Pseudotyping Vesicular Stomatitis Virus with Lymphocytic Choriomeningitis Virus Glycoproteins Enhances Infectivity for Glioma Cells and Minimizes Neurotropism†‡

Alexander Muik,1 Inna Kneiske,1 Marina Werbzik,1 Doris Wiltfangseder,2 Tsanan Giroglou,1 Oliver Ebert,3 Anna Kraft,4 Ursula Dietrich,1 Gert Zimmer,5 Stefan Momma,4,‡ and Dorothee von Laer2,4,†

Georg-Speyer-Haus, Frankfurt am Main, Germany1; Division of Virology, Innsbruck Medical University, Innsbruck, Austria2; Medizinische Klinik und Poliklinik II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany3; Institute of Neurology (Edinger Institute), University of Frankfurt, Frankfurt am Main, Germany4; and Institute of Virology and Immunophrophaxis, Mittelhäusern, Switzerland5

Received 2 December 2010/Accepted 16 March 2011

Vesicular stomatitis virus (VSV)-based oncolytic virotherapy has the potential to significantly improve the prognosis of aggressive malignancies such as brain cancer. However, VSV’s inherent neurotoxicity has hindered clinical development so far. Given that this neurotropism is attributed to the glycoprotein VSV-G, VSV was pseudotyped with the nonneurotropic envelope glycoprotein of the lymphocytic choriomeningitis virus (LCMV-GP—VSV-GP). Compared to VSV, VSV-GP showed enhanced infectivity for brain cancer cells in vitro while sparing primary human and rat neurons in vitro and in vivo, respectively. In conclusion, VSV-GP has a much wider therapeutic window than VSV and is thus more suitable for clinical applications, especially in the brain.

Malignant gliomas are the most aggressive and lethal intracranial tumors, and despite advances in surgery, radiation, and chemotherapy, patient survival is still only 1 to 2 years (15, 40). Therefore, various innovative approaches are under investigation (25, 27). Several groups have developed oncolytic viruses (OV) for cancer therapy, but to date, most of these viruses are not sufficiently effective and safe for use in patient treatment (1, 2, 13, 46). The same holds true for the vesicular stomatitis virus (VSV), which is one of the most promising OV candidates, as it has a short, highly cytolytic, and productive replication cycle, a high susceptibility to interferon (IFN) responses, which mediates its cancer selectivity (38), and has virtually no preexisting immunity in humans (3, 32, 44). However, VSV is neurotoxic, which limits its application, especially in the brain (19, 22, 42).

Researchers have attempted to overcome this limitation by generating attenuated viruses (AV) (10, 23, 39). But the reduced toxicity comes at the expense of reduced replication competence and oncolytic activity, so that it is doubtful whether AVs would be effective in the patient (43). As the viral glycoprotein determines the tropism, the neurotropism is mainly attributed to the glycoprotein VSV-G (8, 41, 42). Hence, we aimed to detarget VSV from neurons at the entry level by pseudotyping. The glycoprotein GP of the neurotropic lymphocytic choriomeningitis virus WE strain (LCMV-WE-HPI) was selected, based on previous findings with respect to the tropism of LCMV-GP (GP)-pseudotyped lentiviral vectors (4, 9). In contrast to VSV-G pseudotypes, GP-pseudotyped lentiviral vectors had little infectivity for neurons in vitro and in rat brains but were at least as infectious for malignant gliomas (28).

To reliably determine the cellular tropism of VSV-GP, we used two variants of a propagation-deficient, green fluorescent protein (GFP)-expressing VSVΔG vector (Indiana serotype) which lacks the G gene: (i) wild-type “cytopathic” VSVΔMgpΔG and (ii) VSVΔMgpΔΔG, which has reduced cytopathicity due to attenuating mutations in the M protein (16, 18). VSVΔMgpΔΔG was included to ensure longer survival of infected cells to facilitate monitoring of infection. To produce the single-cycle infectious VSV-G or VSV-GP virus, the respective viral glycoprotein was provided in trans by transient expression of VSV-G or stable expression of LCMV-GP. The stable cell line was generated by transduction of BHK-21 cells with the lentiviral self-inactivating (SIN) vector pHr/SIN-GPopt, encoding codon-optimized LCMV-GP, as previously described (4, 5, 14).

