Decision support system for truck scheduling in logistic network through cross-docking strategy

Filscha Nurprihatin¹, Elvina², Glisina Dwinoor Rembulan¹, Kevin Christianto³, Henny Hartono³

¹ Department of Industrial Engineering, Faculty of Technology and Design, Universitas Bunda Mulia, Jakarta, Indonesia
² Department of Informatics Engineering, Faculty of Technology and Design, Universitas Bunda Mulia, Jakarta, Indonesia
³ Department of Information System, Faculty of Technology and Design, Universitas Bunda Mulia, Jakarta, Indonesia
fnurprihatin@bundamulia.ac.id

Abstract. In recent years, companies around the world need to find new ways to reduce costs, increase productivity, improve product quality, and meet various customer demands. Each Distribution Center (DC) or warehouse is specifically designed to minimize costs in the company's supply chain. Cross-docking is a logistics technique that eliminates storing and picking up items at warehouses. Cross-docking has several advantages compared to other product distribution strategies from both an economic and an environmental point of view. Cross-docking decisions are influenced by many factors such as the level of product demand, the cost of stock-outs, and the distance from suppliers to customers. This research builds a Decision Support System (DSS) that can help companies to ensure sustainability in the supply chain. This study assumes the demand is deterministic which is indicated by Economic Order Quantity (EOQ). This system can detect the time and quantity of certain items that experience cross-docks accurately. If the customers' demand cannot be fulfilled by the warehouse, then the goods are categorized as out of stock. By knowing the time and quantity of goods at the time of the cross-dock, the warehouse manager can make operational decisions quickly and accurately related to the resources such as operators and forklifts.

1. Introduction
In recent years, companies around the world need to find new ways to reduce costs, increase productivity, improve product quality, and meet various customer demands [1]. As the number of demand keeps increasing, it is logical that the competition between manufacturers is going to be incisive [2]. In addition to the economic aspects, factors that need to be considered are improving customer service, increasing efficiency, reducing waste, and focusing on customer satisfaction [1,3,4]. Waste can be interpreted as all activities that do not provide value-added activities [5]. Strategies to reduce costs and increase profits can be achieved through efficient supply chain management [6]. Distribution is the mechanism which products and services are transferred from producers to end consumers [7]. A previous study tried to minimize the distribution costs alongside the distance traveled [8]. In more detail, the focus on distribution network design is important in order to optimize product flow in minimizing costs [9]. The distribution center (DC) or warehouse plays the most important role in the distribution stage [10].
Each DC or warehouse is specifically designed to minimize costs in the company's supply chain[11]. There are four main activities in the warehouse, such as receiving, storage, picking, and shipping [3,12]. Storage and order-picking are usually the most costly activities because they are intensive[3]. Therefore, choosing the right warehouse strategy can determine warehouse performance and meet customer needs[12]. Furthermore, scheduling strategies are important because they can increase product flow, reduce unnecessary waiting times, and reduce waiting times for product deliveries to customers[13].

Cross-docking is a logistics technique that eliminates storing and picking activities at warehouses[10,14]. With this technique, products are sent to the warehouse with inbound trucks which are firstly sorted and rearranged based on customer requests, then transferred and loaded to outbound trucks to be sent to customers without being stored in the warehouse[13,15]. In other words, this technique moves products directly from inbound trucks to outbound trucks with little or no storage[9,10]. Sometimes, this technique is used if the goods are in the warehouse for less than one hour, or less than 24 hours[9,10,12,13,16], or less than 36 hours[1], or less than 48 hours[11].

Cross-docking has several advantages compared to other product distribution strategies from both an economic and an environmental point of view[9]. Compared to traditional warehouses, cross-docking systems can reduce product storage and retrieval costs by integrating the flow of trucks in and out[13,16]. Other typical advantages are a decrease in inventory levels, operational costs, and delivery time or an increase in throughput and customer satisfaction[13]. This advantage can benefit companies with little or no warehouse capacity[10].

