Deblurring Face Images using Uncertainty Guided Multi-Stream Semantic Networks

Rajeev Yasarla, Student Member, IEEE, Federico Perazzi, Member, IEEE and Vishal M. Patel, Senior Member, IEEE

Abstract—We propose a novel multi-stream architecture and training methodology that exploits semantic labels for facial image deblurring. The proposed Uncertainty Guided Multi-Stream Semantic Network (UMSN) processes regions belonging to each semantic class independently and learns to combine their outputs into the final deblurred result. Pixel-wise semantic labels are obtained using a segmentation network. A predicted confidence measure is used during training to guide the network towards challenging regions of the human face such as the eyes and nose. The entire network is trained in an end-to-end fashion. Comprehensive experiments on three different face datasets demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art face deblurring methods. Code is available at: https://github.com/rajeevyasarla/UMSN-Face-Deblurring

Index Terms—Facial image deblurring, semantic masks, confidence scores.

I. INTRODUCTION

Image deblurring entails the recovery of an unknown true image from a blurry image. Similar to the other image enhancement tasks, image deblurring is experiencing a renaissance as a result of convolutional networks (CNNs) establishing themselves as powerful generative models. Image deblurring is an ill-posed problem and therefore it is crucial to leverage additional properties of the data to successfully recover the lost facial details in the deblurred image. Priors such as sparsity [1], [2], low-rank [3] and patch similarity [4] have been used in the literature to obtain a regularized solution. In recent years, deep learning-based methods have also gained some traction [5], [6], [7], [8].

The inherent semantic structure of natural images such as faces is an important information that can be exploited to improve the deblurring results. Few techniques [9], [10] make use of such prior information in the form of semantic labels. These methods do not account for the class imbalance of semantic maps corresponding to faces. Interior parts of a face like eyes, nose, and mouth are less represented as compared to face skin, hair and background labels. Depending on the pose of the face, some of the interior parts may even disappear. Without re-weighting the importance of less represented semantic regions, the method proposed by Ziyi et al. [9] fails to reconstruct the eyes and the mouth regions as shown in Fig. 1. Similar observations can also be made regarding the method proposed in [10] (Fig. 1) which uses semantic priors to obtain the intermediate outputs and then performs post-processing using k-nearest neighbor algorithm.

To address the imbalance of different semantic classes, we propose a novel CNN architecture, called Uncertainty guided Multi-stream Semantic Networks (UMSN), which learns class-specific features independently and combine them to deblur the whole face image. Class-specific features are learned by sub-networks trained to reconstruct a single semantic class. We use nested residual learning paths to improve the propagation of semantic features. Additionally, we propose a class-based confidence measure to train the network. The confidence measure describes how well the network is likely to deblur each semantic class. This measure is incorporated in the loss to train the network. We evaluate the proposed network by conducting experiments on three face datasets - Helen [11], CelebA [12] and PuBFig [10]. Extensive experiments demonstrate the effectiveness of our approach compared to a number of well established face deblurring methods as well as other competitive approaches. Fig. 1 shows sample results.
from our UMSN network, where one can clearly see that UMSN is able to provide better results as compared to the state-of-the-art techniques [9], [10]. An ablation study is also conducted to demonstrate the effectiveness of different parts of the proposed network. To summarize, this paper makes the following contributions:

- A novel multi-stream architecture called, Uncertainty Guided Multi-Stream Semantic (UMSN), is proposed which learns class-specific features and uses them to reconstruct the final deblurred image.
- We propose a novel method of computing confidence measure for the reconstruction of every class in the deblurred image, which is to rebalance the importance of semantic classes during training.

Rest of the paper is organized as follows. In Section II, we review a few related works. Details of the proposed method are given in Section III. Experimental results are presented in Section IV, and finally, Section V concludes the paper with a brief summary.

II. BACKGROUND AND RELATED WORK

Single image deblurring techniques can be divided into two main categories - blind and non-blind. In the non-blind deblurring problem, the blur kernel is assumed to be known while in the blind deblurring problem, the blur kernel needs to be estimated. Since the proposed approach does not assume any knowledge of the blur kernel, it is a blind image deblurring approach. Hence, in this section, we review some recent blind image deblurring techniques proposed in the literature.

