Certain properties of contra-T^*_{12}-continuous functions

Hadi J. Mustafa
Dept. of Math., F. of Math. & Comp. Sci.
University of Kufa
Najaf, Iraq
drhadi.mustafa@gmail.com

Layth M. H. Alabdulsada
Dept. of Math., F. of Math. & Comp. Sci.
University of Kufa
Najaf, Iraq
lolo_muhsin@yahoo.com

Received July 28, 2019. Accepted for publication Sep. 2, 2019

Abstract—The concept of contra function was introduced by Dontchev [2], in this work, we use the notion of T^*_{12}-open to study a new class of function called a contra-T^*_{12}-continuous function as a generalization of contra-continuous.

Keywords: T^*_{12}-open sets; contra-T^*_{12}-continuous function; operator topological space; contra-T^*_{12}-closed graph.

1. INTRODUCTION

In 1996, Dontchev [2] introduced contra-continuous functions. In [10], the authors introduced the concept of almost contra-T^*-continuous function. In this paper, we introduce a new class of function called contra-T^*_{12}-continuous function where T_1, T_2 are operators associated with the topology τ on X. Throughout the paper, the space X and Y or (X, Y) and (Y, δ) stand for topological space, let A be a subset of X, the closure of A and the interior of A will be denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively.

2.1 Definition: A subset A of a space X is said to be:

i) Semi-open [6] if $A \subseteq \text{Cl}(\text{Int}(A))$,

ii) Pre-open [7] if $A \subseteq \text{Int}(\text{Cl}(A))$,

iii) b-open [1] if $A \subseteq \text{Cl}(\text{Int}(A) \cup \text{Int}(\text{Cl}(A)))$.

The complement of semi-open (pre-open, b-open) is said to be semi-closed (pre-closed, b-closed). The family of all semi-open (pre-open, b-open, semi-closed, pre-closed, b-closed) subset of a space X is denoted by $SO(X)|PO(X)|BO(X)|SC(X)|PC(X)|BC(X)$, respectively.

II. PRELIMINARIES

In this section, we recall the basic facts and definitions needed in this work.
\textbf{2.2 Definition [4]}: A function \(f : X \rightarrow Y \) is called semi-continuous (pre-continuous, b-continuous) if for each \(x \in X \) and each open set \(V \) of \(Y \) containing \(f(x) \), there exists \(U \in \text{SO}(X) \) \((U \in \text{PO}(X), U \in \text{BO}(X)) \) such that \(f(U) \subseteq V \).

\textbf{2.3 Definition}: A function \(f : X \rightarrow Y \) is called contra-continuous [2] (contra-semi continuous [4], contra-pre-continuous [3], contra-b-continuous [5]) if \(f^{-1}(V) \) is closed (semi-closed, pre-closed, b-closed, resp.) in \(X \) for each open set \(V \) of \(Y \).

\section{III. OPERATOR TOPOLOGICAL SPACES}

\textbf{3.1 Definition [8]}: Let \((X, \tau) \) be a topological space and let \(T : p(X) \rightarrow p(X) \) be a function (where \(p(X) \) is the power set of \(X \)) we say that \(T \) is an operator associated with the topology \(\tau \) on \(X \) if \(W \subseteq T(W) \ (W \in \tau) \) and the triple \((X, \tau, T)\) is called an operator topological space.

\textbf{3.2 Definition [9]}: Let \((X, \tau, T) \) be an operator topological space, let \(A \subseteq X \)

\begin{enumerate}
 \item A is called T-open if given \(x \in A \), then there exists \(V \in \tau \) there exists \(x \in V \subseteq T(V) \subseteq A \).
 \item A is called T*-open if \(A \subseteq T(A) \) (\(A \) is not necessarily open).
\end{enumerate}

