Origin of the Dzyaloshinskii-Moriya Interactions in the Intermetallic RMn2Si2 (R= La, Ce, Yb and Y) Materials: A DFT Study

Widad Bazine
Mohammed V University of Rabat: Universite Mohammed V de Rabat

Najim TAHIRI (✉ tahiri.najim@gmail.com)
Mohammed V University of Rabat: Universite Mohammed V de Rabat https://orcid.org/0000-0001-6204-1359

Omar Elbounagui
Mohammed V University of Rabat: Universite Mohammed V de Rabat

Hamid Ez-Zahraouy
Mohammed V University of Rabat: Universite Mohammed V de Rabat

Research Article

Keywords: RMn2Si2 materials, DFT study, Dzyaloshinskii-Moriya interactions, Magnetoelectric coupling, RKKY interactions.

DOI: https://doi.org/10.21203/rs.3.rs-289033/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Origin of the Dzyaloshinskii-Moriya interactions in the intermetallic \(\text{RMn}_2\text{Si}_2\) (R= La, Ce, Yb and Y) materials: A DFT study

Widad Bazine \(^1\), Najim Tahiri\(^1\,*\), Omar El Bounagui \(^2\) and Hamid Ez-Zahraouy \(^1\)

\(^1\)Laboratory of Condensed Matter and Interdisciplinary Sciences, Faculty of Sciences, Mohammed V University in Rabat, Morocco
\(^2\)Department of physics, Faculty of Science, Mohammed V University in Rabat, Morocco

Abstract

The Dzyaloshinskii-Moriya interactions (\(D_M\)) are investigated using first-principles calculations by means of the WIENNCM code, an implementation of the FP-LAPW method. The intermetallic \(\text{RMn}_2\text{Si}_2\) (R= La, Ce, Yb, and Y) materials exhibit a large spin-orbit effect after the density of states; they found a strong hybridization between Mn-Si and Mn-R atoms. Also, show a large noncollinear magnetic configuration depending on the R atoms. By using ab-initio calculations, the RKKY effect is observed in the \(\text{RMn}_2\text{Si}_2\) materials, which shows explicitly the existence of the giant magnetoresistance (GMR) in these materials. Explicitly, the mechanisms responsible for the magnetoelectric coupling are due to relatively the effect of the presence of the Dzyaloshinskii-Moriya term.

Keywords: \(\text{RMn}_2\text{Si}_2\) materials; DFT study; Dzyaloshinskii-Moriya interactions; Magnetoelectric coupling; RKKY interactions.

* Corresponding author: tahiri.najim@gmail.com
1-Introduction

Recently, the ternary intermetallic RT₂X₂ compounds (R is rare earth, T is transition metal and X is Si or Ge) have attracted significant attention because of their remarkable properties and potential application as high-temperature thermoelectric [1]. On the other hand, these materials have been reexamined by neutron diffraction experiments as they show a positive giant magnetoresistance [2]. Several studies indicate that in the majority of these compounds, the Mn metal (except Mn) carries no magnetic moment. R atoms usually order antiferromagnetically at low temperatures. Magnetic studies found that RMn₂Si₂ compounds are either ferromagnetic or antiferromagnetic [3,4]. Nevertheless, the various studies devoted to RMn₂Si₂ (R = La, Ce, Yb, Y, Pr, Nd, Sm, Gd) [2, 5-8] found some discrepancies. Moreover, these materials show a rich variety of magnetic behaviors depending on R (Ba, Ca, La, Rare Earths) [9]. This magnetic diversity should give rise to different transport properties and magneto-resistance (GMR) coefficients. In addition, the non-collinear magnetism in LaMn₂Si₂ compound has been studied in detail in Ref. [2]. Furthermore, these materials crystallize in the ThCr₂Si₂ structure, whereas, the structural and magnetic properties of BaMn₂P₂ and BaMn₂As₂ [10,11] are similar to those of the archetypal magnetoelectric material chromium sesquioxide Cr₂O₃ [12, 13]. Magnetoelectric has a wide interest in several applications as multifunctional devices such as magnetic-electric transducers, actuators, sensors, and spintronic devices [14,15]. There are two principal types of magnetoelectric materials: magnetostrictive-piezoelectric composites and single-phase crystals and polycrystals [16]. In the next year, another two interesting multiferroic materials were discovered: orthorhombic TbMn₂O₅ [17] and hexagonal HoMnO₃ [18] is similar to the TbMnO₃ compound, this demonstrated a strong magnetoelectric coupling, giving a switchable polarization upon magnetic field, although its ferroelectricity is poor. Moreover, the origin of magnetoelectric materials based on the spin-orbit coupling can be explained by two possible
mechanisms, Dzyaloshinskii-Moriya (DM) interaction [19, 20] and spin-dependent metal-
ligand hybridization [19].

