Hydration of nitriles to amides by a chitin-supported ruthenium catalyst†

Aki Matsuoka, Takahiro Isogawa, Yuna Morioka, Benjamin R. Knappett, Andrew E. H. Wheatley,* Susumu Saito* and Hiroshi Naka*

Chitin-supported ruthenium (Ru/chitin) promotes the hydration of nitriles to carboxamides under aqueous conditions. The nitrile hydration can be performed on a gram-scale and is compatible with the presence of various functional groups including olefins, aldehydes, carboxylic esters and nitro and benzoylcarbonyl groups. The Ru/chitin catalyst is easily prepared from commercially available chitin, ruthenium(III) chloride and sodium borohydride. Analysis of Ru/chitin by high-resolution transmission electron microscopy indicates the presence of ruthenium nanoparticles on the chitin support.

Introduction

The catalytic hydration of nitriles (RCN) to carboxamides (RCONH₂) represents a fundamentally important pathway to these products in both laboratory and industrial contexts.1–3 Since the discovery of alumina-supported ruthenium hydroxide catalysts [Ru(OH)₃/Al₂O₃] by Yamaguchi et al.,4 solid-supported Ru has become an important class of catalyst for nitrile hydration, demonstrating high selectivity for carboxamide formation as well as other practical advantages.5–8 Although RuCl₃·nH₂O itself catalyzes nitrile hydration, the choice of solid support is critically important for achieving sufficient reactivity as well as for retaining Ru species on support.4,6 Examples of supports successfully used for Ru species include inorganic γ-Al₂O₃,4 nanoferriehematite4 and magnetic silica,9 as well as organic chitosan,5a amberlite6 and Nafton.7 However, these systems typically require the use of microwave irradiation5,8 or high reaction temperatures (~175 °C).7 Moreover, the tolerance of base-sensitive functional groups such as carboxylic esters has not been documented in these reports.4–7 Such chemoselectivity is important in modern organic synthesis,9 but is generally considered elusive in nitrile hydration promoted by metal-loaded heterogeneous catalysts, a single exception (Au/TiO₂)9 notwithstanding. In this work we establish that chitin-supported ruthenium (abbreviated as Ru/chitin) serves as a versatile catalyst for the hydration of nitriles to carboxamides (Scheme 1). Using this system, nitrile hydration can be operated under near-neutral, aqueous conditions without requiring any special apparatus. Moreover, the morphologies of ruthenium nanoparticles on the chitin support were clarified by high-resolution transmission electron microscopy (HRTEM) analysis.

After cellulose, chitin is the second most abundant polysaccharide in nature.10 It has a wide range of applications in materials, food, medical and environmental contexts. These include in the preparation of chitosan, affinity chromatography, wound-dressing and metal-extraction in water purification.11 Whereas chitin has been intensively used as a catalyst support for enzymes,12 its use as a support for metal catalysts has been less widely explored than has that of chitosan.13,14 So far, chitin has been used as a support for Pt in asymmetric arene hydrogenation,15 Pd in the hydrogenation of nitrobenzene and unsaturated fatty acid esters16 and Re in the epoxidation of olefins.14 We expected that chitin would represent a potentially attractive support for the Ru-catalyzed hydration of nitriles because it is highly stable under aqueous conditions and effectively adsorbs Ru species using its carboxamide functionality.17

Results and discussion

Catalytic tests

Ru/chitin catalyst was prepared by impregnating commercially available chitin with an aqueous solution of RuCl₃·3H₂O

Scheme 1 Hydration of nitriles to carboxamides with Ru/chitin.
followed by reduction with NaBH₄, and was tested for its effectiveness in the hydration of benzonitrile (1a, Table 1).

When a mixture of 1a (1.0 mmol), H₂O (1.0 mL) and Ru/chitin (0.016 mmol Ru, 1.6 mol% Ru) was heated at 120 °C for 3 h, the corresponding amide 2a was obtained in 33% ¹H NMR yield (Table 1, entry 1). The presence of ruthenium was found to be essential, with the reaction hardly proceeding without catalyst or using only chitin (entries 2 and 3). Meanwhile, the chitin support was also found to be critical, with RuCl₃·3H₂O alone catalyzing the hydration of 1a but with significantly lower efficiency (entry 4). The optimization of reaction conditions using Ru/chitin increased the yield of 2a from 33% to 87% (entries 5–7). Ru/chitin with a higher Ru content [2.3 mol% Ru, prepared from catalyst precursor (2.3 mol% Ru)] gave slightly better yield still (entry 8). This result proved to be reproducible (¹H NMR yields of separate runs: 97%, 91%, 89% and 89%). Analogously prepared Ru catalysts that utilized other polysaccharide supports such as chitosan and cellulose (abbreviated as Ru/chitosan and Ru/cellulose, respectively) were found to be less reactive than Ru/chitin (entries 9 and 10).

Entry	Catalyst (mol% Ru)	H₂O (mL)	t/h	Yielda (%)
1	Ru/chitin (1.6)	1	3	33
2	None	1	<1	
3	Chitin	1	3	<1
4	RuCl₃·3H₂O (2.0)	1	3	17
5	Ru/chitin (1.6)	1	20	77
6	Ru/chitin (1.6)	1	30	87
7	Ru/chitin (1.6)	4	20	87
8	Ru/chitin (2.3)	4	20	97
9	Ru/chitosan (3.2)	4	20	74
10	Ru/cellulose (3.2)	4	20	17

a Conditions: 1a (1.0 mmol), H₂O (1.0 mL, 56 equiv.) and catalyst [1.6 mol% Ru, prepared from catalyst precursor (202 mg, 0.8 wt% Ru)] at 120 °C under a N₂ atmosphere unless otherwise stated. The mol% Ru was confirmed by ICP-AES analysis. Of 2a determined by ¹H NMR using mesitylene as an internal standard. Ru/chitin (2.3 mol% Ru), prepared from catalyst precursor (1.2 wt% Ru). Ru/chitosan (3.2 mol% Ru), prepared from catalyst precursor (1.2 wt% Ru). Ru/cellulose (3.2 mol% Ru), prepared from catalyst precursor (1.6 wt% Ru).

