ON THE GLOBAL REGULARITY OF TWO-DIMENSIONAL
GENERALIZED MAGNETOHYDRODYNAMICS SYSTEM

KAZUO YAMAZAKI

ABSTRACT. We study the two-dimensional generalized magnetohydrodynamics system with dissipation and diffusion in terms of fractional Laplacians. In particular, we show that in case the diffusion term has the power $\beta = 1$, in contrast to the previous result of $\alpha \geq \frac{1}{2}$, we show that $\alpha > \frac{1}{3}$ suffices in order for the solution pair of velocity and magnetic fields to remain smooth for all time.

Keywords: Global regularity, magnetohydrodynamics system, Navier-Stokes system.

1. INTRODUCTION AND STATEMENT OF RESULTS

We study the generalized magnetohydrodynamics (MHD) system defined as follows:

$$\begin{cases}
\frac{\partial u}{\partial t} + (u \cdot \nabla)u - (b \cdot \nabla)b + \nabla \pi + \nu \Lambda^{2\alpha} u = 0, \\
\frac{\partial b}{\partial t} + (u \cdot \nabla)b - (b \cdot \nabla)u + \eta \Lambda^{2\beta} b = 0, \\
\nabla \cdot u = \nabla \cdot b = 0, \\
u(x,0) = u_0(x), b(x,0) = b_0(x),
\end{cases}$$

where $u : \mathbb{R}^N \times \mathbb{R}^+ \rightarrow \mathbb{R}^N$ is the velocity vector field, $b : \mathbb{R}^N \times \mathbb{R}^+ \rightarrow \mathbb{R}^N$ the magnetic vector field, $\pi : \mathbb{R}^N \times \mathbb{R}^+ \rightarrow \mathbb{R}$ the pressure scalar field and $\nu, \eta \geq 0$ are the kinematic viscosity and diffusivity constants respectively. We also denote by Λ a fractional Laplacian operator defined via Fourier transform as $\hat{\Lambda}^{2\gamma} f(\xi) = |\xi|^{2\gamma} \hat{f}(\xi)$ for any $\gamma \in \mathbb{R}$.

In case $N = 2, 3$, $\nu, \eta > 0$, $\alpha = \beta = 1$, it is well-known that (1) possesses at least one global L^2 weak solution; in case $N = 2$, it is also unique (cf. [19]). Moreover, in any dimension $N \geq 2$, the case $\nu, \eta > 0$, the lower bounds on the powers of the fractional Laplacians at $\alpha \geq \frac{1}{2} + \frac{N}{4}$, $\beta \geq \frac{1}{2} + \frac{N}{4}$ imply the existence of the unique global strong solution pair (cf. [26]).

Some numerical study have shown that the velocity vector field may play relatively important role in regularizing effect (e.g. [8], [18]). Starting from the works of [9] and [34], we have seen various regularity criteria of the MHD system in terms of only the velocity vector field (e.g. [1], [4], [6], [7], [10], [25], [28], [33]). Moreover, motivated by the work of [20], the author in [24] showed that in case

\[\text{The author expresses gratitude to Professor Jiahong Wu and Professor David Ullrich for their teaching.} \]

\[\text{12000MSC : 35B65, 35Q35, 35Q86} \]

\[\text{2Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences, Stillwater, OK 74078, USA} \]
$N \geq 2, \nu, \eta > 0, \alpha \geq \frac{1}{2} + \frac{N}{4}, \beta > 0$ such that $\alpha + \beta \geq 1 + \frac{N}{2}$, the system (1) even in logarithmically super-critical case still admits a unique global strong solution pair. The endpoint case $\nu > 0, \eta = 0, \alpha = 1 + \frac{N}{2}$ was also completed recently in [23] and [29] (cf. [27] for further generalization).

On the other hand, in case $N = 2$, it is well-known that the Euler equations, the Navier-Stokes system with no dissipation, still admits a unique global strong solution. This is due to the conservation of vorticity which follows upon taking a curl on the system. In the case of the MHD system, upon taking a curl and then L^2-estimates of the resulting system, every non-linear term has b involved. Exploiting this observation and divergence-free conditions, the authors in [2] showed that in case $N = 2$, full Laplacians in both dissipation and magnetic diffusion are not necessary for the solution pair to remain smooth; rather, only a mix of partial dissipation and diffusion in the order of two derivatives suffices.

Very recently, the authors in [22] have shown that in case $N = 2$, the solution pair remains smooth in any of the following three cases:

1. $\alpha \geq \frac{1}{2}, \beta \geq 1$,
2. $\alpha \geq 2, \beta = 0$,
3. $\frac{1}{2} > \alpha \geq 0, 2\alpha + \beta > 2$.

In particular, their result implies that in the range of $\alpha \in [0, \frac{1}{2})$, β must satisfy

$$\beta > 2 - 2\alpha.$$ \hspace{1cm} (2)

These results implied that if $\alpha = 0$, then $\beta > 2$ was necessary to obtain global regularity result. This was improved in [31] to show that either of the following conditions suffices:

1. $\alpha = 0, \beta > \frac{3}{2}$,
2. $\frac{1}{2} > \alpha > 0, \frac{3}{2} \geq \beta > \frac{5}{4}, \alpha + 2\beta > 3$.

In particular, this implies that in the range of $\alpha \in (0, \frac{1}{2})$, β must satisfy

$$\beta > \frac{3 - \alpha}{2}$$ \hspace{1cm} (3)

(cf. also [32]). In this paper we make further improvement in this direction. Let us present our results.

Theorem 1.1. Let $N = 2, \nu, \eta > 0, \alpha > \frac{1}{3}, \beta = 1$. Then for all initial data pair $(u_0, b_0) \in H^s(\mathbb{R}^2) \times H^s(\mathbb{R}^2), s \geq 3$, there exists a unique global strong solution pair (u, b) to (1) such that

$$u \in C([0, \infty); H^s(\mathbb{R}^2)) \cap L^2([0, \infty); H^{s+\alpha}(\mathbb{R}^2)),$$

$$b \in C([0, \infty); H^s(\mathbb{R}^2)) \cap L^2([0, \infty); H^{s+1}(\mathbb{R}^2)).$$

Theorem 1.2. Let $N = 2, \nu, \eta > 0, \alpha \in (0, \frac{1}{4}], \beta \in (1, \frac{3}{2}]$ such that

$$3 < 2\beta + \frac{2\alpha}{1 - \alpha}.$$ \hspace{1cm} (4)

Then for all initial data pair $(u_0, b_0) \in H^s(\mathbb{R}^2) \times H^s(\mathbb{R}^2), s \geq 3$, there exists a unique global strong solution pair (u, b) to (1) such that
Remark 1.1. (1) We observe that (4) is equivalent to
\[\frac{3}{2} - \frac{\alpha}{1 - \alpha} < \beta, \]
and this is a better lower bound than that of (2) or (3) for \(\alpha \in (0, \frac{1}{3}] \).

