REVIEW

Traditional Chinese medicine in COVID-19

Ming Lyu a,b,†, Guanwei Fan c,†, Guangxu Xiao a,†, Taiyi Wang d, Dong Xu a, Jie Gao e, Shaoqin Ge e, Qingling Li f, Yuling Ma d, Han Zhang a, Jigang Wang b, Yuanlu Cui a,*, Junhua Zhang a,*, Yan Zhu a,*, Boli Zhang a,*

aState Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
bArtemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
cNational Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
dOxford Chinese Medicine Research Centre, University of Oxford, Oxford OX1 3PT, UK
eCollege of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
fInstitute of Basic Medicine and Cancer, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou 310022, China

Received 9 February 2021; received in revised form 2 September 2021; accepted 6 September 2021

KEY WORDS
COVID-19; SARS-CoV-2; Traditional Chinese medicine; Clinical evidence; Potential mechanism; Viral infection; Cytokine storm; Multiple organ dysfunction

Abstract COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread across the globe, posing an enormous threat to public health and safety. Traditional Chinese medicine (TCM), in combination with Western medicine (WM), has made important and lasting contributions in the battle against COVID-19. In this review, updated clinical effects and potential mechanisms of TCM, presented in newly recognized three distinct phases of the disease, are summarized and discussed. By integrating the available clinical and preclinical evidence, the efficacies and underlying mechanisms of TCM on COVID-19, including the highly recommended three Chinese patent medicines and three Chinese medicine formulas, are described in a panorama. We hope that this comprehensive review not only provides a reference for health care professionals and the public to recognize the significant contributions of TCM for COVID-19, but also serves as an evidence-based in-depth summary and analysis to facilitate understanding the true scientific value of TCM.

*Corresponding authors.
E-mail addresses: yanzhu.harvard@icloud.com (Yan Zhu), zhangbolipr@163.com (Boli Zhang), zjhtcm@foxmail.com (Junhua Zhang), cuiyl@tju.edu.cn (Yuanlu Cui).
†These authors made equal contributions to this work.
Peer review under responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

https://doi.org/10.1016/j.apsb.2021.09.008
2211-3835 © 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The outbreak and spread of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has inflicted immense losses on human lives and properties all over the world. Globally, as of August 7, 2021, there have been more than two hundred million confirmed COVID-19 cases, including more than four million of deaths (WHO, https://covid19.who.int/). SARS-CoV-2 is an enveloped, single-stranded, positive-sense, β-coronavirus RNA virus that belongs to the sub-family Coronavirinae, family Coronaviridae, order Nidovirales. It shares about 79.6% identity of genome sequence with SARS-CoV and 96% similarity with bat coronavirus at the whole-genome level1,2. SARS-CoV-2 is transmitted from person to person via respiratory droplets, high concentration of aerosols, and occasionally feces or urine. Currently, no approved specific anti-viral drug is recommended to defeat COVID-19, which may lead to acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even death.

It is well documented that traditional Chinese medicine (TCM) has accumulated abundant clinical experience and effective prescriptions to control and treat infectious diseases in about 500 epidemics occurred in China over more than 3000 years in the past. The combined therapy of TCM and Western medicine (WM) had significantly reduced mortality, shortened duration of fever, decreased chest radiograph abnormalities, and relieved secondary fungal infections among patients receiving glucocorticoids in combating severe acute respiratory syndrome (SARS). Owing to the positive role of TCM in treating previous coronavirus pneumonias such as SARS, middle east respiratory syndrome (MERS), and other epidemic diseases3-9, the National Health Commission of China recommended to use TCM as one of the strategies for COVID-19 remedy. This epidemic was deemed as the category of “pestilence” with the pathological characteristics of “dampness, heat, toxin, deficiency, and stasis” under TCM theory10-12. Over the past year, TCM achieved remarkable efficacy in treating patients at all stages infected with SARS-CoV-2 in China. Typical clinical characteristics contain clinical manifestations, laboratory findings, and chest imaging features, as well as the pathogenesis of SARS-CoV-2 infection and therapeutic targets including SARS-CoV-2 invasion and replication, immune response, and cytokine storm, ARDS and MODS were outlined in published papers. In this review, the therapeutic efficacies and pharmacological mechanisms of TCM for this epidemic disease were systematically documented and discussed, aiming at displaying an in-depth understanding of TCM against COVID-19.

2. TCM in the treatment of COVID-19

2.1. Understanding COVID-19 in TCM theory

In the theory of TCM, COVID-19 is deemed as the category of “dampness–toxin pestilence”10. The distinct disease stages of TCM treatment can be divided into mild, moderate, severe, and critical. The main patterns in mild stage are cold–damp constraint and damp–heat accumulation in the lung, where dispersing lung and removing pathogenic factors, and resolve turbidity with aroma are needed; The main patterns in moderate stage are damp–toxin constraint in the lung and cold–damp obstructing the lung, where eliminating heat and dampness, detoxification, and invigorate spleen are needed; The main patterns in severe stage are epidemic toxin blocking the lung, blazing of both qi and yin, where tonifying qi and yin, ventilating lung qi, co-treatment of lung and intestines are needed. The main patterns in critical stage are internal blockage and external desertion, where tonifying qi and preventing exhaustion, cool blood and nourishing yin, and restore consciousness are needed13-15. Syndrome differentiation is one of the most important principles for TCM to treat COVID-19.

2.2. The recommended TCMs for distinct stages of COVID-19 treatment

According to the officially issued 7th and 8th trial version of Diagnosis and Treatment Protocol for COVID-19 in China and other references14,16-23, there are more than 18 recommended TCMs to prevent and treat COVID-19, covering from medical observation period (suspected cases) to clinical treatment period (confirmed cases) including distinct disease stages of mild, moderate, severe, and critical, as shown in Fig. 1. Among them, the highly recommended three Chinese patent medicines (CPMs) are Jinhua Qinggan granules, Lianhua Qingwen capsule (granules), and Xuebijing injection, and three Chinese medicine formulas are Qingfei Paidu decoction, Huashi Baidu formula, and Xuanfei Baidu formula, with proven efficacies in treating COVID-1924,25. Jinhua Qinggan granules clear heat and detoxifying, was an innovative CPM for the treatment of SARS in 200326,27. Xuebijing injection, a five-herbal injection medicine and with a clinical indication for clearing heat, diffusing the lung, and detoxifying, was an innovative CPM for the treatment of SARS in 200328,29. Xuebijing injection, a five-herbal injection medicine and with a clinical indication for resolving stasis and detoxifying, was derived from a modified Xuefu Zhuyu decoction and was developed and marketed during SARS. The Chinese medicine formula Qingfei Paidu decoction consists of 21 herbal medicines from five classic formulas of Treatise on Febrile Diseases. It clears the lung and calm panting, and is the first recommended universal treatment formula for all stages from mild to critical of COVID-1926,27. Huashi Baidu formula is composed of 14 medicinal herbs. It serves to clearing heat and detoxifying, removing dampness, mainly suitable for the treatment of mild, moderate, and severe COVID-19 patients30,31. Xuanfei Baidu formula is derived from classic formulas including Maxing Shigan decoction and Maxing Yigan decoction, and is composed of 13 medicinal herbs. It detoxifies and removes blood stasis, diffuse the lung, removes dampness, clears heat, and is mainly applicable to treat mild and moderate...
Beyond the above-mentioned medicines and formulas, Chinese herbal injections, including Xiyanping injection, Reduning injection, Tanreqing injection, Shenfu injection, Shengmai injection, and Shenmai injection, were more suitable as supplemental treatments for severe or critical COVID-19 cases with their advantages of fast absorption, high bioavailability, and clearer ingredients in contrast to orally administrated TCMs.

2.3. Clinical evidence of TCM for COVID-19

A total of 40 representative clinical trials, including 11 randomized controlled trials (RCTs), 16 retrospective cohort studies (RCSs), 5 multi-center clinical observations, and 8 others were completed and summarized. According to the available clinical data, integrated TCM and WM exhibited several clinical advantages in COVID-19 treatment, including the outcomes of 1) clinical manifestations, 2) lung features, and 3) laboratory findings as shown in Table 1. Furthermore, based on Table 1, the clinical evidence of TCM for typical characteristics of COVID-19 were analyzed and summarized in Table 2.

For mild or moderate stages: 1) the most typical clinical symptoms of fever, cough, and fatigue were relieved by Jinhua Qinggan granules, Lianhua Qingwen granules, Shufeng Jiedu capsule, Toujie Quwen granules, Lianhua Qingke granules, Xuanfei Baidu decoction, and Maxing Shigan decoction. Lianhua Qingwen granules and Shufeng Jiedu capsule improved the symptoms of short of breath and chest tightness; Jinhua Qinggan granules relieved the symptom of psychological anxiety, and Shufeng Jiedu capsule improved the symptoms of short of breath and chest tightness; Jinhua Qinggan granules relieved the symptom of psychological anxiety, and Shufeng Jiedu capsule improved the symptom of diarrhea. 2) Jinhua Qinggan granules, Shufeng Jiedu capsule, and Toujie Quwen granules promoted pneumonia inflammatory absorption or improve lung CT imaging. 3) Jinhua Qinggan granules, Lianhua Qingwen granules, Shufeng Jiedu capsule, and Maxing Shigan decoction increased white blood cell (WBC) or lymphocyte count; Lianhua Qingwen granules, Shufeng Jiedu capsule, Toujie Quwen granules, Xuanfei Baidu decoction, and Maxing Shigan decoction reduced the level of C-reactive protein (CRP). Shufeng Jiedu capsule decreased the level of interleukin-6 (IL-6).

For severe or critical stages: 1) Xuebijing injection and Qingfei Paidu decoction improved the conditions of patients and reduced multiple organ dysfunction. 2) Xuebijing injection, Qingfei Paidu decoction, and Huashi Baidu formula improved chest CT imaging or promoted lung lesions absorption; Chansu injection ameliorated the respiratory function and shorten the respiratory support step-down time. 3) Both Xuebijing injection and Chansu injection improved the oxygenation index of PaO2/FiO2; Xuebijing injection and Qingfei Paidu decoction decreased the level of CRP, and increased WBC or lymphocyte count; In addition, Xuebijing injection reduced the level of inflammatory mediators of TNF-α, IP-10, and RANTES; Qingfei Paidu decoction decreased biochemical parameters of CK and LDH, and the level of blood urea nitrogen; Maxing Shigan decoction increased CD4+ T and CD8+ T count; Qingfei Baidu formula decreased CRP, erythrocyte sedimentation rate (ESR), serum ferritin, and myoglobin level; Yidu-toxicity blocking lung decoction reduced the levels of IL-6 and TNF-α.

For all stages: 1) Qingfei Paidu decoction and Qingfei Dayuan granules ameliorated extensive adverse symptoms such as fever, cough, fatigue, chest tightness, and headache; Xuanfei Huazhuo decoction relieved the symptoms of cough, fever, sputum, diarrhea, fatigue, and loss of appetite. 2) Qingfei Paidu decoction, Qingfei Dayuan granules, Xuanfei Huazhuo decoction, Keguan-1, Qingfei Touxie Fuzheng recipe, Ganlu Xiaodu decoction, and Matrine injection improved lung inflammation or lesions absorption. 3) Qingfei Paidu decoction, Qingfei Dayuan granules, Xuanfei Huazhuo decoction, Ganlu Xiaodu decoction, “Fei Yan No. 1”, Matrine and sodium chloride injection, and Diammonium glycyrrhizinate increased WBC or lymphocyte count; Qingfei Paidu decoction and Diammonium glycyrrhizinate decreased CRP, IL-6, and ESR; Qingfei Paidu decoction and Xuanfei Huazhuo decoction reduced the level of CRP and ESR, and the biochemical parameters of AST and ALT. What’s more, Qingfei Paidu decoction decreased the level of a thrombotic marker D-dimer.

