PRIMITIVE IDEALS OF THE RING OF DIFFERENTIAL OPERATORS ON AN AFFINE TORIC VARIETY

MUTSUMI SAITO

Abstract. Let A be a $d \times n$ integer matrix whose column vectors generate the lattice \mathbb{Z}^d, and let $D(R_A)$ be the ring of differential operators on the affine toric variety defined by A.

We show that the classification of A-hypergeometric systems and that of \mathbb{Z}^d-graded simple $D(R_A)$-modules (up to shift) are the same. We then show that the set of \mathbb{Z}^d-homogeneous primitive ideals of $D(R_A)$ is finite. Furthermore, we give conditions for the algebra $D(R_A)$ being simple.

Mathematics Subject Classification (2000): Primary 13N10, 13P99; Secondary 16W35, 16S32

Keywords: Primitive ideals, Toric variety, Ring of differential operators, Hypergeometric systems

1. Introduction

Let A be a $d \times n$ integer matrix whose column vectors generate the lattice \mathbb{Z}^d. Let R_A be the ring of regular functions on the affine toric variety defined by A, and $D(R_A)$ its ring of differential operators.

In this paper, we show the following three theorems:

1. The classification of A-hypergeometric systems and that of \mathbb{Z}^d-graded simple $D(R_A)$-modules (up to shift) are the same (Theorem 5.10).
2. The set of \mathbb{Z}^d-homogeneous primitive ideals of $D(R_A)$ is finite (Theorem 7.6).
3. The algebra $D(R_A)$ is simple if and only if R_A is a scored semigroup ring, and A satisfies a certain condition (C2) (Theorem 8.25).

The ring of differential operators was introduced by Grothendieck [6] and Sweedler [13]. As for the ring of differential operators $D(R_A)$ on an affine toric variety, many recent papers such as Jones [8], Musson [11], and Musson and Van den Bergh [12] describe the structure of $D(R_A)$ when R_A is normal. For general R_A, we studied the finite generation

Date: May 31, 2005.
of $D(R_A)$ and its graded ring with respect to the order filtration in [13] and [10]. Moreover, in [15], we showed that the algebra $D(R_A)$ and the symmetry algebra (the algebra of contiguity operators) of A-hypergeometric systems are anti-isomorphic to each other. This paper may be considered as a continuation of [15].

The history of A-hypergeometric systems (or GKZ hypergeometric systems) goes back to Kalnins, Manocha, and Miller [9], and Hrabowski [7]. After the papers by Gel’fand, Kapranov, and Zelevinskii (e.g. [2]–[5]), researchers in various fields have studied the systems, and established connection with representation theory, algebraic geometry, commutative ring theory, etc. See, for example, the bibliography of [14].

Associated to a parameter vector α and a face τ of the cone generated by the column vectors of A, we defined a finite set $E_\tau(\alpha)$ (see (8) in Section 7) in [13], and proved that the A-hypergeometric systems are classified by those finite sets. Hence in order to show that the classification of A-hypergeometric systems and that of \mathbb{Z}^d-graded simple $D(R_A)$-modules (up to shift) are the same, we only need to show that \mathbb{Z}^d-graded simple $D(R_A)$-modules can be classified (up to shift) by the finite sets $E_\tau(\alpha)$ as shown in Theorem 4.4 essentially in [12] and [15]. It is however desirable to show the equivalence intrinsically. We therefore present the second proof of the equivalence by connecting A-hypergeometric systems with certain \mathbb{Z}^d-graded $D(R_A)$-modules by functors (Corollary 5.9).

Some topics discussed in this paper were treated in [12] under the conditions (A1) and (A2) (see p.4 in [12]). In our case, (A1) is always satisfied, and (A2) requiring that all \mathbb{Z}^d-homogeneous components $D(R_A)_\alpha$ are singly generated $D(R_A)_0$-modules is equivalent to requiring that R_A satisfies the Serre’s (S_2) condition (see Proposition 5.7). In this paper, we do not assume the Serre’s (S_2) condition.

The layout of this paper is as follows: we start with recalling the definitions and some fundamental facts about differential operators in Section 2, and about A-hypergeometric systems in Section 3. In Section 4, we recall some results by Musson and Van den Bergh [12] about the category \mathcal{O}, analogous to the Bernstein-Gel’fand-Gel’fand’s category \mathcal{O}, and the counterpart $R\mathcal{O}$ for right $D(R_A)$-modules. Then we recall realizations $L(\alpha)$ ($R\tilde{L}(\alpha)$) of simple objects in \mathcal{O} ($R\tilde{O}$) from [15], and we show that we have a duality between \mathcal{O} and $R\tilde{O}$ sending $L(\alpha)$ and $R\tilde{L}(\alpha)$ to each other. We also show that any \mathbb{Z}^d-graded simple $D(R_A)$-module is isomorphic (up to shift) to $L(\alpha)$. These combined prove that the classifications of $L(\alpha)$, $R\tilde{L}(\alpha)$, their projective covers $M(\alpha)$,
$^R M(\alpha)$, and α with respect to the equivalence relation determined by the finite sets $E_r(\alpha)$ are the same.

In Section 5, we provide two functors between the category of right $D(R_A)$-modules and the category of right $D(R)$-modules supported by the affine toric variety defined by A, where $D(R)$ is the n-th Weyl algebra. One is the direct image functor, for right D-modules, of the closed inclusion of the affine toric variety into \mathbb{C}^n, and the other is its right adjoint functor. By using these functors, we prove that $^R M(\alpha) \simeq ^R M(\beta)$ if and only if their corresponding A-hypergeometric systems are isomorphic (Theorem 5.10).

After we see a couple of basic facts about primitive ideals in Section 6, we show in Section 7 that if we properly perturb a parameter α then the annihilator ideal $\text{Ann} L(\alpha)$ remains unchanged, and in this way we show that the set $\text{Prim} D(R_A)$ of \mathbb{Z}^d-homogeneous primitive ideals of $D(R_A)$ is finite (Theorem 7.6).

In Section 8, the simplicity of $D(R_A)$ is treated. First we consider the conditions: the scoredness and the Serre’s (S_2). We prove that the simplicity of $D(R_A)$ implies the scoredness, and that the conditions $(A2)$ and (S_2) are equivalent. Finally we give a necessary and sufficient condition for the simplicity (Theorem 8.26). In Section 9, we give an example of computation of the set $\text{Prim} D(R_A)$, and an example such that R_A is scored and Cohen-Macaulay, but $D(R_A)$ is not simple.

2. Ring of differential operators on an affine toric variety

In this section, we recall some fundamental facts about the rings of differential operators of semigroup algebras.

Let $A := \{ a_1, a_2, \ldots, a_n \}$ be a finite set of column vectors in \mathbb{Z}^d. Sometimes we identify A with the matrix (a_1, a_2, \ldots, a_n). Let NA and ZA denote the monoid and the abelian group generated by A, respectively. Throughout this paper, we assume that $ZA = \mathbb{Z}^d$ for simplicity.

Let R denote the polynomial ring $\mathbb{C}[x] := \mathbb{C}[x_1, \ldots, x_n]$. The semigroup algebra $R_A := \mathbb{C}[NA] = \bigoplus_{\alpha \in NA} \mathbb{C} t^\alpha$ is the ring of regular functions on the affine toric variety defined by A, where $t^\alpha = t_1^{a_1} t_2^{a_2} \cdots t_d^{a_d}$ for $\alpha = t(a_1, a_2, \ldots, a_d)$. Then we have $R_A \simeq R/I_A(x)$, where $I_A(x)$ is the ideal of $\mathbb{C}[x]$ generated by all $x^u - x^v$ for $u, v \in \mathbb{N}^n$ with $Au = Av$.

Let M, N be R-modules. We briefly recall the module $D(M, N)$ of differential operators from M to N. For details, see [17]. For $k \in \mathbb{N}$, the subspaces $D^k(M, N)$ of $\text{Hom}_R(M, N)$ are inductively defined by

$$D^0(M, N) = \text{Hom}_R(M, N)$$
and
\[
D^{k+1}(M, N) = \{ P \in \text{Hom}_\mathbb{C}(M, N) : [f, P] \in D^k(M, N) \quad (\forall f \in R) \},
\]
where \([,]\) denotes the commutator. Set \(D(M, N) : = \bigcup_{k=0}^\infty D^k(M, N)\), and \(D(M) : = D(M, M)\). Then \(D(M)\) is a \(\mathbb{C}\)-algebra, and \(D(M, N)\) is a \((D(N), D(M))\)-bimodule. Hence \(D(R, R_A)\) is a \((D(R_A), D(R))\)-module.

The ring \(D(R)\) is the \(n\)-th Weyl algebra
\[
D(R) = \mathbb{C}\langle x_1, \ldots, x_n, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \rangle,
\]
where \([\frac{\partial}{\partial x_i}, x_j] = \delta_{ij}\), and the other pairs of generators commute. Here \(\delta_{ij}\) is 1 if \(i = j\) and 0 otherwise.

Let \(\mathbb{C}[t, t^{-1}]\) denote the Laurent polynomial ring \(\mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]\). Then its ring of differential operators \(D(\mathbb{C}[t, t^{-1}])\) is the ring
\[
\mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]\langle \partial_1, \ldots, \partial_d \rangle,
\]
where \([\partial_i, t_j] = \delta_{ij}\), \([\partial_i, t_j^{-1}] = -\delta_{ij}t_j^{-2}\), and the other pairs of generators commute. The ring of differential operators \(D(R_A)\) can be realized as a subring of the ring \(D(\mathbb{C}[t, t^{-1}])\) by
\[
D(R_A) = \{ P \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]\langle \partial_1, \ldots, \partial_d \rangle : P(R_A) \subseteq R_A \}.
\]

Put \(s_j := t_j \partial_j\) for \(j = 1, 2, \ldots, d\). Then it is easy to see that \(s_j \in D(R_A)\) for all \(j\). We introduce a \(\mathbb{Z}^d\)-grading on the ring \(D(R_A)\); for \(a = (a_1, a_2, \ldots, a_d) \in \mathbb{Z}^d\), set
\[
D(R_A)_a := \{ P \in D(R_A) : [s_j, P] = a_j P \quad \text{for} \quad j = 1, 2, \ldots, d \}.
\]

Then \(D(R_A) = \bigoplus_{a \in \mathbb{Z}^d} D(R_A)_a\).

By regarding \(D(R_A)_a\) as a subset of \(\mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]\langle \partial_1, \ldots, \partial_d \rangle\), we see that there exists an ideal \(I \subset \mathbb{C}[s] := \mathbb{C}[s_1, \ldots, s_d]\) such that \(D(R_A)_a = t^a I\). To describe this ideal \(I\) explicitly, we define a subset \(\Omega(a)\) of the semigroup \(\mathbb{N}A\) by
\[
\Omega(a) = \{ b \in \mathbb{N}A : b + a \not\in \mathbb{N}A \} = \mathbb{N}A \setminus (-a + \mathbb{N}A).
\]

Then each \(D(R_A)_a\) is described as follows.

Theorem 2.1 ([8], Theorem 3.3.1 in [15]).
\[
D(R_A)_a = t^a \mathbb{P}(\Omega(a)) \quad \text{for all} \quad a \in \mathbb{Z}^d,
\]
where
\[
\mathbb{P}(\Omega(a)) := \{ f(s) \in \mathbb{C}[s] : f \ \text{vanishes on} \ \Omega(a) \}.
\]

In particular, \(D(R_A)_a = t^a \mathbb{C}[s] = \mathbb{C}[s]t^a\) for each \(a \in \mathbb{N}A\), since \(\Omega(a) = \emptyset\) in this case.
3. A-hypergeometric systems

Let us briefly recall the definition of an A-hypergeometric system and its classification.

Let $\alpha = t(\alpha_1, \ldots, \alpha_d) \in \mathbb{C}^d$. The A-hypergeometric system with parameter α is the left $D(R)$-module

$$H_A(\alpha) := D(R) / \left(\sum_{i=1}^{d} D(R)(\sum_{j=1}^{n} a_{ij} x_j \frac{\partial}{\partial x_j} - \alpha_i) + D(R)I_A(\partial) \right),$$

where $a_j = t(a_{1j}, a_{2j}, \ldots, a_{dj})$, $I_A(\partial)$ is the ideal of $C[\partial_{x_1}, \ldots, \partial_{x_n}]$ generated by all $\prod_{j=1}^{n} \partial_{u_j} - \prod_{j=1}^{n} \partial_{v_j} x_j$ for $u, v \in \mathbb{N}^n$ with $Au = Av$.

