LENGTH–WEIGHT AND LENGTH–LENGTH RELATIONS FOR 14 FISH SPECIES FROM THE CENTRAL MEXICAN PACIFIC COAST

Edgar R. SANDOVAL-HUERTA1*, Xavier MADRIGAL-GURIDI2, Omar DOMÍNGUEZ-DOMÍNGUEZ3, Gorgonio RUIZ-CAMPOS3, and Adrián F. GONZÁLEZ-ACOSTA4

1 Instituto Nacional de Pesca-SAGARPA, Centro Regional de Investigación Pesquera, Pátzcuaro, Michoacán, México
2 Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
3 Laboratorio de Vertebrados, Universidad Autónoma de Baja California-Facultad de Ciencias, Ensenada, Baja California, México
4 Centro Interdisciplinario de Ciencias del Mar, Instituto Politécnico Nacional, La Paz, Baja California Sur, México

Sandoval-Huerta E.R., Madrigal-Guridi X., Domínguez-Domínguez O., Ruiz-Campos G., González-Acosta A.F. 2015. Length–weight and length–length relations for 14 fish species from the central Mexican Pacific coast. Acta Ichthyol. Piscat. 45 (2): 199–201.

Abstract. Length–weight (LWR) and standard length–total length (L–L) relations are presented for 14 fish species caught in four estuaries from the south-eastern coast of Michoacán, México (Central Pacific): Lile nigrofasciata Castro-Aguirre, Ruiz-Campos et Balart, 2002; Pliostosteomus lutipinnis (Jordan et Gilbert, 1882); Agonostomus monticola (Bancroft, 1834); Mugil curema Valenciennes, 1836; Poecilia butleri Jordan, 1889; Centropomus nigrescens Günther, 1864; Lutjanus novemfasciatus Gill, 1862; Eucinostomus currani Zahrane, 1980; Dormitator latifrons (Richardson, 1844); Eleotris picta Kner, 1863; Gobiomorus maculatus (Günther, 1859); Awaous banana (Valenciennes, 1837); Gobionellus microdon (Gilbert, 1892); Trinectes fonsecensis (Günther, 1862). Values of b ranged from 2.912 to 3.432. The results revealed that length–weight relations for all species were highly correlated; likewise, length–length relations for all fishes also showed high correlation. This study presents for the first time, length–weight parameters for two species and length–length relations for six species.

Keywords: Actinopterygii, ichthyofauna, estuaries, Michoacán, LWR, regression models, Mexico

Length–weight relations (LWR) studies are used to predict the mean weight of fish when it is not possible to estimate it in field. They are also used to calculate the standing stock biomass, to analyse the ontogenetic changes, and to study other aspects of fish population dynamics like growth rates and age structure (Quist et al. 2012). This type of information is not available for fish species inhabiting the coastal zone of the state of Michoacán, Mexico. Thus, the goal of this study was to report data of the length–weight (LWR) and standard length–total length (L–L) relations, for 14 fish species caught in estuaries from Michoacán (central Mexican Pacific).

Fish specimens were collected in four estuaries from the south-eastern coast of Michoacán: Barra de Nexpa (18°05′07′′N, 102°47′18′′W), Teolán (18°4′19′′N, 102°39′51′′W), Mexcalhuacán (18°3′16′′N, 102°39′28′′W), and Barra de Pichi (17°58′28′′N, 102°19′33′′W). The fishes were sampled bimonthly, from February 2010 through February 2011, using beach seines, cast nets, and trammel nets. Fish specimens, were deposited in the Aquatic Biology Laboratory of the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) to be identified using specialized keys. Standard (SL) and total (TL) lengths were measured to the nearest 1 mm using a digital calliper and weights were determined to the nearest 0.01 g with an electronic balance.

LWR was calculated from linear regression:

\[\log W = \log a + b \log SL \]

where \(W \) is the wet weight [g], SL is the standard length of fish [cm], \(a \) is a constant empirically determined (intercept), and \(b \) allometry coefficient (slope) (Froese 2006).
Student’s t-test was performed to establish when the calculated b values were close to (isometric growth) or different from 3.0 (allometric growth). The L–L relation was calculated by the simple linear regression:

\[TL = b SL + a \]

using pooled data over the study period.