\textbf{3.3 Remarks}:

\begin{enumerate}
 \item Every T-open set is open.
 \item Every open set is T*-open, so we have the following implications:
 \[\text{T-open} \rightarrow \text{open} \rightarrow \text{T*-open} \]
 \item Let \((X, \tau) \) be a topological space define \(T : p(X) \rightarrow p(X) \) as follows: \(T(A) = \text{Int Cl}(A) \) then \(T \) is an operator associated with the topology \(\tau \) on \(X \) and the triple \((X, \tau, T)\) is an operator topological space.
\end{enumerate}

As an example, we can suppose \(X = \mathbb{R} \), \(\tau = \tau_{\text{u}} \) the usual topology on \(\mathbb{R} \), if \(T(A) = \text{Int Cl}(A) \), then the triple \((\mathbb{R}, \tau_{\text{u}}, T)\) is an operator topological space,

notice that \(Q \subseteq \mathbb{R} \) satisfies \(Q \subseteq \text{Int Cl}(Q) \), so \(Q \) is a T*-open (pre-open) which is not open.

\textbf{3.3 Definition}: Let \((X, \tau) \) be a topological space and let \(T_1, T_2 \) be two operators associated with the topology \(\tau \) on \(X \) then \((X, \tau, T_1, T_2) \) is called a bi operator topological space.

\textbf{3.4 Definition}: Let \((X, \tau, T_1, T_2) \) be an operator topological space and let \(A \subseteq X \), we say that \(A \) is a T*_{12}-open if \(A \subseteq T_1(A) \cup T_2(A) \), the complement of T*_{12}-open is called T*_{12}-closed for example if:

\[T_1(A) = \text{Cl}(\text{Int}(A)), \]
\[T_2(A) = \text{Int}(\text{Cl}(A)), \]

then:
\[A \subseteq \text{Cl}(\text{Int}(A)) \cup \text{Int}(A), \]

this is the definition of b-open set.

Notice that every T*_{1,1}-open (T*_{2,2}-open) is T*_{12}-open because if \(A \) is a T*_{1,1}-open then \(A \subseteq T_1(A) \subseteq T_1(A) \cup T_2(A) \), so \(A \) will be T*_{12}-open.

\section{IV. CONTRA-T*_{12}-CONTINUOUS FUNCTIONS}

In this section, we obtain some properties of contra-T*_{12}-continuous functions.

\textbf{4.1 Lemma [1]}: Let \((X, \tau) \) be a topological space then:

\begin{enumerate}
 \item The intersection of an open set and a b-open set is a b-open set.
 \item The union of any family of b-open sets is a b-open set.
\end{enumerate}

Now, we generalize Lemma 4.1 as follows:

\textbf{4.2 Lemma}: Let \((X, \tau, T_1, T_2) \) be a bi operator topological space assume that

\[T_1(W \cap B) = T_1(W) \cap T_1(B), \forall \tau, B \subseteq X, \]
\[T_2(W \cap B) = T_2(W) \cap T_2(B), \] where \(\tau, B \subseteq X. \] Therefore:

1) The intersection of an open set and a \(T_{*12}\)-open set is \(T_{*12}\)-open.

2) The union of any family \(T_{*12}\)-open sets is a \(T_{*12}\)-open set.

Proof:

1) Let \(W \subseteq X \) be an open set and let \(V \) be a \(T_{*12}\)-open set we have to prove that \(W \cap V \) is also a \(T_{*12}\)-open set. Since \(W \) is open then:

\[
 W \subseteq T_1(W) \quad \ldots (1) \\
 W \subseteq T_2(W) \quad \ldots (2)
\]

Since \(V \) is a \(T_{*12}\)-open then

\[
 V \subseteq T_1(V) \cap T_2(V) \quad \ldots (3)
\]

\[
 W \cap V \subseteq W \cap (T_1(V) \cap T_2(V)) = (W \cap T_1(V)) \cup (W \cap T_2(V)) \subseteq (T_1(W) \cap T_1(V)) \cup (T_2(W) \cap T_2(V)) = (T_1(W \cap V)) \cup (T_2(W \cap V))
\]

Then \(W \cap V \) is \(T_{*12}\)-open set.