The present paper is to study the physical properties of RMn2Si2(R= La, Ce, Yb, and Y)
materials by using a non-collinear first-principles calculation. Firstly, we found an important
RKKY coupling in the intermetallic RMn2Si2 materials; this effect is related to the
noncollinear magnetism, which also is the sign of GMR in this compound. Secondly, we
calculated the Dzyaloshinskii-Moriya interaction (DM) in these types of materials; we found
this effect is related to the spin-orbit coupling, also the relationship between magnetoelastic
coupling and DM interaction was presented. For this reason, the intermetallic RMn2Si2
materials could be suggested as a good candidate for magnetoelastic applications.

2-Computational Methods

The intermetallic RMn2Si2 (R= La, Ce, Yb, and Y) compounds is studied using the full
potential linearized augmented plane wave FP-LAPW method implemented in the
WIEN2k package [21] with the noncollinear magnetism. While the exchange and
correlation potentials have been treated by the Generalized Gradient Approximation
parameterized by Perdew, Burke, and Erzehof (GGA-PBE) [22]. All the calculations take into
account spin-orbit coupling with a 300 k-point in the irreducible wedge of the Brillouin zone.
The RMn2Si2 compounds crystallize with the tetragonal ThCr2Si2-type crystal structure in the
following space group (I4/mmm) with the lattice parameter (see Table 1). The atoms R, Mn
and Si are located in [0,0,0], [0,0.5,0.25] and [0,0,z] , respectively.

Table 1: Structural parameters of RMn2Si2 (R= La, Ce, Yb and Y) materials.

	La [23]	Y [24]	Ce [25]	Yb [26]
a(Å)	4.1103	3.9200	4.0417	3.8864
c (Å)	10.5969	10.4750	10.5546	10.4040
z(Si)	0.3805	0.3870	0.3820	0.3838
The Hamiltonian of the system (see, Fig. 1) is described by Heisenberg model:

\[H = -J_{Mn-Mn} \sum_{i<j} \vec{S}_i \cdot \vec{S}_j - J_{RKKY} \sum_{i<k} \vec{S}_i \cdot \vec{S}_k - H_{DM} \]

(1)

where, \(J_{Mn-Mn}\) is the exchange coupling interactions between the first nearest neighbor. \(J_{RKKY}\) is the RKKY interaction between the first nearest neighbor’s intra-plans. \(H_{DM}\) is the Dzyaloshinskii-Moriya interaction given by:

\[\overrightarrow{D}_M \times (\vec{S}_i \times \vec{S}_j) \]

(2)

where \(\vec{S} = (S_x, S_y, S_z)\) and \(\overrightarrow{D}_M = (D_x, D_y, D_z)\)

3-Results and discussion

3.1-Collinear calculation

3.1.1-Density of states and hybridization

The total and partial densities of states of intermetallic RMn\(_2\)Si\(_2\) (R=La, Y, Ce and Yb) compounds are plotted in Figs. 2. From this figure, it is found that these compounds exhibit metallic behavior. The maximum contribution in the total DOS is due to the Mn atom in both up and down spins states, whereas, the R (R=La, Yb, Y and Ce) and Si atoms are lowly
contributing in the DOS states. The densities of states in RMn$_2$Si$_2$ changed with changing the R atoms. For R=La, Y, Ce, and Yb the maximum of dos reached the value 24.56 (states/eV), 6.17 (states/eV), 25.02 (states/eV), and 79.40 (states/eV), respectively. However, the difference in hybridization between Mn-Si and Mn-R states is observed. For all compounds, there are number peaks in the valence band partial DOS of the Mn d states. The Mn (d) and Si (p) states are hybridized mostly in the energy range from -5 eV to -2.0 eV relative to the Fermi level (see, Figs. 2 (a-d)).
Fig. 2: Total and partial density of states for RMn$_2$Si$_2$ materials: a) LaMn$_2$Si$_2$, b) YMn$_2$Si$_2$, c) CeMn$_2$Si$_2$, and d) YbMn$_2$Si$_2$.

