On the minimal feedback arc set of m-free Digraphs *

Hao Liang†
Department of Mathematics
Southwestern University of Finance and Economics
Chengdu 611130, China

Jun-Ming Xu
School of Mathematical Sciences
University of Science and Technology of China
Wentsun Wu Key Laboratory of CAS
Hefei 230026, China

Abstract
For a simple digraph G, let $\beta(G)$ be the size of the smallest subset $X \subseteq E(G)$ such that $G - X$ has no directed cycles, and let $\gamma(G)$ be the number of unordered pairs of nonadjacent vertices in G. A digraph G is called m-free if G has no directed cycles of length at most m. This paper proves that $\beta(G) \leq \frac{1}{m-2} \gamma(G)$ for any m-free digraph G, which generalized some known results.

Keywords: Digraph, Directed cycle
AMS Subject Classification: 05C20, 05C38

1 Introduction

Let $G = (V, E)$ be a digraph without loops and parallel edges, where $V = V(G)$ is the vertex-set and $E = E(G)$ is the edge-set.

It is well known that the cycle rank of an undirected graph G is the minimum number of edges that must be removed in order to eliminate all of the cycles in the graph. That is, if G has v vertices, ε edges, and ω connected components, then the minimum number of edges whose deletion from G leaves an acyclic graph equals the

*Supported by the Key Project of Chinese Ministry of Education (109140) and NNSF of China (No. 11071233).
†Corresponding author: lianghao@mail.ustc.edu.cn
cycle rank (or Betti number) $\rho(G) = \varepsilon - \nu + \omega$ (see Xu [15]). However, the same problem for a digraph is quite difficulty. In fact, the Betti number for a digraph was proved to be NP-complete by Karp in 1972 (see the 8th of 21 problems in [9]).

A digraph G is called to be m-free if there is no directed cycle of G with length at most m. We say G is acyclic if it has no directed cycles. For a digraph G, let $\beta(G)$ be the size of the smallest subset $X \subseteq E(G)$ such that $G - X$ is acyclic, here X is called a minimal feedback arc-set of G. Let $\gamma(G)$ be the number of unordered pairs of nonadjacent vertices in G, called the number of missing edges of G.

Chudnovsky, Seymour, and Sullivan [4] proved that $\beta(G) \leq \gamma(G)$ if G is a 3-free digraph and gave the following conjecture.

Conjecture 1.1 If G is a 3-free digraph, then $\beta(G) \leq \frac{1}{2} \gamma(G)$.

Concerning this conjecture, Dunkum, Hamburger, and Pór [5] proved that $\beta(G) \leq 0.88 \gamma(G)$. Very recently, Chen et al. [3] improved the result to $\beta(G) \leq 0.8616 \gamma(G)$. Conjecture 1.1 is closely related to the following special case of the conjecture proposed by Caccetta and Häggkvist [2].

Conjecture 1.2 Any digraph on n vertices with minimum out-degree at least $n/3$ contains a directed triangle.

Short of proving the conjecture, one may seek as small a value of c as possible such that every digraph on n vertices with minimum out-degree at least cn contains a triangle. This was the strategy of Caccetta and Häggkvist [2], who obtained the value $c \leq 0.3819$. Bondy [1] showed that $c \leq 0.3797$, and Shen [11] improved it to $c \leq 0.3542$. By using a result of Chudnovsky, Seymour and Sullivan [4] related to Conjecture 1.1, Hamburger, Haxell, and Kostochka [6] further improved this bound to 0.35312. Namely, any digraph on n vertices with minimum out-degree at least 0.35312n contains a directed triangle.

More generally, Sullivan [14] proposed the following conjecture, and gave an example showing that this would be best possible if this conjecture is true. Conjecture 1.1 is the special case when $m = 3$.

Conjecture 1.3 If G is an m-free digraph with $m \geq 3$, then

$$\beta(G) \leq \frac{2}{(m+1)(m-2)} \gamma(G).$$

Sullivan proved partial results of Conjecture 1.3 and showed that $\beta(G) \leq \frac{1}{m-2} \gamma(G)$ for $m = 4, 5$. In this article, we prove the following theorem, which extends Sullivan’s result to more general m-free digraphs for $m \geq 4$.

