Independent links between plasma xanthine oxidoreductase activity and levels of adipokines

Masato Furuhashi1*, Megumi Matsumoto1, Takayo Murase2, Takashi Nakamura2, Yukimura Higashiura1, Masayuki Koyama1,3, Mareno Tanaka1, Norihito Moniwa1, Hirofumi Ohnishi1,3, Shigeyuki Saitoh1,4, Kazuaki Shimamoto5, Tetsuji Miura1

1Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, 2Sanwa Kagaku Kenkyusho Co., Ltd., Inabe, 3Department of Public Health, School of Medicine, Sapporo Medical University School of Medicine, 4Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences, and 5Japan Health Care College, Sapporo, Japan

Keywords
Adipokine, Insulin resistance, Uric acid

*Correspondence
Masato Furuhashi
Tel: +81-11-611-2111
Fax: +81-11-644-7958
E-mail address: furuhashi@sapmed.ac.jp

J Diabetes Investig 2019; 10: 1059–1067
doi: 10.1111/jdi.12982

ABSTRACT
Aims/Introduction: Xanthine oxidoreductase (XOR) is a rate-limiting enzyme that catalyzes uric acid formation in the purine metabolism, is involved in an increase in reactive oxygen species. Plasma XOR activity has been shown to be associated with obesity, smoking, liver dysfunction, hyperuricemia, dyslipidemia and insulin resistance.

Materials and Methods: The association between plasma XOR activity, measured by using liquid chromatography and mass spectrometry, and levels of adipokines, including adiponectin, fatty acid-binding protein 4 (FABP4) and fibroblast growth factor 21 (FGF21), was investigated in 282 participants (male/female: 126/156) of the Tanno-Sobetsu Study who were not taking medication.

Results: Women had lower plasma XOR activity than did men. Smoking habit was associated with increased activity. Plasma XOR activity was positively correlated with concentrations of FABP4 ($r = 0.192$, $P < 0.001$) and FGF21 ($r = 0.208$, $P < 0.001$), homeostasis model assessment of insulin resistance as an index of insulin resistance and uric acid, and was negatively correlated with adiponectin level ($r = -0.243$, $P = 0.001$). Multivariate regression analyses showed that levels of adiponectin, FABP4 and FGF21 were independent determinants of plasma XOR activity after adjusting age, sex, uric acid and homeostasis model assessment of insulin resistance. With additional adjustment of smoking habit, the level of FABP4, but not that of adiponectin or FGF21, remained as an independent predictor of plasma XOR activity.

Conclusions: Plasma XOR activity was independently associated with levels of adipokines in a general population of individuals not taking medication.

INTRODUCTION
Xanthine oxidoreductase (XOR) is a rate-limiting enzyme that catalyzes the formation of uric acid by the oxidative hydroxylation of hypoxanthine and xanthine in the purine metabolism. XOR is transcribed and translated as xanthine dehydrogenase, which reduces oxidized nicotinamide adenine dinucleotide to the reduced form of nicotinamide adenine dinucleotide, and can be post-translationally converted to xanthine oxidase, which consumes oxygen to produce hydrogen peroxide and superoxide. Activation of XOR can increase reactive oxygen species and cause oxidative stress-induced injury in several tissues. However, measurement of plasma XOR activity has been difficult because of very low activity in humans. An accurate method for measuring plasma XOR activity in humans has recently been developed using liquid chromatography and triple quadrupole...
mass spectrometry. Using this method, we and others have recently shown that plasma XOR activity is independently associated with obesity, smoking, liver dysfunction, hyperuricemia, dyslipidemia and insulin resistance, suggesting that plasma XOR activity might be a new metabolic biomarker.

