Genome-Wide Analysis of Small RNA and Novel MicroRNA Discovery in Human Acute Lymphoblastic Leukemia Based on Extensive Sequencing Approach

Hua Zhang1,9, Jian-Hua Yang1,9, Yu-Sheng Zheng1,9, Peng Zhang2, Xiao Chen3, Jun Wu3, Ling Xu3, Xue-Qun Luo4, Zhi-Yong Ke4, Hui Zhou1, Liang-Hu Qu1, Yue-Qin Chen1*

1 Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, People’s Republic of China, 2 Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China, 3 The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China, 4 The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China

Abstract

Background: MicroRNAs (miRNAs) have been proved to play an important role in various cellular processes and function as tumor suppressors or oncogenes in cancers including leukemia. The identification of a large number of novel miRNAs and other small regulatory RNAs will provide valuable insights into the roles they play in tumorgenesis.

Methodology/Principal Findings: To gain further understanding of the role of miRNAs relevant to acute lymphoblastic leukemia (ALL), we employed the sequencing-by-synthesis (SBS) strategy to sequence small RNA libraries prepared from ALL patients and normal donors. In total we identified 159 novel miRNAs and 116 novel miRNA*s from both libraries. Among the 159 novel miRNAs, 42 were identified with high stringency in our data set. Furthermore, we demonstrated the different expression patterns of 20 newly identified and several known miRNAs between ALL patients and normal donors, suggesting these miRNAs may be associated with ALL and could constitute an ALL-specific miRNA signature. Interestingly, GO “biological process” classifications revealed that a set of significantly abnormally expressed miRNAs are associated with disease relapse, which implies that these dysregulated miRNAs might promote the progression of ALL by regulating genes involved in the pathway of the disease development.

Conclusion/Significance: The study presents a comprehensive picture of the expression of small RNAs in human acute lymphoblastic leukemia and highlights novel and known miRNAs differentially expressed between ALL patients and normal donors. To our knowledge, this is the first study to look at genome-wide known and novel miRNA expression patterns in human acute lymphoblastic leukemia. Our data revealed that these deregulated miRNAs may be associated with ALL or the onset of relapse.

Introduction

MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs, between 19 to 25 nucleotides in size, which can regulate gene expression at either the transcriptional or post-transcriptional level [1]. Studies have shown that miRNAs play an important role in development and various cellular processes, such as differentiation, growth, and death [2]. A connection between miRNAs and cancers has also been elucidated [3]. It has been shown that about 50% of annotated human miRNAs are located at fragile sites and genomic regions involved in cancers [4]. Other data indicates that miRNAs function as both tumor suppressors and oncogenes in tumorigenesis and cancer-specific miRNA expression signatures have been identified in many cancers [4–7]. Identification of a large number of novel miRNAs and other small regulatory RNAs is critical to provide valuable insights into the role these may play in tumorgenesis.

Recently, the sequencing-based method has been widely applied for identifying and profiling novel miRNAs candidates. Studies on novel miRNAs based on the sequencing method have been reported in chicken, human embryonic stem cells, solid cancers, etc. [8–14]. In leukemia, Marton et al. [15] used a cloning-based sequencing approach to study small RNAs from chronic lymphocytic leukemia (CLL) patients and five novel miRNA candidates were identified, which could be relevant in CLL pathogenesis. Another study examined miRNA expression profiles and isolated many novel miRNAs candidates from leukemia cells mainly present in acute myeloid leukemia (AML) by means of
miRNA amplification and sequencing [16]. Their results suggest that there are still many novel miRNAs existing in leukemia cells. Recently, the Illumina massively parallel sequencing platform was used to carry out an in-depth analysis of the miRNA transcriptome in a murine AML leukemia progression model and 55 novel miRNAs were identified, some of which could be relevant to the pathogenesis of AML [17], indicating that the high-throughput sequencing method can be used as a new and powerful tool to identify unannotated novel miRNA candidates which are lowly abundant or nonconserved but relevant to the diseased state.

Acute lymphoblastic leukemia (ALL) is a malignant disorder of lymphoid progenitor cells and characterized by chromosomal abnormalities, which occurs at all ages but with peak prevalence between the ages of 2 and 5 years [18]. With modern treatment strategies using risk-adapted combination chemotherapy, the cure rates of childhood ALL are almost 80% [19]. However, 20–30% of children still relapse and conventional intensive chemotherapy can only cure up to 30% of children who have relapsed [20–21]. As treatment of relapsed disease remains a challenging, the accurate assignment of individual patients to risk groups is a critical issue for optimal outcome[20,22,23]. Although microRNA expression signatures associated with cytogenetics and the clinical outcome of ALL have been reported [24–27], these efforts are limited as they are mainly restricted to the detection and profiling of previously identified miRNA sequences.

To gain a more complete and unbiased view of the small RNA transcriptome and further understand the role of miRNAs relevant to ALL, we employed a sequencing-by-synthesis (SBS) strategy to globally study small RNAs, especially miRNAs that have thus far been proven difficult to find using traditional cloning and in silico predictions. We present a comprehensive picture of the expression of small RNAs and have identified 159 novel miRNAs in total. Notably, the unique expression patterns in ALL patients and GO analysis suggest a set of miRNAs may be associated with disease relapse, which provides valuable insight into the pathogenesis of ALL relapse.

