Two Novel Rare Strongly Linked Missense SNPs (P27R and A85G) Within the GDF9 Gene Were Significantly Associated With Litter Size in Shaanbei White Cashmere (SBWC) Goats

Yi Bi†, Jie Li†, Xinyu Wang†, Libang He†, Kangshu Lan‡, Lei Qu§, Xianyong Lan*, Xiaoyue Song§ and Chuanying Pan†

OPEN ACCESS

Edited by:
Khalid El Allali,
Agronomic and Veterinary Institute
Hassan II, Morocco

Reviewed by:
Mohammed Piro,
Agronomic and Veterinary Institute
Hassan II, Morocco

Yang-Fu Huang,
Southwest University, China

*Correspondence:
Xianyong Lan
lanxianyong@126.com
Chuanying Pan
chuanyingpan@126.com

1† These authors have contributed equally to this work

Specialty section:
This article was submitted to Animal Reproduction - Theriogenology, a section of the journal Frontiers in Veterinary Science

Received: 27 February 2020
Accepted: 08 June 2020
Published: 30 July 2020

Growth differentiation factor 9 (GDF9) is a high-fertility candidate gene that plays a crucial role in early folliculogenesis in female mammals. In this study, direct sequencing was used to screen possible SNP loci in the goat GDF9 gene. Three SNP loci, p.proline27alanine (P27R), p.leucine61leucine (L61L), and p.alanine85glycine (A85G), were identified in Shaanbei white cashmere (SBWC) goats. Among the three SNPs, two rare missense SNP loci (P27R and A85G) were discovered to be strongly linked with each other (D' value = 0.926, r^2 value = 0.703). Both P27R and A85G loci had two genotypes: wild type and heterozygous type. A85G exerted a significant effect on litter size ($P = 0.029$) in SBWC goats, and the heterozygous genotype was superior in comparison with the wild type. The heterozygous genotype was also superior in P27R but no significant association was found. However, the combination genotypes of P27R and A85G were identified to have superior effects on litter size ($P = 3.8E−15$). This information suggested that these two SNPs influenced litter size in goats synergistically. Combining this information with our previous studies, we propose that the GDF9 gene is the principal high-fertility candidate gene and that the A85G locus is a promising SNP that affects litter size in goats. These results may fill a research gap regarding rare mutations as well as provide crucial molecular markers that could be useful in marker-assisted selection (MAS) goat rearing when selecting superior individuals.

Keywords: goat, growth differentiation factor 9 (GDF9) gene, litter size, association, linkage disequilibrium

INTRODUCTION

The growth differentiation factor 9 (GDF9) gene is a unique member of the transforming growth factor β (TGFβ) superfamily (1), as its protein has six Cys, being different from others in this superfamily that have seven or nine Cys (2, 3). Moreover, its greatest expression is in the ovary while it is widely expressed in 20 different tissues such as the hypothalamus, pituitary, and uterus (4, 5);
this indicates that it affects different physiological pathways and metabolism, as well as phenotypic expression to some degree (6).

Along with being a powerful intra-ovarian regulator during early folliculogenesis, the GDF9 gene is expressed throughout follicle development, and its mutations may contribute to increased ovulation rates or infertility in female mammals (7, 8).

Based on relevant study and data from the National Center for Biotechnology Information Search database (NCBI), 45 SNP loci have been identified in the goat GDF9 gene (9). Among these, 15 SNPs were identified to have significant associations with litter size in more than 30 goat breeds (10–12). Furthermore, there were some controversial and promising SNPs that had different impacts in different goat breeds (13–16). For instance, three missense mutations, A240V (17), Q320P (18–20), and V397I (21, 22), and three synonymous mutations, L61L (23), N121N (24), and L141L (25, 26), were found to have high mutant frequencies and be significantly associated with litter size in different breeds. However, due to breed-specific effects, several of the above results were not consistent. For instance, in Shaanbei white cashmere (SBWC), Lubei White, Jining Gray, Inner Mongolia cashmere, and Laiwu black cashmere goats, the G allele is the major allele in V397I (22, 23, 26), but among the Xinong Saanen dairy goat, Big foot black goat, Guanzhong dairy goat, Jintang black goat, and Yimeng black goat, the A allele is associated with larger litter sizes (27, 28). However, almost all the abovementioned studies focused on a single SNP locus and neglected the fact that quantitative traits are controlled by multiple loci. Therefore, the gap in research regarding the combined effects of multiple loci needed to be addressed.