Interchanging x_j and ∂_{x_j} for all j, we have an anti-automorphism ι of $D(R)$. Clearly ι gives rise to a one-to-one correspondence between the left $D(R)$-modules and the right $D(R)$-modules. Thus ι induces a right $D(R)$-module

$$R^H_A(\alpha) := D(R) / \left(\sum_{i=1}^{d} (\sum_{j=1}^{n} a_{ij} x_j \frac{\partial}{\partial x_j} - \alpha_i)D(R) + I_A(x)D(R) \right).$$

Note that $\iota(x_j \frac{\partial}{\partial x_j}) = \iota(\frac{\partial}{\partial x_j})\iota(x_j) = x_j \frac{\partial}{\partial x_j}$.

In [15, Definition 4.1.1], we have introduced a partial order into the parameter space \mathbb{C}^d (see [10]), which is equivalent by [15, Lemma 4.1.4] to

$$\alpha \preceq \beta \iff I(\Omega(\beta - \alpha)) \not\subseteq m_\alpha,$$

where m_α is the maximal ideal of $\mathbb{C}[s]$ at α. Note that, if $\beta - \alpha \notin \mathbb{Z}^d$, then $\Omega(\beta - \alpha) = NA$, and hence $\alpha \not\in \beta$. We write $\alpha \sim \beta$ if $\alpha \preceq \beta$ and $\alpha \succeq \beta$. This equivalence relation was introduced also by Musson and Van den Bergh (see [12, Lemma 3.1.9 (6)]).

This relation classifies A-hypergeometric systems.

Theorem 3.1 (Theorem 2.1 in [13]). $H_A(\alpha) \simeq H_A(\beta)$ if and only if $\alpha \sim \beta$.

4. $D(R_A)$-modules

In this section, we recall some results by Musson and Van den Bergh [12] about the category O, and the counterpart R^O for right $D(R_A)$-modules. Then we recall realizations $L(\alpha)$ ($R^L(\alpha)$) of simple objects in O (R^O) from [15], and we show that we have a duality between O and R^O sending $L(\alpha)$ and $R^L(\alpha)$ to each other. We also show that any \mathbb{Z}^d-graded simple $D(R_A)$-module is isomorphic (up to shift) to $L(\alpha)$. These combined prove that the classifications of $L(\alpha)$, $R^L(\alpha)$, their
projective covers $M(\alpha)$, $R^*M(\alpha)$, and α with respect to the equivalence relation \sim are the same.

4.1. Left modules. Let us recall the full subcategory \mathcal{O} of the category of left $D(R_A)$-modules introduced in [12], which is an analogue of the Bernstein-Gel’fand-Gel’fand’s category \mathcal{O} for the study of highest weight modules of semisimple Lie algebras. A left $D(R_A)$-module M is an object of \mathcal{O} if M has a weight decomposition $M = \bigoplus_{\lambda \in \mathbb{C}^d} M_\lambda$ with each M_λ finite-dimensional, where

$$M_\lambda = \{x \in M : f(s).x = f(\lambda)x \quad (\text{for all } f \in \mathbb{C}[s])\}.$$

We call λ a weight of M if $M_\lambda \neq 0$.

For $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{C}^d$, set

$$M(\alpha) := D(R_A)/D(R_A)(s - \alpha),$$

where $D(R_A)(s - \alpha)$ means $\sum_{i=1}^d D(R_A)(s_i - \alpha_i)$. Then $M(\alpha) = \bigoplus_{\lambda \in \alpha + \mathbb{Z}A} M(\alpha)_\lambda$, and $M(\alpha) \in \mathcal{O}$.

Among others, Musson and Van den Bergh proved the following.

Proposition 4.1 (Proposition 3.1.7 in [12]).

1. $\text{Hom}_{D(R_A)}(M(\alpha), M) = M_\alpha$ for $M \in \mathcal{O}$.
2. $M(\alpha)$ is a projective object in \mathcal{O}.
3. $M(\alpha)$ has a unique simple quotient (denoted by $L(\alpha)$).
4. All simple objects in \mathcal{O} are of the form $L(\alpha)$.
5. The natural projection $M(\alpha) \to L(\alpha)$ is the projective cover.
6. $M(\alpha) \simeq M(\beta)$ if and only if $L(\alpha) \simeq L(\beta)$.

Remark 4.2. Musson and Van den Bergh assumed the conditions $(A1)$ and $(A2)$ (see p.4 in [12]). In our case, $(A1)$ is always satisfied, and $(A2)$ requiring that all $D(R_A)_\alpha$ are singly generated $\mathbb{C}[s]$-modules is equivalent to requiring that R_A satisfies the Serre’s (S_2) condition (see Proposition 8.7). For Proposition 4.1, we do not need the condition $(A2)$.

Remark 4.3. Let $M \in \mathcal{O}$, and let N be a left $D(R_A)$-submodule of M. Then $N \in \mathcal{O}$. Hence, if M is a simple object in \mathcal{O}, then M is a simple left $D(R_A)$-module.

Let $\alpha \in \mathbb{C}^d$. In [15], we studied the composition factors of a $D(R_A)$-module

$$\mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]t^\alpha,$$

and we saw that

$$\bigoplus_{\lambda \geq \alpha} \mathbb{C}t^\lambda / \bigoplus_{\lambda \prec \alpha} \mathbb{C}t^\lambda$$
is simple \[15\] Theorem 4.1.6], where \(\lambda \succ \alpha \) means \(\lambda \succeq \alpha \) and \(\lambda \not \sim \alpha \). The \(D(R_A) \)-module \[2\] is a simple quotient of \(M(\alpha) \), and hence a realization of \(L(\alpha) \). In particular, the set of weights of \(L(\alpha) \) is

\[\{ \lambda \in \mathbb{C}^d : \lambda \sim \alpha \} \]

Theorem 4.4 (cf. Lemma 3.1.9 (6) in \[12\]). \(L(\alpha) \simeq L(\beta) \) if and only if \(\alpha \sim \beta \).

Proof. By the realization \([2]\), \(L(\alpha) = L(\beta) \) if \(\alpha \sim \beta \).

If \(\alpha \not \sim \beta \), then \(L(\alpha) \) and \(L(\beta) \) have different weights. Hence \(L(\alpha) \neq L(\beta) \).

Proposition 4.5. Let \(M \) be a \(\mathbb{Z}^d \)-graded simple left \(D(R_A) \)-module. Then \(M \) is isomorphic to \(L(\alpha) \) for some \(\alpha \) as a left \(D(R_A) \)-module.

Proof. Recall that \(D(R_A)_0 = \mathbb{C}[s] \). First we show that each nonzero \(M_\lambda \) is a simple \(\mathbb{C}[s] \)-module. Suppose that \(N_\lambda \) is a nontrivial \(\mathbb{C}[s] \)-submodule of \(M_\lambda \). Put \(N := \bigoplus_{a \in \mathbb{Z}^d} N_{\lambda + a} = \bigoplus_{a \in \mathbb{Z}^d} D(R_A)_a N_\lambda \). Then \(N \) is a nontrivial \(\mathbb{Z}^d \)-graded submodule of \(M \), which contradicts the assumption.

Suppose that \(M_\lambda \neq 0 \). By the first paragraph, there exists \(\alpha \in \mathbb{C}^d \) such that \(M_\lambda \simeq \mathbb{C}[s]/m_\alpha \) as \(\mathbb{C}[s] \)-modules. Let \(M[\lambda - \alpha] \) be the \(\mathbb{Z}^d \)-graded \(D(R_A) \)-module shifted by \(\lambda - \alpha \), i.e., \(M[\lambda - \alpha]_\mu = M_{\mu + \lambda - \alpha} \). Then \(M[\lambda - \alpha] = \bigoplus_{\mu \in \mathbb{Z}^d} M[\lambda - \alpha]_\mu \) and \(M[\lambda - \alpha]_{\alpha + a} = D(R_A)_a M_\lambda \). Hence \(M[\lambda - \alpha] \in \mathcal{O} \), and \(M[\lambda - \alpha] \simeq L(\alpha) \in \mathcal{O} \).

4.2. **Right modules.** A right \(D(R_A) \)-module \(M \) is an object of \(R\mathcal{O} \) if \(M \) has a weight decomposition \(M = \bigoplus_{\lambda \in \mathbb{C}^d} M_\lambda \) with each \(M_\lambda \) finite-dimensional, where

\[M_\lambda = \{ x \in M : x.f(s) = f(-\lambda)x \quad (\forall f \in \mathbb{C}[s]) \} \]

We can make a parallel argument about the categories \(\mathcal{O} \) and \(R\mathcal{O} \). Indeed we shall show that there exists a duality functor between them.

For \(\alpha \in \mathbb{C}^d \), set

\[R M(\alpha) := D(R_A)/(s - \alpha)D(R_A) \]

Then \(R M(\alpha) = \bigoplus_{\lambda \in \mathbb{C}^d} R M(\alpha)_{\lambda} \), and \(R M(\alpha) \in B\mathcal{O} \).

The following proposition is proved in the same way as Proposition \[13\].

Proposition 4.6.

1. \(\text{Hom}_{D(R_A)}(R M(\alpha), M) = M_{-\alpha} \) for \(M \in B\mathcal{O} \).
2. \(R M(\alpha) \) is a projective object in \(B\mathcal{O} \).
3. \(R M(\alpha) \) has a unique simple quotient (denoted by \(R L(\alpha) \)).
4. All simple objects in \(B\mathcal{O} \) are of the form \(R L(\alpha) \).
5. The natural projection \(R M(\alpha) \to R L(\alpha) \) is the projective cover.
(6) $RM(\alpha) \simeq RM(\beta)$ if and only if $RL(\alpha) \simeq RL(\beta)$.

The ring $D(R_A)$ is a subring of $\mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}][\partial_1, \ldots, \partial_d]$, where we can take formal adjoint operators, and thus we can consider a right $D(R_A)$-module

$$\mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]t^\alpha dt.$$

Here the right action of $P = \sum a^t f_a(s)$ on this module is defined by

$$\left(g(t) \frac{dt}{t} \right)P := P^*(g) \frac{dt}{t},$$

where $P^* = \sum a^t f_a(-s)t^a$, and recall that $s_i = t_i\partial_i \ (i = 1, \ldots, d)$.

Then

$$(3) \bigoplus_{\beta \prec \alpha} \mathbb{C}t^{-\beta} \frac{dt}{t} / \bigoplus_{\beta \preceq \alpha} \mathbb{C}t^{-\beta} \frac{dt}{t}.$$

is a realization of $RL(\alpha)$.

Let $M \in \mathcal{O}(R\mathcal{O})$. Then $\text{Hom}_\mathbb{C}(M, \mathbb{C})$ is a right (left) $D(R_A)$-module. Define a right (left) $D(R_A)$-submodule M^* of $\text{Hom}_\mathbb{C}(M, \mathbb{C})$ by

$$M^* := \bigoplus_{\lambda} M_{\lambda}^*, \quad M_{\lambda}^* := \text{Hom}_\mathbb{C}(M_{-\lambda}, \mathbb{C}).$$

Then $*: \mathcal{O} \to R\mathcal{O} \quad (*: \mathcal{O} \to \mathcal{O})$ is a duality functor. Hence we have the following proposition.

Proposition 4.7.

1. $\text{Hom}_{D(R_A)}(M, R\mathcal{M}(\alpha)^*) = \text{Hom}_\mathbb{C}(M_\alpha, \mathbb{C})$ for $M \in \mathcal{O}$.
2. $R\mathcal{M}(\alpha)^*$ is an injective object in \mathcal{O}.
3. $R\mathcal{M}(\alpha)^*$ has a unique simple subobject $RL(\alpha)^*$ in \mathcal{O}.
4. $L(\alpha) \simeq RL(\alpha)^*$.
5. The natural inclusion $RL(\alpha)^* \to R\mathcal{M}(\alpha)^*$ is the injective hull.
6. $L(\alpha) \simeq L(\beta)$ if and only if $RL(\alpha) \simeq RL(\beta)$.

