2.5-Connectivity: Unique Components, Critical Graphs, and Applications

Irene Heinrich, Till Heller, Eva Schmidt, and Manuel Streicher

March 4, 2020

Abstract

If a 2-connected graph stays connected after the removal of an arbitrary vertex and an arbitrary edge, then it is called 2.5-connected. We prove that every 2-connected graph has a canonical decomposition into 2.5-connected components. These components are arranged in a tree-structure. We also discuss the connection between 2.5-connected components and triconnected components and use this to present a linear time algorithm which computes the 2.5-connected components of a graph. We show that every critical 2.5-connected graph other than K_4 can be obtained from critical 2.5-connected graphs of smaller order using simple graph operations. Furthermore, we demonstrate applications of 2.5-connected components in the context of cycle decompositions and cycle packings.

1 Introduction

Over the years, connectivity has become an indispensable notion of graph theory. A tremendous amount of proofs start with a reduction which says “The main result holds for all graphs if it holds for all sufficiently connected graphs.” Here, sufficiently connected stands for some measure of connectedness as, for example, 2-connected, 4-edge-connected, vertex-edge-connected, or just connected. Usually, first a reduction from the desired statement for general graphs to sufficiently connected graphs is proven. Then, the subsequent section starts with a sentence of the following manner: “From now on, all considered graphs are sufficiently connected.” For example, it is shown in [Tut54] that the Tutte polynomial is multiplicative over the biconnected components of a considered graph.

* Irene Heinrich has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (EngageS; grant agreement No. 820148).
† Eva Schmidt was partially funded by the Federal Ministry of Education and Research (BMBF) of Germany.
‡ Manuel Streicher was partially funded by the Federal Ministry of Education and Research (BMBF) of Germany.
Another reduction to components of higher connectivity is that finding a planar embedding can be reduced to embedding the triconnected components of the graph, cf. [Lan37].

	connected after removal of	unique components	tree-structured components	example of an application
1-vertex	✓	✓	✓	Tutte polynomial
2-vertex	✓	✓	✓	cycle decomposition
3-vertex	✓	✓	✓	planarity test

Table 1: 2.5-connectivity as an intermediate connectivity measure.

By far the largest part of the existing literature treats either k-connectivity (where, loosely speaking, graphs which stay connected even if $k - 1$ vertices are removed are considered) or k-edge connectivity (where graphs which stay connected even if $k - 1$ edges are removed are considered). We speak of mixed connectivity, when graphs are regarded which stay connected after k vertices and l edges are removed. This measure of connectivity has only rarely been studied. We refer the reader to [BWO12] for a brief survey of mixed connectivity. In [HS19] it is shown that the behaviour of cycle decompositions is preserved under splits at vertex-edge separators (that is, a vertex and an edge whose removal disconnects the graph).

Our contribution We introduce a canonical decomposition of a graph into its 2.5-connected components, where a graph is 2.5-connected if it is 2-connected and the removal of a vertex and an edge does not disconnect the graph. We prove the following decomposition theorem.

Theorem 1 (Decomposition into 2.5-connected components). Let G be a 2-connected graph. The decomposition of G into its 2.5-connected components is unique and can be computed in linear time.

Furthermore, we demonstrate that the behaviour of critical 2.5-connected graphs is preserved in their triconnected components. We obtain a result similar to Tutte’s decomposition theorem for 3-connected 3-regular graphs: all critical 2.5-connected graphs other than K_4 can be obtained from critical 2.5-connected graphs of smaller order by simple graph operations.

Finally, we show that the minimum (maximum) cardinality of a cycle decomposition of an Eulerian graph can be obtained from the minimum (maximum) cardinalities of the cycle decompositions of its 2.5-connected component. This gives new insights into a long standing conjecture of Hajós.

Techniques We demonstrate that 2.5-connected components can be defined in the same manner as triconnected components. The novel underlying idea of the present article is a red-green-colouring of the virtual edges of the triconnected components (a virtual edge of a component is not part of the original
graph but stores the information where the components need to be glued together in order to obtain the host graph. The colouring is assigned to the virtual edges during the process of carrying out splits that give the triconnected components. It preserves the information whether a virtual edge could arise in a sequence of 2.5-splits (those corresponding to a vertex-edge separator). If so, the edge is coloured green, otherwise red. We prove that the exact same colouring can be assigned to the virtual edges of the triconnected components (without knowledge of the splits that led there) in linear time. It can be exploited to obtain 2.5-connected components: glue the red edges. We show that the uniqueness of the red-green-colouring implies the uniqueness of the 2.5-connected components.

Further Related Work We refer to [Tut66] as a standard book on graph connectivity. The same topic is considered from an algorithmic point of view in [NI08]. A short overview on mixed connectivity with strong emphasis on partly raising Menger’s theorem to mixed separators can be found in Chapter 1.4 of [BWO12]. Grolhe [Grol16] introduces a new decomposition of a graph into quasi-4-connected components and discusses the relation of the quasi-4-connected components to triconnected components.

The importance of triconnected components for planarity testing was already observed in [Lan37]. Hopcroft and Tarjan [HT73] proved that these components are tree-structured and exploited this algorithmically. On this basis, Battista and Tamassia [dBT96] developed the notion of SPQR-trees. Gutwenger and Mutzel [GM00] used this result and the results of [HT73] for a linear-time algorithm that computes the triconnected components of a given graph and their tree-structure (SPQR-tree).

