A Euclidean bridge to the relativistic constituent quark model

T. J. Hobbs1 and Mary Alberg1,2, Gerald A. Miller1

1Department of Physics, University of Washington, Seattle, Washington 98195, USA

2Department of Physics, Seattle University, Seattle, Washington 98122, USA

(Dated: August 29, 2016)
Abstract

Background: Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger Equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models).

Purpose: Seeking to bridge these complementary worldviews, we explore the potential of a *Euclidean constituent quark model* (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework.

Method: To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark+scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter Equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data.

Results: From this formalism, we define and compute a new quantity — the *Euclidean density function* (EDF) — an object that characterizes the nucleon’s various charge distributions as functions of the quark’s Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the dressing effect on the proton’s axial-singlet charge to be small in magnitude and consistent with zero.

Conclusions: The scalar quark + diquark ECQM is a step toward a realistic quark model in Euclidean space, and urges additional refinements. The small size we obtain for the impact of the dressed vertex on the axial-singlet charge suggests that models without this effect are on firm ground to neglect it.

* tjhobbs@uw.edu
I. INTRODUCTION

Hadronic physics is presently at an important crossroads. On the one hand, with its advantageous representation of Minkowski field theory, light-front formalism [1–6] has made impressive gains in understanding the proton’s flavor and spin structure [7–10]. At much the same time, techniques grounded in Euclidean field theory, such as Lattice QCD [11] and the methodology of Bethe-Salpeter Equations (BSEs) [12–16], continue to unfold an ever more refined picture of the hadronic spectrum, as well as its various excitations and transitions. An effort to reconcile these two families of approaches is therefore more of a crying necessity than ever before. The present analysis represents an initial step to bridge this enduring gap by formulating a Euclidean constituent quark model (ECQM).

To this end, we craft a simple model in Euclidean space which binds the constituent quark into the nucleon through the exchange of a scalar spectator diquark. While the quark-diquark approach itself is hardly new (such models have an established history in the analyses of both the DIS sector [17–20] and elastic scattering [10]), our specific formulation of a Euclidean constituent quark model has not to our knowledge been previously attempted.

Standard light-front theory [21, 22] extracts bound state properties (e.g., elastic form factors, inelastic structure functions) from overlaps of 3-dimensional light-front wave functions (LFWFs), which are themselves obtained by integrating a 4-dimensional Bethe-Salpeter amplitude over the “minus” components of the internal momenta $k^- \equiv k^0 - k^3$; these in turn provide a means of relating the constituent quark model to form factors and GPDs [23–26]. Despite the remarkable success of methods rooted in constituent quark models, an uncircuitous means of relating them to Euclidean approaches remains lacking, however. That is, although techniques for projecting, e.g., the pion’s Bethe-Salpeter amplitude onto the LF have been pioneered recently [27], a direct formulation of the quark model in Euclidean space has not yet been put forth. The chief aim of the present article is to do precisely this, leading to the aforementioned ECQM. However, the implementation in Euclidean space requires techniques inspired by hyperspherical QED calculations [28–31], which we trace in detail in Sec. III below. Following angular integration of the resulting 4-dimensional amplitudes in Euclidean hyperspherical space, the formalism we develop outputs distributions for the quark-level densities of the proton as functions of the intermediate quark’s Euclidean momentum. These latter quantities we designate Euclidean density functions (EDFs), and
we carry out their evaluation in the sections below.

In the present paper, we test our formalism by performing an analysis of the quark helicity share of the proton’s spin by evaluating the flavor-singlet axial charge as spelled out in later sections. The origin of the proton’s spin in the angular momentum of its QCD constituents is a problem that has bedeviled hadronic physics ever since the advent of the “spin crisis” in the late 1980s following the revelation [32, 33] of the European Muon Collaboration (EMC) concerning the small size of the proton’s integrated spin-dependent structure function, \(\int_0^1 g_1^p(x) \, dx = 0.114 \pm 0.012 \pm 0.026 \). During the intervening decades, sufficient progress has been made to reduce the crisis to a mere “spin problem” as it is now more commonly known. Even so, the exact interplay of the various relevant dynamics [34–36] remains sufficiently subtle as to prevent an unambiguous reckoning of the multiple effects giving rise to the proton’s spin.

Canonically, the spin of the proton is decomposed among contributions from quark and gluon helicity and orbital angular momentum as [37–39]

\[
\frac{1}{2} = \frac{1}{2} \sum_q \Delta q + L_q + J_g, \tag{1}
\]

and the contribution from the total quark helicity \(\sum_q \Delta q \) is now understood to represent approximately one third of the total nucleon spin, and has been the focus of intense experimental and theoretical effort [40–44]. Despite recent progress [10], obtaining this result in the context of constituent quark models, including those formulated on the light-front, remains an elusive goal. For this reason, an assessment of the rôle played by the exchange of nonperturbative gluons in the setting of a constituent quark model could help weigh whether this effect substantially alters the spin decomposition of Eq. (1). To accomplish this, we use the aforementioned hyperspherical ECQM to incorporate information from BSE analyses on the quark’s dressed axial-vector vertex [45–48], ultimately finding a minimal effect.

The remainder of the paper is organized as follows: Sec. II treats the standard covariant approach, with a description of the formalism needed to fit current data in the elastic electromagnetic sector with the bare ECQM in Sec. II A, and a prediction of the proton’s axial-singlet charge in Sec. II B; Sec. III describes the hyperspherical formalism. Herein, the basic properties of EDFs are introduced in Sec. III A, and the simplest nontrivial calculation — the EDF for the proton’s charge distribution — is given in Sec. III B. Having thus completely determined the details of the bare hyperspherical ECQM, we use it to predict the
FIG. 1. (Color online) (a) The standard diagram responsible for the first nontrivial contribution to $F_{1,2}(q^2)$. (b) The main graph for the quark contributions to the nucleon’s axial-singlet charge a_0. In both cases, solid internal lines represent the propagation of the interacting quark, while the dashed lines are for the scalar spectator diquark. The ovate blobs symbolize our prescription for the momentum dependence of the nucleon-quark-diquark interaction as given by $\varphi(k^2)$ in Eq. (3).

axial-singlet charge of the proton in Sec. III C, as well as the distribution of this axial charge as a function of the struck quark Euclidean momentum \tilde{k}. In Sec. IV we fold the latest numerical estimates for the soft gluon dressing effect on the axial charge of an individual quark into our formalism, and draw our final conclusions in Sec. V. Lastly, select formulae are postponed to Appendices A and B.

II. THE BARE MODEL: ELECTROMAGNETIC STRUCTURE AND SPIN

A. Electromagnetic form factors

In the quark+scalar diquark picture, computing the Pauli and Dirac form factors $F_1(q^2)$ and $F_2(q^2)$ as functions of the spacelike photon virtuality squared q^2 amounts to evaluating the leading triangle diagram in Fig. 1(a), which here represents an amplitude formulated in Euclidean space. For this purpose, we take the propagators of the scalar diquark (of mass m_D) and quark (of mass m) to be, respectively,

$$D(\tilde{p} - \tilde{k})^2 = \frac{1}{[\tilde{p} - \tilde{k}]^2 + m_D^2},$$

$$S(\tilde{k}) = \frac{1}{ik + m},$$

(2)

where we in general denote Euclidean 4-vectors as \tilde{v}_μ, and the main prescription-dependent ingredient of the ECQM involves making a formal choice to characterize the binding of the
struck constituent quark into the nucleon. To accomplish this, it is necessary to stipulate a relativistic vertex factor for the momentum dependence of the nucleon-quark-diquark interaction, represented by the “blobs” appearing in both panels of Fig. 1. The systematics involved in the implementation of such phenomenological vertex factors have been explored in diverse contexts, including in models of nucleon structure [49–51] and nuclear scattering [52]; in the end, however, we select for simplicity a minimal choice consistent with Lorentz covariance: a scalar function of the quark’s Euclidean 4-momentum \tilde{k} with the general form

$$\varphi(\tilde{k}^2) \equiv g \left(\frac{\Lambda^2}{\tilde{k}^2 + \Lambda^2} \right).$$

