Research Article

Identification and Analysis of Novel Amino-Acid Sequence Repeats in *Bacillus anthracis* str. *Ames* Proteome Using Computational Tools

G. R. Hemalatha, D. Satyanarayana Rao, and L. Guruprasad

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India

Received 7 August 2006; Revised 6 December 2006; Accepted 9 December 2006

Recommended by Stephen Oliver

We have identified four repeats and ten domains that are novel in proteins encoded by the *Bacillus anthracis* str. *Ames* proteome using automated in silico methods. A “repeat” corresponds to a region comprising less than 55-amino-acid residues that occur more than once in the protein sequence and sometimes present in tandem. A “domain” corresponds to a conserved region with greater than 55-amino-acid residues and may be present as single or multiple copies in the protein sequence. These correspond to (1) 57-amino-acid-residue PxV domain, (2) 122-amino-acid-residue FxF domain, (3) 111-amino-acid-residue YEFF domain, (4) 109-amino-acid-residue IMxxH domain, (5) 103-amino-acid-residue VxxT domain, (6) 84-amino-acid-residue ExW domain, (7) 104-amino-acid-residue NTGFIG domain, (8) 36-amino-acid-residue NxGK repeat, (9) 95-amino-acid-residue VYV domain, (10) 75-amino-acid-residue KEWE domain, (11) 59-amino-acid-residue AFL domain, (12) 53-amino-acid-residue RIDVK repeat, (13) (a) 41-amino-acid-residue AGQF repeat and (b) 42-amino-acid-residue GSAL repeat. A repeat or domain type is characterized by specific conserved sequence motifs. We discuss the presence of these repeats and domains in proteins from other genomes and their probable secondary structure.

Copyright © 2007 G. R. Hemalatha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The anthrax is a disease of herbivores and other mammals including humans, caused by the *Bacillus anthracis* str. *Ames*, a Gram-positive, rod-shaped, nonmotile, spore-forming bacterium [1]. It is an endospore-forming bacterium that causes inhalational anthrax. During the course of disease, endospores are taken up by alveolar macrophages where they germinate in the phagolysosomal compartment. Vegetative cells then escape from the macrophage, eventually infecting blood. Expression of the major plasmid-encoded virulence determinants, tripartite toxin, and a poly-D-glutamic acid capsule is essential for full pathogenicity [2]. Key virulence genes found on plasmids are pXO1 and pXO2 [1]. The 60 MDa plasmid pXO2 carries genes required for the synthesis of an antiphagocytic poly-D-glutamic acid capsule [3]. The 110 MDa plasmid pXO1 [4] is required for the synthesis of the anthrax proteins, edema factor, lethal factor, and protective antigen. These proteins act in binary combinations to produce two anthrax toxins: edema toxin (a protective antigen and edema factor) and lethal toxin (a protective antigen and lethal factor) [5]. The chromosome encodes potential virulence factors that include haemolysins, enterotoxins, phospholipases, proteases, metalloproteases, and iron-acquisition proteins.

The chromosome of *B. anthracis* str. *Ames* contains three homologues of sortase transpeptidase that is responsible for attachment of secreted proteins to peptidoglycan on the cell surface of Gram-positive bacteria [6]. A range of important surface proteins, including enzymes and virulence-related MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) are anchored to the cell wall in Gram-positive bacteria by sortase, a transpeptidase in *Staphylococcus aureus*, that cleaves polypeptides at a conserved LPxTG motif near the carboxyl terminus and covalently links them to penta-glycine crossbridges in peptidoglycan [7, 8]. Nearly 34 candidate surface proteins which have sortase attachment sites and SLH domains were identified. Two putative *B. anthracis* str. *Ames* sortase attached genes have internalin like repeats [9]. The chromosome of
B. anthracis str. Ames also contains the csaAB genes for binding of proteins with S-layer homology (SLH) domains to polysaccharide. The SLH domain is a repetitive modular element that is present in several bacterial cell surface proteins and is involved in noncovalent association with peptidoglycan associated polymers [10]. The SLH domain comprises 55-amino-acid residues [11] and the potential role of most proteins with SLH domains on the surface of B. anthracis str. Ames is unknown at present [12]. However, these surface proteins may mediate unknown interactions between B. anthracis str. Ames and its external environment and could be targets for vaccine and drug design. Read et al. [12] reported the complete genome sequence of B. anthracis str. Ames. It comprises 5227293 base pairs and 5508 genes with an overall G+C content of 35.4%. Of these, 2762 are functional genes, 1212 are conserved hypothetical genes, 657 genes are of unknown function, and 877 genes are annotated as hypothetical proteins.

As the complete genome sequence of B. anthracis str. Ames is available [12], we intended to systematically identify and analyze all the amino-acid sequence repeats in this proteome. In a general context, a “repeat” corresponds to a region comprising less than 55-amino-acid residues that occur more than once, sometimes in tandem along the primary sequence, examples are the YVTN repeats in various cell surface proteins and the WD repeats present in proteins that perform a variety of functions. On the other hand, a “domain” refers to a region of the protein comprising greater than 55-amino-acid residues and does not contain internal sequence repeats. According to the crystallographer definition, a domain represents a region of the protein capable of folding independently as a stable unit. A domain can also exist in multiple copies and there can be several different domains per protein, examples are the SH2, SH3, and PH domains present in signal transduction proteins. The repeats and domains are characterized by conserved sequence motifs that may be identified according to the conservation of individual amino-acid residues at equivalent positions derived from multiple sequence alignments. In the absence of experimental data, the structural information can be obtained from secondary structure or fold prediction studies in silico.

Information about the identified domains and repeats is represented in databases such as SMART, INTERPRO and PFAM. SMART (simple modular architecture research tool) allows the identification and annotation of genetically mobile domains and the analysis of domain architectures [13]. INTERPRO is a searchable database that provides information on sequence, function, and annotation. It is an integrated documentation resource for protein families, domains, and sites [14]. PFAM is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains and families. This can be used to view the domain organization of proteins [15]. We believe that a systematic sequence analysis will provide information on the novel repeats and domains present in B. anthracis str. Ames proteome that are not identified so far.

The B. anthracis str. Ames proteome consists of several known repeats and domains. Some of these domains are as follows. (1) BRCT (breast cancer carboxy terminal) domain was first identified as 100-amino-acid tandem repeat at the C-terminus of the tumor suppressor gene product BRCA1, in which the germline mutations lead to nearly 50% familial breast cancer. Most BRCT domains containing proteins participate in DNA damage checkpoint or DNA repair pathways and transcription regulation [16]. The BRCT is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. (2) Excalibur (extracellular calcium binding) domain consists of a conserved DxDxGxxCE motif, which is strikingly similar to the Ca\(^{2+}\) binding loop of the calmodulin like EF hand domains, suggesting an evolutionary relationship. (3) Cna_B domain forms a stalk in Streptococcus aureus collagen-binding protein that presents the ligand binding domain away from the bacterial cell surface. (4) CBS (cystathionine beta synthase) domain is a small intracellular module with 60-amino-acid residues, mostly found in two or four copies within a protein and occurs in several proteins in all kingdoms of life. Tandem pairs of CBS domains can act as binding domains for adenosine derivatives. In some cases, CBS domains may act as sensors of cellular energy status by being activated by AMP and inhibited by ATP. (5) Par B (par B like nuclease) domain cleaves single stranded DNA, nicks supercoiled plasmid DNA, and exhibits 5'-3' exonuclease activity. (6) KH (homology) domain comprises 70-amino-acids residues and is involved in RNA binding. (7) PAS and PAC domains comprising 300 and 45-amino-acid residues, respectively, mediate signal transduction. (8) PASTA domain is an extracellular module comprising 70-amino-acids residues that fold into a globular architecture consisting of 3\(\beta\)-strands and an \(\alpha\)-helix which aids in penicillin binding. (9) NEAT (near transporter) domain is a 125-amino-acid residue conserved region consisting mainly \(\beta\)-strands. The NEAT domain appears to be associated with iron transport in several Gram-positive species, some of them are pathogenic. (10) SLH domain is present in several bacterial cell surface proteins and is involved in noncovalent association with peptidoglycan associated polymers. It comprises 55-amino-acid residues and the predicted secondary structure comprises two \(\alpha\)-helices flanking a short \(\beta\)-strand [11].

