Mild Acidosis Enhances AMPA Receptor-Mediated Intracellular Zinc Mobilization in Cortical Neurons

Valerio Frazzini,1 Ilario G Rapposelli,1 Carlo Corona,1 Erica Rockabrand,1 Lorella MT Canzoniero,4 and Stefano L Sensi1,2,3

1Department of Basic and Applied Medical Science, Molecular Neurology Unit, CeSI-Center for Excellence on Aging, University ‘G. d’Annunzio’, Chieti, Italy; 2Department of Neurology, University of California, Irvine, Irvine, CA, USA; 3Department of Neurology, University of Texas Medical Branch, Galveston, Galveston, TX, USA; 4Department of Biology and Environmental Sciences, University of Sannio, Benevento, Italy

Overactivation of glutamate receptors and subsequent deregulation of the intraneuronal calcium ([Ca\(^{2+}\)]i) levels are critical components of the injurious pathways initiated by cerebral ischemia. Another hallmark of stroke is parenchymal acidosis, and we have previously shown that mild acidosis can act as a switch to decrease NMDAR-dependent neuronal loss while potentiating the neuronal loss mediated by AMPARs. Potentiation of AMPAR-mediated neuronal death in an acidic environment was originally associated only with [Ca\(^{2+}\)]i dyshomeostasis, as assessed by Ca\(^{2+}\) imaging; however, intracellular dyshomeostasis of another divalent cation, Zn\(^{2+}\), has recently emerged as another important co-factor in ischemic neuronal injury. Rises in [Zn\(^{2+}\)]i greatly contribute to the fluorescent changes of Ca\(^{2+}\)-sensitive fluorescent probes, which also have great affinity for Zn\(^{2+}\). We therefore revisited our original findings (Mcdonald et al., 1998) and investigated if AMPAR-mediated fura-2 signals we observed could also be partially due to (Zn\(^{2+}\)) increases. Fura-2 loaded neuronal cultures were exposed to the AMPAR agonist, kainate, in a physiological buffer at pH 7.4 and then washed either at pH 7.4 or pH 6.2. A delayed recovery of fura-2 signals was observed at both pHs. Interestingly this impaired recovery phase was found to be sensitive to chelation of intracellular Zn\(^{2+}\). Experiments with the Zn\(^{2+}\)-sensitive and Ca\(^{2+}\)-insensitive fluorescent probe FluoZin-3 confirmed the idea that AMPAR activation increases (Zn\(^{2+}\)), a phenomenon that is potentiated by mild acidosis. Additionally, our results show that selective Ca\(^{2+}\) imaging mandates the use of intracellular heavy metal chelators to avoid confounding effects of endogenous metals such as Zn\(^{2+}\).

Address correspondence and reprint requests to Stefano L Sensi, Department of Neurology, University of California, Irvine, Irvine, CA, 92697-4292. Phone: 39-0871-541544; Fax: 39-0871-541542; E-mail: ssensi@uci.edu. Submitted April 25, 2007; Accepted for publication April 25, 2007.

INTRODUCTION

Excitotoxicity is a key phenomenon that promotes neuronal demise in cerebral ischemia (1). Evidence cumulated in the past 30 years has linked ischemic neuronal death to the overactivation of glutamatergic ionotropic receptors (NMDA, N-Methyl-D-aspartate and AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid), a process that leads to massive Ca\(^{2+}\) entry into neurons and activation of a plethora of Ca\(^{2+}\)-dependent injurious pathways. NMDAR associated channels are highly Ca\(^{2+}\) permeable and seem to play a prominent role in ischemic neuronal death. Most of the AMPAR associated channels are Ca\(^{2+}\) impermeable; nevertheless, AMPAR activation is also able to mediate neurotoxic rises of intracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]i) via indirect opening of the voltage sensitive Ca\(^{2+}\) channels (VSCC). Parenchymal acidosis is another key component of the injurious pathways set in motion by cerebral ischemia (2), as well as an important modulator of excitotoxicity. NMDAR-mediated currents are attenuated by moderate extracellular acidity in the range of pH 6.2-7.2 (3–4), and in vitro, reduction of extracellular pH below 6.5 reduces both glutamate and oxygen-glucose deprivation induced neurotoxicity (5–7). While acidosis can reduce NMDAR-dependent neuronal loss, we previously have shown that lowering the extracellular pH can enhance AMPAR-mediated neuronal injury (8). Such enhanced toxicity originally was explained partially by increases of [Ca\(^{2+}\)]i deregulation. In the Mcdonald study, we also found that neurons challenged with AMPA (under non-desensitizing conditions) undergo a phase of delayed recovery of [Ca\(^{2+}\)]i levels when washed in an acidic (pH 6.6) buffer. Using Ca\(^{2+}\) imaging experiments, this delayed recovery was attributed to deregulation of [Ca\(^{2+}\)]i, homeostatic mechanisms, as evaluation of Ca\(^{2+}\) influx by \(^{45}\) Ca\(^{2+}\) uptake showed that influx of the cation via VSCC was decreased by extracellular acidity.

