Synthetic Bioplastic Film from Rice Husk Cellulose

A Hayatun¹, M Jannah¹, A Ahmad², P Taba²

¹Postgraduate Student in the Department of Chemistry, Hasanuddin University, Perintis Kemerdekaan street KM 10, Makassar 90245, Indonesia
²Chemistry Department, Faculty of Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan street KM 10, Makassar 90245, Indonesia

*Email: hayatunasriani@gmail.com

Abstract. Rice husk has high cellulose content so that it could be used as a basis for making bioplastic. This research aims to synthesize cellulose-based bioplastic films from rice husks. The method stages of this study were cellulose extraction, alkali treatment, bleaching, and analyzing by Fourier Transform Infra-Red (FTIR). Bioplastic film were synthesized using cellulose, chitosan and sorbitol with variation in cellulose and chitosan masses to obtain bioplastic films with high mechanical strength. The obtained bioplastic films were tested mechanically by using Universal Testing Machine (UTM). The result of this research showed that cellulose obtained from the extraction was 59.2%, odorless, and white powder. The best bioplastic film was at a variation of 0.8 g cellulose, 1.2 g chitosan, and 1 mL sorbitol with a tensile strength of 5.4147 N/mm²

1. Introduction

Environmental problems especially those caused by plastic waste are one of the unresolved issues in Indonesia. Indonesia produces 187.2 million tons of waste in 2010 and is expected to increase every year [1]. Various activities to reduce plastic waste have been carried out through the use of paid plastic bags, the use of drinking bottles and shopping bags themselves. However, these activities did not produce significant result. So we need a solution that is replacing synthetic plastic using bioplastics, where bioplastics are plastics made from natural materials such as starch [2,12], protein [3], and cellulose [4] so that they are easily broken down by microorganisms.

Cellulose can be the main choice as a raw material for making bioplastics because the source of cellulose can be obtained from waste so that it can also be a solution to overcome environmental problems. One source of cellulose is rice husk. Rice husk contains cellulose which is quite high 57% [5], so it has the potential to be used as a raw material for making bioplastics. The purpose of this research is to synthesize cellulose-based bioplastic films with variation in cellulose mass and chitosan to obtain high mechanical strength.

2. Experimental

2.1. Materials

The material used in this study was rice husk obtained from Gowa Regency, Indonesia, chitosan, sorbitol, methanol, NaOH+Na₂CO₃ 5%, H₂SO₄ 10%, NaOCl 2%, and CH₃COOH 1%.
2.2. Instrument
The tools used in this study are glassware, smoothing machines, filters, ovens, vacuum Buchner, Fourier Transform Infra-Red (FTIR), and Universal Testing Machine (UTM).

2.3. Method

2.3.1. Extraction cellulose of rice husk. Rice husk is a cleaned from impurities and dried in the sun. Dried rice husk has been mashed and sieved with a size 80 mesh. Rice husk powder was macerated with methanol solvent for seven days [4]. Maseration residue was added with 300 mL of 5% (w/v) NaOH + Na₂CO₃ solution. The mixture is added with a solution of 10% H₂SO₄ until it reaches pH 3-4. The residue is dried in an oven at 50°C to a constant weight [6.7].

2.3.2. Characteristic of cellulose. Cellulose from the extraction of rice husk was observed physical properties such as odor and discoloration and its functional group was analyzed using FTIR.

2.3.3. Synthetic of bioplast with cellulose mass variation. Cellulose with a mass variation of 0.2, 0.4, 0.6, 0.8, and 1.0 g was added to the chitosan solution (0.8 g in 50 mL CH₃COOH 1%) in each beaker and stirred until homogeneous. Sorbitol mixture is added and stirred again. The mixture is printed on glass plate and the flattened and dried in oven at 60°C [8].

2.3.4. Synthetic of bioplast with mass chitosan variation. Optimum mass cellulose variation was put into chitosan solution with mass variation 0.8, 1.2, 1.6, 2.0, and 2.6 gram in 50 mL CH₃COOH 1% in each beaker and stirred until homogeneous. Sorbitol mixture is added and stirred again. The mixture printed on a glass plate and then flattened and dried in an oven at 60°C [8].

2.3.5. Bioplastic mechanical test. The bioplastic produced from cellulose mass variation and chitosan mass variation was tested by tensile strength and elongation by using Universal Testing Machine (UTM).

3. Results and Discussion

3.1. Extraction Cellulose of Rice Husk
Cellulose extracted in the form of brown powder. Cellulose extraction consist of several stages, including the removal of lignin (delignification), hydrolysis, and bleaching. The delignification processes use an alkali treatment that is NaOH+Na₂CO₃ 5% (w/v) produces a deep brown color [5]. The brown color indicates that lignin is still trapped with cellulose. The next stage is hydrolysis marked by bubbles appearing which indicates the hydrolysis process has occurred. The last stage is the bleaching process to remove the remnants of lignin that are still bond to cellulose [9]. The cellulose obtained was in the from white and odorless powder, which can be observed in Fig. 1.

![Figure 1. Cellulose extracted](image_url)
The cellulose obtained is by previous studies and is the same a commercial cellulose [10], cellulose content obtained from rice husk extraction was 59.2% higher than the previous observation of 57% [5].

