Introduction

In the last two decades a number of clinically significant arthropod-borne viruses (arboviruses) have emerged and re-emerged in continental Europe. Autochthonous transmission of dengue virus has occurred in France in 2014 [1] and chikungunya virus transmission has been recorded in Italy (2007) [2] and France (2010, 2014) [3,4]. Both of these viruses are transmitted by the invasive Asian tiger mosquito Aedes albopictus, which has colonized parts of Europe [5]. Native Culex mosquitoes are the main vectors for two pathogenic lineages of another arbovirus, West Nile virus (WNV), which are now endemic in southern Europe [6]. Mosquitoes and birds maintain the enzootic transmission cycle of WNV. Infected mosquitoes, however, may also feed on other vertebrates resulting in frequent infections in humans and horses [7].

In 1999, WNV was introduced in the United States. The outbreak that followed was characterized by high mortality rates in various American bird species and resulted in the largest outbreak of human neuroinvasive disease to date [8].

In Austria (2001), a sudden and substantial die-off occurred in Eurasian blackbirds (Turdus merula), closely resembling the 1999 WNV outbreak in the United States. Not WNV, but a related flavivirus (family Flaviviridae), Usutu virus (USUV), was identified in infected birds. This was the first isolation of USUV on the European continent [9]. The virus was first discovered in South Africa in 1959 and since then it has been identified in a number of African countries [10]. After the initial outbreak in Austria, USUV activity has been detected in birds from Spain, Italy, Switzerland, the Czech Republic, Hungary, United Kingdom, Poland, Croatia, Germany and Belgium [11,12]. In some southern European countries USUV co-circulates with WNV [13].
high mortality in a large number of avian species enabled the spread of USUV to be monitored via the surveillance of dead birds [14]. Most of the USUV-positive bird species were blackbirds (T. merula), which belong to the same genus as the suspected WNV reservoir in the United States, the American robin (Turdus migratorius) [15]. USUV infected mosquitoes may also feed on other vertebrates, and the virus has been detected in horses [16] and bats [17]. Infections in humans have resulted in two diagnosed clinical cases in Africa [10]. In Europe, two Italian and three Croatian patients with neuroinvasive disease have been reported [18–20], attributed to USUV. However, serological evidence suggests that less severe and subclinical cases of human USUV infections occur regularly in endemic areas [21–23].

Similar to WNV, USUV is mostly transmitted by Culex mosquitoes. In Africa USU has been isolated from Culex neavei, Culex perfuscus, Culex univittatus and Culex quinquefasciatus. Additionally, USUV has also been detected in a number of mosquito species from other genera [10]. Among European mosquito species, USUV is mostly found in the northern house mosquito (Culex pipiens), which is abundant throughout the northern hemisphere [13].

The presence of competent mosquitoes dictates the potential spread of arthropod-borne pathogens. Vectors are considered competent when they can transmit the pathogen from one vertebrate host to the next. Arboviruses, like USUV, are ingested by the mosquito via a blood meal of an infected vertebrate host, infect the epithelial cells that line the mosquito midgut, escape to the hemolymph, and finally accumulate in the saliva to be transmitted during the next blood meal [24]. Determining vector competence provides an insight into the viral transmission dynamics and is essential to assess the risk for future outbreaks. The only laboratory experiments with USUV were done with the African mosquito, C. neavei [25]. To better understand, predict, and assess the potential spread of USUV in Europe we investigated the vector competence of the northern house mosquito C. pipiens for USUV. In addition, we investigated the activity of RNA interference (RNAi), which is a major antiviral defense system of mosquitoes and other insects [34, 35]. The RNAi response against USUV has never been studied.

Here we show for the first time that C. pipiens is a highly effective European USUV vector. We provide an insight into the virus replication dynamics and the antiviral RNAi response within the mosquito vector and show how the vector competence of USUV relates to that of WNV at different temperatures.

