In Vitro Study of Surface Modified Poly(ethylene glycol)-Impregnated Sintered Bovine Bone Scaffolds on Human Fibroblast Cells

Sumit Pramanik¹, Forough Ataollahi¹, Belinda Pingguan-Murphy¹, Azim Ataollahi Oshkour² & Noor Azuan Abu Osman¹

¹Centre for Applied Biomechanics, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia, ²Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.

Scaffold design from xenogeneic bone has the potential for tissue engineering (TE). However, major difficulties impede this potential, such as the wide range of properties in natural bone. In this study, sintered cortical bones from different parts of a bovine-femur impregnated with biodegradable poly(ethylene glycol) (PEG) binder by liquid phase adsorption were investigated. Flexural mechanical properties of the PEG-treated scaffolds showed that the scaffold is stiffer and stronger at a sintering condition of 1000°C compared with 900°C. In vitro cytotoxicity of the scaffolds evaluated by Alamar Blue assay and microscopic tests on human fibroblast cells is better at 1000°C compared with that at 900°C. Furthermore, in vitro biocompatibility and flexural property of scaffolds derived from different parts of a femur depend on morphology and heat-treatment condition. Therefore, the fabricated scaffolds from the distal and proximal parts at 1000°C are potential candidates for hard and soft TE applications, respectively.

The development of synthetic implants and tissue grafts mainly involves porous material integrated with biological cells or molecules for tissue engineering (TE) applications. However, selection of suitable material is very critical in bone-defect repair or reconstruction applications. Numerous synthetic materials, including biopolymers, bioactive ceramics and high-strength composites, have been tested as scaffolds. However, no synthetic material has been implanted successfully for long-term load-bearing applications because of their several disadvantages including mechanical instability, machinability, long degradation rate, and in sufficient immunogenic responses. Bioceramic scaffold materials have been developed from various natural sources, including coral, shell and bone. The main inorganic constituent of these is calcium phosphate, which closely matches with the structure of synthetic hydroxyapatite (HA, \(\text{Ca}_10(\text{PO}_4)_6(\text{OH})_2 \)). In this way, HA nanoparticles have also been used as bioactive coating materials for surface immobilization in biosensors due to their high enzyme and protein adsorption ability, and have been employed in several biomedical applications, including prostheses and implants, using electrodeposition and various thermal spray techniques. Polymers supplemented by HA have elicited intensive interest in various applications in biomedical fields. Although treatment of HA with several biopolymers, such as aliphatic polyesters (e.g., polylactic acid, PLA) and poly-L-lactic acid, copolymers (e.g., polylactic-co-glycolic acid) and polycaprolactone and collagen, has been intensively explored, these combinations have several limitations in terms of biological reaction with host tissues and mechanical strength of scaffolds. For example, lactic acid, which is a byproduct of PLA degradation, results in an adverse cellular response at the bone-implant interface by reducing the local pH, wherein human synovial fibroblasts and murine macrophages release prostaglandin\(^{11,32}\). On the other hand, polyol polymers, such as poly(ethylene glycol) (PEG) have some excellent properties in TE applications. The major advantage of this biodegradable polymer PEG is its nontoxicity, nonimmunogenicity, and nonantigenicity to active proteins or cells. PEG can govern the cell membranes and has ability to suppress the nonspecific uptake of nanomaterials in a cell through cell membranes. PEG has very little effect on surface chemistry and solubility of other molecules during attachment; however, its morphology can be controlled during attachment with other molecular surfaces. Selection of MWs of PEG polymers are extremely important as its different MWs are departed from the...
vehicle agents in the biomineralization process during *in vivo* use in scaffolds or drug-delivery vehicles. The solubility (physicochemical property) of PEG in water decreases with an increase in MW. This property of PEG polymers is potentially used in drug-delivery systems and bone-tissue engineering. Furthermore, bone grafting is mainly used as a potential treatment for bone-defect repair and reconstruction. Scaffolds derived from bovine bone have been proven to offer potential advantages in terms of quantity and quality over synthetic or natural materials for TE scaffolds. An ideal bone graft material must facilitate a suitable biocompatible scaffold material having matching mechanical properties with the soft and hard tissues for TE applications. Since the presence of PEG, morphology, and heat-treatment conditions on the scaffold materials are critical in bone formation. Mechanical properties of the scaffolds depend on the porosity and morphological structure of the materials. Matching mechanical properties and interconnected porous structure similar to the bone structure and property are highly desirable for different TE applications. In our previous study, we found potential differences in the morphology and chemical compositions in cortical bone along the longitudinal axis of bovine-femur. It suggests the potentiality of bovine-femoral bones as scaffolds and biomaterials. Therefore, the main objective of the present investigation is to study bovine femoral bones for developing a suitable biocompatible scaffold material having matching mechanical properties with the soft and hard tissues for TE applications. We extracted the HA or bovine apatite (BA) scaffolds from bovine cortical bones (BCBs) of different parts in a femur and sintered at 750 °C for completely grown HA crystals was minimal in the bone samples cytotoxicity and mechanical property of TE scaffolds. Since presence of HA or bovine apatite (BA) scaffolds from bovine cortical bones (BCBs) of different parts in a femur and sintered at 750 °C; the main objective of the present investigation is to study bovine femoral bones for developing a suitable biocompatible scaffold material having matching mechanical properties with the soft and hard tissues for TE applications. We extracted the HA or bovine apatite (BA) scaffolds from bovine cortical bones (BCBs) of different parts in a femur and sintered at 750 °C; the main objective of the present investigation is to study bovine femoral bones for developing a suitable biocompatible scaffold material having matching mechanical properties with the soft and hard tissues for TE applications. We extracted the HA or bovine apatite (BA) scaffolds from bovine cortical bones (BCBs) of different parts in a femur and sintered at 750 °C; the main objective of the present investigation is to study bovine femoral bones for developing a suitable biocompatible scaffold material having matching mechanical properties with the soft and hard tissues for TE applications. We extracted the HA or bovine apatite (BA) scaffolds from bovine cortical bones (BCBs) of different parts in a femur and sintered at 750 °C; the main objective of the present investigation is to study bovine femoral bones for developing a suitable biocompatible scaffold material having matching mechanical properties with the soft and hard tissues for TE applications.
preferred to be conducted on the PEG-treated sintered bone scaffolds derived from three different parts of the bovine-femur in a universal mechanical tester (5848 Microtector, Instron Corporation) with a constant cross-head speed of 1 mm/min and a fixed span length of 20 mm to achieve best results. At least three specimens with same dimensions were performed at 25°C to evaluate the SD for each sintered samples.

