Appendix S1 for the manuscript entitled “Variability in Nomadism: Environmental gradients modulate the movement behaviors of dryland ungulates”.

Dejid Nandintsetseg, Chloe Bracis, Peter Leimgruber, Petra Kaczensky, Bayarbaatar Buuveibaatar, Badamjav Lkhagvasuren, Buyanaa Chimedtorj, Shiilegdamba Enkhtuvshin, Ned Horning, Takehiko Y. Ito, Kirk Olson, John Payne, Chris Walzer, Masato Shinoda, Jared Stabach, Melissa Songer, Thomas Mueller

Ecosphere
Table S1. GPS movement dataset for calculation of movement metrics

Species	Individual ID	Habitat type	Sex	Year of data	Monthly GPS positions	Total
Mongolian gazelle (Procapra gutturosa)	61561370	Steppe	F	2016	April: 180, 180, 180, 186	732
	62676240		F	2016	May: 180, 180, 180, 186	
	62940480		F	2016	June: 180, 180, 180, 186	
	62947480		F	2016	July: 180, 180, 180, 186	
	62674330		F	2017	April: 180, 180, 180, 186	732
	62943640		F	2017	May: 180, 180, 180, 186	
	62946690		F	2017	June: 180, 180, 180, 186	
	63995810		F	2017	July: 180, 180, 180, 186	
	64520520		F	2017	April: 180, 180, 180, 186	732
	64525510		F	2017	May: 180, 180, 180, 186	
	64527510		F	2017	June: 180, 180, 180, 186	
	64461040		M	2015	July: 180, 180, 180, 186	
Goitered gazelle (Gazella subgutturosa)	60593620	Gobi desert	F	2015	April: 180, 180, 180, 186	732
	61152400		F	2015	May: 180, 180, 180, 186	
	61157410		F	2015	June: 180, 180, 180, 186	
	61320910		M	2015	July: 180, 180, 180, 186	
	61561400		M	2015	April: 180, 180, 180, 186	732
	61564490		M	2015	May: 180, 180, 180, 186	
	13549		F	2014	April: 180, 180, 180, 186	732
	13557		F	2014	May: 180, 180, 180, 186	
	13741		M	2014	June: 180, 180, 180, 186	
	13743		M	2014	July: 180, 180, 180, 186	
	13744		F	2014	April: 180, 180, 180, 186	732
	13745		F	2014	May: 180, 180, 180, 186	
Khulan (Equus hemionus)	13747	Gobi desert	M	2014	June: 180, 180, 180, 186	
	34407		M	2014	July: 180, 180, 180, 186	
	34413		M	2014	April: 180, 180, 180, 186	730
	3		F	2010	May: 180, 180, 180, 186	
	4		M	2010	June: 180, 180, 180, 186	
	7		M	2010	July: 180, 180, 180, 186	
	6441		M	2010	April: 180, 180, 180, 186	661
	6446		F	2010	May: 180, 180, 180, 186	
	7376		F	2010	June: 180, 180, 180, 186	
Saiga antelope (Saiga tatarica mongolica)	111	Gobi desert	F	2007	April: 135, 146, 137, 146	564
	112		F	2007	May: 141, 142, 132, 134	549
	113		F	2007	June: 133, 139, 131, 136	539
	62060790		F	2016	July: 180, 180, 180, 186	
	62068770		F	2016	April: 180, 180, 180, 186	783
	62670350		F	2016	May: 180, 180, 180, 186	
	62673340		M	2016	June: 180, 180, 179, 36	581
	62679330		F	2016	July: 180, 180, 180, 36	582
Total GPS positions						27368
Figure S1. The distribution of 4-h step lengths across species. The median distance across species was ~ 1km that leads us to select radius of 1 km for recursion analysis.

Figure S2. Recursion estimates at radii of 0.1 to 5 km in increments of 0.1 km.
Figure S3. Movement metrics derived from radius of 1 km and 4-h threshold and the resulting relationship of PC1 and PC2 from the PCA.

Figure S4. Movement metrics derived from radius of 1 km and 12-h threshold and the resulting relationship of PC1 and PC2 from the PCA.

Table S2. The one-way ANOVA test was significant for movement metrics of daily
displacement ($F_{(3,33)} = 20.45, p < 0.05$), 10-day displacement ($F_{(3,34)} = 12.52, p < 0.05$), revisit rates ($F_{(3,36)} = 7.12, p < 0.05$), and residence time ($F_{(3,36)} = 5.76, p < 0.05$) indicating that some of group means are different. The ANOVA test was not significant for return time ($F_{(3,36)} = 2.32, p = 0.09$), indicating there were no statistically significant differences between species means for the return time. The pairwise comparisons between species for each of the movement metrics were performed using the Tukey post-hoc test. Significant codes: *$p<0.05$, **$p<0.01$, ***$p<0.001$. p-values are shown for non-significant comparisons. Note that we did not use Tukey post hoc analysis for return time because ANOVA test did not show significant difference among species.

Species	Daily displacement (km)	10-day displacement (km)	Revisits	Residence time (days)	Time to return (days)					
	Mean	Std. Deviation								
Mongolian gazelle	4.6	1.4	20.9	10.4	3.6	3.2	1.9	1.6	5.8	2.8
Goitered gazelle	2.3	0.8	7.9	7.1	3.6	3.2	12	6.8	3	1.4
Saiga antelope	4.9	1.2	14.8	6.9	3.6	3.2	4.6	3.9	4.7	4.2
Khulan	7	1.3	31	8.7	3.6	3.2	4.6	5.8	4.2	1.9
Goitered gazelle	***	0.93	***	0.46	***	0.79	***	0.65	***	1.0
Saiga antelope	***	0.93	***	0.05	*	0.98	**	0.98	*	
Khulan	***	0.93	***	0.05	*	0.98	**	0.98	*	

Table S3. Model coefficients, r^2 and sample sizes of linear mixed effects models predicting the variability in movement behavior. The predictor variable was NDVI and the random variable was species. We calculated the marginal r^2 (variance explained by the fixed effects) and conditional r^2.
(variance explained by both fixed and random factors) values for the model using the “MuMIn” R package. *p<0.05, **p<0.01, ***p<0.001.

Covariate	Estimate	Std.Error	df	t value	p value
(Intercept)	-4.91	2.45	15.77	-2.002	0.06
log NDVI	-2.46	1.09	20.66	-2.25	0.03*
r2 Marginal	0.21				
r2 Conditional	0.59				
Species	4				
Individuals	40				

Table S4. Model coefficients, r² and sample sizes of linear mixed effects models, which does not include Mongolian gazelle in the mesic steppe, predicting the variability in movement behavior. The predictor variable was NDVI and the random variable was species. We calculated the marginal r² (variance explained by the fixed effects) and conditional r² (variance explained by both fixed and random factors) values for the model using the “MuMIn” R package. *p<0.05, **p<0.01, ***p<0.001

Covariate	Estimate	Std.Error	df	t value	p value
(Intercept)	-13.43	6.13	26.97	-2.192	0.037
log NDVI	-6.03	2.565	26.77	-2.35	0.026*
r2 Marginal	0.12				
r2 Conditional	0.63				
Species	3				
Individuals	29				