Analysis of a small outbreak of Shiga toxin-producing Escherichia coli O157:H7 using long-read sequencing

Citation for published version:
Greig, DR, Jenkins, C, Gharbia, SE & Dallman, TJ 2021, 'Analysis of a small outbreak of Shiga toxin-producing Escherichia coli O157:H7 using long-read sequencing', Microbial Genomics. https://doi.org/10.1099/mgen.0.000545

Digital Object Identifier (DOI):
10.1099/mgen.0.000545

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Microbial Genomics

Publisher Rights Statement:
© 2021 The Authors This is an Open Access article published by the Microbiology Society under the Creative Commons Attribution License

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Jul. 2021
Analysis of a small outbreak of Shiga toxin-producing *Escherichia coli* O157:H7 using long-read sequencing

David R. Greig1,2, Claire Jenkins1,*, Saheer E. Gharbia1 and Timothy J. Dallman1,2

Abstract

Compared to short-read sequencing data, long-read sequencing facilitates single contiguous *de novo* assemblies and characterization of the prophage region of the genome. Here, we describe our methodological approach to using Oxford Nanopore Technology (ONT) sequencing data to quantify genetic relatedness and to look for microevolutionary events in the core and accessory genomes to assess the within-outbreak variation of four genetically and epidemiologically linked isolates. Analysis of both Illumina and ONT sequencing data detected one SNP between the four sequences of the outbreak isolates. The variant calling procedure highlighted the importance of masking homologous sequences in the reference genome regardless of the sequencing technology used. Variant calling also highlighted the systemic errors in ONT base-calling and ambiguous mapping of Illumina reads that results in variations in the genetic distance when comparing one technology to the other. The prophage component of the outbreak strain was analysed, and nine of the 16 prophages showed some similarity to the prophage in the Sakai reference genome, including the *stx2a*-encoding phage. Prophage comparison between the outbreak isolates identified minor genome rearrangements in one of the isolates, including an inversion and a deletion event. The ability to characterize the accessory genome in this way is the first step to understanding the significance of these microevolutionary events and their impact on the evolutionary history, virulence and potentially the likely source and transmission of this zoonotic, foodborne pathogen.

DATA SUMMARY

All FASTQ files and assemblies were submitted to the National Centre for Biotechnology Information (NCBI). All data can be found under BioProject: PRJNA315192 - https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA315192. Strain-specific details can be found in Methods under data deposition.

INTRODUCTION

Shiga toxin-producing *Escherichia coli* (STEC) O157:H7 is a human, gastrointestinal pathogen that colonizes the gut of healthy ruminants, particularly cattle and sheep. Symptoms in humans range from mild diarrhoea to include abdominal cramps, vomiting and severe bloody diarrhoea. In 5–15% of cases, the infection can lead to the development of haemolytic uremic syndrome (HUS), a severe multi-system syndrome [1], that can be fatal, particularly in young children and the elderly. STEC O157:H7 has a very low infectious dose (10–100 organisms) and transmission to humans occurs through consumption of contaminated food or water, direct or indirect contact with animals or their environment and through person-to-person spread [1].

In 2015, Public Health England (PHE) implemented high-throughput, real-time sequencing for the surveillance of gastrointestinal pathogens, including STEC O157:H7. The detection of SNPs by mapping short reads to a single reference genome is used to identify linked cases and outbreaks of infectious disease. High-quality SNPs are identified based on validated thresholds of mapping quality, mapping depth, and variant ratio. SNPs that do not meet these criteria, positions that have no aligned reads, or invariant positions with depth or mapping quality less than the specified thresholds are

Received 09 October 2020; Accepted 15 February 2021; Published 08 March 2021

Author affiliations: 1National Infection Service, Public Health England, London, NW9 5EQ, UK; 2Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK.

Correspondence: Claire Jenkins, Claire.Jenkins1@phe.gov.uk

Keywords: Bacteriophage; *Escherichia coli* O157:H7; Illumina; Nanopore; Shiga toxin; Whole Genome sequencing.

Abbreviations: GATK, genome analysis toolkit; HUS, haemolytic uremic syndrome; LEE, locus of enterocyte effacement; MQ, mapping quality; NCBI, national centre for biotechnology information; ONT, Oxford Nanopore Technology; PHE, Public Health England; PLE, prophage-like element; PT, phage type; SBI, Shiga toxin bacteriophage insertion; STEC, Shiga toxin-producing *Escherichia coli*; WGS, whole genome sequencing.

Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files.

© 2021 The Authors

This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
and six prophage-like regions including the locus of enterocyte effacement [10]. SNPs were identified using GATKv2.6 in unified genotyper mode [11]. Core-genome positions that had a high-quality SNP (>90% consensus, minimum depth 10×, MQ > =30) in at least one isolate were extracted for further analysis. Genomes were compared to the sequences held in the PHE STEC O157:H7 WGS database, (SnapperDB v0.2.5, STEC O157:H7) and isolates with five SNP differences or less within their core genome were considered closely related and likely to have an epidemiological link [7, 12].

Long read sequencing using ONT and data processing

Genomic DNA was extracted and purified using two methods. The first was the Promega Wizard Genomic DNA Purification Kit (Promega, Madison, USA) with minor alterations including doubled incubation times, no vigorous mixing steps (performed by inversion) and elution into 50 µl of double processed nuclease free water (Sigma-Aldrich, St. Louis, USA). The second method was the Revolugen Fire Monkey DNA extraction kit (Revolugen, Glossop, UK) to the manufacturer’s instructions. DNA was quantified using a Qubit and the HS (High sensitivity) dsDNA Assay Kit (Thermofisher Scientific, Waltham, USA) to the manufacturer’s instructions. Library preparation was performed using the Native Barcoding kit (SQK-LSK108 and EXP-NBD103) (Oxford Nanopore Technologies, Oxford, UK). The prepared library was loaded on a FLO-MIN106 R9.4.1 flow cell (Oxford Nanopore Technologies, Oxford, UK) and sequenced using the MinION for 48 h.

Data was produced in a raw FAST5 format was base-called and de-multiplexed using Guppy V3.2.6 (Oxford Nanopore...
Technologies) into FASTQ format and grouped in each samples’ respective barcode. Samples were re-demultiplexed using Deepbinner v0.2.0 [13]. Run metrics were generated using Nanoplot v1.8.1 [14]. The barcode and y-adapter from each sample’s reads were trimmed, and chimeric reads split using Porechop v0.2.1 [15]. Finally, the trimmed reads were filtered using Filtlong v0.1.1 [16] with the following parameters; min_length=1000, keep_percent=90 and target_bases=550 Mbp, to generate approximately 100× coverage of the STEC genome with the longest and highest quality reads.

De novo assembly, polishing, reorientation and annotation

Trimmed and filtered ONT FASTQ files were assembled using Flye v2.6 [17]. The assembly for each sample that had the highest N50 and lowest number of contigs with the assembly size (between 5.3–6.0 Mbp) were taken forward. Polishing of the assemblies was performed in a three-step process firstly, using Nanopolish v0.11.1 [18] using both the trimmed ONT FASTQs and FAST5s for each respective sample accounting for methylation using the --methylatio-aware=dcm,dam, --min-candidate-depth=10 and --min-candidate-frequency=0.1. Secondly, Pilon v1.22 [19] with --minmq=0, --minqual=0 and --mindepth=0.05 set. Illumina FASTQ reads were used as the query dataset with the use of BWA v0.7.17 [9] and Samtools v1.7 [20]. Finally, Racon v1.2.1 [21] (--error-threshold=0.3 and --quality-threshold=10) also using BWA v0.7.17 [9] was used with the Illumina reads to produce a final assembly for each sample. As all assemblies were circularized and closed, they were reoriented to start at the dnaA gene (NC_000913) from *E. coli* K12, using the --fixstart parameter in circlator v1.5.5 [22]. Prokka v1.13 [23] with the use of a personalized database (https://github.com/gingerdave269/prophage_DB) was used to annotate the final assemblies.

Prophage detection, excision and processing

Prophages across all samples were detected using the Phage Search Tool (PHASTER) [24]. Prophage sequences were extracted from each samples’ chromosome and this occurred regardless of prophage size or quality. Any detected
prophages separated by less than 4 kbp were conjoined into a single phage using Propi v0.0.1 as described in Shaaban et al. [25]. Prophages were re-annotated using Prokka v 1.13 [23]. Prophages were compared using Easyfig v2.2.5 [26].

Mash and prophage comparison

Mash v2.2 [27] was used to sketch (sketch length 1000, kmer length, 21) all extracted prophages in the samples sequenced in this study and all prophages found in the Sakai STEC reference genome (BA000007). The pairwise jaccard distance between the prophages was calculated and a neighbour-joining tree computed and visualised using FigTree v1.4.4.