Results

Annotation of small RNAs and identification of novel miRNA genes from patient group and normal donor

To discover additional miRNAs that have escaped detection in previous studies associated with ALL [24–27], we employed SBS strategy to sequence two small RNA libraries of pooled bone marrows from a patient group (P) and a normal donor group (N). This yielded 4,418,887 (P) and 4,361,324 (N) reads, respectively. After computer filtering to remove ambiguous reads, 831,728 (P) and 1,993,962 (N) sequence reads were obtained corresponding to 60,460 (P) and 113,414 (N) unique reads (18 nt, 30 nt). Unique sequences were mapped to the human genome (Mar. 2006, version hg18, NCBI Build 36.1) using MegaBLAST [28] (version 2.2.18), and those with perfect matches across their entire length were retained. Consequently, a total of 15,537 and 23,859 unique sequences represented by 608,358 (P) and 1,327,742 (N) reads were perfectly matched to 3,905,630 and 4,119,366 genome loci, respectively. The schematic representation of small RNA library sequencing and subsequent bioinformatic analysis is shown in Fig. 1. These sequences were annotated based on their overlap with publicly available genome annotations (Table S1) and a total of 472 known miRNAs were identified with a greater total number of miRNAs expressed in the normal donor group than in the patient group (Fig. 2A). By analyzing the precursor sequence of miRNAs, we identified a total of 74 novel miRNA*(star)s (Table S2) in both groups. Mature miRNAs are processed from the stem of a hairpin precursor, and the miRNA*(star) sequence corresponds to the section of this hairpin that remains complementary to the mature form with approximately 2-nucleotide 3’ overhangs [29,30]. Among them, we found that some miRNA*s such as hsa-miR-766* were significantly up-regulated in the patient group, whilst some miRNA*s such as hsa-miR-1307* were significantly down-regulated in the patient group with fold changes

Figure 1. Schematic representation of small RNA library sequencing and subsequent bioinformatic analysis. doi:10.1371/journal.pone.0006849.g001

Figure 2. Venn diagram of the known miRNAs and novel miRNA*(star)s of the known miRNAs identified from the control group and the ALL patient group. (A) Known miRNAs unique in each group and shared by both. (B) MiRNA*s of known miRNAs unique in each group and shared by both. doi:10.1371/journal.pone.0006849.g002
expressed in patient samples with counts compared to control in 85% (17/20) of ALL patients (part of data that expression of miR-223 is significantly reduced over 2 fold). We further performed qRT-PCR to examine the etc. displayed the most significantly reduction in the patient group high abundance, whilst miR-582-5p, miR-223, miR-143, miR-126 miR-9*, miR-9, miR-181a and miR-128 exhibited a significantly decreased abundance or nonconserved is important to comprehensively understand the pathogenesis of leukemia and explore new therapeutic strategies. In this study, we identified 275 novel miRNAs/miRNA*s. Amongst these were 20 newly identified miRNAs, including 6 up-regulated and 14 down-regulated miRNAs exhibiting significantly differential expression in the patient group with fold changes >2.0 and a p-value of <0.001 (Table 2). The six most highly expressed miRNAs are miR-1943, miR-1841, miR-1931, miR-1907, miR-1890, miR-1902 and the most lowly expressed miRNAs are miR-1893, miR-1971*, miR-1834, miR-1842*, miR-1842. The top 40 miRNAs differentially expressed in patient samples with counts >200 and fold changes >2.0 and P-value of <0.001 (Table S3). Of these, miR-9*, miR-9, miR-181a and miR-128 exhibited a significantly high abundance, whilst miR-582-5p, miR-223, miR-143, miR-126 etc. displayed the most significantly reduction in the patient group (Fig. 3). We further performed qRT-PCR to examine the expression levels of three randomly selected highly down-regulated novel miRNA candidates: miR-1042, miR-1059* and miR-1052 in 20 ALL patients and three normal donors’ samples. Results showed that all these miRNAs can be detected in all clinical samples. Interestingly, we found that miR-1042 (16/20), miR-

miR-1052 (13/20) and miR-1059* (14/20) had significantly reduced expressions in most ALL patients compared to normal donors. This is consistent with our results derived using Solexa sequencing technology and suggests that these novel miRNAs may have functional relevance in the pathogenesis of ALL (part of data is shown in Fig. 4B–D).

Gene Ontology analysis reveals a set of abnormally expressed miRNAs involved in the pathway of nervous system development

The targets of the 171 known and novel miRNAs displaying significantly different expression between the normal donors and patient group (fold changes >2.0 and a p-value of <0.001, Table S5) [35–36] were predicted by miRNAs TargetScan to further elucidate their pathological relevance. By examining the significant GO “biological process” classifications that are over-represented among these likely targets genes of the differentially expressed miRNAs, we analyzed the functional annotation for predicted target sets expected to shed light on the specific function of miRNAs significant to ALL biology. Clustering of over-represented GO classes in predicted targets of up-regulated and down-regulated miRNAs in ALL showed that the most significant GO terms were genes involved in cell adhesion, hemophiliac cell adhesion, transcription and regulation of transcription (Fig. 5). Interestingly, another cluster of highly significant GO terms was associated with nervous system development, i.e. neuronal cell differentiation, which might be associated with the pathogenesis of ALL with subsequent central nervous system (CNS) relapse, suggesting that a set of significantly dysregulated miRNAs might promote the progression of CNS relapse in ALL by regulating genes in the pathway of nervous system development.

