Cannabis use and symptom severity in individuals at ultra high risk for psychosis: a meta-analysis

Carney R, Cotter J, Firth J, Bradshaw T, Yung AR. Cannabis use and symptom severity in individuals at ultra high risk for psychosis: a meta-analysis.

Objective: We aimed to assess whether individuals at ultra high risk (UHR) for psychosis have higher rates of cannabis use and cannabis use disorders (CUDs) than non-UHR individuals and determine whether UHR cannabis users have more severe psychotic experiences than non-users.

Method: We conducted a meta-analysis of studies reporting cannabis use in the UHR group and/or positive or negative symptoms among UHR cannabis users and non-users. Logit event rates were calculated for cannabis use, in addition to odds ratios to assess the difference between UHR and controls. Severity of clinical symptoms in UHR cannabis users and non-users was compared using Hedges’ g.

Results: Thirty unique studies were included (UHR n = 4205, controls n = 667) containing data from cross-sectional and longitudinal studies, and randomised control trials. UHR individuals have high rates of current (26.7%) and lifetime (52.8%) cannabis use, and CUDs (12.8%). Lifetime use and CUDs were significantly higher than controls (lifetime OR: 2.09; CUD OR: 5.49). UHR cannabis users had higher rates of unusual thought content and suspiciousness than non-users.

Conclusion: Ultra high risk individuals have high rates of cannabis use and CUDs, and cannabis users had more severe positive symptoms. Targeting substance use during the UHR phase may have significant benefits to an individual’s long-term outcome.

Summations

- Ultra high risk (UHR) individuals are more likely to have used cannabis in their lifetime than controls.
- UHR individuals are more likely to have a comorbid cannabis abuse disorder than controls.
- UHR cannabis users had significantly higher levels of unusual thought content and suspiciousness compared with UHR non-cannabis users.

Considerations

- Included studies often had different methods of identifying cannabis users, and in some cases, use of cannabis was not a primary outcome but was reported as a mediating variable, or secondary area of interest.
- We were unable to account for the use of other substances in our meta-analysis which may have driven the relationship between cannabis use and increased severity of specific positive symptoms.
- Substantial heterogeneity was observed, which may have been the result of clinical and/or methodological differences across studies.
Introduction

Cannabis is one of the most frequently used illicit drugs worldwide (1). It significantly increases the risk of developing a psychotic disorder, particularly among those individuals who use it at an early age (2–4), who frequently use high-potency cannabis or ‘skunk’ (5, 6) and who have a genetic predisposition for psychosis (7).

People with schizophrenia are more likely to use cannabis and have comorbid substance use disorders than the general population (8). This increased comorbidity is associated with poor clinical outcomes: increased premature mortality, poor engagement with services and increased rates of hospitalisation (9, 10). Given the risks of continued substance use, it is important to identify when these problems first emerge. High rates of cannabis use are often observed at an early stage, in people with first-episode psychosis (FEP; (11)). Yet this unhealthy profile may even predate the onset of full psychotic symptoms, during the ultra high risk (UHR) phase.

Young people at UHR for psychosis (also referred to as ‘clinical high risk (CHR)’ or ‘at-risk mental state’) can be identified using operationalised criteria (12–14). An individual must fit one, or a combination of the following criteria: presence of attenuated psychotic symptoms, brief intermittent psychotic symptoms or a genetic-risk combined with a recent decline in functioning (15). Substance use research in the UHR group has mainly focussed on identifying whether cannabis use predicts transition to psychosis. A recent meta-analysis provides evidence for a dose–response relationship, where heavy cannabis use (including abuse or dependence) predicted increased likelihood of later transition to psychotic disorder (16).

Previous reviews have also explored the prevalence of substance use in the UHR group, (17, 18). However, the findings of these reviews were largely inconclusive, due to the lack of research available when the searches were conducted, and the main conclusions were that more prospective studies are required before any conclusions can be made regarding substance use in this group. To date, no meta-analyses have been conducted in this area to allow for more robust conclusions, and a meta-analysis comparing cannabis use in the UHR group to healthy controls (HCs) is lacking. Additionally, little is known about the relationship between cannabis use and attenuated positive and negative symptoms in the UHR group. This is despite many studies reporting a link between symptom severity and cannabis use in FEP and schizophrenia (19). For example, FEP individuals who used cannabis had more severe positive symptoms including hallucinations, suspiciousness and delusions, in addition to other clinical factors such as mania and poor general functioning than non-cannabis users (19).

Thus we aimed to provide robust, up-to-date statistical analyses of the literature examining cannabis use in the UHR group. Therefore, this review aimed to address the following questions:

i) Do UHR individuals have higher rates of current and lifetime cannabis use than HCs?

ii) Do UHR individuals have higher rates of cannabis use disorders (CUDs) than HCs?

iii) Do UHR cannabis users have higher positive and negative symptoms than non-cannabis using UHR subjects?

Method

This review was conducted according to PRISMA guidelines for reporting systematic reviews (20).

