The estimation of the length of a convex curve in two-dimensional Alexandrov space

Alexander A. Borisenko

It is proved the generalization of Toponogov theorem about the length of the curve in two-dimensional Riemannian manifolds in the case of two-dimensional Alexandrov spaces.

Keywords: λ-convex curve, two-dimensional Alexandrov space

MSC: 53C44, 52A40

Let R be an Alexandrov space of curvature $\geq c$ homeomorphic to a disc (see [1, p. 308]). Suppose G is a domain in R that is bounded by a rectifiable curve γ. Denote by $\tau(\gamma_1)$ the integral geodesic curvature (the swerve) of a subarc γ_1 of γ [1, p. 309]. A curve γ is called λ-convex with $\lambda > 0$ if any subarc γ_1 of γ satisfies

$$\frac{\tau(\gamma_1)}{s(\gamma_1)} \geq \lambda > 0,$$

where $s(\gamma_1)$ is the length of γ_1. For regular curves in a two-dimensional Riemannian manifold this condition is equivalent to the assumption that the geodesic curvature at each point of this curve is $\geq \lambda > 0$. In the general case the condition (0.1) allows γ to have a corner points.

We prove the following theorem.

Theorem 1. Let G be a domain homeomorphic to a disc and G lies in a two-dimensional Alexandrov space of curvature $\geq c$ (in the sense of Alexandrov).

I. If the boundary curve γ of G is λ-convex and $c + \lambda^2 > 0$, then the length $s(\gamma)$ of γ satisfies

1. for $c = 0$

$$s(\gamma) \leq \frac{2\pi}{\lambda};$$

2. for $c > 0$

$$s(\gamma) \leq \frac{2\pi\sqrt{c}}{\sqrt{c + \lambda^2}};$$

3. for $c < 0$

$$s(\gamma) \leq \frac{2\pi\sqrt{-c}}{\sqrt{-c + \lambda^2}}.$$

II. All these inequalities attain equalities if and only if the domain G is a disc on the plane of constant curvature c.

This theorem is the generalization of Toponogov theorem [2] about the length of the curve in two-dimensional Riemannian manifolds. We need the following statements to prove Theorem [1].
Theorem A. (A. D. Alexandrov [1] p. 269) A metric space with inner metric of curvature $\geq c$ homeomorphic to a sphere is isometric to a closed convex surface in a simply connected space of constant curvature c.

Theorem B. (A. V. Pogorelov [3] pp. 119-167, 267, 320-321, [4]) Closed isometric convex surfaces in three-dimensional Euclidean and spherical spaces are equal up to a rigid motion.

Theorem C. (A. D. Milka [5]) Closed isometric convex surfaces in three-dimensional Lobachevsky space are equal up to a rigid motion.

Theorem D. (W. Blaschke [6]) Let γ be a closed embedded C^2 regular curve in Euclidean plane.

I. If the curvature k of γ at each its point P satisfies

$$k \geq \lambda > 0,$$

then the curve belongs to the disc that is bounded by the circle of the radius $R = 1/\lambda$ tangent to the curve at point P.

II. If the curvature k of γ at each its point P satisfies

$$0 \leq k \leq \lambda,$$

then the circle of the radius $R = 1/\lambda$ tangent to the curve at the point P belongs to the domain G that is bounded by the curve γ.

The Theorem D is true if the condition for the curve’s curvature k is substituted with the same condition for the specific curvature $\tau(\gamma_1)/s(\gamma_1)$ for any arc.

Lemma 1. Let γ be a closed embedded rectifiable curve in Euclidean plane.

I. If for any subarc γ_1 of γ the specific curvature $\frac{\tau(\gamma_1)}{s(\gamma_1)}$ satisfies

$$\frac{\tau(\gamma_1)}{s(\gamma_1)} \geq \lambda > 0,$$

then the curve γ belongs to the disc that is bounded by the circle of the radius $R = 1/\lambda$ tangent to the support straight line at a point $P \in \gamma$.

II. If for any subarc γ_1 of γ the specific curvature $\frac{\tau(\gamma_1)}{s(\gamma_1)}$ satisfies

$$0 \leq \frac{\tau(\gamma_1)}{s(\gamma_1)} \leq \lambda,$$

then the circle of the radius $R = 1/\lambda$ tangent to the curve at a point P belongs to the domain G that is bounded by the curve γ.

Proof. I. In this case the support function $h(\phi)$, $0 \leq \phi \leq 2\pi$ of the curve γ is $C^{1,1}$ regular and a.e. it satisfies the equation

$$h + h'' = R, \quad 0 \leq R \leq \frac{1}{\lambda},$$

where R is a radius of curvature for γ. Therefore

$$h(\phi) = \int_0^\phi R(\sigma) \sin(\phi - \sigma) \, d\sigma$$
and the proof coincides with Blaschke proof [6].

