Predictive Values of Programmed Cell Death-Ligand 1 Expression for Prognosis, Clinicopathological Factors, and Response to Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Inhibitors in Patients With Gynecological Cancers: A Meta-Analysis

Chen Zhang and Qing Yang*

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China

Background: The prognostic value of programmed cell death-ligand 1 (PD-L1) in gynecological cancers has been explored previously, but the conclusion remains controversial due to limited evidence. This study aimed to conduct an updated meta-analysis to re-investigate the predictive significance of PD-L1 expression.

Methods: PubMed, EMBASE and Cochrane Library databases were searched. The associations between PD-L1 expression status and prognosis [overall survival (OS), progression-free survival (PFS), recurrence-free survival (RFS), cancer-specific survival (CSS) or disease-free survival (DFS)], clinical parameters [FIGO stage, lymph node metastasis (LNM), tumor size, infiltration depth, lymphovascular space invasion (LVSI) or grade] and response to anti-PD-1/PD-L1 treatment [objective response rate (ORR)] were analyzed by hazard ratios (HR) or relative risks (RR).

Results: Fifty-five studies were enrolled. Overall, high PD-L1 expression was not significantly associated with OS, PFS, RFS, CSS and DFS of gynecological cancers. However, subgroup analysis of studies with reported HR (HR = 1.27) and a cut-off value of 5% (HR = 2.10) suggested that high PD-L1 expression was correlated with a shorter OS of gynecological cancer patients. Further sub-subgroup analysis revealed that high PD-L1 expressed on tumor-infiltrating immune cells (TICs) predicted a favorable OS for ovarian (HR = 0.72), but a poor OS for cervical cancer (HR = 3.44). PD-L1 overexpression was also correlated with a lower OS rate in non-Asian endometrial cancer (HR = 1.60). High level of PD-L1 was only clinically correlated with a shorter PFS in Asian endometrial cancer (HR = 1.59). Furthermore, PD-L1-positivity was correlated with LNM (for overall, ovarian
and endometrial cancer expressed on tumor cells), advanced FIGO stage (for overall, ovarian cancer expressed on tumor cells, endometrial cancer expressed on tumor cells and TICs), LVSI (for overall and endometrial cancer expressed on tumor cells and TICs), and increasing infiltration depth/high grade (only for endometrial cancer expressed on TICs). Patients with PD-L1-positivity may obtain more benefit from anti-PD-1/PD-L1 treatment than the negative group, showing a higher ORR (RR = 1.98), longer OS (HR = 0.34) and PFS (HR = 0.61).

Conclusion: Our findings suggest high PD-L1 expression may be a suitable biomarker for predicting the clinical outcomes in patients with gynecological cancers.

Keywords: gynecological cancers, programmed death ligand 1, prognosis, immunotherapy, clinicopathological features

BACKGROUND

Gynecological cancers have been a significant global health burden for women (1, 2). According to the statistics by the American Cancer Society in 2020, uterine corpus endometrial cancer accounts for approximately 65,620 new cases and 12,590 deaths, followed by ovarian cancer (21,750 new cases and 13,940 deaths) and cervical cancer (13,800 new cases and 4,290 deaths) (3). Although several therapeutic options (i.e. surgery, chemoradiotherapy and immunotherapy) have been recommended recently, some patients exhibit a poor response to these management strategies and experience relapses or metastases, ultimately dying from their diseases (4). Therefore, predictive biomarkers may be urgently necessary to early stratify these patients at a high risk of poor responses and unfavorable outcomes and then guide more individualized treatment regimens to further improve overall survival (OS).

Recently, accumulating evidence has revealed that immune escape represents a crucial hallmark for malignant transformation and tumor progression (5, 6). The programmed death-ligand 1 (PD-L1, also called B7-H1 or CD274)/programmed cell death-1 (PD-1) axis is a major immune checkpoint pathway (7). PD-L1 distributed on tumor cells or tumor-infiltrating immune cells (TICs) can bind with the co-inhibitory molecule PD-1 on T cells and then promote T-cell exhaustion (8). Exhausted CD8+ T cells have significantly reduced cytotoxicity, which facilities the cancer cells escape from T cell-mediated immune surveillance (7, 9). These findings suggest that overexpressed PD-L1 may serve as a potential biomarker to predict the tumor progression, poor prognosis and therapeutic response. This hypothesis has been proved by meta-analyses on several cancers, including gynecological cancer types (10–12). For example, Gu et al., synthesized 7 studies of cervical cancer and found that PD-L1 overexpression was related with poor OS.

MATERIALS AND METHODS

This meta-analysis followed the guidelines of the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). Patient consent and ethical approval were waived because this study collected the data from published articles.

Literature Search

The online databases of the PubMed, the Cochrane Library and Embase were systematically searched up to April, 2020. The following key words were applied for searches: ("gynecological" OR "cervical" OR "ovarian" OR "endometrial") AND ("cancer" OR "carcinoma" OR "tumor") AND ("PD-L1" OR "programmed
death ligand-1” OR “B7-H1” OR “CD274”). The reference lists in the retrieved papers and relevant reviews were also checked to identify additional publications.

Inclusion and Exclusion Criteria
Two reviewers independently evaluated potential articles. Studies which met the following inclusion criteria were considered eligible: 1) patients were diagnosed as any one type of gynecological cancers by pathological analyses (regardless of epithelial cancers, sarcomas or neuroendocrine tumors); 2) tumor samples for detection of PD-L1 expression were collected during primary tumor removal surgery or diagnostic biopsy before any treatment (such as neoadjuvant chemotherapy, PD-1/PD-L1 inhibitor); 3) the protein expression of PD-L1 on tumor cells or TICs of cancer tissues was determined using immunohistochemistry (IHC); 4) prognosis [OS, PFS, recurrence-free survival (RFS), cancer-specific survival (CSS) or disease-free survival (DFS)], clinicopathological parameters [FIGO stage, lymph node metastasis (LNM), tumor size, depth of infiltration, lymphovascular space invasion (LVSI), FIGO grade] and therapeutic response outcomes [objective response rate (ORR)] were compared between groups with high (positive) and low (negative) expression of PD-L1; 5) HR or relative risks (RR) as well as 95% CI values could be directly extracted, indirectly calculated using raw data or estimated from Kaplan–Meier curve; and 6) the studies were published in English and full-text. Studies were excluded if they were: 1) duplicate articles; 2) case reports, reviews, meeting abstracts, comments or letters; 3) studies evaluating the expression of PD-L1 at mRNA levels or at protein levels using other methods; 4) studies measuring the expression of PD-L1 after treatment; 5) studies having no usable data to estimate HRs and 95%CIs; 6) studies focusing on other cancers; and 7) studies written in other languages. Any disagreements were solved by discussion.

Data Extraction and Quality Assessment
Two researchers independently extracted the following data from each study: name of the first author, year of publication, country, population number, cancer type, clinicopathological features, prognostic endpoint, treatment, IHC detection area/antibody type/antibody source/IHC counting method/cut-off point for PD-L1, HRs with 95% CIs and their statistical analysis approach. Multivariable analysis results were preferentially extracted to obtain HRs and 95%CIs; otherwise, univariate analysis results were collected. The survival data in the Kaplan-Meier curves were read using a digitizing software-Engauge Digitizer 4.1. Any disputes were resolved through discussion.

The quality of included studies was assessed using the Newcastle-Ottawa Scale (NOS) (13) that consists of three key domains: selection, comparability and outcomes or exposure. Total NOS score ranged from 0 to 9. Studies with the final score > 6 were considered to have a high methodological quality.

