RESEARCH ARTICLE

EARTH SCIENCES

Over-Projected Pacific Warming and Extreme El Niño Frequency due to CMIP5 Common Biases

Tao Tang1,2,†, Jing-Jia Luo1,2,*, Ke Peng1,2, Li Qi2, Shaolei Tang1

1 Institute for Climate and Application Research (ICAR), Nanjing University of Information Science and Technology, Nanjing 210044, China

2 Key Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China

* Corresponding author. Emails: jjluo@nuist.edu.cn; jingjia_luo@hotmail.com.

† Equally contributed to this work.

Abstract

Extreme El Niño events severely disrupt global climate, causing pronounced socio-economic losses. A prevailing view is that extreme El Niño events, defined by total precipitation or convection in Niño3 area, would increase twofold in future. However, this projected change was drawn without correcting potential impacts of CMIP5 models’ common biases. Here, we find that models’ systematic biases in simulating the tropical climate change over the past can reduce the reliability of the projected change in the Pacific sea surface temperature (SST) and its-related extreme El Niño frequency. The projected Pacific SST change, after correcting impacts of 13 common biases, displays a La Niña-like rather than El Niño-like change. Consequently, the extreme El Niño frequency, which is highly linked to the zonal distribution of the Pacific SST change, would remain mostly unchanged under CMIP5 warming scenarios. This finding increases the confidence in coping with climate risks associated with global warming.

Keywords

common model biases; Pacific SST change projection; extreme El Niño frequency change; global warming; emergent constraint method
Introduction

An extreme El Niño event, characterized by massive warm SST anomalies (SSTAs) and strong convection in the eastern Pacific, can severely impact climate, agriculture, economy, marine ecosystems, and environment worldwide [1-9]. It is therefore of great importance to improve the projection of future extreme El Niño frequency change under global warming [2-4,7-9].

According to the CMIP5 projections [10], the Walker circulation would weaken because of the increased atmospheric static stability under global warming [7,11]. The weakened Walker circulation, in turn, would lead to an “El Niño-like” SST change in the tropical Pacific, and enhancing the convection and rainfall in the Niño3 region (Fig. S1). Since the extreme El Niño is defined with the Niño3 total precipitation/vertical velocity [2-4], the two-fold increase of the projected extreme El Niño frequency in future is closely linked to this background change. However, there is a great uncertainty in the “El Niño-like” SST change projection [5,8,12,13].

A remarkable controversy of the Pacific SST change between the CMIP5 simulations and observations during 1981-2010 has been highlighted recently [12,14-18]. Specifically, all CMIP5 models reproduce a spurious warming in the eastern Pacific, in stark contrast to the cooling and intensified Walker circulation in observations [12,14-21]. This common failure may reduce the credibility of the projected “El Niño-like” SST change in future. In addition to possible influences of the internal decadal variability (i.e. PDO or IPO) [19,20], it was found that the CMIP5 models’ ability to simulate the recent Pacific SST cooling is nearly reduced by 50% due to common model biases [14]. Here, we find that the CMIP5 biases in simulating 13 well-recognized processes/mean-states can largely affect the projected extreme El Niño frequency change in future (Figs. 1a and S2, Table S1). Biases in these processes were suggested to have noticeable impacts on the simulations of the tropical Pacific SST [12-18,22-27].

In particular, the CMIP5 experiments display significant inter-model relations among the simulated zonal wind trend in the central-western Pacific, the Pacific east-minus-west SST gradient trend and cold tongue mean-state over the past century and the projected extreme El Niño frequency change in future (Figs. 1a and S2b,f). Models that produce stronger easterly wind trend, weaker warming in the eastern Pacific, and colder cold tongue in the 20th century would project less increase or even the decrease of extreme El Niño frequency in the 21st century. The inter-model relations between the other 10 well-known processes/mean-states and the projected change in the extreme El Niño frequency vary among them (Fig. S2). Based on a multiple linear regression model with the 13 processes/mean-states as predictors (see Supplementary Information), we find the correlation between the originally projected and the reconstructed extreme El Niño frequency change reaches 0.92 and 0.90 in the RCP4.5 and RCP8.5 scenario, respectively (Table S2).

