Supporting Information for:

Cortical composition hierarchy driven by spine proportion economical maximization or wire volume minimization

Jan Karbowski

Institute of Applied Mathematics and Mechanics,
University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland;

Email: jkarbowski@mimuw.edu.pl
Supporting Figure

Figure A. (see below)
Euclidean distance ED for heavy-tailed distributions of spine sizes as a function of exponent γ_2 for spine economical maximization. (A) ED for Log-logistic distribution with different values of β. (B) ED for Log-normal distribution with different values of σ. In both panels $\theta = 0.321 \, \mu m^3$.
THEORETICAL MODELS

Below, the details of calculations are provided for the three principles considered in the main text.

1 Wire minimization principle.

1.1 The system of basic equations for optimal solution.

Explicit form of the fitness function.

The explicit dependence of the fitness function F_w on the three parameters $x, y, \overline{\pi}$ is given as

$$F_w = \frac{rx + y}{\overline{\pi}^\gamma} + \lambda_1 \left(x + y + Pxy + \frac{a(Pxy)^{2/3}}{\overline{\pi}^{2/3}} + \frac{a(Pxy)^{5/3}}{\overline{\pi}^{2/3}} - 1 \right),$$

where the parameter $a = (3\pi^2/256)^{1/3}d_{\alpha S}^2 = 0.352 \, \mu m^2$.

The basic optimal equations.

The optimal values of fractional volumes of axons and dendrites x, y, average spine volume $\overline{\pi}$, and the Lagrange multiplier λ_1 are found by differentiating the benefit-cost function F_w with respect to $x, y, \overline{\pi}$, and λ_1, and requiring that

$$\partial F_w/\partial x = \partial F_w/\partial y = \partial F_w/\partial \overline{\pi} = \partial F_w/\partial \lambda_1 = 0,$$

which corresponds to a critical point of F_w. Consequently, we obtain the following set of four nonlinear equations:
\[r + \lambda_1 \pi^{\gamma_1} \left(1 + P y + \frac{a}{3} \left(\frac{P^2 y^2}{x a^2} \right)^{1/3} [2 + 5Pxy] \right) = 0, \]

(2)

\[1 + \lambda_1 \pi^{\gamma_1} \left(1 + P x + \frac{a}{3} \left(\frac{P^2 x^2}{y a^2} \right)^{1/3} [2 + 5Pxy] \right) = 0, \]

(3)

\[\gamma_1 (r x + y) = \lambda_1 \pi^{\gamma_1 + 1} \left[\frac{\partial P}{\partial \pi} \left(xy + \frac{a(xy)^{2/3} (2 + 5Pxy)}{3P^{1/3} \pi^{2/3}} - \frac{2a(Pxy)^{2/3}}{3\pi^{5/3}} (1 + Pxy) \right) \right] \]

(4)

and

\[x + y + Pxy + \frac{a(Pxy)^{2/3}}{\pi^{2/3}} + \frac{a(Pxy)^{5/3}}{\pi^{2/3}} = 1. \]

(5)

Reduction of dimensionality in the system of basic equations.

Next, we show that we can decrease the number of basic equations from 4 to 3. First, we can get rid of \(\lambda_1 \), since it always appears in the first power. The parameter \(\lambda_1 \) can be determined from Eq. (3) and it reads:
\[\lambda_1 = -\frac{1}{\pi^1 \left(1 + P x + \frac{a}{3} \left(\frac{p^2 x^2}{\pi y}\right)^{1/3} \left[2 + 5Pxy\right]\right)}. \] (6)

Next, we can insert \(\lambda_1 \) into Eqs. (2) and (4). As a result we obtain Eqs. (29) and (30) in the main text.