The repeats present in B. anthracis str. Ames proteome are as follows. (1) RHS repeats are 21-amino-acids residues long and are involved in carbohydrate binding. (2) TPR (tetra-tripeptide) repeats are 34-amino-acids residues long and are involved in protein-protein interactions. (3) EZ_HEAT repeats are 37–47-amino-acid residues long and occur in tandem in a number of cytoplasmic proteins that are involved in intracellular transport processes. Arrays of HEAT repeats consist of 3 to 36 units forming a rod-like helical structure and appear to function as protein-protein interaction surfaces. (4) Ankyrin repeats are about 33-amino-acid residues long and occur in at least four consecutive copies; the core of the repeat appears as a helix-loop-helix structure and is involved in protein-protein interactions. (5) LRR (leucine rich repeats) are 20-amino-acids residues long, each repeat consists of a \(\beta\)-strand and \(\alpha\)-helix, that are oriented in an antiparallel manner. The function of LRRs includes signal
transduction, transmembrane receptors, DNA repair, cell adhesion, and extracellular matrix proteins [17].

Andrade et al. [18] reviewed methods to identify repeats in proteins and the relationship between repeat sequences and their associated functions. Repeats may be identified by manual examination, if the sequence similarity is very high and present in tandem. Repeats are thought to arise due to gene duplication and recombination events. Protein domains may exist either as single or multiple copies and repeats always exist as multiple copies [18, 19]. Programs such as BLASTP [20] are also useful in detecting internal and homologous repeats in a protein database. By using the BLAST program, the presence of repeats in a query protein sequence can be identified if (a) the same region of the query is aligned against two or more distinct regions of a second protein; and (b) different regions of the query are being aligned against the same region of a second protein [18].

Several web-based methods are available for ab initio identification of sequence repeats in proteins. For example, RADAR (rapid automatic detection and alignment of repeats) [21] uses an automatic algorithm, for segmenting a query sequence into repeats; it identifies short composition biased as well as gapped approximate repeats and complex repeat architectures involving many different types of repeats in a query sequence. Rep program [22] uses an iterative algorithm based on score distributions from profile analysis. This procedure allows the identification of homologues at alignment scores lower than the highest optimal alignment score for nonhomologous sequences. The PROSPECTOR program [23] is ideal for large scale self-comparison of protein sequences. It uses a formula that accurately assesses the significance of protein repeat similarities, allowing for existence of gaps, and also takes into account sequence length and composition. TRUST (tracking repeats using significance and transitivity) program [24] exploits the concept of transitivity of alignments as well as a statistical scheme optimized for the evaluation of repeat significance. Starting from significant local suboptimal alignments, the application of transitivity allows to (1) identify distant repeat homologues for which no alignments were found; (2) gain confidence about consistently well-aligned regions; and (3) recognize and reduce the contribution of nonhomologous repeats. This assessment step will enable to derive a virtually noise-free profile representing a generalized repeat with high fidelity. It has been demonstrated by the authors that TRUST is a useful and reliable tool for mining tandem and nontandem repeats in protein sequence databases, to predict multiple repeat types with varying intervening segments within a single sequence. Once statistically significant repeats are detected, construction of a multiple sequence alignment provides insight into the extent of sequence homology among members of the new protein family and identification of the conserved sequence motifs.

We have implemented TRUST on a personal computer in our laboratory and used it to identify amino-acid sequence repeats in the proteins of B. anthracis str. Ames proteome. We have identified four repeats and ten domains that are novel in the proteome of B. anthracis str. Ames. Further analysis corresponding to searches of the completed and unfinished genome databases identified some of these to be present in other bacterial genomes.

2. METHODS

We have downloaded the entire proteome of B. anthracis str. Ames from the website http://www.ncbi.nlm.nih.gov in the FASTA format. The TRUST program was downloaded from the website and installed on the local Pentium IV computers on the Linux platform. The TRUST server together with the source code is available at http://ibivu.cs.vu.nl/programs/trustwww. The TRUST program was run for all the sequences in this proteome. Based on the size of the TRUST output file, the protein sequences with no internal repeats were discarded automatically; that is, only those protein sequences which comprise repeats were retained. The lengths of repeats and domains currently annotated in the INTERPRO database often comprise greater than 25-amino-acid residues; therefore, in this work, we have considered the repeats with greater than 25-amino-acid residues alone for further analysis. Thus selected proteins were submitted to SMART online (http://smart.embl-heidelberg.de/smart/batch.pl) [13] program in batch mode. Manual inspections of the SMART results identified proteins comprising known repeats or domains and were therefore discarded. Only those repeats that are not identified by SMART database are retained for further analysis.

We have downloaded NCBI NR (release date: April 22, 2005) and UNIPROT (release date: April 23, 2005) databases and installed BLAST-2.2.10 on the local Linux computers (OS: Fedora Core-2, Pentium-IV 3.00 GHz, 1 GB RAM, 80 GB hard disk). Using automatic shell scripts, these protein sequences were then blasted using PSI-BLAST program [25] for three iterations against the NCBI NR database and using BLASTALL program against UNIPROT database. The proteins confirmed to comprise repeats by the BLAST program were retained and were tested for presence in the offline versions of INTERPRO (Database: iprscan_DATA_10.0, Applications: iprscan_V4.1, iprscan_binn4.x_Linux) and PFAM (release date: April 26, 2005) databases. A final check was made using online versions of INTERPRO and PFAM. These series of steps are given in the flowchart as shown in Figure 1.

The repeats which are not present in any of these databases were considered to be novel repeats or domains, depending upon (1) the number of times they occur in the protein sequences, and (2) length of the amino-acid sequence region. The novel repeats and domains thus identified in B. anthracis str. Ames proteome were subjected to PSI-BLAST analysis in order to identify other proteins from databases that comprise these repeats and domains. Multiple sequence alignment program, ClustalW [26], was used to detect the extent of sequence conservation and the secondary structure prediction was carried out using PHD [27] method.

3. RESULTS AND DISCUSSION

From the analysis of B. anthracis str. Ames proteome using TRUST program, we identified 905 proteins comprising
of amino-acid sequence repeats. SMART database analysis identified that 302 entries do not have a SMART description. Based on their absence in the INTERPRO and PFAM databases and the length of repeat sequence (greater than 25-amino-acid residues), we have identified about 120 proteins (data not shown) in the *B. anthracis* str. *Ames* proteome to comprise novel amino-acid sequence repeats. We have added an additional constraint that the repeats identified by TRUST program should also be identified as a repeat by the BLAST program. Subsequent online INTERPRO and PFAM searches confirmed that these domains and repeats have not been reported before. In this work, we have identified four repeats and ten domains, that are not within or part of previously reported repeats and our findings are therefore novel. Further analysis identified some of these in the proteins of other bacterial genomes. The conserved amino-acid residues observed from multiple sequence alignments using the CLUSTALW program were used to describe sequence motifs characteristic of these novel repeats and domains. Often, more than one sequence motif is associated with repeats or domains and the amino-acid sequence patterns characteristic of these repeats are represented according to the PROSITE description [28]. Ponting et al. [29], have earlier used a similar approach to identify novel domains and repeats in *Drosophila melanogaster*.

In this work, we identified four repeats and ten domains that have not been reported before in the *B. anthracis* str. *Ames* proteome. The repeats and domains described in 1 to 6 and 9 are also present in some bacterial organisms, 7, 8, 10 and 11 are *Bacillus*-specific, 12 and 13 are *Bacillus anthracis* str. *Ames* specific. Lists of the proteins containing these novel repeats and domains are shown in Tables 1a to 1k. These tables indicate the protein identifiers (Gene or Swall_ID), the number of amino-acid residues in the protein, a description of the protein, and other well-characterized repeats and domains present in the protein. Some sequences representing these repeats or domains share lower than 15% pairwise sequence identity. However, these sequences retain the conserved motifs and the positions of secondary structure elements in the multiple sequence alignment. For all the proteins, the amino-acid sequence corresponding to each representative repeat are shown in the multiple sequence alignments (see Figures from 2 to 14). Conservation of the position of secondary structural elements is indicated from the multiple sequence alignment. The schematic figures used to represent these repeats and domains are shown in Figures 15 to 27. These figures (drawn to an approximate scale) reflect the relative proximity and location of individual repeats and domains along the primary sequence. We discuss each of these novel repeats and domains below.

