The modifier subunit of drosophila glutamate-cysteine ligase regulates catalytic activity by covalent and noncovalent interactions and influences glutathione Homeostasis in vivo

How to cite:

Fraser, Jennifer A.; Kansagra, Pushpa; Kotecki, Claire; Saunders, Robert D.C. and McLellan, Lesley I. (2003). The modifier subunit of drosophila glutamate-cysteine ligase regulates catalytic activity by covalent and noncovalent interactions and influences glutathione Homeostasis in vivo. Journal of Biological Chemistry, 278(47) pp. 46369–46377.

For guidance on citations see FAQs.

© [not recorded]

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1074/jbc.M308035200
http://www.jbc.org/cgi/reprint/278/47/46369

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Glutamate-cysteine ligase (GCL) has a key influence on glutathione homeostasis. It has been proposed that mammalian GCL is regulated by the redox environment, and we show here that cysteine residues in the Drosophila melanogaster GCL modifier subunit (DmGCLM) can form covalent interactions with the catalytic subunit (DmGCLC) and modify its activity. Candidate components of intersubunit disulfides (Cys213, Cys214, and Cys867) were identified using matrix-assisted laser desorption ionization time-of-flight spectroscopy of iodoacetamide-modified DmGCLC as well as examination of evolution in the conservation of cysteines. Mutation of the 3 cysteine residues allowed DmGCLC to associate with DmGCLC, but inhibited the formation of intersubunit disulfides. This caused a 2-fold reduction in the catalytic efficiency of Drosophila GCL, although activity remained significantly higher than the catalytic subunit alone. The cysteine mutant was also more sensitive to inhibition by glutathione than the unmodified holoenzyme. Notably, human GCLM could substitute for DmGCLM in modification of DmGCLC activity. The role of DmGCLM in vivo was examined by analysis of a Drosophila mutant (l(3)L0580) containing a P-element insertion in Gclm. We found that the P-element is not responsible for the lethal phenotype and separated the recessive lethal mutation from the P-element by recombination. This yielded two fully viable and fertile recombinants bearing the P-element insertion, which Western and Northern blotting indicated is a severely hypomorphic allele of Gclm. Glutathione levels were 2-fold lower in the Gclm⁻ mutants than in control strains, demonstrating the importance of DmGCLM in the regulation of glutathione homeostasis in vivo.

The intracellular redox environment is of critical importance in cell physiology. It has a major influence on signaling pathways and cell fate in response to stress (1). Glutathione is one of the key influences on the redox state of the cell; and accordingly, intracellular glutathione levels are subject to multilateral regulatory mechanisms (2, 3).

A major player in the regulation of glutathione homeostasis is glutamate-cysteine ligase (GCL),¹ which catalyzes the first and rate-limiting step in de novo synthesis of glutathione from precursor amino acids (4). GCL is located in the cytoplasm, and its activity appears to be regulated at several levels by the antioxidant status of the cell. In addition to being subject to transcriptional activation by pro-oxidants (5–7), evidence suggests that the catalytic activity is subject to redox regulation by the reversible formation of disulfide bridges between its two subunits (8, 9). Furthermore, GCL is subject to feedback inhibition by glutathione at concentrations that are physiologically relevant (10). The complex regulation of GCL activity highlights its pivotal role in controlling cellular glutathione synthesis.

GCL is a heterodimer composed of a catalytic subunit (GCLC) and a modifier subunit (GCLM). The presence of GCLM modulates the catalytic properties of GCLC by lowering its sensitivity to inhibition by glutathione and by increasing its affinity for glutamate (8, 9). The sensitivity of GCLC to inhibition by glutathione is such that it has been proposed that GCLC would function poorly in vivo without the presence of GCLM. The pioneering biochemical studies of Meister and coworkers (9) in the 1990s provided evidence to suggest that GCLM could further enhance the function of GCLC by the formation of intersubunit disulfide bonds. This proposition was based on the observations that treatment of the GCL holoenzyme with dithiothreitol (DTT) lowered its affinity for glutamate and increased its sensitivity to inhibition by the glutathione analog ophthalmic acid. The effects of DTT were dependent on the presence of GCLM. The results prompted the hypothesis that intracellular GCL activity could be increased under conditions that deplete glutathione, where the oxidizing environment within the cell would promote disulfide bond formation within GCL.

More recently, the role of intermolecular disulfide linkages in modifying GCL activity was investigated by mutagenesis of cysteine residues in the catalytic subunit (11). 8 of the 14 cysteine residues in human GCLC were singly altered to glycine, and the effects on activity and ability to form disulfide linkages were examined. One of the 8 cysteines (Cys⁸⁵⁵) was shown to be involved in influencing the ability of GCLM to increase the activity of GCLC. The mutant holoenzyme was, however, still able to form a 114-kDa complex when analyzed by SDS-PAGE under non-reducing conditions. This suggests

* This work was supported by Grants 94/G15091 and 108/G15090 from the Biotechnology and Biological Sciences Research Council. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

¶ To whom correspondence should be addressed. Tel.: 44-1382-660111; Fax: 44-1382-669993; E-mail: lesley.mcellan@cancer.org.uk.

