A survey for Batrachochytrium salamandrivorans in Chinese amphibians

Wei ZHU1,2, Feng XU3, Changming BAI4, Xuan LIU1, Supen WANG1,2, Xu GAO1,2, Shaofei YAN1,2, Xianping LI1,2, Zetian LIU1,2, Yiming LI1*

1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2 University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
3 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
4 Maricultural Organism Disease Control and Pathogenic Molecular Biology Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, 266071, China

Abstract For the last decade, chytridiomycosis was considered to be caused by a single species of fungus, Batrachochytrium dendrobatidis (Bd), but a second chytrid species, Batrachochytrium salamandrivorans (Bs), was recently isolated from an infected Salamandra salamandra in the Netherlands. To date, Bs has only been found in the Netherlands. To assess whether Bs is present in China, we analyzed a total of 665 samples, including 425 wild samples, 41 preserved specimens, and 199 captive samples, from 30 different species, including both urodeles and anurans. Our sample sites covered 15 provinces in China. All of the samples tested negative for Bs, resulting in a 95% confidence limit for a prevalence of 0.6%. The absence of Bs observed in this large-scale survey in China has significant implications for amphibian conservation and for border trade management strategies intended to control amphibian diseases. We strongly recommend the continued close monitoring of Bs to verify the status of this potentially devastating amphibian fungus in China [Current Zoology 60 (6): 729–735, 2014].

Keywords Amphibian decline, Asia, Batrachochytrium salamandrivorans, China, Chytridiomycosis, Batrachochytrium dendrobatidis.

The emerging infectious disease chytridiomycosis has been identified as a major factor contributing to the decline and extinction of amphibian species at the global scale (Berger et al., 1998; Daszak et al., 2003; Lips et al., 2006; Walker et al., 2008; Vredenburg et al., 2010; Cheng et al., 2011). For the last decade, Batrachochytrium dendrobatidis (Bd) was thought to be the only fungus that caused chytridiomycosis. It was first recognized as a pathogenic organism in 1998 (Berger et al., 1998) and was described as a species of chytrid in 1999 (Longcore et al., 1999). This chytrid fungus has been found on every continent except Antarctica, and it is known to have affected more than 500 species of amphibians worldwide (Fisher et al., 2009; Olson et al., 2013).

However, a second chytrid species, Batrachochytrium salamandrivorans (Bs), was recently isolated from infected Salamandra salamandra in the Netherlands (Martel et al., 2013). Currently, Salamandra salamandra is the only reported host of Bs, which has brought Salamandra salamandra close to extinction in the Netherlands (Spitzen-van der Sluijs et al., 2013). The natural hosts of Bs remain unknown, but this species may have different amphibian hosts with Bd. For example, in an experimental setting, it has been shown that Bs fails to infect midwife toads, which are highly susceptible to Bd infection (Martel et al., 2013). The current molecular screening tests used for Bd are not able to accurately detect Bs. Therefore, it is inappropriate to estimate the distribution of Bs using the Bd mapping framework (Olson et al., 2013). Consequently, there is an urgent need to screen different amphibian species for Bs around the world to evaluate the distribution and potential risk of Bs emerging across the globe.

Two molecular methods have been developed to identify Bs infection. One method is a single-round polymerase chain reaction (PCR) assay in which a region of the 5.8S ribosomal RNA gene of Bs is amplified by a pair of specific primers developed by Martel et al. (2013). The other method is a duplex real-time PCR analysis, which is more sensitive than the single-round
PCR method, with a detection limit of 0.1 genomic equivalents of Bs zoospores (Blooi et al., 2013). For Bd (sister species of Bs) detection, a nested PCR assay has demonstrated more sensitivity than real-time PCR (Goka et al., 2009; Bai et al., 2012). Therefore, we conducted a sensitivity test to determine the sensitivity of the nested PCR assay in detecting Bs.

