Production of High Added-Value Chemicals in *Basfia succiniciproducens*: Role of Medium Composition

Hunor Bartos 1,* , Mártá Balázs 1, Ildikó Hajnalka Kuzman 2, Szabolcs Lányi 2 and Ildikó Miklóssy 2

1 Faculty of Science, University of Pécs, Ifjúság 6, H-7624 Pécs, Hungary; balazsmarta@uni.sapiencia.roc
2 Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piața Libertății 1, 530104 Miercurea Ciuc, Romania; kuzman.hajnalka@gmail.com (I.H.K.); lanyiszabolcs@uni.sapiencia.ro (S.L.); mikllossyildiko@uni.sapiencia.ro (I.M.)

* Correspondence: bartoshunor@uni.sapiencia.ro

Abstract: Succinic acid production through biological fermentation led to new pathways in the integration of renewable feedstock from different industries into biosynthesis. In this article, we investigate the population growth dynamics and succinic acid production potential of the recently isolated natural succinic acid producer, *Basfia succiniciproducens*, using in silico constraint-based metabolic models as well as in vitro experiments. Our work focuses on the influence of different renewable substrates and added yeast extract on fermentation dynamics, and the produced metabolites of the strain cultured in minimal (minimal) medium. According to our experiments, which were carried out as small-scale fermentations and in bioreactor conditions, glucose is the preferred carbon source, while the addition of 1% yeast extract has a significant positive effect on biomass formation. In the case of *B. succiniciproducens* cultured in minimal salt medium, a production potential as high as 47.09 mM succinic acid was obtained in these conditions. Industrial applications related to this bacterial strain could contribute to new possibilities for the re-use of byproducts by using fermentation processes, leading to high added-value compounds.

Keywords: *Basfia succiniciproducens*; succinic acid; yeast extract effect; bacterial growth; batch cultivation

1. Introduction

Worldwide, bio-based succinic acid annual production adds up to 36,600 tons using strains of *B. succiniciproducens* [1], *Escherichia coli* and yeasts (possibly *Candida kruose*) on biomass feedstock like glycerol, sorghum or corn [2]. The projected potential market size of succinic acid is expected to reach 700,000 tons/year by 2020 [3], while biosynthesis based on renewable resources is viewed as a sustainable alternative to replace the petrochemical based succinic acid production. As Nghiem et al. reports, an LCA (Life-cycle assessment) study was conducted at Myriant’s Louisiana plant. Sorghum grains were used as feedstock in comparison with petrochemical-based succinic acid production. The costs were half as much in the case of bio-based succinic acid production; USD 1.17/kg compared to USD 2.89/kg (in the case of petrochemical-based synthesis). Furthermore, global warming potential (GWP) and non-renewable fossil cumulative energy demand (non-ren CED) in the case of petrochemical routes was 3.85 and 10.44 times higher, respectively, than the base case, where glucose was used. Based on information in the study, it is indicated that biosynthetic production should be used [4]. Use of sustainable raw materials instead of petrochemicals is of great importance, in order to reduce the negative health, social and economic impact of air pollution, as well as to contribute to the development of circular economy [5–15]. Ferone et al. reports that high-sugar-content beverages (HSCBs) can be used for succinic acid production [16]. Whey or bakery waste also can be used as Louasté et al. and Zhang et al. present [17,18]. Glucose can be derived from many renewable sources, including the linear glucose chain which builds cellulose as Ramesh et al. explain [19]. As Kuenz et al. report, after several steps (hot water extraction, concentration,
ultrafiltration, recovery of monomeric/oligomeric carbohydrates) xylose can be derived from birch wood [20]. The transesterification of waste frying oil results in a step by step method to achieve glycerol [21].

In recent years, bio-based chemical precursor production have become a strongly growing industry, especially for biopolymer and bioplastic compounds [22–24]. Various bacterial strains, such as *E. coli* and *Mannheimia succiniciproducens* (further shown in Table 1) are used for the production of different platform molecules [23–30].

Several biotechnology companies (BioAmber, Succinity, Myriant, Reverdia) produce thousands of tons of succinic acid with microorganisms such as *E. coli*, *M. succiniciproducens* and other microbial strains mentioned in Table 1 [31], mainly from renewable carbon sources. Succinic acid or amber acid is a naturally occurring compound in various forms of esters [4], due to its wide range of applications in the pharmaceutical, chemical and food industry. It is included in the list of the top 12 platform chemicals by the US Department of Energy.

For the successful bio-based production of a target molecule, several criteria have to be reached, mainly cheap substrates and fermentative conditions on one hand, and high titers, production rates, and yield on the other. In order to address these issues, different microorganisms in different conditions have been tested over the last decade to optimize the production potential. Some of the potential industrial hosts are presented in “Table 1”.

Table 1. Potential microbial candidate strains for succinic acid production through fermentation.