¹ The abbreviations used are: GCL, glutamate-cysteine ligase; GCLC, glutamate-cysteine ligase catalytic subunit; GCLM, glutamate-cysteine ligase modifier subunit; Dm, Drosophila melanogaster; Hs, Homo sapiens; DTT, dithiothreitol; MALDI-TOF, matrix-assisted laser desorption ionization time-of-flight.
that coherent variations could still occur between the mutated catalytic subunit and GCLM, indicating that Cys153 may not be the only cysteine involved in GCLC association with GCLM. It is possible that more than one disulfide linkage may form between the subunits.

We reasoned that the most straightforward method of investigating the importance of intermolecular disulfide linkages in GCL catalysis would be to target the cysteine residues in the modifier subunit; GCLM has fewer cysteines, and interpreting the importance of intermolecular disulfide linkages in GCLM. It is possible that more than one disulfide linkage may alter the cysteine residues within DmGCLM and was carried out using Site-directed mutagenesis was used to mine the disulfide status of specific cysteines in either DmGCLC or DmGCLM is unknown. In this study, we have investigated the importance of intermolecular disulfide linkages in DmGCL activity and show that the ability to form disulfide bonds impinges on both activity and sensitivity to feedback inhibition by glutathione. We also show that Drosophila Gclm mutants, although viable, have approximately half the levels of glutathione compared with the control strains, demonstrating the importance of DmGCLM in glutathione homeostasis in vivo.

EXPERIMENTAL PROCEDURES

Construction of pET20b-DmGCLM—To make recombinant DmGCLM with a histidine tag at the C-terminus, the open reading frame of the Gclc gene was excised from pETDmGCLC (13) and subcloned into the NdeI and XhoI sites of pET20b (Novagen), generating pET20b-DmGCLM. A 254-bp fragment from the 3'-end of the open reading frame was amplified from pDMG84.3.3 (14) by PCR using upstream (5'-GGGAAATTCCGCACCAGCTAACTGACACG-3') and downstream (5'-CCGCTCGAGTTTCTCCTGAGCCACC-3') oligonucleotides designed to insert an EcoRI site into the 5'-end and an XhoI site into the 3'-end of the fragment and to remove the terminal stop codon. The 254-bp cDNA fragment was subcloned into the EcoRI and XhoI sites of pBluescript SK+ and sequenced. The construct DmGCLM was subcloned into the pET-21a plasmid and transformed into BL21 (DE3) E. coli, producing 1 mg/l of recombinant DmGCLM containing a C-terminal histidine tag and GCLM polypeptides (each tagged with histidine at the N-terminus) and purifying the protein complexes by gel filtration chromatography under the conditions described previously (13).

TABLE I

Mutant	Oligonucleotide sequencea	Cysteine location
DmGCLM-A	5'-CAACCTGTCTACGTCTGCGGTCGCGCCAC-3'	Cys113
DmGCLM-B	5'-CAACCTGTCTACGTCTGCGGTCGCGCCAC-3'	Cys114
DmGCLM-C	5'-GCGAGGATGGTCCACCG-3'	Cys115
DmGCLM-D	5'-GCGAGGATGGTCCACCG-3'	Cys116
DmGCLM-E	5'-CCAAACGCCCTCTTCTGAGGATCC-3'	Cys117

a The mutated nucleotides are in lowercase letters.
Stock Center. Recombinant progeny bearing the L0580 P-element insertion (marked with \(w^+ \)) and either \(e^+ \) or \(ro^1 \) were selected and tested for recessive lethality. Approximately 50% of the recombinants of each class were homozygous viable. We did not map the location of the lethal mutation. Viable stocks bearing the L0580 P-element and marked with either \(e^+ \) or \(ro^1 \) were established. We have named the L0580 P-element insertion \(\text{Gclm}_{\text{L0580}} \) to indicate its identity as a mutant allele of \(\text{Gclm} \).

Revertants were obtained from the \(e^+ \) \(\text{Gclm}_{\text{L0580}} \) stock by crossing to a \(\text{P-element} \)-bearing P-element. We confirmed the loss of the element by \(\text{PCR} \). No apparent aberrations were seen. The level of DmGCLM in the revertant stock was estimated by Western blotting.

Multiple Sequence Alignment—Multiple sequence alignments were performed using the Genetics Computer Group Pileup software.

