Dark Energy Nature in Logarithmic $f(R, T)$ Cosmology

Dinesh Chandra Maurya1, Jagat Singh2, Lalit Kumar Gaur3

1 Centre for Cosmology, Astrophysics and Space Science, GLA University, Mathura-281 406, Uttar Pradesh, India.

2 G. B. Pant DSEU Okhla Campus-III, Delhi, Sector-9, Dwarka, New Delhi-110077, India.

3Department of Physics, Seth Gyaniram Bansidhar Podar College, Nawalgarh-333042 (Jhunjhunu), Rajasthan, India.

1Email:dcmaurya563@gmail.com

2Email:jagatiitdelhi@gmail.com

3E-mail:gaurlalit520@gmail.com

Abstract

The present research paper is an investigation of dark energy nature of logarithmic $f(R, T)$-gravity cosmology in a flat FLRW space-time universe. We have derived modified Einstein’s field equations for the function $f(R, T) = R - 16\pi G\alpha \ln(T)$ where R is the Ricci scalar curvature, T is the trace of the stress energy momentum tensor and α is a model parameter. We have solved field equations in the form of two fluid scenario as perfect-fluid and dark-fluid, where dark fluid term is derived in the form of perfect fluid source. We have made observational constraints on the cosmological parameters $\Omega_{(m)}$, $\Omega_{(de)}$, and H_0 using χ^2 test with observational datasets like Pantheon sample of SNe Ia and $H(z)$. With these constraints we have discussed our model with deceleration parameter q, energy parameters $\Omega_{(m)}$, $\Omega_{(de)}$, EoS parameter $\omega_{(de)}$ etc. Also, we have done Om diagnostic analysis. The derived $f(R, T)$ model shows a quintessence dark energy model $\omega_{(de)} > -1$ and late-time universe approaches to ΛCDM model.

Keywords: Modified Logarithmic $f(R, T)$-gravity; Flat FLRW Universe; Dark Energy; Observational Constraints.

Mathematical Subject Classification 2020: 83C15, 83F05, 83D05.

1 Introduction

The noble discovery in [1]-[15] approves the cosmic acceleration in expansion of the universe. The classical General Relativity (GR) predicts the expansion of the universe and it suggests that the expansion should be decelerating with time. But the observations in [1]-[15] suggest that the current universe has entered in a second phase of accelerated expansion which is started around redshift $z = 1$. Also, it is observed that approximately 70% of the total energy density of the universe is in some mysterious form called “Dark Energy” which has high negative pressure that creates repulsive forces among the galaxies and results the accelerating expansion of the universe. But nobody knows actual nature of the Dark Energy. Einstein obtained this acceleration in his cosmological model by adding a constant term Λ, called “Cosmological Constant”. Although the “Cosmological Constant Λ—term” is the best fit candidate for dark energy, but it has two problems, first is about its origin and second is fine-tuning its value with dark energy. To solve the dark energy problem and cosmological constant problem, in literature several modified and alternative theories of gravity to GR are presented by the cosmologists time to time but the...
dark energy problem is an unsolved problem till to date.

Current studies focus on the determination of the equation of state parameter ω (see the references [16, 17, 18, 19]) to measure the properties of dark energy component of the universe from observational data. The equation of state parameter ω is defined as the ratio of pressure to the energy density of the fluid $\omega(t) = \frac{p}{\rho}$ and is not necessarily constant. The vacuum energy having EoS $\omega = -1$ is the simplest dark energy candidate and is equivalent to “Cosmological Constant A-term”. Alternatives to vacuum energy can be described by minimally coupled scalar fields, are quintessence ($\omega > -1$), phantom energy ($\omega < -1$) and Quintom (that can across from phantom region to quintessence region as evolved) and have time dependent EoS parameter. Some observational constraints on limits of EoS ω are obtained by Knop et al. [20] and Tegmark et al. [21] as $-1.67 < \omega < -0.62$ and $-1.33 < \omega < -0.79$ respectively. The latest results on limit of EoS are obtained as $-1.44 < \omega < -0.92$ at 68% confidence level in 2009 by Hinshaw et al. [22]; Komatsu et al. [23]. However, we are not on a stage to use a constant value of ω because we have not observational evidences which makes a distinction between constant and variable ω. A large number of cosmologists, considered the equation of state parameter as a constant (Kujat et al. [24]; Bartelmann et al. [25]) with phase wise value $-1, 0, +\frac{1}{3}$ and $+1$ for vacuum fluid, dust fluid, radiation and stiff dominated universe, respectively. But generally, ω is time or redshift dependent function (Jimenez [27]; Das et al. [28]). In literature, several cosmologists ([29] -[37]) have presented cosmological models with variable EoS parameter ω.

Various $f(R)$ theory applications to cosmology and gravity, including inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds, are reviewed in [38]. In [39, 40, 41, 42], a review of several well-established topics and the most recent advances in modified gravity in cosmology are presented, with an emphasis on inflation, bouncing cosmology, and the late-time acceleration era employing $F(R)$, $F(G)$, and $F(T)$ gravity theories. In the context of higher order theories of gravity, the issues of quintessence and cosmic acceleration have been covered in [43]. In [44], a review of dynamical dark energy models is offered. In the context of modified gravity theories with negative and positive curvatures, references [45] and [46] seek to unify inflation with cosmic acceleration. In [47], a variety of workable $F(R)$ gravity dark energy theories are examined.

A generalization of $f(R)$ gravity by including the trace T of stress-energy-momentum tensor T_{ij} has been proposed by Harko et al. [48] known as $f(R,T)$ gravity. The different cosmological and astrophysical aspects of $f(R,T)$ gravity have been extensively studied by several authors. Several authors [49] have investigated the physical and geometrical aspects of modified $f(R,T)$ cosmological models in different context. The accelerated expansion phase of the universe plays an important role in the dynamical history of our universe. Using different forms of the $f(R,T)$ gravity, Harko et al. [48] have constructed some FLRW modified cosmological models.

