Synthesis, Characterisation and Biological Evaluation of Substituted 4-((1H-Benzo[d]Imidazol-2-YL) Methoxy) Coumarin Derivatives as Antimicrobial Agents

Harpreet Kaur, Baljeet Singh

Department of Pharmaceutical Chemistry, ASBASJSM College of Pharmacy, Bela (Ropar) 140111, Punjab, India
1Punjab Technical University, Jalandhar, Punjab, India
2Assistant Professor, ASBASJSM College of Pharmacy, Bela, Ropar, India

ABSTRACT
A series of coumarin-benzimidazole derivatives i.e. 4-((1H-Benz[a]imidazol-2-yl)methoxy)coumarin derivatives (7a-j) was synthesized by reacting appropriate starting materials and evaluated for its in vitro antimicrobial activity. The newly synthesized compounds have been characterized on the basis of elemental analyses, spectroscopic techniques (FT-IR). Antimicrobial studies of these compounds were performed against the both the Gram positive, MRSA (Staphylococcus aureus, Bacillus subtilis) as well as Gram negative (Escherichia coli) bacteria. The activity was investigated by using both Agar well diffusion as well as MIC assay. All the compounds were show significant bactericidal activity against all the pathogenic strains in comparison to Ciprofloxacin, a broad spectrum antibiotic against Gram positive and Gram negative bacteria. Most of the synthesized derivatives appeared as excellent antimicrobial agents as compared to standard drug Ciprofloxacin. Compound 7b was found to be the most active antibacterial agent against Gram positive as well as Gram negative bacteria.

INTRODUCTION
Benzimidazole rings are the most important heterocyclic nitrogen-containing compounds, which are widely utilized by the pharmaceutical industry for drug discovery [1]. Due to their special structural features and electron-rich environment, Benzimidazole containing drugs bind to a variety of therapeutic targets [2], thereby exhibiting a broad spectrum of biological activities. Compounds containing benzimidazole have been widely used in medicinal chemistry and drug research development. Benzimidazole is a valuable compound for the synthesis of a wide range of biologically active compounds such as anticancer, antihelmintic, antimicrobial, antidiabetic, antiviral, antipsychotic, antioxidant, analgesic and anti-inflammatory, anticonvulsant, antifungal, antitubercular, antiallergic, antioxidant, antimycobacterial, antiprotozoal, antiurease and lipase inhibition [3-14]. Numerous benzimidazole based drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potential [15]. Benzimidazole-based chromophores have received increasing attention due to their different linear and non-linear optical properties and ability of benzimidazole derivatives to form stable complexes with metal ions [16]. The optimization of benzimidazole derivatives based on their structures has resulted in various potent drugs that are now being currently practiced in the market, like albendazole, omeprazole, mebendazole etc. [17].

Benzimidazole derivatives play important role in medical field with different Pharmacological activities such as antimicrobial, antiviral, antioxidants, antidiabetic and anticancer activity [18]. Benzimidazoles are structural isosteres to purines that are essential substrates for the biosynthesis of nucleic acids and proteins inside the bacterial...
The identification and characterization of the compound were carried out determining the melting point on a melting point apparatus by capillary method and were uncorrected. All the IR spectra of the synthesized compounds were recorded on Bruker alpha-E FTIR-ATR.

IR spectra were recorded on Bruker Avance II (400MHz) spectrometer using DMSO as solvent at SAIF, Punjab University; Chandigarh. TMS was taken as standard and chemical shift data were reported in parts per million (ppm) where s, d, t and m are designated as singlet, doublet, triplet and multiplet respectively. TLC development was conducted on 0.25 mm silica gel plates (Merek silica gel 60 F254 in aluminium foil).

Methods and techniques
The coumarin-benzimidazole derivative (compound 7a-j) was prepared in three steps as presented in Scheme 1 and as described below.

