A population-based cohort of young women diagnosed with breast cancer in Geneva, Switzerland

Robin Schaffar1*, Christine Bouchardy1, Pierre Olivier Chappuis2,3, Alexandre Bodmer2, Simone Benhamou1☯, Elisabetta Rapiti1☯

1 Geneva Cancer Registry, Global Health Institute, University of Geneva, Geneva, Switzerland, 2 Service of Oncology, Geneva University Hospitals, Geneva, Switzerland, 3 Service of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland

☯ These authors contributed equally to this work.
* robin.schaffar@unige.ch

Abstract

Purpose
Breast cancer is the most frequently diagnosed cancer among women worldwide. Despite the fact that breast cancer is more frequent after fifty years of age, breast cancer among young women has recently drawn particular attention due to an increase in incidence in several western countries. With the exception of individuals with a high genetic risk, breast cancer occurring in younger women remains poorly understood. This project aims at investigating the patient, tumour and treatment characteristics as well as the long-term health outcomes of these women by evaluating numerous variables that were collected from their pathology and medical files, including the social environment, family history, fertility and pregnancy.

Participants
We constituted a population-based cohort from the Geneva Cancer Registry of 1586 patients with breast cancer who were aged less than 46 years at the time of diagnosis.

Findings to date
Breast cancer was diagnosed before the age of 35 years in 225 women (14.2%), between 35 and 39 years of age in 368 women (23.2%) and between 40 and 45 years of age in 993 women (62.6%). Most of the patients were diagnosed with luminal A or luminal B molecular subtypes (32.8 and 37.5%, respectively), stage I or II tumours (75.2%), and estrogen (74.8%) and progesterone (67.5%) positive receptors. During the study period, 16.7% of these women developed loco-regional recurrences and 25.4% developed distant metastases; the majority (66.3%) did not have a recurrence. Regarding mortality, 474 (29.9%) women died during the study period, 347 (73.2%) from breast cancer.
Future plans

The results of this study will help filling the knowledge gap about treatment of young breast cancer patients and having a child after breast cancer, and will provide clinicians and public health professionals’ with additional information to improve quality of care and decrease the impact of breast cancer in young women.

Introduction

Breast cancer is by far the most frequently diagnosed cancer among women around the world, with about 1.7 million new cases annually and almost half of them in countries with a high level of development [1]. Although breast cancer is more frequent in women above fifty years of age, recently breast cancer in young women has drawn particular interest as several studies have found increasing incidence rates in women less than 40 years old [2,3]. In this age group there is a higher proportion of patients with pathogenic variants in genes that predispose to breast cancer, such as BRCA1 or BRCA2, compared with patients who have onset of breast cancer at an older age [4]. Because of their young age, these women are not invited to breast cancer screening programs and are therefore more likely to be diagnosed with symptomatic disease or an advanced stage. Several studies have described worse clinical outcomes and more long-term treatment complications among these young women as compared to older breast cancer patients [5–13]. In particular, women aged less than 40 years have a higher risk of loco-regional recurrence compared to older patients and an increased risk of distant metastasis and death [14]. However, a large meta-analysis of 66 studies could not conclude whether this worse prognosis is associated with BRCA mutations [15]. Recently, no effect of BRCA1/BRCA2 mutations on the overall survival or distant disease-free survival of early breast cancer patients was found in a large prospective cohort in the United Kingdom [16]. Identifying factors that contribute to loco-regional recurrence-free survival and distant recurrence-free survival can therefore help clinicians to take appropriate decisions about the management of these patients.

In developed countries, approximately 13% of breast cancer diagnoses occur during the reproductive years (20–44 years) and about 2% of women are diagnosed before 35 years of age [17]. The current trend of delayed childbearing in many developed countries may increase the risk of breast cancer during pregnancy or in the first 12 months postpartum (pregnancy-associated breast cancer). In addition, as many young breast cancer survivors may not have constituted their families, the decision on whether and how to become pregnant after treatment is of great importance to these women, their families, and their physicians. The recommendations that are available for counseling this population on the safety of carrying a pregnancy during pregnancy-associated breast cancer or becoming pregnant after treatment for breast cancer are not definitive as they are mainly based on observational studies and systematic reviews [18–20].