Theorem 1.4 If G is an m-free digraph with $m \geq 4$, then $\beta(G) \leq \frac{1}{m-2} \gamma(G)$.
2 Some Lemmas

Let G be a simple digraph. For two disjoint subsets $A, B \subseteq V(G)$, let $E(A, B)$ denote the set of directed edges from A to B, that is, $E(A, B) = \{(a, b) | a \in A, b \in B\}$. Let $\bar{E}(A, B)$ be the missing edges between A and B. It follows that

\[|\bar{E}(A, B)| = |\bar{E}(B, A)| = |A| \cdot |B| - |E(A, B)| - |E(B, A)|. \]

A directed (v_0, v_k)-path P in G is a sequence of distinct vertices $(v_0, v_1, \cdots, v_{k-1}, v_k)$, where (v_i, v_{i+1}) is a directed edge for each $i = 0, \cdots, k - 1$, its length is k. Clearly, the subsequence (v_1, \cdots, v_{k-1}) is a (v_1, v_{k-1})-path, denoted by P'. We can denote $P = (v_0, P', v_k)$. A directed path P is said to be induced if every edge in the subgraph induced by vertices of P is contained in P.

For $v \in V(G)$, let $N^+_i(v)$ be the set of vertices u such that the shortest directed (v, u)-path has length i. Similarly, let $N^-_i(v)$ be the set of vertices whose shortest directed path to v has length i. An induced directed (v_0, v_k)-path is called to be shortest if $v_k \in N^+_k(v_0)$. From definition, we immediately have the following result.

Lemma 2.1 If $(v_0, v_1, \cdots, v_{k-1}, v_k)$ is a shortest induced directed (v_0, v_k)-path, then for any i and j with $0 \leq i < j \leq k$,

\[v_j \in N^+_{j-i}(v_i) \quad \text{and} \quad v_i \in N^-_{j-i}(v_j). \]

Let $\mathcal{P}(G)$ be the set of shortest induced directed paths of G, and m be a positive integer with $m \geq 4$. Let $v \in V(G)$ and k be an integer with $1 \leq k \leq m - 3$. For any $P \in \mathcal{P}(G)$ of length $k - 1$ and $x, y, z \in V(G)$, set

\[P_k(v) = \{(x, y, z)| (x, P, y, z) \in \mathcal{P}(G), x = v\} \quad \text{and} \quad p_k(v) = |P_k(v)|, \]

\[Q_k(v) = \{(x, y, z)| (x, P, y, z) \in \mathcal{P}(G), y = v\} \quad \text{and} \quad q_k(v) = |Q_k(v)|, \]

\[R_k(v) = \{(x, y, z)| (x, P, y, z) \in \mathcal{P}(G), z = v\} \quad \text{and} \quad r_k(v) = |R_k(v)|. \]

\[P'_k(v) = \{(x, y, z)| (x, y, P, z) \in \mathcal{P}(G), x = v\} \quad \text{and} \quad p'_k(v) = |P'_k(v)|, \]

\[Q'_k(v) = \{(x, y, z)| (x, y, P, z) \in \mathcal{P}(G), y = v\} \quad \text{and} \quad q'_k(v) = |Q'_k(v)|, \]

\[R'_k(v) = \{(x, y, z)| (x, y, P, z) \in \mathcal{P}(G), z = v\} \quad \text{and} \quad r'_k(v) = |R'_k(v)|. \]

Lemma 2.2 For any integer k with $1 \leq k \leq m - 3$ and $P \in \mathcal{P}(G)$ of length $k - 1$,

\[\sum_{v \in V(G)} p_k(v) = \sum_{v \in V(G)} q_k(v) = \sum_{v \in V(G)} r_k(v), \quad (2.1) \]

and

\[\sum_{v \in V(G)} p'_k(v) = \sum_{v \in V(G)} q'_k(v) = \sum_{v \in V(G)} r'_k(v). \quad (2.2) \]