(2) Theorem 1.1 also represents the smaller lower bound for the sum of \(\alpha + \beta \) at \(1 + \frac{1}{3} \) required for the solution pair to remain smooth for all time in comparison to the previous works such as [24] and [26] at \(\alpha + \beta \geq 1 + \frac{N}{2} \) in \(N \)-dimension and [22] at \(\alpha + \beta \geq \frac{3}{2} \) in two-dimension.

(3) There are various spaces of functions in which one may obtain local well-posedness of the MHD system. We chose to state above for simplicity. The local theory may be obtained by using mollifiers as done in [14] and we omit the details referring interested readers to [2] where the authors considered (1) in case \(N = 2, \nu = 0, \eta > 0, \beta = 1 \) and showed in particular the existence of its weak solution pair (cf. also [19] and [26]).

(4) After this work was completed, this direction of research has caught much attention from many mathematicians and a remarkable development with new results has been seen. In particular, we mention that in [3] and [11], the authors obtained the global regularity result in the case \(\alpha = 0, \beta > 1 \). We also mention numerical analysis results obtained in [21] concerning the interesting case \(\alpha = 0, \beta = 1 \).

In the following section, let us set up notations and summarize key lemmas that will be used repeatedly. Thereafter, we prove our theorems.

2. Preliminaries

Let us denote a constant that depends on \(a, b \) by \(c(a, b) \) and when the constant is not of significance, let us write \(A \lesssim B, A \approx B \) to imply that there exists some constant \(c \) such that \(A \leq cB, A = cB \) respectively. We also denote partial derivatives and vector components as follows:

\[\frac{\partial}{\partial t} = \partial_t, \quad \frac{\partial}{\partial x} = \partial_1, \quad \frac{\partial}{\partial y} = \partial_2, \quad u = (u_1, u_2), \quad b = (b_1, b_2). \]

For simplicity we also set

\[w = \nabla \times u, \quad j = \nabla \times b, \quad (5) \]

\[X(t) = \|w(t)\|_{L^2}^2 + \|j(t)\|_{L^2}^2, \quad Y(t) = \|\nabla w(t)\|_{L^2}^2 + \|\nabla j(t)\|_{L^2}^2. \]

We use the following well-known inequalities:

Lemma 2.1. Let \(f \) be divergence-free vector field such that \(\nabla f \in L^p, p \in (1, \infty) \). Then the following inequality holds:

\[\|\nabla f\|_{L^p} \leq c(p)\|\text{curl } f\|_{L^p}. \]
Lemma 2.2. (cf. [13]) Let \(f, g \) be smooth such that \(\nabla f \in L^{p_0}, \Lambda^{s-1}g \in L^{p_2}, \Lambda^{s}f \in L^{p_3}, g \in L^{p_4}, p \in (1, \infty) \). Let \(\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p_3} + \frac{1}{p_4} \), \(p_2, p_3 \in (1, \infty) \), \(s > 0 \). Then the following inequality holds:

\[
\|\Lambda^{s}(fg) - f\Lambda^{s}g\|_{L^{p}} \lesssim (\|\nabla f\|_{L^{p_1}}\|\Lambda^{s-1}g\|_{L^{p_2}} + \|\Lambda^{s}f\|_{L^{p_3}}\|g\|_{L^{p_4}}).
\]

Lemma 2.3. (cf. [5], [12]) For any \(\alpha \in [0, 1], x \in \mathbb{R}^N, T^N \) and \(f, \Lambda^{2\alpha}f \in L^{p}, p \geq 2, \)

\[
2 \int |\Lambda^{\alpha}(f^{\frac{p}{2}})|^2 dx \leq p \int |f|^{p-2}f\Lambda^{2\alpha}f dx.
\]

Finally, the following product estimate has proven to be useful (e.g. [15], [16], [17], [30]):

Lemma 2.4. Let \(\sigma_1, \sigma_2 < 1, \sigma_1 + \sigma_2 > 0 \). Then there exists a constant \(c(\sigma_1, \sigma_2) > 0 \) such that

\[
\|fg\|_{\dot{H}^{\sigma_1+\sigma_2-1}} \leq c(\sigma_1, \sigma_2)\|f\|_{\dot{H}^{\sigma_1}}\|g\|_{\dot{H}^{\sigma_2}},
\]

for \(f \in \dot{H}^{\sigma_1}(\mathbb{R}^2), g \in \dot{H}^{\sigma_2}(\mathbb{R}^2) \).

3. Proof of Theorem 1.1

Throughout this section, we assume \(\alpha \in (\frac{1}{2}, \sqrt{2} - 1) \) as the case \(\alpha \in [\sqrt{2} - 1, \frac{1}{2}) \) may be done via slight modification using Gagliardo-Nirenberg inequalities. We note that the restriction of this range of \(\alpha \) in particular becomes crucial at (9); we chose the statements of Propositions 3.1-3.3 for simplicity of presentation. We work on

\[
\begin{aligned}
\partial_t u + (u \cdot \nabla)u - (b \cdot \nabla)b + \nabla \pi + \Lambda^{2\alpha}u &= 0, \\
\partial_t b + (u \cdot \nabla)b - (b \cdot \nabla)u + \Lambda^2b &= 0.
\end{aligned}
\]

(6)

Taking \(L^2 \)-inner products of (6) with \(u \) and \(b \) respectively, we can get

\[
\sup_{t \in [0, T]} \|u(t)\|_{L^2}^2 + \|b(t)\|_{L^2}^2 + \int_0^T \|\Lambda^{\alpha}u\|_{L^2}^2 + \|\Lambda b\|_{L^2}^2 \, d\tau \leq c(u_0, b_0, T). \tag{7}
\]

It has been shown that the following proposition can be attained as long as \(\beta \geq 1 \) (cf. [22], [31]). We sketch its proof for completeness.

Proposition 3.1. Let \(N = 2, \nu, \eta > 0, \alpha \in (\frac{1}{2}, \sqrt{2} - 1), \beta = 1. \) Then for any solution pair \((u, b)\) to (1) in \([0, T]\) there exists a constant \(c(u_0, b_0, T) \) such that

\[
\sup_{t \in [0, T]} \|w(t)\|_{L^2}^2 + \|j(t)\|_{L^2}^2 + \int_0^T \|\Lambda^{\alpha}w\|_{L^2}^2 + \|\Lambda j\|_{L^2}^2 \, d\tau \leq c(u_0, b_0, T).
\]

Proof. Taking curls on (6), we obtain

\[
\begin{aligned}
\partial_t w + \Lambda^{2\alpha}w &= -(u \cdot \nabla)w + (b \cdot \nabla)j, \\
\partial_t j + \Lambda^2j &= -(u \cdot \nabla)j + (b \cdot \nabla)w + 2(\partial_1 b_1(\partial_1 u_2 + \partial_2 u_1) - \partial_1 u_1(\partial_1 b_2 + \partial_2 b_1)).
\end{aligned}
\]

(8)

Taking \(L^2 \)-inner products with \(w \) and \(j \) respectively and using incompressibility of \(u \) and \(b \), we estimate
We fix solution pair \(c \) by Hölder’s, Gagliardo-Nirenberg and Young’s inequalities. Absorbing diffusive term, (7) and Gronwall’s inequality complete the proof of Proposition 3.1.