Outline Preliminaries and definitions are introduced in the next section. In particular, Hopcroft and Tarjan’s notions of triconnected components and virtual edges (cf. [HT73]) are explained. In Section 3 we adapt the definition of triconnected components in order to give a natural definition of 2.5-connected components. We prove that these are unique and show how they can be obtained from the triconnected components. We exploit this knowledge in Section 4 in order to give a linear time algorithm which computes the 2.5-connected components of a given graph. We characterize the critical 2.5-connected graphs in Section 5. Finally, some applications of 2.5-connected graphs are discussed in Section 6.

2 Preliminaries

If not stated otherwise, we use standard graph theoretic notation as can be found in [Die00]. Graphs may contain multiedges but no loops. A connected graph is 2-connected if for each triple of distinct vertices $(u, v, w) \in V(G)^3$ there exists a u-v-path P in G with $w \notin V(P)$. A graph of order 2 and size $\ell \geq 2$ is a multiedge (or ℓ-edge). The following notation and the results in this paragraph
are borrowed from [HT73]. Let u and v be two vertices of a 2-connected graph G. We divide E(G) into equivalence classes E₁, E₂, ..., Eₖ such that two edges lie in the same class if and only if they are edges of a (possibly closed) subpath of G which neither contains u nor v internally. The classes Eᵢ are the separation classes of G with respect to {u, v}. If k ≥ 2, the tuple {u, v} is a separation pair unless k = 2 and \(\min(|E₁|, |E₂|) = 1 \), or, k = 3 and \(|E₁| = |E₂| = |E₃| = 1 \).

Let \({u, v} \) be a separation pair. For \(I \subseteq \{1, \ldots, k\} \) such that \(E' := \bigcup_{i \in I} Eᵢ \) satisfies \(\min\{|E'|, |E(G) \setminus E'|\} \geq 2 \) the graphs \(G₁ := G[E'] + uv \) and \(G₂ := G[E(G) \setminus E'] + uv \) are called split graphs of G with respect to \{u, v\}. Replacing G by \(G₁ \) and \(G₂ \) is called splitting G. The edges \(uv \) added to \(G[E'] \) and to \(G[E(G) \setminus E'] \) are called virtual edges. They are labelled in order to identify them with the split.

A 2-connected graph without a separation pair is triconnected. Graphs that result from splitting a given multigraph G as much as possible are called split components of G. More precisely: If G is triconnected, then \{G\} contains the split components of G. Otherwise, there are split graphs \(G' \) and \(\hat{G} \) of G with respect to some separation pair of G, then \{\(G₁, \ldots, G'ₖ \) \} \cup \{\(\hat{G}_₁, \ldots, \hat{G}_ₖ \) \} is a set of split components of G, where \{\(G₁, \ldots, G'ₖ \) \} (respectively \{\(\hat{G}_₁, \ldots, \hat{G}_ₖ \) \}) is a set of split components of \(G' \) (respectively \(\hat{G} \)). Split components of a graph are not necessarily unique. Consider for example a cycle of length at least 4.

If \(G₁ \) and \(G₂ \) are two split graphs with virtual edges \(e₁ \in E(G₁) \) and \(e₂ \in E(G₂) \) with the same label, then the merge graph of \(G₁ \) and \(G₂ \) is the graph with vertex set \(V(G₁) \cup V(G₂) \) and edge set \((E(G₁) \cup (E(G₂)) \setminus \{e₁, e₂\} \). The split components of G are of one of the following types:

- triangles,
- multiedges of size 3,
- other triconnected graphs.

Denote the latter set by \(\mathcal{T} \). Merge the triangles of the split components as much as possible to obtain a set of cycles \(\mathcal{C} \). Further, merge the three-edges as much as possible to obtain a set of multiedges \(\mathcal{M} \). The set \(\mathcal{C} \cup \mathcal{M} \cup \mathcal{T} \) is the set of triconnected components of G. Indeed, it is accurate to speak of the triconnected components as the following statement of Hopcroft and Tarjan [HT73] shows:

Theorem 2 (Uniqueness of triconnected components, cf. [HT73]). The triconnected components of a graph are unique.

The following statement is crucial for the proof of Theorem 2, cf. [HT73]. We will discuss in the next section how a variation of Lemma 3 serves us in proving the uniqueness of 2.5-connected components.

Lemma 3 ([HT73]). Let \(\mathcal{I} \) be a set of graphs obtained from a 2-connected graph G by a sequence of splits and merges.

(a) The graph \(S(\mathcal{I}) \) with

\[
V(S(\mathcal{I})) = \mathcal{I}, \\
E(S(\mathcal{I})) = \{st : s \text{ and } t \text{ contain virtual edges sharing the same label}\}
\]

is a tree.
(b) The set I can be produced by a sequence of splits.

3 2.5-Connectivity

In the following, we transfer the above notation of [HT73] to mixed connectivity, where separators may contain both, vertices and edges. Let G be a 2-connected graph which is not a triangle. A tuple $(c, uv) \in V(G) \times E(G)$ is a vertex-edge-separator if $G - uv - c$ is disconnected.

Lemma 4 ([HS19]). Let G be a 2-connected graph. If (c, uv) is a vertex-edge-separator of G, then $G - uv - c$ has exactly two components, each containing a vertex of $\{u, v\}$. Let $a \in \{u, v\}$. Denote the component containing a by C_a and set $G_a := G[C_a \cup \{c\}]$. Then $G_a + ca$ is 2-connected.

