Cross-genera Transferability of Microsatellite Loci for Asian Palmyra Palm (Borassus flabellifer L.)

Kwanjai Pipatchartlearnwong, Akarapong Swatdipong, and Supachai Vuttipongchaikij

Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand

Somsak Apisitwanich

Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; School of Science, Mae Fah Luang University, Chiang-Rai 57100, Thailand

Additional index words. Areceae, expressed sequence tag-simple sequence repeat (EST-SSR), genomic simple sequence repeat (gSSR), polymorphism information content (PIC)

Abstract. Asian Palmyra palm, found throughout south and southeast Asia, is important for local economies, especially for sugar palm production. Unlike its related species, such as oil palm and coconut, only a few genetic markers are available for Asian Palmyra palm. In this study, we tested the transferability of molecular markers derived from oil palm, and a set of selected markers were used for evaluating the diversity of Asian Palmyra palm growing in Thailand. From 545 primer pairs of expressed sequence tag-simple sequence repeat (EST-SSR) and genomic simple sequence repeat (gSSR) markers, 317 (58.17%) primer pairs were able to amplify the Asian Palmyra palm DNA, and 19 (5.99%) pairs were polymorphic. After extensively genotyping 164 samples from 12 populations, we obtained 25 loci with the polymorphic information content (PIC) average of 0.37 and allele numbers ranging from one to five. The observed and expected heterozygosity ranged from 0 to 1 and 0 to 0.76, respectively. A dendrogram showed separation of the palm populations into two clades, between north-eastern and southern-central regions. This study provides a set of microsatellite markers for use in further genetic studies of Asian Palmyra palm.

Asian Palmyra palm (2n = 36), found widespread in the Indian subcontinent and Southeast Asia, is a monocotyledonous dioecious woody perennial tree in the Arecaceae family. This palm tree is important for local agriculture and economies as its inflorescence sap is used for palm sugar production and its fruits are widely consumed (Lim, 2012; Morton, 1988). The Asian Palmyra palm has a very slow growth rate and requires 12–20 years to produce its first inflorescence flowers, only then the sex is revealed (Davis and Johnson, 1987). It is widely believed that Asian Palmyra palm originated in Africa and was introduced to India and then into the southeast Asia more than a thousand years ago (Kovoor, 1983).

With such a long juvenile stage and without any direct sex determination, most growers are reluctant to cultivate new crops, and, with the expansion of farmlands and urbanization, Asian Palmyra palm population is in rapid decline. Conservation plans and improvement for use are operating in South and Southeast Asia to conserve this plant species (Barfod et al., 2015; Davis and Johnson, 1987; Sirajuddin et al., 2016). However, genetic data of Asian Palmyra palm are currently limited, and only a few molecular markers including RAPDs and ISSRs have been reported (George et al., 2016; Vinayagam et al., 2009). Markers with higher information such as microsatellites are needed to evaluate the genetic groups and diversity of the Asian Palmyra palm before establishing effective conservation plans.

New microsatellite markers require a high developing cost. Nonetheless, many microsatellite markers have been shown to be transferable across plant species and genera, providing an economical way for marker development (Karaca et al., 2013; Whankaew et al., 2011; Zehdi et al., 2012). Oil palm (Elaeis guineensis), a closely related species to Asian Palmyra palm, has available genome sequences and a wide range of developed microsatellite markers including genomic SSR (gSSR) and EST-SSR (Billotte et al., 2005; Singh et al., 2013; Ukoskit et al., 2014). Thus, it is feasible to apply these makers on the Asian Palmyra palm. In this study, we evaluated the cross-genera transferability of the gSSRs and EST-SSRs derived from oil palm and determined the diversity of some Asian Palmyra palm populations in Thailand.

