Pulmonic stenosis (PS) is a common congenital heart defect in dogs, accounting for 31% of total congenital heart defects. Dogs typically present early in life with a left basilar systolic murmur. In patients with advanced disease, right ventricular hypertrophy often manifests as a pronounced right axis deviation (RAD) on ECG. Therefore, RAD may be a useful screening metric for general practitioners both for preliminary diagnosis of PS and determining if referral to a cardiologist is necessary. Although echocardiography is the diagnostic test of choice for PS, it is relatively expensive and not readily available to most general practitioners outside of academic institutions or larger-scale private practices. In contrast, ECG is more accessible to general practitioners and more economical for clients.

The objective of this study was to evaluate the predictive value of deviations from the normal mean electrical axis (MEA) range in a population of dogs already diagnosed with PS of varying severity.

Materials and Methods

Animals

This study involved a single-center retrospective clinical record review conducted at the University of Florida College of Veterinary Medicine (UF-CVM) and approved by the Institutional Animal Care and Use Committee (IACUC No. 202011206). Written owner consent was not required because there was no subject recruitment and data were collected as part of routine clinical management. Records were deidentified but assigned a unique identifier code for analysis.

Records were extracted from UF-CVM’s clinical database (Cornerstone Practice Management System).
for nonnormal continuous data and counts (percentages) for categorical data. Because MEA is a circular variable, angular means and SDs were calculated by conversion of MEA to Cartesian vector coordinates (sin and cos transformation). Calculations were performed by use of the SAS macro %circular_moment (SAS Institute Inc). Differences in mean angles between stenosis categories were evaluated by Watson-Williams uniform scores test (W) in R version 4.0.2 (R Foundation for Statistical Computing).

Receiver operating characteristic (ROC) curves were used to predict corresponding MEA based on binary classification of stenosis as either severe or less severe. Stenosis severity categories were defined for 2 PG thresholds (< 50 vs ≥ 50 mm Hg, mild vs moderate-severe; and < 75 vs ≥ 75 mm Hg, mild-moderate vs severe). The 2 models were fitted separately by logistic regression with PROC LOGISTIC (SAS version 9.4; SAS Institute Inc). To assess estimate robustness, optimal MEA cut points were estimated with the SAS macro %rocplot by 3 methods: the maximum proportion of correctly classified observations (CORRECT), the minimum absolute difference between sensitivity and specificity (Sens-Spec = sensitivity − specificity), and the Youden J index (Youden = sensitivity + specificity − 1). The SAS statement PROC PROBIT was used to compute 95% CIs for predicted MEA for each method.

Quantile regression was used to model the relationship of PG in relation to MEA and associated risk factors (age, sex, weight, murmur grade, clinical signs [yes or no], and bulldog [yes or no]) without the dichotomization of PG thresholds required for ROC curve analysis and with relaxation of assumptions required for ordinary least-squares regression. A further advantage of quantile regression is that it allows assessment of differing effects of covariates for dogs at the extremes (and especially the upper tail) of the PG distribution. Predicting high PG is important because higher PG subjects are much more likely to require balloon valvuloplasty. Variable selection was performed for nonnormal continuous data and counts (percentages) for categorical data. Because MEA is a circular variable, angular means and SDs were calculated by conversion of MEA to Cartesian vector coordinates (sin and cos transformation). Calculations were performed by use of the SAS macro %circular_moment (SAS Institute Inc). Differences in mean angles between stenosis categories were evaluated by Watson-Williams uniform scores test (W) in R version 4.0.2 (R Foundation for Statistical Computing).

Receiver operating characteristic (ROC) curves were used to predict corresponding MEA based on binary classification of stenosis as either severe or less severe. Stenosis severity categories were defined for 2 PG thresholds (< 50 vs ≥ 50 mm Hg, mild vs moderate-severe; and < 75 vs ≥ 75 mm Hg, mild-moderate vs severe). The 2 models were fitted separately by logistic regression with PROC LOGISTIC (SAS version 9.4; SAS Institute Inc). To assess estimate robustness, optimal MEA cut points were estimated with the SAS macro %rocplot by 3 methods: the maximum proportion of correctly classified observations (CORRECT), the minimum absolute difference between sensitivity and specificity (Sens-Spec = sensitivity − specificity), and the Youden J index (Youden = sensitivity + specificity − 1). The SAS statement PROC PROBIT was used to compute 95% CIs for predicted MEA for each method.

