Original Research Article

Studies on Morphological Variability of the Fungal Pathogen,
Lasiodiplodia theobromae causing Dieback in Mango

M. Dheivam1, K. Manonmani1*, K. Kalpana1, C. Senthilraja2, M. Theradimani1 and J. Rajangam3

1Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
2Department of Plant Protection, 3Department of Fruit Science Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam, India

*Corresponding author

Abstract

Mango (Mangifera indica Linn.) is the “king of fruits” originated from South East Asia. Mango is affected by many biotic stresses; among them dieback is one of the serious diseases incited by the fungus Lasiodiplodia theobromae. Roving survey conducted in Tamil Nadu revealed the maximum disease incidence of 55.84% in Mulaiyur village (ILtDM10) of Dindigul district and minimum disease incidence of 8.95% in Ettipatti village (ILtDM17) of Krishnagiri district, Tamil Nadu. Major symptoms observed were defoliation of infected leaves, tip dieback, bark, twigs drying, shrivelling of twigs, vascular discoulouration, and finally death of plants. Thirty numbers of pathogen isolates were collected from the diseased plant parts collected during the survey and pure cultures of them were established. The morphological characteristics of the pure cultures were studied and the pathogen growth was initially white, later on grey to dark greyish black with black to dark black pigmentation. Conidia were initially hyaline, unicellular, sub ovoid to ellipsoid and mature conidia were dark brown to black, bi-celled, ellipsoid, thick walled with longitudinal striations. The size of the conidia varied between 18.4 - 26.8 × 10.6 - 14.2 µm.

Keywords
Mango dieback, Lasiodiplodia theobromae, Morphological variability

Introduction

Mango (Mangifera indica Linn.) “King of fruits” has its origin from South East Asia. It belongs to the family Anacardiaceae. It is a major fruit tree grown in more than 90 countries in tropical and subtropical regions of the world (Al-Jabri et al., 2017). India rank first among the mango producing countries accounting for 42% of the world production, followed by China 11% (FAO, 2015). In India, area and production is about 2.313 million ha and 22.353 million tonnes respectively (NHB, 2018 - 2019). The major mango growing states in India are Uttar Pradesh, Tamil Nadu, Andhra Pradesh, Bihar, Karnataka and Gujarat.
Mango is affected by various biotic and abiotic stresses that reduce the quantity and quality of the produce. The important diseases viz., anthracnose, dieback, powdery mildew, and mango malformation are the major constraints in mango production in India. Among these, the most destructive disease is dieback incited by the fungus *Lasiodiplodia theobromae*. It causes yield loss in field (pre-harvest disease—dieback) as well as in storage condition (post-harvest diseases—Stem end rot/fruit rot). This disease has been reported in several countries viz., India, China, Pakistan, Brazil, USA, UAE, Korea, Oman (Sharma *et al.*, 1994; Ploetz *et al.*, 1996; Al-Adawi *et al.*, 2003; Khanzada *et al.*, 2004; de Oliveira Costa *et al.*, 2010; Hong *et al.*, 2012; Saeed *et al.*, 2017).

This pathogen is a hemibiotrophic plant pathogen (Tudzynski and Sharon, 2003) and causes severe damage to its hosts. It causes variety of symptoms and named based on the affected plant parts and symptoms such as dieback, gummosis, stem end rot, blights, stem necrosis, root rot, leaf spot etc., (Punithalingam, 1980; Úrbez-Torres *et al.*, 2008). The symptoms are primarily observed at twigs, subsequently spreading to its branches followed by infection in all branches, ultimately resulting in death of the plant. The present research focuses on survey, pathogen isolation and studying the morphological variability in the pathogen causing mango die-back.

Materials and Methods

Survey and collection of diseased samples

Roving survey was taken up in various mango growing hotspots in Tamil Nadu during summer, 2019. The percent dieback incidence was assessed in 30 villages representing 10 districts (Table 1). Data like location (latitude, longitude), variety, age of trees and disease incidence were collected. Disease incidence (%) was calculated by the following formula (Teng and James, 2002).

\[I(\%) = \left(\frac{ni}{N} \right) \times 100 \]

where \(I = \) Disease incidence (%), \(ni = \) total number of diseased trees, \(N = \) total number of trees observed.

Variation in the symptoms in mango plants caused by the disease was also recorded.