Materials and methods

Cells and viruses

C6/36 cells were grown in Leibovitz L15 (Life Technologies, The Netherlands) medium, which was supplemented with 10% FBS. Vero E6 cells were cultured with DMEM Hepes (Life Technologies, The Netherlands)-buffered medium supplemented with 10% FBS containing penicillin (100 IU/ml) and streptomycin (100 μg/ml). When Vero E6 cells were infected with mosquito lysates or saliva the growth medium was supplemented with fungizone (2.5 μg/ml) and gentamycin (50 μg/ml). This medium will be referred to as fully supplemented medium. Passage 2 (P2) virus stocks of USUV, Bologna `09 (GenBank accession no. HM569263) [26] and WNV Gr′to 10 lineage 2 (GenBank accession no. HQ537483.1) [27,28] were grown on C6/36 cells and titrated on Vero E6 cells.

Mosquito rearing

The European C. pipiens colony originated from Brummen, The Netherlands (′05′23.2′N 6′09′20.1′E) and was established in 2010 and maintained at 23 °C. The mosquito colony was kept in Bugdorm cages with a 16:8 light:dark (L:D) cycle and 60% relative humidity (RH), and provided with a 6% glucose solution as a food source. Bovine or chicken whole blood was provided through the Hemotek PSS (Discovery Workshops, UK) for egg production. Egg rafts were allowed to hatch in tap water supplemented with Liquifry No. 1 (Interpet Ltd., UK). Larvae were fed with a 1:1:1 mixture of bovine liver powder, ground rabbit food and ground koi food.

In vivo infections

Two-to-five day old mosquitoes were infected either via ingestion of an infectious blood meal or via intrathoracic injections. Oral infections were performed by mixing whole chicken blood with the respective P2 virus stock to the indicated final concentration. Mosquitoes were allowed to membrane feed, using the Hemotek system, in a dark climate controlled room (24 °C, 70% RH) [29]. After 1 h, mosquitoes were sedated with CO2 by placing them on a semi-permeable pad, attached to 100% CO2. Mosquitoes were infected by intrathoracic injection using the Drummond nanojet 2 (Drummond Scientific Company, United States). Virus-exposed mosquitoes were incubated at the indicated temperatures with a 16:8 L:D cycle and fed with 6% sugar water during the course of the experiment.

Salivation assay

Transmission was determined using the forced salivation technique [29]. Briefly, mosquitoes were sedated with 100% CO2 and their legs and wings were removed. Their proboscis was inserted into a 200 μl filter tip containing 5 μl of salivation medium (50% FBS and 50% sugar water) W/ V 50%). Mosquito bodies were frozen in individual Eppendorf tubes containing 0.5 mm zirconium beads at −80 °C. The mixture containing the saliva was added to 55 μl of fully supplemented growth medium.

Infectivity assays

Frozen mosquito bodies were homogenized in the bullet blender storm (Next Advance, United States) in 100 μl of fully supplemented medium and centrifuged for 90 s at 14,500 rpm in an Eppendorf Minispin Plus centrifuge (14,000 cf) inside the biosafety cabinet of the Wageningen biosafety level 3 laboratory. Thirty μl of the supernatant from the mosquito homogenate or the saliva-containing mixture was inoculated on a monolayer of Vero cells in a 96-well plate. After 2–4 h incubation the medium was replaced by 100 μl of fresh fully supplemented medium. Wells were scored for virus specific cytopathic effects (CPE) at three days post infection. Viral titers were determined using 10 μl of the supernatant from the mosquito homogenate in an end point dilution assay on Vero E6 cells. Infections were scored by CPE, three days post infection.

Analysis of small RNA libraries

Pools of twelve WNV or USUV infected mosquitoes were lysed in TRIzol (Life Technologies) reagent and total RNA was isolated. The isolation and sequencing of small RNAs were described previously [30]. In short, RNA was size separated by PAGE gel electrophoresis and small RNAs (19–33 nucleotides) were isolated. The small RNA library was prepared with the TruSeq Small RNA Sample Preparation Kit (Illumina) and sequenced on an Illumina HiSeq 2500 by Baseclear (www.baseclear.nl). FASTQ sequence reads were generated with the Illumina Casava pipeline (version 1.8.3) and initial quality assessment was performed by Baseclear using in-house scripts and the FASTQC quality control tool (version 0.10.0). FASTQ sequence reads that passed this quality control were analyzed with Galaxy [31]. Sequence reads were clipped from the adapter sequence (TruSeq 3′ adapter indexes #1 and #5) and mapped with Bowtie (version 1.1.2) [28] to the WNV (GenBank: HQ537483.1) and USUV (GenBank: HM569263.1) genomes. Size profiles of the viral small RNAs were obtained from all reads that mapped to their respective genomes.
with no more than one mismatch. The genome distribution of 21-nt viral small RNAs shows the number of 5' ends at each nucleotide position of the viral genome. Read counts for the size profiles and genome distributions were normalized against the total library and are presented as a percentage of the library. Probing piRNAs for an overlap bias was performed using the Mississipi Galaxy Instance available from https://mississippi.snv.jussieu.fr/. The small RNA libraries were mapped to the WNV or USUV genomes using Bowtie2 and 25–30 nt reads were selected to calculate the overlap probability as described [32]. The nucleotide bias of the 25–30 nt viral small RNAs was determined using the Weblogo 3.3 tool available at the Galaxy main server.

