A systematically structured review of biomarkers of dying in cancer patients in the last months of life; An exploration of the biology of dying

Victoria Louise Reid1*, Rachael McDonald2, Amara Callistus Nwosu1, Stephen R. Mason1, Chris Probert3, John E. Ellershaw1, Séamus Coyle1*

1 The Marie Curie Palliative Care Institute Liverpool, University of Liverpool, Liverpool, United Kingdom, 2 Renal Medicine, Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom, 3 Department of Gastroenterology, University of Liverpool, Liverpool, United Kingdom

These authors contributed equally to this work.
* victoria.reid@nhs.net (VLR); s.coyle@liverpool.ac.uk (SC)

Abstract

Background
The Neuberger review made a number of recommendations to improve end of life care, including research into the biology of dying. An important aspect of the biology of dying is the identification of biomarkers as indices of disease processes. Biomarkers have the potential to inform the current, limited understanding of the dying process and assist clinicians in recognising dying, in particular how to distinguish dying from reversible acute deterioration.

Objectives
To critically appraise the literature on biological factors that may be used as prognostic indicators in advanced cancer patients and to identify candidate biomarkers of the dying process that can be measured serially in cancer patients’ bodily fluids.

Methods
A systematically structured review was conducted using three electronic databases. A hand search of six peer-reviewed journals and conference abstracts was also conducted. Studies reporting prognostic biomarkers in cancer patients with a median survival of ≤90 days and post-mortem studies were included. Final levels of evidence and recommendations were made using the Evidence Based Medicine modified GRADE system.

Results
30 articles were included. Seven prognostic biological factors demonstrated Grade A evidence (lymphocyte count, white blood cell count, serum C-reactive protein, albumin, sodium, urea and alkaline phosphatase). An additional eleven prognostic factors were identified with Grade B evidence (platelet count, international normalised ratio, serum vitamin
In a comprehensive evaluation of the challenges and actions required to provide the best care for dying patients, the Neuberger review identified the need for further research into the biology of dying as a priority [1]. The biology of dying is an umbrella topic that encompasses the physiological and biological changes attributed to the dying process, in addition to the aetiology of signs and symptoms commonly seen in the last days, weeks and months of life.

There is significant uncertainty in consistently and accurately identifying the dying phase (last days of life) and no definitive diagnostic criteria exist [1,2]. Little is known about the process of dying [1] and in the final days of life, new symptoms or exacerbation or recurrence of previously well-controlled symptoms can occur [3,4]. A prospective cohort study of 343 doctors found only 20% of prognostic estimates in hospice patients were accurate and that, overall doctors overestimated survival by a factor of five [5].

It has been extensively documented that cancer patients experience a sharp functional decline in the last months of life [6]. The prevalence of common terminal symptoms amongst patients with advanced cancer is suggestive of a common terminal trajectory; historically termed the “terminal cancer syndrome” [7]. Although the concept of the “terminal cancer syndrome” has been largely superseded, there is significant evidence for the prognostic importance of dyspnoea (Grade B), cancer anorexia-cachexia syndrome (CACS, Grade B), delirium (Grade B) and low performance status (Grade A) in advanced cancer [8]. A systematic review by Kehl et al. demonstrated that dyspnoea (56.7%), pain (52.4%), respiratory tract secretions (51.4%) and confusion (50.1%) were the most prevalent signs and symptoms that occur in the last two weeks of life [9]. Further, Hui et al. identified 13 signs highly predictive of death within three days [10,11].

An important aspect of the biology of dying is the identification of biomarkers as indices of disease processes. Biomarkers have the potential to inform the current, limited understanding of the process of dying and assist clinicians in recognising dying, in particular how to distinguish dying from reversible acute deterioration. In 2005, Maltoni et al. published evidence-based recommendations for a number of prognostic biological factors in advanced cancer patients [8]. Subsequently, a number of prognostic models have been developed that incorporate prognostic biomarkers [12]. No systematic reviews have been conducted that summarise the evidence for prognostic biomarkers in advanced cancer patients.

In this systematically structured review, the authors summarise the evidence for prognostic biomarkers in advanced cancer patients in the last months of life and extrapolate which biological processes are affected.
Objectives
This systematically structured review was conducted to collate and critically appraise the literature on prognostic biomarkers in advanced cancer. The following questions formed the basis of this review:

1. What biological factors are prognostic in advanced cancer patients in the last days, weeks or months of life?

2. Can serial measurement of identified biomarkers detect the last days to weeks of life in advanced cancer patients?

Methods
Given that no randomised controlled trials have been conducted on this research topic, a systematically structured review was conducted to ensure a replicable and systematic synthesis of the evidence. The review was structured according to the PRISMA standards for conducting a systematic review [13].

Literature search methods
On 5th February 2016, three electronic databases were searched (Medline, Scopus and Cochrane Database of Systematic Reviews) using combinations of the key words, described in Table 1. Limits were set to humans, adults (aged over 18 years of age) and publication between 1st January 2000 and 5th February 2016. Only published articles were sought. Two reviewers (VLR and SC) independently searched all designated databases for abstracts and titles. Agreement on inclusion was made by consensus. Additional articles were identified through a hand search of contents pages of the most recent issues (December 2014 to February 2016) of six relevant peer-reviewed Palliative Medicine journals: Cancer, BMJ Supportive and Palliative Care, Palliative Medicine, Journal of Palliative Care, Journal of Palliative Medicine, and Journal of Pain and Symptom Management. Grey literature was searched through citation tracking and conference abstracts from the European Association of Palliative Care World Congress 2016, European Association of Palliative Care World Congress 2015, the Marie Curie Research Conference 2015, the Arts and Science of Hospice Care Annual Conference 2015, the 5th International Conference on Advance Care Planning and End of Life Care 2015, and the International Congress of Palliative Care 2014. The last literature search was conducted on 16th June 2016.

Institutional review board approval was not sought or required for this literature review.

Table 1. Search strategy for medline.

Query Number	Query Content
#1	death OR dying OR terminal care OR terminal illness OR “terminally ill” OR hospice* OR palliative care
#2	biolog* OR physiolog* OR pathophysiol* OR patholog* OR biomarker* OR biologic marker* OR biological marker* OR biological factor* OR “biology of dying” OR prognostic* OR prognosis OR predict OR mortality OR “terminal cancer syndrome” OR “common terminal pathway” OR “common terminal trajectory” OR “final common pathway” OR “terminal syndrome”
#3	cancer OR tumor* OR tumour* OR neoplas* OR oncol og* OR carcinoma
#4	#1 AND #2 AND #3
#5	Limit #4 to humans, all adults (19 years plus), publication year 2000—current

*Truncation

https://doi.org/10.1371/journal.pone.0175123.t001
Eligibility criteria

The primary objective was the identification of prognostic biomarkers in advanced cancer patients in the last days, weeks or months of life. Biomarkers were defined as objective, quantifiable characteristics of biological processes [14] quantifiable in bodily fluids and tissues. Given that most cancer patients seem to follow a common terminal trajectory, [6] only patients with cancer were included in this study.

Diagnosing imminent death is often difficult and imprecise [1] and terminal physiological changes are often seen many weeks before death. Further, the definition of “advanced cancer” is often lacking in the literature. In line with the study by Maltoni et al. this review included only study populations with a median survival of ≤90 days [8] that, for the purpose of this study, defines the term “advanced cancer.” This criterion enabled us to capture biological factors predictive of dying over days, weeks and months of life. Post-mortem studies of cancer patients specifically looking at biomarkers of the dying process were also included.

All types of peer-reviewed evidence were included and a 16-year timeframe was selected to ensure comprehensive yet current coverage of the literature, and build on the excellent review published in 2005 by Maltoni et al (last literature search conducted in 2003).

Articles were excluded if they described only signs, symptoms or physiological changes associated with imminent death. The following types of articles were also excluded: duplicates, non-English language, paediatric populations, editorials, commentaries, case reports, reviews and animal studies. The systematic review by Maltoni et al. was included as it provided an evidence-based summary of the literature up until 2005 [8]. Primary researchers were contacted by email, where necessary, to clarify information to ensure strict adherence to the inclusion criteria. Where survival data could not be confirmed, studies were excluded.

Study selection

A review protocol was developed by VLR in advance of the literature search (S2 File). VLR extracted the data from the studies and discussed the results with SC. Disagreements between reviewers were resolved by consensus. Reviewers were not blinded for authors, institutions, or journals of publication. The Liverpool Reviews and Implementation Group (LRiG) at University of Liverpool reviewed and agreed on the employed methodology.

Quality assessment

The primary authors (VLR and SC) used the UK National Institute for Health and Clinical Excellence (NICE) hierarchy of evidence to assign a quality rating to the potential articles for inclusion [15]. Given that a variety of research outputs were considered in this review, a critical appraisal tool described by Hawker et al. [16] was utilised to further evaluate the quality of studies. Briefly, a four-point scale from one (very poor) to four (good) was assigned to nine areas including: abstract and title, introduction and aims, methods and data, sampling, data analysis, ethics and bias, results, transferability/generalisability, and implications and usefulness with a total number between 9–36 assigned to each study [16]. The Maltoni et al. seven-point checklist of quality criteria for evaluation of studies on prognostic factors was also utilised, where one point is assigned to seven criteria including: prospective study design; well-defined cohort of patients assembled at a common point in the course of their disease; random patient selection, percentage of patients lost to follow-up ≤20%; ratio between the number of events (death) and the number of potential predictors ≥10; prognostic variables fully defined, accurately measured, and available for all or a high proportion of patients; and reliable measurement of outcome (date of death) [8]. A total score between 1–7 was assigned and high quality (or low probability of bias) was attributed to studies fulfilling at least five of the seven
criteria [8]. VLR and SC assessed the quality of potential articles for inclusion independently and mean scores were assigned. Spearman’s rank correlation coefficient was used to measure rank correlations of scores between assessors. Data was analyzed using Statistical Software Package for the Social Sciences® (SPSS® version 22.0; IBM SPSS Inc., Chicago, IL). Final levels of evidence and recommendations were made using the Evidence Based Medicine modified Grading of Recommendations Assessments, Development and Evaluation (GRADE) system (Grade A = high quality evidence with consistent results, to Grade D = very low quality evidence such as expert opinion) [17].

