MINI-SYMPOSIUM: Using iPSCs to understand human neurological disease: potential and limitations

Modeling the C9ORF72 repeat expansion mutation using human induced pluripotent stem cells

Bhuvaneish T. Selvaraj1,2,3; Matthew R. Livesey2,3,4; Siddharthan Chandran1,2,3,5

INTRODUCTION

Expansion of a GGGGCC (G4C2) intronic hexanucleotide in the C9ORF72 (chromosome 9, open reading frame 72) gene is the most common cause of familial ALS and accounts for ~10% of sporadic ALS (1, 59, 68). The C9ORF72 repeat expansion (C9ORF72RE) is also the most frequent underlying genetic cause of FTD (12, 59) and approximately 50% of ALS patients co-present with FTD (57). Typically, the number of repeats in healthy individuals is lower than 30 and of several hundred repeats in affected individuals. Cytoplasmic TDP-43 inclusions and C9ORF72RE RNA foci are major histopathological features of both ALS and FTD (12, 45, 52). The pathogenicity of the C9ORF72RE mutation may act through two potential mechanisms; 1) a loss of function generated through haploinsufficiency of the C9ORF72 gene, and 2) a gain of function mediated through transcribed and/or translated elements of the mutant intronic repeat expansion (74).

A range of animal and cellular models have been developed to understand the cellular perturbations generated by the C9ORF72RE. Valuable insights into C9ORF72RE-mediated disease have been determined using animal models, which include C. elegans, zebrafish, drosophila and mice; collectively these reveal the complexity of potential disease mechanism (see (46) for a review). Indeed, the absence of TDP-43 inclusions, RNA foci and neurodegeneration in C9orf72 knock out mice (31) have demonstrated that loss of function is insufficient to generate disease though may contribute to an inflammatory component of the disease (55, 71). In contrast, C9ORF72RE mouse models that support a gain of function mechanism and successfully exhibit neurodegeneration with pathological hallmarks of C9ORF72RE-mediated disease have only recently been developed (7, 38). Such genetically engineered models that follow past strategies that generated only partial recapitulation of the C9ORF72RE phenotype will undoubtedly generate important future insights. Animal models are reviewed elsewhere (46, 74). Conversely, iPSC technology now allows the derivation of cell-type specific and regionally-defined material that harbors the patient genetic background. This also allows to recapitulate the disease in physiological context wherein the mutation is expressed in physiological level. Concurrently, recent development of CRISPR/Cas9 mediated genome editing has paved a way to generate isogenic iPSC lines. This has allowed to study the role of mutation in a genetically defined manner and overcome the challenges of genetic variability between different iPSC lines (61). In this regard multiple studies on a range of C9ORF72RE patient iPSC-derived cell types including motor neurons, cortical neurons, astrocytes and oligodendrocytes have been already performed. Beyond recapitulating major pathological signatures of disease, iPSC-based platforms have yielded novel biochemical and physiological information previously unknown in the context of C9ORF72RE. In this review we will highlight how this technology has contributed to our understanding of C9ORF72RE-mediated disease.

C9ORF72 protein and loss of function hypothesis

The C9ORF72 gene generates three different mRNA transcript variants (V1, V2, V3). Transcript variant 1 and 2 contain the repeat expansion mutation in the first intron therefore pre-mRNA form V1...
and V2 contains the G\(_4\)C\(_2\) repeats, whereas transcriptional start site for variant 2 is after the repeat expansion mutation. Transcript V1 encodes for a short isoform of C9ORF72 protein, whereas transcript V2 and V3 encode for the long isoform of C9ORF72 protein. Although the structure of C9ORF72 protein is not yet elucidated, it is predicted to be related to differentially expressed in normal and neoplasia (DENN) protein which functions as a GDP/GTP exchange factor (GEF) in activating RAB GTPases (36). Localization studies in human post-mortem tissues suggested that C9ORF72 short isoform is localized in the nuclear membrane interacting with components of nuclear pore complex and C9ORF72 long isoform is localized in the cytoplasm (83). Consistent with this prediction, C9ORF72 has been reported to associate with Rab proteins and thus involved in the regulation of endocytosis and autophagy (17). Earlier expression study in mouse showed C9ORF72 is highly expressed in neuronal cells (73). However, recent studies have observed highest levels of C9ORF72 expression in microglia and C9ORF72 knock out leads to an altered auto-immune response with age related neuroinflammation leading to progressive splanemegaly and lymphadenopathy in mice (55).

