Incidence and Characterisation of Methicillin-Resistant Staphylococcus aureus (MRSA) from Nasal Colonisation in Participants Attending a Cattle Veterinary Conference in the UK

Citation for published version:
Paterson, G., Harrison, E.M., Craven, E., Petersen, A., Larsen, A.R., Ellington, M.J., Töröök, M.E., Peacock, S.J., Parkhill, J., Zadoks, R. & Holmes, M.A. 2013, 'Incidence and Characterisation of Methicillin-Resistant Staphylococcus aureus (MRSA) from Nasal Colonisation in Participants Attending a Cattle Veterinary Conference in the UK' PLoS ONE, vol. 8, no. 7, e68463. DOI: 10.1371/journal.pone.0068463

Digital Object Identifier (DOI):
10.1371/journal.pone.0068463

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
PLoS ONE

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Incidence and Characterisation of Methicillin-Resistant *Staphylococcus aureus* (MRSA) from Nasal Colonisation in Participants Attending a Cattle Veterinary Conference in the UK

Gavin K. Paterson¹, Ewan M. Harrison¹, Emily F. Craven¹, Andreas Petersen², Anders Rhod Larsen², Matthew J. Ellington³, M. Estée Török³,⁴,⁵, Sharon J. Peacock³,⁴,⁵, Julian Parkhill⁶, Ruth N. Zadoks⁷, Mark A. Holmes¹

¹ Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, United Kingdom, ² Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark, ³ Health Protection Agency, Microbiology Services Division Cambridge, Level 6 Addenbrookes Hospital, Cambridge, United Kingdom, ⁴ Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom, ⁵ Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, Cambridge, United Kingdom, ⁶ The Wellcome Trust Sanger Institute, Wellcome Trust, Genome Campus, Cambridge, United Kingdom, ⁷ Moredun Research Institute, Bush Loan, Penicuik, United Kingdom

Abstract

We sought to determine the prevalence of nasal colonisation with methicillin-resistant *Staphylococcus aureus* among cattle veterinarians in the UK. There was particular interest in examining the frequency of colonisation with MRSA harbouring mecC, as strains with this mecA homologue were originally identified in bovine milk and may represent a zoonotic risk to those in contact with dairy livestock. Three hundred and seven delegates at the British Cattle Veterinarian Association (BCVA) Congress 2011 in Southport, UK were screening for nasal colonisation with MRSA. Isolates were characterised by whole genome sequencing and antimicrobial susceptibility testing. Eight out of three hundred and seven delegates (2.6%) were positive for nasal colonisation with MRSA. All strains were positive for mecA and none possessed mecC. The time since a delegate’s last visit to a farm was significantly shorter in the MRSA-positive group than in MRSA-negative counterparts. BCVA delegates have an increased risk of MRSA colonisation compared to the general population but their frequency of colonisation is lower than that reported from other types of veterinarian conference, and from that seen in human healthcare workers. The results indicate that recent visitation to a farm is a risk factor for MRSA colonisation and that mecC-MRSA are rare among BCVA delegates (<1% based on sample size). Contact with livestock, including dairy cattle, may still be a risk factor for human colonisation with mecC-MRSA but occurs at a rate below the lower limit of detection available in this study.

Introduction

Staphylococcus aureus is an important opportunistic pathogen associated with nosocomial and community-acquired infections in people, and is responsible for disease in animals where it is most economically significant as a cause of bovine mastitis [1,2].

Methicillin-resistant *S. aureus* (MRSA) have acquired one of a number of staphylococcal cassette chromosome mec elements (SCCmec) [3], carrying a gene (mec) encoding a penicillin binding protein (PBP 2a) with low affinity for β-lactam antibiotics [4]. Since 2005 there have been a number of reports suggesting that the rate of carriage of MRSA is higher in people living or working on pig farms than in the wider community due to zoonotic acquisition of MRSA, primarily belonging to the clonal complex (CC) 398 lineage. Although initially associated with pigs, subsequent reports indicate that other domestic animal species are also affected includingveal calves [5], dairy cattle [6], poultry [7] and horses [8].

