Title
Differential disease restriction of Moloney and Friend murine leukemia viruses by the mouse Rmcf gene is governed by the viral long terminal repeat.

Permalink
https://escholarship.org/uc/item/2jb110mh

Journal
The Journal of experimental medicine, 174(2)

ISSN
0022-1007

Authors
Brightman, BK
Li, QX
Trepp, DJ
et al.

Publication Date
1991-08-01

DOI
10.1084/jem.174.2.389

Peer reviewed
Differential Disease Restriction of Moloney and Friend Murine Leukemia Viruses by the Mouse Rmcf Gene Is Governed by the Viral Long Terminal Repeat

By B. Kay Brightman, Qi-Xiang Li, David J. Trepp, and Hung Fan

From the Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, California 92717

Summary

Neonatal CxD2 (Rmcf) and Balb/c (Rmcf) mice inoculated with Moloney murine leukemia virus (M-MuLV) exhibited approximately equivalent time course and pathology for disease. CxD2 mice showed only slightly reduced presence of Moloney mink cell focus-forming virus (M-MCF) provirus as seen by Southern blot analysis compared to Balb/c mice. This lack of restriction for disease and spread of MCF was in sharp contrast to that seen for CxD2 mice inoculated with Friend murine leukemia virus (F-MuLV), where incidence of disease and propagation of MCFs were severely restricted, as previously reported. Inoculation of CxD2 mice with FM-MuLV, a recombinant F-MuLV virus containing M-MuLV LTR sequences (U3 and R), resulted in T cell disease of time course equal to that seen in Balb/c mice; there also was little restriction for propagation of MCFs. This indicated that presence of the M-MuLV long terminal repeat (LTR) was sufficient for propagation of MCFs in CxD2 mice. Differing restriction for F-MuLV vs. M-MuLV in CxD2 mice was explained on the basis of different "MCF propagator cells" for the two viruses. It was suggested that cells propagating F-MCF (e.g., erythroid progenitors) are blocked by endogenous MCF-like gp70m protein, whereas cells propagating M-MCF (e.g., lymphoid) do not express this protein on their surface. F-MuLV disease in CxD2 mice was greatly accelerated when neonates were inoculated with a F-MuLV/F-MCF pseudotypic mixture. However, F-MCF provirus was not detectable or only barely detectable in F-MuLV/F-MCF-induced tumors, suggesting that F-MCF acted indirectly in induction of these tumors.

Moloney murine leukemia virus (M-MuLV) induces T cell lymphoma with a typical latency of 3–4 mo when inoculated into neonatal mice. One of the events observed in M-MuLV-induced disease is the appearance of mink cell focus-forming (MCF) viruses, which result from recombination of the input ecotropic virus with endogenous polypotrophic retroviral sequences (1, 2). In mice, MCF proviruses are found in M-MuLV-induced tumors (3–5), and are also observed at significant circulating titres at preleukemic times (6). They have been proposed to be the "proximal leukemogens" in MuLV-induced disease (7–9). We have recently reported evidence that MCFs may also play a role early in M-MuLV-induced leukemogenesis, by participating in induction of preleukemic hematopoietic hyperplasia of the spleen (5, 10). The proposed role of MCFs in this process was to induce suppression of bone marrow hematopoiesis by combined infection with M-MuLV, leading to compensatory extramedullary hematopoiesis in the spleen.

To investigate further the role of MCF viruses in M-MuLV-induced disease, we employed a strain of partially congenic Balb/c mice carrying the resistance allele of the Rmcf gene (Rmcf) developed by Potter et al. (11). The Rmcf locus was first described by Hartley et al. (9); Rmcf mice are resistant to rapid development of Friend MuLV- (F-MuLV) induced erythroleukemia (12, 13). Fibroblast cell cultures derived from certain (Rmcf) strains of mice are resistant to infection by MCFs but not ecotropic MuLVs (9, 14). Resistance is correlated with cell surface expression of an endogenous MCF-related gp70 (SU) protein (9, 14). It has been hypothesized that expression of this protein in Rmcf mice interferes with spread of in vivo-generated MCFs due to blockage of MCF receptors by the endogenous MCF-related gp70. Indeed, MCFs propagate poorly or not at all in Rmcf mice inoculated with F-MuLV (12, 13). The Rmcf gene may code for the MCF-related gp70 (16) or, alternatively, for a gene affecting expression of endogenous MuLV-related proviruses (16, 17).
In the experiments described in this report, we tested the effects of M-MuLV in Rmcf mice. Since Friend and Moloney MCFs share the same receptor as measured in interference assays (18), it seemed likely that Rmcf mice would be resistant to in vivo-generation of M-MCF and that they would be relatively resistant to M-MuLV-induced leukemia. Moreover, MCF-driven preleukemic events might not occur would be relatively resistant to M-MuLV-induced leukemia. We report here that there is significantly less restriction for M-MuLV leukemogenesis and MCF generation and propagation in Rmcf mice than is the case for F-MuLV-inoculated Rmcf mice and that the difference is governed by the LTR. A model to explain this difference is presented.

