Classically *conformal* B-L extended standard model

2009年4月13日@中央大学

KEK 総研大 Satoshi Iso

collaboration with Nobu Okada

Yuta Orikasa

arXiv: 09024050 (hep-ph)
Why has a string theorist started phenomenology?

- Why has a string theorist started phenomenology?
 - 弦理論が解くべき問題は何か
 - もちろん重力の問題、時空の問題が第一
 時空生成、時空のミクロな構造、BH統計力学
 - ゲージ重力対応のような“応用弦理論”
 強結合場の理論の新しい見方
 - これ以外にスケールの問題 → 素粒子本来の問題
 ヒエラルキー問題
 インフレーション、暗黒エネルギーの問題
 世代の問題
 - 手がかりの一つは宇宙論
 CMB（Bモード、非ガウス性）、暗黒物質、など
 - LHCで新しい物理が開ける可能性
 とくにヒッグスを通してヒエラルキー問題に光
 → 通常は低エネルギーの超対称性だが問題も多い
 プランクスケールと直接結ぶ可能性は？
Higgs Portal：電弱理論のダイナミクス ⇒ 新しい物理への入り口

LHC：14 TeV ppコライダー

数年以内にヒッグス粒子が発見
その質量は？
相互作用は？
基本粒子なのか？

物（実体）の解明であるとともに
ダイナミクスの解明

標準模型を補完する未知のダイナミクス = 次世代の素粒子論の始まり

ヒッグス場の質量によって予想される物理（ダイナミクス）が異なる
ヒッグス粒子の質量しだいに次世代素粒子論の枠組みが大きく変わる
（弦理論にとっても、ヒッグス粒子の質量に注目することは非常に重要）
ヒッグス粒子の質量についてこれまでにわかっていること

(1) LEP 標準模型の相互作用を仮定するならば 114 GeV 以上
(2) Tevatron 170 GeV 近くは否定: gg → h → WW
(3) 精密測定

\[\rho = 1 = \frac{M_W^2}{M_Z^2 c_\theta^2} \]

にたいする輻射補正の影響をみる。

\[M_W(\text{tree}) = 79.829 \text{ GeV} \quad \leftrightarrow \quad M_W(\text{exp}) = 80.399 \pm 0.025 \text{ GeV} \]

輻射補正の影響

\[M_W^2 = M_w(\text{tree})(1 + \delta) \]

\[\delta = -a \frac{M_t^2}{M_Z^2} + b \log \frac{M_h^2}{M_Z^2} + \cdots \]

SM粒子以外の輻射補正がないのであれば

200 GeV 以下であろう。

Gitter collaboration 0811.0009
ヒッグス粒子にまつわる理論的な問題

（1）Naturalness（ヒエラルキー問題）

ヒッグス粒子質量（〜 weak scale ）に対する安定性の問題 M_h vs. Cut-off scale Λ

ヒッグスポテンシャルに対する放射補正

$$\delta V(\phi) = \frac{1}{2} \int \frac{d^4 k}{(2\pi)^4} \text{Str} \log(k^2 + M^2(\phi))$$

$$= \frac{\Lambda^2}{32\pi^2} \text{STr} M^2(\phi) + \frac{\text{STr} M^2(\phi)}{64\pi^2} (\ln(M^2/\Lambda^2) - 1/2)$$

$\text{STr} M^2(\phi) \neq 0$ だと2次発散が残る。 ➞ ヒエラルキー問題

$\text{STr} M^2(\phi) = 0$ だと1ループでは2次発散が消える（Veltman ‘81）

さらに最近では、次元6の演算子に対する放射補正の計算とLEPでの精密測定の
結果から、紫外カットオフΛは 5-10 Tev 以上である必要性 (little hierarchy problem)
（2）ヒッグスポテンシャルの triviality と安定性

ヒッグスポテンシャルに対する1ループ輻射補正

\[V = V_0 + B \phi_c^4 \ln(\phi_c^2/M^2) \]

\[B = \frac{3}{64\pi^2} \left(3\lambda^2 + \frac{3g_2^2 + 2g_2^2 g_\prime^2 + g_\prime^4}{16} - g_t^4 \right) \]

・ヒッグスが重すぎると、ヒッグス相互作用があるスケールで発散 (Landau singularity)
・ヒッグスが軽すぎると、t-quark の湯川相互作用に負けて真空が不安定化

繰り込み群で improve することでより正確な振舞いを見る

紫外カットオフ\(\Lambda\)まで理論が有効である
ためにには、囲まれた領域にヒッグス粒子の質量がある必要がある。
（もちろん、SM以外の粒子があると様相が変わる）

