Association of CYP2A6*4 with Susceptibility of Lung Cancer: A Meta-Analysis

Lishan Wang

1 Bio-X Institutes and Affiliated Changning Mental Health Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China, 2 FengHe (ShangHai) Information Technology Co., Ltd, Minhang District, Shanghai, China

Abstract

Objectives: To assess the association between the variant of Cytochrome P450 2A6 whole gene deletion (CYP2A6*4) polymorphism and risk of lung cancer.

Methods: Two investigators independently searched the PubMed, Elsevier, EMBASE, Web of Science, Wiley Online Library and Chinese National Knowledge Infrastructure (CNKI). Pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) for CYP2A6*4 and lung cancer were calculated in a fixed-effects model (the Mantel-Haenszel method) and a random-effects model (the DerSimonian and Laird method) when appropriate.

Results: This meta-analysis included seven eligible studies, which included 2524 lung cancer cases and 2258 controls (cancer-free). Overall, CYP2A6*4 was associated with the risk of lung cancer (allele*4 vs. allele non-*4, pooled OR = 0.826, 95% CI = 0.725–0.941, P-value = 0.004). When stratifying for population, significant association was observed in Asian (additive model, pooled OR = 0.794, 95% CI = 0.694–0.909, P-value = 0.001; dominant model, pooled OR = 0.827, 95% CI = 0.709–0.965, P-value = 0.016; recessive model (pooled OR = 0.844, 95% CI = 0.293–0.675, P-value < 0.0001). In the overall analysis, a comparably significant decrease in the frequency of *4/*4 genotype was detected between cases and controls in Asian while no *4/*4 genotype was detected in Caucasian in collected data.

Conclusion: This meta-analysis suggests that the CYP2A6*4 polymorphism is associated with susceptibility of lung cancer in Asian. The whole gene deletion of CYP2A6 may decrease the risk of lung cancer in Asian samples.

Introduction

Lung cancer is the most common cancer in the world, representing approximately 12% of all new cancer cases, with over 1 million deaths annually, which is the leading cause of cancer death [1]. It is well-known that smoking is a major cause of lung cancer. It is reported that environmental tobacco smoke increases the risk of lung cancer in nonsmokers by approximately 20–50% [2].

Tobacco carcinogens are the most significant factors for smoking induced cancers. To exert their effects, most tobacco carcinogens require metabolic activation, which is generally carried out by cytochrome P450 (CYP) enzymes. Short-lived electrophile agents produced in metabolic activation process react with DNA, thus causing DNA damage and inducing tumors. Such process, mostly, only happen in tissues where it is generated. Therefore, tissue-specific metabolic activation is of vital importance for tissue susceptibility to carcinogen-induced tumors. Among tobacco’s potent carcinogens, tobacco-specific nitrosamines (TSNA) and other nitrosamines are activated by CYP2A enzymes, nicotine is also metabolized by CYP2A enzymes [3–4].

There are three CYP2A genes in humans (CYP2A6, CYP2A7 and CYP2A13) and one pseudogene (CYP2A16) [5], but there is no catalytic activity shown for CYP2A7 so far. CYP2A7 expression is mainly found in the liver, but its protein or mRNA is also expressed in other tissues such as nasal epithelium, trachea, lung and esophagus [6–7]. There are 31 numbered CYP2A6 allelic variants identified to date, however, not all have been functionally characterized. The different alleles are described at the Human CYP Allele Nomenclature Committee Homepage (www.cypalleles.ki.se/cyp2a6.htm). CYP2A6*4 presents a gene deletion...
that accounts for the majority of poor metabolizer individuals (PM) in Asian populations, and various alleles have been described [8–9]. Currently, three deletion variants are known for CYP2A6*4. CYP2A6*4A lacks the 3′-UTR of the CYP2A7 gene and the whole CYP2A6 gene is deleted and an unequal crossover junction is located in the 3′-UTR. CYP2A6*4B has a normal CYP2A7 gene, while the whole CYP2A6 gene is deleted. In CYP2A6*4D, an unequal crossover junction is located at the end of the CYP2A7 gene in either exon 8 or 9 and the whole CYP2A6 gene is deleted. Formerly, a CYP2A6*4C allele is recognized, but subsequent observations reveal that this allele is the same as the CYP2A6*4A allele. Because all these variants result in a whole gene deletion of CYP2A6, most studies do not discriminate between the variants and the term ‘CYP2A6*4′ is designated to all deletions [8–9].

