The occurrence of disinfectant and antibiotic-resistant genes in *Escherichia coli* isolated from chickens in Egypt

Waleed A. Ibrahim¹, Sherif A. Marouf², Ahmed M. Erfan¹, Soad A. Nasef¹ and Jakeen K. El Jakee²

1. Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt; 2. Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt. Co-authors: SAM: drsherif.marouf@yahoo.com, AME: ahmed.erfan10000@gmail.com, SAN: dr_soadnasef@yahoo.com, JKE: eljakee@cu.edu.eg

Received: 01-10-2018, Accepted: 10-12-2018, Published online: 25-01-2019
doi: 10.14202/vetworld.2019.141-145 How to cite this article: Ibrahim WA, Marouf SA, Erfan AM, Nasef SA, El Jakee JK (2019) The occurrence of disinfectant and antibiotic-resistant genes in *Escherichia coli* isolated from chickens in Egypt, *Veterinary World*, 12(1): 141-145.

Abstract

Aim: This work aimed to determine the occurrence of antibiotic and disinfectant resistance genes in *Escherichia coli* isolated from chickens in Egypt.

Materials and Methods: Organs (liver, lung, heart, yolk sac, and bone marrow) of 1500 chicken samples were collected from diseased chickens suffered from colibacillosis with PM findings as CRD, diarrhea and omphalitis from different governorates of Egypt as: Giza, EL-Bahira, Fayoum, El-Dakahlia, El-Ismailia, and El-Sharkia during 2015-2016. These samples were labeled and transported immediately on ice to the Reference laboratory for quality control on poultry production (RLQP). The samples were cultured onto MacConkey agar and Eosin Methylene Blue Agar. Isolation and identification of the *E. coli* were performed based on morphology, cultural, staining, and biochemical properties. Antimicrobial resistance test was carried out using disk diffusion method. The PCR employing tetA, qacED1 and qacA/B were carried out for detection of these genes in isolated *E.coli*.

Results: The prevalence of *E. coli* in chicken was 34%. Predominant serotypes of *E. coli* which serologically identified were O128, O111, O44, O158, and O2. Antibiotic susceptibility test of *E. coli* revealed that 100% of isolates were resistant to ampicillin, erythromycin, and sulfamethoxazole-trimethoprim, while 73.53% and 38.23% of them were sensitive for amoxicillin and imipenem, respectively. Antibiotic resistance genes as *tetA* and resistant isolates were infected with antibiotic resistant genes resembling as *qacED1* and *qacA/B* genes were detected in isolated *E. coli* 70.6% and 14.7%, respectively.

Conclusion: *E. coli* isolated from chickens in Egypt was carried *qac* and antibiotic-resistant genes that affect the poultry industry.

Keywords: antimicrobial resistance, chickens, Egypt, *Escherichia coli*, qac resistance genes.

Introduction

Avian pathogenic *Escherichia coli* (APEC) unlike other normal microflora *E. coli* in poultry intestine APEC spreads into several internal organs and causes systemic fatal disease colibacillosis, which is characterized by septicemia with multiple organ lesions, typically pericarditis, airsacculitis, perhepatitis, peritonitis, and other extra-intestinal lesions [1]. In poultry farms and surrounding environment, antibiotic resistance occurs frequently and can be spread to humans through food or water chain and also by routes such as environmental contamination by poultry waste and direct interaction with animals [2]. Quaternary ammonium compounds (QACs) are cationic surface active detergents generally used for the control of microorganisms in clinical and industrial environments plus used in the disinfection of hard surfaces [3]. The last line of defense for the poultry industry could possibly be the use of disinfectants as QACs that are frequently used in environments where antibiotics are used, thus fuelling the concern of a relationship between QAC and antibiotic resistance [4]. QAC resistance genes frequently existed among *E. coli* isolates. The *qac* genes were highly associated with antimicrobial resistance phenotypes [5]. *qac* genes in Gram-negative bacteria were most frequently found in combination with genes coding for resistance to aminoglycosides, chloramphenicol, sulfonamides, trimethoprim, and β-lactams [6,7]. In the previous study, detection of the disinfectant resistant gene of aerobic bacteria in unhatched chicken eggs in Egypt was done, and the results indicate the presence of *qacED1* gene in isolated *E. coli* with incidence rate of 100% [8].