Excitotoxic neuronal loss also has been linked to the dyshomeostasis of another divalent cation, Zn\(^{2+}\). A large amount of data supports the idea that Zn\(^{2+}\) can in...
fact act not only as a cellular messenger, but also as a potent trigger of neuronal death through several mechanisms – including energy depletion, reactive oxygen species (ROS) generation, and mitochondrial dysfunction, reviewed in (9). Injurious [Zn\(^{2+}\)], rises have been linked to excitotoxic conditions such as transient global ischemia, head trauma, and epilepsy (10). Elevations of [Zn\(^{2+}\)], are due to a combination of influx of the cation via glutamate receptors and VSCC activation, as well as its release from intracellular sites. Intracellularly Zn\(^{2+}\) is loosely bound to proteins such as metallothioneins (MTs) and several studies have indicated that the cation can be mobilized from MTs under conditions of oxidative stress. Further studies have shown that Zn\(^{2+}\) also can be mobilized in a Ca\(^{2+}\)-dependent fashion from mitochondria (11–12). Interestingly, changes in the intracellular proton concentration appear to act as a co-factor in ROS-mediated [Zn\(^{2+}\)], rises as a decrease in pH rapidly destabilizes Zn\(^{2+}\) binding to MTs (13) and promotes an overall release of the cation. This phenomenon has now been confirmed in neurons, where mild acidosis has been found to dramatically increase [Zn\(^{2+}\)], rises induced by MT oxidation (12).

A very intriguing debate has recently emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Calcium- Zinc dilemma” (9,12,14–16). While for many years excitotoxicity has emerged in the excitotoxic field: the “Cal
Acidosis, AMPAR Activation, and \([\text{Zn}^{2+}]\) Rises

(30 min at pH 7.4). At the end of the 30 min washout phase, neurons were exposed for 5 min to the cell-permeant heavy metal (and high affinity \([\text{Zn}^{2+}]\)) chelator TPEN \([20 \mu\text{M}; K_d 10^{-26}(19)]\). In a second set of experiments, fura-2 fluorescence changes were investigated in neurons that, after the kainate challenge at pH 7.4, were washed in an acidic buffer (pH 6.2) for 30 min and then exposed to TPEN. Surprisingly, both in the case of post-kainate washout at pH 7.4 and pH 6.2, we observed a delayed recovery in the fura-2 signal. This delayed recovery in fura-2 fluorescence was found to be largely reduced upon TPEN exposure (Figure 1A and B). When we evaluated the extent of the decrease in the fura-2 signal produced by the TPEN exposure, we found no statistical difference between the two conditions. TPEN can decrease fura-2 fluorescence by 58% (SEM ± 4.33) in neurons washed at pH 7.4, while the same maneuver at pH 6.2 produced a 53% (SEM ± 2.68) fluorescence drop. When analyzing these \([\text{Zn}^{2+}]\) rises, one has to consider that potential differences could be difficult to be evaluated considering the high affinity for \([\text{Zn}^{2+}]\) of fura-2 (Kd 0.5-3 nM).

To better analyze AMPAR-mediated \([\text{Zn}^{2+}]\) dyshomeostasis, we therefore loaded our cortical neurons with the \([\text{Zn}^{2+}]\)-sensitive (and \([\text{Ca}^{2+}]\)-insensitive) fluorescent probe FluoZin-3 (20). As with the fura-2 experiments, FluoZin-3 loaded neurons were imaged upon a brief excitotoxic pulse (300 \(\mu\text{M}\) kainate for 1 min at pH 7.4) and during a 20 min washout period either at pH 7.4 or pH 6.2 (Figure 2A and B). Integral analysis of \([\text{Zn}^{2+}]\) overload occurring in the washout period revealed that post-kainate \([\text{Zn}^{2+}]\) dyshomeostasis is enhanced by extracellular acidosis (Figure 2C).