1.2 Proof of the local minimum for optimal solution related to wire minimization.

Let us introduce the following notation: \(x_1 \equiv x, x_2 \equiv y, x_3 \equiv \pi \). Then the function \(F_w \) (Eq. 1) can be rewritten as:

\[F_w = \frac{r x_1 + x_2}{x_3} + \lambda_1 g(x_1, x_2, x_3), \] (7)

where \(g(x_1, x_2, x_3) \) denotes the constraint term present in Eq. (1). Let us define partial derivatives: \(F_{ij} = \frac{\partial^2 F_w}{\partial x_i \partial x_j} \) and \(g_i = \frac{\partial g}{\partial x_i} \), which are determined at the critical point represented by optimal values of \(x_1, x_2, x_3 \). Using these definitions we can construct a matrix called bordered Hessian for our constraint optimization problem as [2]:

\[\begin{bmatrix}
 0 & g_1 & g_2 & g_3 \\
 g_1 & F_{11} & F_{12} & F_{13} \\
 g_2 & F_{21} & F_{22} & F_{23} \\
 g_3 & F_{31} & F_{32} & F_{33}
\end{bmatrix} \]

This is a symmetric matrix, i.e. \(F_{ij} = F_{ji} \).
A sufficient condition for F_w to have a local minimum at the critical point represented by the optimal values x_1, x_2, x_3 is that two principal minors, i.e. determinants of the upper-left sub-matrices 3x3 (called D_1) and 4x4 (determinant of the entire bordered Hessian called D_2), have negative signs [2]. The explicit forms of these determinants are as follows:

$$D_1 = -g_1^2 F_{22} - g_2^2 F_{11} + g_1 g_2 (F_{12} + F_{21})$$ \hspace{1cm} (8)$$

and

$$D_2 = g_1^2 (F_{23}^2 - F_{22} F_{33}) + g_2^2 (F_{13}^2 - F_{11} F_{33}) + g_3^2 (F_{12} - F_{11} F_{22}) + 2 g_1 g_2 (F_{12} F_{33} - F_{13} F_{23}) + 2 g_1 g_3 (F_{13} F_{22} - F_{12} F_{23}) + 2 g_2 g_3 (F_{11} F_{23} - F_{12} F_{13})$$ \hspace{1cm} (9)$$

Exact numerical values of the minors D_1 and D_2 are presented in Table A (below) together with the values of F_{ij}. These results indicate that indeed we have local minima at the critical points.
Table A: “Wire minimization” approach. The numerical values of the elements of the bordered Hessian and principal minors for each type of the spine volume distribution.

Spine size distribution	θ	F_{11}	F_{12}	F_{22}	F_{13}	F_{23}	F_{33}	D_1	D_2
Exponential	0.100 (ED)	0.117	-0.905	0.162	-0.196	-0.230	2.476	-5.529	-13.69
	0.100 (MD)	0.107	-0.890	0.174	-0.185	-0.236	2.433	-5.449	-13.25
	0.321 (ED)	0.031	-0.748	0.041	-0.020	-0.023	0.026	-3.365	-0.087
	0.321 (MD)	0.036	-0.764	0.036	-0.022	-0.022	0.026	-3.433	-0.090
Gamma (n=1)	0.100 (ED)	0.110	-1.045	0.156	-0.191	-0.227	3.205	-7.020	-22.49
	0.100 (MD)	0.074	-0.967	0.216	-0.146	-0.249	2.919	-6.579	-19.19
	0.321 (ED)	0.033	-0.843	0.045	-0.026	-0.031	0.082	-4.148	-0.341
	0.321 (MD)	0.037	-0.856	0.041	-0.028	-0.030	0.084	-4.211	-0.352
Gamma (n=2)	0.100 (ED)	0.112	-1.118	0.156	-0.201	-0.238	4.440	-7.925	-35.19
	0.100 (MD)	0.063	-0.993	0.254	-0.134	-0.269	3.813	-7.196	-27.42
	0.321 (ED)	0.036	-0.891	0.047	-0.031	-0.036	0.155	-4.585	-0.712
	0.321 (MD)	0.038	-0.901	0.045	-0.033	-0.035	0.157	-4.632	-0.727
Rayleigh	0.100 (ED)	0.117	-1.121	0.171	-0.219	-0.265	5.876	-8.101	-47.60
	0.100 (MD)	0.063	-0.987	0.288	-0.141	-0.301	4.979	-7.327	-36.45
	0.321 (ED)	0.040	-0.890	0.052	-0.036	-0.042	0.199	-4.608	-0.918
	0.321 (MD)	0.042	-0.899	0.050	-0.038	-0.041	0.201	-4.655	-0.938
Log-logistic	0.100 (ED)	0.060	-0.856	0.080	-0.065	-0.075	0.243	-4.482	-1.088
	0.100 (MD)	0.062	-0.860	0.078	-0.067	-0.075	0.244	-4.505	-1.099
	0.321 (ED)	0.037	-0.936	0.048	-0.035	-0.040	0.310	-5.012	-1.555
	0.321 (MD)	0.039	-0.967	0.057	-0.042	-0.050	0.594	-5.394	-3.205
Log-normal	0.100 (ED)	0.073	-0.696	0.095	-0.079	-0.090	1.323	-3.290	-4.354
	0.100 (MD)	0.089	-0.791	0.113	-0.114	-0.129	3.283	-4.140	-13.59
	0.321 (ED)	0.045	-0.838	0.061	-0.042	-0.049	0.985	-4.206	-4.141
	0.321 (MD)	0.050	-0.925	0.069	-0.055	-0.064	2.458	-5.061	-12.44