In vitro degradation study. In vitro degradation was tested by immersing the three sets of the PEG-treated scaffolds (PEG-D900, PEG-D1000, PEG-M900, PEG-M1000, PEG-P900, and PEG-P1000), in the small bottle containing 15 ml of freshly prepared phosphate buffer saline (PBS, supplied by Sigma Aldrich) at pH 7.4, 37°C and static condition for three different sets of time i.e., 1, 4 and 7 days using a shaking incubator (LSI-300, Labeck, USA). It is done up to 7 days since beyond that the degradation of biocomposites becomes sluggish or stagnant.25 Dry pre-weighed three specimens from each PEG-treated scaffold were placed in separate bottles for day-1, day-4 and day-7, separately. Since no change of PBS medium was required in middle of the test, this technique eliminated the loss of any material due to the PBS medium changing. Each specimen was removed from the bottles at the predetermined times and rinsed thoroughly with distilled water followed by vacuum dried for 24 h. The degree of degradation was calculated by the percentages of weight change (Am%) according to the equation Eq. 4:

\[Am\% = \frac{m_2 - m_1}{m_1} \times 100 \]

(4)

where, m1 is the dry weight of the PEG-treated scaffold in air before degradation and m2 is the dry weight after degradation test at Day-7. The surface morphology of all the PEG-treated scaffolds after degradation at Day-7 were investigated under scanning electron microscope (SEM) using dual beam focused ion beam field emission scanning electron microscope (ESEM, Carl Zeiss).

Pore size distribution study. Pore size distribution was performed on all the SEM images of PEG-treated scaffolds after degradation at Day-7 using Image J 1.46 software. Each SEM image after degradation at Day-7 was followed the following steps: (i) inverting the image, (ii) adjustment of brightness and contrast according to image histogram, (iii) smoothing the image, (iv) making binary, and (v) analyzing white areas.

In vitro cell culture study. To check the cellular biocompatibility of the PEG-impregnated and sintered (at 900 and 1000°C) bone scaffolds from the three different femoral parts, in vitro cell culture test was performed on the human dermal tissue-derived fibroblast cells.

Cell isolation. The unused disposal dermal tissues from the gluteal region of a young female were collected after cosmetic plastic surgery from the Medical Hospital, University of Malaya. The fibroblast cells were isolated from human skin using outgrowth method.20,21 The materials (supplied by Sigma Aldrich) and technique were similar to our recent study.19 In brief, 1 mm² piece of dermal tissue was dissected mainly from the epidermal layer and rinsed with PBS repeatedly. The subculture of these dermal tissues was performed on 75 cm² flasks in 10% Fetal bovine serum (FBS) and 1% (v/v) penicillin–streptomycin antibiotic with high glucose DMEM were seeded to each sample. The PEG-impregnated scaffolds after PEG treatment to the sintered samples.

Scanning electron microscopy. PEG-impregnated scaffolds after AB assayed only for day 7 was investigated to check the cell attachment and migration into the three different parts (3D) scaffolds from its surface with different morphologies of the differently treated materials. In the present study, no other chemical was used to fix the cells on the scaffold. After Day-7 of AB assay, the cell attached scaffold samples were collected and directly dried in vacuum at 25°C for 48 h. The dried samples were then broken by vertical chiselling technique to observe the cell migrations into the scaffolds under SEM. Since the scanning electron microscopy was performed on the broken cross-section of the scaffolds, all the cells were assumed to have migrated from the surface through the interconnected pores. Cell attachment was determined by the visible adherence of the cells to scaffold’s inner surface from the SEM images.

Statistical analysis. A two-way ANOVA was employed to find the impact of different treatments on scaffolds morphology and cell culture time on mechanical, physical, and biological properties at 95% confidence. The critical level of null hypothesis was tested by F-test distribution by considering a probability value of p < 0.05 to evaluate the significant difference in density, impregnated PEG volume in BA, change in weight in in vitro degradation, AB absorption, and AB reduction between the scaffolds with different treatments and culture time.

Results

Relative density and porosity test.

Relative density and open porosity of the only sintered bovine bones (before PEG treatment) and the PEG-impregnated scaffolds (after PEG treatment to the sintered bovine bone) and amount of PEG present in PEG-impregnated scaffolds are illustrated in Table 1. The relative density (ρr), open porosity (Vopen %), and PEG-volume percentage (VPEG %) were evaluated using Eqs. 1, 2, and 3, respectively. Results in Table 1 showed that the relative density of all the PEG-impregnated scaffolds was significantly (p = 0.005) higher than that of untreated BA scaffolds. At 900°C sintering condition, the relative density was lowest for all scaffolds derived from the three parts of the same bovine-femur compared with the 1000°C sintering condition (see Table 1). By contrast, the open porosity of the untreated scaffolds closely matched with the corresponding adsorbed volume (%) of impregnated PEG present in the PEG-treated scaffolds and the volume of PEG was slightly higher than the open pore volume of the untreated BA scaffolds. The open-pore volume in the BA scaffolds sintered at 900°C before PEG impregnation, was comparable with the
Table 1 | Bulk density and porosity of the scaffolds before the PEG impregnation and density, volume of PEG, mechanical properties of PEG-impregnated sintered bone.

