STUDY OF SPARSITY-AWARE REDUCED-DIMENSION BEAM-DOPPLER SPACE-TIME ADAPTIVE PROCESSING

Zhaocheng Yang¹, and Rodrigo C. de Lamare²

¹College of Information Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
²Communications Research Group, University of York, York YO10 5DD, United Kingdom
yangzhaocheng@szu.edu.cn and rcdl500@ohm.york.ac.uk

ABSTRACT

Existing reduced-dimension beam-Doppler space-time adaptive processing (RD-BD-STAP) algorithms are confined to the beam-Doppler cells used for adaptation, which often leads to some performance degradation. In this work, a novel sparsity-aware RD-BD-STAP algorithm, denoted Sparse Constraint on Beam-Doppler Selection Reduced-Dimension Space-Time Adaptive Processing (SCBDS-RD-STAP), is proposed. This approach formulates the filter design as a sparse representation problem and enforcing most of the elements in the weight vector to be zero (or sufficiently small in amplitude). Simulation results illustrate that the proposed SCBDS-RD-STAP algorithm outperforms the traditional RD-BD-STAP approaches with fixed beam-Doppler localized processing.

Index Terms— Space-time adaptive processing, reduced-dimension, sparsity-aware, clutter suppression.

1. INTRODUCTION

Space-time adaptive processing (STAP) is a leading technology candidate for improving detection performance of phased-array airborne radar [1] and other related approaches. However, STAP techniques often suffer from the lack of snapshots for training the receive filter, especially in nonhomogeneous environments, which is a crucial concern in the development of STAP algorithms [1][2][3].

In the past decades, many related works have been investigated to improve the clutter mitigation performance in scenarios with a number of snapshots (see [1][2][3][5][6][8][9][10][11][63] and the references therein). For instance, the auxiliary channel receiver (ACR) [4], the joint domain localized approach (JDL) [5][6], the space-time multiple-beam (STMB) [7] are three kinds of effective reduced-dimension (RD) algorithms in the beam-Doppler domain. However, the filter design in [4][5][6][7] relies on fixed beam-Doppler cells and cannot provide optimal selection, suffering significant performance degradation in the presence of sensor array errors. To overcome this issue, the studies in [8] and [9] proposed sequential methods that reduce the required partially adaptive dimension in the transformed domain.

Motivated by the rank deficiency in clutter suppression, sparsity-aware beamformers have been proposed to improve the convergence by exploiting the sparsity of the received data and filter weights [10][11]. The studies in [12] and [13] developed a Min-Max STAP strategy based on the selection of an optimum subset of antenna-pulse pairs that maximizes the separation between the target and the clutter trajectory. Both the sparsity-aware beamformers and the Min-Max STAP strategy are in the antenna-pulse domain. The former is a data-dependent strategy and the latter is a data-independent strategy which requires prior knowledge of the clutter ridge. By drawing inspiration from compressive sensing, recently reported sparsity-based STAP algorithms have formulated the STAP problem as a sparse representation that exploits the sparsity of the entire observing scene in the whole angle-Doppler plane [63]. However, this kind of approach suffers from high computational complexity due to the large dimension of the discretized angle-Doppler plane. Previous works imply that the degrees of freedom (DoFs) used for STAP filters required to mitigate the clutter are much smaller than the full dimension, and different selection strategies have resulted in various levels of performance.

In this work, we introduce the idea of sparse selection in the beam-Doppler domain and formulate the STAP filter design as a sparse representation problem. Unlike the sparsity-based STAP [63], the proposed Sparse Constraint on Beam-Doppler Selection Reduced-Dimension STAP (SCBDS-RD-STAP) algorithm does not discretize the angle-Doppler plane into a large number of grids, but only transforms the received data into a same-size beam-Doppler domain. Differently from the sparsity-aware beamformers [10][11] or the Min-Max STAP strategy [12][13], the proposed SCBDS-RD-STAP algorithm designs the filter in the beam-Doppler domain and automatically selects the best beam-Doppler cells used for adaptation by solving a sparse representation problem. In addition, an analysis of the complexity is performed for the proposed algorithm. Simulation results show the effective-
ness of the proposed algorithm.