2) Let \(\mathcal{L} = \{ w_\alpha \mid \alpha \in I \} \) be any family of \(T_{*12}\)-open sets we must prove that \(\bigcup_\alpha w_\alpha \) is also a \(T_{*12}\)-open

\[
 w_\alpha \subseteq T_1(w_\alpha) \cup T_2(w_\alpha) \text{ for each } \alpha \in I \\
 \bigcup_\alpha w_\alpha \subseteq \bigcup_\alpha (T_1(w_\alpha) \cup T_2(w_\alpha)) = \bigcup_\alpha T_1(w_\alpha) \cup \bigcup_\alpha T_2(w_\alpha)
\]

Now \(\bigcup_\alpha T_1(w_\alpha) = T_1(\bigcup_\alpha w_\alpha) \)

Also \(\bigcup_\alpha T_2(w_\alpha) = T_2(\bigcup_\alpha w_\alpha) \)

Then \(\bigcup_\alpha w_\alpha \subseteq T_1(\bigcup_\alpha w_\alpha) \cup T_2(\bigcup_\alpha w_\alpha) \) and \(\bigcup_\alpha w_\alpha \) is a \(T_{*12}\)-open.

4.3 Remarks:

i) The intersection of two \(T_{*12}\)-open is not necessarily \(T_{*12}\)-open, so the collection of all \(T_{*12}\)-open sets is not necessarily a topology on \(X. \)

Let \(\tau_{*12} \) be the topology generated by the collection of all \(T_{*12}\)-open sets.

ii) The intersection of any collection of \(T_{*12}\)-closed sets is \(T_{*12}\)-closed. Let \(T_{*12}\)-Cl(\(B \))-intersection of all \(T_{*12}\)-closed sets containing \(B \).

Recall that for a function \(f: X \rightarrow Y \), the subset \{ \((x, f(x)) \mid x \in X \} \subseteq X \times Y \) is called the graph of \(f \) and denoted by \(G(f) \).

4.4 Definition: Let \(f:(X, \tau, T_1, T_2) \rightarrow (Y, \delta) \) be a function the graph \(G(f) \) of \(f \) is said to be contra- \(T_{*12}\)-closed graph if for each \((x, y) \in (X \times Y) \) \(G(f) \) there exists \(U \) which is \(T_{*12}\)-open containing \(x \) and a closed set \(V \) of \(Y \) containing \(y \) such that \((U \times V) \cap G(f) = \emptyset \). The implies that \(f(U) \cap V = \emptyset \).

4.5 Definition: A space \(X \) is said to be contra-compact if every closed cover of \(X \) has a finite sub cover.

4.6 Theorem: Let \((X, \tau, T_1, T_2) \) be a bi operator topological space and suppose \(f:(X, \tau, T_1, T_2) \rightarrow (Y, \delta) \) has a contra- \(T_{*12}\)-closed graph, then the inverse image of a contra-compact set \(A \) of \(Y \) is \(T_{*12}\)-closed in \(X \).

Proof: Assume that \(A \) is contra-compact set of \(A \) and \(x \notin f^{-1}(A) \) for each \(a \in A \), \((x, a) \notin G(f) \).

Then there exists \(U_a \) which is \(T_{*12}\)-closed containing \(x \) and \(V_a \) which is closed in \(Y \) containing a such that

\[
 f(U_a) \cap V_a = \emptyset.
\]

Consider \(\mathcal{L} = \{ \bigcap_{\alpha} V_a \mid a \in A \} \) and \(\mathcal{L} \) is a closed cover of the subspace \(A \), but \(A \) is contra-compact then there exists \(a_1, a_2, a_3 \ldots a_n \) such that

\[
 A \subseteq \bigcup_{i=1}^n V_{a_i}
\]

Let \(U = \bigcap_{i=1}^n U_{a_i} \), then \(U \) is \(T_{*12}\)-closed containing \(x \) and \(f(U) \cap A = \emptyset \), therefore
Since \(f \) is \(\text{Cl}(V) \cap \), such that \(f(x) \) is Urysohn then there exists open sets \(V \) and \(W \) and let \(x \in E \) such that \(E = \{ x \in X \mid f(x) = g(x) \} \) is \(\text{Cl}(W) \) is open in \(X \). Then \(f \) is \(T^*_{12} \)-closed.

