Bacterial Glycogen as a Durable Energy Reserve Contributing to Persistence: An Updated Bibliography and Mathematical Model

Running Title: Glycogen structure and persistence

Liang Wang, Qinghua Liu, Xinle Tan, Ting Yang, Daoquan Tang, Wei Wang, Michael J. Wise

1 Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou 221000, China

2 Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China

3 Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China

4 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia

5 Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia

6 Center for Experimental Animals, Xuzhou Medical University, Xuzhou 221000, China

7 School of Public Health, Capital Medical University, Beijing, 100000, China

8 School of Medical Sciences, Edith Cowan University, Perth, 6009, Australia

9 The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, 6009, Australia

10 School of Computer Science and Software Engineering, University of Western Australia, Perth 6009, Australia

*For correspondence, please contact Dr. Liang Wang leonwang@xzhmu.edu.cn and Prof. Michael J. Wise michael.wise@uwa.edu.au.
Abstract

Glycogen is conventionally viewed as a transient energy reserve that can be rapidly synthesized for glucose accumulation or mobilized for ATP production and blood glucose homeostasis in higher organisms. However, this understanding is not completely applicable to prokaryotes due to glycogen structural heterogeneity. A number of studies have noted that glycogen with short average chain length g_c in bacteria has the potential to degrade slowly, which might prolong bacterial survival in the environment and thus enhance potential for transmission to new hosts. This phenomenon has been examined over the past few years and called the durable energy storage mechanism hypothesis (DESM). In this updated bibliography, we summarize recent progress and provide a mathematical model of glycogen as a durable energy reserve.

Introduction

Glycogen is a highly branched, water-soluble, and homogeneous polysaccharide that is widely presented in all three life domains. It consists of α-1,4- and α-1,6-linked glucosyl units only. Conventionally, glycogen is linked with maximized storage of glucosyl residues and quickly mobilized glucose for energy supply and blood sugar homeostasis in cellular metabolism of higher organisms (1). However, recent studies indicate that some bacterial glycogen has the potential to function as a durable energy reserve (2-5). This feature is largely regulated by average chain length g_c, one of the determinants of glycogen structure. A set of experimental measurements through the periodate oxidation method has confirmed that g_c in muscle and liver glycogen is comparatively consistent, ranging from 11 to 15 d.p. (degree of polymerization) across eukaryotic species (2). In contrast, g_c in bacteria is highly divergent within a range of 6.6-21 d.p. (2). Thus, glycogen structure between eukaryotes and prokaryotes could be different and may have impacts on their functions. Correlation analysis has already shown that glycogen with shorter g_c acts as a slow-degrading energy reserve and contributes to prolonged bacterial survival in harsh environments. For example, enzymology analysis finds that shorter g_c means higher percentage of α-1, 6- branching points, which requires more energy to break down (2). In addition, branching points are thermodynamically favored during formation. Thus, highly branched glycogen is more structurally stable (3). Moreover, acid hydrolysis confirms that α-1, 4- glycosidic linkages break up at a faster rate than α-1, 6- glycoside linkages (4, 5). Thus, glycogen durability could be an inherent characteristic, rather than relying
on enzyme-substrate interactions (5). In sum, slow-degrading glycogen provides a passive energy-saving strategy for bacteria to adapt to harsh conditions, such as nutrient deprivation. A hypothesis of glycogen as a durable energy reserve has been termed as Durable Energy Storage Mechanism (DESM) to explain the long-term survival of some bacteria in harsh environments (2).

Since the proposal of glycogen as a representative of the DESM hypothesis in 2011, a variety of studies have focused on the mechanism (Table 1). However, so far, there is no experimental confirmation of the existence of glycogen as a durable energy reserve. (6) attempted to use in situ progressive truncation of GBE N-terminus to alter glycogen \(g_c \) in order to investigate how \(g_c \) can influence bacterial environmental persistence. This experiment confirmed the feasibility of \(g_c \) manipulation through gene truncation, and the corresponding impacts on Escherichia coli stress resistance and biofilm formation were observed. However, there was a fundamental flaw of the experiment: the linkage of glycogen amount and \(g_c \), which left the conclusion of the study difficult to illustrate. In addition, the foundation of glycogen as DESM is also compromised if we consider that the variability of \(g_c \) in bacteria might be caused by different methods performed by independent groups (Table 2). In this update, we assess recent progress toward understanding glycogen as a durable energy reserve in bacteria. We then investigate the classical glycogen model initially proposed by Whelan from a novel perspective in order to illustrate how \(g_c \) can influence glycogen structure theoretically. Finally, the relationship between glycogen metabolism and bacterial durability is comprehensively explored in order to provide further support for the hypothesis.

Updated Evidence for Glycogen as a Durable Energy Reserve

Since the proposal of short \(g_c \) glycogen as a durable energy reserve, more experimental evidence has come up to support the hypothesis indirectly (Table 1). A study by Grundel et al. noted that, compared with other energy reserves such as polyhydroxybutyrate (PHB), only glycogen plays the decisive role in metabolic adaptation and maintenance of Synechocystis viability during malnutrition conditions (7). In addition, the study also suggested that short \(g_c \) glycogen has a durable energy reserve role in Cyanobacteria, which is essential for bacterial survival in harsh conditions (7). In the context of a study of Agrobacterium tumefaciens, Bains simply stated that short \(g_c \) glycogen could be utilized slowly due to steric inhibition and promote bacterial survival under starvation (8). Finally, in a targeted metagenomic analysis of glucan-branching enzyme genes in fecal microbiota, Lee
et al. emphasized that more work should be done on the effects of glycogen average chain length in order to better understand the functions of glycogen-degrading enzymes, i.e., how g_c links with degradation rate (9).

