Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A systematic review and meta-analysis of clinical outcomes following COVID-19 infection in ethnic minority groups in the UK.

S. Siddiq, S. Ahmed, I. Akram

PII: S0033-3506(22)00146-9
DOI: https://doi.org/10.1016/j.puhe.2022.05.019
Reference: PUHE 4618

To appear in: Public Health

Received Date: 22 January 2022
Revised Date: 18 May 2022
Accepted Date: 27 May 2022

Please cite this article as: Siddiq S, Ahmed S, Akram I, A systematic review and meta-analysis of clinical outcomes following COVID-19 infection in ethnic minority groups in the UK., Public Health, https://doi.org/10.1016/j.puhe.2022.05.019.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd on behalf of The Royal Society for Public Health.
Clinical outcomes following COVID-19 infection in ethnic minority groups in the UK: a systematic review and meta-analysis

S. Siddiq1,2*, S. Ahmed1,3, I. Akram4,5,6,7

1 School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
2 UK Health Security Agency, UK
3National Institute of Health Research Applied Research Collaboration for Greater Manchester (NIHR ARC-GM), UK
4Southend Clinical Commissioning Group, UK
5Valkyrie Surgery, Westcliff-On-Sea, UK
6West Central Primary Care Network, UK
7Royal College of General Practitioners, London, UK

* Corresponding author:
Dr. Sania Siddiq
179, Rock Avenue,
Gillingham, Kent, ME7 5PY, UK
Phone number: 07473259009
E-mail: booksinspireus@gmail.com
A systematic review and meta-analysis of clinical outcomes following COVID-19 infection in ethnic minority groups in the UK.
Abstract:

Objectives:

This systematic review and meta-analysis evaluated the clinical outcomes of COVID-19 disease in the ethnic minorities of the UK in comparison to the White ethnic group.

Methods:

The study included adult residents of the UK with confirmed COVID-19. Outcomes evaluated were mortality, ICU admission, and invasive mechanical ventilation need in ethnic minorities compared to people from a White background. Medline, Embase, Cochrane, MedRxiv, and Prospero were searched for articles published between May 2020 to April 2021. Risk of bias was evaluated using the Newcastle-Ottawa Scale checklist. PROSPERO ID: CRD42021248117.

Results:

Fourteen studies (767177 participants) were included in the review. In the adjusted analysis, the pooled Odds Ratio (OR) for the mortality outcome was higher for the Black (1.83, 95% CI: 1.21-2.76, number of studies: k=6), Asian (1.16, 95% CI: 0.85-1.57, k=6), and Mixed and Other (MO) groups (1.12, 95% CI: 1.04-1.20, k=5) in comparison to the White group. The adjusted and unadjusted ORs of intensive care admission were more than double for many of the ethnic minorities (OR Black 2.32, 95% CI: 1.73-3.11, k=5, Asian 2.34, 95% CI: 1.89-2.90, k=5, MO group 2.26, 95% CI: 1.64-3.11, k=4). In the adjusted analysis of mechanical ventilation need, the ORs were similarly significantly raised (Black group 2.03, 95% CI: 1.80-2.29, k=3, Asian group 1.84, 95% CI: 1.20-2.80, k=3, MO 2.09, 95% CI: 1.35-3.22, k=3).
Conclusion:

This review found that in the UK, Black, Asian, and MO groups suffered from increased COVID-19 related disease severity and mortality compared to the White majority.

Keywords:

COVID-19, UK, ethnic minorities, mortality, ethnic
1 Introduction

In the UK, there were 152490 deaths (192 deaths/100000 population), 471045 hospital admissions, and 4717811 confirmed cases (7062 cases per 100000 population) due to the COVID-19 pandemic between March 2020 to June 2021.\footnote{1} There are growing concerns in the UK that people belonging to many, if not all ethnic minorities, have been disproportionately impacted by COVID-19.\footnote{2-4}

A systematic review study conducted between December 2019-August 2020 found that Asian people had a higher risk of intensive care admissions and death.\footnote{5} However, another review of COVID-19 patients did not find that ethnicity was associated with the worst outcomes.\footnote{6} This present study was adapted from the systematic reviews by Sze et al., 2020\footnote{5} and Raharja et al., 2020.\footnote{6} Hence, it builds on the work of these two earlier reviews.\footnote{5,6} Since the demographics, socioeconomic issues, healthcare policies and systems of each country are unique, a UK-centric review was needed to understand if her ethnic minority groups faced a greater risk of adverse outcomes from COVID-19 or not.

In order to reduce the impact of COVID-19 on the population, pandemic related research was prioritized and classified as urgent public health research by the National Institute for Health Research (NIHR).\footnote{7} Following the government’s call and support for research in this area, numerous studies were conducted. However, even after this call, there were no published systematic review and meta-analysis studies on the impact of COVID-19 on the ethnic minorities in the UK. Therefore, an up-to-date systematic review of UK-based studies was urgently needed to quantify the health inequalities faced by ethnic minority groups concerning COVID-19. This research aims to assess the clinical outcomes of COVID-19 amongst ethnic minorities in the UK.
2 Methods

The review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The PRISMA checklist is available in the supplementary material (S1 Appendix). The protocol was registered with PROSPERO international prospective register of systematic reviews with the ID. CRD42021248117.

2.1 Information Sources

The reference lists of previous reviews were searched for relevant studies published from January 2020 to August 2020. The database searches (Ovid Medline, Ovid Embase, Ovid Cochrane, MedRxiv, and Prospero) were restricted to one year from May 2020 to April 2021.

2.2 Search Strategy

The Population, Exposure, Comparator, and Outcomes (PECO) framework was used to formulate the criteria for study selection. The target sample included adult population aged 18 years and above in the UK with a confirmed positive COVID-19 result using Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) tests. The ethnic categorization into ‘White’, ‘Black’, ‘Asian’, ‘Mixed’, and other groups was based on the UK Census categories 2001. The Census 2001 categorisation was used because it is used by the National Health Service (NHS). However, there is no group for the Chinese in the Asian category. South Asians and East Asians differ in terms of mortality, so combining these two ethnic groups is not useful.
All-cause mortality and Intensive Care Unit (ICU) admission rates were assessed as the primary outcomes, with Invasive Mechanical Ventilation (IMV) as a secondary outcome. The measures of effect for the outcomes were Hazard Ratio (HR), Risk Ratio (RR), Odds Ratio (OR), or Standardised Mortality Ratio (SMR).

Interventional studies, systematic reviews, observational studies including case-control studies, and cohort studies were included, along with non-peer-reviewed studies as this is a rapidly evolving field.

Conference abstracts, commentaries, cross-sectional studies, reports, editorials, non-systematic review articles, case reports, late-breaking abstracts, studies without a comparator group, and papers whose full text was unavailable, were excluded. Risk of infection only studies were excluded. Studies were restricted to those in the English language. Studies from the same population, with similar outcomes, were reviewed and one relevant study was included; whilst the rest were excluded, as this may have created a duplication of data. Studies that grouped all ethnic minorities as one were excluded. Specialist librarians were asked to review the search strategy with the keywords COVID-19, ethnic minority, and the UK. The search strategy was based on the search originally conducted by Sze et al., 2020 and Public Health England (PHE), 2020 and was adapted for this review by the addition of ‘UK’ as a key term during the searches. The detailed search strategy for each database was provided in the research proposal. The search terms were tailored for each database and the searches were run separately for each database to enhance sensitivity. The search period defined was between May 2020 to April 2021.

2.3 Selection Process
Two reviewers independently screened the titles and the abstracts of the studies; and excluded non-relevant studies. Full texts of the remaining studies were retrieved and reviewed for inclusion in the study against the selection criteria defined earlier. Any disagreements between the researchers were resolved through discussion.

2.4 Data Collection Process

One researcher (SS) extracted data from the eligible studies and assessed the risk of bias. Data extraction was checked by a second reviewer (IA). Authors of relevant studies were also contacted for clarity on missing data.

2.5 Quality Assessment

The Newcastle-Ottawa Scale (NOS) (S2 Appendix) was employed to assess the risk of bias in the included studies.¹² A NOS score of 7-9 is classed as low risk of bias, a score of less than 5 as high risk of bias; and a score of 5-6 as moderate risk of bias.¹³ One researcher (SS) carried out the quality assessment at the study and outcome level using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.¹⁴ Publication bias was not assessed as there were fewer studies in the adjusted analysis. The funnel plot may not detect publication bias when the number of studies is small.¹⁵

2.6 Data Synthesis

The raw counts for the various outcome variables were used to calculate the RR and 95% Confidence Intervals (CIs). Studies that did not use the White group as a comparator group were excluded from the meta-analysis. As all the studies were observational designs, a Der Simonian-Laird Random-Effects Meta-analysis (REM) was conducted for all outcomes. For rare outcomes, OR was assumed to be equal to
RR, and RR was assumed to be equal to HR. Mortality in hospital-based studies was not a rare outcome. However, in population-based studies it was rare. The studies which provided Adjusted Odds Ratio (AOR) were pooled together in one group and those which provided Adjusted Hazard Ratio (AHR) were separately pooled together in another group (if the outcomes were not rare). Thus, adjustments were made, whilst extracting, for study characteristics of each included study. In studies where raw data was missing; the authors were contacted to obtain this. In order to include studies with missing data in the meta-analysis, the unadjusted HR/RR were combined using the inverse variance method. Using this method, the pooled risk estimates were calculated separately for each ethnic group and a summary statistic was provided. The results were written in tabulated form and as forest plots. Excel and RevMan were used to analyse and tabulate the data. Origin 2021b was used to convert graphical data into tabulated form. The statistical heterogeneity was explored by calculating the I^2 statistic using RevMan and by looking at the overlap of CIs in the forest plots. A subgroup analysis was conducted to explore differences in risk estimates across the subgroups.

