Reply on the Comment on “New Conditions for a Total Neutrino Conversion in a Medium”

M. V. Chizhov1 and S. T. Petcov2

1Faculty of Physics, University of Sofia, 1164 Sofia, Bulgaria
2SISSA, I-34014 Trieste, Italy

Chizhov and Petcov Reply: We have found in [1] new conditions for a total neutrino conversion in a medium (see also [2,3]). It is claimed in [4] that our results are a particular case of enhancement of neutrino oscillations, suggested in [5,6] and widely discussed in the literature. We refute these claims, confirming the novelty of our results.

We have studied in [1] the transitions $\nu_e \rightarrow \nu_{\mu(r)}$, etc. of neutrinos which crossed $n = 2$ (3) alternating layers with constant densities N_1 and N_2. The probability of the transitions, $P_{2(3)}(\nu_a \rightarrow \nu_b) = P_{2(3)}$, is given by [1,2]:

$$P_2 = 1 - Y^2 - X_3^2, \quad P_3 = 1 - Y^2 - X_3^2,$$

where Y, X_3 are defined in [4] (eqs. (1), (2)), $Y = -c_2 + 2c_1Y$, $X_3 = -s_2\cos2\theta_2 - 2s_1\cos(2\theta_1)Y$, $c_j, s_j \equiv \cos\phi_j, \sin\phi_j$, $j = 1, 2$, being the mixing angle in matter in layer j and the neutrino state phase difference after neutrinos crossed the j-th layer. The new conditions for a total neutrino conversion follow from (1) [2]:

$$n = 2: \quad Y = 0, \quad X_3 = 0; \quad n = 3: \quad Y = 0, \quad X_3 = 0.$$

The solutions of these conditions were given in [1] (eqs. IV and (22)). We have shown also [1] that, e.g., for $n = 2$, (2) are conditions for a maximal constructive interference between the amplitudes of neutrino transitions in the two layers. Thus, a clear physical interpretation of the absolute maxima of P_2 is that of constructive interference maxima.

(i) In connection with eq. (2) and the related effect of total neutrino conversion the authors of [4] write: “...the "new effect of total neutrino conversion" [1] is nothing but a particular case of the parametric resonance enhancement of neutrino oscillations, suggested in” [5,6] “and widely discussed in the literature...”. We note that the two sets of two conditions in (2) and their solutions were not derived and/or discussed in any form in [5,6] or in any other article published before [1,2]. They do not follow from the conditions of enhancement of $P(\nu_a \rightarrow \nu_b)$ found in [5,6] or [7].

(ii) For n alternating layers one has according to [4]

$$P_n(\nu_a \rightarrow \nu_b) = \frac{X_1^2 + X_2^2}{X_1^2 + X_2^2 + X_3^2} \sin^2 \Phi_p,$$

where $X = (X_1, X_2, X_3)$ is a real vector, $X_2^2 = 1 - Y^2$; X and Φ_p are defined in [4] (eqs. (1) - (5)). According to [4], eq. (3) describes parametric oscillations, and parametric resonance occurs when $X_3 = -(s_1c_2\cos2\theta_1 + c_1s_2\cos2\theta_2) = 0$, the latter being the “resonance condition”. Due to eq. (1), any resonance interpretation of the probabilities $P_{2,3}$ based solely on eq. (3) seems physically questionable. Actually, the denominator in (3) is always canceled by $\sin^2 \Phi_p$, and P_n is just a polynomial without any explicit resonance features: for even n, $\sin^2 \Phi_p = X^2U_n^2 \equiv Z_n = 0$. As should also be clear from (1), $X_3 = 0$ alone does not ensure the existence even of a local maximum of $P_{2,3}$. The same conclusion is valid for any finite n.

(iii) The two conditions $c_{1,2} = 0$ were not given in [5–7]; they were discussed first in [3]. What one finds in [5–7] at most is $2\phi_1 + 2\phi_2 = 2\pi + 2\pi k$. In addition, $c_{1,2} = 0$ are conditions of maxima of $P_{2,3}$ only if fulfilled in a certain region of the space of parameters [3,1,2]. Solution III is more than just $c_{1,2} = 0$ [1]: it includes as an integral part the region $\cos(2\theta_2 - 2\theta_1) \leq 0$, where $c_{1,2} = 0$ have to hold. Thus, solution III in [1] is not “reproducing” any of the solutions in [5–7]. Moreover [2], $c_{1,2} = 0$ lead to a maximum of $P_{2(3)}$ in the neutrino energy only when they hold on the line $\cos(2\theta_2 - 2\theta_1) = 0$ (or $\cos(2\theta_2 - 2\theta_1) = 0$). The three conditions represent a solution of (2) [1,2].

(iv) There is infinite number of irrelevant solutions of $X_3 = 0, c_{1,2} \neq 0$, for $n = 2, 3$. The existence of solution IV (or (22)), its explicit form, found in [1,2], could not be, and were not, inferred from the solutions of $X_3 = 0$, $c_{1,2} \neq 0$.

(v) The case of neutrino oscillations in a medium with 3 layers, studied in [3,1,2], corresponds [3] to the transitions in the Earth of the Earth-core-crossing solar and atmospheric neutrinos. Most importantly, the new conditions for a total neutrino conversion (2), found in [1,2], are fulfilled in this case and lead to observable effects [1–3]. The conditions of enhancement of $P(\nu_a \rightarrow \nu_b)$ obtained in [5–7] are not valid for the indicated ν–transitions in the Earth.

Further comments on [4] can be found in [8].
[1] M. Chizhov and S.T. Petcov, Phys. Rev. Lett. **83**, 1096 (1999) (hep-ph/9903399).
[2] M. Chizhov and S.T. Petcov, hep-ph/9903424.
[3] S.T. Petcov, Phys. Lett. **B434**, 321 (1998).
[4] A.Kh. Akhmedov and A.Yu. Smirnov, preceding Comment.
[5] V.K. Ermilova et al., Short Notices of the Lebedev Institute **5**, 26 (1986).
[6] E.Kh. Akhmedov, Yad. Fiz. **47**, 475 (1988).
[7] P.I. Krastev and A.Yu. Smirnov, Phys. Lett. **B226**, 341 (1989).
[8] M. Chizhov and S.T. Petcov, hep-ph/0003110.