Bacterial Strain	Reached Titer (g L⁻¹)	Substrate	Reference
Anaerobiospirillum succiniciproducens	100	Sorbitol, glycerol	[32]
Actinobacillus succinogenes	50	Corn stover	[33]
A. succinogenes	109	Glucose	[4]
Corynebacterium glutamicum	113	Glucose	[34]
B. succiniciproducens	17	*Arundo donax* hydrolysate	[3]
B. succiniciproducens	5.21	Crude glycerol	[35]
B. succiniciproducens	26	Xylose	[36]

Cimini et al. [22] reports that *Arundo donax* was used as feedstock for biosynthesis of succinic acid after preliminary hydrolysis of the raw material. Spent yeast cells as a nitrogen source and corn fiber as a carbon source were used by the research group of Chen [37]. In these conditions, a succinic acid yield of 67.7% from 70.3 g L⁻¹ total sugars was reached with an *A. succinogenes* strain. Later on, Liu et al. used pretreated sugarcane bagasse as substrate to obtain 18.88 g L⁻¹ succinic acid with *E. coli* BA204 strain under anaerobic fermentation [38]. These raw materials are theoretically sustainable and cost advantageous. Their limitation, however, consists in the presence of different inhibitors due to pretreatment such as furfural, acetate or 5-hydroxymethylfurfural (HMF), which can have a remarkable impact on cell growth [3,39].

B. succiniciproducens is a member of the Pasteurellaceae family, which was first isolated from bovine rumen juice in 2008 and described in detail by the German chemical company BASF in Ludwigshafen, Germany [40]. The presented microorganism is a prominent succinic acid producer due to its facultative anaerobic metabolism and broad substrate utilization spectrum [41].

Currently, metabolic reconstructions are widely used to simulate and analyze the metabolic potential of an organism under different environmental and genetic conditions [42,43]. Here, we utilize a systems biology approach to determine the metabolic flux
distribution and growth rate of *B. succiniciproducens*, using flux balance analysis (FBA) mathematical modeling to quantitatively predict microbial metabolism under steady-state conditions.

The goal of this work was to monitor the population growth dynamics and metabolic profile of the *B. succiniciproducens* bacterial strain under different conditions, namely different carbon sources and concentration of yeast extract. Several substrate concentrations were tested and their effect on the fermentation was assessed. Bioreactor experiments were conducted after several preliminary smaller scale tests in mineral media.

2. Materials and Methods

2.1. In Silico Simulations

In our simulations, we used the most recent metabolic reconstruction of *B. succiniciproducens*, representing the base model, which accounts for more than 60 reactions and metabolites [44]. Simulations were carried out using MATLAB (Mathworks Inc., Natick, MA, USA) and COBRA Toolbox software packages with Gurobi Optimizer (Gurobi Inc., Ann Arbor, MI, USA) [45,46]. During simulations, the substrate uptake rates were fixed as follows: glucose, xylose, glycerol to 7.7/9.24/15.06 mM gDW$^{-1}$ h$^{-1}$, respectively, based on literature data [44]. For maintaining the carbon number in the case of each substrate (glucose—6 carbon atoms, xylose—5 carbon atoms, glycerol—3 carbon atoms), well calculated fluxes were used. Two types of flux analyses were performed; firstly, substrate and oxygen uptake rate were fixed, as described above. In the second case, theoretical maximum predictions were simulated, which meant that fixing the quantity of biomass could be produced (this value was set to 0.1 h$^{-1}$) near the above-mentioned constraints. Regarding the environmental conditions, the oxygen uptake rate was set to zero to create anaerobic conditions. Simulations were carried out by solving a linear optimization problem (FBA, (1)) with a biologically relevant objective function, namely biomass formation:

$$
\max Z = c^T v \\
\text{subject to } S v = 0 \\
v_{lb} < v < v_{ub}
$$

where Z is the objective function for maximization or minimization, c is a vector of weights, presenting how each reaction marked with v contributes to the objective function, S is the stoichiometric matrix, and v_{lb} and v_{ub} mean the lower and upper bounds/limits of the fluxes. For example, the objective function can be the maximum production of biomass or a given product (organic acid) [43].

2.2. Strain

The examined strain *B. succiniciproducens* (DSM-22022) was obtained from DSMZ—German Collection of Microorganisms and Cell Cultures [1]. Cells were rehydrated in TSB (Tryptic soy broth) media, containing 17 g·L$^{-1}$, peptone from soymeal 3 g·L$^{-1}$, D (+)-glucose 2.5 g·L$^{-1}$, NaCl 5 g·L$^{-1}$, K$_2$HPO$_4$ 2.5 g·L$^{-1}$, pH was set to 7 (chemicals were purchased from VWR and Sigma-Aldrich, Taufkirchen, Germany). General culture maintenance was carried out at 37 $^\circ$C and 130 rpm in a shaking incubator (Sartorius CERTOMAT® BS-T, Yumpu, Switzerland) for 8 h.