In 2011 we described a previously unreported divergent mecA homologue [9]. Genome sequencing revealed a mecA homologue (mecAALGA251, now designated mecC [10]) within a new SCCmec element (type XI). A search of human and bovine isolates, suggesting transmission between the two host populations. Strengthening this supposition of interspecies transmission, work in Denmark has identified mecC MRSA human isolates from two different farms that are identical by sequence.
Between host species [12]. Little is known of the epidemiology of genome, substantiating that transmission events had occurred by only a few single nucleotide polymorphisms across the core sequencing revealed that these human and animal isolates differed cattle or sheep on those farms [11]. Subsequent genome Sample Collection and Processing Study Setting and Participants Antimicrobial Resistance Testing

Antimicrobial susceptibility testing was performed by disc diffusion (Oxoid, Basingstoke, UK) according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology (www.eucast.org, (v 2.1, 7 Feb 2012)) for 12 antimicrobial agents: penicillin, cefoxitin, norfloxacin, erythromycin, clindamycin, kanamycin, tetracycline, linezolid, fusidic acid, rifampicin, trimethoprim/sulfamethoxazole and mupirocin. All susceptibility results were interpreted according to EUCAST guidelines with the exception of trimethoprim/sulfamethoxazole, for which interpretation was made according to CLSI guidelines. In addition the MIC was determined for cephalixin and oxacillin by microbroth dilution performed as described by EUCAST using Mueller Hinton BBL II broth (Becton Dickinson, Heidelberg, Germany) and a final inoculum of 5×10^5 CFU. S. aureus ATCC 29213 was used for quality control.

Genome Sequencing and Analysis

Genomic DNA was extracted from overnight cultures by MasterPure™ Gram Positive DNA Purification Kit (Cambio, Dry Drayton, UK) and sequenced by HiSeq 2000 (Illumina Inc., Little Chesterfield, UK). Multi-locus sequence types and SCCmec types were derived from the genome sequences and antimicrobial resistance determinants identified by BLAST analysis [24].

Ethics Study protocol was submitted for consideration for ethical review to the National Research Ethics Service (East of England), which reported that formal ethical approval was not required for this study because the subjects were healthy individuals in a non-healthcare environment, non-invasive sampling was used, and no human tissues were being collected. Delegates who volunteered to be swabbed were provided with an information sheet about the study and provided written informed consent for participation in the study.

Statistics Statistical analysis was performed using SPSS v20 (IBM Corporation). The threshold for statistical significance was an alpha error of 0.05. The Mann-Whitney U Test was used to compare the time since subjects were last on a farm for MRSA positive and negative subjects as this data was not normally distributed.

Results and Discussion MRSA Carriage Amongst Study Participants From the 307 swabs taken, eight produced growth characteristic of MRSA on MRSA Brilliance 2 plates, giving an overall carriage prevalence of 2.6% (95% CI 1.1–4.1%). The approximate geographical location of the primary work address reported by UK subjects is shown in Figure 1. Unsurprisingly, these locations reflect the general distribution of dairy farming in the UK (cattle farms in the UK are concentrated in western regions). The primary place of work of nine participants was outside the UK. The MRSA carriage rate in the general population has been reported to be in the range of 0.8–1.3% [25,26,27,28]. The observed MRSA colonisation rate in delegates at the BCVA 2011 conference of 2.6% was higher than the rate expected in the general population, but lower than the 4.6% observed in human healthcare workers [29] as well as the carriage rates obtained from screening attendees at other veterinary conferences, Table 1. For instance, a survey of Dutch veterinarians and veterinary students found an overall carriage rate of 4% [30], and a survey of British
small animal veterinarians found a rate of 17.9% [31]. Participants at veterinary conferences provide a convenient sample of veterinary practitioners. Although a proportion of people attending these conferences may have little direct contact with animals (e.g. company sales representatives, students or academics, industry and government veterinarians), the majority of participants are likely to have frequent, direct interactions with animals under their care. The median time between swabbing and last visit to a farm was shorter in the MRSA-positive group (median = 1 day, range 1–14 days) than in the MRSA-negative group (median = 3 days, range 0.1–365 days) although not statistically significant using a Mann-Whitney U Test (p = 0.08). The Australian study of a number of different conferences provides a useful comparison of veterinarians working with different species, and reported a 4.7% MRSA carriage rate in veterinarians working with cattle, although this figure has wide confidence intervals (0.57–15.81) due to the small denominator (n = 45) [32]. The carriage rate in small animal veterinarians was comparable (4.9%, n = 430), while the carriage rate in equine veterinarians was considerably greater (11.9%, n = 202) [33]. There are however differences in methodology between studies which may affect rates of isolation and it should be noted that the lack of a broth enrichment step may have reduced the sensitivity of MRSA detection in this survey.

