Just Ask: Learning to Answer Questions from Millions of Narrated Videos
Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid

To cite this version:
Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid. Just Ask: Learning to Answer Questions from Millions of Narrated Videos. ICCV 2021 - IEEE International Conference on Computer Vision, Oct 2021, Montréal, Canada. hal-03328749

HAL Id: hal-03328749
https://inria.hal.science/hal-03328749v1
Submitted on 30 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract

Recent methods for visual question answering rely on large-scale annotated datasets. Manual annotation of questions and answers for videos, however, is tedious, expensive and prevents scalability. In this work, we propose to avoid manual annotation and generate a large-scale training dataset for video question answering making use of automatic cross-modal supervision. We leverage a question generation transformer trained on text data and use it to generate question-answer pairs from transcribed video narrations. Given narrated videos, we then automatically generate the HowToVQA69M dataset with 69M video-question-answer triplets. To handle the open vocabulary of diverse answers in this dataset, we propose a training procedure based on a contrastive loss between a video-question multimodal transformer and an answer transformer. We introduce the zero-shot VideoQA task and show excellent results, in particular for rare answers. Furthermore, we demonstrate our method to significantly outperform the state of the art on MSRVTT-QA, MSVD-QA, ActivityNet-QA and How2QA. Finally, for a detailed evaluation we introduce iVQA, a new VideoQA dataset with reduced language bases and high-quality redundant manual annotations.

1. Introduction

Answering questions about videos requires a detailed understanding of the visual content and its association with the natural language. Indeed, given the large diversity of questions, methods for Video Question Answering (VideoQA) should reason about scenes, objects and human actions as well as their complex temporal interactions.

Current approaches to VideoQA rely on deep fully-supervised models trained on manually annotated datasets with question and answer pairs [23, 33, 36, 37, 42, 44, 50]. Collecting and annotating VideoQA datasets, however, is cumbersome, time consuming, expensive and therefore not scalable. As a result, current VideoQA datasets are relatively small (see Figure 2). This limitation hinders the progress in the field as state-of-the-art VideoQA models often require a large amount of training data.

In this work, we address the scale issue with a new approach for automatically generating a VideoQA dataset, see Figure 1 for examples. The idea is to leverage cross-modal supervision together with text-only tools for question generation and to automatically annotate VideoQA from a large amount of readily-available narrated videos. Inspired by the recent progress in language generation using transformer-based language models [11], we leverage transformers trained on a question-answering text corpus to generate a diverse set of non-scripted questions and corresponding open-vocabulary answers from text. By applying these transformers to speech transcripts of narrated videos from the large-scale HowTo100M dataset [60], we create HowToVQA69M, an open-ended VideoQA dataset with 69 million video-question-answer triplets and a diverse set of more than 16M unique answers (see Figure 3). As shown in Figure 2, our HowToVQA69M is two orders of magnitude larger compared to prior VideoQA datasets.

Given the limited diversity of existing datasets, current methods typically reduce video question answering to a classification problem, where frequent answers are assigned to unique classes. Typically, up to 5K unique possible answers are considered. Such an approach, however, does not scale to the open vocabulary of 16M different answers in our dataset. To address this problem and to enable video question answering with highly diverse questions
and answers, we introduce a training procedure based on contrastive learning between a video-question multi-modal transformer and an answer transformer that can handle free-form answers. This bypasses the need to define a discrete set of answer classes.

The goal of our work is to advance truly open-ended and generic solutions to VideoQA. To evaluate generalization, we propose a new zero-shot VideoQA task where we prohibit any manual supervision of visual data during training. Our VideoQA model, trained on HowToVQA69M, demonstrates excellent zero-shot results on multiple existing datasets, especially for rare answers. Moreover, when finetuned on target datasets, our model significantly outperforms the state of the art on MSRVTT-QA [87], MSVD-QA [87] ActivityNet-QA [94], and How2QA [48].

Initial experiments showed that existing benchmarks for open-ended VideoQA [87, 94] contain a language bias [29], i.e., their questions can often be answered without looking at the video. To better evaluate the impact of visual information in VideoQA, we introduce a new open-ended VideoQA dataset (iVQA) with manually collected questions and answers, where we exclude questions that could be answered without watching the video. Moreover, to account for multiple possible answers, iVQA contains five independently collected answers for each question.

In summary, our work proposes the following three contributions:

(i) We introduce an approach to automatically generate a large-scale VideoQA dataset, HowToVQA69M. Relying on cross-modal supervision, we use transformers trained on an existing text-only question-answering corpus and generate video-question-answer triplets from videos and transcribed narrations.

(ii) We train a VideoQA model on HowToVQA69M with contrastive learning between a multi-modal video-question transformer and an answer transformer. We show the efficiency of our model in the new zero-shot VideoQA task and outperform the state of the art in four existing VideoQA benchmarks: MSRVTT-QA, MSVD-QA, ActivityNet-QA and How2QA.

(iii) Finally, we introduce a new manually annotated open-ended VideoQA benchmark iVQA that excludes non-visual questions and contains multiple possible answers for each question.

Code, datasets and trained models are available at [1].

2. Related Work

Visual Question Answering (VQA). VQA is typically tackled by classifying the image-question (or video-question) representation into a fixed vocabulary of answers. Various approaches to combine spatial image representations and sequential question representations have been proposed [7, 10, 25, 57, 86, 88, 91]. More specifically to the video domain (VideoQA), spatio-temporal video representations in terms of motion and appearance have been used in [23, 27, 33, 35, 36, 37, 42, 43, 44, 50, 87, 89, 97, 105].

Methods above are limited to pre-defined vocabularies of answers and are difficult to apply outside of specific datasets. To address this problem, Hu et al. [32] propose a joint embedding where image-question representations can be matched with free-form answers. Our VideoQA model follows this idea, but instead of relying on manually annotated datasets of limited scale, we train it on a large-scale VideoQA dataset that we automatically generate. In contrast to some previous works using additional video features such as subtitles [13, 38, 39, 45, 46, 48, 77, 83, 90], our video representation is exclusively based on visual information, as we focus on the visual understanding of videos.

To evaluate the generalization of VQA models, Teney and Hengel [78] define zero-shot VQA by answering previously unseen questions, which is a related but less challenging task compared to the zero-shot VQA task we propose in Section 6.2. Vatashsky and Ullman [81] address VQA using COCO image annotations [53], while our zero-shot model is trained with no manual annotations. Our proposed zero-shot VQA task is analogous to zero-shot video retrieval [59] or zero-shot action recognition [63].

Visual question generation (VQG) has been introduced in [61]. The methods in [52] and [69] propose to jointly learn VQG and VQA to improve the image VQA task. However, these works do not generate questions to obtain additional training data, but use visual data annotation for question generation as an additional loss.

VideoQA datasets. Manually collecting and annotating video-question-answer triplets is cumbersome, costly and difficult to scale. As result, current VideoQA datasets [12, 17, 18, 22, 28, 35, 40, 45, 48, 62, 71, 77, 87, 93, 94, 95, 96] are limited in size, as the largest, TGIF-QA [35], contains only 72K annotated clips (see Figure 2 for more details). To address this issue, several works have explored leveraging manually annotated video descriptions [35, 82, 87, 96, 98, 99, 100] for automatic generation of VideoQA datasets, using rule-based [30, 66] approaches.
Instead, we propose to use video narrations that are available at large-scale with no manual supervision. Moreover, rule-based generation requires the manual creation of rules by experts which is expensive, and has also been recently outperformed by neural question generation [21, 92, 102] as used in our approach.