Study inclusion

Eligible studies were original research articles published in peer-reviewed journals, with populations meeting criteria for being at ‘UHR’ or ‘CHR’ (or similarly defined) of psychosis, based on a clinically recognised instrument (21). Studies reporting the proportion of UHR individuals who claimed to currently use cannabis, or have done so in their lifetime, or having a current/lifetime CUD in accordance with DSM-IV/ICD criteria were included. Studies were also included if they reported positive or negative symptoms in both UHR cannabis users and non-users, as measured by a clinically validated tool. Eligible studies included cross-sectional and longitudinal analyses or intervention studies reporting baseline data on cannabis use in UHR individuals.

Studies including only subjects at genetic-risk, case studies, reviews and non-English language articles were excluded. Studies reporting general substance use and not cannabis use specifically were also excluded. Where participant samples overlapped, only the larger sample was included in the review. Where study samples overlapped but reported different outcomes, for example cannabis use and cannabis dependence, both were included in the respective meta-analyses. Authors were contacted if it was unclear whether samples overlapped. To avoid bias, studies using UHR individuals recruited solely from prisons, or young offender institutions were excluded (22) as substance use in these groups tends to be higher than in the general population (23).
Search strategy

On 8th December 2016, we conducted an electronic database search of Ovid MEDLINE, PsycINFO, EMBASE, AMED and the Cochrane Central Register of Controlled Trials (CENTRAL) using the following keyword search terms: ‘clinical high risk’ or ‘CHR’ or ‘ultra high risk’ or ‘UHR’ or ‘at-risk mental state’ or ‘ARMS’ or ‘attenuated positive symptoms’ or ‘attenuated psychotic symptoms’ and ‘psychosis’ or ‘psychotic’ or ‘schizophrenia’ and ‘cannabis’ or ‘marijuana’ or ‘substance use’ or ‘substance abuse’ or ‘substance dependence’ or ‘substance misuse’ or ‘drug’ or ‘recreational drug’ or ‘drug abuse’ or ‘hallucinogen’. In addition, a basic search of Google Scholar was conducted and the reference lists of retrieved papers were reviewed to identify any additional relevant publications.

Study selection and data extraction

Three authors (R.C, J.F & J.C) independently screened articles for eligibility. A tool was developed to extract the following data for eligible studies: (1) study characteristics (author, year of publication, country of origin, study design); (2) sample demographics (sample size, gender composition, mean age); (3) instrument used to assess at-risk status; (4) rate of cannabis use in UHR and control groups (measure, prevalence or sample mean); (5) ICD/DSM CUDs (measure, prevalence); (6) positive and negative symptoms for UHR cannabis users and non-cannabis users (sample size, measure, mean, standard deviation); (7) summary of findings. Studies that included a HC group were assessed for quality using the Newcastle–Ottawa Scale (24), a validated instrument for non-randomised trials and observational studies. The scale utilises a star system to assess selection of participants, comparability of groups and assessment of outcome or exposure of interest. Studies awarded 8–9 stars were classed as high quality, 4–7 medium quality and 0–3 low quality. Any disagreements were resolved through discussion.

Statistical analysis

All statistical analyses were performed using COMPREHENSIVE META-ANALYSIS Version 3.0 (25). Proportional meta-analyses using random-effects models were used to estimate logit event rates of current and lifetime cannabis use across the UHR samples. To assess the difference in cannabis use between UHR and HCs, odds ratios were used, and 95% CI were calculated. Standardised mean differences (SMD) were calculated to assess differences in overall positive and negative symptom severity between UHR cannabis users and non-users using Hedges’ g. SMDs were also conducted on individual positive symptoms if reported among three or more samples. Random-effects models were used throughout to account for heterogeneity between studies (26, 27). Heterogeneity across studies was quantified using the I^2 statistic (28).

Results

Study characteristics

The study selection process is summarised in Fig. 1. A total of 30 unique citations were included (UHR $n = 4205$; controls $n = 667$): 26 studies from the initial search and four additional studies from searching of reference lists (Table 1). Studies were conducted in 10 countries: Canada ($n = 6$), Netherlands ($n = 5$), USA ($n = 5$), Switzerland ($n = 3$), Austria ($n = 2$), Australia ($n = 4$), UK ($n = 2$), France ($n = 1$), Germany ($n = 1$) and Spain ($n = 1$). Study samples overlapped in three instances; however, different outcomes were included in separate meta-analyses (29–34). The majority of studies that included a control group were deemed medium quality, with only one study rated as high quality (35), (see Appendix S1 for individual scores).

Current and lifetime cannabis use

Eighteen studies stated the proportion of UHR individuals who self-reported current cannabis use, defined as any use within the past month, with the exception of one study (39), which defined current use as any cannabis within the past 3 months. Proportionate meta-analysis revealed that 26.7% of UHR individuals currently used cannabis ($n = 3068$, 95% CI = 0.22–0.32; I^2: 85.70%; Fig. 2). A sensitivity analysis removing the study which defined current use as cannabis intake within the last 3 months (rather than last month) found that excluding this study had a negligible impact on the results. Comparisons of current cannabis use in UHR and non-UHR control groups indicated that UHR individuals were more likely to be current cannabis users than HCs, although the difference fell short of statistical significance (OR: 1.56; $P = 0.08$; 95% CI: 0.94–2.57; I^2: 59.52%; see Appendix S1).