The significance of study is to explain the failure of treatment of *E. coli* infection in poultry using antibiotics and increases the infection of *E.coli* during first week of age besides that the antibiotic resistance occurs
often in poultry farms and surrounding environment which can be spread to humans via food or water chain. Hence, the present investigation aimed to study the disinfectant and antibiotic resistance genes among \(E. \) coli isolated from chickens in Egypt.

Materials and Methods

Ethical approval

Ethical approval for this study was obtained from Animal Health Research Institute of Egypt.

Collected samples

Organs (liver, lung, heart, yolk sac, and bone marrow) of 1500 chicken samples were collected from diseased chickens suffered from colibacillosis with PM findings as CRD, diarrhea and omphalitis from different age-old and different governorates of Egypt as: Giza; 610 samples, EL-Bahira; 350 samples, Fayoum; 230 samples, El-Dakahlia; 160 samples, El-Ismailia; 120 samples, and El-Sharkia; 100 samples during 2015-2016 in winter seasons. These samples were labeled and transported immediately on ice to Reference laboratory for quality control on poultry production (RLQP). All samples were handled aseptically and examined microbiologically.

Bacteriological examination

Isolation of \(E. \) coli by conventional method [9]

Each pooled sample was transferred to buffered peptone water and incubated for 16–18 h at 37°C. After selective enrichment, a loopful of the broth was inoculated on MacConkey agar and Eosin Methylen blue agar (Oxoid), then incubated aerobically in 37°C for 24 h. Suspected \(E. \) coli colonies were purified and kept for further identification.

Microscopic examination

Gram’s stain was prepared and used for examined suspected colonies as described by Cruickshank [10] for morphological study.

Biochemical confirmation

Suspected colonies were examined using different biochemical reaction including indole reaction, methyl red test, Voges–Proskauer test, citrate utilization test, catalase test, sugar fermentation test, oxidase test, triple sugar iron, and Christensen’s urea agar test according to Quinn et al. [9].

Serological identification

\(E. \) coli isolates were serologically identified using rapid diagnostic \(E. \) coli antisera Set 1 containing polyvalent and monovalent O antisera (DENKA SEIKEN Co. LTD, Japan) according to Edwards and Ewing [11].

Antibiotic susceptibility testing

Sensitivity to 12 different groups antibacterial drugs (Ampicillin 10 µg, Amoxicillin 10 µg, Gentamicin 10 µg, Streptomycin 10 µg, Erythromycin 15 µg, Amoxi-clavulanic acid 20/10 µg, Doxycycline 30 µg, Tetracycline 30 µg, Nalidixic acid 30 µg, Levofloxacin 5 µg, Colistin sulfate 25 µg, and trimethoprim-sulfamethoxazole 1.25/23.75 µg) from Oxoid Hampshire, U K, was tested by disk diffusion method according to Quinn et al. [9] and Cruickshank [10]. The interpretation of the inhibition zones of tested culture was tested according to Clinical and Laboratory Standards Institute [12].

Polymerase chain reaction (PCR) for the identification of different genes

Oligonucleotide primers

Primers used were supplied from Metabion (Germany) and are listed in Table-1 [13-15], and cycle condition for different primers is shown in Table-2.

DNA extraction

DNA extraction from samples was performed using the QIAamp DNA Mini kit (Qiagen, Germany, GmbH) with modifications from the manufacturer’s recommendations.

Results

Occurrence of \(E. \) coli in chickens

\(E. \) coli isolates showed bright pink colonies, lactose fermentable on MacConkey agar plates and showed a distinctive metallic green sheen on EMB agar plates. Biochemically, all \(E. \) coli suspected isolates were lactose fermenting colonies, positive indole, methyl red, and catalase. Meanwhile all isolates were negative oxidase, urea hydrolysis, citrate utilization, Voges-Proskauer and didn’t produce H₂S.

The incidence of \(E. \) coli isolation in chicken was 34%. The serotyping of isolated \(E. \) coli recovered from different organs of chickens revealed that 24 strains could be identified serologically. They belonged to 12 different serogroups. The most commonly detected \(E. \) coli serogroups isolated were O128 (4 isolates), O111 (3 isolates), O44 (3 isolates), O158 (2 isolates), O2 (2 isolates), O115 (2 isolates), O20 (2 isolates), O29, O15, O169, O125, O26 and O6, while 10 strains were not typed due to antisera unavailability.