The GP pseudotype (VSV-GP) is more infectious for brain tumor cells than VSV-G. A panel of human [G44, G62 (17, 28), Mz54, U-87 MG, U-373 MG, D283Med, Daoy, UKF-NB-3, UKF-NB-4, SK-N-BE(2)C, SH-SY5Y (6, 12), HuH7, and HepG2], murine (Tu-2449 and Tu-9648), and rat (9L and MeA-RH7777) cancer cell lines from three different central nervous system (CNS) neoplasms (glioma, medulloblastoma, and neuroblastoma) as well as from hepatocellular carcinomas (HCC), as an unrelated control, were tested for their susceptibility to VSVΔG pseudotypes. Virus titers were determined by transduction of cells with serial 10-fold
dilutions of the inoculum and flow cytometric analysis to determine GFP expression at 16 h postransduction. Titers are given relative to the titer determined for BHK-21 as the reference cell line.

The LCMV-GP pseudotype VSV*MQ/H9004G-G was significantly (5- to 80-fold) more infectious for all malignant glioma cell lines (P < 0.01 to P < 0.0001) and both medulloblastoma cell lines (P < 0.05) than VSV*MQ/H9004G (Fig. 1A). The neuroblastoma cell lines UKF-NB-3 and UKF-NB-4 were more susceptible to VSV*MQ/H9004G-G (P < 0.01), while SH-SY5Y cells were slightly more susceptible to VSV*MQ/ΔG-GP (P < 0.05). Titers of VSV*MQ/ΔG-G and VSV*MQ/ΔG-GP on SK-N-BE(2)c cells were not significantly different. Cell lines derived from HCC were all more susceptible to VSV*MQ/ΔG-G than to VSV*MQ/ΔG-GP (P < 0.05 to P < 0.001). The tropism of the cytopathic VSV*MQ/ΔG pseudotypes was consistent

FIG. 2. VSV*ΔG-GP shows negligible transduction of PBMCs, macrophages, and dendritic cells. PBMCs were isolated from blood and T cells were stimulated as previously described (30). CD14+ monocytes were purified by magnetic sorting using anti-CD14 microbeads (Miltenyi Biotec). CD14+ monocyte-derived macrophages were differentiated in vitro by adding 50 ng/ml recombinant human macrophage colony stimulation factor (rhM-CSF) (Invitrogen) for 6 days. Monocyte-derived DCs were generated after culturing CD14+ cells with IL-4 and GM-CSF in vitro (35). Macrophages were activated overnight by LPS stimulation (100 ng/ml). Freshly isolated T cells and activated T cells as well as monocytes and macrophages (A) and DCs (B) were infected with 10-fold serial dilutions of VSV*ΔG-G and VSV*ΔG-GP. Titers were analyzed by flow cytometry based on the expression of GFP and normalized to the reference BHK-21 hamster cell line. GFP expression by DCs (gated on CD11b+/DC-SIGN+) was quantified 16 h postinfection by flow cytometry. n.d., not detectable.
microscopy, counting 30 microscopic fields per pseudotype. Values are expressed as means ± standard deviations (SD) and were tested for significance by Student’s t test (P < 0.0001).