Of course other analytic forms for the vertex function may also be used (e.g., multipoles involving higher powers, or functions of the spectator diquark 4-momentum), but these ultimately lead to qualitatively similar results, and in practice we find use of Eq. (3) simplifies calculations dramatically. For this reason, the remainder of the present analysis is carried out using Eq. (3). In light of our choice for the nucleon-quark-diquark vertex function, the model parameters in our framework are thus the strength of the nucleon’s couplings to its internal quark/diquark degrees of freedom g (which acts as an overall normalization), the constituent masses of the quark and scalar diquark m and m_D, respectively, and the ultraviolet cutoff parameter Λ, all of which we take from fits in the electromagnetic sector. Namely, the form factors $F_{1,2}(\tilde{q}^2)$ are extracted from the triangle diagram shown in Fig. 1, which gives the extended electromagnetic vertex $\Gamma_\mu(\tilde{p}',\tilde{p})$ of the nucleon as

$$\bar{u}(\tilde{p}') \gamma_\mu u(\tilde{p}) \rightarrow \bar{u}(\tilde{p}') \Gamma_\mu(\tilde{p}',\tilde{p}) u(\tilde{p})$$

$$= \frac{1}{(2\pi)^4} \int d^4k \, \bar{u}(\tilde{p}') \left(\frac{1}{ik' + m} \right) \gamma_\mu \left(\frac{1}{ik + m} \right) u(\tilde{p}) \left(\frac{\varphi(\tilde{k}^2)}{[\tilde{p} - \tilde{k}]^2 + m_D^2} \right),$$

where \tilde{p} (\tilde{p}') is the initial (final) proton 4-momentum, $\tilde{k}' = \tilde{k} + \tilde{q}$, and $\tilde{p}' = \tilde{p} + \tilde{q}$. Using the general form of the photon-proton vertex given by Eq. (A10) in App. A, we compute this latter amplitude using standard techniques [53, 54] involving Feynman parameters and momentum shifts to obtain

$$F_1(\tilde{q}^2) = \left(\frac{g\Lambda^2}{4\pi} \right)^2 \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} dz \int_0^{1-x-y-z} dw$$

$$\times \left(\left[\frac{1}{\Delta^2} \right]^2 + 2N_1(\tilde{q}^2) \left[\frac{1}{\Delta^2} \right]^3 \right),$$

$$F_2(\tilde{q}^2) = 2 \left(\frac{g\Lambda^2}{4\pi} \right)^2 \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} dz \int_0^{1-x-y-z} dw \, N_2(z) \left[\frac{1}{\Delta^2} \right]^3,$$
in which

\[N_1(\vec{q}^2) = (m + zM)^2 - (x + w)(1 - x - z - w)\vec{q}^2, \]
\[N_2(z) = 2M(1 - z)(m + zM), \]
\[\Delta^2 = (x + w)(1 - x - z - w)\vec{q}^2 + (x + y)m^2 + zm_D^2
- z(1 - z)M^2 + (1 - x - y - z)\Lambda^2. \]

Above, \(M \) is the mass of the on-shell nucleon, and we have made use of the Euclidean Gordon Identity given by Eq. (A9) to decompose the amplitude of Eq. (4) into separate Pauli and Dirac components à la Eq. (A10).

With these explicit expressions for \(F_1 \) and \(F_2 \), it is simple to construct the familiar Sach’s parametrization of the nucleon’s electromagnetic form factors:

\[G_E(\vec{q}^2) \equiv F_1(\vec{q}^2) - \frac{\vec{q}^2}{4M^2} F_2(\vec{q}^2), \]
\[G_M(\vec{q}^2) \equiv F_1(\vec{q}^2) + F_2(\vec{q}^2), \]

and we may determine the model parameters by fitting these expressions to experimental data on the proton. For this purpose, we treat the phenomenological parametrization of Kelly [55] as a proxy for the world’s experimental data and global fits thereof [56, 57], rather than preferencing individual sets; we may then minimize the numerical badness-of-fit measure

\[\chi^2 \equiv \frac{1}{2n_p} \sum_{i=1}^{n_p} \left(\frac{G_E(\widetilde{q}_i^2) - G_E^{\text{phen.}}(\widetilde{q}_i^2)}{G_E^{\text{phen.}}(\widetilde{q}_i^2)} \right)^2 + \left(\frac{G_M(\widetilde{q}_i^2) - G_M^{\text{phen.}}(\widetilde{q}_i^2)}{G_M^{\text{phen.}}(\widetilde{q}_i^2)} \right)^2. \]

We note that to ensure the numerical validity of the hyperspherical Euclidean space formalism presented later in Sec. III, we in practice find it necessary to constrain the value of the diquark mass to be no less than that of the proton, \(m_D \geq M \), while the other parameters are allowed to float freely over a broad range. This condition is a generic artifact of hyperspherical techniques as applied to massive theories [30], and for QED can be circumvented with an appropriate deformation of the integration contour in the complex \(\widetilde{k}^2 \) plane. For the amplitudes under consideration here, however, such an approach meets further complications due to the presence of quark denominators \(\sim (\widetilde{k}^2 + m^2)^{-2} \), which can produce singularities in the timelike region \(\widetilde{k}^2 < 0 \) into which the contour over \(\widetilde{k}^2 \) is deformed; we therefore opt for the simpler \(m_D \geq M \) condition in this initial study. We note of course that this procedure
FIG. 2. (Color online) (a) A plot of the fitted electromagnetic form factors $G_{E,M}(\tilde{q}^2)$, where we constrain fits with the phenomenological parametrization of Kelly [55] for $\tilde{q} \leq 1$ GeV. Here, solid lines give the result of our fitted model for the parameters listed in Table I, while the dashed lines are the phenomenological fits of Ref. [55], with G_E given in black and G_M in red in both cases. (b) A similar comparison, but in this case for the form factor ratios with respect to the well-known dipole parametrization [55] $G_D(\tilde{q}^2) \equiv (1 + \tilde{q}^2/\Lambda_D^2)^{-2}$, where $\Lambda_D^2 = 0.71$ GeV2.

confers the added benefit of simulating the effects of a confining potential in the sense that the nucleon is thereby prohibited from decaying into its constituents ($m + m_D \geq M$, for any choice of m).

Also, for the sake of describing the nucleon axial-singlet charge (which is defined at $\tilde{q}^2 = 0$) we concentrate our fits at low photon virtualities, and hence only constrain them with experimental information for $\tilde{q} \leq 1$ GeV. Doing so, we find that fitting our scalar diquark model to the Kelly prediction for G_E and G_M at 5 uniformly-chosen points in the domain $0 \leq \tilde{q} \leq 1$ GeV [i.e., $n_p = 5$ in Eq. (11) above] results in the description plotted in Fig. 2, which corresponds to a χ^2 per datum of 0.003 for the specific parameter values given in Table I. The numerical values of the fitting parameters imply a mass for the diquark comparable to that of the nucleon (consistent with Faddeev Equation studies, e.g., Ref. [58]), and a rather large constituent quark mass $m \sim 600$ MeV.

In particular, the two panels of Fig 2 compare this fitted model to the parametrization of Ref. [55] for the proton, both at the level of the separate form factors G_E and G_M themselves (a), as well as for the instructive ratios (b) with respect to the one-parameter
TABLE I. The collection of parameters that follow from constraining our model to the proton electromagnetic form factors G_E and G_M at low $\tilde{q} \leq 1$ GeV as given by [55]. The parameters given in the first enclosed box are fitted directly, while those in the open box at the far right are predicted by the fitted model. Note that the interaction strength g and bare axial-singlet charge a_0 determined in Sec. II are dimensionless, while the final two columns give the first moments of the electric and axial-singlet quark charge EDFs $M^1_{J_1}$ and $M^1_{a_0}$ in GeV2; units elsewhere are in GeV unless otherwise noted.

dipole approximation [55] $G_D(\tilde{q}^2) \equiv (1 + \tilde{q}^2/\Lambda^2_D)^{-2}$, with $\Lambda^2_D = 0.71$ GeV2 — the latter serving to draw attention to subtleties in the form factors’ behavior at larger \tilde{q}^2. In both panels also, solid curves represent the output of our fitted model, while dashed lines are the prediction of Ref. [55]. For the region of interest ($\tilde{q}^2 \gtrsim 0$), fitted results agree especially well with G_M, matching its qualitative dependence on \tilde{q}^2 quite closely; for G_E, however, the agreement is somewhat weaker, as especially highlighted by the relatively steep downturn of the solid-black curve of Fig. 2(b). At the same time, we adjudicate the better-than $\sim 10\%$ agreement at lowest $\tilde{q}^2 \lesssim 0.2$ GeV2 for G_E and percent-level agreement for G_M to be fully adequate for our demonstration of the hyperspherical formalism here, which we pursue in the following sections only for quantities defined in the real limit, $\tilde{q}^2 = 0$, including the axial charge a_0.