Commercial trade in amphibians is considered an important factor contributing to the spread of chytridiomycosis, with studies reporting the presence of Bd in pet stores, food markets, introduced amphibians, and the laboratory animal trade (Daszak et al., 2003; Garner et al., 2006; Weldon et al., 2007; Bai et al., 2012; Schloegel et al., 2012; Liu et al., 2013b). Therefore, it is extremely important to assess the risk of Bs spreading through amphibian trade. Additionally, museum collections can further our understanding of the history of emerging pathogens (Soto-Azat et al., 2010). For example, Bd has been present for many years on several continents where endemic lineages of Bd have been found. The earliest known record of Bd was collected in 1894 in Brazil, where Bd-GPL and Bd-Brazil have been present for a long time (Rodriguez et al., 2014). In Africa, the oldest Bd-positive specimens were collected in 1933 (Weldon et al., 2004). Bd-CAPE was found in South Africa and Europe (Farrer et al., 2011). In Asia, the earliest evidence of chytridiomycosis dates back to as early as 1902, but this finding has not yet been confirmed by PCR (Schloegel et al., 2012). These findings indicate that Bd has had a worldwide presence for a long time. Therefore, as the sister species of Bd, it is necessary to investigate the presence of Bs in preserved specimens to understand the history of this chytrid fungus and determine whether this is an old or new pathogen.

China’s large area and complicated terrestrial landscapes provide diverse climates and vegetation patterns that offer various habitats for amphibians (Xie et al., 2007). To date, Bd has been detected in 10 provinces of China (Bai et al., 2010; Bai et al., 2012; Zhu et al., 2014). However, the distribution and prevalence of the emerging Bs remain unknown, and there have been virtually no reports of Bs outside of the Netherlands. In the present study, we collected amphibians from the field, markets, aquaculture farms and museums in order to provide the first evaluation of possible Bs infections in Chinese amphibians.

1 Materials and Methods

1.1 Samples from wild amphibians

We conducted field samplings from 2007 to 2013 in 10 provinces, including Yunnan and Sichuan, which are located in a region recognized as a global biodiversity hotspot with many endemic and endangered amphibian species (Myers et al., 2000). In the Liaoning, Jilin, and Heilongjiang provinces, we collected native amphibian species in the summer when the daily maximum temperature exceeded 30°C. In the Xinjiang and Yunnan provinces, we collected samples during autumn when the daily maximum temperature rarely exceeded 25°C. Individuals from other provinces were collected during spring before the daily maximum temperature exceeded 25°C. In addition to native species, we also collected the introduced American bullfrog (Lithobates catesbeianus, referred to as the bullfrog), which is a known introduced species that has successfully invaded a wide area of China (Li et al., 2006; Liu and Li, 2009; Li et al., 2011; Liu et al., 2012; Liu et al., 2013a). A total of 20 bullfrog tadpoles were collected in the field using long-handled nets during daylight hours, while 26 post-metamorphic bullfrogs were collected by hand at night. Each sample was handled using a fresh pair of disposable latex gloves to prevent cross-contamination (Goka et al., 2009). Additionally, we rinsed our boots and equipment with 5% bleach before entering each location to prevent cross-contamination among the sites (Longcore et al., 2007).

We used two methods to sample Bs from the collected individuals: (i) epithelial swabbing (260 samples) in which each individual was sampled for Bs using the swab technique (Hyatt et al., 2007), and (ii) histology of phalanges (165 samples) in which the top of the third toe of the right hind foot was clipped (Bai et al., 2010). All of the post-metamorphic amphibians were released at their capture site after sampling. For tadpoles, the collected specimens were euthanized with ethyl ether, and then the mouthparts were collected. Both the swabs and tissue samples from the toe clips and mouthparts were preserved separately in 75% EtOH in 1.5-ml microcentrifuge tubes and were stored at –20°C in the laboratory (Bai et al., 2010).

1.2 Samples from amphibians in farms and food markets

The amphibians collected from the markets in Beijing were sampled for Bs using the swab technique (Hyatt et al., 2007). In the other 7 provinces, individuals collected from the farms and food markets were sampled by toe clipping (Bai et al., 2010). Captive samples collected from farms in Huzhou, Zhejiang province were sampled during summer. Other samples were collected during winter and spring. Both swab and tissue
samples from toe clips and mouthparts were preserved separately in 75% EtOH in 1.5-ml microcentrifuge tubes and were stored at –20°C in the laboratory (Bai et al., 2010).

1.3 Samples from preserved amphibians

We used the swab technique to sample the preserved amphibians (Hyatt et al., 2007). These amphibian specimens were collected from the field across 8 provinces between the years of 1957 and 2006. All of the specimens were preserved in 10% buffered formalin at the Chongqing Museum of Natural History. The sampling season was unknown for all but 16 specimens (nine in spring, three in summer, three in autumn, and one in winter). To prevent possible cross-contamination between specimens preserved in the same jars, each individual was rinsed with 70% EtOH before sampling (Cheng et al., 2011).