Wang et al. was the first, and currently the only, group that tried to manipulate glycogen g_c through altering in situ the N-terminus of glycogen branching enzyme (GBE) (6). Although it was proven to be feasible, this experiment brought in multiple confounding factors and could not reach a clear conclusion about how glycogen g_c influences E. coli durability. Recently, Jo et al. identified that Vibrio vulnificus is able to accumulate very short g_c glycogen and inferred that this feature may be associated with V. vulnificus’s unique life cycle in the marine environment (10). In addition, Han et al. used the hypothesis to explain the relationship between glycogen structure and function in their study (11). During the study of highly branched glycogen in red microalga Galdieria sulphuraria, Martinez-Garcia et al. initially presented the two theories that short g_c glycogen could be an easily accessible energy supply or a very durable energy reserve without giving a preference (12). In the follow-up study, they confirmed that short g_c glycogen is a slowly digestible and resistant glucose polymer (13), which provided a strong support for glycogen as a durable energy reserve. In a recent editorial, Klotz and Forchhammer also viewed positively the hypothesis based on the current knowledge (14). Other than these studies, most of the rest listed only cited the hypothesis to support the idea that bacteria with glycogen metabolic pathways are able to face diverse environments and have a flexible lifestyle, which is not relevant to our topic from this perspective (15, 16).

Although there have been no bacterial glycogen structure studies to date, progress has been achieved in higher organisms such as human and animals, according to which, glycogen could have different degradation patterns depending on structural differences. Recent analysis via size exclusion chromatography (SEC) and fluorophore-assisted carbohydrate electrophoresis (FACE) showed that rosette-shaped α-particles in liver glycogen are fragile and easily broken down into smaller β-particles, which degrade much faster than α-particles and may contribute to uncontrolled hyperglycemia (17, 18). However, the explanation about why α-particles are more resistant to degradation than β-particles is simply based on surface area to volume ratio and is debatable (19). In fact, if phosphorylase expression is up-regulated to sufficient concentration in the reaction, large particles should be degraded faster than smaller ones. Moreover, C^{13}-labeled glucose study showed that brain glycogen synthesis in astrocytes is around 25 times slower than liver glycogen (20). In addition, abnormal glycogen structure has also been observed in
different types of glycogen storage disease (GSD) cases, which generates great impacts on glycogen degradation and normally has adverse effects on human health (21).

In sum, glycogen structure is heterogeneous and not consistent, even in the same domain of life or in the same species, including human and animals. Recent research has been warming to the idea that short g_c glycogen could have a potential role as a durable energy reserve. However, direct experimental evidence is needed in order to form a much clearer picture about the process in bacteria.

Theoretical Modeling of Glycogen Structure

To further investigate our hypothesis, we have created theoretical models to describe the structure of glycogen and thus explore the important roles of g_c in glycogen. Using the classical Whelan model (22), together with conditions derived from physical constraints and experimental data that we describe here, a set of glycogen theoretical structures were generated. Through comparative analysis, it was suggested that short g_c glycogen has smaller size, higher percentage of α-1, 6-linkages, higher density in the outmost layer, and fewer phosphorylase available glucosyl residues, while the number of the non-reducing ends are the same. Thus, short g_c glycogen is very likely hard to degrade. Specifically, the following eight mathematical formulas describe a glycogen particle in Whelan’s model (1). Glycogen particles include A- and B-chains and are divided into tiers (t). A-chains are those in the outmost tier without any branches while B-chains are distributed in interior with branches (degree of branching r). All chains have the same length g_c, i.e., average chain length. Based on this simplified model, a set of mathematical expressions has been constructed to describe glycogen structure as follows(1).

1. Total number of chains in a glycogen particle C_T
 $$C_T = \sum_{i=1}^{t} r^{i-1} = \frac{1-r^i}{1-r}$$
 * r is the degree of branching, that is, the average number of branches in a B chain.

2. Number of chains in a given tier C_{ti}
 $$C_{ti} = r^{(t-i-1)}$$
 * ti is the i-th tier

3. The number of A-chains CA
 $$C_A = r^{(t-1)}$$
4. The number of glucose available to phosphorylase in a single A chain GPC
\[G_{PC} = g_c - 4 \] (4)
* The reasoning behind this equation is that phosphorylase can only break \(\alpha-1, 4 \)-glycosidic bonds one at a time from the non-reducing end of a chain until 4 glucosyl residues away from \(\alpha-1, 6 \)-glycosidic bonds (branching points)

5. The number of glucose available to phosphorylase in a glycogen particle GPT
\[G_{PT} = C_A \times (g_c - 4) \] (5)

6. Total glucose in a glycogen particle GT
\[G_T = \left(\frac{1-r^t}{1-r} \right) \times g_c \] (6)

7. Radius of a glycogen particle Rs
\[R_s = (0.12 \times g_c + 0.35) \times t \] (7)

8. Volume of a glycogen particle Vs
\[V_s = \frac{4\pi}{3} \left(0.12 \times g_c + 0.35 \right)^3 \] (8)

According to glycogen mathematical model (formulas listed above), theoretical spatial limitations of glycogen structure (physical constrains), and experimental data sourced from bacterial glycogen studies, we propose four constraints for bacterial glycogen structure, which are listed below.

