The Shape-Memory Effect of Hindered Phenol (AO-80)/Acrylic Rubber (ACM) Composites with Tunable Transition Temperature

Shi-kai Hu 1,2, Si Chen 1, Xiu-ying Zhao 1,*, Ming-ming Guo 1,2 and Li-qun Zhang 1

1 Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China; aircs123@163.com (S.-k.H.); guomm57@swu.edu.cn (M.-m.G.); zhanglq@mail.buct.edu.cn (L.-q.Z.)
2 SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
* Correspondence: zhaoxy@mail.buct.edu.cn; Tel.: +86-10-6443-4860

Received: 31 October 2018; Accepted: 26 November 2018; Published: 4 December 2018

Abstract: To broaden the types and scope of use of shape-memory polymers (SMPs), we added the hindered phenol 3,9-bis[1,1-dimethyl-2-{b-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy}ethyl]-2,4,8,10-tetraoxaspiro-[5,5]-undecane (AO-80), which comprises small organic molecules, to acrylic rubber (ACM) to form a series of AO-80/ACM rubber composites. The structural, thermal, mechanical property, and shape-memory properties of the AO-80/ACM rubber composites were investigated. We identified the formation of intra-molecular hydrogen bonding between –OH of AO-80 and the carbonyl groups and the ether groups of ACM molecules. The amount of AO-80 used can be adjusted to tailor the transition temperature. AO-80/ACM rubber composites showed excellent shape recovery and fixity. The approach for adjusting the transition temperature of AO-80/ACM rubber composites provides remarkable ideas for the design and preparation of new SMPs.

Keywords: acrylic rubber; shape-memory polymer; hindered phenol; hydrogen bonding

1. Introduction

Shape-memory materials (SMMs) can change from one pre-determined shape to another in response to a certain stimulus [1,2]. Research on shape-memory polymers (SMPs) can be fundamental and applied. SMPs possess many advantages over their well-investigated metallic counterparts, shape-memory alloys; these advantages include excellent processability, light weight, and notable flexibility in terms of material design [3–5]; SMP applications include medical devices, actuators, sensors, artificial muscles, switches, smart textiles, and self-deployable structures [4–7]. SMPs can return into an original shape upon the application of stimuli, such as temperature [8–10], humidity [11,12], light [13–16], electricity [8,17–20], pH [15,21–24], and irradiation. This memory phenomenon is because a polymer network has reversible and fixed phases. The reversible phases can be shaped under certain conditions. Reversible phases use ionic bond [1,25], vitrification [25,26], reversible crystallization [27], hydrogen bond [28,29], or supramolecular interactions [30,31] to maintain this metastable shape until an activation energy is used to facilitate a return to the original shape. The fixed phases allow deformation but hold the relative location of the chains. Fixed phases include physical and covalent cross-links, such as crystalline or glassy domains in polymers, or supramolecular interactions [32]. For thermally induced SMPs, when the deformation of SMP is above its switch transition temperature \(T_{\text{trans}} \) and then cooled below \(T_{\text{trans}} \), most internal stress can be stored in cross-linking structure; by heating the SMP above its \(T_{\text{trans}} \), the SMP recovers its original shape by releasing the internal stress [33,34]. When reheated above \(T_{\text{trans}} \) without stress, the cross-linking phase assumes its permanent shape. \(T_{\text{trans}} \) can either be the glass transition
temperature (T_g) or melting temperature (T_m) of polymers. In general, the temperature province of T_{trans} of current SMMs reaches above room temperature. However, in specific conditions, such as deep-sea and polar region explorations, T_{trans} of SMMs should be lower than room temperature and can be adjusted and controlled by specific methods. A critical parameter for SMPs lies in its shape memory T_{trans}. For an amorphous SMP polymer, it is important to develop new methods to tailor its T_g, which corresponds to its shape memory T_{trans}. Zhao et al. created a nano- or molecule-scale-hindered phenol and polar rubber compound. Their research indicated that T_g of the developed material could be tailored by changing the kind and dosage of small organic molecule-hindered phenol [35,36]. This phenomenon was attributed to hydrogen bonding between hindered phenol 3,9-bis[1,1-dimethyl-2-[b-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]ethyl]-2,4,8,10-tetraoxaspiro-[5,5]-undecane (AO-80) and polar rubber. Such interactions will result in the molecular-level dispersion of AO-80 in CPE and rubber matrix and enhancement of intermolecular friction, which will further increase T_g. It is well known that typical epoxy-based materials which have been applied extensively in coatings, adhesives, and matrix material for structural composites are rigid with relatively low failure strains. There are many references regarding shape-memory epoxy composites that all have good shape memory with a high shape fixity (R_f) ratio and high shape recovery ratio (R_r), but these composites all have a short elongation at break [37–42]. In this study, AO-80 had been studied to prepare AO-80/acrylic rubber (ACM) nanocomposites with high failure strains compared to shape-memory epoxy composites. The structure of AO-80 is shown in Figure 1. AO-80/ACM rubber nanocomposites possibly possess remarkable filler/matrix interfacial properties because the AO-80 molecule features numerous polar functional groups (hydroxyl and carbonyl) that can form strong intermolecular interactions with ACM. An elastomer will exhibit shape-memory functionality when the material can be stabilized in the deformed state in a temperature range that is relevant for particular applications. Similar to normal polymers, SMPs also possess 3D molecular network-like architectures. ACM can exhibit 3D network structures after crosslinking. These cross-linked structures ensure that the polymer can maintain a stable shape at the macroscopic level by enabling the original and recovered shapes. This system also features a T_g below the room temperature, and temperature can be adjusted and controlled within a particular scope by incorporating small organic molecules to increase T_g [35,36], which will broaden the kind and scope of use of SMPs. In this study, we designed a series of AO-80/ACM rubber composites with high failure strains, the T_{trans} of which can be tailored by adding a dosage of small organic molecule-hindered phenol. No study or similar work has investigated the shape-memory effect of AO-80/ACM rubber composites, thereby broadening the list of SMPs with excellent shape-memory properties.

