Pseudohyphal growth of the emerging pathogen *Candida auris* is triggered by genotoxic stress through the S phase checkpoint

Gustavo Bravo Ruiz¹, Zoe K. Ross¹,², Neil A.R. Gow², and Alexander Lorenz¹,*

¹Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, UK
²MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Exeter, UK

*Correspondence should be addressed to:
Alexander Lorenz
Institute of Medical Sciences (IMS)
University of Aberdeen
Foresterhill
Aberdeen AB25 2ZD
United Kingdom

Phone: +44 1224 437323
E-mail: a.lorenz@abdn.ac.uk
Figure S1. Filamentation of* Candida auris* wild-type (UACa11) and mutant strains on plates in the presence of genotoxic drugs. Cells from indicated strains were grown at 30°C on solid YPD media containing no drug, 100 mM Hydroxyurea (HU), or 0.02% methyl methanesulfonate (MMS). Microscopic images were taken at indicated time-points.

	2 Days	3 Days	7 Days	14 Days
no drug	![Image](image1)	![Image](image2)	![Image](image3)	![Image](image4)
UACa11	![Image](image5)	![Image](image6)	![Image](image7)	![Image](image8)
rad9Δ	![Image](image9)	![Image](image10)	![Image](image11)	![Image](image12)
mrc1Δ	![Image](image13)	![Image](image14)	![Image](image15)	![Image](image16)
rad51Δ	![Image](image17)	![Image](image18)	![Image](image19)	![Image](image20)

HU	2 Days	3 Days	7 Days	14 Days
UACa11	![Image](image21)	![Image](image22)	![Image](image23)	![Image](image24)
rad9Δ	![Image](image25)	![Image](image26)	![Image](image27)	![Image](image28)
mrc1Δ	![Image](image29)	![Image](image30)	![Image](image31)	![Image](image32)
rad51Δ	![Image](image33)	![Image](image34)	![Image](image35)	![Image](image36)

MMS	2 Days	3 Days	7 Days	14 Days
UACa11	![Image](image37)	![Image](image38)	![Image](image39)	![Image](image40)
rad9Δ	![Image](image41)	![Image](image42)	![Image](image43)	![Image](image44)
mrc1Δ	![Image](image45)	![Image](image46)	![Image](image47)	![Image](image48)
rad51Δ	![Image](image49)	![Image](image50)	![Image](image51)	![Image](image52)
Figure S2. Alignment of yeast Ume6 protein homologs. (A) MSAPros alignment of Ume6 protein sequences from different Candida species and Saccharomyces cerevisiae. The fungal Zn(2)-Cys(6) domain is highlighted. Shades of blue indicate conservation of >60% of amino acid (characteristics). (B) A schematic representation of the alignment scores between yeast Ume6 homologs using the NCBI BLAST-tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
Figure S3. Alignments of yeast Mec1 and Mrc1 homologs. MSAprobs alignment of Mec1 and Mrc1 protein sequences from *C. albicans*, *C. auris* and *S. cerevisiae*. Conserved domains are highlighted. Shades of blue indicate conservation of >60% of amino acid (characteristics).
Figure S4. Alignments of yeast Rad9, Rad53, Rad51 and Rad57 homologs. MSprobs alignments of Rad9, Rad53, Rad51 and Rad57 protein sequences from *C. albicans*, *C. auris* and *S. cerevisiae*. Conserved domains are highlighted. Shades of blue indicate conservation of >60% of amino acid (characteristics).
Figure S5. Verification of *Candida auris* deletion mutants obtained in this study. (A) Schematic indicating the position of the oligonucleotides used as PCR primers (Table S4) for testing the correct integration of the nourseothricin-resistance marker *CaNAT1* at the target locus in transformants and the absence of the deleted open reading frame (ORF). (B) PCR results obtained for indicated deletion strains using the strategy shown in (A). The ORF primers used to verify the *rad57* deletion produced a short unspecific band (<200 bp). Parental wild-type strain UACa11 and transformants with ectopic marker integrations are labelled in light grey. DNA size marker in the left-most lane of every gel is Hyperladder 1kb (Bioline Reagents Ltd, London, UK). Prom = Promoter region; Term = Terminator region.
Figure S6. *rad51* and *rad57* deletion strains show similar phenotypes. (A) Growth analysis of the homologous recombination mutants *rad51Δ* and *rad57Δ* in the presence of genotoxic drugs. Serial dilutions of cells were grown on YPD plates for 3 days at 30°C containing no or the indicated drug; Hydroxyurea (HU), methyl methanesulfonate (MMS), 5-fluorocytosine (5-FC). (B) Microscopy images of *rad51Δ* and *rad57Δ* mutant cells grown in YPD broth at 30°C for 18-20 hours containing no or the indicated drug; Hydroxyurea (HU), methyl methanesulfonate (MMS). Chitin was stained with calcofluor white (CFW), and DNA with SYBR Green I. Bright-field images in the left columns and merged fluorescent images in the right columns. Scale bar represents 10 μm.
Figure S7. Cell cycle arrest by nitrogen starvation in *Candida auris*. Histograms showing cell cycle profiles obtained by flow cytometry of strain UACa11. (A) Cells grown under nitrogen starvation conditions for 24 hours at 30°C. Samples were harvested at indicated time points. (B) Cells previously arrested by nitrogen starvation for 16 h were inoculated into fresh YPD broth and grown at 30°C. Samples were harvested at indicated time-points. Cells start cycling after a lag phase of 150-180 min. (A, B) DNA was stained using SYBR Green I. DNA content is expressed as fluorescence intensity. Approximate position of G1 and G2 peaks are indicated by dotted lines.