2.3. Microplate Experiments

Small volume population growth dynamics studies were carried out in a 96-well microplate (BRAND plates®, Taufkirchen, Germany) and set-up and absorbance was monitored on $\lambda = 595$ nm by a FLUOStar Optima (BMG Labtech GmbH, Ortenberg, Germany) microplate reader. 100 µL total volume of media per well on microplate set-up were inoculated with the same cell density (initial OD$_{595}$ of 0.3) and population growth dynamics parameters were followed by an in situ measurement of optical density at 595 nm, without changing the total volume. Applied culture conditions were as follows: incubation at pH = 6.8 incubation temperature 37 $^\circ$C, optical density at 595 nm, 40 cycles of 1800 s cycle time, 90 s shaking with 150 rpm before each measurement. Population growth dynamics
were examined on the tested three substrates: glucose, xylose and glycerol in 5-15-30-50 and 70 g·L⁻¹ concentration. Throughout the fermentations, minimal media was used with the following composition: 0.1/1 g·L⁻¹ yeast extract, 1 g·L⁻¹ NaCl, 0.2 g·L⁻¹ MgCl₂·6H₂O, 0.2 g·L⁻¹ CaCl₂·2H₂O, 3 g·L⁻¹ K₂HPO₄, 5 g·L⁻¹ (NH₄)₂SO₄ (chemicals from VWR and Sigma-Aldrich, USA).

2.4. Bioreactor Fermentation and Metabolic Profile Analysis

Conditions in the bioreactor in all experiments were 37 °C, 50 cm³·min⁻¹ CO₂ flow rate, pH = 7, and agitation speed was controlled at 150 rpm (radial impeller), using the above-described minimal medium with 50 g L⁻¹ substrate. During the fermentation carried out in the bioreactor, the pH was monitored by continuous measurements and was regulated with 1 M NaOH and 1 M HCl. In this work for fermentations, a performant Sartorius Biostat® (Taufkirchen, Germany) A Plus system with BioPAT® (Goettingen, Germany) MFCS/DA monitoring and controlling unit was used with 1 L total volume reactor vessel and 0.5 L working volume. During fermentation, the samples (2 mL) were taken every two hours for monitoring key parameters and the produced organic acids (succinic acid, acetic acid, formic acid, lactic acid) quantity through the fermentation time. The preparation of samples for high pressure liquid chromatography analysis was the following: culture samples were centrifuged for 10 min at 14,000 rpm and filtered over 0.45 µm Whatman® (Taufkirchen, Germany) sterile filters. Analysis of organic acids and carbohydrates was carried out using the Agilent Infinity 1260 HPLC system, equipped with diode array detection (DAD) and refractive index detector (RID), respectively. In auto-sampling mode, 20 µL samples of the filtered culture supernatants were analyzed, separated on a Coregel 87H3 column. Measurements were carried out using the following parameters: 50 °C column temperature, mobile phase was 0.008 N H₂SO₄ with 600 mL·min⁻¹ flowrate.

3. Results and Discussion

By using sustainable feedstocks, as well as minimal mediums (containing ideally inorganic salts), the production of value-added components (e.g., succinic acid) redounds to a cost-efficient solution. While this article shows the usability of different substrates, the literature reports that the origins of these can be explained. In order to contribute to the understanding of target metabolite production, we proposed the investigation of population growth dynamics and target product forming potential in different substrate conditions of the recently isolated natural succinic acid producer B. succiniciproducens, using in silico constraint-based metabolic models and in vitro experiments.

Constraint-based simulations were carried out for the strain under the specified conditions—glucose uptake rate set to the closest to that observed experimentally, anaerobic conditions—and the results show that, on glucose, the optimal growth rate for this strain is 0.3 h⁻¹. Throughout predictive simulations along the target reaction (biomass), there are several metabolites which are produced such as succinic acid, acetic acid, lactic acid and formic acid, the concentrations of which are determined in mM gDW⁻¹ h⁻¹. Using flux balance analysis and theoretical maximum predictions, we can see the succinic acid production differences between undetermined and fixed biomass (undetermined vs. fixed). In the case of each substrate, the predictions show a doubled succinic acid flux. Glucose and xylose reach 5.57 and 5.79 mM gDW⁻¹ h⁻¹ fluxes, respectively, compared with glycerol, which presents a lower flux with a 4.52 mM gDW⁻¹ h⁻¹ value in normal conditions (undetermined biomass flux). By setting the constraint on biomass to 0.1 value, we can see an increased succinic acid flux in each case. If pathways to biomass creation are limited, carbon fluxes are headed to organic acids that can be produced. Results are presented in Figure 1.
Thus, our goal in this phase was to assess, in small-scale cultures, the effect of different renewable substrates (glucose, xylose, and glycerol) on population growth dynamics of the strain in mineral media, as well as to what extent the essential vitamin and amino acid containing yeast extract would contribute to biomass formation. Cultivation condition in this set up can be considered microaerobic due to the volume of the cultures (100 µL culture/well) and reduced shaking during fermentation. A first set of experiments was carried out using minimal medium with different substrate (5–70 g·L⁻¹) and yeast extract concentrations (0.1 and 1 g·L⁻¹). Utilization of minimal media was based on the theory that metabolic modelling is based on mathematic exchange reactions. These reactions are described in minimal conditions, where media composition has the least impact on cell activity. The impact of yeast extract and substrate concentration on cellular growth under the specified environmental conditions was assessed using a microplate reader, evaluating, in real time, the potential substrate inhibition on cell growth. Results describing microplate experiments are shown in “Figure 2”, where we can observe that B. succiniciproducens is able to grow even on high substrate concentrations (70 g·L⁻¹). The highest optical density in microtiter plate experiments was found in the case of xylose, reaching a maximum OD of 1.33, for an initial substrate concentration of 30 g·L⁻¹ supplemented with 1 g·L⁻¹ yeast extract. Regarding the differences between carbon sources, xylose can be considered the most effective substrate from the tested range, as cultures grown on this substrate presented the highest OD values under every condition tested. Moreover, in the case of this substrate, our culture presented the shortest adaptation period/phase under this experimental setting. Considering our results from microplate experiments, it seems that, in B. succiniciproducens, the initial substrate concentration did not significantly influence the population growth dynamics, but rather was controlled by the concentration of yeast extract. In the case of glycerol, in every condition tested, we observed a reduced growth potential of the strain on this hardly assimilable substrate compared to other examined substrates (glucose, xylose). In the case of this substrate, the growth-promoting effect of yeast extract is obvious; our cultures showed a maximal OD₅₉₅ value of around 1.2, regardless of the concentration of substrate, in the case of the addition of 1 g·L⁻¹ yeast extract. The critical inhibitory concentration for glycerol was also evaluated in microtiter plates and found to be 50 g·L⁻¹ in our experimental setting.
In the following sets of experiments, we proposed to examine the population growth dynamics and metabolic profile of our strain, in a scaled-up and controlled environment, under the conditions identified in the previous step of our work. Briefly, the following parameters were used for bioreactor fermentations: 50 g·L⁻¹ substrate (xylose, glucose, glycerol), 1 g·L⁻¹ yeast extract in mineral medium.

