Coherent scattering of solar, atmospheric and diffuse supernovae neutrinos creates an irreducible background for dark matter experiments with sensitivities to WIMP-nucleon spin-independent scattering cross-sections of 10^{-46}-10$^{-48}$ cm2, depending on the WIMP mass. Even if one could eliminate all other backgrounds, this “neutrino floor” will limit future experiments with projected sensitivities to cross-sections as small as 10$^{-48}$ cm2. Direction-sensitive detectors have the potential to study dark matter beyond the neutrino bound by fitting event distributions in multiple dimensions: recoil kinetic energy, recoil track angle with respect to the sun, and event time. This work quantitatively explores the impact of direction-sensitivity on the neutrino bound in dark matter direct detection.

PACS numbers:

I. INTRODUCTION

Dark matter comprises approximately 25% of the energy density of the Universe [1, 2], yet its particle properties are unknown. There are a large class of dark matter candidates with masses and interaction energy scales expected to appear just beyond the electroweak scale [3]. Such models are interesting since they can lead naturally to an abundance of dark matter in agreement with cosmology. They also suggest cross-sections for scattering off of nuclei which are within reach of current and near-future direct detection experiments.

The precise predictions for scattering cross-sections with nuclei in these models vary a great deal and even within a given model the scattering strongly depends upon the values of the input parameters, such that the range for the WIMP-nucleon interaction cross-section σ_p spans many orders of magnitudes. Very small WIMP-nucleon cross-sections can arise in models in which the dark matter candidate is a mixed state such that small mixing angles may suppress the interaction, or when the self annihilation cross-section of dark matter in the Early Universe (which determines relic density today) is enhanced via kinematics rather than couplings. Another possibility is that different contributions to the interaction of the WIMP with nucleons cancel each other for specific choices of input parameters.

These possibilities require direct dark matter searches that are sensitive to very small WIMP-nucleon cross-sections where, as we will see, coherent neutrino-nucleus scattering will become a problem [4–7].

Direct detection experiments search for dark matter particles using the coherent elastic scattering process. Neutrinos also interact coherently with atomic nuclei, causing the nucleus to recoil with energies up to tens of keV. Such recoils would be indistinguishable from dark matter interactions individually. The scale of the ambient neutrino flux in this energy range is 10^6 cm$^{-2}$s$^{-1}$, and the coherent neutrino-nucleus cross-section is of order 10^{-39} cm2. Background interactions due to these neutrinos represent a lower “neutrino bound” on the achievable sensitivity of dark matter direct detection experiments [8, 9].

Discovering dark matter with a cross-section close to or below the neutrino limit will be difficult. Equivalently, if we discover dark matter relatively soon with cross-sections far above the neutrino limit we will still want to build larger detectors to study the dark matter in more detail, in which case the precision of such measurements will be limited by background neutrinos.

In this paper, we estimate the impact of backgrounds in dark matter detectors caused by coherent neutrino-nucleus elastic scattering of ambient solar, atmospheric and supernovae neutrinos, taking into account recoil energy, direction and time modulation sensitivity. We calculate probability distribution functions for the dark matter signal and the neutrino background in the dimensions of recoil energy, recoil direction, and event time. We find that direction-sensitivity adds approximately an order of magnitude sensitivity beyond non-directional searches for light dark matter, and depending on the target species and energy threshold, this sensitivity can leap far beyond the solar neutrino bound.

II. DARK MATTER DETECTION

Direct detection experiments seek to look for the signal of dark matter particles via their elastic scattering interactions with detector nuclei [10].

Recent experiments have limited the magnitude of the scattering cross-section to be less than approximately
We assume that the dark matter have a Maxwellian distribution $f(\vec{v})$ with a cut-off at the halo escape velocity $v_{\text{esc}} = 544$ km/s. It is well known that limits for light dark matter depend strongly on astrophysical uncertainties, but considering these is not part of this paper. If $|\vec{v}| < v_{\text{esc}}$, the distribution in the halo rest frame is

$$f(\vec{v})_{\text{halo}} = \frac{1}{N_{\text{esc}}} \left(\frac{3}{2\pi\sigma_v^2} \right)^{3/2} \exp \left[-\frac{3}{2} \frac{(\vec{v})^2}{\sigma_v^2} \right],$$

with $N_{\text{esc}} = \text{erf}(z) - 2z \exp(-z^2)/\sqrt{\pi}$ accounting for the truncation. We assume that $f(\vec{v})$ vanishes.

In the Lab frame, we need to take into account the Earth’s overall velocity vector which has contributions from the Sun’s movement around the Galactic center, the peculiar movement of the Sun relative to the local standard of rest and the Earth’s velocity vector relative to the Sun which changes throughout the year. The velocity distribution is therefore time dependent. A detailed description of the Earth’s overall velocity vector that has been used in this work can be found in [22]. We integrate this time dependence over the exposure time from t_0 to t_1 to account for the annual modulation in the event rate.

$$dR_{\text{DM}} \bigg/ dE_{\text{r}} = M_{\text{det}} \frac{\rho_0 \sigma_0}{2m_{\text{DM}} \mu_T^2} F^2(E_{\text{r}}) \int_{t_0}^{t_1} \int_{v_{\text{min}}}^\infty \frac{f(\vec{v}, t)}{v} d^3v \, dt.$$ (3)

Here, M_{det} is the detector mass, ρ_0 the local dark matter density, m_{DM} the dark matter mass, $f(\vec{v}, t)$ the dark matter velocity distribution in Earth’s frame of reference and $F(Q)$ the form factor which describes the distribution of weak hypercharge within the nucleus. The form factor depends on the momentum transfer squared, $Q^2 = 2m_T E_{\text{r}}$. In this work we use Helm form factors, see e.g. [23] or [24]. To obtain the differential rate, an integral over this velocity distribution must be performed from a minimum velocity $v_{\text{min}} = \sqrt{2E_{\text{min}}/m_{\text{DM}}}$ that depends on the recoil energy through the minimal WIMP energy $E_{\text{min}} = E_{\text{r}}(m_{\text{DM}} + m_T)/4$. To obtain such a recoil energy E_{r} it is necessary to perform an integral over the differential rate and the energy-dependent detection efficiency $\epsilon(E_{\text{r}})$ of an experiment:

$$s = \int_{E_{\text{esc}}}^{E_{\text{r}}} \epsilon(E_{\text{r}}) \frac{dR_{\text{DM}}}{dE_{\text{r}}} \, dE_{\text{r}}.$$ (4)

If a dark matter particle with kinetic energy E_{DM} scatters off a target nucleus with scattering angle θ with respect to its incoming direction, the resulting recoil energy is

$$E_{\text{r}} = E_{\text{DM}}\rho(1 - \cos \theta)/2.$$ (5)

A. Dark Matter Scattering Cross-Section

The current approach in direct dark matter detection to test the wide range of theoretical models for dark matter is to measure the event rate of dark matter particles scattering off of target nuclei [20].

