INTRODUCTION

Plant development is highly plastic owing to growth via meristems, and this plasticity is fundamental to the ability of plants, as sessile organisms, to adapt to changing environments. Developmental flexibility is particularly important for trees, which can live for thousands of years in the same place, growing massive bodies that must face a multitude of environmental challenges. The plant hormone auxin is well established as a key regulator of plant morphogenesis and in recent years the molecular mechanisms of transport and action have been elucidated. With the publication of the Populus trichocarpa genome (Tuskan et al., 2006), new tools to improve our understanding of secondary growth — the type of vascular growth that defines woody plants — became available. Populus is not only the dominant model species for woody plant growth, but also a valuable crop for pulp, bioenergy production, and carbon sequestration. Thus, understanding the mechanisms that underlie auxin transport in Populus is of interest both in the context of the evolution of plant development and as a means to manipulate plant architecture, biomass production, and fiber quality.

The auxins as a group include several molecules, with the most abundant natural form in plants being indole-3-acetic acid (IAA). Auxin synthesis occurs in young, actively growing tissues including shoot tips, young leaves, and germinating seeds (Ljung et al., 2001a,b), and increasing evidence suggests that synthesis takes place in the roots as well (Ljung et al., 2005). Auxin moves from the sites of production throughout the plant via two routes: long distance transport of conjugated forms in the phloem and short distance transport of “free” (non-conjugated) auxin via polar auxin transport (PAT). By far the better studied route, PAT is a form of active intercellular transport mediated by proteins inserted in the plasma membrane that belong to three distinct families. The PIN and ABCB families encode efflux proteins (i.e., proteins that facilitate movement out of cells), whereas members of the AUX/LAX family code for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history, including both tandem and whole genome duplication as well as probable gene loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of genes involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ localization.

Keywords: auxin, PIN, AUX/LAX, ABCB, Populus
AUX/LAX family facilitate auxin entry into cells, along with passive diffusion. PAT is relatively slow (3–20 mm/h; Lomax et al., 1995), saturable and can be impaired by the action of both competitive inhibitors and inhibitors of protein synthesis (Katekar and Geisler, 1980; Sussman and Goldsmith, 1981). This form of transport is considered polar because the protein carriers are often asymmetrically positioned in the plasma membrane such that transport is directional. Transport directionality can then be altered on relatively short timescales in response to repositioning of the protein carriers. Feedback mechanisms also exist such that PAT is often self-reinforcing, with multiple protein carriers themselves being upregulated by auxin (Sauer et al., 2006; Titapiwatanakun and Murphy, 2009).

The PIN proteins have been studied extensively in Arabidopsis thaliana (Chen et al., 1998; Luschning et al., 1998; Müller et al., 1998; Utsuno et al., 1998; Friml et al., 2002a,b, 2003) and show dynamic polar localization at the plasma membrane (PIN1, PIN2, PIN3, PIN7) or in the endoplasmic reticulum (ER) (PIN5, PIN6, PIN8; Mravec et al., 2009; Friml and Jones, 2010). PIN1 was first described as mediating PAT and determining organ outgrowth at the inflorescence (Okada et al., 1991; Gälweiler et al., 1998; Vernoux et al., 2011). Subsequently its role in embryogenesis, vein patterning, vascular development, and root development were established (Friml et al., 2003; Vieten et al., 2003; Scarpella et al., 2006; Petrášek and Friml, 2009). The characterization of PIN genes has been expanded to include the monocotyledons Zea mays and Oryza sativa, both of which express several PINs thought to be specific to the monocots. In maize, ZmPIN1a, b, and c are responsible for directing auxin transport in the male and female inflorescences and in the floret meristems (Carraro et al., 2006; Wu and McSteen, 2007). They are also involved in endosperm and embryonic development (Forestan et al., 2010) and in the maintenance of phyllotaxy (Lee et al., 2009). The monocot-specific PINs from rice (OsPIN9, OsPIN10a, and OsPIN10b) are highly expressed in adventitious root primordia and pericycle cells at the stem-base, suggesting that they may have evolved to promote adventitious root development (Wang et al., 2009).

Members of the AUXIN/LIKE AUXIN (AUX/LAX) family in Arabidopsis (Bennett et al., 1996; Yemm et al., 2004) are largely responsible for auxin influx, although the protonated form of auxin (IAA) is able to passively diffuse into cells. The founder member AUX1 encodes a plasma membrane protein that belongs to the amino acid permease family of proton-driven transporters and functions as an anionic symporter (Swarup et al., 2003; Yang et al., 2006). AUX1-mediated IAA uptake is implicated in gravitropic response, as the agravitropic phenotype of the auxl mutant can be phenocopied in wild-type seedlings by applying the auxin influx carrier inhibitor 1-naphthoxyacetic acid (1-NOA) and rescued using the membrane-permeable auxin 1-naphthaleneacetic acid (NAA; Swarup et al., 2001; Yemm et al., 2004). The paralogs of AUX1, LAX1, LAX2, and LAX3 encode proteins that maintain a correct phyllotactic pattern at the shoot apical meristem (SAM), as they act together with PIN1-mediated auxin efflux (Bainbridge et al., 2008). LAX3 is also involved in the development of lateral root primordia (Swarup et al., 2008).

The involvement of ABCB ATP-binding cassette (ABC) transporters of the B class, previously known as multidrug resistance (MDR)/Phosphoglycoprotein (PGP)] proteins in auxin transport was first hypothesized when expression of ABCB1/PGP1 in Arabidopsis was found to regulate hypocotyl elongation in a light-dependent fashion (Sidler et al., 1998). Subsequently, ABCB1 was shown to function with ABCB19/PGP19/MDR1 in mediating PAT (Noh et al., 2001). ABCB1 and ABCB19 are the closest Arabidopsis orthologs of mammalian ABCB1-type MDR transporters and although specificity for auxin is not assured (Lee et al., 2008), some appear to transport auxin with relatively high substrate specificity (Titapiwatanakun and Murphy, 2009; Yang and Murphy, 2009). ABCB14 and ABCB15 promote auxin transport along the inflorescence of Arabidopsis, where they are expressed in vascular tissue and interfascicular fibers. Inflorescence stems in both knockout mutants show a reduction in PAT (Kaneda et al., 2011). ABCB4 from Arabidopsis is involved in basipetal PAT in the root (Terasaka et al., 2005; Wu et al., 2007; Kubés et al., 2011) and, although most ABCBs studied to date function as efflux carriers, heterologous expression of ABCB4 suggests that it functions as an auxin influx carrier under low concentrations of IAA and reverses to efflux when IAA concentrations increase (Yang and Murphy, 2009). The ABCB1/PGP1 ortholog has been cloned in maize (Brachytic2/ZmPGP1) and in Sorghum bicolor (dwarf3/ShPGP1) and shown to be responsible for IAA transport along the stem (Multani et al., 2003; Knöller et al., 2010).

Our understanding of PAT and its role in development has advanced considerably in Arabidopsis and to a lesser extent in monocots, but the functional significance of these transport proteins — particularly the ABCBs — remain largely unknown in woody plants. Woody plants are defined by the production of secondary vascular tissue, specifically secondary xylem and phloem. These vascular tissues are derived from a lateral meristem called the vascular cambium that encircles the stem, adding new cells that will ultimately differentiate into xylem toward the inside of the stem and phloem toward the outside. Given the demonstrated role of PAT in vascular development in herbaceous plants it seems logical to expect a role in secondary growth. Indeed, the vascular cambium contains high levels of IAA in both Pinus and Populus, with a peak concentration occurring either in the cambial initials themselves, or perhaps more likely, in the earliest differentiating xylem elements (Ugglå et al., 1996, 1998; Tuominen et al., 1997; Hellgren et al., 2004). Concentrations rapidly decline through the regions of cell differentiation to near zero in mature secondary xylem and phloem. Auxin transport in the cambium is basipetal (Lachaud and Bonnemain, 1984; Ugglå et al., 1998; Kramer et al., 2008) and several members of the PIN and AUX/LAX gene families are expressed in developing Populus stems (Schrader et al., 2003, 2004; Nilsson et al., 2008). Furthermore, expression of one or more PIN and AUX/LAX genes is downregulated with the onset of dormancy (Schrader et al., 2003, 2004) and upregulated following exogenous application of IAA and/or gibberellins (Schrader et al., 2003; Björklund et al., 2007). Despite several excellent studies in Populus, our knowledge of the molecular mechanisms that regulate PAT in woody plants is essentially restricted to the expression patterns of just three PIN and AUX/LAX genes. A more comprehensive understanding of PAT gene and protein function in Populus will help to clarify the molecular mechanisms controlling vascular patterning in woody plants and explain the link(s) between
short and long distance auxin transport in species with extensive stem development.

Here we present the first comprehensive account of the PIN, AUX/LAX, and ABCB gene families in *Populus*, which contain 16, 8, and 20 members respectively. We investigate the history of gene family members relative to each other within *Populus* and relative to proposed orthologs in *Arabidopsis*. Through phylogenetic analysis we describe the timing of the diversification of the PIN, AUX/LAX, and ABCB gene families relative to when plants colonized land. Because the transport function of the ABCB proteins is less understood and their specificity for auxin has not been completely elucidated, we model the protein structures for *Populus* ABCBs and compare these to known *Arabidopsis* ABCB transporters. We then provide expression data for all putative auxin transporters in *Populus*, including presence or absence data for each gene in the cortex, phloem, cambial zone, and xylem of mature stems. We present quantitative RT-PCR expression levels for whole plantlets, internodes just beginning to form secondary vascular tissue, roots and developing xylem from mature stems. Lastly, in order to determine the most likely contributors to the positive feedback mechanism driving ”canalization” of auxin flow during vascular development, we test the response of PIN, ABCB, and AUX/LAX genes to exogenous IAA application. These findings should lay the foundation for the functional characterization of members of each family and suggest which proteins are likely to be important regulators of secondary growth.

MATERIALS AND METHODS

PLANT MATERIAL

Populus tremula × *alba* hybrid clone INRA 717-1B4 was chosen for all experimental procedures. *In vitro* plants were grown on half-strength Murashige and Skoog (MS) supplemented with 2% sucrose, 0.25 mg ml⁻¹ MES, 0.04 mg ml⁻¹ glycine, and 0.2 mg ml⁻¹ myo-inositol at 25 ± 2°C under 16 h day length conditions using GE 20W F20T12 growth lamps. Greenhouse plants were grown in 2:1:1 promix HP: perlite:vermiculite supplemented with 19–6–12 N–P–K slow release fertilizer. Greenhouse temperatures were maintained around 22 ± 5°C and day light supplemented to achieve a 16 h day length using metal halide lamps.

IDENTIFICATION OF PIN, AUX/LAX AND ABCB GENE AND PROTEIN FAMILIES

Populus trichocarpa gene and protein sequences were retrieved from the Joint Genome Institute’s (JGI) *P. trichocarpa* v.1.1 database. Henceforth we refer to these genes and gene families as *PtrPIN*, *PtrAUX*, and *PtrABCB*. When reporting expression data, we will refer to the same genes from *P. trichocarpa* (abbreviated as *Ptr*, i.e., *PtrPIN*). The PIN and AUX/LAX sequences had been previously annotated and we maintained the original nomenclature including the AUX and LAX names for every member of the AUX/LAX family from *P. trichocarpa* (i.e., *PtrAUX1–LAX5*). Every sequence was used as query with the BLASTn algorithm to search the National Centre for Biotechnology Information (NCBI) nucleotide collection database to confirm sequence identity. Putative ABCB genes in the *P. trichocarpa* genome were identified in the same database using 22 *Arabidopsis* ABCB gene sequences retrieved from the *Arabidopsis* Genome Initiative Research database (TAIR)². The JGI *P. trichocarpa* v.1.1 database was also searched using the terms “MDR” and “ATP” as queries. A third search was conducted using the retrieved sequences to interrogate the *Populus* DataBase (PopulusDB)³. Finally all retrieved sequences were confirmed as encoding putative auxin transporters by searching the phytozome v.7.0 database⁴. All the remaining PIN, AUX/LAX and ABCB sequences from other species were retrieved from phytozome v.7.0, TAIR10, The Rice Genome Annotation Project⁵, and MaizeGDB⁶. The complete list of retrieved genes is provided in Table A4 in Appendix. All sequences were inspected for redundancy and presence of pseudogenes and invalid gene models were discarded. ABCB protein sequences were used as queries to search the PROSITE database⁷ to confirm the presence of the TMD–NBD–TMD–NBD (transmembrane domain, nucleotide-binding domain) structure and the ABC C-motif. This allowed to rule out the presence of ABC half transporters and other ABC proteins not belonging to class B (Sanchez-Fernandez et al., 2001) and to classify the genes according to their full length structure, conserved motifs, sequence similarity, and EST support. Intron–exon structures of *P. trichocarpa PIN, AUX/LAX, and ABCB* genes were produced using the online tool GSDS, Gene Structure Display Server (Guo et al., 2007)⁸. The genome representation for *Populus* was created using the online tool SyMAP v.3.5⁹.

PtrABC, PIN, AND AUX/LAX STRUCTURE ANALYSIS AND PtrABC MODELING

Transmembrane domains were predicted using the online tools TMHMM Server v.2.0⁰ and Aramemnon¹¹. The protein structure of Sav1866 and MDR1 were obtained from the PDB (Protein Data Bank) database¹². The predicted protein structures of AtABCB1 and 4 have been previously generated by Yang and Murphy (2009). *Arabidopsis* templates (ABC B1 or 4) were chosen based on closest sequence identity. To generate the alignment files of *Populus* ABCB protein sequences and *Arabidopsis* ABCB sequences, Multalin¹³ was used with default settings. The output file was manually edited to meet Modeller 9e5 requirements¹⁴. The predicted 3D protein structure was generated using the python script Modeller 9v5. Three structures were generated and the quality was determined according to the manual (Wiederstein and Sippl, 2007). The best model was used for substrate docking. Furthermore, the

¹ http://genome.jgi-psf.org/Poaptr1_1/Poaptr1_1.home.html
² www.arabidopsis.org
³ http://www.populus.db.umu.se
⁴ http://www.phytozome.org
⁵ http://rice.plantbiology.msu.edu/
⁶ http://www.maizegdb.org/
⁷ http://ca.expasy.org/prosite/
⁸ http://gsds.cbi.pku.edu.cn/index.php
⁹ http://www.symapdb.org/
¹⁰ http://www.cbs.dtu.dk/services/TMHMM/
¹¹ http://aramemnon.uni-koeln.de/
¹² http://www.ncbi.nlm.nih.gov/pdb/home/home.do
¹³ http://bioinfo.genotoul.fr/multalin/multalin.html
¹⁴ http://salilab.org/modeller/release.html
quality of the protein model was tested using the program ProSA15. Substrate docking was performed using MEDOCK16. PDB files of all proteins were translated into pdbq files using the PDB2PQR server17. For substrate docking prediction, the nucleotide-binding folds (NBFs) were removed. All loops connecting the TMDs were removed to reduce the size of the file. Finally, the pdbq file of IAA was produced with the Dundee PRODRG2 Server (Dolinsky et al., 2004, 2007)18. Each run had a docking repeat of five times and four runs were performed, resulting in a total of 20 molecules docked to the protein structure. Protein models were displayed using PyMol19.

