Prevalence of pathological FFR_{CT} values without coronary artery stenosis in an asymptomatic marathon runner cohort

Sebastian Gassenmaier1 · Ilias Tsiflikas1 · Simon Greulich2 · Jens Kuebler1 · Florian Hagen1 · Konstantin Nikolaou1 · Andreas M. Niess3 · Christof Burgstahler3 · Patrick Krumm1

Received: 31 January 2021 / Revised: 17 March 2021 / Accepted: 28 April 2021 / Published online: 26 May 2021
© The Author(s) 2021

Abstract

Objectives To evaluate computed tomography fractional flow reserve (FFR_{CT}) values in distal parts of the coronaries in an asymptomatic cohort of marathon runners without any coronary stenosis for potentially false-positive values.

Methods Ninety-eight asymptomatic male marathon runners (age 53 ± 7 years) were enrolled in a prospective monocentric study and underwent coronary computed tomography angiography (CCTA). CCTA data were analyzed for visual coronary artery stenosis. FFR_{CT} was evaluated in 59 participants without coronary artery stenosis in proximal, mid, and distal coronary sections using an on-site software prototype.

Results In participants without coronary artery stenosis, abnormal FFR_{CT} values ≤ 0.8 in distal segments were found in 22 participants (37%); in 19 participants in the LAD; in 5 participants in the LCX; and in 4 participants in the RCA. Vessel diameters in participants with FFR_{CT} values >0.80 compared to ≤ 0.80 were 1.6 ± 0.3 mm versus 1.5 ± 0.3 mm for distal LAD ($p = 0.025$), 1.8 ± 0.3 mm versus 1.6 ± 0.5 mm for distal LCX ($p = 0.183$), and 2.0 ± 0.4 mm versus 1.5 ± 0.2 mm for distal RCA ($p < 0.001$).

Conclusions Abnormal FFR_{CT} values of ≤ 0.8 frequently occurred in distal coronary segments in subjects without any anatomical coronary artery stenosis. This effect is only to some degree explainable by small distal vessel diameters. Therefore, the validity of hemodynamic relevance evaluation using FFR_{CT} in distal coronary artery segment stenosis is reduced.

Key Points

- Abnormal FFR_{CT} values (≤ 0.8) occurred in over a third of the subjects in the distal LAD despite the absence of coronary artery stenosis.
- Therefore, the validity of hemodynamic relevance evaluation in distal coronary artery segment stenosis is reduced.
- Decision-making based on abnormal FFR_{CT} values in distal vessel sections should be performed with caution and only in combination with visual assessment of the grade of stenosis.

Keywords Fractional flow reserve · Myocardial · Computed tomography angiography · Coronary artery disease · Running

Abbreviations

BPM Beats per minute
CAD Coronary artery disease
CCTA Coronary computed tomography angiography
CTDI$_{\text{vol}}$ Volumetric computed tomography dose index
FFR Fractional flow reserve
FFR_{CT} Computed tomography fractional flow reserve
LAD Left anterior descending coronary artery
LCX Left circumflex artery
RCA Right coronary artery

Introduction

One of the most important developments in the diagnosis of significant coronary artery disease (CAD) over the last two
decades is the assessment of the hemodynamic significance of coronary artery stenosis using fractional flow reserve (FFR) and systematic evaluation of its clinical value. It could be shown that an FFR value below 0.75–0.80 defines a hemodynamically significant stenosis that should be treated by revascularization [1–4]. However, a drawback of this method is its invasiveness. Here, a noninvasive approach to detect coronary stenosis is the emerging technique of coronary computed tomography angiography (CCTA). Meanwhile, CCTA has been developed as a well-established and cost-effective imaging modality for the evaluation of CAD, especially to exclude obstructive stenosis due to its high negative predictive value [5–8]. Technical progress and the introduction of various optimized acquisition techniques and strategies allowed considerable radiation dose reduction—one of the most significant issues at the beginning—to sub-millisievert levels [9]. Recently, the development of post-processing procedures enabled the calculation of computed tomography fractional flow reserve (FFR_{CT}) values based on CCTA datasets using computational fluid dynamics or machine learning algorithms. Although good diagnostic accuracy of FFR_{CT} has been reported, a major issue remains the evaluation of the distal parts of the vessels, with a potentially limited specificity [10]. Due to physiological tapering of the coronary vessels, FFR_{CT} evaluation may yield values below 0.8 resulting in false-positive results.