PEG impregnated sintered bovine bone scaffold	Relative density of untreated sintered BA, before PEG treatment ± SD	Relative density of PEG soaked sintered bone ± SD	Open porosity in sintered bone ± SD (SD: standard deviation)	Volume of impregnated PEG in sintered BA ± SD
PEG-D900	51.27 ± 0.63	58.86 ± 0.22	10.28 ± 1.45	13.91 ± 0.04
PEG-D1000	51.27 ± 0.63	60.57 ± 0.32	9.49 ± 0.01	7.85 ± 0.59
PEG-M900	50.95 ± 2.85	56.99 ± 0.28	15.08 ± 2.3	17.88 ± 0.09
PEG-M1000	50.95 ± 2.85	58.61 ± 0.32	9.23 ± 1.78	9.57 ± 1.04
PEG-P900	41.14 ± 1.89	55.28 ± 0.44	18.68 ± 3.82	21.66 ± 0.45
PEG-P1000	50.63 ± 1.89	57.63 ± 0.13	10.38 ± 1.62	14.69 ± 0.57

Table 2 | XRD data analysis for the dried PEG impregnated sintered bovine scaffolds.

PEG impregnated specimens	Intensity ratio (PEG/BA) at 2θ = 19.2°	Intensity ratio (PEG/BA) at 2θ = 32.8°
PEG-D900	15088	13895
PEG-D1000	14028	57355
PEG-M900	27021	13848
PEG-M1000	6945	20843
PEG-P900	36641	17757
PEG-P1000	7507	22330

Figure 2 | XRD patterns of the PEG-impregnated bovine apatite (BA) scaffolds: (A) PEG-D900, (B) PEG-M900, (C) PEG-P900, (D) PEG-D1000, (E) PEG-M1000, and (F) PEG-P1000; inset (f) XRD pattern of pristine PEG. Intensity ratio (IPEG/IBA) of PEG to BA correspond to their maximum intensities (semicrystalline peak of PEG and crystalline peak of BA). Impregnated PEG volume present in the PEG-treated scaffolds sintered at 900°C, and was higher than those of the 1000°C sintering condition for all three regions of the same bovine-femur.

XRD technique. XRD patterns of the PEG impregnated BA such as PEG-D900, PEG-M9000, PEG-P900, PEG-D1000, PEG-M1000 and PEG-P1000 are depicted in Figures 2A–2F, respectively. The XRD pattern of pristine semicrystalline PEG is also depicted as inset in Figure 2F. The peaks around 2θ = 19° and 23° were two major identification peaks of PEG. These two peaks were also found in all the PEG-BA scaffolds in Figures 2A–2F. The main identification peaks (211), (112) and (310) of BA were found at around 2θ = 31.7°, 32.8° and 39.9°, respectively and it is resembled with the standard hydroxyapatite (JCPDS 09-0432). Ratio of highest intensity (IPEG) peaks of PEG at 2θ = 19°, as marked by star ‘*’, and BA (IBA) at 2θ = 32.8°, as marked by hash ‘#’, are depicted in Figure 2. The maximum intensity of the PEG and BA and their ratios are illustrated in Table 2. The intensity ratio, IPEG/IBA, was indicative of amount of impregnated PEG in the PEG-treated scaffolds. The IPEG/IBA ratio was highest for the PEG-treated scaffold, which was made from proximal part of bovine femur and lowest for distal part specimens at both sintering conditions. Sintering temperature also affected on the IPEG/IBA ratio as scaffolds prepared at 900°C has higher values compared to 1000°C.

FTIR spectroscopy. Presence of PEG in the sintered BA was confirmed by FTIR spectroscopy. FTIR spectra of BA sintered at 900°C, PEG-P900, pristine PEG, BA sintered at 1000°C, and PEG-P1000 are depicted in Figures 3A–3E, respectively. In Figure 3, the PEG-impregnated scaffolds showed that they contained all the functional groups those were present in the sintered BA (i.e., P-O, C=O, molecular O-H) and PEG (i.e., C-C, C-O-C, alcoholic O-H, and C-H). In the present study, the corresponding FTIR peaks of PEG, illustrated in Table 3, were found in Figure 3C (blue line). Functional groups present in the sintered bone materials (i.e., P900 and P1000) are similar to the pure HA, which was already explored in our previous report. It has been found that most of the peaks of PEG and the untreated BA are present in PEG-P900 and PEG-P1000. It indicates the adsorption of PEG in the scaffolds is substantial.

Flexural or 3-P bending test. Figure 4 shows stress–strain behaviors and comparisons in strength, modulus, and flexural strain at failure under 3P-bending mode for all liquid phase adsorbed PEG-impregnated samples. The flexural strength of the PEG-treated scaffolds sintered at 1000°C was higher compared with 900°C sintering condition. The modulus of the PEG-treated scaffolds sintered at 1000°C were higher and flexural strain was lower in the sample from the distal and middle parts compared with the samples derived from the proximal part.

In vitro degradation study. Degradation result of PEG-treated scaffolds illustrated in Table 4 showed that all the scaffolds degraded
up to day-4, and then the weight increased at day-7. The SEM images were depicted in Figure 5 for the PEG-treated scaffolds after day-7 to investigate the surface morphology.

Pore size distribution study. Pore size distribution of was evaluated on the PEG-impregnated scaffolds after biodegradation at day-7 after image processing in Image J software. The white colour in the Figures 6A–6F represents the pore areas. The size of each area was converted to equivalent diameter in the software. The corresponding size distribution was plotted in the Figures 6a–6f, respectively.

