A NOTE ON L-PACKETS AND ABELIAN VARIETIES OVER LOCAL FIELDS

JEFFREY D. ACHTER AND CLIFTON CUNNINGHAM
A NOTE ON L-PACKETS AND ABELIAN VARIETIES
OVER LOCAL FIELDS

JEFFREY D. ACHTER AND CLIFTON CUNNINGHAM

A polarized abelian variety (X, λ) of dimension g and good reduction over a local field K determines an admissible representation of $\text{GSpin}_{2g+1}(K)$. We show that the restriction of this representation to $\text{Spin}_{2g+1}(K)$ is reducible if and only if X is isogenous to its twist by the quadratic unramified extension of K. When $g = 1$ and $K = \mathbb{Q}_p$, we recover the well-known fact that the admissible $\text{GL}_2(K)$-representation attached to an elliptic curve E with good reduction is reducible upon restriction to $\text{SL}_2(K)$ if and only if E has supersingular reduction.

Introduction

Consider an elliptic curve E/\mathbb{Q}_p with good reduction. Let π_E be the unramified principal series representation of $\text{GL}_2(\mathbb{Q}_p)$ with the same Euler factor as E. Although π_E is irreducible, the restriction of π_E from $\text{GL}_2(\mathbb{Q}_p)$ to its derived group, $\text{SL}_2(\mathbb{Q}_p)$, need not be irreducible. In fact, it is not hard to show that $\pi_E|_{\text{SL}_2(\mathbb{Q}_p)}$ is reducible if and only if the reduction of E is supersingular; see [Anandavardhanan and Prasad 2006, 2.1], for example.

This note generalizes the observation above, as follows. Let K be a non-Archimedean local field with finite residue field and let (X, λ) be a polarized abelian variety over K of dimension g with good reduction. Fix a rational prime ℓ invertible in the residue field of K. Then the associated Galois representation on the rational ℓ-adic Tate module of X takes values in $\text{GSp}(V_{\ell}X, (\cdot, \cdot)_\lambda) \cong \text{GSp}_{2g}(\mathbb{Q}_\ell)$. The eigenvalues of the image of Frobenius under this unramified representation determine an irreducible principal series representation $\pi_{X,\lambda}$ of $\text{GSpin}_{2g+1}(K)$ with the same Euler factor as X. Note that the dual group to GSpin_{2g+1} is GSp_g; note also that $\text{GSpin}_3 \cong \text{GL}_2$ and $\text{GSpin}_5 \cong \text{GSp}_4$, accidentally. In this note we show that the restriction of $\pi_{X,\lambda}$ from $\text{GSpin}_{2g+1}(K)$ to its derived group $\text{Spin}_{2g+1}(K)$
is reducible if and only if \(X \) is isogenous to its twist by the quadratic unramified extension of \(K \).

Furthermore, we identify the Langlands parameter \(\phi_{X,\lambda} \) for \(\pi_{X,\lambda} \) and then show that the corresponding \(L \)-packet \(\Pi_{X,\lambda} \) contains the equivalence class of \(\pi_{X,\lambda} \) only. Then we show that we can detect when \(X \) is isogenous to its quadratic unramified twist directly from the local \(L \)-packet \(\Pi_{X,\lambda}^{\text{der}} \) determined by transferring the Langlands parameter \(\phi_{X,\lambda} \) to the derived group \(\text{Spin}_{2g+1}(K) \) of \(G\text{Spin}_{2g+1}(K) \).

1. Abelian varieties

In this section, we collect some useful facts about abelian varieties, especially over finite fields. Many of the attributes discussed here are isogeny invariants. We write \(X \sim Y \) if \(X \) and \(Y \) are isogenous abelian varieties, and \(\text{End}^0(X) \) for the endomorphism algebra \(\text{End}(X) \otimes \mathbb{Q} \) of \(X \).

1A. Base change of abelian varieties. Let \(X/\mathbb{F}_q \) be an abelian variety of dimension \(g \). Associated to it are the characteristic polynomial \(P_{X/\mathbb{F}_q}(T) \) and minimal polynomial \(M_{X/\mathbb{F}_q}(T) \) of Frobenius. Then \(P_{X/\mathbb{F}_q}(T) \in \mathbb{Z}[T] \) is monic of degree \(2g \), and \(M_{X/\mathbb{F}_q}(T) \) is the radical of \(P_{X/\mathbb{F}_q}(T) \).

The isogeny class of \(X \) is completely determined by \(P_{X/\mathbb{F}_q}(T) \) [Tate 1966]. It is thus possible to detect from \(P_{X/\mathbb{F}_q}(T) \) whether \(X \) is simple, but even easier to decide if \(X \) is isotypic, which is to say, isogenous to the self-product of a simple abelian variety. Indeed, let \(\text{ZEnd}^0(X) \subset \text{End}^0(X) \) be the center of the endomorphism algebra of \(X \). Then

\[
\text{ZEnd}^0(X) \cong \mathbb{Q}[T]/(M_{X/\mathbb{F}_q}(T)),
\]

and \(X \) is isotypic if and only if \(M_{X/\mathbb{F}_q}(T) \) is irreducible. While it is possible for a simple abelian variety to become reducible after extension of scalars of the base field, isotypicality is preserved by base extension (see [Oort 2008, Claim 10.8], for example).

For a monic polynomial \(g(T) = \prod_{1 \leq j \leq N}(T - \tau_j) \) and a natural number \(r \), set \(g^{(r)}(T) = \prod_{1 \leq j \leq N}(T - \tau_j^r) \). It is not hard to check that

\[
P_{X/\mathbb{F}_q}(T) = P_{X/\mathbb{F}_q}^{(r)}(T).
\]

Lemma 1.1. Suppose \(X/\mathbb{F}_q \) is isotypic, and let \(\mathbb{F}_q'/\mathbb{F}_q \) be a finite extension. Let \(Y \) be a simple factor of \(X_{\mathbb{F}_q'} \). Then there exists some \(m \mid r \) such that

\[
M_{X/\mathbb{F}_q}^{(r)}(T) = M_{Y/\mathbb{F}_q'}(T)^m \quad \text{and} \quad \dim \text{ZEnd}^0(X) = m \dim \text{ZEnd}^0(X_{\mathbb{F}_q'}).\]
Proof. Write $X_{\mathbb{F}_q} \sim Y^n$ with Y simple. Then we have two different factorizations of $P_{X/F_q}(T)$:

$$P_{X/F_q}(T) = (M_{X/F_q}(T))^d,$$

$$P_{X/F_q}(T) = (M_{Y/F_q}(T))^e.$$

Since $M_{Y/F_q}(T)$ is irreducible (and all polynomials considered here are monic), there exists some integer m such that

$$M_{X/F_q}(T) = M_{Y/F_q}(T)^m.$$

Note that $m = \deg M_{X/F_q}(T) = [\text{ZEnd}^0(X) : \text{ZEnd}^0(X_{\mathbb{F}_q})]$. Let τ be a root of $M_{X/F_q}(T)$. Then τ^r is a root of $M_{X/F_q}(T)^r$, and thus of $M_{Y/F_q}(T)$; and the inclusion of fields $\text{ZEnd}^0(X_{\mathbb{F}_q}) \subseteq \text{ZEnd}^0(X)$ is isomorphic to the inclusion of fields $\mathbb{Q}(\tau^r) \subseteq \mathbb{Q}(\tau)$, under (1-1). In particular, $m = [\mathbb{Q}(\tau) : \mathbb{Q}(\tau^r)]$. Since τ satisfies the equation $S^r - \tau^r$ over $\mathbb{Q}(\tau^r)$, its degree over $\mathbb{Q}(\tau^r)$ divides r. □

1B. Even abelian varieties. Call an abelian variety X/F_q even if its characteristic polynomial is even:

$$P_{X/F_q}(T) = P_{X/F_q}(-T).$$

If X is simple, then it admits a unique nontrivial quadratic twist X'/\mathbb{F}_q. For an arbitrary X/F_q, let X'/\mathbb{F}_q be the quadratic twist associated to the cocycle

$$\text{Gal}(\mathbb{F}_q) \rightarrow \text{Aut}(X), \quad \text{Fr}_q \mapsto [-1]$$

corresponding to a nontrivial quadratic twist of all simple factors of X.