In addition, we tested infectivity by the use of primary human glioma-derived stem cell (hGSC) cultures, which have previously been shown to better reflect the genetic heterogeneity of the originating tumor (26). Human neural stem cells (hNSCs) were used as an internal control (Fig. 1B). Isolation and expansion of hNSCs (BLV1 and BLV4) and hGSCs (GBMF10, -15, -22, and -74) from primary tissues of different patients were essentially carried out as previously described for murine neural stem cells (21). While the hNSCs were more susceptible to VSV*MQ than BHK-21 cells; even after infection with 20 transducing units (TU)/cell, infection levels remained below the detection limit. After stimulation (30), detection of T lymphocyte infection required 100-fold-higher multiplicities of infection (MOIs) than BHK-21 infection for VSV*ΔG-G and no infection of stimulated T cells was detected for VSV*ΔG-GP. In monocytes, the cytopathic variant tended to be more infectious, whereas unstimulated and lipopolysaccharide (LPS)-stimulated macrophages were slightly more susceptible to VSV*M0ΔG-G than to VSV*M0ΔG-GP. Monocyte titers were around 100-fold and 1,000-fold lower than BHK-21 titers for VSV*ΔG-G and VSV*ΔG-GP, respectively. After differentiation, the resulting macrophages became more susceptible to both pseudotypes but again slightly lost susceptibility after LPS-induced activation (Fig. 2A). In general, VSV*ΔG-G infected monocytes and macrophages more efficiently than VSV*ΔG-GP. Monocyte-derived DCs were not at all susceptible to either VSV*M0ΔG variant (see Fig. S2 in the supplemental material), presumably due to an induced interferon response. However, as shown in Fig. 2B, DCs are susceptible to infection with VSV*M0ΔG but could not be efficiently infected with the GP pseudotype. Infection with VSV*M0ΔG (MOI{BHK} of 0.2) resulted in 54% GFP+/CD11b+/DC-SIGN+ DCs at 16 h postexposure, whereas 20 TU/cell of VSV*M0ΔG-GP resulted in 2.1% infected DCs. In conclusion, all immune cells tested were considerably less susceptible to the GP pseudotype than to VSV-G-complemented vectors. Thus, VSV-GP may be less susceptible to viral clearance via the host immune system.

Reduced neurotropism of GP pseudotypes in vitro and in vivo. Neurotoxicity is dose limiting and has so far precluded VSV treatment of brain cancer. As we had determined that GP pseudotypes efficiently target brain tumor cells (Fig. 1), we next analyzed the tropism of VSV*ΔG-GP relative to VSV*ΔG-G for primary human neurons. Cells were infected with 4 TU/cell and stained with anti-microtubule-associated protein 2 (anti-MAP-2; for human neurons) and DAPI (4',6-diamidino-2-
phenylindole) at 16 h postinfection. VSV*McΔG-G infection was much more efficient than VSV*McΔG-GP infection (Fig. 3A). For quantification, cultures were infected with 1 TU/cell and GFP+/MAP2+ cells were counted. The percentage of infected neurons was significantly (*P < 0.001) higher in VSV*McΔG-G (12.37 ± 1.21%) infected cultures than in VSV*McΔG-GP infected cultures (1.29 ± 0.46%) (Fig. 3B).

Next, we injected 7×10^5 TU of each pseudotype (reduced...
cytopathic variant) into the striatum and the hippocampus region of rat brains (28). On the following day, animals were sacrificed and microscopic slides were prepared. Neurons were stained with anti-NeuN and astrocytes with anti-glia fibrillary acidic protein (anti-GFAP), and expression of GFP was analyzed by confocal laser scanning microscopy. Massive infection, almost exclusively of neurons, was observed for VSV*MQ3AG-G, as shown by GFAP/NeuN* cells and neurite-localized GFP expression (Fig. 4). The virus was able to efficiently penetrate the examined brain region and infected cells as far as 2 mm from the injection site (Fig. 4A and B).

These observations are in agreement with the previously described tropism of VSV and VSV-G-pseudotyped lentiviral vectors (29, 42). In contrast, VSV*M3AG-GP infection rates were considerably lower, with only a few predominantly glial cells infected (Fig. 4A, detail). This is in accordance with our in vitro data on GP-pseudotyped VSV (Fig. 1B, Fig. 3) as well as with the tropism of lentiviral GP pseudotypes (28, 37). In particular, Stein et al. found a transduction preference of LCMV-WE-HPI-pseudotyped feline immunodeficiency virus for GFAP-positive astrocytes in the striatum and subventricular zone (SVZ) as well as for SVZ neural progenitor cells in vivo (37).