実験的に残された領域は、紫外カットオフ\(\Lambda\)が大きな領域と、不思議に一致している。
ヒエラルキー問題 再考

標準的な考え方： 標準模型 $\text{STr}M^2(\phi) \neq 0$

\downarrow

対称性をenhance $\text{STr}M^2(\phi) = 0$ e.g. 超対称性

標準模型のもう一つの大きな特徴：
ヒッグスの質量項以外は、古典的な共形不変性をもっている

弦理論などのUV理論から出発すると
質量項のある粒子 = プランク質量
質量項のない粒子 中途半端な質量項をもつことはあり得ないだろう。

別の言い方をするならば、プランクスケールの理論から出発したら
質量次元をもつものは、自然とdecouple してしまうはず。

低エネルギー有効理論を導けば、必然的に古典的な共形不変性を
もつ理論しかあり得ないのではないか。
Bardeen（’95 @御岳）： 古典的共形不変性と2次発散の回避

標準模型はヒッグスの質量項以外は、古典的に共形不変性をもつ。1ループでは、相互作用定数の対数的スケール依存性が破る。
（トレースアノマリー：物理的な効果）
これ自体はソフトな破れではないのだが、すでに1ループの効果なのでヒッグス質量に対する1ループの2次発散とは無関係。
この意味で1ループの2次発散は spurious で、これは fine tuning の問題ではなく、正則化の問題と考えるべきである。

\[
T_{\mu}^{\nu} = \beta(\lambda_i)O_i + \delta m^2 \bar{h}h \\
\delta m^2 = \text{const.} \times m^2 \neq \text{const.} \times \Lambda^2
\]

この考え方は高次のループへも拡張できる。

この見方に立てば、電弱理論の対称性の破れは、Coleman-Weinberg流にやるしか方法がない。

しかし 標準模型ではCW機構は機能しない
内容

1章 イントロ ✔

2章 Coleman-Weinberg 機構とその問題点

3章 古典的共形不変性をもつ B−L模型とその破れのスケール

4章 まとめと展望
CW機構と負の質量項による破れとの比較

（1）負の質量項による自発的対称性の破れの場合

\[V = \frac{\lambda}{4} h^4 + \frac{\mu^2}{2} h^2 \quad (\mu^2 < 0) \rightarrow m_h^2 = 2|\mu^2| = 2\lambda \langle h \rangle^2 \]

（2）CW機構の場合：ループ補正による自発的対称性の破れ

\[V_{\text{eff}} = \frac{\lambda h^4}{4} + Bh^4 \left(\ln \left(\frac{h^2}{\langle h \rangle^2} \right) - \frac{25}{6} \right) \]

\[B = \frac{3}{64\pi^2} \left(3\lambda^2 + \frac{3g^2 + 2g^2g' + g'^4}{16} - g' \right) \]

・繰り込み条件：\[V^{(4)}|_{h} = 6\lambda \]

\[V''|_{h} = m_h^2 = 8B\langle h \rangle^2 = \frac{6}{11}\lambda \langle h \rangle^2 \]
CW機構で重要なこと

標準模型ではCW機構は機能しない！

(a) \(V' \big|_{\langle h \rangle} = 0 \longrightarrow \lambda = \frac{44}{3}B \) tree と 1-loop でバランスしている。

e.g. scalar場だけの場合 \(B = \frac{9\lambda^2}{64\pi^2} \) となり1ループ近似はだめ（摂動の適用外）

繰り込み群でimproveした有効作用を求めると

\[
V_{\text{eff}} = \frac{\lambda_0}{4} \frac{h^4}{1 - \frac{9}{16\pi^2} \log\left(\frac{h^2}{\langle h \rangle^2}\right)}
\]

minimum無し！

・1-loopの寄与は自分以外の場(e.g. ゲージ場)の寄与が必要
自己相互作用は小さい
・ヒッグスの質量 \(m_h^2 = 8B\langle h \rangle^2 \) は軽くなる → 10GeV (CWの論文)

(b) それ以上に問題なのは top quark の寄与

\[
B = \frac{3}{64\pi^2} \left(3\lambda^2 + \frac{3g^2 + 2g^2g'^2 + g'^4}{16} - g_t^4 \right)
\]

トップ質量172GeV だと B<0 で真空は不安定
問題: 2次発散が古典的共形不変性で救われるとするならば、CW機構が働く標準模型の拡張はあるのか？

YES しかも現象論的にミニマルな拡張で可能
右巻きニュートリノをいれて (B-L)をゲージ化した古典的共形模型

標準模型の拡張

・ 標準模型はほとんど正しい. 不要なものは導入しない.
 ミニマルな拡張を考える. (cf. vMSSM Shaposhnikov)
・ しかしニュートリノ振動を説明するには右巻きニュートリノが必要
 see-saw 機構でニュートリノに質量を与える.
・ 古典的共形不変性を要請すると右巻きニュートリノのマヨラナ質量を
 だすための新たなスカラー場φが必要
・ 理論全体でCW機構が正しく働くためには、φと相互作用するゲージ場が必要
 標準模型で唯一ゲージ化できる対称性は (B-L)対称性
 右巻きニュートリノを入れることで、全てのアノマリーが消えている.