Eleven studies reported lifetime cannabis use. Proportional meta-analyses found that 52.8% of UHR individuals had used cannabis at some point...
in their lifetime ($n = 2251$, 95% CI = 0.47–0.59; I^2: 84.02%). UHR individuals were also significantly more likely to have used cannabis in their lifetime compared with HCs (OR: 2.09; $P = 0.037$; 95% CI: 1.04–4.19; I^2: 67.63%; Fig. 3).

Cannabis use disorders (CUD)

Eleven studies reported comorbid cannabis abuse or dependence disorders (CUD) in UHR individuals, according to the DSM-IV criteria. Meta-analysis of prevalence rates indicated 12.8% of UHR individuals had a current comorbid CUD (95% CI: 0.09–0.19; I^2: 90.32%). UHR individuals were significantly more likely to have a CUD than controls (OR: 5.49, $P = 0.001$; 95% CI: 1.97–15.32; I^2: 0%). Lifetime CUDs were reported in only two studies and were not included in the meta-analysis (35, 41). The rates of lifetime CUDs were 12.8% ($n = 46$) and 26.7% ($n = 16$) respectively.

Positive and negative symptoms

Table 2 displays the effect and sample sizes, heterogeneity statistics and significance values of the relationships between cannabis use and symptoms in UHR individuals.

Scores for total positive symptoms were derived predominantly from overall scores on the positive items of the SIPS (42). Total positive symptoms did not significantly differ between UHR cannabis
users and non-cannabis users. In two studies, UHR cannabis users also included those who had used in their lifetime and removal of these studies did not affect significance levels. When individual items of positive symptom scales were analysed, UHR cannabis users were found to have

Cannabis use and symptoms in UHR

Study reference and country	Group	Study design	Outcome of interest
Addington et al. (35) – Canada	UHR 360 (211/149)	Longitudinal	Current cannabis use, DSM-IV current/lifetime cannabis abuse
	HC 108 (87/21)		
Ammirer et al. (29) – Austria	UHR 81 (27/54)	RCT	Current cannabis use
Ammirer et al. (30) – Austria	UHR 69* (27/54)	RCT	DSM-IV cannabis abuse disorder
Auther et al. (32) – USA	UHR 101 (66/35)	Longitudinal + cross-sectional	Current/lifetime cannabis use, DSM-IV cannabis abuse, SIPS-positive/negative symptoms in cannabis users
	HC 59 (30/29)		
Auther et al. (31) – USA	UHR 341 (210/131)	Longitudinal + cross-sectional	Current cannabis use, DSM-IV cannabis abuse disorder, SIPS-positive/negative symptoms in cannabis users
Bouchal et al. (57) – Germany	UHR 156 (106/50)	RCT	DSM-IV cannabis abuse disorder
	HC 10 (8/2)		
Bousman et al. (33) – Australia	UHR 225 (93/122)	Longitudinal	Lifetime cannabis use
Bousman et al. (30) – Austria	UHR 69* (27/54)	RCT	DSM-IV cannabis abuse disorder
Auther et al. (31) – USA	UHR 341 (210/131)	Longitudinal + cross-sectional	Current cannabis use, DSM-IV cannabis abuse disorder, SIPS-positive/negative symptoms in cannabis users
Bechdolf et al. (57) – Germany	UHR 156 (106/50)	RCT	DSM-IV cannabis abuse disorder
	HC 10 (8/2)		
Bousman et al. (33) – Netherlands	UHR 37 (26/11)	Longitudinal	Current/lifetime use of cannabis
Bousman et al. (30) – Austria	UHR 69* (27/54)	RCT	DSM-IV cannabis abuse disorder
Auther et al. (31) – USA	UHR 341 (210/131)	Longitudinal + cross-sectional	Current cannabis use, DSM-IV cannabis abuse disorder, SIPS-positive/negative symptoms in cannabis users
Carney et al. (36) – Australia	UHR 279 (93/186)	Cross-sectional	Current/lifetime cannabis use
Concecan et al. (62) – USA	UHR 32 (26/6)	Longitudinal	Lifetime cannabis use
Dragt et al. (63) – Netherlands	UHR 243 (140/103)	Longitudinal	Lifetime cannabis use, DSM-IV cannabis use disorder, SIPS-positive/negative symptoms in cannabis users
Gill et al. (37) – USA	UHR 102 (78/23)	Cross-sectional	Current cannabis use, SIPS-positive/negative symptoms in cannabis users
Hagenmuller et al. (64) – Switzerland	UHR 86 (63/33)	Cross-sectional	Current cannabis use
	HC 47 (23/21)		
Machielson et al. (65) – Netherlands	UHR 59 (52/7)	Cross-sectional	DSM-IV cannabis abuse disorder
Magaud et al. (66) – France	UHR 77 (92/46)	Cross-sectional	Current cannabis use
Marshall et al. (67) – Canada	UHR 48 (33/15)	Cross-sectional	DSM-IV cannabis abuse disorder
McHugh et al. (38) – Australia	UHR 190 (76/114)	Longitudinal + cross-sectional	Lifetime cannabis use
Mizrahi et al. (68) – Canada	UHR 24 (13/11)	RCT	SIPS-positive/negative symptoms in cannabis users
Nieman et al. (69) – Netherlands	UHR 147 (71/76)	Cross-sectional	Current cannabis use, CAARMS-positive/ negative symptoms
Phillips et al. (34) – Australia	UHR 100 (49/51)	Longitudinal	Lifetime cannabis use, DSM-IV cannabis dependence
Pruessner et al. (39) – Canada	UHR 30 (16/14)	Cross-sectional	Current cannabis use
Russo et al. (70) – UK	UHR 30 (15/15)	Cross-sectional	Current cannabis use
Simon &Umbricht (71) – Switzerland	UHR 72 (43/29)	Longitudinal	Current cannabis use
Stojanovic et al. (72) – Spain	UHR 17 (12/5)	Cross-sectional	Current cannabis use
Valmaggia et al. (40) – UK	UHR 182 (104/78)	Cross-sectional	Current/lifetime cannabis use
Vanu et al. (73) – Netherlands	UHR 48 (33/17)	Cross-sectional	SIPS-positive/negative symptoms in cannabis users
Woods et al. (41) – USA	UHR 60 (38/21)	RCT	Lifetime cannabis use or dependence