This paper is structured as follows: Section 2 describes the signal model of a pulse Doppler side-looking airborne system and states the problem. Section 3 details the proposed SCBDS-RD-STAP algorithm along with approximate solutions and their computational complexity. Section 4 presents and discusses simulation results while Section 5 provides the concluding remarks.

2. SIGNAL MODEL AND PROBLEM FORMULATION

In this section we describe the signal model of a pulse Doppler side-looking airborne radar system and state the problem of designing a beam-Doppler STAP.

2.1. Signal Model

Considering a pulse Doppler side-looking airborne radar with a uniform linear array (ULA) consisting of \(M \) elements. The radar transmits a coherent burst of \(N \) pulses at a constant pulse repetition frequency (PRF) \(f_r \). Generally, for a range bin with the space-time snapshot \(x \), target detection can be formulated as a binary hypothesis problem and expressed as

\[
H_0 : x = x_u \\
H_1 : x = \alpha_t s + x_u,
\]

where \(H_0 \) and \(H_1 \) denote the disturbance only and the target plus disturbance hypotheses, respectively, \(\alpha_t \) is a complex gain, \(s \) is the \(NM \times 1 \) target space-time steering vector and \(x_u \) denotes the clutter-plus-noise vector which encompasses the clutter and the thermal noise \(\mathbf{I} \).

The STAP filter based on a minimum variance distortion-less response (MVDR) approach by minimizing the clutter-plus-noise output power while constraining a unitary gain in the direction of the desired target signal is expressed as \(\mathbf{w}_\text{opt} \)

\[
\mathbf{w}_\text{opt} = \frac{\mathbf{R}^{-1}s}{\mathbf{s}^H \mathbf{R}^{-1} \mathbf{s}},
\]

where \(\mathbf{R} = E[\mathbf{x}_u \mathbf{x}_u^H] \) denotes the clutter-plus-noise covariance matrix. Approaches to compute the beamforming weights include [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62].

2.2. The Beam-Doppler STAP Approaches

The beam-Doppler STAP approaches firstly transform the data \(x \) in the antenna-pulse domain to the beam-Doppler domain, denoted as \(\tilde{x} \), where "\~" above \(x \) signifies the beam-Doppler domain. This procedure can be represented by

\[
\tilde{x} = T_{\text{LP}}^H x,
\]

where \(T_{\text{LP}} \) denotes the transformation matrix. The common idea under the beam-Doppler STAP approaches is to choose a localized processing (LP) region, or equivalently, the matrix \(T_{\text{LP}} \), corresponding to a set of beam-Doppler responses, for adaptive processing. The optimal beam-Doppler STAP filter can be represented by

\[
\mathbf{w}_\text{opt} = \frac{\mathbf{R}^{-1} \mathbf{s}}{\mathbf{s}^H \mathbf{R}^{-1} \mathbf{s}},
\]

where \(\mathbf{R} = T_{\text{LP}}^H \mathbf{R} T_{\text{LP}} \) and \(\mathbf{s} = T_{\text{LP}}^H \mathbf{s} \).

Fig. 1. The LP region selections in different beam-Doppler LP approaches. \(\circ \) denotes the selected beam-Doppler cell, and \(\times \) denotes the target beam-Doppler cell.

Observing [4], the key challenge is how to efficiently select the LP region. The ACR method [4] suggests to select the LP region placed along the clutter ridge, as shown in Fig 1(a). The JDL method [5, 6] chooses the beam-Doppler cells around the target cell, which turns out to be a rectangular shape, as shown in Fig 1(b). Unlike ACR and JDL, STMB [7] chooses the beam-Doppler cells with a "cross" shape centered at the target cell, as shown in Fig 1(c). All these approaches can reduce the STAP filter dimension, resulting in improved convergence and steady-state performance in a small training data set. However, the ACR requires the knowledge of the clutter ridge, and there is no rule to determine the optimum size of the chosen beam-Doppler LP region for JDL and STMB. The optimum choice of the beam-Doppler region should be related to the scenario or the data rather than just fixed.

3. PROPOSED SCBDS-RD-STAP ALGORITHM

In this section, we detail the proposed SCBDS-RD-STAP algorithm, how to design the receive filter and discuss the computational complexity.

