Circuit formation in the adult brain

Charlotte Seng | Wenshu Luo | Csaba Földy

Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland

Correspondence
Csaba Földy, Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
Email: foldy@hifo.uzh.ch

Funding information
This work was supported by the Swiss National Science Foundation (310030_188506) and the Dr. Eric Slack-Gyr-Stiftung.

Edited by: Yoland Smith

Abstract
Neurons in the mammalian central nervous system display an enormous capacity for circuit formation during development but not later in life. In principle, new circuits could be also formed in adult brain, but the absence of the developmental milieu and the presence of growth inhibition and hundreds of working circuits are generally viewed as unsupportive for such a process. Here, we bring together evidence from different areas of neuroscience—such as neurological disorders, adult-brain neurogenesis, innate behaviours, cell grafting, and in vivo cell reprogramming—which demonstrates robust circuit formation in adult brain. In some cases, adult-brain rewiring is ongoing and required for certain types of behaviour and memory, while other cases show significant promise for brain repair in disease models. Together, these examples highlight that the adult brain has higher capacity for structural plasticity than previously recognized. Understanding the underlying mechanisms behind this retained plasticity has the potential to advance basic knowledge regarding the molecular organization of synaptic circuits and could herald a new era of neural circuit engineering for therapeutic repair.

KEYWORDS
adult brain, adult-born neuron, brain repair, cell grafting and reprogramming, circuit formation, sprouting

1 INTRODUCTION

1.1 Aim and scope of this review

The field of developmental neurobiology has generated extensive knowledge regarding the wiring of complex neural circuits (Squire et al., 2012). By contrast, circuit formation in the mammalian adult brain has not been widely considered because it is thought that axonal wiring rapidly declines after development and the adult brain cannot generally self-repair damaged circuits. In addition, the vast backdrop of developmentally established circuits makes the observation of any new circuit inherently challenging. However, technological

Abbreviations: AVPV, anteroventral periventricular; bHLH, basic helix–loop–helix; CLK, Clock; CYC, cycle; dLGN, dorsal lateral geniculate nucleus; DN1a, dorsa-anterior clock neurons; ESCs, embryonic stem cells; GCs, granule cells; iPSCs, induced pluripotent cells; LNv, ventral lateral neurons; MAG, myelin associated glycoprotein; NG2, neural/glial antigen 2-expressing; NMDA, N-methyl-D-aspartate; NSCs, neural stem cells; 6-OHDA, 6-hydroxydopamine; OMgp, oligodendrocyte myelin glycoprotein; PR, progesteron receptor; RTN4, Reticulon 4, Nogo; QA, quinolinic acid; SC, superior colliculus; SVZ, subventricular zone; VMHvl, ventrolateral part of the ventromedial hypothalamus.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
advances—first, intracellular labelling of neurons with dye and, more recently, rapid developments in transgenic (Navabpour et al., 2020), whole-brain imaging (Ueda et al., 2020), and cell programming technologies (Gascón et al., 2017)—now allow more thorough analysis of brain circuits. Concomitantly, accumulating evidence shows circuit formation in adult brain. This review aims to combine such pieces of evidence from different areas of neuroscience and to derive hypotheses about underlying molecular mechanisms. We focus on adult-brain circuit formation characterized by gross axonal remodelling. We do not address forms of experience- and homeostasis-dependent synapse formation and pruning and dendritic plasticity (Bennett et al., 2018; Holtmaat & Svoboda, 2009; Trinchero et al., 2017), which may alter circuit connectivity, but are not evinced by gross axon morphological changes. First, we give a brief overview of known principles of circuit formation taken from developmental neurobiology, because they provide an established framework for wiring processes. Then, we review examples of circuit formation in adult brain. And finally, we discuss key steps of adult-brain circuit formation and mechanisms that potentially support these.

1.2 | Principles of circuit formation

Developmental studies consider axon elongation, target recognition and synapse formation as key steps of circuit formation. After neurogenesis and migration, developing neurons display a remarkable capacity for axon growth. Elongating axons are guided through molecularly distinct areas and decision points, for example, crossing of midline or cell layers, until they reach their intended target (Goodman & Shatz, 1993; Kania & Klein, 2016; Polleux et al., 2007; Squire et al., 2012; Stoeckli, 2018; Tessier-Lavigne & Goodman, 1996). Molecularly, axon guidance is mediated by guidance cues—such as members of the netrin, slit, semaphorin and ephrin families—in surrounding tissue and by their receptors on the axon. [Correction added on 8 July 2022, after first online publication: ‘semaphoring’ was changed to ‘semaphorin’ in the previous sentence.] A guidance effect can be characterized as repellent or attractant. The combinations of different repellent and attractant forces are believed to be fundamental to create accurate axonal projections across the nervous system.

After reaching the final target area, the next challenge for axons is to recognize appropriate partner neurons from a potentially diverse pool of cells present in that area. Matching combinations of synaptic cell surface receptors and adhesion molecules displayed on the axon and target neurons are hypothesized to provide a molecular code for target recognition (Sanes & Zipursky, 2020; Sperry, 1963; Südhof, 2018, 2021; Zipursky & Sanes, 2010). Although such a molecular code has not been completely clarified, this hypothesis is supported by many observations showing the importance of cadherin, leucine-rich repeat, immunoglobulin, teneurin, and latrophilin protein families in target recognition.

Circuit formation begins in the embryo and continues after birth. When circuits obtain their adult-like pattern, the developmental drive for axon growth declines. In rodents, which we mostly focus on, growth decline prominently occurs 1–4 weeks after birth (Figure 1). However, timing of the decline varies between circuits. For example, the mature arrangement of thalamocortical axons in somatosensory cortex is virtually established by 8 days after birth (López-Bendito & Molnár, 2003), whereas the density of dopaminergic fibres in the medial prefrontal cortex increases at least until 2 months after birth (Kalsbeek et al., 1988). In addition to growth decline, synaptic competition, elimination of exuberant axons, and activity-dependent refining processes contribute to the formation and maturation of neuronal circuits (Innocenti & Price, 2005; Katz & Shatz, 1996; Squire et al., 2012). The rodent brain is generally considered to be mature one month after birth, when synapse density also stabilizes at adult levels (e.g., in barrel cortex) (Micheva & Beaulieu, 1996).

In contrast, in the adult brain, axon growth has been mostly studied in the context of neuronal injury and neurological disorders. After injury, axon growth can be classified as sprouting or regeneration (Tuszynski & Steward, 2012). Sprouting generally refers to axon growth from uninjured neurons, whereas regeneration mostly refers to growth effects in neurons that experienced injury. In addition, sprouting is used to describe axon growth in models of neurological disorders (regeneration is not typically investigated in this context). Because axon regeneration has the added complication of injury signalling and scar formation, we mostly refrain from including studies on axon regeneration. However, the research of different sprouting phenotypes helped to establish characteristic features (e.g., occurrence in different cell types and formation of feedback and feedforward, and typical and atypical circuits), which also appear to be relevant for other forms of circuit formation. We discuss such features below and then other examples (Figures 1 and 2), which could be used to interrogate the principles of circuit formation in the adult brain.
Figure 1 Circuit formation in developing and adult rodent brain. (a) Maturation of different axon projections in the developing brain. The mature arrangement of thalamocortical axons is virtually established by 8 days after birth (postnatal days 8, or P8) (López-Bendito & Molnár, 2003). Corticospinal axons reach the lumbar part of the spinal cord and develop collateral branching by P11 (Canty & Murphy, 2008). Retinogeniculate axons (retinal projections to LGN) are largely established by P3, but there is a significant overlap between ipsi- and contra-lateral axons, which are refined to adult-like patterns by P12–14 (natural eye opening) (Assali et al., 2014; Jaubert-Miazza et al., 2005; Muir-Robinson et al., 2002). Callosal axons are largely established by P8 and progressively refined until P21 (De León Reyes et al., 2019; Fame & MacDonald, 2011; Innocenti & Price, 2005). Hippocampal mossy fibres display a slowing growth from P10–12 and reach their final length by P21–28 (Blaabjerg & Zimmer, 2007). In somatosensory cortex, the axon length and branching of layer 5 pyramidal neurons continue to increase at least until P21 (Romand et al., 2011). Climbing fibres establish monoinnervation of cerebellar Purkinje cells by around P21 (Hashimoto & Kano, 2005; Reebur et al., 2013). Noradrenergic axon density in the neocortex reaches maximal levels between P6–16, after which it decreases to adult level by P28 (Levitt & Moore, 1979). Serotonergic axons are broadly present in multiple brain areas already at P0–7 and become largely established by P28 (Maddaloni et al., 2017). Dopaminergic axon density in the medial prefrontal cortex continues to increase until P60, after which it stabilizes at adult level (Kalsbeek et al., 1988). (b) Ongoing circuit formation in adult brain. Neurons generated from SVZ and dentate gyrus precursors continue to form circuits in adults (Denoth-Lippuner & Jessberger, 2021; Obernier & Alvarez-Buylla, 2019). In female mice, hypothalamic Pvl neurons periodically extend and retract their axonal projections throughout the 5-day oestrous cycle (Inoue et al., 2019). (c) Induced circuit formation in adult brain. Sprouting, grafted, reprogrammed, and cell autonomously induced neurons can develop dense axonal projections by 14–90 days after induction. However, the end of axon growth and circuit formation in these models remains largely unknown (although see Dhar et al., 2016, in which this question was specifically investigated). Bars show the beginning and end of circuit formation. Grey scale denotes high (black) and low intensity (white) growth periods.

2 | EXAMPLES OF CIRCUIT FORMATION IN ADULT BRAIN

2.1 | Sprouting phenotypes

Sprouting is frequently observed in experimental models of stroke, traumatic injury, and epilepsy. Critically, previous observations have helped to establish that adult neurons can regain their capacity for axon growth. Because sprouting in these models has been extensively reviewed before (e.g., Carmichael et al., 2017; Jasper’s basic mechanisms of the epilepsies [internet], 2012), here we only highlight salient features that are of interest for this review.

First, sprouting has been observed in multiple different cell types (e.g., glutamatergic, GABAergic, serotonergic and catecholaminergic cells) and brain regions (e.g., different cortical and hippocampal regions) (Carmichael et al., 2001; Christenson Wick et al., 2017; Dhar et al., 2016; Dougherty et al., 2020; Esclapez et al., 1999; Hawthorne et al., 2011; Jin et al., 2016; Kajstura et al., 2018; Karlóczi et al., 2011; Laurberg & Zimmer, 1981; Lehmann et al., 2000; Liu et al., 2010; Luo et al., 2021; Marchionni et al., 2019; Peng et al., 2013; Perez et al., 1996; Salin et al., 1995; Schauwecker & McNeill, 1995; Shetty, 2002; Siddiqui & Joseph, 2005; Smith & Dudek, 2001; Steward, 1992; Sutula et al., 1988; Tauck & Nadler, 1985; Watt & Paden, 1991; Wenzel et al., 2000; Zhang et al., 2009) (Figure 2a and Table 1). Despite the ontogenic, functional and morphological diversity of these cell types, the fact that they all display a sprouting phenotype suggests that the capacity for further axon growth is a common feature of adult-brain neurons, regardless of their transcriptomic and epigenetic profiles.

Second, sprouting axons may remain in the local network, or they can also create long-range projections that...
extend into distant brain regions. The majority of observations in this context can be classified as local sprouting (Esclapez et al., 1999; Laurberg & Zimmer, 1981; Lehmann et al., 2000; Luo et al., 2021; Marchionni et al., 2019; Peng et al., 2013; Perez et al., 1996; Smith & Dudek, 2001; Sutula et al., 1988; Tauck & Nadler, 1985; Wenzel et al., 2000; Zhang et al., 2009). Local sprouting often appears to create feedback circuits, in which the output of sprouting neurons is directed back to the same cell type, either directly (e.g., mossy fibre sprouting) or indirectly through other intermediary cell types (e.g., certain forms of CA3 pyramidal cell sprouting) (Siddiqui & Joseph, 2005). However, the occurrence of long-range sprouting is also well supported by evidence showing inter-cortical (Liu et al., 2010), inter-hippocampal (Christenson Wick et al., 2017; Siddiqui & Joseph, 2005), and forebrain/midbrain to cortex sprouting (Dougherty et al., 2020; Hawthorne et al., 2011; Jin et al., 2016; Kajstura et al., 2018). These typically form feedforward circuits. Because sprouting has been often analysed in acute brain slice preparations, which fundamentally limit the study of long-range projections, other examples of long-range sprouting that have gone unnoticed may exist.

Third, sprouting can create typical or atypical axonal projections. Of these, typically sprouted axons overlap with
Brain region	Cell type	Projection	References
Sprouting phenotypes	Cortex	L5 pyramidal cells	Salin et al. (1995), Carmichael et al. (2001)
	Cortex	Cortical neurons	Liu et al. (2010)
	Entorhinal cortex	Entorhinal cortical neurons	Shetty (2002)
	Hippocampus	Granule cells	Laurberg and Zimmer (1981), Tauck and Nadler (1985), Sutula et al. (1988), Wenzel et al. (2000) Luo et al. (2021). (Many more studies show MFS.) Siddiqui and Joseph (2005)
	CA3 pyramidal cells	Long range to bilateral CA3, CA1 and subiculum, and entorhinal cortex	Perez et al. (1996), Esclapez et al. (1999), Lehmann et al. (2000), Smith and Dudek (2001), Marchionni et al. (2019)
	CA1 pyramidal cells	Local	Zhang et al. (2009), Peng et al. (2013)
	SST interneurons	Local	Karlócai et al. (2011)
	CB1/CCK interneurons	Local	
	PV interneurons	Long range to contralateral hippocampus	Christenson Wick et al. (2017)
	Forebrain	Serotoninergic neurons	Hawthorne et al. (2011), Jin et al. (2016), Kajstura et al. (2018)
	Midbrain	Catecholaminergic neurons	Dougherty et al. (2020)
	Hypothalamus	Hypothalamic neurons	Watt and Paden (1991)
	Inferior olive	Inferior olivary neurons	Dhar et al. (2016)
	Ongoing circuit formation by adult-born neurons	Adult-born granule cells	Markakis and Gage (1999), Zhao et al. (2006), Faulkner et al. (2008), Sun et al. (2013), Toni et al. (2008), Restivo et al. (2015), Temprana et al. (2015), Drew et al. (2016), Trinchero et al. (2019), Briones et al. (2021)
	Olfactory bulb	Interneurons	
the developmentally established axonal profile of the neuron (Christenson Wick et al., 2017; Dougherty et al., 2020; Hawthorne et al., 2011; Jin et al., 2016; Kajstura et al., 2018; Liu et al., 2010; Salin et al., 1995; Smith & Dudek, 2001; Watt & Paden, 1991; Zhang et al., 2009). By contrast, atypically sprouted axons deviate from such developmentally established profiles and create projections not seen in naive animals (Carmichael et al., 2001; Dhar et al., 2016; Laurberg & Zimmer, 1981; Lehmann et al., 2000; Luo et al., 2021; Peng et al., 2013; Shetty, 2002; Tauck & Nadler, 1985; Wenzel et al., 2000). Observations describing both in the same cell type (Esclapez et al., 1999; Marchioni et al., 2019; Perez et al., 1996; Siddiqui & Joseph, 2005; Steward, 1992) suggest that sprouting of

Brain region	Cell type	Projection	References
Striatum	Interneurons	Local	Brill et al. (2009), Galliano et al. (2018)
Protocerebrum and accessory medulla	LNd and DN1a neurons	Local	Fernández et al. (2008), Gorostiza et al. (2014), Petsakou et al. (2015), Song et al. (2021)
Hypothalamus	PR + VMHvl cells	Local	Inoue et al. (2019)
Spinal cord	Grafted stem cells	Local and long range to cortex, olfactory bulb, cerebellum	Lu et al. (2012), Lu et al. (2014), Sharp et al. (2014)
Cortex	Grafted embryonic or stem cells	Local and long range to ipsi- and contra-lateral cortex; depending on the study, also to thalamus, spinal cord and other areas	Gaillard et al. (2007), Steinbeek et al. (2012), Tornero et al. (2013), Falkner et al. (2016), Tornero et al. (2017), Palma-Tartosa et al. (2020)
Hippocampus	Grafted stem cells	Local and long range to contralateral hippocampus	Steinbeck et al. (2012)
Substantia nigra	Grafted embryonic cells	Long range to striatum, nucleus accumbens, basal ganglia, thalamus, and cortex	Gaillard et al. (2009); Thompson et al. (2009)
Striatum	Grafted stem cells	Local and long range to prefrontal cortex, globus pallidus, substantia nigra, ventromedial thalamus, subthalamic nucleus	Steinbeck et al. (2015), Grealish et al. (2015), Kirkby et al. (2017), Cardoso et al. (2018), Adler et al. (2019), Besusso et al. (2020)
Substantia nigra	Neurons reprogramed from NG2 glia	Local	Torper et al. (2015)
Substantia nigra	DA neurons reprogramed from astrocytes	Long range to striatum	Qian et al. (2020)
Hippocampus	Interneurons reprogramed from glia	Local	Lentini et al. (2021)
Hippocampus	Granule cells	Local	Luo et al. (2021)
atypical or typical projections does not necessarily exclude the other, and may be present at the same time. Independently of this, examples for typical and atypical sprouting reveal target-region specificity, indicating that sprouting is often a spatially guided process.

