RANK rs1805034 T>C Polymorphism Is Associated with Susceptibility of Esophageal Cancer in a Chinese Population

Jun Yin1*, Liming Wang2*, Weifeng Tang1, Xu Wang1, Lu Lv1, Aizhong Shao1, Yijun Shi1, Guowen Ding1, Suocheng Chen1*, Haiyong Gu1*

1 Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China, 2 Cancer institute, Department of Chemotherapy, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China

Abstract

Esophageal cancer remains the sixth leading cause of cancer associated death and eighth most common cancer worldwide. Genetic factors, such as single nucleotide polymorphisms (SNPs), may contribute to the carcinogenesis of esophageal cancer. Here, we conducted a hospital based case-control study to evaluate the genetic susceptibility of functional SNPs on the development of esophageal cancer. A total of 629 esophageal squamous cell carcinoma (ESCC) cases and 686 controls were enrolled for this study. The OPG rs3102735 T>C, rs2073618 G>C, RANK rs1805034 T>C, RANKL rs9533156 T>C and rs2277438 A>G were determined by ligation detection reaction method. Our findings suggested that RANK rs1805034 T>C is associated with the susceptibility of ESCC, which is more evident in male and elder (≥63) patients. Our study provides the first evidence that functional polymorphisms RANK rs1805034 T>C may be an indicator for individual susceptibility to ESCC. However, further larger studies among different ethnic populations are warranted to verify our conclusion.

Introduction

Despite recent considerable medical advances, esophageal cancer remains a refractory disease with high morbidity and mortality. Essentially, esophageal cancer is the 6th leading cause of cancer-related mortality and the 8th most common cancer worldwide [1]. There are more than 450,000 patients diagnosed as esophageal cancer worldwide and the incidence is still rising rapidly. Meanwhile, its startling overall 5-year survival rate ranges from 15–25% [2]. In China, more strikingly, esophageal cancer ranks the 5th most common diagnosed cancer and 4th leading cause of cancer related mortality [3]. Esophageal squamous cell carcinoma (ESCC) is the predominant histological type of esophageal cancer [1]. Although multidisciplinary therapeutic strategy has been recommended, the prognosis is still poor. Tobacco use [4,5], alcohol consumption [4,6], low socioeconomic status, poor oral hygiene and nutritional deficiencies [2,7–9] have been identified as risk factors for esophageal cancer. Yet, only a subset of individuals exposed to these risk factors eventually develop esophageal cancer, indicating a pivotal role of genetic factors, such as single nucleotide polymorphisms (SNPs), in the esophageal carcinogenesis.

Recently, the osteoprotegerin (OPG), its binding protein—the receptor activator of NF-κB (RANK) and RANK ligand (RANKL) have been implicated with the pathogenesis of breast cancer [10]. OPG was initially identified from a fetal rat intestine cDNA library [11], which is unique for it only exists as a secreted molecule in contrast to the other membrane-bound cell surface members of tumor necrosis factor receptor (TNF-R) family. RANKL is the OPG binding protein (also named OPG ligand, OPGL) [12,13], while RANK constitutes the cell surface receptor which responses to OPGL. In numerous rodent models of tumor, RANKL signal is increased through diverse mechanisms [14]. OPG neutralizes RANKL, which leads to a reduced RANKL-RANK interaction [12]. RANKL expression was verified in various tumor types and inflammatory cells associated with tumor [15–17]. Elevation in stromal RANKL has been detected at local sites of bone metastasis or multiple myeloma [18,19], causing enhanced osteoclast activity and bone destruction. In experimental models, RANKL inhibitors reduced tumor-induced osteolysis in various types of cancer [14], reduced bone destruction, skeletal tumor progression, as well as tumor burden [17,20,21]. In addition, RANKL-RANK pathway may contribute to the primary tumorigenesis and metastasis independently of its effects on tumor-related osteolysis. Regulated by factors including prolactin and progesterone, RANKL could drive the primary mitogenic response of mammary epithelium and the expansion of mammary stem cells via RANK activation [22–24], which may therefore induce mammary cancer by offering a more transformation-susceptible target pool. RANKL may regulate spontaneous mammary tumor formation and metastasis.
driven by the potent oncogene Neu (ERBB2). RANKL blockade effectively attenuated the formation of mammary tumors and pulmonary metastasis in the MMTV-Neu transgenic mouse model [25,26]. Interestingly, OPG may serve as a positive regulator of microvessel formation and may promote neovascularization [27] that is important for tumor progression. OPG overexpression by breast cancer cells enhances orthotopic and osseous tumor growth [28]. In light of all these findings, RANKL/RANK/OPG signaling pathway has emerged as a promising therapeutic target [28]. In a hospital-based case-control study, we performed genotyping analyses of the five miRNA SNPs in 629 ESCC cases and 686 controls in a Chinese population.