The zero momentum WIMP-nucleus cross-section is given by

$$\sigma_0 = \frac{4\mu_T^2}{\pi} (Z f_p + (A - Z) f_n)^2,$$ (1)

where f_p and f_n are the couplings of the dark matter particle to the proton and neutron, respectively, μ_T is the dark matter-nucleus reduced mass, A the atomic number and Z the number of protons of the target nucleus. We assume f_p and f_n to be approximately equal such that the estimation $\sigma_0 \propto A^2 f_p^2 \mu_T^2$ holds. Then, we can cast σ_0 into the WIMP-proton cross-section σ_p via

$$\sigma_0 = \sigma_p \left(\mu_T / \mu_p \right)^2 A^2$$ and use the event rate to constrain σ_p.

B. Dark Matter Velocity Distribution

We assume a local density for the dark matter of 0.3 GeV cm$^{-3}$ which is in agreement with current astrophysical values [21].

We assume that the WIMPs have a Maxwellian distribution $f(\vec{v})$ with a cut-off at the halo escape velocity $v_{\text{esc}} = 544$ km/s. It is well known that limits for light dark matter depend strongly on astrophysical uncertainties, but considering these is not part of this paper. If $|\vec{v}| < v_{\text{esc}}$, the distribution in the halo rest frame is

$$f(\vec{v})_{\text{halo}} = \frac{1}{N_{\text{esc}}} \left(\frac{3}{2\pi\sigma_v^2} \right)^{3/2} \exp \left[-\frac{3}{2} \frac{(\vec{v})^2}{\sigma_v^2} \right],$$

with $N_{\text{esc}} = \text{erf}(z) - 2z \exp(-z^2)/\sqrt{\pi}$ accounting for the truncation. We assume that $f(\vec{v})$ vanishes.

In the Lab frame, we need to take into account the Earth’s overall velocity vector which has contributions from the Sun’s movement around the Galactic center, the peculiar movement of the Sun relative to the local standard of rest and the Earth’s velocity vector relative to the Sun which changes throughout the year. The velocity distribution is therefore time dependent. A detailed description of the Earth’s overall velocity vector that has been used in this work can be found in [22]. We integrate this time dependence over the exposure time from t_0 to t_1 to account for the annual modulation in the event rate.

C. Dark Matter Signal Distribution

The stronger the scattering cross-section, the larger the event rate in an experiment. The differential rate is

$$dR_{\text{DM}} \bigg/ dE_{\text{r}} = M_{\text{det}} \frac{\rho_0 \sigma_0}{2m_{\text{DM}} \mu_T^2} F^2(E_{\text{r}}) \int_{t_0}^{t_1} \int_{v_{\text{min}}}^\infty \frac{f(\vec{v}, t)}{v} d^3v \, dt.$$ (3)

Here, M_{det} is the detector mass, ρ_0 the local dark matter density, m_{DM} the dark matter mass, $f(\vec{v}, t)$ the dark matter velocity distribution in Earth’s frame of reference and $F(Q)$ the form factor which describes the distribution of weak hypercharge within the nucleus. The form factor depends on the momentum transfer squared, $Q^2 = 2m_T E_{\text{r}}$. In this work we use Helm form factors, see e.g. [23] or [24]. To obtain the differential rate, an integral over this velocity distribution must be performed from a minimum velocity $v_{\text{min}} = \sqrt{2E_{\text{min}}/m_{\text{DM}}}$ that depends on the recoil energy through the minimal WIMP energy $E_{\text{min}} = E_{\text{r}}(m_{\text{DM}} + m_T)/4$. To obtain such a recoil energy E_{r} it is necessary to perform an integral over the differential rate and the energy-dependent detection efficiency $\epsilon(E_{\text{r}})$ of an experiment:

$$s = \int_{E_{\text{esc}}}^{E_{\text{r}}} \epsilon(E_{\text{r}}) \frac{dR_{\text{DM}}}{dE_{\text{r}}} \, dE_{\text{r}}.$$ (4)

If a dark matter particle with kinetic energy E_{DM} scatters off a target nucleus with scattering angle θ with respect to its incoming direction, the resulting recoil energy is

$$E_{\text{r}} = E_{\text{DM}}\rho(1 - \cos \theta)/2.$$ (5)
with \(r = 4m_{\text{DM}}m_T/(m_{\text{DM}} + m_T)^2 \). In this work we assume isotropic scattering in \(\cos \theta \). The scattering angle of the recoiling nucleus with respect to the incoming dark matter velocity is then given by:

\[
\tan \theta' = \frac{p' \sin \theta}{\sqrt{2m_{\text{DM}}E_{\text{DM}} - p' \cos \theta}},
\]

with \(p' = \sqrt{2m_{\text{DM}}E_{\text{DM}} - 2m_T E_r} \).

Figure 1 shows the two dimensional probability distribution of event angle and recoil energy for a 6 GeV dark matter particle in a CF\(_4\) detector with 5 keV threshold in September. As in September the Sun and Cygnus A are at equal distances from Earth, the incoming WIMPs that can produce an event above a threshold for a 6 GeV dark matter particle. Two distinctive features should be noted. First, the event angles of dark matter scattering events preferably lie at large \(\cos \theta \) because there is more solid angle there. Sec-ond, the probability distribution drops to zero above the largest possible recoil energy for the given dark matter mass and escape velocity. The power of directionality is that dark matter masses that create an energy spectrum very similar to the neutrino background can easily be distinguished when the event angle is taken into account. As we will see, for light dark matter a strong gain in sensitivity compared to non-directional detectors is therefore expected.

A third feature that is not directly visible in figure 1 but is important nonetheless, is a variation of the peak of the dark matter probability distribution in time. The direction of the Earth’s overall velocity vector will point approximately towards the radio galaxy Cygnus A \([50]\), such that the incoming dark matter particles in the lab-frame will have a preferred direction coming from Cygnus A. The relative angle between the Sun and Cygnus A changes over the year, such that the peak in the dark matter probability distribution will follow a similar pattern.

The annual modulation in the event rate of light dark matter has a maximum in June because at this time the velocity vector of the Earth and the Sun are parallel to each other \([25]\). Both vectors approximately point into the direction of Cygnus A. In December, these two vectors are anti-parallel resulting in a minimum of the event rate. The angle between the Earth-Sun direction and the Earth-Cygnus A direction, \(\theta_{\text{sun-CygnA}} \), is expected to be the same in June and December, because the Earth has simply moved to the other side of the Sun. However, in September the Earth is between the Sun and Cygnus A, such that \(\theta_{\text{sun-CygnA}} \) is at its largest value. The two objects appear on opposite directions in the sky. Analogously, in March when the Earth is behind the Sun relative to Cygnus, \(\theta_{\text{sun-CygnA}} \) is at its smallest value. These situations were studied to test the coordinate system of our simulations.

