Layered Manganese Bismuth Tellurides with GeBi4Te7– and GeBi6Te10–type Structures: Towards Multifunctional Materials

Daniel Souchay, Markus Nentwig, Daniel Günther, Simon Keilholz, Johannes de Boor, Alexander Zeugner, Anna Isaeva, Michael Ruck, Anja U. B. Wolter, Bernd Büchner, Oliver Oeckler

Submitted date: 07/06/2019 • Posted date: 17/06/2019
Licence: CC BY-NC-ND 4.0

Citation information: Souchay, Daniel; Nentwig, Markus; Günther, Daniel; Keilholz, Simon; Boor, Johannes de; Zeugner, Alexander; et al. (2019): Layered Manganese Bismuth Tellurides with GeBi4Te7– and GeBi6Te10–type Structures: Towards Multifunctional Materials. ChemRxiv. Preprint.

The crystal structures of new layered manganese bismuth tellurides with the compositions Mn0.85(3)Bi4.10(2)Te7 and Mn0.73(4)Bi6.18(2)Te10 were determined by single-crystal X-ray diffraction, including the use of microfocussed synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi4Te7 (space group P3m1) and 51R-GeBi6Te10 (space group R3m) structure types they adopt. Modified compositions Mn1–xBi4+2x/3Te7 (x = 0.15 – 0.2) and Mn1–xBi6+2x/3Te10 (x = 0.19 – 0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [M2Te3] and septuple-layer [M3Te4] slabs (M = mixed occupied by Bi and Mn) with 1:1 sequence (12P stacking) in Mn0.85Bi4.10Te7 and 2:1 sequence (51R stacking) in Mn0.81Bi6.13Te10 were also observed in HRTEM images. Temperature-dependent powder diffraction and differential scanning calorimetry show that the compounds are high temperature phases, which are metastable at ambient temperature. Magnetization measurements are in accordance with a MnII oxidation state and point at predominantly ferromagnetic coupling in both compounds. The thermoelectric figures of merit of n-type conducting Mn0.85Bi4.10Te7 and Mn0.81Bi6.13Te10 reach zT = 0.25 at 375 °C and zT = 0.28 at 325 °C, respectively. Although the compounds are metastable, compact ingots exhibit still up to 80% of the main phases after thermoelectric measurements up to 400 °C.
Layered Manganese Bismuth Tellurides with GeBi₄Te₇ and GeBi₆Te₁₀-type Structures: Towards Multifunctional Materials

Daniel Souchay, a, b, c, d, e Markus Nentwig, a, d, e Daniel Günther, a, Simon Keilholz, a, Johannes de Boor, a Alexander Zeugner, a Anna Isaeva, d Michael Ruck, c Anja U. B. Wolter, b Bernd Büchner, d, e Oliver Oeckler a

a Institute for Mineralogy, Crystallography and Materials Science, Faculty of Chemistry and Mineralogy, Leipzig University, Scharnhorststr. 20, 04275 Leipzig, Germany
b Institute of Materials Research, German Aerospace Center, Linder Höhe, 51170 Cologne, Germany
c Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
d Leibniz-Institute for Solid State and Materials Research, Helmholtzstr. 10, 01069 Dresden, Germany
e Institute of Solid State Physics, Technische Universität Dresden, 01062 Dresden, Germany

Corresponding Author * E-Mail: oliver.oeckler@gmx.de

ABSTRACT: The crystal structures of new layered manganese bismuth tellurides with the compositions Mn₂ₓBi₃Te₇ and Mnₓ(GeBi)₂BrₓTe₂₀ were determined by single-crystal X-ray diffraction, including the use of microfocused synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi₂Te₇ (space group P3m1) and 51R-GeBi₂Te₁₀ (space group R3m) structure types they adopt. Modified compositions Mnₓ₋₀.₆₁ₓ₋₀.₆₂Bi₄₋ₓ₋ₓTe₇₋₀.₂₀₋₀.₂₁ (x = 0.15 – 0.2) and Mnₓ₋₀.₆₁ₓ₋₀.₆₂Bi₄₋ₓ₋ₓTe₁₀₋₀.₂₀₋₀.₂₁ (x = 0.19 – 0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [MₓTe₇₋₋₋_-
Insertion of a second Bi₂Te₃-type layer results in the GeBi₂Te₆₀ structure type, described by a 51R stacking sequence. From another point of view, these structures can be understood as consisting of distorted rocksalt-type slabs similar to those in GeBi₂Te₄ and in Bi₂Te₅, separated by van der Waals gaps.²⁶ Mn doping and its influence on the thermoelectric properties was also reported for the layered compound Ge₄Sb₂Te₇; crystallizing with a Ge₃As₂Te₃-type structure.²⁷ MnBi₂Te₄ has been reported to be the first compound of the series MTe₂(Bi₂Te₃)ₙ, where M is a transition metal represented by manganese.³¹ Single-crystal data of MnBi₂Te₄ revealed Mn/Al antisite disorder; the magnetic properties are strongly anisotropic and antiferromagnetic ordering is observed below 24 K.³²,³³ Investigations on the phase diagram of the system Mn/Bi/Te indicated that there are further layered compounds in that system,³⁴ and estimates concerning their structures were suggested. In heterostructured Bi₅Se₃/MnBi₅Se₈ thin films, which were grown by means of molecular beam epitaxy, MnBi₅Se₈ crystallizes in the same structure type as bulk MnBi₂Te₄.³⁵ We have now synthesized further members of the homologous series (MnTe)(Bi₂Te₃)n, with GeBi₂Te₇-type,²⁷,²⁹ or GeBi₂Te₅₀ type¹⁴ structures. According to single-crystal X-ray data, single-phase syntheses and chemical analyses, their chemical compositions significantly deviate from the idealized formulae. Measurements of transport properties with respect to thermoelectric behavior represent one step towards characterizing these potential multifunctional materials.

2 Experimental

Synthesis: Bulk samples were obtained from the elements Mn (chunks, Onyxmet, 99.9%) Bi (Alfa Aesar, 99.9999%) and Te ingots (Haines & Maassen, 99.9%). Mn was heated under vacuum with small silica glass powder at 1000 °C for 1 day to completely remove brownish MnO₂ from the surface. After this cleaning procedure, Mn was stored under argon to avoid oxidation. Stoichiometric mixtures (approximately 2 g) of the elements according to the various sum formulae mentioned in the following sections were sealed in graphitized flat-bottomed silica glass ampules (inner diameter: 12 mm, wall thickness: 1.5 mm) under argon atmosphere, placed in tube furnaces and heated from RT to 950 °C. The samples were kept at these conditions for 1 d and subsequently cooled to RT by quenching at air. The resulting ingots were then annealed at 575 °C for 1 week, again followed by quenching at air. Disc-shaped ingots used for thermal conductivity measurements were obtained by using flat-bottomed silica-glass ampules. The samples were polished to a plane-parallel thickness of 1.07 mm (Mn₀ₓBi₁₋ₓTe₇) or 1.29 mm (Mn₀ₓBi₁₋ₓTe₁₀), by using SiC grinding powder. Cuboid-shaped samples for measurements of the electrical conductivity and the Seebeck coefficient were fabricated using a diamond wire saw and polished with SiC grinding powder. The samples are dark grey with metallic luster. Upon exposure to air over months, no hydrolysis, oxidation or decomposition were observed, even for powder samples.

Powder diffraction: For powder X-ray diffraction (PXRD) at RT, the samples were crushed and spread on Mylar foil. Data were recorded on a Huber G670 diffractometer (Guinier geometry with imaging-plate detector and integrated read-out system) using Cu-Kα₁ radiation [Ge(111) monochromator, λ = 1.54051 Å]. WINPOW²⁶ was used for data evaluation and TOPAS³⁷ for Rietveld refinements. Reflection profiles were described with fundamental parameters using a direct convolution approach. Crystalite strain was described using a Voigt function, and preferred orientation was refined with spherical harmonics of the 4-th order. The background of each diffraction pattern was modelled by a set of 18 parameters (shifted Chebychev polynomial). Structure models with their equivalent isotropic displacement parameters were taken from the single-crystal data. Temperature-dependent measurements in rotating silica glass capillaries under dry Ar atmosphere were obtained with synchrotron radiation (beamline ID11, ESRF, Grenoble) on a Huber diffractometer (λ = 0.18972 Å) with a FReLoN 2K CCD detector.⁴⁴ A hot-gas blower (GSB 1300, FMB Oxford) with a maximal heating rate of 20 K min⁻¹ was used. For temperature calibration, hexagonal BN was used since its c lattice parameter increases with temperature almost linearly.³⁸ In order to adjust the measured temperatures of the heating and cooling curves according to the calibration, a second-order polynomial fit was used for interpolation.

Single-crystal X-ray diffraction: X-ray diffraction data of a Mn₀ₓBi₁₋ₓTe₇ single-crystal were obtained on a STOE STADIVARI diffractometer (Ag-Kα₁, radiation, λ = 0.56086 Å) with a Dectris Pilatus 300k detector. Integration was done with X-Area³⁹ and numerical absorption correction using X-RED⁴⁰ and X-SHAPE.⁴¹,⁴² Single-crystal diffraction data of Mn₀ₓBi₁₋ₓTe₁₀ were obtained using microfocused synchrotron radiation (beamline ID11, ESRF, Grenoble)⁴³ on a Huber diffractometer (λ = 0.30996 Å) with a FReLoN 2K CCD detector.⁴⁴ Integration was done using CrysAlis Pro⁴⁵ and semiempirical absorption correction was applied with SADABS.⁴⁶ Incomplete absorption in the CCD phosphor as a function of beam incidence was taken into account.⁴⁷ Solution and refinement of both structures was done with SHELX-2014.⁴⁸ Further details on the crystal structure analyses can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de) on quoting the deposition numbers 1891486 (Mn₀ₓBi₁₋ₓTe₇) and 1891488 (Mn₀ₓBi₁₋ₓTe₁₀). Crystal structures were visualized with Diamond.³⁹

Thermal analysis: Mn₀ₓBi₁₋ₓTe₇ and Mn₀ₓBi₁₋ₓTe₁₀ powders were analyzed by means of differential scanning calorimetry (DSC) using a Setaram Labsys ATD-DSC device with k-probe (Ni-Cr/Ni-Al; T_max = 800 °C) thermocouples and Al₂O₃ as a reference compound. Weighted amounts of each specimen (ca. 50 mg) were sealed in small evacuated silica ampules and exposed to two consecutive heating and cooling cycles from RT up to 800 °C at the rate of 2 K min⁻¹.

Electron microscopy: Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were done using a Zeiss Leo 1530 instrument (acceleration voltage 20 kV) equipped with an EDX detector (INCA software; Oxford Instruments). Selected-area electron diffraction (SAED), high-
resolution transmission electron microscopy (HRTEM) and further EDX were executed on a Philips CM-200 STEM (LaB₆ cathode, 200 kV, super-twin lens, point resolution 0.23 nm) equipped with RTEM 136-5 EDX detector (EDAX, Genesis software). A double-tilt low-background sample holder (Gatan) was used. For TEM investigations, the bulk material was manually cut with a diamond saw, glued on a copper ring, mechanically ground to a thickness of approximately 30 μm, polished using a dimple grinder (Gatan) and finally Ar-ion-thinned (Duo-Mill, Gatan). Evaluation of SAED data was done using the AnalySIS software. For HRTEM and SAED simulations, jEMS was used. Micrographs and diffraction patterns were evaluated using Digital Micrograph.

