Study of medicinal plants in the geothermal area of Mount Seulawah Agam, Aceh Besar District, Indonesia

MUHAMMAD DOUDI¹, SAIDA RASNOVI², DAHLAN DAHLAN²*, HENDRIX INDRA KUSUMA¹, MUSLICH HIDAYAT³

¹Master in Biology, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Banda Aceh, Indonesia
²Biology Departement, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala University, Banda Aceh, Indonesia
³Biology Department, Faculty of Science and Technology, Ar-Raniry State Islamic University, Banda Aceh, Indonesia

Abstract. The area of mount Seulawah Agam is an area of active volcano paths that impact the appearance of volcanic symptoms, that will affect the species of plants that grow in the area. This study aims to determine the potential of medicinal plant species and their diversity in the geothermal area of Seulawah Agam, Aceh Besar district. The data collection was carried out using multiple square plots placed using stratified sampling based on the soil temperature zone at a predetermined. Each area is set on four impartial actions in systematic random. The name of the species and its individual quantity of each potential plant was documented and analyzed accordingly. Then, they were analyzed based on scientific journals and identification books for medicinal plants. Data analysis was performed using importance value index and Diversity Index. The study found there were 32 species of 21 families of medicinal plants were identified started from the growth rates of seedlings, saplings, poles, and trees. The medicinal plants' diversity index analysis at each growth rate is classified into the medium category. Based on literature studies, plants' parts are commonly used as medicines such as leaves roots, sap, bark, and flowers. Utilization can be used to treat a variety of diseases and illnesses, as well as a parasitic infection. The result shows that the geothermal area of Seulawah Agam in Aceh Besar district has excellent resources and potential for medicinal plants that become used for the benefit of the surrounding community: they need to be maintained so that they still be beneficial for future generations.

Keywords: geothermal area, diversity plants, growth rate, medicinal plants.

INTRODUCTION

Mount Seulawah Agam is an active volcano located in Aceh. The volcano has two craters, namely the Van Heuzst crater and the Simpago crater. The volcano is also surrounded by fumaroles, and hot springs [1]. Hot springs are an indicator of geothermal energy [2]. The hot springs area of Ie Jue Lamteuba is located at the foot of Mount Seulawah Agam, Aceh Besar district, Aceh. The site is still relatively natural and is rarely disturbed by human activities. Therefore, with such environmental conditions, many species of plants grow in the area that have adapted to the extreme environment [3]. Medicinal plants are plants used for their medicinal properties in many traditional health treatments and are also utilized in the form of modern medicines [4]. The use of traditional medicine is one of the primary health service programs. It is also an alternative to modern medicine in order to fulfill basic medical needs [5]. Treatment using traditional medicinal plants continues to this day and the practice has even increased in recent years [6].

The use of plants used as restorative materials for various diseases has been known and utilized for a long time by the community [7]. Knowledge of medicinal plants is based on practices and skills passed down from one generation to the next. The tradition of utilizing medicinal plants has been partly validated in this style. However, many of these traditional
practices have not been scientifically recorded and disseminated through publications, especially the species of medicinal plants found in geothermal areas. This study is aimed at learning more about the diversity of medicinal plant species in the geothermal area of Seulawah Agam, Aceh Besar District

METHODOLOGY

Place and Time of Research

This research was conducted in a geothermal area (Ie Jue hot springs), Lamteuba, Mount Seulawah Agam, Aceh Besar District (Figure 1). The research was carried out from August 2019 to August 2020.

Data Collection

The data was collected in multiple square plots that were chosen based on the stratified sampling of soil temperature zones at a predetermined location (Figure 2).

Each observation plot was made into nested plots, namely: 20 m x 20 m for tree strata observation (tree diameter ≥ 20 cm), 10 m x 10 m for pole level (tree diameter 10 cm to < 20 cm), 5 m x 5 m for sapling level (tree diameter <10 cm, height > 1.5 m) and 2 m x 2 m for seedling level (plant height ≤ 1.5 m). The sample plot scheme carried out in the field can be seen in Figure 3.

