Land use effects on termite assemblages in Kenya

Nahashon Chege Kanyi, Hannah Karuri, Johnson O. Nyasani, Benson Mwangi

ARTICLE INFO

Keywords:
- Diversity partitioning
- Ecosystem engineers
- Maize
- Tropical agro-ecosystems

ABSTRACT

Termites perform key ecological functions and they also cause crop damage. Land use change resulting from agricultural intensification can result in changes in termite species diversity and abundance. Termite species occurring in natural vegetation, maize monocrop and maize-beans intercrop macrohabitats were investigated in Embu and Machakos Counties, Kenya. Influence of soil properties and seasons was also evaluated. Across the two Counties, seven termite species were recorded with Machakos County having the highest number. Additive diversity partitioning of species richness and Simpson diversity showed that, a component contributed to 98.3% and 99.1% of the total diversity, respectively. Population densities of three termite species significantly varied between land use types in Machakos County but there were no differences in termite species abundance in Embu County. In addition, there were no significant differences in species richness between macrohabitats within each County. In Embu, season significantly influenced the abundance of Macrotermes subhyalinus, M. herus, and Copitomoermes formosanus which occurred in greater numbers during the wet season. There was a significant influence of land use on Trinervitermes gratiosus and C. formosanus in Machakos with both species occurring in higher numbers in natural vegetation. Trinervitermes gratiosus was negatively associated with Mn and positively correlated to pH and sand. Macrotermes subhyalinus and M. herus showed a positive association with P and silt while C. formosanus was positively correlated to Ca and Mg. These findings provide an insight into the effects of land use change from natural vegetation to maize agro-ecosystems on termite diversity. It also provides a baseline for further studies on termite diversity in Kenya and their ecological significance.

1. Introduction

Termites form an important component of the soil invertebrate community and they contribute to different ecosystem services (Jouquet et al., 2011). Like most biodiversity, they are threatened by agricultural intensification (Zabel et al., 2019) which occurs in the rise in sub-Saharan Africa (SSA) (Haggar et al., 2020). In the last decade, conversion of natural ecosystems to agricultural land has been observed in SSA in order to cater for the increased demand in supply of key staple crops (Kuyah et al., 2020). In Kenya, maize is widely consumed by both rural and urban population and the area of production has increased in the last decade (FAOSTAT, 2021). Loss of biodiversity, including termites, that results from unsustainable agricultural production can have implications on functioning of agro-ecosystems (Jouquet et al., 2011).

Termite populations can be high, reaching up to 15,000 individuals/m². They play an important role in ecosystem functioning through their involvement in organic matter decomposition, soil pedogenesis and nutrient cycling. They also influence microbial, plant and animal diversity through landscape modifications in water and nutrient distribution (Jouquet et al., 2011). In Uasin Gishu plateau, Kenya, Jungerius et al. (1999) reported that termites improved soil structure by producing stable microaggregates in the sub-soil. Importance of termites in key ecosystem functions was demonstrated in a study in the Kenyan Laikipia plateau whereby subterranean termites influenced N fixation by Acacia drepanolobium and subsequently affected spatial distribution of the Acacia which had ecological implications on the entire community (Fox-Dobbs et al., 2010). At the same site, Pringle et al. (2010) observed that mounds built by Odontotermes species improved plant productivity while Baker et al. (2020) reported that Odontotermes montanatus affected the diversity of fungi and bacteria at localized points within mounds. The effect was scaled up to the entire savanna community at regular spatial points which increased fungal and bacterial diversity with implications for ecosystem functioning.

* Corresponding author.
E-mail address: hwkaruri@gmail.com (H. Karuri).

https://doi.org/10.1016/j.heliyon.2021.e08588
Received 26 August 2021; Received in revised form 8 October 2021; Accepted 8 December 2021
2405-8440/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
In tropical agro-ecosystems, termites are perceived as pests with no consideration for the important ecosystem services that they provide; exploring potential utilization of these ecosystem services in cropping systems is proposed (Jouquet et al., 2011). In some African countries, farmers have utilized the ecosystem engineering function of termites in improving productivity of farmland and restoration of degraded land through the use of Zai pits (Kaiser et al., 2017; Nyantakyi-Frimpong, 2020; Roose et al., 1999). Apart from the ecological role that they perform, termites can also reduce crop yields (Govorushko, 2019) and damage their quality (Black and Okwakol, 1997). Maize production by smallholders in SSA is largely rainfed (Prassana et al., 2021) which makes it susceptible to termite damage (Govorushko, 2019). In western Kenya, farmers reported damage of their crops and trees by termites (Adoyo et al., 1997) while in Zimbabwe, Mutsamba et al. (2016) observed a high prevalence of Macrotermiteinae termites in maize under conservation agriculture.

Different termite species have been identified in Kenya (Anyango et al., 2020; Ayuke et al., 2011; Kagezi et al., 2011; Makonde et al., 2013; Vesala et al., 2017). However, there are limited studies on the influence of land use, soil properties and seasons on their diversity. Land use change through agricultural intensification can affect termite diversity and the ecosystem services that they provide. Soil macrofauna in Zambia varied across land use systems whereby termite abundance was higher in miombo woodland relative to maize monoculture and maize intercropped with trees (Silesli and Mafongoya, 2006). Black and Okwakol (1997) posits that land use change from natural vegetation to agricultural land can affect termite diversity which can consequently affect nutrient cycling, energy flow, gas fluxes and vegetation diversity. In Cameroon, agricultural land that was converted from a tropical forest had a lower number of soil-feeding termite species which the authors argued could negatively affect crop yields (Eggleton et al., 2002). Similarly, anthropogenic disturbance in a West African savannah resulted in reduced population densities of termite species relative to a protected national park (Hausberger and Korb, 2016).