The time evolution of the peak in the two dimensional dark matter probability distribution arises because of this modulation in the relative angle between the incoming dark matter velocity vector and the Earth-Sun direction, \(\theta_{\text{DM-sun}} \). Since in September the Sun and Cygnus A appear in different directions on the sky, the velocities of the incoming WIMPs that can produce an event above a detector’s fixed energy threshold therefore preferentially point along the Earth-Sun direction. In March, however, the incoming dark matter velocities will point away from the Sun, resulting in a large \(\theta_{\text{DM-sun}} \). When simulating light dark matter events for each month \(1 \times 10^4 \) dark matter events have been simulated. The maximum of the distribution follows the expected pattern as described in the text.

FIG. 1: Two dimensional dark matter probability distribution \(p \) of recoil energy and event angle for a 6 GeV dark matter particle in a CF\(_4\) detector with 5 keV threshold in September.

FIG. 2: Distribution of the angle between the incoming dark matter velocity and the Earth-Sun direction over the year for events above threshold. For each month \(1 \times 10^4 \) dark matter events have been simulated. The maximum of the distribution follows the expected pattern as described in the text.
where \(E \) is the mass of the target nucleus. The four-momentum ex-
change is related to the recoil energy by \(Q^2 = 2m_p E_r \), and the three-momentum exchange \(q \) is approximately equal to \(\sqrt{2m_p E_r} \). For neutrino energies below 20 MeV and nuclear targets from \(^{12}\text{C}\) to \(^{132}\text{Xe}\), the maximum recoil kinetic energy ranges between 50 keV and 5 keV, meaning that the maximum possible \(q \) is quite small, \(< 1 \text{ fm}^{-1} \). Typical nuclear radii, \(R \), are 3-5 fm, and therefore the product \(qR < 1 \). In this regime, the neutrino scatters coherently off the weak charge of the entire nucleus, which is given by

\[
Q_W = N - (1 - 4 \sin^2 \theta_W)Z ,
\]

where \(N \) and \(Z \) are the number of target neutrons and protons respectively, and \(\theta_W \) is the weak mixing angle. Through the dependence on \(Q_W \), coherence enhances the scattering cross-section with respect to the single nucleon cross-section by approximately a factor of \(N^2 \).

The \(\nu\-A \) coherent scattering cross-section is given by

\[
\frac{d\sigma}{d(cos \theta)} = \frac{G_F^2}{8\pi} Q_W^2 E^2 \nu (1 + \cos \theta) F(Q^2)^2 ,
\]

where \(G_F \) is the Fermi coupling constant, \(Q_W \) is the weak charge of the target nucleus, \(E_\nu \) is the projectile neutrino energy, \(\cos \theta \) is the scattering angle in the lab frame of the outgoing neutrino direction with respect to the incoming neutrino direction, and \(F(Q^2) \) is again the nuclear form factor. The suppression of the cross-section by the nuclear form factor depends on the target material and grows with the momentum transfer in a collision.

The dependence of the cross-section on scattering angle means that solar neutrino elastic scattering events will, in principle, point back to the sun. However, the majority of dark matter detectors do not have directional sensitivity, and so we calculate event rates here as a function of recoil nucleus kinetic energy as well. The scattering angle and the recoil kinetic energy are related via 2-body kinematics and the cross-section can be expressed in terms of the kinetic energy, \(E_{\text{rec}} \), of the recoiling nucleus as

\[
\frac{d\sigma}{dE_r} = \frac{G_F^2}{4\pi} Q_W^2 M^2 (1 - \frac{m_F E_r}{2E^2_\nu}) F(Q^2)^2 .
\]

The theoretical uncertainty on the coherent \(\nu\-A \) scattering cross-section comes from uncertainty in the form factor; for neutrino energies of 10 MeV the uncertainty is expected to be less than 10% \[30\].

III. NEUTRINO BACKGROUNDS

Dark matter experiments are potentially sensitive to two separate types of neutrino interactions: the first is \(\nu\-e^- \) neutral current elastic scattering, where the neutrino interacts with the atomic electrons, and the second is \(\nu\-A \) neutral current coherent elastic scattering, where the neutrino interacts with the target nucleus. The fact that the former process can lead to events in a dark matter experiment has long been realised and has led to it being suggested as a method for solar neutrino detection \[26\].

The maximum recoil electron kinetic energy from \(\nu\-e^- \) events can be as large as a few hundred keV, and the cross-sections are of order \(10^{-44} \text{ cm}^2 \). The latter process has never been observed since the maximum nuclear recoil kinetic energy is only a few tens of keV, however, the cross-section is relatively large, approximately \(10^{-39} \text{ cm}^2 \). This work focuses exclusively on coherent \(\nu\-A \) scattering.

Although coherent \(\nu\-A \) scattering has never been observed, the process is theoretically well understood. The calculated Standard Model cross-section is relatively large, of order \(10^{-39} \text{ cm}^2 \) \[27\] \[28\]. There has been interest in using this process to make precision weak interaction measurements at the SNS \[29\], to search for supernova neutrinos \[30\] and to measure neutrinos produced in the Sun \[5\]. Even before direct dark matter detection experiments existed, this process was anticipated as a background \[4\]. On the other hand, one could also take the neutrino events as a signal and test neutrino physics using dark matter detectors, see e.g. \[31\].

Here we calculate the background rates caused by \(\nu\-A \) coherent scattering in target materials relevant to current dark matter searches. We consider the recently measured solar, e.g. \[32\] \[33\], the atmospheric, e.g. \[34\] \[30\], and the predicted diffuse neutrino flux from supernovae throughout the Universe and include the nuclear form factors in the coherent cross-section calculation. We include the direction-dependence of the recoil signal, and its sidereal and annual modulation.

A. Neutrino Scattering Cross-Sections

The maximum recoil kinetic energy in \(\nu\-A \) coherent scattering is

\[
E_{\text{r, max}} = \frac{2E_\nu^2}{m_F + 2E_\nu} ,
\]

where \(E_\nu \) is the incident neutrino energy, and \(m_F \) is the mass of the target nucleus. The four-momentum ex-

B. Neutrino Fluxes

There are many sources that contribute to the large flux of ambient neutrinos and anti-neutrinos. The main sources are fusion reactions in the Sun, radioactive decays in the Earth’s mantle and core, decay products of cosmic ray collisions with the atmosphere, relic supernovae neutrinos and neutrinos from fission processes at nuclear
reactors. We show the approximate energy ranges and fluxes of neutrinos in Table I. For this work, we consider the fluxes of solar, atmospheric and supernovae neutrinos. In reference [6] it has been shown that the contribution of geo-neutrinos to the background of dark matter searches can be neglected. In Figure 3 we show the energy dependent fluxes used here.

The largest contribution from solar neutrinos is the 8B neutrino flux, which is well understood. The predicted flux normalisation, shown in Table I, agrees with the measured flux at the 2% level [38]. The uncertainty of the measured flux that includes neutrino oscillations is only 3.5% [39], even though the predicted flux normalisation has an uncertainty of 16% [10]. For the predicted atmospheric neutrino flux the estimated normalisation uncertainty is 10% for neutrino energies below 100 MeV [40] which agrees well with measurements by a number of experiments. We note that the normalisation of the low energy component of the atmospheric neutrino flux is strongly dependent on the latitude. This is due to the geo-magnetic cut-off, e.g. the flux at Super-Kamiokande [12] is approximately half of the flux at the SNO experiment.