3.1. 57-amino-acid-residue PxV domain

The 251-amino-acid-residue protein corresponding to the GENE_ID BA2292 and described as hypothetical protein comprises of a 57-amino-acid-residue region as two copies. Further BLAST searches using sequence corresponding to the region (65–121) as a query identified 24 proteins that are described as hypothetical (see Table 1(a)). This region occurs as four copies in proteins from *Shewanella amazonensis*, and *Halooarcula marismortui*, as two copies in proteins from *B. anthracis*, *B. cereus*, *B. halodurans*, *B. thuringiensis*, *B. thuringiensis* serovar, *Thermus thermopilus*, *Chloroflexus aurantius*, *Chloroflexus aggregans* *Exiguobacterium* *sp.*, *Bacillus weihenstephanensis*, *Roseiflexus castenholzii*, *Clostridium novyi*, *Herpetosiphon aurantius*, and as single copy in *Anabaena variabilis*; we therefore describe this region as a

1 The multiple sequence alignments corresponding to representative repeats and domains from various proteins along with their GENE or SWall identifiers. (a) PxV domain, (b) FxF domain, (c) YEFF domain, (d) IMxxH domain, (e) VxxT domain, (f) ExW domain, (g) NTGFIG domain, (h) NsXG repeat (i) VYV domain, (j) KEWE domain, (k) AFL domain, (l) RIDVK repeat, (m) AGQF repeat and (n) GSAl repeat. The numbers given in brackets indicate the start and end of amino-acid-residue positions corresponding to either the repeat or domain. The 80% consensus is labeled according to the alignment to the alignment generated at the website http://www.bork.embl-heidelberg.de/Alignment/consensus.html: alcohol (o, ST), aliphatic (I, ILV); any (i), aromatic (a, FHWY); charged (c, DEHKR); hydrophobic (h, ACFGHIKLMNPQRSTVWY); negative (−, DE); polar (p, CDEHKNQRST); positive (+, HKR); small (s, ACDGNPSTV); turn-like (t, ACDEHKN-QRST). A capital letter indicates 80% conservation of corresponding amino-acid residue. The secondary structure prediction indicated at the top was derived using the PHD program. Residues predicted with greater than 82% accuracy to form β-sheets are represented by “E” and α-helices are represented by “H.”
Table 1: The proteins are represented by their corresponding Gene_ID along with the number of amino-acid residues indicated in brackets in the first column. The organism and corresponding phylogeny are indicated in the second column: (A) represents Archaea and (B) represents Bacteria. The third column contains the description of the proteins containing the repeats or the domains identified elsewhere, including those identified in the present work and the total number of such repeats or domains. The fourth column represents exclusively the total number of novel repeats or domains identified in this work.

(a) List of proteins containing the 57-amino-acid-residue PxV domain.

Gene ID (number of residues)	Organism	Description	Number of PxV domains
BA2292 (251)	Bacillus anthracis str. Ames (B)	Hypothetical protein	2
BAS2138 (249)	Bacillus anthracis Sterne (B)	Hypothetical protein	2
BT9727_2076 (249)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Hypothetical protein	2
BCZK2072 (249)	Bacillus cereus E33L (B)	Hypothetical protein	2
BCE2326 (249)	Bacillus cereus ATCC 10987 (B)	Hypothetical protein	2
BC2244 (249)	Bacillus cereus ATCC 14579 (B)	Hypothetical protein	2
BH1282 (222)	Bacillus halodurans C-125 (B)	BH1282 protein	2
BCE_G9241_2259 (249)	Bacillus cereus G9241 (B)	Hypothetical conserved protein	2
RBTH_03198 (251)	Bacillus thuringiensis serovar israelensis ATCC 35646 (B)	Hypothetical protein	2
TT_P0044 (221)	Thermus thermophilus HB27 (B)	Hypothetical conserved protein	2
TTHB089 (221)	Thermus thermophilus HB8 (B)	Hypothetical protein	2
Chlo02001630 (262)	Chloroflexus aurantiacus J-10-fl (B)	Hypothetical protein	2
ExigDRAFT_0608 (264)	Exiguobacterium sibiricum 255-15 (B)	Hypothetical protein	2
SamADRAFT_3539 (469)	Shewanella amazonensis SB2B (B)	Hypothetical protein	4
rrrAC0576 (488)	Haloarcula marismortui ATCC 43049 (A)	Unknown	4
Ava_3757 (292)	Anabaena variabilis ATCC 29413 (B)	Hypothetical protein	1
BcerKBAB4DRAFT_2942 (249)	Bacillus weihenstephanensis KBAB4 (B)	Conserved hypothetical protein	2
B14911_22687 (254)	Bacillus sp. NRRL B-14911 (B)	Hypothetical protein	2
Bcer98DRAFT_2673 (249)	Bacillus cereus subsp. cytotoxins NVH (B)	Conserved hypothetical protein	2
RcasDRAFT_0590 (259)	Roseiflexus castenholzii DSM 13941 (B)	Surface protein from Gram-positive cocci, anchor region	2
RoseRSDRAFT_1732 (259)	Roseiflexus sp. RS-1 (B)	Surface protein from Gram-positive cocci, anchor region	2
NT01CX_1619 (210)	Clostridium novyi NT (B)	Conserved hypothetical protein	2
HaurDRAFT_2803 (196)	Herpetosiphon aurantiacus ATCC 23779 (B)	Conserved hypothetical protein	2
CaggDRAFT_2922 (261)	Chloroflexus aggregans DSM 9485 (B)	Conserved hypothetical protein	2
Table 1: Continued.

(b) List of proteins containing the 122-amino-acid-residue FxF domain.

Gene ID (number of residues)	Organism	Description	Number of FxF domains
BA0881 (293)	Bacillus anthracis str. Ames (B)	Conserved domain protein	2
BCZK0785 (293)	Bacillus cereus E33L (B)	Hypothetical protein	2
BT9727_0783 (295)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Hypothetical protein	2
BCE_G9241_0886 (293)	Bacillus cereus G9241 (B)	Conserved protein, putative	2
GK3171 (297)	Geobacillus kaustophilus HTA426 (B)	Hypothetical conserved protein	2
CTC00525 (279)	Clostridium tetani E88 (B)	Hypothetical protein	2
Bcer98DRAFT_3031 (293)	Bacillus cereus subsp. cytotoxins NVH (B)	Conserved hypothetical protein	2
B14911_04439 (305)	Bacillus sp. NRRL B-14911 (B)	Hypothetical protein	2
DredDRAFT_0533 (262)	Desulfotomaculum reducens MI-1 (B)	Hypothetical protein	2
NT01CX_1557 (276)	Clostridium novyi NT (B)	Conserved protein, putative	2

(c) List of proteins containing the 111-amino-acid-residue YEFF domain.

Gene ID (number of residues)	Organism	Description and other known domains	Number of YEFF domains
BA3695 (510)	Bacillus anthracis str. Ames (B)	S-layer protein, putative, SLH-domain (3)	2
BCZK3337 (492)	Bacillus cereus E33L (B)	S-layer protein, SLH-domain (3)	2
BT9727_3386 (510)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	S-layer protein, SLH-domain (3)	2
Bant_01004347 (510)	Bacillus anthracis str. A2012 (B)	Hypothetical protein, SLH-domain (3)	2
BCE_G9241_3590 (492)	Bacillus cereus G9241 (B)	Lipoprotein, putative SLH-domain (3)	2
BA5326 (321)	Bacillus anthracis str. Ames (B)	Lipoprotein, putative	2
BT9727_4791 (321)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Hypothetical protein	2
BC5098 (321)	Bacillus cereus ATCC 14579 (B)	Hypothetical protein	2
BCZK4809 (321)	Bacillus cereus E33L (B)	Hypothetical protein	2
RBTH_06214 (321)	Bacillus thuringiensis serovar israeliens ATCC 35646 (B)	Hypothetical protein	2
EF0374 (325)	Enterococcus faecalis V583 (B)	Lipoprotein, putative	2
EF0375 (321)	Enterococcus faecalis V583 (B)	Hypothetical protein	2
EF0376 (347)	Enterococcus faecalis V583 (B)	Hypothetical protein	2

(d) List of proteins containing the 109-amino-acid-residue IMxxH domain.

