Title
Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact?

Permalink
https://escholarship.org/uc/item/7gd4q6xt

Authors
HAYES, Tyrone
Case, Paola
Chui, Sarah
et al.

Publication Date
2006-04-01

DOI
10.1289/ehp.8051

Peer reviewed
Amphibian populations are declining globally at an alarming rate. Pesticides are among a number of proposed causes for these declines. Although a sizable database examining effects of pesticides on amphibians exists, the vast majority of these studies focus on toxicological effects (lethality, external malformations, etc.) at relatively high doses (parts per million). Very few studies focus on effects such as endocrine disruption at low concentrations. Further, most studies examine exposures to single chemicals only. The present study examined nine pesticides (four herbicides, two fungicides, and three insecticides) used on cornfields in the midwestern United States. Effects of each pesticide alone (0.1 ppb) or in combination were examined. In addition, we also examined atrazine and \(\text{S}-\text{metolachlor} \) combined (0.1 or 10 ppb each) and the commercial formulation Bicep II Magnum, which contains both of these herbicides. These two pesticides were examined in combination because they are persistent throughout the year in the wild. We examined larval growth and development, sex differentiation, and immune function in leopard frogs (\(\text{Rana pipiens} \)). In a follow-up study, we also examined the effects of the nine-compound mixture on plasma corticosterone levels in male African clawed frogs (\(\text{Xenopus laevis} \)). Although some of the pesticides individually inhibited larval growth and development, the pesticide mixtures had much greater effects. Larval growth and development were retarded, but most significantly, pesticide mixtures negated or reversed the typically positive correlation between time to metamorphosis and size at metamorphosis observed in controls: exposed larvae that took longer to metamorphose were smaller than their counterparts that metamorphosed earlier. The nine-pesticide mixture also induced damage to the thymus, resulting in immunosuppression and contraction of flavobacterial meningitis. The study in \(X. \text{laevis} \) revealed that these adverse effects may be due to an increase in plasma levels of the stress hormone corticosterone. Although it cannot be determined whether all the pesticides in the mixture contribute to these adverse effects or whether some pesticides are effectors, some are enhancers, and some are neutral, the present study revealed that estimating ecological risk and the impact of pesticides on amphibians using studies that examine only single pesticides at high concentrations may lead to gross underestimations of the role of amphibian declines. **Key words:** amphibian declines, amphibians, atrazine, corticosterone, development, endocrine disruption, growth, immunosuppression, mixtures. *Environment Health Perspect* 114(supp1):40–50 (2006). doi:10.1289/ehp.8051 available via http://dx.doi.org [Online 24 January 2006]
in disease contraction, we examined thymus histology as a measure of immunocompetence in *R. pipiens*. We also examined plasma levels of corticosterone in adult African clawed frogs (*Xenopus laevis*) exposed to this same mixture to explore a possible mechanism underlying the observed immunosuppressive effects.

Materials and Methods

Materials

Atrazine, alachlor, nicosulfuron, cyfluthrin, λ-cyhalothrin, tebuirimphos, metalaxyl, and propiconizole were purchased from Chem Service, Inc. (Chester, PA) and were ≥ 98% pure (except tebuirimphos, which was 97%). S-metolachlor and the commercial atrazine–metolachlor preparation Bicep II Magnum were gifts from Syngenta Crop Protection U.S. (Research Triangle Park, NC; see below for purity). Except where indicated, all other reagents were obtained from Sigma Chemical Co. (St. Louis, MO).

Experiment 1: Effects of Pesticides on Larval *Rana pipiens*

Animal care for laboratory studies. Adult *R. pipiens* for breeding were purchased from Charles D. Sullivan Co. Inc. (Nashville, TN). Frogs were reportedly obtained from populations within 200 miles of Boston, Massachusetts (Sullivan C, personal communication). Fertilized eggs were obtained by injecting three males and three females with a gonadotropin–releasing hormone agonist des-Gly10-[d-His (Bzl)6 luteninizing hormone (LH)]. Fertilized eggs were maintained in 4 L of aerated 0.1% Holtfreter's (i.e., 10%) solution and fed Purina rabbit chow (Purina Mills, St. Louis, MO). Tanks were covered with a water solution and fed Purina rabbit chow (Purina Mills, St. Louis, MO). Tanks were covered with a water solution (before tadpoles were added) and samples were collected just after making the tadpoles. Water samples were extracted in organic solvents and because sections were cut at 4 µm. The number of thymic plaques, maximum transverse cross-sectional area, and cell density were determined using Metamorph software (version 2.7; Universal Imaging Ltd., Buxton, UK). The effects of all single pesticides were examined (20 animals each), as well as effects of 0.1 ppb Bicep II Magnum and the nine-component mixture. Animals exposed to 0.1 or 10 ppb atrazine + S-metolachlor were not examined because this analysis was not planned and tissues from these animals were prepared for other analyses.

Histological analysis of gonads. After noting that animals exposed to the pesticide mixture experienced increased disease rates due to the pathogen *Chryseobacterium (Flavobacterium) meningosepticum* (see “Results”), we examined the thymus histologically as a measure of immunocompetence. The head was dissected (just anterior to the forelegs). Tissues were embedded in paraffin, and histological analysis was conducted as described for gonads except that sections were cut at 4 µm. The number of thymic plaques, maximum transverse cross-sectional area, and cell density were determined using Metamorph software (version 2.7; Universal Imaging Ltd., Buxton, UK). The effects of all single pesticides were examined (20 animals each), as well as effects of 0.1 ppb Bicep II Magnum and the nine-component mixture. Animals exposed to 0.1 or 10 ppb atrazine + S-metolachlor were not examined because this analysis was not planned and tissues from these animals were prepared for other analyses.

Histological analysis of gonads. After noting that animals exposed to the nine-component mixture suffered from thymic damage (increased thymic plaques) and increased disease rates (see “Results”), we examined the effects of the same pesticide mixture on plasma corticosterone levels. We used male *X. laevis* as a surrogate for this experiment because metamorphic *R. pipiens* are too small to obtain repeated blood samples and because *X. laevis* adults are available year-round for such studies.