For future use, we record the following elementary observation:

Lemma 1.2. Let X/F_q be an abelian variety. Then X is even if and only if X and X' are isogenous.

Proof. Use the (canonical, given our construction) isomorphism $X_{\mathbb{F}_q^2} \cong X'_{\mathbb{F}_q^2}$ to identify $\mathbb{V}_\ell X$ and $\mathbb{V}_\ell X'$. Then one knows (see [Serre and Tate 1968, p. 506], for example) that $\rho_{X'/\mathbb{F}_q}(\text{Fr}_q) = -\rho_{X/\mathbb{F}_q}(\text{Fr}_q)$, and thus that

$$P_{X'/\mathbb{F}_q}(T) = P_{X/\mathbb{F}_q}(-T).$$

The asserted equivalence now follows from Tate’s theorem [1966, Theorem 1]. □

To a large extent, evenness of X is captured by the behavior of the center of $\text{End}^0(X)$ upon quadratic base extension.

Lemma 1.3. If X/\mathbb{F}_q is even, then

$$\dim \text{ZEnd}^0(X) = 2 \dim \text{ZEnd}^0(X_{\mathbb{F}_q^2}).$$
Proof. Suppose X/\mathbb{F}_q is even. Then the multiset \{\tau_1, \ldots, \tau_{2g}\} of eigenvalues of Frobenius of X is stable under multiplication by -1, and in particular the set of distinct eigenvalues of Frobenius is stable under multiplication by -1. Moreover, this action has no fixed points; and thus \{\tau_1^2, \ldots, \tau_{2g}^2\}, the set of eigenvalues of X/\mathbb{F}_{q^2}, has half as many distinct elements as the original set. The claim now follows from characterization (1-1) of $\text{ZEnd}^0(X)$. □

The converse is almost true.

Proposition 1.4. Suppose X is isotypic. Then X is even if and only if
\[
\dim \text{ZEnd}^0(X) = 2 \dim \text{ZEnd}^0(X_{\mathbb{F}_{q^2}}).
\]

Proof. Suppose $\dim \text{ZEnd}^0(X) = 2 \dim \text{ZEnd}^0(X_{\mathbb{F}_{q^2}})$ and let Y be a simple factor of $X_{\mathbb{F}_{q^2}}$. By Lemma 1.1,
\[
(1-2) \quad M^{(2)}_{X/\mathbb{F}_q}(T) = M_{Y/\mathbb{F}_{q^2}}(T)^2.
\]

Factor the minimal polynomials of X and Y as
\[
M_{X/\mathbb{F}_q}(T) = \prod_{1 \leq j \leq 2h} (T - \tau_j),
\]
\[
M_{Y/\mathbb{F}_{q^2}}(T) = \prod_{1 \leq j \leq h} (T - \beta_j).
\]

By (1-2), we may order the roots of $M_{X/\mathbb{F}_q}(T)$ so that, for each $1 \leq j \leq h$, we have
\[
\tau_{h+j} = \pm \tau_j,
\]
so that $\tau_{h+j} = \pm \tau_j$. In fact, $\tau_{h+j} = -\tau_j$; for otherwise, $M_{X/\mathbb{F}_q}(T)$ would have a repeated root, which contradicts the known semisimplicity of Frobenius. Now, $P_{X/\mathbb{F}_q}(T) = M_{X/\mathbb{F}_q}(T)^d$ for some d. The multiset of eigenvalues of Frobenius of X is thus stable under multiplication by -1, and X/\mathbb{F}_q is even. □

Note that evenness is an assertion about the multiset of eigenvalues of Frobenius, while the calculation of $\dim \text{ZEnd}^0(X_{\mathbb{F}_{q^2}})$ only detects the set of eigenvalues. Consequently, if one drops the isotypicality assumption in Proposition 1.4, it is easy to write down examples of abelian varieties which are not even but satisfy the criterion on dimensions of centers of endomorphism rings.

Example 1.5. Let E/\mathbb{F}_q be an ordinary elliptic curve; then E is not isogenous to E' over \mathbb{F}_q but $\text{End}^0(E) \cong \text{End}^0(E') \cong L$, a quadratic imaginary field. Set $X = E \times E \times E'$. Then X is not even, since $X' \cong E' \times E' \times E$, but $\text{ZEnd}^0(X) \cong L \times L$ while $\text{ZEnd}^0(X_{\mathbb{F}_{q^2}}) \cong L$. Therefore, X/\mathbb{F}_q satisfies the dimension criterion of Proposition 1.4 but is not even.
Example 1.6. Consider a supersingular elliptic curve E/F_q, where q is an odd power of the prime p. Then $\text{End}^0(E) \cong \mathbb{Q}(\sqrt{-p})$, while $\text{End}^0(E_{\bar{F}_q})$ is the quaternion algebra ramified at p and ∞. In particular, $\mathbb{Z}\text{End}^0(E)$ is a quadratic imaginary field, while $\mathbb{Z}\text{End}^0(E_{\bar{F}_q}) \cong \mathbb{Q}$. Therefore, E/F_q is even.

Example 1.7. In contrast, if X/F_q is an absolutely simple ordinary abelian variety, then $\text{End}^0(X) = \text{End}^0(X_{\bar{F}_q})$. (This is a consequence of Theorem 7.2 of [Waterhouse 1969], which unfortunately omits the necessary hypothesis of absolute simplicity.)

Example 1.8. Now consider an arbitrary abelian variety X/F_q and its preferred quadratic twist X'. Then the sum $X \times X'$ is visibly isomorphic to its own quadratic twist, and thus even.

Example 1.9. Let X/F_q be an abelian variety of dimension g. Suppose there is an integer $N \geq 3$, relatively prime to q, such that $X[N](F_q) \cong (\mathbb{Z}/N)^{2g}$. Then X is not even. Indeed, if an abelian variety Y over a field k has maximal k-rational N-torsion for $N \geq 3$ and N is invertible in k, then $\text{End}^0(Y) \cong \text{End}^0(Y_\bar{k})$ [Silverberg 1992, Theorem 2.4]. By the criterion of Lemma 1.3, if X/F_q satisfies the hypotheses of the present lemma, then X cannot be even.

1C. Abelian varieties over local fields. Now let K be a local field with residue field \mathbb{F}_q and let X/K be an abelian variety with good reduction X_0/F_q. As in 1B, we define a canonical quadratic twist X' of X, associated to the unique nontrivial character $\text{Gal}(\mathbb{K}/K) \to \text{Gal}(\mathbb{K}^{\text{unram}}/K) \to \{\pm 1\} \subset \text{Aut}(X)$.

Proposition 1.10. Let X/K be an abelian variety with good reduction X_0/F_q. The following are equivalent:

(a) X and X' are isogenous;
(b) X_0/F_q and X'_0/F_q are isogenous;
(c) X_0/F_q is even.

