Hematopoietic Stem Cells Are Uniquely Selective in Their Migratory Response to Chemokines

Douglas E. Wright,1 Edward P. Bowman,2,3,4,5 Amy J. Wagers,1 Eugene C. Butcher,2,3,4 and Irving L. Weissman1

1Departments of Pathology and Developmental Biology, 2Laboratory of Immunology and Vascular Biology, Department of Pathology, and the 3Digestive Disease Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
4Center for Molecular Biology and Medicine, Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA 94305
5Department of Immunology, DNAX Research Institute, Palo Alto, CA 94304

Abstract

Although hematopoietic stem cell (HSC) migration into and out of sites of active hematopoiesis is poorly understood, it is a critical process that underlies modern clinical stem cell transplantation and may be important for normal hematopoietic homeostasis. Given the established roles of chemotactic cytokine (chemokine)-directed migration of other leukocyte subsets, the migration of murine HSC to a large panel of CC and CXC chemokines was investigated. HSC migrated only in response to stromal derived factor-1 (SDF-1), the ligand for the CXC chemokine receptor 4 (CXCR4). CXCR4 expression by HSC was confirmed by reverse transcription polymerase chain reaction analysis. Surprisingly, HSC also expressed mRNA for CCR3 and CCR9, although they failed to migrate to the ligands for these receptors. The sharply restricted chemotactic responsiveness of HSC is unique among leukocytes and may be necessary for the specific homing of circulating HSC to bone marrow, as well as for the maintenance of HSC in hematopoietic microenvironments.

Key words: chemokines • chemokine receptors • chemotaxis • mobilization • bone marrow

Introduction

Hematopoietic stem cells (HSC)* are rare, pluripotent, self-renewing cells that give rise to all hematopoietic lineages (1) and migrate among various hematopoietic tissues. The site of hematopoiesis changes several times during embryonic and fetal development in a process thought to be dependent on HSC migration (for review see reference 2). In normal adult animals, HSC continuously migrate from the bone marrow (BM) to the blood and back to the BM, in such a way that circulating HSC are always available in peripheral blood to fill open BM HSC niches (3–5). Large-scale HSC mobilization from BM to blood is induced in adult animals by treatment with cytokines (e.g., G-CSF) and/or cytotoxic drugs (e.g., cyclophosphamide [Cy]) (1). Drug-induced HSC mobilization from BM to blood and the rehoming of transplanted HSC from blood to BM are critical for modern therapeutic transplants that include stem cells. Finally, HSC have recently been shown to be capable of giving rise to hepatocytes (6), and BM cells enriched for HSC have been shown to be capable of giving rise to epithelial cells (7) and cardiac muscle cells (8). It has been proposed that HSC migration into sites of injury may be a mechanism by which damaged tissues are repaired (6). These new discoveries lend urgency to efforts to understand the mechanisms of HSC migration.

Adhesion molecules, such as α4β1 integrin, have been implicated in both HSC mobilization as well as in the rehoming of transplanted HSC placed in the circulation (9, 10). Roles for chemotactic cytokines (chemokines) in hematopoietic stem and progenitor cell biology have also

*Abbreviations used in this paper: APC, allophycocyanin; BLC, B lymphocyte chemokine; BM, bone marrow; chemokine, chemotactic cytokine; Cy, cyclophosphamide; HSC, hematopoietic stem cell(s); LT-HSC, long-term repopulating hematopoietic stem cell(s); MPB, mobilized peripheral blood; MIG, monokine induced by IFN-γ; MIP, macrophage inflammatory protein; RANTES, regulated upon activation, normal T expressed and secreted; SDF–1α, stromal cell-derived factor–1α; SM, staining medium; ST-HSC, short-term repopulating hematopoietic stem cell(s); TECK, thymus-expressed chemokine; WBM, whole bone marrow.
been proposed. HSC are rapidly mobilized from BM to blood after the administration of the chemokine IL-8 to mice (11) or to monkeys (12), and serum IL-8 levels spike just before mobilization after the induction with G-CSF (13). However, the effect of IL-8 in inducing HSC mobilization appears to be indirect (14, 15). The possibility of a direct role for the chemokine stromal cell–derived factor-1α (SDF-1α) in progenitor mobilization was raised by a study of human BM and mobilized peripheral blood (MPB) CD34+ cells, in which MPB CD34+ cells did not respond as well to SDF-1α as to CD34+ cells isolated from BM (16). The authors proposed that the alteration in SDF-1α responsiveness might be part of the mechanism of progenitor mobilization, although only a fraction of human CD34+ cells are HSC (17, 18). Finally, SDF-1α has been implicated in the strikingly specific homing of transplanted hematopoietic progenitors to BM. SDF-1α is constitutively expressed on human BM endothelium and appears to cooperate with α4β1 integrin (very late antigen–4) and αLβ2 integrin (LFA-1) in inducing the arrest of circulating progenitors on vascular endothelium (19, 20). As of this writing, however, large panel studies on the ability of chemokines to induce chemotaxis of normal and mobilized HSC have not been published. Therefore, we sought to examine chemotaxis of HSC in a mouse model using a panel of chemokines that bind most known chemokine receptors.

