HIV integrase variability and genetic barrier in antiretroviral naïve and experienced patients

Antonio Piralla1, Stefania Paolucci1, Roberto Gulminetti2, Giuditta Comolli1,3 and Fausto Baldanti1*

Abstract

Background: HIV-1 integrase (IN) variability in treatment naïve patients with different HIV-1 subtypes is a major issue. In fact, the effect of previous exposure to antiretrovirals other than IN inhibitors (INI) on IN variability has not been satisfactorily defined. In addition, the genetic barrier for specific INI resistance mutations remains to be calculated.

Methods: IN variability was analyzed and compared with reverse transcriptase (RT) and protease (PR) variability in 41 treatment naïve and 54 RT inhibitor (RTI) and protease inhibitor (PRI) experienced patients from subjects infected with subtype B and non-B strains. In addition, four HIV-2 strains were analyzed in parallel. Frequency and distribution of IN mutations were compared between HAART-naïve and RTI/PI-experienced patients; the genetic barrier for 27 amino acid positions related to INI susceptibility was calculated as well.

Results: Primary mutations associated with resistance to INI were not detected in patients not previously treated with this class of drug. However, some secondary mutations which have been shown to contribute to INI resistance were found. Only limited differences in codon usage distribution between patient groups were found. HIV-2 strains from INI naïve patients showed the presence of both primary and secondary resistance mutations.

Conclusion: Exposure to antivirals other than INI does not seem to significantly influence the emergence of mutations implicated in INI resistance. HIV-2 strain might have reduced susceptibility to INI.

Background

Raltegravir (MK-0518; Isentress, Merck) was the first integrase (IN) inhibitor approved for treatment of HIV infection [1], while other compounds such as GS-9137 [2], S-1360 [3], and L-870,810 [4] are at different stages of development. Raltegravir (RAL) has shown potent and durable antiretroviral activity in both treatment naïve [5,6] and highly experienced HIV-1-infected individuals. Due to its novel mechanism of action, RAL was shown to be effective also against HIV-1 strains resistant to reverse transcriptase (RT), protease (PR) and entry inhibitors, both in vitro [7] and in vivo [8,9]. However, it has been observed that failure of highly active antiretroviral therapy (HAART) including RAL might be related to the emergence of drug-resistant virus variants [10-15], and amino acid changes associated with resistance to integrase inhibitors (INI) have been reported [16-18].

In particular, Y143R/C, N155H and Q148K/R/H have been identified as primary RAL resistance mutations, usually associated with secondary mutations often already present at baseline [10, 12, and 13]. However, the entire panel of mutations associated with RAL resistance has not been fully ascertained. Nor do we fully understand the potential impact of naturally occurring ancillary mutations with respect to: i) promotion of RAL resistance associated mutations, ii) improvement of the activity of mutated IN and iii) HIV-1 replicative capacity. In addition, it is unclear whether drug pressure on the Pol gene by RT and PR inhibitors might influence the emergence of primary or ancillary RAL mutations. Finally, it has been observed that about 20% of new HIV infections are now sustained in Italy by a wide variety of subtype non-B HIV-1 strains and a few HIV-2 strains [19,20]. Thus, it is important to define the variability of the IN gene in treatment naïve and HAART-experienced patients in different HIV-1 subtypes.

The aims of the study were: i) to evaluate IN variability and polymorphism distribution among patients naïve
for RAL treatment; ii) to better understand whether previous HAART treatment not including RAL might be associated with the emergence of mutations conferring resistance to INI; iii) to calculate the genetic barrier of primary and secondary mutations associated with INI resistance in different HIV-1 subtypes.

Materials and methods

Patients

IN variability was analyzed using stored plasma samples from 95 consecutive patients infected with HIV-1, as well as four HIV-2 positive patients referred to our Institution in the period December 2008 - December 2009. Patients with no available plasma samples or viral load < 1,000 HIV RNA copies/ml plasma were excluded from the analysis. Eligible patients were stratified on the basis of treatment history as follows: i) HAART-naïve patients, ii) RT and PR inhibitor-experienced but RAL-naïve (RTI/PI-experienced).