Gene ID (number of residues)	Organism	Description	Number of IMxxH domains
BA1021 (266)	Bacillus anthracis str. Ames (B)	Hypothetical protein	2
BAS0955 (283)	Bacillus anthracis Sterne (B)	Hypothetical protein	2
BCZK0933 (283)	Bacillus cereus E33L (B)	Hypothetical protein	2
BT9727_0941 (283)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Hypothetical protein	2
BC1029 (283)	Bacillus cereus ATCC 14579 (B)	Hypothetical protein	2
RBTH_03050 (283)	Bacillus thuringiensis serovar israeliens ATCC 35646 (B)	Hypothetical protein	2
CAC3450 (307)	Clostridium acetobutylicum ATCC 824 (B)	Hypothetical protein	2
CPE0158 (303)	Clostridium perfringens str. 13 (B)	Hypothetical protein	2
CTC02189 (314)	Clostridium tetani E88 (B)	Conserved protein	2
CitehDRAFT_1311 (307)	Clostridium thermocellum ATCC 27405 (B)	Conserved hypothetical protein	2
DhafDRAFT_0725 (321)	Desulfotobacterium hafniense DCB-2 (B)	Conserved hypothetical protein	2
Table 1: Continued.
(d) Continued.

Gene ID (number of residues)	Organism	Description	Number of IMxxH domains
BCE_G9241_1042 (283)	*Bacillus cereus* G9241 (B)	Conserved protein	2
CbeiDRAFT_3331 (312)	*Clostridium beijerincki* NCIMB 8052 (B)	Conserved hypothetical protein	2
CphyDRAFT_3436 (305)	*Clostridium phytofermentans* ISDg (B)	Conserved hypothetical protein	2
ClosDRAFT_1658 (308)	*Clostridium sp. OhILAs* (B)	Conserved hypothetical protein	2
CdifQ_02001573 (254)	*Clostridium difficile* QCD-32g58 (B)	Hypothetical protein	2
BcerKBAB4DRAFT_3543 (283)	*Bacillus weihenstephanensis* KBAB4 (B)	Hypothetical protein	2
AmetDRAFT_1908 (272)	*Alkaliphilus metalliredigenes* QYMF (B)	Conserved hypothetical protein	2
CD1511 (304)	*Clostridium difficile* 630 (B)	Conserved hypothetical protein	2
CPF_0149 (303)	*Clostridium perfringens* ATCC 13124 (B)	Hypothetical protein	2
BcerKBAB4DRAFT_0307 (171)	*Bacillus weihenstephanensis* KBAB4 (B)	Conserved hypothetical protein	1
Bcer98DRAFT_1038 (303)	*Bacillus cereus* subsp. cytotoxis NVH 391-98 (B)	Conserved hypothetical protein	2

(e) List of proteins containing the 103-amino-acid-residue VxxT domain.

Gene ID (number of residues)	Organism	Description	Number of VxxT domains
BA4716 (349)	*Bacillus anthracis* str. Ames (B)	Germination protein gerM	2
gerM BT9727,4219 (349)	*Bacillus thuringiensis* serovar konkukian str. 97-27 (B)	Germination protein	2
germ BCZK4235 (349)	*Bacillus cereus* E33L (B)	Germination protein	2
BCE4587 (349)	*Bacillus cereus* ATCC 10987 (B)	Germination protein gerM	2
BC4495 (349)	*Bacillus cereus* ATCC 14579 (B)	Germination protein germ	2
BSU28380 (366)	*Bacillus subtilis* subsp. subtilis str. 168 (B)	Germination protein gerM	2
BL00314 (369)	*Bacillus licheniformis* ATCC 14580 (B)	Spore germination protein GerM	2
BH3070 (365)	*Bacillus halodurans* C-125 (B)	Germination (Cortex hydrolysis) and sporulation	2
RBTH_05210 (349)	*Bacillus thuringiensis* serovar israelensis ATCC 35646 (B)	Germination protein germ	2
gerM (210)	*Bacillus subtilis* (B)	gerM	1
ABC2653 (377)	*Bacillus clausii* KSM-K16 (B)	Germination protein GerM	2
GK2667 (357)	*Geobacillus kaustophilus* HTA426 (B)	Germination (Cortex hydrolysis) and sporulation	2
OB2107 (352)	*Oceanobacillus iheyensis* HTE831 (B)	Germination (Cortex hydrolysis) and sporulation	2
SwolDRAFT_2302 (195)	*Syntrophomonas wolfei* str. Goettingen (B)	Hypothetical protein	1
MothDRAFT_0979 (200)	*Moorella thermoacetica* ATCC 39073 (B)	Similar to Spore germination protein	1
CtheDRAFT_0840 (299)	*Clostridium thermocellum* ATCC 27405 (B)	Hypothetical protein	1
gerM ABF83609 (349)	*Bacillus thuringiensis* serovar kurstaki (B)	Spore germination protein	2
BcerKBAB4DRAFT_3179 (348)	*Bacillus cereus* subsp. cytotoxis NVH 391-98 (B)	Germination protein GerM	2
Bcer98DRAFT_4089 (349)	*Bacillus weihenstephanensis* KBAB4 (B)	Germination protein gerM	2
B14911_06091 (361)	*Bacillus sp. NRRL B-14911* (B)	Spore germination protein	2
GAA01614 (295)	*Pelotomaculum thermopropionicum* SI (B)	Hypothetical protein	1
AmetDRAFT_1640 (332)	*Alkaliphilus metalliredigenes* QYMF (B)	Hypothetical protein	2
Moth_0516 (200)	*Moorella thermoacetica* ATCC 39073 (B)	Spore germination protein-like	1
Table 1: Continued.

(f) List of proteins containing the 84-amino-acid-residue ExW domain.

Gene ID (number of residues)	Organism	Description	Number of ExW domains
BA4310 (246)	Bacillus anthracis str. Ames (B)	Hypothetical protein	2
BT9727_3829 (246)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Hypothetical protein	2
BCE4157 (246)	Bacillus cereus ATCC 10987 (B)	Hypothetical protein	2
BCZK3845 (246)	Bacillus cereus E33L (B)	Hypothetical protein	2
BC4088 (248)	Bacillus cereus ATCC 14579 (B)	IG hypothetical 17224	2
GK0969 (226)	Geobacillus kaustophilus HTA426 (B)	Hypothetical conserved protein	2
BSU30660 (145)	Bacillus subtilis subsp. str. 168 (B)	Hypothetical protein ytkA (PSPA8)	1
BL05305 (147)	Bacillus licheniformis ATCC 14580 (B)	Conserved protein YtkA	1
BH0983 (157)	Bacillus halodurans C-125 (B)	BH0983 protein	1
Bant_01004966 (252)	Bacillus anthracis str. A2012 (B)	Protein chain release factor A	2
RBTH_02670 (248)	Bacillus thuringiensis serovar israelensis ATCC 35646 (B)	Hypothetical protein	2
BCE_G9241_4093 (246)	Bacillus cereus G9241 (B)	IG hypothetical protein	2
OB2488 (166)	Oceanobacillus iheyiensis HTE831 (B)	Hypothetical conserved protein	1
ABC0230 (158)	Bacillus clausii KSM-K16 (B)	Unknown conserved protein	1
BH0678 (246)	Bacillus halodurans C-125 (B)	BH0678 protein	2
ABC0488 (142)	Bacillus clausii KSM-K16 (B)	Hypothetical protein	1
ExigDRAFT_1796 (161)	Exiguobacterium sibiricum 255-15 (B)	Hypothetical protein	1
OB3282 (155)	Oceanobacillus iheyiensis HTE831 (B)	Hypothetical conserved protein	1
BcerKBAB4DRAFT_2040 (241)	Bacillus weihenstephanensis KBAB4 (B)	Conserved hypothetical protein	2
B14911_09907 (144)	Bacillus sp. NRRL B-14911 (B)	Hypothetical protein	1
B14911_05359 (273)	Bacillus sp. NRRL B-14911 (B)	Hypothetical protein	2
BAA83944 (267)	Bacillus halodurans (B)	Unnamed protein product	2
BH1853 (158)	Bacillus halodurans C-125 (B)	Hypothetical protein	1
Bcer98DRAFT_3614 (177)	Bacillus cereus subsp. cytotoxis NVH 391-98 (B)	IG hypothetical protein	2
ExigDRAFT_0574 (253)	Exiguobacterium sibiricum 255-15 (B)	Hypothetical protein	2

(g) List of proteins containing the 104-amino-acid-residue NTGFIG domain.

