High density lipoprotein/sphingosine-1-phosphate-induced cardioprotection: Role of STAT3 as part of the SAFE pathway

Miguel A. Frias, Sandrine Lecour, Richard W. James and Sarah Pedretti

High density lipoprotein (HDL) cholesterol has beneficial effects beyond its atheroprotective function in reverse cholesterol transport, including cardioprotection against ischemia reperfusion (IR) injuries. Two major constituents of HDL, namely the structural protein apolipoprotein A1 (apoAI) and the sphingolipid sphingosine-1-phosphate (S1P) appear to contribute to this cardioprotective effect via the activation of intrinsic prosurvival signaling pathways that still remain to be clarified.

Recently, a powerful prosurvival signaling pathway, termed the survivor activating factor enhancement (SAFE) pathway, which involves the activation of signal transducer and activator of transcription 3 (STAT3) and tumor necrosis factor α (TNF), has been shown to protect against ischemia-reperfusion injuries.

The present review summarizes the evidence for the roles of HDL and S1P in cardioprotection and discusses the signaling pathways that have been implicated. It thus provides support for our contention that S1P should be considered in potential formulations of reconstituted HDL (reHDL) that may be tested for cardioprotection against coronary artery disease via the activation of the SAFE pathway.

Introduction

Cardiovascular disease (CVD) is projected to be the leading cause of worldwide mortality by 2020, with patients mainly affected by ischemic heart disease.1,2

High density lipoprotein (HDL) is one of the three principal serum macromolecular protein-lipid complexes. Its quantitatively major components are phospholipids, cholesterol and the structural peptide, apolipoprotein (apo) A1, but there are numerous other lipids and peptides associated with the lipoprotein. Albeit of minor concentration, the latter appear to contribute to the functioning of HDL [a prime example being sphingosine-1-phosphate (S1P), the focus of this review]. As HDL exist as discrete spherical particles, the heterogeneous distribution of these minor lipid and peptide components across the particles is suggested to underlie functional heterogeneity between the particles. For several decades, the principal clinical and vascular interest of HDL has been their well-established strong negative correlation with risk of atherosclerotic disease.3 It is thought to reflect their ability to remove cholesterol from the blood vessel wall and transport it to the liver for biliary excretion. With the growing realization of the compositional heterogeneity of HDL allied to demonstrations of other, beneficial influences on the vasculature [anti-apoptotic, anti-inflammatory, anti-oxidant, anti-thrombictic, protection against ischemia reperfusion injury (IR)], it is presently thought that the lipoprotein plays a much more extensive role in cardioprotection.

New mechanisms involved in HDL-induced cardioprotection are presently a subject of particular interest, with recent studies suggesting that HDL are capable of influencing a number of intracellular prosurvival signaling pathways. Recently, a powerful prosurvival signaling pathway, named as the survivor activating factor enhancement (SAFE) pathway, has been demonstrated to protect the heart against stress situations.4 This pathway involves the activation of cytokine tumor necrosis factor α (TNF) and the transcription factor signal transducer and activator of transcription 3 (STAT3).5 The SAFE path was initially discovered as a protective signaling pathway activated by ischemic pre- and post-conditioning.6 Recent data strongly suggest that HDL, principally the constituent S1P, protect against injury during IR via the activation of the SAFE pathway.

The present review looks at the cardioprotective role of HDL with specific attention to its protective role against IR injury. The delineation of the main constituents of HDL involved in this effect (with particular emphasis on S1P) and the understanding of the prosurvival signaling pathways (in particular the SAFE pathway) activated by HDL and S1P may lead to the development of reconstituted HDL (reHDL) of defined composition as a novel therapy against ischemic heart disease.

HDL and Cardioprotection

The beneficial effect of HDL on IR was first reported in an isolated rat heart model where treatment with HDL, given during the ischemic period, reduced post-ischemic arrhythmias.7 Similarly, HDL perfused for 10 min immediately before the ischemic period improved left ventricular developed pressure...
(LVDP), decreased the coronary perfusion pressure (CPP) and creatine kinase (CK) release, concomitant with a decrease of the myocardial content of TNF and an increase in prostaglandins.10 In isolated cardiomyocytes, HDL limited the apoptosis of hypoxia-reoxygenation11 and doxorubicin-induced cardiotoxicity.12 HDL, given in vivo prior to the ischemic insult, improved the perfusion and reduced infarct size, neutrophil infiltration and apoptosis.13,14 In humans, HDL reduced the risk and extent of percutaneous coronary intervention (PCI)-related myocardial infarction and improved long-term outcome in patients undergoing elective PCI.15

Role of S1P and ApoA1 in HDL-Induced Cardioprotection

The complex role of HDL mirrors the complexity of its composition.4,16 Different components of HDL, including the structural peptide apoAI and the lipid component S1P, are thought to act as key players in HDL-induced cardioprotection4,17 after binding to their specific cell surface receptors, namely the receptor scavenger receptor B1 (apoAI) and the S1P receptor family (S1PR).