Real-time RT-PCR, RT-PCR and sequencing

HIV-1 plasma RNA levels were determined using the Versant HIV-1 RNA 3.0 Assay (Bayer, NY, USA), while HIV-2 plasma RNA levels were determined according to an in house developed real-time RT PCR [21]. For IN gene sequencing (codons 1-277), a region of the HIV-1 Pol gene was amplified in a nested-RT-PCR using primers Int1F, 5′-CAT GGG TAC CAG CAC ACA CAA AGG-3′ and Int1R, 5′-CCA TGT TCT AAT CCT CAT CCT GTC -3′ for the first PCR round, while primers Int2F 5′-GGA ATT GGA GGA AAT GAA CAA GTA GAT -3′ and Int2R 5′-GCC ACA CAA TCA TCA CCT GCC ATC-3′ were used in the second PCR round [12]. The first nested-RT-PCR reaction was performed in 50 μl using the SuperScript™ III Platinum® One-Step qRT-PCR System (Invitrogen, Carlsbad, CA, USA) with the following thermal profile: 30 min at 50°C and 10 min at 95°C for 1 cycle, 1 min at 95°C, 1 min at 52°C and 1 min and 10 sec at 72°C for 50 cycles followed by 10 min at 72°C. The nested PCR reaction was performed in 100 μl using TaqGold and the relevant buffer (Applied Biosystem, Foster City, CA, USA) with the following thermal profile: 10 min at 95°C for 1 cycle, 1 min at 95°C, 1 min at 50°C, and 1 min and 10 sec at 72°C for 30 cycles, followed by 10 min at 72°C [12]. RT and PR genes were sequenced in parallel [22]. Sequencing of amplicons was performed using an ABI PRISM 3100 Genetic Analyzer® (Applied Biosystem, Foster City, CA, USA) with the ABI PRISM™ Big Dye Terminator Cycle Sequencing Reaction kit.

Sequence analysis

IN, RT, and PR sequences were analyzed with the MEGA 4.0 version software [23]. Sequence distances were calculated using the Simmonic sequence editor (version 1.6) program [24], with the Kimura 2-Parameter as a distance estimated method. Divergence was defined as the mean proportion of nucleotide or amino acid differences between all sequence pairs. In each patient, only the predominant virus strain was taken into account to calculate variability. Integrate variability was also calculated in three functional domains: N-terminal domain (NTD), catalytic core domain (CCD), and C-terminal domain (CTD).

Genotypic resistance and genetic barrier

Resistance to antiretrovirals was estimated on the basis of the Stanford HIV drug resistance database report (http://hivdb.stanford.edu) and the geno2pheno® report (http://integrase.bioinf.mpi-inf.mpg.de/index.php). Twenty-seven IN positions related to 28 mutations in INI resistant HIV-1 strains were categorized as follows: i) primary mutations (E92Q, F121Y, E138A, G140A/S, Y143R/C/H, S147G, Q148H/R/K, S153Y, N155H, R263K) ii) ancillary mutations (H51Y, T66I, L74A/M/I, Q95K, T97A, E138K, Q146P V151I, E157Q,G163R, I203M, S230R) and iii) mutations with an uncertain role (V72I, T125K, A128Y, K160D, V165I, V201I; http://hivdb.stanford.edu).

The genetic barrier to INI-resistance was calculated in 27 IN amino acid positions with a method previously published by van de Vijver et al. [25]. The smallest number of transitions (scored as 1) or transversions (scored as 2.5) were used to calculate the genetic barrier. The genetic barrier was calculated with the sum of scores obtained for each amino acid position.

Statistical analysis

Statistical analyses were performed using GraphPad Prism (version 4.0) software (San Diego, CA, USA). To compare the nucleotide and amino acid divergence between groups of patients the Mann Whitney U-test was utilized, while the chi-square test was used for comparing the calculated genetic barrier for major and minor substitutions between groups of patients.

Results

Study population

Nucleotide (nt) and amino acid (aa) integrase variability was analyzed in 41 HAART-naïve patients, and 54 RTI/PI-experienced patients. Four HIV-2 strains were also analyzed. Among HIV-1 strains from HAART-naïve patients, 16 were subtype B and 25 were non-B strains (A, no.3; C, no.5; G, no.3; F, no.6; CRF02AG, no.6; CRF01AE, no.1; CRF12BF, no.1). Among HIV-1 strains from RTI/PI-experienced patients, 19 were subtype B and 35 were subtype non-B strains (A, no.1; A/K no.2; C, no.2 D, no.3; G, no.3; D/F, no.1; F, no.11; CRF02AG,
HIV IN, RT, and PR variability

Both IN nucleotide and amino acid variability was higher in HAART-naïve patients with respect to RTI/PI-experienced patients (p < 0.01; Table 1). Conversely, RT and PR nucleotide variability was higher in RTI/PI-experienced patients with respect to HAART-naïve patients (p < 0.01).