Adult treatments. Adult males were obtained from a long-term captive colony at University of California, Berkeley. Adults were maintained under the same light and temperature cycles as described for *R. pipiens* larvae, but animals were housed individually in caged tanks. Animals were acclimated in 0.1× Holtfreter’s solution for 5 days and then exposed to the pesticide mixture (0.1 ppb each
compound) or an equal amount of ethanol (0.0036%). Five males were treated with the pesticide mixture and five with ethanol only. Holtfreter’s solution was not aerated, animals were fed Purina trout chow (Purina Mills) daily, and solutions were changed and treatments renewed every 3 days. Animals were treated for 27 days. Blood was collected by cardiac puncture in nonanesthetized animals between 1800 and 2000 hr. Plasma was collected by aspiration after low-speed centrifugation and stored frozen (−80°C) until analysis.

Radioimmunoassay. For corticosterone analysis, plasma was thawed and extracted with diethyl ether and evaporated under nitrogen. All samples were reconstituted in phosphate-buffered saline with gelatin. Hormone radioimmunoassays were conducted as described previously (Hayes and Licht 1992). Corticosterone antiserum was purchased from Endocrine Sciences (Calabasas, CA) and has been validated for several species including X. laevis (Hayes and Licht 1992, 1995; Hayes and Wu 1995; Hayes et al 2002a). Plasma from controls and treated animals was assayed in the same assay at three doses, and the assay was repeated 3 times. Intraassay variation was 1.0%, and interassay variation was 1.4%.

Statistical analyses. Metamorphosis (initial time, total time, and completion), size at metamorphosis [snout-vent length (SVL) and body weight (BW)], and maximum cross-sectional area of the thymus (experiment 1), and hormone levels (experiment 2) were examined using analysis of variance (ANOVA) with replicates (tank) nested within treatment. Statistical groupings were determined using a Tukey post-hoc test. The relationship between time to metamorphosis and size (SVL or BW) at metamorphosis was analyzed by correlational analysis using Spearman’s rank order correlation coefficients followed by Bonferroni correction because one replicate suffered high mortality (> 0.05; see sample sizes in Table 1, which reflects the number of larvae surviving to metamorphosis for each treatment). On average, mortality was 4% for animals exposed to single pesticides (range = 0–7.8%), with the highest mortality (7.8%) in S-metolachlor-treated larvae. Larvae treated with metalaxyl, which experienced 35% mortality before reaching metamorphosis, are not included in this analysis because one replicate suffered high mortality (90%) all on a single day, most likely as a result of a mechanical failure in the aeration system. Larvae exposed to the atrazine + S-metolachlor mixture or Bicep II Magnum experienced very low mortality (≤ 10%), but only 65% of the larvae exposed to the 0.1-ppb nine-compound mixture survived to the initiation of metamorphosis [foreleg emergence (FLE), Gosner stage 42]. Animals treated with the nine-compound mixture at 10 ppb all died after the first day of exposure.

Time to metamorphosis. Propiconizole significantly delayed time to initiate metamorphosis (FLE; F = 2.72, df = 10, p = 0.003) and time to complete metamorphosis (TR; F = 2.81, df = 10, p = 0.002) relative to controls (Figure 1). Otherwise, no single compound affected this measure of development, and the rest of the analyses focused on the effects of the three mixtures (atrazine + S-metolachlor, Bicep II Magnum, and the nine-compound mixture).

Animals exposed to pesticide mixtures at 0.1 ppb had significantly longer larval periods: initiation of metamorphosis (days to FLE) was delayed (F = 37.55, df = 3, p < 0.005; Figure 2), and TR was similarly delayed (F = 29.84, df = 3, p < 0.0001; Figure 2). Larvae exposed to 10 ppb atrazine + S-metolachlor experienced a slight delay in both FLE (p = 0.055) and TR (although not statistically significant, p > 0.05). Larvae exposed to the nine-compound mixture experienced an even greater delay (p < 0.0001). There was no difference in the interval between FLE and TR.

Table 1. Statistics for correlational analysis of time to complete TR and SVL.

Treatment	n	r	Chi-squared	df	p-Value	Figure
Ethanol	86	0.23	4.365	1	0.040	5A
Alachlor	86	0.29	7.123	1	0.008	5B
Atrazine	86	−0.19	3.061	1	0.080	5J
Cyfluthrin	86	0.24	4.872	1	0.027	5C
λ-Cyhalothrin	84	−0.00	0.001	1	0.950	5i
S-Metolachlor	83	0.29	7.140	1	0.008	5F
Metalaxyl	58	0.25	3.210	1	0.073	5G
Nicosulfuron	85	0.29	6.785	1	0.009	5D
Propiconizole	88	−0.14	1.581	1	0.190	5H
Telbuvirimophos	85	0.35	10.59	1	0.001	5E
0.1 ppb atrazine + S-metolachlor	89	−0.19	3.018	1	0.082	5K
10 ppb atrazine + S-metolachlor	85	0.14	1.750	1	0.182	5L
0.1 ppb Bicep II	81	0.39	11.50	1	0.001	5M
10 ppb Bicep II	84	0.19	2.732	1	0.098	5N
0.1 ppb mix	59	−0.23	2.100	1	0.147	5O

All treatments were at 0.1 ppb except where indicated for mixtures as described in “Materials and Methods.” Bicep II Magnum (Bicep II) was administered to provide 0.1 ppb atrazine. The nine-compound mixture (mix) was administered to provide 0.1 ppb of all nine pesticides. Sample size (n) represents the number of animals surviving to metamorphosis (of the original 90; 30 animals in each of three replicates). *Indicates the figure number in this article where data are depicted.