To elucidate the source of the \([\text{Zn}^{2+}]\) rises triggered by kainate exposure, we performed a control experiment in which FluoZin-3 loaded neurons were challenged with kainate and washed in an acidic buffer in the presence of the extracellular \([\text{Zn}^{2+}]\) chelator \([\text{Ca}^{2+}]\)EDTA (20 \(\mu\text{M}\)). Indicating that AMPAR activation promotes a process of intracellular mobilization of \([\text{Zn}^{2+}]\), which is enhanced by low extracellular pH, chelation by \([\text{Ca}^{2+}]\)EDTA of any possible contaminant \([\text{Zn}^{2+}]\) in the extracellular medium did not attenuate the FluoZin-3 fluorescent rises observed in the washout period (Figure 3A).

Mobilization of \([\text{Zn}^{2+}]\), can occur from MT oxidation as well as from \([\text{Zn}^{2+}]\) release from mitochondria (12,14,17). We first explored the possibility that AMPAR activation can induce release of \([\text{Zn}^{2+}]\) present in mitochondria. In FluoZin-3 loaded cultures, exposure to a protonophore (CCCP; 1 \(\mu\text{M}\)) that collapses the mitochondrial membrane potential and, as shown before (11–12) promotes \([\text{Zn}^{2+}]\)
release from mitochondria, produced a large increase in cytosolic FluoZin-3 fluorescence. Suggesting that mitochondria are a likely source for AMPAR-mediated \([\text{Zn}^{2+}]\) rises, CCCP exposure also oc-
cluded subsequent responses to kainate (Figure 3B).

On the contrary of NMDAR, AMPAR activation has been shown previously to generate very moderate oxidative stress of mitochondrial origin (21); therefore, a ROS-dependent \([\text{Zn}^{2+}]\) mobilization seems less likely. We examined the possibility that AMPAR stimulation (at physiological and acidicotic pH) can produce different levels of cytosolic ROS in neurons loaded with the superoxide sensitive fluorescent probe hydroethidine (HEt). Confirming the expected low oxidative stress produced by AMPAR activation under physiological conditions, HEt-loaded neurons undergoing a 5 min kainate exposure showed very little increase in ROS production in the following 50 min when washed out in buffer at pH 7.4 (Figure 4A). Interestingly, when the same excitotoxic challenge was followed by a 50 min wash at pH 6.2, ROS generation was found to be significantly higher (Figure 4B and C).

DISCUSSION

Our present study complements previous \([\text{Ca}^{2+}]\) imaging studies in both neuronal cultures and hippocampal slices and clearly indicates that excitotoxic activation of glutamate receptors leads not only to \([\text{Ca}^{2+}]\) dyshomeostasis but also to a significant \([\text{Zn}^{2+}]\) mobilization. This idea is substantiated by the interpretation of the increases in both fura-2 ratios and FluoZin-3 fluorescence (quenched by TPEN) that we observed. Fura-2 has a low affinity for \([\text{Mg}^{2+}]\) (Kd 6–10 mM) and exhibits an affinity for \([\text{Zn}^{2+}]\) that is nearly 100-fold higher than its affinity for \([\text{Ca}^{2+}]\) (Kd 0.5–3 nM). Upon \([\text{Zn}^{2+}]\) binding, fura-2 fluorescence undergoes changes similar to what is observed with \([\text{Ca}^{2+}]\) (i.e. increases of the 340/380 nm excitation ratio). On the other hand, fura-2 binding to transition metals likely to be intracellularly released in significant amounts, such as manganese, ferrous and ferric iron, and copper results in different levels of quenching of the probe fluorescence.

FluoZin-3 is a \([\text{Zn}^{2+}]\) selective indicator that exhibits high \([\text{Zn}^{2+}]\) binding affinity (Kd for \([\text{Zn}^{2+}]\) ~15 nM), that is unperturbed by \([\text{Ca}^{2+}]\) and \([\text{Mg}^{2+}]\) concentrations up to at
least 0.1 mM and 1 M respectively (20). As with fura-2, iron and copper binding to FluoZin-3 produce quenching of the probe fluorescence. Thus, the only metal that could promote TPEN-sensitive increases in both fura-2 ratios and FluoZin-3 fluorescence is Zn$^{2+}$.