A combination of whole-genome sequencing and marker-assisted selection (MAS) could satisfy the demand to screen pivalot genes accurately and rapidly (29–31), as well as to assess relationships between their variations and growth and reproductive traits (32–35).

As a powerful high-fertility candidate gene, our group previously found that two strongly linked SNPs, Q320P and V397I, and a 12-bp indel within the GDF9 gene were significant associated with litter size in goats (20, 36). Furthermore, we summarized all reported SNPs within the GDF9 gene (9). Hence, based on our preliminary work, this study aimed to verify a greater number of SNP loci within the GDF9 gene as well as to analyze their relationships with goat litter size, thus providing more information for selecting a population with a high fertility using MAS method in goat rearing.

MATERIALS AND METHODS

All experiments were approved by the International Animal Care and Use Committee of the Northwest A&F University (IACUC-NWAFU; protocol number NWAFAC1008) and followed local animal welfare guidelines, laws, and policies. The care and use of animals complied with local animal welfare laws and policies.

Sample Collection and DNA Isolation

For this study, 309 ear tissue samples were randomly collected from female SBWC goats (2–3 years) at a goat-breeding farm in Yulin City, Shaanxi Province, China. All selected goats had the same diet and rearing conditions after weaning (37, 38), were healthy, and had records for their first-born litter size and growth traits (e.g., body height, body length, heart girth, body weight, and cannon bone circumference index). Additionally, random selection ensured that individuals were as unrelated as possible (39, 40).

DNA was extracted from ear tissue samples, diluted to 50 ng/µl, and stored at −20°C according to Aljanabi’s method (41). The DNA extraction protocol was as follows: 400 µl of buffer (0.4 M NaCl, 10 mM Tris–HCl at pH 8.0, and 2 mM EDTA at pH 8.0), 40 µl of 20% SDS (2% final concentration), and 8 µl of 20 mg/ml proteinase K (400 µg/ml final concentration) were added to the fresh tissue and mixed well. The samples were kept at a constant temperature of 65°C in a water bath shaker for 12–16 h, followed by the addition of 300 µl of 6 M NaCl (NaCl saturated H2O) and subsequent centrifugation for 30 min at 10,000 r/min. The supernatant was then transferred to fresh tubes. An equal volume of isopropanol was added to each sample, mixed well, and samples were incubated at 20°C for 1 h. Samples were then centrifuged for 20 min at 4°C and at 10,000 r/min. The pellet was washed with 70% ethanol, dried, and finally resuspended in 300–500 µl sterile dH2O.

Primer Design, PCR Amplification, and Genotyping

Based on the sequence of Capra hircus species (GenBank Accession No.NC_030814.1), a pair of primers (F: 5’-TTTGGTTTTGCTGTTTTGCT-3’; R: 5’-TCTTTTCTTTCTCGCCTACCA-3’), which covered P27R, L61L, A85G, L50P, G40G, N112N, and D129D loci, were designed to amplify exon 3 of the goat GDF9 gene using Primer Premier software (Version 6.0). The PCR was carried out in a 25-µl reaction condition containing 1.0 µl of genomic DNA, 0.5 µl of forward and reverse primer separately, 12.5 µl of dNTP mix (2 X MIX (Tsingke, Xi’an, China), and 10.5 µl of dH2O. The PCR amplification protocol contained a pre-denaturation at 95°C for 5 min and denaturation at 94°C for 30 s, followed by 18 cycles of denaturation for 30 s at 95°C, annealing for 30 s at 68°C (with a decrease of 1°C per cycle), 30 cycles of elongation at 72°C for 30 s, and a final extension at 72°C for 10 min with subsequent cooling to 4°C (42, 43). Subsequently, PCR products were genotyped by electrophoresis using 2.0% agarose gel, which was stained with ethidium bromide. The PCR product was then directly sequenced by the Tsingke Biotechnology Company (Xi’an, China) using Sanger sequencing technology. Finally, sequence alignment was conducted using BioXM 2.6 (College of Agriculture, Nanjing Agricultural University, Nanjing, China).