HC, healthy controls; BPRS, brief psychiatric rating scale; BSABS, bonn scale for the assessment of basic symptoms; BSIP, basal screening instrument for psychosis; CAARMS, comprehensive assessment of at-risk mental states; DSM-IV, Diagnostic and statistical manual of mental disorders IV; SIPS, structured interview for prodromal symptoms; UHR, ultra high risk; PANSS, positive and negative syndrome scale; RCT, randomised controlled trial.

*Long-term follow-up, missing data for 12 participants.
significantly higher levels of unusual thought content (UTC) and suspiciousness than non-cannabis users, but no differences were found for perceptual abnormalities, grandiosity or levels of disorganised speech (Table 2). Negative symptoms were reported less frequently, and no significant difference was found for overall scores between cannabis users and non-users.

Discussion

This meta-analysis indicates that UHR individuals have high rates of cannabis use. They are more than twice as likely to have used cannabis in their lifetime compared with HCs. UHR individuals were also more than five times as likely to have a current cannabis abuse disorder compared to HCs. This is particularly problematic given the risks associated with continued cannabis use. Even prior to the onset of psychotic disorders, cannabis use is associated with increased severity of certain positive symptoms, as UHR cannabis users had significantly higher levels of unusual thought content and suspiciousness compared with non-users.

Cannabis use in UHR

We found that 52.8% of UHR individuals reported using cannabis in their lifetime, which is a similar proportion to FEP samples (11), and higher than that of healthy populations (43). Indeed, our analyses found significantly higher rates of lifetime
cannabis use in the UHR samples than in the HC groups. Meta-analyses also revealed approximately one in four UHR individuals currently used cannabis. We also found high rates of comorbid CUDs in UHR individuals (12.8%). This is slightly lower than that found in people with schizophrenia (16%) (8). However, it is important to consider that we focused on young people in the UHR phase; that is, those who are putatively prodromal and are not yet experiencing full psychotic symptoms. Therefore, even prior to the onset of psychosis, UHR individuals are likely to engage in risky cannabis use.

High rates of cannabis use in this group are perhaps unsurprising given that use of substances is common in young people who present for mental health care (44, 45) and people with early psychosis (11). As there is evidence to suggest frequent use of high-potency cannabis increases the risk for later transition (5, 6), it is important that early intervention services encourage substance use reduction upon first presentation. A previous review and meta-analysis found that UHR individuals are significantly more likely to smoke, abuse alcohol and have lower levels of physical activity than their peers (46). Here, we add to this evidence to suggest that this group is also more likely to have used cannabis or have a CUD, posing an additional risk factor to both physical and mental health.

Cannabis use and symptoms

Our meta-analysis is the first to find a statistically significant association between UHR cannabis use and more severe positive symptoms (unusual thought content and suspiciousness). This is in line with previous research in people with FEP. For example, the use of cannabis at the time of, and after FEP, is associated with increased positive symptoms and poorer psychosocial functioning and long-term outcome (10, 19). It also supports the findings of Valmaggia et al. (40) where UHR participants often reported that they stopped using cannabis due to exacerbation of positive symptoms. Similar to Seddon et al. (2016), we also found no association between cannabis use and negative symptoms. We were unable to analyse individual negative symptoms due to a lack of available data. As such, analysis of global symptom domains may have masked any differences in individual symptoms.

