RESEARCH

Presence of a cryptic *Onchocerca* species in black flies of northern California, USA

Matthew Kulpa1, Kimberly J. Nelson2, Alana M. Morales3, Bonnie M. Ryan4, Michelle L. Koschik4, Jamesina J. Scott4 and Guilherme G. Verocai1*

**Abstract**

**Background:** Black flies (Diptera: Simuliidae) serve as arthropod vectors for various species of *Onchocerca* (Nematoda: Onchocercidae) that may be associated with disease in humans, domestic animals, and wildlife. The emergence of zoonotic *Onchocerca lupi* in North America and reports of cervid-associated zoonotic onchocerciasis by *Onchocerca jakutensis* highlight the need for increased entomological surveillance. In addition, there is mounting evidence that *Onchocerca* diversity in North America is far greater than previously thought, currently regarded as *Onchocerca cervi-pedis* species complex. This study reports new geographic records and black fly vector associations of an uncharacterized *Onchocerca* species.

**Methods:** To better understand the biodiversity and geographic distribution of *Onchocerca*, 485 female black flies (2015: 150, 2016: 335) were collected using CO2-baited traps from February to October 2015–2016 in Lake County, northern California, USA. Individual flies were morphologically identified and pooled (≤ 10 individuals) by species, collection date, and trap location. Black fly pools were processed for DNA extraction, and subsequent PCR and sequencing targeting of the NADH dehydrogenase subunit 5 gene of filarioids.

**Results:** Among the pools of black flies, there were 158 individuals of *Simulium tescorum* (2015: 57, 2016: 101), 302 individuals of *Simulium vittatum* (sensu lato [s.l.]) (2015: 82, 2016: 220), 16 individuals of *Simulium clarum* “black” phenotype (2015: 5, 2016: 11), and 13 individuals of *S. clarum* “orange” phenotype (2015: 6, 2016: 7). PCR analysis revealed the percentage of filarioid-positive pools were 7.50% (n = 3) for *S. tescorum*, 3.75% (n = 3) for *S. vittatum* (s.l., likely *S. tribulatum*), 7.69% (n = 1) for *S. clarum* “black” phenotype, and no positives for *S. clarum* “orange” phenotype. Genetic distance and phylogenetic analyses suggest that the northern California *Onchocerca* isolates belong to the same species reported in black flies from southern California (average pairwise comparison: 0.32%), and seem closely related to *Onchocerca* isolates of white-tailed deer from upstate New York (average pairwise comparison: 2.31%).

**Conclusion:** A cryptic *Onchocerca* species was found in Lake County, California, and may be a part of a larger, continentally distributed species complex rather than a single described species of North America. In addition, there are at least three putative vectors of black flies (*S. clarum, S. tescorum, S. vittatum*) associated with this cryptic *Onchocerca* species. A comprehensive reassessment of North American *Onchocerca* biodiversity, host, and geographic range is necessary.

*Correspondence: gverocai@cvm.tamu.edu
1 Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
Full list of author information is available at the end of the article

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Keywords: Cervidae, Filarial parasites, Filarioidea, Onchocerciasis, Parasite biodiversity, Vector-borne diseases, Xenomonitoring

Background

*Onchocerca* Diesing, 1841, a genus of filarial nematodes, is a globally distributed, vector-borne parasite that infects a wide variety of species that includes both animals and humans [1]. Well-known species of *Onchocerca* include *Onchocerca volvulus* (Leuckart, 1893), also known as the agent of river blindness in humans, and the zoonotic parasite *Onchocerca lupi* Rodonaja, 1967, the agent for causing canine ocular onchocerciasis [2]. *Onchocerca* species are transmitted via blood-sucking dipteran vectors, including black flies, pronghorns, elk, and moose. *Onchocerca cervipedis* (Linnaeus, 1758) is known as the “foot worm.” Described nearly a century ago by Wehr and Dikmans, 1935, or what is commonly known as the black fly vectors of southern California, and blood analysis supports the notion of a possible Cervidae host [18].

Despite the zoonotic potential and possible deleterious impacts to host health of most *Onchocerca* species, little is known about the clinical and ecological significance of the ungulate parasite *Onchocerca cervipedis* Wehr and Dikmans, 1935, or what is commonly known as the “foot worm.” Described nearly a century ago [3], *O. cervipedis* has an extensive distribution range from areas of Central America to Canada, and infects a variety of cervids including the white-tailed deer *Odocoileus virginianus* (Zimmermann, 1780); mule deer *Odocoileus hemionus* Rafinesque, 1817); moose *Alces americanus* Clinton, 1822; elk or wapiti *Cervus canadensis* Erxleben, 1777; and caribou *Rangifer tarandus* (Linnaeus, 1758); and the antilocaprid pronghorn *Antilocapra americana* (Ord, 1815) [4–16]. *Onchocerca cervipedis* has always been assumed to be the only *Onchocerca* species to infect these North American ungulates; however, there is mounting evidence that suggests otherwise. Recent studies have shown that *Onchocerca* isolates from the skin of white-tailed deer from New York [17] were genetically distinct from isolates of moose from northern Canada [15]. In addition, cryptic *Onchocerca* DNA was discovered from black fly vectors of southern California, and blood analysis supports the notion of a possible Cervidae host [18]. Therefore, all previous reports on *Onchocerca* across the Americas, including ungulate host and vector associations, require a comprehensive re-evaluation [15, 17, 18].