Materials and Methods

Plant material, DNA isolation, and marker analysis. Leaf samples were collected from 164 accessions located in 12 provinces in three geographical regions in Thailand (Table 1). Oil palm was used as an outgroup. Because the original CTAB (Cetyltrimethylammonium bromide) method (Gawel and Jarret, 1991) gave low yields when isolating DNA from the leaf samples of Asian Palmyra palm. A medication was made by adding 10% polyvinylpyrrolidone in the extraction buffer to help improving the DNA yield. DNA samples from one oil palm and 10 randomly selected Asian Palmyra palm accessions were used for an initial screening using markers previously developed from the oil palm: 289 EST-SSR (Ukoskit et al., 2014) and 256 gSSRs (Billotte et al., 2005). The polymerase chain reaction (PCR) reactions were performed in a 20 μL volume containing 20 ng of total DNA, 20 μM of each dNTP, 0.25 μM of each primer, 10X PCR buffer (with 1.5 mM MgCl₂), and 0.5 U Taq DNA polymerase (Vivantis Technologies, Selangor, Darul Ehsan, Malaysia). Thermocycling parameters included an initial denaturation step of 5 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 1.30 min annealing temperature followed by 2 min in Table 2. 30 s extension step at 72 °C, and 8 min at 72 °C for the final extension step. The PCR products were separated and resolved by 6% polyacrylamide gel electrophoresis with silver staining. Primer pairs, which generated polymorphic markers, were then used for analyzing the 164 accessions. Fragments were scored based on the Low Molecular Weight DNA Ladder (New England Biolabs, Ipswich, MA) and converted into binary data.

Data analysis. Linkage disequilibrium (LD) was calculated using PowerMarker v3.2.5 (Li and Muse, 2005), and sequential Bonferroni correction (Holm, 1979) was performed according to multiple comparisons of the LD tests. Some loci were excluded after observing significant LD. The Hardy–Weinberg equilibrium (HWE) was tested using POPGENE version 1.31 (Yeh et al., 1999). Polymorphic EST-SSR and gSSR loci were used for calculating the number of alleles per locus (N_a), observed heterozygosity (H_o), expected heterozygosity (H_e), and polymorphism information
content (PIC) value (Botstein et al., 1980) using POPGENE version 1.31 (Yeh et al., 1999). A dendrogram was constructed using the EST-SSR and gSSR loci based on Nei’s standard genetic distance (Nei, 1972) and the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) clustering method in Populations software version 1.2.32 (Langella, 1999).

Results and Discussion

An initial marker screening using 289 EST-SSR and 256 gSSR primers derived from oil palm provided 154 (53.3%) and 163 (63.7%) amplifiable markers, respectively. Polymorphic bands were observed from 11 EST-SSR and eight gSSR primers, and these were subsequently used for evaluating the polymorphism of the palm populations. Analysis of 164 accesses using these 19 primers provided 36 polymorphic loci (21 EST-SSR and 15 gSSR loci), but only 15 EST-SSR and 10 gSSR loci were not significant in the LD and HWE tests after the sequential Bonferroni correction ($P > 0.05$) (Table 2). The average PIC value of combined EST-SSRs and gSSRs was 0.37. An average 2.41 alleles per locus was observed. The means of observed and expected heterozygosity were 0.41 and 0.38, respectively.

A dendrogram of 12 populations showed that the populations were clustered into two main clades, clearly separated from the oil palm outgroup (Fig. 1). The north-eastern clade was separated from those of the southern and central clade. The two clades were geographically separated on the map of Thailand and this likely resulted from geographical barriers (Pyeek et al., 2008). Phayyen hill and the Phetchabun mountain ranges located between the two areas had interrupted human movement in the past and, thereby, limited the anthropogenic spread of the Asian Palmyra palm. By contrast, there is no geographical barrier between the southern and central regions resulting in a considerable widespread of the species.