1. The sum of cross-section area of glucose should not be greater than the surface area of glycogen sphere at the outmost layer.
\[4\pi R_s^2 \geq C_A \times \pi R_g^2 \] (9)

1. Glycogen tier volume should be greater than the total volume of glucosyl residues.
\[\frac{4}{3} \pi \left(R_{t_i}^3 - R_{t_{i-1}}^3 \right) \geq C_{t_i} \times g_c \times \frac{4}{3} \pi R_g^3 \] (10)

1. Molecular weight is between 107 to 108 Dalton, that is, the number of glucosyl residues should be in the range of 55506 and 555062 in a single glycogen molecule (23).
\[10^7 \leq G_T \times g_c \leq 10^8 \] (11)

1. Glycogen diameter ranges from 20 to 50 nm (24).
\[20 \leq (0.24 \times g_c + 0.7) \times t \leq 50 \] (12)

Through numerical calculation based on the four newly developed constraint conditions via R package, at given \(g_c \) and r, we get the maximal tier number \(t \) in correspondence. For a complete list of maximal tier numbers, please see Table

6
S1 in the Supplementary Data file. Specifically, for g_c ranging from 7 to 12, the maximal tier is only 13. If g_c is larger than 13, 2 or more maximal tiers could be achieved, depending on branching degrees. In order to understand how glycogen g_c influences glycogen structure, we chose 3 representative g_c in our study (shown with a * in Table S1), which are 7, 10, and 13 with $r = 2$ and $t = 13$. Glycogen with $r = 2, t = 13, g_c = 7$, is the structure that is most likely present in bacteria, while $r = 2, t = 13, g_c = 13$ is a typical glycogen structure identified in eukaryotes. By comparing these two structures, we can get a hint about how glycogen g_c can influence its degradation. Thus, a theoretical three-dimensional model is constructed for each g_c (Figure 1) and the corresponding parameters are presented for each model (Table S2).

Based on the structure modelling, glycogen with parameters $r = 2, t = 13, g_c = 7$ has maximal diameter of $D_{g_c} = 7 = 28.56$ nm while glycogen with parameters $r = 2, t = 13, g_c = 13$ has maximal diameter of $D_{g_c} = 13 = 49.66$ nm. Thus, short g_c leads to small particle size. Further analysis shows that small glycogen particles ($g_c = 7$) have a smaller number of glucose molecules available to glycogen phosphorylase at the outmost sphere than glycogen particles with $g_c = 13$. Previous study confirmed that glycogen phosphorylase has a high affinity to glycogen if g_c is longer (2). Recent investigation into acid hydrolysis of liver glycogen showed large α- particles degrade at faster rate than small β- particles (25), which may be due to more available glucosyl residues at the outermost shell. Thus, larger glycogen particles could be degraded more easily due to long g_c. In addition, glycogen particle ($g_c = 7$) is much denser than glycogen particle ($g_c = 13$) at each tier, based on the calculation of $\rho = G_{ti}/(V_{st_i} - V_{st_{i-1}})$. Higher density may exert spatial hindrance for the glycogen debranching enzyme to function (26). Because branching degree r is pre-set, no difference in terms of the number of α-1, 6- branching points is identified in the models. In sum, based on phosphorylase-available glucose and density in a glycogen particle, we can infer that short g_c glycogen is harder to degrade.

Glycogen Metabolism and its Relationships with Bacterial Environmental Survival

Experimental studies have provided considerable evidence to support glycogen’s contribution to bacterial survival in the environment under a variety of stresses, such as temperature fluctuation, nutrient deprivation, and osmolarity instability (14, 27–30). A variety of genes have been identified to be related with glycogen accumulation and bacterial environmental survival based on Keio collection and
ASKA library analyses, such as csrA, rpoS, spoT, phoP, and phoQ, etc. (31, 32). A comprehensive review on bacterial glycogen can be found at Wilson et al. in 2010 (23), which revealed interconnections between glycogen metabolism and cellular processes. The most recent review about glycogen given by Park, however, focused on glycogen metabolism related enzymes (24). No much bacterial durability was mentioned. Thus, a need for an updated review about glycogen and environmental persistence in bacteria is urgently need. Here, we give an update about recent progress in terms of how glycogen metabolism may contribute to bacterial environmental survival, by focusing on the two compounds, maltodextrin and trehalose (Figure 2). Enzymatic reactions, rather than regulatory mechanisms, are concerned here.

Maltodextrin metabolism was previously linked with bacterial osmoregulation, i.e., sensitivity of endogenous induction to hyperosmolarity (30), which interacts with glycogen metabolism. For osmoregulation, glycogen-generated maltotetraose is dynamically metabolised by MalP (maltodextrin phosphorylase) and MalZ (maltodextrin glucosidase), while MalQ is responsible for maltose recycling to maltodextrins (30). Park et al. looked into the metabolism and proposed a molecular mechanism for the relationship between glycogen and maltose metabolism (33). Basically, maltotetraose generated via glycogen branching enzyme truncation will be further processed by MalQ for glycogen recycling by forming maltodextrin or by MalZ for glycolysis of glucose with the assistance of glucokinase (Glk) (24). Otherwise, glucose-1-phosphate is formed through MalP as a building block of glycogen synthesis or for glycolysis (24). Thus, extracellular maltose or maltodextrin derived from glycogen degradation are tightly linked with glycogen metabolism and have the potential as an essential player for bacterial environmental persistence. In addition, maltose may participate in the formation of capsular α-glucan through (TreS)-Pep2-GlgE-GlgB pathway, which plays essential roles for environmental persistence and antibiotic resistance of Mycobacterium tuberculosis (34, 35).

