Protein family review

The Hedgehog protein family

Thomas R Bürglin

Address: Department of Biosciences and Nutrition, Karolinska Institutet, and School of Life Sciences, Södertörn University, Hälsövägen 7, SE-141 57 Huddinge, Sweden. Email: thomas.burglin@ki.se

Summary

The Hedgehog (Hh) pathway is one of the fundamental signal transduction pathways in animal development and is also involved in stem-cell maintenance and carcinogenesis. The hedgehog (hh) gene was first discovered in *Drosophila*, and members of the family have since been found in most metazoa. Hh proteins are composed of two domains, an amino-terminal domain HhN, which has the biological signal activity, and a carboxy-terminal autocatalytic domain HhC, which cleaves Hh into two parts in an intramolecular reaction and adds a cholesterol moiety to HhN. HhC has sequence similarity to the self-splicing inteins, and the shared region is termed Hint. New classes of proteins containing the Hint domain have been discovered recently in bacteria and eukaryotes, and the Hog class, of which Hh proteins comprise one family, is widespread throughout eukaryotes. The non-Hh Hog proteins have carboxy-terminal domains (the Hog domain) highly similar to HhC, although they lack the HhN domain, and instead have other amino-terminal domains. Hog proteins are found in many protists, but the Hh family emerged only in early metazoan evolution. HhN is modified by cholesterol at its carboxyl terminus and by palmitate at its amino terminus in both flies and mammals. The modified HhN is released from the cell and travels through the extracellular space. On binding its receptor Patched, it relieves the inhibition that Patched exerts on Smoothened, a G-protein-coupled receptor. The resulting signaling cascade converges on the transcription factor Cubitus interruptus (Ci), or its mammalian counterparts, the Gli proteins, which activate or repress target genes.

Published: 19 November 2008

Genome Biology 2008, 9:241 (doi:10.1186/gb-2008-9-11-241)

The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2008/9/11/241

© 2008 BioMed Central Ltd

Gene organization and evolutionary history

Hedgehog (Hh) proteins are composed of two distinct domains, the amino-terminal ‘Hedge’ domain (HhN), and the carboxy-terminal ‘Hog’ domain (HhC) (Figure 1 and Box 1). The founding member of the hh gene family was first discovered in genetic screens in *Drosophila melanogaster* [1] and, once the gene was cloned [2-4], vertebrate members were soon found [5-7]. *Drosophila* has a single hh gene, mammals have three paralogous genes, called Sonic Hedgehog (*Ssh*), Indian Hedgehog (*Ihh*), and Desert Hedgehog (*Dhh*), and the cnidarian *Nematostella vectensis* has two paralogous hh genes, *Nu_HH1* and *Nu_HH2* [8]. The hh gene family is present throughout the Eumetazoa, although it has been lost in some nematodes. For example, *Caenorhabditis elegans* has no hh gene but has other genes related to hh via the Hog domain. These hh-related genes have been grouped into different families, such as Warthog (wrt), Groundhog (grd), and Quahog (qua), and are characterized by having amino-terminal sequences distinct from HhN [9,10].

Soon after the discovery of the fly and vertebrate Hh proteins, it was noticed that their carboxy-terminal auto-proteolytic domains were similar in sequence to the self-splicing inteins [11]. Inteins are protein sequences that autocatalytically splice themselves out of longer protein precursors - analogous to introns - and ligate the flanking regions into a functional protein [12,13]. The determination of the X-ray structure of the *Drosophila* HhC domain confirmed this similarity, and the region of similarity was named the Hint module [14] (see Figure 1). More recently, new classes of Hint-containing proteins with various types of processing activity have been recognized in bacteria and eukaryotes [10,13,15,16] (Figure 2). Intein-containing genes...
are present in all three kingdoms of life, but Hog genes and Vint genes - a novel class of proteins sharing a VWA domain (von Willebrand factor type A domain) and a Hint domain - are known only from eukaryotes at present (Figure 2).

