The Impact of Eating Behavior on Obesity in Northwestern Morocco: Kenitra Region

El Ghouddany Safouane1,*, Yamni Khalid2, Bour Abdellatif3, Khal Layoun Soad4

1Laboratory of Biology and Health, Nutrition Science Team, Food and Health, Faculty of Science, Ibn Tofaïl University of Kénitra, Morocco
2Team of Natural Sciences and Didactic Innovation, Regional Center for Education and Training, Rabat-Salé-Kénitra, Morocco

Received August 22, 2021; Revised October 15, 2021; Accepted October 25, 2021

Cite This Paper in the following Citation Styles

(a): [1] El Ghouddany Safouane, Yamni Khalid, Bour Abdellatif, Khal Layoun Soad , "The Impact of Eating Behavior on Obesity in Northwestern Morocco: Kenitra Region," Universal Journal of Public Health, Vol. 9, No. 5, pp. 344 - 351, 2021. DOI: 10.13189/ujph.2021.090518.

(b): El Ghouddany Safouane, Yamni Khalid, Bour Abdellatif, Khal Layoun Soad (2021). The Impact of Eating Behavior on Obesity in Northwestern Morocco: Kenitra Region. Universal Journal of Public Health, 9(5), 344 - 351. DOI: 10.13189/ujph.2021.090518.

Copyright©2021 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract Introduction: Several studies show that there is a relationship between obesity and individual eating habits. Objective: To describe the relationship between dietary behavior and staturo-ponderal status in individuals of Kénitra. Materials and methods: This work was developed in Kénitra (February 01 to March 30, 2021), it was carried out on a sample of 100 subjects including both sexes with an age range between 18 and 65 years. Data are collected through a questionnaire that includes anthropometric measurements, dietary habits, age and gender. Results: Individuals who had three meals per day had a high BMI average (36.41 kg/m²) with a significant difference (p=0.0404) between BMI and the number of meals per day. As well as individuals who consumed high-fat foods, their mean BMI was high (36.41 kg/m²) with a significant difference (p=0.0120) between intake of high-fat foods and BMI. Conclusion: It is shown that there is a relationship between obesity and eating behavior, and obesity and eating high-fat foods, suggesting that controlling eating behavior helps individuals reduce body weight and have a normal high weight.

Keywords Dietary Behavior, Obesity, Kenitra, Morocco

1. Introduction

Obesity is a rapidly growing epidemic worldwide, and its prevalence has almost doubled in more than 70 countries since 1980. In 2015, 107.7 million children and 603.7 million adults were obese [1]. The prevalence of obesity is increasing dramatically and various factors have been identified as potential causes of obesity such as eating behavior, making eating behavior a primary focus [2,3]. According to Rohrer et al. [4], individuals with unbalanced eating behavior are exposed to the problem of obesity. Eating behavior is the set of rules adopted by a population with regard to the foods consumed. Eating behavior depends on the products consumed, the way of preparing them, the components of the meals, the times and the way of eating the foods [5]. On the other hand, eating behavior is the result of learning that starts from childhood until aging, where it is represented by a group of individuals, to habits and culture that will remain throughout its life (Institut Danone France, 2002),[6]. Experimental studies suggest that behavioral change in food consumption (e.g., consumption of high energy foods) influences obesity [7,8], and other studies show that there is a relationship between the number of meals per day and the structure of these meals and the eating behavior included in the food consumption model. [9,10]. This work is designed to study certain behaviors that may influence the balance of nutritional status of individuals in the Moroccan city of Kenitra.
2. Material and Method

2.1. Study Medium and Sample

This cross-sectional study was conducted in the city of Kenitra from early February to late March 2021, and the health precautions measures imposed by the Ministry of Health during the Covid-19 pandemic were adopted. The targeted sample consists of 100 individuals aged 18 to 65 years with a balanced sex ratio (50% women (25±6) and 50% men), excluding pregnant women. The assessment of the sweetness, soils and fat content in foods were based on A table reference (Table Ciqal 2020). The respondents are randomly selected in the city of Kenitra.

2.2. Anthropometric Measurements and Indices

Table 1. The table presents the meaning of BMI according to WHO criteria.

