The use of hyperimmune chicken reference sera is not appropriate for the validation of influenza pseudotype neutralization assays.

Francesca Ferrara¹, Eleonora Molesti¹, Simon Scott¹, Giovanni Cattoli², Nigel Temperton¹*

¹Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, Kent, United Kingdom
²Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy; Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Seibersdorf, Austria.

*Corresponding author: E-mail n.temperton@kent.ac.uk / Telephone +44(0)1634202957

Abstract

Pseudotype particle neutralization (pp-NT) is a next-generation serological assay employed for the sensitive study of influenza antibody responses, especially haemagglutinin stalk-directed antibodies. However, to date a validation of this assay has not been performed, and this limits its use to primarily research laboratories. To identify possible serological standards to be used in optimization and validation of the pp-NT, we have evaluated the cross-reactivity of hyperimmune chicken reference antisera in this assay. Our findings show that the cross-reactivity detected by the pp-NT assay is only in part explained by phylogenetic relationships and protein homology between the HA subtypes analysed; further studies are necessary to understand the origin of the cross-reactivity detected, and reference standards with higher specificity should be evaluated or generated de novo for future use in pp-NT.

Keywords (6 words)

Influenza, serology, standards, validation, pseudotypes, neutralization
Introduction

Serological methods, such as single radial haemolysis (SRH), haemagglutination inhibition (HI) and microneutralization (MN), are cost-effective and widely-used methodologies to monitor the circulation and the prevalence of influenza viruses, and are also employed in vaccine immunogenicity studies in human and animal populations [1]. However, these assays are subject to numerous shortcomings, especially related to variability of the reagents, their standardization between laboratories, and their ability to detect haemagglutinin (HA) stalk-directed antibodies.

Recently, the use of replication-deficient viruses in neutralization assays is being widely evaluated as a potential alternative to MN assays. For example, HA pseudotype particles (pp) harbouring the HA embedded in the viral envelope and having a lentiviral vector as backbone, have been used effectively for this purpose [2,3]. The pseudotype particle neutralization (pp-NT) assay appears to be more sensitive than other functional assays to detect the antibody response directed against the HA stalk [4]. Consequently, pp could be used to effectively study heterosubtypic antibody responses directed against the HA stalk region. pp-NT assays have been shown to correlate strongly with other classical serological assays [5-8]. Since pp are replication-defective, they offer a safe alternative to wild-type virus methods (that require Biosafety Level 3 containment), and the detection of antibody responses is not influenced by the variability of blood-based reagents as observed in other assays (i.e. red blood cells in HI). Unfortunately, the validation of pp-NT, which will permit its more extensive use in surveillance, and in pre-clinical and clinical studies, has not been undertaken to date. Validation of pp-NT will allow certifying its use in product release and stability control (if, in future, HA stalk-directed monoclonal antibodies will be licensed) and in evaluating antibody responses elicited by current and ‘next-generation universal’ influenza vaccines.

Essential for the optimization and the validation of an assay is the availability of appropriate reference materials. Appropriate reference standards are especially useful when the specificity, sensitivity, precision, and accuracy of an assay are evaluated for the first time [9] but are also essential when other assay parameters, such as dilution range or calibration curves, are established [10]. Furthermore they have an essential role to monitor assay stability and consistency over different analytical sessions (e.g. days) [11]. Reference materials are also useful when multisite validation of an assay is performed. For example the use of reference standard sera has been shown to be extremely useful to increase consistency between laboratories using HI and SRH [12].
Chicken reference antisera against all the HA subtypes are commonly generated and used for influenza virus typing in the HI assay [13,14], and thus should be investigated as possible controls and reference materials in pp-NT assays, which was the purpose of this study.

Results and Discussion

We have evaluated the neutralization activity and cross-reactivity of chicken reference antisera against a panel of pp bearing HAs of a representative strain, where possible of avian origin, for each HA subtype. Unfortunately, H6 and H13 influenza pp were not used in this study since appropriate pp bearing the HA of these two subtypes was not available.

