Identification of two neutralizing human single-chain variable fragment antibodies targeting Staphylococcus aureus alpha-hemolysin

Somayeh Piri-Gavgani 1, 2, Mostafa Ghanei 3, Abolfazl Fateh 1, 2, Seyed Davar Siadat 1, 2, Leila Nematollahi 4*, Fatemeh Rahimi-Jamnani 1, 2*

1 Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
2 Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
3 Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
4 Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran

Objective(s):

- The inability of the host immune system to defeat Staphylococcus aureus is due to various secreted virulent factors such as leukocidins, superantigens, and hemolysins, which interrupt the function of immune components. Alpha-hemolysin is one of the most studied cytolsins due to its pronounced effect on developing staphylococcal infections. Alpha-hemolysin-neutralizing antibodies are among the best candidates for blocking the toxin activity and preventing S. aureus pathogenesis.

Materials and Methods:

- A human single-chain variable fragment (scFv) phage display library was biopanned against alpha-hemolysin. The selected phage clones were assessed based on their binding ability to alpha-hemolysin. The binding specificity and affinity of two scFvs (designated SP192 and SP220) to alpha-hemolysin were determined by enzyme-linked immunosorbent assay. Furthermore, the neutralizing activity of SP192 and SP220 was examined by concurrent incubation of rabbit red blood cells (RBCs) with alpha-hemolysin and scFvs.

Results:

- SP192 and SP220 showed significant binding to alpha-hemolysin compared with the control proteins, including bovine serum albumin, human adiponectin, and toxic shock syndrome toxin-1.

Besides, both scFvs showed high-affinity binding to alpha-hemolysin in the nanomolar range (Kd: 0.9 and 0.7 nM, respectively), leading to marked inhibition of alpha-hemolysin-mediated lysis of rabbit RBCs (73% and 84% inhibition, respectively).

Conclusion:

- SP192 and SP220 scFvs can potentially be used as alpha-hemolysin-neutralizing agents in conjunction with conventional antibiotics to combat S. aureus infections.

Introduction

Staphylococcus aureus infections have become increasingly challenging due to the emergence of resistant strains and the low rate of development of new antibiotics (1). Life-threatening infections, such as endocarditis, pneumonia, and bacteremia with a high morbidity and mortality rate in patients with a suppressed immune system, infants, and people with diabetes, have led the National Academy of Science’s Institute of Medicine to rank methicillin-resistant S. aureus (MRSA) among the top 25 national priorities for research funding (2). Cytotoxins, including leukocidins (e.g., pantheon-valentine leukocidin), hemolysins (e.g., alpha-hemolysin), and phenol-soluble modulins (e.g., PSMa3), are the main invasiveness factors that directly impact the S. aureus pathogenesis (3-6). Alpha-hemolysin (so-called alpha-toxin) involves in the development and severity of S. aureus infections through attacking immune cells (e.g., human lymphocytes and monocytes), induction of apoptosis (e.g., endothelial cells), and disruption of endothelial and epithelial barrier integrity, resulting in dissemination of bacteria to bloodstream and other organs (3, 5, 7-10). It has been demonstrated that alpha-hemolysin plays a critical role in S. aureus infections such as brain abscess, dermonecrosis, pneumonia, and sepsis (5, 7, 11-13), making it an attractive target for the development of biotherapeutics.

Monoclonal antibodies (mAbs) have long been considered some of the most promising agents for neutralizing toxins, especially given their excellent safety profile and significant therapeutic efficacy (14-17). While the function of the constant fragment (Fc) region is not required for neutralizing the toxin and the binding of an antibody to the particular site of toxin is enough to block the activity of alpha-hemolysin, high-affinity and highly specific antibody fragments, such as fragment antigen-binding (Fab) and single-chain variable fragment (scFv), can be better alternatives than the full-length mAbs (18, 19). Caballero et al. developed a fully human anti-alpha-hemolysin Fab, LTM14, which could decrease corneal damage in rabbits with S. aureus keratitis (19). In contrast to Fab fragments,
scFVs benefit from small size, easy production in bacteria, lower immunogenicity, and higher tissue penetration, making them potentially effective anti-toxin agents (20-23).

The current study aimed to identify alpha-hemolysin-specific scFv antibodies by screening a fully human scFv phage library on the alpha-hemolysin protein. Two scFvs (designated SP192 and SP220) were selected, and their binding characteristics and neutralizing ability were assessed in vitro.