Since the extreme El Niño is defined with the sum of the climatology and anomaly [2-4], the projected change in the extreme El Niño frequency is therefore determined by either mean-state change or anomaly change or both. Our results indicate the multi-model mean of the CMIP5 models project nearly unchanged SST anomaly variance in the eastern Pacific (Fig. S3a-c), albeit with an insignificant increase in the central Pacific. While the geographical centers of ENSO may slightly shift among the CMIP5 models [9], the maximum SST anomaly variance mostly stays in the Niño3 area (Fig. S3d). In addition, the relation between the SST anomaly forcing and the vertical velocity (omega) anomaly in the eastern Pacific would not change much in future (Fig.
S3e). Therefore, the future change in the extreme El Niño frequency defined with Niño3 total omega [4] does not appear to be determined by the anomaly change in the CMIP5 projections.

Exploratory analyses indicate the projected change in the extreme El Niño frequency is highly correlated with the change in Niño3 omega mean-state (i.e. the eastern branch of the basin-wide Walker circulation, Fig. 1b). Their inter-model correlation reaches -0.87 and -0.71 in the RCP4.5 and RCP8.5 scenario, respectively. Moreover, the Niño3 omega mean-state change is closely linked to the change in the Pacific east-minus-west SST gradient (Fig. 1c) [28].

Concerning the deterministic role of the mean-state changes in the extreme El Niño frequency change and the large impacts of the model biases on the past and future climate simulations [12-18,22-27], our findings highlight the importance of a proper correction of the impacts of the models’ common biases. This is crucial to produce a more reliable projection of the extreme El Niño frequency change in future.

Results

Over-projected “El Niño-like” warming in the Pacific

Based on 30 CMIP5 coupled models (Table S3), we examine the impacts of common biases in the 13 well-recognized processes/mean-states in present-day period (1901-2010), which includes both externally-forced and internally-induced, on the projections of the future Pacific climate change (2011-2098). We select the 110-year period to minimize possible influences of internal decadal variability (e.g. PDO or IPO). Results based on 88 years (1923-2010) and recent decades with high-quality observations (1981-2010) are similar.

The CMIP5 models display large systematic biases in reproducing the centennial trends of the zonal wind in the central-western Pacific, the cold tongue SST, and the Pacific east-minus-west SST gradient (Figs. 2a and S4a,c). Consistent with the Pacific thermostat mechanism and Bjerknes feedback [5,6], the latter two processes are significantly correlated with the first process (Table S4). Therefore, biases in the three processes exert a similar impact. Our results indicate that models with better simulations of the three centennial trends (i.e. the red groups) tend to project weaker east-minus-west SST warming gradient in the tropical Pacific during 2011-2098 (Fig. 2b-c). Each of the three CMIP5 common biases, calculated by the differences between the multi-model ensemble mean (MME) simulations and the observations over the past century, would lead to an over-projected east-minus-west SST gradient in the Pacific in future (Fig. 2d).

Recent studies suggested that the faster SST warming in the Atlantic and Indian Ocean than that in the Pacific over the past decades/century can also induce the easterly trend in the central-western Pacific via modifying the Walker circulation, and hence decreasing the SST in the eastern Pacific [12,14-18]. The SST in the Indian Ocean and the Atlantic would keep warming under the increasing greenhouse gases, and hence continuously exert influences on the Pacific climate change in future. Accordingly, the models that better reproduce this inter-basin mechanism during 1901-2010 (Fig. 3a), would project a weaker east-minus-west SST warming gradient in the tropical Pacific during 2011-2098 (Figs. 2c and 3b).

