Data Article

Image and data processing algorithms for identifying cell-bound membrane vesicle trajectories and movement information

Ye Xu a, Wendiao Zhang a, Yong Chen a,*, Wenzhe Shan a,b,**

a Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China
b Department of Civil Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China

A R T I C L E I N F O

Article history:
Received 24 November 2018
Received in revised form 20 December 2018
Accepted 21 December 2018
Available online 28 December 2018

A B S T R A C T

This DIB article provides details about the trajectory identification and data processing algorithms used in the article “Dynamic single-vesicle tracking of cell-bound membrane vesicles on resting, activated, and cytoskeleton-disrupted cells” (Zhang et al.) [1]. The algorithm identifies vesicles on cell membranes from series of undyed grayscale images captured by the confocal microscope based on contrast differences and then trajectories of vesicles are obtained by analyzing their positions in consecutive images. Once the trajectories have been obtained, other quantitative movement information, such as moving speed, direction and acceleration, are derived by standard dynamic relations.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.bbamem.2018.10.013
* Corresponding author.
** Corresponding author at: Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, 999 Xuefu Ave. Honggutan District, Nanchang, Jiangxi 330031, PR China.
E-mail addresses: tychen@ncu.edu.cn (Y. Chen), shan@ncu.edu.cn (W. Shan).

https://doi.org/10.1016/j.dib.2018.12.076
2352-3409/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications table

Subject area	Biology, Image processing
More specific subject area	Point-like feature identification and trajectory tracing
Type of data	Images, Computer algorithms, Source code
How data was acquired	Confocal Microscope, In-house MATLAB program
Data format	Analyzed
Experimental factors	The image processing algorithms introduced are implemented in MATLAB. The raw images processed by the program are undyed grayscale images captured by the Confocal microscope.
Experimental features	In-house developed image processing algorithm for identifying positions and trajectories of undyed point-like features from series of raw images, as well as obtaining their moving status (velocity, moving range, etc.).
Data source location	Nanchang, Jiangxi Province, China
Data accessibility	Algorithms, equations and codes are presented in this article.
Related research article	W. Zhang, Y. Xu, G. Chen, K. Wang, W. Shan, Y. Chen, Dynamic single-vesicle tracking of cell-bound membrane vesicles on resting, activated, and cytoskeleton-disrupted cells, BBA-Biomembranes, 1861(1):26–33 [1].

Value of the data

- Algorithms and source code are provided and can be used for identifying multiple point-like features on grayscale raw images (dyeing is not required for the experiment).
- Algorithms and source code are provided and can be used for identifying the moving trajectories of multiple point-like features from series of grayscale raw images (dyeing is not required for the experiment).
- Algorithms and source code are provided and can be used to calculate the movement information, e.g. velocity and moving range, from identified trajectories of moving point-like features.

1. Data

Three types of data are used in the article [1] for analyzing the moving status of vesicles on cell membranes: mean velocity, moving range (displacement) and population of vesicles on different cell samples. These three types of data are obtained from their positions and trajectories (TRJ) extracted from series of raw images captured by the confocal microscope (CM). This report presents algorithmic and implementation details about our in-house developed programs using MATLAB, which is used for extracting the TRJs from unmarked raw images, as well as obtaining the abovementioned data from the TRJs. The following key algorithms are explained in the next section: vesicle-identification, trajectory-tracing and postprocess for additional movement information. Source codes of corresponding algorithms are provided (code 1–code 14), as well.

2. Experimental design, materials and methods

2.1. Algorithm for the vesicle-identification

First, the pixel data are extracted from raw images that are in the RGB format, where each pixel contains three color-data [red, green, blue], ranging from 0 to 254. Since images captured by the CM are stored in the grayscale-style, the three color-data are identical for each pixel and we can take an arbitrary one for the image processing. The source code for this step is given in Code 1.
After the raw data extraction, the so-called Laplacian of Gaussian (LOG) algorithm, which is a standard image-processing algorithm for boundary identification, is used to isolate pixel groups corresponding to vesicles. The raw image data corresponds to redness (brightness in red) of each pixel and the LOG values of pixels corresponding to vesicles will be significantly higher than the rest of the image. Therefore, a lower bound can be used to isolate the pixels corresponding to vesicles from the rest of the image. Such lower bound is obtained by comparing the filtered results with human-eye observations in a try-and-error manner. The filtered image data is then converted into the black-and-white style so that those corresponding to vesicles will have the value of 1 and the rest pixels will have the value of 0, ready for the next step. The additional lower-bound filter mentioned above also guarantees the boundary for vesicles which are close to each other will have their boundaries set to zero. The source code for this step is given in Code 2.