In order to shed further light on the cryptic diversity of species within *Onchocerca* from North America, we molecularly screened putative black fly vectors trapped in Lake County, NC, USA, for filarial nematode DNA. We discuss these results in the current context of known cryptic biodiversity and historical biogeography of *Onchocerca* in North America.

Methods

Black fly collection

Lake County, California, was the designated area targeted for black fly collection. Lake County is located in one of the broad valleys of northern California (122°50' W, 39°00' N) and contains the largest freshwater lake entirely in California, Clear Lake [19]. Through coordination with the Lake County Vector Control District, female black flies were caught by CDC-style miniature CO2-baited mosquito traps (John H. W. Hock Company, Gainesville, FL, USA). Dry ice kept in a cooler served as source of CO2, and traps were set overnight at various locations around the shores of Clear Lake, weekly or biweekly, between April 2015 and October 2016 (Fig. 1). Once collected, the black flies were morphologically identified to species or species-complex level according to taxonomic keys [20]. Adult *S. clarum* black flies were recognized by a distinct three-striped scutal pattern, but were differentiated by stripe color type. All samples were stored at −80°C until further analysis.

Molecular screening and sequencing

Individual flies were morphologically identified and pooled (≤10 individuals) by species, collection date, and trap location (Table 1; Fig. 1). DNA extraction of pools of black flies was performed manually using the Qiagen DNeasy© Blood and Tissue Kit (Qiagen, Valencia, CA, USA). Briefly, black flies were macerated with sterile plastic pestles in an Eppendorf tube, and homogenized with ATL buffer and proteinase K. Samples were then incubated in a dry heat block for 45 min at 56°C, and then centrifuged for 5 min at 8000×g. The remaining protocols followed the manufacturer’s instructions. DNA lysates were kept refrigerated at −20°C until further processing.

Polymerase chain reactions (PCR) targeting the mitochondrial NADH dehydrogenase subunit 5 (nd5) gene of filaroid nematodes, using the primers ND5-Ov5A-F (5’-TTGTTGTGCCTAAAGGCCATATG-3’) and ND5-OvC-R (5’-CCCCTAGTAAACAAAACCCACA-3’) [21]. Cycling conditions consisted of 95°C for 2 min, followed by 35 cycles of 95°C for 30 s, 50°C for 45 s, and 72°C for 30 s, and a final extension at 72°C for 5 min, following previously published protocols [18].
Potential PCR products were subjected to agarose gel to determine if amplicon was present. An E.Z.N.A. Cycle Pure Kit (Omega Bio-tek, Norcross, GA, USA) was used to purify DNA using the manufacturer’s protocol. Products were then directly sequenced with the same primers using the BigDye Terminator Cycle Sequencing Kit.

**Phylogenetic analysis**

Sequences were aligned and edited using MEGA X software [22]. Phylogenetic trees of the partial nd5 gene (427 bp) were constructed by utilizing the maximum likelihood method and Tamura-Nei model with gamma distribution in 2000 bootstrap replicates. All sequences at the nd5 gene for *Onchocerca* species available through GenBank were included. *Dirofilaria immitis* (Leidy, 1856) and *Dirofilaria repens* Railliet and Henry, 1911 were used as outgroups within the family Onchocercidae.

**Taxonomy of simulid vectors and mammalian hosts for Onchocerca**

The taxonomy of black flies and artiodactyl mammalian hosts followed the most recent and comprehensive literature [20, 23, 24].

**Results**

A total of 485 black flies were collected from 27 different collection sites in the Lake County area (Fig. 1). Overall, 150 flies were collected in 2015, and 335 flies in 2016, representing three black fly species. Of these, 158 individuals were identified as *Simulium tescorum* Stone and Boreham, 1965 (2015: 57, 2016: 101), 302 individuals of

![Fig. 1](image-url)
Simulium vittatum Lugger, 1897 (sensu lato [s.l.], likely S. tribulatum) (2015: 82, 2016: 220), 16 individuals of Simulium clarum (Dyar and Shannon, 1927) “black” phenotype (2015: 5, 2016: 11), and 13 individuals of Simulium clarum “orange” phenotype (2015: 6, 2016: 7).

Regarding the samples collected in 2015, a total of 2/31 S. vittatum pools (6.5%), 1/17 S. tescorum pools (5.9%), and 1/3 S. clarum “black” phenotype pools (33.3%) were positive for filarioid DNA and subsequently sequenced for Onchocerca DNA (Table 1). In 2016, a total of 1/49 S. vittatum pools (2.0%) and 2/23 S. tescorum pools (8.7%), were positive for filarioid DNA and subsequently sequenced (Table 1). All positive S. vittatum pools, coordinates and cities of where the positive was located, and the percentage of positive pools by species

