RESEARCH PAPER

MicroR408 regulates defense response upon wounding in sweet potato

Yun-Wei Kuo1,*, Jeng-Shane Lin2, Yu-Chi Li1, Min-Yao Jhu1,*, Yu-Chi King1 and Shih-Tong Jeng1,†

1 Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
2 Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan

* Present address: Department of Plant Biology, University of California, Davis, CA 95616, USA
† Correspondence: stjeng@ntu.edu.tw

Received 26 June 2018; Editorial decision 15 October 2018; Accepted 2 November 2018

Editor: Ramanjulu Sunkar, Oklahoma State University, USA

Abstract

MiRNAs play diverse roles in plant development and defense responses by binding to their mRNA targets based on sequence complementarity. Here, we investigated a wound-related miR408 and its target genes in sweet potato (Ipomoea batatas) by small RNA deep sequencing and transcriptome analysis. The expression patterns of miR408 and the miR408 precursor were significantly repressed by wounding and jasmonate (JA). In contrast, expression of the putative target genes IbKCS (3-ketoacyl-CoA synthase 4), IbPCL (plantacyanin), and IbGAUT (galacturonosyltransferase 7-like) of miR408 was increased following wounding, whereas only IbKCS was increased after JA treatment. Target cleavage site mapping and Agrobacterium-mediated transient assay demonstrated that IbKCS, IbPCL, and IbGAUT were the targets of miR408. The expression of miR408 target genes was repressed in transgenic sweet potatoes overexpressing miR408. These data indicated a relationship between miR408 and its target genes. Notably, miR408-overexpressing plants showed a semi-dwarf phenotype and attenuated resistance to insect feeding, while transgenic plants overexpressing IbKCS exhibited more insect resistance than plants overexpressing only the empty vector. Collectively, sweet potato reduces the abundance of miR408 upon wounding to elevate the expression of IbKCS, IbPCL, and IbGAUT. The expression of IbKCS enhances the defense system against herbivore wounding.

Keywords: GAUT, KCS, miR408, PCL, small RNA deep sequencing, sweet potato, wounding.

Introduction

Plants possess complex signaling systems to survive biotic and abiotic stressors (Wong and Shimamoto, 2009). Unlike animals who can escape from extreme environments, plants respond to different stresses by activating the expression of various genes. Wounding is one of the frequent stresses for terrestrial plants (Savatin et al., 2014). The physical damage caused by rain, wind, herbivore feeding, or microbial attack triggers wound- ing responses in plants (de Bruxelles and Roberts, 2001), and these responses affect plant growth and development (Bowles, 1990; Savatin et al., 2014). Plants have evolved complex defense systems against wounding. Responses to damage are local, systemic, or both (León et al., 2001). Early wounding signals, including jasmonate (JA), ethylene, Ca2+ influx, nitric oxide, and H2O2, can regulate wounding-responsive genes to function in defense-related processes (Pozo et al., 2008; Wasternack and Hause, 2013). In response to a wounding signal from herbivory, plants activate the expression of proteinase inhibitor and lectin genes, which impair the activity of insect digestive enzymes to decrease the damage by herbivory (Howe, 2004; Chen et al., 2008; Chen et al., 2016b). In addition, several factors, including lignin, pectin, suberin, and waxes, are stimulated in wounded tissue to heal the tissue or to form a physical barrier to prevent...
Materials and methods

Plant materials, growth conditions, and stress treatments

Sweet potato (Ipomoea batatas cv. Tanigun 57) and tobacco (Nicotiana tabacum L. cv. W38) plants were grown in growth chambers (16 h/25 °C light and 8 h/22 °C dark; 70% humidity) under illumination of 30 µmol photons m⁻² s⁻¹ and 60 µmol photons m⁻² s⁻¹, respectively. Plants with 6–8 fully developed leaves were used in this study. The third fully expanded sweet potato leaves counted from the terminal bud were treated by wounding, 50 µM methyl jasmonate (MeJA; Sigma, St. Louis, MO, USA), or Spodoptera litura. In the wounding treatment, leaves except the primary veins were pressed by tweezers. In the S. litura feeding assay, the third fully expanded leaves were placed in plastic Petri dishes (90 mm) containing wet filter paper. The third-instar S. litura were individually placed on each leaf at 25 °C under a 16 h light/8 h dark photoperiod. All the analyses were performed in at least three independent biological replicates.

Small RNA library construction, sequencing, and processing

Total RNAs from leaves wounded for 30 min and unwounded leaves were extracted by Trizol reagent (Invitrogen, Carlsbad, CA, USA). The small RNA libraries were prepared following the Small RNA Sample Preparation Protocol of Illumina TruSeq and then sequenced by the Illumina Genome Analyzer IIx. Sequencing data were compared with the known plant miRNAs in the miRBase database (Kozomara and Griffiths-Jones, 2011). The perfectly matching sequences were considered as the conserved miRNAs. The miRNAs whose expression levels changed were classified as wound-inducible miRNAs (>1.2-fold) and wound-repressible miRNAs (<0.8-fold). The raw data of small RNA deep sequencing were uploaded to the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) with accession number GSE115176. The miRNAs repressed in sweet potato upon wounding are shown in Supplementary Table S1 at JXB online.

Transcriptome sequencing and de novo assembly

Total RNAs from sweet potato leaves were extracted using Trizol reagent (Invitrogen). Then, the RNA Sample Prep v2 LS Protocol of Illumina TruSeq was followed to prepare the sweet potato de novo transcriptome library. The transcriptome library was then sequenced by the Illumina MiSeq platform. RNA sequence contigs were de novo assembled using the Trinity platform (Grabherr et al., 2011) (http://trinityrnaseq.sourceforge.net/). The contigs were blasted based on the Blastn/Blastx NCBI database for gene annotation.

Prediction and validation of miR408 precursor and target genes

The small RNA deep sequencing databases were mapped with the sweet potato transcriptome database by Bowtie software (Langmead, 2010) (http://bowtie-bio.sourceforge.net/manual.shtml) to predict the wound-regulated miRNA precursors and target genes. For miR408 precursor prediction, the miRNA contigs that perfectly match with the miR408 sequence were considered as potential miR408 precursors (pre408). The secondary structure of the potential pre408 contigs was predicted by Mfold (Zuker, 2003) (http://unafold.rna.albany.edu/?q=mfold). The contig with the correct stem–loop structure forming a miRNA:miRNA* duplex was selected as pre408. Furthermore, to define and characterize
pre-408, it was isolated from sweet potato cDNA by PCR with the primer pair Pre408-F/Pre408-R (primers are listed in Supplementary Table S2).

Plant miRNAs recognize target miRNAs through sequence complementarity. To evaluate the complementarities of miRNAs and targets, the penalty scores were calculated based on the procedure described by Meyers et al. (2008) and Lin et al. (2014). The penalty scores represent the pairing between miRNAs and targets. A mismatch is defined as 1 point; a GU wobble is defined as 0.5 point; and a gap is defined as 2 points. To identify potential miR408 target genes in sweet potato, the miR408 sequence was searched against the transcriptome contig data set. The contigs that have more than three points or have a mismatch in the central region, the 9–11 nucleotides from the 5’ end of miR408, were excluded from analysis.