B. Axial-singlet charge

The total quark helicity contribution to the nucleon spin in Eq. (1) may be identified with the matrix element for the axial-singlet charge of the proton [59], $a_0 = \sum_q \Delta q$, which we write explicitly as

$$2M\tilde{S}_\mu a_0 \equiv \langle \tilde{p}, s | \bar{q} \gamma_\mu \gamma_5 q | \tilde{p}, s \rangle, \quad \tilde{S}_\mu \equiv \frac{1}{2M} \bar{u}(\tilde{p}) \gamma_\mu \gamma_5 u(\tilde{p}),$$

in which \tilde{S}_μ represents the nucleon’s Euclidean spin 4-vector, which obeys $\tilde{S} \cdot \tilde{p} = 0$ and $\tilde{S}^2 = -1$. For the non-pointlike proton basis states consistent with the bare quark + diquark
picture, the matrix element of Eq. (12) can be realized diagrammatically in a triangle graph akin to that which produced Eqs. (5) and (6) for the proton’s electromagnetic substructure — albeit with the appropriate $\sim \gamma_\mu \gamma_5$ operator entering at the axial current-quark vertex. This is shown explicitly in Fig. 1(b), wherein $\tilde{p}' = \tilde{p}$, as is relevant for the axial-singlet charge defined at $\tilde{q} = 0$. Using our established Euclidean conventions, this then gives the amplitude

$$2M \tilde{S}_\mu a_0 = \frac{1}{(2\pi)^4} \int d^4\tilde{k} \, \tilde{\tau}((\tilde{p} \cdot \tilde{p} + m \gamma_5) \frac{1}{i\gamma_\mu + m} u(\tilde{p}) \left(\frac{1}{i\gamma_\mu + m} u(\tilde{p}) \right) \left(\frac{|\varphi(\tilde{k}^2)|^2}{|\tilde{p} - \tilde{k}|^2 + m_D^2} \right). \quad (13)$$

Thus we can follow a procedure similar to that used in the electromagnetic sector to compute the bare (i.e., undressed) quark + scalar diquark model prediction for the proton’s axial-singlet charge, keeping in mind that we will ultimately match our ECQM formalism to the standard calculation in Sec. III C, constituting a vital test. We find

$$2M \tilde{S}_\mu a_0 = \Gamma(5) \frac{g^2 \Lambda^4}{(2\pi)^4} \int \frac{d^4\tilde{l}}{(l^2 + \Delta^2)^5} \int dx \, dy \, dz \, x \delta(1 - [x + y + z])$$

$$\times \bar{u}(\tilde{p}) \left(-i(\tilde{\ell} + z\tilde{p}) + m \right) \gamma_\mu \gamma_5 \left(-i(\tilde{\ell} + z\tilde{p}) + m \right) u(\tilde{p}) ; \quad (14)$$

again using textbook [53] covariant methods, this can be manipulated to yield

$$a_0 = - \left(\frac{g \Lambda^2}{4\pi} \right)^2 \int_0^1 dy \int_0^{1-y} dz \, y(1 - y - z) \left(\frac{1}{\Delta^2} \right)^2 - 2(m + zM)^2 \left(\frac{1}{\Delta^2} \right)^3 , \quad (15)$$

where here the explicit expression for the denominator in terms of masses and Feynman parameters is

$$\Delta^2 = (1 - y - z)m^2 + y\Lambda^2 + zm_D^2 - z(1 - z)M^2 , \quad (16)$$

and we have implemented the shift $\tilde{k}_\mu \rightarrow \tilde{l}_\mu = \tilde{k}_\mu - z\tilde{p}_\mu$, and made use of Eq. (A8). Thus, Eq. (15) is fully defined, and may be computed with the model parameters determined in the electromagnetic sector — i.e., the values contained within the inner box of Table I. Inserting these, we get $a_0 = 0.784$, which we also report in the rightmost partition of Table I. We reproduce this value via hyperspherical techniques in Sec. III C.
III. HYPERSPHERICAL FORMALISM

A. Euclidean density function

Here we introduce the framework necessary to obtain 4-dimensional Euclidean quark-level densities — for the proton’s electromagnetic charge in Sec. III B, and its axial-singlet charge in Sec. III C.

Formally, we seek 4-dimensional densities dependent on the interacting quark’s Euclidean momentum \tilde{k}. Such quantities would be analogous to the squares of Bethe-Salpeter wave functions $\Psi(k; p)$ from which LFWFs can be derived via the appropriate integral over $\int dk^-$ at fixed LF time $[21, 22]$ as described in Sec. I. Properly formulated, in our case these density functions will allow the recovery of bulk properties of the nucleon from radial integrals in Euclidean space governed by the parameters of a constituent quark model. That is, the total nucleon charge and axial-singlet charge follow from the zeroth moment of the Euclidean density functions (EDFs) $\overline{\mathcal{F}}_1(\tilde{k}^2)$ and $\overline{\mathcal{A}}_0(\tilde{k}^2)$, respectively:

$$F_1(\bar{q}^2=0) = \int d\tilde{k}^2 \overline{\mathcal{F}}_1(\tilde{k}^2) ,$$

$$a_0 = \int d\tilde{k}^2 \overline{\mathcal{A}}_0(\tilde{k}^2) ,$$

(17) (18)

where the integrations over $\int d\tilde{k}^2$ remain after summing over angles, and EDFs for other charges may also be constructed. In fact, inasmuch as EDFs enjoy the proper support (in this case, vanishing in the limit $\tilde{k}^2 \to \infty$), their lowest moments in \tilde{k}^2 may also be computed:

$$M^n_{f_1} \equiv \int d\tilde{k}^2 \left(\tilde{k}^2\right)^n \overline{\mathcal{F}}_1(\tilde{k}^2) ,$$

$$M^n_{a_0} \equiv \int d\tilde{k}^2 \left(\tilde{k}^2\right)^n \overline{\mathcal{A}}_0(\tilde{k}^2) ,$$

(19) (20)

for which the choice ($n = 0$) corresponds to the expressions in Eqs. (17) and (18), while the nontrivial first moments ($n = 1$), corresponding to $M^1 \sim \langle \tilde{k}^2 \rangle$, provide information on the mean \tilde{k}^2 of the electromagnetic and axial-charge densities. We determine these explicitly in Secs. III B and III C below, and ultimately plot their associated integrands in Fig. 3.

Pending this more detailed calculation, the proton’s charge EDF $\overline{\mathcal{F}}_1(\tilde{k}^2)$ may be described to first approximation in the spirit of Feynman et al. [60], using a Euclideanized Gaussian
wave function $\psi(\vec{k}^2) \sim \exp(-R^2 \vec{k}^2/2)$:

$$F_1(\vec{q}^2=0) = \frac{1}{(2\pi)^4} \int d^4 \vec{k} \ |\psi(\vec{k}^2)|^2 = 1$$

$$\rightarrow \psi(\vec{k}^2) = (4\pi R^2) \exp \left\{ -\frac{1}{2} R^2 \vec{k}^2 \right\} , \quad (21)$$

for which the dependence of the wave function on the quark momentum \vec{k} is governed purely by the proton RMS radius, $R \equiv \langle r_p^2 \rangle^{1/2} \approx 0.88 \text{ fm} = 1/(0.227 \text{ GeV})$ [61]. Noting Eq. (B2), we conclude

$$f_{WF1}(\vec{k}^2) = R^4 \vec{k}^2 \exp \left\{ -R^2 \vec{k}^2 \right\} , \quad (22)$$

a simple result to which we compare the model results of Secs. III B and III C below as an instructive benchmark. Plotting the integrand $2\vec{k} f_{WF1}(\vec{k}^2)$ of $F_1(0)$ against \vec{k} in Fig. 3, the resulting distribution peaks predictably near $\vec{k} \gtrsim 0.2 \text{ GeV}$ due to our numerical choice of R, but then has a sharper momentum dependence at higher \vec{k} not found for the more realistic model calculations presented below; this fact alone highlights the necessity for the more detailed hyperspherical treatment of nucleon spin structure outlined in Secs. III B–III C.