The background of diffuse supernovae neutrinos is the integrated flux from all supernovae that occurred in the universe. The neutrino energy spectrum of a single supernova is assumed to be similar to a Fermi-Dirac spectrum with temperatures of 3 MeV for electron neutrinos, 5 MeV for electron anti-neutrino and 8 MeV for the other four flavours. For more details on diffuse supernovae neutrinos see for example [13]. We assume an uncertainty of 10% on the supernovae neutrino flux.

The calculations here use the predicted neutrino fluxes without including neutrino oscillations. The coherent scattering process is neutrino-flavor independent to leading order, and we assume no sterile neutrino participation in oscillations, thus the oscillated and un-oscillated predicted neutrino fluxes are in practice equivalent for our calculation.

C. Neutrino Signal Distribution

The neutrino event rate is, similarly to the dark matter event rate, given by an integral over the differential recoil rate and the energy efficiency,

$$b = \int_{E_{\nu_{min}}}^{E_{\nu_{max}}} \epsilon(E_{\nu}) \frac{dR_{\nu}}{dE_{\nu}} dE_{\nu}.$$

(11)

The differential rate is

$$\frac{dR_{\nu}}{dE_{\nu}} = n_T \int_{t_0}^{t_1} \int_{E_{\nu_{min}}}^{E_{\nu_{max}}} \frac{dN(t)}{dE_{\nu}} \frac{d\sigma(E_{\nu}, E_t)}{dE_t} dE_{\nu} dt,$$

(12)

with n_T the number of target nuclei in the detector, the flux $\frac{dN(t)}{dE_{\nu}}$ and the differential cross-section $\frac{d\sigma(E_{\nu}, E_t)}{dE_t}$. The dependence on time, t, in the flux is due to the change in distance between the Sun and the Earth over the year. We integrate the time dependence over the exposure time of a given experiment to calculate rates. Note that the only thing that changes with time is the normalisation in the solar neutrino flux, not the shape of the spectrum. As a first approximation, we take the flux of atmospheric and supernovae neutrinos to be time independent, although there is a time variation in the atmospheric flux due to temperature changes in the Earth’s atmosphere [35]. This change in the event rate is, however, smaller than the annual modulation of the dark matter rate or the modulation of the solar neutrino rate. As we found that both of these are not contributing significantly to the sensitivity of the simulated detectors we neglect the variation of the atmospheric neutrino flux here.

The integral over the neutrino energy starts at the minimal neutrino energy $E_{\nu_{min}}$ necessary to get a recoil event over threshold and is given by $E_{\nu_{min}} = \sqrt{m_T E_t/2}$. In Figure 4 we show the event rate for a CF4 detector.
the threshold that we will consider in this work (5 keV), only 8B and hep neutrinos from the Sun as well as all atmospheric and supernovae neutrinos are important.

The scattering angle of the nucleus with respect to the incoming neutrino direction can then be found from scattering kinematics to be

$$\cos \theta' = \frac{E_\nu + m_T}{E_\nu} \sqrt{\frac{E_T}{2m_T}}. \quad (13)$$

Figure 4 shows the two dimensional probability distribution of recoil energy and event angle for neutrinos in a CF₄ detector with a 5 keV energy threshold. The significant difference to the dark matter probability distribution is the clear peak at $\cos \theta_{\text{sun}} = -1$ and small recoil energies due to the solar neutrino events. Atmospheric and supernovae neutrinos contribute as a smooth, isotropic background. For a 5 keV CF₄ detector we can see in figure 4 that the non-solar neutrinos have only a small contribution such that in this example the probability distribution function falls off steeply away from the solar peak. The ratio of the solar peak to the smooth background of non-solar neutrinos depends on the target material and the recoil energy threshold. In different detector configurations the dominance of the solar peak over the non-solar background is not necessarily this significant.

IV. DARK MATTER SEARCHES IN THE PRESENCE OF NEUTRINO BACKGROUNDS

Having obtained detailed spectra for dark matter and neutrino events as a function of energy, direction and time, we need a statistic to test these signal and background distributions in a given experiment. In order to do this, we perform a CLs test [16] to distinguish between background and signal + background hypotheses, in which the background comes from solar, atmospheric and diffuse supernovae neutrino coherent elastic scattering. We consider a range of targets and moderately optimistic energy thresholds, as well as energy and angular resolutions, which should be realistically achievable by the next-generation experiments.

A. Statistical Test

The presence of backgrounds in direct searches of any kind implies that a given set of observed events is either pure background or contains background plus signal. One way to distinguish between these two cases statistically is to perform a hypothesis test. Such a test can be carried out by looking at the ratio between the probability densities of the measured data \bar{X} being either signal plus background or background only, $\bar{Q} = \frac{\mathcal{L}(\bar{X},S+B)}{\mathcal{L}(\bar{X},B)}$. We take this as the definition of our test statistic:

$$\bar{Q} = \frac{p_{b+s}(n) \prod_{j=1}^{n} s_{S}(t_{j})+b_{B}(t_{j})}{p_{b}(n) \prod_{j=1}^{n} b_{B}(t_{j}) B_{\theta,E}(\theta_{j},E_{j})} \frac{s_{S}(t_{j})+b_{B}(t_{j})}{s_{S}(t_{j}) B_{\theta,E}(\theta_{j},E_{j})}. \quad (14)$$

Throughout this work, we use the notation $p(x) = dP(x)/dx$ as the probability distribution function of the variable x where $P(x)$ is therefore the cumulative probability of this quantity at x. Here, we have $p_{b}(n)$ as the Poisson distribution centered at λ, s as the number of expected signal (dark matter) events given by equation 4, b as the number of expected background (neutrino) events.
given by equation \[11\] and \(n \) as the number of observed events. We discuss in section \[15\] how to exactly obtain \(b, s \) and \(n \). The capital \(B's \) and \(S's \) are the different probability distributions for the neutrino and dark matter events.

\(B_t \) and \(S_t \) describe the annual modulation of the neutrino and dark matter event rate, respectively. \(B_{\theta, E} \) is the two dimensional probability distribution for the recoil energy and the event angle for neutrino events and \(S_{\theta, E}^{(t)} \) the corresponding one for dark matter. The dark matter distribution carries an additional index for time because of its variation over the year as described in section \[13\]. To include this time variation, we choose ten equally distributed days over one year and create one probability distribution function for each of these days. A given event will then interpolate linearly between the two probability distribution functions closest to the signal event time.

The variables \(t_j, E_j, \theta_j \) denote the time, recoil energy and event angle of the \(j \)-th event. We define the event angle as the angle between the track of the recoiling nucleus and the Earth-Sun direction. Equation \[14\] can be simplified to:

\[
\tilde{Q} = e^{-s} \left(\frac{b}{s+b} \right)^n \prod_{j=1}^{n} \left(1 + \frac{s S(t_j)}{b B(t_j)} \right) \left(1 + \frac{s S_{\theta, E}^{(t)}(\theta_j, E_j)}{b B_{\theta, E}(\theta_j, E_j)} \right)
\]

In the following we will discuss the log-ratio \(Q = -2 \log \tilde{Q} \).

