Accelerometer-measured physical activity and cognitive functioning: A Mendelian
Randomization study

Boris Cheval1,2,a,*, Liza Darrous3,4,a,*, Karmel W. Choi5, Yann C. Klimentidis6, David A.
Raichlen7,8, Gene E. Alexander9,10,11,12, Stéphane Cullati13, Zoltán Kutalik3,4,b,*, Matthieu P.
Boisgontier14,15,b,*

1Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
2Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of
Psychology, University of Geneva, Geneva, Switzerland
3University for Primary Care and Public Health, University of Lausanne, Switzerland
4Swiss Institute of Bioinformatics, Lausanne, Switzerland
5Department of Psychiatry, Massachusetts General Hospital, Massachusetts, Boston MA, USA
6Department of Epidemiology and Biostatistics, University of Arizona, AZ, USA
7Human and Evolutionary Biology Section, Department of Biological Sciences, University of
Southern California, Los Angeles, CA, USA
8Department of Anthropology, University of Southern California, Los Angeles, CA, USA
9Department of Psychology, University of Arizona, AZ, USA
10Department of Psychiatry, University of Arizona, AZ, USA
11Evelyn F. McKnight Brain Institute, University of Arizona, AZ, USA
12Arizona Alzheimer’s Disease Consortium, AZ, USA
13Population Health Laboratory, Department of Community Health, University of Fribourg,
Fribourg, Switzerland
14School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa,
ON, Canada
15Bruyère Research Institute, Ottawa, ON, Canada

*aBC and LZ contributed equally to this work.
*bMPB and ZK jointly directed this work.
*To whom correspondence may be addressed. E-mail: boris.cheval@unige.ch,
liza.darrous@unil.ch, zoltan.kutalik@unil.ch, or matthieu.boisgontier@uottawa.ca
ORCID IDs
Boris Cheval: 0000-0002-6236-4673
Liza Darrous: 0000-0002-0056-4127
Karmel W. Choi: 0000-0002-3914-2431
Yann C. Klimentidis: 0000-0002-6065-4044
David Raichlen: 0000-0002-4940-7886
Gene E. Alexander: 0000-0002-6476-5606
Stéphane Cullati: 0000-0002-3881-446X
Zoltán Katalik: 0000-0001-8285-7523
Matthieu P. Boisgontier: 0000-0001-9376-3071

Classification
Social Sciences; Psychological and Cognitive Sciences

Keywords
Cognition; Exercise; Health Behavior; Mendelian Randomization Analysis; Accelerometry

Author contributions
B.C., M.P.B conceived and designed the study. L.D., Z.K. analyzed the data. B.C., M.P.B., L.D, Z.K. drafted the manuscript. All authors critically appraised the manuscript, worked on its content, and approved its submitted version.

Competing interests
The authors declare no conflict of interests.

Ethical approval
This study was approved by the Ethics Committee of Geneva Canton, Switzerland (CCER-2019-00065).

Data sharing
The datasets used for the analysis are openly available from the Neale Lab GWAS results at http://www.nealelab.is/uk-biobank and from the Social Science Genetic Association Consortium Downloads at https://www.thessgac.org/data. Only the new GWAS dataset created for the fractions of physical activity are available with permission from the UK Biobank.
The LHC-MR code is available at https://github.com/LizaDarrous/lhcMR.

Acknowledgements
B.C. is supported by an Ambizione grant (PZ00P1_180040) from the Swiss National Science Foundation (SNSF). M.P.B. is supported by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2021-03153) and the Banting Research Foundation. Y.C.K. is supported by the National Institute of Health (R01 HL136528). The authors are thankful to Gail Davies for providing useful comments on the manuscript.

Word count
Significance: 119
Abstract: 178
Manuscript, characters including spaces (whole document): 4230
Tables: 2
Figures: 2
Abstract

Physical activity and cognitive functioning are strongly intertwined. However, the causal relationships underlying this association are still unclear. Physical activity can enhance brain functions, but healthy cognition may also promote engagement in physical activity. Here, we assessed the bidirectional relationships between physical activity and general cognitive functioning using Latent Heritable Confounder Mendelian Randomization (LHC-MR). Association data were drawn from two large-scale genome-wide association studies (UK Biobank and COGENT) on accelerometer-measured moderate, vigorous, and average physical activity (N = 91,084) and cognitive functioning (N = 257,841). After Bonferroni correction, we observed significant LHC-MR associations suggesting that increased fraction of both moderate (b = 0.32, CI_{95%} = [0.17,0.47], P = 2.89e-05) and vigorous physical activity (b = 0.22, CI_{95%} = [0.06,0.37], P = 0.007) lead to increased cognitive functioning. In contrast, we found no evidence of a causal effect of average physical activity on cognitive functioning, and no evidence of a reverse causal effect (cognitive functioning on any physical activity measures). These findings provide new evidence supporting a beneficial role of moderate and vigorous physical activity (MVPA) on cognitive functioning.

Significance Statement

Whether the observed correlation between physical activity and cognitive functioning reflects causal relationships in either direction is still unclear. To investigate the potential causal relationships underlying this association, we conducted recently-improved genetically-informed analyses with two large-scale datasets including accelerometer-measured physical activity. In line with theoretical models and previous experimental work explaining the mechanisms underlying the association between physical activity and cognitive functioning, our results revealed a one-way association: Higher levels of moderate and vigorous physical activity can potentially cause higher cognitive functioning. These findings suggest that physical activity plays a fundamental role in general cognitive functioning, and that health policies and interventions promoting moderate or vigorous physical activity are relevant to improve cognitive performance and to delay its decline.
Introduction

Promoting healthy aging is a public health priority (1, 2). Physical activity and cognitive functioning are prime targets of this advocacy because their decline is associated with increased disability and mortality (3-7). Multiple cross-sectional and longitudinal studies have shown that physical activity and cognitive functioning are strongly intertwined and decline through the course of life (8-12). However, the causality of this relationship is still unclear. Previous results have indicated that physical activity may improve cognitive functioning (13-19), but recent studies have also suggested that well-functioning cognitive skills can influence engagement in physical activity (8, 20-27).

