DEGENERATE BERNSTEIN POLYNOMIALS

TAEKYUN KIM AND DAE SAN KIM

ABSTRACT. Here we consider the degenerate Bernstein polynomials as a degenerate version of Bernstein polynomials, which are motivated by Simsek’s recent work ‘Generating functions for unification of the multidimensional Bernstein polynomials and their applications’([15,16]) and Carlitz’s degenerate Bernoulli polynomials. We derived their generating function, symmetric identities, recurrence relations, and some connections with generalized falling factorial polynomials, higher-order degenerate Bernoulli polynomials and degenerate Stirling numbers of the second kind.

1. Introduction

For \(\lambda \in \mathbb{R} \), the degenerate Bernoulli polynomials of order \(k \) are defined by L. Cartliz as

\[
\left(\frac{t}{1 + \lambda t} \right)^k (1 + \lambda t)^x = \sum_{n=0}^{\infty} \beta_{n,\lambda}^{(k)} \frac{t^n}{n!},
\]

\(\text{(see [4, 5]).} \) \hfill (1.1)

Note that \(\lim_{\lambda \to 0} \beta_{n,\lambda}^{(k)}(x) = B_n^{(k)}(x) \) are the ordinary Bernoulli polynomials of order \(k \) given by

\[
\left(\frac{t}{e^t - 1} \right)^k e^{xt} = \sum_{n=0}^{\infty} B_n^{(k)}(x) \frac{t^n}{n!},
\]

\(\text{(see [1, 12, 13]).} \)

It is known that the Stirling number of the second kind is defined as

\[
x^n = \sum_{l=0}^{n} S_2(n, l)(x)_l, \quad \text{(see [2, 4, 8, 10]),}
\]

\(\text{(1.2)} \)

where \((x)_l = x(x-1) \cdots (x-l+1), \; (l \geq 1), \; (x)_0 = 1.\)

For \(\lambda \in \mathbb{R} \), the \((x)_{n,\lambda} \) is defined as

\[
(x)_{0,\lambda} = 1, \quad (x)_{n,\lambda} = x(x-\lambda)(x-2\lambda) \cdots (x-(n-1)\lambda), \; (n \geq 1)
\]

\(\text{(1.3)} \)
In [8,9,10], \((x)_n^\lambda\) is defined as
\[
\binom{x}{n}^\lambda = \frac{x(x-\lambda) \cdots (x-(n-1)\lambda)}{n!}, \quad (n \geq 1), \quad \binom{x}{0}^\lambda = 1. \tag{1.4}
\]
Thus, by (1.4), we get
\[
(1 + \lambda t)^x^\lambda = \sum_{n=0}^{\infty} \binom{x}{n} t^n, \quad \text{(see [7])}. \tag{1.5}
\]
From (1.5), we note that
\[
\sum_{m=0}^{n} \binom{y}{m} \binom{x}{n-m}^\lambda = \binom{x+y}{n}^\lambda, \quad (n \geq 0). \tag{1.6}
\]
The degenerate Stirling numbers of the second kind are defined by
\[
\frac{1}{k!}((1 + \lambda t)^\frac{1}{\lambda} - 1)^k = \sum_{n=k}^{\infty} S_{2,\lambda}(n, k) \frac{t^n}{n!}, \quad (k \geq 0), \quad \text{(see [7,8])}. \tag{1.7}
\]
By (1.7), we easily get
\[
\lim_{\lambda \to 0} S_{2,\lambda}(n, k) = S_2(n, k), \quad (n \geq k \geq 0), \quad \text{(see [8,10])}. \tag{1.8}
\]
In this paper, we use the following notation.
\[
(x \oplus \lambda y)^n = \sum_{k=0}^{n} \binom{n}{k} (x)_{k,\lambda} (y)_{n-k,\lambda}, \quad (n \geq 0). \tag{1.8}
\]
The Bernstein polynomials of degree \(n\) is defined by
\[
B_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k}, \quad (n \geq k \geq 0), \quad \text{(see [6,11,17])}. \tag{1.9}
\]
Let \(C[0,1]\) be the space of continuous functions on \([0,1]\). The Bernstein operator of order \(n\) for \(f\) is given by
\[
\mathfrak{B}_n(f|x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{k,n}(x), \tag{1.10}
\]
where \(n \in \mathbb{N} \cup \{0\}\) and \(f \in C[0,1]\), (see [3,6,14]).