With the same notation as in Lemma 4 let $a \in \{u, v\}$. If $|E(G_a)| \geq 2$, then $\{c, a\}$ is a separation pair of G. Let b denote the vertex in $\{u, v\} \setminus \{a\}$. Now $G_a + ac$, $G_b + ba + ac$ are split graphs of $\{c, a\}$ with virtual edges ac. We say that $\{a, c\}$ supports the vertex-edge-separator (c, uv) or that $\{a, c\}$ is supporting. Replacing G by the two graphs $G_a + ac$ and $G_b + ba + ac$ is called supporting split G at (c, uv) with support $\{a, c\}$. The graphs $G_a + ac$ and $G_b + ba + ac$ are the 2.5-split graphs of G at (c, uv) with support $\{a, c\}$. A non-supporting split is a split which is not of this form for any vertex-edge separator. Observe that a vertex-edge-separator has at least one and at most two separation pairs in its support.

![Figure 1: A graph with its triconnected (left) and 2.5-connected (right) components. Non-virtual edges are black. Virtual edges are green if they can be obtained by a sequence of 2.5-splits and red otherwise.](image)

If G is 2-connected and no tuple $(v, e) \in V(G) \times E(G)$ is a vertex-edge-separator, then G is 2.5-connected. In analogy to the notion of triconnected components of Hopcroft and Tarjan cf. [HT73], we define 2.5-connected components of G, see also Figure 1.

- If G is 2.5-connected, then $\{G\}$ contains the 2.5-split components of G.

Otherwise, there are 2.5-split graphs G' and \hat{G} of G with respect to some separation pair of G. Then $\{G'_1, \ldots, G'_k\} \cup \{\hat{G}_1 \ldots \hat{G}_k\}$ is a set of 2.5-split components of G, where $\{G'_1, \ldots, G'_k\}$ (respectively $\{\hat{G}_1, \ldots, \hat{G}_k\}$) is a set of 2.5-split components of G' (respectively \hat{G}).

Observe that 2.5-split components of a 2-connected graph are not unique (a cycle with more than three edges serves again as an example). The 2.5-split components of a given graph are of the following types: triangles, multiedges of size at least 3, and other 2.5-connected graphs.

Let G be a graph. Consider a decomposition of G into 2.5-split components, where \mathcal{T} denotes the subset of triangles, \mathcal{M} the set of multiedges and \mathcal{H} denotes the set of other 2.5-connected graphs in the decomposition. Now merge the triangles in \mathcal{T} as much as possible and leave the multiedges and 2.5-connected graphs unchanged. Replace \mathcal{T} in the split components by the set \mathcal{C} of cycles obtained this way. The components $\mathcal{C} \cup \mathcal{M} \cup \mathcal{H}$ obtained this way are the 2.5-connected components of G. Applying the exact same arguments as in the proof of Lemma 3 in [HT73] we obtain the following statement:

Lemma 5. Let \mathcal{I} be a set of graphs obtained from a 2-connected graph G by a sequence of 2.5-splits and merges.

(a) The graph $S(\mathcal{I})$ is a tree.

(b) The set \mathcal{I} can be produced by a sequence of 2.5-splits.

Lemma 6. If \mathcal{I} is a set of graphs obtained from a 2-connected graph G by a sequence s_1 of 2.5-splits such that no two distinct cycles in \mathcal{I} share a virtual edge with the same label, then the triconnected components of G can be obtained from \mathcal{I} by a (possibly empty) sequence of splits s_2. In particular, the triconnected components of G can be obtained from a set of 2.5-connected components of G by a (possibly empty) sequence of splits.

Proof. Apply a sequence of splits s to the graphs in \mathcal{I} to obtain a set of split components \mathcal{I}' of G. In order to obtain the triconnected components of G from \mathcal{I}', cycles (respectively multiedges) with a virtual edge in common are merged. The splits that correspond to these shared virtual edges must appear in s since \mathcal{I} does not contain cycles with a common virtual edge by assumption. (Note that \mathcal{I} neither contains multiedges with a common virtual edge since two parallel edges always lie in the same separation class with respect to a supporting separation pair.) Consequently, we can obtain the triconnected components of G from $\mathcal{I'}$ by applying the subsequence of s to \mathcal{I} which skips those splits that are reversed in the construction of the triconnected components from \mathcal{I}'.

Recall that an *ear* of a given edge e in a graph H is the cycle containing e if the connected component of e is a cycle and, otherwise, it is the maximal path

*Recall the definition of $S(\mathcal{I})$ from Lemma 3.
Lemma 7. Let \(s = s_1 \ldots s_k \) be a sequence of splits of a 2-connected graph \(G \) such that the resulting graphs are the triconnected components of \(G \).

(a) None of the separation pairs that correspond to the splits in \(s \) contains a vertex which is of degree 2 when the split is carried out.

(b) Let \(i \in \{1, \ldots, k\} \). Consider the graphs obtained from carrying out \(s_1, \ldots, s_i \) on \(G \). It holds that at most one of the two virtual edges corresponding to the same split lies on a non-trivial ear.

(c) Regard two distinct ears in the triconnected components of \(G \) that contain a virtual edge with the same label. Either both ears are trivial or one of them is a cycle and the other is trivial.

Proof. We prove part (a). Suppose towards a contradiction that \(s \) contains a split \(s_i \) which splits the graph \(H \) at a separation pair \(\{u, v\} \) with \(\text{deg}_H(u) = 2 \). It follows by a simple induction on the number of splits succeeding \(s_i \) that amongst the triconnected components of \(G \) there are two graphs \(G_1 \) and \(G_2 \) such that \(u \in V(G_1) \cap V(G_2) \) and \(\text{deg}_{G_1}(u) = \text{deg}_{G_2}(u) = 2 \) and, in both graphs \(G_1 \) and \(G_2 \), \(u \) is incident to a virtual edge that corresponds to \(s_i \). The only triconnected components that contain degree-2 vertices are cycles and, hence, \(G_1 \) and \(G_2 \) are cycles with a common virtual edge. That contradicts the construction of the triconnected components, where cycles with a common virtual edge are merged.