Code 1: Function for reading pixel data from raw images

```matlab
function group = read_img(filenames, Lx, Ly)
    % Read pixel data from a single image (RGB)
    for i = 1:nim
        pic = imread(filenames(i));
        group(:, :, i) = pic(:, :, :);
    end

    % Identify number of images
    nim = numel(filenames);
    % Allocate memory for image data
    group = zeros(Lx, Ly, nim, 'uint8');
end
```

Special MATLAB Functions:
- `imread`: Image Processing Toolbox.

Code 2: Function for applying the LOG filter to pixel data of a single image

```matlab
function dat = LOG(dat, n, lmin)
    % Apply the Gaussian filter to the raw pixel data
    dat = double(imgaussfilt(dat, n));
    % Compute the brightness gradient of the filtered data
    [gx, gy] = gradient(dat);
    % Compute the divergence of the gradient (Laplacian)
    dat = divergence(gx, gy);
    % Apply the lower bound to isolate vesicle pixels
    dat(dat > -10) = 0;
    % Normalize the LOG values into grayscale style
    dat = abs(dat);
    dat = dat./max(dat(:));
    % Convert the LOG values into back-and-white style
    dat = im2bw(dat, 0.01);
end
```

Special MATLAB Functions:
- `imgaussfilt`: Image Processing Toolbox
- `gradient`: MATLAB Built-in Function
- `divergence`: MATLAB Built-in Function.

After applying the LOG filter and converting the pixel data into the black-and-white style, the filtered pixel data will look like a group of white blobs with approximately the same size.
corresponding to the vesicles in a black background, a recursive algorithm which checks the neighboring pixels is then applied to identify and store them in a more organized format and their centers are then computed and used as the positions of vesicles which will be used later for the trajectory-identification and postprocess. In addition to center coordinates, the size of each blob (number of pixels) will also be counted so that and additional lower bound can be defined to filter out noise blobs whose size are significantly smaller than actual vesicles. Such lower bound should be approximately the number of pixels of the smallest vesicle, which is identified by human-eye observations. The source code for this step is given in Code 3.

With all the steps above, the vesicle positions in all the images are then ready to be identified, or more specifically, by applying step 2 and step 3 to the pixel data read from all raw images in step 1, whose details are given in Code 4.
2.2. Algorithm for trajectory tracing

From human-eye observations, the number of vesicles in each image can be different and their movements can be categorized into the following five types:

1. Move and oscillate within a small region;
2. Move in a very large region with large speed;
3. Some vesicles vanish;
4. Multiple vesicles merge into a single one;
5. Some new vesicles emerge.

In accordance, four types of trajectories must be allowed for the tracing algorithm:

- **Complete trajectories**: traced through the entire series of images
- **Incomplete trajectories**: only traced in a portion of consecutive images
- **Branched trajectories**: a single trajectory expands into multiple branches at certain step
- **Merged trajectories**: multiple trajectories merge into one at certain step.

Therefore, the number of trajectories is most likely NOT equal to the number of vesicles and a relatively complicated data structure is defined for storing and manipulating the trajectory data. In this DIB, it is given the name **TRJ**, which is a compound data structure containing the following members:

- **TRJ.counter**: the number of trajectories stored;
- **TRJ.pos**: array of pointers that access the data of each trajectory;
- **TRJ.nframe**: number of images used for tracing trajectories;
- **TRJ.dat**: group of trajectory data. The information of each trajectory is stored in a three-column matrix as: `[iframe, pid1, pid2]`, where `iframe` is the index of the current image, `pid1` is the index of vesicle in the previous image and `pid2` is the index of vesicle in the current image. Such type of

```matlab
function [point, np] = find_point(filenames, Lx, Ly, r_bub, LOG_min, np_bub)
    % Inputs:
    % filenames: file names of raw images
    % Lx, Ly: size of raw images in pixels
    % r_bub: approximate mean radius of vesicles in pixels
    % LOG_min: minimum value for the LOG filter
    % np_bub: approximate minimum size of vesicles in pixels
    % Output:
    % point: a cell of matrices storing the coordinates of vesicles of each image
    % np: number of vesicles identified for each image
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % extract pixel data from raw images (STEP 1)
    group = read_img(filenames, Lx, Ly)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    nimg = size(group, 1)
    % allocate memory for the outputs
    point = cell(nimg, 1);
    np = zeros(nimg, 1);
    % loop over images
    for i = 1:nimg
        % apply the LOG filter (STEP 2)
        tmp = LOG(group(:, :, i), r_bub, LOG_min);
        % identify centers and sizes (STEP 3)
        cen = find_blob(tmp);
        % find vesicles larger than the given minimum value
        isvalid = cen(:, 3) > np_bub;
        % store their center coordinates
        point{i} = cen(isvalid, 1:2);
        % store the number of valid vesicles for the current image
        np{i} = sum(isvalid);
    end
    % Special MATLAB functions: None
```
data structure is used because vesicles in each image are identified by the same algorithm mentioned above and therefore vesicles with same indices in different images are most likely not the same.

The schematic of the TRJ structure is illustrated in Fig. 1. For the tracing process, the following methods are defined for TRJ:

1. Initialization: initialize the data structure and allocate memory.

 Code 5: Method for initialize the TRJ data structure

 function trj = trj_init(nimg, ntrj_max)
 // Initialize the data structure and allocate memory
 // nimg: number of images
 // ntrj_max: initial guess of the maximum number of trajectories (only affects the efficiency of the program)
 // output:
 // trj: initialized TRJ structure for storing trajectory information
 // Define the structure in MATLAB
 trj = struct('dat', {}, 'counter', 0, 'nframe', nimg, 'pos', {});
 // Allocate memory for members
 trj.dat = cell(ntrj_max, 1);
 trj.pos = zeros(ntrj_max, 1);
 end
 Special MATLAB functions:None

2. New: add a new trajectory.

 Code 6: Method for adding a new trajectory to the TRJ data structure

 function trj = trj_new(trj, iframe, ibub)
 // Add a new trajectory to the TRJ
 // iframe: image index
 // ibub: vesicle index
 // output:
 // trj: updated TRJ with a new trajectory starting with vesicle of index ibub in the image of index iframe.
 // Increase the counter
 trj.counter = trj.counter + 1;
 // Allocate memory for the new trajectory data
 trj.dat{trj.counter} = zeros(trj.nframe, 3);
 // Set the head of the new trajectory in its data
 trj.dat{trj.counter}{1, 1} = [iframe, 0, ibub];
 // Set the local pointer of the new trajectory
 trj.pos(trj.counter) = 1;
 end
 Special MATLAB functions:None

3. Tails: get the tails of all live trajectories, which are equal to the locations of their local pointers during the tracing process. A live trajectory means its end has not been identified yet, and the judging criteria is (pid2 > 0 in Fig. 1) for its current segment, so that it is considered as ‘alive’ for the tracing process. Within this method, trajectories with identical tails will be identified, which corresponds to the merging scenario mentioned above, and those with the same tail will be compared by their lengths, where only the longest will be kept alive while the rest will be killed (considered as merged), as illustrated in Fig. 2.