Synthesis
General procedure for the synthesis of 2-(chloromethyl)-IH-benzo[d]imidazol derivatives (3a-d)
A mixture of o-phenylenediamine derivatives (1a-d) (0.1mol) and chloroacetic acid (0.1mol) was refluxed for 3hr in 4N hydrochloric acid (50 ml) on water bath. Reaction mixture was cooled and basified with ammonium hydroxide solution. The precipitates thus obtained were dried and recrystallized from methanol, to give 2-(chloromethyl)-IH-benzo[d]imidazol derivatives (3a-b) [25].

General procedure for synthesis of4-hydroxy coumarin derivatives (6a-f)
Add Phenol derivatives (4a-f) (0.1mol) and Malonic acid (0.1mol) to a mixture of Phosphorus oxychloride (40 ml), Anhydrous Zinc Chloride (30 gm) which was preheated to 60–70 °C. The reaction mixture was then heated on water bath at 70 °C for 20-24 hr. It was then cooled after completion of reaction which was monitor by TLC and poured in ice cold water. The precipitates were formed, which were filtered and washed with water.

The crude compound was then treated with 10% Sodium Carbonate solution and filtered. The filtrate was slowly acidified with 20% Hydrochloric acid. The product was then filtered and washed with water and dried. The dried product was then recrystallized from Glacial acetic acid [26].

General procedure for synthesis of coumarin-Benzimidazole derivatives (7a-j)
In a round bottom flask containing benzimidazole derivatives (3a-d) (0.01 mol) and 4-Hydroxycoumarin...
derivatives (6a-f) (0.01 mol), DMF and K$_2$CO$_3$ were added and reaction mixture was refluxed for 12-13 hrs. The completion of the reaction was monitored by TLC on silica gel using chloroform: methanol (9:1). After the completion of the reaction, mixture was poured on crushed ice, and then solids are separated out. The solids were filtered, washed with saturated solution of NaHCO$_3$ and then recrystallized from hot ethanol and dried.

In vitro antimicrobial evaluation

All the synthesized compounds were subjected to antibacterial activity against Gram negative E. coli (MTCC 40) and Gram positive S. aureus (MTCC 87), B. subtilis (MTCC 121).

Agar Diffusion Studies

All the substituted 4-((1H-Benz[d]imidazol-2-yl)methoxy) coumarin compounds were evaluated for their in vitro antimicrobial activity by agar diffusion method. The culture medium (nutrient agar) was sterilized and poured in 90mm sterile petri plate in sterile conditions. The lawn of tested bacterial strains Staphylococcus aureus (MTCC 87), Bacillus subtilis (MTCC 121) and Escherichia coli (MTCC 40) was made by spreading 100μl of log phase bacterial strains on different nutrient agar plates.

The substituted 4-((1H-Benz[d]imidazol-2-yl) methoxy) coumarin compound and standard drug (Ciprofloxacin) were suspended in DMSO at the concentration of 1mg/ml. Wells in nutrient agar (0.7cm diameter) was made and 50μl of compound suspension was added to the wells. These compounds were allowed to diffuse for at least 2 hours and were incubated at 37°C for 18-24hrs. The zone of inhibition for substituted 4-((1H-Benz[d]imidazol-2-yl)methoxy) coumarin compounds were recorded on next day. The zone of inhibition was observed in cm.

Minimum inhibitory concentration (MIC)

The 4-((1H-Benz[d]imidazol-2-yl) methoxy) coumarin compounds were determined by micro broth dilution method. A 1mg/mL stock solution of compounds was prepared in DMSO. The MIC was determined using standard protocol in 96-well microtitre plates. The test concentration was kept in the range of 0.0078-1mg/mL for each of the three pathogenic strains.

One hundred microliters of compounds of varying concentrations was added to each well and another well was loaded with the same volume of sterile DMSO. 100μl of nutrient broth was added to each well containing 0.5 O.D. cells of each organism (at 600nm) i.e. Staphylococcus aureus (MTCC 87), Bacillus subtilis (MTCC 121) and Escherichia coli (MTCC 40) in spate rows and was incubated at 37°C.
After the time period of 18-24hrs of incubation, turbidity was observed in the wells as MIC [27-28].