In vitro AB assay. AB assay measured fibroblast cell proliferation of the scaffolds using light absorption at two wavelengths: 570 nm (Figure 7A) and 600 nm (Figure 7B). The absorbance deduced for all the scaffolds and positive controls was measured by the respective absorbance of negative controls or blanks, which showed the absorption only for the DMEM medium. The absorptions of the blank wells are also shown in Figure 7. AB reduction (%) indicates the amount of fibroblast cell proliferation by detecting the level of oxidation and it is distinctly depicted in Figure 8. AB assay was mainly used to determine the AB reduction (%) of the light absorption at 570 nm and 600 nm wavelengths for oxidized and reduced AB, respectively following Eq. 5. The biocharacteristics of PEG-treated bovine cortical bone scaffolds sintered at 900 and 1000°C are depicted in Figure 8A. The population of cell was evaluated corresponding to the %AB reduction in depicted in Figure 8B.

Optical microscopy. Optical micrographs of the live human fibroblast cells at the bottom surface of wells adjacent to the PEG-impregnated BCB scaffolds sintered at 900 and 1000°C are depicted in Figures 9A–9S. Optical images of blank and positive control wells up to day-7 are also presented in Figure 9S and 9T for comparison with the scaffolds containing wells.

Scanning electron microscopy. SEM images in Figure 10 showed the PEG impregnated scaffolds adhered with cells after AB assay for 7 days to illustrate the morphology and migrations of cells in the PEG-

Table 4| Biodegradation test data of the PEG impregnated sintered bovine scaffolds at 37°C in PBS on Days 1, 4, and 7.

PEG impregnated scaffold	Day-1	Day-4	Day-7
PEG-D900	-9.13±0.02	-12.66±0.07	+6.65±0.12
PEG-D1000	-5.49±0.05	-8.49±0.13	+5.63±0.08
PEG-M900	-11.09±0.09	-15.84±0.08	+6.92±0.13
PEG-M1000	-7.24±0.08	-9.13±0.06	+6.38±0.06
PEG-P900	-12.37±0.07	-19.03±0.13	+8.90±0.08
PEG-P1000	-10.13±0.06	-11.13±0.14	+6.71±0.11

Table 3| FTIR peak positions of the all functional groups present in the PEG and PEG-treated bovine apatite.

Name of bond	Untreated proximal BA sintered at 900 and 1000°C	PEG-P900 and PEG-P1000
Molecular OH Absent	3572	3572
Symmetric CH2 stretching	2881	2881
C-H (i.e., alkane) bending and scissoring C-H (i.e., alkane)	1467, 1413, and 1341	1467, 1413, and 1341
C-O and C-C stretching in the crystalline phase	1279	1279
Asymmetric C-O-C stretching	1241	1241
Symmetric C-O-C (i.e., ether) stretching	1146	1146
C-O (i.e., alcoholic) stretching	1095	1095
CO-C axial deformation	1060	1060
Asymmetric PO4- stretching	1023–1027	1023–1027
PO4- stretch symmetric	962	962
=CH bending	960	960
C-CH aliphatic deformation vibration	841	Absent
PO4- vibration	637	Absent
PO4- vibration	Absent	629
C-C vibration	564, 599	564, 599
C-H bending	Absent	Absent

Figure 3| FTIR spectra of (A) BA scaffolds sintered at 900°C, (B) PEG-impregnated BA scaffolds sintered at 900°C (PEG-P900), (C) pristine PEG, (D) BA scaffolds sintered at 1000°C, and (E) PEG-impregnated BA scaffolds sintered at 1000°C (PEG-P1000). Note that most of the peaks of PEG and the untreated BA are present in PEG-P900 and PEG-P1000, indicating the strong adsorption of PEG in the scaffolds.
impregnated BCB scaffolds sintered at 900 and 1000°C derived from the three bovine femoral sections (distal, middle, and proximal).

Discussion

Relative density and porosity test. The relative density (see Table 1) of all the PEG-impregnated scaffolds is significantly (p < 0.005) higher compared to the untreated scaffolds. This is because of a noticeable amount of PEG, which was impregnated in the porous scaffold during liquid phase impregnation process. Since the impregnated volume of PEG is slightly higher than the open pore volume of the untreated scaffolds, it strongly indicates that PEG can occupy all the open pores and additionally, PEG can create more interconnected channels through which it can reach to some close pores of sintered bone scaffolds owing to the driving force generated by the impregnation process. Higher open-pore volume and impregnated PEG volume in the scaffolds sintered at 900°C compared to the scaffolds sintered at 1000°C further affected on the mechanical properties of scaffolds. Furthermore, this result occurred, because a higher amount of polymers was burnt, which were present at the proximal domain of the original as-received femoral bone. Since cortical bovine bone is a natural composite of inorganic ceramics and organic polymers, low melting temperature polymers were gradually removed with sintering temperatures. According to our previous study, the proximal part of the femoral bovine bone contains the highest amount of polymers, which mainly consist of collagen fibrils.

XRD technique. XRD result depicted in Figure 2 indicates the quantitative amount of PEG in the PEG-impregnated BA scaffolds. Higher value of the intensity ratio (IPEG/IBA) indicates the higher amount of impregnated PEG presents in the PEG-treated BA scaffolds. The IPEG/IBA ratio in Figure 2 implies that the PEG-treated scaffolds sintered at 900°C have higher PEG content in comparison with the PEG-treated scaffold sintered at 1000°C. Thus, sintering temperature has effect on the PEG content. It has also been noticed that PEG content is increased for the scaffolds prepared from distal (D900 or D1000) to proximal (P900 or P1000).

