COVID-19 Induced Secondary Hemophagocytic Lymphohsitocytosis: A Case Series

Omelkhir I. Elbanoni1*, Haloom A. Elhashmi2, Mariam M. Madani3, Huda A. Elabbud4, Shirin I. Alougly5 and Nourz A. Elghariani6

1Department of Pediatrics, Faculty of Medicine, University of Benghazi, Libya and Pediatric Gastroenterology Unit at Benghazi Medical Center, Libya.
2Department of Pediatrics, Faculty of Medicine, University of Benghazi, Libya and Pediatric Hematology Unit at Benghazi Medical Center, Libya.
3Department of Pediatrics, Faculty of Medicine, University of Benghazi, Libya and Pediatric cardiology Unit at Benghazi Cardiac Center, Libya.
4Department of Pediatrics, Faculty of Medicine, University of Benghazi, Libya and Pediatric Endocrinology Unit at Benghazi Medical Center, Libya.
5Department of Pediatrics, Faculty of Medicine, University of Benghazi, Libya and Pediatric Intensive care Unit at Benghazi Pediatric H, Libya.
6Department of Pediatrics, Faculty of Medicine, University of Benghazi, Libya and Pediatric Hematology Unit at Benghazi Pediatrics Hospital, Libya.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/AJRIMPS/2022/v11i130178
Editor(s):
(1) Dr. S. Prabhu, Sri Venkateswara College of Engineering, India.
(2) Dr. Somdet Srichairatanakool, Chiang Mai University, Thailand.

Reviewers:
(1) Yildiz, Cliniques Universitaires Saint Luc, Belgium.
(2) Veeraraghavan Meyyur Aravamudan, Woodlands Health Campus, Singapore.
Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here: https://www.sdiarticle5.com/review-history/82183

Received 07 December 2021
Accepted 09 January 2022
Published 10 January 2022

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a lethal and rapidly progressive hyper-inflammatory state that lead to development of fulminant multi-organ failure. HLH is divided into primary or familial HLH (FHL) and secondary HLH (sHLH). It can be triggered by a variety of agent that affect the immune system, infection is a common triggering agent. Recently, Coronavirus disease

*Corresponding author: E-mail: omelkhiranoni@gmail.com;
(COVID-19) has spread all over the world and was declared a pandemic. COVID-19 infection in children can induce serious hyper-inflammatory syndrome termed multisystem inflammatory syndrome (MIS-C). Clinically MIS-C patients present with features that resemble Kawasaki’s disease or toxic shock syndrome and the clinical and laboratory manifestations may also similar to that of secondary hemophagocytic lymphohistiocytosis, or macrophage activation syndrome (MAS).

The reported HLH syndrome in children with COVID-19 increased during 2020-2021. In this case series we present two pediatric patient diagnosed as sHLH post- COVID-19 infection with a brief literature review of similar pediatric patients.

Keywords: Hemophagocytic lymphohistiocytosis (HLH); Macrophage activation syndrome (MAS); COVID-19; children.

1. INTRODUCTION

Hemophagocytic lymphohistiocytosis (HLH) is a lethal and rapidly progressive hyper-inflammatory state due to highly stimulated, unregulated and mostly ineffective immune reaction mostly excessive macrophage activation, and cytokine release that leads to development of fulminant multi-organ failure HLH is divided into primary or familial HLH (FHL) and secondary HLH (sHLH).

It can be triggered by a variety of stimuli that affect the immune system, infection is a common triggering factor [1,2].

Recently, Coronavirus disease (COVID-19) has spread all over the world and was declared a pandemic by the World Health Organization (WHO) [3].

Generally, most children aged <18 years with COVID-19 present with mild symptom or asymptomatic, but some children have had severe illness requiring hospitalization and some children develop life-threatening complication [4,5].

In COVID-19 infection exaggerated and dysregulated monocyte/macrophage and dendritic cells response can induce production of IL6 which lead to massive activation of the adaptive immune system, leading to more inflammation with increase in the production of vascular endothelial growth factor (VEGF) that cause leakage from blood vessels, then result in fall in blood pressure and respiratory and organs failure [6].

COVID-19 induce serious hyper-inflammatory syndrome termed multisystem inflammatory syndrome in children (MIS-C). Clinically MIS-C patients present with features of Kawasaki’s disease or toxic shock syndrome. The clinical and laboratory manifestations may also similar to that of secondary hemophagocytic lymphohistiocytosis, or macrophage activation syndrome (MAS) [7].