Results
Study selection
The results of the literature search are summarised in Fig 1. Based on firm application of the inclusion criteria, 30 articles were included in this systematically structured review (Table 2).
Citation (author, year, country)	Design & Objectives	Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings
Geissbühler, P et al. 2000, Switzerland [18]	Prospective cohort study (investigative)	University hospital inpatients admitted to a geriatric facility requiring inpatient palliative care	Various malignancies • Median age 76 years (range 46-96)	Median survival: 45 days (95% CI 32-56 days)	Relyed on blood samples taken on admission (missing data: n = 4) • Does not clearly distinguish between palliative and curative patients • Requires invasive procedure	Level 2+ • Hawker et al 33/36 • Maltoni et al 6/7	The length of survival decreased with the increase in serum B12 levels (p = 0.001, Cox model). • In univariate analysis, PINI and its 4 components: CRP, AGP, albumin, and prealbumin were predictors of length of survival. • In multivariate analyses, CRP was the most important prognostic factor, and B12 was independent of CRP in predicting survival. • There was a strong correlation between the presence of metastasis, hepatic dysfunction and an elevated serum B12 level (p <0.001). • The BCI, calculated by B12 x CRP, was a simplified and significant marker of survival (trend test, p <0.001). • Serum albumin (p = 0.001) emerged (with a positive sign) as predictive of survival. • Statistically non significant: ○ Lymphocyte count ○ Serum cholesterol
Pasanisi, F et al. 2001, Italy [19]	Prospective cohort study (investigative)	Hospital patients in 2 centres in Italy • n = 76	Terminal illness cancer patients with irreversible bowel obstruction receiving home parenteral nutrition • Various malignancies • Mean age: 56.8 years (SD 14.0)	Median survival: 74 days (range 6-301)	Ratio between the number of events (death) and the number of potential predictors <10 • Method for identifying date of death not described • Requires invasive procedure	Level 2+ • Hawker et al 33/36 • Maltoni et al 4/7	Serum albumin (p = 0.001) emerged (with a positive sign) as predictive of survival.
Greek, P et al. 2001, Australia [20]	Prospective cohort study (confirmative)	University teaching hospital inpatients referred to a hospital-based palliative medicine consultation service in Australia • n = 100	Terminal illness • Advanced cancer, n = 91 • Non-cancer, n = 9 • Median age: 66.5 years (range 16-92)	Median survival: 30 days (95% CI: 24-40)	Includes non-cancer patients (n = 9) • PaP Score requires invasive procedure	Level 2+ • Hawker et al 33/36 • Maltoni et al 6/7	Provano et al published details of the PaP Score, which classifies patients with very advanced cancer into homogeneous risk groups for survival based on various clinical and laboratory parameters (anorexia; dyspnoea; performance status; CPS; WBC; and lymphocyte count)[21]. • The PaP Score subdivides the population into 3 groups with a different probability of survival at 30 days: ○ Group A: >70% ○ Group B: 30-70% ○ Group C: <30% [21] • This study externally validates the PaP Score in patients referred to the hospital palliative care team. Median survivals for the three groups were: ○ Group A: 60 days (95% CI: 41-89) ○ Group B: 34 days (95% CI: 25-40) ○ Group C: 8 days (95% CI: 2-11) • The percentage survival at 30 days for the three groups were: ○ Group A: 66% ○ Group B: 54% ○ Group C: 5%
Citation (author, year, country)	Design & Objectives	Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings
---------------------------------	---------------------	--------------------	-----------	------------------	------------	------------	-------------------
McMillan, DC et al. 2001, UK [22]	Cohort study (explorative)	Hospital inpatients n = 404	Advanced bronchogenic cancer	Median survival: Bronchogenic: 60 days	No protocol for blood sampling; Does not distinguish between palliative and curative patients; Clinicopathological stage at diagnosis and subsequent treatment were not included in analysis; Requires invasive procedure; High risk of bias	Level 2+	On univariate analysis, log10 CRP and albumin concentrations were significant predictors of survival. On multivariate analysis, log10 CRP remained a significant independent predictor of survival. CRP concentrations were associated with a higher risk of non-cancer deaths.
Farsi M. 2003, Oman [23]	Prospective cohort study (explorative)	Tertiary oncology centre in Oman n = 162	Terminally ill	Median survival: 10 days	Exclusion criteria not described; Requires invasive procedure	Level 2+	Univariate analysis demonstrated that a number of factors had a significant effect on survival including: Peripheral oedema; Low lymphocyte count; Low serum albumin level. Multiple regression analysis demonstrated that the following as independent predictors of survival: Peripheral oedema (p = 0.007)
Ho SY et al. 2003, Taiwan [24]	Prospective cohort study (investigative)	University hospice in Taiwan n = 109	Terminally ill Advanced cancer	Median survival: 19 days	Limitations of study not discussed; Serum albumin and lymphocyte count, previously identified prognostic markers, were not significant	Level 2++	Univariate analysis demonstrated that a number of factors had a significant effect on survival including: Prealbumin < 100 mg/L (p = 0.03), AST > 45 U/L (p = 0.03), ALP > 120 U/L (p = 0.02), Serum creatinine > 1.4 mg/dL (p = 0.01), BUN > 20 mg/dL (p < 0.01). Multivariate analysis demonstrated that a number of factors were independent predictors of poor survival: Prealbumin < 100 mg/L (p < 0.01), AST > 45 U/L (p = 0.01), BUN > 20 mg/dL (p < 0.01). Statistically non significant: Serum albumin; Transferrin; Haemoglobin; Total lymphocyte count; Serum ALT.
Citation (author, year, country)	Design & Objectives	Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings
---------------------------------	---------------------	--------------------	-----------	-----------------	------------	-----------	---------------------
Iwase S, et al. 2004, Japan [25]	Prospective cohort study (investigative) Quantitative serial analysis of six cytokines in the plasma: TNFα, IL-1β, IL-6, INFγ, PTHrP and LIF and basic laboratory tests in hospice inpatients with late stages of cachexia. Hospice inpatients in a single centre in Japan n = 28	Various carcinomata Palliative: n = 25 Curative: n = 3 Late stages of cachexia Mean age: 65.2 years (range 38–90)	1–92 days Survival >90 days: n = 1	Small sample size Heterogeneity of sample No protocol for collection of blood samples Primary outcomes not specified Main findings were found incidentally Includes only patients with late stages of cachexia Ratio between the number of events (death) and the number of potential predictors <10 Requires invasive procedure Prognostic significance not assessed	Level 2+ Hawker et al 31/36 Maltoni et al 4/7	Only IL-6 (and TNFα, n = 1) was detected in all patients. Maximum plasma IL-6 4.6–870 pg/mL Concentration of IL-6 rose gradually during the early stages of cachexia. Sharp rise in the week prior to death (n = 10). Plasma levels of IL-6 ≥100 pg/mL detected in the week prior to death (n = 6).	
Maltoni M et al. 2005, Italy [8]	Systematic review of non-randomised controlled trials Working group review of 38 prospective studies evaluating prognostic factors in advanced cancer. To offer evidence-based clinical recommendations concerning prognosis in advanced cancer patients.	Advanced cancer Median survival ≤90 days Mean age: 65.2 years (range 38–90)	Median survival: ≤90 days	Heterogeneity of studies Meta analysis not possible Poor quality of existing published studies Some subjectivity in quality criteria	Level 2++ Hawker et al N/A Maltoni et al N/A	Level B evidence based recommendations for the prognostic correlation of a number of factors including: Leukocytosis Lymphopenia Elevated serum CRP level CACS Factors that proved significant in at least one multivariate analysis included: Low pseudocholinesterase High serum B12 High serum bilirubin Factors for which a correlation has been indicated but not confirmed or for which a statistical significance has been identified in patient populations with less advanced disease or for which contradictory data have emerged: Anaemia Hypoalbuminaemia Low prealbumin Proteinuria Serum calcium level Serum sodium level Serum LDH	

(Continued)
Citation (author, year, country)	Design & Objectives Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings
Shin, HS et al. 2006, Korea [26]	Prospective cohort study (investigative) Serial measurements of a number of serological variables in terminally ill cancer patients admitted to a palliative care unit in a single inpatient centre.	Hospital inpatients admitted to the palliative care unit in a single centre in Korea n = 118	Various carcinomas Terminally ill Median age: 65.5 years (range 25–93)	Median survival: 14 days (95% CI 11–17)	Requires invasive procedure Single centre in Korea Ratio between the number of events (death) and the number of potential predictors <10	Level 2++ Hawker et al 35/36 Maltoni et al 5/7
Lam PT et al. 2007, China [27]	Prospective cohort study (explorative) To identify potential prognostic factors affecting the survival in patients with advanced cancer who were treated in a palliative care unit at a regional hospital in Hong Kong.	Hospital inpatients and outpatients at a palliative care unit at a regional teaching hospital in Hong Kong n = 170	Advanced cancer in the last 6 months of life: Locally advanced (n = 28) Metastatic (n = 142) Various malignancies Mean age: 69 years (SD 12)	Median survival: 77 days (range 31–160)	Confined to a single centre in Hong Kong Requires invasive procedure	Level 2++ Hawker et al 35/36 Maltoni et al 5/7

(Continued)
Citation (author, year, country)	Design & Objectives	Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings	
Kelly, L. et al. 2007, UK [28]	Prospective cohort study (confirmative) Confirmatory study of the BCI	Hospital and hospice patients receiving palliative care in 7 UK centres n = 329	Advanced cancer: Locally advanced (n = 20) Metastatic (n = 309) Palliative Median age 68.7 years (range 23–94)	Median survival: 42 days (95% CI 34.8–49.2)	Relevant blood tests not taken and excluded (n = 50) Patients censored due to missing data (n = 9) Non-consecutive series of patients No clinician estimate of survival Requires invasive procedure	Level 2++ Hawker et al 35/36 Maltoni et al 6/7	The BCI, calculated by B12 x CRP is a simplified and significant marker of survival: BCI < 10000: 50% 3 month mortality BCI > 40000: 90% 3 month mortality [18]	In this study, the BCI was externally validated in hospital and hospice patients receiving palliative care. Patients were divided into 3 groups according to BCI score. The median survival for each group was: Group 1, BCI ≤ 10000: 71 days (95% CI 45.9–96.2) Group 2, BCI 10001–40000: 43 days (95% CI 28.8–57.2) Group 3, BCI > 40000: 29 days (95% CI 22.0–36.1) Patients in Group 3 had a significantly worse survival than patients in Group 2 and patients in Group 1 (p < 0.01). However, patients in Group 1 did not have a significantly better prognosis than those in Group 2 (p = 0.091). Thus, while a high BCI score had poor prognostic significance, an intermediate or low score was more difficult to interpret. 90-day mortality estimates for each of the three risk groups were different from the figures previously reported: Group 1, BCI ≤ 10000: 58.9% vs. 47.2% Group 2, BCI 10001–40000: 64.0% vs. 72.5% Group 3, BCI > 40000: 78.9% vs. 90.6%

(Continued)
Table 2. (Continued)

Citation (author, year, country)	Design & Objectives	Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings
Suh, SY et al. 2007, South Korea [29]	Prospective cohort study (investigative)	Hospital palliative care unit in a single centre in South Korea	Various carcinomas	Median survival: 19 days (95% CI 14–24)	Serum LDH concentrations may fluctuate with the passage of time or may reflect complications of cancer. The relationship between serum LDH and survival time is not a simple negative correlation and requires further research.	Level 2+	Significantly shorter survival times were observed in the following groups in univariate analysis (Cox):
							• High serum LDH >313 IU/L (p < 0.001)
							• Increased leukocytes >10000 mm3 (p = 0.020)
							• Increased neutrophil fraction >75% (p = 0.030)
							• Decreasing thrombocytes (p = 0.030)
							• Elevated serum CRP >8.5 mg/dL (p = 0.015)
							• Elevated serum urate >7.2 mg/dL (p < 0.001)
							• Low serum albumin <3.0g/dL (p = 0.019)
							• Hyperbilirubinaemia >1.0 mg/dL (p = 0.003)
							• INR >1.12 (p = 0.001)
							• Hypocholesteolaemia <130 mg/dL (P < 0.001)
							• The median survival time of 27 days (95% CI 19–35) was significantly longer than that of 14 days (95% CI 10–18) in the elevated serum LDH (>313 IU/L) group (HR 2.235, p<0.001).
							• By multivariate analysis (Cox), the following variables were independent and significant prognostic factors of poor survival time:
							• ECOG PS medium-high level of pain
							• Fatigue
							• Hypotension
							• Elevated serum LDH (HR 2.087, p = 0.002)
							• Elevated serum CRP (HR 1.984, p = 0.002)
							• Elevated serum urate (HR 2.853, p < 0.001)
							• Statistically non significant:
							• Haemoglobin
							• Pleural effusion
							• Pneumonia
							• A new scoring system was developed to estimate the survival time of terminally ill cancer patients using the 7 variables identified by multivariate analysis. The accuracy of prediction for study subjects (n = 93) is below:
							• Prediction <3 weeks sensitivity 76%, specificity 67%, PPV 74%, NPV 70%
							• Prediction <4 weeks sensitivity 71%, specificity 73%, PPV 85%, NPP 55%
							• Average serum LDH concentration was measured consecutively at 2 weeks and 1 week before death (n = 25) and was 5.04.04 +/- 347.11 IU/L and 630.40 +/- 417.32 IU/L, respectively (p = 0.008).