Initially, Hog genes, primarily members of the Hh family, were found only in metazoa, but they have recently been found in many different branches of protists [10,13,17,18] (Figure 3). This widespread distribution indicates that the Hog domain must be of ancient origin and have emerged early in eukaryote evolution. Hog genes are absent in higher plants and several fungal clades, which is presumably due to

Box 1. Terminology

Hint domain/module: an autoproteolytic domain/module originally described in Hedgehog proteins and self-splicing inteins. The Hint-containing group of proteins encompasses several distinct classes, such as inteins, the Hog proteins (including the Hh family), as well as as Bil-A, Bil-B, and Vint.

Hog proteins: class of Hint proteins with a distinct subtype of Hint domain and a carboxy-terminal ARR found in many eukaryotic phyla. The Hint and ARR regions together comprise the Hog domain.

Hedgehog (Hh): one family of Hog proteins found in eumetazoa, composed of an amino-terminal Hedge (HhN) domain and a carboxy-terminal Hog (HhC) domain.

Hedge domain: comprehensive term for the amino-terminal domain of Hh proteins and of Hedgling proteins (which lack a Hog domain).

HhN and HhC: amino-terminal and carboxy-terminal domains specifically of Hh family proteins.

Hh-related genes: a comprehensive term used for those Hog proteins that have amino-terminal domains different from that of Hh, for example, the Quahog, Warthog, and Groundhog families in nematodes.

SRR: sterol-recognition region, the cholesterol-binding site of HhC.

ARR: adduct recognition region in the Hog domain of Hh-related proteins.
gene loss. Many of the protist Hog proteins, as well as the metazoan non-Hh Hog proteins - referred to as Hh-related proteins - have putative secreted domains upstream of the Hog domain [10]. In most cases these upstream regions show conservation only with related Hog genes within the same phylum, suggesting a gradual evolution of the amino-terminal regions within each phylum. In a few instances, such as the fungus Glomus mosseae [17], the choanoflagellate Monosiga ovata [18], and the sponge Amphimedon queenslandica [19], the Hog domain is fused to other well-conserved domains, indicative of a merging of two distinct domains.

The Hedge domain seems to be of more recent origin. It has been found in sponges and Cnidaria in a large extracellular membrane protein called Hedgling [19]. In addition to the Hedge domain at the amino terminus, Hedgling contains many additional domains, such as a VWA domain and numerous cadherin repeats, but lacks a Hog domain [10,19]. A second, divergent fragment of a Hedge domain has been found in the sponge Oscarella carmela that also seems to lack a Hog domain [10,20]. At present, no hh genes have been found in sponges, but they are present in Cnidaria. Two scenarios can be envisaged for the emergence of Hh proteins proper (Figure 4). One is that the Hedge domain evolved from a secreted amino-terminal domain already associated with the Hog domain. Hedgling is then derived from Hh by a ‘split’ of Hedge from Hog before the emergence of sponges. The other is that the Hedge domain evolved in an extracellular protein such as Hedgling. During the emergence of Eumetazoa, the Hedge domain ‘fused’ with a Hog protein to give rise to Hh. Examples of both domain split and loss and domain-merging events are documented for Hog proteins, and therefore do not help to discriminate between alternative scenarios.
Very recent findings have led to a revised understanding of the evolution of \(hh\) genes and the \(hh\)-related genes in metazoa. In *Drosophila* and vertebrates only \(hh\) genes are found, but both \(hh\) and \(hh\)-related genes are present in the Cnidaria, nematodes and also the Lophotrochozoa [8,10]. I have searched the genome sequences of two lophotrochozoan species, the limpet *Lottia gigantea* and the polychaete worm *Capitella* ECS-2004, and retrieved one \(hh\) gene and six \(hh\)-related genes from *L. gigantea* and one \(hh\) gene and one \(hh\)-related gene from *Capitella*. These sequences have been combined with previously published sequences to generate a new phylogenetic tree based on the Hog domain (Figure 5). The most interesting observation from the tree is that the \(hh\)-related genes Cap_213608 and Lg_236513 form a clade, and these two sequences also share sequence similarity just upstream of the Hog domain. Therefore, it seems likely that a new \(hh\)-related gene family, which I refer to as ‘Lophohog’, exists in the Lophotrochozoa and developed in parallel with Hh. On the basis of this observation, the following model could be proposed for the evolution of \(hh\) and \(hh\)-related genes in metazoa (see Figure 4). I suggest that at least one \(hh\) and one \(hh\)-related gene existed at the origin of the Eumetazoa, giving rise to \(hh\) and \(hh\)-related genes in the Cnidaria, Lophotrochozoa and nematodes. In *Drosophila* and deuterostomes the \(hh\)-related gene was lost, whereas in the nematode branch leading to *C. elegans*, \(hh\) was lost. The most radical alternative scenario would be that the \(hh\)-related genes in Cnidaria, Lophotrochozoa, and nematodes are all derived independently from a \(hh\) gene in each phylum. Intermediate scenarios, where \(hh\)-related genes evolved from a \(hh\) gene only in one or two phyla, could also be possible. Phylogenetic analysis does not give definitive answers yet, but may resolve the question in the future, when additional genomes are sequenced.