Several mechanisms could explain how physical activity enhances general cognitive functioning (19, 28-34). For example, physical activity can increase brain plasticity, angiogenesis, synaptogenesis, and neurogenesis primarily through the upregulation of growth factors (e.g., brain-derived neurotrophic factor; BDNF) (30, 31, 33). In addition, the repetitive activation of higher-order brain functions (e.g., planning, inhibition, and reasoning) required to engage in physical activity may contribute to the improvement of these functions (34, 35). In turn, other mechanisms could explain how cognitive functioning may affect physical activity. For example, greater cognitive functioning may be required to counteract the innate tendency for effort minimization, and thereby influence a person’s ability to engage in physically active behaviors (36-41). Of note, these mechanisms are not mutually exclusive and could therefore lead to bidirectionally reinforcing relationships (i.e., positive feedback loop) between physical activity and cognitive functioning (42).

Although previous findings point to a potential mutually beneficial interplay between physical activity and cognitive functioning, these findings mainly stem from observational designs and analytical methods that cannot fully rule out the influence of social, behavioral, and genetic confounders or uni-directional causation (42). Accordingly, evidence for a one- or two-way association between physical activity and cognitive functioning could be considered weak. Mendelian Randomization (MR) is a statistical approach for causal inference that can overcome this weakness of traditional observational studies. Specifically, MR uses genetic variants that are randomly distributed in a population as instruments to reduce the risk of confounding or reverse causation (43, 44). MR-based effect estimates rely on three main assumptions (45) stating that genetic instruments i) are strongly associated with the exposure (relevance assumption), ii) are independent of confounding factors of the exposure-outcome relationship (independence assumption), and iii) are not associated to the outcome conditional on the
exposure and potential confounders (exclusion restriction assumption). Well-powered genome-wide association studies (GWAS) offer multiple genetic instruments that are strongly associated with exposures of interest (cognitive functioning or physical activity in our case), which validates the relevance assumption. Each of these genetic variants (instruments) provides a causal effect estimate of the exposure on the outcome, which can be in turn combined through meta-analysis using inverse-variance weighting (IVW) to obtain an overall estimate. The second and third assumptions are less easily validated and can be violated in the case of a heritable confounder affecting the exposure-outcome relationship and biasing the causal estimate. Such confounders can give rise to instruments with proportional effects on the exposure and outcome, hence violating the INstrument Strength Independent of Direct Effect (InSIDE) assumption requiring the independence of the exposure and direct outcome effects.

There have been several extensions to the common IVW method of MR analysis, including MR-Egger, which allows for directional pleiotropy of the instruments and attempts to correct the causal regression estimate. Other extensions, such as median and mode-based estimators, assume that at least half of or the most “frequent” genetic instruments are valid/non-pleiotropic. However, despite the extensions and their assumptions, these methods still suffer from two major limitations. First, they only use a subset of markers as instruments (genome-wide significant markers), which often dilutes the true relationship between traits. Second, they ignore the presence of a potential latent heritable confounder of the exposure-outcome relationship (e.g., body mass index, educational attainment, level of physical activity at work, or material deprivation).

The present study applies the Latent Heritable Confounder MR (LHC-MR) method (46), which addresses the aforementioned limitations, to simultaneously estimate the bidirectional causal effects between physical activity and cognitive functioning, while accounting for possible heritable confounders of their relationship. Unlike standard MR, LHC-MR accounts for sample overlap from genome-wide genetic instruments, thereby allowing the exposure and the outcome to originate either from overlapping datasets or the same dataset. As such, LHC-MR is an innovative method that exploits the full genome-wide architecture of the exposure trait to maintain sufficient power when few genome-wide significant instruments are available, as is the case for physical activity. In the current study, LHC-MR maintained a reasonable level of power to accurately estimate the bidirectional relationships, while standard MR methods were likely underpowered (46).
Here, the causal estimates were modelled based on summary statistics from large-scale GWAS of accelerometer-measured physical activity (47) and general cognitive functioning (48, 49). Since it has been suggested that the intensity of physical activity may be an important consideration, with moderate intensity having greater beneficial effects than vigorous intensity (50-54), we assessed whether the causal effect estimates on cognitive functioning were dependent on physical activity intensity (i.e., moderate vs. vigorous vs. average).

Results

Three measures derived from accelerometer wear were used as a proxy for physical activity: average, moderate, and vigorous physical activity. These three measures were used in LHC-MR to investigate the possible bidirectional causal effects between them and cognitive functioning. The model tested was adjusted for age, sex, genotyping chip, first ten genomic principal components (PC), center, and season (month) of wearing accelerometer. The Bonferroni correction was used to control for familywise error rates, yielding an $\alpha = 0.05 / (2 \text{ directions } \times 3 \text{ tests}) = 0.008$.

