A Line-Search Algorithm Inspired by the Adaptive Cubic Regularization Framework and Complexity Analysis

El Houcine Bergou · Youssef Diouane · Serge Gratton

Received: 7 July 2017 / Accepted: 20 June 2018 / Published online: 10 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Adaptive regularized framework using cubics has emerged as an alternative to line-search and trust-region algorithms for smooth nonconvex optimization, with an optimal complexity among second-order methods. In this paper, we propose and analyze the use of an iteration dependent scaled norm in the adaptive regularized framework using cubics. Within such a scaled norm, the obtained method behaves as a line-search algorithm along the quasi-Newton direction with a special backtracking strategy. Under appropriate assumptions, the new algorithm enjoys the same convergence and complexity properties as adaptive regularized algorithm using cubics. The complexity for finding an approximate first-order stationary point can be improved to be optimal whenever a second-order version of the proposed algorithm is regarded. In a similar way, using the same scaled norm to define the trust-region neighborhood, we show that the trust-region algorithm behaves as a line-search algorithm. The good potential of the obtained algorithms is shown on a set of large-scale optimization problems.

Keywords
Nonlinear optimization · Unconstrained optimization · Line-search methods · Adaptive regularized framework using cubics · Trust-region methods · Worst-case complexity

Mathematics Subject Classification 49M05 · 49M15 · 90C06 · 90C60

Communicated by Alexey F. Izmailov.

Youssef Diouane
youssef.diouane@isae.fr
El Houcine Bergou
elhoucine.bergou@inra.fr
Serge Gratton
serge.gratton@enseeiht.fr

1 MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
2 ISAE-SUPAERO, Université de Toulouse, 31055 Toulouse Cedex 4, France
3 INP-ENSEEIHT, Université de Toulouse, 31071 Toulouse Cedex 7, France
1 Introduction

An unconstrained nonlinear optimization problem considers the minimization of a scalar function known as the objective function. Classical iterative methods for solving the previous problem are trust-region (TR) [1,2], line-search (LS) [3] and algorithms using cubic regularization. The latter class of algorithms has been first investigated by Griewank [4] and then by Nesterov and Polyak [5]. Recently, Cartis et al. [6] proposed a generalization to an adaptive regularized framework using cubics (ARC).

The worst-case iteration complexity of TR and LS methods is shown to be of the same order as steepest descent method for the minimization of a smooth objective function, more precisely the number of iterations needed to reduce the norm of the gradient of the objective function below a certain threshold is at most proportional to the inverse of the threshold squared [7–9]. Under appropriate assumptions, ARC ensures the optimal worst-case iteration complexity among a certain broad class of second-order methods; namely the number of iterations needed by ARC is at most proportional to the inverse of the threshold to the three halves power, ARC is thus improving substantially the worst-case complexity over the classical TR/LS methods [10]. The complexity bound of ARC can be improved using higher-order regularized models; we refer the reader to the references [11,12].

More recently, a non-standard TR method [13] is proposed with the same worst-case complexity bound as ARC. It is also proved that the same worst-case complexity can be achieved by means of a specific variable norm in a TR method [14] or using quadratic regularization [15]. All previous approaches use a cubic sufficient descent condition instead of the more usual predicted-reduction-based descent. Generally, they need to solve more than one linear system in sequence at each outer iteration (by outer iteration, we mean the sequence of the iterates generated by the algorithm), this makes the computational cost per iteration expensive.

In [16], it has been shown how to use the so-called energy norm in the ARC/TR framework when a symmetric positive definite (SPD) approximation of the objective function Hessian is available. Within the energy norm, the ARC/TR methods behave as LS algorithms along the Newton direction, with a special backtracking strategy and an acceptability condition in the spirit of ARC/TR methods. As far as the model of the objective function is convex, in [16], the proposed LS algorithm derived from ARC enjoys the same convergence and complexity analysis properties as ARC. In the complexity analysis of ARC method [10], it is required that the Hessian approximation has to approximate accurately enough the true Hessian [10, Assumption AM.4], obtaining such a convex approximation may be out of reach when handling nonconvex optimization. This paper generalizes the proposed methodology in [16] to handle non-convex models. We propose to use, in the regularization term of the ARC cubic model, an iteration dependent scaled norm. In this case, ARC behaves as an LS algorithm with a worst-case iteration complexity of finding an approximate first-order critical point of the same order as the steepest descent method. Moreover, under appropriate assumptions, a second-order version of the obtained LS algorithm is shown to have the optimal worst-case complexity.

The use of a scaled norm was first introduced in [1, Section 7.7.1] for TR methods, where it was suggested to use the absolute-value of the Hessian matrix in the scaled
norm; such a choice was described as “the ideal trust region” that reflects the proper scaling of the underlying problem. For a large-scale indefinite Hessian matrix, computing its absolute-value is certainly a computationally expensive task as it requires a spectral decomposition. This means that for large-scale optimization problems, the use of the absolute-value based norm can be seen as out of reach. Our approach in this paper is different as it allows the use of subspace methods.

In fact, as far as the quasi-Newton direction is not orthogonal to the gradient of the objective function at the current iterate, the specific choice of the scaled norm makes the ARC subproblem solution collinear with the quasi-Newton direction. Using subspace methods, we also consider the large-scale setting when the matrix factorizations are not affordable, implying that only iterative methods for computing a trial step can be used. Compared to the classical ARC, when using the Euclidean norm, the dominant computational cost, regardless the function evaluation cost of the resulting algorithm, is mainly the cost of solving a linear system for successful iterations. Moreover, the cost of the subproblem solution for unsuccessful iterations is getting inexpensive and requires only an update of a scalar. Hence, ARC behaves as an LS algorithm along the quasi-Newton direction, with a special backtracking strategy and an acceptance criteria in the spirit of ARC algorithm.

In this context, the obtained LS algorithm is globally convergent and requires a worst-case complexity of the same order as the steepest descent method. A second-order version of the algorithm is also proposed to ensure an optimal worst-case complexity bound of the same order as ARC, by making use of the exact Hessian or at least of a good approximation of the exact Hessian. In this case, we investigate how the complexity bound depends on the quality of the chosen quasi-Newton direction in terms of being a sufficient descent direction. In fact, the obtained complexity bound can be worse than it seems to be whenever the quasi-Newton direction is approximately orthogonal to the gradient of the objective function. Similarly to ARC, we show that the TR method behaves also as an LS algorithm using the same scaled norm as in ARC. Numerical illustrations over a test set of large-scale optimization problems are given in order to assess the efficiency of the obtained LS algorithms.

The proposed analysis in this paper assumes that the quasi-Newton direction is not orthogonal to the gradient of the objective function during the minimization process. When this assumption is violated, one can either modify the Hessian approximation using regularization techniques or, when a second-order version of the LS algorithm is considered, switch to the classical ARC algorithm using the Euclidean norm until this assumption holds. In the latter scenario, we propose first to check whether there exists an approximate quasi-Newton direction, among all the iterates generated using a subspace method, which is not orthogonal to the gradient and that satisfies the desired properties. If not, one minimizes the model using the Euclidean norm until a new successful outer iteration is found.

We organize this paper as follows. In Sect. 2, we introduce the ARC method using a general scaled norm and derive the obtained LS algorithm on the basis of ARC when a specific scaled norm is used. Section 3 analyzes the minimization of the cubic model and discusses the choice of the scaled norm, that simplifies the solution of the ARC subproblem. Section 4 first discusses how the iteration dependent scaled norm can be chosen uniformly equivalent to the Euclidean norm, and then we propose a second-
order LS algorithm that enjoys the optimal complexity bound. The section ends with a detailed complexity analysis of the obtained algorithm. Similarly to ARC and using the same scaled norm, an LS algorithm in the spirit of TR algorithm is proposed in Sect. 5. Numerical tests are illustrated and discussed in Sect. 6. Conclusions and future improvements are given in Sect. 7.

2 ARC Framework Using a Specific M_k-Norm

2.1 ARC Framework

We consider a problem of unconstrained minimization of the form

$$\min_{x \in \mathbb{R}^n} f(x), \tag{1}$$

where the objective function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is assumed to be continuously differentiable. The ARC framework [6] applied to solve (1) can be described as follows: at a given iterate x_k, we define $m_k^Q : \mathbb{R}^n \rightarrow \mathbb{R}$ as an approximate second-order Taylor approximation of the objective function f around x_k, i.e.,

$$m_k^Q(s) := f(x_k) + s^\top g_k + \frac{1}{2} s^\top B_k s, \tag{2}$$

where $g_k := \nabla f(x_k)$ is the gradient of f at the current iterate x_k, and B_k is a symmetric local approximation of the Hessian of f at x_k. The trial step s_k approximates the global minimizer of a cubic model, i.e.,

$$s_k \approx \arg\min_{s \in \mathbb{R}^n} m_k(s), \tag{3}$$

where $m_k(s) := m_k^Q(s) + \frac{1}{3} \sigma_k \|s\|^3_{M_k}$ and $\|\cdot\|_{M_k}$ denotes a scaled norm of the form $\|x\|_{M_k} := \sqrt{x^\top M_k x}$ for all $x \in \mathbb{R}^n$. M_k is a given SPD matrix and $\sigma_k > 0$ is a dynamic positive parameter that might be regarded as the reciprocal of the TR radius in TR algorithms (see [6]). The parameter σ_k is taking into account the agreement between the objective function f and the model m_k.

To decide whether the trial step is acceptable or not a ratio between the actual reduction and the predicted reduction is computed, as follows:

$$\rho_k := \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - m_k^Q(s_k)}. \tag{4}$$

For a given scalar $0 < \eta < 1$, the k^{th} outer iteration is said *successful* if $\rho_k \geq \eta$, and *unsuccessful* otherwise. For all *successful* iterations we set $x_{k+1} = x_k + s_k$; otherwise the current iterate is kept unchanged $x_{k+1} = x_k$. We note that, unlike the original ARC [6,10] where the cubic model is used to evaluate the denominator in (4), in the nowadays works related to ARC, only the quadratic approximation $m_k^Q(s_k)$ is used in
the comparison with the actual value of f without the regularization parameter (see [11], for instance). Algorithm 1 gives a detailed description of ARC.

Algorithm 1: ARC algorithm.