FTIR spectroscopy. In Figure 3, the PEG-treated bone scaffold (PEG-1000) had shown a shift of PO_4^{3-} vibration peak at 629 cm^{-1} from 637 cm^{-1} along with a loss of peak at 1413 cm^{-1} due to symmetric CH_2 stretching of PEG. A superimposition of asymmetric PO_4^{2-} stretching peak at 1027–1026 cm^{-1} (for sintered bone P900) and 1025–1023 cm^{-1} (for sintered bone P1000) of bovine-HA with the alcoholic C-OH peaks of PEG at 1095–1060 cm^{-1} are a clear indication of chemical interaction between bovine-HA and PEG polymer. All the functional groups present in PEG, BA, and PEG-treated BA scaffolds as revealed in FTIR spectra are also illustrated in Table 3. Molecular OH of bovine-HA also formed a weak bond with PEG chains; and as a result, the peak at 3572 cm^{-1} of BA sintered at 900°C was eliminated in the PEG-P900 sample. This is because at high temperature, the oxygen of alcoholic OH of the liquid PEG becomes more polar which helps these ionic PEG polymer chains to bind with hydroxyl O-H of the bovine HA by an ionic bond (Ca_5(PO_4)_3–O–H^+–R–OH). Thus, PEG acts as binder with the bovine-HA.
Flexural or 3-P bending test. In Figure 4, the flexural strength was found to be lower for the PEG-treated scaffolds derived from every part of the bovine-femur sintered at 900 °C (i.e., PEG-D900, PEG-M900 and PEG-P900). This result is ascribed to the high porosity formed in BCB at the sintering condition of 900 °C as found in the previous study. This result is also supported by another study, which showed that mechanical strength deteriorates with increasing of porosity. The higher modulus value was shown by the PEG-treated scaffolds sintered at 1000 °C derived from the distal and middle parts compared to the proximal part. In contrast to the other HA composites reported in elsewhere, the modulus values of the PEG-treated scaffolds sintered at 1000 °C in the present study are substantially higher. Modulus of the few scaffolds (PEG-D900, PEG-M900, and PEG-M1000) was matched with the human trabecular bone, whereas PEG-D1000 showed near to human cortical bone. On the other hand, modulus of the PEG-P900, and PEG-P1000 matched with the human soft tissues. Our present finding is observed owing to the influence of PEG in the sintered BCB scaffolds greatly effects on their mechanical properties. In contrast to the mechanical strength of the dried bone from the three different parts of a bovine-femur in the previous study, the PEG-impregnated scaffolds from the proximal part show lowest flexural strength and were shown highest from the distal section. Consequence of more unidirectional collagen fibril polymers has different effect, was found in the dried BCBS compared to the present strengthening mechanism. In the present study, the bovine-HA particles of PEG-impregnated scaffolds from the proximal part were bonded with excess amount of semicrystalline PEG particle by liquid phase adsorption.

In vitro degradation study. The in vitro degradation data of the biopolymer PEG impregnated BA scaffolds revealed that the weight change with the tested time (1, 4, and 7 days) is significant (p < 0.02). The effect of temperature or impregnated PEG polymer volume has more significant (p = 0.002) effect on the weight change of the scaffolds. It clearly indicates that impregnated PEG volume, which was changed with sintering conditions of the scaffolds as well as impregnated pores, in the PEG-treated scaffolds sintered at 1000 °C (PEG-P1000) compared with the scaffolds derived from the proximal domain at 900 °C (PEG-900). This finding is observed owing to the influence of PEG in the scaffold of the proximal domain at 900 °C, where highest amount (21 vol%) of impregnated PEG was observed (see Table 1). The impregnated PEG also increased the flexural modulus compared with the proximal domain at 1000 °C. In addition, as seen in Figures 4C and 4D, at 900 °C, the PEG-treated scaffolds derived from proximal part showed 64% higher strain (14% for PEG-P900) than that of the other two parts (5% for PEG-M900 or PEG-D900). This is occurred owing to the excess pores, which enabled better binding and adsorption of PEG inside the scaffolds. It is indicated by the impregnated PEG volume, which was 32% higher in PEG-P900 than that of PEG-P1000. Thus, the influence of PEG in the sintered BCB scaffolds generally affects on their mechanical properties. In contrast to the mechanical strength of the dried bone from the three different parts of a bovine-femur in the previous study, the PEG-impregnated scaffolds from the proximal part show lowest flexural strength and were shown highest from the distal section. Consequence of more unidirectional collagen fibril polymers has different effect, was found in the dried BCBS compared to the present strengthening mechanism. In the present study, the bovine-HA particles of PEG-impregnated scaffolds from the proximal part were bonded with excess amount of semicrystalline PEG particle by liquid phase adsorption.

The Alamar Blue reduction (%) behavior of PEG-impregnated BA scaffolds (for distal – square, middle – round, proximal – triangular) sintered at 900 and 1000 °C in AB assay using 570 nm and 600 nm wavelengths. AB Reduction increases with time and it is highest for PEG-P1000 scaffold at day 7. B) Cell population or concentration varies with the PEG-impregnated BA scaffolds (symbols used for distal – square, middle – round, and proximal – triangular) sintered at 900 and 1000 °C.
nation process, has great effect on the in vitro biodegradation in PBS. In Figure 5, the SEM images revealed the typical surface morphology of the PEG-impregnated scaffolds after biodegradation at day-7. All the grain surfaces of the scaffolds sintered at 900 °C (PEG-D900, PEG-M900, and PEG-P900) are homogeneously coated with impregnated PEG in addition to some deposited crystals. On the other hand, the scaffolds sintered at 1000 °C (PEG-D1000, PEG-M1000, and PEG-P1000) are more clear with less amount of PEG on the surface but large size deposited crystals. It also indicates the impregnated PEG was more homogeneously distributed in the scaffolds sintered at 900 °C compared with the scaffolds sintered at 1000 °C. The deposited crystals on both scaffolds are from the PBS solution which might be influenced by dissolved calcium ion (Ca^{2+}) of BA, because calcium phosphates were also found to be dissolved in different medium by other studies. Therefore, the mechanical properties of the scaffolds deteriorate after biodegradation, as found by different researchers.

