Laser controlled charge-transfer reaction at low temperatures

Alexander Petrov,1,2 Constantinos Makrides,1 and Svetlana Kotochigova1

1Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
2NRC Kurchatov Institute PNPI, Gatchina, Leningrad district 188300, Russia; and Division of Quantum Mechanics, St.Petersburg State University, University Embankment 7-9, St. Petersburg, 199034, Russia

We study the low-temperature charge transfer reaction between a neutral atom and an ion under the influence of near-resonant laser light. By setting up a multi-channel model with field-dressed states we demonstrate that the reaction rate coefficient can be enhanced by several orders of magnitude with laser intensities of 10^6 W/cm2 or larger. In addition, depending on laser frequency one can induce a significant enhancement or suppression of the charge-exchange rate coefficient. For our intensities multi-photon processes are not important.

I. INTRODUCTION

The nature and mechanism of charge transfer reactions is of interest to a wide range of scientific disciplines. For example, the ability to control charge transfer processes is an important aspect of research on solar cells [11–12], ion batteries [3, 4], ion sensors [5, 6], and molecular electronics [7, 8]. Various charge exchange processes between particles in the universe serve as an important tool for astrophysical research. The emitted photons are used to analyze and identify compositional and flux changes in solar or stellar winds [9, 10].

Only recently experimental techniques have become available allowing the investigation of charge transfer reactions between atoms and ions at ultracold and cold temperatures [11–18]. These novel capabilities have paved the way towards explorations of the fundamental principles of reactivity at the quantum level. Recent theoretical studies [19–36] mostly involve ultracold neutral alkali-metal or alkaline-earth atoms and fairly-cold alkaline-earth or rare-earth ions. This selection of atoms and ions has its background in the ready availability of these species in on-going experiments with hybrid atom-ion traps [11, 12, 14, 16].

Currently, the accuracy of these theoretical studies is limited by uncertainties in the short-range shape of the atom-ion potentials, where the electronic clouds of the atoms significantly overlap. This state of affairs was not unlike that for neutral alkali-metal dimer potentials twenty five years ago when laser cooling was at its infancy. Clear exceptions are systems dealing with light atoms such as hydrogen [31]. In contrast the long-range potentials [32–36] are based on the Landau-Zener theory of curve crossings. Their predictions for the reaction cross-section are of interest to a wide range of scientific disciplines. For example, the ability to control charge transfer processes is a key aspect of research on solar cells [11–12], ion batteries [3, 4], ion sensors [5, 6], and molecular electronics [7, 8]. Various charge exchange processes between particles in the universe serve as an important tool for astrophysical research. The emitted photons are used to analyze and identify compositional and flux changes in solar or stellar winds [9, 10].

Only recently experimental techniques have become available allowing the investigation of charge transfer reactions between atoms and ions at ultracold and cold temperatures [11–18]. These novel capabilities have paved the way towards explorations of the fundamental principles of reactivity at the quantum level. Recent theoretical studies [19–36] mostly involve ultracold neutral alkali-metal or alkaline-earth atoms and fairly-cold alkaline-earth or rare-earth ions. This selection of atoms and ions has its background in the ready availability of these species in on-going experiments with hybrid atom-ion traps [11, 12, 14, 16].

Currently, the accuracy of these theoretical studies is limited by uncertainties in the short-range shape of the atom-ion potentials, where the electronic clouds of the atoms significantly overlap. This state of affairs was not unlike that for neutral alkali-metal dimer potentials twenty five years ago when laser cooling was at its infancy. Clear exceptions are systems dealing with light atoms such as hydrogen [31]. In contrast the long-range potentials [32–36] are based on the Landau-Zener theory of curve crossings. Their predictions for the reaction cross-section are of interest to a wide range of scientific disciplines. For example, the ability to control charge transfer processes is a key aspect of research on solar cells [11–12], ion batteries [3, 4], ion sensors [5, 6], and molecular electronics [7, 8]. Various charge exchange processes between particles in the universe serve as an important tool for astrophysical research. The emitted photons are used to analyze and identify compositional and flux changes in solar or stellar winds [9, 10].
preparation of the initial reactants as used in \[15\] \[17\] \[58\]. In this paper we explore the control of the charge-exchange reaction at low temperature by applying laser radiation with a frequency that is nearly resonant to the energy difference between the entrance and exit channels. Here, this implies that we study the continuum-to-continuum transition \(A + B^+ + n\gamma \rightarrow A^+ + B + (n + 1)\gamma \), where \(n \) is the photon number. We demonstrate that this stimulated radiative charge transfer can be enhanced by several orders of magnitude with laser intensities of \(10^6 \) \(\text{W/cm}^2 \) or larger. We focus on cold charge-exchange collisions between Ca and Yb\(^{+}\) in the presence of linearly-polarized radiation with wavenumbers between 400 \(\text{cm}^{-1} \) and 1200 \(\text{cm}^{-1} \) and intensities up to \(10^{12} \) \(\text{W/cm}^2 \). Transitions occur between the excited \(A^{2}\Sigma^+ \) and ground \(X^{2}\Sigma^+ \) state potentials.