Now, part (b) follows with similar considerations. Suppose towards a contradiction that two virtual edges \(e \) and \(e' \) corresponding to the same split each lie on a non-trivial ear after carrying out splits \(s_1 \ldots s_i \). In particular, \(e \) and \(e' \) are both incident to a degree-2 vertex. As above, this implies that both, \(e \) and \(e' \) are virtual with the same label and contained in distinct cycles of the triconnected components of \(G \), which is a contradiction.

Since triconnected components with degree-2 vertices are cycles, part (c) is a consequence of (b).

Theorem 8 (Unique colouring of virtual edges). Let \(s = s_1 s_2 \ldots s_k \) be a sequence of splits that is carried out on a graph \(G \) such that the obtained graphs are the triconnected components of \(G \). We define a 2-colouring of the virtual edges of the triconnected components starting from the uncoloured graph \(G \). For \(i \in \{1, \ldots, k\} \):

- If \(s_i \) is a non-supporting split, then the respective virtual edges are coloured red.
If \(s_i \) is a supporting split only for vertex-edge-separators \((c, e)\) with \(e \) red, then the virtual edges corresponding to \(s_i \) are coloured red.

If \(s_i \) is a supporting split for some vertex-edge-separator \((c, e)\) where \(e \) is a green virtual edge or a non-virtual edge, then let \(e^* \) and \(e^{**} \) be the corresponding the virtual edges. Colour all virtual edges with labels that appear in the ear of \(e^* \) and \(e^{**} \) green.

The colouring of the virtual edges of the triconnected components obtained this way is independent of the choice of \(s \).

See Figure 1 for an example of the above colouring.

Proof. We prove the following more general statement:

Claim 1: Let \(i \in \{0, 1, \ldots, l\} \) and let \(G_1, G_2, \ldots, G_{i+1} \) be the graphs that are obtained from carrying out the splits \(s_1, s_2, \ldots, s_i \). It holds that a virtual edge in \(\bigcup_{j=1}^{i+1} E(G_j) \) is coloured green if and only if it or its corresponding edge with the same label is contained in an ear with at least one non-virtual edge. Otherwise it is red.

Internal vertices of ears are of degree 2. Thus by Lemma 7, internal vertices are never contained in a separation pair that corresponds to one of the splits \(s_1, \ldots, s_k \), that is,

\[
\text{ears are never split by the sequence } s_1 s_2 \ldots s_k. \quad (1)
\]

We prove Claim 1 by induction on \(i \). If \(i = 0 \), then no split is carried out and, hence, there are no virtual edges to consider and the statement is trivially satisfied.

Now let \(i \geq 1 \). By induction, Claim 1 holds for the graphs \(G'_1, G'_2, \ldots, G'_i \) obtained from carrying out \(s_1, \ldots, s_{i-1} \). Without loss of generality, \(s_i \) is a split on \(G'_i \) into \(G_i \) and \(G_{i+1} \). Let \(e^*_i \) (respectively \(e^{**}_i \)) be the new virtual edge that corresponds to \(s_i \) in \(G_i \) (respectively \(G_{i+1} \)).

First assume that \(s_i \) is a non-supporting split. The edge \(e^*_i \) (respectively \(e^{**}_i \)) is red and lies in a trivial ear of \(G_i \) (respectively \(G_{i+1} \)) since \(s_i \) is non-supporting. Thus, \(e^*_i \) and \(e^{**}_i \) satisfy Claim 1. Other virtual edges and their ears remain unchanged by \(s_i \).

Now assume that \(s_i \) is a supporting split of some vertex-edge-separator \((c, e)\) in \(G'_i \). We may assume that \(e \in E(G_i) \). In particular,

\[
e \text{ and } e^*_i \text{ lie on the same ear in } G_i. \quad (2)
\]

By Lemma 7(b) and (2) it holds that

\[
\text{the ear of } e^*_i \text{ is trivial.} \quad (3)
\]

If \(e \) is non-virtual, then \(e^*_i \) and \(e^{**}_i \) are coloured green. Both new virtual edges and the virtual edges on their respective ears satisfy Claim 1 by (2) and (3). If \(e \)
is green and there exists a non-virtual edge on the same ear as \(e \), then Claim 1 is satisfied by similar arguments.

If \(e \) is green and there is no non-virtual edge on the ear of \(e \), then the ear that contains the other virtual edge with the same label as \(e \) is non-trivial. In \(G_i \), also the ear that contains \(e \) and \(e^*_i \) in \(G_i \) is non-trivial. This is a contradiction to Lemma 7(b).

If \(e \) is red and \(s_i \) is non-supporting for any vertex-edge-separator with a green or non-virtual edge, then the ear of \(e \) in \(G'_i \) contains only virtual edges.

This property is maintained in \(G_i \) since all edges which are added to the ear of \(e \) in \(G_i \) are virtual by induction. Hence, \(e^*_i \) and the virtual edges on its ear in \(G_i \) and \(e^*_{i+1} \) satisfy Claim 1. Again, other virtual edges and their ears remain unchanged by \(s_i \).

\[\]

Corollary 9. Let \(G \) be a 2-connected graph and let \(e \) and \(e' \) be two virtual edges of the triconnected components of \(G \) with the same label. Apply the edge-colouring of Theorem 8. The following statements are equivalent:

1. \(e \) is red.
2. \(e' \) is red.
3. The ears of \(e \) and \(e' \) in the triconnected components are both trivial, or, one of the two ears is a cycle solely consisting of virtual edges and the other ear is trivial.

