Sexually transmitted infections and risk of hypertensive disorders of pregnancy

Brandie DePaoli Taylor1,2*, Ashley V. Hill3, Maria J. Perez-Patron4, Catherine L. Haggerty3, Enrique F. Schisterman5, Ashley I. Naimi6, Akaninyene Noah1 & Camillia R. Comeaux1

Hypertensive disorders of pregnancy (HDP) result in maternal morbidity and mortality but are rarely examined in perinatal studies of sexually transmitted infections. We examined associations between common sexually transmitted infections and HDP among 38,026 singleton pregnancies. Log-binomial regression calculated relative risk (RRs) and 95% confidence intervals (CIs) for associations with gestational hypertension, preeclampsia with severe features, mild preeclampsia, and superimposed preeclampsia. All models were adjusted for insurance type, maternal age, race/ethnicity, and education. Additional adjustments resulted in similar effect estimates. Chlamydia was associated with preeclampsia with severe features (RRadj. 1.4, 95% CI 1.1, 1.9). Effect estimates differed when we examined first prenatal visit diagnosis only (RRadj. 1.3, 95% CI 0.9, 1.9) and persistent or recurrent infection (RRadj. 2.0, 95% CI 1.1, 3.4). For chlamydia (RRadj. 2.0, 95% CI 1.3, 2.9) and gonorrhea (RRadj. 3.0, 95% CI 1.1, 12.2), women without a documented treatment were more likely to have preeclampsia with severe features. Among a diverse perinatal population, sexually transmitted infections may be associated with preeclampsia with severe features. With the striking increasing rates of sexually transmitted infections, there is a need to revisit the burden in pregnant women and determine if there is a link between infections and hypertensive disorders of pregnancy.

Chlamydia trachomatis, syphilis, and Neisseria gonorrhoeae are common sexually transmitted infections (STIs) that can lead to adverse pregnancy outcomes. The Centers for Disease Control (CDC) recommends universal screening for syphilis in the first trimester and screening for chlamydia and gonorrhea for women < 25 years of age or at high risk. However, these pathogens have been increasing annually since 2014 with glaring racial/ethnic disparities. To optimize screening and prevention tactics, research needs to determine the burden of non-viral STIs on specific adverse birth outcomes, particularly in diverse populations. Meta-analyses are limited but studies examining associations between non-viral STIs and adverse pregnancy outcomes are inconsistent and many suffer from confounding, rely on International Classification of Diseases (ICD)-9 codes or birth certificate data and/or have suboptimal screening in the source population (e.g. < 60% are screened). Many studies are greater than 10 years old and focused on preterm birth, low birth weight, and stillbirth, excluding hypertensive disorders of pregnancy.

Hypertensive disorders of pregnancy (HDP) are characterized by elevated blood pressure during pregnancy. Recent data reports rates as high as 16% in Black women, 13.4% in White women, and 10.6% in Hispanic women. Immune dysfunction is one specific pathway leading to inadequate invasion of trophoblasts, inadequate placentalization, endothelial dysfunction and the development of hypertension during pregnancy. It is accepted that maternal factors influence the response to placental dysfunction resulting in clinical symptoms, but maternal genital infections known to trigger inflammatory pathways are not often examined within the context of HDP.

Innate and T-cell immunity plays a role in C. trachomatis and N. gonorrhoeae induced reproductive tissue damage. Chlamydia muridarum accelerates atherosclerosis and production of systemic inflammation in murine models. These pathways overlap with hypertension and preeclampsia pathogenesis. An association between serological evidence and nucleic acid amplification test diagnosis of Chlamydia trachomatis and

1Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA. 2Department of Preventive Medicine and Population Health, University of Texas Medical Branch-Galveston, Galveston, TX, USA. 3Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. 4Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA. 5Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 6Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA. *email: bradtayl@utmb.edu
Results

Population characteristics. Overall, majority of those in our study were Hispanic (57.6%), foreign born (51.0%), between the ages of 30–39 (45.7%), married (70.3%), where on Medicaid/Children's Health Insurance Program (CHIP) (62.6%), had a high school education or less (51.3%), had one or more prior pregnancies (61.7%), and received prenatal care in the first trimester (59.9%). Both smoking (0.9%) and drug use (0.4%) were low in our population. Women who were ≥25 years (PR 0.2, 95% CI 0.1, 0.3), had one or more prior pregnancies (PR 0.7, 95% CI 0.6, 0.9), and self-identified as White (PR 0.7, 95% CI 0.6, 0.8) or Asian (PR 0.2, 95% CI 0.1, 0.3) were less likely to have a STI (Table 1). Women who had less than high school education (PR 2.9, 95% CI 2.6, 3.2), were single (PR 3.2, 95% CI 2.9, 3.6), and on Medicaid/(CHIP) (PR 5.7, 95% CI 4.8, 6.8) were more likely to have a STI. Prenatal tobacco use (PR 1.9, 95% CI 1.3, 2.8), drug use (PR 1.4, 95% CI 1.2, 1.7) and first prenatal visit in the second (PR 1.9, 95% CI 1.7, 2.1) and third trimesters (PR 2.1, 95% CI 1.8, 2.5) were associated with a STI diagnosis.