Methods

Ethics Statement

This hospital-based case-control study was approved by the Review Board of Jiangsu University (Zhenjiang, China). All subjects provided written informed consent to be included in the study. We have complied with the World Medical Association Declaration of Helsinki regarding ethical conduct of research involving human subjects and/or animals.

Study populations

A total of 1,315 participants consisting of 629 esophageal cancer patients and 686 non-cancer controls frequency-matched to the cases with regard to age (±5 years) and sex were enrolled in this study (Table 1). All patients and controls were consecutively recruited from the Affiliated People’s Hospital of Jiangsu University and Affiliated Hospital of Jiangsu University (Zhenjiang, China) between October 2008 and December 2010. All cases of esophageal cancer were diagnosed as ESCC histologically. Patients who had cancer history/metastasized cancer or had received chemotherapy/radiotherapy were excluded for the current study.

Each subject was personally questioned by experienced interviewers using a questionnaire to obtain information on demographic data (e.g., age, sex) and related risk factors (including tobacco use and alcohol consumption). After the interview, 2-mL samples of venous blood were collected from each subject. “Smokers” subgroup included individuals who smoked one cigarette per day for >1 year. Subjects who consumed ≥5 alcoholic drinks a week for >6 months were subdivided into “alcohol drinkers” category.

Genomic DNA extraction, SNP selection and Genotyping

Genomic DNA was isolated from peripheral blood using QIAamp DNA Blood Mini Kit (Qiagen, Berlin, Germany) as reported previously [33]. Sample DNA were amplified by PCR according to the manufacturer’s protocol. The samples were genotyped using the ligation detection reaction (LDR) method [34] (technical support from the Biowing Applied Biotechnol-
No association was detected among OPG rs3102735 C>T, OPG rs2073618 G>C, RANKL rs9533156 T>C, RANKL rs2277438 A>G polymorphisms and the risk of ECSS (Table 3).

Stratification analyses of RANK rs1805034 T>C genotype and risk of ESCC

To evaluate the effects of RANK rs1805034 T>C genotype on ESCC risk according to different age, sex, smoking and alcohol consumption; we performed the stratification analyses (Table 4). A significantly increased risk of ESCC associated with the RANK rs1805034 T>C polymorphism was evident among male patients (CC vs. TT: adjusted OR = 1.89, 95% CI = 1.16–3.08, p = 0.011) (TC/CC vs. TT, adjusted OR = 1.38, 95% CI = 1.05–1.81, p = 0.022) (CC vs. TT/TC, adjusted OR = 1.68, 95% CI = 1.05–2.69, p = 0.031). Likewise, in elder patients (≥63 years old), RANK rs1805034 T>C polymorphism was also associated with a significantly increased risk of ESCC (CC vs. TT, adjusted OR = 1.84, 95% CI = 1.02–3.31, p = 0.041) (Table 4).

Table 1. Distribution of selected demographic variables and risk factors in ESCC cases and controls.

Variable	Cases (n = 629)	Controls (n = 686)	p*	
Age (years) mean ± SD	62.85 (±8.13)	62.58 (±7.89)	0.541	
Age (years)	0.155			
<63	310	49.28	365	53.21
≥63	319	50.72	321	46.79
Sex	0.185			
Male	444	70.59	461	67.20
Female	185	29.41	225	32.80
Tobacco use	<0.001			
Never	355	56.44	499	72.74
Ever	274	43.56	187	27.26
Alcohol use	<0.001			
Never	428	68.04	526	76.68
Ever	201	31.96	160	23.32

*pTwo-sided χ² test and student t test; Bold values are statistically significant (p<0.05).
doi:10.1371/journal.pone.0101705.t001

Table 2. Primary information for OPG rs3102735 T>C, rs2073618 G>C, RANK rs1805034 T>C, RANKL rs9533156 T>C and rs2277438 A>G polymorphisms.

