Adaptive Neural Path Following Control of Underactuated Surface Vessels With Input Saturation

GUOQING XIA, XINWEI WANG, BO ZHAO, ZHIWEI HAN, AND LINHE ZHENG

College of Automation, Harbin Engineering University, Harbin 150001, China

Corresponding author: Xinwei Wang (s316040164@hrbeu.edu.cn)

This work was supported in part by the 7th Generation Ultra Deep Water Drilling Unit Innovation Project, and in part by the National Natural Science Foundation of China, research on green and safe mooring-assisted dynamic positioning technology for all-weather deepwater platform, under Grant 51879049.

ABSTRACT In this paper, considering the input saturation, off-diagonal mass matrix, model uncertainties and time-varying environment disturbances, an adaptive neural path following control strategy, which is based on the surge-heading line-of-sight guidance law, is presented for underactuated surface vessels. In view of the practical situation, we consider that the mass and damping matrices are off-diagonal. For the sake of better path following performance, a surge-heading line-of-sight guidance law is established, where the surge-heading line-of-sight guidance law not only generates the desired heading angle, but also designs the desired surge speed for the control system. Then, adaptive neural path following controllers are designed to track the referenced signals, where the input saturation nonlinearity is handled by a hyperbolic tangent function, and the lumped disturbances including external environment disturbances, approximation errors and model uncertainties are approximated by adaptive radial basis function neural network. On the basis of the proposed control scheme, all error signals of the whole system are proven to be uniformly ultimately bounded, so that the target of path following problem is realized. At last, simulation results are applied to indicate that the presented approach is effective.

INDEX TERMS Input saturation, neural networks, path following, surge-heading line-of-sight.

I. INTRODUCTION

In recent years, with the requirement of developing marine resources, motion control of underactuated surface vessels (USVs) has gained great attention [1]–[6]. The purpose of path following control problem, which is an important part of motion control, is to design a control strategy for an USV to arrive and sail on a predefined path [7]. In order to obtain better path following performance, numerous control schemes, which are made up of guidance system and control system, have been applied widely.

Based on the path information, the guidance system is developed to generate the desired signals for control system to accomplish the path following task. In the past years, the line-of-sight (LOS) guidance law, which is a simple and convenient method, has been researched extensively. In [8], a proportional LOS (PLOS) guidance law was designed and the uniform semiglobal exponential stability was guaranteed. However, the PLOS guidance law did not consider the environment disturbances, which can create the sideslip angle and damage the path following performance. In order to deal with the sideslip angle, some improved LOS guidance laws were developed, such as integral LOS (ILOS) [9], [10], adaptive LOS (ALOS) [11], extended state observer based-LOS (ELOS) [12], and sideslip-tangent LOS (SLOS) [13], [14]. In addition, the above guidance laws only concluded the desired heading angle signals, and the referenced surge speeds were predefined as constants, so that the maneuverabilities of USVs were decreased. For improving the path following performance, the surge-varying LOS guidance law was developed to generate the desired surge speed and heading angle simultaneously in [15].

It should be noted that the aforementioned methods did not consider the input saturation. In practice, actuator saturation...
nonlinearity exists. The control performance will be degraded and instability may occur, while the input saturation is not handled. In this situation, the input saturation should be considered in the control design to obtain better performance [16]. In [17], an auxiliary design system in the form of anti-windup compensator was applied to deal with actuator saturation. In [18], an auxiliary system was employed to compensate for the effect of actuator saturation. Then, the auxiliary system method was applied in the fullactuated vessels [19]. Moreover, this method was combined with path following control law to deal with the input saturation for underactuated surface vessels [20]. In [21], a hyperbolic tangent function was applied to approximate the effect of input saturation nonlinearity, so that the backstepping technique was used in the control design.

Besides input saturation, another challenge of path following problem is the model uncertainties, which is a common problem in engineering application [22], [23]. In order to deal with the model uncertainties, the neural network (NN) was used to approximate a nonlinear function based on the universal approximation property in [24]. In [25], a multilayer neural-networks (MLPNN) was employed to compensate the model uncertainties. However, the structure of MLPNN is complicated, so that the design parameters are difficult to choose and the learning speed is slow. In [26], the radial basis function neural network (RBFNN) was applied to estimate the unknown model dynamics of fullactuated vessels for dynamic position. For path following problem of USVs, the RBFNN was used to compensate the model uncertainties and environment disturbances in [27] and [28]. In addition, most path following studies assumed that the mass matrices of USVs were diagonal, which was a simplification of the practical condition. In practice, the assumption is not reasonable and causes a problem that the sway and yaw dynamics are coupled, which means that the yaw moment can also control the sway dynamic. In this case, the path following control designs become difficult. In order to solve the problem, the coordinate transformation method was applied in [29], [30].

Motivated by the aforementioned considerations, we consider the path following problem of USVs with off-diagonal mass matrix in the presence of model uncertainties, input saturation and time-varying environment disturbances. An adaptive neural path following control (ANPFC) scheme, which is based on the surge-heading line-of-sight (SHLOS) guidance law, is proposed in this paper. The main contributions of this paper are summarized as follows.

1) Different from the conventional LOS guidance law, a SHLOS guidance law is presented for the path following problem of USVs, while the SHLOS guidance law can generate desired surge speed and heading angle simultaneously. Compared with the designed guidance law in [15], the condition of off-diagonal mass matrix is considered in the SHLOS guidance law.

2) The input saturation is handled by a hyperbolic tangent function, so that the dynamic surface control (DSC) technique can be used in the control design. Then the adaptive neural path following control laws are designed with the lumped disturbances approximated by a RBFNN.

3) It is proven that all states of closed-loop control system are uniformly bounded by using the proposed control scheme.

The paper is organized as follows. The preliminaries and problem formation are stated in Section II. The designs of guidance system and control system are given in Section III and Section IV, respectively. Then, Section V formulates the stability analysis. In addition, Section VI shows the simulation results. At last, Section VII concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMATION

A. NOTATION

The following notations will be used throughout this paper. $|·|$ represents the absolute value of a scalar. $∥·∥$ represents