Sexually transmitted infections and hypertensive disorders of pregnancy. A total of 1521 women (4.0%) were diagnosed with C. trachomatis at the first prenatal visit, 150 (0.39%) were diagnosed with N. gonorrhoeae, and 268 (0.70%) were diagnosed with syphilis. Chlamydia (RRadj. 1.2, 95% CI 1.1, 1.5) and syphilis (RRadj. 1.5, 95% CI 1.1, 2.3) were associated with gestational hypertension (Table 2). Chlamydia was associated with preeclampsia with severe features (RRadj. 1.4, 95% CI 1.1, 1.9) and superimposed preeclampsia (RRadj. 1.6, 95% CI 1.1, 2.4). Gonorrhea was not associated with HDP, although a similar percentage as chlamydia (3.3% vs. 3.2%) developed preeclampsia with severe features (RRadj. 1.4, 95% CI 0.5, 3.0). Rates of HDP were similar among chlamydia positive women who received testing in the first trimester (20.9% for chlamydia positive vs. 16.4% for chlamydia negative) and testing in the second or third trimesters (19.3% vs. 17.0%). For example, among chlamydia positive women who received testing in the first trimester (20.9% for chlamydia positive vs. 3.2%) developed preeclampsia with severe features (RRadj. 1.4, 95% CI 0.5, 3.0). We identified a similar trend with gonorrhea for preeclampsia with severe features (RRadj. 3.0, 95% CI 1.1, 12.2), although the small sample size for this analysis resulted in an imprecise estimate. These trends were not observed for syphilis.

Influence of treatment for sexually transmitted infections on hypertensive disorders of pregnancy. Among women with chlamydia, 58.0% had evidence of CDC recommended treatment in the electronic health record. Results were similar for gonorrhea (52%) and syphilis (43%). Not having a documented CDC recommended treatment for chlamydia was associated with preeclampsia with severe features (RRadj. 2.0, 95% CI 1.3, 2.9) and superimposed preeclampsia (RRadj. 2.2, 95% CI 1.3, 3.6). We identified a similar trend with gonorrhea for preeclampsia with severe features (RRadj. 3.0, 95% CI 1.1, 12.2), although the small sample size for this analysis resulted in an imprecise estimate. These trends were not observed for syphilis.

Persistent or recurrent chlamydia and hypertensive disorders of pregnancy. Women with a diagnosis of chlamydia at the first prenatal visit only and no subsequent diagnosis in the third trimester, did not have increased risk of HDP, expect for superimposed preeclampsia (RRadj. 1.7, 95% CI 1.1, 2.6). Persistent or recurrent chlamydia infection was associated with preeclampsia with severe features (RRadj. 2.0, 95% CI 1.1, 3.4) (Table 3). Sample sizes were not large enough to examine gonorrhea and syphilis.

Sensitivity analyses. We estimated E-values (Supplementary Tables 1, 2), minimal strength of association with exposure and outcome the unmeasured confounder would need to have to bias results after considering adjustment for all included covariates. For example, the association between chlamydia and gestational hypertension, the E-value (1.7) for the point estimate and confidence interval (1.4) were close to one, thus a small or moderate degree of unmeasured confounding could explain these results. Other E-values ranged from 2.6 (1.4 for confidence interval) for the association with chlamydia and preeclampsia with severe features to 3.4 (1.4 for the confidence interval) for the association between a second chlamydia diagnosis and preeclampsia with severe features.

Discussion

Much of the data on the association between non-viral STIs and specific adverse pregnancy outcomes is based on outdated studies, most of which lack diversity and do not consider treatment or persistence/recurrence of infections. We found that Chlamydia trachomatis is associated with preeclampsia with severe features and superimposed preeclampsia. We observed that associations with severe disease were exacerbated in women with persistent or recurrent infection and among those without a documented CDC recommended treatment. Gonorrhea positive women without a documented treatment also had an increased risk of preeclampsia with severe features. Lastly, we observed an association between syphilis and gestational hypertension.