PHYLOGENETIC ANALYSIS

Phylogenetic reconstruction was conducted using the coding sequences of 18 species, including 3 monocotyledonous and 10 dicotyledonous plants. Sequences from the green algae Chlamydomonas reinhardtii (Merchant et al., 2007) and Volvox carteri (Prochnik et al., 2010), the moss Physcomitrella patens (Rensing et al., 2008) and the lycopod Selaginella moellendorffii (Banks et al., 2011) were also included. For each coding sequence, three types of trees were retrieved from two different alignments. The first alignment was generated in concert with the tree search, a method called “dynamic homology” (Wheeler, 1996). 149, 68, and 245 unaligned coding sequences from the PIN, AUX/LAX, and ABCB families (Table A4 in Appendix) were read into the phylogenetic program POY v.4.1.2 (Varón et al., 2009) and trees and alignments were searched simultaneously for the least costly sequence alignment and tree topology combination under the parsimony criterion. A second alignment was generated in the program MAFFT (Katoh et al., 2009), where the same sequences were aligned under a gap opening cost of 4 and a gap extension cost of 0.05. This alignment was then input to the program Gblocks v.0.91b (Castresana, 2000; Talavera and Castresana, 2007), which removes regions with multiple gaps and of dubious homology. Gblocks was run with default settings, except that gaps were allowed in all parts of the resulting alignment (such as in cases where one or a few sequences have a clear insertion or deletion). The alignment output by Gblocks was then used for tree searching in POY, where it was read as pre-aligned. Both unaligned and aligned POY tree searches were immediately followed by bootstrap searches, where 100 pseudoreplicates were searched starting with one Wagner tree each. Tree searches were conducted on a parallel computing cluster, using 24 processors searching for a maximum of 6 h of automated searching (in which POY decides on the best combination of builds, swapping, ratchet, and fusing) with dynamic homology and 16 processors for the pre-aligned data. For dynamic homology, in both the tree searches and the bootstrap calculations, the data were divided by the program into seemingly homologous blocks before searching using the command “auto_sequence_partition,” which greatly increases search speed. For all POY searches, the costs of transitions, transversions, and insertion/deletion events were the same.

The alignment from Gblocks was also used for a maximum likelihood search in RaxML (Stamatakis et al., 2008) on the CIPRES Science Gateway (Miller et al., 2010)20. The alignment was first uploaded and converted to relaxed Phylib format and then tree searches were performed with likelihood bootstrap in which the best tree is reported along with the results of a 100-pseudoreplicate bootstrap calculation. The program was allowed to determine the best model (the GAMMA Model was chosen) and other parameters automatically before tree searching. All trees were visualized and edited using FigTree v.1.3.121

DNA AND RNA ISOLATION AND cDNA SYNTHESIS

Total RNA from whole in vitro-grown plantlets, internodes, roots, and developing xylem was extracted using the Spectrum Plant Total RNA Kit (Sigma-Aldrich, St. Louis, MO, USA) according to manufacturer’s instructions. Aliquots of approximately 100 μg developing xylem tissue were homogenized with a Mini Bead Beater (BioSpec Products Inc., Bartlesville, OK, USA) and stainless steel beads. mRNA from 20 μm-thick frozen sections from the cortex, secondary phloem, cambium, and secondary xylem was extracted using the DynaBeads mRNA Direct Kit (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions. DNA was extracted using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) according to manufacturer’s instructions using approximately 100 μg fresh leaf tissue. DNA and RNA concentrations were measured with a NanoDrop 2000™ (Thermo Scientific, Waltham, MA, USA). Total RNA was treated with TURBO DNAfree™ (Ambion, Austin, TX, USA) according to manufacturer’s instructions. cDNA was synthesized from 1.5 μg of total RNA using SuperscriptII reverse transcriptase (Invitrogen, Carlsbad, CA, USA) with the oligo(dT)20 primer. RT-PCR reaction cycles were carried out according to manufacturer’s instructions including a final 20 min incubation step with RNaseH (Invitrogen, Carlsbad, CA, USA). cDNA concentration was measured with a Nanodrop 2000™ and the cDNA was diluted to 170 ng μl−1.

AMPLIFICATION, CLONING AND SEQUENCING OF 3′ END PCR PRODUCTS

In order to amplify the 3′ end untranslated region (UTR) of transcripts that could not be detected in quantitative real time PCR (qRT-PCR) reactions with at least three different primer pairs, reverse transcription reactions were carried out using the Adp1-dt17 primer (Kramer et al., 1998) and SuperscriptII reverse transcriptase according to manufacturer’s instructions. cDNA was amplified using the Adp1 primer coupled to the corresponding forward primer specifically designed to amplify the 3′ end of the transcript (the complete list of primers is provided in Table A5 in Appendix). The PCR amplifications were carried out with Taq DNA polymerase (SIGMA, St. Louis, MO, USA) or AmpliTag Gold DNA polymerase (Applied Biosystems™, Foster City, CA, USA) according to manufacturer’s instructions. PCR

15 http://www.came.sbg.ac.at/typo3/index.php?id=prosa
16 http://medock.cshb.niu.edu.tw
17 http://pdb2pqr.sourceforge.net
18 http://davapc1.bioch.dundee.ac.uk/prodrg
19 http://pymol.sourceforge.net
20 http://www.phylo.org/news/raxml.php
21 http://tree.bio.ed.ac.uk/software/figtree/
products were run on 1% agarose gels, gel purified using the Zymoclean™ Gel DNA Recovery Kit (Zymo Research, Irvine, CA, USA) and cloned into the pGEM™-T Easy Vector Systems (Promega, Madison, WI, USA). Colonies were grown on LB plates containing 100 mg/ml ampicillin. Following PCR amplification, positive colonies were grown in 4 ml of LB medium containing 100 mg/ml ampicillin, at 37˚C, over night. Plasmid DNA was extracted using the Qiagen Plasmid Mini Kit (Qiagen, Valencia, CA, USA) according to manufacturer’s instructions. Plasmids were sequenced by Eurofins MWG Operon (Huntsville, AL, USA). Sequences were aligned using the Vector NTI Advance™ 10.3.0 AlignX module (Invitrogen, Carlsbad, CA, USA).

QUANTITATIVE RT-PCR
Quantitative real time PCR was carried out on the MX3000P and MX3005P systems (Stratagene, La Jolla, CA, USA) using Brilliant™ SYBR® Green QPCR Master Mix (Stratagene, La Jolla, CA, USA) according to manufacturer’s instructions. The SYBR® Green (with dissociation curve) experiment was used. Plates were manually loaded and reactions were carried out in a total volume of 20 μl, using 75 ng of cDNA per reaction. Reactions were run in triplicate. Primer pairs were designed using Primer3 software22, analyzed with OlygoAnalyzer 3.1 software23 for melting temperature, oligo-, hetero-dimer, and hairpin structure formation, synthesized by Integrated DNA Technologies (IDT, IA) and tested with conventional PCR to verify amplification of a single product. Following primer titration, a final concentration of 250 nM for each primer was chosen. In qRT-PCR experiments the following thermal cycling conditions were used: activation step of 10 min at 95˚C; 40 cycles of 30 s at 95˚C, 25 s at 57˚C, 25 s at 72˚C; following thermal cycling conditions were used: activation step of 10 min at 95˚C; 40 cycles of 30 s at 95˚C, 25 s at 57˚C, 25 s at 72˚C; fluorescence was collected at the end of each extension step. A melting curve analysis was performed.

Efficiency-corrected expression values were calculated based on standard curves for all genes (Livak and Schmittgen, 2001; Pfaffl, 2001). Standard curves were run in triplicate for every gene in every cDNA batch and amplification efficiencies were calculated from the standard curve slopes. Baseline-subtracted and ROX-normalized fluorescence readings were collected with the MX3005P software v.4.01. Expression values were normalized to the geometric mean of four housekeeping genes (PtaTUA2, PtaACT2, PtaTUA1, PtaUBQ1, PtaTUA2, PtaACT2) that were found, in our hands, to have the highest amplification efficiency and most stable expression across different tissues (Vandesompele et al., 2002; Brunner et al., 2004; Gutierrez et al., 2008). For expression following exogenous IAA application, the same set of normalizers was used in a comparative quantitation experiment comparing treated and untreated control tissues.

IAA TREATMENTS
Two-month-old *P. tremula* × *alba* was grown in the greenhouse. Approximately 1-cm-long segments of internodes between four and eight nodes beneath the shoot apex and actively growing root tips were collected and incubated at room temperature in 30 μM IAA in liquid growth media (half-strength MS salts, 2% sucrose, 0.25 mg ml⁻¹ MES, 0.04 mg/ml glycine, and 0.2 mg ml⁻¹ myo-inositol) for 6 h in the dark following a 15 min vacuum infiltration. The same conditions were used for negative controls (no IAA). Tissues were frozen in liquid N₂ and ground for RNA extraction.

RESULTS

CHROMOSOMAL DISTRIBUTION AND GENE DUPLICATION IN THE PIN, AUX/LAX, AND ABCB FAMILIES OF POPULUS
Nearly every locus coding for a PIN, AUX/LAX, or ABCB protein has a corresponding paralogous locus in another chromosomal block (Figure 1). *Populus* has exactly twice the number of *PIN* (16) and *AUX/LAX* (8) genes as *Arabidopsis* (eight and four, respectively) and these genes form pairs with highly similar coding sequences, which may be the consequence of the relatively recent genome duplication (Figures 1, 2, and 3). Neither the PIN loci nor the AUX/LAX loci appear to be derived from tandem duplications. In contrast, three tandem duplicated ABCB loci pairs (*PtrABCB2–PtrABCB8*, *PtrABCB10–PtrABCB13*, and *PtrABCB13–PtrABCB14*) are present in the *Populus* genome. Unlike the PIN and AUX/LAX families, the ABCB genes are more randomly distributed between corresponding and non-corresponding duplicated regions, with nine members that do not present any paired gene on another chromosome (Figure 1).

GENE AND PROTEIN STRUCTURE OF THE PIN, AUX/LAX, AND ABCB FAMILIES OF POPULUS
We identified a total of 44 *Populus* genes encoding putative auxin transport proteins, including 16 PIN, 8 AUX/LAX, and 20 Ptra-BCB loci. The complete list of *P. trichocarpa* PIN, AUX/LAX, and ABCB gene names, gene models, and loci can be found in Table A2 in Appendix. The PIN genes of *Populus* present a conserved intron–exon organization which is illustrated in Figure A1 in Appendix. The same structural characteristics are present across PINs from different plant species including *Arabidopsis* (Mravec et al., 2009; Wang et al., 2009; Shen et al., 2010). The proteins belonging to the PtrPIN family range from 347 to 650 amino acids in length. In *Populus*, seven, three, and six PIN proteins present long, reduced and short central hydrophilic domains respectively. In general, there is no strict correlation between the length of the genomic sequence of loci coding for auxin transporters and their protein product length (Figure A1 and Table A3 in Appendix). One locus (PtrPIN14) is classified as encoding a pseudogene. The proteins for the PtraAUX/LAX family range from 465 to 492 amino acids and present the most conserved sequence among the three families of putative auxin transporters. Their primary sequence is generally conserved across the plant kingdom and *Populus* has twice the number of AUX/LAX coding loci compared to *Arabidopsis*. All of the PtraAUX/LAX proteins have 11 predicted transmembrane domains. All the ABCB loci from *P. trichocarpa* encode proteins with a repeated TMD–NBD structure and carry a predicted nucleotide-binding domain signature ([AG]- × (4)-(G)-K-[ST]; Rea, 2007; Verrier et al., 2008). Their length varies between 1141 and 1578 amino acids and the two regions integral to the plasma membrane are highly hydrophobic and comprise 7–12 transmembrane helices. In addition to these two conserved modules, a more variable and less hydrophobic linker region connects the first NBD to the second TMD in all PtraABCB proteins.
Carraro et al. PIN, AUX/LAX, ABCB in Populus

FIGURE 1 | Chromosome distribution ofPtrPIN, PtrAUX/LAX, andPtrABCB genes. The online tool symap v.3.5 was used to blast the Populus trichocarpa genome against itself and find duplicated regions. Populus has 19 chromosomes in the haploid state, shown here mapped onto a circle with homologous pairs along the upper and lower semi-circumferences. The color coded ribbons link one region with the correspondent homologous chromosomal segments. All PIN, AUX/LAX, and ABCB genes are assigned to a chromosome based on their map position. Red coded genes do not have any unique match on another locus in the genome. For a detailed list of these genes, see Table A2 in Appendix.

IDENTIFICATION OF PREDICTED IAA MEMBRANE TRANSPORTERS FROM THE ABCB FAMILY OF POPULUS

After analysis of the primary structure of the PtrABCB proteins, models of tertiary structure were produced using all 20 ABCB amino acid sequences. Structural models were displayed using PyMol (Figure A2 in Appendix) in order to determine which PtrABCBs are the most likely candidates for IAA transport. Although pairwise comparison of amino acid sequences can provide a first estimate of which proteins are the true orthologs of confirmed Arabidopsis auxin transporters (AtABCB1, AtABCB19, and AtABCB4), this information should be supported with the identification of IAA docking sites and transmembrane barrel structure predictions (Yang and Murphy, 2009). Among all PtrABCBs, 10 are predicted to have one or more IAA binding sites (Figure A2 in Appendix). In Arabidopsis, IAA is primarily docked at two binding sites in the TMDs of ABCB19 while ABCB4 has a unique additional binding site (Yang and Murphy, 2009). In Populus, ABCB1.1/ABCB1.2 and ABCB19 have the most similar sequence to AtABCB1 and AtABCB19 and have two, five, and three predicted binding pockets respectively.