Figure S8. Different degrees of filamentation in *Candida auris* clinical isolates. Representative microscopic images of *C. auris* clinical isolates (Table S1) grown for 18-20 hours at 30°C in YPD broth containing 100 mM Hydroxyurea. Chitin was stained with calcofluor white (CFW), and DNA with SYBR Green I. Bright-field images on the left and merged fluorescent images on the right. Scale bar represents 10 µm.
Figure S9. Cell cycle progression of selected clinical *Candida auris* isolates in the presence of genotoxic drugs. Histograms showing cell cycle profiles obtained by flow cytometry of indicated clinical isolates. Cells, previously arrested in G1 by nitrogen starvation, were transferred to fresh YPD broth and grown for 165 min at 30°C to restart the cycle before adding 100 mM Hydroxyurea (HU), 0.02% methyl methanesulfonate (MMS), or no drug (time-point 0 hours). Cells were harvested at indicated time-points and DNA stained using SYBR Green I. Amount of DNA is expressed as fluorescence intensity. Approximate positions of G1 and G2 peaks are indicated with dotted lines.
Protein	C. auris (Assembly B11221_V1)$	C. albicans (SC5314, Assembly 22)¶	S. cerevisiae (S288C)‖	Access number	Access number	Access number				
		Total length	e-value	Length aligned†	Identities (%)‡			Length aligned†	Identities (%)‡	
Ras1	XP_028890748	243	C2_10210C	2.00E-77	172	83.1	YOR101W	2.00E-83	162	77
Ras2	XP_028892684	326	C3_04480C	2.00E-19	347	27.1	YGR152C	3.00E-15	172	28
Nrg1	XP_028888499	255	C7_04230W	2.00E-30	139	53.2	YDR043C	4.00E-23	57	64
Tup1	XP_028891979	601	C1_00060W	0	406	79.1	YCR084C	4.00E-180	444	59
Ume6	XP_028892977	442	C1_06280C	2.00E-23	74	60.8	YDR207C	4.00E-11	57	40
Flo8	XP_028892793	374	C6_04350C	2.00E-09	93	34.4	YER109C	6.00E-14	118	33
Efg1	XP_028890143	495	CR_07890W	2.00E-72	172	76.7	YMR016C	3.00E-60	108	82
Cyr1	XP_028888959	1963	C7_03070C	0	1765	54.4	YJL005W	0	1421	39
Bcy1	XP_028890128	440	C2_01110C	6.00E-143	450	60.9	YIL033C	1.00E-127	427	48
Ras2	XP_028891209	383	C1_10220C	0	335	91.9	YIL164C (Tpk1)	0	323	76
							YKL166C (Tpk3)	0	322	77
Ras2	XP_028890098	448	C2_07210C	0	357	87.7	YPL203JW	0	329	85
Eed1	Not found		CR_09980W	Not found			YRO19C			
Cph1	(Ste12)	516	C1_07370C	4.00E-97	367	51.2	YHR084W	1.00E-87	189	66
Cek1	(Fus3)	402	C4_06480C	2.00E-168	359	79.7	YBL016W	6.00E-138	351	58
Cek2	(Kss1)		CR_05940W	Not found			*			
Tec1	XP_028891285	551	C3_04530C	8.00E-81	380	45.3	YBR083W	3.00E-16	114	40
Hgc1	XP_028888034	499	C1_00780C	3.00E-86	346	43.4	YPL256C	9.00E-47	346	30
Flo11	Not found		Not found	Not found			YRO19C			
Hwp1	Not found		C4_03570W	Not found						
Hwp2	Not found		C4_03510C	Not found						
Ece1	Not found		C4_03470C	Not found						
Snf1	XP_028885157	604	C5_01320W	0	578	81	YDR477W	0	598	65
Cdc5	XP_028890727	695	C1_00950C	0	692	71.2	YMR001C	0	637	53
Cdc28	XP_028891635	310	CR_06050W	8.00E-157	292	89	YBR160W	4.00E-175	294	76
Cib2	XP_028891144	458	C2_01410C	4.00E-150	420	65.7	YPR119W	8.00E-124	384	50
Gin4	XP_028888326	1270	C1_11400C	0	1381	55.5	YDR507C	2.00E-144	408	58
Hsl7	XP_028890426	480	Not found	Not found			YBR133C	8.00E-30	346	29
Hsl1	XP_028892687	1458	C5_02840C	0	1015	47	YKL101W	4.00E-125	427	54
Mih1	XP_028890158	619	C3_00800W	4.00E-61	385	36.9	YMR036C	8.00E-37	203	37
Sve1	XP_028892733	903	C1_10010C	1.00E-175	1004	42.1	YIL187C	1.00E-70	248	48
Rad51	XP_028892133	337	CR_02200C	3.00E-176	326	88	YER095W	0	330	78
Rad53	XP_028891188	819	C3_03810W	0	690	59.3	YPL153C	5.00E-158	444	53
Rad9	XP_028898586	924	C5_02610C	4.00E-61	500	30	YDR127C	1.00E-28	458	24
Mec1	XP_028890424	2356	C5_04060C	0	2383	43.7	YBR136W	0	1957	31
Mcr1	XP_028891779	1071	C1_11400C	1.00E-132	1233	35.5	YCL061C	4.00E-32	357	35
Rad57	KND99929$	436	C2_08110W	3.00E-33	259	34.4	YDR004W	3.00E-16	222	31