Materials and Methods

Viruses and Cell Lines. Generation of a molecularly cloned viral stock of M-MuLV was described previously (19). For M-MCF, either Mo-MCF-1 or MCFMolLTR viral stock was used. Mo-MCF-1 contains only one copy of the 7.5-bp direct repeat of the M-MuLV enhancer (20) while MCFMolLTR contains two direct repeats. MCFMolLTR was generated by molecular cloning in which the Xho I-Cla I fragment of the M-MCF genome (1.5 kb to 7.6 kb on the proviral map, encompassing the 3' half of gag, all of pol, and the SU portion of env) was exchanged at the same sites into an infectious M-MuLV provirus clone. Infectious virus was then recovered by transfection of the MCFMolLTR clone into NIH-3T3 cells. Pathology data reported in Fig. 1 are that of MCFMoLTR. The F-MuLV and F-MCF producer cell lines were the kind gift of Sandra Ruscetti (NIH, Bethesda, MD) (12). FM-MuLV (21) was kindly provided by Nancy Hopkins (MIT, Cambridge, MA). Pseudotypic viral stocks were obtained by superinfection of cells producing one MuLV with an MuLV of a different interference group. The F-MuLV and F-MCF producer cell lines were the kind gift of Sandra Ruscetti. These mice were interbred after generously provided by Sandra Ruscetti. These mice were interbred after the Xho I-Cla I fragment of the M-MCF, genome (1.5 kb to 7.6 kb on the proviral map, encompassing the 3' half of gag, all of pol, and the SU portion of env) was exchanged at the same sites into an infectious M-MuLV provirus clone. Infectious virus was then recovered by transfection of the MCFMolLTR clone into NIH-3T3 cells. Pathology data reported in Fig. 1 are that of MCFMoLTR. The F-MuLV and F-MCF producer cell lines were the kind gift of Sandra Ruscetti (NIH, Bethesda, MD) (12). FM-MuLV (21) was kindly provided by Nancy Hopkins (MIT, Cambridge, MA). Pseudotypic viral stocks were obtained by superinfection of cells producing one MuLV with an MuLV of a different interference group. Viral titers ranged from 10^3 to 10^6 infectious U/ml as determined by reverse transcriptase assay (for pseudotypic mixtures) (22) or UV/XC assay (23) for ecotropic virus alone. All cells were grown in DMEM plus 10% calf serum.

Inoculation of Mice. Partially congenic Balb/c mice carrying the resistance allele of the Rmcf gene (CxD2) (11, 16) were the generous gift of Sandra Ruscetti (NIH, Bethesda, MD) (12). The F-MuLV inoculum was kindly provided by Nancy Hopkins (MIT, Cambridge, MA). Pseudotypic viral stocks were obtained by superinfection of cells producing one MuLV with an MuLV of a different interference group. Viral titers ranged from 10^3 to 10^6 infectious U/ml as determined by reverse transcriptase assay (for pseudotypic mixtures) (22) or UV/XC assay (23) for ecotropic virus alone. All cells were grown in DMEM plus 10% calf serum.

Southern Blot Analysis. DNA was obtained from tumor splenocytes and thymocytes as described previously (24, 25). Southern blot procedures were performed using Gene Screen Plus (New England Nuclear, Boston, MA), hybridized in 50% deionized formamide, 1% SDS, 1 M NaCl, 10% dextran sulfate at 42°C, followed by two 30 washes at 65°C in 1 x SSC + 1% SDS and two 30 washes at room temperature in 0.1 x SSC according to manufacturer's specifications. Blots were then exposed to Kodak XAR-5 film at −80°C. Fragments used for labeled random primer probes were as follows: the 700-bp Bam HI/Eco RI fragment from M-MCF-1 (20); the ~400-bp Ava I/Eco RI fragment from the F-MCF Clavaco clone (kindly provided by Alan Oliff, Merck and Co., Rahway, NJ) (26); the 8.2-kg Eco RI fragment including the entire LTR permuted F-MuLV genome from F-MuLV Clone 57 (27); the 600-bp Eco RI fragment from B6T5 (28), a cDNA clone for the T cell receptor β chain locus.