Statistical Analysis
All data analyses were achieved with STATA 13.0 software (STATA Corporation, College Station, TX, USA). HRs with 95% CIs from each study were pooled to determine the association of PD-L1 expression with the prognostic indicators; while RRs with 95% CIs were utilized to measure the correlation of PD-L1 expression with clinicopathological factors and ORR. HR or RR > 1 indicated a poorer prognosis or higher degree of malignancy in patients with high PD-L1 expression. Association difference was analyzed using z test (p < 0.05). Heterogeneity across studies was quantified by using the Q-test and I² statistic. P < 0.10 and I² > 50% were set as the threshold for defining the studies with significant heterogeneity. A random-effect model was chosen to compute the pooled HR (or RR) for variables from studies with heterogeneity. A fixed-effect model was adopted for studies without evidence of heterogeneity. Egger’s linear regression test (14) was used to detect the publication bias. If bias was seen (p < 0.05), “trim and fill” algorithm (15) was chosen for adjustment of HRs (RRs). Subgroup analysis was also carried out according to study country, sample size, cancer type, IHC detection area, antibody type, antibody source, IHC counting method, cut-off value, HR source and statistical approach to investigate possible causes of heterogeneity. Sensitivity analysis was performed via omitting any one study at a time. P-values and 95% CIs were two-sided.

RESULTS
Study Selection
Figure 1 outlines the flowchart of the literature collection process. A total of 4,882 records were initially identified through searching the electronic database. After removal of 3,502 duplicate records, the titles and abstracts of 1,380 studies were read. Consequently, 1,312 articles were excluded because of they were: case reports (n = 31), meta/review (n = 47), animal studies (n = 93), studies investigating other cancers (n = 759), irrelevant topics (n = 208), without survival or other clinical outcomes (n = 172) and published in other languages (n = 2). After reviewing 68 full-text articles in detail, 16 studies were further removed since sufficient data were not provided for analysis (n = 8). IHC method was not used for detection of PD-L1 protein expression (n = 5) or the samples were collected after treatment (n = 3). Additional 3 studies were supplemented through checking the references of reviews. Finally, 55 studies were eligible for the meta-analysis (16–70).

Characteristics of the Included Studies
Table 1 shows the characteristics of all the included studies. The publication years ranged from 2007 to 2020 and 61.8% (34/55) of them were published within 2019 and 2020. Fourteen studies were performed in China, nine were in the USA, eight were in Japan, four in Korea, each three in Thailand, Turkey, each two in Canada, France, Germany and each one in Norway, Belgium, Brazil, Denmark, Egypt, Greece, Sweden and UK. Twenty-three studies explored the association of PD-L1 with clinical outcomes in ovarian cancer patients, 15 focused on cervical cancer and 14 investigated endometrial cancer. Ovarian and endometrial cancer patients were both enrolled in two studies, while cervical and endometrial cancer patients were both collected in one study. The prognostic endpoint was OS in 38 studies, PFS in 20 studies, RFS in 2 studies, CSS in 6 studies and DFS in 5
studies. FIGO stage (II-IV vs I or III-IV vs I-II) was compared between the groups with high and low expression of PD-L1 in 27 studies; tumor size (≥40 mm vs < 40 mm) was described in 5 studies; LNM (yes vs no) was reported in 16 studies; infiltration depth (≥ 1/2 vs <1/2) was analyzed in 7 studies; LVSI (yes vs no) was observed in 14 studies; FIGO grade was explored in 13 studies. One thing should be noted that tumor cells and TICs were both analyzed and the different IHC counting methods (cut-off points) were applied in some studies, which led to more datasets used for analysis of the prognostic and clinical significance of PD-L1 compared with the actual number of papers (Table S1). The patients in most of these studies underwent surgery, radiotherapy and/or chemotherapy with routine drugs, while six studies specifically explored the efficacy of anti-PD-1/PD-L1 antibodies (pembrolizumab, atezolizumab, nivolumab) for the treatment of gynecological cancers (65–70). The association of PD-L1 expression status with ORR, OS and PFS to these anti-PD-1/PD-L1 immune checkpoint inhibitors was also investigated in these six studies (65–70). The NOS scores of all included studies were > 6, suggesting the methodological quality was high for all of them (Table S2).

Association Between Programmed Cell Death-Ligand 1 Expression and Survival Overall Analysis in All Gynecological Cancers

Fifty-one datasets (Table S1) reported the predictive values of PD-L1 for OS in all gynecological cancers. The random-effects model was chosen because of significant heterogeneity (I² = 71.7%, p = 0.000). The results of the meta-analysis indicated no significant association of PD-L1 expression with OS (HR = 1.13; 95% CI: 0.91 - 1.39, p = 0.263). Data on PFS were extracted from 26 datasets (Table S1). The pooled results showed that PD-L1 expression was not significantly associated with PFS (HR =
TABLE 1 | Characteristics of included studies.

Study	Year	Country	No.	Cancer type	Clinical endpoint	Clinicopathological factors	HR for survival analysis	PD-L1 expression		
						Calculation method	Source	Detected area by IHC	IHC counting method	Cut-off value
Wang S (16)	2018	China	90	CC	OS, DFS	UV	Reported	Tumor cells	UV	H-score of 100
Enwere EK (17)	2017	Canada	120	CC	OS, DFS	UV	Reported	Tumor cells	SP, SI	Median percentage, Median tAQUA score >5%
Feng M (18)	2018	China	219	CC	OS	UV	Estimated	Tumor cells, TICs	SP	>1%
Kim M (19)	2017	Korea	27	CC	OS, DFS	UV	Estimated	Tumor cells, TICs	SP	>1%
Iijima M (20)	2020	Japan	33	CC	OS	UV	Estimated	Tumor cells, TICs	SP	>1%
Tsuchiya T (21)	2020	Japan	104	CC	OS	UV	Reported	Tumor cells, TICs	SI	Score (tumor cells, 0; TICs, 3) >5%
Kawachi A (22)	2018	Japan	148	CC	DFS	UV	Estimated	Tumor cells, TICs	SP	>5%
Loharamtaweethong K (23)	2019	Thailand	171	CC	RFS, CSS	UV (CSS)	Reported	Tumor cells, TICs	SP	>6%
Miyasaka Y (24)	2020	Japan	71	CC	OS, DFS	UV	Estimated	Tumor cells, TICs	SP	>1%
Chen H (25)	2020	China	222	CC	OS, DFS	UV	Estimated	Tumor cells, TICs	SP	Tumor cells, >1%; TICs, >5% >5% >0%
Lippens (26)	2020	Belgium	38	CC	CSS	UV	Estimated	Tumor cells	SI	Score > 2
Karim R (27)	2009	USA	115	CC	OS	UV	Estimated	Tumor cells	SP	>1%
Loharamtaweethong K (28)	2019	Thailand	153	CC	RFS, CSS	UV	Estimated	Tumor cells	SI	Score > 1
Grochot RM (29)	2019	Brazil	59	CC	OS, DFS	UV	Estimated	Tumor cells	SP	>5%
Xu M (30)	2016	China	112	OC	OS	UV	Estimated	Tumor cells, TICs	SP	>10%
Nhokaew W (31)	2019	Thailand	92	OC	DFS	UV	Estimated	Tumor cells	SI	>5%
Schmoeckel E (32)	2019	Germany	288	OC	OS	UV	Estimated	Tumor cells	SP	>1%
Hamanishi J (33)	2007	Japan	50	OC	OS, DFS	UV	Estimated	Tumor cells, TICs	SP	>5%
Mesnage SJL (34)	2017	France	50	OC	PFS, DFS	UV	Reported	Tumor cells, TICs	SP	>10%
Zhu J (35)	2017	China	122	OC	OS, DFS	UV	Reported	Tumor cells, TICs	SP	>1%
Zong L (37)	2020	China	146	OC	OS, DFS	UV	Estimated	Tumor cells	SP	>5%
Wang Q (38)	2017	China	107	OC	OS	UV	Estimated	Tumor cells, TICs	SP	>5%
Zhu X (39)	2018	China	112	OC	OS	UV	Estimated	Tumor cells, TICs	SP (or SI)	>10% (or score >1)
Buderath P (40)	2019	Germany	179	OC	OS	UV	Estimated	Tumor cells, TICs	SP	>0%
Kim KH (41)	2019	Korea	248	OC	OS	UV	Estimated	Tumor cells, TICs	SP + SI	>5% + score >2
Zhu X (42)	2019	China	112	OC	OS, DFS	UV	Reported	Tumor cells, TICs	SP (or SI)	>10% (or score >1)
Zhang L (43)	2019	China	124	OC	OS, DFS	UV	Reported	Tumor cells	IRS	Score > 3