| Year | Species             | Number examined | Number of pools | Positive black fly pools | Coordinates | Location          | Percentage of positive pools by species (%) |
|------|---------------------|-----------------|-----------------|--------------------------|-------------|-------------------|--------------------------------------------|
| 2015 | S. clarum “black”  | 5               | 3               | (1) SCB-15-039          | 38°53′21.9″N, 122°43′53.6″W | Kelseyville | 33.3                         |
|      | S. clarum “orange” | 6               | 6               | None                     | –           | –                 | 0.0                                        |
|      | S. tescorum         | 57              | 17              | (1) ST-15-010           | 38°43′16.7″N, 122°37′12.8″W | Middletown | 5.9                          |
|      | S. vittatum         | 82              | 31              | (1) SV-15-020A          | 38°55′3.8″N, 122°35′20.9″W | Lower Lake | 6.5                          |
|      |                     |                 |                 | (2) SV-15-043           | 38°55′3.8″N, 122°35′20.9″W | Lower Lake | 6.5                          |
|      | Total               | 150             | 57              | 4                        | –           | –                 | 7.0                                        |
| 2016 | S. clarum “black”  | 11              | 10              | None                     | –           | –                 | –                                          |
|      | S. clarum “orange” | 7               | 7               | None                     | –           | –                 | –                                          |
|      | S. tescorum         | 101             | 23              | (1) ST-16-011           | 38°56′49.5″N, 122°54′14.3″W | Lakeport   | 8.7                          |
|      |                     |                 |                 | (2) ST-16-014           | 38°55′10.2″N, 122°46′35.5″W | Kelseyville | –                                          |
|      | S. vittatum         | 220             | 49              | (1) SV-16-030A          | 38°55′19.1″N, 122°37′35.0″W | Lower Lake | 2.0                          |
|      |                     |                 |                 |                          | –           | –                 | –                                          |
|      | Total               | 335             | 89              | 3                        | –           | –                 | 3.4                                        |
| 2015–2016 | S. clarum “black” | 16              | 13              | 1                        | –           | –                 | 7.7                                        |
|      | S. clarum “orange” | 13              | 13              | 0                        | –           | –                 | 0.0                                        |
|      | S. tescorum         | 158             | 40              | 3                        | –           | –                 | 7.5                                        |
|      | S. vittatum         | 302             | 80              | 3                        | –           | –                 | 3.8                                        |
|      | Overall total       | 485             | 146             | 7                        | –           | –                 | 4.8                                        |

Black flies were collected in the 2015–2016 field season using CO2-baited traps in the Lake County, California area. Four species of black flies were caught: S. clarum (black); S. clarum (orange); S. tescorum; and S. vittatum. However, S. clarum (orange) had no positive individuals. Each row denotes the number of black flies examined, the number of pools (n = ≤ 10), the positive black fly pools, coordinates and cities of where the positive was located, and the percentage of positive pools by species.
Fig. 2. Maximum likelihood tree depicting phylogenetic relationship of the nd5 gene between species of known Onchocerca and the cryptic Onchocerca DNA found across geographic isolates of Onchocerca in California and New York, USA, created with MEGA X. Branches with less than 50% bootstrap were collapsed and bootstrap support shown besides branches indicate 2000 replicates. All cryptic DNA samples obtained from black flies from Lake County, California, are denoted with a black diamond and have been accessioned in GenBank (MZ420192; MZ420193; MZ420194; MZ420195; MZ420196; MZ420197; MZ420198).
comparisons like *O. lupi*, 11.75% average (11.24–11.86%), rather than intraspecific comparisons (Table 2; Fig. 3). The majority of pairwise comparisons fall outside the range of ~2.00–5.00% (Table 2; Fig. 3), which is comparable to other studies comparing interspecific versus intraspecific based on pairwise distances at the partial *cox-1* gene of the genus *Onchocerca* [2]. However, when the New York isolate is compared to either Californian isolate, all pairwise comparisons fall within the range of ~2.00–5.00%. While evidence clearly indicates that all Californian isolates are conspecifics (Table 2; Fig. 3), the phylogenetic relationships among the New York and Californian isolates remain ambiguous. Table 3 shows the average and range percent identity among Lake County *Onchocerca* isolates and other isolates also shown in Table 2 using BLAST analysis.

**Discussion**

Our study identified cryptic *Onchocerca* DNA in three different *Simulium* species in southern California, USA. We discovered that *Onchocerca* isolates found in black flies in Lake County, northern California, belong to the same cryptic *Onchocerca* species previously found in black flies in Los Angeles County, southern California [18]. Corroborating the findings from southern California, *Onchocerca* DNA was detected in two black fly species: *S. vittatum* (s.l.) and *S. tescorum* [18] (Table 1). In addition, a third species of black fly was shown to carry the same cryptic *Onchocerca* DNA: *S. ciarum* belonging to the “black” phenotype (Table 1).

Phylogenetic analyses of the *nd5* gene demonstrate that the cryptic *Onchocerca* found in southern and northern California black flies (present study; [18]) and the equally cryptic *Onchocerca* isolate found in New York, northeastern USA [17] represent one individual clade with little genetic divergence (Fig. 2). However, a definitive conclusion on whether the Californian isolates are conspecific with the New York isolates cannot yet be determined (Table 2; Fig. 3). Further studies targeting a multilocus approach could help shed light on the exact phylogenetic relationships and taxonomic status of these geographically distant isolates. This notion is best exemplified by comparing the *nd5* gene to the *cox-1* gene, which appears to exhibit greater diversity within the cryptic *Onchocerca* isolates [18]. In addition, at this stage, it is not possible to conclude that the cryptic species present in northern California belongs to the originally described *O. cervipes*. In the original description of the species by Wehr and Dikmans [3], the authors used specimens from two different locations and at least two different hosts, including *O. virginianus* and *O. hemionus* from Montana, USA, and *O. hemionus* from British Columbia, Canada. To further elucidate this taxonomic conundrum, isolates from these hosts and locations should be collected, morphologically re-evaluated, molecularly characterized, and subsequently compared to these many isolates within the *Onchocerca* complex.