Abbreviations: GDF9, growth differentiation factor 9; SNPs, single-nucleotide polymorphisms; PCR, polymerase chain reaction; SBWC, Shaanbei white cashmere goat; P27R, p.proline27alanine; L61L, p.leucine61leucine; A85G, p.alanine85glycine; Q320P, p.glutamine320proline; V397I, p.valine397isoleucine; A240V, p.valine240valine; N121N, p.asparagine336asparagine; L141L, p.leucine141leucine; LD, linkage disequilibrium; HWE, Hardy–Weinberg equilibrium; Ho, homozygosity; He, heterozygosity; Ne, effective allele number; PIC, polymorphism information content; MAS, marker-assisted selection.
and Chromas 2.4.1 (Technelysium Pty Ltd, South Brisbane, Queensland, Australia).

Statistical Analyses

Genotype and allele frequencies, Hardy–Weinberg equilibrium (HWE), homozygosity (Ho), heterozygosity (He), effective allele numbers (Ne), and polymorphism information content (PIC) were calculated using PopGene version 1.3.1 (Molecular Biology and Biotechnology Center, University of Alberta, Edmonton, Canada) (44).

Linkage disequilibrium (LD) analysis was conducted on the SHEsis online platform (http://analysis.bio-x.cn) (45). The case of \(D' = 1 \) or \(r^2 = 1 \) indicated a complete LD. Values of \(D' < 1; r^2 > 0.33 \) indicated strong LD (46, 47).

The general linear models were established to analyze correlations between SNP loci and litter size and growth traits using R3.2.0 software. For litter size, model I: \(Y_{ijlm} = \mu + K_i + HYS_j + G_l + \epsilon_{ijlm} \), where \(Y_{ijlm} \) is the litter size phenotypic value, \(\mu \) is the mean of the overall population, \(K_i \) is the effect of kidding years, \(HYS_j \) is the mean of population, \(G_l \) is the fixed effect of the genotype, and \(\epsilon_{ijlm} \) is the random error (36).

Considering that growth traits had a positive correlation with litter size (39), association between SNP loci and growth traits were analyzed. The association between SNPs and growth traits was considered. Model II: \(Y_{klm} = \mu_2 + A_k + G_l + \epsilon_{klm} \), where \(Y_{klm} \) is the observation of growth traits on each of the \(k \)th animal, \(\mu_2 \) is the population mean, \(A_k \) is the fixed effect of age of the \(k \)th animal, \(G_l \) is the fixed effect of genotypes of the \(l \)th animal, and \(\epsilon_{klm} \) is the random error.

\(t \)-test and the analysis of variance (ANOVA) were conducted to analyze the association between SNP loci and quantitative traits. Moreover, the \(t \)-test directed to two group analyses and ANOVA were available for \(> 2 \) group analyses.

Function Prediction of P27R and A85G Within the Goat GDF9 Gene

As P27R and A85G are missense SNP loci, they may contribute to amino acid type change during encoding of the goat GDF9 gene. Herein, potential effects of SNP loci on protein structures

Names	ref SNP No.	HGVS names	Other names	Regions
SNP1	rs671913497	NC_030814.1: g.66025839C>G	g.1902C>G/c.79C>G/p. P27R	Exon 3
SNP2	rs669811820	NC_030814.1: g.66025943C>A	g.2006C>A/c.183C>A/p. L61L	Exon 3
SNP3	rs654628150	NC_030814.1: g.66026014C>G	g.2077C>G/c.254C>G/p. A85G	Exon 3

HGVS, Human Genome Variation Society. The refSNP No. and HGVS names were from the Ensembl database (http://asia.ensembl.org/index.html).

FIGURE 1 | Sequence chromatograms of seven SNPs in the goat GDF9 gene run on Chromas. (A) P27R; (B) A85G; (C) L61L; (D) G40G; (E) L50P; (F) N112N; (G) D129D.
and functions were predicted using three prediction tools, SIFT, PolyPhen-2, and PROVEAN (48–50).

