Prevalence and Genetic Characteristics of Meatborne
Listeria monocytogenes Isolates from Livestock Farms in Korea

Hyemin Oh1,2, Sejeong Kim1,2, Soomin Lee1,2, Heeyoung Lee1,2, Jimyeong Ha1,2, Jeeyeon Lee1,2, Yukyung Choi1,2, Kyoung-Hee Choi3*, and Yohan Yoon1,2*
1Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
2Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Korea
3Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan 54538, Korea

Abstract

This study aimed to evaluate the prevalence of Listeria monocytogenes on livestock farms in Korea and determine their serotypes and genetic correlations. Twenty-five livestock farms in Korea (central: 15, south west: 7, south east: 3) were visited 2-3 times, and 2,018 samples (feces: 677, soil: 680, silage: 647, sludge: 14) were collected. Samples were enriched in LEB (Listeria enrichment broth) and Fraser broth media, and then plated on Palcam agar. The isolates were identified by PCR and 16S rRNA gene sequencing. Then, the serotypes of the isolates were evaluated by analyzing the restriction digest pattern with AscI. Of the 2,018 samples, only 3 (0.15%) soil samples (FI-1-FI-3) from 1 farm in the south east region were positive for L. monocytogenes. Based on biochemical tests and multiplex PCR, the serotype of the isolates were 4ab (FI-1 and FI-3) and 3a (FI-2), which are not common in foodborne L. monocytogenes. The 3a serotype isolate was positive for all tested virulence genes, whereas the 4ab serotype isolates were only positive for hlyA, actA, and inlA. The isolates were resistant to all 12 tested antibiotics, especially FI-3. The genetic correlations among the isolates were 100% for those of the same serotype and 26.3% for those of different serotypes. These results indicate that the prevalence of L. monocytogenes on livestock farms in Korea is low; however, the isolates are pathogenic and antibiotic resistant.

Keywords: Listeria monocytogenes, livestock farms, pulsed field gel electrophoresis

Received October 11, 2016; Accepted November 24, 2016

Introduction

Listeria monocytogenes is a gram-positive, facultative intracellular foodborne pathogen (Vázquez-Boland et al., 2001). The pathogen is the causative agent of listeriosis in animals and humans, which is associated with high mortality, especially in humans (Vázquez-Boland et al., 2001). In humans, listeriosis can cause meningitis, septicemia, and abortion (Locatelli et al., 2013). There are 13 L. monocytogenes serotypes, 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4b, 4ab, 4c, 4d, 4e, and 7, and most human cases of listeriosis are caused by infection with serotypes 1/2a, 1/2b, and 4 (Kathariou, 2002). In the USA, the incidence of listeriosis was estimated to be 0.3 cases per 100,000 in 2005 (CIDRP, 2011), which is close to the EU incidence rate of 0.3 cases per 100,000 (Denny and McLauchlin, 2008). In addition, the estimated mortality rate for listeriosis in the USA was reported to be 16.6%, which is similar to that reported in the USA (EFSA, 2011). Thus, many countries have investigated the prevalence of L. monocytogenes and the serotypes present in various environments, including livestock farms, slaughterhouses, and meat-processing plants to elucidate the potential pathways of L. monocytogenes transmission.

L. monocytogenes is widely distributed in various environments, such as water and soil, and the pathogen can be transferred to animals. Animals infected with L. monocytogenes are generally asymptomatic carriers and can shed the pathogen in their feces, which may contaminate fresh and processed meat products (Boscher et al., 2012). Watkins and Sleath (1981) showed that the levels of L. monocytogenes in sewage sludge on contaminated farm land remained unchanged for at least eight weeks. Silage has
also been identified as a risk factor for farm animal listeriosis through feed consumption, which can result in dissemination of the pathogen in farm environments through animal feces (Fenlon et al., 1996; Weidmann et al., 1996).

In France, Boscher et al. (2012) investigated the prevalence of *L. monocytogenes* and its serotypes in sows in 2008, and they showed that 46% of sow farms and 11% of the collected samples were positive for the pathogen. The serotype distribution was as follows: 1/2a (41%), 1/2b (36%), 4b (21%), and 1/2c (2%). In the feces of black beef cattle in Japan, the *L. monocytogenes* isolation rates were 11.4% of 651 samples (northern region), 2.8% of 572 samples (central region), and 2.9% of 515 samples (southern region). Moreover, 1/2b was the most prevalent serotype (40.5%) followed by 1/2a (36.9%), 4b (21.6%), and 4ab (1.0%) (Megumi et al., 2014). However, in Korea, the prevalence of *L. monocytogenes* on livestock farms has not been studied; thus, very limited information is available on the occurrence of *L. monocytogenes*.