Genotyped SNPs	OPG rs3102735 C>T	OPG rs2073618 G>C	RANK rs1805034 T>C	RANKL rs9533156 T>C	RANKL rs2277438 A>G
Chromosome	8	8	18	13	13
Gene Official Symbol	TNFRSF11B	TNFRSF11B	TNFRSF11A	TNFSF11	TNFSF11
Function	nearGene-5	missense	missense	missense	intron region
Chr Pos (Genome Build 36.3)	120034251	120033233	58178221	42045671	42053168
Regulome DB Scorea	5	4	5	5	No Data
TFBSb	Y	—	—	—	—
Splicing (ESE or ESS)	—	Y	Y	—	—
miRNA (miRanda)	—	—	—	—	—
miRNA (Sanger)	—	—	—	—	—
MAFc for Chinese in database	0.134	0.308	0.300	0.439	0.300
MAF in our controls (n = 686)	0.164	0.263	0.286	0.464	0.314
p value for HWEd test in our controls	0.191	0.371	0.531	0.488	0.700
Genotyping methodd	LDR	LDR	LDR	LDR	LDR
% Genotyping value	95.13%	96.35%	96.43%	96.43%	96.81%

*ahttp://www.regulomedb.org/; bTFBS: Transcription Factor Binding Site (http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm); cMAF: minor allele frequency, OPG rs2073618 G>C MAF is in CHB+JPT population; dHWE: Hardy–Weinberg equilibrium; eLDR: Ligation Detection Reaction.
doi:10.1371/journal.pone.0101705.t002
Table 3. Logistic regression analyses of associations between OPG rs3102735 T>C, rs2073618 G>C, RANK rs1805034 T>C, RANKL rs9533156 T>C and rs2277438 A>G polymorphisms and risk of ESCC.

Genotype	Cases (n = 629)	Controls (n = 686)	Crude OR (95% CI)	p	Adjusted OR * (95% CI)	p
	n	%	n	%		
OPG rs3102735 T>C						
TT	442	73.7	450	69.1	1.00	1.00
TC	146	24.3	188	28.9	0.79 (0.61–1.02)	0.069
CC	12	2.0	13	2.0	0.94 (0.42–2.08)	0.878
T+C	158	26.3	201	30.9	0.80 (0.63–1.02)	0.076
TT+TC	588	98.0	638	98.0	1.00	1.00
CC	12	2.0	13	2.0	1.00 (0.45–2.21)	0.997
T allele	1030	85.8	1088	83.6	1.00	1.00
C allele	170	14.2	214	16.4	0.84 (0.67–1.04)	0.116
OPG rs2073618 G>C						
GG	345	56.6	361	54.9	1.00	1.00
GC	222	36.4	246	37.4	0.94 (0.75–1.19)	0.631
CC	43	7.0	50	7.6	0.90 (0.58–1.39)	0.634
G+C	265	43.4	296	45.1	0.94 (0.75–1.17)	0.564
GG+GC	567	93.0	607	92.4	1.00	1.00
CC	43	7.0	50	7.6	0.92 (0.60–1.41)	0.703
G allele	912	74.8	968	73.7	1.00	1.00
C allele	308	25.2	346	26.3	0.95 (0.79–1.13)	0.533
RANK rs1805034 T>C						
TT	282	45.9	330	50.5	1.00	1.00
TC	264	42.9	273	41.8	1.13 (0.90–1.43)	0.296
CC	69	11.2	50	7.7	**1.62 (1.09–2.40)**	**0.018**
T+C	333	54.1	323	49.5	1.21 (0.97–1.50)	0.096
TT+TC	546	88.8	603	92.3	1.00	1.00
CC	69	11.2	50	7.7	**1.52 (1.04–2.23)**	**0.031**
T allele	828	67.3	933	71.4	1.00	1.00
C allele	402	32.7	373	28.6	**1.21 (1.03–1.44)**	**0.024**
RANKL rs9533156 T>C						
TT	175	28.5	192	29.4	1.00	1.00
TC	305	49.6	316	48.4	1.04 (0.78–1.38)	0.803
CC	135	22.0	145	22.2	0.98 (0.72–1.34)	0.894
T+C	440	71.5	461	70.6	1.02 (0.78–1.32)	0.913
TT+TC	480	78.0	508	77.8	1.00	1.00
Table 3. Cont.