Notations	Descriptions
(x, y)	position in the north-east reference frame
ψ	heading angle
u, v	surge and sway speed
r	yaw rate
m_{ij}	ship inertia including added mass, $i = 1, 2, 3, j = 1, 2, 3$
d_{ij}	hydrodynamic damping term, $i = 1, 2, 3, j = 1, 2, 3$
τ_1	surge force
τ_2	yaw moment
σ_1	control command by surge speed controller
σ_2	control command by heading controller
δ_i	unknown time-varying environment disturbances on surge, sway, and yaw, $i = u, v, r$
D_i	unknown lumped disturbances on surge, sway, and yaw, $i = u, v, r$
θ	path variable
x_e, y_e	path following along-track error and cross-track error
γ_p	path-tangential angle
Δ	look-ahead distance
U	speed of underactuated surface vessel
β	sideslip angle
u_d, ψ_d	desired surge speed and desired heading angle
u_e	first error surface of surge speed controller
ψ_e	heading tracking error
r_d	virtual input to stabilize ψ_e
r_s	second error surface of heading controller
$\bar{\theta}_i$	estimation of the optimal weight value, $i = 1, 2$
ξ_i	auxiliary design signal, $i = 1, 2$
γ_i	adaption gain, $i = u, r$
k_i	design parameter, $i = 1, 2, 3, 4, 5, 6$
k_u	control parameter of surge speed controller
k_{wr}	control parameters of heading controller
the Euclidean norm. \(|| \cdot ||_F \) represents Frobenius norm. \(\mathbb{R}^n \) represents the n-dimensional Euclidean Space. \((\cdot)^T \) denotes the transpose of a matrix. \(\text{tr}(\cdot) \) denotes the trace of the respective matrix. \(\text{sign}(\cdot) \) and \(\tanh(\cdot) \) denote the sign function and hyperbolic tangent function, respectively. \(\cdot \) denotes the estimation value of \((\cdot), \) and \(\hat{(\cdot)} - (\cdot) \) implies the estimating error.

\section{B. RBFFN}

On the basis of the universal approximation property, unknown continuous function can be approximated by the RBFFN, which is a popular method. For any nonlinear continuous function \(f(x) : \mathbb{R}^m \rightarrow \mathbb{R} \) over a compact set \(\Omega_x \subset \mathbb{R}^m, \) it can be approximated by the RBFFN, which is described as [31]:

\[
 f(x) = W^T \Phi(x) + \chi,
\]

where \(x \in \Omega_x \) is the input vector, \(\chi \) is the approximation error, which is a bound parameter, i.e. there exist an unknown positive constant \(\chi^* \), such that \(|\chi| \leq \chi^* \). In addition, \(W^* = [w_1, w_2, \ldots, w_m] \in \mathbb{R}^m \) denotes the optimal weight vector, and \(m \) is the node number of the hidden neurons. The optimal weight vector is unknown in practice, and can be given as:

\[
 W^* = \arg \min_{\hat{W}} \left\{ \sup_{x \in \Omega_x} \left| f(x) - \hat{W}^T \Phi(x) \right| \right\},
\]

where \(\hat{W} \) is the estimation value of \(W^* \), and can be applied to estimate unknown function. Then, we can get the estimation of \(f(x) \) with the estimation value \(\hat{W} \):

\[
 \hat{f}(x) = \hat{W}^T \Phi(x),
\]

where \(\Phi(x) = [\phi_1(x), \phi_2(x), \ldots, \phi_m(x)] \) is the basis function, and can be chosen as Gaussian function with the form as:

\[
 \phi_i(x) = \exp \left(-\frac{||x - c_i||^2}{2b_i^2} \right), \quad i = 1, 2, \ldots, m
\]

where \(c_i \) is the center vector and \(b_i \) is the width of the Gaussian function.

\section{C. MODEL OF UNDERACTUATED SURFACE VESSEL}

Based on [32], only consider the motion on the horizontal plane, and the mathematic model of the USV is expressed by:

\[
 \dot{\eta} = R(\psi) \upsilon,
\]

\[
 M \ddot{\upsilon} + C(\upsilon) \upsilon + D \upsilon = \tau + \delta,
\]

where \(\eta = [x, y, \psi]^T \) stands for the position and heading angle of the USV in the north-east-down (NED) reference frame; \(\upsilon = [u, v, r]^T \) stands for velocities in the body-fixed frame; \(R(\psi) \) is a state dependent rotation matrix and given as:

\[
 R(\psi) = \begin{bmatrix}
 \cos \psi & -\sin \psi & 0 \\
 \sin \psi & \cos \psi & 0 \\
 0 & 0 & 1
 \end{bmatrix}.
\]

In addition, \(\delta(t) = [\delta_x, \delta_y, \delta_z]^T \) denotes the unknown time-varying environment disturbances produced by wind, waves and ocean current. \(M \) represents the ship inertia matrix including added mass; \(C(\upsilon) \) represents the Coriolis and centripetal matrix; and \(D \) is the hydrodynamic damping matrix. The \(M, C(\upsilon) \) and \(D \) are given as:

\[
 M = \begin{bmatrix}
 m_{11} & 0 & 0 \\
 0 & m_{22} & m_{23} \\
 0 & m_{23} & m_{33}
 \end{bmatrix},
\]

\[
 C(\upsilon) = \begin{bmatrix}
 0 & 0 & -m_{22}v - m_{23}r \\
 0 & 0 & m_{11}u \\
 m_{22}v + m_{23}r & -m_{11}u & 0
 \end{bmatrix},
\]

\[
 D = \begin{bmatrix}
 d_{11} & 0 & 0 \\
 0 & d_{22} & d_{23} \\
 0 & d_{32} & d_{33}
 \end{bmatrix}.
\]

The vector \(\tau = [\tau_1, \tau_2]^T \) represents the surge force and yaw moment, which are the inputs of the USV and outputs of actuators, so that the vessel is underactuated. Due to the saturation nonlinearities of actuators, the inputs of the USV can be described as follows:

\[
 \tau_i = \text{sat}(\sigma_i) = \begin{cases}
 \text{sign}(\sigma_i) \tau_{Mi}, & |\sigma_i| \geq \tau_{Mi} \\
 \sigma_i, & |\sigma_i| < \tau_{Mi}
 \end{cases}
\]

where \(\sigma_i, i = 1, 2 \) are the control commands; \(\tau_{Mi}, i = 1, 2 \) are the bounds of the \(\tau_i \).

\textbf{Remark 1:} In general, the conformation of the bow of vessels is different from that of the stern. The mass matrix \(M \) is off-diagonal in this context, which is different from the most studies. The sway and yaw dynamics are coupled, so that the yaw moment can control the sway dynamics, which makes the control design become difficult.

\textbf{Remark 2:} Sharp corners exist when \(|\sigma_i| = \tau_{Mi} \), so that backstepping technique cannot be applied directly.

In order to deal with the problem that saturation control law cannot be applied directly in the DSC design, a smooth function is employed to approximate the saturation characteristic, which is described as follows [16]:

\[
 h_i(\sigma_i) = \tau_{Mi} \tanh(\frac{\sigma_i}{\tau_{Mi}}), \quad i = 1, 2
\]

Then \(\tau_i \) can be expressed as:

\[
 \tau_i = h_i(\sigma_i) + \rho_i(\sigma_i)
\]

where \(\rho_i(\sigma_i) = \tau_i - h_i(\sigma_i), i = 1, 2 \), which are the approximate errors between \(\tau_i \) and \(h_i(\sigma_i) \), are bounded.

\[
 |\rho_i(\sigma_i)| = |\tau_i - h_i(\sigma_i)| \leq \tau_{Mi}(1 - \tanh(1)) = \gamma_i
\]

where \(\gamma_i, i = 1, 2 \) are positive constants.