Figure 1. Chemical structure of hindered phenol 3,9-bis[1,1-dimethyl-2-[b-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]ethyl]-2,4,8,10-tetraoxaspiro-[5,5]-undecane (AO-80).

2. Materials and Methods

2.1. Materials

ACM (AR-801) was provided by Tohpe Corp (Sakai, Japan). AO-80 was obtained from Asahi Denka (Tokyo, Japan). Other ingredients and chemicals were obtained from China and were used as received.

2.2. Sample Preparations

AO-80/ACM rubber composites were obtained as follows: (1) After ACM was kneaded for 3 min, AO-80 (without previous treatment) was added into ACM. (2) After these mixtures were kneaded
for 5 min, the AO-80/ACM mixtures were blended with compounding and crosslinking additives, including 5.0 phr of zinc oxide (CAS No: 1314-13-2), 1.0 phr of stearic acid (CAS No: 57-11-4), 0.5 phr of potassium stearate (CAS No: 593-29-3), 4 phr of sodium stearate (CAS No: 822-16-2), and 0.5 phr of sulfur (CAS No: 7704-34-9). The mixtures were then kneaded for 10 min. The mixtures of AO-80/ACM were kept for at least 24 h. (3) Finally, the mixtures of AO-80/ACM were set at 180 °C and 15 MPa for 20 min and then naturally cooled down to prepare AO-80/ACM rubber composites.

2.3. Methods

The structure, shape-memory properties, and mechanical and thermal properties of AO-80/ACM rubber composites were systematically evaluated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier-transform infrared (FT-IR) spectroscopy. The DSC curves were acquired from −60 °C to 150 °C at a rate of 10 °C/min with a STAR® system calorimeter (Mettler–Toledo Co., Zurich, Switzerland). FT-IR spectra were acquired by using a Spectra-Tech ATR attachment to scan the samples.

The static mechanical properties of AO-80/ACM rubber composites were determined according to ASTM D638 by using a CMT4104 Electrical Tensile Tester (SANS Testing Machine Co., ShenZhen, China) at a rate of 500 mm/min at room temperature. The strip dimensions for testing were 20 mm in length, 6 mm in width, and 2 mm in thickness. Hardness was tested according to ASTM D2240-2015.