Fourth, sprouting axons can form functional synapses. Several of the above studies further tested their sprouting phenotypes to see if circuit formation was completed after axon elongation. Using electron microscopy (Karlócai et al., 2011; Laurberg & Zimmer, 1981; Luo et al., 2021; Peng et al., 2013; Sutula et al., 1988; Wenzel et al., 2000), electrophysiology (Jin et al., 2016; Luo et al., 2021; Peng et al., 2013; Smith & Dudek, 2001; Tauck & Nadler, 1985), transneuronal retrograde labelling (Siddiqui & Joseph, 2005), and behaviour-level readouts (Jin et al., 2016; Liu et al., 2010; Luo et al., 2021), studies show evidence for synapse formation and/or synaptic transmission, supporting that sprouting creates functional circuits.

Finally, sprouting may occur rather rapidly, that is, within days. Currently, only limited information is available on the temporal development of sprouting because the time point at which they were characterized—frequently several weeks or months after induction—was often dictated by other research priorities, for example, study of seizures or motor recovery. Nonetheless, sprouting may start as early as 2–3 days after induction (Luo et al., 2021). The time required for maximal sprouting may depend on the cell type, pathology, and/or model, and remains undetermined in most studies. However, at least in one disease model, in vivo imaging of lesion-induced sprouting revealed that while sprouting lasted over months, most innervations emerged 3–4 weeks after lesion (Dhar et al., 2016).

2.2 Ongoing circuit formation by adult-born neurons

In addition to sprouting by mature neurons, adult-born neurons have a clear capacity for wiring in healthy adult circuits. In contrast to sprouting, which requires some type of pathologival state or induction, circuit formation by adult-born neurons follows genetically defined programs and is usually not considered sprouting. Major sites of adult neurogenesis include the subventricular zone (SVZ) of the lateral ventricles and hippocampal dentate gyrus. Neuroblasts from the SVZ migrate mainly to olfactory bulb in rodents (Bonzano et al., 2016; Brill et al., 2009; Obernier & Alvarez-Buylla, 2019), but to striatum in humans (Bergmann et al., 2012; Ernst et al., 2014), highlighting a species difference. SVZ-derived cells may differentiate into GABAergic, dopaminergic and glutamatergic neurons (Bonzano et al., 2016; Brill et al., 2009; Obernier & Alvarez-Buylla, 2019), some of which remain axon-less (Galliano et al., 2018). By contrast, neurons born in dentate gyrus remain local and differentiate exclusively into granule cells (GCs) (Gonçalves et al., 2016). Independent of their neurogenic origin, adult-born neurons need to integrate into already established circuits. This process involves formation of dendrites and input synapses (out of scope for this review), as well as axons and output synapses.

These processes have been best-characterized in adult-born GCs (Denoth-Lippuner & Jessberger, 2021; Ge et al., 2008; Jahn & Bergami, 2018; Mongiat & Schinder, 2011; Song et al., 2012; Vivar & van Praag, 2013; Zhao et al., 2006) (Figure 2b). Identically to developmentally born GCs, adult-born GCs send axonal projections to the hippocampal CA3 area (Faulkner et al., 2008; Markakis & Gage, 1999; Sun et al., 2013; Zhao et al., 2006) and form synapses with dentate, hilar and CA3 interneurons, hilar mossy cells, and CA3 pyramidal cells (Briones et al., 2021; Drew et al., 2016; Restivo et al., 2015; Temprana et al., 2015; Toni et al., 2008; Trinchero et al., 2019). Thus, circuit formation by adult-born GCs is highly target-specific. In CA3, which is at least 0.5–1 mm away from GC layer, first axons appear 10 days after cell birth (Zhao et al., 2006) and only ~7 days after growing axons become visible in adult-born GCs (Zuccaro et al., 2014), which suggests an axonal elongation speed of ~0.1 mm/day. While adult-born GCs establish their initial synaptic contacts with CA3 pyramidal cells 14 days after cell birth (Faulkner et al., 2008), they continue to mature over at least 2 months, after which their axonal and synaptic structures become virtually indistinguishable from other GCs (Faulkner et al., 2008; Zhao et al., 2006).

After circuit integration, adult-born neurons support a variety behaviourally relevant computations. In dentate gyrus, they are thought to control pattern separation (differentiation of neuronal activity representing similar experiences), one principal function performed by this brain region (Nakashiba et al., 2012). In olfactory bulb, they participate in odour discrimination, associative learning, and memory (Gheusi et al., 2013; Grelat et al., 2018; Li et al., 2018; Malvaut & Saghatelyan, 2016). In order to participate in these specialized computational tasks, it is crucial that the integration process of adult-born neurons is precisely controlled. However, mechanisms in adult brain such as axon guidance and target cell specification remain poorly understood.

2.3 Behaviourally relevant, periodic circuit rewiring by adult neurons

Further evidence from fly (Drosophila melanogaster) and mouse studies suggests that adult-born neurons are not
the only cells that form circuits in the healthy adult brain. Behaviourally relevant circuit rewiring has been reported in both of these species, where axonal outgrowth and retraction are governed by daily or hormonal cycles.

In flies, subpopulations of ventral lateral neurons (LNv) (Fernández et al., 2008; Gorostiza et al., 2014; Petsakou et al., 2015) and dorsal-anterior clock neurons (DN1a) (Song et al., 2021) display daily periodic axonal and synaptic connectivity remodelling (Figure 2c, left panel). These cell types are interconnected and form a reciprocal inhibitory circuit. The daily schedules of their axonal remodelling, however, are in anti-phase: LNv neurons have larger axon area during daytime than night-time, whereas axon length of DN1a neurons is shorter during daytime than night-time. Mechanistically, both processes require Rho1 (RhoA in mammals) (Petsakou et al., 2015; Song et al., 2021), as shown by cell type-specific Rho1 overexpression and depletion, which decreased and increased their axonal areas, respectively (Song et al., 2021). Rho1 activation corresponds with myosin phosphorylation and mediates axon retraction (Petsakou et al., 2015). As a link to circadian regulation, Rho1 activity itself is controlled by clock-regulated transcription of the Rho1 GEF Pura (Petsakou et al., 2015). Thus, rewiring by these adult neurons could be explained on an exclusively cell-autonomous basis and by activation or deactivation of a single effector, namely, Rho1. Behaviourally, dynamic reorganization of this circuit facilitates locomotive startle response to light during night-time, when light is unexpected, and its suppression during daytime, when light is omnipresent (Song et al., 2021).

In adult mouse, axons of a hypothalamic cell type undergo large-scale extension and withdrawal, and correlated with this, cells periodically connect and disconnect from their postsynaptic targets (Inoue et al., 2019) (Figure 2c, right panel). Specifically, projections of progesteron receptor-expressing neurons in the ventrolateral part of the ventromedial hypothalamus (PR + VMHvl neurons, or Pvl neurons for short) to the anteroventral periventricular (AVPV) nucleus change across the 5-day female mouse oestrous cycle. During oestrus, there are ~3 times more termini and functional connections than during non-oestrus (Inoue et al., 2019). Although this projection also exists in males, the cyclic rewiring is dependent on oestrogen signalling (could be also induced by delivery of ovarian sex hormones) and is specific to females. Intriguingly, while Pvl neurons project to multiple other areas (such as preoptic hypothalamus and periaqueductal grey), only AVPV projections, but not others, display periodic rewiring. Further experiments revealed relevance for sexual behaviour (Inoue et al., 2019). Tested during oestrus when axons are extended, optogenetic inhibition of Pvl termini in AVPV (to mimic functional disconnection) inhibited female sexual behaviour and increased rejection of males. In this manner, this periodic rewiring controls output of an otherwise hard-wired circuit for innate behaviour.

Thus far, molecular mechanisms of axon elongation, synapse formation, and retraction by Pvl neurons have not been investigated. Likewise, the question of whether in addition to these examples other adult neurons also use circuit rewiring to support behaviourally relevant functions remains open.

2.4 | Circuit formation after cell transplantation and reprogramming

Advances in in vivo cellular engineering have also provided insights into circuit formation in adult brain. In this area, embryonic or stem cell transplantation (also referred to as grafting), and molecular re-differentiation of existing cells are used as key approaches to generate new neurons (Björklund & Parmar, 2020; Gascón et al., 2017; Henriques et al., 2019). In rodents, newly engineered neurons can be now selectively visualized with fluorescent proteins, which has helped to reveal their striking capacity for circuit formation throughout the central nervous system. Here, we review such evidence and highlight functional consequences when information is available.

In injured spinal cord, grafted neural stem cells (NSCs) and progenitors, and cultured human embryonic stem cells (ESCs) displayed rapid axon growth only 2 days later, which continued at a rate of 1–2 mm/day (Lu et al., 2012). New synapses and myelination could be observed 7 weeks after grafting, and injury-induced motor deficits significantly improved 3–6 weeks after grafting (Lu et al., 2012). Later, an independent replication study confirmed the extensive axon growth phenotype (Sharp et al., 2014). However, motor recovery could not be confirmed, which was possibly due to lack of functional relay formation across the graft (see Sharp et al., 2014, for detailed methodological discussion). In a separate study, the first group used human induced pluripotent cells (iPSCs; derived from a healthy 86-year-old male) for grafting, which revealed even more pronounced axon growth after 3 months (Lu et al., 2014). In addition to spinal cord, axons of spinally transplanted cells were observable as distantly as in the cortex, olfactory bulb, and cerebellum. However, grafts divided into rostral and caudal compartments, between which axons did not travel, and there was no motor improvement either.
In cortical areas, homotopic transplantation of embryonic motor cortical cells into damaged adult motor cortex lead to long-range axon growth (Gaillard et al., 2007) (Figure 2d, left panel). Two months after transplantation, grafted neurons projected to appropriate ipsi- and contralateral cortical and subcortical target areas, including thalamus and spinal cord. Further, graft cell axons appeared to be myelinated, and formed synaptic contacts with cortical, striatal and thalamic host neurons. In another study, embryonic neocortical cells were transplanted into an area of visual cortex, where layer 2/3 neurons were previously selectively ablated (Falkner et al., 2016). Using chronic in vivo two-photon imaging, the authors showed that grafted cells developed into pyramidal cells and displayed largely stable pre- and post-synaptic structures 8–10 weeks after grafting. The cells projected to mostly appropriate areas (e.g., ipsi- and contra-lateral visual cortex) and received appropriate synaptic afferents (most prominently from dorsal lateral geniculate nucleus, dLGN, and other higher-order cortical areas). Four to fifteen weeks after grafting, most cells exhibited stimulus-evoked responses, about half of which displayed tuning-properties typical for layer 2/3 pyramidal neurons (Falkner et al., 2016).

Similar to embryonic cells, the grafting of human ESC-derived long-term self-renewing neuroepithelial stem cells into primary motor cortex also resulted in long-range connections into the cervical spinal cord and contralateral cortex within 6 weeks, with a speed of up to 1 mm/week (Steinbeck et al., 2012). Grafts placed in the dentate gyrus made projections to both ipsilateral and contralateral hippocampi, and formed synaptic connections with host cells (Steinbeck et al., 2012). In other studies, human iPSC-derived cortical neurons were transplanted into stroke-injured cortex of rat, and established monosynaptic wiring with contralateral cortical cells (Palma-Tortosa et al., 2020; Tornero et al., 2013), displayed myelinated axons (Palma-Tortosa et al., 2020), and received synaptic contacts from host cortical and thalamic neurons (Tornero et al., 2017). With regard to functional consequences, Tornero et al. (2013) found significant recovery from stroke-induced motor deficits 2 months after grafting. Tornero et al. (2017) found synaptic recruitment of grafted cells by thalamic afferents and sensory stimuli 2–3 months after grafting, and Palma-Tortosa et al. (2020) showed that although grafted cells could not reverse stroke-induced sensorimotor deficits, they regulated motor function similar to endogenous cortical neurons 6 months after grafting.

In lesioned substantia nigra, homotopic transplantation of embryonic mesencephalic cells helped to reconstitute the dopaminergic nigrostratal pathway after 6-OHDA-induced lesion (Gaillard et al., 2009; Thompson et al., 2009), which is a frequently used model in Parkinson’s research. Growing axons became visible and exited the graft 3 and 5 days after grafting, respectively (Gaillard et al., 2009). Grafted cells developed either into mostly dopamine neurons (Thompson et al., 2009) or diverse neuronal populations (i.e., dopaminergic, serotoninergic, GABAergic, and cholinergic cells) (Gaillard et al., 2009), of which only dopaminergic fibres appeared to project outside the graft (Gaillard et al., 2009). After a week, growing axons reached the striatum and multiple other brain areas (Gaillard et al., 2009). Six weeks after grafting, axons were present in striatum, nucleus accumbens, bed nucleus of the stria terminalis, reaching as far as the frontal cortex and olfactory tubercle, ~6–7 mm from the graft (Thompson et al., 2009). Two to three months after grafting, axons were broadly present in striatum, nucleus accumbens, globus pallidus, caudate putamen, thalamus, and motor cortex (Gaillard et al., 2009). Four months after grafting, axons further expanded to cover larger areas in striatum and forebrain (Thompson et al., 2009). Despite the diversity of projections, the highest density of axons was seen to target the striatum in both studies (Gaillard et al., 2009; Thompson et al., 2009). Furthermore, lesion-induced motor deficits significantly recovered 2–3 months (Gaillard et al., 2009) or 4 months (Thompson et al., 2009) after grafting. The survival of transplanted cells and extent of axon growth appeared to depend on the presence or absence of developmentally grown dopaminergic projections, because in non-lesioned mice axon outgrowth was less dense after grafting (Thompson et al., 2009). These observations suggested that axon growth and target-region specification was regulated by specific interactions between grafted cells and host environment.

Cells grafted into striatum also produced remarkable axon growth. Using differentiated human ESCs in the context of Parkinson’s disease (6-OHDA model), graft-to-host and host-to-graft connectivity were observed 6 months after transplantation (Grealish et al., 2015). Grafted cells received monosynaptic connections from host cells in striatum, cortex, thalamus, amygdala, dorsal raphe nucleus, and substantia nigra. Efferent mapping revealed that the grafted cells produced dense innervation and synaptic contacts not only with surrounding striatal but also with distal targets including prefrontal cortical neurons up to 5 mm away (Grealish et al., 2015; see also Adler et al., 2019; Cardoso et al., 2018; Kirkeby et al., 2017). Functional synaptic transmission to host cells after striatal grafting has been also confirmed (Steinbeck et al., 2015). Consistent with the ability of grafted cells to undergo circuit formation, differentiated ESCs implanted in a Huntington’s disease (QA lesion) model received excitatory inputs and exhibited...
long-range fibre axon within striatum, and into globus pallidus, substantia nigra, ventromedial thalamus, and subthalamic nucleus (Besusso et al., 2020). All studies that looked into functional consequences found significant recovery from lesion-induced motor deficits 16–24 weeks after grafting (Besusso et al., 2020; Cardoso et al., 2018; Kirkeby et al., 2017; Steinbeck et al., 2015).

