Current research in development of polycaprolactone filament for 3D bioprinting: a review

C Amni1,2, Marwan3*, S Aprilia3 and E Indarti4

1 Doctoral School of Engineering Science, Syiah Kuala University, Banda Aceh, Indonesia, 23111
2 Chemical Engineering Department, Faculty of Engineering, Serambi Mekkah University, Banda Aceh, Indonesia, 23245
3 Department of Chemical Engineering, Syiah Kuala University, Banda Aceh, Indonesia, 23111
4 Agricultural Product Technology Department, Faculty of Agriculture, Syiah Kuala University, Banda Aceh, Indonesia, 23111

*e-mail: marwan@unsyiah.ac.id

Abstract. Three-dimensional printing (3DP) provides a fast and easy fabrication process without demanding post-processing. 3D-bioprinting is a special class in 3DP. Bio-printing is the process of accurately 3DP structural design using filament. 3D bio-printing technology is still in the development stage, its application in various engineering continues to increase, such as in tissue engineering. As a forming material in 3D printing, many types of commercial filaments have been developed. Filaments can be produced from either natural or synthetic biomaterials alone, or a combination of the two as a hybrid material. The ideal filament must have precise mechanical, rheological and biological properties. Polycaprolactone (PCL) is specifically developed and optimized for bio-printing of 3D structures. PCL is a strategy in 3D printing to better control interconnectivity and porosity spatially. Structural stability and less sensitive properties environmental conditions, such as temperature, humidity, etc make PCL as an ideal material for the FDM fabrication process. In this review, we provide an in-depth discussion of current research on PCL as a filament currently used for 3D bio-printing and outline some future perspectives in their further development.

1. Introduction
Bio-printing is the process of accurately designing 3DP structures layer by layer using filaments consisting of biomaterials, cells and biomolecules [1–5]. The bio-printing process results in a fast and easy fabrication process without demanding post-processing. This technology brings an unprecedented ability to build complex, multicellular, compartmental tissue that can be used as an in vitro or implantable graft model. This technology covers several areas consisting of industrial rapid prototyping [6-7], microfluidic chips, tissue and scaffold (3D matrix/structure) engineering, prosthetics, bone replacement, bio-electronic platforms, biologically and catalytically compatible structural components [8]. In its development phase, the application of bio-printing technology continues to increase in various engineering, for example in tissue engineering (TE). TE is a scientific field that focuses mainly on the development of tissue and replacement organs by controlling biological, biophysical and biomechanical parameters in the laboratory [9]. The development of this knowledge requires an interdisciplinary research strategy that combines expertise from biology, chemistry, engineering and materials science
Figure 1. Publication trends over the past decade demonstrating a significant rise in the field of bioprinting. (a) Trends in number of publications, and (b) number of citations for articles pertaining to bioprinting [3].

Bio-printing has remained stable in its early stages of development but continues to gain popularity among generative medicine researchers because of its enormous potential in the field (Fig. 1). The steady increase in the number of publications and citations in the field of bio-printing demonstrates its enormous potential in biomedical applications including tissue engineering, drug development, and organ-on-chip platforms. While challenges exist in maintaining the desired shape and distribution of cells from construction over time, researchers have used a variety of new methods and technologies to improve the bio-printing process [10–13].

Bioprinting technology has a lot of understanding from various disciplines. In the medical world, 3D bioprinting is the automatic fabrication of multicellular networks through the spatial deposition of cells. Utilizing the concept of 3DP, which stores layers of material on top of each other, also uses biological material (material that contains living cells) as 3DP ink material, thus creating 3D-bioprinting [1–5]. 3DP is a form of additive manufacturing (AM), which is a three-dimensional object formed by adding material layer by layer. The initial step of 3DP is to create a digital model of the object to be printed. Making this digital model usually uses Computer-Assisted Design (CAD) software or uses online services that have been provided from the 3DP platform. 3D scanners can also be used to automatically create models of axial objects (such as 2D scanners). Smartphone applications can also be used to create 3D models such as Autodesk 123D Catch. 3DP can use a variety of materials both liquids and solids [14,15].