Cross-docking decisions are influenced by many factors such as the level of product demand, the cost of stock-outs, and the distance from suppliers to customers. A previous study discussed several expectations of customer service that need to be fulfilled [17]. This mode of operation usually consists of the number of discrete items in the inbound and outbound[14]. In more detail, previous studies emphasized the importance of making cross-dock operational decisions and distribution network decisions simultaneously[18].

Another study suggested the development of information and technology in improving the quality of work[19]. A Decision Support System (DSS) can help companies to ensure sustainability in the supply chain[20]. In making decisions, it is also important to observe the condition of the supply chain and the available inventory in the warehouse[6]. The cross-docking terminal must coordinate three decisions that are tightly combined, such as[21]:

- Delivery of goods from suppliers to the cross-dock terminal.
- The process of consolidation on the cross-dock terminal.
- Delivery of spare parts from the cross-dock terminal to one or several destinations.

This research discusses inventory policies by considering cross-docking strategies. This study also addresses the problem of scheduling several inbound and outbound trucks simultaneously. The assumption in this study is that demand is deterministic. The idea of cross-dock aims to avoid the traditional functions of the warehouse such as storage costs and handling costs, as discussed in this study.

2. Literature review

Cross-docking is classified into 3 (three) categories based on the level of decision making, such as[3,20]:

- **Strategic level.** At the strategic level, decisions are made in the scope of long-term planning, such as determining the location, form of facilities, and layout of the cross-docking terminal.
- **Tactical level.** At the tactical level, the discussion focuses on cross-docking networks to distribute products.
- **Operational level** At the operational level, decisions are short-term such as scheduling trucks and other vehicles within a daily or weekly period.
Problems at the tactical and operational levels raise various issues such as determining the collaboration of the number of shipments of goods between suppliers and receivers, and multi-mode transportation planning, and their routes[20]. Another study discussed the feasibility study of the pipeline network[22]. This study discusses the cross-docking problem at the operational level, focusing on the truck schedule.

At a strategic level, previous research discussed the location selection of cross-docking terminals using the Intuitionistic Fuzzy Hierarchical Group Decision-Making (IFHGDM) model[23]. Previous research aims to determine the location of cross-docking terminals from several prospective locations[23]. At the tactical level, previous studies have discussed reverse logistics in an industrial area. A Mixed-Integer Linear Programming (MILP) was developed to optimize the total costs consisting of fixed costs during the construction of cross-docking terminals and transportation costs[15]. At the operational level, the development of simulation models, mathematical models, and DSS had been carried out. Simulation models were used to minimize costs by comparing policies against employees with permanent and non-permanent assignments[11]. Another study proposed measurement tools that can be used in cross-docking terminals by illustrating holistic operations on simulation models[18].

Mathematical models were generally discussed to minimize transportation costs by considering various things. Previous study considered penalty fees[16], transport capacity, and time window[3]. Time window factors and customer satisfaction had also been discussed simultaneously[4].

Previous research discussed the development of mathematical models with diverse objectives. Previous studies discussed the time of delivery to minimize the delivery time considering earliness and tardiness[9,13]. Tardiness issue was successfully tackled using heuristics method in production scheduling[24]. There are also studies that aim to determine the optimal number of kanban or card in Japanese[1], and minimizing the usage of the transportation mode[25]. The transportation mode capacity may be assumed homogeneous[26] or heterogeneous which can affect the lot sizing. This study considers the deterministic lot sizing. Previous research found that the mathematical model is able to solve problems at the operational level by considering Economic Order Quantity (EOQ)[6,14].

Studies that develop DSS had been conducted with different objectives. Previous research tried to maximize the level of goods loading by taking into account the limited supply of rail transportation[27]. Similar research was conducted to establish collaboration between interested parties in making decisions[20].

This study aims to create a DSS in avoiding the traditional functions of the warehouse such as storage costs and handling costs. This study assumes that demand is deterministic in terms of EOQ. In previous studies, independent EOQ lot sizes reached near-optimal solutions[14].

