HIGHER RANK NUMERICAL RANGES AND UNITARY DILATIONS

PANKAJ DEY AND MITHUN MUKHERJEE

Abstract. Here we show that for \(k \in \mathbb{N} \), the closure of the \(k \)-rank numerical range of a contraction \(A \) acting on an infinite-dimensional Hilbert space \(\mathcal{H} \) is the intersection of the closure of the \(k \)-rank numerical ranges of all unitary dilations of \(A \) to \(\mathcal{H} \oplus \mathcal{H} \). The same is true for \(k = \infty \) provided the \(\infty \)-rank numerical range of \(A \) is non-empty. These generalize a finite dimensional result of Gau, Li and Wu. We also show that when both defect numbers of a contraction are equal and finite (\(= N \)), one may restrict the intersection to a smaller family consisting of all unitary \(N \)-dilations. A result of Bercovici and Timotin on unitary \(N \)-dilations is used to prove it. Finally, we have investigated the same problem for the \(C \)-numerical range and obtained the answer in negative.

1. Introduction

Let \(\mathcal{H} \) be a Hilbert space and \(\mathcal{B}(\mathcal{H}) \) be the algebra of all bounded linear maps acting on \(\mathcal{H} \). Suppose \(A \in \mathcal{B}(\mathcal{H}) \). Let \(\mathcal{K} \) be a Hilbert space containing \(\mathcal{H} \). An operator \(B \in \mathcal{B}(\mathcal{K}) \) is said to be a dilation of \(A \) (or, \(A \) is said to be a compression of \(B \)) if there exists a projection \(P \in \mathcal{B}(\mathcal{K}) \) on \(\mathcal{H} \) such that \(A = P_{\mathcal{H}}B|_{\mathcal{H}} \) or, equivalently, if \(B \) is unitarily similar to the operator matrix \(\begin{pmatrix} A & * \\ * & * \end{pmatrix} \). If \(\dim \mathcal{K} \ominus \mathcal{H} = r \) then \(B \) is called an \(r \)-dilation of \(A \). Moreover, if \(B \), being a dilation of \(A \), is unitary then \(B \) is said to be a unitary dilation of \(A \). Halmos [11] showed that every contraction \(A \in \mathcal{B}(\mathcal{H}) \) has a unitary dilation \(U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H}) \) of the form

\[
U = \begin{pmatrix}
A & -\sqrt{I-AA^*} \\
\sqrt{I-A^*A} & A^*
\end{pmatrix}.
\]

It generated a lot of research including far reaching Sz.-Nagy dilation theorem regarding power unitary dilations of a contraction.

The notion of the quadratic form associated with a matrix has been extended for an operator acting on a Hilbert space, which is known as the numerical range. The numerical range of \(A \in \mathcal{B}(\mathcal{H}) \), denoted by \(W(A) \), is defined as

\[
W(A) := \{ \langle Ax, x \rangle : \|x\| = 1 \}.
\]
It has been studied extensively because of its connections and applications to many different areas. The numerical range is a non-empty, convex set. Durszt \[7\] proved that the numerical range of a normal operator \(A\) is the intersection of all convex Borel set \(s\) such that \(E(s) = I\) where \(E\) is the unique spectral measure associated with \(A\). The closure of the numerical range of a normal operator is the closed convex hull of its spectrum \([10]\).

It is, in general, difficult to compute the numerical range. Halmos \([12]\) conjectured that for every contraction \(A \in B(H)\),

\[
W(A) = \bigcap \{W(U) : U \text{ is a unitary dilation of } A\}. \tag{1.1}
\]

Durszt \([7]\) settled (1.1) in negative using the description of the numerical range of a normal operator in terms of the convex Borel sets. Later, Choi and Li \([5]\) proved that for every contraction \(A \in B(H)\),

\[
\overline{W(A)} = \bigcap \left\{\overline{W(U)} : U \in B(H \oplus H) \text{ is a unitary dilation of } A\right\}. \tag{1.2}
\]

Note here that the closure sign can be omitted in finite dimensional case.

Let \(A \in B(H)\) be a contraction. Denote \(D_A = (I - A^*A)^{\frac{1}{2}}\), \(D_A = \text{ran}D_A\) and \(d_A = \dim D_A\) as the defect operator, the defect space and the defect number of \(A\), respectively. Bercovici and Timotin \([3]\) recently showed that if both defect numbers of a contraction are same and finite (=\(N\)) then one can restrict the intersection to a smaller family consisting of all unitary \(N\)-dilations. It complements Choi and Li’s theorem (1.2) and also generalizes a result of Benhida, Gorkin and Timotin \([2]\) for \(C_0(N)\) contractions. Let \(A \in B(H)\) be a contraction with \(d_A = d_A^* = N < \infty\). BT proved

\[
\overline{W(A)} = \bigcap \left\{\overline{W(U)} : U \text{ is a unitary } N\text{-dilation of } A \text{ to } H \oplus \mathbb{C}^N\right\}. \tag{1.3}
\]

Choi, Kribs and Žyczkowski have first defined the higher rank numerical range in the context of “quantum error correction” \([4]\), which is defined in the following way. Let \(A \in B(H)\) and \(1 \leq k \leq \infty\). The \(k\)-rank numerical range of \(A\), denoted by \(\Lambda_k(A)\), is defined as

\[
\Lambda_k(A) := \{\lambda \in \mathbb{C} : PAP = \lambda P, \text{ for some projection } P \text{ of rank } k\}
\]

or, equivalently, \(\lambda \in \Lambda_k(A)\) if and only if there is an orthonormal set \(\{f_j\}_{j=1}^k\) such that \(\langle Af_j, f_r \rangle = \lambda \delta_{j,r}\) for \(j, r \in \{1, 2, \cdots, k\}\). Clearly,

\[
W(A) = \Lambda_1(A) \supseteq \Lambda_2(A) \supseteq \cdots \supseteq \Lambda_k(A) \supseteq \cdots.
\]

Li and Sze \([15]\) have described the higher rank numerical range of a matrix as an intersection of closed half planes. Let \(A \in M_n\) and \(1 \leq k \leq n\). Li and Sze showed

\[
\Lambda_k(A) = \bigcap_{\theta \in [0,2\pi)} \left\{\mu \in \mathbb{C} : \Re(e^{i\theta} \mu) \leq \lambda_k(\Re(e^{i\theta} A))\right\}, \tag{1.4}
\]

\[
\lambda_k(\Re(e^{i\theta} A)) = \frac{\lambda_k(e^{i\theta}A)}{1}, \quad \lambda_k(\Re(e^{i\theta} A)) = \frac{\lambda_k(e^{i\theta}A)}{1}.
\]
where $\lambda_k(H)$ denotes the k-th largest eigenvalue of the self-adjoint matrix $H \in M_n$. As an immediate consequence, it follows that the higher rank numerical range of a matrix is convex. It also proved that for a normal matrix $A \in M_n$,

\[\Lambda_k(A) = \bigcap_{1 \leq j_1 < \cdots < j_{n-k+1} \leq n} \text{conv} \{ \lambda_{j_1}, \ldots, \lambda_{j_{n-k+1}} \}. \]

However, the convexity of the higher rank numerical range of any operator was shown by Woerdeman \[20\]. For the non-emptyness of the higher rank numerical ranges, the reader may refer to \[14\], \[17\].