The proposed population-based project aims to evaluate tumour specifics, patterns of care (including genetic counselling), prognostic factors, and outcomes (including loco-regional, distant recurrence, second cancer and death) of breast cancer among women aged 45 years or less. After establishing the prevalence of pregnancies among these breast cancer patients, the second aim is to evaluate characteristics, treatment, and prognosis of breast cancer diagnosed during pregnancy, shortly after (notably during breastfeeding) and/or substantially after in young women.
Cohort description

Study population and study participants

Between 1970 and 2012, 1,586 women in the Geneva Cancer Registry database were identified as resident in the canton of Geneva and diagnosed with a primary invasive non-metastatic (M0) breast cancer at the age of 45 years or less. The study population included women aged up to 45 years of age to increase the sample size, pregnancy events and other outcomes. This also allows a comparison of young patients (40–45 years old) and very young patients (<40 years old). Patients with a previous malignant cancer and/or in situ breast cancer that occurred before or within 6 months of the breast cancer diagnosis were excluded from the cohort. No selection was made regarding a woman’s BRCA1/BRCA2 status or other genetic predispositions to breast cancer.

Data routinely collected by the Geneva Cancer Registry

The Geneva Cancer Registry, created in 1970, was the first cancer registry in Switzerland and one of the oldest in Europe. It is one of the few registries in the world that registers an extended set of clinical data, particularly on the method of diagnosis (including screening), stage, treatment, survival, and second tumours (all tumours are exhaustively recorded). It records information on all incident cases of malignant neoplasms occurring in the population of the canton (approximately 490,000 inhabitants). The Registry collects information from various sources and has high accuracy as evidenced by the very low percentage (<2%) of cases recorded only from death certificates [21]. Data collection is based on a voluntary agreement between the recording medical institutions of the canton of Geneva and the Registry. All hospitals, pathological laboratories and practitioners report information on all current and past cancer cases. Data are systematically abstracted from hospital and laboratory records by trained registrars. To collect missing clinical and therapeutic data, questionnaires are sent out regularly to the private practitioners. In addition to the official underlying cause of death derived from the death certificate, registrars use all available information to establish, where relevant, a revised underlying cause of death.

Formal ethical approval and patient consent for this study was not required as the Geneva Cancer Registry has a general authorization to collect nominative data and analyse anonymized data. This authorization was given in 1991 by the Federal Expert Commission for data protection and research (https://unige.ch/medecine/rgt/questcequunregistredetumeurs/).

Additional data collection from medical charts. All patient medical records were retrospectively reviewed to collect additional information or to complete missing data on the patient, tumour, and treatment characteristics, and on health outcomes including loco-regional and distant recurrences using a structured and validated questionnaire. When no information on recurrence was found in the clinical files the patients were considered as relapse-free.

Additional data collection from genetic counselling. Data from the Oncogenetics and Cancer Prevention Unit of the Oncology Service at the Geneva University Hospitals was merged with the Geneva Cancer Registry data to identify women who underwent counselling and were tested for BRCA1 or BRCA2 germline pathogenic variants.

Additional data collection from the Cantonal Population Office. The Cantonal Population Office (OCP) is a regional administration office that monitors births, deaths, migration, residency and civil partnerships. The Geneva Cancer Registry database was merged with that of the OCP to identify and collect information on the offspring (including stillbirths) who were born within 12 months before and 9 months after breast cancer diagnosis among the
Table 1. List of variables.

Data collected by the Geneva Cancer Registry	
Patient characteristics	Diagnostic circumstances
Age	Method of diagnosis
Gender	Presence of symptoms
Nationality	Methods of assessment
Place of birth	Sector of care
Marital status	Treatment
Last occupation	Type of surgery
Tumour characteristics	
Histological type	Radiotherapy
Grade (since 1990)	Chemotherapy
Estrogen receptor status (since 1995)	Endocrine therapy
Progesterone receptor status (since 1995)	Surgical margin (since 2010)
HER2 overexpression status (since 2003)	Survival status
Size of the tumour	Cause of death
Clinical TNM	Others
Pathological TNM	Subsequent tumour occurrence
Sentinel lymph node biopsy	Family history of breast and/or ovary cancer (since 1990)
Number of lymph nodes resected	
Number of positive lymph nodes	