Quantile regression was used to model the relationship of PG in relation to MEA and associated risk factors (age, sex, weight, murmur grade, clinical signs [yes or no], and bulldog [yes or no]) without the dichotomization of PG thresholds required for ROC curve analysis and with relaxation of assumptions required for ordinary least-squares regression. A further advantage of quantile regression is that it allows assessment of differing effects of covariates for dogs at the extremes (and especially the upper tail) of the PG distribution. Predicting high PG is important because higher PG subjects are much more likely to require balloon valvuloplasty. Variable selection was performed

![Figure 1](image_url)—Flow diagram of records screened, excluded, and analyzed in a retrospective chart review of canine pulmonary stenosis. UF = University of Florida.
Results

Records from 218 dogs diagnosed with PS were screened for eligibility. Records for 88 dogs met the inclusion criteria (Figure 1). With a single exception, all dogs were referred from general practice clinics. Twenty-one breeds were represented, with English and French Bulldogs comprising 26% (23/88) and mixed breeds 32% (28/88) of the sample. Other breeds included pit bull–type breeds (7 [8%]), Cavalier King Charles Spaniel (6 [7%]), Pomeranian (4 [5%]), German Shepherd Dog (3 [3%]), Chihuahua (2 [2%]), Collie (2 [2%]), Yorkshire Terrier (2 [2%]), and 1 each of various other breeds.

Signalment and clinical characteristics were summarized (Table 1). Only 16 of 88 (18%) dogs showed clinical signs associated with PS at presentation. Dogs in the greatest severity category tended to be smaller and were more likely to show ECG abnormalities and overt clinical signs and present with higher murmur grade.

Mean MEA differed statistically between stenosis categories (Watson-Williams W = 29.1; $P < 0.0001$) and increased with stenosis severity (Figure 2), averaging 62°, 113°, and 157° for mild, moderate, and severe stenosis categories, respectively. Mean electrical axis cut points predicted from ROC curve analysis (Table 2; Figure 3) varied with the method of optimal cut-point determination, but estimates were clinically consistent within each PG threshold group. Discrimination between mild stenosis (20 to 50 mm Hg) and moderate to severe stenosis (≥ 50 mm Hg) had high concordance (94%) and high sensitivity and specificity, and the predicted MEA CI for stenosis < 50 mm Hg showed close approximation to the expected normal range for MEA (40° to 100°). Although setting the stenosis discrimination threshold at a PG of 75 mm Hg resulted in poorer concordance (76%) and lower sensitivity and specificity, the MEA CI was consistent with a right axis deviation > 100°.

A scatterplot was created of PG and MEA with superimposed quantile estimates showing a positive relationship and both increasing variation and slope at higher quantiles (Figure 4). Increasing severity of murmur grade was associated with the largest increases in PG and was largest at the highest percentiles. Quantile regression results are displayed elsewhere (Supplementary Table S1; Supplementary Figure S1). Variables included in the final model were MEA, ln(weight), sex, and murmur grade. Each 10° increase in MEA corresponded to an approximate increase of 5 mm Hg in PG. For each unit increase in body weight (approx 2.7 kg), PG declined by approximately 15 mm Hg, especially in the lower percentiles (< 0.5). Female dogs

Table 1—Descriptive statistics for 88 dogs diagnosed with mild (< 50 mm Hg), moderate (50 to 75 mm Hg), or severe (> 75 mm Hg) pulmonary stenosis (PS).

Variable	Mild PS	Moderate PS	Severe PS	
No. of males	7	16	29	
No. of females	36	28	23	
Median (IQR) age (y)	3.6 (0.5–3.0)	0.9 (0.6–2.0)	1.0 (0.5–2.0)	
Median (IQR) body weight (kg)	27.2 (10.8–35.0)	17.7 (14.2–24.4)	11.7 (8.2–21.2)	
Mean ± SD MEA (°)	62.0 ± 13.1	112.8 ± 50.0	165.8 ± 62.9	
No. (%) with all-cause mortality	0 (0)	1 (5)	5 (9)	
No. (%) with ECG abnormalities	0 (0)	0 (0)	4 (7)	
No. (%) with clinical signs	1 (10)	2 (10)	13 (23)	
No. (%) with murmur grade	II	III	IV	
II	1 (10)	1 (5)	0 (0)	
III	5 (50)	1 (5)	5 (9)	
IV	2 (20)	12 (57)	28 (49)	
V	2 (20)	7 (33)	14 (24)	
No. (%) with medications	Atenolol	0 (0)	13 (62)	51 (91)
Other	0 (0)	1 (5)	4 (7)	
No. (%) with surgery	Recommended	0 (0)	1 (5)	49 (86)
Performed	0 (0)	3 (14)	42 (74)	