*Candida auris B11221 (UACa20) on NCBI Genome (www.ncbi.nlm.nih.gov/genome/?term=taxid498019[orgn])
*Candida genome database (www.candidagenome.org)
*Saccharomyces genome database (www.yeastgenome.org)
*C. albicans/S. cerevisiae names, if different S. cerevisiae name in parentheses.
*Length of the alignment obtained after BLAST
*Only identities within the alignment obtained
*Access number from the C. auris Ci6684 draft genome

Table S1. Homology among *C. auris*, *C. albicans* and *S. cerevisiae* proteins
Table S2. Details of *C. auris* strains used in this study

Strain	Collection No.	Relevant genotype/Clade	Site of isolation	Known drug resistances	Origin/Reference
470026	UACa1	WT, S. Asia (I) (India)	BSI	FCZ, CSP	A. Chakrabarti²
470027	UACa2	WT, S. Asia (I) (India)	BSI	FCZ, VCZ, CSP	A. Chakrabarti²
470028	UACa3	WT, S. Asia (I) (India)	BSI	FCZ, CSP	A. Chakrabarti²
470029	UACa4	WT, S. Asia (I) (India)	BSI	FCZ, VCZ, CSP	A. Chakrabarti²
470030	UACa5	WT, S. Asia (I) (India)	BSI	FCZ, VCZ, CSP	A. Chakrabarti²
NCPF8980#9	UACa6	WT, S. Africa (III)	BSI	FCZ, CSP	E. Johnson
NCPF8984#15	UACa7	WT, E. Asia (II) (Japan)	unknown	FCZ	E. Johnson
NCPF8945#20	UACa8	WT, S. Asia (I) (India)	wound	FCZ, ISA, PSZ, VCZ, S-FC, AFG	E. Johnson
NCPF13001#16	UACa9	WT, S. Asia (I) (India)	unknown	FCZ	E. Johnson
NCPF13005#95	UACa10	WT, S. Africa (III)	urine	FCZ, VCZ, AFG, AMB, CSP	E. Johnson
VPCI479/P/13	UACa11	WT, S. Asia (I) (India)	BSI	FCZ	A. Chowdhary³
B11220	UACa18	WT, E. Asia (II) (Japan)	auditory canal burn wound	FCZ, VCZ	S. Lockhart⁴
B11109	UACa19	WT, S. Asia (I) (Pakistan)		CSP	S. Lockhart⁴
B11221	UACa20	WT, S. Africa (III)	BSI	FCZ, CSP	S. Lockhart⁴
B11222	UACa21	WT, S. Africa (III)	BSI	FCZ, CSP	S. Lockhart⁴
B11224	UACa22	WT, S. America (IV) (Venezuela)	BSI	FCZ, VCZ, CSP	S. Lockhart⁴
B11245	UACa23	WT, S. America (IV) (Venezuela)	BSI	FCZ, VCZ, CSP	S. Lockhart⁴
B8441	UACa24	WT, S. Asia (I) (Pakistan)	BSI	CSP	S. Lockhart⁴
B11098	UACa25	WT, S. Asia (I) (Pakistan)	BSI	FCZ	S. Lockhart⁴
B11203	UACa26	WT, S. Asia (I) (India)	BAL	FCZ, S-FC	S. Lockhart⁴
B11205	UACa27	WT, S. Asia (I) (India)	chest wound	FCZ, VCZ, S-FC	S. Lockhart⁴
CBS10913T	UACa83	WT, E. Asia (I) (Japan)	auditory canal	none	CBS-KNAW collection⁵
UACa93	lab strain	not tested	this study		
UACa94	lab strain	not tested	this study		
UACa95	lab strain	not tested	this study		
UACa109	lab strain	not tested	this study		
UACa112	lab strain	not tested	this study		

^aUsing EUCAST clinical breakpoints for *Candida albicans* (http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Clinical_breakpoints/Antifungal_breakpoints_v_9.0_180212.pdf)

