Prediction of target genes for miR-140-5p in pulmonary arterial hypertension using bioinformatics methods

Fangwei Li1, Wenhua Shi1, Yixin Wan2, Qingting Wang1, Wei Feng1, Xin Yan1, Jian Wang1, Limin Chai1, Qianqian Zhang1 and Manxiang Li1

1 Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, China
2 Department of Respiratory Medicine, Lanzhou University Second Hospital, China

Keywords
GO; KEGG; miR-140-5p; target gene; transcription factor

Correspondence
M. Li, Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, West Yanta Road, Xi’an 710061 Shaanxi, China
Tel: +86-029-85324053
E-mail: manxiangli@hotmail.com

(Received 23 June 2017, revised 28 August 2017, accepted 15 September 2017)

doi:10.1002/2211-5463.12322

The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF–miRNA–mRNA network, the important downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF–miRNA–mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro.

Pulmonary arterial hypertension (PAH) is a chronic progressive disease of pulmonary vasculature characterized by sustained elevation of pulmonary vascular resistance and pulmonary arterial pressure, consequently leading to right heart failure and eventual death [1]. The pathogenesis of PAH is associated with genetic predisposition, inflammation, increase in vascular tone, elevation in pulmonary artery cell proliferation and resistance to apoptosis, and the presence of in situ thrombosis [2–5]. Effect of current treatment on PAH remains poor and available therapies to improve long-term prognosis are limited [6], so exploring novel molecular mechanisms and generating therapeutic approaches are urgently needed. MicroRNAs (miRNAs) are small noncoding RNA molecules around 22 nucleotides long that bind the 3’-untranslated region (UTR) of mRNA to degrade mRNA and therefore to negatively regulate relevant genes expression [7].

Abbreviations
GO, gene ontology; KEGG, kyoto encyclopedia of genes and genome; PAH, pulmonary arterial hypertension; PASMC, pulmonary arterial smooth muscle cell; TF, transcription factor.
miRNAs have the ability to target numerous genes mRNA, therefore potentially controlling a host of genes expression and the activity of multiple signaling pathways [8–10]. Recent studies have shown that reduction in microRNA (miR)-140-5p is found in both patients with PAH and monocrotaline-induced PAH models in rat, which is involved in the development of PAH [11,12]. Therefore, it is important to identify comprehensive downstream targets of miR-140-5p with bioinformatics analysis in PAH, and this might provide some critical information for the development and treatment of PAH. In this study, downstream target genes regulated by miR-140-5p and upstream transcription factors (TFs) regulating miR-140-5p expression were predicted, and the downstream target genes were analyzed for gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway. Next, the upstream TFs and downstream targets of miR-140-5p were determined according to the TF–miRNA–mRNA network. Finally, the direct downstream targets and relevant signaling pathways regulated by miR-140-5p were obtained in published literature and were compared with the predicted results of this study.

Materials and methods

Mature sequences of miR-140-5p in various species

Mature sequences of miR-140-5p in various species were obtained in the miRBase database (http://mirbase.org/index.shtml).

Target gene prediction of miR-140-5p

Identification of target genes is critical for characterizing the functions of miRNAs. In this study, miRanda (http://www.microrna.org/), TargetScan (http://www.targetscan.org/), RNAhybrid (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/submission.html), and miRDB (http://www.mirdb.org/) databases were used to predict the target genes of miR-140-5p. To make our predicted target genes more convincible, only the target genes predicted by at least three databases were selected for further analyses.

Database-based GO and KEGG pathway enrichment analysis

Target mRNA of miR-140-5p supported by at least three databases were used for GO analysis to predict gene functions. Integration Discovery (DAVID) software, version 6.7 (http://david.abcc.ncifcrf.gov), was used to perform GO analysis to identify biological processes, cellular components, and molecular functions of these target genes. At the same time, the probable signaling pathways in which these target genes were enriched were analyzed by KEGG database (http://www.genome.jp/kegg/). The P-value <0.05 was considered significant.

Upstream TFs prediction of miR-140-5p

Human miR-140-5p precursor was obtained in the miRBase database and its 5000 bp upstream was defined as the miR-140-5p promoter. The TFs of miR-140-5p were predicted using MOODS-python software (version 1.9.3) in JASPAR database (http://jaspar.binf.ku.dk/), which includes various vertebrate TFs. The P-value <0.0001 was considered significant.