Transferability of SSRs between species or genera has been reported in many plant species including cereals (Castillo et al., 2010; Ince et al., 2010; Sim et al., 2009; Tang et al., 2006) and woody species (Gasic et al., 2009; Park et al., 2010; Yu et al., 2011). The cross-genera transferability of EST-SSRs and gSSRs shown in this study ranged between 53.3% and 63.7%, which are within the 30% to 65% reported for the transferability in other plant species including legumes and grasses (Choudhary et al., 2009; Karaca and these were subsequently used for evaluating the polymorphism of the palm populations. Analysis of 164 accesses using these 19 primers provided 36 polymorphic loci (21 EST-SSR and 15 gSSR loci), but only 15 EST-SSR and 10 gSSR loci were not significant in the LD and HWE tests after the sequential Bonferroni correction ($P > 0.05$) (Table 2). The average PIC value of combined EST-SSRs and gSSRs was 0.37. An average 2.41 alleles per locus was observed. The means of observed and expected heterozygosity were 0.41 and 0.38, respectively.

A dendrogram of 12 populations showed that the populations were clustered into two main clades, clearly separated from the oil palm outgroup (Fig. 1). The north-eastern clade was separated from those of the southern and central clade. The two clades were geographically separated on the map of Thailand and this likely resulted from geographical barriers (Pyeek et al., 2008). Phayyen hill and the Phetchabun mountain ranges located between the two areas had interrupted human movement in the past and, thereby, limited the anthropogenic spread of the Asian Palmyra palm. By contrast, there is no geographical barrier between the southern and central regions resulting in a considerable widespread of the species.

Transferability of SSRs between species or genera has been reported in many plant species including cereals (Castillo et al., 2010; Ince et al., 2010; Sim et al., 2009; Tang et al., 2006) and woody species (Gasic et al., 2009; Park et al., 2010; Yu et al., 2011). The cross-genera transferability of EST-SSRs and gSSRs shown in this study ranged between 53.3% and 63.7%, which are within the 30% to 65% reported for the transferability in other plant species including legumes and grasses (Choudhary et al., 2009; Karaca and these were subsequently used for evaluating the polymorphism of the palm populations. Analysis of 164 accesses using these 19 primers provided 36 polymorphic loci (21 EST-SSR and 15 gSSR loci), but only 15 EST-SSR and 10 gSSR loci were not significant in the LD and HWE tests after the sequential Bonferroni correction ($P > 0.05$) (Table 2). The average PIC value of combined EST-SSRs and gSSRs was 0.37. An average 2.41 alleles per locus was observed. The means of observed and expected heterozygosity were 0.41 and 0.38, respectively.

A dendrogram of 12 populations showed that the populations were clustered into two main clades, clearly separated from the oil palm outgroup (Fig. 1). The north-eastern clade was separated from those of the southern and central clade. The two clades were geographically separated on the map of Thailand and this likely resulted from geographical barriers (Pyeek et al., 2008). Phayyen hill and the Phetchabun mountain ranges located between the two areas had interrupted human movement in the past and, thereby, limited the anthropogenic spread of the Asian Palmyra palm. By contrast, there is no geographical barrier between the southern and central regions resulting in a considerable widespread of the species.

Transferability of SSRs between species or genera has been reported in many plant species including cereals (Castillo et al., 2010; Ince et al., 2010; Sim et al., 2009; Tang et al., 2006) and woody species (Gasic et al., 2009; Park et al., 2010; Yu et al., 2011). The cross-genera transferability of EST-SSRs and gSSRs shown in this study ranged between 53.3% and 63.7%, which are within the 30% to 65% reported for the transferability in other plant species including legumes and grasses (Choudhary et al., 2009; Karaca and these were subsequently used for evaluating the polymorphism of the palm populations. Analysis of 164 accesses using these 19 primers provided 36 polymorphic loci (21 EST-SSR and 15 gSSR loci), but only 15 EST-SSR and 10 gSSR loci were not significant in the LD and HWE tests after the sequential Bonferroni correction ($P > 0.05$) (Table 2). The average PIC value of combined EST-SSRs and gSSRs was 0.37. An average 2.41 alleles per locus was observed. The means of observed and expected heterozygosity were 0.41 and 0.38, respectively.