BMI (kg/m²)	Indicator	Associated morbidity risk
<18.50	Thinness	Weak
18.50-24.99	Normal Corpulence	Medium
25.00-29.99	Overweight/pre-obese	Increased
>30	Obesity	Massive

Size and weight were measured according to WHO (World Health Organization) standards, weight (in kg) was taken using an electronic scale with an accuracy of 0.1 kg. The size (in m) was measured using a roof made in Morocco with an accuracy of 0.1 cm. The weight-status assessment of individuals is determined by BMI (kg/m²) according to WHO.

2.3. Statistical Analysis

The results are expressed as mean or frequency. The data was entered and analyzed by Statistical Package for Social Science (SPSS) Version 17.5. and (SAS) 9.3 for DUNCAN test. The correlation between BMI and food type is assessed by the Pearson test and the comparison of BMI averages to meal intake frequency is performed by the ANOVA test. Statistical tests are considered significant if the p < 0.05 value.

3. Results

3.1. Food Evaluation

Figure 1 shows the weekly frequency of daily meals taken by the study group. In addition, 67% of the individuals eat 3 times per day while 24% eat several times per day, then 8% eat 2 times per day, and 1% eat only once per day.

Figure 1. Circular histogram shows how often meals are taken per day.
Figure 2. Circular histogram presents the frequency of intake of fatty foods taken.

Figure 2 shows circular histogram of the weekly frequency of intake of fatty foods (Sheep skewers; minced meat …). The figure shows that 28% of the individuals consume fatty foods and 72% do not.

Figure 3. Circular histogram presents the frequency of intake of too salty foods taken.

Figure 3 shows circular histogram of the weekly frequency of intake of salty food (the fish; Moroccan soup …). The figure shows that 43% consume foods that are too salty and 57% do not.

Figure 4. Circular histogram presents the frequency of intake of over sweetened foods taken.

Figure 4 shows circular histogram of the weekly frequency of intake too sweet foods (Pastilla; honey cakes …). The figure shows that 39% of the individuals consume foods that are too sweet, while 61% do not.
3.2. The Relationship between BMI and the Number of Meals per Day

The highest mean of BMI was 36.41 kg/m² (obesity) in individuals who ate 3 times a day. Then there is a significant difference (p=0.0404) between the frequencies of meal intake studied, indicating a relationship between overweight (overweight and obesity) and the frequency of meal intake 1 time per day, 2 times per day, 3 times per day and several times per day. This is based on the ANOVA test (Table 2).

The Duncan test (Fig.5) was used to confirm the results obtained by the ANOVA test (Tab.1). This test revealed three statistical groups a, b and ab and allowed us to observe that people who eat their meals twice with a BMI average of 24.628 kg/m² (Normal body weight) and 3 times per day with a BMI average of 25.519 (overweight) are in group (a) followed by individuals who eat their meals several times per day in group (ab) with an average of 23.348 kg/m² (normal body weight), and individuals who eat only once a day in group (b).

Table 2. The relationship between the number of meals per day and BMI

The frequency of meals	Body Mass Index (BMI)	ANOVA test				
	T (Moy/Et)	NC (Moy/Et)	OW (Moy/Et)	O (Moy/Et)	MO (Moy/Et)	
1 time per day	0,00±0,00	19,14±0,00	0,00±0,00	0,00±0,00	0,00±0,00	0,0404*
2 times per day	0,00±0,00	21,88±1,47	26,92±0,8	33,79±0,00	0,00±0,00	
3 times per day	13,86±3,78	22,53±1,51	27,03±1,32	31,62±0,98	36,41±0,75	
Several times per day	17,43±1,33	22,11±2,26	27,09±1,48	31,25±0,00	0,00±0,00	

*Significant difference

T: thin, NC: Normal Corpulence, OW: Overweight/near-obese, O: Obese, MO: Morbid Obesity

Figure 5. The distribution of BMI averages based on the frequency of daily meals
3.3. The Relationship between BMI and the Nature of the Foods Consumed

The average BMI is a maximum of 36.41 kg/m² (morbid obesity) in individuals who eat foods that are too sweet, too salty, and too fatty, indicating a significant difference between the frequency of taking fatty meals and body weight (p=0.012), while the frequency of taking sweet and salty meals is not statistically associated with corpulence (P =0.356; P=0.792) based on the Pearson test (Table 3).

The Duncan Test (Fig.6) was used to confirm the results obtained (Tab.2). This test revealed three statistical groups a, b and ab and it is found that individuals who consume fat with an average of 26.372 kg/m² (overweight) BMI are in the group (a) and individuals who consume salty foods with an average of 24.729 kg/m² (Normal Corpulence) in the group ab, and which consume sweet foods with an average of 24.17 kg/m² (Normal Corpulence) are in the group (b).