We have previously shown that virtually all of the reconstituting activity of HSC isolated from the BM of untreated C57BL/Ka-Thy-1.1 mice and of mobilized HSC isolated from C57BL/Ka-Thy-1.1 mice is contained in two phenotypically defined populations: Thy-1.1lo Sca-1lo Lin− c-Kitlo Mac-1lo cells that are mostly long-term repopulating HSC (LT-HSC), and Thy-1.1lo Sca-1lo Lin− c-Kitlo Mac-1lo cells that are mostly short-term repopulating HSC (ST-HSC) (21–23). Here, the in vitro chemotaxis of LT-HSC and ST-HSC, obtained from the BM of untreated mice, in response to a panel of chemokines binding most currently described chemokine receptors from the CC and CXC families, was investigated. Chemotaxis of HSC obtained from mice treated with a mobilizing regimen of Cy/G-CSF in response to SDF-1α was also studied. In parallel, the expression of mRNA of chemokine receptors on both LT-HSC and ST-HSC derived from the BM of untreated mice was examined. These studies provide a large-scale survey of HSC chemotactic responses and provide evidence that mouse HSC possess mRNA for several chemokine receptors, yet only migrate in vitro in response to one chemokine, SDF-1α.

Materials and Methods

Mice

6–12-wk-old C57BL/Ka-Thy-1.1 mice were bred and maintained at the Stanford University Laboratory Animal Facility, and given acidified water (pH 2.5) and rodent chow ad libitum.

HSC Mobilization

Cy and G-CSF were administered as previously described (23). HSC were analyzed on day 4 of the regimen, due to the expansion of HSC in the BM and the large numbers of HSC in the blood and spleen on that day (23).

Tissue Processing

Single cell suspensions of BM and spleen cells were prepared as previously described (23). Blood was collected from animals after heparin injection and induction of anesthesia with methoxyflurane (Mallinckrodt Veterinary, Inc.). After the incision of the right atrium, blood was removed from the thoracic cavity with a Pasteur pipette. The left ventricle was then perfused via a 25-gauge needle with 10 mM EDTA in HBSS (GIBCO BRL) and blood/EDTA from the thoracic cavity was removed. Blood was subjected to dextran sedimentation and ammonium chloride erythrocyte lysis as previously described (23). Splenic erythrocytes were lysed in all experiments and BM erythrocytes were lysed in most experiments.

Antibodies

mAbs used in immunofluorescence staining were prepared from hybridomas and included 19XE5 (anti–Thy-1.1), 2B8 (anti–c-Kit), and E13 (anti–Sca-1, Ly6A/E). Lineage marker mAbs included KT31.1 (rat anti–mouse CD3), GK1.5 (rat anti–mouse CD4), 53-7.3 (rat anti–mouse CD5), 53-6.7 (rat anti–mouse CD8), Ter119 (rat anti–mouse erythrocyte-specific antigen), 6B2 (rat anti–mouse B220), 8C5 (rat anti–mouse Gr-1), and M1/70 (rat anti–mouse Mac-1).Fc receptors were blocked with mAb 2.4G2 (anti–FcR) at appropriate points in staining procedures.

Depletion of Lineage+ Cells for Chemotaxis Assays

Cells were stained in HBSS/2% calf serum with the lineage marker antibodies listed above at 10⁶ cells/ml of previously determined optimal concentrations of antibody solution on ice for 25 min, rinsed twice in staining medium (SM), and enriched by incubation on a rocking platform at 4°C for 20 min with SM-washed sheep anti–rat IgG magnetic beads (Dynabeads; Dynal) at a 1:1 ratio of beads/cells in SM. After the removal of beads and attached cells, the remaining cells were incubated on a rocking platform at 4°C for 30 min with fresh washed beads at a 4:1 ratio of beads/cells, and a second round of bead/cell removal was accomplished. Typical lineage staining profiles of whole BM and lineage-depleted BM are shown in Fig. 1 A.

Chemotaxis Assay

Lineage-depleted tissues were suspended in RPMI medium (GIBCO BRL) with 10% serum and incubated in polystyrene tissue culture flasks at 37°C for 1 h to remove adherent cells and allow time for resensitization of potentially desensitized chemokine responses (24). Cells were then placed into a transwell platform at 4°C: mouse J5E, mouse eotaxin, human thymus– and activation-regulated chemokine, mouse regulated upon activation, normal T expressed and secreted (RANTES), mouse macrophage inflammatory protein (MIP)-1α, human MIP-3α, human I-309, mouse KC, and human SDF-1α (PeproTech); mouse MIP-1β, human MIP-3β, mouse thymus–expressed chemokine (TECK), mouse monokine induced by IFN-γ (MIG), and mouse B lymphocyte
ch one 8 (a gift from K. Matsushita, University of Tokyo, School of Medicine, Tokyo, Japan). Optimal chemokine concentrations were determined in preliminary chemotaxis assays using BM cells or splenocytes. Two chemokines (IL-309 and eotaxin) did not elicit responses from any BM or splenic subset, and therefore were used at published concentrations (24). Biological activity of IL-309 and eotaxin was confirmed using cell lines expressing CCR8 and CCR3, respectively. Chemokines were used at concentrations of 100 nM, with the following exceptions: 1 nM JE; 3 nM MIP-1β; 5 nM G-CSF; 50 nM SDF-1α; 300 nM KC and TECK; and 500 nM BLC.

