Bifurcation of gap solitons in periodic potentials
with a sign-varying nonlinearity coefficient

Juan Belmonte-Beitiaa,b and Dmitry Pelinovskya
a Department of Mathematics, McMaster University, Hamilton ON, Canada, L8S 4K1
b Departamento de Matemáticas, E. T. S. de Ingenieros Industriales
and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI)
Universidad de Castilla-La Mancha, Ciudad Real, Spain, 13071

October 31, 2018

Abstract

We address the Gross–Pitaevskii (GP) equation with a periodic linear potential
and a periodic sign-varying nonlinearity coefficient. Contrary to the claims in the
previous works of Abdullaev \textit{et al.} [PRE 77, 016604 (2008)] and Smerzi & Trombettoni
[PRA 68, 023613 (2003)], we show that the intersite cubic nonlinear terms
in the discrete nonlinear Schrödinger (DNLS) equation appear beyond the applica-
bility of assumptions of the tight-binding approximation. Instead of these terms,
for an even linear potential and an odd nonlinearity coefficient, the DNLS equation
and other reduced equations for the semi-infinite gap have the quintic nonlinear
term, which correctly describes bifurcation of gap solitons.

\textbf{Keywords:} Gross–Pitaevskii equation, discrete nonlinear Schrödinger equation,
gap solitons, bifurcations, semi-classical limit, Wannier functions.

1 Introduction

The generalized DNLS (discrete nonlinear Schrödinger) equation with intersite cubic
nonlinear terms,

\begin{equation}
\begin{aligned}
i\dot{c}_n &= \alpha(c_{n+1} + c_{n-1}) + \beta|c_n|^2c_n \\
&+ \gamma(2|c_n|^2(c_{n+1} + c_{n-1}) + c_n^2(\bar{c}_{n+1} + \bar{c}_{n-1}) + |c_{n+1}|^2c_{n+1} + |c_{n-1}|^2c_{n-1}) \\
&+ \delta((c_{n+1}^2 + c_{n-1}^2)\bar{c}_n + 2(|c_{n+1}|^2 + |c_{n-1}|^2)c_n),
\end{aligned}
\end{equation}

where (\(\alpha, \beta, \gamma, \delta\)) are constant parameters and the dot denotes differentiation in time,
was derived independently in various contents. Smerzi & Trombettoni \cite{22} suggested
that this equation models Bose–Einstein condensates in a lattice, when Wannier func-
tions associated with a periodic potential are replaced by the nonlinear bound states.
Independently, this equation was derived heuristically by Oster \textit{et al.} \cite{12} to model
waveguide arrays in a nonlinear photonic crystal. Earlier, the same equation was obtained by Claude et al. [6] for modelling of slowly varying discrete breathers in the Fermi–Pasta–Ulam lattices using asymptotic multi-scale expansions. Very recently, the generalized DNLS equation was rederived again by Abdullaev et al. [1] in a more specific context of the GP (Gross–Pitaevskii) equation with a periodic potential and a periodic sign-varying nonlinearity coefficient. If the coefficient in front of the onsite cubic nonlinear term of the DNLS equation vanishes thanks to the sign-varying nonlinearity (that is, if $\beta = 0$ in (1)), the authors of [1] incorporated other intersite cubic nonlinear terms from a decomposition involving Wannier functions.

In what follows, we focus on the specific applications of the generalized DNLS equation (1) in the context of Bose–Einstein condensates in a lattice. Therefore, we consider the GP equation with a periodic linear potential and a periodic sign-varying nonlinearity coefficient in the form

$$i\partial_t \Psi = -\partial_x^2 \Psi + V(x)\Psi + G(x)|\Psi|^2\Psi,$$

where $V(x)$ and $G(x)$ are smooth, 2π-periodic functions on \mathbb{R}. To make all arguments precise, we assume that

$$V(-x) = V(x), \quad G(-x) = -G(x), \quad x \in \mathbb{R}. \quad (3)$$

In this case, $\beta = 0$ and our main result states that the intersite cubic nonlinear terms in the generalized DNLS equation (1) appear beyond the applicability of the DNLS equation in the tight-binding approximation and hence must be dropped from the leading order of the asymptotic equation. Instead of these terms, the onsite quintic nonlinear term must be taken into account to balance the linear dispersion term in the quintic DNLS equation

$$i\dot{c}_n = \alpha(c_{n+1} + c_{n-1}) + \chi|c_n|^4c_n, \quad (4)$$

where (α, χ) are constant parameters which can be computed from analysis of the GP equation (2) with potentials (3).

Note that the approach leading to the DNLS equation is general and can be applied to other 2π-periodic functions $V(x)$ and $G(x)$. In a general case, $\beta \neq 0$ and the onsite cubic nonlinear term is the only nonlinear term, which must be accounted in the cubic DNLS equation

$$i\dot{c}_n = \alpha(c_{n+1} + c_{n-1}) + \beta|c_n|^2c_n, \quad (5)$$

at the leading order of the asymptotic expansions.

To compare the outcomes of the generalized DNLS equation (1) with those of the quintic DNLS equation (4), we study bifurcations of gap solitons in the semi-infinite band gap. We show analytically that α and χ has equal negative signs in the semi-infinite band gap so that the quintic DNLS equation (4) always has a ground state, indicating that bifurcation of a gap soliton in the semi-infinite gap always occurs in the
GP equation (2) with potentials (3). Recall that this bifurcation does not occur if the nonlinearity coefficient is sign-definite and positive, see Pankov [13].

In contrary to the predictions of the quintic DNLS equation (4), we also show that the corresponding version of the generalized DNLS equation (1) does not admit localized solutions for any values of α and γ (when $\beta = \delta = 0$) at least in the slowly varying approximation. A numerical test with particular potentials

$$V(x) = V_0(1 - \cos(x)), \quad G(x) = G_0 \sin(x), \quad (6)$$

indicates that the gap solitons do exist in the semi-infinite gap independently of the signs of V_0 and G_0. The rigorous proof of existence of localized solutions in the GP equation (2) with potentials (3) in the semi-infinite band gap is beyond the scopes of this work and is a subject of an ongoing work [15].

We also inspect another asymptotic reduction of the GP equation (2) to the continuous nonlinear Schrödinger (CNLS) equation, see review of asymptotic reductions of the GP equation with a periodic potential in Pelinovsky [16]. We show that the corresponding CNLS equation also has a focusing quintic nonlinear term, which supports the same conclusion on bifurcation of a gap soliton in the semi-infinite gap.

We note that reductions to the DNLS and CNLS equations were recently justified with rigorous analysis both in the stationary and time-dependent cases, see works [17] and [18] in the context of the DNLS equation and works [5] and [7] in the context of the CNLS equation. Therefore, it is a matter of a routine technique to formalize arguments of our paper.

We shall add that the literature on the GP equation (2) is rapidly growing in physics literature. The GP equation with a periodic nonlinearity coefficient was considered by Fibich at al. [8], where no linear potential $V(x)$ was included and the mean value of $G(x)$ was assumed to be nonzero. For the same equation, Sakaguchi & Malomed [20] derived a quintic CNLS equation in a slowly varying approximation of a broad soliton.