Hypothesis of C9ORF72 haploinsufficiency leading to neurodegeneration was explored based on the observation of reduced C9ORF72 transcripts (V1, V2, V3) in patient tissues and iPSC-derived neurons (1, 12, 16). Reduced expression of C9ORF72 is attributed to CpG hypermethylation of promoter (37) and repeat expansion mutation binding to trimethylated H3K9 and H3K27 leading to epigenetic silencing (4). A number of in-vitro studies using mouse primary neurons have shown that C9ORF72 interacts with Rab proteins and loss of C9ORF72 increases levels of p62 and positively regulates autophagy in the spleen and liver (72, 79). Interestingly, studies have observed increased level of p62, an autophagy marker, in post-mortem tissues and motor neurons derived from C9ORF72 iPSC. Conversely, treatment with chloroquine (autophagy inducer) increased the vulnerability of iPSC-derived C9ORF72 motor neurons to autophagy (1). Recent study in mouse primary motor neurons and human iPSC-derived neurons showed C9ORF72 regulates cytoskeletal actin dynamics through phospho-collin and shRNA mediated knockdown of C9ORF72 leads to axon outgrowth deficits (67). However, the absence of C9ORF72 loss of function (LOF) mutations in patient populations (28) along with rare C9ORF72 homozygous patients displaying a comparable clinical profile to heterozygous patients further argues against haploinsufficiency as the primary mechanism of disease (20).

Pathological hallmarks of C9ORF72\(^{\text{RE}}\)

One of the pathological signatures of C9ORF72\(^{\text{RE}}\) is the presence of RNA foci in cerebellum, motor cortex, spinal cord and hippocampus. These are expressed in both neurons and glial cells. RNA foci are generated by bi-directional transcription of G\(_4\)C\(_2\) repeat expansion (both sense and antisense) (2, 9, 12, 45). RNA foci are also observed in cortical neurons, motor neurons, astrocytes and oligodendrocytes derived from C9ORF72\(^{\text{RE}}\) iPSCs (1, 16, 39, 44, 62). It is widely believed that G\(_4\)C\(_2\) RNA foci sequesters RNA binding proteins and thereby causes toxicity to neurons and glial cells. A number of unbiased studies using co-localization and immunoprecipitation have identified ribonucleoproteins, such as hnRNPA1, hnRNPA2/B1, hnRNPA3, ADARB2, Pur-alpha, Ran-GAP1 that are associated with RNA foci (10, 16, 48).

Albeit rare, hairpin formation of repeat expansion mutations can trigger translation of the repeats through novel non-ATG initiated (RAN) translation. Translation of such repeats are characterized in other diseases such as CTG expansion in 3’UTR of DMPK gene causing myotonic dystrophy type 1 (DM1) (86), and (CTG)n expansion in ATX8 gene lead to bidirectional expression of poly-Q inclusions causing spinocerebellar ataxia type 8 (SCA8) (50). Similarly, C9ORF72\(^{\text{RE}}\) has been observed to be translated through an unconventional mechanism of repeat associated non-ATG (RAN) translation (2, 49). RAN translation from both sense and antisense sequence leads to generation of five distinct di-peptide repeats (DPR): poly-GA, poly-GP, poly-GR, poly-PR, poly-PA (47). These DPR’s are associated with p62\(^{\text{K63 polyubiquitylated}}\), ubiquitin\(^{\text{K48 polyubiquitylated}}\), TDP43\(^{\text{C-terminal}}\) cytoplasmic inclusions in both neurons and glia, a unique pathology of C9ORF72\(^{\text{RE}}\) post-mortem tissues (2, 49). Moreover, a recent transgenic mouse model of C9ORF72, where human C9ORF72 locus containing repeat expansion mutation is inserted in mouse, shows both RNA foci and DPRs in neurons and astrocytes thus recapitulating the pathology observed in patients (54).

Toxic gain of function hypothesis

Expression of RNA foci and DPR’s in various disease models of C9ORF72 suggests that toxic gain of function causes C9ORF72\(^{\text{RE}}\) mediated ALS. However, it is still debatable whether sequestering ribonucleoproteins by RNA foci and/or DPR’s causes neurotoxicity. Ectopic expression of G\(_4\)C\(_2\) repeats in mouse primary neurons recapitulated RNA foci and correlated with apoptosis (33). Adeno viral mediated overexpression (G\(_4\)C\(_2\))\(_{100}\) in mice resulted in expression of RNA foci, DPRs and p-TDP43 inclusions. Furthermore, they were associated with loss of cortical neuron and significant motor deficits (7). These studies suggest a toxic gain-of-function mechanism of neurodegeneration. However, it is difficult to tease apart if RNA foci and/or DPR is causing neurotoxicity since both are expressed. Overexpression of poly-PR DPR in an ATG-dependent translation in mouse primary neurons and human iPSC-derived motor neurons resulted in neurotoxicity as assayed by longitudinal survival analysis (80). Another study shows ectopic expression of poly-GA in mouse cortical neurons is associated with reduced dendritic branching and increased caspase 3 mediated apoptosis (42). The majority of these studies overexpress G\(_4\)C\(_2\) repeats in different models, however, they do not evaluate the consequence of physiological expression of C9ORF72\(^{\text{RE}}\). Human iPSC model systems addresses this issue. Some of the phenotypes observed in C9ORF72 mutant motor neurons such as glutamate induced excitotoxicity (16), hypoexcitability (62) are mitigated by antisense oligonucleotide (ASO) treatment hinting that sequestering of ribonucleoproteins by RNA foci is a driver for disease mechanism. However, it is imperative to generate specific antibodies to inhibit DPRs to identify if DPRs are also contributing to the disease phenotype.

