Rezultati pokazuju da nema statistički
snažne razlike u boji centralnog gornjeg sekutića
Među ispitanicima je utvrđeno da nema statistički
snažna razlike u boji centralnog gornjeg sekutića
među polovima, a razlika u svetlini centralnog gornjeg sekutića
je 0.860573. Statistički značajna razlika ukupno je kod
prezentacije boje između ispitanika kao i u svetlini,
crvenozelenom tonu i žutoplavom tonu boje u zavisnosti od
polova ispitanika.

Ključne reči: boja; zab; spektrofotometrija; sekutić; razlike u
polu ispitanika.

Sažetak

Uvod. Boja zuba se primenom L* (svetlina), a* (crvenozeleni
ton boje) i b* (žutoplav boje) koordinata može predstaviti
u trodimenzionalnom sustavu boje. Razlika u boji (ΔE) se
primenom International Commission on Illumination L*a*b*
sistema može izraziti u jedinicama koje su kliničke
značajne. Cilj rada bio je spektrofotometrijska analiza
boje prirodnog centralnog gornjeg sekutića kao i utvrđivanje
razlike u vrednostima L*, a* i b* koordinata u zavisnosti od pola ispitanika. Materijal i metode. U istraživanju
je učestvovalo 80 studenata (40 ispitanika muškog pola
i 40 ispitanika ženskog pola, prosečne starosti 22 godine).
Boja desneg centralnog gornjeg sekutića određiva
モを primenom intraoralnog spektrofotometra kroz
VITAPAN Classical i VITA 3D-master boje. L*, a* i b*
red
烤

material and method. The study included 80 students (40 male
and 40 female, with an average age of 22 years). The color
of the maxillary right central incisor was determined
using an intraoral spectrophotometer and VITAPAN
Classical and VITA 3D-Master color shade
guides. Lightness, red-green tone, and yellow-blue tone values
were recorded for each result. The obtained data were processed
by using χ², Student’s t-test and Mann-Whitney test. Results. Results showed
no statistically significant gender-related difference in color
according to the VITAPAN Classical and VITA 3D-Master color key.
No difference was found in the lightness of the central maxillary
incisor between genders, or in terms of red-green tone (p = 0.860573).
A statistically significant difference was found when observing
the sex-related yellow-blue tone of the color of the central maxillary
incisor. Conclusion. The analysis of colorimetric parameters of
the International Commission on Illumination L*a*b* system provides
useful information about the tooth color in the examined population,
while potentially revealing differences in lightness, red-green tone
and yellow-blue tone between genders.

Key words: Color; Tooth; Spectrophotometry; Incisor; Sex
Characteristics

Introduction

One of the main goals of restorative dentistry is to
achieve optimal morphological, optical and biological
forms of restoration, which includes satisfactory
reproduction of the color/shade of the natural teeth [1].
In restorative dentistry, tooth color is usually deter-
mined visually using a shade guide, which is the most
widely accepted and most commonly used method [2].

For a long time, the VITApan Classical shade
guide was the gold standard in the tooth color
determination. However, it has several disadvantages,
such as insufficient range of available colors, distribution
of color with respect to two parameters
In 1991, Hall emphasized the need to include all three color parameters (lightness, hue and saturation) in the color determination process [4]. His pioneering work on the subject was the basis for the development of the VITA 3D-Master shade guide in 1998. Thus, VITA 3D-Master is the first three-dimensional commercial color determination and reproduction system based on the colorimetric classification principles. In the selection and organization of samples in the shade guide, all three parameters affecting color perception were taken into account, and the color selection procedure was adapted to the visual perception mechanisms [5]. Owing to its design, wider color range and uniform color distribution, VITA 3D-Master is superior to all classic shade guides [2, 6]. However, for those with less clinical experience or insufficient knowledge related to this system based on lightness-saturation-hue concept, it may be difficult to understand and apply it in practice [7]. As individual aptitude and conditions in which color determination is performed affect the reliability and accuracy of the tooth color determination procedure, the visual method is considered highly unreliable [6, 8].