2. Filament fabrication for 3D-bioprinting
Filaments for 3D printers are mostly produced by free extrusion method. This is one of the most difficult processing techniques with extrusion, due to the impact of very large process parameters on product dimensions and material [16]. The filament is made of a thermoplastic polymer which is melted and extruded through the nozzles on the desired substrate in a layer by layer manner. Multiple or multi-extruder printing heads are often used in material extrusion systems to print multi-material components at once [17]. 3D printers use filaments as raw materials to make components. In making filaments requires an extruder machine (single or twin screw). This technology is currently developing rapidly and it is estimated that it will continue to grow. This is because this technology is able to make all forms of prototypes with various forms from accessories to the medical field.
The general filament manufacturing method is called FDM (Fused Deposition Modeling) as shown in Fig. 2. The extrusion-based molding technique was innovated by Scott Crump in late 1989 and later Stratasys Ltd. became a profit-oriented FDM machine manufacturer. Stratasys Fortus FDM printers can provide product volumes up to 915 mm$^3 \times 610$ mm$^3 \times 915$ mm3 with a layer thickness equivalent to 178 µm [8, 18]. The division of filament material has been summarized by the author and [19] as shown in Table 1.

3. Polycaprolactone filament
The most commonly used polymer for 3D porous scaffold is PCL, although its cell interaction is limited due to its slightly hydrophobic nature but good biocompatibility and processability. PCL is a semicrystalline which, together with its low hydrophobicity and water absorption capacity, results in a very slow degradation kinetics, which is considered a bioresorbable material compatible with soft and hard [50]. PCL shows good cytocompatibility and promotes cell adhesion and proliferation even in the absence of cell-binding groups [3].
Table 1. Filamen non biodegradable dan biodegradable

Matrix	Filler	Compatibilizer/Plasticizer	Toughening Agent	Dia (mm)	Ref.
Non-Biodegradable Filament					
ABS	Hardwood lignin + Carbon Fiber	-	Nitrile Rubber	2,5	[20]
	Coir Fiber	-	-	1,75	[21]
	Rice Straw	-	-	1,75	[22]
	Macadamia nut shell	MAH 3% wt	-	1,75	[23]
PP	Hemp	MAH-g-PP 2 % wt	-	2,4-3,1	[24]
	harakake	MAH-g-PP 2 % wt	-	2,4-3,1	[24]
	Hemp	MAH-g-PP 2 % wt	-	3	[25]
	Gypsum	MAH-g-PP 2 % wt	-	3	[25]
Bio-PE	TMP	MAH-PE	-	2	[26]
	TMP	MAH-PE	-	2	[27]
TPU	Poplar Wood Flour	EPDM-g-MAH, POE-g-MAH, kitsosan, MDI 5%	-	1,75	[28]
Biodegradable Filament					
PLA	Paulawnia wood	-	-	1,75	[29]
	Orange wood	-	-	1,75	[29]
	Aspen sawdus	-	-	1,75	[30]
	Bamboo	-	PEG600, Ester Gliserol, Tributyl citrate	1,75	[31]
	Poplar Wood	-	-	1,75	[32]
	Sawdust	-	-	1,75	[33,34]
	Pine Lignin	-	-	1,75	[35]
	Poplar wood	Graft kopolimer glycidyl methacrylate, Dicumyl Peroxide/Aliphatic polyester 10% wt Tributyl citrate 5%wt	TPU,POE 10% wt	-	[36]
	Cork Powder	cPLA1–cPLA2	-	2,85	[38]
	TMP	-	-	2,2	[39]
	Poplar wood	-	POE	1,75	[40]
	Sugarcane	-	-	1,75	[41]
	Harekeke	-	-	-	[42]
PHB	Sawmill	-	-	1,75	[43]
PCL	Cocoa Shell	-	-	1,75	[44]
	Gum rosin	-	-	2,8–3	[45]
	Beeswax	-	-	2,8–3	[45]
	Sodium Alginate	-	-	1,3	[46]
	Indomethacine	PEG 10% wt, ARA	-	1,78-1,83	[47]
	Corn starch	-	-	1,75	[48]
	Potato Starch	-	-	1,75	[48]
PLA+PHA	Cellulose pulp	-	-	1,75-3	[49]

Many researchers have started to introduce the polymer into a 3D printing strategy to better control the interconnectivity and porosity of PCL [3,52-53]. Compared to other commercially available
bioresorbable polymers, PCL is one of the most flexible and easy to process materials. Its structural stability and properties that are less sensitive to environmental conditions, such as temperature, humidity, etc. make PCL an ideal material for the FDM fabrication process[8].