Proof. Let \(e \) and \(e' \) be two distinct virtual edges with the same label. By Claim 1 of the above proof, \(e \) is red if and only if the ear of \(e \) and the ear of \(e' \) solely consist of virtual edges. If we consider triconnected components, then it follows from Lemma 7(c) that the two ears are trivial or one of them is a cycle solely consisting of virtual edges.

In Chapter 4 we will exploit Corollary 9 to develop a linear time algorithm that computes the 2.5-connected components of a given graph. We need one more lemma in order to prove the uniqueness of 2.5-connected components.

Lemma 10 (cf. [HST9]). Let \(G_1 \) and \(G_2 \) be the split graphs of a 2-connected graph \(G \) with respect to some separation pair. If \((c, e) \) is a vertex-edge-separator of \(G_1 \) and \(e \in E(G) \), then \((c, e) \) is a vertex-edge-separator of \(G \).

Theorem 11. The decomposition of a 2-connected graph \(G \) into 2.5-connected components is unique. With respect to the colouring described in Theorem 8, the 2.5-connected components of \(G \) are obtained from the unique triconnected components by merging all red edges of the triconnected components of \(G \).

Proof. We use the same edge colouring as in Theorem 8. Let \(s \) be a sequence of 2.5-splits that leads to some 2.5-connected components \(H_1, H_2, \ldots, H_l \) of \(G \). Observe that all virtual edges that correspond to the splits in \(s \) are green. By Lemma 6 there exists a sequence of splits \(s' \) such that the triconnected
components of G are obtained by carrying out ss'. As a direct consequence of Lemma 10 all virtual edges that correspond to splits in s' are red.

Altogether, splits from s correspond to green edges and splits from s' correspond to red edges. However, we know that the red-green colouring of the virtual edges of triconnected components is independent of the choice of s and s' by Theorem 8. This implies that any sequence that leads to 2.5-connected components corresponds to the same set of virtual edges of the triconnected components. This settles the claim.

Corollary 12. Let G be a graph. If I denotes the 2.5-connected components of G and I' denotes the triconnected components of G, then $S(I)$ is a minor of $S(I')$.

Proof. This follows from Theorem 11 since merging two components corresponds to contracting an edge of $S(I')$.

Corollary 13. A 2-connected graph G is 2.5-connected if and only if no ear of a triconnected component of G contains both, virtual and non-virtual edges.

4 A Linear Time Algorithm for 2.5-Connected Components

Based on [HT73] it is shown in [GM00] that the triconnected components of a given graph can be computed in linear time. In this section, we provide a linear-time algorithm which computes the 2.5-connected components of a graph given its triconnected components. It follows that the 2.5-connected components of a given graph can be computed in linear time. The main idea is again, to exploit the red-green colouring of the virtual edges in order to obtain the 2.5-connected components from the triconnected components.

Theorem 14. The 2.5-connected components of a 2-connected graph can be computed in linear time.

Proof. Let G be a 2-connected graph and denote by E' the set of all virtual edges in the triconnected components of G. By Gutwenger and Mutzel [GM00] the triconnected components as well as the set of virtual edges can be computed in linear time. It remains to determine those virtual edges that need to be merged again in order to get the 2.5-connected components of G. By Theorem 11 these are the red edges defined in Theorem 8. By Corollary 9 an edge is coloured red if and only if it and the edge with the same label both lie on a trivial ear or one of the two ears is a cycle solely consisting of virtual edges. Clearly, we can find these virtual edges in linear time by moving through the tree structure given by the triconnected components, taking into account that the number of virtual edges is linear in the number of vertices and edges of G, cf. [GM00]. Further each merge can be realised in constant time which gives us the desired result.

†Recall the definition of $S(I)$ from Lemma 3.
5 Critical 2.5-Connected Graphs

In this chapter, we provide novel decomposition techniques for critical 2.5-connected graphs. In analogy to Tutte’s well-known decomposition theorem (cf. Theorem 18) we show that critical 2.5-connected graphs which are not isomorphic to the K_4 can be reduced to critical 2.5-connected graphs of smaller order using simple graph operations.

Let G be a 2-connected graph. A vertex-2-edge-separator of G is a triple $(c, e_1, e_2) \in V(G) \times E(G)^2$ such that $G - e_1 - e_2 - c$ is disconnected. A graph G is critical 2.5-connected if G is 2.5-connected and for every edge $e \in E(G)$ it holds that $G - e$ is not 2.5-connected, that is, e is contained in a vertex-2-edge-separator of G. If $u \in V(G)$ is a degree-3 vertex with incident edges e_0, e_1, e_2, then the vertex-2-edge-separator (c, e_1, e_2) is degenerate, where c denotes the vertex that is joined to u by e_0. A critical 2.5-connected graph is degenerate if every vertex-2-edge-separator is degenerate. Consider prisms of order at least 8 or complete bipartite graphs isomorphic to $K_{3,n}$ with $n \geq 3$ as examples for infinite families of degenerate graphs.

Theorem 15. A 2.5-connected graph G is critical if and only if all triconnected components H of G satisfy that each non-virtual edge of H lies on a vertex-2-edge-separator of H with both edges non-virtual.