| Table-1: Primers used for sequence of partial and complete fusion gene. |
|---|---|---|
| Primer | Sequence | Amplified product | References |
| qacED1 | TAA GCC CTA CAC AAA TTG GGA GAT AT GGC TCC GCA GCG ACT TCC ACG | 362 bp | [13] |
| qacA/B | GCAGGAAATGCAGAGTTCG | 361 bp | [14] |
| tetA(A) | GTTTCACCTGAGACGACGATCA | 576 bp | [15] |

Available at www.veterinaryworld.org/Vol.12/January-2019/21.pdf
Antibiogram pattern of isolated E. coli

Antibiogram pattern of E. coli in our study revealed that 100% of the isolates were resistant to ampicillin, erythromycin, and sulfamethoxazole/trimethoprim, while E. coli isolates were sensitive for colistin sulfate and levofloxacin with 73.53% and 38.23% as shown in Table-3.

Detection of the genes of isolated E. coli by conventional PCR

Screening the presence of tetA, qacED1 and qacA/B genes by PCR technique after DNA extraction revealed that tetA gene in 31 (91.18%), qacED1 gene in 24 (70.56%) and qacA/B gene in 5 (14.7%) out of 34 tested E. coli isolates.

Discussion

Avian colibacillosis is an extraintestinal infection that can progress into several lesions in diverse organs as polyserositis, cellulitis, salpingitis, pericarditis, peritonitis, septicemia, airsacculitis, and death. These cause harsh economic losses in the poultry industry, due to the significant number of morbidities, mortalities, slaughter condemnation, and reduced productivity of affected birds [16].

The incidence of E. coli isolation in chicken was 34%. These results are agreed to some extent with that obtained by Ashraf et al. [17] who isolated E. coli in Egypt at 38%.

The most commonly detected E. coli serogroups were O128, O111, O44, O158, and O2. E. coli serotypes had been previously isolated from chicken and newly hatched chicks in Egypt as reported by Ashraf et al. [17] who detected O78 and O111, El-Haleem [18] and Taha [19] detected O2, El-Jakee et al. [20] collected E. coli serogroups O2, O6, O8, O26, O27, O78, O86, O111, O128, O157, and O136 from chicken cloacal swabs, El-Sayed et al. [21] founded O111, O55, O142, and O128, El Jakee et al. [22] collected E. coli isolates serogroups O125:K70, O1:K-, O146:K-, O26:K-, O78:K80, O126:K58, and O128:K67 from diseased chickens to prepare a potent E. coli vaccine to control colibacillosis in chickens, and also Bakheet et al. [8] identified O2:H6 (2 isolates), O163:H2 (2 isolates), O128:H2 (3 isolates), O158 (2 isolates), and O44:H18 (2 isolates).

Antimicrobial resistance has become a worldwide problem, and the vast consumption of antibiotics by both humans and animals leads to the development and spread of a large number of antibiotic resistance among bacterial populations consequently creating critical public health problems. In the current study, isolated E. coli revealed that 100% of the isolates were resistant to ampicillin, erythromycin, and sulfamethoxazole/trimethoprim (each) as shown in Table-3 that results agreed with Subedi et al. [23] who showed that the maximum resistance of 50 E. coli strains to ampicillin (98%), Bakheet et al. [8] who recorded resistant to sulfamethoxazole/trimethoprim 100%, and Radwan et al. [24] who discussed that antibiogram profiles of E. coli isolates and indicated maximum resistance to ampicillin (100%); furthermore, Eid et al. [25] reported that the highest resistance rates were recorded against trimethoprim sulfate, doxycycline, tetracycline, and amoxicillin (94.1%, 93.2%, 92.9%, and 92.3%, respectively). While E. coli isolates were sensitive for colistin sulfate and levofloxacin with the percentage of 73.53% and 38.23%, respectively, Makhol et al. [26] found that 69.4% of E. coli isolates were sensitive to colistin sulfate.

Table-2: Cycling conditions of the different primers.

Gene	Primary denaturation	Secondary denaturation	Annealing	Extension	Number of cycles	Final extension
QacED1	94°C 5 min	94°C 30 s	58°C 40 s	72°C 40 s	35	72°C 7 min
QacA/B	53°C 40 s					72°C 7 min
TetA(A)	50°C 40 s					72°C 10 min

Table-3: Antibiotic resistance pattern of isolated E. coli.