During this decade, a number of studies have assessed the association between CYP2A6*4 polymorphism and risk of lung cancer in different populations; however, the results are inconsistent and inconclusive [10–11]. Different methodologies have been used, however, in particular, most of the studies use a small sample size and it is therefore not surprising that there has been a lack of replication in the various studies. As meta-analysis is an effective way to increase the statistical power by pooling all the available data together and analyzing with a large dataset, in which all the published case-control studies are processed to confirm whether the CYP2A6*4 polymorphism is associated with susceptibility of lung cancer.

Materials and Methods

Literature search

The PubMed, Elsevier, EMBASE, Web of Science, Wiley Online Library and Chinese National Knowledge Infrastructure (CNKI) for all articles were searched with the following search terms: ‘(CYP2A6′ OR ‘Cytochrome P450 2A6′) AND ‘lung cancer′’. The date of the last search was Sep 20, 2012. Publication date and publication language were not restricted in our search. Reference lists were examined manually to further identify potentially relevant studies. Unpublished reports were not considered. If more than one article was published by the same author using the same case series, we selected the study where the most individuals were investigated.

Inclusion and exclusion criteria

Abstracts of all citations and retrieved studies were reviewed. Studies meeting the following criteria were included: (1) Using a case – control design; (2) Detecting the relationship between variant CYP2A6*4 and lung cancer; (3) Providing available genotype data of CYP2A6*4; (4) Control group is cancer-free. Studies were excluded if one of the following factors existed: (1) the design is based on family or sibling pairs or case-only; (2) the genotype frequency of CYP2A6*4 is not reported; or (3) there is insufficient information for extraction of data.

Data extraction

All data were extracted independently by two reviewers (XXX and XXX) according to the inclusion criteria listed above. Disagreements were resolved by discussion between the two reviewers. The following characteristics were collected from each study: first author, year of publication, country of sample, ethnicity, number of cases and controls, main background of samples, matching criteria, and genotyping methods (Table 1).

Statistical analysis

The statistical analysis was conducted using STATA 11.0 (Stata Corp LP, College Station, TX, United States); P-value <0.05 was considered statistically significant. Hardy Weinberg Equilibrium (HWE) in the controls was tested by the chi-square test for goodness of fit, and a P-value <0.05 was considered as significant disequilibrium. Pooled ORs were calculated for allele frequency comparison (*4 vs. non-*4), dominant model (*4/*4 + *4/*4 vs. non-*4/non-*4), and recessive model (*4/*4 vs. non-*4/*4 + non-*4/non-*4).

Table 1. Characteristics of studies included in the meta-analysis.

| Author       | Year | Country | Population | No.(cases / controls) | Gender | Smoking status | Matching criteria | Genotyping methods | Ref. |
|--------------|------|---------|------------|-----------------------|--------|----------------|-------------------|-------------------|------|
| Miyamoto     | 1999 | Japan   | Asian      | 246/201               | Mixed  | Age, sex, race |                   | PCR-RFLP          | [15] |
| Loriot       | 2001 | France  | Caucasian  | 244/250               | Male   | Age, sex, race |                   | PCR-RFLP          | [16] |
| Tan          | 2001 | China   | Asian      | 151/326               | Mixed  | Age, sex, race |                   | PCR-RFLP          | [17] |
| Fujieda      | 2004 | Japan   | Asian      | 1094/611              | Male   | Age, sex, race |                   | PCR-RFLP          | [18] |
| Gu           | 2005 | China   | Asian      | 180/224               | Mixed  | Age, sex, race |                   | PCR-RFLP          | [19] |
| Tamaki       | 2011 | Japan   | Asian      | 192/203               | Mixed  | Age, sex, race |                   | PCR-RFLP          | [20] |
| Wassenaar    | 2011 | Canada  | Caucasian  | 417/443               | Mixed  | Age, sex, race |                   | PCR-RFLP          | [21] |

PCR-RFLP: Polymerase chain reaction-restriction fragment length polymorphism.