Our study addressed limitations of prior research in a modern diverse cohort. A nested-case control study of 628 women from the Collaborative Perinatal Project, found a significant association between IgG antibody titers for chlamydia and preeclampsia. In a nested case–control study of 845 women from the Danish National Birth Cohort, there were trends towards associations between serological evidence of chlamydia and preeclampsia,
Variable	Missing n (%)	STI+ n (%)	STI− n (%)	Prevalence ratio (95% CI)
Demographic characteristics				
Age	NA	1083 (10.0)	9738 (90.0)	Ref
< 25	731 (2.7)	26,474 (97.3)	0.2 (0.1–0.3)	
≥ 25	31 (< 1%)	15,326 (96.4)	Ref	
Ethnicity	31 (< 1%)	20,856 (94.4)	1.6 (1.4–1.7)	
Race/ethnicity	31 (< 1%)	28,366 (95.6)	0.7 (0.6–0.8)	
White vs. non-white	1303 (4.4)	16,350 (97.5)	Ref	
Black vs. non-black	454 (7.7)	5417 (92.3)	1.8 (1.7–2.0)	
Asian vs. non-Asian	23 (1.2)	1845 (98.8)	0.2 (0.1–0.3)	
Native Hawaiian/PI	2 (5.4)	35 (94.6)	–	
American Indian/NA	1 (4.6)	21 (95.5)	–	
Other race vs. non-other	35 (4.8)	696 (95.2)	1.0 (0.7–1.4)	
Education	3561 (9.4%)	1420 (2.5)	16,350 (97.5)	Ref
< HS education	1220 (6.9)	16,475 (93.1)	2.9 (2.6–3.2)	
Marital status	690 (1.8%)			
Married	782 (3.0)	25,482 (97.8)	Ref	
Single	1000 (9.0)	10,072 (91.0)	3.2 (2.9–3.6)	
Method of payment	601 (1.6%)			
Private	141 (1.2)	11,752 (98.8)	Ref	
Medicaid/CHIP	1503 (6.4)	21,925 (93.6)	5.7 (4.8–6.8)	
No-insurance/other	137 (6.5)	1967 (93.5)	5.8 (4.6–7.3)	
Behavioral characteristics and health				
Prenatal alcohol use	14 (< 1%)			
No	1801 (4.8)	35,860 (95.2)	Ref	
Yes	11 (3.1)	340 (96.9)	0.7 (0.4–1.2)	
Prenatal smoking	12 (< 1%)			
No	1784 (4.7)	35,903 (95.3)	ref	
Yes	29 (8.9)	298 (91.1)	1.9 (1.3–2.8)	
Prenatal drug use	27 (< 1%)			
No	1653 (4.7)	33,858 (95.4)	Ref	
Yes	159 (6.4)	2329 (93.6)	1.4 (1.2–1.7)	
BMI kg/m²	304 (< 1%)			
< 24.9	298 (5.1)	5541 (94.9)	Ref	
25–29.9	567 (4.9)	10,887 (95.1)	1.0 (0.8–1.1)	
≥ 30+	935 (4.6)	19,494 (95.4)	0.9 (0.8–1.0)	
Chronic hypertension	218 (< 1%)			
No	1714 (4.8)	34,122 (95.2)	Ref	
Yes	86 (4.4)	1886 (95.6)	0.9 (0.7–1.1)	
Cardiovascular disease	218 (< 1%)			
No	1785 (4.7)	36,073 (95.3)	Ref	
Yes	19 (4.4)	414 (95.6)	0.9 (0.6–1.5)	
Diabetes	218 (< 1%)			
No	1781 (4.8)	35,597 (95.2)	Ref	
Yes	19 (4.4)	411 (95.6)	0.7 (0.5–1.1)	
Pregnancy history and current pregnancy				
Prior pregnancy	9 (< 1%)			
Nulliparous	626 (5.8)	10,159 (94.2)	Ref	
1+ prior pregnancy	1187 (4.4)	26,045 (95.6)	0.7 (0.6–0.9)	
Prior spontaneous abortion	17 (< 1%)			
No	1363 (5.1)	25,485 (94.9)	Ref	
Yes	451 (4.0)	10,710 (96.0)	0.8 (0.7–0.9)	
Prior preterm birth	17 (< 1%)			
No	1672 (4.8)	32,973 (95.2)	Ref	
Continued				
Table 1. Maternal demographic and clinical characteristics by non-viral sexually transmitted infection (STI) status. Log-binomial logistic regression was used to calculate point prevalence ratios and 95% confidence intervals. PI Pacific Islander, HS High School, BMI body mass index, CHIP Children’s Health Insurance Program, GA gestational age.

Variable	Missing n (%)	STI+ n (%)	STI– n (%)	Prevalence ratio (95% CI)
Yes	142 (4.2)	3222 (95.8)	0.9 (0.7–1.0)	
GA at 1st prenatal visit	NA			
≤12 weeks	910 (3.7)	23,945 (96.3)	Ref	
13–26 weeks	727 (6.7)	10,049 (93.3)	1.9 (1.7–2.1)	
≥27 weeks	177 (7.4)	2218 (92.6)	2.1 (1.8–2.5)	
Infant sex	376 (1.1%)	17,695 (95.4)	Ref	
Female	850 (4.6)	17,695 (95.4)	Ref	
Male	962 (4.9)	18,482 (95.1)	1.1 (1.0–1.2)	

Table 2. Sexually transmitted infections (STI) and hypertensive disorders of pregnancy. *Model 1: Adjusted for insurance type, maternal age, race/ethnicity, and education. *Model 2: Fully adjusted model included all variables in model 1 plus smoking, substance use and co-infection with other STIs. + Preeclampsia with severe features as defined by American College of Obstetricians and Gynecologists guidelines.