A plentiful of clinical studies and analyses proved that integrated Chinese and Western medicine therapy are much better than pure use of WM for COVID-19. A recent systematic
No.	Intervention	Method	Object (T/C)	Disease stage	Clinical manifestation	Laboratory finding	Ref.
1	Jinhua Qinggan granules + WM vs. WM	Retrospective cohort study (RCS)	44/36	Moderate or severe	1) Shorten the duration of nucleic acid turn negative		
2) Promote the absorption of pneumonia inflammatory exudate | Increase WBC and lymphocyte count | 36 |
| 2 | Jinhua Qinggan capsule + WM vs. WM | Randomized controlled trial (RCT) | 82/41 | Mild | Reduce the symptoms of fever, cough, fatigue, and sputum cough, and relieve the psychological anxiety | Unreported | 37 |
| 3 | Lianhua Qingwen capsule + WM vs. WM | RCT | 142/142 | Mild or moderate | 1) Shorten median time to symptom recovery
2) Shorten time to recovery of fever, fatigue, and cough
3) Improve the rate of chest CT manifestations and clinical cure | Unreported | 27 |
| 4 | Lianhua Qingwen capsule + WM vs. WM | RCS | 63/38 | All | Relieve symptoms of fever, cough, weakness, and short of breath | Unreported | 38 |
| 5 | Lianhua Qingwen capsule + arbidol vs. arbidol | RCT | 147/148 | Mild or moderate | Relieve symptoms of fever, fatigue, cough, dry throat, sore throat, and chest tightness | Lower the levels of CRP and procalcitonin, elevate WBC and lymphocyte count | 39 |
| 6 | Lianhua Qingwen capsule + WM | Before and after comparison | 54/0 | Moderate | Relieve the symptoms and reduce the duration of fever, fatigue, and cough.
2) Reduce the utilization rate of anti-infective drugs and improve the prognosis of patients
3) Block disease aggravation | Unreported | 40 |
| 7 | Lianhua Qingwen capsule + Huoxiang Zhengqi dropping pills + WM vs. WM | RCT | 189/94 | All | 1) Improve the symptoms of fever and diarrhea, especially fatigue, nausea and vomiting, chest tightness, shortness of breath and limb soreness
2) Reduce the utilization rate of anti-infective drugs and improve the prognosis of patients
3) Block disease aggravation | Unreported | 28 |
| 8 | Lianhua Qingwen capsule + arbidol vs. arbidol | RCS | 68/40 | Mild or moderate | 1) Shorten the median time from admission to the first negative result of nucleic acid detection
2) Reduce lung inflammation | 1) Increase lymphocytes count
2) Lower the levels of serum amyloid A and CRP | 41 |
| 9 | Xuebijing injection + WM | Case analysis | 11/0 | Severe or critical | May ameliorate lung injury | Reduce the levels of TNF-α, IP-10, MIP-1β, and RANTES | 42 |
| 10 | Xuebijing injection + WM vs. WM | RCT | 40/20 | Severe | Improve the conditions of patients, lower APACHE II score | 1) Improve the oxygenation index of PaO₂/FiO₂
2) Increase WBC and lymphocyte count, decrease the levels of CRP and ESR | 43 |
| 11 | Xuebijing injection + antiviral treatment vs. antiviral treatment | RCS | 22/22 | Moderate | Increase the effective rate of lung lesions absorption and the overall effective rate of treatment | Tend to improve WBC count, lymphocyte count, and the levels of CRP and ferritin | 44 |
| 12 | Qingfei Paidu decoction + WM vs. WM | RCS | 37/26 | Severe | 1) Relieve the symptoms and improve inflammation resolution in the lung
2) Tend to mitigate the extent of multi-organ impairment | 1) Improve the levels of CRP, CK, creatine kinase-myocardial band, LDH, and blood urea nitrogen
2) Increase lymphocyte count | 45 |
| 13 | Qingfei Paidu decoction + WM | Before and after | 98/0 | All | 1) Nearly all adverse symptoms including | Restore the levels of AST, ALT, D- | 46 |
| Comparison | Design | N | Outcome | Additional Findings |
|------------|--------|---|---------|---------------------|
| Qingfei Paidu decoction + antiviral treatment vs. antiviral treatment | RCS | 30/30 | All | 1) Shorten inpatient days and reduce the time of fever and cough 2) Improve lung CT imaging |
| Qingfei Paidu decoction + WM | RCS | 46/43 | All | 1) Reduce inflammation, enhance cellular immunity, improve renal function, lower hypercoagulability 2) Shorten the length of hospitalization and nucleic acid negative time |
| Qingfei Paidu decoction + WM vs. WM | Multi-center clinical observation | 199/96 | Mild or moderate | Unreported |
| Qingfei Paidu decoction + WM | Multi-center clinical observation | 782/0 | All | Shorten the time of recovery, viral shedding, and the duration of hospital stay |
| Xuanfei Baidu decoction + WM | RCT | 22/20 | Mild | Increase the disappearance rate of symptoms of fever, cough, fatigue, and loss of appetite |
| Huashi Baidu granule vs. WM | RCS | 23/32 | Severe | Improve chest CT imaging and lung lesion opacity |
| Huashi Baidu formula + TCM injection vs. Huashi Baidu formula + lopinavir–ritonavir vs. lopinavir–ritonavir | RCS | 20/20/20 | Mild or moderate | Shorten the clinical remission time |
| Shufeng Jiedu capsule + WM vs. WM | RCS | 34/34 | Moderate | 1) Improve the symptoms of cough, sputum, fatigue, chest tightness, and shortness of breath 2) Lower the rate of transferring to severe disease 3) Promote the absorption of lung inflammation and improve lung CT imaging |
| Shufeng Jiedu capsule + arbidol vs. arbidol | RCS | 100/100 | Mild | 1) Alleviate the symptoms of fever, cough, chest distress, and shortness of breath 2) Increase the absorption lung infected lesions |
| Shufeng Jiedu capsule + arbidol vs. arbidol | RCS | 40/30 | Mild or moderate | Unreported |
| Shufeng Jiedu capsule + arbidol vs. arbidol | RCS | 100/100 | Moderate | 1) Shorten defervescence time 2) Improve resolution of pneumonia on chest CT 3) Increase WBC and lymphocyte count |
| Hanshiyì formula + WM vs. WM | RCS | 430/291 | Mild or moderate | 1) Increase lymphocyte count 2) Decrease the levels of CRP, procalcitonin, and D-dimer 3) Increase lymphocyte count and lymphocyte percentage 4) Increase lymphocyte count and lymphocyte percentage 5) Increase WBC and lymphocyte count 6) Reduce the levels of CRP and IL-6 7) Reduce novel coronavirus negative conversion time |

(continued on next page)
No.	Intervention	Method	Object (T/C)	Disease stage	Clinical manifestation	Laboratory finding	Ref.
26	Lianhua Qingke granules + WM vs. WM	RCT	25/32	Mild or moderate	Ameliorate the symptoms of cough, sputum, fever, fatigue, dry throat, and sore throat, and shorten the duration of cough and sputum, reduce lung diseases, improve respiratory function	Unreported	56
27	Toujie Quwen granules + moxifloxacin + ambroxol vs. moxifloxacin + ambroxol	RCS	32/33	Mild or moderate	1) Improve the symptoms of fever, cough, fatigue, expectoration, dry throat, and sore throat 2) Improve lung CT imaging	1) Up-regulate lymphocyte count and neutrophil ratio 2) Down-regulate the levels of CRP, D-dimer, and procalcitonin	57
28	Reyanning mixture + WM vs. WM	Multi-center clinical observation	26/23	Moderate	1) Improve the symptoms of dry throat, cough, fatigue, chest tightness, and headache, and shorten the duration of fever 2) Promote the improvement of lung CT 3) Improve nucleic acid negative conversion rate	No significant differences in neutrophil count, lymphocyte count and CRP level	58
29	Maxing Shigan decoction + WM	Before and after comparison	40/0	Moderate	Improve the symptoms of fever, cough, fatigue, hemoptysis, nausea, vomiting, diarrhea, and chest pain	Decrease CRP level, increase CD4⁺/T and CD8⁺/T count	59
30	Honeysuckle oral liquid + WM vs. WM	Multi-center clinical observation	200/100	Moderate	1) Shorten the length of hospitalization and the time of nucleic acid negative conversion 2) Lower right lung CT score	No significant difference in the levels of ALT, AST, creatinine, and uric acid	60
31	Chansu injection + WM vs. WM	RCT	25/25	Severe or critical	Improve the respiratory function and shorten the respiratory support step-down time	Improve the respiratory function indicators of PaO₂/FiO₂ and ROX index	61
32	Yidu—toxicity blocking lung decoction + WM vs. WM	RCT	15/24	Severe	All patients are cured and discharged	Reduce the levels of IL-6 and TNF-α	62
33	Qingfei Dayuan granules + WM	Multi-center clinical observation	451/0	All	1) Reduce the incidence of fever, cough, and fatigue 2) Improve the symptoms of aversion to cold, nasal obstruction, runny nose, sneezing, pharyngeal itch, sore throat, dyspnea, chest tightness, muscle ache or joint pain, dizziness, headache, tolerance, nausea and vomiting, abdominal distension, and loose stool 3) Thin white greasy moss, thick greasy moss, and yellow greasy moss, and improve tongue color 4) Decrease and thin lung lesion area	1) Increase lymphocyte count 2) Reduce the levels of CRP and procalcitonin	63
34	“Fei Yan No. 1” + WM vs. WM	RCS	49/35	All	1) Improve the rate of recovering from symptoms and shorten the time 2) Increase the proportion of testing negative for nucleic acid 3) Promote focal lung absorption and inflammation	Reduce leukocyte count and CRP level	64
35	Xuanfei Huazhuo decoction + WM	Case analysis	40/0	All	1) Improve the symptoms of cough, fever, sputum, diarrhea, loss of appetite, and 1) Improve WBC count, lymphocyte, and neutrophil percentage	65	
In summary of clinical evidence, TCM is beneficial for treating COVID-19 in 1) relieving the typical symptoms of fever, cough, fatigue, dry throat, sore throat, sputum production, shortness of breath, myalgia, and diarrhea; shortening the duration of positive viral nucleic acid, reducing the time to symptom recovery and the progression to severe disease, and protecting against multi-organ injury; 2) improving the lung features including lung inflammatory absorption, CT imaging, lung injury, lung function, and oxygenation index; 3) regulating laboratory index including inflammatory and immune response related the level of WBC, lymphocyte, CD4+ T and CD8+ T, and the level of CRP, IL-6, TNF-α, and ESR, single or multi-organ injury related the level of procalcitonin, CK, LDH, ALT, and AST, and thrombosis related D-dimer level. Taking full advantage of integration of TCM and WM treatment could improve the amounts of severe and critical conversion, length of hospital stay, time of antipyretic, and resolution rate of fever, fatigue, and tachypnea.

In summary of clinical evidence, TCM is beneficial for treating COVID-19 in 1) relieving the typical symptoms of fever, cough, fatigue, dry throat, sore throat, sputum production, shortness of breath, myalgia, and diarrhea; shortening the duration of positive viral nucleic acid, reducing the time to symptom recovery and the progression to severe disease, and protecting against multi-organ injury; 2) improving the lung features including lung inflammatory absorption, CT imaging, lung injury, lung function, and oxygenation index; 3) regulating laboratory index including inflammatory and immune response related the level of WBC, lymphocyte, CD4+ T and CD8+ T, and the level of CRP, IL-6, TNF-α, and ESR, single or multi-organ injury related the level of procalcitonin, CK, LDH, ALT, and AST, and thrombosis related D-dimer level. Taking full advantage of integration of TCM and WM treatment could improve the amounts of severe and critical conversion, length of hospital stay, time of antipyretic, and resolution rate of fever, fatigue, and tachypnea.

3. Potential mechanisms of TCM for COVID-19

The intervention of TCM for COVID-19 is greatly inspired by the successful experience of treating SARS in 2002—2003. SARS-CoV-2 is genetically more similar with SARS-CoV (about 80%) than MERS-CoV (about 50%). According to sequence alignment and homology modeling, the critical targets of spike, 3C-like protease (3CLpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp) protease share 76%, 96%, 83%, 96% sequence similarity between SARS-CoV and SARS-CoV-2, respectively. We collected and summarized TCMs and their ingredients to reveal the specific mechanisms of TCM for the three phases of distinct disease stages of COVID-19 seen in Table 3 and Table 4.