We can only speculate about the reasons for the association between cannabis and increased positive symptoms. Positive symptoms may occur as a direct result of substance use. Indeed, cannabis can induce symptoms of psychosis in healthy populations, and may therefore influence symptom severity in the UHR group (47). Alternatively, those with more pronounced positive symptoms may be more likely to self-medicate using substances such as cannabis (48). However, a study by Gill et al., (37) found that mood enhancement was the primary reason for cannabis use reported by UHR individuals. Therefore, it could be used as a way to alleviate other symptoms such as anxiety or low mood (45) that are frequently found in the UHR group (49, 50). Another possibility is that a separate factor is driving the increase in positive symptoms. Our meta-analysis does not take into account potential

Table 2. Meta-analyses outputs

Cannabis use in UHR individuals	Studies Included (k)	N (UHR)	Event Rate	95% CI	\(\chi^2 \)	-	-
Current cannabis use	18	3068	0.267	0.22-0.32	85.70	-	-
Lifetime cannabis use	11	2251	0.528	0.47-0.59	84.02	-	-
Current cannabis abuse disorder	11	2315	0.128	0.09-0.19	90.32	-	-

UHR vs. HC	Studies Included (k)	N (UHR)	N (HC)	Odds Ratio	95% CI	\(\chi^2 \)	Z	P-value
Current cannabis use	7	1289	622	1.56	0.94-2.57	59.52	1.73	0.08
Lifetime cannabis use	4	930	405	2.09	1.04-4.19	67.63	2.08	0.04
Current cannabis abuse disorder	2	1095	458	5.49	1.97-15.32	0	3.25	0.001

Symptoms in UHR-CU vs. UHR-NU	Studies Included (k)	N (UHR-C)	N (UHR-NC)	Hedges’ g	95% CI	\(\chi^2 \)	Z	P-value
Total Positive Symptoms	8	325	593	0.16	-0.05-0.37	45.70	1.52	0.13
Disorganised Speech	4	244	452	0.05	-0.27-0.38	71.05	0.31	0.75
Grandiosity	3	178	371	0.11	-0.11-0.32	19.96	0.96	0.34
Perceptual Abnormalities	4	244	452	0.05	-0.115-0.206	0.00	0.56	0.57
Suspiciousness	3	178	371	0.21	0.02-0.39	0.00	2.22	0.03
Unusual Thought Content	4	244	452	0.27	0.07-0.48	30.29	2.63	0.01
Total Negative Symptoms	7	301	515	-0.03	-0.29-0.23	59.77	-0.23	0.82

UHR, ultra high risk.
confounders, such as alcohol or other substance use. Cannabis users are significantly more likely to engage in use of other substances, which may contribute to severity of positive symptoms (51). For example, a recent cohort study found alcohol confounds the relationship between cannabis use and transition to full-threshold psychotic disorders (31). We were also unable to account for the last time a person used cannabis across all studies. Therefore, increased positive symptoms could be due a result of the acute, intoxicating effects of cannabis.

From the studies included in our analysis, we were unable to account for the strength of cannabis young people were using. This may have been why we only found a significant difference for two of the positive symptoms. People with psychosis are more likely to use high-potency cannabis or ‘skunk’ (52). As high-potency cannabis has been shown to have the most harmful effects for both mental and physical health, it may be that those using the strongest forms of cannabis experience more severe symptoms. Similarly, the adverse health effects of synthetic cannabinoids such as ‘spice’ have been recognised, with the increased risk for psychotic-like experiences being a primary area of concern (53). As there has been a recent rise in the use of synthetic cannabinoids, more research is required to establish the effect these have on mental health as well as the patterns of use in people with emerging mental health difficulties.

Clinical implications

Irrespective of causation, high rates of cannabis use in the UHR group carries important clinical implications. Although many UHR individuals will not develop full-threshold psychosis, they may go on to have anxiety, mood or substance use disorders (50), and continue to function poorly regardless of transition or symptomatic remission (54, 55). Therefore, it is important to address any comorbid disorders at an early stage. Future research should assess the efficacy of interventions used to reduce cannabis use in UHR individuals upon first presentation to mental health services. For example, motivational interviewing and cognitive behaviour therapy have been found to be effective in reducing cannabis use among early psychosis groups (57), although a randomised control trial in the UHR group is yet to be conducted. Longitudinal studies are also required to highlight any relationship between continued cannabis use and factors such as long-term outcome, functioning and symptoms over time.

Limitations

High levels of heterogeneity were observed for all estimates which likely reflect clinical and methodological differences between studies. We performed sensitivity analyses in which we removed each study in turn and found that this had a negligible impact on the heterogeneity statistics, indicating that the F values were not the product of the inclusion of a single study but instead reflected wider between-study differences. These may have been driven by different recruitment strategies, study locations, sample demographics and instruments that were used to define and report substance use. We included studies of varied content and design, which meant there were subtle differences in the definition of cannabis use between studies. The inconsistent nature by which cannabis use is classified is a key limitation of many of the studies and may have had an effect on our results. For example, some studies referred to lifetime use as any previous use; therefore, this may have included people with previous heavy cannabis use as well as people who have tried it just once.