Construction of the network for TF–miR-140-5p–mRNA

By merging the regulatory relationships between TFs and miR-140-5p, miR-140-5p and target genes, genes and genes (TF→miRNA, miRNA→gene and gene→gene), we constructed a comprehensive TF–miR-140-5p–mRNA regulatory network using Gephi software (release 0.8.1–β, http://gephi.github.io/).

Screening target genes and signaling pathways inhibited by miR-140-5p in published studies

To obtain downstream target genes and signaling pathways modulated by miR-140-5p in published studies, a comprehensive electronic search of Web of Science and PubMed databases was performed until April 20, 2017. The keyword ‘miR-140-5p’ in the titles or abstracts was used, and then, studies exploring the targets of miR-140-5p were collected.

Results

Mature sequences of miR-140-5p in various species

Mature sequences of miR-140-5p in various species were obtained in the miRBase database. The pre-miR-140-5p was located at position 6993081–69933180 of chromosome 16, and the gene ID of human miR-140-5p was MIMAT0000431. As shown in Table 1, mature sequences of miR-140-5p were highly conserved in various species and human miR-140-5p was chosen for further analyses.
Prediction of target genes for miR-140-5p

As shown in Fig. 1, the number of predicted target genes of miR-140-5p in miRanda, TargetScan, RNAhybrid, and miRDB databases was 2370, 428, 1017, and 262, respectively. There were 482 target genes supported by at least two databases, 123 target genes predicted by at least three databases and five target genes supported by all four databases. The target genes of miR-140-5p predicted by at least three databases are listed in Table 2 and were used for further analyses.

GO enrichment analysis for predicted target genes of miR-140-5p

GO enrichment analysis was conducted for the target genes of miR-140-5p predicted by at least three databases. As shown in Table 3, the target genes of miR-140-5p were mainly located in basement membrane (P < 0.05) and participated in the molecular functions of protein binding, activating transcription factor binding, ion binding, lipid binding, and so on (P < 0.05). In addition, the target genes of miR-140-5p were involved in various biological processes, including biological regulation, metabolic process, cell communication, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathway (P < 0.05). Fig. 2 presents the number of target genes corresponding to each GO term.

KEGG pathway analysis for predicted target genes of miR-140-5p

Enriched signaling pathways for the target genes of miR-140-5p identified by KEGG pathway analysis were ranked according to the P-values. As shown in Table 4, the top rankings were related to Notch, cancer-associated pathway, TGF-beta, PI3K/Akt, HTLV infection, Hippo, HIF-1, alcoholism signaling pathways, and so on (P < 0.05); among them, Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathways were well known to be associated with the pathogenesis of PAH. Fig. 3 presents the rich factor, Q value, and gene number corresponding to each pathway term.
Table 2. The target genes of miR-140-5p predicted by at least three databases.

ABCA1	ACSL6	ADAM10	ADAMTS5	ADCY6	ANKY1
ANKIB1	AP2B1	BACH1	BAZ2B	BCL9	BMP2
C1R	CADM3	CAND1	CAPN1	CCNL1	CELF1
CORO2A	CREB	CTCF	CYTH2	DNM3	DOK4
DPP10	DPYSL2	EGR2	EIF4G2	ELAVL2	ENTPD5
EPB41L2	ERC2	FAM17B	FBN1	FCHO2	FES
FGF9	FLRT2	FOXP2	FYN1	GNAS	GIT1
HAND2	HDAC4	HDAC7	HGFGRP3	HRNPH3	HS2ST1
HSPA13	IGF3	IPI7	JAG1	KAT2B	KBTBD2
KIF1B	KFL6	KLF9	KLK10	LAMC1	LHFPL2
LMNB1	LPHN2	LRAT	LRP4	LSM14B	LYSMD3
MARK1	MED13	MMD	MYCIP2	MYO10	NAA20
NAAALD1	NCKAP1	NCOA1	NCSTN	NFE2L2	NLK
NPL	NUCKS1	OBPL6	PPI1CC	PAFAH1B2	PDGFR
PPTC7	PEDE7A	PPP1R12A	PALM2-AKAP2	RBM39	RXF7
RNF19A	RALA	RAB10	SEPT2	STRAD	SY1
SLAIN1	SAMD4	SMOC2	SNX2	SRCAP	SHROOM3
SIAH1	SLC30A5	SLC38A2	TTYH3	TLR4	TTK
TJP1	TSSK2	TSPAN12	TSC2D2	TTYH2	TGFR1
UBR5	UBR5	VEGF1	VEGFA	WNT1	WDFY3
YOD1	ZBTB10	ZNF800			

