Study of the dijet mass spectrum in \(pp \rightarrow W + \text{jets} \) events at \(\sqrt{s} = 7 \text{ TeV} \)

The CMS Collaboration

Abstract

We report an investigation of the invariant mass spectrum of the two jets with highest transverse momentum in \(pp \rightarrow W+2\text{-jet} \) and \(W+3\text{-jet} \) events to look for resonant enhancement. The data sample corresponds to an integrated luminosity of 5.0 fb\(^{-1}\) collected with the CMS detector at \(\sqrt{s} = 7 \text{ TeV} \). We find no evidence for the anomalous structure reported by the CDF Collaboration, and establish an upper limit of 5.0 pb at 95% confidence level on the production cross section for a generic Gaussian signal with mass near 150 GeV. Additionally, we exclude two theoretical models that predict a CDF-like dijet resonance near 150 GeV.

Submitted to Physical Review Letters
The CDF Collaboration reported evidence for an excess in the mass range 120–160 GeV in the invariant mass (m_{jj}) spectrum of the two leading transverse-momentum (p_T) jets produced in $p\bar{p} \rightarrow W+2$-jet events with a cross section of 4 pb \cite{1}. The DØ Collaboration carried out a similar analysis but did not confirm the CDF result, instead setting a 95% confidence level (CL) upper limit of 1.9 pb on the cross section \cite{2}. This Letter details the search for a bump-like enhancement in the m_{jj} spectrum in events with a W boson using 5.0 fb$^{-1}$ of data collected from pp collisions at $\sqrt{s} = 7$ TeV with the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC) during 2010 and 2011.

We search for a resonance with a width consistent with detector resolution as reported by CDF. We further investigate three representative models, a technicolor π_T from the decay of a technicolor ρ_T \cite{3}, a leptophobic Z' decaying to two jets \cite{4}, and the standard model (SM) Higgs boson ($m_H = 150$ GeV) produced in association with a W boson (referred to as WH production) and decaying to a pair of jets. For the unknown state with detector resolution, we follow the convention used at the Tevatron of using the conservative WH simulation for analysis-dependent quantities like efficiencies and acceptances. The WH production cross section at the LHC is negligible compared to contributions from other SM processes, which overwhelm any contribution to this analysis from WH $\rightarrow \ell\nu jj$ decays for $m_H \approx 125$ GeV \cite{5, 6}.

A detailed description of the CMS experiment can be found in Ref. \cite{7}. The central feature of the CMS detector is a superconducting solenoid, of 6 m internal diameter, that produces an axial magnetic field of 3.8 T. Located within the field volume is the silicon pixel and strip tracker extending up to $|\eta| = 2.5$, as well as a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadronic calorimeter (HCAL), both extending up to $|\eta| = 3$. Outside the field volume in the forward region ($3 < |\eta| < 5$) is an iron/quartz-fiber hadronic calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke outside the solenoid, in the pseudorapidity range $|\eta| < 2.4$. The CMS coordinate system has its origin at the center of the detector, with the z axis pointing along the direction of the counterclockwise proton beam. The azimuthal angle is denoted as ϕ, the polar angle as θ, and the pseudorapidity is defined as $\eta = -\ln [\tan (\theta/2)]$.

We employ selection criteria similar to those used at the Tevatron \cite{1, 2}, but modified to adapt to the higher background rates and different experimental conditions at the LHC. We also place more stringent requirements on the jet kinematics, as suggested in Ref. \cite{8}, to enhance a signal compared to the irreducible W plus jets background.

Events are selected with one well-identified and isolated lepton (muon or electron), large missing transverse energy E_T, and exactly two or exactly three high-p_T jets. The data were collected with a suite of single-lepton triggers, mostly with a p_T threshold of 24 GeV for muons and 25–32 GeV for electrons. The trigger efficiency for the selected muons (electrons) is about 94% (90%). We reconstruct muon candidates in the region $|\eta| < 2.1$ by combining information from the silicon tracker and the muon detectors by means of a global fit. We identify electron candidates within $|\eta| < 1.44$ and $1.57 < |\eta| < 2.5$ as clustered energy deposits in the electromagnetic calorimeter that are matched to tracks. Muon and electron candidates need to fulfill quality criteria established for the measurement of the inclusive W and Z cross sections \cite{9}. In addition, all leptons must be well-separated from hadronic activity in the event. Jets within an η-ϕ cone of radius 0.3 around a lepton candidate are removed.