The shape-memory effect analysis of AO-80/ACM rubber composites was investigated on the DMA Q800 (TA Instruments, New Castle, DE, USA) using controlled-force mode with rectangular samples (6 mm in width and 2 mm in thickness). Prior to the investigation, the temperature was adjusted to an equilibration at \(T_{\text{trans}}+20\) °C for 10 min. In step 1 (deformation), the sample was stretched to a designed value (\(\varepsilon = 55\%\), \(\varepsilon = 100\%\), \(\varepsilon = 130\%\)) by ramping the force from a preload value of 0.005 N at a rate of 0.5 N/min. In step 2 (cooling), the specimen was cooled to fix the deformed sample under constant force at the rate of 3 °C/min to \(T_{\text{trans}}-20\) °C. In step 3 (unloading and fixing), the force of the specimen was unloaded at a rate of 0.5 N/min to a preload value (0.005 N). Then, an equilibration at \(T_{\text{trans}}-20\) °C for 10 min to ensure shape fixing was performed. In the final step (recovery), the specimen was reheated to \(T_{\text{trans}}+60\) °C at the rate of 3 °C/min [37]. All experiments were carried out three times successively and the average results between second and third cycles are shown in the paper. From the curves, the shape recovery ratio (\(R_r\)) and the shape fixity ratio (\(R_f\)) for the shape-memory effect were computed as follows:

\[
\text{Shape recovery} : R_r(N) = \frac{\varepsilon_m - \varepsilon_p(N)}{\varepsilon_m - \varepsilon_p(N-1)} \times 100\% \tag{1}
\]

\[
\text{Shape fixity} : R_f(N) = \frac{\varepsilon_u(N)}{\varepsilon_m(N)} \times 100\% \tag{2}
\]

where \(\varepsilon_m, \varepsilon_u\) and \(\varepsilon_p\) are strains after the step of cooling, unloading, and recovery process, respectively. \(N\) refers to a consecutive number in a cyclic shape-memory measurement.

Dynamical mechanical properties were investigated on a DMA (Rheometric Scientific Co., Piscataway, NJ, USA). The strip dimensions for testing were 20 mm in length, 6 mm in width, and 2 mm in thickness. The curves of \(E'-T\) were acquired from −60 °C to 150 °C at a rate of 3 °C/min and with a frequency of 1 Hz at an amplitude of \(\varepsilon = 0.3\%\).

Shape recovery observations of the AO-80/ACM rubber composites were carried out in water. The composites were cut into rectangular strips with dimensions of 100.0 mm × 10.0 mm × 2.0 mm. The rectangular strips were fixed in a temporary shape at \(T_{\text{high}}\) and then cooled down to \(T_{\text{low}}\). The rectangular strips in temporary shape were placed in a water bath at \(T_{\text{high}}\) while recording images of shape recovery using a video camera at a rate of 20 frames/s. Among the aforementioned procedure/conditions, \(T_{\text{high}}\) was equal to \(T_{\text{trans}}+20\) °C, and \(T_{\text{low}}\) was equal to \(T_{\text{trans}}-20\) °C.
3. Results

3.1. T\textsubscript{g} of AO-80/ACM Rubber Composites

Figure 2 shows that the neat ACM featured a T\textsubscript{g} of approximately −11 °C. Compared with the neat ACM, AO-80/ACM composites showed a T\textsubscript{g} between those of neat ACM and quenched AO-80(40.9)[36]. T\textsubscript{g} of AO-80/ACM rubber composites shifted from −11 °C to 10 °C when the dosage of AO-80 was added from zero phr to one hundred phr. The DSC curves of the composites showed neither T\textsubscript{g} peak nor melting of AO-80[36,43], which suggest that dispersion of AO-80 in ACM was at the molecular level by blending, and AO-80/ACM rubber composites were successfully prepared as expected. Strong intermolecular interactions were formed between AO-80 molecules and polar functional groups (ester and ether groups) of ACM. Hydrogen bonding between ACM and AO-80 are analyzed later. With both polar molecules, intermolecular interactions significantly hindered the slide of ACM chain and increased T\textsubscript{g} of ACM composites.

