Reprogramming of cellular identity is fundamentally at odds with replication of the genome: cell fate reprogramming requires complex multidimensional epigenomic changes, whereas genome replication demands fidelity. In this review, we discuss how the pace of the genome’s replication and cell cycle influences the way daughter cells take on their identity. We highlight several biochemical processes that are pertinent to cell fate control, whose propagation into the daughter cells should be governed by more complex mechanisms than simple templated replication. With this mindset, we summarize multiple scenarios where rapid cell cycle could interfere with cell fate copying and promote cell fate reprogramming. Prominent examples of cell fate regulation by specific cell cycle phases are also discussed. Overall, there is much to be learned regarding the relationship between cell fate reprogramming and cell cycle control. Harnessing cell cycle dynamics could greatly facilitate the derivation of desired cell types.

Keywords: cell cycle speed; cell fate; hematopoietic progenitors; pluripotent stem cells

Abbreviations
CDKs, cyclin-dependent kinases; cLADs, constitutive LADs; fLADs, facultative LADs; GMP, granulocyte-monocyte progenitors; h/mESCs, human and mouse embryonic stem cells; iPSCs, induced pluripotent stem cells; LADs, lamin-associated domains; MBT, midblastula transition; MKL1/SRF, megakaryoblastic leukemia-1/serum response factor; PRC2, polycomb repressive complex 2; PTMs, post-translational modifications.
with divergent fate commitment [11]. Similarly, S-phase length is generally constrained but its shortening is seen in erythroid differentiation and neural progenitor commitment [12,13]. Below, we will first discuss how overall cell cycle speed may impact cell fate decisions without discriminating the specific mode of cell cycle length modulation. We then lay out prominent examples where the regulation of particular cell cycle phases is implicated. Potential future research directions are discussed at the end.

Cell cycle speed varies in many cellular contexts

One of the most striking cell fate transitions is exemplified by Yamanaka reprogramming, where the four transcription factors Oct4, Sox2, Klf4, and c-Myc can turn somatic cells into pluripotent stem cells (iPSCs) [14]. Fast cell cycle promotes somatic cell fate transition into pluripotency [15]. This cell cycle-facilitated fate transition is echoed by differentiating tissue stem cells in vivo, where differentiation is often accompanied by a period of rapid proliferation [16]. How cell cycle dynamics impart specific cell fate choices during lineage specification continues to be an active area of research [13,17,18]. Cells of the hematopoietic system, for example, display extensive heterogeneity in cell cycle dynamics [19]. Hematopoietic stem cells are predominantly quiescent, and their differentiation is accompanied by cell cycle remodeling and acceleration, reaching peak proliferation as lineage-committed progenitors. The heterogeneity in cell cycle dynamics is necessary to maintain tissue homeostasis [20], with each cell type showing characteristic cell cycle behavior. Disruption of the stereotypic cell cycle behaviors occurs during aging and alters the clonal composition that collectively comprises a tissue. While this phenomenon was first described for the hematopoietic tissue in the form of clonal hematopoiesis [21], similar observations have been made in other tissues [22]. As more detailed studies on the cell cycle dynamics of the expanded clones continue to emerge, a significant contribution by these clones to aging and age-related diseases, such as cancer, is highly anticipated. Thus, understanding the mechanisms of cell fate regulation by cell cycle dynamics is of fundamental as well as clinical importance.

Challenges associated with copying the complex epigenome

The linear genome is copied by DNA polymerases following Watson–Crick base pairing. Copying the epigenome, however, requires many other types of molecules, as well as their associated modifications or partner molecules. These include, among others, histone post-translational modifications (PTMs), interactions between sequence-specific transcription factors and chromatin, as well as proper chromatin compartmentalization such as chromatin–lamina interactions. For cellular identity to faithfully propagate across cell generations, all aspects pertinent to epigenome maintenance have to be accurately reinstated after each mitosis. Reduced fidelity in each of these aspects could offer opportunities for cell fate change, as occurs during normal development or diseases such as malignancy.

Achieving proper activity of epigenetic enzymes

Certain epigenetic enzymes are directly regulated by cyclin and cyclin-dependent kinases (CDKs) [4]. The catalytic subunit of the polycomb repressive complex 2 (PRC2), EZH2, is responsible for depositing histone H3 lysine27 trimethylation (H3K27me3) to suppress target gene expression. Thr350 of EZH2 resides in an evolutionarily conserved CDK consensus phosphorylation motif. Thr350 phosphorylation by CDK1 and CDK2 activates EZH2 methyltransferase activity and recruits it to the promoters of its target genes. Some of these targets are lineage-specific genes, such as HOX genes and SOX family members, whose silencing is thought to help maintain stem cell identity [23,24]. Others reported that phosphorylation of EZH2 Thr487 by CDK1 disrupts its binding to other PRC2 components, leading to osteogenic differentiation of human mesenchymal stem cells [25]. Although the exact functional consequence of CDK phosphorylation differed in these reports, possibly related to the different cellular contexts, these studies illustrate that the activity of a prominent histone-modifying enzyme likely oscillates throughout the cell cycle. Therefore, establishment of proper cell identity needs to co-ordinate with cell cycle dynamics to ensure the proper activity, specificity, and/or duration of the epigenetic machineries.

Mitotic bookmarking

The condensed mitotic chromatin is thought to be incompatible with active transcription, with most of the general transcription machinery components stripped away [26]. When the daughter cells need to resume transcriptional identity, how is the transcriptional machinery directed back to the proper genomic sites? A process called ‘mitotic bookmarking’ has been proposed [27]. Some sequence-specific transcription factors can remain bound to the mitotic chromatin. For
example, enhancers of stem cell-related genes are book-
marked by pluripotent transcription factors [28,29].
Additionally, histone PTMs might constitute a book-
mark directly, as seen in erythroid cells, where histone
acetylation widely marks mitotic chromatin [30]. In
other instances, global DNA accessibility has been
shown to remain unaltered during mitosis [31,32], and
different classes of genes could employ distinct book-
marking mechanisms. Palozola et al. [33] revealed that
genes involved in general cell growth and rebuilding of
daughter cells are activated before those specifying lin-
eage identity. It is conceivable that corruption of the
marking mechanisms could lead to cell identity
change or crisis, such as cancer. Indeed, the bookmark-
proteins BRD4 has been a prominent target for the
BET inhibitors [34–36].