Proof. (4) follows from the fact that two simple modules $L(\alpha)$ and $RL(\alpha)^*$ have the same weight spaces.

The other statements are clear. \qed

5. **A-hypergeometric systems and Category \mathcal{O}**

We have proved that the classification of A-hypergeometric systems and that of simple modules $L(\alpha)$ (or $RL(\alpha)$) are the same, by showing that simple modules $L(\alpha)$ are classified according to the equivalence relation \sim in Theorem 4.4. In this section, we make another way to prove
the coincidence of the classifications; we connect \(A\)-hypergeometric systems \(H_A(\alpha)\) and right \(D(R_A)\)-modules \(M(\alpha)\) by functors. This proof is intrinsic, and hence more desirable.

5.1. The bimodule \(D(R, R_A)\). In this subsection, we decompose the \((D(R_A), D(R))\)-bimodule \(D(R, R_A)\) into its \(\mathbb{Z}^d\)-graded parts similarly to Theorem 2.1.

Let \(\mathbb{C}[x, x^{-1}]\) denote the Laurent polynomial ring \(\mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]\). By [1, p. 31], we have

\[
D(R, R_A) = \{ P \in D(\mathbb{C}[x, x^{-1}], \mathbb{C}[t, t^{-1}]) : P(R) \subseteq R_A \}.
\]

From [17] 1.3 (e),

\[
D(\mathbb{C}[x, x^{-1}], \mathbb{C}[t, t^{-1}]) = D(\mathbb{C}[x, x^{-1}])/I_A(x)D(\mathbb{C}[x, x^{-1}]),
\]

and hence

\[
D(\mathbb{C}[x, x^{-1}], \mathbb{C}[t, t^{-1}]) = \bigoplus_{a \in \mathbb{Z}^d} t^a \mathbb{C}[\theta_1, \ldots, \theta_n],
\]

where \(\theta_j = x_j \frac{\partial}{\partial x_j} \) (\(j = 1, \ldots, n\)). From [17] 1.3 (e) again, we have

\[
(4) \quad D(R, R_A) = D(R)/I_A(x)D(R).
\]

Note that \(D(R_A) \subseteq D(R, R_A)\) by [11]. Here we identify \(t^a\) and \(s_i\) with \(x_j\) and \(\sum_{j=1}^n a_{ij} \theta_j\) respectively (\(j = 1, \ldots, n, i = 1, \ldots, d\)). In fact, we have

\[
D(R_A) = D(R, R_A) \cap D(\mathbb{C}[t^{\pm 1}])
\]

in \(D(\mathbb{C}[x, x^{-1}], \mathbb{C}[t, t^{-1}])\). The bimodule \(D(R, R_A)\) inherits the \(\mathbb{Z}^d\) grading from \(D(\mathbb{C}[x, x^{-1}], \mathbb{C}[t, t^{-1}])\),

\[
D(R, R_A)_a = D(R, R_A) \cap t^a \mathbb{C}[\theta_1, \ldots, \theta_n].
\]

Proposition 5.1.

\[
D(R, R_A) = \bigoplus_{a \in \mathbb{Z}^d} t^a \mathbb{C}[\tilde{\Omega}_A(a)],
\]

where \(\tilde{\Omega}_A(a) = N^a \cap T_A^{-1}(\Omega_A(a))\), \(T_A\) is the linear map from \(\mathbb{Z}^n\) to \(\mathbb{Z}^d\) defined by \(A\), and \(\mathbb{C}[\tilde{\Omega}_A(a)]\) is the ideal of \(\mathbb{C}[\theta] = \mathbb{C}[\theta_1, \ldots, \theta_n]\) vanishing on \(\tilde{\Omega}_A(a)\).
Proof. We have
\[
\begin{align*}
& t^a p(\theta) \in D(R, R_A)_a \\
& t^a p(\theta)(x^m) \in \mathbb{C}[NA] \quad (\forall m \in \mathbb{N}^n) \\
\Leftrightarrow & \quad p(m)t^{a+Am} \in \mathbb{C}[NA] \quad (\forall m \in \mathbb{N}^n) \\
\Leftrightarrow & \quad a + Am \in NA \text{ or } p(m) = 0 \text{ if } m \in \mathbb{N}^n \\
\Leftrightarrow & \quad p(m) = 0 \quad (\forall m \in \mathbb{N}^n \setminus T_A^{-1}(-a + NA)).
\end{align*}
\]
□

Corollary 5.2. \(D(R, R_A)_a = t^a\mathbb{C}[\theta] \) for all \(a \in NA \).

Proof. In this case \(\Omega(a) = \emptyset \). Hence \(\mathbb{I}(\overline{\Omega_A(a)}) = \mathbb{C}[\theta] \). □

To close this subsection, we describe the weight decomposition of \(RH_A(\alpha) \). Let
\[
RH_A(\alpha)_\lambda := \{ x \in RH_A(\alpha) : x.(\sum_{j=1}^{n} a_{ij}\theta_j + \lambda_i) = 0 \quad (i = 1, \ldots, d) \}
\]
for \(\lambda = t^i(\lambda_1, \ldots, \lambda_d) \). Note that the weight space \(D(R, R_A)_a \) is a \((\mathbb{C}[s], \mathbb{C}[\theta]) \)-bimodule, since \(D(R_A)_0 = \mathbb{C}[s] \) and \(D(R)_0 = \mathbb{C}[\theta] \). We have
\[
RH_A(\alpha) = \bigoplus_{a \in \mathbb{Z}^d} RH_A(\alpha)_{-\alpha + a},
\]
\[
= \bigoplus_{a \in \mathbb{Z}^d} D(R, R_A)_a/(s - \alpha)D(R, R_A)_a
\]
\[
= \bigoplus_{a \in \mathbb{Z}^d} D(R, R_A)_a/D(R, R_A)_a(A\theta + a - \alpha)
\]
\[
= \bigoplus_{a \in \mathbb{Z}^d} t^a \left(\mathbb{I}(\overline{\Omega}(a))/\mathbb{I}(\overline{\Omega}(a))(A\theta + a - \alpha) \right).
\]

5.2. Functors. Let \(\text{Mod}^R(D(R_A)) \) denote the category of right \(D(R_A) \)-modules, and \(\text{Mod}^R_A(D(R)) \) the category of right \(D(R) \)-modules supported by the affine toric variety \(V(I_A(x)) \) defined by \(A \). A right \(D(R) \)-module \(N \) is said to be supported by \(V(I_A(x)) \) if for every \(x \in N \) there exists \(m \in \mathbb{N} \) such that \(xI_A(x)^m = 0 \).

Let \(\Phi \) denote the functor from \(\text{Mod}^R(D(R_A)) \) to \(\text{Mod}^R_A(D(R)) \) defined by
\[
\Phi(M) := M \otimes_{D(R_A)} D(R, R_A),
\]
and $Ψ$ the functor from $\text{Mod}^R_A(D(R))$ to $\text{Mod}^R(D(R_A))$ defined by

$$Ψ(N) := \text{Hom}_{D(R)}(D(R, R_A), N) = \{x ∈ N : xI_A(x) = 0\}.$$

Then $Ψ$ is right adjoint to $Φ$,

$$\text{Hom}_{D(R)}(Φ(M), N) \simeq \text{Hom}_{D(R_A)}(M, Ψ(N)).$$

Remark 5.3. The functor $Φ$ is the direct image functor, for right D-modules, of the closed inclusion

$$V(I_A(x)) = \{x ∈ C^n : f(x) = 0 \quad (∀f ∈ I_A(x))\} → C^n.$$

For a closed embedding between nonsingular varieties, such a direct image functor gives an equivalence of categories, known as Kashiwara’s equivalence (see e.g. [10, Theorem 4.30]). In our case, the affine toric variety $V(I_A(x))$ is singular whenever $n ≠ d$, and the cone $R_{≥0}A$ generated by A is strongly convex.

We have

$$Φ(D(R_A)) = D(R, R_A),$$

and

$$Ψ(D(R, R_A)) = \text{End}_{D(R)}(D(R)/I_A(x)D(R)) = D(R_A).$$

The following proposition is immediate from the definitions.

Proposition 5.4. We have

$$Φ(^RM(\alpha)) = ^RHA(\alpha).$$

Hence, if $^RM(\alpha) \simeq ^RM(\beta)$, then $^RHA(\alpha) \simeq ^RHA(\beta)$.

To show the inverse of Proposition 5.4, we need the following lemma.

Lemma 5.5.

$$\text{End}_{D(R)}(^RHA(\alpha)) = Cid.$$

Proof. Let $ψ ∈ \text{End}_{D(R)}(^RHA(\alpha))$. Since $ψ(\overline{1}) ∈ ^RHA(\alpha)−\alpha$, there exists a polynomial $f(θ) ∈ C[θ]$ such that $ψ(\overline{1}) = \overline{f(θ)}$. Here \overline{f} is the element of $^RHA(\alpha)$ represented by $P ∈ D(R)$. Let $u, v ∈ N^n$ satisfy $Au = Av$. Then

$$0 = ψ(x^u − x^v) = ψ(\overline{1})(x^u − x^v) = \overline{f(θ)(x^u − x^v)} = \overline{t^Au(f(θ + u) − f(θ + v))}.$$

By [5], we have

$$f(θ + u) − f(θ + v) ∈ (Aθ + Au − α)C[θ]$$
for $u,v \in \mathbb{N}^n$ with $Au = Av$. Hence $f(\theta) - f(\theta + l) \in (A\theta - \alpha)\mathbb{C}[\theta]$ for all $l \in L$, where $L = \{ l \in \mathbb{Z}^n : Al = 0 \}$. Letting $A\gamma = \alpha$ ($\gamma \in \mathbb{C}^n$), we have $f(\gamma) - f(\gamma + l) = 0$ for all $l \in L$. Thus $f(\gamma + \theta) \in f(\gamma) + (A\theta)\mathbb{C}[\theta]$, or equivalently

$$f(\theta) \in f(\gamma) + (A\theta - \alpha)\mathbb{C}[\theta].$$

Hence $\psi(\overline{1}) = \overline{f(\theta)} = f(\gamma)$. Therefore $\psi = f(\gamma)id$.

Let $\beta - \alpha \in \mathbb{Z}^d$, and $Q \in D(R_A)_{\beta - \alpha}$. Then

$$\phi_Q : ^R M(\alpha) \ni \overline{F} \mapsto \overline{QP} \in ^R M(\beta)$$

(6)

$$\psi_Q : ^R H_A(\alpha) \ni \overline{P} \mapsto \overline{QP} \in ^R H_A(\beta)$$

(7)

are well-defined morphisms. Clearly $\psi_Q = \Phi(\phi_Q)$.

Lemma 5.6. The natural map

$$D(R_A)_{\beta - \alpha} \ni Q \mapsto \phi_Q \in \text{Hom}_{D(R_A)}(^R M(\alpha), ^R M(\beta))$$

is surjective.

Proof. Let $\phi \in \text{Hom}_{D(R_A)}(^R M(\alpha), ^R M(\beta))$. Since $\phi(\overline{1}) \in ^R M(\beta)_{-\alpha}$, there exists $Q \in D(R_A)_{\beta - \alpha}$ such that $\phi(\overline{1}) = \overline{Q}$. Then $\phi = \phi_Q$. □

As to $\text{Hom}_{D(R)}(^R H_A(\alpha), ^R H_A(\beta))$, we have the following by Lemma 5.5.

Corollary 5.7. Suppose that $^R H_A(\alpha) \simeq ^R H_A(\beta)$. Then

$$\dim_{\mathbb{C}} \text{Hom}_{D(R)}(^R H_A(\alpha), ^R H_A(\beta)) = 1,$$

and the natural map $D(R_A)_{\beta - \alpha} \to \text{Hom}_{D(R)}(^R H_A(\alpha), ^R H_A(\beta))$ is surjective.

Proof. The first statement is immediate from Lemma 5.5. The second follows from the fact that in this case the image of the map is not zero by Lemma 5.3. □

Now we are in position of proving the inverse of Proposition 5.4. Note that there exists a natural morphism $M \to \Psi(\Phi(M))$ for $M \in \text{Mod}_R(D(R_A))$.