Gene variability in the HIV-1 B and non-B subtypes was also analyzed. In subtype B strains, IN amino acid variability was statistically higher in HAART-naïve patients with respect to RTI/PI-experienced patients (6.1 ± 1.5 vs 4.1 ± 1.3; p < 0.001). However, both RT (8.3 ± 2.3 vs 4.5 ± 1.2; p < 0.001) and PR (20.3 ± 7.5 vs 8.9 ± 2.8; p < 0.001) amino acid variability was higher in strains from RTI/PI-experienced patients with respect to HAART-naïve patients. In subtype non-B strains, IN amino acid variability was not statistically different in naïve patients with respect to RTI/PR experienced patients (6.9 ± 1.9 vs 7.1 ± 1.8; p > 0.05), whereas RT (8.0 ± 2.2 vs 7.0 ± 1.9; p < 0.001) and PR (13.3 ± 6.2 vs 10.8 ± 4.1; p < 0.001) amino acid variability was higher in RTI/PI-experienced patients with respect to HAART-naïve patients.

In Table 1, the number of conserved and variable amino acid residues of the IN gene in each group of virus strains is shown. The number of conserved residues in sequences from HAART-naïve patients and RTI/PI-experienced patients was comparable (Table 1). No differences between singleton sites and parsimony informative sites were observed among the variable residues in all patient groups (Table 1).

When the three functional domains of the IN gene were individually analyzed, the amino acid sequences from HAART-naïve patients were slightly more conserved than sequences from RTI/PI-experienced patients. In the analysis of amino acid variability in the three structural domains for all sequence categories, a higher variability in the NTD with respect to the CCD and the CTD was observed (p < 0.001; data not shown).

Frequency, distribution and genetic barrier of IN resistance mutations

In Table 2, mutations in positions associated with INI susceptibility are shown. The eight primary mutations associated with RAL or elvitegravir (EGV) resistance were not present in any of the strains from INI-naïve patients.

HIV-2 variability and mutation distribution

HIV-2 strains showed higher conservation with respect to HIV-1 subtype B and non-B strains (p < 0.001). In detail, in HIV-2 strains, 241/273 (88.3%) conserved sites and 32/273 (11.7%) variable sites were observed (Table 1). The analysis of four HIV-2 integrase genes showed that the mean nucleotide and amino acid variability was 13.0% ± 1.1 and 7.9% ± 1.4, respectively. Three out of four HIV-2 strains analyzed (all from RTI/PI-experienced patients but INI naïve) showed the presence of an E to T polymorphism, in a position where a primary mutation (E138A normally associated with RAL-resistant HIV-1 strains) was detected. Three secondary mutations I72V, E125D and S163D (Table 2) were also detected.

Discussion

The introduction of the new INI antiviral-drug class [6,26] is an important step forward in the treatment of HIV-1 infection [8]. Despite the success of HAART in managing HIV-1 infection, the development and worldwide spread of HIV-1 drug resistant strains remain serious issues. In this study, we analyzed the IN gene variability in parallel with RT and PR variability with the aim of evaluating whether HIV genetic background influences the appearance of IN mutations. The distribution of specific amino acids implicated in INI susceptibility was also compared in different HIV-1 subtypes.
Table 1 Conserved and variable amino acid distribution in Integrase sequences and amino acid divergence among RT, PR and IN sequences in HIV-1