Classical image deblurring methods estimate the blur kernel given a blurry image and then apply deconvolution to get the deblurred image. To calculate the blur kernel some techniques assume prior information about the image, and formulate maximum a-posteriori (MAP) to obtain the deblurred image. Different priors such sparsity, L_0 gradient prior, patch prior, manifold Prior, and low-rank have been proposed to obtain regularized reconstructions [13], [11], [14], [3], [2], [15], [4], [16], [17]. Chakrabarti et al. [6] estimate the Fourier coefficients of the blur kernel to deblur the image. Nimisha et al. [3] learn the latent features of the blurry images using the latent features of the clean images to estimate the deblurred image. These CNN-based methods do not perform well compared to the state-of-the-art MAP-based methods for large motion kernels. Recent non-blind image deblurring methods like [18], [19], [2], [20], [21] assume and use some knowledge about the blur kernel. Given the latent blurry input, Subeesh et al. [21] estimate multiple latent images corresponding to different prior strengths to estimate the final deblurred image. CNN-based techniques like [22] and [23] estimate the blur kernel and address dynamic deblurring.

The usage of semantic information for image restoration is relatively unexplored. While semantic information has been used for different object classes [24], [25], [26], [27], a substantial body of literature has focused their attention to human faces [28], [9], [29], [30]. Pan et al. [29] extract the edges of face parts and estimate exemplar face images, which are further used as the global prior to estimate the blur kernel.

This approach is complex and computationally expensive in estimating the blur kernel. Recently, Ziyi et al. [9] proposed to use the semantic maps of a face to deblur the image. Furthermore, they introduced the content loss to improve the quality of eyes, nose and mouth regions of the face. In contrast to these methods, we learn a multi-stream network which reconstructs the deblurred images corresponding to different classes in a facial semantic map. Furthermore, we propose a new loss to train the network.

III. PROPOSED METHOD

A blurry face image y can be modeled as the convolution of a clean image x with a blur kernel k, as

$$y = k * x + \eta,$$

where $*$ denotes the convolution operation and η is noise. Given y, in blind deblurring, our objective is to estimate the underlying clean face image x. We group 11 semantic face labels into 4 classes as follows: $m_1 = \{background\}$, $m_2 = \{face\ skin\}$, $m_3 = \{left\ eyebrow,\ right\ eyebrow,\ left\ eye,\ right\ eye,\ nose,\ upper\ lip,\ lower\ lip,\ teeth\}$ and $m_4 = \{hair\}$. Thus, the semantic class mask of a clean image x is the union $m = m_1 \cup m_2 \cup m_3 \cup m_4$. Similarly we define the semantic class masks of a blurry image \hat{m}.

Semantic class masks for blurry image, \hat{m} are generated using the semantic segmentation network (SN) (Fig. 3), and given together with the blurry image as input to the deblurring network, UMSN. This is important in face deblurring as some parts like face skin and hair are easy to reconstruct, while face parts like eyes, nose, and mouth are difficult to reconstruct and require special attention while deblurring a face image. This is mainly due to the fact that parts like eyes, nose and mouth are small in size and contain high frequency elements compared to the other components. Different from [29] that uses edge information and [9] that feed the semantic map to a single-stream deblurring network, we address this problem by proposing a multi-stream semantic network, in which individual branches F-net-i learn to reconstruct different parts of the face image separately. Fig. 2 gives an overview of the proposed UMSN method.

As can be seen from Fig. 2 the proposed UMSN network consists of two stages. We generate the semantic class maps, \hat{m}_i of a blurry face image using the SN network. The semantic maps are used as the global masks to guide each stream of the first stage network. These semantic class maps \hat{m}_i are further used to learn class specific residual feature maps with nested residual learning paths (NRL). In the first stage of our network, the weights are learned to deblur the corresponding class of the face image. In the second stage of the network, the outputs from the first stage are fused to learn the residual maps that are added to the blurry image to obtain the final deblurred image. We train the proposed network with a confidence guided class-based loss.