3.1. Proposed SCBDS-RD-STAP Scheme

The core idea of the proposed SCBDS-RD-STAP scheme is based on a transformation matrix and a filter with sparse constraints. The received space-time data vector \(x \) is first mapped by an \(NM \times NM \) transformation matrix \(T \) into an \(NM \times
1 beam-Doppler domain data vector. Here, \mathbf{T} can be constructed as

$$
\mathbf{T} = \begin{bmatrix} \mathbf{s} & \mathbf{T}_{\text{aux}} \end{bmatrix},
$$

where \mathbf{T}_{aux} is an $NM \times (NM - 1)$ matrix, given by

$$
\mathbf{T}_{\text{aux}} = \begin{bmatrix}
(\mathbf{v}_d(f_d, t) \otimes \mathbf{v}_s(f_s, t + \frac{1}{M}))^T
& \vdots &
(\mathbf{v}_d(f_d, t) \otimes \mathbf{v}_s(f_s, t + \frac{M-1}{M}))^T

& \vdots

(\mathbf{v}_d(f_d, t + \frac{1}{N}) \otimes \mathbf{v}_s(f_s, t + \frac{M-1}{M}))^T
& \vdots

&
(\mathbf{v}_d(f_d, t + \frac{N-1}{N}) \otimes \mathbf{v}_s(f_s, t + \frac{M-1}{M}))^T
\end{bmatrix}.
$$

Denoting $d = \mathbf{s}^H \mathbf{x}$ and $\mathbf{\tilde{x}} = \mathbf{T}_{\text{aux}}^H \mathbf{x}$, we note that d is the component at the target beam-Doppler cell (also called main channel), and elements of $\mathbf{\tilde{x}}$ are the components from otherwise beam-Doppler cells (also called auxiliary channels). Following the concept of GSC, we can expect to reduce the clutter in d by employing a filter on the auxiliary channel data $\mathbf{\tilde{x}}$. Furthermore, based on the first three observations analyzed above, we do not need to use all auxiliary channel data but only a few of them. In order to realize this idea, we perform a sparse constraint on the STAP filter weight vector $\mathbf{\tilde{w}}$. Precisely, we design the filter $\mathbf{\tilde{w}}$ by solving the following optimization problem

$$
\min_{\mathbf{\tilde{w}}} E \left[|d - \mathbf{\tilde{w}}^H \mathbf{\tilde{x}}|^2 \right] + \kappa \| \mathbf{\tilde{w}} \|_0,
$$

where κ is the regularization parameter that controls the balance between the sparsity and total squared error. Theoretically, the optimum choice can be determined by an algorithm that is properly designed for the task. To show an intuitive observation of the above idea, we will provide examples by simulations later on. I am not sure about the above but it would be useful to include a table with the pseudo-code of the SCBDS-RD-STAP algorithm here.

3.2. Approximate Solutions

Since the sparse regularization function is l_0-norm, it leads to an NP-hard problem. In the following, we use the relaxation penalty l_p-norm (where $0 < p \leq 1$) instead of the l_0-norm and rewrite (7) as

$$
\min_{\mathbf{\tilde{w}}} E \left[|d - \mathbf{\tilde{w}}^H \mathbf{\tilde{x}}|^2 \right] + \kappa \| \mathbf{\tilde{w}} \|_0.
$$

In practice, since the expectation in (8) cannot be obtained, we now modify (8) based on a least-squares type cost function. Let $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_L]$ denote the space-time data matrix formed by L training snapshots, and let $\mathbf{d} = \mathbf{X}^2 \mathbf{s}^*$, and $\mathbf{\tilde{X}} = \mathbf{T}_{\text{aux}}^H \mathbf{X}$, then the least-squares type cost function is described by

$$
\min_{\mathbf{\tilde{w}}} \| \mathbf{d}^* - \mathbf{\tilde{X}}^H \mathbf{\tilde{w}} \|_2^2 + \kappa \| \mathbf{\tilde{w}} \|_p.
$$

Note that (9) is a standard sparse representation problem and can be solved by the regularized focal underdetermined system solution (R-FOCUSS) algorithm.