The paper is organized as follows. Section II reviews our \(\textit{ab initio} \) adiabatic potential energy surfaces and describes our procedure to diabatize the potentials. These diabatic potentials are then used in Sec. III in a coupled-channels calculation that includes the coupling to the radiation field. Results on the laser intensity, collision energy, and frequency dependence of the reaction rate are given in Sec. IV. We summarize the results in Sec. V.

II. ADIABATIC AND DIABATIC ELECTRONIC POTENTIALS

We, first, determine the non-relativistic ground and excited CaYb\(^{+}\) potentials as a function of internuclear separation \(R \) using multi-configuration second-order perturbation theory (CASPT2) implemented in the MOLCAS software suite \[49\]. Reference wave functions are obtained from a complete active space self consistent field (CASSCF) calculation with 4s4p5s orbitals of Ca and 6s6p7s orbitals of Yb in the active space. This is followed by a CASPT2 calculation, where the 3s\(^2\) 3p\(^6\) electrons of Ca and 5s\(^2\) 5p\(^6\) 4f\(^1\) electrons of Yb are correlated. Here, the TZVP ANO-RCC (triple-zeta valence polarized atomic natural orbital relativistic CASSCF/CASPT2) basis sets \[53\] contain (20s 16p 6d 4f) [6s 5p 2d 1f] functions for Ca and (25s 22p 15d 11f 4g 2h) [8s 7p 5d 3f 2g 1h] functions for Yb. The relevant electronic dipole moments and non-adiabatic coupling term between the CaYb\(^{+}\) and Ca\(^{+}\)Yb molecular potentials have also been calculated using the CASSCF method.

The two energetically-lowest potentials, \(V_X(R) \) and \(V_A(R) \), for the \(^2\Sigma^+ \) symmetry are presented in Fig. 1. We see that the ground X potential is much deeper than the excited A potential and that they have an avoided crossing at \(R_c = 15a_0 \) with a splitting of \(\Delta V/\hbar c = 1000 \) \(\text{cm}^{-1} \), where \(\hbar \) is the Planck constant and \(c \) is the speed of light. These potentials dissociate to the atomic Ca\(^{+}\)\(^2\Sigma^+ \) + Yb\(^{1}\)S and Ca\(^{1}\)S + Yb\(^{+}\)\(^2\)S limits, respectively. The two limits are split by \(\Delta /\hbar c = 1136 \) \(\text{cm}^{-1} \). The potentials have an attractive long-range \(-C_4/R^4 \) tail, where \(C_4 = 71.5E_ha_0^6 \) for the X state \[51\] and 78.5\(E_ha_0^6 \) for the A state \[52\]. Here \(E_h \) is the Hartree energy. Figure 1b shows the electronic transition dipole moment \(d(R) \) between these \(^2\Sigma^+ \) states. The transition dipole moment has a maximum at \(R = 13a_0 \) and approaches zero for large interatomic separations.

Other excited state potentials (not shown in Fig. 1) lie \(\approx 13000 \) \(\text{cm}^{-1} \) above the A potential and do not contribute to the reaction, so that in our computation we can focus on these two lowest electronic potentials.

The corresponding electronic molecular states, denoted by \(|X; R\rangle \) and \(|A; R\rangle \), parametrically depend on \(R \). Consequently, non-adiabatic coupling between the potentials, proportional to \(U_{\text{NAC}}(R) = \langle X; R|d/dR|A; R\rangle \) and shown in Fig. 2, leads to non-radiative charge transfer reaction when the collision entrance channel is Ca\(^{1}\)S + Yb\(^{+}\)\(^2\)S, the continuum of the A state potential.