Figure 1. Effect of single pesticides (0.1 ppb each) on time to initiate metamorphosis (FLE; A) and time to complete metamorphosis (TR; B). Error bars show SEM. *Statistically significant groups (ANOVA, p < 0.05).
however, for any treatment ($F = 1.15$, $df = 3$, $p = 0.33$). No position or tank effects were observed in any of the analyses of the effects of mixtures on time to metamorphosis ($p > 0.05$).

Size at metamorphosis. For the individual chemicals, there was a significant effect on SVL at metamorphosis ($F = 2.1$, $df = 10$, $p < 0.05$; Figure 3). The smallest animals to metamorphose were those exposed to cyfluthrin, tebufiprinphos, or atrazine. There was also a significant effect on BW ($F = 2.07$, $df = 10$, $p < 0.05$; Figure 3).

All the mixtures (0.1 ppb each pesticide) retarded growth, resulting in smaller animals (SVL) at metamorphosis ($F = 4.05$, $df = 3$, $p = 0.008$; Figure 4). The mixtures also affected BW ($F = 3.86$, $df = 3$, $p = 0.01$; Figure 4), and in this regard, the atrazine + S-metolachlor mixture had the greatest negative effect, followed by the nine-compound mixture. No tank or position effects were observed ($p > 0.05$).

Relationship between time to complete metamorphosis and size at metamorphosis. SVL at metamorphosis was positively correlated with time to complete metamorphosis for controls (Figure 5). Regarding single chemical exposures, all the treatments showed a similar positive significant relationship ($p < 0.05$; Table 1) with the following exceptions: larvae exposed to metalaxyl showed a positive but nonsignificant relationship between time to complete metamorphosis (TR) and SVL, whereas larvae exposed to atrazine, cyhalothrin or propiconazole showed a negative but nonsignificant relationship between TR and SVL (Figure 5).

For the pesticide mixtures, 0.1 and 10 ppb atrazine + S-metolachlor resulted in a negative but nonsignificant relationship between TR and SVL, whereas 0.1 and 10 ppb Bicep II Magnum exposure resulted in maintenance of the positive relationship between TR and SVL, but the relationship was significant for the 0.1 ppb concentration only (Figure 5). The nine-compound pesticide mixture resulted in a negative but nonsignificant relationship (Table 1, Figure 5).

For BW, controls also showed a significant positive correlation between time to complete metamorphosis and BW. All single-treatment exposures showed a similar positive significant relationship ($p < 0.002$ in all cases; Table 2, Figure 6) except nicosulfuron, atrazine, and cyhalothrin, which showed a positive but nonsignificant relationship between TR and BW at metamorphosis. Regarding pesticide mixtures, a positive relationship was observed with Bicep II Magnum but was significant only for the 0.1 ppb concentration. The relationship was negative but nonsignificant for both 0.1 and 10 ppb atrazine + S-metolachlor and negative and significant for the nine-pesticide mixture (Table 2, Figure 6).

Gonadal development. In the population used in the present study, gonadal development was delayed (even in controls) relative to other populations of *R. pipiens* that have been examined by our laboratory (Hayes et al. 2002a, 2002c) or documented in other published accounts (Merchant-Larios and Villapando 1981; Richards and Nace 1978). Histologically, presumptive males maintained both a cortex and a medulla separated by connective tissue without clear formation of testicular lobules (e.g., undifferentiated), whereas females showed regression of the gonadal medulla and an ovarian vesicle but lacked significant numbers of developing oocytes in the cortical regions of the gonad (Figure 7). Because of the underdeveloped state of the gonads and gametes in this population, assessing the effects of atrazine or pesticide mixtures containing atrazine on sex differentiation of the gonads and gametogenesis (e.g., whether testicular oogenesis occurred) was not possible.

Flavobacterial response. Seventy percent of the animals exposed to the nine-compound mixture were unable to sit upright. Exposure to the nine-compound pesticide mixture was associated with meninitis, otitis interna, and septicaemia due to the gram-negative, water-borne bacteria *Chryseobacterium (Flavobacterium) meningoepiticum*. Diagnosis was based on signalment, clinical signs, necropsy results, histopathologic examination of internal organs with special staining in select cases, and the ante-mortem isolation of organism from the internal lesions of affected animals. Manifestations of disease included anorexia, head tilt, circling, loss of righting response, anisocoria, and death.
(Figure 8). Morbidity and mortality rates in animals treated with the nine-pesticide mixture were significantly higher than those in controls (all of which showed a 0% incidence) and reached 70% of the 59 animals that survived to complete metamorphosis in animals exposed to the pesticide mixture. *C. Flavobacterium meningosepticum* was successfully cultured from animals from all groups (including controls), but no animals from other treatments contracted the disease or suffered the symptoms described above.

Thymus characteristics. After noting that animals exposed to the nine-compound mixture contracted *flavobacterial* meningitis (see above "Flavobacterial response"), we examined the condition of the thymus as an estimate of immune function. Exposure to atrazine and S-metolachlor resulted in damage to the thymus as measured by thymic plaques. No other single pesticide produced this effect. The frequency of animals with plaques increased in animals treated with the mixtures (Bicep II Magnum), followed by larvae treated with the nine-compound pesticide mixture (*G = 9.4, df = 4, p < 0.05; Figure 9).* Larvae treated with atrazine + S-metolachlor (0.1 or 10 ppb) were not examined because this analysis was not planned, and these samples were reserved for another analysis (data not shown).

Effects of the pesticide mixture on plasma corticosterone. The nine-pesticide mixture had a clear effect on corticosterone levels in male African clawed frogs (*X. laevis*). Corticosterone levels increased 4-fold in pesticide-exposed males (ANOVA, *p < 0.05; Figure 10).