In order to facilitate the following written, we omit \(\sigma_i \) without confusion, such as \(\rho_i(\sigma_i) = \rho_i, h_i(\sigma_i) = h_i \).

For the sake of handling the situation that sway dynamics and yaw dynamics are controlled by the yaw moment concurrently, a coordinate transformation is applied. The coordinate transformation is described as: \(\bar{x} = x + \epsilon \cos \psi, \epsilon \in

VOLUME 8, 2020
92531
Rotated with an angle as \((\text{SF})\) frame at the point parameterized by a path variable described as the USV follows a predefined path, which is

\[
x = x_e \quad \text{and} \quad y = y_e,
\]

where \(x_e\) and \(y_e\) are designed in this paper. The mathematic model of the USV is rewritten as:

\[
\begin{align*}
\dot{x} &= u \cos \psi - \bar{v} \sin \psi \\
\dot{y} &= u \sin \psi + \bar{v} \cos \psi \\
\dot{\psi} &= r \\
\dot{u} &= D_u + \frac{h_1}{m_1} \\
\dot{\bar{v}} &= -\frac{d_2 \bar{v}}{m_2} + D_v \\
\dot{r} &= D_r + \frac{m_2 h_2}{\Gamma}.
\end{align*}
\]

where

\[
\begin{align*}
D_u &= \frac{1}{m_1} \left(m_{12} v r - d_{11} u + m_{23} r^2 + \delta_u + \rho_1 \right), \\
D_v &= \frac{1}{m_2} \left(m_{11} u r + d_{22} \dot{r} - d_{23} r + \delta_r \right), \\
D_r &= \frac{1}{\Gamma} \left\{ \left(m_{11} m_{22} - m_2^2 \right) \dot{u} v + \left(m_{11} m_{23} - m_{23} m_{22} \right) u r \\
& \quad - m_{22} (d_{23} r + d_{22} v) + m_{23} (d_{23} r + d_{22} v) \\
& \quad + m_{22} \delta_r - m_{23} \delta_v + m_{22} \rho_2 \right\}, \\
\Gamma &= m_{22} m_{33} - m_{23}^2.
\end{align*}
\]

D. PATH FOLLOWING ERROR DYNAMIC

As shown in Figure 1, the path following problem can be described as the USV follows a predefined path, which is parameterized by a path variable \(\theta\). Denote a Serret-Frenet (SF) frame at the point \((x_p(\theta), y_p(\theta))\) along the desired path. To arrive at the SF frame, the NED frame should be rotated with an angle as:

\[
\gamma_p = \text{atan2} \left(y_p'(\theta), x_p'(\theta) \right),
\]

where \(x_p'(\theta) = \partial x_p/\partial \theta\) and \(y_p'(\theta) = \partial y_p/\partial \theta\).

When the position of the USV is denoted as \((x, y)\), and define the path following along-track error and cross-track error built in the SF frame as \(x_e\) and \(y_e\), then the error vector is represented by:

\[
\begin{bmatrix}
x_e \\
y_e
\end{bmatrix} =
\begin{bmatrix}
\cos \gamma_p & -\sin \gamma_p \\
\sin \gamma_p & \cos \gamma_p
\end{bmatrix}^T
\begin{bmatrix}
x - x_p(\theta) \\
y - y_p(\theta)
\end{bmatrix}.
\]

Differentiating (19), the path following error dynamics model in the SF frame is written as follows:

\[
\begin{align*}
\dot{x}_e &= u \cos \left(\psi - \gamma_p \right) - \bar{v} \sin \left(\psi - \gamma_p \right) + \bar{v}_p y_e - u_x, \\
\dot{y}_e &= u \sin \left(\psi - \gamma_p \right) + \bar{v} \cos \left(\psi - \gamma_p \right) - \bar{v}_p x_e,
\end{align*}
\]

where \(u_x\) is the speed of virtual target along the desired path and is expressed by:

\[
u_x = \dot{\theta} \sqrt{\bar{v}_x^2(\theta) + \bar{v}_y^2(\theta)}.
\]

Considering the sideslip angle \(\beta = \text{atan2}(\bar{v}, u)\), the path following error dynamics are rewritten as:

\[
\begin{align*}
\dot{x}_e &= u \cos \left(\psi - \gamma_p - \beta \right) - \bar{v} \sin \left(\psi - \gamma_p \right) + \bar{v}_p y_e - u_x, \\
\dot{y}_e &= u \sin \left(\psi - \gamma_p + \beta \right) + \bar{v}_p x_e - u_x,
\end{align*}
\]

where \(U = \sqrt{u^2 + v^2}\) is the speed of the USV.

In the presence of off-diagonal mass matrix, model uncertainties, unknown external disturbances and input saturation, the path following objective of this study is to ensure that the USV arrives and follows the predefined path. In this situation, a SHLOS guidance law, which is used to generate the desired surge speed and heading angle, and a control system, which is applied to produce the suitable surge force and yaw moment are designed in this paper.

In order to accomplish the design of guidance and control laws for the USV, the following assumptions are made.

Assumption 1: All states are available for measuring.

Assumption 2: The damping matrix is unknown.

Assumption 3: The environment disturbances \(\delta_i\) are bounded, i.e., there exist unknown positive constants \(\delta_i\) such that \(|\delta_i| \leq \delta_i\).

Remark 3: Assumption 1 is a common precondition in the field of control design of vessels \([4], [5], [19], [28]\). In Assumption 2, the damping terms are difficult to obtain \([29]\). The energy of environment disturbances is limited, so that Assumption 3 is reasonable. In practice, the velocities of USV are bounded. In addition, the approximation errors \(\rho_1\) and \(\rho_2\) are bounded, so that the unknown nonlinear terms \(D_u\) and \(D_r\) are bounded, and can be approximated by RBFNN.

III. GUIDANCE SYSTEM

From the previous studies, it is known that most guidance laws only generate desired heading angles for control systems and referenced surge speed signals are predefined. In this situation, the cross-track error is only influenced by the yaw...
dynamics, which will lead to more wear and tear on the rudder. For obtaining more prefect path following performance, not only the desired heading angle but also referenced surge speed are produced by the SHLOS guidance law in this section.

In order to deal with the singularity of sideslip angle when surge and sway speeds are zero simultaneously, the desired sideslip angle is defined as:

$$\beta_d = \tan(2\tilde{v}, u_d)$$

where u_d is the desired surge speed, which is generated by the SHLOS guidance law and always greater than zero.

Define the surge speed tracking error and the heading angle tracking error as:

$$\tilde{u} = u - u_d$$
$$\psi_e = \psi - \psi_d$$

where ψ_d is the desired heading angle.