Results

C. pipiens is a highly competent vector for USUV

Recently we showed that C. pipiens from north-western Europe is a highly competent vector for pathogenic WNV isolates [29]. To evaluate vector competence of this mosquito for USUV, mosquitoes were offered a blood meal containing a 50% tissue culture infectious dose (TCID₅₀) of 4 × 10⁷ USUV or WNV per ml. The fully engorged females were maintained at 28 °C. Virus in the saliva of a mosquito is a prerequisite for transmission and therefore used as a proxy for transmission. We thus isolated saliva from individual mosquitoes at 14 dpi and detected infectious USUV or WNV particles by end-point dilution assays. The blood meal that contained WNV infected 46% of the mosquitoes, whereas the blood meal that contained USUV infected a significantly larger percentage (80%) of mosquitoes (Fig. 1A, Fisher’s exact test, P < 0.05). From the mosquitoes that ingested a WNV-containing blood meal, 33% had infectious WNV in their saliva, whereas a USUV containing blood meal resulted in 69% of mosquitoes with infectious saliva (Fig. 1A, Fisher’s exact test P < 0.05).

To circumvent the midgut infection barrier [33], C. pipiens mosquitoes were inoculated intrathoracically with 5.5 × 10⁴ TCID₅₀ of either virus, resulting in infection and transmission rates of both WNV and USUV up to 100% (Fig. 1B). Taken together, USUV not only infects a large percentage of C. pipiens mosquitoes but also effectively disseminates into their saliva. This indicates that these WNV-competent mosquitoes are even more effective as vector for USUV than WNV. In addition, the differential infectivity and transmissibility of both viruses after an infectious blood meal but not after intrathoracic injection suggests that the midgut epithelial cells play a differentiating role that determines vector competence.

USUV replication in the mosquito vector

To investigate whether or not the increased dissemination of USUV relates to higher viral titers in the vector, the viral titers present in individual mosquito bodies were determined using end point dilution assays. Interestingly, mosquitoes that were orally infected with either WNV or USUV showed a similar variation in viral titers (Fig. 2, mean TCID₅₀ of 1.1 × 10⁶ and 1.5 × 10⁶ per ml, respectively). In contrast, intrathoracic injection of either WNV or USUV resulted in significantly different viral titers, with a mean TCID₅₀ of 8.1 × 10⁶ and 2.7 × 10⁵ per ml, respectively (Fig. 2, Student t-test, P < 0.05). In addition, USUV displayed viral titers that were 30 times lower compared with WNV, but without compromising dissemination to the salivary glands. This suggests that the bottleneck for vector competence is presented by the midgut epithelium, which differentially affects viral replication of WNV and USUV.

WNV and USUV produce viral siRNAs in infected C. pipiens

RNAi is activated by the recognition and cleavage of viral dsRNA into 21-nt small-interfering RNAs (siRNA) by the Dicer2 (DCR2) exoribonuclease [34,35]. To investigate whether or not the RNAi pathway is activated by WNV and USUV infections in C. pipiens, small RNAs were isolated from pools of WNV or USUV infected mosquitoes and analyzed using deep-sequencing. For both viruses, viral small RNA populations are strongly biased for 21 nucleotide siRNAs (Fig. 3A), which map across the entire viral genome both on the viral sense and antisense strand (Fig. 3B). Recent reports have shown that a second class of small RNAs, known as viral PIWI-interacting RNAs (vpiRNAs), are produced in Aedes mosquitoes and mosquito cells in response to arbovirus infections. These small RNAs are 25–30 nt in size and, due to a specific amplification mechanism, known as the ping-pong loop, they can be distinguished by a characteristic sequence signature [36–40]. The RNAi response against USUV infection has never been studied. Probing the 25–30 nucleotides viral small RNAs for this signature, we were unable to identify vpiRNAs derived from either WNV or USUV (Supplemental Fig. S1) in Culex mosquitoes. Thus, the siRNA pathway is the major small RNA pathway that targets these two viruses in C. pipiens mosquitoes upon infection.

