High p_t Measurements at the CERN SPS

C. Blume

Institut für Kernphysik, J.W. Goethe Universität, Frankfurt am Main, Germany

Abstract

The current experimental situation concerning high p_t observables at the CERN SPS is reviewed. Recent data from the NA45, NA49 and NA57 collaborations are discussed and compared to earlier measurements by WA98 and NA45 at the same center-of-mass energies, as well as to measurements at the higher energies by the RHIC experiments. The observables include new p+p, A+A spectra, nuclear modification factors (R_{AA}, R_{CP}), two particle azimuthal correlations, and baryon to meson ratios at moderately high p_t. Generally, the interpretation of the SPS data suffers from the lack of reliable baseline measurements (p+p and p+A). However, the overall picture that is emerging suggests that already at SPS energies medium effects similar to those observed at RHIC are present.

1 Introduction

At RHIC energies a strong suppression of high p_t hadron production in nucleus–nucleus collisions relative to p+p collisions has been observed [1,2], which is usually attributed to the energy loss that the parent partons experience when transversing the color deconfined medium present in these collisions [3]. Also, two particle correlations at high p_t indicate a strong effect of the produced medium on the hadron emission pattern. At the lower SPS energies on the other hand, the experimental situation was rather unclear and even contradictory. While, e.g. the energy density derived from the measured E_t distributions, as well as the fact that the chemical freeze-out occurs very close to the theoretically expected phase boundary, suggest that a quark gluon plasma is already formed at top SPS energies [4], there was so far no indication of any high p_t suppression at these energies. In fact, the WA98 data on the nuclear modification factor R_{AA} of neutral pions rather exhibited a Cronin–type of enhancement [5]. However, a reassessment of the p+p baseline [6] allowed the conclusion that the data on pion production in central A+A reactions are consistent with the expectation in a jet quenching scenario with gluon densities of $dN_g/dy = 400 – 600$ [7], more in line with the measured hadron multiplicities.
A first study of two particle azimuthal correlations for $p_t > 1.2$ GeV/c by the NA45 experiment [8], showed a structure that could be interpreted as a correlation of semi-hard particles on top of a collective flow component. Similar to what has been seen at RHIC, the away-side peaks broaden with centrality, which might be attributed to in-medium effects. Recently, new data on R_{CP} for identified particles have been presented by the NA49 and NA57 experiment [9,10]. Additionally, the NA45 collaboration has done a refined analysis of two particle azimuthal correlations at high p_t [11]. These data help to clarify the current situation and shall be discussed in the following.

2 Baseline measurements in p+p and p+A

In order to establish whether any kind of modification in the high p_t region is present in A+A collisions, reference data from p+p and p+A collisions are of high importance. Unfortunately, there are no p+p(A) data available at $\sqrt{s} = 17.3$ GeV that cover the interesting p_t-region for A+A studies above 2 GeV/c. Recently, the NA49 experiment has published charged pion spectra measured at this center-of-mass energy [12], but the statistics limits the p_t-reach to 2.1 GeV/c. Several attempts have been made to replace the missing data by an interpolation from lower and higher beam energies [5,6]. In [6] the parametrization suggested by Blattning et al. [13] was used to construct a p+p baseline for neutral pions. This parametrization also agrees to the charge averaged pion spectra in the region measured by NA49 at $\sqrt{s} = 17.3$ GeV.
Fig. 2. The nuclear modification factor R_{AA} as a function of p_t for neutral and averaged charged pions [5,20,9]. The hatched box represents the typical normalization error from the $\langle N_{\text{coll}} \rangle$ determination. The lower hatched band is a theory prediction including energy loss, Cronin effect and nuclear shadowing [7]. The upper dashed band shows R_{pA} as measured in p+W at $\sqrt{s_{NN}} = 19.4$ GeV/c [16].