Additional data collection from medical charts

Patient characteristics	Pregnancy
Height	Date
Weight	Duration
Reproductive factors	Complications
Family history of breast cancer	Abortion/miscarriage
Comorbidities	Delivery
Fertility preservation	Child health status
Tumour characteristics	
Delay between symptoms and diagnosis	Breast cancer status
Method of detection	at time of pregnancy
Diagnosis assessment	
Histological subtype	Date
Associated in situ carcinoma	Type
Multifocality	Dose
Estrogen receptor status (before 1995)	Interruption for adverse effects
Progesterone receptor status (before 1995)	Patient refusal
HER2 overexpression status (before 2003)	Quality of treatment
Ki-67 score (since 1997)	Reason for delayed use
Surgical margin	Preservation of fertility
Tumour necrosis	Breast reconstruction
Immunological reaction of peritumoral tissue	Others
Blood vessel invasion	Genetic counselling
Lymphatic vessel invasion	BRCA testing and result
Outcomes	
Loco-regional recurrences	Site

(Continued)
1,586 breast cancer patients. This linkage was done using a unique personal identification number registered in both databases and was used to cross-validate information on children who were born before or after the breast cancer diagnosis as collected from the medical records. All of the variables in the database are described in Table 1.

Follow up

Patient follow-up included the recording of recurrences (loco-regional and distant), secondary malignancies, migration and vital status with the exact date of each event. The date of last follow-up was 31 December 2015.

Collection of data on second cancers, migration and vital status was done through the usual recording process performed at the Geneva Cancer Registry. The same procedure that was used to record a first primary cancer was used to register a second cancer for the same individual. Each year the OCP provides the Geneva Cancer Registry with information on migration and vital status of the Cantonal population.

Information on recurrences is not routinely recorded at the Geneva Cancer Registry. The collection of those data was performed retrospectively from medical charts. Patients who were still alive at the end of follow-up or who died of causes other than breast cancer, and for whom no information on recurrence was found through these strategies, were considered as relapse-free.

Findings to date

The mean age at diagnosis of the 1,586 women in the cohort was 39.9 years (range, 22–45). Breast cancer was diagnosed before the age of 35 years in 225 women (14.2%), between 35 and 39 years of age in 368 women (23.2%) and between 40 and 45 years of age in 993 women (62.6%). Using data on Ki-67 or grade of the tumour, HER2 expression and estrogen and progesterone receptors, most of the patients were diagnosed with luminal A or luminal B molecular subtypes (32.8 and 37.5%, respectively). Triple negative breast cancers represented 10.4% of the tumours. Patients were more often diagnosed with Stage I or II tumours (75.2%), and positive estrogen (74.8%) and progesterone (67.5%) receptors (Table 2).

Almost all women underwent surgery, with breast-conserving surgery in 62% of the patients and mastectomy in 36%. Radiotherapy, chemotherapy and hormonotherapy were administered to 70%, 55% and 36% of the 1,586 patients, respectively.

The median follow-up period was 10.2 years (range, 0.01–45.8 years). During the study period, 16.7% of the women (N = 265) developed local recurrences and 25.4% (N = 403) developed distant metastases; the majority did not have a recurrence (N = 1,051, 66.3%). In terms of mortality, 474 women (29.9%) died during the study period, 347 (73.2%) from breast cancer. A considerable number of women were lost to follow-up during the study period (19.5%).
Table 2. Main individual and tumour characteristics for young women diagnosed with breast cancer in Geneva, Switzerland, 1970–2012.

Age class (years)	Comorbidities	Period of diagnosis	TNM stage	Social class	Grade	Estrogen receptors	Progesterone receptors	Nationality	Origin of diagnosis	Molecular subtypes	Ki-67 (Mib1)	HER2 overexpression	Oncogenetic consultation
<35	225	14.2	No	1'025	64.6	Negative	Positive	1000	Clinical examination	Luminal A	7	No	Tested
35–39	368	23.2	Yes	108	6.8	Positive	Negative	462	Fortuitous	Luminal B	16.4	Yes	Tested
40–45	993	62.6	Missing	453	28.6	Positive	Negative	81	Opportunistic screening	HER2-enriched	3.2	No	Not tested
Total	1’586	100	Total	1’586	100	Total	Negative	Total	Total	Total	100	Total	Total
Period of diagnosis	1970–1979	296	Stage I	504	31.8	Total	Negative	Total	Clinical examination	Luminal A	189	No	Total
	1980–1989	333	Stage II	689	43.4	Total	Positive	Total	Fortuitous	Luminal B	216	Yes	Total
	1990–1999	348	Stage III	130	8.2	Total	Positive	Total	Opportunistic screening	HER2-enriched	33	No	Total
	2000–2009	467	Missing	263	16.6	Total	Positive	Total	Self-examination	Triple negative	60	Yes	Total
	2010–2012	142	9	Total	1’586	100	Missing	Total	Missing	Missing	78	No	Total
	Total	1’586	100	Total	1’586	100	Total	Total			576		