The occupational nature of the risk association with MRSA carriage suggested in this study is strengthened by the association between a subject’s recent presence on a farm and them testing positive for MRSA. It is reasonable to suggest that participants at the congress who had recently visited a farm were more likely to be actively engaged in clinical work on farms and therefore have increased exposure to livestock, and/or, that colonisation by MRSA is rapidly lost after occupational exposure. In support of these suggestions, there is evidence that carriage rates of livestock-associated CC398 MRSA in veal calf farmers are associated with intensity of animal contact and rapidly decrease in the absence of contact with livestock [34]. While the increased rate of MRSA carriage in human health workers might be explained by greater exposure to MRSA through close contact with patients with MRSA and associated fomites. This is less likely to be the situation in veterinary medicine as there is no evidence of high carriage rates of MRSA in UK livestock. The occupational risk of MRSA acquisition and carriage by veterinarians may be associated with working in environments where antibiotics are present, which might offer a selection advantage to colonising bacteria that are resistant. In this regard even low, sub-inhibitory concentrations may be sufficient to provide a selective advantage to resistant strains [35]. Alternatively or additionally, many SCCmec elements contain genes that provide resistance to other bactericidal agents (e.g. the arsenical resistance gene in type XI SCCmec) [36]) and these could explain an increased survival of MRSA in veterinary environments.

Characterisation of Methicillin-resistant Staphylococci from Study Participants

All eight MRSA isolates where femB and mecA gene positive by PCR but negative for mecC. Genome sequencing confirmed each isolate as being mecA-positive MRSA, and selected genotypic and phenotypic characteristics are shown in Table 2. Antimicrobial susceptibilities were compared with the presence/absence of known resistance determinants or mutations (the so-called ‘resistome’) [37]. As described previously for ST22 MRSA [37], antimicrobial phenotypes and genotypes in our study show concordance, further supporting that whole-genome sequencing may in future have a role in informing therapy and represents a powerful tool for the discovery of new drug-resistance mechanisms [9].

There were three methicillin-resistant non-S. aureus isolates that grew on MRSA Brilliance 2 agar, which were identified as *Staphylococcus haemolyticus* by MALDI-TOF. By PCR these were negative for femB and mecC but positive for conventional mecC and each showed resistance to several other antibiotics, Table 3. These displayed relatively high MICs to oxacillin and cephalxin and resistance to multiple other antibiotics. Little data are available on carriage rates of *S. haemolyticus* but it is a nosocomial pathogen characterised by resistance to multiple antimicrobial agents [38,39].

The ST398 MRSA isolated in this study came from a delegate from continental Europe where ST398 is the predominant lineage of LA-MRSA. In the UK MRSA ST398 is apparently rare with only two published reports to date [40] [41], including our recent description of MRSA ST398 isolated from bulk tank milk from five dispersed UK dairy farms which may represent an emerging problem in the UK [41]. Heterogeneity is seen within the ST398 population with human and livestock-associated lineages differentiated by the presence or absence of specific virulence factors and resistance genes [42,43]. The absence of the *sak*, *cph*, and *acr* genes and the presence of *tet(M)* in BCVA198 indicates that it belongs to the livestock-associated lineage.

Four of the eight MRSA isolates belonged to CC22. BCVA7, 182 and 191 were ST22 while BCVA16 was a novel single locus variant in *arcC*, ST2274. CC22 is a diverse and widespread lineage common in many countries [44,45], including in England where it was responsible for >75% of MRSA bacteraemia between 2001–7 [46]. In addition to its importance in human, this lineage has also been isolated from a range of animals: cats, dogs, horses, bats, turtles, pet birds, pigs and goats [31,47,48,49,50,51]. While it has yet to be

Table 1. A summary of the results from previous MRSA carriage surveys undertaken at veterinary or animal health conferences.