1.4 Laboratory analysis

1.4.1 Extraction of DNA from swab samples and histology samples

DNA was extracted from the swabs following the protocol described by Goka et al. (2009). Each toe sample (approx. 1 to 3 mg wet weight) was placed into a microcentrifuge tube containing 150 µl of lysis buffer [1 mg/ml proteinase K, 0.1 M EDTA, 0.01 M NaCl, 0.01 M Tris-HCl (pH 8.0) and 0.5% Nonidet P-40]. The tubes were centrifuged for 30 sec and then incubated at 50°C for 2 hrs and then at 95°C for 20 min. After incubation, 10 µl of supernatant was diluted to 10% of its original concentration in TE buffer and used as a DNA template for PCR.

1.4.2 Nested PCR assay

We diluted the DNA template solutions, which were provided by Prof. An Martel at Ghent University, to 100, 10, 1, 0.1, 0.01 and 0.001 genomic equivalents of Bs zoospores (GE) in each PCR reaction. We conducted nested PCR to detect Bs in these samples.

All DNA templates extracted from swab and histology samples were amplified using nested PCR. The primers used for the first amplification were ITS1f and ITS4, which amplify the 5.8S rRNA gene along with the flanking internal transcribed spacer (ITS) of all fungi (White et al., 1990; Gaertner et al., 2009). In the second amplification step, we used the primers STerF and STerR to amplify the first-round PCR products (Martel et al., 2013).

For the first amplification, the total reaction volume was 25 µl and contained 2 µl of DNA template, 10x PCR Buffer (200 mM Tris-HCl [pH 8.4], 20 mM MgSO₄, 200 mM KCl, 100 mM (NH₄)₂SO₄ and PCR enhancer), 0.2 mM of each dNTP, 0.4 µM of each primer, and 1.25 units of TransStart Taq DNA polymerase (Beijing TransGen Biotech, Beijing, China). The PCR conditions were as follows: an initial denaturation for 5 min at 94°C; 30 cycles of 30 s at 94°C, 30 s at 59°C and 1 min at 72°C; and a final extension for 10 min at 72°C.

For the second amplification, the total reaction volume was 20 µl and contained 1.5 µl of first-round PCR product, 10x PCR Buffer (200 mM Tris-HCl [pH 8.4], 100 mM (NH₄)₂SO₄, 20 mM MgSO₄, 200 mM KCl and PCR enhancer), 0.2 mM of each dNTP, and 0.8 units of TransStart Taq DNA polymerase (Beijing TransGen Biotech, Beijing, China). The PCR amplification was performed under the following conditions: 10 min at 93°C, followed by 30 cycles of 45 s at 93°C, 45 s at 61°C, 60 s at 72°C, and 10 min at 72°C.

For each amplification step, we included a positive control using a DNA template solution containing 0.1 zoospore equivalents per µl and a negative control using TE buffer without any DNA. Each sample was tested in duplicate.

2 Results

The sensitivity test revealed that nested PCR could detect Bs with as little as 0.01 GE (Fig. 1). Therefore, the nested PCR assay is more sensitive than the realtime PCR assay described by Blooi et al. (2013).

A total of 665 samples representing 30 species were collected from museums, food markets, farms, and the field. There were 425 individuals representing 18 species sampled from the field, 199 captive individuals representing 7 species collected from 6 farms and 7 food markets, and 41 individuals representing 9 species collected from museums (Tables 1, 2, 3, Fig. 2).

The nested PCR results revealed that all of the samples in our study area were negative for Bs, with a 95% confidence limit for a prevalence of 0.6%.

3 Discussion

To date, Bs has only been found in the Netherlands (Martel et al., 2013). The present study focused on Chinese amphibians and represents the first effort to test for Bs in another region of the world. Our sample sites were located across a wide latitude range, between 22.26° N and 48.43° N. Moreover, we sampled a total of 30 amphibian species including both urodele (the original infected taxa in the Netherlands, Martel et al., 2013) and anuran species. All 665 specimens sampled in our study area were negative for Bs. Although we cannot state conclusively that Bs is absent in Chinese amphibians
Fig. 1 Results of the sensitivity test for nested PCR

‘100, 10, 1, 0.1, 0.01 and 0.001’ represent genomic equivalents of zoospores (GE) in each PCR reaction. N’ represents the negative control, which used TE buffer instead of DNA template in the amplification reaction.