Affected patients with secondary hemophagocytic lymphohistiocytosis (sHLH) present clinically with acute onset of persistent high grade fever, lymphadenopathy, organomegaly associate with pancytopenia, hyperferritinemia, coagulopathy, hypertriglyceridemia and multi-organ dysfunction [8].

The diagnosis of HLH is based on the HScore. The HScore published by Fardet et al calculate a sum score of nine criteria (fever, organomegally, pancytopenia, ferritin, triglyceride, aspartate aminotransferase; AST, hemophagocytosis features in bone marrow and underlying immunosuppression. Each variable was assigned a maximum number varying between 18 and 64 points. The best cutoff value recommended by the authors to diagnose HLH was 169 [9,10].

HLH is a severe, life-threatening disease with a fatal outcome, but a timely diagnosis and prompt treatment is critical since early and efficient management may improve survival.

Treatment consists mainly of glucocorticoids, intravenous immunoglobulin (IVIG), and chemotherapy [10,11]. Biological treatments, anti-TNF drugs, anti-interleukin-1 (Anakinra), anti-interleukin-6 (Tocilizumab), and B-cell depleting drugs have shown variable degrees of clinical efficiency in HLH subtypes in adults population [12,13,14].

2. CASE PRESENTATION: 1

A ten-year-old male child with juvenile rheumatoid arthritis on methotrexate admitted to pediatric ICU with history of persistent high grade fever for ten days, diarrhea and vomiting for
3 days. There was a household contacts of confirmed cases of COVID-19. On admission he was sick looking, meningeal signs were negative, ears and throat examination were normal and systemic examination was unremarkable, Sepsis was suspected for that investigation withdrawn including COVID-19 PCR and serology. Intravenous fluid and antibiotics started. On 2nd day of admission his consciousness was altered and developed recurrent attacks of convulsion, his blood pressure was 88/40 mmHg, body temperature was 39.5°C, oxygen saturation was 94% intravenous inotropes and antiepileptic medication started. His investigation showed Nasopharyngeal swab for SARS-CoV-2 polymerase chain reaction (PCR) was negative, but Anti-SARS-CoV-2 S IgG was weakly positive and IgM negative.

Complete blood picture	D_1	D_2	D_4	D_6
TLC	9.5	3.4	1.8	0.5
HB	8.4	8	7.9	7
Platelet	174	128	88	32

Triglycerides level: 563mg/dl (N 40-200)
LDH: 929 U/L result of second sample was 1000U/L
S. ferritin level > 1500 ng/ml (N 13 – 150)
S. Fibrinogen level 1.1g/l (N 1.7 -4.2)
D-dimer: >20.0mg/l
CRP: 120
Serological testing for EBV and CMV were negative
Blood culture showed no growth
Bone marrow aspiration couldn’t be performed

Patient HSscore was 184 points which is more than the cut-off value for diagnosing HLH (164 Points). He received Methylprednisolone in dose of 15mg/kg/day for 3 days along blood transfusion antibiotics but, he rapidly deteriorated died on day seven of the admission.

3. CASE PRESENTATION: 2
An-eight year old female child known to have Crohn's disease since 2 years back, she was on Azathioprine and Mesalamine tablets and she was on remission. She has presented with palpitation and dyspnea 6 weeks before admission. Echocardiography showed dilated cardiomyopathy, poor cardiac function with tricuspid and mitral regurgitation and also she had records of high blood pressure treated with captopril (Angiotensin – converting enzyme inhibitor), L-carnitine and furosemide. She was admitted to the hospital 3 weeks back with persistent high grade fever and lethargy for the last 4 weeks. On admission She was unwell, lethargic, febrile, meningeal signs were negative, throat and ears examination were normal, no skin rash, no conjunctivitis, she has high temperature with records of hypotension, chest was clear and abdominal examination revealed mild hepatomegaly and significant splenomegaly.

Nasopharyngeal swab for SARS-CoV-2 polymerase chain reaction (PCR) was negative, but Anti-SARS-CoV-2 S IgG was positive and IgM was weakly positive.