The muon (electron) transverse momentum must exceed 25 (35) GeV, and E_T must be greater than 25 (30) GeV in the muon (electron) analysis. The transverse mass M_T of each W candidate
must be greater than 50 GeV, where
\[M_T \equiv \sqrt{2p_T^\ell E_T [1 - \cos(\phi_\ell - \phi_{E/T})]} \]
and \(\phi_\ell \) and \(\phi_{E/T} \) are the azimuthal angles of the lepton and \(E_T \), respectively. Events with more than one identified lepton are vetoed.

We reconstruct jets and \(E_T \) with the particle-flow algorithm \cite{11}, which combines information from several subdetectors. The jet finding uses the anti-\(k_T \) clustering algorithm \cite{12} with a distance parameter of 0.5. We require \(|\eta_{\text{jet}}| < 2.4 \) to ensure that they lie within the tracker acceptance, and a minimum jet \(p_T \) of 30 GeV. Jets must satisfy identification criteria that eliminate jet candidates originating from noisy channels in the hadron calorimeter \cite{13}. Jet-energy corrections are applied to account for the non-linear response of the calorimeters to the particle energies and other instrumental effects. These corrections are based on in-situ measurements using dijet, \(\gamma + \text{jet} \), and \(Z + \text{jet} \) data samples \cite{14}. Overlapping minimum-bias events from other pp collisions (pile-up) and the underlying event can contribute additional energy to the reconstructed jets. The median energy density due to pile-up is evaluated in each event and the corresponding energy is subtracted from each jet \cite{15}. In addition, tracks that do not originate from the primary vertex are not considered for jet clustering \cite{16}. We verify that the procedures successfully remove the dependence of jet response on the number of interactions in a single event. The jet \(p_T \) resolution varies from 15% at \(p_T = 40 \text{ GeV} \) to 6% at \(p_T = 400 \text{ GeV} \) \cite{14}. We evaluate the mass resolution \(\sigma_{jj} \) for a selected jet pair using simulation and verify it using hadronic W decays in data. We find \(\sigma_{jj} \) to be 10% of \(m_{jj} \) for masses around 150 GeV.

We require \(\|\vec{p}_{T1} + \vec{p}_{T2}\| > 45 \text{ GeV} \) and \(|\Delta\eta(j_1, j_2)| < 1.2 \), where the jets are numbered in order of decreasing \(p_T \). We retain events with exactly two or exactly three jets satisfying \(p_T > 30 \text{ GeV} \) and with the leading jet having \(p_T > 40 \text{ GeV} \) and pointing more than 0.4 rad in azimuth from the direction of the \(E_T \). The selected jets and the lepton from the W decay must originate from the same primary vertex. Additionally, we impose \(0.3 < p_{T2}/m_{jj} < 0.7 \) to take advantage of the Jacobian nature of resonant dijet production as observed in simulation studies compared with nonresonant W plus jets production.

W production with two or more jets dominates the selected sample. Smaller contributions come from top-pair and single-top decays, Drell–Yan events with two or more jets, multijet production, and \(WW \) and \(WZ \) diboson production where one W decays into leptons and the other W or Z decays into quarks.

The shapes of the \(m_{jj} \) distributions for background processes are modeled using samples of simulated events. The \textsc{MadGraph5} 1.3.30 \cite{17} event generator produces parton-level events with a W boson and up to four partons on the basis of matrix-element (ME) calculations. (The Tevatron experiments used the \textsc{Alpgen} generator \cite{18}.) The ME–parton shower matching scale \(\mu \) is taken to be 20 GeV \cite{19}, and the factorization and renormalization scales are set to \(q^2 = M_W^2 + p_{T,W}^2 \). Samples of \(t\bar{t} \) and Drell–Yan events are also generated with \textsc{MadGraph}. Single-top production is modeled with \textsc{Powheg} 1.0 \cite{20}. Multijet and diboson samples (\(WW \), \(WZ \), \(ZZ \)) are generated with \textsc{Pythia} 6.422 \cite{21}. \textsc{Pythia} provides the parton shower simulation in all cases, with parameters of the underlying event set to the Z2 tune \cite{22}. The set of parton distribution functions used is \textsc{Cteq6Ll} \cite{23}. A \textsc{Geant4}-based simulation \cite{24} of the CMS detector is used in the production of all Monte Carlo (MC) samples. Multiple proton-proton interactions within a bunch crossing are simulated, and the triggers are emulated. All simulated events are reconstructed and analyzed with the same software as data.

We generate signal samples for the WH model using \textsc{Pythia}, with parameters corresponding
Table 1: Treatment of background m_{jj} shapes and normalizations in a fit to the data. The background normalizations are constrained within the fit to Gaussian distributions with the listed central values and widths.