In addition to the influence of land use change on termites, soil properties and climatic variables can also affect their diversity (Eggleton, 2000; Bourguignon et al., 2015; Davies et al., 2015). Soil that has finer particles is preferred by termites (Jouquet et al., 2002) and soil properties influence their interactions with micro- and macro-aggregates (Jouquet et al., 2016) and also affect occurrence of different species (Sanabria et al., 2016). Temperature and moisture variations across seasons also affect termite diversity (Davies et al., 2015)—warming and rainfall influence the distribution and architecture of mounds (Korb and Linsenmair, 1998; Shanbhag et al., 2017). Knowledge on the influence of land use change on termite diversity in Kenyan maize agro-ecosystems and natural systems is crucial since it will form a basis for understanding their ecological role and potential economic impact which will consequently inform sustainable crop production that taps into the ecosystem services that they provide. Such information will also be important in designing species-specific integrated termite management programmes that are ecologically sustainable. We therefore tested the hypotheses that i) land use change affects termite diversity and ii) termite diversity is affected by soil and climatic variables.

2. Materials and methods

2.1. Study sites

The study was conducted in Kithimani, Matuu, and Ndalani locations of Machakos County and Kangaru, Kamiu and Ena of Embu County, Kenya (Figure 1). Study sites in Machakos and Embu were at an average altitude of 1240 and 1600 m above sea level, respectively. The rainfall pattern in both counties is bimodal, with the first rainy season (long rains) starting from March to June while the second (short rains) starts in mid-October and ends in December. In each location, three macrohabitats comprising of maize monocrop farms, maize intercropped with beans and natural vegetation were sampled. Three replicates of each macrohabitat in each County were sampled. The replicates were 20km apart from each other. In both Counties, natural vegetation comprised of grass, Lantana camara and Acacia species. The maize monocrop and maize-bean intercrop macrohabitats had been converted from adjacent natural vegetation and had been under cultivation for 20 years.

2.2. Termite sampling and identification

Three 100 × 2 m belt transects separated by 100m were laid out at each macrohabitat as described by Jones et al. (2003). Twenty 5 × 2 m sections from each transect were sampled (one person hour) from different microhabitats that included dead wood, soil, mounds, leaf litter, sheeting and runways. From each section, termites were also collected from twelve (12 cm × 12 cm, 10 cm deep) pits. Sampling across all sites was done during dry and wet seasons for two consecutive years (dry

Figure 1. Study sites at Kithimani, Matuu, and Ndalani locations of Machakos County and Kangaru, Kamiu and Ena of Embu County, Kenya.
season one—July to September 2018, dry season two—Jan to March 2019, wet season one—Oct to Dec 2018 and wet season two—March to May 2019). During each season, samples were collected at monthly intervals and stored in 80% ethanol. Collections of soldier and/or worker castes were identified to species levels using taxonomic guides (Webb, 1961; Sands, 1998) and through reference collections of National Museums of Kenya. For soil physico-chemical analysis, samples were collected from each point in the macrohabitats and a composite 500g sample was used for analysis. Soil samples were air dried at 23–55 °C before analyses at the Kenya Agricultural and Livestock Research Organization, National Agricultural Research Laboratories. Soil texture was determined using the hydrometer method (Klute, 1986) while the Mehlich double acid method was used to assess Phosphorus, Sodium, Potassium, Calcium, Magnesium and Manganese (Mehlich el al., 1962). Nitrogen content was analyzed using the Kjeldahl digestion method (Bremner and Mulvaney 1982) and soil pH was determined in a 1:1 (w/v) water extract as described by Mehlich el al. (1962). For analyses of Copper, Iron and Zinc, 0.1 M HCl in 1:10 (w/v) ratio was used for extraction before Atomic Absorption Spectrophotometer readings were taken (Mehlich el al., 1962). Carbon was determined colorimetrically following Anderson and Ingram (1993).

The average rainfall and minimum temperature data were obtained from the Kenya Meteorological Department.

2.3. Data analysis

We checked the termite species abundance data for normality and log (x+1) transformed where necessary. The data from the two dry seasons (dry season one—July to September 2018, dry season two—Jan to March 2019) was pooled and the average was used for subsequent analyses. The same was done for the two wet seasons (wet season one—Oct to Dec 2018 and wet season two—March to May 2019). To assess the influence of season (dry and wet) and macrohabitats (maize monocrop, maize intercropped with beans and natural vegetation) on termite species and diversity indices in Embu and Machakos Counties, we performed a two-way analysis of variance with subsequent Tukey honestly significant difference post hoc tests. We also conducted simple main effects tests for significant season × macrohabitat interactions. Species richness, Pielou’s evenness, Shannon-Weaver and Simpson diversity indices were analyzed using vegan package version 2.5–7 in R statistical software (Oksanen et al., 2020). To assess the contribution of α (diversity within fields) and β diversity (diversity between fields in different sites) to the total termite diversity (γ = α+β), we carried out additive diversity partitioning (Lande, 1996) using the adpart function (Crist et al., 2003) in R package vegan version 2.5–7 (Oksanen et al., 2020). This function considers that mean alpha (α) and beta (β) diversities add up to gamma (γ) diversity. The six sites were Kangaru, Kamiu, Ena (Embu County), Matuu, Mamba and Kambi ya mawe (Machakos County). The additive partitioning of diversity was based on species richness, Shannon-Weaver and Simpson indices. Permutation analyses was used to determine the expected diversity.