ApoAI and cardioprotection against IR. Several studies have reported that treatment with reHDL containing apoAI, apoAI Milano or apoAI mimetic protects the heart against IR injury.18-21 Perfusion of reHDL containing apoAI protects the isolated rat heart subjected to an IR insult, with a beneficial effect on myocardial function comparable to that of human HDL (increase in LVDP, decrease in CPP and CK release and modulation of TNF and prostaglandin release).18 Of note, post-ischemic treatment with reHDL containing apoAI showed lesser improvement in cardiac function than pre-ischemic treatment. This cardioprotective effect of apoAI was confirmed with reHDL containing apoAI mimetic peptide in both isolated rat and rabbit heart models of IR injury.19,21 In vivo, treatment with reHDL weekly for 4 weeks after permanent ligation of the left coronary artery prevented left ventricular remodeling and improved myocardial function after myocardial infarction.22 In addition to the protection of myocardial function, treatment with apoAI and apoAI mimetic peptide was associated with a reduction of the endothelial inflammatory response.21,23

An antiarrhythmic effect during IR was observed with reHDL in vivo, whereas apoAI alone did not significantly reduce the duration of ventricular tachycardia and ventricular fibrillation at reperfusion.24 This protective effect was inhibited by specific inhibitors of Akt, nitric oxide (NO) or extracellular signal-regulated kinase 1/2 (ERK1/2).24

The use of reHDL containing apoAI (15–80 mg/kg, but principally 80 mg/kg) has been extended to humans in limited pilot studies. Improvement in atherogenic parameters was observed. Thus, infusion of reHDL for a 5 week period provoked a change in atherosclerotic plaque morphology and/or reduction of plaque volume, as analyzed by intravascular ultrasound.25,26 A single injection of reHDL reduced the lipid content of the plaque after one week only, therefore suggesting that even a short treatment period with apoAI may improve plaque composition to limit plaque rupture and cardiovascular events.27 In addition to the direct effect of reHDL on the atherosclerotic plaque, an anti-inflammatory action was observed in diabetic patients.28

In patients with acute coronary syndrome, a single injection of reHDL (80 mg/kg) improved the blood lipid profile (increase in HDL and decrease in low density lipoprotein level), but failed to improve vascular function.29 However, the composition of reHDL was limited to apoAI alone; addition of S1P to reHDL may have enhanced a cardioprotective effect in these patients.

S1P and cardioprotection against IR. HDL acts as a major carrier for S1P in the plasma.30 This sphingolipid is particularly present in the subpopulation of HDL type 3 with a density between 1.12–1.21 g/ml.31 Recent data suggest that another HDL component, apolipoprotein M (ApoM), may regulate the content and the metabolism of S1P in HDL. Hence, the level of circulating S1P is strongly reduced in ApoM knockout mice and increased in ApoM overexpressing mice.32 Of note, S1P and apoM levels were significantly reduced in heterozygous carriers of mutations that lower HDL levels, but S1P and apoM levels were not affected in heterozygous carriers of mutations that increase HDL levels.33 Further investigations are required for the delineation of the exact impact of apoM on S1P metabolism in HDL particles.

The cardioprotective effect of S1P has been extensively studied over the last decade with the delineation of a cardioprotective role against IR for both extracellular and intracellular S1P. Extracellular S1P actions are mediated via five receptor subtypes (S1PR1–5) that belong to the family of G protein-coupled receptors. Only three are expressed in the heart (S1PR1–3).17,34 Although these receptors stimulate some pathways in common, they are not redundant.

Pre-incubation with S1P before an IR insult significantly reduced the infarct size of both in vitro and in vivo models.35–38 Similar findings were reported when S1P was given at the onset of reperfusion.39

The receptor subtypes S1P1 and S1P3 are thought to be involved in the protective effect of S1P as VPC23019 (S1P1 antagonist) abolished the protection with S1P.39 Surprisingly, infarct size induced by myocardial IR in vivo is not affected in S1P2 knockout mice or S1P3 knockout mice, but the infarct size doubles in S1P2 and S1P3 double receptor knockout mice.40

Intracellular S1P formation is mediated via two isoforms of sphingosine kinase (SK): SK1 and SK2. Of note, the intracellular formation of S1P may play a crucial role as a mediator of prosurvival signaling events. Both SK1 and SK2 seem to be required for cardioprotection by ischemic pre- and post-conditioning and infarct size is increased in SK2-deficient mice subjected to IR compared with their littermate controls.38,41-43 Correspondingly, activation of SK with the ganglioside GM-1 in mice enhanced cardioprotection against IR.38

There is some data from animal and human studies to suggest that S1P plays a role in the cardioprotective effect of HDL. Hence, HDL fails to protect in S1PR3-deficient mice subjected to left coronary artery ligation.13 In isolated cardiomyocytes, the actions of S1P receptor inhibitors indicate that protection of HDL...
against simulated oxidative injury is dependent on both S1PR1 and S1PR3. Similarly, HDL protects against apoptosis induced by doxorubicin via S1PR2. Compatible with these observations, an alteration of both S1P and HDL levels in plasma is observed in patients with coronary artery disease.

In order to evaluate the precise role of apoAI and S1P in the protective effects of HDL, we used reHDL containing only apoAI or apoAI supplemented with S1P. Our data demonstrate that S1P is essential to protect against the cardiotoxic effects of doxorubicin in vitro. In agreement with these data we have also recently observed that addition of S1P to classical reHDL (containing apoAI) improves the protection against ischemia reperfusion injury in a murine isolated heart model. Moreover, the cardioprotective capacity of reHDL containing both apoAI and S1P is comparable to that of native HDL.