RESULTS

Mutation of All 5 Cysteines within DmGCLM Inhibits Interaction with DmGCLC—DmGCLM contains 5 cysteine residues at positions 199, 213, 214, 224, and 268, which were named E, A, B, C, and D, respectively (Table II). To investigate the role of intersubunit disulfide linkages in the regulation of DmGCL activity, we performed site-directed mutagenesis on the modifier subunit to generate a polypeptide that entirely lacks cysteine (DmGCLM-FM). Purified recombinant DmGCLM-FM appeared as a single polypeptide with an apparent molecular mass of \(\sim 35 \text{kDa} \) when analyzed by SDS-PAGE (Fig. 1). Its mobility is slower than that of wild-type DmGCLM (Fig. 1), which has an apparent molecular mass of \(31 \text{kDa} \) (13). The reason for the difference in electrophoretic mobility is unknown, but it suggests that DmGCLM-FM may have a less compact structure than the wild-type protein. The secondary structures of the polypeptides were examined by CD spectroscopy over the absorbance range 260 to 320 nm. The CD analyses did not, however, reveal any significant differences between DmGCLM-FM and the unmodified DmGCLM polypeptide (data not shown). The predicted composition of \(\alpha \)-helices and \(\beta \)-sheets in DmGCLM is \(6 \pm 1.3 \) and \(61 \pm 1.45\% \), respectively, similar to that of DmGCLM-FM (7 \pm 1.5 and 62 \pm 1.6\%, respectively).

Redox Status of Cysteine Residues in DmGCLM—The disulfide status of cysteine residues in DmGCLM was analyzed by peptide mass fingerprinting. Recombinant DmGCLM was treated with iodoacetamide under native, reducing, or reducing and denaturing conditions. Tryptic digests of iodoacetamide-treated DmGCLM were analyzed by MALDI-TOF mass spectrometry. The iodoacetamide-modified cysteine-containing polypeptide fragments are shown in Table II. In native DmGCLM, the fragment containing Cys\(^{138} \) (residues 137–147) and the fragment containing Cys\(^{213} \) (Cys\(^{214} \) and Cys\(^{224} \) (residues 177–260) were both singly modified by iodoacetamide (data not shown).

![Fig. 1. SDS-PAGE analysis of DmGCLM-FM.](image)

Peptide mass fingerprinting of recombinant DmGCLM was performed using the Genetics Computer Group Pileup software.

![Fig. 2.](image)

Peptide mass fingerprinting of recombinant DmGCLM was performed using the Genetics Computer Group Pileup software.
conditions, all 3 cysteine residues within this fragment were modified. We were unable to identify the fragment containing Cys267 (residues 267–268) due to its being small and poorly retained on the high pressure liquid chromatography column. Nevertheless, MALDI-TOF analysis implicated Cys267 as being involved in disulfide formation, as peaks corresponding to mixed disulfides between Cys267 and Cys139 and between Cys267 and Cys213, Cys214, or Cys224 were identified when the non-reduced iodoacetamide-treated samples were analyzed. These peaks were absent in samples treated with DTT.

It is important to note that, in the absence of DmGCLC and glutathione or DTT, purified recombinant DmGCLM was predominantly multimeric (data not shown). This suggests that some of the disulfide bonds that become reduced upon DTT treatment and subsequently modified by iodoacetamide are likely to be intermolecular disulfides rather than intramolecular disulfides. It is unclear whether this has biological significance, but it is possible that multimerization may occur as a result of the artificial environment of the E. coli expression system, in which reactive cysteines could readily form intermolecular disulfide bonds giving rise to homodimers or trimers. We reasoned that cysteine residues involved in forming inter-
molecular disulfide bonds in the absence of DmGCLC are potential candidates for forming disulfide bridges with DmGCLC in the holoenzyme.

Our findings from the proteomic analyses indicate that two cysteines on the surface of DmGCLM are predominantly in a reduced state and can be modified by iodoacetamide, two surface cysteines are involved in formation of disulfide bonds, and one cysteine is inaccessible to iodoacetamide without denaturation of the protein. The MALDI-TOF analyses suggest that Cys213 is principally (but not entirely) present as a free thiol on the surface of DmGCLM and that Cys267 can participate in disulfide bridge formation with other cysteines. Tryptic fragment 177–260 appears to contain one free thiol, one cysteine as part of a disulfide, and one cysteine that is buried within the native protein. A caveat to our interpretation is that the vicinal cysteines may not be amenable to simultaneous modification by iodoacetamide in the non-denatured protein. Disulfide shuffling may also occur. Due to the positions of the tryptic cleavage sites, we were unable to dissect this further, and we used a bioinformatics approach to gain additional insight into which of the cysteine residues in tryptic fragment 177–260 could be involved in disulfide formation with DmGCLC.

Comparison of the amino acid sequences of DmGCLM, Hs-GCLM, and hypothetical GCLM polypeptides from Caenorhabditis elegans (GenBankTM/EBI accession number NP_491305), Xenopus laevis (accession number AHA44107), and Danio rerio (accession number AAH44532) showed that both Cys213 and Cys214 are conserved in representatives from mammals, amphibians, fish, arthropods, and nematodes (Fig. 3). A partial sequence of an expressed sequence tag encoding a hypothetical GCLM cDNA from Gallus gallus (accession number AJ447023) also contained the conserved Cys213 and Cys214 residues (data not shown). The only putative GCLM sequence that we found that does not contain both of the conserved cysteines was from Schizosaccharomyces pombe (accession number NP_588368), in which only Cys214 is conserved (Fig. 3). Assuming that the sole function of GCLM is to regulate GCLC activity and that intermolecular disulfide bridges are involved in the regulation of activity in vivo, the evolutionary conservation of cysteine residues infers a possible role for Cys213 and/or Cys214 (rather than Cys224) in the regulation of DmGCLC activity.