Trehalose plays essential roles in bacterial adaptation to temperature fluctuation, hyperosmolarity, and desiccation resistance (28, 36). It was well-established that trehalose can be generated from glycogen through the TreX(GlgX)-TreY-TreZ pathway (37), or from the GalU-OtsA-OtsB pathway (38). Recently, an unexpected and widespread connection between trehalose and glycogen (TreS-Pep2-GlgE-GlgB) has been identified in bacteria (29), which provides a complementary way of cycling these two metabolites. Dalmasso et al. confirmed that both glycogen and trehalose are accumulated under cold conditions (4°C) in Propionibacterium freudenreichii species (28). Although it was suggested that the two compounds
provide a molecular basis of the long-term survival and activity during prolonged incubation at low temperatures, no specific mechanisms were provided. Reina-Bueno systematically examined the roles of trehalose in *Rhizobium etli* in terms of abiotic stress resistance (36). Enhanced gene expression (otsA and otsB) and trehalose content were observed. However, linkages between glycogen and trehalose metabolism was not mentioned. In addition, it is also noteworthy that TreT, a trehalose synthase, sporadically identified in a small set of bacteria (*Rubrobacter xylanophilus*) and archaea (*Pyrococcus furiosus*), catalyses the reversible formation of trehalose based on ADP-glucose and glucose (23). Thus, TreT in trehalose metabolism might contribute to glycogen biosynthesis, although further experimental validation is necessary.

Glycogen plays essential roles in bacterial energy metabolism and is widely connected with a variety of metabolic pathways that are tightly associated with bacterial persistence in the face of environmental stresses such as starvation, desiccation, temperature fluctuation, and/or hyperosmolarity. Maltodextrin and trehalose pathways are examples. However, how glycogen itself and its structure expert impacts on bacterial persistent phenotypes through the connection with other compounds require further exploration and might shed light on new mechanisms for understanding bacterial persistence strategies.

Conclusions

It has been established that glycogen is an important energy reserve in bacteria (23). In this perspective, we have provided an updated view of recent progress in the study of glycogen as durable energy reserve in bacteria since the DESM hypothesis was proposed (2). Recent relevant literature has reinforced the feasibility of the hypothesis. A preliminary glycogen structure modeling also provided a theoretical support for the hypothesis. Ideally, the structure constraint will force bacteria to utilize glycogen in a controlled manner, i.e., slow release of glucosyl residues, which may contribute the elongated survival of bacteria in nutrient-deprived or other life-challenging conditions. Although the network of glycogen metabolism has been investigated from genome (Keio collection) (31), transcriptome (ASKA library) (32) and systematic levels (Petri net model) (39), knowledge about the associations between glycogen metabolism and bacterial environmental persistence is still limited. An updated view about how these genes interact with bacterial environment durability and how glycogen structure can impact on bacterial persistence would greatly improve our knowledge of glycogen in bacterial physiology.
Taken together, priority at current stage should be given to experimental investigation of how g_c influences glycogen degradation. Then, the next questions are whether slow degradation of glycogen could prolong bacterial viability and what are the specific mechanisms. By answering these questions through well-designed experiments, we would get more insight into relationship between bacterial glycogen structure and its biological activities.

Acknowledgements

We would like to thank the Startup Foundation for Excellent Researchers (2016) provided by Xuzhou Medical University under grant number D2016007, the Nature and Science Foundation for Colleges and Universities (2016) by Jiangsu Province under grant number 16KJB180028, Innovative and Entrepreneurial Talent Scheme of Jiangsu Province (2017), and Natural Science Foundation of Jiangsu Province (2018). Dr. Liang Wang is very grateful to Academician/Professor Robert G. Gilbert from University of Queensland and Yangzhou University for his constructive discussions.

References

[1] Melendez-Hevia E, Waddell TG, Shelton ED, 1993. Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem J 295 (Pt 2):477–83.

[2] Wang L, Wise MJ, 2011. Glycogen with short average chain length enhances bacterial durability. Naturwissenschaften 98(9):719–729.

[3] Laidig KE, 1991. Energetics of hydrocarbon branching. The Journal of Physical Chemistry 95(20):7709–7713.

[4] Wolfrom ML, Lassettre EN, O'Neill AN, 1951. Degradation of glycogen to isomaltose1. Journal of the American Chemical Society 73(2):595–599.

[5] Erlander SR, French D, 1958. Acid hydrolysis and molecular weights of various corn amylopectin and glycogen. Journal of Polymer Science 32(125):291–316.

[6] Wang L, Regina A, Jr VMB, Kosar-Hashemi B, Larroque O, Kahler CM, Wise MJ, 2015. Influence of in situ progressive n-terminal is still controversial truncation of glycogen branching enzyme in Escherichia coli dh5α on glycogen structure, accumulation, and bacterial viability. BMC Microbiol 15:96.
[7] Grundel M, Scheunemann R, Lockau W, Zilliges Y, 2012. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium *Synechocystis* sp. pcc 6803. *Microbiology* 158(Pt 12):3032–43.

[8] Bains G, 2012. Probing the allosteric sites of the *Agrobacterium tumefaciens* ADP-Glucose pyrophosphorylase. Ph.D. thesis, California State University.

[9] Lee S, Cantarel B, Henrissat B, Gevers D, Birren BW, Huttenhower C, Ko G, 2014. Gene-targeted metagenomic analysis of glucan-branching enzyme gene profiles among human and animal fecal microbiota. *ISME J* 8(3):493–503.