Enumeration of Migrated HSC

After the addition of a fixed number of 15 μm polystyrene beads (Polysciences) for normalization of cell numbers among wells as previously described (25), migrated cells were carefully collected from bottom wells, centrifuged, restained with lineage marker antibodies, and then stained with PE-conjugated goat anti-rat polyclonal antibody (Jackson ImmunoResearch Laboratories) to visualize lineage markers. Cells were then washed twice and stained with a cocktail containing FITC-conjugated (Molecular Probes) anti-Thy-1.1 (19X5E5), allopurinol-conjugated (APC, Cyanotech) anti-c-Kit, and TxR-conjugated (Molecular Probes) anti-Sca-1 (E13). In some experiments, PE-conjugated lineage antibodies were also included with the anti-Thy-1.1, anti-c-Kit, and anti-Sca-1 antibodies. Stained cells were resuspended in SM containing propidium iodide in preparation for flow cytometry.

Flow Cytometry

Cells were analyzed and sorted by multiparameter flow cytometry on either a modified 2-laser FACS Vantage® (Becton Dickinson), or a modified 3-laser cytometer (Cytomation, Inc. and Becton Dickinson), made available through the flow cytometry shared user group at Stanford University. Flow cytometry data were analyzed using FlowJo® software (Treestar, Inc.). Representative gating for LT-HSC and ST-HSC is shown in Fig. 1 A.

Isolation of HSC for Reverse Transcription (RT)-PCR

HSC were enriched by positive selection for the c-Kit antigen with magnetic beads (Miltenyi Biotec) as previously described (26), and stained for flow cytometry with PE-conjugated lineage mAbs as previously described, FITC-conjugated mAb against Thy-1.1, TxB-conjugated mAb against Sca-1, and APC-conjugated mAb against c-Kit. Lin^−/bThy-1.1^Sca-1^−/c-Kit^+ HSC were double sorted for RT-PCR analysis.

RT-PCR

RNA Isolation. RNA from FACSort®-sorted HSC (~20,000 cells) was extracted with Trizol (GIBCO BRL) according to the manufacturer’s instructions. Isolated RNA was resuspended in diethylpyrocarbonate (DEPC)-treated dH2O and incubated with DNaseI (RNase-free; Boehringer) for 20 min at 37°C to remove contaminating genomic DNA. Before RT, DNaseI was inactivated and RNA was denatured by incubation at 70°C for 10 min.

RT. After chilling on ice, RNA samples were split equally into two 0.5-mL Eppendorf tubes (3.5 μL per tube), and used for either the RT reaction (+RT), or for a control reaction in which the RT was omitted (−RT control). 16.5 μL of the appropriate (+ or −RT) RT master mix was added to each tube containing 3.5 μL RNA, for a final volume of 20 μL.

Results

LT-HSC and ST-HSC Migrate Exclusively to SDF-1α. We assayed the migration of LT-HSC and ST-HSC to a panel of chemokines that bind the receptors listed in Table II. In addition, G-CSF, a nonchemokine cytokine widely used for HSC mobilization in experimental animals and in humans, was tested. BM enriched for HSC was placed in the top well of a transwell chamber, and chemokine-containing medium was placed in the bottom well. Responding cells were collected from the bottom well and stained with antibodies to identify and enumerate HSC by flow cytometry (Fig. 1 A). Migration data were expressed as the percentage of input HSC contained in the population placed in the top well that migrated to the bottom well. Strikingly, both LT-HSC (Fig. 1 B) and ST-HSC (Fig. 1 C) migrated only in response to SDF-1α, and did not respond significantly to any of the other chemokines or to G-CSF. Although the magnitude of SDF-1α–induced migration varied among experiments (5.8–49% for LT-HSC and 7.3–57% for ST-HSC), there was no significant difference in the degree of migration to SDF-1α of LT-HSC and ST-HSC. Furthermore, the pattern of nonresponsiveness to other chemokines did not vary between LT-HSC and ST-HSC.

SDF-1α Induces HSC Chemotaxis That Does Not Require Non-HSC BM Cells. To further characterize SDF-1α–induced HSC migration, we tested the requirement for an SDF-1α gradient to induce HSC migration, or for non-HSC BM cells to stimulate HSC migration to SDF-1α in vitro. HSC migration to SDF-1α was chemotactic (polarized migration toward a chemokine source) not chemokinetic (randomly induced migration), because HSC migration only occurred in a gradient of SDF-1α (bottom well...
only) and not when SDF-1α was presented in a uniform manner (top and bottom wells) (Fig. 2 A). In addition, HSC chemotaxis did not require the presence of non-HSC BM cells. When HSC alone were sorted directly into the top well of the transwell chamber, these individual sorted HSC migrated in response to SDF-1/H9251, with a migration index in the same range as that determined using a heterogeneous mixture of lineage-depleted BM cells (Fig. 2 B).