Let $A \in M_n$ be a contraction. Observe that $d_A = d_{A^*}$. Gau, Li and Wu \[9\] proved the following which extends and refines (1.2) to the higher rank numerical ranges of matrices.

Theorem 1.1 (Theorem 1.1, \[9\]). Let $A \in M_n$ be a contraction and $1 \leq k \leq n$. Then

\[\Lambda_k(A) = \bigcap \{ \Lambda_k(U) : U \in M_{n+d_A} \text{ is a unitary dilation of } A \}. \]

It is to be noted that there exists a normal contraction A for which the k-rank numerical range of all unitary dilations of A contains $\Lambda_k(A)$ as a proper subset for $1 \leq k \leq \infty$. See \[6\]. The following is the first main theorem of this paper. It generalizes Theorem 1.1.

Theorem 1.2. Let $A \in \mathcal{B}(\mathcal{H})$ be a contraction and $k \in \mathbb{N}$. Then

\[\Lambda_k(A) = \bigcap \{ \Lambda_k(U) : U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H}) \text{ is a unitary dilation of } A \}. \]

Moreover,

\[\Lambda_\infty(A) = \bigcap \{ \Lambda_\infty(U) : U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H}) \text{ is a unitary dilation of } A \} \]

provided $\Lambda_\infty(A)$ is non-empty.

An example is given that Theorem 1.2 is not true whenever the ∞-rank numerical range is empty (Example 3.3).

The following is the second main theorem of this paper which complements the previous theorem. It states that if both defect numbers of a contraction are same and finite then one can restrict the intersection to a smaller family of unitary dilations. It generalizes (1.3). A result of Bercovici and Timotin on unitary \mathcal{N}-dilations is used while proving it.

Theorem 1.3. Let $A \in \mathcal{B}(\mathcal{H})$ be a contraction with $d_A = d_{A^*} = \mathcal{N} < \infty$ and $1 \leq k \leq \infty$. Then

\[\Lambda_k(A) = \bigcap \{ \Lambda_k(U) : U \text{ is a unitary } \mathcal{N}\text{-dilation of } A \text{ to } \mathcal{H} \oplus \mathbb{C}^\mathcal{N} \}. \]

There are so many other generalizations of the numerical range like the higher rank numerical range. One of them is the C-numerical range. Let $A, C \in M_n$. The C-numerical range of A, denoted by $W_C(A)$, is defined as

\[W_C(A) := \{ \text{tr}(CU^*AU) : U \in M_n \text{ is a unitary matrix} \}. \]

(1.6)
Let \(C \) be unitarily similar to \(\mathbf{c} = \text{diag}(c_1, c_2, \cdots, c_n) \) where \(c_j \in \mathbb{C} \) for all \(1 \leq j \leq n \). As \(W_c(A) \) is unitarily invariant, we obtain
\[
W_c(A) = \left\{ \sum_{j=1}^{n} c_j \langle Ae_j, e_j \rangle : \{e_j\}_{j=1}^{n} \text{ is an orthonormal basis of } \mathbb{C}^n \right\}. \tag{1.7}
\]
Note that if \(\mathbf{c} = \text{diag}(1, 0, \cdots, 0) \) then \(W_c(A) = W(A) \). Westwick [19] has shown that \(W_c(A) \) is convex if \(c_j \in \mathbb{R} \) for all \(1 \leq j \leq n \). In addition, he gave an example which shows that for \((c_1, c_2, \cdots, c_n) \in \mathbb{C}^n \) with \(n \geq 3 \), the \(c \)-numerical range may fail to be convex. The reader may refer to the survey article [13] for more details on the \(C \)-numerical range. We have investigated Theorem 1.2- and Theorem 1.3-type relations for the \(c \)-numerical range and have obtained the answer in negative, which is the final theorem of this paper.

Theorem 1.4. There exist \(A, c \) for which the intersection of the closure of the \(c \oplus 0 \)-numerical ranges of all unitary dilations of \(A \) contains \(W_c(A) \) as a proper subset.

Let us end this section by listing some basic properties of the higher rank numerical range:

\(\mathbf{P1} \) \(\Lambda_k(\alpha A + \beta I) = \alpha \Lambda_k(A) + \beta, \) for \(\alpha, \beta \in \mathbb{C} \).

\(\mathbf{P2} \) \(\Lambda_k(A^*) = \overline{\Lambda_k(A)}. \)

\(\mathbf{P3} \) \(\Lambda_k(A \oplus B) \supseteq \Lambda_k(A) \cup \Lambda_k(B). \)

\(\mathbf{P4} \) \(\Lambda_k(U^*AU) = \Lambda_k(A), \) for any unitary \(U \in \mathcal{B}(\mathcal{H}). \)

\(\mathbf{P5} \) If \(A_0 \) is a compression of \(A \) on a subspace \(\mathcal{H}_0 \) of \(\mathcal{H} \) such that \(\dim(\mathcal{H}_0) \geq k \) then \(\Lambda_k(A_0) \subseteq \Lambda_k(A). \)

2. Preliminaries

Throughout this paper, we denote \(\mathcal{H} \), an infinite dimensional separable Hilbert space and \(\mathcal{B}(\mathcal{H}) \), the algebra of all bounded linear maps acting on \(\mathcal{H} \). Let \(A \in \mathcal{B}(\mathcal{H}) \) be a normal operator and \(E \) be the unique spectral measure associated with \(A \) defined on the Borel \(\sigma \)-algebra in \(\mathbb{C} \) supported on \(\sigma(A) \). Suppose \(1 \leq k \leq \infty \). Let
\[
S_k := \{ H : H \text{ is a half closed-half plane in } \mathbb{C} \text{ with } \dim \text{ ran } E(H) < k \}\).
\[
S_k := \bigcap_{H \in S_k} H^c. \]
Dey and Mukherjee [6] proved the following, which extends (1.5) for a normal operator acting on an infinite-dimensional Hilbert space.

Theorem 2.1 (Theorem 3.2, [6]). Let \(A \in \mathcal{B}(\mathcal{H}) \) be normal and \(1 \leq k \leq \infty \). Then
\[
\Lambda_k(A) = \bigcap_{V \in \mathcal{V}_k} W(V^*AV) = V_k(A),
\]
where \(\mathcal{V}_k \) is the set of all isometries \(V : \mathcal{H} \to \mathcal{H} \) such that codimension of \(\text{ran } V \) is less than \(k \).
Let $A \in \mathcal{B}(\mathcal{H})$ be a self-adjoint operator and $k \in \mathbb{N}$. Define
\[
\lambda_k(A) := \sup \{ \lambda_k(V^*AV) : V : \mathbb{C}^k \to \mathcal{H} \text{ is an isometry} \}.
\] (2.1)

Let us now observe the following.