RECONSTRUCTION OF THE PHYLOGENETIC RELATIONSHIPS IN THE PIN, AUX/LAX, AND ABCB GENE FAMILIES OF POPULUS

All three phylogenetic analyses (parsimony using unaligned and aligned sequences and maximum likelihood with aligned sequences) generally resulted in well resolved, reasonable, highly supported trees, indicating considerable phylogenetic signal in the sequence data, which was robust to different methods of analysis. Here we show the trees for all three gene families found under maximum likelihood and the tree found under dynamic homology.
and parsimony for the ABCB family (Figures 2, 3, and 4; Figure A3 in Appendix). The three different analyses showed the same general patterns in each gene family, although the PIN analysis was more sensitive to the difference between likelihood and parsimony, the latter producing long, pectinate clades containing a mixture of taxonomic groups.

The PIN genes of basal land plants (Physcomitrella and Selaginella in our analysis) cluster at the base of the tree, with the exception of PpPIN1D (Figure 2A). The placement of PpPIN1D may indicate an erroneous or highly derived sequence, as its placement was unstable and with low bootstrap support and it was recovered in the likelihood tree on an extremely long branch. The angiosperm PINs initially split into two large clades, with subsequent splits that show the monocot/dicot divergence four or five times, although support for several of these nodes is weak (Figure 2). There is also the frequent occurrence of clear sister pairs of PINs in Populus.
The AUX/LAX analysis similarly places the basal land plant AUX/LAX genes in a grade at the base of the tree followed by two large clades of angiosperms (albeit with weak support; Figure 3). The monocot AUX/LAX genes were recovered as two closely related clades under maximum likelihood (Figure 3B) but were recovered as a single clade when the aligned data were analyzed under parsimony (trees not shown). All Populus AUX/LAX genes were recovered as sister pairs or, in the case of *PtrAUX1–LAX5* and *PtrAUX2–LAX1*, as closely related in a clade with the *P. tomentosa* and *P. tremula × tremuloides* AUX/LAXs.
In contrast to the PIN and AUX/LAX trees, clades, or paraphyletic grades of basal land plant ABCBs were recovered in several different locations throughout each tree, often as sister to angiosperm clades that subsequently showed the monocot/dicot split (Figure 4). We included coding sequences from the green algae in our ABCB analysis: two putative ABCB transporters...
from C. reinhardtii (Cre17_g725200 and Cre17_g725150) and one ABCB-like sequence from V. carteri (Veprot1), the latter used to root each ABCB tree. The inclusion of the algal sequences and the use of Volvox as a root appear valid, as they are not recovered on especially long branches, and Physcomitrella and Selaginella are appropriately placed on the first branches of each tree. In the maximum likelihood tree, we recovered 10 separate clades of monocot ABCBs, as well as an apparent expansion of the ABCBs in several angiosperm species, including Medicago truncatula and Prunus persica (Figures 4A,B). Among the Populus ABCBs, only few were recovered in clear sister pairs. The tree found under dynamic homology for the ABCBs recovered almost identical groupings of basal land plant, monocot, and dicot ABCBs as those trees found using aligned sequences, but the relationships among these clades or groups differed. For example, a clade containing OsABCB12 and Mes026648 (top of Figure 4B) was recovered as a paraphyletic grade immediately after the algal sequences in the dynamic homology tree (Figure A3A in Appendix).

Tissue-specific and IAA-induced expression of PtaPINS, PtaAUX/LAXs, and PtaABCBs

Expression of all PIN, AUX/LAX, and ABCB gene family members in P. tremula × alba was characterized for whole plantlets, roots, and stem tissues from several developmental stages through qRT-PCR (Figures 5–8). Whole in vitro-grown plantlets that were old enough to have initiated secondary growth were used as an initial screen and showed that over half of the PtaPINS and PtaAUX/LAX genes were expressed at above-trace levels, while only four or five PtaABCBs showed above-trace expression. Internodes that spanned the region of secondary growth initiation in greenhouse-grown plants should reflect combined expression in several distinct tissues, including cortex, vascular cambium, developing secondary vasculature, and primary xylem parenchyma. Here PtaPIN1, 6, and PtaABCB1.1 show high expression levels, with lower levels of PtaPIN7, 11, 15, 16, and PtaABCB7 (Figures 6 and 8). Developing secondary xylem removed from beneath the bark in 6-month-old greenhouse-grown trees showed high expression of PtaPIN1 and PtaABCB1.1, with lower levels of PtaABCB7. Roots showed low expression levels of most genes, which may simply reflect the fact that the roots collected were relatively mature and composed largely of parenchyma, rather than a concentration of actively growing root tips. PtaAUX/LAX genes were expressed at relatively uniform levels across all tissues and developmental stages (Figure 7), although expression levels were highest for developing xylem, where very high levels of PtaAUX2 were detected.

In order to perform an expression screen (RT-PCR) with higher spatial resolution in developing woody stems, basal internodes approximately 100 nodes and 2.5 m from the stem apex of 6-month-old Populus were freeze-sectioned and tissue collected from the cortex, secondary phloem, cambial zone (restricted to cambial initials and mother/daughter cells), and secondary xylem. Developing secondary xylem and phloem were discarded in order to obtain the most pure collections of tissues possible. Given that, the number of members of all families that are expressed in each tissue is striking (Figures 5–8). Only PtaPIN9, 10, and 12 and PtaABCB5 and 10 were not expressed in any tissue (Figures 6 and 8), and although some of the transcripts detected through RT-PCR are likely expressed at very low levels, it is clear that expression of many previously undescribed members (e.g., PtaPIN6, 7, 15, and 16 and PtaABCB1.1 and 7) is widespread in Populus stems. Also striking is the fact that several members of all three transport families are expressed in mature secondary xylem, from which all mRNA is derived from living ray parenchyma cells.

Because a positive feedback mechanism is fundamental to the canalization of auxin flow during vascular development, we also tested the auxin response of members of the PtaPIN, PtaAUX/LAX, and PtaABCB gene families in roots and internodes from 2-month-old plants, following exogenous IAA application, via qRT-PCR. PtaPIN1, 2, and 7 and PtaAUX5 and 6 were strongly upregulated in developing internodes, with PtaPIN15 and 16 showing a more moderate increase (Figure 9). In contrast, PtaPIN3 and 8 were strongly upregulated in roots, with PtaAUX6 and PtaABCB7 showing a lower expression level.

FIGURE 5 | Analysis of tissue-specific expression of PIN, AUX/LAX, and ABCB transcripts. Presence or absence of transcripts of genes coding for putative auxin transport proteins in the cortex, secondary phloem, cambial zone (i.e., initials and mother/daughter cells), and mature secondary xylem of *Populus tremula* × *alba* as determined by RT-PCR. Consensus of four biological replicates is shown, where GRAY = PRESENT, WHITE = ABSENT, and CROSS-HATCHED = VARIABLE among biological replicates. Samples were taken from the base of 6-month-old trees during active growth, approximately 100 internodes down from the top of the tree at a diameter of about 2 cm.
Carraro et al. PIN, AUX/LAX, ABCB in Populus

FIGURE 6 | Quantification of PIN transcripts expression by qRT-PCR.

PIN genes show tissue-specific expression profiles that may reflect a role in directional auxin transport in developing vasculature, with PtaPIN1 highly expressed across all tissues. PtaPIN6, 7, 15, and 16 were expressed in internodes and have not been described before. Total RNA was extracted from four biological replicates and qRT-PCR standard curves and assays were run in triplicate. Expression values were calculated via the $2^{-\Delta\Delta CT}$ method (Livak and Schmittgen, 2001; Pfaffl, 2001) and baseline-corrected fluorescence values were normalized against the geometric mean of PtaPD-E1, PtaTUA2, PtaUBQ, PtaACT2. These reference genes were stably expressed across all tissues with the exception of developing xylem; this means that it is permissible to compare expression levels within any single tissue as well as across whole plantlets, internodes, and roots. Error bars represent the SEM.

DISCUSSION

THE ARRAY OF PUTATIVE AUXIN TRANSPORTERS IN POPULUS REFLECTS BOTH PRE-EXISTING DIVERSITY AND EXPANSION DUE TO GENOMIC AND SEGMENTAL DUPLICATIONS

There are twice as many members of the PIN and AUX/LAX gene families in Populus as there are in Arabidopsis and both families show a number of clear pairs based on coding sequence (e.g., Ptr-PIN4/5, PtrAUX3/4; Figures 2 and 3). With no clear evidence for any tandem duplication in the PIN and AUX/LAX gene families, it is possible that all gene copies were retained following the "salicoid" genome duplication (Tuskan et al., 2006). Although the functional role of these proteins has not been demonstrated in Populus, given the conserved protein structure and known specificity for IAA for most PINs in Arabidopsis (and to a lesser extent, AUX/LAX proteins), it seems likely that they have retained a function in auxin transport. To what extent new PINs have developed specialized roles in PAT in Populus is not known and the added redundancy for such an important developmental mechanism may be beneficial enough to warrant retention. Indeed, redundancy in Arabidopsis allows single PIN mutants to complete embryogenesis, whereas quadruple mutants are required before severe defects are observed (Benková et al., 2003; Friml et al., 2003). At the same time it is interesting to note that there are clear differences in expression among presumed paralogs. For instance, PtaPIN1 is expressed at much higher levels than PtaPIN7 in internodes and developing xylem. Predictions about PIN function in Populus may also be informed by structural comparisons with Arabidopsis. The "long" PINs in Arabidopsis are localized to the plasma membrane and function in PAT, whereas those with shorter structure are found in the ER (Mravec et al., 2009; Friml and Jones, 2010). PtpPIN1–3 and PtpPIN6–9 are all classified as "long" PINs (Table A3 in Appendix), but it is not known whether similar localization patterns exist in Populus.

In contrast to the PIN and AUX/LAX gene families, the number of ABCBs in Populus is not expanded relative to Arabidopsis (both species include about 20 members; Table A2 in Appendix) and only a few appear as closely related gene pairs. This is perhaps not surprising given that this gene family has a much deeper history and that ABCB proteins transport a number of substrates in addition to IAA. There also appears to be expansion in a number of angiosperms included in our phylogeny, such as Z. mays, M. truncatula, P. persica, and Arabidopsis (Figure 4). Although there has been retention of ABCB copies from both tandem duplication and whole genome duplication events in Populus, there also appears to have been loss. Much functional work is needed on Populus ABCB genes and proteins before any role in PAT can be ascribed.

CANDIDATE ABCBs FOR IAA TRANSPORT FUNCTION IN POPULUS ARE SUGGESTED BY PHYLOGENETIC PLACEMENT AND PROTEIN STRUCTURE PREDICTION

ATP-binding cassette proteins constitute a very large superfamily that has representatives across the bacteria, plant, and animal
FIGURE 7 | Quantification of AUX/LAX transcripts expression by qRT-PCR. Most AUX/LAX transcripts showed broad expression across plant tissues, including the previously undescribed PtaAUX4–8. PtaAUX2 and PtaAUX8 were highly expressed in internodes and developing xylem. Error bars represent the SEM.

FIGURE 8 | Quantification of ABCB transcripts expression by qRT-PCR. Most notable among the ABCB family is PtaABCB1.1, which was highly expressed in internodes and developing xylem and whose ortholog in Arabidopsis (AtABCB1) has been demonstrated to transport auxin. Expression patterns of all PtaABCB genes are previously undescribed. Error bars represent the SEM.
AtABCB19, respectively, both of which are known IAA transporters in kingdom (Jasinski et al., 2003; Verrier et al., 2008) and, as a group, are able to transport a wide array of different molecules (Geisler et al., 2005; Bandyopadhyay et al., 2007). Among the ABCs, the sub-class B includes proteins that are able to bind and transport auxin across the plasma membrane in Arabidopsis, whereas other members transport other substrates in addition to IAA (e.g., AtABCB14 functions primarily as a malate transporter (Lee et al., 2008)). There has been no functional characterization of the ABCBs in Populus to date and given the large size of the family and the likely role of one or more members in IAA transport, we sought to identify candidate PtrABCBs with this function. Our phylogenetic analysis shows that the coding sequences of PtrABCB1.1, PtrABCB1.2, and PtrABCB19 cluster together with AtABCB1 and AtABCB19 respectively, both of which are known IAA transporters with high specificity for IAA (Zazimalová et al., 2010). Interestingly, although 10 of the 20 PtaABCs are predicted to have one or more IAA binding sites based on tertiary structure, both PtaABCB1 and PtaABCB19 have only one clearly defined binding pocket for IAA. All but one of the remaining ABCs with putative IAA binding sites (PtaABC2, PtaABC5, PtaABC6, PtaABC8, PtaABC11, PtaABC14) cluster together in the same clade, which includes AtABC4, a gene coding for another membrane protein capable of IAA transport (Terasaka et al., 2005; Kubeš et al., 2011). Similarly, PtraABC16 occurs in the same clade as AtABCB13 and AtABCB14, where AtABCB14 has been recently determined as responsible for auxin transport in the inflorescence stem of Arabidopsis (Kaneda et al., 2011).

We found PtraABC1.1 to be highly expressed in most Populus tissues, particularly in internodes and developing xylem. PtraABC7 was also expressed in these same tissues and was strongly upregulated in response to IAA, although most notably in roots. However, although coding sequence similarity places PtraABC7 as a close relative of a presumed IAA transporter in Arabidopsis (AtABCB15; Kaneda et al., 2011), the protein was not predicted to contain an IAA binding site. We suggest therefore that PtraABC1.1 and its nearly identical paralog PtraABC1.2 are the most logical candidates for initial functional characterization, both in heterologous expression systems (e.g., Schizosaccharomyces pombe) and in planta, given their phylogenetic placement relative to AtABCB1 and predicted IAA binding sites. It is interesting to note that in contrast to AtABCB1 (Geiser et al., 2005), we did not find PtaABC1.1 to be upregulated by exogenous IAA treatment. Lastly, we did not observe strong expression of PtaABC19 in any Populus tissues nor was it upregulated by IAA. The expression of its presumed ortholog in Arabidopsis, AtABCB19, is induced by IAA treatments (Noh et al., 2001) and the protein often co-localizes with AtPIN1 (Bandyopadhyay et al., 2007), suggesting that the relationship of these two proteins may have changed. Clearly there is much to be learned about the role of these ABCBs in IAA transport in Populus.