![Figure 2. DSC curves of AO-80/acrylic rubber (ACM) rubber composites.](image)

3.2. FT-IR of AO-80/ACM Rubber Composites

Interactions between different functional groups can be investigated through molecular dynamics simulation and FT-IR[44,45]. Figure 3 shows the FT-IR/ATR spectra of neat ACM and AO-80/ACM rubber composites. Figure 3a shows that the FT-IR/ATR spectra of all AO-80/ACM rubber composites indicate significantly wide peaks at 1135 cm−1 to 1195 cm−1, which were assigned to C-O-C bending vibration and symmetric and antisymmetric stretching vibrations. The peak position gradually shifted to a higher wave number from 1158.5 cm−1 to 1163 cm−1 when the dosage of AO-80 was added from zero phr to one hundred phr, determining that -O- of C-O-C can bond with-OH of AO-80. Figure 3b shows the composition dependence of FT-IR spectra for the –C=O stretching regions of AO-80/ACM rubber composites. As AO-80 content increased, the –C=O peak position shifted to a higher wave number from 1730.0 cm−1 to 1732.0 cm−1 when the dosage of AO-80 was added from zero phr to one hundred phr. Studies reported that hydrogen-bonded vibration will present a frequency shift[35,36]. Figure 3c shows the –OH stretching regions of AO-80/ACM rubber composites. The position of–OH peak shifted to a lower wave number from 3555.1 cm−1 to 3498.7 cm−1 when the dosage of AO-80 was added from zero phr to one hundred phr. The hydrogen bonding between carbonyl and ether groups of segments of ACM and -OH groups of AO-80 was observed. The total frequency shift as a measure of the strength of hydrogen bonding is generally accepted[46–48]. Thus, these results indicate that as the dosage of AO-80 increased, the strength of the hydrogen bonding among functional groups between ACM and AO-80 improved. The result corroborates that the T\textsubscript{g} of AO-80/ACM rubber composites increased with the dosage of AO-80, increasing because of hydrogen bonding. Figure 4 shows the possible hydrogen bonding of AO-80/ACM rubber composites.
Figure 3. FT-IR spectra acquired at: (a) 1135 cm\(^{-1}\) to 1195 cm\(^{-1}\); (b) 1710 cm\(^{-1}\) to 1745 cm\(^{-1}\); and (c) 3200 cm\(^{-1}\) to 3600 cm\(^{-1}\) region for AO-80/ACM rubber composites.
3.3. Static Mechanical Properties of AO-80/ACM Rubber Composites

The results of the tensile testing of neat ACM and AO-80/ACM rubber composites are shown in Figure 5 and the acquired data is summarized in Table 1. The elongation and tensile strength at break of the neat ACM were 210% and 1.47 MPa, respectively. All of the AO-80/ACM rubber composites with a content of AO-80 above forty phr had much longer elongation and higher tensile strength at break than ACM. This was because AO-80 had a reinforcement effect when AO-80 was added over 40 phr and the strength of hydrogen bonding among functional groups between ACM and AO-80 was improved when the AO-80 content was added increasingly.

Figure 4. Possible hydrogen bond between AO-80 and ACM.

Figure 5. Stress-strain curves of ACM and AO-80/ACM rubber composites.
Table 1. Mechanical properties of AO-80/ACM rubber composites.

Properties	Loadings of AO-80/phr					
	0	20	40	60	80	100
Hardness (Shore A)	41 ± 0	48 ± 0	68 ± 0	78 ± 0	93 ± 0	95 ± 0
Tensile strength (MPa)	1.5 ± 0.2	1.9 ± 0.1	4.0 ± 0.2	7.7 ± 0.1	8.2 ± 0.1	9.2 ± 0.2
Elongation at break (%)	210 ± 9	248 ± 11	295 ± 12	336 ± 8	369 ± 8	377 ± 5