The neutralizing titres resulting after analysis with GraphPad Prism software were elaborated using the Microsoft Excel and statistical software R to generate a ‘heat-map’ (Figure 1). Phylogenetic analysis was also used to highlight relationships between HA subtypes. The cross-reactivity heat map shows that influenza reference antisera are usually able to efficiently neutralize HA-matched pp, and minor variation in the neutralizing titres can be observed when the serum was generated against paired (same subtype but different strain) HAs. Additionally, cross-reactive responses can be detected not only when phylogenetic relationships are present between the HA of the pp tested and the HA used as antigens to generate the antisera, but also between HA and antisera that share less similarity (Figure 1).

Many studies have previously observed that chicken antisera generated using whole virus, in comparison to the ones generated through HA-expressing DNA vaccination or recombinant HA1 vaccination, present a lower specificity in HI and/or immunodot-blots: this is primarily due to the fact that antisera produced using whole virus also includes NA- and M2-directed antibodies [15,16]. However since a certain level of cross reactivity is observed also with DNA or recombinant protein vaccination, cross-reactive HA-directed antibodies are most probably involved [16].

The fact that reference antisera show high neutralizing responses and cross-reactivity between different strains/subtypes could be problematic not only for HI typing, but especially for pp-NT assays. In fact, in the dilution range analysed the pp-NT assay cannot discriminate between two pp. Preparation of the standard material through dilution of the commonly used reference standard, or the use of monoclonal antibody mixtures (with or without the presence of a serum matrix) showing high specificity could be more effective approaches to establish reference materials to be used to validate, standardise, and control the pp-NT assay. To better understand which factors are
underlining the cross-reactivity observed we have evaluated the percentage amino acid identity between the HAs present on the pp, and the HAs used for antisera generation. A percentage-identity heat map was then designed (Figure 2). This map shows a similar pattern to the cross-reactivity map (Figure 1). Since it is difficult to highlight all the differences and similarities by eye, statistical analysis was performed to see whether any concordance or association between the maps was present. Kendall τ test shows that there is low association between percentage identity and neutralization titres ($\tau = 0.269$, $p \leq 2.22 \times 10^{-16}$). This means that the percentage of amino acid identity is a good approach to evaluate the cross-reactivity response, but to understand and explain the cross-reactivity detected, other approaches should be used. Recently antigenic cartography has been used to evaluate the antigenic evolution/drift of different influenza viruses and to help vaccine strain selection [17,18]. This methodology could be used to analyse the data presented here, and should permit a representation of the antigenic interplays between different pp. In the absence of appropriate controls and presence of high cross-reactivity responses, it will be difficult to assess the specificity of the pp-NT assay. Other parameters should be evaluated to understand if factors unrelated with the sera antibody content could interfere with the pp-NT assay. For example the presence of virus-attachment inhibitors in the sera and serum treatments (e.g. heat-inactivation, pre-treatment with receptor-destroying enzymes) can be assessed to optimise pp-NT assay conditions and to reduce non-specific neutralization if present. Also the evaluation of possible haemolysis or other contaminants (e.g. lipids) of the serum samples is a factor that needs to be taken into consideration when the assay is optimised and validated [9]. To conclude, the results presented here show that the high sensitivity and the propensity of the pp-NT assay to detect cross-reactive responses does not permit the use of current chicken reference standard antisera as reference materials to validate the assay. Until more appropriate standards (e.g. monoclonal antibody mixtures) will be developed to further progress optimisation and validation of the pp-NT assay the routinely used reference standards should be used as positive neutralization controls only in experimental research settings.
Figure 1: Cross-reactivity map of pp and reference sera based on IC$_{50}$
Figure 2: Cross-reactivity map of pp and reference sera based on percentage of amino acid identity.
References

[1] Trombetta C, Perini D, Mather S, Temperton N, Montomoli E. Overview of Serological Techniques for Influenza Vaccine Evaluation: Past, Present and Future. Vaccines 2014;2:707–34. doi:10.3390/vaccines2040707.