Exposure to SDF-1α Does Not Alter the In Vivo Engraftment Potential of HSC. We addressed the possibility that the functional reconstructing ability of phenotypically identified migrated HSC was altered by exposure to SDF-1α over the time course of our assay. We tested whether ex vivo incubation or exposure to SDF-1α altered the engraftment potential at near limit dilution doses of LT-HSC. As shown in Table III, neither ex vivo incubation nor exposure to SDF-1α significantly altered the engraftment potential of LT-HSC. 31 wk after the injection of 40 LT-HSC that had been incubated alone for 1 h, followed by incubation with SDF-1α for 2 h, all recipient mice were engrafted by donor cells and four out of eight mice displayed long-term multilineage reconstitution. In a second experiment, 17 wk after the injection of 30 LT-HSC that had been incubated alone for 1 h, followed by incubation with SDF-1α for 2 h, four out of seven mice were reconstituted with donor cells, and three out of seven mice displayed long-term multilineage reconstitution.

Table I. PCR Primers Used for Analysis of Chemokine Receptor mRNA Expression by HSC. DHFR, Dihydrofolate Reductase

Receptor	Sequence	Size (bp)
XCR1	Sense 5’-CAT CCC TGA TGC TGT CTT CCA C-3’	
CCR1	Sense 5’-AGC CTA CCC CAC AAC TAC AGA A-3’	
CCR2	Sense 5’-GCT CAT GAT CCC TAT GTG G-3’	
CCR3	Sense 5’-CTG GGC ACC TGA TTT AAA GG-3’	
CCR4	Sense 5’-CCA AAG ATG AAT GCC ACA GAG-3’	
CCR5	Sense 5’-GCT GAA GAG CGT GAC TGA C-3’	
CCR6	Sense 5’-GGG CAA CAT TAT GGT GAT GAC-3’	
CCR7	Sense 5’-ACA GCG GCC TCC AGA AGA ACA GCG G-3’	
CCR8	Sense 5’-CGA TGG AGC CCA ACG TCA CG-3’	
CCR9	Sense 5’-GCC CTG CCT CAT TAT GGA TGA TTA AAC AGA-3’	
CXCR1	Sense 5’-ACC GCA GTC AGG AGG ACC ATG-3’	
CXCR2	Sense 5’-AAC AGT TAT GCT GTG GTT GTA C-3’	
CXCR3	Sense 5’-AAC ACG GGA TGT ATT GTT ACC-3’	
CXCR4	Sense 5’-GCC TGT TGA CGG AGT GTT GC-3’	
CXCR5	Sense 5’-AAA CGA AGC GGA AAC TAG AGC C-3’	
CX3CR1	Sense 5’-ACC ATC GTG GCC GCC AGG CAC C-3’	
DHFR	Sense 5’-CCA CAA CCT TTT CGT TGA AGA AAG AAG AGA-3’	

DHFR Sense 5’-CCA CAA CCT TTT CGT TGA AGA AAG AAG AGA-3’ Anti-sense 5’-TTG GCA AGA AAA TGA GCT CCT CGT GG-3’ 159
HSC Express mRNA for CCR3, CCR9, and CXCR4. In parallel with the chemotaxis studies, we tested for expression of mRNAs encoding the chemokine receptors for the chemokines addressed in this study, plus the chemokine receptors XCR1 (lymphotactin [XCL1] receptor) and CX3CR1 (fractalkine [CX3CL1] receptor). Chemokine receptor expression was determined by RT-PCR from samples representing 1,000 double-sorted HSC (this sorted population contained both LT-HSC and ST-HSC) or 1,000 unfractionated whole bone marrow (WBM) cells as a positive control. CXCR4 (SDF-1α receptor) mRNA was easily detected in HSC at the 1,000 cell level. CCR3 (eotaxin and RANTES receptor) and CCR9 (TECK receptor) messages were also detected (Fig. 3 A and Table IV), and XCR1, CXCR2 (KC/IL-8 receptor), and CXCR5 (BLC receptor) mRNA were observed inconsistently. Other chemokine receptors were not detectably expressed in HSC, although they were clearly present in RNA isolated from an equivalent number of WBM cells. Because it is conceivable that the in vivo migratory behavior of LT-HSC and ST-HSC differ, and that these differences could be reflected in chemokine receptor expression, we further examined CCR3, CCR9, and CXCR4 mRNA expression by LT-HSC and ST-HSC individually. CCR3, CCR9, and CXCR4 mRNA expression was detected in both LT-HSC and ST-HSC (Fig. 3 B).