However, one should keep in mind that at the center-of-mass energies under discussion here, the spectral shape in the higher p_t region (i.e. above $p_t = 2$ GeV/c) changes drastically with energy since the kinematic limit becomes important here (see e.g. [14]). Therefore, any parametrization introduces a large systematic error. A specific problem in the interpretation of the SPS data arises from the fact that the typical p_t-reach is in the region below 4–5 GeV/c. This region is governed by an interplay of the Cronin effect, which causes an enhancement in p+A collisions relative to p+p, and a potential suppression due to jet quenching. A proper understanding of the p+A data is therefore indispensable. This is illustrated by Fig. 1 that shows the existing data on the nuclear modification factor R_{pA} at different center-of-mass energies [15,16,17,18,19]. R_{pA} increases by approximately a factor 2 when going from $\sqrt{s_{NN}} = 200$ GeV down to $\sqrt{s_{NN}} = 19.4$ GeV at $p_t \approx 4.6$ GeV/c. This is not unexpected since due to the steeper spectral shape at lower energies R_{pA} is more sensitive to p_t broadening effects. According to the data from Serpukhov at $\sqrt{s_{NN}} = 11.5$ GeV [15], R_{pA} increases towards lower energies even more rapidly, making interpolations very difficult.

3 Nuclear modification factors in A+A

Figure 2 displays the nuclear modification factor R_{AA} for pions based on central A+A data measured by WA98, NA45, NA49 [5,20,9]. Here, R_{AA} was constructed by using the p+p parametrization of Blattmig et al. [13], as al-
Fig. 3. Left: The nuclear modification factor R_{CP} for K^0_S as measured by NA57 [10], compared to predictions with and without parton energy loss [21,22]. Right: R_{CP} for charged pions, charged kaons, and protons measured by NA49 [9]. The dashed (dotted) curves are calculations with parton energy loss for pions (kaons) [21].

ready suggested in [6]. A new feature in this figure are the recent NA49 data that extend the p_t-reach up to 4.5 GeV/c. Bearing in mind all the caveats described in the previous section, the shown R_{AA} values are consistent with the theoretical expectation for an energy loss scenario at realistic gluon densities of $dN_g/dy = 400 - 600$ [7]. They are clearly below the R_{pA} values measured at slightly higher $\sqrt{s_{NN}}$, which should provide a lower bound on the expected R_{pA} at SPS.

The problem of the missing $p+p$ baseline measurement can to a certain extent be circumvented by using peripheral $A+A$ collisions as a reference instead. Figure 3 shows the R_{CP} for K^0_S by NA57 (data is also available for h^-, Λ, and $\bar{\Lambda}$[10]) and the R_{CP} for pions, kaons, and protons by NA49 [9]. A comparison of the data to calculations including parton energy loss [21,22] shows that the measured R_{CP} values are in line with a quenching scenario. When considering all systematic errors introduced by different methods of centrality determination and the estimation of $\langle N_{coll} \rangle$, the results of NA49, NA57, and WA98 are found to be consistent with each other. The energy dependence of R_{CP} at intermediate p_t, which is summarized in the left panel of Fig. 4, apparently is strongest between $\sqrt{s_{NN}} = 17.3$ GeV and $\sqrt{s_{NN}} = 62$ GeV. An interesting question is whether this is just a reflection of a similar energy dependence of the Cronin effect or due to a dramatic increase of the parton energy loss. Data on $p(d)+A$ at $\sqrt{s_{NN}} = 62$ GeV would be needed to provide an answer. As already visible in Fig. 3, there is a clear mass dependence of R_{CP}: $R_{CP}(p,\Lambda) > R_{CP}(K) \geq R_{CP}(\pi)$. This effect is quite similar at SPS and RHIC (see right panel of Fig. 4), even though the overall scale is naturally lower at higher energies. However, the same mass dependence is present in
Fig. 4. Left: The energy dependence of the nuclear modification factor R_{CP} for pions and h^\pm at $p_t \approx 3$ GeV/c [5,9,10,23,24,2,25,1,26,27,28,29]. Also included is R_{pA} (grey boxes) for p+W at the same p_t[16]. Right: The dependence of R_{CP} on the particle mass for SPS ($\sqrt{s_{NN}} = 17.3$ GeV, filled symbols) [5,9,10] and RHIC ($\sqrt{s_{NN}} = 200$ GeV, open symbols) [30,31]. The dark grey band represents R_{pA} from p+W data at $\sqrt{s_{NN}} = 19.4$ GeV [16], while the hatched band displays the same values scaled by 0.5.