Proposition 5.8. Suppose that $^R H_A(\alpha) \simeq ^R H_A(\beta)$. Then

$$\text{Hom}_{D(R_A)}(^R M(\alpha), ^R M(\beta)) \simeq \text{Hom}_{D(R)}(^R H_A(\alpha), ^R H_A(\beta)).$$

Proof. Corollary 5.7 states that there exist $Q, R \in D(R_A)$ such that

$$\psi_Q : ^R H_A(\alpha) \ni \overline{P} \mapsto \overline{QP} \in ^R H_A(\beta)$$

$$\psi_R : ^R H_A(\beta) \ni \overline{P} \mapsto \overline{RP} \in ^R H_A(\alpha)$$

satisfy $\psi_R \circ \psi_Q = id_{^R H_A(\alpha)}$ and $\psi_Q \circ \psi_R = id_{^R H_A(\beta)}$.
The image of the natural morphism $\mathcal{R} \mathcal{M}(\alpha) \to \Psi(\Phi(\mathcal{R} \mathcal{M}(\alpha))) = \Psi(\mathcal{R} H_A(\alpha))$ is $1_{\alpha} D(R_A)$, where

$$\Psi(\mathcal{R} H_A(\alpha)) = \text{Hom}_{D(R)}(D(R, R_A), \mathcal{R} H_A(\alpha)) \ni 1_{\alpha} : \overline{P} \mapsto \overline{P}.$$

The isomorphism ψ_Q induces an isomorphism $\Psi(\psi_Q) : \text{Hom}_{D(R)}(D(R, R_A), \mathcal{R} H_A(\alpha)) \to \text{Hom}_{D(R)}(D(R, R_A), \mathcal{R} H_A(\beta)).$

We show that the restriction of $\Psi(\psi_Q)$ to $1_{\alpha} D(R_A)$ gives an isomorphism $1_{\alpha} D(R_A) \cong 1_{\beta} D(R_A)$. By definition $\Psi(\psi_Q)(1_{\alpha}) = 1_{\beta} Q \in 1_{\beta} D(R_A)$. Hence $\Psi(\psi_Q)(1_{\alpha} D(R_A)) \subseteq 1_{\beta} D(R_A)$. In addition, we have $1_{\beta} = 1_{\beta} Q R = \Psi(\psi_Q)(1_{\alpha} R)$.

Hence $\Psi(\psi_Q)(1_{\alpha} D(R_A)) = 1_{\beta} D(R_A)$. We have thus proved that ψ_Q induces an isomorphism $1_{\alpha} D(R_A) \cong 1_{\beta} D(R_A)$. It is lifted to an isomorphism between their projective covers in $\mathcal{R} \mathcal{O}$, $\mathcal{R} M(\alpha) \cong \mathcal{R} M(\beta)$, which is clearly ϕ_Q. Thus ϕ_Q and ψ_Q correspond to each other.

Combining Propositions 5.4 and 5.8, we have the following.

Corollary 5.9. $\mathcal{R} M(\alpha) \cong \mathcal{R} M(\beta)$ if and only if $\mathcal{R} H_A(\alpha) \cong \mathcal{R} H_A(\beta)$.

We summarize the classification.

Theorem 5.10. The following are equivalent:

1. $\alpha \sim \beta$.
2. $H_A(\alpha) \cong H_A(\beta)$.
3. $\mathcal{R} H_A(\alpha) \cong \mathcal{R} H_A(\beta)$.
4. $M(\alpha) \cong M(\beta)$.
5. $\mathcal{R} M(\alpha) \cong \mathcal{R} M(\beta)$.
6. $L(\alpha) \cong L(\beta)$.
7. $\mathcal{R} L(\alpha) \cong \mathcal{R} L(\beta)$.

6. **Primitive ideals**

In general, a left primitive ideal is not necessarily a right primitive ideal. In our case, however, we have the following proposition thanks to the duality.

Proposition 6.1. For each $\alpha \in \mathbb{C}^d$, the annihilators $\text{Ann}(L(\alpha))$ and $\text{Ann}(\mathcal{R} L(\alpha))$ coincide, i.e.,

$$\text{Ann}(L(\alpha)) = \text{Ann}(\mathcal{R} L(\alpha)).$$

Proof. By definition, it is clear that $\text{Ann} M \subseteq \text{Ann} M^*$.
for $M \in \mathcal{O}(R)$. Since $RL(\alpha)^* = L(\alpha)$ and $L(\alpha)^* = RL(\alpha)$, the statement follows.

Hence the set of annihilators of \mathbb{Z}^d-graded simple left $D(R_A)$-modules and that of \mathbb{Z}^d-graded simple right $D(R_A)$-modules are the same. We denote it by $\text{Prim}(D(R_A))$,

$$\text{Prim}(D(R_A)) = \{ \text{Ann}(L(\alpha)) : \alpha \in \mathbb{C}^d \}.$$

Next we describe the graded components of the annihilator ideal $\text{Ann} L(\alpha)$. For $\alpha \in \mathbb{C}^d$ and $a \in \mathbb{Z}^d$, we define a subset $\Lambda_{[\alpha]}(a)$ of $\alpha + \mathbb{Z}^d$ by

$$\Lambda_{[\alpha]}(a) := \{ \beta \in \alpha + \mathbb{Z}^d : \beta \sim \alpha, \beta + a \sim \alpha \}.$$

Proposition 6.2 (Proposition 3.2.2 in [12]). Let

$$(\text{Ann} L(\alpha))_a = \text{Ann} L(\alpha) \cap D(R_A)_a$$

for $a \in \mathbb{Z}^d$. Then

$$(\text{Ann} L(\alpha))_a = t^a(\Omega(a) \cup \Lambda_{[\alpha]}(a))$$

for all a.

Proof. Let $\beta \sim \alpha$, and let $0 \neq v_{\beta} \in L(\alpha)_{\beta}$. Then

$$\text{Ann}(v_{\beta})_a = \begin{cases} D(R_A)_a & (\beta + a \not\sim \alpha) \\ D(R_A)_a \cap t^a(s - \beta) & (\beta + a \sim \alpha) \end{cases}$$

Hence

$$(\text{Ann} L(\alpha))_a = \bigcap_{\beta \sim \alpha, \beta + a \sim \alpha} D(R_A)_a \cap t^a(s - \beta).$$

We have thus proved the assertion.}

7. **Finiteness**

In this section, we prove that the set $\text{Prim}(D(R_A))$ is finite. If $\alpha - \beta \notin \mathbb{Z}^d$, then $\alpha \not\sim \beta$, and hence there exist infinitely many isomorphism classes of simple objects $L(\alpha)$. We however show that if we properly perturb a parameter α then the annihilator ideal $\text{Ann} L(\alpha)$ remains unchanged.

First we recall the primitive integral support function of a facet (maximal proper face) of the cone $\mathbb{R}_{\geq 0}A$. We denote by \mathcal{F} the set of facets of the cone $\mathbb{R}_{\geq 0}A$. Given $\sigma \in \mathcal{F}$, we denote by F_{σ} the primitive integral support function of σ, i.e., F_{σ} is a uniquely determined linear form on \mathbb{R}^d satisfying

1. $F_{\sigma}(\mathbb{R}_{\geq 0}A) \geq 0$,

linearization of any face of \(R_\sigma \).

Example 7.1. Let

\[
\begin{align*}
F(\alpha) : &= \{ \sigma \in F : F_\sigma(\alpha) \in \mathbb{Z} \}, \\
V(\alpha) : &= \bigcap_{\sigma \in F(\alpha)} (F_\sigma = 0).
\end{align*}
\]

Clearly \(\mu \in V(\alpha) \) implies \(F(\alpha) \subseteq F(\alpha + \mu) \). Note that \(V(\alpha) \) may not be a linearization of a face.

Next we briefly review the finite sets \(E_\tau(\alpha) \) defined in [13]. Associated to a parameter vector \(\alpha \in \mathbb{C}^d \) and a face \(\tau \) of the cone \(\mathbb{R}_{\geq 0}A \), \(E_\tau(\alpha) \) was defined by

\[
E_\tau(\alpha) = \{ \lambda \in \mathbb{C}(A \cap \tau)/\mathbb{Z}(A \cap \tau) : \alpha - \lambda \notin NA + \mathbb{Z}(A \cap \tau) \}.
\]

The set \(E_\tau(\alpha) \) has at most \(\# [\mathbb{Q}(A \cap \tau) \cap \mathbb{Z}^d : \mathbb{Z}(A \cap \tau)] \) elements. Indeed, suppose that \(\lambda \in \mathbb{C}(A \cap \tau) \) satisfies \(\alpha - \lambda \in \mathbb{Z}^d \). Then \(E_\tau(\alpha) \) is a subset of

\[
(\lambda + \mathbb{Q}(A \cap \tau) \cap \mathbb{Z}^d)/\mathbb{Z}(A \cap \tau)
\]

(see [13 Proposition 2.3]). For a facet \(\sigma \), \(E_\sigma(\alpha) = \emptyset \) if and only if \(F_\sigma(\alpha) \in F_\sigma(NA) \), and, for faces \(\tau \preceq \tau' \), \(E_\tau(\alpha) = \emptyset \) implies \(E_{\tau'}(\alpha) = \emptyset \) (see [13 Proposition 2.2]).

We have already introduced a partial ordering \(\preceq \) into the parameter space \(\mathbb{C}^d \) in [11]. The following is its original definition in [15 Definition 4.1.1]: For \(\alpha, \beta \in \mathbb{C}^d \), we write

\[
\alpha \preceq \beta \quad \text{if} \quad E_\tau(\alpha) \subseteq E_\tau(\beta) \quad \text{for all faces} \ \tau.
\]

Hence \(\alpha \sim \beta \) if and only if \(E_\tau(\alpha) = E_\tau(\beta) \) for all faces \(\tau \). Note that \(\alpha + \mathbb{Z}^d \) has only finitely many equivalence classes, since \(E_\tau(\alpha) \) and
Lemma 7.2. Suppose that \(\mu \in V(\alpha) \) and \(F(\alpha + \mu) = F(\alpha) \). Let \(\tau \) be a face of the cone \(\mathbb{R}_{\geq 0}A \). Then \(E_\tau(\alpha + \mu) = \emptyset \) if and only if \(E_\tau(\alpha) = \emptyset \).
Moreover, if \(E_\tau(\alpha) \neq \emptyset \), then
\[
E_\tau(\alpha + \mu) = \mu + E_\tau(\alpha).
\]
Proof. By symmetry, it is sufficient to prove that if \(\lambda \in E_\tau(\alpha) \) then \(\mu \in C(A \cap \tau) \) and \(\lambda + \mu \in E_\tau(\alpha + \mu) \).

Suppose that \(\lambda \in E_\tau(\alpha) \). Then \(F_\sigma(\alpha) = F_\sigma(\alpha - \lambda) \in F_\sigma(N_A) \subseteq N \) for all facets \(\sigma \geq \tau \). Hence \(C(A \cap \tau) \) is the intersection of a subset of \(\mathcal{F}(\alpha) \), and thus \(C(A \cap \tau) \supseteq V(\alpha) \). This proves \(\mu \in C(A \cap \tau) \). Since \(\alpha + \mu - (\lambda + \mu) = \alpha - \lambda \in NA + Z(A \cap \tau) \), we see \(\lambda + \mu \in E_\tau(\alpha + \mu) \).

Corollary 7.3. Suppose that \(\mu \in V(\alpha) \) and \(F(\alpha + \mu) = F(\alpha) \). Then \(\alpha \sim \beta \) if and only if \(\alpha + \mu \sim \beta + \mu \).
Proof. If \(\alpha - \beta \notin ZA \), then \(\alpha \not\sim \beta \) and \(\alpha + \mu \not\sim \beta + \mu \).

Suppose that \(\alpha - \beta \in ZA \). Then \(F(\alpha) = F(\beta) \), and \(F(\alpha + \mu) = F(\beta + \mu) \). The assertion follows from Lemma 7.2.