Lemma 2.2. Let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint and $k \in \mathbb{N}$. Suppose $\{\mathcal{H}_n\}_{n=1}^{\infty}$ is an increasing sequence of closed subspaces of \mathcal{H} with $\mathcal{H} = \bigcup_{n \geq 1} \mathcal{H}_n$ and $A_n = P_{\mathcal{H}_n}A|_{\mathcal{H}_n}$. Then
\[
\lim_{n \to \infty} \lambda_k(A_n) = \lambda_k(A).
\]

Proof. By interlacing theorem, we have, $\lambda_k(A_n) \leq \lambda_k(A_{n+1})$ for every $n \geq k$. Observe that $\lambda_k(A_n) \leq \lambda_k(A)$ for all $n \geq k$. Indeed, if not then there exists $n_o \geq k$ such that $\lambda_k(A) < \lambda_k(A_{n_o})$. Choose $A_{n_o} = \text{diag}(\lambda_1(A_{n_o}), \ldots, \lambda_k(A_{n_o}))$. Then A_{n_o} is a k-by-k compression of A with $\lambda_k(A) < \lambda_k(A_{n_o})$. It contradicts the definition of $\lambda_k(A)$. So, $\lambda_k(A_n) \leq \lambda_k(A)$ for $n \geq k$. Therefore, $\{\lambda_k(A_n)\}_{n \geq k}$ is a monotonically increasing sequence and bounded above. Hence $\lim_{n \to \infty} \lambda_k(A_n) = \sup_{n \geq k} \lambda_k(A_n)$. We claim that $\sup \lambda_k(A_n) = \lambda_k(A)$.

Given $\epsilon > 0$, by the definition of $\lambda_k(A)$, there exists a k-by-k compression A' of A such that $\lambda_k(A) - \frac{\epsilon}{2} < \lambda_k(A')$. Note that there exists $n_1 \geq k$ and a k-by-k compression A'' of A_{n_1} such that $||A' - A''|| < \frac{\epsilon}{2}$. It implies that $|\lambda_k(A') - \lambda_k(A'')| \leq \frac{\epsilon}{2}$. So, $\lambda_k(A) - \epsilon < \lambda_k(A'')$. Again, by interlacing theorem, $\lambda_k(A'') \leq \lambda_k(A_{n_1})$. Therefore, $\lambda_k(A) - \epsilon < \lambda_k(A_{n_1})$ for some $n_1 \geq k$. Hence $\lim_{n \to \infty} \lambda_k(A_n) = \lambda_k(A)$.

Let $A \in \mathcal{B}(\mathcal{H})$ and $k \in \mathbb{N}$. Define
\[
\Omega_k(A) := \bigcap_{\xi \in [0,2\pi]} \{ \mu \in \mathbb{C} : \mathfrak{R}(e^{i\xi}\mu) \leq \lambda_k(\mathfrak{R}(e^{i\xi}A)) \}.
\]

Let $\text{Int}(S)$ denote the relative interior of S for $S \subseteq \mathbb{C}$. Li, Poon and Sze [16] proved the following, which extends (1.4) for an operator.

Theorem 2.3 (Theorem 2.1, [16]). Let $A \in \mathcal{B}(\mathcal{H})$ and $k \in \mathbb{N}$. Then
\[
\text{Int}(\Omega_k(A)) \subseteq \Lambda_k(A) \subseteq \Omega_k(A) = \overline{\Lambda_k(A)}.
\]

Define $\Omega_\infty(A) = \bigcap_{k \geq 1} \Omega_k(A)$.

Theorem 2.4 (Theorem 5.2, [16]). Let $A \in \mathcal{B}(\mathcal{H})$. Then
\[
\text{Int}(\Omega_\infty(A)) \subseteq \Lambda_\infty(A) \subseteq \Omega_\infty(A).
\]

Moreover, $\Lambda_\infty(A) = \Omega_\infty(A)$ if and only if $\Lambda_\infty(A) \neq \emptyset$.

Let $r > 0$. Denote $D(0,r) := \{ z \in \mathbb{C} : |z| < r \}$, the disc centred at 0 with radius r and $\mathbb{D} = D(0,1)$, the open unit disc. Let us end this section with the following lemmas and corollary.
Lemma 2.5 (Theorem 2.1, [8]). Suppose \(n \geq 2 \) and \(1 \leq k \leq n \). Let \(S_n \) be the \(n \)-dimensional unilateral shift on \(\mathbb{C}^n \). Then

\[
\Lambda_k(S_n) = \begin{cases}
D(0, \cos \frac{k\pi}{n+1}), & \text{if } 1 \leq k \leq \left[\frac{n+1}{2} \right] \\
\emptyset, & \text{if } \left[\frac{n+1}{2} \right] < k \leq n.
\end{cases}
\]

Lemma 2.6. Let \(S \) be a shift operator with any multiplicity acting on an infinite dimensional Hilbert space. Then \(\Lambda_k(S) = \mathbb{D} \) for all \(k \in \mathbb{N} \).

Proof. Without loss of generality, we may consider \(S : l^2(\mathcal{H}) \to l^2(\mathcal{H}) \) such that

\[
S((x_0, x_1, \ldots)) = (0, x_0, x_1, \ldots) \quad \text{and} \quad (x_0, x_1, \ldots) \in l^2(\mathcal{H}),
\]

where \(\mathcal{H} \) is a Hilbert space of dimension same as the multiplicity of \(S \). So, \(S = S_0 \otimes I_{\mathcal{H}} \), where \(S_0 \) is the unilateral shift on \(l^2(\mathbb{N}) \). Let \(S_n \) be the unilateral shift on \(\mathbb{C}^n \). As \(S_n \) is a compression of \(S_0 \), by Lemma 2.5 and (P5), we obtain \(D(0, \cos \frac{k\pi}{n+1}) = \Lambda_k(S_n) \subseteq \Lambda_k(S_0) \) for \(1 \leq k \leq \left[\frac{n+1}{2} \right] \). Taking \(n \to \infty \), we get \(\mathbb{D} \subseteq \Lambda_k(S_0) \). Let us now show that \(\Lambda_k(S_0) \subseteq \Lambda_k(S) \).

Let \(\lambda \in \Lambda_k(S_0) \). Then there exists an isometry \(X : \mathbb{C}^k \to l^2(\mathbb{N}) \) such that \(X^*S_0X = \lambda I_k \). Let \(h_0 \in \mathcal{H} \) with \(\|h_0\| = 1 \). Define \(Y : \mathbb{C}^k \to l^2(\mathbb{N}) \otimes \mathcal{H} \approx l^2(\mathcal{H}) \) such that \(Yh = Xh \otimes h_0 \), \(h \in \mathbb{C}^k \). Let \(h \in \mathbb{C}^k \) with \(\|h\| = 1 \). Now,

\[
\|Yh\|^2 = \langle Xh \otimes h_0, Xh \otimes h_0 \rangle = \langle Xh, Xh \rangle \langle h_0, h_0 \rangle = \|Xh\|^2 \|h_0\|^2 = 1.
\]

So, \(Y \) is an isometry. We claim that \(Y^*SY = \lambda I_k \). Let \(h \in \mathbb{C}^k \) with \(\|h\| = 1 \). Observe,

\[
\langle Y^*SYh, h \rangle = \langle (S_0 \otimes I_K)Xh \otimes h_0, Xh \otimes h_0 \rangle = \langle X^*S_0Xh, h \rangle = \lambda.
\]

So, \(Y^*SY = \lambda I_k \). Therefore, \(\lambda \in \Lambda_k(S) \). Hence \(\mathbb{D} \subseteq \Lambda_k(S_0) \subseteq \Lambda_k(S) \).