Thermoelectric characterization: Thermal diffusivity (κ) was measured under He atmosphere using a Linseis LFA1000 apparatus equipped with an InSb detector (aperture diameter 3 mm). Simultaneous heat loss and finite pulse corrections were applied using Dusza’s model. Values were averaged from five measurement points at each temperature. For κ calculation, they were multiplied with the Dulong-Petit heat capacity (\(\left(M_{\text{Bi}_2\text{Te}_3} \right) \times C_p = 0.1659 \text{ J g}^{-1} \text{ K}^{-1}; M_{\text{Bi}_2\text{Te}_3} \times C_p = 0.1624 \text{ J g}^{-1} \text{ K}^{-1} \)) and the density as derived by the weight and the volume determined by Archimedes’ principle with a precision of 0.03 g cm\(^{-3}\) (\(M_{\text{Bi}_2\text{Te}_3} \times C_p = 7.53 \text{ g cm}^{-3}; M_{\text{Bi}_2\text{Te}_3} = 7.65 \text{ g cm}^{-3}\)). Densities were at least 98.5% of the corresponding X-ray densities. DSC measurements (cf. Fig. S1 – S denotes items in the Electronic Supplementary Information, ESI†) confirm that \(C_p \) corresponds to the Dulong-Petit value within experimental error although DSC measurements of \(\text{Bi}_2\text{Te}_3 \) indicate that \(C_p \) near RT is still below the Dulong-Petit value. However, other related compounds such as \((\text{Sn}_{1-x}\text{Pb})_2\text{Te}_3\) or GeBi\(_4\)Te\(_2\) reach this value near RT. The Seebeck coefficient \(S \) (in μV K\(^{-1}\)) and the electrical conductivity \(\sigma \) (in S cm\(^{-1}\)) were measured on cuboid samples \((M_{\text{Bi}_2\text{Te}_3} = 8.13 \text{ mm} \times 1.25 \text{ mm} \times 1.76 \text{ mm}, M_{\text{Bi}_2\text{Te}_3} = 6.92 \text{ mm} \times 1.09 \text{ mm} \times 1.91 \text{ mm})\) simultaneously under He atmosphere using a Linseis LSR-3 instrument with NiCr/Ni and Ni contacts and a continuous reversal of the polarity of the thermocouples (bipolar setup). Measurements comprised three heating/cooling cycles 50–400–50 °C with 25 °C steps at 10 K min\(^{-1}\) heating rate and three data points per temperature. The errors of \(S \) and \(\sigma \) are smaller than 10%; for \(\kappa \), they are ca. 5%. The combined uncertainty may amount to ~15% for the \(S \) and \(\sigma \) values.

Magnetic measurements: Temperature- and field-dependent magnetic measurements were performed on pressed powder samples (ca. 10 mg) using a Superconducting Quantum Interference Device (SQUID) magnetometer (MPMS®3) from Quantum Design. Temperature-dependent zero-field-cooled (ZFC) and field-cooled (FC) warming magnetization measurements were performed at magnetic fields of 0.02 T and 1 T in the temperature range from 2–320 K and field-dependent magnetization measurements were done at 2 K and at 300 K.

3 Results and discussion

3.1 Phase composition and homogeneity

Compounds with nominal compositions \(\text{MnTe(Bi}_2\text{Te}_3)_x \), with \(n = 2 \) or 3 may be expected to crystallize in the GeBi\(_4\)Te\(_7\) [27,29] or GeBi\(_4\)Te\(_{4.10}\) [24] structure types. Corresponding reactions, however, did not lead to single-phase samples. Samples with the nominal composition \(\text{MnBi}_2\text{Te}_7 \) contain two phases, i.e. a mixture of GeSn\(_2\)Te\(_4\)-type and GeBi\(_4\)Te\(_7\)-type compounds (Fig. S2, ESI†). The nominal composition \(\text{MnBi}_2\text{Te}_{4.10} \) yields a mixture GeBi\(_4\)Te\(_7\)-type and GeBi\(_4\)Te\(_{4.10}\)-type phases (Fig. S3, ESI†). In contrast, nominal compositions such as \(M_{\text{Bi}_2\text{Te}_3} = 7 \) (derived from single-crystal data, cf. section 3.3) and \(M_{\text{Bi}_2\text{Te}_3} = 7 \) (which was suggested by preliminary single-crystal data) lead to samples that appear to be single-phase according to Rietveld refinements based on PXRD data (Fig. 1 and Tables S1, S2, and S3 in the ESI†). In both cases, the refined parameters of the single-crystal structure analyses were used for the Rietveld refinement and only lattice parameters were refined. For GeBi\(_4\)Te\(_7\)-type samples, they agreed with those of the single-crystal. For \(M_{\text{Bi}_2\text{Te}_3} = 7 \), lattice parameters from PXRD differ slightly from those of the single crystal but correspond to those of the GeBi\(_4\)Te\(_7\)-type phase in heterogeneous samples with the nominal composition \(M_{\text{Bi}_2\text{Te}_3} = 7 \), from which the single crystal was isolated (Table S4, ESI†). The deviations from the stoichiometric compositions GeBi\(_4\)Te\(_7\) and GeBi\(_4\)Te\(_{4.10}\) are consistent with the EDX data obtained from \(M_{\text{Bi}_2\text{Te}_3} = 7 \) and \(M_{\text{Bi}_2\text{Te}_3} = 7 \) bulk samples (Table S5, ESI†). The measured Mn concentrations match the nominal compositions significantly better than those expected for stoichiometric MnBi\(_4\)Te\(_7\) and MnBi\(_4\)Te\(_{4.10}\). Very small amounts of a manganese telluride side phase were detected in the bulk sample \(M_{\text{Bi}_2\text{Te}_3} = 7 \) by SEM-EDX; in \(M_{\text{Bi}_2\text{Te}_3} = 0 \), however, appeared to be phase-pure (Fig. S4, ESI†). Note that nominal compositions \(M_{\text{Bi}_2\text{Te}_3} = 0 \) and \(M_{\text{Bi}_2\text{Te}_3} = 0 \) derived from refinements not assuming charge neutrality (section 3.3) but full occupation of all Wyckoff positions yield no single phases according to Rietveld refinements, at least not with the synthesis route described above (Fig. S5, ESI†).

The composition has been varied in order to check whether the compounds form solid solutions. Charge neutrality assuming Mn\(^{1+}\), Bi\(^{3+}\), Te\(^{4+}\) and cation vacancies was taken into account as these compounds exhibit small bandgaps (section 3.6). The composition can be varied in the range of \(x = 0.40 \)– 0.26 for \(M_{\text{Bi}_2\text{Te}_3} = 0 \) and in the range of \(x = 0.19 \)– 0.26 for \(M_{\text{Bi}_2\text{Te}_3} = 0 \). The homogeneity of the corresponding bulk samples has been confirmed by Rietveld refinements and EDX measurements (see Fig. S6, and Table S6, ESI†). Lattice parameters do not change significantly (Tables S4, and S7, ESI†). This might be due to vacancies compensating the effect of different atom radii.
3.2 Stability of manganese bismuth tellurides with GeBi$_4$Te$_7$ or GeBi$_6$Te$_{10}$ structure type as a function of particle size

Annealing at 585 °C and subsequent quenching affords phase-pure samples of Mn$_{0.85}$Bi$_{4.10}$Te$_7$ with GeBi$_4$Te$_7$-type structure and Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ with GeBi$_6$Te$_{10}$-type structure according to PXRD patterns. Temperature-programmed PXRD data show no changes except thermal expansion up to ca. 210 °C (Fig. 2). At this temperature, both compounds start decomposing into phases with Bi$_2$Te$_3$ structure type and a Mn-rich phase as visible in samples after thermoelectric measurements (section 3.6, Fig. S7, ESI†). The decomposition of fine powdered samples is complete at 270 °C for Mn$_{0.85}$Bi$_{4.10}$Te$_7$ and at 295 °C for Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$. Fig. 2 shows the disappearance of characteristic low-angle reflections of the long-periodic structures and the emergence of typical reflections of the Bi$_2$Te$_3$ structure type upon decomposition (Fig S8, ESI†). Temperature-programmed PXRD data of MnBi$_2$Te$_4$ show similar decomposition. Reference 34 does not report this decomposition as temperature-dependent PXRD was not used but is crucial to detect the metastability. In addition, the decomposition of bulk samples is much slower as discussed later in this chapter. As this decomposition extends over a wide temperature range, it cannot be detected in DSC measurements (Fig. 3 and Fig. 4), which has been discussed in detail for MnBi$_2$Te$_4$. However, there are characteristic DSC signals for other effects, whose tentative assignment is listed for Mn$_{0.85}$Bi$_{4.10}$Te$_7$ in Table S8 and Fig. S9 (ESI†) and for Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ in Table S9 and Fig. S10 (ESI†). Upon heating of Mn$_{0.85}$Bi$_{4.10}$Te$_7$, two endothermic signals are observed (Fig. 3). We attribute the first signal to the melting of Bi$_2$Te$_3$ (a shoulder on the low-temperature side of the first signal) and of Mn$_{0.85}$Bi$_{4.10}$Te$_7$ since the starting material was partially decomposed (Fig. S11, ESI†). It is followed by the melting of another compound, possibly MnBi$_3$Te$_4$, whose slow exothermic formation is unlikely to be detected. The first cooling curve shows three exothermic signals, which can be assigned to the solidification of Bi$_2$Te$_3$, Mn$_{0.85}$Bi$_{4.10}$Te$_7$, and MnBi$_2$Te$_{4}$, respectively, as tentatively confirmed by PXRD (Fig. S12, ESI†). The second heating cycle is similar.
The DSC curve upon heating of Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ shows four endothermic signals (Fig. 4). The first one might indicate small amounts of a Bi-rich bismuth telluride, which could form next to MnTe$_2$ by redox decomposition (compare Fig. S13, ESI†). In analogy with the above interpretation for the Mn$_{0.85}$Bi$_{4.10}$Te$_7$ sample, the following signals probably correspond to the almost simultaneous melting of Bi$_3$Te$_3$ and Mn$_{0.85}$Bi$_{6.13}$Te$_{10}$, then of Mn$_{0.85}$Bi$_{4.10}$Te$_2$, and of MnBi$_3$Te$_4$. The cooling curve hosts a broad unstructured signal that may indicate glassy behavior or partial crystallization of disordered compounds (Fig. 4). We speculate that just above the melting point of Bi$_3$Te$_3$, the Mn-containing ternaries undergo a series of stepwise structure transformations. The DSC experiment was probably too fast to resolve these transitions. PXRD after the DSC measurement indicates a Bi$_3$Te$_3$-type structure mixed with GeBi$_2$Te$_2$- and GeBi$_3$Te$_{10}$- and possibly GeBi$_3$Te$_4$-type structures (Fig. S14, ESI†). The second DSC heating cycle is similar but shows fewer signals during heating (Table S9 and Fig. S10, ESI†).

Due to these complex phase relationships, manganese bismuth tellurides with GeBi$_2$Te$_2$-type or GeBi$_3$Te$_{10}$-type structure cannot be obtained by quenching or slowly cooling the melt. Annealing in the existence range of the compounds is essential. As they constitute high-temperature phases that decompose at lower temperatures, quenching after the annealing step is beneficial.

However, ex situ SEM images and EDX measurements after three heating cycles up to 400 °C, which were performed for thermoelectric characterization (section 3.6), show that the decomposition is much slower in compact ingots; the samples still consist mainly of the initial phase (Fig. S15 and Table S10, ESI†). Corresponding Rietveld refinements reveal ca. 80% of the main phase along with possibly Mn-doped Bi$_2$Te$_3$ \(^{59}\) (space group \(R\bar{3}m\)) and MnTe$_2$ \(^{60}\) with pyrite-type structure (space group \(Pa\bar{3}\)) (Fig. S7, ESI†). Thus, the metastability with respect to decomposition is best shown using very fine powders.