RESULTS

Genotyping of SNP Loci Within the Goat GDF9 Gene

A total of three SNP loci (Table 1; Figure 1) in exon 3 of the GDF9 gene were detected in this study. Based on sequence chromatograms, three SNP loci (P27R, L61L, and A85G) were genotyped in the analyzed SBWC goat population. For both P27R — where TGC (proline) transformed to TGG (alanine) — and L61L loci, two genotypes, CC and CG, were identified. For the A85G locus where CCT (alanine) transformed to CCG (glycine), three genotypes (CC, CA, and AA) were verified.

Genotypic and Allelic Frequencies of SNP Loci of the GDF9 Gene

Based on PIC values, P27R and A85G displayed low genetic diversity and PIC values were 0.047 and 0.019, respectively (Table 2). The PIC value of L61L was 0.355, demonstrating a medium genetic diversity. Additionally, CC and CG genotypes were identified in the P27R locus, and frequencies of C and G alleles were 0.976 and 0.024, respectively. For the L61L locus, three genotypes (CC, CA, and AA) were identified, and frequencies of C and A alleles were 0.639 and 0.361, respectively. For the A85G locus, in which CC and CG genotypes were detected, the frequency of C and G alleles were 0.990 and 0.010, respectively. Furthermore, both P27R and A85G loci met the HWE principle, whereas L61L did not (Table 2).

Linkage Disequilibrium Analyses

Based on LD analysis results (Table 3; Figure 2), the P27R and A85G loci were discovered to be strongly linked; the D' and r^2 values were 0.926 and 0.703, respectively. For L61L with P27R locus, and L61L with A85G locus, D' values were 0.985 and 0.973, respectively, and r^2 values were 0.016 and 0.012, respectively.

Furthermore, in our previous study, two strongly linked SNPs, Q320P and V397I, were identified to be significantly associated with litter size, using the same population as those in this study (20). Combining our previous data regarding two missense SNPs (Q320P and V397I) within the goat GDF9 gene (20), the LD analysis of P27R, L61L, A85G, Q320P, and V397I (Table 4; Figure 2) revealed that neither P27R nor A85G was strongly linked to Q320P or V397I; our previous study verified that these were strongly linked, and significantly affected litter size. Interestingly, L61L was almost found to be strongly linked to both the Q320P and V397I loci. For L61L with Q320P, and L61L with V397I, D' values were 0.573 and 0.741, respectively, and r^2 values were 0.306 and 0.324, respectively.

Association Analyses Between SNP Loci and Litter Size

The association analysis between SNP loci and litter size (Table 5) illustrated that the A85G locus was significantly associated with litter size ($P = 0.029$), with the heterozygosity genotype displaying a superior phenotype over the homozygosity genotype. However, the P27R locus did not exert a remarkable effect on litter size. In combination genotype analysis of the P27R and A85G loci (Table 6), combination genotypes were significantly correlated to litter size ($P = 3.8E−15$) and the CG-CG produced the largest litter size. Furthermore, based on our previous data of Q320P and V397I (20), we did a combination genotype analysis, which showed that combination genotypes of P27R, A85G, Q320P, and V397I also exerted significant impacts on litter size ($P = 0.001$) with the CC-CC-CC-AA being dominant.

Association Analyses Between SNP Loci and Growth Traits

Previous studies by our group report a significant positive correlation between litter size and growth traits in our SBWC
Bi et al. GDF9 Variants and Goat Fecundity

FIGURE 2 | Linkage disequilibrium plots of the GDF9 gene in Shaanbei white cashmere (SBWC) goats. (A,C): D' of SBWC goats; (B,D): r^2 of SBWC goats. The three loci in the red dotted box were detected in this study and the two loci in the black dotted box were detected in our previous study.

TABLE 4 | Linkage disequilibrium parameters (D' and r^2) among P27R, L61L, A85G, Q320P, and V397I loci of the GDF9 gene in Shaanbei white cashmere (SBWC) goats.

SNP loci	Genotypes	D'	r^2
P27R	CC	0.985	0.703
	CG	0.973	0.005
L61L	CC	0.976	0.306
	CG	0.973	0.324
A85G	CC	0.557	0.391
	CG	0.741	0.813
Q320P	CC	0.998	0.996
	CG	0.741	0.813
V397I	CC	0.998	0.996
	CG	0.741	0.813

Values with different letters (a,b) within the same row differ significantly at $P < 0.05$.

TABLE 5 | Relationship between SNP loci of the GDF9 gene and litter size in Shaanbei white cashmere (SBWC) goats.