Data: select an initial point x_0 and the constant $0 < \eta < 1$. Set the initial regularization $\sigma_0 > 0$ and $\sigma_{\min} \in [0, \sigma_0]$, set also the constants $0 < \nu_1 \leq 1 < \nu_2$.

for $k = 1, 2, \ldots$ **do**

Compute the step s_k as an approximate solution of (3) such that

$$m_k(s_k) \leq m_k(s_k^\alpha),$$

where $s_k^\alpha = -\delta_k^C g_k$ and $\delta_k^C = \arg \min_{t > 0} m_k(-tg_k)$;

if $\rho_k \geq \eta$ **then**

Set $x_{k+1} = x_k + s_k$ and $\sigma_{k+1} = \max\{\nu_1 \sigma_k, \sigma_{\min}\}$;

else

Set $x_{k+1} = x_k$ and $\sigma_{k+1} = \nu_2 \sigma_k$;

end

end

The Cauchy step s_k^C, defined in Algorithm 1, is computationally inexpensive compared to the computational cost of the global minimizer of m_k. The condition (5) on s_k is sufficient for ensuring global convergence of ARC to first-order critical points.

From now on, we will assume that first-order stationarity is not reached yet, meaning that the gradient of the objective function is non-null at the iteration k, i.e., $g_k \neq 0$. Furthermore, $\| \cdot \|$ will denote the vector or matrix ℓ_2-norm, $\text{sign}(\alpha)$ the sign of a real α, and I_n the identity matrix of size n.

2.2 An LS Algorithm Inspired by the ARC Framework

Using a specific M_k-norm in the definition of the cubic model m_k, we will show that the ARC framework (Algorithm 1) behaves as an LS algorithm along the quasi-Newton direction. In a previous work [16], when the matrix B_k is assumed to be positive definite, we showed that the minimizer s_k of the cubic model defined in (3) is getting collinear with the quasi-Newton direction when the matrix M_k is set to be equal to B_k. In this section, we generalize our proposed approach to cover the situation where the linear system $B_k s = -g_k$ admits an approximate solution with B_k not necessarily SPD.

Let s_k^Q be an approximate solution of the linear system $B_k s = -g_k$ and assume that such a step s_k^Q is not orthogonal to the gradient of the objective function at x_k, i.e., there exists an $\epsilon_d > 0$ such that $|g_k^T s_k^Q| \geq \epsilon_d \|g_k\| \|s_k^Q\|$. Suppose that there exists an SPD matrix M_k such that $M_k s_k^Q = \beta_k \|s_k^Q\|^2 g_k$, where $\beta_k \in]\beta_{\min}, \beta_{\max}[\text{ and } \beta_{\max} > \beta_{\min} > 0$. Later, in Theorem 4.1, we will show that such a matrix M_k exists and the associated scale norm $\| \cdot \|_{M_k}$ is uniformly equivalent to the Euclidean norm. By using the latter scaled norm in the definition of the cubic model m_k, one can show
(see Theorem 3.3) that an approximate stationary point of the subproblem (3) is of the form

\[s_k := \delta_k s_k^Q, \quad \text{where} \quad \delta_k := \frac{2}{1 - \text{sign}(g_k^T s_k^Q)\sqrt{1 + 4 \frac{\sigma_k \|s_k^Q\|^3_{M_k}}{|g_k^T s_k^Q|}}} \]

(6)

For unsuccessful iterations in Algorithm 1, since the step direction \(s_k^Q \) does not change, the approximate solution of the subproblem, given by (6), can be obtained only by updating the step-size \(\delta_k \). This means that the subproblem computational cost of unsuccessful iterations is getting straightforward compared to solving the subproblem as required by ARC when the Euclidean norm is used (see e.g., [6]). As a consequence, the use of the proposed \(M_k \)-norm in Algorithm 1 will lead to a new formulation of the ARC algorithm where the dominant computational cost, regardless the objective function evaluation cost, is the cost of solving a linear system for successful iterations.

In other words, with the proposed \(M_k \)-norm, the ARC algorithm behaves as an LS method with a specific backtracking strategy and an acceptance criteria in the spirit of the ARC algorithm, i.e., the step is of the form \(s_k = \delta_k s_k^Q \), where \(\delta_k > 0 \) is chosen such as

\[\frac{f(x_k) - f(x_k + s_k)}{f(x_k) - m_k^Q(s_k)} \geq \eta \quad \text{and} \quad m_k(s_k) \leq m_k(-\delta_k^c g_k). \]

(7)

The step lengths \(\delta_k \) and \(\delta_k^c \) are computed, respectively, as follows:

\[\delta_k = \frac{2}{1 - \text{sign}(g_k^T s_k^Q)\sqrt{1 + 4 \frac{\sigma_k \beta_k^{3/2} \|s_k^Q\|^3}{|g_k^T s_k^Q|}}} \]

(8)

and

\[\delta_k^c = \frac{2}{\frac{g_k^T B_k g_k}{\|g_k\|^2} + \sqrt{\left(\frac{g_k^T B_k g_k}{\|g_k\|^2}\right)^2 + 4\sigma_k \chi_k^{3/2} \|g_k\|}} \]

(9)

where \(\chi_k := \beta_k \left(\frac{5}{2} - \frac{3}{2} \cos(\sigma_k)^2 + 2 \left(\frac{1 - \cos(\sigma_k)}{\cos(\sigma_k)}\right)^2\right) \) and \(\cos(\sigma_k) := \frac{g_k^T s_k^Q}{\|g_k\| \|s_k^Q\|} \).

The \(M_k \)-norms of the vectors \(s_k^Q \) and \(g_k \), in the computation of \(\delta_k \) and \(\delta_k^c \), have been substituted using the expressions given in Theorem 4.1. The value of \(\sigma_k \) is set equal to the current value of the regularization parameter as in the original ARC algorithm. For large values of \(\delta_k \), the decrease condition (7) may not be satisfied. In this case, the value of \(\sigma_k \) is enlarged using an expansion factor \(\nu_2 > 1 \). Iteratively, the value of \(\delta_k \) is updated and the acceptance condition (7) is checked again, until its satisfaction.

We referred the ARC algorithm, when the proposed scaled \(M_k \)-norm is used, by LS-ARC as it behaves as an LS type method in this case. Algorithm 2 details the final
algorithm. We recall again that this algorithm is nothing but the ARC algorithm using a specific M_k-norm.

Algorithm 2: LS-ARC algorithm.

Data: select an initial point x_0 and the constants $0 < \eta < 1$, $0 < \epsilon_d < 1$, $0 < v_1 \leq 1 < v_2$ and $0 < \beta_{\min} < \beta_{\max}$. Set $\sigma_0 > 0$ and $\sigma_{\min} \in [0, \sigma_0]$.

for $k = 1, 2, \ldots$ do

Choose a parameter $\beta_k \in [\beta_{\min}, \beta_{\max}]$;

Let s^O_k be an approximate solution of $B_k s = -g_k$ such as $|g_k^T s^O_k| \geq \epsilon_d \|g_k\|\|s^O_k\|$;

Set δ_k and δ^c_k respectively using (8) and (9);

while condition (7) is not satisfied do

Set $\sigma_k \leftarrow v_2 \sigma_k$ and update δ_k and δ^c_k respectively using (8) and (9);

end

Set $s_k = \delta_k s^O_k$, $x_{k+1} = x_k + s_k$ and $\sigma_{k+1} = \max\{v_1 \sigma_k, \sigma_{\min}\}$;

end

Note that in Algorithm 2 the step s^O_k may not exist or be approximately orthogonal to the gradient g_k. A possible way to overcome this issue can be ensured by modifying the matrix B_k using regularization techniques. In fact, as far as the Hessian approximation is still uniformly bounded from above, the global convergence will still hold as well as a complexity bound of order ϵ^{-2} to drive the norm of the gradient below $\epsilon \in [0, 1]$ (see [6], for instance).

The complexity bound can be improved to be of the order of $\epsilon^{-3/2}$ if a second-order version of the algorithm LS-ARC is used, by choosing B_k equal to the exact Hessian or at least being a good approximation of the exact Hessian (as in Assumption 4.2 of Sect. 4). In this case, modifying the matrix B_k using regularization techniques such that the step s^O_k approximates the linear system $B_k s = -g_k$ and $|g_k^T s^O_k| \geq \epsilon_d \|g_k\|\|s^O_k\|$ is not trivial anymore. This second-order version of the algorithm LS-ARC will be discussed in details in Sect. 4, where both convergence and complexity analysis will be outlined.

3 On the Cubic Model Minimization

In this section, we assume that the linear system $B_k s = -g_k$ admits a solution. We will mostly focus on the solution of the subproblem (3) for a given outer iteration k. In particular, we will establish the condition to impose on the matrix M_k in order to get the solution of the ARC subproblem collinear with the step s^O_k. Hence, in such a case, one can get the solution of the ARC subproblem at a modest computational cost.

The step s^O_k can be obtained exactly using a direct method if the size of the matrix B_k is not too large. Typically, one can use the LDL^T factorization to solve this linear system. For large-scale optimization problems, computing s^O_k can be prohibitively computationally expensive. We will show that it is possible to relax this requirement.
by letting the step s_Q^k be only an approximation of the exact solution using subspace methods.

In fact, when an approximate solution is used and as far as the global convergence of Algorithm 1 is concerned, all what is needed is that the solution of the subproblem (3) yields a decrease in the cubic model, which is as good as the Cauchy decrease emphasized by (5). In practice, a version of Algorithm 2 solely based on the Cauchy step would suffer from the same drawbacks as the steepest descent algorithm on ill-conditioned problems and faster convergence can be expected if the matrix B_k influences also the minimization direction. The main idea consists of achieving a further decrease on the cubic model, better than the Cauchy decrease, by projection onto a sequence of embedded Krylov subspaces. We now show how to use a similar idea to compute a solution of the subproblem that is computationally cheap and yields the global convergence of Algorithm 2.

A classical way to approximate the exact solution s_Q^k is by using subspace methods, typically a Krylov subspace method. For that, let L_k be a subspace of \mathbb{R}^n of dimension l. Let Q_k denote an $n \times l$ matrix whose columns form a basis of L_k. Thus for all $s \in L_k$, we have $s_k = Q_k z_k$, for some $z_k \in \mathbb{R}^l$. In this case, s_Q^k denotes the exact stationary point of the model function m^Q over the subspace L_k when it exists.

For both cases, exact and inexact, we will assume that the step s_Q^k is not orthogonal to the gradient g_k. In what comes next, we state our assumption on s_Q^k formally as follows:

Assumption 3.1 The model m^Q_k admits a stationary point s_Q^k such as

$$|g_k^T s_Q^k| \geq \epsilon_d \|g_k\| \|s_Q^k\|,$$

where $\epsilon_d > 0$ is a pre-defined positive constant.