Abbreviations: BAL = broncho-alveolar lavage, BSI = bloodstream infection, FCZ = fluconazole, ISA = Isavuconazole, PSZ = Posaconazole, VCZ = Voriconazole, CSP = Caspofungin, AFG = Anidulafungin, S-FC = flucytosine, AMB = Amphotericin B, WT = Wild Type, BCKG = background.
Protein	Description	SNP
Cdc37p	Chaperone for Crk1 (involved in hyphal development of Cph1- and Efg1-independent)	Ser-46-Asn
XP_0288896553	Hypothetical protein, fungal specific Zn(II)2Cys6 transcription factor, possibly related to C. albicans Zcf32	Arg-458-STOP
Kin2p	Hyphal growth, cell growth switching	Asp-582-Glu
Tpk2p	cAMP-dependent protein kinase catalytic subunit; isoform of Tpk1; regulation of filamentation, phenotypic switching and mating	Asp-32-Glu
Hap1p	Predicted Zn(II)2Cys6 transcription factor, filamentous growth in response to biotic stimulus	Pro-967-Ala
Cdc3p	Septin; hyphal growth; macrophage/pseudohyphal-repressed	His-214-Pro
Mds3p	TOR signalling pathway component; required for growth and hyphal formation at alkaline pH, pseudohyphal growth	Leu-437-Ser
Dot1p	White-opaque switching; DNA damage checkpoint	Ser-641-Thr
Isw2p	ATPase involved in chromatin remodeling; Hap43-induced gene; Filamentous growth	Lys-462-Met
Dynlp	Motor protein that moves to microtubule minus end; yeast cell separation, spindle positioning, nuclear migration, hyphal growth	Gly-1995-Arg
Sch9p	Protein kinase; involved in growth control, cell size, filamentous growth under some conditions, and virulence	Ile-544-Leu
Mss11p	Transcription factor; activator that binds to Flo8; required for hyphal growth	Gly-134-Arg
Arc40p	Involved in actin filament organization; affects filamentous growth	His-91-Asn
Gpr1p	Plasma membrane G-protein-coupled receptor of the cAMP-PKA pathway; required for hyphal growth	Gly-167-Ser
Wor2p	Regulator of white-opaque switching; filamentous growth	Phe-91-Leu
Tel1p	Telomeric DNA binding activity-DNA repair/damage checkpoint	Ala-2001-Thr
Tif4631p	Translation initiation factor elf4G; overexpression causes hyperfilamentation; hyphal- and macrophage-induced	Asp-763-Gly
Gin4p	Autophosphorylated kinase; role in pseudohyphal-hyphal switch and cytokinesis	Ser-507-Asn
Ecm29p	Scaffold protein; association of the proteasome core particle with the regulatory particle; mutation affects filamentous growth	Ser-489-Tyr
Hai9p	Zn(II)2Cys6 transcription factor involved in salt tolerance, Filamentous growth	Ala-640-Val
Hap1p	Predicted Zn(II)2Cys6 transcription factor, filamentous growth in response to biotic stimulus	Asn-524-His
Tip41p	TOR signalling pathway; regulates Rad53p during DNA damage, Regulation filamentous growth	Phe-331-Leu
YPL108W-like protein	YPL108W is a non-essential gene induced in a GDH1 deleted strain; induced in response to MMS	Gin-92-STOP
Vps36p	ESCRT II protein sorting complex subunit; regulation of pH response, filamentation in response to pH	Ala-441-Thr

