Development and Characterization of Microsatellite Markers in Prunus sibirica (Rosaceae)

Authors: Hua-Bo Liu, Jun Liu, Zhe Wang, Li-Ying Ma, Si-Qi Wang, et. al.
Source: Applications in Plant Sciences, 1(3)
Published By: Botanical Society of America
URL: https://doi.org/10.3732/apps.1200074
DEVELOPMENT AND CHARACTERIZATION OF MICROSATELLITE MARKERS IN _PRUNUS SIBIRICA_ (ROSACEAE)¹

HUA-BO LIU², JUN LIU², ZHE WANG², LI-YING MA², SI-QI WANG², XING-GU LIN², RONG-LING WU², AND XIAO-MING PANG²,³

²Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China

• Premise of the study: Microsatellite loci were developed for _Prunus sibirica_ to investigate genetic diversity, population genetic structure, and marker-assisted selection of late-blooming cultivars in the breeding of _P. sibirica_.

• Methods and Results: Using a magnetic bead enrichment strategy, 19 primer pairs were developed and characterized across 40 individuals from three _P. sibirica_ wild populations and six individuals of _P. armeniaca_. The number of alleles per locus varied from three to 11 and the observed and expected heterozygosities ranged from 0.063 to 0.917 and 0.295 to 0.876, respectively, in the three _P. sibirica_ wild populations. All primer pairs could be successfully amplified in six individuals of _P. armeniaca_.

• Conclusions: These microsatellite primer pairs should be useful for population genetics, germplasm identification, and marker-assisted selection in the breeding of _P. sibirica_ and related species.

Key words: genetic diversity; microsatellite; _Prunus sibirica_; Rosaceae.

METHODS AND RESULTS

Genomic DNA of _P. sibirica_ was extracted from fresh healthy leaves using a modified cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1987). Microsatellites were isolated from an individual tree using a magnetic bead enrichment strategy, as described in Nunome et al. (2006), with minor modifications. Approximately 20 μg of genomic DNA was digested with each enzyme, _AluI_ and _HaeIII_ (New England Biolabs, Ipswich, Massachusetts, USA), and then ligated to a double-stranded linker (F: 5'-GTGGTAGCGCTGGTACGAA-3'; R: 5'-GCGTTGCCTGCAACAGGCTGTTACAAA-3') using T4 DNA ligase. To select fragments containing microsatellites, ligation products were hybridized with a 5'-biotinylated repeat oligonucleotide probe (GA)₅ at 60°C overnight. Hybridization products were captured with streptavidin-coated magnetic beads (Promega Corporation, Madison, Wisconsin, USA) and recovered by PCR using the linker forward primer (5'-GTGGTAGCCTGGTACGAAAGC-3'). The PCR products were purified using Wizard SV Gel and PCR Clean-Up System (Promega Corporation), and then the 3’ end of the PCR products was adenylated. The adenylated PCR products were ligated to pGEM-T Easy Vector (Promega Corporation) and then transformed into competent _Escherichia coli_ TOP10 cells (Biomed Tech, Beijing, China). A total of 384 positive clones were selected and tested by PCR using vector primers T3/T7 and primer (AC). In total, 166 clones with positive inserts were sequenced with an ABI PRISM 3730xl DNA sequencer (Applied Biosystems, Foster City, California, USA).

A total of 144 clones contained simple sequence repeat (SSR) loci, of which 124 were suitable for primer design using Primer3 (version 0.40; Rozen and Skaltsky, 2000). The primer length was set to range from 18 to 23 bp, the annealing temperature (Tₘ) ranged from 55°C to 63°C, amplification product size ranged from 100 to 300 bp, and GC content ranged from 20–80%. The forward primer of each pair was tagged with an M13-forward tag (5′-TGT AA AA CG-3′) and the reverse with an M13-reverse tag (5′-TGT TTA TAC AAC-3′). A third primer (M13F), labeled with a fluorescent molecule (FAM, HEX, ROX, TAMRA), was involved in PCR reactions. These primers were initially screened in eight _P. sibirica_ individuals randomly selected from eight wild populations in northern Hebei Province (Appendix 1). The PCR reactions were performed in a GeneAmp PCR System 9700 thermal cycler (Applied Biosystems) in a 10-μl reaction volume that contained 1–10 ng genomic DNA, 5 μl of 2×_Taq_ PCR mix (Biomed Tech), 0.08 μM of the forward primer, and 0.32 μM of each reverse and fluorescent-labeled M13F primer. Conditions of the PCR amplification were as follows: 94°C for 5 min; 30 cycles...

¹Manuscript received 13 February 2012; revision accepted 22 July 2012.