Spread of DPRs

Among the di-peptide repeats, poly(GA) is prone to aggregation in-vitro and form cytoplasmic inclusions (6). Recently there has been emerging interest in cell to cell transmission of DPR’s. Inter-cellular DPR seeding and transmission has been observed between neuron to neuron and neuron to glial cells (81, 85). Moreover,
direct cell to cell interaction is not required for transmission noting that conditioned media and exosomes fractions are sufficient to induce transmission. These studies are performed predominantly using ectopic expression of DPRs under a strong promoter in various cell lines and primary neurons. However, this could lead to high expression and thus not representative of normal pathophysiology. To overcome this problem, Westergard et al, performed similar studies using co-culture of iPSC-derived C9orf72 mutant sMNs and GFP labelled wildtype MNs. They observed transmission of poly-GA, poly-GP and poly-GR DPRs thereby confirming its relevance at physiological levels (81). Further studies need to be performed to see if DPRs are detected in cerebrospinal fluid of patients which could be potentially used as a biomarker and also potentially an opportunity to neutralize pathogenic DPRs using antibody therapy.

Cellular pathways that are disrupted in C9orf72RE mediated ALS

Nuclear cytoplasmic protein shuttling defects

In a quest to elucidate the molecular mechanism for pathogenicity of hexanucleotide repeat expansion in C9orf72, interactome and modifier studies revealed dysfunctional nuclear-cytoplasmic trafficking of both proteins and RNA. Zhang et al, identified RanGAP1, a protein vital in shuttling of proteins containing nuclear localization signal, interacting with the G4C2 RNA. RanGAP1 overexpression was reverted the ommatidial defects in the eye and restore locomotion deficits of Drosophila model expressing 30 G4C2 repeats. iPSC-derived C9orf72RE mutant motor neurons displayed mislocalization of RanGAP1 protein in cytoplasm and exhibited deficits in nuclear import of protein, which includes TDP43. Targeting the RNA foci by anti-sense oligonucleotides (ASO) and facilitating nuclear import with a compound KPT 276, an inhibitor of exportin, reversed the phenotype observed in Drosophila model and human neurons (84).

Another independent study undertook an unbiased loss of function (LOF) screen to identify genes that modify G4C2 hexanucleotide repeat expansion mediated rough eye phenotype in Drosophila model (21). Eighteen modifiers that target the nuclear pore complex were identified. These included Nup50 and Nup153 RAN were identified to enhance the rough eye phenotype. ALYREF, a RNA binding protein responsible for RNA export, was identified to suppress rough eye phenotype. Consistent with these findings, iPSC-derived C9orf72RE motor neurons showed increased nuclear RNA retention when compared with controls (21). These studies show a toxic gain of function of either G4C2 RNA and DPRs alter the nuclear-cytoplasmic transport and lead to pathogenicity.

Vulnerability to ER and oxidative stress

Endoplasmic reticulum (ER) is an organelle necessary for production, folding and processing of secretory and transmembrane proteins. ER homeostasis, a balance between protein load and capacity to fold this load, is essential for proper folding and thus function of proteins. ER homeostasis is known to be perturbed by accumulation of misfolded mutant protein in the ER lumen. Recent studies have shown evidence ER stress is perturbed in C9orf72RE. Dafinca et al, (11) showed that iPSC-derived C9orf72RE motor neurons exhibited elevated levels of Ca\(^{2+}\) in ER with increased levels of GRP78/Bip – a marker for UPR and ER stress response. Another independent study showed that iPSC-derived C9orf72RE motor neurons are vulnerable to tunicamycin, inducer of ER stress, in a dose dependent manner (26). These studies imply that protein homeostasis is perturbed in C9orf72RE motor neurons, however causality for the ER stress remains unclear.

Oxidative stress is the result of an imbalance in the generation of free radicals and ability of the cell to neutralize/scavenge. The imbalance generally arises due to leakage of electrons from the mitochondria respiratory chain. Many studies, aside from identification of mutation in super oxide dismutase gene (SOD1), have shown evidence for increased oxidative stress in post mortem tissues of ALS patients. Increased levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), a marker for oxidized DNA, was observed in spinal cord ventral horn motor neurons (19). Recent study observed an age dependent (in culture) increase in DNA damage as measured by expression of γH2AX in iPSC-derived C9orf72RE motor neurons (40). Interestingly, ectopic expression of poly-GR\(_{80}\) but not poly-GA\(_{80}\) induced oxidative stress in C9orf72RE motor neurons. Treatment of mutant motor neurons with Trolox, Vitamin E analog, marginally reduced oxidative stress suggesting oxidative stress may also contribute to the disease mechanism (40).

