GEOMETRIC MOVES RELATE GEOMETRIC TRIANGULATIONS

TEJAS KALELKAR AND ADVAIT PHanse

Abstract. We show that geometric triangulations of a compact hyperbolic, spherical or Euclidean n-manifold are related by geometric Pachner moves up to barycentric subdivisions. For $n \leq 3$, we show that geometric triangulations of a closed hyperbolic, spherical or Euclidean n-manifold are related by geometric Pachner moves.

1. Introduction and Notation

A foundational theorem of Pachner\cite{P} states that PL triangulations of PL homeomorphic manifolds are related by local combinatorial transformations called bistellar or Pachner moves. Whitehead\cite{W} showed that smooth triangulations of diffeomorphic smooth manifold are related by smooth Pachner moves. In this short note, we show that geometric triangulations of isometric constant curvature manifolds are related by geometric Pachner moves up to barycentric subdivisions. In low dimensions, barycentric subdivisions can be realised by geometric Pachner moves so the subgraph of geometric triangulations of the Pachner graph becomes connected. This can be used to show that any quantity calculated from a geometric triangulation which is invariant under geometric Pachner moves is in fact an invariant of the manifold. In \cite{K} we give an alternate approach using shellings to relate geometric triangulations via combinatorial Pachner moves (which may not be geometric). This gives a tighter bound on their distance in the Pachner graph than the one that can be calculated from the algorithm in this paper.

A geometric triangulation of a Riemannian manifold is a finite triangulation where the interior of each simplex is a totally geodesic disk. Every constant curvature manifold has a geometric triangulation. In the converse direction, Cartan has shown that if for every point p in a Riemannian manifold M and every subspace V of T_pM there exists a totally geodesic submanifold S through p with $T_pS = V$, then M must have constant curvature; which seems to suggest that the only manifolds which have many geometric triangulations are the constant curvature ones. A common subcomplex of simplicial triangulations K_1 and K_2 of M is a simplicial complex structure L on a subspace of M such that $K_1|_L = K_2|_L = L$. The main result in this article is the following:

Theorem 1.1. Let K_1 and K_2 be geometric simplicial triangulations of a compact constant curvature manifold M with a (possibly empty) common subcomplex L with $|L| \supset \partial M$. When M is spherical we assume that the diameter of the star of each

\textit{Date:} August 2, 2019.

\textit{2010 Mathematics Subject Classification.} Primary 57Q25, 57Q20.

\textit{Key words and phrases.} Hauptvermutung, geometric triangulation, Pachner moves, combinatorial topology.
simplex is less than π. Then for some $s \in \mathbb{N}$, the s-th derived subdivisions $\beta^s K_1$ and $\beta^s K_2$ are related by geometric Pachner moves which keep $\beta^s L$ fixed.

We call K the geometric triangulation of a cusped hyperbolic manifold M if for some subset V' of the set of vertices of K, $M = |K| \setminus |V'|$ and the interior of each simplex of K is a totally geodesic disk in M. Cusped finite volume hyperbolic manifolds have canonical ideal polyhedral decompositions \cite{3}. Further decomposing this into ideal triangulations without introducing new vertices may result in degenerate flat tetrahedra. If however we allow genuine vertices, simply taking a barycentric subdivision of this polyhedral decomposition gives a geometric triangulation for any cusped manifold. For cusped manifolds we have the following weaker result:

Theorem 1.2. Let K_1 and K_2 be geometric simplicial triangulations of a cusped hyperbolic manifold which have a common geometric subdivision. Then for some $s \in \mathbb{N}$, the s-th derived subdivisions $\beta^s K_1$ and $\beta^s K_2$ are related by geometric Pachner moves.

In dimension 2 and 3, every internal stellar move can be realised by geometric Pachner moves (see for example Lemma 2.11 of \cite{4}), so we get the following immediate corollary:

Corollary 1.3. Let K_1 and K_2 be geometric simplicial triangulations of a closed constant curvature 3-manifold M. When M is spherical we assume that the diameter of the star of each simplex is less than π. Then K_1 is related to K_2 by geometric Pachner moves.