Therefore, this study aimed to estimate the current prevalence of *L. monocytogenes* on livestock farms in Korea through molecular identification and serotyping of *L. monocytogenes* isolates and by analyzing the genetic correlations among the isolates by pulsed-field gel electrophoresis (PFGE).

Materials and Methods

Sample collection

The following samples were collected from each livestock farm: fecal (10), soil (10), silage (10) for pig and cattle farms, and sludge (1) only from pig farms. This same number of samples was collected at each visit from 25 farms (20 cattle farms and 5 pig farms). Each farm was visited 2-3 times in a 1-year period. Fecal samples were collected from animal pens with sterile specimen cups (SPL Life Science, Korea), and soil samples were collected from the soil around the animal pens with sterile specimen cups. Silage samples were collected in plastic sample bags, and sludge samples were collected in sterile specimen cups. All samples were placed on ice in a cooler and transferred to our laboratory for analysis.

L. monocytogenes isolation

To isolate *L. monocytogenes* from the samples, the method published by the Manufacturing and Ingredient Regulations for Livestock Products (MFDS, 2015) was used, with some modifications. Briefly, 25-g samples of feces, soil, or sludge were transferred from the specimen cups to sterile plastic sample bags containing 50 mL of Listeria enrichment broth (LEB; Becton Dickinson and Company, USA), and homogenized with a pummeler (BagMixer® 400; Interscience, France) for 60 s. To enrich *L. monocytogenes* in the samples, the homogenates were incubated at 30°C for 24 h. Then, 1-mL aliquots of the enrichments were added to 9 mL of Fraser broth (Becton Dickinson and Company) and incubated at 37°C for 24-48 h. A loopful of the Fraser broth was streaked on Palcam agar (Becton Dickinson and Company), and the plate was incubated at 30°C for 48 h. Three to five *L. monocytogenes*-like colonies from each Palcam agar plate were inoculated into 10 mL of tryptic soy broth plus 0.6% yeast extract (TSBYE; Becton Dickinson and Company) and incubated at 30°C for 24 h. A loopful of the cultures was then streaked on brain-heart infusion (BHI) agar (Becton Dickinson and Company) and incubated at 30°C for 24 h. The colonies on BHI agar were used for identification by PCR.

Identification of L. monocytogenes

The colonies on the BHI agar plates were analyzed by PCR (Rotor-GeneQ; Qiagen, Germany) for the presence of *prs*, a *Listeria* spp.-specific gene (Doumith et al., 2004), and *hlyA*, a *L. monocytogenes*-specific gene (Burall et al., 2011). The PCR amplification was carried out at 98°C for 30 s, followed by 35 cycles of denaturation at 98°C for 5 s, annealing at 60°C for 5 s, and extension at 72°C for 10 s, and a final 1-min extension at 72°C. The *hlyA*-positive samples were further analyzed by 16S rRNA gene sequencing to confirm their identity as *L. monocytogenes*. The genomic template DNA (20 ng) was amplified by EF-Taq (Solgent, Korea) in a 30 μL reaction mixture. An initial activation step was performed at 95°C for 2 min, followed by 35 cycles of denaturation at 95°C for 5 s, annealing at 55°C for 1 min, and extension at 72°C for 10 s, with a final extension step at 72°C for 10 min. A multiscreen filter plate (Millipore Co., USA) was used to purify the amplified products and the primers 27F (5'-AGA GTT TGA TCM TGG CTC AG-3') and 1492R (5'-TAC GGY TAC CTT GTT AGC ACT T-3') (Lane et al., 1991; Weisburger et al., 1991). DNA samples containing the extension products were mixed with Hi-Di formamide (Applied Biosystems, USA). Then, the mixture was incubated at 95°C for 5 min, on ice for 5 min, and then analyzed with an ABI Prism 3730XL DNA analyzer (Applied Biosystems).