Result and Discussion

Synthesis of coumarin-benzimidazole derivative 4-((1H-Benzo[d]imidazol-2-yl) methoxy) coumarin compounds (7a-j)

Synthesis of coumarin-benzimidazole derivative 4-((1H-Benzo[d]imidazol-2-yl)methoxy) coumarin compounds (7a-j) was prepared in three steps and the anticipation was that these compounds might revealed improved antimicrobial activity properties. The chemical structure of the prepared compound (7a-j) is represented in Scheme 1. All the compounds in this series were prepared and purified as explained in the synthesis section.

Spectral data of coumarin- Benzimidazole derivatives (7a-j)

The reaction yield and physical properties, such as melting point and product colour, elemental analysis were discussed as follow:

4-((1H-Benzo[d]imidazol-2-yl)methoxy)-2H-chromen-2-one (7a). Light green colored Powder; m. pt. 216-220 °C; yield 67.60%; 0.62 (Chloroform: Methanol 9:1); IR (cm\(^{-1}\)): 3314.42 cm\(^{-1}\) (N-H stretch), 3045.45 cm\(^{-1}\) (C-O stretch), 1778.41 cm\(^{-1}\) (C=O stretch), 1659.37 cm\(^{-1}\) (C=O stretch), 1603.69 cm\(^{-1}\) (Ar.-C=O stretch), 1055.53 cm\(^{-1}\) (C=O stretch), 739.29 cm\(^{-1}\) (C-Br stretch).

4-((5-Chloro-1H-benz[o]imidazol-2-yl)methoxy)-2H-chromen-2-one (7b). Light purple colored Powder; m. pt. 268-270 °C; yield 69.53%; 0.75 (Chloroform: Methanol 9:1); IR (cm\(^{-1}\)): 3338.03 cm\(^{-1}\) (N-H stretch), 3141.81 cm\(^{-1}\) (Ar.-C=H stretch), 2949.77 cm\(^{-1}\) (Ar.-C=H stretch), 1745.67 cm\(^{-1}\) (C=O stretch), 1648.76 cm\(^{-1}\) (C=N stretch), 1597.12 cm\(^{-1}\) (C=N stretch), 1320.80 cm\(^{-1}\) (C-N stretch), 1059.60 cm\(^{-1}\) (C-O stretch).

4-((5-Nitro-1H-benz[o]imidazol-2-yl)methoxy)-2H-chromen-2-one (7c). Black colored Powder; m. pt. 264-267 °C; yield 63.53%; 0.71 (Chloroform: Methanol 9:1); IR (cm\(^{-1}\)): 3314.01 cm\(^{-1}\) (N-H stretch), 3045.45 cm\(^{-1}\) (Ar.-C=H stretch), 2949.77 cm\(^{-1}\) (Ar.-C=H stretch), 1745.67 cm\(^{-1}\) (C=O stretch), 1648.76 cm\(^{-1}\) (C=N stretch), 1597.12 cm\(^{-1}\) (C=N stretch), 1320.80 cm\(^{-1}\) (C-N stretch), 1059.60 cm\(^{-1}\) (C-O stretch).

4-((5-Methyl-1H-benz[o]imidazol-2-yl)methoxy)-2H-chromen-2-one (7d). Light yellow colored Powder; m. pt. 248-250 °C; yield 69.92%; 0.67 (Chloroform: Methanol 9:1); IR (cm\(^{-1}\)): 3314.42 cm\(^{-1}\) (N-H stretch), 3141.81 cm\(^{-1}\) (Ar.-C=H stretch), 2999.79 cm\(^{-1}\) (Ar.-C=H stretch), 1769.98 cm\(^{-1}\) (C=O stretch), 1658.14 cm\(^{-1}\) (C=O stretch), 1603.99 cm\(^{-1}\) (Ar.-C=O stretch), 1141.13 cm\(^{-1}\) (C-N stretch), 1101.96 cm\(^{-1}\) (C-O stretch).