The instrumental tooth color determination method offers the potential for eliminating all the aforementioned shortcomings. Numerous devices for instrumental determination of tooth color are available today, such as three-stimulus colorimeters, spectrophotometers, digital cameras and spectrophotometers [1, 2, 9–11]. Nonetheless, due to their accuracy, simplicity and ease of application, spectrophotometers remain the most popular devices in clinical practice [12]. When using a spectrophotometer, tooth color is determined by measuring the amount and spectral composition of light reflected from the surface of the observed tooth. In the class of clinical spectrophotometers, the VITA Easyshade Compact stands out due to its superior performance, since the device can determine not only the base color of the whole tooth and its thirds, but verify the color of the restoration [11]. As spectrophotometers are designed for application on smooth surfaces, their use in dentistry is hindered by the convex tooth exterior, which complicates the correct placement of the probe tip. In vivo colorimeter measurements of the color of permanent maxillary teeth show that the middle third segment best represents the overall tooth color and hue [13, 14]. Following the measurement, the color from the VITApan Classical shade guide and the VITA 3D-Master shade guide is displayed along with the L*C*b* coordinates in the CIE L*a*b* color space for the measured tooth area [15].

In 1976, the International Commission on Illumination (Commission Internationale de l’Eclairage) (CIE) introduced the CIE L*a*b* system based on opponent process theory of color. In this three-dimensional space, color can be represented by L*, a* and b* coordinates on their respective axes. Coordinate L* (vertical axis) represents the lightness of the color (with L* = 0 denoting pure black and L* = 100 pure white, i.e., a perfect diffuser). On the other hand, coordinate a* represents the chromaticity of the color, i.e., red-green color balance (+a indicates redness and –a greenness), whereas coordinate b* represents the yellow-blue color balance (+b indicates yellowness and –b blueness) [16]. For natural colors, the values of these coordinates are close to 0 and they increase for more intensive (i.e., more chromatic) colors. A clinically significant color difference, Delta-E (∆E) can be expressed in units that are correlated with visual perception using the CIE L*a*b* system [1, 3, 4, 8, 11, 14]. In experimental conditions, the ∆E > 1 is visible to the naked eye, while in clinical conditions, the difference must exceed 3.7 to be noticeable [2, 5]. As far back as 1900, Munsell wrote about the 3D aspect of color, which can be captured via parameters such as hue, chroma (saturation) and value (lightness) [17].

A vast research on the topic of tooth color is focused on the dentition in the upper jaw, especially the frontal region, i.e., central incisors, lateral incisors, and canines due to their visual exposure and extremely high esthetic requirements [18]. In several studies, only the maxillary incisors [4] or canines [16] were considered.

Age and gender are also important factors in tooth color [14], whereby several studies have shown that women have lighter teeth than men [19–21]. On the other hand, tooth form and shape are not affected by gender [22].

There are many available studies where spectrophotometric analysis of color parameters was used based on the CIE L*a*b* system [23, 24]. There is a paucity of studies focusing on student (and generally younger) population examining tooth color parameters, as majority of such investigations were based on samples aged 30 and older. This results in lack of generalization, given that due to various age-related physiological changes and the development of secondary dentin, the tooth color becomes darker as we get older [24, 25].

Therefore, the aim of our study was to determine if there are any gender-related differences in the natural maxillary central incisor color in the student population by conducting spectrophotometric analysis of relevant color parameters using the CIE L*a*b* system.

**Material and Methods**

This prospective study included 80 dental students (40 males and 40 females, aged 20–24 years) attending the Faculty of Medicine of the University of Novi Sad. Students meeting any of the following criteria were...
excluded from the study: tooth discoloration due to smoking or certain medications, presence of direct or indirect restorations of the natural maxillary central incisors, and previous endodontic treatments involving these teeth. The color of maxillary right central incisor was determined using VITA Easyshade Compact intraoral spectrophotometer (VITA Zahnfabrik, Bad Säckingen, Germany). At the start of the study, all participants received a professional dental cleaning. Prior to selecting the color, the spectrophotometer was subjected to manual calibration involving the application of protective foil, followed by choosing the appropriate function from the menu in order to assess the overall tooth color. When performing the measurements, the probe tip was set vertically at an equal distance from the surface of the tooth, no less than 2 mm away from both the incisal and the gingival edge, in the middle segment of the maxillary central incisor, as the most representative of the natural tooth color. Each measurement by VITApan Classical and VITA 3D-Master color provided L*, a* and b* values to be recorded. The obtained results were processed using $\chi^2$, Student's t-test and Mann-Whitney test.