Some generalization of $F(R)$ and $F(T)$ gravity theories are studied by Myrzakulov [50] and on the basis of this Lagrangian, he derived the field equations in $f(R,T)$ gravity and have obtained some exact solutions for the specific $F(R,T) = \mu R + \nu T$ function. After that several cosmological models are proposed in $f(R,T)$ gravity [51]-[81].

The first logarithmic $f(R,T)$ gravity theory has been proposed by Elizalde et al. [82] in the form of $f(R,T) = R + a R^2 + 23 \ln(T)$ in which they have studied the energy and stability conditions of the cosmological model. Recently Deb and Deshamukhya [83] have studied some constraints on simple form of logarithmic $f(R,T) = R + 16 \pi G a \ln(T)$ gravity by using dark energy parameters and Hubble constant H_0. Here, we have studied the behaviour of dark energy parameters and equation of state parameters in logarithmic $f(R,T) = R - 16 \pi G a \ln(T)$ gravity with observational constraints. The motivation behind choosing such a type of specific $f(R,T)$ function is that in this case, all energy conditions are satisfied. The testing of energy conditions of such type cosmological models are studied in details in [84].

The present paper is organized as follows: Sect. 1 is introductory, Sect. 2 contains formulation of modified field equations for $f(R,T) = R - 16 \pi G a \ln(T)$ and its solution. In Sect. 3, we have made observational constraints
on energy parameters, Sect. 4 contains discussion of results with Om diagnostic analysis. In last section 5 have concluding remarks.

2 Field Equations for Logarithmic $f(R, T)$-Gravity and Solution

We consider the action for the logarithmic $f(R, T) = R - 16\pi G\alpha \ln(T)$ function as,

$$S = \int \sqrt{-g} \left[\frac{R}{16\pi G} - \alpha \ln(T) + L_m \right] d^4x,$$

where L_m is the matter Lagrangian, R is the Ricci scalar curvature, T is the trace of the matter stress-energy momentum tensor T_{ij} and α is the model parameter. The motivation behind choosing such a type of specific $f(R, T)$ function is that in this case, all energy conditions are satisfied. The testing of energy conditions of such type cosmological models are studied in details in [84].

Variation of action (1) with respect to metric tensor g_{ij}, we obtain the following field equations,

$$R_{ij} - \frac{1}{2} g_{ij} R = 8\pi G \left[T_{ij} + T_{ij}^{(de)} \right],$$

where

$$T_{ij}^{(de)} = -\frac{2\alpha}{T} \left(T_{ij} + \frac{T}{2} g_{ij} \ln T + \Theta_{ij} \right),$$

where the term Θ_{ij}, which plays a crucial role in $f(R, T)$ gravity as it contains matter Lagrangian L_m, is given by

$$\Theta_{ij} = g^{\beta\gamma} \frac{\delta T_{\beta\gamma}}{\delta g^{ij}} = -2T_{ij} + g_{ij}L_m - 2\frac{\delta^2 L_m}{\delta g^{ij} \delta g^{\beta\gamma}}$$

Clearly, depending on the nature of the matter field, the field equation for $f(R, T)$ gravity will be different. Now, assuming the Universe is filled with perfect fluid, the stress-energy-momentum tensor is

$$T_{ij} = (\rho + p)u_i u_j - pg_{ij},$$

where ρ is the energy density, p is the isotropic pressure of the perfect fluid source and $u^i = (1, 0, 0, 0)$ is four fundamental velocity in co-moving coordinates and the matter Lagrangian density can be assumed as $L_m = -p$. Now, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric in spherical coordinate for flat Universe as,

$$ds^2 = c^2 dt^2 - a(t)^2 [dx^2 + dy^2 + dz^2],$$

where $a(t)$ denotes scale factor of the Universe.

Now, assuming $8\pi G = 1$ & $c = 1$ in cosmological units, we get the field equations for the metric (6) as,

$$3H^2 = \rho + \rho^{(de)}$$

and

$$2\dot{H} + 3H^2 = -p - p^{(de)}$$

where

$$\rho^{(de)} = \frac{2\alpha(\rho + p)}{T} - \alpha \ln(T), \quad p^{(de)} = \alpha \ln(T)$$

respectively called as dark energy density and corresponding isotropic pressure. Here H is the Hubble parameter defined by $H = \frac{\dot{a}}{a}$, and the trace T of stress-energy momentum tensor is given as $T = \rho - 3p$.

The equation of continuity is obtained as

$$\dot{\rho} + 3H(\rho + p) + [\rho^{(de)} + 3H(\rho^{(de)} + p^{(de)})] = 0$$

(10)
Taking non-interacting condition
\[\dot{\rho} + 3H(\rho + p) = 0, \quad \dot{\rho}^{(de)} + 3H(\rho^{(de)} + p^{(de)}) = 0 \] \tag{11}

Now, taking the equation of state (EoS) as \(p = \omega \rho \) with \(\omega = \text{constant} \), integrating Eq. (11), we get

\[\rho = \rho_0 \left(\frac{a}{a_0} \right)^{3(1+\omega)}, \quad \rho^{(de)} = \rho_0^{(de)} \left(\frac{a}{a_0} \right)^{3(1+\omega^{(de)})} \] \tag{12}

Now, from equation (7), we obtain

\[\Omega_{(m)} + \Omega_{(de)} = 1 \] \tag{13}

where \(\Omega_{(m)} = \frac{\rho}{3H^2} \) and \(\Omega_{(de)} = \frac{\rho^{(de)}}{3H^2} \) are respectively known as matter energy density parameter and dark energy density parameter.