Genotype	Cases (n = 629)	Controls (n = 686)	Crude OR (95% CI)	Adjusted ORa (95% CI)							
	n	%	n	%	p		n	%	n	%	p
RANKL											
rs2277438											
A	277	46.2	315	46.8	0.981	0.981	1.00	1.00	0.981	0.981	
G	352	53.8	371	53.2	1.00	1.00	1.00	1.00	1.00	1.00	
AG	259	43.2	294	43.7	0.988	0.988	1.00	1.00	0.988	0.988	
AA	98	15.8	111	16.4	0.999	0.999	1.00	1.00	0.999	0.999	
RANK											
rs1805034											
A	813	67.8	924	68.6	1.00	1.00	0.993	0.993	0.993	0.993	
C	406	32.2	402	31.4	1.00	1.00	1.04	1.04	1.04	1.04	
GC	381	60.6	416	60.8	1.00	1.00	1.00	1.00	1.00	1.00	
CC	232	36.8	268	38.8	1.00	1.00	1.00	1.00	1.00	1.00	

aAdjusted for age, sex, smoking status and alcohol consumption.

doi:10.1371/journal.pone.0101705.t003

Discussion

In this hospital-based case-control study of ESCC, we investigated the association of OPG rs3102735 C>T, OPG rs2073618 G>C, RANK rs1805034 T>C, RANKL rs9533156 T>C and RANKL rs2277438 A>G polymorphisms with risk of ESCC in a Chinese population. Our multivariable logistic analyses demonstrated that RANK rs1805034 T>C genotype has an increased risk of ESCC. Significant association with increased risk of ESCC was noticed among male patients and elder patients (=63 years old). To our knowledge, this is the first study demonstrating a significant association between the RANK rs1805034 T>C genotype with the susceptibility of ESCC.

OPG was initially derived from an expressed sequence tag of a fetal rat intestine cDNA library encoding a 401-amino-acid polypeptide [11]. Subsequently, a physiological role of OPG in the maintenance of normal bone mass was underscored by several studies [11,35,36]. The later finding in murine myelomonocytic cell line 32D led to the identification of OPG binding protein or OPGL, which has identical sequence as RANKL and was further implicated with the osteoclast development [12]. Direct sequencing of a human bone marrow-derived myeloid dendritic cell cDNA library identified RANK as a novel TNFR homologue [13]. Subsequently, RANKL was identified from murine thymoma cell line EL40.5 [13] as well as in T cells [37]. RANKL exists as a homotrimer and induces receptor clustering upon engaging RANK on the cell surface, consequently causes receptor clustering. Activation events within the cell are initiated through TNFR-associated factors following sufficient RANK clustering. Genetic variants in the OPG locus have previously been implicated with osteoporotic fracture [38], bone mineral density [40], osteonecrosis [41], diabetic neuroarthropathy [42] as well as ankylosing spondylitis [43]. Alterations at the RANK locus and/or functionally related genes, such as RANKL, have also been reported to be associated with rheumatoid arthritis [30], aortic calcification [44], bone mineral density [39] and Paget’s disease of bone [31]. Recently, emerging evidence has indicated an association between OPG/RANK/ RANKL gene polymorphisms with carcinogenesis. Several studies demonstrated additional loci to be associated with breast cancer including the chromosomal region 8q24 for OPG gene [45,46]. SNP rs3102735 of the OPG gene has been reported to be associated with the susceptibility of breast cancer in Caucasian population [10]. Similarly, a genetic variant near the 5’-end of RANK (rs7226991) was associated with a breast cancer risk [47]. The mechanism underlying the association remains obscure so far. Yet, vast majority of the association on chromosome 8q24 lies at approximately 128 Mb and is related to various tumor entities in addition to breast cancer, including prostate [48] and colon cancer [49].