3.2-Non-collinear calculation

The magnetic moment value of Mn in each compound for the different angles is illustrated in **Table 2**. From this table, it is found that the magnetic moment of Mn atom in all materials is in good agreement with the experimental results [23-26].
Table 2: Magnetic moment RMn$_2$Si$_2$ (R= La, Ce, Yb and Y) materials.

Compounds	Present work (μ_B(Mn))	Experimental values (μ_B(Mn))				
	30°	60°	90°	120°	150°	
LaMn$_2$Si$_2$	2.22	2.23	2.16	2.17	2.21	2.49 [23]
YMn$_2$Si$_2$	2.12	2.07	2.05	2.10	2.11	1.98 [24]
CeMn$_2$Si$_2$	2.16	2.13	2.08	2.12	2.17	2.30 [25]
YbMn$_2$Si$_2$	2.05	2.04	2.06	2.05	2.05	2.00 [26]

3.2.1-The Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions

The RMn$_2$Si$_2$ compounds (R=La, Y, Yb, and Ce) form a natural multilayer system where the planes of the rare earth ions are separated from the transition metal layers. The Mn-Mn atoms are formed by two magnetic plans separated by a nonmagnetic plane of Si. By varying the distance between Mn-Mn in different planes, we can calculate the exchange coupling interactions (J_{RKKY}). Fig. 3 shows the exchange coupling interaction as a function of the distance between Mn-Mn atoms in different planes. This figure found that the long-range damping oscillatory behavior can be clearly seen; this oscillatory depended on the spin-orbit interaction, the atomic number of the R atom, and structural parameters. We are found that all family of RMn$_2$Si$_2$ compounds exhibits RKKY interactions (see, Figs. 3(a-d)). These results are in good agreement with the experimental studies and show the contribution of the non-collinearity is due to the GMR effect of these materials [2].
Fig. 3: Exchange coupling interactions J_{RKKY} as a function of the distance between Mn-Mn atoms:
(a) LaMn$_2$Si$_2$ (b) YMn$_2$Si$_2$ (c) CeMn$_2$Si$_2$ and (d) YbMn$_2$Si$_2$.
3.2.2-Dzyaloshinskii-Moriya interaction

The antisymmetric Hamiltonian is expressed by \(H_{DM} = D_M \times (\vec{S}_i \times \vec{S}_j) \), in Heisenberg model \(\vec{S} = (S_x, S_y, S_z) \). [28]:

\[
H_{DM} = D_x(S_y S_z - S_z S_y) - D_y(S_x S_z - S_z S_x) + D_z(S_x S_y - S_y S_x) \tag{3}
\]

where \(D_x, D_y \) and \(D_z \) are calculated coefficients of \(D_M \) by choosing the configuration that take into consideration one direction and cancel the two other components.

The \(D_M \) has been calculated for the \(\text{RMn}_2\text{Si}_2 \) (\(R\)=La, Y, Ce, and Yb) compounds using ab initio calculations. The results of \(D_M \) are presented in Table 3. From these results the \(\text{RMn}_2\text{Si}_2 \) (\(R\)=La, Y, Ce and Yb) compound exhibit a strong \(D_M \) except \(\text{YMn}_2\text{Si}_2 \) give a small \(D_M \) (\(D_x = 0.36\text{meV}, D_y = 0.0\text{meV} \text{ and } D_z = 0.65\text{meV} \)). This difference was related to the spin-orbit effect in each compound, it’s normal to find a \(D_M \) in this type of compounds due to the noncollinear inter-layers coupling existing between Mn-Mn atoms.

Table 3: Dzyaloshinskii-Moriya interactions values in \(\text{RMn}_2\text{Si}_2 \) materials.