Table 3. Gene ontology (GO) analysis for predicted target genes of miR-140-5p

ID	Term	P-value	Genes annotated to the term									
GO:0050794	Regulation of cellular process	5.39E-06	VEGFA	FGF9	PPP1CC	Pin1	HDAC7	PDGFR	TGFR1	ADAM10…		
GO:0050789	Regulation of biological process	9.05E-06	FGF9	BM2	LAMC1	NUMBL	PDGFR	PPP1CC	ADAM10	TLR4	TGFB1…	
GO:0007154	Cell communication	5.69E-05	WNT1	PPP1CC	PDGFR	TLR4	ADAM10	BM2	TGFR1…			
GO:0023052	Signaling	6.14E-05	PDGFR	PPP1CC	FGF9	WNT1	TGFR1	BM2	ADAM10	JAG1	TLR4…	
GO:0044763	Single-organismal cellular process	8.73E-05	VEGFA	FGF9	LAMC1	BM2	TLR4	WNT1	TGFR1	PDGFR	PPP1CC…	
GO:0065007	Biological regulation	9.89E-05	VEGFA	BM2	TLR4	CREB	PPP1CC	PDGFR	ADAM10	TGFR1…		
GO:0007165	Signal transduction	0.00011	PPP1CC	PDGFR	WNT1	TGFR1	FGF9	VEGFA	NCSTN	TLR4	ADAM10…	
GO:0042221	Response to chemical stimulus	0.00048	NUMBL	PPP1CC	PDGFR	VEGFA	LAMC1	TGFR1	FGF9	BM2	ADAM10	TLR4…
GO:0072089	Stem cell proliferation	0.00087	ACSL6	NUMBL	RAB10	HAND2	WNT1	BM2…				
GO:0007166	Cell surface receptor signaling pathway	0.00370	TLR4	WNT1	BM2	ADAM10	NCSTN	JAG1	PPP1CC	PDGFR	FGF9…	
GO:0050896	Response to stimulus	0.01555	PPP1CC	PDGFR	WNT1	CREB	TGFR1	VEGFA	FGF9	BM2	ADAM10	TLR4…
GO:0019538	Protein metabolic process	0.02054	CREB	PPP1CC	PDGFR	NUMBL	TLR4	ADAM10	BM2	KAT2B	NCSTN	TGFR1…
GO:0006464	Cellular protein modification process	0.03073	HDAC4	CREB	ADAM10	TLR4	TGFR1	PPP1CC	PDGFR…			

Molecular functions

GO:0005515	Protein binding	2.53E-07	TLR4	ADAM10	PDGFR	WNT1	HDAC7	VEGFA	CREB	PPP1CC	TGFR1	FGF9…
GO:0005488	Binding	0.00048	HDAC7	JAG1	MNBL	PDGFR	ADAM10	TLR4	FGF9	KAT2B	TGFR1…	
GO:0033613	Activating transcription factor binding	0.00320	EGR2	NF2L2	HDAC4	ADAM10	HAND2…					
GO:0043167	Ion binding	0.00724	VEGFA	PPP1CC	ADAM10	PDGFR	TGFR1	ADAM4	FGF9	HDAC7…		
GO:0008289	Lipid binding	0.04471	LAMC1	OSBPL6	FES	DNM3	MYO10	TLR4…				

Cellular components

| GO:0005604 | Basement membrane | 0.04119 | FGF9|PDGFR|TLR4|VEGFA|SMOC2… |
Prediction of upstream TFs for miR-140-5p and construction of TF–miR-140-5p–mRNA network

The number of predicted TFs for miR-140-5p with P-value <0.0001 was 393. To reduce false-positive results, TFs with a quality score (Q-score) less than 10 were filtered. As shown in Table 5, the remaining TFs, including PAX5, FOXI1, IRF1, FOXL1, RUNX2, were chosen for further analyses. Finally, by merging the regulatory relationships between TFs and miR-140-5p, miR-140-5p and target genes, as well as genes and genes, we built a comprehensive TF–miR-140-5p–mRNA regulatory network, as shown in Fig. 4.