As mentioned above, this metastability was also observed for MnBi$_3$Te$_4$, where the decomposition products should be non-stoichiometric Bi-rich bismuth tellurides \(^{61-63}\) “Bi$_2$Te$_{3-x}$” and MnTe$_{2-y}$ \(^{31,32}\). According to temperature-programmed PXRD, GeBi$_2$Te$_2$- and GeBi$_3$Te$_{10}$-type compounds are not formed from decomposed samples during cooling (Fig. S16 and S17, ESI†). This could mean that the reaction is too slow at 500 °C and below, or that the decomposition products are spatially segregated, resulting in strongly inhibited solid-state reactivity. A possible reason for the increased stability of the bulk material compared to the finely ground samples could be that the metastable compounds decompose faster after many defects were brought into the crystal structure by crushing and that stresses in compact samples may hinder decomposition. In order to exclude alternative explanations such as reactions with the silica-glass capillary or impurities, crushed samples of Mn$_{0.85}$Bi$_{6.13}$Te$_{10}$ and Mn$_{0.85}$Bi$_{4.15}$Te$_7$ were annealed in silica-glass ampules at 300 °C for 1 day, so that most of the single phases decomposed to a Bi-rich Bi$_3$Te$_3$-like phase and MnTe$_2$ (pyrite type, \(P\bar{3}m\)) (Fig. S18, ESI†). After this treatment, the samples were used as starting material for our synthesis route, i.e. they were melted again, followed by annealing and quenching. This again leads to phase-pure samples according to PXRD (Fig. S19, ESI†).

Fig. 3 DSC of Mn$_{0.85}$Bi$_{4.10}$Te$_7$: first heating (top) and cooling (bottom) curves.

Fig. 4 DSC of Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$: first heating (top) and cooling (bottom) curves.
3.3 Crystal structures of $\text{Mn}_{0.853}\text{Bi}_{4.10(2)}\text{Te}_7$ and $\text{Mn}_{0.730}\text{Bi}_{6.18(2)}\text{Te}_{10}$

The crystal structures of representative crystals of manganese bismuth tellurides with GeBi$_4$Te$_7$-type and GeBi$_6$Te$_{10}$-type structures were elucidated from X-ray diffraction data. In the structure refinements, charge neutrality was used as a constraint assuming oxidation states of II for Mn and III for Bi. The presence of MnII is also in accordance with the magnetization measurements, i.e., the effective moment μ_{eff} is in agreement with the value expected for MnII for both compounds (cf. section 3.5). Furthermore, other oxidation states seem unlikely as the oxidation potential of Te is not expected to enable higher oxidation states of the cations. Lower oxidation states of Bi are typically characterized by homoatomic bonds. In the related compound MnBi_2Te_4, the exclusive presence of MnII was shown by X-ray absorption spectroscopy and confirmed by magnetic susceptibility measurements. Mixed occupancies of Mn and Bi on all cation sites were refined as indicated by the scattering density present and the resulting R-values. Cation vacancies were assumed to be located only on the Wyckoff positions 1b for $\text{Mn}_{0.85}\text{Bi}_{4.10}\text{Te}_7$ and 3a for $\text{Mn}_{0.73}\text{Bi}_{6.18}\text{Te}_{10}$, which represent the center of the GeBi$_2$Te$_4$-type building blocks, since vacancies close to the van der Waals gaps are very unfavorable due to a resulting very low coordination number 2 for Te atoms at the van der Waals gap.

![Crystal structures of representative crystals of manganese bismuth tellurides](image)

Fig. 5 Crystal structures of a) $\text{Mn}_{1.18}\text{Bi}_{1.13}\text{Te}_9$ with GeBi$_2$Te$_7$-type structure; b) $\text{Mn}_{0.8}\text{Bi}_{2.1}\text{Te}_9$ with GeBi$_4$Te$_7$-type structure; c) $\text{Mn}_{0.6}\text{Bi}_{2.1}\text{Te}_4$ with GeBi$_2$Te$_4$-type structure; d) Bi_2Te_3 -- for cation distribution, including mixed sites, cf. Tables 2 and 4 (M1 is the Mn-rich site).
Mn0.81Bi4.10(2)Te7

Crystallographic data and details of the structure refinement for a crystal with the refined composition Mn0.81Bi4.10(2)Te7 isolated from a heterogeneous sample with the nominal composition MnBi2Te6.18 are listed in Table 1, atomic positions and displacement parameters are given in Table 2. In contrast to Mn/Bi intermixing on the cation sites, the vacancy concentration of 5.1(17) % on the 1b site seems not very significant; the assumption of an idealized composition MnBi4Te7 results in almost the same residuals (R1 = 0.0332 for I > 2σ(I)). However, such an idealized composition yields no single-phase samples (cf. section 3.1). The EDX analysis of the investigated crystal (Fig. S20, ESI†) yields the composition Mn0.81Bi3.96Te5.8(3)/3, which confirms a deficiency of Mn in good agreement with the nominal composition of Mn0.85Bi4.20Te7 = Mn7/8Bi34.3Te58.6 (Table S11, ESI†).

A refinement without assuming charge neutrality but full site occupancies (i.e., no vacancies) also results in similar R-values and a composition Mn0.85Bi4.08Te7; however, corresponding reactions also yield no single-phase products (cf. section 3.1). Mn0.85Bi4.20Te7 crystallizes in the space group P3m1 and can be described by a 12P stacking sequence with two different building blocks (Fig. 5b): double layers of edge-sharing [Bi2Te3/2/Te3/2] octahedra similar to those in Bi2Te3 24 (Fig. 5d) and GeBi2Te4-type (Fig. 5c) septuple layers of condensed octahedra described by 7/6[Te3/2/μ−M(μ−Te3/2)/M]6/3MTe3/2. The atomic interaction within each layer is much stronger than the interlayer van-der-Waals-like bonding. Similar lattice parameters were reported for Mn-doped BiTe (space group P3m1; a = 4.3783(1) Å, c = 23.8107(8) Å), whose BiTe-type structure consists of Bi2Te3-like layers separated by double layers of Bi atoms resembling those in elemental Bi. However, such a structure model cannot reproduce our diffraction data.

Mn0.71Bi4.18(2)Te6.18

Crystallographic data and details of the structure refinement for a crystal with the refined composition Mn0.71Bi4.18(2)Te6.18 isolated from a heterogeneous sample with the nominal composition MnBi2Te6.18 are given in Table 1; atomic positions and displacement parameters are listed in Table 3. Based on the above mentioned constraints, the refinement yields a significant vacancy concentration of 9(2) % on the site 1b. Constraining to the stoichiometric composition MnBi2Te6.18 leads to higher residuals (R1 = 0.0315 for I > 2σ(I)) and such an idealized composition does not lead to single-phase samples (cf. section 3.1). Assuming full occupancies without constraining to charge neutrality yields a composition of Mn0.85Bi3.95Te6.18, again not suitable for the synthesis of single-phase samples. The EDX analysis of the crystal used for data collection (Fig. S21 and Table S12, ESI†) confirms a Mn Mn0.72Bi4.18Te6.18 obtained in the structure refinement. In space group P3m3, the asymmetric unit consists of distorted NaCl-type septuple building blocks similar to those in GeBi2Te7, which are separated by two Bi2Te3-like layers, resulting in a deficiency and is in good agreement with the composition 51R stacking sequence (Fig. 5a). Again, Mn/Bi intermixing, especially on the 3α, is a characteristic feature of this structure.

Table 1 Crystallographic data for the single-crystal structure determination of Mn0.81Bi4.10(2)Te7 with GeBi2Te4-type structure and Mn0.71Bi4.18(2)Te6.18 with GeBi2Te4-type structure.

Chemical formula	Mn0.81Bi4.10(2)Te7	Mn0.71Bi4.18(2)Te6.18
M (in g mol⁻¹)	1796.72	2608.1
θ(000)	726	3154
Crystal system / space group	trigonal / P3m1	trigonal / P3m3
Lattice	(no. 164)	(no. 166)
Parameters (in Å)	α= 4.3591(3)	α= 4.3698(3)
	c = 23.769(2)	c = 101.829(8)
V (in Å³)	391.41(6)	1683.9(3)
Z	1	3
P (in g cm⁻³)	7.63	7.72
μ (in mm⁻¹)	32.6	13.45
Absorption correction	numerical	semiempirical
Radiation	Ag-Kα	synchrotron
λ	0.56086 Å	0.30996 Å
Independent reflections	594	723
Dmax (in Å)	0.68	0.72
Refined parameter / restraints	27 / 3	36 / 4
Extinction coefficient	2.03 / 24.30	1.83 / 12.43
Rmin / Rmax (in %)	0.0045(3)	0.0054 / 0.0706
R indices	R1 = 0.0331	R1 = 0.0303
(I<2σ(I))	wr2 = 0.0874	wr2 = 0.0703
R indices	R1 = 0.0357	R1 = 0.0312
All data	wr2 = 0.0895	wr2 = 0.0712
Goodness of fit (all)	1.08	1.20
ρFO / ρm (in e Å⁻³)	1.52 / 1.53	3.19 / 2.10
Comparison of selected interatomic distances with Bi$_3$Te$_4$ and Mn$_{0.85}$Bi$_{1.2}$Te$_4$.\(^\dagger\)

Selected interatomic distances are listed in Table S13 (ESI†). Bond lengths in the Bi$_3$Te$_4$-like quintuple layers in Mn$_{0.85}$Bi$_{1.2}$Te$_4$, i.e. d(M3–Te) = 3.0543(7) Å and d(M3–Te4) = 3.2410(4) Å (labelling cf. Fig. 5), deviate by only 0.4% from interatomic distances in Bi$_3$Te$_4$.\(^\ddagger\) itself d(Bi–Te2) = 3.067 Å, d(Bi–Te1) = 3.254 Å; they are slightly shorter by ~0.01 Å as the cation position contains 3% – 4% of Mn$^{4+}$, whose radius (0.81 Å for CN 6), which is smaller than that of Bi$^{3+}$ (1.17 Å for CN 6).\(^3\)

The quintuple layers in Mn$_{0.76}$Bi$_{1.82}$Te$_{20}$, d(M3–Bi3) = 3.0628(5) Å, d(M3–Te4) = 3.2395(5) Å, d(M4–Te5) = 3.0594(5) Å exhibit the same tendency and deviate only up to 0.4% from the interatomic distances in Bi$_3$Te$_4$. All cation-anion bond lengths in the septuple slab of Mn$_{0.85}$Bi$_{1.6}$Te$_7$ [d(M2–Te2) = 3.0436(7) Å, d(M2–Te1) = 3.2987(9) Å, d(M1–Te1) = 2.9909(7) Å] and Mn$_{0.73}$Bi$_{1.26}$Te$_{10}$ [d(M2–Te2) = 3.0473(5) Å, d(M2–Te1) = 3.3055(6) Å, d(M1–Te1) = 2.9969(4) Å] host both mismatches are thus slightly longer than the corresponding bond lengths in Mn$_{0.85}$Bi$_{3}$Te$_4$, d(M1–Te2) = 3.027(1) Å, d(M1–Te1) = 3.291(1) Å, d(M2–Te1) = 2.977(1) Å.\(^4\) On the other hand, the distances across the van der Waals gaps between the quintuple and the septuple slab in Mn$_{0.85}$Bi$_{4.10}$Te$_{17}$ [d(Te2–Te3) = 3.6559(7) Å and Mn$_{0.73}$Bi$_{1.18}$Te$_{10}$, d(Te2–Te3) = 3.6516(5) Å] decrease slightly with higher bismuth concentration.

3.4 TEM investigations

Structured diffuse scattering was not detected in single-crystal X-ray diffraction patterns of the manganese bismuth tellurides with GeBi$_4$Te$_7$ or GeBi$_6$Te$_{10}$ structure type (Fig. S22), thus stacking disorder is not pronounced in these compounds. In order to further analyze possible stacking faults or superstructures along [001], selected area electron diffraction patterns (SAED) were recorded. Fig. 6 and Fig. 7 show experimental diffraction patterns and simulated ones based on the results of the crystal structure analyses (section 3.3). The absence of diffuse streaks along [001]* indicates that there is no significant amount of stacking faults. Indexing of the patterns corresponds to the lattice symmetry and unit cell parameters found in the X-ray diffraction experiments. In order to visualize the long-range ordered stacking of the different slabs, HRTEM images were acquired (Fig. 8 and Fig. S23 and S24, ESI†). The structural entities of quintuple slabs as in Bi$_3$Te$_4$ and septuple slabs as in MnBi$_3$Te$_4$ can be clearly identified. Simulated HRTEM images based on the results of the crystal structure analyses fit the experimental ones quite well and thus confirm the structure models (Fig. 8 and Fig. 9).

