Effect of the gate structure on the kink phenomenon in S_{22} of AlGaN/GaN HEMT

Sinan Osmanoglu and Ekmel Ozbay
Department of Electrical and Electronics Engineering, I.D. Bilkent University, Ankara, Turkey
Email: sinan.osmanoglu@bilkent.edu.tr

For the first time, the effect of the gate structure on the kink phenomenon in S_{22} of the AlGaN/GaN HEMT is investigated in this study. To provide critical understanding into the S_{22} kink effect, the kink effect in S_{22} of the AlGaN/GaN HEMTs is investigated with transistors that have various gate lengths (L_g) and gate connected field plate lengths (L_{gfp}). The HEMTs are fabricated and charaterised at the same conditions, and the equivalent circuit models are used to get consistent results. The experimental results show that the gate structure can play an important role on kink effect in S_{22}. The results present valuable information on the development of the AlGaN/GaN HEMT technology and the MMIC design regarding kink effect.

Introduction: The GaN HEMT technology has gained importance in defense, space, and communications industries due to its superior material properties [1, 2]. Therefore, understanding the parameters such as the kink effect (KE) in the output reflection coefficient (S_{22}), which can degrade the device performance, has become more important; and multiple studies have been conducted to analyse the origin of the kink [3–18].

The KE in S_{22} is defined as an abrupt dip in S_{22} behaviour at a specific frequency as a result of the transition of the output impedance (Z_{ou}) of the transistor from a low-frequency series RC circuit to a high-frequency parallel RC circuit [3]. The origin of the KE has been debated, and it has been studied by poles and zeros [4, 5] and circuit models [6, 7]. Moreover, the KE has been attributed to the feedback resistance [4], the substrate resistance [5–9], the low-frequency dispersion [10], the open dummy structure [11, 12], and the high values of transconductance (g_m) [3, 13, 14]. However, the KE in S_{22} depends on the intrinsic elements [14, 15], and the extrinsic elements change its behaviour [1, 7].

The KE in S_{22} of GaN HEMTs has been attributed to the high values of g_m, but the other technologies such as GaAs and Si also suffer from the kink phenomenon [4, 11, 15, 16]. Besides, the effect of the gate width (W_g), the bias condition and the temperature effect on the scattering (S_{22}) parameters have been studied, and the results are reported in [13, 15, 17, 18].

The AlGaN/GaN HEMT technology offers various L_g options such as 0.4–0.5 mm, 0.25 mm, and 0.15 mm for S-Band, X-Band, and Ka-Band applications, respectively. The L_g is not the only difference between those technologies. The device sizes, the drain-source spacing, the wafer properties, and the bias conditions are other possible differences. Therefore, direct comparison of those transistors would not be meaningful.

In this study, to evaluate the effect of the gate structure, represented in Figure 1, on the KE in S_{22} of AlGaN/GaN HEMTs, eight HEMTs with different L_g and L_{gfp} values are fabricated. HEMTs with 0.2 mm, 0.25 mm, 0.30 mm, and 0.35 mm L_g with 0.9 mm L_{gfp} are fabricated to investigate the effect of L_g on KE. The HEMTs with 0.5 mm, 0.7 mm, and 0.9 mm L_{gfp} with 0.25 mm L_g are fabricated to investigate the effect of L_{gfp} on KE. All HEMTs, used in this study, are fabricated with L_g and L_{gfp} (scfp: source-connected field plate).

Experimental study and results: The devices used for the tests have 8×125 mm ($W_{g,p} = 1.0$ mm) configuration. The HEMTs with different L_g and the HEMTs with 0.7 mm and 0.9 mm L_{gfp} are fabricated on the same wafer with the GaN technology T1. On the other hand, the HEMTs with 0.5 mm and 0.7 mm L_{gfp} are fabricated on the same wafer with the GaN technology T2. The HEMT with 0.7 mm L_{gfp} is common in both technologies to be used as the normalisation reference for the comparison. The S-parameter measurements of the devices are performed with 28 V drain voltage (V_D) and 100 mA/mm drain current (I_D) at 25°C chucks temperature from 0.5 GHz to 25.0 GHz.