Reinstating lamin-associated domains
As part of the nucleoskeleton, the nuclear lamina is
localized at the inner nuclear periphery to provide
structural support for the nucleus. Meanwhile, it teth-
ers heterochromatin to the nuclear periphery [37]. The
heterochromatic regions connected to the nuclear lam-
ina, known as lamin-associated domains (LADs), con-
tain relatively few genes and exhibit a repressive
chromatin state [38]. Actively transcribed regions are
spatially associated with nuclear pores or localized in
the nuclear interior [39]. Such spatial organization is
considerably supported by the nuclear lamina, sug-
gesting a significant role for the lamina in genome
organization [40,41]. Lamins are direct targets of
CDKs [42–47], an interaction which results in their
disassembly and solubilization during nuclear envel-
opese breakdown at mitosis [48]. Therefore, resurrecting
the lamina–chromatin association upon nuclear envel-
opese reformation could represent another challenge
following mitotic exit. Using a modified DamID
assay, Kind et al. tracked the fate of LADs, which are
characterized by histone H3 lysine 9 dimethyla-
tion (H3K9me2). They found that upon mitosis,
LAD positioning is stochastically reshuffled rather
than faithfully inherited [49]. This surprising finding
suggests a substantial reorganization of the genome
immediately after mitosis, contrasting the observation
that cell fate is largely preserved after cell division in
most instances. Further studies revealed that LADs
include constitutive LADs (cLADs) and facultative
LADs (fLADs). cLADs are cell-type invariant, while
fLADs only interact with the nuclear lamina in cer-
tain cell types [50–53]. Thus, LAD rearrangements
might be dominated by fLAD reshuffling, constituting
an opportunity for the rewiring of gene expression
programs as cell division progresses. Given the impor-
tance of the nuclear periphery in organizing the gen-
ome in 3D and its obligatory destruction at mitosis in
mammalian cells, reinstating the proper laminar–
chromatin interaction after mitosis represents another
important point of cell fate regulation. Viewed in this
light, progeria mutations in the canonical nuclear
lamina gene, lamin A [54], might interfere with the
whole spectrum of cell fates required for an adult
organism, even though early development could pro-
gress largely normally [55,56].

Fast cycling cells are more permissive for fate transition
Considering the significant challenges in copying the
epigencode, it is perhaps not surprising that frequent
mitoses could direct assaults on cellular identity.
This notion is supported by studies in somatic cell
reprogramming into pluripotency, where rapid cell
cycle greatly promotes cell fate transition into
pluripotency. The original study showed that c-Myc
significantly promotes proliferation and increases
reprogramming efficiency [14]. Subsequent mechanistic
studies, including manipulation of key cell cycle
regulators, confirmed the importance of cell cycle
dynamics for reprogramming. Inhibition of p53/p21
or overexpression of Lin28 can accelerate cell cycle
and promote reprogramming [57–62]. Conversely,
inhibition of Rb or Ink4/Arf, well-known cell cycle
inhibitors, also promotes reprogramming [63,64]. A
direct comparison of human fibroblasts from differ-
ent ages revealed that aged cells reprogram less effi-
ciently than young cells [65]. Since aged cells
upregulate the p53/p21 pathway and tend to undergo
senescence, these results further support that cell
cycle activity is critical for reprogramming fate tran-
sition. In agreement with this model, a molecular
roadmap charted out that strong upregulation of cell
cycle genes accompanies reprogramming [66]. Fur-
thermore, instead of manipulating the cell cycle, sim-
ply isolating fast-cycling cells during reprogramming
can recover most of the reprogramming-permissive
cells [15]. More strikingly, specific hematopoietic pro-
genitors, a subset of the granulocyte-monocyte pro-
genitors that naturally cycle at a speed of ~8 h/cycle,
reprogram in a nonstochastic manner, with almost all of their progeny turning into mature
iPSCs upon Yamanaka factor induction. In these
hematopoietic progenitors, activation of the endoge-
nous pluripotency locus Oct4 could be detected start-
ing as early as ~48 h following factor induction
[15,67], indicating that the barriers demarcating
somatic cells from pluripotency become severely degraded.

Potential molecular consequences of rapid cell cycle

Exactly how ultrafast cell cycles subvert the constraints on cell fate are yet to be fully determined, but a few possibilities emerging from recent literature are discussed in the following sections.

DNA demethylation

As discussed above, extreme cell cycle acceleration may compromise cells’ ability to faithfully restore the epigenome, providing a window of opportunity for cell fate change. One specific example is DNA CpG methylation, maintenance of which is largely catalyzed by the DNA methyltransferase Dnmt1 [68]. Given that Dnmt1 is a slower processing enzyme as compared to DNA polymerase [69,70], it is reasonable to speculate that cell cycle acceleration could interfere with completion of Dnmt1’s job of copying CpG methylation onto newly replicated DNA, leading to progressive hypomethylation [71]. Consistent with this notion, DNA hypomethylation occurs frequently in cancer cells, which are collectively more proliferative [72–74]. It has been reported that fast cell division could lead to DNA hypomethylation, which predominantly resides in the nuclear lamina-associated, late-replicating regions [75–77]. These regions might gradually become hypomethylated following rounds of rapid cell divisions. Even in normal tissues, DNA hypomethylation in late-replicating regions appears to be correlated with proliferation, as hypomethylation is observed in highly proliferative tissues, such as hematopoietic cells, fibroblasts, and placenta, but not in slowly dividing tissues, such as kidney and lung [77]. In contrast, DNA methylation levels are better maintained throughout cell divisions in the early-replicating regions. In slowly dividing cells, DNA methylation could be maintained or even accumulated in the late-replicating regions. As an extreme example, the methylation state of late-replicating regions in the brain (featured as least proliferative) is higher than that of the early-replicating regions, sharply contrasting the highly proliferative placenta, where the methylation state of late-replicating regions is lower than that of the early-replicating regions [77]. Global DNA hypomethylation driven by cell cycle acceleration is seen in primordial germ cell specification during early embryogenesis [78], where parental imprints and epigenetic marks accrued by the embryo are reset [79].

Time-limited access to chromatin by epigenetic enzymes

Similar to the maintenance of DNA methylation, evidence from early embryogenesis suggests that cell cycle speed could exert significant pressure on histone PTMs. *Drosophila* early embryogenesis starts with astoundingly fast cell divisions driven by cyclin/CDK1 [80,81]. This occurs in syncytium, where multiple nuclei share the same cytoplasm and divide synchronously. The first eight embryonic divisions are extremely fast, with the interphase of each division lasting less than four minutes. Cell cycle progressively slows during later cycles. At cycle 14, the embryo enters the midblastula transition (MBT) stage, coinciding with a dramatically slowed cell cycle due to CDK1 degradation. This is the stage when zygotic genes are fully activated and histone modifications stabilized, such that the heterochromatic foci become recognizable. How are the heterochromatic foci established during *Drosophila* early embryogenesis? Seller et al. [82] found that Eggless, the *Drosophila* H3K9 methyltransferase, mediates this process. Specifically, the length of interphase limits the access of Eggless to chromatin, leading to insufficient Eggless activity on the chromatin and failure in heterochromatic foci formation. However, as cell cycle lengths at the MBT stage, the effect of Eggless becomes sufficient to establish and maintain heterochromatic foci [82]. This mechanism supports the hypothesis that cell cycle length could regulate the epigenome by controlling the time available for establishing/maintaining epigenetic marks. It is not clear how such a global mechanism imparts specific cell fate decisions, and how different genomic regions might be differentially impacted by the time-sensitive regulation. The MBT stage also coincides with S-phase lengthening, which could potentially affect cell fate choice by additional mechanisms. Multiple of these mechanisms could be active to co-ordinate cell fate specifications, which is discussed in the following sections.