[2] Carnell GW, Ferrara F, Grehan K, Thompson CP, Temperton NJ. Pseudotype-based neutralization assays for influenza: a systematic analysis. Front Immunol 2015;6:161. doi:10.3389/fimmu.2015.00161.

[3] Ferrara F, Molesti E, Temperton N. The application of pseudotypes to influenza pandemic preparedness. Future Virology 2015;10:731–49. doi:10.2217/fvimu.15.36.

[4] Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 2011;333:850–6. doi:10.1126/science.1205669.

[5] Garcia J-M, Lagarde N, Ma ESK, de Jong MD, Peiris JSM. Optimization and evaluation of an influenza A (H5) pseudotyped lentiviral particle-based serological assay. Journal of Virological Methods: the Official Publication of the Pan American Society for Clinical Virology 2010;47:29–33. doi:10.1016/j.jcv.2009.10.009.

[6] Wang W, Xie H, Ye Z, Vassell R, Weiss CD. Characterization of lentiviral pseudotypes with influenza H5N1 hemagglutinin and their performance in neutralization assays. Journal of Virological Methods 2010;165:305–10. doi:10.1016/j.jviromet.2010.02.009.

[7] Alberini I, Del Tordello E, Fasolo A, Temperton NJ, Galli G, Gentile C, et al. Pseudoparticle neutralization is a reliable assay to measure immunity and cross-reactivity to H5N1 influenza viruses. Vaccine 2009;27:5998–6003. doi:10.1016/j.vaccine.2009.07.079.

[8] Temperton NJ, Hoschler K, Major D, Nicolson C, Manvell R, Hien VM, et al. A sensitive retroviral pseudotype assay for influenza H5N1-neutralizing antibodies. Influenza Resp Viruses 2007;1:105–12. doi:10.1111/j.1750-2659.2007.00016.x.

[9] Jacobson RH. Validation of serological assays for diagnosis of infectious diseases. Revue Scientifique Et Technique (International Office of Epizootics) 1998;17:469–526.

[10] The United States Pharmacopeial Convention. <1033> Biological Assay Validation. 2010.

[11] Gray JJ, Wreghitt TG, McKee TA, McIntyre P, Roth CE, Smith DJ, et al. Internal quality assurance in a clinical virology laboratory. II. Internal quality control. J Clin Pathol 1995;48:198–202.

[12] Wood JM, Gaines-Das RE, Taylor J, Chakraverty P. Comparison of influenza serological techniques by international collaborative study. Vaccine 1994;12:167–74.

[13] World Organization for Animal Health. AVIAN INFLUENZA. 2012.

[14] Dwyer DE, Smith DW, Catton MG, Barr IG. Laboratory diagnosis of human seasonal and pandemic influenza virus infection. Med J Aust 2006;185:S48–53.

[15] Shahsavandi S, Salmanian A-H, Ghorashi SA, Masoudi S, Fotouhi F, Ebrahimi MM. Specific subtyping of influenza A virus using a recombinant hemagglutinin protein expressed in baculovirus. Mol Biol Rep 2011;38:3293–8. doi:10.1007/s11033-010-0434-2.

[16] Lee C-W, Senne DA, Suarez DL. Development and application of reference antisera against 15 hemagglutinin subtypes of influenza virus by DNA vaccination of chickens. Clin Vaccine Immunol 2006;13:395–402. doi:10.1128/CVI.13.3.395-402.2006.

[17] Fouchier RAM, Smith DJ. Use of antigenic cartography in vaccine seed strain selection. Avian Dis 2010;54:220–3.

[18] de Jong JC, Smith DJ, Lapedes AS, Donatelli I, Campitelli L, Barigazzi G, et al. Antigenic and Genetic Evolution of Swine Influenza A (H3N2) Viruses in Europe. Journal of Virology 2007;81:4315–22. doi:10.1128/JVI.02458-06.