We define also a Newton-like step s_k^N associated with the minimization of the cubic model m_k over the subspace L_k in the following way, when s_Q^k corresponds to the exact solution of $B_k s = -g_k$ by

$$s_k^N := \delta_k^N s_Q^k, \quad \text{where} \quad \delta_k^N := \arg \min_{\delta \in \mathcal{I}_k} m_k(\delta s_Q^k), \quad (10)$$

where $\mathcal{I}_k := \mathbb{R}_+$ if $g_k^T s_Q^k < 0$ and $\mathcal{I}_k := \mathbb{R}_-$ otherwise. If s_Q^k is computed using an iterative subspace method, then $s_k^N := Q_k z_k^N$, where z_k^N is the Newton-like step, as in (10), associated with the following reduced subproblem:

$$\min_{z \in \mathbb{R}^l} f(x_k) + z^T Q_k^T g_k + \frac{1}{2} z^T Q_k^T B_k Q_k z + \frac{1}{3} \sigma_k \|z\|^3 Q_k^T M_k Q_k. \quad (11)$$
Theorem 3.1 Let Assumption 3.1 hold. The Newton-like step \(s_k^N \) is of the form

\[
\begin{align*}
 s_k^N &= \delta_k^N s_k^Q, \\
 \delta_k^N &= \frac{2}{1 - \text{sign}(g_k^\top s_k^Q)\sqrt{1 + 4\frac{\sigma_k\|s_k^Q\|_M^3}{g_k^\top s_k^Q}}}.
\end{align*}
\]

(12)

Proof Consider first the case where the step \(s_k^Q \) is computed exactly (i.e., \(B_k s_k^Q = -g_k \)); in this case, for all \(\delta \in \mathcal{I}_k \), one has

\[
\begin{align*}
 m_k(\delta s_k^Q) - m_k(0) &= \delta g_k^\top s_k^Q + \frac{\delta^2}{2} [s_k^Q]^\top B_k [s_k^Q] + \frac{\sigma |\delta|^3}{3} \|s_k^Q\|_M^3 \\
 &= (g_k^\top s_k^Q)\delta - (g_k^\top s_k^Q)\delta^2 + \left(\sigma_k\|s_k^Q\|_M^3\right)\frac{|\delta|^3}{3}.
\end{align*}
\]

(13)

If \(g_k^\top s_k^Q < 0 \) (hence, \(\mathcal{I}_k = \mathbb{R}_+ \)), then we compute the value of the parameter \(\delta_k^N \) at which the unique minimizer of the above function is attained. Taking the derivative of (13) with respect to \(\delta \) and equating the result to zero, one gets

\[
0 = g_k^\top s_k^Q - (g_k^\top s_k^Q)\delta_k^N + \sigma_k\|s_k^Q\|_M^3 \left(\delta_k^N\right)^2,
\]

(14)

and thus, since \(\delta_k^N > 0 \),

\[
\delta_k^N = \frac{g_k^\top s_k^Q + \sqrt{(g_k^\top s_k^Q)^2 - 4\sigma_k(g_k^\top s_k^Q)\|s_k^Q\|_M^3}}{2\sigma_k\|s_k^Q\|_M^3} = \frac{2}{1 + \sqrt{1 - 4\frac{\sigma_k\|s_k^Q\|_M^3}{g_k^\top s_k^Q}}}.
\]

If \(g_k^\top s_k^Q > 0 \) (hence, \(\mathcal{I}_k = \mathbb{R}_- \)), and again by taking the derivative of (13) with respect to \(\delta \) and equating the result to zero, then one gets

\[
0 = g_k^\top s_k^Q - (g_k^\top s_k^Q)\delta_k^N - \sigma_k\|s_k^Q\|_M^3 \left(\delta_k^N\right)^2,
\]

(15)

and thus, since \(\delta_k^N < 0 \) in this case,

\[
\delta_k^N = \frac{g_k^\top s_k^Q + \sqrt{(g_k^\top s_k^Q)^2 + 4\sigma_k(g_k^\top s_k^Q)\|s_k^Q\|_M^3}}{2\sigma_k\|s_k^Q\|_M^3} = \frac{2}{1 - \sqrt{1 + 4\frac{\sigma_k\|s_k^Q\|_M^3}{g_k^\top s_k^Q}}}.
\]
From both cases, one deduces that
\[\delta_k^N = \frac{2}{1 - \text{sign}(g_k^T s_k^Q \sqrt{1 + 4 \frac{\sigma_k \|s_k^Q\|_3 M_k}{\|g_k^T s_k^Q\|}})}. \]

Consider now the case where \(s_k^Q \) is computed using an iterative subspace method; in this case, one has \(s_k^N = Q_k z_k^N \), where \(z_k^N \) is the Newton-like step associated with the reduced subproblem (11). Hence, by applying the first part of the proof (the exact case) to the reduced subproblem (11), it follows that
\[z_k^N = \tilde{\delta}_k^N z_k^Q, \quad \text{where} \quad \tilde{\delta}_k^N = \frac{2}{1 - \text{sign}((Q_k^T g_k)^T z_k^Q \sqrt{1 + 4 \frac{\sigma_k \|z_k^Q\|_3 M_k}{\|Q_k^T g_k\| z_k^Q}})}. \]
where \(z_k^Q \) is a stationary point of the quadratic part of the minimized model in (11). Thus, by substituting \(z_k^N \) in the formula \(s_k^N = Q_k z_k^N \), one gets
\[s_k^N = Q_k \left(\frac{2}{1 - \text{sign}((Q_k^T g_k)^T z_k^Q \sqrt{1 + 4 \frac{\sigma_k \|z_k^Q\|_3 M_k}{\|Q_k^T g_k\| z_k^Q}})} \right) z_k^Q. \]
\[= \frac{2}{1 - \text{sign}(g_k^T Q_k z_k^Q \sqrt{1 + 4 \frac{\sigma_k \|Q_k z_k^Q\|_3 M_k}{\|g_k^T z_k^Q\|}})} Q_k z_k^Q. \]
\[= \frac{2}{1 - \text{sign}(g_k^T z_k^Q \sqrt{1 + 4 \frac{\sigma_k \|z_k^Q\|_3 M_k}{\|g_k^T z_k^Q\|}})} s_k^Q. \]

In general, for the ARC algorithm, the matrix \(M_k \) can be any arbitrary SPD matrix. Our goal, in this section, is to determine how one can choose the matrix \(M_k \) so that the Newton-like step \(s_k^N \) becomes a stationary point of the subproblem (3). The following theorem gives explicitly the necessary and sufficient condition on the matrix \(M_k \) to reach this aim.

Theorem 3.2 Let Assumption 3.1 hold. The step \(s_k^N \) is a stationary point for the subproblem (3) if and only if there exists \(\theta_k > 0 \) such that \(M_k s_k^Q = \frac{\theta_k}{g_k^T s_k^Q} g_k \). Note that \(\theta_k = \|s_k^Q\|_M^2 \).

Proof Indeed, in the exact case, if we suppose that the step \(s_k^N \) is a stationary point of the subproblem (3), this means that
\[\nabla m_k(s_k^N) = g_k + B_k s_k^N + \sigma_k \|s_k^N\|_M M_k s_k^N = 0, \quad (16) \]
In the other hand, using Eqs. (14) and (15), one has $s_k^N = \delta_k^N s_k^Q$, where δ_k^N is solution of $s_k^Q - (g_k^T s_k^Q) \delta_k^N + \sigma_k \|s_k^Q\|_M^3MK_k \delta_k^N = 0$. Hence, we obtain that

$$
0 = \nabla m_k(s_k^N) = g_k - \delta_k^N g_k + \sigma_k \|s_k^Q\|_M^3MK_k s_k^Q
$$

$$
= \left(1 - \delta_k^N\right) g_k + \left(\sigma_k \|s_k^Q\|_M^3MK_k \delta_k^N\right) \left(\frac{g_k^T s_k^Q}{\|s_k^Q\|_M^3MK_k} - MK_k s_k^Q\right)
$$

$$
= \left(\frac{\sigma_k \|s_k^Q\|_M^3MK_k}{g_k^T s_k^Q} \delta_k^N\right) \left(g_k - \frac{g_k^T s_k^Q}{\|s_k^Q\|^2_MMK_k} MK_k s_k^Q\right).
$$

Equivalently, we conclude that $MK_k s_k^Q = \frac{\theta_k}{g_k^T s_k^Q} g_k$, where $\theta_k = \|s_k^Q\|_M^2 > 0$.

A similar proof applies when a subspace method is used to compute s_k^Q. \qed

The choice of a matrix MK_k is the key condition to ensure that the ARC subproblem stationary point is equal to the Newton-like step s_k^N. The existence of such a matrix MK_k is not problematic as far as Assumption 3.1 holds. In fact, Theorem 4.1 will make explicit a range of $\theta_k > 0$ for which the matrix MK_k exists. Note that in the formula of s_k^N, such a matrix is used only through the computation of the MK_k-norm of s_k^Q. Therefore an explicit formula of the matrix MK_k is not needed, and only the value of $\theta_k = \|s_k^Q\|^2_M$ suffices for the computations.

When the matrix MK_k satisfies the desired properties (as in Theorem 3.2), one is ensured that s_k^N is a stationary point for the model m_k. However, the ARC algorithm imposes on the approximate step to satisfy the Cauchy decrease given by (5), and such a condition is not guaranteed by s_k^N as the model m_k may be nonconvex. In next theorem, we show that for a sufficiently large σ_k, s_k^N is getting the global minimizer of m_k and thus satisfying the Cauchy decrease is not an issue any longer.

Theorem 3.3 Let Assumption 3.1 hold. Let MK_k be an SPD matrix which satisfies $MK_k s_k^Q = \frac{\theta_k}{g_k^T s_k^Q} g_k$ for a fixed $\theta_k > 0$. If the matrix $Q_k^T (MK_k + \sigma_k \|s_k^N\|_MMK_k) Q_k$ is positive definite, then the step s_k^N is the unique minimizer of the subproblem (3) over the subspace L_k.

Proof Indeed, when s^Q is computed exactly (i.e., $Q_k = I_n$ and $L_k = \mathbb{R}^n$), then using [1, Theorem 3.1] one has that, for a given vector s^*, it is a global minimizer of m_k if and only if it satisfies

$$(MK_k + \lambda_k^*MK_k)s_k^* = -g_k,$$

where $MK_k + \lambda_k^*MK_k$ is a positive semi-definite matrix and $\lambda_k^* = \sigma_k \|s_k^*\|_M$. Moreover, if $MK_k + \lambda_k^*MK_k$ is positive definite, then s_k^* is unique.

Since $MK_k s_k^Q = \frac{\theta_k}{g_k^T s_k^Q} g_k$, by applying Theorem 3.2, we see that

$$(MK_k + \lambda_k^NMK_k)s_k^N = -g_k,$$

\(\square\) Springer
with \(\lambda_k^N = \sigma_k \| s_k^N \|_M \). Thus, if we assume that \(B_k + \lambda_k^N M_k \) is a positive definite matrix, then \(s_k^N \) is the unique global minimizer of the subproblem (3).