For each value of θ there are two values of Hessian matrix and Minors corresponding to minimal Euclidean (ED) and Mahalanobis (MD) distances.
2 Spine economical maximization principle.

2.1 The system of basic equations for optimal solution.

Explicit form of the fitness function.

The explicit dependence of the benefit-cost function F_s on the three parameters x, y, π is given as

$$F_s = \frac{Pxy}{u^2} + \lambda_2 \left(x + y + Pxy + \frac{a(\frac{Pxy}{u^2})^{2/3}}{3} + \frac{a(\frac{Pxy}{u^2})^{5/3}}{3} - 1 \right). \quad (10)$$

The basic optimal equations.

The optimal values of x, y, π, λ_2 are found by differentiating the benefit-cost function F_s (Eq. 10) with respect to x, y, π, and λ_2, and requiring that appropriate derivatives are zero. As a result, we obtain the following set of four nonlinear equations:

$$P_y + \lambda_2 u^{-2} \left(1 + P_y + \frac{a}{3} \left(\frac{P^2 y^2}{u^2} \right)^{1/3} [2 + 5Pxy] \right) = 0, \quad (11)$$

$$P_x + \lambda_2 \pi^{-2} \left(1 + P_x + \frac{a}{3} \left(\frac{P^2 x^2}{\pi^2} \right)^{1/3} [2 + 5Pxy] \right) = 0, \quad (12)$$
\[
\left[\frac{1}{u^2} + \lambda_2(xy)^{1/3} + \frac{a\lambda_2(2+5Pxy)}{3(Pu^2)^{1/3}} \right] \frac{\partial P}{\partial u} = \left[\frac{\gamma_2(xy)^{1/3}}{\pi^{\gamma_2+1}} + \frac{2a\lambda_2(1+Pxy)}{3(Pu^2)^{1/3}} \right] P, \tag{13}
\]

and

\[
x + y + Pxy + \frac{a(Pxy)^{2/3}}{u^{2/3}} + \frac{a(Pxy)^{5/3}}{u^{2/3}} = 1. \tag{14}
\]

Note that from Eqs. (11) and (12) it follows that \(\lambda_2\) must be negative, since all other terms on the left hand side are positive. This observation is used below for determination of the type of extremum.

Proof that \(x = y\).

First, we show that for optimal \(x\) and \(y\) we have \(x = y\). To do this, we subtract Eqs. (11) and (12). As a result we get:

\[
(y - x) \left[P(1 + \lambda_2 u^{\gamma_2}) + \lambda_2 u^{\gamma_2} \frac{a}{3} \left(\frac{P^2}{xyu^2} \right)^{1/3} (2 + 5Pxy) \right] = 0, \tag{15}
\]

where the expression in the [...] bracket is equal either to \(-\lambda_2 u^{\gamma_2}/y\) (from Eq. 11) or to \(-\lambda_2 u^{\gamma_2}/x\) (from Eq. 12). Thus, Eq. (15) is equivalent to the following equation:
\[(y - x) \frac{\lambda_2 \pi x^2}{y} = 0, \quad (16)\]

which implies that for nonzero \(\lambda_2\) and \(\pi\) we must have \(x = y\). (The benefit-cost function \(F_s\) is defined only for \(\pi > 0\), see Eq. 10). If however, \(\lambda_2 = 0\), then from Eqs. (11) and (12) we get that \(P_x = P_y = 0\). The case \(P = 0\) implies \(\pi = 0\) (see eqs relating \(P\) and \(\pi\) in the Methods), which however is forbidden. Thus \(P \neq 0\), and in this case we must have \(x = y = 0\), i.e. \(x\) and \(y\) are still equal to each other.