SDF-1α Responses of HSC from BM of Untreated Mice Are Indistinguishable from Responses of HSC Derived from BM, Blood, and Spleens of Cy/G-CSF–treated Mice. It has been suggested that decreased responsiveness to SDF-1α may play a role in the mobilization of human hematopoietic progenitors from BM to blood (16). We tested this hypothesis in the mouse by examining the chemotaxis of HSC derived from BM, blood, and spleens of Cy/G-CSF–treated mice.
animals. When compared with HSC from the BM of untreated mice, PB-, BM-, and spleen-derived HSC from Cy/G-CSF–treated animals showed indistinguishable responsiveness to SDF-1α (Fig. 4). In addition, both MPB and mobilized spleen HSC expressed easily detectable CXCR4 mRNA by RT-PCR (unpublished data).

Discussion

HSC migrate in several circumstances: (a) HSC are thought to migrate through the blood to seed new sites of hematopoiesis during embryonic and fetal development (for review see reference 2); (b) HSC migrate continuously between BM and blood in normal adult animals (3–5); (c) HSC migrate in large numbers from BM to blood after the treatment of animals with cytotoxic agents such as Cy and/or cytokines such as G-CSF (23, 27); and (d) injected HSC migrate efficiently to hematopoietic tissues after transplantation in experimental animals, or after clinical transplantation in humans (28). Because HSC have now been shown to also have the capacity to give rise to nonhematopoietic tissues such as liver, migrating HSC may represent a source of pluripotent cells that are constantly available for the repair of damaged organs. Here, we report the first comprehensive study to address the chemotactic responsiveness of HSC to chemokines.
The role of chemokines in hematopoiesis includes guiding progenitor cells to microanatomical sites in BM or thymus for proper maturation (29). However, the roles of chemokines in the migrations of HSC during embryonic and fetal development, the maintenance of adult HSC niches, and the physiological flux of HSC between BM and blood in adults are unclear. Here we showed that in normal adult animals, BM-derived LT-HSC and ST-HSC displayed a sharply restricted responsiveness pattern to chemokines; they only migrated appreciably in response to SDF-1/β1. Consistent with this, HSC express mRNA for CXCR4, the only known receptor for SDF-1/β1. The SDF-1/β1–CXCR4 interaction is important in hematopoietic development, and may have a role in engraftment of BM by HSC. Among other defects, mice lacking either SDF-1/β1 or CXCR4 lack lymphomyeloid hematopoiesis in fetal BM (30, 31). The antibody blockade of CXCR4 prevented engraftment of adult SCID mouse BM by CD34+-enriched human cord blood cells (32).

Our data suggest that HSC, in contrast to other leukocyte subsets, only respond to SDF-1/β1. However, the possibility exists that HSC may respond to other chemokines or chemoattractants that we have not tested in this study. Although HSC express mRNA for CCR3 and CCR9 (lack of antibodies against murine chemokine receptors precluded determination of whether CCR3 or CCR9 proteins were present on the cell surface of HSC), they did not migrate in response to eotaxin or RANTES, ligands for CCR3, or in

Table IV. Summary of RT-PCR Analysis of Chemokine Receptor mRNA Expression by HSC

Receptor	Expression a
XCR1	± (1/3)
CCR1	– (0/2)
CCR2	– (0/4)
CCR3	– (4/6)
CCR4	– (0/2)
CCR5	– (0/2)
CCR6	– (0/2)
CCR7	– (0/2)
CCR8	– (0/2)
CCR9	+ (2/2)
CXCR2	± (2/5)
CXCR3	– (0/2)
CXCR4	+ (6/6)
CXCR5	± (1/5)
CX3CR1	– (0/3)

aNumbers in parentheses indicate the fraction of independent experiments in which a PCR product was detectable.
response to TECK, the ligand for CCR9. These data indicate that receptor mRNA expression alone does not adequately predict chemotactic responsiveness, as has been observed in other studies (24, 33, 34). Knockout mice that do not express functional CCR3 have been prepared and no hematopoietic defects have been observed (Gerard, C., personal communication). Similarly, preliminary analyses of CCR9 knockout mice do not reveal notable defects in the development of most lymphoid compartments (Wurbel, M.A., and Malissen, B., personal communication [35]). Lack of migration by HSC to eotaxin, RANTES, and TECK is also consistent with the absence of essential roles for CCR3 and CCR9 in hematopoiesis.

Current models of leukocyte trafficking hold that chemotactic responsiveness plays a critical role in the homing of cells to particular microenvironments and in positioning cells within these microenvironments (36). Most leukocyte subsets express multiple chemokine and chemottractant receptors, and migrate in response to several chemokines (37, 38). The possession of multiple chemokine and chemottractant receptors has been shown to allow cells to maneuver in a stepwise fashion through spatial arrays of chemokine and chemottractant gradients (39). This raises the question of the significance of the extremely selective responsiveness pattern to chemokines exhibited by HSC.

BM has the challenging task of promoting the growth of several cell lineages. The presumption that various lineages have unique requirements for maturation has led to the notion that BM is partitioned functionally into specialized microenvironments, or “niches.” Although HSC niches have not been characterized, evidence of their existence comes from the observation that cloned stromal lines are heterogeneous in their ability to maintain hematopoiesis in vitro (40–43). A second observation supporting the niche hypothesis is that transplanted HSC, when injected intravenously as discrete boluses, do not engraft BM of syngeneic recipient animals unless the dose of HSC is extremely large (44–48), or the recipient’s BM is injured by radiation/cytotoxic drugs.