The Ru/chitin system was also applied to the hydration of aliphatic nitriles (Table 2, entries 16–23). Although the hydration reaction proved susceptible to steric hindrance (entry 19), primary and secondary nitriles 1p–r and 1t–w could all be converted to amides (entries 16–18 and 20–23) with retention of olefin (entry 21), β-hydroxy (entry 22) and α-methoxy (entry 23) groups in fair-to-good yields.

Importantly, the presence of a base-sensitive carbonyl functionality in methyl ester 1x was tolerated by virtue of the near-neutral conditions that could be used for catalyst preparation (Scheme 2). Similarly, an α-amino nitrile conjugated with a redox-sensitive benzoxycarbonyl (Cbz) group (as in 1y) was converted to protected α-amino amide 2y with retention of the carbamoyl linkage. The tolerance to carboxylic ester and CbzN functionality shown in Scheme 2 illustrates the applicability of the present method to the nitrile hydration of complex molecules bearing redox- or base-sensitive functional groups.

Scope and limitation

The scope of the Ru/chitin-catalyzed hydration of nitriles is outlined in Table 2. These reactions were run under comparable conditions to those in entry 8 of Table 1. Benzamide (2a) was obtained in 87% isolated yield (Table 2, entry 1) and variously substituted benzonitriles could be converted to the corresponding amides in good-to-excellent yield (entries 2–13). α-Methyl-substituted 1i was somewhat less reactive (entry 9) though m- and p-substituted analogues reacted in satisfying yields (entries 7 and 8). Benzonitrile 1l, which bore an electron-withdrawing p-nitro group, was completely hydrated in shorter reaction times than 1b, 1c, 1f and 1g, each of which bore electron-donating groups at the para positions. p-Formylbenzonitrile (1k) could be converted to the corresponding amide 2k with an intact formyl moiety in 76% yield, though formation of the hydrate of the aldehyde was also noted under aqueous conditions. Furthermore, heteroaromatic nitriles could be efficiently hydrated to the corresponding amides (entries 14 and 15).

The Ru/chitin system was also applied to the hydration of aliphatic nitriles (Table 2, entries 16–23). Although the hydration reaction proved susceptible to steric hindrance (entry 19), primary and secondary nitriles 1p–r and 1t–w could all be converted to amides (entries 16–18 and 20–23) with retention of olefin (entry 21), β-hydroxy (entry 22) and α-methoxy (entry 23) groups in fair-to-good yields.

Up-scale experiment

To verify the scalability of this method, a gram-scale hydration was carried out (Scheme 3). The hydration of 1w using a decreased loading of Ru/chitin catalyst (0.5 mol% Ru) yielded the amide 2w in excellent yield [conditions: 1w (16 mmol), H₂O (13 mL), Ru/chitin (0.5 mol% Ru), 120 °C, 36 h, 92% isolated yield (77% isolated yield after 24 h under otherwise identical conditions)].

HRTEM analysis

To elucidate the nature of the Ru/chitin catalyst, the catalyst was analyzed by HRTEM. The presence of nanoparticles with a mean size of 2.1 ± 0.4 nm was established (Fig. 1a–c). Energy dispersive X-ray spectroscopy (EDX) and measurement of the d-spacings (d = 0.23 nm) indicated the presence of both Ru(0) and RuO₂ (Fig. 1e, inset, and Fig. 1d). EDX also revealed the presence of Ca and P in both Ru/chitin (Fig. 1d) and chitin (Fig. 1e and f). This was attributed to calcium phosphate on account of the crustacean origin of the chitin and was found not to incur significant catalytic activity (Table 1, entry 3).

TEM analysis of the Ru nanoparticles after hydration of 1w showed that they remained morphologically essentially unchanged (Fig. 2). In fact, the Ru/chitin catalyst could be reused without significant loss of catalytic activity (hydration of 1a to 2a, conditions: identical to Table 1, entry 8, first run, 95% yield; reuse run, 87% yield).
Entry	Nitrile (1)	t/h	Amide (2)	Isolated yield (%)
1	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN}				
\end{array}				
\]	1a	20	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2a	87		
2	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{H}_2\text{N}				
\end{array}				
\]	1b	60	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2b	89		
3	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{OH}				
\end{array}				
\]	1c	40	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2c	98		
4	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{OH}				
\end{array}				
\]	1d	32	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2d	97		
5	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{H}_3\text{CO}				
\end{array}				
\]	1e	32	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2e	93		
6	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{H}_3\text{CO}				
\end{array}				
\]	1f	40	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2f	88		
7	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{CN}				
\end{array}				
\]	1g	50	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2g	96		
8	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{CN}				
\end{array}				
\]	1h	60	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2h	92		
9	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{CN}				
\end{array}				
\]	1i	60	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2i	49		
10	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{Cl}				
\end{array}				
\]	1j	24	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2j	80		
11	\[
\begin{array}{c}				
\text{H} \\				
\text{CN} \\				
\text{CN}				
\end{array}				
\]	1k	40	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2k	76		
12	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{NO}_2				
\end{array}				
\]	1l	18	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2l	92		
13	\[
\begin{array}{c}				
\text{F} \\				
\text{F} \\				
\text{F} \\				
\text{CN}				
\end{array}				
\]	1m	50	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2m	65		
14	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{N}				
\end{array}				
\]	1n	24	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2n	94		
15	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{CN}				
\end{array}				
\]	1o	20	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2o	91		
16	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{CN}				
\end{array}				
\]	1p	36	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2p	65		
17	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{CN}				
\end{array}				
\]	1q	36	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2q	55		
18	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{CN}				
\end{array}				
\]	1r	48	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2r	65		
19	\[
\begin{array}{c}				
\text{CN} \\				
\text{CN} \\				
\text{CN}				
\end{array}				
\]	1s	48	\[
\begin{array}{c}				
\text{CONH}_2				
\end{array}				
\]	2s	23		
20	\[
\begin{array}{c}
\text{CN} \\
\text{CN} \\
\text{CN}
\end{array}
\] | 1t | 36 | \[
\begin{array}{c}
\text{CONH}_2
\end{array}
\] | 2t | 85 |
We have established that chitin-supported ruthenium displays high catalytic activity towards the hydration of nitriles to amides under aqueous conditions. The catalyst is easily prepared, and applicable to the hydration of a wide variety of nitriles with aromatic, heteroaromatic and aliphatic substituents. HRTEM analysis of Ru/chitin revealed the presence of ruthenium nanoparticles before and after hydration reactions, indicating that chitin could serve as an effective solid support for ruthenium nanoparticles.