Screening target genes and signaling pathways modulated by miR-140-5p in published studies

A comprehensive electronic search of Web of Science and PubMed databases was performed until April 20, 2017, to obtain target genes and signaling pathways modulated by miR-140-5p in published studies.
Table 4. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis for predicted target genes of miR-140-5p.

Term	ID	Sample number	Background number	P-value	Genes							
Notch signaling pathway	hsa04330	4	52	0.006408	JAG1	ADAM10	KAT2B	NCSTN				
Pathways in cancer	hsa05200	9	337	0.016384	FGF9	TGFBR1	VEGFA	SLC2A1	WNT1	BMP2	PDGFRA	LAMC1
Endocrine and other factor-regulated calcium reabsorption	hsa04961	3	48	0.022347	AP2B1	ADCY6	DNM3					
HTLV-I infection	hsa05166	7	268	0.031935	TGFBR1	KAT2B	SLC2A1	EGR2	WNT1	PDGFRA	ADCY6	PP1CC
Regulation of actin cytoskeleton	hsa04810	6	221	0.031935	PPP1R12A	NCAP1	FGF9	GIT1	PDGFRA	PPP1CC		
Pancreatic cancer	hsa05212	3	66	0.031935	RALA	TGFBR1	VEGFA					
Epithelial cell signaling in Helicobacter pylori infection	hsa05120	3	66	0.031935	TJP1	GIT1	ADAM10					
Proteoglycans in cancer	hsa05205	6	231	0.033735	PPP1R12A	FGF9	VEGFA	WNT1	TLR4	PP1CC		
Adherence junction	hsa04520	3	74	0.037848	NLK	TJP1	TGFBR1					
Alcoholism	hsa05034	5	183	0.038881	HDAC7	HDAC4	CREB3L1	GNG5	PP1CC			
PI3K-Akt signaling pathway	hsa04151	7	358	0.045545	FGF9	VEGFA	PDGFRA	LAMC1	TLR4	CREB	GNG5	
Focal adhesion	hsa04510	5	214	0.045545	PPP1R12A	VEGFA	PDGFRA	LAMC1	PP1CC			
Endocytosis	hsa04144	5	212	0.045545	AP2B1	TGFBR1	GIT1	PDGFRA	DNM3			
Viral carcinogenesis	hsa05203	5	213	0.045545	HDAC7	HDAC4	KAT2B	EGR2	CREB3L1			
Hepatitis B	hsa05161	4	151	0.045545	TGFBR1	EGR2	TLR4	CREB3L1				
Insulin secretion	hsa04911	3	92	0.045545	SLCA1	CREB3L1	ADCY6					
GABAergic synapse	hsa04727	3	89	0.045545	SLCA2	CREB3L1	ADCY6					
TGF-beta signaling pathway	hsa04350	3	83	0.045545	TGFBR1	SMAD4	BMP2					
Gap junction	hsa04540	3	96	0.045545	TJP1	PDGFRA	ADCY6					
Hippo signaling pathway	hsa04390	4	156	0.045655	TGFBR1	WNT1	BMP2	PP1CC				

Fig. 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for predicted target genes of miR-140-5p.
Finally, a total of 26 papers including 23 target genes and seven signaling pathways inhibited by miR-140-5p were obtained; most of them focus on the functions of miR-140-5p suppressing tumor growth, migration, and invasion in various tumor tissues and cells. Two recent studies have found that SMURF1 and Dumt1 are direct target genes of miR-140-5p in pulmonary arterial smooth muscle cells (PASMCs) and are involved in the pathogenesis of PAH. The details are shown in Table 6.

Discussion

Pulmonary arterial hypertension is a chronic life-threatening condition requiring long-term management [13], and its available therapies are limited [6]. There is a clear and urgent need for new therapeutic options based on deeply exploring the pathogenesis of PAH. Previous studies have indicated that miR-140-5p is dramatically downregulated, which in turn causes the development of a variety of cancers by the loss of suppressing tumor cell migration and growth [14–17]. miR-140-5p has been recently found to be reduced in both PAH patients and MCT-induced PAH models in rat [11,12]. However, the downstream targets regulated by miR-140-5p contributing to the development of PAH remain largely unknown.