[19] Ferrara F, Molesti E, Böttcher-Friebertshäuser E, Cattoli G, Corti D, Scott SD, et al. The human Transmembrane Protease Serine 2 is necessary for the production of Group 2 influenza A virus pseudotypes. J Mol Genet Med 2012;7:309–14.

[20] Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research 2004;32:1792–7. doi:10.1093/nar/gkh340.

[21] Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009;25:1189–91. doi:10.1093/bioinformatics/btp033.

[22] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–9. doi:10.1093/molbev/msr121.

Materials and Methods

Reference sera

The OIE avian reference hyperimmune sera used for these studies and associated HI titres were provided by Dr. Giovanni Cattoli when he was at the Istituto Zooprofilattico delle Venezie, OIE, Legnaro, Padua, Italy and are reported in Table 1.

Table 1: OIE avian influenza reference antisera for HI assay, Agar Gel Immunodiffusion test, and Agar Gel Precipitation test

Antigen strain name	Subtype	HA accession number	HI titre
A/duck/Italy/1447/2005	H1N1	HF563054.1	1:512
A/duck/Germany/1215/1973	H2N3	CY014710.1	1:512
A/psittacine/Italy/2873/2000	H3N8	GQ247846.1*	1:256
A/cockatoo/England/1972	H4N8	GQ247847.1*	1:128
A/turkey/Canada/1965	H6N2	GQ247851.1*	1:256
A/turkey/Ontario/6118/1968	H8N4	CY014659.1	1:512
A/mallard/Italy/3817-34/2005	H9N2	Not Applicable	1:256
A/ostrich/South Africa/2001	H10N1	GQ247860.1*	1:512
A/duck/Memphis/546/1974	H11N9	AB292779.1	1:1024
A/duck/Alberta/60/1976	H12N5	CY130078.1	1:128
A/gull/Maryland/704/1977	H13N6	D90308.1	1:1024
A/mallard/Gurjev/263/1982	H14N5	M35997	1:512
A/shearwater/Australia/2576/1979**	H15N9	CY130102.1	1:2048
A/gull/Denmark/68110/2002	H16N3	GQ247872.1*	1:256

*Partial sequence

**Also known as A/shearwater/West Australia/2576/1979

Reference avian sera against H5 and H7 influenza strains were provided by the Animal and Plant Health Agency (APHA, previously Animal Health and Veterinary Laboratories Agency) and are reported in Table 2.
Antigen strain name	Subtype	HA accession number	HI titre
A/chicken/Scotland/1959	H5N1	CY015081.1	Not available
A/African starling/England/983/1979	H7N1	AF202232.1	Not available
A/chicken/Wales/1306/2007	H7N2	EF675618.1	Not available
A/chicken/England/4054/2006	H7N3	EF467826.1	Not available
A/England/268/1996	H7N7	AF028020.1	Not available
A/turkey/England/647/1977	H7N7	AF202247.1	Not available

Pseudotype particles and pseudotype particle neutralization assays

Pseudotype particles were generated as described elsewhere [19] using HAs reported in Table 3.

Plasmid backbone	HA	HA accession number
pI.18	A/duck/Italy/1447/2005 H1	HF563054.1
pI.18	A/Korea/426/1968 H2	CY125846.1
phCMV1	A/duck/Germany/1215/1973 H2	CY014710.1
pI.18	A/Udorn/307/1972 H3	DQ508929.1
phCMV1	A/duck/Czechoslovakia/1956 H4	D90302.1
pI.18	A/Vietnam/1194/2004 H5	ABP51976.1
pI.18	A/chicken/Italy/1082/1999 H7	ABR37396.1
phCMV1	A/turkey/Ontario/6118/1968 H8	CY014659.1
pI.18	A/Hong Kong/1073/1999 H9	AJ404626.1
phCMV1	A/chicken/Germany/N49 H10	CY014671.1
phCMV1	A/duck/Memphis/546/1974 H11	AB292779.1
phCMV1	A/duck/Alberta/60/1976 H12	CY130078.1
phCMV1	A/gull/Maryland/704/1977 H13	D90308.1
phCMV1	A/mallard/Astrakhan/263/1982 H14	AB289335.1
phCMV1	A/shearwater/West Australia/2576/1979 H15	CY130102.1
phCMV1	A/black-headed gull/Sweden/2/1999 H16	AY684888.1