Conclusions

We have established that chitin-supported ruthenium displays high catalytic activity towards the hydration of nitriles to amides under aqueous conditions. The catalyst is easily prepared, and applicable to the hydration of a wide variety of nitriles with aromatic, heteroaromatic and aliphatic substituents. HRTEM analysis of Ru/chitin revealed the presence of ruthenium nanoparticles before and after hydration reactions, indicating that chitin could serve as an effective solid support for ruthenium nanoparticles.

Experimental section

General comments

1H and 13C NMR spectra were recorded on a JEOL ECA-600 (600 MHz for 1H, 150 MHz for 13C, 564 MHz for 19F) or a JEOL ECA-500 (500 MHz for 1H, 125 MHz for 13C) at 25 °C. Chemical shifts are reported as δ in ppm and are internally referenced to tetramethylsilane (TMS, 0.00 ppm for 1H), CD$_3$OH (3.30 ppm for 1H), CD$_3$HSOCD$_3$ (2.50 ppm for 1H), HOD (4.79 ppm for 1H), CDCl$_3$ (77.2 ppm for 13C), CD$_3$OD (49.0 ppm for 13C), dioxane (67.2 ppm in D$_2$O for 13C), or dimethyl sulfoxide-d_6 (DMSO-d_6, 39.5 ppm for 13C). Chemical shifts for 19F NMR were externally referenced to $	ext{CFCl}_3$ (0.00 ppm for 19F).

Table 2 (Contd.)

Entry	Nitrile (1)	t/h	Amide (2)	Isolated yield (%)
21	CN	24	CONH_2	66
22	OH	30	OH	46
23	CN	24	CONH_2	81

a Conditions: 1 (1.0 mmol), H$_2$O (4 mL, 220 equiv.) and Ru/chitin (2.3 mol% Ru) at 120 °C under a N$_2$ atmosphere.

![Scheme 2](image1.png)

Scheme 2 Hydration nitriles bearing carboxylic ester and carbamate functionalities.

![Scheme 3](image2.png)

Scheme 3 Gram-scale hydration of nitrile 1w.

Fig. 1 (a) A histogram representing the particle size distribution of Ru nanoparticles on chitin. (b) Low-magnification and (c) and inset) high resolution TEM images of chitin-supported Ru nanoparticles. (d) EDX of Ru/chitin. (e) A low-magnification TEM image of chitin. (f) EDX of chitin.
TEM analysis

High-resolution transmission electron microscopy (HRTEM) analysis was performed on a JEOL JEM-3011 microscope. Samples illustrated in Fig. 1a-d and 2 were prepared as per the typical procedure for the preparation of Ru/chitin (0.016 mmol Ru, vide infra) and by the hydration of 1w (0.5 mmol) using Ru/chitin (0.016 mmol Ru) at 120 °C for 6 h, respectively. Sample preparation required droplet coating of particle dispersions obtained by sonicating in CH$_2$CH$_2$OH on carbon-coated Cu grids (Agar Scientific, 300 mesh). Electron optical parameters: $C_s = 0.6$ mm, $C_C = 1.2$ mm, electron energy spread = 1.5 eV, beam divergence semi-angle = 1 mrad. Elemental analysis was by energy dispersive X-ray spectroscopy (EDX) using a PGT prism Si/Li detector and an Avalon 2000 analytical system. Spectra were analyzed using the PGT xcalibur 4.03.00 software. Observed Cu Kz and Kβ emission lines were attributed to scattered electrons impinging on the copper grid. Any minor Fe Kz and Co Kz emission lines of similar intensity were due to parasitic scattering from the lens polepiece. Detailed analysis of particle morphology was performed using Digital Micrograph 3.6.5 by counting the diameters of 100 particles (N), defining intervals of 0.25 nm between $d_{\text{min}} = d \leq d_{\text{max}}$ and counting the number of particles falling into these intervals. Particle size distributions were constructed using DataGraph 3.0. Values of average d-spacing were obtained from Fourier transforms of high magnification images ($\times 800$, $\times 1$) using $d = 20/D$ where D is the diameter (nm) of rings obtained. Average d-spacing was confirmed using the profile tool in Digital Micrograph by averaging over 10 d-spacings. To determine the error in the value of d-spacing thus obtained, detailed TEM examination of CeO$_2$ and Au nanoparticles was undertaken. The relationship between FT ring diameter and DV value (a measure of objective lens focusing voltage) was established for DV values between −6 and +6 and the standard deviation in d-spacing was established to be 10% when compared to the literature.