Let \(\lambda \in \Lambda_k(S) \) with \(|\lambda| = 1 \). Then there exists an orthonormal set \(\{f_j\}_{j=1}^k \) such that \(\langle Sf_j, f_r \rangle = \lambda \delta_{j,r} \) for \(1 \leq j, r \leq k \). Note,

\[
1 = |\lambda| = |\langle Sf_j, f_j \rangle| \leq \|Sf_j\| \|f_j\| = 1
\]

for all \(1 \leq j \leq k \). As Cauchy-Schwarz inequality is being attained for all \(1 \leq j \leq k \), \(\lambda \) is an eigenvalue of \(S \) with multiplicity \(k \). It contradicts that \(\sigma_p(S) = \emptyset \). Hence \(\Lambda_k(S) = \mathbb{D} \). \(\square \)

Corollary 2.7. Suppose \(V \) is a proper isometry. Then \(\overline{\Lambda_k(V)} = \mathbb{D} \).

Proof. As \(V \) is a proper isometry, by Wold decomposition (c.f. [18]), we can write \(V = V_0 \oplus S \), where \(V_0 \) is unitary and \(S \) is a shift operator. So, by (P3) and Lemma 2.6, we have

\[
\mathbb{D} \supseteq W(V) \supseteq \cdots \supseteq \Lambda_k(V) = \Lambda_k(V_0 \oplus S) \supseteq \Lambda_k(V_0) \cup \Lambda_k(S) \supseteq \Lambda_k(S) = \mathbb{D}.
\]

Taking closure in both sides of (2.2), we get \(\overline{\Lambda_k(V)} = \mathbb{D} \). \(\square \)
3. Proof of Theorem 1.2

Let $A \in M_n$ and $U = \begin{pmatrix} A & C \\ B & D \end{pmatrix} \in M_{2n}$ be a unitary dilation of A. By polar decomposition of a matrix and using the fact that U is unitary, we obtain $B = U_1 \sqrt{I - A^*A}$, $C = -\sqrt{I - AA^*}U_2$ and $D = U_1 A^* U_2$, where $U_1, U_2 \in M_n$ are unitary. Then

$$(I \oplus U_1^*) U (I \oplus U_1) = \begin{pmatrix} A & -\sqrt{I - A^*A} U_o \\ \sqrt{I - A^*A} & A^* U_o \end{pmatrix},$$

where $U_o = U_2 U_1$. Hence we may take any unitary dilation U of A in the form

$$U = \begin{pmatrix} A & * \\ \sqrt{I - A^*A} & * \end{pmatrix}. \quad (3.1)$$

Let us begin with the following proposition.

Proposition 3.1. Let $A, B \in \mathcal{B}(\mathcal{H})$ with $A^* A + B^* B \leq I_{\mathcal{H}}$ and $k \in \mathbb{N}$. Then there exist $C, D \in \mathcal{B}(\mathcal{H})$ such that $Z = \begin{pmatrix} A & C \\ B & D \end{pmatrix} \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$ is a contractive dilation of A with $\lambda_k(Z + Z^*) = \lambda_k(A + A^*)$.

Proof. Let us first assume that $\dim(\mathcal{H}) = n < \infty$. Then, by Theorem 1.1, [9], there exists a unitary dilation $U_0 \in M_{n+d_A}$ of A such that $\lambda_k(U_0 + U_0^*) = \lambda_k(A + A^*)$. Take $U = U_0 \oplus (-I) \in M_{2n}$. Then U is a unitary dilation of A with $\lambda_k(U + U^*) = \lambda_k(U_0 + U_0^*) = \lambda_k(A + A^*)$. In view of (3.1), we may take U in the form

$$U = \begin{pmatrix} A & * \\ \sqrt{I - A^*A} & * \end{pmatrix}.$$

Since $A^* A + B^* B \leq I_{\mathcal{H}}$, we have $B^* B \leq C^* C$, where $C = \sqrt{I - A^*A}$. So, $B = J \sqrt{I - A^*A}$ for some contraction $J \in M_n$. Let

$$V = \begin{pmatrix} I_n & 0_n \\ 0_n & J^* \end{pmatrix}.$$

Then $V^* V = I_{2n}$. So, V is an isometry. Let $\bar{U} = U \oplus (-I_n)$. Take $Z = V^* \bar{U} V \in M_{2n}$. Then Z is a contractive dilation of A with the desired form. By Cauchy’s interlacing theorem (Corollary III.1.5, [1]), we have $\lambda_k(Z + Z^*) \geq \lambda_k(A + A^*)$ and $\lambda_k(\bar{U} + \bar{U}^*) \geq \lambda_k(Z + Z^*)$ as
Z is a dilation of A and \tilde{U} is a dilation of Z. So,

\[
\lambda_k(Z + Z^*) \leq \lambda_k(\tilde{U} + \tilde{U}^*) \\
= \lambda_k(U + U^*) \\
= \lambda_k(A + A^*) \\
\leq \lambda_k(Z + Z^*).
\]

It implies that $\lambda_k(Z + Z^*) = \lambda_k(A + A^*)$. This completes the proof of the proposition whenever \mathcal{H} is of dimension $n < \infty$.

Now, let \mathcal{H} be an infinite-dimensional separable Hilbert space with an orthonormal basis $\{e_1, e_2, \cdots\}$. Take $A = (a_{ij})_{1 \leq i, j \leq \infty}$ and $B = (b_{ij})_{1 \leq i, j \leq \infty}$ with respect to the orthonormal basis $\{e_1, e_2, \cdots\}$. Let $A_n = (a_{ij})_{1 \leq i, j \leq n}$ and $B_n = (b_{ij})_{1 \leq i, j \leq n}$ be the finite sections of A and B respectively. As $A^*A + B^*B \leq I_\mathcal{H}$, we have $A_n^*A_n + B_n^*B_n \leq I_\mathcal{H}$. So, by the above finite dimensional result, there exists a contractive dilation

\[
Z_n = \begin{pmatrix} A_n & C_n \\ B_n & D_n \end{pmatrix} \in M_{2n}
\]

of A_n with $\lambda_k(Z_n + Z_n^*) = \lambda_k(A_n + A_n^*)$. Consider

\[
\tilde{Z}_n = \begin{pmatrix} A_n & 0 & C_n & 0 \\ 0 & 0 & 0 & 0 \\ B_n & 0 & D_n & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H}).
\]

Note that \tilde{Z}_n converges in weak operator topology to

\[
Z = \begin{pmatrix} A & C \\ B & D \end{pmatrix}.
\]

Now, by applying Lemma 2.2, we obtain $\lim_{n \to \infty} \lambda_k(A_n + A_n^*) = \lambda_k(A + A^*)$ and $\lambda_k(Z_n + Z_n^*) = \lambda_k(Z + Z^*)$. Finally, since $\lambda_k(Z_n + Z_n^*) = \lambda_k(A_n + A_n^*)$ for all $n \geq k$, we have $\lambda_k(Z + Z^*) = \lambda_k(A + A^*)$. This completes the proof.

The following theorem plays the key role while proving Theorem 1.2.

Theorem 3.2. Let $A \in \mathcal{B}(\mathcal{H})$ be a contraction and $k \in \mathbb{N}$. Then there exists a unitary dilation $U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$ of A such that $\lambda_k(U + U^*) = \lambda_k(A + A^*)$.

Proof. If $\lambda_k(A + A^*) = 2$ then the following unitary dilation

\[
U = \begin{pmatrix} A & -\sqrt{I - AA^*} \\ \sqrt{I - A^*A} & A^* \end{pmatrix} \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
\]

of A will do the job. Therefore, assume that $\lambda_k(A + A^*) = \mu < 2$.