(Continued)
Citation (author, year, country)	Design & Objectives Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings		
Alsirafy SA et al. 2009, Saudi Arabia [30]	Retrospective cohort study To assess the predictive significance of abnormalities in serum sodium, potassium, calcium, magnesium and phosphate on the admission outcome and survival of patients with cancer referred to palliative care service.	Hospital inpatients referred to the palliative care team Single centre n = 259	Advanced cancer	Median age: 52 years (range 14–87)	Median survival: 36 days	Retrospective Astrology of electrolyte abnormalities not addressed	Level 2++ Hawker et al 31/36 Mailton et al 6/7	
Hyodo, I et al. 2010, Japan [31]	Prospective cohort study (explorative) To develop a new prediction tool, JPOS-PI for terminally ill cancer patients with advanced solid tumors and to compare the new tool with PaP score and PPI.	Inpatients treated in a hospice or hospital palliative care units across multiple centres in Japan Development sample n = 201	Terminally ill Advanced solid organ tumours	Median age: 65 (SD 12 years)	Median survival: 30 days Test sample: n = 208 Median age: 65 years (SD 12)	The accuracy and practical value of CPS remains controversial	Level 2++	Hawker et al 31/36 Morita et al 5/7

- Hyponatremia was the most common electrolyte abnormality (64%).
- By univariate analysis, the following variables were significant prognostic factors of poor survival time:
 - Serum sodium (p = 0.0008)
 - Serum calcium (p = 0.0008)
 - Serum magnesium (p = 0.0001)
- Abnormalities in serum potassium and phosphate had no significant impact on admission outcome or overall survival.
- The 3 electrolyte abnormalities associated with the highest inpatient death rate and shortest median survival were:
 - Hypercalcaemia (inpatient death rate: 69%, median survival: 12 days)
 - Hyponatremia (68%, 8 days)
 - Hypermagnesemia (62%, 12 days).
- Combining these abnormalities in a simple scoring system divided the patients into 3 groups with significant difference in overall survival:
 - Two abnormalities: 8 days (95% CI 7–9)
 - One abnormality: 24 days (95% CI 10–38)
 - No abnormalities: 60 days (95% CI 26–94)

- Multivariate analysis (Cox) identified 5 significant predictors (p < 0.05) in the development sample, including:
 - CPS
 - Disturbance in consciousness
 - Pleural effusion
 - WBC count
 - Lymphocyte percentage

- JPOS-PI was developed using these predictors and divided patients into 3 risk groups. Median survival for each group was as follows:
 - Group A, low risk: 51 days
 - Group B, intermediate risk: 35 days
 - Group C, high risk: 16 days
- Survival probability for more than 30 days in the development sample was as follows:
 - Group A, low risk: 78%
 - Group B, intermediate risk: 61%
 - Group C, high risk: 16%
- JPOS-PI was studied in subsequent test sample, and constant results were obtained.
- The 3 risk groups judged with JPOS-PI and PaP scores showed very similar survival in the test sample.
| Table 2. (Continued) | | | | | | | |
|---|---|---|---|---|---|---|---|
| **Citation** | **Design & Objectives** | **Setting and Sample** | **Diagnosis** | **Days until Death** | **Weaknesses** | **Appraisal** | **Main Study Findings** |
| Tarumi, Y et al. 2011, Canada [33] | Prospective cohort study (confirmative) | Hospital inpatients referred to the palliative care service in a large acute hospital in Canada. | Cancer, n = 777 (81.1%) | Median survival: 35 days (95% CI 31–39) | Includes cancer and non-cancer patients | Level 2++ | The PaP Score subdivides the population into 3 groups with a different probability of survival at 30 days:
 - Group A: >70%
 - Group B: 30–70%
 - Group C: <30% [21]
This study externally validates the PaP Score in patients referred to the hospital palliative care team. The 3 groups, divided based on different ranges of PaP Score, had significantly different survival curves with 30-day-survival rates as follows:
 - Group A: 78%
 - Group B: 55%
 - Group C: 11%
 - Median survivals for the three groups were:
 - Group A: 89 days (95% CI 72–106)
 - Group B: 35 days (95% CI 30–40)
 - Group C: 4 days (95% CI 3–6)
 - The nomogram was validated with an external dataset that included 474 patients. The nomogram provided better AUC values than the PaP Score at 15, 30 and 60 days.
 - In univariate survival analysis (Cox), a number of factors were statistically significantly associated with survival time including:
 - Serum creatinine (p = 0.039)
 - Serum corrected calcium (p = 0.007)
 - Haemoglobin (p = 0.006)
 - Lymphocyte count (p = 0.000)
 - Serum bilirubin (p = 0.001)
 - Serum LDH (p = 0.000)
 - Serum cholesterol (p = 0.009)
 - Serum albumin (p = 0.000)
 - Multivariate analysis (Cox) identified 5 variables independently prognostic:
 - ECOG PS
 - TTD, a subjective parameter which may relate to tumour aggressiveness
 - Serum albumin (HR 0.729, 95% CI 0.621–0.856, p = 0.000)
 - Serum LDH (HR 1.127, 95% CI 1.058–1.200, p = 0.000)
 - Lymphocyte number (HR 0.876, 95% CI 0.791–0.970, p = 0.011)
 - Statistically non significant factors by univariate analysis:
 - Serum potassium
 - Serum sodium
 - GGT
 - ALP
 - Neutrophil count
 - Uric acid
 - A nomogram for predicting the probability of survival at 15, 30, and 60 days was constructed using the 5 variables identified by multivariate analysis.
 - Cumulative survival could be grouped into quartiles according to the score generated by the nomogram, and median survival by group was:
 - Quartile 1, score ≤ 0.45: 83 days (95% CI 64–102)
 - Quartile 2, score 0.46–0.59: 105 days (95% CI 82–128)
 - Quartile 3, score 0.60–1.24: 24 days (95% CI 15–33)
 - Quartile 4, score ≥1.25: 6 days (95% CI 4–8)
 - The nomogram was validated with an external dataset that included 474 patients. The nomogram provided better AUC values than the PaP Score at 15, 30 and 60 days.
 - Requires invasive procedure
| Felu, J et al. 2011, Spain [33] | Prospective cohort study (explorative) | Hospital oncology and palliative care unit inpatients and outpatients | Various malignancies | Expected survival <6 months | Some relevant survival parameters such as CPS, CRP, and comorbid conditions were not assessed in this study but might provide additional prognostic information | Level 2++ | In univariate survival analysis (Cox), a number of factors were statistically significantly associated with survival time including:
 - Serum creatinine (p = 0.039)
 - Serum corrected calcium (p = 0.007)
 - Haemoglobin (p = 0.006)
 - Lymphocyte count (p = 0.000)
 - Serum bilirubin (p = 0.001)
 - Serum LDH (p = 0.000)
 - Serum cholesterol (p = 0.009)
 - Serum albumin (p = 0.000)
- Multivariate analysis (Cox) identified 5 variables independently prognostic:
 - ECOG PS
 - TTD, a subjective parameter which may relate to tumour aggressiveness
 - Serum albumin (HR 0.729, 95% CI 0.621–0.856, p = 0.000)
 - Serum LDH (HR 1.127, 95% CI 1.058–1.200, p = 0.000)
 - Lymphocyte number (HR 0.876, 95% CI 0.791–0.970, p = 0.011)
- Statistically non significant factors by univariate analysis:
 - Serum potassium
 - Serum sodium
 - GGT
 - ALP
 - Neutrophil count
 - Uric acid
- A nomogram for predicting the probability of survival at 15, 30, and 60 days was constructed using the 5 variables identified by multivariate analysis.
- Cumulative survival could be grouped into quartiles according to the score generated by the nomogram, and median survival by group was:
 - Quartile 1, score ≤ 0.45: 83 days (95% CI 64–102)
 - Quartile 2, score 0.46–0.59: 105 days (95% CI 82–128)
 - Quartile 3, score 0.60–1.24: 24 days (95% CI 15–33)
 - Quartile 4, score ≥1.25: 6 days (95% CI 4–8)
- The nomogram was validated with an external dataset that included 474 patients. The nomogram provided better AUC values than the PaP Score at 15, 30 and 60 days.
- Requires invasive procedure |
| Citation | Design & Objectives | Setting and Sample | Diagnosis | Days until Death | Weaknesses | Appraisal | Main Study Findings |
|------------------|--|---|--------------------|------------------|---|------------|---|
| Gwilliam, B et al. 2011, UK [34] | • Prospective cohort study (explorative)
• Development and validation of 4 prognostic models for predicting survival. | • 18 hospital, hospice and community palliative care services across the UK
• n = 1080 | • Advanced cancer
• Palliative | • Median survival: 34 days | • Models require external validation
• PiPS-B models require invasive procedure | • Level 2++
• Hawker et al 36/36
• Maltoni et al 6/7 | • On multivariate analysis, a number of variables independently predicted both two week and two month survival including:
• Serum CRP
• WBC count
• Platelet count
• Urea
• A number of variables had prognostic significance only for 2 week survival including:
• Serum ALT level
• A number of variables had prognostic significance only for 2 month survival including:
• Lymphocyte count
• Neutrophil count
• Serum ALP level
• Serum albumin
• Separate prognostic models were created for patients without (PiPS-A) or with (PiPS-B) blood results. The AUC for all 4 models varied between 0.79–0.86.
• PiPS-A scores can correctly order survival times for pairs of participants 68.9% of time.
• PiPS-B scores can correctly order survival times for pairs of participants 67.5% of time.
• The PiPS prognostic models can predict whether patients will survive for “days,” “weeks,” or “months.”

| Cui, J et al. 2014, China [35] | • Prospective cohort study (explorative)
• To develop a new prognostic scale to predict survival time of advanced cancer patients in China. | • Hospital inpatients across 12 centres in China
• n = 320 | • Advanced cancer
• Expected to be in the last 6 months of life | • Median survival: 34.5 days | • Serum Na, total bilirubin, direct bilirubin, AST and ALP have not previously been included in other prognostic models. Their significance in survival prediction warrants further study
• Ratio between the number of events (death) and the number of potential predictors <10
• Requires invasive procedure | • Level 2+
• Hawker et al 32/36
• Maltoni et al 5/7 | • By univariate and multivariate analysis, 14 variables were significantly associated with survival time including
• KPS
• Pain
• Ascites
• Hydrothorax
• Oedema
• Delirium
• Cachexia
• WBC
• Hemoglobin
• Serum sodium
• Total bilirubin
• Direct bilirubin
• AST
• ALP
• The new-ChPS Scale developed using the above prognostic factors.
• When the prognostic score of a patient was >12, the prediction of survival appeared to be <7 days.
• When the prognostic score of a patient was <6, the prediction of survival appeared to be >180 days (6 months).
• Statistically non significant factors by univariate analysis:
• Platelet count
• Serum creatinine
• Serum chloride
• Serum globulin