The dendrogramme is created with a final subdivision of 2 groups which occurs at one level. The first group (at the top) is composed of overfat and too salty food consumed by participants, with an average of 26.372 kg/m² (overweight) BMI for participants who consume overfat food (line 2) and an average of 24.729 kg/m² (Normal Corpulence) for participants who consume too salty food (line 3). The second group, at the bottom, is composed of too sweet food consumed with an average of 24.17 kg/m² (Normal Corpulence) (line 1).

Table 3. Association of BMI classes and frequency of consumption of some foods too sweet, too salty and too fatty
T (Moy/Et)
Taking too sweet foods
No
Taking too salty foods
No
Taking too fatty foods
No

*Significant difference, **No-significant difference
T: thin, NC: Normal Corpulence, OW: Overweight/near-obese, O: Obese, MO: Morbid Obesity

![Figure 6. Distribution of BMI averages based on food types](image-url)
4. Discussion

The sample consists of 100 subjects, 50% female and 50% male who are healthy and consume different types of foods at different times in the day. The results of our study suggest that the average value of the highest BMI is 36.41 kg/m² (obesity) was observed in individuals who had their meals three times a day compared to those who had their meals one or two times a day. These findings support studies that suggest that eating behavior is associated with obesity [11,12].

According to Garaulet, Kulovitz and all [13, 14], the timing and frequency of eating may have a significant influence on weight control and weight loss. A very recent and in-depth study published by Kahleova and her colleagues [15] investigated 50,660 adult members of the seventh day Adventistic churches in the United States and Canada. The results showed that eating one or two meals a day is associated with a relatively lower BMI (body mass index) compared to eating three meals a day, these results are similar and confirm our results which also suggest that eating one or two meals is better than three or more.

On the other hand, another study on the animal model suggests that if an animal ingests these meals at intervals of elevated time (more than 6 hours between two successive meals), that animal will consume a higher quantity than usual and as a result has developed a successive weight gain that can result in obesity [16].

Our study also suggests that the average BMI value is up to 36.41 (morbid obesity) in individuals who took foods high in sugar, salt, and lipids with a significant difference between high-fat meal intake and BMI (p=0.012), indicating that high-fat food intake causes the risk of obesity, consistent with the results of several epidemiological and cross-sectional studies that describe a significant relationship between high-fat food intake and obesity [17]. In China [18,19], a longitudinal study shows that the high amount of lipids in foods leads to an increase in weight. This relationship is explained by several factors and among them there is the taste pleasure which is indicated by Blundell JE et al. [20] in their work which suggests that the consumption of foods high in hyperphagia lipid on several individuals exposed to the study.

Additionally, it is indicated that fat taste was tentatively related with an expanded chance of obesity and that count calories appeared to clarify this relationship impressively, and there's no noteworthy association between salt and sweet taste and corpulence hazard. The comes about for the positive affiliation between fat. The results for the positive association between fat taste and obesity risk were consistent with most cross-sectional studies.
The inability to degrade lipids used as a source of energy [26], and the genetic factor involved in the rate of lipid oxidation in individuals, Bouchard C and al. [27] indicate that the heritability of obesity can reach up to 30%.

The nature of fatty acids (saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids) consumed can influence weight gain. A study in Quebec City [28] of a group of 128 men shows that intake of foods that are high in saturated fat is associated with weight increase. Another study [29] showed that intake of foods rich in polyunsaturated fatty acids is associated with weight reduction. These results are explained by the rate of oxidation of fatty acids in cells. DeLany et al. [30] showed that saturated fatty acids are less oxidized than saturated fatty acids, poly- and mono-unsaturated fatty acids.

Our study did not consider whether these individuals ate in the workplace or at home, and whether these individuals brought their meals to work or whether they bought their lunch at the restaurant, etc. This may explain some of the difference in outcomes.

5. Conclusions

Dietary behavior and consumption of lipid-rich foods have an impact on the weight-status of individuals in Kenitra. Indeed, people who eat three meals a day are likely to be obese, and while eating high-fat meals increases the risk of obesity. These findings suggest that improved eating behavior can help reduce the risk of obesity and its public health consequences. The study revealed quite a few problems, but following a sampling problem, it was not possible to work on a very large sample because of the Covid-19 pandemic, and then we are looking at the prospect of doing a second long-term study, which is a much more developed research axis that includes other determinants such as physical activity.