A. Semantic Segmentation Network (SN)

The semantic class maps \hat{m}_i of a face, are extracted using the SN network as shown in Fig. 3. We use residual blocks
(ResBlock) as our building block for the segmentation network. A ResBlock consists of a 1×1 convolution layer, a 3×3 convolution layer and two 3×3 convolution layers with dilation factor of 2 as shown in Fig. 4.

B. Base Network (BN)

We construct our base network using a combination of UNet [31] and DenseNet [32] architectures with the ResBlock as our basic building block. To increase the receptive field size, we introduce smoothed dilation convolutions in the ResBlock as shown in Fig. 4. BN is a sequence of eight ResBlocks similar to the first stage semantic network as shown in Fig. 5. Note that all convolutional layers are densely connected [32]. We follow residual-based learning in estimating the deblurred image for our base network as shown in Fig. 5.

C. UMSN Network

The UMSN network is a two-stage network. The first stage network is designed to obtain deblurred outputs from the semantic class-wise blurry inputs. These outputs are further processed by the second stage network to obtain the final deblurred image. The first stage semantic network contains a sequence of five ResBlocks with residual connections, as shown in Fig. 6. We call the set of all convolution layers of the first stage network excluding the last ResBlock and Conv3×3 as F-Net.

The blurry image y and the semantic masks \hat{m}_i are fed to F-Net-i to obtain the corresponding class-specific deblurred features which are concatenated with the output of the first layer (ResBlock-Avgpool) in Base Network (BN) for constructing the UMSN network. We also use the Nested Residual Learning (NRL) in UMSN network where class specific residual feature maps are learned and further used in estimating the residual.

Fig. 2: An overview of the proposed UMSN network. First stage semantic networks consist of F-Net-i. Second stage is constructed using the base network (BN), where outputs of the F-Net-i’s are concatenated with the output of the first ResBlock layer in BN.

Fig. 3: An overview of the segmentation network. Conv $l \times l (p, q)$ contains instance normalization [33], Rectified Linear Unit (ReLU), Conv ($l \times l$) - convolutional layer with kernel of size $l \times l$, where p and q are number of input and output channels respectively.

Fig. 4: An overview of the ResBlock. Conv $l \times l (p, q)$ contains Instance Normalization [33], ReLU - Rectified Linear Units, Conv ($l \times l$) - convolutional layer with kernel of size $l \times l$, where p and q are number of input and output channels respectively. In the right side of the figure we show smoothed dilation convolutions introduced in ResBlock which is similar to [34].

Fig. 5: An overview of the ResBlock. Conv $l \times l (p, q)$ contains Instance Normalization [33], ReLU - Rectified Linear Units, Conv ($l \times l$) - convolutional layer with kernel of size $l \times l$, where p and q are number of input and output channels respectively.
feature maps that are added to the blurry image for obtaining the final output. For example, we can observe a residual connection between the last layer of UMSN and class-specific feature maps obtained from Conv 1x1 using y and \(\hat{m} \). Output of this residual connection is further processed as the input to the residual connection with the input blurry image, y. In this way, we define our NRL and obtain the final deblurred image. We propose a class-based loss function to train the UMSN network.

D. Loss for UMSN

The network parameters \(\Theta \) are learned by minimizing a loss \(\mathcal{L} \) as follows,

\[
\hat{\Theta} = \arg \min_{\Theta} \mathcal{L}(f_{\Theta}(y, \hat{m}), x) = \arg \min_{\Theta} \mathcal{L}(\hat{x}, x),
\]

where \(f_{\Theta}(\cdot) \) represents the UMSN network, \(\hat{x} \) is the deblurred result, \(\hat{m} \) is the semantic map obtained from SN. We define the reconstruction loss as \(\|x - \hat{x}\|_1 \). A face image can be expressed as the sum of masked images using the semantic maps as

\[
x = \sum_{i=1}^{M} m_i \odot x,
\]

where \(\odot \) is the element-wise multiplication and \(M \) is the total number of semantic maps. As the masks are independent of one another, Eq. (1) can be re-written as,

\[
\hat{\Theta} = \arg \min_{\Theta} \sum_{i=1}^{M} \mathcal{L}(m_i \odot \hat{x}, m_i \odot x).
\]