Discussion

Although a sizable database examining the toxicological effects of pesticides on amphibians exists (Pauli 2004), most of these studies examine acute toxicity, morbidity, and mortality only. Few studies have examined low-concentration effects (especially endocrine disruption) or the effects of pesticide mixtures. In reality, amphibians in the wild (especially in agricultural areas) are exposed to mixtures of pesticides. Further, although brief episodes of high-concentration exposure may occur, prolonged exposures to low concentrations of pesticide mixtures are more common (Battaglin and Goolsby 1999; Burkhart et al. 2003; Capel and Larson 2001; Fischer et al. 1995; Frank and Logan 1988; Frank and Sirons 1979; Frank et al. 1987, 1991; Insensee et al. 1990; Kolpin et al. 1998; Kucklick and Bidleman 1994a, 1994b; Pennington et al. 2001; Solomon et al. 1996; Thurman et al. 1992). Only a few studies have examined the effects of pesticide mixtures on amphibians (Christin et al. 2003; Dawson and Wilke 1991; Gendron et al. 2003; Howe et al. 1998; Mazanti et al. 2003; Mazanti et al. 2003; Relyea 2004), but chemicals were examined at much higher concentrations than those examined here. Only toxicity was examined, and the chemical mixture in the present analysis was not examined. Further, fewer than 20 published laboratory studies (Boegi et al. 2002; Hayes 1997a, 1998, 2000, 2004, 2005; Hayes et al. 1997, 2002a, 2002b, 2002c; Lutz and Kloas 1999; Noriega and Hayes 2000; Palmer and Palmer 1995; Palmer et al. 1998; Tavares-Mendoza et al. 2002a, 2002b) and four field studies (du Preez et al. 2005; Hayes et al. 2002b, 2002c; Reeder et al. 1998) have addressed low-concentration, endocrine-disrupting effects of pesticides (single compounds only) on amphibians. A few studies have examined amphibians in the wild (Harris et al. 1998a, 1998b; Ouellet et al. 1997; Sparling et al. 2001), although establishing cause and effect

![Figure 5. Correlational analysis of time to complete TR and SVL. Results are shown for single pesticides (0.1 ppb) in A–J and for mixtures (K–O). For the x-axis, the scales for A–J are identical, but note the difference in scale for the mixtures as a result of the delay in metamorphosis in the animals treated with the nine-pesticide mixture (0). Results are shown for ethanol (A), alachlor (B), cyfluthrin (C), nicosulfuron (D), terbutylazin (E), J-metolachlor (F), metalaxyl (G), propiconazole (H), A-cyhalothrin (I), atrazine (J), 0.1 ppb atrazine + S-metolachlor (K), 10 ppb atrazine + S-metolachlor (L), 0.1 ppb Bicep II Magnum (M), 10 ppb Bicep II Magnum (N), and the nine-compound mixture (O). Ellipses show Gaussian bivariate confidence limits. Ellipses are color-coded: black, a positive and significant correlation; blue, a positive but nonsignificant correlation; yellow, a negative and significant correlation; red, a negative and nonsignificant correlation. Significance (p ≤ 0.05) was determined by Bonferroni probabilities and based on Spearman rank order correlation coefficients. Sample size (as reported in Table 1) cannot be determined from the number of data points due to overlapping data.](https://example.com/figure5.png)

Table 2. Statistics for correlational analysis of time to complete TR and BW.

Treatment	n	r	Chi-squared	df	p-Value	Figure*
Ethanol	86	+0.41	14.61	1	0.000	6A
Alachlor	86	+0.46	18.92	1	0.000	6B
Atrazine	86	+0.07	3.061	1	0.080	6J
Cyfluthrin	86	+0.34	10.03	1	0.002	6C
A-Cyhalothrin	84	+0.13	1.376	1	0.241	6I
S-Metolachlor	83	+0.47	20.15	1	0.000	6F
Metalaxyl	58	+0.40	9.038	1	0.003	6G
Nicosulfuron	85	+0.49	20.99	1	0.000	6D
Propiconazole	88	+0.20	3.130	1	0.077	6H
Terbutylazin	85	+0.58	32.77	1	0.000	6E
0.1 ppb atrazine + S-metolachlor	89	-0.05	0.251	1	0.616	6K
10 ppb atrazine + S-metolachlor	85	-0.01	0.060	1	0.960	6L
0.1 ppb Bicep	81	+0.51	20.69	1	0.000	6M
10 ppb Bicep	84	+0.33	8.143	1	0.004	6N
0.1 ppb mix	59	-0.32	4.164	1	0.041	6O

All treatments were at 0.1 ppb except where indicated for mixtures as described in "Materials and Methods." Bicep II Magnum (Bicep) was administered to provide 0.1 ppb atrazine. The nine-compound mixture (mix) was administered to provide 0.1 ppb of all nine pesticides. Sample size (n) represents the number of animals surviving to metamorphosis (out of the original 90; 30 animals in each of three replicates). *Indicates the figure number in this article where data are depicted.
in such studies is difficult. The present study is the first to address endocrine-disrupting effects of low-concentration pesticide mixtures on amphibians in the laboratory.

We demonstrated that a realistic pesticide mixture (based on a mixture applied to an actual field) at low ecologically relevant concentrations can have dramatic effects on amphibian development and growth, and ultimately (we predict) survivorship. We propose here that the lack of examinations of endocrine-disrupting effects of low concentrations of pesticides in amphibians has resulted in underestimates of the impacts of pesticides on wildlife (Hayes et al. 2002a), as similarly suggested by Burkhart et al. (2003). The absence of studies that examine low-concentration effects of pesticide mixtures makes this underestimation even more severe.

Most of the nine pesticides used in the present study have not been examined in amphibians at all: no published studies have addressed the effects of cyfluthrin, cyhalothrin, tebupirimphos, metalaxyl, or propiconizole on amphibians. Here, we show that one of these compounds (propiconizole) retards larval development and delays metamorphosis, and two others (tebupirimphos and cyfluthrin) retard larval growth. In addition to these new data, the present study confirms the retardation of amphibian development (Carr et al. 2003; Rohr and Palmer 2005; Rohr et al. 2004) and growth (Boone and James 2003; Britton and Threlkeld 1998; Carr et al. 2003; Diana et al. 2000) already reported for atrazine. Carr et al. (2003) also showed a reversal of the relationship between time to metamorphosis and size at metamorphosis in their studies, consistent with present results.

