The Real-World status and risk factors for a poor prognosis in elderly patients with primary central nervous system malignant lymphomas: a multicenter, retrospective cohort study of the Tohoku Brain Tumor Study Group

Kenichiro Asano1,2, Yoji Yamashita2, Takahiro Ono3, Manabu Natsumeda4, Takaaki Beppu5, Kenichiro Matsuda6, Masahiro Ichikawa7, Masayuki Kanamori8, Masashi Matsuzaka9, Akira Kurose10, Kiyoshi Saito7, Yukihiko Sonoda6, Kuniaki Ogasawara5, Yukihiko Fujii4, Hiroaki Shimizu3, Hiroki Ohkuma1, Chifumi Kitakana11, Takamasa Kayama12, Teiji Tominaga8

Received: 14 April 2021 / Accepted: 29 September 2021 / Published online: 12 October 2021
© Japan Society of Clinical Oncology 2021

Abstract
Background Elderly patients with primary central nervous system malignant lymphoma (EL-PCNSL) may not be given sufficient treatment due to their poor pre-treatment Karnofsky Performance Status (KPS) and comorbidities. Therefore, a retrospective, cohort study was performed to evaluate risk factors associated with a poor prognosis of EL-PCNSL in the Tohoku Brain Tumor Study Group.

Methods Patients aged ≥ 71 years with PCNSL were enrolled from eight centers. Univariate analysis was performed with the log-rank test. A Cox proportional hazards model was used for multivariate analysis.

Results Three of the total 142 cases received best supportive care (BSC). Treatment was given to 30 cases without a pathological diagnosis, 3 cases with cerebrospinal fluid (CSF) cytology, and 100 cases with a pathological diagnosis. After confirmation of no differences in progression-free survival (PFS) and overall survival (OS) between the group treated without pathology and the groups diagnosed by pathology or CSF cytology and between median age ≥ 76 years and < 76 years, a total of 133 patients were studied. The median pre-treatment KPS was 50%. Median PFS and median OS were 16 and 24 months, respectively. Risk factors associated with poor prognosis on Cox proportional hazards model analysis were pre-treatment cardiovascular disease and central nervous system disease comorbidities, post-treatment pneumonia and other infections, and the absence of radiotherapy or chemotherapy.

Conclusions Pre-treatment comorbidities and post-treatment complications would affect the prognosis. Radiation and chemotherapy were found to be effective, but no conclusions could be drawn regarding the appropriate content of chemotherapy and whether additional radiotherapy should be used.

Keywords Elderly patient · PCNSL · Risk factor

Introduction
Primary central nervous system malignant lymphoma (PCNSL) is a rare disease, and usually more than half of the patients are over 60 years of age [1]; however, the percentage of PCNSL among all brain tumors has been increasing in recent years. In the Report of the Brain Tumor Registry of Japan, the percentage of all-age PCNSLs among all brain tumors increased from 3.2% in 2004 to 4.5% in 2008. The proportion of PCNSL occurring in patients aged 70 years or older (elderly patients with PCNSL (EL-PCNSL)) has also increased, from 28.1 to 35.9% [2, 3]. However, this applies not only to Japan, but also to other countries [2–4].

The Eastern Cooperative Oncology Group Performance Status (ECOG-PS) and Karnofsky Performance Status (KPS) before treatment are worse in EL-PCNSL than in younger patients, as reported by Zeremiski et al. [5], and more pre-treatment comorbidities have been
Table 1 Patients' clinical characteristics

Characteristic	Median (IQR), Range, N. (%)*
Age (y)	
Median	76 (73–80), 71–92
Sex	
Male	65 (48.9)
Female	68 (51.1)
Time until diagnosis (months)	
Median	1 (1–2), 0.5–12
Pre-treatment KPS (%)	
Median	50 (40–60), 30–90
Tumor location	
Cortical location	
Frontal	89 (66.9)
Temporal	43 (32.3)
Parietal	19 (14.3)
Occipital	10 (7.5)
Cerebellum	8 (6.0)
Deep location	
Corpus callosum	44 (33.1)
Basal ganglia	13 (9.8)
Thalamus	8 (6.0)
Corona radiata	9 (6.8)
Ventricle	5 (3.8)
Hypothalamus	4 (3.0)
Others	3 (2.3)
Maximum tumor diameter (mm)	
Median	36.3 (25.6–46.7), 3.5–75.3
Multicentric lesion	
No	66 (49.6)
Yes	67 (50.4)
Bilateral and unilateral disease	
Bilateral	20 (15.1)
Right	49 (36.8)
Left	64 (48.1)
Dissemination	
Yes	29 (21.8)
No	104 (78.2)
Pre-treatment comorbidity	
Hypertension	56 (26.3)
Diabetes Mellitus	17 (8.0)
Hyperlipidemia	13 (6.1)
Hyperuricemia	3 (1.4)
Systematic cancer	20 (9.4)
Cardiovascular disease	21 (9.9)
Central nervous system disease	24 (11.3)
Orthopedics disease	15 (7.0)
Gastric ulcer	5 (2.3)
Prostatic hypertrophy	5 (2.3)
Hearing disturbance	4 (1.9)
Respiratory disease	3 (1.4)
Others	27 (12.7)
Chemotherapy	

* N. (%) * refers to the number of patients and the percentage of the total.
79International Journal of Clinical Oncology (2022) 27:77–94

reported [6]. Therefore, it is expected that EL-PCNSL would show the same tendency in Japan, which may lead to unavoidable best supportive care (BSC), omitted biopsies, and unsatisfactory treatment due to various pre-treatment comorbidities. In addition, EL-PCNSL are rarely included in prospective clinical trials [7, 8] making it difficult to determine their actual treatment status precisely [5, 9].

Therefore, how many patients are actually diagnosed and treated is not known. To answer this question, the incidence, treatment, and final outcome of PCNSL in elderly patients in the Tohoku and Niigata regions in the Tohoku Brain Tumor Study Group were examined to identify factors associated with a poor prognosis, and the Real-World status of PCNSL in elderly patients was examined.
Materials and methods

A Real-World study of all patients with immunocompetent EL-PCNSL aged 71 years or older who were treated or not treated including BSC at 8 centers participating in the Tohoku Brain Tumor Study Group from January 2011 to the end of December 2018 was performed. Cases diagnosed as PCNSL without biopsy or resection, cases treated based on cerebrospinal fluid (CSF) cytology, and cases treated based on biopsy or resection were included. To exclude secondary malignant lymphoma, pre-treatment CT, MRI, perfusion MRI, 8F-fluorodeoxyglucose (FDG) positron emission tomography (PET), blood sampling, and whole-body CT were performed in patients treated with or without biopsy. In patients who were treated without biopsy or resection, the response rate on MRI after treatment, and the overall course of the disease were reviewed to exclude other possible enhancing malignant tumors, and it was confirmed that they did not deviate from the clinical characteristics of lymphoma. Finally, the patients were enrolled at the discretion of the attending physician [10, 11]. Patients who underwent biopsy or resection were diagnosed as having CD-20-positive PCNSL by central pathological diagnosis.