Large-scale pretraining for vision and language. Several recent methods [5, 16, 19, 34, 47, 49, 51, 55, 56, 73, 76, 101] pretrain multi-modal vision-language representations, such as transformers, using datasets with image captions, e.g., COCO [15], Conceptual Captions [70] and Visual Genome [41]. These methods are often optimized using generic objectives such as masked language losses and losses for text-image matching and image caption generation. In our work, we pretrain models using large amounts of narrated videos. In contrast to task-agnostic pretraining in the previous work, we show the benefits of task-specific pretraining for our target VideoQA task.

Learning from narrated videos. In this work, we exploit noisy correlations between videos and narrations in unlabeled instructional videos from the recent HowTo100M dataset [60]. Methods using such readily-available data have shown significant improvements on several tasks including video retrieval, action localization, action recognition and video captioning [26, 58, 59, 60, 74, 75, 103], sometimes outperforming fully-supervised baselines. Some recent works use narrated videos for VideoQA. Amrani et al. [6] propose a text-video pretraining approach and finetune for VideoQA. Li et al. [48] propose HERO, a pretraining approach restricted to multiple-choice VideoQA, for which question and answer are treated as a single text stream. Seo et al. [68] propose a pretraining approach based on next utterance prediction and finetune for VideoQA. Differently to these methods with task-agnostic pretraining, we propose a pretraining approach specifically dedicated for VideoQA using automatically generated question and answer pairs from narrated videos, and show in Section 6 the superiority of our approach.

3. Large-scale generation of VideoQA data

This section presents our approach to generate a large-scale VideoQA dataset from videos and transcribed narrations describing the content of the videos. Section 3.1 presents our proposed generation procedures. Section 3.2, then, describes the resulting HowToVQA69M dataset.

3.1. Generating video-question-answer triplets

We tackle the task of generating video-question-answer triplets from a large-scale instructional video dataset with transcribed spoken narration [60]. This is a challenging task because of transcription errors and lack of punctuation. We also wish to obtain highly diverse data. To address these issues, we propose to leverage powerful language models trained on text data. Our approach is illustrated in Figure 3 and details are given next.

We first present details about the generation procedure. Let \(s \) be the transcribed speech data obtained with automatic speech recognition (ASR). First, we use a recurrent neural network \(p \), to infer punctuation in the transcribed speech data. We denote the punctuated transcript as \(p(s) \). We extract video clips \(v \) temporally aligned with the inferred sentences \(p(s) \) using the ASR timestamps. We found that the generation works significantly better when applied to sentences rather than the original sentence fragments from the HowTo100M dataset, see Table 1. Second, for each sentence, we apply a transformer \(T_a \), to extract a set of potential answers: \(a = T_a(p(s)) \). Third, we use another transformer \(T_q \) to generate a question given each transcript sentence and
each extracted answer such that: \(q = T_q(a, p(s)) \). The output is a set of video-question-answer triplets \((v, q, a)\).

We now explain details about the language models and their training procedure. For ASR, we follow [60] and use the readily-available ASR data provided by YouTube. For punctuation \(p \), we use the BRNN model from [79] and the weights available at [2] trained on IWSLT2011 [24]. For \(T_a \) and \(T_q \), we use the transformer-based T5-small and T5-base models [64], respectively. We follow [4, 14, 54] and use the weights available at [3] trained for answer span extraction and answer-aware question generation, respectively, on SQuADv1 [65]. SQuADv1 is a text-only question-answering dataset consisting of questions for which the answer is a segment of text extracted from a paragraph.

3.2. HowToVQA69M: large-scale VideoQA dataset

We have applied the previously described procedure to all 1.2M original videos from the HowTo100M dataset [60]. The result is HowToVQA69M, a dataset of 69,270,581 video clip, question and answer triplets \((v, q, a)\). HowToVQA69M is two orders of magnitude larger than any of the currently available VideoQA datasets (see Figure 2). On average, each original video results in 43 video clips, where each clip lasts 12.1 seconds and is associated to 1.2 question-answer pairs. Questions and answers contain 8.7 and 2.4 words on average respectively. HowToVQA69M is highly diverse and contains over 16M unique answers, where over 2M unique answers appear more than once and over 300K unique answers appear more than ten times. Examples of \((v, q, a)\) triplets from the HowToVQA69M dataset are illustrated in Figure 4.

Manual evaluation of HowToVQA69M.

As shown in Figure 4, HowToVQA69M annotations are noisy, which can be attributed to: (i) errors in speech transcription, (ii) speech not describing the video content, or (iii) errors in question-answer generation. We manually evaluated the quality of 100 randomly sampled \((v, q, a)\) triplets in HowToVQA69M, collected 5 different annotations for each triplet to reduce variance, and reported results in Table 1. Among 100 triplets generated by our method we find 30 to be correctly generated and matching well to the video content, 31 are incorrectly generated and 39 are correctly

Punctuation Generation method	Correct	QA Generation	QA unrelated to video
✔️ Heilman et al. [30]	17	54	29
✗ Ours	23	49	28
✔️ Ours	30	31	39

Table 1: Manual evaluation of our generation method (with and without punctuation) on a random sample of 100 examples compared with a rule-based question-answer generation of [30]. Numbers are obtained with majority voting between 5 annotators.

generated but unrelated to the video content. To demonstrate the influence of the different components of our automatic question-answer generation procedure, we compare it with (i) a variant of our approach that does not split transcribed narrations into sentences using a punctuator, and (ii) a rule-based approach [30] for question-answer generation. Table 1 confirms the importance of punctuation and demonstrates the superior performance of our generation method compared to [30]. Inter-rater agreement statistics, and more details for the generated dataset are provided in Appendix A. Further comparison with [30] is given in Section 6.5. We describe next how we use HowToVQA69M to train our VideoQA model.

4. VideoQA model and training procedure

This section presents our VideoQA model in Section 4.1 and describes its training procedure in Section 4.2. Figure 5 gives an overview of the model.

4.1. VideoQA model

As illustrated in Figure 5, our VideoQA model is composed of two branches: (i) a video-question module \(f \) based on a transformer [80] and a mapping from the CLS token with a linear function. It takes a pair of video \(v \) and question \(q \) as input, models the multi-modal temporal interactions between \(v \) and \(q \) and then outputs an embedding vector \(f(v, q) \in \mathbb{R}^d \). (ii) The second branch is a text encoder \(g \) that embeds an answer \(a \) as \(g(a) \in \mathbb{R}^d \). We will denote our model as \(VQA-T \), standing for VideoQA-Transformer. Note that using the joint (video, question) and answer embeddings allows us to deal with a large open vocabulary of answers present in our new HowToVQA69M dataset as the model can measure similarity between the in-
put video-question embedding and the embedding of any answer. This is in contrast to using a classification answer module [33, 36, 37, 42, 105] that can choose only from a fixed predefined vocabulary of answers. Our embedding can be also easily finetuned on the different downstream VideoQA datasets, which may contain new answers that have not been seen at training. In contrast, the classification answer module has to be retrained when the vocabulary of answers changes. Next, we give details of the language and video representations. Further details about the model are provided in Appendix B.

Word representation. The question and answer are separately tokenized with the WordPieces embedding [84] and fed to DistilBERT [67]. DistilBERT is a light version of BERT [20] pretrained in a self-supervised fashion on English Wikipedia and the Toronto Book Corpus [104].

Video representation. We use a frozen S3D [85] pretrained on HowTo100M [60] using MIL-NCE [59]. This model is pretrained from scratch on HowTo100M only.

4.2. Training procedure

This section describes the training of our VideoQA model on the HowToVQA69M dataset and its finetuning on downstream VideoQA datasets.