Conference	Country	Year	MRSA rate	No. of subjects	Reference
Cattle	UK	2011	2.6%	308	This study
Pig Health	Denmark	2006/7	12.5%	272	[64]
Multiple	Denmark	2006/7	1.9%	574	[65]
ACVIM	USA	2005	6.5%	417	[66]
AAEP	USA	2006	10.1%	257	[67]
ACVS	USA	2008	17.3%	341	[68]
Multiple	Australia	2009	5.8%	771	[33]
Dermatology	Italy	2010	1.6%	128	[69]

ACVIM, The American College of Veterinary Internal Medicine; AAEP, American Association of Equine practitioners; ACVS, American College of Veterinary Surgeons.

doi:10.1371/journal.pone.0068463.t001
Table 2. Characteristics of the eight MRSA isolates found in the survey of conference participants.

Strain	Region of workplace of subject	Clonal Cluster	spa type	SCC type	mec type	Resistant to antibiotic	Additional resistance 1	Resistance determinates 2
BCVA7 ST22 CC22	Somerset, England	CC22 type IVa	t032	SCC t032	mecA	128/128	NOR, ERY, CLI	GyrA S84L,ermC,ermT
BCVA16 ST22 CC22	Cornwall, England	CC22 type IVa	t032	SCC t032	mecA	128/128	NOR, ERY, CLI	GyrA S84L,ermC,ermT
BCVA42 ST2014 CC22	Continental Europe	CC22 type IVa	t032	SCC t032	mecA	128/128	NOR, ERY, CLI	GyrA S84L,ermC,ermT
BCVA14 ST22 CC22	Devon, England	CC22 type IVa	t032	SCC t032	mecA	128/128	NOR, ERY, CLI	GyrA S84L,ermC,ermT
BCVA296 ST59	Gloucestershire, England	CC59 type IVa	t032	SCC t032	mecA	128/128	NOR, ERY, CLI	GyrA S84L,ermC,ermT

1 Susceptibilities tested: linezolid, rifampicin, kanamycin, tetracycline, trimethoprim, mupirocin, fusidic acid, tetracycline, trimethoprim/sulfamethoxazole and mupirocin.
2 Genome screened for M21136, tetM, ermC, ermT, SCCmec-IVa, Panton-Valentine leukocidin (PVL)-positive, arginine catabolic mobile element-positive, and having more than six AT repeats within the SACOL005 locus (a feature used in combination with PVL for PCR identification of USA300 strains).

The aim of this study was to look for evidence of transmission between cow and humans of MRSA harbouring the newly described mecA homologue mecC. The failure to detect any mecC MRSA isolates provides evidence to indicate that the carriage rate of these MRSA strains in UK cattle veterinarians is likely to be less than 1%. A calculation of the binomial exact confidence intervals reveals that our sample size of 307 would have had a 95% probability of finding at least 1 positive result if the prevalence had been 1%. However, the prevalence of MRSA among UK cattle, both mecA and mecC MRSA, is not yet known so it is unclear how likely occupation exposure is for cattle veterinarians. The origins and epidemiology of MRSA mecC, including the risk factors associated with its acquisition remain unclear. Prevalence studies in the general population and in dairy cattle are currently underway in the UK. Recent contact with dairy cattle may yet be an important risk factor for human colonisation with mecC-MRSA but occurs at rates below the lower limit of detection in this study.
Table 3. Characteristics of the three S. haemolyticus isolates found in the survey of conference participants.

Strain	Oxacillin MIC (mg/l)	Cefoxitin MIC (mg/l)	Additional resistances†
BCA70	>128	64	KAN, NOR, ERY, CLI, TET,
BCA233	>128	>256	KAN, NOR, ERY, CLI, FUS, TET, SXT
BCA257	>128	256	KAN, NOR, ERY, CLI, FUS, TET, SXT

†Susceptibility tested: linezolid, rifampicin, kanamycin, norfloxacin, erythromycin, clindamycin, fusidic acid, tetracycline, trimethoprim/sulfamethoxazole and mupirocin.

doi:10.1371/journal.pone.0068463.t003

Acknowledgments

We are grateful to the BCVA for allowing us to conduct this survey at their congress and for the cooperation of all study participants.