An Excel questionnaire was sent to each institution, and the survey was conducted by linkable anonymizing from each patient’s medical record and image server. The survey items included basic patient information, time from initial symptom to diagnosis, pre-treatment KPS, pre-treatment comorbidities, target lesion location, maximum tumor diameter, multiple lesions or no, presence of dissemination on MRI or clinical symptoms, surgery, radiotherapy (RT), dose and technique of RT, presence of chemotherapy and number of cycles, presence of new post-treatment complications, and best MRI response at the end of treatment (within 3 months). KPS at 3 months, progression-free survival (PFS), treatment at recurrence, overall survival (OS), and cause of death were also investigated.

The start date of treatment was defined as the start date of chemotherapy or RT. For patients who could not receive chemotherapy or radiation for various reasons after biopsy or resection, the date of surgery was defined as the date of treatment initiation. PFS was defined as the date of confirmation of tumor growth or until the date of death. OS was defined as the date of final confirmation of survival or until the date of death. The last follow-up was December 31, 2018. Tumor size was determined using the Macdonald Criteria [12], and the response rate was determined according to the International Primary CNS Lymphoma Collaborative Group (IPCNSLCG) [13]. For the determination of the MRI best response rate within 3 months after treatment, the complete response rate (CRR) was defined as CR + CRu/ CR + CRu + PR + SD + PD + NA (not determined). Pre-treatment comorbidity was defined as disease under treatment or follow-up at the time of initiation of treatment, and included previous treatment in the case of cancer.
Table 2 Univariate analysis of the no-surgery or biopsy group and the surgery or CSF cytology group

Characteristic	Surgery	Characteristic category	N. (%)	Median (IQR), Range	Method of statistical analysis	p value
Age (y)	No		30 (22.6)	78 (72.8–81.3), 71–92	Mann–Whitney U test	0.85
	Yes		103 (77.4)	75 (73–79), 71–88		
Sex	No	Male	15 (11.3)		Fisher's exact test	1.00
	Yes	Female	15 (11.3)			
			50 (37.6)			
		Female	53 (39.8)			
Time until diagnosis (months)	No		30 (22.6)	1.25 (1–2), 0.5–5	Mann–Whitney U test	0.28
	Yes		103 (77.4)	1 (1, 2), 0.5–12		
Pre-treatment KPS (%)	No		30 (22.6)	50 (30–62.5), 30–90	Mann–Whitney U test	0.05
	Yes		103 (77.4)	50 (40–60), 30–90		
Tumor location	No	Cortical location*	10 (7.5)		Fisher's exact test	0.001
		Deep location**	20 (15.0)			
	Yes	Cortical location	74 (55.6)			
		Deep location	29 (21.8)			
Maximum tumor diameter (mm)	No		30 (22.6)	30 (21.3–41.4), 11.2–73	Mann–Whitney U test	0.015
	Yes		103 (77.4)	38.4 (26.7–49.1), 3.5–75.3		
Multicentric lesion	No	No	12 (9.0)		Fisher's exact test	1.00
	Yes	No	12 (9.0)			
		Yes	54 (40.6)			
		Yes	55 (41.4)			
Bilateral disease	No	No	23 (17.3)		Fisher's exact test	0.16
	Yes	No	7 (5.3)			
		Yes	90 (67.7)			
		Yes	13 (9.8)			
Dissemination	No	No	15 (11.3)		Fisher's exact test	<0.001
	Yes	No	15 (11.3)			
		Yes	89 (66.9)			
		Yes	14 (10.5)			
Pre-treatment comorbidity	No	No	3 (2.3)		Fisher's exact test	1.00
	Yes	No	27 (20.3)			
		Yes	12 (9.0)			
		Yes	91 (68.4)			
Chemotherapy (CT)	No	No	6 (4.5)		Fisher's exact test	0.36
	Yes	No	24 (18.0)			
		Yes	30 (22.6)			
		Yes	73 (54.9)			
Radiotherapy (RT)	No	No	4 (3.0)		Fisher's exact test	0.60
	Yes	No	26 (19.5)			
		Yes	19 (14.3)			
		Yes	84 (63.2)			
Pattern of treatment combination	No	CT or RT or Nothing	10 (7.5)		Fisher's exact test	0.40
		Combination(CT + RT)	20 (15.0)			
	Yes	CT or RT or Nothing	45 (33.8)			
		Combination(CT + RT)	58 (43.6)			
Complete response rate of CR and CRu	No	CR + CRu	20 (15.0)		Fisher's exact test	1.00
after treatment (operation) within 3		PR + SD + PD + NE	10 (7.5)			
months	Yes	CR + CRu	67 (50.4)			
		PR + SD + PD + NE	36 (27.1)			
In the statistical analysis, Mann–Whitney’s U test, Fisher’s exact test, and the chi-squared test were used for comparisons between groups. For pre-treatment comorbidities and new post-treatment complications, only items with more than 10 comorbidities and complications were subjected to statistical analysis. Univariate analysis was performed by the log-rank test using the Kaplan–Meier method. A Cox proportional hazards model was used for multivariate analysis of risk factors. The entire statistical analysis was performed on a Mac OSX 10.15.7 operating system, using the JMP®14 (SAS Institute, Cary, NC, USA) statistical software.

Results

Patients’ background characteristics

A total of 142 patients were enrolled. Of these, two patients were excluded due to secondary central nervous system lymphoma. There were 3 cases of BSC without aggressive treatment based on imaging diagnosis alone. Thirty-one patients were treated with radiation or chemotherapy without surgery. Of these, 1 case was excluded due to difficulty in MRI follow-up, and only 3 cases were treated as PCNSL based on imaging diagnosis, cytological diagnosis by lumbar puncture, and abnormally high levels of IL-2R in CSF. A total of 103 patients underwent surgical removal or biopsy for tissue confirmation, and they were treated at each institution. These specimens were reviewed, but two cases had very little tumor cell component and could not be diagnosed by central pathological review, and one case had no tumor cell component and could not be diagnosed. All of the 100 cases with tissue confirmation were CD-20-positive, diffuse large B cell malignant lymphoma (DLBCL). A total of 133 cases, including 30 cases without tissue confirmation, 3 cases diagnosed by CSF examination, and 100 cases with tissue confirmation, were examined (Table 1 and Fig. 1).

Table 2 shows the results for the no-surgery or biopsy group and the surgery or CSF cytology group. There was no significant difference between the two groups. However, the no-surgery and biopsy group had significantly more patients with a small tumor, CSF seeding, or a deep tumor (corpus callosum, basal ganglia, thalamus, corona radiata, ventricle, hypothalamus, and others). The median (m)PFS of the no-surgery and biopsy group and the surgery or CSF cytology group was 16 months (95% CI, 11–21 months) and 15 months (95% CI 11–21 months), respectively, with no significant difference ($p = 0.79$). The median (m)OS was 27 months (95% CI 12–52 months) and 21 months (95% CI 15–32 months), respectively, with no significant difference ($p = 0.91$) between the two groups (Fig. 2a, b).