Discussion

To gain insight into the roles of miRNAs in the progression of ALL, we have employed SBS strategy to globally study small RNAs, especially miRNA expression profiles in ALL patients and their normal counterparts. Our results revealed that there are a large number of miRNAs deregulated in ALL patients, of which some known and novel miRNAs may be involved in the progression of ALL or relapse.

Although 678 human miRNA sequences have been cataloged (miRBase, release 11.0, 2008) and identified by either cloning or computational prediction, the identification of unannotated and cancer-specific novel miRNAs candidates which are of low abundance or nonconserved is important to comprehensively understand the pathogenesis of leukemia and explore new therapeutic strategies. In this study, we identified 275 novel miRNAs/miRNA*s. Amongst these were 20 newly identified miRNAs, including 6 up-regulated and 14 down-regulated miRNAs exhibiting significantly differential expression in the patient group with fold changes >2.0 and a p-value of <0.001. We further used qRT-PCR to validate the expression of miR-1842 and miR-1832 and the results revealed that 80% (16/20) and 65% (13/20) of ALL patients had significantly down-regulated miR-1842 and miR-1832, respectively. This indicates that these novel miRNAs may have functional relevance in the pathogenesis of ALL. Schotte et al. [24] identified 8 new miRNA genes from childhood ALL patients using a cloning strategy. However, these 8
new miRNA genes were filtered out in our study for they mostly overlapped with rRNA, tRNA, AhuSx, HY3 RNA, HY5 RNA, or due to poor secondary structure.

MiRNA*, also called passenger strand, has been considered as an inactive strand and prone to be degradation [37]. However, recent studies found that both pre-miRNA arms can functionally suppress the expression of their target genes and the miRNA* strand has inhibitory activity [30,38–39]. By analyzing the precursor sequence of miRNAs, we identified a total of 116 novel miRNA*s, including 74 miRNA*s of known miRNAs and 42 miRNA*s of novel miRNAs and found that some miRNA*s were significantly dysregulated at a fold change >2.0 and a p-value of <0.001. For example, we elucidated that miR-1859* was significantly down-regulated.