(Continued)
TABLE 1 | Continued

Study	Year	Country	No.	Cancer type	Clinical endpoint	Clinicopathological factors	HR for survival analysis	PD-L1 expression	Cut-off value		
						Calculation method	Source	Detected area by IHC	IHC counting method		
Aldredge J (44)	2019	USA	46	OC/EC	OS	FIGO stage	UV	Reported	Tumor cells, TIC	Tumor cells, >0%; CPS, score > 1	
De La Motte Rouge T (45)	2019	France	51	OC	OS, DFS	UV	Reported	Tumor cells	TICs	Other	> 1000
Martin de la Fuente L (46)	2020	Sweden	130	OC	OS	MV	Reported	Tumor cells	TICs	SI	> 1%
Chatterjee J (47)	2017	UK	48	OC	PFS	UV	Reported	TICs	SI	Score > 1%	
Henricksen JR (48)	2020	Denmark	283	OC	OS	UV	Reported	TICs	SI	Score > 1%	
Sungu N (49)	2019	Turkey	127	EC	OS	FIGO stage, grade	UV	Estimated	Tumor cells, TICs	Score > 1%	
Vagios S (50)	2019	Greece	101	EC	OS, PFS	FIGO stage, infiltration depth, LNM	MV	Reported	TICs	SI + SP	Score > 2 (± 1%)
Kucukgoz Gulec U (51)	2019	Turkey	53	EC	OS	FIGO stage, infiltration depth, grade	MV	Reported	TICs	SI	> 1%
Zhang S (52)	2020	Japan	221	EC	OS	FIGO stage, infiltration depth, grade	MV	Reported	TICs	IRS, SI	TC, score > 0; TICs, score > 4
Kim J (53)	2018	Korea	183	EC	PFS	FIGO stage, infiltration depth, grade	UV (tumor cells), MV (TICs)	Reported	Tumor cells, TICs	SI	> 1.977
Jones TE (54)	2021	USA	43	EC	OS	FIGO stage	UV	Reported	TICs	SI	> 5%
Kucukgoz Gulec U (55)	2020	Turkey	59	EC	OS	FIGO stage	UV	Reported	TICs	SI	> 5%
Tawadros AIF (56)	2018	Egypt	95	EC	OS	FIGO stage, infiltration depth, grade	UV	Reported	TICs	IRS	Score > 3
Li ZB (57)	2017	USA	700	EC	OS	FIGO stage	UV	Estimated	Tumor cells, TICs	SI	> 1%
Mo ZF (58)	2016	China	75	EC	OS	FIGO stage	UV	Estimated	Tumor cells, TICs	IRS	> 5%
Yamashita H (59)	2018	Japan	149	EC	OS, PFS	FIGO stage	UV	Estimated	Tumor cells, TICs	SI	> 5%
Engerud H (60)	2020	Norway	700	EC	CSS	FIGO stage, infiltration depth, grade	UV	Estimated	Tumor cells, TICs	IRS	Score > 0
Crumley S (61)	2019	USA	132	EC	OS	FIGO stage, infiltration depth, grade	UV	Estimated	Tumor cells, TICs	SI + SP	Score > 2 ± 0%; Score > 3 + > 2%
Li MJ (62)	2017	China	113	OC	OS	FIGO stage	UV (DFS), MV (OS)	Reported	Tumor cells	IRS	Score > 2
Webb JR (63)	2016	Canada	479	OC	OS	FIGO stage, grade	UV (other), MV (OS), UV (KM)	Reported, estimated	Tumor cells	IRS	Score > 1
Xue CY (64)	2020	China	77	OC	OS, PFS	FIGO stage, grade	UV	Estimated	Tumor cells	IRS	H-score of 100
Chung HC (65)	2019	Korea	98	CC	OS, PFS, ORR	OS, PFS, ORR	UV	Estimated	TICs	SI	Score > 1
Liu JF (66)	2019	USA	12/15	OC/EC	OS, ORR	OS, PFS, ORR	UV	Estimated	TICs	SI	Score > 1
Matulonis UA (67)	2019	USA	12/15	OC	ORR	UV	Reported	TICs	SI	Score > 1	
Zamarin D (68)	2020	USA	52	OC	ORR	UV	Reported	TICs	SI	Score > 1	
Santin AD (69)	2020	USA	12/15	OC	ORR	UV	Reported	TICs	SI	Score > 1	

OS, overall survival; PFS, progression free survival; RFS, recurrence-free survival; CSS, cancer-specific survival; DFS, disease-free survival; FIGO, International Federation of Gynecology and Obstetrics; LNM, lymph node metastasis; LVSI, lymphovascular space invasion; ORR, overall response rate; KM, Kaplan–Meier curve; UV, univariate analysis; MV, multivariate analysis; SP, staining percentage; SI, staining intensity score; IRS, immunoreactive SI (that is, IRS = SI × SP); IHC, immunohistochemistry; TICs, tumor-infiltrating immune cells; CPS, combined positive; estimated, the HR was obtained from Kaplan–Meier curve; HGSC, high-grade serous ovarian cancer.
1.04; 95% CI: 0.85 – 1.29, p = 0.682) under a random-effect model (I^2 = 63.7%, p = 0.000). Meta-analysis using the corresponding datasets also demonstrated that positive expression of PD-L1 was not related to RFS (n = 2; HR = 1.08; 95% CI: 0.85 – 1.29, p = 0.682; I^2 = 0%, p = 0.746), DFS (n = 6; HR = 1.26; 95% CI: 0.60 – 2.64, p = 0.545; I^2 = 81.5%, p = 0.000) and CSS (n = 10; HR = 0.81; 95% CI: 0.65 – 1.01, p = 0.056; I^2 = 28.8%, p = 0.180).

Subgroup Analysis in All Gynecological Cancers

To further investigate the possible prognostic potential of PD-L1 in gynecological cancers, the subgroup analysis was performed. The results showed that, in studies with reported HR, high PD-L1 expression was correlated with shorter OS (n = 33; HR = 1.27; 95% CI: 1.01 – 1.61, p = 0.041) (Figure 2; Table 2). Furthermore, PD-L1-positive status with a cut-off value of 5% predicted a poor OS (n = 8; HR = 2.10; 95% CI: 1.17 – 3.75, p = 0.013), but not 1% or others (Table 2). Although a significant association between PD-L1 and PFS was also observed in analyses of non-Asian population (n = 10; HR = 1.04; 95% CI: 1.00 – 1.07, p = 0.040) (Figure 3; Table 3), the corresponding HR was relatively lower and approximated to 1, indicating the clinical relevance of PD-L1 expression with PFS may be insignifcant. The conclusions of PFS from estimated HR may be undetermined, although it was significant (p = 0.001). Owing to the small number of included studies, subgroup analysis was not performed for RFS, DFS and CSS.