1. S. cerevisiae protein names, unless otherwise indicated.
2. Amino acid produced in UACa1 in front of and in UACa4 after indicated position, stop codon indicated as STOP.
3. Systematic ID of Candida auris B11221 (UACa20) on NCBI Genome (www.ncbi.nlm.nih.gov/genome/?term=txid498019[orgn])
| Name | sequence 5'-3" | Orientation | Experimental use |
|-----------|----------------|-------------|--|
| **CaNAT1**| | | |
| oUA315 | tcgtacgcgtgctggctgcagGTCGACACTGGATGGGCGG | forward | for pALo218 construction (pFA6a overhang) |
| oUA316 | cgcgccttaatatacccggtgcaATCAAGCTGCTGGCTCC | reverse | for pALo218 construction (pFA6a overhang) |
| oUA345 | GCCGCGCCCTGTAGAGAAA | reverse | ORF for mutants check |
| oUA346 | CTCTGGCGGAATTCAGTAGCTCCC | forward | for gene deletion construction |
| oUA353 | ATCAAGCTGCTGGCTCC | reverse | for gene deletion construction |
| oUA346 | CTCTGGCGGAATTCAGTAGCTCCC | forward | for gene deletion construction |
| oUA354 | GTCGACACTGGATGGGGCGG | reverse | for gene deletion construction |
| **RAD51** | | | |
| oUA570 | tgctgtgcgtgataactacggcccatccagtgcagcATAACGCGCCACCCAAAGAG | reverse | promoter region for gene deletion construction (CaNAT1 overhang) |
| oUA571 | GCTGCTTGGACTGCTGGTTCCAC | forward | promoter region for gene deletion construction / mutants check |
| oUA572 | CGTCTTTGGAGTCATGTGGGATG | forward | promoter region nested primer for whole construction amplification |
| oUA573 | cgcctggccgtgggtaccggggacgagctgtgatGGGCTTTATCCAAAGTCAGGGAA | forward | terminator region for gene deletion construction (CaNAT1 overhang) |
| oUA574 | GCGCAAAATTGATCATGGGAGAG | reverse | terminator region for gene deletion construction / mutants check |
| oUA575 | CCAATGCAGTGGGATGTTATGC | reverse | terminator region nested primer for whole construction amplification |
| oUA576 | AAACCTGGCTATGGGCTTCGA | forward | ORF for mutants check |
| oUA577 | AGTCTCACGGGCTCTGATGTC | reverse | ORF for mutants check |
| **RAD57** | | | |
| oUA578 | tgctgtgcgtgataactacggcccatccagtgcagcATTCGCTGTTATCGCATGGAAAC | reverse | promoter region for gene deletion construction (CaNAT1 overhang) |
| Oligonucleotide | Sequence | Description |
|----------------|----------|-------------|
| oUA579 | CTCGTTGAGACAGACAGACTATGG | forward promoter region for gene deletion construction / mutants check |
| oUA580 | CTCAGAGATCGCTATCAAGATCGA | forward promoter region nested primer for whole construction amplification |
| oUA581 | cgctgaggccggtgaccggcccgggaccgagcttgatTTCAGGAGCTTCGGCT | forward terminator region for gene deletion construction (CaNAT1 overhang) |
| oUA582 | ACTGATCGCACCACAACTTAAC | reverse terminator region for gene deletion construction / mutants check |
| oUA583 | CTGTCGGGGGGCTGAAATTGA | reverse terminator region nested primer for whole construction amplification |
| oUA584 | TCGTGTAAGTGGATGTGCAA | forward ORF for mutants check |
| oUA585 | AAAGTGTTCATGGGCG | reverse ORF for mutants check |
| **RAD9** | | |
| oUA624 | tgctgatccgatcaacgcgcctccaggtgacTCGATCTGGAATAGTGGTGGTGG | reverse promoter region for gene deletion construction (CaNAT1 overhang) |
| oUA625 | GAAGCTGTCGGAACAGCTTT | forward promoter region for gene deletion construction / mutants check |
| oUA626 | GGCTCATTATCTCTGAGTC | forward promoter region nested primer for whole construction amplification |
| oUA627 | cgctgaggccggtgaccggcccgggaccgagcttgatGCAAAGACATTCTATGGCGAG | forward terminator region for gene deletion construction (CaNAT1 overhang) |
| oUA628 | GCTCATCATTTCCTTCCAGG | reverse terminator region for gene deletion construction / mutants check |
| oUA629 | CAAGTCATGGATCTGCTCCTCGCA | reverse terminator region nested primer for whole construction amplification |
| oUA676 | CAACGAATCGAATGCAACCGGG | forward ORF for mutants check |
| oUA677 | GACGAGGAGGACTCCATGG | reverse ORF for mutants check |
| **MRC1** | | |
| oUA703 | CTCCACCATGTCAAGCACCACA | forward promoter region for gene deletion construction / mutants check |
| oUA704 | GACGAAATCCACCTGGGGCT | forward promoter region nested primer for whole construction amplification |
| oUA705 | cgctgaggccggtgaccggcccgggaccgagcttgatTGAACAGCAGCTGGCTCCT | forward terminator region for gene deletion construction (CaNAT1 overhang) |
oUA706 CCAACAGTGAGTGACAGCT reverse terminator region for gene deletion construction / mutants check
oUA707 AGCGAGGAGGCTCTCAACTTTT reverse terminator region nested primer for whole construction amplification
oUA708 CTACTGTCGACTCGCTGGTGC forward ORF for mutants check
oUA709 TTCAGCTCTCCGTTCCCAGGC reverse ORF for mutants check
oUA778 tgtgtgcattccgatctaacgccgtcctccagtgctgacGAAGTGTTAGCAATTGTGGAGAGAG reverse promoter region for gene deletion construction (CaNAT1 overhang)