Process	Shape	Constraint on normalization
W plus jets	MC/data	Unconstrained
Diboson	MC	61.2 pb ± 10% (NLO) [25]
tt	MC	163 pb ± 7% (NLO) [26]
Single-top	MC	84.9 pb ± 5% (NNLL) [27–29]
Drell–Yan plus jets	MC	3.05 nb ± 4.3% (NNLO) [30]
Multijet (QCD) data	data	E_T fit (described in text)

a SM Higgs boson with $m_H = 150$ GeV. We use PYTHIA for technicolor generation as well. We generate leptophobic Z' with MADGRAPH. The authors of Refs. [3, 4] provided values for masses and other parameters of the technicolor and Z' models that would best correspond to the signal observed by CDF.

We determine the contributions of the known SM processes to the observed m_{jj} spectrum by means of an extended unbinned maximum-likelihood fit in the range between 40 GeV and 400 GeV. We fit separately in four event categories, $\{\mu, e\} \times \{2$-jet, 3$\text{-jet}\}$, because the background compositions differ. The m_{jj} signal region, 123 to 186 GeV, corresponding to $\pm 2\sigma_{jj}$, is excluded from this fit in order to arrive at an unbiased estimate of a possible resonant enhancement in this region.

Table 1 lists the SM processes included in the fit. The W plus jets normalization is a free fit parameter because it is by far the dominant background. We allow the normalizations of the other background components to vary within Gaussian constraints around the central values also listed in Table 1. The central values for all processes except multijet come from next-to-leading-order (NLO), next-to-next-to-leading-log (NNLL) or next-to-NLO (NNLO) calculations, and the constraints reflect the published uncertainties. We derive templates for the m_{jj} distribution for each background from simulation except for the multijet events, which contribute when jets are misidentified as leptons. In a separate fit to events that fail the lepton isolation requirements, we determine the central value of the multijet normalization, the constraint on the normalization and the template for the m_{jj} distribution [9]. The fit to data determines the correlations among the various fit parameters.

The default CMS MADGRAPH sample of the dominant W plus jets background does not describe well the m_{jj} spectrum in the m_{jj} sidebands. Four alternative samples of W events, with the scales μ and q increased and reduced by a factor two with respect to those of the default, fail to provide significant improvement. Thus, we employ an empirically-driven combination of three shapes to describe this component in the fit model:

$$F_{W+\text{jets}} = \alpha F_{W+\text{jets}}(\mu_0^2, q_0^2) + \beta F_{W+\text{jets}}(\mu'^2, q_0^2) + (1 - \alpha - \beta) F_{W+\text{jets}}(\mu_0^2, q_0^2),$$

where $F_{W+\text{jets}}$ denotes the m_{jj} shape from simulation. The parameters μ_0 (μ') and q_0 (q') correspond to the default (alternative) values of μ and q, respectively, while fractional contributions α and β are free to vary between 0 and 1. We take $\mu' = 2\mu_0$ or $0.5\mu_0$ ($q' = 2q_0$ or $0.5q_0$), depending on which alternative sample provides a better fit to data. Furthermore, we verify, via pseudo-experiment simulations generated with an alternate shape, that the function in the above equation has sufficient freedom to describe the W plus jets shape.

Figure 1(a) shows the observed m_{jj} distribution for all four event categories combined, together
Figure 1: (a) Distribution of the invariant mass spectrum of the leading two jets observed in data. Overlaid are the fit projections of the various components. The region between the vertical dashed lines is excluded from the fit. (b) The same distribution after subtraction of all SM components except the electroweak processes WW/WZ. Error bars correspond to the statistical uncertainties. The hatched band represents the uncertainty on the sum of the SM components including correlations from the fit. The dark blue histogram is a resonance consistent with detector resolution and normalized to the CDF cross section scaled as described in the text. (c) The bin-by-bin pull, \((\text{data} - \text{fit}) / \text{(fit uncertainty)}\). The bins in the figures are representative of the expected resolution for a given mass and the number of entries in each bin is scaled by its width.
Table 2: Event yields determined from maximum-likelihood fits to the data. The total fit yields are corrected for bias. The total fit uncertainties include the correlations among the various yields, as determined by the fit, and the corrections derived from the fit validation described in the text. The χ^2 probability uses the residuals and the data and MC statistical errors.