Proof: First we show that an open set \(U \) of \(Y \) is contra-\(T^*_{12} \)-compact by (theorem 4.6) \(f^1(U) \) is a \(T^*_{12} \)-closed in \(X \) then for \(f \) is contra-\(T^*_{12} \)-continuous.

4.7 **Theorem:** Let \(Y \) be contra-\(T^*_{12} \)-compact space and let \((X, \tau_{(12)}, T_1, T_2) \) be operator topological space, suppose \(f : (X, \tau_{(12)}, T_1, T_2) \rightarrow (Y, \delta) \) has a contra-\(T^*_{12} \)-closed graph then \(f \) is contra-\(T^*_{12} \)-continuous.

Proof: Since \(f \) is contra-\(T^*_{12} \)-continous then \(f^1(U) = g^1(X \times U) \) is a \(T^*_{12} \)-closed in \(X \). Then \(f \) is contra-\(T^*_{12} \)-continuous.

4.8 **Theorem:** Let \(f : (X, \tau, T_1, T_2) \rightarrow (Y, \delta) \) be a function and \(g : X \rightarrow X \times Y \) the graph function of \(f \) defined by \(g(x) = (x, f(x)) \) for every \(x \in X \), if \(g \) is contra-\(T^*_{12} \)-continuous then \(f \) is contra-\(T^*_{12} \)-continuous.

Proof: Since \(g \) is contra-\(T^*_{12} \)-continous then \(f^1(U) = g^1(X \times U) \) is a \(T^*_{12} \)-closed in \(X \). Then \(f \) is contra-\(T^*_{12} \)-continuous.

4.9 **Theorem:** If \(f : (X, \tau, T_1, T_2) \rightarrow (Y, \delta) \) is contra-\(T^*_{12} \)-continuous and \(g : (X, \tau, T_1, T_2) \rightarrow (Y, \delta) \) is contra-continuous and \(Y \) is Urysohn space then \(E = \{ x \in X \mid f(x) = g(x) \} \) is \(T^*_{12} \)-closed in \(X \).

Proof: Let \(x \in E^c \), then \(f(x) \neq g(x) \), since \(Y \) is a Urysohn space then there exists open sets \(V \) and \(W \) such that \(f(x) \in V, g(x) \in W \), and \(\text{Cl}(V) \cap \text{Cl}(W) = \emptyset \).

Since \(f \) is contra-\(T^*_{12} \)-continous then \(f^1(\text{Cl}(V)) \) is \(T^*_{12} \)-open in \(X \) and \(g \) is contra-continuous and \(f(x) \) is open in \(X \), let \(U = f^1(\text{Cl}(V)), G = g^1(\text{Cl}(W)) \).

Then \(x \in U \cap G = A \), where \(A \) is \(T^*_{12} \)-open in \(X \) and \(f(A) \cap g(A) \subseteq f(U) \cap g(G) \subseteq \text{Cl}(V) \cap \text{Cl}(W) = \emptyset \), hence \(f(A) \cap g(A) = \emptyset \) and \(A \cap E = \emptyset, A \subseteq E^c \).

where \(A \) is \(T^*_{12} \)-open there for \(x \notin T^*_{12} \)-Cl(\(E \)), then \(E \) is \(T^*_{12} \)-closed in \(X \).

4.10 **Definition:** A subset \(A \) of operator topological space \((X, \tau, T_1, T_2) \) is said to be \(T^*_{12} \)-dense in \(X \) if \(T^*_{12} \)-Cl(\(A \)) = \(X \).