Studies based only on ICU patients, general hospital patients, and the general population were analysed separately. A sensitivity analysis was conducted based on only peer-reviewed studies and a separate analysis was conducted based on studies with low risk of bias.

3 Results

The search on Medline, Embase, MedRxiv, Cochrane, and Prospero yielded 939 studies on 14-15 April 2021. Fourteen studies were selected to be included in the systematic review as shown in S1 Fig and S1 Table.
3.1 Study Characteristics

The 14 studies included a total of 767177 participants. The study characteristics are given in Table 1. As all the studies were observational, so no adjustment was needed.
Table 1: Study characteristics of included studies

Study ID	Study Design	Population	Setting	Sample Size	Outcomes	Confounders adjusted for	Comorbidities
Alaa17	cohort	Data from ‘COVID-19 Hospitalisation in England Surveillance System’ (CHESS) database, which included COVID-19 cases admitted to hospitals	Hospital	6068	mortality	none	Asthma, diabetes mellitus (DM), Hypertension (HTN), kidney and liver diseases, cardiovascular disease (CVD), respiratory illness, immunosuppressive states
Apea¹⁸ cohort	COVID-19 positive cases admitted to East London hospitals	hospital	1737	Mortality, IMV age, sex, deprivation, Body Mass Index (BMI), DM, HTN, Chronic Kidney Disease (CKD)	DM, CKD, HTN, Ischemic Heart Disease (IHD), CVD, Cerebrovascular Accident (CVA), Chronic Obstructive Lung Disease (COPD), liver disease, cancer, Acquired Immunodeficiency Syndrome (AIDS), Charlson Comorbidity index		
Batty¹⁹ cohort	Participants of the UK Biobank cohort study	community	4486	mortality	age, sex, socioeconomic status, lifestyle factors, co-morbidities	CVD, DM, chronic bronchitis, HTN, mental illnesses	
Ferrando-Vivas²⁰ cohort	COVID-19 cases from the Intensive Care National Audit & Research Centre (ICNARC) database, of ICU admitted cases	ICU	9990	mortality	age, sex, deprivation, BMI, prior dependency, immunocompromised state, sedated for first 24 hours, various clinical variables	Immunocompromised state	
Field²⁹ cohort	COVID-19 positive hospital	hospital	500	mortality	none	none	
Study	Cohort	Cases	Admitted	Mortality	Deprivation	Area of Residence	Comorbidities
-------	--------	-------	----------	-----------	--------------	-------------------	---------------
Gopal Rao²¹	Cohort	COVID-19 cases tested in London hospitals	Hospital	1901	Age, sex, deprivation	Area of residence	None
Mahida²⁷	Case-control	Patients admitted to an ICU of a Birmingham hospital	ICU	140	ICU admission	None	HTN, obesity, IHD, DM, asthma, COPD, CVA, CKD, cancer
Perez-Guzman²²	Cohort	COVID-19 positive cases admitted to a hospital	Hospital	559	Mortality, ICU admission	NEWS-2 score	HTN, DM, IHD, heart failure, stroke, CKD, dementia, previous deep venous
Study	Design	Population	Controls	Number	Mortality	Age	Causes
-------	--------	------------	----------	--------	-----------	-----	--------
Perkin	Case-control	COVID-19 and non-COVID-19 cases admitted to a London hospital		573	Mortality	Age	DM, HTN, IHD
Russell	Cohort	COVID-19 positive cancer patients from a hospital		156	Mortality	None	Cancer, HTN, chronic steroid use, DM, lung disease, liver disease, CVD, frailty
Sapey²³ cohort	London hospital COVID-19 cases admitted to Birmingham hospital Trust	2169	Mortality, ICU admission	Age, sex, deprivation, co-morbidities	Count of morbidities used; HTN, CVA, AF, IHD, DM, asthma, COPD, interstitial lung disease, CKD, malignancy, dementia, obesity		
---	---	---	---	---	---		
Singh⁴ cohort	Living population of Wolverhampton Community and hospital	2286	Mortality	Sex, age, deprivation, smoking, BMI, co-morbidities, previous hospital admissions	DM, HTN, chronic heart, lung, kidney, joint diseases, cancer, dementia, mental illnesses,		
Study	Cohort	Setting	Cases	Endpoints	Variables		
---------	--------	--	-------	--	---		
Thomas	cohort	COVID-19 cases admitted to an ICU in London	156	Mortality	Age, BMI, lowest PaO₂/FiO₂ ratio (P/F) on first day of ICU, pH and PaCO₂ at time of lowest P/F ratio		
					HTN, DM, hyperlipidaemia, IHD, chronic respiratory illnesses, CKD		
Yates	cohort	COVID-19 cases admitted to hospitals in the UK, International Severe	6593	Mortality, ICU admission, IMV	age, sex, obesity, DM, chronic heart disease, CKD, chronic pulmonary disease, cancer		
					Chronic heart, kidney and lung diseases, DM, cancer		
Acute Respiratory and emerging Infections Consortium (ISARIC) dataset

1This is a surveillance system set up by PHE to obtain data regarding COVID-19 cases. 17

Fourteen studies were included in the systematic review and 12 in the meta-analysis. Thirteen studies provided data on risks of mortality due to COVID-19 in the various ethnic groups, six on ICU admission, and four on IMV need.

3.2 Quality of Studies

The risk of bias (ROB) was low, average NOS score was 7.7 (ranging from 4-9). Nine studies had a low risk of bias score on the NOS, four studies had a moderate risk of bias score on the NOS and one study had a high risk of bias as shown in S2 Table. The low scores were largely due to studies that failed to adjust for confounding factors. Most studies were hospital-based, and such populations are somewhat representative...
of the average COVID-19 patient in the community and did not necessarily reflect the wider community. Also, there might be bias introduced in such hospital-based studies as people in some ethnic groups might be reluctant to seek medical advice.

3.3 Mortality

The unadjusted OR, RR, AOR, and AHR are shown in S2 Fig, Figs 1,2, and S3 Fig. As seen in S2 Fig, 20,800/206,562 White individuals died due to COVID-19 compared to 1,254/22,232 Black cases, 1986/51,179 Asian cases and 1648/30,430 MO cases.

In the unadjusted analysis, the risk of death was similar in Blacks and Asians (Black OR: 0.89, 95% CI: 0.71-1.12, I²=83%, number of studies k=9) (Asian OR: 0.83, 95% CI: 0.68-1.02, I²=85%, k=9), but significantly reduced in Mixed and Others group (OR: 0.64, 95% CI: 0.55-0.74, I²= 42%, k=9) as shown in Fig 1. The adjusted mortality risk was significantly raised for the Asian group (1.32, 95% CI: 1.22-1.42, I²= 0%, k=3) but not for the Black and Mixed and Others groups. The odds of dying were significantly increased for the Blacks, Mixed, and Other ethnicities compared to the White group in the adjusted analysis (Black AOR: 1.83, 95% CI: 1.21-2.76, I²= 87%, k=6, MO AOR: 1.12, 95% CI: 1.04-1.20, I²= 0%, k=5) groups, but not for the Asian ethnic group. All the studies in the adjusted analysis were low risk of bias studies. In the sensitivity analysis, with only published studies, the increased odds of mortality in the Black and Mixed and Others groups were maintained (Black AOR 1.48, 95% CI: 1.10- 1.99, and MO AOR 1.12, 95% CI: 1.04-1.20) as shown in S3 Table. The odds of increased mortality for Black, Asian, and MO ethnicities were stronger in subgroup analysis with only hospital-based studies (AOR= 1.22, 95%CI 1.07-1.38, I²=6%, k=4 for Blacks, AOR= 1.28, 95%CI 1.04-1.57, I²=40%, k=4 for Asians, AOR= 1.12, 95%CI 1.04-1.20,
I²=0%, k=4 for MO). This subgroup had low heterogeneity and showed statistically significant results as shown in S4 Table. In the adjusted analysis, of only population-based studies, the odds of dying for the Black ethnic group were almost three times that of the White ethnic group (AOR=2.94, 95% CI: 1.46-5.90), but with a larger CI. However, the odds were not raised for the Asian group. Perkin et al., 2020 28 found that adjusted odds of mortality due to COVID-19 were increased for all ethnicities (Asian AOR 3.62, 95% CI=1.84–7.11, Black AOR 2.91, 95% CI= 1.43–5.91, and Other AOR 3.01, 95% CI=1.61–5.64) compared with hospital deaths in 2019.
Fig 1: Forest plot of unadjusted RR for the mortality outcome (REM, Inverse variance method)
Fig 2: Forest plot of AOR, REM, for the mortality outcome
3.4 Intensive Care Admission