[10] Jo HJ, Park S, Jeong HG, Kim JW, Park JT, 2015. *Vibrio vulnificus* glycogen branching enzyme preferentially transfers very short chains: N1 domain determines the chain length transferred. *FEBS Lett* 589(10):1089–94.

[11] Han AR, Lee YJ, Wang T, Kim JW, 2018. Glycogen metabolism in *Vibrio vulnificus* affected by malp and malq. *Microbiology and Biotechnology Letters* 46(1):29–39.

[12] Martinez-Garcia M, Stuart MCA, van der Maarel MJEC, 2016. Characterization of the highly branched glycogen from the thermoacidophilic red microalga *Galdieria sulphuraria* and comparison with other glycogens. *International Journal of Biological Macromolecules* 89:12–18.

[13] Martinez-Garcia M, Kormpa A, van der Maarel M, 2017. The glycogen of *Galdieria sulphuraria* as alternative to starch for the production of slowly digestible and resistant glucose polymers. *Carbohydr Polym* 169:75–82.

[14] Klotz A, Forchhammer K, 2017. Glycogen, a major player for bacterial survival and awakening from dormancy. *Future Microbiology* 12(2):101–104.

[15] Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C, Mangifesta M, Hevia A, Viappiani A, Scholz M, Arioli S, Sanchez B, Lane J, Ward DV, Hickey R, Mora D, Segata N, Margolles A, van Sinderen D, Ventura M, 2015. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. *Scientific Reports* 5(1).

[16] Sun Z, Harris HMB, McCann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea MC, O’Sullivan O, Ritari J, Douillard FP, Ross RP, Yang R,
Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui Y, Zhang H, O'Toole PW, 2015. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications 6(1).

[17] Sullivan MA, Li J, Li C, Vilaplana F, Stapleton D, Gray-Weale AA, Bowen S, Zheng L, Gilbert RG, 2011. Molecular structural differences between type-2-diabetic and healthy glycogen. Biomacromolecules 12(6):1983–6.

[18] Hu Z, Deng B, Tan X, Gan H, Li C, Nada SS, Sullivan MA, Li J, Jiang X, Li E, Gilbert RG, 2018. Diurnal changes of glycogen molecular structure in healthy and diabetic mice. Carbohydrate Polymers 185:145–152.

[19] Tan X, Sullivan MA, Nada SS, Deng B, Schulz BL, Gilbert RG, 2018. Proteomic investigation of the binding agent between liver glycogen β particles. ACS Omega 3(4):3640–3645.

[20] Takado Y, Knott G, Humbel BM, Escrig S, Masoodi M, Meibom A, Comment A, 2015. Imaging liver and brain glycogen metabolism at the nanometer scale. Nanomedicine: Nanotechnology, Biology and Medicine 11(1):239–245.

[21] Hicks J, Wartchow E, Mierau G, 2011. Glycogen storage diseases: A brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. Ultrastructural Pathology 35(5):183–196.

[22] Gunja-Smith Z, Marshall JJ, Mercier C, Smith EE, Whelan WJ, 1970. A revision of the meyer-bernfeld model of glycogen and amylopectin. FEBS Lett 12(2):101–104.

[23] Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J, 2010. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiology Reviews 34(6):952–985.

[24] Park KH, 2015. Roles of enzymes in glycogen metabolism and degradation in Escherichia coli. Journal of Applied Glycoscience 62(2):37–45.

[25] Powell PO, Sullivan MA, Sheehy JJ, Schulz BL, Warren FJ, Gilbert RG, 2015. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite) particles. PLoS One 10(3):e0121337.
[26] Deng B, Sullivan MA, Wu AC, Li J, Chen C, Gilbert RG, 2015. The mechanism for stopping chain and total-molecule growth in complex branched polymers, exemplified by glycogen. Biomacromolecules 16(6):1870–1872.

[27] Bourassa L, Camilli A, 2009. Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Molecular Microbiology 72(1):124–138.

[28] Dalmasso M, Aubert J, Even S, Falentin H, Maillard MB, Parayre S, Loux V, Tanskanen J, Thierry A, 2012. Accumulation of intracellular glycogen and trehalose by Propionibacterium freudenreichii under conditions mimicking cheese ripening in the cold. Applied and Environmental Microbiology 78(17):6357–6364.

[29] Chandra G, S KFC, Bornemann, 2011. Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157(6):1565–1572.

[30] Dippel R, Bergmiller T, Bohm A, Boos W, 2005. The maltodextrin system of Escherichia coli: Glycogen-derived endogenous induction and osmoregulation. Journal of Bacteriology 187(24):8332–8339.

[31] Eydallin G, Viale AM, Morán-Zorzano MT, Muñoz FJ, Montero M, Baroja-Fernández E, Pozueta-Romero J, 2007. Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli k-12. FEBS Lett 581:2947–2953.

[32] Eydallin G, Montero M, Almagro G, Sesma MT, Viale AM, Muñoz FJ, Rahimpour M, Baroja-Fernández E, Pozueta-Romero J, 2010. Genome-wide screening of genes whose enhanced expression affects glycogen accumulation in Escherichia coli. DNA Res 17(2):61–71.

[33] Park JT, Shim JH, Tran PL, Hong IH, Yong HU, Oktavina EF, Nguyen HD, Kim JW, Lee TS, Park SH, Boos W, Park KH, 2011. Role of maltose enzymes in glycogen synthesis by Escherichia coli. Journal of Bacteriology 193(10):2517–2526.

[34] Bornemann S, 2016. alpha-glucan biosynthesis and the glge pathway in Mycobacterium tuberculosis. Biochem Soc Trans 44(1):68–73.

