Hybrid NLIE for the mirror $\text{AdS}_5 \times S^5$

Ryo Suzuki
Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht, The Netherlands
E-mail: R.Suzuki@uu.nl

Received 9 February 2011, in final form 13 April 2011
Published 6 May 2011
Online at stacks.iop.org/JPhysA/44/235401

Abstract
We revisit the derivation of hybrid nonlinear integral equations of the XXX model starting from the linearization of the T-system related to spinon variables. We obtain two sets of equations, corresponding to two linearly independent solutions of the A_1 TQ-relation. Recalling that the TQ-relations in the horizontal strips of the $\text{su}(2|4|2)$-hook is of A_1 type, we replace the corresponding Y-functions by a finite number of auxiliary variables.

PACS numbers: 02.30.Ik, 11.25.Tq, 11.30.Ly, 75.10.Pq

1. Introduction and summary
AdS/CFT is a conjecture dictating that the spectrum of $\text{AdS}_5 \times S^5$ is dual to the dimension of $D = 4$, $\mathcal{N} = 4$ SYM local operators [1]. The exact spectrum of both theories has recently been studied intensively based on integrability methods. One of the central ideas is thermodynamic Bethe ansatz (TBA) equations. The TBA equations are used to compute the exact ground state energy of a finite-volume field theory by interchanging the space and time directions [5]. Such strategy was followed by the study of worldsheet theory with space and time coordinates interchanged [6]. This theory is also called the mirror $\text{AdS}_5 \times S^5$ model, and thoroughly investigated in [7].

The partition function of the mirror $\text{AdS}_5 \times S^5$ can be computed by asymptotic Bethe ansatz [8, 9] under the assumption called string hypothesis [4, 10]. The variational method is applicable in the thermodynamic limit, and the TBA equations arise as the condition for extremality [11–13]. The TBA consists of a set of nonlinear integral equations for Y-functions. Each Y-function corresponds to a particular type of boundstates which contribute to the mirror partition function.

In the meantime, the Y-system on the $\text{su}(2|4|2)$-hook has been proposed and solved explicitly in the asymptotic limit [14]$.^2$ The Y-system is a set of difference equations for $\text{su}(2|4|2)$-hook we always mean the T-hook drawn as figure B1 in appendix B. There are other T-hooks of $\text{su}(2|4|2)$ type, corresponding to different choices of the Kac–Dynkin diagram [15, 16].
Y-functions, and the Y-system can be expressed as the T-system, namely another set of difference equations for T-functions \cite{17, 18}. The T-system is closely related to global symmetry of the given model \cite{16, 19} and can be derived from simplified TBA equations by the ‘projection’ operator $(\log f) \ast s^{-1}_K \equiv \log(f^K f^{-1})$ \cite{13, 20}. If proper analyticity data are provided, one can integrate the Y-system to obtain most of the TBA equations \cite{21, 22}, except for the formula for the exact energy.

The original TBA equations capture the exact ground state energy, which is zero in the case of AdS/CFT \cite{23}. A common wisdom to compute the exact spectrum of excited states is to deform the integration contours in the TBA equations, which was observed first in integrable 2D vertex models \cite{24} and later in perturbed CFT \cite{25, 26}. Upon contour deformation, the integrals pick up additional terms coming from singularities of Y-functions. As such, the excited-state TBA equations depend on the state and the value of coupling constant under consideration \cite{21}. The numerical study also indicates that (the gradient of) the exact energy may exhibit a noticeable change at the critical value of the coupling constant \cite{27}.

As applications, the exact dimension of Konishi state has been computed numerically up to $\lambda \approx 664$ \cite{28} and $\lambda \approx 2046$ \cite{29}, and it matches string theory results at strong coupling \cite{30–33}. A five-loop dimension of Konishi state has been obtained numerically \cite{34} and analytically \cite{35}, which agrees with the prediction of the generalized Lüscher formula \cite{36–39}, although no field theoretical computation has been done as in the four-loop case \cite{40–42}. Such an agreement has been extended to general twist-two states in the $\mathfrak{sl}(2)$ sector \cite{43, 44}. At strong coupling, the Y-system can be solved by character formula \cite{45}, and the result agrees with the exact energy of semiclassical strings \cite{19, 46}. See also \cite{47–51} toward the exact spectrum of twisted theories.

Behind these successes of TBA there has always been a huge amount of numerical computation, because infinitely many Y-functions must be determined. Therefore, to simplify the spectral problem we need nonlinear integral equations (NLIE) for finitely many degrees of freedom. Several types of NLIE are known in other integrable models. For example, in the NLIE of Destri–de Vega (DdV) type, each integral is evaluated on the real axis (or a path around the real axis if there are branch cuts). Such NLIE was derived from Bethe Ansatz equations \cite{52–55} or from the T-system \cite{24, 56}. As another example, in the NLIE of Takahashi type, one unknown variable is integrated over a contour on the complex plane \cite{57, 58}. The Takahashi-type NLIE consists of smaller number of equations than the NLIE of DdV type, but a comprehensive understanding of the analyticity data is required for its formulation. In this paper we are interested in the DdV-type NLIE.