Six studies provided data about ICU admissions for the various ethnic groups. Five of these studies were suitable for aggregating the raw outcomes and for pooling the unadjusted risk estimates. These studies included a total of 71791 participants who were admitted to critical care units in the UK. Eighty percent of them were White, 5% were Black, 9.5% were Asians and 8% were MO. The unadjusted and adjusted analyses for ICU admission are shown in Fig 3 and S4 Fig. From S4 Fig., it is seen that 11% White individuals were admitted to ICU with COVID-19 compared to 21% Black, 20% Asian, and 21% MO individuals. In the adjusted and unadjusted analysis, the odds of ICU admissions were more than double for patients of the Black, Asian, and MO ethnicities as compared to the White ethnic group. The unadjusted OR for the Black group was 2.32 (95% CI: 1.73-3.11, I^2 = 66%, k=5), for the Asian group 2.34 (95% CI: 1.89-2.90, I^2 = 58%, k=5), and for the MO group 2.26 (95% CI: 1.64-3.11, I^2 = 45%, k=4). In the pooled AOR, the results were not statistically significant for the ethnic minorities as the lower CI crossed the line of no effect as shown in Fig 3. However, the results indicated a strong association (OR twice as high) between ethnicity and ICU admission outcome. The pooled AOR for the Black group was 2.61 (95% CI: 0.89-7.68, I^2 = 91%, k=2), for the Asian group it was 2.05 (95% CI: 0.85-4.94, I^2 = 89%, k=2), and for the MO group 2.12 (95% CI: 0.94-4.78, I^2 = 80%, k=2). One study which was not included in the meta-analysis compared patients admitted to ICU with COVID-19, and patients admitted to ICU with community-acquired pneumonia (non-COVID controls). The study found that the cases with COVID-19 had statistically significantly fewer White (p= 0.012) and more Asian cases (p= 0.002).
Fig 3: Forest plot of ICU admission outcome, pooled AOR, REM
3.5 Mechanical Ventilation

Four cohort studies reported ethnicity data about the need for IMV for hospitalised patients in the UK. Amongst a total of 69707 patients, 80% were White, 5% were Black, 7% were Asian and 8% were from MO ethnic group. In the unadjusted analysis, the odds for the Black, Asian, and MO groups were twice as high, compared to the White group (Black OR: 2.44, 95% CI: 1.67-3.57, $I^2=67\%$, k=4, Asian OR: 2.29, 95% CI: 1.69-3.11, $I^2=58\%$, k=4, and the MO groups OR: 2.67, 95% CI: 1.77-4.01, $I^2=53\%$, k=4) as shown in S5 Fig. From S5 Fig. it is seen that 6% White cases were put on IMV, compared to 15% Black cases, 12% Asian cases, and 15% MO cases. After adjusting for confounders, the odds of needing ventilation were still high for the Black, Asian, and MO groups, indicating that other factors may have been putting them at increased risk. The AOR for the Black group was 2.03 (95% CI: 1.80-2.29, $I^2=1\%$, k=3), for the Asian group 1.84 (95% CI: 1.20-2.80, $I^2=74\%$, k=3) and for the MO group 2.09 (95% CI: 1.35-3.22, $I^2=60\%$, k=3) as shown in Fig 4.
Fig 4: Forest plot of the IMV outcome, pooled adjusted OR, REM
The studies which were included in the IMV need and ICU admission analysis are all low risk of bias studies, published, and hospital-based studies and so further sensitivity analyses were not conducted. The heterogeneity was high for most of the outcomes.

3.6 Quality of Evidence Assessment

As best evidence regarding risk factors is usually obtained from observational studies, so the evidence in this review was started with high ratings as advised by Foroutan et al., 2020 (for prognostic studies). The overall GRADE assessment indicated a high level of confidence for all outcomes, except for the mortality outcomes for the Asian group which was moderate and was downrated due to inconsistency, as shown in the summary of findings in S5 Table.

4 Discussion

There was heterogeneity in the populations, settings, methodology, and statistical analysis. The meta-analysis was still conducted since this degree of heterogeneity had been reported by other reviews and conducting the latter was beneficial.

The results indicate greater disease severity in the Black, Asian, and MO groups necessitating ICU admission and IMV provision. Overall, it can be said that ethnicity is a risk factor for worse prognosis in ethnic minorities and they do suffer from increased disease severity. Several studies and data from Office for National Statistics (ONS) and Intensive Care National Audit and Research Centre (ICNARC) also validate this finding of the worst outcomes or ethnic minorities in the UK.

In the UK, in the national publications, all ethnic groups apart from the White British are considered as ethnic minorities including white minorities like Irish traveller groups, Gypsy, Roma, any other white background.
Some reviews on this topic have combined data from all over the world.5,6 The results from these cannot be extrapolated to the UK, as the healthcare systems, health inequalities issues, and ethnic make-up vary from country to country. A more recent review has attempted to address this issue by analysing the COVID data regionally, but they did not include any data on ICU admissions nor conduct any adjusted analysis on mortality in Europe.38 Agyemang et al. concluded that hospitalised ethnic minorities did not suffer from worse COVID-19 outcomes except for increased mortality among ethnic minorities in Brazil.38

The odds of mortality for hospitalised COVID cases were raised for the Black, Asian, and MO groups in the adjusted analysis. The result from this review is significant as it shows that after hospital admission, there are additional factors in play, which increase the risk of mortality. So, the difference in mortality cannot be attributed to differential access to healthcare facilities or increased risk of infection alone. The odds of mortality due to COVID for the general population were raised for the Black ethnic group similar to findings by ONS and Mathur.32,34 Increased prevalence of comorbidities and raised C-Reactive Protein (CRP) levels, a non-specific marker of inflammation, maybe the cause of the greater severity of COVID-19 in Black and Asian communities. Obesity has been identified as an important risk factor associated with morbidity and mortality due to COVID-19.25,45,46 It has been proven that Black people with obesity suffer the worst outcomes and the effect of this association is attenuated in them.25 Another study reported that the association between obesity and mortality was stronger for non-Whites (especially Black and South Asian people) compared to White people (p-value= 0.002).46 The highest obesity rates have been observed in Black people (68%) compared to the other groups (White 64%, Asian 60%, average 63% adults in the
DM and HTN were three times more common in cases who died due to COVID-19. HTN is three to four times more prevalent in Black people in the UK compared to the rest of the population. DM is more prevalent in South Asian (six times more) and Black people (three times more) compared to White people in the UK. Genetic predisposition, urbanization, migration to Western countries, and reduced physical activity are important causative factors of DM in South Asians.

Black and Asian people have raised CRP compared to White people, putting them at an increased risk of severe COVID-19 infection. Raised CRP levels are an important predictor of the severe form of COVID-19 disease and are also a risk factor for DM and cardiovascular disease. It has been observed in one study that the median CRP levels in Black (181.5 mg/L) and Asian (146 mg/L) people were higher than in White people (136 mg/L) on presentation to the hospital for COVID-19 related symptoms. Lower socioeconomic status is a risk factor for raised CRP levels and it has been hypothesized that stress may be a mediator in this. It has also been hypothesized that chronic inflammation linked to insulin resistance, obesity, cardiovascular disease, stress, and chronic infections in the Black and other ethnic minority groups can trigger a cytokine storm which is associated with the severe form of COVID-19 disease. A cytokine storm is an abnormal dysregulated inflammatory response diagnosed by the presence of respiratory distress, and hyper inflammation (raised CRP levels more than 100mg/L or raised ferritin levels) in COVID-19 cases.

This is the first meta-analysis that analyses IMV data, and ICU data from the UK. The odds of ICU admission in hospitalised patients are similar to findings by ICNARC and
the study by Mathur which also found that the adjusted risk of ICU admission was raised 2-3 times for Blacks, Asians, Mixed, and Other ethnic groups (in the general population). Sze et al. only found raised odds of ICU admission for Asians. However, their analysis was limited by very small numbers (only 4439) compared to this review which included ICU data on 67,833 COVID cases. Several studies have pointed out that the COVID-19 cases presenting to UK hospitals, tend to be people who are White, elderly, and have more comorbidities (like dementia and COPD). In contrast, Black and Asian people tend to be younger and have fewer comorbidities but have a higher prevalence of DM. Elderly White people are not good candidates for ICU admission and IMV. However, the Black and Asian cases are more suitable for ICU admission, and this may be a reason why they have higher rates of ICU admission and IMV.

4.1 Strengths

This is the first systematic review and meta-analysis conducted to assess the burden of disease faced by ethnic minorities in the UK. The strength of the research lies in its comprehensive analysis of relevant databases for published and pre-print articles. Although the heterogeneity was quite high, this was to be expected with observational studies that had a very large number of participants. The heterogeneity was explored by conducting a subgroup and sensitivity analysis.

4.2 Limitations

A broad ethnic classification was used in this review. The Asian group included very diverse subgroups, each of which has now been shown to have different risk profiles.
This review was limited to adults so the results could not be generalised to children. The PCR test for COVID-19 has a high false-negative rate, which led to some cases being wrongly classified as non-COVID. As this review concentrated on UK-based studies, the results were less generalisable to other countries. It has been noted that many participants' ethnicities have been put down as ‘Other’, and this may have created erroneous results for the MO group. The representativeness of study populations would be a limitation of the review. The variables used for the adjustment differed greatly from one paper to another. This is a possible limitation as the amount and nature of adjustment could affect the results.