However, the exact prevalence of this finding is unknown, especially in asymptomatic persons without signs of CAD who perform regular exercise which is known to have a positive impact on endothelial function. Therefore, the aim of this study was to evaluate FFR_{CT} in a collective of asymptomatic marathon runners without CAD who prospectively underwent CCTA for CAD screening purposes.

Materials and methods

Ethics approval

This prospective study was approved by the institutional review board (processing number 158/2011B01) and the German Federal Office for Radiation Protection (processing number Z5-22462/2-2011-22). All participants gave informed consent to participate in this investigation. The study was in line with the declaration of Helsinki.

Study design

Ninety-eight asymptomatic male marathon runners above 45 years of age were prospectively recruited between 2012 and 2014 for CAD screening and estimation of risk for sudden cardiac death in this cohort. Prior to the CCTA examination, all participants underwent a dedicated screening protocol to exclude unknown cardiovascular disease or other severe illness. This screening involved physical examination, resting ECG, and echocardiography. All participants additionally performed a treadmill stress test for maximal oxygen uptake evaluation. Blood samples were taken after 8 h of fasting to determine blood lipid levels (total cholesterol, LDL, HDL, triglyceride).

Participants with known CAD, known allergies to iodinated contrast agents, impaired renal function (glomerular filtration rate < 60 mL/min/1.73 m²), or hyperthyroidism were excluded from this study. Clinical data and visual CCTA results of all study subjects have been published previously [11, 12].

Coronary computed tomography angiography

All examinations were performed using a modern dual-source CT scanner (Siemens Somatom Definition Flash; Siemens Healthineers). After scout acquisition in a supine position, non-contrast high-pitch ECG triggered calcium scoring was acquired in cranio-caudal scanning direction using the following parameters: collimation 2 × 64 × 0.6 mm with a z-axis flying focal spot, gantry rotation 280 ms, pitch 3.4, tube current of 70 mA per rotation applying automatic tube current modulation, tube voltage of 120 kV. For the calculation of the systemic circulation time, a non-ionic iodinated contrast agent bolus of 10 mL (370 mg iodine/mL, Ultravist 370, Bayer Healthcare) followed by a saline flush of 20 mL with a flow of 6 mL/s was applied using a dual-head-injector (CT Stellant, Medrad). For CCTA, a contrast agent dose of 70 mL followed by a saline flush was then applied with the same flow parameters. Depending on the heart rate, participants underwent high-pitch (≤ 60 beats per minute (bpm)) or prospective sequential step-and-shoot (> 60 bpm) acquisition at 60% of the R-R-interval. Technical parameters for high-pitch acquisition were as follows: collimation 2 × 64 × 0.6 mm with a z-axis flying focal spot, gantry rotation 280 ms, pitch 3.4, tube current of 350mA per rotation with automatic tube current modulation, tube voltage of 100 kV. The step-and-shot acquisition protocol was already previously described [11].

Images were reconstructed using a 3-mm slice thickness for calcium scoring (B35f) and 0.75 mm slice thickness for CCTA (B26f).