II. The radius-vector \(r(s) \) of the curve \(\gamma \) is \(C^{1,1} \) regular vector function. Fix the initial point \(P_0 \) on \(\gamma \) and denote by \(e_1 \) the unit tangent vector of \(\gamma \) at \(P_0 \) and by \(e_2 \) the unit normal vector of \(\gamma \) at \(P_0 \). Let \(P(s) \) be the point on \(\gamma \) such that the length of the arc \(\gamma(s) = P_0P(s) \) equals to \(s \). The function \(\tau(s) = \tau(\gamma(s)) \) is the integral geodesic curvature of the arc \(\gamma(s) \) and \(\tau(s) \leq \lambda s \). Therefore

\[
r'(s) = \cos \tau(s) e_1 + \sin \tau(s) e_2.
\] (0.2)

If we compare (0.2) with the equation for the circle of radius \(\frac{1}{4} \), we obtain the proof. \(\square \)

H. Karcher proved the generalization of Blaschke theorem in spherical space \(S^2 \) and in Lobachevsky space \(\mathbb{H}^2 \) for regular curves [7]. We formulate Lemma 2 for the case when the curvature \(S \) equals to 1 and the curvature \(\mathbb{H}^2 \) is equal to \(-1\). The Lemma 2 is true for the planes of any constant curvature \(c \) and the proof is the same.

Lemma 2. Let \(\gamma \) be a closed embedded rectifiable curve in \(\mathbb{H}^2 \) or \(S^2 \).

I. If the specific curvature satisfies

\[
\frac{\tau(\gamma_1)}{s(\gamma_1)} \geq \coth R_0 = \lambda,
\]

for any subarc \(\gamma_1 \) of \(\gamma \) in \(\mathbb{H}^2 \), then the curve \(\gamma \) belongs to the disc that is bounded by the circle of radius \(R_0 \) tangent to the support straight line of \(\gamma \) at a point \(P \in \gamma \).

II. If the specific curvature satisfies

\[
\frac{\tau(\gamma_1)}{s(\gamma_1)} \geq \cot R_0 = \lambda,
\]

for any subarc \(\gamma_1 \) of \(\gamma \) in \(S^2 \), then the curve \(\gamma \) belongs to the disc that is bounded by the circle of radius \(R_0 \) tangent to the support straight line of \(\gamma \) at a point \(P \in \gamma \).

Proof. The curve \(\gamma \) is a closed convex curve. At any point \(P \) of \(\gamma \) there exists a support straight line (geodesic map in the plane of constant curvature).

I. \(\gamma \in \mathbb{H}^2 \). Let \(S \) be a circle of radius \(R_0 \) tangent to the support straight line of \(\gamma \) from the side containing \(\gamma \). Assume that the center of the circle \(S \) is the origin of the coordinate system in the Cayley-Klein model of Lobachevsky plane and also it is the origin for support function \(h \) of curve \(\gamma \). The support function \(h \) is \(C^{1,1} \) regular and a.e. the radius of curvature \(R \) of \(\gamma \) equals

\[
R = \frac{g + g''}{\left(1 - \frac{(g')^2}{1 + g^2}\right)^{3/2}},
\] (0.3)

where \(g(h) = \tanh h \) is the support function for the curve \(\tilde{\gamma} \), and \(\tilde{\gamma} \) is the image of \(\gamma \) under the geodesic map \(\mathbb{H}^2 \) into \(\mathbb{E}^2 \) [9]. The radius of curvature \(\tilde{R} \) of \(\tilde{\gamma} \) is a.e. equal to

\[
\tilde{R} = R \left(1 - \frac{(g')^2}{1 + g^2}\right)^{3/2}, \quad 0 \leq \tilde{R} \leq R.
\] (0.4)