Among different ethnic cohorts, the frequencies of genetic polymorphisms vary drastically. Our study demonstrated that the frequency of RANK rs1805034 C was 0.286 among 686 control subjects in Chinese population, which is lower than that of European (0.438) and African American (0.478), but similar with the Japanese population (0.311). However, interestingly, another study reported the frequency of RANK rs1805034 C was 0.476 in Han population from North China, which differs our finding in cohort from East China, suggesting the ethnical impact could also be interfered with regional environmental factors [http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs = 1805034]. Using Power and Sample Size Calculation (PS, version 3.0.43, 2009, http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize), considering RANK rs1805034 T>C mutant alleles, the power of our analysis
Table 4. Stratified analyses between RANK rs1805034 T>C polymorphism and ESCC risk by sex, age, smoking status and alcohol consumption.

Variable	RANK rs1805034 T>C (case/control) *	Adjusted OR b (95% CI); p_h^c	CC	TC+CC	CC vs. (TT+TC)							
	TT	TC	CC	TC+CC	TT	TC	CC	TC+CC	TT	TC	CC	TC+CC
Sex												
Male	193/227	189/178	52/33	241/211	100	1.28 (0.86–1.71); p: 0.090; p_h: 0.221	1.89 (1.16–3.08); p: 0.011; p_h: 0.155	1.38 (1.05–1.81); p: 0.022; p_h: 0.155	1.68 (1.05–2.69); p: 0.031; p_h: 0.448			
Female	89/103	75/95	17/17	92/112	100	0.93 (0.62–1.42); p: 0.747; p_h: 0.155	1.22 (0.59–2.55); p: 0.594; p_h: 0.290	0.98 (0.66–1.46); p: 0.906; p_h: 0.290	1.26 (0.62–2.56); p: 0.520; p_h: 0.448			
Age												
<63	131/161	136/152	34/28	170/180	100	1.11 (0.79–1.55); p: 0.563; p_h: 0.664	1.48 (0.83–2.61); p: 0.183; p_h: 0.664	1.16 (0.84–1.61); p: 0.360; p_h: 0.664	1.40 (0.81–2.42); p: 0.224; p_h: 0.702			
≥63	151/169	128/121	35/22	163/143	100	1.18 (0.84–1.65); p: 0.338; p_h: 0.664	1.84 (1.02–3.31); p: 0.041; p_h: 0.664	1.28 (0.93–1.76); p: 0.130; p_h: 0.664	1.71 (0.97–3.03); p: 0.063; p_h: 0.702			
Smoking status												
Never	159/234	149/204	36/37	185/241	100	1.06 (0.79–1.43); p: 0.689; p_h: 0.451	1.37 (0.82–2.30); p: 0.228; p_h: 0.457	1.11 (0.84–1.47); p: 0.471; p_h: 0.358	1.33 (0.81–2.19); p: 0.255; p_h: 0.568			
Ever	123/96	115/69	33/13	148/82	100	1.22 (0.81–1.84); p: 0.344; p_h: 0.451	1.89 (0.93–3.84); p: 0.080; p_h: 0.457	1.32 (0.90–1.95); p: 0.157; p_h: 0.358	1.73 (0.87–3.43); p: 0.019; p_h: 0.568			
Alcohol consumption												
Never	190/248	180/215	45/38	225/253	100	1.09 (0.82–1.49); p: 0.551; p_h: 0.354	1.52 (0.93–2.48); p: 0.095; p_h: 0.753	1.16 (0.88–1.51); p: 0.298; p_h: 0.504	1.46 (0.91–2.33); p: 0.117; p_h: 0.871			
Ever	92/82	84/58	24/12	108/70	100	1.16 (0.73–1.84); p: 0.530; p_h: 0.753	1.65 (0.76–3.60); p: 0.210; p_h: 0.753	1.24 (0.80–1.92); p: 0.332; p_h: 0.753	1.54 (0.73–3.28); p: 0.259; p_h: 0.871			

*The genotyping was successful in 615 (97.8%) ESCC cases, and 653 (95.2%) controls for RANK rs1805034 T>C;

bAdjusted for age, sex, smoking status and alcohol consumption (besides stratified factors accordingly) in a logistic regression model;

cp_h for heterogeneity.