Adipose tissue can secrete several hormones called adipokines, including adiponectin, fatty acid-binding protein 4 (FABP4) and fibroblast growth factor 21 (FGF21). Adiponectin, which is abundantly expressed in adipocytes, directly increases insulin sensitivity, and protects against initiation and progression of atherosclerosis. FABP4, also known as adipocyte fatty acid-binding protein (A-FABP) or aP2, is expressed in adipocytes and macrophages, and is related to the development of insulin resistance and atherosclerosis. FGF21 is expressed in several metabolic organs, including fat, liver and skeletal muscle, with profound effects and therapeutic relevance. FGF21 derived from adipocytes, hepatocytes and myocytes has been reported to induce the browning of fat, activate the response to cold exposure in brown adipocytes, and protect against diet-induced insulin resistance, atherosclerosis and cardiac hypertrophy.

It has been shown that XOR is abundantly expressed in adipose tissue of mice and can promote the production of uric acid, which is related to obesity-induced insulin resistance. However, little is known about the association between plasma XOR activity and adipokines. Several drugs have been reported to modulate levels of adiponectin, FABP4 and FGF21. Therefore, we investigated the links between plasma XOR activity and adipokines, including adiponectin, FABP4 and FGF21, in the general population.

METHODS

Study Participants

In a population-based cohort, the Tanno-Sobetsu Study, a total of 627 Japanese participants (male/female: 292/335) were recruited from residents of Sobetsu Town in 2016. This population was the same as that in our previous study for investigating plasma XOR activity. Participants treated with any medications were excluded for the elimination of drug effects on plasma XOR activity and adipokines, and participants not taking any medication \((n = 282, \text{male/female: 126}/156)\) were enrolled. Medical checkups, including measurement of blood pressure and calculation of body mass index (BMI), and collection of blood samples were carried out as previously described. This study was approved with the ethics committee of Sapporo Medical University, and was carried out in accordance with the Declaration of Helsinki. Informed consent was obtained from all of the study participants.

Measurements

Concentrations of adiponectin, FABP4 and FGF21 were measured using enzyme-linked immunosorbent assays kits for adiponectin (R&D Systems, Minneapolis, MN, USA), FABP4 (Biovendor, Modrice, Czech Republic) and FGF21 (R&D Systems), respectively.Variables of liver function, renal function, glucose and lipid metabolism were measured as previously described. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated as insulin (\(\mu U/mL\)) × glucose (mg/dL) / 405.

Plasma XOR Activity

Plasma XOR activity was measured by using a combination of liquid chromatography and triple quadrupole mass spectrometry to detect \([^{15}C_2, ^{15}N_2]\)-uric acid using \([^{15}C_2, ^{15}N_2]\)-xanthine as a substrate, as previously reported. Inter- and intra-assay coefficients of variation were 9.1 and 6.5%, respectively, and the lower limit of detection was 6.67 pmol/h/mL plasma.

Statistical Analysis

Variables are presented as the mean ± standard deviation for normal distributions, or medians (interquartile ranges) for skewed variables. The normality of each variable was tested by the Shapiro–Wilk W-test. Comparison between two groups for parametric and non-parametric parameters was carried out by the Student’s t-test and the Mann–Whitney U-test, respectively. The \(\chi^2\)-test was carried out for intergroup differences in percentages of parameters. A Pearson’s correlation analysis was carried out for the correlation between two variables. Non-normally distributed variables were logarithmically transformed for regression analyses. Multivariate regression analyses were carried out to identify independent links between plasma XOR activity and adipokines, including adiponectin, FABP4 and FGF21, after adjustment of age, sex, smoking habit and levels of uric acid, and HOMA-IR by several models, showing the standardized regression coefficient (\(\beta\)) and the percentage of variance for the selected independent predictors explained (\(R^2\)). Statistical significance was determined as a P-value <0.05. JMP 9 software for Macintosh (SAS Institute, Cary, NC, USA) was used for statistical analyses.