Sub-Subgroup Analysis in Each Cancer Type

In addition, non-significant relationships were seen between PD-L1 and OS/PFS in any type of gynecological cancers (Tables 2 and 3). To further explore whether PD-L1 expression may be a significant prognostic factor for specific gynecological cancer type, the sub-subgroup analysis was also conducted. The results revealed that PD-L1 overexpression on TICs predicted a favorable OS for ovarian cancer (n = 8; HR = 1.89; 95% CI: 1.06 – 3.36, p = 0.031) and sample size > 100 (n = 9; HR = 1.92; 95% CI: 1.07 – 3.45, p = 0.030), further increasing the credibility to use PD-L1 as the prognostic biomarker for cervical cancer (Table S3). Likewise, PD-L1 overexpression was correlated with a lower OS rate in non-Asian individuals with endometrial cancer (n = 7; HR = 1.60; 95% CI: 1.07 – 2.40, p = 0.022) (Table S3). The cut-off value of 5% may be optimal (n = 3; HR = 2.37; 95% CI:

![FIGURE 2](https://www.frontiersin.org/) | Forest plots showing the significant association between high PD-L1 expression and a poor overall survival (OS) in all gynecological cancers patients by analysis of the studies with reported HR, HR, hazard ratio; CI, confidence interval.
1.35 – 4.18, p = 0.003) compared with 1% and others (Table S3). The association between PD-L1 expression and PFS may be clinically significant only in the Asian endometrial cancer patients (n = 5: HR = 1.59; 95% CI: 1.01 – 2.51, p = 0.045) (Table S4), but not in cervical cancer because the pooled HR was obtained from estimated HR in most of individual studies (Table S1) or in ovarian cancer because the pooled HR approximated to 1 (Table S4).
TABLE 3 | Subgroup analysis on the outcome of PFS.

Comparison	Studies	HR(95%CI)	P-value	I²	P_H-value
Region					
Asian	16	1.20(0.86,1.97)	0.209	75.8	0.000
Non-Asian	10	1.04(0.00,1.07)	**0.040**	0.0	0.670
Sample size					
<100	16	0.80(0.72,1.34)	0.921	70.4	0.000
>100	10	1.14(0.83,1.58)	0.423	50.4	0.033
IHC counting method					
SI	8	1.22(0.73,2.03)	0.451	77.3	0.000
SP	15	0.89(0.74,1.08)	0.226	0.0	0.478
IRS	3	2.22(0.76,5.53)	0.149	87.7	0.000
Cut-off					
1%	8	0.75(0.55,1.02)	0.065	0.0	0.669
5%	2	0.76(0.43,1.36)	0.361	0.0	0.947
Others	16	1.25(0.94,1.65)	0.120	74.4	0.000
Cancer type					
Ovarian	10	1.14(0.87,1.49)	0.360	62.0	0.005
Cervical	9	0.87(0.54,1.39)	0.561	68.6	0.001
Endometrial	7	1.27(0.70,2.30)	0.431	56.1	0.034
Antibody type					
Monoclonal	22	0.95(0.73,1.22)	0.665	52.1	0.002
Unclear	4	1.65(0.93,3.01)	0.106	86.3	0.000
Antibody source					
Mouse	3	0.79(0.28,2.41)	0.684	86.7	0.001
Rabbit	19	0.99(0.79,1.24)	0.894	28.5	0.120
Unclear	4	1.65(0.93,3.01)	0.106	86.3	0.000
IHC detection area					
Tumor cells	17	1.16(0.86,1.56)	0.337	59.8	0.001
TICs	7	1.05(0.68,1.61)	0.830	54.4	0.041
Unclear	4	1.65(0.93,3.01)	0.106	86.3	0.000
HR method					
MV	7	1.46(0.82,2.62)	0.201	68.4	0.004
Tumor cells + TICs	2	0.60(0.29,1.24)	0.167	75.7	0.004
UV	9	0.95(0.76,1.20)	0.661	62.3	0.000
HR source					
Reported	16	1.29(0.10,1.67)	0.052	67.1	0.000
Unclear	10	0.65(0.50,0.84)	**0.001**	3.3	0.409

OS, overall survival; UV, univariate analysis; MV, multivariate analysis; SP, staining percentage; SI, staining intensity score; IRS, immunoreactive SI (that is, IRS = SI × SP); HR, hazard ratio; CI, confidence interval; IHC, immunohistochemistry; TIC, tumor-infiltrating immune cells. P⁺ value for association; P_H value for heterogeneity obtained by Q-test; I², the degree of heterogeneity by I² statistic. Bold indicated the significance after analysis of two or more than two studies (p < 0.05).

Association of Programmed Cell Death-Ligand 1 Expressions With Clinicopathological Characteristics

Overall Analysis in All Gynecological Cancers

As shown in **Table 4**, the overall pooled results showed that PD-L1 overexpression correlated with LNM (n = 21; RR = 1.14; 95% CI: 1.01 – 1.51, p = 0.003), advanced FIGO stage (III-IV vs I-II) (n = 34; RR = 1.18; 95% CI: 1.05 – 1.32, p = 0.007) and LVSI (n = 20; RR = 1.26; 95% CI: 1.05 – 1.57, p = 0.034).

Subgroup Analysis in All and Each Cancer Type

High expressed PD-L1 could predict LNM for ovarian (n = 4; RR = 1.70; 95% CI: 1.23 – 2.34, p = 0.001) and endometrial (n = 6; RR = 1.85; 95% CI: 1.17 – 2.91, p = 0.008) cancer patients. These associations for the high risk of LNM may be mainly resulted from the upregulated expression of PD-L1 on tumor cells (ovarian: n = 4, RR = 1.70; 95% CI: 1.23 – 2.34, p = 0.001). Likewise, endometrial cancer patients may have LVSI (n = 14, RR = 1.51; 95% CI: 1.15 – 2.00, p = 0.004) if PD-L1 was high expressed on TICs (n = 5; RR = 1.72; 95% CI: 1.34 – 2.18, p = 0.000; **Figure 5B**) or tumor cells (n = 8; RR = 1.61; 95% CI: 1.03 – 2.51, p = 0.035; **Figure 5C**).

PD-L1 high expressed on TICs was associated with increasing infiltration depth (n = 2; RR = 1.77; 95% CI: 1.33 – 2.35, p = 0.000) and grade (n = 3; RR = 2.37; 95% CI: 1.47 – 3.83, p = 0.000) in endometrial cancer (**Table 4**). There was no significant relationship of PD-L1 with tumor size regardless of overall or subgroup analyses.

Association of PD-L1 Expressions With Response to Anti-Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Treatment

Overall Analysis in All Gynecological Cancers

Twelve datasets reported the ORR, while OS and PFS were recorded in 5 and 7 datasets, respectively. Meta-analysis of these datasets indicated that patients with PD-L1 positive expression may get more benefit from anti-PD-1/PD-L1 antibodies than PD-L1 negative patients, showing a higher ORR (RR = 1.98; 95% CI: 1.38 – 2.83, p = 0.000; **Figure 6A**) and longer OS (HR = 0.34; 95% CI: 0.46 – 0.81, p = 0.001) (**Figure 6C**) compared to PD-L1 negative patients.