Note that single vacancies have very little influence on the contrasts of atom columns that consist of several atoms and can thus not be detected in such images.

Table 2 Wyckoff positions, atomic coordinates, site occupancies and coefficients of the anisotropic as well as equivalent isotropic displacement parameters (in Å2) of Mn$_{0.85}$Bi$_{1.2}$Te$_4$ ($U_{eq} = 1/3[U_{11} + U_{22} + U_{33}]$).

Atom	W. p.	x	y	z	occ.
Mn1/	1b	0	0	1/2	0.694(11)/
Bi1/					0.255(6)/
					0.051(17)/
Mn2/	2d	1/3	2/3	0.3423	0.0414(4)/
Bi2/				0.959(3)	
Mn3/	2d	1/3	2/3	0.0860	0.035(3)/
Bi3/				0.965(3)	
Te1/	2d	1/3	2/3	0.5680	1
Te2/	2c	0	0	0.2703	1
Te3/	2d	1/3	2/3	0.8413	1
Te4/	1a	0	0	0	1

Table 3 Wyckoff positions, atomic coordinates, site occupancies and coefficients of the anisotropic as well as equivalent isotropic displacement parameters (in Å2) for Mn$_{1.3}$Bi$_{1.2}$Te$_4$ ($U_{eq} = 1/3[U_{11} + U_{22} + U_{33}]$).

Atom	W. p.	x	y	z	occ.
Mn1/	3a	0	0	0	0.634(16)/
Bi1/					0.275(6)/
					0.09(2)/
Mn2/	6c	0	0	0.29647(2)	0.017(4)/
Bi2/				0.983(3)	
Mn3/	6c	0	0	0.23671(2)	0.015(4)/
Bi3/				0.985(3)	
Mn4/	6c	0	0	0.47010(2)	0.014(4)/
Bi4/				0.986(3)	
Te1/	6c	0	0	0.34922(2)	1
Te2/	6c	0	0	0.05365(2)	1
Te3/	6c	0	0	0.41290(2)	1
Te4/	6c	0	0	0.11658(2)	1
Te5/	6c	0	0	0.17957(2)	1

Note that single vacancies have very little influence on the contrasts of atom columns that consist of several atoms and can thus not be detected in such images.
Fig. 6 SAED patterns of a manganese bismuth telluride (from a sample with the nominal composition MnBi₆Te₁₀) with the GeBi₄Te₇-type structure and corresponding simulated patterns (kinematical approximation based on the model for Mn₅Bi₄Te₇ from the single-crystal structure analysis) with experimental and calculated tilt angles.

Fig. 7 SAED patterns of a manganese bismuth telluride (from a sample with the nominal composition Mn₀.₇₇Bi₆.₁₅Te₁₀) with the GeBi₆Te₁₀-type structure and corresponding simulated diffraction patterns (kinematical approximation, based on the model for Mn₅.₇₃Bi₄.₄₈Te₇ from the single crystal structure analysis) with experimental and calculated tilt angles.
Fig. 8 HRTEM images (zone axis [100], Fourier filtered) of manganese bismuth tellurides with the GeBi$_4$Te$_7$ (bottom) and GeBi$_6$Te$_{10}$ (top) structure types, each with a corresponding SAED pattern; inset: simulation based on the single-crystal data of Mn$_{0.85}$Bi$_{4.10}$Te$_7$ ($\Delta f = -85$ nm, $t = 8.36$ nm; beam semiconvergence 1.2 mrad, defocus spread 15 nm) and Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$ ($\Delta f = -67$ nm, $t = 0.88$ nm; beam semiconvergence 1.2 mrad, defocus spread 15 nm); white bars symbolize quintuple Bi$_2$Te$_3$-like slab and black lines symbolize septuple layers characteristic of MnBi$_2$Te$_6$.

Fig. 9 HRTEM defocus series (zone axis [100], Fourier filtered) from a manganese bismuth telluride with the GeBi$_6$Te$_{10}$-type structure, insets: GeBi$_6$Te$_{10}$-type structure (green = Te; yellow = Bi-rich; red = Mn-rich: for the exact cation distribution, including mixed sites cf. Tables 2 and 4) and simulated images based on the single-crystal data of Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$, $t = 0.88$ nm; beam semiconvergence 1.2 mrad, defocus spread 15 nm), defocus values Δf are given in the images.
3.5 Magnetic properties

Temperature- and field-dependent magnetization was measured on pellets from single-phase powders with the compositions $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ and $\text{Mn}_{0.88}\text{Bi}_{13}\text{Te}_{10}$. In low magnetic fields of $\mu_0H = 0.02$ T, both compounds demonstrate a temperature-driven phase transition from the paramagnetic into magnetically ordered phases. For $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$, an antiferromagnetic transition can clearly be discerned at $T_N = 13$ K in low fields (see peak in the inset of Fig. 10a at 13 K), which is followed by a subsequent rearrangement of the microscopic spin alignment at lower temperatures, as indicated by an upturn of the magnetization curve. Given the ferromagnetic hysteresis at $T = 2$ K in Fig. 11a, a predominantly ferromagnetic alignment with a large ferromagnetic component of the spins can be envisaged at lowest temperatures. The microscopic spin arrangement and the origin of these two transitions for $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ should, however, be elucidated in more detail in the future using single crystals. In comparison, for $\text{Mn}_{0.81}\text{Bi}_{13}\text{Te}_{10}$ a very strong upturn of the magnetization below $T_C = 12$ K together with the splitting of the zero-field-cooled and field-cooled magnetization data indicate a transition into a ferromagnetic phase in this compound.

![Fig. 10 Magnetization M/H and reciprocal susceptibility of (a) $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ and (b) $\text{Mn}_{0.81}\text{Bi}_{13}\text{Te}_{10}$ as a function of temperature measured at various applied magnetic fields. The extrapolated line on the right axis is a Curie–Weiss fit to the high-temperature data indicating a value θ_C of 14(2) and 17(2) K for $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ and $\text{Mn}_{0.81}\text{Bi}_{13}\text{Te}_{10}$, respectively. A small offset $\theta_C \approx -0.0007(3)$ emu mol$^{-1}$ Oe$^{-1}$ was added to the data to account for the contribution of closed diamagnetic electronic shells.](image1)

The effective paramagnetic moment per formula unit can be estimated from the Curie-Weiss fit of the high-temperature data (Fig. 10) and constitutes 5.7(1) μ_B for $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ and 5.8(1) μ_B for $\text{Mn}_{0.81}\text{Bi}_{13}\text{Te}_{10}$, consistent with the high-spin d^9 configuration of Mn$^{2+}$ ($S = 5/2$). Positive values of $\theta_C = 14(2)$ and 17(2) K for $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ and $\text{Mn}_{0.88}\text{Bi}_{13}\text{Te}_{10}$, respectively, indicate predominantly ferromagnetic coupling. Magnetization curves as function of the magnetic field (Fig. 11) confirm dominating ferromagnetic interactions in both compounds with pronounced magnetic hysteresis at $T = 2$ K up to about $\mu_0H = 0.2$ T and an almost saturated magnetization close to the expected value for Mn(II) for fields above ~2 T. The remanent magnetization and the coercive field are slightly larger for $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ ($\mu_0H_c = 0.08$ T).

![Fig. 11 Magnetic hysteresis curves of (a) $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ and (b) $\text{Mn}_{0.88}\text{Bi}_{13}\text{Te}_{10}$ at 300 and 2 K. The samples were cooled in zero field from 320 K.](image2)

3.6 Thermoelectric properties

Thermoelectric measurements (Fig. 12) were conducted on parts of compact ingots between RT and 400 °C in three consecutive cycles. The temperature evolution of the electrical conductivity σ indicates metallic behavior above RT. Whereas $\text{MnBi}_{10}\text{Te}_7$ has been reported to be a p-type conductor with rather low σ (39 S cm$^{-1}$ at RT),31 other investigations on comparable materials indicate n-type conduction, concluding from a negative Seebeck coefficient S and a much higher σ (450 S cm$^{-1}$ at RT).32 Similarly, $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ and $\text{Mn}_{0.88}\text{Bi}_{13}\text{Te}_{10}$ exhibit negative S and thus are n-type conductors. Despite the shallow minimum in the thermal evolution of S, the bandgap was roughly estimated using the Goldsmid-Sharp relationship,68 $E_g \approx 2eS_{\text{max}}T_{\text{max}}$ with the maximum absolute Seebeck coefficient S_{max} and the corresponding temperature T_{max}. This yields narrow bandgaps of $E_g \approx 0.14$ eV for both $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ and $\text{Mn}_{0.88}\text{Bi}_{13}\text{Te}_{10}$. This bandgap corresponds with the high electrical conductivity and with the E_g of other compounds with layered GeBi$_2$Te$_2$- or GeBi$_2$Te$_2$-type structures (Table 4).

Thermal conductivities are rather low and almost constant up to 400 °C with 1.47 W m$^{-1}$ K$^{-1}$ for $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ and 1.63 W m$^{-1}$ K$^{-1}$ for $\text{Mn}_{0.88}\text{Bi}_{13}\text{Te}_{10}$. However, the small value of S limits the maximum αT values up to 0.25 at 375 °C and 0.28 at 325 °C for $\text{Mn}_{0.88}\text{Bi}_{10}\text{Te}_7$ and $\text{Mn}_{0.88}\text{Bi}_{13}\text{Te}_{10}$, respectively. The αT values decrease slightly from cycle to cycle, which could be attributed to the metastability of the manganese bismuth.
tellurides. The ex situ PXRD measurements performed after the thermoelectric measurements (Fig. S7, ESI†) show that still up to 80% of the main phase is present in both compounds. SEM investigations (Fig. S15 and Table S10, ESI†) confirm that the samples slowly decompose over several measurement cycles (cf. sections 3.1 and 3.2).

The measured \(zT \) values of \(\text{Mn}_0.85\text{Bi}_{4.10}\text{Te}_7 \) and \(\text{Mn}_0.81\text{Bi}_{6.13}\text{Te}_{10} \) indicate that in both compounds the carrier concentrations are higher than optimal as the measured \(zT \) values are on the high-\(\eta \) side of the maximal \(zT(\eta) \) (note that the carrier concentration is a monotonically increasing function of \(\eta \)). With ideal carrier concentration (i.e. optimal \(\eta \)) the maximum of \(zT \) for manganese bismuth tellurides with GeBi\text{Te}_{10}-type structure could increase up to 0.35 at 300 °C and up to 0.47 at 300 °C for the GeBi\text{Te}_{10}-type structure.