Proposition 7.4. Suppose that \(\mu \in V(\alpha) \) and \(F(\alpha + \mu) = F(\alpha) \). Then
\[
(\text{Ann}(L(\alpha))) = \text{Ann}(L(\alpha + \mu)).
\]
Proof. Recall Proposition 6.2
\[
(\text{Ann}(L(\alpha)))_\alpha = \mathfrak{a}_\alpha(\Omega(\alpha) \cup \Lambda_{|\alpha|}(\alpha)),
\]
where \(\Lambda_{|\alpha|}(\alpha) = \{ \beta : \beta \sim \beta + a \sim \alpha \} \). We prove that
\[
ZC(\Lambda_{|\alpha|+\mu}(\alpha)) = ZC(\Lambda_{|\alpha|}(\alpha)),
\]
where \(ZC \) stands for Zariski closure. Since \(\Lambda_{|\alpha|+\mu}(\alpha) = \emptyset \) if and only if \(\Lambda_{|\alpha|}(\alpha) = \emptyset \) by Corollary 7.3, we suppose that they are not empty. Then again by Corollary 7.3
\[
\Lambda_{|\alpha|+\mu}(\alpha) = \mu + \Lambda_{|\alpha|}(\alpha).
\]
Hence for the proof it suffices to show that
\[
V(\alpha) + ZC(\Lambda_{|\alpha|}(\alpha)) = ZC(\Lambda_{|\alpha|}(\alpha)).
\]

Let \(\beta \in \Lambda_{|\alpha|}(\alpha) \), and \(\mu' \in V(\alpha) \cap ZA \). Put \(v := \prod_{\mathbb{C}_\tau \not\subseteq V(\alpha)} [ZA \cap \mathbb{Q}_\tau : Z(A \cap \tau)] \). We show that \(\beta + v\mu' \in \Lambda_{|\alpha|}(\alpha) \).

Suppose that \(\mathbb{C}_\tau \not\subseteq V(\alpha) \). Then there exists a facet \(\sigma \geq \tau \) such that \(\mathbb{C}_\sigma \not\supseteq V(\alpha) \). Thus \(F_\sigma(\alpha) \notin Z \). Note that \(v\mu', a, \alpha - \beta \in ZA \), since \(\alpha \sim \beta \). Hence \(F_\sigma(\beta), F_\sigma(\beta + v\mu'), F_\sigma(\beta + a + v\mu') \notin Z \). This
implies \(E_\sigma(\beta) = E_\sigma(\beta + v\mu') = E_\sigma(\beta + a + v\mu') = \emptyset = E_\sigma(\alpha) \), and
\(E_\tau(\beta) = E_\tau(\beta + v\mu') = E_\tau(\beta + a + v\mu') = \emptyset = E_\tau(\alpha) \) by Proposition \(2.2 \).

Next suppose that \(C_\tau \supseteq V(\alpha) \). Then
\(E_\tau(\beta + v\mu') = E_\tau(\beta) \), and
\(E_\tau(\beta + a + v\mu') = E_\tau(\beta + a) \), since \(v\mu' \in Z(A \cap \tau) \).

Hence \(\beta + v\mu' \in \Lambda(\alpha) \). We have thus proved that

\[
\Lambda(\alpha) + v(\alpha) \cap ZA \subseteq \Lambda(\alpha) \cap ZA.
\]

Taking the Zariski closures, we see that

\[
ZC(\Lambda(\alpha)) + V(\alpha) \subseteq ZC(\Lambda(\alpha))
\]

The other inclusion is trivial. \(\square \)

Lemma 7.5. Let \(\mathcal{F}' \) be a subset of \(\mathcal{F} \), and let \(V(\mathcal{F}') \) be the intersection
\(\bigcap_{\sigma \in \mathcal{F}'}(F_\sigma = 0) \). Then

\[
\{ \alpha : \mathcal{F}(\alpha) \supseteq \mathcal{F}' \}/(ZA + V(\mathcal{F}'))
\]

is finite.

Proof. The \(\mathbb{Z} \)-module \(ZA + V(\mathcal{F}')/V(\mathcal{F}') \) is a \(\mathbb{Z} \)-submodule of \(\{ \alpha : \mathcal{F}(\alpha) \supseteq \mathcal{F}' \}/V(\mathcal{F}') \). Both of them are free of rank \(\dim \mathbb{C}^d/V(\mathcal{F}') \). Hence the index is finite. \(\square \)

Theorem 7.6. The set \(\text{Prim}(D(R_A)) \) is finite.

Proof. It suffices to show that the set

\[
\text{Prim}_{\mathcal{F}'} := \{ \text{Ann} L(\alpha) : \mathcal{F}(\alpha) = \mathcal{F}' \}
\]

is finite for each \(\mathcal{F}' \subseteq \mathcal{F} \).

Let \(\mathcal{F}(\alpha) = \mathcal{F}' \). Let \(\alpha_1, \ldots, \alpha_k \) be a complete set of representatives of \(\{ \alpha : \mathcal{F}(\alpha) \supseteq \mathcal{F}' \}/(ZA + V(\mathcal{F}')) \). We take the representatives so that if a coset \(\alpha_j + ZA + V(\mathcal{F}') \) has an element \(\beta \) with \(\mathcal{F}(\beta) = \mathcal{F}' \) then \(\mathcal{F}(\alpha_j) = \mathcal{F}' \). Then there exist \(j, a \in ZA \), and \(\mu \in V(\mathcal{F}') \) such that

\[
\alpha = \alpha_j + a + \mu.
\]

We have \(\mathcal{F}' = \mathcal{F}(\alpha_j) = \mathcal{F}(\alpha_j + a) \). By Proposition \(7.4 \) \(\text{Ann} L(\alpha) = \text{Ann} L(\alpha_j + a) \). Since each \(\alpha_j + ZA \) has only finitely many equivalence classes, \(\text{Prim}_{\mathcal{F}'} \) is finite. \(\square \)

We exhibit a computation of \(\text{Prim}(D(R_A)) \) in Example \(7.1 \).

8. Simplicity

In this section, we discuss the simplicity of \(D(R_A) \). In the first subsection, we consider the conditions: the scoredness and the Serre's \((S_2) \). We prove that the simplicity of \(D(R_A) \) implies the scoredness, and that all \(D(R_A)_\alpha \) are singly generated \(\mathbb{C}[s] \)-modules if and only if
the condition \((S_2)\) is satisfied. In the second subsection, we give a necessary and sufficient condition for the simplicity (Theorem \ref{thm:simplicity}).

We start this section by noting the \(\mathbb{Z}^d\)-graded version of a well-known fact.

Lemma 8.1. The ring \(D(R_A)\) is simple if and only if \(\text{Ann} \ L(\alpha) = \{0\}\) for all \(\alpha \in \mathbb{C}^d\).

Proof. First note that any two-sided ideal of \(D(R_A)\) is \(\mathbb{Z}^d\)-homogeneous.\(\) An ideal \(I\) is said to be \(\mathbb{Z}^d\)-homogeneous if \(I = \bigoplus_{a \in \mathbb{Z}^d} I \cap D(R_A)a\).

It is enough to show that any maximal ideal of \(D(R_A)\) is the annihilator of a simple \(\mathbb{Z}^d\)-graded module. Let \(I\) be a maximal ideal of \(D(R_A)\). Let \(J\) be a maximal \(\mathbb{Z}^d\)-homogeneous left ideal containing \(I\). Then \(D(R_A)/J\) is a simple \(\mathbb{Z}^d\)-graded \(D(R_A)\)-module, and \(\text{Ann}(D(R_A)/J)\) contains \(I\). Since \(I\) is maximal, we obtain \(I = \text{Ann}(D(R_A)/J)\). \(\square\)

8.1. **Scored semigroups.** We recall the definition of a scored semigroup [13]. The semigroup \(N_A\) is said to be scored if

\[
N_A = \bigcap_{\sigma \in \mathcal{F}} \{ a \in \mathbb{Z}^d : F_\sigma(a) \in F_\sigma(NA) \}.
\]

We know that \(E_\sigma(a) \neq \emptyset\) if and only if \(F_\sigma(a) \in F_\sigma(NA)\) ([13 Proposition 2.2]). Hence a semigroup \(NA\) is scored if and only if

\[
NA = \{ a \in \mathbb{Z}^d : E_\sigma(a) \neq \emptyset \text{ for all } \sigma \in \mathcal{F} \}.
\]

In the following lemma, we characterize the subset \(NA\) of \(\mathbb{Z}^d\) in terms of the finite sets \(E_\tau(a)\).

Lemma 8.2.

\[
NA = \{ a \in \mathbb{Z}^d : 0 \in E_\tau(a) \text{ for all faces } \tau \}.
\]

Proof. Let \(\tau_0\) be the minimal face of \(\mathbb{R}_{\geq 0}A\). We have

\[
\{ a \in \mathbb{Z}A : 0 \in E_\tau(a) \text{ for all faces } \tau \} = \bigcap_\tau (NA + \mathbb{Z}(A \cap \tau)) = NA + \mathbb{Z}(A \cap \tau_0).
\]

If \(\tau_0 = \{0\}\), or if the cone \(\mathbb{R}_{\geq 0}A\) is strongly convex, then clearly \(NA + \mathbb{Z}(A \cap \tau_0) = NA\). Next suppose \(\tau_0 \neq \{0\}\). Then there exist \(c_j \in \mathbb{Z}_{>0}\) such that \(0 = \sum_{a_j \in A \cap \tau_0} c_j a_j\). Let \(b \in \mathbb{Z}(A \cap \tau_0)\) and \(b = \sum d_j a_j\) with \(d_j \in \mathbb{Z}\). Take \(N \in \mathbb{N}\) so that \(Nc_j + d_j > 0\) for all \(j\). Then \(b = \sum (Nc_j + d_j)a_j \in NA\). \(\square\)
Set

\[(15) \quad S_1 := \{ a \in \mathbb{Z}^d : E_\sigma(a) \neq \emptyset (\forall \sigma \in \mathcal{F}) \},\]

\[(16) \quad S_2 := \{ a \in \mathbb{Z}^d : E_\sigma(a) \ni 0 (\forall \sigma \in \mathcal{F}) \}.\]

Then \(S_2 = \bigcap_{\sigma \in \mathcal{F}} (NA + \mathbb{Z}(A \cap \sigma))\), and

\[NA \subset S_2 \subset S_1\]

by (15), (16), and Lemma 8.2.

Remark 8.3. (1) Serre’s condition \((S_2)\) is the equality \(NA = S_2\).

(2) The semigroup \(NA\) is scored if and only if \(NA = S_1\).

(3) By the proof of Lemma 8.2, we have

\[NA = \{ a \in \mathbb{Z}^d : E_{\tau_0}(a) \ni 0 \},\]

where \(\tau_0\) is the minimal face.

Our first aim in this subsection is to show that the simplicity of \(D(R_A)\) implies the scoredness of \(NA\). We use the following lemma for the proof.

Lemma 8.4.

\[\dim ZC(\Omega(a)) < d \text{ for all } a \in \mathbb{Z}^d.\]

Proof. Take \(M\) so that

\[\{a \in \mathbb{Z}A : F_\sigma(a) \geq M\} \subseteq NA\]

(see e.g. [16, Lemma 3.6]). Then

\[ZC(\Omega(a)) \subseteq \bigcup_{\sigma \in \mathcal{F}, F_\sigma(a) < M} \bigcup_{m=0}^{M-F_\sigma(a)-1} (F_\sigma = m).\]

\[\square\]

Proposition 8.5. If \(D(R_A)\) is simple, then \(NA\) is scored.

Proof. We know

\[S_1 = \bigcap_{\sigma \in \mathcal{F}} \{ a \in \mathbb{Z}A : F_\sigma(a) \in F_\sigma(NA) \}.\]

Take \(M\) as in the proof of Lemma 8.4. Then we have

\[(17) \quad ZC(S_1 \setminus NA) \subseteq \bigcup_{\sigma \in \mathcal{F}} \bigcup_{m=0}^{M-1} (F_\sigma = m).\]

Suppose that \(NA\) is not scored, and \(a \in S_1 \setminus NA\). Since \(S_1 \setminus NA\) is a union of some equivalence classes, we have \(\Lambda_{[a]}(b) \subseteq S_1 \setminus NA\) for all \(b \in \mathbb{Z}A = \mathbb{Z}^d\). Hence by (17) \(\dim ZC(\Lambda_{[a]}(b)) < d\) for all \(b\). By Lemma
we have $\dim ZC(\Omega(\mathbf{b}) \cup \Lambda_{\{\alpha\}}(\mathbf{b})) < d$ for all \mathbf{b}. Hence $\text{Ann} L(\alpha) \neq 0$ by Proposition 6.2. \qed

Remark 8.6. By Van den Bergh [20, Theorem 6.2.5], if $D(R_A)$ is simple, then R_A is Cohen-Macaulay. Example 9.2 shows that NA being scored and R_A being Cohen-Macaulay are not enough for the simplicity of $D(R_A)$.