AUXIN TRANSPORTERS IN POPULUS STEM DEVELOPMENT

That auxin regulates vascular development in woody plants is clear, but our understanding of the genetic mechanisms and the role of specific proteins in basipetal transport is limited. The expression of PutPIN1–3 and PutLAX1–3 has already been characterized in detail across the developing stem tissues of P. tremula x tremuloides (Schrader et al., 2003), but our results suggest that a far greater number of putative transporters are expressed in young internodes where cambial growth is being initiated. In particular, PtaPIN1, PtaPIN6, and PtaABC1.1 are highly expressed in internodes, a complex tissue that includes primary xylem parenchyma, primary phloem, cortex, and a nascent vascular cambium. In developing xylem, PtaPIN1, PtaUX2, and PtaABC1.1 are highly expressed, with the latter likely to function in auxin transport given its protein sequence similarity to AtABCB1. Similarly, several previously uncharacterized transporters are strongly upregulated by auxin, including PtaPIN8, PtaUX6, and PtaABC7 in roots and PtaPIN7, PtaPIN15, PtaPIN16, PtaUX5, and PtaUX6 in internodes. Given the retention of copies of auxin transporters following duplication events, there is likely to be both redundancy and neo-functionalization for PAT proteins in Populus.

The vascular cambium and the secondary xylem and phloem that it produces are often viewed as distinct from primary growth, but it is important to remember that vascular development forms a continuum between stem and leaf (Spicer and Groover, 2010). We know a great deal about the role of PAT in venation patterning in leaves of Arabidopsis (Scarpella et al., 2006). Here, AtPIN1 directs auxin flow up through the epidermis toward a convergence point, from where it is channeled down through the center of a developing leaf primordium, establishing the location of the
first central vascular bundle. This vascular bundle differentiates from a strand of procambium that is continuous with the vascular cambium below, such that the basalpetal transport of auxin out of developing primordia is likely continuous with the basalpetal stream moving down through the cambium (Lachaud and Bonnemain, 1984; Ugga et al., 1998; Kramer et al., 2008). Based on a combination of our results and published work in both Arabidopsis and Populus, we suggest that PtaPIN1, PtaAUX2, and PtaABCB1.1 are the best initial candidates for the maintenance of PAT in the cambial zone, although additional transporters are very likely involved. Given the slow time course and laborious nature of transformation in woody plants, our hope is that this work will provide a starting point for work in planta by identifying candidate IAA transporters involved in woody stem development. Functional studies, transport assays and protein localization are all needed to resolve the action of specific transporters in shaping the distribution of auxin across the cambial zone.

Finally, it is interesting to note that several members of the PIN, AUX/LAX, and ABCB gene families are expressed in the mature xylem. Although the bulk of this tissue is dead (e.g., vessels and fibers), ray parenchyma cells remain alive for many years (Spicer and Holbrook, 2007) and serve as a route of transport between xylem and phloem (Van Bel, 1990). In particular, PtaPIN1, PtaAUX2, PtaAUX3, PtaAUX4 and PtaABCB1, PtaABCB7, PtaABCB20 were found to be expressed in these cells. In addition to their role in carbohydrate transport and storage, xylem parenchyma cells are able to exchange solutes with the transpiration stream and function in wound response. What is puzzling however is that these cells are sympasically connected, at least in the radial direction, whereas PAT requires transport across a membrane. Furthermore, there is no evidence for free IAA in mature xylem (Ugga et al., 1996; Tuominen et al., 1997).

Although conjugated forms of IAA are transported in the phloem (Baker, 2000) no studies to date have looked for conjugated IAA in ray or axial parenchyma in secondary xylem. Given their role in wound response, some capacity for IAA transport (or even IAA synthesis) would not be surprising, but transport assays and protein localization are needed to clarify any potential role these cells might play in IAA transport.

THE ABCB GENE FAMILY DIVERSIFIED PRIOR TO THE PIN AND AUX/LAX FAMILIES AND PRIOR TO THE DIVERSIFICATION OF LAND PLANTS

It is clear from our phylogenetic analysis that the ABCB gene family existed before the diversification of land plants, whereas the PIN and AUX/LAX families arose within the land plant clade. This is supported by the fact that ABCB genes from a moss (P. patens) and a lycopod (S. moellendorfii) consistently occur nested within multiple, well-supported clades that also include higher plants (Figure 4; Figure A3 in Appendix). It also confirms previous work reconstructing the evolutionary history of this family (Bandyopadhyay et al., 2007; Krecek et al., 2009). In contrast, diversification of the PIN and AUX/LAX gene families occurred after the origin of land plants, as suggested by the well-supported and exclusively basal position of both Physcomitrella and Selaginella PIN and AUX/LAX genes (Figures 2 and 3). There was already considerable diversity in the ABCB gene family at the time of the monocot/dicot divergence, dated at approximately 130–150 Myr ago (Wolfe et al., 1989b; Chaw et al., 2004; Bell et al., 2010), as we recovered as many as 10 distinct ABCB gene clades that contain a clear monocot/dicot split with strong support. The picture is not as clear for the PIN and AUX/LAX genes due to weak support at some nodes, but there may have been five copies of the PIN and likely just two copies of the AUX/LAX genes at the time of the monocot/dicot divergence. It is not clear at this time whether all AUX/LAX genes in monocots descended from a single original copy, as suggested by the tree found using aligned sequences under parsimony, since monocot AUX/LAX genes were not recovered in a single clade in other trees (Figure 3).

In conclusion, we show that the deep history of the ABCB family of transporters coupled with the expansion of the PIN and AUX/LAX families following a genome duplication has led to a diverse array of over 40 putative auxin transport proteins in Populus. Given this large number and the inherent difficulties in working with a woody plant (e.g., long generation times, slow transformation process, difficult nucleic acid extraction), it is important to establish a comprehensive picture of gene expression profiles and predict their protein structures. By considering both evolutionary relationships and structural similarities to known auxin transporters, we can choose the most appropriate candidates for future study. One of the main goals in the short term should be to develop a set of tools for protein localization, including antibodies and protein fusions for stable plant transformation. Although technically difficult for trees, these findings should be coupled with functional studies with knockout mutants. Lastly, it will be important to determine the transport capacity and substrate specificity of target proteins of Populus by expressing them in heterologous systems such as S. pombe. We hope that this work provides a foundation on which to build an improved understanding of auxin transport in Populus, as knowing the role of specific transport proteins in secondary vascular development is likely key to enhanced utilization of woody plants.

ACKNOWLEDGMENTS

The authors would like to thank the laboratories of Noel M. Holbrook and Elena M. Kramer (Harvard University, OEB) for providing space and access to equipment, technical support, and for helpful discussion. The authors are also grateful to Angus S. Murphy and Wendy A. Peer (Purdue University) for helpful discussion of the manuscript; Serena Varotto and Cristian Forestan for sharing sequences and for helpful discussion. This work was supported by a Rowland Junior Fellowship awarded to Rachel Spicer from 2007 to 2010.

REFERENCES

Bainbridge, K., Guyomarç'h, S., Bayer, E., Saurup, R., Bennett, M., Mandel, T., and Kuhlemeier, C. (2008). Auxin influx carriers stabilize phylloptic patterning. Genes Dev. 22, 810–823.

Baker, D. A. (2000). Long-distance vascular transport of endogenous hormones in plants and their role in source: sink regulation. Int. J. Plant Sci. 48, 199–203.

Bandyopadhyay, A., Blakeloe, J. J., Lee, O. R., Mravec, J., Sauer, M., Tatipwatanakun, B., Makam, S. N., Bouchard, R., Geisler, M., Martinoia, E., Friml, J., Peer, W. A., and Murphy, A. S. (2007). Interactions of PIN and PGP auxin transport mechanisms. Biochem. Soc. Trans. 35, 137–141.

In conclusion, we show that the deep history of the ABCB family of transporters coupled with the expansion of the PIN and AUX/LAX families following a genome duplication has led to a diverse array of over 40 putative auxin transport proteins in Populus. Given this large number and the inherent difficulties in working with a woody plant (e.g., long generation times, slow transformation process, difficult nucleic acid extraction), it is important to establish a comprehensive picture of gene expression profiles and predict their protein structures. By considering both evolutionary relationships and structural similarities to known auxin transporters, we can choose the most appropriate candidates for future study. One of the main goals in the short term should be to develop a set of tools for protein localization, including antibodies and protein fusions for stable plant transformation. Although technically difficult for trees, these findings should be coupled with functional studies with knockout mutants. Lastly, it will be important to determine the transport capacity and substrate specificity of target proteins of Populus by expressing them in heterologous systems such as S. pombe. We hope that this work provides a foundation on which to build an improved understanding of auxin transport in Populus, as knowing the role of specific transport proteins in secondary vascular development is likely key to enhanced utilization of woody plants.

ACKNOWLEDGMENTS

The authors would like to thank the laboratories of Noel M. Holbrook and Elena M. Kramer (Harvard University, OEB) for providing space and access to equipment, technical support, and for helpful discussion. The authors are also grateful to Angus S. Murphy and Wendy A. Peer (Purdue University) for helpful discussion of the manuscript; Serena Varotto and Cristian Forestan for sharing sequences and for helpful discussion. This work was supported by a Rowland Junior Fellowship awarded to Rachel Spicer from 2007 to 2010.
Branner, A. M., Yakowlev, I. A., and Strauss, S. H. (2004). Validating internal controls for quantitative plant gene expression. BMC Plant Biol. 4, 14. doi:10.1186/1471-2229-4-14

Carraro, N., Forestan, C., Canova, S., Taos, I., and Varotto, S. (2008). ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol. 142, 254–264.

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552.

Chaw, S.-M., Chang, C.-C., Chen, H.-L., and Li, W.-H. (2004). Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J. Mol. Evol. 58, 424–441.

Chen, R., Hilson, P., Sedbrook, J., Rosen, E., Caspar, T., and Masson, P. H. (2008). The Arabidopsis thaliana AGLAVITROPIC1 gene encodes a component of the polar-auxin transport efflux carrier. Proc. Natl. Acad. Sci. U.S.A. 95, 15112–15117.

Dolinsky, T. J., Czodrowksi, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., and Baker, N. A. (2007). PDJB2PQR: expanding and upgrading automated preparation of biological molecules for molecular simulations. Nucl. Acids Res. 35, W522–W525.

Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., and Baker, N. A. (2004). PDJB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatic calculations. Nucl. Acids Res. 32, W665–W667.

Forestan, C., Mora, S., and Varotto, S. (2010). ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol. 152, 1373–1390.

Frimer, J., Benková, E., Blíař, L., Wisniewska, J., Hamann, T., Jünger, K., Woody, S., Sandberg, G., Scheres, B., Jungers, K., and Palme, K. (2002a). AtPIN1A mediates sink-driven auxin gradient and root patterning in Arabidopsis. Cell 108, 661–673.

Frimer, J., Wisniewska, J., Benková, E., Mendgen, K., and Palme, K. (2002b). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 866–869.

Frimer, J., B Zelevinsky, A. R. (2010). Endoplastic reticulum: the rising compartment in auxin biology. Plant Physiol. 154, 458–462.

Frimer, J., Vieten, A., Sauer, M., Weiers, D., Schwarz, H., Hamann, T., Offerling, R., and Jürgens, G. (2003). Efflux-dependent auxin gradients establish the APL basal-axis of Arabidopsis. Nature 426, 147–153.

Galweiler, L., Guan, C., Müller, A., Wisman, E., Mendgen, K., Y ephremov, A., and Palme, K. (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230.

Geiser, M., Blakeslee, J. J., Bouchard, R., Lee, O. R., Vincenzetti, V., Bandopadhayay, A., Tipatwamakun, B., Peer, W. A., Bailly, A., Richards, E. L., Ejendal, K. F., Smith, A. P., Baroux, C., Grossniklaus, U., Müller, A., Hrycyna, C. A., Dudley, R., Murphy, A. S., and Martinoia, E. (2005). Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 44, 179–194.

Guo, A.-Y., Zhu, Q.-H., Chen, X., and Luo, J.-C. (2007). GSDS: a gene structure display server. Yi Chun 29, 1022–1026.

Gutierrez, R., Mauriat, M., Guénin, S., Pelloux, J., Lebelivre, J.-F., Louvet, R., Rusterucci, C., Moritz, T., Guerineau, F., Bellini, C., and Van Weytvinkel, O. (2008). The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 6, 609–618.

Hellgren, J. M., Olofsson, K., Plant., U., Centre, S., and Sciences, A. (2004). Patterns of auxin distribution during gravitational induction of root wood in poplar and pine. Plant Physiol. 135, 212–220.

Jasinski, M., Ducos, E., Martinoia, E., and Boutry, M. (2003). The ATP-binding cassette transporters: structure, function, and gene family comparison between Plant Physiol. 131, 1169–1177.

Kaneda, M., Schuetz, M., Lin, B. S. P., Chabin, C., Hamberger, B., Western, T. L., Ehling, J., and Samuels, A. L. (2011). ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCB1s associated with auxin transport. J. Exp. Bot. 62, 2063–2077.

Katerak, G. F., and Geisser, A. E. (1980). Axxin transport inhibitors. Plant Physiol. 66, 1190–1195.

Katoh, K., Asimenos, G., and Toh, H. (2005). Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 357, 39–64.

Knölker, A. S., Blakeslee, J. J., Richards, E. L., Peer, W. A., and Murphy, A. S. (2010). Brachytic1/ZmABCBl functions in IAA export from intercalary meristems. J. Exp. Bot. 61, 3689–3696.

Kramer, E. M., Dorit, R. L., and Irish, V. F. (1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence among the APTELAS and PISTILLATA MADS-box gene lineages. Genetics 149, 765–783.