 The source code for the ‘Tails’ method is given in Code 7.
4. Insertion: append new segments to live trajectories. If no corresponding live trajectories are found for certain new segments, new trajectories will be created, using them as the head segments. The criteria for identifying segments of new trajectories is: \(\text{pid1} = 0 \) and \(\text{pid2} > 0 \), as shown in Fig. 1, and the source code for this method is given in Code 8.

```matlab
function [trj_ids, img_ids, bub_ids] = trj_tails(trj)

% Function to find tails of trajectories
% inputs:
% trj: the TRJ data
% output:
% trj_ids: indices of all live trajectories.
% img_ids: indices of images for their last segments
% bub_ids: indices of vesicles in corresponding images for their last segments

// Find trajectories with non-zero length
trj_ids = find(trj.pos > 0); // extracting local pointers
pos = trj.pos(trj_ids); // allocate memory for outputs
img_ids = zeros(length(trj_ids), 1);
bub_ids = zeros(length(trj_ids), 1);
// extracting image indices and vesicle indices for the last segment
for i = 1:length(trj_ids)
    dat = trj.dat(trj_ids(i), 1); // pid2
    img_ids(i) = dat(3); // pid2
    bub_ids(i) = dat(1);
end

% identify live trajectories
isvalid = bub_ids > 0;
trj_ids = trj_ids(isvalid);
img_ids = img_ids(isvalid);
bub_ids = bub_ids(isvalid);
pos = pos(isvalid);

// identify merged trajectories and kill shorter ones
[tmp, T] = sortrows(bub_ids);
tokill = false(length(T));
id_max = 1;
pos_max = pos(1(id_max));
bub_now = tmp(id_max);
for i = 2:length(T)
    T(i) = T(i); // compare lengths of trajectories with the same tail
    if bub_now == tmp(i) // check for duplicated tails
        if pos(i) > pos_max
            // current is longer, update the longest and kill the previous longest one
            tokill(id_max) = true;
pos_max = pos(i);
            id_max = i;
        else
            // current is shorter and kill it
            tokill(i) = true;
        end
    end
end

// kill merged but shorter trajectories identified above
if any(tokill)
    kill_ids = 1(tokill);
    for i = 1:length(kill_ids)
        il = kill_ids(i);
        trj_id = trj_ids(il);
pos_i = pos(il);
        trj.dat(tld(pos_i, il)) = [img_ids(i), bub_ids(il, 0), 0];
        trj.pos(tld) = pos_i;
    end
end

% remove killed trajectories from the outputs
idleft = [1:tokill];
trj_ids = trj_ids(idleft);
img_ids = img_ids(idleft);
bub_ids = bub_ids(idleft);
end

% special MATLAB functions:
sortrows(): Built-in MATLAB Function
```
Fig. 1. Schematic illustration of the compound data structure storing trajectories (TRJ).

Fig. 2. Merging of trajectories.

Fig. 3. Distance matrix used for determining closest vesicles/bubbles in two consecutive images.

Fig. 4. Branching of a trajectory.
5. Coordinates Extraction: extract coordinates by vesicle indices and image indices. Since only vesicle indices and image indices are stored in the TRJ data structure, such coordinate extraction method must be defined to get the actual coordinates of vesicles along their trajectories, using the results obtained from the vesicle-identification process. The source code for this method is given in Code 9.

Code 9: Extracting vesicle coordinates by vesicle indices and image indices

```matlab
function coords = trj_gen_coords(img_ids, bub_ids, point)
    % allocate memory for the output
    coords = zeros(numbb, 2);
    for i = 1:nbub
        coords(i,:) = points(img_ids(i));bub_ids(i), ;)
    end
end
```

Limited by experiment conditions, vesicles cannot be individually tagged and traced by techniques other than visually comparing their positions in consecutive images. Therefore, the criteria for identifying two vesicles in two consecutive images belonging to the same trajectory are:

- These two vesicles are closest to each other than the rest;
- Their distance should be smaller than a given cutoff distance that corresponds to the maximum moving distance of a vesicle for the time interval between two consecutive images.

The closest vesicles in two consecutive images are determined by using the distance matrix shown in Fig. 3, where distances between all pairs of vesicles in two images are computed and stored. Minimum values are taken for each row and each column and the corresponding column index and row index are stored as well. Taking the row minimum is equivalent to finding the closest vesicles in the current frame to the previous frame, while taking the column minimum determines the closest vesicles in the previous
frame to the current frame. If the obtained minimum distance is less than the cutoff distance, then it is considered as a valid value. The results can be categorized into the following five types:

1. **Regular movement**: A vesicle in the current frame is the closest neighbor to a unique vesicle in the previous frame and vise versa. In the distance matrix, a unique row minimum can be found at the corresponding column;

2. **Merging**: A vesicle in the current frame is the closest neighbor to more than one vesicles in the previous frame (as illustrated in Fig. 2); In the distance matrix, more than one row minimums will be found at the corresponding column;

3. **Branching**: A vesicle in the previous frame is the closest neighbor to more than one vesicles in the current frame (as illustrated in Fig. 4); In the distance matrix, more than one column minimums will be found at the corresponding row;

4. **End of a trajectory**: For a vesicle in the previous frame, no vesicle in the current frame can be considered as a valid neighbor (distance too large).