Substitute (23), (24) and (25) into (22), and we obtain:

$$\dot{x}_e = u \cos(\psi - \psi_p) - u_d \sin(\psi - \psi_p) \tan(\beta_d + \gamma_p y_e - \xi_x),$$
$$\dot{y}_e = U_d \cos(\psi + \beta_d - \gamma_p) + \gamma_p y_e - \xi_x + \dot{u} \cos(\psi - \psi_p),$$
$$\dot{\tilde{v}} = U_d \sin(\psi - \psi_p) + u_d \sin(\psi - \psi_p) \tan(\beta_d - \gamma_p x_e),$$
$$\dot{\psi}_e = \dot{u} \sin(\psi - \psi_p) + U \omega \psi_e,$$

$$\dot{u}_e = u \sin^2 \psi + \sin \psi \psi_e - \psi_d + \bar{d}_1.$$

In this section, the tracking control laws, which are made up of the surge control force and yaw control moment, are designed under the lumped disturbances and input saturation. The unknown nonlinear terms D_p and D_t contain the environment disturbances, model uncertainties and approximation errors, which are compensated by RBFNN.

IV. CONTROL SYSTEM

In this section, the tracking control laws, which are made up of the surge control force and yaw control moment, are designed under the lumped disturbances and input saturation. The unknown nonlinear terms D_p and D_t contain the environment disturbances, model uncertainties and approximation errors, which are compensated by RBFNN.

A. SURGE SPEED CONTROL

On the basis of the SHLOS guidance law, the surge speed control force is designed for tracking the desired surge speed. Define the first error surface as:

$$u_e = u - u_d - \xi_1 = \tilde{u} - \xi_1$$

where

$$\xi_1 = \frac{1}{m_1}(h_1 - \xi_1)$$

where $k_3 > 0$ is the design constant.

Remark 4: As (17) shown, we can not get the control input σ_1 directly, so that we introduce an auxiliary signal to handle the problem.

The time derivative of u_e is given as:

$$\dot{u}_e = D_u + \frac{h_1}{m_1} - \dot{u}_d + \frac{\sigma_1 - h_1 + k_3 \xi_1}{m_1}$$

Then the desired surge control σ^*_1 is designed as:

$$\sigma^*_1 = -m_1 (k_u u_e + D_u - \dot{u}_d) - k_3 \xi_1$$

where $k_u > 0$, and D_u is the unknown lumped disturbance in surge, which can be approximated by RBFNN:

$$D_u = W_1^T \Phi(u) + \chi_1$$

where W_1^* is the optimal weight value and χ_1 is the approximation error. Therefore, the desired surge control law σ^*_1 is designed as:

$$\sigma^*_1 = -m_1 (k_u u_e + W_1^T \Phi(u) + \chi_1 - \dot{u}_d) - k_3 \xi_1$$
Since the W^* and χ_1 are unknown, the control law σ_1 can be expressed as:

$$\sigma_1 = -m_{11}(k_u u_e + \hat{W}_1^T \Phi(u) - \hat{u}_d) - k_3 \xi_1$$ \hspace{1cm} (40)$$

where \hat{W}_1 is the estimation of W^*_1.

Consider the Lyapunov function as:

$$V_2 = \frac{1}{2} u_e^2 + \frac{1}{2} \gamma_u \text{tr}(\hat{W}_1^T \hat{W}_1) + m_{11} \xi_1^2$$ \hspace{1cm} (41)$$

where $\hat{W}_1 = \hat{W}_1 - W^*$ is the estimation error of the weight value, and γ_u is the design parameter.

Taking the time derivative of V_2, we obtain

$$\dot{V}_2 = u_e \dot{u}_e + \frac{1}{2} \gamma_u \text{tr}(\hat{W}_1^T \dot{\hat{W}}_1) + m_{11} \dot{\xi}_1^2$$

$$= -k_u u_e^2 - \dot{\hat{W}}_1^T u_e \Phi(u) + \frac{1}{2} \gamma_u \text{tr}(\hat{W}_1^T \dot{\hat{W}}_1)$$

$$- \rho_1 \dot{\xi}_1 - k_3 \xi_1^2$$ \hspace{1cm} (42)$$

Design the update law of \hat{W}_1 as:

$$\dot{\hat{W}}_1 = \gamma_u (u_e \Phi(u) - k_4 \hat{W}_1)$$ \hspace{1cm} (43)$$

where $k_4 > 0$ is the design constant.

Then, (42) is rewritten as:

$$\dot{V}_2 = -k_u u_e^2 + \chi_1 u_e - k_4 \text{tr}(\hat{W}_1^T \dot{\hat{W}}_1) - \rho_1 \dot{\xi}_1 - k_3 \xi_1^2$$ \hspace{1cm} (44)$$

The result in (44) will be used for the stability analysis of the whole control system in Section V.

B. HEADING CONTROL

In this subsection, the yaw control moment is designed to track the desired heading angle, which is generated by SHLOS guidance law.

Step 1: Consider the heading tracking error ψ_e and take the time derivative, then we have

$$\dot{\psi}_e = r - \dot{\psi}_d$$ \hspace{1cm} (45)$$

To stabilize the dynamic surface ψ_e, a virtual input r_d is chosen as:

$$r_d = -k_\psi \psi_e + \dot{\psi}_d$$ \hspace{1cm} (46)$$

where $k_\psi > 0$ is a design parameter.

In order to avoid the complexity explosion problem induced by the repeated differentiations of the virtual control law, the DSC technology is applied. Let the virtual control input r_d pass through a first-order filter

$$t_1 \dot{\alpha}_r + \alpha_r = r_d, \alpha_r(0) = r_d(0)$$ \hspace{1cm} (47)$$

where t_1 is the design time constant, and α_r is the output of the first-order filter.

Define the output error of the filter as $z_1 = \alpha_r - r_d$, and take the derivative respect with time

$$\dot{z}_1 = -\frac{z_1}{t_1} - \dot{r}_d$$ \hspace{1cm} (48)$$

where $\dot{r}_d = -k_\psi (r - \dot{\psi}_d) + \dot{\psi}_d$ is a bounded nonlinear term, where the maximum value denotes d_3.

Step 2: Define the second error surface r_e

$$r_e = r - \alpha_r - \dot{\xi}_2$$ \hspace{1cm} (49)$$

where

$$\dot{\xi}_2 = \frac{m_{22}}{\Gamma} (h_2 - \sigma_2 - k_5 \xi_2)$$ \hspace{1cm} (50)$$

where $k_5 > 0$ is the design constant.