Average physical activity and general cognitive functioning

LHC-MR applied to summary statistics belonging to model 1 showed no evidence for a potential causal effect of average physical activity on cognitive functioning ($b = 0.245$, $\text{CI}_{95\%} = [-0.01,0.50]$, $P = 0.065$) (Table 1, Figure 2) and no evidence for the reverse causal effect ($b = -0.145$, $\text{CI}_{95\%} = [-0.26,-0.03]$, $P = 0.013$ [$\alpha = 0.008$]). Similarly, standard MR methods such as IVW, MR Egger, weighted median, simple mode, and weighted mode yielded non-significant causal estimates in either direction (Table 2), using 129 genome-wide significant single nucleotide polymorphisms (SNPs) as instruments for cognitive functioning and 6 SNPs for average acceleration.

Moderate physical activity and general cognitive functioning

LHC-MR applied to the fraction of accelerations corresponding to moderate physical activity showed a potential positive causal effect of moderate physical activity on greater cognitive functioning ($b = 0.32$, $\text{CI}_{95\%} = [0.17,0.47]$, $P = 2.89e-05$) (Table 1, Figure 2). We found no evidence for the reverse causal effect ($b = -0.071$, $\text{CI}_{95\%} = [-0.15, 0.01]$, $P = 0.078$ [$\alpha = 0.008$]). As was found with average physical activity, there was no evidence for the presence of a heritable confounder. Standard MR methods yielded non-significant causal estimates in both directions (Table 2).
Vigorous physical activity and general cognitive functioning

LHC-MR applied to the fraction of accelerations corresponding to vigorous physical activity on cognitive functioning showed a potential positive causal effect of vigorous physical activity on greater cognitive functioning ($b = 0.22$, CI$_{95\%} = [0.06,0.37]$, $P = 0.007$) (Table 1, Figure 2). We found no evidence for the reverse causal effect ($b = -0.031$, CI$_{95\%} = [-0.08, 0.02]$, $P = 0.237$ [$\alpha = 0.008$]). As was found with average and moderate physical activity, there was no evidence for the presence of a heritable confounder. Of note, the coefficient of this causal effect was qualitatively weaker than of the causal effect of moderate physical activity on cognitive functioning ($b = 0.22$ vs. $b = 0.32$). Standard MR methods yielded non-significant causal estimates in both directions (Table 2).

Sensitivity analyses

We tested another model where an extra adjustment had been done for the baseline self-reported level of physical activity at work, walking or standing at work, and the Townsend Deprivation Index. LHC-MR applied to summary statistics emerging from this second model showed consistent results with that of the first model ($b = 0.22$, CI$_{95\%} = [-0.05,0.50]$, $P = 0.111$ and $b = -0.090$, CI$_{95\%} = [-0.23,0.05]$, $P = 0.200$, respectively). Both models showed no evidence for the presence of a heritable confounder. Due to the similarity in results between these models, we did not conduct this second model on moderate and vigorous physical activity.

Discussion

This study used a genetically informed method that provides evidence of putative causal relations to investigate the bidirectional associations between accelerometer-based physical activity and general cognitive functioning. Drawing on large-scale GWAS, we found evidence for potential causal effects, suggesting that higher levels of moderate and vigorous physical activity lead to increased cognitive functioning. In the opposite direction, we did not observe evidence of a causal effect of cognitive functioning on physical activity. Hence, our study suggests a favorable effect of moderate and vigorous physical activity on cognitive functioning, but does not provide evidence that increased cognitive functioning promotes engagement in more physical activity.

Previous reviews and meta-analyses of observational studies showed a beneficial effect of physical activity on cognitive functioning (13, 16, 17, 34). However, the evidence arising from intervention studies was inconclusive (18, 19, 21-23, 55). It has been argued that these
inconsistencies may primarily be attributed to the design-specific tools used to assess physical activity (21). Specifically, many observational studies rely on self-reported measures of physical activity, whereas intervention studies often rely on accelerometer-measured physical activity, or have people exercising under monitored conditions. In other words, evidence of a favorable effect of physical activity on cognitive functioning could have emerged because of the self-reported nature of the measures. Yet, in our study, results are based on accelerometer-assessed physical activity, thereby partially ruling out this explanation. Therefore, our findings further support the literature that demonstrated a protective role of physical activity on cognitive functioning and extend it by doing so using an accelerometer-based measure. Our findings are in line with recent MR-based results showing a protective effect of objectively assessed, but not self-reported, physical activity on the risk of depression (42). Of note, results obtained from LHC-MR differed from those obtained with standard MR methods. At least three key differences in the methods can explain this divergence: i) standard MR uses only genome-wide significant markers, ii) standard MR is biased in case of sample overlap (as is the case in this study) and hence their estimate may be biased towards the observational correlation, and iii) LHC-MR explicitly models correlated pleiotropy unlike standard MR. Accordingly, our results obtained from LHC-MR are expected to be more robust than those obtained from standard MR. Since LHC-MR could not find evidence for the presence of a heritable confounder, correlated pleiotropy is less likely, or there might be multiple confounders with opposite effects cancelling each other out. This finding highlights that the main reason for the difference between LHC-MR and classical MR methods is statistical power. For testing the reverse causal effect (cognition on physical activity), we had numerous instruments available, ensuring that all MR-methods are well-powered and yielding the same (null effect) conclusion. The forward effect (physical activity on cognition) relied on only a few (weak) instruments, rendering classical MR methods notably underpowered. This is the type of situation in which methods such as LHC-MR, which leverage genome-wide genetic markers, are crucial to facilitate discovery. It is important to point out that while the statistical conclusion from classical and LHC-MR methods differ, their effect estimates are not significantly different, suggesting that there is no discrepancy in the results, but that they have different precision. Finally, we acknowledge that LHC-MR assumptions may be violated and results should thus still be considered cautiously. Yet, while the assumptions of LHC-MR may not hold, the assumptions of the other five methods are known not to hold because of insufficient genome-wide significant instrument. To the best of our knowledge, our study is the first to investigate the potential causal relationship between physical activity and cognitive functioning using a genetically informed
method. We are aware of only two other, non-genetic studies that examined the potential bidirectional associations between physical activity and cognitive functioning (8, 20). In contrast to the present study, those two studies observed a positive influence of cognitive functioning on physical activity. At least two factors can explain the differences in the results observed. First, both those studies are based on longitudinal assessment (Granger causality) of the two traits, while our approach is based on a genetically instrumented causal inference technique (LHC-MR). Second, these studies draw on self-reported physical activity rather than accelerometer-measured physical activity, which may have biased the observed associations between cognitive functioning and physical activity.