5. **Begin of a new trajectory**: For a vesicle in the current frame, no vesicle in the previous frame can be considered as a valid neighbor (distance too large).

The source code for identifying the connectivity of vesicles identified in two consecutive images is given in Code 10.

```
function connect = find_connect(bub1, bub2, rcut)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    // inputs:
    // pt1: coordinates of vesicles in the previous image
    // pt2: coordinates of vesicles in the current image
    // rcut: cutoff distance for valid neighbors
    // output:
    // connect: connectivity matrix in the form of [pid1, pid2], where the vesicles
    // with indices pid2 in the current image correspond to vesicles with indices
    // pid1 in the previous image. If (pid1 == 0), then the corresponding pid2 are
    // considered as beginnings of new trajectories. If (pid2 == 0), then
    // trajectories with tails corresponding to pid1 are considered to be ended.
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    // number of vesicles in the previous image
    nbub1 = size(bub1, 1);
    // number of vesicles in the current image
    nbub2 = size(bub2, 1);
    // allocate memory for the output
    connect = zeros(nbub1+nbub2, 2);
    // initialize distance matrix (see Figure 3).
    dmat = -ones(nbub1, nbub2);
    // compute distance matrix
    for i = 1:nbub1
        d = repmat(bub1(i, :), 1, nbub2, 1) - bub2;
        dmat(i, :) = sum(d.*d, 2);
    end
    // initialize the connectivity matrix
    connect(1:nbub1, 1) = (1:nbub1)';
    connect(nnbub1+1:end, 2) = (1:nbub2)';
    // identifying row minimums
    for i = 1:nbub1
        [dmin_row, id] = min(dmat(i, :));
        // compare to the cutoff distance and keep the valid neighbor
        if dmin_row < rcut
            connect(i, 2) = id;
        end
    end
    // identifying column minimums
    for i = 1:nbub2
        [dmin_col, id] = min(dmat(:, i));
        // compare to the cutoff distance and keep the valid neighbor
        if dmin_col < rcut
            connect(1+nnbub1, i) = id;
        end
    end
    // remove duplicated rows in the connectivity matrix
    connect = unique(connect, 'rows');
end
```

Special MATLAB functions:
```
unique(..., 'rows'); Built-in MATLAB Function
```
Based on human-eye observations of raw images, the speed of vesicles can vary significantly. Some vesicles can move much faster than others, while the speed of the same vesicle can also sometimes change significantly during a time period. Therefore, a single cutoff distance for the connectivity search can be inconvenient. A small cutoff distance can improve the accuracy of the tracing algorithm for slow vesicles, but very likely miss many fast ones, while a large cutoff distance will decrease the accuracy of the algorithm for vesicles close to each other (mixing-up). Hence, an improved algorithm based on Code 10 is used for searching the connectivity between two groups of points. For the new algorithm, multiple cutoff distances ranging from a minimum value to a maximum value are used, and the implementation is given in Code 11.

```
function connect = find_connect_multi(bub1, bub2, rcut_min, rcut_max, nres)

// inputs:
// bub1: coordinates of vesicles in the previous image
// bub2: coordinates of vesicles in the current image
// rcut_min: minimum cutoff distance for valid neighbors
// rcut_max: maximum cutoff distance for valid neighbors
// nres: number of searching steps between rcut_min and rcut_max

// output:
// connect: connectivity matrix of two groups of vesicles, same as Code 10

// evaluate cutoff distances for each search step
rcut = linspace(rcut_min, rcut_max, nres);
rid = 1;
// number of vesicles in the previous image
nbub1 = size(bub1, 1);
// number of vesicles in the current image
nbub2 = size(bub2, 1);
// allocate memory for the output
connect = zeros(nbub1+nbub2, 2);
ids1 = (1:nbub1)';
ids2 = (1:nbub2)';
counter = 0;
// loop over cutoff distances and apply Code 10 for each one
while rid <= nres
    // identify vesicle connectivity using Code 10
    connect = find_connect(bub1(ids1, :), bub2(ids2, :), rcut(rid));
    // indices of bub1 for the next search
    is_left1 = false(length(ids1), 1);
    // indices of bub2 for the next search
    is_left2 = false(length(ids2), 1);
    // look for isolated vesicles (without valid neighbors)
    for i = 1:size(connect1, 1)
        pid1 = connect1(i, 1);
        pid2 = connect1(i, 2);
        if pid1*pid2 == 0
            // mark isolated vesicles for the next search
            if pid1 == 0
                is_left2(pid2) = true;
            else
                is_left1(pid1) = true;
            end
        else
            // store valid neighbors in the output
            counter = counter + 1;
            connect(counter, :) = [ids1(pid1), ids2(pid2)];
        end
    end
    // prepare for the next search
    ids1 = ids1(is_left1);
    ids2 = ids2(is_left2);
    // check if the search pools are empty
    if isempty(ids1) || isempty(ids2)
        break;
    end
    rid = rid + 1;
end
Special MATLAB functions:
linspace(): Built-in MATLAB Function
```