Proof: For each integer k with $1 \leq k \leq m - 3$ and $P \in \mathcal{P}(G)$ of length $k - 1$,

\[\sum_{v \in V(G)} p_k(v), \sum_{v \in V(G)} q_k(v), \sum_{v \in V(G)} r_k(v) \]

are all equal to the number of triples (x, y, z) of distinct vertices such that $(x, P, y, z) \in \mathcal{P}(G)$ for $P \in \mathcal{P}(G)$. Thus (2.1) holds. The proof of (2.2) is similar. \[\blacksquare \]
Lemma 2.3 If G is an m-free digraph, then for any $v \in V(G)$ and any integer k with $1 \leq k \leq m - 3$,

$$
\begin{align*}
 p_k(v) &= |E(N_{k+1}^+(v), N_{k+2}^+(v))|, \\
 q_k(v) &\leq |E(N_{k+1}^+(v), N_1^+(v))|, \\
 r_k(v) &\leq |E(N_1^-(v), N_{k+2}^+(v))|, \\
 p_k'(v) &\leq |E(N_1^+(v), N_{k+2}^+(v))|, \\
 q_k'(v) &\leq |E(N_{k+1}^+(v), N_1^-(v))|, \\
 r_k'(v) &\leq |E(N_{k+2}^-(v), N_{k+1}^+(v))|.
\end{align*}
$$

Proof: By definition, for each edge $(u, w) \in E(N_{k+1}^+(v), N_{k+2}^+(v))$, there exists $v_i \in N_i^+(v)$, for each $i = 1, 2, \cdots k$, such that $(v, v_1, \cdots, v_k, u, w)$ is a directed (v, w)-path of length $k + 2$. Since G is m-free and $1 \leq k \leq m - 3$, it is easy to see that $(v, v_1, \cdots, v_k, u, w)$ is a shortest induced directed path. It follows that $(v, u, w) \in P_k(v)$ and

$$
p_k(v) \geq |E(N_{k+1}^+(v), N_{k+2}^+(v))|. \tag{2.3}
$$

On the other hand, for each $(v, u, w) \in P_k(v)$, from the definition of $P_k(v)$ and Lemma 2.1 we have $u \in N_{k+1}^+(v)$ and $w \in N_{k+2}^+(v)$. Thus $(u, w) \in E(N_{k+1}^+(v), N_{k+2}^+(v))$. It follows that

$$
p_k(v) \leq |E(N_{k+1}^+(v), N_{k+2}^+(v))|. \tag{2.4}
$$

Combining (2.3) and (2.4), we have that $p_k(v) = |E(N_{k+1}^+(v), N_{k+2}^+(v))|$. The proof of $r_k'(v) = |E(N_{k+2}^-(v), N_{k+1}^+(v))|$ is similar.

For each $(u, w) \in Q_k(v)$, from the definition of $Q_k(v)$ and Lemma 2.1 we have $u \in N_{k+1}^+(v)$, $w \in N_1^+(v)$ and $uw \notin E(G)$. Since G is m-free, we have $(w, u) \notin E(G)$. If not, there exists a directed cycle (v, w, u, \cdots) with length $l = k + 3 \leq m$, a contradiction. So $(u, w) \in |E(N_{k+1}^-(v), N_1^+(v))|$. Thus, $q_k(v) \leq |E(N_{k+1}^- (v), N_1^+(v))|$. The proof of $q_k'(v) \leq |E(N_{k+1}^+(v), N_1^-(v))|$ is similar.

For each $(u, w, v) \in R_k(v)$, from the definition of $R_k(v)$ and Lemma 2.1 we have $u \in N_{k+2}^-(v)$, $w \in N_1^-(v)$ and $(u, w) \notin E(G)$. Since G is m-free, $(w, u) \notin E(G)$. Otherwise, there exists a directed cycle (w, u, \cdots, w) with length $l = k + 2 \leq m - 1$, a contradiction. Thus we have $(u, w) \in |E(N_1^-(v), N_{k+2}^+(v))|$. It derives that $r_k(v) \leq |E(N_1^-(v), N_{k+2}^+(v))|$. The proof of $p_k'(v) \leq |E(N_{k+1}^+(v), N_{k+2}^+(v))|$ is similar.