USUV infection is more effective at higher ambient temperatures

C. pipiens mosquitoes are more competent for WNV at higher ambient temperatures [29]. While both USUV and WNV are endemic in parts of Mediterranean Europe, USUV also extends its distribution into central and northwestern parts of Europe. We hypothesized that the ambient temperature could differentially affect the vector competence to either virus.

Oral infections were performed by offering the mosquitoes a blood meal containing either USUV or WNV, with 3.2 × 10⁷ and 2.2 × 10⁸ TCID₅₀ per ml, respectively. We chose to use higher WNV titers to compensate for the lower vector competence for WNV (Fig. 1). Fully engorged females were incubated at three different temperatures for 14 days post infection. The saliva was collected and the mosquito body was homogenized in a cell culture medium. The mosquito homogenate and saliva were incubated on Vero E6 cells to detect the presence of either WNV or USUV in the mosquito bodies and saliva. Bars represent the percentage of positive samples. Asterisk indicates a significant difference (Fisher’s exact test, P < 0.05).
(18 °C, 23 °C and 28 °C). These temperatures represent the mean diurnal summer (July–August) temperature in northwestern Europe, an intermediate temperature, and the mean diurnal summer temperature for Mediterranean Europe, respectively [41]. After two weeks the mosquitoes were homogenized and the respective viruses were detected. WNV displayed higher infection rates at higher temperatures, infecting 17% at 18 °C, 43% at 23 °C and 58% at 28 °C (Fig. 4, open symbols). At lower temperatures USUV infected a similar percentage of mosquitoes (11% at 18 °C and 53% at 23 °C). Interestingly, at 28 °C, 90% of the mosquitoes were infected with USUV (Fig. 4, closed symbols), which was significantly more as compared with the 58% for WNV (Fisher’s exact test, P < 0.01). This was especially significant as the titer used for USUV in the infectious blood meals was seven times lower. This indicates that USUV is highly infectious for European *C. pipiens* mosquitoes and that temperature differentially affects the susceptibility of mosquitoes to either USUV or WNV.

Discussion

Here we show for the first time that USUV not only infects *C. pipiens*, but also effectively disseminates and accumulates in its saliva. In the field USUV is mostly detected in *Culex* species mosquitoes, although it has also been found in mosquitoes from four other genera within the family of Culicidae. To what extent mosquitoes from these genera may contribute to the dispersal of USUV is unclear. In southern Europe, USUV was detected in *C. pipiens*, which is the most abundant mosquito species in Europe and a competent WNV vector [10,13,29]. Northern Europe has a second abundant *Culex* species: *Culex torrentium*. It
would be interesting to investigate whether this mosquito species can act as a transmission vector for USUV and if, to what extent.

In addition to competent USUV vectors, sufficient vertebrate species are required as amplifying hosts. Susceptible bird species are prevalent in Europe as USUV has been detected in a large number of avian species, most notably within the Turdus genus [9,14]. In addition to birds, other vertebrates can become infected with USUV. Like WNV, humans and horses are incidental hosts. Whether bats develop viral titers that are high enough to contribute to the dispersal of USUV is unknown, but if this is a reservoir it could dramatically influence transmission model predictions [17]. Experimental WNV infections in birds can result in viremia above 10⁶ plaque forming units per ml, which is sufficient to infect blood feeding mosquitoes [27,42]. In the experiments presented here, the chicken blood used for infectious blood meals contained USUV titers of maximally 4 × 10⁷ TCID₅₀ per ml. Higher titers in the blood of USUV infected birds may further increase the percentage of vectors able to transmit USUV after blood feeding.