We went on to generate a mutant form of DmGCLM lacking Cys213, Cys214, and Cys267 (named DmGCLM-ABD). We also generated the reverse mutant lacking Cys139 and Cys224 (named DmGCLM-CE) and investigated the ability of both mutants to form the 140-kDa holoenzyme complex.

Mutation of Cys213, Cys214, and Cys267 Impairs Intermolecular Disulfide Bridge Formation within DmGCLM—Purified recombinant DmGCLM-ABD appeared as single polypeptide with an approximate molecular mass of 31 kDa when analyzed by SDS-PAGE (Fig. 4). This is in agreement with the molecular mass obtained for wild-type DmGCLM. Purified recombinant DmGCLM-CE also appeared as a single polypeptide, although the estimated molecular mass of ~34 kDa (Fig. 4) is similar to that found for DmGCLM-FM. Interestingly, DmGCLM containing a single mutation at Cys224 also exhibited retarded motility (data not shown). This was not observed in DmGCLM with a single mutation at Cys139, implicating Cys224 in this effect.

FIG. 4. SDS-PAGE analysis of DmGCLM-ABD and DmGCLM-CE mutants. Recombinant DmGCLM polypeptides were purified from E. coli by nickel-agarose chromatography and analyzed by SDS-PAGE. Protein (0.75 μg) was loaded as follows: lane 1, DmGCLM; lane 2, DmGCLM-ABD; lane 3, DmGCLM-CE.

FIG. 5. Analysis of intermolecular disulfide bridge formation in the mutant DmGCL holoenzymes. After dialysis to remove DTT, protein (200 μg) from the ~140-kDa peak fractions obtained after gel filtration chromatography of DmGCLC/DmGCLM (lane 1), DmGCLC/DmGCLM-ABD (lane 2), or DmGCLC/DmGCLM-CE (lane 3) was resolved by SDS-PAGE in the absence of 2-mercaptoethanol and analyzed by Western blotting using antiserum raised against recombinant DmGCLC.

TABLE III

Enzyme	K\textsubscript{m} (mM)	V\textsubscript{max} (μmol/min/mg)	k\textsubscript{cat}/K\textsubscript{m} (min-1 μmol-1)
DmGCLC	0.91 ± 0.06	12.1 ± 0.41	1096.1 ± 85
DmGCLC/DmGCLM-ABD	0.97 ± 0.02	5.85 ± 0.40	490.46 ± 33
DmGCLC	0.92 ± 0.08	1.51 ± 0.28	134.44 ± 11

Assays were performed in triplicate from one preparation each of DmGCLC, DmGCLM, and DmGCLM-ABD. The catalytic subunit in each preparation is from the same source, and all proteins were purified on the same day under the same conditions. DmGCLC with a hexahistidine tag at the C terminus was used rather than the N-terminal tag employed previously (13).
Inhibition of recombinant DmGCLC/DmGCLM-ABD activity by glutathione. The specific activities of the wild-type (WT) DmGCL holoenzyme (■), the DmGCLC/DmGCLM-ABD holoenzyme (DmGCL ABD; ○), and DmGCLC (▲) were measured under standard assay conditions in the presence of increasing concentrations of glutathione. Activity is expressed as a percentage of the control activity in the absence of glutathione (mean ± S.E.).

Wild-type DmGCL activity was lowered in the presence of glutathione by a maximum of ~40% (Fig. 6). By contrast, DmGCLC/DmGCLM-ABD activity was more susceptible to inhibition by glutathione; activity was decreased by ~60% at the highest concentration of GSH (16 mM). The difference in the extent of inhibition between DmGCL and DmGCLC/DmGCLM-ABD was particularly evident at lower concentrations of glutathione. These findings highlight the potential importance of intermolecular disulfide bridges within DmGCL in regulating the mechanism of feedback inhibition by glutathione in the holoenzyme. The susceptibility of DmGCLC/DmGCLM-ABD to inhibition by glutathione was not, however, as marked as that of DmGCL, where activity was almost completely abolished at higher concentrations of GSH (Fig. 6). Inhibition of the catalytic subunit by glutathione is competitive (13), and the difference in the extent of inhibition between DmGCLC and DmGCLC/DmGCLM-ABD underscores the impact that non-covalent intersubunit interactions have upon the susceptibility of DmGCLC to glutathione inhibition.