The present study is also important because all the pesticides were examined at low ecologically relevant concentrations (0.1 ppb). The few studies that have previously examined the effects of nicosulfuron (Fort et al. 1999), metolachlor (Mazanti 1999; Mazanti et al. 2003; Osano et al. 2002), and alachlor (Howe et al. 1998; Osano et al. 2002) on amphibians have examined concentrations 10,000 times higher than those used in the present study. All but four previous studies (Howe et al. 1998; Mazanti 1999; Mazanti et al. 2003; Relyea 2004) examined single pesticide exposures, and most examined mortality and teratogenesis, with only two studies addressing effects of these pesticide mixtures on larval growth and development (Howe et al. 2004; Relyea 2004). Again, all these previous studies were conducted at concentrations 10,000 times higher than those used in the present study. The exception is atrazine, for which sublethal developmental effects at low concentrations (in the parts per billion range) have been examined by multiple laboratories (Allran and Karasov 2001; Boone and James 2003; Britton and Threlkeld 1998; Carr et al. 2003; Coady et al. 2004, 2005; Diana et al. 2000, 2006; Hecker et al. 2004) and growth (Boone and James 2003; Britton and Threlkeld 1998; Carr et al. 2003; Coady et al. 2004, 2005; Diana et al. 2000; du Preez et al. 2003; Hayes 2004, 2005; Hayes et al. 2002a, 2002b, 2002c, 2002d, 2002e, 2002f, 2002g, 2002h; Hecker et al. 2004; Howe et al. 1998; Jooste et al. 2005a, 2005b; Miyahara et al. 2003; Reeder et al. 1998; Rohr and Palmer 2005; Rohr et al. 2004; Sullivan and Spence 2003; Tavera-Mendoza et al. 2002a, 2002b).

Atrazine has a number of well-documented adverse effects on amphibian larvae. It is a potent endocrine disruptor that both chemically castrates and feminizes exposed male amphibian larvae and also retards larval development and growth (Carr et al. 2003; du Preez et al. 2003; Hayes 2004, 2005; Hayes et al. 2002a, 2002b, 2002c, 2002d, 2002e, 2002f, 2002g, 2002h; Reeder et al. 1998; Tavera-Mendoza et al. 2002a, 2002b).

It also induces edema (Carr et al. 2003), erratic swimming (Carr et al. 2003), and irregular...
behavioral activity (Rohr and Palmer 2005) and is an immunosuppressant (Christin et al. 2003; Gendron et al. 2003; Kiesecker 2002) in amphibians. The impact of atrazine on amphibian larvae is important both because of the number of documented adverse effects in amphibians and also because atrazine is a ubiquitous, persistent environmental contaminant (Hayes et al. 2006; Solomon et al. 1996): As one of the world’s most commonly applied pesticides, it is the most common contaminant of groundwater and surface water (Hayes et al. 2006). Up to 0.5 million pounds per year are deposited in precipitation in the United States (Miller et al. 2000; Nations and Hallberg 1992; Thurman and Cromwell 2000; Van Dijk and Guicherit 1999), and contamination can spread more than 600 miles from the point of application (Miller et al. 2000; Müller et al. 1997; Thurman and Cromwell 2000).

The present study demonstrates that one of the best-documented effects of atrazine, demasculinization and feminization of male larvae, can vary across populations. In the present population, effects of atrazine on the gonads were not detectable because individuals from the present population do not complete sexual differentiation of the gonads before metamorphosis. In ranids, atrazine induces testicular oogenesis (Hayes et al. 2002b, 2002c), but in the population used in the present study, male gonads were not well differentiated (testicular lobules were not yet developed), and even females lacked significant numbers of oocytes. Although other differences in study design exist (Hayes 2004), this variation in susceptibility may explain some of the disparate findings in the published literature regarding the effects of atrazine on gonadal development in amphibians (Coady et al. 2004, 2005; du Preez et al. 2005; Hayes 2005; Hecker et al. 2004, 2005; Jooste et al. 2005a, 2005b). This finding highlights the importance of understanding population variation when assessing the risk of pesticides to amphibians.

As noted above, retardation of growth and development has been demonstrated for atrazine in previous studies. In the present study, retardation of growth and development was more severe when atrazine was combined with other pesticides (e.g., S-metolachlor), and the nine-pesticide mixture had the most severe impact. The delay in time to initiate and complete metamorphosis was significant. Many amphibians (including leopard frogs) often breed in temporary water sources. In particular, in agricultural areas, where water is manipulated for agricultural purposes, aquatic habitats can be unpredictable from year to year and even day to day (Figure 11). In these habitats, it is important for survivorship that larvae respond to desiccation by metamorphosing rapidly (Denver 1993; Denver et al. 1998). It has already been shown that atrazine alone retards development and prevents the acceleration of metamorphosis induced by pond drying as well as reduces size at metamorphosis (Rohr et al. 2004). As demonstrated by the present study, developing in water sources contaminated with pesticide mixtures (even simply 0.1 ppb atrazine + S-metolachlor) will decrease survivorship because these mixtures delay metamorphosis. Further, as water sources desiccate, pesticide concentrations will increase. Even if larvae metamorphose and escape desiccation, delayed metamorphosis along with decreased size at metamorphosis reduces adult recruitment and the likelihood of reproduction in amphibians (Smith 1987).