Non-metric multidimensional scaling (nMDS; Clarke and Ainsworth, 1993) using Jaccard index was used to present the spatial patterns of termite species populations in Embu and Machakos Counties and the differences were analyzed using permutational multivariate analysis of variance (PERMANOVA) (Anderson, 2001) with soil type as a fixed factor, followed by permutational multivariate analysis of dispersion (PERMDISP) (Anderson, 2006). We evaluated the most influential species and their contribution to site dissimilarities using similarity percentage analysis (SIMPER). The vegan functions singer, metaMDS, adonis and betadisper in R version 2.5–7 were used in the analyses (Oksanen et al., 2020). We determined relationships between climate and soil variables through Canonical correspondence analysis (CCA) in vegan package (Oksanen et al., 2020).

3. Results

Across the two Counties, seven termite species were recorded with Machakos County having the highest number—seven due to the presence of *Trinervitermes gratiosus*. In Embu County, season significantly influenced the abundance of *Macrotermes subhyalinus*, *Macrotermes herus*, and *Coptotermes formosanus*. *Odontotermes badius* was the only species whose abundance was influenced by the interaction of season and macrohabitat (Table 1; Figures 2 and 3). A test of simple main effects showed that interaction between dry season and natural vegetation was significant (P = 0.01).

In Machakos County, the abundance of one species (*Cubitermes ugandensis*) was affected by season × macrohabitat interaction. Specifically, there was a significant interaction of both seasons with maize monocrop (P < 0.001). The number of *M. herus*, and *O. longinthus*, was affected by season. Abundance of *T. gratiosus*, and *C. formosanus*, was influenced by both season and macrohabitat. *Trinervitermes gratiosus* which was only recorded in Machakos County occurred in greater numbers in the natural vegetation macrohabitat. In Embu and Machakos Counties, *C. formosanus* occurred in greater numbers during the wet season (Table 1; Figures 2 and 3). Machakos County had the highest

| Table 1. Two-way analysis of variance of season, macrohabitat and their interaction on termite species in Embu and Machakos Counties. |
|---|---|---|---|---|---|---|---|---|
| | Season | | | Macrohabitat | | | Season X macrohabitat | |
| | F | p* | | F | p* | | F | p* |
| **Embu** | | | | | | | | |
| Macrotermes subhyalinus | 9.0 | 0.011* | 0.1 | 0.895 | 0.3 | 0.723 |
| Macrotermes herus | 12.0 | 0.005** | 2.3 | 0.139 | 1.0 | 0.397 |
| Odontotermes badius | 16.3 | 0.002** | 1.0 | 0.397 | 4.3 | 0.038* |
| Cubitermes uagandensis | 2.0 | 0.183 | 0.5 | 0.619 | 0.5 | 0.619 |
| Odontotermes longinthus | 3.2 | 0.099 | 0.2 | 0.821 | 0.2 | 0.821 |
| Coptotermes formosanus | 36.0 | <0.001*** | 3.3 | 0.074 | 2.3 | 0.148 |
| **Machakos** | | | | | | | | |
| Macrotermes subhyalinus | 4.5 | 0.055 | 0.7 | 0.537 | 0.1 | 0.911 |
| Macrotermes herus | 5.6 | 0.030* | 0.1 | 0.946 | 0.4 | 0.686 |
| Trinervitermes gratiosus | 17.3 | 0.001** | 8.6 | 0.004** | 2.8 | 0.102 |
| Odontotermes badius | 0.9 | 0.361 | 1.3 | 0.308 | 0.3 | 0.746 |
| Cubitermes uagandensis | 196.0 | <0.001*** | 19 | <0.001*** | 7.0 | <0.001*** |
| Odontotermes longinthus | 8.0 | 0.015* | 0.9 | 0.441 | 0.1 | 0.883 |
| Coptotermes formosanus | 14.3 | 0.003** | 8.1 | 0.006** | 1.9 | 0.198 |

P < 0.001, *P < 0.01, * = P < 0.05.
The minimum temperature and rainfall during the study period is provided in Table 5. Minimum temperature (°C) in Embu County during both seasons ranged from 12.7 ± 0.2 to 15.6 ± 0.68 while rainfall (mm) was 30.2 ± 8.17 to 117.8 ± 49.67. The lowest minimum temperature and rainfall in Machakos County was 11.5 ± 0.78 and 5.6 ± 5.07, respectively. Based on the CCA analysis of climatic variables and termite species, 23.1% and 1.4% of the variance was explained by the first and second axis, respectively. *Trinervitermes gratiosus* showed a negative correlation with rainfall and minimum temperature while *Macrotermes subhyalinus* and *M. herus* were positively associated with rainfall (Figure 7).

4. **Discussion**

Several factors including anthropogenic disturbances resulting from land use change affect termite diversity (Muvengwi et al., 2017; Netshifhefhe et al., 2019). In this study, seven termite species were observed across the two Counties with Machakos County having the highest number—seven due to the presence of *T. gratiosus*. Presence of *T. gratiosus* in Machakos County may have been due to region-specific factors.