Both USUV and WNV disseminated into the salivary glands of mosquitoes that were intrathoracically injected with either virus (Fig. 1B). Interestingly, the viral titers that are present in orally infected mosquitoes were variable, whereas infection by injection displayed only a limited variation (Fig. 2). This suggests that the midgut acts as the major bottleneck for dissemination of the virus. Potentially, the induction of antiviral responses, and/or selective pressure for certain viral quasispecies may influence subsequent viral replication and dissemination. Injection of WNV also resulted in titers that were higher than those of blood fed or USUV-injected mosquitoes. Together with the lower vector competence, this suggests that the barriers in the midgut epithelial cells of C. pipiens are more effective against WNV as compared with USUV.

Small RNA pathways are key to antiviral immunity in insects, including mosquitoes. In response to WNV infections, virus-derived siRNAs (vsiRNA) have been detected in C. quinquefasciatus [43]. We show that both WNV and USUV elicit a strong RNAi response by displaying the DCR2 dependent vsiRNAs of 21 nucleotides, which map to both the genomic positive RNA strand and the complementary negative strand. We did not identify vpiRNAs derived from WNV or USUV. These viral small RNAs have until now only been identified in Aedes mosquitoes, primarily for viruses of the Togaviridae and Bunyaviridae families [36,37,39, 40]. Yet, vRNA production from both dengue virus and cell fusing agent virus (both Flaviviridae) has been suggested to occur in RNAi-deficient cells [44]. The lack of viRNAs in the infection models presented here could therefore be attributed to an inability of Culex mosquitoes to process viral RNA into viRNAs or to flaviviral RNA being an inferior substrate for viRNA production. Thus, our data suggest that siRNA-mediated RNA interference is the major small RNA pathway targeting WNV and USUV in C. pipiens mosquitoes. Yet, there were no apparent differences in vsiRNA levels that could explain the differential transmission rates between the two viruses.

Despite the observed differences in infectivity and transmissibility, both WNV and USUV can effectively be transmitted by C. pipiens. However, their distribution throughout Europe only has a limited overlap. The dispersal of WNV has a strong correlation with mean summer temperatures, which can be explained by the vector competence for WNV at the corresponding temperatures [29]. USUV activity is also found in more temperate regions, but surprisingly the infectivity in C. pipiens showed a strong temperature dependency, which was more pronounced than for WNV. In the experiments presented here, we used a constant incubation temperature that represented a mean summer temperature. However, diurnal temperature fluctuations around this mean may have additional effects on the vector competence. Indeed, the vector competence of Ae. aegypti for dengue virus is influenced by the diurnal temperature range. Fluctuations around lower mean temperatures (<18°C) increased the vector competence in comparison with mosquitoes that were incubated at identical, yet constant, mean temperatures [45]. Because C. pipiens is more competent for USUV at higher temperatures, temperature fluctuations above a relatively low mean may still enable USUV to have a higher vectorial capacity compared with WNV, but this needs further experimental evidence. Other factors involved in transmission are e.g., population density of vectors and amplifying hosts (birds), mosquito survival and host feeding behavior of C. pipiens.

In conclusion, both USUV and WNV can be transmitted by European C. pipiens mosquitoes, with increased oral infection rates at higher temperatures. At higher temperatures, however, C. pipiens is significantly more competent for USUV than for WNV.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.oonh.2015.08.002.

Acknowledgments

We thank Corinne Geertsema and Els Roode for technical support concerning the BSL3 Laboratory. We would like to thank Christophe Antoniewski, the ARTbio bioinformatics analyses platform of the Institut de Biologie, Paris Seine and the http://mississippi.fr Galaxy server for sharing their bioinformatics tools. This work is supported by the European 195 Community’s Seventh Framework Programme (FP7 VECTORIE project number 261466).