Variant calling and phylogenetic tree construction

For reference-based variant calling both Illumina and Nanopore FASTQ reads were mapped to the Sakai STEC O157 reference genome (BA000007) using BWA v0.7.3 and minimap2 v2.2, respectively [28]. VCFs were produced using GATK v2.6.5 UnifiedGenotyper [11]. Core-genome positions that had a high-quality SNP (\([>90\%\text{ for Illumina]}\) \([>80\%\text{ for ONT}\) consensus, minimum depth 10x, MQ \(\geq 30\)) in at least one isolate were extracted for further analysis. Any variants called at positions that were within the known prophages in Sakai were masked from further analyses. 5-methylcytosine positions were identified using Nanopolish v0.11.1 [18] and methylated positions were then masked from the ONT VCFs as described in Greig et al. [29]. Masking the prophage regions and relative methylated positions of the reference genome leads to an 81.0% core genome to compare for both Illumina and Nanopore data for the four outbreak samples. The maximum-likelihood phylogenetic tree was constructed by RAxML v8.1.17 [30] using an alignment generated from SnapperDB [12] that recombination had been accounting for by Gubbins v2.00 [31]. Visualization of the phylogenetic tree was performed using FigTree v1.4.4 (Fig. 1). To detect false positive/negative SNPs called by Illumina reads, discrepant variant positions between Illumina and Nanopore relative to the reference genome were extracted. Those variants that were called in paralogous sequences that also had a lower-than-average mapping quality were then masked in the alignment. To be included in the masking process the false called variant must be present in all the alignment of all samples in the study.

Data deposition

All FASTQ and assemblies were submitted to the National Centre for Biotechnology Information (NCBI). Illumina FASTQ accessions: case A: SRR6052868, case B: SRR7223105, case C: SRR6001344 and case D: SRR6052929. Nanopore FASTQ accessions: case A: SRR9987849, case B: SRR9987851, case C: SRR9987850 and case D: SRR7477813. All FASTQs can be found under BioProject: PRJNA315192. Assembly accessions (chromosome and plasmid): case A: CP043011 and CP043012, case B: CP043015 and CP043016, case C: CP043019 and CP043020, case D: CP043025 and CP043023. All FASTQs can be found under BioProject: PRJNA315192.

![Table 1. Total number of SNPs for each sample relative to the each other for both Illumina and Nanopore technologies](image1)

Sample	Case A ONT	Case B ONT	Case C ONT	Case D ONT	Case A Illumina	Case B Illumina	Case C Illumina	Case D Illumina
Case A ONT	/	0	0	0	5	6	5	5
Case B ONT	0	/	0	0	5	6	5	5
Case C ONT	0	0	/	0	5	6	5	5
Case D ONT	0	0	0	/	5	6	5	5
Case A Illumina	5	5	5	5	/	1	0	0
Case B Illumina	6	6	6	6	1	/	0	0
Case C Illumina	5	5	5	5	0	0	/	0
Case D Illumina	5	5	5	5	0	0	0	/

![Table 2. Table showing the position of the variants between the two sequencing technologies for all four samples](image2)

Position in reference genome	Base in reference genome	Base in Illumina data	Base in nanopore data	
------------------------------	--------------------------	-----------------------	-----------------------	
270595	C	A	C	False positive by Illumina
379516	A	G	A	False negative by Nanopore
2033176	T	G	T	False negative by Nanopore
4709195	A	A	G	False positive by Nanopore
4901209	A	A	G	False positive by Nanopore
RESULTS AND DISCUSSION
Assemblies generated by long-read sequencing data and variant calling

The assemblies for each isolate were resolved into two contigs comprising the chromosome and pO157 plasmid. The chromosome length (plasmid sizes and type) was 5486665 bp (91449 bp IncFIB), 5487004 bp (91445 bp IncFIB and 57390 bp IncI2), 5486935 bp (91445 bp IncFIB and 17157 bp unknown type) and 5424337 bp (91443 bp IncFIB) and for cases A to D respectively. Sample B contained an extra 57kbp IncI2 plasmid.