Similar to transplantation, in vivo conversion of existing non-neuronal cells into neuronal types also resulted in significant axon growth and target region-specific projections. In striatum, neurons converted from neural/glial antigen 2-expressing (NG2) glia showed integration within the local circuitry (Torper et al., 2015). In substantia nigra, dopaminergic neurons converted from astrocytes reconstructed the nigrostriatal circuit in a model of Parkinson’s disease (Qian et al., 2020). In this model, 6-OHDA lesion-induced motor deficits were reversed to normal levels 3 months after cell conversion. Of note, that cell conversion technique used in this study was later tested by other groups in the striatum, but there astrocyte-to-neuron cell conversion could not be replicated (Chen et al., 2022; Wang, Serrano, et al., 2021).

Thus, the question remains what region-specific differences, other neurogenic cell types (if not astrocytes) or mechanisms could have contributed to the axon growth phenotypes and motor recovery seen in the original study. Finally, in hippocampus, conversion of reactive glia into inhibitory interneurons led to axon growth and synapse formation, and reduced chronic seizure activity 6–8 weeks after cell conversion in a mouse model of temporal lobe epilepsy (Lentini et al., 2021) (Figure 2d, right panel). Given the rapid rate at which reprogramming techniques develop, outstanding questions will be hopefully soon clarified, and it is likely that several further examples will emerge in the near future.

Taken together, these examples provide evidence for long-range circuit formation in adult brain. Several studies demonstrated functional synaptic transmission between new and host neurons, and/or that new circuits can restore function in pathological context. While the long-term stability of newly engineered circuits remains largely unexplored, the above results indicate that circuit maturation is completed within a few weeks or months. Given that these examples frequently displayed target region-specificity, growing axons likely utilized available guidance cues, the identity of which is yet unknown. Of note, similarly to adult-born neurons, these wiring effects may take place under a hybrid combination of developmental and adult conditions, rather than only adult, because grafted and reprogrammed cells are inherently immature in the beginning. Because no additional manipulations were required to promote wiring, these observations also suggest that newly generated neurons automatically proceed with circuit formation. While some of the studies have looked into inhibitory factors that may interfere with axon growth (Lu et al., 2012; Steinbeck et al., 2012), cell-intrinsic mechanisms that counteract growth inhibition remain elusive. Progress in these areas will be likely facilitated by the investigation of grafting into healthy brain, which may reveal differences from those in disease models (e.g., Grade et al., 2021; Steinbeck et al., 2012; Thompson et al., 2009).

2.5 | Cell autonomously induced circuit formation by healthy adult neurons

The examples above highlight that the adult brain is capable of building new circuits, and also that little is understood of the underlying molecular mechanisms. Thus far, questions related to adult wiring mechanisms have been mostly studied in injury models, where one of the key aims is to identify molecules that can facilitate circuit repair (Fink et al., 2017; Kauer et al., 2021; Mahar & Cavalli, 2018). The induction of axon growth is typically not studied in the absence of injury. While it is important to consider injury-related signalling, studying axon growth in healthy neurons provides a simplified context and unperturbed setting to identify cell-intrinsic wiring mechanisms, without the complication of other pathological signals not necessarily related to wiring. In this part, we focus on a study from our own laboratory (Luo et al., 2021) (Figure 2e) and discuss its results in the context of others.

Our motivation behind this study was to identify cell-intrinsic mechanisms underlying the epilepsy-associated hippocampal mossy fibre sprouting by adult GCs. Apart from human pathology, mossy fibre sprouting has been studied using different experimental models of epilepsy in rodents (Jasper’s basic mechanisms of the epilepsies [Internet], 2012). In these models, in addition to mossy fibre sprouting, cell dispersion and death, and eventually seizures may develop. For a long time, sprouting mechanisms remained elusive and the question of whether mossy fibre sprouting contributed to seizures and memory deficits was debated. Using single-cell RNA sequencing, we investigated transcriptomic changes in GCs after intrahippocampal kainic acid injection-induced sprouting and searched for its mechanisms (Luo et al., 2021). In this study, we showed that sole overexpression of the single gene Id2, which became highly expressed after sprouting, had the remarkable capacity to induce mossy fibre sprouting in healthy adult GCs of mice and rats. The new synapses formed on other GC dendrites, had an abundant supply of synaptic vesicles, and transmitted physiologically typical signals.
Functionally, Id2 is a transcriptional regulator that inhibits the activity of mainly basic helix–loop–helix (bHLH) (Lasorella et al., 2006) but also other transcription factors (Roschger & Cabrele, 2017). This suggests that ongoing transcriptional programs actively suppressed sprouting in GCs until Id2 removed this suppression.

In contrast to human and experimental epilepsy, Id2-induced mossy fibre sprouting did not induce electrographic seizures or severe memory deficits (Luo et al., 2021). Mice displayed normal hippocampal oscillations during freely moving behaviour. However, type-2 dentate spikes, previously associated with the transfer of global navigation cues from entorhinal cortex to hippocampus, were selectively lost. Further analyses confirmed that while mice with the Id2-induced circuit still solved spatial problems just as well as controls, they relied on local rather than global navigation cues. Likely, epileptic seizures and severe memory deficits require other changes in the circuit, which are not induced by Id2. In this manner, cell-autonomous activation of wiring helped to separately analyse consequences of mossy fibre sprouting and its contribution to the disorder. Furthermore, while other studies have previously suggested the involvement of Id2 in axon growth in cultured, developing and/or injured neurons (Huang et al., 2019, 2021; Ko et al., 2016; Lasorella et al., 2006; Yu et al., 2011), the study of Id2 in context of mossy fibre sprouting revealed that activation of this molecule relieves ongoing transcriptional suppression of wiring and induces targetspecific rewiring in healthy adult circuits (Luo et al., 2021).

Cell autonomously induced wiring in healthy neurons thus represents a powerful approach to investigate and explore the potential of circuit formation in the adult nervous system. Many questions have opened themselves for future studies, for example, if wiring could be activated in neuron types other than GCs.

3 | KEY STEPS OF ADULT-BRAIN CIRCUIT FORMATION

Examples above thus highlight the formation of new circuits in the adult brain. These involve axonal elongation, target specification, and synapse formation, which are also key steps during development. The developmental process is orchestrated by a multitude of molecules that together are thought to represent a code for connectivity. Adult neurons feasibly utilize the same code. However, neuronal age, epigenetic and transcriptomic states, and already established circuit environments likely impose restrictions on how such a code may be executed.

3.1 | Transcriptional control of adult-brain wiring

Studies on development and regeneration have proposed several transcription factors in promoting axon growth and facilitating axon guidance (e.g., members of the CREB, HDAC, KLF, SMAD, STAT, SOX, and bHLH families) (Mahar & Cavalli, 2018; Moore & Goldberg, 2011; Polleux et al., 2007). Although wiring programs are not activated under typical neurophysiological states in most adult neurons, it is increasingly evident that targeted manipulation of transcription factors and regulators can reactivate wiring in adults and that bHLH proteins may be important for this.

bHLH transcription factors and regulators (e.g., members of the ASCL, ID, NEUROD, NPAS, MYC and TCF families) have been recognized as essential regulators of neural cell fate determination during development (Baker & Brown, 2018; Dennis et al., 2019; Imayoshi & Kageyama, 2014; Squire et al., 2012). They drive cells to differentiated neuronal states and characteristic axonal structures. Evidence showing that ectopic expression of the bHLH transcriptional regulator Id2 can induce axon growth in developing, regenerating, and adult neurons, further suggested this family to be involved specifically in wiring (Huang et al., 2019, 2021; Ko et al., 2016; Lasorella et al., 2006; Luo et al., 2021; Yu et al., 2011). Additional observations support this. (i) The expression of multiple bHLH-encoding genes changes in models of injury, stroke, and epilepsy, in which sprouting is also known to occur (Aronica et al., 2001; Avansini et al., 2018; Elliott et al., 2001; Kabos et al., 2002; Kawai et al., 2005; Lösing et al., 2017; Luo et al., 2021; Wang et al., 2014; Zhang et al., 2014), and bHLH members have been also shown to facilitate axon regeneration and/or circuit repair (Belin et al., 2015; Buffo et al., 2005; Cho et al., 2015; Huang et al., 2021; Ko et al., 2016; Lai et al., 2020; Li et al., 2020; Ma et al., 2019; Wang et al., 2014; Williams et al., 2015; Yan et al., 2018; Zhang et al., 2014) (Table 2). (ii) Several bHLH factors have been implicated in the control of adult neurogenesis and maturation of adult-born neurons (Brill et al., 2009; Carrica et al., 2019; Gao et al., 2009; Havrda et al., 2008; Jessberger et al., 2008; Matsuda et al., 2012; Ozen et al., 2007; Shariq et al., 2021; Sueda et al., 2019) (Table 2). (iii) RhoA (Rho1 in Drosophila), a key intracellular regulator of axon growth, is potentially controlled by multiple bHLH transcription factors: Clock, Neurog2 and Ascl1. In Drosophila, Clock is presumed to control the expression of Rho1 GEF Pura, which regulates Rho1 activity (Petsakou et al., 2015), and knock-out of Clock disturbed the circadian regulation-dependent startle response that correlates with periodic rewiring (Song...
Gene name	Observation	References	Related genes/molecules based on UniProt and/or STRINGDB
Disease models			
Ascl1 (bHLHa46)	Upregulated after seizures; facilitates axon regeneration.	Elliott et al. (2001)	TCF3, TCF12, TCF4, NEUROG2, SIRT1, ID1, ID2, MEF2A
Hes1 (bHLHb39)	Downregulated after spinal cord hemisection; upregulated after stroke and facilitates regeneration; controls adult neurogenesis after injury.	Kabos et al. (2002)	SIRT1, TLE1, HES6, FA complex (FANC-E, FANC-G, FANC-A, FNACF, FAACL, FAAP100), RBPI, NOTCH2
Hes5 (bHLHb38)	Downregulated after seizures, spinal cord hemisection and stroke.	Elliott et al. (2001), Kabos et al. (2002), Kawai et al. (2005)	Groucho/TLE family, SOX2, SIRT1, HELT, CHD7, RBPI, NOTCH2, HES1
HIF1a (bHLHe78)	Facilitates axon regeneration.	Cho et al. (2015)	ARNT, COP5, SENP1, HIF3A, FOXA2, CREBBP, EP300, VHL, EGLN1
Id2 (bHLHb26)	Upregulated after seizures and/or sprouting; facilitates axon regeneration.	Aronica et al. (2001), Elliott et al. (2001), Luo et al. (2021), Huang et al. (2021), Ko et al. (2016)	Olig1, Olig2, PP1A, TFE2, TCF3, TCF4, TCF12, MYOD1
Myc (bHLHe39)	Facilitates axon regeneration.	Belin et al. (2015), Ma et al. (2019)	TRIM32, MAX, GSK3B, FBXW7, STAT3
Neurod1 (bHLHa3)	Facilitates axon regeneration.	Lai et al. (2020)	TCF3/E47, EP300, ATOH8, TCF4, TCF12, SIX1, CDK5R2, LHX3, GHRHR
Neurog2 (bHLHa8)	Upregulated after seizures.	Avansini et al. (2018)	ASCL1, TCF3, OLIG2, SIRT1
Npas4 (bHLHe79)	Upregulated after seizures and/or sprouting.	Wang et al. (2014)	ARNT, ARNT2, Npas2, NCOA2, ARNTL, CLOCK, NCOA1, NCOA3, ARNTL2
Olig2 (bHLHb1)	Upregulated after brain injury.	Buffo et al. (2005)	ID2, ID4, TCF3, SOX8, NEUROG2, SMARCA4
Sharp1 (bHLHe41)	Downregulated after spinal cord hemisection.	Kabos et al. (2002)	BHLHE40, ARNTL/BLM1, HNF1A, CLOCK, CRY2, GSK3B, CRY1, PER2, BTRC, Npas2
Sharp2 (bHLHe40)	Downregulated after spinal cord hemisection.	Kabos et al. (2002)	BHLHE41, UBE2I/UBC9, TCF3/E47, ARNTL, Npas2, CLOCK, FA complex (FANC-E/G/A/F/L/C)
			(Continues)
Table 2 (Continued)

Gene name	Observation	References	Related genes/molecules based on UniProt and/or STRINGDB
Adult-born neurons			
Ascl1 (bHLHα46)	Associated with adult neurogenesis.	Jessberger et al. (2008)	See above.
Hes1 (bHLHb39)	Associated with adult neurogenesis.	Sueda et al. (2019)	
Hes5 (bHLHb38)	Associated with adult neurogenesis.	Matsuda et al. (2012)	See above.
HIF1α (bHLHe78)	Associated with adult neurogenesis.	Carrica et al. (2019)	
Id2 (bHLHb26)	Associated with adult neurogenesis.	Havrda et al. (2008)	See above.
Neurod1 (bHLHα3)	Associated with adult neurogenesis.	Gao et al. (2009)	See above.
Neurog2 (bHLHα8)	Associated with adult neurogenesis.	Ozen et al. (2007)	See above.
TCF4 (bHLHe19)	Associated with adult neurogenesis.	Shariq et al. (2021)	MYOD1, HIVEP2, NEUROD2, BHLHLα9, LDB1, CTNNB1, TLE1, ID1, TCF12, TLE4, MYF5, MYOG
Behaviourally relevant circuit rewiring by adult neurons			
Clock (bHLHε8)	Potentially controls LNv and DN1a rewiring.	Petsakou et al. (2015), Ma et al. (2018), Song et al. (2021)	CRY1, CYR2, Npas2, Arntl/Bmal1, Arntl2/Bmal2, NR3C1, p35, Rela, ID1, ID3, ID2, Sirt1, Prkca, Per2, Bhlhe41
Neurog2 (bHLHα8)	Potentially controls LNv and DN1a rewiring.	Ge et al. (2006), Heng et al. (2008), Pacary et al. (2011), Song et al. (2021)	See above.
Cell transplantation and reprogramming			
Ascl1 (bHLHα46)	Conversion of neurons from other cell types.	Caiazzo et al. (2011), Pang et al. (2011), Torper et al. (2013), Liu et al. (2015), Jostad et al. (2017), Rivetti di Val Cervo et al. (2017), Karow et al. (2018), Raina et al. (2020), Kempf et al. (2021), Lentini et al. (2021)	See above.
Neurod1 (bHLHα3)	Conversion of neurons from other cell types.	Guo et al. (2014), Pang et al. (2011), Rivetti di Val Cervo et al. (2017), Matsuda et al. (2019), Chen et al. (2020), Puls et al. (2020), Wu et al. (2020)	See above.
Neurod4 (bHLHα4)	Conversion of neurons from other cell types.	Masserdotti et al. (2015)	RUNX1T1, TCF3, TCF4, TCF12, FOXN4, TWIST1, TWIST2

(Continues)
In addition, Clock may directly stabilize RhoA, as shown in cancer cells (Ma et al., 2018). Neurog2 and Ascl1, which are frequently used to reprogram different types of cells into neurons (Table 2), have been shown to induce the expression of Rnd2 and Rnd3 respectively (Ge et al., 2006; Heng et al., 2008; Pacary et al., 2011). Since both Rnd2 and Rnd3 promote RhoA inactivation, Neurog2 and Ascl1 likely create cell states with increased capacity for axon elongation (Figure 3b). And finally, (iv) bHLH factors play a key role in achieving successful cell conversion during grafting and reprogramming (Caiazzo et al., 2011; Chen et al., 2020; Chouchane et al., 2017; di Val et al., 2017; Fukuoka et al., 2021; Guo et al., 2014; Jorstad et al., 2017; Karow et al., 2018; Kempf et al., 2021; Lentini et al., 2021; Liu et al., 2013, 2015; Masserdotti et al., 2015; Matsuda et al., 2019; Pang et al., 2011; Puls et al., 2020; Raina et al., 2020; Torper et al., 2013; Wu et al., 2020) (Table 2). Further, bHLH family members control the expression of several other molecules that were identified to affect wiring (e.g., Adcy1, Slit1, Stat3, and Tle1, expression of which was changed by Id2 overexpression) (Luo et al., 2021), and bHLH factors have been also associated with other, non-bHLH molecules related to neurogenesis, neural differentiation, axon growth or sprouting (Table 2).