Kramer, E. M., Lewandowski, M., Beri, S., Bernard, J., Borkowski, M., Borkowski, M. H., Burchfield, L. A., Mathisen, B., and Normanly, J. (2008). Auxin gradients are associated with polarity changes in trees. Science 320, 1610.

Kubes, M., Yang, H., Richter, G. L., Cheng, Y., Miszczak, E., Wang, X., Blakeslee, J. J., Carraro, N., Petzäke, J., Zazimalová, E., Hoyeoreý, K., Peer, W. A., and Murphy, A. S. (2011). The Arabidopsis concentration-dependent influx/exflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J. [Epub ahead of print].

Kreek, P., Skupa, P., Libus, J., Naramoto, S., Tejos, R., Friman, J., and Zazímalová, E. (2009). Protein family review The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 10, 1–11.

Lachaude, S., and Bonnemain, J. L. (1984). Seasonal variations in the polar transport pathways and retenion sites of [1H]indole-3-acetic acid in young branches of Fagus sylvatica L. Planta 161, 207–215.

Lee, B. H. A., Johnston, R., Yang, Y., Gallavotti, A., Koijima, M., Tra-vençolo, B. A. N., Costa, I. D. F., Sakababa, H., and Jackson, D. (2009). Studies of aberrant phyto- lctaix1 mutantsofmaizindicatecomplexinteractionsbetweenauxin and cytokinin signalling in the shoot apical meristem. Plant Physiol. 150, 205–216.

Lee, M., Choi, Y., Burla, B., Kim, Y.-M., Jeon, B., Maeshima, M., Yoo, J.-Y., Martinoia, E., and Lee, Y. (2008). The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat. Cell. Biol. 10, 1217–1223.

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.

Ljung, K., Bhalerao, R. P., and Sandberg, G. (2001a). Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28, 465–474.
Ljung, K., Ostin, A., Lioussanne, L., and Sandberg, G. (2001b). Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol. 125, 464–475.

Ljung, K., Hull, A. K., Celenza, J., Yamada, M., Estelle, M., and Normann, J. (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17, 1090–1104.

Lomax, T., Muyad, G. K., and Rubery, P. H. (1995). Plant Hormones: Physiol. Biochemistry, and Molecular Biology. Dordrecht: K. A. Publishers.

Luschign, C., Gaxiola, R. A., Grisafi, P., and Fink, G. R. (1998). ERI, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12, 2173–2187.

Merchant, S. S., Prochnik, S. E., Valenzuela, A. M., Grigoriev, I. V., Rokhsar, D. S., and Sidler, M. S. (2010). Genomic analysis of putative genes encoding the IPF2 water channel subfamily in Populus trichocarpa. Tree Physiol. 29, 1467–1477.

Shen, C., Bai, Y., Wang, S., Zhang, S., Wu, Y., Chen, M., Jiang, D., and Qi, Y. (2010). Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J. 277, 2954–2969.

Carraro et al. PIN, AUX/LAX, ABCB in Populus

Frontiers in Plant Science | Plant Physiology February 2012 | Volume 3 | Article 17 | 16

Ljung, K., Ostin, A., Lioussanne, L., and Sandberg, G. (2001b). Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol. 125, 464–475.

Ljung, K., Hull, A. K., Celenza, J., Yamada, M., Estelle, M., and Normann, J. (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17, 1090–1104.

Lomax, T., Muyad, G. K., and Rubery, P. H. (1995). Plant Hormones: Physiol. Biochemistry, and Molecular Biology. Dordrecht: K. A. Publishers.

Luschign, C., Gaxiola, R. A., Grisafi, P., and Fink, G. R. (1998). ERI, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12, 2173–2187.

Merchant, S. S., Prochnik, S. E., Valenzuela, A. M., Grigoriev, I. V., Rokhsar, D. S., and Sidler, M. S. (2010). Genomic analysis of putative genes encoding the IPF2 water channel subfamily in Populus trichocarpa. Tree Physiol. 29, 1467–1477.

Shen, C., Bai, Y., Wang, S., Zhang, S., Wu, Y., Chen, M., Jiang, D., and Qi, Y. (2010). Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J. 277, 2954–2969.

Carraro et al. PIN, AUX/LAX, ABCB in Populus

Frontiers in Plant Science | Plant Physiology February 2012 | Volume 3 | Article 17 | 16

Ljung, K., Ostin, A., Lioussanne, L., and Sandberg, G. (2001b). Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol. 125, 464–475.

Ljung, K., Hull, A. K., Celenza, J., Yamada, M., Estelle, M., and Normann, J. (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17, 1090–1104.

Lomax, T., Muyad, G. K., and Rubery, P. H. (1995). Plant Hormones: Physiol. Biochemistry, and Molecular Biology. Dordrecht: K. A. Publishers.

Luschign, C., Gaxiola, R. A., Grisafi, P., and Fink, G. R. (1998). ERI, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12, 2173–2187.

Merchant, S. S., Prochnik, S. E., Valenzuela, A. M., Grigoriev, I. V., Rokhsar, D. S., and Sidler, M. S. (2010). Genomic analysis of putative genes encoding the IPF2 water channel subfamily in Populus trichocarpa. Tree Physiol. 29, 1467–1477.
Swarup, R., Kramer, E. M., Perry, P., Knox, K., Leyser, H. M. O., Haseloff, J., Beemster, G. T. G., Bhalerao, R., and Bennett, M. J. (2005). Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 7, 1057–1065.

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577.

Terasaka, K., Blakeslee, J. J., Titipatwatanakun, B., Peer, W. A., Bandyopadhyay, A., Makam, S. N., Lee, R., Richards, E. L., Murphy, A. S., Sato, E., and Yazaki, K. (2005). PIGA, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17, 2922–2939.

Titipatwatanakun, B., and Murphy, A. S. (2009). Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition. J. Exp. Bot. 60, 1093–1107.

Tuominen, H., Wall, K., Wessler, S., Yang, S., Yin, T., Douglas, C., Marra, M., Sandberg, G., Van de Peer, Y., and Rokhsar, D. (2006). The genome of black cottonwood, Populus trichocarpa (Torrey & Gray). Science 313, 1596–1604.

Ugglè, C., Mellerowicz, E., and Sundberg, B. (1998). Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol. 117, 113–121.

Ugglè, C., Moritz, T., Sandberg, G., and Sundberg, B. (1996). Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. U.S.A. 93, 9282–9286.

Utsuno, K., Shikani, T., Yamada, Y., and Hashimoto, T. (1998). Agr, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol. 39, 1111–1118.

Van Bel, A. J. E. (1990). Xylem-phloem exchange via the rays: the undervalued route of transport. J. Exp. Bot. 41, 631–644.

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034.

Varó, A., Vinh, L. S., and Wheeler, W. C. (2009). Poy version 4: phylogenetic analysis using dynamic homologies. Cladistics 26, 72–85.

Vernoux, T., Brunoud, G., Faricot, E., Morin, V., Van den Daële, H., Legendre, J., Oliva, M., Das, P., Larrieu, A., Wells, D., Guédon, Y., Armitage, L., Picard, F., Guyomarc’h, S., Cellier, C., Parry, G., Koomprophou, R., Dooman, J. H., Estelle, M., Godin, C., Kepinski, S., Bennett, M., De Veylder, L., and Traas, J. (2011). The auxin signaling network translates dynamic input into robust patterning at the shoot apex. Mol. Syst. Biol. 7, 508.

Verrier, P. J., Bird, D., Burla, B., Dassa, E., Forestier, C., Geiler, M., Klein, M., Kolukisaoglu, U., Lee, Y., Martinova, E., Murphy, A., Rea, P. A., Samuel, L., Schultz, B., Spalding, E. J., Yazaki, K., and Theodoulou, F. L. (2008). Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci. 13, 151–159.

Vietten, A., Vanneste, S., Wusienska, J., Benková, E., Benjamin, R., Beeckman, T., Luschnig, C., and Friml, J. (2005). Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132, 4521–4531.

Wang, J.-R., Hu, H., Wang, G.-H., Li, J., Chen, J.-Y., and Wu, P. (2009). Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. Mol. Plant 2, 828–831.

Wheeler, W. (1996). Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9.

Wiederstein, M., and Sippel, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35, W407–W410.

Wolf, K. H., Gouy, M., Yang, Y. W., Sharp, P. M., and Li, W. H. (1989). Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. U.S.A. 86, 6201–6205.

Wu, G., Lewis, D. R., and Spalding, E. P. (2007). Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell 19, 1826–1837.

Wu, X., and McSteen, P. (2007). The role of auxin transport during inflorescence development in maize (Zea mays, Poaceae). Am. J. Bot. 94, 1745–1755.

Yang, H., and Murphy, A. S. (2009). Functional expression and characterization of Arabidopsis ABCB, AUX1 and PIN auxin transporters in Scleraxisachormyces pombe. Plant J. 59, 179–191.

Yang, Y., Hammers, U. Z., Taylor, C. G., Schachtman, D. P., and Nielsen, E. (2006). High-affinity auxin transport by the AUX1 influx carrier protein. Curr. Biol. 16, 1123–1127.

Yemm, A., May, S., Williams, L., Miller, P., Tsurumi, S., Moore, I., Napier, R., Kerr, I. D., and Bennett, M. J. (2004). Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16, 3069–3083.

Zazimalová, E., Murphy, A. S., Yang, H., Hoyerová, K., and Hosek, P. (2010). Auxin transporters—why so many? Cold Spring Harb. Perspect. Biol. 2, 1–14.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 29 October 2011; accepted: 17 January 2012; published online: 07 February 2012.

Citation: Carraro N, Tisdale-Orr TE, Clouse RM, Knöller AS and Spicer R (2012) Diversification and expression of the PIN, AUX/ LAX, and ABCB gene families of putative auxin transporters in Populus. Front. Plant Sci. 3:17. doi: 10.3389/fpls.2012.00017

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2012 Carraro, Tisdale-Orr, Clouse, Knöller and Spicer. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.
FIGURE A1 | Intron–exon structure of PIN, AUX/LAX, and ABCB genes from *Populus trichocarpa*.
FIGURE A2 | Predicted model structures of putative auxin transport ABCBs from *Populus trichocarpa*. Tertiary protein structures have been generated using the python script Modeller 9v5. Predicted IAA docking sites are depicted in red.
FIGURE A3 | Phylogeny of ABCB genes from land plants, based upon coding sequences from the loci listed in Table A4, analyzed using dynamic homology under the parsimony criterion. Gray branches indicate nodes with bootstrap support lower than 50%. Algal ABCBs are colored light blue–green, basal land plants blue, Populus green, Arabidopsis red, and monocots yellow. Abbreviated names of each species are listed in Table A1.
Table A1 | List of all species with their abbreviated names used in the present work.

Species	Abbreviation	
Aquilegia caerulea	Aco	
Arabidopsis thaliana	At	
Chlamydomonas reinhardtii	Cre	
Eucalyptus grandis	Egr	
Manihot esculenta	Mes	
Medicago truncatula	Mtr	
Oryza sativa	Os	
Physcomitrella patens	Pp	
Populus tomentosa	Pto	
Populus tremula x tremuloides	Ptt	
Populus trichocarpa	Ptr	
Prunus persica	Ppe	
Ricinus communis	Rc	
Selaginella moellendorffii	Sm	
Sorghum bicolor	Sb	
Vitis vinifera	Vv	
Volvox carteri	Vc	
Zea mays	Zm	
Genes	JGI v1.1 gene model	JGI v1.1 locus
--------------	------------------------------------	---------------
PtrPIN1	estExt_fgenesh4_pg.C_LG_XV0366	LG_XV:3955456-3958939
PtrPIN2	estExt_Genewise1_v1.C_LG_XVII1213	LG_XVII:2023747-2028247
PtrPIN3	gvw1.X.6584.1	LG_X:11493441-1149645
PtrPIN4	estExt_fgenesh4_pm.C_LG_X0399	LG_V:12604974-12610191
PtrPIN5	fgenesh4_pm.C_LG_I1000334	LG_II:4970467-4976705
PtrPIN6	fgenesh4_pm.C_LG_VIII000556	LG_VIII:8394273-8397294
PtrPIN7	estExt_Genewise1_v1.C_LG_XII1068	LG_XII:3820572-3824595
PtrPIN8	eugene3.00060333	LG_VI:2264669-2299715
PtrPIN9	fgenesh4_pm.C_LG_VX000434	LG_VX:12913539-12916356
PtrPIN10	fgenesh4.pg.C_LG_I000524	LG_I:12290101-12293363
PtrPIN11	estExt_fgenesh4_pg.C_1870067	scaffold_87:1004073-1006598
PtrPIN12	fgenesh4_pg.C_LG_XII000547	LG_XII:12484946-12491318
PtrPIN13	fgenesh4_pg.C_LG_IV001142	LG_IV:3836316-3838259
PtrPIN14	gvw1.XVII.929.1	LG_VII:7307054-7309154
PtrPIN15	fgenesh4_pg.C_LG_XII000875	gvw1:51472.1
PtrPIN16	gvw1:51473.1	scaffold_5147:1-1679
PtrAUX1/LAX5	grail3:0023028420	LG_VI:6790035-6772003
PtrAUX2/LAX1	eugene3.00161081	LG_XVII:10707443-10710997
PtrAUX3/LAX2	estExt_fgenesh4_pg.C_LG_X1704	LG_X:17003105-17007090
PtrAUX4/LAX6	estExt_Genewise1_v1.C_LG_VIII1679	LG_VIII:2796803-2800287
PtrAUX5/LAX7	estExt_fgenesh4_pg.C_LG_IV1437	LG_IV:15662320-15666183
PtrAUX8/LAX3	grail3:000031001	LG_X:22313536-2235747
PtrAUX7/LAX8	estExt_fgenesh4.pg.C_LG_V0933	LG_V:11004242-11101148
PtrAUX8/LAX4	grail3:0003074001	LG_VI:6104679-6107343
PtrABC1.1	gvw1:28.733.1	scaffold_28:2297969-2304256
PtrABC1.2	fgenesh4_pg.C_LG_XV1000833	LG_XV:7805788-7812322
PtrABC2	estExt_Genewise1_v1.C_LG_I13719	LG_II:16940658-16946357
PtrABC3	eugene3.00130846	scaffold_1:44776038-44781535
PtrABC4	fgenesh4_pg.C_scaffold_204000026	scaffold_204:388201-394437
PtrABC5	gvw1.X:3657.1	LG_X:276780-282241
PtrABC6	estExt_fgenesh4_pm.C_LG_X0835	LG_X:18271969-18278876
PtrABC7	gvw1.XVII.765.1	LG_XII:3190614-3196509
PtrABC8	estExt_fgenesh4_pm.C_LG_I0929	LG_II:16965413-16970969
PtrABC9	fgenesh4_pg.C_LG_XVI0800406	LG_XVII:4919010-4924173
PtrABC10	eugene3.00140575	LG_X:4755266-4761017
PtrABC11	eugene3.00140576	LG_X:4765985-4771483
PtrABC12	gvw1.XVIII.2696.1	LG_XVIII:8860576-8868795
PtrABC13	eugene3.00140578	LG_X:4778009-4781195
PtrABC14	estExt_fgenesh4_pm.C_LG_XIV0249	LG_XIV:4781910-4787506
PtrABC15	fgenesh4_pm.C_LG_XV000001	LG_XV:129033-18128
PtrABC16	fgenesh4_pm.C_LG_I100094	LG_II:1130589-1135712
PtrABC17	eugene3.01580034	scaffold_158:3189766-324742
PtrABC18	fgenesh4_pg.C_LG_VII000415	LG_VII:2748354-2755879
PtrABC19	estExt_fgenesh4_pg.C.LG_XVI0355	LG_XVI:4180851-4188120
PtrABC20	fgenesh4_pm.C_LG_XII000351	scaffold_11:16,395,988.0.16,402,087

