A SUP-HODGE BOUND FOR EXPONENTIAL SUMS

CHUNLEI LIU

Abstract. The C-function of T-adic exponential sums is studied. An explicit arithmetic bound is established for the Newton polygon of the C-function. This polygon lies above the Hodge polygon. It gives a sup-Hodge bound of the C-function of p-power order exponential sums.

1. Introduction

Let p be a prime number, $\mathbb{F}_p = \mathbb{Z}/(p)$, \mathbb{F}_p a fixed algebraic closure of \mathbb{F}_p, and \mathbb{F}_{p^k} the subfield of \mathbb{F}_p with p^k elements.

Let $q > 1$ be a power of p, W the ring scheme of Witt vectors, $\mathbb{Z}_q = W(\mathbb{F}_q)$, \mathbb{Q}_q the fraction field of \mathbb{Z}_q, $\overline{\mathbb{Q}_p} = \lim_{\rightarrow k} \mathbb{Q}_p^k$, and \mathbb{C}_p the p-adic completion of $\overline{\mathbb{Q}_p}$.

Let $\triangle \supseteq \{0\}$ be an integral convex polytope in \mathbb{R}^n, and I the set of vertices of \triangle different from the origin. Let

$$f(x) = \sum_{u \in \triangle} (a_u x^u, 0, 0, \ldots) \in W(\mathbb{F}_q[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]) \text{ with } \prod_{u \in I} a_u \neq 0,$$

where $x^u = x_1^{u_1} \cdots x_n^{u_n}$ if $u = (u_1, \cdots, u_n) \in \mathbb{Z}^n$.

Definition 1.1. For $k \in \mathbb{N}$, the sum

$$S_f(k, T) = \sum_{x \in (\mathbb{F}_{q^k}^\times)^n} (1 + T)^{\text{Tr}_{\mathbb{Z}_q^k/\mathbb{Z}_p}(f(x))} \in \mathbb{Z}_p[[T]]$$

is called a T-adic exponential sum. And the function

$$L_f(s, T) = \exp\left(\sum_{k=1}^{\infty} S_f(k, T) \frac{s^k}{k}\right) \in 1 + s\mathbb{Z}_p[[T]][[s]],$$

as a power series in the single variable s with coefficients in the T-adic complete field $\mathbb{Q}_p((T))$, is called an L-function of T-adic exponential sums.

Let m be a positive integer, ζ_p^m a primitive p^m-th root of unity, and $\pi_m = \zeta_p^m - 1$. Then $S_f(k, \pi_m)$ is the exponential sum studied by Liu-Wei [LWe]. If $m = 1$, the exponential sum $S_f(k, \pi_m)$ was studied by Adolphson-Sperber [AS,AS2]. And, if $n = 1$, the exponential sum $S_f(k, \pi_m)$ was studied by Kumar-Helleseth-Calderbank [KHC] and Li [Li].

This research is supported by NSFC Grant No. 10671015.
Definition 1.2. The function
\[C_f(s, T) = C_f(s, T; \mathbb{F}_q) = \exp\left(\sum_{k=1}^{\infty} -\left(q^k - 1\right)^{-n} S_f(k, T) \frac{s^k}{k}\right), \]
as a power series in the single variable \(s\) with coefficients in the \(T\)-adic complete field \(\mathbb{Q}_p((T))\), is called a \(C\)-function of \(T\)-adic exponential sums.

We have
\[L_f(s, T) = \prod_{i=0}^{n-1} C_f(q^i s, T)^{-1} \frac{n-i+1}{n+i}, \]
and
\[C_f(s, T) = \prod_{j=0}^{\infty} L_f(q^j s, T)^{-1} \frac{n-1}{n+j-1}. \]
So the \(C\)-function \(C_f(s, T)\) and the \(L\)-function \(L_f(s, T)\) determine each other. From the last identity, one sees that \(C_f(s, T) \in 1 + s\mathbb{Z}_p[[T]][[s]].\)

Let \(C(\triangle)\) be the cone generated by \(\triangle\), and \(M(\triangle) = M(\triangle) \cap \mathbb{Z}^n\). There is a degree function \(\text{deg}\) on \(C(\triangle)\) which is \(\mathbb{R}_{\geq 0}\)-linear and takes the values 1 on each co-dimension 1 face not containing 0. For \(a \notin C(\triangle)\), we define \(\text{deg}(a) = +\infty\).

Definition 1.3. A convex function on \([0, +\infty]\) which is linear between consecutive integers with initial value 0 is called the infinite Hodge polygon of \(\triangle\) if its slopes between consecutive integers are the numbers \(\text{deg}(a), a \in M(\triangle)\). We denote this polygon by \(H_\infty^{\triangle}\).

