I. INTRODUCTION

In the frustrated magnetism community, interest in pyrochlore oxides flourished following the 1997 discovery of the spin ice state in Ho$_2$Ti$_2$O$_7$ [1], and shortly thereafter in 1999, the discovery of a putative spin liquid state in Tb$_2$Ti$_2$O$_7$ [2]. Since that time, a detailed characterization of the magnetic ground state of almost every known oxide pyrochlore has been undertaken [3], including in recent years, pyrochlores that can only be formed under high pressure conditions [4]. Furthermore, the magnetic ground states of these pyrochlores have been probed and prodded in every imaginable way, from extreme applied pressure [5] to high magnetic fields [6] to exacting studies of the effect of off-stoichiometry [7] and most recently their growth as epitaxial thin films [8]. This enormous body of research has revealed that the magnetic ground states of many oxide pyrochlores are exceedingly fragile, with very few materials sharing the same magnetic phenomenology. Thus, the origin of these diverse magnetic states is, first and foremost, the frustrated lattice architecture of the corner-sharing tetrahedral pyrochlore lattice but the second most important factor is the nature of the magnetic ion itself, both its single ion properties and its interactions with neighbors.

Pyrochlore oxides, with the general formula $A_2B_2X_7$, take their name from a naturally occurring mineral. This name is also bestowed upon the lattice of corner-sharing tetrahedra, known as the pyrochlore lattice, which both the A and B atoms form in the eponymous family of materials. Pyrochlore oxides have extensive chemical versatility [9], which is another factor that contributes to the diversity in their magnetic states. The spinel oxides, AB_2O_4, which also take their name from a naturally occurring mineral, provide a second structural platform to study frustrated magnetism on the pyrochlore lattice. However, in the spinel structure, only B forms a pyrochlore lattice while A makes up a diamond lattice. Like the pyrochlore oxides, spinel oxides have a significant chemical versatility, yielding a large number of compounds [10, 11]. However, many of these materials have magnetic A sites, which spoils the simple frustration of the pyrochlore B site. Nonetheless, there are many compounds in the spinel family with geometric-frustration driven physics due to both orbital and magnetic degrees of freedom [12, 13].

While oxide pyrochlore lattice materials have dominated the field for multiple decades, recent advances have brought several non-oxide families to the forefront, including fluoride pyrochlores and chalcogenide spinels. The chemical and structural modifications that accompany this replacement of the anion in turn lead to different local environments and hence different single ion anisotropies, different relative energy scales, and new magnetic ions on the pyrochlore lattice, all of which have lead to significant new physics. In this Research Update, we outline what’s been accomplished, primarily over the past five years, and discuss challenges and opportunities for the future. In Section II, we introduce the fluoride pyrochlores which have the unique characteristic of hosting late 3d magnetic transition metals, which cannot be achieved in oxide pyrochlores. In Section III, we discuss the rare earth-based chalcogenide spinels, which have distinct properties from their oxide pyrochlore counterparts due to the different local environment and the reduced crystal field energy scale. In Section IV, we turn to the chromium chalcogenide spinels with an emphasis on the breathing pyrochlore spinels that have alternating small and large tetrahedra, breaking the degeneracy of the pristine pyrochlore lattice but unlocking new, exotic magnetic states. Finally, in Section V, we turn to future directions: known materials that as of now have been the subjects of relatively few investigations or places where altogether unknown, new materials might be lurking.
II. FLUORIDE PYROCHLORES

While the late $3d$ transition metals, from Fe to Cu, are among the most important elements in studies of quantum magnetism, one may lament that they are entirely unrepresented among the pyrochlore oxides, $A_2B_2O_7$. The reason for this is that charge neutrality and structural tolerance factors cannot be simultaneously satisfied for any combination of A and B cations that includes a late $3d$ transition metal [9]. In recent years, this obstacle has been sidestepped by replacing divalent oxygen, $O^{2−}$, with monovalent fluorine, $F^−$, allowing pyrochlores with $B = Mn^{2+}, Fe^{2+}, Co^{2+}$ and Ni^{2+} to be synthesized for the first time Fig. 3(a)) [14–16]. However, this triumph comes at a cost: overall charge neutrality requires an effective 1.5+ valence state on the A-site, which necessitates the deliberate introduction of chemical disorder. The resulting chemical formula of the pyrochlore fluorides is $AA'B_2F_7$, where $A = Na^{+}$ and $A' = Ca^{2+}, Sr^{2+}$ are respectively alkali (Group 1) and alkaline earth (Group 2) metals in equal proportions, randomly distributed over the A sublattice, as shown in Figure 1(a).

Related fluoride pyrochlores in polycrystalline form were first reported in 1970 [17], but investigations of their magnetism have only recently begun following their growth as large single crystals using the floating zone technique [14]. In contrast to the much studied rare earth pyrochlores, where the typical energy scale of the exchange interactions is 1 meV or smaller, the exchange interactions for magnets based on $3d$ transition metals are an order of magnitude or more larger. Therefore, whereas studying the correlated ground states of rare earth pyrochlores requires extremely low temperatures, well below 1 K, the correlated states of the fluoride pyrochlores can be studied at more easily accessible temperatures. All fluoride pyrochlores that have been characterized to date share two key attributes: (i) they are highly frustrated and (ii) that frustration is quenched at low temperatures by a spin freezing transition due to exchange disorder wrought by the intrinsic chemical disorder. The spin freezing transitions occur at a temperature, $T_f \approx 8 \times O(10^3) K$ [18], while correlations onset at significantly higher temperatures, $\theta_{CW} \approx O(10^2) K$. Thus, much of the experimental effort has centered on characterizing their correlated states below their Curie-Weiss temperatures, $|\theta_{CW}|$, and above their spin freezing temperatures, T_f.

A. Cobalt Fluoride Pyrochlores

The cobalt-based fluoride pyrochlore, $NaCaCo_2F_7$, was first reported in 2014 [14] and its sister compound, $NaSrCo_2F_7$, was subsequently reported in 2015 [19]. While more experimental studies have focused on the former compound, all available data suggests that the properties of these two compounds are largely indistinguishable. It is interesting to note that this strongly contrasts with
rare earth oxide pyrochlores, where the choice of the non-magnetic B-site can dramatically modify the magnetic ground state [3]. Both NaCaCo$_2$F$_7$ ($\theta_{CW} = -140$ K, $T_F = 2.4$ K) and NaSrCo$_2$F$_7$ ($\theta_{CW} = -127$ K, $T_F = 3.0$ K) have strongly frustrated antiferromagnetic interactions, with frustration indices of 58 and 42, respectively [14, 19]. The spin freezing transitions in these materials, which are marked by a frequency dependent cusp in ac susceptibility, occur at a temperature commensurate with the strength of the chemical disorder. Thus, the slight increase in the freezing temperature of NaSrCo$_2$F$_7$ can be understood as originating from enhanced bond disorder due to the larger difference in ionic radii between Na ($r = 1.18$ Å) and Sr ($r = 1.26$ Å), as compared to Na and Ca ($r = 1.12$ Å).

The single ion properties of the Co$^{2+}$ ions in these compounds are quite interesting in-and-of-themselves. This was initially hinted by a Curie-Weiss analysis of their magnetic susceptibility data, which revealed a paramagnetic moment around 6 μ_B/Co$^{2+}$ [14, 19], dramatically enhanced from the spin-only value for high spin Co$^{2+}$ in a pseudo-octahedral environment ($S = 3/2$, $\mu_{calc} = 3.87 \mu_B$). Instead, the observed moment is much closer to the value expected with a full orbital contribution ($J = 3/2$, $\mu_{calc} = 6.63 \mu_B$). A subsequent inelastic neutron scattering study of the crystal field excitations in both NaCaCo$_2$F$_7$ and NaSrCo$_2$F$_7$ confirmed the intermediate spin-orbit coupling, which also leads to strong deviations from Heisenberg type moments [20]. Instead, the Co$^{2+}$ moments in these materials have relatively strong XY anisotropy, preferentially lying in the plane perpendicular to the local [111] direction, which is the axis that connects adjacent tetrahedra. This type of anisotropy is also found in the erbium and ytterbium based families of rare earth oxide pyrochlores [21], as well as possibly the dysprosium chalcogenide spinels [22]. An open question surrounds the completion of anisotropy in magnetization measurements for NaCaCo$_2$F$_7$ [23], which does not conform with the expected behavior of an XY antiferromagnet [24].

Although the ultimate ground states of NaCaCo$_2$F$_7$ and NaSrCo$_2$F$_7$ are frozen glass-like states, they are not characterized by random spin configurations. Correlations with a typical length scale of a single tetrahedron set in at temperatures as high as 200 K and inter-tetrahedra correlations develop around 50 K, as observed by neutron scattering, NMR, and ESR measurements [23, 25, 26]. Elastic neutron scattering measurements below the spin freezing transition, shown in Fig. 2(a), show that the frozen state is made up of short-range ordered clusters with antiferromagnetic XY spin configurations (Γ$_5$ in the language of irreducible representations, shown in Fig. 5 (b)) with a correlation length of 16 Å [27]. Two unique, nearly degenerate ordered states exist within Γ$_5$, and the spin freezing transitions brought on by the cation disorder preempts the selection of a unique ordered state in the cobalt pyrochlores. While the low energy spin excitations are consistent with a continuous degree of rotational symmetry in the local XY plane for these Γ$_5$ clusters, at higher energies a different type of spin excitation emerges. This higher energy spin excitation can be rather accurately captured by collinear antiferromagnetic correlations on individual tetrahedra, breaking the local XY anisotropy [27]. The presence of these two distinct excitations is suggestive of a frustration between intra- and inter-tetrahedral correlations.

Another cobalt-based pyrochlore lattice material is realized in the carbonate Na$_3$Co(CO$_3$)$_2$Cl, which forms in the Fd$ar{3}$ space group [28]. Unlike the fluorides, Na$_3$Co(CO$_3$)$_2$Cl is a fully site ordered material with no inherent disorder. The energy scale of this material’s spin correlations, which is roughly parameterized by the Curie-Weiss temperature $\theta_{CW} = -34$ K [29], is reduced from the fluorides by nearly an order of magnitude. This is at least partially attributable to the larger Co-Co bond distance, 4.9 Å in Na$_3$Co(CO$_3$)$_2$Cl as compared to 3.7 Å in the fluorides. This material has a particularly complex phase behavior, first entering a short-range correlated state at 17 K, exhibiting a spin-glass like transition at $T_F = 4.5$ K, before finally proceeding through an apparent long range ordering transition at $T_N = 1.5$ K [29]. The ordered state is an all-in/all-out antiferromagnet, shown in Fig. 5 (a), which implies the Co$^{2+}$ moments in this material have Ising local anisotropy unlike the XY anisotropy observed in the fluorides. Future studies should confirm that this complex phase behavior is intrinsic and not the result of sample inhomogeneity or phase separation.

B. Nickel Fluoride Pyrochlores

The nickel fluoride pyrochlore, NaCaNi$_2$F$_7$ ($\theta_{CW} = -129$ K, $T_F = 3.6$ K) also has highly frustrated antiferromagnetic interactions, with a frustration index of 36 [15]. The effective moment derived from Curie-Weiss fits, 3.7 μ_B, is larger than what is typically observed for the spin-only moment of Ni$^{3+}$ ($S = 1$, $\mu_{calc} = 2.83 \mu_B$) but falls significantly short of what would be expected for a full orbital contribution ($J = 1$, $\mu_{calc} = 5.59 \mu_B$) [15]. Thus, spin-orbit coupling, while not negligible, is less significant than in the case of the cobalt analogs, placing NaCaNi$_2$F$_7$ closer to the Heisenberg limit. This picture is further validated by polarized neutron scattering measurements, where it was observed that the scattering in the spin flip and non-slip flip channels is nearly identical, indicating the interactions are highly isotropic [30].

While it is true that bond disorder induces a spin freezing in each of the fluoride pyrochlores, irrespective of the magnetic ion involved, their magnetic correlations do in fact differ substantially. In the case of the cobalt variants, spin freezing appears to preempt a long-range magnetically ordered state, while in the case of NaCaNi$_2$F$_7$, there is no indication that the compound is close to magnetic order. Elastic neutron scattering measurements in the frozen state, shown in Fig. 2(b), reveal structured diffuse scattering with a correlation length of 6 Å [30], close to the next nearest neighbor bond distance. Fits to the neutron scattering data show that NaCaNi$_2$F$_7$ is very close
to an exact realization of the nearest neighbor Heisenberg antiferromagnet with $S = 1$, where exchange anisotropy, next nearest neighbor exchange, and bond disorder all represent small corrections [30]. Sharp pinch point features, as famously observed in the dipolar spin ices, indicate that there is zero net magnetization on each tetrahedron (Fig. 2(b)) [30, 31]. This observation in particular is suggestive of the classical Heisenberg pyrochlore spin liquid first studied by Villain [32], where the ground state manifold is comprised of all states with zero magnetization per tetrahedron, yielding a macroscopic degeneracy. This may be consistent with the residual entropy of 0.176R per Ni observed in NaCaNi$_2$F$_7$, which is only 16% of the expected entropy release for $R \ln (3)$ [30].

Despite ultimately undergoing a spin freezing transition, quantum effects appear to be quite significant in NaCaNi$_2$F$_7$. Neutron scattering measurements show that at low temperatures, 90% of the magnetic scattering occurs inelastically, dramatically exceeding the semiclassical expectation of 50% for $S = 1$ [30]. In contrast, the cobalt variants agree well with this semiclassical picture where the observed 30% elastic agrees well with the expected 33% for $J = 1/2$ [27]. Further evidence for the importance of quantum fluctuations in NaCaNi$_2$F$_7$ comes from μSR measurements, which show the observed static field in the frozen state is an order of magnitude smaller than expected, perhaps signalling that the Ni moments are not fully frozen [33].

C. Manganese, Iron, and Future Prospects

The fluoride pyrochlore family is rounded out by a trio of compounds, NaSrMn$_2$F$_7$ ($\theta_{\text{CW}} = -90$ K, $T_f = 2.5$ K), NaSrFe$_2$F$_7$ ($\theta_{\text{CW}} = -98$ K, $T_f = 3.7$ K), and NaCaFe$_2$F$_7$ ($\theta_{\text{CW}} = -73$ K, $T_f = 3.9$ K) [16]. Following the familial trend all three are highly frustrated antiferromagnets with frustration indices of 36, 26, and 19, respectively. In all three, the calculated paramagnetic moment is slightly larger than what would be expected for high spin 3d^5 Mn$^{2+}$ ($S = 5/2$) and high spin 3d^6 Fe$^{2+}$ ($S = 2$), respectively [16]. Like Ni$^{2+}$ ($S = 1$), these three compounds are all likely good realizations of Heisenberg spins on the pyrochlore lattice. However, due to their more classical nature (larger S values) they will make for an interesting comparison with NaCaNi$_2$F$_7$ in terms of how well they conform to the classical spin liquid state expected for an antiferromagnetic Heisenberg pyrochlore [34]. To that end, detailed neutron spectroscopic studies on these Mn and Fe variants will be of the utmost interest. One might also expect that it may be possible to extend this series to include other transition metal ions; while the strong Jahn-Teller effect in copper renders it an unlikely candidate, chromium may be a promising avenue to explore.

Two related Mn and Fe based compounds that bear mentioning here are Na$_3$Mn(CO$_3$)$_2$Cl and FeF$_3$, based on Mn$^{2+}$ and Fe$^{3+}$, respectively. These two ions have the same electronic configuration, 3d^5 ($S = 5/2$), and both compounds are good realizations of the classical Heisenberg pyrochlore antiferromagnet. Na$_3$Mn(CO$_3$)$_2$Cl shares the same crystal structure as the aforementioned Na$_3$Co(CO$_3$)$_2$Cl and, unlike the fluorides, does not possess intrinsic disorder. It does not magnetically order or undergo a spin freezing transition down to at least 0.5 K, which when coupled with a Curie-Weiss temperature of -41 K yields a large frustration index of at least $f = 80$ [35]. Below 1 K, Na$_3$Mn(CO$_3$)$_2$Cl exhibits a rather sharp increase in its heat capacity that continues down to the lowest measured temperatures, 0.5 K, and the nature of this feature remains unresolved [35].

Finally, FeF$_3$ with space group $Fd\bar{3}m$ is a unique ma-
terial with no isomorphic compounds. The pyrochlore lattice of Fe\(_{3+}\) is built from a network of corner-sharing FeF\(_6\) octahedra \[36\]. Compared to other materials discussed in this section, all of which are relatively recently characterized, magnetic studies of FeF\(_3\) date back to 1986 \[36, 37\]. This material ultimately magnetically orders close to 20 K in an antiferromagnetic all-in/all-out structure (Fig. 5 (a)) \[37, 38\]. However, intense frustration is evidenced by a lack of Curie-Weiss behavior in susceptibility up to at least 300 K and structured magnetic diffuse scattering up to at least 100 K \[37, 39\]. Further studies of FeF\(_3\) and Na\(_3\)Mn(CO\(_3\))\(_2\)Cl would be facilitated by their growth in large single crystal form, which represents a significant challenge in both cases.

III. RARE EARTH CHALCOGENIDE SPINELS

Much like structural tolerance factors forbid the formation of oxide pyrochlores with late 3d transition metals, the large ionic radius of the 4\(f\) rare earth elements does not allow them to be accommodated by the oxide spinel structure. Given the diversity of magnetic states that can be unlocked in the rare earth \(R_2B_2O_7\) pyrochlores simply through replacement of the non-magnetic \(B\)-site \[40\], the more significant shift to the spinel structure is an important prospect to search for new and exotic magnetic states. It is only through the replacement of oxygen by a larger chalcogen, sulfur or selenium, that rare earth elements can be incorporated into the spinel structure (Fig. 3(b)) – and even then, it is only the heaviest rare earths, which have the smallest ionic radii due to the lanthanide contraction. In this family, compounds of the form \(AR_2X_4\), with \(X = \text{S and Se}\), are stable for \(A = \text{Cd and } R = \text{Dy – Yb}\) \[41\] as well as for the slightly larger \(A = \text{Mg, with } R = \text{Ho – Yb}\) \[42\], first reported in 1964 and 1965, respectively. Remarkably, replacing the \(A\) site by any larger alkaline earth metal (Ca, Sr, or Ba) gives an assortment of orthorhombic and rhombohedral structure types \[42\].

Many of the distinctive properties of the rare earth chalcogenide spinels are directly attributable to the modified local environment. In this structure, the rare earth site in a distorted octahedral environment (Fig. 1(b)) as opposed to the pseudo-cubic coordination of the pyrochlores. This leads, in many cases, to an inversion of the single ion anisotropy \((e.g.\) ions that are Ising-like in the oxide pyrochlores are XY-like in the chalcogenide spinels). Furthermore, the coordinating anions are between 10 to 30% farther away than in the pyrochlore oxides and chalcogens are themselves less electronegative than oxygen. Both of these factors serve to lower the energy scale of the crystal field splitting and this leads to more complex ground state manifolds than the well-isolated ground state doublets generally found in the rare earth pyrochlore oxides. Taken altogether, the chalcogenide spinels exhibit entirely different crystal electric field (CEF) ground states from their oxide pyrochlore counterparts, as highlighted with erbium in Fig. 4.

The crystal field states of the chalcogenide spinels were first studied in the 1970’s \[43-47\]. The accuracy of these studies was limited by their assumption of a perfect octahedral environment and also because magnetization data alone was used for the refinements of the CEF Hamiltonian. More recent studies have used inelastic neutron scattering to directly measure the CEF levels and find that although the ligands are a near perfect octahedra, the field from the next nearest neighbor creates a significant anisotropy along the local [111] directions, which is the axis that connects the centers of two adjacent tetrahedra \[48-50\]. The other major omission of the works prior to the new millennia is that they did not take into
account the importance of geometric frustration, which explains their findings that none of these materials magnetically order above 2 K [43–45, 51]. The importance of geometric frustration in these chalcogenide spinels was not considered until 2005 [52]. The combination of strong anisotropy, complex crystal field ground states, and intense geometric magnetic frustration yields a collection of remarkable magnetic states in the rare earth chalcogenide spinels.

A. Erbium Chalcogenide Spinels

In the erbium chalcogenide spinels, $A\text{Er}_2X_4$ ($A = \text{Cd or Mg and } X = \text{S or Se}$), the pyrochlore sublattice is occupied by Er$^{3+}$, which is a Kramers ion with a total angular momentum of $J = \frac{15}{2}$ and an expected paramagnetic moment of $\mu_{\text{calc}} = 9.6 \mu_B$, which agrees well with experiment [52]. While erbium-based oxide pyrochlores have local XY anisotropy of varying strength [53], the change in the local environment in the spinels yields perfectly Ising moments [48, 49, 54], constrained to lie along the local [111] directions (Fig. 4). However, the first excited CEF levels are found at energies as low as 4 meV above the ground state [48, 49] and as a result, their influence cannot be entirely disregarded. In particular, coupling between the ground and excited states through so-called virtual CEF fluctuations becomes appreciable at these energy scales [55], which can disrupt the otherwise perfect Ising anisotropy. Studies thus far suggest that the $A\text{Er}_2X_4$ compounds, with varying A and X ions, have broadly similar properties, which are to first order dictated by the strong Ising anisotropy.

The earliest studies on the erbium rare earth selenides predicted that these compounds would order between 4 and 10 K, based on the onset of short range order seen in magnetization and Mössbauer spectroscopy measurements [51, 56]. However, it wasn’t until 2010 that the nature of the short range order was understood [54]. The very large effective moments in the erbium spinels combined with their Ising anisotropy, gives rise to long range dipolar interactions that produce a ferromagnetic coupling [57], significantly larger in magnitude than the antiferromagnetic near neighbour exchange [48, 49]. Thus, the erbium spinels possess all the requisite ingredients for spin ice physics and that is indeed what has been found. This was first discovered [61]. A careful analysis of the heat capacity anomaly approaches the Pauling value, which is a Kramers ion with a total angular momentum of $J = \frac{15}{2}$ and an expected paramagnetic moment of $\mu_{\text{calc}} = 9.6 \mu_B$, which agrees well with experiment [52]. While erbium-based oxide pyrochlores have local XY anisotropy of varying strength [53], the change in the local environment in the spinels yields perfectly Ising moments [48, 49, 54], constrained to lie along the local [111] directions (Fig. 4). However, the first excited CEF levels are found at energies as low as 4 meV above the ground state [48, 49] and as a result, their influence cannot be entirely disregarded. In particular, coupling between the ground and excited states through so-called virtual CEF fluctuations becomes appreciable at these energy scales [55], which can disrupt the otherwise perfect Ising anisotropy. Studies thus far suggest that the $A\text{Er}_2X_4$ compounds, with varying A and X ions, have broadly similar properties, which are to first order dictated by the strong Ising anisotropy.

The earliest studies on the erbium rare earth selenides predicted that these compounds would order between 4 and 10 K, based on the onset of short range order seen in magnetization and Mössbauer spectroscopy measurements [51, 56]. However, it wasn’t until 2010 that the nature of the short range order was understood [54]. The very large effective moments in the erbium spinels combined with their Ising anisotropy, gives rise to long range dipolar interactions that produce a ferromagnetic coupling [57], significantly larger in magnitude than the antiferromagnetic near neighbour exchange [48, 49]. Thus, the erbium spinels possess all the requisite ingredients for spin ice physics and that is indeed what has been found. This was first uncovered in CdEr$_2$S$_4$, which is a Kramers ion with a total angular momentum of $J = \frac{15}{2}$ and an expected paramagnetic moment of $\mu_{\text{calc}} = 9.6 \mu_B$, which agrees well with experiment [52]. While erbium-based oxide pyrochlores have local XY anisotropy of varying strength [53], the change in the local environment in the spinels yields perfectly Ising moments [48, 49, 54], constrained to lie along the local [111] directions (Fig. 4). However, the first excited CEF levels are found at energies as low as 4 meV above the ground state [48, 49] and as a result, their influence cannot be entirely disregarded. In particular, coupling between the ground and excited states through so-called virtual CEF fluctuations becomes appreciable at these energy scales [55], which can disrupt the otherwise perfect Ising anisotropy. Studies thus far suggest that the $A\text{Er}_2X_4$ compounds, with varying A and X ions, have broadly similar properties, which are to first order dictated by the strong Ising anisotropy.

The earliest studies on the erbium rare earth selenides predicted that these compounds would order between 4 and 10 K, based on the onset of short range order seen in magnetization and Mössbauer spectroscopy measurements [51, 56]. However, it wasn’t until 2010 that the nature of the short range order was understood [54]. The very large effective moments in the erbium spinels combined with their Ising anisotropy, gives rise to long range dipolar interactions that produce a ferromagnetic coupling [57], significantly larger in magnitude than the antiferromagnetic near neighbour exchange [48, 49]. Thus, the erbium spinels possess all the requisite ingredients for spin ice physics and that is indeed what has been found. This was first uncovered in CdEr$_2$S$_4$, which is a Kramers ion with a total angular momentum of $J = \frac{15}{2}$ and an expected paramagnetic moment of $\mu_{\text{calc}} = 9.6 \mu_B$, which agrees well with experiment [52]. While erbium-based oxide pyrochlores have local XY anisotropy of varying strength [53], the change in the local environment in the spinels yields perfectly Ising moments [48, 49, 54], constrained to lie along the local [111] directions (Fig. 4). However, the first excited CEF levels are found at energies as low as 4 meV above the ground state [48, 49] and as a result, their influence cannot be entirely disregarded. In particular, coupling between the ground and excited states through so-called virtual CEF fluctuations becomes appreciable at these energy scales [55], which can disrupt the otherwise perfect Ising anisotropy. Studies thus far suggest that the $A\text{Er}_2X_4$ compounds, with varying A and X ions, have broadly similar properties, which are to first order dictated by the strong Ising anisotropy.

The earliest studies on the erbium rare earth selenides predicted that these compounds would order between 4 and 10 K, based on the onset of short range order seen in magnetization and Mössbauer spectroscopy measurements [51, 56]. However, it wasn’t until 2010 that the nature of the short range order was understood [54]. The very large effective moments in the erbium spinels combined with their Ising anisotropy, gives rise to long range dipolar interactions that produce a ferromagnetic coupling [57], significantly larger in magnitude than the antiferromagnetic near neighbour exchange [48, 49]. Thus, the erbium spinels possess all the requisite ingredients for spin ice physics and that is indeed what has been found. This was first uncovered in CdEr$_2$S$_4$, which is a Kramers ion with a total angular momentum of $J = \frac{15}{2}$ and an expected paramagnetic moment of $\mu_{\text{calc}} = 9.6 \mu_B$, which agrees well with experiment [52]. While erbium-based oxide pyrochlores have local XY anisotropy of varying strength [53], the change in the local environment in the spinels yields perfectly Ising moments [48, 49, 54], constrained to lie along the local [111] directions (Fig. 4). However, the first excited CEF levels are found at energies as low as 4 meV above the ground state [48, 49] and as a result, their influence cannot be entirely disregarded. In particular, coupling between the ground and excited states through so-called virtual CEF fluctuations becomes appreciable at these energy scales [55], which can disrupt the otherwise perfect Ising anisotropy. Studies thus far suggest that the $A\text{Er}_2X_4$ compounds, with varying A and X ions, have broadly similar properties, which are to first order dictated by the strong Ising anisotropy.
B. Ytterbium Chalcogenide Spinels

The ytterbium spinels, AYb_2X_4 ($A =$ Cd or Mg and X = S or Se), have a pyrochlore network of Yb^{3+}, which has a Hund’s rules total angular moment of $J = 7/2$ and a paramagnetic moment of $\mu_{\text{calc}} = 4.5 \, \mu_B$. In contrast to their erbium counterparts, the ytterbium spinels do have a well-isolated CEF ground state, a Kramers pseudo-spin-1/2 doublet which is separated by approximately 25 meV from the first excited state. There are conflicting reports on the spin anisotropy of the Yb^{3+} moments, which can only partially be explained by material dependent parameters (the specific A and X ions). While one study found that the in- and out-of-plane components are nearly equal [62] and thus, Heisenberg-like, others have reported that it is weakly [63], or moderately Ising-like [50]. An exact identification of the ground state anisotropy is difficult because direct measurements of the CEF energy levels via neutron scattering leads to an underconstrained problem. An additional constraint can be added by considering the magnetization as a function of applied field [50], which led to the most Ising-like result. However the accuracy of this method is debatable, as the strength of short range correlations at low temperature may confound the fits [63]. Electron paramagnetic resonance spectroscopy measurements on magnetically dilute samples could help resolve this question.

All four ytterbium spinels have long-range antiferromagnetic ordering transitions between 1 and 2 K [62]. Neutron diffraction has only been performed in the two cadmium analogs, both of which order into the Γ_5 irreducible representation [63, 64], which is pictured in Fig. 5(b), where linear combinations of the basis vectors ψ_2 and ψ_3 trace out the local XY plane. The ordered moment is significantly reduced compared to the calculated value for the CEF ground state doublet, indicating that strong quantum fluctuations are at play [63, 64]. Spontaneous muon precession is observed in CdYb$_2$X$_4$ [64] but not in MgYb$_2$S$_4$ [62], suggesting that a different ground state might be found in the Mg analogs, or they may have stronger disorder. Within the ordered state, gapless spin excitations are observed in both electron spin resonance measurements [65] and heat capacity [62]. It is interesting to note that there are several order-by-disorder mechanisms through which the Γ_5 degeneracy can be lifted, which would open a small energy gap that as of now has not been detected [66]. One of these mechanisms, virtual CEF fluctuations, can likely be excluded, as the splitting to the first excited CEF level is rather large. Muon spin relaxation studies show that there are persistent spin dynamics well below the ordering temperature [64], a feature that is apparently ubiquitous in rare earth pyrochlore lattice materials, irrespective of anion [67-69].

Although the moments of the ytterbium spinels are not in and of themselves XY-like, there is tantalizing evidence to suggest shared phenomenology with the XY oxide pyrochlores, whose properties are dictated by intense phase competition. The first indication comes from heat capacity, where it is observed that the sharp lambda-like ordering anomalies are preceded in temperature by a broad anomaly, such that only 30% of the entropy release occurs below T_N [62, 64]. This two-stage ordering has become synonymous with phase competition [21]. More direct evidence of competing phases comes from the low magnetic fields required to destabilize their magnetic ground state, as was first observed in CdYb$_2$S$_4$ with electron spin resonance [65]. At moderate fields there is a crossover from the XY antiferromagnetic Γ_5 state (Fig. 5 (b)) to a spin-ice like ferromagnetic Γ_5 state (Fig. 5 (d)) [63]. Theoretical modeling further reinforces the possible importance of phase competition in this family of compounds, showing that CdYb$_2$Se$_4$ lies at a classical phase boundary the splayed ferromagnetic and antiferromagnetic Γ_5 phase [70]. However, inelastic neutron scattering reveals weakly dispersive spin excitations within its ordered state that do not, at face value, resemble the overdamped spin excitations found in the ytterbium oxide pyrochlore family [71]. Future works should clarify the role of phase competition and order-by-disorder effects in the Yb spinels, for which single crystal samples will be crucial.

C. Holmium Chalcogenide Spinels

The holmium chalcogenide spinels are still poorly understood due to their complex single ion properties. The Ho^{3+} cation that occupies the pyrochlore lattice has a total angular momentum of $J = 8$ ($\mu_{\text{calc}} = 10.6 \, \mu_B$) and is hence a non-Kramers ion where a ground state doublet is no longer guaranteed. The CEF ground state was initially suggested to be a non-magnetic singlet [45], due to low temperature susceptibility measurements showing temperature independent paramagnetism in CdHo$_2$S$_4$. More recently, direct measurement of the CEF levels in MgHo$_2$Se$_4$ via inelastic neutron scattering reveals a non-Kramers doublet ground state, in close proximity to an excited doublet and singlet below 1 meV, and yet another singlet below 3 meV [50]. The complicated CEF scheme with many low lying levels bares some resemblance to the terbium oxide pyrochlores, whose ground states are formed by two closely spaced doublets and the competing energy scales of single ion effects and the ion-ion interactions leads to rich and complex physics that has eluded description by a microscopic theory [72-75]. In the holmium spinels the lowest lying excited CEF levels are even more numerous and closely spaced than the 1.5 meV level in the terbium pyrochlores, and thus we can expect similarly rich physics.

The magnetic ground state of the holmium chalcogonides has only been studied in detail in one compound, CdHo$_2$Se$_4$, which has a magnetic transition at $T_C = 0.87 \, \text{K}$ [68]. However, as is the case for the terbium pyrochlores, this ordering transition appears unconventional; despite the very sharp anomaly in heat capacity, magnetic susceptibility only shows a broad inflection at T_C. Muon spin relaxation measurements indicate signifi-
FIG. 5. The irreducible representations (Γ) and their basis vectors (ψ), for allowed $k = 0$ magnetic orders on the pyrochlore lattice. (a) Γ_3 is commonly known as the all-in all-out structure. (b) Γ_5 is usually found in compounds with XY anisotropy and is composed of linear combinations of ψ_2 and ψ_3. (c) Γ_7, often referred to as the Palmer-Chalker state, has a threefold basis, where ψ_5 and ψ_6 are equivalent to ψ_4 rotated about the primary crystal axis. (d) Γ_9 has a sixfold basis, where we show two representative basis vectors, ψ_7 and ψ_8. The other four basis states (ψ_9, ψ_{10}, ψ_{11}, and ψ_{12}) are related to ψ_7 and ψ_8 by a simple rotation to an equivalent cubic direction. The linear combinations of ψ_7 and ψ_8 forms the ice-like splayed ferromagnet (SF) shown. Other linear combinations can give ferromagnetic states with the moment canted away from the local [111].
knowledge, been tested with other anions.

Although we focused here on compounds where only the pyrochlore sublattice is occupied by a magnetic ion, there exist chalcogenide rare earth spinels with either Mn or Fe on the A-site. These materials have either surprisingly low [80], or no observed [80–83] magnetic ordering transitions down to liquid helium temperatures, pointing to the importance of geometric frustration. In fact, of the chalcogenides spinels with magnetic ions on both sites, it is only those with significant site mixing and disorder that have been observed to magnetically order [84–86]. The nature of the magnetic frustration in this family is still poorly understood and explored, and the fact that there is a magnetic atom on the A-site as well adds an entirely new layer of complexity that is beyond the scope of pyrochlore-lattice frustration.

Given the highly anisotropic nature of rare earth magnetism, many of the most illuminating experiments, including inelastic neutron scattering, are best accomplished with single crystal samples. Thus far, the rare earth chalcogenide spinels have only been produced in polycrystalline form. Flux crystal growth is a promising avenue as related chalcogenide compounds have been successfully grown with arsenic and antimony chalcogenide fluxes [87], or with cadmium chloride flux [88]. A second possible route is vapor transport methods. Similar cadmium chalcogenide spinels have been successfully grown with iodine or cadmium chloride as a transport agent [88]. Studies to find suitable single crystal growth methods are demanding, but such samples would open up many new avenues of research.

IV. CHROMIUM CHALCOGENIDE SPINELS

In contrast to the other materials discussed in this review, the family of chromium spinels $A\text{Cr}_2\text{X}_4$ ($A = \text{Cd, Co, Cu, Fe, Mn, Zn; } X = \text{S, Se}$), where chromium occupies the pyrochlore sublattice in the spinel structure, have been extensively studied dating back over 50 years [88]. The chromium spinels are unique in that, despite being a family of compounds with only one magnetic ion, they span a wide range of magnetic phenomena. The Cr^{3+} ion is an excellent example of an isotropic $S = 3/2$ moment with several competing exchange interactions that are highly dependent on lattice spacing [89]. This gives a near continuum of dominant interactions, from the geometrically frustrated antiferromagnetic chromium oxides such as ZnCr_2O_4 ($\theta_{\text{CW}} = -398$ K [90]), to the bond frustrated ZnCr_2S_4 ($\theta_{\text{CW}} = 7.9$ K [91]), to the solidly ferromagnetic HgCr_2S_4 ($\theta_{\text{CW}} = 200$ K [92]). Within this large range of interaction strengths, we find spin-spiral [93], phase coexistence [94], and compounds with ferromagnetic spin fluctuations preceding antiferromagnetic order [95]. Beyond their magnetic ground states, the physics of chromium spinels extend far beyond the scope of this review including semiconductors [92], multiferroics [96], Chern semimetals [97], and colossal magnetoresponse [98]. We will not attempt to be complete on this topic and will instead refer the reader to other comprehensive reviews [99].

A. Breathing pyrochlore chromium spinels

In the past few years, there has been a surge of interest in materials with so-called breathing pyrochlore lattices, in which the corner sharing tetrahedral network alternates between large and small tetrahedra as shown in Figure 1(c). The properties of these materials are often understood in terms of their breathing ratios, $B_r = d'/d$ where d and d' are the bond lengths within the small and large tetrahedra, respectively. The breathing ratio is a good proxy for the relative strength of their inter- and intra-tetrahedron exchange couplings, J and J' (Fig. 6(a)). The non-interacting limit occurs when $J \gg J'$, resulting in a scenario of decoupled small tetrahedra, as realized in $\text{Ba}_3\text{Yb}_2\text{Zn}_3\text{O}_{11}$ with $B_r \approx 1.9$, where the ground state appears to be a nonmagnetic singlet [100–102]. Conversely, when the breathing ratio is closer to unity, as is the case for the chromium spinel oxides $\text{Li(In,Ga)}\text{Cr}_2\text{O}_8$ with $B_r \approx 1.05$, intra-tetrahedral interactions are sufficiently strong to yield collective magnetic behavior [103, 104]. The expected magnetic ground state in the interacting limit is dictated by the signs of J and J', under the assumption that further neighbour exchange is negligible [105]. In $\text{Li(In,Ga)}\text{Cr}_4\text{O}_9$, the intratetrahedral ($J$ and J') exchange couplings are both antiferromagnetic (Fig. 6(b)). These highly frustrated materials exhibit strong spin-lattice coupling and are only able to achieve long range magnetic order after first undergoing a magnetostructural tetragonal lattice distortion [103, 106, 107].

Non-oxide breathing pyrochlores can be found amongst a site-ordered structural derivative of the chromium chalcogenide spinels. These materials have the chemical formula $\text{AA'}\text{Cr}_4\text{X}_8$ ($A = \text{Li, Cu, Ag; } A' = \text{Al, Ga, In; } X = \text{S, Se}$) where A and A' are, respectively, monovalent and trivalent nonmagnetic metals. For certain combinations of A and A', there is no site ordering and the two cations are randomly distributed over the diamond sublattice of the spinel structure with space group $Fd\bar{3}m$ (e.g. $\text{Ag}^+/\text{Ga}^{3+}$ with $X = \text{S}$ [108, 109]). However, for most combinations of A and A', there is a zinc-blende ordering of the two nonmagnetic metals, each of which forms its own face-centered cubic sublattice, lowering the space group symmetry to $F\bar{4}3m$ (e.g. $\text{Cu}^+/\text{In}^{3+}$ with $X = \text{S, Se}$ [108–110]). Magnetic susceptibility measurements on these materials find a paramagnetic moment that agrees well with the expected spin-only value ($S = 3/2$) for Cr^{3+} in a pseudo-octahedral environment [111–113]. While the first reports of these compounds date back more than 50 years, interest in their magnetic ground states has recently been rekindled.

The replacement of $X = \text{O}$ with $X = \text{S}$ or Se in the breathing pyrochlore spinels has three major effects (i) ferromagnetic superexchange is enhanced due to the nearly
90° Cr–X–Cr bond angles, such that either or both J and J' can be ferromagnetic; (ii) the overall magnitude of J and J' exchange couplings decrease; and (iii) the second and third nearest neighbour exchange couplings (J_2, J_{3a}, J_{3b}) become non-negligible (see Fig. 6(b)) [103, 114, 115]. The net result is that an entirely distinct set of magnetic ground states are expected for these breathing chalcogenide spinels. Similar to the oxide analogs, spin-lattice coupling remains significant, as evidenced by an extended region of negative thermal expansion in LiGaCr$_4$S$_8$ coinciding with the temperature interval over which magnetic correlations develop [113]. However, no structural distortions have been detected.

One particularly interesting compound among the chromium chalcogenide breathing pyrochlores is LiGaCr$_4$S$_8$. While the earliest studies of this material suggested that a heat capacity anomaly near 14 K marked an antiferromagnetic ordering transition [108, 112], more recent studies have found that it is instead associated with a spin freezing transition [113]. Both DFT calculations and fits to diffuse neutron scattering data reveal that both J and J' for this material are ferromagnetic and that the origin of frustration is strong antiferromagnetic third nearest neighbor coupling, J_{3a} (Fig. 6(b)) [114, 115]. The resulting so-called cluster glass state is a form of emergent frustration in which ferromagnetic tetrahedral clusters can be mapped onto an antiferromagnetically-coupled FCC lattice.

CuInCr$_4$Se$_8$, also with ferromagnetic J and J' has been predicted to possess an incommensurate spiral magnetic order emerging out of a chiral spin liquid state [114]. Experimentally, significant sample dependence has been observed in this material, with non-stoichiometric samples adopting a spin glass-like state while the magnetic ground state of stoichiometric samples remains unknown [108, 116, 117]. Neutron diffraction has revealed long range antiferromagnetic order in CuInCr$_4$S$_8$ [118, 119], CuGaCr$_4$S$_8$ [116], and AgInCr$_4$S$_8$ [120], with the latter two adopting incommensurate spiral order states. A number of the $X = S$ breathing pyrochlore spinels have multiple magnetization plateaus with and without hysteresis suggestive of complex phase diagrams due to the delicate balance of competing near and further neighbour interactions [112, 121].

V. FUTURE DIRECTIONS

In this report, we have focused on the families of non-oxide pyrochlore lattice materials that have received the most detailed investigations to date, namely the fluoride pyrochlores, the rare earth chalcogenide spinels, and the breathing pyrochlore chromium chalcogenides. We have also briefly touched on a handful of related compounds including Na$_2$M(CO$_3$)$_2$Cl ($M = \text{Co, Mn}$) and FeF$_4$. Our focus in this final section shifts to material families that we hope will receive a similar level of investigation in the years to come. Some of these are materials that have been synthesized, in some cases decades earlier, but have never received a detailed investigation of their magnetic properties. Others are families of compounds where we believe new materials lurk, remaining to be discovered.

An example of a family that has been long known but has received relatively little attention is the $ABB'F_6$ family ($A = \text{Group I and } B = \text{3d transition metal}$), which belong to the same structure type as the so-called β-pyrochlore oxides, $A\text{Os}_2\text{O}_6$ (space group $Fd\bar{3}m$). The β-pyrochlore fluorides have a pyrochlore sublattice that is occupied by a random distribution of the B^{2+} and B^{3+}
atoms. The original reports of this family, from 1967, include more than two dozen compounds [122]. Of these, only one compound, CsNiCrF₆, appears to have had a detailed investigation into its magnetic properties, which revealed Coulomb phase behavior for the magnetic, charge, and lattice degrees of freedom [61, 123, 124]. However, like the disordered A-site pyrochlore fluorides, this material enters a frozen glassy state at low temperatures due to chemical disorder. There are no known sulfide or selenide analogs of the β-pyrochlores but they could conceivably exist with B = Os or some other 5d transition metal.

Another interesting path towards discovering new materials is to search for non-oxides analogs of known oxide pyrochlore derivatives. For example, the “tripod kagome” structure, R_3Sb$_3$A$_2$O$_{14}$ (space group $R\overline{3}m$), where R is a magnetic rare earth and $A = \text{Mg}$ or Zn, has emerged as a new family of magnetically frustrated materials just within the last few years [125, 126]. This structure is obtained by doubling the pyrochlore formula unit and diluting the two pyrochlore sublattices by one quarter. When viewed along the the [111] crystallographic direction, the pyrochlore structure can be visualized as alternating triangular and kagome layers; this non-magnetic dilution selectively substitutes on the triangular sublattice, leaving the magnetic kagome layers intact. Despite the newness of this topic, it already apparent that these tripod kagome materials can exhibit rich magnetic ground states, such as emergent charge order in Dy$_3$Sb$_3$Mg$_2$O$_{14}$ [127] and chiral order in Nd$_3$Sb$_3$Mg$_2$O$_{14}$ [128]. The natural question then is whether this pyrochlore derivative structure could be stabilized with fluoride and chalcogenide anions. A fluorinated version of this structure, $M^2_2 B^2_2 A^2_1 F_{14}$ ($M = 3d$ transition metal, $B = \text{Group 2}$, and $A = \text{Group}$ 1), would have no inherent chemical disorder, unlike the fluoride pyrochlores.

Other interesting prospects exist in the domain of mixed anion systems, where the mixture of anions allows different metal valences to be accessed and hence different magnetic states. There are, for example, fluorosulfide and oxyfluoride pyrochlores of the type $A_2 B_2 F_6 O$ and $A_2 B_2 F_6 S$ wherein the anions are site-ordered such that the one sulfur or one oxygen fully occupies the 48\bar{f} Wyckoff site [129]. An NMR study on Mg$_2$Cu$_2$Fe$_2$S, a rare example of a Cu$^{2+}$ pyrochlore lattice material, found that the nearest neighbor coupling was on the order of 100 K, yet there is no magnetic order down to 2 K, indicating strong frustration [130]. Low temperature topochemical anion substitution reactions may prove a promising route to synthesizing new mixed anion pyrochlore lattice materials, as has been shown in oxynitride molybdate pyrochlores [131].

Non-oxide pyrochlore lattice materials are fertile ground for new and unusual magnetically frustrated states of matter. While materials breakthroughs over the past decade have lead to significant progress, and many interesting findings, there is still much more to be done.

ACKNOWLEDGMENTS

This work was supported by the the Natural Sciences and Engineering Research Council of Canada and the CIFAR Azrieli Global Scholars program. This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program. Crystal structure figures were made using VESTA [132].

[1] Mark J Harris, ST Bramwell, DF McMorrow, TH Zeiske, and KW Godfrey, “Geometrical frustration in the ferromagnetic pyrochlore Ho$_2$Ti$_2$O$_7$,” Physical Review Letters 79, 2554 (1997).
[2] JS Gardner, SR Dunsiger, BD Gaulin, MJG Gingras, JE Greedan, RF Kiefl, MD Lumsden, WA MacFarlane, NP Raju, JE Sonier, et al., “Cooperative paramagnetism in the geometrically frustrated pyrochlore antiferromagnet Tb$_2$Ti$_2$O$_7$,” Physical Review Letters 82, 1012 (1999).
[3] Jason S. Gardner, Michel J. P. Gingras, and John E. Greedan, “Magnetic pyrochlore oxides,” Rev. Mod. Phys. 82, 53–107 (2010).
[4] CR Wiebe and AM Hallas, “Frustration under pressure: Exotic magnetism in new pyrochlore oxides,” APL materials 3, 041519 (2015).
[5] I Mirebeau, IN Goncharenko, P Cadavez-Peres, ST Bramwell, MJG Gingras, and JS Gardner, “Pressure-induced crystallization of a spin liquid,” Nature 420, 54–57 (2002).
[6] Kate A Ross, Lucile Savary, Bruce D Gaulin, and Leon Balents, “Quantum excitations in quantum spin ice,” Physical Review X 1, 021002 (2011).
[7] KE Arpino, BA Trump, AO Scheie, TM McQueen, and SM Koohpayeh, “Impact of stoichiometry of Yb$_2$Ti$_2$O$_7$ on its physical properties,” Physical Review B 95, 094407 (2017).
[8] Laura Bovo, X Moya, D Prabhakaran, Yeong-Ah Soh, AT Boothroyd, ND Mathur, G Aeppli, and ST Bramwell, “Restoration of the third law in spin ice thin films,” Nature Communications 5, 1–8 (2014).
[9] MA Subramanian, G Aravamudan, and GV Subba Rao, “Oxide pyrochlores — a review,” Progress in Solid State Chemistry 15, 55–143 (1983).
[10] Roderick J Hill, James R Craig, and GV Gibbs, “Systematics of the spinel structure type,” Physics and Chemistry of Minerals 4, 317–339 (1979).
[11] Kurt E Sickafus, John M Wills, and Norman W Grimes, “Structure of spinel,” Journal of the American Ceramic Society 82, 3279–3292 (1999).
[12] Seung-Hun Lee, Hidenori Takagi, Despina Louca, Masaaki Matsuda, Sungdae Ji, Hiroaki Ueda, Yutaka Ueda, Takuro Katsufuji, Jae-Ho Chung, Sungil Park, Sang-Wook Cheong, and Collin Broholm, “Frustrated magnetism and cooperative phase transitions in spinels,” Journal of the Physical Society of Japan 79, 011004 (2010).
Hirokazu Tsunetsugu and Yukitoshi Motome, “Magnetic transition and orbital degrees of freedom in vanadium spinels,” Physical Review B 68, 060405 (2003).

J. W. Krizan and R. J. Cava, “NaCaCo$_{2}$F$_7$: A single-crystal high-temperature pyrochlore antiferromagnet,” Physical Review B 89, 214401 (2014).

J. W. Krizan and R. J. Cava, “NaCaNi$_2$F$_7$: A frustrated high-temperature pyrochlore antiferromagnet with $S = 1\frac{1}{2}$,” Physical Review B 92, 014406 (2015).

M B Sanders, J W Krizan, K W Plumb, T M McQueen, and R J Cava, “NaSrMn$_2$F$_7$, NaCaFe$_2$F$_7$, and NaSrFe$_2$F$_7$: Novel single crystal pyrochlore antiferromagnets,” Journal of Physics: Condensed Matter 29, 045801 (2016).

R Hänssler and W Rüdorff, “$A_2B_2F_7$-Verbindungen mit pyrochlor-und weberitstruktur,” Zeitschrift für Naturforschung B 25, 1306–1307 (1970).

TE Saunders and JT Chalker, “Spin freezing in geometrically frustrated antiferromagnets with weak disorder,” Physical Review Letters 98, 157201 (2007).

JW Krizan and Robert J Cava, “NaSrCo$_2$F$_7$, a Co$^{2+}$ pyrochlore antiferromagnet,” Journal of Physics: Condensed Matter 27, 296002 (2015).

K. A. Ross, J. M. Brown, R. J. Cava, J. W. Krizan, S. E. Nagler, J. A. Rodriguez-Rivera, and M. B. Stone, “Single-ion properties of the $S_{\text{eff}} = 1\frac{1}{2}$ XY antiferromagnetic pyrochlores NaA'Co$_2$F$_7$ ($A' = \text{Ca}^{2+}, \text{Sr}^{2+}$),” Physical Review B 95, 144414 (2017).

Alannah M. Hallas, Jonathan Gaudet, and Bruce D. Gaulin, “Experimental insights into ground-state selection of quantum XY pyrochlores,” Annual Review of Condensed Matter Physics 9, 105–124 (2018).

Anson W. C. Wong, Zhihao Hao, and Michel J. P. Gingras, “Ground state phase diagram of generic XY pyrochlore magnets with quantum fluctuations,” Physical Review B 88, 144402 (2013).

J Zeisner, SA Bräuninger, L Opherdien, R Sarkar, DJ Gorbunov, JW Krizan, T Herrmannsdörfer, Robert Joseph Cava, J Wosnitza, B Bürchner, et al., “Magnetic interactions and spin dynamics in the bond-disordered pyrochlore fluoride NaCaCo$_2$F$_7$, ” Physical Review B 99, 155104 (2019).

Pierre Bonville, Sylvain Petit, Isabelle Mirebeau, Julien Robert, Elsa Lhotel, and Carley Paulson, “Magnetization process in Er$_2$Ti$_2$O$_7$ at very low temperature,” Journal of Physics: Condensed Matter 25, 275601 (2013).

Benjamin A Frandsen, Kate A Ross, Jason W Krizan, Goran J Nilson, Andrew R Wildes, Robert J Cava, Robert J Birgeneau, and Simon JL Billinge, “Real-space investigation of short-range magnetic correlations in fluoride pyrochlores NaCaCo$_2$F$_7$ and NaSrCo$_2$F$_7$ with magnetic pair distribution function analysis,” Physical Review Materials 1, 074412 (2017).

R Sarkar, JW Krizan, F Brückner, Eric de Castro Andrade, S Rachel, M Vojta, Robert Joseph Cava, and H-H Klauss, “Spin freezing in the disordered pyrochlore magnet NaCaCo$_2$F$_7$: NMR studies and Monte Carlo simulations,” Physical Review B 96, 235117 (2017).

K. A. Ross, J. W. Krizan, J. A. Rodriguez-Rivera, R. J. Cava, and C. L. Broholm, “Static and dynamic XY-like short-range order in a frustrated magnet with exchange disorder,” Physical Review B 93, 014433 (2016).

Yanzhen Zheng, Arkady Ellern, and Paul Koehler, “A spin-frustrated cobalt (II) carbonate pyrochlore network,” Acta Crystallographica Section C: Crystal Structure Communications 67, 156–158 (2011).

Zhendong Fu, Yanzhen Zheng, Yinguo Xiao, Subhasankar Bedanta, Anatoly Senyshyn, Giovanna Giulia Simeoni, Yixi Su, Ulrich Rücker, Paul Kögerler, and Thomas Brückel, “Coexistence of magnetic order and spin-glass-like phase in the pyrochlore antiferromagnet Na$_3$Co$_2$(CO$_3$)$_2$Cl,” Physical Review B 87, 214406 (2013).

Plumb K. W., Changlani Hitesh J., Scheie A., Zhang Shu, Krizan J. W., Rodriguez-Rivera J. A., Qiu Yiming, Winn B., Cava R. J., and Broholm C. L., “Continuum of quantum fluctuations in a three-dimensional $S = 1$ Heisenberg magnet,” Nature Physics 15, 54–59 (2019).

Shu Zhang, Hitesh J Changlani, Kemp W Plumb, Oleg Tchernyshyov, and Roderich Moessner, “Dynamical structure factor of the three-dimensional quantum spin liquid candidate NaCaNi$_2$F$_7$,” Physical Review Letters 122, 167203 (2019).

Jacques Villain, “Insulating spin glasses,” Zeitschrift für Physik B Condensed Matter 33, 31–42 (1979).

Y Cai, M N Wilson, A M Hallas, L Liu, B A Frandsen, S R Dunsiger, J W Krizan, R J Cava, O Rubel, Y J Uemura, and G M Luke, “μSR study of spin freezing and persistent spin dynamics in NaCaNi$_2$F$_7$,” Journal of Physics: Condensed Matter 30, 385802 (2018).

Roderich Moessner and John T Chalker, “Properties of a classical spin liquid: the Heisenberg pyrochlore antiferromagnet,” Physical Review Letters 80, 2929 (1998).

Kazuhiro Nawa, Daisuke Okuyama, Maxim Avdeev, Hiroyuki Nojiri, Masahiro Yoshida, Daichi Ueta, Hideki Yoshizawa, and Taku J Sato, “Degenerate ground state in the classical pyrochlore antiferromagnet Na$_3$Mn(CO$_3$)$_2$Cl,” Physical Review B 98, 144426 (2018).

R De Pape and G Ferey, “A new form of FeF$_3$ with the pyrochlore structure: Soft chemistry synthesis, crystal structure, thermal transitions and structural correlations with the other forms of FeF$_3$,” Materials research bulletin 21, 971–978 (1986).

G Ferey, R De Pape, M Leblanc, and J Pannetier, “Ordered magnetic frustration. viii: Crystal and magnetic structures of the pyrochlore form of FeF$_3$ between 2.5 and 25 K from powder neutron diffraction. comparison with the order varieties of FeF$_3$,” Revue de Chimie minérale 23, 474–484 (1986).

Y Calage, M Zemirli, JM Greneche, F Varret, R De Pape, and G Ferey, “Mössbauer study of the new pyrochlore form of FeF$_3$,” Journal of Solid State Chemistry 69, 197–201 (1987).

JN Reimers, JE Greedan, CV Stager, M Bjorgvinsson, and MA Subramanian, “Short-range magnetic ordering in the highly frustrated pyrochlore systems FeF$_3$ and Mn$_2$Sb$_2$O$_7$,” Physical Review B 43, 5692 (1991).

John E Greedan, “Geometrically frustrated magnetic materials,” Journal of Materials Chemistry 11, 37–53 (2001).

Lawrence Suchow and Norman R. Stemple, “Fluorescent rare earths in semiconductor thiospinels,” Journal of The Electrochemical Society 111, 191 (1964).

J. Flahaut, M. Guittard, M. Patrie, M. P. Pard, S. M. Golabi, and L. Domange, “Phase cubiques type Th$_2$P$_4$ dans les sulfures, les séléniures et les tellurures L_2X_3 et L_3X_4 des terres rares, et dans leurs combinaisons ML_2X_4 of magnetic order and spin-glass-like phase in the pyrochlore antiferromagnet Na$_3$Co$_2$(CO$_3$)$_2$Cl,” Physical Review B 87, 214406 (2013).
with the sulphures and séléniums \textit{MX} de calcium, strontium et baryum, formation et propriétés cristallines,” Acta Crystallographica 19, 14–19 (1965).

43. S. Pokrzywnicki, A. Czopnik, B. Wróbel, and L. Pawlak, “Crystal field theory interpretation of the magnetic susceptibility of CdYb$_2$Se$_4$ spinel,” Physica Status Solidi (b) 64, 685–688 (1974).

44. S. Pokrzywnicki, “Analysis of the magnetic susceptibility of CdYb$_2$Si$_4$ spinel by means of the crystal field method,” Physica Status Solidi (b) 71, K111–K115 (1975).

45. L. Ben-Dor and I. Shilo, “Structure and magnetic properties of sulfides of the type Cd$_x$RE$_2$S$_4$ and Mg(Gd$_{1-x}$Yb$_x$)$_2$Si$_4$,” Journal of Solid State Chemistry 35, 278–285 (1980).

46. L. Pawlak, M. Duczmal, and A. Zygmun, “Magnetic properties and crystal field in MgYb$_2$S$_4$ and MgYb$_2$Se$_4$ spinels,” Journal of Magnetism and Magnetic Materials 76–77, 199–200 (1988).

47. S. Pokrzywnicki, L. Pawlak, and A. Czopnik, “Magnetic susceptibility of Tm$_2$Se$_4$ and CdTm$_2$Se$_4$ compounds,” Physica B+C 86-88, 1141–1142 (1977).

48. Shiang Gao, O. Zaharko, V. Tsurkan, L. Prodan, E. Rior-nder, J. Lago, B. Fák, A. R. Wildes, M. M. Koza, C. Ritter, P. Fouquet, L. Keller, E. Canévet, M. Medarde, J. Blomgren, C. Johansson, S. R. Giblin, S. Vrtnik, J. Lazor, A. Leidl, Ch. Rüegg, and T. Fennell, “Dipolar spin ice states with a fast monopole hopping rate in CdEr$_2$X$_4$ (X = Se, S),” Physical Review Letters 120, 137201 (2018).

49. D. Reig-i-Plessis, S. V. Geldern, A. A. Azcel, D. Kochkov, B. K. Clark, and G. J. MacDougall, “Deviation from the dipole-ice model in the spin ice candidate MgEr$_2$Se$_4$,” Physical Review B 99, 134438 (2019).

50. D. Reig-i-Plessis, A. Cote, S. van Geldern, R. D. Mayrhofer, A. A. Azcel, and G. J. MacDougall, “Neutron scattering measurement of crystalline-electric fields in magnesium rare-earth selenide spinels,” Physical Review Materials 3, 114408 (2019).

51. Hirobono Fuji, Tetsushiho Okamoto, and Takahiko Kami-gaichi, “Crystallographic and magnetic studies of rare earth chalcogenide spinels,” Journal of the Physical Society of Japan 32, 1432–1432 (1972).

52. G. C. Lau, R. S. Freitas, B. G. Ueland, P. Schiffer, and R. J. Cava, “Geometrical magnetic frustration in rare-earth chalcogenide spinels,” Physical Review B 72, 054411 (2005).

53. J Gaudet, AM Hallas, Alexander I Kolesnikov, and Bruce D Gaulin, “Effect of chemical pressure on the crystal electric field states of erbium pyrochlore magnets,” Physical Review B 97, 024415 (2018).

54. Jorge Lago, Ivica Živković, BZ Malkin, J Rodriguez Fernandez, P Ghigna, P Dalmas de Réotier, A Yaouanc, and T Rojo, “CdEr$_2$Se$_4$: A new erbium spin ice system in a spinel structure,” Physical Review Letters 104, 247203 (2010).

55. Jeffrey G. Rau, Sylvain Petit, and Michel J. P. Gingras, “Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets,” Physical Review B 93, 184408 (2016).

56. L. Ben-Dor, I. Shilo, and I. Felner, “CdEr$_2$S$_4$: Magnetic and Mössbauer measurements,” Journal of Solid State Chemistry 39, 257–258 (1981).

57. Byron C den Hertog and Michel JP Gingras, “Dipolar interactions and origin of spin ice in Ising pyrochlore magnets,” Physical Review Letters 84, 3430 (2000).

58. Pauling Linus, “The structure and entropy of ice and of other crystals with some randomness of atomic arrangement,” Journal of the American Chemical Society 57, 2680–2684 (1935).

59. Arthur P Ramirez, A Hayashi, RJ Cava, R Siddharthan, and BS Shastry, “Zero-point entropy in ‘spin ice,’” Nature 399, 333–335 (1999).

60. Anaëlle Legros, D. H. Ryan, P. Dalmas de Réotier, A. Yaouanc, and C. Marin, “166er mössbauer spectroscopy study of magnetic ordering in a spinel-based potential spin-ice system: CdEr$_2$S$_4$,” Journal of Applied Physics 117, 17C701 (2015).

61. MJ Harris, MP Zinkin, and Th Zeiske, “Magnetic excitations in a highly frustrated pyrochlore antiferromagnet,” Physical Review B 52, R707 (1995).

62. Tomoya Higo, Kensuke Iritani, Mario Halim, Wataru Higemoto, Takashi U. Ito, Kentaro Kuga, Kenta Kimura, and Satoru Nakatsuji, “Frustrated magnetism in the Heisenberg pyrochlore antiferromagnets AVb$_2$X$_4$ (A = Cd, Mg; X = S, Se),” Physical Review B 95, 174443 (2017).

63. K Guratinder, Jeffrey G Rau, V Tsurkan, Clemens Ritter, J Embs, Tom Fennell, Helen C Walker, M Medarde, Tian Shiang, Antonio Cervellino, et al., “Multiphase competition in the quantum XY pyrochlore antiferromagnet CdYb$_2$Se$_4$: Zero and applied magnetic field study,” Physical Review B 100, 094420 (2019).

64. P Dalmas de Réotier, C Marin, A Yaouanc, C Ritter, A Maisuradze, B Roessli, A Bertin, PJ Baker, and A Amato, “Long-range dynamical magnetic order and spin tunneling in the cooperative paramagnetic states of the pyrochlore analogous spin antiferromagnets CdYb$_2$X$_4$ (X = S or Se),” Physical Review B 96, 134403 (2017).

65. D. Yoshizawa, T. Kida, S. Nakatsuji, K. Iritani, M. Halim, T. Takeuchi, and M. Hagiwara, “High-field multi-frequency ESR in the rare-earth spinel compound CdYb$_2$S$_4$,” Applied Magnetic Resonance 46, 993–996 (2015).

66. Jeffrey G. Rau, Paul A. McClarty, and Roderich Moessner, “Pseudo-goldstone gaps and order-by-quantum disorder in frustrated magnets,” Physical Review Letters 121, 237201 (2018).

67. PA McClarty, JN Cosman, AG Del Maestro, and MJP Gingras, “Calculation of the expected zero-field muon relaxation rate in the geometrically frustrated rare earth pyrochlore Gd$_2$Sn$_2$O$_7$ antiferromagnet,” Journal of Physics: Condensed Matter 23, 164216 (2011).

68. A. Yaouanc, P. Dalmas de Réotier, A. Bertin, C. Marin, E. Lhotel, A. Amato, and C. Baines, “Evidence for unidimensional low-energy excitations as the origin of persistent spin dynamics in geometrically frustrated magnets,” Physical Review B 91, 104427 (2015).

69. Pierre Dalmas de Réotier, Alexander Maisuradze, and Alain Yaouanc, “Recent μs studies of insulating rare-earth pyrochlore magnets,” Journal of the Physical Society of Japan 85, 091010 (2016).

70. Jeffrey G. Rau and Michel J. P. Gingras, “Frustration and anisotropic exchange in ytterbium magnets with edge-shared octahedra,” Physical Review B 98, 054408 (2018).

71. AM Hallas, J Gaudet, Nicholas P Butch, M Tachibana, RS Freitas, GM Luke, CR Wiebe, and BD Gaulin, “Universal dynamic magnetism in Yb pyrochlores with
disparate ground states,” Physical Review B 93, 100403 (2016).
[72] Hamid R. Molavian, Michel J. P. Gingras, and Benjamin Canals, “Dynamically induced frustration as a route to a quantum spin ice state in Tb$_2$Ti$_2$O$_7$ via virtual crystal field excitations and quantum many-body effects,” Physical Review Letters 98, 157204 (2007).
[73] Sylvain Petit, Pierre Bonville, Isabelle Mirebeau, Hannu Muttka, and Julien Robert, “Spin dynamics in the ordered spin ice Tb$_2$Sn$_2$O$_7,” Physical Review B 85, 054428 (2012).
[74] Jeffrey G. Rau and Michel J.P. Gingras, “Frustrated quantum rare-earth pyrochlores,” Annual Review of Condensed Matter Physics 10, 357–386 (2019).
[75] AM Hallas, W Jin, J Gaudet, EM Tonita, D Pomaranski, CRC Buharivalla, M Tachibana, NP Butch, S Calder, MB Stone, et al., “Intertwined magnetic dipolar and electric quadrupolar correlations in the pyrochlore Tb$_2$Ge$_2$O$_7,” arXiv preprint arXiv:2009.05036 (2020).
[76] FR Foronda, F Lang, JS Möller, T Lancaster, AT Boothroyd, FL Pratt, SR Giblin, D Prabhakaran, and SJ Blundell, “Anisotropic local modification of crystal field levels in Pr-based pyrochlores: A muon-induced effect modeled using density functional theory,” Physical Review Letters 114, 017602 (2015).
[77] Changle Liu, Chun-Jiong Huang, and Gang Chen, “Intrinsic quantum ising model on a triangular lattice magnet Tb$_3$MgGaO$_7”, Physical Review Research 2, 043013 (2020).
[78] D. Reig-i-Plessis, Geometric frustration in high spin orbit coupling magnetic materials, Ph.D. thesis, University of Illinois at Urbana-Champaign (2019).
[79] Olga Petrova, Roderich Moessner, and S. L. Sondhi, “Hydrogenic states of monopoles in diluted quantum spin ice,” Physical Review B 92, 100401 (2015).
[80] Lucjan Pawlak and Marek Duczmal, “Magnetic and structural properties of iron and manganese lanthanide spinels,” Journal of Alloys and Compounds 184, 203–209 (1992).
[81] J.M. Longo and P.M. Raccah, “Magnetic and structural study of the spinel MnYb$_2$S$_4$, ” Materials Research Bulletin 2, 541–547 (1967).
[82] Lawrence Suchow and Alfred A. Ando, “Magnetic properties of transition metal-rare-earth chalcogenide spinels,” Journal of Solid State Chemistry 2, 156–159 (1970).
[83] Seizo Kainuma, “Magnetic properties of rare earth chalcogeneide spinels,” Journal of the Physical Society of Japan 30, 1205–1206 (1971).
[84] A. Tomas, L. Brossard, and M. Guittard, “Structural studies by x-ray diffraction and Mössbauer spectroscopy of cubic FeYb$_2$S$_4$ and FeLu$_2$S$_4”, Journal of Solid State Chemistry 34, 11–16 (1980).
[85] Lucjan Pawlak and Marek Duczmal, “Magnetic and structural properties of scandium chalcogenide spinels with iron and manganese,” International Journal of Modern Physics B 07, 1020–1022 (1993).
[86] V. Tsurkan, L. Prodan, V. Felea, I. Filipppova, V. Kravtsov, A. Günsther, S. Widmann, H.-A. Krug von Nidda, J. Deisenhofer, and A. Loidl, “Structure, magnetic susceptibility, and specific heat of the spin-orbital-liquid candidate FeSc$_2$S$_4$: Influence of Fe off-stoichiometry,” Physical Review B 96, 054417 (2017).
[87] P. Bohac and A. Gläumann, “New fluxes for crystal growth of chalcogenides,” Journal of Crystal Growth 26, 171–173 (1974).
[88] Henning Von Philipiborn, “Crystal growth and characterization of chromium sulfu- and seleno-spinels,” Journal of Crystal Growth 9, 296–304 (1971).
[89] T Rudolf, Ch Kant, F Mayr, J Hamberger, V Tsurkan, and A Loidl, “Spin-phonon coupling in antiferromagnetic chromium spinels,” New Journal of Physics 9, 76–76 (2007).
[90] S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T. H. Kim, and S.-W. Cheong, “Emergent excitations in a geometrically frustrated magnet,” Nature 418, 856–858 (2002).
[91] T. Rudolf, Ch. Kant, F. Mayr, J. Hamberger, V. Tsurkan, and A. Loidl, “Spin-phonon coupling in ZnCr$_2$Se$_4,” Physical Review B 75, 052410 (2007).
[92] PK Baltzer, PJ Wojtowicz, M Robbins, and Eo Lopatin, “Exchange interactions in ferromagnetic chromium chalco- genide spinels,” Physical Review 151, 367 (1966).
[93] Gia-Wei Chern, C. J. Fennie, and O. Tchernyshyov, “Broken parity and a chiral ground state in the frustrated magnet CdCr$_2$O$_4,” Physical Review B 74, 060405 (2006).
[94] M Hamedoun, A Wiedenmann, J L Dormann, M Nogues, and J Rossat-Mignod, “Magnetic structure and magnetic properties of the spinel solid solutions ZnCr$_2$Al$_2$–$_2$Si$_2$,” Journal of Physics C: Solid State Physics 19, 1783–1800 (1986).
[95] Jun Akimitsu, Kiiti Siratori, Gen Shirane, Masashi Iizumi, and Tsumeo Watanabe, “Neutron scattering study of ZnCr$_2$Se$_4$ with screw spin structure,” Journal of the Physical Society of Japan 44, 172–180 (1978).
[96] Hemberger J., Lunkenheimer P., Fichtl R., Krug von Nidda, J. Deisenhofer, and A. Loidl, “Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr$_2$S$_4,” Nature 434, 364–367 (2005).
[97] Gang Xu, Hongming Weng, Zhijun Wang, Xi Dai, and Zhong Fang, “Chern semimetal and the quantized anomalous Hall effect in HgCr$_2$Se$_4,” Physical Review Letters 107, 186806 (2011).
[98] AP Ramirez, Robert J Cava, and J Krajeewski, “Colossal magnetoresistance in Cr-based chalcogenide spinels,” Nature 386, 156–159 (1997).
[99] S Thota and S Singh, Magnetic Spinels-Synthesis, Properties and Applications (London IntechOpen, 2017).
[100] K Kimura, S Nakatsuji, and T Kimura, “Experimental realization of a quantum breathing pyrochlore antiferromagnet,” Physical Review B 90, 060414 (2014).
[101] T Hakus, K Kimura, Y Matsumoto, M Soda, M Sera, D Yu, RA Mole, T Takeuchi, S Nakatsuji, Y Kono, et al., “Low-energy excitations and ground-state selection in the quantum breathing pyrochlore antiferromagnet Ba$_3$Yb$_2$Zn$_8$O$_{17},” Physical Review B 93, 220407 (2016).
[102] JG Rau, LS Wu, AF May, L Poudel, B Winn, VO Garlea, A Huq, P Whitfield, AE Taylor, MD Lumsden, et al., “Anisotropic exchange within decoupled tetrahedra in the quantum breathing pyrochlore Ba$_3$Yb$_2$Zn$_8$O$_{17},” Physical Review Letters 116, 257204 (2016).
[103] Yoshikiko Okamoto, Goran J. Nilsen, J Paul Attfield, and Zenji Hiroi, “Breathing pyrochlore lattice realized in A-site ordered spin oxide LiGa$_2$Cr$_4$O$_9$ and LiIn$_4$Cr$_4$O$_9,” Physical Review Letters 110, 097203 (2013).
[104] Yu Tanaka, Makoto Yoshida, Masashi Takigawa, Yoshikiko Okamoto, and Zenji Hiroi, “Novel phase transi-
tions in the breathing pyrochlore lattice: 7Li-NMR on LiInCr₄O₈ and LiGaCr₄O₈,” Physical Review Letters 113, 227204 (2014).
[105] Owen Benton and Nic Shannon, “Ground state selection and spin-liquid behaviour in the classical Heisenberg model on the breathing pyrochlore lattice,” Journal of the Physical Society of Japan 84, 104710 (2015).
[106] Goran J Nilsen, Yoshihiko Okamoto, Takatsugu Masuda, Juan Rodriguez-Carvalj, Hannu Mutka, Thomas Hansen, and Zenji Hiroi, “Complex magnetostructural order in the frustrated spinel LiInCr₄O₈,” Physical Review B 91, 174435 (2015).
[107] S Lee, S-H Do, W-J Lee, YS Choi, M Lee, ES Choi, AP Reyes, PL Kuhns, A Ozarowski, and K-Y Choi, “Multistage symmetry breaking in the breathing pyrochlore lattice Li(Ga,In)Cr₄O₈,” Physical Review B 93, 174402 (2016).
[108] HL Pinch, MJ Woods, and E Lopatin, “Some new mixed A-site chromium chalcogenide spinels,” Materials Research Bulletin 5, 425–429 (1970).
[109] H Hauesler and HD Lutz, “Gitterschwingungsspektren xviii. chromitio-und chromselenospinelle mit 1: 1-ordnung auf den tetraederplätzen,” Journal of Solid State Chemistry 22, 201–204 (1977).
[110] FK Lotgering, RP Van Stapele, GHAM Van Der Steen, D Bernard, J Pannetier, and J Lucas, “Hg₁/₂ frustrated system Hg₂Sb₂O₄,” Physical Review Letters 56, 113 (1986).
[111] S Lee, S-H Do, W-J Lee, YS Choi, M Lee, ES Choi, AP Reyes, PL Kuhns, A Ozarowski, and K-Y Choi, “Multistage symmetry breaking in the breathing pyrochlore lattice Li(Ga,In)Cr₄O₈,” Physical Review B 93, 174402 (2016).
[112] Yoshihiko Okamoto, Masaki Mori, Naoyuki Katayama, Atsushi Miyake, Masashi Tokunaga, Akira Matsuo, Koichi Kindo, and Koshi Takenaka, “Magnetic and structural properties of A-site ordered chromium spinel sulfides: Alternating antiferromagnetic and ferromagnetic interactions in the breathing pyrochlore lattice,” Journal of the Physical Society of Japan 87, 034709 (2018).
[113] G. Pokharel, A. F. May, D. S. Parker, S. Calder, G. Ehlers, A. Huq, S. A. J. Kimber, H. Suriya Arachchige, L. Treitinger, and H Pink, “Magnetic susceptibility of semiconducting Cu₁₋ₓInₓCr₂S₄ spinels,” Physica B+ C 80, 62–68 (1975).
[114] Yoshikazu Takenaka, and Koshi Takenaka, “Magnetic and structural properties of A-site ordered chromium spinel sulfides: Alternating antiferromagnetic and ferromagnetic interactions in the breathing pyrochlore lattice,” Journal of the Physical Society of Japan 87, 034709 (2018).
[115] G. Pokharel, A. F. May, D. S. Parker, S. Calder, G. Ehlers, A. Huq, S. A. J. Kimber, H. Suriya Arachchige, L. Treitinger, and H Pink, “Magnetic susceptibility of semiconducting Cu₁₋ₓInₓCr₂S₄ spinels,” Physica B+ C 80, 62–68 (1975).
[116] H. S. Oh, and S. M. Lee, “Negative thermal expansion and magnetoelastic coupling in the breathing pyrochlore lattice material LiGaCr₄S₈,” Physical Review B 97, 134117 (2018).
[117] Bhushan Goyal, Inqalab Yasar, Müller Tobias, Ponnaganti Ravi T., Thomale Ronny, Narayanan Rajesh, Reuther Johannes, Gingras Michel J. P., and Jeschke Harald O., “Breathing chromium spinels: a showcase for a variety of pyrochlore Heisenberg Hamiltonians,” npj Quantum Materials 4, 63 (2019).
[118] Ganesh Pokharel, Hasitha Suriya Arachchige, Travis J Williams, Andrew F May, Randy S Fishman, Gabriele Sala, Stuart Calder, Georg Ehlers, David S Parker, Tao Hong, et al., “Cluster frustration in the breathing pyrochlore magnet LiGaCr₄S₈,” arXiv preprint arXiv:2002.09749 (2020).
[119] C Wilkinson, B M Knapp, and JB Forsyth, “The magnetic structure of Cu₀.₅Ga₀.₅Cr₂S₄,” Journal of Physics C: Solid State Physics 9, 4021 (1976).
[120] H Duda, E Maciácek, T Groń, S Mazur, AW Pacyna, A Waśkowska, T Mydlarz, and A Gilewski, “Spin-glass-like behavior in single-crystalline Cu₀.₄₁In₀.₄₈Cr₁.₉₅Se₄,” Physical Review B 77, 035207 (2008).
[121] R Plumier, FK Lotgering, and RP Van Stapele, “Magnetic properties of Cu₁₋ₓInₓCr₂S₄ and some related compounds,” Le Journal de Physique Colloques 32, C1–324 (1971).
[122] R Plumier, M Sougi, and M Leconte, “Observation of an unusual short range magnetic ordering in spinel Cu₁₋ₓInₓCr₂S₄,” Physics Letters A 60, 341–344 (1977).
[123] R Plumier and M Sougi, “Mise en evidence par diffraction des neutrons d’un terme d’echance biquadratique dans l’helimagnetique Ag₁/₂In₁/₂Cr₂S₄,” Solid State Communications 9, 413–416 (1971).
[124] Masaki Gen, Yoshihiko Okamoto, Masaki Mori, Koshi Takenaka, and Yoshimitsu Kohama, “Magnetization process of the breathing pyrochlore magnet CuInCr₄S₈ in ultrahigh magnetic fields up to 150 T,” Physical Review B 101, 054430 (2020).
[125] D Babel, “The structure of the RbNiCrF₆ type and its relationship to the pyrochlore structure,” Zeitschrift für Inorganic and General Chemistry 387, 161–178 (1972).
[126] MW Zinkin, MJ Harris, and T Zeiske, “From spin glass to quantum spin liquid ground states in the frustrated pyrochlore antiferromagnet CsNiCrF₆,” Physical Review B 57, 11386 (1997).
[127] T Fennell, MJ Harris, S Calder, M Ruminy, M Boehm, P Steffens, M-H Lémée-Cailleau, O Zaharko, A Cervellino, and ST Bramwell, “Positive and negative magnetic susceptibilities in the fluorite pyrochlore CsNiCrF₆,” Nature Physics 15, 60–66 (2019).
[128] MB Sanders, JW Krizan, and R. Cava. “RE₃Sb₂Zn₂O₄₁ (RE = La, Pr, Nd, Sm, Eu, Gd): A new family of pyrochlore derivatives with rare earth ions on a 2d kagome lattice,” Journal of Materials Chemistry C 4, 541–550 (2016).
[129] ZL Dun, J Trinh, K Li, M Lee, KW Chen, R Baumbach, YF Hu, YX Wang, ES Choi, BS Shastry, et al., “Magnetic ground states of the rare-earth tripod kagome lattice Mg₃RE₃Sb₂O₄₁ (RE = Gd, Dy, Er),” Physical Review Letters 116, 157201 (2016).
[130] Joseph AM Paddison, Harapan S Ong, James O Hamp, Paromita Mukherjee, Xiaojian Bai, Matthew G Tucker, Nicholas P Butch, Claudio Castelnovo, Martin Mourigal, and SE Dutton, “Emergent order in the kagome ising magnet Dy₃Sb₃Mg₂O₁₄,” Nature Communications 7, 1–8 (2016).
[131] A Scheie, M Sanders, J Krizan, Yiming Qiu, Robert Joseph Cava, and C Broholm, “Effective spin-1/2 scalar chiral order on kagome lattices in Nd₃Sb₃Mg₂O₁₄,” Physical Review B 93, 180407 (2016).
[132] D Bernard, J Pannetier, and J Lucas, “Hg₂M₂Fe₂S et Hg₂M₂Fe₂O: Deux nouvelles familles de pyrochlores contenant du mercure et des métaux m de transition divalents,” Journal of Solid State Chemistry 14, 328–334 (1975).
[133] S Kawabata, Y. Yasui, Y. Kobayashi, M. Sato, N. Igawa, and K. Kakurai, “Studies of magnetic behavior of spinel Nd₂Sb₃Mg₂O₁₄,” Journal of Magnetic and Magnetic Materials 310, 1295–1296 (2007).
[134] L. Clark, G. J. Nilsen, E. Kermarrec, G. Ehlers, K. S. Knight, A. Harrison, J. P. Attfield, and B. D. Gaulin, “From spin glass to quantum spin liquid ground states in molybdate pyrochlores,” Physical Review Letters 113, 117201 (2014).
[135] Koichi Momma and Fujio Izumi, “VESTA3 for three-dimensional visualization of crystal, volumetric and mor-
phology data,” Journal of Applied Crystallography 44, 1272–1276 (2011).