Proof. First assume that G is critical 2.5-connected. Let H be a triconnected component of G which contains a non-virtual edge $e_1 \in E(H)$. Since G is critical, there exists an edge e_2 and a vertex c in G such that (c, e_1, e_2) is a vertex-2-edge-separator of G.

Suppose towards a contradiction that $e_2 \notin E(H)$. Let H' be the triconnected component of G with $e_2 \in E(H')$. It follows from Corollary 13 that neither H nor H' is a cycle. In particular, $H - e_1$ and $H' - e_2$ are 2-connected graphs. Now, merging preserves 2-connectivity and, hence, $G - e_1 - e_2$ is 2-connected. This is a contradiction since $G - e_1 - e_2 - c$ is disconnected.

So far, we have shown that e_1 and e_2 are both contained in the same triconnected component H of G (which is not a cycle). If $c \in V(H)$, then (c, e_1, e_2) is a vertex-2-edge-separator of H. (A virtual edge with ends in distinct components of $G - e_1 - e_2 - c$ would imply the existence of a path in $G - e_1 - e_2 - c$ between the components which is a contradiction.) If, otherwise, $c \notin V(H)$, then let e^* be the virtual edge in H with the following property: Removing the edge corresponding to the label of e^* from $S(I)$ disconnects the triconnected components containing c from H, where I is the set of triconnected components of G. Now $H - e_1 - e_2 - e^*$ is disconnected. Choose an appropriate endvertex u of e^* to obtain the desired vertex-2-edge-separator.

Now assume that for each triconnected component H of G it holds that every non-virtual edge $e_1 \in E(H)$ lies on a vertex-2-edge-separator (c, e_1, e_2) of H such that also e_2 is non-virtual. Now, $G - e_1 - e_2 - c$ is disconnected since each path in G connecting vertices of H with edges outside of H is represented by virtual edges in H. □
Theorem 16. Let G be a 3-connected graph that contains a non-degenerate vertex-2-edge-separator (c, e_1, e_2).

(a) If c is incident to an edge $e_0 \in E(G)$ such that $G-e_0-e_1-e_2$ is disconnected with components C_1 and C_2, then let G_1 (G_2) be the graph constructed by adding a new vertex x_1 (x_2) and the edges u_ix_1 (v_ix_2) for $i \in \{0, 1, 2\}$, where u_i (v_i) denotes the endvertex of e_i in C_1 (C_2).

(b) Otherwise, there are exactly two components C_1 and C_2 of $G-e_1-e_2-c$. Let G_1 (G_2) be the graph constructed from $G[V(C_1) \cup \{c\}]$ ($G[V(C_2) \cup \{c\}]$) by adding a new vertex x_1 (x_2) and the edges u_ix_1, u_2x_1, and cx_1 (v_ix_2, v_2x_2, and cx_2), where u_i (v_i) is the endvertex of e_i in C_1 (C_2).

If G is critical 2.5-connected, then G_1 and G_2 are critical 2.5-connected 3-connected graphs of smaller order than G.

Proof. Assume that the constraints of (\ast) are satisfied. We may restrict ourselves to proving that G_1 is a critical 2.5-connected 3-connected graph of lesser order than G. If follows from Menger’s theorem that G_1 is a 3-connected graph (\ast). This implies that G_1 is 2.5-connected. It remains to show that G_1 is critical 2.5-connected.

Suppose towards a contradiction that $G_1-\hat{e}_1$ is 2.5-connected for some $\hat{e}_1 \in E(G_1)$. Since $\{u_1x_1, u_2x_1, cx_1\}$ disconnects x_1 from the rest of G_1, we know that $\hat{e}_1 \in E(G)$. Let $\hat{e}_2 \in E(G)$ and $\hat{c} \in V(G)$. If $\hat{e}_2 \in \{e_0, e_1, e_2\}$, then $G-\hat{e}_1-\hat{e}_2-\hat{c}$ is connected as a consequence of the 3-connectivity of G_1 and G_2. From now on, we assume that $\hat{e}_2 \notin \{e_0, e_1, e_2\}$. If $\hat{c} \in V(G_1) \setminus \{x_1\}$, then $G_1-\hat{e}_1-\hat{e}_2-\hat{c}$ is connected by the assumption on \hat{e}_1 and $G_2-\hat{e}_2-x_2$ is connected by (\ast). Then $G_1-\hat{e}_1-\hat{e}_2-\hat{c}-x_1$ has at most three components, each containing at least one vertex from $\{u_0, u_1, u_2\}$. This implies that $G-\hat{e}_1-\hat{e}_2-\hat{c}$ is connected for any choice of \hat{e}_2 and \hat{c} which is a contradiction. If, otherwise $\hat{c} \in V(G_2) \setminus \{x_2\}$, then $G_1-\hat{e}_1-\hat{e}_2$ is 2-connected and $G_2-\hat{e}_2-x_2-\hat{c}$ has at most three components, each containing at least one vertex from $\{v_0, v_1, v_2\}$. As above, we obtain a contradiction to G being critical since $G-\hat{e}_1-\hat{e}_2-\hat{c}$ is connected for any choice of \hat{e}_2 and \hat{c}.

In order to prove (\ast), observe that it follows from the 3-connectivity of G that there are exactly two components C_1 and C_2 of $G-e_1-e_2-c$. Now, we may apply the exact same arguments as in (\ast). This settles the claim.

The only 3-connected critical graphs which cannot be decomposed into critical graphs of smaller order using operations above are degenerate graphs.