Then the derivative of (49) is given as follows:

$$\dot{r}_e = D_r + \frac{m_{22} h_2}{\Gamma} - \alpha_r - \frac{m_{22}}{\Gamma} (h_2 - \sigma_2 - k_5 \xi_2)$$

$$= D_r + \frac{m_{22}(\sigma_2 + k_5 \xi_2)}{\Gamma} - \alpha_r$$ \hspace{1cm} (51)$$

Then the desired yaw control σ_2^* is designed as:

$$\sigma_2^* = -\frac{\Gamma}{m_{22}} (k_r r_e + \psi_e + W^*_2 \Phi(u) + \chi_2 - \dot{\alpha}_r) - k_5 \xi_2$$ \hspace{1cm} (52)$$

where W^*_2 is the optimal weight value and χ_2 is the approximation error. Then the desired yaw control law σ_2^* is designed as:

$$\sigma_2^* = -\frac{\Gamma}{m_{22}} (k_r r_e + \psi_e + W^*_2 \Phi(u) + \chi_2 - \dot{\alpha}_r) - k_5 \xi_2$$ \hspace{1cm} (53)$$

where W^*_2 and χ_2 are unknown, the control law σ_2 can be expressed as:

$$\sigma_2 = -\frac{\Gamma}{m_{22}} (k_r r_e + \psi_e + \hat{W}_2 \Phi(u) - \dot{\alpha}_r) - k_5 \xi_2$$ \hspace{1cm} (55)$$

where \hat{W}_2 is the estimation of W^*_2.

Consider the Lyapunov function as:

$$V_3 = \frac{1}{2} \psi_e^2 + \frac{1}{2} r_e^2 + \frac{1}{2} \gamma_r \text{tr}(\hat{W}_2^T \hat{W}_2) + \frac{1}{2} \xi_2^2 + \frac{m_{22}}{2\Gamma} \xi_2^2$$ \hspace{1cm} (56)$$

where $\hat{W}_2 = \hat{W}_2 - W^*_2$ is the estimation error of the weight value, and γ_r is the design parameter.

The time derivative of V_3 is given by:

$$\dot{V}_3 = \psi_e \dot{\psi}_e + \dot{r}_e \dot{r}_e + \frac{1}{\gamma_r} \text{tr}(\hat{W}_2^T \dot{\hat{W}}_2) + z_1 \dot{z}_1 + \frac{m_{22}}{\Gamma} \xi_2$$

$$= \psi_e (r_e + \dot{z}_1 + \dot{\xi}_2 - k_\psi \psi_e + z_1) - \frac{1}{t_1} \dot{r}_d$$

$$+ r_e (k_r \dot{r}_e - \psi_e - \dot{\psi}_d + \dot{\chi}_2)$$

$$+ \frac{1}{\gamma_r} \text{tr}(\hat{W}_2^T \dot{\hat{W}}_2) + \xi_2 (-\dot{\rho}_2 - k_3 \xi_2)$$

$$= -k_\psi \psi_e^2 - k_r \dot{r}_e^2 - \frac{1}{t_1} \dot{z}_1 - k_5 \xi_2^2 + \psi_e z_1 + \psi_e \dot{z}_1$$

$$+ r_e \chi_2 - z_1 \dot{r}_d - r_e \hat{W}_2^T \Phi(u) + \frac{1}{\gamma_r} \text{tr}(\hat{W}_2^T \dot{\hat{W}}_2)$$

$$- \rho_2 \xi_2$$ \hspace{1cm} (57)$$
Design the update law of \hat{W}_2 as:
\[
\dot{\hat{W}}_2 = \gamma_e (r_e \Phi(u) - k_6 \hat{W}_2)
\]
(58)
where $k_6 > 0$ is the design constant.

Then, (57) is rewritten as:
\[
\dot{V}_3 = -k_\psi \psi e^2 - k_r r_e^2 - \frac{1}{\eta_1} z_1^2 - k_3 \bar{x}_2^2 + \psi_e z_1 + \psi_e \xi_2 + r_e \bar{x}_2 - z_1 \bar{r}_d - k_6 \text{tr}(\hat{W}_2^T \hat{W}_2) - \rho_2 \xi_2
\]
(59)

The result in (59) will be used for the stability analysis of the whole control system in Section V.

V. STABILITY ANALYSIS

In the presence of the off-diagonal mass matrix, environment disturbances, model uncertainties and input saturation, the SHLOS guidance law and tracking control laws are applied to obtain prefact path following performance for an USV. As the result, the stability analysis is presented as following.

Theorem 1: Considering the USV model (2), (3) with the off-diagonal mass matrix, environment disturbances, model uncertainties and input saturation, and supposing that Assumptions 1–3 are satisfied, the SHLOS guidance law (27)–(29), the tracking control laws (40), (55), the RBFNN update laws (43), (58), the first-order filter (48) and the auxiliary signal dynamics (35), (50) are applied to accomplish the path following objective, such that all error signals of the closed-loop system are uniformly ultimately bounded.

proof: Choose the following Lyapunov function:
\[
V = V_1 + V_2 + V_3
\]
\[
\leq \frac{1}{2} \psi e^2 + \frac{1}{2} r e^2 + \frac{1}{2} u e^2 + \frac{1}{2} \text{tr}(\hat{W}_2^T \hat{W}_2) + \frac{m_{11}}{2} z_1^2
\]
\[
+ \frac{1}{2} \psi e^2 + \frac{1}{2} r e^2 + \frac{1}{2} \text{tr}(\hat{W}_2^T \hat{W}_2) + \frac{m_{22}}{2} \xi_2^2
\]
(60)

Based on (33), (44) and (59), the time derivative of V is derived as:
\[
\dot{V} \leq -k_1 x_e^2 - k_2 y_e^2 - k_3 \bar{x}_2^2 - k_4 \psi_e^2 - k_r r_e^2
\]
\[
- \frac{1}{\eta_1} z_1^2 - k_5 \bar{x}_2^2 + \bar{u}_e \bar{x}_1 + r_e \bar{x}_2 + x_e \bar{u} \cos(\psi - \gamma)
\]
\[
+ \gamma_e \bar{u} \sin(\psi - \gamma) + U \omega y_e \psi_e - k_4 \text{tr}(\hat{W}_2^T \hat{W}_2) - \rho_1 \xi_1
\]
\[
+ \psi e z_1 + \psi e \xi_2 - z_1 \bar{r}_d - k_6 \text{tr}(\hat{W}_2^T \hat{W}_2) - \rho_2 \xi_2
\]
(61)