An abstract simplicial complex consists of a finite set K^0 (the vertices) and a family K of subsets of K^0 (the simplexes) such that if $B \subset A \subset K$ then $B \in K$. A simplicial isomorphism between simplicial complexes is a bijection between their vertices which induces a bijection between their simplexes. A realisation of a simplicial complex K is a subspace $|K|$ of some \mathbb{R}^N, where K^0 is represented by a finite subset of \mathbb{R}^N and vertices of each simplex are in general position and represented by the linear simplex which is their convex hull. Every simplicial complex has a realisation in \mathbb{R}^N where N is the size of K_0, by representing K_0 as a basis of \mathbb{R}^N. Any two realisations of a simplicial complex are simplicially isomorphic. For a simplex of K, we denote by ∂A the boundary complex of A. When the context is clear, we shall use the same symbol A to denote the simplex and the simplicial complex $A \cup \partial A$. We call K a simplicial triangulation of a manifold M if there exists a homeomorphism from a realisation $|K|$ of K to M. The simplexes of this triangulation are the images of simplexes of $|K|$ under this homeomorphism. The books by Rourke and Sanderson\cite{9} and Ziegler\cite{14} are good sources of introduction to the theory of piecewise linear topology.

Definition 1.4. For A and B simplexes of a simplicial complex K, we denote their join $A \ast B$ as the simplex $A \cup B$. As the join of totally geodesic disks in a constant curvature manifold gives a totally geodesic disk, operations involving joins are well-defined in the class of geometric triangulations of a constant curvature manifold. The link of a simplex A in a simplicial complex K is the simplicial complex defined by $\text{lk}(A,K) = \{B \in K : A \ast B \in K\}$. The (closed) star of A in K is the simplicial complex defined by $\text{st}(A,K) = A \ast \text{lk}(A,K)$.

Definition 1.5. Suppose that A is an r-simplex in a simplicial complex K of dimension n then a stellar subdivision on A gives the geometric triangulation $(A,a)K$.
by replacing \(st(A,K) \) with \(a \ast \partial A \ast lk(A,K) \) for \(a \in \text{int}(A) \). The inverse of this operation \((A,a)^{-1}K\) is called a stellar weld and they both are together called stellar moves.

When \(\text{lk}(A,K) = \partial B \) for some \((n-r)\)-dimensional geometric simplex \(B \notin K \), then the Pachner or bistellar move \(\kappa(A,B) \) consists of changing \(K \) by replacing \(A \ast \partial B \) with \(\partial A \ast B \). Note that the bistellar move \(\kappa(A,B) \) is the composition of a stellar subdivision and a stellar weld, namely \((B,a)^{-1}(A,a)\).

The barycentric subdivision \(\beta K \) of \(K \) is obtained from \(K \) by performing a stellar subdivision on all \(r \)-simplexes, and ranging \(r \) inductively from \(n \) down to 1.

All stellar and bistellar moves we consider are geometric in nature. Not every combinatorial bistellar move in a geometric manifold can be expressed by geometric bistellar moves (see Fig 1). For details of geometric bistellar moves see Santos [10], where he has also shown that in dimension at least 5, there exist geometric triangulations of a polyhedron that cannot be related by geometric bistellar moves which do not introduce new vertices. Among cusped hyperbolic manifolds, it is remarked in [2] that the Figure Eight knot complement has geometric ideal triangulations which cannot be related by geometric bistellar moves which do not introduce genuine vertices.

It is known that linear triangulations of a convex polytope \(P \subset \mathbb{R}^N \) are related by stellar moves[7][12]. The idea of the proof is to take a geometrically triangulated cobordism \(P \times I \), subdivide it to a regular triangulation with stellar subdivisions and then realise the stellar moves as projections of the upper boundary onto \(P \) under a shelling sequence which inductively removes simplexes from the top to the bottom.

As the supports in \(\mathbb{R}^N \) of two triangulations of a manifold may be different so when the manifold is not a polytope we cannot take a linear cobordism between them. A subtle point here is that even if we obtain a common geometric refinement of two geometric triangulations, the refinement may not be a simplicial subdivision of the corresponding simplicial complexes. To see a topological subdivision which is not a simplicial subdivision, observe that there exists a simplicial triangulation \(K \) of a 3-simplex \(\Delta \) which contains in its 1-skeleton a trefoil with just 3 edges [6]. If \(K \) were a simplicial subdivision of \(\Delta \) there would exist a linear embedding of \(\Delta \) in some \(\mathbb{R}^N \) which takes simplexes of \(K \) to linear simplexes in \(\mathbb{R}^N \). As the stick number of a trefoil is 6, there can exist no such embedding. While there may not exist such a global embedding of a geometric triangulation \(K \) as a simplicial complex in \(\mathbb{R}^N \) which takes geometric subdivisions to linear subdivisions, for constant curvature manifolds there does exist such a local embedding on stars of simplexes of \(K \). This is the property we exploit in this note.