Antimicrobial agents	Resistance n (%)	Intermediate n (%)	Sensitive n (%)
Ampicillin	34 (100)		
Amoxicillin	33 (97.06)		
Gentamicin	22 (64.71)	2 (5.88)	10 (29.41)
Streptomycin	33 (97.06)		1 (2.94)
Erythromycin	34 (100)		
Amoxicillin-clavulanic acid	32 (94.12)		
Doxycycline	30 (88.24)		2 (5.88)
Tetracycline	32 (94.12)		2 (5.88)
Nalidixic acid	30 (88.24)		4 (11.76)
Levofloxacin	9 (26.47)	12 (35.29)	13 (38.23)
Colistin sulfate	7 (20.59)	2 (5.88)	25 (73.53)
Trimethoprim-sulfamethoxazole	34 (100)		
The extensive and prolonged use of tetracycline in the poultry industry is undoubtedly one of the explanations for the high prevalence of resistance to tetracycline in broilers [27]. Concerning tetracycline resistance, in our study, *E. coli* isolates were 94.12% resistance to tetracycline antibiotics.

The *tetA* gene was tested for isolated *E. coli* to assess its resistance to tetracycline. Interestingly, the positive PCR percentage (91.18%) was high as shown in isolates. However, the phenotypic antibiotic susceptibility test was 94.12%, which may be related to more genes than *tetA* gene contributing for tetracycline resistance in *E. coli*. Sengeløv et al. [28] examined *E. coli* isolates from diseased and healthy broilers for the presence of tetracycline resistance genes *tet* (A), (B), (C), (D), or (E) and found that the *tetA* and *tetB* were the most prevalent; in isolates from healthy broilers, *tetA* was present in 41.2%, *tetB* in 52.9%, and *tetD* in 5.9%, and in isolates originated from diseased broilers, *tetA* was present in 72.2% and *tetB* in 27.8% samples. Furthermore, Abo-Amer et al. [29] recorded that tetracyclines genes *tetA* and *tetB* were observed at the prevalence of 65% among *E. coli* isolated from chicken farms in Saudi. There was a correlation between the presence of integrons and resistance to tetracycline in chicken *E. coli* isolates from the Veterinary Antimicrobial Resistance Surveillance Network [30].

QACs are cationic surface active detergents extensively used in the poultry industry as of their low relative toxicity, good antibacterial properties non-irritating, non-corrosive, low toxicity, and reasonably effective in the presence of organic matter. Hence, it makes a disinfectant of choice for equipment such as incubators and hatching trays [31]. Genes that confer resistance to QACs are *qacE* and *qacED1; qacED1* a mutant version of *qacE* appears to be partially functional as a multidrug transporter and is widely distributed throughout Gram-negative bacteria due to its location on the 3’ conserved region of class 1 integrons [32].

In this study, the *qacED1* gene was reported in 70.6% *E. coli* (24 positive samples from 43 *E. coli* isolates). These results were nearly in accordance with Amira [33] and El Tawab et al. [34] who found *qacED1* gene among *E. coli* isolates (93.1% and 63.16%, respectively) in Egypt. QacE gene (including its attenuated variant *qacED1*) is widely spread in Gram-negative bacteria, mainly in *Enterobacteriaceae* [35,36].

QacA/B gene was founded in 14.7% *E. coli* in our study; nevertheless, *qacA/B* was founded in Gram-negative bacteria like *E. coli*. It seems that the presence of the *qac* genes does not necessarily imply increased resistance to antiseptics that could be relevant for practice [37].

Antimicrobial resistance has become a worldwide problem, and the massive usage of antibiotics by both humans and animals leads to the development and spread of a large number of antibiotic resistance among bacterial populations consequently creating critical public health problems. The co-resistance of QAC and antibiotics could be attained by linkage of different resistance mechanisms on the similar plasmid, transposon otherwise integrin, or any combination of these [4]. The localization of these QAC determinants on different mobile elements may share in the transmission of resistance to the other bacteria [38]. Among Gram-negative bacteria, the *qac* genes are often related with plasmid-mediated class 1 integrons which harbor a diversity of antibiotic resistance genes [7].

Conclusion

E. coli is one of the most dangerous pathogens that threaten the poultry industry in Egypt due to the high rate of its presence in the farms as well as the presence of the *qac* resistance gene and antibiotic resistance gene in *E. coli* definite a link between antibiotic and disinfectant in possible that needs further study.

Authors’ Contributions

The study was designed by SAM, SAN, and JKE. WAI and AME did the molecular work. Data collection, analysis and manuscript preparation by WAI. All authors read and approved the final manuscript.

Acknowledgments

We are grateful to the Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Egypt, for the technical support. There was no specific fund received for this study.

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Veterinary World remains neutral with regard to jurisdictional claims in published institutional affiliation.