Trajectories of vesicles can then be traced using the methods introduced above (Code 5–Code 9), as well as the connectivity search algorithms (Code 10–Code 11), and stored in the TRJ data structure.
The implementation for the combined tracing algorithm is given in Code 12.

Code 12: Trace trajectories of vesicles identified in a series of images

```matlab
function [trj, trj_mat] = trace_trj(point, rcut_min, rcut_max, nres)

/// // number of images
nimg = length(point);
/// // initialize number of vesicles
nbub= size(point{1,1});
/// // initialize the TRJ data (Code 5)
trj = trj_init(nimg, nbub*10);
/// // add all vesicles in the first image as new trajectories
pida2 = {nbub}';
pids = zeros(nbub, 1);
trj_ids = {nbub}';
trj = trj_insert(trj, trj_ids, 1, pids, pida2); // (Code 8)
/// // loop over all images and trace trajectories
for n = 2:nimg
    /// // get tails of live trajectories (also handles merging)
    [trj_ids, ~, pids1] = trj_tails(trj); // (Code 7)
    /// // extract coordinates of tails
    cenl = trj_gen_coords(n-1, pids1, point'); /// (Code 9)
    /// // identify the connectivity matrix between vesicles in current
    /// // image and those in the previous image (Code 11)
    connect = find_connect_multi(cenl, point{n}, rcut_min, rcut_max, _
    rcut_nres);
    /// based on the connectivity matrix to determine whether to create
    /// new trajectories (branching) or extend current ones.
    isoccupied = false(length(trj_ids{1}), 1);
    for l = 1:size(connect, 1)
        /// // loop over neighbor pairs
        tid = connect(l, 1);
        if tid_loc > 0
            /// // segments for existing trajectory
            pids1 = pids1(tid_loc);
            if isoccupied(tid_loc)
                /// // if the trajectory is already appended, then a
                /// // create new one (branching)
                trj = trj_new(n-1, pids1); // (Code 6)
                tid = trj.counter;
                else
                    /// // append to existing trajectory
                    tid = trj_ids{tid_loc};
                    isoccupied(tid_loc) = true;
                end
            end
            /// // insert segment
            trj = trj_insert(tid, n, pids1, pida2); // (Code 8)
        else
            /// // segments for new trajectory
            trj = trj_new(n, pida2); // (Code 6)
        end
    end
end
/// clear unused memory allocated for TRJ (Code 13)
trj = trj_trim(trj);
/// generate trajectory matrix for postprocess (Code 14)
trj_mat = trj_gen_trj_map(trj);
end
```

To improve the efficiency of the program, the TRJ data needs to be initialized with an overestimated number of possible trajectories. Therefore, a trimming function should be used after the tracing process to free unused memory, whose implementation is given in Code 13.
2.3. Postprocess for trajectories

The postprocess for trajectories includes visualization and calculation of extra information such as velocity, speed, moving range (displacement), etc. from the obtained vesicle positions and trajectory data. The design of the TRJ data structure illustrated in Fig. 1 is for the convenience of the tracing process, but its direct usage for the postprocess is not efficient. Instead, we designed a trajectory matrix that can be extracted from the TRJ data after the identification process for the postprocess. The schematic of the matrix structure is shown in Fig. 5. And the MATLAB code for extracting the matrix is given in Code 14.