Training on HowToVQA69M. We wish to make a pair of video and question \((v, q)\) close to its correct answer \(a\) measured by the dot product of their embeddings, \(f(v, q)^\top g(a)\). Conversely, the incorrect answers should be far, i.e., the dot product with their embeddings should be small. Formally, this can be done by maximizing the following contrastive objective:

\[
\max_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{e^{f(v_i, q_i)^\top g(a_i)}}{e^{f(v_i, q_i)^\top g(a_i)} + \sum_{(v', q') \sim \mathcal{N}_i} e^{f(v', q')^\top g(a')}} \right),
\]

where \((v_i, q_i, a_i)\) represents a triplet of generated (video clip, question, answer) from HowToVQA69M. Given a specific positive triplet \((v_i, q_i, a_i)\), we construct the set \(\mathcal{N}_i\) of negative triplets \((v_j, q_j, a_j)\) within the training batch to the video-question pair \((v_i, q_i)\) as: \((v_i, q_i, a_j)\) with \(a_j \neq a_i\). In particular, if the same negative answer \(a_j\) is present multiple times in a batch, we only count it once. We found that sampling the same negative answer multiple times leads to worse results (see Section 6.6), which we believe is due to different distributions of answers in the pretraining and downstream datasets. Removing duplicate negatives helps to mitigate this difference.

Finetuning on downstream VideoQA datasets. We leverage the model pretrained on HowToVQA69M and finetune it on a downstream VideoQA dataset that typically has a smaller vocabulary of answers \(V\) (e.g., \(|V| \sim 4000\)). To this end, we adapt the training objective in (1) by constructing the negative set \(\mathcal{N}_i\) from all incorrect answers in \(V\). Note that in such setting (1) becomes equivalent to optimizing the standard cross-entropy objective. In the specific case of multiple-choice VideoQA, the set of negatives \(\mathcal{N}_i\) is the set of incorrect answers for each sample.

Masked Language Modeling (MLM). In addition to the contrastive loss (1) we apply the masking loss [20] to question tokens during both pretraining and finetuning. We found this to have a positive regularization effect when finetuning the DistilBERT weights (see Section 6.6).

5. iVQA: new dataset for VideoQA evaluation

In this section we present our Instructional VQA dataset (iVQA). We start from a subset of HowTo100M videos and manually annotate video clips with questions and answers. We aim to (i) provide a well-defined evaluation by including five correct answer annotations per question and (ii) avoid questions which can be answered without watching the video. The dataset is described below and more details are given in Appendix C and E.3.

Data Collection. iVQA videos are obtained by randomly sampling 7-30 sec. video clips from the HowTo100M dataset [60]. We avoid overlap between datasets and make sure iVQA and HowToVQA69M have no videos in common. Each clip is manually annotated with one question and 5 answers on Amazon Mechanical Turk. We ask workers to annotate questions about objects and scenes in the video and remove videos that could not be annotated. The correctness of annotations is manually verified by the authors. Moreover, we manually reduce the language bias by excluding questions that could be answered without watching the video. To increase diversity, each question is answered by 5 different workers. The answers are restricted to 4 words and are complemented by a confidence level. Questions that receive multiple answers with low confidence are removed.

Statistical Analysis. iVQA contains 10,000 video clips with one question and five corresponding answers per clip. We split the dataset into 60%/20%/20% train/validation/test subsets. On average, questions and answers contain 7.6 and 1.1 words respectively. The average duration of video clips
Table 2: Comparison with baselines for zero-shot VideoQA. Top-1 and top-10 (for open-ended datasets) accuracy are reported.

Method	Pretraining Data	iVQA Top-1	iVQA Top-10	MSRRVT-QA Top-1	MSRRVT-QA Top-10	MSVD-QA Top-1	MSVD-QA Top-10	ActivityNet-QA Top-1	ActivityNet-QA Top-10	How2QA Top-1	How2QA Top-10
Random		0.09	0.9	0.02	0.2	0.05	0.5	0.05	0.5	25.0	
QA-T	HowToVQA69M	4.4	23.2	2.5	6.5	4.8	15.0	11.6	45.8	38.4	
VQA-T	HowTo100M	1.9	11.9	0.3	3.4	1.4	10.4	0.3	1.9	46.2	
VQA-T (Ours)	HowToVQA69M	12.2	43.3	2.9	8.8	7.5	22.4	12.2	46.5	51.1	

6.1. Evaluation Protocol

Datasets. We use two datasets for training and five datasets for evaluation as described below. We follow previous evaluation protocols for open-ended settings [42, 94] and use a fixed vocabulary of training answers. Unless stated otherwise, we report top-1 test accuracy and use original splits for training, validation and test.

For training we use our new HowToVQA69M dataset introduced in Section 3.2 with 90% and 10% videos in training and validation subsets. For comparison, we also train our model using a large-scale text-video dataset, HowTo100M [60], that contains videos with transcribed narrations but no video-question-answer triplets. Test and validation videos of downstream datasets are excluded from HowTo100M and HowToVQA69M.

We evaluate results on four open-ended VideoQA downstream datasets: MSRRVT-QA [87], MSVD-QA [87], ActivityNet-QA [94] and our new iVQA dataset (see Section 5). We also evaluate on a multiple-choice VideoQA dataset How2QA [48] where each question is associated with one correct and three incorrect answers.

Baselines. To evaluate the contribution of the visual modality, we compare our VQA-T model with its language-only variant QA-T. QA-T does not use video input, i.e. we set the input v of the video-question transformer to zero (see Figure 5). To evaluate our generated dataset, we also compare VQA-T trained on HowToVQA69M and on HowTo100M. Since HowTo100M has no (v, q, a) triplets, we only train the f branch of VQA-T on HowTo100M using the standard masking and cross-modal matching losses [16, 48, 55, 75, 103]. In the zero-shot setting we evaluate VQA-T trained on HowTo100M by computing $f(v, [q, a])$ for concatenated pairs of questions and answers $[q, a]$. During finetuning we also initialize the g branch of VQA-T with parameters of the text encoding obtained from f (see further details in Appendix B).

Implementation details. For the training on HowToVQA69M we use the Adam optimizer and mini-batches with 4096 video clips sampled from 128 random videos.
Table 3: Benefits of pretraining our VQA-T model on our new HowToVQA69M dataset (last row) compared to no pretraining (first row) or pretraining on HowTo100M (second row). In each case our VQA-T model was then finetuned on the downstream VideoQA datasets. Top-1 accuracy is reported.

The optimization over 10 epochs lasts 2 days on 8 Tesla V100 GPUs. Further details are included in Appendix D.

6.2. Zero-shot VideoQA

In this section, we address the zero-shot VideoQA task where we prohibit any manual supervision of visual data during training. We explore this setup to evaluate the generalization of VQA-T trained on HowToVQA69M to unseen downstream datasets. For consistency, we use the vocabulary of answers from downstream datasets during testing (see Section 6.1).

Zero-shot results are presented in Table 2. We first observe that the use of visual cues by VQA-T outperforms QA-T when both models are trained on HowToVQA69M. This demonstrates the importance of the cross-modality in HowToVQA69M despite the VideoQA annotation being exclusively generated from text-only methods. Since HowToVQA69M has been generated using no manual annotation of visual data, our approach is scalable and can lead to further improvements by increasing the dataset size, as we discuss in Section 6.6.