The image of the circle \(S \) under the geodesic map is the circle \(\tilde{S} \) in Euclidean plane \(\mathbb{E}^2 \) with the center in the origin of Cartesian orthogonal coordinate system. The curvature of \(\tilde{S} \) equals to \(\coth R_0 \). From Lemma II (I.) it follows that \(\tilde{\gamma} \) belongs to the disc being bounded by the circle \(\tilde{S} \). Applying the inverse geodesic transformation, we obtain that the curve \(\gamma \) belongs to the disc that is bounded by the circle \(S \) in Lobachevsky plane \(\mathbb{H}^2 \).
II. $\gamma \in \mathbb{S}^2$. Let γ be the polar to γ curve in \mathbb{S}^2. The radius vector of γ is $C^{1,1}$ regular and its curvature is $\leq \tan R_0$ a.e. Let P_0 be a point on γ and S be a circle of the radius $\pi/2 - R_0$ tangent to γ at the point P_0. The curvature of this circle is equal to $\tan R_0$. The center \mathcal{O} of S is the south pole of the sphere. Consider the geodesic map of the sphere \mathbb{S}^2 into the plane tangent to \mathbb{S}^2 at the point \mathcal{O}. The curve γ is mapped to the curve $\tilde{\gamma} \in \mathbb{E}^2$ and the circle S is mapped into the circle \tilde{S} of the curvature $\tan R_0$. The curvature $k(\tilde{\gamma})$ of the circle \tilde{S} is $\leq \tan R_0$. From Lemma [II] (II) it follows that the circle \tilde{S} belongs to the domain that is bounded by the curve $\tilde{\gamma}$. Applying the inverse geodesic transformation, we obtain that the circle \tilde{S} belongs to the domain bounded by γ and the polar curve γ belongs to the disc bounded by the polar circle S of the radius R_0.

Proof of the Theorem [I] Let G_1 and G_2 be two copies of the domain G. Let us glue the domains G_1 and G_2 along their boundary curves γ_1 and γ_2 by isometry between these curves. We obtain a manifold F homeomorphic to the two-dimensional sphere with the intrinsic metric. Since the sum of the integral geodesic curvatures of any two identified arcs of the boundary curves is non-negative, from the Alexandrov gluing theorem [I, p. 318] it follows that F is Alexandrov space of curvature $\geq c$. By Theorem A this manifold can be isometrically embedded as a closed convex surface in the simply-connected space $M^3(c)$ of constant curvature c. From Theorem B and C it follows that up to the rigid motion this surface is unique.

By plane domains we will understand domains on totally-geodesic two-dimensional surfaces in spaces of constant curvature; similarly we will call geodesic lines in these spaces as lines.

Perform the reflection of the surface F_1 with respect to a plane π passing through three points on γ that do not belong to a line. We will get the mirrored surface F_2. The domains G_1 and G_2 are mapped to the domains \tilde{G}_1 and \tilde{G}_2 on F_2; the curve γ is mapped to $\tilde{\gamma}$. But G_1 is isometric to G_2 and \tilde{G}_2 is isometric to \tilde{G}_1. Let us reverse the orientation of the domains \tilde{G}_1, \tilde{G}_2. Then the surface F_2 will be isometric to F_1 and they will have the same orientation. By Theorems B and C the surface F_1 can be mapped into the surface F_2 by a rigid motion of the ambient space. But the three points of the curve γ are fixed under this rigid motion. Thus it follows that this motion is the identity mapping and, moreover, the curve γ coincides with the curve $\tilde{\gamma}$. Such situation is possible only when the curve γ is a plane curve and it is the boundary of a convex cup isometric to the domain G. Recall that the convex cup is a convex surface with a plane boundary γ such that the surface is a graph over a plane domain \mathcal{G} enclose by γ. Note that, since γ is a convex curve on the plane, then the integral geodesic curvature of any arc of the curve γ is non-negative viewed both as a curve on the cup and as a curve on a plane $[10]$.

Let us show that the integral geodesic curvature of any arc of γ calculated on G is not less than the corresponding integral geodesic curvature of it that is calculated on the cup G. This means that γ as a boundary curve of \mathcal{G} is also λ-convex.

Recall that the intrinsic curvature $\omega(D)$ of a Borel set D on a convex surface in a space of constant curvature c is

$$\omega(D) = \psi(D) + cF(D),$$

where $\psi(D)$ is the extrinsic curvature, $F(D)$ is the area of D [I, p. 397]. Consider a closed convex surface M bounded by G and the plane domain \mathcal{G}, and a surface \mathcal{M} made up from the double-covered domain \mathcal{G}.

The intrinsic curvature concentrated on γ equals

$$\omega(\gamma) = \tau_\gamma(G) + \tau_\gamma(\mathcal{G}),$$

where $\tau_\gamma(G)$, $\tau_\gamma(\mathcal{G})$ are the integral geodesic curvatures of γ computed in G and \mathcal{G} respectively. Since $F(\gamma) = 0$, we have

$$\psi_\mathcal{M}(\gamma) = \tau_\gamma(G) + \tau_\gamma(\mathcal{G}),$$
\(\psi_M(\gamma) = 2\tau_\gamma(G) \).

From the definition of the extrinsic curvature [1, p. 398] it follows that \(\psi_M(\gamma) \geq \psi_M(\gamma) \) because each plane supporting to \(M \) at a point of \(\gamma \) is also supporting to \(M \). Thus we obtain \(\tau_\gamma(G) \geq \tau_\gamma(G) \). Moreover, this inequality holds for any subarc of \(\gamma \) as well.