RESULTS

Basal Characteristics of the Studied Participants

Basal characteristics of the 282 recruited participants not taking any medications (male/female: 126/156) are shown in Table 1. The numbers of participants with smoking and drinking habits were 68 (24.1%) and 118 (41.8%), respectively. Hypertension (systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg), diabetes mellitus (a combination of hemoglobin A1c ≥6.5% and fasting glucose ≥126 mg/dL), dyslipidemia (low-density lipoprotein cholesterol ≥140 mg/dL, high-density lipoprotein [HDL] cholesterol <40 mg/dL or triglycerides ≥150 mg/dL) and hyperuricemia (uric acid >7 mg/dL) were found in 76, 3, 128 and 25 participants, respectively. Women had significantly lower adiposity, including BMI and waist circumference; significantly lower frequencies of current smoking and drinking habits; and lower levels of blood pressure, liver enzymes and parameters of renal function, and glucose and lipid metabolism except for cholesterol than did men. Levels
Table 1 | Characteristics of the participants not taking medication

Characteristic	Total (n = 282)	Male (n = 126)	Female (n = 156)	P
Age (years)	56 ± 16	55 ± 17	57 ± 16	0.425
Body mass index (kg/m²)	22.8 ± 3.8	23.7 ± 3.6	22.0 ± 3.8	<0.001
Waist circumference (cm)	83.2 ± 11.4	85.7 ± 10.9	81.3 ± 11.4	0.001
Systolic blood pressure (mmHg)	127 ± 20	131 ± 17	124 ± 21	0.009
Diastolic blood pressure (mmHg)	75 ± 11	76 ± 10	73 ± 11	0.031
Pulse rate (b.p.m)	70 ± 11	69 ± 12	71 ± 11	0.108
Smoking habit	68 (24.1)	40 (31.7)	28 (17.9)	0.007
Alcohol drinking habit	118 (41.8)	68 (54.0)	50 (32.1)	<0.001
Disease				
Hypertension	76 (27.0)	35 (27.8)	41 (26.3)	0.789
Diabetes mellitus	3 (1.1)	3 (2.4)	0 (0)	0.088
Dyslipidemia	128 (45.3)	53 (42.1)	75 (48.1)	0.337
Hyperuricemia	25 (8.9)	22 (17.5)	3 (1.9)	<0.001
Biochemical data				
AST (IU/L)	22 (19–26)	22 (20–27)	21 (18–25)	0.008
ALT (IU/L)	18 (14–24)	21 (16–29)	16 (13–20)	<0.001
γ-GTP (IU/L)	21 (15–32)	26 (20–39)	17 (14–27)	<0.001
Blood urea nitrogen (mg/dL)	15 ± 4	15 ± 4	15 ± 4	0.091
Creatinine (mg/dL)	0.8 (0.7–0.9)	0.9 (0.8–0.9)	0.7 (0.6–0.8)	<0.001
eGFR (mL/min/1.73 m²)	73 ± 15	76 ± 16	71 ± 14	0.004
Uric acid (mg/dL)	5.2 ± 1.3	6.0 ± 1.1	4.6 ± 1.0	<0.001
Total cholesterol (mg/dL)	213 ± 38	201 ± 35	223 ± 38	<0.001
LDL cholesterol (mg/dL)	125 ± 34	118 ± 31	132 ± 35	0.001
HDL cholesterol (mg/dL)	63 ± 17	56 ± 15	70 ± 16	<0.001
Triglycerides (mg/dL)	83 (60–116)	92 (65–148)	76 (54–107)	0.001
Fasting glucose (mg/dL)	89 (85–95)	92 (86–98)	89 (83–93)	0.001
Insulin (µU/mL)	8.4 (3.9–17.6)	9.6 (4.4–20.0)	7.3 (3.4–14.3)	0.036
HOMA-IR	1.80 (0.88–4.03)	2.23 (1.05–4.49)	1.55 (0.84–3.32)	0.015
HbA1c (%)	5.4 (5.1–5.6)	5.4 (5.2–5.6)	5.3 (5.1–5.6)	0.015
Adiponectin (µg/mL)	7.1 (4.7–10.6)	5.4 (3.7–8.0)	9.0 (6.2–12.5)	<0.001
FABP4 (ng/mL)	10.1 (6.2–16.7)	8.7 (5.6–15.5)	11.2 (6.9–17.1)	0.038
FGF21 (pg/mL)	96 (58–149)	105 (69–158)	91 (53–140)	0.020
XOR (pmol/l/mL plasma)	32 (19–58)	44 (22–82)	26 (18–45)	<0.001