**Results**

According to the values obtained by intraoral spectrophotometer, in the male subsample, the brightness parameter (L*) ranged from 70.2 to 83.7, with an average of 76.67 (Graph 1), while values in the female subjects ranged from 69.0 to 84.8, with an average of 76.81 (Graph 2). The difference between values obtained in male and female subjects was not statistically significant, as shown in Table 1.

In 36 of 40 male participants, the red-green tone (a* coordinate) tended toward the red (negative) part of the scale (ranging from -0.1 to -2.3), while the remaining four participants had positive values (ranging from 0.0 to 0.3), as shown in Graph 1. Similar red-green tone distribution was noted in female students, with negative values in 37 cases (ranging from -0.2 to -2.0), as shown in Graph 2. Once again, the difference between obtained values in males and females was not statistically significant (Table 1).

In the male subsample, the value of the yellow-blue tone (b* coordinate) was strictly positive (8.4 - 21.9), indicating predominance of yellow color tone (Graph 1). Similarly, only positive values were recorded in the female participants, ranging from 7.4 to 20.1 (Graph 2). However, the difference between genders was statistically significant ($p = 0.036402$, Table 1).

Based on the analysis of the information presented in Table 2 and the p-value of 0.0000178, it can be concluded that the tooth color of dental students established using VITAPAN Classical shade guide is not evenly distributed, as D color (p =

---

**Graph 1.** Distribution of colorimetric parameters (L* - lightness, a* - red-green tone, and b* - yellow-blue tone) of maxillary central incisor color values in male participants

**Graph 2.** Distribution of colorimetric parameters (L* - lightness, a* - red-green tone, and b* - yellow-blue tone) of maxillary central incisor color values in female participants

**Table 1.** Analysis of the colorimetric parameters related to the maxillary central incisor (L* - lightness, a* - red-green tone, and b* - yellow-blue tone) with respect to gender

(0.00325) is prevalent in more than 25% of the sample, as shown in Table 2 and Graph 3.

Using the 3D-Master shade guide, lightness group 3 was identified in more than 20% of participants, as shown in Table 2 and Graph 4.

Among the male students, A1 (i.e., 2M1) color had the highest lightness value (83.7) while C3 (i.e., 3.5M) color had the lowest (70.2), as shown in Table 1. As shown in Table 2, among the female students, C2 (i.e., 3M1) and A1 (i.e., 1.5M1) color had the lowest (69.0) and the highest (84.8) lightness value, respectively.

**Discussion**

As part of this investigation, precise tooth color measurements were performed using the VITA Easyshade Compact optoelectronic device, which enables quick and accurate measuring and provides results that are completely independent of the conditions under which color selection is made or the person performing the procedure [5, 9, 26, 27]. The VITA Easyshade Compact device is considered the most reliable in both in vitro and in vivo settings [28] and is thus typically used as a reference for tooth color determination [29]. Available evidence indicates that, in comparison with the visual method, its color correspondence is 93.3%, with an increase in accuracy by 33% [30].

VITA Easyshade Compact is easy to use and it enables visualizing the L* a* b* coordinates for the measured tooth area in the CIE L*a*b* color space, while providing other useful information about the shade, such as the difference between the color of a measured tooth area and approximate VITAPAN Classical A1-D4 shade in the 3D color space [5].

Moreover, as age has been shown to affect the color of natural teeth, to eliminate any age-related variations, the present study focused on individuals aged 20 – 24 years [31]. This is in line with other studies, given that older participants are rarely considered for this type of research [16]. Evidence reported in related literature indicates that teeth become darker with age [32].

In the CIE L* a* b* system, which is recognized as a universal system for color specification, both the light source and the observer are standardized. With this system, each color can be represented as a point in a spherical space and its position is determined by the distance between the point and each of the three (L*, a* and b*) axes. Therefore, knowledge about this system and its usage is recommended [1, 33]. Within the color space diagram, the color range of natural teeth occupies a small segment of a specific shape (akin to a vertically placed banana), located in the upper third of the diagram (representing the yellow-orange part of spectrum), and in the area of moderate saturation (related to lightness). Consequently, the lightest shades (which have lower saturation) are the closest to the vertical axis [34]. Still, it is worth noting that the distribution of natural tooth color in a Sudanese sample formed a parallelogram shape, while in American and German population it showed elongated oval and circular shape, respectively [19].