A Bernoulli trial involves performing a random experiment and noting whether a particular event \(A\) occurs. The outcome of Bernoulli trial is said to be "success" if \(A\) occurs and a "failure" otherwise. The probability \(P_n(k)\) of \(k\) successes in \(n\) independent Bernoulli trials is given by the binomial probability law:
\[
P_n(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad \text{for } k = 0, 1, 2, \cdots,
\]
From the definition of Bernstein polynomials we note that Bernstein basis is probability mass of binomial distribution with parameter \((n, x = p)\).
Let us assume that the probability of success in an experiment is p. We wondered if we can say the probability of success in the nineth trial is still p after failing eight times in a ten trial experiment. Because there’s a psychological burden to be successful.

It seems plausible that the probability is less than p. This speculation motivated the study of the degenerate Bernstein polynomials associated with the probability distribution.

In this paper, we consider the degenerate Bernstein polynomials as a degenerate version of Bernstein polynomials. We derive their generating function, symmetric identities, recurrence relations, and some connections with generalized falling factorial polynomials, higher-order degenerate Bernoulli polynomials and degenerate Stirling numbers of the second kind.

2. Degenerate Bernstein polynomials

For $\lambda \in \mathbb{R}$ and $k, n \in \mathbb{N} \cup \{0\}$, with $k \leq n,$ we define the degenerate Bernstein polynomials of degree n which are given by

$$B_{k,n}(x|\lambda) = \binom{n}{k}(x)_{\lambda}^k (1-x)_{\lambda}^{n-k}, \ (x \in [0,1]).$$

Note that $\lim_{\lambda \to 0} B_{k,n}(x|\lambda) = B_{k,n}(x), \ (0 \leq k \leq n)$. From (2.1), we derive the generating function of $B_{k,n}(x|\lambda)$, which are given by

$$\sum_{n=k}^{\infty} B_{k,n}(x|\lambda) \frac{t^n}{n!} = \sum_{n=k}^{\infty} \binom{n}{k}(x)_{\lambda}^k (1-x)_{\lambda}^{n-k} \frac{t^n}{n!}$$

$$= \frac{(x)_{\lambda}^k}{k!} \sum_{n=k}^{\infty} \frac{1}{(n-k)!} (1-x)_{\lambda}^{n-k} t^n$$

$$= \frac{(x)_{\lambda}^k}{k!} \sum_{n=0}^{\infty} \frac{(1-x)_{\lambda}^n}{n!} t^{n+k}$$

$$= \frac{(x)_{\lambda}^k}{k!} t^k \sum_{n=0}^{\infty} \left(\frac{1-x}{\lambda} \right)^n \frac{t^n}{n!}$$

$$= \frac{(x)_{\lambda}^k}{k!} t^k (1+\lambda t)^{1-x}.$$

Therefore, by (2.2), we obtain the following theorem.

Theorem 2.1. For $x \in [0,1]$ and $k = 0, 1, 2, \cdots$, we have

$$\frac{1}{k!} (x)_{\lambda}^k (1+\lambda t)^{1-x} = \sum_{n=k}^{\infty} B_{k,n}(x|\lambda) \frac{t^n}{n!}.$$
From (2.1), we note that
\[B_{k,n}(x|\lambda) = \binom{n}{k} (x)_{k,\lambda} (1-x)^{n-k,\lambda} = \binom{n}{n-k} (x)^{k,\lambda} (1-x)^{n-k,\lambda}. \] (2.3)

By replacing \(x \) by \(1-x \), we get
\[B_{k,n}(1-x|\lambda) = \binom{n}{n-k} (1-x)^{k,\lambda} (x)^{n-k,\lambda} = B_{n-k,n}(x|\lambda), \] (2.4)

where \(n, k \in \mathbb{N} \cup \{0\} \), with \(0 \leq k \leq n \).