Variables are expressed as number (%), mean ± standard deviation or median (interquartile range). γ-GTP, γ-glutamyl transpeptidase; ALT, alanine transaminase; AST, aspartate transaminase; eGFR, estimated glomerular filtration rate; FABP4, fatty acid-binding protein 4; FGF21, fibroblast growth factor 21; HbA1c, hemoglobin A1c; HOMA-IR, homeostasis model assessment of insulin resistance; XOR, xanthine oxidoreductase.

of plasma XOR activity and FGF21 were significantly higher in men than in women. Levels of adiponectin and FABP4 were lower in men than in women.

Correlations of Plasma XOR Activity with Clinical Variables
Plasma XOR activity was significantly lower in participants without a smoking habit than in those with a smoking habit (Figure 1a). No significant difference was found between plasma XOR activities in participants with and those without an alcohol drinking habit. As shown in Table 2, plasma XOR activity was positively correlated with adiposity, diastolic blood pressure, and levels of liver enzymes, estimated glomerular filtration rate (eGFR), triglycerides, fasting glucose, insulin, hemoglobin A1c, uric acid, HOMA-IR,homeostasis model assessment of insulin resistance, XOR, and FGF21 (Figure 1e), and was negatively correlated with concentrations of adiponectin (Figure 1f) and HDL cholesterol. Similar correlations of parameters were found when sex was separately analyzed (Table 2).

Correlations of Levels of Adipokines with Clinical Variables
As shown in Table S1, adiponectin concentration was positively correlated with age and HDL cholesterol level, and was negatively correlated with adiposity and levels of alanine aminotransferase (ALT), γ-glutamyl transpeptidase, uric acid, eGFR, triglycerides, parameters of glucose metabolism and plasma XOR activity. Similar correlations of adiponectin level with age, adiposity, and levels of eGFR, HDL cholesterol and triglycerides were found when sex was separately analyzed. Adiponectin level was not significantly correlated with levels of other adipokines, FABP4 and FGF21.

As shown in Table S2, FABP4 concentration was positively correlated with age, adiposity, systolic blood pressure and levels...
Males: $r = 0.312, P < 0.001$
Females: $r = 0.175, P = 0.029$

Males: $r = 0.284, P = 0.002$
Females: $r = 0.328, P < 0.001$

Males: $r = 0.284, P = 0.002$
Females: $r = 0.328, P < 0.001$

Males: $r = 0.230, P = 0.002$
Females: $r = 0.241, P = 0.002$

Males: $r = 0.199, P = 0.026$
Females: $r = 0.165, P = 0.039$

Males: $r = -0.204, P = 0.022$
Females: $r = -0.104, P = 0.195$

All subjects
$n = 282, M/F: 126/156$
$r = 0.346, P < 0.001$

All subjects
$n = 282, M/F: 126/156$
$r = 0.327, P < 0.001$

All subjects
$n = 282, M/F: 126/156$
$r = 0.192, P = 0.001$

All subjects
$n = 282, M/F: 126/156$
$r = -0.243, P < 0.001$

All subjects
$n = 282, M/F: 126/156$
$r = 0.208, P < 0.001$
of aspartate transaminase (AST), ALT, low-density lipoprotein cholesterol, total cholesterol, triglycerides, parameters of glucose metabolism, FGF21 and plasma XOR activity, and was negatively correlated with eGFR and HDL cholesterol level. Similar correlations of FABP4 level with adiposity, systolic blood pressure, and levels of AST, ALT, HDL cholesterol, triglycerides, hemoglobin A1c, FGF21 and plasma XOR activity were found when sex was separately analyzed.

As shown in Table S3, FGF21 concentration was positively correlated with age, adiposity, pulse rate, blood pressure, and levels of AST, ALT, γ-glutamyl transpeptidase, uric acid, triglycerides, FABP4 and plasma XOR activity, and was negatively correlated with levels of blood urea nitrogen and HDL cholesterol. Similar correlations of FGF21 level with diastolic blood pressure, and levels of triglycerides, AST, γ-glutamyl transpeptidase, FABP4 and plasma XOR activity were found when sex was separately analyzed.