Table 1 List of wild amphibian populations from ten provinces of China tested for Batrachochytrium salamandrivorans infection

Province	Sample season	Species	No. examined
Beijing	spring	Rana chensinensis	15
		Bufo gargarizans	15
		Pelophylax nigromaculatus	20
Heilongjiang	summer	Rana amurensis	3
		Pelophylax hubeiensis	4
		Fejervarya limnocharis	3
		Pelophylax nigromaculatus	4
		Pelophylax nigromaculatus	7
		Fejervarya limnocharis	1
		Microhyla ornata	2
Hubei	spring	Pelophylax nigromaculatus	20
		Fejervarya limnocharis	1
		Microhyla ornata	1
Hunan	spring	Hoplobatrachus tigerinus	2
		Fejervarya limnocharis	6
		Pelophylax nigromaculatus	1
		Microhyla ornata	1
Jilin	summer	Pelophylax nigromaculatus	20
Liaoning	summer	Pelophylax nigromaculatus	20
Sichuan	spring	Pelophylax nigromaculatus	5
Xinjiang	autumn	Bufo pfezowi	53
		Pelophylax ridibunda	24
		Rana arvalis	38
		bufo bufo	5
Yunnan	autumn	Lithobates catesbeianus	16
		chaochiaoensis	15
		Babina plesuaden	18
		Bombina maxima	7
		Microhyla ornata	10
Zhejiang	spring	Lithobates catesbeianus	30
		Pelophylax nigromaculatus	10
		Hyla chinesis	10
		Fejervarya limnocharis	10
		Microhyla ornata	10
		Bufo gargarizans	10
		Pelophylax plancyi	10
Total			**425**

Table 2 List of amphibians from food markets and farms in China tested for Batrachochytrium salamandrivorans infection

Cities	Sample season	Species	No. examined
Farms			
Beijing	winter	Andrias davidianus	18
Huarong	spring	Lithobates catesbeianus	20
Hougang	spring	Lithobates catesbeianus	18
Huzhou-M1	summer	Lithobates catesbeianus	10
Huzhou-M2	summer	Lithobates catesbeianus	10
Zhangjiajie	spring	Lithobates catesbeianus	10
Food markets			
Beijing-M1	spring	Lithobates catesbeianus	12
Beijing-M2	winter	Ambystoma mexicanum	7
		Rana chensinensis	10
		Xenopus laevis	13
Beijing-M3	winter	Xenopus laevis	10
Dali	spring	Lithobates catesbeianus	7
Panzhuhua	spring	Xenopus laevis	2
		Lithobates catesbeianus	3
Shijiazhuang	winter	Cynops orientalis	5
		Xenopus laevis	5
		Cynops orientalis	4
		Lithobates catesbeianus	5
		Bufo gargarizans	5
Zhengzhou	winter	Xenopus laevis	5
		Cynops orientalis	5
		Lithobates catesbeianus	15
		Total	**199**

Based on these results, we can assume that the prevalence of Bs across our study regions is only 0.6% according to a 95% confidence limit if we assume that all sampled species and individuals have an equal likelihood of carrying this pathogen. The exact reasons for our inability to detect Bs in the present study are unclear. Temperature may be a potential reason. The optimal temperature for Bs growth is
Table 3 List of preserved amphibians from six provinces of China tested for Batrachochytrium salamandrivorans infection

Species	Province	Sampling period	No. examined
Andrias davidianus	Sichuan, Chongqing	1973.11, 1986.02, no data	6
Batrachuperus pinchonii	Sichuan, Hubei	1979, 1992, no data	6
Batrachuperus tibetanus	Sichuan	1982	1
Cynops cyanurus	Yunnan	1987.03	4
Ichthyophis bannanicus	Guangxi	2006.09	2
Liu shihi	Chongqing, Hubei	1957.06, 1979.05, 1998	14
Paramesotriton chinensis	Guizhou	1981.06	1
Tylototriton kweichowensis	Guizhou	no data	2
Tylototriton verrucosus	Yunnan	1958.06, 1982	5
Total			41

10°C to 15°C under laboratory conditions, and Bs will die when the environmental temperature exceeds 25°C (Martel et al., 2013). Most of the wild amphibians were sampled in the spring, but the daily maximum temperature of these sampling sites in the summer often exceeded 30°C. Previous studies have detected the sister species Bd in 10 of the provinces sampled in our study (Bai et al., 2010; Bai et al., 2012; Zhu et al., 2014). It has been suggested, however, that there is a difference in thermal niches between Bd and Bs, which prefers a substantially lower thermal limit (Martel et al., 2013). Therefore, Bs may be more sensitive to high temperatures. Therefore, we suggest that future studies focus on regions at higher latitudes and elevations with lower temperature conditions that may be more suitable for Bs.