Let H be a 2.5-connected graph. Observe that

if every edge in H is incident to a degree-3 vertex, then H is critical. \hfill (4)

This follows since an edge that is incident to a degree-3 vertex lies in a degenerate separator. Vice versa, it holds that

if H is degenerate, then every edge of H is incident to a degree-3 vertex. \hfill (5)
Suppose that a degenerate graph H contains a triangle. It follows from (5) that at least two vertices, say u and v, of the triangle are of degree 3. Let w denote the third vertex of the triangle and denote by e_u (e_v) the unique edge that is incident to u (v) but is not contained in the triangle. Now (w, e_u, e_v) is a non-degenerate separator if H is not a complete graph on four vertices. This is a contradiction. We obtain that

if a degenerate graph is not isomorphic to the K_4, then it is triangle-free. (6)

Theorem 17. Let G be a degenerate 3-connected graph which is not 3-regular and let $u \in V(G)$ with $\text{deg}_G(u) = 3$. Denote the neighbours of u by $v_1, v_2,$ and v_3.

(a) If $\text{deg}_G(v_i) \geq 4$ for $i \in \{1, 2, 3\}$, then set $G' := G - u$.

(b) If $\text{deg}_G(v_1) = 3$ and $\text{deg}_G(v_3) \geq 4$, then set $G' := G - u + v_1v_2$.

The graph G' is critical 2.5-connected with $|V(G')| < |V(G)|$.

Proof. Every edge in G is incident to a degree-3 vertex by (5). This is maintained when we construct G'. It follows from (4) that it suffices to prove that G' is 2.5-connected. Suppose towards a contradiction that G' contains a vertex-edge-separator (c, e). If the neighbourhood of u is contained in one component of $G' - c - e$, then (c, e) is a vertex-edge-separator of G which is a contradiction. Therefore, $v_1, v_2,$ and v_3 are not all in the same component of $G' - c - e$.

First assume (a). Without loss of generality v_1 is in a different component of $G' - c - e$ than v_2 and v_3. Consequently (c, e, uv_1) is a non-degenerate separator in the degenerate graph G which is a contradiction.

Now assume (b). Observe that $\{v_1, v_2, v_3\}$ is an independent set in G by (6). If v_1 is in a different component than v_2 and v_3 in $G' - c - e$, then $e = v_1v_2$ or $c = v_2$. In the first case $G - c - uv_1$ is disconnected which contradicts that G is 2.5-connected. In the second case (c, e, uv_1) is a non-degenerate separator of G which contradicts the degeneracy of G. Interchanging the roles of v_1 and v_2 leads to a contradiction if v_2 is separated from v_1 and v_3 by (c, e).

Last assume that v_3 does not share a component with v_1 and v_2 in $G' - c - e$. Now (c, e, uv_3) is a non-degenerate separator of G since $\text{deg}_G(v_3) \geq 4$. This settles the claim.

We have shown in this chapter that critical 2.5-connected graphs can be reduced using simple operations until the obtained graphs are 3-regular and 3-connected. Then, we may apply the following theorem of Tutte.

Theorem 18 ([Wor79], cf. [Tut66]). Each simple 3-connected 3-regular graph other than a complete graph on four vertices can be obtained from a 3-connected 3-regular graph H by subdividing two distinct edges of H and connecting the subdivision vertices with a new edge. Conversely, each graph obtainable in this way is 3-connected.
The graph \(H \) in Theorem 18 is 3-regular and 3-connected and, hence, \(H \) is critical 2.5-connected. We close this chapter with an example. Consider Figure 5. The left graph is degenerate and not 3-regular. We apply Theorem 17(b) to obtain the graph in the middle. This graph is critical 2.5-connected and contains a non-degenerate separator \((c, e_1, e_2)\). We obtain the isomorphic copies of the \(K_{3,3} \) and the \(K_4 \) on the right by carrying out the construction of Theorem 16(b). Observe that both of the graphs on the right are 3-regular and 3-connected. We may now apply Theorem 18 to reduce the bipartite graph further while the critical 2.5-connectivity is preserved.

6 Application to Extremal Cycle Decomposition

In this section, we prove that the problem of finding an extremal cycle decomposition of an Eulerian graph can be reduced to finding an extremal cycle decomposition for its 2.5-connected components. Furthermore, we show how Hajós’ conjecture can be reduced to considering 2.5-connected components. A decomposition of a graph \(G \) is a set of subgraphs \(\mathcal{C} \) of \(G \) such that each edge of \(G \) is contained in exactly one of the subgraphs. We say that \(G \) can be decomposed into the elements of \(\mathcal{C} \). If all of the subgraphs in \(\mathcal{C} \) are cycles, then \(\mathcal{C} \) is a cycle decomposition. For an Eulerian graph \(G \) we set

\[
\begin{align*}
c(G) &:= \min\{k: G \text{ can be decomposed into } k \text{ cycles}\} \\
\nu(G) &:= \max\{k: G \text{ can be decomposed into } k \text{ cycles}\}.
\end{align*}
\]

A cycle decomposition of \(G \) with \(c(G) \) (\(\nu(G) \)) cycles is minimal (maximal).

Let \(G_1 \) and \(G_2 \) be obtained from carrying out a 2.5-split on \(G \). It is proven in [HS19] that \(c(G) = c(G_1) + c(G_2) - 1 \) and \(\nu(G) = \nu(G_1) + \nu(G_2) - 1 \). The theorem below follows.