Reduction of dimensionality in the system of basic equations.

Next, we show that we can decrease the number of basic equations. Because \(x = y\), we can reduce the system of 4 equations to the system of 3 equations with unknowns \(x, \pi, \lambda_2\) (Eqs. 11 and 12 are in fact the same equation). Moreover, we can get rid of \(\lambda_2\), since it always appears in the first power, which additionally allows us to reduce the system dimensionality to 2. The parameter \(\lambda_2\) can be determined from Eq. (11) (with the substitution \(y = x\)) and it reads:

\[
\lambda_2 = -\frac{P_x}{\pi x^2 \left(1 + P_x + \frac{a}{3} \left(\frac{\lambda_2}{\pi} \right)^{1/3} [2 + 5P_x^2]\right)}. \quad (17)
\]

Next, we can insert \(\lambda_2\) into Eq. (13). After this procedure Eq.(13) becomes

\[
\pi^{2/3} \frac{\partial P}{\partial \pi} = \frac{P}{\pi} \left(\gamma_2 \pi^{2/3} (1 + P_x) + \frac{a}{3} P^{2/3} x^{1/3} [2(\gamma_2 - 1) + (5\gamma_2 - 2) P x^2]\right) \quad (18)
\]
and Eq. (14) after the substitution $y = x$ becomes

$$2x + P x^2 + \frac{a P^{2/3} x^{4/3}}{\pi^{2/3}} + \frac{a P^{5/3} x^{10/3}}{\pi^{2/3}} = 1. \quad (19)$$

The derivatives of P with respect to π have different forms depending on the type of density probability of spine volumes $H(u)$ (see the main text).

Eqs. (18) and (19) constitute the reduced system of basic equations, which is used for computations of two independent variables x and π. This two-dimensional system can be solved by a handful of numerical techniques (e.g. [1]).

2.2 Proof of the local maximum for optimal solution related to spine economy.

As before, let us introduce the following notation: $x_1 \equiv x$, $x_2 \equiv y$, $x_3 \equiv \pi$. Then the fitness function F_s (Eq. 10) can be rewritten as:

$$F_s = \frac{P x_1 x_2}{x_3^2} + \lambda_2 g(x_1, x_2, x_3), \quad (20)$$

where the probability P is a function of x_3, and $g(x_1, x_2, x_3)$ denotes the constraint term present in Eq. (10). Let us define partial derivatives: $F_{ij} = \partial^2 F_s / \partial x_i \partial x_j$ and $g_i = \partial g / \partial x_i$.

11
which are determined at the critical point represented by optimal values of x_1, x_2, x_3. Using these definitions we can construct a matrix called bordered Hessian for our constraint optimization problem as [2]:

$$
\begin{bmatrix}
0 & g_1 & g_2 & g_3 \\
g_1 & F_{11} & F_{12} & F_{13} \\
g_2 & F_{21} & F_{22} & F_{23} \\
g_3 & F_{31} & F_{32} & F_{33}
\end{bmatrix}
$$

This particular matrix has a high degree of symmetry, since: $g_1 = g_2$, $F_{ij} = F_{ji}$, and additionally $F_{11} = F_{22}, F_{13} = F_{23}$.

A sufficient condition for F_* to have a local maximum at the critical point represented by the optimal values x_1, x_2, x_3 is that two principal minors, i.e. determinants of the upper-left sub-matrices 3x3 (called D_1) and 4x4 (determinant of the entire bordered Hessian called D_2), alternate in sign. Specifically, the principal minors must have respectively positive (D_1) and negative (D_2) signs [2]. Using the high symmetry in the Hessian matrix, the explicit forms of these determinants are as follows:

$$
D_1 = 2g_1^2(F_{12} - F_{11})
$$

and

$$
D_2 = g_1^2(F_{12} - F_{11}) \left[2F_{33} - 4\epsilon F_{13} + \epsilon^2(F_{12} + F_{11}) \right],
$$

where $\epsilon \equiv g_3/g_1$. It is relatively easy to show that $g_1 \geq 1$, and the expression for ϵ reads
\[\epsilon = \frac{x}{P} \left(\frac{\partial P}{\partial u} - \gamma_2 P \right). \]