Isolation and identification of the pathogen

During the survey, infected plant samples (twigs) were collected and used for isolation of pathogen. The collected twigs were approximately cut into 0.2 – 0.5 cm in size (Saeed *et al.*, 2017) and surface sterilised using 1% sodium hypochlorite for 2 min followed by gentle rinse in sterilized distilled water three times and tissues dried using sterilized tissue paper (Al-Jabri *et al.*, 2017). The surface sterilized tissues were placed on Petri dish containing sterilized Potato Dextrose Agar (PDA) medium amended with the bacterial antibiotic, streptomycin sulphate and incubated at room temperature for 3 days. The pure culture of the pathogen was obtained by single hyphal tip method (Dhingra and Sinclair, 1985) and stored in PDA slants at 4°C for further studies.

Morphological variability

Morphological variability of pathogenic isolates was studied by growing the purified isolates on PDA medium. Cultural characters viz., colour (observe and reverse), topography, margin, zonation and days taken to cover the Petri dish were recorded (Sathya *et al.*, 2017). Spore characters were also studied based on the production of pycnidium and spores, colour, shape and size (length and breadth) of the spores using compound microscope.
(Phillips et al., 2013). The intensity of sporulation was measured by using the following grades: - no, + poor, ++ medium, and +++ good (Sathya et al., 2017).

Results and Discussion

Survey and collection of diseased samples

Roving survey on disease incidence in 30 different locations revealed the extent of dieback disease infection in major mango areas of Tamil Nadu (Table 1). Among thirty villages, maximum disease incidence was recorded in Mulaiyur village (ILtDM10) in Dindigul district (55.84%) followed by Andiyur village (ILtDM19) in Krishnagiri District with 53.84% disease incidence. The minimum disease incidence was recorded in Ettipatti village (ILtDM17) of Krishnagiri District (8.95%) (Plate 1; Fig. 1). Similarly, dieback disease incidence was reported to be 30 – 40% in Uttar Pradesh (Prakash and Srivastava, 1987), 0 – 40% in Andhra Pradesh (Madduleti, 1989), 89.4% in Al Batinah region of Oman (Al Adawi et al., 2006), 3.71 – 29.71% in Peru (Rodríguez-Gálvez et al., 2017), 6 – 42% in Oman (Al-Jabri et al., 2017).

Table.1 Survey for incidence of mango dieback disease in Tamil Nadu

S. No.	Latitude	Longitude	Village	District	Isolate Code	Variety	Age of trees (Years)	Disease Incidence (%)
1	29.7502	78.206805	AC&RI (MDU)	Madurai	ILtDM1	Bangalore	10	12.90
2	29.94748	78.974122	Melakkel	ILtDM2	Neelum	12	29.70	
3	30.103769	78.002029	Kudladampatti	ILtDM3	Neelum	15	27.86	
4	30.103239	78.106822	Palamedu	ILtDM4	Neelum	15	43.75	
5	30.124304	77.592151	HC&RI (PKM)	ILtDM5	Neelum	16	18.47	
6	30.049360	77.86057	Melangalam	ILtDM6	Neelum	29	9.61	
7	30.179918	77.538597	Kumbakarai	ILtDM7	Neelum	18	41.80	
8	30.138443	77.519532	Vadagara	ILtDM8	Vadumangai	21	13.15	
9	30.256757	78.126674	Gopalpatti	ILtDM9	Neelum	4	41.93	
10	30.220502	78.161245	Mulaiyur	ILtDM10	Neelum	13	55.84	
11	30.232345	78.219566	Velanpatti	ILtDM11	Neelum	14	28.35	
12	30.186534	77.799800	Nuthalapuram	ILtDM12	Neelum	6	14.10	
13	30.167489	78.557565	Chandrapuram	ILtDM13	Neelum	16	26.47	
14	30.070105	78.476869	Mobripatti	ILtDM14	Neelum	10	46.51	
15	30.130029	78.414420	Mottaiyappathi	ILtDM15	Neelum	14	46.03	
16	30.208179	78.060184	Madhehalli	ILtDM16	Neelum	9	32.69	
17	30.318716	78.477068	Ettipatti	ILtDM17	Neelum	24	8.95	
18	30.354418	78.532969	Vadunganur	ILtDM18	Neelum	16	16.75	
19	30.351093	78.582652	Andiyur	ILtDM19	Neelum	17	53.84	
20	30.201931	78.601207	Nadupatti	ILtDM20	Neelum	23	21.80	
21	30.757643	78.041693	Palbakkai	ILtDM21	Neelum	24	30.50	
22	30.797774	78.025106	Semmadiapatti	ILtDM22	Neelum	27	14.50	
23	30.785663	77.871943	Mangamethai	ILtDM23	Neelum	21	25.60	
24	30.784840	77.872081	Veerakkal	ILtDM24	Neelum	19	26.50	
25	30.781436	79.431387	Sennalery	Vellore	ILtDM25	Neelum	25	22.20
26	30.388515	78.591824	Chinnaarampatti	ILtDM26	Neelum	20	33.52	
27	30.408924	78.590542	Odayamuthur	ILtDM27	Neelum	18	36.15	
28	30.359949	78.387436	Lekkanayakanpatti	ILtDM28	Neelum	25	29.00	
29	30.290105	78.394796	Nagamangalam	ILtDM29	Neelum	23	34.00	
30	30.162863	77.405140	Puliyangudi	ILtDM30	Neelum	12	31.03	
Table 2: Mycelial characters of isolates of *L. theobromae*