4.3 Policy Implications

These results have urgent implications for formulating a COVID-19 response strategy (including vaccination provision) that protects ethnic minorities who are at most risk from the worst outcomes related to COVID-19, and addressing long-standing health inequalities. Recommendations made by Marmot et al. (2020a) to address the health inequalities should be adopted in full. He recommended increased public health funding, investment in key areas like housing and employment, development of a national strategy to reduce health inequalities, and setting targets to monitor government interventions. Measures to reduce the effects of COVID-19, like health promotion efforts, should be targeted at high-risk communities. Clinical guidelines should be adapted to keep in mind the health inequalities faced by ethnic minorities. The NICE guidance on possibly excluding cases with cardiovascular disease especially angina patients from critical care; disproportionately influences ethnic minorities as Asian and Black people are more prone to heart disease. The risk assessment of being employed in healthcare does not allow for the redeployment
of staff based on ethnicity alone. As ethnicity has been proven now to be associated with increased mortality, these workers should be given the choice of being redeployed in non-patient-facing roles.

4.4 Implications of Research

This review needs to be upgraded to a living systematic review so that the changing pandemic risks can be identified in the various ethnicities as the pandemic progresses. There is a need for more epidemiological population-based studies to assess the true risk experienced by various ethnic groups with regards to the worst clinical outcomes. The dataset needs to be large enough to appreciate the risk in the various sub-groups. Ethnic minority focused healthcare research concerning COVID-19 treatments can help to reduce the health inequalities. Research should be conducted to assess why COVID-19 related health inequalities exist for some ethnic minorities.

4.5 Conclusion

It can be concluded that the Black, Asian, and MO groups faced the worst outcomes with regards to COVID-19 in the UK. These findings are of immense public health importance and should be used to help formulate policy concerning COVID-19 and reducing socioeconomic disparities.

Acknowledgements

Any opinions expressed in this study, only represent the views of the authors and were not necessarily related to the United Kingdom Health Security Agency. No
conflict of interest exists in the submission of this manuscript. The content of the manuscript has previously appeared online, as preprint on MedRivx. Librarians at the University of Manchester and Public Health England (PHE) helped to formulate the search strategy. Librarians from PHE also helped to find the full text of articles. SS would like to thank her family, especially her sister Hina Siddiq who funded her studies, Sarah Siddiq who edited this article, and her children who put up with her whilst she worked on this paper.

Competing interest:

None.

Funding:

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Ethical approval:

Not needed.
References:

1. GOV.UK. Guidance - Coronavirus (COVID-19) statistics and analysis [Internet]. London: Cabinet Office; [updated 2021 June 26; cited 2021 June 26]. Available from: https://www.gov.uk/guidance/coronavirus-covid-19-statistics-and-analysis.

2. Public Health England. Beyond the data: Understanding the impact of COVID-19 on BAME groups. [Internet]. 2020 [cited 20 April 2021] Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/892376/COVID_stakeholder_engagement_synthesis_beyond_the_data.pdf

3. Public Health England. Disparities in the risk and outcomes of COVID-19. [Internet]. 2020 [cited 18 June 2021] Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/908434/Disparities_in_the_risk_and_outcomes_of_COVID_August_2020_update.pdf

4. House of Commons. Unequal Impact? Coronavirus and BAME people. [Internet]. 2020 [cited 2021 May 1] Available from: https://committees.parliament.uk/publications/3965/documents/39887/default/

5. Sze S, et al. Ethnicity and clinical outcomes in COVID-19: A systematic review and meta-analysis. EClinicalMedicine. 2020; 29:100630. DOI: 10.1016/j.eclinm.2020.100630.

6. Raharja A, Tamara A, Kok LT. Association between ethnicity and severe COVID-19 disease: a systematic review and meta-analysis. J Racial Ethn Health Disparities. 2020; 12. Available at: https://doi.org/10.1007/s40615-020-00921-5

7. UK Research and Innovation. COVID-19 and ethnicity: funding six new projects [Internet]. London: UK Research and Innovation; [updated 2021 Jan 28; cited 2021 March 1]. Available from: https://www.ukri.org/our-work/tackling-the-impact-of-covid-19/understanding-coronavirus-covid-19-and-epidemics/covid-19-and-ethnicity.

8. Moher D, et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009; 6:e1000097. DOI: 10.1371/journal.pmed.1000097.
9. Siddiq S, Ahmed S. A systematic review of the health inequalities affecting the Black, Asian and other ethnic minority groups in the UK in comparison to the White ethnic population with respect to the clinical outcomes of COVID-19 infection. PROSPERO International prospective register of systematic reviews [Internet]. 2021 [cited 2021 June 24]; CRD42021248117. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021248117.

10. GOV.UK. List of ethnic groups [Internet] London: Cabinet Office; no date [cited 2021 May 11]. Available from: https://www.ethnicity-facts-figures.service.gov.uk/style-guide/ethnic-groups.

11. Stanaway F, Noguchi N, Mathieu E, Khalatbari-Soltani S, Bhopal R. Mortality of ethnic minority groups in the UK: a systematic review protocol. British Medical Journal Open (2020) 10(6):e034903. doi: 10.1136/bmjopen-2019-034903.

12. Wells GA, Shea B., O'Connell D., Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses (2008) [10 June 2021]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm

13. Luchini C, et al. Assessing the quality of studies in meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale. World J Metaanal. 2017; 5:80. DOI: 10.13105/wjma.v5.i4.80.

14. Guyatt GH, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008; 336:924-926. DOI: 10.1136/bmj.39489.470347.ad.

15. Sterne J A C, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials BMJ 2011; 343 :d4002 doi:10.1136/bmj.d4002

16. Page MJ, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021; 372:n160. DOI: 10.1136/bmj.n160.
17. Alaa A, et al. Retrospective cohort study of admission timing and mortality following COVID-19 infection in England. *BMJ Open*. 2020; 10:e042712. DOI: 10.1136/bmjopen-2020-042712.

18. Apea VJ, et al. Ethnicity and outcomes in patients hospitalised with COVID-19 infection in East London: an observational cohort study. *BMJ Open*. 2021; 11:e042140. DOI: 10.1136/bmjopen-2020-042140.

19. Batty GD, et al. Explaining ethnicity disparities in COVID-19 mortality: population-based, prospective cohort study. *MedRxiv [Preprint]*. 2021 DOI: 10.1101/2021.02.07.21251079.

20. Ferrando-Vivas P, et al. Prognostic factors for 30-day mortality in critically ill patients with Coronavirus disease 2019: An observational cohort study. *Crit Care Med*. 2021; 49:102-111. DOI: 10.1097/CCM.0000000000004740.

21. Gopal Rao G, et al. Cross-sectional observational study of epidemiology of COVID-19 and clinical outcomes of hospitalised patients in North West London during March and April 2020. *BMJ Open*. 2021; 11. DOI: 10.1136/bmjopen-2020-044384.

22. Perez-Guzman PN, et al. Clinical characteristics and predictors of outcomes of hospitalized patients with COVID-19 in a multi-ethnic London NHS Trust: a retrospective cohort study. *Clin Infect Dis*. 2020; ciaa1091. DOI: 10.1093/cid/ciaa1091.

23. Sapey E, et al. Ethnicity and risk of death in patients hospitalised for COVID-19 infection in the UK: An observational cohort study in an urban catchment area. *BMJ Open Respiratory Research*. 2020; 7. DOI: 10.1136/bmjresp-2020-000644.

24. Singh BM, et al. Risk of COVID-19 hospital admission and COVID-19 mortality during the first COVID-19 wave with a special emphasis on ethnic minorities: An observational study of a single, deprived, multiethnic UK health economy. *BMJ Open*. 2021; 11. DOI: 10.1136/bmjopen-2020-046556.

25. Yates T, et al. Obesity, ethnicity and risk of critical care, mechanical ventilation and mortality in patients admitted to hospital with COVID-19: Analysis of the ISARIC CCP-UK cohort. *Obesity*. 2021; 29:1223-1230. DOI: 10.1002/oby.23178.
26. Thomson RJ, et al. Clinical characteristics and outcomes of critically ill patients with COVID-19 admitted to an intensive care unit in London: A prospective observational cohort study. *PLoS ONE*. 2020; 15. DOI: 10.1371/journal.pone.0243710.

27. Mahida RY, et al. Characterisation and outcomes of ARDS secondary to pneumonia in patients with and without SARS-CoV-2: a single-centre experience. *BMJ Open Respiratory Research*. 2020; 7:11. DOI: 10.1136/bmjresp-2020-000731.

28. Perkin MR, et al. Deaths in people from Black, Asian and minority ethnic communities from both COVID-19 and non-COVID causes in the first weeks of the pandemic in London: A hospital case note review. *BMJ Open*. 2020; 10:e040638. Available at: 10.1136/bmjopen-2020-040638.

29. Field RE, et al. Cohort profile: Preliminary experience of 500 COVID-19 positive cases at a South West London District General Hospital. *MedRxiv [Preprint]* 2020. DOI: 10.1101/2020.04.28.20075119.

30. Russell B, et al. Factors affecting COVID-19 outcomes in cancer patients: a first report from Guy's Cancer Center in London. *Front Oncol*. 2020; 10 (no pagination). DOI: 10.3389/fonc.2020.01279.

31. Foroutan F, et al. GRADE guidelines 28: Use of GRADE for the assessment of evidence about prognostic factors: rating certainty in identification of groups of patients with different absolute risks. *J Clin Epidemiol*. 2020; 121:62-70. DOI: 10.1016/j.jclinepi.2019.12.023.