Similarly, the CMIP5 models also underestimate the tropical inter-basin decadal coupling among the Pacific, the Atlantic and the Indian Ocean (Fig. S4e,g). Both the Atlantic-Pacific coupling and the Indian Ocean-Pacific coupling display a close relation to the Pacific decadal climate change, indicating the importance of pan-tropical interactions [12,14-18]. Models with
stronger decadal inter-basin couplings tend to project a weaker SST warming in the central-eastern tropical Pacific (Fig. 2c) [12]. Our results indicate that the commonly underestimated centennial/decadal inter-basin couplings in CMIP5 models would lead to an over-projected east-minus-west SST gradient in the Pacific (Fig. 2d).

The CMIP5 models also display long-standing biases in reproducing climatology in the tropics [22]. One well-known mean-state bias is that the Pacific cold tongue is too cold (Fig. 3c). The colder and westward-extended cold tongue tends to suppress deep convection, increasing surface insolation and hence inducing stronger warming in the central-western Pacific [24,26], and vice versa for a warmer cold tongue bias (Figs. 2c and 3d). In agreement with previous studies [24,26], the CMIP5 common bias with a colder cold tongue would result in an under-projected east-minus-west SST gradient in the Pacific (Fig. 2d).

Other long-standing mean-state biases include the warm SST biases in the tropical southeastern Pacific [14,22] and southeastern Atlantic [16,22] (Figs. 3e and S4i), possibly owing to the errors in simulating the coastal upwelling and SST-stratus cloud feedback there [14,22]. The two warm biases could reduce the Pacific trade winds via modulating the Walker circulation [16]. Consistently, models that better simulate the SST mean-states in the two coastal regions tend to project stronger SST warming in the western Pacific than in the east (Figs. 2c, 3f and S4). Thus, the CMIP5 MME warm biases in the tropical southeastern Pacific and southeastern Atlantic would generate an over-projected east-minus-west SST gradient in the Pacific (Fig. 2d).

It has been well recognized that interannual SST anomalies in the tropical Atlantic, Indian Ocean and Pacific can also influence one another via atmosphere and ocean bridges [12,14,17,29-31]. While the influences of ENSO on the Indian Ocean and Atlantic SSTs are well simulated in most CMIP5 models [14], the influences of the Indian Ocean and Atlantic on ENSO are underestimated (cf. green and purple bars in Fig. S4k). Because underlying mechanisms of the inter-basin interactions on interannual timescales are similar to those on decadal timescales [12,14,17], the systematically underestimated interannual inter-basin influence in the CMIP5 MME would similarly lead to a weak over-projection of the tropical Pacific east-minus-west SST gradient in future (Fig. 2d).

Active ocean-atmosphere feedbacks in the tropical Pacific generate the strongest year-to-year climate variability (i.e. ENSO) on Earth [1]. Biases in reproducing the ENSO-related ocean-atmosphere feedbacks might also affect the projections of future climate change. Bjerknes feedback, measured by the regression coefficient of Niño4 zonal wind anomaly onto Niño3 SST anomaly, plays a major role in ENSO growth [23,32]. The Bjerknes feedback is systematically underestimated in CMIP5 models [23] (Fig. 3g). Models with better Bjerknes feedback project a weak increase of the Pacific east-minus-west SST gradient in future (Figs. 2c and 3h). The SST-cloud feedback in the cold tongue region provides a major damping for ENSO [14,23,32], which is also underestimated in the CMIP5 MME (Fig. S4m). Surprisingly, models with better atmospheric damping project a stronger east-minus-west SST warming gradient (Fig. 2c). This is possibly because the models with a stronger SST-cloud feedback also display a stronger Bjerknes feedback (i.e. error compensation) and a warmer cold tongue mean-state, as indicated by the significant correlations among them. Thus, the CMIP5 common biases in the three processes/mean-state would lead to a similar under-projection of the east-minus-west SST gradient in the Pacific (Fig. 2d).
In addition, the asymmetry between El Niño and La Niña, represented by the positive Niño3 SST anomaly skewness, can also induce decadal mean-state change in the Pacific [13,27]. However, the skewness is systematically underestimated or even negative in the CMIP5 models (Fig. 3i). Our result indicates that models with realistic skewness tend to project a “La Niña-like” SST change, except the warming along the western coast of South America [13,27] (Figs. 2c and 3j). Correspondingly, the common bias with an underestimated skewness would lead to an over-projected east-minus-west SST warming gradient in the Pacific in future (Fig. 2d).