(Continued)
Citation (author, year, country)	Design & Objectives	Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings
Kim, ES et al 2014, Korea [36]	Prospective cohort study (confirmative)	Hospital inpatients on a palliative care ward in a single centre in Korea, and evaluate its value in clinical practice.	Advanced cancer, various malignancies	Median survival: 25 days (95% CI 19–30)	Includes only hospital inpatients on palliative care ward. Further research is needed in order to generalise the findings in various clinical settings.	Level 2++	PiPS-B model requires invasive procedure and clinicians’ estimates were consistent with actual median survival.
Gwilliam et al. [34]							
Amano, K et al. 2015, Japan [37]	Prospective cohort study (探索的)	Patients receiving inpatient or community palliative care services across 58 centres in Japan	Advanced cancer, locally extensive	Median survival: Low, CRP < 1 mg/dL: 72.0 days (95% CI 58–86); Moderate, CRP ≥ 1–5 mg/dL: 42.0 days (95% CI 36–48); High, CRP > 5 mg/dL: 25.0 days (95% CI 22–28); Very high, CRP > 10 mg/dL: 17.0 days (95% CI 14–20).	No data on acute infections, acute medical conditions and cachexia, which may influence serum CRP levels.	Level 2++	Survival rate decreased and mortality rate increased with increasing CRP level.
Maltoni et al. [33]							
Baba, M et al. 2015, Japan [38]	Prospective cohort study (探索的)	3 palliative care settings in Japan: Hospital inpatients, Palliative care unit inpatients, Community palliative care services	Advanced cancer, under hospital or community palliative care services	Median survival: Hospital inpatients: 45 days; Palliative care unit inpatients: 24 days; Community palliative care service: 37 days	Inpatients not receiving chemotherapy demonstrated the same conclusions. Modified PiPs model not compared to CPS or another prognostic model.	Level 2++	PiPS-B model requires invasive procedure and clinicians’ estimates were consistent with actual median survival.
(Continued)							

Table 2. (Continued)
Table 2. (Continued)

Citation (author, year, country)	Design & Objectives	Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings
Baba et al. 2015, Japan [39]	Prospective cohort study (confirmative)	4 palliative care settings across 58 centres in Japan.	Advanced cancer:	Median survival:	Physicians not blinded among ratings of each prognostic score	Level 2++	The D-PaP Score integrates delirium as an additional predictor to the PaP score.
			Locally extensive: n = 489	Hospital inpatients: 37 days (95% CI 30.6–42.4)	Hospital inpatients: 37 days (95% CI 31.6–42.4)	Hawker et al. 35/36	In this study, the feasibility of previously described predictor models: PaP Score, D-PaP Score, PPI, and modified PiPS models were assessed across all palliative care settings.
			Metastatic: n = 1876	Palliative care unit inpatients: 25 days (95% CI 22.6–27.4)	Palliative care unit inpatients: 25 days (95% CI 22.6–27.4)		
			Various malignancies including haematological	Community palliative care services: 37 days (95% CI 32.1–41.9)	Community palliative care services: 37 days (95% CI 32.1–41.9)		
			Under hospital or community palliative care services	Mean age: Hospital inpatients: 68.1 years (SD 12.7)	Palliative chemotherapy: 48 days (95% CI 41.9–44.1)		
				Palliative care unit inpatients: 70.9 years (SD 12.2)			
				Community palliative care service: 74.3 years (SD 11.9)			
				Palliative chemotherapy: 62.8 years (SD 12.0)			
				Median survival: Responders 22 days	Serum PTH not routinely measured		
				Non-responders: 3 days	Other causes of hypercalcaemia could not be excluded		
Malik S et al. 2015, Australia [40]	Retrospective cohort study	Single centre Palliative care unit in Australia n = 66	Hypercalcaemia treated with 1V bisphosphonate Cancer	Median survival:	Retrospective Small sample size	Level 2++	A reduction in serum calcium concentration was associated with a significantly prolonged survival, as well as symptomatic improvement, irrespective of whether normocalcaemia was achieved.
				Responders: 22 days	Serum PTH not routinely measured		
				Non-responders: 3 days	Other causes of hypercalcaemia could not be excluded		
				Median survival:	Retrospective Small sample size		
				Responders: 22 days	Serum PTH not routinely measured		
				Non-responders: 3 days	Other causes of hypercalcaemia could not be excluded		

(Continued)
Table 2. (Continued)

Citation	Design & Objectives	Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings
Taylor, P et al. 2015, UK [41]	Retrospective cohort study (investigative)	Hospital inpatients in a single tertiary centre	Terminally ill	Last 2 weeks of life	No data collected on hydration status, clinically assisted hydration, oxygen therapy or presence of acute illness	Level 2++	Heart rate significantly increased during the last week of life, although the model intercept value only reached 99bpm on the day of death.
Yoon, J et al. 2015, Korea [42]	Retrospective cohort study (explorative)	Tertiary hospital palliative care unit in Korea	Terminal cancer: • Locally extensive: n = 80	Median survival: 15 days	Single centre	Level 2++	In univariate analysis (Cox), CRP showed significant association with survival (HR 1.22, p < 0.001).
Mura, T et al. 2015, Japan [43]	Prospective cohort study (explorative)	All palliative care settings across 58 centres in Japan	Advanced care	Median survival: • GPS 0: 58 days (95% CI 48–61)	No laboratory data for 1263 (82.1%) of participants and excluded from analysis	Level 2++	The GPS is a simple inflammation-based prognostic score that represents elevated CRP levels (>10 mg/L) and hypoalbuminaemia (<35 g/L). The GPS is scored as 0, 1 or 2.

Continued...
Table 2. (Continued)

Citation (author, year, country)	Design & Objectives	Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings
Coyle S et al. 2016, UK [44]	Prospective cohort study (investigative)	Hospice inpatients; n = 8	Advanced cancer	Median survival: 25 days	Small sample size; single centre; includes non cancer patients	Conference abstract	GCMS analysis identified over 390 VOCs. There were 279 VOCs in normal urine. The number of statistically significant VOCs increased from 12 at 4 weeks before death, to 43 at 3-5 days before death. A trend analysis for the individual VOCs showed that these VOCs increased significantly at 4 weeks before death and 22 VOCs were significant at 3-5 days before dying. The steepest rise in significant VOCs was seen in the last week of life. These VOCs may predict the dying process.
Niki K et al. 2016, Japan [45]	Retrospective cohort study (explorative)	University hospital inpatients; n = 121	Advanced cancer	Last 2 weeks of life	Requires external validation	Conference abstract	The GPS is a simple inflammation-based prognostic score that represents elevated CRP levels (>10 mg/L) and hypoalbuminaemia (<35 g/dL). The GPS is scored as 0, 1 or 2. The WPICAL and WICAL scores were derived from the WBC, platelet count, BUN, ALT, LDH and CRP levels. The WICAL score was derived from the WBC, platelet count, BUN, ALT, LDH and CRP levels. The WPICAL and WICAL scores showed a higher sensitivity, specificity, negative predictive value, and relative risk for the prognosis within 2 weeks of death compared to those of the GPS considering a less than three weeks prognosis. While the WPICAL and WICAL scores showed an equivalent positive predictive value to the GPS, both positive and negative likelihood ratio were superior to those of GPS.
Paulsen O et al. 2016, Norway [46]	Randomised controlled trial	Palliative care community and inpatients at 5 centres in Norway; n = 49	Advanced cancer	Median survival: 86 days	Only pre-treatment samples available for analysis; no direct comparison with corticosteroid group; small sample number; 6 patients excluded from analysis due to missing data; protein and not RNA levels detected; requires invasive procedure	Conference abstract	Cytokines IL-2, IL-4, IL-6, IL-10, IL-12(p70), TNF-α, IFN-γ, and MIP-1β were elevated above the lower limit of detection in the serum: STNF-r1 (n = 43, median concentration 10917 pg/mL), MCP-1 (n = 43, median 64.1 pg/mL), IL-1β (n = 43, median 103.2 pg/mL), TGF-β1 (n = 43, median 45.145 pg/mL), MIF (n = 42, median 134.9 pg/mL), IL-6 (n = 21, median 2.33 pg/mL), IL-1α (n = 11, median 21.7 pg/mL), IL-1β (median 0.15 pg/mL), CRP (median 44 pg/mL), ESR (median 42 pg/mL). EORTC QLQ-C30 physical and role function (markers of quality of life) were highly correlated to CRP and sTNF-r1, and IL-6 and ESR, respectively. Medium correlations were found between: appetite and CRP, IL-6 and IL-1β; fatigue and IL-1α; cognitive function and TGF-β1; dyspnea and IL-1β.

(Continued)
Citation (author, year, country)	Design & Objectives	Setting and Sample	Diagnosis	Days until Death	Weaknesses	Appraisal	Main Study Findings
Wrafter S et al. 2016, Ireland [47]	Cohort study (confirmatory)	Specialist palliative care unit inpatients in a single centre	Advanced cancer	Mean survival: High and normal CRP: 80 versus 29 days; p < 0.001 Low and normal albumin: 35 versus 87 days; p < 0.01	Conference abstract Level: NA Hawker et al N/A Maltoni et al N/A	85% (n = 94) had serum CRP > 10mg/L. 96% (n = 106) had serum albumin <35g/L. There was a significant mean survival difference between high and normal CRP (80 versus 29 days; p < 0.001) and low and normal albumin (35 versus 87 days; p < 0.01). CAR, the CRP/albumin ratio is an inflammatory prognostic model that has been shown to predict survival in various malignancies. The mGPS combines serum albumin and CRP into a risk stratification score, and has been shown to predict survival in various malignancies. The mGPS divides patients into 3 subgroups: 0, 1 and 2. Neither of these predictive models has been used in palliative care settings. CAR was above published cut-offs for 84% (n = 92). A significant survival difference was found between mGPS groups at 7 (p = 0.01) and 180 (p = 0.02) but not 30 days. A lower CRP threshold did not improve prognostication.	

Only prognostic factors relevant to the objectives of this review are presented here.