Our results obtained with recently-improved genetically-informed analyses (LHC-MR) highlight the potential critical role of physical activity, specifically of moderate and vigorous intensity, on cognitive functioning. However, it should be noted that the estimated effect of moderate physical activity on cognitive functioning was about 1.5 times stronger in magnitude than the effect of vigorous physical activity. This result is consistent with previous literature that have suggested that moderate physical activity yields higher benefits of cognitive functioning compared to vigorous physical activity (50-54). However, to the best of our knowledge, this study is the first to assess and compare the causal relationships of moderate and vigorous physical activity with cognitive functioning with a genetically informed method based on large-scale datasets. Several mechanisms can explain how physical activity of varying intensities may enhance brain functioning. Physical activity promotes neurogenesis, gliogenesis, neuronal excitability, angiogenesis, cortical thickness, and growth factor production (19, 28-34). Moreover, the particular benefits of moderate physical activity could be explained by differences in the quantity of hormones released in the blood. For example, one study observed an inverted U relationships between physical activity intensity and endocannabinoids, with vigorous intensities reducing the concentrations in peripheral endocannabinoids compared with moderate intensities (56). Consequently, vigorous physical activity may be less effective in enhancing cognitive functions than moderate physical activity. Another potential explanation is the stress response associated with vigorous physical activity yielding a large cortisol release that can have a detrimental effect on aspects of cognitive functioning, such as memory (57, 58).

The LHC-MR method revealed two causal relations that are consistent with each other. Importantly, these findings are consistent with theoretical and experimental work explaining the mechanisms underlying the association between the physical activity and cognitive functioning (13-19, 28-35). Results obtained with both the LHC and standard MR methods
showed no evidence of an effect of average physical activity on cognitive functioning. This finding can likely be explained by physical activities of low intensity (i.e., < 100 mg) that are part of the average physical activity, which further suggests that physical activity should be of moderate-to-vigorous intensity to benefit cognitive functioning. Yet, this result contrasts with previous studies showing that total volume of physical activity was associated with cardiovascular disease (59) and all causes of mortality (60). These discrepancies may be due to potential differences in the types of physical activity performed by the participants, or by the fact that cardiovascular disease and mortality could be more responsive to light physical activity than cognitive function. Likewise, studies have suggested that not all physical activities are equal in their effect on cognitive functioning. For example, physical activities that require advanced planning, inhibitory control, and reasoning skills have more pronounced benefits on cognitive functioning (34, 35, 61, 62).

The absence of evidence for a reverse causal effect of cognitive functioning on physical activity may be partly explained by the lower power of this analysis due to smaller sample size of the GWAS of physical activity (n = 91,084) compared to the sample size of the GWAS of cognitive functioning (n = 257,841). This absence of evidence contrasts with other studies arguing that cognitive functioning is critical for supporting engagement in physical activity (27, 36, 37). This difference could be explained in at least two ways. Firstly, previous studies examining the positive effect of cognitive functions on physical activity relied on self-reported physical activity, which can bias the observed associations (8, 24, 27). Secondly, our study relied on general cognitive functioning, whereas previous results highlight the specific importance of inhibition resources that may be required to counteract an innate tendency for effort minimization (27, 36-39, 41). Therefore, future studies should investigate the specific relationships between motor inhibition and physical activity when such data is available.

Among the strengths of the current study are the use of large-scale datasets, the reliance on instruments derived from objective measures of physical activity, and the application of a robust genetically informed method that can estimate causal effects. However, this study has several features that limit the conclusions that can be drawn. First, the measure of cognitive functioning spans multiple performance domains, which reduced the specificity of the cognitive functioning that was assessed. This feature limits our ability to evaluate the putative causal effects between specific cognitive functioning, such as motor inhibition, and physical activity. Second, MR analysis is designed to elucidate a life-long exposure effect on a life-long outcome (except in special cases when genetic factors have time-dependent effects), thus it is not suited to explore temporal aspects of these causal relationships. Third, 2-sample MR methods require that SNP
effects on the exposure are homogeneous between the two samples. Here, because our two samples differ in age, we rely on the assumption that these genetic effects do not change depending on age. This assumption often turns out to be true, although there are rare exceptions (63). Fourth, LHC-MR can be limited by the low heritability of traits, potentially causing bimodal/unreliable estimates. Fifth, LHC-MR assumes a single confounder (or several ones with similar effects), but a limitation exists when multiple confounders are present with similar but opposing effect directions on the traits of interest, resulting in a higher misdetection rate. Finally, it is worth noting that the genetic instruments were developed on a primarily white population of European ancestry, limiting the generalizeability of the results.

Our findings provide preliminary support for a unidirectional relation whereby higher levels of moderate and vigorous physical activity lead to improved cognitive functioning. These results underline the essential role of moderate and vigorous physical activity in maintaining or improving general cognitive functioning. Therefore, health policies and interventions that promote moderate and vigorous physical activity are relevant to improve cognitive functioning or to delay its decline.