32. Office for National Statistics. Coronavirus (COVID-19) related deaths by ethnic group, England and Wales: 2 March 2020 to 15 May 2020 [Internet] London: Office for National Statistics; 2020 [updated 2020 June 19; cited 2021 July 6]. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/coronaviruscovid19relateddeathsbyethnicgroupenglandandwales/2march2020to15may2020.
33. Nafilyan V, et al. Ethnic differences in COVID-19 mortality during the first two waves of the Coronavirus pandemic: a nationwide cohort study of 29 million adults in England. *Eur J Epidemiol.* 2021:1-13. DOI: 10.1007/s10654-021-00765-1.

34. Mathur R, et al. (2021) Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: an observational cohort study using the OpenSAFELY platform. *The Lancet.* 2021; 397:1711-1724. DOI: 10.1016/s0140-6736(21)00634-6.

35. King’s Fund. Deaths from Covid-19 (coronavirus): how are they counted and what do they show? [Internet]. 2021 [cited 2021 June 12] Available from: https://www.kingsfund.org.uk/publications/deaths-covid-19

36. Intensive Care National Audit and Research. ICNARC report on COVID-19 in critical care: England, Wales and Northern Ireland 3 June 2021. [Internet]. 2021 [cited 2021 June 16] Available from: https://www.icnarc.org/our-audit/audits/cmp/reports

37. GOV.UK. Writing about ethnicity [Internet] London: Cabinet Office; updated Dec 2021 [cited 2022 March 11]. Available from: https://www.ethnicity-facts-figures.service.gov.uk/style-guide/writing-about-ethnicity

38. Agyemang C, Richters A, Jolani S, et al. Ethnic minority status as social determinant for COVID-19 infection, hospitalisation, severity, ICU admission and deaths in the early phase of the pandemic: a meta-analysis. *BMJ Global Health* 2021;6:e007433. doi:10.1136/bmjgh-2021-007433

39. Marmot, M., et al. (2020a). Build back fairer: the COVID-19 Marmot review. The Pandemic, Socioeconomic and Health Inequalities in England. London: Institute of Health Equity. [Online]. Available at: https://www.health.org.uk/publications/build-back-fairer-the-covid-19-marmot-review (Accessed: 14 July 2021).

40. Griffin, S. (2020). ‘Covid-19: Failure to control pandemic and inequalities made England worst affected in Europe, says report,’ *British Medical Journal,* 371. DOI: https://doi.org/10.1136/bmj.m4842
41. Iacobucci, G. (2020b). ‘Marmot 10 years on: austerity has damaged nation’s health, say experts,’ British Medical Journal, p. m747. DOI: 10.1136/bmj.m747 (Accessed: 25 May 2021).

42. Marmot, M., et al. (2020b). Health Equity In England: The Marmot Review 10 Years On. London: Institute of Health Equity. [Online]. Available at: https://www.health.org.uk/publications/reports/the-marmot-review-10-years-on (Accessed: 14 June 2021).

43. Paton, A. (2020). ‘Fairness, ethnicity, and COVID-19 ethics: A discussion of how the focus on fairness in ethical guidance during the pandemic discriminates against people from ethnic minority backgrounds,’ Journal of Bioethical Inquiry, 17 (4), pp. 595-600. DOI: 10.1007/s11673-020-09999-2 (Accessed: 10 June 2021).

44. Vepa, A., et al. (2020). ‘COVID-19 and ethnicity: A novel pathophysiological role for inflammation,’ Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14 (5), pp. 1043-1051. DOI: 10.1016/j.dsx.2020.06.056

45. Raleigh, V. (2021). Deaths from Covid-19 (coronavirus): how are they counted and what do they show? London: King's Fund. [Online]. Available at: https://www.kingsfund.org.uk/publications/deaths-covid-19 (Accessed: 12 June 2021).

46. Sattar, N., et al. (2020). ‘BMI and future risk for COVID-19 infection and death across sex, age and ethnicity: Preliminary findings from UK biobank,’ Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14 (5), pp. 1149-1151. DOI: 10.1016/j.dsx.2020.06.060

47. GOV.UK (2021). Ethnicity facts and figures: Overweight adults. Available at: https://www.ethnicity-facts-figures.service.gov.uk/health/diet-and-exercise/overweight-adults/latest (Accessed: 6 July 2021).

48. Schofield, P., Saka, O. & Ashworth, M. (2011). ‘Ethnic differences in blood pressure monitoring and control in south east London,’ British Journal of General Practice, 61 (585), pp. e190-e196. DOI: 10.3399/bjgp11x567126

38
49. Raleigh, V. & Holmes, J. (2021). The health of people from ethnic minority groups in England. London, UK: The King’s Fund. [Online]. Available at: https://www.kingsfund.org.uk/publications/health-people-ethnic-minority-groups-england (Accessed: 12 June 2021).

50. Shah, A. & Kanaya, A. M. (2014). 'Diabetes and associated complications in the South Asian population,' Current Cardiology Reports, 16 (5). DOI: 10.1007/s11886-014-0476-5

51. Nazmi, A. & Victora, C. G. (2007). 'Socioeconomic and racial/ethnic differentials of C-reactive protein levels: a systematic review of population-based studies,' Biomed Central Public Health, 7 (1), p. 212. DOI: 10.1186/1471-2458-7-212

52. Ali, N. (2020). 'Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19,' Journal of Medical Virology, 92 (11), pp. 2409-2411. DOI: 10.1002/jmv.26097

53. Manson, J. J., et al. (2020). 'COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study,' The Lancet Rheumatology, 2 (10), pp. e594-e602. DOI: 10.1016/s2665-9913(20)30275-7

54. Stringer, D., et al. (2021). 'The role of C-reactive protein as a prognostic marker in COVID-19,' International Journal of Epidemiology, 50 (2), pp. 420-429. DOI: 10.1093/ije/dyab012

55. Cron, R. Q. (2021). 'COVID-19 cytokine storm: targeting the appropriate cytokine,' The Lancet Rheumatology, 3 (4), pp. e236-e237. DOI: 10.1016/s2665-9913(21)00011-4

56. Harrison, E. M., et al. (2020). 'Ethnicity and outcomes from COVID-19: The ISARIC CCP-UK prospective observational cohort study of hospitalised patients,' SSRN Electronic Journal. DOI: 10.2139/ssrn.3618215
Table 1: Study characteristics of included studies

Study ID	Study Design	Population	Setting	Sample Size	Outcomes	Confounder(s) adjusted for	Co-morbidities
Alaa¹⁷	cohort	Data from ‘COVID-19 Hospitalisation in England Surveillance System’ (CHESS)¹ database, which included COVID-19 cases admitted to hospitals	hospital	6068	mortality	none	asthma, diabetes mellitus (DM), Hypertension (HTN), kidney and liver diseases, cardiovascular disease (CVD), respiratory illness, immunosuppressive states
Apea¹⁸	cohort	COVID-19 positive cases admitted to East London hospitals	hospital	1737	mortality, IMV	age, sex, deprivation, Body Mass Index (BMI), DM, HTN, Chronic Kidney Disease (CKD)	DM, CKD, HTN, Ischemic Heart Disease (IHD), CVD, Cerebrovascular Accident (CVA), Chronic Obstructive Lung Disease
Study	Cohort	Study Population	Number	Cause of Death	Other Variables	Comorbidities	
-------	--------	------------------	--------	----------------	----------------	--------------	
Batty\(^{19}\)	Cohort	Participants of the UK Biobank cohort study	4486 64	Mortality	Age, sex, socioeconomic status, lifestyle factors, co-morbidities	COPD, liver disease, cancer, Acquired Immunodeficiency Syndrome (AIDS), Charlson Comorbidity index	
Ferrando-Vivas\(^{20}\)	Cohort	COVID-19 cases from the Intensive Care National Audit & Research Centre (ICNARC) database, of ICU admitted cases	9990	Mortality	Age, sex, deprivation, BMI, prior dependency, immunocompromised state, sedated for first 24 hours, various clinical variables	Immunocompromised state	
Field\(^{29}\)	Cohort	COVID-19 positive cases admitted to a London hospital	500	Mortality	None	None	
Gopal Rao\(^{21}\)	Cohort	COVID-19 cases tested in hospital	1901	Mortality, ICU admission	Age, sex, deprivation	None	
Study	Design	Setting	Hospital	ICU admission	Area of residence		
------------------	-------------------------	---	----------	---------------	---		
Mahida et al.	Case-control	London hospitals	ICU	140	ICU admission, IMV, area of residence, HTN, obesity, IHD, DM, asthma, COPD, CVA, CKD, cancer		
Perez-Guzman et al.	Cohort	COVID-19 positive cases admitted to London hospital	Hospital	559	Mortality, ICU admission, IMV, age, sex, comorbidity, deprivation, admission NEWS-2 score, HTN, DM, IHD, heart failure, stroke, CKD, dementia, previous deep venous thrombosis/pulmonary embolism, atrial fibrillation (AF), COPD, liver disease, cancer, AIDS		
Perkin et al.	Case-control	COVID-19 and non-COVID-19 cases admitted to London hospital	Hospital	573	Mortality, age	DM, HTN, IHD	
Russell et al.	Cohort	COVID-19 positive cancer patients from London hospital	Hospital	156	Mortality, none	Cancer, HTN, chronic steroid use, DM, lung disease, liver disease, CVD, frailty	
Sapey	Cohort	COVID-19 cases	Hospital	2169	Mortality, ICU, age, sex, deprivation, count of morbidities		
Study	Cohort	Population	Admission	Mortality Factors	Outcomes		
-------	--------	------------	------------	-------------------	-----------		
Singh²	cohort	Living population of Wolverhampton	admission	comorbidities	DM, HTN, chronic heart, lung, kidney, joint diseases, cancer, dementia, mental illnesses, learning difficulties, immunosuppressive states, palliative care		
Thomson²⁶	cohort	COVID-19 cases admitted to an ICU in London	ICU	lowest PaO₂/FiO₂ ratio (P/F) on first day of ICU, pH and PaCO₂ at time of lowest P/F ratio	HTN, DM, hyperlipidaemia, IHD, chronic respiratory illnesses, CKD		
Yates²⁵	cohort	COVID-19 cases admitted to hospitals in the UK, hospitals	ICU admission, IMV	age, sex, obesity, DM, chronic heart disease, CKD, chronic pulmonary	chronic heart, kidney and lung diseases, DM, cancer		
Internatio							
nal
Severe
Acute
Respirato
ry and
emerging
Infections
Consortiu
m (ISARIC)
dataset | disease, cancer |