3.4. Shape-Memory Effect of AO-80/ACM Rubber Composite

Figure 6 depicts the 3D ε-T-σ curves of various compositions for AO-80/ACM rubber composites. The results showed that the samples were generally further deformed because of loading during the cooling/fixed step after deformation, and the T_g of AO-80/ACM rubber composites increased with an increasing dosage of AO-80; in other words, the T_{trans} of AO-80/ACM rubber composites also increased with increasing AO-80. All samples exhibited excellent shape recovery, as shown in Figure 6. All the samples presented a high shape fixing ratio and recovery ratio when they were stretched to a given strain (100%). R_r and R_f were both above 99%. Figure 7 plots the 3D ε-T-σ curves of five cycles for AO-80/ACM (40/100) rubber composite. The 3D ε-T-σ curves of AO-80/ACM (40/100) rubber composites were similar with different cycles. Different cycles all showed high shape fixing and recovery rates. The results showed the repeatability of AO-80/ACM rubber composites as shape-memory materials were excellent. The excellent repeatability of AO-80/ACM rubber composites was due to good elasticity of samples. Figure 8 plots the 3D ε-T-σ curves of different strains (deformation) for AO-80/ACM (60/100) rubber composite. All the diagrams show high shape fixing and recovery ratio when the given strains were 55%, 100%, and 130%. R_r reached above 99%, and R_f was above 99%. The results show that the range of deformation for the AO-80/ACM rubber composites as shape-memory materials is broad, which is due to high elongation at break of AO-80/ACM rubber composites. Figure 9 displays the R_r-T curves of AO-80/ACM rubber composites with various compositions. A significant portion of prestrain was recovered in all samples within the temperature range of $T_{10} - T_{90}$. With increasing AO-80, the recovery temperature, T_{10} ($R_r = 10\%$), T_{50} ($R_r = 50\%$), T_{90} ($R_r = 90\%$) increased, which was due to intermolecular interactions significantly hindering the slide of ACM chain and increasing the T_g (T_{trans}) of AO-80/ACM rubber composites. Figures 6–9 show that AO-80/ACM rubber composites exhibit excellent shape-memory behavior.

The possible molecular mechanism of AO-80/ACM rubber composites is that AO-80/ACM rubber composites consist of molecular switches that are temperature-sensitive netpoints. The permanent shape in AO-80/ACM rubber composites was determined by netpoints that are cross-linked by the cross-linking agent. The temporary shape was fixed by the vitrification of AO-80/ACM rubber composites. Samples can be deformed to a temporary shape above $T_{\text{trans}} + 20 ^\circC$, and the shape can be fixed at $T_{\text{trans}} - 20 ^\circC$ under stress. When heated above $T_{\text{trans}} + 60 ^\circC$ without stress, the specimen recovered its original shape because of the netpoints.
Figure 6. 3D ε-T-σ curve of various compositions for AO-80/ACM rubber composites.

Figure 7. 3D ε-T-σ curve of five cycles for AO-80/ACM (40/100) rubber composite.
Figure 8. 3D ε-T-σ curves of different strains (deformation) for AO-80/ACM (60/100) rubber composite.

Figure 9. R_r–T curves of AO-80/ACM rubber composites.

Figure 10 shows the shape-memory recovery of AO-80/ACM (100/100) rubber composite. After placing the components in water at 20 °C, which is higher than \(T_g \), they gradually recovered their original shape (Figure 10, \(t = 9 \text{ s–5 min} \)). The results indicate that AO-80/ACM rubber composites exert shape-memory effects.
Figure 10. Shape recovery of AO-80/ACM rubber composites from a spiral-shaped temporary shape to stretched strip in water at 20 °C, which is higher than T_g.

3.5. Dynamic Mechanical Properties of AO-80/ACM Rubber Composites

Dynamic mechanical properties of AO-80/ACM rubber composites are shown in Figure 11. All curves have only one transition, and the curves moved toward higher temperatures with an increasing dosage of AO-80. The E' values of the AO-80/ACM rubber composites were similar in the glassy regions, whereas the E' values in the rubbery regions decreased with an increasing dosage of AO-80. This was because the E' values of AO-80 were similar to that of ACM matrix; therefore the E' values of AO-80/ACM rubber composites were similar in the glassy state. When AO-80/ACM rubber composites were in the rubbery state, temperature was higher than the T_g of AO-80 (40.9°C) [44], the AO-80 acted as a plasticizer after becoming soft, therefore the E' values of AO-80/ACM rubber composites decreased. In AO-80/ACM rubber composites, all specimens showed a difference of approximately three orders of magnitude of AO-80/ACM rubber composites, which is responsible for the good recovery ratio and good shape fixity ratio for all specimens.

Figure 11. E'–T curves of AO-80/ACM rubber composites.