Sexually transmitted infection	Gestational Hypertension n (%)	Mild PE n (%)	> PE with severe features n (%)	Superimposed PE n (%)
No STI, n=36,698	n=2934 (8.0%)	n=1388 (3.6%)	n=688 (1.9%)	n=608 (1.8%)
Chlamydia, n=1521	n=147 (11.0%)	n=69 (5.3%)	n=48 (3.2%)	n=29 (2.1%)
Crude	1.2 (1.0–1.4)	1.2 (0.9–1.5)	1.7 (1.2–2.2)	1.2 (0.9–1.7)
Model 1	1.2 (1.0–1.5)	1.1 (0.8–1.4)	1.4 (1.1–1.9)	1.5 (1.1–2.1)
Model 2	1.2 (1.1–1.5)	1.1 (0.8–1.4)	1.4 (1.1–1.9)	1.6 (1.1–2.1)
Gonorrhea, n=150	n=15 (9.7%)	n=8 (5.4%)	n=5 (3.3%)	n=3 (2.2%)
Crude	0.9 (0.6–1.7)	1.0 (0.5–2.3)	1.7 (0.7–4.1)	++
Model 1	1.0 (0.5–1.7)	1.0 (0.5–1.8)	1.5 (0.6–3.5)	
Model 2	0.8 (0.4–1.5)	1.1 (0.5–2.6)	1.4 (0.5–3.0)	
Syphilis, n=268	n=33 (14.0%)	n=11 (4.9%)	n=6 (2.2%)	n=7 (2.8%)
Crude	1.5 (1.1–2.1)	1.1 (0.6–2.0)	1.1 (0.6–2.5)	1.6 (0.8–3.4)
Model 1	1.6 (1.1–2.2)	1.1 (0.6–1.9)	1.0 (0.5–2.3)	1.5 (0.9–2.6)
Model 2	1.5 (1.1–2.3)	1.1 (0.7–2.3)	1.0 (0.4–2.2)	1.4 (0.8–2.5)

Table 3. *Chlamydia trachomatis* and risk of hypertensive disorders of pregnancy by single diagnosis and persistent or recurrent infection. Single diagnosis refers to women diagnosed at the first prenatal visit only, persistent or recurrent infection refers to an additional diagnosis recorded after repeat testing. *Model 1: Adjusted for insurance type, maternal age, race/ethnicity, and education. *Model 2: Fully adjusted model included all variables in model 1 plus smoking, substance use and co-infection with other STIs. + Preeclampsia with severe features as defined by American College of Obstetricians and Gynecologists guidelines.

Chlamydia	Gestational Hypertension n (%)	Mild PE n (%)	> PE with severe features n (%)	Superimposed PE n (%)
No chlamydia, n = 36,698	n=2934 (8.0%)	n=1388 (3.6%)	n=688 (1.9%)	n=608 (1.8%)
Single diagnosis, n=1333	n=128 (9.6%)	n=60 (4.5%)	n=38 (2.9%)	n=27 (2.0%)
Crude	1.2 (1.0–1.4)	1.2 (0.9–1.6)	1.5 (1.1–2.1)	1.2 (0.9–1.8)
Model 1	1.2 (1.0–1.5)	1.0 (0.8–1.4)	1.4 (0.9–1.9)	1.8 (1.2–2.6)
Model 2	1.2 (1.0–1.5)	1.0 (0.8–1.4)	1.3 (0.9–1.9)	1.7 (1.1–2.6)
Persistent or recurrent infection, n = 192	n=19 (9.8%)	n=9 (4.7%)	n=10 (5.2%)	n=2 (1.0%)
Crude	1.2 (0.8–1.9)	1.3 (0.7–2.4)	2.7 (1.5–5.0)	++
Model 1	1.3 (0.8–2.0)	1.1 (0.6–2.1)	2.0 (1.1–3.8)	
Model 2	1.2 (0.8–2.0)	1.1 (0.6–0.5)	2.0 (1.1–3.4)	
could suggest that \textit{C. trachomatis} maternal outcomes21. It has been suggested that the maternal microbiota is important for ensuring maternal immune regulation and ultimately receptivity19. Bacterial STIs including \textit{N. gonorrhoeae} are associated with severe features but not mild preeclampsia. While we also found an association between chlamydia and severe features, this could suggest that \textit{C. trachomatis} results in pathophysiological changes that increase the probability of developing severe disease among those with preeclampsia. While subtypes of preeclampsia are not well characterized, We cannot distinguish whether persistence or recurrence or timing of infection was associated with our outcomes. However, given the pathogenesis of preeclampsia is likely to begin very early in pregnancy13, chronic inflammation due to persistent or recurrent infection is more plausible than a new infection later in pregnancy. While electronic health records with consistent quality checks allowed us improved phenotyping of HDP, it is an administrative database and misclassification is possible. We did have access to electronic health records from a large diverse population of pregnant women. Approximately 90–97% of our cohort had diagnostic tests for chlamydia, gonorrhea, and syphilis. This is compared to other retrospective studies where < 25% of birth records had STI diagnostic tests completed7 and 60% had STI diagnostic tests completed based on laboratory data1. Thus, while the use of existing data is a limitation of retrospective cohorts, Peribank has a robust database that minimizes bias. However, our study design can result in selection bias due to exclusion of individuals based on availability of data. Exclusion due to a missing STI test could reasonably be associated with exposure as receiving a test is dependent on age and risk of STI. Because those excluded were slightly more likely to be Black and have no insurance, they reasonably may have a higher risk of exposure. We can also assume that these women without a diagnostic test potentially could have a higher risk of adverse outcomes. If the above scenario is the true then it is possible that cases with exposure could have been excluded, which would bias the results towards the null.