Figure 4

One possible scenario for the evolution of \(hh\) and \(hh\)-related genes in metazoa. Different phylogenetic branches are outlined, and gene families known at present are shown. Dotted lines indicate uncertain evolutionary connections. Hedgling genes are currently known only from sponges and Cnidaria [8,10,19]. The Hh family could have originated in two possible ways. (a) The Hedge domain evolved concomitantly with the Hog domain from a protist Hog protein before the emergence of the Metazoa. A duplication of the Hedge domain and merger with an extracellular protein gave rise to the Hedgling gene. (b) No \(hh\) gene existed at the emergence of sponges. The Hedge domain of a Hedgling gene duplicated and merged with a Hog gene to give rise to \(hh\) in early Eumetazoa. Cnidaria, Lophotrochozoa and nematodes contain both Hh as well as other Hog family genes. The phylogenetic analysis cannot unequivocally resolve whether these other families originated from a single ancestor in Eumetazoa - as shown here with dotted lines - or whether, at least in some phyla, duplication and divergence from a \(hh\) gene gave rise to new families in particular phyla.
Neighbor-joining phylogenetic tree of eukaryote Hog domain protein sequences. The Hh, Groundhog (Grd), Warthog (Wrt), Quahog (Qua), and new Lophohog families are indicated. Sequence names are color-coded according to phyletic divisions, except for sponges. Chromadorea and Enoplea are two major nematode divisions. Protist is loosely used to encompass all non-metazoans. The Hint domains of Vint proteins were used as outgroup and bootstrap values ≥ 40 % are shown. Most of the sequences and the analysis methods are described in [10]. Additional sequences were added to this analysis from sponges [19], and BLAST searches were carried out at JGI [72] of the genomes of L. gigantea and Capitella I ECS-2004. From Capitella I ECS-2004 one hh and one hh-related gene were retrieved, and from L. gigantea one hh and six other Hog genes were retrieved. Capitella Cap_213608 and L. gigantea Lg_236513, which encodes an export signal peptide, form a clade, although not with high bootstrap significance. Interestingly, this clade clusters with the Cnidarian hh-related genes - although bootstrap values are insignificant. Five L. gigantea Hog genes (Lg_173620, Lg_173619, Lg_237232, Lg_FC606200, Lg_229767) form a distinct clade, but these genes are very divergent from the Hog domains of the other metazoan genes. These genes encode only a few residues upstream of the Hog domain (7-15), and lack an export signal peptide. This unusual structure is confirmed by multiple expressed sequence tags (ESTs) for each gene. Do these genes represent a highly divergent form of Hog-only proteins in this gastropod, or do they stem from another organism, perhaps some ciliated protozoan parasite found in L. gigantea [73]? More analysis will be necessary to resolve this.
Characteristic structural features

Hh proteins are synthesized as precursor proteins (about 400-460 amino acids long) and comprise several different motifs and domains: a signal peptide for protein export, a secreted amino-terminal HhN (Hedgehog) domain that acts as a signaling molecule, and an autocatalytic carboxy-terminal HhC (Hog) domain that contains a Hint module (see Figure 1). Multiple sequence alignments of the HhN and HhC domains defining the conserved residues and features have been presented in [10]. HhN binds cholesterol in the sterol-recognition region (SRR) [21]. The catalytic activity of the Hint module cleaves Hh into two parts and adds the cholesterol moiety to the carboxyl terminus of HhN (Figure 1b). The structure of *Drosophila* HhC has been determined using X-ray crystallography and shows a high congruence with that of inteins [14]. The structure is globular, composed of β strands, and starts with a cysteine residue critical for autoprocessing (Figure 1b). The nematode Hh-related protein WRT-1 was shown to be autoprocessed like Hh [22]. Given that the critical residues of the active site of HhC are well conserved among Hog proteins [10,14], it can be assumed that most, if not all, are autoprocessed. However, it is not known what adduct binds to the adduct-recognition region (ARR) of Hh-related proteins. Intriguingly, the ARR regions of some of the protist Hog proteins contain motifs conserved with the Hh SRR [10], suggesting that sterol binding might be an ancient feature.