Category (strain no.)	Mean nucleotide divergence ± SD	Mean amino acid divergence ± SD	IN conserved amino acid (%)	IN variable amino acid (%)	IN conserved amino acid in three functional domains (%)
	RT gene PR gene IN gene	RT gene PR gene IN gene	Singleton\(^a\) Parsimony\(^b\) NTD (1-50) CCD (51-212) CTD (213-277)		
HAART-naive (41)	9.2 ± 2.3 10.5 ± 2.9 8.8 ± 2.5	6.3 ± 1.8 11.3 ± 3.5 7.0 ± 1.8	180 (65.9) 36 (13.2) 57 (20.9)	26 (52.0) 114 (70.4) 40 (62.5)	
RT/PI-experienced (54)	9.8 ± 2.5 12.2 ± 3.6 8.3 ± 2.5	9.8 ± 2.6 18.8 ± 7.8 6.5 ± 1.9	170 (62.3) 39 (14.3) 64 (23.4)	26 (52.0) 103 (63.6) 41 (64.1)	
HAART-naive vs RT/PI-experienced	p < 0.001	ns ns ns ns ns	ns ns ns ns ns		
HIV-2 (4)	ND ND 13.0 ± 1.1 ND ND 7.9 ± 1.4	241 (88.3) 9 (3.3) 23 (8.4) 39 (78.0) 149 (91.9) 53 (82.8)			
HIV-2 vs HIV-1	p < 0.001 p < 0.001	p < 0.001			

SD: standard deviation; ND: not done; ns: not significant; NTD: N-terminal domain; CCD: catalytic core domain; CTD: C-terminal domain; RT: reverse transcriptase; PR: protease; IN: integrase.

\(^a\)A singleton site contains at least two types of amino acid with, at most, one occurring multiple times.

\(^b\)Parsimony-informative if it contains at least two types of amino acid, and at least two of these occur with a minimum frequency of two.

\(^{**}\)Significant p-values are reported.
and in patients naïve for treatment or exposed to RTI and PI. The simultaneous evaluation of RT, PR and IN identity showed that the IN gene had lower amino acid variability. This would confirm the high level of integrase sequence conservation reported by Rhee et al. [27]. Moreover, the analysis of three functional integrase domains showed only a small difference in the catalytic core domain.

The evaluation of IN variability in different patient categories showed no differences in subtype non-B and a higher divergence in subtype B strains from HAART-naïve compared with RTI/PI-experienced patients. These results are in contrast with the previously reported greater amino acid IN divergence in RT/PI-experienced patients [28]. On the other hand, we observed a greater RT and PR amino acid divergence in both B and non-B strains from RTI/PI-experienced patients with respect to HAART-naïve patients. These findings are consistent with the hypothesis that multiple rounds of positive selection by subsequent HAART regimens including different RTI and PI, may lead to the emergence of a wider number of RT and PR variants in contrast with little or no change in the IN gene.

In keeping with previous studies [13,29-32] no primary IN mutations associated with INI susceptibility were present in strains from INI-naïve patients.

Table 2 HIV-1 and HIV-2 amino acid polymorphisms at positions associated with INI (RAL and EGV) resistance

Mutation categories	Known amino acid substitution	Rate of INI resistance mutations in INI-naïve patients (%)	HIV-1 amino acid substitution	HIV-2 clade A ROD subtype consensus	HIV-2 substitution (4 strains)
Primary mutations					
F121Y					
E138A					
G140A/S					
Y143R7C/H					
S147G					
Q148H/R/K					
S153Y					
N155H					
R263K					
Secondary mutations					
H51T					
T66I					
L74F/M/I	7 (7.4)		I		
Q95K					
T97A	2 (2.1)		S		
E138K					
Q146P					
V151M					
E157Q	3 (3.2)		Q		
G163R					
I203D	3 (3.2)		M		
S230R/M					
Polymorphic and non-polymeromorphic mutations					
V72I	50 (52.6)		L		
T125K			A		
A128T			A		
K160D			Q		
V165I	18 (18.9)		I		
V201I	68 (71.6)		I		