Neuronal Excitability

Evidence for neuronal hyperexcitability has been broadly observed across the genetic spectrum of ALS and has been suggested to manifest pre-symptomatically before potentially contributing to the degenerative process (3, 77). Emerging clinical functional data for symptomatic ALS patients that carry the C9orf72RE shows axonal hyperexcitability in lower motor neurons (23) and the cortex (24, 65, 82). In direct contrast, cortical hyperexcitability has not been observed in FTD and ALS-FTD patients, or asymptomatic patients, carrying C9orf72RE (65).

Neuronal excitability maybe influenced by intrinsic (isolated neuronal firing, functional receptor/ion channel expression) and/or extrinsic (synaptic and extra-synaptic activity, connectivity) factors. Mechanistic studies are required to elucidate the full contribution of either to any potential excitability impairment in ALS. Electrophysiological approaches have therefore been applied to determine whether such functional impairments manifest at single neuron, synaptic and network levels in C9orf72RE patient iPSC-derived neurons.

Using multi-electrode arrays, Wainger et al, 2014 showed network hyperexcitability in the form of increased basal spontaneous spike firing frequency in C9orf72RE patient hiPSC-derived cultures (14 days old, grown in co-culture with primary mouse cortical astrocytes). Cultures in this study contained a low percentage (<20%) of Islet1+ motor neurons, but ultimately equivalent network hyperexcitability was observed in enriched mutant SOD1 patient iPSC-derived HIB9+GFP motor neuron cultures suggesting a convergence of an ALS hyperexcitable phenotype in lower motor neurons. Interestingly, patch-clamp electrophysiological recordings from mutant SOD1 neurons determined a decreased functional expression in delayed-rectifier potassium channels, but not sodium channels. Such channels have sustained activation kinetics and loss of functional expression is mechanistically consistent with increased capacity of neurons to fire action potentials and display...
an increased network firing frequency. Loss of functional expression of potassium channels with sustained kinetics is theoretically predicted to be a component in the generation of the observed hyperexcitability in symptomatic C9ORF72RE patient lower motor neuron axons (23). Retigabine, a Kv 7 delayed-rectifier potassium channel family activator, has therefore been raised as a potential therapeutic in ALS (78).

In direct contrast, Sareen et al demonstrate that C9ORF72RE patient iPSC-derived neuronal cultures (66–79 days old) containing SMi32+ motor neurons (∼60% enrichment) show intrinsic hyperexcitability with a decrease in the ability to fire action potentials in response to depolarization. Concurrently performed RNA-sequencing indicated an increased expression of the delayed rectifier potassium channel, KCNQ3, which is mechanistically consistent with increased intrinsic hyperexcitability (62).

These divergent findings appear to be reconciled by temporal analysis of excitability of enriched MNs generated from C9ORF72RE patient iPSCs using patch-clamp electrophysiology (14). Evidence for intrinsic hyperexcitability was found at an early time point (21–28 days) in culture in a subset of cells when classified according to their firing state. Recordings made from cells maintained up to 70 days showed that cells lost the capacity to fire action potentials and accordingly lost functional expression of sodium and potassium channel-mediated conductances.

Together this suggests for C9ORF72RE-mediated ALS that a potential early intrinsic hyperexcitability potentially transitions, with time, into a hyperexcitable phenotype in motor neurons. However, the general contribution of intrinsic hyperexcitability to ALS has been further challenged by studies where data from other iPSC-derived motor neuron models of ALS (38, 53) and the mutant SOD1 mouse (5, 13, 35) identify intrinsic hyperexcitability rather than hyperexcitability as the key physiological phenotype. Indeed, pharmacological interventions that increase excitability to improve motor neuron function and survival have been proposed (53, 64).

Differences in neuronal excitability may also arise through altered functional synaptic properties. Patch-clamp recordings from C9ORF72RE patient iPSC-derived cultures containing motor neurons are consistent with hyperexcitability where a reduced detection of cells with post-synaptic events was observed after 7–10 weeks in culture (14). Such data is consistent with synaptic loss/reduced synaptic function observed in ALS patients and other models of ALS (35, 53, 63, 84). The pathological loss of synaptic input is supported by increasing evidence that RNA-seq-based studies on C9ORF72RE iPSC-derived MN cultures and post mortem brain samples that consistently indicate altered expression of synaptically associated proteins (58, 62) and furthermore that C9ORF72 protein is observed to accumulate at the synapse (69). No other functional data is currently available that assesses synaptic physiology in C9ORF72RE models.