Liu-Wan [LWa] also proved the following.

Theorem 1.4 (Hodge bound). We have
\[T - \text{adic NP of } C_f(s, T) \geq \text{ord}_p(q)(p - 1)H_\infty^{\triangle}, \]
where NP is the short for Newton polygon.

Denote by \([x]\) the least integer equal or greater than \(x\), and by \(\{x\}\) the fractional part of \(x\).

Definition 1.5. Let \(C \subseteq M(\triangle)\) be a finite subset. We define
\[r_C = \max_{\beta} \left(\#\{a \in C \mid \{\text{deg}(pa)\}' \geq \beta\} - \#\{a \in C \mid \{\text{deg}(a)\}' \geq \beta\}\right). \]

Definition 1.6. Let \(a \subseteq M(\triangle)\). We define
\[\varpi(a) = [p \text{deg}(a)] - [\text{deg}(a)] + r_{\{a \in M(\triangle) \mid \text{deg}(u) < \text{deg}(a)\} \cup \{a\}} - r_{\{a \in M(\triangle) \mid \text{deg}(u) < \text{deg}(a)\} \cup \{a\}}. \]

Definition 1.7. The arithmetic polygon \(p_\triangle\) of \(\triangle\) is a convex function on \([0, +\infty]\) which is linear between consecutive integers with initial value 0, and whose slopes between consecutive integers are the numbers \(\varpi_\triangle(a), a \in M(\triangle)\).
One can prove the following.

Theorem 1.8. We have then
\[p_\triangle \geq (p - 1)\muH^\infty_\triangle. \]
Moreover, they coincide at the point \(n!\text{Vol}(\triangle) \).

Let \(D \) be the least positive integer such that \(\deg(M(\triangle)) \subseteq \frac{1}{D}\Z \). The main result of this paper is the following.

Theorem 1.9. If \(p > 3D \), then
\[T - \text{adic NP of } C_f(s, T) \geq \text{ord}_p(q)p_\triangle. \]

From the above theorem we shall deduce the following.

Theorem 1.10. If \(p > 3D \), then, for \(t \in \C_p \) with \(0 \neq |t|_p < 1 \), we have
\[t - \text{adic NP of } C_f(s, t) \geq \text{ord}_p(q)p_\triangle. \]

2. **The \(T \)-adic Dwork Theory**

In this section we review the \(T \)-adic analogue of Dwork theory on exponential sums.

Let
\[E(t) = \exp(\sum_{i=0}^{\infty} \frac{t^p^i}{i!}) = \sum_{i=0}^{+\infty} \lambda_i t^i \in 1 + t\Z_p[[t]] \]
be the \(p \)-adic Artin-Hasse exponential series. Define a new \(T \)-adic uniformizer \(\pi \) of \(\Q_p((T)) \) by the formula \(E(\pi) = 1 + T \). Let \(\pi^{1/D} \) be a fixed \(D \)-th root of \(\pi \). Let
\[L = \{ \sum_{u \in M(\triangle)} c_u \pi^{\deg(u)}x^u : c_u \in \Q_q[[\pi^{1/D}]] \}. \]

Let \(a \mapsto \hat{a} \) be the Teichmüller lifting. One can show that the series
\[E_f(x) := \prod_{a \neq 0} E(\pi\hat{a}x^u) \in L. \]

Note that the Galois group of \(\Q_q \) over \(\Q_p \) can act on \(L \) but keeping \(\pi^{1/D} \) as well as the variable \(x \) fixed. Let \(\sigma \) be the Frobenius element in the Galois group such that \(\sigma(\zeta) = \zeta^p \) if \(\zeta \) is a \((q - 1) \)-th root of unity. Let \(\Psi_p \) be the operator on \(L \) defined by the formula
\[\Psi_p(\sum_{i \in M(\triangle)} c_i x^i) = \sum_{i \in M(\triangle)} c_{pi} x^i. \]

Then \(\Psi := \sigma^{-1} \circ \Psi_p \circ E_f \) acts on the \(T \)-adic Banach module
\[B = \{ \sum_{u \in M(\triangle)} c_u \pi^{\deg(u)}x^u \in L, \text{ ord}_T(c_u) \to +\infty \text{ if } \deg(u) \to +\infty \}. \]

We call it Dwork’s \(T \)-adic semi-linear operator because it is semi-linear over \(\Z_q[[\pi^{1/D}]] \).
Let \(b = \log_p q \). Then the \(b \)-iterate \(\Psi^b \) is linear over \(\mathbb{Z}_q[[\frac{1}{p^D}]] \), since

\[
\Psi^b = \Psi_p^b \circ \prod_{i=0}^{b-1} E^i_f(x^p^i).
\]

One can show that \(\Psi \) is completely continuous in the sense of Serre [Se]. So \(\det(1 - \Psi^b s \mid B/\mathbb{Z}_q[[\frac{1}{p^D}]] \) and \(\det(1 - \Psi s \mid B/\mathbb{Z}_p[[\frac{1}{p^D}]] \) are well-defined.