In order to set up the closed-coupling calculation we diabatize the adiabatic X and A potentials by introducing the two diabatic wavefunctions

\[
\begin{pmatrix}
|1\rangle \\
|2\rangle
\end{pmatrix} = O(R) \begin{pmatrix}
|X; R\rangle \\
|A; R\rangle
\end{pmatrix}
\]

with orthogonal transformation

\[
O(R) = \begin{pmatrix}
\cos(\theta) & \sin(\theta) \\
-\sin(\theta) & \cos(\theta)
\end{pmatrix}
\]

and angle \(\theta(R) = \int_0^\infty U_{\text{NAC}}(R')dR' \).
Diabatic states |1⟩ and |2⟩, by construction are assumed to be R independent, are coupled according to the 2 × 2 potential matrix

$$V_{mol}(R) = \begin{pmatrix} V_1(R) & V_{12}(R) \\ V_{12}(R) & V_2(R) \end{pmatrix} = O(R) \begin{pmatrix} V_X(R) & 0 \\ 0 & V_A(R) \end{pmatrix} O^T(R),$$

where \(O^T(R)\) is the matrix transpose of \(O(R)\). The diabatic potentials \(V_1(R)\) and \(V_2(R)\) and coupling function \(V_{12}(R)\) are shown in Fig. 2a. Similarly, the dipole moment matrix in the diabatic basis set is

$$\begin{pmatrix} D_1(R) & D_{12}(R) \\ D_{12}(R) & D_2(R) \end{pmatrix} = O(R) \begin{pmatrix} d_X(R) & d(R) \\ d(R) & d_A(R) \end{pmatrix} O^T(R),$$

where \(d_X(R)\) and \(d_A(R)\) are the permanent dipole moments of the X and A states.

III. COUPLED-CHANNELS CALCULATION

We set up a multi-channel description of charge-exchange collisions between an atom and an ion in the presence of near-resonant linearly-polarized laser light using the dressed-state picture or the Floquet Ansatz. We construct coupled time-independent radial Schrödinger equations for the interatomic separation \(R\) in basis states \(|α, m_S; ℓm_ℓ; n⟩ = |α, m_S⟩|ℓm_ℓ⟩|n⟩\), where \(|α, m_S⟩\) are the diabatic \(2^Σ^+\) electronic states with \(α = 1\) or \(2\) and \(m_S = ±1/2\) is the projection quantum number of the electron spin \(S\) of the \(2S\) ion along the laser polarization. The ket \(|ℓm_ℓ⟩ ≡ Y_{ℓm_ℓ}(\hat{r})\) is a spherical harmonic describing the relative rotational wavefunction of the two particles around the center of mass with projection quantum number \(m_ℓ\) along the direction of the laser polarization. Finally, \(|n⟩\) is a Fock state with \(n\) laser photons of frequency \(ω\).

Figure 2b illustrates the dressed states picture of the CaYb\(^+\) potentials with \(n - 1, n,\) and \(n + 1\) photons and \(ℓ = 0\). The figure shows three pairs of diabatic potential curves shifted by photon energy \(hω\) with \(h = h/(2π)\). For the 1000 cm\(^{-1}\) laser frequency, used in the figure, an additional crossing near \(R = 21a_0\) is created between the entrance channel with \(n\) photons and an exit channel with \(n + 1\) photons. This leads to a new reaction pathway with an exit channel with a small relative kinetic energy between the particles.

The Hamiltonian of our system is

$$H = -\frac{\hbar^2}{2\mu_r} \frac{d^2}{dR^2} + \frac{L^2}{2\mu_r R^2} + V_{mol}(R) + V_{rad}(R) + hωa^†a,$$

(5)

where \(μ_r\) is the reduced mass, \(L\) is the rotational angular momentum operator, \(|ℓm_ℓ⟩\) are eigenstates of \(L^2\), and \(V_{mol}(R)\) is electronic Hamiltonian defined in the previous section. For a \(2^Σ^+\) system the Hamiltonian \(V_{mol}(R)\) is isotropic and does not affect or couple rotational states.