![Fig. 7. Analysis of the subunit composition of the hybrid Drosophila/human GCL holoenzyme. Protein (2 μg) from the peak fractions obtained after gel filtration of DmGCLC (lane 1), DmGCLC/DmGCLM (lane 2), or DmGCLC/HsGCLM (lane 3) was resolved by SDS-PAGE in the presence of 2-mercaptoethanol.](image)

We hypothesized that a DmGCL mutant unable to form disulfide linkages would be more susceptible to inhibition by glutathione.

Absence of Intermolecular Disulfide Linkages between DmGCL and DmGCLC Enhances Sensitivity to Feedback Inhibition by Glutathione—The DmGCL holoenzyme is subject to feedback inhibition by glutathione (13). Inhibition is mixed, and reduction of intermolecular disulfide linkages by glutathione may facilitate its access to the active site to inhibit activity.

formation within DmGCL. Conversely, the 140-kDa band was not detectable in the lane containing DmGCLC/DmGCLM-ABD, suggesting that mutation of these residues inhibits disulfide bond formation between the DmGCL subunits under non-reducing conditions. Taken together with the results from the peptide fingerprinting experiments, these findings implicate Cys202 and either Cys213 or Cys214 (or both) as the cysteine residues within DmGCLM responsible for intermolecular disulfide linkages.

Cysteine Residues in DmGCLM Impact on GCL Activity—To determine whether inhibition of intermolecular disulfide bond formation affects the catalytic characteristics of DmGCL, we compared the catalytic activities of the dialyzed DmGCL and DmGCLC/DmGCLM-ABD samples. Kinetic analyses of DmGCL activity were carried out on at least four separate occasions on different preparations of DmGCL. We found that, unlike the K_m values, which were fairly consistent between experiments, the specific activity and maximal velocity of DmGCLC varied between preparations by as much as 2-fold. Despite this interbatch variation, the magnitude of changes in V_{max} and K_{cat}/K_m between the unmodified and mutant DmGCL polypeptides and the catalytic subunit alone was consistent between preparations.

The K_m of DmGCL for L-glutamate is 0.91 mM, whereas the K_m of DmGCLC/DmGCLM-ABD is 0.97 mM (Table III). This observation implies that loss of disulfide bond formation has little impact on the affinity of DmGCL for L-glutamate. In contrast, the V_{max} of DmGCL was found to be 12.1 μmol/min/mg, approximately twice that of DmGCLC/DmGCLM-ABD. This suggests that intermolecular disulfide bridge formation has a significant impact on the catalytic efficiency of the DmGCL holoenzyme. The V_{max} of DmGCLC is substantially lower than that of either DmGCLC/DmGCLM-ABD (–4-fold) or unmodified DmGCL (–8-fold) (Table III), emphasizing the importance of non-covalent subunit interactions in regulating DmGCL activity. In contrast, the K_m obtained for DmGCLC is not significantly different from that of DmGCL or DmGCLC/DmGCLM-ABD.

Absence of Intermolecular Disulfide Linkages between DmGCL and DmGCLC Enhances Sensitivity to Feedback Inhibition by Glutathione—The DmGCL holoenzyme is subject to feedback inhibition by glutathione (13). Inhibition is mixed, and reduction of intermolecular disulfide linkages by glutathione may facilitate its access to the active site to inhibit activity.
combinant HsGCLM was mixed with purified DmGCLC and resolved by gel filtration chromatography. A major peak with an estimated molecular mass of ~140 kDa and a minor peak with an estimated molecular mass of ~28 kDa, corresponding to uncomplexed HsGCLM, were identified when the DmGCLC/HsGCLM hybrid mixture was separated by gel filtration (data not shown). This was identical to the profile obtained following resolution of the DmGCLC/DmGCLM mixture. Fig. 7 shows that polypeptides corresponding to DmGCLC (28 kDa) and HsGCLM (~80 kDa) are present in the 140-kDa peak. This indicates that, despite having only 27% sequence identity to DmGCLC, HsGCLM is able to interact with DmGCLC to generate a new higher molecular mass protein complex when they are mixed together in vitro.

To determine whether HsGCLM can form covalent interactions with DmGCLC, the ~140-kDa sample was subjected to SDS-PAGE under non-reducing conditions. Western blot analyses using antiserum raised against DmGCLC showed the presence of an ~140-kDa band in the DmGCLC/HsGCLM sample (Fig. 8A), similar to the ~140-kDa band observed when the normal DmGCLC holoenzyme was analyzed under the same conditions. This band was absent in the sample containing DmGCLC alone (Fig. 8A). The 140-kDa band was also detected when the DmGCLC/HsGCLM sample was probed with antiserum raised against HsGCLM (Fig. 8C). These results indicate that HsGCLM is capable of forming disulfide linkages with DmGCLC. As only 2 cysteine residues (Cys213 and Cys214) are present in the 140-kDa band of HsGCLM, we hypothesized that HsGCLM is capable of forming disulfide linkages with DmGCLC and that HsGCLM is able to interact with DmGCLC to generate a new higher molecular mass protein complex when they are mixed together in vitro.