Proof. By hypothesis, X spreads out to an abelian scheme $\mathfrak{X}/\mathbb{O}_K$ (its Néron model) with special fiber X_0/F_q; the automorphism $[-1] \in \text{End}(X)$ extends to an automorphism of \mathfrak{X} and the corresponding twist \mathfrak{X}' has generic and special fibers X' and $(X_0)'/F_q$, respectively. This compatibility explains the equivalence of (a) and (b); the equivalence of (b) and (c) is Lemma 1.2.

Call X/K even if X has good reduction and satisfies any of the equivalent statements in Proposition 1.10.
2. L-packets attached to abelian varieties

2A. Polarizations. Let X/k be an abelian variety over an arbitrary field k. Let λ be a polarization on X, i.e., a symmetric isogeny $X \to \hat{X}$ which arises from an ample line bundle on X. Fix a rational prime ℓ invertible in k. The polarization λ on X induces a nondegenerate skew-symmetric pairing $\langle \cdot, \cdot \rangle_\lambda$ on the Tate module $T_\ell X$ and on the rational Tate module $V_\ell X$. Let $GSp(V_\ell X, \langle \cdot, \cdot \rangle_\lambda)$ be the group of symplectic similitudes of $V_\ell X$ with respect to this pairing; note that $GSp(V_\ell X, \langle \cdot, \cdot \rangle_\lambda)$ comes with a representation $r_{\lambda, \ell} : GSp(V_\ell X, \langle \cdot, \cdot \rangle_\lambda) \hookrightarrow GL(V_\ell X)$. Let $\rho_{X, \ell} : \text{Gal}(\overline{k}/k) \to GL(V_\ell X)$ be the representation on the rational Tate module and let $\rho_{X, \lambda, \ell} : \text{Gal}(\overline{k}/k) \to GSp(V_\ell X, \langle \cdot, \cdot \rangle_\lambda)$ be the continuous homomorphism such that $\rho_{X, \ell} = r_{\lambda, \ell} \circ \rho_{X, \lambda, \ell}$.

\[
\begin{array}{ccc}
\text{Gal}(\overline{k}/k) & \xrightarrow{\rho_{X, \ell}} & GL(V_\ell X) \\
\rho_{X, \lambda, \ell} & \searrow & r_{\lambda, \ell} \\
& GSp(V_\ell X, \langle \cdot, \cdot \rangle_\lambda) & \\
\end{array}
\]

(2-1)

2B. Admissible representations attached to abelian varieties with good reduction. Let K be a local field. Fix a rational prime ℓ invertible in the residue field of K, and thus in K. It will be comforting, though not even remotely necessary, to fix an isomorphism $\mathbb{Q}_\ell \cong \mathbb{C}$. We will indicate the corresponding complex-valued versions of $\rho_{X, \ell}$, $\rho_{X, \lambda, \ell}$, and $r_{\lambda, \ell}$ from Section 2A by eliding the subscript ℓ.

In the rest of the paper we will commonly employ the notation $G := \text{GSpin}_{2g+1}$; note that the dual group to G is $\check{G} = \text{GSp}_{2g}$. The derived group $G_{\text{der}} = \text{Spin}_{2g+1}$, which is semisimple and simply connected, will play a role below, as will its dual $\check{G}_{\text{ad}} = \text{PGSp}_{2g}$, which is of adjoint type.

Proposition 2.1. Let X/K be an abelian variety of dimension g with good reduction and let λ be a polarization on X. There is an irreducible unramified principal series representation $\pi_{X, \lambda}$ of $\text{GSpin}_{2g+1}(K)$, unique up to equivalence, such that

$$L(z, \rho_X) = L(z, \pi_{X, \lambda}, r_\lambda).$$

Moreover, $\mid \mid K^{1/2} \otimes \pi_{X, \lambda}$ is unitary.

Proof. This is a very small and well-known part of the local Langlands correspondence for $G = \text{GSpin}_{2g+1}$ over K which, in this case, matches unramified principal series representations of $\check{G}(K) = \text{GSpin}_{2g+1}(K)$ with unramified Langlands parameters taking values in $\check{G}(\mathbb{C}) = \text{GSp}_{2g}(\mathbb{C})$. For completeness and to introduce notation for later use, we include the details here.

We begin by describing $L(z, \rho_X)$. By [Serre and Tate 1968], the Galois representation $\rho_{X, \ell}$ is unramified and the characteristic polynomial of $\rho_{X, \ell} \circ (\text{Fr}_q)$ has rational
coefficients. Accordingly, the Euler factor for $\rho_{X, \ell}$ takes the form

$$L(s, \rho_X) = \frac{(q^s)^{2g}}{P_{X_0/\ell^q}(q^s)}.$$

Let $\{\tau_1, \ldots, \tau_{2g}\}$ be the (complex) roots of $P_{X_0/\ell^q}(T)$. Also by [Serre and Tate 1968], the ℓ-adic realization $\rho_{X, \ell}(\text{Fr}_q) \in \text{GL}(V_{\ell}X)$ of the Frobenius endomorphism of X is semisimple of weight 1, so each eigenvalue satisfies $|\tau_j| = \sqrt{q}$. Label the roots in such a way that, for each $1 \leq j \leq g$, we have $\tau_{g+j} = q\tau_j^{-1}$; and $\tau_j = \sqrt{q}e^{2\pi i \theta_j}$, where $1 > \theta_1 \geq \theta_2 \geq \cdots \geq \theta_g \geq 0$.

Let T be a K-split maximal torus in G; let \tilde{T} be the dual torus. Then the Lie algebra of the torus $\tilde{T}(\mathbb{C})$ may be identified with $X^*(T) \otimes \mathbb{C}$ through the function

$$\exp : X^*(T) \otimes \mathbb{C} \to \tilde{T}(\mathbb{C})$$

defined by $\tilde{\alpha}(\exp(x)) = e^{2\pi i <\tilde{\alpha}, x>}$ for each root $\tilde{\alpha}$ for \tilde{G} with respect to \tilde{T}. The Lie algebra of the compact part of $\tilde{T}(\mathbb{C})$, denoted by $\tilde{T}(\mathbb{C})^u$ below, is then identified with $X^*(T) \otimes \mathbb{R}$ under \exp. We pick a basis $\{e_0, \ldots, e_g\}$ for $X^*(T)$ that identifies e_0 with the similitude character for \tilde{G} and write $\{f_0, \ldots, f_k\}$ for the dual basis for $X^*(T) \cong X^*(\tilde{T})$. Set $\theta_0 := 0$ and set $\theta := \sum_{j=0}^g \theta_j e_j$; note that $\theta \in X^*(T) \otimes \mathbb{R}$, so $\exp(\theta)$ lies in $\tilde{T}(\mathbb{C})^u$. Then $\rho_{X,\ell}(\text{Fr}_q) = \sqrt{q} \exp(\theta)$.

Let W_K be the Weil group for K. The L-group for T is $L^T = \tilde{T}(\mathbb{C}) \times W_K$ since T is K-split. Consider the Langlands parameter

$$\phi : W_K \to L^T$$

defined by $\phi(\text{Fr}_q) = \rho_{X,\ell}(\text{Fr}_q) = \sqrt{q} \exp(\theta) \times \text{Fr}_q$. Let $\chi : T(K) \to \mathbb{C}^\times$ be the quasicharacter of $T(K)$ matching ϕ under the local Langlands correspondence for algebraic tori [Yu 2009]. The character $\chi^u := \left|K_{1/2}^{-1} \otimes \chi\right|$ corresponds to the unramified Langlands parameter

$$\phi^u : W_K \to L^T$$

defined by $\phi^u(\text{Fr}_q) = \exp(\theta) \times \text{Fr}_q$.

