Baryogenesis Once More, Inside LHC

Haipeng An1 and Yue Zhang2

1Perimeter Institute, Waterloo, Ontario N2L 2Y5, Canada
2California Institute of Technology, Pasadena, CA 91125, USA

We investigate the feasibility of directly detecting a generation mechanism of the cosmic baryon asymmetry, by repeating the same particle physics process inside the LHC. We propose a framework with \textit{R}-parity and CP violating squark decays responsible for baryogenesis, which can be embedded in supersymmetric models and is partly motivated by naturalness. We argue that the baryon number generation here is closely related to lepton charge asymmetry on the resonance. We emphasize the importance of the single charged lepton plus multijet channel in the absence of significant missing energy in search of such a scenario.

\textbf{Introduction.} The existence of baryon asymmetry in our universe is one of the mysteries and long-standing topics in particle physics and cosmology. Many theories have been proposed ever since to explain the generation of the baryon asymmetry. One challenging issue of these mechanisms is how to detect them today. There can be various indirect connections to other phenomena in low energy and collider experiments, from the CP violations behind baryogenesis to the new states which lead to out-of-equilibrium conditions. While it seems difficult to reach the temperature for baryogenesis to happen in the current laboratories, the motivation of this work is to examine how the particle physics side of certain baryogenesis scenarios could be detected in a more direct way.

Natural supersymmetry (SUSY) was invented to solve the hierarchy problem, which necessarily contains light top squarks (stop) accessible to the LHC energy. The LHC data already constrains the stop to be heavier than \(\sim 700 \) GeV \cite{1} if it decays into neutralino, unless one resorts to a compressed spectrum. \textit{R}-parity violation (RPV) is an alternative option to hide the light stops from the current Large Hadron Collider (LHC) data \cite{2}. The RPV interactions controlling the lifetime of the stop may also reach equilibrium and washout the primordial baryon number asymmetry in the early universe \cite{3}. Interestingly, the minimal value of such coupling to wash out the baryon number coincides with the one allowing a sub-TeV stop to decay promptly at colliders \cite{4}. Therefore, the stop RPV interactions either wash out the primordial baryon asymmetry, or induce detectable displaced vertices in the LHC. In the first case, a new mechanism for late baryon number generation is in need.

In this Letter, we propose a scenario for baryogenesis in which both the CP and baryon number violations can be observed at colliders, and can be realized in the natural SUSY framework. The RPV decay of the lightest SUSY partner (LSP) is used to generate the baryon number. Two types of RPV interactions are needed, which break both baryon and lepton symmetries explicitly. The LSP in charge of the genesis can be stop itself or another lighter squark, and it had better be lighter than a few hundred GeV for the sake of naturalness. This allows the LSP squark to be copiously produced at the 14 TeV LHC. We show that successful baryogenesis requires large CP violation, which can be manifested at collider via the lepton charge asymmetry in the decay products from the squark resonances, and can serve as a smoking-gun signature of this scenario.

\textbf{Toy Model.} To capture the essence, we start with a toy model with two squarks \((i = 1, 2)\),

\[
\mathcal{L} = \lambda^i_{\nu} \bar{bc} P_R c \tilde{d}_i + \lambda^i_{\mu} (\bar{u}_j P_R \mu^c - V_{jk} \bar{d}_k P_R \nu^c) \tilde{d}_i ,
\]

where \(j, k = 1, 2, 3 \) and \(V \) is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The above Lagrangian can be obtained from simplified version of the minimal supersymmetric SM (MSSM) with RPV, \(\tilde{d}_i \) identified as right-handed down-type squark, and all other superpartners decoupled. The quark flavors in the \(\lambda^\nu \) term and the muon flavor in \(\lambda^\mu \) are chosen for illustration. To suppress proton decay, we forbid the operators containing the first generation quarks explicitly, which implies \(\lambda^i_{1} = 0 \) and \(\lambda^i_{2} V_{21} + \lambda^i_{3} V_{31} = 0 \). The hierarchy of CKM element predicts \(\tilde{d}_i \) must couple preferably to the third generation quarks, and (1) simplifies to

\[
\mathcal{L} \simeq \lambda^i_{\nu} \bar{bc} P_R c \tilde{d}_i + \lambda^i_{\nu} (i P_R \nu^c - b P_R \mu^c) \tilde{d}_i , \tag{2}
\]

The first thing to notice is that the existence of both \(\lambda^\nu \) and \(\lambda^\mu \) type RPV interactions induces proton decay \cite{5}. With the above choice of flavors, proton decay happens at two-loop order. We calculate its rate by using the chiral effective Lagrangian \cite{6} and the lattice results on nucleon matrix elements \cite{7}. The leading decay mode is \(p \to K \), whose partial lifetime is constrained by Super-Kamiokande \cite{8}. This translates to the upper bounds \(|\lambda^\nu_{i}| |\lambda^\nu_{i}| \lesssim 2 \times 10^{-6} \left(m_{\tilde{d}_i} / 600 \text{ GeV} \right)^2 \).