Serotyping

Isolated *L. monocytogenes* strains were serotyped accor-
Genotypic Profile of *L. monocytogenes* Isolates from Farms

According to the method described by Doumith *et al.* (2004). Five primer sets (ORF2819, ORF2120, *lmo0737*, *lmo1118*, and *prs*) were used in a multiplex PCR. A single colony was suspended in 100 μL of the mixture of sterile distilled water and 50 μL of a 0.25% sodium dodecyl sulfate-0.05 N NaOH solution, and heated at 99°C for 15 min. Then, 2 μL of the suspension was used as the DNA template. The concentration of each primer was 0.2 μM. Then, the template and primers were mixed in a reaction with a final volume of 50 μL using the Qiagen multiplex PCR kit (Germany). The multiplex PCR was performed in a Rotor-Gene Q (Qiagen), with an initial denaturation step at 94°C for 15 min, followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 57°C for 90 s, and extension at 72°C for 60 s, with a final 30-min extension at 60°C. After PCR, 20 μL of the reaction mixture was mixed with 4 μL of loading buffer (Dyne Bio, Korea) and separated on a 1.5% agarose gel in 1× TAE buffer (Biosesang, Korea) for 20 min. Then, the serotypes of the *L. monocytogenes* isolates were determined by analyzing the banding patterns of the products from the multiplex PCR. Serotypes were also determined by an agglutination assay using *Listeria* antiserum (Denka Seiken, Japan) according to the manufacturer’s instructions. When the multiplex PCR analysis and agglutination test results were in agreement, the serotypes of the *L. monocytogenes* isolates were confirmed.

Detection of virulence genes

To detect virulence genes, such as *inlA*, *inlB*, *actA*, *plcB*, and *hlyA*, typical *L. monocytogenes* colonies on Palcam agar were resuspended in 100 μL of sterile distilled water and 50 μL of 0.05 N NaOH-0.25% sodium dodecyl sulfate solution and incubated at 99°C for 15 min. For virulence gene amplification by PCR, an aliquot of this mixture (2 μL) was mixed with the components of the Phire Hot Start II DNA polymerase mix (20 mM Tris-HCl, pH 7.4 at 25°C; 0.1 mM EDTA; 1 mM DTT; 100 mM KCl; 200 μg/mL BSA; and 50% glycerol), 1× reaction buffer (1.5 mM MgCl₂), 200 μM deoxynucleoside triphosphates (dNTPs; Promega Co., USA), and 0.5 μM each virulence gene primer listed in Table 1. PCR was performed in a Rotor-Gene Q with the following program: an initial denaturation step at 98°C for 30 s, followed by 35 cycles of 98°C for 5 s, 60°C for 5 s, and 72°C for 10 s, with a final extension step at 72°C for 1 min. After PCR, an aliquot of the reaction products (20 μL) was mixed with 4 μL of loading star, and then separated by electrophoresis in a 1.5% agarose gel.

Pulsed-Field Gel Electrophoresis (PFGE)

To determine the genetic correlations among the *L. monocytogenes* isolates, they were analyzed by pulsed-field gel electrophoresis (PFGE) according to the standard protocol of Graves and Swaminathan (2001), with some modifications. In brief, *L. monocytogenes* isolates from culture were embedded in 1% SeaKem gold agarose (Cambrex, USA) and lysed with cell lysis buffer (50 mM Tris, 50 mM EDTA, 1% Sarcosine) and proteinase K at 54-55°C for 2 h. The agarose-embedded samples were washed with TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) 7 times, and then digested with the restriction enzyme *AscI* (Enzymomics, Korea) at 37°C for 2 h. The restricted DNA fragments were separated through a 1% SeaKem gold agarose gel in 0.5× tris borate EDTA (TBE) with a CHEF MAPPER XA system (Bio-Rad, USA) at 14°C, 6.0 V/cm, and 120° with a linear ramping factor of 2.2-54 s for 19 h. *XbaI*-digested *Salmonella enterica*-serotype Braenderup H9812 DNA was used as a size standard. After electrophoresis, the agarose gel was stained with SYBR gold (Molecular Probes, USA) and destained with dH₂O for 1 h. Images of the banding patterns were captured using an LAS-3000 imaging system (Fujifilm, Japan), and the