The quality factor \(B \) (eq. 1), the figure of merit \(zT = S^2\sigma T/\kappa \) (eq. 2) and the phononic part of the thermal conductivity \(\kappa_{ph} \) were calculated as a function of the electrons’ chemical potential \(\eta \) from the measured transport properties \(\sigma \), \(S \) and \(\kappa \) of the first cycle of the thermoelectric measurement (Fig. 12), which is only very little affected by the decomposition. An effective mass model was used to calculate the optimal carrier concentration \(zT_{opt} \). Details of the calculations are described at the end of the ESI† and can also be found in several references.\(^{69-75} \) This approach allows one to calculate the intrinsic electrical conductivity \(\sigma_0 \) and \(\kappa_{ph} \) and therefore also the material quality factor \(B \) (eq. 1). These intrinsic properties are independent of doping and thus can be separated from doping and its optimization. The optimal \(zT \) values for different temperatures and therefore different \(B \) factors are shown in Fig. 13.

\[
B = \left(\frac{k_B}{e} \right)^2 \frac{\sigma_0}{\kappa_{ph}} T \quad \text{(eq. 1)}
\]

\[
zT(\eta) = \frac{S^2(\eta)}{B ln(1+e^\eta)} + L(\eta) \quad \text{(eq. 2)}
\]

The crystal-structure determinations of two new compounds in the manganese–bismuth–telluride system reveal unexpected combinations of chemical composition and structure type. Diffraction data of \(\text{Mn}_0.85\text{Bi}_{4.10}\text{Te}_7 \) and...
Mn$_{0.73}$Bi$_{0.28}$Te$_{10}$ indicate that the compounds are isostructural to GeBi$_3$Te$_7$ and GeBi$_2$Te$_{10}$ respectively. This is confirmed by a combination of X-ray diffraction, including the application of microfocused synchrotron radiation (for Mn$_{0.73}$Bi$_{0.28}$Te$_{10}$), of TEM imaging and of EDX spectroscopy. According to the magnetization measurements, the oxidation state of Mn$^2+$ is established. This corresponds to the situation in MnBi$_2$Te$_4$. The structures contain significant amounts of cation vacancies. Intermixing of Mn and Bi on the cation sites is very pronounced and highly significant. Other layered chalcogenides of the GeBi$_3$Te$_7$ GeBi$_2$Te$_7$ and GeBi$_2$Te$_{10}$ structure types also exhibit very characteristic mixed cation occupancies. This phenomenon is also typical and, in principle, to be expected for manganese bismuth tellurides in these structure types. The non-stoichiometry of Mn$_{1+\delta/2}$Bi$_{1-x/2}$Te$_7$ ($\delta = 0.15 - 0.2$) (space group P3m1 with GeBi$_3$Te$_7$-type structure) and Mn$_{1+\delta/2}$Bi$_{1-x/2}$Te$_{10}$ ($\delta = 0.19 - 0.26$) (space group R3m with GeBi$_2$Te$_{10}$-type structure) is comparable to the situation in the related compound 3R-Ge$_2$Sb$_2$Te$_5$ ($\theta, y \approx 0.1$), which is isostructural to Ge$_2$Sb$_2$Te$_5$ despite a different stoichiometry. The manganese bismuth tellurides with GeBi$_2$Te$_7$- and GeBi$_2$Te$_{10}$-type structures are metastable and start decomposing at approximately 250 °C into a Mn-doped Bi$_2$Te$_3$-like structure, Bi-rich bismuth tellurides and a manganese-rich phase. This result is crucial concerning physical measurements at elevated temperatures. This decomposition was not observed in our DSC measurements, as it is very slow and extends over a wide temperature range (~70 K). Yet, the DSC measurements show that these phases are not accessible by slow cooling of melts. An annealing step in the solid state followed by quenching to room temperature is essential to obtain phase pure samples, as kinetic effects impede the immediate decomposition at elevated temperatures. Small variations in the annealing temperature may lead to different structures. The rather broad DSC signal for the GeBi$_2$Te$_{10}$-type structure might indicate other structure variants. The z values of these layered manganese bismuth tellurides indicate decent thermoelectric properties and may be affected by the metastability, but have plenty of room for optimization. The first step towards optimization would be to increase the stability, e.g. by partial substitution of manganese with group 14 elements as preliminary experiments indicate that such substitution is possible. For an increased thermoelectric performance, doping should decrease the concentration of the charge carriers. Much beyond thermoelectrics, the access to single-phase compounds in this ternary system is crucial for various more specialized analyses such as ARPES and detailed investigations of magnetic effects. MnBi$_2$Te$_4$ has attracted much attraction as the first antiferromagnetic topological insulator, with special focus on theoretical calculations. As these may be questionable if they are based on simple ordered models, the crystal-structure data presented in this study should be the basis for realistic calculations that take into account vacancies and Mn/Bi disorder. The new layered manganese bismuth tellurides may be promising candidates for topologically non-trivial materials and thus for studies of mutual influence between long-range magnetic ordering at low temperatures and non-trivial band-structure topology. The single-phase materials, which were only accessible by taking the non-stoichiometry into account, may also be a perspective for magnetic sensing if they should exhibit the anomalous Hall effect like, e.g., Mn-doped Bi$_2$Te$_3$.

Acknowledgments
The authors thank the ESRF, Grenoble, for granting beamtime (experiments CH-5140 and CH-5142) as well as Dr. Jonathan Wright, Lucien Eisenburger, Tobias Stollenwerk, Christina Fraunhofer and Dr. Christopher Benndorf for help with the synchrotron measurements. Kristina Leger and Przemyslaw Blaschkewitz are acknowledged for support with the magnetization studies and the DSC measurements, respectively. We further thank Dr. Ziya S. Aliev (Baku, Azerbaijan) for helpful discussions. This work was supported by the German Research Foundation (DFG) by project OE 530/5-1 and in the framework of the Special Priority Program (SPP 1666, IS 250/2-1) “Topological Insulators”, by the ERA-Chemistry Program (RU 766/15-1), and by CRC “Correlated Magnetism: From Frustration to Topology” (SF8 1143).

Notes and references
1. J. E. Moore, Nature, 2010, 464, 194–198.
2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys., 2010, 82, 3045–3067.
3. Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, R. Z. Fisher, Z. Hussain and Z.-X. Shen, Science, 2009, 325, 178–181.
4. P. Jood and M. Ohta, Materials, 2015, 8, 1124–1149.
5. Y. Mizuguchi, Chem. Rec., 2016, 16, 633–651.
6. S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato and Y. Ando, Phys. Rev. Lett., 2011, 107, 217001.
7. T. V. Bay, T. Naka, Y. K. Huang, H. Luigjes, M. S. Golden and A. de Visser, Phys. Rev. Lett., 2012, 108, 57001.
8. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, Science, 2008, 320, 634–638.
9. W.-S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen and Z. Ren, Adv. Energy Mater., 2011, 1, 577–587.
10. G. Sun, X. Qin, D. Li, J. Zhang, B. Ren, T. Zou, H. Xin, S. B. Paschen and X. Yan, J. Alloy. Compd., 2015, 639, 9–14.
11. A. K. Bohra, R. Bhatt, A. Sigh, R. Basu, S. Bhattacharya, K. N. Mesgharm, S. Ahmad, A. K. Debnath, A. K. Chauhan, P. Bhatt, K. Shah, K. Bhotkar, S. Sharma, D. K. Aswal, K. P. Muthe and S. C. Gadkari, Energy. Convers. Manag., 2017, 145, 415–424.
12. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang and S.-C. Chang, Nat. Phys., 2009, 5, 438–442.
13. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hansan, Phys. Rev. Lett., 2009, 103, 146401.
14. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hansan, Nat. Phys., 2009, 5, 398–402.
15. C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J.-F.
M. Ruck, in *Between Covalent and Metallic Bonding: From Clusters to Intermetallics of Bismuth*. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, ed. J. Reedijk, Elsevier, Waltham, MA, 2015, DOI: 10.1016/B978-0-12-409547-2.11445-3.

J. W. G. Bos, M. Lee, E. Morosan, H. W. Zandbergen, W. L. Lee, N. P. Ong and R. J. Cava, *Phys. Rev. B*, 2006, **74**, 184429.

A. N. Mansour, W. Wong-Ng, W. Huang, W. Tang, A. Tompson and J. Sharp, *J. Appl. Phys.*, 2014, **116**, 083513.

R. D. Shannon, *Acta Crystallogr. Sect. A*, 1976, **32**, 751–767.

H. J. Goldsmid and J. W. Sharp, *J. Electron. Mater.*, 1999, **28**, 869–872.

H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang and G. J. Snyder, *Appl. Mater.*, 2015, **3**, 041506–1–041506–5.

R. P. Chasmar and R. Stratton, *J. Electron. Control*, 1959, **7**, 52–72.

H. J. Goldsmid, in *Introduction to Thermoelectricity*, Springer-Verlag, Berlin, Heidelberg, 2016, ch. 4, pp. 45–66.

H. Wang, Y. Pei, A. D. LaLonde and G. J. Snyder, in *Thermoelectric Nanomaterials: Materials Design and Applications* eds. K. Koumoto, T. Mori, Springer, Berlin, Heidelberg, 2013, ch. 1, pp. 3–32.

S. D. Kang and G. J. Snyder, *Nat. Mater.*, 2017, **16**, 252–257.

A. F. May and G. J. Snyder, in *Thermoelectrics and its Energy Harvesting*, ed. D. M. Rowe, CRC Press, Boca Raton, FL, 2012, ch. 11, pp. 1–18.

S. D. Kang and G. J. Snyder, 2018, arXiv:1710.06896v2.

L. A. Kuznetsova, V. L. Kuznetsov and D. M. Rowe, *J. Phys. Chem. Solids*, **2000**, **61**, 1269–1274.

T. B. Zhukova and A. I. Zaslavskii, *Sov. Phys. Crystallogr.*, **1972**, **16**, 796–800.

O. G. Karpinsky, L. E. Shelimova, M. A. Kretova and J.-P. Fleurial, *J. Alloys Compd.*, **1998**, **265**, 170–175.

T. Matsunaga, R. Kojima, N. Yamada, T. Fujita, K. Kifune, Y. Kubota and M. Takata, *Acta Crystallogr. Sect. B*, **2010**, **66**, 407–411.

M. N. Schneider and O. Oeckler, *Z. Anorg. Allg. Chem.*, **2008**, **634**, 2557–2561.

M. M. Otrokov, T. V. Menshchikova, M. G. Vergniory, I. P. Rusinov, A. Yu. Vyazovskaya, Yu. M. Koroteev, G. Bihlmayer, A. Ernst, P. M. Echenique, A. Arnau and E. V. Chulkov, *2D Mater.*, **2017**, **4**, 025082.

S. H. Lee, Y. Zhu, Y. Wang, L. Miao, T. Pillsbury, S. Kempinger, D. Graf, N. Alem, C.-Z. Chang, N. Samarth and Z. Mao, 2018, arXiv:1812.00339.
Supporting Information

for

Layered Manganese Bismuth Tellurides with GeBi₄Te₇⁻ and GeBi₆Te₁₀⁻type Structures: Towards Multifunctional Materials

Daniel Souchay,† Markus Nentwig,† Daniel Günther,† Simon Keilholz,† Johannes de Boor,§ Alexander Zeugner,† Anna Isaeva,§§ Michael Ruck,† Anja U. B. Wolter,§ Bernd Büchner,§,§§ Oliver Oeckler†,*

† Institute for Mineralogy, Crystallography and Materials Science; Faculty of Chemistry and Mineralogy, Leipzig University, Scharnhorststr. 20, 04275 Leipzig, Germany
§ Institute of Materials Research, German Aerospace Center, Linder Höhe, 51170 Cologne, Germany
‡ Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
§ Leibniz-Institute for Solid State and Materials Research, Helmholtzstr. 10, 01069 Dresden, Germany
§§ Institute of Solid State Physics, Technische Universität Dresden, 01062 Dresden, Germany
Figure S1: Heat capacity C_p determined by DSC measurements (Netzsch DSC 404, Pt crucibles with alumina inlays) for samples $\text{Mn}_{0.85}\text{Bi}_{4.10}\text{Te}_2$ (left) and $\text{Mn}_{0.81}\text{Bi}_{6.13}\text{Te}_{10}$ (right) as used for thermoelectric characterization and comparison with the Dulong-Petit approximation.