Now pick a Borel subgroup $B \subset G$ over K with reductive quotient T and set

$$\pi_{X,\ell} := \text{Ind}_{B(K)}^{G(K)} \chi.$$

Then $\pi_{X,\ell}$ is an irreducible, unramified principal series representation of $G(K)$. In the same way, the unitary character $\chi^u : K^\times \to \mathbb{C}^\times$ determines the irreducible principal series representation

$$\pi_{X,\ell}^u := \text{Ind}_{B(K)}^{G(K)} \chi^u.$$

This admissible representation $\pi_{X,\lambda}^u$ is unitary and enjoys

$$\pi_{X,\lambda}^u = |K|^{-1/2} \otimes \pi_{X,\lambda},$$

as promised.

Having identified the irreducible principal series representation $\pi_{X,\lambda}$ of $G(K)$ attached to (X, λ), we turn to the L function $L(s, \pi_{X,\lambda}, r_{\lambda})$. For this it will be helpful to go back and say a few words about the representation $r_{\lambda,\ell} : \text{GSp}(V_{\ell}X, \langle \cdot, \cdot \rangle_\lambda) \hookrightarrow \text{GL}(V_{\ell}X)$.

Let S be a maximal torus in $\text{GSp}(V_{\ell}X, \langle \cdot, \cdot \rangle_\lambda)$ containing $\rho_{X,\ell}(\text{Fr}_q)$ and let S' be a maximal torus in $\text{GL}(V_{\ell}X)$ containing $r_{\lambda,\ell}(S)$. Let F_{ℓ} be the splitting extension of S' in \overline{Q}_{ℓ}; observe that this contains the splitting extension of $P_{X_0/F_q}(T) \in Q[T]$ in \overline{Q}_{ℓ}. Passing from Q_{ℓ} to F_{ℓ}, we may choose bases $\{f_0, f_1, f_2, \ldots, f_g\}$ for $X^*(S)$ and $\{f'_1, f'_2, \ldots, f'_g\}$ for $X^*(S')$ such that the map $X^*(S') \to X^*(S)$ induced by the representation $r_{\lambda,\ell}$ is given, for $j = 1, \ldots, g$, by

$$X^*(S') \to X^*(S), \quad f'_j \mapsto f_j, \quad f'_{g+j} \mapsto f_0 - f_{g-j+1}.$$

Note that this determines a basis for $V_{\ell}X \otimes Q_{\ell} F_{\ell}$.

Passing from F_{ℓ} to \mathbb{C}, we have now identified a basis for $V_{\ell}X \otimes Q_{\ell} \mathbb{C}$ which defines

$$\text{GSp}(V_{\ell}X \otimes Q_{\ell} \mathbb{C}, \langle \cdot, \cdot \rangle_\lambda) \cong \text{GSp}_{2g}(\mathbb{C}) = \tilde{G}(\mathbb{C})$$

inducing $S \otimes Q_{\ell} \mathbb{C} \cong \tilde{T}$ and also gives

$$\text{GL}(V_{\ell}X \otimes Q_{\ell} \mathbb{C}) \cong \text{GL}_{2g}(\mathbb{C}).$$

Now (2-1) extends to

$$\begin{array}{ccc}
\text{Gal}(\overline{K}/K) & \xrightarrow{\rho_X} & \text{GL}_{2g}(\mathbb{C}) \\
\downarrow{\rho_{X,\lambda}} & & \downarrow{r_{\lambda}} \\
\tilde{G}(\mathbb{C}) & & \end{array}$$

(2-3)

It follows immediately that

$$L(s, \pi_{X,\lambda}, r_{\lambda}) = \prod_{i=1}^{2g} \frac{1}{1 - \tau_i q^{-s}} = \prod_{i=1}^{2g} \frac{q^s}{q^s - \tau_i} = \frac{(q^s)^{2g}}{P_{X_0/F_q}(q^s)} = L(s, \rho_X),$$

concluding the proof of Proposition 2.1. \qed
2C. **R-groups.** The irreducible representation $\pi_{X,\lambda}$ of $G(K)$ in Proposition 2.1 is obtained by parabolic induction from an unramified quasicharacter of a split maximal torus $T(K)$. In Section 2E we will use the restriction of this representation to the derived group $G_{\text{der}}(K) = \text{Spin}_{2g+1}(K)$ of $G(K) = G\text{Spin}_{2g+1}(K)$ to study X. While the resulting representation of $G_{\text{der}}(K)$ is again an unramified principal series representation, it need not be irreducible; in fact, we will glean information about X from the components of this representation of $G_{\text{der}}(K)$. With this application in mind, here we review some basic facts about reducible principal series representations of $G_{\text{der}}(K)$.

As in the proof of Proposition 2.1, let B be a Borel subgroup of G with reductive quotient T, a split maximal torus in G. Set $B_{\text{der}} = G_{\text{der}} \cap B$. This is a Borel subgroup of G_{der} with reductive quotient $T_{\text{der}} = T \cap G_{\text{der}}$, a split maximal torus in G_{der}. Let σ be a character of $T_{\text{der}}(K)$. The component structure of the admissible representation $\text{Ind}_{B_{\text{der}}(K)}^{G_{\text{der}}(K)} \sigma$ is governed by the commuting algebra $\text{End}(\text{Ind}_{B_{\text{der}}(K)}^{G_{\text{der}}(K)} \sigma)$, which, in turn, is given by the group algebra $\mathbb{C}[R(\sigma)]$, where $R(\sigma)$ is the Knapp–Stein R-group; see [Keys 1982, Introduction] for a summary and references to original sources, including [Silberger 1979].

The Knapp–Stein R-group $R(\sigma)$ is determined as follows, as explained in [Keys 1982, §3]. Let R be the root system for G with respect to T and let W be the corresponding Weyl group for G. The root system for G_{der} may be identified with R; see Table 1. Set $W_\sigma = \{w \in W \mid w\sigma = \sigma\}$. For each root $\alpha \in R$, let σ_α be the restriction of σ to the rank-1 subtorus $T_\alpha \subseteq T$. Consider the root system $R_\sigma = \{\alpha \in R \mid \sigma_\alpha = 1\}$. Then $R(\sigma) = \{w \in W_\sigma \mid w(R_\sigma) = R_\sigma\}$. The exact sequence

$$1 \rightarrow W_\sigma^0 \rightarrow W_\sigma \rightarrow R(\sigma) \rightarrow 1$$

determines $R(\sigma)$, with $W_\sigma^0 := \{w_\alpha \mid \alpha \in R_\sigma\}$, the Weyl group of the root system R_σ; see [Keys 1982, §3].

We will need the following alternate characterization of $R(\sigma)$. Let $s \in \tilde{T}_{\text{ad}}(\mathbb{C})$ be the semisimple element of $\tilde{G}_{\text{ad}}(\mathbb{C})$ corresponding to the character σ of $T_{\text{der}}(K)$. By Proposition 4 of [Steinberg 1974, §3.5] (see also [Humphreys 1995, §2.2, Theorem]), $Z_{\tilde{G}_{\text{ad}}(\mathbb{C})}(s)$ is a reductive group with root system $\tilde{R}_s := \{\tilde{\alpha} \in \tilde{R} \mid \tilde{\alpha}(s) = 1\}$. The bijection between R and \tilde{R} which comes with the root datum for G restricts to a bijection between R_σ and \tilde{R}_s. Moreover, by that same Proposition 4, the component group of the reductive group $Z_{\tilde{G}_{\text{ad}}(\mathbb{C})}(s)$ is W_s / W_s^0, where W_s^0 is the Weyl group for the root system \tilde{R}_s and $W_s = \{w \in W \mid w(s) = s\}$:

$$1 \rightarrow W_s^0 \rightarrow W_s \rightarrow \pi_0(Z_{\tilde{G}_{\text{ad}}(\mathbb{C})}(s)) \rightarrow 1.$$
that identification, \(W_s = W_\sigma \) and \(W_\sigma^\circ = W_s^\circ \), so

\[
R(\sigma) \cong \pi_0(Z_{\tilde{G}_{ad}(\mathbb{C})}(s)),
\]

canonically,

2D. Component group calculations. Now we calculate the group \(\pi_0(Z_{\tilde{G}_{ad}(\mathbb{C})}(s)) \).