Therefore, by (2.4), we obtain the following theorem.

Theorem 2.2. (Symmetric identities) For \(n, k \in \mathbb{N} \cup \{0\} \), with \(k \leq n \), and \(x \in [0,1] \), we have
\[B_{n-k,n}(x|\lambda) = B_{k,n}(1-x|\lambda). \]

Now, we observe that
\[
\frac{n-k}{n} B_{k,n}(x|\lambda) + \frac{k+1}{n} B_{k+1,n}(x|\lambda)
= \frac{n-k}{n} \binom{n}{k} (x)_{k,\lambda} (1-x)^{n-k,\lambda} + \frac{k+1}{n} \binom{n}{k+1} (x)_{k+1,\lambda} (1-x)^{n-k-1,\lambda}
= \frac{(n-1)!}{k!(n-k-1)!} (x)_{k,\lambda} (1-x)^{n-k,\lambda} + \frac{(n-1)!}{k!(n-k-1)!} (x)_{k+1,\lambda} (1-x)^{n-k-1,\lambda}
= (1-x-(n-k-1)\lambda) B_{k,n-1}(x|\lambda) + (x-k\lambda) B_{k,n-1}(x|\lambda)
= (1+\lambda(1-n)) B_{k,n-1}(x|\lambda).
\]
(2.5)

Therefore, by (2.5), we obtain the following theorem.

Theorem 2.3. For \(k \in \mathbb{N} \cup \{0\} \), \(n \in \mathbb{N} \), with \(k \leq n-1 \), and \(x \in [0,1] \), we have
\[(n-k) B_{k,n}(x|\lambda) + (k+1) B_{k+1,n}(x|\lambda) = (1+\lambda(1-n)) B_{k,n-1}(x|\lambda). \] (2.6)

From (2.1), we have
\[
\frac{n-k+1}{k} \binom{n-(k-1)\lambda}{1-x-(n-k)\lambda} B_{k-1,n}(x|\lambda)
= \frac{n-k+1}{k} \binom{n-(k-1)\lambda}{1-x-(n-k)\lambda} \binom{n}{k-1} (x)_{k-1,\lambda} (1-x)^{n-k+1,\lambda}
= \frac{n!}{k!(n-k)!} (x)_{k-1,\lambda} (1-x)^{n-k,\lambda} = B_{k,n}(x|\lambda).
\]
(2.7)

Therefore, by (2.7), we obtain the following theorem.
Theorem 2.4. For \(n, k \in \mathbb{N}, \) with \(k \leq n, \) we have

\[
\left(\frac{n - k + 1}{k} \right) \left(\frac{n - (k - 1) \lambda}{1 - x - (n - k) \lambda} \right) B_{k-1,n}(x|\lambda) = B_{k,n}(x|\lambda).
\]

For \(0 \leq k \leq n, \) we get

\[
(1 - x - (n - k - 1) \lambda) B_{k,n-1}(x|\lambda) + (x - (k - 1) \lambda) B_{k-1,n-1}(x|\lambda)
\]

\[
= (1 - x - (n - k - 1) \lambda) \binom{n - 1}{k} (x)_k \lambda (1 - x)_{n-1-k,\lambda}
\]

\[
+ (x - (k - 1) \lambda) \binom{n - 1}{k-1} (x)_{k-1} \lambda (1 - x)_{n-k,\lambda}
\]

\[
= \left(\binom{n - 1}{k} + \binom{n - 1}{k-1} \right) (x)_k \lambda (1 - x)_{n-k,\lambda} = \binom{n}{k} (x)_k \lambda (1 - x)_{n-k,\lambda}.
\]

Therefore, by (2.8), we obtain the following theorem.