Results

Disease Induction in Rmcf Mice by M-MuLV. To investigate the role of MCFs in M-MuLV-induced disease, neonatal Balb/c mice carrying the Rmcf allele from DBA/2 mice (CxD2) (11, 16) were inoculated intraperitoneally with M-MuLV as described in Materials and Methods. Wild-type Balb/c mice, which are sensitive to infection by MCFs (Rmcf), were inoculated in parallel as controls. CxD2 mice are the fifth generation backcrosses of Balb/c × (Balb/c × DBA/2) selected for the Rmcf allele; thus, they are partially congenic to Balb/cAn mice. Since F-MuLV- and AKR-derived MCF viruses propagate poorly in mice carrying the Rmcf gene (8, 12, 13, 16), and since these MCFs and M-MuLV share the same receptor in NIH-3T3 cells (18), we expected that M-MCF would be restricted in these mice as well. Theoretically, this would allow us to test whether inhibition of MCF generation changes the time course or disease frequency induced by M-MuLV. Surprisingly, time course of disease was essentially the same for the Rmcf (CxD2) mice in comparison with Rmcf Balb/c mice as seen in Fig. 1, upper panel. Both Rmcf and Rmcf mice inoculated with M-MuLV died with an average latency of approximately 16 wk. Moribund mice all exhibited enlarged thymus, spleen, and lymph nodes as described previously for M-MuLV-inoculated NFS and NIH Swiss mice (19, 29).

The unexpected sensitivity of the Rmcf mice to M-MuLV leukemogenesis raised the possibility that these mice no longer carried the Rmcf allele. Therefore, we also inoculated (CxD2) (Rmcf) and Balb/c (Rmcf) mice with F-MuLV. As shown in Fig. 1, lower panel, F-MuLV-inoculated Rmcf mice exhibited an average time to death of 9 wk with 100% dying by 19 wk, whereas 50% of the Rmcf mice were still living at 37 wk. These results were consistent with those observed by others previously for Rmcf and Rmcf mice (13, 16), and confirmed that our CxD2 mice still contained the Rmcf allele. Thus, M-MuLV disease is not subject to restriction by the Rmcf allele in the Rmcf mice used in these experiments, while F-MuLV disease is.

M-MCF Generation and Propagation in Rmcf Mice. Since F-MCF was previously shown to propagate poorly or not at all in F-MuLV-inoculated Rmcf mice (12, 13), it was important to determine if the lack of Rmcf restriction for M-MuLV pathogenesis was associated with a lack of restriction for M-MCF propagation. We tested for the presence of M-MCFs in M-MuLV-induced tumors from Rmcf mice by Southern blot analysis as shown in Fig. 2. A. An M-MCF provirus resulting from recombination between the input ecotropic M-MuLV and endogenous polytropic sequences would contain a Bam HI site derived from the polytropic genome at the 5' end of the MCF env region and retain the Xba I site in the 3' LTR of the M-MuLV parent. Therefore, digestion of DNA with Bam HI plus Xba I will yield a unique diagnostic 2.3-kb fragment hybridizable with an HCF env probe if an M-MCF provirus is present (5). As shown in Table 1 and Fig. 2 B, 8/9 or 89% of tumor DNAs from M-MuLV-inoculated Rmcf mice readily showed the MCF-specific band. Thus, M-MCFs could generate and propagate in
Figure 1. Neonatal CxD2 (Rmcf) or Balb/c (Rmcf) mice were inoculated i.p. with M-MuLV or F-MuLV as indicated by legends next to the panels. Number of animals for each inoculum and strain is indicated in parentheses. In addition, a pseudotypic mixture of either M-MuLV/M-MCF (MCFMoLTR) or F-MuLV/F-MCF was inoculated into CxD2 mice (CxD2+MCF). Animals were sacrificed when moribund. Pathogenicity of the different inoculums in the two strains is shown.

Table 1. MCF Provirus in Moribund CxD2 (Rmcf) and Balb/c (Rmcf) Mice*

Strain	Virus	No. MCF+/Total	%MCF+ (%)
CxD2	M-MuLV	8/9	89
Balb/c	M-MuLV	13/13	100
CxD2	Fr-MuLV	0/4	0
Balb/c	Fr-MuLV	3/3	100
CxD2	FM-MuLV	7/9	78
Balb/c	FM-MuLV	7/7	100
CxD2	MuLV/M-MCF	5/5	100
CxD2	Fr-MuLV/Fr-MCF	4/6t	67t

* MCF was detected in tumor DNAs by digestion with XbaI + BamHI for M-MCF and FM-MCF or EcoRI for Fr-MCF followed by Southern blot analysis as described in the Figures and Materials and Methods. r - resistant; s - sensitive.