Table 1. Concentrations of blood parameters

RFT and LFT	D_1	D_6
Urea	156 mg/dl	205 mg/dl
Creatinine	4.6	
AST	1727 U/L	5273 U/L
ALT	700 U/L	980 U/L
S. Bilirubin	2.8 g/dl	4.9 g/dl

Table 2. Weekly variation in blood count

Complete blood picture	Week_1	Week_2	Week_3
TLC	3.7	1.5	2.4
HB	8.3	6.3	7
Platelet	150	58	17

Peripheral blood film shows neutropenia with relative lymphopenia, normal reticulocytes count and there was no blast cells.

ESR 100 mm/hr
CRP 52.9 mg/l
Blood and urine culture showed no growth of organisms

Bone marrow aspiration showed increase macrophages showing hemophagocytosis (suggesting macrophage activation syndrome MAS) and there was no blast cells.

S. Ferritine >2000 ng/ml (N 13 – 150)
LDH 1172U/L (313 – 618)
D.dimer 7.2 μgFEU/ml (0 – 0.5)
Uric acid 9.1mg/dl (2.5 – 6.2)
Triglyceride 399mg/dl (< 150mg/dl)
Fibrinogen 1.82g/l (N 1.7 - 4.2) INR 1.2 (N 0.89 – 1.13)
EBV VCA IgM was negative
CMV PCR was negative
C.T scan chest showed bilateral basal curvilinear and linear fibrotic bands and significant cardiomegaly and C T abdomen showed enlarged bulky spleen, hepatomegaly and mild ascites.

Based on previous clinical symptoms, signs and laboratory finding she was diagnosed as Post – COVD 19 secondary Hemophagocytic lymphohistiocytosis according HScore, her HScore was 292 points.

The main treatment was immunosuppressive therapy (glucocorticoid as methylprednisolone 30 mg/kg/dose for 3 days) then corticosteroid 1mg/kg/day which was tapered over four weeks. Intravenous immunoglobulin (2g/kg/day for two days) and due to unavailability of anti-TNF drugs, anti-interleukin-1 (Anakinra), and anti-interleukin-6 in our center chemotherapy (cyclosporine) was started for her. She improved clinically with improvement in laboratory investigation specially pancytopenia and discharged from hospital after one month duration.

4. DISCUSSION AND CONCLUSION

COVID-19 infection in children has a variable clinical presentation ranging from asymptomatic to mild or severe life threatening disease. COVID-19 induce serious hyper-inflammatory syndrome termed multisystem inflammatory syndrome in children (MIS-C). A subset of children with severe COVID-19 develop intense inflammation and multi-organ dysfunction consistent with a lethal and rare clinical condition called sHLH [15].

We reported two pediatric patients with chronic diseases and both of them on immunosuppressive therapy Akturk et al. [16]. Reported a 10-year-old boy with juvenile idiopathic arthritis (JIA) was diagnosed as MAS/sHLH post-SARS-CoV-2 infection without involvement of gastrointestinal, cutaneous and cardiovascular system. He had received Favipiravir, intravenous immunoglobulin and dexamethasone .The patient improved and all abnormal laboratory parameters returned to normal levels. In Contrary to our patient Mostafavi et al. [17] presented a young aged child, an 18-month-old a previously healthy child who presented with a high fever, conjunctivitis, drowsiness, respiratory distress, and hypoxemia. He was deteriorated rapidly and met five out of eight criteria of sHLH and successfully treated with high-dose dexamethasone, IVIG, interferon β-1a in addition to antiviral agents. Similarly Kalita et al. [18] reported a two years old child who presented with fever and convulsion and was diagnosed as a Post-COVID-19 Secondary Hemophagocytic Lymphohistiocytosis based on The H-score-2014. This child admitted to PICU and received steroid, antiepileptic medication and antibiotics.

Sever COVID-19 infection inducing hyper-inflammatory illness share a number of clinical signs and laboratory finding with sHLH. Therefore, all patient with severe COVID-19 infection should be suspected and screened for sHLH as survival is dependent on prompt diagnosis, and appropriate and early initiation of treatment.

In these HLH published cases HLH–2004 diagnostic criteria and HScore have been used to diagnose patients with HLH. We relied on HScore as NK cell activity, sCD25 (soluble IL-2 receptor) and genetic testing are not widely available limiting the use of HLH-2004 diagnostic criteria.