CCTA and FFR_{CT} evaluation

CCTA datasets were evaluated by two experienced radiologists in consensus via visual analysis using thin slab maximum intensity projections and curved multiplanar reconstructions. FFR_{CT} was determined using an on-site software prototype (cFFR 3.2, syngo.via Frontier, Siemens Healthineers) as previously described [13]. FFR_{CT} values were determined using the reporting system of the American Heart Association [14]: left main (LM, segment 5), left descending
artery (LAD) proximal (segment 6), mid (segment 7), and
distal (segment 8); left circumflex artery (LCX) proximal
(segment 11), mid (border of segments 11 and 13), and distal
(segment 13); and right coronary artery (RCA) proximal (seg-
ment 1), mid (segment 2), and distal (segment 3). No side
branches were evaluated.

FFRCT values ≤ 0.8 were regarded as significant stenosis.
In visual analysis, the degree of maximal stenosis was catego-
rized according to the CAD-RADS scheme: no-stenosis
(CAD-RADS 0), non-significant stenosis (1–49% stenosis;
CAD-RADS 1 and 2), obstructive stenosis (50–99%; CAD-
RADS 3 and 4), and total occlusion (CAD-RADS 5) [15].
According to the degree of stenosis, participants were allocat-
ed to three groups: (I) no coronary artery stenosis, (II) non-
significant coronary artery stenosis (< 50%), and (III) obstruc-
tive coronary artery stenosis (≥ 50%).

Statistical analysis

Proprietary statistical software was used for evaluation
(MedCalc Statistical Software version 18.10; MedCalc
Software bvba). The Mann-Whitney U test and the
Kruskal-Wallis test were used for comparison between
the three stenosis groups. The Fisher-Freeman-Halton
test for frequency of occurrence of pathologically low
FFRCT values ≤ 0.8 between the different groups of
coronary artery dominance for each coronary artery re-
spectively was calculated with SPSS 27 (IBM Corp.).
The significance level alpha was set at 0.05.

Results

Subjects’ characteristics

Ninety-eight participants underwent CCTA. The mean partic-
ips’ age was 53 ± 7 years and all participants were male.
The median personal best marathon time was 3:28 h with an
interquartile range of 41 min. The mean Framingham risk
score was 5.8 ± 3.5. In 31 runners, coronary artery stenosis
was present in visual CCTA evaluation. Non-significant cor-
onary artery stenosis was found in 22 subjects in the LAD, 5
subjects in the LCX, and 8 subjects in the RCA. In total,
23 subjects were affected with non-significant cor-
onary artery stenosis. Obstructive stenosis ≥ 50% was
seen in a total of 9 vessels (LAD: n = 6; LCX: n=2;
RCA: n = 1) in 8 participants. In four of these eight
participants, a stenosis of ≥ 70% (CAD-RADS 4) was
found (maximum stenosis 80%). Further clinical data is
presented in Table 1. The mean volume computed to-
mography dose index (CTDIvol) for CCTA was 6.0 ± 3.0 mGy. Further technical parameters are shown in
Table 2.

Ninety datasets could successfully be evaluated using
the FFRCT prototype. Eight datasets were un evaluable
for the FFRCT prototype software due to prototype soft-
ware coronary artery segmentation processing failure.
Thirty-one participants showed signs of coronary artery
stenosis and were excluded from the main evaluation
(Fig. 1). Data and analysis of the excluded 31 partici-
pants can be found in the electronic supplementary ma-
terial (ESM).

Analysis of participants without coronary artery
stenosis

Fifty-nine participants showed no signs of coronary artery
stenosis in any vessel. No participant showed FFRCT values
below 0.8 in the proximal LAD, LCX, or RCA.

Overall, abnormal FFRCT values in distal segments were
found in 22 participants (37%): FFRCT values ≤ 0.8 were
found in two participants in the mid LAD, in two participants
in the mid LCX, in 19 participants in the distal LAD, in five
participants in the distal LCX, and in four participants in the
distal RCA. The detailed FFRCT values can be found in
Table 3.

