Effect of different bamboo species on growth attributing characters grown on Entisol of semi-arid climate

Aniket S Gaikwad, Mohini Thite, Snehal Ingle and Avinash Rananavare

Abstract
A long-term field experiment initiated in the year 2018-19, was selected for conduct of present study in order to determine the effect of different bamboo species on growth attributing characters after 2nd year of bamboo plantation grown on Entisol of semi-arid climate during the year 2020-21. The treatment of Bambusa tulda recorded highest number of culms per clump (59.32), culm density (49413.56 culms ha⁻¹), number of new culms per clump (13.80) and clump girth (717.27 cm) over rest of tested bamboo species. Whereas, bamboo species Dendrocalamus strictus recorded highest culm height (6.39 m), basal diameter of culm (8.16 cm), Diameter at breast height (7.13 cm), culm girth at 5th internode (16.53 cm) and internodal length (27.51 cm) as compared to other bamboo species. The treatment of Bambusa bamboos recorded highest number of internodes per culm (28.34). From the present study it is clear that tested bamboo species showed significant variation in growth attributing characteristics among themselves after 2nd year of plantation grown on Entisol of semi-arid climate.

Keywords: bamboo, Bambusa balcooa, bambooos, nutans, tulda, basal diameter, culm density, culm height, culm girth at 5th internode, DBH, Dendrocalamus asper, brandisii, strictus, entisol, internodal length, semi-arid

1. Introduction
Bamboos are the fastest growing tall woody grass, taxonomically belongs to the family Poaceae of sub-family Bambusoideae. Bamboo often known as ‘the grass of hope’ (PIA, 2008)[10], is a miracle plant with over 1500 documented uses (Ranjan, 2001) [12]. This ‘green gold’ introduces itself as a prime and plentiful resource that can be used to meet a variety of livelihood needs while also providing numerous environmental benefits to rural communities and commonly known as “poor man’s timber” (Ram et al., 2010) [11]. According to Bakshi (2010) [3], bamboos grow abundantly almost all over India, except in Kashmir Valley and harbouring about 136 species from 22 genera. Sungkaew et al. (2009) [15] has categorized Bambusoideae into three main lineages viz., Arundinarieae (temperate woody bamboos), Bambuseae (tropical woody bamboos) and Olyreae (herbaceous bamboos). Based on morphology, bamboo species are grouped as amphipodial, monopodial and sympodial (Maoyi, 2009) [14]. Bamboos with single stem (leptomorph) are also called as monopodial bamboo whereas those with densely clumped (pachymorph) are also known as sympodial bamboos. Furthermore, bamboo plays an important role in maintaining and improving the nutrient status of the soil (Kleinhenz et al. 2001) [6]. The species of bamboo has tremendous capacity to rapidly regenerate after disturbance and has been reported to grow well in degraded areas under conditions of impoverished soil nutrients and water stress (Tripathi and Singh, 1994)[16], as well as makes efficient use of the available nutrients and build up relatively fertile soil around the clumps (Singh and Singh, 1999) [13]. Bamboo due to its fast growth and extensive root system improves physical, chemical and biological properties of soil, controls soil erosion and is considered suitable for rehabilitation of degraded lands within a short span of time (Sujatha et al., 2008) [14].

Bamboos are blessed with a unique rhizome-dependent system, which is highly dependent on local soil and climate conditions. However it has been observed that there has been considerable variation in growth performance of different bamboo species when grown under different agroclimatic regions. Hence, it is essential to understand the impact of climatic parameters on growth of bamboo species so as to ensure that appropriate species are matched with site conditions.

~ 1980 ~
In this context, the present study was conducted in order to determine the effect of different bamboo species on growth attributing characters grown on Entisol in a semi-arid climate after the 2nd year of bamboo plantation, which may eventually aid in the identification of suitable bamboo species for the region.