Other limitations are possible with retrospective evaluation of administrative databases. We did not have available data on other important variables. We cannot distinguish whether persistence or recurrence or timing of infection was associated with our outcomes. However, given the pathogenesis of preeclampsia is likely to begin early in pregnancy13, chronic inflammation due to persistent or recurrent infection is more plausible than a new infection later in pregnancy. While electronic health records with consistent quality checks allowed us improved phenotyping of HDP, it is an administrative database and misclassification is possible. We did have a low prevalence of gonorrhea (< 1%) but this is consistent with national data among Hispanic women, whom make up the largest portion of our cohort26. A high proportion of STI positive individuals did not have a documented treatment in our study. Thus, our results could reflect a delay in treatment, which was not recorded, rather than no treatment at all. In similar studies, ~ 30% of records did not have documented treatments for perinatal STIs18,27. Goggins et al27, examined treatment delays reporting that over 50% of patients experienced delayed STI treatment during pregnancy, with an overall range of 0–221 days. These delays were primarily due to lack of clinician recognition of positive results and difficulty contacting patients. The use of secondary data also
and at their first prenatal visit, vaginal swabs or urine are collected for chlamydia, gonorrhea, and syphilis. Following standardized protocols, which tested all women for these infections, a diagnosis of HIV was available. However, majority are only tested in symptomatic individuals. Data on routine testing for group B streptococcus was available. Other genital tract infections were available such as herpes simplex virus, hepatitis, bacterial vaginosis, and mycosis. However, majority are only tested in symptomatic individuals. Data on other genital tract infections during pregnancy. In populations where majority of women come from socially disadvantaged backgrounds, our results add to the current literature and suggest that persistent or recurrent genital infections may be associated with preeclampsia with severe features and superimposed preeclampsia.

Methods

We obtained data from PeriBank, a database and biorepository that recruits women from two hospitals within Baylor College of Medicine, a tertiary-care referral center, as well as the Texas Children’s Hospital Pavilion for Women, a private hospital, in Houston, TX. All women are approached at the time of admissions to labor and delivery by trained study personnel and are eligible for enrollment if they meet the inclusion criteria: ≥ 18 years of age or ≥ 16 if emancipated and able to understand and sign the consent form. There are no exclusion criteria. PeriBank has shown previously that they are able to enroll 85–93% of all gravidae presenting to labor and delivery. Given that the hospitals serve a large portion of Hispanic pregnant individuals, this is reflected in the demographic characteristics of PeriBank. However, maternal characteristics are comparable to births in the region (Supplementary Table 3). Clinical metadata from electronic medical records and direct questioning is used to create the database by standardized protocols developed by a working group that consisted of board-certified physicians in obstetrics and gynecology, maternal fetal medicine, and other relevant disciplines. For quality control, a subset of charts included in this study were audited by a maternal–fetal medicine physician scientist. All women provided informed consent. PeriBank protocols were approved by the Baylor College of Medicine Institutional Review Board and all methods were performed following guidelines and regulations. The PeriBank Governance Board provided permission to access the data, which was anonymized prior to use. The current study protocol was reviewed by the University of Texas Medical Branch Institutional Review Board and determined to be non-human subjects research.

We identified 39,006 women with singleton and first recorded pregnancies delivering between August 2011 and February 2020 (Fig. 1). HIV is highly correlated with STIs, leading to multicollinearity in models and difficulty in distinguishing the effects of STIs vs. co-infection with HIV on pregnancy outcomes. A total of 252 women with HIV at the first or third trimester visit were excluded from analysis. This included any indication of HIV as we did not have information on viral load. We excluded 728 women who did not have a diagnostic test conducted for any of the three pathogens. After these exclusions, approximately, 91.1%, 90.6%, and 97.9% had a diagnostic test result for chlamydia, gonorrhea, and syphilis respectively. A total of 38,026 women were included in the final analysis.