Retardation of growth is also detrimental. Smaller size at metamorphosis limits food availability for newly metamorphosed frogs, which are gape-limited predators (Figure 12A). Further, smaller individuals are more susceptible to predators, which may also themselves be gape-limited predators (e.g., snakes; Figure 12B) (De Vito et al. 1999; Kiesecker and Blaustein 1998; Lardner 1998; Lawler et al. 1999; Nicieza 2000; O’Dwyer et al. 2000; Puttlitz et al. 1999; Relyea 2001a, 2001b, 2003; Skelly 1994; Werner 1986; Wilbur and Collins 1973). Because pesticide mixtures retard growth and size at metamorphosis, exposed amphibians are less likely to find food and more likely to be preyed upon. Also, decreased size at metamorphosis combined with subsequent decreased postmetamorphic growth
decreases the chances that amphibians will survive overwintering (Berven and Gill 1983; Smith 1987). Reduced size at metamorphosis also delays reproductive maturity and decreases fecundity (Berven and Gill 1983; Smith 1987; Wilbur et al. 1973). This negative effect is especially true for females, for which size is directly proportional to fecundity (Howard 1981; Shine 1979, 1989), but this is true for males as well. In many species, females prefer larger males as mates, and increased size may be necessary for maintaining territories and fending off rival male suitors during copulation (Balinsky and Balinsky 1954; Howard 1981; Shine 1979, 1989).

The alteration of the relationship between time to metamorphosis and size at metamorphosis is even more significant than either measured alone. In amphibians, the larval stage is a period of growth. As nonamniotes, the size of hatching amphibians is limited. The larval stage, during which time amphibians are typically herbivorous, provides a period of growth that allows individuals to both become large enough to be effective predators and to escape predation. As shown in the present study, there is a positive relationship between time to metamorphosis and size at metamorphosis: among controls, larvae that take longer to metamorphose are larger. However, with exposure to pesticide mixtures, larvae take longer to metamorphose but do not obtain a size advantage and, in fact, are smaller at metamorphosis than larvae that metamorphose earlier. Interestingly, at least three of the single pesticides tested (propiconizole, \(\lambda\)-cyhalothrin, and atrazine) and potentially metalexal had a slight effect on the relationship between time to metamorphosis and size at metamorphosis. Potentially, only these three (or four) pesticides in the mixture produce the additive effects observed with the nine-compound mixture, with no contribution from the other pesticides. Alternatively, pesticides that produce no effects alone may act as “enhancers” that worsen the effects of pesticides that act as “effectors” when the two groups of chemicals are combined.

The present effects of mixtures cannot be assigned to the categories of concentration additive or response additive, as described in Burkart et al. (2003), and further, the roles of each of the individual pesticides in the effects of the mixture cannot be identified. Although the relative roles of all the individual pesticides in the mixture cannot be discerned from the present study, S-metolachlor does appear to be an effector. In the present study and others cited above, atrazine retarded larval development and growth. Although S-metolachlor had no effect on its own in the present study, the negative effects of atrazine were

Figure 10. Effect of the pesticide mixture on plasma corticosterone levels in adult male African clawed frogs (X. laevis). Error bars show SEM.

*Statistical significance (\(p < 0.05\)).
increased when combined with S-metolachlor. Interestingly, the commercial mixture (Bicep II Magnum) appeared more benign than the pure mixture of atrazine and S-metolachlor. Bicep II Magnum at 0.1 ppb resulted in a positive relationship between time to metamorphosis and size at metamorphosis. There was a concentration effect, however: 10 ppb Bicep II Magnum eliminated the positive relationship. The atrazine + S-metolachlor mixture and Bicep II Magnum differ primarily in the surfactant (inert ingredients) (although the concentration of S-metolachlor was 22% lower in the Bicep II Magnum mixture than in the atrazine + S-metolachlor mixture). These data suggest that the surfactant used in this mixture reduces the effect of the two pesticides. Previous studies have shown that surfactant used in pesticides can have biological activity in amphibian larvae (Relvca 2005).

In addition to the adverse effects on the relationship between time to metamorphosis and size at metamorphosis, the pesticide mixture unexpectedly increased disease rates. Based on the observation that controls tested positive for the flavobacteria but did not display symptoms of disease, the pathogen was otherwise nonvirulent under the present experimental conditions. The increased disease rates were associated with an increased frequency of animals with damage to the thymus. Of all the pesticides tested alone, only atrazine and S-metolachlor increased the frequency of damage to the thymus. Further, atrazine has been shown to increase disease rates and parasite loads in amphibians by several pathogens (Christin et al. 2003; Gendron et al. 2003), including the trematode associated with development of limb deformities (Kiesecker 2002). In the present study, atrazine and S-metolachlor combined (Bicep II Magnum) increased the frequency of animals with thymus plaques relative to either herbicide alone, but disease rates were not increased unless animals were exposed to the nine-pesticide mixture.

Regarding to adverse effects that contribute to amphibian declines, the effects of atrazine on sex differentiation can negatively affect amphibian populations. The effects of the pesticide mixture on growth can have an even more rapid negative effect on populations, as described above. The immunosuppressive effects are likely even more relevant. Most significantly, the nine-pesticide mixture increased plasma corticosterone levels. Corticosterone can produce all the effects observed with the pesticide mixtures, including retarded growth (Hayes 1995a, 1995b; Hayes and Wu 1995; Hayes et al. 1993, 1997), retarded development (Glenneimer et al. 2002a, 2002b; Hayes 1999a, 1999b, 1997b; Hayes and Wu 1995; Hayes et al. 1993, 1997), and immunosuppression (Belden and Kiesecker 2005; Hayes 1995b). Given these adverse effects and the continued increase and use of pesticides in agriculture, over the last 50 years, it is likely that pesticides have played and will continue to play a role in amphibian declines. In particular, the effects described here are very important. Pesticide-induced declines in populations as a result of decreased prey availability and increased susceptibility to predators (as a result of decreased size and the negation or reversal of the relationship between time to metamorphosis and size at metamorphosis) may be difficult to discern in the wild. Perhaps more important, emergent diseases caused by agents such as ranavirus (Brunner et al. 2005; Green and Muths 2005; Jancovich et al. 2005; Peartman et al. 2004) and chytrid (Berger et al. 1998; Green and Muths 2005; McCallum 2005; Ouellet et al. 2005; Rollins-Smith et al. 2002; Weldon et al. 2004) are considered major contributors to amphibian declines. Given the present findings with the flavobacteria in the present study, perhaps these diseases are not emergent at all. As suggested by Burkhardt et al. (2003), perhaps what is emergent is the inability to mount proper immune responses as a result of pesticide exposure. As Sparling et al. (2003) pointed out, “Unfortunately, almost all research on amphibian population declines has focused on single factors or multiple factors considered individually with little consideration for interactions.” This approach has to change if problems are to be identified and solutions formulated.