Delayed restoration of histone PTMs

To retain the same cell identity after division, histone PTMs behind the replication fork need to be restored, both positionally and quantitatively. Many histone PTMs can be restored to the prereplication level within one cell cycle [83], possibly due to parent histone recycling that preserves the positional information [84]. However, restoration of certain histone PTMs, such as histone H3 lysine 9 trimethylation (H3K9me3) and H3K27me3, could extend over several cellular
generations. Positional restoration occurs immediately after the replication fork and could occur independent of the enzymatic activities that deposit such PTMs. In contrast, quantitative restoration of histone PTMs may require much longer time. These distinct modes of histone PTM restoration suggest the possibility that cellular identity could become corrupted following several rounds of rapid cell cycles, when the protracted restoration of histone PTM levels is compromised.

Globally altered biomolecular concentrations

Cellular concentration of biomolecules has been shown to be dependent on cell cycle length [85]. In most cases, the apparent effect of mitosis on intracellular biomolecules is to have their quantity reduced by half. Therefore, reduction by cell division instead of degradation could be an effective way to globally reduce the quantity of biomolecules. During Escherichia coli balanced growth, most proteins are not actively degraded, when dilution by cell division becomes a dominant strategy to reduce protein concentration [86,87]. Analysis of 100 proteins in human cancer cells revealed that the abundance of proteins with a long half-life depends on dilution through cell division [88]. Indeed, the concept that stable proteins are preferentially retained in slow-dividing or nondividing cells could be recapitulated by transgenically expressed reporter proteins [89]. These data support the hypothesis that cell cycle length can be opted to control and alter the concentration of molecular species dependent on their inherent half-lives. Long-lived molecules accumulate as cell cycle lengths or slows, but are diluted as cell cycle shortens or accelerates.

In cases where such molecules play important roles in specifying cellular identity, cell cycle speed could profoundly affect cell fate choices. Direct evidence supporting this scenario comes from the study of the transcription factor, PU.1, where high PU.1 level induces macrophage differentiation, while its low level induces B-lymphocyte fate [90–93]. PU.1 is a protein with a long half-life [93]. Developing macrophages increase PU.1 concentration by extending their cell cycle length rather than promoting its protein synthesis. Furthermore, PU.1 can promote cell cycle lengthening, allowing itself to accumulate and drive macrophage differentiation in a positive feedback loop [93,94].

While PU.1 could be unique to hematopoietic lineage specification, similar mechanisms might exist with other transcription factors which regulate cell fate by co-opting cell cycle length. Such a cell cycle length-driven mechanism should not be discriminative and could apply to other classes of intracellular molecules. For example, since microRNAs are generally considered to be stable [95–98], cell cycle acceleration preceding reprogramming could lead to globally reduced microRNAs, thereby facilitating the transition into pluripotency, which is devoid of most microRNAs. Thus, it is reasonable to speculate that during somatic cell reprogramming into iPSCs, reduction in somatic microRNA concentration is one of the consequences of rapid cell cycle that aid cell fate transition.

Heightened chromatin accessibility from a weakened actin cytoskeleton

As indicated by the morphological changes accompanying mitosis, that is, mitotic rounding, the actin cytoskeleton undergoes remodeling throughout the cell cycle. Many cytoskeletal proteins are directly targeted by cyclin/CDKs (reviewed in Ref. [99]). In the fibroblast reprogramming model, dramatic downregulation of the actin cytoskeleton occurs as cells undergo this fate transition [100,101]. The systematic reduction of the actin cytoskeletal network is caused by reduced activity of the transcription factors megakaryoblastic leukemia-1/serum response factor (MKL1/SRF) [101]. Hu et al. demonstrated that low actin cytoskeleton is critical for the maturation of reprogramming fibroblasts. Elevated actin cytoskeleton by sustained MKL1 activity potently restricts nuclear dynamics, reduces chromatin accessibility, and inhibits pluripotency activation, partly through constricting the nuclei via the linker of nucleoskeleton and cytoskeleton complex [101]. This work depicts a novel perspective on how cell cycle could regulate cell fate and demonstrates how a ubiquitous structural network could regulate nuclear dynamics and control cell fate.

Specific cell cycle phases integrating with cell fate determinants

Cell fate regulation often occurs in specific cell cycle phases [5,7,8]. The G1-phase is an important time for deciding whether or not to exit the cell cycle (i.e., the restriction point, R-point) [102]. An additional restriction point was discovered later. This new restriction point occurs in the G2/M phase of the preceding cell cycle, yielding different CDK2 levels after mitosis. During G1 phase of the ensuing cell cycle, cells that have inherited higher CDK2 commit immediately to the next cell cycle while those with low CDK2 enter a transient state of quiescence [103]. Such divergent behavior could be traced even further upstream to the S-phase of the preceding cell cycle, when CDK2 was downregulated by DNA damage response incurred.
during replication [104]. These studies indicate that the basic decisions for whether/when to divide again is regulated at specific cell cycle phases [5,7,8], suggesting the importance of molecular events during distinct cell cycle phases.

G1-phase in pluripotent stem cells

Both human and mouse embryonic stem cells (h/mESCs) display rapid cell cycle with a distinctively short G1-phase, a topic thoroughly covered in recent reviews [5,105,106]. This unique cell cycle structure is accompanied by unusual expression patterns of the cell cycle machinery, with some differences between human and mouse EScs [5]. High levels of cyclin E, A, B [107–109] and CDK1/2 activity persist throughout the mESC cell cycle [106,108,110], while the expression of the KIP/CIP inhibitors is not detectable [108,110]. Rapid replication fork licensing during G1/S transition by Cdt1 is another important feature reported in hESCs [111]. The pluripotent cell cycle also depends on pluripotency transcription factors, such as Nanog and Oct4 [112,113], as well as on pluripotency micro-RNAs [114]. Therefore, the unique cell cycle machinery is an integral aspect of the pluripotency circuitry.

