Supporting Information

Detecting Repetitions and Periodicities in Proteins by Tiling the Structural Space

R. Gonzalo Parra1, Rocío Espada1, Ignacio E. Sánchez1, Manfred J. Sippl2 and Diego U. Ferreiro1

1Protein Physiology Lab, Dep de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN, Buenos Aires, Argentina.

2Center of Applied Molecular Engineering, Division of Bioinformatics, Department of Molecular Biology, University of Salzburg, Austria.
Homogeneous Model

We build a toy-protein consisting of \(N \) amino acids arranged on a straight line, schematized on figure S1.

Each tile is uniquely characterized by its length \(L_i \) and it’s center \(Z_i \), and satisfies:

\[
\frac{L_i}{2} \leq Z_i \leq N - \frac{L_i}{2}.
\]

The maximal coverage is gained when the copies arranged continuously. As such, the centers of the copies (\(Z_{ik} \)) is

\[
Z_{ik} = Z_i + n \cdot L_i \quad n \in \mathbb{Z}.
\]

When only full length tile copies are accepted, the center of the copies are restricted,

\[
\frac{L_i}{2} \leq Z_{ik} \leq N - \frac{L_i}{2}.
\]

\[
\frac{L_i}{2} \leq Z_i + n \cdot L_i \leq N - \frac{L_i}{2}
\]

which can be rearranged to get:

\[
\frac{1}{2} - \frac{Z_i}{L_i} \leq n \leq \frac{N}{L_i} - \frac{1}{2} - \frac{Z_i}{L_i}
\]

with boundaries corresponding to

\[
n_{\text{min}} = \left\lfloor \frac{1}{2} - \frac{Z_i}{L_i} \right\rfloor
\]

\[
n_{\text{max}} = \left\lceil \frac{N}{L_i} - \frac{1}{2} - \frac{Z_i}{L_i} \right\rceil
\]
The number of copies that can be place along the protein is \(n_c = n_{\text{max}} - n_{\text{min}} + 1 \) and the coverage \(C_i = n_c \cdot L_i \). The tile score \(\Theta_i \) is:

\[
\Theta_i = \frac{(n_c - 1) L_{ii}}{N - L_{ii}} \tag{8}
\]

The tiling pattern of a toy-protein of \(N = 120 \) residues is shown in figure S2a.

To calculate the coverage when partial copies of a tile are allowed, we first calculate how many residues are uncovered by tessellation of full length tile copies. The most left tile is centered at \(Z_i + n_{\text{min}} \cdot L_i \), and its start is at the aminoacid \(Z_i + n_{\text{min}} \cdot L_i - \frac{L_{ii}}{2} \) which is also the number of amino acids uncovered at the beginning of the protein \(C_{\text{beg}} \). Analogously, the most right tile center is centered at \(Z_i + n_{\text{max}} \cdot L_i \), its end is located at \(Z_i + n_{\text{max}} \cdot L_i + \frac{L_{ii}}{2} \) and the number of amino acids uncovered is

\[
C_{\text{end}} = N - \left[Z_i + n_{\text{max}} \cdot L_i + \frac{L_{ii}}{2}\right].
\]

If \(C_{\text{beg}} \) and \(C_{\text{end}} \) are bigger than \(\alpha L_i \) the partial tile copies contribute to the coverage obtained with the full length copies:

\[
\chi(x) = \begin{cases}
0 & \text{if } x < 0 \\
1 & \text{if } x \geq 0
\end{cases}
\tag{9}
\]

and their tile score is

\[
\Theta_i = \frac{(n_c - 1) \cdot L_{ii} + C_{\text{beg}} \cdot \chi(C_{\text{beg}} - L_{ii}/2) + C_{\text{end}} \cdot \chi(C_{\text{end}} - L_{ii}/2)}{N - L_{ii}} \tag{10}
\]