S. No.	Isolate Code	Colour	Reverse	Topography	Margin	Zonation	Days to cover Petri Dish (9 cm) *
1	ILtDM1	Greyish white	Black	Aerial	Irregular	No	3
2	ILtDM2	Grey	Black	Aerial	Irregular	No	3
3	ILtDM3	White	Dark green to black	Fluffy	Smooth	No	5
4	ILtDM4	White	Dark green to black	Aerial	Irregular	No	2
5	ILtDM5	Blackish grey	Dark black	Aerial	Irregular	No	3
6	ILtDM6	Greyish black	Dark black	Aerial	Irregular	No	3
7	ILtDM7	Greyish white	Black	Aerial	Irregular	No	3
8	ILtDM8	Grey	Black	Aerial	Irregular	No	3
9	ILtDM9	Greyish black	Dark black	Aerial	Irregular	No	2
10	ILtDM10	Grey	Black	Aerial	Irregular	No	3
11	ILtDM11	White	Dark green to black	Aerial	Irregular	No	2
12	ILtDM12	Greyish white	Black	Aerial	Irregular	No	2
13	ILtDM13	Greyish white	Black	Aerial	Irregular	No	3
14	ILtDM14	White	Dark green to black	Aerial	Irregular	No	4
15	ILtDM15	Dark grey	Black	Aerial	Irregular	No	3
16	ILtDM16	Grey	Black	Aerial	Irregular	No	2
17	ILtDM17	Blackish grey	Dark black	Flat	Smooth	No	3
18	ILtDM18	Dark grey	Black	Aerial	Irregular	No	3
19	ILtDM19	Greyish white	Black	Aerial	Irregular	No	3
20	ILtDM20	Dark grey	Black	Fluffy	Smooth	No	3
21	ILtDM21	White	Dark green to black	Aerial	Irregular	No	3
22	ILtDM22	Dark grey	Black	Aerial	Irregular	No	3
23	ILtDM23	Greyish black	Dark black	Aerial	Irregular	No	2
24	ILtDM24	Greyish white	Black	Aerial	Irregular	No	3
25	ILtDM25	White	Dark green to black	Aerial	Irregular	No	3
26	ILtDM26	Greyish black	Dark black	Aerial	Irregular	No	2
27	ILtDM27	Greyish white	Black	Aerial	Irregular	No	3
28	ILtDM28	Greyish white	Black	Aerial	Irregular	No	2
29	ILtDM29	Greyish black	Black	Aerial	Irregular	Concentric zonation	3
30	ILtDM30	Blackish grey	Dark black	Aerial	Irregular	No	2

Mean values of three replications
Table 3 Spore characters of isolates of *L. theobromae*