Gene ID (number of residues)	Organism	Description	Number of NTGFIG domains
BA2665 (232)	Bacillus anthracis str. Ames (B)	Hypothetical protein	2 tandem
BT9727_2444 (232)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Hypothetical protein	2 tandem
BCZK2413 (232)	Bacillus cereus E33L (B)	Group-specific protein	2 tandem
BCE2700 (234)	Bacillus cereus ATCC 10987 (B)	Hypothetical protein	2 tandem
BC2674 (234)	Bacillus cereus ATCC 14579 (B)	Hypothetical protein	2 tandem
Bant_01003317 (236)	Bacillus anthracis str. A2012 (B)	Hypothetical protein	2 tandem
BCE_G9241_CLNI_0263 (234)	Bacillus cereus G9241 (B)	Conserved hypothetical protein	2 tandem
BcerKBAB4DRAFT_0535 (232)	Bacillus weihenstephanensis KBAB4 (B)	Conserved hypothetical protein	2 tandem
Bcer98DRAFT_0128 (234)	Bacillus cereus subsp. cytotoxis NVH 391-98 (B)	Conserved hypothetical protein	2 tandem
Table 1: Continued.

(h) List of proteins containing the 36-amino-acid-residue NxGK repeat.

Gene ID (number of residues)	Organism	Description and other known domains	Number of NxGK repeats
BA3686 (193)	*Bacillus anthracis* str. *Ames* (B)	Hypothetical protein, SAP domain (1)	2
BT9727_3378 (193)	*Bacillus thuringiensis* serovar konkukian str. 97-27 (B)	Hypothetical protein, SAP domain (1)	2
BCZK3328 (193)	*Bacillus cereus* E33L (B)	Hypothetical protein, SAP domain (1)	2
BC3626 (193)	*Bacillus cereus* ATCC 14579 (B)	Hypothetical protein, SAP domain (1)	2
BCE3645 (193)	*Bacillus cereus* ATCC 10987 (B)	Hypothetical protein, SAP domain (1)	2
RBTH_03615 (193)	*Bacillus thuringiensis* serovar israelensis ATCC 35646 (B)	Hypothetical cytosolic protein, SAP domain (1)	2
BCE_G9241_3579 (193)	*Bacillus cereus* G9241 (B)	Hypothetical cytosolic protein, SAP domain (1)	2
BcerKBAB4DRAFT_0944 (193)	*Bacillus weihenstephanensis* KBAB4 (B)	Conserved hypothetical protein, SAP domain (1)	2
B14911_25780 (189)	*Bacillus sp. NRRL B-14911* (B)	Hypothetical protein, SAP domain (1)	2

(i) List of proteins containing the 95-amino-acid-residue VYV domain.

Gene ID (number of residues)	Organism	Description	Number of VYV domains
BA1701 (225)	*Bacillus anthracis* str. *Ames* (B)	Hypothetical protein	2 tandem
BAS1577 (227)	*Bacillus anthracis* str. Sterne (B)	Hypothetical protein	2 tandem
RBTH_03882 (1004)	*Bacillus thuringiensis* serovar israelensis ATCC 35646 (B)	Hypothetical exported protein	10 tandem
DSY3134 (1674)	*Desulfitobacterium hafniense* Y51 (B)	Hypothetical protein	2 tandem

(j) List of proteins containing the 75-amino-acid-residue KEWE domain.

Gene ID (number of residues)	Organism	Description	Number of KEWE domains
BA3147 (262)	*Bacillus anthracis* str. *Ames* (B)	Hypothetical protein	3 tandem
BAS2924 (344)	*Bacillus anthracis* str. Sterne (B)	Hypothetical protein	4 tandem
RBTH_06405 (331)	*Bacillus thuringiensis* serovar israelensis ATCC 35646 (B)	Hypothetical protein	4 tandem
pE33L466_0092 (328)	*Bacillus cereus* E33L (B)	Hypothetical protein	4 tandem
Bant_01003795 (178)	*Bacillus anthracis* str. A2012 (B)	Hypothetical protein	2 tandem
pBMB165 (247)	*Bacillus thuringiensis* serovar tenebrionis (B)	Hypothetical protein	3 tandem

(k) List of proteins containing the 59-amino-acid-residue AFL domain.

Gene ID (number of residues)	Organism	Description	Number of AFL domains
BA3065 (290)	*Bacillus anthracis* str. *Ames* (B)	Hypothetical protein	2
BAS2851 (297)	*Bacillus anthracis* str. Sterne (B)	Hypothetical protein	2
Bant_01003715 (293)	*Bacillus anthracis* str. A2012 (B)	Hypothetical protein	2
RBTH_02124 (145)	*Bacillus thuringiensis* serovar israelensis ATCC 35646 (B)	Hypothetical protein	1
BcerKBAB4DRAFT_1832 (291)	*Bacillus weihenstephanensis* KBAB4 (B)	Conserved hypothetical protein	2

The length of proteins varied between 196 to 488-amino-acid residues. The multiple sequence alignment corresponding to this domain is associated with PxV sequence motif where x is any amino-acid residue and is shown in Figure 2. The pairwise identities between sequences corresponding to PxV domain varied between 15–96%. The secondary structure corresponding to PxV domain is predicted to comprise four β-strands as shown in Figure 2. The representative domain architecture corresponding to proteins comprising the PxV domain is shown in Figure 15.
3.2. 122-amino-acid-residue FxF domain

The 293-amino-acid-residue protein corresponding to the
GENE_ID BA0881 and described as conserved domain protein
comprises a 122-amino-acid-residue region as two copies.
Further BLAST searches using sequence corresponding
to the region (55–176) as a query identified 10 proteins
(see Table 1(b)). The proteins comprising this region are
described as either conserved or hypothetical proteins. This
region occurs as two copies in the proteins of B. anthracis, B.
cereus, B. thuringiensis, Geobacillus kaustophilus, Clostridium
tetani, Clostridium novyi, and Desulfitoculum reducens
genomes. The length of proteins comprised between 262 to 305-
amino-acid residues. The multiple sequence alignment
corresponding to this domain is associated with characteristic
sequence motif FxF (Figure 3) and we refer to this as the
FxF domain. The pairwise sequence identities corresponding
to this domain varies between 18–97%. The secondary
structure corresponding to FxF domain is predicted to comprise
one α-helix and five β-strands, and the representative
domain architecture of proteins comprising this domain is
shown in Figure 16.

3.3. 111-amino-acid-residue YEFF domain

The 510-amino-acid-residue protein corresponding to the
GENE_ID BA3695 and described as a S-layer protein
comprises a 111-amino-acid-residue region that is present as two copies.
Further BLAST searches, using sequence corresponding
to the region (247–357) as a query, identified 13 proteins
(see Table 1(c)), that are described as S-layer proteins,
hypothetical, or lipoproteins and correspond to the
B. anthracis str. Ames and A2120, B. cereus, B. thuringiensis,
B. thuringiensis serovar israelensis, and Enterococcus faecalis
genomes. The length of proteins comprised between 321 to 510-amino-acid residues. Five proteins corresponding to the
GENE_ID BA3695 and Bant_001004347 of B.
anthracis, BCE_G9241_3590, and BCZK3337 of B. cereus
and BT9727_3386 of B. thuringiensis comprise three copies of
SLH domain, indicating a cell surface role for these proteins.