A short G1-phase is postulated to be important for pluripotency maintenance. Genetic ablation of all cyclin Ds and cyclin Es compromises pluripotency in mESCs [115,116], suggesting G1 cyclins are required for pluripotency maintenance. Notably, G1 cycline–CDKs were shown to stabilize the core pluripotency factors Oct4, Sox2, and Nanog through direct phosphorylation [115], and hyperphosphorylated Rb derepresses Oct4 and Sox2 [64]. Furthermore, EScs of both human and mouse display higher sensitivity to differentiation cues in G1 as compared to when they are in S- or G2-phase [117–119]. Experimentally extending G1-phase in hESCs increases their differentiation potential toward all three germ lineages [120]. Further mechanistic insights were obtained with the help of the FUCCI reporter, a powerful tool for dissecting phenotypes related to cell cycle phases without additional perturbations [121]. hESCs in early G1-phase show higher propensity to differentiate into endoderm and mesoderm, while they tend toward ectoderm when in late G1 [122]. Cyclin D level is low in early G1, allowing Smad2/3 to activate endodermal genes. Sufficient cyclin D1 accumulates in late G1 to complex with CDK4/6, which phosphorylates and inactivates Smad2/3, thereby preventing endoderm fate and allowing neuroectoderm fate [122]. Besides modulating Smad2/3 activity, cyclin Ds can complex with locus-specific transcription factors, recruiting transcriptional coactivators onto neuroectoderm genes and corepressors onto endoderm genes [123]. These studies illustrate how molecular events during specific segments of the G1-phase could oppose pluripotency, and how exempting from the G1/S checkpoint favors pluripotency.

Despite the general consensus on short G1-phase being a characteristic feature of ESCs, a few studies challenged the notion that shortened G1 is required for preventing differentiation. For example, overexpression of CDK inhibitors p21 or p27 could elongate G1 without increasing differentiation of mESCs [124]. In addition, mESCs cultured in the 2i/LIF condition also elongate G1, while their pluripotency is not compromised [125]. These examples demonstrate that pluripotency can be compatible with a lengthened G1-phase, although mechanic understandings are needed for how pluripotency is maintained under these conditions. Some insights could be gleaned from a diapause-like state when Myc is inactivated in pluripotent stem cells [126].

S/G2/M-phase in pluripotency and reprogramming

The G2/M-phase-associated CDK1 also helps pluripotency. Some of the mechanisms include promoting genome stability [127], elevating the protein level of Lin28, and controlling metabolic glycolysis via the PI3K-Akt pathway [128]. In mESCs, CDK1 dissociates Oct4 from mitotic chromatin in an Aurkb/PP1-dependent manner to prevent chromatin decondensation prior to mitosis [129]. The importance of S/G2/M-phase in regulating cell fate determination is also supported by cell fusion-based reprogramming studies. Embryonic stem cells, embryonic carcinoma, and embryonic germ cell lines can reprogram somatic cells to activate pluripotency via cell fusion [130]. Using centrifugal elutriation, Tsubouchi et al. [131] enriched EScs at specific cell cycle phases, avoiding interfering the pluripotent status of ESCs as caused by drug-induced cell cycle synchronization. With this strategy, they found that ESCs in late S/G2-phase have an enhanced capacity to reprogram lymphocytes and fibroblasts. ESCs at this cell cycle stage can induce the somatic nuclei to undergo a round of precocious DNA synthesis shortly after fusion, potentially providing an opportunity for changes in the somatic epigenome [131]. It remains unknown whether the S/G2 length can influence the reprogramming potential of these late S/G2 ESCs, and whether the overall cell cycle speed can alter the reprogramming capacity of ESCs via cell fusion.
S-phase shortening in erythropoiesis

The transcriptional switch demarcating erythroid terminal differentiation in the fetal liver is accompanied by a shortened S-phase and accelerated overall cell cycle. The rapid progression of S-phase is dependent on the downregulation of the CDK inhibitor $p57^{kip2}$. Low $p57^{kip2}$ leads to global increase in replication fork speed, activation of the erythroid master transcriptional regulator GATA-1, as well as formation of DNase I hypersensitive sites and DNA demethylation of these loci [13,132]. It remains to be determined whether S-phase acceleration is the cause or consequence of the transcriptional changes driving terminal erythroid commitment and how replication fork speed integrates with these processes.

With DNA replication being the hallmark S-phase event, speculative connections could be made from other work delineating the roles of genome replication itself in promoting cell fate change. Earlier studies have shown that activation of lineage specifying gene requires DNA replication [133–138], highlighting the importance of S-phase in determining cell fate. Since replication fork progression temporarily disrupts chromatin structure, S-phase could be required for reconfiguration of lineage-specific chromatin loci [139]. Such disruption and reconfiguration process may create an opportunity for cell fate change. However, since terminal erythroid differentiation leads to eventual enucleation, it is possible that erythroid fate is specified with mechanisms unique to this lineage.

Conclusions and outlook

As the cell division cycle globally disrupts and reorganizes the molecular content of the cell, it may represent a most effective path for the genome to be interpreted in a different manner as compared to its predecessors. While the linear genome can be faithfully copied through relatively simple biochemical activities, other components that collectively determine how the genome is expressed have far less stringent, or more versatile, propagating mechanisms during genome replication. We propose that it is the multitude and magnitude of the changes caused by the division cycle, especially those occurring in rapid succession, that present cells with unique opportunities to adopt different identities. The accumulating examples of how cell fate decisions are intertwined with cell cycle regulation demand improved methodologies for unveiling cell cycle dynamics and heterogeneity in live cells, *in vivo* and in a noninvasive manner.

The mechanistic insights on how cell cycle dynamics integrate with cell fate control will need to be investigated from multiple angles. For example, how does a cell take in and allocate its bioenergetic resources? How does this strained bioenergetic state, as represented by the Warburg state [140], shape the biochemical substrate pool for chromatin modulation [141,142]? On the chromatin, would the rapidly progressing replication forks collide more frequently with the transcription machineries [143]? What mechanisms could help to alleviate such collisions? When the need of biochemical reactions, such as DNA replication and transcription/splicing, need to be carried out rapidly with high efficiency and high specificity, how could the myriad reactions be co-ordinated in the crowded yet expansive nuclear space?

Although much is to be learned, the mechanistic insights on the connection between cell cycle and cell fate reprogramming could provide practical instructions on a number of fronts. Reprogramming somatic cells into pluripotency, for example, can be greatly facilitated by cell cycle acceleration [15]. Conversely, differentiating pluripotent stem cells into therapeutic cell types could be potentiated by cell cycle deceleration [120]. It will be important to develop more sophisticated cell cycle manipulation approaches, together with the understanding of how specific genomic regions or configurations respond to cell cycle modulation, to more precisely control cell fate. It is also important to explore how cell cycle dynamics impact reprogramming toward less proliferative cell fates. Understanding intrinsic and inherent cell cycle heterogeneity may help in the identification and eradication of certain rare cell states that found catastrophic cell fates, such as malignancy. Perhaps, cancer itself resembles more closely to a cellular state in which the cell cycle is overly rushed, rather than a cell state in which its genome is overly wrong [144].