A simple summation of the impacts of the 13 common biases on the future projected Pacific east-minus-west SST gradient change would reach 1.3°C per degree of global SST warming (Fig. 2d). However, many of these biases are significantly correlated with one another (Table S4). After removing their inter-dependent impacts with a multiple linear regression method, the net impacts of individual common biases differ largely (Fig. 2d). The total net impacts of the 13 common biases indicate that the Pacific east-minus-west SST gradient change would be over-projected by ~0.52°C per degree of global SST warming in future (Fig. 2d). More importantly, the CMIP5 MME projection of the Pacific SST change after the correction would no longer resemble the original “El Niño-like” pattern. Instead, the corrected projection displays a “La Niña-like” SST change with weaker warming in the east than in the west and intensified trade winds in the Pacific (cf. Fig. 4a and Fig. S1a) [28].

Consistent with the close relation between the Niño3 omega change and the Pacific east-minus-west SST gradient change, the MME projected omega change, after correcting the total net impacts of the 13 common biases, displays an enhanced subsidence in the equatorial Pacific (Fig. 4b). Consistently, the projected precipitation change after the correction also displays a reduction in the equatorial Pacific (Fig. 4c). These are opposite to the original projections.

Over-projected extreme El Niño frequency

In agreement with the strong relation between the extreme El Niño frequency change and Niño3 omega mean-state change, our results indicate that the former would be rectified after correcting the total net impacts of the 13 common biases on the projected mean-state change (Fig. 5, Methods).

The original projections in RCP4.5 scenario indicate the extreme El Niño frequency would increase 93% in future (i.e. 13.9 vs. 7.2 events in per 100-year) [2-4], concurrent with a slightly decreased moderate El Niño frequency (Fig. 5a,b). In stark contrast, after the correction, the frequency of both the extreme and moderate El Niño would barely change (Fig. 5c). Similarly, the original projections of 152% increase of the extreme El Niño frequency in RCP8.5 scenario (13.1 vs. 5.2 events in per 100-year) would be also reduced to insignificant 17% increase (6.1 vs. 5.2 events in per 100-year) (Fig. S5a-c). Results based on 88-year (1923-2010) and recent 30-year (1981-2010) are similar (Table S2).

In the original projections with an “El Niño-like” warming change, the stronger warming in the eastern Pacific would weaken the Walker circulation and the subsidence in the east, and thus favoring moderate SST anomalies there to trigger deep convection (Fig. 5d) [2-4]. However, the frequency of the extreme and moderate El Niño defined by either the SST or omega anomaly in Niño3 region would barely change in future (Fig. 5e-f). After the correction, the SST change would display a weak “La Niña-like” warming in the Pacific. The occurrence of the extreme El Niño defined by deep convection [4] would still require strong SST anomaly forcing in the eastern
Pacific, similar to that in the past century (Figs. 5d, and S3e). Results based on RCP8.5 scenario are similar (Fig. S5d-f).

Discussion
In contrast to previous studies [2-4], our findings indicate that the future extreme El Niño frequency is over-projected due to systematic biases in CMIP5 models. After correcting total net impacts of 13 well-recognized biases on the mean-state projections, the MME projection displays a “La Niña-like” change, opposite to the original “El Niño-like” change [2-4, 24, 26]. While El Niño definition itself is probably uncertain in a warmer climate, the extreme El Niño frequency defined both by the total values [2-4] after the bias-correction and by the original anomalies would barely change in future. This help reduce the uncertainty/debates on the projected future change.