Training on HowToVQA69M significantly outperforms the training on HowTo100M and the random baseline. This confirms the advantage of our HowToVQA69M dataset for the VideoQA task over other generic text-video datasets that do not contain video-question-answer triplets. We emphasize that our training does not use any information about target VideoQA datasets. Qualitative results for zero-shot VideoQA are presented for our approach and compared with baselines in Figure 6. We observe that QA-T (trained on HowToVQA69M) provides plausible but video-unrelated answers to the questions. Moreover, VQA-T (trained on HowTo100M) is able to associate visual content with related answers, but fails to have a complex multimodal understanding. Our VQA-T model trained on HowToVQA69M, on the other hand, correctly understands questions and uses information in the video to provide correct answers, confirming results in Table 2.

6.3. Benefits of HowToVQA69M pretraining

This section evaluates the effect of VQA-T pretraining in combination with finetuning on target datasets. As shown in Table 3, pretraining on HowToVQA69M provides consistent and significant improvements for all datasets when compared to pretraining on HowTo100M and no pretraining. In particular, we observe the largest improvement for our new iVQA dataset which comes from the same domain as HowToVQA69M. Hence, the automatic generation of training data for other domains using our method can lead to further improvements on other datasets.

We compare our pretrained model to the state-of-the-art in VideoQA in Tables 4-5. Notably, VQA-T pretrained on HowToVQA69M outperforms previous methods on all tested datasets. In particular, our method improves over the recent CoMVT approach [68] that has been pretrained on HowTo100M. These strong results show the importance of our proposed HowToVQA69M dataset.
Table 7: Comparison of our question-answer generation approach with Heilman et al. [30], evaluated by downstream performance of the model trained on the generated VideoQA data.

Generation Method	Zero-shot	Finetune
iVQA (Q3 and Q4)	7.4	31.4
ActivityNet-QA	11.1	41.7
How2QA	34.5	83.0
Ours	12.2	51.1
ActivityNet-QA	10.9	38.9
How2QA	35.4	84.4

Table 8: Effect of MLM loss and our negative sampling strategy on HowToVQA69M training.

Pretraining data size	Zero-shot	Finetune
iVQA MSVD-QA	11.1	34.7
MSVD-QA	6.1	45.6
ActivityNet-QA	12.1	34.3
How2QA	7.0	45.0
iVQA	10.9	34.3
MSVD-QA	6.4	45.1
ActivityNet-QA	12.2	35.4
How2QA	7.5	46.3

Table 9: Effect of the training size of HowToVQA69M.

Importance of scale. Results of our method after pretraining on different fractions of HowToVQA69M are shown in Table 9. We construct these subsets such that larger subsets include the smaller ones. These results suggest that the scale is an important factor and that we can expect further improvements with additional pretraining data, both in the zero-shot and finetuning settings.

7. Conclusion

We propose a novel and scalable approach for training VideoQA models without manually annotated visual data. We automatically generate HowToVQA69M – a large-scale VideoQA training dataset generated from narrated videos with readily-available speech transcripts, significantly exceeding existing datasets by size and diversity. We demonstrate several benefits of pretraining on HowToVQA69M. We are the first to demonstrate zero-shot VideoQA results without the use of any manually annotated images or videos. Furthermore, finetuning our HowToVQA69M pretrained model on downstream tasks outperforms the state of the art on MSRVTT-QA, MSVD-QA, ActivityNet-QA and iVQA. We further validate our approach on a new iVQA benchmark we manually collect.

Acknowledgements. This work was granted access to the HPC resources of IDRIS under the allocation 2020-101267 made by GENCI. The work was funded by a Google gift, the French government under management of Agence Nationale de la Recherche as part of the "Investissements d’avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute), the Louis Vuitton ENS Chair on Artificial Intelligence, the European Regional Development Fund under project IMPACT (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000468) and A. Miech’s Google PhD fellowship. We thank P.-L. Guhr and M. Tapaswi for advice on using Amazon Mechanical Turk, E. Berthier, Q. Le Lidec and E. Chane-Sane for the manual evaluation of generated VideoQA data, and I. Rocco for proofreading.
References

[1] Just Ask project webpage. https://antoyang.github.io/just-ask.html. 2
[2] Punctuator. https://github.com/ottokart/punctuator2. 2017. 4
[3] Question generation using transformers. https://github.com/patil-sauraj/question_generation. 2020. 4
[4] Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin, and Michael Collins. Synthetic QA corpora generation with roundtrip consistency. In ACL. 2019. 4
[5] Chris Alberti, Jeffrey Ling, Michael Collins, and David Reitter. Fusion of detected objects in text for visual question answering. In IJCNLP. 2019. 3
[6] Elad Amrani, Rami Ben-Ari, Daniel Rotman, and Alex Bronstein. Noise estimation using density estimation for self-supervised multimodal learning. In AAAI. 2021. 3, 7
[7] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answering. In CVPR. 2018. 2
[8] Stanislaw Antol, Aishwarya Agrawal, Jasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. VQA: Visual question answering. In ICCV. 2015. 6
[9] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450. 2016. 16
[10] Hedi Ben-Younes, Rémi Cadene, Matthieu Cord, and Nicolas Thome. MUTAN: Multimodal tucker fusion for visual question answering. In CVPR. 2017. 2
[11] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165. 2020. 1
[12] Santiago Castro, Mahmoud Azab, Jonathan Stroud, Cristina Noujaim, Ruoyao Wang, Jia Deng, and Rada Mihalcea. LifeQ&A: A real-life dataset for video question answering. In LREC. 2020. 2
[13] Aman Chadha, Gurneet Arora, and Navpreet Kaloty. iPerceive: Applying common-sense reasoning to multi-modal dense video captioning and video question answering. In WACV. 2021. 2
[14] Ying-Hong Chan and Yao-Chung Fan. A recurrent BERT-based model for question generation. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering. 2019. 4
[15] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO captions: Data collection and evaluation server. arXiv preprint arXiv:1504.00325. 2015. 3, 7
[16] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. UNITER: Universal image-text representation learning. In ECCV. 2020. 3, 6
[17] Seongho Choi, Kyoung-Woon On, Yu-Jung Heo, Ahjeong Seo, Youwon Jang, Seungeun Lee, Minsu Lee, and Byoung-Tak Zhang. DramaQA: Character-centered video story understanding with hierarchical qa. In AAAI. 2021. 2
[18] Anthony Colas, Seokhwan Kim, Franck Dernoncourt, Siddhesh Gupte, Daisy Zhe Wang, and Doo Soon Kim. Tutoria lVQA: Question answering dataset for tutorial videos. In LREC. 2020. 2
[19] Karan Desai and Justin Johnson. VirTex: Learning visual representations from textual annotations. In CVPR. 2021. 3
[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL-HLT. 2019. 5
[21] Xinya Du, Junru Shao, and Claire Cardie. Learning to ask: Neural question generation for reading comprehension. In ACL. 2017. 3
[22] Chenyou Fan. EgoVQA - an egocentric video question answering benchmark dataset. In ICCV Workshops. 2019. 2
[23] Chenyou Fan, Xiaofan Zhang, Shu Zhang, Wensheng Wang, Chi Zhang, and Heng Huang. Heterogeneous memory enhanced multimodal attention model for video question answering. In CVPR. 2019. 1, 2, 7
[24] Marcello Federico, Sebastian Stüker, Luisa Bentivogli, Michael Paul, Mauro Cettolo, Teresa Herrmann, Jan Niehues, and Giovanni Moretti. The IWSLT 2011 evaluation campaign on automatic talk translation. In LREC. 2012. 4
[25] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach. Multi-modal compact bilinear pooling for visual question answering and visual grounding. In EMNLP. 2016. 2
[26] Valentin Gabeur, Chen Sun, Kartek Alahari, and Cordelia Schmid. Multi-modal transformer for video retrieval. In ECCV. 2020. 3
[27] Jiyang Gao, Runzhou Ge, Kan Chen, and Ram Nevatia. Motion-appearance co-memory networks for video question answering. In CVPR. 2018. 2, 7
[28] Noa Garcia, Mayu Otani, Chenhui Chu, and Yuta Nakashima. KnowIT VQA: Answering knowledge-based questions about videos. In AAAI. 2020. 2
[29] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in VQA matter: Elevating the role of image understanding in visual question answering. In CVPR. 2017. 2
[30] Michael Heilman and Noah A Smith. Good question! Statistical ranking for question generation. In ACL. 2010. 2, 4, 8, 13, 14, 19
[31] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GEtUs). arXiv preprint arXiv:1606.08415. 2016. 16
[32] Hexiang Hu, Wei-Lun Chao, and Fei Sha. Learning answer embeddings for visual question answering. In CVPR. 2018. 2
[33] Deng Huang, Peihao Chen, Runhao Zeng, Qing Du, Mingkui Tan, and Chuang Gan. Location-aware graph convolutional networks for video question answering. In AAAI. 2020. 1, 2, 5, 7
[34] Zhicheng Huang, Zhaoyang Zeng, Bei Liu, Dongmei Fu, and Jianlong Fu. Pixel-BERT: Aligning image pixels with text by deep multi-modal transformers. *arXiv preprint arXiv:2004.00849*, 2020. 3