Studies on LCMV-WE-HPI envelope glycoprotein displays high-affinity binding to its α-dystroglycan cellular receptor (24), which is likewise expressed on neurons and astrocytes (36, 45), the observed scarce infection of neurons may be due to (i) different glycosylation patterns of α-dystroglycan in distinct cell types of the CNS (33), (ii) alternative, yet-unidentified receptor and/or coreceptor usage in the brain (24), or (iii) the use of propagation-deficient vectors, which, in contrast to wild-type LCMV vectors, cannot spread via direct cell-cell contact from glial cells to proximal neurons (7). Further studies to analyze whether replication-competent VSV-GP can spread from glial cells to neurons are ongoing. In accordance with previous studies on LCMV-WE tropism, VSV*M3AG-GP was able to efficiently infect the ependymal cell layer of the lateral ventricle (Fig. 4C) (11, 34).

In summary, relative to VSV, LCMV-WE-GP-pseudotyped VSV exhibits an increased infectivity for brain cancer cells, whereas its neurotropism is highly attenuated. Immune cells (as potential off-target cells) are also considerably less susceptible to VSV-GP than to VSV-G. Taken together, these consistent data indicate that GP-pseudotyped VSV has a beneficial toxicity as well as efficacy profile and may render VSV eligible for use in the brain for potential treatment of brain cancer. However, use of a propagation-incompetent VSV-GP would presumably result in minor antitumor effectiveness, since preclinical and clinical trials have shown that incomplete viral transduction or distribution within the tumor is a major obstacle that eventually contributes to therapy failure (31). Thus, the use of carrier cell-assisted viral delivery as well as a replication-competent recombinant rVSV-GP is a promising strategy currently under evaluation.

The work was supported by grants from the Wilhelm Sander Foundation and the Deutsche Forschungsgemeinschaft (Graduate College 1172).

We thank Patricia Schult-Dietrich for expert technical assistance.