Process	muons			electrons		
	2-jet	3-jet	2-jet	3-jet	2-jet	3-jet
W plus jets	58919±530	13069±366	29787±1153	8397±292	530±130	366±297
Dibosons	1236±114	333±32	685±65	184±18	114±33	65±36
tt	4570±307	9049±382	2556±174	4265±253	207±51	125±35
Single-top	1765±87	1001±50	916±46	521±26	87±32	46±18
Drell–Yan plus jets	1837±79	561±24	1061±46	364±16	79±32	46±18
Multijet (QCD)	29±284	0±90	3944±1133	324±160	28±23	9±3

Fit χ^2 probability	0.454	0.729	0.969	0.991		
Total from fit	68294±307	24013±193	38949±228	14055±143		
Data	67900	24046	38973	14145		

In the signal region $123 < m_{jj} < 186$ GeV (excluded from the fit)

| Total predicted | 14511±125 | 7739±95 | 7944±92 | 4347±70 | | |
| Data | 14050 | 7751 | 8023 | 4438 | | |

with the fitted projections of the contributions of various SM processes. Figure 1(b) shows the same distribution after subtraction of all SM contributions from data except electroweak diboson WW/WZ events. No peak is visible in the spectrum except that near 80 GeV due to diboson events. Figure 1(c) shows the bin-by-bin pull. Table 2 presents the yields of the SM components obtained from the fit. The sum of all the contributions is compared to the number of observed events. All numbers except those in the last two rows are for the m_{jj} range of 40 to 400 GeV. The last two rows compare the observed number of events and the number predicted by the fit in the m_{jj} range of 123 to 186 GeV. The data agree with the SM expectations, and we find no significant excess in the signal region. We observe a sizable deficit in the muon 2-jet data with respect to the prediction from our model. We do not observe similar deviations in the other three categories, suggesting it is a fluctuation and not a systematic bias.

We validate the fit procedure by performing pseudo-experiments. In each experiment, we generate the m_{jj} pseudo-data of the SM processes, including the correlations taken from the fit to data, and then fit each pseudo-data sample. The results indicate that the bias on the total yield is below 0.2% and that the fit underestimates the total yield uncertainty by about 30%. These effects are corrected for in the final result. Uncertainties in the jet energy are estimated using a sample of W bosons decaying hadronically in a pure sample of semileptonic $t\bar{t}$ events. The mean and resolution of the reconstructed dijet mass distribution in data agree within 0.6% with the expectation from simulation. A small difference in E_T resolution [10] between data and simulation affects the signal acceptance for the new physics models under consideration at the 0.5% level. Further systematic uncertainties are due to the uncertainty of the trigger efficiency estimates (1%) and the estimate of lepton reconstruction and selection efficiency (2%) [9]. The uncertainty on the integrated luminosity is 2.2% [31].

We scrutinize the dijet mass spectrum near 150 GeV, searching for a technicolor, leptophobic Z', or WH resonant enhancement. We also use a generic signal model obtained by convolving a delta function centered at $m_{jj} = 150$ GeV with a Gaussian function having width equal to σ_{jj}. Figure 1(b) shows this generic signal shape. The expected number of signal events at the LHC for a given cross section at the Tevatron can be estimated by considering the ratio of the
Table 3: The PYTHIA cross sections at 7 TeV times branching fraction to jets ($\sigma \times B$) and overall efficiency times acceptance (εA) for various signal models. The relative uncertainties in ε measurements are 1–2%. The uncertainty on A is negligible.

Signal model	$\sigma \times B$ (pb)	εA (muons)	εA (electrons)		
	2-jet	3-jet	2-jet	3-jet	
Technicolor [3]	7.4	0.065	0.020	0.039	0.011
Z' [4]	8.1	0.070	0.023	0.042	0.014
WH [21]	0.059	0.060	0.019	0.038	0.013

predicted cross sections for our reference process, WH production with $M_H = 150$ GeV. This process is dominated by quark-antiquark ($q\bar{q}$) annihilation. As $q\bar{q}$ processes have the smallest increase in parton luminosity from the Tevatron to the LHC, this choice provides a conservative limit. We therefore assume

$$\sigma_{\text{dijet resonance}}^{\text{LHC}} = \sigma_{\text{dijet resonance}}^{\text{Tevatron}} \times \frac{\sigma_{\text{WH}}^{\text{LHC}}}{\sigma_{\text{WH}}^{\text{Tevatron}}}$$

where $\sigma_{\text{WH}}^{\text{LHC}} = 300.1$ fb [32] and $\sigma_{\text{WH}}^{\text{Tevatron}} = 71.8$ fb [33]. A generic Gaussian signal normalized to $\sigma_{\text{Tevatron}} = 4$ pb corresponds to $\sigma_{\text{LHC}} = 16.7$ pb. Table 3 contains the values of σ_{LHC} times the branching fraction to jets and of the overall efficiency times acceptance εA for the models considered.