R_{pA} at $\sqrt{s_{NN}} = 19.4$ GeV. Scaled down by a factor 0.5 it nicely matches the data for A+A at $\sqrt{s_{NN}} = 17.3$ GeV, while the corresponding factor is 0.2 at $\sqrt{s_{NN}} = 200$ GeV.

4 High p_t correlations

Figure 5 shows the two particle correlation functions $C(\Delta \phi)$, as well as the conditional yields of the jet associated hadrons measured by NA45 [11] at $\sqrt{s_{NN}} = 17.3$ GeV. The method and the choice of the p_t-ranges (2.5 GeV/c < p_t^{trigger} < 4.0 GeV/c and 1.0 GeV/c < $p_t^{\text{assoc.}}$ < 2.5 GeV/c) are identical to an analysis performed by the PHENIX collaboration at $\sqrt{s_{NN}} = 200$ GeV [34]. The away side structure observed at SPS is clearly broader than a p+p like di-jet expectation, as e.g. predicted by PYTHIA, and the width does not depend significantly on centrality. However, an indication for a modification of its shape with centrality is observed: The away-side structure seems to develop a flat top for central events. Even though this modification of the shape is much stronger at RHIC, this observations are qualitatively similar at both energies and might in both case be indicative for partonic interaction with the produced medium.
Fig. 5. Upper row: Correlation functions for Pb+Au reactions at $\sqrt{s_{\text{NN}}}$ = 17.3 GeV for three centrality bins. The full line represents the flow contribution estimated via the ZYAM method [34]. The dashed and dotted lines indicated the statistical uncertainty of this contribution. Lower row: Conditional yields of the jet-pair distribution in three centrality bins, normalized to the number of triggers [11].

5 Baryon-meson ratios at high p_t

The mass hierarchy observed in the R_{CP} values at SPS might point to the fact that the quark coalescence approach, that has been proposed to explain the large baryon/meson ratios at intermediate p_t observed at RHIC [33], might also be valid at SPS energies. The upper panels of Fig. 6 show the p/π^+, \bar{p}/π^-, and Λ/K_0^* ratios as measured by NA49, together with the corresponding results from STAR [33] and PHENIX [34] at $\sqrt{s_{\text{NN}}}$ = 200 GeV. Generally, the higher net-baryon density at SPS energies manifests itself in the differences in the overall scale of the ratios. What is remarkable though is the fact that shape of the p_t-dependence is identical to the one observed at RHIC. The lower panels of Fig. 6 show the double ratios which do not exhibit a significant p_t-dependence. A similar observation has been made in the double ratios of R_{CP} by the NA57 collaboration [35]. This would indicate that a possible transition from a hydrodynamical hadronization picture to quark coalescence would happen in the same p_t-region at SPS and RHIC.

6 Summary

New data on high p_t hadron production at the CERN SPS were reviewed. The interpretation of the nucleus–nucleus high p_t data at the SPS generally suffers
Fig. 6. The baryon/meson ratios as measured by NA49 at $\sqrt{s_{NN}} = 17.3$ GeV [32], compared to results from RHIC at $\sqrt{s_{NN}} = 200$ GeV [33,34]. Please note the different scales of the plots.

from the lack of reliable p+p and p+A baseline measurements in the relevant p_t-range. This is particularly important here, since the spectral shape changes drastically with energy in the SPS region. Nevertheless, the general picture that emerges from the new data by NA45, NA49, and NA57, as well as from a reassessment of older data (WA98, NA45), is that also at SPS parton energy loss may be present. The R_{CP} values show no sign of Cronin enhancement but rather indicate that the Cronin effect is counterbalanced by jet quenching. Also, two-particle azimuthal correlations exhibit a qualitatively similar behaviour at SPS than at RHIC and might indicate a partonic interaction with the medium. The new SPS data on intermediate p_t baryon/meson ratios might help to understand the underlying hadronization mechanisms.

