Checklist of commercially important fishes of Puducherry coastal waters, east coast of India

Ravitchandirane Vaithilingam, Kavipriya Jeacoumar, Nithya Mary Srinivasan and Vijilakshmi Udhyasuriyan

DOI: https://doi.org/10.22271/fish.2021.v9.i1b.2400

Abstract
The aim of this study is to update the list of fish species in order to increase the knowledge about biodiversity of commercially important fishes of Puducherry coastal waters. This study also concentrated on the availability and threatened status of commercially important fish species. A total of 88 fish species under 36 families and 11 orders has been collected during the study. Order Perciformes were made up to 65% with 23 families and 58 species followed by Clupeidae 15% with 3 families and 13 species. Clupeiformes stand on top in the catch followed by perches and mackerel’s. The study revealed that there were noteworthy variations found in the ichthyofaunal diversity. Among the 36 families, only 27 families were seen in the caught without any depletion. Order Beloniformes and Gadiformes showed sudden appearance in the catch which were not seen for the past 7 years. IUCN status of 88 species were studied, about 63% of species were under least concern and 8% near threatened, 3% vulnerable category, 7% data deficient, 19% not evaluated. Anthropogenic activities affect aquatic habitats leading to loss of many species as well as bring changes in the species composition. Therefore, ichthyofaunal diversity studies on regular basis are essential for sustainable management.

Keywords: Ichthyofaunal diversity, fishery production, iucn status, conservation, Puducherry

1. Introduction
Every realm of the sea is a warehouse of biodiversity which is a residence for multifarious life. Having a deep understanding of biodiversity is an essential element for survival for most of the human past. The description of new species and mapping of their distribution is an important activity in post-enlightenment science (Costello et al. 2013) [1]. Among various living organisms, fishes are most diverse vertebrate occupying various habitats in different types of ecosystem. In terms of biodiversity fishes overtake all other group of organisms (Mustafa S.1999) [2]. Fish are immensely important to human beings as they have long been a staple food item for a longer period. The Indian fisheries sector plays a valuable role in the global fish production and it is the second largest producer of fish in the world. The importance of the fisheries sector in India is revealed by the fact that it employs more than five million people (Anon, 2000) [3], contributes to food and nutritional security and employment, supports livelihoods and raises the socioeconomic status of poor fishing communities. Fishes are involved in the environmental policies as biodiversity and ecological quality indicators (Kestemont et.al..2000, Schnutz et al.2007) [4, 5] and they have been used successfully in biogeographical studies, ecoregion delineations (Abell et al.,2008) [6], conservation evaluations(Moyle and Randall,.1998) [7] and assessments of ecologically acceptable water regime management(Jowett,.1997) [8]. The marine fish diversity of India is in ever-increasing danger due to overfishing of commercially important species. Further, fish may be considered as apt indicators of aquatic biodiversity, since their rich diversity is reflective of a wide range of environmental conditions (Moyle PB, Leidy RA.1992) [9]. It is well known that biodiversity is in world-wide decline (Butchart et al. 2010) [10]. Knowledge of fish diversity of the particular region is considered to be essential not only for their rational management but also for the conservational strategies for the ichthyo-fauna of that region. Considering the above, the present study has been made to provide a well-documented checklist about species composition and IUCN status of commercially important ichthyofaunal diversity of Puducherry coastal waters.
2. Materials and method
2.1 Study area
Puducherry has a coastline of 45 km, with a continental shelf area of about 1000 sq. km and it lies between North Latitudes 11° 46’ and 120° 03’ and East Latitudes 79° 52’ bounded by Bay of Bengal on the East. The diversity study was conducted in the 14 fish landing centres of Puducherry viz. Kanagachettikulam, Periyakalapet, Chinnakalapet, Pillaiachavadi, Solainagar, Vaithikuppam, Kuruchikuppam, Thengaithittu, Veerampattinam, Pudukuppam, Nallavadu, Narambai, Pannithitu and Moorthikuppam from 2016 to 2017.

2.2 Fish collection methods
The collections were done almost on daily basis during morning and evening hours. The major objective of the bio inventory is to identify all the available species in the habitat using all gear combinations. Information regarding the seasonal availability, fish catch, size, quality, value of fish, common name, crafts and gears used etc., has been collected from traditional fishermen of all the coastal villages and recorded. Collected fish samples were brought to the laboratory and preserved in 10% formaldehyde and identification of the species was established by using FAO identification sheets (Fischer and Bianchi, 1984)[11].

