Analysis and features of operation of fractional grain cleaners and secondary seed cleaning separators

V I Orobinsky, A M Gievsky, I V Baskakov, V A Gulevsky and A V Chernyshov
Voronezh State Agrarian University named after Emperor Peter I, 1, Michurina str., Voronezh, 394087, Russia
E-mail: smachin@agroeng.vsauro

Abstract. To obtain high-quality grain and seeds, it is necessary to clean the combine heap of weeds. Modern air-screen grain cleaners equipped with a screen cleaning systems, flat screens and a double-aspiration pneumatic system with pre-screen and post-screen cleaning channels are used. The fractional principle of post-harvest grain processing is promising. To create a universal grain cleaning machine to isolate the main fraction from the grain heap at the first stage of post-harvest processing, Voronezh State Agar University named after Emperor Peter I carried out theoretical and experimental studies, which made it possible to develop OZF-50, OZF-80 and SVS-30 separators. The machines have higher productivity, the original sieve design with an increased share of sorting sieves and an exclusive aspiration system. A number of new technical solutions have been used in the design of the separators, protected by patents of the Russian Federation. Theoretical prerequisites established the possibility of increasing the productivity 1.6-1.8 times according to GOST R 52325-2005. The total air consumption of the pneumatic system of grain cleaning machines can be reduced by 25-40%. Further improvement of separators requires a deeper study of the grain fractionation process, aerodynamic characteristics of aspiration systems, receiving and distribution devices, and establishment of close mutually beneficial relations between scientific institutions and agricultural engineering enterprises. This can contribute to the development of both domestic agricultural science and grain cleaning equipment production.

1. Introduction

Along with modern varieties of agricultural crops grown by Russian farms and technologies used for their cultivation, to produce high-quality seeds, high-performance fractional cleaners for post-harvest processing of grain heaps are required [1-5]. Separators must ensure the uninterrupted processing of grain. The separation of seed, fodder and unused waste at the earliest stage of cleaning is not possible without the use of two-aspiration air-sieve grain cleaning machines based on the fractional cleaning technology [4-5]. To manufacture grain cleaning machines, mathematical modeling [6-9] and scientific research of the technological process [10-13] are required.

2. Materials and methods

For post-harvest processing of grain, a huge number of grain and seed cleaning machines are produced. The Department of Agricultural Machines, Tractors and Cars of Voronezh State Agrarian University named after Emperor Peter I with the support of the Fund for the Development of Small Science and Technology Enterprises developed highly efficient separators OZF-50/25/10 and OZF-
80/40/20 (Figure 1). The technological scheme of operation of fractional grain cleaners OZF is shown in Figure 2.

Figure 1. Fractional grain cleaners OZF designed by Voronezh State Agricultural University: a - OZF-50; b - OZF-80

Figure 2. The technological diagram of the fractional grain cleaner OZF-80:
1 - frame; 2 - power supply device; 3 - channel of the first aspiration; 4 - channel of the second aspiration; 5 - sediment chamber of the first aspiration; 6 - sediment chamber of the second aspiration; 7 - screws; 8 - cross-flow fan; 9 - air outlet pipe; 10 - divider of the grain heap; 11 - air intake window; 12 - valve; 13 - sieve camps; 14 - tray for the output of the ear heap; 15 - tray for output of fodder fraction; 16 - tray for output of small impurities; 17 - unloading channel of cleaned grain; 18 - visor; B
- spike sieve ø 8-10 mm; C - undersowing sieve □ 1.7 mm; D - sorting sieve □ 2.2-2.4 mm;

- direction of air movement; — direction of grain heap movement;

- direction of movement of light impurities; — sorting sieve passage;

- direction of movement of light impurities; — direction of movement of light impurities;

- sorting sieve passage; — forage fraction; — cleaned grain; — sorting sieve descent; — second aspiration forage fraction

Figure 3. The technological diagram of the fractional grain cleaner OZF-80:
1 - frame; 2 - power supply device; 3 - channel of the first aspiration; 4 - channel of the second aspiration; 5 - sediment chamber of the first aspiration; 6 - sediment chamber of the second aspiration; 7 - screws; 8 - cross-flow fan; 9 - air outlet pipe; 10 - divider of the grain heap; 11 - air intake window; 12 - valve; 13 - sieve camps; 14 - tray for the output of the ear heap; 15 - tray for output of fodder fraction; 16 - tray for outputting small impurities; 17 - unloading channel of cleaned grain; 18 - visor; 19 - air intake windows; B - spike sieve ø 6-9 mm; C - undersowing sieve □ 1.7 mm; D - sorting sieve □ 2.2-2.6 mm;