References

1. Vermeulen K, Van Bockstaele DR and Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. *Cell Prolif.* **36**, 131–149.
2. Murray AW (2004) Recycling the cell cycle: cyclins revisited. *Cell* **116**, 221–234.
3. Harashima H, Dissmeyer N and Schnittger A (2013) Cell cycle control across the eukaryotic kingdom. *Trends Cell Biol* **23**, 345–356.
4. Hydbring P, Malumbres M and Sicinski P (2016) Noncanonical functions of cell cycle cyclins and cyclin-dependent kinases. *Nat Rev Mol Cell Biol* **17**, 280–292.
5 Dalton S (2015) Linking the cell cycle to cell fate decisions. *Trends Cell Biol* 25, 592–600.
6 Soufi A and Dalton S (2016) Cycling through developmental decisions: how cell cycle dynamics control pluripotency, differentiation and reprogramming. *Development* 143, 4301–4311.
7 Boward B, Wu T and Dalton S (2016) Concise review: control of cell fate through cell cycle and pluripotency networks. *Stem Cells* 34, 1427–1436.
8 Zaveri L and Dhawan J (2018) Cycling to meet fate: connecting pluripotency to the cell cycle. *Front Cell Dev Biol* 6, 57.
9 Siskin JE and Kinosita R (1961) Timing of DNA synthesis in the mitotic cycle in vitro. *J Biophys Biochem Cytol* 9, 509–518.
10 Araujo AR, Gelens L, Sheriff RS and Santos SD (2016) Positive feedback keeps duration of mitosis temporally insulated from upstream cell-cycle events. *Mol Cell* 64, 362–375.
11 Pilaz LJ, McMahon JJ, Miller EE, Lennox AL, Suzuki A, Salmon E and Silver DL (2016) Prolonged mitosis of neural progenitors alters cell fate in the developing brain. *Neuron* 89, 83–99.
12 Arai Y, Pulvers JN, Haffner C, Schilling B, Nusslein I, Calegari F and Huttner WB (2011) Neural stem and progenitor cells shorten S-phase on commitment to neuron production. *Nat Commun* 2, 154.
13 Hwang Y, Futran M, Hidalgo D, Pop R, Iyer DR, Scully R, Rhind N and Socolovsky M (2017) Global increase in replication fork speed during a p57(KIP2)-regulated erythroid cell fate switch. *Sci Adv* 3, e1700298.
14 Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell* 126, 663–676.
15 Guo S, Zi X, Schulz VP, Cheng J, Zhong M, Koochaki SH, Megyola CM, Pan X, Heydari K, Weissman SM et al. (2014) Nonstochastic reprogramming from a privileged somatic cell state. *Cell* 156, 649–662.
16 Clevers H and Watt FM (2018) Defining adult stem cells by function, not by phenotype. *Annu Rev Biochem* 87, 1015–1027.
17 Marcelo KL, Sills TM, Coskun S, Vasavada H, Sanglirak S, Goldie LC and Hirschi KK (2013) Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. *Dev Cell* 27, 504–515.
18 Lu YC, Sanada C, Xavier-Ferrucio J, Wang L, Zhang PX, Grimes HL, Venkatasubramanian M, Chetal K, Aronow B, Salomonis N et al. (2018) The molecular signature of megakaryocyte-erythroid progenitors reveals a role for the cell cycle in fate specification. *Cell Rep* 25, 2083–2093.e4.
19 Steinman RA (2002) Cell cycle regulators and hematopoiesis. *Oncogene* 21, 3403–3413.
20 Biteu B, Hochmuth CE and Jasper H (2011) Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. *Cell Stem Cell* 9, 402–411.
21 Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsay RC, Mermel CH, Burtt N, Chavez A et al. (2014) Age-related clonal hematopoiesis associated with adverse outcomes. *N Engl J Med* 371, 2488–2498.
22 Yizhak K, Aguet F, Kim J, Hess JM, Kubler K, Grimes J, Frazer R, Zhang H, Haradhvala NJ, Rosebrock D et al. (2019) RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. *Science* 364, eaaw0726.
23 Chen S, Bohrer LR, Rai AN, Pan Y, Gan L, Zhou X, Bagchi A, Simon JA and Huang H (2010) Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. *Nat Cell Biol* 12, 1108–1114.
24 Kaneko S, Li G, Son J, Xu CF, Margueron R, Neubert TA and Reinberg D (2010) Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. *Genes Dev* 24, 2615–2620.
25 Wei Y, Chen YH, Li LY, Lang J, Yeh SP, Shi B, Yang CC, Yang JY, Lin CY, Lai CC et al. (2011) CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. *Nat Cell Biol* 13, 87–94.
26 Gottesfeld JM and Forbes DJ (1997) Mitotic repression of the transcriptional machinery. *Trends Biochem Sci* 22, 197–202.
27 Kadauke S and Blobel GA (2013) Mitotic bookmarking by transcription factors. *Epigenetics Chromatin* 6, 6.
28 Liu Y, Pelham-Webb B, Di Giammartino DC, Li J, Kim D, Kita K, Saiz N, Garg V, Doane A, Giannakakou P et al. (2017) Widespread mitotic bookmarking by histone marks and transcription factors in pluripotent stem cells. *Cell Rep* 19, 1283–1293.
29 Festuccia N, Dubois A, Vandermael-Pournin S, Gallego Tejeda E, Mouren A, Bessonard S, Mueller F, Proux C, Cohen-Tannoudji M and Navarro P (2016) Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network. *Nat Cell Biol* 18, 1139–1148.
30 Behera V, Stonestrom AJ, Hamagami N, Hsiung CC, Keller CA, Giardine B, Sidoli S, Yuan ZF, Bhanu NV, Werner MT et al. (2019) Interrogating histone acetylation and BRD4 as mitotic bookmarks of transcription. *Cell Rep* 27, 400–415.e5.
31 Teves SS, An L, Hansen AS, Xie L, Darzacq X and Tjian R (2016) A dynamic mode of mitotic bookmarking by transcription factors eLife 5, e22280.
32 Hsiung CC, Morrissley CS, Udugama M, Frank CL, Keller CA, Baek S, Giardine B, Crawford GE, Sung MH, Hardison RC et al. (2015) Genome accessibility is widely preserved and locally modulated during mitosis. Genome Res 25, 213–225.
33 Palozola KC, Donahue G, Liu H, Grant GR, Becker JS, Cote A, Yu H, Raj A and Zaret KS (2017) Mitotic transcription and waves of gene reactivation during mitotic exit. Science 358, 119–122.
34 Dey A, Nishiyama A, Karpova T, McNally J and Ozato K (2009) Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol Biol Cell 20, 4899–4909.
35 Dey A, Ellenberg J, Farina A, Coleman AE, Maruyama T, Scirottino S, Lippincott-Schwartz J and Ozato K (2000) A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol Cell Biol 20, 6537–6549.
36 Shi J and Yakoc CR (2014) The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 54, 728–736.
37 Dechat T, Pilegha K, Sengupta K, Shimi T, Shumaker DK, Solimando L and Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22, 832–853.
38 Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W et al. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951.
39 Raices M and D’Angelo MA (2017) Nuclear pore complexes and regulation of gene expression. Curr Opin Cell Biol 46, 26–32.
40 Ulianov SV, Doronin SA, Khrameeva EE, Kos PI, Luzhin AV, Starikov SS, Galitsyna AA, Nenasheva VV, Ilyin AA, Flyamer IM et al. (2019) Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila. Nat Commun 10, 1176.
41 Shevelyov YY and Ulianov SV (2019) The nuclear lamina as an organizer of chromosome architecture. Cells 8, 136.
42 Heal R and McKeon F (1990) Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61, 579–589.
43 Haas M and Jost E (1993) Functional analysis of phosphorylation sites in human lamin A controlling lamina disassembly, nuclear transport and assembly. Eur J Cell Biol 62, 237–247.
44 Goss VL, Hocevar BA, Thompson LJ, Stratton CA, Burns DJ and Fields AP (1994) Identification of nuclear beta II protein kinase C as a mitotic lamin kinase. J Biol Chem 269, 19074–19080.
45 Kuga T, Nozaki N, Matsushita K, Nomura F and Tomonaga T (2010) Phosphorylation statuses at different residues of lamin B2, B1, and A/C dynamically and independently change throughout the cell cycle. Exp Cell Res 316, 2301–2312.
46 Chen JT, Ho CW, Chi LM, Chien KY, Hsieh YJ, Lin SJ and Yu JS (2013) Identification of the lamin A/C phosphoepitope recognized by the antibody P-STM in mitotic HeLa S3 cells. BMC Biochem 14, 18.
47 Kochin V, Shimi T, Torvaldsen E, Adam SA, Goldman A, Pack CG, Melo-Cardenas J, Imanishi SY, Goldman RD and Eriksson JE (2014) Interphase phosphorylation of lamin A. J Cell Sci 127, 2683–2696.
48 Moir RD, Spann TP, Lopez-Soler R1, Yoon M, Goldman AE, Khuon S and Goldman RD (2000) Review: the dynamics of the nuclear lamins during the cell cycle—relationship between structure and function. J Struct Biol 129, 324–334.
49 Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA and van Steensel B (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192.
50 Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Gräf S, Flice P, Kerkhoven RM, van Lohuizen M et al. (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38, 603–613.
51 Meuleman W, Peric-Hupkes D, Kind J, Beaudry JB, Pagie L, Kellis M, Reinders M, Wessels L and van Steensel B (2013) Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res 23, 270–280.
52 Kind J, Pagie L, de Vries SS, Nahidiazar L, Dey SS, Bienko M, Zhan Y, Lajoie B, de Graaf CA, Amendola M et al. (2015) Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163, 134–147.
53 van Steensel B and Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780–791.
54 De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Bocaccio I, Lyonnet S, Stewart CL, Munnoch A, Le Merrer M et al. (2003) Lamin A truncation in Hutchinson-Gilford progeria. Science 300, 2055.
55 Fong LG, Ng JK, Lammerding J, Vickers TA, Meta M, Cote N, Gavino B, Qiao X, Chang SY, Young SR et al. (2006) Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J Clin Invest 116, 743–752.
56 Kim Y, Zheng X and Zheng Y (2013) Proliferation and differentiation of mouse embryonic stem cells lacking all lamins. *Cell Res* 23, 1420–1423.