| Table 1. 42 novel candidate miRNAs identified from control and patient group. |
|---------------------------------------------------------------|
| **MiRNA Sequence**         | **MiRNA Reads C group** | **MiRNA Reads P group** | **MiRNA* Reads C group** | **MiRNA* Reads P group** |
|---------------------------|------------------------|------------------------|------------------------|------------------------|
| hsa-miR-1832 TCCACATGAAAAATGACTC  | 7                      | 0                      | 3                      | 4                      |
| hsa-miR-1836 AAAAGTATTTGGAATTTTTCG  | 8                      | 0                      | 3                      | 2                      |
| hsa-miR-1842 AAAACCTAGTTACAGTGTGT  | 355                    | 4                      | 44                     | 0                      |
| hsa-miR-1845 ACATGGACTCAGTTGAGGATT  | 1                      | 0                      | 0                      | 1                      |
| hsa-miR-1851 AGACCCATTGAGGAAAGGGTCC  | 4                      | 0                      | 1                      | 0                      |
| hsa-miR-1852 CCTGACTTCTACTGTACAGA  | 66                     | 2                      | 40                     | 1                      |
| hsa-miR-1855 AAAAGTATTTGCTTCCTGCT  | 0                      | 3                      | 0                      | 1                      |
| hsa-miR-1859 ATCCCAAGATATTGGAACACT  | 103                    | 14                     | 121                    | 14                     |
| hsa-miR-1866 CATCAGAATTCTAGAGGAGCTAGA  | 30                     | 2                      | 6                      | 0                      |
| hsa-miR-1872 TCTCGATAAGGGCTACTCTGT  | 0                      | 1                      | 0                      | 1                      |
| hsa-miR-1876 AGCTTTGGGAATTCACTAGTAG  | 6                      | 1                      | 1                      | 1                      |
| hsa-miR-1886 GCAAAAGGCAATGATTTCTT  | 2                      | 0                      | 2                      | 0                      |
| hsa-miR-1889 TCCAGTACATAAGAGGACTT  | 2                      | 0                      | 1                      | 0                      |
| hsa-miR-1896 TTCAGTGAACCTACATTTGGA  | 3                      | 0                      | 4                      | 0                      |
| hsa-miR-1901 AATTACAGATTGCTCAGAGA  | 175                    | 51                     | 21                     | 6                      |
| hsa-miR-1906 TGGGAGATCTGCTCAAGGTTCG  | 4                      | 0                      | 1                      | 0                      |
| hsa-miR-1909 TTAGCAATGTTGCACTTACAT  | 3                      | 1                      | 3                      | 0                      |
| hsa-miR-1911 CACCTTAAGGGAACACT  | 2                      | 0                      | 0                      | 1                      |
| hsa-miR-1915 CAGACAGCTTCTACTGACT  | 1                      | 0                      | 1                      | 0                      |
| hsa-miR-1916 AAAATCTTTTTTGTTCACAG  | 3                      | 0                      | 1                      | 0                      |
| hsa-miR-1917 CACAGATGCCTAGTAAAATTT  | 1                      | 0                      | 1                      | 1                      |
| hsa-miR-1923 AATTAGCAACTACTTGACTT  | 2                      | 0                      | 0                      | 1                      |
| hsa-miR-1926 TATCGTGCAATATCTACTACAC  | 2                      | 0                      | 1                      | 3                      |
| hsa-miR-1929 TTAGATGTACAGAAGACGT  | 4                      | 0                      | 4                      | 0                      |
| hsa-miR-1930 CCTCCACTGAGGAGGCGAGA  | 1                      | 0                      | 0                      | 1                      |
| hsa-miR-1932 TTGATGGAAAGAAATAATCTGA  | 12                     | 0                      | 4                      | 1                      |
| hsa-miR-1940 CCAGAAGGCTGCTTCCTCAACA  | 1                      | 0                      | 0                      | 1                      |
| hsa-miR-1941 AAGGATTTACTAGAAGACTATT  | 2                      | 0                      | 2                      | 0                      |
| hsa-miR-1942 ATTTTACCTGTAGAGTCTGTG  | 1                      | 0                      | 2                      | 0                      |
| hsa-miR-1945 TGGGACTCAGTTGAGTCT  | 5                      | 9                      | 0                      | 1                      |
| hsa-miR-1946 TTTAATGTAGAGAAGACGT  | 4                      | 0                      | 4                      | 0                      |
| hsa-miR-1947 TGTGTGACCTTCTTTTGTC  | 120                    | 12                     | 23                     | 2                      |
| hsa-miR-1953 GCTCCGTCTTTTTCTCTCCT  | 1                      | 1                      | 1                      | 1                      |
| hsa-miR-1955 AGCCATCTGTACTCTGAAT  | 2                      | 4                      | 2                      | 0                      |
| hsa-miR-1962 AGAACAGGTGAAATTTAAGACT  | 7                      | 3                      | 1                      | 0                      |
| hsa-miR-1963 AGAACAGGTGAAATTTAAGACT  | 7                      | 3                      | 1                      | 0                      |
| hsa-miR-1964 AGAACAGGTGAAATTTAAGACT  | 7                      | 3                      | 1                      | 0                      |
| hsa-miR-1967 TAGCTGTAGGTATCGGAGG  | 0                      | 1                      | 0                      | 1                      |
| hsa-miR-1971 TAGGCGCTACGTCTGGTGGT  | 125                    | 11                     | 34                     | 0                      |
| hsa-miR-1972 TGAGACAGGGCTATAGCTGCT  | 0                      | 4                      | 0                      | 1                      |
| hsa-miR-1975 CAAAAGTATTTGCTCCTTCTTGT  | 0                      | 1                      | 0                      | 1                      |
| hsa-miR-1984 AACTTGAAAGGGCAGCAAAGTT  | 2                      | 0                      | 1                      | 0                      |

doi:10.1371/journal.pone.0006849.t001

Novel MicroRNA in Human ALL

PLoS ONE | www.plosone.org 4 September 2009 | Volume 4 | Issue 9 | e6849
about 4 fold in 70% (14/20) patients, suggesting miRNA*s could be involved in the progression of ALL. Interestingly, BCL-2, an anti-apoptotic gene, was predicted to be one of the conserved targets of miR-1859* based on the targetscan prediction algorithm (www.targetscan.com) for the seed region (TTGTCCT). Overexpression of the BCL-2 protein has been frequently observed in many cancers including ALL [40–41]. Recently, it has been demonstrated that ALL cells are dependent on BCL-2, suggesting BCL-2 might be a more clinically significant parameter in ALL [42]. Therefore it is likely that down-regulated miRNA-1859* contributes to the progression of ALL by targeting the anti-apoptotic gene BCL-2.

In order to highlight the genes that are likely to be the targets of the known and novel miRNAs and to analyse their relevance to the pathogenesis of ALL, we also examined the significant GO ‘biological process’ classifications that are over-represented among these targets genes of the 171 known and novel differentially expressed miRNAs. This analysis revealed that the most significant GO terms were genes involved in cell adhesion, hemophilic cell adhesion, transcription and regulation of transcription. Interestingly, target prediction of the miRNA pattern revealed that some abnormally expressed miRNAs may be involved in the pathway of nervous system development, i.e. neuronal cell differentiation. Notably, we found that the nervous system development related gene Sox11 was the target of miR-1986. Sox11 is important for neurogenesis, neural cell survival and neurite outgrowth [43–44], which implies that miRNAs might be associated with the pathogenesis of ALL with subsequent central nervous system (CNS) relapse. CNS relapse is the main source of extramedullary relapse in ALL, and has accounted for 30–40% of initial relapses in some clinical trials [18,41].