Now we prove the fact announced in Remark 4.2.

Proposition 8.7. The $\mathbb{C}[s]$-modules $D(R_A)_{\mathbf{a}}$ are singly generated for all $\mathbf{a} \in \mathbb{Z}^d$ if and only if the semigroup NA satisfies (S_2).

Proof. First we paraphrase the condition (S_2). In [16, Proposition 3.4], we have shown that there exist $(\mathbf{b}_i, \tau_i) (i = 1, \ldots, l)$, where $\mathbf{b}_i \in \mathbb{R}_{\geq 0}A \cap \mathbb{Z}^d$ and τ_i is a face of the cone $\mathbb{R}_{\geq 0}A$, such that

$$
(\mathbf{b}_i + \mathbb{Z}(A \cap \tau_i)) \cap \mathbb{R}_{\geq 0}A.
$$

We may assume that this decomposition is irredundant. Then $\{\mathbf{b}_i + \mathbb{Z}(A \cap \tau_i) : i = 1, \ldots, l\}$ is unique. By [16, Lemma 3.6], for $\sigma \in \mathcal{F}$,

$$
NA + \mathbb{Z}(A \cap \sigma) = [\mathbb{R}_{\geq 0}A + \mathbb{R}(A \cap \sigma)] \cap \mathbb{Z}^d \cap \bigcup_{\tau_i = \sigma}(\mathbf{b}_i + \mathbb{Z}(A \cap \tau_i)).
$$

Hence we obtain

$$
\bigcap_{\sigma \in \mathcal{F}}(NA + \mathbb{Z}(A \cap \sigma)) = \mathbb{R}_{\geq 0}A \cap \mathbb{Z}^d \cap \bigcup_{\tau_i \in \mathcal{F}}(\mathbf{b}_i + \mathbb{Z}(A \cap \tau_i)).
$$

This means that NA satisfies (S_2) if and only if each τ_i appearing in (18) is a facet.

Suppose that NA satisfies (S_2). Then, by the previous paragraph and [16, Proposition 5.1], we have

$$
ZC(\Omega(\mathbf{a})) = \bigcup_{F_{\nu}(\mathbf{a}) < 0} \bigcup_{m < -F_{\nu}(\mathbf{a}), m \in F_{\nu}(NA)} F_{\nu}^{-1}(m) \cup \bigcup_{b_i - \mathbf{a} \in NA + \mathbb{Z}(A \cap \tau_i)} F_{\tau_i}^{-1}(b_i - \mathbf{a}).
$$

Hence $\Omega(\mathbf{a})$ is singly generated.

Next suppose that NA does not satisfy (S_2). Then a face of codimension greater than one appears in the difference (18). Let τ_1 be a face of codimension greater than one, and let $\mathbf{b}_1 + \mathbb{Z}(A \cap \tau_1)$ appear in the difference. Then

$$
ZC(\Omega(\mathbf{b}_1)) = \bigcup_{b_i - \mathbf{b}_1 \in NA + \mathbb{Z}(A \cap \tau_1)} (\mathbf{b}_i - \mathbf{b}_1 + \mathbb{Z}(A \cap \tau_1)).
$$
Lemma 8.8.

Let $\mathcal{C}(A \cap \tau_1)$ be an irreducible component of $\mathcal{Z}(\Omega(b_1))$.

Suppose the contrary. Then there exists i such that

\begin{align}
\mathcal{C}(A \cap \tau_1) \subseteq b_i - b_1 + \mathcal{C}(A \cap \tau_i). \\
\mathcal{C}(A \cap \tau_1) \subseteq \mathbb{N}A + \mathcal{Z}(A \cap \tau_i)
\end{align}

The latter equation (20) means that $b_i - b_1 \in \mathcal{C}(A \cap \tau_i)$ and $\tau_1 \leq \tau_i$. Combining with (19), we have $b_i - b_1 \in \mathcal{Z}(A \cap \tau_i)$. This contradicts the irreducibility of (18). We have thus proved $\mathcal{C}(A \cap \tau_1)$ is an irreducible component of $\mathcal{Z}(\Omega(b_1))$. Hence the ideal $\mathbb{I}(\Omega(b_1))$ is not singly generated.

In the rest of this subsection, we consider the simplicity of R_A and S_1. The following lemma is immediate from the definition of $E_\tau(0)$.

Lemma 8.8.

$$E_\tau(0) = \{0\} \quad \text{for all faces } \tau.$$

Lemma 8.9. Let $a \in \mathbb{Z}^d$. Then there exists $b \in \mathbb{N}A$ such that

$$\mathbb{I}E_\tau(a + b) = [\mathbb{Q}(A \cap \tau) \cap \mathbb{Z}^d : \mathcal{Z}(A \cap \tau)].$$

(In this situation, we write $E_\tau(a + b) = \text{full}.)$

Proof. We may assume that $a \in \mathbb{N}A$. Let $\lambda \in \mathbb{Q}(A \cap \tau) \cap \mathbb{Z}^d / \mathcal{Z}(A \cap \tau)$, take its representative, and denote it by λ again. Write $-\lambda = \sum d_k a_k$ with $d_k \in \mathbb{Z}$. Then $-\sum d_k a_k - \lambda = \sum d_k \leq 0 d_k a_k$. Hence $a + (-\sum d_k a_k) - \lambda \in \mathbb{N}A$. Thus $\lambda \in E_\tau(a + (-\sum d_k a_k))$. We repeat this argument for each pair (τ, λ) to prove the assertion.

Proposition 8.10. The semigroup algebra R_A is a simple \mathbb{Z}^d-graded $D(R_A)$-module if and only if

$$\mathbb{Q}(A \cap \tau) \cap \mathbb{Z}^d = \mathcal{Z}(A \cap \tau) \quad \text{for all faces } \tau.$$

Proof. By Lemma 8.8, $R_A = \mathbb{C}[\mathbb{N}A]$ is a simple graded $D(R_A)$-module if and only if $E_\tau(a) = \{0\}$ for all faces τ and $a \in \mathbb{N}A$. This is equivalent to the condition (21) by Lemma 8.9.

Lemma 8.11. If the semigroup $\mathbb{N}A$ is scored, then it satisfies (21).

Proof. For a facet σ, take $M_\sigma \in \mathbb{N}$ so that M_σ is greater than any number in $\mathbb{N} \setminus F_\sigma(\mathbb{N}A)$.

Let τ be a face, and let $x \in \mathbb{Q}(A \cap \tau) \cap \mathbb{Z}^d$. For each facet $\sigma \not\supseteq \tau$, there exists $a_\sigma \in A \cap \tau \setminus \sigma$. Take m_σ large enough to satisfy $F_\sigma(x) + m_\sigma F_\sigma(a_\sigma) \geq M_\sigma$. Let $y = x + \sum_{\sigma \not\supseteq \tau} m_\sigma a_\sigma$. Then $y \in \mathbb{Q}(A \cap \tau) \cap \mathbb{Z}^d$, and

$$F_\sigma(y) = 0 \quad \text{if } \sigma \supseteq \tau,$$

$$F_\sigma(y) \geq M_\sigma \quad \text{otherwise}.$$

Since $\mathbb{N}A$ is scored, $y \in \mathbb{N}A$. Hence $y \in \mathbb{N}(A \cap \tau)$, and $x \in \mathcal{Z}(A \cap \tau)$.

□
Corollary 8.12. If the semigroup \(NA \) is scored, then \(R_A \) is a simple \(\mathbb{Z}^d \)-graded \(D(R_A) \)-module.

Proof. This follows from Proposition 8.10 and Lemma 8.11. □

Proposition 8.13. The semigroup \(NA \) is scored if and only if \(C[S_1] \) is a simple \(\mathbb{Z}^d \)-graded \(D(R_A) \)-module.

Proof. Suppose that \(NA \) is scored. Then \(S_1 = NA \). Hence \(C[S_1] \) is a simple \(\mathbb{Z}^d \)-graded \(D(R_A) \)-module by Corollary 8.12.

Suppose that \(C[S_1] \) is a simple \(\mathbb{Z}^d \)-graded \(D(R_A) \)-module. Since \(R_A \) is a nonzero \(\mathbb{Z}^d \)-graded \(D(R_A) \)-submodule of \(C[S_1] \), we have \(R_A = C[S_1] \). Hence \(NA \) is scored. □

8.2. Conditions for simplicity. The aim of this subsection is to give a necessary and sufficient condition for the vanishing of a primitive ideal \(\text{Ann} L(\alpha) \). It leads to a necessary and sufficient condition for the simplicity of \(D(R_A) \).

We start this subsection by introducing some notation. Let \(\alpha \in \mathbb{C}^d \).

Set
\[
 \mathcal{F}_+(\alpha) := \{ \sigma \in \mathcal{F} : F_\sigma(\alpha) \in F_\sigma(NA) \},
\]
\[
 \mathcal{F}_-(\alpha) := \{ \sigma \in \mathcal{F} : F_\sigma(\alpha) \notin F_\sigma(NA) \},
\]
and
\[
 \mathbb{R}_{>0}(\alpha) := \left\{ \gamma \in \mathbb{R}^d : \frac{F_\sigma(\gamma)}{F_\sigma(\alpha)} > 0 \quad (\sigma \in \mathcal{F}_+(\alpha)) \right\}.
\]

Let \(\text{Face}(\alpha) \) denote the set of faces \(\tau \) such that \(\alpha - \lambda \in \mathbb{Z}^d \) for some \(\lambda \in \mathbb{C}(A \cap \tau) \), and that every facet \(\sigma \) containing \(\tau \) belongs to \(\mathcal{F}_+(\alpha) \).

Let \([\alpha] \) denote the equivalence class that \(\alpha \) belongs to. An equivalence class \([\alpha] \) is said to be extreme if \(E_\tau(\alpha) \) has \(\mathbb{Q}(A \cap \tau) \cap \mathbb{Z}^d : \mathbb{Z}(A \cap \tau) \)-many elements (i.e., \(E_\tau(\alpha) = \text{full} \)) for every \(\tau \in \text{Face}(\alpha) \), and that \(E_\tau(\alpha) \) is empty for every \(\tau \notin \text{Face}(\alpha) \).

We compare the conditions:

1. An equivalence class \([\alpha] \) is extreme,
2. \(\mathbb{R}_{>0}(\alpha) \) is not empty,
3. \(\mathbb{Z}\mathbb{C}([\alpha]) = \mathbb{C}^d \),
4. \(\text{Ann} L(\alpha) = 0 \).

Remark 8.14. The conditions (1) and (2) have an advantage over the condition (3), for to check (1) and (2) we do not need the equivalence class \([\alpha] \), which is not easy to compute.

We need the following technical lemmas.
Lemma 8.15. Let \(\tau \) be a face of \(\mathbb{R}_{\geq 0}A \). Then there exists \(M \in \mathbb{N} \) such that, if \(a \in \mathbb{Z}^d \) satisfies \(F_\sigma(a) \geq M \) for all facets \(\sigma \geq \tau \), then \(E_\tau(a) = \text{full} \).

Proof. Let \(\lambda \in \mathbb{Q}(A \cap \tau) \cap \mathbb{Z}^d \). By [10, Lemma 3.6], there exists \(M \in \mathbb{N} \) such that \(c \in NA + Z(A \cap \tau) \) for all \(c \in \mathbb{Z}^d \) satisfying \(F_\sigma(c) \geq M \) for all facets \(\sigma \geq \tau \). Hence, if \(a \in \mathbb{Z}^d \) satisfies \(F_\sigma(a) \geq M \) for all facets \(\sigma \geq \tau \), then \(a - \lambda \in NA + Z(A \cap \tau) \), or \(\lambda \in E_\tau(a) \).