Subtle but important differences in experimental approaches likely account for the differences in excitability findings. These include potential for variability in iPSC-derived cellular composition, including specific motor neuron identity, and maturation of iPSC-derived cultures (for in-depth review (60)). For example, motor neuron cultures obtained from different protocols may include different levels of astrocytes that will also harbor C9ORF72RE. C9ORF72RE-iPSC-derived astrocytes have previously been shown to be toxic to iPSC-derived motor neurons (44). The contribution of iPSC-derived astrocytes to the observed intrinsic excitability of C9ORF72RE-patient-derived neurons remains unexplored. Furthermore, consideration of the culture composition has important implications for investigating synaptic physiology – it is unknown to the extent to which the synaptic connectivity in such cultures represents that of native circuits (60). In this regard, altered intrinsic neuronal excitability may simply reflect a homeostatic response to the extent of synaptic innervation within the culture (43).

The current evidence for hyper- vs. hypo-excitability in ALS is clearly heterogeneous. The volume of evidence from in vitro models of ALS is weighted towards hypexcitability in C9ORF72RE ALS, but this appears at clear odds with the existing hyperexcitability data obtained from symptomatic ALS C9ORF72RE patients. To move forward in understanding neuronal/circuit dysfunction in C9ORF72RE-mediated ALS and FTD we must understand better the physiological representation of the iPSC-derived neurons to those of native populations. In alliance with this, longitudinal clinical C9ORF72RE patient data must be obtained to verify and appropriately align observations made in iPSC-derived studies (25).

Excitotoxicity

Persistent glutamate-mediated excitotoxicity is thought to play an important role in the progression of ALS including C9ORF72RE patients (8, 76). The development of the excitotoxicity hypothesis is multifaceted and has largely been developed from studies on mutant SOD1 and post mortem studies. This includes (1) the reduction of astroglial glutamate transporter expression that acts to reduce the clearance of synaptic glutamate; (2) an increase in functional Ca2+-permeable glutamate-gated AMPA receptor expression upon motor neurons and (3) a potentially reduced intracellular buffering Ca2+-capacity leading to toxic elevations of intracellular Ca2+ (8, 76). It is thought that riluzole, the only licensed drug for ALS, largely acts through multiple mechanisms to reduce excitotoxicity (8). To date, only a few iPSC-based studies have provided data to support the role of glutamate receptor-mediated excitotoxicity in motor neurons.

Donnelly et al, 2013 demonstrated that cultures containing C9ORF72RE patient iPSC-derived motor neurons (30%-40% HB9+) are highly susceptible to glutamate excitotoxicity, which is blocked by pharmacological inhibition of AMPA receptors, NMDA receptors and voltage-gated Ca2+ channels. In association with a reduction in RNA foci, treatment of motor neurons with C9ORF72RE anti-sense oligonucleotides partially reduced the vulnerability to excitotoxicity suggesting the glutamate-mediated excitotoxicity is associated with RNA toxicity. Interestingly, this study also observed nuclear co-localization of ADAR2B2 RNA with RNA foci. This enzyme controls the post-transcriptional modification of the GluA2 subunits (glutamine to arginine) that imparts Ca2+-impermeability to GluA2-containing AMPA receptors. Previously inefficient editing of the GluA2 subunit has been implicated in the post mortem spinal cord of sporadic ALS patients (32). The link between Ca2+-impermeable AMPA receptor-mediated excitotoxicity in ALS and C9ORF72RE remains to be definitively determined.

In contrast, cortical neurons derived from C9ORF72RE FTD patients show altered AMPAR transcript regulation that is consistent with more functional Ca2+-impermeable AMPA receptors (22). Furthermore, the functional AMPA receptor composition in
oligodendrocytes derived from C9ORF72RE ALS patient iPSCs is predominantly Ca\(^{2+}\)-impermeable (39). These data indicate that excitotoxicity in these cell types is highly unlikely to be mediated via altered AMPA receptor composition. Importantly, this data is suggestive of both region and cell-type specific C9ORF72RE-mediated pathology.

Glial Cross-Talk

It is well recognized that non-neuronal cellular phenotypes are likely to influence ALS/FTD disease progression beyond that of the astrocytic contribution to glutamate-mediated excitotoxicity (29). Meyer et al, 2014 demonstrated that C9ORF72RE-derived astrocytes were toxic to iPSC-derived HB9\(^+\) motor neurons. Importantly, equivalent experiments using mutant SOD1 (human or rodent) derived astrocytes demonstrate a similar feature (15, 27, 41). Mutant TDP-43 iPSC-derived astrocytes appear not to be associated with toxicity to motor neurons (66) although mutant astrocytes in a TDP-43 rat model do adversely influence motor neuron survival (75). It therefore remains unclear if astrocytes in ALS generally have an associated toxicity to motor neurons.