Ultimately, in a utilitarian sense the EDFs of Eqs. (17) and (18) also permit an interface with the output of traditional Euclidean field-theoretic approaches, as emphasized in Sec. I. Whereas the formalism of Sec. II is adequate for the determination of the total proton charge and helicity in the bare quark model, we ultimately wish to absorb the results of BSE analyses into our ECQM to assess the gluon dressing effect. For this purpose, however, BSEs describe the impact of soft gluon exchange in the form of vertex functions of the quark’s Euclidean momentum, and there is no straightforward way to incorporate such quantities into the bare calculation of Sec. II B, especially given the reliance of the latter upon shifting loop momenta away from those given in Fig. 1(b).

On the other hand, given their status as vertex functions of the quark momentum, BSE results may be incorporated directly into the integrated EDFs typified by Eq. (18) as quark momentum-dependent smearing functions $f_g(\vec{k}^2)$. It is precisely such a scheme that we pursue here for the quark helicity contribution to the nucleon spin, a_0. Thus, with the EDF $\overline{a}_0(\vec{k}^2)$ and the smearing function $f_g(\vec{k}^2)$ for the gluon-dressing effect in hand, one may compute the impact of soft gluon exchange upon the total quark helicity contribution to the proton spin, leading to a corrected axial-singlet charge

$$a'_0 = \int d\vec{k}^2 \ \overline{a}_0(\vec{k}^2) \ f_g(\vec{k}^2) , \quad (23)$$
where in practice we identify the gluonic smearing function with the nonperturbative axial-vector vertex factor of BSE studies, $f_g(\tilde{k}^2) = F_R(\tilde{k}^2, 0)$, which we take from Ref. [48] and describe in greater detail in Sec. IV. Moreover, we point out that assuming the perturbative result expected to hold at $\tilde{k} \gg 0$ for the gluon dressing function, $f_g(\tilde{k}^2) = 1$, in Eq. (23) simply recovers the bare ECQM calculation given by Eq. (18).

We can in fact achieve the specifics of the general formalism described above, and this amounts to the main result of the present paper. We derive the EDFs of Eqs. (17) and (18) by closely following the analogous calculation for the hadronic vacuum polarization effect in the muon’s anomalous magnetic moment [28]; viz., we now evaluate Eq. (4) for $\tilde{p}' = \tilde{p}$ in Sec. III B and Eq. (13) in Sec. III C using a hyperspherical formalism originally adapted to QED [29–31].

B. Quark charge distribution

The hyperspherical formalism we describe below is of sufficient generality that it may be deployed in the evaluation of various Euclidean momentum distributions. As an initial demonstration, however, we highlight the calculation of the EDF for the proton’s electric charge: i.e., the integrand leading to $F_1(\tilde{q}^2 = 0)$ of Eq. (17). As will be the case for the subsequent determination of $\tilde{a}_0(\tilde{k})$, we start at amplitude-level, in this case with Eq. (4), which at $\tilde{q}^2 = 0$ yields

$$2i \tilde{p}_\mu F_1(0) = \frac{1}{(2\pi)^4} \int d^4\tilde{k} \frac{\bar{\pi}(\tilde{p})}{i\gamma^\mu + m} \frac{1}{i\gamma^\mu + m} u(\tilde{p}) \left(\frac{|\varphi(\tilde{k}^2)|^2}{|\tilde{p} - \tilde{k}|^2 + m_D^2} \right)$$

$$= \frac{g^2 \Lambda^4}{(2\pi)^4} \int d^4\tilde{k} \frac{\bar{\pi}(\tilde{p})}{(\tilde{k}^2 + m^2)^2 (\tilde{k}^2 + \Lambda^2)^2} \left(\frac{2\tilde{k} \cdot \tilde{k}_\mu + (\tilde{k}^2 + m^2) \gamma_\mu - im\{\gamma_\mu, \tilde{k}\}}{|\tilde{p} - \tilde{k}|^2 + m_D^2} \right) u(\tilde{p}),$$

(25)

where we have again used Eq. (A10) for the general form of the electromagnetic vertex given in App. A. To apply the hyperspherical formalism, we must express the numerator algebra leading to $F_1(0)$ in terms of inner products. For this example, we achieve this by contracting both sides of Eq. (25) with \tilde{p}_μ and using the identities of App. A, which brings us to the expression

$$F_1(0) = \frac{g^2 \Lambda^4}{(2\pi)^4} \int d^4\tilde{k} \frac{\tilde{k}^2 + m^2 - \frac{2}{\tilde{p}^2} (\tilde{p} \cdot \tilde{k})^2 + \frac{2}{\tilde{p}^2} mM (\tilde{p} \cdot \tilde{k})}{(\tilde{k}^2 + m^2)^2 (\tilde{k}^2 + \Lambda^2)^2} \left(\frac{|\tilde{p} - \tilde{k}|^2 + m_D^2}{|\tilde{p} - \tilde{k}|^2 + m_D^2} \right).$$

(26)
More critically, rather than shifting away the term in the denominator $\sim (\tilde{p} \cdot \tilde{k})$ as in the standard covariant calculations involving Feynman parameters [Eqs. (5) – (6) and (15)], we instead make an expansion of the scalar diquark propagator:

$$\frac{1}{[\tilde{p} - \tilde{k}]^2 + m_D^2} = \frac{Z_{pk}}{\tilde{p}\tilde{k}} \sum_{n=0}^{\infty} \left(\frac{Z_{pk}}{\tilde{p}\tilde{k}} \right)^n C_n(\hat{p} \cdot \hat{k}),$$

where explicitly,

$$Z_{pk} \equiv \frac{1}{2\tilde{p}\tilde{k}} \left(\tilde{p}^2 + \tilde{k}^2 + m_D^2 - \sqrt{(\tilde{p}^2 + \tilde{k}^2 + m_D^2)^2 - 4\tilde{p}^2\tilde{k}^2} \right),$$

and we sometimes find it convenient to work in terms of the dimensionful object $Z \equiv Z_{pk}/\tilde{p}\tilde{k}$. In Eq. (27), the C_n are Gegenbauer polynomials with the normalization and orthogonality properties described in App. B, and \hat{p} is a unit vector in Euclidean space in the direction of \tilde{p}_μ.

We can exploit these properties in App. B to perform the necessary angular integrations by first rendering the numerator of Eq. (26) in terms of a linear combination of the Gegenbauer polynomials

$$(\hat{p} \cdot \hat{k}) = \frac{\tilde{p}\tilde{k}}{2} C_1(\hat{p} \cdot \hat{k}),$$

$$(\hat{p} \cdot \hat{k})^2 = \frac{1}{4} \tilde{p}^2 \tilde{k}^2 \left(C_2(\hat{p} \cdot \hat{k}) + C_0(\hat{p} \cdot \hat{k}) \right).$$

Inserting everything into Eq. (26) and using Eq. (B2) then results in

$$F_1(0) = \frac{g^2\Lambda^4}{(2\pi)^4} \int \frac{d\tilde{k}^2}{2} \frac{\tilde{k}^2 Z}{(k^2 + m^2)^2 (k^2 + \Lambda^2)^2} \int d\Omega_k \left(\sum_{n=0}^{\infty} \left(\frac{\tilde{p}\tilde{k}}{Z} \right)^n C_n(\hat{p} \cdot \hat{k}) \right)$$

$$\times \left(-\frac{\tilde{k}^2}{2} (C_2(\hat{p} \cdot \hat{k}) + C_0(\hat{p} \cdot \hat{k})) + \frac{mM}{\tilde{p}^2} \tilde{p}\tilde{k} C_1(\hat{p} \cdot \hat{k}) + (m^2 + \tilde{k}^2) C_0(\hat{p} \cdot \hat{k}) \right);$$

and we may use Eq. (B3) to evaluate the angular integral $\int \Omega_k$. Before doing so, however, it is imperative to note that Eq. (31) is defined in general for spacelike 4-momenta (including the external nucleon 4-momentum $\tilde{p}^2 \geq 0$). It is therefore necessary to perform an analytic continuation of the proton momentum into the timelike region where it is explicitly on-shell and thus physical: $\tilde{p}^2 = -M^2$. By merit of our requirement that $m_D \geq M$, the integration contour $\tilde{k}^2 \in [0, \infty)$ remains unmenaced by branch points or singularities, and the nucleon momentum may be straightforwardly continued to $\tilde{p} \rightarrow iM$. Doing so after evaluating the angular integrals, we finally obtain

$$F_1(0) = \left(\frac{g\Lambda^2}{4\pi} \right)^2 \int d\tilde{k}^2 \frac{\tilde{k}^2 Z}{(k^2 + m^2)^2 (k^2 + \Lambda^2)^2} \left(\frac{\tilde{k}^2}{2} + \frac{M^2}{\tilde{k}^2 Z} \right) + mM\tilde{k}^2 Z + m^2 \right),$$

(32)
in which \overline{Z} represents the analytic continuation of the rational function Z of Eq. (28), given explicitly by

$$Z = -\frac{1}{2M^2 k^2} \left(\tilde{k}^2 + \delta^2 - \sqrt{(\tilde{k}^2 + \delta^2)^2 + 4M^2 \tilde{k}^2} \right),$$

having defined the shorthand $\delta^2 \equiv m^2_D - M^2$.