The average lightness values in our male (76.67) and female (76.81) subsamples are in accordance with the published results (77.1) [16]. However, the analysis of the L* coordinate values (i.e., the lightness of the

![Graph 3. Maxillary central incisor color values in male participants according to the VITAPAN Classical and VITA 3D-Master shade guides](image3.png)

**Graph 3.** Maxillary central incisor color values in male participants according to the VITAPAN Classical and VITA 3D-Master shade guides

![Graph 4. Maxillary central incisor color values in female participants according to the VITAPAN Classical and VITA 3D-Master shade guides](image4.png)

**Graph 4.** Maxillary central incisor color values in female participants according to the VITAPAN Classical and VITA 3D-Master shade guides
maxillary central incisor) revealed no statistically significant difference between genders, opposite to the observations of other authors that women tend to have brighter teeth [19, 31]. In addition, in some studies, colorimetric measurements have shown that, even though maxillary teeth are more yellow compared to mandibular teeth, maxillary incisors are lighter than mandibular incisors [16]. The mean red-green tone value in our male and female subsample was -0.9 and -1.1075, respectively. For most participants, irrespective of gender, this parameter had a negative value and no statistically significant gender-related differences were found. As the literature search failed to reveal any studies in which analysis of the red-green or blue-yellow parameter was conducted, no comparison with the available data is possible. Yellow-blue tone was strictly positive and peaked at 15.365 and 13.8325 in males and females, respectively. Overall, the maxillary central incisors of female students exhibited less visible yellow tone.

The results yielded by this study have shown that, regardless of gender, the predominant tooth color corresponded to D2 in the VITAPAN Classical shade guide (i.e., 3M1 in the VITA 3D-Master shade guide). In the current study sample, colors from groups A and B according to the VITAPAN Classical shade guide were less represented in regard to those in the color groups C and D. In particular, using the intraoral spectrophotometer in accordance with the VITAPAN Classical shade guide, A3 and B1 colors were not detected in the male subsample and A2 was absent in the female group. In a study of tooth color in the Sudanese population aged 15 – 72, the most common color was A3, followed by A1. In the same study, 3M1 color according to the 3D-Master shade guide was determined in just over 5% of participants, while 1M2 was found in more than 30% of the sample [19]. In our study, the dominant color according to the 3D-Master shade guide was 3M1, which is in line with the results reported by Gómez-Polo, who analyzed tooth color in the Spanish population [35]. Thus, it can be presumed that tooth color is likely dependent on the ethnicity of the population being examined.

**Conclusion**

In restorative dentistry, in order to accurately determine the tooth color and reliably interpret the results of analysis, it is essential to master the basic principles of color science. In particular, the colorimetric parameters of the International Commission on Illumination L*a*b* system provide ample information about the tooth color in the examined population, while potentially revealing any differences in lightness, red-green tone and yellow-blue tone between genders.

Owing to the limitations of the present study, no statistically significant differences in the maxillary central incisor lightness and red-green color tone were noted between genders. However, yellow color tone was more prominent among male students. Within the VITAPAN Classical and 3D-Master shade guide, D2 and 3M1 color, respectively, was most prevalent in the studied sample. Moreover, A1 from the VITA-PAN Classical shade guide has the highest and C1 the lowest lightness values irrespective of gender.