Next two propositions are the keys to the improvement from previous results:

Proposition 3.2. Let \(N = 2, \nu, \eta > 0, \alpha \in \left(\frac{1}{2}, \sqrt{2} - 1 \right), \beta = 1. \) Then for any solution pair \((u, b)\) to (1) in \([0, T]\), for any \(\gamma \in (1, 1 + \alpha) \), there exists a constant \(c(u_0, b_0, T) \) such that

\[
\frac{1}{2} \partial_t (\|\Lambda^\gamma b\|_{L^2}^2 + \|j\|_{L^2}^2) + \|\Lambda^{1+\gamma} b\|_{L^2}^2 \\
= 2 \int [\partial_t b_1 (\partial_t u_2 + \partial_2 u_1) - \partial_t u_1 (\partial_t b_2 + \partial_2 b_1)] j \\
\lesssim \|\nabla b\|_{L^4} \|\nabla u\|_{L^2} \|j\|_{L^4} \\
\lesssim \|j\|_{L^2} \|\nabla j\|_{L^2} \|w\|_{L^2} \\
\leq \frac{1}{2} \|\Lambda^\gamma b\|_{L^2}^2 + c \|j\|_{L^2}^2 \|w\|_{L^2}^2
\]

by Hölder’s, Gagliardo-Nirenberg and Young’s inequalities. Now we use Lemmas 2.4 and 2.1 to estimate

\[
\|b \cdot \nabla\|_{H^{\gamma-1}} \lesssim \|b\|_{H^{\gamma-\alpha}} \|\nabla u\|_{H^{\alpha}} \lesssim \|b\|_{H^{\gamma-\alpha}} \|w\|_{H^{\alpha}}.
\]

We then use Gagliardo-Nirenberg inequality, (7) and Proposition 3.1 to further bound by

\[
\|b \cdot \nabla\|_{H^{\gamma-1}} \lesssim \left(\|b\|_{H^{2(\gamma-\alpha)}} \|\nabla b\|_{L^2}^{2(\gamma-\alpha)} \right) \|w\|_{H^{\alpha}} \lesssim \|w\|_{H^{\alpha}}.
\]

Next, we fix \(\epsilon \in (0, 1 - \alpha) \) and estimate

\[
\|\partial_t b_1 (\partial_t u_2 + \partial_2 u_1)\|_{H^{\gamma-1}} \lesssim \|\partial_t b_1\|_{H^{\gamma-1+\epsilon}} \|\nabla b\|_{H^{1+\epsilon}} \\
\lesssim \|\partial_t b_1\|_{L^2(2-\gamma-\epsilon)} \|\nabla b\|_{L^2}^{2(\gamma-1+\epsilon)} \|j\|_{H^{1-\epsilon}} \lesssim \|j\|_{L^2}^{2(1-\epsilon)} \|j\|_{H^{1+\epsilon}} \lesssim (1 + \|j\|_{H^{1+\epsilon}}^2)
\]

by Lemma 2.4, Gagliardo-Nirenberg inequalities, Lemma 2.1, Proposition 3.1 and Young’s inequality. Thus, absorbing diffusive term, we have

\[
\partial_t \|\Lambda^\gamma b\|_{L^2}^2 + \|\Lambda^{1+\gamma} b\|_{L^2}^2 \lesssim (\|w\|_{H^{\alpha}}^2 + 1 + \|j\|_{H^{1+\epsilon}}^2).
\]

Hence, by Proposition 3.1, integrating in time we obtain
Proposition 3.3. Let $N = 2, \nu, \eta > 0, \alpha \in \left(\frac{1}{3}, \sqrt{2} - 1\right), \beta = 1$. Then for any solution pair (u, b) to (1) in $[0, T]$, for any $\gamma \in (1, 1 + \alpha)$, there exists a constant $c(u_0, b_0, T)$ such that

\[
\sup_{t \in [0, T]} \|w(t)\|^{2(1+\alpha)}_{L^{2(1+\alpha)}} + \int_0^T \|w\|^{2(1+\alpha)}_{L^{2(1+\alpha)}} \, d\tau \leq c(u_0, b_0, T).
\]

Proof. We fix $\gamma \in (1, 1 + \alpha)$ and denote by

\[
p = \frac{2(1+\alpha)}{2 - \gamma}.
\]

We estimate by multiplying the vorticity equation of (8) by $|w|^{p-2}w$ and integrating in space

\[
\frac{1}{p} \partial_t \|w\|^p_{L^p} + \int \Lambda^{2\alpha} |w|^{p-2} w dx = \int (b \cdot \nabla) j |w|^{p-2} w dx,
\]

where we used incompressibility of u. Using Lemma 2.3, because $p \geq 2$, and homogeneous Sobolev embedding $H^\alpha \hookrightarrow L^{\frac{2}{2-\alpha}}$ we can obtain

\[
\int |\Lambda^{2\alpha} w| |w|^{p-2} w dx \geq \frac{2}{p} \|w\|_{H^\alpha}^2 \geq c(p, \alpha) \|w\|^p_{L^{\frac{2}{2-\alpha}}}.
\]

Using this, we further estimate

\[
\frac{1}{p} \partial_t \|w\|^p_{L^p} + c(p, \alpha) \|w\|^p_{L^{\frac{2}{2-\alpha}}} \leq \|b\|_{L^\infty} \|\nabla j\|_{L^{\frac{2}{2-\alpha}}} \|w\|^{p-2}_{L^p} \|w\|_{L^{\frac{2}{2-\alpha}}},
\]

where we used the Hölder’s inequality. Now we use the homogeneous Sobolev embedding of $H^{\gamma-1} \hookrightarrow L^{\frac{2}{2-\alpha}}$ and Gagliardo-Nirenberg inequality to obtain

\[
\frac{1}{p} \partial_t \|w\|^p_{L^p} + c(p, \alpha) \|w\|^p_{L^{\frac{2}{2-\alpha}}} \lesssim \|b\|_{L^\infty} \|\nabla^j\|_{L^{\frac{2}{2-\alpha}}} \|\Lambda^{\gamma \jmath} w\|^{p-2}_{L^p} \|w\|_{L^{\frac{2}{2-\alpha}}}
\]

\[
\lesssim \|b\|_{L^\infty} \|\Lambda^{\gamma \jmath} w\|_{L^{\frac{2}{2-\alpha}}} \|\Lambda^{\gamma \jmath} w\|^{p-2}_{L^p} \|w\|_{L^{\frac{2}{2-\alpha}}}.
\]