The tiling pattern of a toy-protein of \(N = 120 \) residues is shown in figure S2b.
Figure S2: Tiling an homogenous toy-protein. The tiles are ordered according to their size (vertical axis) and their center (horizontal axis) in amino acid units. The tile score Θ_i is displayed in greyscale, and $\delta\bar{\Theta}$ vs. L_i projected on the left. Panel a) shows the tiling profile obtained when only full length copies of the tile are allowed, and panel b) when partial copies are also accepted.
Figure S3: Zoom in the tiling profile of Porcine Ribonuclease Inhibitor (2bnh,A) (shown in Fig3c). The tiling profile is shown on grayscale, together with the $\delta \Theta_i$ projected on the left. This protein has a characteristic frequency at $L_i=57$. The tiles at this length can be composed with tiles of $L_i=28$ and $L_i=29$ that appear alternated in protein structure. This is reflected in a square-tooth pattern around $L_i \approx 30$ and a second peak in $\delta \Theta_i$. The structures of the native protein and the corresponding tiling at the specified length (L_i) and center (Z_i) is shown, using the same coloring scheme of Fig.2. a) Tiling with $L_i=28$, $Z_i=388$. c) Tiling with $L_i=29$, $Z_i=153.5$.
Figure S4: Tiling TIM barrels examples. The tiling profile is shown on grayscale, together with the $\delta \Theta_i$ projected on the left. The structures of the native protein and the corresponding tiling at lengths (L_i) and center (Z_i) corresponding to 2-fold, 4-fold and 8-fold are shown, using the same coloring scheme of Fig.2

a) Ribulose-phosphate 3-epimerase (pdb:1rpx,A) 2-fold: $L_i = 108$, $Z_i = 63$, 4-fold $L_i = 46$, $Z_i = 92$, 8-fold $L_i = 27$, $Z_i = 105.5$
b) HisF (pdb:1thf,D) 2-fold: $L_i = 121$, $Z_i = 181.5$, 4-fold $L_i = 53$, $Z_i = 58.5$, 8-fold $L_i = 22$, $Z_i = 94$
c) Glycosomal, Triosephosphate isomerase (pdb:5tim,A) 2-fold: $L_i = 129$, $Z_i = 186.5$, 4-fold $L_i = 50$, $Z_i = 29$, 8-fold $L_i = 23$, $Z_i = 115.5$
d) Narbonin (pdb:1nar,A) 2-fold: $L_i = 97$, $Z_i = 116.5$, 4-fold $L_i = 43$, $Z_i = 180.5$, 8-fold $L_i = 25$, $Z_i = 251.5
Figure S5: Tiling β-propeller examples. The tiling profile is shown on grayscale, together with the $\delta \Theta_i$ projected on the left. The structures of the native protein and the corresponding tiling at the specified length (L_i) and center (Z_i) is shown, using the same coloring scheme of Fig.2. β-propeller proteins that contain different number of 'blades' are shown. a) 5-bladed Tachylectin-2 (pdb:1tl2.A), $L_i = 47$, $Z_i = 213.5$ b) 7-bladed WD repeat-containing protein-5 (pdb:3smr.A), $L_i = 42$, $Z_i = 138$ c) 6-bladed 3-phytase (pdb:3ams.A), $L_i = 45$, $Z_i = 251.5$ d) 4-bladed Interstitial collagenase (pdb:1fbl.A) $L_i = 49$, $Z_i = 399.5$.
Table S1: Survey of the tile and tessellation parameters in protein structures