![Figure 1. A 2-2 combinatorial Pachner move which is not geometric.](image-url)
2. Star-convex flat polyhedra

Definition 2.1. We call a polyhedron P in \mathbb{R}^n strictly star-convex with respect to a point x in its interior if for any $y \in P$, the interior of the segment $[x, y]$ lies in the interior of P. We call the polyhedron $P \subset \mathbb{R}^n$ flat if it is n-dimensional.

We call a triangulation K of P regular if there is a function $h : |K| \to \mathbb{R}$ that is piecewise linear with respect to K and strictly convex across codimension one simplexes of K.

In their proof of the weak Oda conjecture, Morelli and Wlodarczyk proved the following:

Theorem 2.2. \cite{7,12} Any two triangulations of a convex polyhedron are related by a sequence of stellar moves.

Our aim in this section is to show that their techniques also give a boundary relative version for triangulations of strictly star-convex flat polyhedra, with the stronger notion of bistellar equivalence in place of stellar equivalence. The main theorem of this section is the following:

Theorem 2.3. Let $P \subset \mathbb{R}^n$ be a strictly star-convex flat polyhedron. Let K_1 and K_2 be triangulations of P that agree on the boundary. Then for some $s \in \mathbb{N}$, their s-th derived subdivisions $\beta^s K_1$ and $\beta^s K_2$ are bistellar equivalent.

We use the following simple observation in the proof:

Lemma 2.4 (Lemma 4, Ch 1 of \cite{13}). Let K and L denote two simplicial complexes with $|K| \subset |L|$. Then there exists $r \in \mathbb{N}$ and a subdivision K' of K such that K' is a subcomplex of $\beta^r L$.

Lemma 2.5. Let K denote a triangulated flat polyhedron. Then for some $s \in \mathbb{N}$, its s-th derived subdivision $\beta^s K$ is regular.

Proof. Let Δ be an n-simplex with $|\Delta| \supset |K|$. By Lemma 2.4, there exists an $r \in \mathbb{N}$ and subdivision K' of K which is a subcomplex of $\beta^r \Delta$. As Δ is trivially a regular triangulation, so its stellar subdivision $\beta^r \Delta$ is also regular. Restricting its regular function to the subcomplex K' we get K' to be regular, as codimension one simplexes of K' are also codimension one simplexes of $\beta^r \Delta$. As $|K| = |K'|$ so applying Lemma 2.4 a second time, we get $s \in \mathbb{N}$ such that $\beta^s K$ is a subdivision of K'. Finally as $\beta^s K$ is the subdivision of a regular subdivision K' of K so by Claim 3 in proof of Theorem 1 of \cite{1}, $\beta^s K$ is a regular triangulation. \hfill \square

Proof of 2.3. The techniques in this proof are essentially those of Morelli and Wlodarczyk as detailed in Section 2 of \cite{4}.

Choose $a \in \mathbb{R}^{n+1}$ outside K_1 such that the orthogonal projection map $\text{pr} : \mathbb{R}^{n+1} \to \mathbb{R}^n$ takes the support of $C(K_1) = a + K_1 \subset \mathbb{R}^{n+1}$ onto P and takes a to the interior of an n-simplex of K_1. By Lemma 2.5, there exists $s \in \mathbb{N}$ so that $K = \beta^s C(K_1)$ is a regular simplicial cobordism between $\beta^s K_1$ and $\beta^s C(\partial K_1)$. Choose new vertices of the derived subdivision K such that for any simplex $A \in K$ of dimension less than $n+1$, $\text{pr}(A)$ is a simplex of the same dimension as A.