Table 3 shows the comparison between the age groups using a cut-off of the median age of 76 years. There was no significant difference in mPFS between patients aged 76 years or older and patients younger than 76 years, except for the significant difference in bilateral disease in patients younger than 76 years; mPFS for patients aged...
76 years or older and for those younger than 76 years was 16 months (95% CI 11–21 months) and 15 months (95% CI 11–21 months), respectively, with no significant difference ($p = 0.56$); mOS was 24 months (95% CI 12–30 months) and 21 months (95% CI 15–35 months; $p = 0.92$), respectively, with no significant difference between the two groups (Fig. 2c, d).

After these investigations, it was determined that there was little variation between the groups and ages, and a total of 133 patients were studied (Fig. 1). The characteristics of the 133 cases (65 males and 68 females; median age 76 years) are shown in Table 4. The pre-treatment KPS ranged from 30 to 90% (median 50%). As initial treatment, 110 patients (82.7%) received RT, and 97 patients (72.9%) received chemotherapy. RT alone was used in 32 patients (24.1%), with high-dose methotrexate (HD-MTX) + RT in 59 patients (44.4%), R-MPV (rituximab, MTX, procarbazine, and vincristine) (including MPV or R-MPV-A (rituximab, MTX, procarbazine, vincristine, and Ara-C)) + RT

Fig. 2 Kaplan–Meier survival curves of progression-free survival (PFS) and overall survival (OS). a Kaplan–Meier survival curves of PFS comparing the no-surgery or biopsy group (gray line) and the surgery or CSF cytology group (black line). The median (m)PFS of the no-surgery and biopsy group and that of the surgery or CSF cytology group are not significantly different ($p = 0.79$). b Kaplan–Meier survival curves of OS comparing the no-surgery or biopsy group (gray line) and the surgery or CSF cytology group (black line). The mOS of the no-surgery and biopsy group and that of the surgery or CSF cytology group are not significantly different ($p = 0.91$). c Kaplan–Meier survival curves of PFS comparing the younger than 76 years group (gray line) and the group aged 76 years or older (black line). mPFS of the younger than 76 years group (gray line) and that of the group aged 76 years or older (black line) are not significantly different ($p = 0.56$). d Kaplan–Meier survival curves of OS comparing the younger than 76 years group (gray line) and the group aged 76 years or older (black line). mOS of the younger than 76 years group (gray line) and that of the group aged 76 years or older (black line) are not significantly different ($p = 0.92$)
Table 3 Univariate analysis by age group

Characteristic	Age (y)	Characteristic category	N. (%)	Median (IQR), Range	Method of statistical analysis	p value
Age (y)	≥ 76		71 (53.4)	80 (77–83), 76–92	Mann–Whitney U test	< 0.001
	< 76		62 (46.6)	73 (72–74), 71–75		
Sex	≥ 76	Male	31 (23.3)		Fisher’s exact test	0.86
		Female	31 (23.3)			
	≥ 76	Male	34 (25.6)			
		Female	37 (27.8)			
Time until diagnosis (months)	≥ 76		71 (53.4)	1 (1–2), 0.5–8	Mann–Whitney U test	0.42
	< 76		62 (46.6)	1 (0.875, 2), 0.5–12		
Pre-treatment KPS (%)	≥ 76		71 (53.4)	50 (40–60), 30–90	Mann–Whitney U test	0.35
	< 76		62 (46.6)	50 (40, 70), 30–90		
Tumor location	≥ 76	Cortical location*	44 (33.1)		Fisher’s exact test	0.86
		Deep location**	27 (20.3)			
	< 76	Cortical location	40 (30.0)			
		Deep location	22 (16.5)			
Maximum tumor diameter (mm)	≥ 76		71 (53.4)	32.5 (25–44), 13.6–69.8	Mann–Whitney U test	0.13
	< 76		62 (46.6)	40.0 (27–50), 3.5–75.3		
Multicentric lesion	≥ 76	No	41 (30.8)		Fisher’s exact test	0.06
		Yes	30 (22.6)			
	< 76	No	25 (18.8)		Fisher’s exact test	0.029
		Yes	37 (27.8)			
Bilateral disease	≥ 76	No	65 (48.9)		Fisher’s exact test	1.00
		Yes	6 (4.5)			
	< 76	No	48 (36.1)			
		Yes	14 (10.5)			
Dissemination	≥ 76	No	56 (42.1)		Fisher’s exact test	1.00
		Yes	15 (11.3)			
	< 76	No	48 (36.1)		Fisher’s exact test	0.08
		Yes	14 (10.5)			
Pre-treatment comorbidty	≥ 76	No	43 (32.3)		Fisher’s exact test	1.00
		Yes	28 (21.1)			
	< 76	No	37 (27.8)		Fisher’s exact test	1.00
		Yes	25 (18.8)			
Chemotherapy (CT)	≥ 76	No	24 (18.0)		Fisher’s exact test	0.08
		Yes	47 (35.3)			
	< 76	No	12 (9.0)		Fisher’s exact test	1.00
		Yes	50 (37.6)			
Radiotherapy (RT)	≥ 76	No	12 (9.0)		Fisher’s exact test	1.00
		Yes	59 (44.4)			
	< 76	No	11 (8.3)		Fisher’s exact test	1.00
		Yes	51 (38.3)			
Pattern of treatment combination	≥ 76	CT or RT or Nothing	34 (25.6)		Fisher’s exact test	0.12
		Combination(CT + RT)	37 (27.8)			
	< 76	CT or RT or Nothing	21 (15.8)		Fisher’s exact test	0.15
		Combination(CT + RT)	41 (30.8)			
Complete response rate of CR and CRu after treatment (operation) within 3 months	≥ 76	CR + CRu	41 (30.8)		Fisher’s exact test	0.15
		PR + SD + PD + NE	30 (22.6)			
	< 76	CR + CRu	44 (33.1)			
		PR + SD + PD + NE	18 (13.5)			
in 14 patients (10.5%); chemotherapy alone was used in only 14 patients (10.5%), and R-MPV (including MPV or R-MPV-A) was used in four patients (3.6%). In addition, four patients (3.0%) who were dropout cases in the early treatment phase failed to receive treatment in the initial phase (details below).

There were 61 cases of relapse during the follow-up period. Of these, 32 (52.5%) were given BSC as second-line therapy, accounting for about half of the cases. Salvage RT was added in 8 cases (13.1%), salvage RT and chemotherapy were added in 8 cases (13.1%), and salvage chemotherapy alone was added in 13 cases (21.3%). The final outcome at the end of follow-up was survival in 39 patients (29.3%) and death in 76 patients (57.1%), and no outcome information was available in 18 patients (13.5%) (Table 1).