In this study, we found that the target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, metabolic process, cell communication, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathway. In KEGG pathway analysis, the target genes of miR-140-5p were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathways. According to the TF–miRNA–mRNA network, the important genes potentially regulated by miR-140-5p included PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, TLR4, LAMC1, CREB, and the upstream TFs, which might regulate miR-140-5p expression including TAX5, FOXI, IRF1, GATA6, RUNX2. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these downstream targets were in accordance with our present prediction.

Several studies have shown that activation of Notch3 pathway is involved in the pathogenesis of PAH [18,19]. We have previously shown that

Table 5. Prediction of transcription factors and binding sites of miR-140-5p.

Model ID	Model name	Hit position	Strand	Score	Predicted site sequence
MA0014.2	PAX5	95		10.5663	gtctcactctgtgccccat
MA0014.2	PAX5	3874		11.6915	gtcttgtctgtgccccag
MA0025.1	NFIL3	722		10.0393	TCTCTACATAA
MA0035.3	Gata1	3391		10.0718	agacataaaaa
MA0036.2	GATA2	3391		10.4087	agacataaaaaattt
MA0041.1	Foxd3	4529	+	10.4011	ttgttgtggtt
MA0041.1	FOXI1	984		11.5926	GGATGTTGTTT
MA0042.1	FOXI1	4529	+	10.3990	ttgttgtggtt
MA0046.1	HNF1A	4949	+	10.3282	aagtaatattta
MA0050.2	IRF1	3825	+	11.0065	ttttttttttctttttttttt
MA0050.2	IRF1	3840	+	12.4803	ttttttttttttttttttttttt
MA0050.2	IRF1	3844	+	10.0776	ttttttttttttttttttttttt
MA0062.2	GABPA	1506	+	10.0387	ccggaagctg
MA0073.1	RREB1	1164		10.9028	TTTTGGTTGTTGTTTGTGTTT
MA0073.1	RREB1	3734	+	10.2056	caaacaacaacaacaacaaca
MA0471.1	E2F6	143		10.6410	ttcttcgccct
MA0477.1	FOSL1	4238		11.2229	cctgtagcacc
MA0478.1	FOSL2	4239		10.3145	ctgtagcacc
MA0481.1	FOXP1	3756	+	10.2195	aaaaaaaaaaaaacaa
MA0481.1	FOXP1	4018	+	10.3465	ttgtgtgtgtgtggtgtgtggtg
MA0490.1	JUNB	4239	+	10.6046	ctgtagcacc
MA0491.1	JUND	2362	+	10.0256	GAAATGATACACA
MA0493.1	Klf1	4812	+	10.548	caacacacacaci
MA0511.1	RUNX2	3813	+	11.453	tttgtgtggtgtgtgtgtggtg
MA0515.1	Sox6	3772		10.2529	gacacacacag
MA0595.1	SREBF1	2000		10.1772	gigaagtgggtg
activation of Notch3 promotes PASMC proliferation and inhibition of Notch3 pathway prevents monocrotaline-induced development of PAH in rat [20,21]. JAG1 and ADAM10 are indispensable components of Notch signaling pathway, which were predicted as downstream targets of miR-140-5p in our analysis, suggesting that lack of miR-140-5p might promote the development of PAH by upregulation of JAG1 and ADAM10 genes and therefore activation of Notch3 cascade. In addition, activation of TGF-beta1/Smad4 signaling promotes a proliferative PASMC phenotype and induces PAH in rat [22,23]. We found that TGF-betaR1 and smad4 were possible downstream targets of miR-140-5p, reduction in miR-140-5p in PAH might stimulate TGF-beta1/Smad4 pathway by upregulating TGF-betaR1 and smad4. Previous studies have demonstrated that PDGF, TLR4, VEGFA, and FGF contribute to the pathogenesis of PAH via activating various signaling pathways, especially PI3K/Akt cascade [24–28]. CREB, an important transcription factor lying downstream of PI3K/Akt pathway, mediates the partial functions of PI3K/Akt [29]. In our analysis, PDGF, TLR4, VEGFA, FGF, and CREB were positively predicted as downstream targets of miR-140-5p, implying that miR-140-5p negatively regulates the functions of PI3K/Akt cascade by targeting FGF9, PDGFRA, VEGFA, TLR4, or CREB gene. Recent studies have also shown that Hippo signaling is associated with the development of PAH, which can be activated by PPI [30,31]. Our present results suggested that PPI was a direct target gene of miR-140-5p and might mediate miR-140-5p regulation of Hippo signaling.