Figure 2. Cont.
Figure 2. Effect of initial substrate and yeast extract (YE) concentration on \textit{B. succiniciproducens} population growth dynamics in microplate experiments. Legend: orange line—glucose, blue line—xylose, grey line—glycerol, green line—control (without added bacteria). (a,c,e,g,i) shows the optical density over time with concentrations 5, 15, 30, 50, 70 g·L⁻¹ respectively on glucose, glycerol and xylose with supplemented 0.1 g·L⁻¹ YE. Subfigures (b,d,f,h,j) presents the optical density over time with concentrations 5, 15, 30, 50, 70 g·L⁻¹ respectively on glucose, glycerol and xylose with supplemented 1 g·L⁻¹ YE.

In the following sets of experiments, we proposed to examine the population growth dynamics and metabolic profile of our strain, in a scaled-up and controlled environment, under the conditions identified in the previous step of our work. Briefly, the following parameters were used for bioreactor fermentations: 50 g·L⁻¹ substrate (xylose, glucose, glycerol), 1 g·L⁻¹ yeast extract in mineral medium.

Due to the fact that \textit{B. succiniciproducens} is capnophilic bacterium, CO₂ can be metabolized and may play a key role in the fermentation process [1]. To address this issue, fermentation experiments were performed in a bioreactor (1 L total volume) with a working volume of 0.5 L, with CO₂ sparging at a rate of 50 cm³·min⁻¹. Growth profiles of \textit{B. succiniciproducens} in bioreactor cultures on three different substrates are presented in “Figure 3”.

In the following sets of experiments, we proposed to examine the population growth dynamics and metabolic profile of our strain, in a scaled-up and controlled environment, under the conditions identified in the previous step of our work. Briefly, the following parameters were used for bioreactor fermentations: 50 g·L⁻¹ substrate (xylose, glucose, glycerol), 1 g·L⁻¹ yeast extract in mineral medium.

Due to the fact that \textit{B. succiniciproducens} is capnophilic bacterium, CO₂ can be metabolized and may play a key role in the fermentation process [1]. To address this issue, fermentation experiments were performed in a bioreactor (1 L total volume) with a working volume of 0.5 L, with CO₂ sparging at a rate of 50 cm³·min⁻¹. Growth profiles of \textit{B. succiniciproducens} in bioreactor cultures on three different substrates are presented in “Figure 3”.

In the following sets of experiments, we proposed to examine the population growth dynamics and metabolic profile of our strain, in a scaled-up and controlled environment, under the conditions identified in the previous step of our work. Briefly, the following parameters were used for bioreactor fermentations: 50 g·L⁻¹ substrate (xylose, glucose, glycerol), 1 g·L⁻¹ yeast extract in mineral medium.

Due to the fact that \textit{B. succiniciproducens} is capnophilic bacterium, CO₂ can be metabolized and may play a key role in the fermentation process [1]. To address this issue, fermentation experiments were performed in a bioreactor (1 L total volume) with a working volume of 0.5 L, with CO₂ sparging at a rate of 50 cm³·min⁻¹. Growth profiles of \textit{B. succiniciproducens} in bioreactor cultures on three different substrates are presented in “Figure 3”.

In the following sets of experiments, we proposed to examine the population growth dynamics and metabolic profile of our strain, in a scaled-up and controlled environment, under the conditions identified in the previous step of our work. Briefly, the following parameters were used for bioreactor fermentations: 50 g·L⁻¹ substrate (xylose, glucose, glycerol), 1 g·L⁻¹ yeast extract in mineral medium.