Recently, oligodendrocyte abnormalities have also been identified in experimental models and pathological studies of ALS (30). Rodent mutant SOD1 oligodendrocytes have impairments in differentiation from progenitor cells leading to insufficient re-myelination of motor neurons and those that differentiate appear to exhibit morphological abnormalities consistent with impairments in maturation (30, 56). Mutant SOD1 oligodendrocytes that myelinate appear less able to metabolically support motor neuron axons (34). Furthermore, co-cultures of mutant SOD1 patient iPSC-derived oligodendrocytes were shown to impart toxicity to motor neurons (18). However, data emerging from C9ORF72RE patient iPSC-derived oligodendrocyte studies are highly divergent with mutant SOD1 studies. Despite presenting pathological signatures of C9ORF72RE-mediated disease, including RNA foci, C9ORF72RE patient iPSC-derived oligodendrocytes were shown not to impart toxicity to motor neurons when maintained in co-culture (18) and furthermore were not associated with any maturational or morphological impairment (39).

The analysis of factors (contact and conditioned media) regulating glial toxicity to motor neurons remains to be addressed although early studies have identified promising potential therapeutic candidates (70). Moreover, the very recent ability to generate functional microglia from human pluripotent cultures is of great interest for ALS especially for C9ORF72RE-mediated disease that is maximally expressed in microglia (51, 55).

SUMMARY

iPSC technology allows the generation of multiple in vitro cellular types that are relevant to modeling C9ORF72RE-mediated disease. Critically, patient-derived material largely recapitulates major C9ORF72RE pathology and beyond this has been used to uncover new potential disease hypotheses. Data from a range of C9ORF72RE models will ultimately be required to reinforce these ideas. In this regard, it is important to fully understand the nature of the iPSC-derived material and how it reflects that of native in vivo disease progression to place such results into appropriate context. Nonetheless iPSC technology will continue to be an important platform to explore C9ORF72RE-mediated disease. The increasing ability of these systems to be adapted and scaled for high-throughput screening for novel pharmacological compounds is of particular promise.