**Molecular screening and putative vectors of cryptic *Onchocerca* isolates**

The finding of cryptic *Onchocerca* DNA through molecular screening of arthropod vectors (i.e., xenomonitoring) provides a straightforward approach to understanding more about parasite biodiversity, geographic distribution, and putative vector associations. Moreover, the utilization of xenomonitoring of North American parasites allows for concurrent monitoring of other similar *Onchocerca* species, such as the zoonotic *O. lupi*, that are of current public health concern [28]. However, despite these advantages, implication of a given arthropod species in the transmission of *Onchocerca* should be cautiously interpreted until further demonstrated by recovering infective third-stage larvae or parasite DNA from the head of the vector, and/or experimentally. Comparable to Verocai et al. [18], our results showed that the positivity rate for *Onchocerca* DNA was low in the black fly populations. This is similar to other filarial nematode studies that revealed low positive prevalence rates of *O.

---

**Table 2** Average pairwise comparisons, with ranges in parentheses, of *nd5* gene with different *Onchocerca* isolates or species

| Onchocerca isolate | Lake County, CA | Los Angeles, CA | Upstate New York | *Onchocerca* sp. | *Onchocerca lupi* | Reference |
|--------------------|----------------|----------------|-----------------|-----------------|-----------------|-----------|
| Lake County, CA    | 0.24% (0.00–0.95%) |              |                 |                  |                 | Present study |
| Los Angeles, CA    | 0.32% (0.00–2.26%) | 0.48% (0.00–2.54%) |              |                  |                 | [18]       |
| Upstate New York   | 2.31% (2.12–3.27%) | 2.34% (2.12–3.27%) | 0.24% (0.00–0.48%) |                  |                 | [17]       |
| *Onchocerca* sp.   | 10.04% (9.64–10.64%) | 9.93% (7.65–11.11%) | 9.47% (8.61–9.77%) | 0.12% (0.00–0.24%) |                 | [15]       |
| *Onchocerca lupi*  | 11.75% (11.24–11.86%) | 11.82% (11.24–12.21%) | 10.30% (9.18–10.70%) | 10.99% (10.53–11.3%) | 0.61% (0.00–1.51%) | Various sources |

*Onchocerca* isolates are broken down by region (Lake County, CA; Los Angeles, CA; and Ithaca, NY) or by the species it is from (*O. lupi; Onchocerca* sp.). *Onchocerca lupi* was chosen because it is a North American *Onchocerca* species that is not considered part of the hypothesized *Onchocerca cervipes* species complex.
lupi in southern California [28], O. volvulus in Africa [29, 30], and Wuchereria bancrofti (Cobbold, 1877) in American Samoa and Guinea [31–33].

Our study also provided evidence for an additional species of black fly as a probable vector of this Onchocerca species. Although three black fly species have been implicated as possible intermediate hosts for this Onchocerca, it should be noted that the CO2 trapping method utilized may impact the abundance and species composition of black flies caught [34]. According to the literature, S. clarum has been reported to feed on a variety of mammals (horses, cattle, rabbits, and humans) and birds [35, 36]. The finding of DNA of an Onchocerca species possibly associated with a cervid host(s) suggests that these mammals may serve as a blood source for this dipteran, similar to that of S. tescorum and S. vittatum, as suggested by Verocai et al. [18, 20]. However, S. clarum is restricted to the California Central Valley region near the present study site of Lake County [20]. Similarly, S. tescorum has been reported with a limited range, spanning only California and Arizona [20, 23]. This means that even if these two vectors are competent hosts for this Onchocerca species, they would only contribute to the transmission within their more restricted distribution. In contrast, species within the S. vittatum complex, which includes S. tribulatum, have a widespread distribution across North America, including both California and New York [23].

Definitive hosts of cryptic Onchocerca isolates
While relevant literature suggests that this Onchocerca isolate is associated with cervid hosts [17, 18], there is a lack of experimental data to definitively confirm this hypothesis. However, the recent discoveries of at least two or more genetic Onchocerca isolates in North America indicates a possible wider distribution of this species.