Since we observe no resonant enhancement, we proceed to set exclusion limits using a modified frequentist CL$_S$ method [34, 35] with profile likelihood as the test statistic. Inputs to the limit-setting procedure are the m_{jj} distribution obtained by combining the SM components from the fit, the observed distribution in data, the expectation from the dijet resonance model under consideration and the uncertainties associated with these quantities. Figure 2(a) shows the observed and expected CL$_S$ values versus cross section for a generic Gaussian signal, after combining the results of all four event categories. We set a 95% CL upper limit of 5.0 pb and a 99.9% CL upper limit of 8.5 pb on the dijet production cross section for a generic resonance with WH-like εA.

Figure 2(b) compares the 95% CL upper limits with the expected cross sections for technicolor, leptophobic Z', and WH ($M_H = 150$ GeV) signals. The technicolor and Z' models are excluded. Because we have minimal sensitivity to WH, we compare the limit in Fig. 2(b) to 100 times the SM cross section as an illustration.

In summary, we have studied the invariant mass spectrum of the two jets with highest transverse momentum in $pp \rightarrow W+2$-jet and $W+3$-jet events, with the W decaying leptonically to a muon or electron. The analyzed data sample corresponds to an integrated luminosity of 5.0 fb$^{-1}$ at $\sqrt{s} = 7$ TeV. We find no evidence for a resonant enhancement near a dijet mass of 150 GeV, as reported by the CDF Collaboration, and set upper limits on the dijet production cross section of 5.0 pb at 95% CL and 8.5 pb at 99.9% CL. Two theoretical models, leptophobic Z' and technicolor, which predict the presence of a resonant enhancement near 150 GeV, are excluded.

We thank Adam Martin and Matthew Buckley for help with simulation of technicolor and Z' models, respectively. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS,
Figure 2: (a) The observed and expected values of the CL_S statistic for a generic Gaussian signal hypothesis with $M = 150$ GeV and $\sigma_{jj} = 15$ GeV, as a function of the dijet signal cross section. (b) Observed and expected 95% CL upper limits, with one- and two-sigma error bands, on the cross section divided by the expected values for various signal models. The limits are calculated using the CL_S method. A value of the excluded cross section over the predicted cross section of less than one indicates that the model is excluded at 95% CL. Table 3 lists the cross sections for these models.
MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

[1] CDF Collaboration, “Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in p̅p Collisions at √s = 1.96 TeV”, Phys. Rev. Lett. 106 (2011) 171801, doi:10.1103/PhysRevLett.106.171801, arXiv:1104.0699.

[2] DO Collaboration, “Bounds on an Anomalous Dijet Resonance in W+jets Production in p̅p collisions at √s = 1.96 TeV”, Phys. Rev. Lett. 107 (2011) 011804, doi:10.1103/PhysRevLett.107.011804, arXiv:1106.1921.

[3] E. J. Eichten, K. Lane, and A. Martin, “Technicolor Explanation for the CDF Wjj Excess”, Phys. Rev. Lett. 106 (Jun, 2011) 251803, doi:10.1103/PhysRevLett.106.251803.

[4] M. R. Buckley et al., “Light Z’ Bosons at the Tevatron”, Phys. Rev. D 83 (2011) 115013, doi:10.1103/PhysRevD.83.115013, arXiv:1103.6035.

[5] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, (2012). Submitted to Phys. Lett. B.

[6] ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, (2012). Submitted to Phys. Lett. B.

[7] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008), no. 08, S08004, doi:10.1088/1748-0221/3/08/S08004.

[8] E. Eichten, K. Lane, and A. Martin, “Testing CDF’s Dijet Excess and Technicolor at the LHC”, (2011). arXiv:1107.4075.

[9] CMS Collaboration, “Measurement of the inclusive W and Z production cross sections in pp collisions at √s = 7 TeV”, JHEP 10 (2011) 1, doi:10.1007/JHEP10(2011)132, arXiv:1107.4789.

[10] CMS Collaboration, “Missing transverse energy performance of the CMS detector”, JINST 6 (2011), no. 09, P09001, doi:10.1088/1748-0221/6/09/P09001, arXiv:1106.5048.

[11] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_T”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, (2009).

[12] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063.
[13] CMS Collaboration, “Identification and filtering of uncharacteristic noise in the CMS hadron calorimeter”, *JINST* 5 (2010) T03014, doi:10.1088/1748-0221/5/03/T03014, arXiv:0911.4881.

[14] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, *JINST* 6 (2011) P11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[15] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, *Phys. Lett. B* 659 (2008) 119, doi:10.1016/j.physletb.2007.09.077, arXiv:0707.1378.