From Eqs. (12) & (13), we get the Hubble function as

\[H = H_0 \sqrt{\Omega_{(m)}0 \left(\frac{a_0}{a} \right)^{3(1+\omega)} + \Omega_{(de)}0 \left(\frac{a_0}{a} \right)^{3(1+\omega^{(de)})}} \] \tag{14}

or

\[H = H_0 \sqrt{\Omega_{(m)}0 (1+z)^{3(1+\omega)} + \Omega_{(de)}0 (1+z)^{3(1+\omega^{(de)})}} \] \tag{15}

From Eqs. (7), (8) & (9), we get the expression for deceleration parameter as

\[q = \frac{1}{2} + \frac{3}{2} \frac{p + \alpha \ln(T)}{\rho + \frac{2\alpha(p+p)}{T} - \alpha \ln(T)} \] \tag{16}

where

\[\alpha = \frac{\rho_0^{(de)}}{\frac{2(1+\omega)}{1-3\omega} - \ln(1-3\omega) - \ln(\rho_0)} \] \tag{17}

3 Observational Constraints

Current theoretical cosmology is focused on best-fitting of the cosmological parameters with observational cosmology. Hence, we have obtained the best curve of Hubble parameter \(H(z) \) and apparent magnitude \(m(z) \) using observational datasets \(H(z) \), union 2.1 compilation and Pantheon datasets of SNe Ia observations by applying \(\chi^2 \)-test given as follows:

\[\chi^2 = \sum_{i=1}^{i=N} \frac{(O_i - E_i)^2}{\sigma_i^2} \] \tag{18}

where \(N \) denotes the number of data, \(O_i, E_i \) represent the observed and estimated datasets respectively and \(\sigma_i \) denotes standard deviations.
Hubble Parameter

S.No.	z	$H(z)$	σ_H	Reference	Method	S.No.	z	$H(z)$	σ_H	Reference	Method
1	0.07	69.19	1.30	09	DA	2	0.07	69.19	1.30	09	DA
2	0.09	69.12	1.24	09	DA	3	0.09	69.12	1.24	09	DA
3	0.10	69.12	1.24	09	DA	4	0.10	69.12	1.24	09	DA
4	0.12	68.6	26.2	09	DA	5	0.12	68.6	26.2	09	DA
5	0.17	83	8	09	DA	6	0.17	83	8	09	DA
6	0.19	75	5	09	DA	7	0.19	75	5	09	DA
7	0.2	72.9	29.6	09	DA	8	0.2	72.9	29.6	09	DA
8	0.24	79.7	2.7	09	DA	9	0.24	79.7	2.7	09	DA
9	0.27	77	14	09	DA	10	0.27	77	14	09	DA
10	0.28	88.8	36.6	09	DA	11	0.28	88.8	36.6	09	DA
11	0.35	82.7	8.4	09	DA	12	0.35	82.7	8.4	09	DA
12	0.38	81.5	1.9	09	DA	13	0.38	81.5	1.9	09	DA
13	0.38	81.5	1.9	09	DA	14	0.38	81.5	1.9	09	DA
14	0.38	81.5	1.9	09	DA	15	0.38	81.5	1.9	09	DA
15	0.38	81.5	1.9	09	DA	16	0.38	81.5	1.9	09	DA
16	0.38	81.5	1.9	09	DA	17	0.4	95	17	09	DA
17	0.4	95	17	09	DA	18	0.4	95	17	09	DA
18	0.44	86.5	3.7	09	DA	19	0.44	86.5	3.7	09	DA
19	0.44	86.5	3.7	09	DA	20	0.44	86.5	3.7	09	DA
20	0.44	86.5	3.7	09	DA	21	0.44	86.5	3.7	09	DA
21	0.44	86.5	3.7	09	DA	22	0.44	86.5	3.7	09	DA
22	0.44	86.5	3.7	09	DA	23	0.44	86.5	3.7	09	DA

Table 1: Hubble’s constant table.

The Hubble parameter H is one of the important observational cosmological parameter which reveals the rate of expansion of the universe. We have considered 46 $H(z)$ datasets with redshift z (see the Table 1) estimated using Differential Age (DA) method by cosmologists time to time in [85-100] for best curve-fitting of $H(z)$. Here, we have considered matter dominated universe with $\omega = 0$, hence, the Eq. (15) becomes

$$H(z) = H_0 \sqrt{\Omega_m(1+z)^3 + \Omega_{(de)}(1+z)^3(1+\omega_{(de)})}$$

(19)

The best fit values of energy parameters are mentioned in Table 2 and the best fit curve is given by figure 1.

![Figure 1: The best fit curve of Hubble parameter $H(z)$.](image)

Apparent Magnitude

We have considered 40 SNe Ia bined data of $m(z)$ from compilation of supernovae pantheon samples in the range of $(0 \leq z \leq 1.7)$ [101, 102]. We use the χ^2 test formula to achieve the best fit curve for theoretical and empirical
results. The expression for apparent magnitude is taken by

\[m(z) = 16.08 + 5 \times \log_{10} \left(\frac{H_0 D_L}{0.026 \text{cMpc}} \right). \]

where the Luminosity distance \(D_L \) is given by

\[D_L = c(1 + z) \int_0^z \frac{dz}{H(z)} \]

where \(c \) is the velocity of light and \(H(z) \) is the Hubble parameter given in Eq. (19).

The best fit values of the energy parameters are given in Table 2 and the best fit curve is represented by the figure 2.

Parameters	Bined data	\(H(z) \) data
\(\Omega_{(m)} \)	0.2981 ± 0.08921	0.26535 ± 0.01254
\(\omega^{(de)} \)	-0.81 ± 0.22149	-0.58155 ± 0.16941
\(H_0 \)		67.67851 ± 0.86949 Km/s/Mpc
\(\chi^2 \)	0.01702	0.51113
\(R^2 \)	0.99785	0.98385

Table 2: The best-fit values of energy parameters along two data sets SNe Ia and Hubble Parameter \(H(z) \).

Figure 2: The best fit curve of apparent magnitude \(m(z) \).