The structure of the HhN domain of mouse Shh has also been determined [25]. It is a relatively globular domain with two antiparallel α helices and several β strands wrapping one face of the two helices. Although it was found to have a potential catalytic site, no enzymatic activity has been uncovered so far [24]. In addition to the cholesterol modification, the HhN domain is also modified at its amino terminus by palmitate through the action of a transmembrane acyltransferase, named Skinny hedgehog (Ski, also known as Rasp) in *Drosophila* [25], and hedgehog acyltransferase (HHAT) in mammals [26]. Because of these lipid modifications, the modified HhN domain (M-HhN) can form multimeric complexes [27,28] and can interact with lipoproteins [29]. *Drosophila* Ihog (interference hedgehog) and its mammalian orthologs Cdo and Boc are M-HhN-interacting proteins that are required for normal Hh signaling. They are type I integral membrane proteins with four extracellular immunoglobulin-like domains and two extracellular fibronectin type III domains. Biochemical and structural studies of complexes of *Drosophila* HhN and Ihog show that heparin induces dimerization of Ihog, a prerequisite for high-affinity interactions between M-HhN and Ihog [30]. Biochemical and structural studies of complexes of mouse ShhN and Cdo revealed a different mode of binding, where a calcium-binding site in ShhN is important for the interaction [31]. Therefore, although the structures of fly HhN and mouse ShhN are conserved, the mode of interaction is not necessarily conserved in evolution.

Localization and function

An export signal peptide targets newly synthesized Hh to the endoplasmic reticulum, where autoprocessing, as well as palmitoylation, of the HhN domain occurs [26,28]. The modified HhN is released from the cell with the aid of the 12-pass transmembrane protein Dispatched (Disp). Once released into the extracellular environment, M-HhN interacts with a number of different proteins: the heparin-sulfate proteoglycan Dally-like (Dlp), and the proteins Ihog and growth-arrest-specific 1 (Gas1) are positive regulators of Hh signaling, whereas Hh-interacting protein (Hip) acts as a negative regulator by sequestering M-HhN. The lipid modification of HhN as well as the extracellular protein interactions influences extracellular movement and ensure correct short- and long-range signaling (see, for example, [28]).

The key function of M-HhN as an extracellular signal is to inhibit the activity of the receptor Patched (Ptc), a 12-pass transmembrane protein. Ptc is closely related to Disp and shares similarity with the bacterial family of resistance-nodulation division (RND) proton pumps that transport small molecules across membranes. Numerous reviews deal with the biological function of the Hh pathway and its components [32-52]. Figure 6 shows a summary of the pathway composed from *Drosophila* and mammalian data (although a number of important differences exist between the pathways in these two groups of organisms). Briefly, in the absence of M-HhN binding, Ptc represses a signaling pathway that acts through Smoothened (Smoo), a seven-pass G-protein-coupled receptor. Smoo is negatively regulated by pro-vitamin D3, and is positively, but indirectly, regulated by oxysterols (oxygenated derivatives of cholesterol) [53-55]. 7-Dehydrocholesterol reductase, which converts pro-vitamin D3 into cholesterol, is also a regulator of Hh signaling [56]. Another important aspect of Smo activity is its subcellular localization. When M-HhN binds to Ptc, the complex is internalized while Smo translocates to the cell membrane or - in mammals - to the primary cilia. Localization of Smo to the primary cilia is a fundamental requirement for the pathway to be active, and in the absence of M-HhN, Ptc inhibits this localization [57]. How exactly Ptc inhibits Smo is still not clear and numerous models are being contemplated (see, for example, [38,41,52]). Because of the similarity of Ptc to bacterial transporters, Ptc could secrete a pro-vitamin D3 or related molecule to inhibit Smo. Activated Smo is phosphorylated and signals via a cascade of microtubule-associated proteins to the nucleus, where the transcription factor Cubitus interruptus (Ci) in *Drosophila* or its mammalian counterparts, the Gli transcription factors, activate or repress target genes. Among the many target genes regulated by mammalian GliI are those for Ptc and GliIi themselves. This results in feedback loops in which upregulation of Ptc leads to negative feedback, whereas upregulation of GliI leads to positive feedback.

