A COMPARISON OF BODY MASS INDEX AND WEIGHT GAIN AMONG MALE SPRAGUE DAWLEY RATS ON BROILER AND DOMESTIC CHICKEN MEAT FEED

Hammad Gul Khan, Amir Rashid, Zainab Khan*, Faiza Aman**, Muhammad Shoaib**

Army Medical College/National University of Medical Sciences (NUMS) Rawalpindi Pakistan, *Khyber Medical University, Peshawar Pakistan, **Quaid-e-Azam University, Islamabad Pakistan

ABSTRACT

Objective: To compare and evaluate the effects of broiler chicken fed with commercially offered feed and chicken fed with organic diet on body mass index and weight gain in male Sprague Dawley rats.

Study Design: Laboratory based experimental study.

Place and Duration of Study: Multi-Disciplinary Laboratory of Department of Biochemistry and Molecular Biology, Army Medical College, Rawalpindi, and collaborated with Quaid-e-Azam University, Islamabad, from Nov 2017 to Apr 2019.

Methodology: Ninety male early weaned Sprague Dawley rats were arbitrarily assorted into three groups (n=30). Group I control rats were nourished on standard pelleted diet. Group II rats were nourished with organic chicken meat along with their standard pelleted diet. Group III rats were nourished with broiler chicken meat along with their standard pelleted diet. Body mass index and weight gain were estimated. All variables were calculated as Mean ± SD values. One-way ANOVA was applied to determine the significance among groups followed by Tukey’s HSD post hoc test. p-value ≤0.05 was considered significant.

Results: The current study demonstrated significant increase in body mass index (p≤0.001) and weight gain (p≤0.001) in broiler chicken meat treated group as compared to control and organic chicken meat treated groups.

Conclusion: Based on the findings of our study we concluded that broiler chicken meat consumption could be the probable cause of weight imbalances and out of proportion gain of weight and growth in experimental rats.

Keywords: Body mass index, Broiler chicken, Growth rate, Organic chicken, Organic diet, Sprague dawley rats.

INTRODUCTION

The consumption of chicken as an essential source of animal protein has displayed an immense upsurge globally over the passage of time and is being used as a staple food worldwide because of its easy accessibility, pleasant taste, relatively reasonable price, nutritional value and acceptance by all echelons of society with various backgrounds1. The increasing worldwide population, shared with factors such as amplified pressure on the world’s resources, changing socio-demographics and augmented demand for animal-based protein, resulted in chicken meat as popular alternative source for protein2.

The consumption of global chicken meat in 2018 averaged 13.9 kg per capita3. Consumption of chicken meat in Asia, increased from 6.6 kg to 9.5 kg per capita per year1. In Pakistan poultry consumption is 4.4 kg/capita 3 in 2017. In 2025, the poultry consumption per capita in Pakistan is anticipated to amount to approximately 4.68 kilograms per individual per annum4. Presently revenue generated by Poultry Industry in Pakistan is about 750 Billion rupees. Poultry sector produces employment and profits for about 1.5 million people.

The current sources of poultry in vogue are broiler and domestic. The former is the most reasonable and accessible in local marketplaces and is nourished on commercially offered feed. While the latter one is difficult to acquire due to high cost and shortage. There is an inclination towards poultry meat instead of red meat because of delicious taste, diminutive price and easy accessibility. Modern broiler has 150 to 200 grams of fat per kg body of its weight5, which is 15-20% more fat6, than that of indigenous/organic

Correspondence: Dr Hammad Gul Khan, Department of Biochemistry, Army Medical College Rawalpindi Pakistan

Received: 30 Jan 2020; revised received: 24 Jun 2020; accepted: 17 Jul 2020
chicken. Of this additional fat >85% is not physio-
logically required7. Diet, especially fat enriched
plays significant role in hormonal imbalance,
obesity and hyperlipidemias. Synthetic estrogens
and other compounds having androgenic and
progestogenic properties have been in practice
for growth promotion and to improve carcass
quality in chicken.