Our results are consistent with the common notion that many increased extreme events are largely induced by mean-state changes in the past and future [33]. Nevertheless, the statistical method for correcting future extreme El Niño frequency might not be perfect, especially, possible impacts of complex interactions between ENSO and mean-state change on the future extreme El Niño change remain to be explored [7-9, 13, 23, 34, 35]. In addition, the significant correlations among many of the 13 processes/mean-states indicate that fundamental processes (such as cloud physics) may be commonly misrepresented in CMIP5 models. This requires much advanced climate models that can accurately reproduce these important processes. Before reaching this stage, the results here can provide useful information on whether the model biases may impact the future projections and how large the impacts of the biases are possibly be. This will certainly help advance the model development in future.

Materials and Methods

Materials:
We examine the impacts of 13 common biases based on 30 models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). To minimize possible influences of internal decadal variabilities, we use a 110-year period (1901-2010) to estimate the model biases. Correspondingly, the maximum period (2011-2098) is selected to estimate the future projections. We also examine the results based on 88 years (2011-2098 vs. 1923-2010) and the recent 30 years (2069-2098 vs. 1981-2010) with high-quality of observations. The historical runs mostly end in 2005, so outputs from 2006 to 2010 are from the Representative Concentration Pathway (RCP) 4.5 scenario. Future projections are represented by RCP4.5 and RCP8.5 scenarios from 2011 to 2098. Monthly mean fields of sea surface temperature (SST), precipitation, total cloud cover, near-surface zonal wind, and omega averaged from 500 hPa to 0 hPa are used.

To better represent the truth, we utilize the average of three or four reanalysis datasets to minimize the uncertainty. Specifically, reanalysis datasets used in this study include monthly SST from the NOAA Extended Reconstructed SST V5 [36], the UK Met Office Hadley Centre’s HadISST data [37], Centennial in situ Observation-Based Estimates (COBE) data [38], and ERA-20C [39]. Total cloud cover datasets are from ERA-20CM [39], NOAA-20CRV2 [40] and NOAA-20CRV3 [41]; surface zonal wind datasets are from the NOAA-20CRV2 [40], NOAA-20CRV3 [41] and ERA-20C [39], respectively. All model outputs and reanalysis datasets are interpolated to 1º×1º grid.
The multiple model ensemble (MME) mean is defined as the equal weight average of the 30 models. Note that some CMIP5 models have more than one member. For these models, each member is calculated independently, and then a simple average is used to get the ensemble mean of that model. This approach is used throughout the analysis.

Methods:

SST, precipitation, and omega changes at each latitude and longitude grid between the future climatology (2011-2098) and the present-day climatology (1901-2010) are divided by the global mean SST change in each model to account for the different sensitivity of each model to global warming.

Please refer to Supplementary Information for the details of the “model grouping” method, the “emergent constraint” method [42,43], and the “multiple emergent constraint” method [44].

The projected monthly fields (i.e. SST, surface wind, precipitation and omega) during 2011-2098 can be divided into their long-term climatology (i.e. \bar{A}) and their anomaly relative to the \bar{A}. Here, we correct the \bar{A} to examine the impacts of the models’ common biases on the extreme El Niño frequency change in future.

$$\bar{A}^* = \bar{A} - T1 \times \Delta SST$$

where $T1$ represents the total net impacts of the 13 common biases on the projected future changes in SST, surface wind, precipitation, and omega, respectively. ΔSST represents the global mean SST change. \bar{A}^* represents the long-term climatology after the correction.

Acknowledgments: We thank two anonymous reviewers for their comments that greatly helped improve the original manuscript. The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Nanjing University of Information Science & Technology.

Funding: This work is supported by the National Natural Science Foundation of China (42088101). L.Q. is supported by the National Key Research and Development Program of China (2017YFA0603803) and J.J.L is supported by the National Natural Science Foundation of China (42030605).

Author Contributions: J.J.L. conceived the idea of the study. T.T. performed the analysis under supervision of J.J.L. T.T. and J.J.L. wrote the manuscript. All authors contributed to interpreting results, discussion of associated dynamics, and improvement of the presentation.

Conflict of interest: The authors declare that they have no conflict of interests.