Materials and Methods

Screening of a large human scFv phage library

Isolation of the scFv-phages specific to alpha-hemolysin

To isolate phages expressing scFv specific to alpha-hemolysin, a human scFv phage display library (diversity: 2x10^10) was biopanned against the full-length alpha-hemolysin protein (Merck, Calbiochem, Germany) for four rounds as previously described (1, 24). A MaxiSorp 96-well microtiter plate (Nunc, Roskilde, Denmark) was coated with 100 µl of 2 µg/ml alpha-hemolysin in bicarbonate buffer 0.1 M or 100 µl of 4 µg/ml bovine serum albumin (BSA) (Merck) in phosphate-buffered saline (PBS). After incubation at 4 °C overnight, the plate was washed with PBS containing 0.05% (v/v) Tween-20 (PBS-T) and then incubated with blocking buffer (5 mg/ml BSA in PBS-T) for 90 min at room temperature (RT). Next, 100 µl of the scFv-phages (approximately 10^12 plaque-forming units [PFU]/ml) obtained from the library amplification (input) were added to the BSA-coated wells, and incubation was done for one hour at RT. After 10 times washing with PBS-T, the bound phages were eluted by 10 min incubation with 150 µl of 0.2 M glycine-HCl (pH 2.2), followed by immediate neutralization with 1 M Tris-HCl (pH 9.1). The eluted phages (output) were amplified in Escherichia coli strain TG1 and subjected to the next round of biopanning. The washing steps were repeated 10, 15, 20, and 25 times for rounds one to four to isolate the scFv-phages with high-affinity binding ability to alpha-hemolysin.

Assessment of the binding ability of the scFv-phages to alpha-hemolysin

The binding ability of the phage pools obtained from four rounds of biopanning (input, input, and output, output) to alpha-hemolysin was assessed by polyclonal phage ELISA, as previously described by Soltanmohammadi et al. (1). The periplasmic expression of the scFvs was analyzed by a 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Moreover, the expression of the scFvs was confirmed by western blotting as described previously (1). In brief, the periplasmic extract was run on a 12% SDS-PAGE gel and then transferred onto the polyvinylidene fluoride (PVDF) membrane (GE Healthcare) using a wet-tank transfer system. Next, the membrane was blocked with 5% (w/v) non-fat dry milk (Merck) in PBS. The membrane was incubated with the mouse polyclonal antibody generated against fully human scFvs (MAb) (1:200 dilution), followed by the goat anti-mouse mAb conjugated to HRP (GAB-HRP) (Santa Cruz) (1:2000 dilution). The bands were visualized using diaminobenzidine (DAB) (Sigma) and hydrogen peroxidase solution (H₂O₂) (Sigma).

Expression of five soluble scFv antibodies

Monoclonal soluble scFv antibodies were produced by infecting E. coli strain HB2151 with the selected phages (clones SP164, SP178, SP192, SP218, and SP220), which showed the highest binding reactivity to alpha-hemolysin in polyclonal phage ELISA, as previously described by Soltanmohammadi et al. (1). The periplasmic expression of the scFvs was analyzed by a 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Moreover, the expression of the scFvs was confirmed by western blotting as described previously (1). In brief, the periplasmic extract was run on a 12% SDS-PAGE gel and then transferred onto the polyvinylidene fluoride (PVDF) membrane (GE Healthcare) using a wet-tank transfer system. Next, the membrane was blocked with 5% (w/v) non-fat dry milk (Merck) in PBS. The membrane was incubated with the mouse polyclonal antibody generated against fully human scFvs (MAb) (1:200 dilution), followed by the goat anti-mouse mAb conjugated to HRP (GAB-HRP) (Santa Cruz) (1:2000 dilution). The bands were visualized using diaminobenzidine (DAB) (Sigma) and hydrogen peroxidase solution (H₂O₂) (Sigma).

Sequencing

To analyze the sequences of five scFv antibodies, the phagemid DNA extraction was performed by the High Pure Plasmid Isolation Kit (Roche Diagnostics GmbH, Mannheim, Germany) as recommended by the manufacturer. A forward primer (5-CTATGACCATGATGACATGGA-3) was used to identify the nucleotide sequence of SP164, SP178, SP192, SP218, and SP220. Next, the sequences were analyzed in the IMGT/V-QUEST database (1). The data indicated that three scFvs, SP178, SP192, and SP218, had a similar sequence, and two scFvs, SP164 and SP220, shared a similar sequence. SP192 and SP220 were selected for further evaluation due to their higher expression levels.

