Modular synthesis of thirty lead-like scaffolds suitable for CNS drug discovery
Mayol-Llinàs, Joan; Farnaby, William; Nelson, Adam

Published in:
Chemical Communications

DOI:
10.1039/c7cc06078e

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Mayol-Llinàs, J., Farnaby, W., & Nelson, A. (2017). Modular synthesis of thirty lead-like scaffolds suitable for CNS drug discovery. Chemical Communications, 53(91), 12345-12348. DOI: 10.1039/c7cc06078e
Modular synthesis of thirty lead-like scaffolds suitable for CNS drug discovery†

Joan Mayol-Llina`s, a William Farnaby‡b and Adam Nelson*ac

A modular synthetic approach was developed that yielded thirty diverse lead-like scaffolds suitable for CNS drug discovery.

Controlling molecular properties is a challenge that is intrinsic to drug discovery.1 The challenge is intensified in central nervous system (CNS) programmes in order that CNS drugs are able to cross the blood–brain barrier.2 The properties of drugs differ from those of high-quality lead molecules since molecular weight, lipophilicity and complexity tend to increase during optimisation.3 Sourcing large numbers of lead-like screening compounds4 is, however, a significant challenge that is heightened by the limited scaffold diversity of historically explored chemical space.5 To address this challenge, the development of new synthetic methods to support discovery applications is being increasingly informed by prospective molecular property, diversity and novelty analyses.6,7 To facilitate the exploration of lead-like space for CNS drug discovery,6,8 we recently adapted a multi-parameter optimisation (MPO) system8 for scoring CNS drugs.9 We have now exploited our MPO scoring system to guide the development and exemplification of a unified synthetic approach to diverse sp3-rich lead-like scaffolds suitable for CNS drug discovery.11 In addition, the approach was designed to yield scaffolds adhering to accepted CNS design principles: small and rigid scaffolds8a that could yield screening compounds lacking functionality that could contribute to poor permeability and high efflux (e.g. carboxylate and sulfonyl groups and multiple amides, basic centres and hydrogen bond donors).8e

These characteristics were largely captured in our filtering and scoring process.

Our synthetic approach (Scheme 1) exploits cyclisation precursors 1 with an embedded ring system (blue) and up to four functional group handles (green, light blue, beige and yellow blobs). It was envisaged that product scaffolds would be formed by reaction between pairs of functional groups, in some cases in conjunction with an external reactant (red). Crucially, the approach should result in significant product scaffold diversity including fused (light blue to yellow e.g. 2; light blue to green e.g. 3), bridged (green to beige e.g. 4) and spirocyclic (green to yellow e.g. 5 and 6) ring systems.

A range of cyclisation precursors 1 was prepared (Scheme 2). For example, reaction of the lithium enolate of 7 with the carbonyl imidazole 8 (→ 9),12 and base-catalysed reaction with the α-NHBoc sulfone 10, gave the β-keto ester 11; Pd-catalysed
decarboxylative allylation13 then gave the exemplar cyclisation precursor \textit{1a} (panel A).

A toolkit of cyclisations was developed using the exemplar substrate \textit{1a} (Scheme 3). Initially, cyclisations to give fused...
scaffolds were investigated that involved the ketone (light blue) and either the alkene (yellow) or the Boc-protected amine (green) in the cyclisation precursor 1a. Hydroboration–oxidation of 1a gave the hemiacetal 12 which was reduced (Et₃SiH, TFA) to give, after reprotection, 13 as a single diastereomer. Ozonolysis of 1a gave the hemiaminals 14 which, on treatment with benzylamine and NaBH(OAc)₃, underwent double reductive amination to yield 15 as a 83:17 mixture of diastereomers. Alternatively, reduction of the ketone 1a with 'Bu₂AlH gave the corresponding secondary alcohol 16a which iodocyclised to give 17 with high diastereoselectivity. Finally, treatment of the alcohol 16a with 'BuOK gave the fused bicyclic carbamate 18.

Cyclisations between the distal α carbon (beige) and the Boc-protected amine (green) yielded bridged scaffolds. Thus, intramolecular Mannich reaction with either formaldehyde (→ 19) or benzaldehyde (→ 4) gave the bridged scaffolds.