References

1. McPhaden MJ, Zebiak SE and Glantz MH. ENSO as an integrating concept in earth science. *Science* 2006;314: 1740-5.
2. Cai W, Borlace S and Lengaigne M et al. Increasing frequency of extreme El Niño events due to greenhouse warming. *Nat Clim Change* 2014; 4: 111-6.
3. Cai W, Santoso A and Wang G et al. ENSO and greenhouse warming. *Nat Clim Change* 2015; 5: 849-59.
4. Cai W, Wang G and Santoso A et al. Definition of extreme El Niño and its impact on projected increase in extreme El Niño frequency. *Geophys Res Lett* 2017; 44: 11184-90.
5. Clement AC, Seager R and Cane MA et al. An ocean dynamical thermostat. J Clim 1996; 9: 2190-6.
6. Bjerknes J. Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 1969; 97: 163-72.
7. Collins M, An SI and Cai W et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 2010; 3: 391-7.
8. Wang B, Luo X and Yang YM et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc Natl Acad Sci USA 2019; 116: 22512-7.
9. Cai W, Wang G and Dewitte B et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 2018; 564: 201-6.
10. Taylor KE, Stouffer RJ and Meehl GA. An overview of CMIP5 and the experiment design. Bull Amer Meteor Soc 2012; 93: 485-98.
11. Vecchi GA, Soden BJ and Wittenberg AT et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 2006; 441: 73-6.
12. Cai W, Wu L and Lengaigne M et al. Pantropical climate interactions. Science 2019; 363: eaav4236.
13. Kohyama T, Hartmann DL and Battisti DS. La Niña–like mean-state response to global warming and potential oceanic roles. J Clim 2017; 30: 4207-25.
14. Luo JJ, Wang G and Dommengest D. May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña-like cooling? Clim Dyn 2018; 50: 1335-51.
15. Luo JJ, Sasaki W and Masumoto Y. Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci USA 2012; 109: 18701-6.
16. McGregor S, Stuecker MF and Kajtar JB et al. Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat Clim Change 2018; 8: 493-8.
17. Kucharski F, Syed FS and Burhan A et al. Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Clim Dyn 2014; 44: 881-96.
18. Kajtar JB, Santos a and McGregor S et al. Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias. Clim Dyn 2017; 50: 1471-84.
19. Lee SK, Kim D and Foltz GR et al. Pantropical response to global warming and the emergence of a La Niña–like mean state trend. Geophys Res Lett 2020, doi.org/10.1029/2019GL086497.
20. Watanabe M, Shiogama H and Tachibe H et al. Contribution of natural decadal variability to global warming acceleration and hiatus. Nat Clim Change 2014; 4: 893-7.
21. Solomon A, Newman M. Reconciling disparate twentieth-century Ind-Paciﬁc Ocean temperature trends in the instrumental record. Nat Clim Change 2012; 2: 299-304.
22. Wang C, Zhang L and Lee SK et al. A global perspective on CMIP5 climate model biases. Nat Clim Change 2014; 4: 201-5.
23. Kim ST, Cai W and Jin FF et al. ENSO stability in coupled climate models and its association with mean state. Clim Dyn 2013; 42: 3313-21.