Some essential ingredients included in poul-
try feed are steroids, antibiotics, minerals and
arsenic which might be used intentionally for
the higher boom and overall performance of the
chickens8. The elements of the chicken feed are
stated to impart higher flavor and increased
growth rate and meat quantity in chickens and
as a result more and more chicken is consumed
on daily basis. As broiler chicken meat contains
extra fat and increased nitrogenous compounds
so imparting humans with extra fat and proteins.
The existence of the certain substances mainly
oysters shells and roxersone from infected
waters, antibiotics, fat from previous bird debris
and hormones extracts making up the feed of
the chicken might also deliver dangerous effects to
the people ingesting the meat.

With increased consumption of poultry
meat, it is a growing myth in general public that
broiler chicken consumption may not be safe and
is commonly believed to be an estrogenic, carci-
nogenic as well as growth retardant. It is a grow-
ing concern not in general public but also among
the clinicians that broiler chicken consumption
may lead to obesity9, reproductive disorders10,
such as precocious puberty, hirsutism, polycystic
ovarian syndrome, early menarche and meno-
pause. We have conducted a comparative study
to determine the effects on body mass index
and weight gain in response to chicken fed with
commercially available feed and chicken fed with
organic diet.

METHODOLOGY

A total number of 90 early weaned Sprague
Dawley rats weighing 45-60 grams and between
ages of 3-411, weeks were obtained from inbred
colony of animal house of Quaid-e-Azam
University, Islamabad. Laboratory based experi-
mental study was conducted in the Multidiscip-
lineary laboratory, Biochemistry Department,
Army Medical College, Biochemistry Department,
from November 2017 to April 2019. The Ethics Review
Committee reviewed the ethical aspects of the
venture and was contented with the undertaking
of the investigators and they were in line with the
approvals of National Institute of Health Guide
for Care and Use of Laboratory Animals (Publi-
cation No. 85-23, revised 1985)12. Non-probability
consecutive sampling was employed to split rats
into three groups, group I, II and III with 30 rats
allocated to each group. The group I control rats
were fed on standard pelleted rat diet and water
ad libitum while group II were fed on standard
diet supplemented with organic chicken meat
and group III were fed on standard diet supple-
mented with broiler chicken meat forten weeks’
time. At the end of the study weight, the abdomi-
nal circumference (AC) (immediately anterior to
the forefoot), thoracic circumference (immedia-
tely behind the foreleg), body length (nose-to-
anus or nose-anus length) were measured in all
rats. The measurements were made in sedated
rats (0.1mL intraperitoneally of 1% sodium barbi-
turate). The body weight and body length were
used to calculate the body mass index13.

Body mass index = body weight (g)/length²
(cm²). Growth rate is also calculated at the end.

The data analysis was performed using SPSS
version 22. Quantitative data was presented
in terms of mean and SD. Data distribution was
checked using Shapiro Wilk test. One-way
ANOVA was applied to gauge the statistical sig-
nificance among the groups (data was found to
be uniform or non-skewed). p-value of ≤0.05 was
considered significant and group differences
were calculated using Post Hoc test (Tukey HSD).

RESULTS

A comparison of the mean body mass index
and weight gain among the three groups at the
end of ten weeks is shown in table. Mean body
mass index of the three groups (I, II, III) was 0.61
± 0.03 g/cm², 0.72 ± 0.02 g/cm² and 0.81 ± 0.01
Body Mass Index and Weight Gain

Pak Armed Forces Med J 2020; 70 (6): 1662-65

g/cm² respectively. Similarly mean weight gain in group I, II and III was 190.27 ± 17.57g, 185.30 ± 17.41g and 229.17 ± 16.88g respectively.

We observed an increase in degree of body mass index and weight gain in both broiler and domestic chicken diets groups; however the significance level was more in broiler chicken group (table-I).

The animals of group I and II gained almost equal weight (187 ± 17g) during study period while the weight gain in animals of group III was significantly higher (229 ± 17g) as compared to those of controls or group II. Body weight gain with increasing age of animals in group III was significantly different while it was normal in rats of group I and II.