In animal development, the secreted M-HhN moiety functions as a morphogen. The Hh signaling pathway plays...
many important roles in development, including conferring segment polarity on the body segments and patterning the wing in *Drosophila*, and patterning the neural tube in mammals [39,48,58]. Hh is also required for stem-cell maintenance, and mutations in the pathway lead to cancer. Increased activity of the pathway causes basal cell carcinoma and medulloblastoma [37,59-63]. For example, insufficient Ptc function leads to Gorlin syndrome in humans, one feature of which is an increased risk of basal cell skin cancer.

In mammals, Shh, Dhh, and Ihh have partially redundant functions. Shh is the most widely expressed of the three paralogs, and regulates development from embryo to adult. Key roles are in patterning the neural tube: Shh is first expressed in the notochord, and later in the floor plate of the neural tube, where it produces a gradient of activity in the ventral neural tube. Shh is also expressed in the zone of polarizing activity of the limb buds and is important for limb and digit formation. Other roles of Shh include inner ear, eye, taste bud, and hair follicle development. Ihh is expressed in the primitive endoderm and is required for bone growth and pancreas development. Shh and Ihh both play roles in cardiovascular development. Dhh is expressed in the gonads, and Dhh-mutant males are sterile [39,48,64].

Frontiers

Despite substantial insights into the Hh signaling pathway, there are still many gaps in our understanding. How, and in
which forms, the M-HhN morphogen travels from the signaling cells to the target cells requires further investigation. Obviously, the number of potential interactors in the extracellular matrix and extracellular space is vast, and any changes therein could influence how M-HhN propagates. And could the M-HhN domain potentially have functions other than to regulate the Ptc-Smo interaction? Clearly, the amino-terminal domains of Hh-related proteins in protists and nematodes, as well as Hh in Enoplea [10] must have other functions, as there is no bona fide Hh signaling pathway in these organisms. The inhibition of Smo by Ptc and the role of sterol compounds also need further investigation to unravel the action of sterols on Smo, and to determine how Ptc is involved in this regulation. The Hh signaling pathway has been compared to the Wnt pathway, another key signaling pathway in development, since some of the molecules in the pathways have similarities to each other [65]. However, the Hh signaling pathway is unusual and different from other signaling pathways in that the primary morphogen, M-HhN, does not directly act on the key receptor, Smo. Perhaps the Smo signaling pathway was originally part of a sterol homeostasis pathway. M-HhN and Ptc could then be viewed as secondary modifiers of the Smo pathway. Did they originally have other functions? For example, the Ptc homolog PTC-1 in C. elegans functions in the absence of Smo and plays a role in oocyte cytokinesis [66].

A substantial number of components of the Smo signaling cascade leading to the nucleus have been uncovered, though many of the interactions still need to be better understood. Did they originally have other functions? For example, the Ptc homolog PTC-1 in C. elegans functions in the absence of Smo and plays a role in oocyte cytokinesis [66].

Acknowledgements
I would like to thank Peter Zaphiropoulos for critical reading of the manuscript. TRB is supported by the Center of Biosciences.