In total, variant calling using GATK and SnapperDB identified between zero and six SNPs when comparing each sample with both sequencing technologies to one another (Table 1). Concerning the Illumina generated sequence data, there was only a single SNP detected between each sample. This SNP was located in sample B at position 2578517 relative to the reference genome with a gene that encodes a proton conductor (Table 1). For the ONT generated sequence data, there were no SNPs detected between all four samples relative to the reference genome (Table 2). There were five SNPs that differed between ONT and Illumina datasets relative to the reference genome. Of the five discrepant SNPs, one was called as a variant in the Illumina data and four were called as variants in the ONT data (Table 2).

All five of the discrepant SNPs between both technologies were false positive or false negative calls. Ambiguous mapping of short-read Illumina sequences to paralogous sequences in the reference genome leads to the introduction of a single false positive SNP. The remaining four false positive or false negative SNPs were generated from a known systemic error during the base-calling process of homopolymer regions in ONT sequencing, resulting in small single or double base insertions within the reads [29, 32]. Correction for these systemic errors and the ambiguous mapping error confirmed a single SNP in sample B in the Illumina dataset and all other samples (and technologies) had no SNPs different from each other.

The comparison of the ONT sequencing data with the Illumina sequencing data confirmed the close genetic relatedness of the four outbreak isolates, as only one additional SNP was identified between the outbreak strain genomes. This comparison highlighted the limitations associated with each technology, specifically the base-calling errors related to homopolymer detection observed in ONT data and the importance of masking of homologous and paralogous regions in the Illumina data.

Analysis of prophage content of the outbreak isolates and comparison with the Sakai reference genome

Of 16 prophage regions, 15 were shared between the four outbreak isolates (Tables 3 and 4, Fig. 2), with sample D containing an extra prophage (Table 3). Prophage size ranged from 8 to 145 kbp. Seven of the 16 prophages showed similarity to prophages in the Sakai reference genome; all seven prophages had 98–100% nucleotide identity and coverage (Table 3 and Fig. 2). Prophages 3, 4, 5, 7, 10, 14 and 15 in the outbreak isolates matched >98% similarity and coverage to Sakai prophages (Sp3, Sp4, Sp6, Sp8, Sp14, Sp16 and Sp17, respectively), and shared the same bacteriophage insertion (SBI) site (ybhC, yccA, potC, icerU, argW and ssrA, respectively). Case D had an extra prophage compared to the other three samples designated prophage A (Figs 2 and 3, Table 3). This prophage was 28 kbp in length and integrated at the hipA gene.

There were nine prophages in the outbreak isolates and 11 in Sakai that were <50% homologous or do not match at all. Five prophages in the outbreak isolates share the same SBI site with prophages in the Sakai reference genome; prophage 6 shares phoQ with Sp6, prophage 12 shares yehV with Sp15. There appears to be a homologous recombination event in between prophages 8 and 9 relative to Sp11 and 12. Prophage 2 labelled as a compound prophage shares thrW where Sp1 and Sp2 are located. The sites of prophages 1, 11 and 13 located at lexA, tnpA and argW, respectively, in the outbreak strain are vacant in the Sakai reference genome whereas the sites for Sp5, Sp9, Sp10, Sp13 and Sp18 located at wrbA, yciD, ydaO, leuZ and a sorbitol operon, respectively in Sakai are vacant in the outbreak samples.

In the outbreak strain, stx2a and stx2c were encoded on prophages 11 and 13, inserted at argW and tnpA, respectively. For the stx2c encoding prophage the known SBI site, sbcB, as previously described for a PT21/28 STEC [15, 29, 33] has been split by a short 2.7 kbp insertion sequence (IS629) hence the designation tnpA which encodes a transposase.

The stx2a-encoding prophage detected in the strain described in this study had ~30% coverage but greater than 97% nucleotide similarity with Sp5, which is the Sakai stx2a-encoding prophage. The regions of high similarity included the stx encoding genes, Q region, nin region, DNA replication, origin and general recombination and the prophage structural regions differed including head, tail and tail fibres/tip regions. The stx2c-encoding prophage was not present in the Sakai reference strain and so no comparison was possible.

Unlike Sakai, the samples sequenced in this study did not contain a stx1a-encoding prophage however, Sp15 which is a stx1a-encoding prophage was structurally similar to that of prophage 11 and shared the same SBI site, yehV (Table 3, Fig. 3).