HDL/S1P and Cell Survival Signaling

The direct actions of HDL on the signaling pathways in cardiac cells have been poorly investigated. One study showed that HDL protects cultured cardiomyocytes against hypoxia-reoxygenation damage via the activation of ERK1/2 and Akt. This protective effect occurred via S1PR1 and S1PR3, which are involved in the activation of ERK1/2 and Akt, respectively. No role was attributed to S1PR2 but this was not investigated. In neonatal cardiomyocytes, we have shown that HDL and S1P prevent apoptosis induced by doxorubicin via S1PR2 and subsequent activation of ERK1/2 and STAT3; p38 MAPK was not involved (Fig. 1). In neonatal cardiomyocytes, both HDL and S1P can induce the phosphorylation of connexin 43 (Cx43) via the protein kinase C (PKC), both being key players in cardioprotection.

In cardiac cells, S1P induces the phosphorylation of Akt and Bcl-2-associated death promoter (BAD) which are essential for its ability to enhance survival during hypoxia/reoxygenation in adult mouse cardiac myocytes. In neonatal rat cardiomyocytes, S1P and the SK activator GM-1 protects against hypoxia-associated cell death, whereas dimethylsphingosine, an inhibitor of sphingosine kinase (SK), enhanced cell death. Similarly S1P and GM-1 induce protection against ischemia-induced cardiac damage in mice. Protection is absent in the hearts of PKC-ε knockout mice. In the murine heart, Jin and colleagues also showed that PKC-ε is recruited by ischemic preconditioning with subsequent activation of SK1 that mediates cardioprotective effects.

In endothelial cells, HDL suppresses apoptosis. This protection is mediated via S1P3 and subsequent activation of intracellular signaling pathways involving ERK1/2, Akt and eNOS. Interestingly, ERK1/2 and Akt are both required for eNOS upregulation, mediated via S1P3. Phosphorylation induces the release of NO, which leads to vasodilation and protection of the endothelium. Interestingly, one of the first applications of reHDL containing S1P showed activation of ERK1/2 via S1P2

![Figure 1.](image-url)
and 3 and this activation played a role in endothelium tube formation.50

In conclusion, HDL and S1P can both activate intracellular signaling pathways that may be involved in cardioprotection. The precise mechanisms remain to be elucidated.

The SAFE Pathway and Cardioprotection against IR

An alternative protective signaling pathway activated by HDL/S1P is the survivor activating factor enhancement (SAFE) pathway. First described in 2009, the SAFE pathway involves the activation of the pro-inflammatory cytokine TNF and STAT3.5,6

TNF and cardioprotection. Generally considered cytotoxic, activation of TNF during IR has proved to be paradoxically cardioprotective in a dose- and time-dependent manner. Hence, TNF protects against IR in a dose-dependent manner. Small amounts of exogenous TNF (0.5 ng/ml, in vitro) given prior to IR enhanced cell survival while higher concentrations (10–20 ng/ml, in vitro) were cytotoxic.37,51,52 Also, TNF is an important endogenous cardioprotectant released by ischemic pre- and post-conditioning7,8 and many other pharmacological agents such as bradykinin, opioids, ethanolamine, melatonin and resveratrol (for a review see refs. 53 and 54). This cardioprotective effect appears to be mediated by TNF produced from the cardiomyocytes as TNF cardiomyocyte specific knockout mice were resistant to post-conditioning.55 Low doses of exogenous TNF, given prior to the ischemic insult or at the onset of reperfusion, confer cardioprotection by modulation of free radical production and inactivation of pro-apoptotic proteins such as Bad, after binding to its specific receptors.7,52,56 Two TNF receptor isoforms have been identified in the heart, TNF receptor type 1 (TNFR1) and TNF receptor type 2 (TNFR2). Interestingly, exogenous TNF confers cardioprotection in TNFR1 knockout mice but fails to protect TNFR2 knockout mice, therefore suggesting that its cardioprotective effect is mediated via the activation of TNFR2.8

In addition, mice with cardiac-restricted overexpression of TNF receptor-associated factor 2 (TRAF2) are protected from IR, therefore suggesting that TNF confers cardioprotection via TRAF2 as a downstream target of TNFR2.57 TRAF2 is capable of activating the formation of S1P via SK158 (see Fig. 2). The protective effect of TNF is inhibited in the presence of the sphingolipid pathway inhibitor, N-oleoylethanolamine, therefore suggesting that S1P acts as a downstream target of TNF/TNFR2/TRAF2 for cardioprotection.57

JAK-STAT3 and cardioprotection. Once TNF binds to its specific receptors, another signaling path, the Janus kinase (JAK)-STAT3 pathway, can be activated. JAKs are a family of tyrosine

Figure 2. HDL/S1P-induced activation of the SAFE pathway. Extracellular sphingosine-1 phosphate (S1P) activates the SAFE pathway that involves TNF and STAT3. The activation of STAT3 may occur after activation of ERK 1/2 following the binding to its specific receptor or via the activation of TNF receptor 2. Activation of STAT3 downstream of TNFR2 remains unclear but may involve the activation of intracellular S1P downstream of the activation of TRAF2 and sphingosine kinase 1. Abbreviations as described in the text.
kinases that are associated with the cytoplasmic domain of cyto-
kine and growth factor receptors (including TNFR and gp130) and
play a major role in transducing signals from the cytosol to the
nucleus (for a review, see refs. 59 and 60). Upon activation of
the receptors, JAK2 phosphorylates and creates a docking site for
STAT3 proteins that, in turn, are activated by phosphoryla-
tion (Fig. 2). Tyrosine phosphorylation of STAT3 enables it to
homodimerize and translocate to the nucleus. Serine phospha-
rylation of STAT3 is required for its translocation to the
mitochondria where it regulates the electron transport chain.61-64

Neither TNF receptor contains protein tyrosine kinase activ-
ity or any motif suggesting a biochemical activity but TNF is
paradoxically capable to promote induction of specific tyrosine
phosphorylation.65 While TNFR1 can directly interact with and
form signaling complexes with JAK kinases, the interaction
between TNFR2 and JAK2 is still unclear.65 In fact, this inter-
action may involve the activation of SK1 and intracellular S1P.
Following the binding of TNF to TNFR2, activation of TRAF2
can upregulate SK1,66 which in turn, may catalyze the formation
of intracellular S1P and subsequent activation of JAK-STAT3.