Methods

Data sources and instruments
This study used de-identified GWAS summary statistics from original studies that were approved by relevant ethics committees. The current study was approved by the Ethics Committee of Geneva Canton, Switzerland (CCER-2019-00065). The available summary-level data were based on 257,841 samples for general cognitive functioning and 91,084 samples for accelerometer-based physical activity. Participants’ age ranged from 40 to 69 years in the UK Biobank and from 8 to 96 years in the COGENT consortium.

Physical activity

Accelerometer-measured physical activity was assessed based on summary statistics from a recent GWAS (47) analyzing accelerometer-based physical activity data from the UK Biobank. In the UK Biobank, about 100,000 participants wore a wrist-worn triaxial accelerometer (Axivity AX3) that was set up to record data for seven days. Individuals with less than 3 days (72 h) of data or not having data in each 1-hour period of the 24-h cycle or for whom the accelerometer could not be calibrated were excluded. Data for non-wear segments, defined as consecutive stationary episodes ≥ 60 min where all three axes had a standard deviation < 13 mg, were imputed. The details of data collection and processing can be found elsewhere (64).
We examined three measures derived from the three to seven days of accelerometer wear: the average acceleration in milli-gravities (mg), the fraction of accelerations > 100 mg and < 425 mg to estimate moderate physical activity (65), and fraction of accelerations ≥ 425 mg to estimate vigorous physical activity (65) (Manhattan plots and Q-Q plots can be found in Supplementary Material 1 and 2). The GWAS for average physical activity ($n_{max} = 91,084$) identified 2 independent genome-wide significant SNPs ($P < 5e-09$), with a SNP-based heritability of $\sim 14\%$.

As for the other two physical activity measures, the fractions of accelerations corresponding to moderate and vigorous physical activity were obtained by running new GWAS on the decomposed acceleration data from UK Biobank using the BGENIE software (66). The phenotype for moderate physical activity was limited to acceleration magnitudes ranging from 100 to < 425 mg, whereas vigorous physical activity was limited to acceleration magnitudes ranging from 425 to 2,000 mg. These acceleration fractions were adjusted for age, sex, and the first 40 PC, and the analyzed individuals were restricted to unrelated white-British. The two datasets of average physical activity summary statistics, alongside the moderate and vigorous physical activity summary statistics, were used in LHC-MR to investigate the possible bidirectional effect that exists between these physical activity traits and cognitive functioning.

General cognitive functioning

General cognitive functioning was assessed based on summary statistics from a recent GWAS combining cognitive and genetic data from the UK Biobank and the COGENT consortium ($N = 257,841$) (48). The phenotypes of these cohorts are well-suited to meta-analysis because their pairwise genetic correlation has been shown to be high (49). In the UK Biobank ($n_{max} = 222,543$) participants were asked to complete 13 multiple-choice questions that assessed verbal and numerical reasoning. The verbal and numerical reasoning score was based on the number of questions answered correctly within a two-minute time limit. Each respondent took the test up to four times. The phenotype consists of the mean of the standardized score across the measurement occasions for a given participant. In the COGENT consortium ($n_{max} = 35,298$), general cognitive function is statistically derived from a principal components analysis of individual scores on a neuropsychological test battery (67). The phenotype estimates overall cognitive functioning and is relatively invariant to the battery used and specific cognitive abilities assessed (68, 69). These COGENT data used to assess general cognitive functioning were also used in another GWAS study (49). The GWAS identified 226 independent genome-wide significant SNPs, with a SNP-based heritability of $\sim 20\%$.

13
Statistical analysis

MR is an epidemiological method in which the randomized inheritance of genetic variation is considered as a natural experiment to estimate the potential causal effect of a modifiable risk factor or exposure on health-related outcomes in an observational design (43, 44). MR draws on the assumption that genetic variants, because they are randomly allocated at conception, are less associated with other risk factors that may be confounders of the exposure and the outcome, and are immune to reverse causality since diseases or health-related outcomes have no reverse effect on genetic variants. Consequently, these genetic variants can be used as instrumental variables, potentially making MR less vulnerable to confounding or reverse causation than conventional approaches in observational studies (43, 44). However, MR and its various extensions that aim to relax several of its assumptions are still prone to biased estimates due to the presence of unmeasured genetic confounders (horizontal pleiotropy) and their use of only genome-wide significant markers from GWAS summary statistics.

LHC-MR (46) also uses GWAS summary statistics, but importantly, this new method appropriately uses genome-wide genetic markers to estimate bidirectional causal effects, direct heritability, and confounder effects while accounting for sample overlap. LHC-MR can be viewed as an extension of the linkage disequilibrium score regression (LDSC) (70) designed to estimate trait heritability, in that it models all genetic marker effects as random, but additionally estimates bidirectional causal effect, as well as other parameters. LHC-MR extends the standard two-sample MR by modeling a latent (unmeasured) heritable confounder that has an effect on the exposure and outcome traits. This allows LHC-MR to differentiate SNPs based on their co-association to a pair of traits and distinguish heritable confounding that leads to genetic correlation from actual causation. Thus, the unbiased bidirectional causal effect between these two traits are estimated simultaneously along with the confounder effect on each trait (Figure 1a-b). The LHC-MR framework, with its multiple pathways through which SNPs can have an effect on the traits, as well as its allowance for null effects, make LHC-MR more precise at estimating causal effects compared to standard MR methods (i.e., MR egger, weighted median, inverse variance weighted, simple mode, and weighted mode).