4. Conclusions

In this work, AO-80/ACM rubber composites were prepared. AO-80 has been successfully used to tailor T_{trans} and T_g of AO-80/ACM rubber composites became higher with the increment in AO-80. The formation of hydrogen bonding between carbonyl and ether groups of ACM molecules and the -OH of AO-80 is responsible for the increase in T_g. Considering that T_{trans} of ACM and AO-80/ACM rubber composites was related to T_g, the T_{trans} of AO-80/ACM rubber composites shifted from -11 °C to 10 °C when the dosage of AO-80 was added from zero phr to one hundred phr. In shape-memory experiments, the composites presented a shape-memory effect, and T_{10}, T_{50}, and T_{90} increased with
Shape memory can be maintained at a wide deformation range and has good repeatability. All memory tests led to the conclusion that AO-80/ACM rubber composites feature excellent shape behavior. R_f and R_r of AO-80/ACM rubber composites were higher than 99% and 99%, respectively. The aforementioned approaches of tuning the transition temperature of developed composites can be potentially applied to other polymer systems.

Author Contributions: X.-y.Z. conceived and designed the experiments; S.-k.H. and S.C. performed the experiments; L.-q.Z. analyzed the data; M.-m.G. contributed reagents/materials/analysis tools; S.-k.H. wrote the paper.

Funding: This research was funded by [National Natural Science Foundation of China] grant number [51103006 and 51320105012].

Acknowledgments: We are thankful to Bao-chun Guo from the South China University of Technology and Wei-yu Cao from Beijing University of Chemical Technology for measurement of shape memory properties.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Weiss, R.A.; Izzo, E.; Mandelbaum, S. New Design of Shape Memory Polymers: Mixtures of an Elastomeric Ionomer and Low Molar Mass Fatty Acids and Their Salts. *Macromolecules* 2008, 41, 2978–2980. [CrossRef]
2. Lendlein, A.; Kelch, S. Shape-Memory Polymers. *Angew. Chem. Int. Ed.* 2002, 41, 2034–2057. [CrossRef]
3. Sun, L.; Huang, W.M.; Ding, Z.; Zhao, Y.; Wang, C.C.; Purnawali, H.; Tang, C. Stimulus-responsive shape memory materials: A review. *Mater. Des.* 2012, 33, 577–640. [CrossRef]
4. Leng, J.S.; Lan, X.; Liu, Y.L.; Du, S.Y. Shape-memory polymers and their composites: Stimulus methods and applications. *Prog. Mater. Sci.* 2011, 56, 1077–1135. [CrossRef]
5. Lendlein, A.; Jiang, H.Y.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. *Nature* 2005, 434, 879–882. [CrossRef] [PubMed]
6. Fabrizio, Q.; Loredana, S.; Anna, S.E. Shape memory epoxy foams for space applications. *Mater. Lett.* 2012, 69, 20–23. [CrossRef]
7. Lendlein, A.; Behl, M.; Hiebl, B.; Wischke, C. Shape-memory polymers as a technology platform for biomedical applications. *Expert Rev. Med. Devices* 2010, 7, 357–379. [CrossRef]
8. Liu, Y.P.; Gall, K.; Dunn, M.L.; McCulskey, P. Thermomechanics of shape memory polymer nanocomposites. *Mech. Mater.* 2004, 36, 929–940. [CrossRef]
9. Squeo, E.A.; Quadrini, F. Shape memory epoxy foams by solid-state foaming. *Smart Mater. Struct.* 2010, 19, 533–536. [CrossRef]
10. Liu, Y.Y.; Han, C.M.; Tan, H.F.; Du, X.W. Thermal, mechanical and shape properties of shape memory epoxy resin. *Mater. Sci. Eng. A* 2010, 527, 2510–2514. [CrossRef]
11. Yang, B.; Huang, W.M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. *Polymer* 2006, 47, 1348–1356. [CrossRef]
12. Huang, W.M.; Yang, B.; An, L.; Li, C. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. *Phys. Lett. A* 2005, 36, 114105–114108. [CrossRef]
13. Lee, K.M.; Koerner, H.; Vaia, R.A.; Bunning, T.J.; White, T.J. Light-activated shape memory of glassy, Azobenzene liquid crystalline polymer networks. *Soft Mater* 2011, 7, 4318–4324. [CrossRef]
14. Koerner, H.; Price, G.; Pearce, N.A.; Alexander, M.; Vaia, R.A. Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers. *Nat. Mater.* 2004, 3, 115. [CrossRef] [PubMed]
15. Xiao, Y.Y.; Gong, X.L.; Kang, Y.; Jiang, Z.C.; Zhang, S.; Li, B.J. Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect. *Chem. Commun.* 2016, 52, 10609–10612. [CrossRef]
16. Yang, J.; Wen, H.; Zhuo, H.; Chen, S.; Ban, J. A new type of photo-thermo staged-responsive shape-memory polyurethanes network. *Polymers* 2017, 9, 287–297. [CrossRef]
17. Ji, F.L.; Zhu, Y.; Hu, J.L.; Liu, Y.; Yeung, L.Y.; Ye, G.D. Smart polymer fibers with shape memory effect. *Smart Mater. Struct.* 2006, 15, 1547. [CrossRef]
18. Du, F.P.; Ye, E.Z.; Yang, W.; Shen, T.H.; Tang, C.Y.; Xie, X.L.; Zhou, X.P.; Law, W.C. Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites. Compos. Part B 2015, 68, 170–175. [CrossRef]