A dendrogram of 12 populations showed that the populations were clustered into two main clades, clearly separated from the oil palm outgroup (Fig. 1). The north-eastern clade was separated from those of the southern and central clade. The two clades were geographically separated on the map of Thailand and this likely resulted from geographical barriers (Pyeek et al., 2008). Phayyen hill and the Phetchabun mountain ranges located between the two areas had interrupted human movement in the past and, thereby, limited the anthropogenic spread of the Asian Palmyra palm. By contrast, there is no geographical barrier between the southern and central regions resulting in a considerable widespread of the species.
The genetic study of the Asian Palmyra palm was, so far, limited to a few markers, for example, RAPDs developed for sex determination (George and Karun, 2011; George et al., 2007), and ISSRs used for diversity assessment in India (Vinayagam et al., 2009). These, however, were unable to provide a genetic resolution for the population structure of the Asian Palmyra palm because of their limitation as dominant markers. This study provides a set of codominant microsatellite EST-SSR and gSSR markers, which would be used to further study the genetics of Asian Palmyra palm. Furthermore, we found that the population diversity of Asian Palmyra palm in Thailand is very low as indicated by the genetic variation indices (PIC, N_a, H_o, and H_e). This observation is somewhat similar to previous studies in India using ISSRs that showed 0.84 average similarity coefficient and PIC ranging between 0 and 0.56 (Vinayagam et al., 2009) and RAPDs that had 0.76 average similarity coefficient (George et al., 2016; Ponnuswami et al., 2008; Raju and Al-Dous, 2015). The small number of alleles per locus coincides with the notion that Asian Palmyra palm is an introduced species (Kovoor, 1983), and, with limited numbers of originally introduced plants, this eventually resulted in low genetic diversity.

In conclusion, the evaluation of marker transferability in this study provided a set of microsatellite markers for studying the genetic diversity and population structure of the Asian Palmyra palm in Thailand. This data could be useful for the management of the Asian Palmyra palm plantation and advance its breeding efforts.