The majority of studies were rated as medium quality, with only one high-quality study included in the analyses. The major source of bias related to exposure measurement as many studies did not use an objective method to classify cannabis use (such as blood/urine testing). Due to the classification of cannabis as an illicit substance in many countries, individuals may have been reluctant to admit use, leading to underreporting among both the UHR and control comparator groups. Another source of bias was that many studies also failed to control for confounding variables, such as age, gender, use of other substances and frequency of cannabis use. As mentioned previously, we were therefore, unable to control for other substances in our meta-analysis. Cannabis users are more likely to use other substances; therefore, comorbid substance use may have accounted for higher rates of UTC/suspiciousness. We also could not control for the strength or frequency of cannabis use, and the last time a person used cannabis.

Concluding remarks

Ultra high risk individuals have high rates of cannabis use and abuse which are significantly higher than HCs. Among UHR individuals, cannabis users have more severe unusual thought content and suspiciousness compared to non-cannabis users. The UHR phase represents an important opportunity to intervene, and targeting substance use at this stage may have significant benefits to an
individual’s long-term outcome. Clinicians should be aware of comorbid substance use disorders in young people at UHR for psychosis, and reduction in substance use should be a priority in youth mental health services.

Acknowledgements
This work was supported by the Economic and Social Research Council [ES/J000941/1].

References
1. Degenhardt L, Coffey C, Romanuk H et al. The persistence of the association between adolescent cannabis use and common mental disorders into young adulthood. Addiction. 2013;108:124–133.
2. Large M, Sharma S, Compton MT, Slade T, Neilson O. Cannabis use and earlier onset of psychosis: a systematic meta-analysis. Arch Gen Psychiatry 2011;68:555–561.
3. Donohue K, Doody GA, Murray RM et al. Cannabis use, gender and age of onset of schizophrenia: data from the AESOP study. Psychiatry Res 2014;215:528–532.
4. Heille S, Ringsen PA, Melle I et al. Cannabis use is associated with 3 years earlier onset of schizophrenia spectrum disorder in a naturalistic, multi-site sample (N = 1119). Schizophr Res 2016;170:217–221.
5. Di Forti M, Sallis H, Allegra F et al. Daily use, especially of high-potency cannabis, drives the earlier onset of psychosis in cannabis users. Schizophr Bull 2014;40:1509–1517.
6. Marconi A, Di Forti M, Lewis CM, Murray RM, Vassos E. Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr Bull 2016;42:1262–1269.
7. Henquet C, Krabbeendam L, Spaanen J et al. Prospective cohort study of cannabis use, predisposition for psychosis, and psychotic symptoms in young people. BMJ 2004;330:11.
8. Korskeni J, Löökinen J, Koponen H, Isohanni M, Miettunen J. Rate of cannabis use disorders in clinical samples of patients with schizophrenia: a meta-analysis. Schizophr Bull 2009;36:1115–1130.
9. Volkow ND. Substance use disorders in schizophrenia—clinical implications of comorbidity. Schizophr Bull 2009;35:469–472.
10. Schoeler T, Petros N, Di Forti M et al. Effects of continuation, frequency, and type of cannabis use on relapse in the first 2 years after onset of psychosis: an observational study. Lancet Psychiatry 2016;3:947–953.
11. Myles H, Mylès N, Large M. Cannabis use in first episode psychosis: meta-analysis of prevalence, and the time course of initiation and continued use. Aust N Z J Psychiatry 2016;50:208–219.
12. Yung AR, Phillips LJ, Yuen HP et al. Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res 2003;60:21–32.
13. Yung AR, Phillips LJ, McGorry PD et al. Prediction of psychosis: a step towards indicated prevention of schizophrenia. Br J Psychiatry 1998;172:14–20.
14. Cannon TD, Cadenhead K, Cornblatt B et al. Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch Gen Psychiatry 2008;65:26–37.
15. Yung AR, Yuen HP, McGorry PD et al. Mapping the onset of psychosis—the comprehensive assessment of at risk mental states (CAARMS). Aust N Z J Psychiatry 2003;39:964–971.
16. Kranz T, Velthorst E, Koenders L et al. Cannabis use and transition to psychosis in individuals at ultra-high risk: review and meta-analysis. Psychol Med 2016;46:673–681.
17. Addington J, Case N, Saleem MM, Author AM, Cornblatt BA, Cadenhead KS. Substance use in clinical high risk psychosis: a report from the UK National EDEN study. Schizophr Bull 2016;42:619–625.
18. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264–269.
19. Seeran J, Birchwood M, Copello A et al. Cannabis use is associated with increased psychotic symptoms and poorer psychosocial functioning in first-episode psychosis: a report from the UK National EDEN study. Schizophr Res 2016;43:63–72.
20. Philpot M, Leckham D, Tipp E. Genealogy of instruments for prodrome evaluation of psychosis. Front Psychiatry 2013;4:25. doi: 10.3389/fpsyt.2013.00025.
21. Flynn D, Smith D, Quirke L, Monks S, Kennedy HG. Ultra high risk of psychosis on committal to a young offender prison: an unrecognised opportunity for early intervention. BMC Psychiatry 2012;12:1.
22. Kanato M. Drug use and health among prison inmates. Curr Opin Psychiatry 2008;21:252–254.
23. Wells G, Shea B, O’Connell D et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses, 2013. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
24. Borenstein M, Hedges L, Higgins J, Rothstein H. Comprehensive meta-analysis: a computer program for meta-analysis. Englewood, NJ: Biostat Inc., 2007.
25. Brockwell SE, Gordan IR. A comparison of statistical methods for meta-analysis. Stat Med 2001;20:825–840.
26. Contopanteli E, Razves D. Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a simulation study. Stat Methods Med Res 2012;21:409–426.
27. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–560.
28. Amminger GP, Schäfer MR, Papageorgiou K et al. Long-chain ω-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry 2010;67:146–154.
29. Amminger GP, Schäfer MR, Schögelhofer M, Kljer CM, McGorry PD. Longer-term outcome in the prevention of psychotic disorders by the Vienna omega-3 study. Nat Commun 2015;6: doi:10.1038/ncomms9343.
30. Author AM, Cadenhead K, Carréon R et al. Alcohol confounds relationship between cannabis misuse and psychosis conversion in a high-risk sample. Acta Psychiatr Scand 2015;132:60–68.
31. Author AM, McLaughlin D, Carréon RE, Nagachandran P, Correll CU, Cornblatt BA. Prospective study of cannabis use in adolescents at clinical high risk for psychosis: impact on conversion to psychosis and functional outcome. Psychol Med 2012;42:2485–2497.
Carney et al.