The pp-NT assays were performed as described elsewhere [19], using 5 µl of each serum sample (starting dilution 1:40) and using a pp input of 1×10^6 RLU/well. IC_{50} neutralization titres were calculated using GraphPad Prism® expressed as dilution factor; then for further statistical analysis they were categorised into 17 groups according to the dilution tested and as reported in Table 4.
Table 4: Category of IC₅₀ used for statistics

Group	IC₅₀ values	Dilution Factor
0	<35	<40
1	35-45	40
2	45-75	40-80
3	75-85	80
4	85-150	80-160
5	150-170	160
6	170-310	160-320
7	310-330	320
8	330-630	320-640
9	630-670	640
10	670-1270	640-1280
11	1270-1290	1280
12	1290-2550	1280-2560
13	2550-2570	2560
14	2570-5100	2560-5120
15	5100-5140	5120
16	>5140	>5120

A cross-reactivity map (pp versus reference antisera), completed using the neutralization groups for further statistical analysis, was designed in a Microsoft® Excel 2011 spreadsheet and then saved as a comma-separated value (csv) file.

Bioinformatic analysis

Percentage identity between HA amino acid sequences of pp and reference sera antigens were calculated to check if cross-reactivity could be explained by overall sequence similarity. Amino acid sequences of the HA used in neutralization assays, and used to generate the reference antisera, were downloaded from the Influenza Virus Resource, the Influenza Research database and the Global Initiative on Sharing Avian Influenza Data (GISAID) Epi-Flu™ platform. The accession numbers of the HAs used in pp-NT assays are reported in Table 3; HA accession numbers of the reference antisera are reported in Tables 1 and 2. For A/mallard/Italy/3817-34/2005 (H9N2) the HA sequence was not available at the time of analysis and therefore the pp sequence was used as reference. Additionally, some of the HA sequences in the databases were incomplete, which complicates the analysis. To minimize this, it was decided to evaluate the percentage identity only for the amino acids that constitute the extracellular part of the HA (amino acids from 24 to 547 - H3 numbering), which were available for all HAs used. All sequences were aligned using MUSCLE algorithm [20] and Jalview software [21]. Subsequently the sequences were trimmed of their N-Terminal signal sequence, the transmembrane region, and the cytoplasmic tail. Percentage identities between amino acid sequences were calculated by pair-wise alignments using Jalview,
before being reported in a Microsoft® Excel 2011 spreadsheet and saved as a csv file. The phylogenetic trees shown alongside the cross-reactivity and the percentage identity tables were generated using Molecular Evolutionary Genetics Analysis (MEGA) software [22]: the aligned sequences were imported and trees derived using Unweighted Pair Group Method with Arithmetic mean (UPGMA), the simplest method of tree construction based on pairwise evolutionary distances. The trees generated were manually modified using MEGA and FigTree (http://tree.bio.ed.ac.uk/software/figtree/).

Statistical analysis

Cross-reactivity tables for the IC₅₀ neutralization titres, expressed as group, and for percentage amino acid identity, were completed using Microsoft® Excel 2011. The R statistical software was then used to analyse the data and design a ‘heat-map’ which colour codes the neutralization titres and the percentage identity. These codes are based on the use of the software package “RColorBrewer”, which permits building of a personalised colour palette, and “gplots”, a package that contains functions for the graphical interface. The “heatmap.2” function was eventually used to assign to each IC₅₀ group or percentage identity value a colour. Kendall τ (tau) statistics (“Kendall” package) was also run using R software to check if association/correlation between measured IC₅₀ titres and percentage identity was present.