TUP1

oUA588 tgtgtgcattccgatctaacgccgtcctccagtgctgacGTGGATGGGGCACAGAATTAGAGA reverse promoter region for gene deletion construction (CaNAT1 overhang)
oUA589 CCGACTCCAGAATAGCCGGTC forward promoter region for gene deletion construction / mutants check
oUA590 GCAGGTAAAAGTGGGGCAGAGGG forward promoter region nested primer for whole construction amplification
oUA591 cggctgccccgggtgaccccggacggcagcttcatCAGTTTTGATGATGAGCATGGGTCG forward terminator region for gene deletion construction (CaNAT1 overhang)
oUA592 GTATGAGCCGTGCTGATACCAG reverse terminator region for gene deletion construction / mutants check
oUA593 GTGCAATCGACCAACTGTCATC reverse terminator region nested primer for whole construction amplification
oUA594 GGCACCACGGAAGCTGGTGA forward ORF for mutants check
oUA595 CCAAGGATGGACAAAGTTCACG reverse ORF for mutants check

*Overhangs in lowercase
ORF = Open reading frame
Supplementary References

1. Chatterjee S, Alampalli SV, Nageshan RK et al. Draft genome of a commonly misdiagnosed multidrug resistant pathogen Candida auris. *BMC Genomics* 2015;**16**:686.

2. Chakrabarti A, Sood P, Rudramurthy SM et al. Incidence, characteristics and outcome of ICU-acquired candidemia in India. *Intensive Care Med* 2014;**41**:285–95.

3. Sharma C, Kumar N, Meis JF et al. Draft genome sequence of a fluconazole-resistant *Candida auris* strain from a candidemia patient in India. *Genome Announc* 2015;**3**:e00722-15.

4. Lockhart SR, Etienne KA, Vallabhaneni S et al. Simultaneous emergence of multidrug-resistant *Candida auris* on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. *Clin Infect Dis* 2017;**64**:134–40.

5. Satoh K, Makimura K, Hasumi Y et al. *Candida auris* sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. *Microbiol Immunol* 2009;**53**:41–4.