GAUGE FIELDS WITH QUAZINILPOTENT GAUGE GROUP.
Arthur M. Aslanyan
Kazan State University, Russia

Abstract
We investigate non-linear generalization of Maxwell theory of electromagnetic field keeping the gauge invariance of Lagrangian. New theory, which is standard Yang-Mills theory, is based on Harmonic Oscillator $HO(N, R)$ gauge group. It’s a solvable Lie group with nilpotent normal subgroup of codimension 1. We wright down the Yang-Mills equation and point out their peculiarities and connection with standard Maxwell theory.

Field equations and interpretation.
We shall operate with so-called Harmonic Oscillator Lie algebra $ho(4, R)$, which is quazinilpotent and admitts non-degenerate invariant bilinear form:
$b : L \times L \rightarrow R$, such that $\forall x, y, z \in L$ the following condition:

$$b(ad_z(x), y) + b(x, ad_z(y)) = 0$$

is hold true.

Consider a phase space of harmonic oscillator with generalized variables: p, q and Hamiltonian: $H = \frac{1}{2}(p^2 + q^2)$. It’s known that a set $< 1, p, q >$ forms a Lie algebra in respect to Poisson brackets:

$$\begin{align*}
[1, p] &= [1, q] = 0, \\
[p, q] &= 1,
\end{align*}$$

which is a nilpotent Lie algebra called Heisenberg algebra.
If we join them a Hamiltonian the new set \(<1, p, q, H > \) will form new algebra:
\[
\begin{align*}
[1, p] &= [1, q] = 0, \\
[p, q] &= 1, \\
[H, p] &= q, \\
[H, q] &= -p,
\end{align*}
\]
which is a quazinilpotent Lie algebra and contains Heisenberg algebra as an ideal. Indeed it’s a semi-simple sum of 3-dimensional Heisenberg algebra \(<1, p, q > \) and one-dimensional algebra \(<H> \). This algebra was generalized in papers [1](See also [2]). The main property of this algebra is that it admits non-degenerate invariant bilinear form:
\[
<u, v> = u^sv^s + u^1v^1 + u^4v^4 + zu^4v^4
\]
Here \(s, r, t, ... \) = \((2,3)\), \(z - \) any real constant and \(u^1, u^s, u^4 - \) are the components of the element \(u \) of Lie algebra in the basis \(<1, p, q, H> \):
\[
u = u^11 + u^2p + u^3q + u^4H.
\]
Due to the existence of this form we can construct for the gauge fields \(\hat{A}_\alpha \) a Lagrangian \(L = \frac{1}{4} <\hat{F}_{\alpha\beta}, \hat{F}^{\alpha\beta}> \) which extremals are the Yang-Mills equations exactly!
Here hat \(\hat{A}_\alpha \) means that it belongs to the matrix representation of gauge Lie algebra, and \(\alpha, \beta, \gamma, ... \) are the indices on the bundle (Minkowski) manifold.
\(\hat{F}_{\alpha\beta} = \partial_\alpha \hat{A}_\beta - \partial_\beta \hat{A}_\alpha + [\hat{A}_\alpha, \hat{A}_\beta] - \) curvature tensor of gauge field \(\hat{A}_\alpha \),

Yang-Mills equations are:
\[
\begin{align*}
\partial^\alpha F^{1}_{\alpha\beta} + \omega_{st}A^{s\alpha} F_{t\alpha\beta} &= 0, \\
\partial^\alpha F^{s}_{\alpha\beta} + 2\omega_{st}A^{\alpha[t} F^{t\alpha\beta} &= 0, \\
\partial^\alpha F^{4}_{\alpha\beta} &= 0,
\end{align*}
\]
coupled with system
\[
\begin{align*}
F^{1}_{\alpha\beta} &= 2\partial_{[\alpha} A^{1}_{\beta]} + \omega_{st}A^{s}_{\alpha} A^{t}_{\beta}, \\
F^{s}_{\alpha\beta} &= 2\partial_{[\alpha} A^{s}_{\beta]} + 2\omega_{st}A^{4}_{\alpha} A^{t}_{\beta}, \\
F^{4}_{\alpha\beta} &= 2\partial_{[\alpha} A^{4}_{\beta]}.
\end{align*}
\]
Here \(\omega_{st} = -\omega_{ts} \). The system is semi-splitted in three parts. We see that \(A^4 \) component is a pure Maxwell field. We substitute this field to the
second part and find the A^s components. The first part can be rewritten as a Maxwell equations with sources:

\[
\begin{align*}
\varphi_{\alpha\beta} &= 2\partial_\alpha A^1_\beta, \\
\partial^\alpha \varphi_{\alpha\beta} &= J_\beta.
\end{align*}
\]

where $J_\beta = -\omega_{st} \partial^\alpha (A^s_{\alpha} A^t_\beta) - \omega_{st} A^{s0}_t F^t_{\alpha\beta} - "sources"$. Note that center of $ho(N, R)$ is $<1>$ and from physical point of view it has no useful information, because the element 1 was coupled to the set p, q to complete it to the Lie algebra, what is simply a mathematical trick. It brings to the idea that component A^1 don’t represent the real physical field, and putting it to be trivial we can regard the first equation like a constrain on sources, more precisely on physical fields A^2, A^3.

To write down the gauge transformations for this theory we have first to construct a Lie group with $ho(4, R)$ Lie algebra. We call this group $HO(4, R)$ a harmonic oscillator Lie group [4]. There are two types of gauge transformations (connected with semi-simple splitting of algebra into two subalgebras):

First type:

\[
\begin{align*}
A^1 &\to A^1, \\
A^s &\to (e^{-\omega \lambda^4})^s_t A^t, \\
A^4 &\to A^1 + \partial \lambda^4.
\end{align*}
\]

Transformation for A^4 is usual gauge transformation for Maxwell field (generally for any abelian gauge field). And transformation for A^s are simply rotation in the p, q plane at angle λ^4:

\[
\begin{align*}
A^2 &\to \cos(\lambda^4) A^2 + \sin(\lambda^4) A^3, \\
A^3 &\to -\sin(\lambda^4) A^2 + \cos(\lambda^4) A^3.
\end{align*}
\]

Second type:

\[
\begin{align*}
A^1 &\to A^1 + \partial \lambda^1 + \omega_{st} \partial \lambda^s \lambda^t + (\lambda^s \lambda^s) A^4, \\
A^s &\to A^s + \partial \lambda^s + \omega_{st} \lambda^t A^4, \\
A^4 &\to A^4.
\end{align*}
\]

Conclusion. We see that putting p, q—components of gauge field to zero we come to standard Maxwell theory for A^4—component. Then there are two aspects of this theory.

The local is connected with the physical meaning of p, q—components which satisfy linear equations and non-linear constraints. These components are not independent because of the gauge transformations and we can well put one of them (say A^3) to zero, providing the gauge for
the usual Maxwell field A^4 being fixed. In this case the constraints will be satisfied automatically and we come to the ordinary two-component Maxwell theory with linear constraints on one of the component.

Another aspect is global. We know that in the Maxwell theory all regular in R^3 monopole solutions are trivial. It turns out that the same is hold true for $HO(4, R)$-theory, but it’s much more difficult to prove this [3]. In Maxwell theory we are forced to regard singular monopole solutions (like Dirac magnetic monopole), but it’s energy is infinite. Does it valid for the $HO(4, R)$ – theory? We just can claim the same thing in the case when Maxwell sector is trivial ($A^4 = 0$) [3], but it’s not clear in the general case.

And the last question: is it possible for non-trivial A^8, A^4 field to give a zero energy? In this case we can speak about energyless electrodynamics, which can lead to the interesting physical effects. to

References

[1] Gavrilov S.P., Exact solution of Yang-Mills equations with Generalized Harmonic Oscillator gauge group, In Theory of Relativity and Gravitation, V.27, Publishing of Kazan State University, Kazan, 1986

[2] Aslanyan A.M., Left-invariant metrics on four-dimensional solvable Lie groups, Proceedings of International Conference Geometrization of Physics, Kazan, 1993

[3] Aslanyan A.M., Asimptotically flat monopole solution of Bogomolny equations with solvable gauge group, Izv. Vuzov. Mathematics (to be published)

[4] Aslanyan A.M., Gavrilov S.P., Matrix realization of Generalized Harmonic Oscillator Lie group, Izv.Vuzov.Mathematics (to be published)