We now state the \(T \)-adic Dwork trace formula [LWa].

Theorem 2.1. We have

\[
C_f(s, T) = \det(1 - \Psi^b s \mid B/\mathbb{Z}_q[[\frac{1}{p^D}]]).
\]

Lemma 2.2. The Newton polygon of \(\det(1 - \Psi^b s^b \mid B/\mathbb{Z}_q[[\frac{1}{p^D}]] \) coincides with that of \(\det(1 - \Psi s \mid B/\mathbb{Z}_p[[\frac{1}{p^D}]] \).

Proof. Note that

\[
\det(1 - \Psi^b s \mid B/\mathbb{Z}_p[[\frac{1}{p^D}]] = \text{Norm}(\det(1 - \Psi^b s \mid B/\mathbb{Z}_q[[\frac{1}{p^D}]]),
\]

where Norm is the norm map from \(\mathbb{Z}_q[[\frac{1}{p^D}]] \) to \(\mathbb{Z}_p[[\frac{1}{p^D}]] \). The lemma now follows from the equality

\[
\prod_{\zeta_i=1} \det(1 - \Psi \zeta_i s \mid B/\mathbb{Z}_p[[\frac{1}{p^D}]] = \det(1 - \Psi^b s^b \mid B/\mathbb{Z}_p[[\frac{1}{p^D}]]).
\]

\[\square\]

Write

\[
\det(1 - \Psi s \mid B/\mathbb{Z}_p[[\frac{1}{p^D}]] = \sum_{i=0}^{+\infty} (-1)^i c_i s^i.
\]

Theorem 2.3. The \(T \)-adic Newton polygon of \(\det(1 - \Psi^b s \mid B/\mathbb{Z}_q[[\frac{1}{p^D}]] \) is the lower convex closure of the points

\[
(m, \text{ord}_T(c_{bm})), \ m = 0, 1, \ldots.
\]

Proof. By Lemma 2.2, the \(T \)-adic Newton polygon of \(\det(1 - \Psi^b s^b \mid B/\mathbb{Z}_q[[\frac{1}{p^D}]] \) is the lower convex closure of the points

\[
(i, \text{ord}_T(c_i)), \ i = 0, 1, \ldots.
\]

It is clear that \((i, \text{ord}_T(c_i))\) is not a vertex of that polygon if \(b \nmid i \). So that Newton polygon is the lower convex closure of the points

\[
(bm, \text{ord}_T(c_{bm})), \ m = 0, 1, \ldots.
\]

It follows that the \(T \)-adic Newton polygon of \(\det(1 - \Psi^b s \mid B/\mathbb{Z}_q[[\frac{1}{p^D}]] \) is the lower convex closure of the points

\[
(m, \text{ord}_T(c_{bm})), \ m = 0, 1, \ldots.
\]

\[\square\]
3. The arithmetic bound

In this section we prove the following.

Theorem 3.1. We have

\[\text{ord}_T(c_{bm}) \geq p\Delta(m). \]

Proof. First, we choose a basis of \(B \otimes_{\mathbb{Z}_p} \mathbb{Q}_p(\pi^{1/D}) \) over \(\mathbb{Q}_p(\pi^{1/D}) \) as follows. Fix a normal basis \(\xi_i, i \in \mathbb{Z}/(b) \) of \(\mathbb{F}_q \) over \(\mathbb{F}_p \). Let \(\xi_i \) be their Teichmüller lift of \(\bar{\xi}_i \). The system \(\xi_i, i \in \mathbb{Z}/(b) \) is a normal basis of \(\mathbb{Q}_q \) over \(\mathbb{Q}_p \). Then \(\{\xi_i x^u\}_{u \in M(\Delta), 1 \leq i \leq b} \) is a basis of \(B \otimes_{\mathbb{Z}_p} \mathbb{Q}_p(\pi^{1/D}) \) over \(\mathbb{Q}_p(\pi^{1/D}) \).