For each plot that has been determined, plant species were observed at each growth level, namely seedlings, saplings, poles, and trees. The names and numbers of individuals of each plant species in the observation plot were recorded, then identified using plant determination key books from Steenis [8] and Tjitosoeppomo [9]. Subsequently, plants which had potential for medicinal properties were identified through a literature study using scientific journals and identification books of medicinal plant species. The books used included The Taxonomy of Medicinal Plants Collection (Aspan) [10], Efficacious Family Medicinal Plants (Wibisono) [11], The Smart Book of Medicinal Plants (Utami) [12], and The Indonesian Medicinal Plants Encyclopedia (Bangun) [13]. The journals that were used as references to identify medicinal plants can be seen in Table 4.

Figure 1. Map of the research area

Figure 2. Design sketch of the laying of sample plots in the field based on soil temperature zones

Notes:
A (Seedling) : 2 m x 2 m
B (Sapling) : 5 m x 5 m
C (Pole) : 10 m x 10 m
D (Tree) : 20 m x 20 m

Figure 3. Plot sketch of an observation of medicinal plant data.
Table 1. Species of medicinal plants found in the geothermal area of Seulawah Agam, Aceh Besar

No.	Family	Species	Growth Rate	Seedlings	Saplings	Poles	Trees
1	Amaranthaceae	Amaranthus spinosus	✓	✓			
2	Anacardiaceae	Lannea nigritana			✓		
3	Anacardiaceae	Mangifera foetida			✓		
4	Annonaceae	Annona squamosa		✓			
5	Annonaceae	Annona cherimola			✓		
6	Apocynaceae	Alstonia scholaris	✓		✓	✓	✓
7	Asteraceae	Chromolaena odorata	✓				
8	Asteraceae	Blumea balsamifera	✓				
9	Cleomaceae	Cleome viscosa			✓		
10	Clusiaeae	Calophyllum inophyllum	✓				
11	Euphorbiaceae	Acalypha indica	✓				
12	Euphorbiaceae	Claoxylon indicum			✓		
13	Euphorbiaceae	Bischofia javanica					✓
14	Euphorbiaceae	Bridelia stipularis					✓
15	Euphorbiaceae	Aleurites moluccana					✓
16	Fabaceae	Desmodium triflorum	✓				
17	Fabaceae	Senna tora	✓				
18	Lamiaceae	Ocimum tenuiflorum					✓
19	Malvaceae	Urena lobata	✓				
20	Malvaceae	Microcos tomentosa	✓	✓			
21	Malvaceae	Ceiba petandra		✓			
22	Meliaceae	Melia azedarach	✓	✓			
23	Moraceae	Strylbs asper	✓	✓	✓		
24	Myrtaceae	Syzygium jambos	✓	✓	✓		
25	Piperaceae	Piper aduncum	✓				✓
26	Poaceae	Axonopus compressus	✓	✓			
27	Rutaceae	Murraya koenigii		✓			
28	Salicaceae	Flacourtia rukam	✓		✓		✓
29	Sapindaceae	Erioglossum rubiginosum	✓	✓	✓		✓
30	Ulmaceae	Trema orientalis					✓
31	Verbenaceae	Stachyartheta jamaicensis	✓				
32	Verbenaceae	Vitex pinnata	✓	✓	✓		✓

Measurements of abiotic environmental factors were carried out in each observation zone from 06.00 am to 08.00 am. The measured data on abiotic environmental factors included soil temperature, air temperature, soil humidity, air humidity, and sunlight intensity.

Data Analysis

The data was analyzed using the Importance Value Index analysis (IVI) and the Shannon-Wiener diversity index analysis with the following formula:

1. **Importance Value Index (IVI)**

 IVI species at the growth rate of seedling and sapling = KR + FR

 IVI species at the level of Pole and Tree Growth = KR + FR + DR

 Where:

 \[K = \frac{\text{The number of individual of a species}}{\text{Area of plots}} \]

 \[KR = \frac{\text{The density of a species}}{\text{Density of all species}} \times 100 \]

 \[F = \frac{\text{Number of compartments where a species is found}}{\text{Sum of all sample plots}} \]

 \[FR = \frac{\text{Frequency of a species}}{\text{Frequency of all species}} \times 100 \]

 \[D = \frac{\text{Total basal area of a species}}{\text{Sample plot area}} \]

 \[DR = \frac{\text{Dominance of a species}}{\text{Dominance of all species}} \times 100 \]
Table 2. Five dominant species of medicinal plants at each growth rate in the geothermal area of Seulawah Agam, Aceh Besar District