Methods
Clinical samples and Ethics Statement
A total of 32 bone marrow samples including 27 ALL untreated pediatric patients and 5 normal donors were enrolled from the First and Second Affiliated Hospital of Sun Yat-sen University in this study. Among them, 3 ALL patients’ and 2 normal donors’ (control group) bone marrows were pooled respectively for small RNA library construction for Solexa sequencing. Another 24 ALL patients and 3 normal donors were used as a validation set to confirm the miRNA differential expression by qRT-PCR. Bone marrow samples were taken by bone marrow puncture at diagnosis. Written informed consent for biological studies was obtained from all patients analyzed. The study was approved by the Ethics Committee of the affiliated hospitals of Sun Yat-sen University.

Total RNA isolation, small RNA library preparation, and nucleotide sequencing
Total RNA was isolated with Trizol (Invitrogen, Carlsbad, CA) according to the instructions of the manufacturer. Small RNA library preparation and sequencing were performed with Solexa sequencing Technology (BGI, Shenzhen, China). Briefly, total RNA was size fractionated on a 15% tris-borate-EDTA (TBE) urea polyacrylamide gel and a 15–30 nt fraction was excised, using 10 bp ladder (Invitrogen) as marker. RNA was eluted from the gel, precipitated by addition of 750 μL of 100% ethanol and 3 μL of glycogen and incubating at ~80°C for 30 minutes. After washing with 75% ethanol, the RNA pellet was dissolved in DEPC-treated water. The RNA was dephosphorylated by alkaline phosphatase and recovered by ethanol precipitation. The small RNAs pools were
then ligated sequentially to a 5’RNA adapter (5’-GUUCAGAGUUCUACAGUCGACGAUG-3’) with T4 RNA ligase (Promega). The ligated RNA was size fractionated on a 15% TBE urea polyacrylamide gel, and a 40–60 nt fraction was excised. The RNA was eluted, precipitated and resuspended as described above. The 3’RNA adapter (5’-pUCGUAGUUCGUCUCUG-CUUGidT-3’; p, phosphate; idT, inverted deoxythymidine) was subsequently ligated to the precipitated RNA with T4 RNA ligase. Ligated RNA was size fractionated on a 10% TBE urea polyacrylamide gel, and the 70–90 nt fraction was excised. The RNA was eluted from the polyacrylamide gel and precipitated and resuspended in DEPC water. Then, reverse transcription reaction was performed after ligation with adapters using Superscript II reverse transcriptase (Invitrogen) and Solexa’s small RNA RT-Primer (5’-CAAGCAGAAGACGGCATACGA-3’) and followed by PCR amplification with Hotstart Phusion DNA Polymerase (NEB) in 15 cycles using Solexa’s small RNA primer set (5’-CAAGCAGAAGACGGCATACGA-3’, 3’-AATGATACGGCGACGCAGGTTCAGAGTTCTACAGTCCGA-3’). PCR products were purified on a 6% TBE polyacrylamide gel using a 25 bp DNA marker (Invitrogen). An approximately 92 bp fraction was excised, eluted and precipitated by ethanol. The pellet was dissolved in EB buffer and diluted for sequencing on the Solexa Genome Sequencer.

**Initial processing of reads**

Low quality reads were filtered and 3’ adaptor sequence trimmed. Adaptor contaminants were cleaned up and 18–30 nt reads collected. The remaining reads were discarded. We calculated sequencing frequency of each unique small RNA sequence, the number of reads for each sequence reflecting relative abundance. Each unique sequence was aligned to the human reference genome (Version hg18, Mar. 2006, NCBI Build 36.1, obtained from the UCSC Genome Browser download page) using MegaBLAST [28] with the following options: -W 15 –F F. Only perfect matches over their entire length were set aside. All mapped sequences were also searched against the human miRNA, tRNA, rRNA, snoRNA, snRNA, scRNA or refGene (exonic) (miRBase 11.0, UCSC annotation). These annotated RNAs were removed. To avoid repeat associated sequences, reads with more than five total matching positions in the genome were discarded. We aligned known mature miRNA sequence to the human genome and 97% known mature sequences are less than five positions (Fig. S2). The genomic loci corresponding to sequences remaining

![Figure 4](https://www.plosone.org/article/f BeitקW0006849.g004)
after these filtering steps were then analyzed for the hairpin secondary structure that is characteristic of miRNA precursors. Each miRNA tally from each library was normalized to the total number of miRNA hairpin-matching reads for that library, and those normalized tallies were used for relative expression analysis.

**Known miRNAs expression analysis**

Relative expression analysis was sought to determine the expression preferences of individual miRNAs between these two libraries. The number of reads matching a particular mature miRNA was calculated, but only sequence matches that overlapped at least 10 nt with the dominantly abundant mature miRNA sequence contributed to the miRNA tally. The Audic and Claverie test was used to establish the statistical significance of the difference in read frequencies for predicting differential miRNA expression based on the comparison of tag counts generated from digital expression analyses [46]. The program winflat (http://www.igs.cnrs-mrs.fr/SpipInternet/IMG/tgz/winflat.tgz) was used to compute the probability of differential miRNA. A p-value of ≤0.001 was chosen as a threshold for determining significant differential miRNA expression.