・ 要請: M_W から M_{PL} までφセクター以外の中間スケールがない.
内容

1章 イントロ

2章 Coleman-Weinberg 機構とその問題点

3章 古典的共形不変性をもつ B－L模型とその破れのスケール

4章 まとめと展望
古典的共形不変な(B−L)模型

	SU(3)$_c$	SU(2)$_L$	U(1)$_Y$	U(1)$_{B−L}$
q^i_L	3	2	+1/6	+1/3
u^i_R	3	1	+2/3	+1/3
d^i_R	3	1	−1/3	+1/3
ℓ^i_L	1	2	−1/2	−1
ν^i_R	1	1	0	−1
e^i_R	1	1	−1	−1
H	1	2	−1/2	0
Φ	1	1	0	+2

・(B-L)対称性は標準模型で anomaly free な唯一の global 対称性
・右巻きニュートリノがあるとゲージ化しても anomaly free

\[\mathcal{L} \supset -Y^{ij}_D \bar{\nu}^i_R H^\dagger \ell^j_L - \frac{1}{2} Y^{ij}_N \Phi \bar{\nu}^{ic}_R \nu^j_R + \text{h.c.} \]

Dirac 湯川 マヨラナ湯川

\[
\begin{pmatrix}
0 & m \\
m & M_N
\end{pmatrix} \quad \rightarrow \quad m_{\nu} = \frac{m^2}{M_N}
\]

\[
V = \lambda_H (H^\dagger H)^2 + \lambda (\Phi^\dagger \Phi)^2 + \lambda' (\Phi^\dagger \Phi) (H^\dagger H)
\]

・古典的共形不変性より質量項はなし
・$\lambda' < 0$ は十分小さな負の結合定数 → 二つのセクターが近似的に分離
この模型のダイナミクス：cascade的にCW流の破れが実現

(1) ΦセクターでCW機構により対称性が破れる。

\[
M = \langle \Phi \rangle \sim \text{数TeV}
\]

Φセクター
スカラーΦ+(B-L) gauge場 + 右巻きニュートリノ

・treeと1-loopのバランス：摂動的な正当性 \rightarrow (B-L)をゲージ化する必然性

\[
\alpha_{\lambda}(0) \simeq -\frac{6}{\pi} \left(\alpha_{B-L}(0)^2 - \frac{1}{96} \sum_i (\alpha_N^i(0))^2 \right)
\]

\[
\alpha_{B-L} \sim 0.01
\]

ベータ関数が大きいので，\(M_{PL}\)までRGでつなげられる
ためには（Landau singularityがない）この程度の大きさ以下

\[
\rightarrow \alpha_{\lambda} = -1.91 \times 10^{-4}
\]

・stability and instability

インフラの不安定性
（ただし40桁下なので問題なし）

\[
\alpha_{B-L} = \frac{g_{B-L}^2}{4\pi} \quad \alpha_{\lambda} = \frac{\lambda}{4\pi} \quad \alpha_N = \frac{(Y_N)^2}{4\pi}
\]
（2）電弱対称性の破れ

ヒッグスHセクター
ヒッグスH + 標準模型のフェルミオン

・Φセクターとの相互作用を通してヒッグスセクターの対称性の破れがトリガーされる。

\[
\lambda' (\Phi^\dagger \Phi) (H^\dagger H) \quad \lambda' < 0
\]

\[
V = \frac{\lambda}{4} h^4 + \frac{\mu^2}{2} h^2 \quad \mu^2 = \frac{\lambda'}{2} M^2
\]

radiatively induced effective action

\[
m_h^2 = 2|\mu^2| = |\lambda'| M^2 = 2 \lambda_H v^2
\]

SMのポテンシャルと同じなので
ポテンシャルからの理論的制限も同じ

\[
130 \text{ GeV} \lesssim m_h \lesssim 170 \text{ GeV}
\]

・Vに対する標準模型以外の量子補正是無視できる

Φ粒子の1ループ補正

\[
|\lambda'| = \left(\frac{m_h}{M} \right)^2 \rightarrow \lambda' \ll 1
\]

右巻きニュートリノ

\[
m_\nu = \frac{(Y_D \langle H \rangle)^2}{M_N} \sim 10^{-1} \text{ eV}
\]