A total of 2228 fish specimens, representing 10 families and 14 species were included: *Lile nigrofasciata* Castro-Aguirre, Ruiz-Campos et Balart, 2002; *Pliosteostoma lutipinnis* (Jordan et Gilbert, 1882); *Agnostomus monticola* (Bancroft, 1883); *Magil curema* Valenciennes, 1836; *Poezilia butleri* Jordan, 1889; *Centropomus nigrescens* Günther, 1864; *Lutjanus novemfasciatus* Gill, 1862; *Eucinostomus currani* Zahuranece, 1980; *Dormitator latifrons* (Richardson, 1844); *Eleotris picta* Kner, 1863; *Gobiomorus maculatus* (Günther, 1859); *Awaous banana* (Valenciennes, 1837); *Gobionellus microdon* (Gilbert, 1892); *Trinectes fonsecensis* (Günther, 1862). Results of LWR relations are summarized in Table 1, including number of specimens (n), size range, and b values. Estimations revealed that length–weight for all species were highly correlated, with the coefficient of determination, \(r^2 \), ranging from 0.94 to 0.99 (\(P < 0.001 \)). The b values ranged from 2.912 in *Centropomus nigrescens* to 3.432 in *Poezilia butleri*. For all species, b parameter values fall within the expected range of 2.5 to 3.5 (Froese 2006). L–L relations were also highly correlated for all species (L–L; \(r^2 > 0.99, P < 0.001 \)) (Table 2). Values for the regression constant (intercept) varied between –0.494 and 0.426. Allometric growth was recorded for nine species. The most represented family in our study was Eleotridae (three species). It was followed by Mugilidae and Gobiidae (two species each) while the remaining seven families were represented by a single species only (Table 2).

Results were compared with those reported in other studies taken place in the Mexican Pacific coast (González-Acosta et al. 2004, Rojas-Herrera et al. 2009, Velázquez-Velázquez et al. 2009). Four of 14 LWRs (*Lile nigrofasciata*, *Magil curema*, *Lutjanus novemfasciatus*, and *Eucinostomus currani*) and one of L–L relations (*E. currani*) were not within the expected range. The differences in the expected ranges when compared with the estimates provided by other studies may be due to the variation in the sample sizes and the size ranges. The high number of individuals with small length was because estuaries are used as nurseries for fishes such as *L. nigrofasciata*, *Agnostomus monticola*, *M. curema*, and *E. currani* (see Sandoval-Huerta et al. 2014).

ACKNOWLEDGEMENTS

The authors are grateful to everyone who contributed to the field sampling in the project Ictiofauna de la Costa de Michoacán. We grate to Fabiola Ortiz Valderrában no by help in the laboratory work. Funding was obtained from the project CONABIO HI021 and the Coordination of Scientific Research of the Universidad Michoacana, 2010 projects. AFGA thanks to COFAA and EDI-IPN, and SNI-CONACyT the grants for this research.

Species	n	Length (SL) [cm]	Anti-Log a	b	95% CI of b	Min.	Max.	\(r^2 \)	Growth
Lile nigrofasciata	294	2.4–7.5	0.00839	3.239	3.204	3.274	0.99	A	
Pliosteostoma lutipinnis	14	7.9–17.5	0.00630	3.158	2.934	3.382	0.99	I	
Agnostomus monticola	647	2.9–16.4	0.0103	3.255	3.209	3.301	0.97	A	
Magil curema	567	2.1–16.6	0.0126	3.193	3.143	3.242	0.97	A	
Poezilia butleri	33	2.1–5.5	0.0115	3.432	3.1	3.764	0.94	A	
Centropomus nigrescens	52	3.3–30	0.0165	2.912	2.82	3.004	0.99	A	
Lutjanus novemfasciatus	46	2.3–23.7	0.0238	3.024	2.983	3.064	0.99	I	
Eucinostomus currani	173	1.2–8.8	0.0111	3.384	3.298	3.469	0.97	A	
Dormitator latifrons	187	1.4–20.6	0.0148	3.309	3.242	3.377	0.98	A	
Eleotris picta	19	2.6–22.4	0.0154	3.074	2.975	3.173	0.99	I	
Gobiomorus maculatus	96	3.9–15.1	0.0135	3.042	2.969	3.114	0.99	I	
Awaous banana	39	2.1–9.3	0.00885	3.284	3.128	3.44	0.98	A	
Gobionellus microdon	36	1.9–7.9	0.00583	3.406	3.303	3.509	0.99	A	
Trinectes fonsecensis	25	1.7–5.2	0.0242	3.158	2.92	3.397	0.97	I	

