Length of parallel curves

E. Macías-Virgós

Abstract

We prove that the length difference between a closed periodic curve and its parallel curve at a sufficiently small distance ε equals $2\pi \varepsilon$ times the rotation index. As an application, the rotation index of a curve could be estimated by means of Cauchy-Crofton’s formula.

INTRODUCTION. The aim of this note is to prove the following result. Let α be a closed periodic regular curve, let β be the parallel curve at distance $\varepsilon \geq 0$. Assume that ε is small enough to not exceed the radius of curvature of α when $\kappa > 0$ (κ is the signed curvature of α). Let ω be the rotation index of α.

Theorem 1 The length difference $L(\alpha) - L(\beta)$ equals $2\pi \varepsilon \omega$.

I think this result is new or at least is not well known in differential geometry. Although elementary, it seems interesting because it actually finds the exact difference and shows that a relatively sophisticated invariant like the rotation index can be determined by a much simpler invariant, namely, the length of a curve. Of course, the converse is also a useful observation: computing the length by the rotation index since this is a regular homotopy invariant [1, p.330]. As a corollary, the difference of the length of a curve and its ε-parallel curve is a regular homotopy invariant. Possibly this could also be directly proved by a variational argument.

BASIC DEFINITIONS AND NOTATIONS. Let $\alpha(t)$ be a differentiable plane curve, defined on the interval $[a, b]$. The length of the curve is given by

$$L(\alpha) = \int_a^b |\alpha'(t)| \, dt. \quad (1)$$

Suppose that the curve is regular, which means that the speed $|\alpha'|$ never vanishes. Then the arc-length parameter $s(t)$, defined by $ds = |\alpha'| dt$ and $s(a) = 0$, serves to reparametrize the curve with unit speed.

The (signed) curvature of α is the function

$$\kappa = \det(\alpha', \alpha'')/|\alpha'|^3. \quad (2)$$
If the parameter is arc-length, the absolute value of the curvature is $|\kappa| = |\ddot{\alpha}|$, the module of the second derivative.

When $\kappa \neq 0$, the unitary normal vector $\vec{n} = \ddot{\alpha}/|\ddot{\alpha}|$ is well defined. It is perpendicular to the tangent direction and it points inwards the curve. For an arbitrary parameter t, the vector α'' is not collinear to $\ddot{\alpha}$, but both are on the same side of the tangent line.

PARALLEL CURVES. Let $\alpha(t)$ be an arbitrary regular parametrization. At each point $\alpha(t)$ we take a unitary vector $\vec{e}(t)$ orthogonal to $\alpha'(t)$ and such that $\det(\alpha', \vec{e}) > 0$. In other words, \vec{e} is obtained by rotating in the counter-clockwise sense the unitary tangent vector $\vec{t} = \dot{\alpha} = \alpha'/|\alpha'|$ (in Alfred Gray’s book [3], \vec{e} is denoted by $J\alpha'$).

Then $\vec{e} = +\vec{n}$ when $\kappa > 0$ (the curve turns left) and $\vec{e} = -\vec{n}$ when $\kappa < 0$ (the curve turns right).

Definition 1 We define the (left) parallel curve to α at distance $\varepsilon \geq 0$ as the curve $\beta = \alpha + \varepsilon \vec{e}$.

Remark: It is unnecessary to consider the case $\varepsilon \leq 0$, as we can always reparametrize the curve α in the opposite direction.

We now discuss the regularity of β. For that we have to take into account the radius of curvature $1/|\kappa|$ and the evolute of α, which is the geometric locus of the centers of curvature $\alpha + (1/|\kappa|) \vec{n} = \alpha + (1/\kappa) \vec{e}$.

By differentiating with respect to the arc-length parameter s of α, we obtain $\dot{\vec{e}} = -\kappa \vec{t}$, which is just a reformulation of the usual Frénet formula $\vec{n} = -|\kappa| \vec{t}$ [1] [2] [3]. Hence $d\beta/ds = (1 - \varepsilon \kappa) \dot{\alpha}$ and

$$|d\beta/ds| = |1 - \varepsilon \kappa|.$$ \hspace{1cm} (3)

It follows that the parallel β has a singularity each time ε equals $1/\kappa$. This can only occur (as we are taking $\varepsilon \geq 0$) when $\kappa > 0$ and ε equals the radius of curvature, i.e. the parallel β touches
the evolute of α at corresponding points (see figure 2).

Remark: The evolute itself has singularities at the places where the curvature attains a critical value; this is a consequence of the fact that the tangent vector to the evolute points in the normal direction to α.

By applying definition (1) to formula (3) we obtain the length of β.