For any $v \in V(G)$ and any integer k with $1 \leq k \leq m - 3$, set

$$
\alpha_k(v) = \frac{p_k(v)}{s_k(v)} \quad \text{and} \quad \beta_k(v) = \frac{r_k'(v)}{t_k(v)}.
$$

Here

$$
\begin{align*}
 s_k(v) &= \sum_{i=k}^{m-3} p_i'(v) + \sum_{i=1}^{k} q_i'(v) \quad \text{and} \quad t_k(v) = \sum_{i=k}^{m-3} r_i(v) + \sum_{i=1}^{k} q_i(v). \tag{2.5}
\end{align*}
$$

The result is obvious.
Lemma 2.4 If \(a_i \geq 0, b_i \geq 0 \) for each \(i = 1, 2, \cdots, n \), and \(\sum_{i=1}^{n} b_i > 0 \), then

\[
\min_{1 \leq i \leq n} \left\{ \frac{a_i}{b_i} \right\} \leq \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}.
\]

Let

\[
\alpha = \min_{v \in V(G), 1 \leq k \leq m-3} \{\alpha_k(v)\} \quad \text{and} \quad \beta = \min_{v \in V(G), 1 \leq k \leq m-3} \{\beta_k(v)\}.
\]

Applying Lemma 2.4 we obtain the following bound about \(\alpha \) and \(\beta \).

Lemma 2.5 If \(G \) is a \(m \)-free digraph, then

\[
\min\{\alpha, \beta\} \leq \frac{1}{m-2}.
\]

Proof: By Lemma 2.4, we have

\[
\alpha = \min_{v \in V(G), 1 \leq k \leq m-3} \{\alpha_k(v)\} = \min_{v \in V(G), 1 \leq k \leq m-3} \left\{ \frac{p_k(v)}{s_k(v)} \right\} \leq \frac{\sum_{k=1}^{m-3} \sum_{v \in V(G)} p_k(v)}{\sum_{k=1}^{m-3} \sum_{v \in V(G)} s_k(v)},
\]

and

\[
\beta = \min_{v \in V(G), 1 \leq k \leq m-3} \{\beta_k(v)\} = \min_{v \in V(G), 1 \leq k \leq m-3} \left\{ \frac{r_k'(v)}{t_k(v)} \right\} \leq \frac{\sum_{k=1}^{m-3} \sum_{v \in V(G)} r_k'(v)}{\sum_{k=1}^{m-3} \sum_{v \in V(G)} t_k(v)}.
\]

It follows that

\[
\min\{\alpha, \beta\} \leq \frac{\sum_{k=1}^{m-3} \left(\sum_{v \in V(G)} p_k(v) + \sum_{v \in V(G)} r_k'(v) \right)}{\sum_{k=1}^{m-3} \left(\sum_{v \in V(G)} s_k(v) + \sum_{v \in V(G)} t_k(v) \right)},
\]

Summing \(s_k(v) \) and \(t_k(v) \) over all \(v \in V(G) \) and noting (2.5), we have

\[
\sum_{k=1}^{m-3} \sum_{v \in V(G)} s_k(v) = \sum_{k=1}^{m-3} \left(\sum_{i=k}^{m-3} \sum_{v \in V(G)} p_i'(v) \right) + \sum_{k=1}^{m-3} \left(\sum_{i=1}^{k} \sum_{v \in V(G)} q_i'(v) \right)
\]

\[
= \sum_{k=1}^{m-3} \left(\sum_{i=k}^{m-3} \sum_{v \in V(G)} r_i'(v) \right) + \sum_{k=1}^{m-3} \left(\sum_{i=1}^{k} \sum_{v \in V(G)} r_i'(v) \right)
\]

\[
= \sum_{k=1}^{m-3} \left(\sum_{i=1}^{m-3} \sum_{v \in V(G)} r_i'(v) \right) + \sum_{v \in V(G)} r_k'(v)
\]