Activation of the SAFE pathway with TNF-JAK-STAT3
signaling is required for the cardioprotective effect of ischemic
pre- and post-conditioning as TNF knockout or cardiomyocyte
STAT3 knockout abolishes protection with a conditioning
stimulus.67 It should be noted that activation of the JAK-
STAT3 pathway also occurs with many other cardioprotective
agents such as melatonin, resveratrol, erythropoietin, cannabinoid
agonists, insulin and prostaglandins.53,68 More recently, a link
between HDL and JAK-STAT3 has also been unveiled.69

HDL/S1P and the SAFE Pathway for Cardioprotection

HDL/S1P and TNF signaling. Using an isolated heart model,
our recent data suggest that TNF activation is required in HDL-
induced cardioprotection as HDL failed to protect against
ischemia-reperfusion in TNF knockout mice.69 If TNF seems
to require the presence of intracellular S1P for cardioprotection,
exogenous S1P paradoxically requires the activation of TNF
signaling for cardioprotection as S1P failed to protect against IR
in TNF-deficient mice (see Fig. 3). The mechanisms involved
in S1P-induced activation of TNF signaling remain unclear but
may involve STAT3 activation following S1P receptor binding.70
In cancer cells, very recent data suggest that STAT3 may also
promote TNFR2 activation,71 therefore suggesting that exogenous
activation of S1P may trigger the SAFE pathway via TNFR2,
following the activation of STAT3 (see Fig. 2). Stimulation of
TNFR2 will then mobilize TRAF2 that, in turn, activates SK1
and the endogenous sphingolipid pathway to promote JAK-
STAT3 activation and downstream prosurvival signaling cascades.

HDL/S1P and JAK-STAT3 signaling. Our recent data
support a link between HDL and JAK-STAT3 signaling as
human HDL was not able to confer cardioprotection in the
isolated STAT3-deficient mouse heart subjected to an IR insult.69
In neonatal rat ventricular cardiomyocytes, human HDL, S1P or
reHDL containing S1P induced a time- and concentration-
dependent serine and tyrosine phosphorylation of STAT3 as well
as an increase in STAT3 binding to DNA.70 In contrast, reHDL
without S1P (containing apoAI only) had a weaker effect on
both STAT3 phosphorylation and DNA-binding. Both HDL
and S1P induced STAT3 phosphorylation principally through the
receptor S1P2, although, following treatment with HDL, a
possible involvement of an additional receptor with a lesser
impact may occur. Activation of STAT3 is also required in the
cardioprotective effect of HDL and S1P against doxorubicin-
induced apoptosis12 (see Fig. 1). Ethanolamine, a downstream
product of S1P, confers cardioprotection via the activation of
STAT3.72 In an ex vivo mouse model of global ischemia,
post-conditioning with S1P (10 nM) failed to protect against IR
in STAT3-deficient mice.73 Interestingly, S1P leads to a time-
dependent increase in serine phosphorylation of STAT3 in both
nucleus and mitochondria.73 The activation of STAT3 with

![Figure 3](https://via.placeholder.com/150)

Figure 3. S1P and TNF for cardioprotection. In the isolated mouse heart model, exogenous S1P fails to protect TNF knockout mice against an IR insult (A), therefore suggesting that exogenous S1P requires TNF signaling for cardioprotection. In contrast, exogenous TNF fails to protect isolated rat heart subjected to IR in the presence of the inhibitor of the sphingolipid pathway (NOE, N-oleoylethanolamine) (B), therefore suggesting that intracellular formation of S1P is required in TNF-induced cardioprotection. Abbreviations as described in the text. *p < 0.05 vs. control group. Adapted from references 37 and 73.
exogenous S1P in rat intestinal smooth muscle cells exerts a local proinflammatory effect. Other studies suggest that STAT3 plays an important role in cancer and in prostate cancer cells. A link between STAT3 and HDL has been reported as both HDL and S1P increase serine phosphorylation of STAT3 (but not tyrosine) via S1P2 and S1P3 receptors. These data strongly support the role of STAT3 as a downstream target of HDL/S1P.

HDL/S1P and downstream targets of the SAFE pathway. In the context of cardioprotection, mitochondria appear to be the main downstream target of the SAFE pathway as mitochondrial activated STAT3 contributes to cardioprotection by stimulation of respiration and inhibition of mitochondrial permeability transition pore (mPTP) opening. In isolated cardiomyocytes, the protective effect of HDL or S1P against simulated ischemia was associated with an activation of mitochondrial STAT3 and the inhibition of mPTP opening. In contrast, STAT3-deficient mice were not protected by HDL or S1P with, likewise, failure to inhibit mPTP opening.