3.1. Potential mechanisms of TCM for SARS-CoV-2 invasion and replication

Although the direct evidence is still lacking, increasing reports suggested that TCM resource holds great promises for agents against SARS-CoV-2 invasion and replication. Numerous efforts had been made to identify the antiviral effects of CPMs and herbals, as shown in Table 3. Lianhua Qingwen capsule with a half maximal inhibitory concentration (IC50) of 411.2 μg/mL89, Liu Shen capsule107 with an IC50 of 0.93–1.2 μL/mL were confirmed to inhibit SARS-CoV-2 replication in Vero E6 cells. In addition, Pudilan Xiaoyan oral liquid not only inhibited SARS-CoV-2-stimulated Vero E6 cells in vitro, but also showed the potential efficacy on SARS-CoV-2-infected human cells.
Clinical symptom	Clinical evidence
Fever	Jinhua Qinggan granules[^37], Lianhua Qingwen capsule[^7,28,38-40], Qingfei Paidu decoction[^46,47], Xinfei Baidu decoction[^25], Shufeng Jiedu capsule[^53], Lianhua Qingke granules[^46], Toujie Quwen granules[^57], Reyanning mixture[^59], Maxing Shigan decoction[^39], Qingfei Dayuan granules[^63], Xuanfei Huazhuo decoction[^5], Qingfei Touxie Fuzheng recipe[^6], Diammonium glycyrrhizinate[^70]
Cough	Jinhua Qinggan granules[^37], Lianhua Qingwen capsule[^7,28,38-40], Qingfei Paidu decoction[^46,47], Xinfei Baidu decoction[^25], Shufeng Jiedu capsule[^51-53], Lianhua Qingke granules[^56], Toujie Quwen granules[^57], Reyanning mixture[^59], Maxing Shigan decoction[^39], Qingfei Dayuan granules[^63], Xuanfei Huazhuo decoction[^5], Qingfei Touxie Fuzheng recipe[^6], Matrine injection[^6], Diammonium glycyrrhizinate[^70]
Fatigue	Jinhua Qinggan granules[^37], Lianhua Qingwen capsule[^7,28,39,40], Qingfei Paidu decoction[^46,47], Xinfei Baidu decoction[^25], Shufeng Jiedu capsule[^51-53], Lianhua Qingke granules[^56], Toujie Quwen granules[^57], Reyanning mixture[^59], Maxing Shigan decoction[^39], Qingfei Dayuan granules[^63], Xuanfei Huazhuo decoction[^5], Matrine injection[^6], Diammonium glycyrrhizinate[^70]
Dry throat	Lianhua Qingwen capsule[^27], Shufeng Jiedu capsule[^52], Lianhua Qingke granules[^56], Toujie Quwen granules[^57], Reyanning mixture[^59]
Sore throat	Lianhua Qingwen capsule[^27], Lianhua Qingke granules[^56], Toujie Quwen granules[^57], Qingfei Dayuan granules[^63]
Sputum production	Jinhua Qinggan granules[^37], Qingfei Paidu decoction[^49], Lianhua Qingke granules[^56], Xuanfei Huazhuo decoction[^5], Qingfei Touxie Fuzheng recipe[^57]
Shortness of breath	Lianhua Qingwen capsule[^38], Qingfei Paidu decoction[^46], Shufeng Jiedu capsule[^52], Qingfei Dayuan granules[^63], Qingfei Touxie Fuzheng recipe[^57]
Myalgia	Lianhua Qingwen capsule[^39], Shufeng Jiedu capsule[^53], Lianhua Qingke granules[^56], Toujie Quwen granules[^57], Qingfei Dayuan granules[^63]
Diabetes	Lianhua Qingwen capsule[^39], Shufeng Jiedu capsule[^53], Maxing Shigan decoction[^59], Xuanfei Huazhuo decoction[^5]
Duration of nucleic acid turn negative	Jinhua Qinggan granules[^36], Lianhua Qingwen capsule[^41], Qingfei Paidu decoction[^48], Shufeng Jiedu capsule[^52], “Fei Yan No. 1”[^64], Matrine injection[^6], Diammonium glycyrrhizinate[^70]
Time to symptom recovery	Lianhua Qingwen capsule[^27], Xuebijing injection[^42], Qingfei Paidu decoction[^46], Shufeng Jiedu capsule[^51,52], Xuanfei Huazhuo decoction[^5], “Fei Yan No. 1”[^64], Keguan-1[^66]
The progression to severe disease	Shufeng Jiedu capsule[^2], Banshiy formula[^3]
Laboratory finding	Xuebijing injection[^42], Qingfei Paidu decoction[^6]
WBC count	Jinhua Qinggan granules[^36], Lianhua Qingwen capsule[^39], Xuebijing injection[^43,44], Xinfei Baidu decoction[^2], Shufeng Jiedu capsule[^52], “Fei Yan No. 1”[^64], Xuanfei Huazhuo decoction[^65], Ganlu Xiaodu decoction[^68], Matrine injection[^69]
Lymphocyte count	Jinhua Qinggan granules[^36], Lianhua Qingwen capsule[^39], Xuebijing injection[^43,44], Xuanfei Paidu decoction[^45,46], Xinfei Baidu decoction[^2], Shufeng Jiedu capsule[^51,52], Toujie Quwen granules[^57], Qingfei Dayuan granules[^63], Xuanfei Huazhuo decoction[^65], Matrine injection[^69], Diammonium glycyrrhizinate[^70]
Oxygenation index	Xuebijing injection[^42], Banshiy formula[^3]
CRP	Lianhua Qingwen capsule[^38], Xuebijing injection[^43,44], Qingfei Paidu decoction[^45], Xinfei Baidu Decoction[^1], Huashi Baidu formula[^4], Shufeng Jiedu capsule[^51,54], Toujie Quwen granules[^57], Maxing Shigan decoction[^59], Qingfei Dayuan granules[^63], “Fei Yan No. 1”[^64], Xuanfei Huazhuo decoction[^5], Qingfei Touxie Fuzheng recipe[^6], Matrine injection[^6], Diammonium glycyrrhizinate[^70]
IL-6	Xuebijing injection[^42], Qingfei Paidu decoction[^48], Shufeng Jiedu capsule[^54], “Fei-tycoy blocking lung decoction[^1], Qingfei Touxie Fuzheng recipe[^6], Diammonium glycyrrhizinate[^70]
TNF-α	Xuebijing injection[^42], “Fei-tycoy blocking lung decoction[^1]
ESR	Xuebijing injection[^42], Qingfei Paidu decoction[^48], Xinfei Baidu Decoction[^32], Huashi Baidu formula[^30], Xuanfei Huazhuo decoction[^65], Qingfei Touxie Fuzheng recipe[^6], Diammonium glycyrrhizinate[^70]
CK	Qingfei Paidu decoction[^45]
LDH	Qingfei Paidu decoction[^45], Xuanfei Huazhuo decoction[^65]
Table 2 (continued)

Clinical evidence	TCM
ALT	Qingfei Pai duo decoction*9, Xuanfei Huazhuo decoction*9
AST	Qingfei Pai duo decoction*9, Xuanfei Huazhuo decoction*9
Procalcitonin	Lianhua Qingwen capsule*9, Shufeng Jiedu capsule*1, Toujie Quwen granules*57, Qingfei Dayuan granules*9, Diamonium glycyrrhizinate
D-dimer	Qingfei Pai duo decoction*9, Shufeng Jiedu capsule*21, Toujie Quwen granules*57
CD4+ T cell	Maxing Shigan decoction*9
CD8+ T cell	Maxing Shigan decoction*9

Noticeably, a considerable number of ingredients derived from TCMs were found to have anti-viral invasion and anti-viral replication activities by targeting diverse molecules, as seen in Table 4. The interaction between spike protein and ACE2, primed by serine protease transmembrane protease serine 2 (TMPRSS2), is the key step for SARS-CoV-2 host invasion. Emodin from Yaoyong Dahuang was able to inhibit S protein and ACE2 interaction with an IC50 of 200 μmol/L, while hesperidin from Citrus aurantium (Shouwuteng) was predicted to target the binding between spike RBD and ACE2 with high affinity. Besides, geniposide from Gardenia jasminoides (Zhizhi) was found through virtual screening of 2140 compounds with pharmacophoric features, which could target the active site residues of TMPRSS2 with a binding energy score of −14.69, and is even greater than that of the standard inhibitor of camostat mesylate. Seven isolated tanshinones derived from Salvia miltiorrhiza (Danshen) including tanshinone IIA, tanshinone IIB, methyl tanshinonate, cryptotanshinone, tanshinone I, dihydrotanshinone I, and rosmanquinone showed marked inhibitory activities to both proteases of 3CLpro and PLpro. Particularly, dihydrotanshinone I exerted powerful effects with IC50 values of 14.4 μmol/L regarding 3CLpro and 4.9 μmol/L regarding PLpro. Furthermore, cryptotanshinone exhibited the most potent nanomolar level inhibitory activity toward PLpro with an IC50 of 0.8 μmol/L. Baicalin and baicalein, the major bioactive ingredients of Shuanghuanglian preparation, were characterized as the first noncovalent and nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro, also possessed good anti-SARS-CoV-2 activity in Vero E6 cell-based assay. What’s more, celastrol, tingenone, xanthoangelol E, and hesperetin targeting 3CLpro, while hirsutenone, methyl tanshinoate, tanshinoine I, xanthoangelol E, isobavachalcone, 4′-O-methylbavachalcone, psoralidin, and tomentin A-E targeting PLpro, may have relatively strong anti-viral replication efficacy with IC50 below or near 10 μmol/L. Notably, the well-known anti-malarial, anti-tumor, and immune modulation compound artemisinin from Artemisia apiacea (Qinghao), and its derivatives including artenannuin B, artemesunate, dihydroartemisinin, arteether, and lumefantrine presented favorable anti-SARS-CoV-2 effects. Among these artemisinin derivatives, artenannuin B showed the highest anti-viral potential with an IC50 of 10.28 μmol/L, while lumefantrine exerted therapeutic promise owing to its high plasma and lung concentrations after multiple dosing. The deeper pharmacological mechanism analysis revealed that these two compounds acted at the post-entry step of SARS-CoV-2 infection. Significantly, lycorine from Lycoris radiata (Shisuan) had a powerful inhibitory effect on virus activity with an IC50 of 15.7 μmol/L and may serve as a candidate for the development of new anti-SARS-CoV-2 drug in the treatment of COVID-19. In addition, a Vero E6 cell-based large-scale anti-SARS-CoV-2 activity of 1058 natural compounds were screened, and 17 newly discovered compounds showed strong anti-virus propagation effects with the IC50 values ranging from 0.011 to 11.03 μmol/L. Among them, bufalin from toad venom (Chansu) exerted the antiviral effect with an IC50 of 18 mmol/L by targeting the ion transport function of Na+/K+ - ATPase. Theaflavin was predicted to exert anti-viral replication by inhibiting RdRp activity. The binding affinities with the critical proteins of a portion of ingredients presented above were also predicted by in silico screening and molecular docking. Whether these TCM ingredients could be used to combat COVID-19 need further in vitro and in vivo validation. Pharmacokinetic profiles including absorption, distribution, metabolism, and excretion (ADME) on the promising leads should be further studied.