2.3 Gear combinations
Various types of fishing gears are used by the fishermen of Puducherry region for exploiting different types of fishes. The major part of marine fish landings in Puducherry was from mechanised sector (86.7%). Motorised and non-motorised sectors contributed 13.3% and 0.04% respectively (Grinson George et al. 2016)[12]. The motorized sector includes gillnets, seine nets, hooks & lines and bagnets. All small boats and catamarans with low sea worthiness take on single day fishing with unfixed voyage times based on the season and the fishery resource which they target. Multiday and single day trawlers together contributed 82% of the total catch (FRAD, CMFRI, 2017)[13].

3. Results
A total of 88 commercially important fish species belonging to 36 families and 11 orders were reported from all landing centres of Puducherry. Out of 88 species, 84 species were teleost and the remaining were cartilaginous (Table: 1). In general, the fishes belong to the class Actinopterygii were found to be dominant. The best represented order was Perciformes (65%) with 23 families and 58 species followed by Clupeiformes (15%) with 3 families and 13 species. Other families were each represented by 1 to 3 species (Fig: 1). Among 88 species, 40 species were caught regularly (45%), 33 species were less available (38%), 9 species shows rare occurrence (10%) and 6 species (Hilsha ilisha, Hilsha other, Harpodon nehereus, Eel, Bregmaceros, Elagatis) were very rare (7%) (Fig.2). In present study, as per IUCN 2016 red list status, out of 88 species, about 63% of species were under the status of least concern and 8% near threatened, 3% vulnerable category, 7% data deficient, 19% not evaluated categories (Fig. 3).

4. Discussion
The focus of the present study is to establish the list of commercially important fish species with its IUCN status. In this study visual illustrations and descriptive statistics were used to study the fish diversity in Puducherry. Among fin fishes, the pelagic group was dominant which contributed about 70.3% of the total catch followed by demersal fin fish (29.6%). The major fish species representing the fish landings along Puducherry coast were sardines including oil sardines, Indian mackerel, seer fish, pomfrets, carangids, perches (sea bass and Leiognathus), Clupeidae family was represented by 7 species. These species (Table: 1). A total of 23 families falls under Perciformes in which the Carangidae family was dominated by holding 11 species followed by Scombridae with 9 species. Family Sciaenidae and Polynemidae were also contributed with a reasonable of 5 species each. 13 species were recorded in order Clupeiformes under three families. Out of this, Clupeidae family was represented by 7 species. These observation were common in most of marine environment. The presence of large number of species in these two orders could also be explained by the fact that they found favourable condition which allows them to develop and grow (Leveque et al., 1991)[20]. The present finding was supported by Kumaran et al., (2012)[21] in Griypmepeta estuary, Yanam and Kuppan et al., (2016)[22] from east coastal region, Chennai. Among the 36 families, only 27 families were seen in the observation were common in most of marine environment. The presence of large number of species in these two orders could also be explained by the fact that they found favourable condition which allows them to develop and grow (Leveque et al., 1991)[20]. The present finding was supported by Kumaran et al., (2012)[21] in Griypmepeta estuary, Yanam and Kuppan et al., (2016)[22] from east coastal region, Chennai. Among the 36 families, only 27 families were seen in the...
Elagatis) were in downfall status owing to human activities such as over fishing, modification of water quality etc. (Konan Gervias et al., 2014) [24]. It has been came to know that 2 groups viz., Belone & Hemiramphus and Lactarius were resurface again in the catch during 2015 to 2017 which were not seen before 2015 (Puducherry Fisheries Statistics, 2017) [25].

Among the total 88 species reported during the study, 40 species were available (45%), 33 species were less available (38%), 9 species were rare (10%) and 6 species were very rare (7%) (Fig.2) based on the availability status recorded by Department of Fisheries and Fishermen Welfare, Puducherry. From the various detailed studies on fishery resources reported by the scientists of CMFRI (2006) [26], it is understood that 65% of the commercially important fish varieties in marine waters are overfished. Over exploitation indicates that fisheries prompted changes in the ecosystem owing to low productivity of the coastal waters and high density of fishing craft. The number of mechanised and motorised vessels went amassed due to ultimate demand for seafood and subsequent price escalation. Various developmental programmes of Central and State Governments such as subsidies for diesel engines, new gears and gear materials, vessels and financial assistance to fishermen and cooperative societies (Srivastava et al., 1991) [27] zipped up the modernization in fishing process. Present estimated number of fishing vessels of almost all the types seem to be far excess than the actual number required to produce the sustainable yield (Mohammed Kasim and Vivekanandan, CMFRI, 2011) [28]. In simple words, coastal biodiversity is at risk and marine environments are threatened (Imtiyaz et al., 2011) [29] due to intensified human activities (Dulvy et al., 2014) [30].