Associations Between Plasma XOR Activity and Adipokines

As shown in Table 3, multivariate regression analyses showed that the level of adiponectin, FABP4 or FGF21 was independently related to plasma XOR activity after adjusting age and sex (model 1). When BMI was incorporated into the adjustment (model 2), the level of FGF21, but not that of adiponectin or FABP4, was an independent predictor of plasma XOR activity. When uric acid (model 3) or uric acid and HOMA-IR (model 4) instead of BMI were incorporated into the adjustment in model 1, the level of adiponectin, FABP4 or FGF21 was an independent predictor of plasma XOR activity. With additional adjustment of uric acid, HOMA-IR and smoking...
habit (model 5), the level of FABP4, but not that of FGF21 or adiponectin, remained as an independent determinant of plasma XOR activity, explaining 25.0% of the variance ($R^2 = 0.250$).

DISCUSSION

Plasma XOR activity was independently linked to levels of adipokines in the general population of participants with no medication. Levels of adiponectin, FABP4 and FGF21 were independently correlated with plasma XOR activity after adjusting age, sex, insulin resistance and uric acid level. After additional adjustment of smoking habit, the level of FABP4, but not that of adiponectin or FGF21, was still an independent predictor of plasma XOR activity. It has been previously and preliminarily reported that plasma XOR activity measured by the same assay was positively correlated with insulin resistance and negatively correlated with adiponectin level in 29 young participants (mean age 25.9 years)\(^6\). In the present study using a large number of participants not taking any medication ($n = 282$), we showed independent links between plasma XOR activity and levels of adipokines, not only

Table 3 | Multivariate regression analysis for log xanthine oxidoreductase activity

	Log adiponectin	Log FABP4	Log FGF21						
	β	P	R^2	β	P	R^2	β	P	R^2
Model 1	-0.183	0.005	0.098	0.233	<0.001	0.126	0.175	0.003	0.104
Model 2	-0.089	0.157	0.214	0.090	0.136	0.216	0.146	0.007	0.227
Model 3	-0.161	0.011	0.151	0.189	0.001	0.166	0.146	0.011	0.152
Model 4	-0.133	0.033	0.225	0.149	0.010	0.236	0.126	0.027	0.226
Model 5	-0.124	0.052	0.242	0.135	0.022	0.250	0.068	0.255	0.234

Standardized regression coefficient (β). Model 1, adjusted for age and sex. Model 2, adjusted for model 1 + body mass index. Model 3, adjusted for model 1 + uric acid. Model 4, adjusted for model 3 + log homeostasis model assessment of insulin resistance. Model 5, adjusted for model 4 + smoking habit. FABP4, fatty acid-binding protein 4; FGF21, fibroblast growth factor 21.
adiponectin, but also FABP4 and FGF21. Speculation of possible mechanisms about the association between XOR and adipokines is shown in Figure 2.

Adiponectin, a favorable adipokine, is a molecule regulated by peroxisome proliferator-activated receptor γ (PPARγ). Treatment with thiazolidinediones, PPARγ agonists, increases the expression and circulating level of adiponectin. It has been shown that gene expression of XOR is abundant in fat tissue of mice and is increased in visceral fat in the obese condition. XOR has also been shown to regulate adipocyte differentiation in an early stage by the activation of PPARγ. Knockdown of XOR decreased the expression of PPARγ and inhibited adipocyte differentiation, whereas overexpression of XOR increased PPARγ activity, but decreased the expression of PPARγ, resulting in inhibition of adipogenesis. One possible reason for the inverse correlation between XOR activity and adiponectin level is that robust activation of XOR might decrease the expression of adiponectin through reduced expression of PPARγ in adipose tissue (Figure 2).