Figure 1. Flow chart of selection of studies and specific reasons for exclusion from the meta-analysis. doi:10.1371/journal.pone.0059556.g001
non-*4/non-*4), respectively. The significance of pooled ORs was determined by Z-test and P-value, 0.05 was considered statistically significant.

The OR and 95% CI were estimated for each study in a random-effects model or a fixed-effects model. Heterogeneity among studies was examined with the \( \chi^2 \)-based Q testing and \( I^2 \) statistics [12]. P-value, 0.1 was considered significant for the \( \chi^2 \)-based Q testing and \( I^2 \) was interpreted as the proportion of total variation contributed by between-study variation. If there was a significant heterogeneity (P-value, 0.1), a random-effects model (the DerSimonian and Laird method) was selected to pool the data. If not, a fixed-effects model (the Mantel-Haenszel method) was selected to pool the data. Heterogeneity was also quantified using the \( I^2 \) metric (\( I^2 = 0\% \), no heterogeneity; \( I^2 = 25\% \), moderate heterogeneity; \( I^2 = 50\% \), large or extreme heterogeneity) [25]. Publication bias was examined with funnel plots and with the Egger’s tests [13–14]. If there is evidence of publication bias, the funnel plot is noticeably asymmetric. For the Egger’s tests, the significance level was set at 0.05.

Results

Study Characteristics

A total of 52 papers were retrieved after the first search. After our selection, 7 case-control studies including 2524 lung cancer cases and 2258 controls fulfilled the inclusion criteria [10–11]. The qualities of the studies were considered acceptable for our meta-analysis. HWE were calculated for all seven publications and found that only Tamaki’s study was inconsistent with Hardy-Weinberg disequilibrium (P-value = 0.042). The flow chart of selection of studies and reasons for exclusion is presented in Figure 1. Studies had been carried out in Japan, France, China and Canada. Five studies [10], [15–16] used Asian samples while two studies [17], [11] used Caucasian samples. Characteristics of studies included in the meta-analysis are presented in Tables 1 and 2.

Evaluation of CYP2A6*4 and association with lung cancer

There were seven case-control studies [10–11] which had been performed to study the CYP2A6*4 polymorphism and lung cancer risk. Results of the meta-analysis are shown in Table 3. Results showed that there was a significant association between CYP2A6*4 polymorphism and lung cancer risk (additive model, pooled OR = 0.826, 95% CI = 0.725–0.941, P-value = 0.004). But no significant association was observed under dominant model (pooled OR = 0.867, 95% CI = 0.747–1.006, P-value = 0.06). When studies were divided according to the population, the results indicated that significant associations were observed in Asian samples under all models (additive model, pooled OR = 0.794, 95% CI = 0.694–0.909, P-value = 0.001; dominant model, pooled OR = 0.827, 95% CI = 0.709–0.965, P-value = 0.016). For Caucasian samples, only additive model showed a significant association (pooled OR = 1.640, 95% CI = 1.091–2.457, P-value = 0.015).