Consider now, the case where \(s_k^Q \) is computed using a subspace method, due to \(M_k s_k^Q = \frac{\theta_k}{\| s_k^Q \|} g_k \) one has \(Q_k^T M_k Q_k s_k^Q = \frac{\theta_k}{\| s_k^Q \|} g_k^T Q_k^T g_k \). Hence, if we suppose that the matrix \(Q_k^T (B_k + \lambda_k^N M_k) Q_k \) is positive definite, then by applying the same proof of the exact case to the reduced subproblem (11), we see that the step \(z_k^N \) is the unique global minimizer of the subproblem (11). We conclude that \(s_k^N = Q_k z_k^N \) is the global minimizer of the subproblem (3) over the subspace \(L_k \).

Thus, since \(M_k \) is an SPD matrix and the regularization parameter \(\sigma_k \) is increased for unsuccessful iterations in Algorithm 1, the positive definiteness of matrix \(Q_k^T (B_k + \lambda_k^N M_k) Q_k \) is guaranteed after finitely many unsuccessful iterations. In other words, one would have the insurance that \(s_k^N \) will satisfy the Cauchy decrease after a certain number of unsuccessful iterations.

4 Complexity Analysis of the LS-ARC Algorithm

For the well definiteness of the LS-ARC algorithm, one first needs to show that the proposed \(M_k \)-norm is uniformly equivalent to the Euclidean norm. Next theorem gives a range of choices for the parameter \(\theta_k \) to ensure the existence of an SPD matrix \(M_k \) such as \(M_k s_k^Q = \frac{\theta_k}{\| s_k^Q \|} g_k \) and the \(M_k \)-norm is uniformly equivalent to the \(\ell_2 \)-norm.

Theorem 4.1 Let Assumption 3.1 hold. If

\[
\theta_k = \beta_k \| s_k^Q \|^2 \quad \text{where} \quad \beta_k \in]\beta_{\min}, \beta_{\max}[\quad \text{and} \quad \beta_{\max} > \beta_{\min} > 0, \tag{17}
\]

then there exists an SPD matrix \(M_k \) such as

(i) \(M_k s_k^Q = \frac{\theta_k}{\| s_k^Q \|} g_k \),

(ii) the \(M_k \)-norm is uniformly equivalent to the \(\ell_2 \)-norm on \(\mathbb{R}^n \) and for all \(x \in \mathbb{R}^n \), one has

\[
\frac{\sqrt{2} \beta_{\min}}{\sqrt{2}} \| x \| \leq \| x \|_{M_k} \leq \frac{\sqrt{2} \beta_{\max}}{\epsilon_d} \| x \|. \tag{18}
\]
Moreover, one has \[\| s_k^O \|_{M_k} = \beta_k \| s_k^O \|_2^2 \] and \[\| g_k \|_{M_k} = \chi_k \| g_k \|_2^2 \], where \(\chi_k := \frac{\beta_k}{\frac{5}{2} - \frac{3}{2} \cos(\varpi_k)^2 + 2 \left(\frac{1 - \cos(\varpi_k)^2}{\cos(\varpi_k)} \right)^2} \) and \(\cos(\varpi_k) := \frac{s_k^O g_k}{\| g_k \| \| s_k^O \|} \).

Proof Let \(\overline{s_k^O} = \frac{s_k^O}{\| s_k^O \|} \) and \(\overline{g}_k \) be an orthonormal vector to \(\overline{s_k^O} \) (i.e., \(\| \overline{g}_k \| = 1 \) and \(\overline{g}_k^\top \overline{s_k^O} = 0 \)) such that
\[
\frac{\overline{g}_k}{\| g_k \|} = \cos(\varpi_k) \overline{s_k^O} + \sin(\varpi_k) \overline{g}_k. \tag{19}
\]

For a given \(\theta_k = \beta_k \| s_k^O \|^2 \), where \(\beta_k \in]\beta_{\min}, \beta_{\max} [\) and \(\beta_{\max} > \beta_{\min} > 0 \), one would like to construct an SPD matrix \(M_k \) such as \(M_k \overline{s_k^O} = \frac{\theta_k g_k}{s_k^O \| s_k^O \|} \), hence
\[
M_k \overline{s_k^O} = \frac{\theta_k g_k}{s_k^O \| s_k^O \|} = \frac{\theta_k \| g_k \|}{s_k^O \| s_k^O \|} \left(\cos(\varpi_k) \overline{s_k^O} + \sin(\varpi_k) \overline{g}_k \right) = \beta_k \overline{s_k^O} + \beta_k \tan(\varpi_k) \overline{g}_k.
\]

Using the symmetry of the matrix \(M_k \), let \(\gamma_k \) be a positive parameter such as
\[
M_k = \left[\overline{s_k^O}, \overline{g}_k \right] N_k \left[\overline{s_k^O}, \overline{g}_k \right]^\top, \text{ where } N_k = \begin{bmatrix} \beta_k & \beta_k \tan(\varpi_k) \\ \beta_k \tan(\varpi_k) & \gamma_k \end{bmatrix}.
\]

The eigenvalues \(\lambda_{\min}^k \) and \(\lambda_{\max}^k \) of the matrix \(N_k \) are the roots of
\[
\lambda^2 - (\beta_k + \gamma_k) \lambda + \beta_k \gamma_k - (\beta_k \tan(\varpi_k))^2 = 0,
\]

hence
\[
\lambda_{\min}^k = \frac{(\beta_k + \gamma_k) - \sqrt{\vartheta_k}}{2} \quad \text{and} \quad \lambda_{\max}^k = \frac{(\beta_k + \gamma_k) + \sqrt{\vartheta_k}}{2},
\]

where \(\vartheta_k := (\beta_k - \gamma_k)^2 + 4 (\beta_k \tan(\varpi_k))^2 \). Note that both eigenvalues are monotonically increasing as functions of \(\gamma_k \).

One may choose \(\lambda_{\min}^k \) to be equal to \(\frac{1}{2} \beta_k = \frac{1}{2} \frac{\theta_k}{\| s_k^O \|} \), therefore \(\lambda_{\min}^k > \frac{1}{2} \beta_{\min} \) is uniformly bounded away from zero. In this case, from the expression of \(\lambda_{\min}^k \), we deduce that \(\gamma_k = 2 \beta_k \tan(\varpi_k) + \beta_k/2 \) and
\[
\lambda_{\max}^k = \frac{3}{4} \beta_k + \beta_k \tan(\varpi_k)^2 + \frac{1}{16} \beta_k^2 + \frac{1}{2} \beta_k^2 \tan(\varpi_k)^2 + \beta_k^2 \tan(\varpi_k)^4
\]
\[
= \beta_k \left(\frac{3}{4} + \tan(\varpi_k)^2 + \frac{1}{16} + \frac{1}{2} \tan(\varpi_k)^2 + \tan(\varpi_k)^4 \right)
\]
\[
= \beta_k \left(1 + 2 \tan(\varpi_k)^2 \right).
\]
From Assumption 3.1 (i.e., $|g_k^T s^Q_k| \geq \epsilon_d \|g_k\|\|s^Q_k\|$, where $\epsilon_d > 0$), one has $\tan(\omega_k) \leq 1 - \frac{\epsilon_d^2}{\epsilon_d^2}$; hence,

$$\lambda_{\text{max}}^k \leq \beta_{\text{max}} \left(1 + 2 \frac{1 - \epsilon_d^2}{\epsilon_d^2}\right) \leq \frac{2 \beta_{\text{max}}}{\epsilon_d^2}.$$

A possible choice for the matrix M_k can be obtained by completing the set of vectors $\{s^Q_k, \tilde{g}_k\}$ to an orthonormal basis $\{s^Q_k, \tilde{g}_k, q_3, q_4, \ldots, q_n\}$ of \mathbb{R}^n as follows:

$$M_k := [s^Q_k, \tilde{g}_k, q_3, \ldots, q_n] \begin{bmatrix} N_k & 0 \\ 0 & D \end{bmatrix} [s^Q_k, \tilde{g}_k, q_3, \ldots, q_n]^\top,$$

where $D := \text{diag}(d_3, \ldots, d_n) \in \mathbb{R}^{(n-2) \times (n-2)}$ with positive diagonal entries independent from k. One concludes that for all $\theta_k = \beta_k \|s^Q_k\|^2$ the eigenvalues of the constructed M_k are uniformly bounded away from zero and from above, hence the scaled M_k-norm is uniformly equivalent to the ℓ_2-norm on \mathbb{R}^n and for all $x \in \mathbb{R}^n$, one has

$$\frac{\sqrt{\beta_{\text{min}}}}{\sqrt{2}} \|x\| \leq \sqrt{\lambda_{\text{min}}^k} \|x\| \leq \|x\|_{M_k} \leq \sqrt{\lambda_{\text{max}}^k} \|x\| \leq \frac{\sqrt{2 \beta_{\text{max}}}}{\epsilon_d} \|x\|.$$

Finally, by multiplying $M_k s^Q_k = \frac{\theta_k}{s^Q_k s_k} g_k$ from both sides by s^Q_k, one gets $\|s^Q_k\|_{M_k} = \theta_k = \beta_k \|s^Q_k\|^2$. Furthermore, using (19) and (20), one has

$$\|g_k\|_{M_k}^2 = \|g_k\|^2 \left(\cos(\omega_k) s^Q_k + \sin(\omega_k) \tilde{g}_k\right)^\top \left(\cos(\omega_k) M_k s^Q_k + \sin(\omega_k) M_k \tilde{g}_k\right)$$

$$= \|g_k\|^2 \left(\frac{\theta_k \cos(\omega_k)^2}{\|s^Q_k\|^2} + \gamma_k \sin(\omega_k)^2 + 2 \sin(\omega_k) \cos(\omega_k) \frac{\theta_k \tan(\omega_k)^2}{\|s^Q_k\|^2}\right)$$

$$= \beta_k \|g_k\|^2 \left(\cos(\omega_k)^2 + \frac{5}{2} \sin(\omega_k)^2 + 2 \sin(\omega_k)^2 \tan(\omega_k)^2\right)$$

$$= \beta_k \|g_k\|^2 \left(\frac{5}{2} - \frac{3}{2} \cos(\omega_k)^2 + 2 \left(\frac{1 - \cos(\omega_k)^2}{\cos(\omega_k)}\right)^2\right).$$

\[\square\]

A direct consequence of Theorem 4.1 is that, by choosing $\theta_k > 0$ of the form $\beta_k \|s^Q_k\|^2$ as in (17) during the application of the LS-ARC algorithm, the global convergence and complexity bounds of the LS-ARC algorithm can be derived straightforwardly from the classical ARC analysis [10]. In fact, as far as the objective function f is continuously differentiable, its gradient is Lipschitz continuous, and its approximated Hessian B_k is bounded for all iterations (see [10, Assumptions AF1, AF4, and AM1]). The LS-ARC algorithm is globally convergent and will require at most

\[\square\] Springer
a number of iterations of order ϵ^{-2} to produce a point x_ϵ with $\|\nabla f(x_\epsilon)\| \leq \epsilon$ [10, Corollary 3.4].