Small RNA blot assay
Total RNA (20 µg) extracted from sweet potato leaves was separated by electrophoresis using a 12% polyacrylamide gel containing 8 M urea (Amresco Inc., USA). Then the RNA gel was transferred to a Hybond-NX membrane (GE Healthcare, USA) and cross-linked by UV (Pall et al., 2007). For miR408 detection, the blotted membranes were hybridized with the radiolabeled gene-specific RNA probes, produced by in vitro transcription (Jeng et al., 1990, 1992) using T3 RNA polymerase (Promega, Madison, WI, USA). The antisense sequence of miR408 fused with the T3 promoter was synthesized and annealed with the T3 top strand (Supplementary Table S2) as the DNA template for transcription to synthesize the miR408 RNA probe by T3 RNA polymerase (Promega). The procedures of pre-hybridization, hybridization, and washing were performed as previously described (Lin et al., 2012). The membrane was exposed to a Phosphorimager screen (Molecular Dynamics) for 3–4 d after washing, and then was scanned by Phosphorimager (Typhoon 9400). In addition, the membrane was stripped and re-hybridized with the radio-labeled 5.8S rRNA probe, produced by PCR with primers 5.8S RNA-F/5.8S RNA-R (Supplementary Table S2), and it served as an internal control for small RNA blot assays. Three independent experiments were performed for each sample.

RNA extraction and quantitative real-time PCR (qRT-PCR) analysis
Total RNA was extracted from sweet potato leaves using Trizol reagent (Invitrogen), and then treated with RNase-free Turbo DNase (Thermo Fisher) to remove contaminated genomic DNA. RNA (2 µg) was used to synthesize the first-strand cDNA using Moloney murine leukemia virus (MMLV) reverse transcriptase (Invitrogen) with primer T2SVN (Supplementary Table S2). The cDNAs were further analyzed by qRT-PCR (SYBR FAST qRT-PCR, Master Mix, BioRad). The IbActin gene was used as an internal control to normalize the gene expression.

To detect the expression of miRNA, poly(A) tailing assay was performed (Shi and Chiang, 2005; C. Wang et al., 2013). RNAs were polyadenylated by poly(A) polymerase (New England BioLabs) at 37 °C for 60 min. The poly(A) RNA was reverse transcribed with a poly(T) adaptor containing universal primer-1 (MatureF-1 (Supplementary Table S2) into cDNA. For miRNA analysis, the miR408-specific primer and miRNA universal primer-1 (UniPCR-1) (Supplementary Table S2) were used for qRT-PCR (Shi and Chiang, 2005). The expression of 5.8S rRNA was used for qRT-PCR normalization (Supplementary Table S2). Three independent experiments were performed for each sample.

Isolation and sequence characterization of IbKCS, IbPCL, and IbGAUT genes
The transcriptome data of sweet potato provide only partial gene sequences. Therefore, 5’ and 3’ RACE was used to obtain the full coding sequences of the targets of miRNAs. RACE was performed as previously described (Lin et al., 2012). RNAs were ligated with 5’-RNA adaptor and 3’-RT adaptor. After being reverse transcribed to cDNA, these PCR fragments were cloned and sequenced by 5’- or 3’-adapter primers and gene-specific RACE primers (Supplementary Table S2).

Mapping of miR408 cleavage sites
Modified RNA ligase-mediated 5’ RACE (5’-RLM-RACE) and 3’ poly(A) polymerase-mediated RACE (3’-PPM-RACE) were used to confirm the miR408-directed cleavage site as previously described (Kasschau et al., 2003; Lin et al., 2012; C. Wang et al., 2013). For 5’-RLM-RACE, total RNAs from sweet potato leaves were ligated to a 5’-RNA adaptor (Supplementary Table S2) by T4 RNA ligase (New England Biolabs). For 3’-PPM-RACE, RNAs were polyadenylated by poly(A) polymerase (New England BioLabs), and the poly(A) RNAs were reverse transcribed with a poly(T) 3-RT adaptor (Supplementary Table S2) into cDNA. Then, PCRs using 5’- or 3’-adapter primers and gene-specific primers (Supplementary Table S2) were applied. The PCR amplicons were cloned, and sequenced to determine the cleavage sites in target miRNAs.

Constructs and plant transformation
Pre408 was cloned into the binary vector pCAMBIA2300 driven by the 3S promoter. These constructions were transferred into Agrobacterium rhizogenes strain 15834 for plant transformation. For sweet potato transformation, the leaves from virus-free tissue culture were infected by A. rhizogenes strain 15834 for hairy root induction (Lin et al., 2012, 2013; Li et al., 2016). The induced roots were further selected by 30 ppm kanamycin for 14 d. Plants regenerated from the transgenic hairy roots were used.

For ectopic expression of IbKCS, IbPCL, and IbGAUT in tobacco, the ORFs of these genes were cloned into the binary vector pCAMBIA2300, which harbors a 35S promoter. These constructions were then separately transferred into Agrobacterium tumefaciens strain LBA4404 (Horsch et al., 1985). For tobacco transformation, leaf discs co-incubated with A. tumefaciens strain LBA4404 were used to generate transgenic plants under kanamycin selection.

Agrobacterium-mediated transient expression in tobacco
Agrobacterium tumefaciens (LBA4404) was infiltrated into N. tabacum leaves as previously described (Kim et al., 2009; Lin et al., 2012). The sequence of pre-408 was obtained by PCR with primer set Pre408-F/Pre408-R (Supplementary Table S2), and then inserted into the pCAMBIA1300 vector.

Short tandem target mimic (STTM) is an approach for silencing specific small RNAs in vivo. The fragment STTM408 was designed and obtained as previously described (Yan et al., 2012) by PCR using primer set Xba1-STTM-Mimic408-F/Xma1-STTM-Mimic408-2R (Supplementary Table S2), and cloned into pCAMBIA1300. The ORFs of IbKCS, IbPCL, and IbGAUT were amplified by PCR with gene-specific primer pairs (Supplementary Table S2), and were inserted in pCAMBIA2300.

Agrobacterium carrying pCAMBIA1300-Pre408 (Pre408), pCAMBIA1300-STTM408 (STTM), pCAMBIA2300–IbKCS, pCAMBIA2300–IbPCL, or pCAMBIA2300–IbGAUT were generated to infiltrate mature leaves of tobacco. After 4 d of infiltration, total RNAs of the infiltrated leaves were isolated using Trizol reagent (Invitrogen). Total RNAs were treated with RNase-free Turbo DNase (Thermo Fisher), and then reverse transcribed to cDNAs for gene expression analyses. qRT-PCR was used to detect the expression of IbKCS, IbPCL, IbGAUT, NPTII, and NtActin in tobacco.

Insect bioassay with Spodoptera litura
The method of insect bioassay in this study was modified from previous reports (Song et al., 2013; Chen et al., 2016b). The third fully expanded leaves of wild-type, transgenic sweet potatoes, and transgenic tobacco were placed in plastic Petri dishes (90 mm) containing wet filter paper. The second instar S. litura larvae were placed on each leaf at 25 °C under 16 h light/8 h dark photoperiod. Larval weights (±10) were determined after 5, 7, and 9 d of feeding. These analyses included three independent biological repeats.

Chlorophyll content and chlorophyll fluorescence measurement
For chlorophyll content assay, the third leaves of wild-type and transgenic sweet potatoes were extracted by 80% acetone. The leaves were

MiR408 in sweet potato upon wounding | 471
then incubated in 80% acetic acid at 4 °C overnight, and clarified by centrifugation at 14,000 g for 5 min. The absorbance of the supernatant was measured at wavelengths of 645 nm and 663 nm by spectrophotometry (Infinite M200 plate reader) as previously described (Minocha et al., 2012). These analyses were repeated three independent biological repeats.

Photoinhibition was determined by measuring the potential quantum yield (F_v/F_m) of dark-adapted samples as described by Genty et al. (1989). The variable/maximal fluorescence ratio (F_v/F_m) represents the activity of PSII, and was used to assess functional damage to the plants (Artus et al., 1996). Chlorophyll fluorescence was measured by a Photosynthesis Yield Analyzer (Mini-Pam, Heinz Walz GmbH, Effeltrich, Germany) (Rascher et al., 2000). The wild-type and transgenic sweet potatoes grown normally for 6 weeks were dark-adapted for 30 min before chlorophyll fluorescence measurements. After 30 min of acclimation, the F_v/F_m of the third fully expanded sweet potato leaves was measured by a mini PAM at a light intensity of 110 µmol photons m$^{-2}$ s$^{-1}$. The F_v/F_m values were examined from one leaf per plant for five plants in each transgenic line. This experiment was executed in three replicates.