Vessel diameters in the distal LAD were significantly larg-
er between participants with FFRCT values > 0.80 (1.6 ± 0.3
mm) compared to participants with FFRCT values ≤ 0.80 (1.4
± 0.3 mm; p = 0.040). The vessel diameter evaluation of the
distal LCX showed no significant difference with 1.8 ±
0.3 mm (FFRCT > 0.80) versus 1.5 ± 0.5 mm (FFRCT ≤
0.80; p = 0.285). Vessel diameters of the distal RCA were
significantly larger with 2.0 ± 0.5 mm in participants with
FFRCT > 0.80 compared to 1.4 ± 0.1 mm in participants with
FFRCT ≤ 0.80 (p = 0.007).

Coronary dominance had no significant impact on the oc-
currence of pathologically low FFRCT values in distal coro-
nary artery segments: Frequency of occurrence of pathologi-
cally low FFRCT values ≤ 0.8 between the different groups of
coronary artery dominance for each distal coronary artery re-
spectively was not significant; Fisher-Freeman-Halton test for
LAD: p = 0.227; LCX: p = 0.183; RCA: p = 0.170. Detailed
evaluation, see Table 7 in the ESM.

Figure 2 shows an example of FFRCT evaluation in a part-
icipant without stenosis.

Discussion

This study demonstrated that in an asymptomatic cohort of
male marathon runners without clinical or visually assessable
coronary artery stenosis, FFRCT evaluation results in abnor-
mal FFRCT values (FFRCT ≤ 0.8) in distal segments of coro-
nary arteries in over one-third of subjects. This effect is inde-
dependent from coronary artery dominance and only to some
degree explainable by small distal vessel diameters. Isolated vessel diameter is one important but not the only factor influencing FFR_{CT}. This finding limits the use of the method in distal vessel segments.

This is the first systematic FFR_{CT} evaluation in an asymptomatic cohort of male marathon runners initially prospectively recruited at that time. Correct evaluation and grading of FFR_{CT} values are of utmost importance for the estimation of relevant coronary artery stenosis, since the appropriate use of CCTA has been reported to decrease, and not to increase the number of unnecessary invasive coronary angiographies [16]. CCTA alone can be considered an established diagnostic modality in patients with low or intermediate pre-test probability for the exclusion of CAD [17]. It was previously shown that FFR_{CT} can successfully be used in an acute chest pain setting for the decision or deferral of invasive angiography [18]. It was also shown that FFR_{CT} provides reliable results compared to invasive catheter-based measurements [10, 19–24]. In a recent publication, it was demonstrated that also on-site FFR_{CT} might be able to change patient management and improve diagnostic efficiency in patients with obstructive CAD [25]. It was also shown that on-site FFR_{CT} combined with CCTA offers similar diagnostic accuracy compared to CT perfusion and CCTA [26]. Therefore, the main task for

Table 1 Characteristics of the study group

Characteristics	Values
Subjects	$n = 98$ (90 with successful FFR_{CT})
Subjects’ characteristics	
Age	53 ± 7 years (range: 45–74 years)
Height	179.7 ± 5.6 cm
Bodyweight	76.6 ± 8.9 kg
BMI	23.7 ± 2.3
Body fat	13.3 ± 5.5 %
Systolic blood pressure	134 ± 17 mmHg
Diastolic blood pressure	85 ± 9 mmHg
Personal best marathon time (median; IQR)	$3:28$ h (41 min)
Number of marathons (median; IQR)	10 (16)
VO2 max	48.0 ± 6.0 mL/kg/min
Agatston calcium score (median; IQR)	0 (26)
Blood lipid and glucose levels	
Triglyceride	94 ± 57 mg/dL
LDL	107 ± 28 mg/dL
HDL	62 ± 13 mg/dL
Cholesterol	201 ± 34 mg/dL
Glucose levels	96 ± 9 mg/dL
Risk scores and medication	
Framingham score	5.8 ± 3.5
Cardiac-related medication	$n = 9$
Beta-blocker	$n = 1$
ACE inhibitor / AT1 antagonist	$n = 7$
Diuretics	$n = 0$
Statin	$n = 3$
Ca-antagonist	$n = 2$
Coronary artery stenosis	$n = 31$
Obstructive coronary artery stenosis (≥ 50%)	$n = 8$
Coronary vessels with obstructive stenosis (≥ 50%)	$n = 9$
Coronary dominance in participants without coronary artery stenosis ($n = 59$)	$n = 7$
Left dominant	$n = 7$
Right dominant	$n = 20$
Codominant	$n = 32$