\[
= (m-2) \sum_{k=1}^{m-3} \sum_{v \in V(G)} r_k'(v)
\]
and
\[
\sum_{k=1}^{m-3} \sum_{v \in V(G)} t_k(v) = \sum_{k=1}^{m-3} \left(\sum_{i=k}^{m-3} \sum_{v \in V(G)} r_i(v) \right) + \sum_{k=1}^{m-3} \left(\sum_{i=1}^{k} \sum_{v \in V(G)} q_i(v) \right) = \sum_{k=1}^{m-3} \left(\sum_{i=1}^{m-3} \sum_{v \in V(G)} p_i(v) \right) + \sum_{k=1}^{m-3} \left(\sum_{i=1}^{k} \sum_{v \in V(G)} p_i(v) \right) = \sum_{k=1}^{m-3} \sum_{i=1}^{m-3} p_i(v) + \sum_{v \in V(G)} p_k(v) = (m-2) \sum_{k=1}^{m-3} \sum_{v \in V(G)} p_k(v).
\]

It follows that
\[
\sum_{k=1}^{m-3} \left(\sum_{v \in V(G)} s_k(v) + \sum_{v \in V(G)} t_k(v) \right) = (m-2) \sum_{k=1}^{m-3} \left(\sum_{v \in V(G)} p_k(v) + \sum_{v \in V(G)} r'_k(v) \right).
\]

Substituting this equality into (2.7) yields
\[
\min \{\alpha, \beta\} \leq \frac{1}{m-2}.
\]

The lemma follows.

\[\blacksquare \]

3 Proof of Theorem 1.4

Clearly Theorem 1.4 holds for \(|V(G)| \leq m\). We proceed the proof by induction on \(|V(G)|\) under the assumption that Theorem 1.4 holds for all digraphs with \(|V(G)| \leq n\), here \(n > m\). Now let \(G\) be an \(m\)-free digraph with \(|V(G)| = n\), we may assume that for any \(v \in V(G)\), \(N^+_1(v) \neq \emptyset\) and \(N^-_1(v) \neq \emptyset\). Otherwise, if there exists \(v \in V(G)\) such that \(N^+_1(v) = \emptyset\) or \(N^-_1(v) = \emptyset\), then \(v\) is not in a directed cycle. From the inductive hypothesis, we can choose \(X \subseteq E(G-v)\) with \(|X| \leq \frac{1}{m-2} \gamma(G-v)\) such that \((G-v) - X\) is acyclic, then \(G - X\) has no directed cycles. It follows that

\[\beta(G) \leq |X| \leq \frac{1}{m-2} \gamma(G-v) \leq \frac{1}{m-2} \gamma(G). \]

From Lemma 2.3, we have that \(\alpha \leq \frac{1}{m-2}\) or \(\beta \leq \frac{1}{m-2}\). For each case, we prove that there exists \(X \subseteq E(G)\) satisfying \(|X| \leq \frac{1}{m-2} \gamma(G)\) and \(G - X\) has no directed cycles.

Case 1. \(\alpha \leq \frac{1}{m-2}\).

By (2.6), there exist a vertex \(v \in V(G)\) and an integer \(k\) with \(1 \leq k \leq m-3\) such that
\[\alpha = \alpha_k(v) = \frac{p_k(v)}{s_k(v)} \leq \frac{1}{m-2}. \]
We consider the partition \(\{V_1, V_2\} \) of \(V(G) \), where
\[
V_1 = \bigcup_{i=1}^{k+1} N_i^+(v), \quad V_2 = V(G) \setminus V_1.
\]

Clearly, \(N_1^-(v) \subset V_2 \) and \(\bigcup_{i=k+2}^{m-1} N_i^+(v) \subset V_2 \). Since \(G \) is an \(m \)-free digraph, we claim
\[
N_1^-(v) \cap \bigcup_{i=1}^{m-1} N_i^+(v) = \emptyset.
\]

Otherwise, let \(u \in N_1^-(v) \cap \bigcup_{i=1}^{m-1} N_i^+(v) \). Then \((u, v) \in E(G) \) and there exists a directed \((v, u)\)-path \(P \) with length \(l_1 \leq m - 1 \). Then \(P + (u, v) \) is a directed cycle with length \(l_1 + 1 \leq m \), a contradiction.