A more general equation with both linear and nonlinear periodic coefficients was studied by Bludov et al. in [3, 4], where gap solitons were approximated numerically. It was shown in these works that bifurcations of small-amplitude gap solitons near the lowest band edge depend on the sign of the cubic coefficient in the effective CNLS equation. Using perturbation theory, Rapti et al. [19] studied existence and stability of gap solitons in the semi-infinite gap for the GP equation with small linear and nonlinear periodic coefficients.

The paper is organized as follows. Section 2 justifies the asymptotic reduction of the Gross–Pitaevskii equation (2) to the quintic DNLS equation (4). Section 3 gives results on existence of stationary localized modes in the generalized DNLS equations (1) and (4) and discusses the relevance of previous works [22] and [1]. Section 4 justifies the asymptotic reduction to the quintic CNLS equation.

Acknowledgements: J. B.-B. has been partially supported by grants PCI08-0093 (Consejería de Educación y Ciencia de la Junta de Comunidades de Castilla-La Mancha, Spain), PRINCET and FIS2006-04190 (Ministerio de Educación y Ciencia, Spain). J. B.-B. also would like to thank the Mathematics Department at McMaster University for their hospitality during his visit there.
To consider the tight-binding approximation and reductions to the DNLS equation, we assume that
\[V(x) = \epsilon^{-2} V_0(x), \]
where \(\epsilon \) is a small parameter and \(V_0 \) is a smooth, \(2\pi \)-periodic, and even function on \(\mathbb{R} \). In what follows and without loss of generality, we set
\[V_0(0) = 0 \quad \text{and} \quad V_0''(0) = 2, \]
so that \(V_0(x) = x^2 + O(x^4) \) as \(x \to 0 \). For particular explicit computations, we consider the standard example
\[V_0(x) = 2(1 - \cos(x)) = 4 \sin^2\left(\frac{x}{2}\right). \]
The limit \(\epsilon \to 0 \) is generally referred to as the semi-classical limit [10].

Let \(\Psi(x; k) \) be the Bloch function of
\[L \Psi(x; k) = E(k) \Psi(x; k), \quad L = -\partial_x^2 + \epsilon^{-2} V_0(x), \]
for the lowest energy band function \(E(k) \). It is known (see review in Pelinovsky et al. [17]) that \(E(k) \) and \(\Psi(x; k) \) satisfy
\[E(k) = E(k + 1) = E(-k), \quad k \in \mathbb{R} \]
and
\[\Psi(x; k) = e^{-2\pi ki} \Psi(x + 2\pi; k) = \Psi(x; k + 1) = \bar{\Psi}(x; -k), \quad x \in \mathbb{R}, \quad k \in \mathbb{R}, \]
so that one can define the Fourier series decompositions
\[E(k) = \sum_{n \in \mathbb{Z}} \hat{E}_n e^{2\pi n k i}, \quad \Psi(x; k) = \sum_{n \in \mathbb{Z}} \hat{\psi}_n(x) e^{2\pi n k i}, \]
with real-valued Fourier coefficients satisfying the reduction
\[\hat{E}_n = \hat{E}_{-n}, \quad \hat{\psi}_n(x) = \hat{\psi}_0(x - 2\pi n), \quad n \in \mathbb{Z}. \]
Functions \(\{\hat{\psi}_n(x)\}_{n \in \mathbb{Z}} \) are referred to as the Wannier functions. For the lowest energy band, these functions form an orthonormal basis in a subspace of \(L^2(\mathbb{R}) \) associated with the lowest energy band, enjoy an exponential decay to zero as \(|x| \to \infty \) and satisfy the system of differential equations
\[\left(L - \hat{E}_0\right) \hat{\psi}_0(x) = \sum_{n \geq 1} \hat{E}_n \left(\hat{\psi}_n(x) + \hat{\psi}_{-n}(x)\right), \quad x \in \mathbb{R}. \]
Thanks to orthogonality and normalization of the Wannier functions, we infer that \hat{E}_n can be computed from the overlapping integrals

$$\hat{E}_n = \langle L\hat{\psi}_0, \hat{\psi}_n \rangle = \int_\mathbb{R} \left[\hat{\psi}'_0(x)\hat{\psi}'_n(x) + \epsilon^{-2}V_0(x)\hat{\psi}_0(x)\hat{\psi}_n(x) \right] dx, \quad n \in \mathbb{N}. \quad (11)$$

For the semi-infinite gap and for even potentials, Wannier functions $\{\hat{\psi}_n(x)\}_{n \in \mathbb{Z}}$ are strictly positive and even on \mathbb{R}. It is proved with the standard technique in the semiclassical limit $\epsilon \to 0$ (see review in Aftalion & Helffer [2]) that the Wannier function $\hat{\psi}_0(x)$ can be approximated near $x = 0$ by the normalized Gaussian eigenfunction of

$$\left(-\partial_x^2 + \frac{x^2}{\epsilon^2} \right) \psi_0(x) = \frac{1}{\epsilon} \psi_0(x), \quad x \in \mathbb{R},$$
or explicitly,

$$\psi_0(x) = \frac{1}{(\pi\epsilon)^{1/4}} e^{-\frac{x^2}{2\epsilon}}, \quad x \in \mathbb{R}. \quad (12)$$

This approximation suggests that

$$\hat{E}_0 \sim \frac{1}{\epsilon}, \quad \hat{\psi}_0(x) \sim \psi_0(x), \quad \text{near} \quad x = 0, \quad (13)$$

where we have used the notation $A(\epsilon) \sim B(\epsilon)$ for two functions of ϵ near $\epsilon = 0$ to indicate that $A(\epsilon)/B(\epsilon) \to 1$ as $\epsilon \to 0$. To obtain approximations for the overlapping integrals (11), one need to proceed with the WKB solution

$$\hat{\psi}_0(x) \sim A(x)e^{-\frac{1}{2} \int_0^x S(x') dx'}, \quad x \in (0, 2\pi), \quad (14)$$

where

$$S(x) = \sqrt{V_0(x)}, \quad A(x) = \frac{1}{(\pi\epsilon)^{1/4}} \exp \left[\int_0^x \frac{1 - S'(x')}{2S(x')} dx' \right], \quad x \in (0, 2\pi).$$

The WKB solution (14) is derived by neglecting the term $A''(x)$ in the left-hand-side of (10) and by dropping the right-hand-side of (10) thanks to the hierarchy of overlapping integrals

$$\ldots \ll |\hat{E}_2| \ll |\hat{E}_1| \ll |\hat{E}_0|. \quad (15)$$

In addition, to derive the explicit expression for $A(x)$ we have replaced \hat{E}_0 by $1/\epsilon$ and used the matching condition of $\hat{\psi}_0(x)$ with $\psi_0(x)$ as $x \downarrow 0$. Note that the expression for $A(x)$ diverges as $x \uparrow 2\pi$.

Thanks to the explicit formulas and the symmetry of $\hat{\psi}_0(x)$ on \mathbb{R}, the first overlapping integral is computed as follows

$$\hat{E}_1 = 2 \int_{-\infty}^\pi \hat{\psi}_0(x) \left(-\partial_x^2 + \epsilon^{-2}V_0(x) - \hat{E}_0 \right) \hat{\psi}_0(x - 2\pi) dx$$

$$= 4\psi_0(\pi)\hat{\psi}_0(\pi) + 2 \int_{-\infty}^\pi \hat{\psi}_0(x - 2\pi) \left(-\partial_x^2 + \epsilon^{-2}V_0(x) - \hat{E}_0 \right) \hat{\psi}_0(x) dx.$$
Neglecting the integral (thanks again to smallness of the right-hand-side of (11) on \((-\infty, -\pi]\)) and substituting the WKB solution (14) at \(x = \pi\), we infer that the leading order of the first overlapping integral is given by

\[
\hat{E}_1 \sim 4\hat{\psi}_0(\pi)\hat{\psi}'_0(\pi) = -4\sqrt{V_0(\pi)} \frac{2}{\pi^{1/2} \epsilon^{3/2}} \exp \left(-\frac{2}{\epsilon} \int_0^\pi \sqrt{V_0(x)} dx + \int_0^\pi \frac{1 - S'(x)}{S(x)} dx \right). \tag{16}
\]

For instance, if \(V_0(x) = 2(1 - \cos(x))\), then

\[
S(x) = 2\sin \left(\frac{x}{2} \right), \quad A(x) = \frac{1}{(\pi \epsilon)^{1/4} \cos \left(\frac{x}{2} \right)}, \quad x \in (0, 2\pi),
\]

so that

\[
\hat{E}_1 \sim -\frac{16}{\pi^{1/2} \epsilon^{3/2}} e^{-\frac{8}{\epsilon}}.
\]

Similarly, one can establish the hierarchy of other overlapping integrals in (15). See Helffer [10] for rigorous justification of the WKB solutions above.

To deal with nonlinear terms, we compute the integral involving \(G(x)\hat{\psi}_0^4(x)\) as \(\epsilon \to 0\). This integral can be computed with the use of the Gaussian approximation (12)–(13), thanks to the fast decay of \(\hat{\psi}_0(x)\) on \(\mathbb{R}\) and the smoothness of \(G(x)\) on \(\mathbb{R}\):

\[
\int_\mathbb{R} G(x)\hat{\psi}_0^4(x) dx \sim \frac{1}{\pi \epsilon} \int_\mathbb{R} G(x)e^{-\frac{x^2}{\epsilon^2}} dx \sim \frac{1}{2\pi \epsilon^{1/2}} G(0). \tag{17}
\]

The overlapping integrals involving homogeneous quartic powers of \(\hat{\psi}_0(x)\), \(\hat{\psi}_0(x - 2\pi)\), etc. are much smaller compared to the integral (17), thanks again to the fast decay of \(\hat{\psi}_0(x)\) on \(\mathbb{R}\).

2.1 Reduction to the cubic DNLS equation

Asymptotic reduction to the cubic DNLS equation holds for \(G(0) \neq 0\). Computations (16) and (17) suggest the use of the scaling transformation

\[
\Psi(x, t) = e^{1/4} \mu^{1/2} (\Psi_0 + \mu \Psi_1) e^{-i\hat{E}_0 t},
\]

with a new small parameter

\[
\mu = \frac{1}{\pi^{1/2} \epsilon^{3/2}} e^{-\frac{2}{\epsilon} \int_0^\pi \sqrt{V_0(x)} dx}, \tag{18}
\]

for asymptotic solutions of the Gross–Pitaevskii equation (2). To give main details, let \(T = \mu t\) be slow time and decompose

\[
\Psi_0 = \sum_{n \in \mathbb{Z}} c_n(T) \hat{\psi}_n(x),
\]
for some coefficients \(\{c_n\}_{n \in \mathbb{Z}} \) to be defined. The remainder term \(\Psi_1 \) satisfies

\[
i \partial_t \Psi_1 = (L - \hat{E}_0) \Psi_1 + \sum_{n \in \mathbb{Z}} \left(-i \hat{c}_n + \mu^{-1} \sum_{m \in \mathbb{N}} \hat{E}_m (c_{n+m} + c_{n-m}) \right) \hat{\psi}_n + \epsilon^{1/2} G(x) |\Psi_0 + \mu \Psi_1|^2 (\Psi_0 + \mu \Psi_1).
\]

Coefficients \(\{c_n\}_{n \in \mathbb{Z}} \) are uniquely defined by the orthogonality condition

\[
\langle \hat{\psi}_n, \Psi_1 \rangle = 0 \quad \text{for all } n \in \mathbb{Z},
\]

which ensures that \(\Psi_1 \) is in the orthogonal complement of the subspace of \(L^2(\mathbb{R}) \) corresponding to the lowest spectral band of operator \(L \). Orthogonal projections to \(\{\hat{\psi}_n\}_{n \in \mathbb{Z}} \) truncated at the leading-order terms as \(\mu \to 0 \) take the form of the cubic DNLS equation

\[
i \hat{c}_n = \alpha (c_{n+1} + c_{n-1}) + \beta |c_n|^2 c_n,
\]

where

\[
\alpha = \mu^{-1} \hat{E}_1 \sim -4 \sqrt{V_0(\pi)} \exp \left(\int_0^\pi \frac{1 - S'(x)}{S(x)} dx \right), \quad (20)
\]

\[
\beta = \epsilon^{1/2} \int_{\mathbb{R}} G(x) \hat{\psi}_0^4(x) dx \sim \frac{1}{(2\pi)^{1/2}} G(0), \quad (21)
\]

thanks to the fact that other overlapping integrals in the linear and cubic terms are smaller. Rigorous justification of the cubic DNLS equation (19) on a finite time interval is proved by Pelinovsky & Schneider [18], where the main result is formulated in space \(\mathcal{H}^1(\mathbb{R}) \) defined by the norm \(\|\Psi\|_{\mathcal{H}^1(\mathbb{R})} := \sqrt{\langle (L + I) \Psi, \Psi \rangle} \), where \(L = -\partial_x^2 + V(x) \).

Theorem 1 Assume that \(V(x) \) is given by (7), \(G(0) \neq 0 \), and \(\mu \) is given by (18). Let \(\{c_n(T)\}_{n \in \mathbb{Z}} \in C^1(\mathbb{R}, l^1(\mathbb{Z})) \) be a global solution of the cubic DNLS equation (19) with initial data \(\{c_n(0)\}_{n \in \mathbb{Z}} \in l^2_p(\mathbb{Z}) \) for any \(p > \frac{1}{2} \). Let \(\Psi_0 \in \mathcal{H}^1(\mathbb{R}) \) satisfy the bound

\[
\left\| \Psi_0 - \epsilon^{1/4} \mu^{1/2} \sum_{n \in \mathbb{Z}} c_n(0) \hat{\psi}_n \right\|_{\mathcal{H}^1(\mathbb{R})} \leq C_0 \epsilon^{1/4} \mu^{3/2},
\]

for some \(C_0 > 0 \). There exists \(\mu_0 > 0, T_0 > 0, \) and \(C > 0 \), such that for any \(\mu \in (0, \mu_0) \), the GP equation (2) with initial data \(\Psi(0) = \Psi_0 \) has a solution \(\Psi(t) \in C([0, T_0/\mu], \mathcal{H}^1(\mathbb{R})) \) satisfying the bound

\[
\forall t \in [0, T_0/\mu] : \left\| \Psi(\cdot, t) - e^{-i \hat{E}_0 t} \left(\sum_{n \in \mathbb{Z}} c_n(\mu t) \hat{\psi}_n \right) \right\|_{\mathcal{H}^1(\mathbb{R})} \leq C \epsilon^{1/4} \mu^{3/2}.
\]
2.2 Reduction to the quintic DNLS equation

If \(G(0) = 0 \), and we assume that \(G(x) \) is odd on \(\mathbb{R} \), then \(\beta = 0 \) and the DNLS equation \((19)\) becomes a linear equation. A modified asymptotic solution is needed to incorporate the leading order of the asymptotic expansion. We will show that the modified scaling

\[
\Psi(x,t) = \epsilon^{-1/4} \mu^{1/4} \left(\Psi_0 + \mu^{1/2} \Psi_1 + \mu \Psi_2 \right) e^{-i\hat{E}_0 t},
\]

will reduce the GP equation \((2)\) to the quintic DNLS equation \((4)\) if \(G'(0) \neq 0 \). Again, let \(T = \mu t \) be the slow time and define \(\Psi_0 \) and \(\Psi_1 \) by

\[
\Psi_0 = \sum_{n \in \mathbb{Z}} c_n(T) \hat{\psi}_n(x), \quad \Psi_1 = \sum_{n \in \mathbb{Z}} |c_n(T)|^2 c_n(T) \hat{\varphi}_n(x),
\]

where \(\hat{\varphi}_n(x) = \hat{\varphi}_0(x - 2\pi n), n \in \mathbb{Z} \) is a solution of

\[
(L - \hat{E}_0) \hat{\varphi}_0(x) = -\epsilon^{-1/2} G(x) \hat{\psi}_0^3(x), \quad x \in \mathbb{R}, \tag{22}
\]

under the orthogonality condition

\[
\int_{\mathbb{R}} G(x) \hat{\psi}_0^4(x) dx = 0. \tag{23}
\]

The remainder term \(\Psi_2 \) satisfies

\[
i \partial_t \Psi_2 = (L - \hat{E}_0) \Psi_2 + \sum_{n \in \mathbb{Z}} \left(-i \dot{c}_n + \mu^{-1} \sum_{m \in \mathbb{N}} \hat{E}_m (c_{n+m} + c_{n-m}) \right) \hat{\psi}_n
\]

\[
- i \mu^{1/2} \sum_{n \in \mathbb{Z}} \frac{d}{dT} (|c_n|^2 c_n) \hat{\varphi}_n + \epsilon^{-1/2} \mu^{-1/2} G(x)
\]

\[
\times \left(|\Psi_0 + \mu^{1/2} \Psi_1 + \mu \Psi_2|^2 (\Psi_0 + \mu^{1/2} \Psi_1 + \mu \Psi_2) - \sum_{n \in \mathbb{Z}} |c_n|^2 c_n \hat{\psi}_n^3 \right).
\]

Orthogonal projections to \(\{ \hat{\psi}_n \}_{n \in \mathbb{Z}} \) truncated at the leading-order terms as \(\mu \to 0 \) result in the quintic DNLS equation \((4)\) with the same expression for \(\alpha \) as in \((20)\) and the following expression for \(\chi \):

\[
\chi = 3 \epsilon^{-1/2} \int_{\mathbb{R}} G(x) \hat{\psi}_0^3(x) \hat{\varphi}_0(x) dx. \tag{24}
\]

The justification of the quintic DNLS equation \((4)\) relies on the two facts.

Lemma 1 Under condition \((3)\), there exists a solution \(\hat{\varphi}_0(x) \) of the inhomogeneous equation \((22)\) so that \(\chi \) is bounded and nonzero as \(\epsilon \to 0 \).
Proof. First we note that if $G(x)$ is odd and $\hat{\psi}_0(x)$ is even on \mathbb{R}, then $\hat{\phi}_0(x)$ is odd on \mathbb{R}, so that the integral in (24) is generally non-zero. Moreover, using the inhomogeneous equation (22), we infer that $\chi = -3\langle (L - \hat{E}_0)\hat{\phi}_0, \hat{\phi}_0 \rangle$, so that $\chi < 0$ for the lowest band of L, since $(L - \hat{E}_0)$ is positive definite if \hat{E}_0 is at the bottom of the spectrum of L in the limit $\epsilon \to 0$. To show that χ is bounded as $\epsilon \to 0$, we can use again the Gaussian approximation (13) and find solutions of the inhomogeneous equation (22) near $x = 0$ in the form

$$\hat{\phi}_0(x) \sim -\frac{\epsilon^{1/2}G'(0)}{8(\pi \epsilon)^{3/4}}xe^{-\frac{3x^2}{2\epsilon^2}}$$, near $x = 0$.

(26)

As a result, $\chi \sim -\frac{(G'(0))^2}{16\sqrt{3\pi}}$,

(27)

and we see that χ is bounded and negative as $\epsilon \to 0$.

Lemma 2 Under condition (3), the largest overlapping integrals from the cubic term $|\Psi_0|^2 \Psi_0$,

$$\int_{\mathbb{R}} G(x)\hat{\psi}_0^3(x)\hat{\psi}_0(x-2\pi)dx, \quad \int_{\mathbb{R}} G(x)\hat{\psi}_0^2(x)\hat{\psi}_0^2(x-2\pi)dx, \quad (28)$$

are smaller than $\epsilon^{1/2} \mu$.

Proof. First, we note that if $G(x)$ is a smooth, 2π-periodic, and odd function, then $G(x)$ is also odd with respect to the point $x = \pi$, so that

$$\int_{\mathbb{R}} G(x)\hat{\psi}_0^3(x)\hat{\psi}_0(x-2\pi)dx = 0. \quad (29)$$

To consider the other nonzero integral in (28), we write

$$\int_{\mathbb{R}} G(x)\hat{\psi}_0^3(x)\hat{\psi}_0(x-2\pi)dx = \left(\int_{-\infty}^{\pi} + \int_{\pi}^{\infty}\right) G(x)\hat{\psi}_0^3(x)\hat{\psi}_0(x-2\pi)dx. \quad (30)$$

The second integral on $[\pi, \infty)$ is much smaller than the first integral on $(-\infty, \pi]$ thanks to the faster decay of $\hat{\psi}_0^3(x)$ compared to $\hat{\psi}_0(x)$ on \mathbb{R}. As a result, we deal only with the first integral, which we rewrite as follows:

$$\int_{-\infty}^{\pi} G(x)\hat{\psi}_0^3(x)\hat{\psi}_0(x-2\pi)dx$$

$$= -\epsilon^{1/2} \int_{-\infty}^{\pi} \hat{\psi}_0(x-2\pi)\left(-\partial_x^2 + \epsilon^{-2}V_0(x) - \hat{E}_0\right)\hat{\phi}_0(x)dx$$

$$= \epsilon^{1/2} \left[\hat{\psi}_0(\pi)\hat{\psi}_0'(\pi) + \hat{\psi}_0'(\pi)\hat{\phi}_0(\pi)\right] - \epsilon^{1/2} \int_{-\infty}^{\pi} \hat{\phi}_0(x)\left(-\partial_x^2 + \epsilon^{-2}V_0(x) - \hat{E}_0\right)\hat{\psi}_0(x-2\pi)dx,$$
where we recall again that \(\hat{\psi}_0(x) \) is even on \(\mathbb{R} \). In view of equation (10), we have

\[
\int_{-\infty}^{\pi} \hat{\varphi}_0(x) \left(-\partial_x^2 + \epsilon^{-2} V_0(x) - \hat{E}_0\right) \hat{\psi}_0(x - 2\pi)dx
\]

\[
= \sum_{n \geq 1} \hat{E}_n \int_{-\infty}^{\pi} \hat{\varphi}_0(x) \left(\hat{\psi}_{n+1}(x) + \hat{\psi}_{-n+1}(x)\right)dx
\]

\[
\sim \hat{E}_1 \int_{-\infty}^{\pi} \hat{\varphi}_0(x) \hat{\psi}_0(x)dx = -\hat{E}_1 \int_{\pi}^{\infty} \hat{\varphi}_0(x) \hat{\psi}_0(x)dx,
\]

where the last equality is due to the fact that \(\hat{\psi}_0(x) \) is even and \(\hat{\varphi}_0(x) \) is odd on \(\mathbb{R} \).

Thanks to the fast decay of \(\hat{\psi}_0(x) \) and \(\hat{\varphi}_0(x) \) on \(\mathbb{R} \), the second term in (31) becomes smaller than \(\epsilon^{1/2} \hat{E}_1 = \epsilon^{1/2} \mu_0 \), where \(\alpha \) is given by (20).

Boundary values of \(\hat{\psi}_0(x) \), \(\hat{\varphi}_0(x) \) and their derivatives at \(x = \pi \) in the first term in (31) can again be computed from the WKB solutions for \(\hat{\psi}_0(x) \) and \(\hat{\varphi}_0(x) \).

For solutions of the inhomogeneous equation (22), we substitute

\[
\hat{\varphi}_0(x) \sim B(x) e^{-\frac{1}{\epsilon} \int_0^x S(x')dx'}, \quad x \in (0, 2\pi),
\]

where \(S(x) = \sqrt{V_0(x)} \) and \(B(x) \) satisfies the first-order differential equation

\[
\epsilon(6S(x)B'(x) + 3S'(x)B(x) - B(x)) - 8S^2(x)B(x) = -3^{1/2}G(x)A^3(x),
\]

where the term \(B''(x) \) is neglected and \(\hat{E}_0 \sim 1/\epsilon \) is used. Solving the differential equation with the integration factor, we obtain

\[
B(x) = \frac{C(x)}{S^{1/3}(x)} \exp \left(\frac{4}{3\epsilon} \int_0^x S(x')dx' - \frac{1}{6} \int_0^x \frac{1}{S(x')} S(x')dx' \right), \quad x \in (0, 2\pi),
\]

with

\[
C(x) = -\frac{\epsilon^{1/2}}{6} \int_0^x \frac{G(x')A^3(x')}{S^{1/3}(x')} \exp \left(-\frac{4}{3\epsilon} \int_0^{x'} S(x'')dx'' - \frac{1}{6} \int_0^{x'} \frac{1}{S(x'')} S(x'')dx'' \right) dx'.
\]

Using the Laplace method for computing integrals, we obtain a correct behavior of \(\hat{\varphi}_0(x) \) near \(x = 0 \) that matches the previous calculation (26):

\[
\hat{\varphi}_0(x) \sim -\frac{\epsilon^{1/2}G'(0)}{6(\pi \epsilon)^{3/4} x^{1/4}} e^{-\frac{3\pi^2}{2\epsilon}} \int_0^x y^{1/2} e^{-\frac{3}{2\epsilon}(y^2 - x^2)} dy
\]

\[
\sim -\frac{\epsilon^{1/2}G'(0)}{8(\pi \epsilon)^{3/4} x^{3/4}} e^{-\frac{3\pi^2}{2\epsilon}}, \quad \text{near} \quad x = 0.
\]

As a result, we have

\[
\epsilon^{1/2} \left[\hat{\psi}_0(\pi) \hat{\varphi}_0'(\pi) + \hat{\psi}_0'(\pi) \hat{\varphi}_0(\pi) \right]
\]

\[
\sim \frac{4}{9} S^{2/3}(\pi) A(\pi) \exp \left(-\frac{8}{3\epsilon} \int_0^\pi S(x)dx + \frac{1}{6} \int_0^\pi \frac{1}{S(x)} S(x)dx \right) C_0,
\]
We shall consider the stationary solutions of the quintic DNLS equation (4), where the coefficients α_L and χ are computed asymptotically for the lowest energy band of $L = -\partial_x^2 + \epsilon^{-2}V_0(x)$ in the semi-classical limit $\epsilon \to 0$.

For instance, if $V(x) = 2(1 - \cos(x))$, we obtain

$$e^{1/2} \left[\psi_0(\pi) \psi'_0(\pi) + \hat{\psi}'_0(\pi) \hat{\psi}_0(\pi) \right] \sim \frac{4}{9\pi^2} e^{-\frac{48}{3\pi}} \int_0^\pi \frac{G(x)}{\sin^{2/3}(\frac{x}{4}) \cos^{10/3}(\frac{x}{4})} \epsilon^{-\frac{16}{3\pi}} \cos(\frac{x}{2}) dx,$$

which is clearly smaller than

$$e^{1/2} \mu = \frac{1}{\pi^{1/4} \epsilon} \exp \left(-\frac{2}{\epsilon} \int_0^\pi S(x) dx \right) = \frac{1}{\pi^{1/4} \epsilon} e^{-\frac{8}{\epsilon}}.$$

This completes the proof of Lemma 2.

Using the approach from Pelinovsky & Schneider in [18], we can justify the quintic DNLS equation (4) on a finite time interval, according to the following statement.

Theorem 2 Assume that $V(x)$ and $G(x)$ are given by (3) and (7), $G'(0) \neq 0$, and μ is given by (18). Let $\{c_n(T)\}_{n \in \mathbb{Z}} \in C^1(\mathbb{R}, L^1(\mathbb{Z}))$ be a global solution of the quintic DNLS equation (4) with initial data $\{c_n(0)\}_{n \in \mathbb{Z}} \in L^2_p(\mathbb{Z})$ for any $p > \frac{1}{2}$. Let $\Psi_0 \in H^4(\mathbb{R})$ satisfy the bound

$$\left\| \Psi_0 - \epsilon^{-1/4} \mu^{1/4} \sum_{n \in \mathbb{Z}} c_n(0) \hat{\psi}_n \right\|_{H^4(\mathbb{R})} \leq C_0 \epsilon^{-1/4} \mu^{3/4},$$

for some $C_0 > 0$. There exists $\mu_0 > 0$, $T_0 > 0$, and $C > 0$, such that for any $\mu \in (0, \mu_0)$, the GP equation (2) with initial data $\Psi(0) = \Psi_0$ has a solution $\Psi(t) \in C([0,T_0/\mu], H^4(\mathbb{R}))$ satisfying the bound

$$\forall t \in [0, T_0/\mu] : \left\| \Psi(\cdot, t) - e^{-1/4} \mu^{1/4} \left(\sum_{n \in \mathbb{Z}} c_n(\mu t) \hat{\psi}_n \right) e^{-iE_0 t} \right\|_{H^4(\mathbb{R})} \leq C \epsilon^{-1/4} \mu^{3/4}.$$

Remark 1 Note that the results of Theorems 4 and 2 also hold for the piecewise-constant Kronig-Pennig potential $V_0(x)$ after minor modifications required because of a different algebraic factor of ϵ in the definition of μ [17].

3 Localized solutions of reduced equations

We shall consider the stationary solutions of the quintic DNLS equation (4), where the coefficients α and χ are computed asymptotically for the lowest energy band of $L = -\partial_x^2 + \epsilon^{-2}V_0(x)$ in the semi-classical limit $\epsilon \to 0$.

...
Let $c_n(T) = \phi_n e^{-i\Omega T}$ for a real parameter Ω and a real-valued sequence $\{\phi_n\}_{n \in \mathbb{Z}}$ and obtain the stationary quintic DNLS equation
\[
\alpha(\phi_{n+1} + \phi_{n-1}) + \chi \phi_n^5 = \Omega \phi_n, \quad n \in \mathbb{Z}.
\] (32)
The hierarchy of overlapping integrals (11) implies that the energy band function $E(k)$ is given at the leading order by
\[
E(k) \sim \hat{E}_0 + 2\hat{E}_1 \cos(2\pi k) + \ldots
\]
Since $k = 0$ is the minimal point of $E(k)$ for the lowest energy band, we have $\hat{E}_1 < 0$ so that $\alpha < 0$. See also (24), where $\alpha < 0$ is computed in the limit $\epsilon \to 0$. On the other hand, representation (25) implies that $\chi < 0$ for the lowest band. See also (27), where $\chi < 0$ is computed for $G'(0) \neq 0$ as $\epsilon \to 0$. The semi-infinite gap corresponds to the interval $\Omega < 2\alpha$.

Localized solutions of the stationary quintic DNLS equation (32) can be obtained from a minimization of the energy functional
\[
H = \sum_{n \in \mathbb{Z}} \left(\alpha \phi_n \phi_{n+1} + \frac{\chi}{6} \phi_n^6 \right),
\]
subject to a fixed $N = \sum_{n \in \mathbb{Z}} \phi_n^2$. According to Theorem 2.1 of Weinstein [23], there exists a minimizer of H (called a ground state) for $\text{sign}(\alpha) = \text{sign}(\chi)$ with $\text{sign}(\Omega - 2\alpha) = \text{sign}(\alpha)$. Monotonic exponential decay of the sequence $\{\phi_n\}_{n \in \mathbb{Z}}$ to zero as $n \to \pm \infty$ was shown in Theorem 1.1 of Pankov [14] (where the cubic DNLS equation was considered without loss of generality). Note that the localized solution also exists if $\text{sign}(\alpha) = -\text{sign}(\chi)$ for $\text{sign}(\Omega + 2\alpha) = -\text{sign}(\alpha)$ thanks to the staggering transformation $\phi_n \to (-1)^n \phi_n, \quad \chi \to -\chi, \quad \Omega \to -\Omega, \quad \alpha \to \alpha$,
that leaves solutions of (32) invariant. Therefore, the localized solution is not monotonically decaying if $\text{sign}(\alpha) = -\text{sign}(\chi)$. For the semi-infinite gap, we have shown above that α and χ have equal negative sign, so that a localized solution of the stationary quintic DNLS equation (32) exists in the semi-infinite gap for $\Omega < 2\alpha$.

Consider the stationary GP equation
\[
-\Phi''(x) + V(x)\Phi(x) + G(x)\Phi^3(x) = \omega \Phi(x), \quad x \in \mathbb{R},
\] (33)
which is derived from the GP equation (2) from $\Psi(x,t) = \Phi(x)e^{-i\omega t}$. Persistence analysis of gap solitons in Pelinovsky et al. [17] gives the following result.

Theorem 3 Let $V(x)$ and $G(x)$ satisfy (3) and (7) and $G'(0) \neq 0$, and μ is given by (18). Let $\{\phi_n\}_{n \in \mathbb{Z}} \in l^1(\mathbb{Z})$ be a ground state of the stationary quintic DNLS equation (32) for $\Omega < 2\alpha$. There exists $\mu_0 > 0$ and $C > 0$, such that for any $\mu \in (0, \mu_0)$, the stationary GP equation (23) with $\omega = \hat{E}_0 + \mu \Omega$ has a solution $\Phi \in \mathcal{H}^1(\mathbb{R})$ satisfying the bound
\[
\left\| \Phi - \epsilon^{-1/4} \mu^{1/4} \left(\sum_{n \in \mathbb{Z}} \phi_n \hat{\psi}_n \right) \right\|_{\mathcal{H}^1(\mathbb{R})} \leq C \epsilon^{-1/4} \mu^{3/4}.
\]
Moreover, $\phi(x)$ decays to zero exponentially fast as $|x| \to \infty$.

12
Remark 2 One can also prove existence of gap solitons in the semi-infinite gap of the GP equation (2) with potentials (3) in the opposite limit of large-amplitude gap solitons using the Lyapunov–Schmidt reduction method. See Sivan et al. [27] for an example of this technique for the GP equation with a periodic linear potential $V(x)$ and a constant nonlinearity coefficient.

To summarize, from Theorem 3, we predict existence of gap solitons in the semi-infinite gap for any even $V(x)$ and odd $G(x)$ with $G'(0) \neq 0$. To illustrate the existence numerically, we solve the GP equation by using the so-called imaginary time method [9]. As approximations of localized solutions evolve along the imaginary time, iterations converge to the ground state of the stationary GP equation (33).

We have developed a Fourier pseudospectral scheme for the discretization of the spatial derivatives combined with a split-step scheme for iterations in the imaginary time, see implementation of this method by Montesinos & Pérez-García [11]. In other words, solutions of

$$\partial_t U(x,t) = (A + B)U,$$

with

$$A = -\partial_{xx}, \quad B = V(x) + G(x)|U|^2,$$

are approximated from exact solutions of the problems $\partial_t U = AU$ and $\partial_t U = BU$. By using the symmetric (second-order) split-step method, whose equation is

$$U(x, t + \tau) = e^{\tau A/2} e^{\tau B} e^{\tau A/2} U(x, t) + O(\tau^3), \quad (34)$$

we calculate a localized solution of the stationary GP equation (33) as $t \to \infty$. Figure 1 shows the branch of gap solitons bifurcating to the semi-infinite gap (left) and a particular profile of the localized solution (right) that corresponds to the point on the solution branch on the left.

We note that the numerical scheme we have used has many advantages. First, it is more accurate than finite-difference numerical methods. Second, the Fourier transform can be computed by using the fast Fourier transform. Finally, the L^2-norm of the localized solutions is preserved during the time iterations so that the L^2-norm of a gap soliton along the solution branch can be fixed by the starting approximation.

In the end, we note that existence of localized solutions in the stationary GP equation (33) for any smooth 2π-periodic even $V(x)$ and odd $G(x)$ in the semi-infinite gap of L can be proved using the variational theory by a modification of arguments in [13]. This modification is a subject of an ongoing work [15]. Numerical evidences of existence of gap solitons in the semi-infinite gap for sign-varying nonlinearity coefficients can be found in [3, 4].

3.1 Comparison with the generalized DNLS equations

Let us compare our main conclusion with the prediction of the stationary generalized DNLS equation considered by Abdullaev et al. [1]. For the case of odd nonlinearity
Figure 1: The solution family of gap solitons for $G_0 = -10$ and $V_0 = 6$ in (6): The L^2-norm N versus ω (left) and the spatial profile of gap soliton corresponding to marked point with a black circle (right).

coefficient $G(x)$, this stationary equation is written in the form

$$\alpha(\phi_{n+1} + \phi_{n-1}) + \gamma(3\phi_n^2(\phi_{n+1} - \phi_{n-1}) - \phi_{n+1}^3 + \phi_{n-1}^3) = \Omega \phi_n, \ n \in \mathbb{Z},$$

(35)

where α is the same as in (32) and γ is proportional to the overlapping integral (30). Note that the cubic term in (35) is slightly different from the one in (1), which holds for even nonlinearity coefficient $G(x)$ [1]. We also note that $\beta = \delta = 0$ thanks to (23) and (29). The energy functional is now written as follows:

$$H = \sum_{n \in \mathbb{Z}} \left(\alpha \phi_n \phi_{n+1} + \gamma \phi_n^3(\phi_{n+1} - \phi_{n-1}) \right).$$

While we are not able to prove that the stationary DNLS equation (35) admits no localized solutions for any signs of α and γ, we can simplify the problem in the slowly varying approximation, which is also referred to as the continuum limit of the lattice equation. To this end, we assume that the following expansion makes sense

$$\phi_{n\pm 1} = \phi(x_n) \pm h\phi'(x_n) + \frac{1}{2}h^2\phi''(x_n) + O(h^3),$$

where $x_n = hn, \ n \in \mathbb{Z}$ and apply the scaling

$$\alpha = 2h\hat{\alpha}, \ \Omega - 2\alpha = 2h^3\hat{\Omega}.$$

At the leading order, the difference equation (35) becomes the second-order differential equation

$$\hat{\alpha}\phi''(x) - \gamma\phi'(x) \left[(\phi'(x))^2 + 3\phi(x)\phi''(x)\right] = \hat{\Omega}\phi(x), \ x \in \mathbb{R},$$

(36)

which has the first integral

$$I = \frac{1}{2}\hat{\alpha}(\phi'(x))^2 - \gamma\phi(x)(\phi'(x))^3 - \frac{1}{2}\hat{\Omega}\phi^2(x).$$
We note that $I = 0$ for localized solutions and that no turning point $x_0 \in \mathbb{R}$ with $\phi(x_0) > 0$ and $\phi'(x_0) = 0$ exists. As a result, the trajectory departing from the critical point $(\phi, \phi') = (0, 0)$ in the first quadrant of (ϕ, ϕ') remains in the first quadrant and goes to infinity. As a result, no classical localized solutions of the differential equation (36) exist. Thus, we have the following result.

Proposition 1 Stationary generalized DNLS equation (35) for any coefficients α, γ, and Ω admits no localized solutions in the slowly varying approximation.

We conclude that the stationary generalized DNLS equation (1) gives the opposite (wrong) conclusion to the bifurcation problem of localized solutions in the semi-infinite gap, compared to the stationary quintic DNLS equation (32).

It is even more problematic how to interpret the modification of the generalized DNLS equation (1) by Smerzi & Trombettoni [22], where the onsite cubic nonlinear term $\beta |c_n|^2 c_n$ was replaced by $\beta |c_n|^{2p} c_n$ with $p \leq 2$. If $\beta \neq 0$, the justification of the cubic DNLS equation (19) in Theorem 1 leaves no hope to have $p < 2$ in the generalized DNLS equation and to account the intersite cubic nonlinear terms at the same order as the onsite cubic nonlinear terms. Thus, we have to conclude that the generalized DNLS equations considered in [1] and [22] (and implicitly in [6] and [12]) are invalid for potential $V(x)$ in (7) in the tight-binding approximation as $\epsilon \to 0$.

4 Reductions to the CNLS equation

Let us now consider the potential $V(x)$ in the GP equation (2) without assumption (7). Spectral bands are generally of a finite size, so that we can simplify the GP equation (2) if the bound state has small amplitude near the band edge. This asymptotic reduction leads to the continuous nonlinear Schrödinger (CNLS) equation justified by Busch et al. [5].

To give main details, let E_0 be the lowest band edge of operator $L = -\partial_x^2 + V(x)$ corresponding to the 2\pi-periodic L^2-normalized eigenfunction $\Psi_0 \in L^2_{\text{per}}(0, 2\pi)$. Since the second solution of $L\Psi = E_0 \Psi$ is linearly growing, the subspace $\text{Ker}(L - E_0 I) \subset L^2_{\text{per}}(0, 2\pi)$ is one-dimensional. Looking at the Fredholm alternative condition for the inhomogeneous equation

$$-\Psi''_1(x) + V(x)\Psi_1(x) - E_0\Psi_1(x) = 2\Psi'_0(x),$$

we infer that there exists a unique 2\pi-periodic function $\Psi_1 \in L^2_{\text{per}}(0, 2\pi)$ in the orthogonal complement of $\text{Ker}(L - E_0 I)$. If $V(x)$ is even on \mathbb{R}, then $\Psi_0(x)$ is even and $\Psi_1(x)$ is odd on \mathbb{R}. In addition, if $G(x)$ is an odd 2\pi-periodic function, there exists a unique odd 2\pi-periodic solution of the inhomogeneous equation

$$-\Psi''_2(x) + V(x)\Psi_2(x) - E_0\Psi_2(x) = -G(x)\Psi'_0(x),$$

15
that also lies in the orthogonal complement of $\text{Ker}(L - E_0 I)$. Equipped with these facts, we are looking for an asymptotic solution of the GP equation (2) using the decomposition

$$
\Psi(x, t) = \varepsilon^{1/2} \left(A(X, T) \Psi_0(x) + \varepsilon (A_X(X, T) \Psi_1(x) + |A(X, T)|^2 A(X, T) \Psi_2(x) \right)
+ \varepsilon^2 \tilde{\Psi}(x, t) e^{-iE_0 t},
$$

where ε is a small parameter, $X = \varepsilon x$ and $T = \varepsilon^2 t$ are slow variables, and $\tilde{\Psi}(x, t)$ satisfies the time evolution equation

$$
i\partial_t \tilde{\Psi} = (L - E_0) \tilde{\Psi} - i A_T \Psi_0 - \varepsilon \left(A_X T \Psi_1 + (|A|^2 A)_T \Psi_2 \right)
- A_{XX} (\Psi_0 + 2 \Psi_1') - 2(|A|^2 A)_X \Psi_2' - \varepsilon \left(A_{XXX} \Psi_1 + (|A|^2 A)_X \Psi_2 \right)
+ G(x) \varepsilon^{-1} \left(|A| \Psi_0 + \varepsilon (A_X \Psi_1 + |A|^2 A \Psi_2) + \varepsilon^2 |\tilde{\Psi}|^2 \right)
(A \Psi_0 + \varepsilon (A_X \Psi_1 + |A|^2 A \Psi_2) + \varepsilon^2 |\tilde{\Psi}| - |A|^2 A \Psi_0^3)
$$

Projecting the right-hand side to Ψ_0 and truncating at the leading-order terms, we obtain the CNLS equation

$$
iA_T = \alpha A_{XX} + \chi |A|^4 A + \gamma \left(|A|^2 A\right)_X,
$$

where

$$
\alpha = -1 - 2 \int_0^{2\pi} \Psi_1'(x) \Psi_0(x) dx,
$$

$$
\chi = 3 \int_0^{2\pi} G(x) \Psi_0^3(x) \Psi_2(x) dx,
$$

$$
\gamma = -2 \int_0^{2\pi} \Psi_2(x) \Psi_0(x) dx + \int_0^{2\pi} G(x) \Psi_0^3(x) \Psi_1(x) dx.
$$

Justification of the generalized CNLS equation (39) can be developed similarly to the work of Busch et al. [5]. While it may seem that the generalized CNLS equation (39) contains both the quintic and the cubic derivative terms, we obtain that

$$
\gamma = \int_0^{2\pi} \left(-2 \Psi_2'(x) \Psi_0(x) + G(x) \Psi_0^3(x) \Psi_1(x) \right) dx
= - \int_0^{2\pi} \left(2 \Psi_2'(x) \Psi_0(x) + \Psi_1(x) \left(-\partial_x^2 + V(x) - E_0 \right) \Psi_2(x) \right) dx
= - \int_0^{2\pi} \left(2 \Psi_2(x) \Psi_0'(x) + \Psi_2(x) \left(-\partial_x^2 + V(x) - E_0 \right) \Psi_1(x) \right) dx = 0.
$$

Therefore, the generalized CNLS equation (39) is just the quintic CNLS equation

$$
iA_T = \alpha A_{XX} + \chi |A|^4 A.
$$

(40)
For stationary solutions with $A(X,T) = a(X)e^{-i\Omega T}$, where Ω and $a(X)$ are real-valued, we obtain the stationary quintic NLS equation in the form

$$\alpha a''(X) + \chi a^5(X) = \Omega a(X), \quad X \in \mathbb{R}. \quad (41)$$

Similarly to the case in the tight-binding approximation, we note that $\alpha < 0$ and $\chi < 0$ for the semi-infinite gap since $\alpha = -\frac{1}{2}E''(0) < 0$, where $E(k)$ is the energy band function for the lowest energy band, and

$$\chi = 3 \int_{0}^{2\pi} G(x)\Psi_{0}^{3}(x)\Psi_{2}(x)dx = -3 \int_{0}^{2\pi} \Psi_{2}(x)(-\partial_{X}^{2} + V(x) - E_{0}) \Psi_{2}(x)dx < 0.$$

The stationary quintic NLS equation (41) has a positive definite soliton for $\text{sign} (\alpha) = \text{sign} (\chi)$ with $\text{sign} (\Omega) = \text{sign} (\alpha)$, that is for $\Omega < 0$ in the semi-infinite gap.

References

[1] F.Kh. Abdullaev, Yu.V. Bludov, S.V. Dmitriev, P.G. Kevrekidis, and V.V. Konotop, “Generalized neighbor-interaction models induced by nonlinear lattices”, Phys. Rev. E 77, 016604 (2008)

[2] A. Aftalion and B. Helffer, “On mathematical models for Bose–Einstein condensates in optical lattices”, arXiv:0810.4003 (2008)

[3] Yu.V. Bludov and V.V. Konotop, “Localized modes in arrays of boson-fermion mixtures”, Phys. Rev. A 74, 043616 (2006)

[4] Yu.V. Bludov, V.A. Brazhnyi, and V.V. Konotop, “Delocalizing transition in one-dimensional condensates in optical lattices due to inhomogeneous interactions”, Phys. Rev. A 76, 023603 (2007)

[5] K. Busch, G. Schneider, L. Tkeshelashvili, and H. Uecker, “Justification of the nonlinear Schrödinger equation in spatially periodic media”, Z. Angew. Math. Phys. 57, 905-939 (2006).

[6] C. Claude, Y.S. Kivshar, O. Kluth, and K.H. Spatschek, ”Moving localized modes in nonlinear lattices”, Phys. Rev. B 47, 14228–14232 (1993).

[7] T. Dohnal and H. Uecker, “Coupled-mode equations and gap solitons for the 2D Gross–Pitaevskii equation with a non-separable periodic potential”, Physica D 238, 860–879 (2009).

[8] G. Fibich, Y. Sivan, and M.I. Weinstein, “Bound states of nonlinear Schrödinger equations with a periodic nonlinear microstructure”, Physica D 217, 31–57 (2006)

[9] J. J. García-Ripoll, V. M. Pérez-García, “Optimizing Schrödinger functionals using Sobolev gradients: applications to quantum mechanics and nonlinear optics”, SIAM Journal on Scientific Computing 23, 1315–1333 (2001)
[10] B. Helffer, *Semi-classical analysis for the Schrödinger operator and applications*, Lecture Notes in Mathematics 1336 (Springer, New York, 1988).

[11] G.D. Montesinos and V.M. Pérez-García, “Numerical studies of stabilized Townes solitons”, Math. Comp. Simul., 69, 447-456 (2005).

[12] M. Oster, M. Johansson, and A. Eriksson, “Enhanced mobility of strongly localized modes in waveguide array by inversion of stability”, Phys. Rev. E 67, 056606-8 (2003)

[13] A. Pankov, “Periodic nonlinear Schrödinger equation with application to photonic crystals”, Milan J. Math. 73, 259–287 (2005)

[14] A. Pankov, ”Gap solitons in periodic discrete nonlinear Schrödinger equations”, Nonlinearity 19, 27 (2006)

[15] A. Pankov, personal communication (2009).

[16] D.E. Pelinovsky, “Asymptotic reductions of the Gross–Pitaevskii equation”, in *Emergent Nonlinear Phenomena in Bose–Einstein Condensates*, Eds. P.G. Kevrekidis, D.J. Franzesklakis, and R. Carretero-Gonzalez , (Springer-Verlag, New York, 2008), pp. 377-398

[17] D. Pelinovsky, G. Schneider, and R. MacKay, “Justification of the lattice equation for a nonlinear elliptic problem with a periodic potential”, Comm. Math. Phys. 284, 803–831 (2008)

[18] D. Pelinovsky and G. Schneider, “Bounds on the tight-binding approximation for the Gross–Pitaevskii equation with a periodic potential”, J. Diff. Eqs., in press (2009)

[19] Z. Rapti, P.G. Kevrekidis, V.V. Konotop, and C.K.R.T. Jones, “Solitary waves under the competition of linear and nonlinear periodic potentials”, J. Phys. A: Math. Theor. 40, 14151–14163 (2007)

[20] H. Sakaguchi and B.A. Malomed, “Matter-wave solitons in nonlinear optical lattices”, Phys. Rev. E 72, 046610 (2005)

[21] Y. Sivan, G. Fibich, N.K. Efremidis, and S. Bar-Ad, “Analytic theory of narrow lattice solitons”, Nonlinearity 21, 509-536 (2008)

[22] A. Smerzi and A. Trombettoni, “Nonlinear tight-binding approximation for Bose–Einstein condensates in a lattice”, Phys. Rev. A 68, 023613 (2003)

[23] M. Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity 12, 673-691 (1999).