HsGCLM Can Enhance the Activity of DmGCLC—The catalytic activity of the wild-type DmGCLC holoenzyme was compared with that of the DmGCLC/HsGCLM hybrid. The K_m for the DmGCLC/HsGCLM hybrid enzyme is 1.01 mM, which is similar to the value of 0.89 mM obtained for the Drosophila GCL holoenzyme. The V_{max} for the DmGCLC/HsGCLM hybrid enzyme was found to be 8.39 μmol/min/mg, similar to the V_{max} determined for the DmGCLC holoenzyme (8.45 μmol/min/mg) generated from the same preparation of DmGCLC. These results indicate that HsGCLM is able to modify the activity of DmGCLC in a similar way to DmGCLM.

Effect of DmGCLM Ablation on Glutathione Homeostasis in Vivo—The gene encoding DmGCLM (Gclm) maps to 94C on the third chromosome. We obtained the P-element-induced recessive lethal mutant stock l[3]L0580, which contains a P[lacW]-element inserted in the 5′-noncoding region of the Gclm gene. The P-element in this stock was not responsible for the lethality, as judged from failure to recover dysgenically induced revertants, from failure to rescue lethality with a transgene, and by deficiency mapping (data not shown). Accordingly, we separated the recessive lethal mutation in this stock from the P-element by recombination with an e4 we1 ro1 chromosome. This yielded two fully viable recombinants bearing the P-element insertion, e4 GclmL0580 and GclmL0580 ro1. We have named this P-element allele GclmL0580 and refer here to the two marked recombinant derivatives as e GclmL0580 and GclmL0580 ro. Levels of DmGCLM in homozygous e GclmL0580 and GclmL0580 ro flies were examined by Western blotting. Fig. 9A shows that DmGCLM was substantially diminished in e GclmL0580 or GclmL0580 ro fly lysates. Fig. 9B shows that the reduction in DmGCLM was not accompanied by any change in DmGCLC protein levels. Northern blotting showed a dramatic reduction in Gclm transcription in adult GclmL0580 homozygotes (data not shown). Collectively, these data indicate that GclmL0580 is a severely hypomorphic allele. GclmL0580 homozygous flies are viable and fertile under normal laboratory conditions and have no obvious phenotype. We obtained a revertant (e Gclmrev4) by mobilizing the L0580 element from the e GclmL0580 chromosome. The e Gclmrev4 homozygotes have wild-type levels of DmGCLM, as judged by Western blotting (Fig. 9).

As DmGCLM enhances the catalytic efficiency of DmGCLC and reduces its sensitivity to feedback inhibition by glutathione, we hypothesized that e GclmL0580 and GclmL0580 ro flies may have an impaired capacity to synthesize glutathione. We analyzed the whole body glutathione contents of e GclmL0580 and GclmL0580 ro flies and compared them with those of Canton S and w1118 flies, both of which are wild-type for Gclm, and with the revertant, e Gclmrev4 (Fig. 10). Canton S and w1118 flies contained 348.15 ± 20.9 and 305.5 ± 27.3 pmol of glutathione/fly, respectively. The revertant strain (e Gclmrev4) contained slightly less glutathione than the wild-type strains.

Fig. 8. Analysis of the subunit behavior of the hybrid Drosophila/human GCL holoenzyme under nonreducing conditions. After dialysis to remove DTT, protein (200 ng) from the peak fractions obtained after gel filtration of DmGCLC (lane 1), DmGCLC/DmGCLM (lane 2), or DmGCLC/HsGCLM (lane 3) was resolved by SDS-PAGE in the absence of 2-mercaptoethanol and analyzed by Western blotting using antiserum raised against DmGCLC (A), DmGCLM (B), or HsGCLM (C).

Fig. 9. DmGCL protein levels in GclmL0580 flies. Portions (5 μl for analysis of DmGCLM or 10 μl for analysis of DmGCLC) of fly homogenates from wild-type, mutant, or revertant strains were analyzed by Western blotting using antiserum raised against DmGCLM (A) or DmGCLC (B). Lane 1, Canton S; lane 2, w1118; lane 3, e GclmL0580; lane 4, GclmL0580 ro; lane 5, e Gclmrev4.
Drosophila Glutamate-Cysteine Ligase

Figure 10. Effect of mutation of Gclm on glutathione levels in vivo. Glutathione levels in whole fly homogenates were determined as described under “Experimental Procedures.” Glutathione concentrations are expressed as the mean ± S.D. of three experiments. Glutathione levels differed significantly by genotype (analysis of variance, $F_{4,20} = 68.42, p < 0.001$). Post hoc comparisons indicated that the levels in Canton S and w^{118} flies did not differ significantly from each other, but did differ from the levels in the other three genotypes ($p < 0.001$; the levels in the two GclmL0580 stocks did not differ from each other, but did differ from the levels in the other three genotypes ($p < 0.001$); and the levels of glutathione in the Gclmrev4 stock were significantly different from those in each of the other genotypes in the analysis.