33. BOUSMAN C, YUNG A, PANTELIS C et al. Effects of NRG1 and DAOA genetic variation on transition to psychosis in individuals at ultra-high risk for psychosis. Transl Psychiatry 2013;3(9):207–210.

34. PHILLIPS LJ, CURRY C, YUNG AR, PAN YUEN H, ADLARD S, MCGORRY PD. Cannabis use is not associated with the development of psychosis in an ‘ultra’high-risk group. Aust N Z J Psychiatry 2002;36:800–806.

35. ADDINGTON J, CADENHEAD KS, CORNBLATT BA et al. North American prodrome longitudinal study (NAPLS 2): overview and recruitment. Schizophr Res 2012;142:77–82.

36. CARNEY R, YUNG AR, AMMINGER GP et al. Substance use in youth at risk for psychosis. Schizophr Res 2017;181:23–29.

37. GILL KE, PUE L, AZIMOV N et al. Reasons for cannabis use among youths at ultra high risk for psychosis. Early Interv Psychiatry 2015;9:207–210.

38. MCGUIR M, MCGORRY P, YUNG A et al. Cannabis-induced attenuated psychotic symptoms: implications for prognosis in young people at ultra-high risk for psychosis. Psychol Med 2017;47:616–626.

39. PREUSSNER M, IVER SN, FAERDI K, JOOBER R, MALLA AK. Stress and protective factors in individuals at ultra-high risk for psychosis, first episode psychosis and healthy controls. Schizophr Res 2011;129:29–35.

40. VALMAGGIA L, DAY F, JONES C et al. Cannabis use and transition to psychosis in people at ultra-high risk. Psychol Med 2014;44:2503–2512.

41. WOODS SW, BREER A, ZIPSERK RB et al. Randomized trial of olanzapine versus placebo in the symptomatic acute treatment of the schizophrenic prodrome. Biol Psychiatry 2003;54:453–464.

42. McGlashan T, MILLER T, WOODS S, ROSEN J, HOFFMAN R, DAVIDSON L. Structured interview for prodromal syndromes (SIPS). New Haven: Yale University; 2001.

43. EMCFDAD A. Annual report 2012: the state of the drugs problem in Europe. Luxembourg: Publications Office of the European Union, 2012.

44. HERMENS DF, SCOTT EM, WHITE D et al. Frequent alcohol, nicotine or cannabis use is common in young persons presenting for mental healthcare: a cross-sectional study. BMJ Open 2013;3:e002224.

45. SCOTT EM, HERMENS DF, NASHIM L et al. Distress and disability in young adults presenting to clinical services with mood disorders. Int J Bipolar Disord 2013;1:23.

46. CARNEY R, COTTER J, BRADSHAW T, FIRTH J, YUNG AR. Cardiometabolic risk factors in young people at ultra-high risk for psychosis: a systematic review and meta-analysis. Schizophr Res 2016;170:290–300.

47. HALL W, DEGENHAARDT L. Adverse health effects of non-medical cannabis use. Lancet 2009;374:1383–1391.

48. KUMARI V, POSTMA P. Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev 2005;29:1021–1034.

49. SVIRSKIS T, KORKELA J, HEINIMA A et al. Axis-I disorders and vulnerability to psychosis. Schizophr Res 2005;75:439–446.