Regarding pesticides, the present study demonstrates that examinations of effects of single pesticides are inadequate to assess adverse impacts on amphibian development or to address the role of pesticides in amphibian declines. The examinations needed to characterize pesticide interactions as concentration additive or response additive (Burkhart et al. 2003), to distinguish between effectors and enhancers, and to examine multiple combinatorial pesticides at multiple concentrations are difficult to design and carry out and present new challenges to regulators. Such studies are difficult to design and carry out and present new challenges to regulators. Such studies are necessary, however, to determine if the net effects of pesticide mixtures are truly due to the sum of the parts or simply some of the parts.

References

Adams M. 1998. Correlated factors in amphibian decline: exotic species and habitat change in western Washington. J Wildl Manag 62:1182–1171.

Allford RA, Richards SJ. 1999. Global amphibian declines: a problem in applied ecology. Annu Rev Ecol Syst 30:133–165.

Akhun J, Kassouw W. 2001. Effects of atrazine on embryos, larvae, and adults of anuran amphibians. Environ Toxicol Chem 20:769–775.

Baldwin D, Baldwin J. 1984. On the breeding habits of the South African bullfrog, Pyxicephalus adspersus. S Afr J Sci 80:55–58.

Battaglin BW, Goolsby D. 1999. Are shifts in herbicide use reflected in concentration changes in Midwestern Rivers. Environ Sci Technol 33:2917–2925.

Belden L, Kiesecker J. 2005. Glucocorticoid control of metamorphic transformations in Midwestern Rivers. Environ Sci Technol 33:2917–2925.

Belden L, Kiesecker J. 2005. Glucocorticoid control of metamorphic transformations in Midwestern Rivers. Environ Sci Technol 33:2917–2925.

Berger L, Spearer R, Uszak P, Green D, Cunningham A. 1998. Chytridymyces causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA 95:9031–9036.

Belden L, Gill D. 1993. Interpreting geographic variation in life-history traits. Am Zool 33:85–97.

Bishop C, Malony N, Struger J, Ng P, Pettit K. 1999. Anuran development, density, and diversity in relation to agricultural activity in the Holland River watershed, Ontario, Canada (1990–1992). Environ Monit Assess 52:21–43.

Bluststein A, Kiesecker J. 2002. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5:597–608.

Bluststein AR, Wake DB. 1990. Amphibian declines: judging stabili ty, persistence and susceptibility of populations to local and regional extinction. Trends Ecol Evol 15:204.

Boeig C, Levy G, Lutz I, Klaas W. 2002. Functional genomics and sexual differentiation in amphibians. Comp Biochem Physiol B Biochem Mol Biol 130:599–607.

Boone M, James S. 2003. Interactions of an insecticide, herbicide, and natural stressors in amphibian community meseocosms. Ecol Appl 13:729–41.

Bridges C, Stasak R. 2005. Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline. Conserv Biol 19:1460–1469.

Britton C, Threlkeld S. 1998. Abundant, metamorphosis, developmental, and behavioral abnormalities in hyla chrysocelis tadpoles following exposure to three agricultural and methyl mercury in ourcury mepholos. Bull Environ Contam Toxicol 61:154–161.

Brunner J, Richards C, Collins J. 2005. Growth and dose characteristics: influence virulence of ranavirus infections. Oecologia (Berlin) 144:39–40.

Burkhart J, Bidwell J, Fort D, Sheffield S. 2003. Chemical Stresses: In: Amphibian Decline: An Integrated Analysis of Multiple Stressor Effects (Linder G, Krest S, Sparling D, eds). Raleigh, NC:SETAC, 111–128.

Burrows P, Green D. 2004. Potential causes for amphibian declines in Puerto Rico. Herpetologica 60:141–154.

Cape P, Larsen S. 2001. Effect of scale on the behavior of atraezine in surface waters. Environ Sci Technol 35:648–657.

Carr J, Cohen N, Rollins-Smith L. 1999. Amphibian declines: an immunological perspective. Dev Comp Immunol 23:459–472.

Carr J, Gentles A, Smith E, Goleman W, Urquidi L, Thuett K, et al. 2002. Response of larval Xenopus laevis to atrazine: assessment of growth, metamorphosis, and gonadal and larvalgyn morpholgy. Environ Toxicol Chem 21:398–408.

Cavieres M, Jaeger J, Porter W. 2002. Developmental toxicity of a commercial herbicide mixture in mice: I. Effects on embryo implantation and litter size. Environ Health Perspect 110:1081–1085.

Choi KC, Jeung E-B. 2002. The biomarker and endocrine disruptors in mammals. Reprod Dev Comp 20:769–775.

Christin MS, Gendron A, Brussauppe P, Ménard L, Marcogliese D, Catt D, et al. 2003. Effects of agricultural pesticides on the immune system of Rana pumpe and on its resistance to parasite infection. Environ Toxicol Chem 22:1137–1143.

Coady K, Murphy M, Villeneuve D, Hecker M, Jones P, Carr J, et al. 2004. Effects of atrazine on metamorphosis, growth, and gonadal development in the green frog (Rana clamitans). J Toxicol Environ Health A 67:61–67.

Coady KK, Murphy J, Villeneuve DL, Hecker MJ, Carr J, Solomon K, et al. 2005. Effects of atrazine on metamorphosis, growth, larvalgyn and gonadal development, dopamine activity, and plasma sex steroid concentrations in Xenopus laevis. Ecotoxicol Environ Safety 62:160–173.

Collins T. 1994. The wildlife/human connection: modernizing risk decisions. Environ Health Perspect 102:55–59.