IQR = Interquartile (25th to 75th percentile) range. MEA = Mean electrical axis.

with SAS statement PROC QUANTSELECT (SAS Institute Inc) by use of the adaptive lasso method. Final model fit and diagnostics were performed with the SAS statement PROC QUANTREG (SAS Institute Inc), with 90% confidence limits constructed by resampling.11-13
showed an increase in PG of approximately 14 to 20 mm Hg over males at the extremes and up to 30 mm Hg in the midrange. A grade IV murmur was associated with an increase in PG of 25 to 40 mm Hg over dogs presenting with murmur grade II to III, and a grade V murmur was associated with an increase in PG of 10 to 77 mm Hg.

Discussion

Secondary effects of PS include right ventricular hypertrophy, ventricular arrhythmias, right-sided heart failure, and abnormal diastolic filling. In patients with moderate and severe PS, MEA RAD is often observed as a result of extensive right ventricular hypertrophy. Because RAD is associated with right ventricular hypertrophy, we predicted that a greater MEA deviation would be associated with greater severity of disease. In the present study, MEA RAD, coupled with smaller body weight and higher-grade murmurs (> III), was shown to be a reasonably good surrogate marker of moderate to severe PS.

Pulmonic stenosis and subsequent severe right ventricular concentric hypertrophy are associated with a 6-fold increase in risk of cardiac death in dogs. However, balloon valvuloplasty decreases the risk of sudden death. In 1 study, 12 of 41 dogs that did not receive balloon valvuloplasty died suddenly, compared with only 1 of 40 dogs that did receive balloon valvuloplasty. Thus, recognition of dogs with severe PS by primary veterinarians is critical to ensure referral to a board-certified cardiologist for therapeutic intervention and an improved outcome. In the present study, overt clinical signs and additional ECG abnormalities, such as arrhythmias, were identified in only a few of the most severely affected dogs, suggesting that these may be relatively late signs. Instead, MEA RAD > 100° was associated with PG > 50 mm Hg and the more severe cases (PG > 75 mm Hg) with MEA RAD > –180°.

Strengths of the present study included a large sample size, the variety of breeds included, and dif-
different models for obtaining and evaluating diagnostic predictions. Receiver operating characteristic curves essentially describe a gradient of response (here, stenosis severity) in terms of a dichotomy (e.g., mild disease = 0 vs severe disease = 1). However, dichotomization of a response gradient results in considerable loss of both clinical information and power and is strongly discouraged by many applied statisticians. In the present study, similar conclusions were obtained by ROC curve analyses and quantile regression results, namely recognition of increased and clinically actionable PS severity with MEA RAD > 100°. Limitations of this study included the potential for both spectrum and selection bias. Spectrum bias results in variation of diagnostic test performance in different clinical settings because of differences in subject populations and case mix. The bias toward more severe stenosis cases at this tertiary referral center limits the generalizability of this study. Dogs with severe PS comprised > 60% of our sample population. However, dogs with louder murmurs and higher pulmonary PG could be more likely to be referred to this center for board-certified cardiology evaluation and therefore may not reflect the clinical range of presentations encountered in general practice. Second, missing or unreadable ECG records resulted in the exclusion of 40% of screened records. This high proportion of loss greatly reduced precision of the models and increased the potential for selection bias. Further investigation with a larger and more representative sample is necessary to accurately determine the predictability of MEA RAD in diagnosing PS severity in dogs.