Investigation of the binding ability of two soluble scFvs to alpha-hemolysin

The periplasmic extract containing the scFv antibody was purified by immobilized metal affinity chromatography (IMAC; Qiagen, Hilden, Germany), according to the manufacturer’s instructions. Next, the purified scFv antibodies were dialyzed against PBS in a dialysis bag with a molecular weight cut-off of 14,000 Da (Sigma), according to the manufacturer’s instructions. The concentration of the dialyzed scFv was determined by the Bradford assay, and the purity of the scFv was examined by SDS-PAGE. The binding of two soluble scFvs (SP192 and SP220) to alpha-hemolysin was examined by ELISA as previously described (24). In brief, a Maxisorp 96-well microtiter plate (Nunc) was coated with 100 µl of 2 µg/ml alpha-hemolysin protein or 4 µg/ml BSA. After blocking, 100 µl of the purified scFv (SP192 or SP220), the control scFv (MS460, an scFv specific to S. aureus TSST-1), or the mouse anti-staphylococcal alpha-hemolysin toxin mAb (mStaph-Alpha mAb) (6C12; IBT BIOSERVICES, Gaithersburg, MD, USA)
(1:500 dilution) were added to the wells and incubation was done at RT for one hour. After several times washing, the wells were incubated with the MAb or normal mouse immunoglobulin G (IgG) at RT for one hour. Next, the wells were washed, and GAb-HRP was added to the wells, followed by incubation at RT for one hour. After washing, the color reaction was developed with the TMB substrate solution and terminated by adding 1 M H$_2$SO$_4$ solution. OD$_{450}$ was measured by an ELISA reader.

Evaluation of binding specificity and affinity of two scFvs to alpha-hemolysin

The specific binding and affinity of SP192 and SP220 to alpha-hemolysin were determined by ELISA (9, 24-26). To assess the binding specificity of SP192 and SP220, a MaxiSorp 96-well microtiter plate (Nunc) was coated with 100 µl of alpha-hemolysin (2 µg/ml), human adiponectin (2 µg/ml) (R&D Systems, Minnesota, USA), BSA (4 µg/ml), non-fat dry milk (10 mg/ml), or TSST-1 (2 µg/ml) (Sigma). The binding of two scFvs to the coated proteins was detected with the MAb, followed by the GAb-HRP mentioned above.

To measure the affinity of SP192 and SP220 to alpha-hemolysin, a MaxiSorp 96-well microtiter plate (Nunc) was coated with 100 µl of alpha-hemolysin (2 and 5 µg/ml). The alpha-hemolysin–coated wells were incubated with 100 µl of SP192 or SP220 at concentrations ranging from 0.02 to 450 µg/ml at RT for one hour. Next, the wells were incubated with MAb, followed by GAB-HRP. Using the following equation defined by Beatty et al. (27), the affinity constant (K_d) of SP192 and SP220 to alpha-hemolysin was calculated:

$$n = \frac{Ag}{Ag'}$$

$$K_d = n - 1/2 \times [scFv]$$

Where Ag and Ag' are the concentrations of alpha-hemolysin (5 and 2 µg/ml, respectively), and scFv and scFv' are the concentrations of SP192 (or SP220) at half maximum binding to alpha-hemolysin at concentrations of 5 and 2 µg/ml, respectively (OD50 and OD50', respectively).

Determination of toxicity of alpha-hemolysin-specific scFvs

The toxic potential of two scFvs on rabbit red blood cells (RBCs) was investigated. To estimate the hemolytic potential of SP192 and SP220, rabbit RBCs were treated with scFv as previously described (1, 28-30). Briefly, 100 µl of 5% (v/v) rabbit RBCs suspension in a round-bottom 96-well plate (Nunc) were incubated with SP192, SP220, or a combination of SP192 and SP220 (8.3 µM) at 37 °C for one hour. The wells containing rabbit RBCs incubated with normal saline (no hemoglobin release) or 0.1% (v/v) Triton X-100 (maximum hemoglobin release) or 0.1% (v/v) Triton X-100 (maximum hemoglobin release) were used as the controls. Next, the reaction mixtures were centrifuged, and the absorbance at 450 nm was measured to determine the quantity of hemoglobin released into the supernatants.

Hemolysis percentage was calculated with the following equation (1):

$$\text{Hemolysis percentage} = \left[\frac{A_{450 \text{ scFv}} - A_{450 \text{ NS}}} {A_{450 \text{ Triton X-100}} - A_{450 \text{ NS}}} \right] \times 100$$

Where $A_{450 \text{ scFv}}$ is the absorbance of the wells treated with SP192 or SP220, $A_{450 \text{ NS}}$ is the absorbance of the wells treated with normal saline (NS), and $A_{450 \text{ Triton X-100}}$ is the absorbance of the wells treated with 0.1% Triton X-100.