**References**

1. Bayindir F, Kuo S, Johnston W, WEE AG. Coverage error of three conceptually different shade guide systems to vital unrestored dentition. J Prosthodont. 2007;98(3):175-85.
2. Rutkūnas V, Dirse J, Bilius V. Accuracy of an intraoral digital scanner in tooth color determination. J Prosthodont. 2020;123(3):322-9.
3. Paravina RD. Performance assessment of dental shade guides. J Dent. 2009;37 Suppl 1:e15-20.
4. Hall NR. Tooth colour selection: the application of colour science to dental colour matching. Aust Prosthodont J. 1991;5:41-6.
5. Brandt J, Nelson S, Lauer HC, von Huhn U, Brandt S. In vivo study for tooth colour determination-visual versus digital. Clin Oral Investig. 2017;21(9):2863-71.
6. Yuan JC, Brewer JD, Monaco EA Jr, Davis EL. Defining a natural tooth color space based on 3-dimensional shade system. J Prosthodont. 2007;98(2):110-9.
7. Gomez-Polo C, Montero J, Gomez-Polo M, de Parga JA, Celemin-Vinuela A. Natural tooth color estimation based on age and gender. J Prosthodont. 2017;26(2):107-14.
8. Hadad HJ, Jakstat HA, Arnetzl G, Borbely J, Vichi A, Dumfahrt H, et al. Does gender and experience influence shade matching quality? J Dent. 2009;37 Suppl 1:e40-4.
9. Bum Kim J, Paravina R. Color of primary teeth. Acta Stomatologica Naissi. 2006;22(53):61-8.
10. Ishikawa-Nagai S, Yoshida A, Sakai M, Kristiansen J, Da Silva JD. Clinical evaluation of perceptibility of color differences between natural teeth and all-ceramic crowns. J Dent. 2009;37 Suppl 1:e57-63.
11. Da Silva JD, Park SE, Weber HP, Ishikawa-Nagai S. Clinical performance of a newly developed spectrophotometric system on tooth color reproduction. J Prosthodont. 2008;99(5):361-8.
12. Chen H, Huang J, Dong X, Qian J, He J, Qu X, et al. A systematic review of visual and instrumental measurements for tooth shade matching. Quintessence Int. 2012;43(8):649-59.
13. Geary JL, Kinirons MJ. Colour perception of laboratory – fired samples of body-coloured ceramic. J Dent. 1999;27(2):145-8.
14. Gozalo-Diaz D, Johnston WM, WEE AG. Estimating the color of maxillary central incisors based on age and gender. J Prosthodont. 2008;100(2):93-8.
15. Paravina RD. New shade guide for tooth whitening monitoring: visual assessment. J Prosthodont. 2008;99(3):178-84.
16. Eiffler C, Cevirgen E, Helling S, Zornek J, Pritsch M, Hassel AJ. Differences in lightness, chroma, and hue in the anterior teeth of quinquagenarians and septuagenarians. Clin Oral Investig. 2010;14(5):587-91.
17. Ostervemb N, Jorgensen JN, Horsted-Bindslev P. Shade guide optimization - a novel shade arrangement principle for both ceramic and composite shade guides when identifying composite test objects. J Esthet Restor Dent. 2011;23(1):22-32.
18. Goodkind RJ, Schwabacher WB. Use of fiber-optic colorimeter for in vivo color measurement of 2380 anterior teeth. J Prosthodont. 1987;58(5):535-42.
19. Elamin HO, Abubakr NH, Ibrahim YE. Identifying the tooth shade in group of patients using Vita Easyshade. Eur J Dent. 2015;9(2):213-7.
20. Demirel MG, Tunçdemir MT. Influence of age, gender, and educational background on tooth color. Niger J Clin Pract. 2019; 22(2):162-6.
21. Kim HK. A study on the color distribution of natural teeth by age and gender in the Korean population with intraoral spectrophotometer. J Esthet Restor Dent. 2018;30(5):408-14.
22. Mahn E, Walls S, Jorquera G, Valdes AM, Val A, Sampao CS. Prevalence of tooth forms and their gender correlation. J Esthet Restor Dent. 2018;30(1):45-50.
23. Karaman T, Altintas E, Eser B, Yildirim TT, Ozekin F, Bozoglan A. Spectrophotometric evaluation of anterior maxillary tooth color distribution according to age and gender. J Prosthodont. 2019;28(1):96-102.
24. Alrifai M, Alharby H, Zubrzycka-Wrobel J, Chalas R. A comparison of anterior teeth color among Polish, Saudi and Taiwanese students of dentistry. Polish Journal of Public Health. 2016;126(3):134-7.
25. Savas S, Kavrik F, Yasa B, Kucukyilmaz E. Spectrophotometric color analysis of maxillary permanent central incisors in a pediatric population: a preliminary study. Int J Paediatr Dent. 2017;27(5):420-7.
26. Kim-Pusateri S, Brewer JD, Davis EL, Wee AG. Reliability and accuracy of four dental shade matching. J Prosthodont. 2009;101(3):193-9.
27. Kim-Pusateri S, Brewer JD, Dunford RG, Wee AG. In vitro model to evaluate reliability and accuracy of a dental shade-matching instrument. J Prosthodont. 2007;98(5):353-8.

Rad je primljen 28. X 2020.
Recenziran 5. XI 2020.
Prihvaćen za štampu 1. XII 2020.

BIBLID.0025-8105:(2020):LXXIII:9-10:309-314.