![Fig 2: Availability of recorded fish species in the study area](image2)

4.1 Threatened Status

While evaluating the threat status of 88 fish species, 6 species comes under near threatened (NT), 3 species are vulnerable, 53 least concern, 5 species have deficient data and data about 17 species did not drop under any threat category so it was placed in not evaluated group (Table 1). In present study, as per IUCN 2016 [31] red list status out of 88 species, about 63% of species were under least concern and 8% near threatened, 3% vulnerable category, 7% data deficient, 19% not evaluated categories (Fig. 3).

![Fig 3: IUCN status of fishes](image3)

The coastal waters of Puducherry receive discharges from 4 major industrial complexes including untreated municipal sewage from urban settlements and tourist resorts (Ramachandran, 2001) [32]. The other source of marine pollution includes tourism activities which lead to dumping of plastic and other solid wastes by tourists on the beaches. Recreational activities like tourism lead to loss of habitats, habitat degradation, the spread of disease, pollution, and unsustainable fishing practices are directly related to the actions of humans and recovery from these problems is rarely straightforward.
Table 1: Systematic position of the fishes collected in the study with threat status

Order and suborder	Family & subfamily	Name of species	Common Name	Vernacular name	IUCN/status	
Order 1: Lamniformes	Family 1: Carcharhinidae	1	*Rhizoprionodon acutus*, Rüppell, 1837	Milk shark	Pall surra	LC/AV
Order 2: Myliobatiformes	Family 2: Dasyatidae	2	*Dasyatis zugei*, Müller & Henle, 1841	Pale-edged stingray	Chamburaka-kah	NT/AV
Subclass: 1: elasmobranchii	Subfamily: Dasyatinae	3	*Himantura uarnak*, Gil, 1879	Honey combed stingray	Pulli-thirukkai	VU/AV
Subclass: actinopterygii		4	*Dasyatis jenkinsii*, Annadale, 1900	Sharpnose stingray	Sen-thirukkai	VU/AV
Super order: Gnathostomata						
Order 2: Myliobatiformes						
Subclass: 1: elasmobranchii	Subfamily: Dasyatinae	5	*Sardinella longiceps*, Valenciennes, 1847	Indian oil sardine	Mathi	LC/AV
Subclass: 2: actinopterygii	Subfamily: Clupeidae	6	*Sardinella alsabella*, Valenciennes, 1847	White sardine	Therakuthuva	LC/AV
Order 3: Clupeiformes		7	*Hilsa ilisha*, Hamilton & Buch., 1822	Hilsa shad	Karuvallam	LC/VR
Suborder: Clupeoidei		8	*Hilsa toli*, Valenciennes, 1847	Toli shad	Chuida	LC/VR
Subclass: 1: elasmobranchii	Subfamily: Dorosomatinae	9	*Anodontostoma chacunda*, Hamilton, 1822	Chacunda gizzard	Poikendai	LC/AV
Subclass: actinopterygii	Subfamily: Pristigasterinae	10	*Ophisthopterus tardo*, Cuvier, 1829	Shad Tardoore	Thalporuva	LC/AV
Order 4: Perciformes	Family 4: Engraulidae	11	*Engraulis japonica*, Hamilton, 1822	White fin wolf herring	Mulivalai	LC/R
Suborder: Perciformes		12	*Colia dussumieri*, Valenciennes, 1848	Golden anchovy	Thova	LC/LA
Subfamily: Engraulinae		13	*Stolephorus commersonii*, Lacepède, 1803	Commerson’s anchovy	Therangunn	LC/RA
Family 5: Chirocentridae		14	*Moustached thryssa*, Schneider, 1801	Moustached thryssa	Poruva	LC/AV
Subfamily: Pteropominae		15	*Thryssa vitrirostris*, Gilchrist & Thompson, 1908	Orange mouth thryssa	Nedumporuva	LC/RA
Subfamily: Pristidae		16	*Chirocentrus nasus*, Swainson, 1839	White-finned thryssa	Mullivalai	LC/R
Subfamily: Engraulinae		17	*Chirocentrus dorab*, Forsskål, 1775	Dorab herring	Karivalai	LC/R
Subclass: 1: elasmobranchii	Subfamily: Squilidae	18	*Lates calcarifer*, Bloch, 1790	Sea bass	Koduva	NE/AV
Subclass: actinopterygii	Subfamily: Carangidae					
Order 1: Lamniformes						
No.	Scientific Name	Common Name	IUCN Status	Location		
-----	---	------------------------------------	-------------	----------		