The likelihood function for LHC-MR, which is derived from the mixture of different pathways through which the genome-wide SNPs can have an effect (acting on either the exposure, the outcome, the confounder, or the combinations of these three), is then optimized given random starting values for the parameters it can estimate. The optimization of the likelihood function then yields the maximum likelihood estimate (MLE) value for a set of estimated parameters,
including the bidirectional causal effect between the exposure and the outcome as well as the strength of the confounder effect on each of those two traits.

The standard errors of each of the parameters estimated using LHC-MR were obtained by implementing a block jackknife procedure where the SNP effects are split into blocks, and the MLE is computed again in a leave-one-block-out fashion. The variance of the estimates can then be computed from the results of the various MLE optimizations. Furthermore, the causal estimates obtained from LHC-MR are on the scale of 1 standard deviation (SD) outcome difference upon a 1 SD exposure change due to the use of standardized summary statistics for the two traits.

A sensitivity analysis in which the model was further adjusted for baseline self-reported level of physical activity at work, walking or standing at work, and the Townsend Deprivation Index was conducted.
References

1. Kontis V, et al. (2017) Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet 389:1323-1335.
2. Rechel B, et al. (2013) Ageing in the European union. Lancet 381:1312-1322.
3. Clegg A, Young J, Iliffe S, Rikkert MO, & Rockwood K (2013) Frailty in elderly people. Lancet 381:752-762.
4. Boyle PA, Buchman AS, Wilson RS, Leurgans SE, & Bennett DA (2010) Physical frailty is associated with incident mild cognitive impairment in community-based older persons. J Am Geriatr Soc 58:248-255.
5. Lee I-M, et al. (2012) Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380:219-229.
6. Rowe JW & Kahn RL (1997) Successful aging. Gerontologist 37:433-440.
7. Aichele S, et al. (2018) Fluid intelligence predicts change in depressive symptoms in later life: the Lothian Birth Cohort 1936. Psychol Sci 29:1984-1995.
8. Cheval B, et al. (2020) Relationship between decline in cognitive resources and physical activity. Health Psychol 39:519-528.
9. Cheval B, et al. (2018) Effect of early-and adult-life socioeconomic circumstances on physical inactivity. Med Sci Sports Exerc 50:476-485.
10. DiPietro L (2001) Physical activity in aging: changes in patterns and their relationship to health and function. J Gerontol A Biol Sci Med Sci 56:13-22.
11. Levy R (1994) Aging-associated cognitive decline. Int Psychogeriatr 6:63-68.
12. Sebastiani P, et al. (2020) Patterns of multi-domain cognitive aging in participants of the Long Life Family Study. GeroScience 42:1335-1350.
13. Baumgart M, et al. (2015) Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimer Dement 11:718-726.
14. Blondell SJ, Hammersley-Mather R, & Veerman JL (2014) Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health 14:510.
15. Hamer M, Terrera GM, & Demakakos P (2018) Physical activity and trajectories in cognitive function: English Longitudinal Study of Ageing. J Epidemiol Community Health 72:477-483.
16. Morgan GS, et al. (2012) Physical activity in middle-age and dementia in later life: findings from a prospective cohort of men in Caerphilly, South Wales and a meta-analysis. J Alzheimers Dis 31:569-580.
17. Sofi F, et al. (2011) Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med 269:107-117.
18. Angevaren M, Auñěmkampe G, Verhaar H, Aleman A, & Vanhees L (2008) Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev 3:CD005381.
19. Colcombe S & Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14:125-130.
20. Daly M, McMinn D, & Allan JL (2015) A bidirectional relationship between physical activity and executive function in older adults. Front Hum Neurosci 8:1044.
21. Sabia S, et al. (2017) Physical activity, cognitive decline, and risk of dementia: 28 year follow-up of Whitehall II cohort study. Brit Med J 357:j2709.
22. Snowden M, et al. (2011) Effect of exercise on cognitive performance in community-dwelling older adults: review of intervention trials and recommendations for public health practice and research. J Am Geriatr Soc 59:704-716.
23. Young J, Angevaren M, Rusted J, & Tabet N (2015) Aerobic exercise to improve
cognitive function in older people without known cognitive impairment. Cochrane
Database Syst Rev 4:CD005381.
24. Lindwall M, et al. (2012) Dynamic associations of change in physical activity and change in cognitive function: Coordinated analyses of four longitudinal studies. J Aging
Res 2012:793598.
25. Cheval B, et al. (2020) Higher inhibitory control is required to escape the innate
attraction to effort minimization. Psychol Sport Exerc 51:101781.
26. Cheval B, et al. (2022) Cognitive functions and physical activity in aging when energy
is lacking. Eur J Ageing doi: 10.1007/s10433-10021-00654-10432.
27. Cheval B, et al. (2019) Cognitive resources moderate the adverse impact of poor
neighborhood conditions on physical activity. Prev Med 126:105741.
28. Colzato LS, Kramer AF, & Bherer L (2018) Editorial special topic: enhancing brain and
cognition via physical exercise. J Cogn Enhanc 2:135-136.
29. Roig M, Nordbrandt S, Geertsen SS, & Nielsen JB (2013) The effects of cardiovascular
exercise on human memory: a review with meta-analysis. Neurosci Biobehav Rev 37:1645
-1666.
30. Cotman CW & Berchtold NC (2002) Exercise: a behavioral intervention to enhance
brain health and plasticity. Trends Neurosci 25:295-301.
31. Hillman CH, Erickson KI, & Kramer AF (2008) Be smart, exercise your heart: exercise
effects on brain and cognition. Nat Rev Neurosci 9:58-65.
32. Lisanne F, Hsu CL, Best JR, Barha CK, & Liu-Ambrose T (2018) Increased aerobic
fitness is associated with cortical thickness in older adults with mild vascular cognitive
impairment. J Cogn Enhanc 2:157-169.
33. Cotman CW, Berchtold NC, & Christie L-A (2007) Exercise builds brain health: key
roles of growth factor cascades and inflammation. Trends Neurosci 30:464-472.
34. Raichlen DA & Alexander GE (2017) Adaptive capacity: an evolutionary neuroscience
model linking exercise, cognition, and brain health. Trends Neurosci 40:408-421.
35. Frith E & Loprinzi P (2018) Physical activity and individual cognitive function
parameters: unique exercise-induced mechanisms. JCBPR 7:92-106.
36. Cheval B, et al. (2018) Behavioral and neural evidence of the rewarding value of
exercise behaviors: a systematic review. Sports Med 48:1389-1404.
37. Cheval B, et al. (2018) Avoiding sedentary behaviors requires more cortical resources
than avoiding physical activity: an EEG study. Neuropsychologia 119:68-80.
38. Cheval B, et al. (2020) Higher inhibitory control is required to escape the innate
attraction to effort minimization. Psychol Sport Exerc 51:101781.
39. Cheval B, et al. (2021) Inhibitory control elicited by physical activity and inactivity
stimuli: an EEG study. Motiv Sci 7:386-389.
40. Cheval B, Sarrazin P, Boisgontier MP, & Radel R (2017) Temptations toward behaviors
minimizing energetic costs (BMEC) automatically activate physical activity goals in
successful exercisers. Psychol Sport Exerc 30:110-117.
41. Cheval B & Boisgontier MP (2021) The theory of effort minimization in physical
activity. Exerc Sport Sci Rev 49:168-178.
42. Choi KW, et al. (2019) Assessment of bidirectional relationships between physical
activity and depression among adults: a 2-sample mendelian randomization study. JAMA Psychiat 76:399-408.
43. Davies NM, Holmes MV, & Smith GD (2018) Reading Mendelian randomisation
studies: a guide, glossary, and checklist for clinicians. BMJ 362:k601.
44. Byrne EM, Yang J, & Wray NR (2017) Inference in psychiatry via 2-sample mendelian
randomization—from association to causal pathway? JAMA Psychiat 74:1191-1192.
45. Lawlor DA, Harbord RM, Sterne JA, Timpson N, & Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. *Stat Med* 27:1133-1163.