¹This is a surveillance system set up by PHE to obtain data regarding COVID-19 cases. ¹⁷
S1 Table: Excluded studies

Study	Reason for Exclusion
Aldridge et al., 2020	Wrong study type... cross-sectional study
Atkins et al., 2020	Same database... UK Biobank
Ayoubkhani et al., 2021	Includes suspected COVID-19 cases
Bannaga et al., 2020	Full text not available
Boddington et al., 2021	Risk of infection study
Baumer et al., 2020	No relevant outcomes, OR/RR/HR not given
Brendish et al., 2020	Risk of infection study
Brill et al., 2020	No relevant outcomes, OR/RR/HR not given
Cheng et al., 2021	Includes suspected COVID-19 cases
Cheng et al., 2020	Full text not available
Clough et al., 2021	Includes suspected COVID-19 cases
Corcillo et al., 2021	Limited ethnic data
Davies et al., 2021	No relevant outcomes, OR/RR/HR not given
De Lusignan, Joy M. et al., 2020	Includes suspected COVID-19 cases
De Lusignan, Dorward J. et al., 2020	Risk of infection study
Dennis et al., 2021	Includes suspected COVID-19 cases
Desai et al., 2020	Full text not available
Drozd et al., 2021	No relevant outcomes, OR/RR/HR not given
Elliot et al., 2021	Includes suspected COVID-19 cases
Gates et al., 2020	Full text not available
Galloway et al., 2020	Limited ethnic data
Goodacre et al., 2020	No relevant outcomes, OR/RR/HR not given
Ho et al., 2020	Risk of infection study
Hull et al., 2020	Includes suspected COVID-19 cases
Joy et al., 2020	No relevant outcomes, OR/RR/HR not given
Ken-Dror et al., 2020	Limited ethnic data
Khalil et al., 2020	No relevant outcomes, OR/RR/HR not given
Knight et al., 2020	Includes suspected COVID-19 cases
Lassale et al., 2020	Same database... UK Biobank
Martin et al., 2020	Risk of infection study
Study	Findings
-------------------------------	--
Miles et al., 2020	Includes suspected COVID-19 cases
Milln et al., 2021	Includes suspected COVID-19 cases
Moret et al., 2021	Full text not available
Nafilyan et al., 2021	Includes suspected COVID-19 cases
Navaratnam et al., 2021	Includes suspected COVID-19 cases
Niedzwiedz et al., 2020	Same database… UK Biobank
Patel et al., 2021	Includes suspected COVID-19 cases
Raharja et al., 2020	Not UK based, global study
Raisi-Estabragh et al., 2020	Includes suspected COVID-19 cases
Razieh et al., 2021	Same database… UK Biobank
Richards-Belle et al., 2020	Includes suspected COVID-19 cases
Sattar et al., 2020	Includes suspected COVID-19 cases
Shah et al., 2020	No relevant outcomes, OR/RR/HR not given
Soltan et al., 2021	Full text not available
Sze et al., 2020	Not UK based, global study
Tay et al., 2020	Full text not available
Thompson et al., 2020	Included Chinese in Asian group
Williamson et al., 2020	Includes suspected COVID-19 cases
Zakeri et al., 2020	Included Chinese in Asian group
S2 Table: Quality assessment of studies using a modified NOS for assessing studies

Study ID	Selection Representativeness of exposed cohort (*)	Selection Selection of non-exposed cohort (*)	Selection Ascertainment of exposure (*)	Selection Outcome not present at start (*)	Outcome Assesment of outcome (*)	Outcome Follow-up long enough (*)	Outcome Adequacy of follow-up (*)	Total (*9)						
Alaa 17	*	*	*	*	*	*	*	6						
Apea 18	*	*		*	*	*	*	8						
Batt y 19	*	*		*	*	*	*	7						
Ferr ando - Vivas 20	*				*	*	*	8						
Field 29	*	*			*	*	*	6						
Gopal Rao 21					*	*	*	8						
Mahida 27	*	*	*		*	*	*	4						
Perez-Guzman 22					*	*	*	9						
Perkin 28	*				*	*	*	6						
Author	Reference	Value												
------------	------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	
Russell	30	*	*	*	*	*	*	*	*	*	*	*	*	
Sapey	23	*	*	*	**	*	*	*	*	*	*	*	*	9
Singh	24	*	*	*	**	*	*	*	*	*	*	*	*	9
Thomson	26	*	*	*	*	*	*	*	*	*	*	*	*	7
Yates	25	*	*	*	**	*	*	*	*	*	*	*	*	9
S3 Table: Sensitivity analysis for the mortality outcome

	Studies	Pooled unadjusted OR (95% CI)	I^2	Studies	Pooled unadjusted RR (95% CI)	I^2	Studies	Pooled AOR (95% CI)	I^2
All studies with raw mortality data									
Black	9	0.89, (0.71-1.12)	83	11	0.98, (0.86-1.12)	88	6	1.83, (1.21-2.76)	87
Asian	9	0.83, (0.68-1.02)	85	11	0.97, (0.84-1.12)	91	6	1.16, (0.85-1.57)	71
Mixed and Other	9	0.64, (0.55-0.74)	42	10	0.74, (0.64-0.85)	74	5	1.12, (1.04-1.20)	0
Only published, peer-reviewed studies									
Black	9	0.89, (0.71-1.12)	83	10	0.98, (0.83-1.15)	84	5	1.48, (1.10-1.99)	69
Asian	9	0.83, (0.68-1.02)	85	10	0.96, (0.82-1.14)	90	5	1.14, (0.80-1.60)	77
Mixed and Other	9	0.64, (0.55-0.74)	80	10	0.74, (0.64-0.85)	45	4	1.12, (1.04-1.20)	0
Only studies with low ROB									
--------------------------	---	---	---	---	---				
Black	8	0.92, (0.73-1.15)	84%	8	0.94, (0.80-1.11)	85%	6	1.83, (1.21-2.76)	87%
Asian	8	0.81, (0.66-0.99)	86%	8	0.86, (0.74-1.00)	88%	6	1.16, (0.85-1.57)	71%
Mixed and Other	8	0.63, (0.54-0.74)	48%	8	0.72, (0.64-0.82)	58%	6	1.12, (1.04-1.20)	0%
S4 Table: Subset analysis for the mortality outcome

	Studies	Pooled unadjusted OR (95%)	I²	Studies	Pooled unadjusted RR (95%)	1²	Studies	Pool ed AOR (95%)	1²
All studies with raw mortality data									
Black	9	0.89 (0.71-1.12)	83 %	11	0.98 (0.86-1.12)	88 %	6	1.83 (1.21-2.76)	87 %
Asian	9	0.83 (0.68-1.02)	85 %	11	0.97 (0.84-1.12)	91 %	6	1.16 (0.85-1.57)	71 %
Mixed and Other	9	0.64 (0.55-0.74)	42 %	10	0.74 (0.64-0.85)	74 %	5	1.12 (1.04-1.20)	0%
Hospital based									
Black	8	0.82 (0.67-1.00)	75 %	8	0.87 (0.75-1.01)	79 %	4	1.22 (1.07-1.38)	6%
Asian	8	0.87 (0.70-1.09)	86 %	8	0.94 (0.80-1.11)	89 %	4	1.28 (1.04-1.57)	40 %
Mixed and Other	8	0.68 (0.60-0.76)	23 %	8	0.76 (0.69-0.84)	33 %	4	1.12 (1.04-1.20)	0%
Population based									
Black								2.94 (1.46-5.90)	83 %
Asian								0.80 (0.30-2.15)	81 %
Mixed and Other									
Intensive care based									
---------------------	-------	-------	-------	-------					
Black	2	1.00, (0.87-1.15)	0%	2	1.00, (0.92-1.09)	0%			
Asian	2	1.36, (0.65-2.80)	67%	2	1.24, (0.74-2.08)	69%			
Mixed and Other	2	0.74, (0.51-1.08)	5%	2	0.82, (0.57-1.17)	6%			
S5 Table: GRADE, a summary of findings table

MORTALITY

	AOR	Number of participants (studies)	ROB	Inconsistency	Imprecision	Indirectness	Publication bias	Strong association	GRAD E
Black	1.83	74584 4 (6)	no	no	no	no	-	potential risk factor, OR between 1-2	high
Asian	1.16	74584 4 (6)	no	yes	no	no	-	neutral	moderate, due to inconsistency
MO	1.12	74584 4 (6)	no	no	no	no	-	potential risk factor, OR between 1-2	high