[35] Gupta AK, Singh A, Singh S, 2017. Glycogen as key energy storehouse and possibly responsible for multidrug resistance in Mycobacterium tuberculosis.
[36] Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, Vargas C, 2012. Role of trehalose in heat and desiccation tolerance in the soil bacterium *Rhizobium etli*. BMC Microbiology 12(1).

[37] Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M, 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaeabacterium *Sulfolobus acidocaldarius*. Biochim Biophys Acta 1291(3):177–81.

[38] Elbein AD, 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17R–27.

[39] Tian Z, Fauré A, Mori H, Matsuno H, 2013. Identification of key regulators in glycogen utilization in *E. coli* based on the simulations from a hybrid functional petri net model. BMC Systems Biology 7(Suppl 6).

[40] Urbano SB, Albarracín VH, Ordoñez OF, Farias ME, Alvarez HM, 2013. Lipid storage in high-altitude andean lakes extremophiles and its mobilization under stress conditions in *Rhodococcus* sp. a5, a uv-resistant actinobacterium. Extremophiles 17(2):217–227.

[41] Goh YJ, Klaenhammer TR, 2013. A functional glycogen biosynthesis pathway in *Lactobacillus acidophilus*: expression and analysis of the *glg* operon. Molecular Microbiology 89(6):1187–1200.

[42] Seibold GM, Eikmanns BJ, 2013. Inactivation of the phosphoglucomutase gene *pgm* in *Corynebacterium glutamicum* affects cell shape and glycogen metabolism. Bioscience Reports 33(4):645–654.

[43] Fung T, Kwong N, van der Zwan T, Wu M, 2013. Residual glycogen metabolism in *Escherichia coli* is specific to the limiting macronutrient and varies during stationary phase. J Exp Microbiol Immunol 17(5):5.

[44] Rahimpour M, Montero M, Almagro G, Viale AM, Sevilla A, Canovas M, Muñoz FJ, Baroja-Fernández E, Bahaji A, Eydallin G, Dose H, Takeuchi R, Mori H, Pozueta-Romero J, 2013. Glgs, described previously as a glycogen synthesis control protein, negatively regulates motility and biofilm formation in *Escherichia coli*. Biochemical Journal 452(3):559–573.
[45] Wang L, 2013. Exploring the genetic basis for the sit-and-wait hypothesis: abiotic stress resistance and energy storage mechanisms. Ph.D. thesis, University of Western Australia.

[46] Tytgat HLP, Lebeer S, 2014. The sweet tooth of bacteria: Common themes in bacterial glycoconjugates. Microbiology and Molecular Biology Reviews 78(3):372–417.

[47] Goh YJ, Klaenhammer TR, 2014. Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention. Microbial Cell Factories 13(1).

[48] von Zaluskowski PRA, 2015. Glycogen metabolism in Corynebacterium glutamicum: effects of environmental factors and of metabolic disturbances. Ph.D. thesis, Ulm University.

[49] Feng L, Fawaz R, Hovde S, Gilbert L, Chiou J, Geiger JH, 2015. Crystal structures of Escherichia coli branching enzyme in complex with linear oligosaccharides. Biochemistry 54(40):6207–6218.

[50] Almagro G, Viale AM, Montero M, Rahimpour M, Muñoz FJ, Baroja-Fernández E, Bahaji A, Zuacentbñiga M, González-Candelas F, Pozueta-Romero J, 2015. Comparative genomic and phylogenetic analyses of gammaproteobacterial glg genes traced the origin of the Escherichia coli glycogen glgbcap operon to the last common ancestor of the sister orders Enterobacteriales and Pasteurellales. PLoS One 10:e0115516.

[51] Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Valentine DL, Hinrichs KU, Jensen GJ, Dubilier N, Orphan VJ, 2017. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti. Molecular Microbiology 103(2):242–252.

[52] Morin M, Ropers D, Cinquemani E, Portais JC, Enjalbert B, Cocaign-Bousquet M, Romeo T, Greenberg EP, 2017. The csr system regulates Escherichia coli fitness by controlling glycogen accumulation and energy levels. mBio 8(5).

[53] Wang L, Liu Z, Dai S, Yan J, Wise MJ, 2017. The sit-and-wait hypothesis in bacterial pathogens: A theoretical study of durability and virulence. Frontiers in Microbiology 8.
[54] Wang L, Yan J, Wise MJ, Liu Q, Asenso J, Huang Y, Dai S, Liu Z, Du Y, Tang D, 2018. Distribution patterns of polyphosphate metabolism pathway and its relationships with bacterial durability and virulence. Frontiers in Microbiology 9.

[55] Kindt TJ, Conrad HE, 1967. The role of primer in glycogen biosynthesis in *Aerobacter aerogenes*. Biochemistry 6(12):3718–29.

[56] Gahan LC, Conrad HE, 1968. An enzyme system for de novo biosynthesis of glycogen in *Aerobacter aerogenes*. Biochemistry 7(11):3979–90.

[57] Zevenhuizen LP, 1992. Levels of trehalose and glycogen in *Arthrobacter globiformis* under conditions of nutrient starvation and osmotic stress. Antonie Van Leeuwenhoek 61(1):61–8.

[58] Rose AH, Tempest DW, 1973. Advances in Microbial Physiology, volume 10. Academic Press.

[59] Goldemberg SH, 1972. Glucan biosynthesis in *Bacillus stearothermophilus* i. properties of the polysaccharide. Arch Biochem Biophys 149:252–258.

[60] Hara F, Akazawa T, Kojima K, 1973. Glycogen biosynthesis in *Chromatium* strain d: I. characterization of glycogen. Plant Cell Physiol 14:737–745.