33	Chorinemas lvstian, Forsskål, 1775	Double spotted queen fish	DD/R			
34	Elagatis bipinnulata, Quoy & Gaimard, 1825	Rainbow runner	LC/VR			
35	Alepes djedaba, Forsskål, 1775	Shrimp scad	LC/LA			
36	Atropus atropot Bloch & Schneider, 1801	Leftbally travelly	NE/LA			
37	Atule mate, Cuvier, 1833	Yellow tail scad	LC/RA			
38	Carangoides chrysophrys, Valenciennes, 1833	Large nose travelly	LC/LA			
39	Gnathanodon speciosus, Forsskål, 1775	Golden travelly	LC/RA			
40	Decapterus russeli, Ruppell, 1830	Indian scad	LC/LA			
41	Megalaspis cordyla, Linnaeus, 1758	Torpedo scad	LC/LA			
42	Trachinotus mookalee, Cuvier, 1832	Indian pompano	LC/RA			
43	Leioignathus bindus, Valenciennes, 1835	Orange fin pony fish	LC/AV			
44	Leioignathus brevirostris, Valenciennes, 1835	Short nose pony fish	NE/LA			
45	Gagga minuta, Bloch, 1795	Toothed pony fish	LC/AV			
46	Dendrophysa russeli, Cuvier, 1830	Goat croaker	LC/RA			
47	Johnius belangeri, Cuvier, 1830	Belangers croaker	NE/LA			
48	Nibea maculata, Schneider, 1801	Blotched croaker	NE/LA			
49	Protonotus diacanthus, Lacepode, 1802	Spotted croaker	Panna			
50	Otilothoides biuritius, Cantor, 1849	Bronze croaker	NE/LA			
51	Upeneus moluccensis, Bleeker, 1855	Gold banded goatfish				
52	Upeneus vittatus, Lacepode, 1801	Striped goatfish				
53	Sphyraena jello, Cuvier, 1829	Pick handle barracuda	NE/LA			
54	Sphyraena obtusa, Cuvier, 1829	Obtuse barracuda				
55	Sphyraena heptadactyla, Cuvier, 1829	Four finger thread fin				
56	Polyneus indicus, Shaw, 1804	Indian fin fish				
57	Polyneus paradiseus, Linnaeus, 1758	Paradise thread fin				
58	Polyneus xanthias, Bloch & Schneider, 1801	Black spot thread fin				
59	Trichiurus lepturus, Linnaeus, 1758	Large head hair tail				
60	Trichiurus xanthias, Lacepode, 1802	Spanish mackerel				
62	Euthynus affinis, Cantor, 1850	Kawa kawa				
63	Scomberomorus guttatus, Bloch & Schneider, 1801	Indopacific king mackerel				
64	Katsuwonus pelamis, Linnaeus, 1758	Skipjack tuna				
65	Thunnus albarea, Bonnaterre, 1788	Yellow fin tuna				
66	Thunnus oceanus, Lowe, 1839	Big eye tuna				
67	Thunnus tonggol, Bleeker, 1851	Long tail tuna				
69	Pampus argentus, Euphrasen, 1788	Silver pomfrets				
71	Pampus chinensis, Euphrasen, 1788	Chinese silver pomfret				
72	Isthmurus platypetra, Shaw, 1792	Indo-Pacific sail fish				
73	Makaira indica, Cuvier, 1832	Black Marlin				
74	Mugil cephalus, Linnaeus, 1758	Flathead mullet				
75	Cynoglossus macrostomus, Norman, 1928	Malabar tongue sole				
#	Common Name	Scientific Name	Family	Status	Region	
----	---	---	-----------------	-----------	---------	
75	Speckled tongue sole	Cynoglossus puncticeps, Richardson, 1846	Soleidae		NE/LA	
76	Speckled tongue sole	Cynoglossus puncticeps, Richardson, 1846	Soleidae		NE/LA	
77	Oriental tongue sole	Euryglossa orientalis, Bloch & Schneider, 1801	Soleidae		NE/LA	
78	Engraved catfish	Arius caelatus, Valenciennes, 1840	Ariidae		NT/LA	
79	Thin spine sea catfish	Arius tenuispinis, Day, 1877	Ariidae		NT/LA	
80	Giant catfish	Arius thalassinus, Rüppell, 1837	Ariidae		NT/LA	
81	Soldier catfish	Osteogeneiosus militaris, Linnaeus, 1758	Ariidae		NE/LA	
82	Greater lizard fish	Saurida tumbil, Bloch, 1795	Synodontidae		LC/LA	
83	Brush tooth lizardfish	Saurida undosquamis, Richardson, 1848	Synodontidae		LC/LA	
84	Bombay duck	Harpadon nehereus, Hamilton, 1822	Synodontidae		LC/LA	
85	Indian pike-conger	Congresox talabonoides, Bleeker, 1853	Ariidae		NE/VR	
86	African flying fish	Cheilopogon nigricans, Bennett, 1840	Exocoetidae		LC/LA	
87	African flying fish	Cheilopogon nigricans, Bennett, 1840	Exocoetidae		LC/LA	
88	Codlet	Bregmaceros bathymaster, Jordan & Boltman, 1890	Bregmacerotidae		LC/VR	