Despite these observations, delineating the role of bHLH and other transcriptional regulators in the wiring process remains challenging. At least in adult-born and reprogrammed neurons this would require experiments that probe wiring but do not affect other domains of cellular maturation. Another difficulty is that members of the bHLH family regulate both the expression and activity of each other (Baker & Brown, 2018; Cho et al., 2007; Dennis et al., 2019; Imayoshi & Kageyama, 2014). To overcome challenges in this domain of research, cell type-specific expression and molecular interaction maps of transcription factors will likely be helpful.

3.2 Axon elongation in established circuits

In apparent contradiction to models that posit broad growth inhibition after development, the above-mentioned examples of adult-brain circuit formation clearly demonstrate robust axon elongation in already established circuits. While clearly an important issue, there is still too much uncertainty with regard to cellular mechanisms that allow elongating axons to bypass presumed inhibitory signals in the adult brain. Growth inhibition is thought to be rendered by a specialized signalling system that is comprised of growth inhibitory
receptors/complexes on axons (e.g., NogoR/RTN4R, Lingo1, Troy, PirB) and myelin-associated growth inhibitory ligands in the surrounding tissue (e.g., Nogo, MAG, and OMgp). This model is extensively supported by neuronal culture and nerve injury studies, in which application of ligands inhibited axon growth or neutralization of ligands and/or receptors enhanced axon growth (Fujita & Yamashita, 2014; Schwab, 2010; Yiu & He, 2006). By extension, it has been hypothesized that myelin-associated growth inhibitors are physiologically relevant for stabilizing neural circuitry, and act as a tonic negative regulator of growth in the healthy adult nervous system (Schwab, 2010; Yiu & He, 2006). Although this hypothesis has yet to be conclusively proven, many studies show that components of the signalling system can restrict synapse formation and different forms of experience-dependent synaptic and circuit plasticity (Baldwin & Giger, 2015; Delekate et al., 2011; Guzik-Kornacka et al., 2016; Iobbi et al., 2017; Kellner et al., 2016; Lee et al., 2008; McGee et al., 2005; Raiker et al., 2010; Petrinovic et al., 2013; Stehle et al., 2021; Stephany et al., 2014; Syken et al., 2006; Wills et al., 2012; Zagrebelsky et al., 2017; Zemmar et al., 2018). Intracellularly, the RhoA/ROCK pathway has been implicated as a key signal transducer for these growth inhibitors, in part because of its ability to induce cytoskeletal reorganization,
such as growth cone collapse, that disadvantages further growth (Fujita & Yamashita, 2014; Schwab, 2010; Yiu & He, 2006). Here, we highlight evidence that links bHLH factors to the regulation of Nogo/RTN4 receptors and intracellular transducers, which are possible sites for the disinhibition of axon growth in adult brain.

First, the developmentally regulated degradation of Id2 was found to correlate with upregulation of the protein form of Nogo/RTN4 receptors (Lasorella et al., 2006). Although the reciprocal thesis, that is, if surface expression of Nogo/RTN4 receptors is down-regulated in response to Id2 upregulation, has not been tested, the lack of inhibitory receptors could feasibly help growing axons to evade inhibitory signals. However, at least during Id2-induced mossy fibre sprouting, the mRNA levels of Nogo/RTN4 receptors did not change (Luo et al., 2021). Further, independently of Id2, grafting studies in which this issue was investigated have reported powerful axon growth despite continued expression of Nogo/RTN4 receptors (Lu et al., 2012; Steinbeck et al., 2012). In addition, a more recent study highlighted that apart from mediating growth inhibition, Nogo/RTN4 receptors play another role during circuit formation (Wang, Miao, et al., 2021). Specifically, this study identified the synaptogenic BAI adhesion GPCRs as high affinity binding ligands for Nogo/RTN4 receptors and showed that while this binding still inhibited axon growth, it was also required for synapse formation. By extension, temporally controlled surface presentation of Nogo/RTN4 receptors on the elongating fibres may be necessary, rather than adverse, for adult-brain formation of synaptic circuits.

Second, with regard to downstream effectors, bHLH factors may exert control over the RhoA/ROCK pathway independently of Nogo/RTN4 signalling. As discussed above, Clock likely controls periodic rewiring of Drosophila circuits through Rho1 (RhoA in mammals), and Neurog2 and Ascl1 feasibly inactivate RhoA/ROCK to allow axon elongation in reprogrammed neurons. In addition to these, other observations support a link between bHLH factors and RhoA/ROCK. As shown in developing neuronal cultures, Id2 overexpression promoted axon growth through upregulation of Neurog2 (Huang et al., 2019). While knockdown of Neurog2 impaired axon growth in this model, demonstrating the necessity for Neurog2, Neurog2 overexpression alone was not sufficient for axon growth because this manipulation only induced indistinguishable neurite growth from the cells (Huang et al., 2019). Thus, axon specification and/or growth in these cells required both Id2 and Neurog2. By contrast, in adult GCs, Id2 overexpression promoted mossy fibre rewiring without upregulating Neurog2 (Luo et al., 2021), which is normally not expressed by this cell type. However, in GCs, but not in developing neuronal cultures (Huang et al., 2019), Id2 increased the expression of Cdkn1a (Luo et al., 2021), the protein product of which (called p21 or Cip1/WAF1) is a potent ROCK inhibitor (Tanaka et al., 2002) and was shown to facilitate axon growth (Tanaka et al., 2004) (Figure 3c). Together, these observations suggest that Id2 may support axon growth through RhoA/ROCK inhibition by activating Neurog2 or Cdkn1a. Further, in adult GCs, Id2 overexpression upregulated Stat1 and Stat3. Stat3 has been previously implicated in promoting axon growth after neuronal injury (Bareyre et al., 2011; Pernet et al., 2013; Sun et al., 2011), and both Stat1 and Stat3 were shown to promote Cdkn1a expression (Chin et al., 1996; Pernet et al., 2013; Smith et al., 2011). Thus, it is likely that Cdkn1a expression was a consequence of Id2-induced Stat1 and/or Stat3 upregulation. While bHLH-mediated RhoA/ROCK inhibition represent a feasible mechanism for allowing axon elongation, future studies will need to confirm if Id2-, Neurog2-, and Ascl1-induced RhoA/ROCK inhibitors are indeed translated and contribute adult-brain circuit formation.

Third, independently of the role of Id2 in transcriptional regulation, this molecule has been shown to promote growth cone formation and stabilization in developing neurons (Ko et al., 2016). Potentially, such a mechanism could also help to overcome growth inhibition in adults. However, expression of a mutant form of Id2, which was used to prevent growth cone formation in developing neurons (Ko et al., 2016), still induced mossy fibre rewiring in adult GCs (Luo et al., 2021). Nonetheless, it remains possible that Id2-mediated growth cone stabilization supports axon growth in other cell types in the adult brain, for example, in adult-born, grafted, and reprogrammed neurons, which are immature in the beginning. More broadly, the question of whether growth cone formation by adult neurons is similar to that during development remains open.

Together, rather than providing solutions, these observations serve as conceptual access points to the conundrum of axon elongation in adult circuits. They also underscore the importance of clarifying the role of growth inhibitory signals and receptors in adult-brain circuit formation.

3.3 Target specificity and synapse formation

Perhaps target specification appears to be the most susceptible to modifications in adults. The different circuits formed by hippocampal mossy fibres highlight this. The developmental pattern is well characterized: mossy fibres
originates from GCs and project into hilus and CA3 (Blaabjerg & Zimmer, 2007; Hainmueller & Bartos, 2020). As described above, adult-born GCs precisely replicate this pattern. However, during mossy fibre sprouting GCs make new projections into the inner molecular layer of dentate gyrus (Laurberg & Zimmer, 1981; Luo et al., 2021; Sutula et al., 1988; Tauck & Nadler, 1985; Wenzel et al., 2000). Although adult-born GCs demonstrate that axon growth into CA3 would be permitted, sprouting mossy fibres do not opt for this. The opposite also holds true. Adult-born GCs do not normally grow axons into the inner molecular layer (Briones et al., 2021; Drew et al., 2016; Faulkner et al., 2008; Markakis & Gage, 1999; Restivo et al., 2015; Sun et al., 2013; Temprana et al., 2015; Toni et al., 2008; Trinchero et al., 2019; Zhao et al., 2006). The most likely explanation for this, based on what we know about development, is that adult-born GCs and sprouting adult GCs utilize different sets of cell-surface molecules for axon guidance.

This may be because sprouting induction methods do not recruit all developmentally relevant molecules in mature neurons, but potentially others that specify different targets. In addition to GCs, circuits formed by several other adult neuronal cell types (e.g., sprouting CA1, CA3, and cortical pyramidal neurons) display atypical targeting that is different from their developmentally established profiles (see Section 2.1). In these cases, it is also possible that although developmentally relevant molecules are recruited (or remain expressed), but complementary binding partners are not anymore present in the original target-cell population after development. Given that adult-born and grafted/reprogramed neurons, which proceed through all steps of cell development, frequently recapitulate developmental patterns and that neurons which periodically rewire naturally do this, an altered display of guidance and/or target recognition receptors on sprouting axons is a likely factor in most cases when atypical connections are formed. Results from studies that employed heterotopic transplants provide further support for this scenario.

As discussed above, homotopic transplantation of embryonic motor cortical cells into motor cortex resulted in projections appropriate for motor cortical neurons (Gaillard et al., 2007). In the same study, transplantation of embryonic visual cortex cells into the motor cortex (heterotopic transplant) was also tested. However, axon projections formed by homotopic and heterotopic transplants were different. After heterotopic transplantation, new projections grew into visual cortical areas and caudate putamen, appropriate for visual cortical but not for motor cortical neurons. As also discussed, homotopic transplantation of embryonic mesencephalic cells reconstituted the nigrostriatal pathway (Gaillard et al., 2009; Thompson et al., 2009). In their study, Gaillard et al. (2009) tested embryonic olfactory bulb cells as heterotopic transplant, because adult olfactory areas also contain dopaminergic neurons, the cell type of interest for this study. Although dopaminergic neurons appeared in the graft, growing fibres remained in close proximity of the graft and never reached the striatum. Thus, already committed embryonic cells appear to give rise to neurons, whose projection specificity is predetermined—most likely by the availability of guidance receptors on their axons.

Another important question is whether new circuits formed by elongating axons need to compete with already established ones. Such competition could take place already at the level of synapse formation, which has been viewed to principally occur during development (Katz & Shatz, 1996; Squire et al., 2012). This question has been investigated also in the context of hippocampal GCs. In 2–6 months old mice, electron microscopy images in the CA3 area demonstrated that adult-born GCs formed synapses at sites already contacted by other presynaptic terminals (Toni et al., 2008; Toni & Sultán, 2011). New synapse formation on pre-existing postsynaptic targets would indicate synaptic competition. Although in juvenile mice, functional analysis in which the activity of GCs was permanently silenced from early postnatal stages supported this hypothesis. Axonal projections by silenced GCs first developed normally, but they retracted by 3–4 weeks of age (Yasuda et al., 2011). The retraction was dependent on ongoing neurogenesis, and driven by activity-dependent competition between mature and newborn GCs, which were not silenced (Yasuda et al., 2011). Another study performed a similar experiment in adult mice. This study employed an inducible technique for long-term and reversible silencing in already matured GCs (Lopez et al., 2012). During silencing, existing GCs synapses were presumed to suffer a competitive disadvantage if active synapses formed by adult-born GCs (born after silencing and themselves are not silenced) were preferred by postsynaptic neurons. However, reversal of 3–6 months of silencing revealed that existing axons were not retracted, nor were their synaptic transmission affected. While this result suggests that synaptic competition may not be prevalent during adult-brain circuit formation, it is also possible that relative contribution of adult-born GC axons to the entire GC axon population was too small at this age to induce gross axon retraction as seen at younger age (Lopez et al., 2012). Thus, more detailed analyses will be necessary to establish if the adult brain has capacity to host circuits in addition to those established during development, or only at the expense of those.

Although region- and cell type-specificity is clearly recognizable in several forms of adult-brain circuit formation,
it remains unclear how elongating axons are guided through already established circuits and to specific target neuron type(s) while rejecting other options. Adaptation of cutting-edge in vivo time-lapse imaging, such as dynamic morphometrics (Hogg et al., 2021), and intravital (Falkner et al., 2016; Pilz et al., 2018) and whole-brain imaging (Li et al., 2021), will likely make important contributions to answering those questions. For example, time-lapse imaging has the capacity to reveal spatial location of key decision points, where elongating fibres may or may not immediately find their final path. Moreover, time-lapse imaging over longer periods would enable to study long-term stability of newly formed circuits. Together with results of molecular analyses, such information could facilitate gaining control over the selection of target cell types, a potential prerequisite for re-establishing damaged circuits after injuries and in disorders.

4 | CONCLUDING REMARKS

In summary, evidence supports that neurons have the capacity to form new circuits in adult brain. Some of the circuit formation are ongoing and their relevance to behaviour and memory already warrants an increased attention for understanding their mechanisms. Since detection of such ongoing wiring events was made possible only through specific experiments that were designed to probe them, it remains possible that further behaviourally relevant circuit rewiring exists, which itself is an exciting area for future research. Furthermore, disease modelling represents another area of research where the studying of adult-brain wiring has clear benefits. Multiple disorders have been associated with atypical wiring but without a clearly established role of new circuits in disease pathology. This may be because other cellular or circuit pathologies often create a complex landscape, in which dissociation of causes and consequences is difficult. In these cases, cell-autonomous induction of particular wiring events are especially useful. Additionally, studying of circuit formation in adult brain could lead to a deeper understanding of principles behind the brain’s connectivity. Currently, the lack of this understanding represents not only an academic challenge but effectively hinders successful repair after damage. An eventual ability to induce and control target-specific wiring in adult circuits would be a major step towards achieving these goals.

ACKNOWLEDGEMENTS

We thank Drs. Jason Aoto and Beat Gähwiler for their comments on the manuscript. Open access funding provided by Universitat Zurich.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1111/ejn.15742.

DATA AVAILABILITY STATEMENT

There were no new data generated for this study.