Treatment and response rate

The overall mPFS was 16 months (95% CI 12–20 months) and mOS was 24 months (95% CI 16–30 months), despite the variety of treatments, RT, chemotherapy, and number of cycles. In addition, there was a significant difference in mOS between the 32 patients treated with RT alone and the 59 patients treated with HD-MTX + RT (12 months and 32 months, respectively; \(p < 0.001\)). A comparison of 32 patients in the RT alone group and 14 patients in the R-MPV + RT (including MPV or R-MPV-A) group also showed a significant difference (\(p = 0.036\)), although the R-MPV group had not yet reached mOS. There was no significant difference between the HD-MTX + RT treatment group and the R-MPV + RT (or MPV or R-MPV-A) group (\(p = 0.79\)). R-MPV or R-MPV therapy is a recently introduced therapy, with a maximum follow-up of 48 months.

The best response within the first 3 months of treatment was interpreted as CR in 35 (26.3%), CRu in 52 (39.1%), PR in 40 (30.1%), SD in 0 (0.0%), and PD in 3 (2.3%) cases. Thus, the CRR was 65.4% (87/133 cases) (Table 4 and Fig. 3).

Pre-treatment comorbidities

There were 117 patients (88.0%) with pre-treatment comorbidities and 16 patients (12.0%) with no comorbidities. The total number of comorbidities was 213, or 1.8 comorbidities per patient. The most common pre-treatment comorbidity was hypertension, with 56 cases (26.3%). This was followed by central nervous system diseases such as post-stroke syndrome and dementia, with 24 cases (11.3%). Cardiovascular diseases such as arrhythmia, heart failure, angina pectoris, and myocardial infarction accounted for 21 cases (9.9%), comorbidities of systemic cancer other than brain tumor accounted for 20 cases (9.4%), and diabetes mellitus accounted for 17 cases (8.0%) (Tables 1 and 4).

Surgical complications within 1 month postoperatively and early treatment dropouts within 3 months

There were a total of 10 surgical complications within 1 month after surgery (9.7% of surgical cases). These
included 2 cases of postoperative bleeding, 3 cases of deep vein thrombosis (DVT), 2 cases of pneumonia (1 case of Pneumocystis carinii pneumonia), and 1 case each of spontaneous pneumothorax, upper gastrointestinal bleeding, and urinary tract infection. A total of 15 (11.3%) patients dropped out within 3 months after the start of treatment, including those with complications from the above surgery, all of which occurred within 2 months. The breakdown was as follows: four patients died of complications including operation-related complications (26.7%), four patients died of tumors (26.7%), one patient refused treatment (6.7%), and six patients were lost to follow-up due to hospital transfer (40.0%). The breakdown of the four deaths due to complications was: one patient died of Pneumocystis carinii pneumonia, one patient died of pulmonary embolism (PE) due to upper gastrointestinal bleeding and deep venous thrombosis (DVT), one patient died of myelosuppression, cholecystitis, and pseudodenteritis, and one patient died of postoperative biopsy hemorrhage.

Post-treatment complications and causes of death

Tables 1 and 4 show the post-treatment complications (complications during the course of treatment), including the above early dropout cases. Fifty-four patients (40.6%) had some complications during the course of treatment, and 79 patients (59.4%) had no complications. The total number of complications was 84 in 54 patients, or a rate of 1.6 per patient. The most common complication was pneumonia and other infections in 28 patients (33.3%), followed by DVT, PE, and cardiac disease in 12 patients (14.3%), and renal dysfunction including delayed MTX excretion in 11 patients (13.1%). There were two cases of postoperative hemorrhage, including the above-mentioned fatal case.

The number of deaths at the last follow-up was 76 (57.1%), of which 38 (50.0%) were apparent tumor deaths, 33 (43.4%) were complication deaths, and 5 (6.6%) were deaths of unknown cause, accounting for about half of the deaths and about one-quarter of the total population. The breakdown of deaths due to complications was pneumonia and other infections in 15 patients (45.5%), accounting for about half of the deaths due to complications.

Risk factors associated with a poor prognosis

Univariate analysis

Significant differences in mPFS and mOS were observed for cardiovascular disease (PFS: +8 months vs −18 months, \(p=0.004\); OS: +11 months vs. 27 months, \(p=0.001\)), central nervous system disease (PFS: +6 months vs −18 months, \(p=0.033\); OS: +9 months vs. −26 months, \(p=0.038\)), post-treatment KPS (PFS: <60 11 months vs ≥ 60 19 months, \(p=0.005\); OS: <60% 12 months vs. ≥60% 34 months, \(p<0.001\)), presence of chemotherapy (PFS: +7 months vs −19 months, \(p<0.001\); OS: +30 months vs. −12 months, \(p<0.001\)), presence of radiotherapy (PFS: +7 months vs −16 months, \(p=0.029\); OS: +25 months vs. −9 months, \(p=0.045\)), best response of CRR within 3 months (PFS: CRR 20 months vs non-CRR 9 months, \(p=0.032\); OS: CRR 30 months vs non-CRR 12 months, \(p=0.013\)), post-treatment pneumonia and other infections (PFS: +11 months vs −19 months, \(p=0.003\); OS: +16 months vs. 27 months, \(p<0.001\)).
Characteristic	N. (%)	Median PFS (95%CI)	p value (log-rank test)	Median OS (95%CI)	p value (log-rank test)
Age (y)					
≥ 76	71(53.4)	16 (11–21)	0.56	24 (12–30)	0.68
< 76	62(44.6)	15 (11–21)	0.61	21 (16–37)	0.09
Sex					
Male	65 (48.9)	19 (12–21)	0.61	21 (15–27)	0.09
Female	68 (51.1)	13 (9–21)	21 (15–27)	31 (15–41)	
Time until diagnosis (months)					
≥ 1	24 (18.0)	21 (6–28)	0.80	26 (16–32)	0.90
< 1	109 (82.0)	16 (12–20)	0.80	21 (11–31)	
Pre-treatment KPS (%)					
≥ 50	86 (64.7)	16 (12–22)	0.50	25 (16–34)	0.54
< 50	47 (35.3)	13 (8–21)	21 (12–31)		
Maximum tumor diameter (mm)					
≥ 36.3	67 (50.4)	15 (12–23)	0.25	24 (15–41)	0.27
< 36.3	66 (49.6)	16 (9–21)	24 (12–30)		
Multicentric lesion					
No	66 (49.6)	19 (11–22)	0.61	25 (16–34)	0.58
Yes	67 (50.4)	14 (9–20)	21 (12–30)		
Dissemination					
Yes	29 (21.8)	13 (11–20)	0.39	17 (11–30)	0.15
No	104 (78.2)	18 (11–21)	26 (16–34)		
Pre-treatment comorbidity*					
Hypertension (+)	56 (42.1)	15 (11–23)	0.41	21 (12–30)	0.27
Hypertension (−)	77 (57.9)	16 (11–21)	26 (16–37)		
Diabetes Mellitus (+)	17 (12.8)	12 (3–31)	0.42	24 (16–30)	0.53
Diabetes Mellitus (−)	116 (87.2)	16 (12–20)	28 (8–37)		
Hyperlipidemia (+)	13 (9.8)	16 (5–.)	0.91	36 (6–.)	0.54
Hyperlipidemia (−)	120 (90.2)	16 (12–20)	24 (16–30)		
Systematic cancer (+)	20 (15.0)	19 (7–28)	0.83	24 (9–71)	0.99
Systematic cancer (−)	113 (85.0)	15 (12–20)	24 (16–31)		
Cardiovascular disease (+)	21 (15.8)	8 (2–13)	0.004	11 (6–16)	0.001
Cardiovascular disease (−)	112 (84.2)	18 (12–21)	27 (21–34)		
Central nervous system disease (+)	24 (18.0)	6 (3–15)	0.033	9 (5–.)	0.038
Central nervous system disease (−)	109 (82.0)	18 (13–21)	26 (19–32)		
Orthopedics disease (+)	15 (11.3)	20 (5–23)	0.93	31 (15–37)	0.71
Orthopedics disease (−)	118 (88.7)	15 (11–19)	21 (15–30)		
Chemotherapy					
No	36 (27.1)	7 (4–13)	<0.001	12 (8–24)	<0.001
Yes	97 (72.9)	19 (15–31)	30 (21–52)		
Radiotherapy					
No	23 (17.3)	7 (2–48)	0.029	9 (2–36)	0.045
Yes	110 (82.7)	16 (13–21)	25 (19–31)		
Pattern of treatment combination					
RT only	32 (24.1)	7 (5–14)	<0.001	12 (8–24)	<0.001
HD-MTX + RT	59 (44.4)	26 (18–36)	32 (21–)		
R-MVP(or MPV or R-MPV-A)+ RT	14 (10.5)	15 (5–.)	,5–.)	,6–.)	
CHOP + RT	5 (3.8)	–	–	–	
HD-MTX	14 (10.5)	–	–	–	
and post-treatment DVT, PE, and cardiac complications (PFS: +8 months vs −16 months, \(p = 0.001 \); OS: +11.5 months vs 26 months, \(p = 0.001 \)) (Table 4 and Fig. 4).