Primer	Size (bp)	Sequence (5′ to 3′)	Reference
inlA	255	For: CCTAGCAGGTCTAAACGCAC Rev: TCGCTAATTTGGTTATGCC Chelef *et al.*, 2006	
inlB	146	For: AAAGCACGATTTCATGGGAG Rev: ACATAGCCTTGTTTGGCG Yong *et al.*, 2003	
hlyA	174	For: GCATCTGCATTCAATAAAGA Rev: TGTCACTGCATCTCCGTGG Riedo *et al.*, 1994	
actA	385	For: GACGAAAATCCCGAAGTGAA Rev: CTAGCGAAGGTGCTGTTCC Gianfranceschi *et al.*, 1998	
plcB	261	For: GGGAAATTTGACACAGGCGT Rev: ATTTTCGGGTTAGTCCGCTT Winters *et al.*, 1999	
PFGE patterns were analyzed with Gelcompar II 6.6 software (Applied Maths, Belgium). Similarity clustering analyses of the isolates were performed by the unweighted pair group method with arithmetic mean (UPGMA) using the Dice correlation coefficient and 1% tolerance.

Antimicrobial susceptibility assay

Antimicrobial susceptibility testing was performed according to the Clinical Laboratory Standards Institute (CLSI, 2014). A single colony of each *L. monocytogenes* isolate was inoculated into 10 mL of tryptic soy broth containing 0.6% yeast extract (TSBYE; Becton, Dickinson and Company). After incubation at 30°C for 24 h, the culture was diluted with 5 mL of phosphate buffered saline (PBS, pH 7.4; KH$_2$PO$_4$, 0.2 g; Na$_2$HPO$_4$, 1.5 g; NaCl, 8.0 g; KCl, 0.2 g in 1 L of dH$_2$O) to an OD$_{620}$ of 0.2. A sterile swab was dampened with the cell suspension, and approximately 1-2×108 CFU/mL of bacterial inoculum was spread on the surface of a Muller-Hinton agar plate (Becton Dickinson and Company). The plates were then incubated at room temperature for 10-15 min to allow the plate to absorb the liquid. Then, antibiotic discs (Oxoid, UK) were placed on the surface of the agar with a multidisc dispenser (Oxoid). After incubation at 30°C for 24 h, the diameters of the clear zones were measured. Antimicrobial sensitivity (resistant, intermediate, and susceptible) was judged according to the standards of the Clinical Laboratory Standard Institute (CLSI, 2014). The following 12 antimicrobial agents (amounts) were used: gentamycin (10 μg), penicillin G (10 units), tetracycline (30 μg), spectinomycin (100 μg), kanamycin (30 μg), erythromycin (15 μg), tigecycline (15 μg), ampicillin (10 μg), streptomycin (10 μg), vancomycin (30 μg), chloramphenicol (30 μg), and rifampicin (5 μg) (Oxoid, UK).

Results

Prevalence of *L. monocytogenes* on livestock farms in Korea

A total of 2,018 samples were collected, including 677 feces samples, 680 soil samples, 647 silage samples, and 14 sludge samples. All feces, silage and sludge samples were negative for *L. monocytogenes*. Only 3 of the samples were positive for *L. monocytogenes*, and all 3 were soil samples obtained from a single cattle farm in the south east region. Thus, 3 of the 2,018 (0.15%) samples from livestock farms in Korea were contaminated with *L. monocytogenes*, which is a low prevalence rate. In addition, the farm from where the contaminated samples were obtained was revisited, however, no *L. monocytogenes* was isolated.

Serotypes of *L. monocytogenes* isolates

The 3 *L. monocytogenes* isolates were examined by multiplex PCR and agglutination assays to determine their serotypes. Multiplex PCR analysis can be used to classify *L. monocytogenes* strains into 1 of 5 serotype groups, group 1 (1/2a and 3a), group 2 (1/2c and 3c), group 3 (1/2b, 3b, and 7), group 4 (4b, 4d, and 4e), and group 5 (other serotypes and *Listeria* spp.), by the presence/absence of lineage-specific and serogroup-specific sequences (Douth et al., 2004). The multiplex PCR results showed that isolate FI-2 was group 1 (1/2a and 3a), whereas the other isolates, FI-1 and FI-3, were group 5 (other serotypes such as 4a, 4d, 4ab; Fig. 1). Since multiplex PCR only determines serotype group, an agglutination assay was also conducted, and the results are shown in Table 3. Based on the results of the multiplex PCR and agglutination assays,
the serotypes of the *L. monocytogenes* isolates were determined. *L. monocytogenes* FI-1 and FI-3 were determined to be serotype 4ab, and *L. monocytogenes* FI-2 was determined to be 3a, which are 2 serotypes that are not commonly isolated from food products and humans (Huang et al., 2015; Zhang et al., 2007).