Given the unique requirement of HSC niches in supporting both the maintenance of multipotency and differentiation, it is tempting to speculate that the restricted chemotactic responsiveness of HSC we observed might be important in localizing HSC within their niches, at least when they are actively participating in hematopoiesis. Possession by HSC of multiple functional chemokine receptors in a complex environment such as BM would be undesirable as it could lead to the inappropriate migration of HSC out of the HSC niche. Ma et al. (49) recently proposed that CXCR4 is required for the retention of B lineage and granulocytic precursors in the fetal liver and BM. The possibility that CXCR4 might similarly promote the retention of HSC in their BM niches remains to be fully tested, but is supported by the observation that the administration to mice of an SDF analogue that downmodulates CXCR4 resulted in a greater than 30-fold increase in the number of circulating Thy-1.1⁻Lin⁻Sca-1⁺c-Kit⁺ cells (50).

In addition to promoting the maintenance of HSC in specific microanatomical sites within BM, CXCR4 might allow efficient homing back to BM by those HSC that are released into the bloodstream. Using a cross-circulation model, we have found that HSC continuously flux between BM and blood under physiological conditions. HSC released from the BM into the circulation recolonize BM in other locations (5). Therefore, the circulating pool of HSC must have a mechanism for the efficient homing to BM. The SDF–CXCR4 interaction appears to play a key role in the homing of transplanted human hematopoietic progenitors to BM of NOD/SCID mice (32), and SDF–CXCR4 promotes integrin-mediated arrest on vascular endothelium of circulating CD34⁺ cells (19). The SDF–CXCR4 interaction may have a similar role in the rehoming to BM of murine HSC released physiologically into the circulation or injected intravenously for transplantation.

Aiuti et al. (16) raised the possibility of a direct role for SDF–CXCR4 in hematopoietic progenitor mobilization. In a study of human BM and MPB CD34⁺ cells, fewer MPB CD34⁺ cells responded to SDF–CXCR4 than CD34⁺ cells isolated from BM, and it was suggested that the reduction in SDF–CXCR4 responsiveness might be part of the mechanism of progenitor mobilization. But only a fraction of CD34⁺ cells are HSC (17, 18). We found that mouse HSC from MPB, or from BM or spleens of C57BL/6–CXCR4–/– mice, were equally responsive to SDF–CXCR4 as HSC from BM of untreated control animals. These data do not support a role for changes in SDF–CXCR4 responsiveness in cytokine-induced HSC mobilization. The disparity between the results of the current study and those of Aiuti et al. (16) might be due to the differences between progenitors and HSC, or it may reflect species- or mobilization protocol–specific effects. In preliminary experiments, the migration of mobilized HSC to the following chemokine panel was also tested: JE, eotaxin, thymus- and activation-regulated chemokine, RANTES, MIP-1β, MIP-3α, MIP-3β, I-309, KC, IL-8, MIG, and SDF–CXCR4. Similar to untreated BM, mobilized BM-SDF migrated only to SDF–CXCR4 and did not respond to the other chemokines or to G-CSF (unpublished data).

In conclusion, we report that HSC migrate to SDF–CXCR4 but not to chemokines signaling through other known chemokine receptors. To our knowledge, this is the first report of a leukocyte subset that responds to a single chemokine, which makes HSC highly specialized in this regard. It remains to be determined whether SDF–CXCR4 interactions play a role in HSC localization within BM, or in the rehoming to BM by HSC that are released physiologically into the circulation. SDF–CXCR4 responsiveness is preserved in HSC isolated from BM, blood, and spleens of C57BL/6–CXCR4–/– mice.

The authors thank Libuse Jerabek for superb laboratory management, Veronica Braunstein for antibody production, Lou Hidalgo and Bert Lavarro (deceased) for animal care, and Jim Campbell for very helpful discussions.

This work was supported by National Institutes of Health grant 5R01 HL-58770 to IL Weissman, and by NIH grants GM37734
and AI47822 to E.C. Butcher. D.E. Wright was supported by National Institute of Allergy and Infectious Diseases Training grant ST32 AI-07290. E.P. Bowman was supported by U.S. Public Health Service grant ST32CA09151 and was a recipient of an Arthritis Foundation Postdoctoral Fellowship. A.J. Wagers was supported by American Cancer Society grant PF-00-017-01-LBC.