The equivalent-circuit model, illustrated in Figure 2, is used to develop the models of the HEMTs. The developed models are used for accurate analysis and the results of the models are compared with the measured S_{22} data, and are presented in Figure 3.

The kink parameters (KPs): the kink frequency band (KFB), the kink frequency point (KFP), the kink size (KS), and the kink figure of merit (KFM) are calculated from the second derivative (D2) of $\text{Im}(S_{22})$ with respect to $\text{Re}(S_{22})$ as explained in [15]. Since the results of D2 from the measured data can be very noisy to evaluate the parameters properly, the simulation results of the models are used for the rest of the analysis. The KFP is the frequency point where KE occurs in S_{22} and can be determined from the negative peak of D2. The KS is defined as the value of the negative peak in D2. The KFB is the frequency range between two zero crossing of D2. The KFM is the ratio of KFB.

Figure 4 shows the $\text{Im}(S_{22})$ versus $\text{Re}(S_{22})$ and its corresponding first (D1) and second (D2) derivatives from 0.5 GHz to 25.0 GHz for the whole and the intrinsic HEMTs with different L_g. Figure 5 illustrates the kink parameters for the HEMTs with different L_g.
The KPs in Figure 5 for different L_g values are calculated from the D2s in Figure 4. From Figures 3(a) and 4, one can evaluate that KFP is moving to lower frequency points by the increase in L_g. Excluding the HEMT with 0.25 μm L_g, the increase in L_g results with the reduction in KPs of intrinsic HEMT, while there is no significant change in KS of whole HEMT. Thus, it is clear that the extrinsic parameters have major impact on KE [1, 7].

SET1 HEMTs with 0.7 μm and 0.9 μm $L_{g_{H}}$ from T1 and SET2 HEMTs with 0.5 μm and 0.7 μm $L_{g_{H}}$ from T2 are analysed separately; and the normalised KP results according to HEMTs with 0.7 μm $L_{g_{H}}$ from technology T1 and T2 are used to compare the changes in the KPs with respect to L_g. Figure 6 shows the Im(S_{22}) versus Re(S_{22}), D1, and D2 from 0.5 GHz to 25.0 GHz for the intrinsic HEMTs with different L_g. Figure 7 illustrates the KPs for the intrinsic HEMTs with different $L_{g_{H}}$. The actual KP values of SET1 and SET2 HEMTs, and g_m, C_{gd}, and C_{gs} are shared in Table 1. Although KFP change is clear from the S_{22} data of varying L_g case, it is not clear for the varying $L_{g_{H}}$ case from Figures 3(b) and 6. The KPs in Figure 5 for different $L_{g_{H}}$ values are calculated from the D2s in Figure 6. The increase in $L_{g_{H}}$ results with increase in KFB, KS, and KFM, while there is no significant change in KFP. The changes in L_g and $L_{g_{H}}$ directly affect the depletion region properties of the HEMTs. Therefore, the gate-to-drain capacitance (C_{gd}), the gate-to-source capacitance (C_{gs}), and g_m are directly affected by the gate structure. Although C_{gd} is $\sim 10\times$ larger than C_{gs}, the change in C_{gd} becomes critical with the change in the gate structure. Moreover, it is clear from Table 1 that KS can be negligible even with large gate widths unlike stated in [3, 15].

Figure 8 shows S_{22} results of the HEMT with $L_g = 0.25$ μm and $L_{g_{H}} = 0.9$ μm. To investigate the effect of C_{gd}, C_{gs}, and g_m, C_{gd} and C_{gs} values are varied, and g_m is varied by excluding C_{gd} from the model. The results are compared with the whole HEMT and the intrinsic HEMT results, and the KP results are shared in Table 2. Since C_{gd} is related with the isolation of the HEMT, S_{12} results of those configurations are also given in Table 2. The S_{12} comparison shows that the increase in C_{gd} results with lower isolation. Furthermore, the KPs are directly affected by the change in the isolation as a result of the change in C_{gd}. Although doubling C_{gs} has minor effect on KS, KFP is lowered, and KFB becomes narrow, which results with worse KFM. Excluding C_{gd} from the model eliminates the kink in S_{22} by increasing the isolation between the gate and the drain.