Materials

RuCl$_3$·3H$_2$O was purchased from Furuya Metal Co., Ltd. Benzonitrile (1a), m-hydroxybenzonitrile (1d), p-methoxybenzonitrile (1g), m-methylbenzonitrile (1h), o-methylbenzonitrile (1i), m-chlorobenzonitrile (1j), p-nitrobenzonitrile (1l), 2,3,4,5,6-pentafluorobenzonitrile (1m), acetonitrile (1p), pivalonitrile (1s), 2-phenylacetonitrile (1t), 3-hydroxy-3-phenylpropanonitrile (1v), z-methoxyacetonitrile (1w) and 4-(methoxycarbonyl)benzonitrile (1x), were purchased from TCI. p-Aminobenzonitrile (1b), p-methoxybenzonitrile (1f), 2-furonitrile (1o), yttrium standard solution [Y(NO$_3$)$_3$ in HNO$_3$, 1.00 mg Y per mL; 1000 ppm] and coned HNO$_3$ were purchased from Wako Chemicals. p-Hydroxybenzonitrile (1e), p-formylbenzonitrile (1k), propionitrile (1q), 2-methylpropanenitrile (1r) and acrylonitrile (1u) were purchased from Aldrich. o-Hydroxybenzonitrile (1e) was purchased from Merck. Nicotinonitrile (1n) and chitin were purchased from Kanto Chemicals. Ruthenium standard solution (1 mg Ru per mL in HCl) for ICP-AES was purchased from Acros. x-(Benzylxoycarbonylamino)acetonitrile (1y) was prepared according to the literature procedure by protecting x-aminoacetonitrile with CbzCl.

Catalyst preparation

A typical procedure for the preparation of Ru/chitin (0.016 mmol Ru). To a 300 mL round-bottom flask, RuCl$_3$·3H$_2$O (71.6 mg, 0.30 mmol Ru), H$_2$O (50 mL) and chitin (2980.4 mg) were added. The mixture was heated at 50 °C for 30 min, and concentrated using a rotary evaporator at 50 °C for 25 min (17 mm Hg). The solid was dried at 50 °C in vacuo overnight to afford the catalyst precursor (0.8 wt% Ru as determined by ICP-AES analysis, dark green solid, 2784.0 mg). To a 10 mL test tube with a screw cap, a magnetic stirring bar and the catalyst precursor (202 mg, 0.8 wt% Ru), deaerated H$_2$O (8 mL) was added under a N$_2$ atmosphere. Under vigorous stirring, a solution [1.0 mL; a mixture of NaBH$_4$ (39.4 mg, 1.0 mmol) and deaerated H$_2$O (5.2 mL)] was introduced dropwise to the test tube. The mixture was stirred at room temperature (rt) for 3.5 h. The liquid phase was separated by centrifugation (3500 rpm, 5 min) and replaced with H$_2$O (8 mL) via syringe. After the mixture was stirred at rt overnight, the solid was washed with water (2 times) and dried in vacuo at rt for 2 h to afford Ru/chitin as a grey solid, which was directly used for nitrile hydration.

Ru/chitin (0.023 mmol Ru). As per the above-mentioned typical procedure, the catalyst precursor was prepared using RuCl$_3$·3H$_2$O (107.4 mg, 0.45 mmol Ru), H$_2$O (50 mL), and chitin
Hydration of nitriles to amides

A typical procedure for hydration of nitriles: benzamide (2a, Table 1, entry 8; Table 2, entry 1). As per the above-mentioned procedure, Ru/chitin (0.023 mmol Ru) was prepared in a screw-cap 10 mL test tube equipped with a rubber septum and a magnetic stirring bar. To this tube were added nitrile (0.986 mmol, 101.6 mg) and deaerated H2O (2 mL) and a reducing solution [1.5 mL; a mixture of NaBH4 (103 mg, 2.7 mmol) and deaerated H2O (20 mL)] under a N2 atmosphere. After the septum inlet was replaced with a plastic screw cap and the cap was wrapped with Teflon tape, the mixture was shaken at 120 °C for 20 h (ca. 100 rpm, with a constant temperature oven [EYELA GM-2300, Tokyo Rikakikai Co. Ltd]) on a rotary shaker (EYELA Multi Shaker MMS, Tokyo Rikakikai Co. Ltd). The mixture was cooled down with ice water, and mixed with CH2OH (4 mL) under air. The liquid phase was separated by centrifugation (3500 rpm, 10 min). Extraction of the product was carried out by repeating this process (CH3OH, 6 mL). Liquid phases were combined and concentrated in vacuo. 1H NMR analysis of this crude mixture using mesitylene as an internal standard indicated the formation of amide 2a in 97% yield. The product was purified by sequential column chromatography on silica gel (acetone/dichloromethane 3 : 7; tetrahydrofuran/diethyl ether 1 : 10) to afford amide 2a as colorless plates (103.8 mg, 87% yield). Mp 126.5–127.1 °C [lit.19 125–128 °C]; IR (KBr) 1405, 1577, 1625, 1650, 3175, 3369 cm\(^{-1}\); 1H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 7.36 (bs, 1H), 7.42–7.47 (m, 2H), 7.51 (tt, \(J = 1.5, 7.3\) Hz, 1H), 7.85–7.89 (m, 2H), 7.97 (tt, 1H); 13C{1H} NMR (150 MHz, DMSO-\(d_6\)) \(\delta\) 127.4, 128.2, 131.2, 143.3, 167.9; elemental analysis calcd for [C7H7NO]: C, 71.09; H, 6.71; N, 10.36, found: C, 71.09; H, 6.66; N, 10.26.

p-Methoxybenzamide (2g). Colorless needles, purified by column chromatography on silica gel (acetone/dichloromethane 2 : 5); mp 157.6–159.0 °C [lit.20 159–160 °C]; IR (KBr) 1397, 1414, 1571, 1618, 1671, 3168, 3343 cm\(^{-1}\); 1H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 2.34 (s, 3H), 7.22–7.30 (m, 3H), 7.75–7.80 (m, 2H), 7.89 (bs, 1H); 13C{1H} NMR (150 MHz, DMSO-\(d_6\)) \(\delta\) 55.9, 114.7, 126.9, 130.6, 161.4, 172.0; elemental analysis calced for [C6H4NO2]: C, 63.56; H, 6.00; N, 9.27; found: C, 63.73; H, 6.00; N, 9.23.