REFERENCES

1. Agbi, M., and R. L. Martuza. 2005. Oncolytic viral therapies—the clinical experience. Oncogene 24:7892–7816.
2. Agbi, M. K., and E. A. Chiocca. 2009. Phase ib trial of oncolytic herpes virus G207 shows safety of multiple injections and documents viral replication. Mol. Ther. 17:8–9.
3. Barber, G. N. 2004. Vesicular stomatitis virus as an oncolytic vector. Viral Immunol. 17:516–527.
4. Beyer, W. R., H. Miletic, W. Ostertag, and D. von Laer. 2002. Recombinant expression of lymphocytic choriomeningitis virus strain WE glycoproteins: a single amino acid makes the difference. J. Virol. 76:1061–1064.
5. Beyer, W. R., M. Westphal, W. Ostertag, and D. von Laer. 2002. Oncoreovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J. Virol. 76:1488–1495.
6. Biedler, J. L., and B. A. Spengler. 1976. Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science 191:185–187.
7. Bonthius, D. J., J. Mahoney, M. J. Buchmeier, B. Karacay, and D. Taggard. 2002. Critical role for glial cells in the propagation and spread of lymphocytic choriomeningitis virus in the developing rat brain. J. Virol. 76:6618–6635.
8. Boritz, E., J. Gerlach, J. E. Johnson, and J. K. Rose. 1999. Replication-competent rhadoviruses with human immunodeficiency virus type 1 coats and green fluorescent protein: entry by a pH-independent pathway. J. Virol. 73:6937–6945.
9. Cannon, J. R., T. Sew, L. Montero, E. A. Burton, and J. T. Greenamyre. 2011. Pseudotype-dependent lentiviral transduction of astrocytes or neurons in the substantia nigra. Exp. Neurol. 228:51–57.
10. Clarke, D. K., et al. 2007. Synergistic attenuation of vesicular stomatitis virus by combination of specific G gene truncations and N gene translocations. J. Virol. 81:2058–2064.
11. Cole, G. A., D. H. Gilden, A. A. Monjan, and N. Nathanson. 1971. Lymphocytic choriomeningitis virus: pathogenesis of acute central nervous system disease. Fed. Proc. 30:1831–1841.
12. Ebener, U., S. Wehner, J. Cinatl, E. S. Gussetis, and B. Kornhuber. 1999. Expression of markers shared between human hematopoietic cells and neuroblastoma cells. Anticancer Res. 19:887–890.
13. European Medicines Agency. 2009. Questions and recommendations on the recommendation for the refusal of the marketing authorisation for Cerepito (sitimagen cereadenovec). EMA/828428/2009. European Medicines Agency, London, United Kingdom.
14. Fischer, Y. H., et al. 2007. A retroviral packaging cell line for pseudotype vectors based on gloma-infiltrating progenitor cells. J. Gene Med. 9:335–344.
15. Furnari, F. B., et al. 2007. Malignant astrocytic glioma: genomics, biology, and paths to treatment. Genes Dev. 21:2683–2710.
16. Hanika, A., et al. 2005. Use of influenza C virus glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes. J. Gen. Virol. 86:1455–1465.
17. Heese, O., A. Disko, D. Zirkel, M. Westphal, and K. Lamszus. 2005. Neural stem cell migration toward gliomas in vitro. Neuro. Oncol. 7:478–484.
18. Hoffmann, M., et al. 2010. Fusion-active glycoprotein G mediates the cytopathicity of vesicular stomatitis virus M mutants lacking host shut-off activity. J. Gen. Virol. 91:2782–2793.
19. Honeycutt, B. S., et al. 1994. Distribution of vesicular stomatitis virus proteins in the brains of BALB/c mice following intranasal inoculation: an immunohistochemical analysis. Brain Res. 635:81–95.
20. Ilett, E. J., et al. 2009. Dendritic cells and T cells deliver oncolytic reovirus for tumour killing despite pre-existing anti-viral immunity. Gene Ther. 16:689–699.
21. Johansson, C. B., et al. 1999. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34.
22. Johnson, J. E., et al. 2007. Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates. Virology 360:36–49.
23. Kelly, E. J., R. Nace, G. N. Barber, and S. J. Russell. 2010. Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting. J. Virol. 84:1550–1562.
24. Kunz, S., N. Sevilla, J. M. Rojek, and M. B. Oldstone. 2004. Use of alternative receptors different than alpha-dystroglycan by selected isolates of lymphocytic choriomeningitis virus. Virology 325:432–445.
25. Kyrtiss, A. P., C. Sioka, and J. S. Rao. 2009. Viruses, gene therapy and stem cells for the treatment of human glioma. Cancer Gene Ther. 16:741–752.
26. Lee, J., et al. 2006. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403.
27. Liu, T. C., E. Galanis, and D. K. Rose. 2007. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat. Clin. Pract. Oncol. 4:101–117.
28. Miletics, H., et al. 2004. Selective transduction of malignant glioma by lentiviral vectors pseudotyped with lymphocytic choriomeningitis virus glycoproteins. Hum. Gene Ther. 15:1091–1100.
29. Naldini, L., U. Blomer, F. H. Gage, D. Trono, and I. M. Verma. 1996. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. U. S. A. 93:11382–11388.

30. Newrzela, S., B. Gunda, and D. von Laer. 2009. T-cell culture for gamma-retroviral transfer. Methods Mol. Biol. 506:71–82.

31. Pulkkanen, K. J., and S. Yla-Herttuala. 2005. Gene therapy for malignant glioma: current clinical status. Mol. Ther. 12:585–598.

32. Rose, J. K., and M. A. Whitt. 2001. Rhabdoviridae: the viruses and their replication, p. 1221–1244. Fields virology, 4th ed. Lippincott-Raven Publishers, Philadelphia, PA.

33. Satz, J. S., et al. 2010. Distinct functions of glial and neuronal dystroglycan in the developing and adult mouse brain. J. Neurosci. 30:14560–14572.

34. Smelt, S. C., et al. 2001. Differences in affinity of binding of lymphocytic choriomeningitis virus strains to the cellular receptor alpha-dystroglycan correlate with viral tropism and disease kinetics. J. Virol. 75:448–457.

35. Stein, C. S., I. Martins, and B. L. Davidson. 2005. The lymphocytic choriomeningitis virus envelope glycoprotein targets lentiviral gene transfer vector to neural progenitors in the murine brain. Mol. Ther. 11:382–389.