Table 3: Average percent identity of Lake County isolates compared to other known Onchocerca isolates, using NCBI BLAST analysis, at the nd5 gene level

| Accession numbers | Lake County, CA | Los Angeles, CA | Upstate New York | Onchocerca sp. [15] | Onchocerca lupi |
|------------------|-----------------|-----------------|-------------------|--------------------|----------------|
| MZ420192         | 99.76% (98.57–100%) | 96.42% (94.57–100%) | 92.09% (91.94–92.04%) | 91.81% (91.74–92.00%) |
| MZ420193         | 99.76% (98.57–100%) | 96.42% (94.57–100%) | 92.08% (91.92–92.38%) | 91.79% (91.72–92.00%) |
| MZ420194         | 99.76% (98.57–100%) | 96.42% (94.57–100%) | 92.09% (91.94–92.04%) | 91.81% (91.74–92.00%) |
| MZ420195         | 99.76% (98.57–100%) | 96.42% (94.57–100%) | 92.09% (91.94–92.04%) | 91.79% (91.72–92.00%) |
| MZ420196         | 99.76% (98.57–100%) | 96.42% (94.57–100%) | 92.08% (91.92–92.38%) | 91.79% (91.72–92.00%) |
| MZ420197         | 99.26% (97.87–100%) | 95.70% (94.03–97.37%) | 91.95% (91.63–92.36%) | 92.05% (91.99–92.24%) |

Onchocerca isolates are broken down by region (Lake County, CA; Los Angeles, CA; and Ithaca, NY) or by the species it is from (O. lupi; Onchocerca sp.). Onchocerca lupi was chosen because it is a North American Onchocerca species that is not considered part of the hypothesized Onchocerca cervipedis species complex.
America hypothesized to be associated with at least three of the cervid hosts (i.e., mule deer, white-tailed deer, and moose) raise many questions regarding *Onchocerca*—host assemblages. Of these three cervid hosts, only the mule deer’s range encompasses southern California, including Los Angeles County [37–39]. Thus, it was reasonably hypothesized that the mule deer could be the putative host to the *Onchocerca* isolate from southern California if the parasite is truly associated with cervid hosts [18]. Lake County also includes the range of the mule deer [37]; however, unlike southern California, Lake County is also home to the Californian tule elk, or *Cervus elaphus nannodes* Merriam, 1905 [40]. This elk subspecies was hunted to near extinction in the late 1800s, and now has a thriving population in California. According to most recent data, about 6000 tule elk populate California, including many herds that live near the Lake County region of northern California where black flies were sampled for this current study [40–42]. While there was no blood meal analysis completed, it is possible that these cervids could be a blood meal source for black flies and consequently be a potential host to the hypothesized *O. cervipedis* species complex [8]. Ideally, adult worms or microfilariae should be sampled from necropsied elk hosts and molecularly analyzed to confirm its definitive host status.

Species within *O. cervipedis* complex have been reported in a variety of locations across North America in the six ungulate hosts: pronghorn from Idaho [9]; moose from Alaska, Alberta, British Columbia, and the Northwest Territories [12, 14–16, 43]; elk from Montana [8]; mule deer from Arizona, California, Montana, Utah, Wyoming, and British Columbia [3–5, 7, 8, 10, 18, 44–52]: white-tailed deer from Arizona, Missouri, Montana, New York, Oregon, Pennsylvania, and British Columbia, and also from Costa Rica [3, 5, 6, 8, 13, 17, 46, 50, 53–57]; and caribou from Alaska and British Columbia [11, 15]. Additional records from *Odocoileus* from Colorado, Idaho, and Montana were reported as “deer” without species designation [58–62]. Therefore, it can be inferred that sample collection should begin in these reported locations and include all six ungulate hosts when obtaining biological samples. Recovery of nematodes from necropsy, with subsequent morphological and DNA identification, will confirm parasitic infection of a definitive host and aid in interpreting the distribution of cryptic *Onchocerca* isolates.

Evolutionary history and ecological considerations of cryptic *Onchocerca* isolates

Currently, it is hypothesized that the two, and possibly more, known *Onchocerca* species (i.e., *O. cervipedis* sensu Verocai et al. [15] and the clade comprising the Californian and New York isolates [17, 18]) are the result of independent expansion events from Palearctic ungulates hosts colonizing from across the Bering Land Bridge into the Nearctic [63–65]. It is currently unknown if the finding of at least two *Onchocerca* species is the result of a small, incomplete sampling of larger species diversity or the true representation of diversity in North America. Nevertheless, there is substantial evidence from eastern Asia for prior underestimation of *Onchocerca* species diversity and richness. For instance, *Onchocerca suzukii* Yagi, Bain and Shoho, 1994, *Onchocerca eberhardi* Uni et al., 2007, and *Onchocerca takaokai* Uni, Fukuda and Bain, 2015, have been recently described from wild ungulates of Japan [66–68]. Furthermore, *Onchocerca borneensis* Uni, Mat Udin and Takaoka, 2020 [69], was described in bearded pigs of Borneo with additional molecular evidence suggesting that two closely related parasites, *Onchocerca dewittei* Bain, Ramachandran, Petter and Mak, 1977, and *Onchocerca japonica* Uni, Bain and Takaoka, 2001, which were considered subspecies of the former were, in fact, separate species [69]. Indeed, it is feasible that the North American *Onchocerca* species complex, about which much is still unknown, could comprise undescribed *Onchocerca* diversity, similar to the pattern that we have witnessed in Asian suids and ungulates. Moreover, host–parasite biogeography appears to play a critical role in *Onchocerca* diversification. As noted by Uni et al. [69], *O. borneensis* and *O. dewittei* infect *Sus barbatus* Müller and *Sus scrofa vittatum* Boie in the Indomalayan region, but *O. japonica* and *O. dewittei* infect different subspecies of the same host species in the Palearctic and Indomalayan regions. Thus, when re-evaluating *Onchocerca* in the North American landscape, collecting specimens from sympatric and allopatric host ranges may yield more complete information about parasitic diversity.