Due to the fact that \textit{B. succiniciproducens} is capnophilic bacterium, CO₂ can be metabolized and may play a key role in the fermentation process [1]. To address this issue, fermentation experiments were performed in a bioreactor (1 L total volume) with a working volume of 0.5 L, with CO₂ sparging at a rate of 50 cm³·min⁻¹. Growth profiles of \textit{B. succiniciproducens} in bioreactor cultures on three different substrates are presented in “Figure 3”.

In the following sets of experiments, we proposed to examine the population growth dynamics and metabolic profile of our strain, in a scaled-up and controlled environment, under the conditions identified in the previous step of our work. Briefly, the following parameters were used for bioreactor fermentations: 50 g·L⁻¹ substrate (xylose, glucose, glycerol), 1 g·L⁻¹ yeast extract in mineral medium.

Due to the fact that \textit{B. succiniciproducens} is capnophilic bacterium, CO₂ can be metabolized and may play a key role in the fermentation process [1]. To address this issue, fermentation experiments were performed in a bioreactor (1 L total volume) with a working volume of 0.5 L, with CO₂ sparging at a rate of 50 cm³·min⁻¹. Growth profiles of \textit{B. succiniciproducens} in bioreactor cultures on three different substrates are presented in “Figure 3”.
As previously reported, the wild type of the studied microorganism can naturally produce relatively high amounts of succinic acid from different carbon sources. To assess the metabolic potential of our cultures grown on different carbon sources in mineral medium, the produced metabolites (succinic acid, acetic acid, formic acid and lactic acid) were analyzed at the end of the fermentation (“Figure 4”).
Based on the obtained data, we can conclude that the highest amount of succinic acid, 47.097 mM, was reached after 20 h of fermentation in the case of glucose, and acetic, formic and lactic acid were the major organic acid by-products. In the case of glycerol, around 79% lower succinic acid production was observed at the same time point, with a 9.491 mM concentration. In the case of xylose, the highest measured succinic acid concentration was 7.196 mM. In order to increase the production of succinic acid, it is necessary to optimize the fermentation conditions and to reduce or eliminate the by-product formation, e.g., by a metabolic engineering approach and long-term adaptation experiments.

4. Conclusions

Mathematical models describing metabolic systems are powerful tools to analyze the metabolic potential of different organisms under different environmental conditions and to decipher the possible modification necessary to design industrially important strains. The in silico simulation results revealed the metabolic reconstruction of *B. succiniciproducens*, even if it is not a genome-scale reconstruction, can be used to analyze the most important metabolic functions and make predictions regarding the growth and production rate of organic acids, including succinic acid as well. Bacterial behavior, in the case of the natural succinic acid producer *B. succiniciproducens* as a result of different environmental effects, was investigated based on fermentation data. The present study provides valuable information about the strain growth potential on different renewable carbon sources (glucose, xylose and glycerol), as well as the effect of additives on population growth dynamics. Our goal was to show the effect of yeast extract concentration on cellular growth, while the obtained data shows a clear difference between the two studied yeast extract concentrations.

According to the literature, *B. succiniciproducens* is a robust succinic acid producer with a wide substrate utilization spectrum, while in-depth physiological description of the species is scarce. Our results revealed the effect of substrate concentration on the population growth dynamics of the strain. Our data suggest that the strain can produce biomass over a wide range of substrate concentrations, for example, it can reach OD$_{595}$ 1.3 value on xylose (70 g·L$^{-1}$ substrate concentration). According to our findings, in the case of glycerol, we determined a substrate inhibition concentration of 50 g·L$^{-1}$ that affects growth and biomass formation of the strain. The addition of 1 g·L$^{-1}$ yeast extract,
compared to 0.1 g·L⁻¹ yeast extract, had a higher positive impact over bacterial growth in all examined conditions.

According to our studies conducted in the bioreactor set up under CO₂ atmosphere, glucose was the most suitable substrate. The metabolite profile of fermentation showed the presence of metabolic by-products (acetic acid, formic acid and lactic acid) and the target product, succinic acid, was formed. Our findings suggest that lignocellulosic feedstocks (containing glucose, xylose) can be utilized as industrial substrates, and would be a cost efficient solution for the production of high added-value components, such as succinic acid [49]. The highest succinic acid concentration, 5.55 g·L⁻¹ (47.097 mM), reached is comparable to those presented in the literature: 4.6–6.4 g·L⁻¹ with glycerol [35], 26 g·L⁻¹ using xylose [36], and 30 g·L⁻¹ on lignocellulosic hydrolysate, used as main carbon sources [50].

Author Contributions: Conceptualization, I.M.; Data curation, I.H.K.; Formal analysis, H.B.; Investigation, H.B., M.B. and I.H.K.; Methodology, M.B.; Project administration, S.L. and I.M.; Supervision, S.L.; Validation, S.L.; Visualization, H.B.; Writing—original draft, H.B.; Writing—review and editing, I.M. All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by the Sapientia University 2017/2018 Research Program, grant nr. 227/2/17.05.2017.

Data Availability Statement: Chemicals for lab experiments were purchased from VWR (vwr.com) and Sigma-Aldrich (sigmaaldrich.com). Accessing date: 8 November 2019 and 8 December 2019 respectively.