AGP = α1-acid glycoprotein; ALP = alkaline phosphatase; ALT = alanine aminotransferase; AST = aspartate transaminase; AUC = area under the curve; BCI = B12 CRP index; BUN = blood urea nitrogen; B12 = vitamin B12; CACS = cancer anorexia-cachexia syndrome; CAR = CRP/albumin ratio; CPS = Clinicians’ Prediction of Survival; CRP = C-reactive protein; D-PAP = Delirium-Palliative Prognostic Score; ECOG PS = Eastern Cooperative Oncology Group Performance Status; ESR = erythrocyte sedimentation rate; GC-MS = Gas Chromatography Mass Spectrometry; GGT = gamma-glutamyl transpeptidase; GPS = Glasgow Prognostic Score; IFN-γ = interferon gamma; IL-1β = interleukin-1 beta; IL-2 = interleukin-2; IL-4 = interleukin-4; IL-6 = interleukin-6; IL-8 = interleukin-8; IL-10 = interleukin-10; IL-12(p70) = interleukin-12(p70); IL-18 = interleukin-18; INR = international normalised ratio; JPOS-PI = Japan Palliative Oncology Study-Prognostic Index; KPS = Karnofsky Performance Status; LDH = lactate dehydrogenase; LIF = leukaemia inhibiting factor; MCP-1 = monocyte chemoattractant protein-1; m-GPS = modified Glasgow Prognostic Score; MIF = macrophage migration inhibitory factor; MIP-1α = macrophage inflammatory protein-1α; MSSE = mini mental state examination; new-ChPS = new-Chinese Advanced Cancer Patients Scale; NLR = neutrophil-lymphocyte ratio; NMR = Nuclear Magnetic Resonance Spectrometry; NPV = negative predictive value; PaP Score = Palliative Prognostic Score; PINI = Prognostic Inflammatory and Nutritional Index; PiPS = Prognosis in Palliative Care Study; PiPS-A = modified Prognosis in Palliative Care Study-A; PiPS-B = modified Prognosis in Palliative Care Study-B; PPI = Palliative Performance Index; PPV = positive predictive value; PTH = parathyroid hormone; PTHrP = parathyroid hormone related protein; RNA = ribonucleic acid; sTNF- r1 = soluble tumour necrosis factor receptor 1; TGF-β1 = transforming growth factor β1; TNFα = tumour necrosis factor alpha; TTD = time from initial diagnosis to diagnosis of terminal disease; VOCs = volatile organic compounds; WBC = white blood cell count; WPBAL = WBC/platelet/BUN/AST/LDH prognostic score; WPCBAL = WBC/platelet/CRP/BUN/AST/LDH prognostic score.

https://doi.org/10.1371/journal.pone.0175123.t002
A selected number of articles were excluded as patient populations had a median survival >90 days. An additional three articles were excluded due to lack of survival data.

Study characteristics

The characteristics of the included studies are summarised in Table 2. A formal meta-analysis was not conducted because of the heterogeneity of the published studies. A number of studies utilised univariate rather than multivariate analysis. Both types of studies were included to ensure a comprehensive summary of the literature. The use of the Evidence Based Medicine modified GRADE system has highlighted the limitations of univariate analysis for these types of studies [17].

Table 3 subdivides prognostic biomarkers by grades of evidence. Only five articles investigated changes in concentrations of identified biomarkers in the last days to weeks of life (Table 3).

The methodological quality of the included studies ranged between 26–36 using the Hawker et al. appraisal tool [16]. Using the seven-point checklist of quality criteria, the selected studies ranged between 3–6 [8]. Spearman’s rank correlation coefficient demonstrated a statistically significant rank correlation between assessors (rs 1⁄4 0.955 p = 0.000 and rs 1⁄4 0.921 p = 0.000, respectively). Frequently, sample size calculations were not conducted, and some studies lacked information about the study setting and patient characteristics. Further, the majority (97%) of studies had convenience rather than random sampling, a reliable method for identification of the date of death was often poor, and a large number of potential prognostic factors were analysed despite small sample sizes, which meant that the ratio between the number of deaths and the number of potential prognostic factors frequently scored less than ten.

Discussion

This is the first systematically structured review to evaluate prognostic biomarkers in a heterogeneous group of patients with advanced cancer. Seven prognostic biological factors had Grade A evidence: lymphocyte count, white blood cell (WBC) count, serum albumin, sodium, C-reactive protein (CRP), urea and alkaline phosphatase (ALP) (Table 3). Few studies have specifically investigated changes in biomarkers in the last days to weeks of life. In the last two weeks of life a number of biomarkers were elevated in the blood including: WBC count, platelet count, serum CRP, urea, urate, alanine transaminase (ALT), lactate dehydrogenase (LDH), sodium and plasma interleukin-6 (IL-6). However limitations exist as only five studies specifically investigated serial measurements of candidate biomarkers in the last weeks of life.

A number of common themes emerged: systemic inflammation, haematological changes, CACS, hepatic dysfunction, renal dysfunction, and electrolyte changes. A number of biomarkers, such as serum albumin could be explained by multiple themes.

Systemic inflammation & haematological changes

There is consistent evidence that the presence of a systemic inflammatory response is associated with reduced survival in patients with a variety of solid organ tumors [48–50]. Elevated serum CRP levels are associated with poor prognosis independent of tumour stage [37,51]. IL-6, interleukin-1 (IL-1) and tumour necrosis factor alpha (TNFα) induce the hepatic synthesis of CRP. Further, elevated CRP and IL-6 are associated with CACS in advanced cancer [51]. Measurement of serum CRP is readily available and is an ideal biomarker of systemic inflammation. There is Grade A evidence that elevated serum CRP is an independent prognostic factor in advanced cancer [18,22,29,34,37,42]. Amano et al. demonstrated a clear dose-related
Table 3. Prognostic biomarkers subdivided by evidence based medicine modified GRADE criteria.

GRADE	Quality of Evidence	Biomarker(s)
A	High	• Serum CRP^a
		• Serum WBC^a
		• Serum lymphocyte count
		• Serum albumin
		• Serum ALP
		• Serum urea/BUN^a
		• Serum Na^a
B	Moderate	• Platelet count^a
		• Serum prealbumin
		• Serum vitamin B12
		• Serum bilirubin
		• Serum AST
		• Serum ALT^a
		• INR
		• Serum LDH^a
		• Serum cholesterol
		• Serum urate^a
		• Serum pseudocholinesterase
C	Low	• Plasma IL-6^{ab}
		• Plasma sTNF- r1^b
		• Plasma MCP-1^b
		• Plasma IL-18^b
		• Plasma TGF-β1^b
		• Plasma MIF^b
		• Plasma IL-1ra^b
		• Plasma IL-1β^b
		• Plasma IL-6^b
		• ESR^b
		• Serum haemoglobin
		• Serum GGT
		• Serum creatinine
		• Serum calcium
		• Serum magnesium
		• Plasma glucose
		• Urine VOCs^b
D	Very Low	• Proteinuria
		• Serum potassium
		• Serum phosphate

ALP = alkaline phosphatase; ALT = alanine aminotransferase; AST = aspartate transaminase; BUN = blood urea nitrogen; CRP = C-reactive protein; IL-1ra = interleukin-1 receptor antagonist; IL-1β = interleukin-1 beta; IL-6 = interleukin-6; IL-18 = interleukin-18; ESR = erythrocyte sedimentation rate; GGT = gamma-glutamyl transferase; INR = international normalised ratio; LDH = lactate dehydrogenase; MCP-1 = monocyte chemoattractant protein-1; MIF = macrophage migration inhibitory factor; sTNF- r1 = soluble tumour necrosis factor receptor 1; TGF-β1 = transforming growth factor β1; VOCs = volatile organic compounds; WBC = white blood cell count.

^aBiomarkers detectable in the blood in the last two weeks of life
^bPrognostic significance not assessed

https://doi.org/10.1371/journal.pone.0175123.t003
effect between elevated serum CRP and prognosis, and patients could be divided into four groups based on CRP concentrations [37] (Table 2).

Only two studies investigated the role of inflammatory cytokines at the end of life [25,46], this may be because most cytokines have a short plasma half-life and assays are expensive in relation to serum CRP. Iwase et al. measured changes in plasma levels of various cytokines in 28 terminally ill cancer patients with cachexia [25]. Only IL-6 was detected in all patients at a concentration greater than 10pg/mL [25]. The concentration of IL-6 was seen to gradually rise during the early stages of cachexia followed by a sharp rise in the week prior to death [25]. It was hypothesised that circulating macrophages and T lymphocytes produce IL-6 in response to tumour burden, or plasma IL-6 is produced by the tumour mass itself [25,52]. IL-6 is a pro-inflammatory cytokine that regulates immune reactions to tissue damage. There is a growing consensus that plasma IL-6 is a prognostic factor in solid organ malignancies [53,54], however changes in plasma IL-6 levels are affected by carcinoma type [55].

Paulsen et al. identified that a number of inflammatory cytokines were significantly elevated in the plasma in the last months of life [46] (Table 2). Interestingly, soluble tumour necrosis factor receptor-1 (sTNF-r1), IL-6, CRP and erythrocyte sedimentation rate (ESR) were highly correlated with quality of life, and interleukin-1β (IL-1β) was moderately correlated with breathlessness[46]. Further research is required to confirm these preliminary findings and assess their prognostic significance.

There is Grade A evidence that WBC count is an independent predictor of survival in advanced cancer [31,34,35]. In a UK multicentre cohort study, Gwilliam et al. demonstrated WBC count and platelet count independently predicted survival at two months and two weeks in a heterogeneous population of advanced cancer patients across a variety of palliative care settings [34].

There is Grade A evidence that lymphopenia is an independent predictor of survival in advanced cancer [23,31,33,34,41,43]. Gwilliam et al. confirmed that lymphocyte count was a significant predictor of two-month but not two-week survival [34]. The mechanisms driving lymphopenia in advanced cancer are unknown. Immunodeficiency in advanced cancer has been well documented and there is a significant trend of decreasing functional T cell populations (including CD4, CD8, CD4:CD8 ratio and naïve T cells) with cancer progression: this is associated with increased morbidity and mortality [56]. WBC differential rather than WBC counts may be a more useful prognostic marker for future studies.

The prognostic role of thrombocytopenia (Grade B) [29,34] and haemoglobin count (Grade C) [33] has been indicated but further research is needed to confirm these findings.

Cancer anorexia-cachexia syndrome
CACS is a significant prognostic factor in advanced cancer [8] and the biological mechanisms have been extensively studied [57,58]. There is Grade A evidence for the independent prognostic role of hypoalbuminaemia in advanced cancer [19,27,33,34,41]. It is hypothesised that hypoalbuminaemia is caused by a combination of hepatic dysfunction and CACS. Interestingly, Gwilliam et al. demonstrated hypoalbuminaemia was a predictor of two-month but not two-week survival, suggesting serum albumin is a predictor of dying over a longer timeframe [34]. This is contrary to the findings by Taylor et al. who demonstrated a significant change over time and as death approached [41]. These findings highlight the need for further prospective studies that analyse serial measurements of serum albumin at the end of life.

One article demonstrated low serum prealbumin as a significant predictor of survival in terminally ill cancer patients by multivariate analysis (Grade B) [24]. Albumin and prealbumin
levels reflect the visceral protein pool [24]. Given that prealbumin has a shorter half-life than albumin; prealbumin may be a more sensitive marker of nutritional status [24].

Hepatic dysfunction

A number of biomarkers of liver dysfunction have been indicated as prognostic in advanced cancer including: serum vitamin B12, albumin, bilirubin, aspartate aminotransferase (AST), ALT, ALP, gamma-glutamyl transferase (GGT), international normalised ratio (INR), LDH and cholesterol. The aetiology of hepatic dysfunction at the end of life is unclear. Certainly, studies have demonstrated mixed results on the prognostic significance of liver metastasis in advanced cancer [27,29,33,34,43].

There is *Grade B* evidence for the independent prognostic significance of elevated serum vitamin B12 in advanced cancer [18]. Geissbühler *et al.* demonstrated an inverse relationship between survival and serum vitamin B12 levels [18]. There was also a strong correlation between the presence of metastasis or hepatic dysfunction and an elevated serum vitamin B12 [18]. Importantly, there was no difference in serum vitamin B12 levels in patients with haematological malignancies (a potential confounding factor) compared to other cancers [18]. To our knowledge no additional studies have been published that investigate vitamin B12 as a prognostic factor.