3.2. Potential mechanisms of TCM for immune and inflammatory regulation

Antiviral monotherapy for patients hospitalized with COVID-19 is quite not enough, especially for severely and critically ill patients. Except for the broad-spectrum antiviral activity, TCM process...
No.	TCM	Coronavirus	Model/method	IC_{50} (EC_{50}) or dosage	Potential mechanism	Ref.
1	Jinhua Qinggan	SARS-CoV-2	Network pharmacology (NP), molecular docking	Not applicable (NA)	1) Regulate TNF, PI3K/Akt, and HIF-1 signaling pathways via binding angiotensin converting enzyme 2 (ACE2) and acting on targets such as PTGS2, HSP90AB1, HSP90AA1, PTGS1, and NCOA2	
2) Formononetin, stigmasterol, β-sitosterol, and anhydroicaritin have a high affinity with 3CLpro and ACE2 | 88 |
| 2 | Lianhua Qingwen capsule | SARS-CoV-2 | Infected Vero E6 cells and Huh-7 cells, cytopathic effect (CPE), plaque reduction assay | 411.2 μg/mL | 1) Inhibit virus replication and decrease the number of virus particles
2) Reduce pro-inflammatory cytokines of TNF-α, IL-6, MCP-1, and IP-10 production | 89 |
| 3 | Lianhua Qingwen formula | SARS-CoV-2 | NP | NA | 1) Exert antiviral effect and repair lung injury
2) Modulate inflammatory process and relieve cytokine storm
3) Improve ACE2 expression disorder caused symptoms | 90 |
| 4 | Xuebijing injection | SARS-CoV-2 | Infected Vero E6 cells and Huh-7 cells, CPE, plaque reduction assay | 11.75 mg/mL | 1) Exert antiviral effect and reduce plaque formation
2) Inhibit the expression and release of TNF-α, IL-6, MIP-1β, RANTES, and IP-10 | 42 |
| 5 | Xuebijing injection | SARS-CoV-2 | NP, molecular docking | NA | 1) Quercetin, luteolin, apigenin, and other compounds may target TNF, MAPK1, and IL6
2) Anhydrosaflor yellow B, salvianolic acid B, and rutin play the role of anti-inflammatory, antiviral, and immune response | 91 |
| 6 | Xuebijing injection | SARS-CoV-2 | NP | NA | Exert ant-inflammatory and immunoregulatory effects through RAS, NF-κB, PI3K, Akt, MAPK, VEGF, TLR, TNF, and TRP signaling pathways | 92 |
| 7 | Qingfei Paidu decoction | SARS-CoV-2 | NP, molecular docking | NA | 1) Exert antiviral and anti-inflammatory activities, regulate metabolic programming, and repair lung injury
2) Glycyrrhizin in one of the main ingredients inhibits TLR agonists induced IL-6 production in macrophage | 93 |
| 8 | Qingfei Paidu decoction | SARS-CoV-2 | NP, molecular docking, molecular verification | NA | 1) Exhibit the effects of immune regulation, anti-infection, anti-inflammatory, and multi-organ protection
2) Four compounds of baicalin, glycyrrhizin, hesperidin, and hyperoside act on the targets including AKT1, TNF-α, IL-6, PTGS2, HMOX1, IL10, and TP53
3) Inhibit IL-6, CCL2, TNF-α, NF-κβ, PTGS1/2, CYP1A1, and CYP3A4 activity, and increase IL-10 expression
4) Reduce platelet aggregation | 94 |
| 9 | Huashi Baidu formula | SARS-CoV-2 | NP, molecular docking | NA | 1) Regulate TNF, PI3K-Akt, NOD-like, MAPK, and HIF-1 signaling pathways
2) Baicalein and quercetin are the top two compounds with a high affinity to ACE2 | 97 |
| 10 | Xuanfei Baidu | SARS-CoV-2 | NP | NA | Regulate viral, parasites and bacterial infections, and modulate energy metabolism, immunity, and inflammation | 98 |
| 11 | Shufeng Jiedu capsule | SARS-CoV-2 | NP | NA | Regulate the key targets of RELA, MAPK1, MAPK14, CASP3, CASP8, and IL-6 | 99 |
| 12 | Shufeng Jiedu capsule | SARS-CoV-2 | NP, molecular docking | NA | Regulate immunomodulatory and anti-inflammatory related targets on multiple pathways | 100 |
| 13 | Maxing Shigan decoction | SARS-CoV-2 | NP | NA | 1) Reduce inflammation and suppress cytokine storm | 101 |
No.	Name	SARS-CoV-2 Source	Method	Description
14	Maxing Shigan decoction	SARS-CoV-2	NP, molecular docking,	2) Protect pulmonary alveolar-capillary barrier and alleviate pulmonary edema 1) Inhibit IL-6 mediated JAK-STAT signal pathway 2) Amygdalin is predicted to bind ACE2, 3CLpro, and RdRp 1) Regulate free radical production and blood circulation 2) Exert antiviral, immune-regulatory, and anti-inflammatory by targeting ACE2 and IL-6
15	Cold-damp plague formula	SARS-CoV-2	NP, molecular docking	1) Play an anti-inflammatory and immunoregulatory role via acting on IL-6, IL-1β, and CCL2 2) Decrease the level of IL-6 in mild, moderate, and severe clinical cases 3) The ingredients of kaempferol, quercetin, 7-methoxy-2-methylisoflavone, naringenin, and formononetin target IL-6, IL-1β, and CCL2 with high affinity 1) Exert antiviral effect 2) Regulate ACE2, 3CLpro, and PLpro activity 3) Modulate inflammation-related expressions of MAPKs, PKC, and NF-κB
16	Dayuanyin	SARS-CoV-2	NP, molecular docking	1) Inhibit IL-6 mediated JAK-STAT signal pathway 2) Exert antiviral, immune-regulatory, and anti-inflammatory by targeting ACE2 and IL-6 1) Regulate free radical production and blood circulation 2) Decrease the level of IL-6 in mild, moderate, and severe clinical cases 3) The ingredients of kaempferol, quercetin, 7-methoxy-2-methylisoflavone, naringenin, and formononetin target IL-6, IL-1β, and CCL2 with high affinity 1) Exert antiviral effect 2) Regulate ACE2, 3CLpro, and PLpro activity 3) Modulate inflammation-related expressions of MAPKs, PKC, and NF-κB
17	Reduning injection	SARS-CoV-2	Infected Vero E6 cells, CPE,	Inhibit viral replication in vitro and in vivo 1) Inhibit virus replication and reduce plaque formation 2) Reduce pro-inflammatory cytokines of TNF-α, IL-6, IL-1β, IL-8, MCP-1, and IP-10 production, and inhibit p-NF-κB p65, p-p38, and p-gp38 MAPK expression
18	Liu Shen capsule	SARS-CoV-2	Infected Vero E6 cells and	Inhibit viral replication 1) Inhibit viral replication 2) Inhibit 3CLpro activity 3) Regulate TNF, T-cell receptor, Toll-like receptor, and MAPK signaling pathways
19	Pudilian Xiaoayan oral liquid	SARS-CoV-2	Infected Vero E6 cells, CPE,	Inhibit viral replication in vitro and in vivo 1) Inhibit virus replication and reduce plaque formation 2) Reduce pro-inflammatory cytokines of TNF-α, IL-6, IL-1β, IL-8, MCP-1, and IP-10 production, and inhibit p-NF-κB p65, p-p38, and p-gp38 MAPK expression
20	Shuanghuangliang preparation	SARS-CoV-2	Infected Vero E6 cells, CPE	Inhibit viral replication in vitro and in vivo 1) Inhibit virus replication and reduce plaque formation 2) Reduce pro-inflammatory cytokines of TNF-α, IL-6, IL-1β, IL-8, MCP-1, and IP-10 production, and inhibit p-NF-κB p65, p-p38, and p-gp38 MAPK expression
21	Yinqiao powder	SARS-CoV-2	NP, molecular docking, surface	Regulate TNF, T-cell receptor, Toll-like receptor, and MAPK signaling pathways
22	Pudilian prescription	SARS-CoV-2	NP, GSEA enrichment, molecular	Regulate TNF, T-cell receptor, Toll-like receptor, and MAPK signaling pathways
23	Matrine injection	SARS-CoV-2	NP, molecular docking	Regulate TNF, T-cell receptor, Toll-like receptor, and MAPK signaling pathways
24	Shenfu decoction	SARS-CoV-2	NP, molecular docking	Regulate TNF, T-cell receptor, Toll-like receptor, and MAPK signaling pathways
25	Andrographis paniculate	SARS-CoV-2	Infected Calu-3 cells, CPE	Inhibit viral replication, host cell apoptosis and inflammation by targeting the TNF-α, IL-6, and CASP3 in TNF signaling pathway 2) Reduce lung tissue damage and lung index 3) Decrease the production of IL-6, IL-10, TNF-α, IFN-γ, as well as the viral load in lung tissue 4) Increase the percentage of CD4⁺ T cells, CD8⁺ T cells and B cells in peripheral blood 5) Prevent SARS-CoV-2 entrance by blocking ACE2 6) Inhibit cytokine storm of CRP, IFN-γ, IL-6, IL-10, TNF, EGFR, CCL5, and TGF-β1
26	Scutellaria baicalensis	SARS-CoV-2	1) Enzyme inhibition assay	Inhibit viral replication, host cell apoptosis and inflammation by targeting the TNF-α, IL-6, and CASP3 in TNF signaling pathway 2) Reduce lung tissue damage and lung index 3) Decrease the production of IL-6, IL-10, TNF-α, IFN-γ, as well as the viral load in lung tissue 4) Increase the percentage of CD4⁺ T cells, CD8⁺ T cells and B cells in peripheral blood 5) Prevent SARS-CoV-2 entrance by blocking ACE2 6) Inhibit cytokine storm of CRP, IFN-γ, IL-6, IL-10, TNF, EGFR, CCL5, and TGF-β1
27	Rheum officinale	SARS-CoV-2	Infected Vero E6 cells, CPE,	Block spike–ACE2 interaction 1) Inhibit 3CLpro activity 2) Exert antiviral effect

(continued on next page)
Table 3 (continued)

No.	TCM	Coronavirus Model/method	IC₅₀ or dosage	Potential mechanism
28	Polygonum multiflorum	SARS-CoV Infected Vero E6 cells, CPE, e₁₀₀µg/mL	Block spike e₁₀₀µg/mL	1) Block spike e₁₀₀µg/mL 2) Increase the proportion of CD₈⁺ and CD₄⁺ T cells 3) Increase in the secretion of IL-2 and IL-10 in mouse splenic lymphocytes 4) Inhibit 3CLpro activity
29	Houttuynia cordata	SARS-CoV Flow cytometry, ELISA, 0₈₀₀µg/mL	1) Stimulate the proliferation of mouse splenic lymphocytes and CD₈⁺ T cells 2) Increase the proportion of CD₄⁺ T cells 3) Increase in the secretion of IL-2 and IL-10 in mouse splenic lymphocytes 4) Inhibit 3CLpro and RdRp activity	
30	Rheum palmatum (Zhangye)	SARS-CoV Enzyme inhibition assay 13.76 µg/mL	1) Inhibit viral replication 2) Inhibit viral replication	
31	Chlorophyllum buxifolium (Guogu)	SARS-CoV Enzyme inhibition assay 2.139 µg/mL	1) Inhibit 3CLpro activity 2) Inhibit 3CLpro activity	
32	Dioscorea batatas (Shanyao)	SARS-CoV Infected Vero E6 cells, CPE, 2₄₄µg/mL	1) Inhibit viral replication 2) Inhibit viral replication	

Advantages in regulating immune response, suppressing cytokine storm through multiple avenues [179–177]. Beyond inhibiting virus replication, Lianhua Qingwen capsule 136 and Liu Shen capsule 107 reduced pro-inflammatory cytokines production such as TNF-α, IL-6, MCP-1, and IP-10 in SARS-CoV-2 infected Huh-7 cells. In addition, Lianhua Qingwen capsule was analyzed to repair lung injury by modulating inflammatory process and cytokine storm 115. Maxing Shigan decoction is the basic prescription of “three medicines and three formulas” apart from Xuebijing injection, was revealed to regulate immunity and reduce cytokine storm, as well as protect alveolar-capillary barrier of lung and relieve pulmonary edema by utilizing integrated network pharmacological approaches 105. As same as Maxing Shigan decoction, Qingfei Paidu decoction showed multiple immune regulation, anti-inflammatory, and lung injury—repair activities with its main ingredients of baicalin, glycyrrhizic acid, hesperidin, and hyperoside by targeting proteins including TNF-α, IL-6, IL-10, and CCL2 95–96. Furthermore, several ingredients such as baicalin and glycyrrhizin of Qingfei Paidu decoction could inhibit platelet aggregation 98. Dayuanxin is the basic formula of Qingfei Dayuan granules that might process an anti-inflammatory and immunoregulatory effects via acting on IL-6, IL-₁β, and MCP-1, with its ingredients containing kaempferol, isoflavone, and formononetin 102,103. Glycyrrhizin is an anti-viral agent and clinically used anti-inflammatory ingredient from Glycyrrhiza uralensis (Gancao) was determined to elevate immunity and suppress inflammatory stress through T cell receptor and VEGF signaling pathways 141,159,173. Matrine was not only predicted to suppress host cell apoptosis and inflammation by targeting the TNF-α, IL-6, and CASP3 in the TNF signaling, but also validated to reduce lung tissue damage and lung index by decreasing the production of IL-6, IL-₁₀, TNF-α, and IFN-γ, increasing the percentage of CD4⁺ T cells, CD8⁺ T cells, and B cells in peripheral blood, and lessening viral load in lung tissue in a mouse model combining human coronavirus pneumonia with cold—dampness pestilence attacking the lung 112,113. Although systems pharmacology is a convenient and effective tool to propose the mechanism of action of TCM at a holistic level, all the results above need to be further validated. IL-6 was considered as one of the most important molecules in cytokine storm 174–182. Administration with Dayuanyin reduced the level of IL-6 in mild, moderate, and even severe clinical stages of COVID-19 104. Besides, Shufeng Jiedu capsule 105, Yidu-toxicity blocking lung decoction 62, Qingfei Toujie Fuzheng recipe 97, and diammonium glycyrrhizinate 100 were confirmed to decrease the level of IL-6 in COVID-19 patients, as seen in Table 1. Interestingly, except for the strong anti-SARS-CoV-2 activity 37, artemisinin and its derivatives regulated multiple immune cells including macrophage, monocyte, dendritic cell, and T cell to inhibit pro-inflammatory cytokine release and cytokine storm outbreak to protect tissues from injury 185 (Table 3).