RTI: reverse transcriptase inhibitor; PI: protease inhibitor; INI: integrase inhibitor. New polymorphisms are reported in boldface.
IN codon position	Substitution	HAART-naive (n = 41)	RTI/PI-experienced (n = 54)	HAART-naive (n = 41)	RTI/PI-experienced (n = 54)				
		Codon % distribution	Mutational resistance codon	Lower score	IN codon position	Substitution	Codon % distribution	Mutational resistance codon	Lower scores
51	H51Y	CAT 98 100	TAT 1 143 Y143C TAC 90 90	TGC 1					
		CAC 2 0	TAC 1 10 TAT 10 10	GTC 1					
66	T66I	ACA 98 94	ATA 1 90 90 Y13R TAC 90 90	CGC 2					
		ACC 0 6	ATC 1 10 10 TAT 10 10	CGT 2					
72	V72I	GTC 15 6	ATC 1 90 90 Q146P CAA 98 98	CCG 2.5					
		GTA 0 6	ATA 1 90 90 CAA 98 98	AAA 2.5					
		GTG 0 4	ATA 2 147 S147G AGT 76 70	GGT 1					
		ATT 41 45	0 80 96 CAT/C 2.5						
		ATC 12 2	0 148 Q148H CAA 80 96						
		ATA 0 4	0 80 96 CAT/C 2.5						
74	L74I	CTG 72 78	ATA 3.5 151 V151I GTA 71 72						
		CTA 10 15	ATA 2.5 151 V151I GTA 71 72						
		TTA 10 2	ATA 2.5 151 V151I GTA 71 72						
		TTG 2 0	ATA 3.5 151 V151I GTA 71 72						
		ATT 0 0	0 153 S153Y TCT 76 87	TAT 2.5					
		ATA 2 7	0 153 S153Y TCT 76 87	TAT 2.5					
		ATG 2 0	ATA 1 15 11 TAC 2.5						
		GAA 63 61	CAA 2.5 TCA 7 2 TAT/C 5						
		GAG 37 39	CAG 2.5 A153 GCC 2 0 TAC 5						
		CAA 32 28	AAA 2.5 155 N135H AAT 90 93	CAT 2.5					
		CAG 68 70	AAG 2.5 155 N135H AAT 90 93	CAT 2.5					
		CGG 0 2	AAG 3.5 N135S AAT 90 93	AGT 1					
		ACA 98 96	GCA 1 AAC 10 7 CAC 2.5						
		GCA 0 4	0 157 E157Q GAA 88 91	AAA 2.5					
		TCA 2 0	GCA 2.5 GAG 7 7 CAG 2.5						
92	E92Q	GAA 63 61	CAA 2.5 TCA 7 2 TAT/C 5						
		GAG 37 39	CAG 2.5 A153 GCC 2 0 TAC 5						
		CAA 32 28	AAA 2.5 155 N135H AAT 90 93	CAT 2.5					
		CAG 68 70	AAG 2.5 155 N135H AAT 90 93	CAT 2.5					
		CGG 0 2	AAG 3.5 N135S AAT 90 93	AGT 1					
		ACA 98 96	GCA 1 AAC 10 7 CAC 2.5						
		GCA 0 4	0 157 E157Q GAA 88 91	AAA 2.5					
		TCA 2 0	GCA 2.5 GAG 7 7 CAG 2.5						
121	F121Y	TTC 90 98	TAC 2.5 Q157 CAA 5 2 0						
		TTT 10 2	TAT 2.5 160 K160D AAA 85 93	GAT/C 3.5					
125	T125K	ACA 27 18	AAG 2.5 AAG 11 5 GAT/C 3.5						
		ACT 10 4	AAA/G 5 R160 AGA 2 0 GAT 4.5						
		ACG 12 24	AAG 2.5 Q160 CAA 2 2 GAT/C 5						
		GCA 44 33	AAA 3.5 163 G163R GGA 63 57	AGA 1					
Table 3: Codon distribution and calculated genetic barrier at 27 integrase inhibitor susceptible positions in HIV-1 INI-naïve patients (Continued)

Position	Codon	Frequency	Genetic Barrier	Calculated Genetic Barrier			
V125	GCG	2	AAG	3.5	GGG 27	AGG 1	
	GCT	0	AAA/G	6	GGT 0	CGC,AGA/G 3.5	
	GTG	0	AAG	3.5	E163	GAA 0	AGA 2
	GTA	2	AAA	3.5	N163	AAC 0	CGC,AGA/G 3.5
	ATG	2	AAG	2.5	A163	GCG 0	CTG,AGG 3.5
P125	CCG	0	AAG	5	165	GTC 1	ATT 1
	GCC	37	ACC	1	GTC 1	ATT 1	
	GCT	9	ACT	1	GTC 1	ATT 1	
128	A128T	54	ACA	1	ATA 20	ATA 2	
	GCA	50	AAA	1	I165	ATA 18	0
	GCC	37	AGC	1	I165	ATA 70	0
	GCT	9	ACT	1	I165	ATA 70	0
138	E138K	100	AAA	1	I165	ATA 20	0
D138	GAC	0	AAA/G	2	V201I	GTA 24	1
140	GGA	46	AGT/C	3.5	GTG 2	ATA 2	
	GCC	46	AGC	1	I201	ATA 70	0
	GGT	5	AGT/C	1	I201	ATA 70	0
	GGG	5	AGT/C	3.5	M203	AGT 5	0
G140A	GGA	46	GCA	2.5	S230R	AGC 96	1
	GCC	46	GCT	2.5	N230	AAC 10	0
	GGT	5	GCT	2.5	R263K	AGA 85	1
	GGG	6	GCT/G	2.5	AGG 15	AAA 1	