Moreover, we did not find Bs present in any of the captive amphibians from the farms, markets or museums. This finding further demonstrates that Bs may be absent in Chinese amphibians. Farms and markets, however, are considered prime locations for the spread of wildlife pandemics through the circulation of introduced host species for amphibian diseases (Li and Li, 1998; Garner et al., 2006; Schloegel et al., 2009; Liu et al., 2013a). Therefore, to control the possible inadvertent introduction of an emerging disease, including Bs, to naïve populations, the amphibians in pet stores and food markets should be regularly screened using non-invasive methods. Additionally, human activities are also considered an important factor in the spread of exotic amphibian species (Li et al., 2006; Liu et al., 2014), and the government should implement strict management policies to control the introduction of alien species into the wild. Finally, we strongly recommend...
that wild amphibians be periodically sampled and tested for Bs to intensively monitor for this potentially devastating amphibian fungus.

Acknowledgements We thank Prof. An Martel at Ghent University for providing positive control samples for Bs detection by PCR. We thank Zhiqing Xu at the Chongqing Museum of Natural History for assisting with sampling. This research was supported by grants from the Ministry of Science and Technology of China (2013FY110300) and the Beijing Natural Science Foundation (code: 5132026).

References

Bai CM, Garner TW, Li YM, 2010. First evidence of *Batrachochytrium dendrobatidis* in China: discovery of chytridiomycosis in introduced American bullfrogs and native amphibians in the Yunnan Province, China. Ecohealth 7: 127–134.

Bai CM, Liu X, Fisher MC, Garner TWJ, Li YM, 2012. Global and endemic Asian lineages of the emerging pathogenic fungus *Batrachochytrium dendrobatidis* widely infect amphibians in China. Diversity and Distributions 18: 307–318.

Berger L, Speare R, Daszak P, Green DE, Cunningham AA et al., 1998. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences of the United States of America 95: 9031.

Blooi M, Pasmans F, Longcore JE, Spizten-van der Sluijs A, Vercammen F et al., 2013. Duplex real-time PCR for rapid simultaneous detection of *Batrachochytrium dendrobatidis* and *Batrachochytrium salamandrivorans* in Amphibian samples. Journal of Clinical Microbiology 51: 4173–4177.

Cheng TL, Rovito SM, Wake DB, Vredenburg VT, 2011. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen *Batrachochytrium dendrobatidis*. Proceedings of the National Academy of Sciences 108: 9502.

Daszak P, Cunningham AA, Hyatt AD, 2003. Infectious disease and amphibian population declines. Diversity and Distributions 9: 141–150.

Farrar RA, Weinert LA, Bielby J, Garner TWJ, Balloux F et al., 2011. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences of the United States of America 108: 18732–18736.

Fisher MC, Garner TWJ, Walker SF, 2009. Global emergence of *Batrachochytrium dendrobatidis* and amphibian chytridiomycosis in space, time, and host. Annual Review of Microbiology 63: 291–310.

Gaertner JP, Forstner MRJ, O’Donnell L, Hahn D, 2009. Detection of *Batrachochytrium dendrobatidis* in endemic salamander species from Central Texas. Ecohealth 6: 20–26.

Garner TWJ, Perkins MW, Govindaraju P, Seglie D, Walker SF et al., 2006. The emerging amphibian pathogen *Batrachochytrium dendrobatidis* globally infects introduced populations of the North American bullfrog *Rana catesbeiana*. Biology Letters 2: 455–459.

Goka K, Yokoyama J, Une Y, Kuroki T, Suzuki K et al., 2009. Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Molecular Ecology 18: 4757–4774.

Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L et al., 2007. Diagnostic assays and sampling protocols for the detection of *Batrachochytrium dendrobatidis*. Diseases of Aquatic Organisms 73: 175–192.

Li YM, Li DM, 1998. The dynamics of trade in live wildlife across the Guangxi border between China and Vietnam during 1993–1996 and its control strategies. Biodiversity and Conservation 7: 895–914.

Li YM, Ke ZW, Wang YH, Blackburn TM, 2011. Frog community responses to recent American bullfrog invasions. Current Zoology 57: 83–92.