24. Huang P, Ying J. A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J Clim 2015; 28: 4706-23.
25. Ying J, Huang P. Cloud-radiation feedback as a leading source of uncertainty in the tropical paciﬁc SST warming pattern in CMIP5 models. J Clim 2016; 29: 3867-81.
26. Li G, Xie SP and Du Y et al. Effects of excessive equatorial cold tongue bias on the projections of tropical Paciﬁc climate change. Part I: the warming pattern in CMIP5 multi-model
ensemble. *Clim Dyn* 2016; 47: 3817-31.
27. Hayashi M, Jin FF and Stuecker MF. Dynamics for El Niño-La Nina asymmetry constrain equatorial-Pacific warming pattern. *Nat Commun* 2020; 11: 4230.
28. Tokinaga H, Xie SP and Deser C et al. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. *Nature* 2012; 491: 439-43.
29. Yamagata T, Behera SK and Rao RA et al. The Indian Ocean dipole: a physical entity. *CLIVAR Exchanges* 2002; 24: 15-8.
30. Ashok K, Guan Z and Yamagata T. Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. *Geophys Res Lett* 2001; 28: 4499-502.
31. Behera SK and Yamagata T. Influence of Indian Ocean dipole on the southern oscillation. *J Meteorol Soc Jpn* 2003; 81: 169-77.
32. Guilyardi E, Braconnot P and Jin FF et al. Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. *J Clim* 2009; 22: 5698-718.
33. Stott P. How climate change affects extreme weather events. *Science* 2016; 352: 1517-8.
34. Fedorov AV, Philander SG. Is El Niño changing? *Science* 2000; 288: 1997-2001.
35. Atwood AR, Battisti DS and Wittenberg AT et al. Characterizing unforced multi-decadal variability of ENSO: a case study with the GFDL CM2.1 coupled GCM. *Clim Dyn* 2016; 49: 2845-62.
36. Huang B, Liu C and Ren G et al. The role of buoy and Argo observations in two SST analyses in the global and tropical Pacific oceans. *J Clim* 2018; 32: 2517-35.
37. Rayner NA, Parker D and Horton EB et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. *J Geophys Res: Atmos* 2003; 108: 4407.
38. Hirahara S, Ishii M and Fukuda Y. Centennial-scale sea surface temperature analysis and its uncertainty. *J Clim* 2014; 27: 57-75.
39. Poli P, Hersbach H and Dee DP et al. ERA-20C: An atmospheric reanalysis of the twentieth century. *J Clim* 2016; 29: 4083-97.
40. Compo GP, Whitaker JS and Sardeshmukh PD et al. The twentieth century reanalysis project. *Q J R Meteorol Soc* 2011; 137: 1-28.
41. Slivinski LC, Compo GP and Whitaker JS et al. Towards a more reliable historical reanalysis: Improvements for version 3 of the twentieth century reanalysis system. *Q J R Meteorol Soc* 2016; 145: Issue 724.
42. Eyring V, Cox PM and Flato GM et al. Taking climate mode evaluation to the next level. *Nat Clim Change* 2019; 9: 102-10.
43. Karpechko AY, Maraun D and Eyring V. Improving Antarctic total ozone projections by a process-oriented multiple diagnostic ensemble regression. *J Atmos Sci* 2013; 70: 3959–76.
44. Bracegirdle TJ, Stephenson DB. Higher precision estimates of regional polar warming by ensemble regression of climate model projections. *Clim Dyn* 2012; 39: 2805-21.
Figure captions