REFERENCES

1. Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF, Degroot S et al (2013) Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. *Acta Neuropathol* 126:385–399.
2. Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to C9FTD/ALS. *Neuron* 77:639–646.
3. Bae JS, Simon NG, Menon P, Yuec S, Kieman MC (2013) The puzzling case of hyperexcitability in amyotrophic lateral sclerosis. *J Clin Neurol* 9:65–74.
4. Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK et al (2013) Reduced C9orf72 gene expression in C9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. *Acta Neuropathol* 126:905–905.
5. Bories C, Amendola J, Lamotte d’Incamps B, Durand J (2007) Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis. *Eur J Neurosci* 25:451–459.
6. Chang YJ, Jeng US, Chiang YL, Hwang IS, Chen YR (2016) The glycine-alanine dipeptide repeat from C9orf72 hexanucleotide expansions forms toxic amyloids possessing cell-to-cell transmission properties. *J Biol Chem* 291:4903–4911.
7. Chew J, Gendron TF, Prudencio M, Sasaki H, Zhang YJ, Castanedes-Casey M et al (2015) Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. *Science* 348:1151–1154.
8. Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. *Nat Rev Neurosci* 2:806–819.
9. Cooper-Knock J, Higginbottom A, Stopford MJ, Highley JR, Ince PG, Wharton SB et al (2015) Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. *Acta Neuropathol* 130:63–75.
10. Cooper-Knock J, Walsh MJ, Higginbottom A, Robin Highley J, Dickman MJ, Edbauer D et al (2014) Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. *Brain* 137:2040–2051.
11. Dafinca R, Scaber J, Ababneh N, Lalic T, Weir G, Christian H et al (2014) Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. *Brain Pathology* 27 (2017) 518–524.
12. Dejesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. *Neuron* 72:245–256.
13. Delestrée N, Manuel M, Iglesias C, Elbasiouny SM, Heckman CJ, Zytnicki D (2014) Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. *J Physiol* 592:1687–1703.
14. Derlin AC, Burr K, Boroah S, Foster JD, Cleary EM, Geti I et al (2015) Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. *Nat Commun* 6:5999.
15. Di Giorgio FP, Boulling GL, Bobrowicz S, Egan KC (2008) Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3:637–648.
16. Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Videnksy S et al (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80:415–428.
17. Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RA, Levin V et al (2014) C9ORF72, implicated in amyotrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficing. Hum Mol Genet 23:3579–3595.
18. Ferrauilo L, Meyer K, Sherwood TW, Vick J, Likhit S, Frakes A et al (2016) Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc Natl Acad Sci USA 113: E6496–E6505.
19. Fitzmaurice PS, Shaw IC, Kleiner HE, Miller RT, Monks TJ, Lau SS et al (1996) Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 19:797–798.
20. Fratta P, Poulter M, Lashley T, Rohrer JD, Polke JM, Beck 3 et al (2013) Homozygozity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta Neuropathol 126:401–409.
21. Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim MC, Almeida S, Lee KH et al (2014) Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med 20:1444–1451.
22. Geesinga N, Menon P, Howells J, Nicholson GA, Kiem MC, Vucic S (2015) Axonal ion channel dysfunction in C9orf72 familial amyotrophic lateral sclerosis. JAMA Neurol 72:49–57.
23. Geesinga N, Menon P, Nyholm AR, Kiernan MC, Vucic S (2016) Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol 12:651–661.
24. Haesler AR, Donnelly CJ, Periz G, Simko EA, Shaw KG, Kim MS et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200.
25. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A et al (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. J Neurol Sci 299:824–828.
26. Harms MB, Cady J, Zaidman C, Cooper P, Bali T, Allred P et al (2013) Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiol Aging 34:2234.e13–9.
27. Ilieva H, Rymermonidu M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772.
28. Kang SH, Li Y, Fukaya M, Lorenzi I, Cleveland DW, Ostrow LW et al (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579.
29. Koppers M, Blokhuis AM, Westeneng HJ, Terpstra ML, Zundel CA, Vieira de Sa et al (2015) C9orf72 amination in mice does not cause motor neuron degeneration or motor deficits. Ann Neurol 78:426–438.
30. Kwak S, Hideyama T, Yamashita T, Aizawa H (2010) AMPA receptor-mediated neuronal death in sporadic ALS. Neuropathology 30:182–188.
31. Lee YB, Chen HJ, Peres JN, Gomez-Deza J, Attig J, Stalekar M et al (2013) Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 5:1178–1186.
32. Lee YB, Chen HJ, Lengacher S, Farah MH, Hoffman PN et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448.
33. Leroy F, Lamotte d’ Incamps B, Imhoff-Manuel RD, Zytnicki D (2014) Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis. Elife 3.
34. Levine TP, Daniels RD, Gatta AT, Wong LH, Hayes MJ (2013) The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics 29: 499–503.
35. Liu EY, Russ J, Wu K, Neal D, Suh E, McNally AG et al (2014) C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol 128:525–541.
36. Liu ML, Zhang T, Zhang CL (2016) Direct lineage reprogramming reveals disease-specific phenotypes of motor neurons from human ALS patients. Cell Rep 14:115–128.
37. Livezey MR, Magnani D, Cleave EM, Vastia NA, James OT, Selvaraj BT et al (2016) Maturation and electrophysiological properties of human pluripotent stem cell-derived oligodendrocytes. Stem Cells 34:1040–1053.
38. Lopez-Gonzalez R, Lu Y, Gendron TF, Karyadas A, Tran H, Yang D et al (2016) Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in IPSC-derived motor neurons. Neuron 92:383–391.
39. Marchetto MC, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH (2008) Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3:649–657.
40. May S, Hornburg D, Schludi MH, Arzberger T, Rentzsch K, Schwenk BM et al (2014) C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol 128:485–503.
41. Menits GZ, Blivis D, Liu W, Drobac E, Crowder ME, Kong L et al (2011) Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69:453–467.
42. Meyer K, Ferrauilo L, Miranda CJ, Likhit S, McElroy S, Renush S et al (2014) Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc Natl Acad Sci U S A 111:829–832.
43. Mizielenksa S, Lashley T, Norona FE, Clayton EL, Ridey CE, Fratta P et al (2013) C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol 126:845–857.
44. Moens TG, Partridge L, Isaac AM (2017) Genetic models of C9orf72: what is toxic? Curr Opin Genet Dev 44:92–101.
45. Mori K, Arzberger T, Grassner FA, Giselskienyi I, May S, Rentzsch K et al (2013) Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 126:881–893.
46. Mori K, Lammich S, Mackenzie IR, Forne I, Zilow S, Kretzchmann H et al (2013) hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125:413–423.
47. Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339: 1335–1338.
48. Moseley ML, Zhu T, Ikeda Y, Gao W, Bossemlaker M, Daughters RS et al (2006) Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinoocerebellar ataxia type 8. Nat Genet 38:758–769.
49. Musa M, Li Y, Yuan B, Mitalipova M, Omer A, Corcoran S et al (2016) Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 22:1358–1367.

Modelling the C9ORF72 repeat expansion mutation
Modelling the C9ORF72 repeat expansion mutation

52. Murray ME, DeJesus-Hernandez M, Rutherford NJ, Baker M, Duara R, Graff-Radford NR et al (2011) Clinical and neuropathologic heterogeneity of C9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 122:673–690.

53. Naujok M, Stanislovsny N, Bufler S, Naumann M, Reinhardt P, Sternebeck J et al (2016) Aminopiridine induced activity rescues hypoexcitable motor neurons from amyotrophic lateral sclerosis patient-derived induced pluripotent stem cells. Stem Cells 34:1563–1575.

54. O'Rourke JG, Bogdanik L, Muhammad AK, Gendron TF, Kim KJ, Austin A et al (2015) C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron 88:892–901.