References

1. Oh, J.Y., Kang, M.S., Kim, J.M., An, B.K., Song, E.A., Kim, J.Y. and Kwon, Y.K. (2011) Characterization of *Escherichia coli* isolates from laying hens with colibacillosis on 2 commercial egg-producing farms in Korea. *Poult. Sci.* 90(9): 1948-1954.

2. Vehlner, M., Petrović, J., Stojanov, I., Ratajac, R. and Stojanović, D. (2010) Mechanisms transmission of resistance to bacteria. *Arch. Vet. Med.*, 3(1): 85-92.

3. Ioannou, C.J., Hanlon, G.W. and Denyer, S.P. (2007) Action of disinfectant quaternary ammonium compounds against *Staphylococcus aureus*. *Antimicrob Agents Chemother.*, 51(1): 296-306.

4. Hegstad, K., Langsrud, S., Lunestad, B.T., Scheie, A.A., Sunde, M. and Yazdankhah, S.P. (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? *Microb. Drug Resist.*, 16(2): 91-104.

5. Zhang, A., He, X., Meng, Y., Guo, L., Long, M., Yu, H.
and Zou, L. (2016) Antibiotic and disinfectant resistance of Escherichia coli isolated from retail meats in Sichuan, China. Microb. Drug Resist., 22(1): 80-87.

6. Colinon, C., Jocktane, D., Brothier, E., Rossolini, G.M., Cournoyer, B. and Nazaret, S. (2010) Genetic analyses of Pseudomonas aeruginosa isolated from healthy captive snakes: Evidence of high inter-and intraspecies dissemination and occurrence of antibiotic resistance genes. Environ. Microbiol., 12(3): 716-729.

7. Zhao, W.H., Chen, G., Ito, R., Kimura, S. and Hu, Z.Q. (2012) Identification of a plasmid-borne blaIMP-11 gene in clinical isolates of Escherichia coli and Klebsiella pneumoniae. J. Med. Microbiol., 61(2): 246-251.

8. Bakheet, A.A., Naglaa, M.A., Sayed, Al Habaty and Soad, A.N. (2017) Detection of Disinfectant resistant antibiotic bacteria in unhatched chicken eggs. Benha Vet. Med. J., 32(2): 248-259.

9. Quinn, J.P., Carter, M.E., Markey, B.K. and Carter, G.R. (2002) Clinical Veterinary Microbiology. 4th ed. Harcourt Publishers Ltd., London, UK. p61-63.

10. Cruickshank, R. (1975) Medical Microbiology. In: The Practice of Medical Microbiology. Vol. 2. Churchill Livingstone, Edinburgh.

11. Edwards, R. and Ewing, H. (1972) Identification of Enterobacteriaceae. Burgess Publishing Co., Minneapolis. p709.

12. Clinical and Laboratory Standards Institute. (2015) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement. Vol. 31. Clinical and Laboratory Standards Institute, Wayne, PA, USA. p42-46.

13. Chuanchuen, R., Khemtong, S. and Padungtod, P. (2007) Occurrence of qacE/qacED1 genes and their correlation with class 1 integrons in Salmonella Enterica isolates from poultry and swine. Southeast Asian J. Trop. Med. Public Health, 38(5): 855-862.

14. Noguchi, N., Suwa, J., Narui, K., Sasatsu, M., Ito, T., Hiramatsu, K. and Song, J.H. (2005) Susceptibilities to antibiotic resistance genes qacE delta 1 isolated from clinical and environmental isolates of Vibrio parahaemolyticus isolated from Asia in 1998 and 1999. J. Med. Microbiol., 54(6): 557-565.

15. Randall, L.P., Cooles, S.W., Osborn, M.K., Piddock, L.J.V. and Woodward, M.J. (2004) Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella Enterica isolated from humans and animals in the UK. J. Antimicrob. Chemother., 53(2): 208-216.

16. Dho-Moulin, M. and Fairbrother, J.M. (1999) Avian pathogenic Escherichia coli (APEC). Vet. Res., 30(2-3): 299-316.

17. Amien, A.A., Ph.D. Thesis, Assiut University. Egypt.

18. El-Jakee, J.K., Mahmoud, R.M., Samy, A.A., El-Shabrawy, M.A., Effat, M.M. and Gad El-Said, W.A. (2012) Molecular characterization of E. coli isolated from chicken, cattle and buffaloes. Int. J. Microbiol. Res., 3(1): 64-74.