19. Lu, H.B.; Liu, Y.J.; Gou, J.H.; Leng, J.S.; Du, S.Y. Synergistic effect of carbon fiber and carbon nanopaper on shape memory polymer composite. Appl. Phys. Lett. 2010, 96, 879. [CrossRef]

20. Lu, H.B.; Liu, Y.J.; Gou, J.H.; Leng, J.S.; Du, S.Y. Synergistic effect of carbon fiber and sub-micro filamentary nickel nanostrand on the shape memory polymer nanocomposite. Smart Mater. Struct. 2011, 20, 035017–035023. [CrossRef]

21. Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296, 1673–1676. [CrossRef] [PubMed]

22. Han, X.J.; Dong, Z.Q.; Fan, M.M.; Liu, Y.; Li, J.H.; Wang, Y.F.; Yuan, Q.J. pH-induced shape-memory polymers. Macromol. Rapid Commun. 2012, 33, 1055–1060. [CrossRef] [PubMed]

23. Meng, H.; Xiao, P.; Gu, J.; Wen, X.; Xu, J.; Zhao, C.; Zhang, J.; Chen, T. Self-healable macro-/microscopic shape memory hydrogels based on supramolecular interactions. Chem. Commun. 2014, 50, 12277–12280. [CrossRef] [PubMed]

24. Meng, H.; Zheng, J.; Wen, X.; Cai, Z.; Zhang, J.; Chen, T. Ph- and sugar-induced shape memory hydrogel based on reversible phenylboronic acid–diol ester bonds. Macromol. Rapid Commun. 2015, 36, 533–537. [CrossRef] [PubMed]

25. Yasin, A.; Li, H.Z.; Lu, Z.; Rehman, S.; Siddig, M.; Yang, H.Y. A shape memory hydrogel induced by the interactions between metal ions and phosphate. Soft Matter 2014, 10, 972. [CrossRef]

26. Ahn, S.; Deshmukh, P.; Kasi, R.M. Shape Memory Behavior of Side-Chain Liquid Crystalline Polymer Networks Triggered by Dual Transition Temperatures. Macromolecules 2010, 43, 7330–7340. [CrossRef]

27. Liu, C.D.; Chun, S.B.; Mather, P.T.; Zhang, L.; Haley, E.H.; Coughlin, E.B. Chemically Cross-Linked Polycyclooctene: Synthesis, Characterization, and Shape Memory Behavior. Macromolecules 2002, 35, 9868–9874. [CrossRef]

28. Liu, G.; Ding, X.; Cao, Y.; Zheng, Z.H.; Peng, Y.X. Shape Memory of Hydrogen-Bonded Polymer Network/Poly(ethylene glycol) Complexes. Macromolecules 2014, 37, 2228–2232. [CrossRef]

29. Cao, Y.P.; Guan, Y.; Du, J.; Luo, J.; Peng, Y.X.; Chan, A.S.C. Hydrogen-bonded polymer network-poly(ethylene glycol) complexes with shape memory effect. J. Mater. Chem. 2002, 12, 2957–2960. [CrossRef]

30. Liu, C.; Qin, H.; Mather, P.T. Review of progress in shape-memory polymers. J. Mater. Chem. 2007, 17, 1543–1558. [CrossRef]

31. Li, J.; Viveros, J.A.; Wrue, M.H.; Anthamatten, M. Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv. Mater. 2007, 19, 2851–2855. [CrossRef]

32. Ware, T.; Hearon, K.; Lonnecker, A.; Wooley, K.; Maitland, D.J.; Voit, W. Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding. Macromolecules 2012, 45, 1062. [CrossRef] [PubMed]