Table 2. Review of PCL-based 3D application studies

Ref.	Blending Component	Methods	Analysis
[45]	PCL-GR-BW	mixing using co-rotating twin-screw extruder	Printability Tests & Rheology, DSC, Tensile test, DMTA, FTIR, SEM, contact angle measurements, wettability and colour
[46]	PCL-SA	Manual blending and casting in petri dishes & heat extruder	SEM, EDX, DSC, Mechanical properties, & UV-Vis
[48]	PCL-corn starch, potato starch, soluble starch	mixing using single & twin-screw extruder	3D-printability, tensile strength, rheological properties, crystallization properties & biological performance
[54]	PCL/PLA blend	Extrusion &Fused Filament Fabrication (FFF)	Printability test & ANOVA
[55]	PCL	mixing using magnetic stirrer & combined extrusion-based cryogenic 3D printing	Accelerated alkaline degradation, SEM, Tensile, Porosity, biocompatibility, ANOVA
[56]	PCL-HA	Technic of wire-network molding (WNM)	Porositas, Cell proliferation and viability assays, & ANOVA
[57]	PCL/PLA blend	Melt blending	Thermography characterisation, TGA, SEM, tensile, compression, biological test

PCL has been developed as a filament modeling material to produce a porous scaffold, made of parallel microfilament layers, using computer-controlled extrusion and deposition processes[51]. PCL scaffolds are produced with a channel size range of 160–700 mm, filament diameter of 260–370 mm, and porosity of 48–77% and regular geometric honeycomb pores depending on processing parameters. The different porosity of the frame also shows the characteristic pattern of stress-strain behavior of the porous solid under the load. The compressive stiffness ranges from 4-77MPa, strength 0.4-3.6 MPa, and stretches from 4 to 28%. The analysis of the measured data showed a high correlation between the porosity of the frame and the compressive properties based on the energy law relationship [51].

In the process, the monofilament is driven by two rollers and acts as a piston to drive the semi-liquid extrudate. At the end of each finished layer, the base platform is lowered and the next layer is stored. The designed object is created as a 3D piece based solely on the proper deposition of the extrudate thick layer. The path and deposition parameters for each layer are determined depending on the material used, fabrication conditions, application of the part being designed and the preferences of the designer as shown in Fig.3 [51]. According to [58], PCL is one of the less popular polymers in the 3DP community but its filament which is the best and still has its practical uses as well as the development of training accessories for sports. This filament is a durable material that provides flexible strength and size.
4. Conclusion
This paper discusses the current research in development PCL filament for recent trends in 3D-bioprinting. 3D-bioprinting technology utilizing PCL filaments has entered a very promising research development stage. PCL is a strategy in 3D printing to better control interconnectivity and porosity spatially. PCL is one of the most flexible and easy to process materials. Structural stability and less sensitive properties environmental conditions, such as temperature, humidity, etc make PCL as an ideal material for the FDM fabrication process. The various advantages of these biodegradable resins are a new challenge for researchers to develop research towards mixing PCL with various hybrid materials.