m-Methylbenzamide (2h). Colorless plates, purified by column chromatography on silica gel (n-hexane/ethyl acetate 2 : 3); mp 91.0–92.4 °C [lit.21 92–93 °C]; IR (KBr) 687, 1114, 1347, 1432, 1616, 1650, 3195, 3376 cm\(^{-1}\); 1H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 2.34 (s, 3H), 7.22–7.30 (m, 3H), 7.64–7.69 (m, 1H), 7.69–7.72 (m, 1H), 7.91 (bs, 1H); 13C{1H} NMR (150 MHz, DMSO-\(d_6\)) \(\delta\) 20.9, 127.5, 128.7, 131.5, 141.0, 167.8; elemental analysis calced for [C6H5NO2]: C, 71.09; H, 6.71; N, 10.36; found: C, 71.04; H, 6.78; N, 9.98.

o-Methylbenzamide (2i). Colorless needles, purified by column chromatography on silica gel (ethyl acetate/n-hexane 2 : 3); mp 140.1–140.5 °C [lit.22 140 °C]; IR (KBr) 1140, 1395, 1623, 1656, 3187, 3368 cm\(^{-1}\); 1H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 2.36 (s, 3H), 7.18–7.24 (m, 2H), 7.28–7.37 (m, 3H), 7.68 (bs, 1H); 13C{1H} NMR (150 MHz, DMSO-\(d_6\)) \(\delta\) 19.6, 125.4, 129.0, 129.1, 130.4, 131.5, 137.1, 171.0; elemental analysis calced for [C6H5NO2]: C, 71.09; H, 6.71; N, 10.36; found: C, 71.35; H, 6.72; N, 10.36.

m-Chlorobenzamide (2j). Colorless plates, purified by sequential column chromatography on silica gel (n-hexane/ethyl acetate 1 : 1; ethyl acetate only; tetrahydrofuran only) and activated carbon treatment; mp 132.6–133.4 °C [lit.23 134–136 °C]; IR (KBr) 1123, 1389, 1432, 1569, 1626, 1658, 3181, 3366 cm\(^{-1}\); 1H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 7.46–7.52 (m, 1H), 7.54 (bs, 1H), 7.56–7.61 (m, 1H), 7.81–7.86 (m, 1H), 7.89–7.94 (m, 1H), 8.10 (bs, 1H); 13C{1H} NMR (150 MHz, DMSO-\(d_6\)) \(\delta\) 124.2, 128.7, 131.5, 137.1, 171.0; elemental analysis calced for [C6H5NO2]: C, 71.09; H, 6.71; N, 10.36; found: C, 71.35; H, 6.72; N, 10.36.

n-Chlorobenzamide (2k). Colorless needles, purified by column chromatography on silica gel (n-hexane/ethyl acetate 1 : 1; ethyl acetate only; tetrahydrofuran only) and activated carbon treatment; mp 132.6–133.4 °C [lit.24 134–136 °C]; IR (KBr) 1123, 1389, 1432, 1569, 1626, 1658, 3181, 3366 cm\(^{-1}\); 1H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 7.46–7.52 (m, 1H), 7.54 (bs, 1H), 7.56–7.61 (m, 1H), 7.81–7.86 (m, 1H), 7.89–7.94 (m, 1H), 8.10 (bs, 1H); 13C{1H} NMR (150 MHz, DMSO-\(d_6\)) \(\delta\) 124.2, 128.7, 131.5, 137.1, 171.0; elemental analysis calced for [C6H5NO2]: C, 71.09; H, 6.71; N, 10.36; found: C, 71.35; H, 6.72; N, 10.36.
13C{1H} NMR (150 MHz, DMSO-d6) δ 162.2, 127.3, 130.3, 131.1, 133.1, 136.3, 166.4; elemental analysis calcd for [C3H4NCIO]: C, 54.04; H, 3.89; N, 9.00, found: C, 53.96; H, 3.89; N, 8.95.

p-Formylbenzamide (2k). White powder, purified by column chromatography on silica gel (n-hexane/ethyl acetate 1 : 3); mp 155.4–159.2 °C; IR (KBr) 1212, 1397, 1607, 1670, 1698, 3194, 3288, 3354 cm⁻¹; 1H NMR (600 MHz, DMSO-d6) δ 7.60 (bs, 1H), 7.96–8.00 (m, 2H), 8.03–8.08 (m, 2H), 8.17 (bs, 1H), 10.08 (s, 1H); 13C{1H} NMR (150 MHz, DMSO-d6) δ 128.1, 129.3, 137.8, 139.3, 167.0, 192.9; elemental analysis calcd for [C6H4NO2]: C, 64.42; H, 4.73; N, 9.39, found: C, 64.69; H, 4.85; N, 9.16.

p-Nitrobenzamide (2l). Colorless needles, purified by column chromatography on silica gel (triethylamine/2-propanol/chloroform 0.05 : 3 : 7); mp 197.1–200.0 °C; IR (KBr) 1346, 1413, 1526, 1600, 1678, 3177, 3477 cm⁻¹; 1H NMR (600 MHz, CDCl3) δ 8.05–8.08 (m, 2H), 8.29–8.33 (m, 2H); 13C{1H} NMR (150 MHz, CDCl3) δ 124.6, 130.0, 149.1, 152.0, 170.1; elemental analysis calcd for [C6H4NO2]: C, 54.04; H, 3.89; N, 9.00, found: C, 53.96; H, 3.89; N, 8.95.