Our findings reinforce the idea that glutamate receptor overactivation can trigger a synergistic injurious interplay between Ca$^{2+}$ and Zn$^{2+}$. Considering the fact that Zn$^{2+}$ is able to induce neuronal loss with greater potency compared with Ca$^{2+}$, the cation might soon emerge as the major ionic determinant of excitotoxicity. Indeed, given the fact that significant [Zn$^{2+}$], release from mitochondria can result from large, NMDA-triggered [Ca$^{2+}$]$_{i}$ rises, and the likely probability that Ca$^{2+}$-induced mitochondrial ROS generation could also trigger Zn$^{2+}$ mobilization from MTs, we might envision a pathological setting in which glutamate receptor-driven [Ca$^{2+}$]$_{i}$ rises actually play a more modest injurious role than previously thought. Instead of being the executioner, [Ca$^{2+}$]$_{i}$, dyshomeostasis can actually serve as an “accomplice” to deregulate the intracellular concentration of the primary ionic mediator of neuronal injury, Zn$^{2+}$.

This study also integrates the main results of our previous experiments with the novel finding that reduction of extracellular pH to levels of parenchymal acidosis associated with cerebral ischemia (2) enhances AMPAR-mediated Zn$^{2+}$ dyshomeostasis.

The connection between Zn$^{2+}$ and acidosis is intriguing as pH reduction can affect many Zn$^{2+}$ homeostatic systems. The permeability of major routes of Zn$^{2+}$ entry, such as the VSCC and Ca$^{2+}$-permeable AMPAR, is enhanced at acidic pH, while the Ca$^{2+}$ permeability of these channels (as well as NMDAR permeability) has been shown to be decreased under the same conditions (22–23). Zn$^{2+}$ uptake and compartmentalization by Zinquin-positive cytosolic organelles is blocked by intracellular acidification, indicating the presence of a putative intracellular Zn$^{2+}$/proton antipporter (24), and previous studies have also indicated that an acidic environment can greatly destabilize Zn$^{2+}$ binding to MTs and therefore promote [Zn$^{2+}$], accumulation (13). Interestingly, Zn$^{2+}$ dyshomeostasis itself can alter the intracellular acid-base equilibrium and promote a feed-forward dyshomeostatic loop. Findings in cultured neurons suggest that Zn$^{2+}$ can in fact favor intracellular acidification in a Ca$^{2+}$-dependent fashion through an increased activity of the Na$^{+}$/Ca$^{2+}$ exchanger, and also maintain such acidification by Zn$^{2+}$-dependent inhibition of proton efflux via the Cl$^{-}$/HCO$_3$--exchanger (25). Finally, as observed in our study, prolonged intracellular acidosis could further evoke [Zn$^{2+}$], dyshomeostasis by interfering with the overall neuronal redox state, either by reducing the activity of cellular antioxidant enzymes or increasing hydroxyl radical formation (26).

In our study, it appears that the acidic/AMPAR-mediated [Zn$^{2+}$], rises observed in neuronal cultures can be attributed to combined mechanisms of mitochondrial release of the cation together with impaired buffering by MTs. The fact that mitochondrial depolarization prior to the kainate exposure completely occludes AMPAR-mediated [Zn$^{2+}$], increases seems to indicate that most of the Zn$^{2+}$ is released from that subcellular compartment (Figure 3B). On the other hand, the impaired Zn$^{2+}$ buffering under acidic conditions that follows AMPAR activation appears to be related to a synergistic inhibition on Zn$^{2+}$ binding to MTs that is promoted by protons either directly (13), or indirectly, by enhancing AMPAR-mediated ROS production. This process eventually leads to MT oxidation and further decreased Zn$^{2+}$ buffering.

On a speculative note, our model, which emphasizes the role played by acidosis and AMPAR-mediated Zn$^{2+}$ dyshomeostasis in excitotoxicity, might be relevant for the timing and selection of pharmacological intervention in neurological conditions associated with both acidosis and alteration of [Zn$^{2+}$], content such as stroke, status epilepticus, and trauma. While hours away from the ischemic attack when the acid-base equilibrium is restored, NMDAR antagonists maintain a very important therapeutic value, AMPAR antagonists might result as a better option immediately after the insult given the fact that NMDARs are already blocked by post-ictal parenchymal acidosis (27). The importance of AMPAR antagonism has been demonstrated recently by an elegant series of studies in which blockade of the Ca$^{2+}$-permeable AMPARs has been found to be neuroprotective both in “in vitro” and “in vivo” models of cerebral ischemia (28–30). Work by our laboratory and the groups of Suzanne Zukin and Mike Bennett has convincingly demonstrated that, in the post-ischemic period, blockade of Ca-A/K channels by spermine derivatives can greatly inhibit neuronal death in the CA1 hippocampal region by counteracting both [Zn$^{2+}$], accumulation and Zn$^{2+}$-dependent injurious processes.