Another important mediator that may be stimulated by HDL/S1P downstream of the SAFE pathway is Cx43. This major myocardial gap junction protein is responsible for rapid and synchronous transmission of the cardiac action potential. Mitochondrial Cx43 is known as a key element of the signal transduction cascade affording protection by ischemic preconditioning (IPC). In neonatal rat cardiomyocytes, short-term treatment with HDL or S1P induces phosphorylation of Cx43. Modulation of Cx43 could be dependent on the JAK-STAT3 pathway. Other targets of STAT3 have been identified including pro- and anti-apoptotic proteins. In a mouse ex vivo model of global ischemia, post-conditioning with S1P protected the heart and simultaneously induced nuclear phosphorylation of FOXO-1. This was not observed in STAT3-deficient mice. FOXO-1 is a pro-apoptotic protein known to enhance hypertrophy, oxidative stress and IR injury in its non-phosphorylated (active) form. Caspase-3, responsible for the cleavage of key cellular proteins leading to the typical morphological changes observed in cells undergoing apoptosis, could be a downstream target of HDL/S1P-induced STAT3 activation. Indeed, in a rat model of left anterior descending coronary artery ligation, inhibition of STAT3 results in an increase in caspase-3 activity while in HUVEC cells submitted to apoptosis induced by growth factor deprivation, HDL prevented activation of caspase-3. BAD and glycogen synthase kinase 3β (GSK3β) are potential downstream targets of the SAFE pathway but their implication in HDL/S1P-induced cardioprotection needs to be clarified.

Similarly, the pro-apoptotic Bax that promotes mitochondrial outer membrane permeabilization and release of cytochrome c into the cytosol may also be a downstream target of HDL. S1P is known to suppress cellular levels of Bax and STAT3 has been reported to regulate Bax protein levels. Nitric oxide (NO) is another possible downstream target. The JAK-STAT3 pathway can increase inducible NO synthase protein and activity. In an in vivo mouse model of coronary artery ligation, HDL- and S1P-mediated cardioprotection is dependent on NO. This effect may be mediated via SK1, which is known to alter the expression and production of NO.

Interaction of the SAFE Pathway with Other Cell Survival Signaling

In ventricular cardiomyocytes ERK1/2, Rho kinase (ROCK), phospholipase C (PLC) and Src were involved in the STAT3 activation promoted by HDL or S1P. Neither p38 MAPK, nor phosphatidylinositol 3-kinase (PI3K) or PKC were implicated. In the isolated mouse heart model, ischemic post-conditioning with S1P induced STAT3 activation and this effect was decreased in presence of a PI3K/Akt inhibitor (wortmannin). Accordingly, STAT3 knockout mice failed to increase Akt phosphorylation.

Several studies exploring the interaction between JAK-STAT3 and PI3K/Akt have provided inconsistent results that may, in part, be due to different models and experimental systems. Some studies report a dual interaction between JAK-STAT3 and PI3K/Akt: a reduction in Akt phosphorylation occurs in the presence of a JAK-STAT3 pathway inhibitor (AG490) and vice versa. In the context of cardioprotection, mitochondria appear to be the main downstream target of the SAFE pathway as mitochondrial activated STAT3 contributes to cardioprotection by stimulation of respiration and inhibition of mitochondrial permeability transition pore (mPTP) opening. The interaction of JAK-STAT3 pathway with GSK3β, a downstream target of Akt, is also controversial. Some studies suggest downregulation of GSK3β phosphorylation in the presence of an inhibitor of STAT3 while other studies do not support an involvement for GSK3β as a downstream target of STAT3. Additional studies are required to explore the exact interaction between Akt and STAT3 in the context of HDL-induced cardioprotection.

Conclusion

Strong evidence, both in clinical and in experimental settings, underlines the key role of S1P in HDL-induced cardioprotection against coronary artery disease.

Evidently it focuses attention on the HDL-S1P association, and how this could affect the cardioprotective influence of the lipoprotein. It is known that HDL is the principal carrier of the lipid, which, due to its hydrophobic nature, cannot circulate freely in serum. It has also been suggested that S1P is limited to a subfraction of HDL particles, reflecting the HDL-S1P association, mitochondrial activation promoted by HDL or S1P.

www.landesbioscience.com JAK-STAT 97
This protective effect is mediated, at least in part, via the activation of the powerful prosurvival signaling pathway that involves TNF and STAT3. Further studies are still required in order to understand the exact signaling events involved in this protective signaling cascade. This review also provides persuasive evidence that modification of the basal composition of reHDL, by addition of S1P, would improve their therapeutic potential against coronary artery disease and other stress-related pathologies.