3.2. Characterization Cellulose of Rice Husk

Figure 2 shows the FTIR cellulose extracted from rice husk. The peak that appears is around 3440-3500 cm\(^{-1}\) showing O-H group. These result show the hydroxyl group on cellulose. The peaks that appear in the area of 1080-1094 cm\(^{-1}\) indicate the C-O group on cellulose. Clusters that appear on the spectrum can be observed in Table 1.

![Figure 2. FTIR cellulose spectrum](image)

Functional Groups	Wave Number (cm\(^{-1}\))
O-H	3450.19
C-H	2920.28
C-O	1094.53

3.3. Bioplastic mechanical test

Cellulose obtained from the extraction of rice husk is used in synthesis bioplastic. Cellulose is composited with chitosan and sorbitol. The resulting bioplastic can be observed in Fig. 3.
Mechanical tests include tensile strength and elongation. Tensile strength indicates the tensile strength of bioplastic films produced by the compilation is given a load. The lowest tensile strength was found in bioplastic films with a variation of cellulose mass of 0.2 g which was 0.3947 N/mm2, while the highest value was in the mass of cellulose 1.0 g that was 2.0804 N/mm2. But seen from the variation of cellulose mass 0.6-0.8 g constant that is 14.88-14.90%, then cellulose mass 0.8 g is used to process chitosan mass variation. The results obtained can be obtained in Fig. 4.
In chitosan mass variation, the lowest tensile strength was found in bioplastic films with 0.8 g chitosan mass variation, namely 1.1058 N/mm², while the highest value was in chitosan mass 1.2 g which was 5.4147 N/mm² with an elongation value of 28.17%. The results obtained can be observed in Fig. 5. This is consistent with the theory that chitosan acts as an amplifier in bioplastics [8]. Addition of chitosan can increase the tensile strength of bioplastics. The high tensile strength is caused by interactions between chitosan and cellulose polymers in the form of hydrogen bonds. Tensile strength decreased in the mass variation of chitosan 2.0 g which is 2.338 N/mm² due to the increase in mass of chitosan not followed by the formation of interactions with the bioplastic polymer chains [11].

![Tensile strength graph](attachment: tensile_strength_graph.png)

Figure 5. Tensile strength (a) and elongation (b)

4. Conlusion
Cellulose extracted from rice husk was 59.2%, white powder and odorless. The best bioplastic in cellulose variation was obtained at 0.8 g mass with tensile strength yield of 1.1058 N/mm² and bioplastic at chitosan mass variation 1.2 g with tensile strength result of 5.4147 N/mm².

Acknowledgements
This research is supported by the 2019 grant for the master thesis research with the contract number of 1739/UN4.21/PL.01.10/2019. The authors thank to the staff of Physical Chemistry Laboratory of Hasanuddin University.
References

[1] Jambeck J R, Roland G, Chris W, Theodore, Singler, Miriam P, Anthony A, Ramani N and Lavender L 2015 Plastic waste inputs from land into the ocean *Marine Polution* **347** 768-771

[2] Ravindra V, Gadhave, Abhijit Das, Prakash A and Pradeep T 2018 Strach Based Bio-Plastic The Future of Sustainable Packaging *J.Polymer Chem* **8** 21-33

[3] Felix M, Valma C, Albert R and Anonio G 2016 Influence of sorbitol on mechnical and physico-chemical properties of soy protein-based bioplastic processed by injecion molding *J.Polymeros* **26** 277-81

[4] Chadijah S, W O Rustiah and Munir 2018 Determination of the optimum concentration cellulose baggase in making film bioplastic *J. Phys.: Conf. Ser.* **979** 012026

[5] Johar N, Ishak A and Alain D 2012 Extraction preparation and characterization of cellulose fiber and nanocrystals from rice husk *J.Industrial Crops and Product* **37** 93-9

[6] Das A M, Ali A A and Hazarika M P 2014 Synthesis and characterization of cellulose acetate from rice husk eco-friendly confition *J. Carbohydr. Polym.* **112** 342-9

[7] Aurelia C, Agnes M, Supriyanto and Ningrum A 2019 Effect of sodium hydroxide and sodium hypochlorite on the physicochemical characteristics of jack bean skin (canavalia ensiformis) *Pak J. Nutr.* **18** 193-200

[8] De Olivera J P, Bruni G P, Lima K, Halal S L M E, da Rosa G S, Dias A R G and da Rosa Z E 2017 Cellulose fibres extracted from rice husk and oat husks and their application in hidrogel *J. Food Chem.* **221** 153-60

[9] Sheltami R M, Ibrahim A, ishak A, Alain D and Hanieh K 2012 Extraction of cellulose nanocrystals from mengkuas leaves *Carbohydrate Polymers* **88** 772-9

[10] Nasution H, Yurnaliza, Veronicha, Irnadani and S Sitompul 2017 Material Science and Engineering Preparation and characterization of cellulose microcrystalline from fiber of empty fruit bunch palm oil *IOP Conf. Ser.: Mater. Sci. Eng.* **180** 012007

[11] Hasan M, Rahmayani R F and Munandar 2017 Bioplastic from chitosan and yellow pimpkin starch with castor oil as plasticizer *IOP Conf. Ser.: Mater. Sci. Eng.* **333** 012087

[12] Soekamto N H, St Fauziah, P Taba, and M B Amran 2017 Adsorption of β-sitosterol on molecularly imprinted polymer *IOP Conf. Ser.: Mater. Sci. Eng.* **188** 012048