doi:10.1371/journal.pone.0101705.t004
(\(\alpha = 0.05\)) was 0.946 in 629 ESCC cases and 686 control subjects with adjusted OR 1.52. In male subgroup, the power of our analysis was 0.995 among 434 cases and 438 control subjects, with the adjusted OR 1.89. In elder cohort (\(\geq 65\)), the power of analysis (\(\alpha = 0.05\)) was 0.962 among 314 cases and 312 controls with adjusted OR 1.8. The current study has highlighted the increased risk of ESCC among male patients and elder patients (\(\geq 63\) years old), which was in consistent with the previous report. In a retrospective study involving 74,854 ESCC patients from North China, the prevalence among males was higher than that among females, similar to our findings. Moreover, this study demonstrated that although the prevalence significantly declined, the median age-of-onset of ESCC postponed \([50]\), verifying our notion that elder population has higher risk.

In conclusion, our study provides with the evidence that functional polymorphism of \(\text{RANK}\) rs1805034 \(\text{T}\rightarrow\text{C}\) is associated with the susceptibility of ESCC. We acknowledge there are several limitations in this study that need to be addressed. First of all, the study subjects were all recruited from several local medical centers within same area, which may not completely represent the general Chinese population, especially when diverse regional environmental factors exist. Secondly, the detailed information regarding cancer metastasis and survival were not provided as the follow-up study is still ongoing, which hinders further analyses of the impact of these SNP polymorphisms on the ESCC progression and prognosis. Lastly, as the epidemiologic complexities of esophageal cancer are vast, rendering screening and prevention limited at best. The association between nutrition factors, exposure to fungal toxins or N-nitroso-compound in food and risk of ESCC is not studied. Further studies among different regions or ethnic populations with diverse nutrition conditions, and supplemented with functional analyses, are warranted to verify our findings.

Acknowledgments

We wish to thank Dr. Yiqun Chen (Shanghai Biowing Applied Biotechnology Company, http://www.biowing.com.cn) for technical support.

Author Contributions

Conceived and designed the experiments: JY SC HG. Performed the experiments: LW WT XW LL AS YS. Analyzed the data: JY WT GD HG. Contributed reagents/materials/analysis tools: GD SC HG. Wrote the paper: JY LW HG.