References
[1] Rider P, Kačarević Ž P, Alkildani S, Retnasingh S and Barbeck M 2018 Bioprinting of tissue engineering scaffolds J. Tissue Eng. 9
[2] Varntanian S 2017 3D Printing of Polycaprolactone Scaffolds University of Sheffield
[3] Carrow J K, Kerativitayanan P, Jaiswal M. K, Lokhande G and Gaharwar A K 2015 Chapter 13 – Polymers for bioprinting Essentials of 3D Biofabrication and Translation, Elsevier Inc. 229–248.
[4] Gungor-Ozkerim P S, Inci I, Zhang Y S, Khademhosseini A and Dokmeci M R 2018 Bioinks for 3D bioprinting: an overview,” Biomater. Sci. 6 (5) 915–946
[5] Desai D R and Magliocca G N 2014 Meet napster: 3d printing and the digitization of things
[6] Roskos K, Stuiver I, Pentoney S and Presnell S 2015 Bioprinting: An industrial perspective. Elsevier Inc.
[7] Dong Y et al 2015 A novel bio-carrier fabricated using 3D printing technique for wastewater treatment Sci. Rep 5 1–10
[8] Prasad A and Kandasubramanian B 2019 Fused deposition processing polycaprolactone of composites for biomedical applications Polym. Technol. Mater. 58 (13) 1365–1398
[9] Castells-sala C, Ribes M A, Children B and Recha L 2015 Current applications of tissue engineering in biomedicine J. Biochips Tissue Chips 2
[10] Ferris C J, Gilmore K J, Beirne S, McCallum D and Wallace G G 2013 Bio-ink for on-demand printing of living cell Biomater. Sci. 1 (2) 224–230
[11] Xu T, Albanna M Z and Binder K W 2013 Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications Biofabrication 5(1)
[12] Wüst S, Godla M E, Müller R and Hofmann S 2014 Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting Acta Biomater. 10 (2) 30–640
[13] Ozbolat I T and Yu Y 2015 Bioprinting toward organ fabrication : challenges and future trends IEEE Trans Biomed Eng 60 691–699
[14] Ismianti H 2018 Framework prediksi penggunaan 3D printing di Indonesia pada tahun 2030 Semin. Nas. IENACO, 2337 546–553
[15] Rayna T and Striukova L 2016 Technological forecasting & social change from rapid prototyping to home fabrication : how 3D printing is changing business model innovation,” Technol. Forecast. Soc. Chang. 102 214–224
[16] Spectrum Filaments 2019 High quality filaments for desktop and industrial applications Filament Catalog
[17] Rafiee M, Farahani R D and Therriault D 2020 Multi-material 3D and 4D printing : a survey Adv. Sci. 7
[18] Balletti C, Ballarin M and Guerra F 2017 3D printing: state of the art and future perspectives J. Cult. Herit 26 172–182
[19] Mazzanti V, Malagutti L and Mollica F 2019 FDM 3D printing of polymers containing natural fillers: a review of their mechanical propertie Polymers (Basel). 11 (7) 1–22
[20] Nguyen N A, Bowland C C and Naskar A K 2018 A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites Appl. Mater. Today, 12 138–152
[21] Jiří Š, Michal A, Jiří B, Martin S, Jiří H and Luboš B 2016 Use of composite materials for FDM 3D print technology Materials Science Forum 862 174–181
[22] Osman M A, Atia M R A, Osman M A and Atia M R A 2018 Investigation of ABS-rice straw composite feedstock fi lament for FDM Rapid Prototyping Journal
[23] Girdis J, Gaudion L, Schke S L O and Dong A 2016 Rethinking timber : investigation into the use of waste macadamia nut shells for additive manufacturing The Minerals, Metals & Materials Society 2–6
[24] Milosevic M, Stooft D and Pickering K L 2020 Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites J. Compos. Sci. 1 (7)
[25] Stooft D and Pickering K 2017 Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene Compos. Part B
[26] Filgueira D, Holmen S, Melbo J K, Moldes D, Echtermeyer A T and Chinga-carrasco G 2018 3D printable filaments made of biobased polyethylene biocomposites Polymer (Guildf). 10 (314) 1–15
[27] Tarrés Q, Melbø J K, Delgado-aguilar M, Espinach F X, Mutjé P and Chinga-carrasco G 2018 Bio-polyethylene reinforced with thermomechanical pulp fi bers: mechanical and micromechanical characterization and its application in 3D-printing by fused deposition modelling Compos. Part B, 153 70–77
[28] Bi H, Ren Z, Guo R, Xu M and Song Y 2018 Industrial crops & products fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding Ind. Crop. Prod. 122 76–84
[29] Tisserat B, Liu Z, Finkenstadt V, Lewandowski B, Ott S and Reifschneider L 2015 3D printing biocomposites Soc. Plast. Eng. 10–12
[30] Tao Y, Wang H, Li Z, Li P and Shi S Q 2017 Development and application of wood flour-filled poly(lactic acid) composite filament for 3D printing Materials 10 (339) 1–6
[31] Zhao D, Cai X, Shou G, Gu Y and Wang P 2016 Study on the preparation of bamboo plastic composite intend for additive manufacturing Key Eng. Mater. 667 250–258
[32] Xie G, Zhang Y and Lin W 2017 Plasticizer combinations and performance of wood flour–poly(lactic acid) 3D printing filaments Bioresources 12 (3) 6736–6748
[33] Kariz M, Sernek M and Kuzman M K 2018 Effect of humidity on 3D-printed specimens from wood-pla filaments Wood Res. 63 (5) 917–922