Let $h : |K| \to \mathbb{R}$ be a regular function for K. If a simplex A' has some point above a simplex A then \(\frac{\partial h}{\partial x_{A'}} \) on A' is greater than $\frac{\partial h}{\partial x_{A}}$ on A. So inductively removing simplexes in non-increasing order of the vertical derivative of h we ensure that the projection of the upper boundary onto P is always one-to-one. That
is, we get a sequence of triangulations $\Sigma_0 = K$, Σ_1, ..., $\Sigma_N = K_1$ such that $\Sigma_{i+1} = \Sigma_i \setminus \sigma_i$ and the orthogonal projection $pr : \partial^+ \Sigma_i \to P$ from the upper boundary of Σ_i onto P is one-to-one for every i. Removing an $n + 1$-simplex σ_i from K corresponds to a bistellar move on $\partial^+ \Sigma_i$. As the projection map is linear so it also corresponds to a bistellar move taking $pr(\partial^+ \Sigma_i)$ to $pr(\partial^+ \Sigma_{i+1})$. Therefore $pr(\partial^+ \Sigma_0) = \beta^*C(\partial K_1)$ is bistellar equivalent to $pr(\partial^+ \Sigma_N) = \beta^*K_1$. Consequently, β^*K_1 is bistellar equivalent to β^*K_2 via $\beta^*C(\partial K_1) = \beta^*C(\partial K_2)$. □

3. Geometric manifolds

Definition 3.1. Let K be a geometric triangulation of a Riemannian manifold M and let L be a subcomplex of K. We call K locally geodesically-flat relative to L if for each simplex A of $K \setminus L$, $st(A, K) \setminus lk(A, K)$ is simplicially isomorphic to the interior of a star-convex flat polyhedron in \mathbb{R}^n by a map which takes geodesics to straight lines.

Definition 3.2. Let L be a subcomplex of K containing ∂K and let αK be a subdivision of K which agrees with K on L. Let $\beta^*_n K$ be the subdivision of K such that, if A is a simplex in L or $\text{dim}(A) \leq r$, then $\beta^*_n A = \alpha A$. If A is not in L and $\text{dim}(A) > r$ then $\beta^*_n A = a \ast \beta^*_n \partial A$, i.e. it is subdivided as the cone on the already defined subdivision of its boundary. Observe that $\beta^*_n K$ is αK while $\beta^*_0 K = \beta L K$ is a barycentric subdivision of K relative to L.

Lemma 3.3. Let K be a locally geodesically-flat simplicial complex relative to a subcomplex L which contains ∂K. Let αK be a geometric subdivision of K which agrees with K on L. Then there exists $s \in \mathbb{N}$ for which $\beta^* \alpha K$ is related to $\beta^* K$ by bistellar moves which keep $\beta^* L$ fixed.

Proof. For A a positive dimensional r-simplex in $K \setminus L$, $st(A, \beta^*_n K)$ is a strictly star-convex subset of $st(A, K)$. As K is locally geodesically-flat relative to L, there exists a geodesic embedding taking $st(A, \beta^*_n K)$ to a strictly star-convex flat polyhedron of \mathbb{R}^n. By Theorem 2.3, $\beta^* st(A, \beta^*_n K)$ is bistellar equivalent to $\beta^*C(\partial st(A, \beta^*_n K))$. As A is not in L so no interior simplex of $st(A, \beta^*_n K)$ is in L and consequently these bistellar moves keep $\beta^* L$ fixed. Taking all simplexes A in $K \setminus L$ of dimension $r = n$, we get a sequence of bistellar moves taking $\beta^* \beta^*_n K$ to $\beta^* \beta^*_n K$ while $\beta^* L$ fixed.

And finally, arguing as above with the trivial subdivision $\alpha K = K$, we get $\beta^* \beta L K$ from $\beta^* K$ by bistellar moves which keep $\beta^* L$ fixed. □

The following simple observation allows us to treat the star of a simplex in a geometric triangulation as the linear triangulation of a star-convex polytope in \mathbb{R}^n and bistellar moves in the manifold as bistellar moves of the polytope.

Lemma 3.4. Let K be a geometric simplicial triangulation of a spherical, hyperbolic of Euclidean n-manifold M and let L be a subcomplex of K containing ∂K. When M is spherical we require the star of each positive dimensional simplex of $K \setminus L$ to have diameter less than π. When M is cusped we include the ideal vertices in L. Then K is locally geodesically-flat relative to L.

Proof. Let K be a geometric triangulation of M and let B be the interior of the star of a simplex in $K \setminus L$. As K is simplicial, B is an open n-ball.
When M is hyperbolic, let $\phi : B \to \mathbb{H}^n$ be the lift of B to the hyperbolic space in the Klein model. As geodesics in the Klein model are Euclidean straight lines (as sets) so ϕ is the required embedding.