It should be noted that the sensing matrix or the dictionary $\mathbf{\tilde{X}}^H$ of the optimization problem (9) of the proposed SCBDS-RD-STAP scheme is formed by the received data (i.e., snapshots from the beam-Doppler domain), and is different from that of the sparsity-based STAP approaches [63], which is composed of known space-time steering vectors from the discretized angle-Doppler plane. Furthermore, unlike the ACR, JDL, and STMB, which are performed with fixed beam-Doppler LP region, the proposed SCBDS-RD-STAP scheme provides an iterative approach to automatically select the beam-Doppler LP region aided by a sparse constraint. Additionally, the auxiliary channel data are formulated by a standard 2-D discrete Fourier transform with explicit physical meaning in the proposed SCBDS-RD-STAP scheme, whereas the auxiliary channel data are formulated by a signal blocking matrix in the sparsity-aware beamformer [10].

3.3. Computational Complexity

We detail the computational complexity of the proposed SCBDS-RD-STAP algorithm, sparsity-aware beamformer [10], and JDL [6]/STMB [7], as shown in Table 1. Here, for the proposed algorithm, K_{foc} is the total iteration number and $D_{\text{foc},q}$ is the number of elements above the preset threshold at the qth iteration, which is decided by the sparsity; for the JDL/STMB, D is the number of selected beam-Doppler elements. From the table, we see that the computational complexity of the proposed algorithm is comparable or even lower than those of the sparsity-aware beamformer, and higher than those of the JDL and STMB. This is because the number of snapshots L used in the proposed SCBDS-RD-STAP algorithm is much smaller than NM (which can be seen in the simulations), the value of $D_{\text{foc},q}$ after several iterations will also be much smaller than NM, and the pseudo-inversion can be calculated by the conjugate gradient approach, which has low complexity [64].

4. SIMULATIONS

In this section, we assess the performance of the proposed SCBDS-RD-STAP algorithm and compare it with other existing algorithms, namely, the JDL (3×3) [6], STMB ($8 + 4 + 1$)
Table 1. Computational Complexity

Algorithm	Complexity
Sparsity-aware beamformer	$O(5L(NM)^2)$
JDL/STMB	$O(LD^2 + D^3)$
Proposed SCBDS-RD-STAP	$O\left(\sum_{q=1}^{K_{foc}} D_{foc,q} L^2\right)$

and sparsity-aware beamformer \cite{10} in terms of the output signal-to-clutter-plus-noise-ratio (SCNR) loss \cite{1}, which is defined as

$$SCNR_{loss} = \frac{\sigma^2 |\hat{w}^H s|^2}{NM\hat{w}^H R\hat{w}},$$

(10)

where $\hat{w} = s - T_{aux}\tilde{w}$ is the corresponding filter weight vector in the original domain. We consider a side-looking ULA (half-wavelength inter-element spacing) airborne radar with the following parameters: uniform transmit pattern, $M = 12$, $N = 12$, carrier frequency 1.2GHz, $f_r = 2$kHz, platform velocity 125 m/s, platform altitude 8 km, clutter-to-noise ratio (CNR) 45dB. For the following examples: in the sparsity-aware beamformer, we set parameters as those in \cite{10}; in the proposed SCBDS-RD-STAP algorithm, we set the regularization parameter to 3, the maximum iteration number is 500, and the stopping criterion is decided by the preset limit relative change of the solution between two adjacent iterations 10^{-4}.

In the first example, we examine the convergence performance (signal-to-clutter-plus-noise ratio (SCNR) loss against the number of snapshots) of the proposed SCBDS-RD-STAP algorithm, as shown in Fig.2. The true target is supposed to be boresight aligned with normalized Doppler frequency -0.1667. The curves show that the proposed Switched-SCBDS-RD-STAP algorithm converges to a higher SCNR loss with much fewer training snapshots compared to all the considered algorithms.

Fig. 3 illustrates the 2-D view of the weight vector, specifically, each element in the weight vector is represented by one grid point, and its amplitude is depicted by the grayscale of the grid. Note that, each element in the weight vector is associated to one auxiliary channel in the GSC, and a zero amplitude implies the associated auxiliary channel is not involved in the adaption. Apparently, most of the elements in the weight vector have zero amplitudes, which implies that the Switched-SCBDS-RD-STAP selects very few beam-Doppler cells for adaptation.