33. Chen, L.; Li, W.B.; Liu, Y.J.; Leng, J.S. Nanocomposites of epoxy-based shape memory polymer and thermally reduced graphite oxide: Mechanical, thermal and shape memory characterizations. Compos. Part B 2016, 91, 75–82. [CrossRef]

34. Lendlein, A.; Behl, M. Shape-memory polymers. Mater. Today 2007, 10, 20–28. [CrossRef]

35. Zhao, X.Y.; Cao, Y.J.; Zou, H.; Li, J.; Zhang, L.Q. Structure and Dynamic Properties of Nitrile-Butadiene Rubber/Hindered Phenol Composites. J. Appl. Polym. Sci. 2011, 123, 3696–3702. [CrossRef]

36. Zhao, X.Y.; Xiang, P.; Cao, Y.J.; Tian, M.; Fond, H.; Jin, R.G.; Zhang, L.Q. Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance. Polymer 2007, 48, 6056–6063. [CrossRef]

37. Jiang, H.Y.; Kelch, S.; Lendlein, A. Polymers Move in Response to Light. Adv. Mater. 2006, 18, 1471–1475. [CrossRef]

38. Parameswaranpillai, J.; Ramanan, S.P.; Jose, S.; Siengchin, S.; Magueresse, A.; Janke, A.; Pionteck, J. Shape memory properties of epoxy/PPO-PEO-PPO triblock copolymer blends with tunable thermal transitions and mechanical characteristics. Ind. Eng. Chem. Res. 2017, 56, 14069–14077. [CrossRef]

39. Kumar, K.S.S.; Biju, R.; Nair, C.P.R. Progress in shape memory epoxy resins. React. Funct. Polym. 2013, 73, 421–430. [CrossRef]
40. Yu, R.; Yang, X.; Zhang, Y.; Zhao, X.; Wu, X.; Zhao, T.; Zhao, Y.; Huang, W. Three-dimensional printing of shape memory composites with epoxy-acrylate hybrid photopolymer. ACS Appl. Mater. Interfaces 2017, 9, 1820–1829. [CrossRef]
41. Wang, W.; Liu, D.; Liu, Y.; Leng, J.; Bhattacharyya, D. Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites. Compos. Sci. Technol. 2015, 106, 20–24. [CrossRef]
42. Karger-Kocsis, J.; Keki, S. Review of Progress in Shape Memory Epoxies and Their Composites. Polymers 2018, 10, 34. [CrossRef]
43. Xiao, D.L.; Zhao, X.Y.; Feng, Y.P.; Xiang, P.; Zhang, L.Q.; Wang, W.M. The structure and dynamic properties of thermoplastic polyurethane elastomer/hindered phenol hybrids. J. Appl. Polym. Sci. 2010, 116, 2143–2150. [CrossRef]
44. Ghobadi, E.; Heuchel, M.; Kratz, K.; Lendlein, A. Atomistic Simulation of the Shape-Memory Effect in Dry and Water Swollen Poly[(rac-lactide)-co-glycolide] and Copolyester Urethanes Thereof. Macromol. Chem. Phys. 2014, 215, 65–75. [CrossRef]
45. Ghobadi, E.; Heuchel, M.; Kratz, K.; Lendlein, A. Simulation of volumetric swelling of degradable poly[(rac-lactide)-co-glycolide] based polyesterurethanes containing different urethane-linkers. J. Appl. Biomater. Funct. Mater. 2013, 10, 293–301. [CrossRef] [PubMed]
46. Cao, Y.Y.; Mou, H.Y.; Shen, F.; Xu, H.Y.; Hu, G.H.; Wu, C.F. Hydrogenated nitrile butadiene rubber and hindered phenol composite. II. Characterization of hydrogen bonding. Polym. Eng. Sci. 2011, 51, 201–208. [CrossRef]
47. Wu, C.F. Microstructural development of a vitrified hindered phenol compound during thermal annealing. Polymer 2003, 44, 1697–1703. [CrossRef]
48. Zhao, X.Y.; Lu, Y.L.; Xiao, D.L.; Wu, S.Z.; Zhang, L.Q. Thermoplastic Ternary Hybrids of Polyurethane, Hindered Phenol and Hindered Amine with Selective Two-Phase Dispersion. Macromol. Mater. Eng. 2009, 294, 345–351. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).