Materials	\((\theta_1, \theta_2)\) and \((\phi_1, \phi_2)\)	\(D_M \) (meV)
\(\text{LaMn}_2\text{Si}_2 \)	(60,120)-(90,270)	\(D_x = 0.09 \)
	(60,120)-(0,180)	\(D_y = 1.75 \)
	(0,0)-(60,120)	\(D_z = 5.73 \)
\(\text{YMn}_2\text{Si}_2 \)	(60,120)-(90,270)	\(D_x = 0.36 \)
	(60,120)-(0,180)	\(D_y = 0.0 \)
	(0,0)-(60,120)	\(D_z = 0.65 \)
\(\text{CeMn}_2\text{Si}_2 \)	(45,135)-(90,270)	\(D_x = 10.90 \)
	(60,120)-(0,180)	\(D_y = 1.25 \)
	(0,0)-(90,180)	\(D_z = 5.16 \)
\(\text{YbMn}_2\text{Si}_2 \)	(60,120)-(90,270)	\(D_x = 108.29 \)
	(60,120)-(0,180)	\(D_y = 1.95 \)
	(0,0)-(30,150)	\(D_z = 1.55 \)
Moreover, the LaMn$_2$Si$_2$ compound presents a large D_M along in the z-axis directions and a little effect in the y-axis directions. The YbMn$_2$Si$_2$ illustrates a maximum (108.29meV) of D_M along the x-axis directions and a weak value in the y-axis and z-axis directions. The maximum of D_M for the CeMn$_2$Si$_2$ compound is along the x-axis direction, also an important value in the z-axis and a weak value in the y-axis direction. This difference is due to the hybridization between orbital d for Mn and p for Si. However, it’s clear that when we change the tilt angle the value of the D_M changes too, we can conclude the D_M depended strongly on the angle. We found a strong D_M in the intermetallic RMn$_2$Si$_2$ (R=La, Ce, and Yb) compounds, this interaction allows coupling between magnetism and ferroelectricity [15, 16]. This interaction resembles the form of antisymmetric superexchange interaction due to relativistic spin-orbit coupling, being proportional to the vector product of spins, whereas, the D_M interaction favors non-collinear spin ordering. These types of materials are an excellent model system for studying magnetoelectric coupling.

4-Conclusions

In summary, the electronic and magnetic properties of the ternary intermetallic RMn$_2$Si$_2$ (R=La, Ce, Yb, and Y) compounds are calculated. Using the first-principles calculations, we demonstrate that these materials exhibit noncollinear magnetism in agreement with experimental results. By varying the distance between Mn-Mn atoms, we indicate that the presence of RKKY interactions. Also, the Dzyaloshinskii-Moriya interactions in these materials are discussed. These materials could be suggested as a good candidate for magnetoelectric applications.

Conflicts of interest: The authors declare that they have no conflict of interest.
Funding: No

Availability of data and material: No

Code availability: Wien2k code

Authors' contributions:

- Conception and design of study: Najim Tahiri, Widad Bazine,
- Acquisition of data: Widad Bazine
- Analysis and/or interpretation of data: Najim Tahiri, Widad Bazine, Omar El Bounagui and Hamid Ez-Zahraouy.
- Drafting the manuscript: Najim Tahiri, Widad Bazine
- Revising the manuscript critically for important intellectual content: Najim Tahiri, Widad Bazine and Omar El Bounagui
- Approval of the version of the manuscript to be published: Najim Tahiri, Widad Bazine, Omar El Bounagui and Hamid Ez-Zahraouy.
References