Studies assessing serum bilirubin and other liver function tests have found mixed results. There is *Grade B* evidence that hyperbilirubinaemia is an independent prognostic factor [26,29,33,35]. Laboratory parameters ALP (*Grade A*), AST (*Grade B*) and ALT (*Grade B*) proved to be prognostically significant in at least one multivariate analysis [24,34,35]. Gwilliam *et al.* also found ALT predictive of two-week, but not two-month survival [34]. There are conflicting results whether GGT is prognostic (*Grade C*) [33,35]. These contrasting results may be explained by the geographical differences in patient groups, the type of patients included and differences in the methods of biochemical analysis of liver function tests. In contrast to serum AST, elevations in serum ALT are rarely seen in conditions other than liver parenchymal damage and may be a more sensitive marker for liver disease [24].

Prolonged INR was an independent prognostic factor by multivariate analysis in two prospective studies of terminally ill cancer patients (*Grade B*) [26,29]. To our knowledge, no studies have been published that measure serial changes in INR and liver function tests at the end of life.

Serum LDH is an independent prognostic factor in advanced cancer [26,29,33] (*Grade B*). Suh *et al.* demonstrated a significant increase in LDH concentrations in the last two weeks of life [29]. This retrospective study was limited however by sample size and was restricted to hospitalised patients [29]. Prospective multicentre studies across a variety of palliative care settings are required to confirm these preliminary findings. It has been extensively published that elevated serum LDH in cancer reflects tumour burden and aggressiveness [29,59]. Serum concentrations can be further elevated due to hepatic necrosis caused by hepatic dysfunction and/or metastasis in advanced cancer [29,60].

There is *Grade B* evidence for the prognostic role of hypocholesterolaemia in advanced cancer [26,29,33]. A number of risk factors for hypocholesterolaemia have been identified including: cancer, hepatic dysfunction, CACS, haematological disease and elderly populations [61].

Renal dysfunction

A number of potential prognostic biomarkers of renal dysfunction have been indicated in advanced cancer. Maltoni *et al.* demonstrated insufficient evidence for the prognostic role of proteinuria in advanced cancer [8]. Proteinuria is prognostic in a number of solid organ
tumours [62,63] however, to our knowledge, there have been no recent published studies that investigate proteinuria as a predictor of survival in advanced cancer.

Elevated serum urea was demonstrated as a significant predictor of survival in three studies by multivariate analysis (Grade A) [24,34,41]. Gwilliam et al. identified serum urea as an independent predictor of two-week and two-month survival in advanced cancer [34]. Taylor et al. also found that serum urea and creatinine showed a statistically and clinically significant increase in the last two weeks of life [41]. There is Grade C evidence that serum creatinine is prognostic in advanced cancer [26,33].

There is Grade B evidence that serum urate is a significant prognostic factor in advanced cancer [26,29,33] and serum urate levels were significantly increased in the last two weeks of life [26]. A number of potential explanations for raised serum urate concentrations have been hypothesised including: renal dysfunction and cellular injury caused by hypoxia and/or inflammation [26].

The mechanisms for renal dysfunction at the end of life are unclear. Oliguria was identified as a significant prognostic factor in two univariate analyses [26,29]. It is hypothesised that glomerular filtration rate is reduced at the end of life. Although hypotension is a prognostic factor, there are conflicting results whether blood pressure falls during the dying phase [41,64].

Electrolyte changes

There is Grade A evidence that serum sodium is a significant predictor of survival in advanced cancer [30,35]. These studies involved hospitalised patients; and acute illness may be a confounding factor. One multivariate analysis identified hyponatraemia as an independent predictor of survival in advanced cancer [42]. The most common aetiology of hyponatraemia in cancer is syndrome of inappropriate secretion of antidiuretic hormone (SIADH) [42,65]. Conversely, hypernatraemia at the end life is commonly caused by dehydration [30] and is associated with shorter overall survival in hospitalised patients receiving palliative care [30].

Although, Taylor et al. demonstrated a statistically significant elevation in serum sodium in the last two weeks of life, results were not clinically significant [41]. Serum sodium levels rather than serum sodium may be a more useful prognostic factor for future studies.

The prognostic significance of hypercalcaemia has been described in a number of solid organ and haematological malignancies including: lung [66], prostate [67], renal [68], head and neck [69,70] and the aerodigestive tract [71]. There is conflicting evidence whether hypercalcaemia predicts survival in advanced cancer (Grade C). By univariate analysis, Alsirafy et al. found that hypercalcaemia was associated with a 69% inpatient death rate in hospitalised patients [30]. However, an additional three articles failed to demonstrate statistical significance [27,33,40]. Contrasting results may reflect differences in study settings, tumour type, and the presence of bony metastasis. One univariate analysis identified hypermagnesemia to be predictive of survival (Grade C) in patients referred to the hospital palliative care team [30].

Although Cui et al. demonstrated serum potassium as a prognostic factor by univariate analysis [35], an additional three articles were identified which failed to demonstrate statistical significance including two multivariate analyses (Grade D) [30,33,41]. In one univariate analysis, abnormal plasma glucose levels were predictive of survival (Grade C) [35].

Non-invasive research methodologies

Coyle et al. recently presented preliminary results of a statistically significant increase in the number of volatile organic compounds (VOCs) in the urine in the last weeks of life using Gas Chromatography Mass Spectrometry (GC-MS) [44]. Interestingly, the steepest rise in significant VOCs was seen in the last week of life [44].
Prognostic models

Based on the outcome of these studies a number of prognostic models have been developed to assist clinicians. Simmons et al. recently reviewed the role of prognostic models in advanced cancer [12]. They concluded that ‘various prognostic tools have been validated, but vary in their complexity, subjectivity and therefore clinical utility’ [12].

What makes this study unique?

The Neuberger review made a number of recommendations to improve end of life care, including research into the biology of dying [1]. This is the first study to specifically investigate biomarkers in advanced cancer patients in the last months of life and attempts to extrapolate which biological processes are affected. A number of common themes emerged including: systemic inflammation, organ dysfunction and CACS.

What is the significance of the findings of this analysis?

This review demonstrates that there are many biological prognostic factors that have an association with the dying process. Although this review is unable to provide evidence of causation it is important for healthcare professionals to be aware of these prognostic factors and their incorporation into existing prognostic models [12], which may be useful in clinical practice. However, further research is needed to understand the application of biomarkers in prognostication at the end of life.

Identification of biomarkers of dying is an important area for future research that will lead to both improved clinical tools for managing patients, and shed light on fundamental processes such as the answer to the question: why do patients die from cancer?

The “terminal cancer syndrome” theory is characterised by common terminal symptoms including dry mouth, dyspnoea, malnutrition and susceptibility to infection, which are shared amongst heterogeneous groups patients with advanced cancer [7]. In the last three days of life, Bruera et al. demonstrated that blood pressure and oxygen saturations decrease significantly in cancer patients [64]. Heart rate variability [72] and autonomic dysfunction [73] have also been described. Thus, changes in vital signs and biomarkers suggest end organ dysfunction.

In non-cancer animal models, McDonald et al. demonstrated a rapid loss of body weight and disintegration of the circadian rhythmicity in deep body temperature several days before death in senescent but not presenescent rats [74]. Tankersley et al. also demonstrated a predictable sequence of pathophysiological events associated with dying including a fall in daily mean heart rate and a loss of circadian pattern in deep body temperature 3–4 weeks before death [75]. Further, increased lung permeability, reduced lung volume and compliance were seen during a period of terminal senescence [76].

At post-mortem, Kadhim et al. demonstrated the over-expression of interleukin-2 (IL-2) in situ in brainstem neuronal centres implicated in autonomic control of vital homeostatic functions in adults and children who died from severe illness [77,78]. It was hypothesised that biological stressors trigger over-expression of IL-2 in brainstem neuronal centres, inducing a neurochemical cascade that results in disturbed homeostatic control of cardiorespiratory responses, and eventual death; however, populations were confined to non-cancer diagnoses [78]. Further, Perry et al. hypothesised that a neurochemicals including glutamate decarboxylase, tissue pH and tryptophan could reflect novel biomarkers of agonal status [79] and hence the dying phase.

Prognostic factors and post-mortem therefore studies suggest a common biological process to dying. Measurable parameters in the blood suggest a systemic inflammatory response including: elevated CRP, IL-6 and other pro-inflammatory cytokines, hypoalbuminaemia,
leucocytosis and neutrophilia. Interestingly, post-mortem studies demonstrated evidence of silent pneumonia in advanced cancer \[80,81\]. Although it is not possible to assume causation, these findings are of clinical and research interest. For example, the presence of silent pneumonia, may to some extent explain why 24% of patients with terminal cancer have breathlessness despite a lack of risk factors \[7\]. Further, Kontoyiannis \textit{et al.} demonstrated pulmonary candidiasis in 21% of patients with evidence of pneumonia at post-mortem and 42% of these patients had disseminated candidiasis \[82\].

What is the role of immunodeficiency towards the end of life?
Is there an overarching aetiology for common terminal symptoms?
Does over-expression of IL-2 in brainstem neuronal centres together with silent pneumonia, contribute to breathing changes seen during the dying phase?
When is the “point of no return” when the administration of antibiotics is futile?

The current lack of research in these areas, together with our desire to improve patient care, highlights the importance for further research into the biology of dying. Biomarkers are important adjuncts in prognostication and the recognition of dying, but equally increase our understanding of the dying process.

Key areas for future research include: serial blood measurements of candidate biomarkers including inflammatory cytokines during the dying phase, intracerebral measurement of cytokines; and correlation with physiological parameters observed during the dying phase. Interestingly, Coyle \textit{et al.} recently presented a feasibility study for taking serial urine samples from hospice inpatients towards the end of life \[83\] and demonstrated elevated levels of a number of volatile VOCs in the urine during the dying phase \[44\]. Non-invasive research methodologies are an important area for future research.

Limitations

There are several limitations with this review. This review only included published studies from year 2000, in order to conduct an in-depth analysis of current studies since the Maltoni \textit{et al.} paper. The authors recognise that a systematic review of randomised controlled trials is the gold standard in research synthesis, however within the constraints of current available evidence, the PRISMA standards for reporting evidence were applied to ensure a systematic structure to the search, selection and review of the literature \[13\]. However, reviewers were not blinded to the authors, institutions, or journals of publication, which could have introduced selection bias.

This review excluded non-cancer conditions and was limited to patient populations with a median survival of ≤90 days, which meant that a selected number of articles were excluded. This was important given that “advanced cancer” is poorly defined in the literature; exclusion of these articles did not change the overall findings of this review.

Many of the studies included in Table 2 were heterogeneous in nature, small and under-powered, and the quality of studies varied considerably. Few studies have specifically investigated changes in the last weeks of life. We screened some studies that may have contained information specific to the objectives of this review, but data was not presented in a way that was specific to advanced cancer. There are considerable ethical implications of conducting research in patients in the last few weeks of life, in particular when this involves invasive procedures. We recognise that this may have limited the number of studies for inclusion in this review. Certainly, a number of included studies were limited by sample size and lack of protocols for collection of blood samples.

It was not possible to provide a synthesis of the evidence due to the heterogeneity of the sample. Despite this, the findings of this review are of particular research interest. This review makes an important contribution to the evidence base on the biology of dying and highlights potential areas for research funding and analysis. Attention has been given to the
ethical and methodological implications of research into the biology of dying and future strategies are described.