S. No.	Isolate Code	Pycnidia production*	Shape of the conidia	Conidia production*	Size of conidia (µm)**	
					Length	Breadth
1	ILtDM 1	++	Ellipsoid	++	22.0	13.6
2	ILtDM 2	++	Ellipsoid	+	23.8	13.6
3	ILtDM 3	++	Ellipsoid	+	23.2	13.6
4	ILtDM 4	+	Ellipsoid	+	20.0	11.0
5	ILtDM 5	++	Ellipsoid	+++	26.8	13.0
6	ILtDM 6	+++	Ellipsoid	+++	18.4	10.6
7	ILtDM 7	++	Ellipsoid	+	23.2	13.2
8	ILtDM 8	+	Ellipsoid	+	22.6	11.4
9	ILtDM 9	+++	Ellipsoid	+++	23.8	12.0
10	ILtDM 10	++	Ellipsoid	+++	24.0	12.6
11	ILtDM 11	+	Ellipsoid	+	24.0	12.0
12	ILtDM 12	++	Ellipsoid	++	22.6	12.0
13	ILtDM 13	+++	Ellipsoid	+++	23.8	13.6
14	ILtDM 14	+	Ellipsoid	+	20.2	12.8
15	ILtDM 15	+	Ellipsoid	+	21.6	13.4
16	ILtDM 16	+++	Ellipsoid	+++	24.0	14.2
17	ILtDM 17	+	Ellipsoid	+	25.0	11.8
18	ILtDM 18	+	Ellipsoid	+	24.4	13.4
19	ILtDM 19	++	Ellipsoid	++	23.6	14.0
20	ILtDM 20	+	Ellipsoid	+	20.4	11.0
21	ILtDM 21	++	Ellipsoid	+	22.6	12.8
22	ILtDM 22	+	Ellipsoid	+	21.4	13.0
23	ILtDM 23	+	Ellipsoid	+	24.8	12.8
24	ILtDM 24	+	Ellipsoid	+	23.6	13.6
25	ILtDM 25	+	Ellipsoid	+	20.2	11.6
26	ILtDM 26	+	Ellipsoid	+	23.8	13.8
27	ILtDM 27	++	Ellipsoid	+	21.6	11.2
28	ILtDM 28	++	Ellipsoid	+	23.2	13.6
29	ILtDM 29	++	Ellipsoid	+	20.2	12.6
30	ILtDM 30	+++	Ellipsoid	+++	22.6	13.2

* Mean values of three replications; ** Mean values of five replications
- no, + poor, ++ medium, +++ good

Fig. 1 Mango dieback disease incidence caused by different isolates of *Lasiodiplodia theobromae*
Plate.1 Symptomatology of Mango dieback disease

Plate.2 Variability among mycelial and conidial character

Variability in morphological characters

Variability in mycelial characters

Mycelial growth of the pathogen, *L. theobromae* was observed to be hyaline to white coloured initially, which radiated from the small piece of the infected tissue. Upon the maturation of mycelium, it exhibited the colour variation ranging from grey to dark greyish black colour. Pycnidia were observed to be scattered along the periphery of the Petri dish (Table 2).

The colour of matured culture was grey to dark greyish black. Among the isolates greyish white mycelium was produced by the isolates *viz.*, ILtDM1, ILtDM7, ILtDM12, ILtDM19, ILtDM24, ILtDM27, ILtDM28. The isolates *viz.*, ILtDM2, ILtDM8, ILtDM10, ILtDM16 produced grey colour mycelium and ILtDM3, ILtDM4, ILtDM11, ILtDM14, ILtDM21, ILtDM25 produced white coloured mycelium. Blackish grey mycelium was produced by the isolates *viz.*, ILtDM5, ILtDM17, ILtDM30. The isolates ILtDM6, ILtDM9, ILtDM23, ILtDM26, ILtDM29 produced greyish black mycelium and ILtDM15, ILtDM18, ILtDM20, ILtDM22 produced dark grey coloured mycelium (Plate. 2).

Apart from these, isolates of ILtDM5, ILtDM6, ILtDM9, ILtDM17, ILtDM23,
ILtDM26, ILtDM30 produced dark black pigmentation, ILtDM3, ILtDM4, ILtDM11, ILtDM14, ILtDM21 and ILtDM25 produced dark green to black pigmentation and all others produced black coloured pigmentation.

The pathogenic isolates exhibited three different topographic features viz., aerial, flat and fluffy growth. The isolate ILtDM17 only had flat growth, ILtDM3, ILtDM20 had fluffy growth and remaining all had aerial growth. Margin of different isolates were characterized as smooth and irregular. All isolates produced irregular margin except ILtDM3, ILtDM17, ILtDM20 which produced smooth margin. But the isolate, ILtDM29 alone produced concentric zonation, which was not observed in other isolates.