Proposition 2.2. Suppose \(t \in \text{GSp}_{2g}(\mathbb{C}) \) is semisimple and all eigenvalues have complex modulus 1. Let \(s \in \text{PGSp}_{2g}(\mathbb{C}) \) be the image of \(t \) under \(\text{GSp}_{2g}(\mathbb{C}) \to \text{PGSp}_{2g}(\mathbb{C}) \). Then, if and only if the characteristic polynomial of \(r_\lambda(t) \) is even,

\[
\pi_0(Z_{\text{PGSp}_{2g}(\mathbb{C})}(s)) \cong \mathbb{Z}/2\mathbb{Z};
\]

otherwise, \(\pi_0(Z_{\text{PGSp}_{2g}(\mathbb{C})}(s)) \) is trivial.

Proof. Using the notation in the proof of Proposition 2.1, pick \(x \in X^*(T) \otimes \mathbb{R} \) with \(\exp(x) = t \); of course, \(x \) is not uniquely determined by \(t \), as the kernel of \(\exp : X^*(T) \otimes \mathbb{R} \to \tilde{T}(\mathbb{C}) \) is the weight lattice for \(T \), which, in this case, is the character lattice \(X^*(T) \) itself; see Table 1. Let \(v \in X^*(T_{\text{der}}) \otimes \mathbb{R} \) be the image of \(x \) under the map \(X^*(T) \otimes \mathbb{R} \to X^*(T_{\text{der}}) \otimes \mathbb{R} \) induced from \(X^*(T) \to X^*(T_{\text{der}}) \); see Table 1. Note that \(\exp(v) = s \), where now \(\exp \) refers to the map \(\exp : X^*(T_{\text{der}}) \to \tilde{T}(\mathbb{C}) \) defined as above. Using this map we may identify \(\text{Lie} \tilde{T}_{ad}(\mathbb{C}) \) with \(X^*(T_{\text{der}}) \otimes \mathbb{C} \); under this identification, the Lie algebra of the compact subtorus of \(\tilde{T}_{ad}(\mathbb{C}) \) may be identified with \(X^*(T_{\text{der}}) \otimes \mathbb{R} \), henceforth denoted by \(V \).

Let \(R_{\text{der}} \) be the root system for \(G_{\text{der}} \) and let \(\langle R_{\text{der}} \rangle \) be the lattice generated by \(R_{\text{der}} \). By [Reeder 2010, §2.2],

\[
(2-4) \quad \pi_0(Z_{\tilde{G}_{ad}(\mathbb{C})}(s)) \cong \left\{ \gamma \in X^*(T_{\text{der}})/\langle R_{\text{der}} \rangle \mid \gamma(v) = v \right\},
\]

for a canonical action of \(X^*(T_{\text{der}})/\langle R_{\text{der}} \rangle \) on \(V \), which we will use to calculate \(\pi_0(Z_{\tilde{G}_{ad}(\mathbb{C})}(s)) \). Even before describing this action, however, we remark that (2-4), together with the calculation of \(X^*(T_{\text{der}})/\langle R_{\text{der}} \rangle \) in Table 1, already gives us good information about \(\pi_0(Z_{\tilde{G}_{ad}(\mathbb{C})}(s)) \): this component group is trivial or \(\mathbb{Z}/2\mathbb{Z} \), and in particular, abelian.

In order to describe the action of \(X^*(T_{\text{der}})/\langle R_{\text{der}} \rangle \) on \(V \) and calculate the right-hand side of (2-4), we must introduce yet more notation. Adapting [Bourbaki 1968, VI, §2], let \(W_{\text{aff}} := \langle R_{\text{der}} \rangle \rtimes W \) be the affine Weyl group for \(\tilde{G}_{ad} \) and let \(W_{\text{ext}} := X^*(T_{\text{der}}) \rtimes W \) be the extended affine Weyl group for \(\tilde{G}_{ad} \). (Here we use the coincidence of the weight lattice for \(G_{\text{der}} \) with the character lattice for \(G_{\text{der}} \).) Then \(W_{\text{ext}} \) is a semidirect product of the Coxeter group \(W_{\text{aff}} \) by \(X^*(T_{\text{der}})/\langle R_{\text{der}} \rangle \).

\[
(2-5) \quad 1 \to W_{\text{aff}} \to W_{\text{ext}} \to X^*(T_{\text{der}})/\langle R_{\text{der}} \rangle \to 1.
\]

The quotient \(X^*(T_{\text{der}})/\langle R_{\text{der}} \rangle \) coincides with the fundamental group \(\pi_1(\tilde{G}_{ad}) \) of \(\tilde{G}_{ad} \).
Semisimple, simply connected & Type: B_g & Adjoint \\
\(G_{\text{der}} = \text{Spin}_{2g+1}\) & \(G = \text{GSpin}_{2g+1}\) & \(G_{\text{ad}} = \text{SO}_{2g+1}\) \\
\(T_{\text{der}} = \mathbb{G}_m^g\) & \(T = \mathbb{G}_m^{g+1}\) & \(T_{\text{ad}} = \mathbb{G}_m^g\) \\
\(Z(G_{\text{der}}) = \mu_2\) & \(Z(G) = \mathbb{G}_m\) & \(Z(G_{\text{ad}}) = 1\) \\
\(X^*(T_{\text{der}}) = (e_1, \ldots, e_g)\) & \(X^*(T) = (e_0, e_1, \ldots, e_g)\) & \(X^*(T_{\text{ad}}) = (\alpha_1, \ldots, \alpha_g)\) \\

\(R_{\text{der}} := R(G_{\text{der}}, T_{\text{der}})\) & \(R := R(G, T)\) & \(R_{\text{ad}} := R(G_{\text{ad}}, T_{\text{ad}})\) \\
\(= (\alpha_1, \ldots, \alpha_g)\) & \(= (\alpha_1, \ldots, \alpha_g)\) & \(= (\alpha_1, \ldots, \alpha_g)\) \\
\(\alpha_1 = e_1 - e_2\) & \(\alpha_1 = e_1 - e_2\) & \(\alpha_1 = f_1 - f_2\) \\
\(\alpha_2 = e_2 - e_3\) & \(\alpha_2 = e_2 - e_3\) & \(\alpha_2 = f_2 - f_3\) \\
\(\vdots\) & \(\vdots\) & \(\vdots\) \\
\(\alpha_{g-1} = e_{g-1} - e_g\) & \(\alpha_{g-1} = e_{g-1} - e_g\) & \(\alpha_{g-1} = f_{g-1} - f_g\) \\
\(\alpha_g = e_g\) & \(\alpha_g = e_g\) & \(\alpha_g = 2f_g - f_0\) \\

\(X^*(T_{\text{der}})/R_{\text{der}}) = \mathbb{Z}/2\mathbb{Z}\) & \(X^*(T)/R = \mathbb{Z}\) & \(X^*(T_{\text{ad}})/R_{\text{ad}}) = \mathbb{Z}/2\mathbb{Z}\) \\
weight lattice = \(X^*(T_{\text{der}})\) & weight lattice = \(X^*(T)\) & weight lattice = \(X^*(T_{\text{ad}})\) \\

Table 1. Based data for \(\text{GSpin}_{2g+1}, \text{Spin}_{2g+1}\) and \(\text{SO}_{2g+1}\).