The value of Hubble constant measuring from velocity and distances of galaxies is reported as 73 ± 1 Km/s/Mpc that is called late-time version and from another way using “early time” information, astrophysicists predict that the Hubble constant should be about 67.5 ± 0.5 Km/s/Mpc. The values obtained from these two ways are not consistent and this problem is called Hubble tension. The estimated present value of Hubble constant in the derived model is 67.67851 ± 0.86949 Km/s/Mpc which is very closed to “early time” version of the Hubble constant value and hence, this model may resolve the Hubble tension issue in cosmology, since it is consistent with both early and late-time universe. Niedermann and Sloth [103] are reported Hubble constant value 69.6 ± 1.0 Km/s/Mpc (at 68% C.L.) without the local measurement of the Hubble parameter, bringing the tension down to 2.5 \(\sigma \).
4 Discussion of Results

Deceleration Parameter

The expression for deceleration parameter q is given by equation (16) and its geometrical behaviour is represented by figure 3. One can see that the $q(z)$ is an increasing function of redshift z with signature flipping and it shows a transit phase universe (decelerating to accelerating phase) model. The transition redshift is obtained as $z_t = 0.6455$ for Pantheon data and $z_t = 0.7356$ for $H(z)$ data. That is the matter dominated ($\omega = 0$) universe is in decelerating phase for $z > z_t$ and accelerating for $z < z_t$. In literature, Davis et al. [104] have obtained the transition redshift $z_t \sim 0.6(1 \sigma)$ in better agreement with the flat ΛCDM model ($z_t = (2\Omega_\Lambda/\Omega_m)^{1/3} - 1 \sim 0.66$) which is supported our model. The present value of the deceleration parameter is obtained $q_0 = -0.5276$ for Pantheon data and $q_0 = -0.5756$ for $H(z)$ data (see Table 3) which shows that present universe is accelerating phase and is in good agreement with recent observations [11-15].

![Deceleration Parameter Graph](image)

Figure 3: The behaviour of deceleration parameter q over redshift z.

From equation (22), we can obtain

$$q = \frac{1}{2} + \frac{3}{2} \omega^{(de)} \Omega^{(de)}$$ \hspace{1cm} (22)

For $q < 0$, we have

$$\Omega^{(de)} > -\frac{1}{3\omega^{(de)}}$$ \hspace{1cm} (23)

In our derived model, we have obtained for $q < 0$, $\Omega^{(de)} > 0.411522634, 0.573180867$ for two datasets and these are in good agreement with observations. Also, for $q = q_0$, the energy parameters are $\Omega_{(m)} = 0.2981 \pm 0.08921$, $\Omega_{(de)} = 0.7019$ for Pantheon data and $\Omega_{(m)} = 0.26535 \pm 0.01254$, $\Omega_{(de)} = 0.73465$ for $H(z)$ datasets.

Parameters	Bined data	$H(z)$ data
$\Omega_{(de)}$	0.7019	0.73465
$\rho_0^{(de)}$	4.3012×10^{-36} gm/cm3	3.8286×10^{-36} gm/cm3
$\rho_0^{(m)}$	1.0127×10^{-35} gm/cm3	1.0600×10^{-35} gm/cm3
α	1.2138×10^{-37}	1.2687×10^{-37}
q_0	-0.5276	-0.5756
z_t	0.6455	0.7356

Table 3: The present values of cosmological parameters along two data sets SNe Ia and Hubble Parameter $H(z)$.
Energy parameters

The energy density parameters $\Omega_{(m)}$ and $\Omega_{(de)}$ is given by equation (13) and its geometrical behaviour is shown in figure 4a & figure 4b. One can see that as $z \to -1$, $(\Omega_{(m)}, \Omega_{(de)}) \to (0, 1)$ and this reveals that the late-time universe is dark energy dominated and approaches to ΛCDM model, which is in good agreement with recent observations. In our model, the dark energy term is derived from perfect-fluid source and this shows the importance of the model. The present values of energy parameters are mentioned in Table 2 & 3. The value of the model parameter α is estimated as $\alpha = 1.26870954 \times 10^{-37}$ for $H(z)$ data and $\alpha = 1.21383844 \times 10^{-37}$ for Pantheon data of SNe Ia which is compatible with recent values.

![Figure 4: The evolution of matter energy density parameter $\Omega_{(m)}$ and dark energy density parameter $\Omega_{(de)}$ over redshift z respectively.](image1.png)

The expression for dark-energy density and pressure is derived in equation (9) and its geometrical behaviour is shown in figure 5a & figure 5b. One can see that as $z \to -1$, the dark energy density $\rho_{(de)}$ increases and the negative pressure of dark energy $p_{(de)}$ is also increases. This shows that the present universe is dark energy dominated and this energy comes from matter fluid source which is responsible for acceleration in expansion.

![Figure 5: The evolution of dark energy density $\rho_{(de)}$ and dark-fluid pressure $p_{(de)}$ over redshift z.](image2.png)
Analysis of Om Diagnostic

The cosmic dark energy models can be classified through behaviour of Om diagnostic function [105]. The simplest diagnostic for a spatially flat universe is given by

\[Om(z) = \frac{\left(\frac{H(z)}{H_0} \right)^2 - 1}{(1 + z)^3 - 1} \]

where \(H(z) \) is the Hubble parameter given in Eq. [18] and \(H_0 \) is its current value. A negative slope of \(Om(z) \) corresponds to pith motion, and a positive slope corresponds to phantom motion. The \(Om(z) \) constant represents the \(\Lambda \)CDM model.

![Figure 6: The geometrical behaviour of Om diagnostic function over redshift z.](image)

Figure 6 shows the geometrical behaviour of Om diagnostic function \(Om(z) \) over redshift \(z \) and mathematical expression is given in above equation (24). From figure 6, one can see that the slope of \(Om(z) \) function is negative for our model and it shows the quintessence behaviour of the model. Thus, the model derived in \(f(R, T) = R - 16\pi G \alpha \ln(T) \) gravity behaves just like quintessence dark energy model. Also, it is supported by the behaviour of dark energy EoS \(\omega^{(de)} > -1 \) as in our derived model \(\omega^{(de)} = -0.81 \pm 0.22149, -0.58155 \pm 0.16941 \) along two observational datasets Pantheon and \(H(z) \) respectively. One can see that a quintessence dark energy model can be equivalently mapped to generalized holographic dark energy model with a suitable choice of cut-off, which is clearly shown in [106]. The behavior of our derived model is quintessential and hence, it can be equivalently mapped to generalized holographic dark energy model with a suitable choice of cut-off and this shows the viability of the model.