2-Methylaniline (2m). Colorless needles, purified by short-column chromatography on silica gel (dichloromethane); mp 157.9–158.5 °C (lit.155°C); IR (KBr) 1627, 1656, 3204, 3398 cm⁻¹; 1H NMR (600 MHz, CDCl3) δ 1.23 (s, 9H), 5.21 (bs, 1H), 5.59 (bs, 1H); 13C{1H} NMR (150 MHz, CDCl3) δ 27.8, 38.1, 181.5; elemental analysis calcd for [C6H11NO-NO-0.08H2O]: C, 58.54; H, 10.97; N, 13.65, found: C, 58.29; H, 10.85; N, 13.36.

2-Phenylacetamide (2n). White powder, purified by recrystallization (from dichloromethane/n-hexane); mp 148.7–152.0 °C; IR (KBr) 1627, 1656, 3204, 3398 cm⁻¹; 1H NMR (600 MHz, CDCl3) δ 3.60 (s, 2H), 5.13–5.64 (m, 2H), 7.28–7.38 (m, 5H); 13C{1H} NMR (150 MHz, CDCl3) δ 43.5, 127.6, 129.2, 129.6, 135.0, 173.7; elemental analysis calcd for [C9H9NO3]: C, 71.09; H, 6.71; N, 10.36, found: C, 71.07; H, 6.76; N, 10.28.

Acrylamide (2o). Colorless plates, purified by short-column chromatography on silica gel (dichloromethane/n-hexane); mp 78.2–80.3 °C; IR (KBr) 1613, 1675, 3139, 3357 cm⁻¹; 1H NMR (600 MHz, CDCl3) δ 3.60 (s, 2H), 5.13–5.64 (m, 2H), 7.28–7.38 (m, 5H); 13C{1H} NMR (150 MHz, CDCl3) δ 43.5, 127.6, 129.2, 129.6, 135.0, 173.7; elemental analysis calcd for [C9H9NO3]: C, 71.09; H, 6.71; N, 10.36, found: C, 71.07; H, 6.76; N, 10.28.

2-Fracontacarbamide (2p). White powder, purified by column chromatography on silica gel (dichloromethane/acetic acid 1 : 4) and recrystallization (from water); mp 120.6–127.7 °C; IR (KBr) 1620, 1682, 3159, 3370 cm⁻¹; 1H NMR (500 MHz, CDCl3) δ 7.48–7.51 (m, 1H), 7.59 (bs, 1H), 8.15 (bs, 1H), 8.19–8.21 (m, 1H), 8.69–8.70 (m, 1H), 9.02–9.03 (m, 1H); 13C{1H} NMR (150 MHz, CDCl3) δ 123.3, 129.6, 135.1, 148.6, 151.8, 166.4; elemental analysis calcd for [C9H9NO3]: C, 59.01; H, 4.95; N, 22.94, found: C, 59.00; H, 4.91; N, 22.70.

2-Flurocarbamide (2q). White powder, purified by recrystallization (from dichloromethane/acetic acid 1 : 4); mp 72.9–80.1 °C; IR (KBr) 1655, 3212, 3389 cm⁻¹; 1H NMR (600 MHz, D2O) δ 2.00 (s, 3H); 13C{1H} NMR (150 MHz, D2O) δ 21.9, 178.0; elemental analysis calcd for [C6H10NO-0.001H2O]: C, 40.66; H, 8.53; N, 23.71, found: C, 40.26; H, 8.54; N, 23.53.

Propionamide (2r). Colorless plates, purified by recrystallization (from dichloromethane/n-hexane); mp 79.1–80.5 °C; IR (KBr) 1664, 3202, 3370 cm⁻¹; 1H NMR (600 MHz, CDCl3) δ 1.18 (t, J = 7.6 Hz, 3H), 2.27 (q, J = 7.6 Hz, 2H), 5.04–5.58 (m, 2H); 13C{1H} NMR (150 MHz, CDCl3) δ 9.8, 29.1, 176.3; elemental analysis calcd for [C6H10NO-0.02H2O]: C, 49.05; H, 9.66; N, 19.07, found: C, 48.70; H, 9.56; N, 18.82.
a-(Benzylxocarbonylamino)acetamide (2y). White needles, purified by column chromatography on silica gel (chloroform/methanol 95:5:92:8, gradient); mp 135.0–136.6 °C (lit.34 138–139 °C); IR (KBr) 1537, 1652, 1688, 3191, 3324, 3381 cm⁻¹; 1H NMR (600 MHz, DMSO-d₆) δ 3.55 (d, J = 6.2 Hz, 2H), 5.03 (s, 2H), 7.01 (s, 1H), 7.26–7.40 (m, 7H); 13C(1H) NMR (150 MHz, DMSO-d₆) δ 43.3, 65.4, 127.7, 127.8, 128.3, 137.1, 156.4, 171.1; HRMS (ESI-TOF) m/z calcd for C₁₀H₁₁N₂O₃Na [M + Na]⁺ 231.0746, found 231.0757.

Gram-scale hydration (Scheme 3). To a 30 mL test tube with a screw cap, a magnetic stirring bar and catalyst precursor ([657 mg, 1.2 wt% Ru], deaerated H₂O (13 mL) was introduced dropwise to the test tube. The mixture was stirred at rt for 3.5 h. The liquid phase was separated by centrifugation (3500 rpm, 5 min) and replaced with H₂O (10.9 mL) was introduced dropwise to the test tube. The mixture was stirred at rt for 3.5 h. The liquid phase was separated by centrifugation (3500 rpm, 5 min) and replaced with H₂O (10 mL) via syringe. After the mixture was stirred at rt overnight, the solid was washed with water (2 times) and dried in vacuo at rt for 2 h to afford Ru/chitin as a grey solid. To this Ru/chitin in the test tube were added 1w (16.3 mmol, 1.16 g) and deaerated H₂O (7.2 × 10⁻³ mmol, 13 mL) under a N₂ atmosphere. After this the septum inlet was replaced with plastic screw cap and the cap was wrapped with Teflon tape. The mixture was then shaken at 120 °C for 36 h (ca. 100 rpm). After cooling with ice water, the catalyst was removed by filtration and washed with methanol (300 mL). The solvent was concentrated in vacuo. The product was purified by short-column chromatography on silica gel (ethyl acetate only) to afford 2w as colorless needles (1.34 g, 92% yield).