(see [Steinberg 1968, p. 45] for a table of these finite abelian groups by type). By
[Bourbaki 1968, VI, §2.4, Corollary], the minuscule coweights for \(\tilde{G}_{\text{ad}}\) determine a
set of representatives for \(X^*(T_{\text{der}})/R_{\text{der}}\). The basis in Table 1 for the root system
The calculation of \(\gamma \in X^*(T_{\text{der}})/\langle R_{\text{der}} \rangle \) now follows easily. Let \(\{\varpi_1, \ldots, \varpi_g\} \) be the basis of weights for \(X^*(T_{\text{der}}) \) dual to the basis \(\mathcal{R}_{\text{ad}} = \{\check{\alpha}_1, \ldots, \check{\alpha}_g\} \) for \(X^*(\check{T}_{\text{ad}}) = X_*(T_{\text{der}}) \); set \(\varpi_0 = 0 \). The closure \(\overline{C} \) of the alcove \(C \) is the convex hull of the vertices \(\{v_0, v_1, \ldots, v_g\} \) defined by \(v_j = (1/b_j)\varpi_j \), where \(b_0 = 1 \) and the other integers \(b_j \) are determined by the longest root in \(\mathcal{R}_{\text{ad}} \) according to \(\check{\alpha} = \sum_{j=1}^g b_j \check{\alpha}_j \). In the case at hand, the longest root is \(\check{\alpha} = 2\check{\alpha}_1 + 2\check{\alpha}_2 + \cdots + 2\check{\alpha}_{g-1} + \check{\alpha}_g \), so \(b_1 = 2, \ldots, b_{g-1} = 2, b_g = 1 \). Note that exactly two vertices in \(\{v_0, v_1, \ldots, v_g\} \) are hyperspecial: \(v_0 \) and \(v_g \). Since \(W_{\text{ext}} \) acts transitively on the alcoves in \(V \) and since \(\exp: V \to \check{T}_{\text{ad}}(\mathbb{C}) \) is \(W_{\text{ext}} \)-invariant, we may now suppose \(v \in \overline{C} \). Express \(v \in V \) in the basis of weights for \(X^*(T_{\text{der}}) \):

\[
v = \sum_{j=1}^g x_j \varpi_j; \tag{2-7}
\]

note that the coefficients in this expansion are precisely the root values \(x_j = \check{\alpha}_j(v) \). Then \(v \in \overline{C} \) exactly means \(x_j \geq 0 \). Set \(b_0 = 1 \) and define \(x_0 \geq 0 \) so that \(\sum_{j=0}^g b_j x_j = 1 \); in other words,

\[
v = \sum_{j=0}^g x_j \varpi_j, \quad x_0 + 2x_1 + \cdots + 2x_{g-1} + x_g = 1.
\]

Under the isomorphism (2-6), the nontrivial element of \(X^*(T_{\text{der}})/\langle R_{\text{der}} \rangle \) corresponds to \(\rho \in W_{\text{ext}} \) defined by \(v_j \mapsto v_{g-j} \) for \(j = 0, \ldots, g \). In terms of the fundamental weights \(\{\varpi_0, \varpi_1, \ldots, \varpi_g\} \), this affine transformation is defined by \(\varpi_j \mapsto \varpi_{g-j} \) for \(j = 0, \ldots, g \). Thus, \(\{\gamma \in X^*(T_{\text{der}})/\langle R_{\text{der}} \rangle \mid \gamma(v) = v\} \) is nontrivial if and only
if \(\rho(v) = v \), which is to say,

\[
(2-8) \quad x_j \geq 0, \quad j = 1, \ldots, g
\]

and

\[
x_1 + \cdots + x_{g-1} + x_g = \frac{1}{2}, \quad x_j = x_{g-j}, \quad j = 1, \ldots, g - 1.
\]

It only remains to translate the conditions above into conditions on the eigenvalues of \(t \in G(\mathbb{C}) \). To do that we pass from root values \(x_j = \langle \check{\alpha}_j, x \rangle \) to character values \(y_j := \langle f_j, x \rangle \). Again using Table 1, we see that these conditions are equivalent to

\[
(2-9) \quad y_1 \geq y_2 \geq \cdots \geq y_g \geq \frac{1}{2} y_0
\]

and

\[
y_1 + y_g = \frac{1}{2} + y_0, \quad y_j - y_{j+1} = y_{g-j} - y_{g-j+1}, \quad j = 1, \ldots, g - 1.
\]

When combined, these last two conditions take a very simple form:

\[
(2-10) \quad y_0 - y_j = \frac{1}{2} + y_{g-j+1}, \quad j = 1, \ldots, g - 1.
\]

Finally, we calculate the characteristic polynomial of \(r_\lambda(t) \). Observe that \(r_\lambda(t) = r_\lambda(\exp(x)) = \exp(dr_\lambda(x)) \), where \(dr_\lambda : X^*(T) \to X^*(\mathbb{G}_m^g) \) is given by (2-2). Set \(t_j = e^{2\pi i y_j} \) for \(j = 0, \ldots, g \). Then constraint (2-10) is equivalent to

\[
(2-11) \quad t_0 t_j^{-1} = -t_{g-j+1}, \quad j = 1, \ldots, g - 1.
\]

The characteristic polynomial of \(r_\lambda(t) \) is

\[
(2-12) \quad P_{r_\lambda(t)}(T) := \prod_{j=1}^{g} (T - t_j) \prod_{j=1}^{g} (T - t_0 t_j^{-1}).
\]

When combined with (2-11), it is clear that \(P_{r_\lambda(t)}(T) \) is even:

\[
P_{r_\lambda(t)}(T) = \prod_{j=1}^{g} (T - t_j) \prod_{j=1}^{g} (T + t_{g-j+1}) = \prod_{j=1}^{g} (T - t_j) \prod_{i=1}^{g} (T + t_i), \quad j \mapsto g - j + 1
\]

\[
= \prod_{j=1}^{g} (T^2 - t_j^2).
\]

We have now seen that if \(\pi_0(Z_{PGSp_{2g}(\mathbb{C})}(s)) \) is nontrivial, then \(P_{r_\lambda(t)}(T) \) is even. To see the converse, suppose \(P_{r_\lambda(t)}(T) \) (2-12) is even. Without loss of generality,
we may assume the similitude factor t_0 is trivial. Then, after relabeling if necessary, the symplectic characteristic polynomial $P_{r_{\sigma}(T)}(T)$ is even if and only if it takes the form $P_{r_{\sigma}(T)}(T) = \prod_{j=1}^{g}(T^2 - r_j^2)$, with $r_j^{-1} = -r_{\sigma(j)}$ for some permutation σ of $\{1, \ldots, g\}$. Since the roots are the eigenvalues of t, which are unitary by hypothesis, we can order them by angular components, as in (2-9), while replacing σ with the permutation $j \mapsto g - j + 1$, thus bringing us back to (2-10). This concludes the proof of Proposition 2.2.

2E. **Restriction to the derived group.** In this section we show how to recognize when X/K is even through a simple property of the admissible representation $\pi_{X,\lambda}$ of $G(K)$.