In other words, the loss is calculated for every class independent and summed up in order to obtain the overall loss as follows,

\[
\mathcal{L}(\hat{x}, x) = \sum_{i=1}^{M} \mathcal{L}(m_i \odot \hat{x}, m_i \odot x).
\]

Uncertainty Guidance

We introduce a confidence measure for every class and use it to re-weight the contribution of the loss from each class to the total loss. By introducing a confidence measure and re-weighting the loss, we benefit in two ways. If the network is giving less importance to a particular class by not learning appropriate features of it, then the Confidence Network (CN) helps UMSN to learn those class features by estimating low confidence values and higher gradients for those classes through CN network. Additionally, by re-weighting the contribution of loss from each class, it counters for the imbalances in the error estimation from different classes. The loss function can be written as,

\[
\mathcal{L}_c(\hat{x}, x) = \sum_{i=1}^{M} C_i \mathcal{L}(m_i \odot \hat{x}, m_i \odot x) - \lambda \log(C_i),
\]

where \(\log(C_i) \) acts as a regularizer that prevents the value of \(C_i \) going to zero and \(\lambda \) is a constant. We estimate the confidence measure \(C_i \) for each class by passing \(m_i \odot \hat{x}, m_i \odot x \) as inputs to CN as shown in Fig. 6. \(C_i \) represents how confident UMSN is in deblurring the \(i^{th} \) class components of the face image. Note that, \(C_i \in [0, 1] \), confidence measure is used only in the loss function while training the weights of UMSN, and it is not used (or estimated) during inference.

IV. Experimental Results

We evaluate the results using the images provided by the authors of \cite{9} which consists of 8000 blurry images generated using the Helen dataset \cite{11}, and 8000 blurry images generated using the CelebA dataset \cite{12}. Furthermore, we test our network on a test dataset called PubFig, provided by the authors of \cite{10} which contains 192 blurry images. We quantitatively evaluate the results using the Peak-Signal-to-Noise Ratio (PSNR) and the Structural Similarity index (SSIM) \cite{39}.

\footnote{We follow the same training and testing protocols defined by \cite{9}.}
A. Implementation Details

1) Segmentation Network: We initially train the SN network using the Helen dataset [11] which contains 2000 clean images with corresponding semantic labels provided by Smith et al. [40]. SN is trained using the cross entropy loss with the Adam optimizer and the learning rate is set equal to 0.0002. We train SN for 60000 iterations on clean images. As can be seen from Fig. 7 and Table I, SN trained on clean images only is not able to produce good results on the blurry images. Thus, we fine-tune SN using the blurry images and the corresponding semantic maps generated using the Helen dataset. In this case, SN is fine-tuned for 30000 iterations with the learning rate of 0.00001. We test our SN network on 330 clean Test images provided by the Helen dataset as well as 8000 blurry images. Results are shown in Fig. 7 and Table I in terms of F-scores. As can be seen from these results, our method is able to produce reasonable segmentation results from blurry images.

Class	Clean Images	Blurry Images	
	SN trained on clean images	SN trained on clean images	SN fine-tuned w/ blurry images
class-1	0.910	0.889	0.901
class-2	0.903	0.877	0.884
class-3	0.856	0.775	0.814
class-4	0.625	0.538	0.566

TABLE II: F-score values of semantic masks for clean and blurry images from the Helen dataset.

2) UMSN Network: Training images for UMSN are generated using 2000 images from the Helen dataset [11], and randomly selected 25000 images from the CelebA dataset [12]. We generate 25000 blur kernels sizes ranging from 13×13 to 29×29, using 3D camera trajectories [41]. Patches of size 128×128 are extracted from those images and convolved with 25000 blur kernels randomly to generated about 1.7 million pairs of clean-blurry data. We added Gaussian noise with $\sigma = 0.03$ to the blurry images.