Subgroup Analysis in All Gynecological Cancers

Subgroup analysis was performed only for ORR and PFS, not OS because of small articles included. The results showed that PD-1/PD-L1 inhibitors should be especially recommended for PD-L1-high expressed patients.
FIGURE 4 | Forest plots showing the association of PD-L1 expression for ovarian cancer patients. (A) PD-L1 expression on tumor-infiltrating immune cells and overall survival (OS). (B) PD-L1 expression on tumor cells and LNM. (C) PD-L1 expression on tumor cells and FIGO stage. FIGO, International Federation of Gynecology and Obstetrics; LNM, lymph node metastasis; HR, hazard ratio; RR, relative risk; CI, confidence interval.
TABLE 4 | Correlations between PD-L1 expression and clinical characteristics.

Comparison	Studies	RR(95% CI)	P-value	I²	P-value	
LNM (yes vs no)	Overall	21	1.23(1.09,1.51)	0.003	42.2	0.022
Cancer type	Ovarian	4	1.70(1.23,2.34)	0.001	51.2	0.105
Cervical	11	1.03(0.83,1.27)	0.792	29.3	0.167	
Endometrial	6	1.85(1.17,2.91)	0.008	46.3	0.097	
IHC detection area (overall)	Tumor cells	19	1.33(1.12,1.59)	0.001	42.5	0.027
	TICs	2	0.98(0.64,1.49)	0.907	48.2	0.165
IHC detection area (ovarian)	Tumor cells	4	1.70(2.23,3.33)	0.001	51.2	0.105
	TICs	2	0.98(0.64,1.49)	0.907	48.2	0.165
IHC detection area (cervical)	Tumor cells	9	1.05(0.82,1.33)	0.725	33.7	0.148
	TICs	2	0.98(0.64,1.49)	0.907	48.2	0.165
IHC detection area (endometrial)	Tumor cells	6	1.85(1.17,2.91)	0.008	46.3	0.097
Tumor size (≥4 cm vs < 4 cm)	Overall	6	1.05(0.86,1.29)	0.637	23.7	0.256
Cancer type	Cervical	6	1.05(0.86,1.29)	0.637	23.7	0.256
IHC detection area (overall)	Tumor cells	5	1.11(0.90,1.37)	0.339	10.6	0.346
	TICs	1	0.61(0.24,1.51)	–	–	–
FIGO stage (III-IV vs I)	Overall	23	1.21(1.07,1.37)	0.003	42.5	0.017
Cancer type	Cervical	14	1.23(1.12,1.36)	0.000	33.1	0.110
IHC detection area (ovarian)	Tumor cells	23	1.22(0.85,1.76)	0.279	82.5	0.000
	TICs	1	0.98(0.64,1.49)	0.907	48.2	0.165
FIGO stage (II-IV vs I)	Overall	13	1.23(1.09,1.39)	0.009	57.7	0.017
Cancer type	Endometrial	4	0.91(0.77,1.09)	0.286	0.0	0.688
IHC detection area (overall)	Tumor cells	5	1.33(0.71,2.27)	0.837	85.0	0.000
	TICs	1	0.87 (0.57,1.34)	0.520	79.1	0.002
IHC detection area (cervical)	Tumor cells	3	1.77(0.45,6.96)	0.417	78.6	0.009
	TICs	2	0.94(0.48,1.84)	0.254	66.5	0.084
IHC detection area (endometrial)	Tumor cells	7	1.10(0.88,1.37)	0.019	80.5	0.001
	TICs	2	1.72(1.62,5.24)	0.007	60.0	0.005
Infiltration depth (≥ 1/2 vs <1/2)	Overall	9	1.27(0.99,1.63)	0.058	78.1	0.000
Cancer type	Cervical	1	1.12(0.96,1.30)	0.150	–	–
IHC detection area (cervical)	Tumor cells	8	1.34(0.96,1.87)	0.082	80.8	0.000
	TICs	1	0.87(0.57,1.34)	0.520	79.1	0.002
IHC detection area (endometrial)	Tumor cells	7	1.15(0.88,1.49)	0.316	76.3	0.000
	TICs	2	1.77(1.32,2.35)	0.000	85.0	0.000
LVSI (yes vs no)	Overall	20	1.26(1.02,1.57)	0.034	69.5	0.000
Cancer type	Cervical	6	0.91(0.77,1.09)	0.286	0.0	0.450
IHC detection area (overall)	Tumor cells	13	1.28(0.91,1.67)	0.044	89.2	0.000
	TICs	6	1.41(0.95,2.10)	0.902	64.6	0.015
IHC detection area (cervical)	Tumor cells	1	0.92(0.58,1.44)	0.700	–	–
	TICs	1	0.80(0.50,1.28)	0.354	–	–
IHC detection area (endometrial)	Tumor cells	8	1.61(1.03,2.51)	0.035	75.4	0.000
	TICs	5	1.71(1.34,2.18)	0.000	19.2	0.293
Grade (G3 vs G1+ G2)	Overall	18	1.20(0.96,1.51)	0.111	74.0	0.000
Cancer type	Ovarian	10	1.22(0.90,1.64)	0.205	66.8	0.001
Cervical	2	0.88(0.76,1.01)	0.075	0.0	0.557	
Endometrial	7	1.48(0.79,2.77)	0.221	77.5	0.000	
IHC detection area (overall)	Tumor cells	11	1.01(0.76,1.35)	0.924	68.1	0.001
	TICs	5	1.86(0.99,3.47)	0.053	84.3	0.000
	Tumor cells + TICs	4	1.15(0.95,1.39)	0.145	10.0	0.380
IHC detection area (ovarian)	Tumor cells	6	0.96(0.77,1.20)	0.722	24.2	0.252

(Continued)
positive ovarian patients who could gain the high ORR (n = 6: RR = 2.17; 95% CI: 1.38 – 3.42, p = 0.001) and PD-L1-positive cervical patients who could obtain a longer PFS (n = 2: RR = 0.44; 95% CI: 0.29 – 0.68, p = 0.000) (Table 5).

Publication Bias and Sensitivity Analyses

Although significant heterogeneities were present for analysis of OS, PFS, DFS, LNM, FIGO stage, infiltration depth, LVSI and grade, Egger’s linear regression test analysis showed that there were no publication bias among their related studies (OS: p = 0.478; PFS: p = 0.939; DFS, p = 0.534; LNM, p = 0.917; FIGO stage, p = 0.087; infiltration depth, p = 0.181; LVSI, p = 0.504; grade, p = 0.246), indicating the credibility of results. Sensitivity analyses also confirmed the robustness of the results.

DISCUSSION

There were several meta-analyses to analyze the prognostic significance PD-L1 by integrating multiple solid tumor types (71–74), but rare studies included the gynecological cancer [n = 1, cervical carcinoma (73, 75); n = 1 each for cervical and ovarian cancer (74)]. Our present study, for the first time, specifically investigated the association of PD-L1 expression with the prognosis and clinicopathological factors in all gynecological cancer patients. Pooled results showed that PD-L1 overexpression was not associated with OS, PFS, DFS, CSS and LNM, but subgroup analysis suggested PD-L1 overexpression predicted shorter OS in studies with reported HR and the cut-off value of 5%. Furthermore PD-L1 overexpression predicted clinical malignant characteristics of gynecological cancer patients (including LNM, advanced FIGO stage and LVSI). These conclusions seemed to be in line with the results of previous meta-studies of clinical samples (71–74) and the tumor-promoting mechanisms demonstrated by in vitro and in vivo experiments. For example, Wang et al. found that overexpression of PD-L1 significantly increased the migration, invasion, proliferative and colony-forming abilities of Siha and Me180 cervical cancer cell lines compared with control. Tumor xenograft growth was also significantly enhanced and LNM was more apparently observed in abdominal cavities of mice injected with PD-L1-overexpressing cervical cancer cells (16). Fei et al. also demonstrated that ectopic expression of PD-L1 promoted nasopharyngeal carcinoma cell invasion and metastasis in vitro and in vivo, which was attributed to its capability to activate the epithelial-mesenchymal transition process in a PI3K/AKT-dependent manner (76).