(23)

In general for all considered distributions of spine volume, the numerical value of \(\epsilon \) is very small at the critical point, i.e. \(|\epsilon| \ll 1 \). Typical values of \(F_{ij} \) are in the range \((-1.7, 1)\). Thus, approximately the sign of \(D_2 \) is determined by the sign of the product \(F_{33}(F_{12} - F_{11}) \), since other terms in Eq. (22) are much smaller and thus can be neglected. Of these two factors, \(F_{33} \) is always negative (which comes from a numerical calculation) and \((F_{12} - F_{11}) = -\lambda_2/x \) is always positive (\(\lambda_2 < 0 \)). This implies that \(D_2 \) is negative, and \(D_1 \) is positive, which is sufficient for the benefit-cost function \(F_s \) (Eq. 10) to have maximum. Exact numerical values of the rescaled minors \(D_1/g_1^2 \) and \(D_2/g_1^2 \) are presented in Table B (below) together with the values of \(\epsilon \) and \(F_{ij} \).
Table B: “Spine economical maximization”. The numerical values of the elements of the bordered Hessian and principal minors for each type of the spine volume distribution.

Spine size distribution	θ	ϵ	F_{11}	F_{12}	F_{13}	F_{33}	D_1/g_1^2	D_2/g_1^2
Exponential	0.100 (ED)	-0.053	0.017	0.621	-0.018	-0.059	1.207	-0.072
	0.100 (MD)	-0.053	0.017	0.621	-0.018	-0.059	1.207	-0.072
	0.321 (ED)	0.024	0.016	0.540	-0.010	-0.145	1.048	-0.151
	0.321 (MD)	0.014	0.014	0.526	-0.009	-0.098	1.023	-0.100
Gamma (n=1)	0.100 (ED)	-0.072	0.017	0.657	-0.020	-0.055	1.279	-0.072
	0.100 (MD)	-0.072	0.017	0.657	-0.020	-0.055	1.279	-0.072
	0.321 (ED)	0.061	0.022	0.664	-0.014	-0.397	1.284	-0.506
	0.321 (MD)	0.017	0.016	0.606	-0.012	-0.165	1.180	-0.194
Gamma (n=2)	0.100 (ED)	-0.062	0.013	0.645	-0.014	-0.024	1.263	-0.031
	0.100 (MD)	-0.062	0.013	0.645	-0.014	-0.024	1.263	-0.031
	0.321 (ED)	0.085	0.025	0.739	-0.016	-0.653	1.427	-0.924
	0.321 (MD)	0.033	0.020	0.669	-0.015	-0.315	1.298	-0.408
Rayleigh	0.100 (ED)	-0.098	0.020	0.677	-0.027	-0.072	1.314	-0.097
	0.100 (MD)	-0.058	0.013	0.641	-0.013	-0.021	1.256	-0.028
	0.321 (ED)	0.067	0.025	0.734	-0.018	-0.654	1.418	-0.921
	0.321 (MD)	0.015	0.019	0.662	-0.016	-0.283	1.285	-0.362
Log-logistic	0.100 (ED)	-0.016	0.022	0.654	-0.022	-0.189	1.264	-0.240
	0.100 (MD)	-0.016	0.022	0.654	-0.022	-0.189	1.264	-0.240
	0.321 (ED)	0.124	0.026	0.778	-0.014	-0.895	1.505	-1.332
	0.321 (MD)	0.075	0.025	0.784	-0.019	-0.949	1.518	-1.432
Log-normal	0.100 (ED)	-0.074	0.021	0.582	-0.025	-0.247	1.121	-0.279
	0.100 (MD)	-0.074	0.017	0.616	-0.019	-0.076	1.199	-0.092
	0.321 (ED)	0.044	0.023	0.683	-0.018	-1.737	1.321	-2.292
	0.321 (MD)	-0.030	0.021	0.666	-0.022	-0.797	1.290	-1.029

For each value of θ there are two values of Hessian matrix and Minors corresponding to minimal Euclidean (ED) and Mahalanobis (MD) distances.
3 Combined “wire minimization” and “spine economy maximization” principle.