In what comes next, we assume the following regularity condition on the objective function f:

Assumption 4.1 Assume that f is twice continuously differentiable with Lipschitz continuous Hessian, i.e., there exists a constant $L \geq 0$ such that for all $x, y \in \mathbb{R}^n$, one has

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \leq L\|x - y\|.$$ When the matrix B_k is set to be equal to the exact Hessian of the problem and under Assumption 4.1, one can improve the iteration complexity to be $O(\epsilon^{-3/2})$ for the ARC algorithm by imposing, in addition to the Cauchy decrease, an additional termination condition during the computation of the trial step s_k (see [10,11]). Such a condition is of the form

$$\|\nabla m_k(s_k)\| \leq \xi\|s_k\|^2,$$ (20)

where $\xi > 0$ is a given constant chosen at the beginning of the algorithm.

When only an approximation of the Hessian is available during the application of Algorithm 1, an additional condition has to be imposed on the Hessian approximation B_k in order to ensure an optimal complexity of order $\epsilon^{-3/2}$. Such a condition is often considered as (see [10, Assumption AM.4]):

Assumption 4.2 The matrix B_k approximates the Hessian $\nabla^2 f(x_k)$ in the sense that

$$\|\nabla^2 f(x_k) - B_k s_k\| \leq C\|s_k\|^2$$ (21)

for all $k \geq 0$ and for some constant $C > 0$.

Similarly, for the LS-ARC algorithm, the complexity bound can be improved to be of the order of $\epsilon^{-3/2}$ if one includes the following two requirements (a) the s_k satisfies the criterion condition (20) and (b) the Hessian approximation matrix B_k has to satisfy Assumption 4.2. When our proposed M_k-norm is used, the termination condition (20) imposed on the cubic model m_k can be expressed only in terms of s_k^Q and $\nabla m_k^Q(s_k^Q)$. The latter condition will be required in the LS-ARC algorithm at each iteration to ensure that it takes at most $O(\epsilon^{-3/2})$ iterations to reduce the gradient norm below ϵ. Such a result is given in the following proposition

Proposition 4.1 Let Assumption 3.1 hold and $\theta_k = \beta_k\|s_k^Q\|^2$ as in (17). Then imposing the condition (20) in Algorithm 2 is equivalent to the following condition

$$\|\nabla m_k^Q(s_k^Q)\| \leq \frac{2\text{sign}(g_k^\top s_k^Q)\xi}{-1 + \text{sign}(g_k^\top s_k^Q)\sqrt{1 + 4\frac{\sigma_k\theta_k^{1/2}}{|s_k^Q|}}}\|s_k^Q\|^2.$$ (22)
Proof Since Assumption 3.1 holds and $\theta_k = \beta_k \|s_k^O\|^2$ as in (17), Theorem 4.1 implies the existence of an SPD matrix M_k such that $M_k s_k^Q = \frac{\theta_k}{g_k^T s_k^Q} g_k$. Using the M_k-norm, an approximate solution of the cubic model m_k is of the form $s_k = \delta_k s_k^O$, where δ_k is solution of $g_k^T s_k^Q - (g_k^T s_k^Q) \delta_k + \sigma_k \|s_k^O\|^3_{M_k} |\delta_k| \delta_k = 0$. Hence,

$$
\nabla m_k(s_k) = g_k + B_k s_k + \sigma_k \|s_k\|_{M_k} M_k s_k
$$

$$
= g_k + \delta_k B_k s_k^O + \sigma_k |\delta_k| |\delta_k| s_k^O_{M_k} M_k s_k^O.
$$

Since $M_k s_k^O = \frac{\theta_k}{g_k^T s_k^Q} g_k$ with $\theta_k = \|s_k^O\|^2_{M_k}$, one has

$$
\nabla m_k(s_k) = g_k + \delta_k B_k s_k^O + \frac{\sigma_k |\delta_k| |\delta_k| s_k^O_{M_k}^3}{g_k^T s_k^Q} g_k
$$

$$
= \left(1 + \frac{\sigma_k |\delta_k| |\delta_k| s_k^O_{M_k}^3}{g_k^T s_k^Q}\right) g_k + \delta_k B_k s_k^O.
$$

From the fact that $g_k^T s_k^Q - (g_k^T s_k^Q) \delta_k + \sigma_k \|s_k^O\|^3_{M_k} |\delta_k| \delta_k = 0$, one deduces

$$
\nabla m_k(s_k) = \delta_k \left(g_k + B_k s_k^O\right) = \delta_k \nabla m_k(s_k^O).
$$

Hence, the condition (20) is equivalent to

$$
\|\nabla m_k(s_k^O)\| \leq \frac{\zeta}{\delta_k} \|s_k\|^2 = \zeta |\delta_k| \|s_k^O\|^2.
$$

We note that the use of an exact solver to compute s_k^O implies that the condition (22) will be automatically satisfied for such an iteration. Moreover, when a subspace method is used to approximate the step s_k^O, we note the important freedom to add an additional preconditioner to the problem. In this case, one would solve the quadratic problem with preconditioning until the criterion (22) is met. This is expected to happen early along the Krylov iterations when the preconditioner for the linear system $B_k s = -g_k$ is good enough.

Algorithm 3 summarizes a second-order variant of LS-ARC, referred here as LS-ARC(s), which is guaranteed to have an improved iteration worst-case complexity of order $\epsilon^{-3/2}$ (see Theorem 4.2).

The Hessian approximation B_k (as required by Assumption 4.2) involves s_k, hence finding a new matrix B_k so that the new s_k^O satisfies Assumption 3.1 using regularization techniques is not trivial as s_k is unknown at this stage. A possible way to satisfy Assumption 4.2 without modifying B_k is by choosing s_k^O as the first iterate to satisfy (22) when using a subspace method to solve the linear system $B_k s = -g_k$. Then, one
Algorithm 3: LS-ARC Algorithm.

1. In each iteration k of Algorithm 2:

Let s_k^Q be an approximate solution of $B_k s = -g_k$ such as $|g_k^T s_k^Q| \geq \epsilon_d \|g_k\|\|s_k^Q\|$ and the termination condition

$$\|\nabla m_k^Q(s_k^Q)\| \leq \frac{2 \text{sign}(g_k^T s_k^Q)\xi}{-1 + \text{sign}(g_k^T s_k^Q)\sqrt{1 + 4\sigma_k^3\|g_k\|^3\|s_k^Q\|^3 \|g_k^T s_k^Q\|}}$$

is satisfied for a given constant $\xi > 0$ chosen at the beginning of the algorithm.

checks if s_k^Q satisfies Assumption 3.1 or not. If s_k^Q violates the latter assumption, one performs further iterations of the subspace method until Assumption 3.1 is satisfied. If the subspace method ends and Assumption 3.1 is still violated, one would restore such an assumption by minimizing the cubic model using the ℓ_2-norm until a successful outer iteration is found.

For the sake of illustration, consider the minimization of the objective function $f(x, y) = x^2 - y^2$ for all $(x, y) \in \mathbb{R}^2$, starting from $x_0 = (1, 1)$, with $\sigma_0 = 1$, and B_k being the exact Hessian of the problem during the application of the algorithm. One starts by checking if $s_0^Q = (-1, -1)$ (i.e., the exact solution of the system $B_0 s = -g_0$) is a sufficient descent direction or not. As the slope $g_0^T s_0^Q$ is equal to zero, the algorithm has to switch to the ℓ_2-norm and thus s_0 will be set as a minimizer of the cubic model with the ℓ_2-norm to define the cubic regularization term. Using a subproblem solver (in our case the GLRT solver from GALAHAD [17], more details are given in Sect. 6), one finds the step $s_0 = (-0.4220, 2.7063)$ and the point $x_1 = x_0 + s_0$ is accepted (with $f(x_1) = -13.4027$). Once the new gradient $g_1 = (1.1559, -7.4126)$ and the quasi-Newton direction $s_1^Q = (-0.5780, -3.7063)$ are computed, one has $|g_1^T s_1^Q| = 20.5485 \geq \epsilon_d \|g_1\|\|s_1^Q\|$ where $\epsilon_d = 10^{-3}$; hence Assumption 3.1 holds. We perform then our proposed LS strategy along the direction s_1^Q to obtain the step s_1. For this example, except the first one, all the remaining iterations k satisfy the condition $|g_k^T s_k^Q| \geq \epsilon_d \|g_k\|\|s_k^Q\|$. We note that the considered minimization problem is unbounded from below, hence f decreases to $-\infty$ during the application of the algorithm.

LS strategies require in general to have a sufficient descent direction for each iteration. It seems then natural that one may need to choose ϵ_d to be large (close to 1) to target good performance. However, during the application of LS-ARC(s) and to satisfy Assumption 3.1 (without modifying the matrix B_k), one may be encouraged to use an ϵ_d small. In what comes next, we will give a detailed complexity analysis of the LS-ARC(s) algorithm in this case. In particular, we will exploit how the complexity bound will depend on the choice of the constant ϵ_d. The following results are obtained from [11, Lemma 2.1] and [11, Lemma 2.2]:

Lemma 4.1 Let Assumptions 4.1 and 3.1 hold and consider Algorithm 3. Then for all $k \geq 0$, one has
\begin{equation}
\left| f(x_k) - m_k^Q(s_k) \right| \geq \frac{\sigma_k}{3} \left\| s_k \right\|_M^3,
\end{equation}

and

\begin{equation}
\sigma_k \leq \sigma_{\text{max}} := \max \left\{ \sigma_0, \frac{3\nu_2 L}{2(1-\eta)} \right\}.
\end{equation}

Next lemma is an adaptation of [11, Lemma 2.3] when the proposed M_k-norm is used in the ARC framework.