The isolates ILtDM4, ILtDM9, ILtDM11, ILtDM12, ILtDM16, ILtDM23, ILtDM26, ILtDM28 and ILtDM30 were grown fast and took two days to cover the 9 cm diameter Petri dish followed by ILtDM1, ILtDM2, ILtDM5, ILtDM6, ILtDM7, ILtDM8, ILtDM10, ILtDM13, ILtDM15, ILtDM17, ILtDM18, ILtDM19, ILtDM20, ILtDM21, ILtDM22, ILtDM24, ILtDM25, ILtDM27, and ILtDM29. These isolates required three days to cover the Petri dish and ILtDM14 required four days. Among all these, the isolate ILtDM3 was very slow and took five days to cover the Petri dish. In this study, culture characters of all the isolates were agreed with the findings of the authors (Goos et al., 1961; Punithalingam, 1976; Ko et al., 2004; Shah et al., 2010; Sathya et al., 2017; Ekanayake et al., 2019).

Variability in spore characters

Morphological variations in pycnidium and spores of *L. theobromae* were studied (Table 3). Pycnidia were black and scattered along the periphery of the Petri Dish. Among 30 the isolates, isolates ILtDM6, ILtDM9, ILtDM13, ILtDM16 and ILtDM30 had more production of pycnidia and sporulation than other isolates. Conidia were initially hyaline, unicellular, sub ovoid to ellipsoid in shape and mature conidia were dark brown to black colour, bi-celled, thick walled, ellipsoidal shape with longitudinal striations (Plate.2). The size of the spore (length and breadth) was in the range between 18.4 - 26.8 x 10.6 - 14.2 µm. Among the isolates, ILtDM5 had the highest length of the spore and the smallest spore length was recorded in with ILtDM6. Such variation in conidial characters was reported by different workers, which was attributed to the inherent genetic variability (Khanzada et al., 2004; Alves et al., 2008; Shah et al., 2010; Phillips et al., 2013).

References

Al-Adawi, A.O., M. Deadman, A. Al-Rawahi, A. Khan, and Y. Al-Maqbali. 2003. *Diplodia theobromae* associated with sudden decline of mango in the Sultanate of Oman. *Plant Pathology* 52 (3).

Al-Jabri, M., M. Al-Shaili, M. Al-Hashmi, A. Nasehi, I. Al-Mahmooli, and A. Al-Sadi. 2017. Characterization and evaluation of fungicide resistance among *Lasiodiplodia theobromae* isolates associated with mango dieback in Oman. *Journal of plant pathology* 99 (3):753-759.

Al Adawi, A., M. Deadman, A. Al Rawahi, Y. Al Maqbali, A. Al Jahwari, B. Al Saadi, I. Al Amri, and M. Wingfield. 2006. Aetiology and causal agents of mango sudden decline disease in the Sultanate of Oman. *European Journal of Plant Pathology* 116 (4):247-254.

Alves, A., P.W. Crous, A. Correia, and A. Phillips. 2008. Morphological and molecular data reveal cryptic speciation in *Lasiodiplodia theobromae*. *Fungal diversity* 28:1-13.
de Oliveira Costa, V.S., S.J. Michereff, R.B. Martins, C.A.T. Gava, E.S.G. Mizubuti, and M.P.S. Câmara. 2010. Species of Botryosphaeriaceae associated on mango in Brazil. *European Journal of Plant Pathology* 127 (4):509-519.

Dhingra, O.D., and J.B. Sinclair. 1985. *Basic plant pathology methods*: CRC Press, Inc.

Ekanayake, G., K. Abeywickrama, A. Daranagama, and S. Kannangara. 2019. Morphological characterization and molecular identification of stem-end rot associated fungal species isolated from ‘Karutha Colomban’ mango fruits in Sri Lanka. *The Journal of Agricultural Sciences–Sri Lanka* 14 (2):120-128.

FAO. 2015.

Goos, R.D., E.A. Cox, and G. Stotzky. 1961. *Botryodiplodia theobromae* and its association with Musa species. *Mycologia* 53 (3):262-277.