REFERENCES

[1] Collaborators, G.B.D.O., Afshin A., Forouzanfar M.H., Reitsma M.B., Sur P., Estep K., Lee A., Marczak, L., Mokdad A.H., Moradi-Lakeh M., and al., "Health effects of overweight and obesity in 195 countries over 25 years," N. Engl. J. Med, vol. 377, no.1, pp. 13–27, 2017. DOI: 10.1056/NEJMoa1614362

[2] Kaoutar K., Hilali MK., Loukid M., "Comportement alimentaire et indice de masse corporelle des adolescents de la Wilaya de Marrakech (Maroc)," Antropo, vol. 30, no. 1, pp. 79-87, 2013. www.didac.chu.es/antropo

[3] Huffman S. K., Rizov M., "Determinants of obesity in transition economies: The case of Russia," Economics and human biology, vol.5, no. 3, pp. 379–391, 2007. DOI: 10.1016/j.ehb.2007.07.001

[4] Rohrer JE., Kristin Vickers-Douglas KS., Stroebel RJ., "Uncontrolled eating and obesity in adult primary care patients," Obesity Research & Clinical Practice, vol. 3, no. 2, pp. 115-121, 2009. DOI: 10.1016/j.orcp.2009.01.004

[5] Recours F., Hebel P., Gaiginier C., "Exercice d’anticipation des comportements alimentaires des Français Modèle Âge – Période - Cohorte," Cahier de Recherche du CEDOC, no 222, Centre de Recherche pour l’Etude et l’Observation des Conditions de Vie, CREDOC, pp. 1-130, December 2005, Paris.

[6] Nicklaus S., "The Role of Dietary Experience in the Development of Eating Behavior during the First Years of Life," Annals of Nutrition and Metabolism, vol. 70, no. 3, pp. 241-245, 2017. DOI: 10.1159/000465532

[7] Cawley J.,"An economic framework for understanding physical activity and eating behaviors," Am J Prev Med, vol. 27, no. 3, pp. 117-125, 2004. DOI: 10.1016/j.amepre.2004.06.012

[8] Cutler DM., Glaeser EL., Shapiro JM., "Why have Americans become more obese?," Journal of Economic Perspectives, vol. 17, no. 3, pp. 93-118, 2003. DOI: 10.1257/089533003769204371

[9] Bowman S., Vinyard B., "Fast food consumption of US adults: impact on energy and nutrient intakes and overweight status," Journal of the American College of Nutrition, vol. 23, no. 2, pp. 163-168, 2004. https://doi.org/10.1080/07357524.2004.10719357

[10] Pereira M., Kartashov A., Ebbeling C., Van Hom L., Slatery M., Jacobs jr D., Ludwig D., "Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis," THE LANCET, vol. 365, no. 9453, pp. 36-42, 2005. DOI: 10.1016/S0140-6736(04)17663-0

[11] Shields M., "L’embonpoint et l’obésité chez les enfants et les adolescents," Statistique Canada no 82-003 au catalogue, Rapports sur la santé, 2006, pp. 27-43.

[12] Andrieu E., Caillavet F., "Consommation alimentaire et statut pondéral en France," Document de travail no 5-6, INRA sciences économiques et sociales, 2004.

[13] Garaulet M., Gomez-Abellan P., "Timing of food intake and obesity: A novel association," Physiology & Behavior, vol. 134, no. 2, pp. 44–50, 2014. DOI: 10.1016/j.physbeh.2014.01.001

[14] Kulovitz MG., Kravitz L.R., Mermier C., Gibson AL., Conn CA., Kolkmeyer D., Kerkisck CM., "Potential role of meal frequency as a strategy for weight loss and health in overweight or obese adults" Nutrition, vol. 30, no. 4, pp. 386–392, 2014. DOI: 10.1016/j.nut.2013.08.009. Epub 2013 Nov 20

[15] Kahleova H., Lloren JI., Mashchak A., Hill M., Fraser GE., "Meal frequency and timing are associated with changes in body mass index in adventist health study" The Journal of Nutrition, vol. 147, no. 9, pp. 1722–1728, 2017. https://doi.org/10.3945/jn.116.244749