LC - least concern, NT- Near Threatened, VU- Vulnerable, DD- Data Deficient, NE- Not Evaluated, AV- Available, VR- Very Rare, R- Rare, LA- Less Available
5. Conclusion
Biodiversity, the variation of life on Earth, is a major factor in its resilience. It is regularly to be overlooked species that are the most important to healthy ecosystems. There are promising fisheries technologies which have been developed and are being practised for improving fish biodiversity and nutrition. Loss of habitat threatens habitat specialists with extinction risk. The stress on major ecosystems has resulted in erosion of biodiversity due to various anthropogenic activities. This study attempted to record the diversity of commercially important fishes and fishery status of Puducherry coastal waters and also to open up arguments and considerations on the importance of conservation management, and further points to new directions on this frontier.

6. Acknowledgement
We extend our sincere gratitude to Department of Fisheries & Fishermen Welfare, Puducherry and NMFDC of CMFRI, Kochi, for providing the information about fishery status. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

7. References
1. Costello MJ, Bouchet P, Boxshall G, Fauchald K, Gordon DP, Hoeksema BW. Global coordination and standardisation in marine biodiversity through the World Register of Marine Species (WoRMS) and related databases; PLoS one 2013;8:e51629.
2. Mustafa S. Introduction. In: Mustafa S, editor. Genetics in Sustainable Fisheries Management. London: Blackwell Science Publishing 1999, 3-23.
3. Annon. Report of Task Force on Conservation and Sustainable Use of Medicinal Plants. Planning Commission, Government of India 2000.
4. Kestemont P, Didier J, Micah JC, Depiereux E. Selecting Ichthyological metrics to assess river basin ecological quality. Arch. Hydrobiol. Suppl 2000;121:321-348.
5. Schmutz S, Cowx IG, Haidvogal G, Pont D. Fish based methods for assessing European running waters. A synthesis. Fish Mang Ecol 2007;14:369-380.
6. Abell R, Michele L, Thieme ML, Revenga C, Breyer M, Kottelat M et al. Freshwater ecoregion of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 2008;58(5):403-414.
7. Moyle PB, and Randall PJ. Evaluating the biotic integrity of watersheds in the Sierra Nevada, California. Conservation Biology 1998;12:1318-1326.
8. Jowet IG. In stream low methods: A comparison of approaches. Regul. Rivers: Reg. Manag 1997;13:115-127.
9. Moyle PB, Leidy RA. Loss of biodiversity in aquatic ecosystems: Evidence from fish faunas. In: Friedler PL, Jain SK, editors. Conservation Biology. New York: Chapman and Hall 1992, 128-169.
10. Butchart SHM, Walpole M, Colleen B, Van Strien A, Scharlemann, JPW, Almon REE. Global biodiversity: Indicators of recent declines. Science 2010;328:1164-1168.
11. Fischer W, Bianchi G. FAO Species Identification sheets for fishery purposes: Western Indian Ocean (Fishing Area 51) 1984.
12. Grinson George K, Ramani D, Pugazhendi Sindhu K, Augustine, Sathianandan TV. Marine fish landings in Tamil Nadu and Puducherry during 2016 - An overview-ICAR-Central Marine Fisheries Research Institute, Kochi-Madras Research Centre of ICAR-Central Marine Fisheries Research Institute, Chennai 2016.