\textbf{Baryogenesis in the Early Universe.} We proceed to discuss how baryon asymmetry could be regenerated from the decays of \(\tilde{d}_i \) via (2) \cite{9}. The mechanism discussed here relies on \textit{R}-parity and CP violating decays, which is similar to leptogenesis \cite{10, 11}, except that the decaying particles are colored and not self-conjugate, and the baryon number is created directly from their decays. From Eq. (2), the squarks have the decay channels

\[
\tilde{d}_i \to \bar{b} c, \ t \mu^- (\bar{b} \nu) , \quad \tilde{d}_i \to \bar{b} c, \ \bar{t} \mu^+ (\bar{b} \nu) . \tag{3}
\]
The \tilde{d}_i decays generate only $B + L$, which is the difference of quantum numbers between the two final states [12]. In order for baryon number to survive, the decay must happen after the weak sphaleron process ceases.

We define the CP violation in d_1 and d_1^* decays and a hadronic branching ratio $Br_{d_i \rightarrow bc}$ as follows

$$\varepsilon_i \equiv \frac{\Gamma_{d_i \rightarrow bc} - \Gamma_{d_i^* \rightarrow bc}}{\Gamma_{d_i \rightarrow bc} + \Gamma_{d_i^* \rightarrow bc}}$$

$$Br_i \equiv \frac{\Gamma_{d_i \rightarrow bc}}{\Gamma_{d_i \rightarrow bc} + 2\Gamma_{d_i \rightarrow t\mu^{-}}}$$ (4)

All the other decay branching ratios can be obtained from these two quantities,

$$Br_{d_i \rightarrow t\mu^{-}} = Br_{d_i \rightarrow b\nu} = \frac{1}{2} (1 - Br_i), \quad Br_{d_i^* \rightarrow bc} = 1 - \varepsilon_i Br_i,$$

$$Br_{d_i^* \rightarrow t\mu^{-}} = Br_{d_i^* \rightarrow b\nu} = \frac{1}{2} \left(1 + \frac{1 - \varepsilon_i}{1 + \varepsilon_i} Br_i \right).$$ (5)

To generate the correct sign of baryon asymmetry requires $\varepsilon_i < 0$. The source term of the Boltzmann equation depends on the quantity

$$\varepsilon_i Br_i = \frac{\text{Im} \left(\frac{\lambda_i^* \lambda_i^{*i} \lambda_i'^{*i}}{\left| \lambda_i^2 + \lambda_i'^2 \right|^2} \right)}{\left| \lambda_i^2 + \lambda_i'^2 \right|^2} F_j(m_{\nu}^2/m_{\tilde{d}_i}^2),$$ (6)

where $F_j(x) = (2\Gamma_j/m_j)(1/(1 - x) - 3 + (2 + 3x)\ln(1 + 1/x))$ and m_i, Γ_i are the mass and width of d_i, respectively. When d_1 and d_2 become quasi degenerate, the resonant propagator is regularized by Γ_2 [13]

$$F_j(x) \approx \frac{(\Gamma_1 - m_2)(\Gamma_2/2)}{(m_1 - m_2)\Gamma_2 \Gamma_j}. $$ (7)

The Boltzmann equation to generate the baryon number is

$$\frac{dY_B}{dz} = - 2\varepsilon_i \Gamma'^{\text{eq}} \frac{\langle \Gamma_{d_i} \rangle}{H(z)} (Y_{d_i} - Y_{d_i}^{\text{eq}}) - \frac{(4\Gamma'^{\text{eq}} \Gamma_j)}{H(z) \Gamma_j^2} Y_B - \frac{\langle \Gamma_{d_i} \rangle}{H(z)} Y_B^{\text{eq}} + \cdots$$ (8)

where $z = M_{d_i}/T$, $Y_i \equiv n_i/s$ is the yield of d_i, $s = 2\pi^2 g_s T^3/45$ is the total entropy density. The term proportional to ε_i is the source term, which implies d_i must decay out of equilibrium. In the washout terms, we have defined $\Gamma'^{\text{eq}} \equiv 2\langle \Gamma_{d_i} \rangle (Br_{d_i \rightarrow t\mu^{-}} + Br_{d_i \rightarrow t\mu^{+}})$ and $\Gamma'^{\text{eq}} \equiv \langle \Gamma_{d_i} \rangle (Br_{d_i \rightarrow b\nu} + Br_{d_i^* \rightarrow b\nu})$, where $\langle \rangle$ means thermal average. The \cdots are the washout terms involving the lepton asymmetry and are numerically insignificant.