- direction of air movement; — direction of grain heap movement;

- direction of movement of light impurities; — sorting sieve passage;

- direction of movement of light impurities; — direction of movement of light impurities;

- sorting sieve passage; — forage fraction; — cleaned grain; — sorting sieve descent; — second aspiration forage fraction
Highly efficient OZF grain cleaning machines are designed for preliminary, primary and secondary cleaning of grain heap, cereals, legumes and other crops. In the pre-cleaning mode, light and large impurities are released with an air flow and sieves in order to safely store grain and seeds, as well as to increase the efficiency of post-harvest processing. During the primary cleaning of grain, it is divided into fractions with bringing the content of impurities to basic conditions in accordance with GOST R 52325-2005. With the secondary cleaning of grain and leguminous crops, it is necessary to bring them to the requirements for sowing material and marketable grain.

3. Results and their discussion

For the OZF machines, several new technical solutions have been applied. They are protected by patents of the Russian Federation:

- two-aspiration air cleaning, which ensures the removal of light impurities into the waste fraction to the sieve mill, as well as the isolation of feeble and biologically defective kernels into the forage fraction after sieve cleaning, and the system is served by one diametrical fan with independent stepless air flow rate control in each of the aspiration systems using a frequency converter and changing the opening value of the adjusting air intake windows;
- sieve mills with a two-tier arrangement of sieves according to a new scheme, which makes it possible to double the area of the sorting sieves with the same dimensions of the machine, which ensures the allocation of up to 25% of defective grain to the fodder part;
- the original device of the ball cleaner, which allows for cleaning the sieves from "dead" zones.

The main technical characteristics of OZF separators are presented in Table 1.

Table 1. Main technical data of OZF grain cleaners

No.	Indicator	Machine brand	
		OFF-50	OFF-80
1	Wheat processing capacity, t/h:		
	- for preliminary cleaning;		
	- for primary cleaning;		
	- on secondary cleaning		
	fifty	80	
	25	40	
	10	twenty	
2	Electric motor power, kW:		
	- drive of the fan of the aspiration system and augers;		
	- drive of sieve mills		
	eleven	eleven	
	three	three	
3	Rotation frequency of the electric motor, min⁻¹:		
	- drive of the fan of the aspiration system and augers;		
	- drive of sieve mills		
	970	970	
	945	945	
4	Overall dimensions, mm:		
	- length;		
	- width;		
	- height		
	2995	4000	
	2260	2260	
	2760	2760	
5	Weight, kg		
	2300	2600	

The acceptance tests of the machines showed that after the secondary cleaning of winter wheat Moskovskaya 39, the content of crushed grain was 0.06-0.1%, and the number of weeds did not exceed 5 pcs/kg. At the same time, the purity of seeds was 99.2%. During the secondary cleaning of spring barley Honor, the content of crushed grain was 0.04-0.07%, and the number of weeds varied from 4 to 17 pcs / kg.

The OZF separators are mass-produced by the Oskolselmash enterprise in Novy Oskol, Belgorod region. Voronezh State Agrarian University with the support of the Ministry of Agriculture of the Russian Federation has developed a new grain cleaning machine SVS-30 (Figure 4).

The process flow diagram of the SVS-30 secondary seed cleaning separator is shown in Figure 5.
Figure 4. The separator for secondary cleaning of seeds SVS-30 developed by Voronezh State Agrarian University.

Figure 5. The diagram of operation of the secondary cleaning separator SVS-30: 1 - pneumatic separation channel of post-sieve cleaning; 2 - sedimentary chamber of the pneumatic channel; 3 - guiding visor; 4 - horizontal pre-sieve cleaning channel; 5 - section of the main fraction of the sedimentary chamber of the pre-sieve cleaning channel; 6 - dividing wall with a valve; 7 - section for collecting forage; 8 - power supply; 9 - channel to the cyclone and fan; 10 - upper reshetny camp; 11 - lower reshetny camp; 12 - feeding device; 13 - aspiration fodder output; 14 - trays for output of large impurities; 15 - trays for forage output of sieves; 16 - the output of the refined grain of the main fraction; 17 - spike sieves; 18 - sorting sieves of the lower mill; 19 - sorting sieves of the upper mill.