[35] Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and Gunhee Kim. TGIF-QA: Toward spatio-temporal reasoning in visual question answering. In *CVPR*, 2020. 2, 7

[36] Jianwen Jiang, Ziqiang Chen, Haojie Lin, Xibin Zhao, and Yue Gao. Divide and conquer: Question-guided spatio-temporal contextual attention for video question answering. In *AAAI*, 2020. 1, 2, 5, 7

[37] Pin Jiang and Yahong Han. Reasoning with heterogeneous graph alignment for video question answering. In *AAAI*, 2020. 1, 2, 5, 7

[38] HyoungHun Kim, Zineng Tang, and Mohit Bansal. Dense-caption matching and frame-selection gating for temporal localization in VideoQA. In *ACL*, 2020. 2

[39] Junyeeong Kim, Minuk Ma, Trung Pham, Kyungsu Kim, and Chang D Yoo. Modality shifting attention network for multi-modal video question answering. In *CVPR*, 2020. 2

[40] Kyung-Min Kim, Min-Oh Heo, Seong-Ho Choi, and Byoung-Tak Zhang. Deepstory: Video story qa by deep embedded memory networks. In *IJCAI*, 2017. 2

[41] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, Michael Bernstein, and Li Fei-Fei. Visual Genome: Connecting language and vision using crowdsourced dense image annotations. *IJCV*, 2016. 3, 7

[42] Thao Minh Le, Vuong Le, Svetla Venkatesh, and Truyen Tran. Hierarchical conditional relation networks for video question answering. In *CVPR*, 2020. 1, 2, 5, 6, 7, 19

[43] Thao Minh Le, Vuong Le, Svetla Venkatesh, and Truyen Tran. Neural reasoning, fast and slow, for video question answering. In *IJCNN*, 2020. 2

[44] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mohit Bansal, and Jingjing Liu. Less is more: Clipbert for video-and-language learning via sparse sampling. In *CVPR*, 2021. 1, 2, 7

[45] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg. TVQA: Localized, compositional video question answering. In *EMNLP*, 2018. 2

[46] Jie Lei, Licheng Yu, Tamara L Berg, and Mohit Bansal. TVQA+: Spatio-temporal grounding for video question answering. In *ACL*, 2020. 2

[47] Gen Li, Nan Duan, Yuejian Fang, Ming Gong, Daxin Jiang, and Ming Zhou. Unicoder-VL: A universal encoder for vision and language by cross-modal pre-training. In *AAAI*, 2020. 3

[48] Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng Yu, and Jingjing Liu. HERO: Hierarchical encoder for video+language omni-representation pre-training. In *EMNLP*, 2020. 2, 3, 6, 7

[49] Lianian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. VisualBERT: A simple and performant baseline for vision and language. *arXiv preprint arXiv:1908.03557*, 2019. 3

[50] Xiangpeng Li, Jingkuan Song, Lianli Gao, Xianglong Liu, Wenbing Huang, Xiangnan He, and Chuang Gan. Beyond RNNs: Positional self-attention with co-attention for video question answering. In *AAAI*, 2019. 1, 2

[51] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiawei Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training for vision-language tasks. In *ECCV*, 2020. 3

[52] Yikang Li, Nan Duan, Bolei Zhou, Xiao Chu, Wanli Ouyang, Xiaogang Wang, and Ming Zhou. Visual question generation as dual task of visual question answering. In *CVPR*, 2018. 2

[53] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In *ECCV*, 2014. 2

[54] Luis Enrico Lopez, Diane Kathryn Cruz, Jan Christian Blaise Cruz, and Charibeth Cheng. Transformer-based end-to-end question generation. *arXiv preprint arXiv:2005.01107*, 2020. 4

[55] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. ViLBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In *NeurIPS*, 2019. 3, 6

[56] Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi Parikh, and Stefan Lee. 12-in-1: Multi-task vision and language representation learning. In *CVPR*, 2020. 3

[57] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-image co-attention for visual question answering. In *NeurIPS*, 2016. 2

[58] HuaiShao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan Duan, Tianrui Li, Xilin Chen, and Ming Zhou. UniViLM: A unified video and language pre-training model for multimodal understanding and generation. *arXiv preprint arXiv:2002.06353*, 2020. 3

[59] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman. End-to-end learning of visual representations from uncurated instructional videos. In *CVPR*, 2020. 2, 3, 5

[60] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef Sivic. HowTo100M: Learning a text-video embedding by watching hundred million narrated video clips. In *ICCV*, 2019. 1, 3, 4, 5, 6, 19

[61] Nasrin Mostafazadeh, Ishan Misra, Jacob Devlin, Margaret Mitchell, Xiaodong He, and Lucy Vanderwende. Generating natural questions about an image. In *ACL*, 2016. 2

[62] Jonghwan Mun, Paul Hongsuck Seo, Ilchae Jung, and Bo-hyung Han. MarioQA: Answering questions by watching gameplay videos. In *CVPR*, 2017. 2

[63] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. *arXiv preprint arXiv:2103.00020*, 2021. 2

[64] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *JMLR*, 2020. 3, 4

[65] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQcAD: 100,000+ questions for machine comprehension of text. *arXiv preprint arXiv:1606.05250*, 2016. 4

[66] Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring models and data for image question answering. In *NeurIPS*, 2015. 2

[67] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019. 5, 16

[68] Paul Hongsuch Seo, Arsha Nagrani, and Cordelia Schmid. Look before you speak: Visually contextualized utterances. In *CVPR*, 2021. 3, 7

[69] Meet Shah, Xinlei Chen, Marcus Rohrbach, and Devi Parikh. Cycle-consistency for robust visual question answering. In *CVPR*, 2019. 2

[70] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual Captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In *ACL*, 2018. 3

[71] Xiaomeng Song, Yucheng Shi, Xin Chen, and Yahong Han. Explore multi-step reasoning in video question answering. In *ACM international conference on Multimedia*, 2018. 2

[72] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. *JMLR*, 2014. 16

[73] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. VL-BERT: Pre-training of generic visual-linguistic representations. In *ICLR*, 2019. 3

