. and van Leeuwen, T. (2013) A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae. BMC Genomics, 14(1), 317.

Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstälder, J. et al. (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 6(1), 27.

Faast, R., Thonglairoam, V., Schulz, T.C., Beall, J., Wells, J.R., Taylor, H. et al. (2001) Histovariant H2A. Z is required for early mammalian development. Current Biology, 11(15), 1183–1187.

Flower, D.R. (1996) The lipocalin protein family: structure and function. Biochemical Journal, 318, 1–14.

Gasparich, G.E., Whitcomb, R.F., Dodge, D., French, F.E., Glass, J. and Williamson, D.L. (2004) The genus Spiroplasma and its non-helical descendants: phylogenetic classification, correlation with phenotype and roots of the Mycoplasma mycoides clade. International Journal of Systematic and Evolutionary Microbiology, 54, 893–918.

Gebiola, M., Giorgini, M., Kelly, S.E., Doremus, M.R., Ferree, P.M. and Hunter, M.S. (2017) Cytological analysis of cytoplasmic incompatibility induced by Cardinium suggests convergent evolution with its distant cousin Wolbachia. Proceedings of the Royal Society B: Biological Sciences, 284(1862), 20171433.

Ghedin, E., Hailemariam, T., DePasse, J.V., Zhang, X., Oksoy, Y., Unnasch, T.R. et al. (2009) Brugia malayi gene expression in response to the targeting of the Wolbachia endosymbiont by tetracycline treatment. PLoS Neglected Tropical Diseases, 3(10), e525.

Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I. et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644.

Hamilton, P.T., Peng, F., Boulanger, M.J. and Perlman, S.J. (2016) A ribosome-inactivating protein in a Drosophila defensive symbiont. Proceedings of the National Academy of Sciences USA, 113, 350–355.

Harumoto, T. and Lemaitre, B. (2018) Male-killing toxin in a bacterial symbiont of Drosophila. Nature, 557(7704), 252.

Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.Y. and Fukatsu, T. (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proceedings of the National Academy of Sciences USA, 107(2), 769–774.

Jaenike, J. and Brekke, T.D. (2011) Defensive endosymbionts: a cryptic trophic level in community ecology. Ecology Letters, 14, 150–155.

Jaenike, J., Unckless, R., Cockburn, S.N., Boelio, L.M. and Perlman, S.J. (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science, 329(5988), 212–215.

Jiggins, F.M., Hurst, G.D.D., Jiggins, C.D., vd Schulenburg, J.H.G. and Majerus, M.E.N. (2000) The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology, 120, 439–446.

Kambris, Z., Blagborough, A.M., Pinto, S.B., Blagrove, M.S., Godfray, H.C.J., Sinden, R.E. et al. (2010) Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae. PLoS Pathogens, 6(10), e1001143.

Kambris, Z., Cook, P.E., Phuc, H.K. and Sinkins, S.P. (2009) Immune activation by life-shortening Wolbachia and reduced...
...filariar competence in mosquitoes. Science, 326(5949), 134–136.
Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M. et al. (2007) KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36 (Suppl 1), D480–D484.
Karban, R. and Baldwin, I.T. (2007) Induced Responses to Herbivory. University of Chicago Press, Chicago, IL.
Kittayapong, P., Mongkalangoon, P., Baimai, V. and O’Neill, S.L. (2002) Host age effect and expression of cytoplasmic incompatibility in field populations of Wolbachia-superinfected Aedes albopictus. Heredity, 88(4), 270.
Lee, M., Cram, E.J., Shen, B. and Schwarzauer, J.E. (2001) Roles for \(\beta \)pat-3 integrins in development and function of Caenorhabditis elegans muscles and gonads. Journal of Biological Chemistry, 276(39), 36404–36410.
Lee, M., Shen, B., Schwarzauer, J.E., Ahn, J. and Kwon, J. (2005) Connections between integrins and Rac GTPase pathways control gonad formation and function in C. elegans. Biochimica et Biophysica Acta, 1723(1–3), 248–255.
Leonardo, T.E. and Muiru, G.T. (2003) Facultative symbionts are associated with host plant specialization in pea aphid populations. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270 (Suppl 2), S209–S212.
LePage, D.P., Metcalf, J.A., Bordenstein, S.R., On, J., Perlmuter, J.I., Shropshire, J.D. et al. (2017) Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature, 543 (7644), 243.
Li, B. and Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323.
Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{-\Delta\Delta CT} \) method. Methods, 25, 402–408.
Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.
Mao, X., Cai, T., Olyarchuk, J.G. and Wei, L. (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21(19), 3787–3793.
Ramsey, J.S., Rider, D.S., Walsh, T.K., De Vos, M., Gordon, K.H.J., Ponnala, L. et al. (2010) Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae. Insect Molecular Biology, 19, 155–164.
Rangasamy, D., Greaves, I. and Tremethick, D.J. (2004) RNA interference demonstrates a novel role for \(H2A.Z \) in chromosome segregation. Nature Structural & Molecular Biology, 11(7), 650.
Reynolds, K.T. and Hoffmann, A.A. (2002) Male age, host effects and the weak expression or non-expression of cytoplasmic incompatibility in Drosophila strains infected by maternally transmitted Wolbachia. Genetics Research, 80, 79–87.
Sanada-Morimura, S., Matsumura, M. and Noda, H. (2013) Male killing caused by a Spiroplasma symbiont in the small brown planthopper, Laodelphax striatellus. Journal of Heredity, 104, 821–829.
Scarborough, C.L., Ferrari, J. and Godfray, H.C.J. (2005) Aphid protected from pathogen by endosymbiont. Science, 310, 1781.
Serbus, L.R., Casper-Lindley, C., Landmann, F. and Sullivan, W. (2008) The genetics and cell biology of Wolbachia-host interactions. Annual Review of Genetics, 42, 683–707.
Shimizu, H., Nagamori, I., Yabuta, N. and Nojima, H. (2009) GAK, a regulator of clathrin-mediated membrane traffic, also controls centrosome integrity and chromosome congression. Journal of Cell Science, 122, 3145–3152.
Tinsley, M.C. and Majerus, M.E.N. (2006) A new male-killing parasitism: Spiroplasma bacteria infect the ladybird beetle Anisosticta novemdecimpunctata (Coleoptera: Coccinellidae). Parasitology, 132, 757–765.
Tram, U. and Sullivan, W. (2002) Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science, 296, 1124–1126.
Tram, U., Fredrick, K., Werren, J.H. and Sullivan, W. (2006) Paternal chromosome segregation during the first mitotic division determines Wolbachia-induced cytoplasmic incompatibility phenotype. Journal of Cell Science, 119, 3655–3663.
Tully, J.G., Whitcomb, R.F., Rose, D.L., Williamson, D.L. and Bové, J.M. (1983) Characterization and taxonomic status of tick Spiroplasma: a review. The Yale Journal of Biology and Medicine, 56(5–6), 599.
Wang, J.C. (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nature Reviews Molecular Cell Biology, 3(6), 430.
Wang, L., Xu, Z., Khawar, M.B., Liu, C. and Li, W. (2017) The histone codes for meiosis. Reproduction, 154(3), R65–R79.
Wermeling, B., Oertli, J.J. and Baumgärtner, J. (1991) Environmental factors affecting the life-tables of Tetramychus urticae (Acari: Tetranychidae) III. Host-plant nutrition. Experimental and Applied Acarology, 12(3–4), 259–274.
Werren, J.H. (1996) Biology of Wolbachia. Annual Review of Entomology, 42, 587–609.
Werren, J.H., Baldo, L. and Clark, M.E. (2008) Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6(10), 741.
Williamson, D.L., Sakaguchi, B., Hackett, K.J., Whitcomb, R.F., Tully, J.G., Carle, P. et al. (1999) Spiroplasma poulsonii sp. nov., a new species associated with male-lethality in Drosophila willistoni, a neotropical species of fruit fly. International Journal of Systematic and Evolutionary Microbiology, 49, 611–618.