Targeting Zn$^{2+}$ dyshomeostasis might also require further exploration, as recent animal studies involving the use of pyruvate to restore Zn$^{2+}$-dependent injurious depletion of cytosolic NAD$^{+}$ levels showed a dramatic neuroprotective effect in the context of both global and focal cerebral ischemia (31–32).

A final technical issue raised by our findings concerns the need for highly selective Ca$^{2+}$-sensitive fluorescent probes. The warning contained in the paper by Grynkiewicz, Poenie and Tsien (33) indicating the high sensitivity of Ca$^{2+}$-sensitive fluorescent probes to heavy metals has been neglected. It is now clear that mobilization of intracellular Zn$^{2+}$ can be a significant contributor to the fluorescence changes of Ca$^{2+}$ fluorescent probes. This effect should no longer be ignored nor Ca$^{2+}$ dependency claimed without a prior careful exclusion of Zn$^{2+}$-dependent phenomena.

ACKNOWLEDGMENTS

We thank Tiziana D’Ettorre and Francesca Faricelli for expert assistance.
REFERENCES

1. Lee JM, Zipfel GJ, Choi DW. (1999) The changing landscape of ischaemic brain injury mechanisms. Nature. 399:A7–14.

2. Chesler M. (2003) Regulation and modulation of pH in the brain. Physiol. Rev. 83:1183–221.

3. Tang CM, Dichter M, Morad M. (1990) Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc. Natl. Acad. Sci. U. S. A. 87:6445–9.

4. Traynelis S, Cull-Candy S. (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature. 345:347–50.

5. Giffard RG, Monyer H, Christine CW, Choi DW. (1990) Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res. 506:339–42.

6. Tombaugh GC, Sapolsky RM. (1990) Mild acidosis protects hippocampal neurons from injury induced by oxygen and glucose deprivation. Brain Res. 506:343–5.

7. Kaku DA, Giffard RG, Choi DW. (1993) Neuroprotective effects of glutamate antagonists and extracellular acidity. Science. 260:1516–8.

8. McDonald JW et al. (1998) Extracellular acidity.

9. Sensi SL, Jeng JM. (2004) Rethinking the excitotoxic ionemic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. Curr. Mol. Med. 4:87–111.

10. Frederickson CJ, Koh JY, Bush AI. (2005) The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6:449–62.

11. Sensi SL, Ton-That D, Weiss JH. (2002) Mitochondrial sequestration and Ca(2+)-dependent release of cytosolic Zn(2+) loads in cortical neurons. Neurobiol. Dis. 10:100–8.

12. Sensi SL et al. (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. PNAS. 100:6157–62.

13. Jiang LJ, Vasak M, Vallee BL, Maret W. (2000) Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J. Biol. Chem. 270:2719–27.

14. Bossy-Wetzel E et al. (2004) Divergent effects of pH on Zn2+ and Ca2+ flux through Ca2+-permeable AMPA/kainate channels (CAKRs) SFN Annual Meeting. Washington, DC: Society for Neuroscience, Orlando, FL, p.539.

15. Colvin RA. (2002) pH dependence and compartmentalization of zinc transported across plasma membrane of rat cortical neurons. Am. J. Physiol. Cell Physiol. 282:C317–29.

16. Dineley KE, Brocard JB, Reynolds IJ. (2002) Elevated intracellular zinc and altered proton homeostasis in forebrain neurons. Neuroscience. 114:439–49.

17. Ying W, Han SK, Miller JW, Swanson RA. (1999) Acidosis potentiates oxidative neuronal death by multiple mechanisms. J. Neurochem. 73:1549–56.

18. Gill R, Lodge D. (1997) Pharmacology of AMPA antagonists and their role in neuroprotection. Int. Rev. Neurobiol. 40:197–232.

19. Yin HZ, Sensi SL, Ogoshi F, Weiss JH. (2002) Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons. J. Neurosci. 22:1273–1279.

20. Calderone A et al. (2004) Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J. Neurosci. 24:9903–13.

21. Noh KM et al. (2005) Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc. Natl. Acad. Sci. U. S. A. 102:12230–5.

22. Lee JY, Kim KY, Koh JY. (2001) Protection by pyruvate against transient forebrain ischemia in rats. J. Neurosci. 21:RC171.

23. Yi JS, Kim TY, Kyu Kim D, Koh JY. (2007) Systemic pyruvate administration markedly reduces infarcts and motor deficits in rat models of transient and permanent focal cerebral ischemia. Neurobiol. Dis. 26:94–104.