5 Conclusion

The present research paper is an investigation of dark energy nature of logarithmic \(f(R, T) \)-gravity cosmology in a flat FLRW space-time universe. We have derived modified Einstein’s field equations for the function \(f(R, T) = R - 16\pi G \alpha \ln(T) \) where \(R \) is the Ricci scalar curvature, \(T \) is the trace of the stress energy momentum tensor and \(\alpha \) is a model parameter. We have solved field equations in the form of two fluid scenario as perfect-fluid and dark-fluid, where dark fluid term is derived in the form of perfect fluid source. We have made an observational constraints on the cosmological parameters \(\Omega_m, \omega^{(de)} \) and \(H_0 \) using \(\chi^2 \) test with observational datasets like Pantheon sample of SNe Ia and \(H(z) \). With these constraints we have discussed our model with deceleration parameter \(q \), energy...
parameters $\Omega_{(m)}, \Omega_{(de)}$, EoS parameter $\omega^{(de)}$ etc. and Om diagnostic function. The main features of the derived model are as follows:

- The derived model shows a transit phase (decelerating to accelerating) model with present values $q_0 = -0.5276, -0.5756$ along two observational datasets Pantheon and $H(z)$ respectively.

- The transition redshift is estimated as $z_t = 0.6455, 0.7356$ for two data sets Pantheon and $H(z)$ respectively, which is in good agreement with recent observations [102].

- The present values of energy parameters are estimated as $\Omega_{(m)} = 0.2981 \pm 0.08921$, $\Omega_{(de)} = 0.7019$ for Pantheon data and $\Omega_{(m)} = 0.26535 \pm 0.01254$, $\Omega_{(de)} = 0.73465$ for $H(z)$ datasets.

- The behaviour of dark energy EoS $\omega^{(de)} > -1$ as in our derived model $\omega^{(de)} = -0.81 \pm 0.22149, -0.58155 \pm 0.16941$ along two observational datasets respectively.

- The values of model parameter α are estimated as $\alpha = 1.26870954 \times 10^{-37}$ for $H(z)$ data and $\alpha = 1.21383844 \times 10^{-37}$ for Pantheon data of SNe Ia which is compatible with recent values.

- The derived $f(R, T)$ model shows a quintessence dark energy model $\omega^{(de)} > -1$ and late-time universe approaches to ΛCDM model.

- We have estimated the present value of Hubble constant as $H_0 = 67.67851 \pm 0.86949$ Km/s/Mpc that may resolve Hubble tension issues in cosmology, since it is consistent with both early and late-time universe.

Thus, the derived cosmological model behaves as an quintessence dark energy model and the dark energy term is derived from perfect fluid source which is an interesting feature of this model.

Acknowledgement

We are thankful to reviewers and editors for their motivational suggestions to improve our manuscript.

6 Declarations

Funding and/or Conflicts of interests/Competing interests

The authors of this article have no conflict of interests. Also, this work is not supported by any type of funding sources.

7 Data Availability

We have not used any data for the analysis presented in this work.

References

[1] P. M. Garnavich et al., Constraints on cosmological models from Hubble space telescope observations of high z supernove, *Astrophys. J.* **493** (1998) L53.

[2] P. M. Garnavich et al., Supernova limits on the cosmic equation of state, *Astrophys. J.* **509** (1998) 74.

[3] S. Perlmutter et al., Measurement of the cosmological parameters Omega and Lambda from the first 7 supernovae at $z \geq 0.35$, *Astrophys. J.* **483** (1997) 565.
[4] S. Perlmutter et al., Discovery of a supernova explosion at half the age of the universe and its cosmological implications, Nature 391 (1998) 51.

[5] S. Perlmutter et al., Measurements of omega and lambda from 42 high-redshift supernovae, Astrophys. J. 517 (1999) 565.

[6] A. G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astrphys. J. 116 (1998) 1009.

[7] A. G. Riess et al., The case for an accelerating universe from supernovae, Publ. Astron. Soc. Pac. 114 (2000) 1284.

[8] A. G. Riess et al., Type-Ia supernova discoveries of $z \geq 1$ from the Hubble space telescope: Evidence from past deceleration and constraints on dark energy evolution, Astrophys. J. 607 (2004) 665.

[9] B. P. Schmidt et al., The high-z supernova search: Measuring cosmic deceleration and global curvature of the universe using type Ia supernovae, Astrophys. J. 507 (1998) 46.

[10] J. L. Tonry et al., Cosmological results from High-z supernovae, Astrophys. J. 594 (2003) 1.

[11] C. L. Bennett et al., First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results, Astrophys. J. Suppl. Ser. 148 (2003) 1.

[12] D. N. Spergel et al., First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of Cosmological parameters, Astrophys. J. Suppl. Ser. 148 (2003) 175.

[13] M. Tegmark et al., Cosmological parameters from SDSS and WMAP, Phys. Rev. D 69 (2004) 103501.

[14] A. Clocchiatti, Hubble space telescope and ground base observation of type-Ia supernovae at redshift $z = 0.5$: Cosmological implications, Astrophys. J. 642 (2006) 1.

[15] P.de Bernardis et al., (BOOMERANG), A flat universe from high resolution maps of the cosmic microwave background radiation, Nature 404 (2000) 955.

[16] P. Astier et al., The supernova legacy survey: Measurement of ω_m, ω_{Λ} and ω from the first-year data set, Astron. Astrophys. 447 (2006) 31.

[17] D. N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology, Astrophys. J. Suppl. Ser. 170 (2007) 377.