Evaluation of the neutralizing activity of the scFvs against alpha-hemolysin

The toxic potential of two scFvs on the human embryonic lung fibroblast cells (MRC-5) was investigated. To examine the cytotoxic potential of SP192 and SP220, the MRC-5 cells (National Cell Bank, Pasteur Institute of Iran) were treated with SP192, SP220, or a combination of SP192 and SP220 (31). Briefly, in a flat-bottom 96-well cell culture plate (Nunc), the MRC-5 cells (10,000 cells/well) in Dulbecco’s modified Eagle’s medium (Gibco, Grand Island, NY, USA) plus 10% fetal bovine serum (Gibco) were incubated with SP192 (6.6 µM), SP220 (6.6 µM), a combination of SP192 and SP220 (6.6 µM), alpha-hemolysin (0.15 µM), or PBS at 37 °C for 16 hr under 5% CO$_2$. The toxic effects of SP192 and SP220 on the morphology of the MRC-5 cells were examined compared with the cytotoxic effect of alpha-hemolysin using an inverted microscope (BEL INV100, MA, Italy).

Results

Identification of scFvs binding to alpha-hemolysin

Enriching a human scFv phage library with alpha-hemolysin led to isolating a population of scFv-phages. The polyclonal phage ELISA results showed that the scFv-phages obtained from the third and fourth rounds of biopanning reacted significantly with alpha-hemolysin compared with the control protein (BSA) (Figure 1A). To identify monoclonal phages specific to alpha-hemolysin, *E. coli* TG1 bacteria infected with the phages obtained from the last two rounds of biopanning were cultured on the lysogeny broth (LB) agar supplemented with ampicillin. An ELISA was used to assess the binding ability of phages amplified from
single colonies to alpha-hemolysin. As shown in Figure 1B, out of 20 phage clones able to bind alpha-hemolysin, five clones, SP164, SP178, SP192, SP218, and SP220, showed the highest levels of binding.

E. coli HB2151 bacteria were infected with the five selected phages to produce soluble scFvs (SP164, SP178, SP192, SP218, and SP220), which were subsequently evaluated by SDS-PAGE and western blot (Figure 2A and B). As illustrated in Figure 2B, a single band was observed at about 27 kDa, which corresponded to the molecular weight of the scFv (SP164, SP178, SP192, SP218, and SP220).

Based on the sequencing results, SP178, SP192, and SP218 shared the same sequence, and the sequence of SP164 and SP220 was identical. Therefore, SP192 and SP220 were selected for further characterization due to their high alpha-hemolysin binding ability and expression levels. Analysis of the nucleotide sequence by the IMGT/V-QUEST tool showed that the VH and VL of both scFvs belonged to human IGHV1-46*01F and IGKV1-39*01F germline genes, respectively. The amino acid sequence of both scFvs is presented in Supplementary Figure S1.

Significant binding of SP192 and SP220 to alpha-hemolysin

The amount of purified and dialyzed SP192 and SP220 was determined to be about 0.45 mg/ml. Based on SDS-PAGE results, a single band at about 27 kDa demonstrated the successful purification of SP192 and SP220 (Figure 3A). The binding of purified scFvs (SP192, SP220, and MS460 [as a negative control]) and mStaph-Alpha mAb (as a positive control) to alpha-hemolysin and BSA were investigated by ELISA. As shown in Figure 3B, SP192, SP220, and mStaph-Alpha mAb showed the highest binding to alpha-hemolysin compared with the controls.

High specificity and binding affinity of SP192 and SP220 to alpha-hemolysin

The binding specificity of SP192 and SP220 was examined by ELISA. Based on the results, both scFvs displayed significant binding to alpha-hemolysin, while minor cross-reactivity was observed between the scFvs and BSA, human

Figure 1. Assessment of the binding ability of phage clones to alpha-hemolysin by ELISA. (A) The binding reactivity of phage pools amplified from four rounds of biopanning on alpha-hemolysin (Hla) was analyzed by polyclonal phage ELISA. Bovine serum albumin (BSA)-coated wells were used as the control. (B) The binding of the 20 selected phage clones to alpha-hemolysin and BSA (control) was examined by monoclonal phage ELISA. Five phage clones (SP164, SP178, SP192, SP218, and SP220) exhibited higher binding abilities to alpha-hemolysin than BSA. The data are represented as the mean ± standard deviation of triplicate determination. Significance was determined by Student’s t-test (* indicates $P<0.01$ and ** indicates $P<0.001$).

Figure 2. SDS-PAGE and western blot analysis of five soluble scFvs. (A) The periplasmic expression of five scFv antibodies, including SP164, SP178, SP192, SP218, and SP220, was analyzed by a 12% SDS-PAGE gel. Lane M: Unstained protein marker. (B) A sharp band corresponding to the scFv with a molecular weight of about 27 kDa was observed in western blot analysis. Non-infected *Escherichia coli* HB2151 was used as the control (HB2151). Lane M: Pre-stained protein marker.
adiponectin, non-fat dry milk, and TSST-1 (Figure 4).