50. LIN A, WOOD SJ, NELSON B, BEAVAN A, MCGORRY P, YUNG AR. Outcomes of nontransitioned cases in a sample at ultra-high risk for psychosis. Am J Psychiatry 2015;172:249–258.

51. KAVANAGH DJ, WASHBORN G, JENSEN L et al. Demographic and clinical correlates of comorbid substance use disorders in psychosis: multivariate analyses from an epidemiological sample. Schizophr Res 2004;66:115–124.

52. Di FORT M, MORGAN C, DAZZAN P et al. High-potency cannabis and the risk of psychosis. Br J Psychiatry 2009;195:488–491.

53. VAN AMSTERDAM J, BRUNT T, VAN DEN BROEK W. The adverse health effects of synthetic cannabinoids with emphasis on psychosis-like effects. J Psychopharmacol 2015;29:254–263.

54. COTTER J, DRAKE RJ, BUCCI S, FIRTH J, EDGE D, YUNG AR. What drives poor functioning in the at-risk mental state? A systematic review Schizophr Res 2014;159:267–277.

55. YUNG A, COTTER J, WOOD S et al. Childhood maltreatment and transition to psychotic disorder independently predict long-term functioning in young people at ultra-high risk for psychosis. Psychol Med 2015;45:3453–3465.

56. BUCCI S, BAKER A, HALPIN SA et al. Intervention for cannabis use in young people at ultra high risk for psychosis and in early psychosis. Ment Health Subst Use 2010;3:66–73.

57. BECHDOLF A, MILLER H, STUTZER H et al. Rationale and baseline characteristics of PREVENT: a second-generation intervention trial in subjects at-risk (prodromal) of developing first-episode psychosis evaluating cognitive behavior therapy, aripiprazole, and placebo for the prevention of psychosis. Schizophr Bull 2011;37(suppl 2):S111–S121.

58. BLOEMEN OJ, DE KONING MB, SCHMITZ N et al. White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychol Med 2010;40:1297–1304.

59. BUCHY L, CADENHEAD KS, CASSON TD et al. Substance use in individuals at clinical high risk of psychosis. Psychol Med 2015;45:2275–2284.

60. BUCHY L, PERKINS D, WOODS SW et al. Impact of substance use on conversion to psychosis in youth at clinical high risk of psychosis. Schizophr Res 2014;156:277–280.

61. BUGA H, STUDERUS E, RAW C et al. Cannabis use and cognitive functions in at-risk mental state and first episode psychosis. Psychopharmacology 2013;230:299–308.

62. CORCORAN CM, KEMHY D, STANDFORD A et al. Temporal association of cannabis use with symptoms in individuals at clinical high risk for psychosis. Schizophr Res 2008;106:286–293.

63. DRAIG S, NIEMAN DH, SCHULTZE-LUTTER F et al. Cannabis use and age at onset of symptoms in subjects at clinical high risk for psychosis. Acta Psychiatr Scand 2012;125:45–53.

64. HAGENMULLER F, HEKEREN K, MEIER M et al. The Loudness Dependence of Auditory Evoked Potentials (LDAEP) in individuals at risk for developing bipolar disorders and schizophrenia. Clin Neurophysiol 2016;127:1342–1350.

65. MACHELEN M, VAN DER SLUIS S, DE HAAN L. Cannabis use in patients with a first psychotic episode and subjects at ultra high risk of psychosis: impact on psychotic- and pre-psychotic symptoms. Aust N Z J Psychiatry 2010;44:721–728.

66. MAGAUD E, KEBIR O, GUT A et al. Altered semantic but not phonological verbal fluency in young help-seeking individuals with ultra high risk of psychosis. Schizophr Res 2010;123:53–58.

67. MARSHALL C, ADDINGTON J, EPSCH J et al. Treating young individuals at clinical high risk for psychosis. Early Interv Psychiatry 2012;6:60–68.

68. MIZRAHI R, KENK M, SURIDAN I et al. Stress-induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology 2014;39:1479–1489.
69. Nieman DH, Dragt S, van Duin ED et al. COMT Val 158 Met genotype and cannabis use in people with an At Risk Mental State for psychosis: exploring Gene x Environment interactions. Schizophr Res 2016;174:24–28.

70. Russo DA, Stochl J, Painter M et al. Substance use in people at clinical high-risk for psychosis. BMC Psychiatry 2014;14:361.

71. Simon AE, Umbricht D. High remission rates from an initial ultra-high risk state for psychosis. Schizophr Res 2010;116:168–172.

72. Stojanovic A, Martorell L, Montalvo I et al. Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology 2014;41:23–32.

73. van Tricht MJ, Harmsen EC, Koelman JH et al. Effects of cannabis use on event related potentials in subjects at ultra high risk for psychosis and healthy controls. Int J Psychophysiol 2013;88:149–156.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Quality assessment and meta-analyses outputs.