Secondly, we write out the matrix of \(\Psi \) on \(B \otimes_{\mathbb{Z}_p} \mathbb{Q}_p(\pi^{1/D}) \) with respect to the basis \(\{\xi_i x^u\}_{u \in M(\Delta), 1 \leq i \leq b} \). Write

\[E_f(x) = \sum_{u \in M(\Delta)} \gamma_u x^u, \]

and

\[\sigma^{-1}(\xi_j \gamma_{pu-w}) = \sum_{i=1}^b \gamma(\xi_i, (w,j)) \xi_i. \]

Then

\[\Psi(\xi_j x^w) = \sum_{u \in M(\Delta)} \sigma^{-1}(\xi_j \gamma_u) \Psi_p(x^{u+w}) = \sum_{u \in M(\Delta)} \sigma^{-1}(\xi_j \gamma_{pu-w}) x^u = \sum_{u \in M(\Delta)} \sum_{i=1}^b \gamma(\xi_i, (w,j)) \xi_i x^u. \]

So \(\{\gamma(\xi_i, (w,j))\}_{u,w \in M(\Delta), 1 \leq i,j \leq b} \) is the matrix of \(\Psi \) on \(B \otimes_{\mathbb{Z}_p} \mathbb{Q}_p(\pi^{1/D}) \) with respect to the basis \(\{\xi_i x^u\}_{u \in M(\Delta), 1 \leq i \leq b} \).

Thirdly, we claim that

\[\text{ord}_T(\gamma(\xi_i, (w,j))) \geq \lceil \deg(pu-w) \rceil. \]

In fact, this follows from the equality

\[\sigma^{-1}(\xi_j \gamma_{pu-w}) = \sum_{i=1}^b \gamma(\xi_i, (w,j)) \xi_i, \]

and the inequality \(\text{ord}_T(\gamma_u) \geq \lceil \deg(u) \rceil. \)

Finally, we show that

\[\text{ord}_T(c_{bm}) \geq p\Delta(m). \]

Note that

\[c_{bm} = \sum_A \det((\gamma(\xi_i, (w,j)))_{(u,i),(w,j) \in A}). \]
where \(A \) runs over all subsets of \(M(\triangle) \times \mathbb{Z}/(b) \) with cardinality \(bm \). So it suffices to show that

\[
\text{ord}_T(\det(\gamma_{(i,u),(j,\omega)})(i,u),(j,\omega)\in A)) \geq bp_\triangle(m).
\]

Note that

\[
\det(\gamma_{(i,u),(j,\omega)})(i,u),(j,\omega)\in A)) = \sum_{\tau \in S_A} \sum_{a \in A} \text{ord}_\pi(\gamma_{a,\tau(a)}),
\]

where \(S_A \) is the permutation group of \(A \). So it suffices to show that

\[
\sum_{a \in A} \text{ord}_\pi(\gamma_{a,\tau(a)}) \geq bp_\triangle(m), \quad \tau \in S_A.
\]

Since

\[
\text{ord}_T(\gamma_{(u,i),(w,j)}) \geq \lceil \deg(pu - w) \rceil,
\]

the theorem follows from the following.

Theorem 3.2. If \(p > 3D \), \(A \) is a subset of \(M(\triangle) \times \mathbb{Z}/(b) \) with cardinality \(bm \), and \(\tau \in S_A \), then

\[
\sum_{a \in A} \lceil \deg(p\nu(a) - \nu(\tau(a))) \rceil \geq bp_\triangle(m),
\]

where \(\nu(u,i) = u \).

Proof. We have

\[
\sum_{a \in A} \lceil \deg(p\nu(a) - \nu(\tau(a))) \rceil \geq \sum_{a \in A} \lceil \deg(p\nu(a)) - \nu(\tau(a)) \rceil
\]

\[
\geq \sum_{a \in A} \lceil \deg(p\nu(a)) \rceil - \lceil \deg(\nu(\tau(a))) \rceil + 1_{\{\deg(p\nu(a)) > \deg(\nu(\tau(a)))\}}
\]

\[
\geq \sum_{a \in A} \lceil \deg(p\nu(a)) \rceil - \lceil \deg(\nu(a)) \rceil + 1_{\{\deg(p\nu(a)) > \deg(\nu(\tau(a)))\}}.
\]

Choose a set \(B \) of cardinality \(|A| \) such that \(B \cap A \) is as big as possible under the condition that, for some \(\alpha \),

\[
\{a \in M(\triangle) \times \mathbb{Z}/(b) \mid \deg(\nu(a)) < \alpha\} \subseteq B \subseteq \{a \in M(\triangle) \times \mathbb{Z}/(b) \mid \deg(\nu(a)) \leq \alpha\}.
\]