[16] M. Cacciari, G. P. Salam, and G. Soyez, “The Catchment Area of Jets”, *JHEP* 04 (2008) 005, doi:10.1088/1126-6708/2008/04/005, arXiv:0802.1188.

[17] F. Maltoni and T. Stelzer, “MadEvent: automatic event generation with MadGraph”, *JHEP* 02 (2003) 027, doi:10.1088/1126-6708/2003/02/027, arXiv:hep-ph/0208196.

[18] M. L. Mangano et al., “ALPGEN, a generator for hard multiparton processes in hadronic collisions”, *JHEP* 07 (2003) 001, doi:10.1088/1126-6708/2003/07/001, arXiv:hep-ph/0206293.

[19] S. Hoeche et al., “Matching Parton Showers and Matrix Elements”, (2006), arXiv:hep-ph/0602031.

[20] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with Parton Shower simulations: the POWHEG method”, *JHEP* 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.

[21] T. Sjostrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, *JHEP* 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[22] CMS Collaboration, “Measurement of the underlying event activity at the LHC with \(\sqrt{s} = 7\) TeV and comparison with \(\sqrt{s} = 0.9\) TeV”, *JHEP* 2011 (09) 109, doi:10.1007/JHEP09(2011)109, arXiv:1107.0330.

[23] H.-L. Lai et al., “Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions”, *Phys. Rev. D* 82 (2010) 054021, doi:10.1103/PhysRevD.82.054021, arXiv:1004.4624.

[24] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[25] J. M. Campbell, R. K. Ellis, and C. Williams, “Vector boson pair production at the LHC”, *JHEP* 7 (2011) 018, doi:10.1007/JHEP07(2011)018, arXiv:1105.0020.

[26] N. Kidonakis, “Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution”, *Phys. Rev. D* 82 (2010) 114030, doi:10.1103/PhysRevD.82.114030, arXiv:1009.4935.

[27] N. Kidonakis, “Next-to-next-to-leading logarithm resummation for s-channel single top quark production”, *Phys. Rev. D* 81 (2010) 054028, doi:10.1103/PhysRevD.81.054028, arXiv:1001.5034.
[28] N. Kidonakis, “Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production”, Phys. Rev. D 83 (2011) 091503, doi:10.1103/PhysRevD.83.091503, arXiv:1103.2792.

[29] N. Kidonakis, “Two-loop soft anomalous dimensions for single top quark associated production with a W^- or H^-”, Phys. Rev. D 82 (2010) 054018, doi:10.1103/PhysRevD.82.054018, arXiv:1005.4451.

[30] K. Melnikov and F. Petriello, “Electroweak gauge boson production at hadron colliders through $O(a_s^2)$”, Phys. Rev. D 74 (2006) 114017, doi:10.1103/PhysRevD.74.114017, arXiv:hep-ph/0609070.

[31] CMS Collaboration, “Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update”, CMS Physics Analysis Summary CMS-PAS-SMP-12-008, (2012).

[32] LHC Higgs Cross Section Working Group et al., “Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables”, (CERN, Geneva, 2011). arXiv:1101.0593.

[33] Higgs Working Group, M. S. Carena, et al., “Report of the Tevatron Higgs working group”, (2000). arXiv:hep-ph/0010338.

[34] A. L. Read, “Modified frequentist analysis of search results (the C_L method)”, Technical Report CERN-OPEN-2000-005, CERN, (2000).

[35] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Höchstenergiephysik der OEAW, Wien, Austria
W. Adam, E. Aguilo, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan¹, M. Friedl, R. Frühwirth¹, V.M. Ghete, J. Hammer, N. Hörmann, J. Hrubec, M. Jeitler¹, W. Kiesenhofer, V. Knünz, M. Krammer¹, I. Krätschmer, D. Liko, I. Mikulec, M. Pernicka¹, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz¹

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universität Antwerpen, Antwerpen, Belgium
M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, L. Micibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, T. Reis, L. Thomas, G. Vander Marcken, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco², J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebrengs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, L. Soares Jorge, A. Sznajder

Instituto de Física Teórica, Universidade Estadual Paulista, Sao Paulo, Brazil
T.S. Anjos³, C.A. Bernardes³, F.A. Dias³, T.R. Fernandez Perez Tomei, E. M. Gregores³, C. Lagana, F. Marinho, P.G. Mercadante³, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev³, P. Iaydjiev³, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhiuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang,
X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, S. Guo, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng,
D. Wang, L. Zhang, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Pileta6, D. Polic, I. Puljak5

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
Y. Assran7, S. Elgammal8, A. Ellithi Kamel9, S. Khalil8, M.A. Mahmoud10, A. Radi11,12