Discussion

Glutamate-cysteine ligase has a profound influence on intracellular redox status. Despite this, the complex regulatory mechanisms that modify GCL activity to control glutathione homeostasis remain poorly understood. In this study, we have examined the role of intermolecular disulfide linkages in regulating Drosophila GCL activity and showed that abrogation of the ability to form disulfide bridges between the catalytic and modifier subunits has a significant impact on the catalytic efficiency of the holoenzyme as well as sensitivity to feedback inhibition by glutathione. The proposed importance of DmGCLM in regulating glutathione homeostasis in vivo was substantiated by the observation that Drosophila strains with a mutation in Gclm have approximately half as much glutathione as wild-type strains.

Using a combination of MALDI-TOF mass spectroscopy and examination of evolutionary conservation of cysteines, we identified Cys213, Cys214, and Cys207 in DmGCLM as candidate disulfide-forming cysteines important for the interactions with DmGCLC. A mutant form of DmGCLM that lacks these 3 cysteine residues (DmGCLM-ABD) could form a stable holoenzyme complex with DmGCLC, but was unable to form intermolecular disulfide bridges under non-reducing conditions. Our kinetic analyses showed that the mutant DmGCLM/DmGCLM-ABD holoenzyme was less active than the unmodified holoenzyme, but significantly more active than DmGCLM-ABD mutant. It is possible, however, that a proportion of the recombinant holoenzyme contains glutathione-resistant disulfides. Pertinently, it was shown previously that a proportion of native rat kidney GCL remained as undisassociated holoenzyme when subjected to SDS-PAGE after incubation with the physiologically attainable concentration of 10 mM glutathione (9).

At the outset of this study, we noticed that replacing the N-terminal histidine tag with one at the C terminus caused GCL activity to increase by >10-fold. This implies that the N-terminal tag may interfere with the conformation of the protein. Although we have not analyzed DmGCLC activity without a histidine tag, previous studies have shown that an N-terminal histidine tag has a modest inhibitory effect on HsGCLC activity (11). The low activity of N-terminally tagged DmGCLC made it less amenable to study than the more active C-terminally tagged protein, and therefore, we carried out all of our subunit interaction studies using the latter DmGCLC form. Furthermore, to circumvent potential problems due to the rapid oxidation of the cysteine substrate in vitro, we performed our enzyme assays with α-aminobutyrate rather than cysteine, which we had used previously (13). We were surprised, however, to find that there was no significant difference in the K_m values for glutamate between DmGCLC and either the mutant or wild-type DmGCLC holoenzyme. In our earlier study (using cysteine as substrate and DmGCLC with an N-terminal tag), we found that the K_m value for glutamate was nearly six times higher when the modifier subunit was absent. This difference in K_m values is highly reproducible. We are uncertain why the more active C-terminally tagged DmGCLC does not exhibit this DmGCLM-dependent difference in K_m for glutamate. It is possible that the cysteine residue that has been proposed to be at or near the active site (12, 22) is more susceptible to oxidation by the cysteine substrate in uncomplexed DmGCLC due to
DmGCLM-induced conformational alterations. Indeed, we have shown previously that DmGCLC is more sensitive to inactivation by cystamine than the DmGCL holoenzyme (13). Alternatively, it is possible that oxidation of cysteine to cystine in the assay mixture could cause differential inhibition, which might be reflected in apparent differences in K_m values. One other possibility is that the C-terminal histidine tag on DmGCLC actually generates a conformational change in the catalytic subunit to increase activity and to decrease the K_m for glutathione.

Despite this caveat, we have demonstrated convincingly that interaction with DmGCLM increases the catalytic efficiency of DmGCLC and that the potential to form intersubunit disulfide linkages can further modulate activity and susceptibility to inhibition by glutathione.

We found that HsGCLM was able to functionally substitute for DmGCLM in the regulation of DmGCLC activity. The modifying effect of HsGCLM was very similar to that of unmodified DmGCLM, suggesting that intersubunit disulfide bridges may form between HsGCLM and DmGCLC to enhance activity. Supporting this notion, HsGCLM was able to form disulfide bonds with DmGCLC. These data strongly implicate Cys213 and/or Cys214 as the principal modulator of GCLC activity, as Cys213 and Cys214 are the only cysteines that are conserved between HsGCLM and DmGCLM. We should note, however, that mutant DmGCLM polypeptides in which only Cys213 and Cys214 were changed to serine could still form covalent linkages with DmGCLC when analyzed by SDS-PAGE under non-reducing conditions (data not shown). In this study, it was therefore important to perform the biochemical analyses on GCL protein in vitro.

Supporting this notion, HsGCLM was able to form disulfide bridge interactions between HsGCLM and DmGCLM (11). When we examined GCLC sequences from organisms in which we found a hypothetical GCLM subunit (D. rerio, X. laevis, G. gallus, C. elegans, Anopheles gambiae, S. pombe, and Neurospora crassa), as well as the characterized mammalian forms, all were found to contain the conserved Cys553, supporting the hypothesis that this cysteine residue plays an important role in regulating GCLC activity by participating in intermolecular disulfide bridge formation. It is of interest to note that, unlike S. pombe GCLC, Saccharomyces cerevisiae GCLC does not contain the conserved Cys553, and we were unable to find a GCLM ortholog in the genome sequence.