[34] Kariz M, Sernek M, Obu’cina M and Kuzman M K 2017 Effect of wood content in FDM filament on properties of 3D printed parts Mater. Today Proc 14 135-140
[35] Gkartzou E, Koumoulos E P and Charitidis C A 2017 Production and 3D printing processing of bio-based thermoplastic filament Manuf. Rev. 4
[36] Guo R, Ren Z, Bi H, Song Y and Xu M 2018 Effect of toughening agents on the properties of poplar wood flour/poly (lactic acid) composites fabricated with fused deposition modeling Eur. Crop. J.
[37] Daver F, Peng K, Lee M, Brandt M and Shanks R 2018 Cork–PLA composite filaments for fused deposition modelling Compos. Sci. Technol.
[38] Depuydt D, Balthazar M, Hendrickx K, Six W, Ferraris E, Desplenter F, Ivens J, Van Vuure A W 2018 Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM) Soc. Plast. Eng. 14 (34)
[39] Filgueira D, Holmen S, Melbø J K, Echtermeyer A and Chinga-carrasco G 2017 Enzymatic-assisted modification of TMP fibres for improving the interfacial adhesion with PLA for 3D printing ACS Sustain. Chem. Eng. 1–22
[40] Zhang Q, Cai H, Zhang A, Lin X, Yi W and Zhang J 2018 Effects of lubricant and toughening agent on the fluidity and toughness of poplar powder-reinforced polylactic acid 3D printing materials Polymer (Guildf). 10 (932) 1–11
[41] Liu H, He H, Peng X, Huang B and Li J 2019 Three - dimensional printing of poly (lactic acid) bio - based composites with sugarcane bagasse fiber : effect of printing orientation on tensile
performance Polym. Adv. Technol. 1–13
[42] Stoof D and Pickering K 2017 Fused deposition modelling of natural fibre / polylactic acid composites J. Compos. Sci. 1 (8).
[43] Vaidya A A A, Collet C, Gaugler M and Lloyd-Jones G 2019 Integrating softwood biorefinery lignin into polyhydroxybutyrate composites and application in 3D printing Mater. Today Commun.
[44] Tran T N, Bayer I S, Heredia-Guerrero J A, Frugone M, Lagomarsino M, Maggio F and Athanassiou A 2017 Cocoa shell waste biofilaments for 3D printing applications Macromol. Mater. Eng., 17 (219) 1–10
[45] Pavon C, Aldas M, López-Martínez J and Ferrández S 2020 New materials for 3D-printing based on polycaprolactone with gum rosin and beeswax as additives Polymers (Basel). 12 (2)
[46] Liakos IL, Mondini A, Del Dottore E, Filippeschi C, Pignatelli F and Mazzolai B 2020 3D printed composites from heat extruded polycaprolactone/sodium alginate filaments and their heavy metal adsorption properties Mater. Chem. Front. 4 (8) 2472–2483
[47] Viidik L, Vesala J, Laitinen R, Korhonen O and Kirsim K 2020 Preparation and characterization of hot-melt extruded polycaprolactone-based filaments intended for 3D-printing of tablets Eur. J. Pharm. Sci. 105619
[48] Zhao Y Q, Yang J H, Ding X, Ding X, Duan S and Xu F J 2020 Polycaprolactone/poly saccharide functional composites for low-temperature fused deposition modelling Bioact. Mater. 5 (2) 185–191
[49] Wimmer R and Vienna L S 2015 3D printing and wood pro ligno 11 (4) 144-149
[50] Li X, Cui R, Sun L, Aifantis K E, Fan Y, Feng Q, Cui F and Watari F 2014 3D-printed biopolymers for tissue engineering application Int. J. Polym. Sci. 2014 1-13
[51] Zein I, Hutmacher D W, Tan K C and Teoh S H 2002 Fused deposition modeling of novel scaffold architectures for tissue engineering applications Biomaterials 23 (4) 1169–1185
[52] Guarino V, Gentile G, Sorrentino L and Ambrosio L 2017 Polycaprolactone: synthesis, properties, and applications Encyclopedia ofPolymer Science and Technology John Wiley & Sons, Inc 1-9
[53] Woodruff M A and Hutmacher D W 2010 The return of a forgotten polymer - polycaprolactone in the 21st century Prog. Polym. Sci. 35 (10) 1217–1256
[54] Abdul Haq R H, Faizan Marwah O M, Abdol Rahman M N, Haw H F, Abdullah H and Ahmad S 2019 3D printer parameters analysis for PCL/PLA filament wire using Design of Experiment (DOE) IOP Conf. Ser. Mater. Sci. Eng. 607 (1)
[55] Zhang W, Ullah I, Shi L, Zhang Y, Ou H, Zhou J, Ullah M W, Zhang X, Li W 2019 Fabrication and characterization of porous polycaprolactone scaffold via extrusion-based cryogenic 3D printing for tissue engineering Mater. Des. 180 1-10
[56] Cho Y S, Hong M W, Jeong H J, Lee S J, Kim Y Y and Cho Y S 2017 The fabrication of well-interconnected polycaprolactone/hydroxyapatite composite scaffolds, enhancing the exposure of hydroxyapatite using the wire-network molding technique J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (8) 2315–2325
[57] Patricio T, Glória A and Bártilo P 2013 Mechanical and biological behaviour of PCL and PCL/PLA scaffolds for tissue engineering applications Chem. Eng. Trans. 32 1645–1650
[58] 3D Printing Canada 2020 The Comprehensive Guide to Comparing 3D Filament article Ontario L8W 3P9 Canada

Acknowledgements
The authors would like to thank the Aceh Government for Doctoral School Scholarship 2018.