Results

Identification of miR408 during the wounding response

Wounding-inducible miRNAs have been found and investigated in sweet potato (Lin et al., 2012, 2013). In this study, we were interested in identifying the miRNAs that are repressed by wounding. To identify the wound–repressed miRNAs in the leaves of sweet potato, small RNA deep sequencing was conducted on the unwounded and wounded leaves for 30 min (Supplementary Tables S1, S3). After analyses, one of the miRNAs, miR408, was noticed due to the wound-repressed expression. The abundance of miR408 decreased 32% in sweet potato after wounding (Table 1). In addition, its complementary miRNA strand, miR408*, predicted by Mfold (Zuker, 2003) was also found in the small RNA deep sequence libraries (Table 1). Most miRNA* is generally considered a by-product of the miRNA:miRNA* duplex and is typically degraded rapidly. The leader strand (miRNA) is generally highly expressed compared with the passenger strand (miRNA*) (Pérez-Quintero et al., 2012). In this study, the miR408:miR408* ratio was ~100:1 based on the small RNA deep sequencing data. To isolate the miR408 precursor (pre-408) in sweet potato, the sequence of miR408 was searched against a sweet potato transcriptomic database (Supplementary Table S4). A transcriptome contig perfectly matched with the sequence of miR408 was considered to be pre408. The secondary structure of pre-408 was predicted by Mfold, and showed that the transcriptome contig formed a hairpin–loop structure with the mature miR408 in the stem region (Fig. 1A). These results strongly proved the presence of miR408 in sweet potato.

Northern blot hybridization and small RNA qRT-PCR analyses were used to confirm the expression pattern of mature miR408. The result of northern blot indicated that the expression of miR408 was rapidly decreased by wounding, but was gradually restored to the basal level at 120 min of wounding in sweet potato leaves (Fig. 1B). Furthermore, the expression patterns of pre-408 and miR408 were verified by qRT-PCR (Fig. 1C, D), indicating that they were obviously decreased after wounding for 30–60 min. These findings demonstrated that the expression of pre-408 and miR408 was consistent with the small RNA sequencing result, within which miR408 expression was repressed by wounding.

Wounding in plants is mostly caused by insect herbivory. Thus, a comparison of miR408 expression between mechanical wounding and insect feeding was performed. The qRT-PCR analysis revealed that pre-408 and miR408 were down-regulated by S. litura feeding (Fig. 1C, D). MiR408 expression was reduced at 15 min after insect feeding, and was maintained at a low level until 60 min. The expression patterns of miR408 with mechanical wounding and insect feeding suggested that miR408 functioned in both responses.

Many miRNAs are evolutionarily conserved in plants (Zhang et al., 2006). Sequences were compared using ClustalX2 to determine the correlation of miR408 and its precursor RNA (pre-miRNA) in different plant species. The pre-408 sequence (Ib-MIR408) of sweet potato was compared with those of other plants (Supplementary Fig. S1), indicating the diverse sequences of pre-408 observed among plants. Although miR408 was conserved in different plants, only nta-miR408, stu-miR408b-3p, cca-miR408, and ppt-miR408 were perfect matches with Ib-miR408. The sequences of other miR408s showed the two nucleotide differences at the 5′ and 3′ ends of miR408 (Supplementary Table S5). The nucleotide differences in mature miR408s may result in the recognition of various target genes in plants.

Isolation and validation of miR408-targeting mRNAs in sweet potato

The identification of miRNA-targeting mRNAs is essential for the functional characterization of miRNAs (Karlova et al., 2013). Plant miRNAs require strict sequence complementarity with their target genes to cleave at the pairing sites (Voinnet, 2009; Zhao et al., 2015). The miR408 sequence was searched against the sweet potato transcriptome contig data set to predict potential miR408 targets. The penalty score was calculated

miRNA	Unwounded (RPM)	Wounded (RPM)	Ratio
Ib-miR408	290.95	197.04	0.68
Ib-miR408*	2.7	3.77	1.4

RPM, reads per million.
from the number of mismatches (1 point) and GU wobbles (0.5 point) to predict the miRNA targets (Meyers et al., 2008; Liu et al., 2014). The candidate contigs by score (≤3 points) and no mismatch in the central region, the ninth, 10th, and 11th nucleotides from the 5’ end of miRNA, were selected for further study. Based on these criteria, not only the typical miR408 target gene, plantacyanin (IbPCL), but also two sweet potato-specific genes, 3-ketoacyl-CoA synthase 4 (IbKCS) and galacturonosyltransferase 7-like (IbGAUT), were suggested to be the putative target genes of miR408 in sweet potato (Table 2). Hence, these three target genes, namely IbKCS, IbPCL, and IbGAUT, were selected, and their full lengths were obtained by RACE.

To determine the regulatory relationship between miR408 and its putative targets, the expression levels of IbKCS, IbPCL, and IbGAUT were monitored by qRT-PCR in sweet potato upon wounding. IbKCS and IbPCL expression was up-regulated rapidly, while IbGAUT expression was induced after wounding for 60 min (Fig. 2A–C). These results suggested that the expression patterns of miR408 putative targets were inversely related to that of miR408 in sweet potato upon mechanical wounding. To confirm further the expression of these putative targets in response to insect feeding, the expression levels of IbKCS, IbPCL, and IbGAUT were analyzed by qRT-PCR after insect feeding (Fig. 2A–C). The expression patterns of IbKCS and IbGAUT were similar between the mechanical wounding and insect feeding treatments, while the expression of IbPCL was slightly increased upon insect feeding. These results suggested that both mechanical wounding and herbivore wounding reduced the expression of miR408, resulting in the induction of IbKCS, IbPCL, and IbGAUT expression in sweet potato.

The interaction between miR408 and its targets were further examined. The 5’-RLM-RACE and 3’-PPM-RACE

Table 2. Prediction of miR408 target genes from de novo transcriptome of sweet potato.

Annotation subject title	Penalty Score	5' region	3' region	Central region
3-Ketoacyl-CoA synthase 4-like	2	0/1	0/1	0/0
Plantacyanin-like (basic blue)	2.5	0/0	1/2	0/0
Galacturonosyltransferase 7-like	3	1/1	1/1	0/0

* The number of GU wobbles/the number of mismatches.
methods were used to identify the cleavage sites within the target mRNAs caused by miRNA (Lin et al., 2012, 2013; C. Wang et al., 2013). The RLM-RACE analyses revealed that \(\text{IbKCS} \), \(\text{IbPCL} \), and \(\text{IbGAUT} \) were mainly cleaved by miR408 at the 10th, 10th, and 11th nucleotides, respectively, relative to the 5' end of miR408 (Fig. 3A–C). These results demonstrated that \(\text{IbKCS} \), \(\text{IbPCL} \), and \(\text{IbGAUT} \) were miR408 target genes in sweet potato.

The \textit{Agrobacterium}-mediated transient expression assay was performed to study the interaction between miR408 and its targets. The coding sequences of \(\text{IbKCS} \), \(\text{IbPCL} \), and \(\text{IbGAUT} \) were co-expressed with \(\text{pre408} \), the short tandem target mimic of miR408 (STTM), or the empty vector (EV) in tobacco leaves by \textit{Agrobacterium} infiltration. Expression of \(\text{IbKCS} \), \(\text{IbPCL} \), and \(\text{IbGAUT} \) was reduced by co-expression with \(\text{pre408} \) compared with those with the EV (Fig. 3D–F). The expression of \(\text{IbKCS} \), \(\text{IbPCL} \), and \(\text{IbGAUT} \) increased significantly in the presence of both \(\text{pre408} \) and STTM. These results provided further evidence that \(\text{IbKCS} \), \(\text{IbPCL} \), and \(\text{IbGAUT} \) were miR408 targets.