It has previously been shown that a small molecule FABP4 inhibitor might be a new therapy for insulin resistance and atherosclerosis. FABP4 is non-classically secreted from adipocytes in connection with lipolysis, although the amino acid sequence of FABP4 has no signal peptides for secretion. Previous studies showed that circulating FABP4 can act as an adipokine, and directly develop insulin resistance and atherosclerosis in vitro and in vivo, suggesting that circulating FABP4 might directly affect plasma XOR activity. Conversely, increased XOR activity might increase circulating FABP4 concentration through augmentation of lipolysis (Figure 2), as it has recently been reported that febuxostat, an XOR inhibitor, attenuates lipolysis in adipose tissue.

FGF21 is an endocrine molecule for regulating glucose and lipid metabolism. Treatment with FGF21 has been shown to improve glucose and lipid homeostasis, increase the number of brown adipocytes, preserve β-cell functions, ameliorate hepatic steatosis, and decrease atherosclerosis. FGF21 concentration has been shown to be increased in several aspects of metabolic syndrome, indicating the presence of a compensatory response to higher metabolic stress or resistance to FGF21. As FGF21 is widely expressed and secreted in metabolic organs including fat tissue, liver and skeletal muscle, FGF21 has been proposed as a complex biological molecule, such as an adipokine, hepatokine or myokine. In the present study, the level of FGF21, but not that of adiponectin or FABP4, was independently associated with plasma XOR activity after adjustment of age, sex and BMI. Furthermore, XOR activity was strongly correlated with liver enzymes, AST and ALT. FGF21 derived from the liver might be mainly associated with XOR activity (Figure 2). The present study also showed that FGF21 concentration was positively correlated with FABP4 concentration, as shown in a previous study. It has been reported that FGF21 induces lipolysis during normal feeding in white fat tissue, probably leading to an increased circulating FABP4 level caused by lipolysis-related secretion of FABP4 from adipocytes in a non-classical pathway. FABP4 might participate in the counteraction of FGF21 or resistance to FGF21.

Xanthine oxidoreductase is expressed as the xanthine dehydrogenase form in tissues, and it leaks into the blood and consequently converts to the xanthine oxidase form. Xanthine oxidase is shed by an organ without non-specific membrane damage into plasma, and is partially bound to sulfated glycosaminoglycans on the surface of vascular endothelial cells. It has been reported that activation of endothelium-bound XOR can inhibit endothelial nitric oxide production and impair vasodilatory reaction. In contrast, T-cadherin-mediated accumulation of adiponectin in the endothelium plays a protective role against neointimal and atherosclerotic plaque formation. Ectopic expression of FABP4 in endothelial cells has also been reported to contribute to neointima formation and organ damage. Plasma XOR activity might reflect endothelial dysfunction in association with adipokines in endothelial cells.

It has been suggested that high plasma XOR activity is a metabolic parameter that is superior to uric acid level, and that adequately inhibiting plasma XOR activity unless lowering uric acid would be a new therapeutic strategy for treatment of metabolic and cardiovascular diseases. It has also been reported that unexpected high plasma XOR activities possibly associated with liver dysfunction and insulin resistance are found in some women with a relatively low level of uric acid in a general population. There have been some interventional investigations on the effects of XOR inhibitors, including allopurinol, febuxostat and topiroxostat, on adipokine levels in humans, but results showed that XOR inhibitors did not significantly change levels of adipokines. Possible interventions for adipokines, including adiponectin receptor agonists, FABP4 inhibitors and FGF21 analogs, have been postulated in metabolic and cardiovascular diseases. It is possible that modulations of adipokines using adiponectin receptor agonists, FABP4 inhibitors or FGF21 analogs might contribute to the regulation of XOR activity, and the prognosis of metabolic and cardiovascular diseases in humans.

The present study had some limitations. First, the results in the present study do not prove causal relations between plasma XOR activity and correlated biomarkers because of a cross-sectional study. Second, as only Japanese people were enrolled, the results in the present study might not correspond to other races. Third, several related biomarkers, including oxidative stress, other adipokines and free fatty acids as ligands of FABP4, were not examined in the present study owing to the lack of remaining blood samples. Finally, measurement of plasma XOR activity is varied in laboratories. Values of plasma XOR activity are not comparable with those measured in other laboratories using different assay protocols.

In conclusion, plasma XOR activity is independently linked to several adipokines, including FABP4, adiponectin and FGF21, in the general population of individuals not taking medication. Measurement of XOR activity might contribute to
finding potentially high-risk patients with metabolic disorders and/or cardiovascular diseases. Further understanding of the associations between plasma XOR activity and levels of adipokines might enable the development of novel therapies for metabolic and cardiovascular diseases.

ACKNOWLEDGMENTS
Masato Furuhashi was supported by a grant from the Japan Society for the Promotion of Science.

DISCLOSURE
Takayo Murase and Takashi Nakamura at Sanwa Kagaku Kenkyusho Co., Ltd. developed the assay of plasma XOR activity and measured the activity. This does not alter our adherence about sharing data and materials. The other authors declare no conflict of interest.

REFERENCES
1. Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem 2015; 20: 195–207.
2. Battelli MG, Bolognesi A, Polito L. Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim Biophys Acta 2014; 1842: 1502–1517.
3. Kelley EE. A new paradigm for XOR-catalyzed reactive species generation in the endothelium. Pharmacol Rep 2015; 67: 669–674.
4. Parks DA, Granger DN. Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl 1986; 548: 87–99.
5. Murase T, Nampei M, Oka M, et al. A highly sensitive assay of human plasma xanthine oxidoreductase activity using stable isotope-labeled xanthine and LC/TQMS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1039: 51–58.
6. Washio KW, Kusunoki Y, Murase T, et al. Xanthine oxidoreductase activity is correlated with insulin resistance and subclinical inflammation in young humans. Metabolism 2017; 70: 51–56.
7. Furuhashi M, Matsumoto M, Tanaka M, et al. Plasma xanthine oxidoreductase activity as a novel biomarker of metabolic disorders in a general population. Circ J 2018; 82: 1892–1899.
8. Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116: 1784–1792.
9. Furuhashi M, Fucho R, Gorgun CZ, et al. Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J Clin Invest 2008; 118: 2640–2650.
10. Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 2008; 7: 489–503.
11. Furuhashi M, Saitoh S, Shimamoto K, et al. Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin Med Insights Cardiol 2014; 8: 23–33.
12. Itoh N. FGF21 as a hepatokine, adipokine, and myokine in metabolism and diseases. Front Endocrinol (Lausanne) 2014; 5: 107.
13. Xie T, Leung PS. Fibroblast growth factor 21: a regulator of metabolic disease and health span. Am J Physiol Endocrinol Metab 2017; 313: E292–E302.
14. Lee P, Brychta RJ, Linderman J, et al. Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J Clin Endocrinol Metab 2013; 98: E98–E102.
15. Lee P, Linderman JD, Smith S, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 2014; 19: 302–309.
16. Kharitonov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115: 1627–1635.
17. Lin Z, Pan X, Wu F, et al. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 2015; 131: 1861–1871.
18. Planavila A, Redondo I, Hondares E, et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun 2013; 4: 2019.
19. Tsushima Y, Nishizawa H, Tochino Y, et al. Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem 2013; 288: 27138–27149.
20. Furuhashi M, Ura N, Higashiura K, et al. Citation of interest. Cell Metab 2017; 313: E292–E302.
21. Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50: 2094–2099.
22. Furuhashi M, Hiramitsu S, Mita T, et al. Reduction of serum FABP4 level by sitagliptin, a DPP-4 inhibitor, in patients with type 2 diabetes mellitus. J Lipid Res 2015; 56: 2372–2380.
23. Furuhashi M, Hiramitsu S, Mita T, et al. Angiotensin II receptor blockers decrease serum concentration of fatty acid-binding protein 4 in patients with hypertension. Hypertension 2015; 38: 252–259.
24. Galman C, Lundasen T, Kharitonov A, et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 2008; 8: 169–174.
25. Cheung KJ, Tzameli I, Pissios P, et al. Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab 2007; 5: 115–128.
26. Furuhashi M, Tuncman G, Gorgun CZ, et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein p2. Nature 2007; 447: 959–965.
27. Mita T, Furuhashi M, Hiramitsu S, et al. FABP4 is secreted from adipocytes by adenylyl cyclase-PKA- and guanylyl cyclase-PKG-dependent lipolytic mechanisms. Obesity (Silver Spring) 2015; 23: 359–367.