References

1. Bradley AJ, Leach KA, Breen JE, Green LE, Green MJ (2007) Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet Rec 160: 253–257.
2. Sharma N, Rho GJ, Hong YH, Kang TY, Lee HK, et al. (2012) Bovine Mastitis: An Asian Perspective. Asian Journal of Animal and Veterinary Advances 7: 454–476.
3. Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, staphylococcal cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 44: 1549–1555.
4. Utsui Y, Yokota T (1995) Role of an altered penicillin-binding protein in methicillin- and cephalosporin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 39: 233–239.

Guidelines for Reporting Novel human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infectious Diseases 11: 595–603.

5. Nemati M, Hermans K, Lipinska U, Denis O, Deplano A, et al. (2008) High occurrence of methicillin-resistant Staphylococcus aureus (MRSA) ST398 in veal calf farming. PLoS One 3: e10990.
6. Vanderhaeghen W, Cerpentier T, Adriaensen C, Vicca J, Hermans K, et al. (2013) Very low prevalence of MRSA Colonisation at UK Cattle Vet Conference 2011.
7. Rim JY, Bacon AE, 3rd (2007) Prevalence of community-acquired methicillin-resistant Staphylococcus aureus colonization outside the healthcare environment. Epidemiol Infect 137: 1257–1261.
8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
9. Albrich WC, Harbarth S (2000) Health-care workers: source, vector, or victim of MRSA? Lancet Infect Dis 8: 289–301.
10. Wulf M, van Nes A, Eikenboom-Boskamp A, de Vries J, Melchers W, et al. (2005) Methicillin-resistant Staphylococcus aureus by veterinarians in Australia. Aust Vet J 83: 152–159.
11. Harrison EM, Paterson GK, Holden MTG, Maudyly J, Stone SP, Kibbler CC, Li, EFC AP AL MJE MAH. Wrote the paper: GKP MAH. Novel Genetic Homologue and Important Virulence Determinants. Journal of Clinical Microbiology 50: 3374–3377.
12. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
13. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2011) Meticillin-resistant Staphylococcus aureus isolates from a diverse range of host species. Journal of Antimicrobial Chemotherapy.
14. Laurent F, Chardon H, Haenni M, Bes M, Reverdy ME, et al. (2012) Novel Genetic Homologue and Important Virulence Determinants. Journal of Clinical Microbiology 50: 3374–3377.
15. Laurent F, Chardon H, Haenni M, Bes M, Reverdy ME, et al. (2012) Novel Genetic Homologue and Important Virulence Determinants. Journal of Clinical Microbiology 50: 3374–3377.
16. Kriegeskorte A, Ballhausen B, Idelevich EA, Koeck R, Friedrich AW, et al. (2012) Methicillin-resistant Staphylococcus aureus ST398 associated with livestock-associated methicillin-resistant strain ST398. Antimicrob Agents Chemother 28: 397–403.
17. Basset P, Prod'hom G, Senn L, Greub G, Blanc DS (2013) Very low prevalence of methicillin-resistant Staphylococcus aureus colonization outside the healthcare environment. Epidemiol Infect 137: 1257–1261.
18. Sabat AJ, Koksal M, Akkerboom V, Monecke S, Kriegeskorte A, et al. (2012) Methicillin- and cephem-resistant Staphylococcus aureus with the novel mecC gene variant in companion animals. Emerg Infect Dis 18: 2017–2020.
19. Jordan D, Simon J, Fury S, Moss S, Giffard P, et al. (2011) Carriage of methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. Journal of Antimicrobial Chemotherapy.
20. Webster B, Wieler LH, Vincze S, Antoons EM, Brandenburg A, et al. (2012) MRSA variant in companion animals. Emerg Infect Dis 18: 2017–2020.
21. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2013) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
22. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
23. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
24. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
25. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
26. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
27. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
28. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
29. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
30. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
31. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
32. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
33. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
34. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
35. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
36. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylococcus xylosus Isolate with a New mecC Allotype. Antimicrobial Agents and Chemotherapy 57: 1524–1528.
37. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR, et al. (2012) A Staphylo
37. Kosier KK, Holden MTG, Ellington MJ, Cartwright EJP, Brown NM, et al. (2012) Rapid Whole-Genome Sequencing for Investigation of a Neonatal MRSA Outbreak. New England Journal of Medicine 366: 2267–2275.