**Novel miRNAs prediction**

Sequences from 100 nucleotide (nt) upstream to 100 nt downstream of the remaining aligned reads were extracted from the human genome. Potential miRNA stem loops were located by sliding a 100 nt window advancing by 10-nt increments along the strand of read sequences and folding the window with the secondary structure prediction program RNAfold[47] to identify stem-loop structures with a folding free energy of at most −18 kcal/mole (Mfe≤−18 kcal/mole). For overlapped hairpins, we only took the one that had the greatest number of paired arm bases. Forked hairpins were permitted provided that the longest forked segment contained no more than eight base pairs. For forked hairpins, we folded the sequence again with the program RNAshapes [48] and discarded the forked hairpins without stem-loop optional structure. Only structures that: 1) folded into hairpins, 2) contained a read in one of the hairpin arm, 3) loop length of hairpin is less than 20 and minimum pairs of arm is 15, 4) more than 2 reads located within hairpin, 5) the read sequences does not span the loop and 6) potential precursors are consistent with miRNA biogenesis [14,45], were used in further analysis. We also used a recently discovered property of miRNAs to have lower folding free energies than random sequences with the same nucleotide content [31–32]. We thus use z-scores as described by Washietl et al [33] to filter the candidates. Only hairpins with the fold value less than −3.0 were novel miRNA genes. Furthermore, the observation of both a candidate miRNA and a corresponding candidate miRNA* was defined as high stringency. The sequence with dominantly abundant reads was named as mature miRNA and its corresponding complementary sequence as miRNA*.

**Target prediction and Gene Ontology (GO) analysis**

The conserved targets of known miRNAs and novel miRNAs were predicted by TargetScan (http://www.targetscan.org/vert_42/vert_42_data_download/targetscan_41.zip) [35–36]. Only miRNAs with significant over-expression in either C group or P group were included in target analyses. GO [49] terms and gene information were downloaded from the NCBI website (ftp://ftp.ncbi.nih.gov/gene/DATA) on August 2008. The functional categories scrutinized are biological processes and molecular functions as defined in the Gene Ontology Consortium database (http://www.geneontology.org) [49]. Significant overrepresentation of particular GO terms in the dataset was determined using the

---

**Table 2. The top 6 up-regulated and 14 down-regulated novel miRNAs differentially expressed in patient group (fold changes >2.0 and P-value of <0.001).**

| MicroRNA | Control reads | Patient reads | Control percent | Patient percent | Fold changes | P-value |
|----------|---------------|---------------|----------------|----------------|--------------|---------|
| hsa-miR-1943 | 0 | 31 | 0 | 100 | 8.1E-17 | |
| hsa-miR-1841 | 0 | 5 | 0 | 100 | 0.000962473 | |
| hsa-miR-1931* | 0 | 5 | 0 | 100 | 0.000962473 | |
| hsa-miR-1898 | 0 | 5 | 0 | 100 | 0.000962473 | |
| hsa-miR-1890 | 8 | 54 | 6.392458766 | 93.60754123 | 14.64343294 | 4.51E-20 |
| hsa-miR-1902 | 3 | 14 | 8.989689382 | 91.01301062 | 10.12385487 | 8.25E-06 |
| hsa-miR-1859 | 103 | 14 | 77.2278611 | 22.77214389 | 0.294869559 | 6.11E-07 |
| hsa-miR-1859* | 121 | 14 | 79.935753 | 20.064247 | 0.251004666 | 5.31E-09 |
| hsa-miR-1947 | 120 | 12 | 82.1733704 | 17.8266296 | 0.216939747 | 6.78E-10 |
| hsa-miR-1971 | 125 | 11 | 83.96961466 | 16.03038534 | 0.190906978 | 4.38E-11 |
| hsa-miR-1866 | 30 | 2 | 87.3647314 | 12.6352686 | 0.144626498 | 0.000498687 |
| hsa-miR-1986 | 33 | 2 | 88.37992777 | 11.62007223 | 0.131478635 | 0.000189704 |
| hsa-miR-1843 | 43 | 2 | 90.83458937 | 9.16541063 | 0.100902208 | 3.31E-06 |
| hsa-miR-1852 | 62 | 2 | 93.45961416 | 6.54538934 | 0.069805646 | 1.05E-08 |
| hsa-miR-1852* | 40 | 1 | 94.85551703 | 5.14482971 | 0.054234937 | 2.67E-06 |
| hsa-miR-1842 | 355 | 4 | 97.61393329 | 2.38606705 | 0.024443915 | 3.31E-52 |
| hsa-miR-1842* | 44 | 10 | 99.4569161 | 0.54038934 | 0.069805646 | 1.05E-08 |
| hsa-miR-1834 | 37 | 0 | 100 | 0 | 0 | 5.96E-07 |
| hsa-miR-1971* | 34 | 0 | 100 | 0 | 0 | 1.85E-06 |
| hsa-miR-1893 | 18 | 0 | 100 | 0 | 0 | 0.000771849 |

doi:10.1371/journal.pone.0006849.t002
Figure 5. Clustering of over-represented Gene Ontology (GO) classes in predicted targets of differential microRNAs (fold changes $\geq 2.0$ and P-value of $<0.001$). All genes with statistically over-represented GO annotations were included ($P<0.001$).