ORCID

Csaba Földy https://orcid.org/0000-0001-8709-8490

REFERENCES

Adler, A. F., Cardoso, T., Nolbrant, S., Mattsson, B., Hoban, D. B., Jarl, U., Wahlestedt, J. N., Grealish, S., Björklund, A., & Parmar, M. (2019). hESC-derived dopaminergic transplants integrate into basal ganglia circuitry in a preclinical model of Parkinson’s disease. Cell Reports, 28(13), 3462–3473.e5. https://doi.org/10.1016/j.celrep.2019.08.058

Aronica, E., Vandeputte, D. A., van Vliet, E. A., Lopes da Silva, F. H., Troost, D., & Gorter, J. A. (2001). Expression of id proteins increases in astrocytes in the hippocampus of epileptic rats. Neuroreport, 12(11), 2461–2465. https://doi.org/10.1097/00001756-200108080-00035

Assali, A., Gaspar, P., & Rebsam, A. (2014). Activity dependent mechanisms of visual map formation—From retinal waves to molecular regulators. Seminars in Cell & Developmental Biology, 35, 136–146. https://doi.org/10.1016/j.semcdb.2014.08.008

Avansini, S. H., Torres, F. R., Vieira, A. S., Dogini, D. B., Rogiero, F., Coan, A. C., Morita, M. E., Guerreiro, M. M., Yasuda, C. L., Secolin, R., Carvalho, B. S., Borges, M. G., Almeida, V. S., Araújo, P. A. O. R., Queiroz, L., Cendes, F., & Lopes-Cendes, I. (2018). Dysregulation of NEUROG2 plays a key role in focal cortical dysplasia. Annals of Neurology, 83(3), 623–635. https://doi.org/10.1002/ana.25187

Baker, N. E., & Brown, N. L. (2018). All in the family: Proneural bHLH genes and neuronal diversity. Development, 145(9), dev159426. https://doi.org/10.1242/dev.159426

Baldwin, K. T., & Giger, R. J. (2015). Insights into the physiological role of CNS regeneration inhibitors. Frontiers in Molecular Neuroscience, 8, 23. https://doi.org/10.3389/fnmol.2015.00023

Bareyre, F. M., Garzorz, N., Lang, C., Misgeld, T., Büning, H., & Kerschensteiner, M. (2011). In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 6282–6287. https://doi.org/10.1073/pnas.1015239108

Belin, S., Nawabi, H., Wang, C., Tang, S., Latremoliere, A., Warren, P., Schorle, H., Uncu, C., Woolf, C. J., He, Z., & Steen, J. A. (2015). Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron, 86(4), 1000–1014. https://doi.org/10.1016/j.neuron.2015.03.060

Bennett, S. H., Kirby, A. J., & Finnerty, G. T. (2018). Rewiring the connectome: Evidence and effects. Neuroscience and Biobehavioral Reviews, 88, 51–62. https://doi.org/10.1016/j.neubiorev.2018.03.001
Bergmann, O., Liebl, J., Bernard, S., Alkass, K., Yeung, M. S., Steier, P., Kutschera, W., Johnson, L., Landén, M., Druid, H., Spalding, K. L., & Frisén, J. (2012). The age of oligofractobulb neurons in humans. Neuron, 74(4), 634–639. https://doi.org/10.1016/j.neuron.2012.03.030

Besusso, D., Schellino, R., Boido, M., Belloli, S., Parolisi, R., Conforti, P., Faedo, A., Cernigoj, M., Campus, I., Laporta, A., Bocchi, V. D., Murtaj, V., Parmar, M., Spaiardi, F., Falvo, F., Manieczii, C., Toselli, M. G., Biella, G., MoreSCO, R. M., ... Cattaneo, E. (2020). Stem cell-derived human striatal progenitors innervate striatal targets and alleviate sensorimotor deficit in a rat model of Huntington disease. Stem Cell Reports, 14(5), 876–891. https://doi.org/10.1016/j.stemcr.2020.03.018

Björklund, A., & Parmar, M. (2020). Neuronal replacement as a tool for basal ganglia circuitry repair: 40 years in perspective. Frontiers in Cellular Neuroscience, 14, 146. https://doi.org/10.3389/fncel.2020.00146

Blaabjerg, M., & Zimmer, J. (2007). The dentate mossy fibers: Structural organization, development and plasticity. Progress in Brain Research, 163, 85–107. https://doi.org/10.1016/S0079-6123(07)63005-2

Bonzano, S., Bovetti, S., Gendusa, C., Perotto, P., & De Marchis, S. (2016). Adult born olfactory bulb dopaminergic interneurons: Molecular determinants and experience-dependent plasticity. Frontiers in Neuroscience, 10, 189. https://doi.org/10.3389/fnins.2016.00189

Brill, M. S., Ninkovic, J., Winpenny, E., Hodge, R. D., Ozen, I., Yang, R., Lepier, A., Gascon, S., Erdelyi, F., Szabo, G., Parras, C., Guillemot, F., Frotscher, M., Berninger, B., Hevner, R. F., RaineTeau, O., & GÓtz, M. (2009). Adult generation of glutamatergic olfactory bulb interneurons. Nature Neuroscience, 12(12), 1524–1533. https://doi.org/10.1038/nn.2416

Briones, B. A., Pisano, T. J., Pitcher, M. N., Haye, A. E., Diethorn, E. J., Engel, E. A., Cameron, H. A., & Gould, E. (2021). Adult-born granule cell mossy fibers preferentially target parvalbumin-positive interneurons surrounded by perineuronal nets. Hippocampus, 31(4), 375–388. https://doi.org/10.1002/hipo.23296

Buffo, A., Vosko, M. R., Ertürk, D., Hamann, G. F., Jucker, M., Rowitch, D., & Götz, M. (2005). Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 18183–18188. https://doi.org/10.1073/pnas.0506535102

Caiazzo, M., Dell’Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., Sotnikova, T. D., Menegon, A., Roncaglia, P., Colciago, G., Russo, G., Carninci, P., Pezzoli, G., Gainetdinov, R. R., Gustinich, S., Dityatev, A., & Broccoli, V. (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476(7359), 224–227. https://doi.org/10.1038/nature10284

Canty, A. J., & Murphy, M. (2008). Molecular mechanisms of axon guidance in the developing corticospinal tract. Progress in Neurobiology, 85(2), 214–235. https://doi.org/10.1016/j.pneurobio.2008.02.001

Cardoso, T., Adler, A. F., Mattsson, B., Hoban, D. B., Nolbrant, S., Wahlestedt, J. N., Kirkeby, A., Grealish, S., Björklund, A., & Parmar, M. (2018). Target-specific forebrain projections and appropriate synaptic inputs of hESC-derived dopamine neurons grafted to the midbrain of parkinsonian rats. The Journal of Comparative Neurology, 526(13), 2133–2146. https://doi.org/10.1002/cne.24500

Carmichael, S. T., Kathirvelu, B., Schwegge, C. A., & Nie, E. H. (2017). Molecular, cellular and functional events in axonal sprouting after stroke. Experimental Neurology, 287(Pt 3), 384–394. https://doi.org/10.1016/j.expneurol.2016.02.007

Carmichael, S. T., Wei, L., Rovainen, C. M., & Woolsey, T. A. (2001). New patterns of intracortical projections after focal cortical stroke. Neurobiology of Disease, 8(5), 910–922. https://doi.org/10.1006/ndbi.2001.0425

Carrica, L., Li, L., Newville, J., Kenton, J., Gustus, K., Brigman, J., & Cunningham, L. A. (2019). Genetic inactivation of hypoxia inducible factor 1-alpha (HIF-1α) in adult hippocampal progenitors impairs neurogenesis and pattern discrimination learning. Neurobiology of Learning and Memory, 157, 79–85. https://doi.org/10.1016/j.nlm.2018.12.002

Chen, W., Zheng, Q., Huang, Q., Ma, S., & Li, M. (2022). Repressing PTBP1 fails to convert reactive astrocytes to dopaminergic neurons in a 6-hydroxydopamine mouse model of Parkinson’s disease. eLife, 11, e75636. https://doi.org/10.7554/eLife.75636

Chen, Y. C., Ma, N. X., Pei, Z. F., Wu, Z., Do-Monte, F. H., Keefe, S., YeLin, E., Chen, M. S., Yin, J. C., Lee, G., Minier-Toribio, A., Hu, Y., Bai, Y. T., Lee, K., Quirk, G. J., & Chen, G. (2020). A NeuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Molecular Therapy, 28(1), 217–234. https://doi.org/10.1016/j.ymthe.2019.09.003

Chin, Y. E., Kitagawa, M., Su, W. C., You, Z. H., Iwamoto, Y., & Fu, X. Y. (1996). Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Fu, X. Y. (1996). Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science, 272(5262), 719–722. https://doi.org/10.1126/science.272.5262.719

Cho, J. H., Klein, W. H., & Tsai, M. J. (2007). Compensational regulation of bHLH transcription factors in the postnatal development of BET2/NeuroD1-null retina. Mechanisms of Development, 124(7–8), 543–550. https://doi.org/10.1016/j.mod.2007.06.001

Cho, Y., Shin, J. E., Ewan, E. E., Oh, Y. M., Pita-Thomas, W., & Cavalli, V. (2015). Activating injury-responsive genes with hypoxia enhances axon regeneration through neuronal HIF-1α. Neuron, 84(4), 720–734. https://doi.org/10.1016/j.neuron.2015.09.050

Chouchane, M., Melo de Farias, A. R., Moura, D. M. S., Hilscher, M. M., Schroeder, T., Leão, R. N., & Costa, M. R. (2017). Lineage reprogramming of Astrogial cells from different origins into distinct neuronal subtypes. Stem Cell Reports, 9(1), 162–176. https://doi.org/10.1016/j.stemcr.2017.05.009

Christenson Wick, Z., Leintz, C. H., Yamonti, C., Huang, B. H., & Krook-Magnuson, E. (2017). Axonal sprouting in commissurally projecting parvalbumin-expressing interneurons. Journal of Neuroscience Research, 95(12), 2336–2344. https://doi.org/10.1002/jnr.24011

De León Reyes, N. S., Mederos, S., Varela, I., Weiss, L. A., Perea, G., Galazo, M. J., & Nieto, M. (2019). Transient callosal projections of L4 neurons are eliminated for the acquisition of local connectivity. Nature Communications, 10(1), 4549. https://doi.org/10.1038/s41467-019-12495-w
Delekte, A., Zagrebelsky, M., Kramer, S., Schwab, M. E., & Korte, M. (2011). NogoA restricts synaptic plasticity in the adult hippocampus on a fast time scale. *Proceedings of the National Academy of Sciences of the United States of America*, 108(6), 2569–2574. https://doi.org/10.1073/pnas.1013322108

Dennis, D. J., Han, S., & Schuurmans, C. (2019). bHLH transcription factors in neural development, disease, and reprogramming. *Brain Research*, 1705, 48–65. https://doi.org/10.1016/j.brainres.2018.03.013

Denou-Lippuner, A., & Jessberger, S. (2021). Formation and integration of new neurons in the adult hippocampus. *Nature Reviews. Neuroscience*, 22(4), 223–236. https://doi.org/10.1038/s41583-021-00433-z

Dhar, M., Brenner, J. M., Sakimura, K., Kano, M., & Nishiyama, H. (2016). Spatiotemporal dynamics of lesion-induced axonal sprouting and its relation to functional architecture of the cerebellum. *Nature Communications*, 7, 12938. https://doi.org/10.1038/ncomms12938

di Val, R., Cervo, P., Romanov, R. A., Spigolon, G., Masini, D., Martin-Montañez, E., Toledo, E. M., La Manno, G., Feyder, M., Pilf, C., Ng, Y. H., Sánchez, S. P., Linnarsson, S., Wernig, M., Harkany, T., Fisone, G., & Arenas, E. (2017). Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. *Nature Biotechnology*, 35(5), 444–452. https://doi.org/10.1038/nbt.3835

Dougherty, S. E., Kajstura, T. J., Jin, Y., Chan-Cortés, M. H., Kota, A., & Linden, D. J. (2020). Catecholaminergic axons in the neocortex of adult mice regrow following brain injury. *Experimental Neurology*, 323, 113089. https://doi.org/10.1016/j.expneurol.2019.113089

Drew, L. J., Kheirbek, M. A., Luna, V. M., Denny, C. A., Cloidt, M. A., Wu, M. V., Jain, S., Scharfman, H. E., & Hen, R. (2016). Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. *Hippocampus*, 26(6), 763–778. https://doi.org/10.1002/hipo.22557

Elliot, R. C., Khademi, S., Pleasure, S. J., Parent, J. M., & Lowenstein, D. H. (2001). Differential regulation of basic helix-loop-helix mRNAs in the dentate gyrus following status epilepticus. *Neuroscience*, 106(1), 79–88. https://doi.org/10.1016/S0306-4522(01)00198-1

Ernst, A., Alkkas, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G., Druid, H., & Frisen, J. (2014). Neurogenesis in the striatum of the adult human brain. *Cell*, 156(5), 1072–1083. https://doi.org/10.1016/j.cell.2014.01.044

Esclapez, M., Hirsch, J. C., Ben-Ari, Y., & Bernard, C. (1999). Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy. *The Journal of Comparative Neurology*, 408(4), 449–460. https://doi.org/10.1002/(SICI)1096-9861(19990614)408:4<449::AID-CNE1>3.0.CO;2-R

Falkner, S., Grade, S., Dimou, L., Conzelmann, K. K., Bonhoeffer, T., Götz, M., & Hübener, M. (2016). Transplanted embryonic neurons integrate into adult neocortical circuits. *Nature*, 539(7628), 248–253. https://doi.org/10.1038/nature20113

Fame, R. M., MacDonald, J. L., & Macklis, J. D. (2011). Development, specification, and diversity of callosal projection neurons. *Trends in Neurosciences*, 34(1), 41–50. https://doi.org/10.1016/j.tins.2010.10.002

Faulkner, R. L., Jang, M. H., Liu, X. B., Duan, X., Sailor, K. A., Kim, J. Y., Ge, S., Jones, E. G., Ming, G. L., Song, H., & Cheng, H. J. (2008). Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. *Proceedings of the National Academy of Sciences of the United States of America*, 105(37), 14157–14162. https://doi.org/10.1073.pnas.0806658105

Fernández, M. P., Berni, J., & Ceriani, M. F. (2008). Circadian remodeling of neuronal circuits involved in rhythmic behavior. *PLoS Biology*, 6(3), e69. https://doi.org/10.1371/journal.pbio.0060069

Fink, K. L., López-Giráldez, F., Kim, I. J., Strittmatter, S. M., & Cafferty, W. B. J. (2017). Identification of intrinsic axon growth modulators for intact CNS neurons after injury. *Cell Reports*, 18(11), 2687–2701. https://doi.org/10.1016/j.celrep.2017.02.058

Fujita, Y., & Yamashita, T. (2014). Axon growth inhibition by RhoA/ROCK in the central nervous system. *Frontiers in Neurosciences*, 8, 338. https://doi.org/10.3389/fnins.2014.00338

Fukuoka, T., Kato, A., Hirano, M., Ohka, F., Aoki, K., Awaya, T., Adilijiang, A., Sachi, M., Tanahashi, K., Yamaguchi, J., Motomura, K., Shimizu, H., Nagashima, Y., Ando, R., Wakabayashi, T., Lee-Liu, D., Larrain, J., Nishimura, Y., & Natsume, A. (2021). Neurod4 converts endogenous neural stem cells to neurons with synaptic formation after spinal cord injury. *iScience*, 24(2), 102074. https://doi.org/10.1016/j.isci.2021.102074

Gaillard, A., Decrecessac, M., Frappé, I., Fernagut, P. O., Prestoz, L., Besnard, S., & Jaber, M. (2009). Anatomical and functional reconstruction of the nigrostriatal pathway by intranigral transplants. *Neurobiology of Disease*, 33(3), 477–488. https://doi.org/10.1016/j.nbd.2009.07.003

Gaillard, A., Prestoz, L., Dumartin, B., Cantereau, A., Morel, F., Roger, M., & Jaber, M. (2007). Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons. *Nature Neuroscience*, 10(10), 1294–1299. https://doi.org/10.1038/nn1970

Galliano, E., Franzoni, E., Breton, M., Chand, A. N., Byrne, D. J., Murthy, V. N., & Grubb, M. S. (2018). Embryonic and postnatal neurogenesis produce functionally distinct subclasses of dopaminergic neuron. *eLife*, 7, e32373. https://doi.org/10.7554/elife.32373

Gao, Z., Ure, K., Ablies, J. L., Lagace, D. C., Nave, K. A., Goebbel, S., Eisch, A. J., & Hsieh, J. (2009). Neurod1 is essential for the survival and maturation of adult-born neurons. *Nature Neuroscience*, 12(9), 1090–1092. https://doi.org/10.1038/nn.2385

Gascón, S., Masserdotti, G., Russo, G. L., & Götz, M. (2017). Direct neuronal reprogramming: Achievements, hurdles, and new roads to success. *Cell Stem Cell*, 21(1), 18–34. https://doi.org/10.1016/j.stem.2017.06.011

Ge, S., Sailor, K. A., Ming, G. L., & Song, H. (2008). Synaptic integration and plasticity of new neurons in the adult hippocampus. *The Journal of Physiology*, 586(16), 3759–3765. https://doi.org/10.1113/jphysiol.2008.155655