An advantage of this procedure is that experimental uncertainties can easily be incorporated by smearing the probability distributions. Dark matter searches have to deal with imperfect energy and angular resolution (in the case of directional experiments), as we discuss in section \[14\]. The background of non-solar neutrinos ensures a non-zero value for \(B_{\theta, E} \) for all values of \(\theta \) and \(E \) such that \(Q \) is well behaved.

Since we perform a hypothesis test, \(Q \) is evaluated twice: First we simulate pseudo-experiments that observe data consisting of pure background to get a distribution \(p_B(Q_B) \). We then repeat the exercise with signal plus background in the observed pseudo-events and get a distribution \(p_{SB}(Q_{SB}) \). The clearer the separation between these two distributions is, the easier it is for the chosen detector configuration to distinguish between these two hypotheses. The lower the signal rate and the more similar the signal looks to the background, the closer the distributions will be until they start to overlap. If the overlap becomes too large, the experiment will lose its sensitivity completely. See figure \[6\] for a visualisation.

To obtain the sensitivity of a given dark matter experiment for a specific dark matter mass and cross-section we calculate the overlap of these two distributions. We integrate both,

\[
\beta_{SB} = \int_{-\infty}^{q} p_{SB}(Q_{SB}) \, dQ_{SB} ,
\]

up to a \(q \) value for which

\[
1 - \beta_{SB} = \beta_B \equiv \alpha .
\]

We take the confidence level at which signal plus background hypothesis can be distinguished from the background-only hypothesis to be \((1 - \alpha) \). In this work we are interested in separations of both hypotheses at 90\% confidence level, corresponding to \(\alpha \) equal to 0.1, and in 3\sigma separations (\(\alpha = 0.00135 \)).

The statistical approach has uncertainties due to a finite sample size of pseudo-experiments, a finite number of events to create the two dimensional probability distributions as well as a finite bin width when creating the histograms of the test-statistics. We estimate this numerical error to be 5\% in the overlap and add it to the error due to the systematic uncertainties.

B. Detector Performance Assumptions

In this work we will estimate future sensitivities of dark matter detectors including the irreducible neutrino nucleus coherent scattering as a background. To see how the mass of the target material influences the sensitivities, we look at Tetrafluormethane, CF\(_4\), as a light and Xenon, Xe, as a heavy target material.

Interesting directional technologies are already existent for experiments based on CF\(_4\) [13,17] and we show here...
that scaling these detectors to large masses can test cross-
sections beyond the neutrino background. For Xenon, on
the other hand, there are at the moment no directional
techniques demonstrated and our directional sensitivities
are in this sense futuristic. However, we think it is still
interesting to see how directional information would help
if a heavy target material was used.

For the CF$_4$ detectors, we model the energy efficiency
of the detectors with

$$
\epsilon(E_{\text{rec}}) = c_1 \left(1 + \text{erf} \left(\frac{(E_{\text{rec}} - c_2)}{c_3} \right) \right),
$$

and choose $c_1 = 0.5$, c_2 as the energy threshold E_{thr}
and $c_3 = 15$ keV. These values for the efficiency asymp-
tote at 50% and are consistent with current directional
searches [13]. The 5 keV energy threshold we assume is
optimistic relative to current searches (although a num-
ber of CF$_4$ directional detectors use 5.9 keV 55Fe sources
for calibration, and track images with directionality at this
energy have been measured in small prototypes [15]).

Large direct dark matter searches based on Xenon have
been carried out in the past already [11, 12], so we use
the efficiency curve published by the LUX experiment and
shift it to smaller energy thresholds, such as 2 keV. For
the Xenon detectors we assume an upper energy window
cutoff of 40 keV, for the CF$_4$ detectors we take 100 keV.

The energy resolution is modeled as

$$
\sigma_E = 0.1 \sqrt{E/\text{keV}},
$$

and the angular resolution as

$$
\sigma_\theta = \frac{30^\circ}{\sqrt{E/\text{keV}}}. \tag{21}
$$

For the angular efficiency we assume 100%.

C. Event Simulation

To simulate dark matter events we use the rest frame
of the static, spherically symmetric dark matter halo and
draw a random velocity magnitude v from the velocity
distribution according to equation $\ref{eq:veldist}$ and, to fix the
dark matter direction, additionally two angles (θ, φ) in a spher-
ically symmetric way. We then calculate the cartesian co-
ordinates of the dark matter velocity vector \vec{v} in galactic
coordinates. Drawing a random event time t from a uni-
form distribution between t_0 and t_1 gives us the Earth’s
overall velocity vector in galactic coordinates from refer-
ence $[22]$. After a coordinate transformation into the rest
frame of the Earth, we have the incoming WIMP velocity
vector.

As we assume isotropic scattering, we draw a uniform
scattering angle and obtain the recoil energy E_r of the
event from equation $\ref{eq:recoil}$. In this way, the dark matter
direction and annual modulation are both included in the
event simulation as we use the full information of the
Earth’s velocity vector and start from a spherically sym-
metric halo. We calculate the event angle θ_{sun} by project-
ing the track of the recoiling nucleus onto the Earth-Sun
direction and perform the energy and angular gaussian
smearing. To take the energy efficiency into account, we
only accept the corresponding fraction of events at each
recoil energy and apply the energy thresholds as hard cut-
offs. For each of the ten dark matter probability distrib-
butions of each dark matter mass we simulate 10^6 events
and bin the data into 30 energy and 15 angular bins.

To create the two dimensional probability distribution
function for neutrinos, we perform the event rate calcu-
lation, equation $\ref{eq:nu_rate}$ for each neutrino type seperately
to know exactly how many events of each type can be ex-
pected in a given detector configuration.

To simulate neutrino events, we draw a random neu-
trino energy according to the energy dependent flux. For a
solar neutrino the direction is known. When simulating
the atmospheric and supernovae neutrinos we assume an
isotropic incoming neutrino direction. We use the differ-
ential cross-section and its dependence on the neutrino
energy to create a probability distribution for a given
neutrino energy E_{ν} to give an event of recoil energy en-
ergy E_r. From this we draw a random E_r and obtain the
scattering angle via equation $\ref{eq:scatt_angle}$.

These real event values are smeared according to the
detector resolutions as explained in section $\ref{sec:det_res}$ and
the energy efficiency and thresholds are applied. The event
time is drawn uniformly for the atmospheric and super-
novae neutrinos, but from a non-uniform distribution for
the solar neutrinos that follows the annual modulation of
the event rate. For the neutrino probability distribution
we simulate 1.5×10^6 neutrino events and bin them into
30 energy and 15 angular bins.

In figure $\ref{fig:nu_results}$ we present the combined two dimensional
signal plus background probability distribution of event
angle and recoil energy for a 6 GeV dark matter particle
in a CF$_4$ detector. As can be seen in equation $\ref{eq:nu_rate}$ the con-
stituent probability distribution functions of signal and
background are weighted according to the expected num-
ber of background and signal events. We present the case
for $b=500$ and $s=10$. Even for such low count rates, a sig-
nificant excess at large $\cos \theta_{\text{sun}}$ is visible, compared to
figure $\ref{fig:xenon_results}$.