The presence of F-MCFs in Rmcf mice has been investigated in previous reports by infectious center assays or by immunoprecipitation of a gp70 MCF envelope polypeptide precursor (12, 13, 16), and the results were negative. It was important to compare the sensitivity of the results obtained by the previous assays with the Southern blot analyses for MCF provirus in Fig. 2. Therefore, we examined Rmcf tumors induced by F-MuLV after long latency for the presence of F-MCF. For detection of F-MCF, Eco RI digestion will yield a diagnostic 3.5-kb fragment spanning the pol and env regions which hybridizes with an F-MCF probe. As seen in Fig. 2 C, F-MuLV-induced tumors in CxD2 mice showed no evidence for MCFs, even though F-MuLV provirus was easily detected by separate Southern analysis using an F-MuLV probe (data not shown). Thus, the Southern blot assay was in agreement with previous assays, and the results for Fig. 2 indicated that M-MCF formation and propagation is not restricted to the same extent as for F-MCFs in Rmcf mice. We also examined three tumors induced in Balb/c (Rmcf) mice inoculated with F-MuLV. All contained F-MuLV provirus (Fig. 2 D). These results indicated that failure of F-MCF to generate or propagate in CxD2 mice was due to the Rmcf allele of the Rmcf gene, as reported. Furthermore, the Rmcf allele may also have provided slight resistance to spread of M-MCF, since one M-MuLV-induced tumor in CxD2 mice failed to show evidence by this analysis of MCF proviruses.

Table 1. MCF Provirus in Moribund CxD2 (Rmcf) and Balb/c (Rmcf) Mice*

Strain	Virus	No. MCF+/Total	%MCF+ (%)
CxD2	M-MuLV	8/9	89
Balb/c	M-MuLV	13/13	100
CxD2	Fr-MuLV	0/4	0
Balb/c	Fr-MuLV	3/3	100
CxD2	FM-MuLV	7/9	78
Balb/c	FM-MuLV	7/7	100
CxD2	MuLV/M-MCF	5/5	100
CxD2	Fr-MuLV/Fr-MCF	4/6t	67t

* MCF was detected in tumor DNAs by digestion with XbaI + BamHI for M-MCF and FM-MCF or EcoRI for Fr-MCF followed by Southern blot analysis as described in the Figures and Materials and Methods. r - resistant; s - sensitive.

Diagnostic band barely detectable by Southern blot analysis.
Figure 2. Detection of MCF provirus by Southern blot analysis. (A) Restriction maps of M-MuLV, F-MuLV, and expected M- and F-MCFs derived from recombination between the respective inoculated ecotropic virus and endogenous polytropic sequences. M-MCF recombinants are detected by the diagnostic 2.3-kb Bam HI/Xba I fragment of the M-MCF env region (5). F-MCF recombinants are detected by a diagnostic 3.5-kb Eco RI fragment of the F-MCF pol-env region. These bands detected using an M- or F-MCF-specific probe as described in Materials and Methods. X - Xba I; B - Bam HI; R - Eco RI. (B) - M-MuLV-induced CxD2 (Rmcf) tumor DNAs digested with Xba I plus Bam HI, separated by gel electrophoresis, and analyzed by Southern blot hybridization with an M-MCF-specific probe. Lane a - uninoculated CxD2 mouse DNA; Lanes b-g - representative thymic tumor DNAs from six M-MuLV-inoculated moribund CxD2 mice. Left arrow indicates diagnostic band. (C) F-MuLV-induced CxD2 tumor DNAs digested with Eco RI and hybridized with a F-MCF-specific probe. Lane a - uninoculated CxD2 mouse DNA; Lanes b and c - F-MuLV and F-MCF producer cell line DNAs, respectively; Lanes d-i - thymus and spleen DNAs, respectively, for two F-MuLV-inoculated moribund mice, and lanes h-i - spleen tumor DNAs only from two additional mice. (D) F-MuLV-induced Balb/c (Rmcf) tumor DNAs digested and hybridized as for panel C. Lane a - Uninoculated Balb/c splenocyte DNA; Lane b - F-MCF producer cell line showing expected F-MCF-specific band (arrow); Lanes c-e - three F-MuLV-induced Balb/c tumor DNAs.

Figure 3. Disease induced by FM-MuLV in CxD2 and Balb/c mice. FM-MuLV (21) (which contains the U3-R region of M-MuLV and U5 and coding sequences of F-MuLV) was inoculated i.p. into neonatal CxD2 (Rmcf) or Balb/c (Rmcf) mice, and animals were sacrificed when moribund. Pathogenicity in the two strains is shown.
Figure 4. TCRα gene rearrangement in FM-MuLV-induced tumors. Tumor DNAs were digested with Hpa I and analyzed by Southern blot hybridization with a TCRα constant region probe (28) as described in Materials and Methods. Lane 1 - uninoculated CxD2 mouse DNA showing expected germline bands of 11.6 and 6.1 kb; Lanes 2 and 3 - tumor DNAs from FM-MuLV-inoculated CxD2 (Rmcf) mice; Lane 4 - uninoculated Balb/c mouse DNA; Lanes 5–11 - tumor DNAs from FM-MuLV-inoculated Balb/c (Rmcf) mice.