Pore size distribution study. Figures 6A to 6F depict the porous morphology of inverted image of the PEG-treated scaffolds after degradation at day-7. The pore sizes distribution of the scaffolds evaluated from the images Figures 6A to 6F is depicted in Figures 6a to 6f, respectively. The scaffolds sintered at 900 °C contained mainly single modal pores having maximum pores of 1.1, 0.7, and 1.2 μm for PEG-D900, PEG-M900, and PEG-P900, respectively and while the scaffolds sintered at 1000 °C contained multimodal pores. Pore size range in the scaffold derived from distal and middle parts was 100 nm to 3.2 μm, whereas this range was noticeably higher for proximal part samples (200 nm to 5.5 μm). Pore size distribution results of the present study also resembled with the other bioceramics.

In vitro cell culture study. In Figure 7, the absorbance is higher at lower (excitation) wavelength (570 nm) compared with higher (emission) wavelength (600 nm). Initially, at day-1, the difference in absorbance was insignificant (p=1.4 for wavelength 570 nm and p=1.7 for wavelength 600 nm) for all the scaffolds with respect to their positive controls. It indicates that the cytotoxicity variation within the scaffolds were not significant. At higher wavelength, the absorbance decreased with cell-culture time, whereas at lower wavelength, the absorbance values were substantially high and also significantly increased with culture time. The latter result indicates the significant (p=<0.001 for both wavelengths) growth of fibroblast cells on the scaffold samples with culture time from day 1 to day 7. Moreover, excellent biocompatibility of all PEG-treated bone scaffolds is suggested.

The amount of AB reduction (%) in colour absorption by live fibroblast cells corresponds to cell proliferation is depicted in Figure 8A. Thus, the significant (p=0.01) increased AB reduction% with culture time (from day-1 to day-7) is indication of a larger number of proliferating cells. The trend in cell population was also similar to the %AB reduction as depicted in Figure 8B. This result also strongly supports the AB absorbance results. The AB reduction and cell concentration characteristics of the AB assay on the scaffolds suggest that rate of cell growth properties became sluggish after day-7 as the maximum rate of AB reduction (%) or cell growth was found at day-4 study. Thus, based on the AB assay results, the percentage of AB reduction% was largest at day-7, which indicates greater cell proliferation because of stimulation with PEG-impregnated scaffolds sintered at 1000 °C. An exception is observed for distal PEG-treated scaffolds at day-7 due to dense microstructure of the PEG-D1000. Moreover, a higher biocompatibility was observed for the PEG-treated scaffolds those were sintered at 1000 °C compared with those sintered at 900 °C. Although it was not statistically significant (p=0.4) at a particular time line, the difference indicates that only the porosity and pore size were not factors for cell growth in a biomaterial. Further, it was confirmed by morphology study in SEM, which showed that particle shape is another important factor for cytotoxicity or cell viability. Most importantly, the scaffolds sintered at 1000 °C from the proximal region showed maximum reduction.
compared with the others owing to the more interconnected porosities provided by the PEG-treatment. Therefore, this study indicates that the cell viability also depends on interconnected pores, which were developed by PEG-treatment, beside over all porosity.

Optical microscopy. In Figure 9 depicts the live cells which had not attached to scaffolds and migrated from scaffolds to the well-plate surface. As observed, cell concentration was higher in the PEG-treated BA scaffolds those were sintered at 1000°C compared with those sintered at 900°C for all three femoral sections. One of the main reasons for this result is the sharp edge of the grains scaffolds at 900°C sintered condition which inhibit the growth and lifespan of cells. Furthermore, cell concentration was higher for the scaffolds derived from the proximal section at both sintering conditions compared to the other femoral parts. This result shows all the scaffolds were nontoxic and is a supportive upshot of the AB assay.

Scanning electron microscopy. The morphology of the scaffold-substrate in the present study closely resembles the scaffolds derived from a femoral BA sintered at 900 and 1000°C before PEG-impregnation, as reported previously. The cells growing in all PEG-treated scaffolds tended to form colonies/aggregates (see green coloured arrow in Figure 10). Thus, the difference in cell morphology from live cells, as shown in optical microscopy, was related to the effect of PEG in AB solution with time, and it is in agreement with other studies. Cell migrations were better in scaffolds sintered at 1000°C (e.g., PEG-P1000) compared with those sintered at 900°C despite higher porosity present in the scaffolds at 900°C (e.g., PEG-P900), as depicted in Table 1. This was confirmed by the impregnated PEG-volume, which was higher at failure of the scaffolds is higher for the proximal femoral part because of the presence of more interconnected pores, which enable PEG to better reach inside the scaffolds. The interconnected porosity is confirmed by the impregnated PEG-volume, which was higher than the open pore volume of the scaffolds (see Table 1). The excess impregnated PEG volume also indicated that the new interconnected channels were created during PEG adsorption by liquid phase adsorption and hence influenced the flexural strain, strength and modulus by facilitating polymer matrix within the BA ceramics. It has been found that the PEG-treated scaffolds sintered at 1000°C with multimodal pore distribution have better cell response than those of higher porosity scaffolds sintered at 900°C. Thus, the in vitro cell culture study, including AB assay and microscopy, of the scaffolds on human fibroblast cells strongly suggests that the cytotoxicity or cell growth property of a biomaterial not only depends on porosity or pore size but interconnection between the pores as well as shape and surface

![Figure 10](image-url) | SEM morphology of the broken surface of PEG-impregnated BA scaffolds sintered at 900 and 1000°C derived from three different femoral sections with cells and morphology of the fibroblast cells that adhered to the PEG-treated scaffolds (a – PEG-D900, b – PEG-M900, c – PEG-P900, d – PEG-D1000, e – PEG-M1000, and f – PEG-P1000) after day 7 of AB assay. Attachment of the cell or cell colony (green coloured arrow) is found inside the scaffolds and it is very high for PEG-P1000. Sharp edged particles, pores, and cells are indicated by white, yellow, and green coloured arrows, respectively.