References

1. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lou SASF. INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364:937-52; PMID:15364185; http://dx.doi.org/10.1016/S0140-6736(04)17018-9

2. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease. Lancet 1997; 349:1456-62; PMID:9164317; http://dx.doi.org/10.1016/S0140-6736(96)60749-8

3. Nofer JR, Krehel B, Fohrer M, Lewkow B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 1996; 121:1-12; PMID:8678914; http://dx.doi.org/10.1016/0021-9150(96)90076-X

4. Lecour JL, Thielmeier G, van der Giet M, Chia J, Schobre O, et al. High-density lipoprotein stimulates myocardial perfusion in vivo. Circulation 2004; 110:3355-9; PMID:1545521; http://dx.doi.org/10.1161/01.CIR.0000147827.43912.AE

5. Santell KJ, Elsbauan K, Peul P, Elunger-Shulz M, Bode C, Graler MH, et al. Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res Cardioiol 2010; 105:821-32; PMID:20562276; http://dx.doi.org/10.1007/s00422-009-0561-7

6. Lecour JL. Multiple protective pathways against reperfusion injury: a SAFE path without Akton? J Mol Cell Cardiol 2009; 46:607-9; PMID:19318238; http://dx.doi.org/10.1016/j.yjmcc.2009.01.003

7. Lecour JL. Activation of the protective Survivin Activating Factor Enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 2009; 47:32-40; PMID:19344728; http://dx.doi.org/10.1016/j.yjmcc.2009.03.019

8. Lecour JL, Salem Ham, Deuchar GA, Somers S, Lacerda L, Huisamen B, et al. Pharmacological preconditioning with tumor necrosis factor-alpha induces activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 2005; 112:391-8; PMID:15654482; http://dx.doi.org/10.1161/01.CIR.0000195242.89771.92

9. Mochnick S, Okumura M, Tanaka F, Sato T, Kagami A, Tada N, et al. Ischemia-reperfusion arrhythmias and lipidic effect of human high- and low-density lipoproteins on reperfusion arrhythmias. Cardiovasc Drugs Ther 1991; 5(Suppl 2):269-76; PMID:1908676; http://dx.doi.org/10.1007/BF00547448

10. Calabresi L, Rossoni G, Gomaraschi M, Sirtori CR, et al. Association between plasma HDL-cholesterol and HDL-apolipoprotein A-I levels of HDL-cholesterol and apolipoproteins. Eur Heart J 2004; 110:3355-9; PMID:1545521; http://dx.doi.org/10.1016/0140-6736(96)90076-X

11. Tao R, Hoover HE, Hosono N, Kalinowsky M, Alano CC, Kailin JS, et al. High-density lipoprotein receptors determine adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated sphingosine 1-phosphate. Am J Physiol Heart Circ Physiol 2010; 298:H1022-8; PMID:20061542; http://dx.doi.org/10.1152/ajpheart.00902.2009

12. Fias MA, Lang U, Gerber-Wicht C, James RW. Native and reconstituted HDL protect cardiomyocytes from doxorubicin-induced apoptosis. Cardiovasc Res 2010; 85:118-26; PMID:19700468; http://dx.doi.org/10.1093/eurheartj/epv289

13. Thielmeier G, Schmidt C, Herrmann J, Keul P, Schäfers M, Herrigot I, et al. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 2006; 114:1403-9; PMID:16982942; http://dx.doi.org/10.1161/CIRCULATIONAHA.105.607135

14. Lewkow B, Herrmann S, Thielmeier G, van der Giet M, Chia J, Schobre O, et al. High-density lipoprotein stimulates myocardial perfusion in vivo. Circulation 2004; 110:3355-9; PMID:1545521; http://dx.doi.org/10.1161/01.CIR.0000147827.43912.AE

15. Santell KJ, Elsbauan K, Peul P, Elunger-Shulz M, Bode C, Graler MH, et al. Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res Cardioiol 2010; 105:821-32; PMID:20562276; http://dx.doi.org/10.1007/s00422-009-0561-7

Acknowledgments

The authors are funded, in part, by the Swiss South African Joint Research Programme (JRP 16) to S.L. and R.W.J., the Swiss National Science Foundation to R.W.J. (SNSF 310030-135221), to M.A.F. (SNSF PBGEP3-125930), the National Research Foundation South Africa, the South African Medical Research Council to S.L. and the University of Cape Town to S.P.
33. Karuna R, Park R, Othman A, Holleboom AG, Motazacker MM, Satter I, et al. Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism. Atherosclerosis 2011; 219:855-63; PMID:21946699; http://dx.doi.org/10.1016/j.atherosclerosis.2011.08.049

34. Keul P, Sartier K, Levkau B. HDL and its sphingolipids—new players in cardioprotection. Heart Fail Rev 2007; 12:301-6; PMID:17554629; http://dx.doi.org/10.1007/s10741-007-9038-x

35. Zhang J, Hongbo N, Goetzl EJ, Chatterjee K, Karliner JS, Gray MO. Signals from type 1 sphingosine-1-phosphate receptors enhance adult mouse cardiac mitochondrial respiration during hypoxia. Am J Physiol Heart Circ Physiol 2007; 293:H3150-8; PMID:17766476; http://dx.doi.org/10.1152/ajpheart.00587.2006

36. Veesey DA, Li L, Kelley M, Zhang J, Karliner JS. Sphingosine can pre- and post-condition the heart and utilizes a different mechanism from sphingosine-1-phosphate. J Biochem Mol Toxicol 2008; 22:113-8; PMID:18418901; http://dx.doi.org/10.1002/jbt.20227

37. Leonc S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN. Identification of a novel role for sphingolipid signaling in TFN alpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol 2002; 34:509-18; PMID:12056855; http://dx.doi.org/10.1016/S0022-5193(02)00233-3

38. Jin ZQ, Zhang J, Hongbo N, Moehly-Rasen D, Messing RO, et al. Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in wild-type and PKC epsilon knockout mouse hearts. Am J Physiol Heart Circ Physiol 2002; 282:H1970-7; PMID:12022757