Abbreviations: IQR, interquartile range
FFRCT in CCTA is the evaluation not only of the anatomical significance but also of the hemodynamical relevance of a given stenosis. One approach is the application of the FFRCT threshold of 0.8. However, our study results indicate that this threshold might not be applied for the evaluation of hemodynamic coronary stenosis in the distal parts of the vessels. Therefore, it is of crucial importance that CCTA and FFRCT are regarded as complementary techniques instead of the isolated use of CCTA or FFRCT to prevent false-positive findings.

The development and introduction of FFRCT have been an important step over the last few years to not only visually grade the significance of coronary artery stenosis but also non-invasively get information about its hemodynamic and clinical relevance. Severe stenosis does not consistently result in hemodynamically relevant pressure gradients, and a significant percentage of intermediate stenosis does not even cause ischemia [27, 28]. The calculation of FFRCT values via post-processing of an existing CCTA dataset displayed a promising diagnostic tool without harming patients. Although many studies could demonstrate good sensitivity and specificity in comparison to invasive X-ray coronary angiography, it remains elusive if the same threshold can be applied to FFRCT as for the invasive counterpart [10]. FFRCT values were comparable with invasive X-ray coronary angiography values in previous studies focusing on patients with coronary stenosis [10, 19–24]. However, there is so far no data about the reliability of FFRCT in apparently healthy subjects. A common finding in FFRCT is the constant decline of FFR values in the more distal parts of the vessels, most probably due to the physiological tapering of the vessels. Another explanation might be the presence of endothelial dysfunction affecting the hemodynamics of the coronary arteries. However, a constant decline in more distal parts would not be generally expected in patients with endothelial dysfunction. Other influencing factors might be coronary dominance or the presence of serial lesions, as well as compensation via collaterals.

The question arises of how far distally hemodynamically significant stenosis can reliably be detected, and at which level the high diagnostic accuracy of coronary CT turns into a rate of high false-positive (FFRCT) findings, potentially causing harm to the patient by subsequent investigations or medication. The evaluation of the vessel diameters in participants without any coronary artery stenosis showed a significant difference in vessel size in the distal LAD and RCA depending on FFRCT above or below 0.8. However, no clear cut-off can be defined.
Therefore, we propose FFR_{CT} should always be evaluated in addition to visual evaluation of the CCTA dataset so that pathologic FFR_{CT} values without any stenosis in CCTA can easily be interpreted as false positive, but probably as a sign of endothelial dysfunction. Nevertheless, in subjects with stenosis located proximal or midportion, values below 0.8 in the distal vessel might be the result of two amplifying mechanisms. Other likely reasons reported are diffuse CAD, serial lesions, small vessel size relative to myocardial mass, inadequate nitrate response, or technical misalignment [27]. This issue of falsely pathologic FFR_{CT} presumably affects a significant portion of CAD patients, since we found this effect in up to a third of our study participants without any coronary stenosis at all. Of course, clinical data and symptom presentation should also be taken into consideration. However, further studies are necessary to investigate the clinical relevance of FFR_{CT} measurements in distal vessel parts. FFR_{CT} may report pathological values so distal in the vessel that it could not be stented [29]. In this context, hemodynamically relevant stenosis also in proximal or midportion segments may be treated with initial conservative strategy in chronic coronary syndrome [30]. Decision-making based on pathological FFR_{CT} values in distal coronary artery segments should therefore be performed with the greatest caution and by a thorough consideration of visual assessment, clinical data, and patient symptoms.