The last two terms in Eq. (5) describe the coupling between the particles and laser field and the Hamiltonian of the field, respectively. In the dipole and long-wavelength approximations the molecule-field interaction \(V_{rad}(R) = -\frac{1}{2}e^2 \frac{V}{\hbar ω} \hat{ε} \cdot \hat{D}(a^† + a)\), where \(\hat{D}\) is the molecular electric dipole moment operator, constructed from Eq. (4) and the field operators \(a^†\) and \(a\) create and destroy laser photons of frequency \(ω\) and polarization \(\hat{ε}\) in volume \(V\). This molecule-field interaction is anisotropic and only has non-zero matrix elements between states that differ by one photon. We choose the polarization vector \(\hat{ε}\) along the laboratory z axis. In our basis the
matrix elements are
\[
\langle 1, m_S; \ell m_\ell; n + 1 | |^{\text{rad}} 2, m_S; \ell' m'_\ell; n \rangle = -D_{12}(R) \sqrt{2\pi I c} \sqrt{2\ell' + 1} \frac{2\ell + 1}{2\ell + 1} C_{10, \ell, 0}^{\ell m_\ell m'_\ell} C_{0, \ell, 0}^{m_\ell m'_\ell},
\]
where \(D_{12}(R) = \langle 1, m_S|d_z|2, m_S \rangle \) is the electronic transition dipole moment for our linearly polarized photon, and \(I = n\hbar\omega/V \) is the laser intensity. The functions \(C_{j m, j' m'}^{m_\ell, m'_\ell} \) are Clebsch-Gordan coefficients.

The charge exchange rate coefficient from \(|1, m_S \rangle \) with \(n \) photons is given by
\[
K = \frac{\hbar^3}{\mu_R k} \sum_{\ell, \ell'=0}^{\ell_{\text{max}}} \sum_{m_\ell=n-\delta n}^{m_\ell+n} \sum_{n'=n-\delta n}^{n+\delta n} |T_{2, \ell m_\ell, n' - 1, \ell m_\ell, n}|^2,
\]
where \(k \) is collisional wave vector, \(m_\ell \) varies from \(-\min(\ell, \ell')\) to \(\min(\ell, \ell')\), \(\delta n = 1 \) or \(2 \) in our simulations, and \(T_{j \to i} \) are T-matrix elements obtained from the scattering solutions of Eq. 5. We find that the main contribution to \(K \) comes from \(T \)-matrix elements with \(n' = n + 1 \), which corresponds to the transition \(|1\rangle + n\hbar\omega \to |2\rangle + (n + 1)\hbar\omega \).

We neglect effects of the permanent dipole moments \(D_1(R) \) and \(D_2(R) \) as the detuning between states of the same molecular state but with different photon number is large. Moreover, such coupling does not lead to charge exchange.

To calculate the non-radiative and stimulated radiative charge exchange rate we include many partial waves for both continua. For example, \(E/k = 1 \) mK and 10 mK requires \(\ell_{\text{max}} \approx 10 \) and 20 partial waves, respectively. In contrast, we only need to include a few partial waves (up to 3 or 4) for collision energies around 1 \(\mu \)K.

IV. RESULTS

We modify the charge-exchange reaction by applying an infra-red laser with frequency near 1000 cm\(^{-1}\). This is a natural choice of the frequency, which is resonant to the adiabatic potential splitting near the avoided crossing at \(R = R_c \). Figures 3a and b show the charge-exchange rate coefficient as a function of collision energy for collision energies of \(E/k = 1 \) \&K and 1 mK, respectively. In both panels the intensity is varied over 10 decades, leading to a dramatic change of the rates coefficient.

At low laser intensity, from zero up to \(10^2 \) W/cm\(^2\), the weak non-adiabatic interaction between the adiabatic X and A potentials results in a small reaction rate of the order of \(10^{-14} \) cm\(^3\)/s. As the field intensity is increased, from \(10^3 \) to \(10^8 \) W/cm\(^2\), we observe a linear rise in the reaction rate reaching a maximum value close to the Langevin rate for our system. Figure 3a also shows the partial wave contribution to the reaction rate coefficient for \(E/k = 1 \) \&K. Only s, p, and d waves contribute significantly. The calculation becomes more complex for a collision energy of 1 mK in Fig. 3b, as a greater number of channels are coupled by the laser field. We obtain the total charge-exchange rate coefficient \(K \) after summation of the transition matrix elements squared (Eq. 7) over all possible \(m_\ell \) projections for partial waves from 0 to \(\ell_{\text{max}} = 10 \). For clarity contributions from individual partial waves are not shown.