Body Mass Index (kg/m²)

<20	111	7	Total	609	100			
20–24	282	17.8	Total	609	100			
25–29	81	5.1	No	391	67.9			
30+	46	2.9	Yes	122	21.2			
Missing	1’066	67.2	Missing	63	10.9			
Total	1’586	100	Total	576	100			

Origin of diagnosis

Clinical examination	689	43.4	Luminal A	189	32.8
Fortuitous	50	3.2	Luminal B	216	37.5
Opportunistic screening	260	16.4	HER2-enriched	33	5.7
Self-examination	474	29.9	Triple negative	60	10.4
Missing	113	7.1	Missing	78	13.5
Total	1’586	100	Total	576	100

Oncogenetic consultation

| No | 1304| 82.3 |
| Yes | 282 | 17.8 |

Tested	185	65.6
Not tested	97	34.4
Total	1586	100

https://doi.org/10.1371/journal.pone.0222136.t002
When patients who were lost to follow-up were compared to those who remained, no statistical difference was found in terms of individual (age and social class status) or tumour characteristics (grade and stage of the disease) (Table 3). However, women lost to follow-up were more likely to have a non-Swiss nationality (Table 3). Breast cancer was diagnosed during pregnancy in 1.3% of patients (N = 20) and within one year following childbirth in 3.3% of patients (N = 53).

The time between diagnosis and first relapse (loco-regional or distant) or date of last follow-up was used to calculate the disease-free survival (DFS) by Kaplan–Meier method. Thirteen patients were excluded from this analysis because of missing dates. The total number of relapses considered was therefore 522. Overall, the DFS rate at 10 years was 0.68 (95% CI: 0.66–0.71). The DFS rate decreased to 0.60 (95% CI: 0.57–0.63) at 20 years and remained stable thereafter (Fig 1).

Strengths and limitations

This is the first study to investigate the long-term health outcomes in a population-based cohort of young breast cancer patients with complete information on patient, tumour and treatment characteristics. The strengths of this study include the high quality of data available at the Geneva Cancer Registry and the capacity to merge it with additional databases. This enables both cross-validations and the inclusion of supplementary variables.
Information on recurrence was collected retrospectively during the study by re-opening the patients’ medical charts rather than recorded at the time of occurrence. We are confident, however, that all available information was captured due to the strong, high quality network of experts that operates in this geographically restricted area. Furthermore, the assumption that “no information” means “no relapse” was tested and validated for a random sample of 30 cases for which an active search was performed using all available sources including direct contact with patients’ physicians.

Germline BRCA1/BRCA2 pathogenic variants are an important factor in studying young women with breast cancer. Second primary breast cancers are more frequent in carriers of BRCA1/BRCA2 mutations and this higher frequency drives early genetic testing to inform surgical decision-making, even though recent studies have questioned the role of BRCA1/BRCA2 mutations in breast cancer survival [16]. In our population-based cohort not all patients had genotyping for pathogenic BRCA1/BRCA2 mutations. However, information obtained by linking the cohort dataset with that of the onco-genetic counselling unit enables the evaluation of potential biases.

The main shortcoming for our cohort is the proportion of patients who were lost to follow-up (19.5%). The comparison of these patients with those who remained in the risk set reveals a sole difference the nationality, being women lost to follow-up more often of a non-Swiss nationality, which corresponds to the general structure of the Geneva population with more than 40% of the residents coming from outside the Canton. Finally, although a patient
who is lost to follow-up cannot present as a death event, such patients could still present as a
loco-regional and/or a distant recurrence.