Limitations

A drawback of our study is the absence of invasive angiography FFR as a reference standard. However, in an asymptomatic cohort mostly without coronary artery stenosis, invasive angiography is not indicated and was consequently not part of the study protocol. On the other hand, this limitation might also be judged to be a strength of the study design, since routine CCTA in asymptomatic subjects with a low cardiovascular risk profile is rare. Additionally, the applied FFR software prototype in this study is not FDA-approved compared to other available applications. Due to the technical specifications of the software prototype, no side branches of the coronaries were evaluated. Furthermore, only male athletes were included in this study.

Conclusion

Even in highly trained athletes, pathologic FFR_{CT} values ≤ 0.8 in distal coronary artery segments, suggesting hemodynamically significant stenosis, are a frequent finding, occurring in over one-third of subjects despite the absence of coronary artery stenosis. This effect is to some degree explainable by small vessel diameters and independent from coronary artery dominance. Therefore, the validity of hemodynamic relevance evaluation in distal coronary artery segment stenosis is reduced.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00330-021-08027-0.

Acknowledgements We thank Elizabeth Kraemer MSc, PhD, for native speaker proofreading and language editing.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Guarantor The scientific guarantor of this publication is Patrick Krumm.

Table 3 Per vessel analysis: computed tomography fractional flow reserve (FFR_{CT}) results with number and percentage of vessels with $\text{FFR} \leq 0.8$ in parentheses

Vessels in subjects without coronary artery stenosis in any vessel ($n = 59$)	Proximal	Mid	Distal
LAD ($n = 59$)	0.98 ± 0.02 (0; 0%)	0.93 ± 0.05 (2; 3%)	0.81 ± 0.10 (19; 32%)
LCX ($n = 59$)	0.99 ± 0.02 (0; 0%)	0.94 ± 0.06 (2; 3%)	0.89 ± 0.07 (5; 8%)
RCA ($n = 59$)	0.99 ± 0.01 (0; 0%)	0.96 ± 0.02 (0; 0%)	0.89 ± 0.07 (4; 7%)

Fig. 2 Example of FFR_{CT} evaluation without coronary stenosis. Despite the absence of coronary stenosis, the FFR_{CT} evaluation resulted in values of ≤ 0.8 in the distal section. The location of FFR_{CT} measurement is marked by an arrow. *Abbreviations: FFR_{CT}, CT fractional flow reserve*
Conflict of interest The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry One of the authors has significant statistical expertise.

Informed consent Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval Institutional Review Board approval was obtained.

Study subjects or cohorts overlap Some study subjects or cohorts have been previously reported in:

Tsiflikas I, Thomas C, Fallmann C et al (2015) Prevalence of subclinical coronary artery disease in middle-aged, male marathon runners detected by cardiac CT. Rofo 187:561–568

Burgstahler C, Cipowicz H, Thomas C et al (2018) Coronary and carotid atherosclerosis in asymptomatic male marathon runners. Scand J Med Sci Sports 28:1397–1403