Figure S2: PXRD pattern of a sample with the nominal composition MnBi_2Te_4 (black points); Rietveld refinement taking into account structure models for $\text{Mn}_{0.85}\text{Bi}_{2.1}\text{Te}_4$ (GeBi$_2$Te$_4$-type structure) and $\text{Mn}_{0.85}\text{Bi}_{4.10}\text{Te}_7$ (GeBi$_4$Te$_7$-type structure) based on SCXRD refinements (see chapter 3.3), sum of calculated patterns light gray and experimental data black points; difference plot (black) and reflection markers (black lines GeBi$_2$Te$_4$-type structure, gray lines GeBi$_4$Te$_7$-type structure).
Figure S3: PXRD pattern of a sample with the nominal composition MnBi₆Te₁₀ (black points); Rietveld refinement taking into account structure models for Mn₀₈₅Bi₄₁₀Te₇ (GeBi₄Te₇-type structure) and Mn₀₇₃Bi₆₁₈Te₁₀ (GeBi₆Te₁₀-type structure) based on the SCXRD refinements (see chapter 3.3), sum of calculated patterns light gray and experimental data black points; difference plot (black) and reflection markers (black lines GeBi₄Te₇-type structure, gray lines GeBi₆Te₁₀-type structure).

Table S1: Details of the Rietveld refinements of samples with the nominal compositions Mn₀₈₅Bi₄₁₀Te₇ and Mn₀₇₃Bi₆₁₈Te₁₀ based on structure models for Mn₀₈₅Bi₄₁₀Te₇ (GeBi₄Te₇-type structure) and Mn₀₇₃Bi₆₁₈Te₁₀ (GeBi₆Te₁₀-type structure, the slightly different Mn content has no influence on the fit) from the SCXRD refinement (section 3.3).

formula	Mn₀₈₅Bi₄₁₀Te₇	Mn₀₇₃Bi₆₁₈Te₁₀
M (in g mol⁻¹)	1796.715	7824.35
Z	1	3
F(000)	725.55	3154
crystal system	trigonal	trigonal
space group (no.)	P₃m1 (164)	R₃m (166)
cell parameter (in Å)	a = 4.3613(1)	a = 4.3694(2)
	c = 23.794(2)	c = 101.870(7)
cell volume (in Å³)	391.95(3)	1674.3(2)
X-ray density (in g cm⁻³)	7.61	7.71
radiation	Cu-Kα₁ (λ = 1.540596 Å)	
2θ range (in °)	4 ≤ 2θ ≤ 100	
number of reflections	216	310
refined parameter / thereof background	27 / 18	27 / 18
R_p / R_wp	0.0172 / 0.0269	0.0171 / 0.0264
R_Bragg	0.021	0.021
GooF	1.01	1.01
Table S2: Wyckoff positions and atomic parameters (coordinates x y z, site occupancy factors s.o.f. and isotropic displacement parameters B_{eq}, all from single-crystal data and not further refined) used in the Rietveld refinement of Mn$_{0.85}$Bi$_{4.10}$Te$_7$.

Atom	Wyckoff	x	y	z	s. o. f.	B_{eq}
Mn1 / Bi1 / □	1b	0	0	1/2	0.694 / 0.255 / 0.051	2.58
Mn2 / Bi2	2d	1/3	2/3	0.3423	0.0414 / 0.959	2.63
Mn3 / Bi3	2d	1/3	2/3	0.0860	0.035 / 0.965	2.51
Te1	2d	1/3	2/3	0.5680	1	2.54
Te2	2c	0	0	0.2703	1	2.38
Te3	2d	1/3	2/3	0.8413	1	2.34
Te4	1a	0	0	0	1	2.12

Table S3: Wyckoff positions and atomic parameters (coordinates x y z, site occupancy factors s.o.f. and isotropic displacement parameters B_{eq}, all from single-crystal data and not further refined) used in the Rietveld refinement of Mn$_{0.85}$Bi$_{6.13}$Te$_{10}$.

Atom	Wyckoff	x	y	z	s. o. f.	B_{eq}
Mn1/Bi/□	3a	0	0	0	0.634 / 0.275 / 0.09	1.79
Mn2/Bi2	6c	0	0	0.29647	0.017 / 0.983	1.92
Mn3/Bi3	6c	0	0	0.23671	0.015 / 0.985	1.79
Mn4/Bi4	6c	0	0	0.47010	0.014 / 0.986	1.80
Te1	6c	0	0	0.34922	1	1.77
Te2	6c	0	0	0.05365	1	1.61
Te3	6c	0	0	0.41290	1	1.55
Te4	6c	0	0	0.11658	1	1.38
Te5	6c	0	0	0.17957	1	1.54

Table S4: Lattice parameters of Mn$_{1.4}Bi_{4.12}$Te$_7$ with x = 0.15, 0.167 and 0.2 from Rietveld refinements compared with single crystal data of Mn$_{0.85}$Bi$_{4.10}$Te$_7$.

nominal composition	a (in Å)	c (in Å)	R_{wp}
Mn$_{0.10}$Bi$_{4.11}$Te$_7$	4.3610(1)	23.792(2)	0.028
Mn$_{0.85}$Bi$_{4.11}$Te$_7$	4.3606(2)	23.794(2)	0.029
Mn$_{0.85}$Bi$_{4.10}$Te$_7$	4.3613(1)	23.794(2)	0.027
SCXRD Mn$_{0.85}$Bi$_{4.10}$Te$_7$	4.3591(3)	23.769(2)	0.033 (R1 for I > 2σ(I))
GeBi$_3$Te$_7$-type phase in a heterogeneous sample with nominal composition MnBi$_6$Te$_{10}$	4.3612(6)	23.769(4)	0.025

Table S5: SEM-EDX results for samples with the nominal compositions Mn$_{0.85}$Bi$_{4.10}$Te$_7$ and Mn$_{0.85}$Bi$_{6.13}$Te$_{10}$ (data averaged from 7-8 point measurements), compared with the nominal compositions MnBi$_6$Te$_7$ and MnBi$_6$Te$_{10}$, respectively.

nominal composition	at.% measured (8 points)	at.% calc. for Mn$_{0.85}$Bi$_{4.10}$Te$_7$	at.% calc. for MnBi$_6$Te$_7$
Mn$_{0.85}$Bi$_{4.10}$Te$_7$	Mn: 6.6(6); Bi: 34.7(3); Te: 58.7(4)	Mn: 7.1; Bi: 34.3; Te: 58.6	Mn: 8.33; Bi: 33.33; Te: 58.33
Mn$_{0.85}$Bi$_{6.13}$Te$_{10}$	at.% measured (7 points)	at.% calc. for Mn$_{0.85}$Bi$_{6.13}$Te$_{10}$	at.% calc. for MnBi$_6$Te$_{10}$
Mn$_{0.85}$Bi$_{6.13}$Te$_{10}$	Mn: 4.5(3); Bi: 36.5(5); Te: 59.1(5)	Mn: 4.78; Bi: 36.19; Te: 59.03	Mn: 5.9; Bi: 35.3; Te: 58.8
Figure S4: SEM images (backscattered electrons) of samples with the nominal compositions \(\text{Mn}_{0.85}\text{Bi}_{4.1}\text{Te}_7 \) (left) and \(\text{Mn}_{0.81}\text{Bi}_{6.13}\text{Te}_{10} \) (right); the minor phase (black spots, bottom left) corresponds to a manganese telluride; the main phase (gray) to \(\text{Mn}_{0.85}\text{Bi}_{4.1}\text{Te}_7 \) (the influence of the minor phase on the composition is negligible) and \(\text{Mn}_{0.81}\text{Bi}_{6.13}\text{Te}_{10} \), respectively.

Figure S5: PXRD pattern of samples with the nominal compositions \(\text{Mn}_{0.89}\text{Bi}_{4.11}\text{Te}_7 \) (left) and \(\text{Mn}_{0.85}\text{Bi}_{6.15}\text{Te}_{10} \) (right); Rietveld refinements taking into account structure models for \(\text{Mn}_{0.85}\text{Bi}_{4.1}\text{Te}_7 \) (GeBi\(_4\)Te\(_7\)-type structure, section 3.3), \(\text{Mn}_{0.73}\text{Bi}_{6.18}\text{Te}_{10} \) (GeBi\(_6\)Te\(_{10}\)-type structure, section 3.3) and \(\text{Mn}_{0.85}\text{Bi}_{2.1}\text{Te}_4 \) [Zeugner, A.; Nietschke, F.; Wolter A. U. B.; Guß, S.; Vidal, R. C.; Peixoto, T. R. F.; Pohl, D.; Damm, C.; Lubk, A.; Henrich, R.; Moser, S. K.; Formari, C.; Min, C. H.; Schatz, S.; Kißner, K.; Ünzelmann, M.; Kaiser, M.; Scaravaggi, F. Rellinghaus, B.; Nielsch, K.; Heß, C.; Büchner, B.; Reinert, F.; Bentmann, H.; Oeckler, O.; Doert, T.; Ruck, M.; Isaeva, A. Chemical Aspects of the Antiferromagnetic Topological Insulator MnBi\(_2\)Te\(_4\); available at arxiv.org/abs/1812.03106] based on SCXRD refinements; sum of calculated patterns light gray and experimental data as black points; difference plot (gray) and reflection markers below, gray markers for GeBi\(_4\)Te\(_7\)-type structure, black markers GeBi\(_6\)Te\(_{10}\)-type structure (right) and GeBi\(_2\)Te\(_4\)-type structure (left).
Figure S6: PXRD patterns of samples Mn$_{1-x}$□$_x$/3Bi$_{6+2x/3}$Te$_{10}$ with $x = 0.19$, 0.23 and 0.26 (top row) and Mn$_{1-x}$□$_x$/3Bi$_{4+2x/3}$Te$_7$ with $x = 0.15$, 0.167 and 0.2 (bottom row); Rietveld refinements taking into account structure models for Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$ (GeBi$_6$Te$_{10}$ type) and Mn$_{0.77}$Bi$_{6.15}$Te$_{10}$ (GeBi$_4$Te$_7$ type) based on SCXRD (section 3.3); difference plots (gray), sum of calculated patterns light gray, experimental data as black points; reflection markers: black lines for GeBi$_4$Te$_7$ type (top) and GeBi$_6$Te$_{10}$ type (bottom), respectively.

Table S6: SEM-EDX data of Mn$_{1-x}$□$_x$/3Bi$_{4+2x/3}$Te$_7$ with $x = 0.15$, 0.167 and 0.2 (top) and Mn$_{1-x}$□$_x$/3Bi$_{6+2x/3}$Te$_{10}$ with $x = 0.19$, 0.23 and 0.26 (bottom) (averaged from eight point measurements) compared with the nominal composition MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$.