Submitted: 18 July 2001
Revised: 12 March 2002
Accepted: 19 March 2002

References

1. Morrison, S.J., N. Uchida, and I.L. Weissman. 1995. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11:35–71.
2. Ley, K., editor. 2001. Physiology of Inflammation. Oxford University Press, New York. 546 pp.
3. Goodman, J.W., and G.S. Hodgson. 1962. Evidence for stem cells in the peripheral blood of mice. Blood. 19:702–714.
4. Fleming, W.H., E.J. Alpern, N. Uchida, J. Ikuta, and I.L. Weissman. 1993. Steel factor influences the distribution and activity of murine hematopoietic stem cells in vivo. Proc. Natl. Acad. Sci. USA. 90:3760–3764.
5. Wright, D.E., A.J. Wagers, A.P. Gulati, F.L. Johnson, and I.L. Weissman. 2001. Physiological migration of hematopoietic stem and progenitor cells. Science. 294:1933–1936.
6. Lagasse, E., H. Connors, M. Al-Dhalimy, M. Reitsma, M. Dolhe, L. Osborne, X. Wang, M. Finegold, I.L. Weissman, and M. Grompe. 2000. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6:1229–1234.
7. Krause, D.S., N.D. Theise, M.I. Collector, O. Henegarui, S. Hwang, R. Gardner, S. Neutzel, and S.J. Shankis. 2001. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 105:369–377.
8. Orlic, D., J. Kajstura, S. Chimenti, I. Jakoniuk, S.M. Anderson, B. Li, J. Pickel, R. McKay, B. Nadal-Ginard, D.M. Bolline, A. Leri, and P. Anversa. 2001. Bone marrow cells regenerate infarcted myocardium. Nature. 410:701–705.
9. Papayannopoulou, T., and B. Nakamoto. 1993. Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin. Proc. Natl. Acad. Sci. USA. 90:9374–9378.
10. Papayannopoulou, T., C. Craddock, B. Nakamoto, G.V. Priestley, and N.S. Wolf. 1995. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc. Natl. Acad. Sci. USA. 92:9647–9651.
11. Laterveer, L., I.J. Lindley, M.S. Hamilton, R. Willelmze, and W.E. Fibbe. 1995. Interleukin–8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myeloid/lymphoid repopulating ability. Blood. 85:2269–2275.
12. Laterveer, L., I.J. Lindley, D.P. Heemskerk, J.A. Camps, E.K. Pauwels, R. Willelmze, and W.E. Fibbe. 1996. Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single intravenous injection of interleukin-8. Blood. 87:781–788.
13. Watanebe, T., Y. Kawano, S. Kanamaru, T. Onishi, S. Kaneko, Y. Wakata, R. Nakagawa, A. Makimoto, Y. Kuroda, Y. Takaue, and J.E. Talmadge. 1999. Endogenous interleukin–8 (IL-8) surge in granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Blood. 93:1157–1163.
14. Fibbe, W.E., J.F. Pruji, G.A. Velders, G. Opdenakker, Y. van Kooyk, C.G. Figdor, and R. Willelmze. 1999. Biology of IL-8-induced stem cell mobilization. Ann. NY Acad. Sci. 872:71–82.
15. Pruji, J.F., Y. van Kooyk, C.G. Figdor, R. Willelmze, and W.E. Fibbe. 1999. Murine hematopoietic progenitor cells with colony-forming or radioprotective capacity lack expression of the beta 2-integrin LFA-1. Blood. 93:107–112.
16. Ilutti, A., I.J. Webb, C. Bleul, T. Springer, and J.C. Gutierrez-Ramos. 1997. The chemokine SDF–1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J. Exp. Med. 185:111–120.
17. Baum, C.M., I.L. Weissman, A.S. Tsukamoto, A.M. Buckle, and B. Peault. 1992. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. USA. 89:2804–2808.
18. Bhutta, M., J.C. Wang, U. Kapp, D. Bonnet, and J.E. Dick. 1997. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl. Acad. Sci. USA. 94:5320–5325.
19. Peled, A., V. Grabovsky, L. Habler, J. Sandbank, F. Arenzana-Seisdedos, I. Petit, H. Ben-Hur, T. Lapidot, and R. Alon. 1999. The chemokine SDF–1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J. Clin. Invest. 104:199–1211.
20. Peled, A., O. Kollet, T. Ponomaryov, I. Petit, S. Franitza, V. Grabovsky, M.M. Slav, A. Nagler, O. Lider, R. Alon, et al. 2000. The chemokine SDF–1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells and induces hematopoietic stem cells to proliferate prior to mobilization of NOD/SCID mice. Blood. 95:3289–3296.
21. Spangrude, G.J., S. Heimfeld, and I.L. Weissman. 1988. Purification and characterization of mouse hematopoietic stem cells. Science. 241:58–62.
22. Morrison, S.J., and I.L. Weissman. 1994. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1661–673.
23. Morrison, S.J., D.E. Wright, and I.L. Weissman. 1997. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc. Natl. Acad. Sci. USA. 94:1908–1913.
24. Bowman, E.P., J.J. Campbell, D. Soler, Z. Dong, N. Manlongat, D. Picarella, R.R. Hardy, and E.C. Butcher. 2000. Developmental switches in chemokine response profiles during B cell differentiation and maturation. J. Exp. Med. 191:1303–1318.
25. Campbell, J.J., S. Qin, K.B. Bacon, C.R. Mackay, and E.C. Butcher. 1996. Biology of chemokine and classical chemoattractant receptors: differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells. J. Cell Biol. 134:255–266.