57 Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creighton MP, van Oudenaarden A and Jaenisch R (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. *Nature* 462, 595–601.

58 Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM and Izpisua Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. *Nature* 460, 1140–1144.

59 Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M and Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPSC cell genomic integrity. *Nature* 460, 1149–1153.

60 Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K et al. (2011) A more efficient method to generate integration-free human iPSC cells. *Nat Methods* 8, 409–412.

61 Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K and Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. *Nature* 460, 1132–1135.

62 Rasmussen MA, Holst B, Tumer Z, Johnsen MG, Zhou S, Stummann TC, Hyttel P and Clausen C (2014) Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage. *Stem Cell Reports* 3, 404–413.

63 Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, Blasco MA and Serrano M (2009) The Ink4/Arf locus is a barrier for iPSC cell reprogramming. *Nature* 460, 1136–1139.

64 Kaireta MS, Gorges LL, Hafeez S, Benayoun BA, Marro S, Zmoos AF, Cecchini MJ, Spacek D, Batista LF, O’Brien M et al. (2015) Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. *Cell Stem Cell* 16, 39–50.

65 Trokovic R, Weltner J, Noisa P, Raivio T and Otonkoski T (2015) Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells. *Stem Cell Res* 15, 254–262.

66 Polo JM, Anderssen E, Walsh RM, Schwarz BA, Neffzger CM, Lim SM, Borkent M, Apostolou E, Alaei S, Cloutier J et al. (2012) A molecular roadmap of reprogramming somatic cells into iPSCs. *Cell* 151, 1617–1632.

67 Megyola CM, Gao Y, Teixeira AM, Cheng J, Heydari K, Cheng EC, Nottoli T, Krause DS, Lu J and Guo S (2013) Dynamic migration and cell-cell interactions of early reprogramming revealed by high-resolution time-lapse imaging. *Stem Cells* 31, 895–905.

68 Song J, Teplova M, Ishibe-Murakami S and Patel DJ (2012) Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. *Science* 335, 709–712.

69 Pradhan S, Bacolla A, Wells RD and Roberts RJ (1999) Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification, and comparison of de novo and maintenance methylation. *J Biol Chem* 274, 33002–33010.

70 Jackson DA and Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. *J Cell Biol* 140, 1285–1295.

71 Bergman Y and Cedar H (2013) DNA methylation dynamics in health and disease. *Nat Struct Mol Biol* 20, 274–281.

72 Feinberg AP and Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. *Nature* 301, 89–92.

73 Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW and Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. *Nucleic Acids Res* 11, 6883–6894.

74 Goetz SE, Vogelstein B, Hamilton SR and Feinberg AP (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. *Science* 228, 187–190.