[74] Chen Sun, Fabien Baradel, Kevin Murphy, and Cordelia Schmid. Contrastive bidirectional transformer for temporal representation learning. *arXiv preprint arXiv:1906.05743*, 2019. 3

[75] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. VideoBERT: A joint model for video and language representation learning. In *ICCV*, 2019. 3, 6

[76] Hao Tan and Mohit Bansal. LXMER T: Learning cross-modality encoder representations from transformers. In *EMNLP*, 2019. 3

[77] Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba, Raquel Urtasun, and Sanja Fidler. MovieQA: Understanding stories in movies through question-answering. In *CVPR*, 2016. 2

[78] Damien Teney and Anton van den Hengel. Zero-shot visual question answering. *arXiv preprint arXiv:1611.05546*, 2016. 2

[79] Ottokar Tilk and Tanel Alumäe. Bidirectional recurrent neural network with attention mechanism for punctuation restoration. In *Interspeech 2016*, 2016. 4

[80] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017. 4

[81] Ben-Zion Vatashsky and Shimon Ullman. VQA with no questions-answers training. In *CVPR*, 2020. 2

[82] Weineng Wang, Yan Huang, and Liang Wang. Long video question answering: A matching-guided attention model. *Pattern Recognition*, 2020. 2

[83] Thomas Winterbottom, Sarah Xia, Alistair McLean, and Noura Al Moubayed. On modality bias in the TVQA dataset. *arXiv preprint arXiv:2012.10210*, 2020. 2

[84] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. *arXiv preprint arXiv:1609.08144*, 2016. 5

[85] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification. In *ECCV*, 2018. 5, 16

[86] Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory networks for visual and textual question answering. In *ICML*, 2016. 2

[87] Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting Zhuang. Video question answering via gradually refined attention over appearance and motion. In *ACM international conference on Multimedia*, 2017. 2, 6, 7, 8

[88] Huijuan Xu and Kate Saenko. Ask, attend and answer: Exploring question-guided spatial attention for visual question answering. In *ECCV*, 2016. 2

[89] Hongyang Xue, Wenqing Chu, Zhou Zhao, and Deng Cai. A better way to attend: Attention with trees for video question answering. *IEEE Transactions on Image Processing*, 2018. 2

[90] Zekun Yang, Noa Garcia, Chenhui Chu, Mayu Otani, Yuta Nakashima, and Haruo Takemura. BERT representations for video question answering. In *WACV*, 2020. 2

[91] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention networks for image question answering. In *CVPR*, 2016. 2

[92] Kaichun Yao, Libo Zhang, Tiejian Luo, Lili Tao, and Yan-Jun Wu. Teaching machines to ask questions. In *IJCAI*, 2018. 3

[93] Yunan Ye, Zhou Zhao, Yiming Li, Long Chen, Jun Xiao, and Yueting Zhuang. Video question answering via attribute-augmented attention network learning. In *ACM SIGIR*, 2017. 2

[94] Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueting Zhuang, and Dacheng Tao. ActivityNet-QA: A dataset for understanding complex web videos via question answering. In *AAAI*, 2019. 2, 6, 7

[95] Amir Zadeh, Michael Chan, Paul Pu Liang, Edmund Tong, and Louis-Philippe Morency. Social-IQ: A question answering benchmark for artificial social intelligence. In *CVPR*, 2019. 2

[96] Kuo-Hao Zeng, Tseng-Hung Chen, Ching-Yao Chuang, Yuan-Hong Liao, Juan Carlos Niebles, and Min Sun. Leveraging video descriptions to learn video question answering. In *AAAI*, 2017. 2, 8
[97] Zheng-Jun Zha, Jiawei Liu, Tianhao Yang, and Yongdong Zhang. Spatiotemporal-textual co-attention network for video question answering. *ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)*, 2019. 2

[98] Zhou Zhao, Shuwen Xiao, Zehan Song, Chujie Lu, Jun Xiao, and Yueting Zhuang. Open-ended video question answering via multi-modal conditional adversarial networks. *IEEE Transactions on Image Processing*, 2020. 2, 8

[99] Zhou Zhao, Qifan Yang, Deng Cai, Xiaofei He, Yueting Zhuang, Zhou Zhao, Qifan Yang, Deng Cai, Xiaofei He, and Yueting Zhuang. Video question answering via hierarchical spatio-temporal attention networks. In *IJCAI*, 2017. 2, 8

[100] Zhou Zhao, Zhu Zhang, Shuwen Xiao, Zhou Yu, Jun Yu, Deng Cai, Fei Wu, and Yueting Zhuang. Open-ended long-form video question answering via adaptive hierarchical reinforced networks. In *IJCAI*, 2018. 2, 8

[101] Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason J Corso, and Jianfeng Gao. Unified vision-language pre-training for image captioning and VQA. In *AAAI*, 2020. 3

[102] Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou. Neural question generation from text: A preliminary study. In *National CCF Conference on Natural Language Processing and Chinese Computing*, 2017. 3

[103] Linchao Zhu and Yi Yang. ActBERT: Learning global-local video-text representations. In *CVPR*, 2020. 3, 6

[104] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In *ICCV*, 2015. 5

[105] Yueting Zhuang, Dejing Xu, Xin Yan, Wenzhuo Cheng, Zhou Zhao, Shiliang Pu, and Jun Xiao. Multichannel attention refinement for video question answering. *ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)*, 2020. 2, 5, 7
Appendix

In this Appendix, we start by giving additional analysis and examples of our proposed HowToVQA69M dataset in Section A. We, then, provide additional architecture details for our VideoQA model in Section B. Next, we present additional statistics and details of the collection procedure for our manually collected iVQA evaluation benchmark in Section C. We describe additional implementation details in Section D and present experiments including cross-dataset transfer, results per answer quartile and per question type in Section E.

A. Analysis of HowToVQA69M dataset

Figure 7 shows the statistics of the HowToVQA69M dataset in terms of the question length, answer length and video clip duration. Overall, HowToVQA69M contains longer answers than downstream open-ended VideoQA datasets like MSRVTT-QA, MSVD-QA or ActivityNet-QA. The distribution of clip duration has a peak at around seven seconds with a long tail of longer clips. These statistics demonstrate the diversity of our HowToVQA69M dataset, both in terms of videos and answers.

Word clouds for questions and answers in HowToVQA69M are shown in Figure 8 and illustrate the diverse vocabulary in HowToVQA69M as well as the presence of speech-related words such as okay, right, oh. In Figure 10 we illustrate the diversity and the noise in the automatically obtained annotations in the HowToVQA69M dataset.

We show quantitative comparisons of our question-answer generation models with [30] in Section 6.5, and supplement it here with a qualitative comparison shown in Figure 9. We found that compared to [30] our generation method provides higher quality as well as higher diversity of question-answer pairs when applied to the uncurated sentences extracted from speech in narrated videos.

In Section 3.2 we present a manual evaluation of the quality of the automatically generated video-question-answer triplets for our method and two other baselines. We complement this analysis here with inter-rater agreement statistics. For the 300 generated video-question-answer triplets (100 for each generation method), 94 were in an agreement of all 5 annotators, 198 in an agreement of at least 4 annotators, and 299 in an agreement of at least 3 annotators. This high agreement of annotators demonstrates the reliability of the results in Table 1.

We further manually classify the 100 video-question-answer triplets obtained with our method by the question type (“Attribute”, “Object”, “Action”, “Counting”, “Place”, “People”, or “Other”), evaluate the quality of generated triplets for different question types and report results in Table 10. Out of the 6 most common categories, we observe that questions related to “Action” lead to the best annotations, “Counting” questions lead to the highest number of QAs unrelated to the video content, and questions related to “Place” lead to the highest number of QA generation errors. Qualitatively, we found that actions are often depicted in the video, while counted quantities (e.g. time, weight, length) mentioned in the speech are hard to guess from the video only.