SNP loci	Genotypes	Litter size (n)	P-values
P27R	CC	1.70 ± 0.48 ($n = 292$)	0.404
	CG	1.80 ± 0.41 ($n = 15$)	
A85G	CC	1.70 ± 0.48 ($n = 297$)	0.029
	CG	1.91 ± 0.28 ($n = 12$)	

Values with different letters (a,b) within the same row differ significantly at $P < 0.05$.

TABLE 6 | Least squares mean and standard error for litter size of different combination genotypes of the GDF9 gene in Shaanbei white cashmere (SBWC) goats.

SNP loci	Genotypes	Litter size (n)	P-values
Combination genotypes with the P27R and A85G	CC-CC	1.72 ± 0.02 ($n = 300$)	0.036
	CG-CG	1.77 ± 0.02 ($n = 13$)	
Combination genotypes with the P27R, A85G, Q320P, and V397I	CC-CC-CC	1.77 ± 0.07 ($n = 30$)	0.001
	CC-CC-GG	1.69 ± 0.07 ($n = 42$)	
	CC-CC-AC-AG	1.75 ± 0.05 ($n = 64$)	
	CC-CC-AC-AG	1.78 ± 0.10 ($n = 18$)	

Values with different letters (A, B) within the same row differ significantly at $P < 0.01$.

TABLE 7 | Relationship between the A85G locus of the GDF9 gene and growth parameters in Shaanbei white cashmere (SBWC) goats.

Parameters	Genotypes (n)	P-values	
BL (cm)	CC	68.72 ± 0.26 ($n = 288$)	0.001
	CG	71.33 ± 0.58 ($n = 12$)	
HG (cm)	CC	90.14 ± 0.47 ($n = 297$)	0.002
	CG	95.17 ± 1.28 ($n = 12$)	

BL, body length; HG, heart girth. Values with different letters (A, B) within the same row differ significantly at $P < 0.01$.

goat cohorts (20, 36); therefore, the relationship between these two missense SNPs (P27R and A85G) was addressed here. Association analyses between P27R and A85G loci as well as growth traits of SBWC goats revealed that the A85G locus was significantly related to body length ($P = 0.001$) and heart girth ($P = 0.002$). Furthermore, the heterozygosity genotype was superior when compared with the wild type (Table 7). No significance was found for P27R and growth traits. However, combination genotypes of P27R and A85G were proved to be
TABLE 8 | Least squares mean and standard error for growth parameters of different combination genotypes of the SNPs P27R and A85G within the GDF9 gene in Shaanbei white cashmere (SBWC) goats.

Parameters	Genotypes (N)	P-values	
	CC-CC	CG-CG	
HW (cm)	A: 31.67 ± 1.85 (n = 283)	B: 20.15 ± 0.61 (n = 13)	6.9E−8
CCI (%)	A: 19.77 ± 0.76 (n = 275)	B: 14.89 ± 0.45 (n = 13)	1.0E−6

HW, hip width; CCI, cannon circumference index. Values with different letters (A, B) within the same row differ significantly at *P* < 0.01.

significantly associated with hip width (*P* = 6.9E−8) and the cannon circumference index (*P* = 1.0E−6), with the phenotype of the homozygosity genotype showing a superior performance over the heterozygosity genotype (*P* = 6.9E−8; **Table 8**).

Protein Function Prediction of SNP Loci

For protein function prediction of the P27R and A85G loci, the scores of SIFT, PolyPhen-2, and PROVEAN suggested that their influence on the GDF9 protein was benign and probably damaging, respectively. The scores implied that A85G had an impact on protein structure change of the goat GDF9 gene.

DISCUSSION

The GDF9 gene plays a considerable role in the control of somatic cell functions such as follicular proliferation, ovulation, and fertilization, as well as enhancing oocyte development in females (51, 52). Therefore, study of the GDF9 gene and its mutations is worthwhile (53, 54). In the current study, three SNP loci (P27R, L61L, and A85G) were identified within the goat GDF9 gene. The L61L locus is reported to have a negative association with litter size in Jining Gray and Yimeng Black goat breeds (55). However, no significant association has been noted in Wenden dairy, Liaoning cashmere, Beijing native, Boer, and Lubei goat breeds (23), which was consistent with the findings of this study. This may be due to a breed-specific effect or some degree of linkage between L61L and other SNP loci (22). Furthermore, two novel SNP loci, P27R and A85G, were detected to have low mutation frequencies and be strongly linked. The A85G locus was found to be significantly associated with litter size in SBWC goats while the P27R locus was not. However, combination genotypes of P27R and A85G showed significant association with litter size of SBWC goats with the heterozygosity genotype showing a superior performance over the heterozygosity genotype (*P* = 6.9E−8; **Table 8**).