This research can help companies in making decisions from an operational level. This research is also the first step in developing a decision-making model up to the tactical and strategic stages. As an illustration, the company can later manage the conditions of inventory and resources in the warehouse in serving suppliers and consumers.

3. Methodology
The research procedure started with the identification of data requirements and followed by data collection methods and techniques, and data processing. At the problem identification stage, the recent development of a DSS at the warehouse by considering cross-docking is discussed. The scope of this research is warehousing activities involving suppliers and consumers. At the literature study stage, a collection of material, data, and information from related books and scientific articles is carried out while strengthening the understanding of cross-docking theory, the development of previous research, and the development of DSS. At the same time, the demand is assumed to be deterministic based on the EOQ calculation. Next is the identification phase of data requirements, such as the number of demand in a year, the ordering cost, and the handling cost as shown in Figure 1. After the data is collected, DSS is developed under the System Development Life Cycle (SDLC) with the waterfall model. The waterfall model is the oldest and most well-known model in SDL[28]. At the final stage, the waterfall is tested so that it is in accordance with the requirements of the DSS. Next, the analysis and recommendation of resources used in the warehouse are carried out.
This paper used the dummy data as a numerical test. From these data, behavior can be obtained from DSS towards extreme numbers. Although the limited number of players still can deliver values to customer [29], the number of suppliers and customers can vary [1]. The structure of the problem can be one-to-one when there is only one supplier serving one customer, one-to-many with one supplier and several customers, or many-to-many with multiple suppliers and several customers [1].

4. Results and discussion

4.1. Context diagram
Data-flow diagrams (DFD) are usually developed using a tiered method. Starting with the Context Diagram (CD), DFD level 1, DVD, level 2, DVD level 3, and so on in accordance with the complexity of the system to be developed. This study only covers CD and DFD level 1. Figure 2 explains CD or DFD level 0. The warehouse manager will interact with the DSS so that it is able to adjust resource requirements at a certain time.

4.2. Data-flow diagram
Figure 3 shows the level 1 DFD which is used as input for information and knowledge to be followed up by the warehouse manager in his actions. Level 1 DFD describes more specific DSS systems, such as master data manipulation, ordering data manipulation, and cross-docking checks.
4.3. Flowchart
The flowchart for making DSS is shown in Figure 4. The first process starts from manipulating the master data which will produce a database of supplier and consumer identities. Furthermore, users can manipulate ordering data from both the supplier and consumer side. Finally, cross-docking checks are carried out while simultaneously displaying the status of a lack of items.

4.4. Master data

4.4.1. Supplier data. This tab is useful for inserting, editing, and deleting supplier data. On this tab, users will be asked to enter the supplier ID, supplier name, supplier email, and supplier address. The contents of the supplier table are displayed on the right side of the supplier tab.

4.4.2. Customer data. This tab is useful for inserting, editing, and deleting customer data. On this tab, users will be asked to enter their customer ID, customer name, customer email, and customer address. The contents of the consumer table are displayed on the right side of the customer tab.

4.4.3. Item data. This tab is useful for inserting, editing, and deleting data on manufactured goods (items). On this tab, users will be asked to enter item ID, supplier ID, supplier name, item name, item price, item selling price, and storage cost. The contents of the item data table are displayed on the right side of the item tab.
Figure 4. Flowchart

4.5. Item order data

4.5.1. Supplier order. This tab is useful for inserting, editing, and deleting supplier order data. In this tab, the user will be asked to enter the supplier ID (selected via the dropdown list), goods ordered through the supplier (via the dropdown list), the annual demand, order price, lead time, and also the total days in a year (default is 261 days work). The remaining column will automatically display the calculation automatically using equation (1). The supplier order data is displayed on the right of the supplier orders tab.