References

1. Pennathur A, Gibson MK, Joele BA, Lukerich JD (2013) Oesophageal carcinoma. Lancet. 381:400–412
2. Enzinger PC, Mayer RJ (2003) Esophageal cancer. The New England journal of medicine. 349:2241–2252
3. Chen W, He Y, Zheng R, Zhang S, Zeng H, et al. (2013) Esophageal cancer incidence and mortality in China, 2009. Journal of thoracic disease. 5:19–26
4. Gammon MD, Schoenberger JB, Ahman H, Risck HA, Vaughan TL, et al. (1997) Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. Journal of the National Cancer Institute. 89:1277–1284
5. De Stefani E, Barrios E, Fierro L (1993) Black (air-cured) and blond (flue-cured) cigar smoke as a source of esophageal cancer. Carcinogenesis. 14:171–177
6. Lee CH, Wu DC, Lee JM, Wu IC, Gao YG, et al. (2007) Carcinogenic effect of alkylamine intake on squamous cell carcinoma risk of the oesophagus in relation to tobacco smoking. European journal of cancer. 43:1188–1199
7. Brown LM, Hower R, Silverman D, Barit D, Hayes R, et al. (2003) Excess incidence of squamous cell esophageal cancer among us black men: Role of social class and other risk factors. American journal of epidemiology. 153:114–122
8. Taylor PR, Qiao VL, Ahn CC, Davos SM, Yang CS, et al. (2003) Prospective study of serum vitamin c levels and esophageal and gastric cancers. Journal of the National Cancer Institute. 95:1414–1416
9. Ahn CC, Liu B, Qiao YL, Vogt S, Luo XM, et al. (2005) Zinc concentration in esophageal biopsy specimens measured by x-ray fluorescence and esophageal cancer risk. Journal of the National Cancer Institute. 97:301–306
10. Ney JT, Juhasz-Bossi E, Barrios E, Pierro L, Rohde RM, et al. (2013) Genetic polymorphism of the opg gene associated with breast cancer. BMC cancer. 13:40
11. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, et al. (1997) Osteoprotegerin: A novel secreted protein involved in the regulation of bone cell differentiation and activation. Cell. 93:165–176
12. Lacey DL, Temm E, Tan HL, Kelley MJ, Dunstan CR, et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 93:165–176
13. Anderson DM, Marasovsky E, Billingsley WL, Dougall WC, Tomerko ME, et al. (1997) A homologue of the tnf receptor and its ligand enhanced cell growth and dendritic-cell function. Nature. 390:175–179
14. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, et al. (2012) Bench to bedside: Elucidation of the prep-rankl-pathway and the development of denosumab. Nature reviews. Drug discovery. 11:401–419
15. Brown JM, Corey E, Lee ZD, True LD, Yun TJ, et al. (2002) Osteoprotegerin and rank ligand expression in prostate cancer. Urology. 57:611–616
16. Giuliano N, Colla S, Sala R, Moroni M, Lazzaretto M, et al. (2002) Human myeloma cells stimulate the receptor activator of nuclear factor-kappa-b ligand (rank) in t lymphocytes: A potential role in multiple myeloma bone disease. Blood. 100:4615–4621
17. Zhang J, Dai J, Qi Y, Lin DL, Smith P, et al. (2001) Osteoprotegerin inhibits prostate cancer-induced osteolastogenesis and prevents prostate tumor growth in the bone. The Journal of clinical investigation. 107:1235–1244
18. Good CR, O’Keefe RJ, Puza J, Schwarz EM, Rosier RN (2002) Immunohistochemical study of receptor activator of nuclear factor kappa-b ligand (rank-l) in human osteolytic bone tumors. Journal of surgical oncology. 80:174–179
19. Huang L, Cheng YW, Chow LT, Zheng MH, Kumta SM (2002) Tumour cells produce receptor activator of nf-kappab ligand (rank) in skeletal metastases. Journal of clinical pathology. 55:877–878
20. Quinn JE, Brown LG, Zhang J, Keller ET, Vossella RL, et al. (2005) Comparison of fc-osteoprotegerin and zoledronic acid activities suggests that zoletronic acid inhibits prostate cancer in bone by indirect mechanisms. Prostate cancer and prostate diseases. 8:233–239
21. Whang PG, Schwarz EM, Gunrail SC, Dougall WC, Lieberman JR (2005) The effects of rank blockade and osteoclast depletion in a model of pure osteoblastic prostate cancer metastasis in bone. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 23:1473–1483
22. Asulin-Labat ML, Vaillant F, Sherridan JM, Pab B, Wu D, et al. (2010) Control of mammary stem cell function by steroid hormone signalling. Nature. 463:786–802
23. Belo M, Rajaram RD, Calikovski M, Ayyanan A, Gennaro D, et al. (2010) Two distinct mechanisms underlie prostate-stimulated-induced proliferation in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America. 107:2989–2994
24. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, et al. (2010) Progesterone induces adult mammary stem cell expansion. Nature. 463:803–807
25. Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roullet-Meyer MP, et al. (2010) Rank ligand mediates preestrogin-induced mammary epithelial prolifera-
26. Tan W, Zhang W, Strasner A, Gervenisovovs C, Cheng JQ, et al. (2011) Tumour-infiltrating regulatory t cells stimulate mammary cancer metastasis through rank-rank signalling. Nature. 470:548–553
27. Mignon JS, Giachelli CM, Scatena M (2009) Osteoprotegerin and rankl differentially regulate angiogenesis and endothelial cell function. Angiogenesis. 12:35–46