2. Material and Methods

2.1 Experimental site
A long term field experiment entitled, “Performance of different bamboo species on growth and yield of bamboo” was initiated in the year 2018-19 at National Agricultural Research Project, Dryland Sub-Centre (Agroforestry), M. P. K. V., Rahuri, Dist. Ahmednagar (M.S.). The same field experiment was selected for conduct of present study in order to determine the effect of different bamboo species on growth attributing characters after 2nd year of bamboo plantation grown on Entisol of semi-arid climate during the year 2020-21. The geographical location of experimental site is N 19º 31’ 996” to N 19º 32’ 073” latitude and E 74º 63’ 920” to E 74º 64’ 042” longitude, at the altitude of 608.4 to 616.1 meter above mean sea level. Agro-climatically the experimental site belongs to scarcity zone of Western Maharashtra, comes under hot semi-arid region with dry summer and mild winter to September (South-West monsoon), while the remaining total annual precipitation about 70% is received during June to September (South-West monsoon), while the remaining precipitation is received in the months of October and November (North-East monsoon). During crop growth period of different bamboo species for the year 2020-21, it was observed that the average maximum and minimum temperature ranged between 27.0 to 38.5°C and 13.0 to 25.7°C respectively. The average morning and evening relative humidity ranged between 61.1 to 91.1% and 19.3 to 66.5%, respectively. The average wind speed ranged between 0.74 - 4.37 km hr⁻¹. The average bright sunshine hours and open pan evaporation ranged between 3.2 to 10.1 hrs. and 3.0 to 13.4 mm, respectively.

2.2 Soil of experimental site
The soil of experimental site is grouped under Entisol order of potash (60% K₂O), respectively. Well decomposed farmyard manure was added @ 25 kg clump⁻¹ (i.e. 20.8 t FYM ha⁻¹ yr⁻¹) as a source of organic manure. Irrigation to bamboo plantation was given at regular intervals as required.

2.3 Experimental setup
The field experiment was laid out in Randomized Block Design comprising 3 replications and 7 treatments of different bamboo species viz., T₁: Dendrocalamus brandisii, T₂: Bambusa mutans, T₃: Bambusa balcooa, T₄: Dendrocalamus strictus, T₅: Bambusa tulda, T₆: Bambusa bamboos, T₇: Dendrocalamus asper. Bamboo seedlings of uniform size and age were planted during October, 2018 in the pits of 45 cm × 45 cm × 45 cm. The gross plot size for the field experiment was 20 m × 15 m, and the net plot size was 12 m × 09 m. The optimum spacing adopted was 4 m × 3 m so as to accommodate 833 clumps per ha. The recommended dose of chemical fertilizers, 160:40:200 kg N, P₂O₅ and K₂O ha⁻¹ year⁻¹ was applied as split dose through commercial grade urea (46% N), single superphosphate (16% P₂O₅) and muriate of potash (60% K₂O), respectively. Irrigation was given at regular intervals as required.

2.4 Biometric observation
Five representative clumps of each bamboo species were randomly selected and identified with the help of colour paint marking as suggested by Shanmughavel and Francis (2003) [5]. The biometric observations for growth attributing characters were recorded on marked clumps for different bamboo species. The number of culms per clump was determined species-wise by counting all culms of a randomly selected and marked clump. Culm density was computed by multiplying average number of culm per clump with 833 (i.e. number of culms per hectare) and expressed as culm ha⁻¹. The number of new culms per clump was determined by counting culms produced after 2nd year. The culm height of five representative culms was measured species-wise by using a standard measuring tape and expressed in meters. Diameter of the culm at the base of the culm below the first internode was measured in cm using Vernier callipers. Diameter at breast height was measured at the 5th internode from the base of culm was measured in cm using Vernier callipers. Culm girth at 5th internode was measured in cm using standard measuring tape. Culm girth in cm was calculated by averaging this data. The length of internode at the 5th internode from culm base was measured using a standard measuring tape and recorded in cm. The number of internodes per culm was estimated by counting all internode of culm from the base to the tip of representative culms.
3.1.1 Number of culms per clump
Table 1 and Fig. 2 depicts that, *Bambusa tulda* recorded highest number of culms per clump (59.32) followed by *Bambusa nutans* (44.68) and *Dendrocalamus brandisii* (36.20). Whereas, *Bambusa* bamboos recorded lowest number of culms per clump (10.48) followed by *Bambusa balcooa* (13.72) and *Dendrocalamus strictus* (15.24) on Entisol. Similar findings were also reported by Venkatesh et al. (2005) [17].