Conclusions

Breast cancer in young women remains poorly understood. Many uncertainties exist in terms
of prognostic factors, treatment, recurrence and mortality. Uncertainties are even greater in
terms of the risks posed by pregnancy during and after breast cancer in this population. This
project would contribute to the accumulating knowledge on factors that influence the risk of
local and distant recurrence and the probability of survival in young women with breast cancer.
Enhancing understanding of the risks associated with pregnancy during and after breast
cancer in this age group is internationally recognized as a research priority. The creation of
this population-based dataset on breast cancer in young women is envisioned to be the first
step towards the constitution of a Swiss Observatory of young breast cancer patients through
which the burden of disease, incidence and mortality trends, quality of care, prognostic factors
and outcomes can be monitored on an ongoing basis.

Acknowledgments

We would like to thank all of the medical professionals who provide data to the Geneva Cancer
Registry, the members of the working group and the team of the Geneva Cancer Registry, as
well as Dr Bruce Aylward for editing the manuscript.

Author Contributions

Conceptualization: Christine Bouchardy, Pierre Olivier Chappuis, Alexandre Bodmer,
Simone Benhamou, Elisabetta Rapiti.

Data curation: Robin Schaffar.

Formal analysis: Robin Schaffar.

Funding acquisition: Christine Bouchardy, Pierre Olivier Chappuis, Alexandre Bodmer,
Simone Benhamou, Elisabetta Rapiti.

Investigation: Robin Schaffar, Simone Benhamou, Elisabetta Rapiti.

Methodology: Robin Schaffar, Christine Bouchardy, Simone Benhamou, Elisabetta Rapiti.

Project administration: Simone Benhamou, Elisabetta Rapiti.

Software: Robin Schaffar.

Supervision: Simone Benhamou, Elisabetta Rapiti.

Validation: Christine Bouchardy, Pierre Olivier Chappuis, Alexandre Bodmer, Simone Ben-
hamou, Elisabetta Rapiti.

Visualization: Simone Benhamou, Elisabetta Rapiti.

Writing – original draft: Robin Schaffar.

Writing – review & editing: Robin Schaffar, Christine Bouchardy, Pierre Olivier Chappuis,
Alexandre Bodmer, Simone Benhamou, Elisabetta Rapiti.

References

1. Stewart BW, Wild C, International Agency for Research on Cancer, World Health Organization, editors.
 World cancer report 2014. Lyon, France: International Agency for Research on Cancer; 2014.
2. Bodmer A, Feller A, Bordoni A, Bouchardy C, Dehler S, Ess S, et al. Breast cancer in younger women in Switzerland 1996–2009: A longitudinal population-based study. The Breast. 2015; 24: 112–117. https://doi.org/10.1016/j.breast.2014.11.004 PMID: 25522906

3. Merlo DF, Ceppli M, Filiberti R, Bocchini V, Znaor A, Gamulin M, et al. Breast cancer incidence trends in European women aged 20–39 years at diagnosis. Breast Cancer Res Treat. 2012; 134: 363–370. https://doi.org/10.1007/s10549-012-2031-7 PMID: 22456983

4. Malone KE, Daling JR, Doody DR, Hsu L, Bernstein L, Coates RJ, et al. Prevalence and predictors of BRCA1 and BRCA2 mutations in a population-based study of breast cancer in white and black American women ages 35 to 64 years. Cancer Res. 2006; 66: 8297–8308. https://doi.org/10.1158/0008-5472.CAN-06-0503 PMID: 16912212

5. Maggard MA, O’Connell JB, Lane KE, Liu JH, Etzioni DA, Ko CY. Do young breast cancer patients have worse outcomes? J Surg Res. 2003; 113: 109–113. https://doi.org/10.1016/s0022-4804(03)00179-3 PMID: 12943818

6. Kroman N. Factors influencing the effect of age on prognosis in breast cancer: population based study Commentary: much still to learn about relations between tumour biology, prognosis, and treatment outcome in early breast cancer. BMJ. 2000; 320: 474–479. https://doi.org/10.1136/bmj.320.7233.474 PMID: 10678859