Neglecting the asymmetry between the numbers of d_i and d_i^*, which is already exponentially suppressed during the decay, the Boltzmann equation governing the d_i number density can be written as

$$\frac{dY_{d_i}}{dz} = - \frac{\langle \Gamma_{d_i} \rangle}{H(z)} (Y_{d_i} - Y_{d_i}^{\text{eq}}) - s \langle \sigma v_i \rangle \left(Y_{d_i}^{\text{eq}} - (Y_{d_i}^{\text{eq}})^2 \right),$$ (9)

where σv_i include all possible $d_i d_i^* \rightarrow q\bar{q}, g\bar{g}$ annihilation channels. The strong interaction keeps d_i in equilibrium and tends to suppress $Y_{d_i} - Y_{d_i}^{\text{eq}}$, and consequently the final baryon asymmetry. If the decay mainly happens well after the freeze-out time z_{fo}, defined by $n_{d_i}^{\text{eq}}(\sigma v)(z_{fo}) \sim H(z_{fo})$, the resulting $Y_B(\infty) \sim \varepsilon_i Y_{d_i}^{\text{eq}}(z_{fo})$ will be much smaller than the observed value.

On the other hand, if the decay happens during the freeze-out, the final baryon number can be enhanced [14]. Combining Eqs. (8) and (9) and neglecting the washout terms,

$$\frac{dY_B}{dz} \sim \varepsilon_i Br_i \langle \Gamma_{d_i} \rangle \frac{dY_{d_i}^{\text{eq}}}{dz}.$$

For $z \ll 1$, the annihilation rate dominates over the decay, whereas at $z \gg z_{fo}$, $Y_{d_i}^{\text{eq}}/dz$ is Boltzmann suppressed. Therefore, the dominant contribution to Y_B is from the epoch $z \sim z_{fo}$, with $n_{d_i}^{\text{eq}}(\sigma v_i) \sim \langle \Gamma_{d_i} \rangle$. The resulting baryon number is $Y_B(\infty) \sim \varepsilon_i Y_{d_i}^{\text{eq}}(z_{fo})$. Thus, it can be enhanced by orders of magnitude if $z_{fo} \ll z_{fo}$. As a result, for a given ε, the final baryon asymmetry first increases with the decay rate (Fig. 1), and then drops at larger decay rate because the washout terms in (8) become important. This trend is also shown in Fig. 2.

From Fig. 1, we also find that successful baryogenesis requires $\varepsilon \gtrsim 10^{-2}$, which implies the mass gap between d_1 and d_2 should be at most 10^2 of their widths.
Baryogenesis inside the LHC. As colored particles, \(d_i \), \(d'_i \) can be copiously pair-produced at high-energy colliders. This offers a unique opportunity to access the particle physics part of the above baryogenesis scenario. We sketch the strategy of measuring the CP and lepton number violating signals at the LHC.

Constraints. After being produced inside the LHC, \(d_i \) and \(d'_i \) will decay according to (3), and the possible final states are

process	signal	relevant data
\((bc)(bc)\)	\(4j\)	—
\((t\mu^-)(\bar{t}\mu^+)\)	\(\mu^+\mu^-2b4j\)	Leptoquark [15]
	\(\mu^+\mu^-\ell^+\ell^-2b2\ell\)	Chargino-Neutralino [16]
\((t\mu^-)(b\bar{v}), (\bar{t}\mu^+)(bv)\)	\(\mu^\pm 2b2j\)	Leptoquark [15]
	\(\mu^\pm \ell^\pm 2b\)	Stop [17]
\((bv)(b\bar{v}), (b\bar{v})(bc)\)	\(2b1j\)	B-sbottom [18]
\((t\mu^-)(bc), (\bar{t}\mu^+)(bc)\)	\(\mu^\pm 2b3j\)	Multijet-Time\(E_T\) [19]
\((t\mu^-)(bc), (\bar{t}\mu^+)(bc)\)	\(\mu^\pm \ell^\pm 2b1j\)	Our signal

with \(\ell, \ell' = e, \mu \), and their branching ratios can be calculated from Eq. (5). The corresponding LHC data relevant for the constraints are also shown. There is no constraint from the \(4j \) channel, which is the usual place to hide SUSY using RPV. We find that the \(\mu^+ \mu^- + \)jets and \(\mu^\pm + \)jets + \(E_T \) channels can be constrained by simple leptoquark searches [15], which give the strongest limits. They have been interpreted to the bounds on \(Br \) and \(\varepsilon \), as displayed in Fig. 3.