This work was supported by grants from the Program for New Century Excellent Talents in University by the Ministry of Education, China (NCET-10-0223), and the Starting Funds from the Office for Science and Technology of Beijing Forestry University, China (2008-03), to X.M.P.

³Author for correspondence: xmpang@bjfu.edu.cn
doi:10.3732/apps.1200074
TABLE 1. Characteristics of 19 microsatellite loci developed in *Prunus sibirica*.

Locus	Primer sequences (5′–3′)	Repeat motif	Size (bp)	T_a (°C)	GenBank accession no.
PSL1	F: GTGGTGGAGGCCTTCAGTG	(AG)_7	173	55	JQ411730
	R: GTGCTTTTCCTTTTGCT	(CT)_5	153	55	JQ411731
PSL2	F: TGGGGTTCTCTCTTTTCT	(AT)_10	188	55	JQ411733
	R: AGTCTCTGCGGATTCTTGGC	(CT)_10	248	55	JQ411734
PSL3	F: TCTCTCTTTTGCTGGTCTTT	(TCTTT)_3	200	55	JQ411732
	R: GGTGCCCAAGATCACGAAAATA	(GA)_13	180	55	JQ411735
PSL4	F: AAGTCTCGCCCACTTAGAAC	(AG)_8	218	55	JQ411737
	R: TGGCAGACCCCTAATTGTG	(CTT)_13	180	55	JQ411738
PSL5	F: TGCAATTGGACGACATTGAC	(CT)_10	248	55	JQ411734
	R: TTGCCAGACCCCTAATTGTG	(CTT)_13	180	55	JQ411735
PSL6	F: GTTCAAATGGTCCTCGCATT	(GA)_13	295	55	JQ411736
	R: CTTTGGCCCTCACAACAAAGT	(GA)_13	151	55	JQ411736
PSL7	F: TTTGAGGAGGAAGGATGAGT	(AG)_9	218	55	JQ411737
	R: CTTGGCCCTCACAACAAAGT	(GA)_13	151	55	JQ411736
PSL8	F: AAGCAGGCTCTTCAACAGCAG	(AG)_9	218	55	JQ411737
	R: TGGCAGACCCCTAATTGTG	(CTT)_13	180	55	JQ411735
PSL9	F: AATAGTGGTGGGCACAGAGG	(CTT)_12	255	55	JQ411740
	R: TGGCAGACCCCTAATTGTG	(CTT)_13	255	55	JQ411741

Note: T_a = annealing temperature.

TABLE 2. Variability of 19 SSR loci in three populations of *Prunus sibirica* and six individuals of *P. armeniaca*.

Locus	Pop. 1 (N = 12)	Pop. 2 (N = 12)	Pop. 3 (N = 16)	*P. armeniaca* (N = 6)								
	A	H_o	H_e									
PSL1	4	0.750	0.601	5	0.583	0.646	5	0.563	0.609	3	0.667	0.611
PSL2	4	0.667	0.698	3	0.500	0.517	4	0.500	0.518	3	0.667	0.653
PSL3	5	0.583	0.517	4	0.583	0.409	4	0.438	0.363	3	0.667	0.611
PSL4	9	0.750	0.830	7	0.545	0.733	6	0.750	0.777	5	0.667	0.611
PSL5	10	0.583	0.813	6	0.264	0.764	9	0.688	0.773	6	0.667	0.792
PSL6	8	0.500	0.747	8	0.500	0.823	9	0.800	0.824	5	0.000	0.778
PSL7	10	0.750	0.844	10	0.833	0.865	9	0.563	0.777	3	0.667	0.611
PSL8	4	0.727	0.682	4	0.750	0.552	3	0.563	0.541	2	0.333	0.444
PSL9	9	0.636	0.798	7	0.750	0.806	8	0.750	0.805	4	0.833	0.694
PSL10	7	0.833	0.757	4	0.583	0.510	4	0.563	0.662	4	0.667	0.736
PSL11	8	0.833	0.826	11	0.833	0.833	6	0.625	0.768	6	0.667	0.500
PSL12	11	0.667	0.802	6	0.833	0.764	7	0.750	0.777	6	0.667	0.806
PSL13	5	0.417	0.472	6	0.583	0.726	7	0.688	0.730	5	0.833	0.764
PSL14	4	0.333	0.295	5	0.833	0.674	6	0.563	0.570	4	0.833	0.583
PSL15	10	0.909	0.876	10	0.727	0.847	9	0.813	0.832	6	0.833	0.778
PSL16	9	0.250	0.795	8	0.364	0.826	4	0.063	0.408	3	0.000	0.611
PSL17	6	0.417	0.809	4	0.727	0.694	4	0.688	0.588	3	1.000	0.611
PSL18	10	0.917	0.847	7	0.500	0.771	9	0.625	0.855	8	0.833	0.861
PSL19	5	0.833	0.601	3	0.417	0.542	3	0.533	0.504	3	0.500	0.403