[16] L. Pénicaud, J Le Magnen., "Effets d’un régime hyperlipidique sur l’hyperphagie et la prise de poids après
un jeûne chez le rat," Reproduction Nutrition Développement, 1984, 24 (5B), pp.699-699. https://hal.archives-ouvertes.fr/hal-00898190

[17] Bray GA., Popkin BM., "Dietary fat intake does affect obesity !," The American Journal of Clinical Nutrition, vol. 68, no. 6, pp. 1157–1173, 1998. https://doi.org/10.1093/ajcn/68.6.1157

[18] Popkin BM., Paeratakul S., Zhai F., Ge K., "Dietary and environmental correlates of obesity in a population study in China," Obesity Research, vol. 3, no. S2, pp. 135s-143s, 1995. https://doi.org/10.1002/j.1550-8528.1995.tb00456.x

[19] Paeratakul S., Popkin BM., Keyou G., Adair LS., Stevens J., "Changes in diet and physical activity affect the body mass index of Chinese adults, " International Journal of Obesity, vol. 22, no 5, pp. 424–431, 1998. https://doi.org/10.1038/sj.ijo.0800603

[20] Blundell JE., King NA., "Overconsumption as a cause of weight gain: behavioural-physiological interactions in the control of food intake (appetite)," The Origins and Consequences of Obesity, Novartis Foundation Symposia, 1996, pp. 138-154. https://doi.org/10.1002/9780470514962.ch9

[21] Deglaire A., Mejean C., Castetbon K., Kesse-Guyot E., Hercberg S., Schlich P., "Associations between weight status and liking scores for sweet, salt and fat according to the gender in adults (The Nutrinet-Sante study)," European Journal of Clinical Nutrition, vol. 69, no. 1, pp. 40-46, 2015. https://doi.org/10.1038/ejcn.2014.139

[22] Bartoshuk LM., Duffy VB., Hayes JE., "Moskowitz HR., Snyder DJ., Psychophysics of sweet and fat perception in obesity: problems, solutions and newperspectives, " Philosophical Transactions of The Royal Society B Biology Sciences, vol. 361, no. 1471, pp. 1137-1148, 2006. https://doi.org/10.1098/rstb.2006.1853

[23] Cox DN., Hendrie GA., Carty D., "Sensitivity, hedonics and preferences for basic tastes and fat amongst adults and children of differing weight status: a comprehensive review," Food Quality and Preference, vol. 48, part. B, pp. 359-367, 2016. DOI: 10.1016/j.foodqual.2015.01.006

[24] Ricketts CD., "Fat preferences dietary fat intake and body composition in children, " European Journal of Clinical Nutrition, vol. 51, no. 11, pp. 778-781, 1997. https://doi.org/10.1038/sj.ejcn.1600487

[25] Salbe AD., DelParigi A., Pratley RE., Drewnowski A., Tataranni PA., "Tastepreferences and body weight changes in an obesity-prone population," The American Journal of Clinical Nutrition, vol. 79, no.3, pp. 372-378, 2004. https://doi.org/10.1093/ajcn/79.3.372

[26] Schutz Y., Flatt JP., Jequier E., "Failure of dietary fat intake to promote fat oxidation: a factor favoring the development of obesity," The American Journal of Clinical Nutrition, vol. 50, no. 2, pp. 307-314, 1989. https://doi.org/10.1093/ajcn/50.2.307

[27] Bouchard C., Perusse L., "Genetic aspects of obesity," Annals of the New York Academy of Sciences, Vol. 699, no. 1, pp. 26-35, 1993.https://doi.org/10.1111/j.17496632.1993.tb18834.x

[28] Doucet E., Almeras N., White MD., Despres JP., Bouchard C., Tremblay A., "Dietary fat composition and human adiposity," European Journal of Clinical Nutrition, vol. 52, no. 1, pp. 2-6, 1998. https://doi.org/10.1038/sj.ejcn.1600500

[29] Couet C., Delarue J., Ritz P., Antoine JM., Lamisse F., "Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults." International Journal of Obesity, vol. 21, no. 8, pp. 637-643, 1997. https://doi.org/10.1038/sj.ijo.0800451

[30] DeLany JP., Windhauser MM., Champagne CM., Bray GA., "Differential oxidation of individual dietary fatty acids in humans," The American Journal of Clinical Nutrition, vol. 72, no. 4, pp. 905-911, 2000. https://doi.org/10.1093/ajcn/72.4.905