We further bound by (7) and Proposition 3.2 to obtain

\[
\frac{1}{p} \partial_t \|w\|^p_{L^p} + c(p, \alpha) \|w\|^p_{L^{\frac{2}{2-\alpha}}}
\]

\[
\leq \frac{c(p, \alpha)}{2} \|w\|^p_{L^{\frac{2}{2-\alpha}}} + c \|\Lambda^{\gamma \jmath} w\|_{L^p}^\gamma \|w\|^{(p-2)(\frac{p}{p'})}_{L^p}
\]

\[
\leq \frac{c(p, \alpha)}{2} \|w\|^p_{L^{\frac{2}{2-\alpha}}} + c(1 + \|\Lambda^{\gamma \jmath} w\|^2_{L^p})(1 + \|w\|_{L^p})
\]

by Young’s inequalities. After absorbing the dissipative term, integrating in time gives
\[
\sup_{t \in [0,T]} \|w(t)\|_{L^P}^p + \int_0^T \|w\|_{L^{p\gamma}}^p \, dt \leq c(u_0, b_0, T)
\]
due to Proposition 3.2. This completes the proof of Proposition 3.3.

Proposition 3.4. Let \(N = 2, \nu, \eta > 0, \alpha \in \left(\frac{1}{3}, \sqrt{2} - 1 \right), \beta = 1. \) Then for any solution pair \((u, b)\) to (1) in \([0,T]\), there exists a constant \(c(u_0, b_0, T)\) such that

\[
\sup_{t \in [0,T]} \|\nabla w(t)\|_{L^2}^2 + \|\nabla j(t)\|_{L^2}^2 + \int_0^T \|\Lambda^\alpha \nabla w\|_{L^2}^2 + \|\Lambda \nabla j\|_{L^2}^2 \, dt \leq c(u_0, b_0, T).
\]

Proof. We apply \(\nabla\) on (8) and take \(L^2\)-inner products with \(\nabla w\) and \(\nabla j\) respectively to estimate

\[
\frac{1}{2} \partial_t (\|\nabla w(t)\|_{L^2}^2 + \|\nabla j(t)\|_{L^2}^2) + \|\Lambda^\alpha \nabla w\|_{L^2}^2 + \|\Lambda \nabla j\|_{L^2}^2
\]

\[
= - \int \nabla w \cdot \nabla u \cdot \nabla w \, dx - \int \nabla j \cdot \nabla u \cdot \nabla j \, dx
\]

\[
+ \int \nabla ((b \cdot \nabla) j) \cdot \nabla w + \nabla ((b \cdot \nabla) w) \cdot \nabla j \, dx
\]

\[
+ 2 \int \nabla [\partial_1 b_1 (\partial_1 u_2 + \partial_2 u_1)] \cdot \nabla j \, dx - 2 \int \nabla [\partial_1 u_1 (\partial_1 b_2 + \partial_2 b_1)] \cdot \nabla j \, dx = \sum_{i=1}^5 I_i.
\]

We estimate separately:

\[
I_1 \leq \|\nabla w\|_{L^2} \|\nabla u\|_{L^{\frac{\gamma}{\gamma-2}}} \|\nabla w\|_{L^{\frac{\gamma}{\gamma-2}}}
\]

\[
\lesssim \|\nabla w\|_{L^2} \|\nabla \|_{L^{\frac{\gamma}{\gamma-2}}} \|\Lambda^\alpha \nabla w\|_{L^2} \leq \frac{1}{8} \|\Lambda^\alpha \nabla w\|_{L^2}^2 + cY(t)\|w\|_{L^2}^2
\]

by Hölder’s inequality, homogeneous Sobolev embedding of \(\dot{H}^\alpha \hookrightarrow L^{\frac{2}{2\alpha}}, \) Lemma 2.1 and Young’s inequality. Next,

\[
I_2 \leq \|\nabla j\|_{L^4}^2 \|\nabla u\|_{L^2} \lesssim \|\nabla j\|_{L^2} \|\Delta j\|_{L^2} \|w\|_{L^2} \leq \frac{1}{8} \|\Delta j\|_{L^2}^2 + cY(t)
\]

by Hölder’s, Gagliardo-Nirenberg and Young’s inequalities. Next, we first integrate by parts and use the incompressibility conditions to obtain

\[
I_3 = \int \nabla ((b \cdot \nabla) j) \cdot \nabla w \, dx + \int \nabla ((b \cdot \nabla) w) \cdot \nabla j \, dx
\]

\[
= \int \Delta b \cdot (\nabla j) w + 2 \nabla b \cdot (\nabla \nabla j) w \, dx.
\]

We now estimate this by
\begin{align*}
I_3 & \lesssim (\|\nabla j\|_{L^2}^2 \|w\|_{L^2} + \|\nabla b\|_{L^4} \|\Delta j\|_{L^2} \|w\|_{L^4}) \\
& \lesssim (\|\nabla j\|_{L^2} \|\Delta j\|_{L^2} \|w\|_{L^2} + \|j\|_{L^2}^2 \|\nabla j\|_{L^2}^2 \|\Delta j\|_{L^2} \|w\|_{L^2}^2 \|\nabla w\|_{L^2}^2) \\
& \leq \frac{1}{8} \|\Delta j\|_{L^2}^2 + cY(t)
\end{align*}

due to the Hölder’s inequalities, Lemma 2.1, Gagliardo-Nirenberg inequalities, Proposition 3.1 and Young’s inequalities. Finally, after integrating by parts again,

\begin{align*}
I_4 + I_5 & \lesssim \int \nabla b \nabla u \Delta j \, dx \lesssim \|\nabla b\|_{L^4} \|w\|_{L^4} \|\Delta j\|_{L^2}
\end{align*}

by Hölder’s inequality and Lemma 2.1. Note this is same as the second term of \(I_3\) and hence its identical estimate suffices.

Therefore, absorbing dissipative and diffusive terms, we have

\begin{align*}
\partial_t Y(t) + \|\Lambda^\alpha \nabla w\|_{L^2}^2 + \|\Lambda \nabla j\|_{L^2}^2 \lesssim Y(t)(1 + \|w\|_{L^2}^2).
\end{align*}

Now it can be checked that

\begin{align*}
1 < 2 - \frac{\alpha(1 + \alpha)}{1 - \alpha} < 1 + \alpha \quad \forall \alpha \in \left(\frac{1}{3}, \sqrt{2} - 1\right) \quad (9)
\end{align*}

and hence we can choose \(\gamma = 2 - \frac{\alpha(1 + \alpha)}{2(1 - \alpha)}\) so that by Hölder’s inequality and Proposition 3.3,

\begin{align*}
\int_0^T \|w\|_{L^2}^2 \, d\tau = \int_0^T \|w\|_{L^{2(1 + \alpha)}(1 - \alpha)}^2 \, d\tau \leq T^{\frac{2 - 1 + \alpha}{1 + \alpha}} \left(\int \|w\|_{L^{2(1 + \alpha)}(1 - \alpha)}^2 \right)^{\frac{2 - 1 + \alpha}{1 + \alpha}} \leq c(u_0, b_0, T).
\end{align*}

Therefore by Gronwall’s inequality,

\begin{align*}
\sup_{t \in [0, T]} \|\nabla w(t)\|_{L^2}^2 + \|\nabla j(t)\|_{L^2}^2 + \int_0^T \|\Lambda^\alpha \nabla w\|_{L^2}^2 + \|\Lambda \nabla j\|_{L^2}^2 \, d\eta \leq c(u_0, b_0, T).
\end{align*}

This completes the proof of Proposition 3.4.