Choose a permutation \(\tau_0 \) on \(B \cap A \) which agrees with \(\tau \) on \((B \cap A) \cap \tau^{-1}(B \cap A) \). Extend it trivially to \(B \). We have

\[
\sum_{a \in A} \lceil \deg(p\nu(a)) \rceil - \lceil \deg(\nu(a)) \rceil \geq \sum_{a \in B} (\lceil \deg(p\nu(a)) \rceil - \lceil \deg(\nu(a)) \rceil) + 2\#(A \setminus B).
\]

We also have

\[
\sum_{a \in A} 1_{\{\deg(p\nu(a)) > \deg(\nu(\tau(a)))\}} \geq \sum_{a \in B} 1_{\{\deg(p\nu(a)) > \deg(\nu(\tau(a)))\}} - 2\#(A \setminus B).
\]

It follows that

\[
\sum_{a \in A} \lceil \deg(p\nu(a)) \rceil - \lceil \deg(\nu(a)) \rceil + 1_{\{\deg(p\nu(a)) > \deg(\nu(\tau(a)))\}}
\]
\[\sum_{a \in B} \left\lfloor \deg(p\nu(a)) \right\rfloor - \left\lfloor \deg(\nu(a)) \right\rfloor + 1_{\{\deg(p\nu(a))' > \{\deg(\nu(a)_0)\}'\}} \]
\[\geq \sum_{a \in B} \left(\left\lfloor \deg(p\nu(a)) \right\rfloor - \left\lfloor \deg(\nu(a)) \right\rfloor \right) + r_B, \]
where
\[r_B = \max_{\beta} \{ \# \{ a \in B \mid \{\deg(p\nu(a))\}' \geq \beta \} - \# \{ a \in B \mid \{\deg(\nu(a))\}' \geq \beta \} \}. \]

Choose a set \(C \) of cardinality \(m \) such that for some \(\alpha \),
\[\{ a \in M(\Delta) \mid \deg(\nu(a)) < \alpha \} \subseteq C \subseteq \{ a \in M(\Delta) \mid \deg(\nu(a)) \leq \alpha \}. \]
Recall that
\[r_C = \max_{\beta} \{ \# \{ a \in C \mid \{\deg(pa)\}' \geq \beta \} - \# \{ a \in C \mid \{\deg(a)\}' \geq \beta \} \}. \]
It is easy to see that \(r_B = br_C \), and
\[\sum_{a \in B} \left(\left\lfloor \deg(p\nu(a)) \right\rfloor - \left\lfloor \deg(\nu(a)) \right\rfloor \right) + r_B \]
\[= b \sum_{a \in C} \left(\left\lfloor \deg(pa) \right\rfloor - \left\lfloor \deg(a) \right\rfloor \right) + br_C = bp_\Delta(m). \]
The theorem now follows. \(\square \)

References

[AS] A. Adolphson and S. Sperber, Newton polyhedra and the degree of the L-function associated to an exponential sum, Invent. Math. 88(1987), 555-569.

[AS2] A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra: cohomology and estimates, Ann. Math., 130 (1989), 367-406.

[BF] R. Blache and E. Férard, Newton stratification for polynomials: the open stratum, J. Number Theory, 123(2007), 456-472.

[KHC] P. V. Kumar, T. Helleseth and A. R. Calderbank, An upper bound for some exponential sums over Galois rings with applications, IEEE Trans. Inform. Theory 41 (1995), no.2, 456-468.

[Li] W.-C. W. Li, Character sums over \(p \)-adic fields, J. Number Theory 74 (1999), no.2, 181-229.

[LWa] C. Liu and D. Wan, \(T \)-adic exponential sums, Algebra & Number theory, Vol. 3, No. 5 (2009), 489-509.

[LWe] C. Liu and D. Wei, The \(L \)-functions of Witt coverings, Math. Z., 255 (2007), 95-115.

[Se] J-P. Serre, Endomorphismes complétement continus des espaces de Banach \(p \)-adiques, Publ. Math., IHES., 12(1962), 69-85.

[Zh1] J. H. Zhu, \(p \)-adic variation of \(L \) functions of one variable exponential sums, I. Amer. J. Math., 125 (2003), 669-690.

[Zh2] J. H. Zhu, Asymptotic variation of \(L \) functions of one-variable exponential sums, J. Reine Angew. Math., 572 (2004), 219-233. 1529–1550.

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.

E-mail address: clliu@sjtu.edu.cn