Theorem 2.3. Let X/K be an abelian variety of dimension g with good reduction and let λ be a polarization on X. The restriction of $\pi_{X,\lambda}$ from $\text{GSp}_{2g+1}(K)$ to $\text{Spin}_{2g+1}(K)$ is reducible if and only if X is even.

Proof. With reference to notation from the proof of Proposition 2.1, set $t = \exp(\theta)$ and let $s \in \tilde{T}_{\text{ad}}$ be the image of t under $\tilde{T} \to \tilde{T}_{\text{ad}}$. The restriction of $\pi_{X,\lambda}$ from $G(K)$ to $G_{\text{der}}(K)$ decomposes into irreducible representations indexed by the component group $\pi_0(Z_{G_{\text{ad}}(C)}(s))$. Indeed, the irreducible representations of $G_{\text{der}}(K)$ that arise in this way are precisely the irreducible representations appearing in $\text{Ind}_{B_{\text{der}}(K)}^{G_{\text{der}}(K)}(\chi_{\text{der}})$, where $B_{\text{der}}(K)$ is a Borel subgroup containing $T_{\text{der}}(K)$ and χ_{der} is the unramified quasicharacter of $T_{\text{der}}(K)$ corresponding to $t_{\text{ad}} \in \tilde{T}_{\text{ad}}(C)$. The R-group for this unramified principal series representation is $\pi_0(Z_{G_{\text{ad}}}(s))$. By Proposition 2.2, this group is either trivial or a group of order 2, so either $\pi_{X,\lambda}|_{G_{\text{der}}(K)}$ is irreducible or contains two irreducible admissible representations; also by Proposition 2.2, the latter case occurs if and only if the characteristic polynomial $P_{X_{\text{ad}}/T}(T)$ is even, in which case X/K itself is even (Proposition 1.10).

2F. **L-packets interpretation.** In this section we show how to recognize even abelian varieties over local fields through associated L-packets.

As discussed in Section 2A, every polarized abelian variety (X, λ) over K determines an ℓ-adic Galois representation $\rho_{X,\lambda,\ell} : \text{Gal}(\overline{K}/K) \to \text{GSp}(V_\ell X, \langle \cdot, \cdot \rangle_{\lambda})$. Let W'_K be the Weil–Deligne group for K [Tate 1979, §4.1]. Let $\phi_{X,\lambda,\ell} : W'_K \to \text{Gal}(\overline{K}/K) \to \text{GSp}(V_\ell X, \langle \cdot, \cdot \rangle_{\lambda})$ be the Weil–Deligne homomorphism obtained by applying [Deligne 1973, Theorem 8.2] to $\rho_{X,\lambda,\ell}$. We note that $^L G = \tilde{G}(C) \rtimes W_K = \text{GSp}_{2g}(C) \rtimes W_K$. Let

$$\phi_{X,\lambda} : W'_K \to \text{Gal}(\overline{K}/K) \to ^L G$$

be the admissible homomorphism determined by $\phi_{X,\lambda,\ell}$ and the basis for $V_\ell X \otimes \mathbb{Q}_\ell \mathbb{C}$ identified in the proof of Proposition 2.1. The equivalence class of the admissible homomorphism $\phi_{X,\lambda}$ is the Langlands parameter for the polarized abelian variety.
We remark that this recipe is valid for all polarized abelian varieties over K, not just those of good reduction. But here we are interested in the case when X has good reduction, in which case $\rho_{X,\lambda}$ is unramified in the strongest sense: the local monodromy operator for the Langlands parameter $\phi_{X,\lambda}$ factors through $W'_K \to W_K$ and $\phi_{X,\lambda}$ is trivial on the inertia subgroup I_K of W_K.

Although the full local Langlands correspondence for $G = \mathrm{GSpin}_{2g+1}$ is not yet known, the part which pertains to unramified principal series representations is, allowing us to consider the L-packet $\Pi_{X,\lambda}$ for the Langlands parameter $\phi_{X,\lambda}$. Indeed, we have seen that this L-packet contains the equivalence class of $\pi_{X,\lambda}$, only.

Theorem 2.3 shows that we can detect when X is K-isogenous to its twist over the quadratic unramified extension of K by restricting $\pi_{X,\lambda}$ from $G(K)$ to $G_{\mathrm{der}}(K)$. On the Langlands parameter side, this restriction corresponds to post-composing $\phi_{X,\lambda}$ with $L^G \to L^G_{\mathrm{ad}}$. Let $\phi^\text{der}_{X,\lambda}$ be the Langlands parameter for G_{der}/K defined by the diagram below and let $\Pi^\text{der}_{X,\lambda}$ be the corresponding L-packet.

\[W'_K \xrightarrow{\phi_{X,\lambda}} L^G \]

Corollary 2.4. Let X/K be an abelian variety of dimension g with good reduction and let λ be a polarization on X. The L-packet $\Pi^\text{der}_{X,\lambda}$ for $\mathrm{Spin}_{2g+1}(K)$ has cardinality 2 exactly when X is even; otherwise, it has cardinality 1.

Proof. This follows directly from the fact that the R-group for any representation in the restriction of $\pi_{X,\lambda}$ to $G_{\text{der}}(K)$ coincides with the Langlands component group attached to $\phi^\text{der}_{X,\lambda}$. (See [Ban and Goldberg 2012] for more instances of this coincidence.) Namely, equivalence classes of representations that live in $\Pi^\text{der}_{X,\lambda}$ are parametrized by irreducible representations of the group

\[\mathcal{H}^\text{der}_{X,\lambda} := Z_{\tilde{G}_{\text{ad}}} (\phi^\text{der}_{X,\lambda}) / Z_{\tilde{G}_{\text{ad}}} (\phi^\text{der}_{X,\lambda})^0 (Z_{\tilde{G}_{\text{ad}}})_{W_K}. \]

Since G_{der} is K-split, the action of W_K on \tilde{G}_{ad} is trivial, and since $\phi^\text{der}_{X,\lambda}$ is unramified, $Z_{\tilde{G}_{\text{ad}}} (\phi^\text{der}_{X,\lambda}) = Z_{\tilde{G}_{\text{ad}}} (t_{\text{ad}})$, where $t_{\text{ad}} = \phi^\text{der}_{X,\lambda} (\text{Fr}_q)$; thus,

\[\mathcal{H}^\text{der}_{X,\lambda} = \pi_0 (Z_{\tilde{G}_{\text{ad}}} (t_{\text{ad}})), \]

which is precisely the R-group for $\pi_{X,\lambda}|_{G_{\text{der}}(K)}$ calculated in Theorem 2.3. ∎
3. Concluding remarks

It is natural to ask how the story above extends to include abelian varieties X over local fields which do not necessarily have good reduction, keeping track of the relation between the ℓ-adic Tate module $T_\ell X$ and the associated Weil–Deligne representations, generalizing [Rohrlich 1994], and the corresponding L-packets. For this it would be helpful to know the full local Langlands correspondence for $\text{GSpin}_{2g+1}(K)$, not just the part which pertains to unramified principal series representations. Since the full local Langlands correspondence for $\text{GSpin}_{2g+1}(K)$ is almost certainly within reach by an adaptation of Arthur’s work [2013] on the endoscopic classification of representations, following [Arthur 2004], we have, for the moment, postponed looking into such questions until Arthur’s ideas have been adapted to general spin groups.

At the heart of this note we have used a very simple instance of what is, according to a conjecture of Arthur [1989], a very general phenomenon: the coincidence of Knapp–Stein R-groups with the component groups attached to Langlands parameters, sometimes known as Arthur R-groups, as in [Ban and Zhang 2005]. While most known cases of this coincidence appear or are summarized in [Ban and Goldberg 2012], as remarked at the end of the introduction to that paper, there is work remaining for general spin groups.