Resonances and lepton charge asymmetry. Compared to other channels the analysis of \(\mu^\pm \mu^- \) and \(\mu^- \) jets without significant missing energy seem to have received less motivations. However, these channels can be used as a smoking-gun signal for the baryogenesis scenario discussed above, since \(d \) decays preferably to semi-leptonic channels, whereas \(d^* \) to hadronic channels. Therefore, if the events are triggered with a single muon and multiple hard jets, it is expected to see more \(\mu^- \) events than \(\mu^+ \) events. In practice, we use PYTHIA 8 [20] and FastJet 3 [21] to generate the decay events of the pair-produced \(d \) and \(d^* \). We require the transverse momenta \((P_T) \) of the \(\mu^\pm \) to be larger than 170 GeV. The two hardest jets are required to have \(P_T > 200 \) GeV, and the third hardest jet \(P_T > 150 \) GeV. We calculate the invariant mass of two of the jets \(M_{jj} \), and compare it with the invariant mass of the muon and the rest jets \(M_{\mu j} \). By finding the combination with the closest \(M_{jj} \) and \(M_{\mu j} \), we identify the mass of \(d \) with \(M_{jj} \). To reduce the background from \(W + \)jets, we further require that the missing energy to be smaller than 30 GeV. With these cuts, the major background comes from QCD multi-jet processes with one jet mis-identified as an muon. For \(P_T > 100 \) GeV, the fake rate is less than \(10^{-4} \) [22]. To be conservative, we take the fake rate equal to this upper limit.

The \(M_{jj} \) distributions for events with a single \(\mu^\pm \) for \(m_j = 600 \) and 800 GeV are shown in Fig. 4, where we choose two benchmark points corresponding to the blue and red stars shown in Fig. 3. For the first benchmark, with \(\varepsilon = -0.2 \) and \(Br = 0.2 \), the ratio of the parton level production rates of the \(\mu^- \) jets and \(\mu^+ \) jets events can be calculated from Eq. (5) that \(\sigma_{\mu^-/\mu^+} \approx 1.7 \). For the second benchmark, we have \(\sigma_{\mu^-/\mu^+} \approx 3 \). In practice, the ratios of heights of the \(\mu^- \) peak to \(\mu^+ \) peak shown in Fig. 4 are smaller than their parton level values, due to the self-contaminations from other decay channels of the resonances, apart from the SM background. One such contamination is from the \(4j \) channel, which is potentially more important, for it has the same bump structure as the desired \(\mu^\pm \) jets signal.

Identify baryon number generation in collider. From the above discussion, we are able to observe a particle or its antiparticle (on resonance) decaying into one muon and one top quark, or two hard jets. Based on the fact that a hard jet can be either a quark/antiquark or a gluon (we assume that jet substructure analysis can distinguish jets from boosted heavy particles), we enumerate all the possibilities of the color and spin quantum numbers, which can be reconstructed from the two types of final states, using \((\mu^\pm, (jj) \) to match are color triplets with integer spins. Meanwhile, the dijet final states decayed from the resonances are also fixed to be \((q\bar{q})^\pm \) or \((q\bar{q})^0 \). We further assume that the resonance is made of particle-anti-particle pairs \(X \) and \(\tilde{X} \). Then, from the lepton charge asymmetry between \((\mu^- - t) \) and \((\mu^+ + t) \), we know the semi-leptonic decay branching ratios of \(X \) and \(\tilde{X} \) are different, and so are the hadronic decays due to the CPT theorem which dictates that the equality of the total widths of \(X \) and \(\tilde{X} \). Therefore, a net baryon number must have been generated, if \(X \) and \(\tilde{X} \) are pair
produced.

Another caveat to this argument is the possibility of same sign pair productions of XX and $X\bar{X}$, with different rates, if X is the superpartner of a light quark. Because LHC is a proton-proton machine, the asymmetry of the light quark parton distributions results in the different production rates of XX, $X\bar{X}$, with the exchange of a t-channel gluino. However, these processes are always accompanied by events with same-sign di-muon plus jets. The identification of baryogenesis at LHC requires the absence of this kind of events.