Figure 2: BA2292 is homologous to protein GBA2292 from Bacillus anthracis str. "Ames Ancestor". BAS2138 is homologous to proteins BT9727_2076 from Bacillus thuringiensis serovar konukian str. 97-27 and Bant_001002917 from Bacillus anthracis str. A2012.
This domain is characterized by conserved sequence motifs; YEFF, RGD, FTY, GKD, and FVEH. We refer to this 111-amino-acid region as the YEFF domain. The pairwise sequence identities corresponding to the YEFF domain varied between 36–96%. The conserved secondary structure predicted for this domain suggests mainly β-strands and the conserved sequence motifs, that is, YEFF and FTY are associated with β-strands; see Figure 4. The representative domain architecture of proteins comprising this domain is shown in Figure 17. It is intriguing that each domain comprises RGD sequence motif which is found in the proteins of extracellular matrix. Many viruses enter their host cells via the RGD motif—integrin interaction and synthetic peptides containing this RGD motif are active modulators of cell adhesion [30]. The RGD motif was originally identified as the sequence within fibronectin that mediates cell attachment. This motif has now been found in numerous other proteins and supports cell adhesion. The integrins, a family of cell surface proteins, act as receptors for integrin-bound ligands, which bind to specific motifs in cell substituents and cell-cell interactions [31]. The presence of RGD motif and SLH domain implies that the conserved structure is also present on the cell surface and mediates protein-protein interactions.

3.4. 109-amino-acid-residue IMxxH domain

The 266-amino-acid-residue protein corresponding to the GENE_ID BA1021 and described as hypothetical protein comprises a 109-amino-acid-residue region as two copies. Further BLAST searches using sequence corresponding to the region (4–112) as a query identified 22 proteins (see Table 1(d)) that are described as either conserved or hypothetical proteins. This domain region occurs as two copies in all the proteins of the order B. antracis, B. cereus, B. thuringiensis, Bacillus weihenstephanensis C. acetobutylicum, C. perfringens, C. tetani, C. thermocellum, Desulfotobacterium hafniense, Clostridium phytofermentans, and Alkaliphilus metallicireducens, and as single domain in the 171-amino-acid-residue protein BcerKB44DRAFT_0307. The length of proteins varied between 171 to 321-amino-acid residues. The multiple sequence alignment corresponding to this domain identified the characteristic sequence motifs; IMxxH, REA, and we refer to this as the IMxxH domain. The IMxxH sequence motif occurs at the N-terminal region of the protein.
pairwise sequence identities corresponding to the IMxxH domain varies between 5–98%. The secondary structure corresponding to IMxxH domain is predicted to comprise four α-helices as shown in Figure 5. The representative domain architectural correspondence to proteins comprising this domain is shown in Figure 18.

3.5. 103-amino-acid-residue VxxT domain

The 349-amino-acid-residue protein corresponding to the GENE_ID BA4716 and described as germination protein comprises a 103-amino-acid-residue region as two copies. Further BLAST searches using sequence corresponding to the region (67–169) as query identified 23 proteins (see Table 1(e)). The proteins comprising this domain are described as germination proteins as the *Bacillus anthracis* is an endospore-forming bacterium. This domain occurs twice in proteins of *B. anthracis* str. *Ames*, *B. cereus*, *B. clausii*, *B. thuringiensis* serovar *amepsis*, *Syntrophomonas* sp., *Alkaliphilus metallireducens*, and *Bacillus weihenstephanensis* genomes and only once in the proteins of *Syntrophomonas wofei* str. *Goutting*, *Moorella thermoacetica*, *Clostridium thermocellum*, *B. subtilis*, and *Peltomonaculum thermopropicikum* genomes. The length of proteins varied between 195 to 377-amino-acid residues. The multiple sequence alignment corresponding to this domain identified VxxT as sequence motif. This sequence motif occurs in the N-terminal region of each protein and the pairwise sequence identity

Figure 4: BA3695 is homologous to proteins GAAB3695 from *Bacillus anthracis* str. “Ames Ancestor” and BA5342 from *Bacillus anthracis* str. *Sterne*. BA5326 is homologous to proteins GAAB5326 from *Bacillus anthracis* str. “Ames Ancestor,” BA54948 from *Bacillus anthracis* str. *Sterne* and BA1000199 from *Bacillus anthracis* str. A2012.

[Table 1(e)](#) The proteins comprising this domain are described as germination proteins as the *Bacillus anthracis* is an endospore-forming bacterium. This domain occurs twice in proteins of *B. anthracis* str. *Ames*, *B. cereus*, *B. clausii*, *B. thuringiensis* serovar *amepsis*, *Syntrophomonas* sp., *Alkaliphilus metallireducens*, and *Bacillus weihenstephanensis* genomes and only once in the proteins of *Syntrophomonas wofei* str. *Goutting*, *Moorella thermoacetica*, *Clostridium thermocellum*, *B. subtilis*, and *Peltomonaculum thermopropicikum* genomes. The length of proteins varied between 195 to 377-amino-acid residues. The multiple sequence alignment corresponding to this domain identified VxxT as sequence motif. This sequence motif occurs in the N-terminal region of each protein and the pairwise sequence identity
Figure 5: BAS0955 is homologous to proteins BT9727_0941 from Bacillus thuringiensis serovar konkukian str. 97-27, BCZ0933 from Bacillus cereus E33L, and BCE_G9241_1042 from Bacillus cereus G924. BA1021 is homologous to protein GAA1021 from Bacillus anthracis str. "Ames Ancestor." BA0807 is homologous to proteins GBA0807 from Bacillus anthracis str. "Ames Ancestor" and BA0770 from Bacillus anthracis str. Sterne.
Secondary Structure	EEE	НИНИНИНИНИ
BT9727_4219 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
BCZK235 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
BA4716 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
BCG495 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
NcoIDRAFT (409-1, 167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
Bce9DRAFT (3179-167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG

Secondary Structure	EEE	НИНИНИНИНИ
BT9727_4219 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
BCZK235 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
BA4716 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
BCG495 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
NcoIDRAFT (409-1, 167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
Bce9DRAFT (3179-167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG

Secondary Structure	EEE	НИНИНИНИНИ
BT9727_4219 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
BCZK235 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
BA4716 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
BCG495 (167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
NcoIDRAFT (409-1, 167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG
Bce9DRAFT (3179-167-169)	VDKNYYVPYQALTIPFKANE.	... VYKQTLETVKDPYNVLNLGNFFAVAPNTSMT... - LDLKEDG

Figure 6: BA4716 is homologous to proteins GBA44716 from *Bacillus anthracis* str. "Ames Ancestor," BAS4378 from *Bacillus anthracis* str. Sterne, and Ban 80105366 from *Bacillus anthracis* str. A2012. BT9727_4219 is homologous to protein BCZK2435 from *Bacillus cereus* E33L. BA4716 is homologous to protein BL02986 from *Bacillus licheniformis* ATCC 14580.
Figure 7: BA4310 is homologous to proteins GBA4310 from *Bacillus anthracis* str. "Ancestor," BAS3998 from *Bacillus anthracis* str. Sterne, and BT9727_3829 from *Bacillus thuringiensis* serovar konukianon konukianon 97-27.
Figure 8: BA2665 is homologous to proteins GBAA2665 from Bacillus anthracis str. "Ames Ancestor," BAS2482 from Bacillus anthracis str. Sterne, BT9727_2444 is homologous to protein BCZK2413 from Bacillus cereus E33L.

varied between 11–98%. The secondary structure is predicted to comprise two α-helices and three β-strands as shown in Figure 6. The representative domain architecture corresponding to proteins comprising this domain is shown in Figure 19.