In virtue of Young’s inequality, we obtain:
\[
x_e \bar{u} \cos(\psi - \gamma) \leq \bar{u}_e \bar{u}_e + \xi_1
\]
\[
\leq \frac{\xi_1 + \xi_2}{2} \bar{u}_e^2 + \frac{1}{2} \bar{u}_e^2 + \frac{1}{2} \xi_2^2
\]
(62)
\[
y_e \bar{u} \sin(\psi - \gamma) \leq \bar{u}_e \bar{u}_e + \xi_1
\]
\[
\leq \frac{\xi_1 + \xi_2}{2} \bar{u}_e^2 + \frac{1}{2} \bar{u}_e^2 + \frac{1}{2} \xi_2^2
\]
(63)

\[
U \omega y_e \psi_e \leq U \omega \xi_1 \psi_e + U \omega \psi_e^2
\]
\[
\leq \frac{1}{2} u_e^2 + \frac{1}{2} \bar{x}_1^2 + \rho_1 \xi_1
\]
(64)
\[
- \rho_1 \xi_1 \leq \frac{1}{2} \bar{r}_d^2 + \frac{1}{2} \bar{x}_2^2 \leq \frac{1}{2} \bar{r}_d^2 + \frac{1}{2} \bar{x}_2^2
\]
(65)
\[
- \rho_1 \xi_1 \leq \frac{1}{2} \psi e^2 + \frac{1}{2} \xi_2^2 \leq \frac{1}{2} \psi e^2 + \frac{1}{2} \xi_2^2
\]
(66)
\[
- \rho_1 \xi_1 \leq \frac{1}{2} \bar{r}_d^2 + \frac{1}{2} \xi_2^2 \leq \frac{1}{2} \bar{r}_d^2 + \frac{1}{2} \xi_2^2
\]
(67)
\[
U \omega \xi_1 \psi_e \leq \frac{1}{2} \bar{x}_1^2 + \frac{1}{2} \bar{r}_d^2 \leq \frac{1}{2} \bar{x}_1^2 + \frac{1}{2} \bar{r}_d^2
\]
(68)
\[
U \omega \xi_1 \psi_e \leq \frac{1}{2} \bar{r}_d^2 + \frac{1}{2} \xi_2^2 \leq \frac{1}{2} \bar{r}_d^2 + \frac{1}{2} \xi_2^2
\]
(69)
\[
U \omega \xi_1 \psi_e \leq \frac{1}{2} \bar{r}_d^2 + \frac{1}{2} \xi_2^2 \leq \frac{1}{2} \bar{r}_d^2 + \frac{1}{2} \xi_2^2
\]
(70)
\[
U \omega \xi_1 \psi_e \leq \frac{1}{2} \bar{r}_d^2 + \frac{1}{2} \xi_2^2 \leq \frac{1}{2} \bar{r}_d^2 + \frac{1}{2} \xi_2^2
\]
(71)

where $\xi_i > 0$, $i = 1 \sim 5$.

In addition, consider the fact as follows:
\[
-k_4 \text{tr}(\hat{W}_2^T \hat{W}_1) \leq \frac{k_4}{2} \left\| \hat{W}_1 \right\|_F^2 + k_4 \left\| W_1^* \right\|_F^2
\]
(72)
\[
-k_6 \text{tr}(\hat{W}_2^T \hat{W}_2) \leq \frac{k_6}{2} \left\| \hat{W}_2 \right\|_F^2 + k_6 \left\| W_2^* \right\|_F^2
\]
(73)

Substituting (62)–(73) into (61), we get:
\[
\dot{V} \leq -k_1 x_e^2 - k_2 y_e^2 - k_3 \bar{x}_2^2 - k_4 \psi_e^2 - k_r r_e^2
\]
\[
- \frac{1}{\eta_1} z_1^2 - k_5 \bar{x}_2^2 + \bar{u}_e \bar{x}_1 + r_e \bar{x}_2 + x_e \bar{u} \cos(\psi - \gamma)
\]
\[
+ \gamma_e \bar{u} \sin(\psi - \gamma) + U \omega y_e \psi_e - k_4 \text{tr}(\hat{W}_2^T \hat{W}_2) - \rho_1 \xi_1
\]
\[
+ \psi e z_1 + \psi e \xi_2 - z_1 \bar{r}_d - k_6 \text{tr}(\hat{W}_2^T \hat{W}_2) - \rho_2 \xi_2
\]
\[
\leq \frac{k_4}{2} \left\| \hat{W}_1 \right\|_F^2 + \frac{k_4}{2} \left\| W_1^* \right\|_F^2 - \frac{k_6}{2} \left\| \hat{W}_2 \right\|_F^2 - \frac{k_6}{2} \left\| W_2^* \right\|_F^2
\]
\[
\leq -2\psi + C
\]
(74)
where $K = \min \left\{ \left(k_1 - \frac{\xi_1 + \xi_2}{2} \right), \left(k_2 - \frac{\xi_1 + \xi_4 - Ud_4 \xi_5}{2} \right), \left(k_u - \frac{1}{2 \xi_1} - \frac{1}{2 \xi_2} - \frac{1}{2} \right), \left(k_\psi - 1 - \frac{Ud_4 \xi_5}{2 \xi_1} \right), \left(k_r - \frac{1}{2} \right), \left(k_3 - \frac{1}{2} - \frac{1}{2 \xi_1} - \frac{1}{2 \xi_2} \right), \frac{1}{\xi_1} - \frac{1}{2} \right\}$, $(k_5 - 1), k_4^2 \gamma_u, k_6^2 \gamma_r$, and $C = \frac{1}{2} \gamma_1^2 + \frac{1}{2} d^2 + \frac{1}{2} \gamma_2^2 + \frac{1}{2} \gamma_3^2 + \frac{1}{2} \gamma_4^2 + \frac{k_2}{2} \| W^* \|_2 + \frac{k_2}{2} \| W^*_2 \|_2^2$.

Then, choose the suitable design parameters satisfy $K > 0$, such that $k_1 - \frac{\xi_1 + \xi_2}{2} > 0, k_2 - \frac{\xi_1 + \xi_4 - Ud_4 \xi_5}{2} > 0, k_u - \frac{1}{2 \xi_1} - \frac{1}{2 \xi_2} - \frac{1}{2} > 0, k_\psi - 1 - \frac{Ud_4 \xi_5}{2 \xi_1} > 0, k_r - \frac{1}{2} > 0, k_3 - \frac{1}{2} - \frac{1}{2 \xi_1} - \frac{1}{2 \xi_2} > 0, \frac{1}{\xi_1} - \frac{1}{2} > 0, k_5 - 1 > 0, k_4 \gamma_u > 0, k_6 \gamma_r > 0$.

We can obtain the solution of (74)

$$V \leq e^{-2K(t)} V(0) + \frac{C}{2K} .$$

It is concluded that V is bounded, which means that the error signals are uniformly ultimately bounded.

As a result, the proof is concluded.

Remark 5: Considering the sway dynamics, choose the Lyapunov function

$$V_v = \frac{1}{2} \tilde{v}^2$$

The time derivative can obtain as:

$$\dot{V}_v = \tilde{v} \ddot{v} = -\frac{d^2 v^2}{\xi_v} + \tilde{v} D_v$$

$$\leq -\frac{d^2 v^2}{\xi_v} + | \tilde{v} | | D_v |$$

Since D_v is bounded, so \tilde{v} is uniformly ultimately bounded [28]. Consider the coordinate transformation $\tilde{v} = v + \epsilon$, and r is bounded, then we can get the sway velocity v is bounded.