[1] E. Partháe, B. Chabot, in: K.A. Gschneidner Jr., L. Eyring (Eds.), Handbook of Physics and Chemistry of Rare Earths, Vol. 6, North-Holland, Amsterdam, (1984) 212.
[2] Di Napoli, S., Bihlmayer, G., Blügel, S., Alouani, M., Dreyssé, H., Llois, A.M., Journal of Magnetism and Magnetic Materials 272–276 (2004) E265–E266.
[3] K. S.V. L. Narasimhan, V.U.S. Rao, R.L. Bergner and W.E. Wallace, J. Appl. Phys. 46 (1976) 4597.
[4] S. Sick, A. Szytuta and J. Leciejewicz, Phys. Status. Solidi. (a) 46, K101 (1978).
[5] M.V. Lalic, J. Mestnik-Filho, A.W. Carbonari and R. N. Saxena, Journal of Magnetism and Magnetic Materials 272 (2004) 633–634.
[6] R. A. Mole, D. L. Cortie, M. Hofmann, J. Wang, W. D. Hutchison, D. Yu, X. Wang and S. J. Campbell, Journal of Alloys and Compounds 845 (2020) 155316.
[7] M. Hofman, S. J. Campbell, X. L. Zhao, H. S. Li and R. Cywinski, Materials Science 228 (1996) 587.
[8] K. Ilzumi, S. Okada, T. Mori, T. Shishido, K. Kudou and P. Rogl, Journal of ceramic Society of Japan 112 (2004) 263-265.
[9] B. Malaman, et al., J. Alloys Compounds 210 (1994) 209.
[10] S. L. Brock et al., J. Solid State Chem. 113, 303 (1994).
[11] Y. Singh et al., Phys. Rev. B 80 (2009) 100403.
[12] D. N. Astrov, Zh. Eksp. Teor. Fiz. 38 (1960) 984.
[13] I. Dzyaloshinskii, Zh. Exp. Teor. Fiz. 37 (1959) 881.
[14] Dhanalakshmi, B., Kollu, P., Rao, B.P., Rao, P.S.V.S., Ceramics International 42 (2016) 2186–2197.
[15] Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G., Journal of Applied Physics 103 (2008) 031101.
[16] Fuentes, M.E., Fuentes, L., Olivera, R., Garcia, M., 2007. Revista Mexicana de Fisica 38 (2007) 21-29.
[17] dela Cruz, C.R., Yen, F., Lorenz, B., Gospodinov, M.M., Chu, C.W., Ratcliff, W., Lynn, J.W., Park, S., Cheong, S.-W., Physical Review B 73 (2006).
[18] García-Flores, A.F., Granado, E., Martinho, H., Rettori, C., Golovenchits, E.I., Sanina, V.A., Oseroff, S.B., Park, S., Cheong, S.-W., Journal of Applied Physics 101 (2007) 09-106.
[19] Fogh, E., Zaharko, O., Schefer, J., Niedermayer, C., Holm-Dahlin, S., Sørensen, M.K., Kristensen, A.B., Andersen, N.H., Vaknin, D., Christensen, N.B., Toft-Petersen, R., Physical Review B 99 (2019) 104421.
[20] Dong, S., Liu, J.-M., Cheong, S.-W., Ren, Z., Advances in Physics 64 (2015) 519-626.
[21] R. Laskowski, P.Blaha, Physical Review B 69, (2004) 140408.
[22] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[23] Hofmann, M., Campbell, S.J., Kennedy, S.J., Zhao, X.L., Journal of Magnetism and Magnetic Materials 176, (1997) 279–287.
[24] Korotin, D.M., Rosenfeld, E.V., Mushnikov, N.V., Gerasimov, E.G., Zhirov, I.S., Kukhareno, A.I., Finkelstein, L.D., Cholakh, S.O., Kurmaev, E.Z, Journal of Alloys and Compounds 695, (2017) 1663–1671.
[25] Fernandez-Baca, J.A., Hill, P., Chakoumakos, B.C., Ali, N. Journal of Applied Physics 79, (1996) 5398.
[26] Hofmann, M., Campbell, S.J., Edge, A.V.J., Studer, A.J., Journal of Physics: Condensed Matter 13 (2001) 9773-9780.
[27] Vilarinho, R., Almeida, A., Machado da Silva, J.M., Oliveira, J.B., Sá, M.A., Tavares, P.B., Agostinho Moreira, J., Solid State Communications 208 (2015) 34-40.
[28] Tamine, M., Surface Science 369 (1996) 403-414.
Figures

Figure 1

Unit cell structure of RMn2Si2 (R= La, Ce, Yb and Y) materials.
Figure 2

Total and partial density of states for RMn2Si2 materials: a) LaMn2Si2 b) YMn2Si2, c) CeMn2Si2, and d) YbMn2Si2.
Figure 3

Exchange coupling interactions J_RKKY as a function of the distance between Mn-Mn atoms: (a) LaMn_2Si_2 (b) YMn_2Si_2 (c) CeMn_2Si_2 and (d) YbMn_2Si_2.