PdbID	Architecture	Protein	Selected Tile (T_i)	Tessellation							
			N^a	Ξ^b	L_i^c	Z_i^d	Θ_i^e	$n_{T_i^f}$	C_i^g	I_i^h	NR_i^2
HM	toy model	120	1.0000	79*	39.5*	1.00	2	1.00	0.00	0.00	
2b9c,A	Coiled-Coil	136	0.8761	35	143.5	0.93	4	0.98	0.00	0.02	
2fo7,A	TPR	136	0.7897	68*	35*	1.00	2	1.00	0.00	0.00	
3esk,A	TPR	128	0.7845	41*	297.5*	0.94	4	1.00	0.00	0.00	
2bnh,A	Leucine	456	0.7628	57*	139.5*	0.96	8	0.99	0.00	0.01	
2j8k,A	β-Solenoid	175	0.7569	10*	87*	0.91	17	0.93	0.03	0.04	
4db6,A	Armadillo	197	0.7367	42*	33*	0.99	5	1.00	0.00	0.00	
3ltm,A	Heat	185	0.7039	31*	62.5*	0.97	6	1.00	0.00	0.00	
2i13,A	Zn-Finger	154	0.7030	28*	62*	0.87	5	0.89	0.00	0.11	
2xtw,A	β-Solenoid	210	0.7029	10	32	0.85	19	0.88	0.05	0.07	
1k1a,A	Ank	228	0.7022	33	241.5	0.93	7	0.96	0.04	0.00	
1awc,B	Ank	153	0.6918	66*	89*	0.97	3	0.97	0.00	0.03	
1n11,A	Ank	408	0.6804	33*	510.5*	0.90	12	0.95	0.00	0.05	
1ihb,A	Ank	156	0.6794	33*	79.5*	0.95	5	0.99	0.01	0.00	
1mx2,A	Ank	156	0.6789	33*	79.5*	0.95	5	0.99	0.01	0.00	
3ltj,A	Heat	191	0.6771	93*	59.5*	0.73	2	0.97	0.00	0.03	
1ixv,A	Ank	229	0.6765	34	190	0.90	7	1.00	0.00	0.00	
3u4t,A	TPR	258	0.6757	34*	382*	0.85	7	0.92	0.04	0.04	
1nfi,E	Ank	213	0.6748	106*	123*	0.79	2	0.92	0.05	0.03	
3sla,A	Armadillo	166	0.6744	42	204	0.89	4	0.98	0.02	0.00	
1n0r,A	Ank	126	0.6725	33*	18.5*	0.97	4	0.99	0.00	0.01	
2rfm,A	Ank	183	0.6699	33	117.5	0.93	6	1.00	0.00	0.00	
3lbx,A	Spectrin	140	0.6674	63*	50.5*	0.45	2	0.79	0.21	0.00	
1ot8,A	Ank	209	0.6578	33*	157.5*	0.89	6	0.94	0.00	0.06	
1plq@1	Quaternary	774	0.6515	132*	190,A*	0.92	6	0.95	0.05	0.00	
1tr4,A	Ank	226	0.6488	33	55.5	0.90	7	0.98	0.00	0.02	
1blx,B	Ank	160	0.6465	65	76.5	0.86	3	0.90	0.00	0.10	
3ow8,A	β-Propeller	300	0.6317	42	200	0.93	7	0.99	0.01	0.00	
PDB Code	Type	Structure	AccessNumber	RMSD	M.	T.	R.	R.	R.		
----------	--------------	-----------	--------------	------	----	----	----	---	----		
1h4a,X	β-γ-crystallin	Hevein	174	0.6226	43	149.5	0.87	4	0.95	0.03	0.02
1k7u,A	Hevein	Ank	171	0.6225	43	150.5	0.99	4	1.00	0.00	0.00
1bu9,A	Hevein	Ank	168	0.6200	33*	87.5*	0.88	5	0.97	0.00	0.03
2vj3,A	EFG-Like	Hevein	120	0.6155	38*	453*	0.93	4	1.00	0.00	0.00
3smr,A	β-Propeller	Hevein	304	0.5969	42	138	0.92	7	0.99	0.00	0.01
1ybi,A	Hevein	Ank	284	0.5890	142	223	0.86	2	0.97	0.02	0.01
1vpk@1	Quaternary	Hevein	734	0.5856	128*	297	0.78	6	0.93	0.07	0.00
1r8p@0	Quaternary	Hevein	162	0.5800	43*	58.5*	0.78	4	1.00	0.00	0.00
4atg,A	Hevein	Ig-Like	195	0.5788	87*	277.5*	0.49	2	0.83	0.00	0.17
2rik,A	Hevein	Ig-Prop-	280	0.5760	94	140	0.94	3	1.00	0.00	0.00
2hhb@1	Quaternary	Hevein	574	0.5700	21*	66.5*	0.76	24	0.84	0.12	0.04
2afg,A	Hevein	Ank	129	0.5586	41	30.5	0.85	3	0.98	0.02	0.00
1d9s,A	Hevein	Ank	130	0.5576	66*	30*	0.71	2	0.98	0.00	0.02
1ap7,A	Hevein	Ank	168	0.5469	32	114	0.78	5	0.93	0.02	0.05
1ikn,D	Hevein	Ank	220	0.5540	106*	128*	0.59	2	0.92	0.05	0.03