\[EOQ = Q^* = \left(\frac{2. D . S}{H}\right)^{1/2} \] \hspace{1cm} (1)

where,
- \(Q^* \) = Economic Order Quantity (EOQ)
- \(D \) = Demand within 1 (one) year
- \(S \) = Ordering cost
- \(H \) = Holding cost

4.5.2. Customer Order. This tab is useful for inserting, editing, and deleting customer order data. In this tab, the user will be asked to enter the customer ID (selected via the dropdown list), items ordered by the customer (via the dropdown list), the annual demand, the price of the message, lead time, and also the total days in a year (default is 261 days work). The remaining column will automatically display the calculation automatically using equation (1). The customer order data is displayed on the right side of the customer orders tab.
4.6. Cross-dock data.
In this form, the user needs to press the "check" button so that the application can process all order data entered by the user and generate a "cross-dock checking" report. Column "Day" contains certain customers who will take goods from the warehouse, while the column "customer ID" contains ID from the customer. The column "item ID" contains ID of the item ordered by the customer, and column “cross-dock” contains the number of items that have cross-docked. The column "warehouse" contains the number of items taken from the warehouse, and the "out of stock" column contains the number of items that are less than the number requested by the customer.

4.7. Testing
Table 1 demonstrates the reliability testing of the DSS from the user side. This test discusses the use of each available menu. The testing stage is important to see the response of each menu function that is tailored to the original purpose. All scenarios on each menu match the expected results.

Test Scenario	No	Test Case	Expected Result	Passed
Inserting Supplier Data	TC_001	User open the supplier data form, then input all the data and click save button	The data from user input is saved, and showed in supplier table	Yes
Updating Supplier Data	TC_002	User open the supplier data form, then input all the data and click update button	The specific data on database is updated as user input on supplier data form	Yes
Deleting Supplier Data	TC_003	User open the supplier data form, then select the data that user want to delete. After that, click delete button	The selected data deleted from supplier table	Yes
Inserting Customer Data	TC_004	User open the customer data form, then input all the data and click save button	The data from user input is saved, and showed in customer table	Yes
Updating Customer Data	TC_005	User open the customer data form, then input all the data and click update button	The specific data on database is updated as user input on customer data form	Yes
Deleting Customer Data	TC_006	User open the customer data form, then select the data that user want to delete. After that, click delete button	The selected data deleted from customer table	Yes
Inserting Item Data	TC_007	User open the item data form, then input all the data and click save button	The data from user input is saved, and showed in item table	Yes
Updating Item Data	TC_008	User open the item data form, then input all the data and click update button	The specific data on database is updated as user input on item data form	Yes
Deleting Item Data	TC_009	User open the item data form, then select the data that user want to delete. After that, click delete button	The selected data deleted from item table	Yes
Inserting Supplier Order Data	TC_010	User open the supplier order form, then input all the data and click save button	The data from user input is saved, and showed in supplier order table	Yes
Test Scenario	No	Test Case	Expected Result	Passed
-----------------------	-----	---	---	--------
Updating Supplier	TC_011	User open the supplier order form, then input all the data and click update button	The specific data on database is updated as user input on supplier order form	Yes
Deleting Supplier	TC_012	User open the supplier order form, then select the data that user want to delete. After that, click delete button	The selected data deleted from supplier order table	Yes
Inserting Customer	TC_013	User open the customer order form, then input all the data and click save button	The data from user input is saved, and showed in customer order table	Yes
Updating Customer	TC_014	User open the customer order form, then input all the data and click update button	The specific data on database is updated as user input on supplier order form	Yes
Deleting Customer	TC_015	User open the customer order form, then select the data that user want to delete. After that, click delete button	The selected data deleted from customer order table	Yes
Cross-dock Checking	TC_016	User open the cross-docking panel, click check button	The cross-dock checking data showed on cross-dock table	Yes

Future studies can discuss the layout [11] and warehouse capacity. The objective function can also be a reduction in costs and delivery times simultaneously [1]. The design of cross-docking facilities and truck scheduling is more practical for use in reverse logistics networks [15]. The assumption that there is an uncertainty in the arrival time of the trucks can be discussed [16,23]. The stochastic travel time may be considered as the unique characteristics [30]. This study still uses the deterministic EOQ equation, so that further research can discuss the application of probabilistic EOQ. Demand from retail and consumers is deterministic and shortages of goods are still acceptable under the backorder policy [6]. Since the work environment has a positive and significant effect of improving the work performance [31], hence the future study may lead to the work performance measurement while using the particular DSS.