Cox proportional hazards model

Multivariate analysis was performed using a Cox proportional hazards model for PFS. The results showed that there were significant associations with age (HR 1.993; 95% CI 1.1186–3.358; \(p = 0.009 \)), pre-treatment cardiovascular disease (HR 3.008; 95% CI 1.508–5.803; \(p = 0.002 \)), pre-treatment central nervous system disease (HR 2.686; 95% CI 1.318–5.233; \(p = 0.007 \)), radiotherapy (−/+ HR 3.064; 95% CI 1.573–5.965; \(p = 0.001 \)), chemotherapy (−/+ HR 4.615; 95% CI 2.563–8.274; \(p < 0.001 \)), best response rate of CRR within 3 months (HR 1.863; 95% CI 1.090–3.137; \(p = 0.023 \)), and post-treatment pneumonia and other infections (HR 2.936; 95% CI 1.586–5.352; \(p < 0.001 \)). Multivariate analysis was performed using a Cox proportional hazards model for OS. The results showed that there were significant associations of OS with pre-treatment cardiovascular disease (HR 3.432; 95% CI 1.612–7.065; \(p = 0.002 \)), pre-treatment central nervous system disease (HR 2.869; 95% CI 1.280–6.126; \(p = 0.012 \)), radiotherapy (−/+ HR 3.536; 95% CI 1.748–6.854; \(p = 0.001 \)), chemotherapy (−/+ HR 3.733; 95% CI 1.994–6.959; \(p < 0.001 \)), and post-treatment pneumonia and other infections (HR 3.505; 95% CI 1.827–6.665; \(p < 0.001 \)); these were all determined to be independent prognostic factors (Table 5).

Discussion

The increase in the number of elderly patients with malignant lymphoma with a high rate of pre-treatment comorbidities and treatment-related complications is a common problem worldwide [6]. In the case of patients...
aged 70 years or older, PFS was 16.1 months in the elderly group compared to 35 months in the young group, even in CR cases, and there are reports that salvage therapy at the time of recurrence, including chemotherapy, was not performed [14], indicating that patients may not be treated satisfactorily. Previously, there was no definition of elderly and younger age groups using a cut-off value [15]. There are many reports that elderly patients have a worse prognosis, but the cut-off age ranged from 60 to 80 years [16–19], and a systematic review defined it as 75 years [20]. However, few cohorts have been directly compared. Zeremski et al. [5] retrospectively compared 20 consecutive cases in German Primary Central Nervous System Lymphoma Study Group-1 (G-PCNSL-SG-1). A comparative study was conducted between the HD-MTX basic therapy with whole-brain irradiation group as initial treatment and the irradiation avoidance group in which whole-brain irradiation was replaced with HD-AraC therapy, with 66 consecutive cases in the ‘real-life group’ treated otherwise. The median age was 62 and 70 years, with the real-life group being older, median KPS was 80% vs 70%, which also shows the poor condition of the real-life group, mOS was 33.4 months and 9.3 months, and mPFS was 24.8 months and 3.4 months, indicating that the elderly population was clearly in worse condition. Thus, there are very few studies of EL-PCNSL that are based on actual clinical practice, and in fact, there are probably quite a few cases that are not treated BSC cases. In the present study, only 3 of 142 enrolled patients had BSC, and it was shown that EL-PCNSL was treated fairly actively. Compared with the ‘real-life group’ of Zeremski et al. [5], the present cases had a higher median age of 76 years (vs. 70 years) and a lower pre-treatment KPS of 50% (vs. 70%). However, the treatment outcome was good, with PFS of 16 months (vs 3.4 months) and OS of 24 months (vs 9.3 months). The results of the present study are highly reliable because they are based on Real-World data collected from all patients in a regional center hospital, and one can assume that the data are almost complete.