Theorem 2.5. (Recurrence formula). For \(k, n \in \mathbb{N}, \) with \(k \leq n - 1, \) \(x \in [0,1], \) we have

\[
(1 - x - (n - k - 1) \lambda) B_{k,n-1}(x|\lambda) + (x - (k - 1) \lambda) B_{k-1,n-1}(x|\lambda) = B_{k,n}(x|\lambda).
\]

Remark 1. For \(n \in \mathbb{N}, \) we have

\[
\sum_{k=0}^{n} \frac{k}{n} B_{k,n}(x|\lambda) = \sum_{k=0}^{n} \binom{n}{k} (x)_k \lambda (1 - x)_{n-k,\lambda}
\]

\[
= \sum_{k=1}^{n} \binom{n - 1}{k-1} (x)_k \lambda (1 - x)_{n-k,\lambda} = \sum_{k=0}^{n-1} \binom{n - 1}{k} (x)_{k+1} \lambda (1 - x)_{n-1-k,\lambda}
\]

\[
= (x - k \lambda) \sum_{k=0}^{n-1} \binom{n - 1}{k} (x)_k \lambda (1 - x)_{n-1-k,\lambda} = (x - k \lambda) (x \oplus_\lambda (1 - x))^{n-1}.
\]

Now, we observe that
\[
\sum_{k=2}^{n} \frac{k}{2} B_{k,n}(x|\lambda) = \sum_{k=2}^{n} \frac{k(k-1)}{n(n-1)} \binom{n}{k} (x)_{k,\lambda} (1-x)_{n-k,\lambda}
\]
\[
= \sum_{k=2}^{n} \frac{k(k-1)}{n(n-1)} \binom{n}{k} (x)_{k,\lambda} (1-x)_{n-k,\lambda}
\]
\[
= \sum_{k=2}^{n} \binom{n-2}{k-2} (x)_{k,\lambda} (1-x)_{n-k,\lambda}
\]
\[
= \sum_{k=2}^{n} \binom{n-2}{k} (x)_{k+2,\lambda} (1-x)_{n-2-k,\lambda}
\]
\[
= (x-k\lambda)(x-(k+1)\lambda) \sum_{k=0}^{n-2} \binom{n-2}{k} (x)_{k,\lambda} (1-x)_{n-2-k,\lambda}.
\]

(2.9)

Similarly, we have
\[
\sum_{k=i}^{n} \frac{k}{i} B_{k,n}(x|\lambda) = (x-k\lambda)_{i,\lambda} \sum_{k=0}^{n-i-1} \binom{n-i}{k} (x)_{k,\lambda} (1-x)_{n-i-k,\lambda}
\]
\[
= (x-k\lambda)_{i,\lambda} (x \oplus \lambda (1-x))^{n-i}.
\]

(2.10)

From (2.10), we note that
\[
(x-k\lambda)_{i,\lambda} = \frac{1}{(x \oplus \lambda (1-x))^{n-i}} \sum_{k=i}^{n} \frac{k}{i} B_{k,n}(x|\lambda),
\]

(2.11)

where \(n, i \in \mathbb{N}\), with \(i \leq n\), and \(x \in [0,1]\).

Therefore, by (2.11), we obtain the following theorem.

Theorem 2.6. For \(n, i \in \mathbb{N}\), with \(i \leq n\), and \(x \in [0,1]\), we have
\[
(x-k\lambda)_{i,\lambda} = \frac{1}{(x \oplus \lambda (1-x))^{n-i}} \sum_{k=i}^{n} \frac{k}{i} B_{k,n}(x|\lambda).
\]
From Theorem 2.1, we note that
\[
t_k \frac{x_{k, \lambda} (1 + \lambda t)^{\frac{1}{k}}}{k!} = \frac{(x)_{k, \lambda}}{k!} \left((1 + \lambda t)^{\frac{1}{k}} - 1 \right)^k \left(\frac{t}{(1 + \lambda t)^{\frac{1}{k}} - 1} \right)^k (1 + \lambda t)^{\frac{1}{k} - x}
\]

\[
= (x)_{k, \lambda} \left(\sum_{m=k}^{\infty} S_{2, \lambda}(m, k) \frac{t^m}{m!} \right) \left(\sum_{l=0}^{\infty} \beta_{l, \lambda}^{(k)} (1 - x) \frac{t^l}{l!} \right)
\]

\[
= (x)_{k, \lambda} \sum_{n=k}^{\infty} \left(\sum_{m=k}^{n} \binom{n}{m} S_{2, \lambda}(m, k) \beta_{n-m, \lambda}^{(k)} (1 - x) \right) \frac{t^n}{n!}.
\]

(2.12)

On the other hand,
\[
\frac{(x)_{k, \lambda}}{k!} t^k (1 + \lambda t)^{\frac{1}{k} - x} = \sum_{n=k}^{\infty} B_{k, n}(x|\lambda) \frac{t^n}{n!}.
\]

(2.13)

Therefore, by (2.12) and (2.13), we obtain the following theorem.