Growth Rate	Dominant Species	KR (%)	FR (%)	DR (%)	Importance Value Index (%)
Seedling	Desmodium triflorum	42.55	5.71	-	48.26
	Chromolaena odorata	13.83	20.00	-	33.83
	Stachytarpheta jamaicensis	12.23	17.14	-	29.37
	Senna tora	5.85	8.57	-	14.42
	Axonopus compressus	8.51	5.71	-	14.22
Sapling	Streblus asper	16.32	13.51	-	29.84
	Erioglossum rubiginosum	14.28	13.51	-	27.79
	Flacourtia rukam	10.20	10.81	-	21.01
	Vitex pinnata	10.20	10.81	-	21.01
	Microcos tomentosa	8.16	8.10	-	16.27
Pole	Alstonia scholaris	15.15	16.00	25.00	56.15
	Streblus asper	15.15	16.00	25.00	56.15
	Vitex pinnata	15.15	12.00	25.00	52.15
	Erioglossum rubiginosum	12.12	12.00	25.00	49.12
	Microcos tomentosa	12.12	8.00	0.00	20.12
Tree	Melia azedarach	26.19	20.00	27.50	73.69
	Vitex pinnata	23.81	20.00	22.50	66.31
	Aleurites moluccana	11.90	10.00	20.00	41.90
	Erioglossum rubiginosum	9.52	13.33	12.50	35.35
	Alstonia scholaris	9.52	10.00	7.50	27.02
Importance value index (IVI) analysis was used to determine the dominant species in an observation plot [20]. The dominant species was defined as a species that can utilize its environment more efficiently than other species in the same place [21]. The index of the importance value of medicinal plants at each growth rate in the geothermal area of Al Seulawah Agam, Aceh Besar district, can be seen in Table 2.

Based on Table 2, it is clear that Desmodium triflorum is the predominant medicinal plant species present in the area when compared with other medicinal plants in the seedling growth rate category. It comprises about 48.26% of the total species listed in the seedling category. Desmodium triflorum is a species of medicinal plant that is widespread in Southeast Asia, South Asia, and East Asia [22]. This is influenced by their ability to spread seeds that are very easily carried away by wind and water [23]. This plant species contains many diseases fighting compounds, including flavonoids, saponins, polyphenols, and trigonelline compounds [24].

Streblus asper is the most dominant medicinal plant compared to other medicinal plants at the sapling growth rate, with a total of 29.84%. The importance value index illustrates that this species has more growth suitability than other plant species [25]. The leaves of this plant can be used to treat ulcers and hepatitis [19].

The species Alstonia scholaris and Streblus asper were discovered to be the most prominent species of plants in the pole growth rate category. Compared with others, they amounted to a combined total of 56.15% of the total category. These values indicate that these species play a vital role in the area because they have an IVI value of ≥ 15 % [20].

Melia azedarach is a species of medicinal plant that is the most dominant compared to other medicinal plants in the tree growth rate category, with a total of 73.69%. The high IVI value indicates that this species is prevalent because it has adapted to the environment better than other species [26]. The bark and leaves of Melia azedarach can be used as a medicine to treat high blood pressure and roundworms [19].

Diversity of Medicinal Plant Species in the Geothermal Area of Seulawah Agam, Aceh Besar District

The analysis of the diversity index for medicinal plants in the geothermal area of Seulawah Agam, Aceh Besar district, can be seen in Table 3.

Based on Table 3, it can be seen that the diversity index of medicinal plants in the geothermal area of Seulawah Agam, Aceh Besar district at each growth rate is classified into the medium category. This indicates that each of the growth rates have a reasonably good level of plant growth stability in the area.

Species diversity can be used to measure community stability, such as the ability of a community to keep itself stable despite the disturbance of its components [27]. The species diversity index also shows the amount of variation in plant species in one place. The higher the diversity index value, the higher the diversity of species, and the ecosystem’s stability in an area [28].

Utilization of the potential of medicinal plants in the geothermal area of Seulawah Agam, Aceh Besar District

The utilization of therapeutic plant potential based on literature review in the geothermal area of Seulawah Agam, Aceh Besar District, can be seen in Table 4. The table shows that the parts of plants used as traditional medicine consist of roots, bark, sap from bark, leaves, and flowers.

Table 4 shows that the leaves of medicinal plants are the most widely used as a medicine. The leaves accumulate many secondary metabolites that are useful as medicines, such as alkaloids, tannins, essential oils, and other organic compounds stored in vacuoles or additional tissue in leaves such as trichomes [44].