a) First Stage Semantic Network: Every F-Net in the first stage network is trained with clean-blurry paired data where only the corresponding class components of the face images are blurred. The first stage semantic network is trained with a combination of the L1-norm and the perceptual losses using the Adam optimizer with learning rate of 0.0002. The first stage network is trained for 50,000 iterations. To illustrate what kind of outputs are observed from the F-Nets, in Fig. 8 we display semantic masks (first row), the corresponding blurry images (second row) and the final estimated deblurred outputs from F-Nets (last row). As it can be seen from the last row, F-Nets are able to remove most of the blur from corresponding class in the image.

b) Overall UMSN Network: UMSN is trained using \mathcal{L}_{total} with the Adam optimizer and batchsize of 16. The learning rate is set equal to 0.0002. Note that, semantic maps $\{m_i\}_{i=1}^4$ of the ground truth clean images in \mathcal{L}_{total} are generated using SN, since we do not have the actual semantic maps for them. λ and λ_1 values are set equal to 0.01 and 1.0, respectively. UMSN is trained for 0.1 million iterations.

B. Evaluation

a) PSNR and SSIM: We compare the performance of our method with the following state-of-the-art algorithms: MAP-based methods [14], [13], [42], [43], [44], face deblurring exemplar-based method [29], and CNN-based methods [7].
Table III: PSNR and SSIM comparison of UMSN against state-of-the-art methods.

Deblurring Method	Helen	CelebA		
	PSNR	SSIM	PSNR	SSIM
Xu et al.[13]	10.15	11.38	12.28	14.72
Zhong et al.[44]	7.46	8.92		
Ziyi et al.[9]	5.87	6.49		
UMSN (ours w/\(L_{total}\))	**5.23**	**5.57**		

Table IV: Comparison of UMSN against state-of-the-art methods using distance of feature from VGG-Face(\(d_{VGG}\)). lower is better

Deblurring Method	Helen	CelebA
	\(d_{VGG}\)	\(d_{VGG}\)
Xu et al.[13]	10.15	11.38
Zhong et al.[44]	12.28	14.72
Nah et al.[17]	7.46	8.92
Ziyi et al.[9]	5.87	6.49
UMSN (ours w/\(L_{total}\))	**5.23**	**5.57**

Table V: Top-1, Top-3 and Top-5 face recognition accuracies of the CelebA dataset.

Deblurring Method	Top-1	Top-3	Top-5
Clear images	71%	84%	89%
Blurred images	31%	46%	53%
Pan et al.[19]	44%	57%	64%
Xu et al.[13]	43%	57%	64%
Zhong et al.[44]	30%	44%	51%
Nah et al.[17]	42%	59%	65%
Ziyi et al.[9]	54%	68%	74%
UMSN (ours w/\(L_{total}\))	**59%**	**72%**	**80%**

Qualitative Results: The qualitative performance of different methods on several images from the Helen and CelebA test images are shown in Fig. [9]. We can clearly observe that UMSN produces sharp images without any artifacts when compared to the other methods [13], [9], [44].

In addition, we conducted experiments on 100 real blurry images provided by the authors of [13], [9], [44]. Results corresponding to different methods are shown in Fig. [10]. As can be seen from this figure, UMSN produces sharper and clearer images when compared to the state-of-the-art methods. For example, methods [13], [44] produce results which contain artifacts or blurry images. Ziyi et al.[9] is not able reconstruct eyes, nose and mouth as shown in the fourth row of Fig. [10]. On the other hand, eyes, nose, and mouth regions are clearly visible in the images corresponding to the UMSN method.