Ge, W., He, F., Kim, K. J., Blanchi, B., Coskun, V., Nguyen, L., Wu, X., Zhao, J., Heng, J. I., Martinowich, K., Tao, J., Wu, H., Castro, D., Sobeih, M. M., Corfas, G., Gleeson, J. G.,
Greenberg, M. E., Guillemot, F., & Sun, Y. E. (2006). Coupling of cell migration with neurogenesis by proneural bHLH factors. *Proceedings of the National Academy of Sciences of the United States of America, 103*(5), 1319–1324. https://doi.org/10.1073/pnas.0510419103

Gheusi, G., Lepousez, G., & Lledo, P. M. (2013). Adult-born neurons in the olfactory bulb: Integration and functional consequences. *Current Topics in Behavioral Neurosciences, 15*, 49–72. https://doi.org/10.1007/7854_2012_228

Gonçalves, J. T., Schafer, S. T., & Gage, F. H. (2016). Adult neurogenesis in the Hippocampus: From stem cells to behavior. *Cell, 167*(4), 897–914. https://doi.org/10.1016/j.cell.2016.10.021

Goodman, C. S., & Shatz, C. J. (1993). Developmental mechanisms that generate precise patterns of neuronal connectivity. *Cell, 72*(Suppl), 77–98. https://doi.org/10.1016/S0092-8674(05)80030-3

Gorostiza, E. A., Depetris-Chauvin, A., Frenkel, L., Pirez, N., & Ceriani, M. F. (2014). Circadian pacemaker neurons change synaptic contacts across the day. *Current Biology, 24*(18), 2161–2167. https://doi.org/10.1016/j.cub.2014.07.063

Grade, S., Thomas, J., Zarb, Y., Thorwirth, M., Conzelmann, K.-K., Hauck, S. M., & Götz, M. (2021). Brain injury environment critically influences the connectivity of transplanted neurons. *BioRxiv*. https://doi.org/10.1101/2021.12.13.472270

Grealish, S., Heuer, A., Cardoso, T., Kirkeby, A., Jönsson, M., Johansson, J., Björklund, A., Jakobsson, J., & Parmar, M. (2015). Monosynaptic tracing using modified rabies virus reveals early and extensive circuit integration of human embryonic stem cell-derived neurons. *Stem Cell Reports, 4*(6), 975–983. https://doi.org/10.1016/j.stemcr.2015.04.011

Grelat, A., Benoît, L., Wagner, S., Moigné, C., Lledo, P. M., & Alonso, M. (2018). Adult-born neurons boost odor-reward association. *Proceedings of the National Academy of Sciences of the United States of America, 115*(10), 2514–2519. https://doi.org/10.1073/pnas.1716400115

Guo, Z., Zhang, L., Wu, Z., Chen, Y., Wang, F., & Chen, G. (2014). In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. *Cell Stem Cell, 14*(2), 188–202. https://doi.org/10.1016/j.stem.2013.12.001

Guzik-Kornacka, A., van der Bourg, A., Vajda, F., Joly, S., Christ, F., Schwab, M. E., & Pernet, V. (2016). Nogo-A deletion increases the plasticity of the optokinetic response and changes retinal projection organization in the adult mouse visual system. *Brain Structure & Function, 221*(1), 317–329. https://doi.org/10.1007/s00429-014-0909-3

Hainmueller, T., & Bartos, M. (2020). Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. *Nature Reviews. Neuroscience, 10*(9), 647–658. https://doi.org/10.1038/nrn2699

Huang, Z., Liu, J., Jin, J., Chen, Q., Shields, L. B. E., Zhang, Y. P., Shields, C. B., Zhou, L., Zhou, B., & Yu, P. (2019). Inhibitor of DNA binding 2 promotes axonal growth through upregulation of Neuronal2. *Experimental Neurology, 320*, 112966. https://doi.org/10.1016/j.expneurol.2019.112966

Huang, Z. H., Feng, A. Y., Liu, J., Zhou, L., Zhou, B., & Yu, P. (2021). Inhibitor of DNA binding 2 accelerates nerve regeneration after sciatic nerve injury in mice. *Neural Regeneration Research, 16*(12), 2542–2548. https://doi.org/10.4103/1673-5374.313054

Imayoshi, I., & Kageyama, R. (2014). bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. *Neuron, 82*(1), 9–23. https://doi.org/10.1016/j.neuron.2014.03.018

Innocenti, G. M., & Price, D. J. (2005). Exuberance in the development of cortical networks. *Nature Reviews. Neuroscience, 6*(12), 955–965. https://doi.org/10.1038/nrn1790

Inoue, S., Yang, R., Tantry, A., Davis, C. H., Yang, T., Knoedler, J. R., Wei, Y., Adams, E. L., Thombare, S., Goff, S. R., Neve, R. L., Tessier-Lavigne, M., Ding, J. B., & Shah, N. M. (2019). Periodic remodeling in a neural circuit governs timing of female sexual behavior. *Cell, 179*(6), 1393–1408.e16. https://doi.org/10.1016/j.cell.2019.10.025

Iobbi, C., Korte, M., & Zagrebelsky, M. (2017). Nogo-66 Restricts Synaptic Strengthening via Lingo1 and the ROCK2-Cofilin Pathway to Control Actin Dynamics. *Cerebral Cortex, 27*(5), 2779–2792. https://doi.org/10.1093/cercor/bhw122

Jahn, H. M., & Bergami, M. (2018). Critical periods regulating the circuit integration of adult-born hippocampal neurons. *Cell and Tissue Research, 371*(1), 23–32. https://doi.org/10.1007/s00441-017-2677-x

(2012). *Jasper’s basic mechanisms of the epilepsies [internet]* (4th ed.). National Center for Biotechnology Information (US).
Jaubert-Miazza, L., Green, E., Lo, F. S., Bui, K., Mills, J., & Guido, W. (2005). Structural and functional composition of the developing retinogeniculate pathway in the mouse. Visual Neuroscience, 22(5), 661–76, 676. https://doi.org/10.1017/S0952523805225154

Jessberger, S., Toni, N., Clemenson, G. D. Jr., Ray, J., & Gage, F. H. (2008). Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nature Neuroscience, 11(8), 888–893. https://doi.org/10.1038/nn.2148

Jin, Y., Dougherty, S. E., Wood, K., Sun, L., Cudmore, R. H., Abdalla, A., Kannan, G., Pletnikov, M., Hashemi, P., & Linden, D. J. (2016). Regrowth of serotonin axons in the adult mouse brain following injury. Neuron, 91(4), 748–762. https://doi.org/10.1016/j.neuron.2016.07.024

Jorstad, N. L., Wilken, M. S., Grimes, W. N., Wohl, S. G., VandenBosch, L. S., Yoshimatsu, T., Wong, R. O., Rieke, F., & Reh, T. A. (2017). Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature, 548(7665), 103–107. https://doi.org/10.1038/nature23283

Kabos, P., Kabosova, A., & Neuman, T. (2002). Neuronal injury affects expression of helix-loop-helix transcription factors. Neuronreport, 13(18), 2385–2388. https://doi.org/10.1097/00001756-200212200-00002

Kajstura, T. J., Dougherty, S. E., & Linden, D. J. (2018). Serotonin axons in the neocortex of the adult female mouse regrow after traumatic brain injury. Journal of Neuroscience Research, 96(4), 512–526. https://doi.org/10.1002/jnr.24059

Kalsbeek, A., Voorn, P., Bijls, R. M., Pool, C. W., & Uylings, H. B. (1988). Development of the dopaminergic innervation in the prefrontal cortex of the rat. The Journal of Comparative Neurology, 269(1), 58–72. https://doi.org/10.1002/cne.902690105

Kania, A., & Klein, R. (2016). Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nature Reviews. Molecular Cell Biology, 17(4), 240–256. https://doi.org/10.1038/nrm.2015.16

KarlוכaI, M. R., Tóth, K., Watanabe, M., Ledent, C., Juhasz, G., Freund, T. F., & Maglóczky, Z. (2011). Redistribution of CB1 cannabinoid receptors in the acute and chronic phases of pilocarpine-induced epilepsy. PLoS ONE, 6(11), e27196. https://doi.org/10.1371/journal.pone.0027196

Karow, M., Camp, J. G., Falk, S., Gerber, T., Pataskar, A., Gaetz-Santel, M., Kageyama, J., Brazovskaja, A., Garding, A., Fan, W., Riedemann, T., Casamassa, A., Smiyakin, A., Schichor, C., Götz, M., Tiwari, V. K., Treutlein, B., & Berninger, B. (2018). Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nature Neuroscience, 21(7), 932–940. https://doi.org/10.1038/s41593-018-0168-3

Katz, L. C., & Shatz, C. J. (1996). Synaptic activity and the construction of cortical circuits. Science, 274(5290), 1133–1138. https://doi.org/10.1126/science.274.5290.1133

Kauer, S. D., Finck, K. L., Li, E. H. F., Evans, B. P., Golan, N., & Cafferty, W. B. J. (2021). Inositol polyphosphate-5-phosphatase K (Inpp5k) enhances sprouting of corticospinal tract axons after CNS trauma. bioRxiv. https://doi.org/10.1101/2021.04.27.441184

Kawai, T., Takagi, N., Nakahara, M., & Takeo, S. (2005). Changes in the expression of Hes5 and Mash1 mRNA in the adult rat dentate gyrus after transient forebrain ischemia. Neuroscience Letters, 380(1-2), 17–20. https://doi.org/10.1016/j.neulet.2005.01.005

Kellner, Y., Fricke, S., Kramer, S., Iobbi, C., Wierenga, C. J., Schwab, M. E., Korte, M., & Zagrebelsky, M. (2016). Nogo-A controls structural plasticity at dentritic spines by rapidly modulating actin dynamics. Hippocampus, 26(6), 816–831. https://doi.org/10.1002/hipo.22565

Kempf, J., Knelles, K., Hersbach, B. A., Petrlik, D., Riedemann, T., Bednarova, V., Janic, A., Simon-Ebert, T., Enard, W., Smialowski, P., Götz, M., & Masserottti, G. (2021). Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2. Cell Reports, 36(3), 109409. https://doi.org/10.1016/j.celrep.2021.109409

Kirkeby, A., Nolbrant, S., Tikkova, K., Heuer, A., Kee, N., Cardoso, T., Ottosson, D. R., Lelos, M. J., Rifes, P., Dunnett, S. B., Grealish, S., Perlmann, T., & Parmar, M. (2017). Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell, 20(1), 135–148. https://doi.org/10.1016/j.stem.2016.09.004

Ko, H. R., Kwon, I. S., Hwang, I., Jin, E. J., Shin, J. H., Brennan-Minnella, A. M., Swanson, R., Cho, S. W., Lee, K. H., & Ahn, J. Y. (2016). Akt1-inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration. eLife, 5, e20799. https://doi.org/10.7554/eLife.20799

Lai, M., Pan, M., Ge, L., Liu, J., Deng, J., Wang, X., Li, L., Wen, J., Tan, D., Zhang, H., Hu, X., Fu, L., Xu, Y., Li, Z., Qiu, X., Chen, G., & Guo, J. (2020). NeuroD1 overexpression in spinal neurons accelerates axonal regeneration after sciatic nerve injury. Experimental Neurology, 327, 113215. https://doi.org/10.1016/j.expneurol.2020.113215

Lasorella, A., Stegmüller, J., Guardavaccaro, D., Liu, G., Carro, M. S., Rothschild, G., de la Torre-Ubieta, L., Pagano, M., Bonni, A., & Iavarone, A. (2006). Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature, 442(7101), 471–474. https://doi.org/10.1038/nature04895

Laurberg, S., & Zimmer, J. (1981). Lesion-induced sprouting of hippocampal mossy fiber collaterals to the fascia dentata in developing and adult rats. The Journal of Comparative Neurology, 200(3), 433–459. https://doi.org/10.1002/cne.902000310

Lee, H., Raiker, S. J., Venkatesh, K., Geary, R., Robak, L. A., Zhang, Y., Yeh, H. H., Shragar, P., & Giger, R. J. (2008). Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength. The Journal of Neuroscience, 28(11), 2753–2765. https://doi.org/10.1523/JNEUROSCI.5586-07.2008

Lehmann, T. N., Gabriel, S., Kovaçs, R., Eilers, A., Kivi, A., Schulze, K., Lanksch, W. R., Meencke, H. J., & Heinemann, U. (2000). Alterations of neuronal connectivity in area CA1 of hippocampal slices from temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats. Epilepsia, 41(Suppl 6), S190–S194. https://doi.org/10.1111/j.1528-1157.2000.tb01580.x

Lentini, C., d'Orange, M., Marichal, N., Trottmann, M. M., Vignoles, R., Foucault, L., Verrier, C., Massera, C., Raineteau, O., Conzelmann, K. K., Rival-Gervier, S., Depaulis, A., Berninger, B., & Heinrich, C. (2021). Reprogramming reactive glia into interneurons reduces chronic seizure
activity in a mouse model of mesial temporal lobe epilepsy.

Cell Stem Cell, 28(12), 2104–2121.e10.

Levitt, P., & Moore, R. Y. (1979). Development of the noradrenergic innervation of neocortex. Brain Research, 162(2), 243–259. https://doi.org/10.1016/0006-8993(79)90287-7

Li, T., Fu, T. M., Wong, K. K. L., Li, H., Xie, Q., Luginbuhl, D. J., Wagner, M. J., Betzig, E., & Luo, L. (2021). Cellular bases of olfactory circuit assembly revealed by systemic time-lapse imaging. Cell, 184(20), 5107–5121.e14. https://doi.org/10.1016/j.cell.2021.08.030

Li, W. L., Chu, M. W., Wu, A., Suzuki, Y., Imayoshi, I., & Komiyama, T. (2018). Adult-born neurons facilitate olfactory bulb pattern separation during task engagement. eLife, 7, e33006. https://doi.org/10.7554/eLife.33006

Li, Y., Zhang, Y., Fu, H., Huang, H., Lu, Q., Qin, H., Wu, Y., Huang, H., Mao, G., Wei, Z., & Liao, P. (2020). Hes1 knockdown exacerbates ischemic stroke following tMCAO by increasing ER stress-dependent apoptosis via the PER-K/ELF2α/ATF4/CHOP signaling pathway. Neuroscience Bulletin, 36(2), 134–142. https://doi.org/10.1007/s12264-019-00411-7

Liu, M. L., Zang, T., Zou, Y., Chang, J. C., Gibson, J. R., Huber, K. M., & Zhang, C. L. (2013). Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nature Communications, 4, 2183. https://doi.org/10.1038/ncomms3183

Liu, Y., Miao, Q., Yuan, J., Han, S., Zhang, P., Li, S., Rao, Z., Zhao, W., Ye, Q., Geng, J., Zhang, X., & Cheng, L. (2015). Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo. The Journal of Neuroscience, 35(25), 9336–9355. https://doi.org/10.1523/JNEUROSCI.3975-14.2015

Liu, Z., Li, Y., Zhang, Z. G., Cui, X., Cui, Y., Lu, M., Savant-Bhonsale, S., & Chopp, M. (2010). Bone marrow stromal cells enhance inter- and intracortical axonal connections after ischemic stroke in adult rats. Journal of Cerebral Blood Flow and Metabolism, 30(7), 1288–1295. https://doi.org/10.1038/jcbfm.2010.8

Lopez, C. M., Pelkey, K. A., Chittajallu, R., Nakashiba, T., Tóth, K., Tonegawa, S., & McBain, C. J. (2012). Competition from newborn granule cells does not drive axonal retraction of silenced old granule cells in the adult hippocampus. Frontal Neural Circuits, 6, 85. https://doi.org/10.3389/fncir.2012.00085

López-Bendito, G., & Molnár, Z. (2003). Thalamocortical development: How are we going to get there? Nature Reviews. Neuroscience, 4(4), 276–289. https://doi.org/10.1038/nrn1175