Figure 5. Detection of MCFs in FM-MuLV-induced CxD2 and Balb/c tumors. DNAs were analyzed by Southern blot hybridization as in Fig. 2B for the M-MCF-specific band using the M-MCF-specific probe (arrow). (A) Lane 1 - NIH-3T3 cell line DNA; Lane 2 - NIH-3T3-based M-MCF producer cell line (MCFMoLTR); Lane 3 - NIH-3T3-based FM-MuLV producer cell line; Lanes 4–8 - FM-MuLV-induced CxD2 tumor DNAs. The diagnostic MCF band was present in lanes 5–8. (B) Lanes 1 and 2 - FM-MuLV and MCFMoLTR producer cell line DNAs, respectively, as in panel A; Lane 3 - uninoculated Balb/c mouse spleen DNA; Lanes 4–8 - FM-MuLV-induced Balb/c tumor DNAs; Lane 9 - DNA from FM-MuLV-inoculated 8-wk-old Balb/c mouse. (C) Restriction maps of FM-MuLV and the expected FM-MuLV MCF arising through recombination of the input virus with endogenous proviral env sequences. FM-MuLV contains the Xba I site in its LTR derived from M-MuLV. Thus an FM-MuLV-MCF would generate the same diagnostic 2.3-kb XbaI/BamHI fragment as for M-MCF.

(12) However, the potential effect of such a pseudotypic mixture on F-MuLV-induced disease of longer latency has not been investigated. We inoculated neonatal CxD2 mice with a pseudotypic mixture of either F-MuLV/F-MCF or M-MuLV/M-MCF. Slight acceleration by M-MCF of M-MuLV-induced disease (2–3 wk) was observed in CxD2 mice (Fig. 1, upper panel). For F-MuLV-induced disease in Rmcf mice, average time to death was decreased by addition of F-MCF to nearly half—from 30 to 16 wk (Fig. 1, lower panel). Gross pathology of the disease induced by the F-MuLV/F-MCF inoculum appeared similar to that of F-MuLV alone in Rmcf mice with greatly enlarged spleen and normal or regressed lymph nodes.
and thymus. Southern blot analysis on F-MuLV/F-MCF-induced tumor DNAs revealed a faint MCF diagnostic band (indicating low copy number) in 4/6 tumors examined and this band was undetectable in the remaining tumors (not shown). Thus, while F-MCF accelerated F-MuLV-induced leukemia, direct infection by F-MCF of the majority of the resulting tumor cells was apparently not required.

Discussion

In these experiments, the pathogenesis of M-MuLV in mice carrying the Rmcf' and Rmcf alleles was compared by infecting CxD2 vs. Balb/c mice. In contrast to F-MuLV, M-MuLV showed no significant difference in leukemia time course in Rmcf' vs. Rmcf mice, and the majority of tumors developing in Rmcf' CxD2 mice showed evidence of MCF proviruses. Thus, M-MuLV was much less sensitive to the Rmcf-mediated restriction in vivo than F-MuLV. These results were initially surprising, since considerable evidence for the involvement of MCF recombinants in M-MuLV pathogenesis has been reported (3, 4, 5, 10). Moreover, since M-MCFs and F-MCFs bind to the same cellular receptor (18), it might seem that leukemogenesis by M-MuLV should be restricted in Rmcf mice to the same degree as F-MuLV. Indeed, this was the initial motivation for our experiments.

The different restrictions of the Rmcf gene for M-MuLV and F-MuLV might result from two possibilities. First, it is possible that F-MCF and M-MCF glycoproteins might have different affinities for the cellular MCF receptor. If F-MCF had a lower affinity than M-MCF, the endogenous MCF-like gp70 expressed in Rmcf cells might competitively block binding of F-MCF virus particles, but not M-MCF particles. A second possibility could be that enhancer differences between M-MuLV and F-MuLV (dictated by theLTRs) mediate the different responses. The experiments with FM-MuLV clearly support the second possibility, since this virus has the structural genes of F-MuLV, but theLTR of M-MuLV, and it is not restricted by the Rmcf gene.