Conclusion
The biology of dying is an important area for future research interest. The evidence to date is largely focused on signs, symptoms and prognostic factors. Despite appearances, the extent to which cancer patients follow a common terminal trajectory is uncertain and high quality research should be conducted to explore this concept further. This review identifies a number common themes shared amongst advanced cancer patients and highlights candidate biomarkers which may be indicative of a common biological process to dying. Attention should be placed on understanding the physiological process of dying and identification of candidate biomarkers of imminent death. This will increase clinicians’ confidence in identifying the dying process, inform decision making surrounding end of life care, and ensure the best possible care for patients and their families.

Supporting information
S1 File. PRISMA checklist.
(PDF)
S2 File. Protocol.
(PDF)

Acknowledgments
VLR took a lead role in writing the manuscript, appraising the evidence and rewriting the manuscript in response to feedback. RM, ACN, SRM, CP, JJE provided support with the review process and critique of manuscripts. SC devised the concept of the study, appraised the data, oversaw the project, and supported the writing of the manuscript.

Author Contributions
Conceptualization: VLR SC.
Data curation: VLR.
Formal analysis: VLR.
Investigation: VLR SC.
Methodology: VLR.
Project administration: VLR.
Supervision: ACM SRM SC.
Validation: VLR SC.
Visualization: VLR.
Writing – original draft: VLR.
Writing – review & editing: VLR RM ACM SRM CP JEE SC.
References

1. Neuberg J, Guthrie C, Aaronovitch D, Hameed K, Bonser T, Harries R, et al. More care, less pathway: a review of the Liverpool Care Pathway. 2013: 1–61.

2. Kennedy C, Brooks-Young P, Brunton Gray C, Larkin P, Connolly M, Wilde-Larsson B, et al. Diagnosing dying: an integrative literature review. BMJ Support Palliat Care. 2014; 4: 263–270. https://doi.org/10.1136/bmjspcare-2013-000621 PMID: 24790538

3. Lichter I, Hunt E. The last 48 hours of life. J Palliat Care. 1990; 6: 7–15.

4. Vigano A, Bruera E, Suarez-Almazor M. Terminal cancer syndrome: myth or reality?. 1999; 15: 32–39. PMID: 10693304

5. Christakis NA, Lamont EB. Extent and determinants of error in doctors’ prognoses in terminally ill patients: prospective cohort study. BMJ. 2000; 320: 469–472. PMID: 10678857

6. Teno JM, Weitzen S, Fennell ML, Mor V. Dying trajectory in the last year of life: does cancer trajectory fit other diseases? J Palliat Med. 2001; 4: 457–464. https://doi.org/10.1089/109662101753381593 PMID: 11798477

7. Reuben DB, Mor V, Hiris J. Clinical symptoms and length of survival in patients with terminal cancer. Arch Intern Med. 1988; 148: 1586–1591. PMID: 3382303

8. Maltoni M, Caraceni A, Brunelli C, Broeckaert B, Christakis N, Eychmueller S, et al. Prognostic factors in advanced cancer patients: evidence-based clinical recommendations—a study by the Steering Committee of the European Association for Palliative Care. J Clin Oncol. 2005; 23: 6240–6248. https://doi.org/10.1200/JCO.2005.06.866 PMID: 16135490

9. Kehl KA, Kowalkowski JA. A systematic review of the prevalence of signs of impending death and symptoms in the last 2 weeks of life. Am J Hosp Palliat Care. 2013; 30: 601–616. https://doi.org/10.1177/1049909112468222 PMID: 23236090

10. Hui D, dos Santos R, Chisholm G, Bansal S, Silva TB, Kilgore K, et al. Clinical signs of impending death in cancer patients. Oncologist. 2014; 19: 681–687. https://doi.org/10.1634/theoncologist.2013-0457 PMID: 24760709

11. Hui D, Dos Santos R, Chisholm G, Bansal S, Souza Crovadore C, Bruera E. Bedside clinical signs associated with impending death in patients with advanced cancer: preliminary findings of a prospective, longitudinal cohort study. Cancer. 2015; 121: 960–967. https://doi.org/10.1002/cncr.29048 PMID: 25676895

12. Simmons CPL, McMillan DC, McWilliams K, Sande TA, Fearon KC, Tuck S, et al. Prognostic tools in patients with advanced cancer: a systematic review. J Pain Symptom Manage. 2017.

13. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009; 339: b2700. https://doi.org/10.1136/bmj.b2700 PMID: 19622552

14. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010; 5: 463–466. https://doi.org/10.1097/COH.0b013e32833ed177 PMID: 20978388

15. Methods for development of NICE public health guidance. 2006: 1–131.

16. Hawker S, Payne S, Kerr C, Hardey M, Powell J. Appraising the evidence: reviewing disparate data systematically. Qual Health Res. 2002; 12: 1284–1299. https://doi.org/10.1177/1049732302238251 PMID: 12448672

17. Barry H, Ebell M, Shaughnessy A, Slawson D. Essential Evidence Plus. 2016. https://www.essential evidenceplus.com/product/ebm_loe.cfm?show=grade.

18. Geissbuhler P, Mermillod B, Rapin CH. Elevated serum vitamin B12 levels associated with CRP as a predictive factor of mortality in palliative care cancer patients: a prospective study over five years. J Pain Symptom Manage. 2000; 20: 93–103. PMID: 10989247

19. Pasanisi F, Orban A, Scala L, Alfonsi L, Santarpia L, Zurlo E, et al. Predictors of survival in terminal-cancer patients with irreversible bowel obstruction receiving home parenteral nutrition. Nutrition. 2001; 17: 581–584. PMID: 11448576

20. Glare P, Virik K. Independent prospective validation of the PaP score in terminally ill patients referred to a hospital-based palliative medicine consultation service. J Pain Symptom Manage. 2001; 22: 891–898. PMID: 11728792

21. Pirovano M, Maltoni M, Nanni O, Marinini M, Indelli M, Zaninetta G, et al. A new palliative prognostic score: a first step for the staging of terminally ill cancer patients. Italian Multicenter and Study Group on Palliative Care. J Pain Symptom Manage. 1999; 17: 231–239. PMID: 10203875

22. McMillan DC, Elahi MM, Sattar N, Angerson WJ, Johnstone J, McArdie CS. Measurement of the systemic inflammatory response predicts cancer-specific and non-cancer survival in patients with cancer. Nutr Cancer. 2001; 41: 64–69. https://doi.org/10.1080/01635581.2001.9680613 PMID: 12094630
23. Faris M. Clinical estimation of survival and impact of other prognostic factors on terminally ill cancer patients in Oman. Support Care Cancer. 2003; 11: 30–34. PMID: 12527951

24. Ho SY, Guo HR, Chen HH, Peng CJ. Nutritional predictors of survival in terminally ill cancer patients. J Formos Med Assoc. 2003; 102: 544–550. PMID: 14569319

25. Iwase S, Murakami T, Saito Y, Nakagawa K. Steep elevation of blood interleukin-6 (IL-6) associated only with late stages of cachexia in cancer patients. Eur Cytokine Netw. 2004; 15: 312–316. PMID: 15627639

26. Shin HS, Lee HR, Lee DC, Shim JY, Cho KH, Suh SY. Uric acid as a prognostic factor for survival time: a prospective cohort study of terminally ill cancer patients. J Pain Symptom Manage. 2006; 31: 493–501. https://doi.org/10.1016/j.jpainsymman.2005.11.014 PMID: 16793489

27. Lam PT, Leung MW, Tse CY. Identifying prognostic factors for survival in advanced cancer patients: a prospective study. Hong Kong Med J. 2007; 13: 453–459. PMID: 18057434

28. Kelly L, White S, Stone PC. The B12/CRP index as a simple prognostic indicator in patients with advanced cancer: a confirmatory study. Ann Oncol. 2007; 18: 1395–1399. https://doi.org/10.1093/annonc/mdm138 PMID: 17513884

29. Suh SY, Ahn HY. Lactate dehydrogenase as a prognostic factor for survival time of terminally ill cancer patients: a preliminary study. Eur J Cancer. 2007; 43: 1051–1059. https://doi.org/10.1016/j.ejca.2007.01.031 PMID: 17349786

30. Asiraly A, Sroor MY, Al-Shahri MZ. Predictive impact of electrolyte abnormalities on the admission outcome and survival of palliative care cancer referrals. J Palliat Med. 2009; 12: 177–180. https://doi.org/10.1098/jpm.2008.0200 PMID: 19207062

31. Hyodo I, Morita T, Adachi I, Shima Y, Yoshizawa A, Hiraga K. Development of a predicting tool for survival of terminally ill cancer patients. Jpn J Clin Oncol. 2010; 40: 442–448. https://doi.org/10.1093/jjco/hyp182 PMID: 20085908

32. Tarumi Y, Watanabe SM, Lau F, Yang J, Quan H, Sawchuk L, et al. Evaluation of the Palliative Prognostic Score (PaP) and routinely collected clinical data in prognostication of survival for patients referred to a palliative care consultation service in an acute care hospital. J Pain Symptom Manage. 2011; 42: 419–431. https://doi.org/10.1016/j.jpainsymman.2010.12.013 PMID: 21477974

33. Feliu J, Jimenez-Gordo AM, Madero R, Rodriguez-Aizcorbe JR, Espinosa E, Castro J, et al. Development and validation of a prognostic nomogram for terminally ill cancer patients. J Natl Cancer Inst. 2011; 103: 1613–1620. https://doi.org/10.1093/jnci/djr388 PMID: 21972226

34. Gwilliam B, Keeley V, Todd C, Gittins M, Roberts C, Kelly L, et al. Development of prognosis in palliative care study (PIPS) predictor models to improve prognostication in advanced cancer: prospective cohort study. BMJ. 2011; 343: d4920. https://doi.org/10.1136/bmj.d4920 PMID: 21868477

35. Cui J, Zhou L, Wee B, Shen F, Ma X, Zhao J. Predicting survival time in noncurative patients with advanced cancer: a prospective study in China. J Palliat Med. 2014; 17: 545–552. https://doi.org/10.1089/jpm.2013.0368 PMID: 24708258

36. Kim DH, Kim JA, Choi YS, Kim SH, Lee JY, Kim YE. Heart rate variability and length of survival in hospice cancer patients. J Korean Med Sci. 2010; 25: 1140–1145. https://doi.org/10.3346/jkms.2010.25.8.1140 PMID: 20676323

37. Amano K, Maeda I, Morita I, Miura T, Inoue S, Ikenaga M, et al. Clinical Implications of C-Reactive Protein as a Prognostic Marker in Advanced Cancer Patients in Palliative Care Settings. J Pain Symptom Manage. 2016; 51: 860–867. https://doi.org/10.1016/j.jpainsymman.2015.11.025 PMID: 26826766

38. Baba M, Maeda I, Morita I, Hisanaga T, Ishihara T, Iwashita T, et al. Independent validation of the modified prognostic palliative care study predictor models in three palliative care settings. J Pain Symptom Manage. 2015; 49: 853–860. https://doi.org/10.1016/j.jpainsymman.2014.10.010 PMID: 25499420

39. Baba M, Maeda I, Morita I, Inoue S, Ikenaga M, Matsumoto Y, et al. Survival prediction for advanced cancer patients in the real world: A comparison of the Palliative Prognostic Score, Delirium-Palliative Prognostic Score, Palliative Prognostic Index and modified Prognosis in Palliative Care Study predictor model. Eur J Cancer. 2015; 51: 1618–1629. https://doi.org/10.1016/j.ejca.2015.04.025 PMID: 26074396

40. Mallik S, Mallik G, Macabulos ST, Dorigo A. Malignancy associated hypercalcaemia-responsiveness to IV bisphosphonates and prognosis in a palliative population. Support Care Cancer. 2016; 24: 1771–1777. https://doi.org/10.1007/s00520-015-2962-8 PMID: 26441077

41. Taylor P, Crouch S, Howell DA, Dowding DW, Johnson MJ. Change in physiological variables in the last 2 weeks of life: an observational study of hospital in-patients with cancer. Palliat Med. 2015; 29: 120–127. https://doi.org/10.1177/0269216314554967 PMID: 25524964

42. Yoon J, Ahn SH, Lee YJ, Kim CM. Hyponatremia as an independent prognostic factor in patients with terminal cancer. Support Care Cancer. 2015; 23: 1735–1740. https://doi.org/10.1007/s00520-014-2522-7 PMID: 25433438
43. Miura T, Matsumoto Y, Hama T, Amano K, Tei Y, Kikuchi A, et al. Glasgow prognostic score predicts prognosis for cancer patients in palliative settings: a subanalysis of the Japan-prognostic assessment tools validation (J-ProVal) study. Support Care Cancer. 2015; 23: 3149–3156. https://doi.org/10.1007/s00520-015-2693-x PMID: 25777319

44. Coyle S, Scott A, Nwosu A, Latten R, Phelan M, Mason S, et al. A process to dying? Metabolic changes in urine towards the end of life. Palliat Med. 2016; 30: NP1–NP401.