(Continued)
Genes	Phytozome v.7.0 locus	GenBank accession number	Chrom.	Closest similar sequence
PtrPIN1	POPTR_0015s04570	XM_002322068	chr.15	PtrPIN7
PtrPIN2	POPTR_0016s03450	XM_002322578	chr.16	PtrPIN8
PtrPIN3	POPTR_0010s12320	XM_002314734	chr.10	PtrPIN6
PtrPIN4	POPTR_0005s20990	XM_002306642	chr.5	PtrPIN5
PtrPIN5	POPTR_0002s07310	XM_002302160	chr.2	PtrPIN4
PtrPIN6	POPTR_0008s12830	XM_002312400	chr.8	PtrPIN3
PtrPIN7	POPTR_0012s04470	XM_002317838	chr.12	PtrPIN1
PtrPIN8	POPTR_0006s03540	XM_002307930	chr.6	PtrPIN2
PtrPIN9	POPTR_0018s13610	XM_002324641	chr.18	No clear match
PtrPIN10	POPTR_0001s21230	XM_002298168	chr.1	No clear match
PtrPIN11	POPTR_0013s08810	XM_002328968	chr.13	PtrPIN12
PtrPIN12	POPTR_0019s07990	XM_002325430	chr.19	PtrPIN11
PtrPIN13	POPTR_0004s12310	XM_002305335	chr.4	PtrPIN14
PtrPIN14	POPTR_0017s11440	NC_008483	chr.17	PtrPIN13
PtrPIN15	POPTR_0014s14390*	XM_002320399	chr.14	No clear match
PtrPIN16	POPTR_0014s14390*	XM_002336619	chr.2	No clear match
PtrAUX1/LAX5	POPTR_0006s09940	XM_002309092	chr.6	PtrAUX2/LAX1
PtrAUX2/LAX1	POPTR_0016s12100	XM_002322933	chr.16	PtrAUX1/LAX5
PtrAUX3/LAX2	POPTR_0010s19840	XM_002316190	chr.10	PtrAUX4/LAX6
PtrAUX4/LAX6	POPTR_0008s06630	XM_002311172	chr.8	PtrAUX3/LAX2
PtrAUX5/LAX7	POPTR_0004s17860	XM_002306139	chr.4	PtrAUX6/LAX3
PtrAUX6/LAX3	POPTR_0009s13470	XM_002312937	chr.9	PtrAUX5/LAX7
PtrAUX7/LAX8	POPTR_0005s16020	XM_002306579	chr.5	PtrAUX8/LAX4
PtrAUX8/LAX4	POPTR_0002s08750	XM_002302217	chr.2	PtrAUX7/LAX8
PtrABC1.1	POPTR_0006s12590	XM_002323449	chr.6	PtrABC1.2
PtrABC1.2	POPTR_0016s09680	XM_002519442	chr.16	PtrABC1.1
PtrABC2	POPTR_0002s18860	XM_002303151	chr.2	PtrABC10
				PtrABC11
				PtrABC13
				PtrABC14
PtrABC3	POPTR_0001s44320	XM_002319243	chr.1	PtrABC20
PtrABC4	POPTR_0001s34280	XM_002331841	chr.1	No clear match
PtrABC5	POPTR_0010s00840	XM_002314297	chr.10	No clear match
PtrABC6	POPTR_0010s21720	XM_002316273	chr.10	PtrABC18
PtrABC7	POPTR_0017s11030	XM_002323983	chr.17	No clear match
PtrABC8	POPTR_0002s18850	XM_002301514	chr.2	PtrABC10
				PtrABC11
PtrABC9	POPTR_0017s12120	XM_002323930	chr.17	POPTR_0004s12180
PtrABC10	POPTR_0014s10860	XM_002320902	chr.14	PtrABC2, PtrABC8
PtrABC11	POPTR_0014s10870	XM_002320903	chr.14	PtrABC2, PtrABC8
PtrABC12	POPTR_0018s09420	XM_002324987	chr.18	No clear match
PtrABC13	POPTR_0014s10880.1	XM_002320905	chr.14	PtrABC2, PtrABC8
PtrABC14	POPTR_0014s10880.2	XM_002320906	chr.14	PtrABC2, PtrABC8
PtrABC15	POPTR_0015s00250	XM_002321303	chr.15	POPTR_0012s00290
				POPTR_0012s00360
				POPTR_0012s00370

(Continued)
Table A2 | Continued

Genes	Phytozome v.7.0 locus	GenBank accession number	Chrom.	Closest similar sequence
PtrABCB16	POPTR_0002s02110	XM_002301925	chr.2	No clear match
PtrABCB17	POPTR_0001s16560	XM_002331169	chr.1	No clear match
PtrABCB18	POPTR_0008s05020	XM_002311108	chr.8	PtrABCB6
PtrABCB19	POPTR_0017s11750	XM_002323811	chr.17	No clear match
PtrABCB20	POPTR_0011s13720	XM_002316941	chr.11	PtrABCB3

Gene models, accession numbers, chromosome position, and the closest most similar match for each gene are reported.

*These genes are distinct in GenBank but they retrieve the same entry in the phytozome database (www.phytozome.org).

Very short protein classified as ATP-binding transporter.

Uncharacterized conserved protein.
Table A3 | Summary of the protein characteristics of the PIN, AUX/LAX, and ABCB families of *Populus trichocarpa*, *Populus tomentosa*, *Populus tremula × tremuloides*, and Arabidopsis.

Gene	CDS (bp)	Protein (aa)	TMHs	Type
AtPIN1	1869	622	11	Long
AtPIN2	1944	647	10	Long
AtPIN3	1923	640	10	Long
AtPIN4	1851	616	10	Long
AtPIN5	1056	351	10	Short
AtPIN6	1713	570	10	Reduced
AtPIN7	1860	619	10	Long
AtPIN8	1104	367	10	Short
PtrPIN1	1845	614	10	Long
PtrPIN2	1767	588	11	Long
PtrPIN3	1906	634	10	Long
PtrPIN4	1338	446	9	Reduced
PtrPIN5	1110	369	8	Reduced
PtrPIN6	1950	650	10	Long
PtrPIN7	1830	610	10	Long
PtrPIN8	1764	588	10	Long
PtrPIN9	1902	634	10	Long
PtrPIN10	1644	548	10	Reduced
PtrPIN11	1041	347	9	Short
PtrPIN12	1041	347	10	Short
PtrPIN13	1068	356	8	Short
PtrPIN14	1071	357	8	Short
PtrPIN15	1113	371	8	Short
PtrPIN16	912	304	6	Short
PtrPIN1	1845	614	10	Long
PtrPIN2	1767	588	10	Long
PtrPIN3	1923	640	10	Long
PtrPIN4	1860	619	9	Long
PtAUX1	1458	485	11	
PtAUX2	1452	484	11	
PtAUX3	1413	471	11	
PtAUX4	1443	481	11	
PtAUX5	1434	478	11	
PtAUX6	1422	474	11	
PtAUX7	1416	472	11	
PtAUX8	1476	492	11	
PtAUX9	1476	492	11	
PtAUX10	1395	465	11	
PtAUX11	1398	466	11	
PtLAX1	1434	477	10	
PtLAX2	1422	473	11	
PtLAX3	1476	491	11	
PtAUX1	1434	477	10	
AtABC1	3061	1296	12	
AtABC2	3022	1273	12	
AtABC3	3090	1229	11	
AtABC4	3061	1296	9	
AtABC5	3693	1230	9	
AtABC6	4224	1407	13	

(Continued)
Table A3 | Continued

Gene	Length	Length	n
	cds (bp)	Protein (aa)	TMHs
AtABCB7	3747	1248	11
AtABCB8	3723	1241	12
AtABCB9	3711	1236	9
AtABCB10	3684	1227	10
AtABCB11	3837	1278	9
AtABCB12	3822	1273	9
AtABCB13	3738	1245	11
AtABCB14	3744	1247	11
AtABCB15	3723	1240	11
AtABCB16	3887	1228	7
AtABCB17	3723	1240	9
AtABCB18	3678	1225	9
AtABCB19	3759	1252	10
AtABCB20	4227	1408	13
AtABCB21	3891	1296	9
AtABCB22	3666	1221	7
PtrABCB1 1.1	4074	1357	12
PtrABCB1 1.2	3975	1324	12
PtrABCB2	3687	1228	10
PtrABCB3	3756	1251	9
PtrABCB4	3768	1255	10
PtrABCB5	3882	1294	9
PtrABCB6	4194	1398	12
PtrABCB7	3780	1260	11
PtrABCB8	3828	1276	11
PtrABCB9	3717	1239	9
PtrABCB10	3864	1287	9
PtrABCB11	3882	1294	9
PtrABCB12	3693	1230	8
PtrABCB13	3597	1199	7
PtrABCB14	3885	1294	9
PtrABCB15	3828	1276	10
PtrABCB16	3660	1220	11
PtrABCB17	4644	1548	12
PtrABCB18	4197	1399	12
PtrABCB19	3756	1252	10
PtrABCB20	3516	1171	10

All proteins are classified according to their sequence length, number of predicted transmembrane helices, and length of the central hydrophilic loop (short, reduced, long).
Table A4 | List of all the sequences used in the reconstruction of PIN, AUX/LAX, and ABCB families phylogenies.

Phytozome database locus or GenBank accession number	Assigned name
ppa000359m.g	Ppe000359
ppa000340m.g	Ppe000340
ppa000269m.g	Ppe000269
ppa000313m.g	Ppe000313
ppa000316m.g	Ppe000316
ppa023953m.g	Ppe023953
ppa000315m.g	Ppe000315
ppa015302m.g	Ppe015302
ppa000363m.g	Ppe000363
ppa015387m.g	Ppe015387
ppa015389m.g	Ppe015389
ppa017251m.g	Ppe017251
ppa023915m.g	Ppe023915
ppa018252m.g	Ppe018252
ppa000312m.g	Ppe000312
ppa026713m.g	Ppe026713
ppa000338m.g	Ppe000338
ppa0208157m.g	Ppe020815
POPTR_0006s12590	PrtABC11
POPTR_0016s09680	PrtABC12
POPTR_0002s18860	PrtABC2
POPTR_0001s44320	PrtABC3
POPTR_0001s34290	PrtABC4
POPTR_0010s00540	PrtABC5
POPTR_0010s21720	PrtABC6
POPTR_0017s11030	PrtABC7
POPTR_0002s18850	PrtABC8
POPTR_0017s12120	PrtABC9
POPTR_0014s10960	PrtABC10
POPTR_0014s10970	PrtABC11
POPTR_0018s09420	PrtABC12
POPTR_0014s10980.1	PrtABC13
POPTR_0014s10980.2	PrtABC14
POPTR_0015s00250	PrtABC15
POPTR_0002s02110	PrtABC16
POPTR_0001s16560	PrtABC17
POPTR_0008s05020	PrtABC18
POPTR_0017s11750	PrtABC19
POPTR_0011s13720	PrtABC20
GRMZM2G315375_T01	Zm2G315375-1
GRMZM2G085236_T01	Zm2G085236-1
GRMZM2G085236_T02	Zm2G085236-2
GRMZM2G0004748_T01	Zm2G004748-1
GRMZM2G119894_T01	Zm2G119894-1
GRMZM2G119894_T03	Zm2G119894-3
GRMZM2G0086730_T01	Zm2G0086730
AC2339882.1_FGT002	ZmAC2339882-1_FGT003
GRMZM2G0025860_T01	Zm2G0025860
GRMZM2G0167658_T01	Zm2G0167658
GRMZM2G1111462_T01	Zm2G1111462
GRMZM2G085111_T02	Zm2G085111-1