Termite species observed in this study have been reported in Kenya and the number is within that observed in other studies (Anyango et al., 2020; Ayuke et al., 2011; Kagezi et al., 2011; Makonde et al., 2013; Vesala et al., 2017). Additive diversity partitioning of species richness and Simpson diversity showed that a component contributed 98.3% and 99.1% of the total diversity, respectively; an indication that most species were similar within fields in the two Counties. The low beta diversity within each county may be an indication of lack of significant differences in microhabitats which resulted in homogenization of the termite communities (Liu et al., 2019).
Population densities of three termite species significantly varied between macrohabitats in Machakos County but there were no differences in termite species abundance in Embu County. In addition, there were no significant differences in species richness between macrohabitats within each County. Contrary to the observations made in this study, loss of termite species due to agricultural activities has been reported in several studies. For instance, in Uganda 40% reduction in termite species richness was observed after a forest was cleared and the numbers reduced further when banana was cultivated (Okwakol, 2000). An agricultural field in Zimbabwe had lower termite species richness compared to a woodland and grazing area (Muvengwi et al., 2017). Application of fertilizers, liming and tillage— which led to termite habitat changes —were farming practices that contributed to low number of termite species in Colombia. Furthermore, cultivation of annual crops such as maize was considered as the most unfavorable land use type for termite species (Sanabria et al., 2016). Supporting the observations of low termite abundance in Embu County, Kagezi et al. (2011) reported that there was no difference in populations of termite species between forested land and agricultural fields in Kenya. This was attributed to the study site altitude and the fact that moderate levels of disturbance did not affect species abundance. This is further corroborated by Muvengwi et al. (2017) in Zimbabwe where there were no differences in species richness between farmland and woodland habitats.

Figure 3. Abundance (mean ± standard error) of termite species in maize-beans intercrop, maize monocrop and natural vegetation macrohabitats in A) Embu and B) Machakos Counties. Different letters indicate significant differences in abundance of termite species. Mas- Macrotermes subhyalinus, Mah-Macrotermes herus, Trg- Trinervitermes gratiosa, Odh-Odontotermes badius, Cu- Cubitermes ugandensis, Od-Odontotermes longignathus and Mu- Coptotermes formosanus.

Table 2. Species richness, Pielou’s evenness, Shannon-Weaver and Simpson diversity indices of three macrohabitats in Embu and Machakos Counties during wet and dry seasons.

County	Index	Maize-beans intercrop	Maize monocrop	Natural vegetation
	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)
Embu	Shannon-Weaver	1.32a (0.04)	1.37a (0.05)	1.45a (0.02)
	Simpson diversity	0.67a (0.02)	0.69a (0.02)	0.73a (0.01)
	Species richness	5.83a (0.17)	5.83a (0.17)	5.83a (0.17)
	Pielou’s evenness	0.75b (0.01)	0.78ab (0.02)	0.83a (0.02)
Machakos	Shannon-Weaver	1.37a (0.06)	1.2a (0.10)	1.42a (0.08)
	Simpson diversity	0.68a (0.02)	0.61a (0.04)	0.68a (0.03)
	Species richness	6.33a (0.33)	5.67a (0.42)	6.67a (0.33)
	Pielou’s evenness	0.74a (0.02)	0.69a (0.04)	0.75a (0.03)

Different letters across the row indicate significant differences. SE-Standard error.
In Embu, *O. badius* which occurred in greater numbers during the wet season was influenced by season × macrohabitat interaction. Similar interaction in Machakos affected the abundance of *C. ugandensis* which was lower in the maize monocrop. Natural vegetation had a higher number of the species although it was not significantly different from maize-beans intercrop. *Odontotermes* spp. whose foraging activity increases during the wet season (Sattar and Naeem, 2013) causes considerable damage in maize and a study in Kenya demonstrated that they were associated with lodging in the crop (Anyango et al., 2019). Corroborating the observations made in this study, Okwakol (2000) observed a reduction in abundance of *Cubitermes* spp. and *Trinervitermes* spp. after clearance of a forest and subsequent banana cultivation which was attributed to mound destruction. Similarly, in West Africa, *Cubitermes* spp. occurred in lower numbers in agricultural plots due to high levels of disturbance (Eggleton et al., 2002). This species improves soil quality and fertility (Donovan et al., 2001), influences availability of nutrients to plants and the indirect contribution of symbiotic microorganisms to nutrient acquisition (Diaye et al., 2003). Reduced densities of *Cubitermes* spp. may therefore negatively affect crop yields (Eggleton et al., 2002).

In addition, there was a significant influence of habitat on *T. gratiosus* and *C. formosanus* in Machakos with both species occurring in higher numbers in natural vegetation. Occurrence of *Coptotermes* spp. in natural vegetation consisting of *Acacia* spp. has been previously reported (Intachat and Kirton 1997; Kirton et al., 1999). On the other hand, *Trinervitermes* has also been observed in undisturbed land in other studies (Hausberger and Korb 2016; Schyra and Korb, 2019). Compared to other termite species, *Trinervitermes* spp. is highly susceptible to disturbances because it is specialized in how it feeds and nests (Schyra and Korb, 2019). *Coptotermes* is among the invasive termite species (Evans, 2021) with potential ecological consequences. They colonize dead or living trees (Lee et al., 2015) in large colonies causing considerable damage to trees (Evans, 2021).

NMDS analysis clearly differentiated termite species in Machakos and Embu County probably due to regional differences. As per our hypothesis, soil properties affected termite species whereby *T. gratiosus* was negatively associated with Mn but positively correlated to pH and sand. *M. subhyalinus* and *M. herus* showed a positive association with P and silt while *C. formosanus* was positively correlated to Ca and Mg. Soil properties influence termite abundance and diversity (Dosso et al., 2010) and mound properties (Jouquet et al., 2015). *Trinervitermes* spp. is adapted to a wide range of soil types (Brossard et al., 2007) and can tolerate pH levels above 4 as observed in the current study (Mugerwa et al., 2011).

Table 3. Two-way analysis of variance of season, macrohabitat and their interaction on species richness, Pielou's evenness, Shannon-Weaver and Simpson diversity indices in Embu and Machakos Counties.