The SVS-30 separator for secondary cleaning of seeds is designed for the preparation of seeds of cereal crops, legumes, industrial and oil crops using the fractional technology of post-harvest processing of grain heaps. The planned technical characteristics are presented in Table 2.
Table 2. Planned technical characteristics of the SVS-30 separator

Indicators	Value
Specific productivity of the machine when wheat seed cleaning, t / (h · dm)	3.0
Separation completeness,%	85.0
Total resistance of the pneumatic system, no more, Pa	800
Air consumption, thousand m³ / (h · dm)	0.8
Specific power consumption for the fan drive, kW / dm	less than 0.5
Permissible specific load on sorting sieves, [q], kg / (h · dm²)	37

The innovative development is characterized by the consistent use of air flow in aspiration systems for pre-sieve cleaning with a horizontal channel and post-sieve cleaning with a vertical channel, as well as multi-tiered placement of the main sieves with a heap feeding. This design ensures the separation of the heap from combine harvesters into fractions at the pre-sieve cleaning stage. The advantages of the SVS-30 separator are improved quality of works, increased completeness of separation into fractions. This will increase the productivity of the grain cleaning machine by 1.5 ... 1.8 times and reduce the total air consumption of the pneumatic system by 25 ... 40%. The design of the SVS-30 separator has a lot of new technical solutions protected by patents of the Russian Federation. The employees of the University have developed scientific and technical documents, which was transferred to agricultural engineering enterprises.

4. Conclusion
Voronezh State Agricultural University has developed grain cleaning machines for various purposes. Their originality is confirmed by a number of patents of the Russian Federation, and their efficiency is due to high technical and economic indicators. Without further scientific research of the grain fractionation process, aerodynamic characteristics of aspiration systems, receiving and distributing devices, it is not possible to increase the productivity and quality of separators. It is necessary to establish close mutually beneficial relations between the scientific organizations and agricultural engineering enterprises of the Russian Federation, which will speed up the production of developed machines. This will increase the performance of domestic agricultural science and grain cleaning equipment production.

References
[1] Astanakulov K D, Karimov Y Z and Fozilov G 2011 Design of a grain cleaning machine for small farms *Ama-Agricultural mechanization in Asia Africa and Latin America* 42 (4) 37–40
[2] Kalkan F and Kara M 2011 Handling, frictional and technological properties of wheat as affected by moisture content and cultivar *Powder Technol.* 213 116–122
[3] Orobinsky V I, Tarasenko A P, Gievsky A M, Chernyshov A V and Baskakov I V 2018 Improving the mechanization of high-quality seed production *Advances in Engineering Research* 151 849-852
[4] Orobinsky V I, Gievsky A M, Gulevsky V A, Baskakov I V and Chernyshov A V 2021 Obtaining high-quality grain through the use of fractional technology for its cleaning *IOP Conf. Ser.: Earth Environ. Sci.* 640 022046
[5] Butovchenko A, Doroshenko A, Kol’Cov A and Serdyuk V 2019 Comparative analysis of the functioning of sieve modules for grain cleaning machines *E3S Web of Conf.: Innovative Technologies in Environmental Sci. and Education* 135 01081
[6] Badretdinov I, Mudarisov S, Tuktarov M, Dick E and Arslanbekova S 2019 Mathematical modeling of the grain material separation in the pneumatic system of the grain-cleaning machine *J. of Applied Engineering Sci.* 17 (4) 529-534
[7] Butovchenko A, Dorochenko A and Kotelnikova I 2018 Graph model development in the
context of the grain cleaning machine MATEC Web of Conf. 224 141807

[8] Gievskiy A M, Orobinsky V I, Tarasenko A P, Chernyshov A V and Kurilov D O 2018 Substantiation of basic scheme of grain cleaning machine for preparation of agricultural crops seeds IOP Conf. Ser.: Materials Sci. and Engineering 327 042035

[9] Saitov V E, Kurbanov R F and Suvorov A N 2016 Assessing the adequacy of mathematical models of light impurity fractionation in sedimentary chambers of grain cleaning machines Procedia Engineering 150 107–110

[10] Kharitonov M K, Gievsky A M, Orobinsky V I, Chernyshov A V and Baskakov I V 2020 Studying the design and operational parameters of the sieve module of the grain cleaning machine IOP Conf. Ser.: Earth Environ. Sci. 488 012021

[11] Machyhin S A, Rydin A A, Vasiliev A M and Strelyukhina A N 2018 Movement of the top layer of the grain mixture on the vibrating grooved surface J. Proceedings of the Voronezh State University of Engineering Technologies 80(4) 55-62 (In Russ.)

[12] Saitov V E, Farafonov V G and Saitov A V 2019 Experimental substantiation of the effective height of a grain falling by a stream of liquid in an ergot release device IOP Conf. Ser.: Earth Environ. Sci. 341 012123

[13] Vasiliev A M, Machikhin S A, Strelyukhina A N and Ryndin A A 2018 Influence of geometry of corrugated base surface of working bodies on the sorting of grain mixes J. Proceedings of Voronezh State University of Engineering Technologies 80(3) 26-30 (In Russ.)