4-((1H-Benzo[d]imidazol-2-yl)methoxy)-6-nitro-2H-chromen-2-one (7e). Brown colored Powder; m. pt. 258-262 °C; yield 63.53%; 0.71 (Chloroform: Methanol 9:1); IR (cm\(^{-1}\)): 3304.15 cm\(^{-1}\) (N-H stretch), 3050.99 cm\(^{-1}\) (Ar.-C=H stretch), 2920.80 cm\(^{-1}\) (Ar.-C=H stretch), 1763.32 cm\(^{-1}\) (C=O stretch), 1655.21 cm\(^{-1}\) (C=N stretch), 1429.65 cm\(^{-1}\) (Ar.-C=O stretch), 1193.50 cm\(^{-1}\) (C-N stretch), 1325.40 cm\(^{-1}\) (N=O stretch), 1093.47 cm\(^{-1}\) (C-O stretch).

4-((1H-Benzo[d]imidazol-2-yl)methoxy)-6-bromo-2H-chromen-2-one (7f). Light brown colored Powder; m. pt. 246-248 °C; yield 68.57%; 0.64 (Chloroform: Methanol 9:1); IR (cm\(^{-1}\)): 3440.01 cm\(^{-1}\) (N-H stretch), 3057.19 cm\(^{-1}\) (Ar.-C=H stretch), 2921.96 cm\(^{-1}\) (Ar.-C=H stretch), 1813.66 cm\(^{-1}\) (C=O stretch), 1657.06 cm\(^{-1}\) (C=N stretch), 1620.42 cm\(^{-1}\) (Ar.-C=O stretch), 1264.64 cm\(^{-1}\) (C-N stretch), 1094.21 cm\(^{-1}\) (C-O stretch), 739.29 cm\(^{-1}\) (C-Br stretch).

4-((1H-Benzo[d]imidazol-2-yl)methoxy)-6-chloro-2H-chromen-2-one (7g). Dark brown colored Powder; m. pt. 272-276 °C; yield 62.22%; 0.61 (Chloroform: Methanol 9:1); IR (cm\(^{-1}\)): 3387.71 cm\(^{-1}\) (N-H stretch), 3045.45 cm\(^{-1}\) (Ar.-C=H stretch), 2930.35 cm\(^{-1}\) (Ar.-C=H stretch), 1708.87 cm\(^{-1}\) (C=O stretch), 1658.37 cm\(^{-1}\) (C=N stretch), 1601.58 cm\(^{-1}\) (Ar.-C=O stretch), 1136.68 cm\(^{-1}\) (C-N stretch), 1320.80 cm\(^{-1}\) (N=O stretch), 1092.81 cm\(^{-1}\) (C-O stretch), 737.55 cm\(^{-1}\) (C-Cl stretch).

6-Amino-8-chloro-4-((5-nitro-1H-benzo[d]imidazol-2-yl)methoxy)-2H-chromen-2-one (7h). Black colored Powder; m. pt. 285-288 °C; yield 85.6%; 0.74 (Chloroform: Methanol 9:1); IR (cm\(^{-1}\)): 3343.10 cm\(^{-1}\) (N-H stretch), 3093.62 cm\(^{-1}\) (Ar.-C=H stretch), 2924.72 cm\(^{-1}\) (Ar.-C=H stretch), 1778.81 cm\(^{-1}\) (C=O stretch), 1654.23 cm\(^{-1}\) (C=N stretch), 1499.77 cm\(^{-1}\) (Ar.-C=O stretch), 1091.77 cm\(^{-1}\) (C-N stretch), 1326.94 cm\(^{-1}\) (C=O stretch), 1055.53 cm\(^{-1}\) (C-O stretch), 733.32 cm\(^{-1}\) (C-Cl stretch).