The primary exposure of interest is a diagnosis with Chlamydia trachomatis and secondary exposures were a diagnosis of Neisseria gonorrhoeae and syphilis. Following standardized protocols, which tested all women at their first prenatal visit, vaginal swabs or urine are collected for C. trachomatis and Neisseria gonorrhoeae diagnosis using Nucleic acid amplification tests (NAAT). Standard guidelines were followed for treatment and re-testing in the third trimester. Syphilis was indicated in the database by rapid plasma regain (RPR), data on treponemal test was not available. We did not have information on the recommended 28 week retesting for high-risk individuals, thus, a new diagnosis at the first prenatal visit was included in the analysis. Data on other genital tract infections were available such as herpes simplex virus, hepatitis, bacterial vaginosis, and trichomoniasis. However, majority are only tested in symptomatic individuals. Data on routine testing for group B streptococcus was available.

The primary outcomes were HDP as defined by the American College of Obstetricians and Gynecologists. Preeclampsia is defined by new onset of hypertension: “systolic blood pressure (BP) ≥ 140 mmHg and/or diastolic BP ≥ 90 mmHg on at least two occasions four hours apart after 20 weeks’ gestation but before labor and proteinuria (24 h urinary protein ≥ 300 mg or spot urine protein to creatinine ratio ≥ 30 mg/mmol creatinine or urine dipstick protein ≥ ++)”33. ACOG guidelines from 2013, state that “in the absence of proteinuria, the new onset of thrombocytopenia, renal insufficiency, impaired liver function, pulmonary edema or cerebral visual symptoms can be used for diagnosis.” Preeclampsia with severe features includes one or more of the following: (1) systolic blood pressure ≥ 160 mmHg; (2) diastolic blood pressure ≥ 110 mmHg; (3) proteinuria ≥ 5 g/24 h; (4) elevated liver enzymes or (5) platelet count ≤ 100,00033. Preeclampsia with delivery < 37 weeks gestation or term delivery was not examined as a separate outcome as both were previously examined in a smaller subset of this cohort. We defined mild preeclampsia as women with preeclampsia as defined above, but without severe features. Gestational hypertension was defined as the new onset of elevated BP after 20 weeks gestation without proteinuria or severe features. Superimposed preeclampsia was diagnosed in women with underlying chronic hypertension who develop evidence of preeclampsia.

Other variables of interest included self-reported sociodemographic variables: maternal age (< 25, ≥ 25), ethnicity (Hispanic, non-Hispanic) and race (Black or African American, White, American Indian/Alaska Native, Asian, Native Hawaiian or Pacific Islander, Other), education (high-school or greater, less than high-school, marital status (married, single), and insurance status (private, Medicaid/CHIP, no-insurance/other). Behavioral
and health indicators including prenatal alcohol use (no, yes), drug use (marijuana, heroin, methamphetamine, or cocaine vs. no reported use) and tobacco use (no, yes), body mass index (BMI kg/m² < 24.9, 25–29.9, 30+), mental health issues (no, yes—anxiety, depression, other disorders), chronic hypertension (no, yes), cardiovascular disease (no, yes), and diabetes (no, yes). Pregnancy history variables included prior pregnancies (nulliparous, parous), prior pregnancy complications (no, yes—history of spontaneous abortion, preterm birth), gestational age at 1st prenatal visit (≤ 12 weeks, 13–26 weeks, 27+ weeks), and infant sex (male, female).

Statistical analyses. Associations between maternal characteristics and a diagnosis with chlamydia, gonorrhea, or syphilis was examined using log-binomial regression to calculate point prevalence ratios (PR) and 95% confidence intervals (CIs)34. We used directed acyclic graphs to theorize confounders35 including proxies for unmeasured confounders (e.g. race as a social determinant given well known associations with STIs and HDP) but excluding instrumental variables36. Model 1 adjusted for insurance type, maternal age (dichotomized as < 25 and ≥ 25 as this is the cut-point to determine high-risk for STIs), race/ethnicity (collapsed as Hispanic, White, Black, other), and education. A second model further adjusting for tobacco use, substance use, and co-infection (composite of other STIs, BV, or GBS) found similar effect estimates. For missing covariate data (range 0.01–9.4%), multiple imputation with 10 replications and fully conditional specification was utilized37. For the primary analysis, log-binomial regression was used to calculate relative risk (RR) and 95% CIs for the association between STIs and each HDP.

We conducted several sensitivity analyses. We examined whether associations were consistent among women with and without a documented CDC recommended treatment for each STI. We examined associations stratified by a STI diagnosis at the first prenatal visit only and among women who had a second diagnosis in the third trimester, which we refer to as persistent or recurrent infection. We examined chlamydia-gonorrhea co-infection, given mechanistic data suggesting that this combination exacerbates disease progression38. However, there were too few cases for analysis. We did not have data on specific gestational age of STI testing. However, per hospital protocols, women are tested at their first prenatal visit. As a proxy we assessed associations among women who received prenatal care in the first trimester and those who received care in the second and third
trimesters. Lastly, to assess the effect of unmeasured confounding, E-values were calculated. All analyses were conducted in SAS V 9.2, Cary, NC.