Reuse experiment. As per the typical procedure, Ru/chitin (0.023 mmol Ru) was prepared in a screw-cap 10 mL test tube equipped with a rubber septum and a magnetic stirring bar. To this tube was added nitrile 1a (1.01 mmol, 104.1 mg) and deaerated H₂O (2.2 × 10⁻² mmol, 4.0 mL) under a N₂ atmosphere. After this septum inlet was replaced with a plastic screw cap and the cap was wrapped with Teflon tape. The mixture was shaken at 120 °C for 20 h (ca. 100 rpm). The mixture was cooled down with ice water, mixed with deaerated H₂O (4 mL) under a N₂ atmosphere, and stirred at 100 °C for 1 min. The liquid phase was separated by centrifugation (3500 rpm, 3 min). Extraction of the product was carried out by repeating this process (deaerated H₂O, 7 × 4 mL). The combined liquid phases were concentrated in vacuo. 1H NMR analysis of this crude mixture using mesitylene as an internal standard indicated the formation of 2a in 95% yield. Ru/chitin in the test tube was directly reused for the next run [conditions: 1a (1.04 mmol, 107.2 mg), deaerated H₂O (2.2 × 10⁻² mmol, 4.0 mL) and the reused catalyst at 120 °C for 20 h under a N₂ atmosphere]. 1H NMR analysis of this crude mixture showed the formation of 2a in 87% yield.

Acknowledgements

This work was partly supported by grant from Yoshida Foundation for Science and Technology (to H.N.) and the program “Integrated Research on Chemical Synthesis”, MEXT, Japan (to H.N.). A.M. acknowledges a Grant-in-Aid for JSPS fellows (25(4)305) and IGER program at NU. B.R.K. thanks the UK EPSRC for financial support (EP/J500380/1) and A.E.H.W. thanks the GB Sasakawa Foundation for travel grant 4388. The authors are grateful to Drs K. Oyama and Y. Maeda (Chemical Instrument Center, NU) for technical support. The authors wish to thank Prof. R. Noyori (NU and RIKEN) for fruitful discussions.

Notes and references

1 (a) C. E. Mabermann, in Encyclopedia of Chemical Technology, ed. J. I. Kroschwitz, Wiley, New York, 1991, vol. 1, pp. 251–266; (b) D. Lipp, in Encyclopedia of Chemical Technology, ed. J. I. Kroschwitz, Wiley, New York, 1991, vol. 1, pp. 266–287; (c) R. Opsahl, in Encyclopedia of Chemical Technology, ed. J. I. Kroschwitz, Wiley, New York, 1991, vol. 2, pp. 346–356.

2 (a) Ch. Allen and J. M. J. Williams, Chem. Soc. Rev., 2010, 40, 3405–3415; (b) C. Singh, V. Kumar, U. Sharma, N. Kumar and B. Singh,Curr. Org. Synth., 2013, 10, 241–264.

3 (a) V. Y. Kukushkin and A. J. L. Pombeiro, Inorg. Chem. Acta, 2005, 358, 1–21; (b) T. J. Ahmed, S. M. M. Knapp and D. R. Tyler, Coord. Chem. Rev., 2011, 255, 949–974; (c) T. Tu, Z. Wang, Z. Liu, X. Feng and Q. Wang, Green Chem., 2012, 14, 921–924; (d) R. Garcia-Alvarez, P. Crochet and V. Cadierno, Green Chem., 2013, 15, 46–66; (e) E. L. Downs and D. R. Tyler, Coord. Chem. Rev., 2014, 280, 28–37.

4 K. Yamaguchi, M. Matsuhashi and N. Mizuno, Angew. Chem., Int. Ed., 2004, 43, 1576–1580.

5 (a) V. Polsheettiwar and R. S. Varma, Chem.–Eur. J., 2009, 15, 1582–1586; (b) R. B. N. Baig and R. S. Varma, Chem. Commun., 2012, 48, 6220–6222; (c) R. B. N. Baig, M. N. Nadagouda and R. S. Varma, Green Chem., 2014, 16, 2122–2127.

6 S. Kumar and P. Das, New J. Chem., 2013, 37, 2987–2990.

7 G. K. S. Prakash, S. B. Munoz, A. Papp, K. Masood, I. Bychinskaya, T. Mathew and G. A. Olah, Asian J. Org. Chem., 2012, 1, 146–149.