Take $B = \sqrt{I - A^*A} \in \mathcal{B}(\mathcal{H})$. Then, by Proposition 3.1, there exists a contractive dilation

$$Z_1 = \left(\frac{A}{\sqrt{I - A^*A}} \begin{pmatrix} C \\ D \end{pmatrix} \right) \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

of A such that $\lambda_k(Z_1 + Z_1^*) = \lambda_k(A + A^*)$ and $\|Z_1v\| = \|v\|$ for all $v \in \mathcal{H} \oplus \mathcal{O}$, where \mathcal{O} is the zero subspace of \mathcal{H}.

Repeating the argument on Z_1, we get a contractive dilation

$$Z_2 = \left(\frac{Z_1}{\sqrt{I - Z_1^*Z_1}} \begin{pmatrix} \tilde{C} \\ \tilde{D} \end{pmatrix} \right) \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H})$$

of Z_1 such that $\lambda_k(Z_2 + Z_2^*) = \lambda_k(Z_1 + Z_1^*) = \lambda_k(A + A^*)$ and $\|Z_2v\| = \|v\|$ for all $v \in \mathcal{H} \oplus \mathcal{H} \oplus \mathcal{O} \oplus \mathcal{O}$. Continuing this process, we obtain a contractive dilation Z_{∞}, denoted by U, acting on $\mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H} \oplus \cdots$ such that $\lambda_k(U + U^*) = \lambda_k(A + A^*)$ and $\|Uv\| = \|v\|$ for all unit vector $v \in \mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H} \oplus \cdots$. Identifying $\mathcal{O} \oplus \mathcal{H}$ with $\mathcal{O} \oplus \mathcal{H} \oplus \mathcal{H} \cdots$, we may regard U as an isometry acting on $\mathcal{H} \oplus \mathcal{H}$ while A acts on $\mathcal{H} \oplus \mathcal{O}$. Hence we get an isometric dilation $U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$ of A such that $\lambda_k(U + U^*) = \lambda_k(A + A^*) = \mu < 2$.

We will now show that U is unitary. If possible, assume that U is a proper isometry. Then, by Corollary 2.7, we get $\overline{\Lambda_k(U)} = \overline{\mathbb{D}}$. This forces $\overline{\Lambda_k(U^* + U)} = [-2, 2]$. This contradicts our assumption that $\lambda_k(U + U^*) = \mu < 2$. This completes the proof. \hfill \Box

Proof of Theorem 1.2. Suppose $1 \leq k \leq \infty$. Clearly,

$$\overline{\Lambda_k(A)} \subseteq \bigcap \left\{ \overline{\Lambda_k(U)} : U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H}) \text{ is a unitary dilation of } A \right\}.$$

To prove the reverse inclusion, let us first assume that $k \in \mathbb{N}$. Suppose $\xi \notin \overline{\Lambda_k(A)}$. Then, by Theorem 3.2, there exists $\theta \in [0, 2\pi)$ such that $e^{i\theta} \xi + e^{-i\theta} \xi = \lambda_k(e^{i\theta}A + e^{-i\theta}A^*)$. Now, by Theorem 2.3, there exists a unitary dilation $U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$ of A such that $\lambda_k(e^{i\theta}U + e^{-i\theta}U^*) = \lambda_k(e^{i\theta}A + e^{-i\theta}A^*)$. Therefore, again by Theorem 2.3, we have $\xi \notin \Lambda_k(U)$.

Let $\xi \notin \overline{\Lambda_\infty(A)}$. Then, by Theorem 2.4, there exists $k_0 \in \mathbb{N}$ such that $\xi \notin \Omega_{k_0}(A)$. So, by Theorem 2.3, there exists $\theta \in [0, 2\pi)$ such that $e^{i\theta} \xi + e^{-i\theta} \xi > \lambda_{k_0}(e^{i\theta}A + e^{-i\theta}A^*)$. Now, by Theorem 3.2, there exists a unitary dilation $U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$ of A such that $\lambda_{k_0}(e^{i\theta}U + e^{-i\theta}U^*) = \lambda_{k_0}(e^{i\theta}U + e^{-i\theta}U^*)$. So, $e^{i\theta} \xi + e^{-i\theta} \xi = \lambda_{k_0}(e^{i\theta}U + e^{-i\theta}U^*)$. Therefore, by Theorem 2.3, $\xi \notin \Omega_{k_0}(U)$. Hence, by Theorem 2.4, $\xi \notin \bigcap_{k \geq 1} \Omega_k(U) = \Omega_\infty(U) = \overline{\Lambda_\infty(U)}$ as $\emptyset \neq \Lambda_\infty(A) \subseteq \Lambda_\infty(U)$. This completes the proof. \hfill \Box

The following example shows that Theorem 1.2 is not true whenever the ∞-rank numerical range is empty.
Example 3.3. Consider \(A = \bigoplus_{n \geq 2} \begin{pmatrix} -\frac{1}{n} & 0 \\ 0 & e^{i\pi/n} \end{pmatrix} \). Then

\[
\sigma_e(A) = \left\{ -\frac{1}{n} : n \geq 2 \right\} \cup \left\{ \frac{e^{i\pi/n}}{n} : n \geq 2 \right\},
\]

\[
\sigma(A) = \sigma_e(A) \cup \{0\}.
\]

Using Theorem 2.1, it was shown in Example 5.2, [6] that \(\Lambda_\infty(A) = \emptyset \). Let \(U \) be a unitary dilation of \(A \). If possible, assume that \(0 \notin \Lambda_\infty(U) = \bigcap_{k \geq 1} \Lambda_k(U) \). Then there exists \(k \in \mathbb{N} \) such that \(0 \notin \Lambda_k(U) \). By Theorem 2.1, there exists a half closed-half plane \(H_o \) at 0 such that \(\dim \text{ran}E_U(H_o) < k \). We claim that \(H_o \) cannot contain infinitely many eigenvalues of \(A \). If possible, let \(H_o \) contain infinitely many eigenvalues of \(A \), say, \(\{ \lambda_r : r \geq 1 \} \). Take \(A' = \bigoplus_{r \geq 1} (\lambda_r) \). Then

\[
\Lambda_k(A') \subseteq \Lambda_k(A) \subseteq \Lambda_k(U) \subseteq H_o^c.
\]

It is a contradiction as \(\emptyset \neq \Lambda_k(A') \subseteq \text{conv}\{\lambda_r : r \geq 1\} \subseteq H_o \). So, the only possible choice of \(H_o = \{ z \in \mathbb{C} : \Im(z) < 0 \} \cup [0, \infty) \). Let \(H_{-\frac{1}{2}} = \{ z \in \mathbb{C} : \Im(z) < 0 \} \cup [-\frac{1}{2}, \infty) \) be a half closed-half plane at \(-\frac{1}{2}\). As \(\dim \text{ran}E_U(H_o) < k \), we have \(\dim \text{ran}E_U(H_{-\frac{1}{2}}) < k \). Consider \(A'' = \bigoplus_{n \geq 2} (-\frac{1}{n}) \). Then

\[
\Lambda_k(A'') \subseteq \Lambda_k(A) \subseteq \Lambda_k(U) \subseteq H_{-\frac{1}{2}}^c.
\]

It is again a contradiction as \(\emptyset \neq \Lambda_k(A'') \subseteq \text{conv}\{-\frac{1}{n} : n \geq 2\} \subseteq H_{-\frac{1}{2}} \). Hence \(0 \notin \Lambda_\infty(U) \) for every unitary dilation \(U \) of \(A \). This provides an example that Theorem 1.2 is not true whenever the \(\infty \)-rank numerical range is empty.