To interpret these results, it is important to consider that at early times, most MCF particles probably also have MCF envelope proteins, i.e., pseudotyping of MCF genomes with ecotropic env proteins is probably rare due to the low multiplicities of infection in vivo at this time. (Other experiments support this notion [5].) Thus, MCF viruses would propagate in vivo in “MCFpropagator” cells: cells with (a) surface MCF receptors (18, 33) and (b) transcriptional milieu compatible with the viral LTR of the infecting virus (6, 21, 30, 34, 35) (Fig. 6 A). MCF propagators could be either hematopoietic or non-hematopoietic cells.

The differential restriction of F-MuLV and M-MuLV in Rmcf mice might be explained if there existed (a) nonequivalent sets of F-MCF vs. M-MCF propagator cells, and (b) differential tissue-specific expression of endogenous MCF-like gp70. In particular, for F-MuLV in Rmcf mice, MCF propagators probably include erythroid and myeloid hematopoietic cells, fibroblasts and stromal cells, since the F-MuLV LTR is active in these cell types (9, 12, 27, 36), and in vivo and in vitro experiments suggest that many of these have surface MCF receptors (9, 15, 16) (Fig. 6 B, upper panel). If all potential F-MCF propagators are expressing endogenous MCF gp70 in Rmcf mice, they would be blocked for F-MCF infection (Fig. 6 B, lower panel) and propagation. On the other hand, M-MuLV could generate M-MCFs in Rmcf mice (and cause rapid disease) if at least some M-MCF propagators did not express Rmcf-controlled endogenous MCF gp70. Lymphoid cells would be candidates for such cells; they would not be F-MCF propagators in either Rmcf or Rmcf mice because they do not efficiently support transcription from the F-MuLV LTR (37-39) (Fig. 6 B, lower panel). This model also would explain the behavior of FM-MuLV in Rmcf mice: an FM-MCF would be able to propagate in the same cells that an M-MCF can (e.g., a lymphoid cell), since it contains the same LTR as M-MCF.

Previous results of Buller et al. (15) strongly support the model in Fig. 6. These investigators showed that expression of endogenous MCF-like gp70 in Rmcf mice is found predominantly on erythroid cells and to a lesser extent on myeloid and lymphoid progenitors. Notably, 90–95% of Rmcf mouse thymocytes do not express the endogenous gp70.
While the Rmcf⁺ gene did not delay the time course of leukemogenesis for M-MuLV or FM-MuLV in CxD₂ mice, there may have been slight blockage in MCF formation, since one tumor did not show evidence for MCFs. According to our model, it is quite likely that some M-MCF propagator cells are blocked in Rmcf⁻ mice (e.g., myeloid cells). Thus, a decrease in efficiency of MCF formation and propagation for M-MuLV and FM-MuLV in CxD₂ mice would be reasonable.

As shown in Fig. 1, lower panel, a pseudotypic mixture of F-MuLV/F-MCF showed greatly accelerated disease in comparison to F-MuLV alone in Rmcf⁻ mice. Two aspects require explanation. First, the fact that the F-MCF accelerated the disease implies that it had an effect in vivo, even in Rmcf⁻ mice. However, since the F-MCF was administered as a pseudotypic mixture with F-MuLV, F-MCF genomes could infect cells by way of ecotropic F-MuLV glycoprotein and ecotropic receptors. The second aspect is that in the rapidly developing tumors induced by F-MuLV/F-MCF, 2/6 tumors did not contain detectable F-MCF provirus, and others showed only low concentrations. Thus, F-MCF may have accelerated the disease course by infecting some cell other than the ultimate tumor cell itself. We have observed a related phenomenon in M-MuLV-induced tumors. As described in the Introduction, M-MuLV induces a preleukemic state of generalized hematopoietic hyperplasia in the spleen which is necessary for rapid disease. However, this does not result from direct M-MuLV infection of hematopoietic progenitors (40). Rather, combined infection of M-MCPs and M-MuLV in other cells (perhaps bone marrow stroma) indirectly leads to preleukemic hyperplasia (10). By the same token, combined F-MuLV/F-MCF infection of nonhematopoietic cells might accelerate leukemogenesis without F-MCF infecting the final tumor cells.

We wish to thank the Cancer Research Institute, University of California, Irvine, for support. We are deeply indebted to Sandra Ruscetti for CxD₂ mice and F-MuLV and F-MCF cell lines as well as helpful suggestions. We also wish to thank Alan Oliff for F-MuLV and F-MCF plasmid clones.

This work was supported by National Institutes of Health (NIH) grant ROI CA-32455 to H. Fan. B. K. Brightman was supported by NIH Post-Doctoral Training Grant T32 AI-07319, and a grant from the University of California Cancer Research Coordinating Committee.

Address correspondence to Hung Y. Fan, Cancer Research Institute, Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92717.