[18] A. G. Riess et al., New Hubble space telescope discoveries of type Ia supernovae at $z \geq 1$: narrowing constraints on the early behaviour of dark energy, Astrophys. J. 659 (2007) 98.

[19] S. M. Carrol and M. Hoffman, Can the dark energy equation of state parameter ω be less than -1 ?, Phys. Rev. D. 68 (2003) 023509.

[20] R. K. Knop et al., New constraints on Ω_m, Ω_{Λ} and ω from an independent set of eleven high redshift supernovae observed with HST, Astrphys. J. 598 (2003) 102.

[21] M. Tegmark et al., The three-dimensional power spectrum of galaxies from the sloan digital sky survey, Astrphys. J. 606 (2004) 702.

[22] G. Hinshaw et al., [WMAP Collaboration], Five-year Wilkinson microwave anisotropy (WMAP) observation: Likelihoods and parameters from the WMAP data, Astrphys. J. Suppl. Ser. 180 (2009) 306.

[23] E. Komatsu et al., Five-year Wilkinson microwave anisotropy probe (WMAP) cosmological interpretation, Astrphys. J. Suppl. Ser. 180 (2009) 330.
[24] J. Kujat et al., Prospects for determining the equation of state of the dark energy: what can be learned from multiple observables?, Astrophys. J. 572 (2002) 1.
[25] M. Bartelmann et al., Evolution of dark matter haloes in a variety of dark energy cosmologies, New Astron. Rev. 49 (2005) 199.
[26] R. Jimenez, The value of the equation of state of dark energy, New Astron. Rev. 47 (2003) 761.
[27] A. Das et al., Cosmology with decaying tachyon matter, Phys. Rev. D 72 (2005) 043528.
[28] M. S. Turner and M. White, CDM models with a smooth component, Phys. Rev. D 56 (1997) R4439.
[29] R. R. Caldwell et al., Cosmological imprint of an energy component with general equation of state; Phys. Rev. Lett. 80 (1998) 1582.
[30] A. R. Liddle and R. J. Scherrer, A classification of scalar field potential with cosmological scaling solutions; Phys. Rev. D 59 (1999) 023509.
[31] P. J. Steinhardt et al., Cosmological tracking solutions, Phys. Rev. D 59 (1999) 023504.
[32] F. Rahaman and B. C. Bhui, Cosmological models with a viscous fluid in a Kaluza-Klein metric, Astropys. Space Sci. 301 (2006) 47.
[33] F. Rahaman, M. Kalam and S. Chakraborty, Wormholes with varying equation of state parameter, Acta Phys. Pol. B 40 (2009) 25.
[34] U. Mukhopadhyay, P. P. Ghosh and S. B. D. Choudhary, ACDM universe: A phenomenological approach with many possibilities, Int. J. Mod. Phys. D 17 (2008) 301.
[35] S. Ray, F. Rahaman, U. Mukhopadhyay and R. Sarkar, Variable equation of state for generalized dark energy model, Int. J. Theor. Phys. 50 (2011) 2687.
[36] O. Akarsu and C. B. Kilinc, LRS Bianchi type-I models with anisotropic dark energy and constant deceleration parameter, Gen. Relativ. Gravit. 42 (2010) 119.
[37] O. Akarsu and C. B. Kilinc, LRS Bianchi type-III models with anisotropic dark energy, Gen. Relativ. Gravit. 42 (2010) 763.
[38] Antonio De Felice and S. Tsujikawa, $f(R)$ Theories, Living Rev. Relativity 13 (2010) 3.
[39] S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution, Physics Reports 692 (2017) 1-104.
[40] S. Capozziello and M.D. Laurentis, Extended Theories of Gravity, Physics Reports 509 (2011) 167-321.
[41] T. Clifton et al., Modified Gravity and Cosmology, Physics Reports 513 (2012) 1-189.
[42] T. P. Sotiriou and V. Faraoni, $f(R)$ Theories of Gravity, Rev. Mod. Phys. 82 (2010) 451.
[43] S. Capozziello, Curvature Quintessence, Int. J. Mod. Phys. D 11 (2002) 483-491.
[44] E.J. Copeland, M. Sami, and S. Tsujikawa, Dynamics of Dark Energy, Int. J. Mod. Phys. D 15 (2006) 1753-1935.
[45] S. Nojiri and S.D. Odintsov, Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration, Phys. Rev. D 68 (2003) 123512.
[46] V.K. Oikonomou, Unifying inflation with early and late dark energy epochs in axion $F(R)$ gravity, *Phys. Rev. D* **103** (2021) 044036.

[47] V.K. Oikonomou and I. Giannakoudi, A panorama of viable $F(R)$ gravity dark energy models, *Int. J. Mod. Phys. D* **31** (2022) 2250075.

[48] T. Harko *et al.*, $f(R,T)$-Gravity, *Phys. Rev. D* **84** (2011) 024020.

[49] F. G. Alvarenga, A. de la Cruz-Dombriz, M. J. S. Houndjo, M. E. Rodrigues and D. Saez-Gomez, Dynamics of scalar perturbations in $f(R,T)$ gravity, *Phys. Rev. D* **87** (2013) 103526, Erratum: *Phys. Rev. D* **87** (2013) 129905. https://arxiv.org/abs/1302.1866[gr-qc]; P. K. Sahoo, P. Sahoo, B. K. Bishi and S. Aygün, Magnetized strange quark matter in $f(R,T)$ gravity with bilinear and special form of time varying deceleration parameter, *New Astronomy*, **60** (2018) 80; P. H. R. S. Moraes, P. K. Sahoo, G. Ribeiro and R. A. C. Correa, A cosmological scenario from the Starobinsky model within the $f(R,T)$ formalism, *Int. J. Mod. Phys. D* **31** (2012) 13341344; K. S. Adhav, LRS Bianchi type-I cosmological model in $f(R,T)$ theory of gravity, *Astrophys. Space Sci.* **339** (2012) 365369; R. Chaubey and A. K. Shukla, A new class of Bianchi cosmological models in $f(R,T)$ theory of gravity, *Eur. Phys. J. C* **74** (2014) Article 3070, 1-11.