Our predicted network provided potential target genes and relevant signaling pathways that might be modulated by miR-140-5p contribution to the
development of PAH. Several targets and pathways predicted in our analysis, such as TGF-betaR1, ADAM10, FGF9, PDGFRα, VEGFA and Notch, PI3K/Akt, TGF-beta cascades, have been demonstrated to mediate the effects of miR-140-5p on antiproliferation and prodifferentiation in several cell types in published studies [16,17,32,33]. While the other targets predicted in our study, including PPI, smad4, JAG1, LAMC1, TLR4, and CREB as well as Hippo signaling pathway, have not been confirmed in
the published literature, they still need further verification in vivo and in vitro.

Acknowledgement
This work was supported by Chinese National Science Foundation (No. 81670051 and No. 81330002).

Author contributions
ML and FL designed the study; WS, YW, LC, and QW analyzed and interpreted the data; WF, XY, QZ, and JW organized the results; FL wrote the manuscript.

References
1 Grant JS, White K, MacLean MR and Baker AH (2013) MicroRNAs in pulmonary arterial remodeling. Cell Mol Life Sci 70, 4479–4494.
2 Higasa K, Ogawa A, Terao C, Shimizu M, Kosugi S, Yamada R, Date H, Matsubara H and Matsuda F (2017) A burden of rare variants in BMPR2 and KCNK3 contributes to a risk of familial pulmonary arterial hypertension. BMC Pulm Med 17, 57.
3 Malenfant S, Neyron AS, Paulin R, Potus F, Meloche J, Provencer S and Bonnet S (2013) Signal transduction in the development of pulmonary arterial hypertension. Pulm Circ 3, 278–293.
4 Rabinovitch M (2012) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 122, 4306–4313.
5 Vaillancourt M, Ruffenach G, Meloche J and Bonnet S (2015) Adaptation and remodeling of the pulmonary circulation in pulmonary hypertension. Can J Cardiol 31, 407–415.
6 McLaughlin VV (2011) Looking to the future: a new decade of pulmonary arterial hypertension therapy. Eur Respir Rev 20, 262–269.
7 Negi V and Chan SY (2017) Discerning functional hierarchies of microRNAs in pulmonary hypertension. JCI Insight 2, e91327.
8 Bienertova-Vasku J, Novak J and Vasku A (2015) MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. J Am Soc Hypertens 9, 221–234.
9 Bockmeyer CL, Maegel L, Janciauskiene S, Rische J, Lehmann U, Maus UA, Nickel N, Haverich A, Hoeper MM, Golpon HA et al. (2012) Plexiform vasculopathy of severe pulmonary arterial hypertension and microRNA expression. J Heart Lung Transplant 31, 764–772.
10 Caruso P, MacLean MR, Khanin R, McClure J, Soon E, Southgate M, MacDonald RA, Greig JA, Robertson KE, Masson R et al. (2010) Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol 30, 716–723.
11 Rothman AM, Arnold ND, Pickworth JA, Iremonger J, Ciucian L, Allen RM, Guth-Gundel S, Southwood M, Morrell NW, Thomas M et al. (2016) MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension. J Clin Invest 126, 2495–2508.
12 Zhang Y and Xu J (2016) MiR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression. Biochem Biophys Res Commun 473, 342–348.
13 Hoep MM, Bogaard HJ, Condilffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, Manes A, Sato T, Torres F et al. (2014) Definitions and diagnosis of pulmonary hypertension. Turk Kardiyol Dern Ars 42 (Suppl 1), 55–66.
14 Kai Y, Peng W, Ling W, Jiebing H and Zhuau B (2014) Reciprocal effects between microRNA-140-5p and ADAM10 suppress migration and invasion of human tongue cancer cells. Biochem Biophys Res Commun 448, 308–314.
15 Li W and He F (2014) Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer. Biochem Biophys Res Commun 450, 844–850.
16 Yang H, Fang F, Chang R and Yang L (2013) MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor beta receptor 1 and fibroblast growth factor receptor 9 in hepatocellular carcinoma. Hepatology 58, 205–217.
17 Jing P, Sa N, Liu X, Liu X and Xu W (2016) MicroR-140-5p suppresses tumor cell migration and invasion by targeting ADAM10-mediated Notch1 signaling pathway in hypopharyngeal squamous cell carcinoma. Exp Mol Med 100, 132–138.
18 Yu YR, Mao L, Piantadosi CA and Gunn MD (2013) CCR2 deficiency, dysregulation of Notch signaling, and spontaneous pulmonary arterial hypertension. Am J Respir Cell Mol Biol 48, 647–654.
19 XIA Y, Bhattacharyya A, Roszell EE, Sandig M and Mequanint K (2012) The role of endothelial cell-bound Jagged1 in Notch3-induced human coronary artery smooth muscle cell differentiation. Biomaterials 33, 2462–2472.
20 Zhang Y, Xie P, Zhu Y, Liu L, Feng W, Pan Y, Zhai C, Ke R, Li S, Song Y et al. (2015) Inhibition of Notch3 prevents monocrotaline-induced pulmonary arterial hypertension. Exp Lung Res 41, 435–443.
21 Song Y, Zhang Y, Jiang H, Zhu Y, Liu L, Feng W, Yang L, Wang Y and Li M (2015) Activation of Notch3 promotes pulmonary arterial smooth muscle...
Target genes modulated by miR-140-5p in PAH