Literature Cited

- Al-Dous, E.K., B. George, M.E. Al-Mahmoud, M.Y. Al-Jaber, H. Wang, T.M. Salameh, E.K. Al-Isawi, S. Pontaroli, J. DeBarry, and V. Arondel. 2011. De novo genome sequencing and comparative genomics of date palm (*Phoenix dactylifera*). Nat. Biotechnol. 29(6):521–527.
- Al-Msalleem, I.S., S. Hu, X. Zhang, Q. Lin, W. Liu, J. Tan, X. Yu, J. Liu, L. Pan, T. Zhang, Y. Yin, C. Xin, H. Wu, G. Zhang, M.M. Ba Abdullah, D. Huang, Y. Fang, Y.O. Alnakhli, S. Jia, A. Yin, E.M. Alhuzimi, B.A. Alsaihati, S.A. Al-Owadyed, D. Zhao, S. Zhang, N.A. Al-Otaibi, G. Sun, M.A. Majrashi, F. Li, Tala, J. Wang, Q. Yun, N.A. Alnasser, L. Wang, M. Yang, R.F. Al-Jelaify, K. Liu, S. Gao, K. Chen, S.R. Alkhaldi, G. Liu, M. Zhang, H. Guo, and J. Yu. 2013. Genome sequence of the date palm *Phoenix dactylifera* L. Nat. Commun. 4:2274.
- Barfod, A.S., M. Balhara, J. Dransfield, and H. Balslev. 2015. SE Asian palms for agroforestry and home gardens. Forests 6(12):4607–4616.
- Billotte, N., N. Marseillac, A.M. Risterucci, B. Adon, P. Brottier, F.C. Baurens, R. Singh, A. Herrán, H. Asmady, C. Billot, P. Amblard, T. Borassus flabellifer L.). Curr. Sci. 100(6):314–331.
- Botstein, D., R.L. White, M. Skolnick, and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Amer. J. Hum. Genet. 32(3):314–331.
- Castillo, A., H. Budak, A.C. Martin, G. Dorado, A. Borner, M. Roder, and P. Hernandez. 2010. Interspecies and intergeneric transferability of barley and wheat D-genome microsatellite markers. Ann. Appl. Biol. 156:347–356.
- Choudhary, S., N.K. Sethy, B. Shokeen, and S. Bhatia. 2009. Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor. Appl. Genet. 118:591–608.
- Davis, T.A. and D.V. Johnson. 1987. Current utilization and further development of the palmyra palm (*Borassus flabellifer* L., *Arecaceae*) in Tamil Nadu State, India. Econ. Bot. 41(2):247–266.
- Gasic, K., Y. Han, S. Kerbundit, V. Shulaev, A.F. Iezzoni, E.W. Stover, R.L. Bell, and M.E. Wniewirowski. 2009. Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol. Breed. 23:397–411.
- Gawel, N.J. and R.L. Jarret. 1991. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rpt. 9(3):262–266.
- George, J. and A. Karun. 2011. Marker assisted detection of seed sex ratio in palmyrah palm (*Borassus flabellifer* L.). Curr. Sci. 100(6):922–925.
- George, J., A. Karun, R. Manimekalai, M.K. Rajesh, and P. Remya. 2007. Identification of RAPD markers linked to sex determination in palmyrah (*Borassus flabellifer* L.). Curr. Sci. 93:1075–1077.
- George, J., K. Venkataramana, P. Nainar, M. Rajesh, and A. Karun. 2016. Evaluation of molecular diversity of ex situ conserved germplasm of palmyrah (*Borassus flabellifer* L.) accessions using RAPD markers. J. Plant. Crops 44(2):96–102.
- Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2):65–70.
- Ince, A.G., M. Karaca, and A.N. Onus. 2010. Polymorphic microsatellite markers transferable across *Capsicum* species. Plant Mol. Biol. Rpt. 28:285–291.
- Karaca, M., A.G. Ince, A. Aydin, and S.T. Ay. 2013. Cross-genera transferable microsatellite markers for 12 genera of the *Lamiaceae* family. J. Sci. Food Agr. 93(8):1869–1879.
Raju, D.C. and J.V. Reji. 2015. Genetic diversity

Ponnuswami, V., R. Jagadeesan, A. Ramesh.

Ponnuswami, V. 2010. Genetic diversity in palmyrah palms (Arecaceae). Econ. Bot. 62(3):420–441.

Nei, M. 1972. Genetic distance between populations. Amer. Nat. 106:283–292.

Park, Y.H., S.G. Ahn, Y.M. Choi, H.J. Oh, D.C. Ahn, J.G. Kim, J.S. Kang, Y.W. Choi, and B.R. Jeong. 2010. Rose (Rosa hybrid L.) EST-derived microsatellite markers and their transferability to strawberry (Fragaria spp.). Sci. Hort. 125:733–739.

Ponnuswami, V. 2010. Genetic diversity in palmyrah genotypes using morphological and molecular markers. Electron. J. Plant Breeding 1(4):556–567.

Ponnuswami, V., R. Jagadeesan, A. Ramesh Kumar, M. Prabhu, and S. Makesh. 2008. Genetic relationship and diversity in palmyrah accessions based on RAPD marker. Amer. Eurasian J. Sustain. Agr. 2:165–171.

Pynek, P., D.M. Richardson, J. Pergl, V. Jarosik, Z. Sixtova, and E. Weber. 2008. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 23(5):237–244.

Raju, D.C. and J.V. Reji. 2015. Genetic diversity analysis in palmyrah palms using RAPD markers. Int. J. Pharma Bio Sci. 6:244–250.