3.1.2 Culm density (culms ha⁻¹)
Perusal of Table 1 and Fig. 3, it was observed that, *Bambusa tulda* recorded highest culm density (49413.56 culms ha⁻¹), followed by *Bambusa nutans* (37218.14 culms ha⁻¹). While, lowest culm density (8729.34 culms ha⁻¹) was found in *Bambusa* bamboos (Kumar et al., 2005) [4] followed by *Bambusa balcooa* (11428.76 culms ha⁻¹) and *Dendrocalamus strictus* (12694.92 culms ha⁻¹) on Entisol in a semi-arid climate.

3.1.3 Number of new culms per clump
Table 1 and Fig. 2 depicts that on Entisol under semi-arid climate, *Bambusa tulda* recorded highest number of new culms per clump (13.80), which was statistically at par with *Bambusa nutans* (12.93) and *Dendrocalamus brandisii* (11.80). Whereas, *Bambusa* bamboos recorded lowest numbers of culms per clump (5.33) closely followed by *Bambusa balcooa* (5.67) and *Dendrocalamus strictus* (5.80).

3.1.4 Culm height (m)
Culm height is primarily governed by the genetic makeup of the species, but it is also influenced by row spacing, prevailing climatic conditions and management practises. Perusal of Table 1 and Fig. 4, it was observed that the treatment, *Dendrocalamus strictus* recorded numerically highest culm height (6.39 m), which was found statistically at par with *Bambusa balcooa* (6.33 m), *Bambusa nutans* (6.05 m) and *Bambusa bamboos* (5.97 m). While, lowest culm height was recorded in *Dendrocalamus asper* (3.82 m) closely followed by *Dendrocalamus brandisii* (3.93 m) on Entisol in a semi-arid climate.

3.1.5 Basal diameter of culm
After 2nd year of plantation as depicted in Table 1 and Fig. 1, the treatment *Dendrocalamus strictus* recorded highest basal diameter of culm (8.16 cm), which was statistically at par with *Bambusa bamboos* (7.19 cm) and *Bambusa balcooa* (7.01 cm). While, lowest basal diameter of culm (2.96 cm) was observed in *Bambusa tulda* followed by *Dendrocalamus brandisii* (3.14 cm) and *Dendrocalamus asper* (3.92 cm) on Entisol in a semi-arid climate. The results are in line with the findings of Shanmugavel and Francis (2003) [5].

3.1.6 Diameter at breast height (DBH)
Perusal of Table 1 and Fig. 1, it was observed that *Dendrocalamus strictus* recorded highest diameter at breast height (7.13 cm), which was statistically at par with *Bambusa bamboos* (6.38 cm) and *Bambusa balcooa* (6.35 cm) (Venkatesh et al., 2005) [17]. While, lowest DBH (2.51 cm) was recorded in *Bambusa tulda* followed by *Dendrocalamus brandisii* (2.98 cm), *Dendrocalamus asper* (3.38 cm) and *Bambusa nutans* (3.49 cm). Similar findings were also reported by Shanmugavel and Francis (2003) [5] and Kim et al. (2018) [18].

3.1.7 Culm girth at 5th internode (cm)
Table 1 and Fig. 1 depicts that on Entisol under semi-arid climate, *Dendrocalamus strictus* recorded highest culm girth at 5th internode (16.53 cm), which was statistically at par with *Bambusa* bamboos (15.99 cm) and *Bambusa balcooa* (14.73 cm). Whereas, *Dendrocalamus brandisii* recorded lowest culm girth at 5th internode (6.59 cm), closely followed by *Bambusa tulda* (7.00 cm), *Dendrocalamus asper* (7.87 cm) and *Bambusa nutans* (8.34 cm). The results are in corroborative with the findings of Angom et al. (2018) [9].

3.1.8 Clump girth (cm)
After 2nd year of plantation as depicted in Table 1 and Fig. 5, the treatment *Bambusa tulda* recorded highest clump girth (717.27 cm), which was found statistically at par with *Bambusa nutans* (682.07 cm) and *Dendrocalamus strictus* (638.33 cm). Whereas, *Bambusa balcooa* recorded lowest clump girth (478.47 cm) followed by *Dendrocalamus brandisii* (530.93 cm) and *Dendrocalamus asper* (539.73 cm), on Entisol.