The sequential coordinates of vesicles corresponding to each trajectory can be easily obtained by using the trajectory matrix, together with the coordinate generation code given by Code 9. Then the velocity, speed and moving range (displacement), as well as other kinds of movement information can be readily derived. In addition, by counting the number of non-zero elements in each row of the trajectory matrix, the life (how many images a trajectory lasts) of each trajectory can be obtained, which can be used for controlling the quality of trajectories used for calculating statistical

Code 13: Free unused memory allocated for the TRJ data

```matlab
function trj = trj_trim(trj)
    % Free completely unused memory
    trj.dat = trj.dat(1:trj.counter);
    trj.pos = trj.pos(1:trj.counter);
    % remove trajectories corresponding to only one segment
    is_rm = trj.pos == 1;
    trj.dat(is_rm) = [];
    trj.pos(is_rm) = [];
    trj.counter = trj.counter - sum(is_rm);
    % free unused memory allocated for each trajectory
    for i = 1:trj.counter
        trj.dat(i) = trj.dat(i){1:trj.pos(i), :};
    end
end
```

Special MATLAB functions: None

Code 14: Extract the trajectory matrix from the TRJ data for the postprocess

```matlab
function trj_mat = trj_gen_trj_map(trj)
    % Allocate memory for the output and initialize
    trj_mat = zeros(trj.counter, trj.nframe);
    % loop over each trajectory data and extract the vesicle index
    for i = 1:trj.counter
        if trj.pos(i) > 0
            % ensure current trajectory data is not empty
            tmp = trj.dat{i}{1:trj.pos(i), [1, 3]};
            % image indices
            img_ids = tmp(:, 1);
            % vesicle indices
            bub_ids = tmp(:, 3);
            if bub_ids(end) == 0
                img_ids = img_ids(end-1);
                bub_ids = bub_ids(end-1);
            end
            % fill in the trajectory with vesicle indices
            trj_mat{i, img_ids} = bub_ids';
        end
    end
end
```

Special MATLAB functions: None

The sequential coordinates of vesicles corresponding to each trajectory can be easily obtained by using the trajectory matrix, together with the coordinate generation code given by Code 9. Then the velocity, speed and moving range (displacement), as well as other kinds of movement information can be readily derived. In addition, by counting the number of non-zero elements in each row of the trajectory matrix, the life (how many images a trajectory lasts) of each trajectory can be obtained, which can be used for controlling the quality of trajectories used for calculating statistical
information. For example, adding a lower-bound filter to the trajectory life can allow us to exclude short-lived trajectories most likely caused by image noises.

The velocity of a vesicle along a trajectory is computed by

\[v_(n) = \begin{cases} \frac{X_(n+1) - X_(n)}{\Delta t}, & \text{if } n = 1 \\ \frac{X_(n+1) - X_(n-1)}{2\Delta t}, & 1 < n < N_{\text{img}} \\ X_(n) - X_(n-1), & n = N_{\text{img}} \end{cases} \]

where \(v_(n) \) is the velocity at the time corresponding to the image of index \(n \), \(X_(n) \) is the vesicle position, \(\Delta t \) is the time interval between two consecutive images and \(N_{\text{img}} \) is the number of images. The speed is by definition the magnitude of the velocity, namely

\[v(n) = \| v_(n) \| \]

The traveling distance of a vesicle along its trajectory is computed by

\[s(n) = \begin{cases} 0, & n = 1 \\ \sum_{i=2}^{n} \| X_(i) - X_(i-1) \|, & n \leq N_{\text{img}} \end{cases} \]

The moving range (displacement) of a vesicle along its trajectory is defined by

\[R(n) = \begin{cases} 0, & n = 1 \\ \max(\| X_(i) - X_(1) \|), & 1 < i \leq n, n \leq N_{\text{img}} \end{cases} \]

Implementations for calculating the above variables are quite straightforward and are therefore omitted here.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31760320), the Natural Science Foundation of Jiangxi Province of China (20161ACB20001, 20171BAB211014).
Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.12.076.

Reference

[1] W. Zhang, Y. Xu, G. Chen, K. Wang, W. Shan, Y. Chen, Dynamic single-vesicle tracking of cell-bound membrane vesicles on resting, activated, and cytoskeleton-disrupted cells, BBA-Biomembr., vol. 1861(1), pp. 26–33.