Conclusions

In this study, bovine cortical bones from different parts of a femur were heat-treated and integrated with PEG by liquid phase adsorption to design a potential 3D TE scaffold. The biodegradable PEG acted as a binder with BA to keep strength of the scaffold structure. Given the biodegradable property of PEG, it can also improve cell proliferation and mechanical properties. The quantitative analysis of all PEG impregnated scaffolds was analyzed by XRD and qualitative study on the scaffolds from proximal part was employed by FTIR. The present investigation on the compositional studies by XRD and FTIR also strongly supports the previous studies. Flexural strain at failure of the scaffolds is higher for the proximal femoral part because of the presence of more interconnected pores, which enable PEG to better reach inside the scaffolds. The interconnected porosity is confirmed by the impregnated PEG-volume, which was higher than the open pore volume of the scaffolds (see Table 1). The excess impregnated PEG volume also indicated that the new interconnected channels were created during PEG adsorption by liquid phase adsorption and hence influenced the flexural strain, strength and modulus by facilitating polymer matrix within the BA ceramics. It has been found that the PEG-treated scaffolds sintered at 1000°C with multimodal pore distribution have better cell response than those of higher porosity scaffolds sintered at 900°C. Thus, the in vitro cell culture study, including AB assay and microscopy, of the scaffolds on human fibroblast cells strongly suggests that the cytotoxicity or cell growth property of a biomaterial not only depends on porosity or pore size but interconnection between the pores as well as shape and surface
properties of the particles. The scaffolds derived from the proximal domain are more flexible, which facilitates better cellular response. On the other hand, scaffolds derived from distal part have highest mechanical properties of the particles. The scaffolds derived from the proximal domain are more flexible, which facilitates better cellular response.

25. Russias, J. et al. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biomed. Mater. Res. Part A 80, 655–660 (2007).

26. Xiao, Y. et al. Preparation of nano-HA/PLA composite by modified-PLA for hard tissue repair. Eur. Cell. Mater. 11, 43–56 (2006).

27. Macarini, L., Millo, P., Moccia, A., Vincio, R. & Ettorre, G. C. Poly-L-lactic acid – Hydroxyapatite (PLLA-HA) bioabsorbable interference screws for tibial graft fixation in anterior cruciate ligament (ACL) reconstruction surgery: MR evaluation of osteointegration and degradation features. Radiol. Med. 113, 1185–1197 (2008).

28. Albano, C., González, G., Palacios, J., Karam, A. & Covis, M. PLA-HA vs. PGA-HA characterization and comparative analysis. Polym. Compos. 34, 1433–1442 (2013).

29. Zhao, J., Guo, L. Y., Yang, X. B. & Weng, J. Preparation of bioactive porous HAp/PLLA composite scaffolds. Adv. Funct. Mater. 15, 2942–2946 (2005).

30. Ang, K. C., Leong, K. F., Chu, C. K. & Chandrasekar, M. Compressive properties and degradation of poly(c-caprolactone)/hydroxyapatite composites under accelerated hydrolytic degradation. J. Biomed. Mater. Res. Part A 80, 655–660 (2007).

31. Wahl, D. A. & Czernuszka, J. T. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cell. Mater. 11, 43–56 (2006).

32. Dawes, E. & Rushton, N. The effects of lactic acid on PGE2 production by macrophages and human synovial fibroblasts: a possible explanation for problems associated with the degradation of poly(lactide) implants? Clin. Mater. 17, 157–163 (1994).

33. Zhang, H., Liu, M., Fan, H. & Zhang, X. Carbonated nano-hydroxyapatite crystal growth modulated by poly(ethylene glycol) with different molecular weights. Cryst. Growth Des. 12, 2024–2022 (2012).

34. Harris, J. M. in Poly(Ethylene Glycol) Chemistry. (ed. J.M. Harris) 1–14 (Springer US, 1992).

35. Harris, J. M. Introduction to biomedical and biotechnical applications of polyethylene glycol. Prog. Polym. Prepr. Div. Polym. Chem. 42, 529–532 (2001).

36. Kelf, T. et al. Non-specific cellular uptake of surface-functionalized quantum dots. Nanotechnology 21, 285105, DOI:10.1088/0957-4484/21/28/285105 (2010).

37. Burdick, J. A., Mason, M. N., Himan, A. D., Thorne, K. & Anseth, K. S. Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J. Control. Release 83, 53–63 (2002).

38. Hamidi, M., Azadi, A. & Rohani, S. H. Pharmacokinetic consequences of pegylation. Drug Deliv. 13, 399–406 (2006).

39. Frijwitter-Poltho, C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology 214, 1–38 (2005).

40. Veronese, F. M. & Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 10, 1451–1458 (2005).

41. Huang, F. W. et al. PEGylated PEI-based biodegradable polymers as non-viral gene vectors. Acta Biomater. 6, 4285–4295 (2010).

42. Burdick, J. A. & Anseth, K. S. Photocatalytic effectiveness of bone graft derived from antler cancellous bone: An experimental study in the rabbit mandible defect model. Int. J. Oral Maxil. Surg. 41, 1336–1347 (2012).

43. Edwards, S. A., Pandit, H. G., Groves, M. L. & Clarke, H. J. Impaction bone grafting in revision hip surgery. J. Arthroplasty 18, 852–859 (2003).

44. Ooi, C. Y., Hamdi, M. & Ramesh, S. Properties of hydroxyapatite produced by annealing of bovine bone. Ceram. Int. 33, 1171–1177 (2007).

45. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 852–859 (2006).

46. Karageorghis, V. & Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005).

47. Pramanik, S., Pingguan-Murphy, B., Cho, J. & Osman, N. A. A. Design and development of potential tissue engineering scaffolds from structurally different longitudinal parts of a bovine-femur. J. Biomed. Mater. Res. Part A 64, 70–79 (2003).

48. Zhang, X. et al. Osteoconductive effectiveness of bone graft derived from antler cancellous bone: An experimental study in the rabbit mandible defect model. Int. J. Oral Maxil. Surg. 41, 1336–1347 (2012).