The amino acids differing from wild-type or expected mutant are in boldface.
However, in sequences from INI-naïve patients some secondary mutations, which have been shown to contribute to RAL resistance [28-31], were found. The low prevalence and the equal distribution of these polymorphisms among the different groups of patients are in contrast with the reported appearance of secondary mutations in association with prior antiretroviral exposure [28,31]. Thus, our results are in accordance with findings by Garrido et al. [32] and suggest that the emergence of RAL resistance mutations is weakly influenced by prior exposure to antiretrovirals other than INI.

Finally, new polymorphisms (Q95R, and T97S) in positions related to INI resistance were found. Whether and how these mutations might influence viral fitness or replication remains to be clarified.

The genetic barrier was calculated for 27 amino acid positions related to INI susceptibility. The majority of these positions were highly conserved. Our analysis extends the results reported by Maiga et al [33] (including only B and CRFD02 AG subtypes) to a wider collection of HIV-1 subtypes which reflects the evolving epidemiology of this infection in our region [19]. Analysis of codon usage distribution between sequences from HAART-naïve and RTI/PI-experienced patients revealed a single position (148), with a predominant difference in codon usage. These findings suggest a marginal yet valid influence of prior antiretroviral exposure on the genetic barrier in our study population [33]. A larger dataset would allow better definition of the role played by previous treatment with RTI and PI on INI susceptibility. On the other hand, the great majority of patients on HAART show complete suppression of peripheral viral load, and the enrollment of 95 viremic patients required 1 year to be completed.

Due to the small number of HIV-2 sequences, our analysis did not allow us to draw conclusions on HIV-2 variability. However, of particular interest was the detection of mutations in IN positions associated with RAL resistance. This finding confirms and extends a previous observation by Xu et al. [34]. The identification of INI resistance mutations in INI-naïve patients infected with HIV-2 highlights the urgent need for future studies on HIV-2 and may necessitate avoidance of INI in the treatment of these patients.

In conclusion, primary INI resistance-associated mutations were not present in this population of INI naïve HIV-1 infected individuals. Exposure to antivirals other than INI does not seem to significantly influence the emergence of mutations implicated in INI resistance.

Acknowledgements
We thank all the technical staff of the Virology Unit, Laurene Kelly for revision of the English, and Daniela Sartori for editing. This work was partially supported by the Ministero della Salute, Ricerca Corrente 80207 and Programma Nazionale AIDS (convenzione 40HSS).

Author details
1Molecular Virology Unit, Virology and Microbiology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy. 2Institute of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy. 3Experimental Research Laboratories, Biotechnology Area, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.

Authors’ contributions
AP has made great contribution to sequences analysis and manuscript preparation. SP and RG have been involved in sample collection and sequencing. GC has been involved in sample collection. FB has contributed in manuscript preparation and fund raising.

All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 19 January 2011 Accepted: 31 March 2011 Published: 31 March 2011