It is notable also that the expression given in Eq. (32) constitutes an important check of the hyperspherical formalism which we use in Sec. III C below for a_0, and one may straightforwardly verify that it yields $F_1(0) = 1$ for the parameters of Table 1. From it, we may at last extract the Euclidean density function $\overline{f}_1(\tilde{k}^2)$ for the proton’s quark-level charge through direct matching with Eq. (17),

$$\overline{f}_1(\tilde{k}^2) = \left(\frac{g \Lambda^2}{4\pi} \right)^2 \frac{\tilde{k}^2 \overline{Z}}{(\tilde{k}^2 + m^2)(\tilde{k}^2 + \Lambda^2)^2} \left(\frac{\tilde{k}^2}{2} + \frac{M^2}{2} (\tilde{k}^2 \overline{Z})^2 + mM \tilde{k}^2 \overline{Z} + m^2 \right);$$

we plot this EDF in Fig. 3 alongside the analogous quantity for the axial-singlet charge $\overline{a}_0(\tilde{k}^2)$ derived in Sec. III C below.

Having determined the quark-level EDF for the proton’s electric charge in Eq. (34), we may use this result to evaluate higher moments of the charge distribution given in Eq. (19):

$$M^1_{\overline{f}_1} = 0.1985 \text{ GeV}^2.$$ (35)

In this case, this value corresponds roughly to the center of the peak of the heavy-solid line in Fig. 3; more directly, we also plot the integrand over \tilde{k} for the moment $M^1_{\overline{f}_1}$ as the thin-solid line, multiplied by a factor of 2 for ease of comparison.

C. Quark helicity

While the formalism in Sec. II B above was sufficient to determine the bare quark helicity contribution to the proton axial-singlet charge a_0, we must ultimately interface our quark-diquark framework with the results of BSE analyses to estimate the gluon dressing effect as mentioned above. In this case, the BSE calculations we aim to incorporate are \tilde{k}-dependent vertex factors as noted in Sec. III A, and thus we require an axial charge momentum distribution along the lines of Eq. (34) to evaluate Eq. (23).

Hence, analogously to the calculation in Sec. III B, we now proceed by contracting both
FIG. 3. (Color online) A comparison of EDFs for the proton’s charge 2 \(\tilde{k} \) [Eq. (34), black-solid] and axial-singlet charge 2 \(\tilde{k} \) [Eq. (41), maroon-dashed] carried by the struck quark in the scalar diquark ECQM as functions of its Euclidean momentum \(\tilde{k} \); for illustration, we contrast these with the result of using the Gaussian wave function, 2 \(\tilde{k} \) from Eq. (22) [red-dotted]. The thin lines and associated shaded regions at bottom correspond to the integrands of these distributions’ first moments in \(\tilde{k} \), i.e., \(M^1 \sim \langle \tilde{k}^2 \rangle \) of Eqs. (19) and (20). Note that these latter moments have been rescaled by a factor of 2 for comparison.

sides of Eq. (13) with the nucleon spin 4-vector \(\tilde{S}_\mu \) to obtain

\[
2Ma_0 = \frac{-g^2\Lambda^4}{(2\pi)^4} \int d^4\tilde{k} \tilde{S}_\mu \overline{\eta}(\tilde{p}) \left(-i\tilde{\gamma}_5 + m \right) \gamma_\mu \gamma_5 \left(-i\tilde{\gamma}_5 + m \right) u(\tilde{p}) \frac{ \left(\tilde{k}^2 + m^2 \right)^2 (\tilde{k}^2 + \Lambda^2)^2 \left(\tilde{p} - \tilde{k} \right)^2 + m^2_D } { \left(\tilde{k}^2 + m^2 \right)^2 (\tilde{k}^2 + \Lambda^2)^2 \left(\tilde{p} - \tilde{k} \right)^2 + m^2_D } .
\]

(36)

and here we require an additional inner product:

\[
(\tilde{S} \cdot \tilde{k})^2 = \frac{1}{4} \tilde{S}^2 \tilde{k}^2 \left(C_2(\tilde{S} \cdot \tilde{k}) + C_0(\tilde{S} \cdot \tilde{k}) \right) .
\]

(37)

Using this and Eq. (29) to re-write the inner products of Eq. (36) above, we incorporate the polynomial expansion for \(\left(|\tilde{p} - \tilde{k}|^2 + m^2_D \right)^{-1} \); here this leads to
\[a_0 = \frac{g^2 \Lambda^4}{(2\pi)^4} \int \frac{d\tilde{k}^2}{2} \frac{\tilde{k}^2 Z}{(k^2 + m^2)^2 (\tilde{k}^2 + \Lambda^2)^2} \int d\Omega_k \left(\sum_{n=0}^{\infty} (\tilde{p} \tilde{k} Z)^n C_n(\hat{p} \cdot \hat{k}) \right) \]
\[\times \left(\frac{\tilde{k}^2}{2} (C_2(\hat{S} \cdot \hat{k}) + C_0(\hat{S} \cdot \hat{k})) - \frac{m}{M} \tilde{p} \tilde{k} C_1(\hat{p} \cdot \hat{k}) + (m^2 - \tilde{k}^2) C_0(\hat{S} \cdot \hat{p}) \right) \]
\[= \left(\frac{g \Lambda^2}{4\pi} \right)^2 \int d\tilde{k}^2 \frac{\tilde{k}^2 Z}{(k^2 + m^2)^2 (\tilde{k}^2 + \Lambda^2)^2} \left(-\frac{\tilde{k}^2}{2} + \frac{M^2}{6}(\tilde{k}^2 Z)^2 + mM\tilde{k}^2 Z + m^2 \right) \] \hspace{1cm} (38)

As before, we analytically extend \(\tilde{p} \) into the timelike region where it is on-shell, leading to

\[a_0 = \left(\frac{g \Lambda^2}{4\pi} \right)^2 \int d\tilde{k}^2 \frac{\tilde{k}^2 Z}{(k^2 + m^2)^2 (\tilde{k}^2 + \Lambda^2)^2} \left(-\frac{\tilde{k}^2}{2} + \frac{M^2}{6}(\tilde{k}^2 Z)^2 + mM\tilde{k}^2 Z + m^2 \right) \] \hspace{1cm} (40)

and \(\tilde{Z} \) is again given by the expression in Eq. (33). Lastly, we deduce the EDF appearing in Eq. (18) [and Eq. (23)] from Eq. (40) by simple matching, as had been done for \(\tilde{f}_1(\tilde{k}^2) \):

\[\tilde{u}_0(\tilde{k}^2) = \left(\frac{g \Lambda^2}{4\pi} \right)^2 \frac{\tilde{k}^2 Z}{(k^2 + m^2)^2 (\tilde{k}^2 + \Lambda^2)^2} \left(-\frac{\tilde{k}^2}{2} + \frac{M^2}{6}(\tilde{k}^2 Z)^2 + mM\tilde{k}^2 Z + m^2 \right) \] \hspace{1cm} (41)

in summary, we emphasize that to obtain Eqs. (36)–(41) we have contracted both sides of the first equation with \(\tilde{S}_\mu \) and expanded the diquark propagator `a la Eq. (27).

