Glutamate gated spiking Neuron Model

Krisha M Deka¹, Soumik Roy²

¹Dept of Electronics and Communication Engg, Tezpur University, Napaam Post, Tezpur, Assam -784028; ²Dept of Electronics and Communication Engg, Tezpur University, Napaam Post, Tezpur, Assam -784028

ABSTRACT

Background: Biological neuron models mainly analyze the behavior of neural networks. Neurons are described in terms of firing rates viz an analog signal. Purpose: The Izhikevich neuron model is an efficient, powerful model of spiking neuron. This model is a reduction of Hodgkin-Huxley model to a two variable system and is capable of producing rich firing patterns for many biological neurons. Methods: In this paper, the Regular Spiking (RS) neuron firing pattern is used to simulate the spiking of Glutamate gated postsynaptic membrane. Results: Simulation is done in MATLAB environment for excitatory action of synapses. Conclusions: Analogous simulation of spiking of excitatory postsynaptic membrane potential is obtained.

doi : 10.5214/ans.0972.7531.210105

KEY WORDS

Ion channels
Postsynaptic neuron
synapse
synaptic cleft
postsynaptic membrane
Glutamate
ENFET

Introduction

A typical neuron can be divided into three functionally distinct parts: dendrites, soma, and axon. Dendrites play the role of the ‘input device’ that collects signals from other neurons and transmits them to the soma. The soma is the central processing unit. If the total input exceeds a certain threshold, then an output signal is generated. The junction between two neurons is called a synapse. The neuronal signals consist of short electrical pulses. The pulses, so-called action potentials or spikes, have an amplitude of about 100 mv and typically a duration of 1-2 ms. The form of the pulse does not change as the action potential propagates along the axon. A chain of action potentials emitted by a single neuron is called a spike train - a sequence of stereotyped events which occur at regular or irregular intervals. Since all spikes of a given neuron look alike, the form of the action potential does not carry any information. Rather, it is the number and the timing of spikes which matter. Action potentials in a spike train are usually well separated. Even with very strong input, it is impossible to excite a second spike during or immediately after a first one.¹

One of the most important neuron models in computational neuroscience is the Hodgkin-Huxley model. Based on their 1952 experiments on the giant axon of the squid, Hodgkin and Huxley developed a mathematical model describing neuron membrane potential and the flow of ions through channels in the membrane. In the Hodgkin-Huxley model (Figure 1) the cell membrane is considered as a capacitor. An input current I applied to the membrane may be split into a current which charges the capacitor I_{cap} and a current that passes through the ion channels I_{chan}.²

\[I = I_{cap} + I_{chan} \]

The ionic current is divided into components carried by sodium and potassium ions I_{Na} and I_{K} respectively, and a small 'leakage current' I_L made up by chloride and other ions. Each component of the ionic current is determined by a driving force which may conveniently be measured as an electrical potential difference and a permeability coefficient which has the dimensions of a conductance. Thus the sodium current (I_{Na}) is equal to the sodium conductance (g_{Na}) multiplied by the difference between the membranes potential (E) and the equilibrium potential for the sodium ion (E_{Na}). The experiments suggest that g_{Na} and g_{K} are functions of time and membrane potential, but that E_{Na}, E_{K}, E_{O}, C_{M} and g_{O} may be taken as constant.³,⁴

\[I = I_{m} + I_{Na} + I_{K} + I_{L} \]

= \frac{C_{M}}{dE/dt} (V_{m} - E_{Na}) - g_{Na}(V_{m} - E_{Na}) + g_{K}(V_{m} - E_{K})

where V_{m} represents the postsynaptic membrane potential established by the ionic and capacitive membrane current, C_{M} is the capacitance of the lipid bilayer of postsynaptic membrane, t is time. The Hodgkin-Huxley model is biophysically meaningful but very expensive to implement. The motive of this paper is...
to develop a simple analog circuit model that can simulate the spiking of glutamate gated postsynaptic membrane.

Glutamate sensitive ENFET

Glutamate is a non essential amino acid. It is the primary excitatory neurotransmitter in the human central nervous system. In simplest case, the binding reaction may be represented as:

\[
\begin{align*}
&k_1 \\
&\text{Glutamate} + \text{Receptor(closed)} \rightarrow \text{Glutamate–Receptor(open)} \\
&k_2
\end{align*}
\]

where \(k_1\) and \(k_2\) are the forward and backward rate constants respectively. The field effect transistor (FET) gate surface plays an important role in the sensitivity and stability of the sensor. Each surface layer possesses certain pH sensitivity and can, therefore, detect minute changes in pH close to the electrolyte/insulator interface. Tantalum pentoxide (Ta\(_2\)O\(_5\)) is a promising gate oxide material for sensoric purposes, as it has a large number of surface sites that leads to a large buffer capacity.