46. Darrous L, Mounier N, & Kutalik Z (2021) Simultaneous estimation of bi-directional causal effects and heritable confounding from GWAS summary statistics. *Nat Commun* 12:1-15.

47. Klimentidis YC, et al. (2018) Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. *Int J Obes* 42:1161-1176.

48. Lee JJ, et al. (2018) Gene discovery and polygenic prediction from a 1.1-million-person GWAS of educational attainment. *Nat Genet* 50:1112.

49. Davies G, et al. (2018) Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. *Nat Commun* 9:1-16.

50. Bosch BM, Bringard A, Ferretti G, Schwartz S, & Iglói K (2017) Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study. *Neurophotonics* 4:041404.

51. Chang Y-K, Labban JD, Gapin JI, & Etnier JL (2012) The effects of acute exercise on cognitive performance: a meta-analysis. *Brain Res* 1453:87-101.

52. Suwabe K, et al. (2018) Rapid stimulation of human dentate gyrus function with acute mild exercise. *PNAS* 115:10487-10492.

53. Erickson KI, et al. (2019) Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. *Med Sci Sports Exerc* 51:1242-1251.

54. Raichlen DA, Foster AD, Seillier A, Giuffrida A, & Gerdeman GL (2013) Exercise-induced endocannabinoid signaling is modulated by intensity. *Eur J Applied Physiol* 113:869-875.

55. Het S, Ramlow G, & Wolf O (2005) A meta-analytic review of the effects of acute cortisol administration on human memory. *Psychoneuroendocrinology* 30:771-784.

56. Hill E, et al. (2008) Exercise and circulating cortisol levels: the intensity threshold effect. *J Endocrinol Invest* 31:587-591.

57. Ramakrishnan R, et al. (2021) Accelerometer measured physical activity and the incidence of cardiovascular disease: Evidence from the UK Biobank cohort study. *PLoS medicine* 18:e1003487.

58. Ekelund U, et al. (2019) Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850 060 participants. *Br J Sports Med* 53:869-894.

59. Raichlen DA & Alexander G (2020) Why your brain needs exercise. *Sci Am* January.

60. Egger F, Benzing V, Conzelmann A, & Schmidt M (2019) Boost your brain, while having a break! The effects of long-term cognitively engaging physical activity breaks on children’s executive functions and academic achievement. *Plos One* 14:e0212482.