A multidisciplinary approach by experienced clinicians including hemato-oncologists, infectious disease specialists, rheumatologists, and intensivists is required in the management of the patient.

CONSENT

Informed consent was obtained from the patient’s parents for publication of this case report and any accompanying images and in order to protect the patient’s confidentiality, all personal identifiers were removed from the case report’s images.

ETHICAL APPROVAL

As per international standard or university standard written ethical approval has been collected and preserved by the author(s).
ACKNOWLEDGEMENT

The authors would like to thank the staff of medical record compartment in Benghazi children's hospital for their assistance and also they would like to thank the parents of the second case.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Clinical management of relapsed/refractory hemophagocytic lymphohistiocytosis in adult patients: A review of current strategies and emerging therapies. Ther Clin Risk Manag. 2021;17:293-304
2. Aravamudan VM, Er C, Hussain I, Cheong NWW, Chern Hao C, Kuthah N, En-Xian Tan E, Fan BE. A case of parvovirus-related Haemophagocytic lymphohistiocytosis in a patient with HbH disease. Case Rep Med. 2018 Dec 24;2018:8057045.
3. World Health Organization. Multisystem inflammatory syndrome in children and adolescents with COVID-19; 2020.
4. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020;145(6).
5. Kim L, Whitaker M, O'Halloran A, et al. COVID-NET Surveillance Team. Hospitalization rates and characteristics of children aged <18 years hospitalized with laboratory-confirmed COVID-19—COVID-NET, 14 states, March 1–July 25, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(32):1081-1088.
6. Fang Y, Aravamudan VM, Sridharan GK, Mehta KK, Sekhar R, Senguttuvan NB, Venkatachalam I, Abid MB. Kawasaki like illness due to COVID-19: A review of the literature. J Infect Dev Ctries. 2021 May 31;15(5):630-638.
7. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020;383(4):334-46.
8. Soy M, Atagündüz P, Atagündüz I, Sucak GT. Hemophagocytic lymphohistiocytosis: A review inspired by the COVID-19 pandemic. Rheumatol Int. 2021;41:7-18. DOI:10.1007/s00296-020-04636-y
9. Fardet L, Galicier L, Lambotte O, Marzac C, Aumont C, et al. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol, 2014; 66(9):2613–20.
10. Henter JI, Horne A, Arico M, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–131.
11. Halyabar O, Chang MH, Schoettler ML, Schwartz MA, Baris EH, Benson LA, et al. Calm in the midst of cytokine storm: A collaborative approach to the diagnosis and treatment of hemophagocytic lymphohistiocytosis and macrophage activation syndrome. Pediatr Rheumatol Online J. 2019;17(1):7.
12. Daver N, McClain K, Allen CE, et al. A consensus review on malignancy-associated hemophagocytic lymphohistiocytosis in adults. Cancer. 2017;10.1002/cncr.30826
13. Weitzman S. Approach to Hemophagocytic syndromes. Hematology. 2011;2011(1):178–183. DOI:10.1182/asheducation-2011.1.178
14. Ramos-Casals M, Brito-Zerón P, López-Guillermo A, Khamashta MA, Bosch X. Adult haemophagocytic syndrome. Lancet. 2014;383:1503–1516
15. England JT, Abdulla A, Biggs CM, et al. Weathering the COVID-19 storm: lessons from hematologic cytokine syndromes. Blood Rev. 2021;45:100707.
16. Akturk H, Tanyildiz M, Erbey F, et al. Macrophage activation syndrome in a child with juvenile idiopathic arthritis secondary to SARS-CoV-2. J Trop Pediatr. 2021;67(2):fmba049. DOI:10.1093/troped/fmba049
17. Mostafavi SN, Sadeghizadeh A, Babaie S, Saleh R, Dehghan A, et al. Successful Recovery of a Child with COVID-19-Induced Secondary Hemophagocytic Lymphohistiocytosis. Arch Pediatr Infect Dis. 2020;10(1):e111434.
18. Kalita P, Laishram D, Dey B, Mishra J, Barman B, Barman H. Secondary hemophagocytic lymphohistiocytosis in Post-COVID-19 patients: A report of two cases. Cureus. 2021;13(8):e17328. Published 2021 Aug 20. DOI:10.7759/cureus.17328

© 2022 Elbanoni et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/82183