4.11 **Remarks:** Let \((X, \tau) \) be a topological space define:

\[T_1 : p(X) \rightarrow p(X) \]

\[T_2 : p(X) \rightarrow p(X) \text{ as follows} \]

\[T_1 (A) = \text{Int} (\text{Cl} (A)) \]

\[T_2 (A) = \text{Cl} (\text{Int}(A)) \text{, then } T^*_{12} \text{-dense subset will be b-dense and } T^*_{12} \text{-Cl}(A) \text{ will be b-Cl}(A) \text{ so b-dense in } X \text{ mean that b-Cl}(A) = X. \]

4.12 **Corollary:** Let \(f : (X, \tau, T_1, T_2) \rightarrow (Y, \delta) \) is contra-\(T^*_{12} \)-continuous and \(g : (X, \tau, T_1, T_2) \rightarrow (Y, \delta) \) is contra-continuous if \(Y \) is Urysohn and \(f = g \) on \(T^*_{12} \)-dense set \(A \subseteq X \) then \(f = g \) on \(X \).

Proof: since \(f \) is contra-\(T^*_{12} \)-continuous and is contra continuous and \(Y \) is Urysohn by previous Theorem \(E = \{ x \in X \mid f(x) = g(x) \} \) is a \(T^*_{12} \)-closed in \(X \). We have \(f = g \) on \(T^*_{12} \)-dense set \(A \subseteq E \), then \(X = T^*_{12} \text{-Cl} (A) \subseteq T^*_{12} \text{-Cl} (E) = E \). Hence \(f = g \) on \(X \).

4.13 **Definition:** A bi operator topological space \((X, \tau, T_1, T_2) \) is called \(T^*_{12} \)-connected if \(X \) is not the Union of two non-empty \(T^*_{12} \)-open sets.

4.14 **Theorem:** If \(f : (X, \tau, T_1, T_2) \rightarrow (Y, \delta) \) is contra-\(T^*_{12} \)-continuous from a \(T^*_{12} \)-connected space onto \(Y \), then \(Y \) is not a discrete space.
Proof: Suppose that Y is discrete. Let $\emptyset \neq A \subset Y$ then A is proper nonempty open and closed subset of Y. Then $f^{-1}(A)$ is a proper nonempty T_{12}^*-clopen (T_{12}^*-open and T_{12}^*-closed) subset of X such that $X = f^{-1}(A) \cup (f^{-1}(A))^c$ which means that X is T_{12}^*-disconnected which is a contradiction. Hence Y is not discrete.

References

[1] D. Andrijević, “On b-open sets”. Mat. Vesnik 48, 1996, 59-64.

[2] J. Dontchev, “Contra-continuous functions and strongly S-closed spaces”. Internat.J. Math. Math. Sci. 19, 1996, 303-310.

[3] S. Jafari and T. Noiri, “On contra-precontinuous functions”. Bull. Malaysian Math. Sc.Soc. 25 (2002), 115-128.

[4] E. Ekici and M. Caldas, "Slightly -continuous functions", Bol. Soc. Paran. Mat. 22(2) (2004), 63-74.

[5] A.A. Nasef, “Some properties of contra-continuous functions”. Chaos Solitons Fractals 24 (2005), 471-477.

[6] N. Levine, “Semi-open sets and semi-continuity in topological spaces”. Amer. Math. Monthly 70 (1963), 36-41.

[7] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, “On precontinuous and weak precontinuous functions” Proc. Math. Phys. Soc. Egypt 51 (1982), 47-53.

[8] Hadi J. Mustafa, A. Lafta. “Operator topological space”. Journal the college of Education, Al-Mustansiriya University. (2009)

[9] Hadi J. Mustafa, and A. Abdul Hassan, T-open sets. M.Sc thesis. Mu'ta University Jordan. (2004)

[10] Hadi J. Mustafa, and Layth M. Habeeb. “On Almost contra T^*-continuous functions”. Journal the college Mathematics and computer Sciences, University of Kufa. (2012)