The effect of one- or two-photon dressing (i.e. \(\delta n = 1 \) or 2) is also studied in Fig. 3. The comparison between these two cases demonstrates that the one-photon dressing model is adequate for our hybrid system when the intensity is below \(10^{10} \) W/cm\(^2\). These results are ob-
served for a collision energy of 1 μK. Finally, we note that the total reaction rates in Figs. 3a and b obtained for different collision energies are nearly the same despite of large difference in the contributing number of partial waves.

The strong resonant field creates coupling between the entrance and light-induced exit channels, indicated in Fig. 2b, and leads to an enhanced reaction rate. Even entrance and light-induced exit channels, indicated in waves. Of large difference in the contributing number of partial waves.

Fig. 2b, and leads to an enhanced reaction rate. Even entrance and light-induced exit channels, indicated in waves. Of large difference in the contributing number of partial waves.

The strong resonant field creates coupling between the entrance and light-induced exit channels, indicated in Fig. 2b, and leads to an enhanced reaction rate. Even entrance and light-induced exit channels, indicated in waves. Of large difference in the contributing number of partial waves.

The total charge-exchange rate coefficient K as a function of collision energy is shown in Fig. 4a for several intensities. In the absence of the external field the rate coefficient is relatively small, only slightly above 10^{-14} cm3/s, and increases four orders of magnitude when the intensity reaches 10^9 W/cm2. This occurs uniformly over the 20 mK interval of collision energies shown in the figure. Moreover, the unthermalized rate coefficient has a number of shape resonances due to the many partial waves that contribute. The resonances occur when the energy of the entrance channel matches quasi-bound levels trapped by the long-range potential, $-C_4/R^4 + h^2\ell(\ell+1)/(2\mu R^2)$, near the top of the centrifugal barrier. This enhances the wave functions at small separations and thus enhances the charge-exchange rate coefficient. We also find that the resonance positions occur at almost the same collision energy at any laser intensity. There is a slight shift and broadening of the resonances when the intensity is increased. Once we thermalize the rate coefficient the effect of resonances is less visible.

In our calculations we are able to identify the partial waves that contribute to the resonances. Figure 4b presents plots of partial rate coefficients at zero field intensity for $\ell = 0$ to 19 as a function of collision energy. For collision energies from 1 mK to 10 mK resonances occur for odd partial-wave quantum numbers between 11 and 19. Reference [53] showed that the analytical scattering solutions for a $-C_4/R^4$ potential are such that if a shape resonance exists for partial wave ℓ then $\ell + 2, \ell + 4$ etc. resonances also exist. This observation explains our finding that all resonances in Figs. 4a and b are due to odd partial waves.

We also test the dependence of the charge-exchange rate on the laser wavenumber in between 400 cm$^{-1}$ and 1200 cm$^{-1}$. Figure 5 shows that the rate coefficient is very sensitive to the laser frequency and even oscillates due to changing wave-function overlap at the avoided crossing point between the initial n photon state and the final $n + 1$ photon state. The location of this crossing point also changes with the laser frequency. In fact, these are Stueckelberg oscillations. The maximum rate is reached for a wavenumber $\omega/c \approx 1000$ cm$^{-1}$, which corresponds to the closest approach of the adiabatic potentials. For $\omega/c > 1136$ cm$^{-1}$, the energy difference between the dissociation limits, the laser light does not affect the charge-exchange rate and leads to K of the order 10^{-14} cm3/s. The laser-induced crossing between entrance and exit channels shown in Fig. 2 does not occur any more.

V. SUMMARY

We have explored the effect of a moderately intense laser field on the charge transfer reaction for hybrid atom-atom collisions in the realm of cold temperatures. We have shown that the reaction rate coefficient can be significantly enhanced with a near-resonant laser field. We find that around a field intensity of 10^9 W/cm2 the reaction mechanism changes from being dominated by the intra-molecular non-adiabatic coupling to being laser field dominated. We investigate these processes over a wide range of laser intensities, laser frequencies and collision energies.