Data availability
The data that support the findings of this study are available from Peribank but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. To access data, interested parties should contact Peribank to request access to data.

Received: 6 April 2022; Accepted: 3 August 2022
Published online: 16 August 2022

References
1. Blatt, A. J., Lieberman, J. M., Hoover, D. R. & Kaufman, H. W. Chlamydial and gonococcal testing during pregnancy in the United States. Am. J. Obstet. Gynecol. 207(55), e51-58. https://doi.org/10.1016/j.aog.2012.04.027 (2012).
2. Prevention, C. I. D. C. a. Sexually Transmitted disease Surveillance 2018, https://www.cdc.gov/std/stats18/STDSSurveillance2018-full-report.pdf (2019).
3. Waltmann, A., McKinney, T. R. & Duncan, J. A. Nonviral sexually transmitted infections in pregnancy: Current controversies and new challenges. Curr. Opin. Infect. Dis. 34, 40-49. https://doi.org/10.1097/QCO.0000000000000702 (2021).
4. Baer, R. J. et al. An evaluation of sexually transmitted infection and odds of preterm or early-term birth using propensity score matching. Sex Transm. Dis. 46, 389–394. https://doi.org/10.1097/olq.0000000000000985 (2019).
5. Heumann, C. L., Quilter, L. A., Eastment, M. C., Heffron, R. & Hawes, S. E. Adverse birth outcomes and maternal Neisseria gonorrhoeae infection: A population-based cohort study in Washington State. Sex Transm. Dis. 44, 266–271. https://doi.org/10.1097/olq.0000000000000592 (2017).
6. Vallely, L. M. et al. Adverse pregnancy and neonatal outcomes associated with Sex Transm. Infect. 97, 104–111. https://doi.org/10.1136/sextrans-2020-054653 (2021).
7. Reekie, J. et al. Chlamydia trachomatis and the risk of spontaneous preterm birth, babies who are born small for gestational age, and stillbirth: A population-based cohort study. Lancet Infect. Dis. 18, 452–460. https://doi.org/10.1016/S1473-3099(18)30045-8 (2018).
8. Grobman, W. A. et al. Racial disparities in adverse pregnancy outcomes and psychosocial stress. Obstet. Gynecol. 131, 328–335. https://doi.org/10.1097/AOG.0000000000002441 (2018).
9. Redman, C. W. & Sargent, I. L. Immunology of pre-eclampsia. Am. J. Reprod. Immunol. 63, 534–543. https://doi.org/10.1111/j.1600-0896.2010.00831.x (2010).
10. Darville, T. Pelvic inflammatory disease due to Neisseria gonorrhoeae and Chlamydia trachomatis: Immune evasion mechanisms and pathogenic disease pathways. J. Infect. Dis. 224, S39–S46. https://doi.org/10.1093/infdis/jiab031 (2021).
11. Nagarajan, U. M. et al. Genital Chlamydia infection in hyperlipidemic mouse models exacerbates atherosclerosis. Atherosclerosis 290, 103–110. https://doi.org/10.1016/j.atherosclerosis.2019.09.021 (2019).
12. Haggerty, C. L. et al. Prenatal infection increases the risk of preeclampsia. Pregnancy Hypertens. 3, 151–154. https://doi.org/10.1016/j.preghy.2013.03.002 (2013).
13. Haggerty, C. L. et al. Chlamydia trachomatis infection may increase the risk of preeclampsia. Pregnancy Hypertens. 3, 28–33. https://doi.org/10.1016/j.preghy.2012.09.002 (2013).
14. Hill, A. V. et al. Chlamydia trachomatis is associated with medically indicated preterm birth and preeclampsia in young pregnant women. Sex Transm. Dis. https://doi.org/10.1097/OLQ.0000000000001134 (2020).
15. Mobah, A. & Nabielski, Y. Helicobacter pylori, Chlamydia pneumoniae and trachomatis as probable etiologic agents of preeclampsia. J. Matern. Fetal Neonatal Med. 29, 1607–1612. https://doi.org/10.3109/14767058.2015.1056146 (2016).
16. Schlueter, A., Doshi, U., Garg, B., Hersh, A. R. & Caughey, A. B. Adverse pregnancy outcomes associated with maternal syphilis infection. J. Matern. Fetal Neonatal Med. https://doi.org/10.1080/14767058.2021.1895740 (2021).
17. Northam, S. & Knapp, T. R. The reliability and validity of birth certificates. J. Obstet. Gynecol. Neonatal Nurs. 35, 3–12. https://doi.org/10.1111/j.1552-6909.2006.00016.x (2006).
18. Dionne-Odom, J. et al. High rates of persistent and recurrent chlamydia in pregnant women after treatment with azithromycin. Am. J. Obstet. Gynecol. MFM 2, 100216. https://doi.org/10.1016/j.ajogmf.2020.100216 (2020).
19. Mor, G., Aldo, P. & Alverno, A. B. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 17, 469–482. https://doi.org/10.1038/nri.2017.64 (2017).
20. Staff, A. C. et al. Redefining preeclampsia using placenta-derived biomarkers. Hypertension 61, 932–942. https://doi.org/10.1161/HYPERTENSIONAHA.111.00250 (2013).
21. Leavé, K. et al. Unsupervised placental gene expression profiling identifies clinically relevant subclasses of human preeclampsia. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.116.07293 (2016).
22. Molenaar, M. C., Singer, M. & Ouburg, S. The two-sided role of the vaginal microbe in Chlamydia trachomatis and Mycoplasma genitalium pathogenesis. J. Reprod. Immunol. 130, 11–17. https://doi.org/10.1016/j.jri.2018.06.006 (2018).
23. de la Torre, E. et al. Chlamydia trachomatis infection modulates trophoblast cytokine/chemokine production. J. Immunol. 182, 3735–3745. https://doi.org/10.4049/jimmunol.0800764 (2009).
24. Byard, R. W. Syphilis-cardiovascular manifestations of the great imitator. J. Forensic Sci. 63, 1312–1315. https://doi.org/10.1111/1556-4029.13709 (2018).
25. Redman, C. W. & Sargent, I. L. Latest advances in understanding preeclampsia. Science 308, 1592–1594. https://doi.org/10.1126/science.1111726 (2005).
26. Gregory, E. C. W. & Ely, D. M. Trends and characteristics of sexually transmitted infections during pregnancy: United States, 2016–2018. Natl. Vital Stat. Rep. 69, 1–11 (2020).
27. Goggins, E. R. et al. Patterns of screening, infection, and treatment of Chlamydia trachomatis and Neisseria gonorrhoeae in pregnancy. Obstet. Gynecol. 135, 799–807. https://doi.org/10.1097/AOG.0000000000003757 (2020).
28. Perneger, T. V. What's wrong with Bonferroni adjustments. BMJ 316, 1236–1238. https://doi.org/10.1136/bmj.316.7139.1236 (1998).
29. Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990).
30. Antony, K. M. et al. Generation and validation of a universal perinatal database and biospecimen repository: PeriBank. J. Perinatol. 36, 921–929. https://doi.org/10.1038/jp.2016.130 (2016).
31. CDC. Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae—2014 https://www.cdc.gov/std/laboratory/2014lab-rec.pdf (2014).
32. ACOG. STI guidelines and resources for providers: Did you know?, https://www.acog.org/About-ACOG/ACOG-Departments/Patient-Safety-and-Quality-Improvement/Did-You-Know-Video-Series/Did-You-Know-STI-Guidelines-and-Resources-for-Providers (2016).
33. ACOG. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ task force on hypertension in pregnancy. Obstet. Gynecol. 122, 1122 (2013).