Negligible toxic effect of SP192 and SP220 on rabbit RBCs and MRC-5 cells

Treatment of rabbit RBCs with SP192, SP220, or a combination of SP192 and SP220 showed no significant hemolysis (1.04%, 0.75%, and 0.38% hemolysis, respectively) compared with rabbit RBCs treated with Triton X-100 (100% hemolysis) (Figure 5A). Furthermore, the cell morphology of the MRC-5 cells incubated with SP192 and SP220 (alone or a combination of two scFvs) was compared with the...
Alpha-hemolysin neutralizing scFvs

Clostridium
S.
Pseudomonas aeruginosa
Enterohemorrhagic
Clostridium botulinum
Bordetella pertussis

Iran J Basic Med Sci, Vol. 25, No. 10, Oct 2022
Piri-Gavgani et al. Alpha-hemolysin neutralizing scFvs

(6) and Caballero
K

low immunogenicity, and easy and low-cost production such as scFvs are valuable substitutes due to their small related activity of antibodies; therefore, antibody fragments activity in combating promising neutralizing agents, exhibiting considerable Notably, anti-alpha-hemolysin mAbs are one of the most cell (8, 32-35). Therefore, direct targeting of alpha-hemolysin might have a significant neutralization activity against alpha-hemolysin. However, before evaluating the inhibitory activity of SP192 and SP220 on the hemolysis effect of alpha-hemolysin on rabbit RBCs, the toxic potential of the scFvs on rabbit RBCs and MRC-5 cells was assessed. Based on the results, neither scFvs had any hemolytic or cytotoxic activity. Next, the antagonist activity of SP192 and SP220 on alpha-hemolysin was examined by treating rabbit RBCs with alpha-hemolysin and different concentrations of SP192, SP220, and a combination of two scFvs. The results demonstrated that SP192 and SP220 significantly inhibited the lysis of rabbit RBCs compared with the control group. In two studies, Foletti et al. (6) and Caballero et al. (19) investigated the neutralizing activity of a human anti-alpha-hemolysin mAb (LTM14) and its Fab, respectively. They showed that LTM14 mAb (Kg, 1.7 PM) and LTM14 Fab inhibited alpha-hemolysin-mediated lysis of rabbit RBCs (6, 19). In another study, Liu et al. developed a fully human mAb against alpha-hemolysin (YGI1) with a Kg value of approximately 2 nM (9). Similar to the LTM14 mAb, the YGI1 mAb inhibited the hemolytic activity of alpha-hemolysin in a dose-dependent manner (9). The LC-10 mAb, further named MEDI4893*, is a human IgG1 mAb, with a Kg value of 0.6 nM, developed by Tkaczyk et al. (11). They showed that the LC-10 mAb impeded alpha-hemolysin-induced hemolysis in a dose-dependent fashion, and there was a relationship between the affinity and potency of anti-alpha hemolysin mAbs developed in this study (11).

There is a long list of neutralizing scFvs developed against toxins such as adenylate cyclase toxin (Bordetella pertussis), anthrax toxin (Bacillus anthracis), botulinum neurotoxin (Clostridium botulinum), cry toxin (Bacillus thuringiensis), type A alpha-toxin (Clostridium perfringens), enterotoxin (E. coli), exotoxin A (Pseudomonas aeruginosa), hemolysin (Vibrio parahaemolyticus), Shiga toxin (Enterohemorrhagic E. coli), tetanus toxin (Clostridium tetani), and TSST-1 (S. aureus) (23). Most antibodies generated against alpha-hemolysin are conventional mAbs or bispecific antibodies such as 11H10-BiSAb comprising the scFv of MEDI4893* fused to the heavy chain of an anti-clumping factor A mAb (11H10) (6, 9, 11, 14). However, we demonstrated in the current study that a single scFv had the ability to neutralize alpha-hemolysin effectively.

Targeting various sites of the toxin with two or more neutralizing antibodies seems to be a sophisticated strategy for inhibiting the toxin-mediated cytotoxic effects. We showed that the combination of SP192 and SP220 (at a