7. Xiong Q, Valero V, Kau V, Kau SW, Taylor S, Smith TL, et al. Female patients with breast carcinoma age 30 years and younger have a poor prognosis: the M.D. Anderson Cancer Center experience. Cancer. 2001; 92: 2523–2528. Kauswhttps://doi.org/10.1002/1097-0142(20011115)92:2<2523::aid-cncr1603>3.0.co;2-6 PMID: 11745185

8. Tai P, Cserni G, Van De Steene J, Vlastos G, Voordeckers M, Royce M, et al. Modeling the effect of age in T1-2 breast cancer using the SEER database. BMC Cancer. 2005; 5: 130. https://doi.org/10.1186/1471-2407-5-130 PMID: 16212670

9. Bollet MA, Sigal-Zafrani B, Mazeau V, Savignoni A, de la Rochefordière A, Vincent-Salomon A, et al. Age remains the first prognostic factor for loco-regional breast cancer recurrence in young (<40 years) women treated with breast conserving surgery first. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2007; 82: 272–280. https://doi.org/10.1016/j.radonc.2007.01.001 PMID: 17287037

10. Ahn SH, Son BH, Kim SW, Kim SI, Jeong J, Ko S-S, et al. Poor outcome of hormone receptor-positive breast cancer at very young age is due to tamoxifen resistance: nationwide survival data in Korea—a report from the Korean Breast Cancer Society. J Clin Oncol Off J Am Soc Clin Oncol. 2007; 25: 2360–2368. https://doi.org/10.1200/JCO.2006.10.3754 PMID: 17515570

11. Fredholm H, Eaker S, Frisell J, Holmberg L, Fredriksson I, Lindman H. Breast cancer in young women: poor survival despite intensive treatment. PloS One. 2009; 4: e7695. https://doi.org/10.1371/journal.pone.0007695 PMID: 19907646

12. Copson E, Eccles B, Maishman T, Gerty S, Stanton L, Cutress RI, et al. Prospective observational study of breast cancer treatment outcomes for UK women aged 18–40 years at diagnosis: the POSH study. J Natl Cancer Inst. 2013; 105: 978–988. https://doi.org/10.1093/jnci/djt134 PMID: 23723422

13. Yeo W, Lee H-M, Chan A, Chan EY, Chan MC, Chan K-W, et al. Risk factors and natural history of breast cancer in younger Chinese women. World J Clin Oncol. 2014; 5: 1097–1106. https://doi.org/10.5306/wjco.v5.i5.1097 PMID: 25493246

14. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. The Lancet. 2011; 378: 1707–1716. https://doi.org/10.1016/S0140-6736(11)61629-2 PMID: 22019144

15. van den Broek AJ, Schmidt MK, van ’t Veer LJ, Tollenaar RAEM, van Leeuwen FE. Worse breast cancer prognosis of BRCA1/BRCA2 mutation carriers: what’s the evidence? A systematic review with meta-analysis. PloS One. 2015; 10: e0120189. https://doi.org/10.1371/journal.pone.0120189 PMID: 25816289

16. Copson E, Maishman TC, Tapper WJ, Cutress RI, Greville-Heygate S, Altman DG, et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study. Lancet Oncol. 2018; 19: 169–180. https://doi.org/10.1016/S1470-2045(17)30981-4 PMID: 29337092

17. National Center for Health Statistics. [Internet]. http://www.cdc.gov/nchs/.

18. Raphael J, Trudeau ME, Chan K. Outcome of patients with pregnancy during or after breast cancer: a review of the recent literature. Curr Oncol. 2014; 22: 8. https://doi.org/10.3747/co.22.2338 PMID: 25848342

19. Amant F, Deckers S, Van Calsteren K, Loibl S, Halaska M, Brepoels L, et al. Breast cancer in pregnancy: Recommendations of an international consensus meeting. Eur J Cancer. 2010; 46: 3158–3168. https://doi.org/10.1016/j.ejca.2010.09.010 PMID: 20932740
20. Peccatori FA, Azim HA, Orecchia R, Hoekstra HJ, Pavlidis N, Kesic V, et al. Cancer, pregnancy and fertility: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013; 24: vi160–vi170. https://doi.org/10.1093/annonc/mdt199 PMID: 23813932

21. Forman D, Bray F, Brewster DH, Gombe Mbalawa C, Kohler B, Piñeros M, et al., editors. Cancer Incidence in Five Continents. Lyon, France: International Agency for Research on Cancer; 2014.