In addition, although some cases of PCNSL are difficult to image, Japanese patients usually have non-germinal center type DLBCL (non-GCB) [21], and if PCNSL is immunocompetent, specific imaging findings such as CT, MRI, and FDG-PET, as well as clinical and spinal fluid examination findings, can be evaluated [22]. The risk of postoperative hemorrhage is also observed in a certain percentage of biopsy procedures [23]. In fact, in the present study, two cases of postoperative hemorrhage were observed, and one was a case of early death and dropout. Therefore, before treatment, the patient should be checked by CSF cytology if possible, whole-body

Table 5 Cox proportional hazard model of factors associated with progression-free survival and overall survival

Characteristic	Progression-free survival	Overall survival				
	p value	Hazard ratio	95% CI	p value	Hazard ratio	95% CI
Age (≥76/<76 y)	0.009	1.993	1.186–3.358	0.06	1.739	0.994–3.046
Sex (male/female)	0.95	1.015	0.629–1.650	0.20	1.434	0.824–2.488
Pre-treatment KPS (<50/≥50%)	0.16	1.488	0.859–2.635	0.33	1.337	0.749–2.436
Pre-treatment comorbidity						
HT (+)	0.85	1.059	0.573–1.913	0.93	1.030	0.507–2.008
DM (+)	0.91	1.046	0.445–2.314	0.43	0.701	0.276–1.688
HL (+)	0.46	1.412	0.539–3.280	0.72	1.212	0.393–3.270
Systemic cancer (+)	0.38	0.742	0.360–1.426	0.44	0.753	0.349–1.507
Cardiovascular disease (+)	0.002	3.008	1.508–5.803	0.002	3.432	1.612–7.065
Central nervous system disease (+)	0.007	2.686	1.318–5.233	0.012	2.869	1.280–6.126
Chemotherapy (−/+)	<0.001	4.615	2.563–8.274	<0.001	3.733	1.994–6.959
Radiotherapy (−/+)	0.001	3.064	1.573–5.965	0.001	3.536	1.748–6.854
Post-treatment CRR (−/+)	0.023	1.863	1.090–3.137	0.08	1.677	0.949–2.922
Post-treatment KPS (<60/≥60%)	0.82	1.066	0.624–1.812	0.32	1.352	0.749–2.439
Post-treatment complications						
Pneumonia and other infections (+)	<0.001	2.936	1.586–5.352	<0.001	3.505	1.827–6.665
Cardiovascular complications (+)	0.55	1.260	0.578–2.593	0.43	1.380	0.609–2.948
Renal dysfunction (+)	0.47	1.525	0.447–4.321	0.08	3.091	0.884–9.123

CI confidence interval, KPS Karnofsky Performance Status, HT hypertension, DM diabetes mellitus, HL hyperlipidemia, CRR complete response rate (CR+CRu/CR+CRu+PR+SD+PD+NA), CR complete response, CRu CR/unconfirmed, PR Partial response, SD Stable disease, PD progressive disease, NE not evaluable, DVT deep venous thrombosis, PE pulmonary embolism.
FDG-PET CT, enhanced dynamic susceptibility weighted magnetic resonance (DSC-MR) perfusion imaging MRI, testicular ultrasound if possible, liquid biopsy for MYD88 mutation, and so on [10, 11, 24–27]. A liquid biopsy for MYD88 mutation to differentiate from glioblastoma or metastatic brain tumor, followed by a skip biopsy, may be one option for EL-PCNSL. In view of the potential complications of biopsy and the time required for diagnosis, the usefulness of liquid biopsy is also important [24, 27]. Although biopsy is the gold standard, it is useful to note that there were 30/142 (21.1%) such cases. In fact, in the comparison of differences between the biopsy group and the non-biopsy group, most of the patients with small deep dissemination were in the non-biopsy group, which clearly shows selection bias (Table 2). However, there was no significant difference in PFS or OS between the biopsy and non-biopsy groups (Fig. 2a, b). In fact, the Japanese Brain Tumor Society guidelines (JSNO) also mention that surgery is difficult for elderly and at-risk patients, which might be the Real-World situation in Japan [28]. In addition, the percentage of bilateral disease was higher in younger patients and lower in elderly patients when comparing patients aged 76 years or older and those younger (Table 3). One possible reason for this is that if PCNSL is generally divided into germinal center type (GCB) and non-GCB, GCB is more common in the middle line, whereas non-GCB is more likely to occur laterally [29]. Hans et al. reported that there is no difference between GCB and non-GCB depending on age [30], but there are many differences between GCB and non-GCB depending on race, with Japanese and other Asian people having more non-CGB [21] and non-GCB being more common in older age groups [31, 32]. Therefore, it is possible that bilateral disease is more common in patients under 76 years of age because of the high incidence of middle line disease, and less common in the elderly. In addition, although there were no significant differences in PFS and OS, elderly patients over 76 years of age tended not to receive chemotherapy (Tables 3 and 4). This includes old cases from around 2011, when MTX-based chemotherapy with high nephrotoxicity was avoided in the elderly and RT was used instead. As a result, no significant differences in PFS and OS were observed. In the present study as well, treatment mainly by HD-MTX has been performed for the past 10 years, but it is thought that treatment has been performed for each case according to the patient’s condition, and the number of treatment cycles and radiation methods varied. Under such circumstances, on both univariate and multivariate analyses of the presence or absence of RT and the presence or absence of chemotherapy, the prognosis of patients treated with RT and chemotherapy was significantly different from that of those treated without RT and chemotherapy. These results are noteworthy. The disadvantages of HD-MTX-based chemotherapy for EL-PCNSL are low rates of CR and PR and the short mPFS and mOS. A sub-analysis of the elderly patients in the G-PCMD-SG-1 trial also showed that the CR + PR rate was 44%, mPFS 4.0 was months, and mOS was 12.5 months, which was significantly worse than in the younger patients [14]. Furthermore, in the present study, 3 months CRR was 65.4% (87/133). Therefore, since Morris et al. [33] reported R-MPV therapy in 2013, R-MPV therapy has been introduced, but not all centers are on the same start, and the maximum follow-up period is 48 months, so the comparison with HD-MTX is short. In fact, this is the limitation of a retrospective study (Fig. 3).

Some reports have shown that pre-treatment low PS or KPS is associated with a poor prognosis in EL-PCNSL [16, 18–20, 34]. The report by Kasenda et al. [20] showing that pre-operative KPS ≥ 70% is the strongest prognostic factor for mortality in their large systematic review of 783 elderly PCNSL is particularly compelling. In the present cases, however, univariate analysis showed that pre-treatment KPS was irrelevant, but that there was a significant difference in KPS improvement after treatment. The reason for this might be that KPS would improve and the prognosis would improve if a therapeutic response were seen by aggressive intervention for EL-PCNSL patients. However, we believe that the cause of it not being identified as related to prognosis in the Cox proportional hazards model is stronger factor of systemic pre-treatment comorbidities and after treatment complications. In the analysis of factors associated with a poor prognosis, the results for OS were close to those for PFS, which may be attributed to the fact that 52.5% of patients (about half) received BSC as second-line treatment after relapse (Tables 4 and 5, Fig. 3). The significance of this suggestion that
pre-treatment comorbidities, especially cardiac and central nervous system comorbidities, and post-treatment new infectious complications affect prognosis is great, and this is a point of focus that has not received much attention. In other words, if we pay attention to patients with pre-treatment comorbidities, minimize new post-treatment complications, and aggressively intervene in the treatment of patients with low PS, long-term survival could be expected even in EL-PCNSL patients.