County	Season	Macrohabitat	Season X macrohabitat				
	F value	P value	F value	P value	F value	P value	
Embu	Shannon-Weaver	0.19	0.67	2.89	0.09	0.25	0.79
	Simpson diversity	0.46	0.51	3.59	0.06	0.41	0.67
	Species richness	3.00	0.10	0.10	1.00	0.10	1.00
	Pielou's evenness	3.61	0.08	5.53	0.02*	0.39	0.69
Machakos	Shannon-Weaver	3.27	0.10	2.68	0.11	2.40	0.13
	Simpson diversity	5.07	0.04*	1.93	0.19	1.70	0.22
	Species richness	0.31	0.59	2.15	0.16	2.15	0.16
	Pielou's evenness	4.31	0.06	1.24	0.32	1.60	0.24

* = P < 0.05.

Figure 4. Additive partitioning of A) species richness B) Shannon-Weaver diversity and C) Simpson diversity for fields in Kangaru, Kamiu, Ena (Embu County), Matuu, Mamba and Kambi ya mawe (Machakos County) sites. Total diversity (γ) is partitioned into (α) and beta (β) components.
Figure 5. Non-metric multidimensional scaling (nMDS) ordination of maize-beans intercrop, maize monocrop and natural vegetation macrohabitats in Kangaru, Kamiu, Ena (Embu County), Matuu, Mamba and Kambi ya mawe (Machakos County) sites based on distribution of termite species (PERMANOVA: $P = 0.001$, NMDS; Stress $= 0.06$). Mas- *Macrotermes subhyalinus*, Mah-*Macrotermes herus*, Trg- *Trinervitermes gratiosus*, Odb- *Odontotermes badius*, Cu- *Cubitermes ugandensis*, Od-*Odontotermes longignathus* and Mu-*Coptotermes formosanus*.

Table 4. Physical and chemical properties of soil collected from Embu and Machakos Counties.

Soil property	Embu Mean (SE)	Machakos Mean (SE)	P value
pH	4.79a (0.07)	7.26b (0.28)	<0.001***
Total Nitrogen%	0.21a (0.07)	0.17a (0.06)	0.648
Total organic Carbon %	1.52a (0.18)	1.2a (0.23)	0.297
Phosphorous ppm	20.11a (1.42)	15.44b (1.26)	0.026*
Potassium meq%	0.44a (0.07)	0.56a (0.11)	0.362
Calcium meq%	0.84a (0.25)	15.73b (5.83)	0.021*
Magnesium meq%	0.83a (0.13)	2.29b (0.63)	0.039*
Manganese meq%	0.93a (0.08)	0.33b (0.1)	<0.001***
Copper ppm	0.5a (0.3)	0.5a (0.11)	0.99
Iron ppm	17.58a (2.97)	17.58a (3.5)	1
Zinc ppm	12.09a (3.26)	1.54b (0.16)	0.005**
Sodium meq%	0.47a (0.05)	0.66a (0.12)	0.151
Sand	47.11b (0.48)	72a (4.18)	<0.001***
Clay	47.33b (1)	23.11a (3.7)	<0.001***
Silt	5.56a (0.73)	5.11a (0.75)	0.68

Means with the same letter across the row are not significantly different. *** = $P < 0.001$, ** = $P < 0.01$, * = $P < 0.05$. SE-Standard error.
Trinervitermes spp. nests was much lower compared to Macrotermes mounds. Soil physical characteristics coupled with environmental conditions affects the survival and body hydration levels in termites (Jin et al., 2020). Contrary to the findings in this study, Macrotermes spp. did not show a significant correlation with silt in Ghana (Usher, 1975). The positive association of Macrotermes with P may be related to phosphorus adsorption dynamics during mound construction (Seymour et al., 2014). Similarly, for the mound outer casing, Coptotermes spp. uses clay which is rich in inorganic ions such as Ca and Mg (Wang and Henderson, 2014).

In Embu County, season significantly influenced the abundance of M. subhyalinus, M. herus, and C. formosanus with all the species occurring in greater numbers during the wet season. From the CCA analysis of climatic variables, there was a negative correlation between T. gratiosus, minimum temperature and rainfall while M. subhyalinus and M. herus were positively associated with rainfall. However, the variance explained by the first two axes was low. Woon et al. (2019) demonstrated that moisture which determines the rate of desiccation also influences distribution of termite species which may affect ecological roles that they perform. In addition, temperature also influences dispersal of termites and their foraging behavior; species have different thermal tolerance levels (Smith and Rust, 1994; Woon et al., 2019). Cao and Su (2016) observed that Reticulitermes spp. was found in areas with lower temperatures compared to Coptotermes spp. and the authors argued that temperature preferences of termite species can be used in prediction of invasion patterns to new regions. In the tropics, average and very high temperature have direct and indirect relationships with termite species richness (Cerezer et al., 2020). For Trinervitermes spp., temperature is important in providing ideal conditions in the nest that allow decomposition of plant material and survival of termites (Aiki et al., 2019).

![Figure 6. Canonical correspondence analysis of seven termite species in Embu and Machakos Counties using soil physico-chemical properties (pH, N, C, P, K, Ca, Mg, Mn, Cu, Fe, Zn, Na, sand, clay and silt) marked by arrows. The first and second axes explain 79.8% and 0.07%, of the variance, respectively. Mass- Macrotermes subhyalinus, Mah-Macrotermes herus, Trg- Trinervitermes gratiosus, Odb- Odontotermes badius, Cu- Cubitermes ugandensis, Od- Odontotermes longignathus and Mu- Coptotermes formosanus.]