38. Barros EM, Coelho H, Santos MGF, dos Santos KRN, Giambiagi-deMarval M (2012) Staphylococcus haemolyticus as an Important Hospital Pathogen and Carrier of Methicillin Resistance Genes. Journal of Clinical Microbiology 50: 166–168.

39. Frohberg JW, Johnston JL, Galetto DW, Archer GL (1989) Antimicrobial resistance in nose-cleaning isolates of Staphylococcus haemolyticus. Antimicrobial Agents and Chemotherapy 33: 460–466.

40. Leefler A, Kearns AM, Ellington MJ, Smith LJ, Unt VE, et al. (2009) First isolation of MRSA ST398 from UK animals: a new challenge for infection control teams? J Hop Infec 72: 269–271.

41. Paterson G, Larsen J, Harrison E, Larsen A, Morgan F, et al. (2012) First detection of livestock-associated meticillin-resistant Staphylococcus aureus CC398 in bulk tank milk in the United Kingdom, January to July 2012. Euro Surveill 17: 20337.

42. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, et al. (2012) Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3: e00303–e00311.

43. Uhlemann A-C, Porcella SF, Trividi S, Sullivan SB, Hafer C, et al. (2012) Identification of a Highly Transmissible Animal-Independent Staphylococcus aureus ST398 Clone with Distinct Genomic and Cell Adhesion Properties. MBio 3.

44. Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, et al. (2011) A field guide to pandemic, epidemic and sporadic clones of meticillin-resistant Staphylococcus aureus. PLoS One 6: e17936.

45. Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE, et al. (2013) A genomic portrait of the emergence, evolution and global spread of a meticillin resistant Staphylococcus aureus pandemic. Genome Res 8: 8.

46. Ellington MJ, Hope R, Livermore DM, Kearns AM, Henderson K, et al. (2010) Decline of EMRSA-16 amongst meticillin-resistant Staphylococcus aureus causing bacteraemias in the UK between 2001 and 2007. Journal of Antimicrobial Chemotherapy 65: 446–448.

47. Cuny C, Friedrich A, Konzytsa S, Layer F, Nubel U, et al. (2010) Emergence of meticillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int J Med Microbiol 300: 109–117.

48. Concepcion Porrero M, Hasan H, Vela AJ, Fernandez-Garayzabal JF, Dominguez I, et al. (2011) Clonal diversity of Staphylococcus aureus originating from the small ruminants goats and sheep. Vet Microbiol 153: 1107–1109.

49. Sergio DM, Koh TH, Hsu LY, Ogden BE, Goh AL, et al. (2007) Investigation of meticillin-resistant Staphylococcus aureus in pigs used for research. J Med Microbiol 56: 1107–1109.

50. Stromme B, Krehrenberg C, Kettlum C, Cuny G, Verghese J, et al. (2006) Molecular characterization of meticillin-resistant Staphylococcus aureus strains from pet animals and their relationship to human isolates. Journal of Antimicrobial Chemotherapy 57: 461–465.

51. Walther B, Wieler LH, Friedrich AW, Hansen AM, Kohl B, et al. (2008) Meticillin-resistant Staphylococcus aureus (MRSA) isolated from small and exotic animals at a university hospital during routine microbiological examinations. Veterinary Microbiology 127: 171–178.

52. Bonnemettler KK, Wolter DJ, Tenerow FC, McDougal JK, Goering RV (2007) Rapid Multiplex PCR Assay for Identification of USA300 Community-Associated Meticillin-Resistant Staphylococcus aureus Isolates. Journal of Clinical Microbiology 45: 141–146.

53. Otter JA, Havill NL, Bovey JM, French GL (2009) Comparison of community-associated meticillin-resistant Staphylococcus aureus from teaching hospitals in London and the USA, 2004–2006: where is USA300 in the UK? European Journal of Clinical Microbiology & Infectious Diseases 28: 835–839.