In the third example, we assess the performance of the proposed SCBDS-RD-STAP algorithm under different target Doppler frequencies, as depicted in Fig.4. Here, we set the number of snapshots for training used in the JDL \cite{30}, STMB

![Fig. 2. The SCNR loss against the number of snapshots for training.](image)

![Fig. 3. 2-D view of the weight vector of the Switched-SCBDS-RD-STAP](image)

![Fig. 4. The SCNR loss versus different target Doppler frequencies.](image)
5. CONCLUSIONS

This paper has proposed a novel STAP algorithm based on the beam-Doppler selection for clutter mitigation for airborne radar with small sample support. The SCBDS-RD-STAP algorithm transforms the received data into beam-Doppler domain, employs a sparse constraint on the filter weight for sparse beam-Doppler selection and formulates this selection as a sparse representation problem, where the sensing matrix is formed by the data matrix. Simulations have demonstrated the effectiveness of the proposed SCBDS-RD-STAP algorithm and shown its improvement in target detection over the existing algorithms, such as the JDL, STMB, and sparsity-aware beamformer both in absence and presence of array errors.

6. REFERENCES

[1] J. R. Guerci, Space-time adaptive processing for radar, Artech House, 2003.
[2] W. L. Mevin and G. A. Showman, “An approach to knowledge-aided covariance estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no.3, pp. 1021-1042, Jul. 2006.
[3] R. Fa, R. C. de Lamare and L. Wang, “Reduced-rank STAP schemes for airborne radar based on switched joint interpolation, decimation and filtering algorithm,” IEEE Trans. Signal Process., vol. 58, no.8, pp. 4182-4194, 2010.
[4] R. Klemm, “Adaptive airborne MTI: an auxiliary channel approach,” IEEE Proc. Pt.F, vol.134, no.3, pp. 269-276, 1987.
[5] H. Wang and L. Cai, “On adaptive spatial-temporal processing for airborne surveillance radar systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 30, no.3, pp. 660-670, 1994.
[6] R. S. Adve, T. B. Hale and M. C. Wicks, “Practical joint domain localised adaptive processing in homogeneous and nonhomogeneous environments. Part 1: homogeneous environments,” IEEE Proc-Radar Sonar Navig., vol. 147, no.2, pp. 57-65, 2000.
[7] Y. L. Wang, J. W. Chen, Z. Bao and Y. N. Peng, “Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no.1, pp. 70-81, 2003.
[8] I. Scott, and B. Mulgrew, “Sparse LCMV beamformer design for suppression of ground clutter in airborne radar”, IEEE Trans. Signal Process., vol.43, no.12, pp. 2843-2851, 1995.
[9] W. Zhang, J. Li, H. Liu and Y. Sun, “A method for finding best channels in beam-space post-Doppler reduced-dimension STAP,” IEEE Trans. Aerosp. Electron. Syst., vol.50, no.1, pp. 254-264, 2014.
[10] Z. Yang, R. C. de Lamare and X. Li, “L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar,” IEEE Trans. Signal Process., vol.60, no.2, pp. 674-686, Feb. 2012.
[11] Z. Yang, “Space-time adaptive processing by enforcing sparse constraint on beam-Doppler patterns,” Electron. Lett., vol. 53, no.17, pp. 1220-1222, 2017.
[12] X. Wang, E. Aboutanios, and M. G. Amin, “Reduced-rank STAP for slow-moving target detection by antenna-pulse selection,” IEEE Signal Process. Lett., vol. 22, no.8, pp. 1156-1160, 2015.
[13] X. Wang, E. Aboutanios, and M. G. Amin, “Slow radar target detection in heterogeneous clutter using thinned space-time adaptive processing,” IET Radar Sonar Navig., vol. 10, no. 4, pp. 726C734, 2016.
[14] Z. Xu and M.K. Tsatsanis, “Blind adaptive algorithms for minimum variance CDMA receivers,” IEEE Trans. Communications, vol. 49, No. 1, January 2001.