3.6. 84-amino-acid-residue ExW domain

The 246-amino-acid-residue protein corresponding to the GENE_ID BA4310 and described as hypothetical protein comprises an 84-amino-acid-residue region as two copies. Further BLAST searches using sequence corresponding to the domain (45–128) as a query identified 25 proteins (Table 1(f)) that are described as either conserved or hypothetical proteins. This domain region occurs as two copies in proteins of B. anthracis str. Ames, B. cereus, B. halodurans (GENE_ID BH0678), B. thuringiensis, B. thuringiensis serovar iraelesin, Geo Bacillus kaustophilus, Bacillus weihenstephanensis, and Exiguobacterium sibiricum genomes and as single copy in proteins of B. clausii, B. halodurans (GENE_ID BH0983), B. licheniformis, B. subtilis, Exiguobacterium sp., and Oceanobacillus ihenyensis genomes. The length of proteins varied between 142 to 273-amino-acid residues. The multiple sequence alignment corresponding to this domain identified ExW sequence motif. The pairwise sequence identities corresponding to the ExW domain varied between 14–98%. The secondary structure of this domain is predicted to comprise five β-strands and the conserved sequence motif is associated with one of the β-strands as shown in Figure 7. The representative domain architecture corresponding to proteins comprising this domain is shown in Figure 20.

3.7. 104-amino-acid-residue NTGFIG domain

The 232-amino-acid-residue protein corresponding to the GENE_ID BA2665 and described as a hypothetical protein comprises a 104-amino-acid-residue region as two copies in tandem. Further BLAST searches using sequence corresponding to the region (16–119) as a query identified 9 hypothetical proteins comprising this domain from organisms such as B. anthracis, B. thuringiensis, Bacillus weihenstephanensis, and B. cereus. The protein corresponding to the GENE_ID BCZK2413 of B. cereus is described as group-specific protein. The list of 9 proteins comprising this domain is shown in Table 1(g). The length of proteins varied between 232 to 236-amino-acid residues. This domain
occurs twice in every protein of the bacillus species as shown in Table 1(g). We refer to this as the NTGFIG domain based on the conserved sequence motif that is present at the N-terminal part. The pairwise sequence identities between sequences corresponding to this domain varied between 31–99%. The secondary structure corresponding to this domain is predicted to comprise three α-helices and two β-strands as shown in Figure 8. The representative domain architecture corresponding to proteins comprising this domain is shown in Figure 21.

3.8. 36-amino-acid-residue NxGK repeat

The 193-amino-acid-residue protein corresponding to GENE_ID BA3686 and described as hypothetical cytotoxic protein comprises a 36-amino-acid-residue region as two
Figure 11: BA3147 is homologous to protein GBAA3147 from Bacillus anthracis str. "Ancestor."
Secondary Structure

Peptide	Sequence
BA4081(10-50)	SIGMYLSELQKGTESRLLEASMAKEDGKMIDLGPAQF
BA4081(172-212)	NITQLINGMQLALSLPQVAQTMGDLD1KSNVQVDLGAGQF
BA4081(292-333)	GSKSGSELQGGL1SQDGYIKGSALQVGSAHNAFSTINGSPA
BA4081(334-375)	GNQGGQFGSGIVNQKGY IRGSALEVTPAHTGFNTINGTQP

Consensus:

- **Secondary Structure:**
 - BA4081(10-50)
 - BA4081(172-212)
 - BA4081(292-333)
 - BA4081(334-375)

Figure 14: BA4081 is homologous to proteins GBAA4081 from Bacillus anthracis str. “Ames Ancestor,” BAS3792 from Bacillus anthracis str. Sterne, and Bant01004731 from Bacillus anthracis str. A2012.

Figure 15: PxV-57 aa domain.

Figure 16: FxF-122 aa domain.

Figure 17: YEFF-111 aa domain.

Figure 18: IMxxH-109 aa domain.
copies. Further BLAST searches using sequence corresponding to the region (94–129) as query identified 9 hypothetical proteins comprising this repeat region from the organisms *B. anthracis*, *B. thuringiensis*, *B. thuringiensis* serovar israelensis, *Bacillus weihenstephanensis*, and *B. cereus* (see Table 1(h)). The length of proteins varied between 189 to 193-amino-acid residues, and also consists a SAP domain at the N-terminus, in addition to the novel repeat described here. A SAP domain consists of two α-helices and is a DNA-binding motif that is involved in chromosomal organization [32]. Therefore, we believe that these repeats might also participate in a similar function. The multiple sequence alignment corresponding to this repeat identified NxGK sequence motif (Figure 9). The pairwise sequence identities between sequences corresponding to NxGK repeats varied between 36–97%. The secondary structure is predicted to comprise a α-helix and the conserved sequence motif described above is also associated with α-helix. The representative domain architecture corresponding to proteins comprising the NxGK repeats is shown in Figure 22.

3.9. 95-amino-acid-residue VYV domain

The 225-amino-acid-residue protein corresponding to the GENE_ID BA1701 and described as a hypothetical protein comprises a 95-amino-acid-residue region, as two copies in tandem. Further BLAST searches using sequence corresponding to the region (31–125) as query identified BAS1577 protein of *B. anthracis*, RBTH_03882 protein of *Bacillus thuringiensis* serovar israelensis, and DSY3134 of *Desulfotobacterium hafniense* Y51 that are described as hypothetical proteins. The length of proteins varied between 227 to 1674-amino-acid residues (see Table 1(i)). In RBTH_03882, this region occurs ten times and in tandem. The multiple sequence alignment corresponding to this domain identified characteristic sequence motifs; G DxV, VYV (see Figure 10). For the sake of simplicity, we refer to this 95-amino-acid region as VYV domain. The pairwise sequence identities between sequences corresponding to VYV domains varied between 29–95%. The secondary structure corresponding to VYV domain is predicted to comprise five β-strands. The representative domain architecture corresponding to proteins comprising the VYV domains is shown in Figure 22.

3.10. 75-amino-acid-residue KEWE domain

The 262-amino-acid-residue protein corresponding to the GENE_ID BA3147 and described as a hypothetical protein comprises a 75-amino-acid-residue region as three copies in tandem.
tandem. Further BLAST searches using the sequence corresponding to the region (34–108) as query identified this domain in 6 proteins that are described as hypothetical proteins (see Table 1(j)). This domain may exist as 2, 3, or 4 copies in these proteins. The length of proteins identified varied between 178 to 344-amino-acid residues. The pairwise sequence identities between sequences corresponding to these regions varied between 22–69%. These domains are present in tandem and associated with SPY, MIN, LYP, KEWE, and FWT conserved sequence motifs as indicated in the multiple sequence alignment (see Figure 11). We refer to these as the KEWE domain. The sequence identities shared between KEWE domains varied between 38–91%. The secondary structure corresponding to the KEWE domain is predicted to comprise three \(\alpha \)-helices as shown in Figure 11. The representative domain architecture corresponding to proteins comprising the KEWE domain is shown in Figure 24.

3.11. 59-amino-acid-residue AFL domain

The 290-amino-acid-residue protein corresponding to the GENE_ID BA3065 and described as hypothetical protein comprises a 59-amino-acid-residue region as two copies. Further BLAST searches using sequence corresponding to the region (13–71) as query identified that this region occurs twice in the proteins with GENE_ID's: BAS2851 and Bant_01003715 of *B. anthracis* strains, the protein with GENE_ID: BcerKBAB4DRAFT_1832 of *Bacillus weihenstephanensis*, and once in the protein with GENE_ID: RBTH_02124 of *Bacillus thuringiensis serovar israelensis* (see Table 1(k)). The lengths of the proteins varied between 145 to 297-amino-acid residues and are described as hypothetical proteins. The multiple sequence alignment corresponding to this domain identified two characteristic sequence motifs: RFxI and AFL (see Figure 12). We refer to this as the AFL domain. The sequence identities shared between AFL domains varied between 38–91%. The secondary structure corresponding to the AFL domain is predicted to comprise of one \(\alpha \)-helix and two \(\beta \)-strands and the conserved sequence motif AFL is a part of the \(\alpha \)-helix. The representative domain architecture corresponding to protein comprising the AFL domain is shown in Figure 25.