5. Conclusion

This research can help companies in making decisions from an operational level. This research is also the first step in developing a decision-making model up to the tactical and strategic stages. As an illustration, the company can later manage the conditions of inventory and resources in the warehouse in serving suppliers and consumers.

The generated DSS from this study can accurately detect the time and quantity of certain goods that are cross-docked. If the quantity required by the consumer cannot be met by the warehouse, then the item is categorized as out of stock. By knowing the time and quantity of goods at the cross-dock, warehouse managers can make quick and precise decisions regarding the required resources such as the number of operators and forklifts.

References

[1] Goodarzi A H and Zegordi S H 2018 Vehicle routing problem in a kanban controlled supply chain system considering cross-docking strategy Oper. Res.
[2] Nurprihatin F, Angely M and Tannady H 2019 Total productive maintenance policy to increase effectiveness and maintenance performance using overall equipment effectiveness J. Appl. Res. Ind. Eng. 6 184–99
[3] Shadman A, Bozorgi-amiri A and Rahmani D 2017 A mathematical model for vehicle routing
and scheduling problem with cross-docking by considering risk Int. J. Ind. Eng. Prod. Res. 28
189–99
[4] Baniamerian A, Bashiri M and Zabihi F 2018 Two phase genetic algorithm for vehicle routing and scheduling problem with cross-docking and time windows considering customer satisfaction J. Ind. Eng. Int. 14 15–30
[5] Tannady H, Gunawan E, Nurprihatin F and Wilueng F R 2019 Process improvement to reduce waste in the biggest instant noodle manufacturing company J. Appl. Eng. Sci. 17 203–12
[6] Rafie-Majd Z and Pasandideh S H R 2019 Solving a supply chain problem including VMI and cross-docking approaches, with genetic algorithm J. Adv. Manuf. Syst. 18 311–24
[7] Andry J F, Tannady H and Nurprihatin F 2020 Eliciting requirements of order fulfilment in a company IOP Conference Series: Materials Science and Engineering vol 771 pp 1–6
[8] Nurprihatin F and Lestari A 2020 Waste collection vehicle routing problem model with multiple trips, time windows, split delivery, heterogeneous fleet and intermediate facility Eng. J. 24
[9] Nikolopoulou A I, Repoussis P P, Tarantilis C D and Zachariadis E E 2019 Adaptive memory programming for the many-to-many vehicle routing problem with cross-docking Oper. Res. 19
[10] Seyedi I, Hamedi M and Tavakkoli-Moghaddam R 2019 Truck scheduling in a cross-docking terminal by using novel robust heuristics Int. J. Eng. Trans. B Appl. 32 284–91
[11] Cox D A and Rossetti M D 2017 Simulation modeling of alternative staffing and task prioritization in manual post-distribution cross docking facilities Proceedings of the 2017 Winter Simulation Conference (Las Vegas: IEEE) pp 3447–58
[12] Kłodawski M, Lewczuk K, Jacyna-Golda I and Żak J 2017 Decision making strategies for warehouse operations Arch. Transp. 41 43–53
[13] Assadi M T and Bagheri M 2016 Differential evolution and population-based simulated annealing for truck scheduling problem in multiple door cross docking systems Comput. Ind. Eng. 96 149–61
[14] Kellar G M, Polak G G and Zhang X 2015 Synchronization, cross-docking, and decoupling in supply chain networks Int. J. Prod. Res. 54 2585–99
[15] Kheirkhah A and Rezaei S 2015 Using cross-docking operations in a reverse logistics network design: a new approach Prod. Eng. 10
[16] Molavi D, Shahmardan A and Sajadieh M S 2018 Truck scheduling in a cross docking systems with fixed due dates and shipment sorting Comput. Ind. Eng. 117 29–40
[17] Gunawan F E, Wilueng F R, Rembulan G D and Tannady H 2020 Service quality analysis of smes tempe in province of Jakarta, Indonesia Technol. Reports Kansai Univ. 62 3827–33
[18] Buijs P, Danhof H W and Wortmann J H C 2016 Just-in-time retail distribution: a systems perspective on cross-docking J. Bus. Logist. 37 213–30
[19] Tannady H, Eryiana Y and Nurprihatin F 2019 Effects of work environment and self-efficacy toward motivation of workers in creative sector in Province of Jakarta, Indonesia Qual. Access to Success 20 165–8
[20] Allauoi H, Guo Y and Sarkis J 2019 Decision support for collaboration planning in sustainable J. Clean. Prod. 229 761–74
[21] Boysen N, Ende S, Hoeck M and Kauderer M 2015 Part logistics in the automotive industry: decision problems, literature review and research agenda Eur. J. Oper. Res. 242 107–20
[22] Nurprihatin F, Octa A, Regina T, Wijaya T, Luin J and Tannady H 2019 The extension analysis of natural gas network location-routing design through the feasibility study J. Appl. Res. Ind. Eng. 6 108–24
[23] Mousavi S M and Vahdani B 2016 Cross-docking location selection in distribution systems: a new intuitionistic fuzzy hierarchical decision model Int. J. Comput. Intell. Syst. 9 91–109
[24] Nurprihatin F, Jayadi E L and Tannady H 2020 Comparing heuristic methods’ performance for pure flow shop scheduling under certain and uncertain demand Manag. Prod. Eng. Rev. 11 50–61
[25] Schwerdfeger S, Boysen N and Briskorn D 2018 Just-in-time logistics for far-distant suppliers:
scheduling truck departures from an intermediate cross-docking terminal. *OR Spectr.* 40