Presence of virulence genes and genetic correlation

To determine the pathogenicity of the *L. monocytogenes* isolates, the presence of 5 virulence genes, *actA, inlA, inlB, hlyA*, and *plcB*, was detected by PCR. The FI-2 isolate showed all 5 virulence genes, indicating that it may be pathogenic to humans. The FI-1 and FI-3 isolates showed only *actA, hlyA*, and *inlA*, indicating that these isolates may have low pathogenicity (Wiedmann et al., 1996). The 3 *L. monocytogenes* farm isolates were genotyped using PFGE (Fig. 2). DNA macrorestriction with *Ascl* suggests that the FI-1 and FI-3 isolates were 100% similar, whereas the FI-2 isolate (3a) shared only 26.3% similarity with the FI-1 and FI-3 isolates (4ab), showing low genetic correlation. These results show that although these strains of *L. monocytogenes* were isolated from the same geographical location, they had different serotypes and low genetic correlation.

Antibiotic resistance of *L. monocytogenes* isolates

Most *L. monocytogenes* isolates showed resistance to most tested antibiotics except tetracycline, erythromycin, and chloramphenicol. Of these 3 antibiotics, only isolate FI-3 was resistant to tetracycline and chloramphenicol. All 3 isolates had intermediate sensitivity to erythromycin (Table 3).

Table 3. Serotypes of *Listeria monocytogenes* strains FI-1, FI-2, and FI-3 isolated from a cattle farm determined by multiplex PCR and agglutination analysis

Isolate strain	*lmo* (906 bp)	*lmo* (691 bp)	ORF 2110 (2819 bp)	ORF 2819 (370 bp)	*prs* (370 bp)	serotype	Final serotype
FI-1							
FI-2							
FI-3							

Table 4. Antibiotic susceptibility testing of *Listeria monocytogenes* isolate strains FI-1, FI-2, and FI-3

Antibiotic	FI-1	FI-2	FI-3
Gentamycin	12.0 ± 0.8 R	12.0 ± 0.8 R	12.5 ± 1.3 R
Penicillin G	10.3 ± 2.1 R	10.5 ± 1.9 R	10.0 ± 0.8 R
Tetracycline	14.5 ± 1.3 R	15.8 ± 1.0 R	13.3 ± 1.0 R
Spectinomycin	10.0 ± 1.4 R	10.8 ± 1.5 R	9.5 ± 1.7 R
Kanamycin	12.8 ± 1.0 R	12.0 ± 1.4 R	12.3 ± 1.5 R
Erythromycin	15.5 ± 1.3 R	15.3 ± 1.7 R	15.0 ± 2.2 R
Tigecycline	13.3 ± 1.5 R	13.0 ± 1.8 R	11.5 ± 2.1 R
Ampicillin	14.0 ± 2.2 R	14.0 ± 1.8 R	13.5 ± 1.9 R
Streptomycin	9.8 ± 1.0 R	9.5 ± 1.3 R	8.5 ± 1.3 R
Vancomycin	11.5 ± 0.6 R	12.3 ± 1.0 R	10.8 ± 1.0 R
Chloramphenicol	13.0 ± 2.0 R	13.0 ± 2.3 R	12.3 ± 2.1 R
Rifampicin	11.8 ± 1.0 R	12.5 ± 1.3 R	12.0 ± 1.2 R

Values shown are the diameters (mean ± SD; mm) of clear zones.

AB Means within the same row with different superscript letters are significantly different (*p<0.05*).