39. Veesey DA, Li L, Hongbo N, Karliner JS. Sphingosine-1-phosphate is an important endogenous cardioprotectant released by ischemic pre- and postconditioning. Am J Physiol Heart Circ Physiol 2009; 297:H1429-35; PMID:19711857; http://dx.doi.org/10.1152/ajpheart.00587.2006

40. Lacerda L, McCarthy J, Mungly SF, Lynn EG, Sack MN, Opie LH, et al. TNFalpha protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol 2010; 105:751-62; PMID:2063007; http://dx.doi.org/10.1007/s00395-010-0113-4

41. Deusch G, Zhang J, Hongbo N, Sack MN. Toll-like receptor 4 activation mediates S1P-dependent vasorelaxation through the lysophospholipid receptor S1P3. J Clin Invest 2004; 113:569-81; PMID:14965666

42. Matsu T, Miura S, Kawamura A, Uehara Y, Rye KA, Saku K. Newly developed reconstituted high-density lipoprotein containing sphingosine-1-phosphate induces endothelial cell ruffle formation. Atherosclerosis 2007; 194:159-68; PMID:17118570; http://dx.doi.org/10.1016/j.atherosclerosis.2007.02.012

43. Leonc S, Opie LH, Zhang J. When are pro-inflammatory cytokines SAFE in heart failure? Eur J Heart J 2011; 32:680-5; PMID:21303780; http://dx.doi.org/10.1093/eurheartj/ehq484

44. Hausenloy DJ, Lecer L, Yellow DM. Reperfusion injury salvage kinase and survivor activating factor expression in heart failure. Heart Fail Rev 2012; 19:17-52; PMID:22181021; http://dx.doi.org/10.1007/s10741-011-9568-y

45. Nofer JR, Levkau B, Wolinska I, Junker R, Fobker M, et al. Adaptive resistance to TNFalpha in neonatal rat cardiac myocytes. J Mol Cell Cardiol 2009; 46:32-41; PMID:19131594; http://dx.doi.org/10.1016/j.yjmcc.2009.04.001

46. Szczepanek K, Chen Q, Derecka M, Salloum FN, Zhang Q, Szlag M, et al. Mitochondrial-targeted S1P mimics ischemic preconditioning in vitro and in vivo. Am J Physiol Heart Circ Physiol 2011; 300:H1337-43; PMID:21946658; http://dx.doi.org/10.1152/ajpheart.00706.2010

47. Babawale M, Salloum FN, Zhang Q, Szlag M, Morel S, Frias MA, Rosker C, James RW, Rohr S, Kurdi M, Booz GW. JAK redux: a second look at the regulation and role of JAKs in the heart. Am J Physiol Heart Circ Physiol 2010; 299:H1970-7; PMID:20938668; http://dx.doi.org/10.1152/ajpheart.00587.2006

48. Burchfield JS, Dong JW, Sakata Y, Gao F, Tzeng HP, Chung DB. Induction of Jak/STAT signaling by activation of the type II TNF receptor. J Immunol 1998; 160:2742-50; PMID:9510175

49. Smith RM, Suleman N, McCarthy J, Sack MN. Classical ischemic but not pharmacologic preconditioning is abrogated following genetic ablation of the TNFalpha gene. Cardiovasc Res 2002; 52:553-60; PMID:1216062; http://dx.doi.org/10.1016/S0008-6363(02)00283-3

50. Smith RM, Suleman N, Lacerda L, Opie LH, Alila S, Chien KR, et al. Genetic depletion of cardiac myocyte S1P3 abolishes classical preconditioning. Cardiovasc Res 2004; 65:631-6; PMID:15306216; http://dx.doi.org/10.1016/j.cardiores.2004.06.019

51. Lamont KT, Somers S, Lacerda L, Opie LH, Lecour S. Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection. J Pineal Res 2011; 50:374-80; PMID:21342247; http://dx.doi.org/10.1111/j.1600-079X.2010.00853.x

52. Frias MA, Somers S, Othman A, Lacerda L, James RW, Lecour S. HDL protects against lethal reperfusion injury via the SAFE pathway. SA Heart 2010; 7:202.

53. Frias MA, James RW, Gerbes-Wicht C, Lang U. Native and reconstituted HDL activate S3 in ventricular cardiomycocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovasc Res 2009; 82:313-23; PMID:19131562; http://dx.doi.org/10.1093/cvr/cvp024

54. Hamilton KE, Simmonds JG, Ding S, Van Landeghem L, Lund PK. Cytokine induction of tumor necrosis factor receptor 2 is mediated by S1P3 in colon cancer cells. Mol Cancer Res 2011; 9:1718-31; PMID:21994466; http://dx.doi.org/10.1158/1541-7786.MCR-10-2610

55. Kelly RF, Lamont KT, Somers S, Hacking D, Lacerda L, Thomas P, et al. Ethanolamine is a novel S3A2-dependent cardioprotective agent. Basic Res Cardiol 2010; 105:763-70; PMID:20938668; http://dx.doi.org/10.1007/s00395-010-0125-0

56. Lamont KT, Somers S, Hacking D, Lacerda L, Thomas P, et al. Ethanolamine is a novel S3A2-dependent cardioprotective agent. Basic Res Cardiol 2010; 105:763-70; PMID:20938668; http://dx.doi.org/10.1007/s00395-010-0125-0

57. Aoki T, Ono M, Sato K, Hashimoto K, Ohtake K, et al. Dual action of sphingosine 1-phosphate in eliciting proinflammatory responses in primary cultured rat intestinal smooth muscle cells. Cell Signal 2010; 22:1727-33; PMID:20624458; http://dx.doi.org/10.1016/j.cellsig.2010.06.013
75. Sekine Y, Suzuki K, Remaley AT. HDL and sphingosine-1-phosphate activate stat3 in prostate cancer DU145 cells via ERK1/2 and S1P receptors, and promote cell migration and invasion. Prostate 2011; 71:609-9; PMID:20979115; http://dx.doi.org/10.1002/pros.21285

76. Hacking D, Kelly RF, Yellon DM, Opie LH, Hausenloy DJ, Lecour S. Sphingosine-1-phosphate mediates cardioprotection by modulation. SA Heart J 2010; 7:203.

77. Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-H Hermoso M. The complex of ciliary neurotrophic factor-ciliary neurotrophic factor receptor alpha up-regulates connexin43 and intercellular coupling in astrocytes via the Janus tyrosine kinase/signal transducer and activator of transcription pathway. Mol Biol Cell 2004; 15:4761-74; PMID:15342787; http://dx.doi.org/10.1093/mbc/e04-03-0271

78. Osog MA, Bernier SM, Bates DC, Chatterjee B, Lo CW, Naas CC. The complex of ciliary neurotrophic factor-ciliary neurotrophic factor receptor alpha up-regulates connexin43 and intercellular coupling in astrocytes via the Janus tyrosine kinase/signal transducer and activator of transcription pathway. Mol Biol Cell 2004; 15:4761-74; PMID:15342787; http://dx.doi.org/10.1093/mbc/e04-03-0271

79. Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yturry KE. FoxO3a transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem 2011; 286:7468-78; PMID:21517981; http://dx.doi.org/10.1074/jbc.M110.179242

80. Ni YG, Berenji K, Wang N, Oh M, Sachan N, Dey A, et al. Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 2004; 110:11507-12; PMID:15002027; http://dx.doi.org/10.1073/pnas.96.20.11507

81. Negoro S, Kuniada K, Tone E, Funamoto M, Oh H, Kishimoto T, et al. Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res 2000; 44:444-53; PMID:11612837; http://dx.doi.org/10.1016/s0002-7142-3

82. Pedretti S, Raddatz E. STAT3 interacts with nuclear GSK3beta and cytoprotective RISK pathway and stabilizes rhythm in the anoxic-reoxygenated embryonic heart. Basic Res Cardiol 2011; 106:55-69; PMID:21279516; http://dx.doi.org/10.1007/s00395-011-0152-5

83. Xuan YT, Guo Y, Han H, Zhu Y, Bolli R. An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci U S A 2001; 98:9050-5; PMID:11484174; http://dx.doi.org/10.1073/pnas.161283798

84. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, et al. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci U S A 1999; 96:11507-12; PMID:10500207; http://dx.doi.org/10.1073/pnas.96.20.11507

85. Nagay D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, Ling EA, et al. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 2010; 166:132-44; PMID:20363221; http://dx.doi.org/10.1016/j.neuroscience.2009.12.020

86. Tamareille S, Mateus V, Ghoboura N, Jeanneteau J, Crouè A, Henrotin D, et al. RISK and SAFE signaling pathway interactions in remote limb ischemic preconditioning in combination with local ischemic preconditioning. Basic Res Cardiol 2011; 106:1529-39; PMID:21833651; http://dx.doi.org/10.1007/s00395-011-0210-a

87. Suleman N, Somers S, Smith R, Opie LH, Lecour SC. Dual activation of STAT-3 and Akt is required during the trigger phase of ischemic preconditioning. Cardiovasc Res 2008; 79:127-33; PMID:18339648; http://dx.doi.org/10.1093/cvr/cvn067

88. Lu Y, Zhou J, Xu C, Lin H, Xiao J, Wang Z, et al. FOXO transcription factor-ciliary neurotrophic factor receptor alpha up-regulates connexin43 and intercellular coupling in astrocytes via the Janus tyrosine kinase/signal transducer and activator of transcription pathway. Mol Biol Cell 2008; 19:4714-24; PMID:18445159; http://dx.doi.org/10.1105/00100129389

89. Goodman MD, Koch SE, Fuller-Bierer GA, Butler KL. Regulating RISK: a role for JAK-STAT signaling in postconditioning? Am J Physiol Heart Circ Physiol 2008; 295:H1664-6; PMID:18708442; http://dx.doi.org/10.1152/ajpheart.00692.2008

90. Fuglesteg BN, Suleman N, Tiron C, Kanhera T, Lacerda I, Andreasen TV, et al. Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion. Basic Res Cardiol 2008; 103:444-53; PMID:18500485; http://dx.doi.org/10.1007/s00395-008-0728-x

91. Gross ER, Hou AK, Gross GJ. The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3 beta. Am J Physiol Heart Circ Physiol 2006; 291:H827-34; PMID:16517948; http://dx.doi.org/10.1152/ajpheart.00033.2006

92. Zhang X, Shan P, Alam J, Fu XY, Lee PJ. Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem 2005; 280:8714-21; PMID:15590660; http://dx.doi.org/10.1074/jbc.M408092200

93. Smith CC, Dixon RA, Wynne AM, Theodorou L, Ong SG, Subrayan S, et al. Lepin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol 2010; 299:H1265-70; PMID:20656889; http://dx.doi.org/10.1152/ajpheart.00092.2010