Discussion
The binding of alpha-hemolysin to A-disintegrin and metalloprotease 10 (ADAM10) triggers a cascade of events, including the cell detachment from the neighboring cells and the basal membrane and cell lysis, dependent on the concentration of toxin and the expression of ADAM10 cell (8, 32-35). Therefore, direct targeting of alpha-hemolysin and ADAM10 can be functional strategies to prevent the detrimental effects of alpha-hemolysin (36). Notably, anti-alpha-hemolysin mAbs are one of the most promising neutralizing agents, exhibiting considerable activity in combating S. aureus infections (6, 9, 16, 37-39). Neutralization of alpha-hemolysin does not need the Fc-related activity of antibodies; therefore, antibody fragments such as scFvs are valuable substitutes due to their small size and high ability to penetrate the infected tissues, low immunogenicity, and easy and low-cost production compared with the full-length mAbs (18, 20, 21). To isolate anti-alpha hemolysin scFvs, we biopanned a fully human scFv phage library against alpha-hemolysin, leading to isolating five scFvs with high binding ability to the target toxin. Among isolated scFvs, two scFvs, SP192 and SP220, with unique sequences and high expression levels, were assessed based on their binding specificity and affinity to alpha-hemolysin and neutralization activity. Both scFvs showed significant binding to alpha-hemolysin, while no significant cross-binding was observed between the scFvs and proteins such as human adiponectin and TSST-1. Of note, SP192 and SP220 showed high affinity-binding to alpha-hemolysin (Kd = 0.9 and 0.7 nM−1, respectively). Several studies reported the association between the binding affinity and the neutralization potency of anti-toxin antibodies (6, 11, 39-41). In this regard, we speculated that SP192 and SP220 showing high-affinity binding to alpha-hemolysin might have a significant neutralization activity against alpha-hemolysin. Therefore, in two studies, Foletti et al. (6) and Caballero et al. (19) investigated the neutralizing activity of a human anti-alpha-hemolysin mAb (LTM14) and its Fab, respectively. They showed that LTM14 mAb (Kg, 1.7 PM) and LTM14 Fab inhibited alpha-hemolysin-mediated lysis of rabbit RBCs (6, 19). In another study, Liu et al. developed a fully human mAb against alpha-hemolysin (YGI1) with a Kg value of approximately 2 nM (9). Similar to the LTM14 mAb, the YGI1 mAb inhibited the hemolytic activity of alpha-hemolysin in a dose-dependent manner (9). The LC-10 mAb, further named MEDI4893*, is a human IgG1 mAb, with a Kg value of 0.6 nM, developed by Tkaczyk et al. (11). They showed that the LC-10 mAb impeded alpha-hemolysin-induced hemolysis in a dose-dependent fashion, and there was a relationship between the affinity and potency of anti-alpha hemolysin mAbs developed in this study (11).

There is a long list of neutralizing scFvs developed against toxins such as adenylate cyclase toxin (Bordetella pertussis), anthrax toxin (Bacillus anthracis), botulinum neurotoxin (Clostridium botulinum), cry toxin (Bacillus thuringiensis), type A alpha-toxin (Clostridium perfringens), enterotoxin (E. coli), exotoxin A (Pseudomonas aeruginosa), hemolysin (Vibrio parahaemolyticus), Shiga toxin (Enterohemorrhagic E. coli), tetanus toxin (Clostridium tetani), and TSST-1 (S. aureus) (23). Most antibodies generated against alpha-hemolysin are conventional mAbs or bispecific antibodies such as 11H10-BiSAb comprising the scFv of MEDI4893* fused to the heavy chain of an anti-clumping factor A mAb (11H10) (6, 9, 11, 14). However, we demonstrated in the current study that a single scFv had the ability to neutralize alpha-hemolysin effectively.

Targeting various sites of the toxin with two or more neutralizing antibodies seems to be a sophisticated strategy for inhibiting the toxin-mediated cytotoxic effects. We showed that the combination of SP192 and SP220 (at a
concentration of 6.6 μM) had higher inhibitory activity than SP192 and SP220 alone (96% versus 73% and 84%, respectively). Likewise, Demarest et al. reported that a cocktail of two neutralizing mAbs, designated 3358 and 3359, targeting Clostridium difficile toxin A, had higher neutralizing activity than each mAb alone (42). They suggested that binding two different mAbs to several epitopes on toxin A might result in efficient neutralization and subsequent decrease of toxin A-mediated cell lysis (42).

Conclusion

Alpha-hemolysin plays a critical role in the development of S. aureus infections. Furthermore, most S. aureus isolates express alpha-hemolysin, making it an excellent target for generating therapeutics effective against S. aureus infections. Our study led to the development of two novel human scFvs, SP192 and SP220, which bound significantly to alpha-hemolysin. Both scFv antibodies showed neutralization activity against alpha-hemolysin and significantly inhibited the lysis of rabbit RBCs mediated by alpha-hemolysin. It is therefore expected that the use of antibodies in combination with two different anti-alpha hemolysin scFvs can lead to promising results in patients with S. aureus infections (e.g., pneumonia).

Acknowledgment

The results presented in this paper were part of a Ph.D. thesis of the first author, conducted at the Human Antibody lab, the Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, from 2017 to 2020.