Sim, S.C., J.K. Yu, Y.K. Jo, M.E. Sorrells, and G. Jung. 2009. Transferability of cereal EST-SSR markers to ryegrass. Genome 52:431–437.

Singh, R., M. Ong-Abullah, E.T.L. Low, M.A.A. Manaf, R. Rosli, R. Nookiah, L.C.L. Ooi, S.E. Ooi, K.L. Chan, M.A. Halim, and N. Azizi. 2013. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500(7462):335–339.

Sirajuddin, S., M. Mulyadi, G.D. Dirawan, F. Amir, and N. Pertiwi. 2016. Conservation status of lontar palm trees (Borassus flabellifer Linn) in Jeneponto district, South Sulawesi, Indonesia. J. Trop. Crop Sci. 3(1):28–33.

Tang, J., Y. Gao, and J. Jia. 2006. Homologous analysis of SSR-ESTs and transferability of wheat SSR-EST markers across barley, rice, and maize. Euphytica 151:87–93.

Ukoskit, K., V. Chanroj, G. Bhusudsawang, K. Pipatcharteamwong, S. Tangphatsomrung, and S. Tragoomrungr. 2014. Oil palm (Elaeis guineensis Jacq.) linkage map, and quantitative trait locus analysis for sex ratio and related traits. Mol. Breed. 33(2):415–424.

Vinayagam, P., J. Dhandapani, P. Raman, R.K. Alagarsamy, P. Mathusamy, and S.S. Balanaman. 2009. Molecular characterization for genetic diversity of palmyrah (Borassus flabellifer) accessions using Inter Simple Sequence Repeat (ISSR) markers. Asian Austrul. J. Plant Sci. Biotechnol. 3(1):11–15.

Whankaew, S., K. Kanjanawattanawong, C. Phumichai, D.R. Smith, J. Narangajavana, and K. Trivitayakorn. 2011. Cross-genera transferability of (simple sequence repeat) SSR markers among cassava (Manihot esculenta Crantz), rubber tree (Hevea brasiliensis Muell.) and physic nut (Jatropha curcas L.). Afr. J. Biotechnol. 10(10):1768–1776.

Yeh, F.C., R.C. Yang, and T. Boyle. 1999. POPGENE version 1.31: Microsoft Windows-based freeware for population genetic analysis, quick user guide. Center for International Forestry Research, University of Alberta, Edmonton, Alberta, Canada.

Yu, F., B.H. Wang, S.P. Feng, J.Y. Wang, W.G. Li, and Y.T. Wu. 2011. Development, characterization, and cross-species/genera transferability of SSR markers for rubber tree (Hevea brasiliensis). Plant Cell Rpt. 30:335–344.

Yu, J., H. Zhao, T. Zhu, L. Chen, and J. Peng. 2013. Transferability of rice SSR markers to Miscanthus sinensis, a potential biofuel crop. Euphytica 191(3):455–468.

Zehdi, S., E. Cherif, S. Rhouma, S. Santoni, A.S. Hannachi, and J.C. Pintaud. 2012. Molecular polymorphism and genetic relationships in date palm (Phoenix dactylifera L.): The utility of nuclear microsatellite markers. Sci. Hort. 148:255–263.

Zeid, M., J.K. Yu, I. Goldowitz, M.E. Denton, D.E. Costich, C.T. Jayasuriya, M. Saha, R. Elshife, D. Benschier, F. Breseghello, J. Munkvold, R.K. Varshney, G. Belay, and M.E. Sorrells. 2010. Cross-amplification of EST-derived markers among 16 grass species. Field Crops Res. 118(1):28–35.

Zhou, Y., J. Li, S.S. Korban, and Y. Han. 2013. Apple SSRs present in coding and noncoding regions of expressed sequence tags show differences in transferability to other fruit species in Rosaceae. Can. J. Plant Sci. 93(2):183–190.