Despite the wide distribution of GCLM, Gclm^{Lo58g} flies are fully viable and fertile. The P-element insertion in the 5’-untranslated region of Gclm almost entirely ablates expression, and the mutants have ~50% less glutathione than control strains. However, the lack of phenotype under standard laboratory conditions is perhaps not surprising in light of a recent study in which targeted disruption of mouse Gclm caused no overt phenotype, despite causing significant decreases in glutathione levels in all tissues examined (24). Gclm^{−/−} mouse fetal fibroblasts were, however, substantially more susceptible to H₂O₂ toxicity than those with the Gclm^{+/+} genotype.

The genetic experiments with fruit flies and mice have highlighted the importance of GCLM in glutathione homeostasis in vivo. It is likely that an impaired capacity to synthesize glutathione would sensitize mutant Gclm animals to cellular oxidative damage. As oxidative stress has been proposed to play a prominent role in aging (25), it will be interesting to study the relationship between glutathione homeostasis, resistance to various stresses, and aging in mutant Gclm flies. The use of Drosophila as a model system will allow us to address the importance of reversible disulfide bridges as a mechanism for regulating glutathione synthesis in vitro. We should be able to use gene replacement strategies to generate flies that express the DmGCLM-ABD mutant instead of the wild-type protein, furthering our understanding of the fundamental mechanisms of regulation and the biological relevance of this essential thiol antioxidant.

Acknowledgment—We thank Douglas J. Lamont for advice and helpful discussion on the MALDI-TOF analyses.

REFERENCES

1. Finkel, T. (2003) Curr. Opin. Cell Biol. 15, 247–254
2. Dickinson, D. A., and Forman, H. J. (2002) Biochem. Pharmacol. 64, 1019–1026
3. Lu, S. C. (1999) FASEB J. 13, 1169–1183
4. Griffith, O. W. (1999) Free Radic. Biol. Med. 27, 922–935
5. Griffith, O. W., and Mulkay, R. T. (1999) Adv. Enzymol. Relat. Areas Mol. Biol. 73, 209–267
6. Hayes, J. D., and McLellan, L. I. (1999) Free Radic. Res. 31, 273–300
7. Soltaninassab, S. R., Sekhar, K. R., Meredith, M. J., and Freeman, M. L. (2000) J. Cell. Physiol. 182, 165–170
8. Huang, C. S., Anderson, M. E., and Meister, A. (1993) J. Biol. Chem. 268, 20578–20583
9. Huang, C. S., Chang, L. S., Anderson, M. E., and Meister, A. (1993) J. Biol. Chem. 268, 19675–19680
10. Richman, P. G., and Meister, A. (1975) J. Biol. Chem. 250, 1422–1426
11. Tu, Z., and Anders, M. W. (1998) Biochem. J. 336, 675–680
12. Seelig, G., and Meister, A. (1984) J. Biol. Chem. 259, 3534–3538
13. Fraser, J. A., Saunders, R. D. C., and McLellan, L. I. (2002) J. Biol. Chem. 277, 1158–1165
14. Saunders, R. D. C., and McLellan, L. I. (2000) FERBS Lett. 467, 337–340
15. Tipnis, S. R., Blake, D. G., Shepherd, A. G., and McLellan, L. I. (1999) Biochem. J. 337, 559–566
16. Kim, S. O., Merchant, K., Nudelman, R., Beyer, W. F., Jr., Keng, T., DeAngelo, J., Hausladen, A., and Stamler, J. S. (2002) Cell 109, 383–396
17. Walsh, P. E., Lamont, D. J., Beattie, K. A., and Stark, M. J. R. (2002) Biochemistry 41, 2409–2420
18. Provencher, S. W., and Gloeckner, J. (1981) Biochemistry 20, 33–37
19. Easterby, J. S. (1996) Hyper, Version 1.1s, University of Liverpool, Liverpool, United Kingdom
20. Tietze, F. (1969) Anal. Biochem. 27, 502–522
21. Spradling, A. C., Stern, D., Beaton, A., Rhem, E. J., Laverty, T., Mozden, N., Misra, S., and Rubin, G. M. (1999) Genes 153, 135–177
22. Brecken, D. L., and Phillips, M. A. (1998) J. Biol. Chem. 273, 26317–26322
23. Lueder, D. V., and Phillips, M. A. (1996) J. Biol. Chem. 271, 17485–17490
24. Yang, Y., Dieter, M. Z., Chen, Y., Shertzer, H. G., Nebert, D. W., and Dalton, T. P. (2000) J. Biol. Chem. 275, 49446–49452
25. Finkel, T., and Hahnbrook, N. J. (2000) Nature 406, 239–247