Proof of Theorem 1.1

We now prove Theorem 1.1. We apply \(\Lambda^s, s \in \mathbb{R}^+\) on (6) and take \(L^2\)-inner products with \(\Lambda^s u\) and \(\Lambda^s b\) respectively to estimate using Lemma 2.2 and incompressibility conditions to estimate
\begin{align*}
\partial_t (||\Lambda^* u||_{L^2}^2 + ||\Lambda^* b||_{L^2}^2) & + ||\Lambda^{*+\alpha} u||_{L^2}^2 + ||\Lambda^{*+1} b||_{L^2}^2 \\
& = - \int \Lambda^*[(u \cdot \nabla) u] \cdot \Lambda^* u - u \cdot \nabla \Lambda^* u \cdot \Lambda^* u \, dx \\
& - \int \Lambda^*[(u \cdot \nabla) b] \cdot \Lambda^* b - u \cdot \nabla \Lambda^* b \cdot \Lambda^* b \, dx \\
& + \int \Lambda^*[(b \cdot \nabla) b] \cdot \Lambda^* u - b \cdot \nabla \Lambda^* b \cdot \Lambda^* u \, dx \\
& + \int \Lambda^*[(b \cdot \nabla) u] \cdot \Lambda^* b - b \cdot \nabla \Lambda^* u \cdot \Lambda^* b \, dx \\
& \lesssim (||\nabla u||_{L^\infty} ||\Lambda^{*-1} \nabla u||_{L^2} + ||\Lambda^* u||_{L^2} ||\nabla u||_{L^\infty}) ||\Lambda^* u||_{L^2} \\
& + (||\nabla u||_{L^2} ||\Lambda^{*-1} \nabla b||_{L^2} + ||\Lambda^* u||_{L^2} ||\nabla b||_{L^2}) ||\Lambda^* b||_{L^2} \\
& + (||\nabla b||_{L^2} ||\Lambda^{*-1} \nabla b||_{L^2} + ||\Lambda^* b||_{L^2} ||\nabla b||_{L^2}) ||\Lambda^* u||_{L^2} \\
& + (||\nabla b||_{L^2} ||\Lambda^{*-1} \nabla u||_{L^2} + ||\Lambda^* b||_{L^2} ||\nabla u||_{L^2}) ||\Lambda^* b||_{L^2} \\
& \lesssim (||w||_{L^2} \|\nabla w||_{L^2}^{1-\alpha} ||\Lambda^* u||_{L^2} ||\Lambda^{*+\alpha} u||_{L^2} + \|\Lambda^* b||_{L^2} + \|\Lambda^* u||_{L^2} ||\nabla j||_{L^2} ||\Lambda^* b||_{L^2} ||\Lambda^{*+1} b||_{L^2} \\
& + (||j||_{L^2} \|\nabla j||_{L^2} ||\Lambda^* u||_{L^2} + ||\Lambda^* b||_{L^2} ||\nabla w||_{L^2} ||\Lambda^* b||_{L^2} ||\Lambda^{*+1} b||_{L^2}) \\
& \cdot ||\Lambda^* u||_{L^2} \\
& \leq \frac{1}{2} (||\Lambda^{*+\alpha} u||_{L^2}^2 + ||\Lambda^{*+1} b||_{L^2}^2) + c(||\Lambda^* b||_{L^2}^2 + ||\Lambda^* u||_{L^2}^2). \\
\end{align*}

by Hölder’s and Gagliardo-Nirenberg inequalities, homogeneous Sobolev embedding of $H^\alpha \hookrightarrow L^{2\alpha}$. Due to Propositions 3.1 and 3.4 and Young’s inequalities we have

\begin{align*}
\partial_t (||\Lambda^* u||_{L^2}^2 + ||\Lambda^* b||_{L^2}^2) & + ||\Lambda^{*+\alpha} u||_{L^2}^2 + ||\Lambda^{*+1} b||_{L^2}^2 \\
& \leq \frac{1}{2} (||\Lambda^{*+\alpha} u||_{L^2}^2 + ||\Lambda^{*+1} b||_{L^2}^2) + c(||\Lambda^* b||_{L^2}^2 + ||\Lambda^* u||_{L^2}^2).
\end{align*}

Absorbing the dissipative and diffusive terms, Gronwall’s inequality implies the desired result.

4. Proof of Theorem 1.2

Throughout this section, we let α, β satisfy (4) and in particular we assume

\begin{equation}
2\beta + \frac{\alpha(1+\alpha)}{1-\alpha} < 3 < \alpha + 2\beta + \frac{\alpha(1+\alpha)}{1-\alpha}
\end{equation}

as the other case can be done similarly. We work on

\begin{equation}
\begin{cases}
\partial_t u + (u \cdot \nabla) u - (b \cdot \nabla) b + \nabla \pi + \Lambda^{2\alpha} u = 0, \\
\partial_t b + (u \cdot \nabla) b - (b \cdot \nabla) u + \Lambda^{2\beta} b = 0.
\end{cases}
\end{equation}

As before, taking L^2-inner products of (11) with u and b respectively, we immediately obtain

\begin{equation}
\sup_{t \in [0,T]} ||u(t)||_{L^2}^2 + ||b(t)||_{L^2}^2 + \int_0^T \|\Lambda^\alpha u||_{L^2}^2 + ||\Lambda^\beta b||_{L^2}^2 d\tau \leq c(u_0, b_0, T).
\end{equation}
Since $\beta \geq 1$, it is clear from the proof of Proposition 3.1 that its slight modification applied to the following system

$$
\begin{align*}
\partial_t w + \Lambda^{2\alpha} w &= -(u \cdot \nabla) w + (b \cdot \nabla) j \\
\partial_t j + \Lambda^{2\beta} j &= -(u \cdot \nabla) j + (b \cdot \nabla) w + 2[\partial_1 b_1 (\partial_1 u_2 + \partial_2 u_1) - \partial_1 u_1 (\partial_1 b_2 + \partial_2 b_1)]
\end{align*}
$$

(13)

leads to the following result:

Proposition 4.1. Let $N = 2, \nu, \eta > 0, \alpha \in (0, \frac{1}{4}], \beta \in (1, \frac{3}{2}]$ satisfy (10). Then for any solution pair (u, b) to (1) in $[0, T]$, there exists a constant $c(u_0, b_0, T)$ such that

$$
\sup_{t \in [0, T]} \|w(t)\|_{L^2}^2 + \|j(t)\|_{L^2}^2 + \int_0^T \|\Lambda^\alpha w\|_{L^2}^2 + \|\Lambda^\beta j\|_{L^2}^2 \, dt \leq c(u_0, b_0, T).
$$

Now we prove the following proposition:

Proposition 4.2. Let $N = 2, \nu, \eta > 0, \alpha \in (0, \frac{1}{4}], \beta \in (1, \frac{3}{2}]$ satisfy (10). Then for any solution pair (u, b) to (1) in $[0, T]$, for any $\gamma \in (\beta, \alpha + \beta)$, there exists a constant $c(u_0, b_0, T)$ such that

$$
\sup_{t \in [0, T]} \|\Lambda^\gamma b(t)\|_{L^2}^2 + \int_0^T \|\Lambda^{\beta+\gamma} b\|_{L^2}^2 \, dt \leq c(u_0, b_0, T).
$$

Proof. We fix $\gamma \in (\beta, \alpha + \beta)$. From the magnetic field equation of (11), we estimate after multiplying by $\Lambda^{\beta+\gamma} b$ and integrating in space

$$
\frac{1}{2} \partial_t \|\Lambda^\gamma b\|_{L^2}^2 + \|\Lambda^{\beta+\gamma} b\|_{L^2}^2 \\
\leq \left(\| (u \cdot \nabla) b \|_{H^{\gamma-\beta}} \|\Lambda^{\beta+\gamma} b\|_{L^2} + \| (b \cdot \nabla) u \|_{H^{\gamma-\beta}} \|\Lambda^{\beta+\gamma} b\|_{L^2}\right) \\
\leq \frac{1}{2} \|\Lambda^{\beta+\gamma} b\|_{L^2}^2 + c\left(\| (u \cdot \nabla) b \|^2_{H^{\gamma-\beta}} + \| (b \cdot \nabla) u \|^2_{H^{\gamma-\beta}}\right)
$$

by H"older’s and Young’s inequalities. Now by Lemma 2.4 and Gagliardo-Nirenberg inequality, Lemma 2.1 and Proposition 4.1, we estimate

$$
\| (u \cdot \nabla) u \|_{H^{\gamma-\beta}} \lesssim \| b \|^2_{H^{\beta+1-2\beta-\gamma}} \| \nabla u \|^2_{H^{\alpha}} \lesssim \| b \|^2_{L^2} \beta^{-2\gamma} \| \nabla b \|^2_{L^2} \beta^{-2\beta-\gamma} \| \nabla u \|^2_{L^2} \lesssim \| u \|^2_{H^{\alpha}} \lesssim \| u \|^2_{H^{\alpha}}.
$$

Next, we fix $\epsilon \in (\beta - 1, \beta - \alpha)$ and estimate using Lemma 2.4 and Gagliardo-Nirenberg inequalities, (12), Proposition 4.1 and Young’s inequality as follows:

$$
\| (u \cdot \nabla) b \|^2_{H^{\gamma-\beta}} \lesssim \| u \|^2_{H^{\beta+1-2\beta-\gamma}} \| \nabla b \|^2_{H^{\beta-\epsilon}} \\
\lesssim \| u \|^2_{L^2} \beta^{-2(\beta-\epsilon)-\gamma} \| \nabla u \|^2_{L^2} \beta^{-(2(\beta-\epsilon)-\gamma)} \| j \|^2_{H^{\beta-\epsilon}} \\
\lesssim \| j \|^2_{L^2} \beta^{-(2(\beta-\epsilon)-\gamma)} \beta^2 (1-\beta) \lesssim 1 + \| j \|^2_{H^{\beta}}.
$$

Therefore, we have shown

$$
\frac{1}{2} \partial_t \|\Lambda^\gamma b\|_{L^2}^2 + \|\Lambda^{\beta+\gamma} b\|_{L^2}^2 \leq \frac{1}{2} \|\Lambda^{\beta+\gamma} b\|_{L^2}^2 + c\left(\| u \|^2_{H^{\alpha}} + \| j \|^2_{H^{\beta}}\right).
$$

Integrating in time and using Proposition 4.1 complete the proof of Proposition 4.2.
Proposition 4.3. Let $N = 2, \nu, \eta > 0, \alpha \in (0, \frac{1}{3}], \beta \in (1, \frac{3}{2}]$ satisfy (10). Then for any solution pair (u, b) to (1) in $[0, T]$, for any $\gamma \in (\beta, \alpha + \beta)$, there exists a constant $c(u_0, b_0, T)$ such that

$$\sup_{t \in [0, T]} \|w(t)\|_{L^{\frac{2(1+\alpha)}{2-\beta-\gamma}(1+\alpha)}}^\frac{2(1+\alpha)}{2-\beta-\gamma} + \int_0^T \|w\|_{L^{\frac{2(1+\alpha)}{2-\beta-\gamma}(1+\alpha)}}^\frac{2(1+\alpha)}{2-\beta-\gamma} d\tau \leq c(u_0, b_0, T).$$

Proof. We fix $\gamma \in (\beta, \alpha + \beta)$ and denote

$$p = \frac{2(1+\alpha)}{3-\beta-\gamma}.$$

Note due to (10), we have $3 - \beta - \gamma > 0$. We estimate by multiplying the vorticity equation of (13) by $|w|^{p-2}w$ and integrating in space, using Lemma 2.3 and the same homogeneous Sobolev embedding of $H^\alpha \hookrightarrow L^{\frac{2}{1+\alpha}}$ as before to obtain

$$\frac{1}{p} \partial_t \|w\|_{L^p}^p + c(p, \alpha) \|w\|_{L^\frac{2p}{p-2}}^p \leq \|b\|_{L^\infty} \|\nabla j\|_{L^\frac{p}{p-2}} \|w\|_{L^\frac{p}{p-2}}^p \|w\|_{L^\frac{p}{p-2}}^p$$

by Hölder’s inequality. By our choice of p, we see that we may continue our estimate by

$$\frac{1}{p} \partial_t \|w\|_{L^p}^p + c(p, \alpha) \|w\|_{L^\frac{2p}{p-2}}^p \leq \|b\|_{L^\infty} \|\nabla j\|_{L^\frac{2p}{p-2}} \|w\|_{L^\frac{p}{p-2}}^p \|w\|_{L^\frac{p}{p-2}}^p \leq \|b\|_{L^\frac{2p}{p-2}} \|\Lambda^\gamma b\|_{L^2} \|\Lambda^{\beta+\gamma} b\|_{L^2} \|w\|_{L^\frac{p}{p-2}}^p \|w\|_{L^\frac{p}{p-2}}^p \leq \frac{c(p, \alpha)}{2} \|w\|_{L^\frac{p}{p-2}}^p + c(\|\Lambda^{\beta+\gamma} b\|_{L^2} + 1)(\|w\|_{L^p}^p + 1)$$

where we used the Gagliardo-Nirenberg inequality, homogeneous Sobolev embedding of $H^{\beta+\gamma-2} \hookrightarrow L^{\frac{2}{\beta+\gamma-2}}$, Propositions 4.1 and 4.2, Young’s inequalities.