49. Edwards, S. A., Pandit, H. G., Groves, M. L. & Clarke, H. J. Impaction bone grafting in revision hip surgery. J. Arthroplasty 18, 852–859 (2003).

50. Grover, L., Knowles, J., Fleming, G. & Barrat, J. In vitro ageing of brushite carbonate phosphate. Biomaterials 24, 2178–2185 (2006).

51. Lv, Q., Deng, M., Ulery, B. D., Nair, S. & Laurencin, C. T. Nano-ceramic composite scaffolds for bioceramic-based bone tissue engineering. Basic Clin. Mater. Sci. Technol. Adv. Mater. 13, 043002; DOI:10.1088/1468-6993/13/4/043002 (2012).

52. Pilia, M., Guda, T. & Appleford, M. Development of Composite Scaffolds for Load-Bearing Segmental Bone Defects. Biomed Res. Int. 2013, 15; DOI:10.1155/2013/999205 (2013).

53. Roy, D. M. & Linnehan, S. K. Hydroxyapatite formed from coral skeletal carbonate complex from bone. Calcif. Tissue Int. 19, 273–283 (1976).

54. Hunter, G. K. & Goldberg, H. A. Nucleation of hydroxyapatite by bone sialoprotein. Proc. Natl. Acad. Sci. USA 90, 8562–8565 (1993).

55. Lin, F. H., Liao, C. J., Chen, K. S. & Sun, J. S. Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with Na2PO4·10H2O addition. Biomaterials 20, 475–484 (1999).

56. Pramanik, S., Hanif, A. S. M., Pingguan-Murphy, B. & Osman, N. A. A. Morphological change of heat treated bovine bone: A comparative study. Materials 6, 65–75 (2013).

57. Pramanik, S., Pingguan-Murphy, B. & Osman, N. A. A. Developments of immobilized surface modified piezoelectric crystal biosensors for advanced applications. Int. J. Electrochem. Sci. 8, 8863–8892 (2013).

58. Gadow, R., Killinger, A. & Steigler, N. Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques. Surf. Coat. Tech. 205, 1157–1164 (2010).

59. Wang, Q., Chen, C., Xie, Q. & Liu, P. Electrodeposition of a biocompatible hydroxyapatite matrix to immobilize glucose oxidase for sensitive glucose biosensing. Microchim. Acta 165, 223–229 (2009).

60. Swetha, M. et al. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol. 47, 1–4 (2010).

61. Wahl, D. & Czernuszka, J. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cell. Mater. 11, 43–56 (2006).

62. Russias, J. et al. Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation. Mater. Sci. Eng. C 26, 1289–1295 (2006).

63. Xiao, Y. et al. Preparation of nano-HA/PLA composite by modified-PLA for controlling the growth of HA crystals. Mater. Lett. 61, 59–62 (2007).
58. McBride, J., Ingram, P. R., Henriquez, F. L. & Roberts, C. W. Development of colorimetric microtiter plate assay for assessment of antimicrobials against Acanthamoeba. J. Clin. Microbiol. 43, 629–634 (2005).

59. Shikinami, Y. & Okuno, M. Biodegradable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials 20, 859–877 (1999).

60. Furuhashi, T. et al. Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. J. Biomed. Mater. Res. 50, 410–419 (2000).

61. Askarzadeh, K., Orang, F. & Mozarrabzadeh, F. Fabrication and characterization of a porous composite scaffold based on gelatin and hydroxyapatite for bone tissue engineering. Iran. Polym. J. 14, 511–530 (2005).

62. Rho, J.-Y., Kuhn-Spearing, L. & Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998).

63. Kuhn, J. L. et al. Comparison of the trabecular and cortical tissue moduli from human iliac crests. J. Orthop. Res. 7, 876–884 (1989).

64. Silver, F., Christiansen, D. & Buntin, C. Mechanical properties of the aorta: a review. Crit. Rev. Biomed. Eng. 17, 323–358 (1988).

65. Silver, F. H., Freeman, J. W. & DeVore, D. Viscoelastic properties of human skin and processed dermis. Skin Res. Technol. 7, 18–23 (2001).

66. Pramanik, S. & Kar, K. K. Synthesis and Characterizations of Hydroxyapatite-Poly(ether ether ketone) Nanocomposite: Acellular Simulated Body Fluid Conditioned Study. IFMBE Proc. 23, 1309–1312 (2009).

67. Shi, D., Jiang, G. & Wen, X. In vitro behavior of hydroxyapatite prepared by a thermal deposition method. Process. Fabricat. Adv. Mater. VIII, 117 (2000).

68. Liao, H. et al. Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds. Colloid. Surface. B 84, 528–535 (2011).

69. Lahiji, A., Sohrabi, A., Hungerford, D. S. & Fromdasa, C. G. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J. Biomed. Mater. Res. 51, 586–595 (2000).

70. Okada, S., Ito, H., Nagai, A., Komotori, J. & Imai, H. Adhesion of osteoblast-like cells on nanostructured hydroxyapatite. Acta Biomater. 6, 591–597 (2010).

Acknowledgments
This study was supported by UM/MOHE/HIR grant (Project number: D000010-16001).

Author contributions
S.P. performed all the experiments and wrote the manuscript. F.A. & A.A.O. assisted to conduct cell culture and mechanical studies, respectively. B.P-M. & N.A.A.O. provided all the facilities for characterizations. All authors interpreted the data and reviewed the entire manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Pramanik, S., Ataollahi, F., Pingguan-Murphy, B., Oshkour, A.A. & Abu Osman, N.A. In Vitro Study of Surface Modified Poly(ethylene glycol)-Impregnated Sintered Bovine Bone Scaffolds on Human Fibroblast Cells. Sci. Rep. 5, 9806; DOI:10.1038/srep09806 (2015).