When some of these missing pieces are available, we intend to use the local results in this note to explore the connection between abelian varieties over number fields and global L-packets of automorphic representations of spin groups and general spin groups, generalizing the results of [Anandavardhanan and Prasad 2006, §2].

Acknowledgements

We thank V. Vatsal, P. Mezo and U. K. Anandavardhanan for helpful conversations, and the referee for a careful reading and useful suggestions.

References

[Anandavardhanan and Prasad 2006] U. K. Anandavardhanan and D. Prasad, “On the $\text{SL}(2)$ period integral”, Amer. J. Math. 128:6 (2006), 1429–1453. MR 2008b:22014 Zbl 1117.11030

[Arthur 1989] J. G. Arthur, “Unipotent automorphic representations: conjectures”, pp. 13–71 in Orbites unipotentes et représentations, II: Groupes p-adiques et réels, edited by M. Andler, Astérisque 171-172, Société Mathématique de France, Paris, 1989. MR 91f:22030 Zbl 0728.22014

[Arthur 2004] J. G. Arthur, “Automorphic representations of $\text{GSp}(4)$”, pp. 65–81 in Contributions to automorphic forms, geometry, and number theory (Baltimore, 2002), edited by H. Hida et al., Johns Hopkins University Press, Baltimore, 2004. MR 2005d:11074 Zbl 1080.11037

[Arthur 2013] J. G. Arthur, The endoscopic classification of representations: orthogonal and symplectic groups, American Mathematical Society Colloquium Publications 61, American Mathematical Society, Providence, RI, 2013. MR 3135650 Zbl 06231010
[Ban and Goldberg 2012] D. Ban and D. Goldberg, “R-groups and parameters”, Pacific J. Math. 255:2 (2012), 281–303. MR 2928553 Zbl 1284.22008

[Ban and Zhang 2005] D. Ban and Y. Zhang, “Arthur R-groups, classical R-groups, and Aubert involutions for SO$(2n+1)$”, Compos. Math. 141:2 (2005), 323–343. MR 2006d:22019 Zbl 1131.11033

[Bourbaki 1968] N. Bourbaki, Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles 1337, Hermann, Paris, 1968. Translated as Lie groups and Lie algebras: chapters 4–6, Springer, Berlin, 2002. MR 39 #1590 Zbl 0186.33001

[Deligne 1973] P. Deligne, “Les constantes des équations fonctionnelles des fonctions L”, pp. 501–597 in Modular functions of one variable, II (Antwerp, 1972), edited by P. Deligne and W. Kuyk, Lecture Notes in Math. 349, Springer, Berlin, 1973. MR 50 #2128 Zbl 0271.14011

[Humphreys 1995] J. E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs 43, American Mathematical Society, Providence, RI, 1995. MR 97i:20057 Zbl 0834.20048

[Keys 1982] C. D. Keys, “On the decomposition of reducible principal series representations of p-adic Chevalley groups”, Pacific J. Math. 101:2 (1982), 351–388. MR 84d:22032 Zbl 0438.22010

[Oort 2008] F. Oort, “Abelian varieties over finite fields”, pp. 123–188 in Higher-dimensional geometry over finite fields (Göttingen, 2007), edited by D. Kaledin and Y. Tschinkel, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur. 16, IOS, Amsterdam, 2008. MR 2009k:14085 Zbl 1181.14029

[Reeder 2010] M. Reeder, “Torsion automorphisms of simple Lie algebras”, Enseign. Math. (2) 56:1-2 (2010), 3–47. MR 2012b:17040 Zbl 1223.17020

[Rohrlich 1994] D. E. Rohrlich, “Elliptic curves and the Weil–Deligne group”, pp. 125–157 in Elliptic curves and related topics, edited by H. Kisilevsky and M. R. Murty, CRM Proc. Lecture Notes 4, American Mathematical Society, Providence, RI, 1994. MR 95a:11054 Zbl 0852.14008

[Serre and Tate 1968] J.-P. Serre and J. Tate, “Good reduction of abelian varieties”, Ann. of Math. (2) 88 (1968), 492–517. MR 38 #4488 Zbl 0172.46101

[Silverberg 1992] A. Silverberg, “Fields of definition for homomorphisms of abelian varieties”, J. Pure Appl. Algebra 77:3 (1992), 253–262. MR 93f:14008 Zbl 0808.14037

[Steinberg 1968] R. Steinberg, Lectures on Chevalley groups, Yale University, New Haven, CT, 1968. MR 57 #6215 Zbl 1196.22001

[Steinberg 1974] R. Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Math. 366, Springer, Berlin, 1974. MR 50 #4766 Zbl 0281.20037

[Tate 1966] J. Tate, “Endomorphisms of abelian varieties over finite fields”, Invent. Math. 2 (1966), 134–144. MR 34 #5829 Zbl 0147.20303

[Tate 1979] J. Tate, “Number theoretic background”, pp. 3–26 in Automorphic forms, representations and L-functions (Corvallis, OR, 1977), vol. 2, edited by A. Borel and W. Casselman, Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence, RI, 1979. MR 80m:12009 Zbl 0422.12003

[Waterhouse 1969] W. C. Waterhouse, “Abelian varieties over finite fields”, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521–560. MR 42 #279 Zbl 0188.53001

[Yu 2009] J.-K. Yu, “On the local Langlands correspondence for tori”, pp. 177–183 in Ottawa lectures on admissible representations of reductive p-adic groups, edited by C. Cunningham and M. Nevins, Fields Inst. Monogr. 26, American Mathematical Society, Providence, RI, 2009. MR 2009m:11201 Zbl 1187.11045
Received February 21, 2014. Revised July 25, 2014.

JEFFREY D. ACHTER
COLORADO STATE UNIVERSITY
WEBER BUILDING
FORT COLLINS, CO 80523-1874
UNITED STATES
achter@math.colostate.edu

CLIFTON CUNNINGHAM
DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF CALGARY
2500 UNIVERSITY DRIVE NW
CALGARY, AB T2N 1N4
CANADA
cunning@math.ucalgary.ca
Taut foliations in surface bundles with multiple boundary components

TEJAS KALELKAR and RACHEL ROBERTS

Some results on archimedean Rankin–Selberg integrals

JINGSONG CHAI

Prescribing the boundary geodesic curvature on a compact scalar-flat Riemann surface via a flow method

HONG ZHANG

−1-Phenomena for the pluri χ_y-genus and elliptic genus

PING LI

On the geometry of Prüfer intersections of valuation rings

BRUCE OLBERDING

Non-Kähler expanding Ricci solitons, Einstein metrics, and exotic cone structures

MARIA BUZANO, ANDREW S. DANCER, MICHAEL GALLAUGHER and McKENZIE WANG

A note on L-packets and abelian varieties over local fields

JEFFREY D. ACHTER and CLIFTON CUNNINGHAM

Rotating drops with helicoidal symmetry

BENNETT PALMER and OSCAR M. PERDOMO

The bidual of a radical operator algebra can be semisimple

CHARLES JOHN READ

Dimension jumps in Bott–Chern and Aeppli cohomology groups

JIEZHU LIN and XUANMING YE

Fixed-point results and the Hyers–Ulam stability of linear equations of higher orders

BING XU, JANUSZ BRZDĘK and WEINIAN ZHANG

Complete curvature homogeneous metrics on $\text{SL}_2(\mathbb{R})$

BENJAMIN SCHMIDT and JON WOLFSON