Lemma 4.2 Let Assumptions 4.1, 4.2 and 3.1 hold. Consider Algorithm 3 with $\theta_k = \beta_k \left\| s_k^Q \right\|^2$ as in (17). Then, for all $k \geq 0$, one has

\begin{equation}
\begin{aligned}
\left\| s_k \right\| \geq \left(\frac{\left\| g_{k+1} \right\|}{L + C + 2\sqrt{2}\sigma_{\text{max}}\beta_{\text{max}}^3\varepsilon_d^{-3} + \zeta} \right)^\frac{1}{2}.
\end{aligned}
\end{equation}

Proof Indeed, using Assumptions 4.1 and 4.2 within Taylor expansion, one has

\begin{equation}
\begin{aligned}
\left\| g_{k+1} \right\| &\leq \left\| g_{k+1} - \nabla m_k(s_k) \right\| + \left\| \nabla m_k(s_k) \right\| \\
&\leq \left\| g_{k+1} - g_k - B_k s_k - \sigma_k \left\| s_k \right\| M_k s_k + \zeta \left\| s_k \right\|^2 \\
&\leq \left\| g_{k+1} - g_k - \nabla^2 f(x_k) s_k \right\| + \left\| (\nabla^2 f(x_k) - B_k) s_k \right\| \\
&+ \sigma_k \left\| M_k \right\|^3\left\| s_k \right\|^2 + \zeta \left\| s_k \right\|^2 \\
&\leq L \left\| s_k \right\|^2 + C \left\| s_k \right\|^2 + (\sigma_k \left\| M_k \right\|^3\left\| s_k \right\|^2 + \zeta) \left\| s_k \right\|^2.
\end{aligned}
\end{equation}

Using (24), one has

\begin{equation}
\left\| g_{k+1} \right\| \leq (L + C + \sigma_{\text{max}} \left\| M_k \right\|^3\left\| s_k \right\|^2 + \zeta) \left\| s_k \right\|^2.
\end{equation}

Since $\theta_k = \beta_k \left\| s_k^Q \right\|^2$, then using Theorem 4.1, the matrix M_k norm is bounded from above by $2\beta_{\text{max}}\varepsilon_d^{-2}$. Hence,

\begin{equation}
\left\| g_{k+1} \right\| \leq \left(L + C + 2\sqrt{2}\sigma_{\text{max}}\beta_{\text{max}}^3\varepsilon^{-3} + \zeta \right) \left\| s_k \right\|^2.
\end{equation}

Using previous lemmas, next theorem gives the worst-case iteration complexity of the LS-ARC\(_{(s)}\) algorithm required to produce an approximate first-order stationary point.

Theorem 4.2 Let Assumptions 4.1, 4.2 and 3.1 hold. Consider Algorithm 3 with $\theta_k = \beta_k \left\| s_k^Q \right\|^2$ as in (17). Then, given an $\varepsilon > 0$, Algorithm 3 needs at most

\begin{equation}
\left\lceil \kappa_s(\varepsilon_d) \frac{f(x_0) - f_{\text{low}}}{\varepsilon^{3/2}} \right\rceil
\end{equation}

Springer
iterations to produce an iterate \(x_\varepsilon \) such that \(\| \nabla f(x_\varepsilon) \| \leq \varepsilon \), where \(f_{\text{low}} \) is a lower bound on \(f \) and \(\kappa_s(\varepsilon_d) \) is given by

\[
\kappa_s(\varepsilon_d) = \frac{6\sqrt{2} \left(L + C + 2\sqrt{2}\sigma_{\max}\beta_{\max}^{-3} + \xi \right)^{3/2}}{\eta \sigma_{\min}^{3/2}}.
\]

Proof Indeed, at each iteration of Algorithm 3, one has

\[
f(x_k) - f(x_k + s_k) \geq \eta (f(x_k) - m_k^Q(s_k))
\]

\[
\geq \frac{\eta \sigma_k}{3} \|s_k\|^3_{M_k}
\]

\[
\geq \frac{\eta \sigma_{\min}^{3/2} \beta_{\min}^{3/2}}{6\sqrt{2}} \|s_k\|^3
\]

\[
\geq \frac{\eta \sigma_{\min}^{3/2}}{6\sqrt{2} \left(L + C + 2\sqrt{2}\sigma_{\max}\beta_{\max}^{3/2} + \xi \right)^{3/2} \|g_{k+1}\|^{3/2}} \|g_{k+1}\|^{3/2}
\]

\[
\geq \frac{\eta \sigma_{\min}^{3/2} \beta_{\min}^{3/2}}{6\sqrt{2} \left(L + C + 2\sqrt{2}\sigma_{\max}\beta_{\max}^{3/2} + \xi \right)^{3/2} \varepsilon^{3/2}},
\]

by using (7), (23), (18), (25), and the fact that \(\|g_{k+1}\| \geq \varepsilon \) before termination. Thus, we deduce for all iterations as long as the stopping criterion does not occur

\[
f(x_0) - f(x_{k+1}) = \sum_{j=0}^{k} f(x_j) - f(x_{j+1})
\]

\[
\geq (k + 1) \frac{\eta \sigma_{\min} \sqrt{\beta_{\min}}}{3\sqrt{2} \left(L + C + 2\sqrt{2}\sigma_{\max}\beta_{\max}^{3/2} + \xi \right)^{3/2} \varepsilon^{3/2}}.
\]

Hence, the required number of iterations to produce an iterate \(x_\varepsilon \) such that \(\| \nabla f(x_\varepsilon) \| \leq \varepsilon \) is given as follow

\[
k + 1 \leq \frac{6\sqrt{2} \left(L + C + 2\sqrt{2}\sigma_{\max}\beta_{\max}^{3/2} + \xi \right)^{3/2}}{\eta \sigma_{\min}^{3/2} \beta_{\min}^{3/2}} \frac{f(x_0) - f_{\text{low}}}{\varepsilon^{3/2}},
\]

where \(f_{\text{low}} \) is a lower bound on \(f \). The proof is then complete. \end{proof}

We note that \(\kappa_s(\varepsilon_d) \) can be large for small values of \(\varepsilon_d \). Hence, although the displayed worst-case complexity bound is of order \(\varepsilon^{-3/2} \), the latter can be worse than it appears to be if the value of \(\varepsilon_d \) is very small (i.e., the chosen direction is almost orthogonal to the gradient). Such a result seems coherent regarding the LS strategies where, typically, it is required to have a sufficient descent direction (i.e., an \(\varepsilon_d \) sufficiently large).
5 TR Algorithm Using a Specific M_k-Norm

Similarly to the ARC algorithm, it is possible to make the TR algorithm behave as an LS algorithm using the same scaled norm to define the trust-region neighborhood. As a reminder in a basic TR algorithm [1], one computes a trial step p_k by approximately solving

$$
\min_{p \in \mathbb{R}^n} \ m_k^O(p) \quad \text{s. t.} \quad \|p\|_{M_k} \leq \Delta_k,
$$

where $\Delta_k > 0$ is known as the TR radius. As in ARC algorithms, the scaled norm $\|\cdot\|_{M_k}$ may vary along the iterations and M_k is an SPD matrix.

Once the trial step p_k is determined, the objective function is computed at $x_k + p_k$ and compared with the value predicted by the model at this point. If the model value predicts sufficiently well the objective function (i.e., the iteration is successful), then the trial point $x_k + p_k$ will be accepted and the TR radius is eventually expanded (i.e., $\Delta_k + 1 = \tau_2 \Delta_k$ with $\tau_2 \geq 1$). If the model turns out to predict the objective function poorly (i.e., the iteration is unsuccessful), then the trial point is rejected and the TR radius is contracted (i.e., $\Delta_k + 1 = \tau_1 \Delta_k$ with $\tau_1 < 1$). The ratio between the actual reduction and the predicted reduction for the TR algorithms is defined as in ARC (see (4)). For a given scalar $0 < \eta < 1$, the iteration will be said successful if $\rho_k \geq \eta$, and unsuccessful otherwise. Algorithm 4 gives a detailed description of a basic TR algorithm.

Algorithm 4: TR algorithm.

Data: select an initial point x_0 and $0 < \eta < 1$. Set the initial TR radius $\Delta_0 > 0$, the constants $0 \leq \tau_1 < 1 \leq \tau_2$, and $\Delta_{\text{max}} > \Delta_0$.

for $k = 1, 2, \ldots$ do

Compute the step p_k as an approximate solution of (25) such that

$$
\min_{p \in \mathbb{R}^n} \ m_k^O(p) \leq m_k(p_k^c),
$$

where $p_k^c = -\alpha_k^c g_k$ and $\alpha_k^c = \arg \min_{0 < t \leq \Delta_k} m_k^O(-tg_k)$.

if $\rho_k \geq \eta$ then

Set $x_{k+1} = x_k + p_k$ and $\Delta_{k+1} = \min\{\tau_2 \Delta_k, \Delta_{\text{max}}\}$;

else

Set $x_{k+1} = x_k$ and $\Delta_{k+1} = \tau_1 \Delta_k$;

end

end

Note that for the TR subproblem, the solution we are looking for lies either in the interior of the trust region, that is $\|p_k\|_{M_k} < \Delta_k$, or on the boundary, $\|p_k\|_{M_k} = \Delta_k$. If the solution is interior, the solution p_k is the unconstrained minimizer of the quadratic model m_k^O. Such a scenario can only happen if m_k^O is convex. In the nonconvex case, a solution lies on the boundary of the trust region, while in the convex case a solution
may or may not do so. Consequently in practice, the TR algorithm first finds the unconstrained minimizer of the model m_k^Q. If the model is unbounded from below, or if the unconstrained minimizer lies outside the trust region, the minimizer then occurs on the boundary of the trust region.

In this section, we will assume that the approximated solution s_k^Q of the linear system $B_k s^{} = -g_k$ is computed exactly. Using similar arguments as for the ARC algorithm, one can extend the obtained results when a truncated step is used in the TR algorithm. Under Assumption 3.1, we will call the Newton-like step associated with the TR subproblem the vector of the following form

$$
p_k^N := \alpha_k^N s_k^Q,
$$

where $\alpha_k^N := \arg \min_{\alpha \in \mathcal{R}_k} m_k^Q(\alpha s_k^Q)$,

$$
(27)
$$

with $\mathcal{R}_k :=]0, \frac{\Delta_k}{\|s_k^Q\| M_k} [$ if $g_k^\top s_k^Q < 0$ and $\mathcal{R}_k := [-\frac{\Delta_k}{\|s_k^Q\| M_k}, 0[$ otherwise.

Similarly to the ARC algorithm, one has the following results:

Theorem 5.1 Let Assumption 3.1 hold.

1. The Newton-like step (27) is of the following form:

$$
p_k^N = \alpha_k^N s_k^Q,
$$

where $\alpha_k^N = \min \left\{ 1, - \frac{\text{sign}(g_k^\top s_k^Q)}{\|s_k^Q\| M_k}, \frac{\Delta_k}{\|s_k^Q\| M_k} \right\}.
$$

$$
(28)
$$

2. When it lies on the border of the trust region p_k^N is a stationary point of the subproblem (25) if and only if $M_k s_k^Q = \theta_k g_k$, where $\theta_k = \|s_k^Q\|^2_{M_k}$.