3.3. Potential mechanisms of TCM for ARDS and MODS treatment

In contrast with WM therapy, TCM is adept at treating complications of COVID-19 such as ARDS and MODS which are likely caused by the concurrence of viral toxicity, endothelial damage, cytokine storm, excessive immune, and microthrombus holistically (Table 3). Xuebijing injection was certified to treat severe pneumonia, sepsis, coagulopathy, SIRS, and MODS, owing to its various effects on cytokine reduction, immunoregulation, microcirculation improvement, anti-coagulation, pro-angiogenesis, and neutralization of released bacterial cytokinins 42,184–189. Xuebijing injection...
No.	TCM ingredient	Source	Coronavirus	Model/method	IC₅₀ (EC₅₀) or dosage	Potential mechanism	Ref.
1	Rhein	Rheum palmatum (Yaoyong Dahuang)	SARS-CoV-2	Enzyme inhibition assay, molecular docking, and surface plasmon resonance (SPR) analysis	18.33 µmol/L	Inhibit ACE2 activity	121
2	Forsythoside A	Forsythiae fructus (Lianqiao) fruit	SARS-CoV-2	Enzyme inhibition assay, molecular docking, SPR analysis	Unclear	Inhibit ACE2 activity	121
3	Neochlorogenic acid	Lonicera japonica (Jingyinhua)	SARS-CoV-2	Enzyme inhibition assay, molecular docking, SPR analysis	~40 µmol/L	Inhibit ACE2 activity	121
4	Quercetin	Ginkgo biloba (Yinxing)	SARS-CoV-2	Enzyme inhibition assay	4.48 µmol/L	Inhibit ACE2 activity	122
5	Ephedrine	Ephedrae Herba (Mahuang)	SARS-CoV-2	Molecular docking, SPR analysis	Unclear	Inhibit ACE2 activity	123
6	Hesperidin	Citrus aurantium (Suancheng)	SARS-CoV-2	Target-based virtual ligand screening	Unclear	Block spike—ACE2 interaction.	124,125
7	Geniposide	Gardenia jasminoides (Zhizi)	SARS-CoV-2	Molecular docking	Unclear	Inhibit TMPRSS2 activity	126
8	Baicalin	Scutellaria baicalensis (Huangqin)	SARS-CoV-2	1) Enzyme inhibition assay 2) Infected Vero E6 cells, CPE	1) 27.87 µmol/L 2) 6.41 µmol/L	1) Inhibit viral replication 2) Inhibit 3CLpro activity	109
9	Baicalein	Scutellaria baicalensis (Huangqin)	SARS-CoV-2	1) Enzyme inhibition assay 2) Infected Vero cells	1) 0.39 µmol/L 2) 2.9 µmol/L	1) Inhibit 3CLpro activity 2) Exert antiviral infection effect	116
10	Shikonin	Lithospernum erythrorhizon (Zicao)	SARS-CoV-2	Enzyme inhibition assay	15.75 µmol/L	Inhibit 3CLpro activity	127
11	EGCG	Green tea	SARS-CoV-2	Enzyme inhibition assay	0.017 µmol/L	Inhibit 3CLpro activity	128
12	Theaflavin	Black tea	SARS-CoV-2	Enzyme inhibition assay	0.015 µmol/L	Inhibit 3CLpro activity	128
13	Scutellarein	Scutellaria baicalensis (Huangqin)	SARS-CoV-2	Enzyme inhibition assay	5.8 µmol/L	Inhibit 3CLpro activity	116
14	Myricetin	Myrica rubra (Yangmei)	SARS-CoV-2	Enzyme inhibition assay	2.86 µmol/L	Inhibit 3CLpro activity	116
15	Cannabidiol	Cannabis sativa (Dama)	SARS-CoV-2	1) Enzyme inhibition assay 2) Infected Vero cells	1) 7.91 µmol/L 2) 1.55 µmol/L	1) Bind to PLpro 2) Exert antiviral effect	129
16	Theaflavin	Black tea	SARS-CoV-2	Molecular docking	Unclear	Inhibit RdRp activity	130,131
17	Digitoxin	Digitalis purpurea (Yangdihuang)	SARS-CoV-2	Infected Vero cells, CPE	0.23 µmol/L	Exert antiviral effect	132
18	Tetrandrine	Stephania tetrandra (Fengfangji)	SARS-CoV-2	Infected Vero cells, CPE	3 µmol/L	Exert antiviral effect	132
19	Glycyrrhizin	Glycyrrhiza uralensis (Gancao)	SARS-CoV-2	Infected Vero E6 cells, CPE	0.53 µmol/L	Exert antiviral effect	133
20	Resveratrol	Polygonum cuspidatum (Huzhang)	SARS-CoV-2	Infected Vero E6, Calu-3 and primary human bronchial epithelium cells, CPE	66 µmol/L	Exert antiviral effect	134
21	Pterostilbene	Pterocarpus santalinus (Zitan)	SARS-CoV-2	Infected Vero E6, Calu-3 and primary human bronchial epithelium cells, CPE	19 µmol/L	Exert antiviral effect	134
22	Phillyrin	Forsythiae fructus (Lianqiao)	SARS-CoV-2	Infected VeroE6 cells and Huh-7 cells, CPE	1) 63.9 µg/mL 2) and 3) 62.5—250 µg/mL	1) Inhibit viral replication 2) Reduce the production of proinflammatory cytokines of	135

(continued on next page)
No.	TCM Ingredient	Source	Coronavirus	Model/method	IC₅₀ (EC₅₀) or dosage	Potential mechanism	Ref.
23	Catechin	Green tea	SARS-CoV-2	Molecular docking	Unclear	3) Suppress NF-κB signaling pathway	131,136
24	Artemisinin	Artemisia annua (Qinghao)	SARS-CoV-2	Infected Vero E6 cells, CPE	64.45 μmol/L	Bind to 3CLpro, cathepsin L, RBD of S protein, NSP6, and nucleocapsid protein	137
25	Artesunate	Artemisinin derivative (Qianjinteng)	SARS-CoV-2	Infected Vero E6 cells, CPE	12.98 μmol/L	Inhibit viral replication	137
26	Cepharanthine	Stephania japonica	SARS-CoV-2	Infected Vero E6 cells, CPE	0.98 μmol/L	Inhibit viral replication	138
27	Bufalin	Toad venom (Chansu)	SARS-CoV-2	Infected Vero E6 cells, CPE	18 nmol/L	Exert antiviral effect by targeting Na⁺/K⁺-ATPase	139
28	Bruceine A	Brueca javanica (Yadanzi)	SARS-CoV-2	Infected Vero E6 cells, CPE	11 nmol/L	Exert antiviral effect	139
29	Naringenin	Gardenia jasminoides (Zhishi)	SARS-CoV-2	Infected Vero E6 cells, CPE	31.3–250 μmol/L	Target two-pore channel 2	140
30	Andrographolide	Andrographis paniculata (Chuanxinlian)	SARS-CoV-2	Infected Calu-3 cells, CPE	0.034 μmol/L	Exert antiviral effect	142
31	Glycyrrhizin + vitamin C	Glycyrrhiza uralensis (Gancao)	SARS-CoV-2	NP	Unclear	Elevate immunity and suppress inflammatory stress	141
32	Chlorogenic acid	Lonicer japonica (Jinyinhua)	SARS-CoV-2	NP	Unclear	Exert antiviral effect by targeting NFE2L2, PPARG, ESR1, ACE, IL-6, and HMOX1	142
33	Emodin	Rheum palmatum (Yaoyong Dahuang)	SARS-CoV	Infected Vero E6 cells, CPE, biotinylated ELISA	200 μmol/L	Block spike–ACE2 interaction	117
34	Celastrol	Celastrus orbiculatus (Nansheteng)	SARS-CoV	Enzyme inhibition assay	10.3 μmol/L	Inhibit 3CLpro activity	143,144
35	Tingenonol	Euonymus alatus (Weimao)	SARS-CoV	Enzyme inhibition assay	9.9 μmol/L	Inhibit 3CLpro activity	143
36	Curcurmin	Curcuma longa (Jianghuang)	SARS-CoV	1) Enzyme inhibition assay; 2) Infected Vero E6 cells, CPE	1) 23.5 μmol/L 2) 40 μmol/L	1) Inhibit 3CLpro activity; 2) Inhibit viral replication	145,146
37	Quercetin	Ginkgo biloba (Yingxing)	SARS-CoV	Enzyme inhibition assay	73 μmol/L	Inhibit 3CLpro activity	147,148
38	Tanshinone IIA	Salvia miltiorrhiza (Danshen)	SARS-CoV	Enzyme inhibition assay	89.1 μmol/L	Inhibit 3CLpro activity	149
39	Dihydrotanshinone I	Salvia miltiorrhiza (Danshen)	SARS-CoV	Enzyme inhibition assay	14.4 μmol/L	Inhibit 3CLpro activity	150
40	Xanthoangelol E	Angelica keiskei (Mingriye)	SARS-CoV	Enzyme inhibition assay	11.4 μmol/L	Inhibit 3CLpro activity	151
41	Sinigrin	Isatis indigotica root (Banlangen)	SARS-CoV	Enzyme inhibition assay	217 μmol/L	Inhibit 3CLpro activity	151
42	Hesperetin	Isatis indigotica root (Banlangen)	SARS-CoV	Enzyme inhibition assay	8.3 μmol/L	Inhibit 3CLpro activity	151
43	Pectolinarin	Cirsium japonicum (Daji)	SARS-CoV	Enzyme inhibition assay	37.78 μmol/L	Inhibit 3CLpro activity	152
44	Luteolin	Jinyinhua	SARS-CoV	1) Infected Vero E6 cells, CPE; 2) Enzyme inhibition assay	1) 9.02 μmol/L 2) 20.2 μmol/L	1) Exert antiviral effect; 2) Inhibit PLpro activity	153,154,149
45	Hirsutenone	Alnus japonica (Chiyang)	SARS-CoV	Enzyme inhibition assay	4.1 μmol/L	Inhibit PLpro activity	155
46	Tanshinone IIB	Salvia miltiorrhiza (Danshen)	SARS-CoV	Enzyme inhibition assay	10.7 μmol/L	Inhibit PLpro activity	149
was able to improve the oxygenation index of PaO2/FiO2 and reduce the level of pro-inflammatory cytokines of TNF-α, IL-10, MIP-1β, and RANTES in the treatment of COVID-19. It was also reported that Xuebijing injection could downregulate the expression of IL-6, IL-1, TLR4, MAPK, and NF-κB, maintain the balance of Tregs and Th17 cells in acute lung injury. Besides, Xuebijing injection processed the potential to alleviate liver damage, acute lung injury-induced left ventricular ischemia/reperfusion, sepsis-induced acute kidney injury, and sepsis-induced myocardial injury via inhibiting inflammation, apoptosis, and endothelial injury. Systems pharmacological analysis revealed that Qingfei Paidu decoction could protect multi-organ including nervous system, sensory system, digestive system, and circulatory system by regulating key enzymes, G protein-coupled receptors, ion channels, and transporters.

In the background of great demands for acute lung injury and ARDS therapy of COVID-19, more than one hundred of natural products from TCM with their potential benefits and underlying mechanisms of anti-inflammation, antioxidative stress, anti-apoptosis, and anti-pulmonary fibrosis were summarized and categorized. According to their chemical structures, these were divided into flavonoids (e.g., luteolin, baicalin), alkaloids (e.g., berberine, matrine), terpenoids (e.g., pogostone, andrographolide), polyphenols (e.g., honokiol, curcumin), quinonoids (e.g., emodin, shikonin), and other compounds (e.g., osthole, imperatorin). In addition, a systematic review and meta-analysis of 19 eligible RCTs including Tanreqing injection, Shengmai injection, Reduning injection, and Xuebijing injection demonstrated that Chinese medicine injections were adjuvant therapy with great potential benefits for the treatment of ALI/ARDS. For example, based on the effects of inhibiting inflammatory cytokines of IL-6, IL-8, IL-1β, and TNF-α, regulating immune, and elevating the oxygenation index of PaO2, Tanreqing injection was proved to improve lung injury, pulmonary infection, airway inflammation, and airway mucus hypersecretion. Reduning injection was demonstrated to prevent pulmonary neutrophil infiltration, lung injury and severe pneumonia which may attribute to downregulating IL-1β, IL-8, TNF-α, NF-κB, and pyrin domain containing 3 levels, lowering myeloperoxidase activities, and reducing reactive oxygen species production. Xiyangping injection, a famous Chinese medicinal preparation of andrographolide sulfate, was reputed as one of the most effective alternatives to antibiotics, which has been widely used to ameliorate lung damage, bronchitis and community acquired pneumonia probably through inhibiting NF-κB and MAPK-mediated inflammatory responses. Besides, Xiyangping injection and Reduning injection were used to treat diarrhea in children. Xiyangping injection could ameliorate colitis by inhibiting TH1/TH17 response in mice.

Cardiovascular disease is a high frequent comorbidity and complication of COVID-19. Three Chinese injection medicines including Shengmai injection, Shennai injection, and Shenfu injection, have both pulmonary and cardiac protective effects. For instance, Shengmai injection is effective in the treatment of heart failure, myocardial hypertrophy, cardiac arrest, myocardial ischemia-reperfusion injury, myocardial fibrosis, and acute viral myocarditis, partly through suppressing apoptosis and inflammation, improving microcirculation, reducing mitochondrial damage and coagulation-fibrinolysis disorders. Moreover, Shengmai injection has a protective effect on gastrointestinal tract and intestinal mucosa. Xingmaojing injection and Angong Niuhuang pill are different preparations share similar ingredients for stroke treatment in clinic. Both of them ameliorate cerebral...
Figure 2 Representative herbs and their main active ingredients and functions for COVID-19. (A) The herb-ingredient-target-function network of frequently used herbs and their main ingredients, as well as their key targets and functions for COVID-19. (B) The chemical structures of main active ingredients and their main functions of commonly used herbs for COVID-19.
Figure 3 An overview of pathogenesis of COVID-19 and the potential mechanisms of TCM remedy in distinct disease stages.
ischemia/reperfusion injury, cerebral infarction, cerebral edema, blood–brain barrier disruption, and acute cerebral hemorrhage because of their benefits in brain microvascular endothelial cells, hippocampal and cortical neurons protection, and their anti-inflammation and anti-apoptosis effects.

3.4. Potential mechanisms of the representative and commonly used herbs in the treatment of COVID-19

Analyses of the main compositions of the “three medicines and three formulas” and other related literatures identified G. uralensis (Gancao), Ephedrae Herba (Mahuang), Semen Armeniacae Amurum (Kuxingren), Scutellaria baicalensis (Huangqin), Forsythiae Fructus (Lianqiao), Lonicera japonica (Jingyinhua), Rheum palmatum (Dahuang), and Artemisia annua (Qinghao) as the representative and commonly used herbs for COVID-19.

Gut microbiome is involved in disease severity and host inflammatory and immune response by targeting inflammatory cytokines such as IL-1, TNF-

In summary of preclinical evidence, the anti-COVID-19 effects and mechanisms of TCM include but not limited to 1) inhibiting SARS-CoV-2 infection and replication by targeting the key proteins of spike, ACE2, TMPRSS2, 3CLpro, PLpro, RdRp, and spike–ACE2 interaction; 2) regulating immune and inflammatory response by targeting inflammatory cytokines such as IL-1, TNF-α, and IL-8, and chemokines like CCL5, CCL2, and IP-10, which are secreted by monocytes, macrophages, dendritic cells, CD4+ T cells, and CD8+ T cells; 3) protecting against ARDS and MODS by suppressing the crosstalk of viral toxicity, endothelial damage, cytokine storm, excessive immune, and microthrombus by targeting IL-6, CRP, D-dimer, and procalcitonin.