Lemma 8.16. Let \(\tau \) be a face of \(\mathbb{R}_{\geq 0}A \), and let \(\alpha \in \mathbb{C}^d \). Assume that there exists \(\lambda \in \mathbb{C}(A \cap \tau) \) such that \(\alpha - \lambda \) belongs to \(\mathbb{Z}^d \). Then there exists \(M \in \mathbb{N} \) such that, if \(\gamma \in \alpha + \mathbb{Z}^d \) satisfying \(F_\sigma(\gamma) \in \mathbb{Z}_{\geq M} \) for all facets \(\sigma \geq \tau \), then \(E_\tau(\gamma) = \text{full} \).

Proof. Apply Lemma 8.15 to \(\gamma - \lambda \).

Proposition 8.17. If the Zariski closure of an equivalence class \([\alpha]\) is the whole space \(\mathbb{C}^d \), then \(\mathbb{R}_{>0}(\alpha) \) is not empty.

Proof. Since the set

\[
\{ \gamma \in \alpha + \mathbb{Z}^d : F_\sigma(\gamma) \in F_\sigma(NA) \quad (\sigma \in \mathcal{F}_+(\alpha)) \}
\]

contains \([\alpha]\), its Zariski closure equals \(\mathbb{C}^d \). Take a real number \(\epsilon \) so that \(\epsilon \) is algebraically independent over \(\mathbb{Q}[F_\sigma(\text{Re}(\alpha)), F_\sigma(\text{Im}(\alpha)) : \sigma \in \mathcal{F}] \).

Put \(\alpha_\epsilon := \text{Re}(\alpha) + \epsilon \text{Im}(\alpha) \), where \(\text{Re}(\alpha) \) and \(\text{Im}(\alpha) \) are the vectors in \(\mathbb{R}^d \) with \(\alpha = \text{Re}(\alpha) + \sqrt{-1} \text{Im}(\alpha) \) Then \(\mathcal{F}_+(\alpha) = \mathcal{F}_+(\alpha_\epsilon) \), and \(\mathcal{F}_-(\alpha) = \mathcal{F}_-(\alpha_\epsilon) \), since \(\sigma \in \mathcal{F}_+(\alpha) \) or \(\mathcal{F}_-(\alpha) \) implies \(F_\sigma(\text{Re}(\alpha)) = 0 \).

The set

\[
\{ \gamma \in \alpha_\epsilon + \mathbb{Z}^d : F_\sigma(\gamma) \in F_\sigma(NA) \quad (\sigma \in \mathcal{F}_+(\alpha)) \}
\]

is bijective to the set (22) under the map sending \(\alpha_\epsilon + a \) to \(\alpha + a \), and hence its Zariski closure equals \(\mathbb{C}^d \). The Zariski closure of

\[
\bigcap_{\sigma \in \mathcal{F}_+(\alpha)} F_\sigma = 0 \setminus \bigcup_{\sigma \in \mathcal{F}_-(\alpha)} \bigcup_{m \in \mathbb{N} \setminus F_\sigma(NA)} \{ F_\sigma = m \}
\]

also equals \(\mathbb{C}^d \). Hence \(\mathbb{R}_{>0}(\alpha) \) is not empty.

Proposition 8.18. If the Zariski closure of an equivalence class \([\alpha]\) is the whole space \(\mathbb{C}^d \), then \([\alpha]\) is extreme, i.e.,

\[
[\alpha] = \left\{ \gamma \in \alpha + \mathbb{Z}^d : \begin{array}{ll}
E_\tau(\gamma) = \text{full} & (\tau \in \text{Face}(\alpha)) \\
E_\tau(\gamma) = \emptyset & (\tau \notin \text{Face}(\alpha))
\end{array} \right\}.
\]

Proof. By Lemma 8.16 the equivalence class

\[
[\alpha_1] := \left\{ \gamma \in \alpha + \mathbb{Z}^d : \begin{array}{ll}
E_\tau(\gamma) = \text{full} & (\tau \in \text{Face}(\alpha)) \\
E_\tau(\gamma) = \emptyset & (\tau \notin \text{Face}(\alpha))
\end{array} \right\}
\]
contains
\[
\{ \gamma \in \alpha + \mathbb{Z}^d : \begin{array} {l}
F_\sigma(\gamma) \geq M \\
F_\sigma(\gamma) < 0
\end{array} \ (\sigma \in \mathcal{F}_+(\alpha)) \}
\]
for some M sufficiently large.

Suppose that $[\alpha] \neq [\alpha_1]$. Then $[\alpha]$ does not belong to the set $\{24\}$. Hence we have
\[
[\alpha] \subseteq \bigcup_{\sigma \in \mathcal{F}_+(\alpha)} \bigcup_{m=0}^{M-1} \{ \gamma \in \alpha + \mathbb{Z}^d : F_\sigma(\gamma) = m \}.
\]
This contradicts the assumption that the dimension of $\text{ZC}([\alpha])$ equals d. \hfill \Box

Proposition 8.19 (cf. Proposition 3.3.1 in [12]). \textit{Let} $\alpha \in \mathbb{C}^d$. \textit{Then} $\text{Ann}(L(\alpha)) = 0$ if and only if $\text{ZC}([\alpha]) = \mathbb{C}^d$.

Proof. Let $I := \text{Ann}(L(\alpha))$. Recall that we have
\[
I_a = t^a \mathbb{P}((\Omega(a) \cup \Lambda_{[\alpha]}(a))),
\]
where
\[
\Lambda_{[\alpha]}(a) = \{ \gamma : \gamma \sim \alpha, \gamma + a \sim \alpha \}.
\]
Since $I_0 = \mathbb{P}([\alpha])$, the vanishing of I leads to the assertion that $\text{ZC}([\alpha]) = \mathbb{C}^d$.

Next suppose that $\text{ZC}([\alpha]) = \mathbb{C}^d$. As in the proof of Proposition 8.18 there exists $M \in \mathbb{N}$ such that
\[
[\alpha] \supseteq \left\{ \gamma \in \alpha + \mathbb{Z}^d : \begin{array} {l}
F_\sigma(\gamma) \geq M \\
F_\sigma(\gamma) < 0
\end{array} \ (\sigma \in \mathcal{F}_+(\alpha)) \right\}.
\]
Hence
\[
\Lambda_{[\alpha]}(a) \supseteq \left\{ \gamma \in \alpha + \mathbb{Z}^d : \begin{array} {l}
F_\sigma(\gamma) \geq \max\{M, -F_\sigma(a)\} \\
F_\sigma(\gamma) < \min\{0, -F_\sigma(a)\}
\end{array} \ (\sigma \in \mathcal{F}_+(\alpha)), \ (\sigma \in \mathcal{F}_-(\alpha)) \right\}.
\]
Since the right hand side is d-dimensional by Proposition 8.17 the Zariski closure $\text{ZC}(\Lambda_{[\alpha]}(a))$ is also d-dimensional. Hence $I_a = 0$ for all $a \in \mathbb{Z}^d$. \hfill \Box

Proposition 8.20. If $[\alpha]$ is extreme, and $\mathbb{R}_{>0}(\alpha)$ is not empty, then $\text{ZC}([\alpha]) = \mathbb{C}^d$.

Proof. As in the proof of Proposition 8.18 $[\alpha]$ contains
\[
\left\{ \gamma \in \alpha + \mathbb{Z}^d : \begin{array} {l}
F_\sigma(\gamma) \geq M \\
F_\sigma(\gamma) < 0
\end{array} \ (\sigma \in \mathcal{F}_+(\alpha)) \right\}.
\]
for some M sufficiently large. By the assumption, the dimension of
\[
\left\{ a \in \mathbb{Z}^d : \begin{array}{ll}
F_{\sigma}(a) > M - F_{\sigma}(\alpha) & (\sigma \in \mathcal{F}_+(\alpha)) \\
F_{\sigma}(a) < -F_{\sigma}(\alpha) & (\sigma \in \mathcal{F}_-(\alpha))
\end{array} \right\}
\]
equals d. Hence the proposition follows.

Theorem 8.21. Let $\alpha \in \mathbb{C}^d$. Then $\text{Ann}(L(\alpha)) = 0$ if and only if $[\alpha]$ is extreme, and $\mathbb{R}_{>0}(\alpha)$ is not empty.

Proof. This follows from Propositions 8.17, 8.18, and 8.20.

Theorem 8.22. The algebra $D(R_A)$ is simple if and only if the conditions
\begin{enumerate}
\item[(C1)] Any equivalence class is extreme.
\item[(C2)] For any α, $\mathbb{R}_{>0}(\alpha)$ is not empty.
\end{enumerate}
are satisfied.

Proof. This follows from Lemma 8.1 and Theorem 8.21.

Remark 8.23. To know whether $D(R_A)$ is simple or not, by Theorem 7.6, we need to check (C1) and (C2) only for finitely many α.

Proposition 8.24. If the semigroup N_A is scored, then it satisfies the condition (C1).

Proof. First note that the condition (21) is satisfied in the scored case by Lemma 8.11.

Let $\lambda \in \mathbb{C}(A \cap \tau)$ and $\alpha - \lambda \in \mathbb{Z}^d$. Suppose that $\sigma \in \mathcal{F}_+(\alpha)$ for all facets σ containing τ. We need to show $\lambda \in E_\tau(\alpha)$.

If a facet σ contains τ, then $\sigma \in \mathcal{F}_+(\alpha)$, or $F_\sigma(\alpha) \in F_\sigma(NA)$. Hence $F_\sigma(\alpha - \lambda) \in F_\sigma(NA)$. If a facet σ does not contain τ, then there exists $a_j \in A \cap \tau$ such that $F_\sigma(a_j) > 0$. Hence $F_\sigma(\alpha - \lambda + ma_j) \in F_\sigma(NA)$ for $m \in \mathbb{N}$ sufficiently large. Hence there exists $a \in N(A \cap \tau)$ such that $F_\sigma(\alpha - \lambda + a) \in F_\sigma(NA)$ for all $\sigma \in \mathcal{F}$. Since NA is scored, we obtain $\alpha - \lambda + a \in NA$. This means $\lambda \in E_\tau(\alpha)$.

Theorem 8.25. The algebra $D(R_A)$ is simple if and only if the semigroup NA is scored and satisfies the condition (C2).

Proof. This immediately follows from Theorem 8.22 and Proposition 8.24.

Corollary 8.26. Assume that the cone $\mathbb{R}_{>0}A$ is simplicial. Then the algebra $D(R_A)$ is simple if and only if NA is scored.

Proof. In this case the cone $\mathbb{R}_{>0}A$ has exactly d facets. Since the d F_σ’s are linearly independent, the condition (C2) is satisfied.
Example 9.1. Let
\[
A = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 0 & 1 \end{pmatrix}.
\]
Then \(N_A \) is the set of black dots in Figure 1, and \(\mathbb{R}_{\geq 0} A \) has two facets: \(\sigma_2 := \mathbb{R}_{\geq 0} a_2 \) and \(\sigma_3 := \mathbb{R}_{\geq 0} a_3 \). Their primitive integral support functions are \(F_{\sigma_2}(s) = 2s_1 - s_2 \) and \(F_{\sigma_3}(s) = s_2 \) respectively.

\[\sigma_2 \quad \sigma_3 \]

Figure 1. The semigroup \(N_A \)

The condition (C2) is satisfied, since \(\mathbb{R}_{\geq 0} A \) is simplicial. However \(D(R_A) \) is not simple, since \(N_A \) is not scored. We have
\[
\{ \alpha : F(\alpha) = \emptyset \} / \mathbb{C}^2 = \{ t(\sqrt{2}, \sqrt{3}) \}
\]
\[
\{ \alpha : F_{\sigma_2}(\alpha) \in \mathbb{Z} \} / (\mathbb{Z}^2 + (F_{\sigma_2} = 0)) = \{ t(1/2, \sqrt{2}) \}
\]
\[
\{ \alpha : F_{\sigma_3}(\alpha) \in \mathbb{Z} \} / (\mathbb{Z}^2 + (F_{\sigma_3} = 0)) = \{ t(\sqrt{2}, 0) \}
\]
\[
\{ \alpha : F_{\sigma_2}(\alpha), F_{\sigma_3}(\alpha) \in \mathbb{Z} \} / \mathbb{Z}^2 = \{ t(0, 0), t(1/2, 0) \}.
\]

First we classify \(\mathbb{Z}^2 \). Let \(\alpha \in \mathbb{Z}^2 \). Then we see
- \(E_{\mathbb{R}_{\geq 0}}(\alpha) = \{ 0 \} \),
- \(E_{\sigma_2}(\alpha) = \{ 0 \} \Leftrightarrow 2\alpha_1 - \alpha_2 \geq 0 \),
- \(E_{\sigma_3}(\alpha) = \{ 0, t(1, 0) \} \Leftrightarrow \alpha_2 \geq 1 \),
- \(E_{\sigma_3}(\alpha) = \{ 0 \} \Leftrightarrow \alpha_2 = 0, \alpha_1 \in 2\mathbb{Z} \),
- \(E_{\sigma_3}(\alpha) = \{ t(1, 0) \} \Leftrightarrow \alpha_2 = 0, \alpha_1 \in 2\mathbb{Z} + 1 \),
- \(E_{\{ 0 \}}(\alpha) = \{ 0 \} \Leftrightarrow \alpha \in N_A \).