13. FRAD, CMFRI. Marine Fish Landings in India 2016, Technical Report, CMFRI, Kochi 2017.
14. Banse K. On upwelling and bottom trawling off the south-west coast of India. J Mar. Biol. Assoc. India 1959;1:33-49.
15. Longhurst AR, Wooster WS. Abundance of oil sardine (Sardinella longiceps) and upwelling on the south-west coast of India. Can. J Fish Aquat. Sci 1990;47:2407-19.
16. Madhupratap M, Shetye SR, Nair KVN, Sreekumaran Nair SR. Oil sardine and Indian mackerel, their fishery, problem and coastal oceanography. Curr. Sci 1994;66(5):340-48.
17. Yohannan TM, Abdulrahimian UC. Environmental influence of the behaviour of Indian mackerel and their availability to fishing gear along Malabar Coast. Indian J Fish 1998;45:239-247.
18. Jayaprakash AA. Long term trends in rainfall, sea level and solar periodicity. A case study for forecast of Malabar sole and oil sardine fishery. J. Mar. Biol. Assoc. India 2002;44:163-75.
19. Xu C, Boyce MS. Oil sardine (Sardinella longiceps) off the Malabar Coast: density dependence and environmental effects. Fish. Oceanogr 2009;18(5):359-370.
20. Leveque C, Paugy D, Teugels GG. Annotated checklist of the freshwater fishes of the Nilo-Sudan river basin in Africa. Rev. Hydrobiol. Trop 1991;24:131-154.
21. Bassoucalingan Kamaran, Sowjanya Naikar Kambala, Jayaraman Nadarajan. Assessment of Ichthyo-faunal Diversity in Giriyampeta Estuary, Yanam (U.T.of Puducherry). Bull. Environ. Pharmacol. Life Sci 2012;11(9):17-25.
22. Kuppian A, Martin P, Kalaichelvi N, Srinivasaas. S, Sivamani S. Diversity of edible and non-edible marine fishes in East Coastal Region villages at Chennai, Tamil Nadu, India. Int. J Adv. Res. Biol. Sci 2016;3(12):147-151.
23. Department of Fisheries & Fishermen Welfare, Puducherry. Puducherry Fisheries Statistics at a Glance 2010.
24. Konan Grevias N Zi, Stanislas Silvain Yao, Gouli Greore Bi and valentin Ndouba. Update of ichthyoafauna diversity and ecological status of a coastal river Nera-West Africa. Saud. J Biol 2014;22(3):265-273.
25. Department of Fisheries & Fishermen Welfare, Puducherry. Puducherry Fisheries Statistics at a Glance 2017.
26. CMFRI. Annual Report 2006-07. Central Marine Fisheries Research Institute, Cochin 2007, 126.
27. Srivastava UK, Dholakia BH, Vathsala S, Chidambaram K. “India Fishery Sector Study”, Review and Analysis, IIM-Ahmedabad. Study sponsored by the World Bank through the Min of Food Processing Industries’, Gol 1991, 7-12 Annexures
28. Mohamad Kasim H, Vivekanandan V. Marine Fish Production in Tamil Nadu & Puducherry. A Report based on a detailed analysis of Central Marine Fisheries Research Institute Data 2011.
29. Imtiyaz BB, Sweta PD, Prakash KK. Threats to Marine
Biodiversity. Marine Biodiversity: Present Status and Prospects 2011, 21-26.

30. Dulvy NK, Fowler S, Musick SJ, Cavanagh RD, Kyne PM, Harrison LR et al. Extinction risk and conservation of the world’s shark and rays. eLIFE 2014;3:e00590. https://sites.google.com/site/fimsul/

31. IUCN Red List of Threatened Species, Version 2016. http://www.iucnredlist.org/search, IUCN.

32. Ramachandran S. Coastal Environment and Management. Institute of Ocean Management, Anna University, Chennai 2001, 347.