8 Recent examples based on other metals: (a) A. Ishizuka, Y. Nakazaki and T. Oshiki, Chem. Lett., 2009, 38, 360–361; (b) T. Mitsudome, Y. Mikami, H. Mori, S. Arita, T. Mizugaki, K. Jitsukawa and K. Kaneda, Chem. Commun., 2009, 3258–3260; (c) S. Ichikawa, S. Miyazoe and O. Matsuoka, Chem. Lett., 2011, 40, 512–514; (d) M. Tamura, H. Wakisugi, K.-i. Shimizu and A. Satsuma, Chem.–Eur. J., 2011, 17, 11428–11431; (e) A. Y. Kim, H. S. Bae, S. Park, S. Park and K. H. Park, Catal. Lett., 2011, 141, 685–690; (f) Y.-M. Liu, L. He, M.-M. Wang, Y. Cao, H.-Y. He and K.-N. Fan, ChemSusChem, 2012, 5, 1392–1396; (g) Y. Gangarajula and B. Gopal, Chem. Lett., 2012, 41, 101–103; (h) K. Yamaguchi, Y. Wang, H. Kobayashi and N. Mizuno, Chem. Lett., 2012, 41, 574–576; (i) K.-i. Shimizu, T. Kubo, A. Satsuma, T. Kamachi and K. Yoshizawa, ACS Catal., 2012, 2, 2467–2474; (j) T. Hirano, K. Uehara, K. Kamata and N. Mizuno, J. Am. Chem. Soc., 2012, 134, 6425–6433; (k) M. B. Gawande, P. S. Branco, I. D. Nogueira, C. A. A. Ghumman, N. Bundaleski, A. Santos, O. M. N. D. Teodorro and R. Luque, Green Chem., 2013, 15,
682–689; (f) C. Battilocchio, J. M. Hawkins and S. V. Ley, Org. Lett., 2014, 16, 1060–1063.
9 (a) N. A. Afagh and A. K. Yudin, Angew. Chem., Int. Ed., 2010, 49, 262–310; (b) J. Mahatthanachai, A. M. Dumas and J. W. Bode, Angew. Chem., Int. Ed., 2012, 51, 10954–10990.
10 (a) Chin: Formation and Diagenesis, ed. N. S. Gupta, Springer, New York, 2011; (b) V. S. Yeul and S. S. Rayalu, J. Polym. Environ., 2013, 21, 606–614.
11 (a) M. N. V. R. Kumar, React. Funct. Polym., 2000, 46, 1–27; (b) M. Rinaudo, Prog. Polym. Sci., 2006, 31, 603–632.
12 B. Krajewska, Enzyme Microb. Technol., 2004, 35, 126–139.
13 (a) E. Guibal, Prog. Polym. Sci., 2005, 30, 71–109; (b) D. J. Macquarrie and J. E. Hardy, Ind. Eng. Chem. Res., 2005, 44, 8499–8520.
14 (a) F. Quignard, A. Choplin and A. Domard, Langmuir, 2000, 16, 9106–9108; (b) V. Calò, A. Nacci, A. Monopoli, A. Fornaro, L. Sabbatini, N. Cioffi and N. Ditaranto, Organometallics, 2004, 23, 5154–5158; (c) A. Corma, P. Concepción, I. Domínguez, V. Fornés and M. J. Sabater, J. Catal., 2007, 251, 39–47; (d) A. D. Giuseppe, M. Crucianelli, M. Passacantando, S. Nisi and R. Saladino, J. Catal., 2010, 276, 412–422; (e) A. Ricci, L. Bernardi, C. Gioia, S. Vierucci, M. Robitzer and F. Quignard, Chem. Commun., 2010, 46, 6288–6290; (f) A. C. Kathalikkattil, J. Tharun, R. Roshan, H.-G. Soek and D.-W. Park, Appl. Catal., A, 2012, 447–448, 107–114.
15 G.-L. Yuan, M.-Y. Yin, T.-T. Jiang, M.-Y. Huang and Y.-Y. Jiang, J. Mol. Catal. A: Chem., 2000, 159, 45–50.
16 (a) Y. Ito and M. Inoue, Kagaku to Kyoiku, 2010, 58, 486–489; (b) D. Abiru and M. Inoue, Kagaku to Kyoiku, 2014, 62, 36–39.
17 (a) B. J. Arena, US Pat. 4274980, 1981; (b) B. J. Arena, US Pat. 4367355, 1983; (c) R. A. A. Muzzarelli, Water Res., 1970, 4, 451–455.
18 M. Zahmakan and S. Özkar, J. Mol. Catal. A: Chem., 2006, 258, 95–103.
19 Q. Song, Q. Feng and K. Yang, Org. Lett., 2014, 16, 624–627.
20 J. Lee, M. Kim, S. Chang and H.-Y. Lee, Org. Lett., 2009, 11, 5598–5601.
21 D. R. Brown, I. Collins, L. G. Czapelewski and D. J. Hayden, WO Patent 2007/107758, 2007.
22 X.-b. Jiang, A. J. Minnaard, B. L. Feringa and J. G. de Vries, J. Org. Chem., 2004, 69, 2327–2331.
23 SDBSWeb: http://sdb.s.db.aist.go.jp/ (National Institute of Advanced Industrial Science and Technology, accessed August 2014) SDBS no. 553.
24 L. Zhang, S. Wang, S. Zhou, G. Yang and E. Sheng, J. Org. Chem., 2006, 71, 3149–3153.
25 SDBSWeb: http://sdb.s.db.aist.go.jp/ (National Institute of Advanced Industrial Science and Technology, accessed August 2014) SDBS no. 1491.
26 SDBSWeb: http://sdb.s.db.aist.go.jp/ (National Institute of Advanced Industrial Science and Technology, accessed August 2014) SDBS no. 1431.
27 K. Y. Koltunow, S. Walspurger and J. Sommer, Eur. J. Org. Chem., 2004, 4039–4047.
28 SDBSWeb: http://sdb.s.db.aist.go.jp/ (National Institute of Advanced Industrial Science and Technology, accessed August 2014) SDBS no. 4737.
29 S. S. Deshmukh, S. N. Huddar, D. S. Bhalaria and K. G. Akamanchi, ARKIVOC, 2010, 2, 118–126.
30 SDBSWeb: http://sdb.s.db.aist.go.jp/ (National Institute of Advanced Industrial Science and Technology, accessed August 2014) SDBS no. 1461.
31 A. Kamal, G. B. R. Khanna, T. Krishnaji and R. Ramu, Bioorg. Med. Chem. Lett., 2005, 15, 613–615.
32 K. L. Breno, M. D. Pluth and D. R. Tyler, Organometallics, 2003, 22, 1203–1211.
33 B. F. Plummer, M. Menendez and M. Songster, J. Org. Chem., 1989, 54, 718–719.
34 S.-T. Chen, S.-H. Wu and K.-T. Wang, Synthesis, 1989, 37–38.
35 P. Chen, L. B. Horton, R. L. Mikulski, L. Deng, S. Sundriyal, T. Palzik and Y. Song, Bioorg. Med. Chem. Lett., 2012, 22, 6229–6232.