Although previous meta-analysis studies had investigated the prognostic and clinicopathological impact of PD-L1 for cervical (10), ovarian (12) and endometrial cancer (11), the number of articles included was relatively small. Our study performed an updated meta-analysis for each gynecological cancer type by increasing the number of articles included by more than two fold. As expected, some of our results were obviously different from previous reports: our analysis showed that PD-L1 was not significantly associated with OS and PFS in any cancer type, but the study of Gu et al. reported PD-L1 overexpression was related to a poor OS in patients with cervical cancer (10); our results revealed that LNM, high FIGO stage and LVSI were more frequently observed in PD-L1-positive endometrial cancer patients compared with negative controls; while Lu et al. proved that elevated PD-L1 expression was only correlated with advanced stage, but not LVSI (11). Thus, we consider our conclusions may be more believable by analysis of larger samples. Furthermore, compared with the above meta-analyses (10, 11), one innovation point in our study was to collect the PD-L1 expression on both of tumor cells and TICs, not only tumor cells. As anticipated, we obtained several new conclusions: high expression of PD-L1 on TICs was a protective factor for a poor OS in ovarian cancer patients (HR < 1), but a risk factor for unfavorable OS in cervical cancer patients, advanced stage, LVSI, high grade and increasing infiltration depth in endometrial cancer patients (HR > 1). Positive expression of PD-L1 on tumor cells was associated with a poor OS for ovarian cancer patients, LVSI for endometrial cancer patients, LNM and advanced stage for both cancer types. The anti-tumor roles of high PD-L1 on TICs for ovarian patients was also illustrated in other cancers, including colorectal (77), breast (78) and high-grade neuroendocrine carcinoma of lung (79). Its anti-cancer effects may be related with an adaptive mechanism to further activate and increase levels of cytotoxic CD8+ T cells as well as tumor-infiltrating lymphocytes (78, 80–82). Also, there was a study of non-small cell lung cancer to report that PD-L1 expression on tumor cells and TICs was associated with high levels of M2 tumor-associated macrophages and then led to a poor prognosis and an aggressive malignant phenotype, which may be one potential reason to cause the tumor-promoting effects of PD-L1 on tumor cells and TICs for gynecological cancers (83, 84).

TABLE 4	Continued				
Comparison	Studies	RR(95%CI)	P-value	I²	P-value
---	---	---	---	---	---
TICs	1	2.45(1.69,3.57)	0.000	–	–
Tumor cells + TICs	4	1.19(0.95,1.39)	0.145	0.0	0.806
Tumor cells	1	0.85(0.72,1.01)	0.070	–	–
TICs	1	0.94(0.72,1.22)	0.629	–	–
TICs	4	1.19(0.86,1.54)	0.344	85.6	0.000
Tumor cells + TICs	3	2.37(1.47,3.83)	0.000	0.0	0.464

FIGO, International Federation of Gynecology and Obstetrics; LNM, lymph node metastasis; LVSI, lymphovascular space invasion; RR, relative risk; CI, confidence interval; IHC, immunohistochemistry; TICs, tumor-infiltrating immune cells. P_α, p-value for association; P_β, p-value for heterogeneity obtained by Q-test; I², the degree of heterogeneity by I² statistic. Bold indicated the significance after analysis of two or more than two studies (p < 0.05).
In consideration of the fact that PD-L1 was highly expressed and the use of anti-PD-L1/PD-1 antibodies induced cell apoptosis and cell-cycle arrest in G0/G1 phase in gynecological cancer cells (85), increasing scholars recommended to using the PD-L1/PD-1 immune checkpoint inhibitors for the treatment of gynecological cancers in clinic (4, 86). However, like other therapeutic methods, there were differences in the therapeutic efficiency among different patients (69). Thus, it is also necessary to explore biomarkers to distinguish the patients and then schedule the PD-L1/PD-1 immune checkpoint inhibitors more efficiently.

FIGURE 5 | Forest plots showing the association of PD-L1 expression for endometrial cancer patients. (A) PD-L1 expression on tumor cells and LNM. (B) PD-L1 expression on tumor-infiltrating immune cells and LVSI. (C) PD-L1 expression on tumor cells and LVSI. LNM, lymph node metastasis. LVSI, lymphovascular space invasion; HR, hazard ratio; RR, relative risk; CI, confidence interval.
reasonably. Previous studies on other cancers suggested the magnitude of clinical benefit from PD-L1/PD-1 inhibitors was PD-L1-dependent (87, 88). Therefore, we also investigated the associations between PD-L1 expression and ORR, OS, PFS in gynecological cancer patients. In agreement with the above studies (87–89), we also found PD-L1 patients had a significantly higher ORR (especially ovarian cancer), OS and PFS (especially cervical cancer) than PD-L1-negative patients.

FIGURE 6 | Forest plots showing the association between PD-L1 expression and response to PD-1/PD-L1 inhibitors in gynecological cancers. (A) Overall response rate (ORR). (B) Overall survival (OS). (C) Progression-free survival (PFS). HR, hazard ratio; CI, confidence interval.
Although Kowanetz et al. observed that the ORR was relatively lower in patients with tumors expressing high PD-L1 levels on tumor cells than TICs (40% vs 22%) \((80)\), our subgroup results indicated no association with tumor cells or TICs, which may be related with the small sample size.

Several limitations should be acknowledged in this study. First is the retrospective nature in most of included studies. Second, the cut-off value of PD-L1 was determined by different methods in included studies, which influenced its clinical use. Third, the number of included studies to report the association of PD-L1 expression with RFS/CSS/DFS/response to anti-PD-L1/PD-1 treatment was relatively small, which may compromise the credibility of the results and influence the subgroup analysis for each cancer type. Fourth, the estimation of HR from Kaplan–Meier curve may introduce some errors. Fifth, the restriction of articles published in other languages may lead to some negative results neglected.

CONCLUSION

Our meta-analyses (Figure 7) indicated that positive PD-L1 detected by IHC may serve as a valuable predictor of a poor prognosis (OS, PFS), malignant clinicopathological characteristics (LNM, advanced FIGO stage and LVSI) and response efficiency to anti-PD-1/PD-L1 (ORR, OS, PFS) for patients with gynecological cancers, especially expression on tumor cells. High expressed PD-L1 on TICs may exert dual functions, including anti-cancer for ovarian cancer or oncogenic for cervical and endometrial cancers.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

CZ and QY conceived and designed the study, collected the data, and performed the analysis. CZ wrote the first draft of the manuscript. QY was involved in the interpretation of the analyses and revised the manuscript. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global Cancer in Women: Burden and Trends. *Cancer Epidemiol Biomarkers Prev* (2017) 26(4):444–57.
2. Ginsburg O, Bray F, Coleman MP, Vanderpuye V, Conteh L. The global burden of women’s cancers: a grand challenge in global health. *Lancet* (2017) 389(10077):847–60.
3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. *CA Cancer J Clin* (2020) 70(1):7–33.
4. Grywalska E, Sobstyl M, Putowski L, Rolin J, Izyra A. Prognostic value of tumor-infiltrating CD8+ T cells in pre-treatment biopsy specimens of locally advanced cervical cancer. *Mod Pathol* (2017) 30(4):577–86.
5. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Performance of the risk of bias tool for use in systematic reviews of non-randomised studies: a survey. *Stat Med* (2007) 26(25):4544–62.
6. Wang SL, Li J, Xie J, Liu F, Duan Y, Wu Y, et al. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway. *Oncogene* (2018) 37(30):4164–80.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2020.572203/full#supplementary-material

Supplementary Table 1 | The data extracted from the published studies.