Löning, P., Niturad, C. E., Harrer, M., Beckendorf, C. M. Z., Schatz, T., Sinske, D., Lerche, H., Maljевич, S., & Knöll, B. (2017). SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model. Molecular Brain, 10(1), 30. https://doi.org/10.1186/s13041-017-0310-2

Lu, P., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., Brock, J., Blesch, A., Rosenzweig, E. S., Havton, L. A., Zheng, B., Conner, J. M., Marsala, M., & Tuszyński, M. H. (2012). Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell, 150(6), 1264–1273. https://doi.org/10.1016/j.cell.2012.08.020

Lu, P., Woodruff, G., Wang, Y., Graham, L., Hunt, M., Wu, D., Boehle, E., Ahmad, R., Poplawski, G., Brock, J., Goldstein, L. S., & Tuszyński, M. H. (2014). Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron, 83(4), 789–796. https://doi.org/10.1016/j.neuron.2014.07.014

Luo, W., Egger, M., Domonkos, A., Que, L., Lukacsovich, D., Cruz-Ochoa, N. A., Szőcs, S., Seng, C., Arszovszki, A., Sipos, E., Amrein, I., Winterer, J., Lukacsovich, T., Szabadsics, J., Wolfer, D. P., Varga, C., & Földy, C. (2021). Recurrent rewiring of the adult hippocampal mossy fiber system by a single transcriptional regulator, Id2. Proceedings of the National Academy of Sciences of the United States of America, 118(40), e2108239118. https://doi.org/10.1073/pnas.2108239118

Ma, J. J., Ju, X., Xu, R. J., Wang, W. H., Luo, Z. P., Liu, C. M., Yang, L., Li, B., Chen, J. Q., Meng, B., Yang, H. L., Zhou, F. Q., & Sajilaju. (2019). Telomerase reverse transcriptase and p53 regulate mammalian peripheral nervous system and CNS axon regeneration downstream of c-Myc. The Journal of Neuroscience, 39(46), 9107–9118. https://doi.org/10.1523/JNEUROSCI.0419-19.2019

Ma, T. J., Zhang, Z. W., Lu, Y. L., Zhang, Y. Y., Tao, D. C., Liu, Y. Q., & Ma, Y. X. (2018). CLOCK and BMAL1 stabilize and activate RHOA to promote F-actin formation in cancer cells. Experimental & Molecular Medicine, 50(10), 1–15. https://doi.org/10.1038/s41227-018-0156-4

Maddaloni, G., Bertero, A., Pratelli, M., Barsotti, N., Boonstra, A., Giorgi, A., Migliarini, S., & Pasqualletti, M. (2017). Development of serotonergic fibers in the post-Natal mouse brain. Frontiers in Cellular Neuroscience, 11, 202. https://doi.org/10.3389/fncel.2017.00202

Mahar, M., & Cavalli, V. (2018). Intrinsic mechanisms of neuronal axon regeneration. Reviews. Neuroscience, 19(6), 323–337. https://doi.org/10.1007/s12276-018-0001-8

Malvart, S., & Saghatelayan, A. (2016). The role of adult-born neurons in the constantly changing olfactory bulb network. Neural Plasticity, 2016, 1614329. https://doi.org/10.11565/2016/1614329

Marchionni, I., Oberoi, M., Soltesz, I., & Alexander, A. (2019). Ripple-related firing of identified deep CA1 pyramidal cells in chronic temporal lobe epilepsy in mice. Epilepsia Open, 4(2), 253–263. https://doi.org/10.1002/epio.12310

Markakis, E. A., & Gage, F. H. (1999). Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. The Journal of Comparative Neurology, 406(4), 449–460. https://doi.org/10.1002/(SICI)1096-9861(19990419)406:4<449::AID-CNE3>3.0.CO;2-I

Masserott, G., Gillotin, S., Sutor, B., Dreschel, D., Irmler, M., Jorgensen, H. F., Sass, S., Theis, F. J., Beckers, J., Berninger, B., Guillomet, F., & Götz, M. (2015). Transcriptional mechanisms of prioneeval factors and REST in regulating neuronal reprogramming of astrocytes. Cell Stem Cell, 17(1), 74–88. https://doi.org/10.1016/j.stem.2015.05.014

Matsuda, S., Kuwako, K., Okano, H. J., Tsutsumi, S., Aburatani, H., Saga, Y., Matsuzaki, Y., Akaike, A., Sugimoto, H., & Okano, H. (2012). Sox21 promotes hippocampal adult neurogenesis via the transcriptional repression of the Hes5 gene. The Journal of Neuroscience, 32(36), 12543–12557. https://doi.org/10.1523/JNEUROSCI.5803-11.2012

Matsuda, T., Irie, T., Katsurabayashi, S., Hayashi, Y., Nagai, T., Hamazaki, N., Adefuin, A. M. D., Miura, F., Ito, T., Kimura, H., Shirahige, K., Takeda, T., Iwasaki, K., Imamura, T., & Nakashima, K. (2019). Pioneer factor NeuroD1
rearranges transcriptional and epigenetic profiles to execute microglia-neuron conversion. *Neuron*, 101(3), 472–485.e7. https://doi.org/10.1016/j.neuron.2018.12.010

McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W., & Strittmatter, S. M. (2005). Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. *Science*, 309(5744), 2222–2226. https://doi.org/10.1126/science.1114362

Micheva, K. D., & Beaulieu, C. (1996). Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. *The Journal of Comparative Neurology*, 373(3), 340–354. https://doi.org/10.1002/(SICI)1096-9861(19960923)373:3<340::AID-CNE3>3.0.CO;2-2

Mongiat, L. A., & Schinder, A. F. (2011). Adult neurogenesis and the plasticity of the dentate gyrus network. *The European Journal of Neuroscience*, 33(6), 1055–1061. https://doi.org/10.1111/j.1460-9568.2011.07603.x

Moore, D. L., & Goldberg, J. L. (2011). Multiple transcription factor families regulate axon growth and regeneration. *Developmental Neurobiology*, 71(12), 1186–1211. https://doi.org/10.1002/dneu.20934

Muir-Robinson, G., Hwang, B. J., & Feller, M. B. (2002). Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. *The Journal of Neuroscience*, 22(13), 5259–5264. https://doi.org/10.1523/JNEUROSCI.22-13-05259.2002

Nakashiba, T., Cushman, J. D., Pelkey, K. A., Renaudineau, S., Buhl, D. L., McHugh, T. J., Rodriguez Barrera, V., Chittajallu, R., Iwamoto, K. S., McBain, C. J., Fanselow, M. S., & Tonegawa, S. (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. *Cell*, 149(1), 188–201. https://doi.org/10.1016/j.cell.2012.01.046

Navabpour, S., Kwapis, J. L., & Jerome, T. J. (2020). A neuroscientist’s guide to transgenic mice and other genetic tools. *Neuroscience and Biobehavioral Reviews*, 108, 732–748. https://doi.org/10.1016/j.neubiorev.2019.12.013

Obernier, K., & Alvarez-Buylla, A. (2019). Neural stem cells: Origin, heterogeneity and regulation in the adult mammalian brain. *Development*, 146(4), dev156059. https://doi.org/10.1242/dev.156059

Ozen, I., Galichet, C., Watts, C., Parras, C., Guillemot, F., & Raineteau, O. (2007). Proliferating neuronal progenitors in the postnatal hippocampus transiently express the proneural gene Ngn2. *The European Journal of Neuroscience*, 25(9), 2591–2603. https://doi.org/10.1111/j.1460-9568.2007.05541.x

Pacary, E., Heng, J., Azzarelli, R., Riou, P., Castro, D., Lebel-Potter, M., Parras, C., Bell, D. M., Ridley, A. J., Parsons, M., & Guillemot, F. (2011). Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. *Neuron*, 69(6), 1069–1084. https://doi.org/10.1016/j.neuron.2011.02.018

Palma-Tortosa, S., Torner, D., Grønning Hansen, M., Monni, E., Haji, M., Kartsivadze, A., Aktay, S., Tsupykov, O., Parmar, M., Deisseroth, K., Skibo, G., Lindvall, O., & Kokaia, Z. (2020). Activity in grafted human iPSC cell-derived cortical neurons integrated in stroke-injured rat brain regulates motor behavior. *Proceedings of the National Academy of Sciences of the United States of America*, 117(16), 9094–9100. https://doi.org/10.1073/pnas.2000690117

Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., Citri, A., Sebastiani, V., Marro, S., Südholz, T. C., & Wernig, M. (2011). Induction of human neuronal cells by defined transcription factors. *Nature*, 476(7359), 220–223. https://doi.org/10.1038/nature10202

Peng, Z., Zhang, N., Wei, W., Huang, C. S., Cetina, Y., Otis, T. S., & Houser, C. R. (2013). A reorganized GABAergic circuit in a model of epilepsy: Evidence from optogenetic labeling and stimulation of somatostatin interneurons. *The Journal of Neuroscience*, 33(36), 14392–14405. https://doi.org/10.1523/JNEUROSCI.2045-13.2013

Perez, Y., Morin, F., Beaulieu, C., & Lacaille, J. C. (1996). Axonal sprouting of CA1 pyramidal cells in hyperexcitable hippocampal slices of kainate-treated rats. *The European Journal of Neuroscience*, 8(4), 736–748. https://doi.org/10.1111/j.1460-9568.1996.tb01259.x

Pernet, V., Joly, S., Jordi, N., Dakara, D., Guzik-Kornacka, A., Flannery, J. G., & Schwab, M. E. (2013). Misguidance and modulation of axonal regeneration by Stat3 and rho/ROCK signaling in the transparent optic nerve. *Cell Death & Disease*, 4(7), e734. https://doi.org/10.1038/cddis.2013.266

Pet rinovic, M. M., Hourez, R., Aloy, E. M., Dewarrant, G., Gall, D., Weinmann, O., Gaudias, J., Bachmann, L. C., Schiffl mann, S. N., Vogt, K. E., & Schwab, M. E. (2013). Neuronal Nogo-A negatively regulates dendritic morphology and synaptic transmission in the cerebellum. *Proceedings of the National Academy of Sciences of the United States of America*, 110(3), 1083–1088. https://doi.org/10.1073/pnas.1214255110

Petsakou, A., Sapsis, T. P., & Blau, J. (2015). Circadian rhythms in Rho1 activity regulate neuronal plasticity and network hierarchy. *Cell*, 162(4), 823–835. https://doi.org/10.1016/j.cell.2015.07.010

Pilz, G. A., Bottes, S., Betizeau, M., Jörg, D. J., Carta, S., Simons, B. D., Helmchen, F., & Jessberger, S. (2018). Live imaging of neurogenesis in the adult mouse hippocampus. *Science*, 359(6376), 658–662. https://doi.org/10.1126.science.aao5056

Polleux, F., Ince-Dunn, G., & Ghosh, A. (2007). Transcriptional regulation of vertebrate axon guidance and synapse formation. *Nature Reviews. Neuroscience*, 8(5), 331–340. https://doi.org/10.1038/nrn2118

Puls, B., Ding, Y., Zhang, F., Pan, M., Lei, Z., Pei, Z., Jiang, M., Bai, Y., Forsyth, C., Metzger, M., Rana, T., Zhang, L., Ding, X., Keeffe, M., Cai, A., Redilla, A., Lai, M., He, K., Li, H., & Chen, G. (2020). Regeneration of functional neurons after spinal cord injury via in situ NeuroD1-mediated astrocyte-to-neuron conversion. *Frontiers in Cell and Development Biology*, (8), 59188. https://doi.org/10.3389/fcell.2020.59188

Qian, H., Kang, X., Hu, J., Zhang, D., Liang, Z., Meng, F., Zhang, X., Xue, Y., Maimon, R., Dowdy, S. F., Devaraj, N. K., Zhou, Z., Mobley, W. C., Cleveland, D. W., & Fu, X. D. (2020). Reversing a model of Parkinson’s disease with in situ converted nigral neurons. *Nature*, 582(7813), 550–556. https://doi.org/10.1038/s41586-020-2388-4

Raiker, S. J., Lee, H., Baldwin, K. T., Duan, Y., Shrager, P., & Giger, R. J. (2010). Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. *The Journal of Neuroscience*, 30(37), 12432–12445. https://doi.org/10.1523/JNEUROSCI.0895-10.2010
Raina, A., Mahajani, S., Bühr, M., & Kügler, S. (2020). Neuronal Trans-differentiation by Transcription Factors Ascl1 and Nurr1: Induction of a Dopaminergic Neurontransmitter Pheno-type in Cortical GABAergic Neurons. *Molecular Neurobiology, 57*(1), 249–260. https://doi.org/10.1007/s12035-019-01701-x

Reeber, S. L., White, J. J., George-Jones, N. A., & Sillitoe, R. V. (2013). Architecture and development of olivocerebellar circuit topography. *Front Neural Circuits, 6*, 115. https://doi.org/10.3389/fncir.2012.00115

Restivo, L., Niibori, Y., Mercaldo, V., Josselyn, S. A., & Frankland, P. W. (2015). Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the Hippocampus. *The Journal of Neuroscience, 35*(29), 10600–10612. https://doi.org/10.1523/JNEUROSCI.3238-14.2015

Rivetti di Val Cervo, P., Romanov, R. A., Spigolon, G., Masini, D., Martín-Montañéz, E., Toledo, E. M., La Manno, G., Feyder, M., Pill, C., Ng, Y. H., Sánchez, S. P., Linnarsson, S., Wernig, M., Harkany, T., Fisone, G., & Arenas, E. (2017). Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. *Nature Biotechnology, 35*(5):444–452.

Romand, S., Wang, Y., Toledo-Rodriguez, M., & Markram, H. (2011). Morphological development of thick-tufted layer v pyramidal cells in the rat somatosensory cortex. *Frontiers in Neuroanatomy, 5*, 5. https://doi.org/10.3389/fnana.2011.00005

Roschger, C., & Cabrele, C. (2017). The id-protein family in developmental and cancer-associated pathways. *Cell Communication and Signaling: CCS, 15*(1), 7. https://doi.org/10.1186/s12964-016-0161-y

Salin, P., Tseng, G. F., Hoffman, S., Parada, I., & Prince, D. A. (1995). Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex. *The Journal of Neuroscience, 15*(12), 8234–8245. https://doi.org/10.1523/JNEUROSCI.15-12-08234.1995

Sanes, J. R., & Zipursky, S. L. (2020). Synaptic specificity, recognition molecules, and assembly of neural circuits. *Cell, 181*(3), 536–556. https://doi.org/10.1016/j.cell.2020.04.008

Schauwecker, P. E., & McNeill, T. H. (1995). Enhanced but delayed axonal sprouting of the commissural/associational pathway following a combined entorhinal/limbic fissura fornix lesion. *The Journal of Comparative Neurology, 351*(3), 453–464. https://doi.org/10.1002/cne.903510311

Schwab, M. E. (2010). Functions of Nogo proteins and their receptors in the nervous system. *Nature Reviews. Neuroscience, 11*(12), 799–811. https://doi.org/10.1038/nrn2936

Shariq, M., Sahasrabuddhe, V., Krishna, S., Radha, S., Nruorthathy, B. R., Dwivedi, A., Cherrangalalam, R., Reizis, B., Hébert, J., & Ghosh, H. S. (2021). Adult neural stem cells have latent inflammatory potential that is kept suppressed by Tcf4 to facilitate adult neurogenesis. *Science Advances, 7*(21), eabf5606. https://doi.org/10.1126/sciadv.aba5606

Sharp, K. G., Yee, K. M., & Steward, O. (2014). A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury. *Experimental Neurology, 257*, 186–204. https://doi.org/10.1016/j.expneurol.2014.04.008

Shetty, A. K. (2002). Entorhinal axons exhibit sprouting in CA1 subfield of the adult hippocampus in a rat model of temporal lobe epilepsy. *Hippocampus, 12*(4), 534–542. https://doi.org/10.1002/hipo.10031

Siddiqui, A. H., & Joseph, S. A. (2005). CA3 axonal sprouting in kainate-induced chronic epilepsy. *Brain Research, 1066*(1–2), 129–146. https://doi.org/10.1016/j.brainres.2005.10.066

Smith, B. N., & Dudek, F. E. (2001). Short- and long-term changes in CA1 network excitability after kainate treatment in rats. *Journal of Neurophysiology, 85*(1), 1–9. https://doi.org/10.1152/jn.2001.85.1.1

Smith, R. P., Lerch-Haner, J. K., Pardinas, J. R., Buchser, W. J., Bixby, J. L., & Lemmon, V. P. (2011). Transcriptional profiling of intrinsic PNS factors in the postnatal mouse. *Molecular and Cellular Neurosciences, 46*(1), 32–44. https://doi.org/10.1016/j.mcn.2010.07.015

Song, B. J., Sharp, S. J., & Rogulja, D. (2021). Daily rewiring of a neural circuit generates a predictive model of environmental light. *Science Advances, 7*(13), eabe4284. https://doi.org/10.1126/sciadv.abe4284

Song, J., Christian, K. M., Ming, G. L., & Song, H. (2012). Modification of hippocampal circuitry by adult neurogenesis. *Developmental Neurobiology, 72*(7), 1032–1043. https://doi.org/10.1002/dneu.22014

Sperry, R. W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. *Proceedings of the National Academy of Sciences of the United States of America, 50*(4), 703–710. https://doi.org/10.1073/pnas.50.4.703

Squire, L. R., Berg, D., Bloom, F. E., Du Lac, S., Ghosh, A., & Spitzer, N. (2012). *Fundamental neuroscience* (Fourth ed.). Academic Press. ISBN 9780123858702 (Book).