The utilization of the leaves does not have a negative effect on the survival of medicinal plants. The part of the plant that needs to be limited in its use in medicine is the tuber, because the use of this part can kill the plant [49].

Many different benefits and uses of medicinal plant species were identified in the geothermal Seulawah Agam. Based on the literature study, these plants can be used to treat diarrhea, fever, dysentery, malaria, wounds, toothache, vaginal discharge, ulcers, hypertension, hepatitis, malaria, and many others.
No	Species Names	Usefulness	Plant part used	Ref.
1	*Amaranthus spinosus*	Used to treat diarrhea, eczema, dysentery, teeth, gonorrhea, and ulcers.	Leaf	[29]
2	*Lannea nigritana*	Used to treat raho	Leaf	[41]
3	*Mangifera foetida*	Used to treat itching	Leaf	[41]
4	*Annona Squamosa*	Used to treat intestinal worms, indigestion, skin wounds, ulcers, and scabies.	Leaf	[30]
5	*Annona cherimola*	Used to treat internal disease	Leaf	[43]
6	*Alstonia scholaris*	Used to promote hair growth	Bark sap	[17]
7	*Chromolaena odorata*	Used as a medication for wounds, scabies or itching, antioxidants	Leaf	[41]
8	*Blumea balsamifera*	Internal medicine and diarrhea	Leaf	[35]
9	*Cleome viscosa*	Rheumatic drugs	Leaf	[32]
10	*Calophyllum inophyllum*	Kidney medicine	Bark	[33]
11	*Acalypha indica*	Used to treat nosebleeds, lower high blood uric acid levels, rheumatism,	Roots and Leaves	[31]
		diabetes, aches, pains, and wound medication		[43]
12	*Claroxyylon indicum*	Used to treat malaria	Leaf	[40]
13	*Bischofia javanica*	Used to treat diabetes mellitus, cholesterol, and abdominal pain	Bark	[42]
14	*Bridelia stipularis*	Used to treat dysentery	Bark	[46]
15	*Aleurites molucca*	Used to treat constipation, ambient, promote hair growth, chapped and wet	Bark and Leaves	[19]
		feet		[41]
16	*Desmodium triflorum*	Used treat diarrhea	Leaves and whole plant	[46]
17	*Senna tora*	Used to treat liver disease	Leaf	[45]
18	*Ocimum tenuiflorum*	Used to treat, expectorant, diaphoretic, anthelmintic, analgesic, as a	Leaf	[34]
		tonic, and for cancer prevention		[36]
19	*Urena lobata*	Medication for wounds, abdominal pain, fever, anti-inflammatory, anti-	Root or Whole plant	[42]
		rheumatic, anti-malarial, vaginal discharge, vomiting of blood, difficulty		[48]
		giving birth, broken bones, and snake bites.		
20	*Microcos tomentosa*	Used to treat diarrhea	Leaf	[33]
21	*Ceiba petandra*	Used to treat hemorrhoids, heartburn, dysentery, and asthma	Leaf	[42]
22	*Media azedarach*	Used to treat high blood pressure and roundworms	Bark and Leaves	[19]
23	*Streblus asper*	Used to treat ulcers and hepatitis	Leaf	[41]
24	*Syzygium polyanthum*	Used to treat hypertension	Leaf	[43]
25	*Piper aduncum*	Toothache medicine	Leaf	[43]
26	*Axonopus compressus*	Medicine for stomach pain, cough	Leaf	[36]
27	*Murraya koenigii*	Diarrhea, dizziness, abdominal pain, influenza, rheumatism, medicine for	Leaf	[38]
		wounds and diabetes		
28	*Flacourtia rukam*	Diarrhea and dysentery drugs	Fruit	[37]
29	*Erioglossum rubiginosum*	Used to treat internal disease	Bark	[43]
30	*Trema orientalis*	Sprain medicine	Bark	[44]
31	*Stachyterpha jamaicensis*	Tonsil medicine, sore throat, and vaginal discharge	Flowers, leaves, and	[32]
			roots	[48]
32	*Vitex pinnata*	Used to treat diarrhea, dysentery, fever, and malaria	Leaves and Leather Trunk	[47]
Furthermore, the most common method used to process the plants was by boiling and pounding them. Boiling is very common and effective because people generally prefer to consume these plants after they have been boiled in water rather than consume them directly. The healing process is also much faster because the healing compounds of the plants are instantly released into the water and more easily processed by the body’s metabolism when consumed [50].