Authors’ Contributions

FRJ Supervised, directed, and managed the study. MG, AF, SDS, and LN Helped design the study. SPG Performed the experiments and was involved in the manuscript preparation. All authors reviewed the manuscript.

Ethical Approval

The animal experiment was conducted in accordance with ARRIVE guidelines (https:// ARRIVEguidelines.org) and approved by the Animal Care and Use Committees of the Pasteur Institute of Iran (Ethics No.: IR.PII.REC.1398.031).

Conflicts of Interest

The authors declare no competing interests.

References

1. Soltanmohammadi B, Piri-Gavgani S, Basardeh E, Ghanei M, Aazizi M, Khaksar Z, et al. Bacterial fully human single-chain fragment variable antibodies protect mice against methicillin-resistant Staphylococcus aureus bacteremia. Clin Transl Immunol 2021;10:e1302.
2. Kim HK, Missiakas D, Schneewind O. Mouse models for infectious diseases caused by Staphylococcus aureus. J Immunol Methods 2014;410:88-99.
3. Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol 2012;2:12.
4. Lin Y-C, Peterson ML. New insights into the prevention of staphylococcal infections and toxic shock syndrome. Expert Rev Clin Pharmacol 2010;3:753-767.
5. Diviyakola S, Chikkala R, Ratnakar KS, Sritharan V. Hemolysins of Staphylococcus aureus—An update on their biology, role in pathogenesis and as targets for anti-virulence therapy. Ther Adv Infect Dis 2019;9:80-104.
6. Foletti D, Strop P, Shaughnessy L, Hasa-Moreno A, Casas MG, Russell M, et al. Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus alpha-hemolysin. J Mol Biol 2013;425:1641-1654.
7. Tabor DE, Yu L, Mok H, Tkaczyc C, Sellman BR, Wu Y, et al. Staphylococcus aureus alpha-toxin is conserved among diverse hospital respiratory isolates collected from a global surveillance study and is neutralized by monoclonal antibody MEDI4893. Antimicrob Agents Chemother 2016;60:5312-5321.
8. Berube BJ, Wardenburg JB. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins 2013;5:1140-1166.
9. Liu F, Guan Z, Liu Y, Li J, Liu C, Gao Y, et al. Identification of a Human Anti-Alpha-Toxin Monoclonal Antibody Against Staphylococcus aureus Infection. Front Microbiol 2021;12:692279.
10. Zhang X, Hu X, Rao X. Apoptosis induced by Staphylococcus aureus toxins. Microbes Res 2017;205:19-24.
11. Tkaczyc C, Hua L, Varkey R, Shi Y, Dettinger L, Woods R, et al. Identification of anti-alpha toxin monoclonal antibodies that reduce the severity of Staphylococcus aureus dermonecrosis and exhibit a correlation between affinity and potency. Clin Vaccine Immunol 2012;19:377-385.
12. Kennedy AD, Bubecck Wardenburg SJ, Gardner DJ, Long D, Whitney AR, Braughton KR, et al. Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J Infect Dis 2010;202:1050-1058.
13. Dhailberg D, Mariussen E, Goverud IL, Tonjum T, Mahelen J, Antal E-A, et al. Staphylococcal α-hemolysin is neurotoxic and causes lysis of brain cells in vivo and in vitro. Neurotoxicology 2015;48:61-67.
14. Tkaczyc C, Kasturirangan S, Minola A, Jones-Nelson O, Gunter V, Shi YY, et al. Multimechanism Monoclonal Antibodies (MAbs) Targeting Staphylococcus aureus α-Toxin and Clumping Factor A: Activity and Efficacy Comparisons of a MAb Combination and an Engineered Bispecific Antibody Approach. Antimicrob Agents Chemother 2017;61:e00629-17.
15. Sause WE, Buckley PT, Strohl WR, Lynch AS, Torres VI. Antibody-based biologics and their promise to combat Staphylococcus aureus infections. Trends Pharmaco Sci 2016;37:231-241.
16. Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins 2016;8:72-93.
17. Speziale P, Pietrococca G. Monoclonal Antibodies Targeting Surface-Exposed and Secreted Proteins from Staphylococci. Vaccine 2021;9:459-476.
18. Tkaczyc C, Hamilton M, Sadowska A, Shi Y, Chang C, Chowdhury P, et al. Targeting alpha toxin and ClfA with a multimechanistic monoclonal-antibody-based approach for prophylaxis of serious Staphylococcus aureus disease. mBio 2016;7:e00528-16.
19. Caballero AR, Foletti DL, Bierdeman MA, Tang A, Arana AM, Hasa-Moreno A, et al. Effectiveness of Alpha-toxin Fab Monoclonal Antibody Therapy in Limiting the Pathology of Staphylococcus aureus Keratitis. Ocul Immunol Inflamm 2015;23:297-303.