© 2019 The Authors. Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences, 27, 921–937.
Wolbachia and Spiroplasma in the spider mite

Williamson, D.L., Whitcomb, R.F., Tully, J.G., Gasparich, G.E., Rose, D.L., Carle, P. et al. (1998) Revised group classification of the genus Spiroplasma. *International Journal of Systematic and Evolutionary Microbiology*, 48, 1–12.

Xie, J., Vilchez, I. and Mateos, M. (2010) *Spiroplasma* bacteria enhance survival of *Drosophila hydei* attacked by the parasitic wasp *Leptopilina heterotoma*. *PLoS ONE*, 5(8), e12149.

Xu, J., Raman, C., Zhu, F., Tan, A. and Palli, S.R. (2012) Identification of nuclear receptors involved in regulation of male reproduction in the red flour beetle, *Tribolium castaneum*. *Journal of Insect Physiology*, 58, 710–717.

Xu, X., Lee, D., Shih, H.Y., Seo, S., Ahn, J. and Lee, M. (2005) Linking integrin to IP3 signaling is important for ovulation in *Caenorhabditis elegans*. *FEBS Letters*, 579, 549–553.

Yamada, R., Floate, K.D., Riegler, M. and O’Neill, S.L. (2007) Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in *Drosophila melanogaster*. *Genetics*, 177, 801–808.

Young, M.D., Wakefield, M.J., Smyth, G.K. and Oshlack, A. (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. *Genome Biology*, 11(2), R14.

Zhang, Y.K., Chen, Y.T., Yang, K., Qiao, G.X. and Hong, X.Y. (2016) Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history. *Scientific Reports*, 6, 27900.

Zhang, Y.K., Yang, K., Zhu, Y.X. and Hong, X.Y. (2018) Symbiont–conferred reproduction and fitness benefits can favour their host occurrence. *Ecology and Evolution*, 8, 1626–1633.

Zhao, D.X., Zhang, X.F. and Hong, X.Y. (2013) Host-symbiont interactions in spider mite *Tetranychus truncates* doubly infected with Wolbachia and Cardinium. *Environmental Entomology*, 42, 445–452.

Zhao, D.X., Zhang, X.F., Chen, D.S., Zhang, Y.K. and Hong, X.Y. (2013) Wolbachia-host interactions: host mating patterns affect Wolbachia density dynamics. *PLoS ONE*, 8, e66373.

Zhu, Y.X., Song, Y.L., Zhang, Y.K., Hoffmann, A.A., Zhou, J.C., Sun, J.T. et al. (2018). Incidence of facultative bacterial endosymbionts in spider mites associated with local environments and host plants. *Applied and Environmental Microbiology*, 84(6), e02546-17.

Zug, R. and Hammerstein, P. (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. *PLoS ONE*, 7, e38544.

Zug, R. and Hammerstein, P. (2015) Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. *Biological Reviews*, 90, 89–111.

Manuscript received April 2, 2019
Final version received May 2, 2019
Accepted June 3, 2019

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Primers used for quantitative real-time polymerase chain reaction of differentially expressed genes.

Table S2. Genes that were differentially expressed in response to symbiont infection in *Tetranychus truncatus* males.