[61] Whyte JNC, Strasdine GA, 1972. An intracellular alpha-d-glucan from *Clostridium botulinum*, type e. Carbohydr Res 25:435–441.

[62] König H, Skorko R, Zillig W, Reiter WD, 1982. Glycogen in thermoacidophilic archaeabacteria of the genera sulfolobus, thermoproteus, desulfurococcus and thermococcus. Archives of Microbiology 132(4):297–303.

[63] Bender H, 1979. Glycogen from *Klebsiella pneumoniae* m 5 al and *Escherichia coli* k 12. European Journal of Applied Microbiology and Biotechnology 8(4):279–287.

[64] Devillers CH, Piper ME, Ballicora MA, Preiss J, 2003. Characterization of the branching patterns of glycogen branching enzyme truncated on the n-terminus. Arch Biochem Biophys 418(1):34–8.

[65] Kent PW, Stacey M, 1949. Studies in the glycogen of *M. tuberculosis* (human strain). Biochimica et Biophysica Acta 3:641–647.
[66] Scherp HW, 1955. Neisseria and neisserial infections. Annual Review of Microbiology 9(1):319–334.

[67] Chao L, Bowen CC, 1971. Purification and properties of glycogen isolated from a blue-green alga, *Nostoc muscorum*. J Bacteriol 105(1):331–8.

[68] Lou J, Dawson KA, Strobel HJ, 1997. Glycogen formation by the ruminal bacterium *Prevotella ruminicola*. Appl Environ Microbiol 63(4):1483–8.

[69] Zevenhuizen LP, Ebbink AG, 1974. Interrelations between glycogen, poly-beta-hydroxybutyric acid and lipids during accumulation and subsequent utilization in a *Pseudomonas*. Antonie Van Leeuwenhoek 40(1):103–20.

[70] Wallace RJ, 1980. Cytoplasmic reserve polysaccharide of *Selenomonas ruminantium*. Appl Environ Microbiol 39(3):630–4.

[71] Kamio Y, Terawaki Y, Nakajima T, Matsuda K, 1981. Structure of glycogen produced by *Selenomonas ruminantium*. Agricultural and Biological Chemistry 45(1):209–216.

[72] Builder JE, Walker GJ, 1970. Metabolism of the reserve polysaccharide of *Streptococcus mitis*. properties of glycogen synthetase. Carbohydrate Res 14(1):35–51.

[73] Cheetham NW, Hansawek N, Saecou P, 1991. An h.p.l.c. method for determining chain-length distribution in some glycogens. Carbohydr Res 215(1):59–65.

[74] Yoo SH, Keppel C, Spalding M, lin Jane J, 2007. Effects of growth condition on the structure of glycogen produced in cyanobacterium *Synechocystis* sp. pcc6803. International Journal of Biological Macromolecules 40(5):498–504.

[75] Yoo SH, Lee BH, Moon Y, Spalding MH, lin Jane J, 2014. Glycogen synthase isoforms in *Synechocystis* sp. pcc6803: Identification of different roles to produce glycogen by targeted mutagenesis. PLoS ONE 9(3).

[76] Palomo M, Pijning T, Booman T, Dobruchowska JM, van der Vlist J, Kralj S, Planas A, Loos K, Kamerling JP, Dijkstra BW, van der Maarel MJEC, Dijkstra L, Leemhuis H, 2011. Thermus thermophilusglycoside hydrolase family 57 branching enzyme. Journal of Biological Chemistry 286(5):3520–3530.

[77] Abdel-Akher M, Smith F, 1951. The repeating unit of glycogen. J Am Chem Soc 73(3):994–996.
[78] Manners DJ, 1957. The molecular structure of glycogens. Advances in Carbohydrate Chemistry 12:261–298.

[79] Gunja-Smith Z, Marshall JJ, Smith EE, 1971. Enzymatic determination of the unit chain length of glycogen and related polysaccharides. FEBS Lett 13(5):309–311.

[80] Illingworth B, Larner J, Cori GT, 1952. Structure of glycogens and amylopectins. i. enzymatic determination of chain length. J Biol Chem 199(2):631–40.
Tables

Table 1: Studies citing the Durable Energy Storage Mechanism (DESM) hypothesis since its first proposal

No	Year	Species	Argument	Ref
1	2012	*Synechocystis* sp. PCC 6803	Short gc increases durability	7
2	2012	*Agrobacterium tumefaciens*	Short gc increases durability	8
3	2013	*Rhodococcus* sp.	Glycogen for carbon starvation	40
4	2013	*Lactobacillus acidophilus*	Glycogen for diverse lifestyle	41
5	2013	*Corynebacterium glutamicum*	Exponential utilization of glycogen	42
6	2013	*Escherichia coli*	Glycogen supports viability	43
7	2013	*Escherichia coli*	Glycogen supports viability	44
8	2013	*Escherichia coli*	Short gc increases durability	45
9	2014	General bacteria	Intracellular energy storage	46
10	2014	*Lactobacillus acidophilus*	Glycogen for diverse lifestyle	47
11	2014	Fecal microbiota	Further study needed	9
12	2015	*Corynebacterium glutamicum*	Glycogen accumulation	48
13	2015	General bacteria	Glycogen for diverse lifestyle	16
14	2015	*Bifidobacterium*	Glycogen for diverse lifestyle	15
15	2015	*Escherichia coli*	GBE for optimal structure	49
16	2015	*Escherichia coli*	Glycogen supports viability	50
17	2015	*Escherichia coli*	Short gc increases durability	6
18	2015	*Vibrio vulnificus*	Short gc increases durability	10
19	2016	*Galdieria sulphuraria*	Controversial	12
20	2017	*Methyloprofundus sedimenti*	Glycogen as an energy storage	51
21	2017	*Galdieria sulphuraria*	Slow degradation of short gc glycogen	13
22	2017	General bacteria	Slow degradation of short gc glycogen	14
23	2017	*Escherichia coli*	Glycogen supports viability	52
24	2017	General bacteria	Durable energy storage mechanism	53
25	2018	General bacteria	Polyphosphate metabolism	54
26	2018	*Vibrio vulnificus*	Short gc increases durability	11
Table 2: Methods used for measuring glycogen g_c in bacteria and eukaryotes (adapted from (2) with newly sourced methods)