CONCLUSION

The species of medicinal plants found in the geothermal area of Seulawah Agam, Aceh Besar district, consisted of as many as 21 families of 32 identified plant species starting from the growth rate of seedlings, saplings, poles, and trees. Meanwhile, the diversity index at each growth rate is classified into the medium category. Plants that were commonly used as medicines were identified based on literature studies, and the parts most commonly used in traditional medicines were the leaves, roots, sap, bark, and flowers. This study is expected to be used by the local community for critical data about the utilization of medicinal plant species found in the geothermal area of Seulawah Agam. This study can also be used as a reference for further research related to medicinal plants in the geothermal area.

ACKNOWLEDGMENT

The authors would like to thank all parties who have helped both in funding the research and in the process of collecting research data in the field. Syiah Kuala University funded this research, Ministry of Research, Technology, and Higher Education through the 2020 Masters Thesis Research Fund with Contract Number: 44/UN.11.2.1/PT.01.03 / DPRM / 2020.

REFERENCE

[1] Syukri, M.; Fadhli, Z.; and Saad, R. 2014. The investigation of hot spring flow using resistivity method at geothermal fields in Seu'um. EJGE 19 2419-2427.
[2] Saptadji, N. M. 2002. Teknik panasbumi. (Bandung: Institut Teknologi Bandung).
[3] Stout, R. G.; and Al-Niemi, T. S. 2002. Heat-Tolerant Flowering Plants of Active Geothermal Areas in Yellowstone National Park. Ann. Bot. 90 259-267.
[4] Allo, M.K. 2010. Kajian keragaman tumbuhan berkhasiat obat berdasarkan etnobotani dan fitokimia di taman nasional loire lindu. Laporan Hasil Penelitian Insentif TA. 2010 Flora Fauna dan Mikroorganisme. Balai Penelitian Kehutanan Makassar.
[5] Inawati; Syamsudin; and Winarno, H. 2006. Pengaruh ekstrak daun inai (Lawsonia inermis Lilihi) terhadap penurunan kadar glukosa, kolesterol total dan trigliserida darah mentic yang diinduksi aloksan. Jurnal Kimia Indonesia 1 71-77.
[6] Kristiani, A. 2013. Uji tetragenik ekstrak etanol daun alpokat (Persea americana Mill) pada mentic betina (Mus musculus). Jurnal Ilmiah Mahasiswa Universitas Surabaya 2 1-15.
[7] Mustikasari, K.; and Ariyani, D. 2008. Studi potensi binjai (Mangifera caesia) dan kasturi (Mangifera casturi) sebagai anti diabetes malalui skrining fitokimia. Sains dan Terapan Kimia 2 64-73.
[8] Steenis, C. V. 2013. Flora. (Jakarta: PT. Balai Pustaka).
[9] Tjitosoepomo, G. 2014. Taksonomi tumbuhan: Schizophyta, Thallophyta, Bryophyta, Pteridophyta. (Yogyakarta: Gadjah Mada University Press).
[10] Aspan, R. 2008. Taksonomi koleksi tanaman obat catureup. (Jakarta Pusat: Badan Pengawas Obat dan Makanan Republik Indonesia, Depati Bidang Pengawasan Obat Tradisional, Kosmetik, dan Produk Komplemen Direktorat Obat Asli Indonesia).
[11] Wibisono, G.W. 2011. Tanaman obat keluarga berkhasiat. (Jawa Tengah: Vivo Publisher).
[12] Utami, P. 2008. Buku pintar tanaman obat. (Jakarta: AgroMedia Pustaka).
[13] Bangun, A. 2012. Ensiklopedia Tanaman Obat Indonesia. (Bandung: Indonesia Publishing House).
[14] Magurran, A. E. 1988. Ecological diversity and its measurement. (New Jersey: Princeton University Press).
[15] Barbour, G. M.; Burk, J. H.; and Pitts, W. D. 1987. Terrestrial plant ecology. The Benjamin/Cumming Publishing Company inc. Menlo Park, Readling, California, Massachusetts, Singapore.
[16] Arief, A. 1994. Hutan: Hakikat dan pengaruhnya terhadap lingkungan. (Jakarta: Penerbit Yayasan Obor Indonesia).
[17] Oktoba, Z. 2018. Studi etnofarmasi tanaman obat untuk perawatan dan penumbuhan rambut pada beberapa daerah di Indonesia. Jurnal Jamu Indonesia 3 81-88.
[18] Slamet, A.; and Andarias, S. H. 2018. Studi etnobotani dan identifikasi tumbuhan berkhasiat obat masyarakat Sub Etmis Wolio Kota Baubau Sulawesi Tenggara. Proceeding Biology Education Conference 15 721-732.
[19] Jannah, H.; and Safinowandi. 2018. Identifikasi jenis tumbuhan obat tradisional di kawasan Hutan Olat Cabe Desa Batu Bangka Kecamatan Moyo Hilir Kabupaten Sumbawa Besar. Bioscientist: Jurnal Ilmiah Biologi 6 145-172.
Keanekaragaman tanaman obat dan pengembangan etnobotani