Finally, by integrating the clinical evidence and potential mechanisms of TCM for COVID-19, a panorama is drawn in Fig. 3, hoping that the effect and mechanism of TCM for COVID-19 could be viewed and understood within a single framework.

4. Conclusions and perspectives

Although a great quantity of review articles have been published on the topic of TCM in COVID-19, our work offers something unique. 1) To our knowledge, this is the first review of TCM on COVID-19 that integrates evidence-based scientific findings from bedside to bench with the most comprehensive and updated literatures. 2) The pathogenesis and potential mechanisms of TCM remedy in three phases corresponding to distinct stages for COVID-19 are first systematically described and presented within a single panorama by integrating available clinical and fundamental evidence. A valuable lesson learned from China’s COVID-19 battle is that perseverance in combination of TCM and WM is the right and sensible choice. Looking ahead, several critical issues need to be addressed as we prepare to face similar or even more serious global health threats in the future. Firstly, as the pandemic continues to evolve, the pathogenesis of COVID-19 is not fully elucidated. It is reasonable to postulate that the crosstalk of viral toxicity, endothelial damage, cytokine storm, excessive immune, and microthrombus are essential contributors for severely or critically ill patients with COVID-19, which need to be validated further. Secondly, due to a lack of in-depth understanding, there are still some skepticism on the validity of treating COVID-19 with TCM. More RCTs with high accuracy, clinical safety, rigorous design, and large sample, as well as in-depth mechanistic explorations with compatibility principal should be conducted to provide more reliable evidence for TCM in COVID-19 intervention, especially for the highly recommended three CPMS and three Chinese medicine formulas. Thirdly, the rehabilitative effects of TCM ought to be continuous concerned and long-term medical observed for the COVID-19 patients in recovery phase, especially for the aged. A recent paper published in The Lancet on 6-month consequences of 1733 COVID-19 patients revealed that those with severe disease discharged from hospital showed common syndromes of fatigue or muscle weakness, sleep difficulties, and anxiety or depression. Meanwhile, a comparison of 425 non-treatment with 143 TCM-treated COVID-19 patients post discharge showed that TCM was beneficial for decreasing IL-6 and procalcitonin, and increasing red blood cell, hemoglobin, and platelet count.

Overall, the purpose of this review is to scientifically and systematically evaluate the roles of TCM in combating COVID-19. The efficacies and potential mechanisms of TCM remedy in three phases of distinct stages of COVID-19 are discussed and presented comprehensively within a single panorama by integrating available clinical and preclinical evidence. Finally, although the availability of anti-COVID-19 vaccines and a global vaccination program have brought great hope for the ultimate control of the disease, threat of viral variants and new epidemics still exist. Therefore, it is of scientific value to historically and objectively summarize the contribution of TCM during the pandemic, which could be deployed in the future to combat against COVID-19 and other infectious diseases around the world.
Acknowledgments

This study was supported by grants from National Science and Technology Emergency Project (Integrated Traditional Chinese and Western Medicine to Control COVID-19, 2020YFC1704502, 2020YFA0708004), National Science Foundation of China (NSFC 82104431), Open project of State Key Laboratory of Component-based Chinese Medicine (CBCM2020201, China), and China Postdoctoral Science Foundation Grant (2019M650989).

Author contributions

Boli Zhang, Yan Zhu, Junhua Zhang, Yuanlu Cui, and Jigang Wang conceived, designed, and revised the manuscript; Ming Lyu, Guanwei Fan, and Guangyu Xiao wrote and revised the manuscript; Taiyi Wang, Dong Xu, Jie Gao, Shaoqin Ge, Qinglin Li, Yuling Ma, and Han Zhang revised the manuscript and discussed interpretation.

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565–74.
2. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–3.
3. Luo H, Tang QL, Shang YX, Liang SB, Yang M, Robinson N, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 2020;26:243–50.
4. Liu J, Mantheimer E, Shi Y, Gluid C. Chinese herbal medicine for severe acute respiratory syndrome: a systematic review and meta-analysis. J Alternative Compl Med 2004;10:1041–51.
5. Leung PC. The efficacy of Chinese medicine for SARS: a review of Chinese publications after the crisis. Am J Chin Med 2007;35:575–81.
6. International expert meeting on the treatment of SARS by traditional Chinese medicine, and the integration of traditional Chinese medicine with Western medicine. SARS: clinical trials on treatment using a combination of traditional Chinese medicine and Western medicine: report of the WHO international expert meeting to review and analyse clinical reports on combination treatment for SARS, 8–10 October 2003, Beijing, People’s Republic of China. World Health Organization. Available from: https://apps.who.int/iris/handle/10665/43029.
7. Lau TF, Leung PC, Wong EL, Fong C, Cheng KF, Zhang SC, et al. Using herbal medicine as a means of prevention experience during the SARS crisis. Am J Chin Med 2005;33:345–56.
8. Hsu CH, Hwang KC, Chao CL, Chang SG, Ker CC, Chien LC, et al. The lesson of supplementary treatment with Chinese medicine on severe laboratory-confirmed SARS patients. Am J Chin Med 2006;34:927–35.
9. Chen Z, Nakamura T. Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS. Phytother Res 2004;18:592–4.
10. Zhao YS, Hou XY, Gao ZH, Wang T. Research on medication for severe type of COVID-19 based on Huashi Baidu prescription. Chin Arch Trad Chin Med 2020;38:14–7.
11. Zhao ZH, Zhou Y, Li WH, Huang QS, Tang ZH, Li H. Analysis of traditional Chinese medicine diagnosis and treatment strategies for COVID-19 based on “the diagnosis and treatment program for coronavirus disease-2019” from Chinese authority. Am J Chin Med 2020;48:1035–49.
12. Tong XL, Li XY, Zhao LH, Li QW, Yang YY, Lin YQ, et al. Discussion on traditional Chinese medicine prevention and treatment strategies of coronavirus disease 2019 (COVID-19) from the perspective of “cold–dampness pestilence”. J Tradit Chin Med 2020;61:465–70.
13. Leung ELH, Pan HD, Huang YF, Fan XX, Wang WY, He F, et al. The scientific foundation of Chinese herbal medicine against COVID-19. Engineering (Beijing) 2020;6:1099–107.
14. Luo H, Gao Y, Zou J, Zhang S, Chen H, Liu Q, et al. Reflections on treatment of COVID-19 with traditional Chinese medicine. Chin Med 2020;15:94.
15. Zheng WK, Zhang JH, Yang FW, Huang M, Miao Q, Qi WS, et al. Treatment of coronavirus disease 2019 (COVID-19) from perspective of dampness–toxicity plagues. J Tradit Chin Med 2020;61:1024–8.
16. Chinese Association of Integrated Traditional and Western Medicine. Expert consensus on prevention and treatment of COVID-19 by integrating traditional Chinese and Western medicine. Chin J Integr Tradit West Med 2020;40:1413–23.
17. Li YY, Li J, Zhang Y, Tian YP, Zhang YQ, Jin RJ, et al. Clinical practice guidelines and experts’ consensuses for treatment of coronavirus disease 2019 (COVID-19) patients with Chinese herbal medicine: a systematic review. Chin J Integr Med 2020;26:786–93.
18. Lee BJ, Lee JA, Kim KI, Choi JY, Jung HJ. A consensus guideline of herbal medicine for coronavirus disease 2019. Integ Med Res 2020;9:100470.
19. Chan KW, Wong VT, Tang SCW. COVID-19: an update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative Chinese–Western medicine for the management of 2019 novel coronavirus disease. Am J Chin Med 2020;48:737–62.
20. Liang N, Li H, Wang J, Jiao L, Ma Y, Wang X, et al. Development of rapid advice guidelines for the treatment of coronavirus disease 2019 with traditional Chinese medicine. Am J Chin Med 2020;48:1511–21.
21. Ho LTF, Chan KKH, Chung VCH, Leung TH. Highlights of traditional Chinese medicine frontline expert advice in the China national guideline for COVID-19. Eur J Integr Med 2020;36:101116.
22. Liang N, Ma Y, Wang J, Li H, Wang X, Jiao L, et al. Traditional Chinese medicine guidelines for coronavirus disease 2019. J Tradit Chin Med 2020;40:891–6.
23. Qiu Q, Huang Y, Liu X, Huang F, Li X, Cui L, et al. Potential therapeutic effect of traditional Chinese medicine on coronavirus disease 2019: a review. Front Pharmacol 2020;11:570893.
24. Wang J, Qi F. Traditional Chinese medicine to treat COVID-19: the importance of evidence-based research. Drug Discov Ther 2020;14:149–50.
25. Li Q, Wang H, Li X, Zheng Y, Wei Y, Zhang P, et al. The role played by traditional Chinese medicine in preventing and treating COVID-19 in China. Front Med 2020;14:681–8.
26. Wang C, Cao B, Liu QQ, Zou ZQ, Liang ZA, Gu L, et al. Osel tamivir compared with the Chinese traditional therapy maxingshigan- yingqiaosan in the treatment of H1N1 influenza: a randomized trial. Ann Intern Med 2011;155:217–25.
27. Hu K, Guan WJ, Bi Y, Zhang W, Li L, Zhang B, et al. Efficacy and safety of Lianhuqiuweng capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: a multicenter, prospective, randomized controlled trial. *Phytomedicine* 2020; 16:153242.

28. Xiao M, Tian J, Zhou Y, Xu X, Min X, Lv Y, et al. Efficacy of Huoxiang Zhengqi dropping pills and Lianhua Qingwen granules in treatment of COVID-19: a randomized controlled trial. *Pharmacol Res* 2020; 161:1605126.

29. Zhan J, Li X, Gou C, Li L, Luo X, Zhang C, et al. Effect of Jinhua Qinggan granules on novel coronavirus pneumonia in patients. *J Tradit Chin Med* 2020; 161:153367.

30. Xiong WZ, Wang G, Gu J, Ai W. Efficacy of herbal medicine (Xuanfei Baidu decoction) combined with conventional drug in treating COVID-19: a pilot randomized clinical trial. *Integr Med Res* 2020; 9:100489.

31. Shi N, Guo L, Liu B, Bian Y, Chen R, Chen S, et al. Efficacy and safety of Chinese herbal medicine versus lopinavir–ritonavir in adult patients with coronavirus disease 2019: a non-randomized controlled trial. *Phytomedicine* 2020; 81:153367.

32. Song P, Zhao L, Li X, Su J, Jiang Z, Song B, et al. Is Chinese medicine injection applicable for treating acute lung injury and acute respiratory distress syndrome? A systematic review and meta-analysis of randomized controlled trials. *Chin J Tradit Med Res* 2019; 6:857–66.

33. Song P, Zhao L, Li X, Su J, Jiang Z, Song B, et al. Interpretation of the traditional Chinese medicine portion of the diagnosis and treatment protocol for corona virus disease 2019 (Trial Version 7). *J Tradit Chin Med* 2020; 40:497–508.

34. Zhang D, Zhang B, Lv JT, Sa RN, Zhang XM, Lin ZJ. The clinical benefits of Chinese patent medicines against COVID-19 based on current evidence. *Pharmacol Res* 2020; 157:104882.

35. Liu Z, Li X, Guo C, Li L, Luo X, Zhang C, et al. Effect of Jinhua Qinggan granules on novel coronavirus pneumonia in patients. *J Tradit Chin Med* 2020; 40:467–72.

36. Duan C, Xia WG, Zhen CJ, Sun GB, Li ZL, Li QL, et al. Clinical observation of Jinhua Qinggan granules in treating pneumonia infected by COVID-19. *J Tradit Chin Med* 2020; 61:1473–7.

37. Lu RB, Wang WJ, Li X. Clinical observation on Lianhua Qingwen granules combined with Western medicine conventional therapy in the treatment of 63 suspected cases of COVID-19. *J Tradit Chin Med* 2020; 61:655–9.

38. Yu P, Li YZ, Wan SB, Wang Y. Efficacy of Lianhua Qingwen granules combined with arbidol in the treatment of mild novel coronavirus pneumonia. *China J Chin Mater Med* 2020; 55:1042–5.

39. Cheng ZD, Li Y. Clinical effectiveness and case analysis in 54 NCP patients treated with Lanhua Qingwen Granules. *World Chin Med* 2020; 15:150–4.

40. Liu L, Shi F, Tu P, Chen C, Zhang M, Li X, et al. Arbidol combined with the Chinese medicine Lianhuqiuweng capsule versus arbidol alone in the treatment of COVID-19. *Medicine (Baltimore)* 2021; 100:e24475.

41. Ma Q, Qiu M, Zhou H, Chen J, Yang X, Deng Z, et al. The study on the treatment of Xuebijing injection (XBJ) in adults with severe or critical Corona Virus Disease 2019 and the inhibitory effect of XBJ against SARS-CoV-2. *Pharmacol Res* 2020; 160:105073.
Zhang K, Tian M, Zeng Y, Wang L, Luo S, Xia W, et al. The Chansu injection improves the respiratory function of severe COVID-19 patients. medRxiv 2020. Available from: https://doi.org/10.1101/2020.05.20.20107607.