19. El-Sayed, M.E., Shabana, I.I., Essawy, A.M. and Rashid, A.M. (2015) Detection of virulence-associated genes of avian pathogenic Escherichia Coli (APEC) isolated from broilers. J. Genet., 1(1): 4.

20. El-Jakee, J.K., El Amry, G.M., Hessain, A.M., Hemeg, H.A., Shafei, S.M. and Moussa, I.M. (2016) The production and evaluation of autogenous vaccine against avian colibacillosis. J. Anim. Plant Sci., 26(1): 79-87.

21. Subedi, M., Luitel, H., Devkota, B., Bhattachari, R.K., Phuyal, S., Panthi, P. and Chaudhary, D.K. (2018) Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res., 14(1): 113.

22. Radwan, I.A.E., Salami, H.S.H., Abd-Alwais, A.A. and Al-Sayed, M.Y. (2014) Frequency of some virulence-associated genes among multidrug-resistant Escherichia coli isolated from septicemic broiler chicken. Int. J. Adv. Res. 2(12):867-874.

23. Eid, S.E.A., Nasef, S.A. and Erfan, A.M. (2015) Characterization of E. coli associated with high mortality of poultry flocks. Assiat Vet. Med. J., 59(139): 51-61.

24. Makhol, B.M., Habreh, N. and Sakural, K. (2011) Antibiotic resistance of E. coli isolated from poultry in Syria. Assiat Vet. Med. J., 57(128): 265-275.

25. Van den Bogaard, A.E., London, N., Driessen, C.A.G. and Stobberingh, E.E. (2001) Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughturers. J. Antimicrob. Chemother., 47(6): 763-771.

26. Sengelov, G., Halling-Sorensen, B. and Aarestrup, F.M. (2003) Susceptibility of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E. coli from food animals. Vet. Microbiol., 95(1-2): 91-101.

27. Abo-Amer, A.E., Shobrak, M.Y. and Altalhi, A.D. (2018) Isolation and antimicrobial resistance among Escherichia coli isolated from farm chickens in Taif , Saudi Arabia. J. Glob. Antimicrob. Resist., 15: 65-68.

28. Marchant, M., Vinué, L., Torres, C. and Moreno, M.A. (2013) Change of integrons over time in Escherichia coli isolates recovered from healthy pigs and chickens. Vet. Microbiol., 163(1-2): 124-132.

29. Haynes, R.L. and Smith, T.W. (2003) Hatchery Management Guide for Game Birds and Small Poultry Flock Owners. Online Publication of Mississippi State University. Available from: http://www.extension.msstate.edu/content/hatchery-management-guide-for-game-bird-and-small-poultry-flock-owners.

30. Kazama, H., Hamashima, H., Sasatsu, M. and Ariai, T. (1999) Characterization of the antiseptic-resistance gene qacE delta 1 isolated from clinical and environmental isolates of Vibrio para-haemolyticus and Vibrio cholerae non-O1. FEMS Microbiol. Lett., 174(2): 379-384.

31. Amira, F.A. (2016) Molecular Characterization of Virulence Genes in Salmonella spp. isolated from Poultry. Ph.D. Thesis, Kafrelsheikh University.

32. El Tawab, A.S.A., Soad, A.N., Fatma, I.E. and Ola, A.I. (2017) Prevalence of qacA and qacEAI genes in Escherichia coli isolated from omphalitis in baby chicks. Benha Vet. Med. J., 32(1): 184-192.

33. Wang, C., Zhan, Q., Mi, Z., Huang, Z. and Chen, G. (2008) Distribution of the antiseptic-resistance gene qacEAI in 283 clinical isolates of Gram-negative bacteria in China. J. Hosp. Infect., 69(4): 394-396.

34. Mak, J.K., Kim, J.M., Phum, J., Tapsall, J. and White, P.A. (2008) Antibiotic resistance determinants in nosocomial strains of multidrug-resistant Acinetobacter baumannii. J. Antimicrob. Chemother., 63(1): 47-54.

35. Jaglic, Z. and Cervinkova, D. (2012) Genetic basis of resistance to quaternary ammonium compounds—the qac genes and their role: A review. Vet. Med., 57(6): 275-281.

36. Gillings, M.R., Yuejun, D., Hardwick, S.A., Holley, M.P. and Stokes, H.W. (2008) Gene cassettes encoding resistance to quaternary ammonium compounds: A role in the origin of clinical class 1 integrons? ISME J., 3(2): 209.