Bacteria	g_c	Methods	Ref
Aerobacter aerogenes	13	β-amylolysis, Methylation	(55, 56)
Agrobacterium tumefaciens	13	N/A	(2)
Arthrobacter globiformis	6.6	β-amylolysis, Methylation	(57)
Arthrobacter spp	7-9	β-amylolysis	(57, 58)
Bacillus megaterium	10-11	N/A	(2)
Bacillus stearothermophilus	21	Periodate oxidation	(59)
Chromatium strain D	11.1-11.4	Periodate oxidation	(60)
Clostridium botulinum	17	Periodate oxidation	(61)
Desulfurococcus	7	Periodate oxidation	(62)
Escherichia coli	12, 10.8, 13, 14	Isoamylase debranching and High-Performance Anion-Exchange Chromatography	(63, 64)
Klebsiella pneumoniae	11.6	Isoamylase debranching and chromatography	(63)
Mycobacterium tuberculosis	7-9, 10-12	N/A (7-9), Oxidation	(2, 65)
Neisseria perflava	11-12	N/A	(2, 66)
Nostoc muscorum	13	Periodate oxidation	(58, 67)
Prevotella ruminicola	8	Periodate oxidation	(68)
Pseudomonas V-19	8	Methylation, Periodate oxidation	(69)
Selenomonas ruminantium	12, 23.5	Liquid chromatography (12), Methylation (23.5)	(70, 71)
Sphaerotilus natans	11.5, 13	Inferred from H1-NMR (11.5), N/A (13)	(2, 12)
Streptococcus mitis	9.97, 12	HPLC (9.97), N/A	(2, 72, 73)
Sulfolobus	7	Periodate oxidation	(62)
Synechocystis sp. PCC6803	7.5-10.4, 9.6	High-Performance Anion-Exchange Chromatography	(74, 75)
Thermococcus	7	Periodate oxidation	(62)
Thermoproteus	7	Periodate oxidation	(62)
Thermus thermophilus	7	Anion-Exchange Chromatography with a pulse amperometric detector	(76)
Eukaryotes	gc	Methods	Ref
--------------------------	-----	--	---------
Bass liver	14	Periodate oxidation	(77, 78)
Bullhead liver	12	Periodate oxidation	(77)
Cat liver	13-15	Periodate oxidation, Isoamylase	(79)
Dog liver	12	Periodate oxidation	(77)
Haddock liver	12	Methylation	(78)
Horse liver	11	Periodate oxidation	(77)
Horse muscle	11-12	Methylation	(80)
Human muscle	11-12	Periodate oxidation, Isoamylase	(79)
Northern pike liver	12-13	Periodate oxidation	(78)
Rabbit muscle	11-13	Periodate oxidation, Methylation, Isoamylase	(79, 80)

21
Figure 1: Three-dimensional illustration of bacterial glycogen structure at different gc values with given degree of branching r and maximal tier number t. Physical properties varies and the most apparent difference among them is the sphere diameter ($D_{gc=7} = 28.56$ nm, $D_{gc=10} = 40.3$ nm, $D_{gc=13} = 49.66$ nm). Although it is predicted that the ratio of surface (S_s) and volume (V_v) determines glycogen degradation rate, the conclusion does not consider glycogen interior structure. Thus, it would be interesting to see how degrading rate changes by combing the two factors to simulate glycogen degradation. Tier 1-3, shown in yellow dots; Tier 4-6 shown in blue dots; Tier 7-9 shown in red dots; Tier 10-13 shown as a gradient from light to dark grey.
Figure 2: Bacterial glycogen metabolism with integrated maltose and trehalose pathways. Extracellular free glucose was phosphorylated into G-6-P through PEP:PTS system during transporting into cytoplasm. G-6-P was then transformed into G-1-P by PGM. GlgC provided ADPG as building blocks for GlgA. GlgB then branched the linear oligosaccharide into highly branched structure. Glycogen was degraded first by GlgP from outmost sphere to generate G-1-P and then truncated by GlgX to generate maltotetraose. The six enzymes work concurrently to balance glycogen metabolism and maintain its structure dynamically.

Newly discovered associations of trehalose (TreS, Pep2, GlgE, GlgB) and maltose (MalQ, MalZ, MalP) pathways with glycogen metabolism are also illustrated. In addition, the classical TreX(GlgX)-TreY-TreZ pathway for trehalose synthesis from glycogen is also present, while another GalU-OtsA-OtsB pathway has been omitted (29). Details are in the main text. Rv3032 is another newly identified enzyme responsible for possible intracellular and capsular glycogen formation in *Mycobacterium tuberculosis*, exclusively. Glycogen, trehalose, and maltose are interconnected, forming a dynamic network for bacterial viability in the face of unfavourable conditions.