54. Hata E, Katsuda K, Kobayashi H, Uchida I, Tanaka K, et al. (2010) Genetic Variation among Staphylococcus aureus Strains from Bovine Milk and Their Relationship to Meticillin-Resistant Staphylococcus aureus. J Clin Microbiol 48: 166–168.

55. Turkylısaz T, Tezkıryı S, Özyaşın E, Bızdogan B (2010) Molecular epidemiology and antimicrobial resistance mechanisms of meticillin-resistant Staphylococcus aureus isolated from bovine milk. Zoonoses Public Health 57: 197–203.

56. Weese JS, Calkdwell F, Willey BM, Kreiswirth BN, McGee A, et al. (2006) An outbreak of meticillin-resistant Staphylococcus aureus skin infections resulting from horse to human transmission in a veterinary hospital. Vet Microbiol 114: 160–166.

57. Weese JS, Archambault M, Willey BM, Hearn P, Kreiswirth BN, et al. (2005) Meticillin-resistant Staphylococcus aureus in horses and horse personnel, 2000–2002. Emerg Infect Dis 11: 430–433.

58. Monecke S, Kuhnert P, Hotzel H, Slickers P, Ehrlich R (2007) Microarray based study on virulence-associated genes and resistance determinants of Staphylococcus aureus isolates from cattle. Vet Microbiol 125: 128–140.

59. Salewiska O, Giedley M, Moreillon M, Morisset D, Walvdovgel A, et al. (2011) Staphylococcus aureus host range and human-bovine host shift. Appl Environ Microbiol 77: 5908–5915.

60. Hung WC, Takanoo T, Higuchi W, Iwao Y, Khokhlkova O, et al. (2012) Comparative genomics of community-acquired ST398 meticillin-resistant Staphylococcus aureus in Taiwan: novel mobile resistance structures with predominant ST lineages. J Appl Microbiol 112: 205–213.

61. Hsieh JM, Chen RS, Tsai TY, Pan TM, Chou CC (2008) Phylogenetic analysis of livestock oxacillin-resistant Staphylococcus aureus. Vet Microbiol 126: 234–242.

62. Alidin E, Zunita Z, Hassan I, Chen HC (2010) Phenotypic and genotypic characterization of meticillin-resistant Staphylococcus aureus (MRSA) isolated from dogs and cats at University Veterinary Hospital, Universiti Putra Malaysia. Trop Biomed 27: 483–492.

63. Wan MT, Fu SY, Lo YP, Huang TM, Cheng MM, et al. (2012) Heterogeneity and phylogenetic relationships of community-associated meticillin-sensitive/resistant Staphylococcus aureus isolates in healthy dogs, cats and their owners. J Appl Microbiol 112: 205–213.

64. Wull MW, Sorum M, van Nes A, Skov R, Melchers WJ, et al. (2008) Prevalence of meticillin-resistant Staphylococcus aureus among veterinarians: an international study.Clin Microbiol Infect 14: 29–34.

65. Moodley A, Nightingale EC, Stegger M, Nielsen SS, Skov RL, et al. (2008) High risk for nasal carriage of meticillin-resistant Staphylococcus aureus among Danish veterinary practitioners. Scand J Work Environ Health 34: 151–157.

66. Hamelman BA, Kruhl SA, Rousseau J, Low DE, Willey BM, et al. (2006) Meticillin-resistant Staphylococcus aureus colonization in veterinary personnel. Emerg Infect Dis 12: 1933–1938.

67. Anderson ME, LeFevre SL, Weese JS (2008) Evaluation of prevalence and risk factors for meticillin-resistant Staphylococcus aureus colonization in veterinary personnel attending an international equine veterinary conference. Vet Microbiol 129: 410–417.

68. Burström LG, Faires M, Weese JS (2010) Meticillin-resistant Staphylococcus aureus colonization in personnel attending a veterinary surgery conference. Vet Surg 39: 150–157.

69. Paul NC, Moodley A, Ghibaudo G, Guardabassi L (2011) Carriage of Meticillin-Resistant Staphylococcus pseudintermedius in Small Animal Veterinarians: Indirect Evidence of Zoonotic Transmission. Zoonoses Public Health 58: 333–339.