(Continued)
Table A4 | Continued

Phytozome database locus or GenBank accession number	Assigned name
GRMZM2G333183_T01	Zm2G333183
AC233939_1_FGT002	ZmAC233939_1_FGT002
GRMZM2G441722_T01	Zm2G441722
Eucgr.J2160.1	EgrJ02160
Eucgr.D00350.1	EgrD00350
Eucgr.K00568.1	EgrK00568-1
Eucgr.K02930.1	EgrK02930
Eucgr.E00260.1	EgrE00260
Eucgr.C01000.1	EgrC01000
Eucgr.A01005.1	EgrA01005
Eucgr.A01006.1	EgrA01006-1
Eucgr.A01006.2	EgrA01006-2
Eucgr.J01214.1	EgrJ01214
Eucgr.J02615.1	EgrJ02615
Eucgr.H00958.1	EgrH00958
Eucgr.J00052.1	EgrJ00052
cassava4.1_000398m.g	Mes000398
cassava4.1_000345m.g	Mes000345
cassava4.1_000359m.g	Mes000359
cassava4.1_030988m.g	Mes030988
cassava4.1_000410m.g	Mes000410
cassava4.1_000306m.g	Mes000306
cassava4.1_000385m.g	Mes000385
cassava4.1_000386m.g	Mes000386
cassava4.1_000399m.g	Mes000399
cassava4.1_000409m.g	Mes000409
cassava4.1_026648m.g	Mes026648
cassava4.1_021429m.g	Mes021429
Medtr5g029640.1	Mtr5g029640
Medtr1g031500.1	Mtr1g031500
Medtr2g022080.1	Mtr2g022080
Medtr6g089620.1	Mtr6g089620
Medtr2g021930.1	Mtr2g021930
Medtr1g105850.1	Mtr1g105850
Medtr6g078020.1	Mtr6g078020
Medtr6g009670.1	Mtr6g009670
Medtr6g133940.1	Mtr6g133940
Medtr3g110110.1	Mtr3g110110
Medtr6g133950.1	Mtr6g133950
Medtr6g133840.1	Mtr6g133840
Medtr4g107320.1	Mtr4g107320
Medtr4g107560.1	Mtr4g107560
Medtr6g009780.1	Mtr6g009780
Medtr6g009880.1	Mtr6g009880
Medtr6g009840.1	Mtr6g009840
Medtr3g136400.1	Mtr3g136400
Medtr7g048630.1	Mtr7g048630
Medtr6g009450.1	Mtr6g009450
Medtr3g102650.1	Mtr3g102650
Medtr6g025810.1	Mtr6g025810
Medtr4g110940.1	Mtr4g110940
GSVIVT000000633001	VvT000000633001
Phytozome database locus or GenBank accession number	Assigned name
---	---------------
GSVIVT00003365001 VvT00003365001	
GSVIVT00003375001 VvT00003375001	
GSVIVT00003377001 VvT00003377001	
GSVIVT00003386001 VvT00003386001	
GSVIVT00003386001 VvT00003386001	
GSVIVT00003375001 VvT00003375001	
GSVIVT00003375001 VvT00003375001	
GSVIVT00003365001 VvT00003365001	
Sb01g039110.1 SbABCB1	
Sb02g019540.1 SbABCB2	
Sb03g011860.1 SbABCB3	
Sb03g023740.1 SbABCB4	
Sb03g031990.1 SbABCB5	
Sb03g032000.1 SbABCB6	
Sb03g033290.1 SbABCB7	
Sb03g047490.1 SbABCB8	
Sb04g006090.1 SbABCB9	
Sb04g006100.1 SbABCB10	
Sb04g022480.1 SbABCB11	
Sb04g031170.1 SbABCB12	
Sb06g001440.1 SbABCB13	
Sb06g018860.1 SbABCB14	
Sb06g020350.1 SbABCB15	
Sb06g030350.1 SbABCB16	
Sb07g003510.1 SbABCB17	
Sb07g003520.1 SbABCB18	
Sb07g023730.1 SbABCB19	
Sb09g002940.1 SbABCB20	
Sb09g027320.1 SbABCB21	
Sb09g027330.1 SbABCB22	
e_gw1.13.597.1 SmABC1	
fgenesh1_pm.C_scaffold_6000062	SmABC2
fgenesh2_pg.C_scaffold_13000013	SmABC3
e_gw1.6.146.1 SmABC4	
estExt_Genewise1Plus.C_350372	SmABC5
fgenesh1_pm.C_scaffold_42000045	SmABC6
e_gw1.0.369.1 SmABC7	
fgenesh2_pg.C_scaffold_90000128	SmABC8
estExt_Genewise1C.C_210058	SmABC9
fgenesh1_pm.C_scaffold_20000054	SmABC10
e_gw1.173.371 SmABC11	
estExt_Genewise1Plus.C_90010	SmABC12
e_gw1.10.1863.1 SmABC13	
e_gw1.22.3071 SmABC14	

(Continued)
Table A4 | Continued

Phytozome database locus or GenBank accession number	Assigned name
fgenesh1_pm.C sóccafold_0000169	SmABCB15
estExt_Geneewise1.C_00569	SmABCB16
e_gw1.73.196.1	SmABCB17
fgenesh1_pm.C_scaffold_15000068	SmABCB18
LOC_Os01g18670.1	OsABCB1
LOC_Os01g35030.1	OsABCB3
LOC_Os01g50080.1	OsABCB4
LOC_Os01g50100.1	OsABCB5
LOC_Os01g50160.1	OsABCB6
LOC_Os01g52550.1	OsABCB7
LOC_Os01g74470.1	OsABCB8
LOC_Os02g09720.1	OsABCB9
LOC_Os02g46680.1	OsABCB11
LOC_Os03g08380.1	OsABCB12
LOC_Os03g17180.1	OsABCB13
LOC_Os04g40570.1	OsABCB15
LOC_Os05g34900.1	OsABCB18
LOC_Os05g47500.1	OsABCB19
LOC_Os08g05690.1	OsABCB20
LOC_Os08g05710.1	OsABCB21
LOC_Os08g45030.1	OsABCB22
Rco00078.1000079	Rco30078_t000079
Rco00054.1000025	Rco30054_t000025
Rco00076.1000120	Rco30076_t000120
Rco00076.1000122	Rco30076_t000122
Rco28180.1000015	Rco28180_t000015
Rco30170.1000796	Rco30170_t000796
Rco29581.1000001	Rco29581_t000001
Rco29693.1000124	Rco29693_t000124
Rco29622.1000171	Rco29622_t000171
Rco29989.1000174	Rco29989_t000174
Rco29989.1000175	Rco29989_t000175
Pp1s252_67V6.1	Pp1s252_67
Pp1s38_321V6.1	Pp1s38_321
Pp1s28_282V6.1	Pp1s28_282
Pp1s173_145V6.1	Pp1s173_145
Pp1s1_780V2.1	Pp1s1_780
Pp1s397_2V6.1	Pp1s397_2
Pp1s188_78V6.1	Pp1s188_78
Pp1s391_45V6.1	Pp1s391_45
Pp1s338_12V6.1	Pp1s338_12
Pp1s29_108V2.1	Pp1s29_108
Vc_estExt_fgenesh4_pg.C_30286	VcProt1
Cre17g275200	Cre17g275200
Cre17g275150	Cre17g275150
AT2G36910	AtABCB1
AT4G25980	AtABCB2
AT4G01820	AtABCB3
AT2G47000	AtABCB4
AT4G01830	AtABCB5
AT2G39480	AtABCB6
AT5G46540	AtABCB7

(Continued)
Table A4 | Continued

Phytozome database locus or GenBank accession number	Assigned name
AT3G30875	AtABCB8
AT4G18050	AtABCB9
AT1G10880	AtABCB10
At1g02520	AtABCB11
AT1G02530	AtABCB12
AT1G27940	AtABCB13
AT1G28010	AtABCB14
AT3G28345	AtABCB15
AT3G28360	AtABCB16
AT3G28380	AtABCB17
AT3G28390	AtABCB18
AT3G28860	AtABCB19
AT3G55320	AtABCB20
AT3G62150	AtABCB21
AT3G28415	AtABCB22
orange1.1g000851m.g	Csi_g000851
orange1.1g000777m.g	Csi_g000777
orange1.1g000789m.g	Csi_g000789
orange1.1g000909m.g	Csi_g000909
orange1.1g000830m.g	Csi_g000830
orange1.1g000406m.g	Csi_g000406
orange1.1g000687m.g	Csi_g000687
orange1.1g000856m.g	Csi_g000856
AcoGoldSmith_v1.000232m.g	Aco000232
AcoGoldSmith_v1.022827m.g	Aco022827
AcoGoldSmith_v1.027230m.g	Aco027230
AcoGoldSmith_v1.000200m.g	Aco000200
AcoGoldSmith_v1.018338m.g	Aco018338
AcoGoldSmith_v1.000314m.g	Aco000314
AcoGoldSmith_v1.022346m.g	Aco022346
AcoGoldSmith_v1.026987m.g	Aco026987
AcoGoldSmith_v1.022633m.g	Aco022633
AcoGoldSmith_v1.000202m.g	Aco000202
AcoGoldSmith_v1.000201m.g	Aco000201
AcoGoldSmith_v1.000230m.g	Aco000230
AcoGoldSmith_v1.000215m.g	Aco000215
AcoGoldSmith_v1.000236m.g	Aco000236
AcoGoldSmith_v1.000229m.g	Aco000229

AUX/LAXs	
pp005323m.g	Ppe005323
pp005057m.g	Ppe005057
pp004949m.g	Ppe004949
pp004865m.g	Ppe004865
POPTR_0066s09940	PtAUX1/LAX5
POPTR_0016s12100	PtAUX2/LAX1
POPTR_0010s19840	PtAUX3/LAX2
POPTR_0006s06630	PtAUX4/LAX6
POPTR_0004s17980	PtAUX5/LAX7
POPTR_0009s13470	PtAUX6/LAX3
POPTR_0005s16020	PtAUX7/LAX8
POPTR_0002s08750	PtAUX8/LAX4
GRMZM2G067022_T01	Zm2G067022

(Continued)
Table A4 | Continued

Phytozome database locus or GenBank accession number	Assigned name
GRMZM2G127949_T01	Zm2G127949
GRMZM2G045057_T01	Zm2G045057
GRMZM2G149481_T01	Zm2G149481
GRMZM2G129413_T01	Zm2G129413
Eucgr.F03758.1	EgrF03758_1
Eucgr.K02992.2	EgrK02992_2
Eucgr.G03044.2	EgrG03044_2
Eucgr.G01769.2	EgrG01769_2
Eucgr.A00514.2	EgrA00514_2
cassava4.1_006838m.g	Mes006838
cassava4.1_006423m.g	Mes006423
cassava4.1_006788m.g	Mes006788
cassava4.1_006570m.g	Mes006570
cassava4.1_006783m.g	Mes006783
cassava4.1_006474m.g	Mes006474
cassava4.1_007093m.g	Mes007093
Medtr3g024670.1	Mtr3g024670
Medtr3g097960.1	Mtr3g097960
Medtr5g089600.1	Mtr5g089600
GSVIVT01008917001	VvT01008917001
GSVIVT01024054001	VvT01024054001
GSVIVT01032855001	VvT01032855001
GSVIVT01033998001	VvT01033998001
Sb01g062240.1	SbLAX1
Sb01g041270.1	SbLAX2
Sb03g040320.1	SbLAX3
Sb05g004250.1	SbLAX4
Sb09g021990.1	SbLAX5
estExt_Genewise1Plus.C_20968	SmAUX1
estExt_fgenesh2_pg.C_50586	SmAUX2
LOC_Os01g63770.1	OsLAX1
LOC_Os03g14080.1	OsLAX2
LOC_Os05g33470.1	OsLAX3
LOC_Os10g05690.1	OsLAX4
LOC_Os11g06820.1	OsLAX5
Rco29669.1000030	Rco29669_1000030
Rco29741.1000002	Rco29741_1000002
Rco29908.1000197	Rco29908_1000197
Rco29969.1000004	Rco29969_1000004
Pp1s90_46V6.1	Pp1s90_46
Pp1s213_89V6.1	Pp1s213_89
Pp1s211_67V6.1	Pp1s211_67
AT2G38120.1	AtAUX1
AT5G01240.1	AtLAX1
AT2G21050.1	AtLAX2
AT1G77680.1	AtLAX3
orange1.1g011392m.g	Csi_g011392
orange1.1g011022m.g	Csi_g011022
orange1.1g012371m.g	Csi_g012371
orange1.1g011986m.g	Csi_g011986
AcoGoldSmith_v1.004219m.g	Aco004219
AcoGoldSmith_v1.004342m.g	Aco004342

(Continued)
Phytozome database locus or GenBank accession number	Assigned name
AcoGoldSmith_v1.003895m.g	Aco003895
AY864733	Pto-AY864733
AF115543	Ptt-AF115543

PINs

Phytozome database locus or GenBank accession number	Assigned name
ppa022797m.g	Ppe022797
ppa003159m.g	Ppe003159
ppa024134m.g	Ppe024134
ppa002528m.g	Ppe002528
ppa025174m.g	Ppe025174
ppa002944m.g	Ppe002944
ppa021573m.g	Ppe021573
ppa007621m.g	Ppe007621
POPTR_0015s04570	PrtPin1
POPTR_0016s03450	PrtPin2
POPTR_0010s12320	PrtPin3
POPTR_0005s20990	PrtPin4
POPTR_0002s07310	PrtPin5
POPTR_0008s12830	PrtPin6
POPTR_0012s04470	PrtPin7
POPTR_0006s03540	PrtPin8
POPTR_0018s13610	PrtPin9
POPTR_0001s21230	PrtPin10
POPTR_0013s08510	PrtPin11
POPTR_0019s07990	PrtPin12
POPTR_0004s12310	PrtPin13
POPTR_0017s11440	PrtPin14
POPTR_0014s14390	PrtPin15
XM_002336619.1	PrtPin16
ZmPIN1a_GRMZM2G098643	ZmPIN1a
ZmPIN1b_GRMZM2G074267	ZmPIN1b
ZmPIN1c_GRMZM2G149184	ZmPIN1c
ZmPIN1d_GRMZM2G171702_T01	ZmPIN1d
ZmPIN2	ZmPIN2
ZmPIN5a-GRMZM2G025742	ZmPIN5a
ZmPIN5b-GRMZM2G148648	ZmPIN5b
ZmPIN5c-GRMZM2G040911	ZmPIN5c
ZmPIN8_GRMZM5G839411	ZmPIN8
ZmPIN9_GRMZM5G859099	ZmPIN9
ZmPIN10a-GRMZM2G126260	ZmPIN10a
ZmPIN10b-GRMZM2G160496	ZmPIN10b
Eucgr.F04265.1	EgrF04265_1
Eucgr.K02271.1	EgrK02271_1
Eucgr.G002187.1	EgrG002187_1
Eucgr.G002549.1	EgrG002549_1
Eucgr.B01406.1	EgrB01406_1
Eucgr.B02902.1	EgrB02902_1
Eucgr.B00948.1	EgrB00948_1
Eucgr.C00078.1	EgrC00078_1
Eucgr.A02229.1	EgrA02229_1
Eucgr.H01390.1	EgrH01390_1
Eucgr.H01391.1	EgrH01391_1
Eucgr.I01919.1	EgrI01919_1