With these expressions, one may proceed to compute the bare quark contribution to the proton spin using the set of parameters determined from fits to the proton electromagnetic form factors, given in Table I. Using these values in the conventional formalism of Sec. II B that led to Eq. (15), we found \(a_0 = 0.784 \) — a value which may also be recovered from the hyperspherical formalism as given by Eq. (40). Incidentally, this figure is in accord with the moment of the scalar diquark contribution to the quark helicity PDF obtained in a typical light-front quark model (see Eqs. (61) and (62) of Ref. [10]):

\[\Delta q_s = \frac{1}{3} (2\Delta u - \Delta d) \approx 0.75 \] \hspace{1cm} (42)

this latter expression assumed an \(SU(2) \otimes SU(2) \) structure for the proton’s spin-flavor wave function.

We point out as well that the axial-singlet EDF \(\tilde{u}_0(\tilde{k}^2) \) given by Eq. (41) is not restricted to be positive-definite, unlike the analogous electromagnetic charge EDF \(\tilde{f}_1(\tilde{k}^2) \) of Eq. (34),
FIG. 4. (Color online) (a) The diagram leading to the DSE for a quark of momentum \tilde{k} dressed by a nonperturbative gluon carrying loop momentum \tilde{L}. (b) The corresponding diagram for the quark axial-vector vertex BSE, responsible for the \tilde{k}-dependent gluonic dressing correction to the axial charge of an individual quark.

which is related to the zeroth moments of traditional probabilistic quark density functions. In fact, for certain parameter combinations, $\bar{a}_0(\tilde{k}^2)$ may experience substantial negative downturns at larger spacelike quark momenta, $\tilde{k} \geq 1$ GeV. However, for the set of fitting parameters that best describes proton form factor data, this effect is not evident, and the axial-singlet EDF $\bar{a}_0(\tilde{k})$ is instead dominated by a soft peak centered roughly at $\tilde{k} \lesssim 0.2$ GeV, as shown in Fig. 3 as the maroon-dashed line.

Owing mainly to the similarity of the explicit \tilde{k}^2 dependence appearing in Eqs. (34) and (41), the shapes of these distributions closely track each other, with $f_1(\tilde{k}^2) \approx \bar{a}_0(\tilde{k}^2)$, particularly for $\tilde{k}^2 \ll m^2$. Ultimately, we interpret this behavior as following from the common origin of both expressions in the diagrams of Fig. 1, which at $\tilde{q} = 0$ differ only by the appearance of γ_5.

Moreover, for the higher $\sim \langle \tilde{k}^2 \rangle$ moment of the axial-singlet EDF, we obtain the value

$$M_{\bar{a}_0}^1 = 0.08125 \text{ GeV}^2,$$

(43)

implying the proton’s distribution of axial-singlet charge is relatively softer than the charge distribution [Eq. (35)] in the bare model.

IV. GLUON DRESSING EFFECT

We now incorporate numerical estimates of the effect of dressing the quark-axial current vertex with gluon exchange, which in principle may be determined from DSE-BSE analyses. Here, the relevant diagrams are displayed in Fig. 4, wherein panel (a) illustrates the dressed
propagator responsible for QCD's quark DSE, while panel (b) demonstrates the realization of the BSE for the quark-level coupling of the axial-vector current dressed by soft gluon exchange. Naturally, the infrared momenta at which this effect is of interest demands the use of nonperturbative methods, and the standard procedure requires a prescription-dependent truncation of the quark-gluon vertex (shown as the blobs in Fig. 4).

In the context of BSE analyses \cite{45–48}, the dressed axial-vector vertex is represented by the structure \(\Gamma^{fg}_{\mu}(\vec{K}; \vec{P}) \), which is understood to connect an incoming quark of flavor \(g \) and momentum \(\vec{K}_- = \vec{K} - (1 - \eta)\vec{P} \) to an outgoing quark of flavor \(f \) and momentum \(\vec{K}_+ = \vec{K} + \eta\vec{P} \); here \(\vec{P} \) and \(\vec{K} \) represent the total and relative momentum of the quark pair, and \(\eta \) is a dimensionless parameter upon which calculations cannot depend. Thus, for our purposes, we require the case \(\vec{P} = 0 \), such that \(\vec{K}_+ = \vec{K}_- = \vec{K} \equiv \vec{k} \), and we take the diagonal isospin-independent vertex \(f = g \), as described in Ref. \cite{48}. Then the structure of the quark-axial vector vertex of relevance here is simply

\[
\pi(\vec{k}) \Gamma^{fg}_{\mu}(\vec{k}; 0) \ u(\vec{k}) = \pi(\vec{k}) \gamma_5 \left[\gamma_{\mu} F_R(\vec{k}; 0) + \ldots \right] u(\vec{k}) ,
\]

and the ellipsis in Eq. (44) above represents additional contributions to the vertex that do not contribute in the present analysis. We therefore make the identification \(f_g(\vec{k}) \equiv F_R(\vec{k}; 0) \) mentioned in Sec. IIIA, and directly insert the numerical results reported in Ref. \cite{48} to smear the bare model axial charge as in Eq. (23).

The behavior of \(f_g(\vec{k}) \) depends crucially on the truncation scheme used to obtain the effective quark-gluon vertices in the panels of Fig. 4. To get a sense for this source of prescription dependence, we compute the correction following from both schemes treated in Ref. \cite{48} — the rainbow-ladder scheme (RL), and an ansatz based on a specific realization of dynamical symmetry breaking (DB), which we take numerically from Fig. 1 of Ref. \cite{48}. Referring to these as \(f_g^{RL}(\vec{k}) \) (blue-dotted) and \(f_g^{DB}(\vec{k}) \) (red-dashed), we plot both dressing functions against \(\vec{k} \) in Fig. 5(a). Plainly, both truncation schemes predict a suppression of the quark’s axial charge for the lowest infrared momenta \(\vec{k} \lesssim 0.3 \text{ GeV} \), but substantial enhancements beyond — particularly for the RL prescription, which overhangs the DB scheme by \(\sim 25\% \) for \(\vec{k} \sim 1 \text{ GeV} \). Having determined the axial EDF of Eq. (41) we may fold these extractions for the gluon dressing function into Eq. (23) to determine the overall effect, plotting the integrands responsible for \(a'_0 \), \(2\vec{k} f_g^{RL}(\vec{k}^2) \bar{a}_0(\vec{k}^2) \) (blue-dotted) and \(2\vec{k} f_g^{DB}(\vec{k}^2) \bar{a}_0(\vec{k}^2) \) (red-dashed), in Fig. 5(b) alongside the bare or “undressed” scenario, \(f_g(\vec{k}^2) = 1 \) (black-solid).
FIG. 5. (Color online) (a) The gluon dressing function $f_g(\tilde{k}^2)$ under several different scenarios: the perturbative limit $f_g(\tilde{k}^2) = 1$ (solid black), and $f_g^{DB}(\tilde{k}^2)$ (red-dashed) and $f_g^{RL}(\tilde{k}^2)$ (blue-dotted). (b) A plot of the integrand of Eq. (23) $2\tilde{k}^2 \pi_0(\tilde{k}^2) f_g(\tilde{k}^2)$ for several choices of the gluon dressing function: $f_g(\tilde{k}^2) = 1$ (“bare,” shown in solid black), as well as the result of an improved dynamical chiral symmetry-breaking kernel in the BSE $f_g^{DB}(\tilde{k}^2)$ (“DB,” red-dashed line), and the rainbow-ladder truncation method $f_g^{RL}(\tilde{k}^2)$ (“RL,” blue-dotted curve) of Ref. [45, 48].