Remark 3.4. The contraction \(A \), in Example 3.3, shows that if \(W(A) \) lies in a half closed-half plane, it does not necessarily imply that there exists a unitary dilation \(U \) of \(A \) with \(W(U) \) lying in the same half closed-half plane.

4. Proof of Theorem 1.3

We begin with a few lemmas.

Lemma 4.1 (Proposition 2.2, [3]). Let \(A \in \mathcal{B}(\mathcal{H}) \) be a contraction with \(d_A = d_{A^*} = N < \infty \). Assume that \(\lambda_1, \cdots, \lambda_r \) are distinct points in \(\mathbb{T} \setminus \sigma(T) \) and \(n_1, \cdots, n_r \) are positive integers satisfying \(\sum_{j=1}^r n_j = N \). Then there exists a unitary \(N \)-dilation \(U \) of \(T \) such that \(\lambda_j \) is an eigenvalue of \(U \) with multiplicity greater than or equal to \(n_j \) for every \(j \in \{1, 2, \cdots, r\} \).

Let \(A \in \mathcal{B}(\mathcal{H}) \) be self-adjoint and \(k \in \mathbb{N} \). Define

\[
\mu_k(A) = \inf_{N \in \mathcal{H}} \sup_{x \in N, \|x\|=1} \langle Ax, x \rangle. \tag{4.1}
\]
We claim that $\lambda_k(A) \leq \mu_k(A)$. Indeed, if \mathcal{M}, \mathcal{N} are two closed subspaces of \mathcal{H} with $\dim \mathcal{M} = k$ and $\text{codim} \mathcal{N} < k$ then there exists a unit vector $h \in \mathcal{M} \cap \mathcal{N}$. Now,

$$\min_{x \in \mathcal{M}, \|x\|=1} \langle Ax, x \rangle \leq \langle Ah, h \rangle \leq \sup_{x \in \mathcal{N}, \|x\|=1} \langle Ax, x \rangle$$

$$\Rightarrow \lambda_k(A) = \sup_{\mathcal{M} \subseteq \mathcal{H}, \dim \mathcal{M} = k} \min_{x \in \mathcal{M}, \|x\|=1} \langle Ax, x \rangle \leq \sup_{x \in \mathcal{N}, \|x\|=1} \langle Ax, x \rangle$$

$$\Rightarrow \lambda_k(A) \leq \inf_{\mathcal{N} \subseteq \mathcal{H}} \sup_{x \in \mathcal{N}, \|x\|=1} \langle Ax, x \rangle = \mu_k(A). \quad (4.2)$$

Lemma 4.2. Let $A \in \mathcal{B}(\mathcal{H})$ be a contraction with $d_A = d_{A^*} = N < \infty$ and $k \in \mathbb{N}$. Then there exists a unitary N-dilation U of A such that $\lambda_k(U + U^*) = \lambda_k(A + A^*)$.

Proof. Let $\lambda_k(\mathcal{R}(A)) = \mu$. If $\mu = 1$ then any unitary N-dilation of A will do the job. So, assume that $-1 \leq \mu < 1$. Let $\epsilon > 0$ be such that the line passing through $\mu + \epsilon$ and parallel to the Y-axis cuts the unit circle at two points, say, λ_e and $\overline{\lambda_e}$. Then, by Lemma 4.1, there exists a unitary N-dilation U_ϵ (acting on $\mathcal{H} \oplus \mathbb{C}^N$) of A such that λ_e is an eigenvalue of U_ϵ with multiplicity N. Let E_ϵ be the spectral measure associated with $\mathcal{R}(U_\epsilon)$. We claim that $\dim \text{ran} E_\epsilon(\mu + \epsilon, \infty) < k$. If possible, let $\dim \text{ran} E_\epsilon(\mu + \epsilon, \infty) \geq k$. Suppose $f_1^{\epsilon}, \ldots, f_N^{\epsilon}$ are orthonormal eigenvectors of $\mathcal{R}(U_\epsilon)$ corresponding to the eigenvalue $\mu + \epsilon$ and $\{f_{N+1}^{\epsilon}, \ldots, f_{N+r}^{\epsilon}\}$ is an orthonormal basis of $\text{ran} E_\epsilon(\mu + \epsilon, \infty)$. Consider $\mathcal{K}_\epsilon = \text{span}\{f_1^{\epsilon}, f_2^{\epsilon}, \ldots, f_N^{\epsilon}\} \cap \mathcal{H}$. As codimension of \mathcal{H} in $\mathcal{H} \oplus \mathbb{C}^N$ is N, we have $\dim(\mathcal{K}_\epsilon) \geq r \geq k$. Note, $P_{\mathcal{K}_\epsilon} \mathcal{R}(U_\epsilon)|_{\mathcal{K}_\epsilon} = P_{\mathcal{K}_\epsilon} \mathcal{R}(A)|_{\mathcal{K}_\epsilon}$. Let A' be any k-by-k compression of $P_{\mathcal{K}_\epsilon} \mathcal{R}(A)|_{\mathcal{K}_\epsilon}$. Then

$$[\lambda_k(A'), \lambda_1(A')] = W(A') \subseteq W(P_{\mathcal{K}_\epsilon} \mathcal{R}(A)|_{\mathcal{K}_\epsilon}) = W(P_{\mathcal{K}_\epsilon} \mathcal{R}(U_\epsilon)|_{\mathcal{K}_\epsilon}) \subseteq [\mu + \epsilon, \infty).$$

So, $\lambda_k(A') \geq \mu + \epsilon > \mu$. It contradicts $\lambda_k(\mathcal{R}(A)) = \mu$ as, by the definition of $\lambda_k(\mathcal{R}(A))$, there cannot exist any k-by-k compression of $\mathcal{R}(A)$ whose smallest eigenvalue is strictly greater than $\lambda_k(\mathcal{R}(A)) = \mu$. Hence $\dim \text{ran} E_\epsilon(\mu + \epsilon, \infty) < k$. Now, using (4.2), we have

$$\lambda_k(\mathcal{R}(U_\epsilon)) \leq \mu_k(\mathcal{R}(U_\epsilon))$$

$$= \inf_{\mathcal{M} \subseteq \mathcal{H}, \text{codim} \mathcal{M} < k} \sup_{x \in \mathcal{M}, \|x\|=1} \langle \mathcal{R}(U_\epsilon)x, x \rangle$$

$$\leq \sup_{x \in \mathcal{N}, \|x\|=1} \langle \mathcal{R}(U_\epsilon)x, x \rangle, \text{ where } \mathcal{N} = \text{ran} E_\epsilon(-\infty, \mu + \epsilon]$$

$$\leq \mu + \epsilon. \quad (4.3)$$

Since the set of all unitary N-dilations of A on $\mathcal{H} \oplus \mathbb{C}^N$ is compact with respect to the norm topology, $\{U_\epsilon\}_\epsilon$ has a limit point, say, U. Clearly, U is a unitary N-dilation of A. Now, using
Corollary III.1.2, [1], we obtain

\[
\lambda_k(\Re(U)) = \sup_{M \subseteq H \oplus \mathbb{C}^N} \min_{x \in M, \|x\|=1} \langle \Re(U)x, x \rangle
\]

\[
= \lim_{\epsilon \to 0} \sup_{M \subseteq H \oplus \mathbb{C}^N, \dim M = k} \min_{x \in M, \|x\|=1} \langle \Re(U_\epsilon)x, x \rangle, \quad \text{as } U_\epsilon \to U \text{ in norm}
\]

\[
= \lim_{\epsilon \to 0} \lambda_k(\Re(U_\epsilon))
\]

\[
\leq \lim_{\epsilon \to 0} \mu + \epsilon, \quad \text{by (4.3)}
\]

\[
= \lambda_k(\Re(A)).
\]