6-Amino-4-((5-nitro-1H-benzo[d]imidazol-2-yl)methoxy)-2H-chromen-2-one (7i). Black colored Powder; m. pt. 264-267 °C; yield 64.46%; 0.69 (Chloroform: Methanol 9:1); IR (cm\(^{-1}\)): 3343.10 cm\(^{-1}\) (N-H stretch), 3093.62 cm\(^{-1}\) (Ar.-C=H stretch), 2924.72 cm\(^{-1}\) (Ar.-C=H stretch), 1778.81 cm\(^{-1}\) (C=O stretch), 1654.23 cm\(^{-1}\) (C=N stretch), 1499.77 cm\(^{-1}\) (Ar.-C=O stretch), 1091.77 cm\(^{-1}\) (C-N stretch), 1326.94 cm\(^{-1}\) (C=O stretch), 1055.53 cm\(^{-1}\) (C-O stretch), 733.32 cm\(^{-1}\) (C-Cl stretch).

6-Nitro-4-((5-nitro-1H-benzo[d]imidazol-2-yl)methoxy)-2H-chromen-2-one (7j). Dark Brown colored
Evaluation of Zone of Inhibition of synthesized compounds

Table No. 3.3.1: *In vitro* antibacterial activity of synthesized compounds

Compounds (1mg/ml or 1µg/ml)	E. coli (MTCC 40)	S. aureus (MTCC87)	B. subtilis (MTCC121)			
	Inferences	Diameter	Inferences	Diameter	Inferences	Diameter
7a	+	1.0 cm	+	0.7 cm	+	1.9 cm
7b	+	1.1 cm	+	0.1 cm	+	1.5 cm
7c	+	0.8 cm	+	0.8 cm	+	1.4 cm
7d	+	0.7 cm	+	0.8 cm	+	1.5 cm
7e	+	1.0 cm	+	0.7 cm	+	1.9 cm
7f	+	0.9 cm	+	0.9 cm	+	1.3 cm
7g	+	1.1 cm	+	1.1 cm	+	1.5 cm
7h	+	0.5 cm	+	0.6 cm	+	1.2 cm
7i	+	0.8 cm	+	0.9 cm	+	0.8 cm
7j	+	1.1 cm	+	1.2 cm	+	1.1 cm
DMSO*	-	-	-	-	-	-
Ciprofloxacin	+	3.8 cm	+	3.9 cm	+	4.1 cm

Evaluation of Minimum Inhibitory concentration of synthesized compounds

Table No. 3.3.2: Observation for Minimum Inhibitory Concentration (mg/ml)

Compounds	E. coli (MTCC 40)	S. aureus (MTCC87)	B. subtilis (MTCC121)
7a	0.125	0.250	0.016
7b	0.016	0.125	0.125
7c	0.008	0.063	0.250
7d	0.063	0.250	0.063
7e	0.250	0.125	0.250
7f	0.063	0.500	0.125
7g	0.063	0.125	0.250
7h	0.250	0.500	0.500
7i	0.016	0.250	0.250
7j	0.125	0.500	0.500
DMSO*	0	0	0
Ciprofloxacin#	0.008	0.008	0.008
Powder; m. pt. 276-280°C; yield 79.88%; 0.58 (Chloroform: Methanol 9:1); IR (cm⁻¹): 3446.31 cm⁻¹ (N-H stretch), 3092.68 cm⁻¹ (Ar.-C-H stretch), 2915.73 cm⁻¹ (Al.-C-H stretch), 1734.51 cm⁻¹ (C=O stretch), 1657.75 cm⁻¹ (C=N stretch), 1593.37 cm⁻¹ (Ar.-C=C stretch), 1096.26 cm⁻¹ (C-N stretch), 1328.90 cm⁻¹ (N=O stretch), 1057.37 cm⁻¹ (C-O stretch).