From this, we find the net correction to the quark helicity contribution from gluon dressing to be

$$\left(\frac{a'_0}{a_0} \right) - 1 = -0.04\% \quad \text{(DB scheme)},$$

$$= +2.98\% \quad \text{(RL scheme)}.$$ \hspace{1cm} (45) \hspace{1cm} (46)

The magnitude of the effect from gluon dressing is therefore quite small, and in the present analysis, actually consistent with zero in the sense that depending upon the choice of truncation scheme, one may obtain a modest enhancement (RL) or tiny suppression (DB) of the proton’s total quark helicity. The smallness of the effect can be understood from the momentum dependence shown in Fig. 5(b), in which the interplay of the shapes of $f_g(\tilde{k}^2)$ and $\pi_0(\tilde{k}^2)$ are such that the axial-singlet charge is slightly suppressed at low \tilde{k} and enhanced at higher \tilde{k}. These two effects largely cancel, however, in the integral over \tilde{k} involved in the computation of a'_0 according to Eq. (23), such that $a'_0 \approx a_0$, and we conclude the dressing effect in a_0 to be minimal.
V. CONCLUSION

In this paper we have proposed a model in Euclidean space formulated in terms of constituent quark degrees of freedom. The essential products of the resulting ECQM technology are density functions of the quark’s Euclidean momentum (the EDFs) obtained from hyperspherical angular integrations of 4-dimensional amplitudes. The special value of these derived quantities is their ability to recover nucleon charges through integrals over the internal momenta of their constituent quarks, a fact that empowered us to couple them to predictions of other Euclidean analyses — in this case, BSEs.

Thus, having introduced this formalism, we tested it preliminarily by computing both the nucleon’s quark charge density, as well as its axial-singlet charge. For the latter, this test assumed the form of an assessment of the impact of BSE calculations for the dressed quark axial-vector vertex. There are of course various sources of model dependence on the side of both our ECQM for the nucleon-quark interaction and of the BSE analyses. Despite these sources of model-dependence, we find the effect of the gluon dressing to be small — at most a several percent correction to the total quark helicity in the bare ECQM.

Naturally, the analysis presented here is essentially exploratory, and if anything, suggests the need for further refinements. For instance, the scalar diquark picture alone cannot realistically approximate the nucleon’s full spin structure as evidenced by the large value we obtain for the bare axial-singlet charge ($a_0 = 0.784$); a fuller calculation would therefore involve spin-1 diquark exchanges, which in general are necessary to obtain an authentic flavor decomposition of the nucleon helicity. At the same time, it is reasonable to expect that the qualitative shape obtained for $\tilde{a}_0(k)$ shown in Fig. 5 for the present scalar diquark ECQM would hold also for amplitudes involving spin-1 exchanges, so that the essential details of such a calculation would resemble our presentation here. That being the case, our ultimate conclusion is unlikely to change: models in which bare constituent quarks carry the great predominance of the total quark helicity are on robust footing.

Similarly, it should be noted that other possible considerations have not been treated systematically, including the momentum dependence of the constituent quark’s dynamical mass, the implementation of which would require a self-consistent scheme not typical of the fitted constituent quark model presented here. Such issues, as well as continued improvements to the Euclidean hyperspherical formalism and BSEs for the axial-vertex dressing functions
will be of enormous value in extending the current state-of-the-art regarding quark helicity, the nucleon spin problem, and Euclidean modeling of nucleon structure.

VI. ACKNOWLEDGEMENTS

We thank Ian Cloët, Javier Menéndez, Brian Tiburzi, Andre Walker-Loud, and Xilin Zhang for helpful exchanges. The work of TJH and GAM was supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences program under Award Number DE-FG02-97ER-41014. The work of MA was supported under NSF Grant No. 1516105.

Appendix A: Euclidean space conventions

We proceed using the Minkowski ↔ Euclidean transcription dictionary as outlined in, e.g., Refs. [15, 16], wherein 4-momenta and Dirac matrices transform according to

\[
\begin{align*}
k^0 &= i k_4 , \\
k^j &= - k_j , \\
\gamma^0 &= \gamma_4 , \\
\gamma^j &= i \gamma_j ; \quad j \in \{1, 2, 3\} .
\end{align*}
\]

(A1)

The Dirac algebra in this setting is then specified by

\[
\left\{ \gamma_\mu, \gamma_\nu \right\} = 2 \delta_{\mu\nu} ,
\]

such that the Euclidean inner product for any two 4-vectors \(\vec{a}_\mu, \vec{b}_\mu \) is

\[
\vec{a} \cdot \vec{b} \equiv \sum_\mu \vec{a}_\mu \vec{b}_\mu = \vec{a}_1 \vec{b}_1 + \cdots + \vec{a}_4 \vec{b}_4 ,
\]

(A3)

and, by extension,

\[
\vec{p} \equiv \gamma_1 \vec{p}_1 + \cdots + \gamma_4 \vec{p}_4 .
\]

(A4)

We also note the definition

\[
\gamma_5 = -\gamma_1 \gamma_2 \gamma_3 \gamma_4 .
\]

(A5)

We may give explicit expressions for the Euclidean Dirac spinors, which we obtain following the conventional Wick rotation as

\[
u_\lambda(p) = \sqrt{M + p^0} \left(\frac{\chi_\lambda}{\sigma \cdot p / M + i p^0} \chi_\lambda \right) \quad \rightarrow \quad u_\lambda(\vec{p}) = \sqrt{M + i \vec{p}_4} \left(\frac{\chi_\lambda}{-\sigma \cdot \vec{p} / M + i \vec{p}_4} \chi_\lambda \right) ,
\]

(A6)
where the helicity states \(\chi_{\{\lambda=\uparrow\downarrow\}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) are proportional to the standard eigenvectors of \(\sigma_3 \). These spinors are endowed with the typical normalization,

\[
\bar{u} u = 2M, \quad \bar{u}(\vec{p}) \gamma_\mu u(\vec{p}) = 2i \vec{p}_\mu, \quad (A7)
\]

and obey the Dirac Equation

\[
\bar{u}(\vec{p}')(i\vec{p'} + M) u(\vec{p}) = 0 \ . \quad (A8)
\]

Moreover, in Euclidean space, the Gordon Identity assumes the slightly altered form

\[
\bar{u}(\vec{p}')(\gamma_\mu - \sigma_{\mu\nu} \vec{q}_\nu) u(\vec{p}) = 2M \left\{ -i \vec{P}_\mu + \sigma_{\mu\nu} \vec{q}_\nu \right\} u(\vec{p}) , \quad (A9)
\]

where we have defined \(\vec{P}_\mu \equiv \vec{p}'_\mu + \vec{p}_\mu \) and \(\sigma_{\mu\nu} \equiv (i/2)[\gamma_\mu, \gamma_\nu] \). By similar logic, we obtain the general form for the extended electromagnetic vertex of the proton,

\[
\bar{u}(\vec{p}') \Gamma_\mu(\vec{p}', \vec{p}) \ u(\vec{p}) = \bar{u}(\vec{p}') \left\{ F_1(\vec{q}^2) \gamma_\mu + F_2(\vec{q}^2) \sigma_{\mu\nu} \frac{\vec{q}_\nu}{2M} \right\} u(\vec{p}) . \quad (A10)
\]

Appendix B: Hyperspherical formalism

In the hyperspherical formalism \([28–31]\), numerator algebra leads to covariant expressions involving inner products which we represent in terms of the Gegenbauer polynomials, of which only the lowest are relevant for the present analysis:

\[
\begin{align*}
C_0(x) &= 1 , & C_1(x) &= 2x , \\
C_2(x) &= 4x^2 - 1 . \quad (B1)
\end{align*}
\]

Hyperspherical integrals may be separated into radial and angular parts according to

\[
\int d^d\vec{k} = \int d\vec{k} \vec{k}^{d-1} \int d\Omega^{(d)}_k , \quad (B2)
\]

and we of course take \(d = 4 \) in the integrations over \(d\Omega_k \equiv d\Omega^{(4)}_k \) \((= \sin^2 \psi \sin \theta \ d\phi \ d\theta \ d\psi) \) in Sec. III; these can then be carried out in practice using well-known orthogonality properties:

\[
\int d\Omega_{\hat{\theta}} \ C_m(\hat{a} \cdot \hat{b}) \ C_n(\hat{b} \cdot \hat{c}) = \frac{2\pi^2 \delta_{mn}}{n+1} \ C_n(\hat{a} \cdot \hat{c}) . \quad (B3)
\]
These relations can be determined from an appropriate choice of hyperspherical coordinates, with a common selection \[k_\mu = \sqrt{k^2} \begin{pmatrix} \sin \psi \sin \theta \cos \phi \\ \sin \psi \sin \theta \sin \phi \\ \sin \psi \cos \theta \\ \cos \psi \end{pmatrix} . \] (B4)