References
1. Anker M, Corales RB: Raltegravir (MK-0518): a novel integrase inhibitor for the treatment of HIV infection. Expert Opin Investig Drugs 2008, 17:97-103.
2. DeJesus E, Berger D, Markowitz M, Cohen C, Hawkins T, Ruane P, Elion R, Farthing C, Zhong L, Cheng AK, McColl D, Kearney BP, for the 183-0101 Study Team: Antiviral activity, pharmacokinetics, and dose response of HIV-1 integrase inhibitor GS-9137 (JTK-303) in treatment-naïve and treatment-experienced patients. J Acquir Immun Defic Syndr 2006, 43:1-5.
3. Billich A, S-1360 Shionogi-GlaxoSmithKline. Curr Opin Investig Drugs 2003, 4:206-209.
4. Egbertson MS, Moritz HM, Melamed JY, Han W, Perlow DS, Kuo MS, Embrey M, Vacci JP, Zrada MM, Cortes AR, Wallace A, Leonard Y, Hazuda DJ, Miller MD, Fellock PJ, Stillmock KA, Witmer MV, Schleif W, Gabryelski LJ, Moyer G, Ellis JD, Jin L, Xu W, Braun MP, Kassahun K, Tsou NN, Young SD: A potent orally active HIV-1 integrase inhibitor. Bioorg Med Chem Lett 2007, 17:1392-1398.
5. Markowitz M, Morales-Ramirez JO, Nguyen BY, Kovacs CM, Steigbigel RT, Cooper DA, Liporace R, Schwartz R, Isaacs R, Gilde LR, Wenning L, Zhao J, Teppeler H: Antiretroviral activity, pharmacokinetics, and tolerability of MK-0518, a novel inhibitor of HIV-1 integrase, dosed as monotherapy for 10 days in treatment-naïve HIV-1-infected individuals. J Acquir Immun Defic Syndr 2006, 43:509-515.
6. Markowitz M, Nguyen BY, Gotuzzo E, Prada G, Morales-Ramirez JO, Crumpacker CS, Isaacs RD, Gilde LR, Wan H, Miller MD, Wenning LA, Teppeler H, Protocol 004 Part II Study Team: Rapid and durable antiretroviral effect of the HIV-1 integrase inhibitor raltegravir as part of combination therapy in treatment-naïve patients with HIV-1 infection: results of a 48-week controlled study. J Acquir Immun Defic Syndr 2007, 46:125-133.
7. Lee DJ, Robinson WE Jr: Human immunodeficiency virus type 1 (HIV-1) integrase: resistance to diketo acid integrase inhibitors impairs HIV-1 replication and integration and confers cross-resistance to L-chicoric acid. J Virol 2004, 78:5891-5897.
8. Grinsztejn B, Nguyen BY, Katlama C, Gallant JM, Lazzarin A, Vittinghoff E, Gonzalez CJ, Chen J, Harvey CM, Isaacs RD, Protocol 005 Team: Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet 2007, 369:1261-1269.
9. Di Biagio A, Buciozzone B, Rosso R, Viganò G, Kardi G, Viscoli C, Rusconi S: Successful rescue therapy with raltegravir (MK-0518) and Etravirine (TMC125) in an HIV-infected patient failing all four classes of antiretroviral drugs. AIDS Patient Care STDs 2008, 22:415-417.
10. Cooper DA, Steigbigel RT, Gatell JM, Rockstroh JK, Katlama C, Yeni P, DiBiagio A, Bruzzone B, Rosso R, Gilde LR, Wan H, Miller MD, Wenning LA, Teppeler H, Protocol 004 Part II Study Team: Rapid and durable antiretroviral effect of the HIV-1 integrase inhibitor raltegravir as part of combination therapy in treatment-naïve patients with HIV-1 infection: results of a 48-week controlled study. J Acquir Immun Defic Syndr 2007, 46:125-133.
Teams: Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med 2008, 419:355-365.

11. Malet I, Delelis O, Valantin MC, Montes B, Soulie C, Widren M, Tchetanov L, Peytavin G, Reyens J, Mouscard JF, Katlama C, Calvez V, Marcellin AG. Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. J Antimicrob Agents Chemother 2008, 52:1411-1418.

12. Baldanti F, Paolucci S, Gulinetti R, Brandolini M, Barbarini G, Maserati R. Early emergence of raltegravir resistance mutations in patients receiving HAART salvage regimens. J Med Virol 2010, 82:116-122.

13. Canduccio Filippo, Sampaolo Michela, Maria Chiara Marinozzi, Boeri Enzo, Spagnuolo Vincenzo, Gali Andrea, Castagna Antonella, Lazzarina Adriano, Clementia Massimo, Gianotti Nicola: Dynamic patterns of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations. J Virol 2003, 77:11439-11470.

14. Hombrouck A, Voet A, Van Remoortel B, Desadeler C, De Mayer M, Debyser Z, Witvrouw M. Development of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations. J Virol 2003, 77:11439-11470.