3. Let $\lambda_k^N := \frac{s_k^Q}{\theta_k} \left(1 + \text{sign}(g_k^\top s_k^Q) \frac{\|s_k^Q\| M_k}{\Delta_k} \right)$ and assume that p_k^N lies on the border of the trust-region. Then, if the matrix $B_k + \lambda_k^N M_k$ is positive definite, the step p_k^N will be the unique minimizer of the subproblem (25).

Proof 1. To calculate the Newton-like step p_k^N, we first note, for all $\alpha \in \mathcal{R}_k$

$$
m_k^Q(\alpha s_k^Q) - m_k^Q(0) = \alpha g_k^\top s_k^Q + \frac{\alpha^2}{2} [s_k^Q]^\top B_k [s_k^Q]
$$

$$
= (g_k^\top s_k^Q)\alpha - (g_k^\top s_k^Q)\frac{\alpha^2}{2}.
$$

(29)

Consider the case where the curvature model along the Newton direction is positive, that is when $g_k^\top s_k^Q < 0$ (i.e., $\mathcal{R}_k =]0, \frac{\Delta_k}{\|s_k^Q\| M_k} [)$), and compute the value of the parameter α at which the unique minimizer of (29) is attained. Let α_k^N denote this optimal parameter. Taking the derivative of (29) with respect to α and equating the result to zero, one has $\alpha_k^N = 1$. Two sub-cases may then occur. The first is when this minimizer lies within the trust region (i.e., $\alpha_k^N \|s_k^Q\| M_k \leq \Delta_k$), then

$$
\alpha_k^N = 1.
$$
If $\alpha_k^* \|s_k^Q\|_{M_k} > \Delta_k$, then the line minimizer is outside the trust region and we have that

$$\alpha_k^N = \frac{\Delta_k}{\|s_k^Q\|_{M_k}}.$$

Finally, we consider the case where the curvature of the model along the Newton-like step is negative, that is when $g_k^\top s_k^Q > 0$. In this case, the minimizer lies on the boundary of the trust region, thus

$$\alpha_k^N = -\frac{\Delta_k}{\|s_k^Q\|_{M_k}}.$$

By combining all cases, one concludes that

$$p_k^N = \alpha_k^N s_k^Q,$$

where $\alpha_k^N = \min \left\{ 1, -\frac{\text{sign}(g_k^\top s_k^Q) \Delta_k}{\|s_k^Q\|_{M_k}} \right\}$.

2. Suppose that the Newton-like step lies on the border of the trust region, i.e., $p_k^N = \alpha_k^N s_k^Q = -\frac{\text{sign}(g_k^\top s_k^Q) \Delta_k}{\|s_k^Q\|_{M_k}} s_k^Q$. The latter step is a stationary point of the subproblem (25) if and only if there exists a Lagrange multiplier $\lambda_k^N \geq 0$ such that

$$(B_k + \lambda_k^N M_k) p_k^N = -g_k.$$

Substituting $p_k^N = \alpha_k^N s_k^Q$ in the latter equation, one has

$$\lambda_k^N M_k s_k^Q = \left(1 - \frac{1}{\alpha_k^N} \right) g_k.$$

By multiplying it from left the by $(s_k^Q)^\top$, we deduce that

$$\lambda_k^N = \left(1 - \frac{1}{\alpha_k^N} \right) \frac{g_k^\top s_k^Q}{\|s_k^Q\|^2_{M_k}} = \frac{g_k^\top s_k^Q}{\|s_k^Q\|^2_{M_k}} \left(1 + \text{sign}(g_k^\top s_k^Q) \frac{\|s_k^Q\|_{M_k}}{\Delta_k} \right).$$

By replacing the value of λ_k^N in (30), we obtain that $M_k s_k^Q = \frac{\theta_k}{g_k^\top s_k^Q} g_k$, where $\theta_k = \|s_k^Q\|^2_{M_k} > 0$.

3. Indeed, if the step p_k^N lies on the boundary of the trust region and $M_k s_k^Q = \frac{\theta_k}{g_k^\top s_k^Q} g_k$. Then, by applying item (1) of Theorem 5.1, we see that

$$(B_k + \lambda_k^N M_k) p_k^N = -g_k.$$
with \(\lambda_k^N = \frac{s_k^Q s_k^Q}{\theta_k} \left(1 + \text{sign}(g_k^T s_k^Q) \frac{\|s_k^Q\|}{\Delta_k} \right) > 0 \). Applying \[1, \text{Theorem 7.4.1}\], we see that if we assume that the matrix \(B_k + \lambda_k^N M_k \) is positive definite, then \(p_k^N \) is the unique minimizer of the subproblem (25).

\[\Box \]

Given an SPD matrix \(M_k \) that satisfies the condition \(M_k s_k^Q = \theta_k g_k^T s_k^Q g_k \), item (3) of Theorem 5.1 states that the step \(p_k^N \) is the global minimizer of the associated subproblems as far as the matrix \(B_k + \lambda_k^N M_k \) is SPD. We note that \(\lambda_k^N \) goes to infinity as the trust-region radius \(\Delta_k \) goes to zero, meaning that the matrix \(B_k + \lambda_k^N M_k \) will be SPD as far as \(\Delta_k \) is chosen to be sufficiently small. Since the TR update mechanism allows to shrink the value of \(\Delta_k \) (when the iteration is declared as unsuccessful), satisfying the targeted condition will be geared automatically by the TR algorithm.

Again, when Assumption 3.1 holds, we note that unsuccessful iterations in the TR Algorithm require only updating the value of the TR radius \(\Delta_k \) and the current step direction is kept unchanged. For such iterations, as far as there exists a matrix \(M_k \) such as \(M_k s_k^Q = \theta_k g_k^T s_k^Q g_k \), the approximate solution of the TR subproblem is obtained only by updating the step-size \(\alpha_k^N \). This means that the computational cost of unsuccessful iterations do not require solving any extra subproblem. We note that during the application of the algorithm, we will take \(\theta_k \) of the form \(\beta_k \|s_k^Q\|^2_2 \), where \(\beta_k \in [\beta_{\text{min}}, \beta_{\text{max}}] \) and \(0 < \beta_{\text{min}} < \beta_{\text{max}} \). Such a choice of the parameter \(\theta_k \) ensures that the proposed \(M_k \)-norm is uniformly equivalent to the Euclidean norm along the iterations (see Theorem 4.1).

In this setting, the TR algorithm behaves as an LS method with a specific backtracking strategy; for each iteration \(k \), the step is of the form \(p_k = \alpha_k s_k^Q \), where \(s_k^Q \) is an approximate solution of the linear system \(B_k s = -g_k \). The step length \(\alpha_k > 0 \) is chosen such as

\[
\frac{f(x_k) - f(x_k + p_k)}{f(x_k) - m_k^Q(p_k)} \geq \eta \quad \text{and} \quad m_k^Q(p_k) \leq m_k^Q(-\alpha_k^c g_k). \tag{31}
\]

The values of \(\alpha_k \) and \(\alpha_k^c \) are computed respectively as follows:

\[
\alpha_k = \min \left\{ 1, -\text{sign}(g_k^T s_k^Q) \frac{\Delta_k}{\beta_k^{1/2} \|s_k^Q\|} \right\} \tag{32}
\]

and

\[
\alpha_k^c = \begin{cases} \frac{\Delta_k}{\chi_k^{1/2} \|g_k\|}, & \text{if } g_k^T B_k g_k \leq 0 \text{ or } \frac{g_k^T B_k g_k}{\|g_k\|^2} \geq \frac{\Delta_k}{\chi_k^{1/2}}, \\ \frac{g_k^T B_k g_k}{\|g_k\|^2}, & \text{else}, \end{cases} \tag{33}
\]

where \(\chi_k = \beta_k \left(\frac{5}{2} - \frac{3}{2} \cos(\varpi_k) \right)^2 + 2 \left(\frac{1-\cos(\varpi_k)}{\cos(\varpi_k)} \right)^2 \) and \(\cos(\varpi_k) = \frac{g_k^T s_k^Q}{\|g_k\| \|s_k^Q\|} \). \(\Delta_k \) is initially equal to the current value of the TR radius (as in the original TR algorithm).

\(\square \) Springer
For large values of α_k the sufficient decrease condition (31) may not be satisfied; in this case, the value of Δ_k is contracted using the factor τ_1. Iteratively, the value of α_k is updated and the acceptance condition (31) is checked again until its satisfaction. Algorithm 5 details the adaptation of the classical TR algorithm when our proposed M_k-norm is used. We denote the final algorithm by LS-TR as it behaves as an LS algorithm.

Algorithm 5: LS-TR algorithm.

Data: select an initial point x_0 and the constants $0 < \eta < 1$, $0 < \epsilon_d \leq 1$, $0 \leq \tau_1 < 1 \leq \tau_2$, and $0 < \beta_{\text{min}} < \beta_{\text{max}}$. Set the initial TR radius $\Delta_0 > 0$ and $\Delta_{\text{max}} > \Delta_0$.

for $k = 1, 2, \ldots$ do

Choose a parameter $\beta_k \in [\beta_{\text{min}}, \beta_{\text{max}}]$;

Let s^Q_k be an approximate stationary point of m^Q_k satisfying $|g_k^\top s^Q_k| \geq \epsilon_d \|g_k\| \|s^Q_k\|$;

Set α_k and α_c^k using (32) and (33);

while condition (31) is not satisfied do

Set $\Delta_k \leftarrow \tau_1 \Delta_k$, and update α_k and α_c^k using (32) and (33);

end

Set $p_k = \alpha_k s^Q_k$, $x_{k+1} = x_k + p_k$ and $\Delta_{k+1} = \min\{\tau_2 \Delta_k, \Delta_{\text{max}}\}$;

end

As far as the objective function f is continuously differentiable, its gradient is Lipschitz continuous, and its approximated Hessian B_k is bounded for all iterations, the TR algorithm is globally convergent and will require a number of iterations of order ϵ^{-2} to produce a point x_ϵ with $\|\nabla f(x_\epsilon)\| \leq \epsilon$ [8].

We note that the satisfaction of Assumption 3.1 is not problematic. As suggested for the LS-ARC algorithm, one can modify the matrix B_k using regularization techniques (as far as the Hessian approximation is kept uniformly bounded from above all over the iterations, the global convergence and the complexity bounds will still hold [1]).