34. Zou, G. A modified Poisson regression approach to prospective studies with binary data. Am. J. Epidemiol. 159, 702–706. https://doi.org/10.1093/aje/kwh090 (2004).

35. Schisterman, E. F., Cole, S. R. & Platt, R. W. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20, 488–495. https://doi.org/10.1097/EDE.0b013e3181a819a1 (2009).

36. VanderWeele, T. J. Principles of confounder selection. Eur. J. Epidemiol. 34, 211–219. https://doi.org/10.1007/s10654-019-00494-6 (2019).

37. Harel, O. et al. Multiple imputation for incomplete data in epidemiologic studies. Am. J. Epidemiol. 187, 576–584. https://doi.org/10.1093/aje/kwh090 (2004).

38. Localio, A. R., Stack, C. R. & Griswold, M. E. Sensitivity analysis for unmeasured confounding: E-values for observational studies. Ann. Intern. Med. 167, 285–286. https://doi.org/10.7326/M17-1485 (2017).

Acknowledgements
We thank Peribank for allowing us access to the data used in this study and thank the women who participated. In Peribank, subject data were obtained following full and informed subject consent with the generous support from the Departments of Obstetrics and Gynecology and Pathology and Laboratory Medicine at Texas Children's Hospital and Baylor College of Medicine on the PeriBank protocol (IRB H-26364, Dr. Kjersti Aagaard PI).

Author contributions
B.D.T. developed the concept and design of the study, analyzed data, and wrote the manuscript. A.V.H., M.J.P., C.L.H., E.F.S., and A.I.N. provided feedback on the design, analysis, and interpretation of the data. A.N. and C.R.C. assisted with database management, statistical analyses, reporting of data, and interpretation of data. All authors contributed to editing and approving the final version of the manuscript.

Funding
This work was funded in part by NIH/NIAID R01AI143653 to B.D.T.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-17989-0.

Correspondence and requests for materials should be addressed to B.D.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022