Absorbing dissipative term, Gronwall’s inequality and Proposition 4.2 complete the proof of Proposition 4.3.

Proposition 4.4. Let $N = 2, \nu, \eta > 0, \alpha \in (0, \frac{1}{3}], \beta \in (1, \frac{3}{2}]$ satisfy (10). Then for any solution pair (u, b) to (1) in $[0, T]$, there exists a constant $c(u_0, b_0, T)$ such that

$$\sup_{t \in [0, T]} \|\nabla w(t)\|_{L^2}^2 + \|\nabla j(t)\|_{L^2}^2 + \int_0^T \|\Lambda^\alpha \nabla w\|_{L^2}^2 + \|\Lambda^\beta \nabla j\|_{L^2}^2 d\tau \leq c(u_0, b_0, T).$$

Proof. Similarly as before, we apply ∇ on (13), take L^2-inner products with $\nabla w, \nabla j$ respectively to estimate
In sum, after absorbing dissipative and diffusive terms, we have

\[
\frac{1}{2} \partial_t (\| \nabla w(t) \|^2_{L^2} + \| \nabla j(t) \|^2_{L^2} + \| \Lambda^\alpha \nabla w \|^2_{L^2} + \| \Lambda^\beta \nabla j \|^2_{L^2}) = - \int \nabla w \cdot \nabla u \cdot \nabla w \, dx - \int \nabla j \cdot \nabla u \cdot \nabla j \, dx + \int \nabla ((b \cdot \nabla) j) \cdot \nabla w + \nabla ((b \cdot \nabla) w) \cdot \nabla j \, dx + 2 \int \nabla \partial_t b_1 (\partial_t u_2 + \partial_2 u_1) \cdot \nabla j \, dx - 2 \int \nabla [\partial_t u_1 (\partial_t b_2 + \partial_2 b_1)] \cdot \nabla j \, dx = \sum_{i=1}^5 I_i.
\]

As before,

\[
I_1 \leq \| \nabla w \|_{L^2} \| \nabla u \|_{L^\infty} \| \nabla w \|_{L^\infty} \leq \frac{1}{8} \| \Lambda^\alpha \nabla w \|^2_{L^2} + c Y(t) \| w \|^2_{L^\infty}
\]

by Hölder’s inequality, homogeneous Sobolev embedding of $H^\alpha \hookrightarrow L^{\frac{2\alpha}{2\alpha - \beta}}$ and Young’s inequalities. Next,

\[
I_2 \leq \| \nabla j \|^2_{L^2} \| \nabla u \|_{L^2} \lesssim \| \nabla j \|^2_{L^2} \| \Lambda^\beta \nabla j \|^2_{L^2} \leq \frac{1}{8} \| \Lambda^\beta \nabla j \|^2_{L^2} + c Y(t)
\]

by Hölder’s inequality, Proposition 4.1, Gagliardo-Nirenberg and Young’s inequalities. Next, we estimate I_3 after same integration by parts in the proof of Proposition 3.4,

\[
I_3 \lesssim (\| \nabla j \|^2_{L^2} \| w \|_{L^2} + \| \nabla b \|_{L^{\frac{2\beta}{\beta - 1}}} \| \Delta j \|_{L^{\frac{2\beta}{\beta - 1}}} \| w \|_{L^2})
\]

\[
\lesssim \| \nabla j \|^{2(\frac{2\beta}{2\beta - 1})}_{L^2} \| \Lambda^\beta \nabla j \|^{2(\frac{2\beta}{2\beta - 1})}_{L^2} + \| \nabla b \|^{\frac{2\beta + \gamma - 3}{2\beta - 1}}_{L^2} \| \Lambda^{\beta + \gamma} b \|_{L^2}^{\frac{2\beta - \gamma}{2\beta - 1}} \| \Lambda^\beta \nabla j \|_{L^2}
\]

\[
\leq \frac{1}{8} \| \Lambda^\beta \nabla j \|^2_{L^2} + c (Y(t) + 1 + \| \Lambda^{\beta + \gamma} b \|^2_{L^2})
\]

by Hölder’s and Gagliardo-Nirenberg inequalities, homogeneous Sobolev’s embedding of $H^{\beta - 1} \hookrightarrow L^{\frac{2\beta}{\beta - 1}}$ and Proposition 4.1.

The estimates of I_4 and I_5 are simple: after the same integration by parts as before, we have

\[
I_4 + I_5 \lesssim \int |\nabla b| \| \nabla u \| \| \Delta j \| \, dx \lesssim \| \nabla b \|_{L^{\frac{2\beta}{\beta - 1}}} \| \Delta j \|_{L^{\frac{2\beta}{\beta - 1}}} \| w \|_{L^2}
\]

by Hölder’s inequality and hence the same estimate as the second term of I_3 suffices. In sum, after absorbing dissipative and diffusive terms, we have

\[
\partial_t Y(t) + \| \Lambda^\alpha \nabla w \|^2_{L^2} + \| \Lambda^\beta \nabla j \|^2_{L^2} \lesssim (Y(t) + 1) (1 + \| w \|^2_{L^\infty} + \| \Lambda^{\beta + \gamma} b \|^2_{L^2}).
\]

Now we see that we may choose $\gamma = 3 - \beta - \frac{\alpha (1 + \alpha)}{1 - \alpha}$ so that

\[
\beta < \gamma < \alpha + \beta
\]

due to (10) and therefore, by Hölder’s inequality we have...
\[
\int_0^T \|w\|^2_{L^2} \, dt \leq T^{2+\alpha+2-\beta} \left(\int_0^T \|w\|^{2+\alpha+2-\beta}_{L^{2+\alpha+2-\beta}} \, dt \right)^{\frac{2-\beta-\alpha}{2+\alpha}} \leq c(u_0, b_0, T)
\]
due to Proposition 4.3. Thus, Gronwall’s inequality and Proposition 4.2 complete the proof of Proposition 4.4.