Zhou J, Yang X, Wang C, Song S, Cao K, Wei T, et al. Yidu-toxicity blocking lung decoction ameliorates inflammation in severe pneumonia of SARS-COV-2 patients with Yidu-toxicity blocking lung syndrome by eliminating IL-6 and TNF-α. Biomed Pharmacother 2020;129:110436.

Ba YM, Wang LQ, Li WN, Li M, Tao R, Zuo XH, et al. Multi center clinical study on 451 cases of COVID-19 treated with ‘Pneumonia No. 1 Formula’. World Chin Med 2020;15:1962–6.

Ai Z, Zhou S, Li W, Wang M, Wang L, Hu G, et al. “Fei Yan No. 1” as a combined treatment for COVID-19: an efficacy and potential mechanistic study. Front Pharmacol 2020;11:581277.

Shi TF, Zhou GC, Zhang LY, Niu F, Ye WC, Zhou T, et al. Clinical evidence from China. standard care for severe coronavirus disease 2019 (G-CHAMPS): a systematic review and meta-analysis. J Clin Med 2020;9:1583.

Xiong X, Wang P, Su K, Cho WC, Xing Y. Chinese herbal medicine for coronavirus disease 2019: a systematic review and meta-analysis. Pharmacol Res 2020;160:105056.

Yu M, Zhang R, Ni P, Duan G. Chinese herbal medicine supplementation therapy on COVID-19. Pharmacol Res 2020;160:105181.

Pang W, Liu Z, Li N, Li Y, Yang F, Pang B, et al. Chinese medical drugs for coronavirus disease 2019: a systematic review and meta-analysis. Integr Med Res 2020;9:100477.

Chan JF, Kok KH, Zou Z, Chu H, To KK, Yuan S, et al. Genomic characterization of the 2019 novel human–pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microb Infect 2020;9:221–36.

Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chembiochem 2020;21:730–8.

Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci 2020;6:315–31.

Li H, Yang L, Liu FF, Ma XN, He PL, Tang W, et al. Overview of therapeutic drug research for COVID-19 in China. Acta Pharmac Sin 2020;41:1133–40.

Gong PY, Guo YJ, Li XP, Wang N, Gu J. Exploring active compounds of Jinhua Qinggan Granules for prevention of COVID-19 based on network pharmacology and molecular docking. Chin Tradit Herb Drugs 2020;51:1685–93.

Li RF, Hou YL, Huang JC, Pan WQ, Ma QH, Shi YX, et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res 2020;156:104761.

Zheng S, Baak JP, Li S, Xiao W, Ren H, Yang H, et al. Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in Coronavirus disease 2019 (COVID-19), gives fundamental support to the clinical use of LHQW. Phytomedicine 2020;79:153336.

Xing Y, Hua YR, Shang J, Ge WH, Liao J. Traditional Chinese medicine network pharmacology study on exploring the mechanism of Xuebijing Injection in the treatment of coronavirus disease 2019. Chin J Nat Med 2020;18:941–51.

Zheng WJ, Yan Q, Ni SY, Zhan SF, Yang LL, Zhuang HF, et al. Examining the effector mechanisms of Xuebijing injection on COVID-19 based on network pharmacology. BioData Min 2020;13:17.

Chen J, Wang YK, Gao Y, Hu LS, Yang JW, Wang JR, et al. Protection against COVID-19 injury by Qingfei Paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming. BioMed Pharmacoter 2020;129:110281.

Yang R, Liu H, Bai C, Wang Y, Zhang X, Guo R, et al. Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against coronavirus disease 2019 (COVID-19): in silico and experimental study. Pharmacol Res 2020;157:104820.
95. Zhang DH, Zhang X, Peng B, Deng SQ, Wang YF, Yang L, et al. Network pharmacology suggests biochemical rationale for treating COVID-19 symptoms with a traditional Chinese medicine. *Commun Biol* 2020;3:466.

96. Zhao J, Tian S, Lu D, Yang J, Zeng H, Zhang F, et al. Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammatory, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. *Phytotherapy* 2020;85:153315.

97. Tao Q, Du J, Li X, Zeng J, Tan B, Xu J, et al. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashui Baidu formula in the treatment of COVID-19. *Drug Dev Ind Pharm* 2020;46:1345–53.

98. Wang Y, Li X, Zhang JH, Xue R, Qian JY, Zhang XH, et al. Study on the mechanism of Xuantie Baidu decoction for COVID-19 based on network pharmacology. *China J Chin Mater Med* 2020;45:2249–56.

99. Chen X, Yin YH, Zhang MY, Liu JY, Li R, Qu YQ. Investigating the mechanism of ShuFeng JieDu capsule for the treatment of novel coronavirus pneumonia (COVID-19) based on network pharmacology. *Int J Med Sci* 2020;17:2511–30.

100. Tao Z, Zhang L, Friedemann T, Yang G, Li J, Wen Y, et al. Systematic analyses on the potential immune and anti-inflammatory mechanisms of Shufeng Jiedu capsule against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused pneumonia. *J Funct Foods* 2020;75:104243.

101. Wang YX, Ma JR, Wang SQ, Zeng YQ, Zhou CY, Ru YH, et al. Utilizing integrating network pharmacological approaches to investigate the potential mechanism of Ma Xing Shi Gan Decoction in treating COVID-19. *Eur Rev Med Pharmacol Sci* 2020;24:3360–84.

102. Li Y, Chu F, Li P, Johnson N, Li T, Wang Y, et al. Potential effect of Maxing Shigan decoction against coronavirus disease 2019 (COVID-19) revealed by network pharmacology and experimental verification. *J Ethnopharmacol* 2021;273:113854.

103. Han L, Wei XX, Zheng YJ, Zhang LL, Wang XM, Yang HY, et al. Potential mechanism prediction of Cold–Damp Plague Formula against COVID-19 via network pharmacology analysis and molecular docking. *Chin Med* 2020;15:78.

104. Ruan X, Du P, Zhao K, Huang J, Xia H, Dai D, et al. Mechanism of Dayuanyin in the treatment of coronavirus disease 2019 based on network pharmacology and molecular docking. *Chin Med* 2020;15:62.

105. Zhang XR, Li TN, Ren YY, Zeng YJ, Lv HY, Wang J, et al. The important role of volatile components from a traditional Chinese medicine Dayuan-Yin against the COVID-19 pandemic. *Front Pharmacol* 2020;11:583651.

106. Jia S, Luo H, Liu X, Fan X, Huang Z, Lu S, et al. Dissecting the novel mechanism of Reduning injection in treating Coronavirus Disease 2019 (COVID-19) based on network pharmacology and experimental verification. *J Ethnopharmacol* 2021;273:113871.

107. Ma Q, Pan W, Li R, Liu B, Li C, Xie Y, et al. Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-kappaB signaling pathway. *Pharmacol Res* 2020;158:104850.

108. Deng W, Xu Y, Kong Q, Xue J, Yu P, Liu J, et al. Therapeutic efficacy of pudilan xiaoyan oral liquid (PDL) for COVID-19 in vitro and in vivo. *Signal Transduct Target Ther* 2020;5:66.

109. Su HX, Yao S, Zhao WF, Li MJ, Liu J, Shang WJ, et al. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. *Acta Pharmacol Sin* 2020;41:1167–77.

110. Lin H, Wang X, Liu M, Huang M, Shen Z, Feng J, et al. Exploring the treatment of COVID-19 with Yinqiao powder based on network pharmacology. *Phytother Res* 2021;35:2651–64.

111. Kong Q, Wu Y, Gu Y, Lv Q, Qi F, Gong S, et al. Analysis of the molecular mechanism of Pudilan xiaoyan oral liquid (PDL) treatment for COVID-19 by network pharmacology tools. *Biomed Pharmacother* 2020;128:110316.

112. Peng W, Xu Y, Han D, Feng F, Wang Z, Gu C, et al. Potential mechanism underlying the effect of matrine on COVID-19 patients revealed through network pharmacological approaches and molecular docking analysis. *Arch Physiol Biochem* 2020. Available from: https://www.tandfonline.com/doi/full/10.1080/13813455.2020.1817944.

113. Sun J, Zhao RH, Guo SS, Shi YJ, Bao L, Geng ZH, et al. Effect of matrine sodium chloride injection on a mouse model combining disease with syndrome of human coronavirus pneumonia with cold-dampness pestilence attacking the lung. *Acta Pharm Sin* 2020;55:666–73.

114. Lin X, Lin H, Wang Q, Cui L, Luo H, Luo L. Chemical composition and pharmacological mechanism of shenfu decoction in the treatment of novel coronavirus pneumonia (COVID-19). *Drug Dev Ind Pharm* 2020;46:1947–59.

115. Sa-ngiamsunthorn K, Suksut A, Pewkliang Y, Thongpi P, Kanjanasiriprat P, Manopwisedjaroen S, et al. Anti-SARS-CoV-2 activity of *Andrographis paniculata* extract and its major component androgapholide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. *J Nat Prod* 2021;84:1261–70.

116. Liu H, Ye F, Sun Q, Liang H, Li C, Li S, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. *J Enzym Inhib Med Chem* 2021;36:497–503.

117. Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. *Antivir Res* 2020;74:92–101.

118. Lau KM, Lee KM, Koon CM, Cheung CS, Lau CP, Ho HM, et al. Immunomodulatory and anti-SARS activities of *Houttuynia cordata*. *J Ethnopharmacol* 2008;118:79–85.

119. Luo W, Su X, Gong S, Qin Y, Liu W, Li J, et al. Anti-SARS coronavirus 3C-like protease effects of *Rheum palmatum* L. extracts. *Biosci Trends* 2009;3:124–6.

120. Wen CC, Shyur LF, Jan JT, Liang PH, Kuo CJ, Arulselvan P, et al. Traditional Chinese medicine herbal extracts of *Cibotium barometz*, *Gentiana scabra* *Discorea batatas*, *Cassia tora*, and *Taxillus chinensis* inhibit SARS-CoV replication. *J Tradit Complement Med* 2011;1:41–50.

121. Chen X, Wu Y, Chen C, Gu Y, Zhu C, Wang S, et al. Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. *Acta Pharm Sin B* 2021;11:222–36.

122. Liu X, Raghuvanshi R, Ceylan FD, Bolling BW. Quercetin and its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) activity. *J Agric Food Chem* 2020;68:13982–9.

123. Lv Y, Wang S, Liang P, Wang Y, Zhang X, Jia Q, et al. Screening and evaluation of anti-SARS-CoV-2 components from *Ephedra sinica* by ACE2/CMEC–HPLC–IT–TOF–MS approach. *Anal Bioanal Chem* 2021;413:2995–3004.

124. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. *Acta Pharm Sin B* 2020;10:766–88.

125. Haggag YA, El-Ashmawy NE, Okasha KM. Is hesperidin essential for prophylaxis and treatment of COVID-19 infection? *Med Hypotheses* 2020;144:109957.
126. Rahman N, Basharat Z, Yousuf M, Castaldo G, Rastrelli L, Khan H. Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2). Molecules 2020;25:2271.

127. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. *Nature* 2020;582:289–93.

128. Jang M, Park YI, Chi YE, Park R, Namkoong S, Lee JI, et al. Tea polyphenols EGCG and theaflavin inhibits the activity of SARS-CoV-2 3CLpro in vitro. *Evid Based Complement Alternat Med* 2020;2020:560383.

129. Raj V, Park JG, Cho KH, Choi P, Kim T, Ham J, et al. Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches. *Int J Biol Macromol* 2021;188:474–85.

130. Lung J, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, et al. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. *J Med Virol* 2020;92:693–7.

131. Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review. *Phytotherapy* 2020;85:153286.

132. Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. *Antimicrob Agents Chemother* 2020;64:e00819–20.

133. Sand LVD, Bormann M, Alt M, Schiper L, Heilongh LS, Toft D, et al. Glycyrrizin effectively neutralizes SARS-CoV-2 in vitro by inhibiting the viral main protease. *Viruses* 2021;13:609.

134. Ellen ter BM, Dinesh N, Bouma EM, Troost B, Pol van de DPI, Ende BV, et al. Repurposing of clinically approved drugs. *Int J Biol Macromol* 2020;164:1693–703.

135. Park JY, Kim JH, Kim YM, Jeong HJ, Kim DW, Park KH, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV-2 protease. *Bioorg Med Chem* 2012;20:5928–35.

136. Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, Reyburn HT, et al. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. *Int J Biol Macromol* 2020;164:831–8.

137. Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, Reyburn HT, et al. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. *Int J Biol Macromol* 2020;164:831–8.

138. Park JY, Ko JA, Kim DW, Kim YM, Kwon HJ, Jeong HJ, et al. Chalcones isolated from *Angelica keiskei* inhibit cytotoxic activities against severe acute respiratory syndrome coronavirus. *J Enzym Inhib Med Chem* 2016;31:23–30.

139. Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, et al. Anti-SARS coronavirus 3C-like protease effects of *Isatis indigotica* root and plant-derived phenolic compounds. *Antivir Res* 2005;68:36–42.

140. Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, et al. Anti-SARS coronavirus 3C-like protease effects of *Isatis indigotica* root and plant-derived phenolic compounds. *Antivir Res* 2005;68:36–42.

141. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, et al. Small molecules inhibit papain-like protease of severe acute respiratory syndrome coronavirus into host cells. *J Virol* 2004;78:11334–9.

142. Ryu YB, Jeong HJ, Kim YM, Park JY, Kim D, et al. Biflavonoids from *Torreya nucifera* displaying SARS-CoV 3CL(pro) inhibition. *Bioorg Med Chem* 2010;18:7940–7.

143. Ryu YB, Jeong HJ, Kim YM, Park JY, Kim D, et al. Biflavonoids from *Torreya nucifera* displaying SARS-CoV 3CL(pro) inhibition. *Bioorg Med Chem* 2010;18:7940–7.

144. Cho JK, Curtis-Long MJ, Lee KH, Kim DW, Ryu HY, Suk HJ, et al. Geranylglavine flavonoids from *Aralis japonica* inhibit papain-like protease of severe acute respiratory syndrome coronavirus. *Bio Pharm Bull* 2012;35:2036–42.

145. Song YH, Kim DW, Curtis-Long MJ, Yuk HJ, Wang Y, Zhuang N, et al. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from *Triputus terrestris* fruits. *Bio Pharm Bull* 2014;37:1021–8.

146. Kim DW, Seo KH, Curtis-Long MJ, Oh KY, Oh JW, Cho JK, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of *Psoralea corylifolia*. *J Enzym Inhib Med Chem* 2014;29:59–63.

147. Cho JK, Curtis-Long MJ, Lee KH, Kim DW, Ryu HY, Suk HJ, et al. Geranylglavine flavonoids from *Aralis japonica* inhibit papain-like protease of severe acute respiratory syndrome coronavirus. *Bio Pharm Bull* 2012;35:2036–42.

148. Cнят F, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. *Lancet* 2003;361:2045–6.

149. Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA, et al. Antiviral activity of glycyrrhizin acid derivatives against SARS-CoV. *J Med Chem* 2005;48:1256–9.
161. Bailly C, Vergoten G. Glycyrrhizin: an alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?. Pharmacol Ther 2020;214:107618.

162. Zhang CH, Wang YF, Liu XJ, Lu JH, Qian CW, Wan ZY, et al. Antiviral activity of ephedrine against severe acute respiratory syndrome coronavirus in vitro. Chin Med J 2005;118:493–6.

163. Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci U S A 2004;101:10012–7.

164. Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antivir Res 2005;67:18–23.

165. Bridgford JL, Xie SC, Cobbold SA, Pasaje CFA, Herrmann S, Yang T, et al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat Commun 2018;9:3001.

166. Wang J, Zhang J, Shi Y, Xu C, Zhang C, Wong YK, et al. Mechanistic investigation of the specific anticancer property of artemisinin and its combination with aminolevulinic acid for enhanced anticancer activity. ACS Cent Sci 2017;3:743–50.

167. An J, Minie M, Sasaki T, Woodward JJ, Elkon KB. Antimalarial therapeutic agents and Chinese herbal medicines against SARS-CoV-2 (COVID-19). Pharmacol Rev 2020;158:104929.

168. Cao B, Hayden FG. Antiviral monotherapy for hospitalised patients with COVID-19 is not enough. Lancet 2020;396:1310–1.

169. Huang CF, Li Y, Leung EL, Liu X, Liu K, Wang Q, et al. A review of therapeutic agents and Chinese herbal medicines against SARS-CoV-2 (COVID-19). Pharmacol Rev 2020;158:104939.

170. Liu SY, Chen C, Zhang HQ, Lv H, Wang M, Pan G, et al. Network pharmacology-guided development of a novel integrative regimen to prevent acute graft-vs-host disease. Front Pharmacol 2019;10:440.

171. Wang L, Liu Z, Dong Z, Pan J, Ma X. Effects of Xuebijing injection on microcirculation in septic shock. J Surg Res 2016;202:147–54.

172. Yan Q, Li C. Treatment effects of xuebijing injection in severe septic patients with disseminated intravascular coagulation. Evid Based Complement Alternat Med 2014;2014:949254.

173. Song Y, Yao C, Yao Y, Han H, Zhao X, Yu K, et al. XueBijing injection versus placebo for critically ill patients with severe community-acquired pneumonia: a randomized controlled trial. Crit Care Med 2019;47:e735–43.

174. Hou SY, Feng XH, Lin CL, Tan YF. Efficacy of Xuebijing for coagulopathy in patients with sepsis. Saudi Med J 2015;36:164–9.

175. Liu MW, Su MX, Zhang W, Wang YQ, Chen M, Wang L, et al. Protective effect of Xuebijing injection on paraquat-induced pulmonary injury via down-regulating the expression of p38 MAPK in rats. BMC Complement Altern Med 2014;14:498.

176. He F, Wang J, Liu Y, Wang X, Cai N, Wu C, et al. Xuebijing injection versus placebo for critically ill patients with sepsis-induced acute kidney injury after Wenchuan earthquake. Biomed Pharmacother 2018;106:1404–11.

177. Chen X, Feng Y, Shen X, Pan G, Fan G, Gao X, et al. Anti-sepsis protective effect of Xuebijing injection is mediated by differential regulation of pro- and anti-inflammatory Th17 and T regulatory cells in a murine model of polymicrobial sepsis. J Ethnopharmacol 2018;211:358–65.

178. Liu MW, Wang YH, Qian CY, Li H. Xuebijing exerts protective effects on lung permeability leakage and lung injury by upregulating Toll-interacting protein expression in rats with sepsis. Int J Mol Med 2014;34:1492–504.

179. Zhang H, Wei L, Zhao G, Liu S, Zhang Z, Zhang J, et al. Protective effect of Xuebijing injection on myocardial injury in patients with sepsis: a randomized clinical trial. J Tradit Chin Med 2016;36:706–10.

180. Xue Q, Zhang H, Baili Y, Shi S. Effects of Xuebijing injection for patients with sepsis-induced acute kidney injury after Wenchuan earthquake. Altern Ther Health Med 2017;23:36–42.

181. Ji M, Wang Y, Wang L, Chen L, Li J. Protective effect of Xuebijing injection against acute lung injury induced by left ventricular ischemia/reperfusion in rabbits. Exp Ther Med 2016;12:51–8.

182. Xu Q, Liu J, Guo X, Tang Y, Zhou G, Liu Y, et al. Xuebijing injection reduces organ injuries and improves survival by attenuating inflammatory responses and endothelial injury in heatstroke mice. BMC Complement Altern Med 2015;15:4.

183. Liu X, Hu Z, Zhou B, Li X, Tao R. Chinese herbal preparation Xuebijing potently inhibits inflammatory activation in hepatocytes and ameliorates mouse liver ischemia–reperfusion injury. PLoS One 2015;10:e0131436.
233. Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AX, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021;70: 698–706.
234. Augusti PR, Conterato GM, Denardin CC, Prazeres ID, Serra AT, Bronze MR, et al. Bioactivity, bioavailability, and gut microbiota transformations of dietary phenolic compounds: implications for COVID-19. J Nutr Biochem 2021;97:108787.
235. Li X, Wu D, Niu J, Sun Y, Wang Q, Yang B, et al. Intestinal flora: a pivotal role in investigation of traditional Chinese medicine. Am J Chin Med 2021;49:237–68.
236. Zhang Q, Yue S, Wang W, Chen Y, Zhao C, Song Y, et al. Potential role of gut microbiota in traditional Chinese medicine against COVID-19. Am J Chin Med 2021;49:785–803.
237. Wu GS, Zhong J, Zheng NN, Wang CR, Jin HL, Ge GB, et al. Investigation of modulating effect of Qingfei Paidu Decoction on host metabolism and gut microbiome in rats. China J Chin Mater Med 2020;45:3726–39.
238. Lyu M, Wang YF, Fan GW, Wang XY, Xu SY, Zhu Y. Balancing herbal medicine and functional food for prevention and treatment of cardiometabolic diseases through modulating gut microbiota. Front Microbiol 2017;8:2146.
239. Qiu Y, Yang J, Wang L, Yang X, Gao K, Zhu C, et al. Dietary resistant starch attenuation of intestinal inflammation and oxidative damage is linked to the alteration of gut microbiota and butyrate in piglets challenged with deoxyxynvalenol. J Anim Sci Biotechnol 2021;12:71.
240. Valizadeh H, Abdolmohammadi-Vahid S, Daneshnia S, Ziya GM, Ammari A, Sadeghi A, et al. Nano-curcumin: a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharm 2020;89:107088.
241. Dai YJ, Wan SY, Gong SS, Liu JC, Li F, Kou JP. Recent advances of traditional Chinese medicine on the prevention and treatment of COVID-19. Chin J Nat Med 2020;18:881–9.
242. Wang Z, Yang L. Chinese herbal medicine: fighting SARS-CoV-2 infection on all fronts. J Ethnopharmacol 2021;270:113869.
243. Lee DYW, Li QY, Liu J, Efferth T. Traditional Chinese herbal medicine in patients at different stages of coronavirus infection. Int J Clin Pharm 2020;32:782–93.
244. Shi J, Lu Y, Zhang Y, Xia L, Ye C, Lu Y, et al. Traditional Chinese medicine formulation therapy in the treatment of coronavirus disease 2019 (COVID-19). Am J Chin Med 2020;48:1523–38.
245. Zhang L, Yu J, Zhou Y, Shen M, Sun L. Becoming a faithful defender: traditional Chinese medicine against coronavirus disease 2019 (COVID-19). Am J Chin Med 2020;48:763–77.
246. Sun CY, Sun YL, Li XM. The role of Chinese medicine in COVID-19 pneumonia: a systematic review and meta-analysis. Am J Emerg Med 2020;38:2153–69.
247. Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun 2020;87:59–73.
248. Liu L. Traditional Chinese medicine contributes to the treatment of COVID-19 patients. Chin Herb Med 2020;12:95–6.
249. Li JG, Xu H. Chinese medicine in fighting against Covid-19: role and inspiration. Chin J Integr Med 2021;27:3–6.
250. Tong T, Wu YQ, Ni WJ, Shen AZ, Liu S. The potential insights of traditional Chinese medicine on treatment of COVID-19. Chin Med 2020;15:51.
251. Xu J, Zhang Y. Traditional Chinese medicine treatment of COVID-19. Curr Opin Clin Nutr 2020;39:101165.
252. Zhang W, Fan Z, Chu Y, Wang H, Yang Y, Wu L, et al. Chinese patent medicines in the treatment of coronavirus disease 2019 (COVID-19) in China. Front Pharmacol 2020;11:1066.
253. Lopez-Alcalde I, Yan Y, Witt CM, Barth J. Current state of research about Chinese herbal medicines (CHM) for the treatment of coronavirus disease 2019 (COVID-19): a scoping review. J Altern Complement Med 2021;27:225–37.
254. Ling CQ. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). J Integr Med 2020;18:87–8.
255. Al-Roomai A, Liao Y, Feng J, Qin X, Qin G. Advances in the treatment of novel coronavirus disease (COVID-19) with Western medicine and Chinese medicine: a narrative review. J Thorac Dis 2020;12:6054–69.
256. McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 2020;157:104859.
272. Wang WY, Xie Y, Zhou H, Liu L. Contribution of traditional Chinese medicine to the treatment of COVID-19. Phytomedicine 2021;85:153279.

273. Zhang JL, Li WX, Li Y, Wong MS, Wang YJ, Zhang Y. Therapeutic options of TCM for organ injuries associated with COVID-19 and the underlying mechanism. Phytomedicine 2021;85:153297.

274. Zhao Z, Li Y, Zhou L, Zhou X, Xie B, Zhang W, et al. Prevention and treatment of COVID-19 using traditional Chinese medicine: a review. Phytomedicine 2021;85:153308.

275. He T, Qu R, Qin C, Wang Z, Zhang Y, Shao X, et al. Potential mechanisms of Chinese herbal medicine that implicated in the treatment of COVID-19 related renal injury. Saudi Pharm J 2020;28:1138–48.

276. Cui HT, Li YT, Guo LY, Liu XG, Wang LS, Jia JW, et al. Traditional Chinese medicine for treatment of coronavirus disease 2019: a review. Tradit Med Res 2020;5:65–73.

277. Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res 2020;284:197989.

278. Gray PE, Belessis Y. The use of Traditional Chinese medicines to treat SARS-CoV-2 may cause more harm than good. Pharmacol Res 2020;156:104776.

279. Yang Y. Use of herbal drugs to treat COVID-19 should be with caution. Lancet 2020;395:1689–90.

280. Zhang AH, Ren JL, Wang XJ. Reply to “The use of traditional Chinese medicines to treat SARS-CoV-2 may cause more harm than good”. Pharmacol Res 2020;157:104775.

281. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-Month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021;397:220–32.

282. Yelin D, Wirtheim E, Vetter P, Kalil AC, Bruchfeld J, Runold M, et al. Long-term consequences of COVID-19: research needs. Lancet Infect Dis 2020;20:1115–7.

283. An YW, Yuan B, Wang JC, Wang C, Liu TT, Song S, et al. Clinical characteristics and impacts of traditional Chinese medicine treatment on the convalescents of COVID-19. Int J Med Sci 2021;18:646–51.