Composition	at.-% measured	at.-% calculated (nominal)	at.-% calculated for MnBi$_4$Te$_7$
Mn$_{0.80}$Bi$_{4.13}$Te$_7$ ($x = 0.2$)	Mn: 6.5(5) Bi: 34.2(7) Te: 59.3(7)	Mn: 6.7 Bi: 34.6 Te: 58.7	Mn: 8.3 Bi: 33.3 Te: 58.3
Mn$_{0.833}$Bi$_{4.11}$Te$_7$ ($x = 0.167$)	Mn: 6.7(5) Bi: 34.6(5) Te: 58.7(5)	Mn: 7.0 Bi: 34.4 Te: 58.6	Mn: 8.3 Bi: 33.3 Te: 58.3
Mn$_{0.85}$Bi$_{4.10}$Te$_7$ ($x = 0.15$)	Mn: 6.6(6); Bi: 34.7(3); Te: 58.7(4)	Mn: 7.1; Bi: 34.3; Te: 58.6	Mn: 8.3 Bi: 33.3 Te: 58.3

Table S7: Lattice parameters of Mn$_{1-x}$□$_x$/3Bi$_{6+2x/3}$Te$_{10}$ with $x = 0.19$, 0.23 and 0.26 from Rietveld refinements compared with single-crystal data of Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$.

nominal composition	a (in Å)	c (in Å)	R_{wp}
Mn$_{0.74}$Bi$_{6.18}$Te$_{10}$	4.3739(1)	101.818(8)	0.027
Mn$_{0.77}$Bi$_{6.15}$Te$_{10}$	4.3697(2)	101.863(8)	0.027
Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$	4.3694(1)	101.870(7)	0.030
SCXRD Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$	4.3698(3)	101.829(8)	0.0303 (R1 for $I > 2\sigma(I)$)
Figure S7: PXRD for samples with the nominal compositions $\text{Mn}_{0.85}\text{Bi}_{4.10}\text{Te}_7$ (left) and $\text{Mn}_{0.81}\text{Bi}_{6.13}\text{Te}_{10}$ (right) after thermoelectric characterization; Rietveld refinements taking into account structure models for $\text{Mn}_{0.85}\text{Bi}_{4.10}\text{Te}_7$ (GeBi_4Te_7 type), $\text{Mn}_{0.73}\text{Bi}_{6.18}\text{Te}_{10}$ ($\text{GeBi}_6\text{Te}_{10}$ type) based on SCXRD (section 3.3), for Bi_2Te_3 [Atuchin, V. V.; Gavrilova, T. A.; Kokh, K. A.; Kuratieva, N. V.; Pervukhina, N. B.; Surovtsev, N. V. *Solid State Commun.* 2012, 152, 1119–1122] and for MnTe_2 (FeS$_2$-type structure, space group $\text{Pn}3$) [Fjellvåg, H.; Kjekshus, A.; Chattopadhyay, T.; Hochheimer, H. D.; Höfle, W.; von Schnering, H. G. *Phys. Lett.* 1985, 112A, 411–413]; experimental data (black points), refined curve (gray), difference plot (black) and reflection positions: black GeBi_4Te_7 type (left) and $\text{GeBi}_6\text{Te}_{10}$ type (right), respectively, dark gray Bi_2Te_3 type and light gray MnTe_2.

Figure S8: PXRD patterns (taken from Fig. 2, $\lambda = 0.18972$ Å) of $\text{Mn}_{0.85}\text{Bi}_{4.10}\text{Te}_7$ (left) and $\text{Mn}_{0.81}\text{Bi}_{6.13}\text{Te}_{10}$ (right) at 120 °C (black curve) and 465 °C (gray curve; Bi_2Te_3 type resulting from decomposition); vertical black lines and dashed black lines indicate the reflection positions of GeBi_4Te_7-type structure (left) and of $\text{GeBi}_6\text{Te}_{10}$-type structure (right), respectively; vertical gray lines and gray dashed lines indicate reflection positions of a Bi_2Te_3-type structure; note that the strongest reflections may easily be confused with each other.
Table S8: Signals of Mn$_{0.85}$Bi$_{4.10}$Te$_7$ in the DSC experiment and possible assignments.

Run	Signal	T_{peak} / °C	possible assignment
1st heating	shoulder of 1	590.2	melting of Bi$_2$Te$_3$
	1	590.2	melting of Mn$_{0.85}$Bi$_{4.10}$Te$_7$
	2	598.2	melting of Mn$_2$BiTe$_4$
1st cooling	1	588.7	solidification of Mn$_2$BiTe$_4$
	2	584.5	solidification of Mn$_{0.85}$Bi$_{4.10}$Te$_7$
	3	580.5	solidification of Bi$_2$Te$_3$
2nd heating	1	589.2	melting of Bi$_2$Te$_3$
	1'	590.5	melting of Mn$_{0.85}$Bi$_{4.10}$Te$_7$
	2	596.5	melting of Mn$_2$BiTe$_4$
2nd cooling	1	588.7	solidification of Mn$_2$BiTe$_4$
	2	584.5	solidification of Mn$_{0.85}$Bi$_{4.10}$Te$_7$
	3	580.5	solidification of Bi$_2$Te$_3$

Figure S9: DSC experiments (two heating–cooling cycles from 100-700 °C) for Mn$_{0.85}$Bi$_{4.10}$Te$_7$.
Table S9: Signals of Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ DSC experiment and possible assignment.

Run	Signal	T_{peak} / °C	Possible assignment
1st heating	1	574.0	Melting Bi-rich Bi$_2$Te$_3$
	2	588.3	Melting Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$
	3	590.0	Melting Mn$_{0.85}$Bi$_{4.10}$Te$_{7}$
	4	598.2	Melting Mn$_3$BiTe$_4$
1st cooling	1 (broad unstructured signal)	Bi$_2$Te$_3$ and Mn-poorer Mn$_0.06$Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ and Mn$_0.05$Mn$_{0.85}$Bi$_{4.10}$Te$_{7}$	
2nd heating	1		Bi$_2$Te$_3$ and Mn-poorer Mn$_0.06$Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ and Mn$_0.05$Mn$_{0.85}$Bi$_{4.10}$Te$_{7}$
	2		Melting Mn$_3$BiTe$_4$
2nd cooling	1 (broad unstructured signal)	Bi$_2$Te$_3$ and Mn-poorer Mn$_0.06$Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ and Mn$_0.05$Mn$_{0.85}$Bi$_{4.10}$Te$_{7}$	

Figure S10: DSC experiments (two heating–cooling cycles from 100-700 °C) for Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$.
Figure S1: PXRD pattern of the decomposition product of a sample with the nominal composition $\text{Mn}_{0.85}\text{Bi}_{4.1}\text{Te}_7$ after DSC heating up to 400 °C; Rietveld refinements taking into account structure models for $\text{Mn}_{0.85}\text{Bi}_{4.1}\text{Te}_7$ (GeBi$_4$Te$_7$ type), $\text{Mn}_{0.73}\text{Bi}_{6.18}\text{Te}_{10}$ (GeBi$_6$Te$_{10}$ type) based on SCXRD refinements (section 3.3), for Bi_2Te_3 [Atuchin, V. V.; Gavrilova, T. A.; Kokh, K. A.; Kuratieva, N.V.; Pervukhina, N.B.; Surovtsev, N. V. Solid State Commun. 2012, 152, 1119–1122] and for MnTe_2 (FeS$_2$-type structure, space group $\text{Pa}\bar{3}$) [Fjellvåg, H.; Kjekshus, A.; Chattopadhyay, T.; Hochheimer, H. D.; Hönle, W.; von Schniering, H. G. Pressure induced phase transition in MnTe_2. Phys. Lett. 1985, 112A, 411–413]; experimental data (black points), refined curve (gray), difference plot (black) and reflection markers: black GeBi$_4$Te$_7$ type, dark gray Bi_2Te_3 type and light gray MnTe_2.

Figure S12: PXRD of the decomposition product of $\text{Mn}_{0.85}\text{Bi}_{4.1}\text{Te}_7$ after a DSC experiment with two consecutive cycles from RT up to 700 °C; Rietveld refinements taking into account structure models for $\text{Mn}_{0.85}\text{Bi}_{4.1}\text{Te}_7$ (GeBi$_4$Te$_7$ type structure, section 3.3), $\text{Mn}_{0.85}\text{Bi}_{2.1}\text{Te}_4$ [GeBi$_2$Te$_4$-type structure: Zeugner, A.; Nietschke, F.; Wolter A. U. B.; Gaß, S.; Vidal, R. C.; Peixoto, T. R. F.; Pohl, D.; Damm, C.; Lubk, A.; Hentrich, R.; Moser, S. K.; Fornari, C.; Min, C. H.; Schatz, S.; Küster, K.; Ünzelmann, M.; Kaiser, M.; Scaravaggi, F.; Rellinghaus, B.; Nielsch, K.; Heß, C.; Büchner, B.; Reinert, F.; Bentmann, H.; Oeckler, O.; Doert, T.; Ruck, M.; Iseaeva, A. Chemical Aspects of the Antiferromagnetic Topological Insulator MnBi_2Te_3; available at arxiv.org/abs/1812.03106]; experimental data (black points), for Bi_2Te_3 [Atuchin, V. V.; Gavrilova, T. A.; Kokh, K. A.; Kuratieva, N.V.; Pervukhina, N.B.; Surovtsev, N. V. Solid State Commun. 2012, 152, 1119–1122] and for MnTe (NiAs-type structure) [Efrem D’Sa, J.B.C.; Bhobe, P. A.; Riolkar, K. R.; Das, A.; Paramje, S. K.; Prabhu, R. B.; Sarode, P. R. J. Magn. Magn. Mater. 2005, 285, 267–271], refined curve (gray), difference plot (black) and reflection positions (black GeBi$_4$Te$_7$ type; dark gray GeBi$_2$Te$_4$ type, gray Bi_2Te_3 type and light gray NiAs-type structure of MnTe).
Figure S13: PXRD pattern of the decomposition product of Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ after DSC (heating up to 400 °C); Rietveld refinement taking into account structure models for Mn$_{0.85}$Bi$_{4.1}$Te$_7$ (GeBi$_4$Te$_7$-type structure), Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$ (GeBi$_6$Te$_{10}$-type structure) based on SCXRD (section 3.3), for Bi$_2$Te$_3$ [Atuchin, V. V.; Gavrilova, T. A.; Kokh, K. A.; Kuratieva, N. V.; Pervukhina, N. B.; Surovtsev, N. V. Solid State Commun. 2012, 152, 1119–1122] and for MnTe$_2$ (FeS$_2$-type structure, space group P6$_3$) [Fjellvåg, H.; Kjekshus, A.; Chattopadhyay, T.; Hochheimer, H. D.; Höne, W.; von Schnering, H. G. Phys. Lett. 1985, 112A, 411–413]; experimental data (black points), refined curve (gray), difference plot (black) and reflection markers (black GeBi$_4$Te$_7$ type, dark gray GeBi$_6$Te$_{10}$ type and light gray MnTe$_2$).

Figure S14: PXRD of the decomposition product of Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ after a DSC experiment with two consecutive cycles from RT up to 700 °C; Rietveld refinement taking into account structure models for Mn$_{0.85}$Bi$_{4.1}$Te$_7$ (GeBi$_4$Te$_7$-type structure), Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$ (GeBi$_6$Te$_{10}$-type structure) based on SCXRD (section 3.3), and Mn$_{0.85}$Bi$_2$Te$_4$ [Zeugner, A.; Nietschke, F.; Wolter A. U. B.; Gaß, S.; Vidal, R. C.; Peixoto, T. R. F.; Pohl, D.; Damm, C.; Lubk, A.; Hentrich, R.; Moser, S. K.; Formari, C.; Min, C. H.; Schatz, S.; Kißner, K.; Ünzelmann, M.; Kaiser, M.; Scaravaggi, F. Rellinghaus, B.; Nielsch, K.; Heß, C.; Büchner, B.; Reinert, F.; Bentmann, H.; Oeckler, O.; Doert, T.; Ruck, M.; Isaacva, A. Chemical Aspects of the Antiferromagnetic Topological Insulator MnBi$_2$Te$_4$ available at arxiv.org/abs/1812.03106] and for Bi$_2$Te$_3$ [Atuchin, V. V.; Gavrilova, T. A.; Kokh, K. A.; Kuratieva, N. V.; Pervukhina, N. B.; Surovtsev, N. V. Solid State Commun. 2012, 152, 1119–1122]; experimental data (black points), refined curve (gray), difference plot (black) and reflection markers (black GeBi$_4$Te$_7$ type; dark gray GeBi$_2$Te$_4$ type, gray Bi$_2$Te$_3$ type and light gray GeBi$_6$Te$_{10}$ type).
Figure S15: SEM images (backscattered electrons) after thermoelectric measurements (3 cycles; RT – 400 °C) of samples with the nominal composition Mn$_{0.85}$Bi$_{4.10}$Te$_{7}$ (left) and Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ (right) with increasing magnification from top to bottom; black areas (lines, spots) correspond to manganese tellurides and possibly other Mn-rich phases, light gray areas to Mn-doped Bi$_2$Te$_3$ and the dark gray main phase to Mn$_{0.85}$Bi$_{4.10}$Te$_{7}$ and Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$, respectively. EDX results are given in Table S10.