Conclusion

A cryptic *Onchocerca* species was found in Lake County, California, which is likely conspecific to isolates previously characterized from southern California. Putative vectors of this cryptic parasite include *S. tesserum* and *S. vittatum*. In addition, a previously unrecognized black fly vector, *S. clarum*, was discovered to be a potential vector. In order to understand the true biodiversity of the genus *Onchocerca* in North America, a complete continental re-evaluation of definitive hosts, vector associations, and geographic distribution is necessary through the integration of classical and molecular methods.

Acknowledgements

We would like to thank the Lake County Vector Control District and all whose support made this study possible.
**Authors’ contributions**
MK and GGV drafted the manuscript. GGV acquired funding. BMR, MLK, AAM, and JS performed blackfly collections and KIN performed identification. GGV performed the molecular genetic study. All authors read and approved the final manuscript.

**Funding**
Not applicable.

**Availability of data and materials**
The data supporting the conclusions of this article are included within the article. The sequences have been submitted to the GenBank database under the accession numbers MZ420192–MZ420198 (ndS).

**Declarations**

**Ethics approval and consent to participate**
Not applicable.

**Consent for publication**
Not applicable.

**Competing interests**
The authors declare that they have no competing interests.

**Author details**
1 Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA. 2 San Gabriel Valley Mosquito and Vector Control District, West Covina, CA, USA. 3 Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA. 4 Lake County Vector Control District, 410 Esplanade St., Lakeport, CA 95453, USA.