Comparison of mean body mass index by Post hoc Tukey’s HSD revealed that group III (0.81 ± 0.01 g/cm²) rats displayed significantly higher (p≤0.001) measurements as compared to the group I rats (0.61 ± 0.03 g/cm²). The body mass index values in group I and II were not significantly raised (p=0.623) as shown in table-II.

Table-I: Comparison of anthropometric parameters in control and experimental groups.

Variables	Group I (n=30)	Group II (n=30)	Group III (n=30)	p-value
Body Mass Index (g/cm²)	0.61 ± 0.03	0.72 ± 0.02	0.81 ± 0.01	<0.001*
Weight Gain (Grams)	190.27 ± 17.57	185.30 ± 17.41	229.17 ± 16.88	<0.001*

*p-value <0.05 was significant.

Table-II: Intra-group association of variables among the control and experimental groups.

Parameters	Group-1	Group-2	Group-3
Body Mass Index (g/cm²)	0.623	<0.001*	<0.001*
Weight Gain (Grams)	0.509	<0.001*	<0.001*

DISCUSSION

The equilibrium of dietary proteins is shifting from red meat and fish to chicken meat. The results of our study showed that consumption of broiler chicken significantly increased body mass index and weight gain in male rats. Ahmad *et al*, 2016 also reported increase in weight gain in female Albino Wistar rats. But as we have conducted study on male animal population as a pilot project, our results were more pronounced because of gender differences.

Our study also suggested that consumption of broiler chicken on daily basis may lead to oscillating levels of sex hormones. Estrogen as a pleiotropic hormone, affects every system of the body and has profound effects on body metabolism. Studies showed that excess of estrogen is linked to disturbed metabolism which leads to inappropriate deposition of fats and adipose tissue hence causing obesity. This can further be inferred from this fact that this may lead to insulin resistance, diabetes and dyslipidemias. Excessive estrogen in female can enhance proliferation of uterine lining and breast tissue which may be implicated as not good in perspective of malignancy. This can further enhance the chances of anovulatory cycles and hence decreasing the fertility ratio in female population.

Broiler chicken contains extra cholesterol which acts like a substrate for the steroidogenesis, thus balance is tipped towards increased production which control many regulatory processes in the body and also have been implicated as the cause of obesity. These hormones along with GH, leptin, adiponectin and insulin interfere with our appetite and may modulate our behavior and preference, over a particular diet and they also guide the distribution of fat. This chicken is reared on diets enriched with nutritional and non-nutritional ingredients. These ingredients hoard in chicken meat and in the consumer and could be the cause of disturbed
metabolism and obesity. Chicken feed causes more muscle mass and abdominal obesity in broilers and this may reflect in consumers as well.

The results of our study showed significant increases in weight gain in broiler chicken meat fed group as compared to control and organic meat fed groups. Growth, weight gain and body mass index are said to be environmentally linked. Group III rats showed marked increase in body weight and body mass index was consistent with earlier reports and studies.

Hormonal derangements because of consistent use of broiler chicken meat are reflected in terms of precocious puberty, and an increase in weight and growth rates. This rise was however not seen in control and group II. The early growth spurt and obesity surge may be linked to increase in the rate of broiler chicken consumption on daily basis in Pakistani population. More general population in Pakistan is utilizing cholesterol and fats than proteins and hence imparting a majormass to the burden of obesity and weight gain.

CONCLUSION

Based on the findings of our study we concluded that broiler chicken meat consumption on regular basis could be the potential cause of out of proportion weight gain and growth spurt in experimental rats.

CONFLICT OF INTEREST

This study has no conflict of interest to be declared by any author.