(Continued)
Table A4 | Continued

Phytozome database locus or GenBank accession number	Assigned name
Eucgr.G02548.1	EgrG02548_1
Eucgr.B01405.1	EgrB01405_1
Eucgr.B01403.1	EgrB01403_1
Eucgr.H01382.1	EgrH01382_1
cassava4.1_003807m.g	Mes003807
cassava4.1_030090m.g	Mes030090
cassava4.1_029078m.g	Mes029078
cassava4.1_003367m.g	Mes003367
cassava4.1_006998m.g	Mes006998
cassava4.1_026579m.g	Mes026579
cassava4.1_003794m.g	Mes003794
cassava4.1_029063m.g	Mes029063
cassava4.1_033391m.g	Mes033391
cassava4.1_010688m.g	Mes010688
cassava4.1_010607m.g	Mes010607
Medtr2g043210	Mtr2g043210
Medtr4g154810	Mtr4g154810
Medtr6g083450	Mtr6g083450
Medtr7g008720	Mtr7g008720
Medtr7g089430	Mtr7g089430
Medtr7g106430	Mtr7g106430
Medtr8g130020	Mtr8g130020
Medtr8g130040	Mtr8g130040
MtrAA555297	MtrAA555297
MtrAY115838	MtrAY115838
MtrAT48627	MtrAT48627
GSVIVT00014302001	VvT00014302001
GSVIVT00017824001	VvT00017824001
GSVIVT00020886001	VvT00020886001
GSVIVT00023254001	VvT00023254001
GSVIVT00023256001	VvT00023256001
GSVIVT00025093001	VvT00025093001
GSVIVT00025108001	VvT00025108001
GSVIVT00030482001	VvT00030482001
GSVIVT00031315001	VvT00031315001
Sb02g029210.1	SbPIN1
Sb03g029320.1	SbPIN2
Sb03g032650.1	SbPIN3
Sb03g037350.1	SbPIN4
Sb03g043960.1	SbPIN5
Sb04g028170.1	SbPIN6
Sb05g002150.1	SbPIN7
Sb07g026370.1	SbPIN8
Sb10g004430.1	SbPIN9
Sb10g008290.1	SbPIN10
Sb10g026300.1	SbPIN11
e_gw1.26.13.1	Sm102666
e_gw1.59.169.1	Sm119024
fgenshe1_pm.C_scaffold_90000007	Sm231064
fgenshe1_pm.C_scaffold_59000022	Sm2334325
estExt_fgenshe1_pm.C_5000006	Sm268490
Table A4 | Continued

Phytozome database locus or GenBank accession number	Assigned name
e_gw1.21.81.1	Sm99301
Os01g45550.1	OsPIN10a
Os01g51780	OsPIN8
Os01g58860	OsPIN9
Os01g69070	OsPIN5a
Os02g60960.1	OsPIN1b
Os05g50140	OsPIN10b
Os06g12610	OsPIN1a
Os06g44970	OsPIN2
Os08g41720	OsPIN5b
Os09g32770	OsPIN5c
Os11g04190	OsPIN1c
Os12g04000	OsPIN1d
Rco27985.1000045	Rc27985_1000045
Rco29662.1000026	Rc29662_1000026
Rco29816.1000014	Rc29816_1000014
Rco30180.1000054	Rc30180_1000054
Rco29822.1000419	Rc29822_1000419
Rco30128.1000486	Rc30128_1000486
Pp1s10_17V6.1	PpPIN1A
Pp1s18_186V6.1	PpPIN1B
Pp1s32_43V6.1	PpPIN1C
Pp1s79_126V6.1	PpPIN1D
AT1G73590	AtPIN1
AT5G57090	AtPIN2
AT1G70940	AtPIN3
AT2G01420	AtPIN4
AT5G16530	AtPIN5
AT1G77110	AtPIN6
AT1G23080	AtPIN7
AT5G15100	AtPIN8
orange1.1g006199m.g	Csi_g006199
orange1.1g007826m.g	Csi_g007826
orange1.1g036474m.g	Csi_g036474
orange1.1g041301m.g	Csi_g041301
orange1.1g048649m.g	Csi_g048649
orange1.1g035534m.g	Csi_g035534
orange1.1g003420m.g	Csi_g003420
orange1.1g018360m.g	Csi_g018360
orange1.1g019021m.g	Csi_g019021
AcoGoldSmith_v1.001931m.g	Aco001931
AcoGoldSmith_v1.018694m.g	Aco018694
AcoGoldSmith_v1.018139m.g	Aco018139
AcoGoldSmith_v1.018169m.g	Aco018169
AcoGoldSmith_v1.007499m.g	Aco007499
AcoGoldSmith_v1.021242m.g	Aco021242
AY302060	PtoPIN1-like
AF190881	PttPIN1
AF515435	PttPIN2
AF515434	PttPIN3
Table A5 | List of all primers used in the present work.

Name	Direction	Sequence (5′→3′)	Tm (˚C)*	Amplicon (bp)
PIN1 RT-F3	Forward	AAGCTGAAGATGGTAGGGGACCTT	58	94
PIN1 RT-R3	Reverse	TGGCCGCCCATCAATCTGAC	59	
PIN2 RT-F4	Forward	GATCAATGTTACGGGATCAACAGA	59	81
PIN2 RT-R4	Reverse	GTTGTGTTGGGAAATGGAATGGAAA	59	
PIN3 RT-F3	Forward	CTCAGTTGCTATTTGCTAGGG	54.1	238
PIN3 RT-R3	Reverse	TGACACAGAGGACGAGAATAA	56.5	
PIN4 RT-F4	Forward	CGTGGAATGAGAGGAGTGCC	55	204
PIN4 RT-R4	Reverse	AACTCTAAATCCCTCTCAATTGAGG	54.8	
PIN5 RT-F2	Forward	GCTAATGCAACACACACACCTTT	58	67
PIN5 RT-R2	Reverse	TTGATGCCGGGATATTTTACC	59	
PIN6 RT-F2	Forward	CCAATCCACAGCTGGAAAAAT	53.7	166
PIN6 RT-R2	Reverse	CCGGAGATCTGGAGCCCGGA	62.6	
PIN7 RT-F4	Forward	TCAGTGCTGGGAGCATCAA	58	81
PIN7 RT-R4	Reverse	GGATCATTAGTAGATAGTGAAGTGGGAGAG	58	
PIN8 RT-F2	Forward	CTTAATGCTGTTGGACTACG	54.1	192
PIN8 RT-R2	Reverse	GCCAACAGCAACTACCTCTAGGC	55.6	
PIN9 RT-F2	Forward	GTCTGTTCAACCTGAATC	57	173
PIN9 RT-R2	Reverse	TCTGCTGCCATATCCCTCTCTTGTG	57.3	
PIN10 RT-F4	Forward	GGCAGACACACACCTCTCTAGC	59.4	100
PIN10 RT-R4	Reverse	CCGGAGGCTCATGGTTGTC	56.3	
PIN11 RT-F3	Forward	CAGCTTGGCCACAGCCTACATC	56.8	196
PIN11 RT-R3	Reverse	GCCGAGGCTATATCCCTCCTCAGA	57	
PIN12 RT-F6	Forward	GCAGCGGCTGTTGCAATACC	58	100
PIN12 RT-R6	Reverse	ACTGCGGTGCGGCCATA	59.6	
PIN13 RT-F2	Forward	GGATCATTGAGCACCAAGGGGAA	56.6	199
PIN13 RT-R2	Reverse	TGGACGCGACAGACTCTCTATGTCC	57.9	
PIN14 RT-F3	Forward	ATAGTGATATGTTGCAACAGGAGG	54.1	175
PIN14 RT-R3	Reverse	CCAGTCTAAGCCTGCAAGGAAG	57.6	
PIN15 RT-F2	Forward	TTTCGTTGCGTATTCTTCTGAG	55.5	188
PIN15 RT-R1	Reverse	AGTGGGATCCCACATCACAA	54.9	
PIN16 RT-F4	Forward	GTTAAACATCTTGGCTCAAGGGCCAGT	57.3	199
PIN16 RT-R4	Reverse	GGATAGTTTCAACATGGTCCCTCTACA	58.2	
AUX1 RT-F1	Forward	TCCCTTTTATGCCAAGCTGGA	56.5	217
AUX1 RT-R1	Reverse	AGTGATCTGCACTCCTAGCC	56.6	
AUX2 RT-F3	Forward	CGTCCGAGCTTTGGCCAAG	56.3	100
AUX2 RT-R3	Reverse	TCTTGGGACTGTTTCTGCTAG	55.1	
AUX3 RT-F2	Forward	GTTCAGCGCCAGGTGTGATG	56.6	100
AUX3 RT-R2	Reverse	CATGCCGCAACAAAATCGTAGAG	56.1	
AUX4 RT-F4	Forward	AGGTGGTGGCATAGTAGTGTGCCA	57.7	191
AUX4 RT-R4	Reverse	AAACACAATGCAAGGGAGATGC	55.9	
AUX5 RT-F1	Forward	AGCCATCAAGTACAGCAGG	56.3	174
AUX5 RT-R1	Reverse	TCTGAAGTGGGCATTGGTA	56.1	
AUX6 RT-F4	Forward	CCTTGGTATTTCCTTCATTTGTT	55.6	180
AUX6 RT-R4	Reverse	GTACTTTTGTTGGTGTGCC	55.2	
AUX7 RT-F2	Forward	CTCAGATTGATTCAATTTGGCTATT	54.2	213
AUX7 RT-R2	Reverse	ATCACACCTTTTCAAGAACCACACAA	55.2	
AUX8 RT-F1	Forward	GAGAATATGCTGTTGGAGGAC	54.8	182
AUX8 RT-R1	Reverse	ACAGCTGTTAAGCCTTGGTGA	56.2	
ABCB1 RT-F4	Forward	GATGTTAAAGTACAGAGGAAGGAC	56.7	212
ABCB1 RT-R4	Reverse	ATGGCGATATCTCCTCTTGTACTGGTG	56.5	
ABCB2 RT-F3	Forward	CAAGCATGAGACTCTCTGATTCAATCA	54.7	100

(Continued)
Table A5 | Continued

Name	Direction	Sequence (5′–3′)	Tm (˚C)*	Amplicon (bp)
ABCB2 RT-R3	Reverse	AATATTGCAAAATGTGCTCAAGA	56.4	
ABCB4 RT-F2	Forward	GGGCAATCTAAAGAATCCGAAAAAT	55.7	264
ABCB4 RT-R4	Reverse	TATGAAAGGCAAGCAAAGATG	56.9	
ABCB5 RT-F3	Forward	TCGCAATACCTCCGGTTACA	58.1	100
ABCB5 RT-R3	Reverse	GCCTGCGGTCTGCTA AAAA	57.3	
ABCB7 RT-F2	Forward	GTGTTTTTCTGCTGTAATGAGGC	56.5	269
ABCB7 RT-R2	Reverse	ACCTTTTCTGTTGCTCCTGGA	55.4	
ABCB10 RT-F4	Forward	CAG AAG CAA AGG GAA GCC AT	55.4	211
ABCB10 RT-R4	Reverse	CTCAATTTAACACACTGCAGTGA	56.4	
ABCB13 RT-F3	Forward	CAAGAACATCTGAAAGAATCCCAA	56.3	206
ABCB13 RT-R3	Reverse	AACTCTTTTCCTGATGCTCAG	55.6	
ABCB14 RT-F1	Forward	GACAGCTCAAGTCAGAAATGCTCATT	54.2	221
ABCB14 RT-R1	Reverse	TGGAAACCTCTGCTGTTGGA	56	
ABCB13 RT-F2	Forward	CAAGAACACTGCAGCAATCAT	57.4	229
ABCB13 RT-R2	Reverse	TAAACACACGGAGCTGCTCAAA	56.4	
ABCB18 RT-F3	Forward	AGCTCATCAGCAATCTGATCA	56.3	211
ABCB18 RT-R3	Reverse	GCATGAGCAGGAATACAAACC	57.4	
ABCB19 RT-F3	Forward	TCTTAAGGACCCAGCAATCTC ACT	57.3	100
ABCB19 RT-R3	Reverse	CTCATGAACTCCTGAGTCTTT	58.5	
ACT2 RT-F1 b	Forward	GCAACTGGGATGATGAGGA	54.3	213
ACT2 RT-R1	Reverse	TACGACACTGGCACATAGG	56.5	
UBQ RT-F1 b	Forward	CAGCTTGAAGATGGAGGAG	55.4	154
UBQ RT-R1	Reverse	CAATGGTCTGACTGCTCG	55.5	
TUA2 RT-F1	Forward	CCTAGCTGAGTACTGGGGTG	58.2	230
TUA2 RT-R1	Reverse	CCAACTTCTGGATATCCTTCCTA	56.2	
PD-E1 RT-F1	Forward	ATGAGAACTTGTTGATTGTC	57.3	164
PD-E1 RT-R1	Reverse	TGCACAATCTGAGGGCCAGT	58.5	

CLONING AND SEQUENCING

Name	Direction	Sequence (5′–3′)	Tm (˚C)	Amplicon (bp)
M13F	Forward	TTGTAAAACGACGCTGAGTAGT	54.7	
M13R	Reverse	CAGGAATACCGCTATGACC	50.1	
adp1-dT17	Forward	CCGATCCTGAAAGGGCCGCT17	64.6	
adp1	Reverse	CCGATCCTGAAAGGGCCG	61.9	
PIN2 RT-F3	Forward	CTTCACGTGTCATTGTTGCA	54.1	
PIN4 RT-F3	Forward	CTTCAAGCTGCTATGTTGCA	54.1	
PIN11A RT-F3	Forward	GCAGATCGCTGTAGTATTGTC	55.1	
PIN13 RT-F2	Forward	GGTGTCTGACTAGTCCTGTA	55.1	
AUX4 RT-F3	Forward	CCGACTCTCAAAACACTCAA	55.4	
ABCB1 RT-F3	Forward	CGCATGATACGTTACAAAGGTTCA	55.5	

*Melting temperatures were calculated with the online tool OlygoAnalyzer v.3.1 from Integrated DNA Technologies.

*These primer pairs have been first published in Secchi et al. (2009).

*This primer sequence has been first published in Kramer et al. (1998).