![Image](image-url)
Table 2. Kink parameters of Whole HEMT (WH) and Intrinsic HEMTs (IH) (Lg = 0.25 μm and Lgrf = 0.9 μm)

DUT	g_m	C_{gd}	C_{gs}	KS	KFP	KFB	KFM	$S_{11\text{max}}$
WH	g_m	C_{gd}	C_{gs}	-9.84	5.4	6.1	-1.61	-23.8
IH	g_m	C_{gd}	C_{gs}	-20.27	6.6	8.3	-2.44	-23.2
IH	g_m	C_{gd}	C_{gs}	-55.03	7.1	10.4	-5.29	-20.6
IH	g_m	C_{gd}	C_{gs}	-10.61	5.7	6.5	-1.63	-26.9
IH	g_m	C_{gd}	C_{gs}	-19.88	3.2	3.9	-5.09	-27.2
IH	g_m	no C_{gd}	no C_{gs}	no KS	no KFP	no KFB	no KFM	no $S_{11\text{max}}$
IH	g_m	no C_{gd}	no C_{gs}	no KS	no KFP	no KFB	no KFM	no $S_{11\text{max}}$
IH	g_m	no C_{gd}	no C_{gs}	no KS	no KFP	no KFB	no KFM	no $S_{11\text{max}}$

Thus, it reveals that the limited isolation between the gate and the drain caused by the high values of C_{gd} leads to the kink in S_{22}. Since the feedback capacitance C_{gs} is a strong function of V_D, the KE can be also controlled with V_D.

A HEMT that has $10 \times 125 \mu m$ ($W_{gs,rf} = 1.25 \text{ mm}$) configuration with $340 \text{ mS} \ g_m$ is preferred to evaluate the effect of C_{gd} change that is caused by V_D change. Thus, V_{DD} is kept constant at -3.25 V and V_{DS} is swept from 12 V to 32 V with 4 V steps. Moreover, S-parameter measurements are performed with 0.8 ms pulse width and 0.8% duty cycle to eliminate thermal effects.

Fig. 9. Intrinsic HEMT results of $10 \times 125 \mu m$ ($W_{gs,rf} = 1.25 \text{ mm}$). (a) S_{22} results with respect to V_{DS} from 0.5 GHz to 25.0 GHz. (b) Kink parameters versus C_{gd}.

Thus, it reveals that the limited isolation between the gate and the drain caused by the high values of C_{gd} leads to the kink in S_{22}. Since the feedback capacitance C_{gs} is a strong function of V_D, the KE can be also controlled with V_D.

A HEMT that has $10 \times 125 \mu m$ ($W_{gs,rf} = 1.25 \text{ mm}$) configuration with $340 \text{ mS} \ g_m$ is preferred to evaluate the effect of C_{gd} change that is caused by V_D change. Thus, V_{DD} is kept constant at -3.25 V and V_{DS} is swept from 12 V to 32 V with 4 V steps. Moreover, S-parameter measurements are performed with 0.8 ms pulse width and 0.8% duty cycle to eliminate thermal effects. The S_{22} and KP results of the extracted intrinsic HEMT results are shared in Figure 9. The results support the findings that the KE can be controlled by controlling the C_{gd}.

Conclusion: The effect of the gate structure on the kink in S_{22} is investigated with the transistors that have different L_g and L_{grf} configurations. This study shows that the KPs also depend on the gate structure besides the gate width, the bias point, and the thermal conditions. The KS is also affected by the change in C_{gd}.

As a result of the change in C_{gd}, the isolation of the transistor is also affected. A proper feedback technique and a proper V_D can be useful to suppress the kink in S_{22} associated with C_{gd}. Thus, the gate structure has to be studied carefully to develop a proper kink-free technology, and a proper feedback has to be studied in the design process to minimise the kink in S_{22}. Considering the transistor as a whole, KE exists as a combined effect of the parameters such as C_{gd}, C_{gs}, g_m, the bias conditions, and the operating temperature. Moreover, the study of the KE in S_{22} can be extended by investigating the epitaxial structure of the wafers and the process parameters.