F. Li et al.

cells proliferation via Hes1/p27Kip1 signaling pathway. *FEBS Open Bio* **5**, 656–660.
22 Aschner Y and Downey GP (2016) Transforming growth factor-beta: master regulator of the respiratory system in health and disease. *Am J Respir Cell Mol Biol* **54**, 647–655.
23 Chai SD, Liu T, Dong MF, Li ZK, Tang PZ, Wang JT and Ma SJ (2016) Inactivated Pseudomonas aeruginosa inhibits hypoxia-induced pulmonary hypertension by preventing TGF-beta1/Smad signaling. *Braz J Med Biol Res* **49**, e5526.
24 Bauer EM, Chanthaphavong RS, Sodhi CP, Hackam DJ, Billiar TR and Bauer PM (2014) Genetic deletion of toll-like receptor 4 on platelets attenuates experimental pulmonary hypertension. *Circ Res* **114**, 1596–1600.
25 Sun Z (2014) Platelet TLR4: a critical link in pulmonary arterial hypertension. *Circ Res* **114**, 1551–1553.
26 Song Y, Wu Y, Su X, Zhu Y, Liu L, Pan Y, Zhu B, Yang L, Gao L and Li M (2016) Activation of AMPK inhibits PDGF-induced pulmonary arterial smooth muscle cells proliferation and its potential mechanisms. *Pharmacol Res* **107**, 117–124.
27 Chuang JJ, Huang JY, Tsai SJ, Sun HS, Yang SH, Chuang PC, Huang BM and Ching CH (2015) FGF9-induced changes in cellular redox status and HO-1 upregulation are FGFR-dependent and proceed through both ERK and AKT to induce CREB and Nrf2 activation. *Free Radic Biol Med* **89**, 274–286.
28 Zheng Y, Ma H, Hu E, Huang Z, Cheng X and Xiong C (2015) Inhibition of FGFR signaling with PD173074 ameliorates monocrotaline-induced pulmonary arterial hypertension and rescues BMPR-II expression. *J Cardiovasc Pharmacol* **66**, 504–514.
29 Garat CV, Crossno JT Jr, Sullivan TM, Reusch JE and Klemm DJ (2013) Inhibition of phosphatidylinositol 3-kinase/Akt signaling attenuates hypoxia-induced pulmonary artery remodeling and suppresses CREB depletion in arterial smooth muscle cells. *J Cardiovasc Pharmacol* **62**, 539–548.
30 Lv XB, Liu CY, Wang Z, Sun YP, Xiong Y, Lei QY and Guan KL (2015) PARD3 induces TAZ activation and cell growth by promoting LATS1 and PP1 interaction. *EMBO Rep* **16**, 975–985.
31 Boucherat O, Bonnet S and Paulin R (2016) The HIPPO-thesis of pulmonary hypertension. *Am J Respir Crit Care Med* **194**, 787–789.
32 Lan H, Chen W, He G and Yang S (2015) miR-140-5p inhibits ovarian cancer growth partially by repression of PDGFRA. *Biomed Pharmacother* **75**, 117–122.
33 Zhang W, Zou C, Pan L, Xu Y, Qi W, Ma G, Hou Y and Jiang P (2015) MicroRNA-140-5p inhibits the progression of colorectal cancer by targeting VEGFA. *Cell Physiol Biochem* **37**, 1123–1133.