There are eight classes in \(\mathbb{Z}^2 \):

1. \(\{ \alpha \in \mathbb{Z}^2 : E_{\sigma_2}(\alpha) = \{ 0 \}, E_{\sigma_3}(\alpha) = \{ 0, t(1, 0) \}, E_{\{ 0 \}}(\alpha) = \{ 0 \} \}
 = \{ (\alpha_1, \alpha_2) \in \mathbb{Z}^2 : \alpha_2 \geq 1, 2\alpha_1 - \alpha_2 \geq 0 \} \)
2. \(\{ \alpha \in \mathbb{Z}^2 : E_{\sigma_2}(\alpha) = \emptyset, E_{\sigma_3}(\alpha) = \{ 0, t(1, 0) \}, E_{\{ 0 \}}(\alpha) = \emptyset \}
 = \{ (\alpha_1, \alpha_2) \in \mathbb{Z}^2 : \alpha_2 \geq 1, 2\alpha_1 - \alpha_2 < 0 \} \)
if Ann L see that $\alpha ZC(\Lambda [\alpha]) = 0$,
$E_{\sigma_3}(\alpha) = \emptyset$, $E_{\{0\}}(\alpha) = \emptyset$
$\{t(\alpha_1, \alpha_2) \in \mathbb{Z}^2 : \alpha_2 = 0, \alpha_1 \in 2\mathbb{N}\}$.

(4)
$\{\alpha \in \mathbb{Z}^2 : E_{\sigma_2}(\alpha) = \emptyset, E_{\sigma_3}(\alpha) = \emptyset, E_{\{0\}}(\alpha) = \emptyset\}
= \{t(\alpha_1, \alpha_2) \in \mathbb{Z}^2 : \alpha_2 = 0, \alpha_1 \in 2\mathbb{N} + 1\}.

(5)
$\{\alpha \in \mathbb{Z}^2 : E_{\sigma_2}(\alpha) = \emptyset, E_{\sigma_3}(\alpha) = \emptyset, E_{\{0\}}(\alpha) = \emptyset\}
= \{t(\alpha_1, \alpha_2) \in \mathbb{Z}^2 : \alpha_2 = 0, \alpha_1 \in 2(-\mathbb{N} - 1)\}.

(6)
$\{\alpha \in \mathbb{Z}^2 : E_{\sigma_2}(\alpha) = \emptyset, E_{\sigma_3}(\alpha) = \emptyset, E_{\{0\}}(\alpha) = \emptyset\}
= \{t(\alpha_1, \alpha_2) \in \mathbb{Z}^2 : \alpha_2 = 0, \alpha_1 \in -2\mathbb{N} - 1\}.

(7)
$\{\alpha \in \mathbb{Z}^2 : E_{\sigma_2}(\alpha) = \emptyset, E_{\sigma_3}(\alpha) = \emptyset, E_{\{0\}}(\alpha) = \emptyset\}
= \{t(\alpha_1, \alpha_2) \in \mathbb{Z}^2 : \alpha_2 < 0, 2\alpha_1 - \alpha_2 \geq 0\}.

(8)
$\{\alpha \in \mathbb{Z}^2 : E_{\sigma_2}(\alpha) = \emptyset, E_{\sigma_3}(\alpha) = \emptyset, E_{\{0\}}(\alpha) = \emptyset\}
= \{t(\alpha_1, \alpha_2) \in \mathbb{Z}^2 : \alpha_2 < 0, 2\alpha_1 - \alpha_2 < 0\}.

Let α be not extreme, i.e., let α belong to (3), (4), (5), or (6). Then
$ZC(\Lambda_{\alpha}(a)) = \{\mu : \mu_2 = 0\}$ if $a_2 = 0$ and $a_1 \in 2\mathbb{Z}$, and $\Lambda_{\alpha}(a) = 0$
otherwise.

Let α be extreme, i.e., let α belong to (1), (2), (7), or (8). Then
$ZC(\Lambda_{\alpha}(a)) = \mathbb{C}^2$ for all $a \in \mathbb{Z}^2$.

Similarly $t(\sqrt{2}, \sqrt{3}) + \mathbb{Z}^2$, $t(\frac{1}{2}\sqrt{2}, \sqrt{3}) + \mathbb{Z}^2$, $t(\sqrt{2}, 0) + \mathbb{Z}^2$, and $t(\frac{1}{2}, 0) + \mathbb{Z}^2$
have one, two, four, and eight equivalence classes respectively. We see
that $\alpha = t(\alpha_1, \alpha_2)$ is not extreme if and only if $\alpha_2 = 0$ if and only
if Ann $L(\alpha) = Ann L(0)$.

Hence
$\text{Prim}(D(R_A)) = \{(0), \text{Ann } L(0)\}$.

Example 9.2. (cf. [13] Example 4.9,) Let
$$A = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 2 & 3 & 0 & 2 & 3 \\
0 & 0 & 0 & 1 & 1 & 1
\end{pmatrix}.$$
Then the cone $\mathbb{R}_{\geq 0}A$ has four facets whose primitive integral support functions are

\[
F_{\sigma_{14}}(s) = s_2, \quad F_{\sigma_{36}}(s) = 3s_1 - s_2, \\
F_{\sigma_{123}}(s) = s_3, \quad F_{\sigma_{456}}(s) = s_1 - s_3.
\]

We have an equality

\[(25) \quad F_{\sigma_{14}} + F_{\sigma_{36}} = 3(F_{\sigma_{123}} + F_{\sigma_{456}}).\]

Then the semigroup

\[S := \mathbb{N}A = \{ a \in \mathbb{R}_{\geq 0}A \cap \mathbb{Z}^3 : F_{\sigma_{14}}(a) \neq 1 \}\]

is scored. Let $\alpha = t(0, 1, 0)$. Then $\text{Face}(\alpha) = \{ F_{\sigma_{123}}, F_{\sigma_{456}} \}$. We see that α is extreme, and $\mathbb{R}_{> 0}(\alpha)$ is empty. Hence $\text{Ann} L(\alpha) \neq 0$.

Let $\lambda := F_{\sigma_{14}} + 2F_{\sigma_{36}} = 6s_1 - s_2$, and let E_λ be the blow-up extension of S,

\[E_\lambda := \left\{ \left(\begin{array}{c} a \\ p \end{array} \right) \in S \bigoplus \mathbb{N} : p \leq \lambda(a) \right\}.
\]

We can prove that an affine semigroup is scored if and only if its blow-up extension is scored by the same argument as the proof of [19, Lemma 1.1]. Thus E_λ is scored. Indeed, the cone $\mathbb{R}_{\geq 0}E_\lambda$ has six facets whose primitive integral support functions are

\[
F_{\sigma_{14}}(s,p) = F_{\sigma_{14}}(s), \quad F_{\sigma_{36}}(s,p) = F_{\sigma_{36}}(s), \\
F_{\sigma_{123}}(s,p) = F_{\sigma_{123}}(s), \quad F_{\sigma_{456}}(s,p) = F_{\sigma_{456}}(s), \\
F_{\sigma_{p}}(s,p) = p, \quad F_{\sigma_{\lambda}}(s,p) = \lambda(s) - p,
\]

and

\[E_\lambda = \mathbb{R}_{\geq 0}E_\lambda \cap \mathbb{Z}^4 \setminus (F_{\sigma_{14}} = 1).\]

In addition, $\mathbb{C}[E_\lambda]$ is Cohen-Macaulay [19, Example 4.9].

However $D(\mathbb{C}[E_\lambda])$ is not simple. To see this, let $\beta = t(0, 1, 0, 0)$. Then

\[\mathcal{F}_+(\beta) = \{ \sigma_{123}, \sigma_{456}, \sigma_{p} \}, \quad \mathcal{F}_-(\beta) = \{ \sigma_{14}, \sigma_{36}, \sigma_{\lambda} \}.
\]

By (25)

\[(F_{\sigma_{123}} > 0) \cap (F_{\sigma_{456}} > 0) \cap (F_{\sigma_{14}} < 0) \cap (F_{\sigma_{36}} < 0)
\]

is empty. Hence $\mathbb{R}_{> 0}(\beta)$ is also empty, and $D(\mathbb{C}[E_\lambda])$ is not simple by Theorem 8.25.
References

[1] R.C. Cannings, The lifting theory of rings of differential operators, Ph. D. Thesis, The University of Leeds, 1991.
[2] I. M. Gel’fand, General theory of hypergeometric functions, Dokl. Akad. Nauk. SSSR 288 (1986) 14–18; Soviet Math. Dokl. (English translation), 33 (1987) 9–13.
[3] I.M. Gel’fand, A.V. Zelevinskii, M.M. Kapranov, Equations of hypergeometric type and Newton polyhedra, Soviet Mathematics Doklady 37 (1988) 678–683.
[4] I. M. Gel’fand, A. V. Zelevinskii, M. M. Kapranov, Hypergeometric functions and toric varieties, Funktsional. Anal. i Prilozhen 23 (1989) 12–26; Funkt. Anal. Appl. (English translation), 23 (1989) 94–106.
[5] I. M. Gel’fand, M. M. Kapranov, A. V. Zelevinskii, Generalized Euler integrals and A-hypergeometric functions, Advances in Mathematics, 84 (1990) 255–271.
[6] A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique IV. Publ. Math. I. H. E. S., Vol. 32, 1967.
[7] J. Hrabowski, Multiple hypergeometric functions and simple Lie algebras SL and Sp, SIAM J. Math. Anal. 16 (1985) 876–886.
[8] A.G. Jones, Rings of differential operators on toric varieties, Proc. Edinburgh Math. Soc. 37 (1994) 143–160.
[9] E.G. Kalnins, H. L. Manocha, W. Miller, The Lie theory of two-variable hypergeometric functions, Stud. Appl. Math. 62 (1980) 143–173.
[10] M. Kashiwara, D-modules and microlocal calculus, Transl. of Math. Monographs vol. 217, American Mathematical Society, Providence, 2003.
[11] I.M. Musson, Differential operators on toric varieties, J. Pure Appl. Algebra 95 (1994) 303–315.
[12] I.M. Musson and M. Van den Bergh, Invariants under tori of rings of differential operators and related topics, Mem. Amer. Math. Soc. 650 (1998).
[13] M. Saito, Isomorphism classes of A-hypergeometric systems, Compositio Mathematica 128 (2001) 323–338.
[14] M. Saito, B. Sturmfels, N. Takayama, Gröbner deformations of hypergeometric differential equations. Algorithms and Computation in Mathematics, vol. 6, Springer, New York, 2000.
[15] M. Saito, W.N. Traves, Differential algebras on semigroup algebras, AMS Contemporary Math. 286 (2001) 207–226.
[16] M. Saito, W.N. Traves, Finite generations of rings of differential operators of semigroup algebras, J. Algebra 278 (2004) 76–103.
[17] S.P. Smith, J.T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc. 56 (1988) 229–259.
[18] M. Sweedler, Groups of simple algebras, Publ. Math. I.H.E.S. 44 (1974) 79–189.
[19] N.V Trung, L.T. Hoa, Affine semigroups and Cohen-Macaulay rings generated by monomials, Trans. of AMS 298 (1986) 145–167.
[20] M. Van den Bergh, Differential operators on semi-invariants for tori and weighted projective spaces, Topics in invariant theory (M. P. Maliavin, ed.), Lecture Notes in Mathematics 1478 Springer, Berlin, (1991) 255-272.

Department of Mathematics
Hokkaido University
Sapporo, 060-0810
Japan
e-mail: saito@math.sci.hokudai.ac.jp