[15] R. C. de Lamare and R. Sampaio-Neto, “Low-Complexity Variable Step-Size Mechanisms for Stochastic Gradient Algorithms in Minimum Variance CDMA Receivers”, IEEE Trans. Signal Processing, vol. 54, pp. 2302 - 2317, June 2006.
[16] C. Xu, G. Feng and K. S. Kwak, “A Modified Constrained Constant Modulus Approach to Blind Adaptive Multiuser Detection,” IEEE Trans. Communications, vol. 49, No. 9, 2001.
[17] Z. Xu and P. Liu, “Code-Constrained Blind Detection of CDMA Signals in Multipath Channels,” IEEE Sig. Proc. Letters, vol. 9, No. 12, December 2002.
[18] R. C. de Lamare and R. Sampaio-Neto, “Minimum Mean-Squared Error Iterative Successive Parallel Arbitrated Decision Detectors for DS-CDMA Systems”, IEEE Transactions on Communications, vol. 56, no. 5, pp. 778-789, May 2008.
[19] R. C. de Lamare and R. Sampaio Neto, “Blind Adaptive Code-Constrained Constant Modulus Algorithms for CDMA Interference Suppression in Multipath Channels”, IEEE Communications Letters, vol 9, no. 4, April, 2005.
[20] L. Landau, R. C. de Lamare and M. Haardt, “Robust adaptive beamforming algorithms using the constrained constant modulus criterion,” IET Signal Processing, vol.8, no.5, pp.447-457, July 2014.
[21] R. C. de Lamare, “Adaptive Reduced-Rank LCMV Beamforming Algorithms Based on Joint Iterative Optimisation of Filters”, Electronics Letters, vol. 44, no. 9, 2008.
[22] R. C. de Lamare and R. Sampaio-Neto, “Adaptive Reduced-Rank Processing Based on Joint and Iterative Interpolation, Decimation and Filtering”, IEEE Transactions on Signal Processing, vol. 57, no. 7, July 2009, pp. 2503 - 2514.
[23] R. C. de Lamare and Raimundo Sampaio-Neto, “Reduced-rank Interference Suppression for DS-CDMA based on Interpolated FIR Filters”, IEEE Communications Letters, vol. 9, no. 3, March 2005.
[24] R. C. de Lamare and R. Sampaio-Neto, “Adaptive Reduced-Rank MMSE Filtering with Interpolated FIR Filters and Adaptive Interpolators”, IEEE Signal Processing Letters, vol. 12, no. 3, March, 2005.
[25] R. C. de Lamare and Rama Sampaio-Neto, “Adaptive Interference Suppression for DS-CDMA Systems based on Interpolated FIR Filters with Adaptive Interpolators in Multipath Channels”, IEEE Trans. Vehicular Technology, Vol. 56, no. 6, September 2007.
[26] R. C. de Lamare, “Adaptive Reduced-Rank LCMV Beamforming Algorithms Based on Joint Iterative Optimisation of Filters,” Electronics Letters, 2008.
[27] R. C. de Lamare and R. Sampaio-Neto, “Reduced-rank adaptive filtering based on joint iterative optimization of adaptive filters”, IEEE Signal Process. Lett., vol. 14, no. 12, pp. 980-983, Dec. 2007.
[28] R. C. de Lamare, M. Haardt, and R. Sampaio-Neto, “Blind Adaptive Constrained Reduced-Rank Parameter Estimation based on Constant Modulus Design for CDMA Interference Suppression”, IEEE Transactions on Signal Processing, June 2008.

[29] M. Yukawa, R. C. de Lamare and R. Sampaio-Neto, “Efficient Acoustic Echo Cancellation With Reduced-Rank Adaptive Filtering Based on Selective Decimation and Adaptive Interpolation,” IEEE Transactions on Audio, Speech, and Language Processing, vol.16, no. 4, pp. 696-710, May 2008.

[30] R. C. de Lamare and R. Sampaio-Neto, “Reduced-rank space-time adaptive interference suppression with joint iterative least squares algorithms for spread-spectrum systems,” IEEE Trans. Veh. Technol., vol. 59, no. 3, pp. 1217-1228, Mar. 2010.

[31] R. C. de Lamare and R. Sampaio-Neto, “Adaptive reduced-rank equalization algorithms based on alternating optimization design techniques for MIMO systems,” IEEE Trans. Vehi. Technol., vol. 60, no. 6, pp. 2482-2494, Jul. 2011.