26. Domen, J., S.H. Cheshier, and I.L. Weissman. 2000. The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of Bcl-2 increases both their number and repopulation potential. J. Exp. Med. 191:253–264.
27. Wright, D.E., S.H. Cheshier, A.J. Wagers, T.D. Randall, J.L. Christensen, and I.L. Weissman. 2001. Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobili-
zation of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle. Blood. 97:2278–2285.
28. Thomas, E.D. 1999. Bone marrow transplantation: a review. Semin. Hematol. 36:95–103.
29. Kim, C.H., and H.E. Broxmeyer. 1999. Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J. Leukoc. Biol. 65:6–15.
30. Nagasawa, T., S. Hirota, K. Tachibana, N. Takakura, S. Nishikawa, Y. Kitamura, N. Yoshida, H. Kikutani, and T. Kishimoto. 1996. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 382:635–638.
31. Zou, Y.R., A.H. Kottmann, M. Kuroda, I. Taniuchi, and T. Nagasawa. 2001. Mice lacking the CCR9 CC-chemokine receptor lose natural NOD/SCID mice on CXCR4. Nature. 413:595–599.
32. Peled, A., I. Petit, O. Kollet, M. Magid, T. Ponomaryov, T. Byk, A. Nagler, H. Ben-Hur, A. Many, L. Shultz, et al. 1999. Dependence of human stem cell engraftment and re-population of NOD/SCID mice on CXCR4. Science. 283:845–848.
33. Forster, R., T. Emrich, E. Kremmer, and M. Lipp. 1994. Expression of the G-protein—coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood. 84:830–840.
34. Bleul, C.C., J.L. Schultze, and T.A. Springer. 1998. Lymphocyte chemotaxis regulated in association with microanatomic localization, differentiation state, and B cell receptor engagement. J. Exp. Med. 187:753–762.
35. Wurbel, M.A., M. Malissen, D. Guy-Grand, E. Meffre, M.C. Nusseizweg, M. Richelme, A. Carrier, and B. Malissen. 2001. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor gammadelta(+) gut intraepithelial lymphocytes. Blood. 98:2626–2632.
36. Butcher, E.C., and L.J. Picker. 1996. Lymphocyte homing and homeostasis. Science. 272:60–66.
37. Zlotnik, A., J. Morales, and J.A. Hedrick. 1999. Recent advances in chemokines and chemokine receptors. Ccit. Rev. Immunol. 19:1–47.
38. Murdoch, C., and A. Finn. 2000. Chemokine receptors and their role in inflammation and infectious diseases. Blood. 95:3032–3043.
39. Foxman, E.F., J.J. Campbell, and E.C. Butcher. 1997. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139:1349–1360.
40. Whitlock, C.A., G.F. Tidmarsh, C. Muller-Sieburg, and L.L. Weissman. 1987. Bone marrow stromal cell lines with lymphopoietic activity express high levels of a pre-B neoplasia-associated molecule. Cell. 48:1009–1022.
41. Williams, D.A., M.F. Rosenblatt, D.R. Beier, and R.D. Cone. 1988. Generation of murine stromal cell lines supporting hematopoietic stem cell proliferation by use of recombinant retrovirus vectors encoding simian virus 40 large T antigen. Mol. Cell. Biol. 8:3864–3871.
42. Rios, M., and D.A. Williams. 1990. Systematic analysis of the ability of stromal cell lines derived from different murine adult tissues to support maintenance of hematopoietic stem cells in vitro. J. Cell. Physiol. 145:434–443.
43. Wineman, J., K. Moore, I. Lemischka, and C. Muller-Sieburg. 1996. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood. 87:4082–4090.
44. Micklem, H.S., C.M. Clarke, E.P. Evans, and C.E. Ford. 1968. Fate of chromosome-marked mouse bone marrow cells transfused into normal syngeneic recipients. Transplantation. 6:299–302.
45. Takada, A., Y. Takada, and J.L. Ambrus. 1971. Proliferation of donor spleen and bone-marrow cells in the spleens and bone marrows of unirradiated and irradiated adult mice. Proc. Soc. Exp. Biol. Med. 136:222–226.
46. Takada, Y., and A. Takada. 1971. Proliferation of donor hematopoietic cells in irradiated and unirradiated host mice. Transplantation. 12:334–338.
47. Brecher, G., J.D. Ansell, H.S. Micklem, J.H. Tjio, and E.P. Cronkite. 1982. Special proliferative sites are not needed for seeding and proliferation of transfused bone marrow cells in normal syngeneic mice. Proc. Natl. Acad. Sci. USA. 79:5085–5087.
48. Saxe, D.F., S.S. Boggs, and D.R. Boggs. 1984. Transplantation of chromosomally marked syngeneic marrow cells into mice not subject to hematopoietic stem cell depletion. Exp. Hematol. 12:277–283.
49. Ma, Q., D. Jones, and T.A. Springer. 1999. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity. 10:463–471.
50. Shen, H., T. Cheng, I. Olzak, E. Garcia-Zepeda, Z. Lu, S. Hermann, R. Fallon, A.D. Luster, and D.T. Scadden. 2001. CXCR4 desensitization is associated with tissue localization of hematopoietic progenitor cells. J. Immunol. 166:5027–5033.