Overexpression of miR408 reduces the resistance of plants to insect feeding

To study the biological function of miR408 in sweet potato, transgenic sweet potato plants overexpressing miR408 driven by the 35S promoter were generated by \textit{Agrobacterium}-mediated transformation. The expression levels of \(\text{pre408} \) and miR408 increased significantly in both transgenic plants (miR408-ox) compared with those of the wild type upon wounding (Fig. 4A, B). Thus, these two transgenic lines (Pre408-ox1 and Pre408-ox2) were selected to investigate the role of miR408 in detail. The expression of \(\text{IbKCS} \), \(\text{IbPCL} \), and \(\text{IbGAUT} \) was decreased in plants overexpressing miR408 (Fig. 4C–E), suggesting a negative correlation between miR408 and its target gene expression. The combination of transgenic studies and cleavage site identification clearly demonstrated that miR408 negatively regulates the expression of \(\text{IbKCS} \), \(\text{IbPCL} \), and \(\text{IbGAUT} \) in vivo.

Wounding stress is mainly caused by insect feeding in field crops. To study whether miR408 functions in defense against insect damage, the insect bioassay was performed. Second-instar larvae of \textit{S. litura} were fed miR408-ox and mature wild-type sweet potato leaves. The leaves of plants overexpressing miR408 were consumed significantly more frequently by larvae than those of the wild type (Fig. 4F). The body weights of larvae fed the miR408-ox leaves were higher than those fed wild-type leaves at 7 d and 9 d of feeding (Fig. 4G, H), suggesting that miR408 attenuates plant resistance to insect attack.

To determine how miR408 influenced the plant defense against insect feeding, transgenic tobacco plants overexpressing miR408-targeting genes were generated. Transgenic tobacco plants overexpressing \(\text{IbKCS} \) (KCS-ox4 and KCS-ox11), \(\text{IbPCL} \) (PCL-ox1 and PCL-ox4), and \(\text{IbGAUT} \) (GAUT-ox1 and GAUT-ox5) were identified by RT-PCR and qRT-PCR (Supplementary Fig. S2), and their effects on insects were analyzed. The body weights of larvae fed \(\text{IbKCS} \)-ox leaves were higher than those fed wild-type leaves at 7 d and 9 d of feeding (Fig. 4G, H), suggesting that miR408 attenuates plant resistance to insect attack. Moreover, \(\text{IbPCL} \)-ox and \(\text{IbGAUT} \)-ox leaves were not different from those fed the EV leaves (Fig. 5A). The body weights of insects fed \(\text{IbKCS} \)-ox leaves were lower than those fed EV leaves (Fig. 5A), whereas the body weights of insects fed \(\text{IbPCL} \)-ox and \(\text{IbGAUT} \)-ox leaves were not different from those fed the EV tobacco leaves (Fig. 5A).

Involvement of miR408 in JA response

The defense-related phytohormone JA is known to participate in wounding signaling and insect damage of plants (Fürstenberg-Hägg et al., 2013; Wasternack and Hause, 2013). To characterize whether miR408 is involved in JA signaling, the expression of miR408 and its target genes was examined after JA treatment (Fig. 6). The expression of \(\text{pre408} \) and
miR408 was obviously reduced after JA treatment (Fig. 6A, B). Although IbKCS, IbPCL, and IbGAUT were the targets of miR408 in the wounding response, only IbKCS was regulated by JA treatment (Fig. 6C–E).

Effects of miR408 on water loss rate, plant growth, and chlorophyll degradation

Physical barriers function to protect plants against herbivory and water loss (Riederer and Schreiber, 2001; Lee et al., 2009; Mitchell et al., 2016). To determine whether miR408 is involved in barrier formation, the water loss rate of leaves was monitored. The water loss rate from the detached leaves of miR408-ox plants was increased compared with that of wild-type plants (Fig. 7A). This result indicated that overexpression of miR408 increased the sensitivity to water deficiency in sweet potato.

In addition to regulating defense ability and water deficiency, the transgenic lines Pre408-ox1 and Pre408-ox2 reduced vegetative growth (Fig. 7B). After 9 weeks growth of cutting propagation, stem lengths of miR408-ox transgenic sweet potatoes were ~40% shorter than those of the wild type (Fig. 7C). MiR408-ox also had a profound effect on root formation. Cut stems of plants with six fully developed leaves were immersed in water, and root growth was induced. After 16 d of inducing root growth, the length of the primary root of miR408-ox transgenic sweet potato was ~50% shorter than that of the wild type (Fig. 7D; Supplementary Fig. S3). These results indicated that overexpression of miR408 in sweet potato significantly decreased plant growth.

Furthermore, Pre408-ox1 and Pre408-ox2 plants had the visible chlorosis phenotypes; thus, the chlorophyll contents of the plants were analyzed. Total chlorophyll contents in miR408-ox plants were lower than those in the wild type (Fig. 7E). Simultaneously, the efficiency of PSII in transgenic sweet potato leaves was investigated by the \(F_v/F_m \) values. Under a saturating light pulse, the \(F_v/F_m \) value of miR408-ox was lower than that of the wild type, indicating the reduced efficiency of electron transfer in miR408-ox transgenic plants (Fig. 7F).

Discussion

MiR408 in plants

MiR408 contains 21 nucleotides and has been identified in >30 plants (Reinhart et al., 2002; Axtell and Bowman, 2008; Kozomara and Griffiths-Jones, 2011). The alignment of pre408 sequences revealed the maximum conservation sequences in the stem region of the hairpin structures, from which mature miR408 are produced (Supplementary Fig. S1). Although miR408s within pre408s are conserved in many plants, the mature miR408 sequences are not all the same (Supplementary Table S5). Recent studies have shown...
that miRNA families have a pattern of positional differentiation between dicots and monocots (Jagtap and Shivaprasad, 2014; Montes et al., 2014). In general, the 5’ start nucleotide of miR408 in most dicots is the nucleotide A, whereas that in monocots is the nucleotide C. However, the 5’ start nucleotide and the 3’-terminal nucleotide of miR408 in sweet potato...
and Solanaceae are the nucleotide U (Supplementary Table S5). The shift variants of miRNA in sweet potato may lead to the recognition of different targets compared with other dicots.

The expression of miR408 in responses to cold, salinity, dehydration, and oxidative stresses, heavy metals, and pathogen infection has been reported in various plant species (Jia et al., 2009b; Kantar et al., 2010; Feng et al., 2013; Ozhuner et al., 2013; Jovanović et al., 2014; Wu et al., 2014; Ma et al., 2015). However, research focusing on the role of miR408 in the wounding response is rare. MiR408 was identified as a wound-inducible miRNA in Nicotiana attenuate (Bozorov et al., 2012), but its function in the wounding response remains unknown. Interestingly, the present study indicated that sweet potato miR408 was negatively regulated upon wounding, suggesting that although the miR408 sequence between Solanaceae and sweet potato is identical, the different expression patterns of miR408 among plants may indicate a special physiological role for miR408 in response to stress.