Remark 6: A parameter selection guide is provided as follows. First, the parameter Δ determines the convergence speed of cross-path error. The convergence speed can be fast by increasing Δ. Second, the parameter k_1 influences the convergence speed of along-path error. Third, the parameters γ_u, γ_r determine the learning rate of RBFNNs. Forth, the parameters k_u, k_ψ and k_r influence the output response, and a tradeoff should be made between response speed and stability margin. Finally, optimal parameters can be obtained with running simulation.

VI. SIMULATION

In this section, the simulation results and comparison are provided to confirm the validity and merits of the proposed method. The simulation is tested in the Cybership II [33], which is considered as an underactuated surface ship with input saturation. The surge control force and yaw control moment are limited as 2N and 1.5Nm, respectively [33]. The parameters of the ship are given as:

$$M = \begin{bmatrix} 25.8 & 0 & 0 \\ 0 & 33.8 & 1.01 \\ 0 & 1.01 & 2.76 \end{bmatrix} ,$$

The desired path to be followed is defined as:

$$x_p (t) = \begin{cases} 2 \theta, & 0 \leq \theta < 5 \\ 2 \sin (0.5 \theta - 2.5) + \theta + 5, & \theta \geq 5 \\ \theta \end{cases}$$

In addition, the unknown environment disturbances are set as:

$$\delta (t) = \begin{bmatrix} \sin (0.3 \theta + 0.3 \pi) \\ 0.5 \cos (0.3 \theta + 0.1 \pi) + 0.7 \\ \cos (0.3 \theta + 0.2 \pi) \end{bmatrix} .$$

The initial states of the USV are considered as $[x, y, \psi]^T = [4, 0, 0]^T$ and $[u, v, r]^T = [0, 0, 0]^T$. In order to test the proposed adaptive neural path following control laws, the design parameters are chosen as $k_1 = 1, k_2 = 0.25, \Delta = 1, k_3 = 30, k_4 = 0.005, k_u = 5, k_\psi = 2, k_r = 5, t_1 = 0.1, k_5 = 3, k_6 = 0.005, \gamma_u = 2, \gamma_r = 2$. In addition, the node number of RBFNN $m = 9$, and the initial value of the weights of RBFNN are set as $W_{10} = [0, 0, 0, 0, 0, 0, 0, 0, 0]^T$, $W_{20} = [0, 0, 0, 0, 0, 0, 0, 0, 0]^T$.

In order to show the advantages of the proposed strategy, a comparison between the ANPFC with the ANPFC/SA, which is defined as the ANPFC method without considering the input saturation is applied. In addition, we also conduct a comparison between ANPFC based on the SHLOS guidance with the ELOS guidance law [12], while the desired surge speed of the ELOS law is defined as 0.25m/s, and the observer gain $K_o = 10$.

A. COMPARISON WITH ANPFC/SA

In this subsection, the importance of the method with considering input saturation is revealed by the comparison analysis between ANPFC with ANPFC/SA. The simulation results of the different methods are shown in Figure 2–Figure 6. As we can see that, the ANPFC/SA method with the unconstrained
controller has a better path following performance. Due to the input saturation, the surge speed based ANPFC is smaller than ANPFC/SA, then the convergence time of ANPFC is more than ANPFC/SA. However, the control inputs break through the limitations of actuators, so that this situation is not practical. In addition, the ANPFC can force the USV to arrive and follow the desired path, and the desired heading angle and surge speed can be tracked accurately, while the control inputs via ANPFC method stay in the limitations, as shown in Figure 2–Figure 6. Based on the simulation results, we can conclude that the presented ANPFC method is more efficient and operable.
In this subsection, a comparison between the proposed SHLOS guidance law with ELOS is applied. The results of simulation are shown in Figure 7–Figure 12. From Figure 7–Figure 8, we can see that the SHLOS performs better than ELOS, while the USV based on SHLOS guidance law arrive the desired path faster than ELOS. In addition, the steady-state path tracking errors of ELOS are larger than SHLOS. The heading angle and surge speed tracking performance are shown in Figure 9–Figure 10, and illustrate that the two methods can track the desired values. In addition, the surge speed based on SHLOS guidance law is bigger than ELOS, so that the convergence time of SHLOS is less than ELOS. In addition, from Figure 11–Figure 12, we can conclude that the lumped disturbances can be estimated with RBFNN accurately, and the control inputs are smooth and keep in the limits. The simulation results demonstrate the efficiency of the designed control strategy.

VII. CONCLUSION

In this paper, an adaptive neural path following control scheme based on the SHLOS guidance law has been proposed for path following problem of an USV in the presence of off-diagonal mass matrix, unknown time-varying environment disturbances, model uncertainties and input saturation. The SHLOS guidance law can generate the reference surge speed and heading angle simultaneously. The effect of input saturation is handled by the hyperbolic tangent function, and the lumped disturbances are compensated by the RBFNN. Then, the proposed ANPFC scheme has been designed via DSC technique, so that the USV can arrive and follow the desired path. It has been proven that all error signals of the whole system are uniformly ultimately bounded. In addition, the simulation results confirm the effectiveness of the proposed control method. In the future, the path following tracking errors constraint problem will be considered in path following control design.

REFERENCES

[1] C. Hu, R. Wang, F. Yan, and N. Chen, “Robust composite nonlinear feedback path-following control for underactuated surface vessels with desired-heading amendment,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6386–6394, Oct. 2016.

[2] Z. Peng, J. Wang, and Q.-L. Han, “Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization,” IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8724–8732, Nov. 2019.

[3] G. Chen, W. Yang, S. Fu-Chun, and S. Zhi-Peng, “Survey for motion control of underactuated surface vessels,” Control Decis., vol. 24, no. 3, pp. 321–329, 2009.
[4] C. Paliotta, E. Lefebre, K. Y. Pettersen, J. Pinto, M. Costa, and J. T. de Figueiredo Borges de Sousa, “Trajectory tracking and path following for underactuated marine vehicles,” IEEE Trans. Control Syst. Technol., vol. 27, no. 4, pp. 1423–1437, Jul. 2019.

[5] Z. Zheng and M. Ferrokhian, “Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 6, pp. 2564–2575, Dec. 2017.

[6] Z. Zheng, L. Sun, and L. Xie, “Error-constrained LOS path following of a surface vessel with actuator saturation and faults,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 10, pp. 1794–1805, Oct. 2018.

[7] T. I. Fossen and A. M. Lekkas, “Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents,” Int. J. Adapt. Control Signal Process., vol. 31, no. 4, pp. 445–463, Apr. 2017.

[8] T. I. Fossen and K. Y. Pettersen, “On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws,” Automatica, vol. 50, no. 11, pp. 2912–2917, Nov. 2014.

[9] E. Borhaug, A. Pavlov, and K. Y. Pettersen, “Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents,” in Proc. 47th IEEE Conf. Decis. Control, Dec. 2008, pp. 4984–4991.