20. Ahamadi-Fesharaki R, Fateh A, Vaziri F, Solgi G, Siadat SD, Mahmoudi F, et al. Single-chain variable fragment-based bispecific antibodies: Hitting two targets with one sophisticated arrow. Mol Ther Oncolytics 2019;14:38-56.
21. RukkawatanaKul T, Sookrung N, seasuay W, onlamoon N, diraphat P, chaicumpa W, et al. Human scFvs that counteract bioactivities of Staphylococcus aureus TSST-1. Toxins 2017;9:50-67.
22. Singh PK, Agrawal R, kamboj DV, Gupta G, Boopathi M, Goel AK, et al. Construction of a single-chain variable-fragment antibody against the superantigen Staphylococcal enterotoxin B. Appl Environ Microbiol 2010;76:8184-8191.
23. Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, et al. Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy. Front Cell Infect Microbiol 2021;11:697867.
24. Jamnani FR, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Sharifzadeh Z. Targeting high affinity and epitope-distinct oligoclonal nanobodies to HER2 over-expressing tumor cells. Exp Cell Res 2012;318:1112-1124.
25. Zarei B, Javidan Z, Fatemi E, Jamnani FR, Khatami S, Khalaj V. Targeting c-Met on gastric cancer cells through a fully human fab antibody isolated from a large naive phage antibody library. DARU J Pharm Sci 2020;28:221-235.
26. Mazaheri S, Talebkhan Y, Mahboudi F, Nematollahi L, Cohan RA, Ardakani EM, et al. Improvement of Certolizumab Fab′ properties by PASylation technology. Sci Rep 2020;10:1-13.
27. Beatty JD, Beatty BG, Vlahos WG. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J Immunol Methods 1987;100:173-179.
28. Wang X, Thompson CD, Weidenmaier C, Lee JC. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun 2018;9:1-13.
29. Irani N, Basardeh E, Samiee F, Fatemi E, Shojaie F, Rahimi A, et al. The inhibitory effect of the combination of two new peptides on biofilm formation by Acinetobacter baumannii. Microb Pathog 2018;121:310-317.
30. Zhang K, Du Y, Si Z, Liu Y, Turvey ME, Raju C, et al. Enantiomeric glycosylated cationic block co-beta-peptide eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nat Commun 2019;10:1-14.
31. Mairpady Shambat S, Chen P, Nguyen Hoang AT, Bergsten H, Vandenesch F, Siemens N, et al. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology. Dis Model Mech 2015;8:1413-1425.
32. Hilliard JJ, Datta V, Tkaczyk C, Hamilton M, Sadowska A, Jones-Nelson O, et al. Anti-alpha-toxin monoclonal antibody and antibiotic combination therapy improves disease outcome and accelerates healing in a Staphylococcus aureus dermonecrosis model. Antimicrob Agents Chemother 2015;59:299-309.
33. Wilke GA, Wardenburg JB. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. PNAS 2010;107:13473-13478.
34. Ford CA, Hurford IM, Cassat JE. Antivirulence strategies for the treatment of Staphylococcus aureus infections: a mini review. Front Microbiol 2021;11:1-14.
35. De Jong NW, Van Kessel KP, Van Strijp JA. Immune evasion by Staphylococcus aureus. Microbiol Spectr 2019;7:7-2.
36. Sampedro GR, DeDent AC, Becker RE, Berube BJ, Gebhardt MJ, Cao H, et al. Targeting Staphylococcus aureus alpha-toxin as a novel approach to reduce severity of recurrent skin and soft-tissue infections. J Infect Dis 2014;210:1012-1018.
37. Francois B, Mercier E, Gonzalez C, Asehnoune K, Nseir S, Fiancette M, et al. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: first-in-human trial. Intensive Care Med 2018;44:1787-1796.
38. Ragle BE, Bubeck Wardenburg J. Anti-alpha-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect Immun 2009;77:2712-2718.
39. Rouha H, Badarau A, Visram Z, Battles M, Prinz B, Magyrics Z, et al. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. Mabs 2015;7:243-254.
40. Kozel TR. The road to toxin-targeted therapeutic antibodies. MBio 2014;5:e01477-14.
41. Pelat T, Hust M, Laflly E, Condemine F, Bottex C, Vidal D, et al. High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 2007;51:2758-2764.
42. Demarest SJ, Hariharan M, Elia M, Salbato J, Jin P, Bird C, et al., editors. Neutralization of Clostridium difficile toxin A using antibody combinations. MAbs 2010;2:190-198.