Proof of Theorem 1.2

We are now ready to complete the proof of Theorem 1.2. Similarly as before we apply $\Lambda^s, s \in \mathbb{R}^+$ on (11) and take L^2-inner products with $\Lambda^s u$ and $\Lambda^s b$ respectively to estimate using Lemma 2.2

\[
\partial_t (\|\Lambda^s u\|^2_{L^2} + \|\Lambda^s b\|^2_{L^2}) + \|\Lambda^{s+\alpha} u\|^2_{L^2} + \|\Lambda^{s+\beta} b\|^2_{L^2}
\]

\[
\lesssim \|\nabla u\|_{L^6} \|\Lambda^s u\|_{L^2} \|\Lambda^s u\|_{L^2}^{\frac{1}{6}}
\]

\[
+ (\|\nabla u\|_{L^6} \|\Lambda^{s+\beta} u\|_{L^6}^{\frac{1}{6}} + \|\Lambda^{s+\beta} u\|_{L^6} \|\nabla b\|_{L^6}^{\frac{1}{6}}) \|\Lambda^s u\|_{L^2}
\]

\[
+ (\|\nabla b\|_{L^6} \|\Lambda^{s+\beta} b\|_{L^6}^{\frac{1}{6}} + \|\Lambda^{s+\beta} b\|_{L^6} \|\nabla u\|_{L^6}^{\frac{1}{6}}) \|\Lambda^s b\|_{L^2}
\]

\[
\lesssim \|\nabla u\|_{L^2} \|\Lambda^s u\|_{L^2} \|\Lambda^{s+\alpha} u\|_{L^2} + \|\Lambda^s b\|_{L^2} \|\Lambda^{s+\beta} b\|_{L^2}
\]

\[
+ (\|w\|_{L^2}^{1-\alpha} \|\nabla u\|_{L^2} \|\Lambda^{s+\alpha} u\|_{L^2}^{\frac{a+2\beta-1}{2}} \|\Lambda^{s+\beta} b\|_{L^2}^{\frac{1-\alpha}{2}} + \|\Lambda^{s+\beta} u\|_{L^2} \|\Lambda^s b\|_{L^2}
\]

\[
+ (\|\Lambda^s b\|_{L^2} \|\Lambda^{s+\alpha} u\|_{L^2}^{\frac{a+2\beta-1}{2}} \|\Lambda^{s+\beta} b\|_{L^2}^{\frac{1-\alpha}{2}} + \|\Lambda^s u\|_{L^2} \|\nabla w\|_{L^2}^{\frac{1-\alpha}{2}}) \|\Lambda^s u\|_{L^2}
\]

\[
\leq \frac{1}{2} (\|\Lambda^{s+\alpha} u\|^2_{L^2} + \|\Lambda^{s+\beta} b\|^2_{L^2}) + c(\|\Lambda^s u\|^2_{L^2} + \|\Lambda^s b\|^2_{L^2})
\]

by Hölder’s inequalities, Lemma 2.1, homogeneous Sobolev embedding of $\dot{H}^s \hookrightarrow L^{2-s}$ and Gagliardo-Nirenberg and Young’s inequalities. Absorbing the dissipative and diffusive terms, Gronwall’s inequality complete the proof of Theorem 1.2.

References

[1] C. Cao, and J. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations, 248, 9 (2010), 2263-2274.

[2] C. Cao, and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226, 2 (2011), 1803-1822.

[3] C. Cao, J. Wu, and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, arXiv:1306.3629 [math.AP], 10, Dec. 2013.

[4] Q. Chen, C. Miao, and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magnetohydrodynamics equations, Comm. Math. Phys., 275, 3 (2007), 861-872.

[5] A. Córdoba, and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249, 3 (2004), 511-528.

[6] Y. Du, Y. Liu, and Z. Yao, Remarks on the blow-up criteria for three-dimensional ideal magnetohydrodynamics equations, J. Math. Phys., 50, 023507 (2009).
[7] J. Fan, H. Gao, and G. Nakamura, Regularity criteria for the generalized magnetohydrodynamic equations and the quasi-geostrophic equations, Taiwanese J. Math., 15, 3 (2011), 1059-1073.
[8] A. Hasegawa, Self-organization processes in continuous media, Adv. Phys., 34, 1 (1985), 1-42.
[9] C. He, and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213, 2 (2005), 234-254.
[10] X. Jia, and Y. Zhou, Regularity criteria for the 3D MHD equations involving partial components, Nonlinear Anal. Real World Appl., 13, 1 (2012), 410-418.
[11] Q. Jiu, and J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion, arXiv:1309.5819 [math.AP], 10, Dec. 2013.
[12] N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255, 1 (2005), 161-181.
[13] T. Kato, and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41, 7 (1988), 891-907.
[14] A. J. Majda, and A. L. Bertozzi, Vorticity and incompressible flow, Cambridge University Press, 2001.
[15] R. May, Global well-posedness for a modified dissipative surface quasi-geostrophic equation in the critical Sobolev space H^1, J. Differential Equations, 250, 1 (2011), 320-339.
[16] C. Miao, and L. Xue, On the regularity of a class of generalized quasi-geostrophic equations, J. Differential Equations, 251, 10 (2011), 2789-2821.
[17] H. Miura, Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space, Comm. Math. Phys., 267 (2006), 141-157.
[18] H. Politano, A. Pouquet, and P.-L. Sulem, Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence, Phys. Plasmas, 2 (1995), 2931-2939.
[19] M. Sermange, and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.
[20] T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Anal. PDE, 2, 3 (2009), 361-366.
[21] C. V. Tran, X. Yu, and L. A. K. Blackbourn, Two-dimensional magnetohydrodynamic turbulence in the limits of infinite and vanishing magnetic Prandtl number, J. Fluid Mech., 725 (2013), 195-215.
[22] C. V. Tran, X. Yu, and Z. Zhai, On global regularity of 2D generalized magnetohydrodynamics equations, J. Differential Equations, 254, 10 (2013), 4194-4216.
[23] C. V. Tran, X. Yu, and Z. Zhai, Note on solution regularity of generalized magnetohydrodynamic equations with partial dissipation, Nonlinear Anal., 85 (2013), 43-51.
[24] J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13, 2 (2011), 295-305.
[25] J. Wu, Regularity criteria for the generalized MHD equations Comm. Partial Differential Equations, 33, 2 (2008), 285-306.
[26] J. Wu, The generalized MHD equations, J. Differential Equations, 195 (2003), 284-312.
[27] K. Yamazaki, On the global regularity of generalized Leray-alpha type models, Nonlinear Anal., 75, 2 (2012), 503-515.
[28] K. Yamazaki, Remarks on the regularity criteria of generalized MHD and Navier-Stokes systems, J. Math. Phys., 54, 011502 (2013).
[29] K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity, Appl. Math. Lett., 29 (2014), 46-51.
[30] K. Yamazaki, A remark on the global well-posedness of a modified critical quasi-geostrophic equation, ArXiv, arXiv:1006.0253 [math.AP], 10, Dec. 2013.
[31] K. Yamazaki, Remarks on the global regularity of two-dimensional magnetohydrodynamics system with zero dissipation, Nonlinear Anal., 94 (2014), 194-205.
[32] B. Yuan and L. Bai, Remarks on global regularity of 2D generalized MHD equations, arXiv:1306.2190 [math.AP], 10, Dec. 2013.
[33] Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. I. H. Poincaré - AN 24, 3 (2007), 491-505.
[34] Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12, 5 (2005), 881-886.