Acknowledgments: The authors thanks the support from Doctoral School of Chemistry, University of Pécş.

Conflicts of Interest: The authors declare no conflict of interest.

Ethics Approval and Consent to Participate: The manuscript it is not submitted to more than one journal for consideration. This work is original and it is not published elsewhere in any form or language. In the manuscript experiments no human subject was included for whom the participate consent should be declared.

References

1. Kuhnert, P.; Scholten, E.; Haefner, S.; Mayor, D.; Frey, J. Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. *Int. J. Syst. Evol. Microbiol.* **2010**, *60*, 44–50. [CrossRef]
2. Becker, J.; Lange, A.; Fabarius, J.; Wittmann, C. Top value platform chemicals: Bio-based production of organic acids. *Curr. Opin. Biotechnol.* **2015**, *36*, 168–175. [CrossRef] [PubMed]
3. Cimini, D.; Argenzio, O.; D’Ambrosio, S.; Lama, L.; Finore, I.; Finamore, R.; Pepe, O.; Faraco, V.; Schiraldi, C. Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. *Bioresour. Technol.* **2016**, *222*, 355–360. [CrossRef] [PubMed]
4. Nghiem, N.P.; Kleff, S.; Schwegmann, S. Succinic Acid: Technology Development and Commercialization. *Fermentation* **2017**, *3*, 26. [CrossRef]
5. Szép, R.; Bodor, Z.; Miklóssy, I.; Níttá, I.-A.; Oprea, O.A.; Keresztesi, Á. Influence of peat fires on the rainwater chemistry in intra-mountain basins with specific atmospheric circulations (Eastern Carpathians, Romania). *Sci. Total Environ.* **2019**, *647*, 275–289. [CrossRef]
6. Szép, R.; Mateescu, E.; Níttá, I.-A.; Birsan, M.-V.; Bodor, Z.; Keresztesi, Á. Effects of the Eastern Carpathians on atmospheric circulations and precipitation chemistry from 2006 to 2016 at four monitoring stations (Eastern Carpathians, Romania). *Atmos. Res.* **2018**, *214*, 311–328. [CrossRef]
7. Szép, R.; Mateescu, E.; Nechifor, A.C.; Keresztesi, Á. Chemical characteristics and source analysis on ionic composition of rainwater collected in the Carpathians ‘Cold Pole,’ Ciuc basin, Eastern Carpathians, Romania. *Environ. Sci. Pollut. Res. Int.* **2017**, *24*, 27288–27302. [CrossRef] [PubMed]
8. Keresztesi, A.; Sandor, P.; Ghita, G.; Dumitru, F.D.; Moncea, M.A.; Ozunu, A.; Szep, R. Ammonium Neutralization Effect on Rainwater Chemistry in the Basins of the Eastern Carpathians—Romania. *Rev. Chim.* **2018**, *69*, 57–63. [CrossRef]
9. Korodi, A.; Petres, S.; Keresztesi, Á. Sustainable Development. Theory or Practice? In Proceedings of the International Multidisciplinary Scientific GeoConference & EXPO SGEM2017, Albena, Bulgaria, 29 June–5 July 2017; p. 8.
10. Keresztesi, Á.; Birsan, M.-V.; Níta, I.-A.; Bodor, Z.; Robert, S. Assessing the neutralisation, wet deposition and source contributions of the precipitation chemistry over Europe during 2000–2017. *Environ. Sci. Eur.* **2019**, *31*. [CrossRef]
11. Keresztesi, Á.; Nita, I.-A.; Birsan, M.-V.; Bodor, Z.; Pernyeszi, T.; Mícheu, M.M.; Szép, R. Assessing the variations in the chemical composition of rainwater and air masses using the zonal and meridional index. *Atmos. Res.* **2020**, *237*, 104846. [CrossRef]

12. Keresztesi, Á.; Nita, I.-A.; Birsan, M.-V.; Bodor, Z.; Szép, R. The risk of cross-border pollution and the influence of regional climate on the rainwater chemistry in the Southern Carpathians, Romania. *Environ. Sci. Pollut. Res.* **2020**, *27*, 9382–9402. [CrossRef] [PubMed]

13. Szep, R.; Keresztesi, D.; Deak, G.; Toba, F.; Ghimpus, M. The Dry Deposition of the PM10 and PM2.5 to the Vegetation and its Health Effect in the Ciuc Basin. *Rev. Chim.* **2016**, *67*, 639–644.

14. Szep, R.; Matyas, L. The role of regional atmospheric stability in high-PM10 concentration episodes in Miercurea Ciuc (Harghita). *Carpathian J. Earth Environ. Sci.* **2014**, *9*, 241–250.