Ablation Study

We conduct experiments on two datasets to study the performance contribution of each component in UMSN. We start with the base network (BN) and progressively add components to establish their significance to estimate the final deblurred image. The corresponding results are shown in Table [VI]. It is important to note that BN and UMSN are configured to have the same number of learnable parameters by setting appropriate number of output channels in the intermediate convolutional layers of the ResBlock.
Fig. 9: Sample results from the Helen and CelebA datasets. As can be seen from this figure, MAP-based methods [44], [13] are adding some artifacts on the final deblurred images especially near the eyes, nose and mouth regions. Global prior-based method [9] produces very smooth outputs and some parts of the deblurred images are deformed. This can be clearly seen by looking at the reconstructions in the fourth column corresponding to [9], where the right eye is added in the face image, the fingers are removed, the mustache is removed, and the mouth is deformed. On the other hand by using class-specific multi-stream networks and L_{total}, our method is able to reconstruct all the classes of a face perfectly and produces sharper face images. For example, UMSN is able to reconstruct eyes, nose, mustache and mouth clearly. Additionally, UMSN does not add parts like eyes when they are occluded (last row). Note that the method proposed in [9] uses a generative adversarial network (GAN) to reconstruct sharper images. In contrast, our method is able to reconstruct sharper images even without using a GAN.
Fig. 10: Sample results on real blurry images.
Fig. 11: Ablation study. (a) Blurry image, (b) BN, (c) BN + semantic maps, (d) BN + semantic maps + NRL, (e) UMSN without L_c, (f) UMSN (g) ground Truth.

The ablation study demonstrates that each of the components improve the quality of the deblurred image. In particular, the introduction of the multi-stream architecture improved the performance by 0.5dB. When UMSN is trained using L_{total} the performance improved by an additional 0.25dB. Finally, the combination of all the components of UMSN produce the best results with 1.65dB gain compared to BN.

Deblurring Method	Helen	CelebA		
	PSNR	SSIM	PSNR	SSIM
baseline (BN)	25.12	0.82	24.38	0.81
+ semantic maps	25.55	0.84	24.72	0.82
+ nested residuals	26.08	0.85	25.26	0.84
UMSN without L_c	26.61	0.87	25.67	0.87
UMSN	26.93	0.897	25.90	0.90

TABLE VI: PSNR and SSIM results of the ablation study.

Sample reconstructions corresponding to the ablation study using the Helen and CelebA datasets are shown in Fig. 11. As can be seen from this figure, BN and BN+semantic maps produce reconstructions that are still blurry and they fail to reconstruct the facial parts like eyes, nose and mouth well. On the other hand, BN+semantic maps+ NRL is able to improve the reconstruction quality but visually it is still not comparable to the state-of-the-art method. As shown in Fig. 12, NRL is able to estimate the class-specific residual feature maps, which are further used for estimating the final deblurred image. From Fig. 12 we can see what different residual feature maps are learning for different classes. In particular, the use of F-Nets helps UMSN to produce qualitatively good results, where all the parts of a face are clearly visible. Furthermore, training UMSN using L_{total} results in sharper images.

We also compare our method qualitatively with post processing-based method [10] on the PubFig dataset. As can be seen from the results shown in Fig. 13, even after applying some post processing, [10] tends to produce results that are smooth. In comparison, UMSN is able to produce sharper and high-quality images without any post-processing.

Fig. 12: (a) Blurry image. (b) UMSN. (c) Intermediate residual feature map learned for the eyes and the hair. (d) Intermediate residual feature map learned for the face skin in NRL.

Fig. 13: Sample results from the PubFig dataset. (a) Blurry image. (b) Ground Truth. (c) Song et al. [10] (IJCV’19). (d) UMSN.

V. CONCLUSION

We proposed a new method, called Uncertainty guided Multi-stream Semantic Network (UMSN), to address the single image blind deblurring of face image problem that entails the use of facial semantic information. In our approach, we introduced a different way to use the output features from the sub-networks which are trained for the individual semantic class-wise deblurring. Additionally, we introduced
novel techniques such as nested residual learning, and class-based confidence loss to improve the performance of UMSN. In comparison to the state-of-the-art single image blind deblurring methods, the proposed approach is able to achieve significant improvements when evaluated on three popular face datasets.

APPENDIX A

UMSN network sequence

The BaseNetwork is similar to the first stage semantic network as shown in Fig. 5 with the following sequence of layers, ResBlock(3,64)-Avgpool-ResBlock(64,64)-ResBlock(64,64)-ResBlock(64,64)-ResBlock(64,64)-ResBlock(64,64)-Upsample-ResBlock(64,16)-Conv 3 × 3(16,3).

F-Net-i is a sequence of five ResBlocks with dense connections, ResBlock(3,16)-Avgpool-ResBlock(16,16)-ResBlock(16,16)-ResBlock(16,16)-ResBlock(16,8)

where ResBlock(m, n) indicates m input channels and n output channels for ResBlock.