3.1.9 Internodal length (cm)
Perusal of Table 1 and Fig. 1, it was observed that the treatment, *Dendrocalamus strictus* recorded highest internodal length (27.51 cm), which was statistically at par with *Bambusa balcooa* (25.31 cm) and *Bambusa nutans* (23.03 cm). While, lowest internodal length (16.64 cm) was recorded in *Dendrocalamus asper* followed by *Dendrocalamus brandisii* (17.19 cm) and *Bambusa tulda* (17.94 cm), after 2nd year on Entisol under semi-arid climatic condition. The results are in line with the findings of Kumari et al. (2017) [17].

3.1.10 Number of internodes per culm
After 2nd year of plantation as depicted in Table 1 and Fig. 2, the treatment, *Bambusa bamboos* (28.34) recorded highest number of internodes per culm (28.34), which was statistically at par with *Bambusa nutans* (26.27) and *Bambusa tulda* (26.03). Whereas, *Dendrocalamus brandisii* recorded lowest number of internodes per culm (22.86) closely followed by *Dendrocalamus asper* (22.95) and *Dendrocalamus strictus* (23.22), on Entisol under semi-arid climate. The results are in line with the findings of Venkatesh et al. (2005) [17] and Shanmugavel and Francis (2003) [5].
Table 1: Effect of different bamboo species on growth attributing characters after 2nd year of plantation grown on Entisol of semi-arid climate

Tr. No.	Treatment	Number of culms per clump	Culm density (culm ha⁻¹)	Number of new culms per clump	Culm height (m)	Basal diameter of culm (cm)	Diameter of breast height (DBH) (cm)	Number of internodes per culm
T₁	Dendrocalamus brandisii	36.20	30154.60	11.80	3.93	1.44	530.93	22.86
T₂	Bambusa nutans	44.68	37218.44	12.93	6.05	4.03	682.07	26.27
T₃	Bambusa balcooa	13.72	11428.76	5.67	6.33	7.01	478.41	25.00
T₄	Dendrocalamus strictus	15.24	12694.92	5.80	6.39	8.16	634.33	23.22
T₅	Bambusa tulda	59.32	49413.56	13.80	4.67	2.96	717.27	26.03
T₆	Bambusa bambos	10.48	8729.84	5.33	5.97	7.19	576.80	28.34
T₇	Dendrocalamus asper	19.68	16393.44	9.27	3.82	3.92	539.73	16.64
General mean		28.47	23719.08	9.23	5.31	5.20	594.84	24.95
SEm			1.98	820.40	0.58	0.18	34.20	1.31
CD at 5%			5.99	2468.00	1.80	0.60	103.38	3.73

Fig 1: Effect of different bamboo species on basal diameter, diameter at breast height, culm girth and internodal length

Fig 2: Effect of different bamboo species on no. of culms per clump, no. of new culms per clump and no. of internodes per culm

Fig 3: Effect of different bamboo species on culm density (culm ha⁻¹) ~ 1983 ~
4. Conclusion
In the present study, Bambusa tulda showed its dominance over other tested bamboo species in terms of number of culms per clump (59.32), culm density (49413.56 culms ha⁻¹), number of new culms per clump (13.80) and clump girth (712.27 cm). Dendrocalamus strictus, on the other hand, displayed its supremacy over other bamboo species in respect to culm height (6.39 m), basal diameter of culm (8.16 cm), DBH (7.13 cm), culm girth at 5th internode (16.53 cm) and internodal length (27.51 cm). While, Bambusa bamboos showed its superiority over other in case of number of internodes per culm (28.34) after 2nd year of bamboo plantation grown on Entisol of semi-arid climate. Growth and developmental characteristics of individual bamboo species are greatly influenced by their genetic makeup, prevailing climatic conditions, genotype and environmental interactions. As well as above ground bamboo biomass and dry matter accumulation increases significantly concomitant with diameter at breast height (DBH) and culm height which in turn contributes its major portion towards the total bamboo biomass.