The glutamate sensitive ENFET is prepared by immobilizing glutamate oxidase on the surface of gate oxide (Ta\(_2\)O\(_5\)) (Figure 2). It is based on the biocatalyzed hydrolysis of L-glutamate in accordance with the chemical reaction:

\[
\text{L-Glutamate} + O_2 \rightarrow 2\text{-Oxoglutarate} + H_2O_2
\]

where \(k_1, k_2\) are time constants analogous to the rate constants of equation (1), \(U(t-t_m)\) is the Heaviside function and \(V_{THO}\) is the threshold voltage proportional to the maximum attainable conductance, when all the transmitter-gated channels for Na\(^+\) ions are open.

Spiking neuron model

The simplest form of spiking neural model includes time and gives their output in the form of spikes. A spiking model is a mathematical model which describes how input spike trains (sequences of timings) are mapped to an output spike train. Thus the output can be characterized by

\[
S = (t_i; i = 1, 2, \ldots, n, t_i - t_{i-1})
\]

where \(t_i\) is the \(i^{th}\) spike train in a train of \(n\) spikes.

In this paper, a simple spiking model represented by equation (4), (5) is as biologically plausible as the Hodgkin–Huxley model, yet as computationally efficient as the integrate-and-fire model. The model is a reduction of the Hodgkin-Huxley model to a two variable system. Two ordinary differential equations describe the membrane potential \(v\) and a recovery variable \(u\) by:
\[
\frac{dv}{dt} = 0.04v^2 + 5v + 140 - u + I \quad \text{equation (4)}
\]

\[
\frac{du}{dt} = a(bv-u) \quad \text{equation (5)}
\]

with an after-spike reset rule:

\[
\text{if } v \geq 30 \text{ then } v \leftarrow c, u \leftarrow u + d \quad \text{equation (6)}
\]

Here \(v\) and \(u\) are dimensionless variables, and \(a\), \(b\), \(c\), and \(d\) are dimensionless parameters. The variable \(v\) represents the membrane potential of the neuron and \(u\) represents a membrane recovery variable, which accounts for the activation of \(K^+\) ionic currents and inactivation of \(Na^+\) ionic currents, and it provides negative feedback to \(v\). After the spike reaches its apex (+30 mV), the membrane voltage and the recovery variable are reset according to the equation (6). Synaptic currents or injected dc-currents are delivered via the variable \(I\). The model can exhibit firing patterns of all known types of cortical neurons with the choice of parameters: \(a\), \(b\), \(c\), and \(d\). In this paper, regular spiking neuron is used to generate spike. The Regular spiking (RS) neuron (Figure 3) has four model parameters \(a\), \(b\), \(c\), and \(d\). The parameter \(a\) describes the time scale of the recovery variable \(u\). Smaller values result in slower recovery. Typical value of \(a\) is 0.02. The parameter \(b\) describes the sensitivity of the recovery variable \(u\) to the subthreshold fluctuations of the membrane potential \(v\). Its value is 0.2. The parameter \(c\) describes the after-spike reset value of the membrane potential \(v\) caused by the fast high-threshold \(K^+\) conductances. Its value is \(c = -65 \text{ mV}\). The parameter \(d\) describes after-spike reset of the recovery variable \(u\) caused by slow high-threshold \(Na^+\) and \(K^+\) conductances. A typical value is \(d = 8\).^{12}

Methods

RS neurons generate ‘regular’ action potentials. Their synaptic function is excitatory. The slow potential of the RS neuron begins to rise due to the input from some other neurons. When the potential reaches the threshold of the RS neuron, the neuron fires. Immediately after the firing, the slow potential \(U_s\) is lowered to a reset value \(U_{rs}\) which is lower than the rest potential \(U_o\) and after passing the period of absolute refractoriness \(T_{rs}\) it resumes rising again. This process of lowering and rising of the potential represents afterhyperpolarization (AHP) and afterdepolarization (ADP) observed in the membrane potential of RS neuron (Figure 4).^{13}

The strategy that is used to produce spiking in the glutamate gated postsynaptic membrane is governed by a) integrating set of differential equations with incoming spikes inducing discrete changes in the state variables and outgoing spikes are triggered by a threshold condition b) using Euler’s forward approximation method. The modeling for excitatory synapse is shown in Figure 5. The leakage current \(I_o\) is considered to be small enough to be neglected. Since only sodium channels are responsible for excitatory action, the postsynaptic membrane is divided into three patches to represent spatial summation of the sodium current controlled by

\[
I_{m} = I_1 + I_2 + I_3
\]

\[
I = I_m + I_{m} - I_m + I_i
\]

\[
I = C(dV_m/dt) + g_{m}(V_m-E_m) - g_{m}(V_m-E_m) + g_{m}(V_m-E_m)
\]

where \(g_{m}\) is the total sodium conductance and \(g_{m}\) is the non-gated potassium conductance. \(V_{g1}\), \(V_{g2}\), and \(V_{g3}\) are the voltages applied to the reference electrodes of the ENFETs. The

Fig. 3: Showing the firing pattern of a regular spiking neuron.