55. O'Rourke JG, Bogdanik L, Yanze A, Lall D, Wolf AJ, Muhammad AK et al (2016) C9orf72 is required for proper macrophage and microglial function in mice. Science 351:1324–1329.

56. Philips T, Bento-Abreu A, Nonneman A, Haeck W, Staats K, Geelen A et al (2016) Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci 18:1175–1182.

57. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9orf72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268.

58. Sances S, Bruijn LI, Chandran S, Eggan K, Ho R, Klim JR et al (2016) Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 19:542–553.

59. Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16:780–789.

60. Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M et al (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9RF72 repeat expansion. Sci Transl Med 5:208ra149.

61. Sasaki S, Maruyama S (1994) Synapse loss in anterior horn neurons in amyotrophic lateral sclerosis. Acta Neuropathol 88:222–227.

62. Saxena S, Roselli F, Singh K, Leptien K, Julien JP, Gros-Louis F et al (2013) Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival. Neuron 80:80–96.

63. Schanz O, Bageac D, Braun L, Wolf AJ, Muhammad AK et al (2016) CORT-ALS: selective vulnerability of motor neurons. Acta Neuropathol Commun 51.

64. Serino A, Bilican B, Barmada SJ, Ando DM, Zhao C, Siller R et al (2013) Pathophysiological insights into ALS with C9ORF72 expansions. J Neurol Neurosurg Psychiatry 84:931–935.

65. Shi Y, Wang J, Cui J, Li J, Wang D, Wu Q et al (2017) Antibodies inhibit transmission and aggregation of C9orf72 protein repeat. Proc Natl Acad Sci U S A 114:4697–4702.

66. Smith BN, Newhouse S, Shatunov A, Vance C, Topp S, Johnson L et al (2013) The C9ORF72 expansion mutation is a common cause of ALS+/−FTD in Europe and has a single founder. Eur J Hum Genet 21:102–108.

67. Snowdon JS, Rollinson S, Thompson JC, Harris JM, Stopford CL, Richardson AM et al (2012) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135:693–708.

68. Song S, Miranda CJ, Braun L, Meyer K, Frakes AE, Ferraiuolo L et al (2016) Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis. Nat Med 22:397–403.

69. Sutphin-Delgado E, Koppers M, de Wit M, van der Meer C, Westeneng HJ, Zundel CA et al (2016) Full ablation of C9orf72 in mice causes immune system-related pathology and neoplastic events but no motor neuron defects. Acta Neuropathol 132:145–147.

70. Sullivan PM, Zhou X, Robins AM, Paushker DH, Kim D, Smolka MB et al (2016) The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autohyphosome lysosome pathway. Acta Neuropathol Commun 4:51.

71. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ et al (2016) In vivo genome editing via CRISPR-Cas9 mediated homology-independent targeted integration. Nature 540:144–149.

72. Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206.

73. Tong J, Huang C, Bi F, Wu Q, Huang B, Liu X et al (2013) Expression of ALS-associated TDP-43 mutant in astrocytes causes non-cell-autonomous motor neuron death in rats. EMBO J 32:1917–1926.

74. Van Den Bosch L, Vandenberghe W, Klaassen H, Van Houtte E, Robberecht W (2000) C(2+) permeable AMPA receptors and selective vulnerability of motor neurons. J Neurol Sci 180:29–34.

75. Vucic S, Nicholson GA, Kiernan MC (2008) Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131:1540–1550.

76. Wainger BJ, Kiskinis E, Mellin C, Wiskow O, Han SS, Sandoe J et al (2014) Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 7:1–11.

77. Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L et al (2016) The C9orf72 protein interacts with Tubulins and the ULK1 complex to regulate initiation of autophagy. EMBO J 35:1656–1676.

78. Wen X, Tan W, Westergard T, Krishnamurthy K, Markandiaah SS, Shi Y et al (2014) Antisense polyglutamine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 84:1213–1225.

79. Westergard T, Jensen BK, Wen X, Cai J, Kropf E, Iacovitti L et al (2016) Cell-to-cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Rep 17:645–652.

80. Williams KL, Fifita JA, Vucic S, Durnall JC, Kiernan MC, Blair IP et al (2013) Pathophysiologic insights into ALS with C9ORF72 expansions. J Neurosci Res 84:931–935.

81. Xiao S, MacNair L, McGoldrick P, McKeever PM, McLean JR, Zhang M et al (2015) Isoform-specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis. Ann Neurol 78:568–583.

82. Zhang K, Donnelly CJ, Haesler AR, Grima JC, Machamer JB, Steinwald P et al (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525:56–61.

83. Zhou Q, Lehner C, Michaelsen M, Mori K, Alterauge D, Baumjohann D et al (2017) Antibodies inhibit transmission and aggregation of C9orf72 poly-GA dipeptide repeat proteins. EMBO Mol Med 9:687–702.

84. Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD et al (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 108:260–265.