Clinically, dogs with moderate to severe PS warrant further diagnostic workup including an echocardiogram, serial monitoring, and potential medical or surgical intervention. Additional factors such as breed, age, and murmur characterization coupled with ECG variation will be helpful in the clinical setting to identify more advanced cases of PS. A left basilar systolic murmur should warrant increased suspicion of PS in a young dog, especially in predisposed breeds such as French and English Bulldogs, Chihuahua, Miniature Schnauzer, and American Staffordshire Terrier. In the present study, 94.9% of dogs with moderate to severe PS were correctly identified on the basis of MEA deviation alone. Based on our analysis, an MEA > 100° should increase suspicion of severe PS. In addition, more severe PS was definitively associated with MEA with RAD > –180°. Thus, if a primary care veterinarian suspects PS on the basis of signalment, breed, and murmur characterization and observes an MEA RAD of > –180°, referral to a board-certified cardiologist is strongly recommended.

For general veterinary practices where echocardiography is not available, ECG with evidence of RAD (MEA > 100°) coupled with murmur grade (> III) may be a useful diagnostic for dogs with suspected advanced PS. Identifying and referring cases of severe PS is critical as these patients benefit from early therapeutic intervention. Results from the present study suggested that MEA RAD may be helpful in differentiating severe PS requiring surgical intervention from milder forms of the disease. Thus, ECG with concurrent MEA calculations may be a useful tool during the decision-making process to determine if referral to a board-certified cardiologist for further workup and treatment is warranted.

Acknowledgments
No third-party funding or support was received in connection with this study or the writing or publication of the manuscript. The authors declare that there were no conflicts of interest.

References
1. Schroepe DP. Prevalence of congenital heart disease in 76,301 mixed-breed dogs and 57,025 mixed-breed cats. J Vet Cardiol. 2015;17(3):192–202.
2. Caivano D, Dickson D, Martin M, Rishniw M. Murmur intensity in adult dogs with pulmonic and subaortic stenosis reflects disease severity. J Small Anim Pract. 2018;59(3):161–166.
3. Corcoran D, Aronson E. Congenital cardiac disease in dogs. Mod Vet Pract. 1984;65(7):509–512.
4. Thomas WP, Gaber CE, Jacobs GJ, et al. Recommendations for standards in transthoracic two-dimensional echocardiography in the dog and cat. Echocardiography Committee of the Specialty of Cardiology, American College of Veterinary Internal Medicine. J Vet Intern Med. 1993;7(4):247–252.
5. Giussadoni C, Amberger C, Le Bobinnec G, Lombard CW. Guidelines for the echocardiographic studies of suspected subaortic and pulmonic stenosis. J Vet Cardiol. 2000;2(2):15–22.
6. Tilley LP. Essentials of Canine and Feline Electrocardiography: Interpretation and Treatment. Lea & Febiger; 1992:444–447.
7. Boon JA. Veterinary Echocardiography. Wiley-Blackwell; 2010.
8. Fisher NI. Statistical Analysis of Circular Data. Cambridge University Press; 1993:59–133.
9. Kolliker M, Richner H. Navigation in a cup: chick positioning in great tit. Parus major, nest. Anim Behav. 2004;68:941–948.
10. Aitman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332(7549):1080.
11. Koenker R, Hallock KF. Quantile regression. J Econ Perspect. 2001;15(4):143–156.
12. Cade BS, Noon BR. A gentle introduction to quantile regression for ecologists. Front Ecol Evol. 2003;1(8):412–420.
13. Yu K, Lu Z, Stander J. Quantile regression: applications and current research areas. Statistician. 2003;52(3):331–350.
14. Francis AJ, Johnson MJ, Culshaw GC, Corcoran BM, Martin MW, French AT. Outcome in 55 dogs with pulmonic stenosis that did not undergo balloon valvuloplasty or surgery. J Small Anim Pract. 2011;52(6):282–288.
15. Johnson MS, Martin M, Edwards D, French A, Henley W. Pulmonic stenosis in dogs: balloon dilation improves clinical outcome. J Vet Intern Med. 2004;18(5):656–662.
16. Ransohoff DF, Feinstein AR. Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. N Engl J Med. 1978;299(17):926–930.
17. Goehring C, Perrier A, Morabia A. Spectrum bias: a quantitative and graphical analysis of the variability of medical diagnostic test performance. Stat Med. 2004;23(1):125–135.
18. Chetboul V, Damoiseaux C, Poissonnier C, et al. Specific features and survival of French Bulldogs with congenital pulmonic stenosis: a prospective cohort study of 66 cases. J Vet Cardiol. 2018;20(6):405–414.

Supplementary Materials
Supplementary materials are posted online at the journal website: avmajournals.avma.org