61. Winkler TW, et al. (2015) The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. *PLoS Genet* 11:e1005378.

62. Doherty A, et al. (2017) Large scale population assessment of physical activity using wrist worn accelerometers: the UK biobank study. *Plos One* 12:e0169649.
65. Hildebrand M, Van Hees VT, Hansen BH, & Ekelund U (2014) Age group comparability of raw accelerometer output from wrist-and hip-worn monitors. *Med Sci Sports Exerc* 46:1816-1824.
66. Bycroft C, *et al.* (2018) The UK Biobank resource with deep phenotyping and genomic data. *Nature* 562:203-209.
67. Trampush JW, *et al.* (2017) GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. *Mol Psychiatr* 22:336-345.
68. Johnson W, te Nijenhuis J, & Bouchard Jr TJ (2008) Still just 1 g: Consistent results from five test batteries. *Intelligence* 36:81-95.
69. Panizzon MS, *et al.* (2014) Genetic and environmental influences on general cognitive ability: Is ga valid latent construct? *Intelligence* 43:65-76.
70. Bulik-Sullivan BK, *et al.* (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat Genet* 47:291-295.
Figure and tables

Table 1. Latent Heritable Confounder Mendelian Randomization (LHC-MR) results for the association between accelerometer-measured physical activity and general cognitive functioning

Parameter	Cognitive Functioning	Physical Activity	Cognitive Functioning	Physical Activity		
	Heritability	t	Heritability	t	Heritability	t
Average accelerometer-measured physical activity						
Estimate	0.207	0.033	0.123	-0.011	-0.145	0.245
P-value	2.67E-115	0.612	4.41E-28	0.816	0.013	0.065
Moderate accelerometer-measured physical activity (fraction of acceleration > 100 mg and < 425 mg)						
Estimate	0.202	0.072	0.092	-0.105	-0.071	0.323
P-value	1.13E-165	0.032	5.98E-29	0.046	0.078	2.89e-05
Vigorous accelerometer-measured physical activity (fraction of acceleration ≥ 425 mg)						
Estimate	0.210	0.002	0.069	-0.001	-0.031	0.212
P-value	6.75E-157	0.972	3.95E-25	0.992	0.237	0.007

Notes. Parameters estimates and their p-values obtained from the LHC-MR optimized model with the maximum likelihood. Bidirectional associations from cognitive functioning to physical activity and from physical activity to cognitive functioning are reported. t = effect of the confounder. Bonferroni corrected $\alpha = 0.008$.
Table 2. Standard Mendelian Randomization (MR) results for the association between accelerometer-based physical activity and general cognitive functioning

Exposure	Outcome	MR method	Valid SNPs	Causal estimate	SE	P-value
Average accelerometer-based physical activity		MR Egger	129	0.015	0.185	0.935
Cognitive Functioning	Physical Activity	Weighted median	129	-0.027	0.036	0.440
		Inverse variance weighted	129	-0.011	0.032	0.723
		Simple mode	129	-0.102	0.116	0.376
		Weighted mode	129	-0.084	0.111	0.452
		MR Egger	4	-2.833	1.148	0.069
		Weighted median	4	0.017	0.062	0.782
		Inverse variance weighted	4	-0.088	0.127	0.488
		Simple mode	4	0.020	0.076	0.801
		Weighted mode	4	0.023	0.074	0.770
Moderate accelerometer-based physical activity (fraction of acceleration > 100 mg and < 425 mg)		MR Egger	129	0.054	0.181	0.766
Cognitive Functioning	Physical Activity	Weighted median	129	-0.032	0.037	0.389
		Inverse variance weighted	129	-0.012	0.032	0.710
		Simple mode	129	-0.059	0.106	0.575
		Weighted mode	129	-0.031	0.091	0.729
		MR Egger	106	0.325	0.319	0.310
		Weighted median	106	-0.001	0.021	0.981
		Inverse variance weighted	106	0.023	0.022	0.309
		Simple mode	106	-0.017	0.057	0.767
		Weighted mode	106	-0.010	0.050	0.837
Vigorous accelerometer-based physical activity (fraction of acceleration ≥ 425 mg)		MR Egger	129	0.009	0.149	0.952
Cognitive Functioning	Physical Activity	Weighted median	129	0.018	0.036	0.623
		Inverse variance weighted	129	0.002	0.026	0.939
		Simple mode	129	0.021	0.097	0.829
		Weighted mode	129	0.021	0.088	0.812
		MR Egger	88	0.151	0.335	0.653
		Weighted median	88	-0.035	0.022	0.108
		Inverse variance weighted	88	-0.016	0.020	0.432
		Simple mode	88	-0.065	0.060	0.286
		Weighted mode	88	-0.059	0.052	0.257

Notes. Causal estimates from 5 standard Mendelian Randomization (MR) methods on alternating exposure and outcome traits. For both moderate and vigorous physical activity as exposure, the cutoff was decreased to 6.33e-5 because of the low number of genome wide significant single nucleotide polymorphisms (SNPs) to use as instruments. Corrected α = 0.008.
Figure 1. Visual representation of the model in LHC-MR

Notes. G = Genetic instruments; CF = general cognitive functioning; a. For moderate physical activity (ModPA); b. For vigorous physical activity (VigPA); U = Latent heritable confounder; $h^2 =$ direct heritability. Each figure includes the bidirectional causal effects between the two traits as well as the confounder effects on each of them. Coefficients are beta values. P-values are indicated in brackets. The models were adjusted for age, sex, genotyping chip, first ten genomic principal components (PC), center, and season (month) of wearing accelerometer.
Figure 2. LHC-MR plots for the association between accelerometer-based physical activity and general cognitive functioning

Notes. This modified dot-and-whisker plot reports the causal estimate between general cognitive functioning (CF) as exposure and varying physical activity (PA)-related traits as outcome. The forward (CF → PA) and reverse (PA → CF) causal estimates are shown in two different colors as dots (grey and white) with 95% CI whiskers (grey and black). Average PA = average of overall accelerations. Moderate PA = fraction of acceleration corresponding to moderate physical activity (> 100 mg and < 425 mg). Vigorous PA = fraction of acceleration corresponding to vigorous physical activity (≥ 425 mg). The models were adjusted for age, sex, genotyping chip, first ten genomic principal components (PC), center, and season (month) of wearing accelerometer. * = significant effect after Boneferroni correction (i.e., p-value < .008).