Mawazin dan Subiakto, A. 2013. Keanekaragaman jenis permudaan alam hutan rawa gambut bekas tembangan di Riau. *Forest Rehabilitation Journal* 1: 59-73.

Vedpal, S.P.; Dhanabal, P.; Dhamodaran, M.V.; Chaitnya, N.L.; Duraiswamy, B.; Jayaram, U.; and Neha, S. 2016. Ethnopharmacological and phytochemical profiles of three potent *Desmodium* species: *Desmodium ganggeticum* (L.) DC., *Desmodium trifolium* Linn. and *Desmodium triquetrum* Linn. *J. Chem. Pharm. Res.* 8: 91-97.

Santosa, D.; Wahyuono, S.; Riyanto, S.; and Widayastuti, SM. 2017. Kajian keanekaragaman jenis tumbuhan obat di daerah aliran sungai opak, Daerah Istimewa Yogyakarta. *Majalah Farmasieutik* 13: 1-8.

Fauzi; and Subobiti, D. 2019. Respon tumbuhan, produksi dan kualitas daun dukud (Desmodium triquetrum (L.) D.C.) terhadap ketinggian tempat budidaya. *Jurnal Jamu Indonesia* 4: 48-53.

Nuraini, I.; Fahrizul; and Prayogo, H. 2018. Analisis komposisi dan keanekaragaman jenis tegaan penyusun hutan tembawang jelomuk di Desa Mesuji Barsa Kecamatan Kanyep Kabupaten Melawi. *Jurnal Hutan Lestari* 6: 137-146.

Destaranti, N.; Sulistiyani; and Yani, E. 2017. Struktur dan vegetasi tumbuhan bawah pada tekaangan pinus di RPH Kalirajut dan RPH Baturaden Banyumas. *Scripta Biologica* 4: 155-160.

Indriyanto. 2006. Ekologi Hutan (Jakarta: Bumi Aksara).

Ismaini, L.; Lailati, M.; Rustandi; and Sunandar, D. 2015. Analisis komposisi dan keanekaragaman tumbuhan di Gunung Dempo, Sumatera Selatan. *Pros Sem Nas Biodiv Indon.* 1: 1397-1402.

Sulistyaningsih, R.; Firmansyah; and Tjitrawesri, A. 2016. Uji aktivitas ekstrak etanol bayam duri (*Amaranthus spinosus* L.) terhadap bakteri *Staphylococcus aureus* dan *Psuedomonas aeruginosa* dengan Metode Difusi Agar. *Farmaka* 14: 93-102.

Rochmat, A.; Nuraini, L. A.; and Kurniasih, S. 2018. Pengembangan salep luka bakar ekstrak flavonoid daun sriyaka (*Annona squamosa* L.). *SCIENTIA Jurnal Farmasi dan Kesehatan* 8: 1-7.

AMELIA, A. 2018. Khasiat Tanaman Anting-Anting (*Acalypha indica* L.). *Majalah Farmasieutik* 3: 7-11.

Ariandri; and Khaerati. 2015. Identifikasi indeks keanekaragaman tanaman obat di kawasan hutan Kelurahan Battang dan Battang Barat. *Provision Seminar Nasional* 2: 729-737.

Arini, D. I. D.; and Kinho, J. 2015. Keanekaragaman berkhiasiat obat di Hutan Pantai Cagar Alam Tangkoko. *Jurnal WASIAN* 2: 1-8.

Sulianti, S. B. 2008. Studi fitokimia *Occinum* spp.: Komponen kimia minyak atsiri kemangi dan ruku-ruku. *Berita Biologi* 9: 237-241.