Received for publication 26 March 1991 and in revised form 8 May 1991.

References

1. Stoye, J.P., and J.M. Coffin. 1987. The four classes of endogenous murine leukemia virus: structural relationships and potential for recombination. J. Virol. 61:2659.
2. Evans, L.H., and M.W. Cloyd. 1985. Friend and Moloney murine leukemia viruses specifically recombine with different endogenous retroviral sequences to generate mink cell focus-forming viruses. Proc. Natl. Acad. Sci. USA. 82:459.
3. Selten, G., H.T. Cuypers, M. Zijlstra, C. Melief, and A. Berns. 1984. Involvement of c-myc in MuLV-induced T cell lymphomas in mice; frequency and mechanisms of activation. EMBO (Eur. Mol. Biol. Organ.) J. 3:3215.
4. Vogt, M. 1979. Properties of “mink cell focus-inducing” (MCF) virus isolated from spontaneous lymphoma lines of Balb/c mice carrying Moloney leukemia virus as an endogenous virus. Virology. 93:226.
5. Brightman, B.K., A. Rein, D.J. Trepp, and H. Fan. 1991. An enhancer variant of Moloney murine leukemia virus defective in leukemogenesis does not generate detectable mink cell focus-inducing virus in vivo. Proc. Natl. Acad. Sci. USA. 88:2264.
6. Evans, L.H., and J.D. Morrey. 1987. Tissue-specific replication of Friend and Moloney murine leukemia viruses in infected mice. J. Virol. 61:1350.
7. Cloyd, M.W., J.W. Hartley, and W.P. Rowe. 1980. Lymphomagenicity of recombinant mink cell focus-inducing murine leukemia viruses. J. Exp. Med. 151:542.
8. Rowe, W.P., and J.W. Hartley. 1983. Genes affecting mink cell focus-inducing (MCF) murine leukemia virus infection and spontaneous lymphoma in AKR F1 hybrids. J. Exp. Med. 158:353.
9. Hartley, J.W., R.A. Yetter, and H.C. Morse, III. 1983. A mouse gene on chromosome 5 that restricts infectivity of mink cell focus-forming recombinant murine leukemia viruses. J. Exp. Med. 158:16.
10. Li, Q.-X., and H. Fan. 1990. Combined infection by Moloney murine leukemia virus and a mink cell focus-forming virus recombinant induces cytopathic effects in fibroblasts or in long-term bone marrow cultures from preleukemic mice. J. Virol. 64:3701.
11. Potter, M., J.W. Hartley, J.S. Wax, and D. Gallahan. 1984. Effect of MuLV-related genes on plasmacytomagenesis in Balb/c mice. J. Exp. Med. 160:435.
12. Ruscetti, S., L. Davis, J. Field, and A. Oliff. 1981. Friend murine leukemia virus-induced leukemia is associated with the formation of mink cell focus-inducing viruses and is blocked in mice expressing endogenous mink cell focus-inducing xenotropic viral envelope genes. J. Exp. Med. 154:907.
13. Buller, R.S., M. Sitbon, and J.L. Portis. 1988. The endogenous mink cell focus-forming (MCF) gp70 linked to the Rmcf gene restricts MCF virus replication in vivo and provides partial resistance to erythroleukemia induced by Friend murine leukemia virus. J. Exp. Med. 167:1535.

14. Bassin, R.H., S. Ruscetti, I. Ali, D.K. Haapala, and A. Rein. 1982. Normal DBA/2 mouse cells synthesize a glycoprotein which interferes with MCF virus infection. Virology. 123:139.

15. Buller, R.S., G. VanZant, P.W. Eldridge, and J.L. Portis. 1989. A subpopulation of murine hematopoietic progenitors expresses an endogenous retroviral gp70 linked to the Rmcf gene and associated with resistance to erythroleukemia. J. Exp. Med. 169:865.

16. Ruscetti, S., R. Matthai, and M. Potter. 1985. Susceptibility of Balb/c mice carrying various DBA/2 genes to development of Friend murine leukemia virus-induced erythroleukemia. J. Virol. 62:251.

17. Frankel, W.N., J.P. Stoye, G.A. Taylor, and J.M. Coffin. 1989. Genetic identification of endogenous polytropic proviruses by using recombinant inbred mice. J. Virol. 63:3810.

18. Rein, A. 1982. Interference grouping of murine leukemia viruses: a distinct receptor for the MCF-recombinant viruses in mouse cells. Virology. 120:251.

19. Davis, B., E. Linney, and H. Fan. 1985. Suppression of leukemia virus pathogenicity by polyoma virus enhancers. Nature (Lond.). 314:550.