75 Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Nourshmehr H, Lange CP, van Dijk CM, Tolnenaar RA et al. (2011) Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. *Nat Genet* 44, 40–46.

76 Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall LE et al. (2012) Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. *Genome Res* 22, 246–258.

77 Aran D, Toperoff G, Rosenberg M and Hellman A (2011) Replication timing-related and gene body-specific methylation of active human genes. *Hum Mol Genet* 20, 670–680.

78 Kagiwada S, Kurimoto K, Hirota T, Yamaji M and Saitou M (2013) Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. *EMBO J* 32, 340–353.

79 Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J and Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. *Mech Dev* 117, 15–23.
Farrell JA and O’Farrell PH (2014) From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition. *Annu Rev Genet* **48**, 269–294.

Yuan K, Seller CA, Shermonen AW and O’Farrell PH (2016) Timing the Drosophila mid-blastula transition: a cell cycle-centered view. *Trends Genet* **32**, 496–507.

Seller CA, Cho CY and O’Farrell PH (2019) Rapid embryonic cell cycles defer the establishment of heterochromatin by eggless/SetDB1 in Drosophila. *Genes Dev* **33**, 403–417.

Alabert C, Barth TK, Reveron-Gomez N, Sidoli S, Schmidt A, Jensen ON, Imhof A and Groth A (2015) Two distinct modes for propagation of histone PTMs across the cell cycle. *Genes Dev* **29**, 585–590.

Reveron-Gomez N, Gonzalez-Aguilera C, Stewart-Curtis J, Johansen JV, Jakobsen JS, Alabert C and Groth A (2018) Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. *Mol Cell* **72**, 239–249.e5.

Cookson NA, Cookson SW, Tsimring LS and Hasty J (2010) Cell cycle-dependent variations in protein concentration. *Nucleic Acids Res* **38**, 2676–2681.

Nath K and Koch AL (1970) Protein degradation in *Escherichia coli*. I. Measurement of rapidly and slowly decaying components. *J Biol Chem* **245**, 2889–2900.

Klumpp S, Zhang Z and Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. *Cell* **139**, 1366–1375.

Eden E, Geva-Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T, Cohen L, Mayo A and Alon U (2011) Proteome half-life dynamics in living human cells. *Science* **331**, 764–768.

Eastman AE, Chen X, Hu X, Hartman AA, Morales AMP, Yang C, Lu J, Kueh HY and Guo S (2018) A fluorescent reporter enables instantaneous measurement of cell cycle speed in live cells. *BioRxiv* [PREPRINT].

Singh H, DeKoter RP and Walsh JC (1999) PU.1, a shared transcriptional regulator of lymphoid and myeloid cell fates. *Cold Spring Harb Symp Quant Biol* **64**, 13–20.

Nutt SL, Metcalf D, D’Amico A, Polli M and Wu L (2005) Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. *J Exp Med* **201**, 221–231.

Arimobu Y, Mizuno S, Chong Y, Shigematsu H, Iino T, Iwasaki H, Graf T, Mayfield R, Chan S, Kastner P *et al.* (2007) Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. *Cell Stem Cell* **1**, 416–427.

Kueh HY, Champhekar A, Nutt SL, Elowitz MB and Rothenberg EV (2013) Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. *Science* **341**, 670–673.

Solomon LA, Podder S, He J, Jackson-Chornenki NL, Gibson K, Ziliotto RG, Rhee J and DeKoter RP (2017) Coordination of myeloid differentiation with reduced cell cycle progression by PU.1 induction of microRNAs targeting cell cycle regulators and lipid anabolism. *Mol Cell Biol* **37**, e00013–17.

Guo Y, Liu J, Elfenbein SJ, Ma Y, Zhong M, Qiu C, Ding Y and Lu J (2015) Characterization of the mammalian miR-34 turnover landscape. *Nucleic Acids Res* **43**, 2326–2341.

Kai ZS and Pasquinelli AE (2010) MicroRNA assassins: factors that regulate the disappearance of miRNAs. *Nat Struct Mol Biol* **17**, 5–10.

Ji L and Chen X (2012) Regulation of small RNA stability: methylation and beyond. *Cell Res* **22**, 624–636.

Gebert LFR and MacRae JJ (2019) Regulation of microRNA function in animals. *Nat Rev Mol Cell Biol* **20**, 21–37.

Bendris N, Lemmers B and Blanchard JM (2015) Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. *Cell Cycle* **14**, 1786–1798.

Sakurai K, Talukdar I, Patil VS, Dang J, Li Z, Chang KY, Lu CC, Delorme-Walker V, Dermardirossian C, Anderson K *et al.* (2014) Kinome-wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming. *Cell Stem Cell* **14**, 523–534.

Hu X, Liu ZZ, Chen X, Schulz VP, Kumar A, Hartman AA, Weinstein J, Johnston JF, Rodriguez EC, Eastman AE *et al.* (2019) MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. *Nat Commun* **10**, 1695.

Pardee AB (1974) A restriction point for control of normal animal cell proliferation. *Proc Natl Acad Sci USA* **71**, 1286–1290.

Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL and Meyer T (2013) The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. *Cell* **155**, 369–383.

Barr AR, Cooper S, Heldt FS, Butera F, Stoy H, Mansfeld J, Novak B and Bakal C (2017) DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. *Nat Commun* **8**, 14728.

White J and Dalton S (2005) Cell cycle control of embryonic stem cells. *Stem Cell Rev* **1**, 131–138.

Liu L, Michowski W, Kolodziejczyk A and Sicinski P (2019) The cell cycle in stem cell proliferation, pluripotency and differentiation. *Nat Cell Biol* **21**, 1060–1067.

Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen D, Dingra U, Rathjen P, Walker D and
Dalton S (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. *Oncogene* 21, 8320–8333.

108 Fujii-Yamamoto H, Kim JM, Arai K and Masai H (2005) Cell cycle and developmental regulations of replication factors in mouse embryonic stem cells. *J Biol Chem* 280, 12976–12987.

109 White J, Stead E, Faast R, Conn S, Cartwright P and Dalton S (2005) Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. *Mol Biol Cell* 16, 2018–2027.

110 Bar-On O, Shapira M, Skorecki K, Hershko A and Hershko DD (2010) Regulation of APC/C (Cdh1) ubiquitin ligase in differentiation of human embryonic stem cells. *Cell Cycle* 9, 1986–1989.

111 Matson JP, Dumitr u R, Coryell P, Baxley RM, Chen W, Twaroski K, Webber BR, Tolar J, Bielinski AK, Purvis JE et al. (2017) Rapid DNA replication origin licensing protects stem cell pluripotency. *eLife* 6, e30473.

112 Lee J, Go Y, Kang I, Han YM and Kim J (2010) Oct-4 controls cell-cycle progression of embryonic stem cells. *Biochem J* 426, 171–181.