[1] S.-J. Chang and T.-M. Yan, Phys. Rev. D7, 1147 (1973).
[2] G. P. Lepage and S. J. Brodsky, Phys. Rev. D22, 2157 (1980).
[3] G. A. Miller, Prog. Part. Nucl. Phys. 45, 83 (2000), arXiv:nucl-th/0002059 [nucl-th].
[4] S. J. Brodsky, D. S. Hwang, B.-Q. Ma, and I. Schmidt, Nucl. Phys. B593, 311 (2001), arXiv:hep-th/0003082 [hep-th].
[5] B. L. G. Bakker et al., Proceedings, International Conference on Light-Cone Physics: Hadronic and Particle Physics: New Delhi, India, December 10-15, 2012, Nucl. Phys. Proc. Suppl. 251-252, 165 (2014), arXiv:1309.6333 [hep-ph].
[6] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rept. 301, 299 (1998), arXiv:hep-ph/9705477 [hep-ph].
[7] F. Cardarelli, E. Pace, G. Salmè, and S. Simula, Phys. Lett. B357, 267 (1995), arXiv:nucl-th/9507037 [nucl-th].
[8] J. Carbonell, B. Desplanques, V. A. Karmanov, and J. F. Mathiot, Phys. Rept. 300, 215 (1998), arXiv:nucl-th/9804029 [nucl-th].
[9] G. A. Miller, Phys. Rev. C66, 032201 (2002), arXiv:nucl-th/0207007 [nucl-th].
[10] I. C. Cloët and G. A. Miller, Phys. Rev. C86, 015208 (2012), arXiv:1204.4422 [nucl-th].
[11] S. Aoki et al., (2016), arXiv:1607.00299 [hep-lat].
[12] E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
[13] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
[14] P. Maris and C. D. Roberts, Int. J. Mod. Phys. E12, 297 (2003), arXiv:nucl-th/0301049 [nucl-th].
[15] C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994), arXiv:hep-ph/9403224 [hep-ph].
I. C. Cloët and C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014), arXiv:1310.2651 [nucl-th].

H. Meyer and P. J. Mulders, Nucl. Phys. A528, 589 (1991).

P. J. Mulders, A. W. Schreiber, and H. Meyer, Nucl. Phys. A549, 498 (1992).

R. Jakob, P. J. Mulders, and J. Rodrigues, Nucl. Phys. A626, 937 (1997), arXiv:hep-ph/9704335 [hep-ph].

F. Gross, G. Ramalho, and M. T. Peña, Phys. Rev. D85, 093006 (2012), arXiv:1201.6337 [hep-ph].

B. C. Tiburzi and G. A. Miller, Phys. Rev. D67, 054014 (2003), arXiv:hep-ph/0210304 [hep-ph].

G. A. Miller and B. C. Tiburzi, Phys. Rev. C81, 035201 (2010), arXiv:0911.3691 [nucl-th].

M. Diehl, Phys. Rept. 388, 41 (2003), arXiv:hep-ph/0307382 [hep-ph].

A. V. Belitsky and A. V. Radyushkin, Phys. Rept. 418, 1 (2005), arXiv:hep-ph/0504030 [hep-ph].

J. O. Gonzalez-Hernandez, S. Liuti, G. R. Goldstein, and K. Kathuria, Phys. Rev. C88, 065206 (2013), arXiv:1206.1876 [hep-ph].

T. J. Hobbs, M. Alberg, and G. A. Miller, Phys. Rev. C91, 035205 (2015), arXiv:1412.4871 [nucl-th].

L. Chang, I. C. Cloët, J. J. Cobos-Martinez, C. D. Roberts, S. M. Schmidt, and P. C. Tandy, Phys. Rev. Lett. 110, 132001 (2013), arXiv:1301.0324 [nucl-th].

T. Blum, Phys. Rev. Lett. 91, 052001 (2003), arXiv:hep-lat/0212018 [hep-lat].

M. J. Levine and R. Roskies, Phys. Rev. D9, 421 (1974).

R. Z. Roskies, M. J. Levine, and E. Remiddi, Adv. Ser. Direct. High Energy Phys. 7, 162 (1990).

J. L. Rosner, Annals Phys. 44, 11 (1967).

J. Ashman et al. (European Muon), Internal spin structure of the nucleon. Proceedings, Symposium, SMC Meeting, New Haven, USA, January 5-6, 1994, Phys. Lett. B206, 364 (1988).

J. Ashman et al. (European Muon), Internal spin structure of the nucleon. Proceedings, Symposium, SMC Meeting, New Haven, USA, January 5-6, 1994, Nucl. Phys. B328, 1 (1989).

F. Myhrer and A. W. Thomas, Phys. Rev. D38, 1633 (1988).

F. Myhrer and A. W. Thomas, Phys. Lett. B663, 302 (2008), arXiv:0709.4067 [hep-ph].

A. W. Thomas, Phys. Rev. Lett. 101, 102003 (2008), arXiv:0803.2775 [hep-ph].

R. L. Jaffe, Phys. Lett. B365, 359 (1996), arXiv:hep-ph/9509279 [hep-ph].
[38] X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997), arXiv:hep-ph/9603249 [hep-ph].
[39] B. W. Filippone and X.-D. Ji, Adv. Nucl. Phys. 26, 1 (2001), arXiv:hep-ph/0101224 [hep-ph].
[40] J. Blümlein and H. Böttcher, Nucl. Phys. B636, 225 (2002), arXiv:hep-ph/0203155 [hep-ph].
[41] E. Leader, A. V. Sidorov, and D. B. Stamenov, Phys. Rev. D73, 034023 (2006), arXiv:hep-ph/0512114 [hep-ph].
[42] M. Hirai, S. Kumano, and N. Saito, Phys. Rev. D74, 014015 (2006), arXiv:hep-ph/0603213 [hep-ph].
[43] D. de Florian, G. A. Navarro, and R. Sassot, Phys. Rev. D71, 094018 (2005), arXiv:hep-ph/0504155 [hep-ph].
[44] A. J. Chambers et al., Phys. Rev. D92, 114517 (2015), arXiv:1508.06856 [hep-lat].
[45] P. Maris, C. D. Roberts, and P. C. Tandy, Phys. Lett. B420, 267 (1998), arXiv:nucl-th/9707003 [nucl-th].
[46] M. Bhagwat, M. A. Pichowsky, and P. C. Tandy, Phys. Rev. D67, 054019 (2003), arXiv:hep-ph/0212276 [hep-ph].
[47] M. S. Bhagwat, L. Chang, Y.-X. Liu, C. D. Roberts, and P. C. Tandy, Phys. Rev. C76, 045203 (2007), arXiv:0708.1118 [nucl-th].
[48] L. Chang, C. D. Roberts, and S. M. Schmidt, Phys. Rev. C87, 015203 (2013), arXiv:1207.5300 [nucl-th].
[49] V. R. Zoller, Z. Phys. C53, 443 (1992).
[50] W. Melnitchouk, A. W. Schreiber, and A. W. Thomas, Phys. Rev. D49, 1183 (1994), arXiv:nucl-th/9311008 [nucl-th].
[51] W. Melnitchouk and M. Malheiro, Phys. Rev. C55, 431 (1997), arXiv:hep-ph/9610331 [hep-ph].
[52] A. Bodek and J. L. Ritchie, Phys. Rev. D23, 1070 (1981).
[53] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory (1995).
[54] G. A. Miller, Phys. Rev. C80, 045210 (2009), arXiv:0908.1535 [nucl-th].
[55] J. J. Kelly, Phys. Rev. C70, 068202 (2004).
[56] J. Arrington, C. D. Roberts, and J. M. Zanotti, J. Phys. G34, S23 (2007), arXiv:nucl-th/0611050 [nucl-th].
[57] C. F. Perdrisat, V. Punjabi, and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 59, 694 (2007), arXiv:hep-ph/0612014 [hep-ph].
[58] J. Segovia, C. D. Roberts, and S. M. Schmidt, Phys. Lett. B750, 100 (2015), arXiv:1506.05112 [nucl-th].

[59] H. Li, P. Wang, D. B. Leinweber, and A. W. Thomas, Phys. Rev. C93, 045203 (2016), arXiv:1512.02354 [hep-ph].

[60] R. P. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev. D3, 2706 (1971).

[61] P. J. Mohr, D. B. Newell, and B. N. Taylor, (2015), arXiv:1507.07956.