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Muntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Harkonen, A. Heikkinen, V. Karimaki, R. Kinnunen, M.J. Kortelainen, T. Lampen, K. Lassila-
Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi,
E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour,
A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millisicher,
A. Nayak, J. Rander, A. Rosowsky, I. Shreyer, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj13, C. Broutin, P. Busson, C. Charlot,
N. Daci, T. Dahms, L. Dobrzynski, R. Granier de Cassagnac, M. Haguenaier, P. Miné,
C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois,
C. Veelken, A. Zabi
Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte, F. Drouhin, C. Ferro, J.-C. Fontaine, D. Gelé, U. Goerlach, P. Juillot, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France, Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, O. Bondou, G. Boudoul, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, Y. Tschudi, P. Verdier, S. Viret

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
J.-L. Agram, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte, F. Drouhin, C. Ferro, J.-C. Fontaine, D. Gelé, U. Goerlach, P. Juillot, A.-C. Le Bihan, P. Van Hove

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, O. Bondou, G. Boudoul, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, Y. Tschudi, P. Verdier, S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
G. Anagnostou, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, P. Kreuzer, C. Magass, M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
M. Bontenackels, V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuesseli, A. Nowack, L. Perchalla, O. Pooth, P. Sauerland, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, E. Castro, C. Costanza, D. Dammann, C. Diez Pardos, G. Eckerlin, D. Eckstein, G. Flucke, A. Geiser, I. Glushkov, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, H. Jung, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann, B. Lutz, R. Mankel, I. Marfin, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mlch, A. Musgiller, S. Naumann-Emme, J. Olzem, H. Perrey, A. Petrukhin, D. Pitzl, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron, M. Rosin, J. Salfeld-Nebgen, R. Schmidt, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
C. Autermann, V. Blobel, J. Draeger, H. Enderle, J. Erfle, U. Gebbert, M. Görner, T. Hermanns, R.S. Höing, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, F. Nowak, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, J. Thomsen, L. Vanelderen
Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Berger, C. Böser, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff, C. Hackstein, F. Hartmann, T. Hauth, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, I. Katkov, J.R. Komaragiri, P. Lobelle Pardo, D. Martschei, S. Mueller, T. Müller, M. Niegel, A. Nürnberg, O. Oberst, A. Oehler, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker, A. Scheurer, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, P. Mehta, A.K. Mohanty, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, S. Ganguly, M. Guchait, M. Maity, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, H. Hesari, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdizadeh, B. Safarzadeh, M. Zeinali

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza,
P. Meridiania,5, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Soffia,b

 INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy

 N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, M. Costaa,b, N. Demariaa, C. Mariottia,5, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,5, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

 INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy

 S. Belfortea, V. Candelisea,b, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,5, D. Montaninoa,b,5, A. Penzoa, A. Schizzia,b

 Kangwon National University, Chunchon, Korea

 S.G. Heo, T.Y. Kim, S.K. Nam

 Kyungpook National University, Daegu, Korea

 S. Chang, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son

 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

 J.Y. Kim, Zero J. Kim, S. Song

 Korea University, Seoul, Korea

 S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park

 University of Seoul, Seoul, Korea

 M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

 Sungkyunkwan University, Suwon, Korea

 Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

 Vilnius University, Vilnius, Lithuania

 M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

 H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Martínez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

 Universidad Iberoamericana, Mexico City, Mexico

 S. Carrillo Moreno, F. Vazquez Valencia

 Benemérita Universidad Autonoma de Puebla, Puebla, Mexico

 H.A. Salazar Ibarguen

 Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

 E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

 University of Auckland, Auckland, New Zealand

 D. Krofcheck

 University of Canterbury, Christchurch, New Zealand

 A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.H. Ansari, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
I. Belotelov, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, V. Karjavin, V. Konoplyanikov, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
S. Evtushukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gnenenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin³, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kudolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, A. Popov, L. Sarycheva⁴, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin⁵, V. Kachenov, D. Konstantinov, A. Korablev, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic³⁰, M. Djordjevic, M. Ekmedzic, D. Krpic³⁰, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo
Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. García-Abia, O. González Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, C. Jorda, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, D. D’Enterria, A. Dabrowski, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Giunta, F. Glege, R. Gomez-Reino Garrido, P. Govoni, S. Gowdy, R. Guida, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, Y.-J. Lee, P. Lenzi, C. Lourenço, N. Magini, T. Mäki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, P. Musella, E. Nesvold, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimià, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi, C. Rovelli, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas, D. Spiga, A. Tisrou, G.I. Veres, J.R. Vlimant, H.K. Wöhri, S.D. Worm, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dietmar, M. Donegà, M. Dünser, J. Eegster, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lustermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägele, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov, B. Stieger, M. Takahashi, L. Tauscher, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli

Universität Zürich, Zurich, Switzerland
C. Amsler, V. Chiocchia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti

National Central University, Chung-Li, Taiwan
Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, A.P. Singh, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, X. Wan, M. Wang

Cukurova University, Adana, Turkey

A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gursนзн, I. Hos, E.E. Kangat, T. Karaman, G. Karapınar, A. Kayis Topakෙ, G. Onengut, K. Ouzemir, S. Ozturk, A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey

I.V. Akin, T. Aliiev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Opzineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey

E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey

K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

L. Levchuk

University of Bristol, Bristol, United Kingdom

F. Bostock, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom

L. Basso, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom

R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, A. Papageorgiou, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, M. Stoye, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie

Brunel University, Uxbridge, United Kingdom

K. Hatakeyama, H. Liu, T. Scarborough

Baylor University, Waco, USA

O. Charaf, C. Henderson, P. Rumerio
Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, T. Miceli, D. Pellett, F. Ricci-tam, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra

University of California, Los Angeles, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein^1, P. Traczyk, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng^50, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer, G. Petrucchini, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech^51, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Krutelyov, S. Lowette, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, M. Spiropulu, V. Timciuc, J. Veverka, R. Wilkinson, S. Xie, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
B. Akgun, V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn
Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Kilminster, B. Klima, S. Kunori, S. Kwan, C. Leonidopoulos, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, R. Remington, A. Rinkevicius, P. Sellers, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, F. Lacroix, M. Malek, C. O’Brien, C. Silkworth, D. Strom, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, S. Griffiths, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, Y. Onel, F. Ozok, S. Sen, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn,
T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Peterman, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, K. Krajczar56, W. Li, P.D. Luckey, T. Ma, S. Nahm, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
S.I. Cooper, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, S.C. Kao, K. Klaoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, University, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Casco, J. Haley, D. Nash, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, B. Safdi, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
J.G. Acosta, E. Brownson, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyan

Purdue University, West Lafayette, USA
E. Alagöz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng
Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA
A. Adair, C. Boulahouache, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, C. Florez, S. Greene, A. Gurrola, W. Johns, C. Johnston, P. Kurt, C. Maguire, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, M. Bachtis, D. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, E. Friis, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, F. Palmonari, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, USA
5: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
6: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
7: Also at Suez Canal University, Suez, Egypt
8: Also at Zewail City of Science and Technology, Zewail, Egypt
9: Also at Cairo University, Cairo, Egypt
10: Also at Fayoum University, El-Fayoum, Egypt
11: Also at British University, Cairo, Egypt
12: Now at Ain Shams University, Cairo, Egypt
13: Also at National Centre for Nuclear Research, Swierk, Poland
14: Also at Université de Haute-Alsace, Mulhouse, France
15: Now at Joint Institute for Nuclear Research, Dubna, Russia
16: Also at Moscow State University, Moscow, Russia
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at Eötvös Loránd University, Budapest, Hungary
20: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
21: Also at University of Visva-Bharati, Santiniketan, India
22: Also at Sharif University of Technology, Tehran, Iran
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran
25: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
26: Also at Università della Basilicata, Potenza, Italy
27: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
28: Also at Università degli studi di Siena, Siena, Italy
29: Also at University of Bucharest, Faculty of Physics, București-Magurele, Romania
30: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
31: Also at the University of California, Los Angeles, Los Angeles, USA
32: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
33: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
34: Also at University of Athens, Athens, Greece
35: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
36: Also at The University of Kansas, Lawrence, USA
37: Also at Paul Scherrer Institut, Villigen, Switzerland
38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
39: Also at Gaziosmanpasa University, Tokat, Turkey
40: Also at Adiyaman University, Adiyaman, Turkey
41: Also at Izmir Institute of Technology, Izmir, Turkey
42: Also at The University of Iowa, Iowa City, USA
43: Also at Mersin University, Mersin, Turkey
44: Also at Ozyegin University, Istanbul, Turkey
45: Also at Kafkas University, Kars, Turkey
46: Also at Suleyman Demirel University, Isparta, Turkey
47: Also at Ege University, Izmir, Turkey
48: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
49: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
50: Also at University of Sydney, Sydney, Australia
51: Also at Utah Valley University, Orem, USA
52: Also at Institute for Nuclear Research, Moscow, Russia
53: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
54: Also at Argonne National Laboratory, Argonne, USA
55: Also at Erzincan University, Erzincan, Turkey
56: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
57: Also at Kyungpook National University, Daegu, Korea