Kusumawati, IGA.; and Yogeswara, IBA. 2016. Antioxidant and antibacterial capacity of loloh sengump (Blumea balsamifera) based on the extraction method. *Trad. Med. J.* 21: 143-148.

Bana, S. W. A.; Khumaidi, A.; and Pitopang, R. 2016. Studi etnobotani tumbuhan obat pada masyarakat Kailirai di Desa Taripa Kecamatan Sindue Kabupaten Danggal Salawesi Tengah. *Bioceules* 10: 68-81.

Fadilyah, I.; Lestari, L.; and Mahardika, R. G. 2020. Kapasitas antiosidsi dan ekstrak buah rukam (*Flacourtia rukam*) menggunakan metode Microwave Assisted Extraction (MAE). *Indo. J. Chem. Res.* 7: 107-113.

Kong, Y. C.;; Ng, K. H.; But, P. P.; Li, Q.; Yu, S. X.; Zhang, H. T.; Cheng, K. F.; Soejarto, D. D.; Kan, W. S.; and Waterman, P. G. 1986. Source of the Anti-implantation Alkaloid Yuelchuhkene in the Genus Murraya. *J. Ethnopharmacol.* 15: 195-200.

Fitrnah, M. 2016. Identifikasi ekstrak daun Kopasunda (*Chromolaena odorata* Linn) terhadap sel anti proliferasi tikus leukemia L1210. *JFK UINAM.* 4: 99-105.

Margarethy, I.; Yahya; and Salim, M. 2019. Kearnifan lokal dalam pemanfaatan tumbuhan untuk mengatasi malaria oleh pengobatan tradisional di Sumatera Selatan. *J. Health Epidemio. Common.* 5: 40-48.

Rubiah; Djufri; and Mulhibbudin. 2015. Kajian etnobotani tumbuhan obat penyakit kulit pada masyarakat Kabupaten Pidie. *Jurnal Biologi Edukasi* 14: 73-84.

Silaalahi, M.; Nisyawati; Walujo, E. B.; and Mustaqim, W. 2018. Etnomedisin tumbuhan obat oleh Sub etnis Batak Phakpak di Desa Surung Monsada, Kabupaten Phakpak Bharat, Sumatera Utara. *Jurnal Ilmu Dasar* 19: 77-92.

Slamet, A.; and Andarias, S. H. 2018. Studi etnobotani dan identifikasi tumbuhan berkhiasiat obat masyarakat Sub Etnis Wolio Kota Baubau Sulawesi Tenggara. *Proceeding Biology Education Conference.* 15: 721-732.

Tudjuka, K.; Ningsih, S.; and Toknok, B. 2014. Keanekaragaman jenis tumbuhan obat pada kawasan hutan lindung di Desa Tindoli Kecamatan Pamona Tenggara Kabupaten Poso. *Warta Rimba* 2: 120-128.

Widodo, H.; Rohman, A.; and Sismindari. 2018. Pemanfaatan tumbuhan famili...
Fabaceae untuk pengobatan penyakit liver oleh pengobatan tradisional berbagai Etnis di Indonesia. *Media Litbangkes* **29** 65-88.

[46] Riswan, S.; and Andayaningsih, D. 2008. Keanekaragaman tumbuhan obat yang digunakan dalam pengobatan tradisional masyarakat Sasak Lombok Barat. *Jurnal Farmasi Indonesia* **4** 96-103.

[47] Rinaldi, F. F.; Ibrahim, A.; Fadraersada, J.; and Rijai, L. 2016. Identifikasi metabolik sekunder dan pengujuan toksisitas ekstrak metanol kulit kayu laban (*Vitex pinnata* L.) dengan metode Brine Shrimp Lethality Test (BSLT). Prosiding Seminar Nasional Kefarmasian ke-4. 133-139.

[48] Badrunasar, A.; and Santoso, H. B. 2016. Tumbuhan Liar Berkhasiat Obat. (Jawa Barat: FORDA PRESS).

[49] Kandawongko, N.; Margaretha, S.; and Jusna, A. 2011. Kajian etnobotani tanaman obat oleh masyarakat Bonemolango Provinsi Gorontalo. (Laporan Penelitian Pengembangan Program Studi. Universitas Negeri Gorontalo).

[50] Djauhariya, E.; and Hernani. 2004. Gulma Berkhasiat Obat. (Jakarta: Penebar Swadaya).