Finally, cyclisations between the Boc-protected amine (green) and the alkene (yellow) in 1a gave spirocyclic scaffolds. Iodocyclisation of benzyl-protected 20 gave 21 (dias: 77:23), whilst Pd-catalysed aminoarylation with 3-bromopyridine gave the spirocycle 6. Alternatively, hydroboration–oxidation of acetyl-protected 22a, followed by sulfonylation and cyclisation, gave, after re-protection, the spirocycle 24 in 57% overall yield. Finally, ozonolysis of 22a gave a mixture of hemiaminals 25 that

Scheme 4 Eighteen additional scaffolds prepared using the prioritised cyclisation toolkit. Standard methods: A: disiamylborane, THF, 0 °C then NaBO₂,4H₂O, THF–H₂O; B: Et₃SiH, TFA, CH₂Cl₂ then Boc₂O, Et₃N, CH₂Cl₂; C: O₃, CH₂Cl₂, −78 °C then Me₂S, CH₂Cl₂; E: 'Bu₂AlH, CH₂Cl₂, −78 °C; G: 'BuOK, THF, 0 °C; L: Ac₂O, pyridine; M: MsCl, Et₃N, CH₂Cl₂ then TFA, CH₂Cl₂ then Et₃N, CH₂Cl₂ then Boc₂O, Et₃N, CH₂Cl₂; N: PDC, celite, CH₂Cl₂; O: NaBH(OAc)₃, AcOH. See ESI† for diastereoselectivities. *See ESI† for details of method variations.
could be converted into three different spirocyclic scaffolds: oxidation with PDC gave the γ-lactam 26; reduction with NaBH(OAc)$_3$ in AcOH gave 27; and conversion into the aminals 28 and treatment with PhMgBr and CuBr-Me$_2$S gave 29.

In total, twelve scaffolds were prepared from the precursor 1a using the toolkit of cyclisation reactions. High scaffold diversity was possible, with product scaffolds based on fused, spiro and bridged bicyclic ring systems. The toolkit of cyclisations was exploited in the synthesis of additional scaffolds by changing the precursor 1 (Scheme 4). Product scaffolds were selected on the basis of the potential of their derivatives to serve as high-quality leads for CNS drug discovery. Thus, potential scaffolds were decorated once or twice with exemplar capping groups, and the CNS lead-likeness of the resulting virtual compounds scored (see ref. 9 and ESI†).

Thus, desirability scores (0.05–1) were determined for six properties (clogP; clogD at pH 7.4; pK_a, number of H bond donors; molecular weight; and topological polar surface area), and summed to give a CNS Lead MPO score (0.3–6) (Fig. 1). The approach was also highly efficient, delivering 30 scaffolds in a total of 51 steps from the precursors 1a–g. We note that, in addition to specific application in CNS drug discovery, simple derivatives of scaffolds would be highly distinctive fragments with suitable properties for fragment-based discovery.

In conclusion, a highly modular and efficient approach for the synthesis of structurally diverse molecular scaffolds was developed. Crucially, it was demonstrated that independent variation of the rings within the scaffolds was possible, enabling the synthesis of thirty diverse and lead-like molecular scaffolds suitable for CNS drug discovery programmes. We thank Takeda, the University of Leeds and EPSRC (EP/N025652/1) for funding, and Dr Andrew Ayscough for discussions.

Conflicts of interest

There are no conflicts to declare.