ICU ADMISSION

	AOR	Number of participants (studies)	ROB	Inconsistency	Imprecision	Indirectness	Publication bias	Strong association	GRAD E	
Black	2.61	67833 (2)	no	no	no	no	-	yes	high, due to strong association	
	I^2=91%									
---	---------	----------------	----------------	----------------	----------------	----------------	----------------			
Arabian	2.05 (0.85-4.94)	P=0.003, I^2=89%	67833 (2)	no	no	no	no	-	yes	high, due to strong association
M	2.12 (0.94-4.78)	P=0.03, I^2=80%	67833 (2)	no	no	no	no	-	yes	high, due to strong association

IMV

	AOR	Number of participants (studies)	R O B	Inconsistency	Imprecision	Indirectness	Publication bias	Strong association	GRAD E	
Black	2.03 (1.8-2.29)	P=0.36, I^2=1%	69570 (3)	no	no	no	no	-	yes	high, due to strong association
Arabian	1.84 (1.2-2.8)	P=0.02, I^2=74%	69570 (3)	no	no	no	no	-	no	high, due to strong association
M	2.09 (1.35-3.22)	P=0.08, I^2=60%	69570 (3)	no	no	no	no	-	yes	high, due to strong association
Study or Subgroup	BAME	White	Odds Ratio	M-H, Random, 95% CI						
-------------------	------	-------	------------	---------------------						
	Events	Total	Events	Total	Weight					
10.7.1 Black										
Apea 2021	97	340	210	703	4.9%	0.94 [0.70, 1.25]				
Ferrando-Vivas 2020	373	940	2530	6384	6.6%	1.00 [0.87, 1.15]				
Gopal Rao 2021	61	237	166	514	4.2%	0.73 [0.51, 1.03]				
Perez Guzman 2020	41	133	67	236	3.1%	1.12 [0.70, 1.78]				
Russell 2020	5	35	21	78	0.9%	0.45 [0.16, 1.32]				
Sapely 2020	40	134	502	1540	3.8%	0.70 [0.48, 1.03]				
Singh 2021	39	17858	190	142781	4.2%	1.64 [1.16, 2.32]				
Thomson 2020	7	32	16	73	1.0%	1.00 [0.37, 2.72]				
Yales 2021	591	2523	17018	54254	7.0%	0.67 [0.61, 0.74]				
Subtotal (95% CI)	22232	206562	35.6%	0.89 [0.71, 1.12]						
Total events	1254	20800								
						Heterogeneity: Tau² = 0.08, Chi² = 45.82, df = 8 (P < 0.00001), I² = 83%				
						Test for overall effect: Z = 0.98 (P = 0.33)				

10.7.2 Asian

Study or Subgroup	BAME	White	Odds Ratio	M-H, Random, 95% CI		
	Events	Total	Events	Total	Weight	
Apea 2021	138	538	210	703	5.3%	0.81 [0.63, 1.04]
Ferrando-Vivas 2020	591	1459	2530	6384	6.8%	1.04 [0.92, 1.16]
Gopal Rao 2021	174	679	166	514	5.3%	0.72 [0.56, 0.93]
Perez Guzman 2020	30	94	67	236	2.7%	1.19 [0.70, 1.97]
Russell 2020	4	6	21	78	0.3%	5.41 [0.83, 31.88]
Sapely 2020	120	410	502	1540	5.5%	0.60 [0.54, 0.68]
Singh 2021	32	44229	190	142781	3.9%	0.54 [0.37, 0.79]
Thomson 2020	14	36	16	73	1.3%	2.27 [0.95, 5.41]
Yales 2021	863	3726	17018	54254	7.2%	0.60 [0.63, 0.73]
Subtotal (95% CI)	51179	206562	38.4%	0.63 [0.50, 1.02]		
Total events	1986	20800				
						Heterogeneity: Tau² = 0.06, Chi² = 53.39, df = 8 (P < 0.00001), I² = 85%
						Test for overall effect: Z = 1.78 (P = 0.07)

10.7.3 Mixed and Other

Study or Subgroup	BAME	White	Odds Ratio	M-H, Random, 95% CI		
	Events	Total	Events	Total	Weight	
Apea 2021	33	156	210	703	3.5%	0.63 [0.42, 0.96]
Ferrando-Vivas 2020	278	830	2530	6384	6.5%	0.77 [0.66, 0.89]
Gopal Rao 2021	31	129	166	514	3.3%	0.66 [0.43, 1.03]
Perez Guzman 2020	3	17	67	236	0.6%	0.64 [0.15, 2.43]
Sapely 2020	15	85	582	1540	2.4%	0.35 [0.20, 0.62]
Singh 2021	11	23764	190	142761	2.2%	0.35 [0.19, 0.64]
Thomson 2020	1	15	16	73	0.2%	0.25 [0.03, 0.80]
Yales 2021	1274	5427	17018	54254	7.2%	0.67 [0.63, 0.72]
Subtotal (95% CI)	30430	206562	26.3%	0.64 [0.55, 0.74]		
Total events	1648	20800				
						Heterogeneity: Tau² = 0.01, Chi² = 13.73, df = 8 (P = 0.09), I² = 42%
						Test for overall effect: Z = 6.78 (P < 0.00001)

Total (95% CI)

Study or Subgroup	BAME	White	Odds Ratio	M-H, Random, 95% CI		
	Events	Total	Events	Total	Weight	
Apea 2021	10384	619686	100.0%	0.78 [0.70, 0.87]		
Total events	4898	62400				
						Heterogeneity: Tau² = 0.04, Chi² = 128.76, df = 26 (P < 0.00001), I² = 86%
						Test for overall effect: Z = 4.57 (P < 0.00001)
						Test for subgroups differences: Chi² = 7.46, df = 2 (P = 0.02), I² = 73.2%
Study or Subgroup	log(Risk Ratio)	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
------------------	----------------	------	--------	-------------------	-------------------	
10.8.1 Black						
Alaa 2020	0.3953	0.1526	3.1%	1.47 [1.09, 1.98]		
Acea 2021	-0.0408	0.1059	4.6%	0.96 [0.78, 1.18]		
Ferrando-Vivas 2020	0.00425	0.0546	5.1%	1.00 [0.92, 1.09]		
Field 2020	0.0392	0.0238	5.5%	1.04 [0.99, 1.09]		
Gopal Rao 2021	-0.2231	0.113	3.6%	0.80 [0.62, 1.03]		
Perez Guzman 2020	0.877	0.166	2.9%	1.08 [0.78, 1.50]		
Russel 2020	-0.6349	0.4486	0.7%	0.53 [0.22, 1.28]		
Sapey 2020	-0.2357	0.1049	3.3%	0.79 [0.60, 1.04]		
Singh 2021	0.4947	0.1676	2.7%	1.64 [1.16, 2.32]		
Thomson 2020	-0.002	0.007	8.9%	0.99 [0.46, 2.19]		
Yates 2021	-0.2977	0.0352	5.2%	0.75 [0.70, 0.80]		
Subtotal (95% CI)			26.8%	0.97 [0.83, 1.12]		
Heterogeneity: Tau² = 0.03, Chi² = 64.45, df = 10 (P = 0.00001); I² = 89%	Test for overall effect: Z = 0.28 (P = 0.78)					

10.8.2 Asian					
Alaa 2020	0.4187	0.0567	4.2%	1.52 [1.26, 1.83]	
Acea 2021	-0.1508	0.0507	3.8%	0.86 [0.72, 1.03]	
Ferrando-Vivas 2020	0.0198	0.0363	5.2%	1.02 [0.95, 1.10]	
Field 2020	0.0488	0.0367	5.2%	1.05 [0.98, 1.13]	
Gopal Rao 2021	-0.2257	0.017	4.3%	0.79 [0.66, 0.95]	
Perez Guzman 2020	0.1133	0.0146	2.6%	1.12 [0.78, 1.61]	
Russel 2020	0.0983	0.0245	1.1%	2.48 [1.26, 4.88]	
Sapey 2020	-0.2614	0.0786	4.5%	0.77 [0.66, 0.90]	
Singh 2021	-0.6162	0.1029	2.5%	0.54 [0.37, 0.79]	
Thomson 2020	0.5734	0.3041	1.4%	1.77 [0.80, 3.22]	
Yates 2021	-0.2744	0.0347	5.2%	0.76 [0.67, 0.89]	
Subtotal (95% CI)			40.5%	0.97 [0.84, 1.12]	
Heterogeneity: Tau² = 0.04, Chi² = 168.79, df = 10 (P = 0.00001); I² = 91%	Test for overall effect: Z = 0.43 (P = 0.67)				