28. Fisher JL, Thomas-Mudge RJ, Elliott J, Hards DK, Sims NA, et al. (2006) Osteoprotegerin overexpression by breast cancer cells enhances osteothrophic and ossous tissue growth and contrasts with that delivered therapeutically. Cancer research. 66:3620–3628
29. Song R, Atkinson P, Bopp J, Steger GG, Tomkin K, et al. (2010) Denosumab compared with zoletronic acid for the treatment of bone metastases in patients with advanced breast cancer: A randomized, double-blind study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 28:5132–5139
30. Assmann G, Koenig J, Pfreundschuh M, Epplen JT, Kekow J, et al. (2010) Genetic variations in genes encoding rank, rankl, and ogp and ogp in rheumatoid arthritis: A case-control study. The Journal of rheumatology. 37:900–904
31. Chuong PV, Beyens G, Riches PL, Van Wesenbeeck L, de Pretas F, et al. (2010) Genetic variation in the tnf-r1la gene encoding rank is associated with susceptibility to paget’s disease of bone. Journal of bone and mineral research. 25:2959–2965
32. Zhang YP, Liu YZ, Guo Y, Liu XG, Xu XH, et al. (2011) Pathway-based association analyses identified trail pathway for osteoporotic fractures. PloS one. 6:e21835
33. Yin J, Wang X, Zheng L, Shi Y, Wang L, et al. (2013) Hsa-mir-34b/c rs4938723
 t>c and hsa-mir-423 rs6505162 c>a polymorphisms are associated with the risk of esophageal cancer in a chinese population. PloS one. 8:e80570
34. Chen ZJ, Zhao H, He L, Shi Y, Qin Y, et al. (2011) Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nature genetics. 43:55–59
35. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, et al. (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Gene & development. 12:1260–1268
36. Udagawa N, Takahashi N, Akatsu T, Sasaki T, Yamaguchi A, et al. (1989) The bone marrow-derived stromal cell lines mc3t3-g2/pa6 and st2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology. 125:1805–1813
37. Wong BR, Rho J, Arron J, Robinson E, Orlinick J, et al. (1997) Trance is a novel ligand of the tumor necrosis factor receptor family that activates c-jun n-terminal kinase in t cells. The Journal of biological chemistry. 272:25190–25194
38. Jorgensen HL, Kuik P, Madsen B, Fenger M, Lauritzen JB (2004) Serum osteoprotegerin (opg) and the a163g polymorphism in the opg promoter region are related to peripheral measures of bone mass and fracture odds ratios. Journal of bone and mineral metabolism. 22:132–138
39. Roshandel D, Hollday KL, Pye SR, Boonen S, Borgha H, et al. (2010) Genetic variation in the rankl/rank/opg signaling pathway is associated with bone turnover and bone mineral density in men. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research. 25:1830–1838
40. Hsu YH, Niu T, Terwedow HA, Xu X, Feng Y, et al. (2006) Variation in genes involved in the rankl/rank/opg bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Human genetics. 118:560–577
41. Katz J, Gong Y, Sahmasia D, Hou W, Burdley B, et al. (2011) Genetic polymorphisms and other risk factors associated with bisphosphonate induced osteonecrosis of the jaw. International journal of oral and maxillofacial surgery. 40:605–611
42. Pitocco D, Zelano G, Giodi G, Di Stasio E, Zaccardi F, et al. (2009) Association between osteoprotegerin g1181c and 1245g polymorphisms and diaabetic charcot neuroarthropathy: A case-control study. Diabetes care. 32:1694–1697
43. Huang CH, Wei JC, Hung PS, Shiu LJ, Tsay MD, et al. (2011) Osteoprotegerin genetic polymorphisms and age of symptom onset in anklyosing spondylitis. Rheumatology. 50:359–365
44. Rice EJ, Yun EJ, Oh KW, Park SE, Park CY, et al. (2010) The relationship between receptor activator of nuclear factor-kappab ligand (rankl) gene polymorphism and aortic calcification in korean women. Endocrine journal. 57:541–549
45. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 447:1087–1093
46. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, et al. (2007) A genome-wide association study identifies allelic variation in the fgr2 gene associated with risk of sporadic postmenopausal breast cancer. Nature genetics. 39:870–874
47. Bonifaci N, Palafax M, Pellegrini P, Osorio A, Benitez J, et al. (2011) Evidence for a link between tnfrsf1a and risk of breast cancer. Breast cancer research and treatment. 129:947–954
48. Chu LW, Meyer TE, Li Q, Menache I, Yu K, et al. (2010) Association between genetic variants in the 8q24 cancer risk regions and circulating levels of androgens and sex hormone-binding globulin. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 19:1848–1854
49. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, et al. (2007) Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nature genetics. 39:989–994
50. Feng XS, Yang YT, Gao SG, Ru Y, Wang GP, et al. (2014) Prevalence and age, gender and geographical area distribution of esophageal squamous cell carcinomas in north china from 1965 to 2006. Asian Pacific journal of cancer prevention: APJCP. 15:1981–1987