Thus the number of missing edges between \(V_1 \) and \(V_2 \) satisfies
\[
|\bar{E}(V_1, V_2)| \geq |\bar{E}(\bigcup_{i=1}^{k+1} N_i^+(v), N_1^-(v) \cup (\bigcup_{i=k+2}^{m-1} N_i^+(v)))| \\
\geq \sum_{i=k+2}^{m-1} |\bar{E}(N_i^+(v), N_i^+(v))| + \sum_{i=2}^{k+1} |\bar{E}(N_i^+(v), N_i^-(v))| \\
\geq \sum_{i=k}^{m-1} p_i(v) + \sum_{i=1}^{k} q_i(v) \\
= s_k(v).
\]

It follows that
\[
\gamma(G) = \gamma(G_1) + \gamma(G_2) + |\bar{E}(V_1, V_2)| \geq \gamma(G_1) + \gamma(G_2) + s_k(v). \tag{3.1}
\]

Let \(G_i \) be the induced subgraph by \(V_i \) for each \(i = 1, 2 \). Since \(|V_1| < n \) and \(|V_2| < n \), from the inductive hypothesis, we have \(\beta(G_1) \leq \frac{1}{m-2} \gamma(G_1) \) and \(\beta(G_2) \leq \frac{1}{m-2} \gamma(G_2) \). We choose \(X_i \subseteq E(G_i) \) with
\[
|X_i| \leq \frac{1}{m-2} \gamma(G_i) \quad \text{for each } i = 1, 2 \tag{3.2}
\]
such that \(G_i - X_i \) is acyclic.

Let \(X_3 = E(V_1, V_2) \). Then \(X_3 = E(N_{k+1}^+(v), V_2) = E(N_{k+1}^-+v), N_{k+2}^+(v)) \), and
\[
|X_3| = |E(N_{k+1}^+(v), N_{k+2}^+(v))| = p_k(v). \tag{3.3}
\]

Let \(X = X_1 \cup X_2 \cup X_3 \). Then \(G - X \) has no directed cycles and, by \((3.1) \sim (3.3)\),
\[
|X| = |X_1| + |X_2| + |X_3| \\
= |X_1| + |X_2| + p_k(v) \\
\leq \frac{1}{m-2} \gamma(G_1) + \frac{1}{m-2} \gamma(G_2) + \frac{1}{m-2} s_k(v) \\
= \frac{1}{m-2} \left(\gamma(G_1) + \gamma(G_2) + s_k(v) \right) \\
\leq \frac{1}{m-2} \gamma(G).
\]

Case 2. \(\beta \leq \frac{1}{m-2} \).
By (2.7), there exist a vertex \(v \in V(G) \) and an integer \(k \) with \(1 \leq k \leq m - 3 \) such that
\[
\beta = \beta_k(v) = \frac{r_k(v)}{t_k(v)} \leq \frac{1}{m - 2}.
\]

We consider the partition \(\{V_1, V_2\} \) of \(V(G) \), where
\[
V_1 = \bigcup_{i=1}^{k+1} N_i^-(v), \quad V_2 = V(G) \setminus V_1.
\]

Clearly, \(N_1^+(v) \subset V_2 \), \(\bigcup_{i=k+2}^{m-1} N_i^-(v) \subset V_2 \) and \(N_1^+(v) \cap \bigcup_{i=k+2}^{m-1} N_i^-(v) = \emptyset \). The number of missing edges between \(V_1 \) and \(V_2 \) satisfies
\[
|\bar{E}(V_1, V_2)| \geq |\bar{E}(\bigcup_{i=1}^{k+1} N_i^-(v), N_1^+(v) \cup (\bigcup_{i=k+2}^{m-1} N_i^-(v)))| \geq \sum_{i=k+2}^{m-1} |\bar{E}(N_i^-(v), N_i^+(v))| + \sum_{i=2}^{k+1} |\bar{E}(N_i^-(v), N_i^+(v))| - \sum_{i=1}^{k} r_i(v) - \sum_{i=1}^{k} q_i(v) = t_k(v).
\]