10.8.3 Mixed and Other					
Alaa 2020	-0.0726	0.145	3.3%	0.93 [0.70, 1.24]	
Acea 2021	-0.3425	0.1689	2.9%	0.71 [0.51, 0.99]	
Ferrando-Vivas 2020	-0.1825	0.0571	4.9%	0.85 [0.76, 0.95]	
Gopal Rao 2021	-0.3911	0.1703	2.6%	0.74 [0.53, 1.03]	
Perez Guzman 2020	-0.478	0.5286	0.6%	0.62 [0.22, 1.75]	
Russel 2020	0.0363	0.0673	9.3%	1.00 [0.31, 3.62]	
Sapey 2020	-0.755	0.2464	1.6%	0.47 [0.29, 0.86]	
Singh 2021	-1.0498	0.3117	1.3%	0.35 [0.19, 0.64]	
Thomson 2020	-1.1902	0.901	0.2%	0.30 [0.04, 2.12]	
Yates 2021	-0.2977	0.0089	4.5%	0.75 [0.64, 0.89]	
Subtotal (95% CI)			22.7%	0.74 [0.64, 0.88]	
Heterogeneity: Tau² = 0.02, Chi² = 16.49, df = 9 (P = 0.06); I² = 45%	Test for overall effect: Z = 4.14 (P = 0.0001)				

| **Total (95% CI)** | | | 100.0% | 0.91 [0.84, 0.99] | |
| **Heterogeneity:** Tau² = 0.03, Chi² = 226.89, df = 31 (P = 0.00001); I² = 86% | Test for overall effect: Z = 2.32 (P = 0.02) |

Test for subgroup differences: Chi² = 9.89, df = 2 (P = 0.007), I² = 79.8%.
Study or Reference	Treatment	Weight	Mean Ratio	95% CI	Heterogeneity	Test for overall effect	Test for subgroup differences	
7.2.1 Analysis	Test 1	0.291	0.0137	0.0051	0.0011	0.0011		0.0011
	Test 2	0.291	0.0137	0.0051	0.0011	0.0011		0.0011
7.2.2 Analysis	Test 1	0.291	0.0137	0.0051	0.0011	0.0011		0.0011
	Test 2	0.291	0.0137	0.0051	0.0011	0.0011		0.0011
7.2.3 Analysis	Test 1	0.291	0.0137	0.0051	0.0011	0.0011		0.0011
	Test 2	0.291	0.0137	0.0051	0.0011	0.0011		0.0011

Heterogeneity: Test for overall effect: | 0.0011 (P = 0.0011) |
Test for subgroup differences: | 0.0011 (P = 0.0011) |
Study or Subgroup	BAME	White	Odds Ratio
	Events	Total	95% CI
Apex 2621	63	340	1.85 (1.29, 2.65)
Gopal Rao 2021	40	237	5.60 (3.13, 10.00)
Perez Oyserman 2020	20	130	1.63 (0.96, 2.61)
Spain 2020	21	134	1.97 (1.10, 3.24)
Yates 2021	570	2623	2.29 (2.08, 2.52)
Subtotal (95% CI)	3367	57246	**2.32 (1.73, 3.11)**
Total events	714	6383	
Heterogeneity:	Tau² = 0.07; Chi² = 11.09; df = 4 (p = 0.032); I² = 58%		
Test for overall effect: Z = 5.61 (p < 0.00061)			

9.2.2 Asian

Study or Subgroup	BAME	White	Odds Ratio
Apex 2621	108	638	2.04 (1.49, 2.80)
Gopal Rao 2021	84	679	3.89 (2.31, 6.54)
Perez Oyserman 2020	15	84	1.75 (0.87, 3.53)
Spain 2020	66	410	2.81 (2.08, 3.76)
Yates 2021	775	3728	2.05 (1.89, 2.23)
Subtotal (95% CI)	5449	57246	**2.34 (1.69, 2.96)**
Total events	1096	6383	
Heterogeneity:	Tau² = 0.02; Chi² = 9.57; df = 4 (p = 0.05); I² = 59%		
Test for overall effect: Z = 7.92 (p < 0.00061)			

9.2.3 Mixed and Other

Study or Subgroup	BAME	White	Odds Ratio
Apex 2621	20	156	1.78 (1.11, 2.80)
Gopal Rao 2021	10	120	4.47 (2.26, 4.64)
Perez Oyserman 2020	2	17	1.23 (0.26, 6.74)
Spain 2020	0	0	Not estimable
Yates 2021	1173	5424	2.10 (2.02, 2.22)
Subtotal (95% CI)	5729	55766	**2.29 (1.64, 3.11)**
Total events	1221	6250	
Heterogeneity:	Tau² = 0.05; Chi² = 5.45; df = 3 (p = 0.14); I² = 45%		
Test for overall effect: Z = 4.59 (p = 0.00061)			

Study or Subgroup	BAME	White	Odds Ratio
	Events	Total	95% CI
Apex 2621	14545	170198	2.25 (2.04, 2.49)
Total events	3001	18016	
Heterogeneity:	Tau² = 0.64; Chi² = 22 (p = 0.00061); I² = 54%		
Test for overall effect: Z = 7.92 (p < 0.00061)			
Test for substantive differences: Cm² = 0.64; df = 2 (p = 0.68); I² = 0%			
Study of Subgroup	BAME	White	Odds Ratio
---	---	---	---
	Total	Total	IV, Random, 95% CI
3.1.1 Black			
Apea 2021	50	340	8.4%
Gopal Rao 2021	16	237	8
Perez Guzman 2020	18	133	8
Yales 2021	404	2523	19.3%
Subtotal (95% CI)	5233	55706	34.4%
Total events	485	3367	
Heterogeneity Tau² = 0.09, Ch² = 9.23, df = 3 (P = 0.03); I² = 67%			
Test for overall effect: Z = 4.62 (P < 0.00001)			

3.1.2 Asian				
	Total	Total	IV, Random, 95% CI	
Apea 2021	78	538	9.6%	1.85 [1.29, 2.65]
Gopal Rao 2021	54	878	8	5.46 [2.58, 11.50]
Perez Guzman 2020	14	94	22	1.69 [0.63, 3.47]
Yales 2021	474	3728	18.7%	2.27 [2.04, 2.51]
Subtotal (95% CI)	5039	55706	36.1%	2.29 [1.60, 3.11]
Total events	620	3367		
Heterogeneity Tau² = 0.05, Ch² = 7.11, df = 3 (P = 0.07); I² = 58%				
Test for overall effect: Z = 5.31 (P < 0.00001)				

3.1.3 Mixed and Other				
	Total	Total	IV, Random, 95% CI	
Apea 2021	23	156	6.0%	1.89 [1.13, 3.16]
Gopal Rao 2021	12	129	9	6.49 [2.50, 18.23]
Perez Guzman 2020	2	17	22	1.29 [0.26, 6.02]
Yales 2021	816	5427	20.4%	2.75 [2.53, 2.99]
Subtotal (95% CI)	5729	55706	29.9%	2.67 [1.77, 4.01]
Total events	853	3367		
Heterogeneity Tau² = 0.00, Ch² = 6.32, df = 3 (P = 0.10); I² = 63%				
Test for overall effect: Z = 4.72 (P < 0.00001)				

Total (95% CI) 14001 167118 100.0% 2.47 [2.13, 2.86]
Study or Subgroup	log(Odds Ratio)	SE	Weight	IV, Random, 95% CI	Odds Ratio IV, Random, 95% CI
3.3.1 Black					
Apea 2021	0.5878	0.2069	9.6%	1.99 [1.20, 2.70]	
Oopal Rao 2021	1.3788	0.5174	2.3%	3.97 [1.44, 10.85]	
Yates 2021	0.7988	0.0814	21.3%	2.03 [1.80, 2.29]	
Subtotal (95% CI)					2.03 [1.80, 2.29]

Heterogeneity: $\hat{\tau}^2 = 0.00$, $\chi^2 = 2.02$, df = 2 ($P = 0.36$), $I^2 = 1$

Test for overall effect: $Z = 11.59$ ($P < 0.00001$)

3.3.2 Asian

Study or Subgroup	log(Odds Ratio)	SE	Weight	IV, Random, 95% CI	Odds Ratio IV, Random, 95% CI
Apea 2021	0.4318	0.1906	10.5%	1.54 [1.06, 2.24]	
Oopal Rao 2021	1.0351	0.4461	3.0%	5.13 [2.14, 12.30]	
Yates 2021	0.3908	0.0598	21.6%	1.49 [1.33, 1.67]	
Subtotal (95% CI)					1.84 [1.20, 2.80]

Heterogeneity: $\hat{\tau}^2 = 0.09$, $\chi^2 = 7.56$, df = 2 ($P = 0.02$), $I^2 = 74$

Test for overall effect: $Z = 2.82$ ($P = 0.005$)

3.3.3 Mixed and Other

Study or Subgroup	log(Odds Ratio)	SE	Weight	IV, Random, 95% CI	Odds Ratio IV, Random, 95% CI
Apea 2021	0.4383	0.2717	6.6%	1.55 [0.91, 2.64]	
Oopal Rao 2021	1.6956	0.5014	2.4%	5.45 [2.04, 14.56]	
Yates 2021	0.6471	0.0446	22.6%	1.91 [1.75, 2.08]	
Subtotal (95% CI)					2.09 [1.35, 3.22]

Heterogeneity: $\hat{\tau}^2 = 0.09$, $\chi^2 = 4.06$, df = 2 ($P = 0.08$), $I^2 = 60$

Test for overall effect: $Z = 3.32$ ($P = 0.0009$)

Total (95% CI)

	100.0%	1.89	[1.61, 2.22]		

Heterogeneity: $\hat{\tau}^2 = 0.03$, $\chi^2 = 29.80$, df = 6 ($P = 0.0002$), $I^2 = 73$

Test for overall effect: $Z = 7.73$ ($P < 0.00001$)

Test for subgroup differences: $\chi^2 = 0.22$, df = 2 ($P = 0.90$), $I^2 = 0$