![Figure 2: The same curve, its evolute (dashed) and one parallel with two singularities](image)

Theorem 2 The length of the left parallel curve β at distance $\varepsilon \geq 0$ to α is given by

$$L(\beta) = \int_0^{L(\alpha)} |1 - \varepsilon \kappa(s)| \, ds.$$

In Corollary 3 we shall emphasize two particular cases of Theorem 2.

Definition 2 The total curvature of the curve α is the number

$$K = \int_0^{L(\alpha)} \kappa(s) \, ds = \int_a^b \kappa(t)|\alpha'(t)| \, dt.$$

Corollary 3

1. If $\kappa \leq 1/\varepsilon$ then $L(\beta) = L(\alpha) - \varepsilon K$;

2. If $\kappa \geq 0$ and $\varepsilon \geq 1/\kappa$ then $L(\beta) = \varepsilon K - L(\alpha)$.

Example: Let $\alpha(t) = (R \cos t, R \sin t)$, $0 \leq t \leq \pi$, be a half-circle with a big radius $R > 0$. It has global curvature $K = \pi$. The parallel curve at distance $R + 1$ is a small half-circle of radius 1 which goes backwards. Its length is $(R + 1)\pi - \pi R = \pi$.

Remark: From (2) it follows that the curvature of the parallel curve $\beta = \alpha + \varepsilon \overline{e}$ is given by $\kappa_\beta = \kappa/|1 - \varepsilon \kappa|$, see [3, p. 117]. Then, when $\kappa < 1/\varepsilon$, β has the same evolute that α.

3
Let $\alpha(t)$ be a regular curve defined in $[a, b]$. From now on we shall assume that our curve is closed and periodic, i.e. it satisfies $\alpha(a) = \alpha(b)$ and $\alpha'(a) = \alpha'(b)$.

Let us recall the notion of rotation index (also called turning number). For simplicity, we parametrize α by the arc-length $s \in [0, L(\alpha)]$, so the tangent vector $\bar{\mathbf{t}} = \dot{\alpha}$ has module 1. Write $\dot{\alpha} = (\cos \theta, \sin \theta)$. Then

$$\kappa = \det(\dot{\alpha}, \ddot{\alpha}) = d\theta/ds,$$

which proves that it is always possible to choose the angle θ in a differentiable way (unique for any preassigned value of $\theta(0)$). Namely

$$\theta(s) = \theta(0) + \int_0^s \kappa. \quad (4)$$

Clearly θ does not depend on the parametrization of α. Moreover, since the curve is periodic, the difference $\theta(b) - \theta(a)$ equals $2\pi \omega$, for some integer number ω.

Definition 3 ([3, p. 159]) The integer ω is called the rotation index of α. It measures how many times the curve turns with respect to a fixed direction.

Example: The rotation index of the Pascal Snail in Figure 1 is $\omega = \pm 2$ depending on the sense of rotation.

The following result is immediate from (4).

Proposition 4 The total curvature K of a closed periodic curve with rotation index ω equals $2\pi \omega$.

Finally, if ε is not too large, directly from Corollary [3] we obtain Theorem [1].

In addition, we have the following consequence of the Hopf theorem on turning tangents [1, p. 333].

Corollary 5 For a simple closed curve in the plane (i.e., one without selfintersections), the length of the ε-parallel curve minus the length of the original curve is always $\pm 2\pi \varepsilon$, for ε small enough.

Remark: The following is a very well-known fact, which seems quite striking to non-mathematicians. Imagine that we surround the earth by the equator with a cable at ground level. If we next wanted the cable to stand a metre above ground level, how much extra cable would we need? The answer is: a little more than 6 metres. The reason is: $2\pi(R + 1) - 2\pi R = 2\pi$. Of course this is a very particular case of our result.

ESTIMATION OF THE ROTATION INDEX An estimation of the rotation index of the closed curve α can be obtained by applying Cauchy-Crofton’s formula [4] in order to estimate the lengths of α and the offset curve β, then applying Theorem [1].
References

[1] S. Montiel; A. Ros, *Curves and surfaces*. Graduate Texts in Mathematics, Vol. 69, AMS-RSME (2005)

[2] Manfredo P. DoCarmo, *Differential geometry of curves and surfaces*. Englewood Cliffs, N. J.: Prentice-Hall, Inc. VIII (1976).

[3] Alfred Gray, *Modern differential geometry of curves and surfaces with MATHEMATICA®*. 2nd ed., FL: Boca Raton, CRC Press (1998).

[4] Luis A. Santaló. *Integral Geometry and Geometric Probability*, Addison-Wesley, Reading, MA (1976).

Enrique Macías-Virgós
Institute of Mathematics
Department of Geometry and Topology
University of Santiago de Compostela
15782- SPAIN
xtquique@usc.es
http://www.usc.es/imat/quique