Targets of miR408 in sweet potato

MiR408 target genes, including plantacyanin, uclacyanin, cupredoxin, laccase family genes, chemocyanin-like protein gene, and Timing of CAB expression 1, have been characterized in plants (Abdel-Ghany and Pilon, 2008; Trindade et al., 2010; Feng et al., 2013; Ma et al., 2015; Thatcher et al., 2015; Zhao et al., 2016; Zhang et al., 2017). In addition to the typical target IbPCL, two sweet potato-specific miR408 target genes, IbKCS and IbGAUT, were identified and verified in this study. Sweet potato PCL exhibited 69% identity with the Arabidopsis PCL (basic blue protein) (Supplementary Figs S4, S5). MiR408 directly cleaved IbPCL at the 10th nucleotide from the 5' end of miR408 in sweet potato (Fig. 3B), and the same cleavage site caused by miR408 has been reported in others plants (Sunkar and Zhu, 2004; Maunoury and Vaucheret, 2011; Feng et al., 2013; Mutum et al., 2013; Hajyzadeh et al., 2015). IbPCL contains the conserved domain of the type 1 copper-binding site of AtPCL (plantacyanin), AtUCC2 (uclacyanin II), and AtCPC (cupredoxin superfamily protein) (Supplementary Fig. S4). Plantacyanins belong to the phyto-cyanin family, which encodes blue copper proteins that function as electron transfer shuttles among proteins (Rydén and Hunt, 1993; Nersissian et al., 1998; Ma et al., 2015). In addition, plantacyanins are also stress-related proteins that function in copper starvation (Kim et al., 2003), plant defense (Nersissian et al., 1998), programmed cell death (Dong et al., 2005), and heavy metal accumulation (Ruan et al., 2011). These findings suggested that the expression of IbPCL may have an important role in wounding response in sweet potato.

In contrast to the interaction between IbPCL and miR408, IbKCS is an atypical target gene of miR408 that contains two mismatches within the miR408 sequence. The IbKCS cleavage sites directed by miR408 were located at the fifth and 10th nucleotides, which are non-canonical and canonical cutting sites, respectively, from the 5' end of miRNA (Fig. 3A). Generally, the extensive cleavage sites of target mRNA directed by miRNA are localized at the 10th and 11th nucleotides from...
the 5' end of miRNA (Schwab et al., 2005; Liu et al., 2015). However, non-canonical cleavage sites in targets induced by miRNA have been reported (Hackenberg et al., 2015; Sharma et al., 2016; Ferdous et al., 2017; Shen et al., 2017). To investigate the relationship between miR408 and \(IbKCS\) orthologous genes, the nucleotide sequences of \(KCS\) orthologs among plants were compared (Supplementary Fig. S6). The number of mismatches within the predicted complementary region of \(KCS\) orthologs in \(N.\ tabacum\), \(A.\ thaliana\), and \(O.\ sativa\) is more than five in the miR408 recognition region (Supplementary Fig. S6), indicating that regulation of miR408 in these \(IbKCS\) orthologs may not be effective.

\(IbGAUT\) is another atypical target of miR408 in sweet potato. MiR408 directed the cleavage of \(IbGAUT\) at the 11th nucleotide from the 5' end of miRNA (Fig. 3C). The nucleotide sequence comparison of \(GAUT\) orthologs revealed the presence of more than five mismatches, and the asymmetric bulges between miR408 and the miR408 predicted target sites in \(N.\ tabacum\), \(A.\ thaliana\), and \(O.\ sativa\) (Supplementary Fig. S7). These results suggested a unique feature of sweet potato miR408 by targeting to \(IbKCS\) and \(IbGAUT\) in regulation of the wounding response.

Functions of sweet potato miR408 in the mechanical and herbivore wounding responses

In this study, we found that overexpression of miR408 in sweet potato decreased the resistance of sweet potato to \(S.\ litura\) (Fig. 4), indicating that the wound-induced repression of miR408 was a defense regulatory mechanism to prevent the wounding damage caused by insect feeding through miRNA-mediated target repression. JA plays an important role as a signaling molecule in plant defense against insect herbivory (Fürstenberg-Hägg et al., 2013; Wasternack and Hause, 2013). Mithöfer et al. (2014) reported that both mechanical wounding and herbivore damage can increase JA accumulation in plants. Moreover, transcriptome analyses indicated that a large portion of wounding- and herbivore-induced responses are mediated through JA signaling (Reymond et al., 2000; Wu and Baldwin, 2010).
Interestingly, a previous report showed that nta-miR408 is induced by wounding, but it is JA independent (Bozorov et al., 2012). In contrast to nta-miR408, the expression of pre408 and miR408 is JA dependent in sweet potato (Fig. 6A, B), suggesting that Ib-miR408 and nta-miR408 play different roles in the wound-mediated JA response. In sweet potato, endogenous JA enhanced by wounding modulates the signal transduction and triggers the activation of defense genes in response to herbivore wounding (Rajendran et al., 2014; Chen et al., 2016b). Both wounding and insect feeding reduced the expression of miR408, resulting in the induction of IbKCS, IbPCL, and IbGAUT in sweet potato. However, only IbKCS was clearly induced when the plants were treated with JA compared with IbPCL and IbGAUT (Fig. 6C–E), suggesting that IbKCS may be the major target gene of miR408 in the wound-mediated JA response. Indeed, IbKCS-ox plants demonstrated an enhanced defense response against S. litura compared with the EV, IbPCL-ox, and IbGAUT-ox plants (Fig. 5). Taken together, these results indicated that herbivore wounding regulates miR408 repression via JA signaling that increases insect resistance by regulating IbKCS expression. However, the detailed mechanism of IbKCS in insect resistance is not fully understood.

A phylogenetic analysis revealed that IbKCS is closely associated with AtKCS4, AtKCS9, AtKCS16, and AtKCS20 (Supplementary Fig. S8). These KCS proteins function as
fatty acid elongases, which are involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberin, sphingolipids, and phospholipids (Kim et al., 2013). In addition, KCS catalyzes acyl elongation to produce very long chain fatty acids for wax synthesis (Todd et al., 1999; Weidenbach et al., 2014; Guo and Jetter, 2017). In several cases, KCS genes are involved in the biosynthesis of cuticular wax, which covers the aerial surfaces of plants to limit water loss and invader attack (Kunst and Samuels, 2003; Jetter et al., 2007; Lee et al., 2009; War et al., 2012; Weidenbach et al., 2015). Plant barriers, including waxes, trichomes, and lattices, play important roles in defenses against phytophagous insects (Eigenbrode and Espelie, 1995; Reina-Pinto and Yephremov, 2009; Fürstenberg-Hägg et al., 2013) and resistance to other stresses (Jenks et al., 1995; De Bigault Du Granrut and Cacas, 2016). Previous literature demonstrated that the gene functioning in barrier trichome formation increases the ability for defense against insect herbivores in tobacco (Wang et al., 2001) and tomato (Gao et al., 2017). Although many studies discussed the involvement of the barrier of cuticular wax in plant resistance (Gorb and Gorb, 2017; Domínguez et al., 2017), rare reports indicated that KCS genes or their homologs function directly in insect resistance. Thus, the detailed function of KCS in insect defense is still unclear. Moreover, the sensitivity to water loss in miR408-ox plants may also imply the function of IbKCS in wax synthesis (Fig. 7A). In view of these findings, we speculated that IbKCS may participate in surface barrier formation to confer resistance in sweet potato.

IbPCL and IbGAUT are wound-responsive genes, but JA independent (Fig. 6D, E). The JA-dependent wound healing response plays an essential role in plant protection (Howe et al., 1996; Halitschke and Baldwin, 2003; Howe, 2004), while JA-independent wound-induced genes may also participate in wound healing (de Bruxelles and Roberts, 2001; Sasaki et al., 2002). PCL has been demonstrated to be a regulator of copper homeostasis in plants (Abdel-Ghany and Pilon, 2008; Ma et al., 2015) in order to participate in the multiple abiotic stresses and resistance to stripe rust (Feng et al., 2013; Ma et al., 2015), but its detailed function remains unknown. PCL has been proposed to be involved in the oxidative burst, which may occur in pathogen infection and mechanical wounding (Low and Merida, 1996; Nersissian et al., 1998; Dong et al., 2005). Reactive oxygen species function as signaling molecules participating in regulating development and defense responses in plants (Apel and Hirt, 2004). Herbivore-induced damage requires repair of the cell wall to prevent pathogen entry (War et al., 2012). Accordingly, most cell wall repair genes have been reported to be up-regulated upon wounding (Pandey et al., 2017). GAUT family genes are critical proteins for the synthesis of homogalacturonan, which is the most abundant pectic polymer in the primary cell wall of plant (Wolf et al., 2009; L. Wang et al., 2013). The sequence alignments of IbGAUT exhibited high identity to the GAUT7 family (Supplementary Fig. S9), suggesting that IbGAUT may function in cell wall structure for wound healing (Bouton et al., 2002; Lao et al., 2003; Orfila et al., 2005; Persson et al., 2007). Thus, we proposed that IbPCL and IbGAUT may play different roles from IbKCS in sweet potato upon wounding.