References
1. Nüsslein-Volhard C, Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature 1980, 287:795-801.
2. Mohler J, Vani K: Molecular organization and embryonic expression of the hedgehog gene involved in cell-cell communication in segmental patterning of Drosophila. Development 1992, 115:957-971.
3. Lee JJ, van Kessel DP, Parks S, Beachy PA: Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 1992, 71:133-50.
4. Tabata T, Eaton S, Kornberg TB: The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev 1992, 6:2635-2645.
5. Echeard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP: Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993, 75:1417-1430.
6. Krauss S, Concordet J-P, Ingham PW: A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 1993, 75:1431-1444.
7. Riddle R, Johnson RL, Lafer U, Tabin C: Sonic hedgehog mediates the ZPA of polarizing activity. Cell 1993, 72:401-416.
8. Matus DQ, Magie CR, Pang K, Martindale MQ, Thomsen GH: The Hedgehog family gene of the ctenidian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol 2008, 318:189-201.
9. Aspock G, Kagoshima H, Niklaus G, Burglin TR: Caenorhabditis elegans has scores of hedgehog-related genes: sequence and expression analysis. Genome Res 1999, 9:909-923.
10. Burglin TR: Evolution of hedgehog and hedgehog-related genes, their origin from Hog proteins in ancestral eukaryotes and discovery of a novel Hint motif. BMC Genomics 2008, 9:127.
11. Koonin EV: A protein splice-junction motif in hedgehog family proteins. Trends Biochem Sci 1995, 20:141-142.
12. Saleh L, Perler FB: Protein splicing in cis and in trans. Chem Rev 2006, 111:83-193.
13. Dassa B, Pietrokovski S: Origin and evolution of inteins and other Hht domains. In: Homing Endonucleases and Inteins. Edited by: Belfort M, Stoddard BL, Wood DW, Derbyshire V. Berlin: Springer; 2005.
14. Porter JA, Ekker SC, Park WJ, von Kessler DP, Young KE, Chen CH, Ma Y, Woods AS, Cotter RJ, Koonin EV, Beachy PA: Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell 1997, 91:85-97.
15. Amitai G, Belenky O, Dassa B, Shamis A, Pietrokovski S: Distribution and function of new bacterial intein-like protein domains. Mol Microbiol 2003, 47:61-73.
16. Dassa B, Yanai I, Pietrokovski S: New type of polyubiquitin-like genes with intein-like autoprocessing domains. Trends Genet 2004, 20:538-542.
17. Requena N, Mann P, Hamp R, Franken P: Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGIN, a novel gene with homology to the C-terminus of metazoan hedgehog genes. Plant Soil 2002, 244:129-139.
18. Snell EA, Brooke NM, Taylor WR, Casane D, Philippe H, Holland PW: An unusual choao Sagellatae protein released by Hedgehog autocatalytic processing. Proc Biol Sci 2006, 273:401-407.
19. Adamska M, Matus DQ, Adamski M, Green K, Rokhsar DS, Martin-Parras M, Degnan BH: The evolutionary origin of hedgehog proteins. Curr Biol 2007, 17:R83-R87.
20. Nichols SA, Dirks W, Pearse JS, King N: Early evolution of animal cell signaling and adhesion genes. Proc Natl Acad Sci USA 2006, 103:12451-12456.
21. Beachy PA, Cooper CK, Young KE, van Kessel DP, Park WJ, Hall TMT, Leahy DJ, Porter JA: Multiple roles of cholesterol in hedgehog protein biogenesis and signaling. Cold Spring Harb Symp Quant Biol 2002, 67:191-204.
22. Porter JA, Ekker SC, Park WJ, van Kessel DP, Young KE, Chen CH, Ma Y, Woods AS, Cotter RJ, Koonin EV, Beachy PA: Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 1996, 86:21-34.
23. Porter TMT, Hall TMT, Beachy PA, Leahy DJ: A potential catalytic site revealed by the 1.7Å crystal structure of the amino-terminal signaling domain of Sonic hedgehog. Nature 1995, 378:212-216.
24. Fuse N, Matii T, Wang B, Porter JA, Hall TMT, Leahy DJ, Beachy PA: Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for patched. Proc Natl Acad Sci USA 1999, 96:10992-10999.
25. Chamoun Z, Mann RK, Nellen D, van Kessel DP, Bellotto M, Beachy PA, Basler K: Skinny hedgehog, an sdotransferase required for palmitoylation and activity of the hedgehog signal. Science 2001, 293:2080-2084.
26. Buglino JA, Resh MD: Hhat is a palmitoylcysteine transferase with specificity for N-palmitoylation of Sonic Hedgehog. J Biol Chem 2008, 283:22076-22088.
27. Chen MH, Li YJ, Kawakami T, Xu SM, Chuang PT: Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev 2004, 18:641-659.