doi:10.1371/journal.pone.0006849.g005
software GeneMerge with corrections for multiple tests [50]. Bonferroni-corrected p-values are reported and a cutoff of 0.1 on the Bonferroni-corrected F value was applied. As described by Lall et al [51], Bonferroni-corrected P values for overrepresented GO terms for the targets of each miRNA are plotted on a negative log2 scale (e.g. $-\log_{10}P^{*} = 1, -\log_{10}P^{*} = 0.015625$). We performed 2-way hierarchical clustering with the program MeV [52], with the Pearson correlation coefficient and average linkage clustering.

**Quantitative real-time reverse transcription PCR assays**

Quantitative real-time RT-PCR (qRT-PCR) was performed as described[53] and employed a Hairpin-it™ miRNAs Real-Time PCR Quantitation Kit containing stem-loop like RT primer, miRNA specific PCR primers and Molecular Beacon probe PCR Quantitation Kit containing stem-loop like RT primer, real-time PCR was used as negative control in each PCR reaction. Quantitative real-time reverse transcription PCR assays (qRT-PCR) was performed in triplicate. The no-template real-time PCR was used as negative control in each PCR reaction.

**Supplementary Information**

| Table S1 | Found at: doi:10.1371/journal.pone.0006849.s001 | (0.05 MB DOC) |
| Table S2 | Found at: doi:10.1371/journal.pone.0006849.s002 | (0.07 MB DOC) |
| Table S3 | Found at: doi:10.1371/journal.pone.0006849.s003 | (0.33 MB DOC) |

**References**

1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

2. Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antiimmune inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33: 1290–1297.

3. Calin GA, Croce CM (2006) MicroRNA cancer: the beginning of a new tale. Cancer Res 66: 7390–7394.

4. Calin GA, Sevignani C, Dumitru CD, Heoods T, Noch E, et al. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101: 2999–3004.

5. Zhang B, Paz X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302: 1–12.

6. Chen CZ (2005) microRNAs as oncogenes and tumor suppressors. N Engl J Med 353: 1768–1771.

7. Esquela-Kerscher A, Slack FJ (2006) microRNAs - microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

8. Babaraz JE, Ruby JG, Wang Y, Bartel DP, Belloch R (2008) Mouse ES cells express endogenous siRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22: 2773–2785.

9. Berezikov E, van Tetering G, Verheul M, van de Belt J, van Laake L, et al. (2007) A new microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. PLoS ONE 2: e980.

10. Glazov EA, Cotter PA, Barts NC, Moore RJ, Dalrymple BP, et al. (2008) A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res 18: 957–964.

11. Landgraf P, Russo M, Sheridan R, Sewer A, Lovino N, et al. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401–1414.

12. Liu WO, Pourmand N, Patterson BK, Fire A (2007) Patterns of known and novel small RNAs in human cervical cancer. Cancer Res 67: 6031–6043.

13. Ruby JG, Jan C, Player C, Axelrod PJ, Lee W, et al. (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127: 1193–1207.

14. Morn RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, et al. (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18: 610–621.

15. Marton S, Garcia MR, Robello C, Persson H, Trajenberg F, et al. (2008) Small RNAs analysis in CIL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CILI pathogenesis. Leukemia 22: 330–338.

16. Takada S, Yamashita Y, Berezikov E, Hatanaka H, Fujisawa SL, et al. (2008) MicroRNA expression profiles of human leukemia. Leukemia 22: 1274–1278.

17. Kuchenbauer F, Morin RD, Argiroposolos B, Petroi OI, Grifflith M, et al. (2008) In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Res 18: 1767–1797.

18. Pui CH, Robinson LL, Look AT (2008) Acute lymphoblastic leukemia. Lancet 371: 1030–1043.

19. Faderl S, Jeha S, Kantarjian HM (2003) The biology and therapy of adult acute lymphoblastic leukemia. Cancer 98: 1337–1354.

20. Lange BJ, Bostrom BC, Cherlow JM, Sensel MG, La MK, et al. (2002) Double-delayed intensification improves event-free survival for children with intermediate-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 99: 825–833.

21. Huchinson RJ, Gaynor PS, Suther H, Berndse ,J, Cooper HA, et al. (2003) Intensiﬁcation of therapy for children with low-risk acute lymphoblastic leukemia: long-term follow-up of patients treated on Children’s Cancer Group Trial 1881. J Clin Oncol 21: 1790–1797.

22. Bostrom BC, Sensel MR, Suther HN, Gaynor PS, La MK, et al. (2003) Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 101: 3809–3817.

23. Pui CH, Howard SC (2008) Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol 9: 257–268.

24. Schotte D, Chau JC, Sylvester G, Liu G, Chen C, et al. (2009) Identiﬁcation of new microRNA genes and aberrant microRNA expression proﬁles in childhood acute lymphoblastic leukemia. Leukemia 23: 313–321.

25. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. (2005) MicroRNA expression proﬁles classify human cancers. Nature 435: 834–838.

26. Mi S, Lu J, Sun M, Li Z, Zhang H, et al. (2007) MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A 104: 19971–19976.

27. Zanette DL, Rivadavia F, Molletta GA, Barbuzano FG, Proto-Siqueira R, et al. (2007) microRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 40: 1435–1440.

**Table S4**

| Found at: doi:10.1371/journal.pone.0006849.s004 | (0.10 MB DOC) |

**Table S5**

| Found at: doi:10.1371/journal.pone.0006849.s005 | (0.22 MB DOC) |

**Figure S1**

Alignment of 159 novel miRNAs in C group and P group(q means the read comes from C group; t means the read comes from P group).

| Found at: doi:10.1371/journal.pone.0006849.s006 | (0.29 MB DOC) |

**Figure S2**

The loci number of known miRNAs

| Found at: doi:10.1371/journal.pone.0006849.s007 | (0.15 MB TIF) |

**Acknowledgments**

We thank the following investigators and hospitals that provided samples for this analysis:

1. Dr. Hai-Xia Guo, the Second Affiliated Hospital of Sun Yat-sen University; Li-Bing Huang, the First Affiliated Hospital of Sun Yat-sen University and Li-Ming Tu Guangdong Provincial People’s Hospital. We also thank Ms. Xiao-Hong Chen, Qiao-Juan Huang and Yi-Ling Chen for technical support and Dr. Farid Ghadessy for editing the manuscript.

**Author Contributions**

Conceived and designed the experiments: HZ JHY YSZ YQC. Performed the experiments: HZ YSZ JC JW XQL ZYK HZ. Analyzed the data: HZ JHY YSZ PJ XC JW XQL ZYK HZ YQC. Contributed reagents/materials/analysis tools: PZ LX XQL ZYK HZ LHQ YQC. Wrote the paper: H ZHY YSZ PJ YQC.
28. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

29. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, et al. (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17: 991–1008.

30. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, et al. (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nat Struct Mol Biol 15: 354–363.

31. Bonnet E, Wuys J, Rouze P, Van de Peer Y (2008) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 24: 2911–2917.

32. Clote P, Ferre F, Kranakis E, Krizanc D (2005) Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. Rna 11: 578–591.

33. Washietl S, Hofacker IL, Stadler PF (2005) Fast and reliable prediction of non-coding RNAs. Proc Natl Acad Sci U S A 102: 2454–2459.

34. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, et al. (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26: 407–415.

35. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115: 787–798.

36. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

37. O'Toole AS, Miller S, Haines N, Zink MC, Serra MJ (2006) Comprehensive thermodynamic analysis of 3' double-nucleotide overhangs neighboring Watson-Crick terminal base pairs. Nucleic Acids Res 34: 3338–3344.

38. Ro S, Park C, Young D, Sanders KM, Yan W (2007) Tissue-dependent paired expression of microRNAs. Genes Chromosomes Cancer 46: 594–5953.

39. Seitz H, Ghioldiy M, Zamoore PD (2008) Argonaute loading improves the precision of both MicroRNAs and their miRNA strands in flies. Curr Biol 18: 147–151.

40. Narayan S, Chandra J, Sharma M, Naithani R, Sharma S (2007) Expression of apoptosis regulators Bcl-2 and Bax in childhood acute lymphoblastic leukemia. Hematology 12: 39–43.

41. Wójcik I, Szybka M, Golanska E, Riske P, Blonski JB, et al. (2005) Abnormalities of the P53, MDM2, BCL2 and BAX genes in acute leukemias. Neoplasma 52: 318–324.

42. Del Gairo Moore V, Schir KD, Sallan SE, Armstrong SA, Letax A (2008) BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia. Blood 111: 2300–2309.

43. Wang X, Aplund AC, Powit A, Flygare J, Smith CI, et al. (2008) The subcellular Sox11 distribution pattern identifies subsets of mantle cell lymphoma: correlation to overall survival. Br J Haematol 143: 248–252.

44. Bergland M, Werme M, Malewicz M, Perlmann T, Muh J (2006) The establishment of neuronal properties is controlled by Sox1 and Sox11. Genes Dev 20: 3475–3486.

45. Fut CH (2003) Toward optimal central nervous system-directed treatment in childhood acute lymphoblastic leukemia. J Clin Oncol 21: 179–181.

46. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7: 986–995.

47. Hofacker IL, FVW, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsch Chem 125: 167–188.

48. Steffen P, Voss B, Rehmeyer M, Reeder J, Giegerich R (2006) RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics 22: 500–503.

49. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.

50. Castillo-Davis CI, Hartl DL (2003) GeneMerge—post-genomic analysis, data mining, and hypothesis testing. Bioinformatics 19: 891–892.

51. Lall S, Grun D, Krek A, Chen K, Wang YL, et al. (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16: 460–471.

52. Saeed AI, Sharov V, White J, Li J, Liang W, et al. (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34: 374–378.

53. Chen C, Ridzon DA, Broman KW, Zhou Z, Lee DH, et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33: e179.

54. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔT cycle Method. Methods 25: 402–408.