[50] R. Myrzakulov, Dark energy in $F(R,T)$ gravity, *arXiv:1205.5266[physics.gen-ph]* (2012)

[51] M. J. S. Houndjo and M. Houndjo, Reconstruction of $f(R,T)$ gravity describing matter dominated and accelerated phases, *Int. J. Mod. Phys. D* **21** (2012) 1250003.

[52] M. Jamil, D. Momeni, M. Raza and R. Myrzakulov, Reconstruction of some cosmological models in $f(R,T)$ cosmology, *Eur. Phys. J. C* **72**, (2012) 1999.

[53] M. Sharif, S. Rani and R. Myrzakulov, Analysis of $F(R,T)$ gravity models through energy conditions, *Eur. Phys. J. Plus* **128** (2013) 123.

[54] M. J. S. Houndjo, F. G. Alvarenga, M. E. Rodrigues, D. F. Jardim and R. Myrzakulov, Thermodynamics in Little Rip cosmology in the framework of a type of $f(R, T)$ gravity, *Eur. Phys. J. Plus* **129** (2014) 171.

[55] N. Ahmed and A. Pradhan, Bianchi type-V cosmology in $f(R,T)$ gravity with $\Lambda(T)$, *Int. J. Theor. Phys.* **53** (2014) 289.

[56] C. P. Singh and P. Kumar, Friedmann model with viscous cosmology in modified $f(R,T)$ gravity theory, *Eur. Phys. J. C* **74** (2014) Article 3070, 1-11.

[57] P. H. R. S. Moraes, Cosmological solutions from induced matter model applied to 5D $f(R,T)$ gravity and the shrinking of the extra coordinate, *Eur. Phys. J. C* **75** (2015) 168.

[58] P. K. Sahoo and M. Sivakumar, LRS Bianchi type-I cosmological model in $f(R,T)$ theory of gravity with $\Lambda(T)$, *Astrophys. Space Sci.* **357** (2015) 60.
[59] P. K. Sahoo, B. Mishra and S. K. Tripathy, Kaluza–Klein cosmological model in $f(R, T)$ gravity with $\Lambda(T)$, *Int. J. Phys.* 90 (2016) 485-493.

[60] M. Zubair, H. Ali and M. Syed, Dynamics of Bianchi type I, III and Kantowski-Sachs solutions in $f(R, T)$ gravity, *Astrophys. Space Sci.* 361 (2016) 149.

[61] G. P. Singh, B. K. Bishi and P.K. Sahoo, Scalar field and time varying cosmological constant in $f(R, T)$ gravity for Bianchi type-I universe, *Chin. J. Phys.* 54 (2016) 244-255.

[62] P. K. Sahoo, S. K. Sahu and A. Nath, Anisotropic Bianchi-III cosmological model in $f(R, T)$ gravity, *Eur. Phys. J. Plus*, 131 (2016) 18.

[63] S. Bhattacharjee, P. K. Sahoo, Constraining $f(R, T)$ Gravity from the Dark Energy Density Parameter Ω_Λ, *Gravitation and Cosmology* 26 (2020) 281.

[64] M. J. S. Houndjo, O. F. Piattella, Reconstruction of $f(R, T)$ Gravity Describing Matter Dominated and Accelerated Phases, *Int. J. Mod. Phys. D* 21 (2012) 1250003.

[65] A. Pasqua, S. Chattopadhyay, I. Khomenko, A reconstruction of modified holographic Ricci dark energy in $f(R, T)$ gravity, *Cond. J. Phys.* 91 (2013) 632.

[66] J. K. Singh and N. K. Sharma, Bianchi type-II dark energy model in $f(R, T)$ gravity, *Int. J. Theor. Phys.* 53 (2014) 1424.

[67] D.R.K. Reddy, R.S. Kumar and T.V.P. Kumar, Bianch type-III dark energy model in $f(R, T)$ gravity, *Int. J. Theor. Phys.* 52 (2013) 239.

[68] R. Zaregonbadi, M. Farhoudi and N. Riazi, Dark matter from $f(R, T)$ gravity, *Phys. Rev. D* 94 (2016) 084052.

[69] M. Z. Bhatti, Z. Youraf and M. Youraf, Stability of self-gravitating anisotropic fluids in $f(R, T)$ gravity, *Physics of the Dark Universe* 28 (2020) 100501.

[70] V. Singh and C. P. Singh, Modified $f(R, T)$ gravity theory and scalar field cosmology, *Astrophys. Space Sci.* 356 (2015) 153.

[71] T. B. Goncalves, J. L. Rosa and F. S. Lobo, Cosmology in scalar-tensor $f(R, T)$ gravity, *Phys. Rev. D* 105 (2022) 064019.

[72] V.U.M. Rao and D.C.P. Rao, Five dimensional anisotropic dark energy model in $f(R, T)$ gravity, *Astrophys. Space Sci.* 357 (2015) 65.

[73] M.F. Shamir, Exact solutions of Bianchi type-V spacetime in $f(R, T)$ gravity, *Int. J. Theore. Phys.* 54 (2015) 1304.

[74] P. Sahoo et al., Bouncing scenario in $f(R, T)$ gravity, *Mod. Phys. Lett. A* 35 2050095.

[75] S. Bhattacharjee and P.K. Sahoo, Comprehensive analysis of a non-singular bounce in $f(R, T)$ gravitation, *Physics of the Dark Universe* 28 (2020) 100537.

[76] S. Bhattacharjee and P.K. Sahoo, Big Bang nucleosynthesis and entropy evolution in $f(R, T)$ gravity, *The European Physical Journal Plus* 135 (2020) 350.