Again by Cauchy’s interlacing theorem (Corollary III.1.5, [1]), we have \(\lambda_k(\Re(U)) \geq \lambda_k(\Re(A))\) as \(U\) is a dilation of \(A\). Hence \(\lambda_k(\Re(U)) = \lambda_k(\Re(A))\). \(\square\)

Proof of Theorem 1.3. We will prove it considering the following two cases.

Case I: Suppose \(k \in \mathbb{N}\). Clearly,

\[
\Lambda_k(A) \subseteq \bigcap \left\{ \overline{\Lambda_k(U)} : U \text{ is a unitary } N\text{-dilation of } A \text{ to } H \oplus \mathbb{C}^N \right\}.
\]

Let \(\xi \notin \Lambda_k(A)\). Then, by Theorem 2.3, there exists \(\theta \in [0, 2\pi)\) such that \(e^{i\theta}\xi + e^{-i\theta}\xi > \lambda_k(e^{i\theta}A + e^{-i\theta}A^*)\). Now, by Lemma 4.2, there exists a unitary \(N\)-dilation \(U\) of \(A\) such that \(\lambda_k(e^{i\theta}U + e^{-i\theta}U^*) = \lambda_k(e^{i\theta}A + e^{-i\theta}A^*)\). So, \(e^{i\theta}\xi + e^{-i\theta}\xi > \lambda_k(e^{i\theta}U + e^{-i\theta}U^*)\). Therefore, again by Theorem 2.3, we have \(\xi \notin \Lambda_k(U)\). This completes the proof in this case.

Case II: Suppose \(k = \infty\). Let us first assume that \(\Lambda_\infty(A) = \emptyset\). Suppose \(U\) is a unitary \(N\)-dilation of \(A\) to \(H \oplus \mathbb{C}^N\). If possible, let \(\lambda \in \Lambda_\infty(U)\). Then there exists an \(\infty\)-rank projection \(P \in \mathcal{B}(H \oplus \mathbb{C}^N)\) such that \(PUP = \lambda P\). Let \(K = \text{ran}P \cap H\). As codimension of \(H\) in \(H \oplus \mathbb{C}^N\) is \(N < \infty\), \(K\) is infinite dimensional. Observe,

\[
\lambda P_K = P_K(\lambda P)P_K = P_KPUPP_K = P_KUP_K = P_KAP_K.
\]

So, \(\lambda \in \Lambda_\infty(A)\), which contradicts \(\Lambda_\infty(A) = \emptyset\). Hence \(\Lambda_\infty(U) = \emptyset\) and we are done.

Now, let \(\Lambda_\infty(A) \neq \emptyset\). Clearly,

\[
\Lambda_\infty(A) \subseteq \bigcap \left\{ \overline{\Lambda_\infty(U)} : U \text{ is a unitary } N\text{-dilation of } A \text{ to } H \oplus \mathbb{C}^N \right\}.
\]

Let \(\xi \notin \Lambda_\infty(A)\). Then, by Theorem 2.4, there exists \(k_o \in \mathbb{N}\) such that \(\xi \notin \Omega_{k_o}(A)\). So, by Theorem 2.3, there exists \(\theta \in [0, 2\pi)\) such that \(e^{i\theta}\xi + e^{-i\theta}\xi > \lambda_{k_o}(e^{i\theta}A + e^{-i\theta}A^*)\). Now, by Lemma 4.2, there exists a unitary \(N\)-dilation \(U\) of \(A\) such that \(\lambda_{k_o}(e^{i\theta}U + e^{-i\theta}U^*) = \lambda_{k_o}(e^{i\theta}U + e^{-i\theta}U^*)\). So, \(e^{i\theta}\xi + e^{-i\theta}\xi > \lambda_{k_o}(e^{i\theta}U + e^{-i\theta}U^*)\). Therefore, by Theorem 2.3, \(\xi \notin \Omega_{k_o}(U)\). Hence, by Theorem 2.4, \(\xi \notin \bigcap_{k \geq 1} \Omega_k(U) = \Omega_\infty(U) = \overline{\Lambda_\infty(U)}\) as \(\emptyset \neq \Lambda_\infty(A) \subseteq \Lambda_\infty(U)\). \(\square\)
5. Proof of Theorem 1.4

Let \(A \in \mathcal{B}(\mathcal{H}) \) be a contraction. Suppose \(c = \text{diag}(c_1, c_2, \cdots) \) be a finite rank operator. Observe that
\[
W_c(A) \subseteq \bigcap \left\{ W_{c\oplus 0}(U) : U \text{ is a unitary dilation of } A \right\}.
\]
(5.1)

We need a few lemmas.

Lemma 5.1 ([13]). Let \(c = \text{diag}(c_1, c_2, \cdots, c_n) \) with \(c_1 \geq c_2 \geq \cdots \geq c_n \). Suppose \(A \in M_n \) and \(\Re(A) \) has eigenvalues \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \). If \(\alpha = \sum_{j=1}^{n} c_j \lambda_{n-j+1} \) and \(\beta = \sum_{j=1}^{n} c_j \lambda_j \) then
\[
\Re(W_c(A)) = W_c(\Re(A)) = [\alpha, \beta].
\]

Let \(A \in \mathcal{B}(\mathcal{H}) \) be self-adjoint and \(k \in \mathbb{N} \). Define
\[
\nu_k(A) = \inf_{M \subseteq \mathcal{H}, \dim M = k} \max_{x \in M, \|x\|=1} \langle Ax, x \rangle.
\]
Then \(\nu_k(A) = -\lambda_k(-A) \). Note that if \(A \in M_n \) is self-adjoint and \(1 \leq k \leq n \) then \(\nu_k(A) = \lambda_{n-k+1}(A) \).