Hong, S.K., S.Y. Lee, H.W. Choi, Y.K. Lee, J.-H. Joa, and H. Shim. 2012. Occurrence of stem-end rot on mango fruits caused by *Lasiodiplodia theobromae* in Korea. *Plant Pathol. J* 28 (455):10.5423.

Khanzada, M.A., A.M. Lodhi, and S. Shahzad. 2004. Mango dieback and gummosis in Sindh, Pakistan caused by *Lasiodiplodia theobromae*. *Plant Health Progress* 5 (1):13.

Ko, W., I. Wang, and P. Ann. 2004. *Lasiodiplodia theobromae* as a causal agent of kumquat dieback in Taiwan. *Plant Disease* 88 (12):1383-1383.

Madduleti, M. 1989. Studies on die-back and death of mango trees (*Mangifera indica* L.). Acharya Ng Ranga Agricultural University, Rajendranagar, Hyderabad.

NHB. 2018 - 2019.

Phillips, A., A. Alves, J. Abdollahzadeh, B. Slippers, M.J. Wingfield, J. Groenewald, and P.W. Crous. 2013. The Botryosphaeriaceae: genera and species known from culture. *Studies in mycology* 76:51-167.

Ploetz, R.C., D. Benscher, A. Vazquez, A. Colls, J. Nagel, and B. Schaffer. 1996. A reexamination of mango decline in Florida. *Plant disease (USA).*

Prakash, O., and K. Srivastava. 1987. *Mango diseases and their management. A world review*: Today & Tomorrow’s Printers and Publishers.

Punithalingam, E. 1976. *Botryodiplodia theobromae* [Descriptions of Fungi and Bacteria]. *IMI Descriptions of Fungi and Bacteria* (52).

Punithalingam, E. 1980. *Plant diseases attributed to Botryodiplodia theobromae Pat*: J. Cramer.

Rodriguez-Gálvez, E., P. Guerrero, C. Barradas, P.W. Crous, and A. Alves. 2017. Phylogeny and pathogenicity of *Lasiodiplodia* species associated with dieback of mango in Peru. *Fungal biology* 121 (4):452-465.

Saeed, E.E., A. Sham, A. AbuZarqa, K. A Al Shurafa, T. S Al Naqbi, R. Iratni, K. El-Tarabily, and S. F AbuQamar. 2017. Detection and management of mango dieback disease in the United Arab Emirates. *International journal of molecular sciences* 18 (10):2086.

Sathya, K., S. Parthasarathy, G. Thiribhuwanamala, and K. Prabakar. 2017. Morphological and molecular variability of *Lasiodiplodia theobromae* causing stem end rot of mango in Tamil Nadu, India. *Int. J. Pure Appl. Biosci* 5:1024-1031.

Shah, M., K. Verma, K. Singh, and R. Kaur. 2010. Morphological, pathological and molecular variability in *Botryodiplodia theobromae* (Botryosphaeriaceae) isolates associated with die-back and bark canker of pear trees in Punjab, India. *Genetics and Molecular Research* 9 (2):1217-1228.

Sharma, I., R. Harender, and J. Kaul. 1994.
Studies on post-harvest diseases of mango and chemical control of stem end rot and anthracnose. *Indian Phytopathology* 47 (2):197-200.

Teng, P., and W. James. 2002. Disease and yield loss assessment. *Plant Pathologist’s Pocketbook 3rd Edition*: 35.

Tudzynski, P., and A. Sharon. 2003. Fungal pathogenicity genes. *Applied mycology and biotechnology* 3:187-212.

Úrbez-Torres, J., G. Leavitt, J. Guerrero, J. Guevara, and W. Gubler. 2008. Identification and pathogenicity of *Lasiodiplodia theobromae* and *Diplodia seriata*, the causal agents of bot canker disease of grapevines in Mexico. *Plant Disease* 92 (4):519-529.

How to cite this article:

Dheivam, M., K. Manonmani, K. Kalpana, C. Senthilraja, M. Theradimani and Rajangam, J. 2020. Studies on Morphological Variability of the Fungal Pathogen, *Lasiodiplodia theobromae* causing Dieback in Mango. *Int.J.Curr.Microbiol.App.Sci*. 9(12): 2446-2454. doi: https://doi.org/10.20546/ijcmas.2020.912.289