[32] R. C. de Lamare, L. Wang, and R. Fa, “Adaptive reduced-rank LCMV beamforming algorithms based on joint iterative optimization of filters: Design and analysis,” Signal Processing, vol. 90, no. 2, pp. 640-652, Feb. 2010.

[33] R. Fa, R. C. de Lamare, and L. Wang, “Reduced-Rank STAP Schemes for Airborne Radar Based on Switched Joint Interpolation, Decimation and Filtering Algorithm,” IEEE Transactions on Signal Processing, vol.58, no.8, Aug. 2010, pp.4182-4194.

[34] L. Wang and R. C. de Lamare, “Low-Complexity Adaptive Step Size Constrained Constant Modulus 5G Algorithms for Blind Adaptive Beamforming”, Signal Processing, vol. 89, no. 12, December 2009, pp. 2503-2513.

[35] L. Wang and R. C. de Lamare, “Adaptive Constrained Constant Modulus Algorithm Based on Auxiliary Vector Filtering for Beamforming,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5408-5413, Oct. 2010.

[36] L. Wang, R. C. de Lamare, M. Yukawa, “Adaptive Reduced-Rank Constrained Constant Modulus Algorithms Based on Joint Iterative Optimization of Filters for Beamforming,” IEEE Transactions on Signal Processing, vol.58, no.6, June 2010, pp.2983-2997.

[37] L. Qiu, Y. Cai, R. C. de Lamare and M. Zhao, “Reduced-Rank DOA Estimation Algorithms Based on Alternating Low-Rank Decomposition,” IEEE Signal Processing Letters, vol. 23, no. 5, pp. 565-569, May 2016.

[38] L. Wang, R. C. de Lamare and M. Yukawa, “Adaptive reduced-rank constrained constant modulus algorithms based on joint iterative optimization of filters for beamforming”, IEEE Transactions on Signal Processing, vol.58, no. 6, pp. 2983-2997, June 2010.

[39] L. Wang and R. C. de Lamare, “Adaptive constrained constant modulus algorithm based on auxiliary vector filtering for beamforming”, IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5408-5413, October 2010.

[40] R. Fa and R. C. de Lamare, “Reduced-Rank STAP Algorithms using Joint Iterative Optimization of Filters,” IEEE Transactions on Aerospace and Electronic Systems, vol.47, no.3, pp.1668-1684, July 2011.

[41] Z. Yang, R. C. de Lamare and X. Li, “L1-Regularized STAP Algorithms With a Generalized Sidelobe Canceller Architecture for Airborne Radar,” IEEE Transactions on Signal Processing, vol.60, no.2, pp.674-686, Feb. 2012.

[42] Z. Yang, R. C. de Lamare and X. Li, “Sparsity-aware spacetime adaptive processing algorithms with L1-norm regularisation for airborne radar”, IET signal processing, vol. 6, no. 5, pp. 413-423, 2012.

[43] Neto, F.G.A.; Nascimento, V.H.; Zakharov, Y.V.; de Lamare, R.C., "Adaptive re-weighting homotopy for sparse beamforming," in Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European , vol., no., pp.1287-1291, 1-5 Sept. 2014.

[44] Almeida Neto, F.G.; de Lamare, R.C.; Nascimento, V.H.; Zakharov, Y.V.,"Adaptive reweighting homotopy algorithms applied to beamforming," IEEE Transactions on Aerospace and Electronic Systems, vol.51, no.3, pp.1902-1915, July 2015.

[45] L. Wang, R. C. de Lamare and M. Haardt, “Direction finding algorithms based on joint iterative subspace optimization,” IEEE Transactions on Aerospace and Electronic Systems, vol.50, no.4, pp.2541-2553, October 2014.

[46] S. D. Somasundaram, N. H. Parsons, P. Li and R. C. de Lamare, “Reduced-dimension robust capon beamforming using Krylov-subspace techniques,” IEEE Transactions on Aerospace and Electronic Systems, vol.51, no.1, pp.270-289, January 2015.

[47] H. Ruan and R. C. de Lamare, “Robust adaptive beamforming using a low-complexity shrinkage-based mismatch estimation algorithm,” IEEE Signal Process. Lett., vol. 21 no. 1 pp. 60-64, Nov. 2013.