Theorem 2.7. For \(n, k \in \mathbb{N} \cup \{0\}\) with \(n \geq k\), we have

\[
B_{k, n}(x|\lambda) = (x)_{k, \lambda} \sum_{m=k}^{n} \binom{n}{m} S_{2, \lambda}(m, k) \beta_{n-m, \lambda}^{(k)} (1 - x).
\]

Let \(\Delta\) be the shift difference operator with \(\Delta f(x) = f(x + 1) - f(x)\). Then we easily get

\[
\Delta^n f(0) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} f(k), \quad (n \in \mathbb{N} \cup \{0\}).
\]

(2.14)

Let us take \(f(x) = (x)_{m, \lambda}\), \((m \geq 0)\). Then, by (2.14), we get

\[
\Delta^n (0)_{m, \lambda} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} (k)_{m, \lambda}.
\]

(2.15)

From (1.7), we note that

\[
\sum_{n=k}^{\infty} S_{2, \lambda}(n, k) \frac{t^n}{n!} = \frac{k}{k!} \left((1 + \lambda t)^{\frac{1}{k}} - 1 \right)^k = \frac{1}{k!} \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} (1 + \lambda t)^{\frac{l}{k}}
\]

\[
= \sum_{n=0}^{\infty} \left(\frac{1}{k!} \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} (l)_{n, \lambda} \right) \frac{t^n}{n!}.
\]

(2.16)

Thus, by comparing the coefficients on both sides of (2.16), we have

\[
\frac{1}{k!} \Delta^k (0)_{n, \lambda} = \frac{1}{k!} \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} (l)_{n, \lambda} = \begin{cases} S_{2, \lambda}(n, k) & \text{if } n \geq k, \\ 0 & \text{if } n < k. \end{cases}
\]

(2.17)
By (2.17), we get
\[\frac{1}{k!} \Delta^k(0)_{n,\lambda} = S_{2,\lambda}(n, k), \text{ if } n \geq k. \] (2.18)

From Theorem 7 and (2.18), we obtain the following corollary.

Corollary 2.8. For \(n, k \in \mathbb{N} \cup \{0\} \) with \(n \geq k \), we have
\[B_{k,n}(x|\lambda) = (x)_{k,\lambda} \sum_{m=k}^{n} \binom{n}{m} \beta^{(k)}_{n-m,\lambda} (1-x) \frac{1}{k!} \Delta^k(0)_{m,\lambda}. \]

Now, we observe that
\[(1 + \lambda t)^x = \left((1 + \lambda t)^{\frac{x}{\lambda}} - 1 + 1\right)^x = \sum_{k=0}^{\infty} \binom{x}{k} \left((1 + \lambda t)^{\frac{x}{\lambda}} - 1\right)^k \]
\[= \sum_{k=0}^{\infty} (x)_{k,\lambda} \frac{1}{k!} \left((1 + \lambda t)^{\frac{x}{\lambda}} - 1\right)^k \]
\[= \sum_{k=0}^{\infty} (x)_{k,\lambda} \sum_{n=k}^{\infty} S_{2,\lambda}(n, k) \frac{t^n}{n!} \]
\[= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} (x)_{k,\lambda} S_{2,\lambda}(n, k) \right) \frac{t^n}{n!}. \] (2.19)

On the other hand,
\[(1 + \lambda t)^x = \sum_{n=0}^{\infty} \binom{x}{n} \lambda^n t^n = \sum_{n=0}^{\infty} (x)_{n,\lambda} \frac{t^n}{n!}. \] (2.20)

Therefore, by (2.19) and (2.20), we obtain the following theorem.