Supplementary Table 2 | The Newcastle-Ottawa scale (NOS) quality assessment of the enrolled studies.

Supplementary Table 3 | Subgroup analysis on the outcome of OS in each cancer type.

Supplementary Table 4 | Subgroup analysis on the outcome of PFS in each cancer type.
30. Xu M, Zhang B, Zhang M, Liu Y, Yin FL, Liu X, et al. Clinical relevance of expression of B7-H1 and B7-H4 in ovarian cancer. Oncol Lett (2016) 11(4):2815–9.

31. Nkhouw W, Kleebkow P, Chaisuriti N, Kietpeerakul C. Programmed Death Ligand 1 (PD-L1) Expression in Epithelial Ovarian Cancer: A Comparison of Type I and Type II Tumors. Asian Pac J Cancer Prev (2019) 20(4):1161–9.

32. Schmoeckel E, Hofmann S, Fromberger D, Rottmann M, Luthardt B, Burges A, et al. Comprehensive analysis of PD-L1 expression, HER2 amplification, ALK/ EML4 fusion, and mismatch repair deficiency as putative predictive and prognostic factors in ovarian carcinoma. Virchows Arch (2019) 475(5):599–608.

33. Hamamishi J, Mandal M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A (2007) 104(9):3360–5.

34. Mesnage SJL, Auguste A, Genestie C, Dunant A, Pain E, Drusch F, et al. Neoadjuvant chemotherapy (NACT) increases immune infiltration and programmed death-ligand 1 (PD-L1) expression in epithelial ovarian cancer (EOC). Ann Oncol (2017) 28(3):651–7.

35. Zhu J, Wen H, Bi R, Wu Y, Wu X. Prognostic value of programmed death-ligand 1 (PD-L1) expression in ovarian clear cell carcinoma. J Gynecol Oncol (2017) 28(6):e77.

36. Zhu J, Wen H, Ju X, Bi R, Zuo W, Wu X. Clinical Significance of Programmed Death Ligand–1 and Intra-Tumoral CD8+ T Lymphocytes in Ovarian Carcinoma. Plast Reconstr Surg (2017) 141(1):207S–8.

37. Zong L, Zhou Y, Zhang M, Chen J, Xiang Y. VISTA expression is associated with a favorable prognosis in patients with high-grade serous ovarian cancer. Cancer Immunol Immunother (2020) 69(1):33–42.

38. Wang Q, Lou W, Di W, Wu X. Prognostic value of tumor PD-L1 expression combined with CD8(+) tumor infiltrating lymphocytes in high grade serous ovarian cancer. Int Immunopharmacol (2017) 52:7–14.

39. Zhu X, Zhao L, Lang J. The BRCA1 Methylation and PD-L1 Expression in Sporadic Ovarian Cancer. Int J Gynecol Cancer (2018) 28(8):1514–9.

40. Buderath P, Mairinger F, Mairinger E, Bohm K, Mach P, Schmid KW, et al. Prognostic significance of PD-1 and PD-L1 positive tumor-infiltrating immune cells in ovarian carcinoma. Int J Gynecol Cancer (2019) 29(9):1389–95.

41. Kim KH, Choi KU, Kim A, Lee SJ, Lee JH, Suh DS, et al. PD-L1 expression onstromal tumor-infiltrating lymphocytes is a favorable prognostic factor in ovarian serous carcinoma. J Ovarian Res (2019) 12(1):56.

42. Zhu X, Yang H, Lang J, Zhang Y. Ras association domain family protein 1a hypermethylation and PD-L1 expression in ovarian cancer: A retrospective study of 112 cases. Eur J Obstet Gynecol Reprod Biol (2019) 240:103–8.

43. Zhang L, Chen Y, Li F, Bao L, Liu W. Atezolizumab and Bevacizumab Study of 112 cases.

44. Schmoeckel E, Hofmann S, Fromberger D, Rottmann M, Luthardt B, Burges A, et al. Comprehensive analysis of PD-L1 expression, HER2 amplification, ALK/EML4 fusion, and mismatch repair deficiency as putative predictive and prognostic factors in ovarian carcinoma. Virchows Arch (2019) 475(5):599–608.

45. Henriksen JR, Donskov F, Waldstrøm M, Jakobsen A, Hjortkjaer M, Petersen A, et al. Programmed death-ligand 1 (PD-L1) expression and PD-L2, and their Relationship With Clinicopathologic Characteristics in Endometrial Cancer. Int J Gynecol Pathol (2019) 38(5):404–13.

46. De La Motte Rouge T, Corne D, Cauchois A, Le Boulch M, Poupon C, Henno S, et al. Use of Programmed Cell Death-1 and Its Ligand Expression as Discriminatory and Predictive Markers in Ovarian Cancer. Int J Gynecol Cancer (2018) 28(1):260–7.

47. Chatterjee J, Dai W, Aziz NHA, Teo PY, Wahba J, Phelps DL, et al. Clinical Significance of Programmed Death-Ligand 1 (PD-L1) Expression in Epithelial Ovarian Cancer: A ClinicoPathologic Study of 43 Cases. Int J Gynecol Pathol (2021) 40(1):84–93. doi: 10.1097/ PGP.0000000000000662.

48. Kucukguz Gulec U, Kilibar Bag, Eda S, Guldbrandsen HJ, Ling-Lee YC, Chang C, et al. Prognostic significance of programmed death-1 and programmed death-ligand 1 (PD-L1) expression in uterine carcinosarcoma. Eur J Obstet Gynecol Reprod Biol (2020) 244:51–5.

49. Tawadros ALF, Khalafallah MMM. Expression of programmed death-ligand 1 and hypoxia-inducible factor-1Î± proteins in endometrial cancer. J Cancer Res Ther (2018) 14(Supplement):S1063–9.

50. Li Z, Lin AE, Price AS, Rhodes J, Ayoola-Adeola M, Miller K, Parwani AV, et al. Programmed Death Ligand 1 Expression Among 700 Consecutive Endometrial Carcinomas: Strong Association With Mismatch Repair Protein Deficiency. Int J Gynecol Cancer (2018) 28(1):59–68.

51. Mo ZF, Liu J, Zhang QY, Chen ZQ, Mei JD, Liu LX, et al. Expression of PD-1, PD-L1 and PD-L2 is associated with differentiation status and histological type of endometrial cancer. Oncol Lett (2016) 12(2):944–50.

52. Yamashita H, Nakayama K, Ishikawa M, Nakamura K, Ishibashi T, Sanuki K, et al. Microsatellite instability is a biomarker for immune checkpoint inhibitors in endometrial cancer. Oncotarget (2018) 9(5):5652–64.

53. Engerud H, Berg HF, Myrvold M, Halle MK, Björg L, Haldorsen IS, et al. High degree of heterogeneity of PD-L1 and PD-1 from primary to metastatic endometrial cancer. Gynecol Oncol (2020) 157(1):260–7.