113 Zhang X, Neganova I, Przyborski S, Yang C, Cooke M, Atkinson SP, Anfantis G, Fenyk S, Keith WN, Hoare SF et al. (2009) A role for NANO G in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. *J Cell Biol* 184, 67–82.

114 Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L and Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. *Nat Genet* 40, 1478–1483.

115 Liu L, Michowski W, Inuzuka H, Shimizu K, Nihira NT, Chick JM, Li N, Geng Y, Meng AY, Ordureau A et al. (2017) G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. *Nat Cell Biol* 19, 177–188.

116 Kalaszczyńska I, Geng Y, Iino T, Mizuno S, Choi Y, Kondratiu I, Silver DP, Wolgemuth DJ, Akashi K and Sicinski P (2009) Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. *Cell* 138, 352–365.

117 Coronado D, Godet M, Bourillot PY, Tapponnier Y, Bernat A, Petit M, Afanassiiev M, Markossian S, Malashicheva A, Iacone R et al. (2013) A short G1 phase is an intrinsic determinant of naive embryonic stem cell pluripotency. *Stem Cell Res* 10, 118–131.

118 Sela Y, Molotski N, Golan S, Itskovitz-Eldor J and Soen Y (2012) Human embryonic stem cells exhibit increased propensity to differentiate during the G1 phase prior to phosphorylation of retinoblastoma protein. *Stem Cells* 30, 1097–1108.

119 Gonzales KA, Liang H, Lim YS, Chan YS, Yeo JC, Tan CP, Gao B, Le B, Tan ZY, Low KY et al. (2015) Deterministic restriction on pluripotent state dissolution by cell-cycle pathways. *Cell* 162, 564–579.

120 Chetty S, Engquist EN, Mehanna E, Lui KO, Tsankov AM and Melton DA (2015) A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation. *J Cell Biol* 210, 1257–1268.

121 Sakae-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H et al. (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. *Cell* 132, 487–498.

122 Pauklin S and Vallier L (2013) The cell-cycle state of stem cells determines cell fate propensity. *Cell* 155, 135–147.

123 Pauklin S, Madrigal P, Bertero A and Vallier L (2016) Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D. *Genes Dev* 30, 421–433.

124 Li VC, Ballabeni A and Kirschner MW (2012) Gap 1 phase length and mouse embryonic stem cell self-renewal. *Proc Natl Acad Sci USA* 109, 12550–12555.

125 Ter Huurne M, Chappell J, Dalton S and Stunnenberg HG (2017) Distinct cell-cycle control in two different states of mouse pluripotency. *Cell Stem Cell* 21, 449–455.e4.

126 Scognamiglio R, Cabezaz-Wallscheid N, Thier MC, Altamura S, Reyes A, Prendergast AM, Baumgartner D, Carnevalli LS, Atzberger A, Haas S et al. (2016) Myc depletion induces a pluripotent dormant state mimicking diapause. *Cell* 164, 668–680.

127 Neganova I, Tilgner K, Buskin A, Paraskevopoulou I, Atkinson SP, Peberdy D, Passos JF and Lako M (2014) CDK1 plays an important role in the maintenance of pluripotency and genomic stability in human pluripotent stem cells. *Cell Death Dis* 5, e1508.

128 Wang XQ, Lo CM, Chen L, Ngan ES, Xu A and Poon RY (2017) CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. *Cell Death Differ* 24, 38–48.

129 Kim HJ, Shin J, Lee S, Kim TW, Jang H, Suh MY, Kim JH, Hwang IY, Hwang DS, Cho EJ et al. (2018) Cyclin-dependent kinase 1 activity coordinates the chromatin associated state of Oct4 during cell cycle in embryonic stem cells. *Nucleic Acids Res* 46, 6544–6560.

130 Soza-Ried J and Fisher AG (2012) Reprogramming somatic cells towards pluripotency by cellular fusion. *Curr Opin Genet Dev* 22, 459–465.

131 Tsoubouchi T, Soza-Ried J, Brown K, Piccolo FM, Cantone I, Landeira D, Bagi H, Hochegger H, Merkenschlager M and Fisher AG (2013) DNA synthesis is required for reprogramming mediated by stem cell fusion. *Cell* 152, 873–883.

Notes:

- *FEBS Letters* 593 (2019) 2840–2852 © 2019 The Authors. *FEBS Letters* published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
132 Pop R, Shearstone JR, Shen Q, Liu Y, Hallstrom K, Koulnis M, Gribnau J and Socolovsky M (2010) A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. *PLoS Biol* **8**, e1000484.

133 Edgar LG and McGhee JD (1988) DNA synthesis and the control of embryonic gene expression in *C. elegans*. *Cell* **53**, 589–599.

134 Aparicio OM and Gottschling DE (1994) Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. *Genes Dev* **8**, 1133–1146.

135 Weigmann K and Lehner CF (1995) Cell fate specification by even-skipped expression in the *Drosophila* nervous system is coupled to cell cycle progression. *Development* **121**, 3713–3721.

136 Forlani S, Bonnerot C, Capgras S and Nicolas JF (1998) Relief of a repressed gene expression state in the mouse 1-cell embryo requires DNA replication. *Development* **125**, 3153–3166.

137 Ambros V (1999) Cell cycle-dependent sequencing of cell fate decisions in *Caenorhabditis elegans* vulva precursor cells. *Development* **126**, 1947–1956.

138 Fisher D and Mechali M (2003) Vertebrate HoxB gene expression requires DNA replication. *EMBO J* **22**, 3737–3748.

139 Wolfe AP (1991) Implications of DNA replication for eukaryotic gene expression. *J Cell Sci* **99** (Pt 2), 201–206.

140 Vazquez A, Liu J, Zhou Y and Olsvai ZN (2010) Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. *BMC Syst Biol* **4**, 58.

141 Finman B, Bolster CJ and Bellinetti S (1989) Failure to follow through can cripple even the best decisions. *Aspens Advis Nurse Exec* **4**, 6–7.

142 Montellier E and Gaucher J (2019) Targeting the interplay between metabolism and epigenetics in cancer. *Curr Opin Oncol* **31**, 92–99.

143 Babos KN, Galloway KE, Kisler K, Zitting M, Li Y, Shi Y, Quintino B, Chow RH, Zlokovic BV and Ichida JK (2019) Mitigating antagonism between transcription and proliferation allows near-deterministic cellular reprogramming. *Cell Stem Cell* **25**. https://doi.org/10.1016/j.stem.2019.08.005

144 Chen X, Hartman A, Hu X, Eastman AE, Wang X, Zhong M and Guo S (2018) MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors. *BioRxiv* [PREPRINT].