3.1 The system of basic equations for optimal solution.

The optimal values of \(x, y, \overline{\pi}, \) and \(\lambda \) are found by differentiating the meta fitness function \(F \) (Eq. 1 in the main text) with respect to \(x, y, \overline{\pi}, \) and \(\lambda \), and requiring that appropriate derivatives are zero. As a result, we obtain the following set of four nonlinear equations:

\[
\frac{f_{rx}}{\overline{\pi}^{\gamma_1}} - \frac{(1-f)s}{\overline{\pi}^{\gamma_2}} + \lambda \left(x + s + \frac{2}{3}g + \frac{5}{3}c \right) = 0, (24)
\]

\[
\frac{f_{yy}}{\overline{\pi}^{\gamma_1}} - \frac{(1-f)s}{\overline{\pi}^{\gamma_2}} + \lambda \left(y + s + \frac{2}{3}g + \frac{5}{3}c \right) = 0, (25)
\]

\[
\left[\lambda - \frac{(1-f)}{\overline{\pi}^{\gamma_2}} \right] s + \frac{\lambda g}{3} \left(2 + 5s \right) \frac{\overline{\pi}}{P} \frac{\partial P}{\partial \overline{\pi}} - \frac{2}{3} \lambda g(1+s) = \frac{\gamma_1 f}{\overline{\pi}^{\gamma_1}} \left(r x + y \right) - \frac{\gamma_2 s}{\overline{\pi}^{\gamma_2}} (1-f) \quad (26)
\]

and
\[x + y + s + g + c = 1. \quad (27) \]

Reduction of dimensionality in the system of basic equations.

As before we can reduce the number of equations from 4 to 3. For this purpose, we determine \(\lambda \) from Eq. (25):

\[
\lambda = \frac{(1 - f) \frac{s}{g} - f \frac{y}{c}}{y + s + \frac{2}{3} g + \frac{5}{3} c} \quad (28)
\]

and next, we insert this equation into Eqs. (24) and (26). As a result, we get Eqs. (26-27) in the main text.

3.2 Proof of the local maximum for optimal solution related to spine economy.

The bordered Hessian matrix can be determined similarly as in the previous two cases. A sufficient condition for the meta fitness function \(F \) (Eq. 1 in the main text) to have a local minimum is that two principal minors are negative. Exact numerical values of the minors and elements of the bordered Hessian are displayed in Tables C-E, for different mixing ratio \(f \) in \(F \). These tables correspond to Tables 4-6 in the main text.
Table C: Combined “Wire min + spine max” approach for $f = 0.1$.