Theorem 2.9. For \(n \geq 0 \), we have
\[(x)_{n,\lambda} = \sum_{k=0}^{n} (x)_{k,\lambda} S_{2,\lambda}(n, k). \]

By Theorem 2.9, we easily get
\[(x - k\lambda)_{i,\lambda} = \sum_{l=0}^{i} (x - k\lambda)_{i} S_{2,\lambda}(i, l). \] (2.21)

From Theorem 2.6, we have the following theorem.

Theorem 2.10. For \(n, i \in \mathbb{N} \), with \(i \leq n \), and \(x \in [0, 1] \), we have
\[\sum_{i=0}^{n} (x - k\lambda)_{i} S_{2,\lambda}(i, l) = \frac{1}{(x \oplus \lambda (1-x))^{n-i}} \sum_{k=0}^{n} \binom{k}{l} B_{k,n}(x|\lambda). \]
References

1. S. Araci, M. Acikgoz, *A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials*, Adv. Stud. Contemp. Math. (Kyungshang) **22** (2012), no. 3, 399-406.

2. M. Arató, A. Rényi, *Probabilistic proof of a theorem on the approximation of continuous functions by means of generalized Bernstein polynomials*, Acta Math. Acad. Sci. Hungar. **8** (1957), 91-98.

3. V. A. Baskakov, *A generalization of the Bernstein polynomials*, (Russian) Izv. Vysš. Učebn. Zaved. Matematika **1960** (1960), no. 3 (16), 48-53.

4. L. Carlitz, *Degenerate Stirling, Bernoulli and Eulerian numbers*, Utilitas Math. **15** (1979), 51-88.

5. L. Carlitz, *A degenerate Staudt-Clausen theorem*, Arch. Math. (Basel) **7** (1956), 28-33.

6. T. Kim, *A note on q-Bernstein polynomials*, Russ. J. Math. Phys. **18** (2011), no. 1, 73-82.

7. T. Kim, *λ-analogue of Stirling numbers of the first kind*, Adv. Stud. Contemp. Math. (Kyungshang) **27** (2017), no. 3, 423-429.

8. T. Kim, *A note on degenerate Stirling polynomials of the second kind*, Proc. Jangjeon Math. Soc. **20** (2017), no. 3, 319-331.

9. T. Kim, D. S. Kim, *Degenerate Laplace Transform and degenerate gamma functions*, Russ. J. Math. Phys. **24** (2017), 241–248.

10. T. Kim, Y. Yao, D. S. Kim, G.-W. Jang, *Degenerate r–Stirling numbers and r–Bell polynomials*, Russ. J. Math. Phys. **25** (2018), no. 1, 44–58.

11. G. G. Lorentz, *Bernstein polynomials*, Second edition. Chelsea Publishing Co., New York, 1986.

12. S.-H. Rim, J. Joung, J.-H. Jin, S.-J. Lee, *A note on the weighted Carlitz’s type q-Euler numbers and qBernstein polynomials*, Proc. Jangjeon Math. Soc. **15** (2012), no. 2, 193-201.

13. C. S. Ryoo, *Some relations between twisted q-Euler numbers and Bernstein polynomials*, Adv. Stud. Contemp. Math. (Kyungshang) **21** (2011), no. 2, 217-223.

14. M.A. Siddiqui, R. R. Agrawal, N. Gupta, *On a class of modified new Bernstein operators*, Adv. Stud. Contemp. Math. (Kyungshang) **24** (2014), no. 1, 97-107.

15. Y. Simsek, *Combinatorial identities associated with Bernstein type basis functions*, Filomat **30** (2016), no. 7, 1683-1689.

16. Y. Simsek, *Generating functions for unification of the multidimensional Bernstein polynomials and their applications*, Math. Methods Appl. Sci. **2018**, 1–12.

17. O. Szasz, *Generalization of S. Bernstein’s polynomials to the infinite interval*, J. Research Nat. Bur. Standards **45** (1950), 239-245.