VI. ACKNOWLEDGMENTS

This work is supported by grants of the ARO-MURI Nos. W911NF-14-1-0378 and W911NF-12-1-0476, the NSF No. PHY-1619788.

[1] Y. Liu, Y. Feng, and M. Sun, Scientific Reports 5, 13970 (2015).
[2] C. S. Ponseca, Y. Tian, V. Sundström, and I. G. Schelbykin, Nanotechnology 27, 082001 (2016).
[3] R. Haushard, D. Becker, and W. Jaegermann, Progress in Solid State Chemistry 42, 175 (2014).
[4] J. W. Choi and D. Aurbach, Nature Reviews Materials 1, 16013 (2016).
[5] M. Shahinpoor, Electrochimica Acta 48, 2343 (2003).
[6] B. Cho, M. G. Hahm, M. C. J. Yoon, A. R. Kim, Y.-J. Lee, S.-G. Park, J.-D. Kwon, C. S. Kim, M. Song, Y. Jeong, K.-S. Nam, T. J. Y. S. Lee, C. G. Kang, B. H. Lee, H. C. Ko, P. M. Ajayan, and D.-H. Kim, Scientific Reports 5, 8052 (2015).
[7] K. Kawai, H. Kodera, Y. Osakada, and T. Majima, Nature Chemistry 1, 156 (2009).
[8] E. J. Dell, B. Capozzi, J. Xia, L. Venkataraman, and L. M. Campos, Nature Chemistry 5, 209 (2015).
[9] R. Lallement, Astronomy and Astrophysics 422, 391 (2004).
[10] L. Gu, J. Kaastra, and A. J. J. Raassen, Astronomy and Astrophysics 588, A52 (2016).
[11] A. T. Grier, M. Cetina, F. Oručić, and V. Vuletić, Physical Review Letters 102, 113201 (2009).
FIG. 4. Panel a: Charge-exchange rate coefficient for Ca + Yb$^+$ as a function of collision energy E/k from 1 mK to 20 mK for four laser intensities. Panel b: The partial wave contributions to the rate coefficients at zero intensity. The gray curves correspond to partial rates for $\ell \leq 9$, those for s, p, and d waves are indicated in the figure. From left to right the dark-green curves correspond to $\ell = 10, 12, 14, 16$, and 18, respectively. Partial rates for $\ell = 11, 13, 15, 17$, and 19, shown by red curves, have distinct orbiting resonances. The wavenumber of the laser is 1000 cm$^{-1}$ and $\delta n = 1$ in both panels.

FIG. 5. Charge-exchange rate coefficient for Ca + Yb$^+$ as a function of laser wavenumber. Laser intensity is 10^7 W/cm2 and $E/k = 1\mu$K.