Table 3. Pooled odds ratio for CYP2A6*4 in meta-analyses.

| Population | Genetic Model | Pooled OR (95% CI) | P-value | P-value* (Publication bias) | P-value* (heterogeneity) | \( I^2 \) |
|------------|---------------|--------------------|---------|---------------------------|--------------------------|------|
| All        | Additive      | 0.826 (0.725–0.941) | 0.004   | 0.002                     | 71.4%                    |      |
|            | Dominant      | 0.867 (0.747–1.006) | 0.06    | 0.001                     | 72.9%                    |      |
| Asian      | Additive      | 0.794 (0.694–0.909) | 0.001   | 0.005                     | 73.0%                    |      |
|            | Dominant      | 0.737 (0.640–0.848) | 0.001   | 0.0001                    | 4.5%                     |      |
|            | Recessive     | 0.827 (0.709–0.965) | 0.016   | 0.002                     | 75.7%                    |      |
|            |               | 0.751 (0.637–0.884) | 0.001   | 0.004                     | 13.7%                    |      |
|            |               | 0.444 (0.293–0.675) | <0.0001 | 0.090                     | 0.0%                     |      |
| Caucasian  | Additive      | 1.640 (0.919–2.927) | 0.094   | –                         | 62.0%                    |      |
|            | Dominant      | 1.674 (0.927–3.024) | 0.088   | –                         | 61.8%                    |      |

*Random-effects model was used when the p-value for heterogeneity test <0.10, otherwise the fixed-effect model was used. \(^*\) Egger’s test to evaluate publication bias. P-value <0.05 is considered statistically significant. \(^*\) P-value <0.1 is considered statistically significant for Q statistics. \(^d\) and \(^e\) The results of Asian samples after exclusion of Tan’s study. OR: Odds ratio; CI: confidence interval.
Reversely, no significant associations were observed in Caucasian samples under any model (allele, pooled OR = 1.640, 95% CI = 0.919–2.927, P-value = 0.094; dominant model, pooled OR = 1.674, 95% CI = 0.927–3.024, P-value = 0.088; recessive model was not available as no *4/*4 genotype was observed in Caucasian samples). Results of the meta-analysis are shown in Table 3 and Figure 2.

Sensitivity analysis

The influence of a single study on the overall meta-analysis estimate was investigated by omitting one study at a time, and the omission of any study made no significant difference, indicating that our results were statistically reliable.

Evaluation of heterogeneity and publication bias

For all studies, statistically significant heterogeneity was observed (P-values by χ²-based Q testing <0.1 and I² >50%). Then subgroup analysis was carried out. Studies were divided according to the population. For Caucasian, no statistically significant heterogeneity was observed under either additive model (*4 vs. non-*4, P-value = 0.105) or dominant model (*4/*4+*4/non-*4 vs. non-*4/non-*4, P-value = 0.106). For Asian, no statistically significant heterogeneity was observed under recessive model (*4/*4 vs. non-*4, P-value = 0.990, I² = 0), but significant heterogeneity was still observed under both additive model (*4 vs. non-*4, P-value = 0.005) and dominant model (*4/*4+*4/non-*4 vs. non-*4/non-*4, P-value = 0.002). However, when Tan’s study was excluded, no statistically significant heterogeneity was observed anymore under either additive model (*4 vs. non-*4, P-value = 0.370, I² = 4.5%) or dominant model (*4/*4+*4/non-*4 vs. non-*4/non-*4, P-value = 0.324, I² = 13.7%). Funnel plot and Egger’s test were performed to assess the publication bias of the literature. No publication bias was observed (all P-value of Egger’s test >0.05) and symmetrical funnel plots were obtained. Results of heterogeneity and publication bias are shown in Table 2.

Discussion

As previous research reported, allele frequency of CYP2A6*4 differed significantly between Asian and non-Asian. CYP2A6*4 is more prevalent among Japanese individuals, with an allele frequency of approximately 0.200[18],[19–20]. The frequency is also relatively high among Koreans and Thais (0.110 and 0.140, respectively)[20],[21]. Among Brazilians, French individuals and Canadians, the frequency is 0.010 or lower [22],[23],[24]. The data from this meta-analysis showed a significant decrease of genotype frequency of *4/*4 for the CYP2A6*4 polymorphism in patients with lung cancer than controls in Asian, which suggest that genotype *4/*4 of CYP2A6*4 may decrease the risk of lung cancer in Asian. Therefore, significant results were only discovered in Asian, but not non-Asian population, which may be caused by low frequency of CYP2A6*4 polymorphism. In addition, it is reported that plasma concentration of cotinine, a major metabolite of nicotine, is considerably higher in carriers of wild-type alleles of CYP2A6 than that in carriers of null or reduced-function alleles of CYP2A6, raising the possibility that cotinine plays an important role in the development of lung cancer [25]. It is also reported that lung tumorigenesis can be promoted by anti-apoptotic effects of cotinine through activation of PI3K/Akt pathway, which is mediated by CYP2A6 [26]. These previous
findings support our results and give us possible explanation to the mechanism.