20. Bosselman, R.A., F. van Straaten, C. van Beveren, I.M., Verma, and W. Vogt. 1982. Analysis of the env gene of a molecularly cloned and biologically active Moloney mink cell focus-forming proviral DNA. J. Virol. 44:19.

21. Chatis, P.A., C.A. Holland, J.W. Hartley, W.P. Rowe, and N. Hopkins. 1983. Role for the 3' end of the genome in determining disease specificity of Friend and Moloney murine leukemic viruses. Proc. Natl. Acad. Sci. USA. 80:4408.

22. Fan, H., R. Jaenisch, and P. Maclsaac. 1978. Low-multiplicity infection of Moloney murine leukemia virus in mouse cells: effect on number of viral DNA copies and virus production in producer cells. J. Virol. 28:802.

23. Rowe, W.P., W.E. Pugh, and J. Hartley. 1970. Plaque assay techniques for murine leukemia viruses. Virology. 42:1136.

24. Brightman, B.K., K.G. Chandy, and H. Fan. 1988. Characterization of lymphoid tumors induced by a recombinant murine leukemia virus containing the avian v-myc oncogene: identification of novel (B-lymphoid) tumors in the thymus. J. Immunol. 141:2844.

25. Brightman, B.K., K.G. Chandy, R.H. Spencer, and H. Fan. 1989. A T-lymphoid cell line responds to a thymic stromal cell line by expression of Thy 1 and CD4. J. Immunol. 143:2775.

26. Oliff, A., L. Collins, and C. Mirenda. 1983. Molecular cloning of Friend mink cell focus-inducing virus: identification of mink cell focus-inducing virus-like messages in normal and transformed cells. J. Virol. 48:542.

27. Oliff, A.I., G.L. Hager, E.H. Change, E.M. Scolnick, H.W. Chan, and D.R. Lowy. 1980. Transfection of molecularly cloned Friend murine leukemia virus DNA yields a highly leukemogenic helper-independent type C virus. J. Virol. 33:475.

28. Hedrick, S.M., D.I. Cohen, E.A. Nielsen, and M.M. Davis. 1984. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature (Lond.). 308:149.

29. Weiss, R., N. Teich, H. Varmus, and J. Coffin. 1984. RNA Tumor Viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. pp. 901-922.

30. Chatis, P.A., C.A. Holland, J.E. Silver, T.N. Frederickson, N. Hopkins, and J.W. Hartley. 1984. A 3' end fragment encompassing the transcriptional enhancers of nondefective Friend virus confers erythroleukemogenicity on Moloney leukemia virus. J. Virol. 52:248.

31. Davis, B.R., B.K. Brightman, K.G. Chandy, and H. Fan. 1987. Characterization of a preleukemic state induced by Moloney murine leukemia virus: Evidence for two infection events during leukemogenesis. Proc. Natl. Acad. Sci. USA. 84:4875.

32. Born, W., J. Yague, E. Palmer, J. Kappler, and P. Marrack. 1985. Rearrangement of T-cell receptor beta-chain genes during T-cell development. Proc. Natl. Acad. Sci. USA. 82:2925.

33. Rein, A., and A. Schultz. 1984. Different recombinant murine leukemia viruses use different cell surface receptors. Virology. 136:144.

34. Lenz, J., D. Celander, R.L. Patarca, R. Crowther, D.W. Perkins, and W.A. Haseltine. 1984. Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature (Lond.). 308:467.

35. DesGroseilliers, L., E. Rassart, and P. Jolicoeur. 1983. Thymotropism of murine leukemia virus is conferred by its long terminal repeat. Proc. Natl. Acad. Sci. USA. 80:4203.

36. Shibuya, T., and T.W. Mak. 1982. Host control of susceptibility to erythroleukemia and to the types of leukemia induced by Friend murine leukemia virus: initial and late stages. Cell. 31:483.

37. Short, M.K., S.A. Okenquist, and J. Lenz. 1987. Correlation of leukemogenic potential of murine retroviruses with transcriptional tissue preference of the viral long terminal repeats. J. Virol. 61:1067.

38. Thiesen, H.-J., Z. Bosze, L. Henry, and P. Charnay. 1988. A DNA element responsible for the different tissue specificities of Friend and Moloney retroviral enhancers. J. Virol. 62:614.

39. Chesebro, B., J.L. Portis, K. Wehrly, and J. Nishio. 1983. Effect of the Rmcf gene on the expression latency, of Friend and Moloney retroviral enhancers. J. Virol. 52:248.

40. Brightman, B.K., B.R. Davis, and H. Fan. 1990. Preleukemic hematopoietic hyperplasia induced by Moloney murine leukemia virus is an indirect consequence of viral infection. J. Virol. 64:4582.