R: resistant, I: intermediate, S: susceptible (CLSI, 2014)
Discussion

Although *L. monocytogenes* foodborne outbreaks have not been reported in Korea, many cases of *L. monocytogenes* infection have been reported. Thus, the potential sources of these *L. monocytogenes* infections need to be examined. Animal feces and soil are potential sources of *L. monocytogenes* (Oliver *et al*., 2005). Fox *et al.* (2009) reported that 14% and 25% of samples from silage and hay used for feeding and cattle bedding, respectively, were positive for *L. monocytogenes*. Silage contamination may cause infection in animals. Other studies (Ho *et al*., 2007; Schoder *et al*., 2011) showed variation in the prevalence of *L. monocytogenes* in feces. Thus, the pathogen may infect humans through consumption of contaminated meat. Although some studies isolated *L. monocytogenes* from slaughterhouses for hens, pigs, and cattle in Korea, the detection rate of *L. monocytogenes* on livestock farms was considerably lower than reported in other countries (Baek *et al*., 2000). Kang *et al.* (1998) and Yi *et al.* (2000) detected no *L. monocytogenes* contamination in fecal and water samples from livestock farms in Korea. Therefore, in this study, we examined potential contamination sources, such as feces, soil, silage, and sludge, on livestock farms, and we collected a total of 2,018 samples in 2-3 visits to each farm. Only 3 soil samples from a cattle farm in the south west region were contaminated with *L. monocytogenes*. Soil is considered a natural source of *L. monocytogenes* (Locatelli *et al*., 2013), and the pathogen may infect humans through food processing. The results of our study indicate that *L. monocytogenes* is present on livestock farms in Korea, which is in disagreement with previous data. However, the prevalence was very low compared to that in other countries such as France (11-46%) and Japan (2.8-11.4%) (Boscher *et al*., 2012; Megumi *et al*., 2014).

The serotypes of the *L. monocytogenes* isolates in this study were 3a and 4ab, which are rarely reported in food and human listeriosis (Doumith *et al*., 2004). Of the isolates, FI-2 is serotype 3a, which belongs to lineage II (Nadon *et al*., 2001), suggesting that, although serotype 3a is not a common cause of human listeriosis, it could cause human listeriosis. The finding of an isolate of this serotype in agreement with the high prevalence of 3a serotypes on dairy farms (Jamali *et al*., 2013). The serotype 4ab *L. monocytogenes* isolates FI-1 and FI-3 do not belong to any lineage.

A recent study by Rahimi *et al.* (2010) suggested that *Listeria* species were resistant to tetracycline and penicillin. G. Walsh *et al.* (2001) showed that 10.9% of *L. monocytogenes* isolates were resistant to 1 or more antibiotic agents, and were most frequently resistant to tetracycline (6.7%) and penicillin (3.7%). However, all the isolates in our study were multidrug resistant, and showed resistance to all tested antibiotics, including tetracycline. The high prevalence of resistance to tetracycline in these *L. monocytogenes* isolates may be caused by treating animal infections with tetracycline (Aureli *et al*., 2002; Vela *et al*., 2001). The high prevalence of *L. monocytogenes* multidrug resistance observed in our study, compared to that observed in other countries, is cause for concern; thus, control measures should be established to decrease antibiotic resistance. Although the 3 *L. monocytogenes* isolates were obtained from the same cattle farm, they were of 2 different serotypes, and the genetic correlation between these serotypes was very low. This suggests that *L. monocytogenes* strains of various serotypes that are genetically unrelated can be found in the same geographical region, which should be considered in epidemiological studies.

In conclusion, although the prevalence is low, *L. monocytogenes* can be isolated from livestock farms in Korea. The serotypes of the isolates were not those that commonly infect humans; however, the presence of virulence genes suggests that they could be infectious. In addition, the isolates showed resistance to multiple antibiotics, which is not common for *L. monocytogenes*. Therefore, control measures for *L. monocytogenes* on livestock farms are needed.

Acknowledgements

This research was supported by a grant (Z-1543081-20 14-15-01) from the Animal and Plant Quarantine Agency in 2014-2015.

References

1. Aureli, P., Ferrini, A. M., Mannoni, V., Hodzic, D., Wedell-Weergaard, C., and Oliva, B. (2002) Susceptibility of *Listeria monocytogenes* isolated from food in Italy to antibiotics. *Int. J. Food Microbiol.* **83**, 325-330.
2. Baek, S. Y., Lim, S. Y., Lee, D. H., Min, K. H., and Kim, C. M. (2000) Incidence and characterization of *Listeria monocytogenes* from domestic and imported foods in Korea. *J. Food Prot.* **63**, 186-189.
3. Boscher, E., Houard, E., and Denis, M. (2012) Prevalence and distribution of *Listeria monocytogenes* serotypes and pulsortypes in sows and fattening pigs in farrow-to-finish farms (France, 2008). *J. Food Prot.* **72**, 889-895.
4. Burall, L. S., Simpson, A. C., and Datta, A. R. (2011) Evaluation of a serotyping scheme using a combination of an anti-
body-based serogrouping method and a multiplex PCR assay for identifying the major serotypes of *Listeria monocytogenes*. *J. Food Prot.* **74**, 403-409.