1b3u,A	Hevein	Heat	588	0.5488	39	530.5	0.87	15	0.98	0.02	0.00
1jt4,A	Hevein	Trefoil	137	0.5169	41*	30.5*	0.77	3	0.92	0.01	0.07
2pnn,A	Hevein	Ank	248	0.5026	11	135.5	0.65	17	0.75	0.23	0.02
1kmn,A	Hevein	Trefoil	129	0.4975	40*	27*	0.84	3	0.91	0.05	0.04
3jxi,A	Hevein	Ank	253	0.4927	11	286.5	0.63	19	0.81	0.17	0.02
1fq0,A	Hevein	TIM	213	0.4909	88	60	0.50	2	0.89	0.03	0.08
1hxn,A	Hevein	β-Propeller	210	0.4909	9*	247.5*	0.66	19	0.80	0.18	0.02
1t12,A	Hevein	β-Propeller	235	0.4851	47*	119.5*	0.99	5	1.00	0.00	0.00
1rpx,A	Hevein	TIM	230	0.4838	109	171.5	0.60	2	0.94	0.00	0.06
1qo2,A	Hevein	TIM	241	0.4810	15*	42.5*	0.53	11	0.71	0.22	0.07
1s70,B	Hevein	Ank	291	0.4776	33*	86.5*	0.66	7	0.77	0.10	0.13
1thf,D	Hevein	TIM	253	0.4707	121*	179.5*	0.64	2	0.94	0.00	0.06
2a0n,A	Hevein	TIM	251	0.4697	121*	181.5*	0.67	2	0.96	0.00	0.04
1s4u,X	Hevein	β-Propeller	390	0.4612	11	330.5	0.60	28	0.79	0.18	0.03
3pg0,A	Hevein	Trefoil	140	0.4605	47*	25.5*	1.00	3	1.00	0.00	0.00
3ams,A	Hevein	β-Propeller	352	0.4582	167*	244.5*	0.50	2	0.92	0.00	0.08
PDB	Protein	Length	Len	Width	Max Fl	Cent	Cover (%)	Insert (%	Non-R	Max Fl	Coverage (%)
------	----------	--------	------	-------	--------	-------	-----------	-----------	--------	--------	--------------
2v70	Leucine	210	24	628	0.65	7	0.83	0.09	0.08		
2a62	Cadherin	322	109	167.5	0.77	3	0.98	0.00	0.02		
1s2w	TIM	275	124*	179*	0.42	2	0.81	0.00	0.19		
5tim	TIM	249	23	115.5	0.47	8	0.76	0.19	0.05		
3kea	Ank	282	99	134.5	0.34	2	0.61	0.00	0.39		
8tim	TIM	247	23	116.5	0.45	7	0.67	0.21	0.12		
1dx5	EGF-Like	118	13*	442.5*	0.57	7	0.77	0.23	0.00		
3ehq	Ank	182	67*	93.5*	0.42	2	0.72	0.00	0.28		
2aja	Ank	347	11	226.5	0.81	28	0.88	0.11	0.01		
1mbd	Globin	153	7	12.5	0.79	19	0.87	0.11	0.02		
1ycs	Ank	193	33*	400.5*	0.51	4	0.65	0.00	0.35		
1gfl	GFP	230	7	92.5	0.72	26	0.78	0.21	0.01		
1sw6	Ank	301	7	485.5	0.58	29	0.67	0.31	0.02		
1nar	TIM	289	11	153.5	0.53	20	0.75	0.22	0.03		
1vju	TIM	325	13	63.5	0.46	16	0.66	0.33	0.01		
2iho	Trefoil	292	51*	82.5*	0.39	3	0.53	0.00	0.47		
1dcq	Ank	276	7	388.5	0.64	32	0.81	0.18	0.01		
3phz	Trefoil	285	13	85.5	0.51	17	0.77	0.22	0.01		
1bfl	β-Propeller	367	13	386.5	0.49	19	0.71	0.25	0.04		
1hx1	Globular	377	7	216.5	0.62	44	0.81	0.19	0.00		
2vg3	Globular	284	11	198.5	0.52	18	0.69	0.22	0.09		
4blm	Globular	261	15	185.5	0.52	13	0.74	0.25	0.01		
3dtm	Globular	263	13	185.5	0.53	15	0.73	0.26	0.01		
2psg	Globular	326	15	270.5	0.50	17	0.77	0.22	0.01		

a Protein length. *b* Tileability Score. *c* Tile center. *d* Tile Score. *e* Number of tessellated tile copies. *f* Fraction of the coverage given by insertions between tiles. *g* Fraction of the coverage of the Non-Repeating regions. *h* Fraction of the coverage accounted by tile copies. *i* Proteins for which there is more than one tile that have identical max Θ, at the characteristic frequency. *(†)* Protein Complexes, the letter after Z indicates the chain ID.