Principle type/ spine distr.	Bordered Hessian	Minors							
	F_{11}	F_{12}	F_{22}	F_{13}	F_{23}	F_{33}	D_1	D_2	
wire length min + spine max	Exponential	-0.010	-0.694	-0.010	0.141	0.141	0.163	-2.870	-0.455
	Gamma (n=1)	-0.013	-0.809	-0.014	0.154	0.153	0.324	-3.664	-1.154
	Gamma (n=2)	-0.015	-0.895	-0.017	0.172	0.168	0.540	-4.228	-2.219
	Rayleigh	-0.015	-0.898	-0.018	0.177	0.171	0.535	-4.289	-2.252
	Log-logistic	-0.017	-0.963	-0.022	0.173	0.156	1.056	-4.867	-5.045
	Log-normal	-0.019	-1.000	-0.022	0.228	0.222	2.370	-5.103	-12.13
wire surface min + spine max	Exponential	-0.008	-0.598	-0.009	0.058	0.058	0.104	-2.488	-0.254
	Gamma (n=1)	-0.011	-0.707	-0.012	0.068	0.067	0.230	-3.211	-0.726
	Gamma (n=2)	-0.013	-0.764	-0.015	0.073	0.070	0.368	-3.626	-1.316
	Rayleigh	-0.013	-0.760	-0.016	0.074	0.071	0.349	-3.645	-1.262
	Log-logistic	-0.015	-0.843	-0.020	0.078	0.071	0.822	-4.264	-3.472
	Log-normal	-0.023	-0.988	-0.030	0.112	0.100	6.943	-4.898	-33.89
wire volume min + spine max	Exponential	-0.008	-0.545	-0.008	0.005	0.005	0.090	-2.267	-0.204
	Gamma (n=1)	-0.011	-0.637	-0.012	0.008	0.008	0.209	-2.886	-0.601
	Gamma (n=2)	-0.012	-0.681	-0.014	0.010	0.010	0.296	-3.239	-0.955
	Rayleigh	-0.012	-0.674	-0.014	0.010	0.011	0.271	-3.240	-0.878
	Log-logistic	-0.014	-0.759	-0.019	0.013	0.015	0.734	-3.833	-2.804
	Log-normal	-0.015	-0.726	-0.021	0.016	0.019	1.938	-3.632	-7.038
delays min + spine max	Exponential	-0.011	-0.751	-0.011	0.195	0.195	0.202	-3.102	-0.603
	Gamma (n=1)	-0.014	-0.888	-0.015	0.220	0.219	0.411	-4.012	-1.589
	Gamma (n=2)	-0.015	-0.941	-0.018	0.224	0.219	0.562	-4.461	-2.433
	Rayleigh	-0.018	-1.004	-0.020	0.258	0.253	0.712	-4.778	-3.313
	Log-logistic	-0.019	-1.076	-0.025	0.250	0.231	1.389	-5.407	-7.316
	Log-normal	-0.022	-1.127	-0.026	0.326	0.316	3.596	-5.570	-19.96
Table D: Combined “Wire min + spine max” approach for \(f = 0.5 \).

Principle type/ spine distr.	\(F_{11} \)	\(F_{12} \)	\(F_{22} \)	\(F_{13} \)	\(F_{23} \)	\(F_{33} \)	\(D_1 \)	\(D_2 \)
wire length min + spine max								
Exponential	-0.432	-16.79	-0.432	9.602	9.604	858.9	-43.24	-35899.2
Gamma (n=1)	-0.132	-6.323	-0.126	4.242	4.230	85.09	-19.83	-1542.5
Gamma (n=2)	-0.055	-4.055	-0.051	2.668	2.612	24.29	-15.13	-320.69
Rayleigh	-0.054	-4.001	-0.050	2.546	2.491	27.10	-15.66	-378.75
Log-logistic	-0.017	-2.778	-0.021	1.360	1.459	11.86	-13.58	-146.30
Log-normal	0.008	-1.679	0.010	0.871	1.000	1.299	-8.369	-10.948
wire surface min + spine max								
Exponential	-0.017	-2.345	-0.017	1.280	1.280	12.93	-7.794	-91.96
Gamma (n=1)	0.008	-1.536	0.008	0.583	0.583	1.576	-6.470	-8.808
Gamma (n=2)	0.012	-1.206	0.012	0.353	0.353	0.231	-5.844	-1.155
Rayleigh	0.010	-1.320	0.011	0.402	0.433	0.645	-6.353	-3.725
Log-logistic	0.005	-1.377	0.008	0.344	0.424	1.764	-7.203	-12.18
Log-normal	0.010	-1.317	0.013	0.384	0.448	3.027	-6.831	-20.67
wire volume min + spine max								
Exponential	0.017	-0.639	0.017	-0.011	-0.011	0.098	-2.754	-0.272
Gamma (n=1)	0.014	-0.733	0.016	-0.010	-0.011	0.208	-3.451	-0.720
Gamma (n=2)	0.013	-0.786	0.016	-0.011	-0.012	0.308	-3.877	-1.196
Rayleigh	0.014	-0.788	0.016	-0.012	-0.013	0.336	-3.921	-1.320
Log-logistic	0.011	-0.872	0.014	-0.009	-0.011	0.837	-4.561	-3.817
Log-normal	0.014	-0.810	0.019	-0.016	-0.018	1.980	-4.282	-8.477
delays min + spine max								
Exponential	-1.173	-47.71	-1.174	27.45	27.48	4239.5	-115.2	-4.7·10^5
Gamma (n=1)	-0.290	-11.87	-0.290	8.223	8.223	280.65	-34.14	-8.9·10^3
Gamma (n=2)	-0.142	-7.007	-0.142	5.057	5.057	82.31	-23.48	-1.7·10^3
Rayleigh	-0.133	-6.587	-0.133	4.521	4.521	83.58	-23.60	-1.8·10^3
Log-logistic	-0.017	-3.069	-0.022	1.785	1.994	12.03	-15.63	-170.03
Log-normal	-0.022	-3.329	-0.031	2.025	2.332	70.05	-16.83	-1156.2
Table E: Combined “Wire min + spine max” approach for \(f = 0.9 \).