D. Systematic Uncertainties

The exact values of the neutrino fluxes are unknown
which will lead to a loss in sensitivity. For the solar neu-
trinos we assume an uncertainty of 8% (note that only
8B and hep neutrinos can give events above threshold in
this work), for the atmospheric and supernovae neutrini-
s we take a 10% flux uncertainty. These values are
approximately half of the current uncertainties.

To include these neutrino flux uncertainties we first ob-
tain a central value result. This means that we assume
the incoming fluxes to have their nominal measured val-
FIG. 7: The combined two dimensional probability distribution ρ of the recoil energy and event angle for a 6 GeV dark matter particle and neutrinos in a CF$_4$ detector. The expected signal rate is fixed to $s=10$ and the expected background rate to $b=500$.

The number of observed events n in a pseudo experiment is drawn from a Poisson distribution centered at a value λ which is either equal to b_0 for the background only or b_0+s for the signal plus background simulation. For each pseudo experiment we simulate these n events as we discussed in section IV C.

To account for the unknown real flux value when performing the experiment we vary the expectation of each pseudo experiment, that is b in equation 15. Hence, for each pseudo experiment we draw a random flux value for each neutrino flux type from a gaussian with 1 σ corresponding to the uncertainties. This results in a different expected background rate b for each pseudo experiment via equation 12 and widens the Q-distributions. We then repeat the procedure shifting b_0 up and down by one σ to obtain a 1 σ band for the estimated exclusion limits.

V. RESULTS

A. Estimation of Detector Sensitivities

In order to see directly the gain in sensitivity when directional information is used, we evaluate the sensitivity that we obtain from our statistical approach for both cases, excluding (red bands) and including directional information (green bands). To compare the results to the WIMP discovery limit that was presented in [9], we show this limit as a light-grey line. Note here that the limits from [9] are discovery limits at the 3σ level and based on a profile likelihood approach, whereas we perform a hypothesis test. Therefore, any direct comparison should be taken with care. A strict discovery limit exists for dark matter masses that match the energy spectrum of the neutrino background perfectly, see [9]. This is for example the case for a 6 GeV dark matter particle and the background of 8B neutrinos in a Xenon detector. We reproduce this limit and the discovery limits for heavy dark matter from [9] with very good accuracy, see also section V D. In the dark matter mass region around 10 GeV where a steep increase in sensitivity towards smaller cross-sections is observed, however, we find slightly less constraining discovery limits, as will become clear when we discuss the Xenon detector.

In this section we will look at sensitivity limits at the 90% CL and 3σ level for experiments with different target materials and energy thresholds. To compare the different simulations, the detector exposure is scaled such that the simulated experiment will observe 500 neutrino events, i.e. the background contribution is sizable. As an example for a dark matter detector with directionality, we estimated the sensitivity of Tetrafluoromethane CF$_4$ as target material. As a light target CF$_4$ is promising to distinguish solar neutrinos from light dark matter. We set the energy thresholds in our run to 5 keV.

Figure 8 shows the obtained sensitivity bands for a 36.6 ton-year CF$_4$ experiment with a 5 keV energy threshold. The 500 neutrino events consist of 499.8 expected solar and 0.2 expected non-solar neutrinos. The green and red bands represent limits that can be obtained with directional and non-directional detectors at a 3σ level, respectively. The fainter colors show corresponding limits at 90% CL. The seperation of the green band from the red band clearly shows the impact of directional informa-
tion. A strong increase in sensitivity for directional detectors towards smaller cross-sections is observed which is larger the smaller the dark matter mass. This is easily understood when considering the clear separation of the neutrino and dark matter peak in the two dimensional probability distribution functions. The lighter the dark matter particle is, the more significant this separation. For a light dark matter event to be above threshold, the track of the recoiling nucleus has to lie closer along the incoming dark matter direction in order to produce a large enough recoil. Hence, the dark matter signal also has a strong directional character, as discussed in section [11]. Since the event angle distribution is different to the neutrinos, directional information has a large impact.

We find that cross-sections below the solar neutrino bound can be tested at 3σ level when directional information is taken into account.

Towards heavier dark matter masses, we see that the sensitivity curves approach each other and directionality loses some impact. For heavy dark matter, the distinction of signal and solar background is already easy when the energy spectrum is considered on its own, because the recoil energies of solar neutrinos are much smaller compared to heavy dark matter. Besides, the dark matter events loose their directional character more and more: Light dark matter can only give recoil energies above threshold for the largest dark matter velocities in the halo, such that only those particles coming from Cygnus A can give a recoil event in the detector. The kinetic energy of heavy dark matter particles is, in contrast, also large for small dark matter velocities. Hence, the incoming direction of dark matter particles that give a signal event in the detector becomes unconstrained and more and more isotropic. A competing effect is that the track resolution for small recoil energies is worse, but improves for larger recoil energies and thus for heavier dark matter. Overall, we see that directional information is also useful for heavier dark matter. This is mainly because when heavy dark matter particles give recoil energies comparable to the recoil energies of solar neutrinos, the dark matter events can be distinguished using directional information, which would not be possible otherwise.

At the moment, the strongest constraints on the WIMP-nucleon cross-section are set by experiments that use Xenon as a target material. These detectors have no directional information and no technology exists up to now that could achieve this. However, it is still interesting to ask which cross-section experiments with heavy target materials would be able to probe if they could use directional information. There is recent interest in developing a direction-sensitive Xenon detector technology based on recombination dependence on the recoil angle relative to the detector E field [15], so perhaps this will be a possibility for the future.

Therefore, we additionally choose Xenon as a target material and perform the same tests. Estimated sensitivity curves for a hypothetical experiment with 367.7 ton-year exposure using a 2 keV threshold can be seen in figure [9]. The 500 neutrino background events consist of 485.8 expected solar and 14.2 expected non-solar neutrinos.

Our statistical test finds that even without directional information cross-sections below the discovery limit from [9] can be tested at 3σ level. For example, an 8 GeV WIMP with a cross-section of 2.3×10^{-46} cm2 would give about 470 dark matter events. We note here, that we assumed half the flux uncertainties and took a different statistical approach than reference [9]. The non-directional 3σ-limit should hence be seen as a WIMP-discovery limit obtained from our approach rather than testing cross-sections beyond the discovery limit. Again, we see that directional detectors can go beyond and probe smaller cross-sections compared to non-directional detectors. The same trend that directional and non-directional detectors give similar sensitivities for heavy dark matter particles is visible; the limits are basically identical for the Xenon detector.