The degree of heterogeneity is one of the major concerns in a sound meta-analysis because non-homogeneous data are liable to result in misleading results. In the present study, the Q testing and F statistics were carried out to test the significance of heterogeneity. For all studies, there existed significant heterogeneity. So subgroup analysis was made according to the ethnicity of samples. No significant heterogeneity was observed in Caucasian under any model or in Asian under recessive model. But significant heterogeneity existed in Asian under the other two models, and Tan’s study was found to be responsible for heterogeneity. After removing this study, no significant heterogeneity was observed (both P-value of Q testing>0.1, shown in Table 2). Moreover, we performed a sensitivity analysis by removing one study each time and rerunning the model to determine the effect on each overall estimate. The estimates changed little, which implied that our results were statistically reliable.

However, there are still some limitations in this meta-analysis. (1) In seven studies included for our analysis, only two of them are Caucasian samples; (2) The samples from 4 countries and controls are not uniform; (3) CYP2A6*4 is related with smoking, but the smoking status of samples is not uniform in our study. Thus, results should be interpreted with caution; (4) Number of studies and number of subjects in the studies included in the meta-analysis are still small; and (5) Meta-analysis is a retrospective research that is subject to some methodological limitations. In order to minimize the bias, we used explicit methods for study selection, data extraction and data analysis. Nevertheless, our results should be interpreted with caution.

This meta-analysis suggests that the CYP2A6*4 polymorphism is associated with susceptibility of lung cancer in Asian and the whole gene deletion of CYP2A6 may decrease the risk of lung cancer. The pooled ORs in this study suggest that *4/*4 genotype has a modest but definite genetic effect in Asian. Larger and well-designed studies based on different ethnic groups are needed to confirm our results.

Supporting Information

Checklist S1 PRISMA Checklist.

Author Contributions

Conceived and designed the experiments: LW. Wrote the paper: LW.