54. Cluney S, Kurnit K, Hudgens C. Identification of a subset of microsatellite-stable endometrial carcinoma with high PD-L1 and CD8+ lymphocytes. Mod Pathol (2019) 32(3):396–404.

55. Li MJ, Li HR, Liu F, Bi R, Tu XY, Chen LH, et al. Characterization of ovarian clear cell carcinoma using target drug-based molecular biomarkers: implications for personalized cancer therapy. J Ovarian Res (2017) 10(1):9.

56. Webb J, Milne K, Kroeger DR, Nelson BH. PD-L1 expression is associated with tumor-infiltrating T cells and favorable prognosis in high-grade serous ovarian cancer. Gynecol Oncol (2019) 151(2):302–7.

57. Xue CY, Xu Y, Ye WF, Xie QX, Gao HY, Xu B, et al. Expression of PD-L1 in ovarian cancer and its synergistic antitumor effect with PARP inhibitor. Gynecol Oncol (2020) 157(1):222–33.

58. Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, et al. Efficiency and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. J Clin Oncol (2019) 37(17):1470–8.

59. Liu JF, Gordon M, Veneris J, Braith F, Baltmanoukian A, Eder JP, et al. Safety, clinical activity and biomarker assessments of atezolizumab from a Phase I study in advanced/recurrent ovarian and uterine cancers. Gynecol Oncol (2019) 154(2):314–22.

60. Matulonis UA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I, et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase III KEYNOTE-100 study. Ann Oncol (2019) 30(7):1080–7.

61. Zamarin D, Burger RA, Sill MW, Powell DJr, Lankes HA, Feldman MD, et al. Randomized Phase II Trial of Nivolumab Versus Nivolumab and Ipilimumab for Recurrent or Persistent Ovarian Cancer: An NRG Oncology Study. J Clin Oncol (2020) 38(16):1814–23.

62. Santin AD, Deng W, Frumovitz M, Buzu N, Bello N, Huh W, et al. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02255782/NRG-GY002). Gynecol Oncol (2020) 157(1):161–6.

63. Tamura K, Hasegawa K, Katsumata N, Matsumoto K, Mukai H, Takahashi S, et al. Efficacy and safety of nivolumab in Japanese patients with uterine carcinoma.
PD-L1 Value for Gynecological Cancers

Zhang, P.; Wu, D.; Li, L.; Chai, Y.; Huang, J. PD-L1 and Survival in Solid Tumors: A Meta-Analysis. *PLoS One* (2015) 10(6):e0131403.

Xiang, X.; Yu, P.; Long, D.; Liao, X.; Zhang, S.; You, X.M., et al. Prognostic value of PD-L1 expression in patients with primary solid tumors. *Oncotarget* (2018) 9(4):5058–72.

Lin, Z.; Xu, Y.; Zhang, Y.; He, Q.; Zhang, J.; He, J., et al. The prevalence and clinicopathological features of programmed death-ligand 1 (PD-L1) expression: a pooled analysis of literatures. *Oncotarget* (2016) 7(12):15033–46.

Wang, Q.; Liu, F.; Liu, L. Prognostic significance of PD-L1 in solid tumor: An updated meta-analysis. *Med (Baltimore)* (2017) 96(18):e6569.

Jin, Y.; Zhao, J.; Shi, X.; Yu, X. Prognostic value of programmed death-ligand 1 in patients with solid tumors: A meta-analysis. *J Cancer Res Ther* (2015) 11 Suppl 1:C38–43.

Fei, Z.; Deng, Z.; Zhou, L.; Li, K.; Xia, X.; Xie, R. PD-L1 Induces Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma Cells Through Activation of the PI3K/AKT Pathway. *Oncol Res* (2019) 27(7):801–7.

Koganemaru, S.; Inoshita, N.; Miura, Y.; Miyama, Y.; Fukui, Y.; Ozaki, Y., et al. Prognostic value of programmed death-ligand 1 expression in patients with stage III colorectal cancer. *Cancer Sci* (2017) 108(5):853–8.

Huang, W.; Ran, R.; Chao, Shao, B.; Li, H.L. Prognostic and Clinicopathological Value of PD-L1 Expression in Primary Breast Cancer: A Meta-Analysis. *Breast Cancer Res Treat* (2019) 178(1):17–33.

Kim, H.S.; Lee, J.H.; Nam, S.; Ock, C.Y.; Moon, J.W.; Yoo, C.W., et al. Association of PD-L1 Expression with Tumor-Infiltrating Immune Cells and Mutation Burden in High-Grade Neuroendocrine Carcinoma of the Lung. *J Thorac Oncol* (2018) 13(5):636–48.

Kowanetz, M.; Zou, W.; Gettinger, S.N.; Koeppen, H.; Kox, M.; Schmid, P., et al. Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with atezolizumab (anti-PD-L1). *Proc Natl Acad Sci U S A* (2018) 115(43):E10119–26.

Thompson, E.D.; Taube, J.M.; Schindler, C.; Oertel, S.; Strick, J., et al. PD-L1 expression and the immune microenvironment in primary invasive lobular carcinomas of the breast. *Mod Pathol* (2017) 30(11):1551–60.

Xu, Y.; Zhang, X.; Yang, Y.; Pan, M.; Wang, M.; Zhang, J. A VEGFR2-MICA bispecific antibody activates tumor-infiltrating lymphocytes and exhibits potent anti-tumor efficacy in mice. *Cancer Immunol Immunother* (2019) 68(9):1429–41.

Kim, D.H.; Kim, H.; Choi, V.J.; Kim, S.Y.; Lee, J.E.; Sung, K.J., et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. *Exp Mol Med* (2019) 51(8):e433–43.

Sumimoto, R.; Hirasawa, T.; Fujita, M.; Murakami, H.; Otake, Y.; Huang, C.L. PD-L1 expression on tumor-infiltrating immune cells is highly associated with M2 TAM and aggressive malignant potential in patients with resected non-small cell lung cancer. *Lung Cancer* (2019) 136:136–44.

Sun, L.M.; Liu, Y.C.; Li, W.; Liu, S.; Liu, H.X.; Li, L.W., et al. Nivolumab effectively inhibit platinum-resistant ovarian cancer cells via induction of cell apoptosis and inhibition of ADAM17 expression. *Eur Rev Med Pharmacol Sci* (2017) 21(6):1198–205.

Naumann, R.W.; Hollebeque, A.; Meyer, T.; Devlin, M.J.; Oskinin, A.; Kerger, J., et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase I/II CheckMate 358 Trial. *J Clin Oncol* (2019) 37(31):2825–34.

Liu, X.; Guo, C.Y.; Tou, F.F.; Wen, X.M.; Kuang, Y.K.; Zhu, Q., et al. Association of PD-L1 expression status with the efficacy of PD-1/PD-L1 inhibitors and overall survival in solid tumours: A systematic review and meta-analysis. *Int J Cancer* (2020) 147(1):116–27.

Zhang, B.; Liu, Y.; Zhou, S.; Jiang, H.; Zhu, K.; Wang, R. Predictive effect of PD-L1 expression for immune checkpoint inhibitor (PD-1/PD-L1 inhibitors) treatment for non-small cell lung cancer: A meta-analysis. *Int Immunopharmacol* (2020) 80:106214.

Ghate, K.; Amir, E.; Kuksis, M.; Hernandez-Barajas, D.; Rodriguez-Romo, L.; Booth, C.M., et al. PD-L1 expression and clinical outcomes in patients with advanced urothelial carcinoma treated with checkpoint inhibitors: A meta-analysis. *Cancer Treat Rev* (2019) 76:51–6.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhang and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.