[26] Nurprihatin F and Tannady H 2018 An integrated transportation models and savings algorithm to minimize distribution costs. *Proceeding of the 1st Asia Pacific Conference on Research in Industrial and Systems Engineering* (Depok: Department of Industrial Engineering Universitas Indonesia) pp 216–21

[27] Dotoli M, Epicoco N, Falagario M, Seatzu C and Turchiano B 2017 A decision support system for optimizing operations at intermodal railroad terminals. *IEEE Trans. Syst. Man, Cybern. Syst.* 47: 487–501

[28] Siregar E, Rajagukguk J, Sinulingga K. Improvement of Science Process Skills Using Scientific Inquiry Models With Algodoo Media and Quotient Adversity in High School Students. *Journal of Transformative Education and Educational Leadership*. 2020 Jun; 4(1):53-65.

[29] Tannady H, Nurprihatin F and Hartono H 2018 Service quality analysis of two of the largest retail chains with minimart concept in Indonesia. *Bus. Theory Pract.* 19: 177–85

[30] Nurprihatin F, Elnathan R, Rumawan R E and Regina T 2019 A distribution strategy using a two-step optimization to maximize blood services considering stochastic travel times. *IOP Conference Series: Materials Science and Engineering* vol 650 (IOP Publishing Ltd)

[31] Tannady H, Andry J F and Nurprihatin F 2020 Determinants factors toward the performance of the employee in the crude palm oil industry in West Sumatera, Indonesia. *IOP Conference Series: Materials Science and Engineering* pp 1–5

Acknowledgment

This work is supported by the Directorate of Research, Development and Community Service, Universitas Bunda Mulia. The authors also express gratitude to the research team which consists of Industrial Engineering, Informatics Engineering, and Information Systems colleagues for providing opportunities for growth through fresh and useful research activities.