Methodology

• Prospective
• Diagnostic or prognostic study
• performed at one institution

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. De Bruyne B, Pijls NH, Kalesan B et al (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367:991–1001
2. Pijls NH, van Schaardenburgh P, Manoharan G et al (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 49:2015–2111
3. Pijls NH, Korn MJ, Yock PG, De Bruyne B (2000) Practice and potential pitfalls of coronary pressure measurement. Catheter Cardiovasc Interv 49:1–16
4. Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224
5. Salavati A, Radmanesh F, Heidari K, Dwamena BA, Kelly AM, Cronin P (2012) Dual-source computed tomography angiography for diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. J Cardiovasc Comput Tomogr 6:78–90
6. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336
7. Meijboom WB, Meijls MF, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144
8. Cole JH, Chunn VM, Morrow JA, Buckley RS, Phillips GM (2007) Cost implications of initial computed tomography angiography as opposed to catheterization in patients with mildly abnormal or equivocal myocardial perfusion scans. J Cardiovasc Comput Tomogr 1:21–26
9. Kosmala A, Petritsch B, Weng AM, Bley TA, Gassenmaier T (2019) Radiation dose of coronary CT angiography with a third-generation dual-source CT in a “real-world” patient population. Eur Radiol 29:4341–4348
10. Norgaard BL, Lepisic J, Gaur S et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63:1145–1155
11. Tsiflikas I, Thomas C, Fallmann C et al (2015) Prevalence of subclinical coronary artery disease in middle-aged, male marathon runners detected by cardiac CT. Rofo 187:561–568
12. Burgstahler C, Cipowicz H, Thomas C et al (2018) Coronary and carotid atherosclerosis in asymptomatic male marathon runners. Scand J Med Sci Sports 28:1397–1403
13. Mastrodicasa D, Albrecht MH, Schoepf UJ et al (2019) Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFRML): Impact of iterative and filtered back projection reconstruction techniques. J Cardiovasc Comput Tomogr 13:331–335
14. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40
15. Canan A, Ranganath P, Goeme S, Albarada S, Landers L, Rajiah P (2020) CAD-RADS: Pushing the Limits. Radiographics 40:629–652
16. Roifman I, Rezai MR, Wijesundera HC, Chow BJ, Wright GA, Tu JV (2015) Utilization of cardiac computed tomography angiography and outpatient invasive coronary angiography in Ontario, Canada. J Cardiovasc Comput Tomogr 9:567–571
17. Abdulla J, Abildstrom SZ, Gotzsche O, Christensen E, Kober L, Torp-Pedersen C (2007) 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J 28:3042–3050
18. Chinnaiyan KM, Safian RD, Gallagher ML et al (2020) Clinical use of CT-derived fractional flow reserve in the emergency department. JACC Cardiovasc Imaging 13:452–461
19. Renker M, Schoepf UJ, Wang R et al (2014) Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol 114:1303–1308
20. Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58:1989–1997
21. Min JK, Leipsic J, Pencina MJ et al (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308:1237–1245
22. Nakazato R, Park HB, Berman DS et al (2013) Noninvasive fractional flow reserve derived from computed tomography
angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging 6:881–889

23. Baumann S, Wang R, Schoepf UJ et al (2015) Coronary CT angiography-derived fractional flow reserve correlated with invasive fractional flow reserve measurements—initial experience with a novel physician-driven algorithm. Eur Radiol 25:1201–1207

24. Coenen A, Kim YH, Kruk M et al (2018) Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium. Circ Cardiovasc Imaging 11:e007217

25. Nous FMA, Budde RPJ, Lubbers MM et al (2020) Impact of machine-learning CT-derived fractional flow reserve for the diagnosis and management of coronary artery disease in the randomized CRESCENT trials. Eur Radiol. https://doi.org/10.1007/s00330-020-06778-w

26. Guo W, Lin Y, Taniguchi A et al (2021) Prospective comparison of integrated on-site CT-fractional flow reserve and static CT perfusion with coronary CT angiography for detection of flow-limiting coronary stenosis. Eur Radiol. https://doi.org/10.1007/s00330-020-07508-y

27. Rabbat MG, Berman DS, Kern M et al (2017) Interpreting results of coronary computed tomography angiography-derived fractional flow reserve in clinical practice. J Cardiovasc Comput Tomogr 11:383–388

28. Tonino PA, Fearon WF, De Bruyne B et al (2010) Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 55:2816–2821

29. Cook CM, Petraco R, Shun-Shin MJ et al (2017) Diagnostic accuracy of computed tomography-derived fractional flow reserve: a systematic review. JAMA Cardiol 2:803–810

30. Maron DJ, Hochman JS, Reynolds HR et al (2020) Initial invasive or conservative strategy for stable coronary disease. N Engl J Med 382:1395–1407

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.