[48] H. Ruan and R. C. de Lamare, “Robust Adaptive Beamforming Based on Low-Rank and Cross-Correlation Techniques,” IEEE Transactions on Signal Processing, vol. 64, no. 15, pp. 3919-3932, Aug. 2016.

[49] S. Xu and R.C de Lamare, “Distributed conjugate gradient strategies for distributed estimation over sensor networks,” Sensor Signal Processing for Defense SSPD, September 2012.

[50] S. Xu, R. C. de Lamare, H. V. Poor, “Distributed Estimation Over Sensor Networks Based on Distributed Conjugate Gradient Strategies”, IET Signal Processing, 2016 (to appear).

[51] S. Xu, R. C. de Lamare and H. V. Poor, Distributed Compressed Estimation Based on Compressive Sensing, IEEE Signal Processing letters, vol. 22, no. 9, September 2014.

[52] S. Xu, R. C. de Lamare and H. V. Poor, “Distributed reduced-rank estimation based on joint iterative optimization in sensor networks,” in Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), pp.2360-2364, 1-5, Sept. 2014.

[53] S. Xu, R. C. de Lamare and H. V. Poor, “Distributed low-rank adaptive estimation algorithms based on alternating optimization”, Signal Processing, vol. 144, 2018, pp. 41-51.

[54] S. Xu, R. C. de Lamare and H. V. Poor, “Adaptive link selection strategies for distributed estimation in diffusion wireless networks,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), , vol., no., pp.5402-5405, 26-31 May 2013.

[55] S. Xu, R. C. de Lamare and H. V. Poor, “Dynamic topology adaptation for distributed estimation in smart grids,” in Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2013 IEEE 5th International Workshop on , vol., no., pp.420-423, 15-18 Dec. 2013.

[56] S. Xu, R. C. de Lamare and H. V. Poor, “Adaptive Link Selection Algorithms for Distributed Estimation”, EURASIP Journal on Advances in Signal Processing, 2015.

[57] T. G. Miller, S. Xu, R. C. de Lamare and H. V. Poor, “Distributed Spectrum Estimation Based on Alternating Mixed Discrete-Continuous Adaptation,” IEEE Signal Processing Letters, vol. 23, no. 4, pp. 551-555, April 2016.

[58] N. Song, R. C. de Lamare, M. Haardt, and M. Wolf, “Adaptive Widely Linear Reduced-Rank Interference Suppression based on the Multi-Stage Wiener Filter,” IEEE Transactions on Signal Processing, vol. 60, no. 8, 2012.
[59] N. Song, W. U. Alokozai, R. C. de Lamare and M. Haardt, “Adaptive Widely Linear Reduced-Rank Beamforming Based on Joint Iterative Optimization,” IEEE Signal Processing Letters, vol.21, no.3, pp. 265-269, March 2014.

[60] R.C. de Lamare, R. Sampaio-Neto and M. Haardt, “Blind Adaptive Constrained Constant-Modulus Reduced-Rank Interference Suppression Algorithms Based on Interpolation and Switched Decimation,” IEEE Trans. on Signal Processing, vol.59, no.2, pp.681-695, Feb. 2011.

[61] Y. Cai, R. C. de Lamare, “Adaptive Linear Minimum BER Reduced-Rank Interference Suppression Algorithms Based on Joint and Iterative Optimization of Filters,” IEEE Communications Letters, vol.17, no.4, pp.633-636, April 2013.

[62] R. C. de Lamare and R. Sampaio-Neto, “Sparsity-Aware Adaptive Algorithms Based on Alternating Optimization and Shrinkage,” IEEE Signal Processing Letters, vol.21, no.2, pp.225-229, Feb. 2014.

[63] Z. Yang, R. C. de Lamare, and W. Liu, “Sparsity-based STAP using alternating direction method with gain/phase errors,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 6, pp. 2756-2768, Dec. 2017.

[64] Z. He, A. Cichocki, R. Zdunek and S. Xie, “Improved FOCUSS method with conjugate gradient iterations,” IEEE Trans. Signal Process., vol.57, no. 1, pp.399-404, Jan. 2009.