A complete model. To generate enough baryon asymmetry, the mass gap between d_1 and d_2 should be of the same order as their decay widths, $\sim 10^{-12}$ GeV, which is suppressed by their RPV couplings (see Fig. 1). In a natural model, such a small mass gap should be controlled by the same RPV couplings as well, which implies the existence of an approximate $SU(2)_{h}$ horizontal symmetry. Here we give a SUSY model example to illustrate the idea. For the sake of gauge unification, the new states should form complete representations under $SU(5)$. We add two pairs of $\tilde{5}'_{i}$ and $\tilde{5}''_{i}$ to the MSSM, with $i = 1, 2$ forming doublets under the $SU(2)_{h}$ symmetry. We assume the $SU(2)_{h}$ symmetry is broken only by the RPV interactions in the superpotential

$$W = W_{R_{\text{MSSM}}}^{\text{RPV}} + \lambda_{1}Q_{3}L_{1}D_{i}^{c}L_{1}^{c} + \lambda_{2}U_{2}^{c}D_{3}^{c}D_{3} + M D_{i}^{c}D_{i}^{c}.$$ \tag{11}

where $D_{i}^{c} \in \tilde{5}'_{i}$, and the above \tilde{d}_{i}^{c} in the sdown case can be identified as the scalar part of D_{i}^{c}, $\tilde{d}_{i}^{c} = \tilde{d}_{i}^{c} + \theta d_{i}^{c}$. The loop generated mass difference between d_1 and d_2 is just on same order of magnitude as their widths. The masses of d_{i}^{c} and its fermionic partner d_{i} can be different due to a SUSY breaking but $SU(2)_{h}$ conserving soft mass. By arranging the spectrum, it is possible to allow d_{i} to decay into a quark and a squark via the same RPV interactions. We find the gauge couplings are still perturbative at the unified scale in this model.

Realization in the MSSM. A more interesting question is how to realize the toy model in the MSSM. Again, we need a tiny mass gap between two lightest squarks. This degeneracy suffers from corrections from different Yukawa couplings for different flavors, and merely requires tuning at zero temperature. The real problem is that, in the early universe, the finite temperature effect modifies the mass gap dynamically. The most important contribution comes from the F-terms of the Yukawa couplings, with the Higgs boson running in the thermal loop,

$$(m_1 - m_2)(T) \approx \Delta m_{0} + \frac{y_1^2 - y_2^2}{2m_{q_{i}}} M_{h} \left(\frac{M_{h}T}{2\pi} \right)^{3/2} e^{-M_{h}/T},$$ \tag{12}

where low temperature expansion [25] has been used, and $M_{h} = 126$ GeV. Through Eq. (7), this causes the CP violation parameter ε to vary with the temperature. Enough baryon asymmetry requires the source term for baryogenesis to remain effective, i.e., $\varepsilon(T) > 10^{-2}$, for a long enough period around the freeze out temperature $T_{f} \sim 20$ GeV. As a result, there is an upper bound on the differences of Yukawa couplings $|y_{1}^{2} - y_{2}^{2}| < 10^{-5}$. This limits the choice of flavors to the nearly-degenerate sdown-sstrange co-LSP scenario only, which is able to give sufficient baryon asymmetry. The right panel of Fig. 2 shows an example of the evolution of Y_{B} taking into account of the temperature dependence in ε. In this case, for naturalness, the light stop can still be hidden by either cascade decaying to the LSPs or via its own RPV couplings.

Summary. To summarize, we propose a TeV scale baryogenesis picture, which can be realized in natural SUSY models, and can be directly probed in the LHC. Baryogenesis from colored particle decays require CP violation to be close to maximal, which can be realized with nearly degenerate squarks. The smoking-gun signal would be the charge asymmetry from the decay of squark resonances. The charged lepton plus multijet final states without significant missing energy, should be taken into account in future analysis of LHC data, which will help to unveil the origin of baryon asymmetry in our universe.

Acknowledgement. We acknowledge insightful discussions with Clifford Cheung, Tao Liu, Michael Ramsey-Musolf and Natalia Toro. H.A.'s research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation. Y.Z.'s work is supported by the Gordon and Betty Moore Foundation through Grant #776 to the Caltech Moore Center for Theoretical Cosmology and Physics, and by the DOE Grant DE-FG02-92ER40701.