Lemma 5.2. Let \(A \in \mathcal{B}(\mathcal{H}) \) be self-adjoint and \(c = \text{diag}(c_1, c_2, \cdots) \) with \(c_1 \geq c_2 \geq \cdots \) be a finite rank operator. Suppose \(\alpha = \sum_{j=1}^{\infty} c_j \nu_j(A) \) and \(\beta = \sum_{j=1}^{n} c_j \lambda_j(A) \). Then
\[
\overline{W_c(A)} = [\alpha, \beta].
\]

Proof. Let \(\{e_1, e_2, \cdots\} \) be an orthonormal basis of \(\mathcal{H} \). Suppose \(\mathcal{H}_n = \text{span}\{e_1, \cdots, e_n\} \) and \(A_n = P_{\mathcal{H}_n}A|_{\mathcal{H}_n} \). Then
\[
\overline{W_c(A)} = \bigcap_{j=1}^{\infty} \bigcup_{n \geq j} W_{c_n}(A_n), \text{ where } c_n = \text{diag}(c_1, \cdots, c_n)
\]
\[
= \bigcap_{j=1}^{\infty} \bigcup_{n \geq j} [\alpha_n, \beta_n], \text{ by Lemma 5.1, } \alpha_n = \sum_{j=1}^{\infty} c_j \nu_j(A_n), \beta_n = \sum_{j=1}^{n} c_j \lambda_j(A_n)
\]
\[
= \left[\lim_{n \to \infty} \inf \alpha_n, \lim_{n \to \infty} \sup \beta_n \right]
\]
\[
= [\alpha, \beta], \text{ by Lemma 2.2.}
\]

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let \(A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) and \(c = I_2 \). Then \(W_c(A) = \{0\} \). If possible, let
\[
W_c(A) = \bigcap \left\{ W_{c\oplus 0}(U) : U \text{ is a unitary dilation of } A \right\}.
\]
Then
\[\mathcal{W}_c(\mathbb{R}(A)) = \bigcap \left\{ \overline{\mathcal{W}_{c\oplus 0}(\mathbb{R}(U))} : U \text{ is a unitary dilation of } A \right\}. \]

Now, by Lemma 5.2, we obtain
\[\overline{\mathcal{W}_{c\oplus 0}(\mathbb{R}(U))} = [\alpha_U, \beta_U] \] with \(\alpha_U = \nu_1(\mathbb{R}(U)) + \nu_2(\mathbb{R}(U)) \) and \(\beta_U = \lambda_1(\mathbb{R}(U)) + \lambda_2(\mathbb{R}(U)) \). So,
\[\{0\} = \mathcal{W}_c(\mathbb{R}(A)) = \bigcap_U [\alpha_U, \beta_U]. \]

Then there exists a sequence of unitary operators \(\{U_n\}_{n=1}^\infty \) such that \(\beta_{U_n} \to 0 \) whenever \(n \to \infty \). Given \(\epsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that \(\beta_{U_{n_0}} < \epsilon \), that is, \(\lambda_2(\mathbb{R}(U_{n_0})) + \lambda_1(\mathbb{R}(U_{n_0})) < \epsilon \), which implies that \(\overline{W(U_{n_0})} = \text{conv} \sigma(U_{n_0}) \) does not contain \(W(A) = \{z \in \mathbb{C} : |z| \leq \frac{1}{2}\} \).

It is a contradiction as \(U_{n_0} \) is a dilation of \(A \). Hence the intersection of the closure of the \(c \oplus 0 \)-numerical ranges of all unitary dilations of \(A \) contains \(W_c(A) \) as a proper subset.

\[\square \]

References

[1] Bhatia R., *Matrix analysis*, Springer Science and Business Media, 2013.

[2] Benhida, Chafiq and Gorkin, Pamela and Timotin, Dan, *Numerical ranges of \(C_0(N) \) contractions*, Integral Equations and Operator Theory, 70, 2011, 2, 265–279, 0378-620X, 47A12 (47A20), 2794391.

[3] Bercovici, Hari and Timotin, Dan, *The numerical range of a contraction with finite defect numbers*, Journal of Mathematical Analysis and Applications, 417, 2014, 1, 42–56, 0022-247X, 47A12 (30J05 47H09), 3191411.

[4] Choi, Man-Duen and Kribs, David W. and Życzkowski, Karol, *Higher-rank numerical ranges and compression problems*, Linear Algebra and its Applications, 418, 2006, 2-3, 828–8390024-3795, 15A60 (47A12 47N50), 2260232.

[5] Choi, Man-Duen and Li, Chi-Kwong, *Constrained unitary dilations and numerical ranges*, Journal of Operator Theory, 46, 2001, 2, 435–447, 0379-4024, 47A12 (15A60 47A20), 1870416.

[6] Dey, Pankaj and Mukherjee, Mithun, *Higher rank numerical ranges of normal operators and unitary dilations*, arXiv:2105.09877.

[7] Durszt, E., *On the numerical range of normal operators*, Acta Sci. Math. (Szeged), 25, 1964, 262–265, 0001-6969, 169054.

[8] Gaaya, Haykel, *On the higher rank numerical range of the shift operator*, Journal of Mathematical Sciences. Advances and Applications, 13, 2012, 1, 1–19, 0974-5750.

[9] Gau, Hwa-Long and Li, Chi-Kwong and Wu, Pei Yuan, *Higher-rank numerical ranges and dilations*, Journal of Operator Theory, 63, 2010, 1, 181–189, 0379-4024, 15A60 (47A12), 2606889.

[10] Gustafson, Karl E and Rao, Duggirala KM, *Numerical range*, 1–26, 1997, Springer.

[11] Halmos, Paul Richard, *A Hilbert space problem book*, 19, 2012, Springer Science & Business Media.

[12] Halmos, P. R., *Numerical ranges and normal dilations*, Acta Sci. Math. (Szeged), 25, 1964, 1–5, 0001-6969, 47.10, 171168.

[13] Li, Chi-Kwong, *C-numerical ranges and C-numerical radii*, Special Issue: The numerical range and numerical radius, Linear and Multilinear Algebra, 37, 1994, 1-3, 51–82, 0308-1087, 15A60 (15-02 47A12), 1313758.
[14] Li, Chi-Kwong and Poon, Yiu-Tung and Sze, Nung-Sing, *Condition for the higher rank numerical range to be non-empty*, Linear and Multilinear Algebra, 57, 2009, 4, 365–368, 0308-1087, 15A60 (81P68), 2522848.

[15] Li, Chi-Kwong and Sze, Nung-Sing, *Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations*, Proc. Amer. Math. Soc, 136, 2008, 9, 3013–3023, 0002-9939, 15A60 (15A24 81P68), 2407062.

[16] Li, Chi-Kwong and Poon, Yiu-Tung and Sze, Nung-Sing, *Higher rank numerical ranges and low rank perturbations of quantum channels*, Journal of Mathematical Analysis and Applications, 348, 2008, 2, 843–855, 0022-247X, 47A12 (47A55 47N50 81P68 94A40), 2446039.

[17] Martínez-Avendaño, Rubén A., *Higher-rank numerical range in infinite-dimensional Hilbert space*, Operators and Matrices, 2, 2008, 2, 249–264, 1846-3886.

[18] Nagy, B.S., Foias, C., Bercovici, H. and Kérchy, L., *Harmonic analysis of operators on Hilbert space*, Springer Science and Business Media, 2010.

[19] Westwick, R., *A theorem on numerical range*, Linear and Multilinear Algebra, 2, 1975, 311–315, 0308-1087, 47A10, 374936.

[20] Woerdeman, Hugo J., *The higher rank numerical range is convex*, Linear and Multilinear Algebra, 56, 2008, 1-2, 65–67, 0308-1087, 15A60 (15A24 47A12), 2378302.

Pankaj Dey, School of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram-695551, Kerala, India.

Email address: pankajdey15@iisertvm.ac.in

Mithun Mukherjee, School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S C Mullick Road, Jadavpur, Kolkata-700032, India.

Email address: mithun.mukherjee@iacs.res.in