28. Cao H, Sekiya M, Ertunc ME, et al. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab 2013; 17: 768–778.

29. Furuhashi M, Fuseya T, Murata M, et al. Local production of fatty acid-binding protein 4 in epicardial/perivascular fat and macrophages is linked to coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36: 825–834.

30. Furuhashi M, Fuseya T, Matsumoto M, et al. Ectopic fatty acid-binding protein 4 expression in the vascular endothelium is involved in neointima formation after vascular injury. J Am Heart Assoc 2017; 6: e006377.

31. Yisireyili M, Hayashi M, Wu H, et al. Xanthine oxidase inhibition by febuxostat attenuates stress-induced hyperuricemia, glucose dysmetabolism, and prothrombotic state in mice. Sci Rep 2017; 7: 1266.

32. Wentz W, Efanov AM, Brenner M, et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006; 55: 2470–2478.

33. Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 2009; 58: 250–259.

34. Zhang X, Yeung DC, Karpisek M, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008; 57: 1246–1253.

35. Chow WS, Xu A, Woo YC, et al. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors. Arterioscler Thromb Vasc Biol 2013; 33: 2454–2459.

36. Novotny D, Vaverkova H, Karasek D, et al. Evaluation of total adiponectin, adipocyte fatty acid binding protein and fibroblast growth factor 21 levels in individuals with metabolic syndrome. Physiol Res 2014; 63: 219–228.

37. Hotta Y, Nakamura H, Konishi M, et al. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 2009; 150: 4625–4633.

38. Amaya Y, Yamazaki K, Sato M, et al. Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J Biol Chem 1990; 265: 14170–14175.

39. Battelli MG, Abbondanza A, Strife P. Effects of hypoxia and ethanol on xanthine oxidase of isolated rat hepatocytes: conversion from D to O form and leakage from cells. Chem Biol Interact 1992; 83: 73–84.

40. Houston M, Esteeve A, Cheumley P, et al. Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and oxidative impairment of nitric oxide-dependent signaling. J Biol Chem 1999; 274: 4985–4994.

41. Fujishima Y, Maeda N, Matsuda K, et al. Adiponectin association with T-cadherin protects against neointima proliferation and atherosclerosis. FASEB J 2017; 31: 1571–1583.

42. Tanaka M, Furuhashi M, Okazaki Y, et al. Ectopic expression of fatty acid-binding protein 4 in the glomerulus is associated with proteinuria and renal dysfunction. Nephron Clin Pract 2014; 128: 345–351.

43. Furuhashi M, Mori K, Tanaka M, et al. Unexpected high plasma xanthine oxidoreductase activity in female subjects with low levels of uric acid. Endocr J 2018; 65: 1083–1092.

44. Inokuchi T, Tsutsumi Z, Takahashi S, et al. Effects of benzbromarone and allopurinol on adiponectin in vivo and in vitro. Horm Metab Res 2009; 41: 327–332.

45. Beddhu S, Filipowicz R, Wang B, et al. A randomized controlled trial of the effects of febuxostat therapy on adipokines and markers of kidney fibrosis in asymptomatic hyperuricemic patients with diabetic nephropathy. Can J Kidney Health Dis 2016; 3: 2054358116675343.

46. Hosoya T, Ohno I, Nomura S, et al. Effects of topiroxostat on the serum urate levels and urinary albumin excretion in hyperuricemic stage 3 chronic kidney disease patients with or without gout. Clin Exp Nephrol 2014; 18: 876–884.

47. Okada-Iwabu M, Yamauchi T, Iwabu M, et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 2013; 503: 493–499.

48. Mu J, Pinkstaff J, Li Z, et al. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes 2012; 61: 505–512.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 | Correlation analysis for log adiponectin.
Table S2 | Correlation analysis for log fatty acid-binding protein 4.
Table S3 | Correlation analysis for log fibroblast growth factor 21.