The conserved miR408 family has diverse biological functions in multiple plant species. Our study reveals the involvement of miR408 in the wounding response by regulating its specific targets in sweet potato. The regulation mechanism between miR408 and its targets, IbKCS, IbPCL, and IbGAUT, not only affects plant development but also participates in the plant defense response.

Supplementary data

Supplementary data are available at JXB online.

Table S1. The conserved miRNAs repressed in sweet potato upon wounding by small RNA sequencing.

Table S2. Primers used in this study.

Table S3. Small RNA deep sequencing of the unwounded and wounded sweet potato leaves.

Table S4. Statistics of the paired-end transcriptome sequencing data from sweet potato leaves.

Table S5. Mature miR408 sequences in different plants.

Fig. S1. Clusters of miR408 precursors (MIR408) in different plant species.

Fig. S2. Analysis of transgenic plants.

Fig. S3. Phenotypes of sweet potato plants overexpressing miR408.

Fig. S4. Comparisons of the plantacyanin family.

Fig. S5. Phylogenetic tree of the basic blue protein (BBP) family in plants.

Fig. S6. Comparisons of the 3-ketoacyl-CoA synthase-like gene (KCS) in plants.

Fig. S7. Comparisons of galacturonosyltransferase-like gene (GAUT) in plants.

Fig. S8. Phylogenetic tree of the KCS protein family in plants.

Fig. S9. Phylogenetic tree of the GAUT protein family in plants.

Acknowledgements

This work was supported by the Ministry of Education and Technology, ROC under grants 105-2313-B-002-052-MY3 and 105-2311-B-002-018, and by the National Taiwan University under grants 105R892004, 105R104509, 106R891504, and 107L893103 to S-TJ.

References

Abdel-Ghany SE, Pilon M. 2008. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. Journal of Biological Chemistry 283, 15932–15945.

Ameres SL, Zamore PD. 2013. Diversifying microRNA sequence and function. Nature Reviews. Molecular Cell Biology 14, 475–488.

Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399.

Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF. 1996. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proceedings of the National Academy of Sciences, USA 93, 13404–13409.

Axtell MJ, Bowman JL. 2008. Evolution of plant microRNAs and their targets. Trends in Plant Science 13, 343–349.

Axtell MJ, Westholm JO, Lai EC. 2011. Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biology 12, 221.
Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

Bouton S, Leboeuf E, Mouille G, Leydecker MT, Talbotec J, Granier F, Lahaye M, Höfte H, Truong HN. 2002. QUASIMODO encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. The Plant Cell 14, 2577–2590.

Bowles DJ. 1990. Defense-related proteins in higher plants. Annual Review of Biochemistry 59, 873–907.

Bozorov TA, Baldwin IT, Kim SG. 2012. Identification and profiling of miRNAs during herbivory reveals jasmonate-dependent and -independent patterns of accumulation in Nicotiana attenuata. BMC Plant Biology 12, 209.

Budak H, AKpinar BA. 2015. Plant miRNAs: biogenesis, organization and origins. Functional & Integrative Genomics 15, 523–531.

Budak H, Kantar M, Bulut R, Akpinar BA. 2015. Stress responsive miRNAs and isomiRs in cereals. Plant Science 235, 1–13.

Chen SP, Kuo CH, Lu HH, Lo HS, Yeh KW. 2016a. The sweet potato NAC-domain transcription factor IbNAC1 is dynamically coordinated by the activator IbbHLH3 and the repressor IbbHLH4 to reprogram the defense mechanism against wounded. PLoS Genetics 12, e1006397.

Chen SP, Lin IW, Chen X, Huang YH, Chang SC, Lo HS, Lu HH, Yeh KW. 2016b. Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding to the SWRE motif against mechanical wounding and herbivore attack. The Plant Journal 86, 234–248.

Chen YC, Lin HH, Jeng ST. 2008. Calcium influxes and mitogen-activated protein kinase activation mediate ethylene inducing ipomeoëin gene expression in sweet potato. Plant, Cell & Environment 31, 62–72.

Cheng MC, Liao PM, Kuo WW, Lin TP. 2013. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology 162, 1566–1582.

De Bigault Du Granrut A, Cacas JL. 2016. How very-long-chain fatty acids could signal stressful conditions in plants? Frontiers in Plant Science 7, 1490.

de Bruxelles GL, Roberts MR. 2001. Signals regulating multiple responses to wounding and herbivores. Critical Reviews in Plant Sciences 20, 487–521.

Domingue E, Heredia-Guerrero JA, Heredia A. 2017. The plant cuticle: old challenges, new perspectives. Journal of Experimental Botany 68, 5251–5255.

Dong J, Kim ST, Lord EM. 2005. Plantacycain plays a role in reproduction in Arabidopsis. Plant Physiology 138, 778–789.

Eigenbrode SD, Espelie KE. 1995. Effects of plant epicuticular lipids on insect herbivores. Annual Review of Entomology 40, 171–194.

Feng H, Zhang Q, Wang G, Wang X, Liu J, Li M, Huang L, Kang Z. 2013. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays key roles in reproductive mechanism for microRNA-223 expression revealed by microRNA gene origins. Functional & Integrative Genomics 15, 103–114.

Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990, 87–92.

Gorb EV, Gorb SN. 2017. Anti-adhesive effects of plant wax coverage on insect attachment. Journal of Experimental Botany 68, 5323–5337.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. 2011. Trinit: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology 29, 644.

Guo Y, Jetter R. 2017. Comparative analyses of cuticular waxes on various organs of potato (Solanum tuberosum L.). Journal of Agricultural and Food Chemistry 65, 3926–3933.

Hackenberg M, Gustafson P, Langridge R, Shi BJ. 2015. Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnology Journal 13, 2–13.

Hajzadeh M, Turkats M, Khawar KM, Unver T. 2015. miR408 overexpression causes increased drought tolerance in chickpea. Gene 555, 186–193.

Halitsche R, Baldwin IT. 2003. Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. The Plant Journal 36, 794–807.

Horsch R, Fry J, Hoffman N, Eichholtz D, Rogers SA, Fraley R. 1985. A simple and general method for transferring genes into plants. Science 227, 1292–1298.

Howe GA. 2004. Jasmonates as signals in the wound response. Journal of Plant Growth Regulation 23, 223–237.

Howe GA, Lightner J, Ryan C. 1996. An octadecanoid pathway mutant (uls) of tomato is compromised in signaling for defense against insect attack. The Plant Cell 8, 2067–2077.

Jagadeeswaran G, Saini A, Sunkar R. 2009. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229, 1009–1014.

Jagetia S, Shrivaprasad PV. 2014. Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants. BMC Genomics 15, 1049.

Jeng ST, Gardner JF, Gumpor RI. 1990. Transcription termination by bacteriophage T7 RNA polymerase at rho-independent terminators. Journal of Biological Chemistry 265, 3823–3830.

Jeng ST, Gardner JF, Gumpor RI. 1992. Transcription termination in vitro by bacteriophage T7 RNA polymerase. The role of sequence elements within and surrounding a rho-independent transcription terminator. Journal of Biological Chemistry 267, 19306–19312.

Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA. 1995. Leaf epicuticular waxes of the easternev mutants in Arabidopsis. Plant Physiology 108, 369–377.