Notes and references

1 C. A. Lipinski, Drug Discovery Today, 2004, 1, 337.
2 (a) Z. Rankovic, J. Med. Chem., 2015, 58, 2584; (b) Z. Rankovic, J. Med. Chem., 2017, 60, 5943.
3 S. J. Teague, A. M. Davis, P. D. Leeson and T. Oprea, Angew. Chem., Int. Ed., 1999, 38, 3743.
4 A. Nadin, C. Hattotuwagama and I. Churcher, Angew. Chem., Int. Ed., 2012, 51, 1114.
5 (a) A. H. Lipkus, Q. Yuan, K. A. Lucas, S. A. Funk, W. F. Bartlett III, R. J. Schenck and A. J. Tripe, J. Org. Chem., 2008, 73, 4443; (b) M. Garcia-Castro, S. Zimmermann, M. G. Sankar and K. Kumar, Angew. Chem., Int. Ed., 2016, 55, 7586; (c) S. R. Langdon, N. Brown and J. Blagg, J. Chem. Inf. Model., 2011, 51, 2174.
6 (a) D. Foley, A. Nelson and S. Marsden, Angew. Chem., Int. Ed., 2016, 55, 13650; (b) I. Colomer, C. J. Empon, P. Craven, Z. Owen, R. G. Doveston, I. Churcher, S. P. Marsden and A. Nelson, Chem. Commun., 2016, 52, 7209.
7 See: (a) A. V. Borisov, V. V. Voloshchuk, M. D. Nechayev and O. O. Grygorenko, Synthesis, 2013, 2413; (b) R. G. Doveston, P. Tosatti, M. Dow, D. J. Foley, H. Y. Li, A. J. Campbell, D. House, I. Churcher, S. P. Marsden and A. Nelson, Org. Biomol. Chem., 2015, 13, 859; (c) M. Lüthy, M. C. Wheldon, C. Haji-Chetel, M. Atobe, P. S. Bond, P. O’Brien, R. E. Hubbard and I. J. S. Fairlamb, Bioorg. Med. Chem., 2015, 23, 2680.
8 (a) A. K. Ghose, T. Herbertz, R. L. Hudkins, B. D. Dorsey and J. P. Mallamo, ACS Chem. Neurosci., 2012, 3, 50; (b) T. T. Wager, X. Hou, P. R. Verhoeast and A. Villalobos, ACS Chem. Neurosci., 2010, 1, 435; (c) H. Gunaydin, ACS Med. Chem. Lett., 2016, 7, 89; (d) T. T. Wager, X. Hou, P. R. Verhoeast and A. Villalobos, ACS Chem. Neurosci., 2016, 7, 767; (e) S. A. Hitchcock, J. Med. Chem., 2012, 55, 4877.
9 J. Mayol-Llinás, A. Nelson, W. Farbary and A. Ayscough, Drug Discovery Today, 2017, 22, 965.
10 F. Lovering, J. Bikker and C. Humblet, J. Med. Chem., 2009, 52, 6752.
11 For an approach to the synthesis of scaffolds for CNS drug discovery, see: J. T. Lowe, M. D. Lee IV, L. B. Akella, E. Davoine, E. J. Doncecke, L. Durak, J. R. Duvall, B. Gerard, E. B. Holson, A. Joliton, S. Kesavan, B. C. Lemercier, H. Liu, J. Marie, C. A. Mulrooney, G. Muncipinto, M. Welzel-O’Shea, L. M. Panko, A. Rowley, B. Suh, M. Thomas, F. F. Wagner, J. Wei, M. A. Foley and L. A. Marcaurelle, J. Org. Chem., 2012, 77, 7187.
12 B. M. Trost and J. Xu, J. Org. Chem., 2007, 72, 9372.
13 Y. Numajiri, B. P. Pritchett, K. Chiyoda and B. M. Stoltz, J. Am. Chem. Soc., 2015, 137, 1040.
14 (a) D. Stead, P. O’Brien and A. J. Sanderson, Org. Lett., 2005, 7, 4459; (b) H. Brice, D. M. Gill, L. Goldie, P. S. Keegan, W. J. Kerr and P. H. Svensson, Chem. Commun., 2012, 48, 4836.
15 M. B. Bertrand, M. L. Leatthen and J. P. Wolfe, Org. Lett., 2007, 9, 457.
16 Capturing graph-node-bond frameworks and multiple bonds to 2 atoms.
17 Some cyclisations were not possible with specific precursors (e.g. no ketone in 1c; no NHBOc in 1f or 1g) or were deprotonated due to poor leadlikeness (e.g. two lactams with 1c and methods C,N).
18 Counted steps resulted in isolated and characterised compounds.
19 (a) C. W. Murray and D. C. Rees, Angew. Chem., Int. Ed., 2016, 55, 4881; (b) A. D. Morley, A. Pugliese, K. Birchall, J. Bowler, P. Brennan, N. Brown, T. Chapman, M. Drysdale, I. H. Gilbert, S. Hoedler, A. Jordon, S. V. Ley, A. Merritt, D. Miller, M. E. Swarbrick and P. G. Wyatt, Drug Discovery Today, 2013, 18, 1221.