Evaluation of anti-microbial activity of coumarin-benzimidazole derivative 4-((1H-Benzo[d]imidazol-2-yl)methoxy) coumarin compounds (7a-j)

All the synthesized compounds were found to be active against both the bacterial strain that is Gram negative bacteria E. coli (MTCC 40) and Gram positive bacteria S. aureus (MTCC 87), B. subtilis (MTCC121). These active compounds are further subjected to antibacterial activity in comparison with standard drug. The primary screening was carried out by taking concentration (1mg/ml) for test and standard and then dilution’s of the all the compounds and standard drug i.e. 0.500mg/ml, 0.250mg/ml, 0.125mg/ml, 0.0625mg/ml, 0.03125mg/ml, 0.0156mg/ml and 0.0078mg/ml) are used for the antimicrobial evaluation. Ciprofloxacin was used as standard drug for antibacterial and DMSO was used as control.

As compare to standard ciprofloxacin, compounds exhibited good activity against all the tested strains.

Conclusion

A series of coumarin-benzimidazole derivatives was synthesized and evaluated for its in vitro antimicrobial activity. Most of the synthesized derivatives appeared out as excellent antimicrobial agents as compared to standard drug. Compound 7b was found to be the most active antibacterial agent against Gram positive as well as Gram negative bacteria.

Acknowledgement

The authors thank the Institute ASBASJSM College of Pharmacy, Bela which served as temple of knowledge and provided quality education.