Parameters of LWR using logarithmic regression (base 10); SL = standard length, n = sample size, a = intercept, b = slope, \(r^2 \) = coefficient of determination, CI = confidence interval; I = isometric, A = allometric; Species names in bold indicate length–weight relations published for the first time; \(^1\) indicates juvenile individuals.
Table 2
Length–length relations (standard length to total length) for 14 fishes of four estuaries from south-eastern coast of Michoacán, central Mexican Pacific

Family	Species	\(a\)	\(b\)	\(r^2\)
Clupeidae	*Lile nigrofasciata*	0.0119	1.229	0.99
Pristigasteridae	*Pristoleostoma lutipinnis*	–0.194	1.206	0.99
Mugilidae	*Agonostomus monticola*	0.1278	1.162	0.99
	Mugil curema\(^1\)	–0.0423	1.231	0.99
Pocilidae	*Poeelia butleri*	–0.0546	1.239	0.99
Centropomidae	*Centropomus nigrescens*	0.426	1.204	0.99
Lutjanidae	*Lutjanus novomaculatus*\(^1\)	0.0042	1.192	0.99
Gerreidae	*Eucinostomus cuvieri*\(^1\)	0.112	1.227	0.99
Eleotridae	*Eleotris picea*	–0.0126	1.261	0.99
Gobiidae	*Awaous banana*\(^1\)	0.0382	1.175	0.99
	Gobionellus microdon	–0.494	1.146	0.99
Achiridae	*Trinectes fonsecaensis*\(^1\)	0.109	1.577	0.99

\(L-L\) = length–length relation; \(a\) = intercept, \(b\) = slope, \(r^2\) = coefficient of determination; Species names in bold indicate length–length relations published for the first time, \(^1\) indicates juvenile individuals.

REFERENCES

Froese R. 2006. Cube law, condition factor and weight–length relationships: History, meta-analysis and recommendations. Journal of Applied Ichthyology 22 (4): 241–253.

DOI: 10.1111/j.1439-0426.2006.00805.x

Froese R., Pauly D. (eds.) 2014. FishBase. [version 08/2014] http://www.fishbase.org

González Acosta A.F., De La Cruz Agüero G., De La Cruz Agüero J. 2004. Length–weight relationships of fish species caught in a mangrove swamp in the Gulf of California (Mexico). Journal of Applied Ichthyology 20 (2): 154–155.

DOI: 10.1046/j.1439-0426.2003.00518.x

Quist M.C., Pegg M.A., DeVries D.R. 2012. Age and growth. Pp. 677–731. In: Alexander A.V., Parrish D. L., Sutton T.M. (eds.) Fisheries techniques. American Fisheries Society, Bethesda, MD, USA.

Rojas-Herrera A.A., Violante-González J., Palacios-Salgado D.S. 2009. Length–weight relationships and seasonality in reproduction of six commercially utilized fish species in the coastal lagoon of Tres Palos (Mexico). Journal of Applied Ichthyology 25 (2): 234–235.

DOI: 10.1111/j.1439-0426.2009.01219.x

Sandoval-Huerta E.R., Madrigal-Guridi X., Escalera-Vázquez L.H., Medina-Nava M., Domínguez-Domínguez O. 2014. Estructura de la comunidad de peces en cuatro estuarios del Pacífico mexicano central. Revista Mexicana de Biodiversidad 85 (4): 1184–1196.

DOI: 10.7550/rmb.42105

Velázquez-Velázquez E., Navarro Alberto J., Domínguez Cisneros S.E., Vega Cendejas M.E. 2009. Length–weight relationships for 24 fish species in a coastal lagoon of the Mexican South Pacific. Journal of Applied Ichthyology 25 (2): 228–229.

DOI: 10.1111/j.1439-0426.2008.01199.x

Received: 15 November 2014
Accepted: 1 March 2015
Published electronically: 30 June 2015