**Received:** 28 June 2021  **Accepted:** 1 September 2021

**Published online:** 15 September 2021

**References**
1. Anderson RC. Nematode parasites of vertebrates: their development and transmission. Wallingford: CABI Publishing; 2000.
2. Lefolouin G, Gannelli A, Makepeace BL, Mutatchiy V, Townson S, Uni S, et al. Whence river blindness? The domestication of mammals and host-parasite co-evolution in the nematode genus Onchocerca. Int J Parasitol. 2017;47:457–70.
3. Wehr EE, Dikmans G. New Nematodes (Filariidae) from North American Ruminants. Zool Anz. 1935;202–8.
4. Annarell A. A new record of a deer parasite for California. Am J Vet Res. 1941;2:199–201.
5. Caballero Y. Morfología y posicion sistemática de Onchocerca cervipedis. Rev Bras Biol. 1954;4:537–62.
6. Carreno RA, Dudden LA, Brooks DR, Abrams A, Hoberg EP. Parelaphostrongylus tenuis (Nematoda: Protostrongylidae) and other parasites of white-tailed deer (Odocoileus virginianus) in Costa Rica. Comp Parasitol. 2001;68:177–84.
7. Cowan IM. Parasites, diseases, injuries, and anomalies of the Columbian black-tailed deer, Odocoileus hemionus columbianus (Richardson), in British Columbia. Can J Res. 1946;24:71–103.
8. De Nio RM, West RM. The foot-worm disease in deer of the northern Rocky Mountain region. J For. 1942;40:540–3.
9. Dikmans G. Onchocerca flexuosa from the subcutaneous tissues of an antelope and subcutaneous abscesses of a deer. J Parasitol. 1933;19:246.
10. Herman CM, Bischoff A. The foot worm parasite of deer. Calif Fish Game. 1946;32:182–90.
11. Low W. Parasites of woodland caribou in Tweedsmuir Provincial Park, British Columbia. Can Field Nat. 1976;90:189–91.
12. Ritchey R, Edwards R. Parasites and diseases of the Wells Gray Moose Herd. J Mammal. 1958;39:139–45.
13. Rush W. Onchocerciasis, a new disease in the white-tailed deer of Montana. J Mammal. 1935;16:70–1.
14. Samuel W, Barrett M, Lynch G. Helminths in moose of Alberta. Can J Zool. 1976;54:307–12.
15. Verocai GG, Lejeune M, Beckmen KB, Kashivakura CK, Veitch AM, Popko RA, et al. Defining parasite biodiversity at high latitudes of North America: new host and geographic records for Onchocerca cervipedis (Nematoda: Onchocercidae) in moose and caribou. Parasit Vectors. 2012;5:242.
16. Williams RB, Babero BB. Onchocerca in an Alaskan moose. J Mammal. 1958;39:449–50.
17. McFrederick QS, Haselkorn TS, Verocai GG, Gaenke J. Cryptic Onchocerca species infecting North American cervids, with implications for the evolutionary history of host associations in Onchocerca. Parasitol. 2013;140:1201–10.
18. Verocai GG, Nelson KJ, Callahan RT, Weskja JW, Hassan HK, Hoberg EP. A cryptic species of Onchocerca (Nematoda: Onchocercidae) in blackflies (Simulium spp) from southern California, USA. Parasit Vectors. 2018;11:547.
19. Goldman CR, Wetzel RG. A study of the primary productivity of clear lake, Lake County, California Ecol. 1963;44:283–94.
20. Adler P, Currie D, Wood D. The Black Flies (Simuliidae) of North America. Comstock Pub. Associates, Ithaca, NY, 2004.
21. Morales-Hojas R, Cheke RA, Post R. Molecular systematics of five Onchocerca species (Nematoda: Filarioidea) including the human parasite, O. volvulus, suggest sympatric speciation. J Helminthol. 2006;80:281–90.
22. Kumar S, Stecher G, Li M, Krzyzak A, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547.
23. Adler PH, Crosskey RW. World blackflies (Diptera: Simuliidae): a comprehensive Revision of the Taxonomic and Geographical Inventory. https://biomia.sites.clemson.edu/pdfs/blackflyinventory.pdf. (2016). Accessed 15 May 2021.
24. Grubb P. Order artiodactyla. In: Wilson DE, Reeder DM, editors. Mammal species of the world: a taxonomic and geographic reference. Baltimore: The Johns Hopkins University Press; 2005. p. 652–722.
25. Cantey PT, Weeks J, Edwards M, Rao S, Ostovar GA, Dehorry W, et al. The emergence of zoonotic Onchocerca lupi infection in the United States—a case-series. Clin Infect Dis. 2016;62:278–83.
26. Roe CC, Yaglom H, Howard A, Urbans J, Verocai GG, Andrews L, et al. Coyotes as Reservoirs for Onchocerca lupi, United States, 2015–2018. Emerg Infect Dis. 2020;26:2989.
27. Verocai GG, Conboy G, Lejeune M, Maron F, Hanna P, MacDonald E, et al. Onchocerca lupi nematodes in dogs exported from the United States into Canada. Emerg Infect Dis. 2016;22:1477.
28. Hassian HK, Bolcen S, Kuboefick J, Nutman TB, Eberhard ML, Middleton K, et al. Isolation of Onchocerca lupi in dogs and black flies, California, USA. Emerg Infect Dis. 2015;21:789–96.
29. Katholi CR, Toel L, Memiweather A, Unnasch TR. Determining the prevalence of Onchocerca volvulus infection in vector populations by polymerase chain reaction screening of pools of black flies. J Infect Dis. 1995;172:1414–7.
30. Yaméogo L, Toel L, Hougaard J-M, Boatin BA, Unnasch TR. Pool screen polymerase chain reaction for estimating the prevalence of Onchocerca volvulus infection in Simulium damnosum sensu lato: results of a field trial in an area subject to successful vector control. Am J Trop Med. 1999;60:124–8.
31. Chadee D, Williams S, Ottesen E. Xenomonitoring of Culicifacies quinquemaisi cusciotis mosquitoes as a guide for detecting the presence or absence of lymphatic filariasis: a preliminary protocol for mosquito sampling. Ann Trop Med Parasitol. 2002;96:547–53.
32. Kouassi BL, de Souza DK, Goepogui A, Narah CA, King SA, Mamadou BS, et al. Assessing the presence of Wuchereria bancrofti in vector and human populations from urban communities in Conakry, Guinea. Parasit Vectors. 2015;8:1–9.
33. Schmaedick MA, Koppel AL, Pilotte N, Torres M, Williams SA, Dobson SL, et al. Molecular xenomonitoring using mosquitoes to map lymphatic filariasis after mass drug administration in American Samoa. PLoS Negl Trop Dis. 2014;8:e3087.