The present study succeeded in establishing a clear and significant correlation between two SNPs (P27R and A85G) within the GDF9 gene with litter size in SBWC goat. Further studies are needed to identify sire effect before the commercial use of these SNPs in MAS.

CONCLUSION

In conclusion, two novel rare missense SNPs were verified to be strongly linked in this study. Moreover, A85G was significantly associated with litter size, and P27R could have a simultaneous effect. The present study succeeded in establishing a clear and significant correlation between two SNPs (P27R and A85G) within the GDF9 gene with litter size in SBWC goat. Further studies are needed to identify sire effect before the commercial use of these SNPs in MAS.

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found in the Ensembl database under accession numbers listed in **Table 1** [http://www.ensembl.org/index.html].

ETHICS STATEMENT

The animal study was reviewed and approved by The International Animal Care and Use Committee of the Northwest A&F University (IACUC- NWFU) (protocol number NWAFA10008). Written informed consent was obtained from the owners for the participation of their animals in this study.

AUTHOR CONTRIBUTIONS

YB, JL, and XW came with idea and wrote manuscript. LH, KL, XS, and XL collected the goat samples and isolated of genomic DNA. YB, JL, XW, and LH performed the experiments. YB,
ACKNOWLEDGMENTS

Sincere thanks go to all the staff at the Shaanbei White Cashmere goat breeding farm, who made sample collection possible. We would also like to thank the Agricultural Technical Station of Veterinary and Animal Husbandry of Yulin City, Shaanxi Province, P.R. China and the Life Science Research Core Services (LSRCS) of Northwest A&F University (Northern Campus), for providing us with the platform.

REFERENCES

1. McPherron AC, Lee SJ. GDF-3 and GDF-9: two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines. J Biol Chem. (1993) 268:3444–9.

2. Incerti B, Dong J, Borsani G, Matzuk MM. Structure of the mouse growth/differentiation factor 9 gene. Biochem Biophys Acta. (1994) 1222:125–8. doi: 10.1016/0167-4889(94)90034-5

3. Ahmad HI, Liu G, Jiang X, Edallew SG, Wassie T, Tesema B, et al. Maximum-likelihood approaches reveal signatures of positive selection in BMP15 and GDF9 genes modulating ovarian function in mammalian female fertility. Ecol Evol. (2017) 7:8905–80. doi: 10.1002/ece3.3336

4. Silva JR, van den Hurk R, van Tol HT, Roelen BA, Figueiredo JR. Expression analysis of candidate gene SNP for high-yield in liangang cashmere goats with litter size and cashmere performance. Anim Biotechnol. (2019) 1–8. doi: 10.1080/10495398.2019.1652188

5. Pramod RK, Sharma SK, Singhi A, Pan S, Mitra A. Differential ovarian specific mRNA expression profiles of GDF9, BMP15, and BMP15 genes in prolific and non-prolific goat breeds. Czech J Anim Sci. (2015) 60:452–8. doi: 10.17221/8525-CJAS

6. Pan ZY, Di R, Tang QQ, Jin HH, Chu MX, Huang DW, et al. Tissue-specific mRNA expression profiles of GDF9, BMP15, and BMP15 genes in prolific and non-prolific goat breeds. Czech J Anim Sci. (2015) 60:452–8. doi: 10.17221/8525-CJAS

7. Simpson CM, Robertson DM, Al-Musawi SL, Heath DA, McNatty KP, Ritter c.1189G>A single nucleotide polymorphism of GDF9 and litter size in goats: a meta-analysis. Anim Reprod Sci. (2019) 209:106140. doi: 10.1016/j.anireprosci.2019.106140