[10] A. M. Lekkas and T. I. Fossen, “Integral LOS path following for curved paths based on a monotone cubic Hermite spline parametrization,” IEEE Trans. Control Syst. Technol., vol. 22, no. 6, pp. 2287–2301, Nov. 2014.

[11] T. I. Fossen, K. Y. Pettersen, and R. Galeazzi, “Line-of-Sight path following for dubins paths with adaptive sideslip compensation of drift forces,” IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 820–827, Mar. 2015.

[12] L. Liu, D. Wang, and Z. Peng, “ESO-based Line-of-Sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation,” IEEE J. Ocean. Eng., vol. 42, no. 2, pp. 477–487, Apr. 2017.

[13] N. Wang, Z. Sun, J. Yin, S.-F. Su, and S. Sharma, “Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances,” IEEE Access, vol. 6, pp. 14039–14070, 2018.

[14] N. Wang, Z. Sun, Z. Zheng, and H. Zhao, “Finite-time sideslip observer-based adaptive fuzzy path-following control of underactuated marine vehicles with time-varying large sideslip,” Int. J. Fuzzy Syst., vol. 20, no. 6, pp. 1767–1778, Aug. 2018.

[15] N. Wang, Z. Sun, S.-F. Su, and Y. Wang, “Fuzzy uncertainty observer-based path-following control of underactuated marine vehicles with unmodelled dynamics and disturbances,” Int. J. Fuzzy Syst., vol. 20, no. 8, pp. 2593–2604, Dec. 2018.

[16] C. Wen, J. Zhou, Z. Liu, and H. Su, “Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance,” IEEE Trans. Autom. Control, vol. 56, no. 7, pp. 1672–1678, Jul. 2011.

[17] Z. Dong, D. Ma, Q. Liu, and X. Yue, “Motion control of valve-controlled hydraulic actuators with input saturation and modelling uncertainties,” Adv. Mech. Eng., vol. 10, no. 11, Nov. 2018, Art. no. 168781401811227.

[18] M. Chen, S. S. Ge, and B. Ren, “Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints,” Automatica, vol. 47, no. 3, pp. 452–465, Mar. 2011.

[19] G. Xia, C. Sun, B. Zhao, and J. Xue, “Cooperative control of multipole dynamic positioning vessels with input saturation based on finite-time disturbance observer,” Int. J. Control, Autonom. Syst., vol. 17, no. 2, pp. 370–379, Feb. 2019.

[20] J. Nie and X. Lin, “Robust nonlinear path following control of underactuated MSV with time-varying sideslip compensation in the presence of actuator saturation and error constraint,” IEEE Access, vol. 6, pp. 71906–71917, 2018.

[21] M. Chen, G. Tao, and B. Jiang, “Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 9, pp. 2086–2097, Sep. 2015.

[22] Z. Dong, J. Ma, and J. Yao, “Barrier function-based asymptotic tracking control of uncertain nonlinear systems with multiple states constraints,” IEEE Access, vol. 8, pp. 14917–14927, 2020.

[23] W. Deng and J. Yao, “Extended-state-observer-based adaptive control of electro-hydraulic servomechanisms without velocity measurement,” IEEE/ASME Trans. Mechatronics, early access, Dec. 12, 2019, doi: 10.1109/TMECH.2019.2959297.

[24] M. Chen, P. Shi, and C.-C. Lim, “Robust constrained control for MIMO nonlinear systems based on disturbance observer,” IEEE Trans. Autom. Control, vol. 60, no. 12, pp. 3281–3286, Dec. 2015.

[25] Z. Yao, J. Yao, and W. Sun, “Adaptive RISE control of hydraulic systems with multilayer neural-networks,” IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8638–8647, Nov. 2019.

[26] G. Xia, C. Sun, B. Zhao, X. Xia, and X. Sun, “Neuroadaptive distributed output feedback tracking control for multiple marine surface vessels with input and output constraints,” IEEE Access, vol. 7, pp. 123076–123085, 2019.

[27] Y. Wang, H. Tong, and C. Wang, “High-gain observer-based Line-of-Sight guidance for adaptive neural path following control of underactuated marine surface vessels,” IEEE Access, vol. 7, pp. 26088–26101, 2019.

[28] Z. Zheng and L. Sun, “Path following control for marine surface vessel with uncertainties and input saturation,” Neurocomputing, vol. 177, pp. 158–167, Feb. 2016.

[29] B. S. Park, J.-W. Kwon, and H. Kim, “Neural network-based output feedback control for reference tracking of underactuated surface vessels,” Automatica, vol. 77, pp. 353–359, Mar. 2017.

[30] K. D. Do and J. Pan, “Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices,” Automatica, vol. 41, no. 1, pp. 87–95, Jan. 2005.

[31] S. Seshagiri and H. K. Khalil, “Output feedback control of nonlinear systems using RBF neural networks,” IEEE Trans. Neural Netw., vol. 11, no. 1, pp. 69–79, Jan. 2000.

[32] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, Hoboken, NJ, USA: Wiley, 2011.

[33] E. Fredriksen and K. Y. Pettersen, “Global κ-exponential way-point maneuvering of ships: Theory and experiments,” Automatica, vol. 42, no. 4, pp. 677–687, 2006.

GUOQING XIA received the Ph.D. degree in control theory and control engineering from Harbin Engineering University (HEU), in 2001. He is currently working as a Professor with HEU. His research interests are ship dynamic positioning control technique, intelligent control theory, and system simulation technique.

XINWEI WANG received the bachelor’s degree in electrical engineering and automation from Harbin Engineering University (HEU), in 2015, where he is currently pursuing the Ph.D. degree in control science and engineering. His research interests are ship motion control, nonlinear control theory, and intelligent control theory.

BO ZHAO received the bachelor’s degree in automation and the master’s degree in navigation, guidance and control from the Beijing University of Aeronautics and Astronautics (BUAA), in 2006 and 2009, respectively, and the Ph.D. degree in marine cybernetics from the Norwegian University of Science and Technology, in 2015. From 2013 to 2018, he served at Global Maritime AS as a Senior Marine System Advisor, and developed hardware-in-the-loop testing for dynamic positioning systems. He currently works as an Associate Professor at Harbin Engineering University. His research interests are applying advanced control and artificial intelligence in the control of vessel, underwater robotics, and other marine systems.
ZHIWEI HAN received the bachelor’s degree in electrical engineering and automation from Northeast Agricultural University (NEAU), in 2015. He is currently pursuing the Ph.D. degree in control science and engineering from Harbin Engineering University. His research interests are intelligent optimization algorithm, path planning and collision avoidance of unmanned surface vehicle, and thrust allocation of DP vessels.

LINHE ZHENG was born in Suihua, China, in 1993. He is currently pursuing the Ph.D. degree with the College of Automation, Harbin Engineering University, China. His research interest includes ship motion stabilization control.