Then
\[
\gamma(G) = \gamma(G_1) + \gamma(G_2) + |\bar{E}(V_1, V_2)| \geq \gamma(G_1) + \gamma(G_2) + t_k(v).
\]

Let \(G_i \) be the induced subgraph by \(V_i \) for each \(i = 1, 2 \). For \(i = 1, 2 \), from the inductive hypothesis, \(\beta(G_1) \leq \frac{1}{m-2} \gamma(G_1) \) and \(\beta(G_2) \leq \frac{1}{m-2} \gamma(G_2) \), we can choose \(X_i \subseteq E(G_i) \) with \(|X_i| \leq \frac{1}{m-2} \gamma(G_i) \) such that \(G_i - X_i \) is acyclic. Let \(X_3 = (V_2, V_1) \), we have \(X_3 = E(V_2, N_{k+1}^-(v)) = E(N_{k+2}^-(v), N_{k+1}^+(v)) \), and \(|X_3| = r_k(v) \). Let \(X = X_1 \cup X_2 \cup X_3 \). Then \(G - X \) has no directed cycles. Hence
\[
|X| = |X_1| + |X_2| + |X_3| = |X_1| + |X_2| + r_k(v) \leq \frac{1}{m-2} \gamma(G_1) + \frac{1}{m-2} \gamma(G_2) + \frac{1}{m-2} t_k(v) = \frac{1}{m-2} (\gamma(G_1) + \gamma(G_2) + t_k(v)) \leq \frac{1}{m-2} \gamma(G).
\]

For each case, there exists \(X \subseteq E(G) \) satisfying \(|X| \leq \frac{1}{m-2} \gamma(G) \) and \(G - X \) has no directed cycles. This implies that \(\beta(G) \leq |X| \leq \frac{1}{m-2} \gamma(G) \), and Theorem 1.3 follows.

References

[1] J. A. Bondy, Counting subgraphs: A new approach to the Caccetta-Häggkvist conjecture. Discrete Math. 165/166 (1997), 71-80
On the minimal feedback arc set of m-free Digraphs

[2] L. Caccetta and R. Häggkvist, On minimal digraphs with given girth. Proc. 9th S-E Conf. Combinatorics, Graph Theory and Computing (1978) 181-187

[3] K. Chen, S. Karson, D. Liu, J. Shen, On the Chudnovsky-Seymour-Sullivan Conjecture on Cycles in Triangle-free Digraphs. Discrete Math. (submitted for publication)

[4] M. Chudnovsky, P. Seymour and B. Sullivan, Cycles in dense digraphs. Combinatorica 28 (2008), 1-18

[5] M. Dunkum, P. Hamburger and A. Pór, Destroying cycles in digraphs. Combinatorica 31 (2011), 55-66

[6] P. Hamburger, P. Haxell, and A. Kostochka, On the directed triangles in digraphs. Electronic J. Combin. 14 (2007), Note 19

[7] Y. O. Hamidoune, A note on minimal directed graphs with given girth. J. Combin. Theory, Ser. B, 43(3) (1987), 343-348

[8] C. Hoáng and B. Reed, A note on short cycles in digraphs. Discrete Math. 66(1-2) (1987), 103-107

[9] R. M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, (R. E. Miller and J. W. Thatcher, eds.), New York, Plenum, 1972, pp. 85-103.

[10] Q. Li and R. A. Brualdi, On minimal regular digraphs with girth 4. Czechoslovak Math. J, 33 (1983), 439-447

[11] J. Shen, Directed triangles in digraphs. J. Combin. Theory, Ser. B, 74 (1998), 405-407

[12] J. Shen, On the girth of digraphs. Discrete Math. 211(1-3) (2000), 167-181

[13] B. D. Sullivan, A summary of results and problems related to the Caccetta-Häggkvist Conjecture. Arxiv preprint math/0605646, 2006-arxiv.org

[14] Sullivan, B., Extremal Problems in Digraphs. Ph.D. thesis, Princeton University, May 2008

[15] J.-M. Xu, Theory and Application of Graphs. Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.