B. VideoQA architecture

Our architecture, shown in Figure 11, has two main modules: (i) a video-question multi-modal transformer (top) and (ii) an answer transformer (bottom). Details are given next, and further implementation details are given in Section D.

1 To generate the word clouds, we used https://github.com/amueller/word_cloud.
Figure 8: Word clouds extracted from the HowToVQA69M dataset showing its diverse vocabulary and the words characteristic to speech such as okay, right, or ok.

Figure 9: Qualitative examples of video-question-answer triplets generated with our trained language models compared to Heilman et al. [30], illustrating the higher quality and diversity of triplets obtained with our generation method.
ASR: Then you release the right and you take out the tube pretty simple.
Question: What do you take out?
Answer: The tube

ASR: You can just lift them right up like that that there we go, and these are ready to cut.
Question: What do you do to get them ready to cut?
Answer: Lift them right up

ASR: And the last thing that goes on top would be the spinach.
Question: What is the last thing that goes on top?
Answer: Spinach

ASR: And what you're going to do is take the first section underneath and pull that nice and tight.
Question: What are you going to do with the first section underneath?
Answer: Pull that nice and tight

ASR: ...and we're gonna create slipknot by pulling this side of the rubber band through the center of this side.
Question: How do we create slipknot?
Answer: Pull that through

ASR: So I transferred my smaller piece to the top of the yellow larger piece.
Question: What color was the larger piece?
Answer: Yellow

ASR: You can't miss this...
Question: What can’t you do?
Answer: Miss

ASR: The soil can be mixed with compost or slow release fertilizer to help nourish your tree.
Question: What can be mixed with the soil to help nourish your tree?
Answer: Compost or slow release fertilizer

ASR: And then voila, perfect chocolate mousse.
Question: What kind of mousse is perfect?
Answer: Chocolate

ASR: ...and I will put it in a 400 degree oven for 15 minutes.
Question: How many minutes will peppers be in the 400 degree oven?
Answer: 15

Figure 10: Additional examples of videos, questions and answers from our automatically generated HowToVQA69M dataset. These examples illustrate the large data diversity in HowToVQA69M. The green color indicates relevant examples, the orange color (penultimate row) indicates a failure of the question-answer generation, and the red color (last row) indicates that the generated question-answer is unrelated to the visual content.
Video representation, obtained from a fixed S3D model \[85\], is composed of \(t\) features denoted \(v = [v_1, ..., v_t] \in \mathbb{R}^{d_v \times t}\) where \(d_v\) is the dimension of the video features, and \(t\) is the number of extracted features, one per second. The contextualized representation of the question, provided by the DistilBERT model \[67\], is composed of \(l\) token embeddings denoted as \(q = [q_1, ..., q_l] \in \mathbb{R}^{d_q \times l}\) where \(d_q\) is the dimension of the DistilBERT embedding and \(l\) is the number of tokens in the question. The inputs to our video-question multi-modal transformer are then defined as a concatenation of question token embeddings and video features

\[
u(v, q) = [\tilde{q}_1, ..., \tilde{q}_t, \tilde{v}_1, ..., \tilde{v}_t] \in \mathbb{R}^{d_x \times (l+t)},
\]

(2)

where

\[
\tilde{q}_s = dp(\sigma(W_q q_s + b_q) + pos_s + mod_q),
\]

(3)

and

\[
\tilde{v}_s = dp(\sigma(W_v v_s + b_v) + pos_s + mod_v),
\]

(4)

where \(W_q \in \mathbb{R}^{d_q \times d}, b_q \in \mathbb{R}^d, W_v \in \mathbb{R}^{d_v \times d}, b_v \in \mathbb{R}^d\) and learnable parameters, \(mod_q \in \mathbb{R}^d\) and \(mod_v \in \mathbb{R}^d\) are learnt modality encodings for video and question, respectively, and \([pos_1, ..., pos_{l+t}] \in \mathbb{R}^{d \times (l+t)}\) are fixed sinusoidal positional encodings. \(\sigma\) is a Gaussian Error Linear Unit \[31\] followed by a Layer Normalization \[9\] and \(dp\) refers to Dropout \[72\].

The multi-modal transformer is a transformer with \(N\) layers, \(h\) heads, dropout probability \(p_d\), and hidden dimension \(d_h\). The outputs of the multi-modal transformer \([Q_1, ..., Q_l, V_1, ..., V_t] \in \mathbb{R}^{d \times (l+t)}\) are contextualized representations over tokens in the question and temporal video representations. Finally, the fused video-question embedding \(f(v, q)\) is obtained as

\[
F(Q_1) = W_{vq}dp(Q_1) + b_{vq},
\]

(5)

where \(W_{vq} \in \mathbb{R}^{d \times d}, b_{vq} \in \mathbb{R}^d\) are learnable parameters and \(Q_1\) is the multi-modal contextualized embedding of the [CLS] token in the question, as shown in Figure 11.

Answer transformer. The contextualized representation of the answer, provided by the DistilBERT model \[67\], is composed of \(m\) token embeddings denoted as \(a = [a_1, ..., a_m] \in \mathbb{R}^{d_a \times m}\) where \(d_a\) is the dimension of the
Figure 12: Word clouds for our iVQA dataset illustrate a vocabulary related to the domains of cooking, hand crafting, or gardening. The frequent occurrence of location and time-specific words (behind, front, right, left, first, end, beginning) indicate the presence of the spatial and temporal context within iVQA questions.

DistilBERT embedding and \(m \) is the number of tokens in the answer. Our answer embedding \(g(a) \) is then obtained as

\[
G(a_1) = W_a a_1 + b_a,
\]

where \(W_a \in \mathbb{R}^{d_a \times d} \), \(b_a \in \mathbb{R}^d \) are learnable parameters and \(a_1 \) is the contextualized embedding of the [CLS] token in the answer, as shown in Figure 11.

C. Details of the iVQA dataset

C.1. Data Collection

The Amazon Mechanical Turk interfaces used for collecting the question and answer annotations, are shown in Figure 14. An emphasis was placed on collecting visually grounded questions about objects and scenes that could not be easily guessed without watching the video, and collecting short answers in order to maximize the chance for consensus between annotators, i.e., having multiple annotators giving exactly the same answer.

C.2. Statistical Analysis

Word clouds for questions and answers in iVQA, shown in Figure 12, demonstrate the relation of iVQA to the domains of cooking, hand crafting and gardening. These word clouds also indicate that questions in iVQA often require spatial reasoning (behind, front, right, left) and temporal understanding (first, end, left, beginning) of the video. The most frequent answer (spoon) in iVQA corresponds to 2% of all answers in the dataset. In contrast, the most frequent answers in other VideoQA datasets account for more than 9% of all answers in these datasets (we have verified this for MSRVTQI-QA, MSVD-QA and ActivityNet-QA).

As a consequence, the most frequent answer baseline is significantly lower for our iVQA dataset compared to other VideoQA datasets. Figure 13 shows the distributions of question length, answer length, clip duration and clip relative start time in the original video. Clip duration and start time distributions are almost uniform because we randomly sampled them to obtain the clips, which results in a high video content diversity. Answers are in great majority one or two words as a result of our collection procedure.