8. Ahlawat S, Sharma R, Maitra A, Tantia MS. Current status of molecular genomics research on gene fertility. Small Rumin Res. (2013) 3:625–32. doi: 10.3923/javaa.2013.1590.1605

9. Zhu GQ, Wang QI, Kang YG, Lv YZ, Cao BY. Polymorphisms in GDF9 gene and their association with litter size in jining grey goats. Small Rumin Res. (2019) 1–8. doi: 10.9774/GLEAF.978-1-909493-38-4_2

10. Chen MY, Wang J, Liu N, Cui WB, Dong WZ, Xing BS, et al. Detection of coding sequence, mRNA expression and indel variations identification and functional analysis of exon2 of GDF9 gene in local of jiangsu province. Mol Biol Rep. (2018) 5:51–3. doi: 10.3969/j.issn.1002-1302.2008.05.018

11. Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and fertility in Cambridge and belclare sheep (Ovis aries). Biol Reprod. (2004) 70:900–9. doi: 10.1095/biolreprod.103.023903

12. Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and fertility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. (2004) 70:900–9. doi: 10.1095/biolreprod.103.023903

13. Chen MY, Yan HL, Wang K, Liu JW, Xing BS, et al. Goat SPEF2: expression profile, indel variations identification and functional analysis on exon 2 of growth differentiation factor 9 gene in goats. Sci Agric Sin. (2006) 39:802–8.

14. Wang BC, Zhang QK, Xu J, Chen M, Liu KD, Li Z, et al. Polymorphism detection of GDF9 gene exon 2 in three China goat breeds. China Herbiv Sci Collect Pap. (2014) 37:41–6.

15. Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and fertility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. (2004) 70:900–9. doi: 10.1095/biolreprod.103.023903

16. Yue C, Bai WL, Zheng YH, Fu Y, Sun JM, Guo D, et al. Correlation analysis of candidate gene SNP for high-yield in liangang cashmere goats with litter size and cashmere performance. Anim Biotechnol. (2019) 125:115–21. doi: 10.1016/j.theriogenology.2018.10.013
association analysis with litter size. *Theriogenology*. (2019) 139:147–55. doi: 10.1016/j.theriogenology.2019.08.007

33. Kang ZH, Zhang ZH, Zhi HJ, Wang Z, Yan HL, Huang YZ, et al. A 14-bp functional deletion within the CMTM2 gene is significantly associated with litter size in goat. *Theriogenology*. (2019) 139:49–57. doi: 10.1016/j.theriogenology.2019.07.026

34. Wang K, Kang ZH, Jiang EH, Yan HL, Qu Lei, Lan XY, et al. Genetic effects of DSCAML1 identified in genome-wide association study revealing strong associations with litter size and semen quality in goat (Capra hircus). *Theriogenology*. (2020) 146:20–5. doi: 10.1016/j.theriogenology.2020.01.079

35. Zhang YH, Cui WB, Yang H, Wang M, Yan HL, Zhu HJ, et al. A 12-bp indel polymorphism within the GDF9 gene is significantly associated with litter size and growth traits in goats. *Anim. Genet.* (2018) 49:735–6. doi: 10.1111/age.12617

36. Zhang YH, Cui WB, Yang H, Wang M, Yan HL, Zhu HJ, et al. Insertion/deletion within the KDM6A gene is significantly associated with litter size in goat. *Front. Genet.* (2018) 9:91. doi: 10.3389/fgen.2018.00091

37. Liu Q, Yuan Y, Li J, Liu Y, Yan HL, Pan CY, Chen H, et al. A novel 14-bp duplicated deletion within goat GHR gene is significantly associated with growth traits and litter size. *Anim. Genet.* (2017) 48:499–500. doi: 10.1111/age.12551

38. Wang K, Yan HL, Xu H, Wang Q, Zang SH, Pan CY, et al. A novel indel within goat casein alpha s1 gene is significantly associated with litter size. *Gene*. (2018) 671:161–9. doi: 10.1016/j.gene.2018.05.119

39. Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. *Prion*. (2009) 19:519–23. doi: 10.1038/cr.2009.33

40. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, et al. Linkage disequilibrium in the human genome. *Nature*. (2001) 411:199–204. doi: 10.1038/35075590