References

[1] M.C. Paty, Dengue fever in mainland France, Arch. Pediatr. 21 (2014) 1274–1278.
[2] G. Rezza, I. Nicolloti, R. Angelini, R. Romi, A.C. Finarelli, M. Panning, et al., Infection with chikungunya virus in Italy: an outbreak in a temperate region, Lancet 370 (2007) 1840–1846.
[3] M. Grandadam, V. Caro, S. Plumet, J.M. Thibierge, Y. Souares, A.B. Failloux, et al., Chikungunya virus, southeastern France, Emerg. Infect. Dis. 17 (2011) 910–913.
[4] E. Delisle, C. Rousseau, B. Broche, J. Leparc-Goffart, G. L’Ambert, A. Cochet, et al., Chikungunya outbreak in Montpellier, France, September to October 2014, Euro Surveill. 20 (2015).
[5] F. Schaffner, A. Mathis, Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future, Lancet Infect. Dis. 14 (2014) 1271–1280.
[6] F. Magurano, M. Remoli, M. Baggioli, C. Fortuna, A. Marchi, C. Fiorentini, et al., Circulation of West Nile virus lineages 1 and 2 during an outbreak in Italy, Clin. Microbiol. Infect. 18 (2012) E545–E547.
[7] F.B. Hayes, N. Komar, R.S. Nasci, S.P. Montgomery, D.R. O’Leary, G.L. Campbell, Epidemiology and transmission dynamics of West Nile virus disease, Emerg. Infect. Dis. 11 (2005) 1167–1173.
[8] Prevention CDCa, West Nile virus disease cases and deaths reported to CDC by year and clinical presentation, 1999–2013. Atlanta, http://www.cdc.gov/2014 available at.
[9] H. Weissenbock, J. Kolodziejek, A. Uri, H. Lussy, B. Rebel-Bauder, N. Nowotny, Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe, Emerg. Infect. Dis. 8 (2002) 652–656.
[10] B. Nikolay, M. Diallo, C.S. Boye, A.A. Sall, Usutu virus in Africa, Vector Borne Zoonotic Dis. 11 (2011) 1417–1423 (Larchmont, NY).
[11] A. Vazquez, M. Jimenez-Clavero, L. Franca, O. Donoso-Manfro, V. Sanabria, M. Niedrig, et al., Usutu virus: potential risk of human disease in Europe, Euro Surveill. 16 (2011).
[12] M.M. Garigliany, D. Marlier, K. Tenner-Racz, M. Eiden, D. Cassart, F. Gandar, et al., Detection of Usutu virus in a bullfinch (Pyrrhula pyrrhula) and a great spotted woodpecker (Dendrocopos major) in north-west Europe, Vet. J. 199 (2014) 191–193.
[13] O. Engler, G. Savini, A. Papa, J. Figuerola, M.H. Gress Humph, K. Kampen, et al., European surveillance for West Nile virus in mosquito populations, Int. J. Environ. Res. Public Health 10 (2013) 4869–4895.
[14] S. Chvala, T. Bakonyi, C. Bukovsky, T. Meister, K. Brugger, F. Rube, et al., Monitoring of Usutu virus activity and spread by using dead bird surveillance in Austria, 2003–2005, Vet. Microbiol. 122 (2007) 237–245.
[15] A.M. Kilpatrick, P. Daskal, M.J. Jones, P.P. Marra, L.D. Kramer, Host heterogeneity dominates West Nile virus transmission, Proc. Biol. Sci. 273 (2006) 2327–2333.
[16] L. Barbic, T. Vilibic-Cavlek, E. Listes, V. Stevanovic, M. Ljubin-Sternak, et al., Demonstration of Usutu virus antibodies in horses, Croatia, Vector Borne Zoonotic Dis. 13 (2013) 722–724 (Larchmont, NY).
[17] C. Mucientes, J. Chabal, T. Caulet, B. Brugg, J. Muste, et al., Epidemiology and transmission dynamics of West Nile virus activity and spread by using dead bird surveillance in Austria, 2003–2005, Vet. Microbiol. 122 (2007) 237–245.
[18] M. Santini, T. Vilibic-Cavlek, B. Baric, L. Barbic, V. Savic, V. Stevanovic, et al., First case of human Usutu virus neuroinvasive infection in Croatia, August–September 2013: clinical and laboratory features, Journal of Neurololgical 21 (2015) 92–97.
[19] F. Cavin, P. Calvani, G. Longo, A.M. Pierro, G. Rossini, P. Bonilauri, et al., Usutu virus infection in a patient who underwent orthotopic liver transplantation, Italy, August–September 2009, Euro Surveill. 14 (2009).