References

1. Parkin DM, Bray FI, Devesa SS (2001) Cancer burden in the year 2000. The global picture. Eur J Cancer 37 Suppl 8S–66.
2. Boyle P, Maisonneuve P (1995) Lung cancer and tobacco smoking. Lung Cancer 12:167–181.
3. Nakajima M, Yamamoto T, Nunoya K, Yokoi T, Nagashima K, et al. (1996) Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug metabolism and disposition: the biological fate of chemicals 24:1212–1217.
4. Yamazaki H, Inoue K, Hashimoto M, Shimada T (1999) Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch toxicology 73:65–70.
5. Hoffman SM, Nelson DR, Kwoen DS (2003) Organization, structure and evolution of the CYP2 gene cluster on human chromosome 19. Pharmacogenetics 11:687–696.
6. Koskela S, Hakkilä J, Hukkanen J, Pekkonen O, Sorri M, et al. (1999) Expression of CYP2A6 genes in human liver and extrahepatic tissues. Biochem pharm 57:1407–1413.
7. Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. An rev pharm toxicol 43:149–173.
8. Oscarson M, McLellan RA, Gullsten H, Agundez JA, Benitez J, et al. (1999) Identification and characterization of novel polymorphisms in the CYP2A6 locus: implications for nicotine metabolism. FEBS letters 460:321–327.
9. Ariyoshi N, Sekine H, Nakayama K, Saito K, Miyamoto A, et al. (2004) Identification of deletion variation in CYP2A6*4B allele lacking entire coding region of CYP2A6 in Japanese. Pharmacogenetics 14:701–705.
10. Miyamoto M, Unitomo Y, Dosaka-Akita H, Sawamura Y, Yokota J, et al. (1999) CYP2A6 gene deletion reduces susceptibility to lung cancer. Biochem bioph res co 261:638–660.
11. Wasenaa CA, Dong Q, Wei Q, Amos CI, Spitnik MR, et al. (2011) Relationship between CYP2A6 and CHRNA3-CHRNA5-CHRNH1 variation and smoking behavior and lung cancer risk. J Natl Cancer Ins 105:1342–1346.
12. Higgin JP, Thompson SG (2000) Quantifying heterogeneity in a meta-analysis. Statistics in medicine 21:1539–1558.
13. Light RJ, Pillerite DB (1984) Summing up: the science of reviewing research. Harvard University Press, Cambridge, Mass.
14. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634.
15. Tan W, Chen GF, Xing DY, Song CY, Kadlubar FF, et al. (2001) Frequency of CYP2A6 gene deletion and its relation to risk of lung and esophageal cancer in the Chinese population. Int J Cancer 95:96–101.
16. Tamaki Y, Arai T, Sugimura H, Sasazuki T, Honda M, et al. (2011) Association between cancer risk and drug-metabolizing enzyme gene (CYP2A6, CYP2A13, CYP3A4, BDL1, SULT1A1, GSTM1, and GSTT1) polymorphisms in cases of lung cancer in Japan. Drug metabolism and pharmacokinetics 26:516–522.
17. Loriot MA, Reubenou S, Oscarson M, Cene C, Miyamoto M, et al. (2001) Genetic polymorphisms of cytochrome P450 2A6 in a case-control study on lung cancer in a French population. Pharmacogenetics 11:39–44.
18. Fujieda M, Yamazaki H, Saito T, Kiyotani K, G Yamada MA, et al. (2004) Evaluation of CYP2A6 genetic polymorphisms as determinants of smoking behavior and tobacco-related lung cancer risk in male Japanese smokers. Carcinogenesis 25:2451–2458.
19. Nakajima M, Kwon JT, Tanaka N, Zenta T, Yamamoto Y, et al. (2001) Relationship between interindividual differences in nicotine metabolism and CYP2A6 genetic polymorphism in humans. Clin pharm therapeutics 69:72–78.
20. Yoshida R, Nakajima M, Watanabe Y, Kwon JT, Yokoi T (2002) Genetic polymorphisms in human CYP2A6 gene causing impaired nicotine metabolism. Bri J clin pharm 54:511–517.
21. Peinarkasatam S, Swinatakanuk K, Kiyotani K, Fujieda M, Yamazaki H, et al. (2006) In vivo evaluation of coumarin and nicotine as probe drugs to predict the metabolic capacity of CYP2A6 due to genetic polymorphism in Thais. Drug metabolism and pharmacokinetics 21:473–484.
22. Xu G, Rao YS, Xu B, Hofmann E, Jones J, et al. (2002) An in vivo pilot study characterizing the new CYP2A6*5, *6, and *10 alleles. Biochem bioph res co 290:318–324.
23. Vasconcelos GM, Struchucher CJ, Suarez-Kurtz G (2005) CYP2A6 genetic polymorphisms and correlation with smoking status in Brazilians. The pharmacogenomics J 5:42–48.
24. Gamberoni N, Batt AM, Marie B, Pflister M, Siest G, et al. (2005) Association of CYP2A6*1B gene variant with the amount of smoking in French adults from the Stanislas cohort. The pharmacogenomics J 5:271–273.
25. Tynadle RF, Sellers EM (2002) Genetic variation in CYP2A6-mediated nicotine metabolism alters smoking behavior. Therapeutic drug monitoring 24:163–171.
26. Nakada T, Kiyotani K, Iwano S, Uno T, Yokohira M, et al. (2012) Lung tumorogenesis promoted by anti-apoptotic effects of cotinine, a nicotine metabolite through activation of PI3K/Akt pathway. J toxicol sci 37:555–563.