5. CIDRP (Center for Infectious Disease Research and Policy). (2011) Listeriosis. Available from: http://www.cidrap.umn.edu/cidrap/content/fs/food-disease/causes/listerioview.html. Accessed Aug 4, 2016.

6. CLSI (Clinical Laboratory Standards Institute). (2014). M100-S24. Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement.

7. Denny, J. and McLauchlin, J. (2008) Human *Listeria monocytogenes* infections in Europe—an opportunity for improved European surveillance. *Euro. Surveill.* **13**, 80-82.

8. Doumith, M., Bucherieser, C., Glaser, P., Jaquet, C., and Mar tin, P. (2004) Differentiation of the major *Listeria monocytogenes* serovars by multiplex PCR. *J. Clin. Microbiol.* **42**, 3819-3822.

9. EFSA (European Food Safety Authority). (2011) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009. EFSA J. **9**, 2090.

10. Fenlon, D. R., Wilson, J., and Donachie, W. (1996) The incidence and level of *Listeria monocytogenes* contamination of food sources at primary production and initial processing. *J. Appl. Microbiol.* **81**, 641-650.

11. Fox, E., O’Mahony, T., Clancy, M., Dempsey, R., O’Brien, M., and Jordan, K. (2009) *Listeria monocytogenes* in the Irish dairy farm environment. *J. Food Prot.* **72**, 1450-1456.

12. Gianfranceschi, M., Fransiosa, G., Gattuso, A., and Aureli, P. (1998) Detection of two phospholipases C by means of plate tests for the rapid identification of pathogenic *Listeria monocytogenes*. *Archiv für Lebensmittelhygien* **49**, 54-57.

13. Graves, L. M. and Swaminathan, B. (2001) PulseNet standardized protocol for subtyping *Listeria monocytogenes* by macrorestriction and pulsed-field gel electrophoresis. *Int. J. Food Microbiol.* **65**, 55-62.

14. Ho, A. J., Lappi, V. R., and Wiedmann, M. (2007) Longitudinal monitoring of *Listeria monocytogenes* contamination patterns in a farmstead dairy processing facility. *J. Dairy Sci.* **90**, 2517-2524.

15. Huang, Y. T., Ko, W. C., Chan, Y. J., Lu, J. J., Tsai, H. Y., Liao, C. H., Sheng, W. H., Teng, L. J., and Hsueh, P. R. (2015) Disease burden of invasive listeriosis and molecular characterization of clinical isolates in Taiwan, 2000-2013. *PLoS One* **10**, e0141241. doi:10.1371/journal.pone.0141241

16. Jamali, H., Radmehr, B., and Thong, K. L. (2013) Prevalence, characterisation, and antimicrobial resistance of *Listeria* species and *Listeria monocytogenes* isolates from raw milk in farm bulk tanks. *Food Control* **34**, 121-125.

17. Kang, H. J., Kim, J. S., Suk, J. M., Lee, S. M., and Son, W. G. (1998) Prevalence of *Salmonella* spp., *Escherichia coli* O157: H7 and *Listeria monocytogenes* in fresh feces and in drinking water of feedlots. *Kor. J. Vet. Publ. Hlth.* **22**, 195-200.

18. Kathariou, S. (2002) *Listeria monocytogenes* virulence and pathogenicity, a food safety perspective. *J. Food Prot.* **65**, 1811-1829.

19. Khelef, N., Lecuit, M., Bierre, H., and Cossart, P. (2006) Species specificity of the *Listeria monocytogenes InlB* protein. *Cell Microbiol.* **8**, 457-470.

20. Lane, D. J. (1991) 16S/23S rRNA sequencing. In Stackebrandt, E., Goodfellow, M. (Ed.) Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, 115-175.

21. Locatelli, A., Depret, G., Joliver, C., Henry, S., Dequiedt, S. Piveteau, P., and Hartmann, A. (2013) Nation-wide study of the occurrence of *Listeria monocytogenes* in French soils using culture-based and molecular detection methods. *J. Microbiol. Method.* **93**, 242-250.