Table S10: Results of SEM-EDX analyses (marked in Fig. S15) for samples with the nominal compositions Mn$_{0.85}$Bi$_{4.10}$Te$_{7}$ and Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ after thermoelectric measurements (3 cycles; RT-400 °C) taking into account formed precipitates; data averaged from 2-5 point measurements; the small size of the precipitates can result in large errors as surrounding matrix material may contribute to point measurements.

formula	Mn$_{0.85}$Bi$_{4.10}$Te$_{7}$ (point 6-9)	MnTe$_{2}$ (point 1-5)	Bi$_2$Te$_3$ (point d-g)	Mn-rich phase (point a-c)
at.-% meas.	Mn: 6.4(10); Bi: 35.0(9); Te: 59.2(7)	Mn: 33.1(5); Bi: 37.7(10); Te: 66.9(5)	Bi: 40; Te: 60	“MnTe$_2$ + Bi$_2$Te$_3$”
at.-% calc.	Mn: 7.1; Bi: 34.3; Te: 58.6	Mn: 33.3; Bi: 38.2(8); Te: 60.2(12)	“MnTe$_2$ + Bi$_2$Te$_3$”	

formula	Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ (1-5)	Bi$_2$Te$_3$ (6-9)	Mn-rich phase (a-b)
at.-% meas.	Mn: 4.6(3); Bi: 36.2(5); Te: 59.2(5)	Mn: 1.7(6); Bi: 38.2(8); Te: 60.2(12)	“MnTe$_2$ + Bi$_2$Te$_3$”
at.-% calc.	Mn: 4.78; Bi: 36.19; Te: 59.03	Bi: 40; Te: 60	“MnTe$_2$ + Bi$_2$Te$_3$”

at.-% meas. and calc. refer to measured and calculated concentrations, respectively.
Figure S16: Temperature-dependent PXRD patterns of Mn$_{0.85}$Bi$_{4.1}$Te$_7$ during cooling (decomposition into a Bi$_2$Te$_3$-like structure took place during heating): the starting materials were not regained during cooling and the Bi$_2$Te$_3$-like structure remains ($\lambda = 0.18972$ Å, synchrotron radiation).

Figure S17: Temperature-dependent PXRD patterns of Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ during cooling (decomposition into a Bi$_2$Te$_3$-like structure took place during heating): the starting materials were not regained during cooling and the Bi$_2$Te$_3$-like structure remains ($\lambda = 0.18972$ Å, synchrotron radiation).
Figure S18: PXRD patterns of the decomposition products of Mn$_{0.85}$Bi$_{4.10}$Te$_7$ (left) and Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ (right) after 1d at 300 °C; Rietveld refinements taking into account structure models for Mn$_{0.85}$Bi$_{4.10}$Te$_7$ (GeBi$_4$Te$_7$ type), Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$ (GeBi$_6$Te$_{10}$ type) based on SCXRD data (section 3.3), for Bi$_2$Te$_3$ [Atuchin, V. V.; Gavrilova, T. A.; Kokh, K. A.; Kuratieva, N. V.; Pervukhina, N. B.; Surovtsev, N. V. Solid State Commun. 2012, 152, 1119–1122] and for MnTe$_2$ (FeS$_2$-type structure, space group Pa3) [Fjellvåg, H.; Kjekshus, A.; Chattopadhyay, T.; Hochheimer, H. D.; Hönl, W.; von Schnering, H. G. Phys. Lett. 1985, 112A, 411–413]; experimental data (black points), refined curve (gray), difference plot (black) and reflection markers black GeBi$_4$Te$_7$ type (left) or GeBi$_6$Te$_{10}$ type (right), dark gray Bi$_2$Te$_3$ type and light gray MnTe$_2$).

Figure S19: The decomposition products of Figure S18 were again treated like during the initial melt synthesis (section 2) and result in phase pure samples again: Mn$_{0.85}$Bi$_{4.10}$Te$_7$ (left) and Mn$_{0.81}$Bi$_{6.13}$Te$_{10}$ (right); Rietveld refinements taking into account structure models for Mn$_{0.85}$Bi$_{4.10}$Te$_7$ (GeBi$_4$Te$_7$ type) and Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$ (GeBi$_6$Te$_{10}$ type) based on SCXRD refinements (section 3.3); calculated patterns light gray, experimental data black points; difference plot (black) and reflection markers (black lines for GeBi$_4$Te$_7$ type and GeBi$_6$Te$_{10}$ type, respectively).
Figure S20: SEM SE image of the Mn$_{0.85}$Bi$_{4.10}$Te$_7$ single crystal used for structure analysis.

Table S11: SEM-EDX data of the Mn$_{0.85}$Bi$_{4.10}$Te$_7$ crystal used for structure analysis (averaged from five point measurements).

	at.-% measured	at.-% calculated for Mn$_{0.85}$Bi$_{4.10}$Te$_7$	at.-% calculated for MnBi$_2$Te$_7$
Mn	5.8(5) Bi: 35.9(5); Te: 58.3(3)	Mn: 7.1; Bi: 34.3; Te: 58.6	Mn: 8.33 Bi: 33.33 Te: 58.33

Figure S21: TEM image of the Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$ single crystal used for structure analysis.

Table S12: TEM-EDX data of the Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$ crystal used for structure analysis (averaged from two point measurements).

	at.-% measured	at.-% calculated for Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$	at.-% calculated for MnBi$_6$Te$_{10}$
Mn	5.4(4); Bi: 36.4(4); Te: 58.2(2)	Mn: 4.3; Bi: 36.5; Te: 59.1	Mn: 5.9 Bi: 35.3 Te: 58.8
Table S13: Selected interatomic distances (in Å) for Mn$_{0.85}$Bi$_{2.10}$Te$_4$ [Zeugner, A.; Nietschke, F.; Wolter A. U. B.; Gaß, S.; Vidal, R. C.; Peixoto, T. R. F.; Pohl, D.; Damm, C.; Lub, A.; Hentrich, R.; Moser, S. K.; Fornari, C.; Min, C. H., Schatz, S.; Kifßner, K.; Ünzelmann, M.; Kaiser, M.; Scaravaggi, F. Rellinghaus, B.; Nielsch, K.; Heß, C.; Bächner, B.; Reinert, F.; Bentmann, H.; Oeckler, O.; Doert, T.; Ruck, M.; Isaeva, A. Chemical Aspects of the Antiferromagnetic Topological Insulator MnBi$_2$Te$_4$; available at arxiv.org/abs/1812.03106], Bi$_2$Te$_3$ [Mansour, A. N.; Wong-Ng, W.; Huang, W.; Tang, W.; Tompson, A.; Sharp, J. J. Appl. Phys. 2014, 116, 083513] as well as Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$ and Mn$_{0.85}$Bi$_{4.10}$Te$_7$ (this work).

	bond length in Å		bond length in Å		bond length in Å		
septuple layer							
Mn$_2$/Bi$_2$ – Te$_1$	3.0473(5)	Mn$_{0.85}$Bi$_{1.16}$Te$_7$	3.0436(7)	Mn$_{0.85}$Bi$_{2.1}$Te$_4$	3.027(1)	Bi$_2$Te$_3$	
Mn$_1$/Bi$_1$ – Te$_1$	3.3055(6)	Bi$_1$/Mn$_1$ – Te$_2$	3.2987(9)	Bi$_1$/Mn$_1$ – Te$_1$	3.291(1)		
Mn$_1$/Bi$_1$ – Te$_1$	2.9969(4)	Mn$_1$/Bi$_1$ – Te$_1$	2.9909(7)	Bi$_2$/Mn$_2$ – Te$_1$	2.977(1)		
van der Waals gap		van der Waals gap		van der Waals gap		van der Waals gap	
Te$_2$ – Te$_3$	3.6516(5)	Te$_2$ – Te$_3$	3.6559(7)	Te$_2$ – Te$_2$	3.699(1)	Te$_2$ – Te$_2$	3.630
Te$_5$ – Te$_5$	3.6432(5)						
quintuple layers							
Mn$_3$/Bi$_3$ – Te$_3$	3.0628(5)	Mn$_3$/Bi$_3$ – Te$_3$	3.0543(7)	Mn$_3$/Bi$_3$ – Te$_4$	3.2410(4)	Bi – Te$_2$	3.067
Mn$_3$/Bi$_3$ – Te$_4$	3.2395(5)	Mn$_3$/Bi$_3$ – Te$_4$	3.2410(4)	Mn$_3$/Bi$_3$ – Te$_4$	3.2410(4)	Bi – Te$_1$	3.254
Mn$_4$/Bi$_4$ – Te$_4$	3.2536(5)						
Mn$_4$/Bi$_4$ – Te$_5$	3.0594(5)						
Figure S22: Reconstructed reciprocal lattice sections $0kl$ (top) and $h0l$ (bottom) from the data of the crystals used for structure analysis: a) Mn$_{0.85}$Bi$_{4.10}$Te$_7$ single crystal (GeBi$_4$Te$_7$-type structure) and b) Mn$_{0.73}$Bi$_{6.18}$Te$_{10}$ single crystal (GeBi$_6$Te$_{10}$-type structure). No pronounced diffuse streaks, which would suggest stacking disorder, are visible in the experimental diffraction patterns of both crystals.
Figure S23: HRTEM image (zone axis [100]), Fourier filtered) of manganese bismuth tellurides with GeBi₄Te₇ structure type (space group R3m, a = 4.370 Å, c = 101.82 Å, Δf = -67 nm, t = 0.88 nm; beam semiconvergence 1.2 mrad, defocus spread 15 nm), with a corresponding SAED pattern in the upper right corner; in order to symbolize the long-range order, white bars symbolize quintuple Bi₂Te₃-like slab and black lines symbolize septuple layers characteristic of MnBi₂Te₄.

Figure 24: HRTEM image (zone axis [100]) of a manganese bismuth telluride with GeBi₄Te₇-type structure; inset: simulation based on single-crystal data of Mn₀.₈₅Bi₄.₁₅Te₇ (space group P3m1, a = 4.359 Å, c = 23.77 Å, Δf = -85 nm, t = 8.36 nm; beam semiconvergence 1.2 mrad, defocus spread 15 nm); in the upper part of the simulation, the atom positions of the GeBi₂Te₅-type structure are illustrated (green = Te; yellow = Bi-rich cation position; red = Mn-rich cation position); for the exact cation distribution, including mixed sites, cf. Tables 2 and 4.
Modelling of transport properties and thermoelectric data

First, the electron chemical potential η was estimated from the measured Seebeck coefficient at a given temperature by numerical methods:

$$ S(\eta) = \frac{k_B}{e} \left(2 \frac{F_2(\eta)}{F_0(\eta)} - \eta \right) $$

with the Fermi integrals $F(\eta)$ being defined as:

$$ F_x(\eta) = \int f e^x d\varepsilon = \int \frac{e^{x}d\varepsilon}{1 + \exp(e - \eta)} $$

From η and the measured electrical conductivity σ, the intrinsic electrical conductivity σ_{E} was calculated:

$$ \sigma_{\text{E}} = \frac{\sigma}{\ln(1 + e^\eta)} $$

Further, the phononic part of thermal conductivity κ_{ph} was calculated from the measured σ and thermal conductivity κ:

$$ \kappa_{\text{ph}} = \kappa - L(\eta) \cdot \sigma T $$

with the Lorenz number $L(\eta)$ being calculated as:

$$ L(\eta) = \frac{k_B^2}{e^2} \frac{3 F_0(\eta) F_2(\eta) - 4 F_1(\eta)^2}{F_0(\eta)^2} $$

The quality factor B was obtained from the following equation:

$$ B = \left(\frac{k_B}{e} \right)^2 \frac{\sigma_{\text{E}}}{\kappa_{\text{ph}}} T $$

For a given B, η was varied in order to find the optimal doping level, obtaining ZT for different chemical potentials η (see chapter 3.6):

$$ zT(\eta) = \frac{S^2(\eta)}{B \ln(1 + e^\eta) + L(\eta)} $$