We observe that 27.0% of questions lead to a perfect consensus among the five answer annotators, 48.4% of questions lead to a consensus among at least four annotators, and 77.3% lead to a consensus among at least three annotators, while only six questions do not lead to a consensus between at least two annotators, justifying the defined accuracy metric. Additionally, 27.5% of questions have two different answers that had a consensus between at least two annotators.
Instructions:

(a) Collection interface for questions. Note that the answer provided by the question annotator is only used to ensure that the provided question follows the given instructions, but is not included in iVQA. Answers are collected separately, see Figure 14b.

Instructions:

- Watch the video excerpt and ask a question about its visual content.
- Someone that watched the video's visual content should be able to answer the question. But someone that did not watch it shouldn't be able to guess the right answer.
 - **X** "What did the man use for blending?" "Blender" (easy to guess)
 - **X** "What is the chef wearing over her shirt?" "Apron" (easy to guess)
- You should be thinking of a new question each time specific to the video and avoid asking generic questions too often.
 - **X** "What is it?" (too generic)
 - **X** "What is on the table at the end of the video?" (specific)
- The answer type must be an object, a living being or a place (not a proper noun, nor a verb, nor an adjective, nor an adverb, nor a number, nor yes, nor no).
 - **X** "It is" (paraphrase of yes)
 - **X** "Table" (object)
 - **X** "Bear" (living being)
 - **X** "Living room" (place)
- Provide a precise and brief answer (typically 1 to 3 words) that should be how most people would answer that question. For instance:
 - In the bedroom (too long) → "Bedroom"
 - She is making pancakes (too long) → "Pancakes"
 - Orange balloon (too long) → "Balloon"
- If you do not find any object, any living being or any place that you could ask question on in the video, please check the corresponding button and provide a free-type question.
- You can find a set of illustrated good and bad examples in the detailed instructions.

(b) Collection interface for answers. Five different answer annotators provide an answer annotation for each collected question.

Figure 14: Amazon Mechanical Turk interfaces for collecting questions (Figure 14a) and answers (Figure 14b) for the iVQA dataset. For readability, the videos shown in these Figures are shrunk, and only one annotation example is shown.
D. Additional experimental details

VideoQA generation. The input sequence to the answer extractor and question generation transformers are truncated and padded up to a maximum of 32 tokens. The question decoding is done with the beam search keeping track of the 4 most probable states at each level of the search tree. We have used the original captions (including stop words) from the HowTo100M dataset [60] and removed word repetitions from adjacent clips.

VideoQA model. We use the following hyperparameters: \(l = 20, t = 20, m = 10, d = 512, d_h = 2048, N = 2, H = 8, p_a = 0.1, d_q = d_a = 768, d_v = 1024 \). The video features are sampled at equally spaced timestamps, and padded to length \(t \). Sequences of question and answer tokens are truncated and padded to length \(l \) and \(m \), respectively. Attention is computed only on non-padded sequential video and question features.

VideoQA datasets. For MSRVTT-QA and MSVD-QA, we follow [42] and use a vocabulary made of the top 4000 training answers for MSRVTT-QA, and all 1852 training answers for MSVD-QA. For our iVQA dataset and ActivityNet-QA, we consider all answers that appear at least twice in the training set, resulting in 2348 answers for iVQA and 1654 answers for ActivityNet-QA.

Training. We use a cosine annealing learning rate schedule with initial values of \(5 \times 10^{-5} \) and \(1 \times 10^{-5} \) for pretraining and finetuning, respectively. For finetuning, we use the Adam optimizer with batch size of 256 and training runs for 20 epochs. The final model is selected by the best performance on the validation set.

Masked Language Modeling. For the masked language modeling objective, a token is corrupted with a probability 15\%, and replaced 80\% of the time with [MASK], 10\% of the time with the same token and 10\% of the time with a randomly sampled token. To guess which token is masked, each sequential question output \(Q_i \) of the multimodal transformer is classified in a vocabulary of 30,522 tokens, and we use a cross-entropy loss.

Pretraining on HowTo100M. For video-text cross-modal matching, we sample one video negative and one text negative per (positive) video-text pair, and use a binary cross-entropy loss. The cross-modal matching module is used to perform zero-shot VideoQA for the variant VQA-T trained on HowTo100M, by computing scores for \(f(v, [q, a]) \) for all possible answers \(a \), for each video-question pair \((v, q)\). We aggregate adjacent clips from HowTo100M to have at least 10 second clips and at least 10 narration words.

E. Additional experiments

E.1. Comparison to cross-dataset transfer

We define cross-dataset transfer as a procedure where we pretrain our VideoQA model on a VideoQA dataset and then finetune and test it on another VideoQA dataset. The training follows the procedure described for finetuning in Section 4.2. We report results for cross-dataset transfer in Table 11. Note that we do not use MSVD-QA as downstream dataset as its test set has been automatically generated with the same method [30] as MSRVTT-QA. As can be observed, our approach with pretraining on HowToVQA69M significantly outperforms cross-dataset transfer models using the previously largest VideoQA dataset (MSRVTT-QA), or the largest manually annotated VideoQA dataset (ActivityNet-QA), both for the zero-shot and finetuning settings, on all four downstream datasets. We emphasize that our dataset is generated relying on text-only annotations, while MSRVTT-QA was generated using manually annotated video descriptions and ActivityNet-QA was manually collected. These results further demonstrate the benefit of our HowToVQA69M dataset.
Table 13: Effect of our pretraining per question type on MSRVTT-QA and MSVD-QA.

Pretraining Data	Finetuning	Motion	Spatial	Temporal	Yes-No	Color	Object	Location	Number	Other
HowTo100M	✓	23.4	16.1	3.8	65.6	31.3	26.4	33.7	48.0	33.6
HowToVQA69M	✗	2.3	1.1	0.3	36.3	11.3	4.1	6.5	0.2	4.7
HowToVQA69M	✓	28.0	17.5	4.9	66.3	34.3	26.7	35.8	50.2	36.8

Table 14: Effect of our pretraining per question type on ActivityNet-QA.

E.2. Results for rare answers and per question type

Results for different answers frequencies are presented for the iVQA dataset in Section 6.4. Here, we show results for MSRVTT-QA, MSVD-QA and ActivityNet-QA datasets in Table 12. As for iVQA, we observe that our model pretrained on our HowToVQA69M dataset, after finetuning, shows the best results for quartiles corresponding to rare answers (Q3 and Q4), notably in comparison with the model trained from scratch or the model pretrained on HowTo100M. We also find that our pretrained model, in the zero-shot setting, performs similarly across the different quartiles, with the exception of ActivityNet-QA, which includes in its most common answers yes, no. Note that in order to have a consistent evaluation with other experiments, we keep the same train vocabulary at test time. This implies that a significant part of answers in the test set is considered wrong because the answer is not in the vocabulary. This represents 16% of answers in iVQA, 3% of answers in MSRVTT-QA, 6% for MSVD-QA and 19% for ActivityNet-QA. Note, however, that our joint embedding framework could allow for different vocabularies to be used at the training and test time.

We also present results per question type for MSRVTT-QA, MSVD-QA and ActivityNet-QA in Tables 13 and 14. Compared to the model trained from scratch or the model pretrained on HowTo100M, we observe consistent improvements for most categories.

E.3. Comparison between QA-T and VQA-T on different datasets.

We show in Table 15 that QA-T is a strong baseline compared to VQA-T on existing VideoQA datasets, when both are trained from scratch. However, on iVQA, VQA-T improves more over QA-T than in other datasets, as measured by absolute improvement in top-1 accuracy. This suggests that the visual modality is more important in iVQA than in other VideoQA datasets.

Table 15: Comparison of QA-T and VQA-T models trained from scratch (without pretraining) on downstream datasets.