Note: A = number of alleles; H_o = observed heterozygosity; H_e = expected heterozygosity; N = sample size for each population.
Applications in Plant Sciences 2013 1(3): 1200074
doi:10.3732/apps.1200074

Liu et al.—Prunus sibirica microsatellites

at 94°C for 30 s, 55°C for 40 s, and 72°C for 45 s; followed by eight cycles at 94°C for 30 s, 53°C for 40 s, and 72°C for 45 s; and a final extension at 72°C for 10 min. PCR products were genotyped using an ABI 3730xl DNA Analyzer with GeneScan-500LIZ size standard (Applied Biosystems) and GeneMarker software (SoftGenetics, State College, Pennsylvania, USA). A total of 52 primers successfully amplified products with expected size and simple banding patterns. These primers were screened further for polymorphism and transferability using 40 individuals of P. sibirica from three wild populations (Appendix 1) and six individuals of P. armeniaca L. (Appendix 2). Finally, 19 of 52 primers successfully amplified in all individuals of P. armeniaca and revealed high levels of polymorphism (Table 1). Using the software GenAIEx version 6.4 (Peakall and Smouse, 2006), we found the number of alleles per locus varied from three to 11 in three P. sibirica wild populations and from two to eight in P. armeniaca individuals. The observed and expected heterozygosities ranged from 0.063 to 0.917 and 0.295 to 0.876, respectively, in three P. sibirica wild populations, and from 0 to 1 and 0.403 to 0.861 in P. armeniaca (Table 2).

CONCLUSIONS

We reported the development of 19 genomic SSR markers from enriched genomic SSR libraries in P. sibirica, providing valuable tools for genetic studies in P. sibirica and related species, such as population genetics, germplasm identification, and marker-assisted selection.

APPENDIX 1. Geographic localities of samples of Prunus sibirica used in this study.

Code	Locality	Sample sizes	Geographic coordinates
S01	Yanqing, Beijing, China	1	40°21'N, 116°00'E
S02	Chicheng, Hebei, China	1	41°08'N, 115°54'E
S03	Chongli, Hebei, China	1	41°09'N, 115°06'E
S04	Fengning, Hebei, China	1	41°23'N, 117°06'E
S05	Luanping, Hebei, China	1	40°52'N, 117°37'E
S06	Pingquan, Hebei, China	1	41°19'N, 118°47'E
S07	Pingquan, Hebei, China	1	41°16'N, 118°58'E
S08	Weichang, Hebei, China	1	42°01'N, 118°01'E
Pop. 1	Pingquan, Hebei, China	12	41°16'N, 118°58'E
Pop. 2	Chifeng, Neimenggu, China	12	41°53'N, 120°16'E
Pop. 3	Weichang, Hebei, China	16	42°01'N, 118°01'E

APPENDIX 2. Samples of Prunus armeniaca used in this study. The samples are deposited at the Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Science.

Code	Cultivar name	Original code	Origin
A01	Longwangmao	6-2	Mentougou, Beijing
A02	Yiwofeng	18-8	Zhulu, Hebei
A03	Shushanggan	5-1	Yili, Xinjiang
A04	Chuanzhihong	8-10	Jiu, Hebei
A05	Luotuohuang	4-11	Mentougou, Beijing
A06	Akeqiaoerpaing	12-1	Hetian, Xinjiang

LITERATURE CITED

DOYLE, J. J., AND J. L. DOYLE. 1987. A rapid DNA isolation procedure for small quantities of leaf tissue. Phytocenology Bulletin 19: 11–15.

NUNOME, T., S. NEGORO, K. MIYATAKE, H. YAMAGUCHI, AND H. FUKUOKA. 2006. A protocol for the construction of microsatellite enriched genomic library. Plant Molecular Biology Reporter 24: 305–312.

PEAKALL, R., AND P. E. SMOURSE. 2006. GenAIEx 6: Genetic analysis in Excel. Population genetics software for teaching and research. Molecular Ecology Notes 6: 288–295.

ROZEN, S., AND H. SKELETKEY. 2000. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz (eds.), Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

TAUTZ, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17: 6463–6471.

ZHANG, J. Y., AND Y. HE. 2007. Development of apricot industry belt in northern China. Northern Fruits 1: 33–35 (in Chinese with English abstract).

ZHANG, J. Y., AND Z. ZHANG [eds.]. 2003. Chinese fruit tree: Apricot. China Forestry Press, Beijing, China.

http://www.bioone.org/loi/apps