15. Kobayashi M, Nakahara K, Seki T, Miki S, Kawasuichi S, Suyama A, Wakisaka-Morimoto C, Kodama M, Endoh T, Osugi E, Matsushita Y, Muri H, Fujitsuka T, Yashinaga T, Garvey E, Foster S, Underwood M, Johns B, Sato A, Fujitawa T. Selection of diverse and clinically relevant integrase-resistant human immunodeficiency virus type 1 mutants. Antiviral Res 2008, 80:213-222.

16. Fikvrt V, Van Maelle B, Vercammen J, Hantson T, Van Remoortel B, Gurnari MM, Pannecoque C, De Maeyer M, Engelborghs Y, De Clercq E, Debyser Z, Witvrouw M. Development of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations. J Virol 2003, 77:11439-11470.

17. Sampaolo Michela, Maria Chiara Marinozzi, Boeri Enzo, Spagnuolo Vincenzo, Gali Andrea, Castagna Antonella, Lazzarina Adriano, Clementia Massimo, Gianotti Nicola: Dynamic patterns of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations. J Virol 2003, 77:11439-11470.

18. Canduccio Filippo, Sampaolo Michela, Maria Chiara Marinozzi, Boeri Enzo, Spagnuolo Vincenzo, Gali Andrea, Castagna Antonella, Lazzarina Adriano, Clementia Massimo, Gianotti Nicola: Dynamic patterns of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations. J Virol 2003, 77:11439-11470.

19. Malet I, Delelis O, Valantin MC, Montes B, Soulie C, Widren M, Tchetanov L, Peytavin G, Reyens J, Mouscard JF, Katlama C, Calvez V, Marcellin AG. Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. J Antimicrob Agents Chemother 2008, 52:1411-1418.

20. Baldanti F, Paolucci S, Cunloni R, Brandolini M, Barbarini G, Maserati R. Early emergence of raltegravir resistance mutations in patients receiving HAART salvage regimens. J Med Virol 2010, 82:116-122.

21. Canduccio Filippo, Sampaolo Michela, Maria Chiara Marinozzi, Boeri Enzo, Spagnuolo Vincenzo, Gali Andrea, Castagna Antonella, Lazzarina Adriano, Clementia Massimo, Gianotti Nicola: Dynamic patterns of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations. J Virol 2003, 77:11439-11470.

22. Fikvrt V, Van Maelle B, Vercammen J, Hantson T, Van Remoortel B, Gurnari MM, Pannecoque C, De Maeyer M, Engelborghs Y, De Clercq E, Debyser Z, Witvrouw M. Development of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations. J Virol 2003, 77:11439-11470.

23. Kobayashi M, Nakahara K, Seki T, Miki S, Kawasuichi S, Suyama A, Wakisaka-Morimoto C, Kodama M, Endoh T, Osugi E, Matsushita Y, Muri H, Fujitsuka T, Yashinaga T, Garvey E, Foster S, Underwood M, Johns B, Sato A, Fujitawa T. Selection of diverse and clinically relevant integrase-resistant human immunodeficiency virus type 1 mutants. Antiviral Res 2008, 80:213-222.

24. Fikvrt V, Van Maelle B, Vercammen J, Hantson T, Van Remoortel B, Gurnari MM, Pannecoque C, De Maeyer M, Engelborghs Y, De Clercq E, Debyser Z, Witvrouw M. Development of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations. J Virol 2003, 77:11439-11470.

25. Sampaolo Michela, Maria Chiara Marinozzi, Boeri Enzo, Spagnuolo Vincenzo, Gali Andrea, Castagna Antonella, Lazzarina Adriano, Clementia Massimo, Gianotti Nicola: Dynamic patterns of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations. J Virol 2003, 77:11439-11470.

26. Fikvrt V, Van Maelle B, Vercammen J, Hantson T, Van Remoortel B, Gurnari MM, Pannecoque C, De Maeyer M, Engelborghs Y, De Clercq E, Debyser Z, Witvrouw M. Development of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations. J Virol 2003, 77:11439-11470.

Cite this article as: Piralla et al: HIV integrase variability and genetic barrier in antiretroviral naive and experienced patients. Virology Journal 2011 8:149.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit