Clinical profile of recurrent headache in rural children of Rajasthan: A cross-sectional study

Jagdish Prasad Agrawal, Masand Rupesh, Grover Nidhi
From Department of Pediatrics, National Institute of Medical Sciences and Research, Jaipur, Rajasthan, India

Correspondence to: Dr. Rupesh Masand, Sector-4/467, Malviyanagar, Jaipur, Rajasthan, India. Tel.: 01412522148. Phone: +91-9928882855. E-mail: masand.rupesh72@gmail.com

Received - 30 December 2018 Initial Review - 21 January 2018 Published Online - 18 March 2018

ABSTRACT

Context: Recurrent headache is a commonly encountered clinical entity in rural children. Aims: This study aims to record the clinical profile of recurrent headache in rural children of Rajasthan. Settings and Design: A cross-sectional, observational study in a pediatric outpatient department of a tertiary care teaching hospital. Methods and Materials: A total of 164 children of either sex, between 5 and 17 years of age, presenting with complaints of a recurrent headache were included in the study. All relevant clinical details collected from patients and their relatives were recorded in a structured pro forma. A detailed examination was performed to rule out underlying problems associated with a headache. Headache subtypes were classified according to the International Classification of Headache Disorders, 3rd edition beta, 2013. Pediatric migraine disability assessment test score and Faces pain rating scale were utilized to assess the disability and severity, respectively. Statistical analysis involved summarizing the continuous variables as mean and standard deviation while nominal/categorical variables were expressed as percentages. Results: The mean age was 11.5 years and the M:F ratio was 1:1.1. Adolescents in 13–17 years age group constituted 61.5% (n=101) of the study sample with 58.4% (n=59) female subjects. Primary headaches - tension-type headache (n=77, 46.9%), migraine (n=43, 26.2%), and new daily persistent headache (n=5, 3%) were observed in 125 (76.1%) cases. Common causes of secondary headache were somatization disorder (n=27, 16.5%), ophthalmic problems (n=7, 4.3%), medication overuse (n=3, 1.9%), intracranial tumor (n=1, 0.6), and postictal (n=1, 0.6). Conclusions: Recurrent headache in rural children has distinct etiological profile which mandates a meticulous evaluation for initiating appropriate management.

Key words: Recurrent, Headache, Rural, Children

Headache is a common problem in children and adolescents worldwide and ranks third among illness-related causes of school absenteeism [1]. Prevalence estimates vary according to age, the definition of headache, and the method of data collection used, but as many as 60% of school-age children may experience headache infrequently at some point of time [2], while around 10% have recurring headaches [3]. Studies have found prevalence rates of 10–20% in school-age children [4,5] and >50% in those below the age of 20 years [2].

There is a paucity of available data on the clinical profile of recurrent headache in Indian children with studies in rural settings [6] being a rarity. The majority of studies have been school-based questionnaire surveys [4-5,7-18] in urban settings. This study was designed to record the clinical profile of recurrent headache in rural children in a hospital-based setting.

METHODS AND MATERIALS

This cross-sectional, observational study was carried out in the pediatric outpatient department of a tertiary care hospital from April 2015 till October 2017. This teaching hospital is situated 50 km from Jaipur city amidst rural surroundings. Apart from Jaipur district, it also caters to a significant chunk of rural population from adjoining Alwar, Dausa, Bharatpur, Karauli, Kota, Churu, Sikar, and Jhunjhunu districts of eastern Rajasthan and bordering districts of Haryana.

Children of either sex, between 5 and 17 years of age, presenting with complaints of a recurrent headache were included in the study after obtaining written informed consent from their parents or guardians.

For this study, a recurrent headache was defined as more than three headache episodes in past 12 months [19]. Children presenting with <3 headache episodes, headache due to fever, acute trauma, intracranial infections, dental or sinus infection, and chronic medical illnesses were excluded from the study.

The sample size of 160 subjects was calculated by considering an 11% prevalence of childhood migraine with a 5% margin of error and 95% confidence level.

A structured pro forma was prepared to collect relevant details from parents and record clinical examination data in relation to recurrent headache in the study subjects. All patients were evaluated as per recommendations [18]. A detailed ophthalmological, ear, nose, throat and dental examinations were performed by the respective consultants to rule out underlying problems associated with a headache. Spectacles for correction...
of vision were prescribed wherever indicated and its impact on occurrence and severity of a headache was assessed on follow-up. Magnetic resonance imaging brain and fundus examination were performed in those patients presenting with a history or examination suggestive of of an intracranial neoplasm, seizures, refractory error, or strabismus. A psychiatric evaluation was carried out by a consultant psychiatrist in study subjects with suggestive clinical history and where other common causes of headache were ruled out by history, examination, or by investigations.

Headache subtypes were classified according to diagnostic criteria laid down in the International Classification of Headache Disorders, 3rd edition beta (ICHD-3b)

Table 1: Classification of headache according to ICHD-3b criteria

	Classification of headache according to ICHD-3b criteria
1	Migraine without aura
2	Probable migraine without aura
3	Migraine with aura
4	Infrequent tension-type headache
5	Frequent tension-type headache
6	Probable tension-type headache
7	NDPH
8	Headache associated with somatization disorder
9	Headache attributed to refractive errors
10	Headache attributed to squint
11	Headache associated with overuse of acetylsalicylic acid
12	Headache attributed to intracranial neoplasia
13	Postictal headache

ICHD-3b: International classification of headache disorders, 3rd edition beta, NDPH: New daily persistent headache
RESULTS

Of the 247 patients presenting with a headache during the study period, 25 patients were excluded as per stated criteria, 21 refused to participate, and 37 patients failed to follow-up. Finally, 164 patients (78 boys) were included in the study. The mean age (SD, range) of these study subjects was 11.5 years (2.43, 5–17) and the M:F ratio was 1:1.1. The etiology of recurrent headache in the study subjects is shown in Table 2.

Among primary headaches - tension-type headache, migraine, and new daily persistent headache were observed in 76.1% cases. Migraine without aura constituted 88.3% (n=38) of patients with migraine (n=43). A headache due to underlying psychiatric problems was the most common cause of a secondary headache followed by a headache attributed to ophthalmic disorders.

Myopia was newly diagnosed in five patients and was corrected with appropriate spectacles. An increase in occurrence of recurrent headache was observed with increase in age (Table 3).

Adolescents in 13–17 years age group constituted 61.5% (n=101) of the study sample with 58.4% (n=59) female subjects. Recurrent headache due to migraine and psychiatric disorders was commonly observed in adolescent females. The clinical profile of the study subjects is shown in Table 4.

The average duration of headache illness was 1.63 ± 0.9 years. Mean duration of headache episodes was 3.57 h. A headache was characteristically reported as “throbbing” and “band-like” tightening sensation by migraine (n=32, 78%) and TTH (n=57, 74%) patients, respectively. A family history of migraine could be elicited in only 12 patients (27.9%), whereas triggers inciting a migraine episode could be identified in

Type of headache	ICHD-3 code	Number of cases (n)	% age of total cases (n=164)	
Primary headache				
1. Tension-type headache		2	77	46.9
a). Infrequent episodic	2.1.2	55		
b). Frequent episodic	2.2.2	17		
c). Probable freq. episodic	2.4.2	05		
2. Migraine		1	43	26.2
a). Without aura	1.1	38		
b). With aura	1.2.1.1	03		
c). Probable without aura	1.5.1	02		
3. NDPH	4.10	05	3.0	
Total	-	125	76.1	
Secondary headache				
1. Headache attributed somatization disorder	12.1	27	16.5	
2. Headache attributed to disorder of the eyes	11.3	07	4.3	
a). Attributed to refractory error	11.3.2	05		
b). Attributed to squint	11.3.3	02		
3. Acetylsalicylic acid overuse headache	8.2.3.3	03	1.9	
4. Headache attributed to intracranial neoplasm	7.4.1	01	0.6	
5. Postictal headache	7.6.2	01	0.6	
Total	39	23.9		

ICHD-3b: International classification of headache disorders, 3rd edition beta, NDPH: New daily persistent headache

Etiology of recurrent headache	Gender	Age group (in years)/gender-wise distribution						
	M	F	5–<9	9–<13	13–17			
Tension-type headache (n=77)	51	26	02	00	20	10	29	16
Migraine (n=43)	13	30	01	01	04	09	08	20
New daily persistent headache (n=5)	03	02	00	00	00	00	03	02
Headache attributed to somatization disorder (n=27)	05	22	00	00	02	05	03	17
Headache attributed to disorder of the eyes (n=7)	03	04	00	00	01	02	02	02
Acetylsalicylic acid overuse headache (n=3)	01	02	00	00	00	00	01	02
Headache attributed to intracranial neoplasm (n=1)	01	00	01	00	00	00	00	00
Postictal headache (n=1)	01	00	00	00	00	00	01	00
Total (n=164)	78	86	04	01	27	26	47	59
15 (34.8%) cases only. The majority of patients with migraine (n=31, 72%) or tension-type headache (n=59, 76.5%) had symptoms of chronic duration (>1 year). The severity of a headache and the resultant disability could be assessed in only 125 patients (76.2%) appearing for follow-up (Table 4). Of 95 patients of primary headache, remission from headache and associated symptoms was observed in 84 (88.4%) along with poor compliance (n=8, 8.4%) and partial response (n=3, 3.2%) to treatment in the remaining patients. All patients (n=27) with headache secondary to somatization disorder were provided appropriate therapy and counseling at the time of diagnosis by the psychiatrist. A remission in headache with concomitant disappearance of associated somatic symptoms was observed in 21 patients (77.7%) on follow-up. Regular use of spectacles with appropriate lenses resulted in correction of myopia and strabismus and relief from headache in 7 (100%) cases. Two patients reported remission from headache for few days on withdrawal of acetylsalicylic acid that was being overused earlier, only to follow-up with features of tension-type headache episodes presently. One patient diagnosed as a case of astrocytoma with recurrent headache was operated in the department of neurosurgery of this institution.
DISCUSSION

Recurrent headaches may have a considerable impact on the quality of life as it may affect productivity at school, general work capacity, and leisure time activities of the affected child. This hospital-based cross-sectional study aimed to record the clinical profile of recurrent headache in children of rural background.

Among children with primary headache, tension-type headache was diagnosed in 77 (46.9%) as compared to migraine in 43 (26.2%) children. Malik et al. [16] reported the prevalence of tension-type headache and migraine to be 50.99% and 26.98%, respectively, in their school-based study. Similarly, Bugdayci et al. [10] have reported it as 24.7% and 10.4%, respectively. Mishra et al. [19] have reported 21 (48.8%) children with migraine and 11 (25.6%) with tension-type headache in their hospital-based study. However, no hospital-based Indian study reporting a higher occurrence of tension-type headache could be identified. Recent reviews indicate a higher prevalence and disability attributed to tension-type headache than migraine [23,24]. A significant observation during follow-ups in all the study subjects with tension-type headache was the absence of pericranial tenderness as has been classically described in ICHD-3b classification [20].

Age was observed to affect occurrence of headache. Both tension-type headache and migraine increased with increase in age (Table 3) in male and female subjects, respectively. A Swedish study [25] observed similarly, especially in girls. Other studies [26,27] have described a similar escalating trend of headache frequency, duration, severity, and resultant disability with age in adolescents. A family history of migraine could be elicited in 12 (29.2%) patients only in comparison to that of Mishra et al. [19] (23%). However, other studies [28,29] have observed a significant proportion of study subjects with positive family history in the first degree relatives.

In this study, new daily persistent headache was observed in five adolescent patients with some having overlapping features suggestive of a tension-type-like headache or a migraine-like headache (Table 4). Abu-arafah [30] observed similar headache presentation in 81% cases. Chakravarty [31] had described patients with a “baseline” chronic daily headache of more than 3 months duration among 8–15-year-old children with superimposed episodic spells of a migraine-like headache.

A significant number of patients presented with secondary headache (n=39, 23.9%) in comparison with other studies [19,32]. This may be due to the fact that the study subjects belonged from far-flung rural areas where medical facilities are inadequate, leading to chronic untreated underlying health problems associated with headache. In this study, the most common cause of secondary headache was due to psychiatric problems (16.5%). The majority (81.4%) of patients were school-going adolescent females who reported headache in association with multiple unexplainable symptoms such as bloating, chest pain, back pain, difficulty in swallowing, and irregular menses in varying combinations.

Psychiatric evaluation revealed gender discrimination, family conflicts, social pressure for early marriage, and discontinuation in studies as underlying issues rampant in any rural society. The frequency of somatization in the population of children and adolescents is estimated at 10–25% [33]. In diagnostically difficult cases of headache, it is recommended that a detailed psychiatric history of the patients and their family members should also be taken [34]. Anxiety arising out of poor academic performance was noted in study subjects with chronic tension-type headache [35] and chronic daily headache [31]. In comparison to other studies [19], headache due to refractory errors and strabismus was observed in seven patients. Coexistence of errors of refraction and headache is not unusual [36]. This is in contrast to the earlier studies [37,38] which failed to show any conclusive evidence for a relationship between headache and refractory errors.

A headache attributed to chronic analgesic overuse was observed in three patients who had primarily experienced episodic tension-type headache but over a period of time complained of increased recurrence of headache after frequent ingestion of acetylsalicylic acid. A remission in headache on withdrawal of the drug was documented during follow-ups. Such cases were similarly observed in other studies [39,40].

Majority of patients consulted after 1–2 years of onset of their recurrent headache episodes due to inability to access medical facilities from remotely located rural areas. Reliance on alternative therapies - Homeopathy, Unani, and Ayurveda over a chronic period with limited or no relief was cited as the reason. Moreover, the local unqualified practitioner or a quack’s “help” was sought at times to relieve acute episodes.

The strengths of this study are that it is the first hospital-based study which attempted to shed light on the prevalent causes and clinical profile of recurrent headache in children from rural background. The sample size was adequate to lend sufficient power to this study. Due to the availability of a well-defined headache subtypes in ICHD-3b classification [20], all cases could be recognized and specified. At the same time, it could not calculate the prevalence due to difficulty in defining the exact catchment area for this tertiary level hospital. An assessment of severity and disability arising due to recurrent headache could not be performed in all the study subjects as 39 (23.7%) patients failed to appear on follow-ups despite several telephonic reminders. As this hospital also has a department of general medicine and neurology as a superspecialty, other relatively rarer types of primary or secondary headaches could not be included.

CONCLUSION

Recurrent headache is a commonly encountered entity in children from rural background with significantly different etiologial profile. Further, the currently available extensive classification has helped to recognize and treat various headache entities as evident in this study. However, a population-based community survey to know the exact prevalence of headache in vast stretches of hinterland is the need of the hour.
REFERENCES

1. Newacheck PW, Taylor WR. Childhood chronic illness: Prevalence, severity, and impact. Am J Public Health 1992;82:364-71.

2. Abu-Arefeh I, Razak S, Sivaraman B, Graham C. The prevalence of headache and migraine in children and adolescents: A systematic review of population-based studies. Dev Med Child Neurol 2010;52:1088-97.

3. Fearon P, Hotopf M. Relation between headache in childhood and physical and psychiatric symptoms in adulthood: National birth cohort study. BMJ 2001;322:1145.

4. Gupta R, Bhatia MS, Daihya D, Sharma S, Sapra R, Senalit K, et al. Recurrent headache in Indian adolescents. Indian J Pediatr 2009;76:733-7.

5. Shivpuri D, Rajesh MS, Jain D. Prevalence and characteristics of migraine among adolescents: A questionnaire study. Indian Pediatr 2003;40:665-9.

6. Jain AP, Chauhan B, Bhat AD. Socio-demographic and clinical profile of headache–A rural hospital based study. JIACM 2007;8:26-8.

7. Lu SR, Fuh JL, Juang KD, Wang SJ. Migraine prevalence in adolescents aged 13-15: A student population-based study in Taiwan. Cephalalgia 2000;20:479-85.

8. Al Jumah M, Awada A, Al Azzam S. Headache syndromes amongst schoolchildren in Riyadh, Saudi Arabia. Headache 2002;42:281-6.

9. Abu-Arefeh I, Russel G. Prevalence of headache and migraine in schoolchildren. BMJ 1994;309:765-9.

10. Bugdayci R, Orge A, Sarmaz T, Kurt AO, Kalezagi H, Karakelle A, et al. Prevalence and factors affecting headache in Turkish school children. Pediatr Int 2005;47:316-22.

11. Arruda MA, Guidetti V, Galli F, Albuquerque RC, Bigal ME. Primary headaches in childhood–a population-based study. Cephalalgia 2010;30:1056-64.

12. Rho YI, Chung HJ, Lee KH, Eun BL, Eun SH, Nam SO, et al. Prevalence and clinical characteristics of primary headaches among school children in South Korea: A nationwide survey. Headache 2012;52:592-9.

13. Visudthiban A, Boonsopa C, Thampratankul L, Nuntnarumit P, Okaschareon C, Khongkhatithum C, et al. Headache in junior high school students: Types & characteristics in Thai children. J Med Assoc Thai 2010;93:550-7.

14. Arruda MA, Bigal ME. Migraine and migraine subtypes in preadolescent children: association with school performance. Neurology 2012;79:1881-8.

15. Slater S, Crawford MJ, Kubouche MA, Le Cates SL, Cherney S, Vaughan P, et al. Effect of gender and age on pediatric headache. Cephalalgia 2009;29:969-73.

16. Aromaa M, Rautava P, Helenius H, Sillanpää ML. Factors of early life as predictors of headache in children at school entry. Headache 1998;38:23-30.

17. Condon P, Forsythe W. Migraine in childhood: A study of 300 children. Dev Med Child Neurol 1979;21:209-16.

18. Abu-Arefeh I. Chronic tension-type headache in children and adolescents. Cephalalgia 2001;21:830-6.

19. Chakravarty A. Chronic daily headache in children and adolescents: A clinic based study from India. Cephalalgia 2005;25:795-800.

20. Talebian A, Soltani B, Haji Rezaei M. Causes and associated factors of headaches among 5 to 15-year-old children referred to a neurology clinic in Kashan, Iran. Iran J Child Neurol 2015;9:71-5.

21. Albrecht S, Naugle AE. Psychological assessment and treatment of somatization: Adolescents with medically unexplained neurologic symptoms. Adolesc Med 2002;13:625-41.

22. Emich-Widera E, Kazek B, Szwed-Bialożyt B, Kopyta I, Kostorz A. Headaches as somatoform disorders in children and adolescents. Ment Illn 2012;4:e9.

23. Mandić Z, Baraban D, Boranić M. Chronic tension-type headache in school-aged children–personality traits and behavior. Coll Antropol 2003;27 Suppl 1:159-66.

24. Albers L, Straube A, Landgraf MN, Filipopoulos F, Heinen F, von Kries R, et al. Migraine and tension type headache in adolescents at grammar school in Germany-burden of disease and health care utilization. J Headache Pain 2015;16:534.

25. Malik AH, Shah PA, Yaseen Y. Prevalence of primary headache disorders in school-going children in Kashmir valley (North-west India). Ann Indian Acad Neurol 2012;15:1519-21.

26. Slater S, Crawford MJ, Kubouche MA, Le Cates SL, Cherney S, Vaughan P, et al. Effect of gender and age on pediatric headache. Cephalalgia 2009;29:969-73.

27. Lauxell K, Larsson B, Eeg-Olofsson O. Prevalence of headache in Swedish school children, with a focus on tension-type headache. Cephalalgia 2004;24:380-8.

28. Virtanen R, Aromaa M, Rautava P, Mietotsonkala L, Anttila P, Helenius H, et al. Changes in headache prevalence between pre-school and pre-pubertal ages. Cephalalgia 2002;22:179-85.

29. Slater S, Crawford MJ, Kubouche MA, Le Cates SL, Cherney S, Vaughan P, et al. Effect of gender and age on pediatric headache. Cephalalgia 2009;29:969-73.

30. Aromaa M, Rautava P, Helenius H, Sillanpää ML. Factors of early life as predictors of headache in children at school entry. Headache 1998;38:23-30.

31. Condon P, Forsythe W. Migraine in childhood: A study of 300 children. Dev Med Child Neurol 1979;21:209-16.

32. Tomsak RL. Ophthalmologic aspects of headache. Med Clin North Am 2004;63:843-7.

33. Aromaa M, Rautava P, Helenius H, Sillanpää ML. Factors of early life as predictors of headache in children at school entry. Headache 1998;38:23-30.

34. Bigal ME, Lipton RB, Tepper SJ, Rapoport AM, Sheftell FD. Primary headache disorders among adolescents: association with school performance. Neurology 2012;79:1881-8.

35. Bigal ME, Lipton RB, Tepper SJ, Rapoport AM, Sheftell FD. Primary headache disorders among adolescents: association with school performance. Neurology 2012;79:1881-8.

36. Abu-Arefeh I, Callaghan M. Headache clinics for children. children. In: Abu-Arefeh I (ed). Childhood. Clin Dev Med 2002;158:175-84.

37. Bigal ME, Lipton RB, Tepper SJ, Rapoport AM, Sheftell FD. Primary headache disorders among adolescents: association with school performance. Neurology 2012;79:1881-8.

38. Bigal ME, Lipton RB, Tepper SJ, Rapoport AM, Sheftell FD. Primary headache disorders among adolescents: association with school performance. Neurology 2012;79:1881-8.

39. Bigal ME, Lipton RB, Tepper SJ, Rapoport AM, Sheftell FD. Primary headache disorders among adolescents: association with school performance. Neurology 2012;79:1881-8.

40. Bigal ME, Lipton RB, Tepper SJ, Rapoport AM, Sheftell FD. Primary headache disorders among adolescents: association with school performance. Neurology 2012;79:1881-8.

How to cite this article: Jagdish PA, Rupesh M, Nidhi G. Clinical profile of recurrent headache in rural children of Rajastan: A cross-sectional study. Indian J Child Health. 2018;5(3):178-183.

Funding: None; Conflict of Interest: None Stated.

Available from: http://www.iasp-pain.org/Content/Navigation Menu/General Resource Links/Faces Pain Scale Revised/default.htm. [Last accessed on 2015 Mar 24].

Doi: 10.32677/ijch.2018.v05.i03.008