Li YM, Wu, ZJ, Duncan RP, 2006. Why islands are easier to invade: Human influences on bullfrog invasion in the Zhoushan archipelago and neighboring mainland China. Oecologia 148: 129–136.

Lips KR, Brem F, Brenes R, Reese JD, Alford RA et al., 2006. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America 103: 3165–3170.

Liu X, Li YM, 2009. Aquaculture enclosures relate to the establishment of feral populations of introduced species. PLoS ONE 4: e6199.

Liu X, McGarrity ME, Li YM, 2012. The influence of traditional Buddhist wildlife release on biological invasions. Conservation Letters 5: 107–114.

Liu X, McGarrity ME, Bai CM, Ke ZW, Li YM, 2013a. Ecological knowledge reduces religious release of invasive species. Ecosphere 4: art21.

Liu X, Rohr JR, Li YM, 2013b. Climate, vegetation, introduced hosts and trade shape a global wildlife pandemic. Proceedings of the Royal Society B: Biological Sciences 280: 1753.

Liu X, Li XP, Liu ZT, Tingley R, Kraus F et al., 2014. Congenital diversity, topographic heterogeneity and human-assisted dispersal predict spread rates of alien herpetofauna at a global scale. Ecology Letters 17: 821–829.

Longcore JE, Pessier AP, Nichols DK, 1999. *Batrachochytrium dendrobatidis* gen et sp nov, a chytrid pathogenic to amphibians. Mycologia 91: 219–227.

Longcore JR, Longcore JE, Pessier AP, Halteman WA, 2007. Chytridiomycosis widespread in anurans of northeastern United States. Journal of Wildlife Management 71: 435–444.

Marter A, Spitzten-van der Sluijs A, Blooi M, Bert W, Ducatelle R et al., 2013. *Batrachochytrium salamandrivorans* sp. nov. causes lethal chytridiomycosis in amphibians. Proceedings of the National Academy of Sciences 110: 15325–15329.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF et al., 2013. Mapping the global emergence of *Batrachochytrium dendrobatidis*, the Amphibian Chytrid fungus. PLoS ONE 8: e56802.

Rodriguez D, Becker CG, Pupin NC, Haddad CFB, Zamudio KR, 2014. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil.
Molecular Ecology 23: 774–787.
Schloegel LM, Picco AM, Kilpatrick AM, Davies AJ, Hyatt AD et al., 2009. Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs Rana catesbeiana. Biological Conservation 142: 1420–1426.
Schloegel LM, Toledo LF, Longcore JE, Greenspan SE, Vieira CA et al., 2012. Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Molecular Ecology 21: 5162–5177.
Soto-Azat C, Clarke BT, Poynton JC, Cunningham AA, 2010. Widespread historical presence of Batrachochytrium dendrobatidis in African pipid frogs. Diversity and Distributions 16: 126–131.
Spitzen-van der Sluijs A, Spikmans F, Bosman W, de Zeeuw M, van der Meij T et al., 2013. Rapid enigmatic decline drives the fire salamander Salamandra salamandra to the edge of extinction in the Netherlands. Amphibia-Reptilia 34: 233–239.
Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ, 2010. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the National Academy of Sciences of the United States of America 107: 9689–9694.
Walker SF, Bosch J, James TY, Litvintseva AP, Valls JAO et al., 2008. Invasive pathogens threaten species recovery programs. Current Biology 18: R853–R854.
Weldon C, De Villiers AL, Du Preez LH, 2007. Quantification of the trade in Xenopus laevis from South Africa, with implications for biodiversity conservation. African Journal of Herpetology 56: 77–83.
Weldon C, du Preez LH, Hyatt AD, Muller R, Speare R, 2004. Origin of the amphibian chytrid fungus. Emerging Infectious Diseases 10: 2100–2105.
White TJ, Bruns T, Lee S, Taylor J, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ ed. PCR protocols: A guide to methods and applications. New York: Academic Press, 315–322.
Xie F, Lau MWN, Stuart SN, Chanson JS, Cox NA et al., 2007. Conservation needs of amphibians in China: A review. Science in China Series C: Life Sciences 50: 265–276.
Zhu W, Bai CM, Wang SP, Soto-Azat C, Li XP et al., 2014. Retrospective survey of museum specimens reveals historically widespread presence of Batrachochytrium dendrobatidis in China. Ecohealth 11: 241–250.