Fig. 4: Schematic diagram of a single spike together with Afterhyperpolarization (AHP) and afterdepolarization (ADP).
membrane potential V_m is obtained by spatially and temporally
varying g_{Na} of glutamate-gated sodium channels.

Simulation

The component values assigned in the model for MATLAB
simulation are taken from reference: $C_m = 1 \mu F$ per cm2,
$g_c = 36$ mS per cm2, $E_{Na} = 115$ mV and $E_K = -12$ mV and $I = 0$.
The specifications for three n-channel ENFETs are $L = 15 \mu$m,
$W = 2 \mu$m, $t_{ox} = 100$ nm, $\mu = 600$ cm2/V-sec. The parameters
for exponential function in equation (3), applied to each ENFET
inputs are: $V_{TH0} = -10$ mV, $t_m = 600$ μsec, $k_1 = k_2 = 5$ msec. The
three gates to source voltage of three ENFETs i.e V_g_1, V_g_2 and
V_g_3 are kept constants at 1 Volt each. The three input param-
eters of ENFET namely V_{TH1}, V_{TH2} and V_{TH3} dependence on con-
centration of glutamate are applied in a staggered sequence
at 0.01 msec intervals. This is done to simulate the time varia-
tion in glutamate transmitter–receptor binding with respect
to different patches of postsynaptic membrane. The values as-
signed for regular spiking neuron model parameters: $a = 0.02$,
$b = 0.2$, $c = -65$, $d = 8$.

Results

The MATLAB simulation outputs are shown in figure 6.
The waveform represents the normal postsynaptic membrane
potential with respect to time. Membrane potential, V_m is
established by spatial summation and temporal integration
of the glutamate-gated sodium current. In this model, ac-
tion potential takes the form of spikes and occurs during the
time period of the pulse. Here the action potential is ex-
hibited whenever V_m reaches the threshold in the range of
-60 mv and after that the action potential is reset when it
reaches 40 mv.

Conclusions

The figure above shows an analogous simulation showing the
response of the model to a time varying injected current. The
three glutamate gated sodium channels are staggered at 0.01 ms
time interval which simulates the time variation in transmitter-
receptor binding with respect to different patches of post synap-
tic membrane. The work shows that glutamate-sensitive ENFET
can be used as a circuit analog to simulate the spiking of excit-
atory postsynaptic membrane potential.

Acknowledgements

The authors wish to thank UGC for their support to innova-
tive programme “Bioelectronics” and AICTE for their support to
Neuro bioengineering research.

Conflict of Interests: None, Source of funding: None

Received Date : 17 December 2013; Revised Date : 24 January 2014;
Accepted Date : 12 March 2014

References

1. Wulfram G, Werner M K. Spiking Neuron Models, Single neurons, Pop-
ulations, Plasticity. United Kingdom: Cambridge University press,
2002. p. 1–480.
2. Russell T. Spiking Neurons Models for Control and Evolutionary Robotics.
[BSc Thesis] Victoria University of Wellington; 2003.
3. Hodgkin A L, Huxley A F. A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve.
J Physiol, 1952: 117; 500–544.
4. Lewis ER. Using electronic circuits to model simple Neuroelectric inter-
actions. Proc. IEEE, 1968: 56; 931–949.
5. Jiten Ch. D, Soumik R. Modeling Neuron for Simulation of transmit-
ter gated ion channels of postsynaptic membrane at synaptic cleft.
American Journal of Biomedical Sciences, 2011: 3(3); 176–182.
6. Braeken DR, Rand DR, Andrei A et al. Bartic. Glutamate sensing with
enzyme modified floating-gate field effect transistors. Biosensors
and Bioelectronics. 2009: 24; 2384–2389.
7. Kitikul J, Preechaworapun A, Pookmanee P, Satienperakul S, Tangkuaram T. A Glutamate biosensor based on the cross linked Glutamate oxidase with chitosan on the Carbon nanotube modified gold nanowire electrode. 38th Congress on Science and Technology of Thailand; 2012 Oct 17–19; Thailand.

8. Jiten Ch D, Soumik R. Biologically motivated Circuit model for simulation of excitatory and inhibitory synapses. Canadian Journal on Biomedical Engineering & Technology. 2010: 1; 49–51.

9. Michael D L, Fare TL. A Physiologic-Based Circuit Model of the Postsynaptic region at the Neuromuscular Junction. IEEE Proceedings; 1992, Oct 29-Nov 1; Paris. P. 1602–03.

10. Smith L. Implementing Neural Models in Silicon. In: Albert Y, editors. Handbook of Nature-Inspired and Innovative Computing Section. Springer. 2006. p. 736.

11. Eugene MI. Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on neural networks, 2004; 15(5):1063–70.

12. Izhikevich EM. Simple model of spiking neurons. IEEE Trans. Neural Networks. 2003: 14; 1569–1572.

13. Sakari I. Spiking Neuron Models for Regular-Spiking, Intrinsically Bursting and Fast-Spiking Neurons, Neural Information Processing, 1999. Proceedings; 1999, Nov 16-20; Perth. P. 32–36.