This study has several inherent limitations, which has potential implications for its interpretation. First, this was a retrospective study, the data were provided by eight centers, and all patients with low KPS and various comorbidities were included. In addition, because the data were obtained from various centers, the treatment strategy was not uniform, and the overall PFS and OS may be biased. Second, it is difficult to make comparisons according to the type of chemotherapy because of the variety of treatments. Similarly, it is difficult to compare treatment outcomes due to the variety of radiotherapy techniques. Third, non-surgical cases were also included. Before and after treatment, fairly strict patient selection criteria were required, and the final decision was made by the attending physician. Although the possibility of misdiagnosis seems small, it cannot be ruled out that cases with misdiagnosis may be included. Fourth, the no-surgery cases showed selection bias for small, deep-seated, and disseminated tumors. Fifth, 6 (40%) of the patients who dropped out of treatment within 3 months included patients who were missing, which is a slightly high percentage and may potentially affect PFS and OS. Therefore, prospective studies with appropriately designed allocation factors including all elderly patients and patients with low PS are needed in the future. Sub-analyses of biological factors, MRI, cognitive function, and changes in PS are also necessary.

In conclusion, we have presented the Real-World status of EL-PCNSL. Patients were treated actively even at an advanced age, but further prospective studies are needed to determine the appropriate treatment. Factors associated with a poor prognosis included lack of radiation or chemotherapy, pre-treatment cardiovascular complications, history of brain disease, and new post-treatment infections.

Acknowledgements The authors would like to express their appreciation to all those who contributed to this study. Yuichi Sato MD, PhD (Department of Neurosurgery, Iwate Medical University), Masazumi Fujii MD, PhD (Department of Neurosurgery, Fukushima Medical University), Yoshihiro Kameoka MD, PhD, (Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine), all the doctors at all the institutions and the members of the Tohoku Brain Tumor Study Group, and all the staff of the Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine.

Author contributions KA and HO contributed to the concept and design of the study. KA and MM contributed to the acquisition and analysis of the data. AK contributed to central pathological diagnosis. All authors contributed to drafting the text and preparing the figure. KA, YY, TO, MN, TB, KM, MI, and MK contributed to acquisition of the data in individual institutions. KS, YS, KO, YF, HS, HO, and TT contributed to supervision in individual institutions. YS, CK, TK, and TT contributed to supervision and advising on the whole project.

Funding This study did not receive any funding.

Availability of data and material The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability Not applicable.

Declarations
Conflict of interest M. Natsumeda has received honoraria from Novo-cure; Y. Sonoda has received honoraria from Eisai, Dai-ichi Sankyo, and Chugai and research grants from Astellas, Eisai, Otsuka, Dai-ichi Sankyo, Chugai, Tsumura, Bayer, Pfizer, Fuji-film, and HOYA PEN-TAX; K. Asano, Y. Yamashita, T. Ono, T. Beppu, K. Matsuda, M. Ichikawa, M. Kanamori, M. Matsuura, A. Kurose, K. Saito, K. Ogasawara, Y. Fujii, H. Shimizu, H. Okhuma, C. Kitamura, T. Kayama, and T. Tominaga have no conflict of interest to declare.

Ethical approval This study was conducted with the approval of the ethics committees of Hirosaki University Graduate School of Medicine (2018-118) and individual institutions. In addition, since this was a retrospective study, notifications to patients to opt-out were given on the homepage of each hospital.

Consent to participate The institutional review board waived the requirement for informed consent, owing to the retrospective nature of the study. However, the details of the study are posted on the hospital’s homepage (http://www.med.hirosaki-u.ac.jp/~neuros/).

Consent for publication Not applicable.