15. Petres, S.; Szabócs, L.; Piriantu, M.; Keresztesi, Á.; Nechifor, A. Evolution of Tropospheric Ozone and Relationship with Temperature and NOx for the 2007–2016 Decade in the Ciuc Depression. *Rev. Chim.* **2018**, *69*. [CrossRef]

16. Ferone, M.; Ercole, A.; Raganati, F.; Olivieri, G.; Salatino, P.; Marzocchella, A. Efficient succinic acid production from high-sugar-content beverages (HSCBs) by Actinobacillus succiniger. *Biotechnol. Prog.* **2019**, *35*, 36. [CrossRef] [PubMed]

17. Louasté, B.; Eloutassi, N. Succinic acid production from whey and lactose by Actinobacillus succiniger 130Z in batch fermentation. *Biotechnol. Rep.* **2020**, *27*, e00481. [CrossRef]

18. Zhang, A.Y.-Z.; Sun, Z.; Leung, C.C.J.; Han, W.; Lau, K.Y.; Li, M.; Lin, C.S.K. Valorisation of bakery waste for succinic acid production. *Green Chem.* **2013**, *15*, 690–695. [CrossRef]

19. Ramesh, H.P.; Tharanathan, R.N. Carbohydrates—The Renewable Raw Materials of High Biotechnological Value. *Crit. Rev. Biotechnol.* **2003**, *23*, 149–173. [CrossRef]

20. Kuenz, A.; Jäger, M.; Niemi, H.; Kallioinen, M.; Mänttäri, M.; Prüße, U. Conversion of Xylose from Birch Hemicellulose Hydrolysate to 2,3-Butanediol with Bacillus subtilis. *Fermentation* **2020**, *6*, 86. [CrossRef]

21. Harabi, M.; Bouguerra, S.N.; Marrakchi, F.; Chrysikou, L.P.; Bezergianni, S.; Bouaziz, M. Biodiesel and Crude Glycerol from Waste Frying Oil: Production, Characterization and Evaluation of Biodiesel Oxidative Stability with Diesel Blends. *Sustainability 2019*, *11*, 1937. [CrossRef]

22. Cimini, D.; Zaccariello, L.; D’Ambrosio, S.; Lama, L.; Ruoppolo, G.; Pepe, O.; Faraco, V.; Schiraldi, C. Improved production of succinic acid from *Basfia succiniciproducens* growing on A. donax and process evaluation through material flow analysis. *Biotechnol. Biofuels* **2019**, *12*, 22. [CrossRef]

23. Lee, J.W.; Yi, J.; Kim, T.Y.; Choi, S.; Ahn, J.H.; Song, H.; Lee, M.-H.; Lee, S.Y. Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens. *Metab. Eng.* **2016**, *38*, 409–417. [CrossRef] [PubMed]

24. Saha, B.C.; Kennedy, G.J. Efficient itaconic acid production by *Aspergillus terreus*: Overcoming the strong inhibitory effect of manganese. *Biotechnol. Prog.* **2020**, *36*. [CrossRef] [PubMed]

25. Miklóssy, I.; Bodor, Z.; Sinkler, R.; Orbán, K.C.; Lányi, S.; Albert, B. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered *E. coli*. *J. Biomol. Struct. Dyn.* **2017**, *35*, 1874–1889. [CrossRef] [PubMed]

26. Bodor, Z.; Kovács, E.; Albert, B. Systems biology and metabolic engineering for obtaining *E. coli* mutants capable to produce succinate from renewable resources. *Rom. J. Biol. Lett.* **2014**, *19*, 12.

27. Bodor, Z.; Tompos, L.; Nechifor, A.C.; Bodor, K. In silico Analysis of 1,4-butanediol Heterologous Pathway Impact on Escherichia coli Metabolism. *Rev. Chim.* **2019**, *70*, 3448–3455. [CrossRef]

28. Bodor, Z.; Lányi, S.; Albert, B.; Bodor, K.; Nechifor, A.C.; Miklóssy, I. Model Driven Analysis of the Biosynthesis of 1,4-butanediol from Renewable Feedstocks in Escherichia coli. *Rev. Chim.* **2019**, *70*, 3808–3817. [CrossRef]

29. Bodor, Z.; Fazakas, A.; Kovács, E.; Szabócs, L.; Ábrahám, B. Biotechnological production of succinic acid from glycerol; The role of co-substrates. *Stud. Univ. Babes Bolyai Chim. Acta* **2014**, *59*, 33–50.

30. Fazakas, A.; Csató-Kovács, E.; Bodor, Z.; Lányi, S.; Ábrahám, B. Production of Chemicals with Genetically Modified Escherichia coli Strains from Renewable Resources. *Stud. Univ. Babes Bolyai Chem.* **2016**, *61*, 35–46.

31. Lange, A.; Becker, J.; Schulze, D.; Cahoreau, E.; Portais, J.-C.; Haefner, S.; Schröder, H.; Krawczyk, J.; Zelder, O.; Wittmann, C. Bio-based succinate from sucrose: High-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium *Bacillus succiniciproducens*. *Metab. Eng.* **2017**, *44*, 198–212. [CrossRef]

32. der Werf, M.J.V.; Guettler, M.V.; Jain, M.K.; Zeikus, J.G. Environmental and physiological factors affecting the succinate production ratio during carbohydrate fermentation by *Actinobacillus sp.* **1997**, *167*, 332–342. [CrossRef] [PubMed]

33. Zheng, P.; Fang, L.; Xu, Y.; Dong, J.-J.; Ni, Y.; Sun, Z.-H. Succinic acid production from corn stover by simultaneous saccharification and fermentation using *Actinobacillus succiniger*. *Bioresour. Technol.* **2010**, *101*, 7889–7894. [CrossRef] [PubMed]