22. Megumi, H., Eriko, I., Shiiori, Y., Masatake, M., Ikuro, T., and Katsuya, H. (2014) Prevalence and characteristics of *Listeria monocytogenes* in feces of black beef cattle reared in three geographically distant area in Japan. *Foodborne Pathog. Dis.* **11**, 96-103.

23. Ministry of Food and Drug Safety (MFDS). (2015) Processing standards and ingredient specifications for livestock products. Available at: http://www.mfds.go.kr/eng/eng/index.do?nMenuCode=120&page=1&mode=view&boardSeq=70016. Accessed 1 September 2016.

24. Nadon, C. A., Woodward, D. L., Young, C., Rodgers, F. G., and Weidmann, M. (2001) Correlations between molecular subtyping and serotyping of *Listeria monocytogenes*. *J. Clin. Microbiol.* **39**, 2704-2707.

25. Oliver, S. P., Jayarao, B. M., and Almeida, R. A. (2005) Food-borne pathogens in milk and the dairy farm environment: food safety and public health implications. *Foodborne Pathog. Dis.* **2**, 115-129.

26. Rahimi, E., Ameri, M., and Mombaz, H. (2010) Prevalence and antimicrobial resistance of *Listeria* species isolated from milk and dairy products in Iran. *Food Control* **21**, 1448-1452.

27. Riedo, F. X., Weaver, R. E., Plikaytis, B. D., and Broome, C. V. (1994) A point-source foodborne listeriosis outbreak: documented incubation period and possible mild illness. *J. Infect. Dis.* **170**, 693-696.

28. Schoder, D., Melzer, D., Schmalwieser, A., Zangana, A., Winter, P., and Wagner, M. (2011) Important vectors for *Listeria monocytogenes* transmission at farm dairies manufacturing fresh sheep and goat cheese from raw milk. *J. Food Prot.* **74**, 919-924.

29. Swaminathan, B. and Gerner-Smidt, P. (2007) The epidemiology of human listeriosis. *Microbes Infect.* **9**, 1236-1243.

30. Vázquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebe, W., Gonzalez-Ber, B., Wehl land, J., and Kreft, J. (2001) *Listeria* pathogenesis and molecular virulence determinants. *Clin. Microbiol. Rev.* **14**, 584-640.

31. Vela, A. I., Fernandez-Garayzabal, J. F., Latre, M. V., Rodri guez, A. A., Dominguez, L., and Moreno, M. A. (2001) Antimicrobial susceptibility of *Listeria monocytogenes* isolated from meningococcephalitis in sheep. *Int. J. Antimicrob. Agents* **17**, 215-220.

32. Walsh, D., Duffy, G., Sheridan, J. J., Blair, I. S., and McDow ell, D. A. (2001) Antibiotic resistance among *Listeria*, inclu-
d Listeria monocytogenes, in retail foods. J. Appl. Microbiol. 90, 517-522.
33. Watkins, J. and Sleath, K. P. (1981) Isolation and enumeration of Listeria monocytogenes from sewage, sewage sludge and river water. J. Appl. Bacteriol. 50, 1-9.
34. Weidmann, M., Bruce, J., Korr, R., Bodis, E., Cole, C., McDowell, P., McDonough, P., and Batt, C. (1996) Ribotype diversity of Listeria monocytogenes strains associated with outbreaks of listeriosis in ruminants. J. Clin. Microbiol. 34, 1086-1090.
35. Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J. (1991) 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703.
36. Winters, D. K., Maloney, T. P., and Johnson, M. G. (1999) Rapid detection of Listeria monocytogenes by a PCR assay specific for an amino peptidase. Mol. Cell. Probes 13, 127-131.
37. Yi, C. H., Son, W. G., and Kang H. J. (2000) Prevalence and antibiotic-resistance of Listeria monocytogenes from sewage of livestock farms and product processing plants. Kor. J. Vet. Publ. Hlth. 24, 9-15.
38. Yong, S. J., Joseph, F., Frank, R., Brackett, E., and Jinru, C. (2003) Polymerase chain reaction detection of Listeria monocytogenes on frankfurters using oligonucleotide primers targeting the genes encoding internalin AB. J. Food Prot. 66, 237-241.
39. Zhang, Y., Yeh, E., Hall, G., Cripe, J., Bhagwat, A. A., and Meng, J. (2007) Characterization of Listeria monocytogenes isolated from retail foods. Int. J. Food Microbiol. 113, 47-53.