(a) Inter-model correlation between the simulated trends of the zonal wind in the western-central Pacific (150°E-150°W, 5°S-5°N) during 1901-2010 and the projected extreme El Niño frequency changes in future (2011-2098 vs. 1901-2010, in events per 100-year). Extreme El Niño is defined with the Niño3 total omega (Pa s⁻¹) averaged from 500 hPa to 0 hPa being negative (i.e. convection) in boreal winter (DJF) [4]. Correlation coefficients and p-values are indicated in each panel. The results of RCP4.5 and RCP8.5 are represented by red and blue, respectively. (b, c) Inter-model correlation of the projected Niño3 omega changes with the projected extreme El Niño frequency changes and the Pacific east-minus-west SST gradient changes in future, respectively.

Figure 1. Inter-model correlations among the extreme El Niño frequency change, process simulation, and mean-state changes in the CMIP5 models. (a) Inter-model correlation between the simulated trends of the zonal wind in the western-central Pacific (150°E-150°W, 5°S-5°N) during 1901-2010 and the projected extreme El Niño frequency changes in future (2011-2098 vs. 1901-2010, in events per 100-year). Extreme El Niño is defined with the Niño3 total omega (Pa s⁻¹) averaged from 500 hPa to 0 hPa being negative (i.e. convection) in boreal winter (DJF) [4]. Correlation coefficients and p-values are indicated in each panel. The results of RCP4.5 and RCP8.5 are represented by red and blue, respectively. (b, c) Inter-model correlation of the projected Niño3 omega changes with the projected extreme El Niño frequency changes and the Pacific east-minus-west SST gradient changes in future, respectively.
Figure 2. Impacts of 13 common biases of CMIP5 models on the projected SST change in the Pacific. (a) Rank of the simulated zonal wind trends in the central-western Pacific (150°E-150°W, 10°S-10°N) during 1901-2010. Filled purple, green, red, and blue bars denote the observed, CMIP5 MME, mean of red group of models (hatched red bars), and mean of blue group of models (hatched blue bars), respectively. The error bar in (a) represents the range from the lowest to the highest values in the observation, red and blue group. (b) Differences (i.e. red group minus blue group) in the projected SST and surface wind change (i.e. 2011-2098 minus 1901-2010, divided by the global mean SST change). Stippling and vector indicate statistical confidence at the 90% level according to Student t-test. (c) Differences in the Pacific east-minus-west SST gradient change between the red and blue groups, estimated for each process based on the results shown in Figs. 2b, 3 and S4. (d) Impacts of the common biases on the MME projections of the Pacific east-minus-west SST gradient change. Pink bars denote the impacts of individual common biases, calculated by emergent constraint method. Yellow bars denote the net impacts of these common biases. The error bars in (d) represent ±1 standard deviation. Detailed discussions of the model grouping, emergent constraint, and the multiple linear regression methods are shown in Supplementary Information.
Figure 3. Five biases in simulating the present-day climate and their inter-group differences on the future projection. As in Fig. 2a and 2b, but for the results of the Atl/2+IO/2-Pac SST warming trend, cold tongue mean-state, tropical southeastern Pacific mean-state, Bjerknes feedback, and Niño3 SSTA skewness, respectively (Table S1).
Figure 4. MME-projected future changes in the tropical Pacific after the correction. (a) MME projected SST and wind changes after correcting the total net impacts of 13 common biases of 30 CMIP5 models. The SST and wind change refers to the difference between 2011-2098 and 1901-2010, normalized by global mean SST change in each model before calculating the MME. The two dashed blue boxes are used to calculate the north-minus-south meridional SST gradient [2-4] shown in Fig. 5. Stippling and vector indicate more than 75% of the CMIP5 models agree...
with the sign of the MME-projected SST and zonal wind change, respectively. (b) as in (a), but for the omega changes. Units: Pa \(s^{-1} \circ C^{-1} \). Dashed red box indicates the Niño3 region. (c) as in (a), but for the rainfall change. Units: mm day\(^{-1} \circ C^{-1} \).

Figure 5. El Niño frequency change in RCP4.5 scenario. Relation between the Niño3 omega and the north-minus-south meridional SST gradient in the eastern Pacific. Red, green, and gray dots indicate extreme El Niño events (i.e. negative Niño3 omega), moderate El Niño events (i.e. positive omega but with greater than 0.5 standardized SSTA in Niño3 region), and non-El Niño years, respectively [4]. Results are based on (a) the historical simulations during 1901-2010, (b, c) the original and corrected projections of the extreme El Niño frequency in RCP4.5 scenario during 2011-2098. All the frequency is calculated per 100-year. (d) Histogram of the extreme El Niño frequency in each magnitude bin of the Niño3 SSTA (interval: 0.5 standard deviation). The 95% confidence interval of the extreme El Niño frequency is estimated by bootstrap test. (e) Frequency of extreme and moderate El Niño, defined as the standardized Niño3 SSTA in boreal winter being greater than 1.5 (red line) and being 0.5-1.5 standard deviation (green line), respectively. The frequency of the extreme and moderate El Niño events (per 100-year) in the historical simulations and future projections are represented by gray and blue Arabic numbers, respectively. (f) As in (e), but for the results defined by Niño3 omega anomaly in boreal winter.