34. Xu, H.; Zhou, Z.; Wang, C.; Chen, Z.; Cai, H. Enhanced succinic acid production in Corynebacterium glutamicum with increasing the available NADH supply and glucose consumption rate by decreasing H+-ATPase activity. *Biotechnol. Lett.* **2016**, *38*, 1181–1186. [CrossRef]

35. Scholten, E.; Renz, T.; Thomas, J. Continuous cultivation approach for fermentative succinic acid production from crude glycerol by *Bacillus succiniciproducens* DD1. *Biotechnol. Lett.* **2009**, *31*, 1947–1951. [CrossRef] [PubMed]

36. Pateraki, C.; Almqvist, H.; Ladakis, D.; Lidén, G.; Koutinas, A.A.; Vlysidis, A. Modelling succinic acid fermentation using a xylose based substrate. *Biochem. Eng. J.* **2016**, *114*, 26–41. [CrossRef]
37. Chen, K.-Q.; Li, J.; Ma, J.-F.; Jiang, M.; Wei, P.; Liu, Z.-M.; Ying, H.-J. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber. *Bioresour. Technol.* 2011, 102, 1704–1708. [CrossRef] [PubMed]

38. Liu, R.; Liang, L.; Li, F.; Wu, M.; Chen, K.; Ma, J.; Jiang, M.; Wei, P.; Ouyang, P. Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. *Bioresour. Technol.* 2013, 149, 84–91. [CrossRef]

39. Jiang, M.; Ma, J.; Wu, M.; Liu, R.; Weiliang, D.; Xin, F.; Zhang, W.; Jia, H.; Dong, W. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies. *Bioresour. Technol.* 2017, 245, 1710–1717. [CrossRef] [PubMed]

40. Scholten, E.; Dägele, D. Succinic acid production by a newly isolated bacterium. *Biotechnol. Lett.* 2008, 30, 2143–2146. [CrossRef]

41. Ventorino, V.; Robertiello, A.; Cimini, D.; Argenzio, O.; Schiraldi, C.; Montella, S.; Faraco, V.; Ambrosanio, A.; Viscardi, S.; Pepe, O. Bio-Based Succinate Production from Arundo donax Hydrolysate with the New Natural Succinic Acid-Producing Strain Basfia succiniciproducens BPP7. *BioEnergy Res.* 2017, 10, 488–498. [CrossRef]

42. Wallenius, J.; Maakeimo, H.; Eerikäinen, T. Carbon 13-Metabolic Flux Analysis derived constraint-based metabolic modelling of Clostridium acetobutylicum in stressed chemostat conditions. *Bioresour. Technol.* 2016, 219, 378–386. [CrossRef] [PubMed]

43. Orth, J.D.; Thiele, I.; Palsson, B.O. What is flux balance analysis? *Nat. Biotechnol.* 2010, 28, 3. [CrossRef] [PubMed]

44. Becker, J.; Reinefeld, J.; Stellmacher, R.; Schäfer, R.; Lange, A.; Meyer, H.; Lalk, M.; Zelder, O.; Von Abendroth, G.; Schröder, H.; et al. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing *Basfia succiniciproducens*: Systems-Wide Analysis and Engineering. *Biotechnol. Bioeng.* 2013, 110, 3013–3023. [CrossRef] [PubMed]

45. Becker, S.A.; Feist, A.M.; Mo, M.L.; Hannum, G.; Palsson, B.O.; Herrgard, M.J. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox. *Nat. Protoc.* 2007, 2, 3. [CrossRef] [PubMed]

46. Schellenberger, J.; Que, R.; Fleming, R.M.T.; Thiele, I.; Orth, J.D.; Feist, A.M.; Zielinski, D.C.; Bordbar, A.; Lewis, N.E.; Rahmanian, S.; et al. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0. *Nat. Protoc.* 2011, 6, 9. [CrossRef]

47. Murarka, A.; Dharmadi, Y.; Yazdani, S.S.; Gonzalez, R. Fermentative Utilization of Glycerol by Escherichia coli and Its Implications for the Production of Fuels and Chemicals. *Appl. Environ. Microbiol.* 2008, 74, 1124–1135. [CrossRef]

48. Sun, F.; Dai, C.; Xie, J.; Hu, X. Biochemical Issues in Estimation of Cytosolic Free NAD/NADH Ratio. *PLoS ONE* 2012, 7, e34525. [CrossRef]

49. Kim, S. Xylitol Production From Byproducts Generated During Sequential Acid-/Alkali-Pretreatment of Empty Palm Fruit Bunch Fiber by an Adapted Candida tropicalis. *Front. Energy Res.* 2019, 7, 72. [CrossRef]

50. Salvachúa, D.; Smith, H.; John, P.C.S.; Mohagheghi, A.; Peterson, D.J.; Black, B.A.; Dove, N.; Beckham, G.T. Succinic acid production from lignocellulosic hydrolysate by *Basfia succiniciproducens*. *Bioresour. Technol.* 2016, 214, 558–566. [CrossRef]