The strain of STEC O157:H7 linked to the tripe outbreak sequenced in this study and the Sakai reference strain [34] belonging to two different sub-lineages, sub-lineages Ic and Ia, respectively, were isolated in geographically distinct regions, 20 years apart. The prophage commonality shared between the two strains indicates some stability of the non-stx-encoding prophage content over time and space (Fig. 3). In contrast, the dynamic nature of the stx-encoding phage is well documented, and variation of stx profiles in strains belonging to the same lineage that are globally distributed but also in closely related strains at the local level has been described [7, 34, 35]. Previous studies charting the evolutionary history
Table 3. The size, position and integration sites of all 16 prophages within all samples in this study, also included is the percentage nucleotide similarity to any Sakai prophages

Prophage detected	Gene 5’ to prophage	Gene 3’ to prophage	Size (bp) in sample A	Size (bp) in sample B	Size (bp) in sample C	Size (bp) in sample D	(% similarity/%coverage) to Sakai prophages	Position in sample A	Position in sample B	Position in sample C	Position in sample D
1	lexA	aphA	22035	22035	22034	22036	/	403708–425743	403729–425764	403712–425746	403708–425744
2*	tRNA-Thr (cgt)†	prgR	26826	26826	26823	26821	/	1101411–1128239	1101440–1128263	1101421–1128244	1101414–1128235
3	ybbC†	ybbB	38095	38095	38096	38095	Sp3 (99%/100%)	1697277–1735372	1697420–1735315	1697397–1735493	1697388–1735483
4	yccA†	tRNA-Ser (tga)	48257	48277	48265	48263	Sp4 (99%/100%)	1967370–2015627	1967513–2015790	1967491–2015756	1967481–2015744
5	potC†	potR	47889	47879	47879	47896	Sp6 (99%/100%)	2283891–2331780	2284054–2331733	2284019–2331898	2284012–2331908
6	rpsA†	phoQ	10436	10436	10436	10436	/	2337022–2347458	2336975–2347411	2337140–2347576	2337150–2347586
7	icl†	caeB	40992	40991	40992	40991	Sp8 (99%/100%)	2356230–2397222	2356183–2397174	2356348–2397340	2356358–2397349
8*	ompW†	rpsR	145151	144981	145040	53636	/	2495566–2640717	2495518–2640499	2495685–2640725	2495693–2548329
A	hipA	ydeP	/	/	/	28513	/	/	/	/	258922–2617735
9	trpA	rpsA	59339	59340	59322	59863	/	2918047–2977386	291784–2977174	2918086–2977383	2855169–2915032
10	yodB	tRNA-Ser (tga)†	43681	43694	43684	43690	Sp14 (99%/98%)	3370042–3413723	3369847–3413541	3370054–3413740	330170–3350860
11 (strc2)	yoeA	trpA†	55650	56910	55652	55655	/	3457661–3513311	3456222–3513132	3457677–3513329	3394797–3450452
12	yehV†	yehV†	45720	45725	45732	45719	/	3654766–3700486	3654584–3700309	3654782–3600154	3591904–3637623
13 (strc2a)	yfdC†	argW†	60239	60237	60239	60242	/	3948586–4008802	3948386–4008623	3948591–4008830	3885700–3949542
14	argW†	lexI†	8233	8233	8233	8233	Sp16 (100%/100%)	4009234–4017467	4009055–4017288	4009262–4017495	3946374–3954607
15	ssrA	aphA†	22107	22103	22098	22106	Sp17 (99%/99%)	4294770–4316877	4294584–4316687	4294801–4316899	4231915–4254021

*Refers to prophages that appear to be compound prophages (i.e. two or more prophages that are sequential, with intact integrase genes).
†Refers to the end in which the Integrase gene (IntA) is located.
of STEC O157:H7 propose the lineage I progenitor strain has stx2c only [7]. At some point during its evolutionary history, the Sakai outbreak strain appears to have lost the stx2c-encoding prophage and acquired a stx1a-encoding (which is similar to the stx-negative prophage 11 in this study) and a stx2a-encoding prophage, although the order of these events is unclear. The acquisition of stx2a-encoding prophages by sub-lineage 1 c in the UK approximately 25–30 years ago is well described and resulted in the change in PT from PT32 to PT21/28 [7, 25, 34]. The stx2a-encoding prophage (prophage 12) and Sp5 (Sakai’s stx2a-encoding prophage) share only 40% of hashes via mash and both have different SBI sites (argW and wrbA, respectively).

Table 4. The size, position and integration sites of any prophage-like elements within all samples in this study. Also showing the percentage nucleotide similarity and coverage to the prophage-like elements found in Sakai.

Prophage-like element	Gene 5’	Gene 3’	Size (bp) in sample A	Size (bp) in sample B	Size (bp) in sample C	Size (bp) in sample D	(% similarity	% coverage) to Sakai
PLE1	int	tRNA-Leu	9530	9530	9530	9530	SpLE5 (99 %/97 %)	650 711–660 241 650 730–660 260 650 601–660 131 650 715–660 245
PLE2	int	nanS	34 465	34 465	34 465	34 465	SpLE6 (99 %/100 %)	660 260–697 725 660 260–697 725 660 260–697 725 660 260–697 725
PLE3	ycdU	tRNA-Ser	85 906	85 906	85 906	85 906	SpLE1 (99 %/100 %)	2 112 819–2 198 725 2 112 819–2 198 725 2 112 819–2 198 725 2 112 819–2 198 725
PLE4	cfbU	yeeB	15 044	15 044	15 044	15 044	SpLE2 (99 %/100 %)	3 439 330–3 454 183 3 439 330–3 454 183 3 439 330–3 454 183 3 439 330–3 454 183
PLE5	tRNA-Phe	pitB	23 333	23 333	23 333	23 333	SpLE3 (99 %/100 %)	5 393 215–5 443 248 5 393 215–5 443 248 5 393 215–5 443 248 5 393 215–5 443 248
PLE6	yicL	selC	50 390	50 390	50 390	50 390	SpLE4 (99 %/79 %)	6 501 598–6 542 908 6 501 598–6 542 908 6 501 598–6 542 908 6 501 598–6 542 908

Fig. 2. The relative positions of the 15 prophages and six prophage-like elements within the chromosomes of samples A–C, 16 prophages within sample D (order descending). Red prophages indicate stx gene encoding prophages. Blue indicates prophage like elements. Green indicates the locus of enterocyte effacement (LEE).

Fig. 3. Mid-rooted neighbour-joining tree of Jaccard distances showing prophages from cases A–D with prophages from BA000007 (Sakai). Grouped by green; prophages shared in cases A–D and Sakai, yellow; Sakai only and red; prophages unique to cases A–D.
Within-outbreak comparison of the prophage regions of the four outbreak isolates

The chromosomes of the outbreak isolates were aligned. Genome rearrangements were identified within prophage 2, where cases A and B differ from C and D (Fig. 4), and in prophages 8 in the sequence linked to case D with respect the other outbreak sequences (Fig. 5). In prophage 2, a 1739 bp inversion was identified involving two prophage tail genes surrounding a hypothetical gene (yfdK) (Fig. 4). In prophage 8, a deletion event was observed (Fig. 5). Prophage 8 was a large compound prophage (53 kbp in the sequence linked to case D and 145 kbp in the remaining samples) containing at least three separate prophages positioned sequentially without any chromosomal sequence separating them. In the sequenced linked to case D, there appears to be 92 kbp deletion (relative to the three other samples). The 92 kbp deletion contained almost two full prophage sequences, making up two sets of structural bacteriophage genes, regulatory genes, lysis genes and site-to-site recombination genes.

Within the four outbreak strains, the prophage content was equivalent except for the deleted prophage sequence in prophage 8 and the acquisition of another prophage in case D and a recombination event in prophage 2 in cases A and B relative to C and D were identified. Without a better understanding of the expected variation within prophage in STEC O157:H7 in the source population, specifically in this case the bovine gastrointestinal tract, it is difficult to be certain if these microevolutionary events represent meaningful differences between isolates. Once colonized, cattle may shed STEC O157:H7 for many months [36], and the genetic changes including the horizontal exchange of genetic information and genomic recombination/rearrangements will occur in the bacterial genomes over that time [10, 25]. Although currently little is known about the selection pressures and population dynamics of STEC O157:H7 in the bovine reservoir, micro-evolutionary events such as these, are unlikely to reflect a different source.
SUMMARY
The advantages of using short-read WGS technologies for routine surveillance and the detection and risk management of outbreaks of STEC O57:H7 is well-established [36–38]. For example, it is unlikely that this small, nationally dispersed cluster of the cases of PT21/28, a commonly reported PT in the UK, would have been investigated prior to the implementation of WGS. However, due to the high prophage content in STEC O157:H7, assembling the genome into one contig is challenging and the utility of accessing information from the STEC accessory genome during an outbreak investigation is yet to be fully explored. In this study, we describe our methodological approach to the comparison of the accessory genomes of four temporally related cluster isolates of STEC O157:H7 epidemiologically linked to exposure to raw tripe. Comparison of Illumina with ONT sequencing data highlighted the limitations of SNP detection associated with both technologies, however, the analysis of the ONT data confirmed the close genetic relatedness demonstrated by the Illumina data. Although the within-outbreak prophage content was stable, minor structural alterations were observed in two prophages in one of the isolates. The ability to characterize the accessory genome in this way is the first step to understanding the significance of these microevolutionary events and their impact on relatedness [33, 39], the evolutionary history, virulence, and potentially the likely source and transmission [40] of this zoonotic, foodborne pathogen.

Funding information
The research was part funded by the National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections at University of Liverpool in partnership with Public Health England (PHE), in collaboration with University of East Anglia, University of Oxford and the Quadram Institute. Claire Jenkins, David Greig and Timothy Dallman are based at Public Health England. The views expressed are those of the authors and not necessarily those of the National Health Service, the NIHR, the Department of Health or Public Health England.

Acknowledgements
We would like to thank Professor David Gally at the Roslin Institute, University of Edinburgh, for his critical review of the early stages of this project.

Author contributions
T.J.D. and C. J. conceptualized the project. D.R.G. performed DNA extractions, library preparations, sequencing of isolates, data processing, genome assembly, genome polishing, genome annotation and created the Easyfig diagrams. T.J.D. performed prophage comparison using Mash and wrote associated scripts. D.R.G. performed the SNP comparison using SnapperDB and made the phylogenetic tree. D.R.G., T.J.D. and C.J., wrote the original manuscript. D.R.G., T.J.D., C.J. and S.E.G. reviewed and edited the manuscript. T.J.D. and C.J. supervised D.R.G.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Launders N, Byrne L, Jenkins C, Harker K, Charlett A et al., Disease severity of Shiga toxin-producing E. coli O157 and factors influencing the development of typical haemolytic uraemic syndrome: a retrospective cohort study, 2009-2012. BMJ Open 2016;6:e009933.
2. Eppinger M, Mammel MK, Leclerc JE, Ravel J, Cebula TA. Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A 2011;108:20142–20147.
3. Ogura Y, Mondal SL, Islam MR, Mako T, Arisawa K et al., The Shiga toxin 2 production level in enterohemorrhagic Escherichia coli O157:H7 is correlated with the subtypes of toxin-encoding phage. Sci Rep 2015;5:16663.
4. Byrne L, Adams N, Jenkins C. Association between Shiga Toxin-Producing Escherichia coli O157:H7 stx gene subtype and disease severity, England, 2009-2019. Emerg Infect Dis 2020;26:2394–2400.
5. Latif H, Li HJ, Charusanti P, Palsson Bernhard Ø, Aziz RK. A Gapless, Unambiguous genome sequence of the enterohemorrhagic Escherichia coli O157:H7 Strain EDL933. Genome Announc 2014;2:pii: e00821–14.
6. Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A et al., The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 2009;5:e1000408.
7. Dallman TJ, Ashton PM, Byrne L, Perry NT, Petrovska L et al., Applying phylogenomics to understand the emergence of Shiga toxin-producing Escherichia coli O157:H7 strains causing severe human disease in the UK. Microb Genom 2015;1:e000029.
8. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014;30:2114–2120.
9. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010;26:589–595.
10. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K et al., Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 2001;8:11–22.
11. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al., The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297–1303.
12. Dallman T, Ashton P, Schafer U, Jironkin A, Painset A et al., SnapperDB: a database solution for routine sequencing analysis of bacterial isolates. Bioinformatics 2018;34:3028–3029.
13. Wick RR, Judd LM, Holt KE. Deepbinner: demultiplexing barcoded Oxford nanopore reads with deep convolutional neural networks. PLoS Comput Biol 2018;14:e1006583.
14. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read nanopore data. Bioinformatics 2018;34:2666–2669.
15. Wick RR. Porechop. https://github.com/rrwick/Porechop
16. Wick RR. Filtlong. https://github.com/rrwick/Filtlong
17. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019;37:540–546.
18. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 2015;12:733–735.
19. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al., Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014;9:e112963.
20. H L, Handsaker B, Wyssker A, Fennell T, Ruan J et al., 1000 genome project data processing subgroup. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 2009;25:2078–2079.
21. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017;27:737–746.
22. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al., Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015;16:294.
23. Seemann T, Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2368–2369.