Daniels R. 2003. Impact of tea cultivation on anurans in the west-central Florida anuran populations in response to habitat degration. Bioindicators Conserv 5:1579–1595.

Delis P, Mushinsky H, McCoy E. 1996. Decline of some west-cen tral Florida anuran populations in response to habitat degration. Bioindicators Conserv 5:1579–1595.
Denver RJ. 1993. Acceleration of anuran amphibian metamorphosis by gondolin aromatizing hormone-like peptides. Gen Comp Endocrinol 91:38–51.

Denver RJ, Michi N, Phillips M. 1998. Adaptive plasticity in anuran amphibian: response of Scaphiopus hammondii tadpoles to habitat desiccation. Ecology 79:1989–1972.

De Vito J, Chivers D, Kiesecker J, Beidlen B, Blaustein A. 1999. Effects of atrazine on aggregation and metamorphosis of Pacific treefrog (Hyla regilla) larvae. J Herpetol 33:504–507.

Diana S, Racette W, Schaeffer D, Beckman K, Beasley V. 2000. Effects of atrazine on amphibian growth and survival in artificial aquatic communities. Environ Toxicol Chem 19:2931–2967.

Diep P, Schmidt S, Vollmer G, Janning P, Upremier A, Michna H, et al. 2004. Comparative responses of three rat strains (DA/Han, Sprague-Dawley and Wistar) to treatment with environmental estrogens. Arch Toxicol 78:193–193.

Duft M, Schulte-Oehlmann U, Weltje L, Tillman M, Oehlmann J. 2003. The functional integrity of northern leopard frog (Rana pipiens) and green frog (Rana clamitans) populations in orchard wetlands: II. Effects of temperature and environmental conditions on early life stage development. Environ Toxicol Chem 17:1351–1363.

Harris M, Bishop C, Struger J, van den Heuvel M, van Der Kraak G, Dixon D, et al. 1998a. The functional integrity of northern leopard frog (Rana pipiens) and green frog (Rana clamitans) populations in orchard wetlands: I. Effects of temperature and environmental conditions on early life stage development. Environ Toxicol Chem 17:1351–1363.

Hayes TB, Chan R, Licht P. 2003. Steroids as modulators of thyroid hormone activity in amphibian development. Am Zool 37:185–195.

Hayes TB. 2005. Endocrine disruption in amphibians. In: Ecotoxicology of Amphibians and Reptiles (Spaling D, Linder B, Bishop C, eds). Pensacola, FL:SETAC Press, 596–616.

Hayes TB. 1998a. Interdependence of corticosterone and thyroid hormone levels in larval toads (Bufo boreas). I. Thyroid hormone dependent and independent effects of corticosterone on growth and development. J Exp Zool 281:90–102.

Hayes TB. 1998b. A histological examination of the effects of corticosterone in larvae of the western toad, Bufo boreas. Annu. Rev. Urodriidae and the oriental fire-bellied toad, Bombina orientalis (Anura: Discoglossidae). J Morphol 294:297–307.

Hayes TB. 1995a. Interdependence of corticosterone and thyroid hormone levels in larval toads (Bufo boreas). II. Regulation of corticosterone and thyroid hormones in larval growth and development in the western toad, Bufo boreas. Arch Environ Contam Toxicol 27:119–125.

Hayes TB. 1997a. Steroids as modulators of thyroid hormone activity in amphibian development. Am Zool 37:185–195.

Hayes TB. 1997b. Steroids as modulators of thyroid hormone activity in amphibian development. Am Zool 37:185–195.

Hayes TB. 2004. There is no denying this: defusing the confusion about atrazine. BioScience 54:1138–1139.

Hayes TB. 2005. Welcome to the revolution: integrative biology and assessing the impact of endocrine disruptors on environmental and public health. J Integr Comp Biol 45:321–329.

Hayes TB, Chan R, Licht P. 1993. Interactions of temperature and steroids in growth, development, and metamorphosis in a toad (Bufo boreas). J Exp Zool 260:206–215.

Hayes TB, Collins A, Lee M, Mendoza N, Norta AA, et al. 2002a. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Nat Acad Sci USA 95:5478–5480.

Hayes TB, Kasten K, Mendoza M, Norta A, Verov K. 2002b. Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. Environ Health Perspect 110:989–994.

Hayes TB, Kasten K, Mendoza M, Norta A, Verov K. 2002c. Feminization of male frogs in the wild. Nature 419:895–896.

Hayes TB, Licht P. 1992. Gonadal involvement in sexual size dimorphism in the African bullfrog (Pyxicephalus adspersus). J Exp Zool 264:120–125.

Hayes TB, Licht P. 1995. Factors influencing testosterone metabolite activity in anuran amphibian. J Exp Zool 271:112–119.

Hayes TB, Stuart AA, Mendoza M, Collins A, Norta A, Verov K, et al. 2008. Characterization of atrazine-induced gonadal malformations in African bullfrogs (Xenopus leavis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17β-estradiol): support for the demasculinization/feminization hypothesis. Environ Health Perspect 116(suppl 1):134–141.

Hayes TB. Wu H-T. 1995. Interdependence of corticosterone and thyroid hormones in larval growth and development in the western toad, Bufo boreas. J Exp Zool 271:110–113.

Hayes TB. Wu H-T, Gill T. 1997. Similarities in effects of DDT and corticosterone in anuran larvae is DDT a stressor or corticosterone mimic? J Exp Zool 271:110–113.

Hekker MJ, Giesy JP, Jones P, Joost AM, Carr J, Solomon KR, et al. 2004. Plasma sex steroid concentrations and gonadal aromatase activity in the green frog (Rana clamitans) from South Africa. Environ Toxicol Chem 23:1966–2007.

Heiter H-W. 2003. Plasma concentrations of estradiol and testosterone, gonadal aromatase activity, and structure of the testis in Xenopus leavis exposed to estradiol or atrazine. Aquat Toxicol (Amsterdam) 72:393–396.

Hoffmann JA, Bonefeld-Jorgensen EC, Dupont J, the pos-...