45. Niki K, Okamoto Y, Tabata Y, Murata T, Matsumura Y, Takagi T, et al. A new approach of determining short-term prognostic predictive methods in terminal cancer patients based on the change-point in laboratory test values. Palliat Med. 2016; 30: NP1–NP401.

46. Paulsen O, Kaasa S, Aass N, Lea T, Klepstad P. Are serum concentrations of cytokines associated with symptom intensities or response to corticosteroids in advanced cancer patients receiving opioids? Palliat Med. 2016; 30: NP1–NP401.

47. Wrafter S, Lorton C, Brady B, Dhubhir Ul P, Joyce D, O’Leary N, et al. The prognostic role of C-reactive protein and albumin in advanced cancer palliative care inpatients: A retrospective study. Palliat Med. 2016; 30: NP1–NP401.

48. Falconer JS, Fearon KC, Ross JA, Elton R, Wigmore SJ, Garden OJ, et al. Acute-phase protein response and survival duration of patients with pancreatic cancer. Cancer. 1995; 75: 2077–2082. PMID: 7535184

49. O’Gorman P, McMillan DC, McArdle CS. Prognostic factors in advanced gastrointestinal cancer patients with weight loss. Nutr Cancer. 2000; 37: 36–40. https://doi.org/10.1207/S15327914NC3701_4 PMID: 10965517

50. Scott H, McMillan D, Forest L, Brown D, McArdle C, Milroy R. The systemic inflammatory response, weight loss, performance status and survival in patients with inoperable non-small cell lung cancer. Br J Cancer. 2002; 87: 264–267. https://doi.org/10.1038/sj.bjc.6600466 PMID: 12177792

51. Mahmoud FA, Rivera NI. The role of C-reactive protein as a prognostic indicator in advanced cancer. Curr Oncol Rep. 2002; 4: 250–255. PMID: 11937016

52. Ebrahim B, Tucker SL, Li D, Abbruzzese JL, Kurzrock R. Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and prognosis. Cancer. 2004; 101: 2727–2736. https://doi.org/10.1002/cncr.20672 PMID: 15526319

53. Wu CW, Wang SR, Chao MF, Wu TC, Lui WY, P’eng FK, et al. Serum interleukin-6 levels reflect disease status of gastric cancer. Am J Gastroenterol. 1996; 91: 1417–1422. PMID: 8678006

54. Martin F, Santolaria F, Batista N, Milena A, Gonzalez-Reimers E, Brito MJ, et al. Cytokine levels (IL-6 and IFN-gamma), acute phase response and nutritional status as prognostic factors in lung cancer. Cytokine. 1999; 11: 80–86. PMID: 10080883

55. Nakano T, Chahinia AP, Shinjo M, Tonomura A, Miyake M, Togawa N, et al. Interleukin 6 and its relationship to clinical parameters in patients with malignant pleural mesothelioma. Br J Cancer. 1998; 77: 907–912. PMID: 9528833

56. Chang C, Wu C, Lu Y. Cancer-associated immune deficiency: a form of accelerated immunosenescence? 2012.

57. Tisdale MJ. Biology of cachexia. J Natl Cancer Inst. 1997; 89: 1763–1773. PMID: 9392617

58. Strasser F, Bruera ED. Update on anorexia and cachexia. Hematol Oncol Clin North Am. 2002; 16: 589–617. PMID: 12170570

59. Miao P, Sheng S, Sun X, Liu J, Huang G. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life. 2013; 65: 904–910. https://doi.org/10.1002/iub.24265197

60. Baur M, Schlapack O, Havelec L, Wrba F, Dittrich C. Prognostic significance of liver metastases as first site of generalisation in patients with breast cancer—a retrospective analysis. Acta Med Austriaca. 2001; 28: 135–140. PMID: 11774775

61. Elmehdawi R. Hypolipidemia: a word of caution. Libyan J Med. 2008; 3: 84–90. https://doi.org/10.4176/071221 PMID: 21499464

62. Pedersen LM, Milman N. Prevalence and prognostic significance of proteinuria in patients with lung cancer. Acta Oncol. 1996; 35: 691–695. PMID: 8938215

63. Liu J, Wang X. Incidence and prognostic significance of proteinuria in patients with gastric carcinoma. 2005; 2: 511–515.

64. Bruera S, Chisholm G, Dos Santos R, Crovador C, Bruera E, Hui D. Variations in vital signs in the last days of life in patients with advanced cancer. J Pain Symptom Manage. 2014; 48: 510–517. https://doi.org/10.1016/j.jpainsymman.2013.10.019 PMID: 24731412
65. Berghmans T, Paesmans M, Body JJ. A prospective study on hyponatraemia in medical cancer patients: epidemiology, aetiology and differential diagnosis. Support Care Cancer. 2000; 8: 192–197. PMID: 10789959

66. Sculier JP, Chansky K, Crowley JJ, Van Meerbeeck J, Goldstraw P, International Staging Committee and Participating Institutions. The impact of additional prognostic factors on survival and their relationship with the anatomical extent of disease expressed by the 6th Edition of the TNM Classification of Malignant Tumors and the proposals for the 7th Edition. J Thorac Oncol. 2008; 3: 457–466. https://doi.org/10.1097/JTO.0b013e31816de2b8 PMID: 18448996

67. Tucci M, Mosca A, Lamanna G, Porpiglia F, Terzolo M, Vana F, et al. Prognostic significance of disordered calcium metabolism in hormone-refractory prostate cancer patients with metastatic bone disease. Prostate Cancer Prostatic Dis. 2009; 12: 94–99. https://doi.org/10.1038/pcan.2008.10 PMID: 18332901

68. Fahn HJ, Lee YH, Chen MT, Huang JK, Chen KK, Chang LS. The incidence and prognostic significance of humoral hypercalcaemia in renal cell carcinoma. J Urol. 1991; 145: 248–250. PMID: 1988711

69. Tucci M, Mosca A, Lamanna G, Porpiglia F, Terzolo M, Vana F, et al. Prognostic significance of disordered calcium metabolism in hormone-refractory prostate cancer patients with metastatic bone disease. Prostate Cancer Prostatic Dis. 2009; 12: 94–99. https://doi.org/10.1038/pcan.2008.10 PMID: 18332901

70. Alsirafy SA, Sroor MY, Al-Shahri MZ. Hypercalcaemia in advanced head and neck squamous cell carcinoma: prevalence and potential impact on palliative care. J Support Oncol. 2009; 7: 154–157. PMID: 19831158

71. Penel N, Berthon C, Everard F, Neu JC, Clisant S, Nguyen M, et al. Prognosis of hypercalcaemia in aerodigestive tract cancers: study of 136 recent cases. Oral Oncol. 2005; 31: 507–516. PMID: 16043379

72. Kim ES, Lee JK, Kim MH, Noh HM, Jin YH. Validation of the prognosis in palliative care study predictor models in terminal cancer patients. Korean J Fam Med. 2014; 35: 283–294. https://doi.org/10.4082/kjfm.2014.35.6.283 PMID: 12324806

73. Walsh D, Nelson KA. Autonomic nervous system dysfunction in advanced cancer. Support Care Cancer. 2002; 10: 523–528. https://doi.org/10.1007/s00520-002-0376-x PMID: 12324806

74. Tran JS, Morrissey JJ, Weiser MR, Neumeyer N, Lutes LA, Edsberg LL, et al. Brown adipose tissue thermogenesis during aging and senescence. J Bioenerg Biomembr. 1999; 31: 507–516. PMID: 10653478

75. Tankersley CG, Irizarry R, Flanders SE, Rabold R, Frank R. Unstable heart rate and temperature regulation predict mortality in AKR/J mice. Am J Physiol Regul Integr Comp Physiol. 2003; 284: R742–50. https://doi.org/10.1152/ajpregu.00416.2002 PMID: 12388436

76. Tankersley CG, Shank JA, Flanders SE, Soutiere SE, Rabold R, Mitzner W, et al. Changes in lung permeability and lung mechanics accompany homeostatic instability in senescent mice. J Appl Physiol (1985). 2003; 95: 1681–1687.

77. Kadhim H, Deltenre P, De Preez C, Sebire G. Interleukin-2 as a neuromodulator possibly implicated in the physiopathology of sudden infant death syndrome. Neurosci Lett. 2010; 480: 122–126. https://doi.org/10.1016/j.neulet.2010.06.021 PMID: 20542085

78. Kadhim H, Deltenre P, Segers V, Sebire G. Selective expression of a neuromodulatory cytokine (IL-2) in specific brainstem neurovegetative centers: a possible final common neuro-molecular pathway in dying patients. Med Hypotheses. 2012; 78: 793–795. https://doi.org/10.1016/j.mehy.2012.03.010 PMID: 22498047

79. Perry EK, Perry RH, Tomlinson BE. The influence of agonal status on some neurochemical activities of postmortem human brain tissue. Neurosci Lett. 1982; 29: 303–307. PMID: 6212778

80. Abdel-Karim IA, Sammel RB, Prange MA. Causes of death at autopsy in an inpatient hospice program. J Palliat Med. 2007; 10: 894–898. https://doi.org/10.1089/jpwm.2006.0240 PMID: 17803410

81. Kontoyiannis DP, Reddy BT, Torres HA, Luna M, Lewis RE, Tarrand J, et al. Pulmonary candidiasis in patients with cancer: an autopsy study. Clin Infect Dis. 2002; 34: 400–403. https://doi.org/10.1086/338404 PMID: 11774088

82. Coyle S, Scott A, Nwosu A, Aggio R, Latten R, Wilson J, et al. Biological changes towards the end of life: a feasibility study. European Association of Palliative Care 2015. 2015: 206. Available: http://www.eapc-2015.org/tl_files/eapc15/Downloads/EAPC_2015_Abstract_Book.pdf.