[20] M. Pecorari, G. Longo, W. Gennari, A. Grotto, A. Sabbatini, S. Tagliiazucchi, et al., First human case of Usutu virus neuroinvasive infection, Italy, August–September 2009, Euro Surveill. 14 (2009).
[21] W. Takken, B.G. Knols, Emerging Pests and Vector-borne Diseases in Europe, Wageningen Academic Publishers, 2007.
[22] L. Allering, H. Jost, P. Emmerich, S. Gunther, L. Lathwein, M. Schmidt, et al., Detection of Usutu virus infection in a healthy blood donor from south-west Germany, 2012, Euro Surveill. 17 (2012).
[23] P. Gaibani, A. Pierro, R. Alicino, G. Rossini, F. Cavrini, M.P. Landini, et al., Detection of Usutu-virus-specific IgG in blood donors from northern Italy, Vector Borne Zoonotic Dis. 12 (2012) 431–433 (Larchmont, NY).
[24] P.S. Mellor, Replication of arboviruses in insect vectors, J. Comp. Pathol. 123 (2000).
[25] B. Nikolay, M. Diallo, O. Faye, C.S. Boye, A.A. Sall, Vector competence of Culex neavei (Diptera: Culicidae) for Usutu virus, Am. J. Trop. Med. Hyg. 86 (2012) 995–996.
[26] P. Gaibani, F. Cavrini, E.A. Gould, G. Rossini, A. Pierro, M.P. Landini, et al., Comparative genomic and phylogenetic analysis of the first Usutu virus isolate from a human patient presenting with neurological symptoms, PLoS One 8 (2013), e64761.
[27] S.M. Lim, A.C. Brault, G. van Amerongen, A.M. Bosco-Lauth, H. Romo, V.D. Sewhalakis, et al., Susceptibility of carrion crows to experimental infection with lineage 1 and 2 West Nile viruses, Emerg. Infect. Dis. 21 (2015) 1357–1365.
[28] A. Papa, K. Xanthopoulou, S. Gewehr, S. Mourelatos, Detection of West Nile virus lineage 2 in mosquitoes during a human outbreak in Greece, Clin. Microbiol. Infect. 17 (2011) 1176–1180.
[29] J.J. Fros, C. Geertsema, C.B. Vogels, J.P. Rooijen, A.B. Failloyx, J.M. Vlak, et al., West Nile virus: high transmission rate in north-western European mosquitoes indicates its epidemic potential and warrants increased surveillance, PLoS Negl. Trop. Dis. 9 (2015) http://dx.doi.org/10.1371/journal.pntd.0003956.
[30] C.D. Blair, Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission, Future Microbiol 6 (2011) 265–277.
[31] P. Miesen, E. Girardi, R.P. van Rij, Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells, Nucleic Acids Res. 43 (2015) 6545–6556.
[32] E. Schnettler, C.L. Donald, S. Human, M. Watson, R.W. Sia, M. McFarlane, et al., Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells, J. Gen. Virol. 94 (2013) 1680–1689.
[33] D.B. Gannon, C.C. Mello, RNA interference-mediated antiviral defense in insects, Curr. opinion insect sci. 8 (2015) 111–120.
[34] N. Vodovar, A.W. Bronkhorst, K.W. van Cleef, P. Miesen, H. Blanc, R.P. van Rij, et al., Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells, PLoS Negl. Trop. Dis. 7 (2012), e30861.
[35] A.M.G.K. Tank, J.B. Wijngaard, G.P. Konnen, R. Bohn, G. Demaree, A. Gocheva, et al., Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment, Int. J. Climatol. 22 (2002) 1441–1453.
[36] J. Del Amo, F. Llorente, J. Figuerola, N. Nowotny, et al., Experimental infection of house sparrows (Passer domesticus) with West Nile virus strains of lineages 1 and 2, Vet. Microbiol. 172 (2014) 542–547.
[37] D.E. Brackney, J.E. Beane, G.D. Ebel, RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification, PLoS Pathog. 5 (2009), e1000502.
[38] D.E. Brackney, J.C. Scott, F. Sagawa, J.E. Woodward, N.A. Miller, P.D. Schilkey, et al., C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response, PLoS Negl. Trop. Dis. 4 (2010), e856.
[39] L. Lambrechts, K.P. Paaijmans, T. Fansiri, L.B. Carrington, L.D. Kramer, M.B. Thomas, et al., Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 7460–7465.