F-Net-i’s are joined to form the first stage of UMSN, further these outputs re concatenated to output of first layer of Base Network(BN) for constructing the UMSN network. Thus UMSN is constructed by combining F-Net-i’s and BN, where F-Net-i’s acts as first stage of UMSN, and BN acts as second stage of UMSN.

APPENDIX B

Confidence scores

In this section, we show some example test outputs of UMSN(trained with L_{total}) at different time instances of training, and their corresponding confidence values to show how confidence measure is helping the network. Confidence measure helps the UMSN in deblurring different parts of the face. For example, as shown in the Fig. 14 and Table VII, the output of UMSN after 50,000 iterations are blurry at eyes, nose, and mouth which was reflected in low confidence score for C_3 when compared to other classes. Eventually, UMSN learnt to reconstruct eyes, nose and mouth which was reflected in high confidence score for C_3, and as shown in the Figure 14 the output deblurred images are sharp, with eyes, nose and mouth reconstructed perfectly.

Blurry Image	Iteration	C_1	C_2	C_3	C_4
Image1	3000	0.573	0.576	0.610	0.584
	50000	0.676	0.902	0.789	0.847
	100000	0.858	0.917	0.989	0.962
Image2	3000	0.519	0.528	0.493	0.611
	50000	0.728	0.883	0.817	0.872
	100000	0.896	0.919	0.966	0.944

TABLE VII: Confidence values for the Image1 and Images2, first row and second row images in Fig. 14 respectively.

![Fig. 14: Sample deblurring results of UMSN at different time instances of training: (a) Blurry image; (b) trained for 3000 iterations (c) 50,000 iterations (d) 0.1 million iterations.](image)

ACKNOWLEDGMENT

This research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D Contract No. 2014-14071600012. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

REFERENCES

[1] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” *ACM transactions on graphics (TOG)*, vol. 25, no. 3, pp. 787–794, 2006.

[2] C. J. Schuler, H. Christopher Burger, S. Harmeling, and B. Scholkopf, “A machine learning approach for non-blind image deconvolution,” in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2013, pp. 1067–1074.

[3] W. Ren, X. Cao, J. Pan, X. Guo, W. Zuo, and M.-H. Yang, “Image deblurring via enhanced low-rank prior,” *IEEE Transactions on Image Processing*, vol. 25, no. 7, pp. 3426–3437, 2016.

[4] L. Sun, S. Cho, J. Wang, and J. Hays, “Edge-based blur kernel estimation using patch priors,” in *IEEE International Conference on Computational Photography (ICCP)*. IEEE, 2013, pp. 1–8.

[5] T. M. Nimisha, A. Kumar Singh, and A. N. Rajagopalan, “Blur-invariant deep learning for blind-deblurring,” in *Proceedings of the IEEE International Conference on Computer Vision*, 2017, pp. 4752–4760.

[6] L. Xu, J. S. Ren, C. Liu, and J. Jia, “Deep convolutional neural network for image deconvolution,” in *Advances in neural information processing systems*, 2014, pp. 1790–1798.

[7] S. Nah, T. Hyun Kim, and K. Mu Lee, “Deep multi-scale convolutional neural network for dynamic scene deblurring,” in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2017, pp. 3883–3891.

[8] S. Zhang, X. Shen, Z. Lin, R. Mêch, J. P. Costeira, and J. M. Moura, “Learning to understand image blur,” in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2018, pp. 6586–6595.

[9] Z. Shen, W.-S. Lai, T. Xu, J. Kautz, and M.-H. Yang, “Deep semantic face deblurring,” *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 8260–8269, 2018.

[10] Y. Song, J. Zhang, L. Gong, S. He, L. Bao, J. Pan, Q. Yang, and M.-H. Yang, “Joint face hallucination and deblurring via structure generation and detail enhancement,” *International Journal of Computer Vision*, vol. 127, no. 6-7, pp. 785–808, 2019.

[11] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang, “Interactive facial feature localization,” in *European conference on computer vision*. Springer, 2012, pp. 679–692.