Jeong DH, Thatcher SR, Brown RS, Zhai J, Park S, Rymarquis LA, Meyers BC, Green PJ. 2013. Comprehensive investigation of microRNAs enhanced by analysis of sequence variants, expression patterns, ARGONAUTE loading, and target cleavage. Plant Physiology 162, 1225–1245.

Jetter R, Kunst L, Samuels AL. 2007. Composition of plant cuticular waxes. Annual Plant Reviews 23, 145–181.

Jia X, Ren L, Chen QJ, Li R, Tang G. 2009a. UV-B-responsive microRNAs in Populus tremula. Journal of Plant Physiology 166, 2046–2057.

Jia X, Wang WX, Ren L, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang X, Tang G. 2009b. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Molecular Biology 71, 51–58.

Jones-Rhoades MW, Bartel DP. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell 71, 51–59.

Jovanović Ž, Stanislavijević N, Mikić A, Radićović S, Maksimović V. 2014. Water deficit down-regulates miR398 and miR408 in pea (Pisum sativum L.). Plant Physiology and Biochemistry 83, 26–31.

Juszczak I, Baier M. 2012. The strength of the miR398–Csd2–CCS1 region is subject to natural variation in Arabidopsis thaliana. FEBS Letters 586, 3385–3390.

Kantar M, Unver T, Budak H. 2010. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Functional & Integrative Genomics 10, 493–507.

Karlova R, van Haarst JC, Maliepaard C, van de Geest H, Bovy KW, De Bigault Du Granrut A, Cacas JL. 2015. Identification and profiling of miRNAs during herbivory reveals jasmonate-dependent and -independent patterns of accumulation in Nicotiana attenuata. BMC Plant Biology 12, 209.

Kargoja V, van Haarst JC, Maliepaard C, van de Geest H, Bovy KW. 2015. Plant miRNAs: biogenesis, organization and origins. Functional & Integrative Genomics 15, 523–531.

Kantar M, Unver T, Budak H. 2010. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Functional & Integrative Genomics 10, 493–507.

Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC. 2003. P1/HC-Pro, a viral suppressor of RNA silencing,
interferes with Arabidopsis development and miRNA function. Developmental Cell 4, 205–217.

Khrapivnaya A, Arif MA, Seemal GI, Ossowski S, Weigel D, Reski R, Frank W. 2010. Transcriptional control of gene expression by microRNAs. Cell 140, 111–122.

Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahanon R, Markham JE, Cahanon EB, Suh MC. 2013. Arabidopsis 3-ketoacyl-coA: A synthase is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberin, sphingolipids, and phospholipids. Plant Physiology 162, 567–580.

Kim MJ, Beak K, Park CM. 2009. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Reports 28, 1159–1167.

Kim S, Mollet JC, Dong J, Zhang K, Park SY, Lord EM. 2003. Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proceedings of the National Academy of Sciences, USA 100, 16125–16130.

Kim VN. 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology 6, 376–385.

Koizumi A, Griffiths-Jones S. 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research 39, 152–157.

Kunst L, Samuels AL. 2003. Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research 42, 51–80.

Langmead B. 2010. Aligning short sequencing reads with Bowtie. Current Protocols in Bioinformatics. 32, 11.7.1–11.7.14.

Lao NT, Long D, Kiang S, Coupland G, Shoue DA, Carpita NC, Kavanagh TA. 2003. Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis. Plant Molecular Biology 53, 647–661.

Lee SB, Jung SJ, Go YS, Kim HU, Cho HJ, Park OK, Suh MC. 2009. Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS2 and KCS2/DA/SY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. The Plant Journal 60, 462–475.

León J, Rojo E, Sánchez-Serrano JJ. 2001. Wound signalling in plants. Journal of Experimental Botany 52, 1–9.

Li C, Zhang B. 2016. MicroRNAs in control of plant development. Journal of Cellular Physiological 231, 303–313.

Li YC, Wan WL, Lin JS, Kuo YW, King YC, Chen YC, Jeng ST. 2016. Signal transduction and regulation of lbpreproHypSy5 in sweet potato. Plant, Cell & Environment 39, 1576–1587.

Lin JS, Lin CC, Li YC, Wu MT, Tsai MH, Hsing YIC, Jeng ST. 2013. Interaction of small RNA-8105 and the intron of lbMYB1 RNA regulates lbMYB1 family genes through secondary siRNAs and DNA methylation after wounding. The Plant Journal 75, 781–794.

Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST. 2012. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New phytologist 196, 427–440.

Lin JS, Lin HH, Li YC, King YC, Sung RJ, Kuo YW, Lin CC, Shen YH, Jeng ST. 2014. Carbon monoxide regulates the expression of the wound-inducible gene pmoelcin through antioxidation and MAPK phosphorylation in sweet potato. Journal of Experimental Botany 65, 5279–5290.

Liu Q, Wang F, Axtell MJ. 2014. Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. The Plant Cell 26, 741–753.

Liu S, Li JH, Wu J, Zhou KR, Zhou H, Yang JH, Qu LH. 2015. StarScan: a web server for scanning small RNA targets from degradome sequencing data. Nucleic Acids Research 43, W480–W486.

Low P, Merida J. 1996. The oxidative burst in plant defense: function and signal transduction. Physiologia Plantarum 96, 533–542.

Ma C, Burd S, Lers A. 2015. miR408 is involved in abiotic stress responses in Arabidopsis. The Plant Journal 84, 169–187.

Maunoury N, Vaucheret H. 2011. AGO1 and AGO2 act redundantly in miR408-mediated Plantacyanin regulation. PLoS One 6, e28729.

Mendes ND, Freitas AT, Sagot MF. 2009. Current tools for the identification of miRNA genes and their targets. Nucleic Acids Research 37, 2419–2433.

Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ. 2008. Criteria for annotation of plant microRNAs. The Plant Cell 20, 3186–3190.

Minocha R, Martínez G, Lyons B, Long S. 2009. Development of a standardized methodology for quantifying total chlorophyll and carotenoids from foliage of hardwood and conifer tree species. Canadian Journal of Forest Research 39, 849–861.

Miskiewicz J, Tomczyk K, Mickiewicz A, Sarzynska J, Szachiuk M. 2017. Bioinformatics study of structural patterns in plant microRNA precursors. BioMed Research International 2017, e683010.

Mitchell C, Brennan RM, Graham J, Karley AJ. 2016. Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection. Frontiers in Plant Science 7, 1132.

Mithöfer A, Reichelt M, Nakamura Y. 2014. Wound and insect-induced jasmonate accumulation in carnivorous Drosera capensis: two sides of the same coin. Plant Biology 16, 982–987.

Montes RAC, Rosas-cárdenas FDF, De Paoli E, Acerbi M, Pymarquis LA, Mahalingam G, Marsch-Martinez N, Meyers BC, PJ De, Fotter S. 2014. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nature Communications 5, 3722.

Mutum RD, Balyan SC, Kansal S, Garwal P, Kumar S, Kumar M, Raghuvanshi S. 2013. Evolution of variety-specific regulatory schema for expression of csa-miR408 in indica rice varieties under drought stress. FEBS Journal 280, 1717–1730.

Nersissian AM, Valentine JS, Immoos C, Hill MG, Hart PJ, Williams G, Herrmann RG. 1998. Uclaycanins, stellacyanins, and plantacyanins are distinct subfamilies of phytocyanins: plant-specific mononuclear blue copper proteins. Protein Science 7, 1915–1929.

Niu D, Lii YE, Chellappan P, Lei L, Peralta K, Jiang C, Guo J, Coaker G, Jin H. 2016. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nature Communications 7, 11324.

Orfia C, Sørensen SO, Harholt J, Geshi N, Crombie H, Truong HN, Reid JS, Knox JP, Scheller HV. 2005. QUASIMODO1 is expressed in vascular tissue of Arabidopsis thaliana inflorescence stems, and affects homogalacturonan and xylan biosynthesis. Planta 222, 613–622.

Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang B, Boke H, Unver T. 2013. Boron stress responsive microRNAs and their targets in barley. PLoS One 8, e59543.

Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A. 2007. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Research 35, e60.

Pandey SP, Srivastava S, Goel R, Lakhwani D, Singh P, Asif MH, Sane AP. 2017. Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin pathways and hormonal transcription networks in Arabidopsis thaliana. Scientific Reports 7, 44729.

Pérez-Quintero ÁL, Quintero A, Urrego O, Vanegas P, López C. 2012. Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis. BMC Plant Biology 12, 29.

Persson S, Caffall KH, Freshour G, Hilley MT, Baur S, Poindexter P, Hahn MG, Mohnen D, Somerville C. 2007. The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. The Plant Cell 19, 237–255.

Pollard M, Beisson F, Li Y, Ohroge JB. 2008. Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science 13, 236–246.

Pozo MJ, Van Der Ent S, Van Loon LC, Pieterse CM. 2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytologist 180, 511–523.

Rajendran S, Lin IW, Chen CY, Yeh KW. 2014. Differential activation of sporamin expression in response to abiotic mechanical wounding and biotic herbivore attack in the sweet potato. BMC Plant Biology 14, 112.

Rascher U, Liebig M, Lütge U. 2000. Evaluation of instant light-response curves of chlorophyll fluorescence parameters with a portable

chlorophyll fluorometer on site in the field. Plant, Cell & Environment 23, 1397–1405.

Reina-Pinto JJ, Yephremov A. 2009. Surface lipids and plant defenses. Plant Physiology and Biochemistry 47, 540–549.

Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. 2002. MicroRNAs in plants. Genes & Development 16, 1616–1626.

Reymond P, Weber H, Damond M, Farmer EE. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell 12, 707–720.

Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. 2002. Prediction of plant microRNA targets. Cell 110, 513–520.

Riederer M, Schreiber L. 2001. Protecting against water loss: analysis of the barrier properties of plant cuticles. Journal of Experimental Botany 52, 2023–2032.

Rogers K, Chen X. 2013. Biogenesis, turnover, and mode of action of plant microRNAs. The Plant Cell 25, 2383–2399.

Ruan XM, Luo F, Li DD, Zhang J, Liu ZH, Xu WL, Huang QQ, Li XB. 2011. Cotton BCP genes encoding putative blue copper-binding proteins are functionally expressed in fiber development and involved in response to high-salinity and heavy metal stresses. Physiologia Plantarum 141, 71–83.

Rydén LG, Hunt LT. 1993. Evolution of protein complexity: the blue copper-containing oxidases and related enzymes. Journal of Molecular Evolution 36, 41–66.

Samad AFA, Saajd M, Nazaruddin N, Fauzi IA, Murad AMA, Zainal Z, Ismail I. 2017. MicroRNA and transcription factor: key players in plant regulatory network. Frontiers in Plant Science 8, 566.

Sasaki K, Hiraga S, Ito H, Seo S, Matsui H, Ohashi Y. 2002. A wound-inducible tobacco peroxidase gene expresses preferentially in the vascular system. Plant & Cell Physiology 43, 108–117.

Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. 2005. Specific effects of microRNAs on the plant transcriptome. Developmental Cell 8, 517–527.

Sharma D, Tiwari M, Pandey A, Bhatia C, Sharma A, Trivedi PK. 2014. Wounding in the plant tissue: the defense of a dangerous passage. Frontiers in Plant Science 5, 470.

Sharma D, Tiwari M, Pandey A, Bhatia C, Sharma A, Trivedi PK. 2016. MicroRNA585 is a potential regulator of phenylpropanoid pathway and plant development in Arabidopsis. Plant Physiology 171, 944–959.

Shen EM, Singh SK, Ghosh JS, Patra B, Paul P, Yuan L, Pattanaik S. 2011. Structural basis of microRNA length conservation and divergence of plant microRNA genes. The Plant Journal 70, 669–687.

Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, Wu D, Guo H, Xie D. 2013. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genetics 9, e1003653.

Sunkar R, Chinnusamy V, Zhu J, Zhu JK. 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science 12, 301–309.

Sunkar R, Zhu JK. 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell 16, 2001–2019.

Tang S, Wang Y, Li Z, Gui Y, Xiao B, Xie J, Zhu QH, Fan L. 2012. Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum), BMC Plant Biology 12, 28.

Thatcher SR, Burd S, Wright C, Lers A, Green PJ. 2015. Differential expression of miRNAs and their target genes in senescing leaves and siliques: insights from deep sequencing of small RNAs and cleaved target RNAs. Plant, Cell & Environment 38, 188–200.

Todd J, Post-Beltenmiller D, Jaworski JG. 1999. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. The Plant Journal 17, 119–130.

Trindade I, Capitão C, Dalmary T, Fevereiro MP, Santos DM. 2010. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231, 705–716.

Veipold O. 2009. Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669–687.

Wang B, Sun YF, Song N, Wei JP, Wang XJ, Feng H, Yin ZY, Kang ZS. 2014. MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiology and Biochemistry 80, 90–96.

Wang C, Han J, Korir NK, Wang X, Liu H, Li X, Leng X, Fang J. 2013. Characterization of target miRNAs for grapevine microRNAs with an integrated strategy of modified RLM-RACE, newly developed PPM-RACE and qPCRs. Journal of Plant Physiology 170, 943–957.

Wang E, Wang R, DeParasis J, Loughrin JH, Gan S, Wagner GJ. 2001. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nature Biotechnology 19, 371–374.

Wang L, Wang W, Wang YQ, Liu YY, Wang JX, Zhang XQ, Ye D, Chen LQ. 2013. Arabidopsis galacturonosyltransferase (GAUT) 13 and GAUT14 have redundant functions in pollen tube growth. Molecular Plant 6, 1131–1148.

War AR, Pauralg MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7, 1306–1320.

Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Annals of Botany 111, 1021–1058.

Weidenbach D, Jansen M, Bodewein T, Nagel KA, Schaffrath U. 2015. Shoot and root phenotyping of the barley mutant kcs6 (3-ketoacyl-CoA synthase) depleted in epicuticular waxes under water limitation. Plant Signaling & Behavior 10, 1–3.

Weidenbach D, Jansen M, Franke RB, Hensel G, Weissberger W, Ulbert S, Jansen I, Schreiber L, Korzin V, Pontzen R. 2014. Evolutionary conserved function of barley and Arabidopsis 3-KETOACYL-CoA SYNTHASEs in providing wax signals for germination of powdery mildew fungi. Plant Physiology 166, 1621–1633.

Wolf S, Mouille G, Pelloux J. 2009. Homogalacturonan methyl-esterification and plant development. Molecular Plant 2, 851–860.

Wong HL, Shimamoto K. 2009. Sending ROS on a bullet train, Science Signaling 2, pe60.

Wu F, Shu J, Jin W. 2014. Identification and validation of miRNAs associated with the resistance of maize (Zea mays L.) to Exserohilum turcicum. PLoS One 9, e87251.

Wu J, Baldwin IT. 2010. New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics 44, 1–24.

Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T. 2009. Detailed study of KCS1-like and coevolutionary consequences of MIRNA genes and microRNA targets from insect herbivores. Annual Review of Genetics 43, 1–24.

Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T. 2009. Detailed study of KCS1-like and coevolutionary consequences of MIRNA genes and microRNA targets from insect herbivores. Annual Review of Genetics 43, 1–24.

Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T. 2009. Detailed study of KCS1-like and coevolutionary consequences of MIRNA genes and microRNA targets from insect herbivores. Annual Review of Genetics 43, 1–24.

Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T. 2009. Detailed study of KCS1-like and coevolutionary consequences of MIRNA genes and microRNA targets from insect herbivores. Annual Review of Genetics 43, 1–24.