References
1. Daras M, DeAngelis LM (2013) Management of elderly patients with primary central nervous system lymphoma. Curr Neurol Neurosci Rep 13(5):344. https://doi.org/10.1007/s11910-013-0344-5
2. Shibui S (2014) Report of brain tumor registry of Japan (2001–2005). Neurol Med Chir 54:10–102, 13th edn
3. Narita Y (2017) Report of brain tumor registry of Japan (2005–2008). Neurol Med Chir 57:9–102, 14th edn
4. Villano JL, Kosh Y, Shaikh H et al (2011) Age, gender, and racial differences in incidence and survival in primary CNS lymphoma. Br J Cancer 105(9):1414–1418. https://doi.org/10.1038/bjc.2011.357
5. Mendez JS, Ostrom QT, Gittleman H et al (2018) The elderly left behind-changes in survival trends of primary central nervous system lymphoma over the past 4 decades. Neuro Oncol 20(5):687–694. https://doi.org/10.1093/neuonc/nox187
6. Ostrom QT, Gittleman H, Xu J et al (2016) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro Oncol 18(Suppl_5):v1–v75. https://doi.org/10.1093/neuonc/now207
7. Zeremski V, Koehler M, Fischer T et al (2016) Characteristics and outcome of patients with primary CNS lymphoma in a “real-life” setting compared to a clinical trial. Ann Hematol 95(5):793–799. https://doi.org/10.1007/s00277-016-2602-5
8. Siegel T, Bairey O (2019) Primary CNS lymphoma in the elderly: the challenge. Acta Haematol 141(3):138–145. https://doi.org/10.1159/000495284
9. Ferreri AJ, Cywnarski K, Pulczynski E et al (2016) Chemoinmunotherapy with methotrexate, cytarabine, thiopeta, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial. Lancet Haematol 3(5):e217–227. https://doi.org/10.1016/s2355-3026(16)00036-3
10. Schorb E, Finke J, Ferreri AJ et al (2016) High-dose chemotherapy and autologous stem cell transplant compared with conventional chemotherapy for consolidation in newly diagnosed primary CNS lymphoma—a randomized phase III trial (MATRix). BMC Cancer 16:282. https://doi.org/10.1186/s12885-016-2311-4
11. Fallah J, Qunaj L, Olszewski AJ (2016) Therapy and outcomes of primary central nervous system lymphoma in the United States: analysis of the National Cancer Database. Blood Adv 1(2):112–121. https://doi.org/10.1182/bloodadvances.2016000927
12. Fox CP, Phillips EH, Smith J et al (2019) Guidelines for the diagnosis and management of primary central nervous system diffuse large B-cell lymphoma. Br J Haematol 184(3):348–363. https://doi.org/10.1111/bjh.15661
13. Goyal P, Kumar Y, Gupta N et al (2017) Usefulness of enhancement-perfusion mismatch in differentiation of CNS lymphomas from other enhancing malignant tumors of the brain. Quant Imaging Med Surg 7(5):511–519. https://doi.org/10.21037/qims.2017.09.03
14. Macdonald DR, Cascino TL, Schold SC Jr et al (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8(7):1277–1280. https://doi.org/10.1200/jco.1990.8.7.1277
15. Abrey LE, Batchelor TT, Ferreri AJ et al (2005) Report of an international workshop to standardize baseline evaluation and response criteria for primary CNS lymphoma. J Clin Oncol 23(22):5034–5043. https://doi.org/10.1200/jco.2005.13.524
16. Roth P, Martus P, Kiewe P et al (2012) Outcome of elderly patients with primary CNS lymphoma in the G-PCNSL-SG-1 trial. Neurology 79(9):890–896. https://doi.org/10.1212/wnl.0b013e3182660cb2
17. Roth P, Hoang-Xuan K (2014) Challenges in the treatment of elderly patients with primary central nervous system lymphoma. Curr Opin Neurol 27(6):697–701. https://doi.org/10.1097/wco.0000000000000145
18. Ney DE, Reiner AS, Panageas KS et al (2010) Characteristics and outcomes of elderly patients with primary central nervous system lymphoma: the Memorial Sloan-Kettering Cancer Center experience. Cancer 116(19):4605–4612. http://doi.org/10.1002/cncr.25363
19. Schlegel U, Schmidt-Wolf IG, Deckert M (2000) Primary CNS lymphoma: clinical presentation, pathological classification, molecular pathogenesis and treatment. J Neurol Sci 181(1–2):1–12. https://doi.org/10.1016/s0022-510x(00)00385-3
20. Xie H, Daiya S, Murphy ES et al (2013) Primary central nervous system lymphoma in the elderly: the Cleveland Clinic experience. Anticancer Res 33(8):3251–3258
21. Lee SY, Okoshi Y, Kurita N et al (2014) Prognosis factors in Japanese elderly patients with primary central nervous system lymphoma treated with a nonradiation, intermediate-dose methotrexate-containing regimen. Oncol Res Treat 37(7–8):378–383. https://doi.org/10.1159/000363435
22. Kasenda B, Ferreri AJ, Marturano E et al (2015) First-line treatment and outcome of elderly patients with primary central nervous system lymphoma (PCNSL)—a systematic review and individual patient data meta-analysis. Ann Oncol 26(7):1305–1313. https://doi.org/10.1093/annonc/mdv076
23. Shiozawa E, Yamochi-Onizuka T, Takimoto M et al (2007) The GCB subtype of diffuse large B-cell lymphoma is less frequent in Asian countries. Leuk Res 31(11):1579–1583. https://doi.org/10.1016/j.leukres.2007.03.017
24. Chiavazza C, Pellerino A, Ferrio F et al (2018) Primary CNS lymphomas: challenges in diagnosis and monitoring. Biomed Res Int 2018:3609790. https://doi.org/10.1155/2018/3609790
25. Mizobuchi Y, Nakajima K, Fujihara T et al (2019) The risk of hemorrhage in stereotactic biopsy for brain tumors. J Med Invest 66(34):314–318. https://doi.org/10.2152/jmi.66.314
26. Baranisnik A, Schroers R (2021) Liquid biopsy and other noninvasive diagnostic measures in PCNSL. Cancers 13(11):2665. https://doi.org/10.3390/cancers13112665
27. Barajas RF, Politi LS, Anzalone N et al (2021) Consensus recommendations for MRI and PET imaging of primary central nervous system lymphoma: guideline statement from the International Primary CNS Lymphoma Collaborative Group (IPCG). Neuro Oncol 23(7):1056–1071. https://doi.org/10.1093/neuonc/noab020
28. Hiemcke-Jiwa LS, Leguit RJ, Snijders TJ et al (2018) Molecular analysis in liquid biopsies for diagnostics of primary central nervous system lymphoma: review of literature and future opportunities. Crit Rev Oncol Hematol 95(5):793–799. https://doi.org/10.1016/j.critrevonc.2018.05.010
29. Watanabe J, Natsumeda M, Kanemaru Y et al (2019) Comparison of circulating tumor DNA between body fluids in patients with primary central nervous system lymphoma. Leuk Lymphoma 60(14):3587–3589. https://doi.org/10.1080/10428194.2019.1639169
30. Neuro-Oncology TISS (2019) The Japan Society for Neuro-Oncology, The Japan Neurosurgical Society (2019) Practical Guideline for Neuro-Oncology, Kanazawa
31. Kinoshita M, Sasayama T, Narita Y et al (2014) Different spatial distribution between germinal center B and non-germinal center B primary central nervous system lymphoma revealed by magnetic resonance group analysis. Neuro Oncol 16(5):728–734. https://doi.org/10.1093/neuonc/not319
32. Hans CP, Weisenburger DD, Greiner TC et al (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103(1):275–282. https://doi.org/10.1182/blood-2003-05-1545
33. Phang KC, Hussin NH, Abdul RF et al (2019) Characterisation of immunogenotypes of diffuse large B-cell lymphoma. Malaysian J Pathol 41(2):101–124
34. Umemura H, Homma M, Shiozawa E et al (2012) Immunohistochemical analysis of the cell cycle-associated proteins in diffuse large B-cell lymphoma. Showa Ikaiishi 72(1):108–117
35. Morris PG, Correa DD, Yahalom J et al (2013) Rituximab, methotrexate, procarbazine, and vincristine followed by consolidation reduced-dose whole-brain radiotherapy and cytarabine in newly diagnosed primary CNS lymphoma: final results and long-term outcome. J Clin Oncol 31(31):3971–3979. https://doi.org/10.1200/jco.2013.50.4910
36. Schuurmans M, Bromberg JE, Doorduijn J et al (2010) Primary central nervous system lymphoma in the elderly: a multicentre retrospective analysis. Br J Haematol 151(2):179–184. https://doi.org/10.1111/j.1365-2141.2010.08328.x

Publisher’s Note Springer Nature remains neutral with regard to jurisdicitional claims in published maps and institutional affiliations.
Authors and Affiliations

Kenichiro Asano1 · Yoji Yamashita2 · Takahiro Ono3 · Manabu Natsumeda4 · Takaaki Beppu5 · Kenichiro Matsuda6 · Masahiro Ichikawa7 · Masayuki Kanamori8 · Masashi Matsuzaka9 · Akira Kurose10 · Kiyoshi Saito7 · Yukihiko Sonoda6 · Kuniaki Ogasawara5 · Yukihiko Fujii4 · Hiroaki Shimizu3 · Hiroki Ohkuma1 · Chifumi Kitanaka11 · Takamasa Kayama12 · Teiji Tominaga8

1 Department of Neurosurgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
2 Department of Neurosurgery, Miyagi Cancer Center, Natori, Japan
3 Department of Neurosurgery, Akita University Graduate School of Medicine, Akita, Japan
4 Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Japan
5 Department of Neurosurgery, Iwate Medical University, Morioka, Japan
6 Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
7 Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan
8 Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
9 Department of Medical Informatics, Hirosaki University Hospital, Hirosaki, Japan
10 Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
11 Department of Molecular Cancer Science, Faculty of Medicine, Yamagata University, Yamagata, Japan
12 Department of Advanced Cancer Medicine, Yamagata University Graduate School of Medical Science, Yamagata, Japan