I. The curve \(\gamma \) is a \(\lambda \)-convex curve lying in the plane of constant curvature \(c \). From Lemmas \textbf{1} and \textbf{2} it follows that the curve \(\gamma \) belongs to the disc bounded by the circle of radius \(R_0 \). The curvature and the length \(s \) of these circle equals

1. for \(c = 0 \), \(\lambda = \frac{1}{R_0} \), \(s = 2\pi R_0 \);
2. for \(c > 0 \), \(\lambda = \sqrt{c} \cot \sqrt{c}R_0 \), \(s = 2\pi \sin \sqrt{c}R_0 \);
3. for \(c < 0 \), \(\lambda = \sqrt{-c} \coth \sqrt{-c}R_0 \), \(s = 2\pi \sinh \sqrt{-c}R_0 \).

The curve \(\gamma \) on the plane of constant curvature \(c \) bounds the convex domain \(G \). It follows that the length of \(\gamma \) satisfies

\[
s(\gamma) \leq \begin{cases}
\frac{2\pi}{\lambda} & \text{if } c = 0 \\
\frac{2\pi \sqrt{c}}{\sqrt{c} + \lambda} & \text{if } c > 0 \\
\frac{2\pi \sqrt{-c}}{\sqrt{-c} + \lambda} & \text{if } c < 0
\end{cases} \quad (0.5)
\]

II. Suppose that there is equality in (0.5). Then the domain \(G \) is a disc bounded by the circle \(\gamma \). Furthermore, \(\tau_\gamma(G) = \tau_\gamma(G) \) and the intrinsic curvature of \(\gamma \) satisfies \(\omega_M(\gamma) = \omega_M(\gamma) = 2\tau_\gamma(G) \) and the extrinsic curvature for any subarc \(\gamma_1 \) of \(\gamma \) satisfies

\[
\psi_M(\gamma) = \psi_M(\gamma) \quad (0.6)
\]

It follows that the surface \(M \) and \(M \) coincide, \(M \) is the double-covered disk and then \(G \) is a disk. If \(M \) doesn’t coincide with \(M \) then there exists the set of a positive measure of supporting planes to \(M \) along \(\gamma \), that are not planes of support to \(M \). It follows that the extrinsic curvatures of \(M \) and \(M \) along \(\gamma \) don’t coincides. This contradicts the equality (0.6). The Theorem 1 is proved.

References

[1] A.D. Alexandrov, A. D. Alexandrov selected works. Part II,Intrinsic geometry of convex surfaces, Edited by S. S. Kutateladze; Translated from the Russian by S. Vakhrameyev, Chapman & Hall/CRC, Boca Raton, FL, 2006.

[2] V. A. Toponogov, Estimation of the length of a convex curve on a two-dimensional surface, Sibirsk. Mat. Zh.1 4 (1963), No. 5, 1189-1183.

[3] A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Translated from the Russian by Israel Program for Scientific Translations; Translations of Mathematical Monographs, Vol. 35. American Mathematical Society, Providence, R.I., 1973. MR 0346714.

[4] A. A. Borisenko, About Kharkiv Mathematicians, Members of the Academy of Sciences of Ukraine, Journal of Mathematical Physics, Analysis, Geometry. 15 (2019), No. 2, 288-303.

[5] A. D. Milka, Unique determinacy of general closed convex surfaces in Lobachevsky space, (Russian), Ukrain. Geom. Sb. 23 (1980), 99-107. MR614279.
[6] W. Blaschke, *Kreis und Kugel*, Walter de Gruyter & Co., Berlin, 1956 (German). 2te Aufl. MR 0077958.

[7] H. Karcher, *Umkreise und Inkreise konvexer Kurven in der spharischen und der hyperbolischen Geometrie*, Math. Ann. **177** (1968), 122-132.

[8] A. A. Borisenko, K. D. Drach, *Extreme Properties of Curves with Bounded Curvature on a Sphere*, J Dyn Control Syst. **21**(2015), No. 3, 311-327.

[9] K. D. Drach *About the isoperimetric property of lambda-convex lunes on the Lobachevsky plane*, Dopov. Nac. akad. nauk Ukr. **11** (2014), 11-15 English translation: preprint, arXiv.1402.2688.

[10] A. A. Borisenko, *Reverse isoperimetric inequality in two-dimensional Alexandrov spaces*, Proc. Amer. Math. Soc. **145** (2017), 4465-4471

B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, 61103, Ukraine

E-mail address: aborisenk@gmail.com