References
1. Abraham D, Burger A: Burger’s medicinal chemistry and drug discovery. Hoboken NJ: Wiley, 6th edition 2003.
2. Patrick L: An Introduction to Medicinal Chemistry. Oxford, 4th edition 2009.
3. Omar M. A., Shaker Y . M., Galal S.A., Ali M.M., Kerwin S.M., Li J., El Diwani H. I., Synthesis and docking studies of novel antitumor benzimidazoles, Bioorganic Medicinal Chemistry 2012; 20: 6989-6901.
4. Wubulikasimu R., Yang Y ., Xue F., Luo X., Shao D., Li Y ., Ye W., Synthesis and Biological Evaluation of Novel Benzimidazole Derivatives Bearing a Heterocyclic Ring at 4/5 Position, Bulletin of the Korean Chemical Sococity 2013; 34: 2297-2304.
5. Sawant R., Kawade D., Synthesis and biological evaluation of some novel 2-phenyl benzimidazole-1- acetamide derivatives as potential anthelmintic agents, Acta Pharmaceutica 2011; 61: 353-361.
6. Gobis K., Foks H., Bojanowski K., Augustynowicz- Kopeć E., Napiórkowska N., Synthesis of novel 3- cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds and their
evaluation for tuberculostatic activity, Bioorganic Medicinal Chemistry 2012; 20: 137-144.
7. Ranjit P. K., Rajesh P., Haridas K. R., Susanta N. K., Guru Row T. N., Rishikesan R., Suchetha Kumari N., Design and synthesis of positional isomers of 5 and 6- bromo-1-[(phenyl sulfonyl)]-2-[4-nitrophenoxy)methyl]-1Hbenzimidazoles as possible antimicrobial and antituberular agents, Bioorganic Medicinal Chemistry 2013; 23: 5228-5234.
8. Shingalapur R. V., Hosamani K. M., Keri R. S., Hugar M. H., Derivatives of benzimidazole pharmacoehore: synthesis anticonvulsant antidiabetic and DNA cleavage studies, European Journal of Medicinal Chemistry 2010; 45: 1753-1759.
9. Yadav G., Ganguy S., Murugesan S., Dev A., Synthesis, anti-HIV, antinflammatory evaluation and structure activity relationship studies of some novel benzimidazole derivatives, Antibiotics agents and plasmepsin inhibitors: synthesis and analysis possible antimicrobial and antitubercular agents, Bioorganic Medicinal Chemistry 2011; 1-5.
17. Mariappan. G, Hazarika. R, Alam. F, Karki. R,Patangia. U, Nath. S., Synthesis and biological evaluation of 2-substitutedbenzimidazole derivatives, Arabian Journal of Chemistry, 2011; 5.
18. Rang H and Dale M: Rang and Dale’s pharmacology, Edinburgh: Elsevier / Churchill Livingstone, 7th edition 2012.
(a) Zhang S.L., Damu G.L.V., Zhang L., Geng R.X., Zhou C.H., Synthesis and biological evaluation of novelbenzimidazole derivatives and their binding behavior with bovine serum albumin, European Journal of Medicinal Chemistry 2012; 55:164–175;
(b) Zhang H.Z., Damu G.L.V., Cai G.X., Zhou C.H., Design, synthesis and antimicrobial evaluation of novelbenzimidazole type of fluconazole analogues and their synergistic effects with chloromycin, norfloxacina and fluconazole, European Journal of Medicinal Chemistry 2013; 64: 329–344.
19. Baartzes N., Stringer T., Seldon R., Warner D. F., Taylor D., Wittlin S., Chibale K., Smith G.S., Biosossteric ferrocenyl aminooquinoline-benzimidazole hybrids: Antimicrobial evaluation and mechanistic insights, European Journal of Medicinal Chemistry 2019; 180: 121-133.
20. Lv N, Sun M, Liu C, et al. Design and synthesis of 2-phenylpyrimidine coumarinderivatives as anticancer agents, Bioorganic Medicinal Chemistry Letters 2017; 27.
21. Xie. Y, Han. L., Ge. C.S, Cui. Y.H, Gao. J.R. Novel organic dye sensitizers containingfluorenyl and biphenyl moieties for solar cells, Chinese Chemical Letters 2017; 28: 285–292.
22. Murrey R. D. H., Medez D., Brown S. A., The natural coumarins occurrences, chemistry and biochemistry, John Wiley Interscience, Newyork 1982.
23. Valgas C., De Souza S. M., Smania E. F. A., Smania A., Screening methods to determine antibacterial activity of natural products, Brazilian Journal of Microbiology 2007; 38: 369–380.
24. Mariappan. G, Hazarika. R, Alam. F, Karki. R,Patangia. U, Nath. S., Synthesis and biological evaluation of 2- substituted Benzimidazole derivatives, Arabian Journal of Chemistry (2011), doi:10.1016/j.arabjc.2011.008.
25. Trivedi J. C., Bariwal J. B., Upadhyay K. D., Naliapara Y. T., Joshi S. K., Pannecouque C. C., Shah A. K., Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity, Tetrahedron Letters 2007; 48: 8472-8474.
26. H.A. El-Wahab, et al., Synthesis and characterization of coumarin thiazone derivative 2-(2-amino- 1,3-thiazol-4-yl)-3H-benzof[1]chromen-3-one with anti-microbial activity and its potential application in antimicrobial polyurethane.
coating, Progress in Organic Coating (2014), http://dx.doi.
org/10.1016/j.porgcoat.2014.04.026.

28. Snehlata Yadav, Balasubramanian Narasimhan, Siong Meng
Lim, Kalavathy Ramasamy, Mani Vasudevan, Syed Adnan
Ali Shah, Abhishek Mathur, Synthesis and evaluation of
antimicrobial, antitubercular and anticancer activities of
benzimidazole derivatives, Egyptian Journal of Basic and
Applied Sciences 2018; 5: 100–109.

Cite this article as: Harpreet Kaur, Baljeet Singh. Synthesis, characterisation and biological evaluation of substituted
4-((1h- benzo[d]imidazol-2-yl) methoxy) coumarin derivatives as antimicrobial agents. Indian J. Pharm. Biol. Res.2019;
7(2):1-8.

All © 2019 are reserved by Indian Journal of Pharmaceutical and Biological Research
This Journal is licensed under a Creative Commons Attribution-Non Commercial-Share Alike 3.0 Unported License. This article can be downloaded
to ANDROID OS based mobile.