Acknowledgment: The first author would like to thank Dr. Giovanni Crupi from BIOMORF Department of University of Messina for the valuable discussions.

© 2021 The Authors. Electronics Letters published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Received: 4 September 2020 Accepted: 7 December 2020 doi: 10.1049/el.2020.0274

References

1. Lanzieri, C., Pantellini, A., Romanini, P.: Wide bandgap technology: The right solution for space and defense market. 2012 19th International Conference on Microwaves, Radar & Wireless Communications. May 2012, pp. 587–592. IEEE, Piscataway, NJ (2012)

2. Yuki, K., Bramer, G., Cui, C.: Future directions for GaN in 5G and satellite communications. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 803–806. IEEE, Piscataway, NJ (2017)

3. Lu, S-S., et al.: The origin of the kink phenomenon of transistor scattering parameter S_{22}. IEEE Trans. Microwave Theory Tech. 49 (2), 333–340 (2001)

4. Lin, Y-S., Lu, S-S.: An analysis of the kink phenomenon of scattering parameters S_{22} in RF power mosfets for system-on-chip (SOC) applications. Microwave Opt. Technol. Lett. 36 (5), 371–376 (2003)

5. Lu, S-S., et al.: A novel interpretation of transistor s-parameters by poles and zeros for RF IC circuit design. IEEE Trans. Microwave Theory Tech. 49 (2), 406–409 (2001)

6. Ahsan, S., et al.: Modeling of kink-effect in RF behaviour of GaN HEMTs using ASM-HEMT model. 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 426–429. IEEE, Piscataway, NJ (2016)

7. Crupi, G., et al.: Empowering GaN HEMT models: The gateway for power amplifier design. Int. J. Numer. Modell. Electron. Networks Devices Fields 30 (1), e2125 (2015)

8. Hjelmgren, H., Litwin, A.: Small-signal substrate resistance effect in RF CMOS identified through device simulations. IEEE Trans. Electron Devices 48 (2), 397–399 (2001)

9. Lin, Y-S., Lu, S-S.: An analysis of small-signal substrate resistance effect in deep-submicrometer RF MOSFETs. IEEE Trans. Microwave Theory Tech. 51 (5), 1534–1539 (2003)

10. Chalermwisutkul, S.: Phenomena of electrical memory effects on the device level and their relations. 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. pp. 229–232. IEEE, Piscataway, NJ (2008)

11. Gao, H., et al.: A composite transistor to suppress kink phenomenon in hbt's for broadband design. IEEE Electron Device Lett. 31 (10), 1113–1115 (2010)

12. Crupi, G., Schreurs, N., Caddemi, A.: Accurate silicon dummy structure model for nonlinear microwave Finfet modeling. Microelectron. J. 41 (9), 574–578 (2010)

13. Crupi, G., et al.: An extensive experimental analysis of the kink effects in S_{22} and h_{21} for a GaN HEMT. IEEE Trans. Microwave Theory Tech. 62 (3), 513–520 (2014)

14. Marinkovic, Z., et al.: Neural approach for temperature-dependent modeling of GaN HEMTs. Int. J. Numer. Modell. Electron. Networks Devices Fields 26 (4), 359–370 (2014)

15. Crupi, G., et al.: The kink phenomenon in the transistor S_{22}: A systematic and numerical approach. IEEE Microwave Wireless Compon. Lett. 22 (8), 406–408 (2012)

16. Tu, H-Y., et al.: An analysis of the anomalous dip in scattering parameter S_{22} of InGaP-GaAs heterojunction bipolar transistors (HBTs). IEEE Trans. Electron Devices 49 (10), 1831–1833 (2002)

17. Alim, M., et al.: Thermal influence on S_{22} kink behavior of a 0.15 μm gate length AlGaN/GaN/SiC HEMT for microwave applications. Semicond. Sci. Technol. 34 (3), 035002 (2019)

18. Crupi, G., et al.: A new study on the temperature and bias dependence of the kink effects in s22 and h21 for the GaN HEMT technology. Electronics 7 (12), 353 (2018)