[12] C. Zipkes, S. Palzer, L. Ratschbacher, C. Sias, and M. Köhl, Physical Review Letters 105, 1 (2010).
[13] S. Schmid, A. Härter, and J. H. Denschlag, Physical Review Letters 105, 133202 (2010).
[14] F. H. J. Hall, M. Aymar, N. Bouloufa-Maafa, O. Dulieu, and S. Willitsch, Physical Review Letters 107, 243202 (2011).
[15] F. H. J. Hall and S. Willitsch, Physical Review Letters 109, 233202 (2012).
[16] W. G. Reillyergert, S. T. Sullivan, S. Kotochigova, A. Petrov, K. Chen, S. J. Schwalter, and E. R. Hudson, Phys. Rev. Lett. 107, 243201 (2011).
[17] L. Ratschbacher, C. Zipkes, C. Sias, and M. Köhl, Nature Physics 8, 649 (2012).
[18] S. Haze, R. Saito, M. Fujinaga, and T. Mukaiyama, Physical Review A 91, 032709 (2015).
[19] R. Coté and A. Dalgarno, Physical Review A 62, 012709 (2000).
[20] A. Watanabe, C. Dutta, P. Nordlander, M. Kimura, and A. Dalgarno, Physical Review A 66, 2 (2002).
[21] L. B. Zhao, P. C. Stancil, J. P. Gu, H. Liebermann, Y. Li, P. Funke, R. J. Buenker, B. Zygelman, M. Kimura, and A. Dalgarno, The Astrophysical Journal 615, 1063 (2004).
[22] P. Zhang, E. Bodo, and A. Dalgarno, J. Phys. Chem. A 113, 15085 (2009).
[23] C. H. Liu, Y. Z. Qu, Y. Zhou, J. G. Wang, Y. Li, and R. J. Buenker, Physical Review A 79, 042706 (2009).
[24] X. J. Liu, Y. Z. Qu, B. J. Xiao, C. H. Liu, Y. Zhou, J. G. Wang, and R. J. Buenker, Physical Review A 81, 1 (2010).
[25] M. Tacconi, F. A. Gianturco, and A. K. Belyaev, Phys. Chem. Chem. Phys. 13, 19156 (2011).
[26] P. Zhang, A. Dalgarno, R. Cote, and E. Bodo, Phys. Chem. Chem. Phys. 13, 19026 (2011).
[27] H. D. L. Lamb, J. F. McCann, B. M. McLaughlin, J. Goold, N. Wells, and I. Lane, Phys. Rev. A 86, 022716 (2012).
[28] A. K. Belyaev, S. A. Yakovleva, M. Tacconi, and F. A. Gianturco, Physical Review A 85, 042716 (2012).
[29] E. R. Sayfutyarova, A. A. Buchachenko, S. A. Yakovleva, and A. K. Belyaev, Physical Review A 87, 052717 (2013).
[30] B. M. McLaughlin, H. D. L. Lamb, I. Lane, and J. F. McCann, Journal Physics B: At. Mol. Opt. Phys. 47, 145201 (2014).
[31] E. Bodo, P. Zhang, and A. Dalgarno, New Journal of Physics 10, 033024 (2008).
[32] Z. Idziaszek, T. Calarco, and P. Zoller, Physical Review A 76, 1 (2007).
[33] Z. Idziaszek, T. Calarco, P. Julienne, and A. Simoni, Physical Review A 79, 1 (2009).
[34] Z. Idziaszek, A. Simoni, T. Calarco, and P. S. Julienne, New J. Phys. 13, 083005 (2011).
[35] M. Li and B. Gao, Physical Review A 86, 012707 (2012).
[36] B. Gao, Physical Review A 88, 022701 (2013).
[37] B. Zygelman, A. Dalgarno, M. Kimura, and N. F. Lane, Phys. Rev. A 40, 2340 (1989).
[38] B. Zygelman, P. C. Stancil, and A. Dalgarno, The Astrophysical Journal 508, 151 (1998).
[39] R. Z. Vitilina, A. V. Chaplik, and M. V. Entin, Sov. Phys.-JETP 40, 472 (1975).
[40] D. A. Copeland and C. L. Tang, Journal of Chemical Physics 65, 3161 (1976).
[41] D. A. Copeland and C. L. Tang, Journal of Chemical Physics 66, 5126 (1977).
[42] Y. P. Hsu, M. Kimura, and R. E. Olson, Physical Review A 31, 576 (1985).
[43] T.-S. Ho, C. Laughlin, and S.-I. Chu, Physical Review A 32, 122 (1985).
[44] P. W. Brumer and M. Shapiro, Optical Control of Molecular Dynamics (Wiley-Interscience, Hoboken, NY, 2000).
[45] S. A. Rice and M. Zhao, Principles of the Quantum Control of Molecular Processes (Wiley NY, 2003).
[46] A. D. Bandrauk, Molecules in Laser Fields (Marcel Dekker, New York, 1994).
[47] B. J. Sussman, D. Townsend, M. Y. Ivanov, and A. Stolow, Science 314, 278 (2006).
[48] S. T. Sullivan, W. G. Rellergert, S. Kotochigova, and E. R. Hudson, Phys. Rev. Lett. 109, 223002 (2012).
[49] G. Karlström, R. Lindh, P.-A. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, and L. Seijo, Computational Materials Science 28, 222 (2003) proceedings of the Symposium on Software Development for Process and Materials Design.
[50] “Molcas 7,” http://molcas.org/.
[51] P. Zhang and A. Dalgarno, J. Phys. Chem. A 111, 12471 (2007).
[52] S. Porsev and A. Derevianko, JETP 102, 195 (2006).
[53] B. Gao, Physical Review Letters 104, 213201 (2010).