County	Season	Minimum temperature (°C)	Rainfall (mm)
Embu	Dry season one	12.7 ± 0.2	36.3 ± 9.51
	Dry season two	14 ± 0.2	30.2 ± 8.17
	Wet season one	14.9 ± 0.28	86.9 ± 17.91
	Wet season two	15.6 ± 0.68	117.8 ± 49.67
Machakos	Dry season one	11.5 ± 0.78	5.6 ± 5.07
	Dry season two	14 ± 0.21	9.7 ± 3.81
	Wet season one	14.7 ± 0.09	124.5 ± 54.16
	Wet season two	15 ± 0.47	26.7 ± 13.61

Dry season one - July to September 2018, Dry season two – Jan to March 2019, Wet season one – Oct to Dec 2018 and Wet season two – March to May 2019.

Table 5. Minimum temperature and rainfall during dry and wet seasons in Embu and Machakos Counties.
Foraging activity of fungus-cultivating termites increases during the wet season (Schuurman, 2006) and in some species, such as *M. gilvus*, flight is positively correlated with rainfall (Neoh and Lee, 2009). This could be a possible explanation of the high population densities of *Macrotermes* spp. that were observed in this study during the wet season which corroborates findings by Dangerfield and Schuurman (2000). Similarly, Korb and Linzenmair (2001) reported that the activity of *M. bellicosus* increased during the rainy season in a savanna in Cote d’Ivoire. In Botswana, occurrence of termite species was linked to seasons with *M. subhyalinus* preferring the wet season (Séré et al., 2018). *Macrotermes* spp. prefer to construct their mounds in areas of high moisture levels due to the fact that they need to provide optimal humidity conditions for their symbiotic *Termitomyces* fungi (Bardunias et al., 2020; Aanen and Eggleton, 2005). *Coptotermes* spp. occurrence is also largely dependent on rainfall (Lee et al., 2017).

In this study, habitat type, edaphic and climatic variables influenced abundance of certain termite species. However, influence of other factors such as predator-prey interactions (Sanabria et al., 2016) and competence cannot be ruled out and requires further investigations. Land use change can result in shifts of termite species which contribute to both beneficial ecosystem functions and also cause damage to plants. As put forward by Jouquet et al. (2020) benefits and risks attributed to termites are mutually exclusive and there is therefore need to design programmes that can achieve an ecological balance between the two extremes. Cropping practices in maize farming systems in Kenya should therefore have minimal detrimental effects on the soil engineers. Control strategies of termite species that attack maize should also consider non-target effects on beneficial termites. There should also be continuous monitoring to assess the long-term impact of land use change on termites.

Foraging activity of fungus-cultivating termites increases during the wet season (Schuurman, 2006) and in some species, such as *M. gilvus*, flight is positively correlated with rainfall (Neoh and Lee, 2009). This could be a possible explanation of the high population densities of *Macrotermes* spp. that were observed in this study during the wet season which corroborates findings by Dangerfield and Schuurman (2000). Similarly, Korb and Linzenmair (2001) reported that the activity of *M. bellicosus* increased during the rainy season in a savanna in Cote d’Ivoire. In Botswana, occurrence of termite species was linked to seasons with *M. subhyalinus* preferring the wet season (Séré et al., 2018). *Macrotermes* spp. prefer to construct their mounds in areas of high moisture levels due to the fact that they need to provide optimal humidity conditions for their symbiotic *Termitomyces* fungi (Bardunias et al., 2020; Aanen and Eggleton, 2005). *Coptotermes* spp. occurrence is also largely dependent on rainfall (Lee et al., 2017).