The author would like to thank the organisers of Hard Probes 2006 for the invitation to the conference. Also, valuable discussions with D. d’Enterria and M. Ploskoň are greatfully acknowledged.

References

[1] K. Adcox et al. [PHENIX collaboration], Phys. Rev. Lett. 88 (2002) 022301.
[2] C. Adler et al. [STAR collaboration], Phys. Rev. Lett. 89 (2002) 202301.
[3] M. Gyulassy, I. Vitev, X.-N. Wang, B.-W.-Zhang, in Quark Gluon Plasma 3, ed. R.C. Hwa et al., arXiv:nucl-th/0302077.
[4] U.W. Heinz and M. Jacob, arXiv:nucl-th/0002042.
[5] M.M. Aggarwal et al. [WA98 collaboration], Eur. Phys. J. C23 (2002) 225.
[6] D. d’Enterria, Phys. Lett. B596 (2004) 32.
[7] I. Vitev and M. Gyulassy, Phys. Rev. Lett. 89 (2002) 252301.
[8] G. Agakichiev et al. [NA45 collaboration], Phys. Rev. Lett. 92 (2004) 032301.
[9] A. László and T. Schuster [for the NA49 collaboration], Nucl. Phys. A774 (2006) 473.
[10] F. Antinori et al. [NA57 collaboration], Phys. Lett. B623 (2005) 17.
[11] M. Ploskoí [for the NA45/CERES collaboration], arXiv:nucl-ex/0511043 and these proceedings.
[12] C. Alt et al. [NA49 collaboration], Eur. Phys. J. C45 (2006) 343.
[13] S. Blattning et al., Phys. Rev. D62 (2000) 094030.
[14] E.W. Beier et al., Phys. Rev. D18 (1978) 2235.
[15] V.V. Abramov et al., Yad. Fiz. 41 (1985) 357.
[16] D. Antreasyan et al., Phys. Rev. D19 (1979) 764.
[17] L. Apanasevich et al. [E706 collaboration], Phys. Rev. D68 (2003) 052001, Phys. Rev. D72 (2005) 032003.
[18] S.S. Adler et al., Phys. Rev. Lett. 91 (2003) 072303.
[19] J. Adams et al., Phys. Lett. B616 (2005) 8.
[20] J.P. Wurm and J. Bielcikova [for the NA45/CERES collaboration], arXiv:nucl-ex/0407019.
[21] X.-N. Wang, Phys. Lett. B595 (2004) 165 and private communication.
[22] A. Dainese, C. Loizides, and G. Pai´c, Eur. Phys. J. C38 (2005) 461.
[23] L. Ruan et al. [for the STAR collaboration], J. Phys. G31 (2005) s1029.
[24] S.S. Adler et al. [PHENIX collaboration], Phys. Rev. C69 (2004) 034909.
[25] J. Adams et al. [STAR collaboration], Phys. Rev. Lett. 90 (2003) 082302.
[26] S.S. Adler et al. [PHENIX collaboration], Phys. Rev. C69 (2004) 034910.
[27] I. Arsene et al. [BRAHMS collaboration], arXiv:nucl-ex/0602018.
[28] I. Arsene et al. [BRAHMS collaboration], Phys. Rev. Lett. 91 (2003) 072305.
[29] B.B. Back et al. [PHOBOS collaboration], Phys. Rev. Lett 94 (2005) 082304.
[30] S.S. Adler et al. [PHENIX collaboration], Phys. Rev. C69 (2004) 034909.
[31] J. Adams et al. [STAR collaboration], Phys. Rev. Lett. 92 (2004) 052302.
[32] T. Schuster and A. László [for the NA49 collaboration], arXiv:nucl-ex/0606005.
[33] J. Adams et al. [STAR collaboration], arXiv:nucl-ex/0601042.
[34] S.S. Adler et al. [PHENIX collaboration], arXiv:nucl-ex/0507004.
[35] G.E. Bruno and A. Dainese [for the NA57 collaboration], arXiv:nucl-ex/0511020.