3.12. 53-amino-acid-residue RIDVK repeat

The 159-amino-acid-residue protein corresponding to the GENE_ID BA0482 and described as a conserved domain protein comprises a 53-amino-acid-region as two copies. BLAST did not identify this repeat in any other proteins; therefore this repeat is unique to *B. anthracis* str. *Ames*. The multiple sequence alignment corresponding to this repeat identified three characteristic sequence motifs: ITV, IGD, and RIDVK (Figure 13). We refer to this as the RIDVK repeat. The sequence identity shared between this RIDVK repeats in BA0482 is 45%. The secondary structure corresponding to the RIDVK repeat is predicted to comprise three \(\beta \)-strands. The representative domain architecture corresponding to protein comprising the RIDVK repeat is shown in Figure 26.
4. CONCLUSIONS

A systematic analysis using computational tools identified four novel repeats and ten domains corresponding to the *B. anthracis* str. *Ames* proteome. Further database searches identified that some novel repeats and domains are also present in other bacterial genomes. The NxGK repeats are associated with SAP domain. The SAP domain is a DNA-binding motif that is involved in chromosomal organization. Therefore, we believe that these repeats also participate in similar function. The YEFF domain-containing proteins are associated with RGD motif and may be involved in cell adhesion. The identification of novel repeats and domains corresponding to *B. anthracis* proteome may be useful for annotation. From the presence of VYV and AFL domains in all the *B. anthracis* species and their absence in *B. cereus* genomes, we identified some differences in these two genomes that are otherwise closely related.

ACKNOWLEDGMENTS

The first author thanks UGC, New Delhi, for a JRF fellowship. The second author thanks DBT, New Delhi, for project funding. The third author thanks DBT, New Delhi, for research funding.

REFERENCES

[1] R. Okinaka, K. Cloud, O. Hampton, et al., “Sequence, assembly and analysis of pX01 and pX02,” *Journal of Applied Microbiology*, vol. 87, no. 2, pp. 261–262, 1999.
[2] T. C. Dixon, M. Meselson, J. Guillemin, and P. C. Hanna, “Anthrax,” *New England Journal of Medicine*, vol. 341, no. 11, pp. 815–826, 1999.
[3] I. Uchida, T. Sekizaki, K. Hashimoto, and N. Terakado, “Association of the encapsulation of Bacillus anthracis with a 60 megadalton plasmid,” *Journal of General Microbiology*, vol. 131, no. 2, pp. 363–367, 1985.
[4] I. Uchida, K. Hashimoto, and N. Terakado, “Virulence and immunogenicity in experimental animals of Bacillus anthracis strains harbouring or lacking 110 MDa and 60 MDa plasmids,” *Journal of General Microbiology*, vol. 132, no. 2, pp. 557–559, 1986.
[5] S. H. Leppla, “Anthrax toxins,” in *Bacterial Toxins and Virulence Factors in Disease*, J. Moss, B. Iglewski, M. Vaughan, and A. T. Tu, Eds., pp. 543–572, Marcel Dekker, New York, NY, USA, 1995.
[6] M. J. Fallon, A. C. Lam, M. Antonio, and K. Dunbar, “An embarrassment of sortases - a richness of substrates?” *Trends in Microbiology*, vol. 9, no. 3, pp. 97–101, 2001.
[7] J. M. Patti, B. L. Allen, M. J. McGavin, and M. Hook, “MSCRAMM-mediated adherence of microorganisms to host tissues,” *Annual Review of Microbiology*, vol. 48, pp. 585–617, 1994.
[8] W. W. Navarre and O. Schneeewind, “Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope,” *Microbiology and Molecular Biology Reviews*, vol. 63, no. 1, pp. 174–229, 1999.

[9] D. M. Guttmann and D. J. Ellar, “Phenotypic and genotypic comparisons of 23 strains from the Bacillus cereus complex for a selection of known and putative *B. thuringiensis* virulence factors,” *FEMS Microbiology Letters*, vol. 188, no. 1, pp. 7–13, 2000.

[10] A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister, “Domain structure of the *Acetobacter kivui* surface layer revealed by electron crystallography and sequence analysis,” *Journal of Bacteriology*, vol. 176, no. 5, pp. 1224–1233, 1994.

[11] A. Lupas, “A circular permutation event in the evolution of the SLH domain?” *Molecular Microbiology*, vol. 20, no. 4, pp. 897–898, 1996.

[12] T. D. Read, S. N. Peterson, N. Tourasse, et al., “The genome sequence of *Bacillus anthracis* Ames and comparison to closely related bacteria,” *Nature*, vol. 423, no. 6935, pp. 81–86, 2003.

[13] I. Letunic, R. R. Copley, S. Schmidt, et al., “SMART 4.0: towards genomic data integration,” *Nucleic Acids Research*, vol. 32, pp. D142–D144, 2004.

[14] N. J. Mulder, R. Apweiler, T. K. Attwood, et al., “The InterPro database, 2003 brings increased coverage and new features,” *Nucleic Acids Research*, vol. 31, no. 1, pp. 315–318, 2003.

[15] A. Bateman, E. Birney, L. Cerruti, et al., “The Pfam protein families database,” *Nucleic Acids Research*, vol. 30, no. 1, pp. 276–280, 2002.

[16] X. Yu, C. S. Chini, M. He, G. Mer, and J. Chen, “The BRCT domain is a phospho-protein binding domain,” *Science*, vol. 302, no. 5645, pp. 639–642, 2003.

[17] B. Kobe and J. Deisenhofer, “The leucine-rich repeat: a versatile binding motif,” *Trends in Biochemical Sciences*, vol. 19, no. 10, pp. 415–421, 1994.

[18] M. A. Andrade, C. Perez-Iratxeta, and C. P. Ponting, “Protein repeats: structures, functions, and evolution,” *Journal of Structural Biology*, vol. 134, no. 2–3, pp. 117–131, 2001.

[19] M. A. Andrade, F. D. Ciccarelli, C. Perez-Iratxeta, and P. Bork, “NEAT: a domain duplicated in genes near the components of a putative Fe³⁺ siderophore transporter from Gram-positive pathogenic bacteria,” *Genome Biology*, vol. 3, no. 9, pp. 0047.1–0047.5, 2002.

[20] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” *Journal of Molecular Biology*, vol. 215, no. 3, pp. 403–410, 1990.

[21] A. Heger and L. Holm, “Rapid automatic detection and alignment of repeats in protein sequences,” *Proteins: Structure, Function and Genetics*, vol. 41, no. 2, pp. 224–237, 2000.

[22] M. A. Andrade, C. P. Ponting, T. J. Gibson, and P. Bork, “Homology-based method for identification of protein repeats using statistical significance estimates,” *Journal of Molecular Biology*, vol. 298, no. 3, pp. 521–537, 2000.

[23] R. Mott, “Accurate formula for P-values of gapped local sequence and profile alignments,” *Journal of Molecular Biology*, vol. 300, no. 3, pp. 649–659, 2000.

[24] R. Szklarczyk and J. Heringa, “Tracking repeats using significance and transitivity,” *Bioinformatics*, vol. 20, supplement 1, pp. i311–i317, 2004.

[25] S. F. Altschul, T. L. Madden, A. A. Schäffer, et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” *Nucleic Acids Research*, vol. 25, no. 17, pp. 3389–3402, 1997.

[26] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” *Nucleic Acids Research*, vol. 22, no. 22, pp. 4673–4680, 1994.

[27] B. Rost, C. Sander, and R. Schneider, “PHD—an automatic mail server for protein secondary structure prediction,” *Computer Applications in the Biosciences*, vol. 10, no. 1, pp. 53–60, 1994.

[28] L. Falquet, M. Pagni, P. Bucher, et al., “The PROSITE database, its status in 2002,” *Nucleic Acids Research*, vol. 30, no. 1, pp. 235–238, 2002.

[29] C. P. Ponting, R. Mott, P. Bork, and R. R. Copley, “Novel protein domains and repeats in *Drosophila melanogaster*: insights into structure, function, and evolution,” *Genome Research*, vol. 11, no. 12, pp. 1996–2008, 2001.

[30] S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, “Integrin α3β1 (CD 49c/29) is a cellular receptor for Kapośi’s sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells,” *Cell*, vol. 108, no. 3, pp. 407–419, 2002.

[31] S. E. D’Souza, M. H. Ginsberg, and E. F. Plow, “Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif,” *Trends in Biochemical Sciences*, vol. 16, no. 7, pp. 246–250, 1991.

[32] L. Aravind and E. V. Koonin, “SAP—a putative DNA-binding motif involved in chromosomal organization,” *Trends in Biochemical Sciences*, vol. 25, no. 3, pp. 112–114, 2000.