34. Anderson J, Yew W. Trapping black flies (Diptera: Simuliidae) in Northern California. I. Species composition and seasonal abundance on horses, host models, and in insect flight traps. J Vector Ecol. 1995;20:7–25.
35. Anderson JR, Voskuil GA. A reduction in milk production caused by the feeding of blackflies (Diptera: Simuliidae) on dairy cattle in California,
with notes on the feeding activity on other animals. Mosq News. 1963;23:126–31.
36. Reeves W, Asman S, Hardy J, Milby M, Reisen W. Epidemiology and Control of Mosquito-borne Arboviruses in California, 1943–1987. Sacramento, CA: California Mosquito and Vector Control Association. 1990;28–44.
37. Pérez-Solano LA, Gallina-Tessaro S, Sánchez-Rojas G. Individual variation in mule deer (Odocoileus hemionus) habitat and home range in the Chihuahuan Desert. Mexico J Mammal. 2016;97:1228–37.
38. Hundertmark K. Alces alces: The IUCN red list of threatened species 2016. (2016). Accessed Downloaded on 09 June 2021.
39. Gallina S, Lopez Arevalo H. Odocoileus virginianus. The IUCN red list of threatened species. (2016). Accessed Downloaded on 09 June 2021.
40. Batter TJ, Bush JP, Sacks BN. Assessing genetic diversity and connectivity in a tule elk (Cervus canadensis nannodes) metapopulation in Northern California. Conserv Genet. 2021;1–13. https://doi.org/10.1007/s10592-021-01371-0.
41. Ciriacy-Wantrup S, Phillips WE. Conservation of the California Tule Elk: a socioeconomic study of a survival problem. Biol Conserv. 1970;3:23–32.
42. Watt LA. The continuously managed wild: tule elk at point Reyes National Seashore. J Int Wildl Law Policy. 2015;18:289–308.
43. Pledger DJ: Black flies (Diptera, Simuliidae) of the Swan Hills, Alberta. 1955;8:13–22.
44. Duckworth CU. Division of Animal Husbandry. 21 Ann Rep Calif Dept Agr; 1916;34:294–300.
45. Herman CM. Further observations on deer foot worm infection. Calif Fish Game. 1947;33:54.
46. Hibler CP . Description of the Microfilaria of Eulaeophora schneideri and Onchocerca cervipes in mule deer from central Utah. Great Basin Nat. 1982;42:3.
47. Jensen LA, Pederson JC, Andersen FL. Prevalence of O. skrjabini in Montana deer. Montana Livestock San Bd and State Vet. 1936;15.
48. Dikmans G. A note on the caudal papillae of the male of Wehrdikmansia cervipes (Wehr and Dikmans, 1935) Caballero, 1945. Proc Helminthol Soc Wash. 1947;14:34–5.
49. Senger CM. Some parasites of Montana deer. Montana Wildl 1963;Autumn:5–13.
50. Walker ML, Becklund WW. Checklist of the internal and external parasites of the white-tailed deer in the United States and Canada. Index-Catalogue Med Vet Zool. 1970;1 Special Publ 45.
51. Wehrdikmans G. A note on the parasitism of the male of Wehrdikmansia cervipes (Wehr and Dikmans, 1935) Caballero, 1945. Proc Helminthol Soc Wash. 1947;14:34–5.
52. Herrmann CM. Some parasites of Oregon wildlife. Oreg Agr Exp Sta Tech Bull. 1956;8:13–22.
53. Voge M. A list of nematode parasites from California mammals. Am Midl Nat. 1956;64:2–9.
54. Walker ML. Becklund WW. Checklist of the internal and external parasites of deer, Odocoileus hemionus and O. virginianus, in the United States and Canada. Index-Catalogue Med Vet Zool. 1970;1 Special Publ 45.
55. Wehrdikmans G. A note on the parasitism of the male of Wehrdikmansia cervipes (Wehr and Dikmans, 1935) Caballero, 1945. Proc Helminthol Soc Wash. 1947;14:34–5.
56. Samuel W. Parasites of Pennsylvania Deer. Penn Game News. 1967;36:25–7.
57. Shaw JN. Some Parasites of Oregon Wildlife. Oreg Agr Exp Sta Tech Bull. 1947;11:1–6.
58. Butler WJ. Onchocerca cerva (in a deer shot in Broadwater County). Rep Montana Livestock San Bd and State Vet. 1936;15.
59. Samuel W. Parasites of Pennsylvania Deer. Penn Game News. 1967;36:25–7.
60. Reeves W, Asman S, Hardy J, Milby M, Reisen W. Epidemiology and Control of Mosquito-borne Arboviruses in California, 1943–1987. Sacramento, CA: California Mosquito and Vector Control Association. 1990;28–44.
61. Senger CM. Some parasites of Montana deer. Montana Wildl 1963;Autumn:5–13.
62. Hobberg EP, Brooks DR. A macroevolutionary mosaic: episodic host-switching, geographical colonisation and diversification in complex host–parasite systems. J Biogeogr. 2008;35:1533–50.
63. Hobberg EP, Brooks DR. Beyond vicariance: integrating taxon pulses, ecological fitting, and oscillation in evolution and historical biogeography. Biogeogr Host–Parasite Interact. 2010;7:7–20.
64. Hobberg EP, Galbreath KE, Cook JA, Kutz SJ, Polley L. Northern host–parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. Adv Parasitol. 2012;79:1–97.
65. Uni S, Bain O, Agatsuma T, Harada M, Torii H, Fukuda M, et al. Onchocerca eberhardi n. sp. (Nematoda: Filarioidea) from sika deer in Japan; relationships between species parasitic in cervids and bovids in the Holarctic region. Parasite. 2007;14:199–211.
66. Uni S, Fukuda M, Agatsuma T, Bain O, Otsuka Y, Nakatani J, et al. Onchocerca takaokai n. sp. (Nematoda: Filarioidea) in Japanese wild boars (Sus scrofa leucystax); description and molecular identification of intradiscal females. Parasitol Int. 2015;64:493–502.
67. Yagi K, Bain O, Shoho C. Endosymbionts of O. skrjabini (= O. tarsicola) from a relict bovid, Capricornis crispus, in Japan. Parasite. 1994;1:349–56.
68. Yagi K, Bain O, Shoho C. Onchocerca suzuki n. sp. O. skrjabini (= O. tarsicola) from a relict bovid, Capricornis crispus, in Japan. Parasite. 1994;1:349–56.
69. Yagi K, Bain O, Shoho C. Onchocerca suzuki n. sp. O. skrjabini (= O. tarsicola) from a relict bovid, Capricornis crispus, in Japan. Parasite. 1994;1:349–56.
70. Yagi K, Bain O, Shoho C. Onchocerca suzuki n. sp. O. skrjabini (= O. tarsicola) from a relict bovid, Capricornis crispus, in Japan. Parasite. 1994;1:349–56.
71. Yagi K, Bain O, Shoho C. Onchocerca suzuki n. sp. O. skrjabini (= O. tarsicola) from a relict bovid, Capricornis crispus, in Japan. Parasite. 1994;1:349–56.