だと \(M_N \ll 10^{13} \text{ GeV} \) ならば \(Y_D \ll 1 \)
(B-L)の破れのスケールに対する実験的、理論的制限

（1）標準模型にない粒子の質量について
・右巻きニュートリノ
 \[M_N = Y_N \langle \phi \rangle \]
 \[m_\nu = \frac{(Y_D \langle H \rangle)^2}{M_N} \sim 10^{-1} \text{eV} \]

・(B-L)ゲージ場
 \[m_{Z'} = 2g_{B-L} M \]
 \[>3 \text{TeV}: \text{from LEP2, Tevatron} \]

・スカラーカー場 \(\Phi \)
 \[\left(\frac{m_\Phi}{m_{Z'}} \right)^2 \approx \frac{6}{\pi} \frac{\alpha_{B-L}}{m_{Z'}} < 1 \]
 これはCWの一般的な特徴

将来、この関係式が見つかればCWシナリオを示唆
\(\Phi \)はヒッグスとカップルしているので、LHCの崩壊モードに影響

（2）weak scale の安定性から要請される理論的な制限

weak scale の安定性

\[|\lambda'| = \left(\frac{m_h}{M} \right)^2 \]

一種の little hierarchy 問題
λ' への輻射補正

(a) 右巻きニュートリノ: 1-loop

\[\Delta m_h^2 \sim \frac{Y_D^2 Y_N^2}{16\pi^2} M^2 \sim \frac{m_\nu M_N^3}{16\pi^2 v^2} \]

\[m_\nu \sim \frac{Y_D^2 v^2}{M_N} \]

\[M_N = Y_N M \]

\[\Delta m_h^2 < M_w^2 \rightarrow M_N \lesssim 10^7 \text{ GeV} \]

(b) 2-loop with top and (B-L) gauge field

\[\Delta m_h^2 \sim \frac{Y_D^2 Y_N^2}{16\pi^2} M^2 \sim \frac{m_\nu M_N^3}{16\pi^2 v^2} \]

\[M < 10 \text{ TeV} \ \text{程度} \]
内容

1章 イントロ

2章 Coleman-Weinberg 機構とその問題点

3章 古典的共形不変性をもつ B－L模型とその破れのスケール

4章 まとめと展望
まとめ

・2次発散の問題は、問題ではないかも知れない。
 → 古典的共形不変性が重要
 プランクスケールと電弱スケールを超対称性なしでつなぐ
 （このような弦理論からの模型はつくられるか？）

・対称性の破れは Coleman-Weinberg 型
 標準模型だけではCW機構だめ
 → ミニマルな標準模型の拡張でCWが機能する模型として
 (B-L)ゲージ対称性をもつ古典的共形不変な拡張

・2次発散はないが、重い粒子からの輻射補正に対して電弱スケールが
 安定であることを要請すると、強い制限がつく

1 TeV < M < 10 TeV

低いスケールでの(B-L)の破れが期待される。
また右巻きニュートリノの質量も TeV 領域
このような理論の現象論的な検証
このシナリオが本当なら近い将来
素粒子物理学は60年代のような状況になる

- ヒッグス質量: 130 GeV ~ 180 GeV
 低いスケールの超対称性が困難な重いヒッグス質量

- (B-L) gauge boson の質量に対する制限
 もしLHCやILCで生成されれば、そこからあらゆることが判る。
 例えば右巻きニュートリノがダイレクトに生成されれば
 LHCでレプトン数破るプロセスが見つかる可能性
 ニュートリノ振動実験と相補的な解析ができる

- Φスカラーフ：軽い可能性があり
 ヒッグス粒子とのミキシング：ヒッグスの崩壊モードなどが大きく変更

- その他、種々の可能性 μの g-2 など

別の方言をするならば、数年でこのモデルは否定されるかも知れない

(B-L)現象論は、いろいろやられているが、
① 低いスケールの必然性、② 古典的共形不変性からくるパラメータの少なさ
がこの模型の特色
これ以外の理論的課題

- dark matter
 さらにもう一つ Z2対称性をもつスカラーフィールド
 古典的共形不変性とプランクスケールまでの安定性を課すことで
 パラメータ領域に制限

- leptogenesis
 スケールが低いので通常の thermal leptogenesis は困難だが
 resonant leptogenesis ならば可能性あり

 他にφスカラーフィールドの導入により EW baryogenesis の可能性？

- 古典的共形不変性の考え方を宇宙論と組み合わせるとどうなるのか？
 （インフレーション、ダークエネルギー問題）

- 弦理論でBardeen の考え方を正当化できないか
 （質量項が禁止されるスカラーフィールドとは）