Principle type/ spine distr.	\(F_{11} \)	\(F_{12} \)	\(F_{22} \)	\(F_{13} \)	\(F_{23} \)	\(F_{33} \)	\(D_1 \)	\(D_2 \)
wire length min + spine max								
Exponential	-2*10^-7	-0.027	-2*10^-7	3*10^-8	3*10^-8	7*10^-13	-0.107	-8*10^-14
Gamma (n=1)	-28.19	-3134.4	-28.19	-854.0	-854.0	8*10^5	-6590.6	-5*10^9
Gamma (n=2)	-8.533	-666.9	-8.533	-169.3	-169.3	10^5	-1440.5	-10^8
Rayleigh	-6.136	-283.8	-6.136	-87.28	-87.28	4*10^4	-660.35	-2*10^7
Log-logistic	-2*10^-7	-0.027	-2*10^-7	3*10^-8	3*10^-8	7*10^-13	-0.107	-8*10^-14
Log-normal	-0.677	-20.66	-0.944	-1.887	-4.444	17389.8	-100.47	-2*10^6
wire surface min + spine max								
Exponential	-11.59	-1045.9	-11.59	-397.0	-397.0	4*10^5	-2222.0	-8*10^8
Gamma (n=1)	-1.608	-94.90	-1.608	-23.57	-23.57	12275.2	-211.3	-2*10^6
Gamma (n=2)	-0.606	-29.01	-0.606	-3.631	-3.631	2166.6	-68.4	-10^5
Rayleigh	-0.528	-20.09	-0.528	-2.217	-2.217	1437.8	-51.8	-7*10^4
Log-logistic	-0.084	-5.240	-0.118	0.747	0.745	329.89	-26.1	-8*10^3
Log-normal	-0.013	-3.494	-0.017	1.029	1.174	477.03	-17.12	-8*10^3
wire volume min + spine max								
Exponential	0.043	-0.725	0.043	-0.028	-0.028	0.079	-3.220	-0.257
Gamma (n=1)	0.042	-0.840	0.042	-0.031	-0.031	0.177	-4.074	-0.724
Gamma (n=2)	0.036	-0.878	0.047	-0.030	-0.034	0.284	-4.456	-1.273
Rayleigh	0.038	-0.879	0.049	-0.034	-0.038	0.325	-4.501	-1.470
Log-logistic	0.038	-0.986	0.049	-0.032	-0.036	0.948	-5.277	-5.015
Log-normal	0.044	-0.913	0.057	-0.046	-0.052	2.645	-4.907	-12.99
delays min + spine max								
Exponential	-2*10^-6	-0.034	-2*10^-6	5*10^-7	3*10^-7	10^-10	-0.135	-2*10^-11
Gamma (n=1)	-2*10^-6	-0.034	-2*10^-6	5*10^-7	3*10^-7	10^-10	-0.135	-2*10^-11
Gamma (n=2)	-20.49	-1961.9	-20.49	-488.7	-488.7	3*10^5	-4169.7	-2*10^9
Rayleigh	-16.33	-865.41	-16.33	-287.2	-287.2	10^5	-1961.9	-3*10^8
Log-logistic	-2*10^-6	-0.034	-2*10^-6	5*10^-7	3*10^-7	10^-10	-0.135	-2*10^-11
Log-normal	-0.746	-23.22	-1.035	-0.794	-3.932	19583.9	-112.99	-2*10^6
References

[1] Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran. Cambridge: Cambridge Univ. Press.

[2] Neudecker H, Magnus JR (1988) Matrix Differential Calculus with Applications in Statistics and Econometrics. New York: Wiley.