Theorem 19. Let \(G \) be a 2-connected Eulerian graph and \(G_1, G_2, \ldots, G_k \) its 2.5-connected components.

\begin{align*}
(a) \quad c(G) &= \sum_{i=1}^{k} c(G_i) - k + 1, \\
(b) \quad \nu(G) &= \sum_{i=1}^{k} \nu(G_i) - k + 1.
\end{align*}
Hajós’ conjecture asserts that an Eulerian graph can be decomposed into at most \(\frac{1}{2}(|V(G)| + m(G) - 1) \) cycles, where \(m(G) \) denotes the minimal number of edges that need to be removed from \(G \) in order to obtain a simple graph. The only progress made towards a verification of Hajós’ conjecture concerns graphs that contain vertices of degree at most 4 (cf. [GX02]), very sparse graphs (cf. [FGH19]) and, very dense graphs (cf. [GGKO19]).

Theorem 20. The conjecture of Hajós’ is satisfied if and only if all 2.5-connected graphs satisfy Hajós’ conjecture.

Proof. Assume that all 2.5-connected graphs satisfy Hajós’ conjecture. Let \(G \) be an Eulerian graph. Granville and Moisiades [GMS7] proved that it suffices to verify Hajós’ conjecture for all 2-connected graphs in order to show that all graphs satisfy the conjecture. In particular, we may assume that \(G \) is 2-connected. We prove the following claim: Let \(G_1 \) and \(G_2 \) be obtained from carrying out a 2.5-split on \(G \). If \(G_1 \) and \(G_2 \) satisfy Hajós’ conjecture, then \(G \) satisfies Hajós’ conjecture.

We have \(V(G_1) + V(G_2) = V(G) + 2 \) and \(m(G_1) + m(G_2) \leq m(G) + 1 \). Consequently,

\[
c(G) = c(G_1) + c(G_2) - 1 \\
\leq \frac{1}{2}(|V(G_1)| + |V(G_2)|) + m(G_1) + m(G_2) - 2) - 1 \\
\leq \frac{1}{2}(|V(G)| + 2 + m(G) + 1 - 2) \\
= \frac{1}{2}(|V(G)| + m(G) - 1).
\]

Now, the statement follows by induction on the number of 2.5-connected components of \(G \).

\[\square\]

7 Conclusion

We provide a canonical decomposition of a 2-connected graph into its unique 2.5-connected components. Furthermore, we show how these components can be constructed from the triconnected components of the graph. This overall gives a linear-time algorithm for the 2.5-connected components. We show that all critical 2.5-connected except complete graphs on four vertices can be reduced to smaller critical 2.5-connected graphs. Finally, we prove that it suffices to verify Hajós’ conjecture for all 2.5-connected graphs in order to verify the conjecture for all graphs.

\[\text{Originally, Hajós conjectured that at most } \frac{1}{2}|V(G)| \text{ cycles are needed. This equivalent reformulation is due to Fan and Xu, cf. [GX02].}\]
References

[BWO12] L. W. Beineke, R. J. Wilson, and O. R. Oellermann. *Topics in structural graph theory*. Cambridge Univ. Press, 2012.

[dBT96] G. di Battista and R. Tamassia. On-line planarity testing. *SIAM J. Computing*, 25(5):956–997, 1996.

[Die00] R. Diestel. *Graph Theory*. Graduate Texts in Mathematics. Springer, 2000.

[FGH19] E. Fuchs, L. Gellert, and I. Heinrich. Cycle decompositions of pathwidth-6 graphs. *J. Graph Theory*, 2019.

[GGKO19] A. Girão, B. Granet, D. Kühn, and D. Osthus. Path and cycle decompositions of dense graphs. arXiv:1911.05501, 2019.

[GM87] A. Granville and A. Moisidias. On Hajósf conjecture. *Congressus Numerantium*, 56:183–187, 1987.

[GM00] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In *International Symposium on Graph Drawing*. Springer, Berlin, Heidelberg, 2000.

[Gro16] M. Grohe. Quasi-4-connected components. In *43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)*, 2016.

[GX02] G. Fan and B. Xu. Hajós’ conjecture and projective graphs. *Discrete Mathematics*, 252(1):91–101, 2002.

[HS19] I. Heinrich and M. Streicher. Cycle decompositions and constructive characterizations. *EJGTA*, 7(2):411–428, 2019.

[HT73] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. *SIAM J. Computing*, 2:135–158, 1973.

[Lan37] S. Mac Lane. A structural characterization of planar combinatorial graphs. *Duke Math. J.*, 3(3):460–472, 1937.

[NI08] H. Nagamochi and T. Ibaraki. *Algorithmic Aspects of Graph Theroy*. Cambridge University Press, 2008.

[Tut54] W. T. Tutte. A contribution to the theory of chromatic polynomials. *Can. J. Math.*, 6:80–81, 1954.

[Tut66] W. T. Tutte. *Connectivity in Graphs*. University of Toronto Press, 1966.

[Wor79] N. C. Wormald. Classifying k-connected cubic graphs. In *Combinatorial Mathematics VI*, pages 199–206. Springer, 1979.
Version March 4, 2020

Irene Heinrich
Algorithms and Complexity Group, Department of Computer Science
Technische Universität Kaiserslautern, Kaiserslautern
Germany
ORCiD: 0000-0001-9191-1712

Till Heller
Department of Optimization
Fraunhofer ITWM, Kaiserslautern
Germany
ORCiD: 0000-0002-8227-9353

Eva Schmidt
Optimization Research Group, Department of Mathematics
Technische Universität Kaiserslautern, Kaiserslautern
Germany

Manuel Streicher
Optimization Research Group, Department of Mathematics
Technische Universität Kaiserslautern, Kaiserslautern
Germany
ORCiD: 0000-0001-5605-7637