In this study, habitat type, edaphic and climatic variables influenced abundance of certain termite species. However, influence of other factors such as predator-prey interactions (Sanabria et al., 2016) and competence cannot be ruled out and requires further investigations. Land use change can result in shifts of termite species which contribute to both beneficial ecosystem functions and also cause damage to plants. As put forward by Jouquet et al. (2020) benefits and risks attributed to termites are mutually exclusive and there is therefore need to design programmes that can achieve an ecological balance between the two extremes. Cropping practices in maize farming systems in Kenya should therefore have minimal detrimental effects on the soil engineers. Control strategies of termite species that attack maize should also consider non-target effects on beneficial termites. There should also be continuous monitoring to assess the long-term impact of land use change on termites.
Haggag, J., Nelson, V., Lambool, R., Roddenberg, J., 2020. Understanding and informing decisions on sustainable agri- cultural intensification in sub-Saharan Africa. Int. J. Agric.
Hausberger, B., Korb, J., 2016. The impact of anthropogenic disturbance on assembly patterns of termite communities. Biotropica 48, 356–364.
Intachat, J., Kirtong, L.G., 1997. Observations on insects associated with Acacia mangium in the Loei province, Thailand. Malay J. For. Sci. 30, 55–65.
Jin, Z., Chen, J., Wen, X., Wang, C., 2020. Effects of clay materials and moisture levels on habitat preference and survival of Formosan subterranean termite, Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae). PLoS Ecol. 8, e002143.
Jones, D.T., Suto, F.X., Bignell, D.E., Hardwicke, S., Gillison, A.N., Eggleton, P., 2003. Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. J. Appl. Ecol. 40, 380–391.
Juquet, P., Lepage, M., Veld, E.J., Bignell, D.E., 2000. Termite soil mycobiome and particles selection: experiments. J. Invert. Pathol. 60, 25–28.
Korh, J., Linnenski, K.E., 1998. Decomposition of tissue and soil termite density along a gradient of human land-use intensification within Western Kenya. Afr. J. Ecol. 49, 267–276.
Kaiser, D., Lepage, M., Konaté, S., Linnenski, K.E., 2017. Ecosystem services of termite (Blattoideae: termitidae) in the traditional soil restoration and cropping system Zai in the West African Burkina Faso (Northern Agric. Ecosyst. 236, 198–213.
Kirtong, L.G., Brown, V.K., Azmi, M., 1999. The pest status of the termite Coptotermes curvignathus in Acacia mangium plantations: incidence, mode of attack and inherent predisposing factors. J. Trop. For. Sci. 82–831.
Klute, A., 1986. Water-retention: laboratory methods. Methods Soil Anal.: Phys.
Kob, J., Nissen, M.K., 2007. Resource availability and distribution patterns, indicators of competition between Macroters bellicosus and other macro- detritivores in the Comoe National Park, Côte d'Ivoire. Afr. J. Ecol. 39, 257–265.
Kapuy, S., Sènko, G.W., Nkuruziza, L., Chishida, N., Ndayisaba, P.C., Dimobe, K., 2021. Innovative agronomic practices for sustainable intensification in sub-Saharan Africa. A review. Agron. Sustain. Dev. 41, 1–21.
Lande, R., 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76, 5–13.
Lee, T.R., Cameron, S.L., Evans, T.A., Ho, S.Y., Lo, N., 2015. The origins and radiation of the Australian Coptotermes termites: from rainforest to desert dwellers. Mol. Phylogenet. Evol. 82, 234–244.
Lee, T.R., Evans, T.A., Cameron, S.L., Hochuli, D.F., Ho, S.Y., Lo, N., 2017. Ecological diversification of the Australian Coptotermes termites and the evolution of mound building. J. Biogeogr. 44, 1405–1417.
Lin, R., Xin, B., Behm, J., Yang, X., Hli, B., Sibotnik, J., Gan, J., Xia, S., Yang, X., 2019. Comparative responses of termite functional and taxonomic diversity to land-use change Ecolog. Environ. 42, 762–770.
Makonde, H.M., Boga, H.I., Osiemo, Z., Mchiria, R., Siwulo, J.B., Goeker, M., Klok, H.P., 2013. Diversity of Termomyzines associated with fungus-farming termites assessed by cultural and culture-independent methods. PLoS One 8, 56464.
Mehlich, A., Pinkerton, A., Robertson, W., Kepton, R., 1962. Mass Analysis Methods for the properties of termite mound nests in Southern India. J. Appl. Ecol. 96, 282–287.
Mufungeti, J., Choosai, C., Hartmann, C., Bignell, D.E., 2011. Insectes Soc. 45, 1–7.
Juquet, P., Traoré, S., Choosai, C., Hartmann, C., Bignell, D., 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47, 215–222.
Juquet, P., Guilleux, N., Shannah, B.R., Subramanian, S., 2015. Influence of soil type on the properties of termite mound nests in Southern India. J. Appl. Ecol. 49, 197–204.
Juquet, P., Bignell, D.E., Stielow, J.B., Goeker, M., 2015. The extension of internal humidity levels beyond the soil surface facilitates mound building. J. Trop. For. Sci. 822.
Juquet, P., Traoré, S., Harit, A., Choosai, C., Chetk, S., Bottinelli, N., 2020. Moving beyond the distinction between the bright and dark sides of termites to achieve sustainable development goals. Curr. Opin. Insect. Sci. 40, 71–76.
Jungers, P.D., Van Den Ancker, J.A.M., Mihcik, J.H., 1999. The contribution of termites to the microgranular structure of soils on the Uasin Gishu Plateau, Kenya. Catena 34, 349–363.
Kagey, G.H., Kaib, M., Nyeko, P., Bakuwena, C., Schäfler, M., Brandl, R., 2011. Fungus feeding and termite diversity across humid to semi-arid tropical zones. Agric. Ecosyst. Environ. 140, 148–154.
Kake, K., Araf, M., 2019. The role of fungus-farming termites in the Okavango delta, Botswana. J. Trop. Ecol. 16, 731–743.
Kaminski, M., Lepage, M., Leprun, J.C., 2007. Nutrient storage in habitats of a West African Guinea savanna. Insectes Soc. 45, 51–65.
Kar, S., Sánchez, D., Lepage, M., Leprun, J.C., 2007. Nutrient storage in soils and nests of mound-building Trinervitermes termites in Central Burkina Faso: consequences for soil fertility. Biol. Fertil. Soils 43, 447–457.
Kao, R., Su, N.Y., 2016. Temperature preferences of four subterranean termite species (Isoperta: Rhinotermitidae) and temperature-dependent survivorship and wood-consumption rate. An. Entomol. Soc. Am. 109, 64–71.
Kedzier, M., Lopes-Hernández, D., Lepage, M., Leprun, J.C., 2007. Nutrient storage in soils and nests of mound-building Trinervitermes termites in Central Burkina Faso: consequences for soil fertility. Biol. Fertil. Soils 43, 447–457.
Keeney, D.R. (Eds.), Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd Edn. Number 9 (Part 2), Agronomy. Am. Soc. of Agron. Inc, Soil Sci. Soc. of Am, Inc Madison, Wisconsin, USA, pp. 595–622.
Kob, J., Linnenski, K.E., 2001. Resource availability and distribution patterns, indicators of competition between Macroters bellicosus and other macro-detritivores in the Comoe National Park, Côte d'Ivoire. Afr. J. Ecol. 39, 257–265.
Kubay, S., Saniel, G.W., Nkuruziza, L., Chirinda, N., Ndayisaba, P.C., Dimobe, K., 2021. Innovative agronomic practices for sustainable intensification in sub-Saharan Africa. A review. Agron. Sustain. Dev. 41, 1–21.
Lande, R., 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76, 5–13.
Lee, T.R., Cameron, S.L., Evans, T.A., Ho, S.Y., Lo, N., 2015. The origins and radiation of the Australian Coptotermes termites: from rainforest to desert dwellers. Mol. Phylogenet. Evol. 82, 234–244.
Lee, T.R., Evans, T.A., Cameron, S.L., Hochuli, D.F., Ho, S.Y., Lo, N., 2017. Ecological diversification of the Australian Coptotermes termites and the evolution of mound building. J. Biogeogr. 44, 1405–1417.
Lin, R., Xin, B., Behm, J., Yang, X., Hli, B., Sibotnik, J., Gan, J., Xia, S., Yang, X., 2019. Comparative responses of termite functional and taxonomic diversity to land-use change Ecolog. Environ. 42, 762–770.
Makonde, H.M., Boga, H.I., Osiemo, Z., Mchiria, R., Siwulo, J.B., Goeker, M., Klok, H.P., 2013. Diversity of Termomyzines associated with fungus-farming termites assessed by cultural and culture-independent methods. PLoS One 8, 56464.
Mehlich, A., Pinkerton, A., Robertson, W., Kepton, R., 1962. Mass Analysis Methods for Soil Fertility Evaluation. Cyclostyled Paper. National Agric. Laboratories, Nairobi.
Mills, A.J., Miles-McKee, A., Fey, M.Y., Groenroeth, A., Petersen, A., 2009. Fungus culturing, nutrient mining and geophagy: a geochemical investigation of Macrotermes and Trinervitermes mounds in southern Africa. J. Zool. 278, 24–35.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., 2020. Vegan: Community Ecology Package. R Package Version 2, pp. 5–7.