5. Acknowledgments
Author extend sincere thanks to Department of Soil Science and Agricultural Chemistry, Post Graduate Institute, MPKV, Rahuri, Dist. Ahmednagar, Maharashtra (India) for providing healthy environment and essential facilities required for undertaking the research work and also wish to express profound sense of gratitude to research guide, colleagues for their generous encouragement, ceaseless guidance and constructive criticism till the successful completion of this venture.

6. References
1. Angom SD, Kshetrimayum SS, Lalramnghingl H. Above ground biomass production of Melocanna baccifera and Bambusa tulda in a Sub-tropical bamboo forest in Lengpui, North-East India. International Research Journal of Environmental Sciences. 2018;7(7):23-28.
2. Bakshi M. Sustainable production of bamboo for rural and tribal communities via farmer-friendly technologies. In Multipurpose forestry. Proc. Managing and Enhancing Ecosystem Services and Production Function of Forests, Woodlands and Trees Outside Forests (S.S. Negi and Dinesh Kumar eds.). FRI, Dehradun, 2010, 268p.
3. Kim C, Baek G, Yoo-Oh B, Jang, Su-Y, Lee Kwang-S. Regular fertilization effects on the nutrient distribution of bamboo components in a Moso Bamboo (Phyllostachys pubescens (Mazel) Ohwi) Stand in South Korea. Forests 2018;9:671.
4. Kumar BM, Rajesh G, Sudheesh K.G. Aboveground biomass production and nutrient uptake of thorny bamboo Bambusa bambos (L) Voss in the home gardens of Thrissur, Kerala. Journal of Tropical Agriculture 2005;43:51-56.
5. Shanmughavel P, Francis K. Biomass accumulation and nutrient distribution in Dendrocalamus hamiltonii paper submitted to the XII World Forestry Congress. Quebec City, Canada 2003.

http://www.fao.org/docrep/article/wfc/xii/0269-b3-
6. Kleinhenz V, Midmore DJ. Aspects of Bamboo Agronomy. Advances in Agronomy. 2001;74:99-153.

7. Kumari Y, Bhardwaj D. Effect of various bamboo species on soil nutrients and growth parameters in mid hills of Himachal Pradesh, India. International Journal of Chemical Studies. 2017;5(4):19-24.

8. Maoyi F, Banik R. Bamboo production systems and their management. In: Rao, I.V.R., Sastry, C.B. and Widjaja, E. (Edition), Bamboo, People and the Environment. INBAR, EBF, IPGRI, IDRC. 1996;4:18-33.

9. Panse VG, Sukhatme PV. Statistical methods for agricultural workers. Revised IV Edition. Indian Council of Agricultural Research, New Delhi. 1985, 157-165.

10. PIA. Bamboo as carbon sequester and income booster. Non Wood News, 2008, 17.

11. Ram N, Singh L, Kumar P. Bamboo plantation diversity and its economic role in North Bihar, India. Nature and Science. 2010;8(11):111-115.

12. Ranjan NP. Rethinking Bamboo in the 21st Century. Development of the Bamboo and Rattan Sector in Tropical China. China Forestry Publishing House, 2001.

13. Singh AN, Singh JS. Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a Dry Tropical region. Forest Ecology and Management. 1999;119(1-3):195-207.

14. Sujatha MP, Tomas TP, Sankar S. Influence of REED bamboo (Ochlandra travancorica) on soils of the Western Ghats in Kerala: A comparative study with adjacent non-Reed bamboo areas. Indian Forester. 2008;134:403-416.

15. Sungkaew S, Stapleton C, Salamin N, Hodkison T. Non-monophyly of the woody bamboos (Bambuseae): A multi-gene region phylogenetic analysis of Bambusoideae. Journal of Plant Research. 2009;122:95-108.

16. Triphati SK, Singh KP. Productivity and nutrient cycling in recently harvested and mature bamboo savannas in the dry tropics. Journal of Applied Ecology. 1994;31:109-124.

17. Venkatesh MS, Bhatt BP, Kumar K, Majumdar B, Singh K. Soil properties influenced by some important edible bamboo species in the north eastern Himalayan region, India. Journal of Bamboo and Rattan. 2005;4(3):221-230.