Stehle, J. H., Sheng, Z., Hausmann, L., Beachstein, P., Wehmann, O., Hernesniemi, J., Neimat, J. S., Schwab, M. E., & Zemmar, A. (2021). Exercise-induced Nogo-A influences rodent motor learning in a time-dependent manner. *PLoS ONE, 16*(5), e0250743. https://doi.org/10.1371/journal.pone.0250743

Steinbeck, J. A., Choi, S. J., Mrejeru, A., Ganat, Y., Deisseroth, K., Sulzer, D., Mosharov, E. V., & Studer, L. (2015). Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. *Nature Biotechnology, 33*(2), 204–209. https://doi.org/10.1038/nbt.3124

Steinbeck, J. A., Koch, P., Derouiche, A., & Brüstle, O. (2012). Human embryonic stem cell-derived neurons establish region-specific, long-range projections in the adult brain. *Cellular and Molecular Life Sciences, 69*(3), 461–470. https://doi.org/10.1007/s00018-011-0759-6

Stephan, C. E., Chan, L. L., Parivash, S. N., Horton, H. M., Piekowicz, M., Qiu, S., & McGee, A. W. (2014). Plasticity of binocularity and visual acuity are differentially limited by nogo receptor. *The Journal of Neuroscience, 34*(35), 11631–11640. https://doi.org/10.1523/JNEUROSCI.0545-14.2014

Steward, O. (1992). Lesion-induced synapse reorganization in the hippocampus of cats: Sprouting of entorhinal, commissural/associational, and mossy fiber projections after unilateral entorhinal cortex lesions, with comments on the normal organization of these pathways. *Hippocampus, 2*(3), 247–268. https://doi.org/10.1002/hipo.450020305

Stoeckli, E. T. (2018). Understanding axon guidance: Are we nearly there yet? *Development, 145*(10), dev151415. https://doi.org/10.1242/dev.151415
Südhof, T. C. (2018). Towards an understanding of synapse formation. *Neuron, 100*(2), 276–293. https://doi.org/10.1016/j.neuron.2018.09.040

Südhof, T. C. (2021). The cell biology of synapse formation. *The Journal of Cell Biology, 220*(7), e202103052. https://doi.org/10.1083/jcb.202103052

Sueda, R., Imayoshi, I., Harima, Y., & Kageyama, R. (2019). High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. *Genes & Development, 33*(9–10), 511–523. https://doi.org/10.1101/gad.332196.118

Sun, F., Park, K. K., Belin, S., Wang, D., Lu, T., Chen, G., Zhang, K., Yeung, C., Feng, G., Yankner, B. A., & He, Z. (2011). Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. *Nature, 480*(7377), 372–375. https://doi.org/10.1038/nature10594

Sun, G. J., Sailor, K. A., Mahmood, Q. A., Chavali, N., Christian, K. M., Song, H., & Ming, G. L. (2013). Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. *The Journal of Neuroscience, 33*(28), 11400–11411. https://doi.org/10.1523/JNEUROSCI.1374-13.2013

Sutula, T., He, X. X., Cavazos, J., & Scott, G. (1988). Synaptic reorganization in the hippocampus induced by abnormal functional activity. *Science, 239*(4844), 1147–1150. https://doi.org/10.1126/science.2449733

Syken, J., Grandpre, T., Kanold, P. O., & Shatz, C. J. (2006). PirR restricts ocular-dominance plasticity in visual cortex. *Science, 313*(5794), 1795–1800. https://doi.org/10.1126/science.1128232

Tanaka, H., Yamashita, T., Asada, M., Mizutani, S., Yoshikawa, H., & Tohyama, M. (2002). Cytoplasmic p21 (Cip1/WAF1) regulates neurite remodeling by inhibiting rho-kinase activity. *The Journal of Cell Biology, 158*(2), 321–329. https://doi.org/10.1083/jcb.200202071

Tanaka, H., Yamashita, T., Yachi, K., Fujiwara, T., Yoshikawa, H., & Tohyama, M. (2004). Cytoplasmic p21 (Cip1/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats. *Neuroscience, 127*(1), 155–164. https://doi.org/10.1016/j.neuroscience.2004.05.010

Tauck, D. L., & Nadler, J. V. (1985). Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. *The Journal of Neuroscience, 5*(4), 1016–1022. https://doi.org/10.1523/JNEUROSCI.05-04-01016.1985

Temprana, S. G., Mongiat, L. A., Yang, S. M., Trinchero, M. F., Alvarez, D. D., Kropff, E., Giacomini, D., Beltramone, N., Lenuza, G. M., & Schinder, A. F. (2015). Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. *The Journal of Neuroscience, 35*(1), 116–130. https://doi.org/10.1523/JNEUROSCI.0441-14.2014

Tessier-Lavigne, M., & Goodman, C. S. (1996). The molecular biology of axon guidance. *Science, 274*(5290), 1123–1133. https://doi.org/10.1126/science.274.5290.1123

Thompson, L. H., Grealish, S., Kirik, D., & Björklund, A. (2009). Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. *The European Journal of Neuroscience, 30*(4), 625–638. https://doi.org/10.1111/j.1460-9568.2009.06878.x

Toni, N., Laplagne, D. A., Zhao, C., Lombardi, G., Ribak, C. E., Gage, F. H., & Schinder, A. F. (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. *Nature Neuroscience, 11*(8), 901–907. https://doi.org/10.1038/nn.2156

Toni, N., & Sultan, S. (2011). Synapse formation on adult-born hippocampal neurons. *The European Journal of Neuroscience, 33*(6), 1062–1068. https://doi.org/10.1111/j.1460-9586.2011.07604.x

Torner, D., Tsupsykov, O., Granmo, M., Rodriguez, C., Grenning-Hansen, M., Thelin, J., Smoohnik, E., Laterza, C., Wattanainit, S., Ge, R., Tatarishvili, J., Grealisb, S., Brüstle, O., Skibo, G., Parmar, M., Schouenborg, J., Lindvall, O., & Kokaia, Z. (2017). Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. *Brain, 140*(3), 692–706. https://doi.org/10.1093/brain/aww347

Torner, D., Wattanainit, S., Grenning Madsen, M., Koch, P., Wood, J., Tatarishvili, J., Mine, Y., Ge, R., Monni, E., Devaraju, K., Hevner, R. F., Brüstle, O., Lindvall, O., & Kokaia, Z. (2013). Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. *Brain, 136*(Pt 12), 3561–3577. https://doi.org/10.1093/brain/awt278

Torper, O., Ottosson, D. R., Pereira, M., Lau, S., Cardoso, T., Grealisb, S., & Parmar, M. (2015). In vivo reprogramming of striatal NG2 glia into functional neurons that integrate into local host circuitry. *Cell Reports, 12*(3), 474–481. https://doi.org/10.1016/j.celrep.2015.06.040

Torper, O., Pfitzner, U., Wolf, D. A., Pereira, M., Lau, S., Jakobsson, J., Björklund, A., Grealish, S., & Parmar, M. (2013). Generation of induced neurons via direct conversion in vivo. *Proceedings of the National Academy of Sciences of the United States of America, 110*(17), 7038–7043. https://doi.org/10.1073/pnas.1303829110

Trinchero, M. F., Buttner, K. A., Sulkes Cuevas, J. N., Temprana, S. G., Fontanet, P. A., Monzón-Salinas, M. C., Ledda, F., Paratcha, G., & Schinder, A. F. (2017). High plasticity of new granule cells in the aging Hippocampus. *Cell Reports, 21*(5), 1129–1139. https://doi.org/10.1016/j.celrep.2017.09.064

Trinchero, M. F., Herrero, M., Monzón-Salinas, M. C., & Schinder, A. F. (2019). Experience-dependent structural plasticity of adult-born neurons in the aging hippocampus. *Frontiers in Neuroscience, 13*, 739. https://doi.org/10.3389/fnins.2019.00739

Tuszyński, M. H., & Steward, O. (2012). Concepts and methods for the study of axonal regeneration in the CNS. *Neuron, 74*(5), 777–791. https://doi.org/10.1016/j.neuron.2012.05.006

Ueda, H. R., Dodt, H. U., Osten, P., Economo, M. N., Chandrashekar, J., & Kellé, P. J. (2020). Whole-brain profiling of cells and circuits in mammals by tissue clearing and light-sheet microscopy. *Neuron, 106*(3), 369–387. https://doi.org/10.1016/j.neuron.2020.03.004

Vivar, C., & van Praag, H. (2013). Functional circuits of new neurons in the dentate gyrus. *Front Neural Circuits, 7*, 15. https://doi.org/10.3389/fncir.2013.00015

Wang, D., Ren, M., Guo, J., Yang, G., Long, X., Hu, R., Shen, W., Wang, X., & Zeng, K. (2014). The inhibitory effects of Npas4 on seizures in pilocarpine-induced epileptic rats. *PLoS ONE, 9*(12), e115801. https://doi.org/10.1371/journal.pone.0115801
Wang, J., Miao, Y., Wicklein, R., Sun, Z., Wang, J., Jude, K. M., Fernandes, R. A., Merrill, S. A., Wernig, M., García, K. C., & Sidiho, T. C. (2021). RTN4/NoGo-receptor binding to RAI adhesion-GPCRs regulates neuronal development. Cell, 180(2), 01232–0.

Wang, L. L., Serrano, C., Zhong, X., Ma, S., Zou, Y., & Zhang, C. L. (2021). Revisiting astrocyte to neuron conversion with lineage tracing in vivo. Cell, 184(21), 5465–5481.e16. https://doi.org/10.1016/j.cell.2021.09.005

Watt, J. A., & Paden, C. M. (1991). Compensatory sprouting of uninjured magnocellular neurosecretory axons in the rat neural lobe following unilateral hypothalamic lesion. Experimental Neurology, 111(1), 9–24. https://doi.org/10.1016/0014-4886(91)90046-F

Wenzel, H. J., Woolley, C. S., Robbins, C. A., & Schwartzkroin, P. A. (2000). Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats. Hippocampus, 10(3), 244–260. https://doi.org/10.1002/1098-1060(2000)10:3<244::AID-HIPO5>3.0.CO;2-7

Williams, R. R., Venkatesh, I., Pearse, D. D., Udvadia, A. J., & Bunge, M. B. (2015). MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS. PLoS ONE, 10(3), e0118918. https://doi.org/10.1371/journal.pone.0118918

Wills, Z. P., Mandel-Brehm, C., Mardingly, A. R., McCord, A. E., Giger, R. J., & Greenberg, M. E. (2012). The nogo receptor family restricts synapse number in the developing hippocampus. Neuron, 73(3), 466–481. https://doi.org/10.1016/j.neuron.2011.11.029

Wu, Z., Parry, M., Hou, X. Y., Liu, M. H., Wang, H., Cain, R., Pei, Z. F., Chen, Y. C., Guo, Z. Y., Abhijeeet, S., & Chen, G. (2020). Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’s disease. Nature Communications, 11(1), 1105. https://doi.org/10.1038/s41467-020-14855-3

Yan, R., Zhang, L., Li, M., Liu, X., Yang, X., & Chen, L. (2018). Hes1 negatively regulates neurogenesis in the adult mouse dentate gyrus following traumatic brain injury. Experimental and Therapeutic Medicine, 16(3), 2267–2274. https://doi.org/10.3892/etm.2018.6450

Yasuda, M., Johnson-Venkatesh, E. M., Zhang, H., Parent, J. M., Sutton, M. A., & Umemori, H. (2011). Multiple forms of activity-dependent competition refine hippocampal circuits in vivo. Neuron, 70(6), 1128–1142. https://doi.org/10.1016/j.neuron.2011.04.027

Yiu, G., & He, Z. (2006). Glial inhibition of CNS axon regeneration. Nature Reviews. Neuroscience, 7(8), 617–627. https://doi.org/10.1038/nrn1956

Yu, P., Zhang, Y. P., Shields, L. B., Zheng, Y., Hu, X., Hill, R., Howard, R., Gu, Z., Burke, D. A., Whittemore, S. R., Xu, X. M., & Shields, C. B. (2011). Inhibitor of DNA binding 2 promotes sensory axonal growth after SCI. Experimental Neurology, 231(1), 38–44. https://doi.org/10.1016/j.expneuro.2011.05.013

Zagrebelsky, M., Lonnenmann, N., Fricke, S., Kellner, Y., Preuß, E., Michaelisen-Preusse, K., & Korte, M. (2017). Nogo-A regulates spatial learning as well as memory formation and modulates structural plasticity in the adult mouse hippocampus. Neurobiology of Learning and Memory, 138, 154–163. https://doi.org/10.1016/j.nlm.2016.06.022

Zemmar, A., Chen, C. C., Weinmann, O., Kast, B., Vajda, F., Bozeman, J., Isaaad, N., Zuo, Y., & Schwab, M. E. (2018). Oligodendrocyte- and Nuron-Specific Nogo-A Restict Dendritic Branching and Spine Density in the Adult Mouse Motor Cortex. Cerebral Cortex, 28(6), 2109–2117. https://doi.org/10.1093/cercor/bhx116

Zhang, W., Yamawaki, R., Wen, X., Uhl, J., Diaz, J., Prince, D. A., & Buckmaster, P. S. (2009). Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy. The Journal of Neuroscience, 29(45), 14247–14256. https://doi.org/10.1523/JNEUROSCI.3842-09.2009

Zhang, Z., Yan, R., Zhang, Q., Li, J., Kang, X., Wang, H., Huan, L., Zhang, L., Li, F., Yang, S., Zhang, J., Ren, X., & Yang, X. (2014). Hes1, a notch signaling downstream target, regulates adult hippocampal neurogenesis following traumatic brain injury. Brain Research, 1583, 65–78. https://doi.org/10.1016/j.brainres.2014.07.037

Zhao, C., Teng, E. M., Summers, R. G. Jr., Ming, G. L., & Gage, F. H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. The Journal of Neuroscience, 26(1), 3–11. https://doi.org/10.1523/JNEUROSCI.3648-05.2006

Zipursky, S. L., & Sanes, J. R. (2010). Chemoaffinity revisited: Dscams, protocadherins, and neural circuit assembly. Cell, 143(3), 343–353. https://doi.org/10.1016/j.cell.2010.09.009

Zuccaro, E., Bergami, M., Vignoli, B., Bony, G., Pierchala, B. A., Santi, S., Cancedda, L., & Canossa, M. (2014). Polarized Dscams, protocadherins, and neural circuit assembly. Cell Reports, 7(1), 138–152. https://doi.org/10.1016/j.celrep.2014.02.059