Compared to the light target material CF$_4$ we find that the impact of directional information is less significant in this Xenon detector configuration when searching for heavy dark matter. With Xenon as a heavy target material solar neutrinos can give recoil energies only up to approximately 5 keV. Hence, the range of recoil energies for which directionality is the only indicator to distinguish the signal from the solar neutrino background is small. For the light target material CF$_4$ this range is larger: solar neutrinos can recoil up to approximately 30 keV, see figure [11] We can therefore conclude that the larger the range of possible recoil energies of solar neutrinos is compared to the total energy range of the detector, the larger the gain in sensitivity from directional information.
On the other hand, for the same number of background events Xenon can probe smaller cross-sections.

It is not clear how a Xenon detector might be made directional. However, an additional motivation to pursue directionality is that ultimately very large Xenon detectors would be limited by the background of solar neutrino-electron elastic scattering events. It is important to note that we do not take this background source into account in our simulations, although it is expected to become significant at the 10^{-48} cm2 level [19]. Additionally, the electron discrimination in Xenon detectors is less efficient than in other detectors, for example liquid Argon. Directionality could aid in that discrimination considerably, because these events have a direction that points back to the sun, allowing deeper cross-sections to be probed. Of course it is important to note that such large detectors would cost a great deal of money since Xenon is \sim1000 per kg at today’s prices and only 25 tonnes is obtained from the air annually.

In this section we have presented results from detector simulations for which we fixed the number of expected neutrino events to 500 in order to estimate possible sensitivity limits in the presence of neutrino backgrounds. It was shown that cross-sections beyond the discovery limit can be probed when directional information is taken into account. Directional detectors have significantly larger sensitivities for light dark matter masses. For a light target material this is also true for heavy dark matter. We will now move on and discuss how these limits behave as a function of exposure.

B. Projected Sensitivity

For both detector configurations that were presented in section VA we choose 3 dark matter masses and for different exposures find the minimal cross-section that can be tested at a 3σ level with and without directional information. In this way we can find the exposure necessary to go beyond the discovery limit. As the dark matter masses we choose 6 GeV in order to see how directionality helps when the energy spectrum of solar 8B neutrinos and dark matter are identical, 1000 GeV as a heavy dark matter mass and 30 GeV as a mass for which non-directional experiments have close to maximal sensitivity. We expect the projected non-directional sensitivity limits for the Xenon detector to flatten out below the limits from reference [9] by a factor two because we assume half the neutrino flux uncertainties. For each dark matter mass and cross-section we simulate 5×10^3 pseudo-experiments.

We present the results for the Xenon detector in figure 10 and for the CF$_4$ detector in figure 11. The projected sensitivity limits for directional detectors are presented as solid lines, non-directional detectors are shown as dashed-dotted lines. The discovery limits of [9] are indicated as horizontal dashed lines. We color code the three different masses in blue (6 GeV), red (30 GeV) and black (1000 GeV).

As expected, for $m_{DM} = 6$ GeV the sensitivity of non-directional Xenon detector flattens out just below the discovery limit. This shows our agreement with earlier work [9] and shows directly the impact of improved knowledge on neutrino fluxes by a factor of two. For the non-directional CF$_4$ detector we see that the curve becomes flat already above the discovery limit. This is simply because the discovery limits were calculated for Xenon and we consider a different target material here. The solid blue line indicates possible limits if directional detectors were constructed. It is visible that the solar neutrino floor disappears for both target materials once there is a clear way to distinguish signal from background using directionality.

For the larger dark matter masses the directional and non-directional limits are basically the same when Xenon is used as a target material, as we discussed in section VA. We see that the projected sensitivities reach a boundary close to the discovery limit of [9]. For the 1000 GeV WIMP this is slightly below the boundary as we expect from the reduced flux uncertainties. The 30 GeV sensitivity line stays just above the neutrino bound. We note out that the discovery limits in [9] were obtained with a 4 keV energy threshold, compared to a 2 keV threshold here and the different statistical approaches that were taken. Sensitivities for dark matter masses in this region show a dependence on the threshold energy. Besides, this change in threshold energy affects the neutrino energy spectrum significantly, which influences sensitivities of medium dark matter more than of heavy dark matter.

![FIG. 10: Estimated sensitivity limits for a directional Xenon detector with a 2 keV energy threshold for a 6 GeV (blue), 30 GeV (red) and 1000 GeV (black) dark matter particle. The solid lines show directional detectors, the dash-dotted lines show non-directional detectors. The horizontal blue lines indicate the discovery limit of [9] for each dark matter mass. The vertical grey line shows the simulated detector of section VA.](image-url)
In this work we looked at future sensitivities of direct dark matter searches when irreducible neutrino backgrounds from coherent neutrino-nucleus elastic scattering is present. We investigated how time, recoil energy and directional information can help to distinguish signal from background. To do so, we performed a hypotheses test, as explained in section V A and demanded separations of the two hypotheses at 90% confidence and three sigma level.

For the simulated detectors we assumed moderately optimistic energy thresholds and energy efficiency behaviour as well as realistic smearing in the energy and angular resolution. In order to see how the target mass influences the searches, we looked at Tetrafluoromethane, CF$_4$, as a light and Xenon as a heavy target material. For CF$_4$ there are detector technologies that measure the recoil track of the nucleus, whereas they are up to now not existent for Xenon.

In section I we presented two dimensional probability distributions in recoil energy and event angle, θ_{sun}, for neutrino and dark matter events. In figure I we showed the distribution for light dark matter and pointed out how the position of this peak evolves over the year due to the motion of the Earth around the Sun.

In the same section we presented in figure V the corresponding distribution for the neutrino events. The way we defined the event angle removes any time dependence of this distribution. Compared to dark matter, we noted that the solar neutrinos peak at small recoil energies and at $\cos \theta_{\text{sun}} \approx -1$. The non-solar neutrinos were assumed to have an isotropic distribution in the detector frame and act as a smooth background for the distribution.

In section V A we simulated one detector for each target material and fixed the exposure such that there are 500 expected neutrino events. We found that with directional information cross-sections beyond the neutrino discovery limit may be probed. For the light target material we see that directional information is helpful for the complete dark matter mass range, whereas for the heavy target nuclei, directional and non-directional detectors will give the same limits for heavy dark matter.

VI. DISCUSSION AND CONCLUSIONS

Because the directional and non-directional projected sensitivities are close to identical, going beyond discovery limits for these masses with a heavy target material is only possible if the uncertainties of the neutrino fluxes are reduced and extremely large exposures become possible. Note here that our analysis does not include the pp solar neutrino-electron scattering background, which is relevant for cross-sections below 10^{-48} cm2.

In figure 11 we show the sensitivity limits for a CF$_4$ detector. Similar trends are visible. Directional information allows to go beyond the discovery limits for light WIMPs even with imperfect flux knowledge. Directionality contributes significantly for the complete dark matter mass range and can help more than an order of magnitude in the cross-section. For the light target material, we see a significant contribution from directionality even to the sensitivity of heavy WIMPs, but their discovery limits cannot be reached with the exposures we consider.

In the presence of backgrounds, the sensitivity is not expected to scale linearly with exposure. In a Poisson dominated regime, a scaling behaviour as the square-root of the number of background events is expected. Since we are using additional information here, coming from the energy spectrum, which might be identical for background and signal, and the directionality of the events, a better scaling behaviour is possible. For the two detectors we simulated, the isotropic background of non-solar neutrinos is smaller for the CF$_4$ compared to the Xenon case, resulting in a better scaling behaviour. This, however, depends on the energy threshold.