REFERENCES

1. Wahyono N, Utami M, Editors. A review of the poultry meat production industry for food safety in Indonesia. J Phys Conf Ser 2018; 993(2): 1-5.
2. Henchion M, Hayes M, Mullen AM, Mullenon M, Tiwari B. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods 2017; 6(7): 53-55.
3. Meat Consumption: Beef and veal / Poultry meat / Sheep meat, Kilograms/capita, 2018: The Organisation for Economic Co-operation and Development (OECD); [Internet]. Available from: [Accessed 26 Oct 2018]. https://data.oecd.org/agrouput/meat-consumption.htm.
4. Sohaib M, Jamil F. An insight of meat industry in pakistan with special reference to halal meat: a comprehensive review. Korean J Food Sci Anim Resour 2017; 37(3): 329-41.
5. Wang Y, Lehane C, Ghebremeskel K, Crawford MA. Modern organic and broiler chickens sold for human consumption provide more energy from fat than protein. Public Health Nutr 2010; 13(03): 400-08.
6. Wang Y, Lehane C, Ghebremeskel K. Modern organic and broiler chickens sold for human consumption provide more energy from fat than protein. Public Health Nutr 2010; 13(3): 400-8.
7. Fouad A, El-Senousy H. Nutritional factors affecting abdominal fat deposition in poultry: a review. Asian-Australasian J Anim Sci 2014; 27(7): 1057-68.
8. Gonzalez-Moran MG. Immunohistochemical localization of progesterone receptor isoforms and estrogen receptor alpha in the chicken oviduct magnum during development. Acta Histochem 2015; 117(8): 681-67.
9. Ahmad S, Ahmed I, Haider S, Batool Z, Ahmed F, Tabassum S, et al. Effects of Consumption of Caged and Un-Caged Chicken Meat on Ovarian Health of Female Wistar Rats. Pak J Zool 2018; 50(2): 401-97.
10. Ahmad S. The effect of commercially available chicken feed and chicken meat on body weight and serum estrogen levels in female albino Wistar rats. Int J Livest Prod 2017; 9(2): 24-27.
11. Sengupta P. The Laboratory Rat: Relating Its Age With Human's. Int J Prevent Med 2013; 4(6): 624-30.
12. Health Nl. Guide for the care and use of laboratory animals: National Academies; 1985 [Internet]. https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals. pdf.
13. Novelli EL, Diniz YS, Galhardi CM, Elbad GM, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Laborat Anim 2007; 41(1): 111-19.
14. Ahmad S, Omme-e-Hany AI, Ahmed SA, Alamigir A, Neelam A. Potential Effect of Chicken Boneless Meat on the Body Weight and Serum Cholesterol Levels of the Female Albino Wister Rats: in Direct Human Prospective Studies. Am-Eurasian J Agric Environ Sci 2016; 16(03): 466-69.
15. Velarde MC. Pleiotropic actions of estrogen: a mitochondrial matter. Physiol Genom 2012; 45(3): 106-09.
16. Qiu S, Vazquez JT, Boulier E, Liu H. Hepatic estrogen receptor α is critical for regulation of gluconeogenesis and lipid metabolism in males. Scien Report 2017; 7(1): 1661-65.
17. Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and breast cancer: role of leptin. Front Oncol 2019; 9(2): 112-80.
18. Pihlajoki M, Heikinheimo M, Wilson DB. Regulation of Adrenal Steroidogenesis. Adrenal Disorders: Springer; 2018. p. 15-66. [Internet]https://profiles.wustl.edu/en/publications/regulation-of-adrenal-steroidogenesis.
19. Avila Carrasco L, Pavone MA, González E. Abnormalities in glucose metabolism, appetite-related peptide release and pro-inflammatory cytokines play a central role in appetite disorders in peritoneal dialysis. Front Physiol 2019; 10(1): 630-45.
20. Ahmad S, Omme-e-Hany AI, Ahmed SA, Alamigir A, Neelam A. Potential Effect of Chicken Boneless Meat on the Body Weight and Serum Cholesterol Levels of the Female Albino Wister Rats: in Direct Human Prospective Studies. American-Eurasian J. Am Eurasian J Agric Environ Sci 2016; 16(1): 466-69.
21. Calder PC, Ahlouwala N, Brouns F, Baetert T, Clement K. Dietary factors and low-grade inflammation in relation to overweight and obesity. British J Nutrit 2011; 106(S3): S1-S78.
22. Misra A, Jayawarden N. Obesity in south asia: phenotype, morbidities, and mitigation. Current Obes Rep 2019; 8(1): 43-52.