Okwakol, M.J., 2000. Changes in termite (Isoptera) communities due to the clearance and cultivation of tropical forest in Uganda. Afr. J. Ecol. 38, 1–7.

Prassana, B.M., Cairns, J.E., Zaidi, P.H., Beyene, Y., Makumbi, D., Gowda, M., Magorokosho, C., Zaman-Allah, M., Olsen, M., Das, A., Worku, M., 2021. Beat the stress: breeding for climate resilience in maize for the tropical rain fed environments. Theor. Appl. Genet. 1–24.

Pringle, R.M., Doak, D.F., Brody, A.K., Jacquez, R., Palmer, T.M., 2010. Spatial pattern enhances ecosystem functioning in an African savanna. PLoS Biol. 8, e1000377.

Roose, E., Kabore, V., Guenat, C., 1999. Zaï practice: a West African traditional rehabilitation system for semiarid degraded lands, a case study in Burkina Faso. Arid Land Res. Manag. 13, 343–355.

Sanabria, C., Dubs, F., Lavelle, P., Fonte, S.J., Barot, S., 2016. Influence of regions, land uses and soil properties on termite and ant communities in agricultural landscapes of the Colombian Llanos. Eur. J. Soil Biol. 74, 81–92.

Sands, W.A., 1998. The Identification of Worker Castes of Termite Gen- Era from Soils of Africa and Middle East. CAB International, Wallingford.

Sattar, A., Naem, M., 2013. Impact of environmental factors on the population dynamics, density and foraging activities of Odontotermes lokanandi and Microtermes obesi in Islamabad. SpringerPlus 2, 1–7.

Schuurman, G., 2006. Foraging and distribution patterns in a termite assemblage dominated by fungus-growing species in semi-arid northern Botswana. J. Trop. Ecol. 22, 277–287.

Schyma, J., Korb, J., 2019. Termite communities along a disturbance gradient in a West African savanna. Insects 10, 17.

Séré, A., Bougma, A., Ouilly, J.T., Traoré, M., Sangaré, H., Lykke, A.M., Ouedraogo, A., Banoe, I.H.N., 2018. Traditional knowledge regarding edible insects in Burkina Faso. J. Ethnobiol. Ethnomed. 14, 1–11.

Seymour, C.L., Milewski, A.V., Mills, A.J., Joseph, G.S., Camming, G.S., Camming, D.H.M., Mahlungu, Z., 2014. Do the large termite mounds of Macrotermes concentrate micronutrients in addition to macronutrients in nutrient-poor African savannas? Soil Biol. Biochem. 68, 95–105.

Shanbhag, R.R., Kabbaj, M., Sundararaj, R., Jouquet, P., 2017. Rainfall and soil properties influence termite mound abundance and height: a case study with Odontotermes obesus (Macrotermes) mounds in the Indian Western Ghats forests. Appl. Soil Ecol. 111, 33–38.

Silesi, G., Mafongoya, P.L., 2006. Variation in macrofaunal communities under contrasting land use systems in eastern Zambia. Appl. Soil Ecol. 33, 49–60.

Smith, J.L., Rust, M.K., 1994. Temperature preferences of the western subterranean termite, Reticulitermes hesperus Banks. J. Arid Environ. 28, 313–323.

Usher, M.B., 1975. Studies on a wood-feeding termite community in Ghana, West Africa. Biotropica 217–223.

Vesala, R., Niskanen, T., Liimatainen, K., Boga, H., Pellikka, P., Rikkinen, J., 2017. Diversity of fungus-growing termites (Macrotermes) and their fungal symbionts (Termitomyces) in the semiarid Tsavo Ecosystem, Kenya. Biotropica 49, 402–412.

Wang, C., Henderson, G., 2014. Clay preference and particle transport behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae): a laboratory study. J. Insect Sci. 21, 785–795.

Webb, G.C., 1961. Keys to the Genera of the African Termites. Ibadan University Press, Ibadan.

Woon, J.S., Boyle, M.J.W., Ewers, R.M., Chung, A., Eggleton, P., 2019. Termite environmental tolerances are more linked to desiccation than temperature in modified tropical forests. Insectes Soc. 66, 57–64.

Zabel, F., Delzeit, R., Schneider, J.M., Soppeh, R., Mauer, W., Vaslavik, T., 2019. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 1–10.