[77] P.K. Sahoo and S. Bhattacharjee, Gravitational baryogenesis in non-minimal coupled $f(R, T)$ gravity, *Int. J. Theore. Phys.* 59 (2020) 1451.

[78] J.L. Rosa et al., Thick branes in the scalar-tensor representation of $f(R, T)$ gravity, *The European Physical Journal C* 81 (2021) 1.
[79] R. Zia, D. C. Maurya and A. Pradhan, Transit dark energy string cosmological models with perfect fluid in $F(R,T)$-gravity, *International Journal of Geometric Methods in Modern Physics* **15** (2018) 1850168.

[80] D. C. Maurya, Transit cosmological model with specific Hubble parameter in $F(R,T)$ gravity, *New Astronomy* **77** (2020) 101355.

[81] D. C. Maurya, A. Pradhan, A. Dixit, Domain walls and quark matter in Bianchi type-V universe with observational constraints in $F(R,T)$ gravity, *Int. J. Geom. Meth. Mod. Phys* **17** (2020) 2050014.

[82] E. Elizalde, N. Godani and G. C. Samanta, Cosmological dynamics in R^2 gravity with logarithmic trace term, *Physics of the Dark Universe* **30** 100618.

[83] B. Deb and A. Deshamukhya, Constraining logarithmic $f(R,T)$ model using Dark Energy density parameter Ω_Λ and Hubble parameter H_0, (2022) https://arxiv.org/abs/2207.10610 [gr.qc].

[84] F.G. Alvarenga, M.J.S. Houndjo, A.V. Monwanou, and Jean B. Chabi Orou, Testing some $f(R,T)$ gravity models from energy conditions, *J. Mod. Phys.* **4** (2013) 130-139.

[85] S. Agrawal, R. K. Pandey and A. Pradhan, LRS Bianchi type-II perfect fluid cosmological models in normal gauge for Lyra’s manifold, *Int. J. Theor. Phys.* **50** (2011) 296.

[86] A. Pradhan, S. Agrawal and G. P. Singh, LRS Bianchi type-I universe in Barber’s second self creation theory, *Int. J. Theor. Phys.* **48** (2009) 158.

[87] E. Macaulay *et al.*, First cosmological results using type Ia supernovae from the dark energy survey: measurement of the Hubble constant, *Mon. Not. R. Astro. Soc.* **486** (2019) 2184.

[88] C. Zhang *et al.*, four new observational $H(z)$ data from luminous red galaxies in the sloan digital sky survey data release seven, *Res. Astron. Astrophys.* **14** (2014) 1221.

[89] D. Stern *et al.*, Cosmic chronometers: constraining the equation of state of dark energy-ω: $H(z)$ measurements, *J. Cosmol. Astropart. Phys.* **1002** (2010) 008.

[90] E.G. Naga *et al.*, Clustering of luminous red galaxies-IV: Baryon acoustic peak in the line-of-sight direction and a direct measurement of $H(z)$, *Mon. Not. R. Astro. Soc.* **399** (2009) 1663.

[91] D.H. Chauang, Y. Wang, Modelling the anisotropic two-point galaxy correlation function on small scales and single-probe measurements of $H(z)$, $DA(z)$ and $f(z)$, $\sigma(z)$ from the sloan digital sky survey DR7 luminous red galaxies, *Mon. Not. R. Astro. Soc.* **435** (2013) 255.

[92] S. Alam *et al.*, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, *Mon. Not. R. Astron. Soc.* **470** (2017) 2617.

[93] A.L. Ratsimbazafy, *et al.*, Age-dating luminous red galaxies observed with the Southern African Large Telescope, *Mon. Not. R. Astron. Soc.* **467** (2017) 3239.

[94] L. Anderson, *et al.*, The clustering of galaxies in the SDSS-III Baryon oscillation Spectroscopic Survey: baryon acoustic oscillations in the data releases 10 and 11 galaxy samples, *Mon. Not. R. Astron. Soc.* **441** (2014) 24.

[95] M. Moresco, Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at $z \equiv 2$, *Mon. Not. R. Astron. Soc.* **450** (2015) L16.

[96] N.G. Busa *et al.*, Baryon acoustic oscillations in the Lyα forest of BOSS quasars, *Astron. & Astrophys.* **552** (2013) A96.
[97] M. Moresco et al., Improved constraints on the expansion rate of the Universe up to $z \sim 1.1$ from the spectroscopic evolution of cosmic chronometers, *J. Cosmol. Astropart. Phys.* **2012** (2012) 006.

[98] J. Simon, L. Verde, R. Jimenez, Constraints on the redshift dependence of the dark energy potential, *Phys. Rev. D* **71** (2005) 123001.

[99] M. Moresco et al., A 6% measurement of the Hubble parameter at $z \sim 0.45$ direct evidence of the epoch of cosmic re-acceleration, *J. Cosmol. Astropart. Phys.* **05** (2016) 014.

[100] G.F.R. Ellis, M.A.H. MacCallum, A class of homogeneous cosmological models, *Commun. Math. Phys.* **12** (1969) 108.

[101] A. K. Camlibel, I. Semiz and M. A. Feyizoglu, Pantheon update on a model-independent analysis of cosmological supernova data, *Class. Quantum Grav.* **37** (2020) 235001.

[102] D. M. Scolnic et al., The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan–STARRS1 and cosmological constraints from the combined pantheon sample, *Astrophys. J.* **859** (2018) 101.

[103] Florian Niedermann and Martin S. Sloth, Resolving the Hubble tension with new early dark energy, *Phys. Rev. D* **102** (2020) 063527.

[104] T.M. Davis, E. Mörtsell, J. Sollerman, et al., Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes *Astrophysical J.* **666** (2007) 716-725.

[105] V. Sahni, A. Shafieloo, A. A. Starobinsky, Two new diagnostics of dark energy, *Phys. Rev. D* **78** (2008) 103502.

[106] S. Nojiri, S.D. Odintsov and T. Paul, Different faces of generalized holographic dark energy, (2021) arXiv:2105.08438 [gr-qc].