6 Numerical Experiments

In this section, we report the results of experiments performed in order to assess the efficiency and the robustness of the proposed algorithms (LS-ARC and LS-TR) compared with the classical LS algorithm using the standard Armijo rule. In the latter approach, the trial step is of the form $s_k = \delta_k d_k$, where $d_k = s^Q_k$ if $-g_k^\top s^Q_k \geq \epsilon_d \|g_k\| \|s^Q_k\|$ (s^Q_k is being an approximate stationary point of m^Q_k) otherwise $d_k = -g_k$, and the step length $\delta_k > 0$ is chosen such as

$$f(x_k + s_k) \leq f(x_k) + \eta s_k^\top g_k,$$

where $\eta \in]0, 1[$. The appropriate value of δ_k is estimated using a backtracking approach with a contraction factor set to $\tau \in]0, 1[$ and where the step length is initially chosen to be 1. This LS method will be called LS-ARMijo. We implement all the algorithms in Matlab and for all the tested algorithms B_k is set to the true Hessian.
\[\nabla^2 f(x_k) \] and \[\epsilon_d = 10^{-3} \] for both LS-ARC and LS-ARMIJO. Other numerical experiments (not reported here) with different values of \(\epsilon_d \) (for instance, \(\epsilon_d = 10^{-1}, 10^{-6}, \) and \(10^{-12} \)) lead to almost the same results.

By way of comparison, we have also implemented the standard ARC/TR algorithms (see Algorithms 1, 4) using the Lanczos-based solver GLTR/GLRT implemented in GALAHAD [17]. The two subproblem solvers, GLTR/GLRT are implemented in Fortran and interfaced with Matlab using the default parameters. For the subproblem formulation, we used the \(\ell_2 \)-norm (i.e., for all iterations the matrix \(M_k \) is set to identity). We shall refer to the ARC/TR methods based on GLRT/GLTR as GLRT-ARC/GLTR-TR.

The other parameters defining the implemented algorithms are set as follows, for GLRT-ARC and LS-ARC

\[\eta = 0.1, \quad \nu_1 = 0.5, \quad \nu_2 = 2, \quad \sigma_0 = 1, \quad \text{and} \quad \sigma_{\text{min}} = 10^{-16}; \]

for GLTR-TR and LS-TR

\[\eta = 0.1, \quad \tau_1 = 0.5, \quad \tau_2 = 2, \quad \Delta_0 = 1, \quad \text{and} \quad \Delta_{\text{max}} = 10^{16}; \]

and finally for LS-ARMIJO

\[\eta = 0.1, \quad \text{and} \quad \tau = 0.5. \]

In all the algorithms, the maximum number of iterations is set to 10000 and the algorithms stop when

\[\|g_k\| \leq 10^{-5}. \]

A crucial ingredient in LS-ARC and LS-TR is the management of the parameter \(\beta_k \). A possible choice for \(\beta_k \) is \[|g_k^\top s_k^Q|/\|s_k^Q\|^2. \] This choice is inspired from the fact that, when the Hessian matrix \(B_k \) is SPD, this update corresponds to use the energy norm, meaning that the matrix \(M_k \) is set equal to \(B_k \) (see [16] for more details). However, this choice did not lead to a good performance of the algorithms LS-ARC and LS-TR. In our implementation, for the LS-ARC algorithm, we set the value of \(\beta_k \) as follows: \[\beta_k = 10^{-4} \sigma_k^{-2/3} \text{ if } g_k^\top s_k^Q < 0 \text{ and } 2 \text{ otherwise.} \] With this choice, we are willing to allow LS-ARC, at the beginning of the backtracking procedure, to take approximately the Newton step. Similarly, for the LS-TR method, we set \(\beta_k = 1 \) and this allows LS-TR to use the Newton step at the beginning of the backtracking strategy (as in LS-ARMIJO method).

All the algorithms are evaluated on a set of unconstrained optimization problems from the CUTEst collection [18]. The test set contains 62 large-scale (\(1000 \leq n \leq 10,000 \)) CUTEst problems with their default parameters. Regarding the algorithms LS-TR, LS-ARC, and LS-ARMIJO, we approximate the solution of the linear system \(B_k s = -g_k \) using the MINRES Matlab solver. The latter method is a Krylov subspace method designed to solve symmetric linear systems [19]. We run the algorithms with the MINRES default parameters except the relative tolerance error which
is set to 10^{-4}. We note that on the tested problems, for LS-ARC/LS-TR, Assumption 3.1 was not violated frequently. The restoration of this assumption was ensured by performing iterations of GLRT-ARC/GLTR-TR (with the ℓ_2-norm) until a new successful iteration is found.

To compare the performance of the algorithms we use the performance profiles proposed by Dolan and Moré [20] over a variety of problems. Given a set of problems \mathcal{P} (of cardinality $|\mathcal{P}|$) and a set of solvers \mathcal{S}, the performance profile $\rho_s(\tau)$ of a solver s is defined as the fraction of problems, where the performance ratio $r_{p,s}$ is at most τ

$$\rho_s(\tau) := \frac{1}{|\mathcal{P}|} \text{size}\{p \in \mathcal{P} : r_{p,s} \leq \tau\}.$$

The performance ratio $r_{p,s}$ is in turn defined by

$$r_{p,s} := \frac{t_{p,s}}{\min\{t_{p,s} : s \in \mathcal{S}\}},$$

where $t_{p,s} > 0$ measures the performance of the solver s when solving problem p (seen here as the function evaluation, the gradient evaluation, and the CPU time). Better performance of the solver s, relatively to the other solvers on the set of problems, is indicated by higher values of $\rho_s(\tau)$. In particular, the efficiency is measured by $\rho_s(1)$ (the fraction of problems for which solver s performs the best) and robustness is measured by $\rho_s(\tau)$ for τ sufficiently large (the fraction of problems solved by s). Following what is suggested in [20] for a better visualization, we will plot the performance profiles in a log 2-scale (for which $\tau = 1$ will correspond to $\tau = 0$).

We present the obtained performance profiles in Fig. 1. Regarding the gradient evaluation (i.e., outer iteration) performance profile, see Fig. 1a, the LS approaches are the most efficient among all the tested solvers (in more 60% of the tested problems the LS methods perform best, while GLRT-ARC and GLTR-TR are performing better only in less than 15%). When it comes to robustness, all the tested approaches exhibit good performance, GLRT-ARC and GLTR-TR are slightly better.

For function evaluation performance profile given by Fig. 1b, GLRT-ARC and GLTR-TR show a better efficiency but not as good as the LS methods. In fact, in more than 50% of the tested problems, the LS methods perform best while GLRT-ARC and GLTR-TR are better only in less than 35%. The robustness of the tested algorithms is the same as in the gradient evaluation performance profile.

In terms of computing time, see Fig. 1c, as one can expect, GLRT-ARC and GLTR-TR are turned to be very consuming compared to the LS approaches. In fact, unlike the LS methods where only an approximate solution of one linear system is needed, the GLRT/GLTR approaches may require (approximately) solving multiple linear systems in sequence.

For the LS approaches, one can see that LS-TR displays a better performance compared to LS-ARMijo on the tested problems. The main difference between the two LS algorithms is the strategy of choosing the search direction whenever $g_k^T s_k Q > 0$. In our tested problems, the obtained performance using LS-TR suggests that going
Fig. 1 Performance profiles for 62 large-scale optimization problems (i.e., $1000 \leq n \leq 10,000$). a Gradient evaluation, b function evaluation and c CPU time.
exactly in the opposite direction $-s_k^Q$, whenever s_k^Q is not a descent direction, can be seen as a good strategy compared to LS–ARMijo.

7 Conclusions

In this paper, we have proposed the use of a specific norm in ARC/TR. With this norm choice, we have shown that the trial step of ARC/TR is getting collinear to the quasi-Newton direction. The obtained ARC/TR algorithm behaves as LS algorithms with a specific backtracking strategy. Under mild assumptions, the proposed scaled norm was shown to be uniformly equivalent to the Euclidean norm. In this case, the obtained LS algorithms enjoy the same convergence and complexity properties as ARC/TR. We have also proposed a second-order version of the LS algorithm derived from ARC with an optimal worst-case complexity bound of order $\epsilon^{-3/2}$. Our numerical experiments showed an encouraging performance of the proposed LS algorithms.

A number of issues need further investigation, in particular the best choice and the impact of the parameter β_k on the performance of the proposed LS approaches. The analysis of the second-order version of ARC also suggests that taking the Newton direction is suitable for defining a line-search method with an optimal worst-case complexity bound of order $\epsilon^{-3/2}$. It would be interesting to confirm the potential of the proposed line-search strategy compared to the classical LS approaches using extensive numerical tests.

Acknowledgements The authors would like to thank the anonymous referees for their constructive comments and suggestions which led to an improved version of the paper.

References

1. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. SIAM, Philadelphia (2000)
2. Yuan, Y.: Recent advances in trust region algorithms. Math. Program. 151(1), 249–281 (2015)
3. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)
4. Griewank, A.: The modification of Newton’s method for unconstrained optimization by bounding cubic terms. Technical report, NA/12, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, United Kingdom (1981)
5. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton’s method and its global performance. Math. Program. 108(1), 177–205 (2006)
6. Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. 127(2), 245–295 (2011)
7. Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, Dordrecht (2004)
8. Gratton, S., Sartenaer, A., Toint, P.L.: Recursive trust-region methods for multiscale nonlinear optimization. SIAM J. Optim. 19(1), 414–444 (2008)
9. Cartis, C., Sampaio, P.R., Toint, P.L.: Worst-case evaluation complexity of non-monotone gradient-related algorithms for unconstrained optimization. Optimization 64(5), 1349–1361 (2015)
10. Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic overestimation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity. Math. Program. 130(2), 295–319 (2011)
11. Birgin, E.G., Gardenghi, J.L., Martínez, J.M., Santos, S.A., Toint, P.L.: Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models. Math. Program. 163(1), 359–368 (2017)

12. Cartis, C., Gould, N.I.M., Toint, P.L.: Optimality of orders one to three and beyond: characterization and evaluation complexity in constrained nonconvex optimization. Technical report (2017)

13. Curtis, F.E., Robinson, D.P., Samadi, M.: A trust region algorithm with a worst-case iteration complexity of $O(\epsilon^{-3/2})$ for nonconvex optimization. Math. Program. 162(1), 1–32 (2017)

14. Martínez, J.M., Raydan, M.: Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization. J. Glob. Optim. 68(2), 367–385 (2017)

15. Birgin, E.G., Martínez, J.M.: The use of quadratic regularization with a cubic descent condition for unconstrained optimization. SIAM J. Optim. 27(2), 1049–1074 (2017)

16. Bergou, E., Diouane, Y., Gratton, S.: On the use of the energy norm in trust-region and adaptive cubic regularisation subproblems. Comput. Optim. Appl. 68(3), 533–554 (2017)

17. Gould, N.I.M., Orban, D., Toint, P.L.: GALAHAD, a library of thread-safe fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)

18. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing environment with safe threads for mathematical optimization. Comput. Optim. Appl. 60(3), 545–557 (2015)

19. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)

20. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)