41. Airdle KG, Kruglyak L, Sieielstad M. Patterns of linkage disequilibrium in the human genome. *Nat Rev Genet*. (2002) 3:299–309. doi: 10.1038/nrg777

42. Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affect protein function. *Genome Res.* (2002) 12:436–46. doi: 10.1101/gr.121802

43. Alshubaili IA, Schmitt P, Peshkin L, Ramseney VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. *Nat Methods*. (2010) 7:248–9. doi: 10.1038/nmeth0410-248

44. Choi Y, Chan AP. Provean web server: a tool to predict the functional effects of amino acid substitutions and indels. *Bioinformatics*. (2015) 31:2745–7. doi: 10.1093/bioinformatics/btv195

45. Pier S, Aad PJ, Allen D, Mazerebourg S, Husea A. Growth differentiation factor 9 has divergent effects on proliferation and steroidogenesis of bovine granulosa cells. *J. Endocrinol*. (2006) 189:329–39. doi: 10.1677/joe.1.06503

46. Yang CX, Zhi XD, Wang Y, Yang DQ, Ma L, Lu ZY, et al. Cloning and mRNA expression levels of GDF9, BMP15, and BMPRIB genes in prolific and non-prolific goat breeds. *Mol Reprod Dev*. (2012) 79:9–21. doi: 10.1002/mrd.21265

47. Dutta R, Das B, Laskar S, Kalti D, Borah P, Zaman G, et al. Polymorphism, sequencing and phylogenetic characterization of growth differentiation factor 9 (GDF9) gene in assam hill goat. *Afr J Biotechnol*. (2013) 12:6894–6900.

48. Yang CX, Zhi XD, Wang Y, Yang DQ, Ma L, Lu ZY, et al. Cloning and mRNA expression levels of GDF9, BMP15, and BMPRIB genes in prolific and non-prolific goat breeds. *Mol Reprod Dev*. (2012) 79:9–21. doi: 10.1002/mrd.21386

49. Otsuka F, McVilash Kl, Shimazaki S. Integral role of GDF-9 and BMP-15 in ovarian function. *Mol Reprod Dev*. (2011) 85:142–53. doi: 10.1002/mrd.21265

50. Cui Y, Yan H, Wang K, Xu H, Zang X, Zhu H, et al. Insertion/deletion within the KDM6A gene is significantly associated with litter size in goat. *Front. Genet.* (2018) 9:91. doi: 10.3389/fgen.2018.00091

51. Spicer LJ, Aad PJ, Allen D, Mazerebourg S, Husea A. Growth differentiation factor 9 has divergent effects on proliferation and steroidogenesis of bovine granulosa cells. *J. Endocrinol*. (2006) 189:329–39. doi: 10.1677/joe.1.06503

52. Dutta R, Das B, Laskar S, Kalti D, Borah P, Zaman G, et al. Polymorphism, sequencing and phylogenetic characterization of growth differentiation factor 9 (GDF9) gene in assam hill goat. *Afr J Biotechnol*. (2013) 12:6894–6900.

53. Chu MX, Wu ZHI, Feng S, Cao G, Fang L, Di R, et al. Polymorphism of GDF9 gene and its association with litter size in goats. *Vet Res Commun*. (2011) 35:329–36. doi: 10.1007/s11259-011-9476-8

54. Oertum S, Roovers M, Leichsenring M, Acquaiviva-Bourdain C, Beermann F, Goppl-Brtschgi C, et al. Novel patient missense mutations in the HSD17B10 gene affect dehydrogenase and mitochondrial tRNA modification functions of the encoded protein. *Biochim Biophys Acta Mol Basis Dis*. (2017) 1863:3294–302. doi: 10.1016/j.bbadis.2017.09.002

55. Shaheen R, Tasak M, Maddirevula S, Abdel-Salam GMH, Sayed ISMS, Alazami AM, et al. PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. *Hum Genet*. (2019) 138:231–9. doi: 10.1007/s00439-019-01980-3

56. Lee SY, Park JH, Jeong S, Kim BY, Kang YK, Xu Y, et al. K120R mutation in actives p53 by creating an aberrant splice site leading to nonsense mediated mRNA decay. *Oncogene*. (2019) 38:1597–610. doi: 10.1038/s41388-018-0542-3

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Bi, Li, Wang, He, Lan, Qu, Lan, Song and Pan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.