These plots show that in principle there is no solar discovery limit for direct dark matter searches if directional detectors are constructed. Going beyond the discovery limit for a 6 GeV dark matter particle is possible for an exposure of approximately 5 ton-years for a directional CF$_4$ and around 10 ton-years for a directional Xenon detector. Directionality has more impact the lighter the dark matter particle. For events to be above the energy threshold, the incoming light dark matter particles need a large velocity and, hence, have a clear arrival direction from Cygnus A. For a light target material directionality also adds to the sensitivity of heavy dark matter candidates.

FIG. 11: Estimated sensitivity limits for a directional CF$_4$ detector with a 5 keV energy threshold for a 6 GeV (blue), 30 GeV (red) and 1000 GeV (black) dark matter particle. The solid lines show directional detectors, the dash-dotted lines show non-directional detectors. The horizontal blue lines indicate the discovery limit of [9] for each dark matter mass. The vertical grey line shows the simulated detector of section V A.
In both cases, directional detectors can test more than an order of magnitude smaller cross-sections compared to non-directional detectors for some light dark matter masses.

We projected possible sensitivities as a function of exposure in section V B. In figure 10 and 11 we saw that directional information removes the solar neutrino discovery limits and is especially useful for light dark matter. If a light target material is used, a gain in sensitivity exists also for heavy dark matter candidates, but very large exposures are needed to reach their discovery limits. We noted that perfect flux knowledge would also remove any discovery limit and conclude that there is no neutrino bound for directional dark matter searches.

Acknowledgments

This work was supported by the ERC and the STFC. We are grateful to Peter Fisher for collaboration in the early stages of this project and commenting on the manuscript. Also, we wish to thank Tevong You and Thomas Richardson for helpful discussions, Julien Billard for valuable comments on the draft and Nigel Arnott for help with software, hardware and network problems. MF is grateful for the hospitality of NORDITA during the "What is dark matter" program where many relevant interesting conversations took place.

[1] D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).
[2] P. Ade et al. (Planck Collaboration) (2013), 1303.5076.
[3] P. G. Cushman, C. Galbiati, D. McKinsey, H. Robertson, T. Tait, et al. (2013), 1310.8327.
[4] A. K. Drukier, K. Freese, and D. N. Spergel, Phys. Rev. D 33, 3495 (1986).
[5] B. Cabrera, L. M. Krauss, and F. Wilczek, Phys.Rev.Lett. 55, 25 (1985).
[6] J. Monroe and P. Fisher, Phys.Rev. D76, 033007 (2007), 0706.3019.
[7] L. E. Strigari, New J.Phys. 11, 105011 (2009), 0903.3630.
[8] A. Gutlein, C. Cienniak, F. von Feilitzsch, N. Haag, M. Hofmann, et al., Astropart.Phys. 34, 90 (2010), 1003.5530.
[9] J. Billard, L. Strigari, and E. Figueroa-Feliciano, Phys.Rev. D89, 023524 (2014), 1307.5458.
[10] R. J. Gaitskell, Ann. Rev. Nucl. Part. Sci. 54, 315 (2004).
[11] A. Aprile et al. (XENON100 Collaboration), Phys.Rev.Lett. 109, 181301 (2012), 1207.5988.
[12] D. Akerib et al. (LUX Collaboration), Phys.Rev.Lett. 112, 091303 (2014), 1310.8214.
[13] S. Ahlen, N. Ashford, J. Battat, J. Billard, N. Bozorgnia, et al., Int.J.Mod.Phys. A25, 1 (2010), 0911.0323.
[14] S. Ahlen, J. Battat, T. Caldwell, C. Deaconu, D. Djunic, et al., Phys.Lett. B695, 124 (2011), 1006.2928.
[15] D. Santos, J. Billard, G. Bosson, J. Boully, O. Bourrion, et al., J.Phys.Conf.Ser. 309, 012014 (2011), 1102.3960.
[16] J. Billard, F. Mayet, and D. Santos, Phys.Rev. D83, 075002 (2011), 1012.3265.
[17] J. Billard, F. Mayet, and D. Santos, Phys.Rev. D82, 055011 (2010), 1006.3513.
[18] B. Morgan, A. M. Green, and N. J. Spooner, Phys.Rev. D71, 103505 (2005), astro-ph/0408047.
[19] S. K. Lee and A. H. Peter, JCAP 1204, 029 (2012), 1202.5035.
[20] M. W. Goodman and E. Witten, Phys.Rev. D31, 3059 (1985).
[21] M. Fairbairn, T. Douce, and J. Swift, Astropart.Phys. 47, 45 (2013), 1206.2693.
[22] C. McCabe, JCAP 1402, 027 (2014), 1312.1355.
[23] J. D. Lewin and P. F. Smith, Astropart. Phys. 6, 87 (1996).
[24] C. J. Horowitz and B. D. Serot, Nucl. Phys. A368, 503 (1981).
[25] K. Freese, J. A. Frieman, and A. Gould, Phys.Rev. D37, 3388 (1988).
[26] J. N. Bahcall, M. Kamionkowski, and A. Sirlin, Phys. Rev. D51, 6146 (1995).
[27] D. Z. Freedman, D. N. Schramm, and D. L. Tubbs, Annu. Rev. Nucl. Sci. 27, 147 (1977).
[28] A. Drukier and L. Stodolsky, Phys. Rev. D 30, 2295 (1984).
[29] K. Scholberg, Phys. Rev. D 73, 033005 (2006).
[30] C. J. Horowitz, K. J. Coakley, and D. N. McKinsey, Phys. Rev. D 68, 023005 (2003).
[31] R. Harnik, J. Kopp, and P. A. Machado, JCAP 1207, 026 (2012), 1202.6073.
[32] B. Cleveland, T. Daily, J. Davis, Raymond, J. R. Distel, K. Lande, et al., Astrophys.J. 496, 505 (1998).
[33] S. Ahmed et al. (SNO Collaboration), Phys.Rev.Lett. 92, 181301 (2004), nucl-ex/0309004.
[34] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys.Rev.Lett. 92, 021803 (2004), nucl-ex/0309004.
[35] A. Drukier and L. Stodolsky, Phys. Rev. D 33, 3495 (1986).
[36] R. Abbasi et al. (IceCube Collaboration), Phys.Rev.D92, 021803 (2015), 1503.0184.
[37] J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. 701, 85 (2009).
[38] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 49, 39 (1999).
[39] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 145 (2000).
[40] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 439 (1999).
[41] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 145 (2000).
[42] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 439 (1999).
[43] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 145 (2000).
[44] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 439 (1999).
[45] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 145 (2000).
[46] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 439 (1999).
[47] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 145 (2000).
[48] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 439 (1999).
[49] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 145 (2000).
[50] T. K. Gaisser and M. Honda, Ann. Rev. Nucl. Part. Sci. 50, 439 (1999).