When M is spherical, let D be the southern hemisphere of $S^n \subset \mathbb{R}^{n+1}$, let T be the hyperplane $x_{n+1} = -1$ and let $p : D \to T$ be the radial projection map (gnomonic projection) which takes spherical geodesics to Euclidean straight lines. As B is small enough, lift B to D and compose with the projection p to obtain the required embedding ϕ from B to $T \simeq \mathbb{E}^n$.

When B is Euclidean let ϕ be the lift of B to \mathbb{R}^n, which is an isometry. □

It is known (Theorem 4 of [1]) that for simplicial complexes of dimension at least 5 the number of derived subdivisions required to make the link of a vertex combinatorially isomorphic to a convex polyhedron is not (Turing machine) computable. So in particular, the stars of simplexes of a geometric triangulation may not even be combinatorially isomorphic to convex polyhedra, which is why we need to work with star-convex polyhedra instead.

Given a Riemannian manifold M, a geometric polytopal complex C of M is a finite collection of geometric convex polytopes in M whose union is all of M and such that for every $P \in C$, C contains all faces of P and the intersection of two polytopes is a face of each of them.

Proof of 1.1 and 1.2. By Lemma 3.4, K_1 and K_2 are locally geodesically flat simplicial complexes. Let C be the geometric polytopal complex obtained by intersecting the simplexes of K_1 and K_2. Then $K = \beta_1 C$, the barycentric subdivision of C relative to L is a common geometric subdivision of K_1 and K_2. When M is a cusped manifold we assume that we are given such a common geometric subdivision K as C might have infinitely many polytopes. By Lemma 3.3 then, there exists $s \in \mathbb{N}$ so that $\beta^s K_1$ and $\beta^s K_2$ are bistellar equivalent via $\beta^s K$ by bistellar moves which leave $\beta^s L$ fixed. In the cusped situation we can take L as the set of ideal vertices. □

Acknowledgements. The first author was supported by the MATRICS grant of Science and Engineering Research Board, GoI and the second author was supported by National Board of Higher Mathematics, GoI.

References

1. Adiprasito, Karim A.; Izmestiev, Ivan Derived subdivisions make every PL sphere polytopal Israel J. Math. 208 (2015), no. 1, 443–450
2. Dadd, Blake; Duan, Aochen Constructing infinitely many geometric triangulations of the figure eight knot complement Proc. Amer. Math. Soc. 144 (2016), no. 10, 4545–4555.
3. Epstein, D. B. A.; Penner, R. C. Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988), no. 1, 67–80.
4. Izmestiev, Ivan; Schlenker, Jean-Marc Infinitesimal rigidity of polyhedra with vertices in convex position, Pacific J. Math. 248 (2010), no. 1, 171–190
5. Kalelkar, Tejas; Phanse, Advait An upper bound on Pachner moves relating geometric triangulations, arXiv:1902.02163
6. Lickorish, W. B. R. Unshellable triangulations of spheres, European J. Combin. 12 (1991), no. 6, 527–530.
7. Morelli, R. The birational geometry of toric varieties, J. Algebraic Geom. 5:4 (1996), 751–782
8. Pachner, Udo P.L. homeomorphic manifolds are equivalent by elementary shellings, European J. Combin. 12 (1991), no. 2, 129–145.
9. Rourke, C. P.; Sanderson B. J. Introduction to piecewise-linear topology, Springer-Verlag, New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69.
10. Santos, F. *Geometric bistellar flips: The setting, the context and a construction*, pp 931–962 in International Congress of Mathematicians, vol 3, Eur. Math. Soc., Zurich, 2006
11. Whitehead, J. H. C. *On C1-complexes*, Ann. Math. (2) 41, 809-824 (1940).
12. Wlodarczyk *Decomposition of birational toric maps in blow-ups and blow-downs*, Trans. Amer. Math. Soc. 349:1 (1997), 373–411
13. Zeeman, E. C *Seminar on Combinatorial Topology* Institut des Hautes Etudes Scientifiques, Paris, 1966
14. Ziegler, G. M. *Lectures on Polytopes*, Revised first ed., (Graduate Texts in Mathematics) Springer

MATHEMATICS DEPARTMENT, INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH, PUNE 411008, INDIA

E-mail address: tejas@iiserpune.ac.in

MATHEMATICS DEPARTMENT, INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH, PUNE 411008, INDIA

E-mail address: advait.phanse@students.iiserpune.ac.in