At first sight, it is not even clear if the NLIE for the mirror $\text{AdS}_5 \times S^5$ exists at all. A hint for the derivation of NLIE comes from the linearization of the T-system by Q-functions \cite{59}. The linearized equations, or the so-called TQ-relations \cite{60}, have been studied a lot so far and are solved by Bäcklund transformation \cite{61, 62}, or explicitly by the Wronskians of Q-functions \cite{63, 64}. Remarkably, in the Wronskian formula, all T-functions of $\mathfrak{su}(2|4)$-hook are expressed by the Wronskian of eight fundamental Q-functions. It does not immediately imply, however, that the spectral problem gets simpler. In TBA it is enough to compute each Y-function on the real axis. In the Wronskian formula, each fundamental Q-function has to be evaluated on the whole complex plane. Hence, one more step is needed after having solved the TQ-relations.

Motivated to get something practical, we start investigating a mixture of NLIE and TBA, called hybrid NLIE. Hybrid NLIE was first formulated in the XXX model at spin $S = k/2$ \cite{65}, generalizing earlier successes of \cite{52, 53}. The idea is to add auxiliary variables to the T-system such that the mixed system of equations is closed within a finite number of variables. The Y-function Y_k is replaced by $(1 + Y_k) = (1 + a)(1 + \bar{a})$, where a pair of variables a, \bar{a}
represent the degrees of freedom of spinons, and all Y-functions $Y_{j=k}$ disappear from the equations.

Here the term ‘spinon’ is used in the following sense. According to [66], the S-matrix of the XXX spin chain at spin $S = k/2$ factorizes into the RSOS R-matrix at level k and the S-matrix of spin $l \geq k$ excitations. The former degree of freedom, called RSOS excitation, does not couple to the external magnetic field. The latter degree of freedom, called spinon, couples to the magnetic field. It turns out that only the auxiliary fields a, \bar{a} are sensitive to the magnetic field, while Y-functions are insensitive. Thus, the auxiliary fields are identified as spinons [65].

When $k = 1$, there are further intimate relations between the auxiliary fields and ‘spinons’ in the usual sense, that is, momentum-carrying excitations over the antiferromagnetic vacuum. For one thing, one can derive the character formula of $\mathfrak{sl}(2)_{k-1}$ as a summation over spinons [67, 68]. For another, as mentioned in [69], the hybrid NLIE of the XXX model at $k = 1$ reduces to the NLIE of Destri and de Vega [54, 55]3. In the DdV approach, the fundamental excitations are usual spinons, and we expect that the auxiliary fields of hybrid NLIE will play the same role. More insights have been found in the NLIE of the $O(4)$ sigma model [69–71], the sine-Gordon model [54, 55, 72–74] and other integrable lattice models [75, 76].

Summary of results

In this paper, we first revisit the derivation of hybrid NLIE in the XXX model [65] in a slightly different way. We start our discussion from new recursion relations for spinon variables, instead of the following computations using an explicit form of T-functions. From these lessons we learn how to proceed in the $\text{AdS}_5 \times S^5$ case4.

Next, we repeat the discussions from the TQ-relations which appear in the horizontal strips ($|s| \geq 2$) of the $\mathfrak{su}(2|4|2)$-hook. We derive a set of NLIE which decomposes the TBA equations for $Y_{\Omega|w}$-strings of the mirror $\text{AdS}_5 \times S^5$. This set of NLIE can be glued to the other parts of TBA equations together with the exact Bethe equation, and hence our formalism is hybrid. Using analyticity assumptions, the NLIE can be truncated within a finite number of variables.

In the literature, it is commonly recognized that TQ-relations are important to derive DdV-type NLIE (see for instance [56], or appendices of [77, 78]). Our discussions goes almost in parallel, but the derivation is a bit more general. We use the explicit form of T- and Q-functions only for checking analyticity assumptions, and the rest of arguments follows immediately from the symmetry structure of A_1 TQ-relations. Note that, in the integrable models studied so far, there is a gauge choice in which all T-functions on the boundary of A_1-type strip are either unity, or some known functions independent of Bethe roots5. We do not use such conditions in the case of $\text{AdS}_5 \times S^5$, because it is unclear if there exists such a gauge choice.

To be specific, let us introduce a set of parameters for the hybrid NLIE as

$$\{Y_{1|w}, \ldots, Y_{s-2|w}\} \cup \{\frac{a^w}{\bar{a}^w}\}, \quad (s \geq 3), \quad (1.1)$$

3 At $k = 1$, Y-functions disappear from the hybrid NLIE, and thus the NLIE is no longer hybrid.

4 An object called quantum transfer matrix was studied in [65]. In AdS/CFT, it is not known how to construct usual or quantum transfer matrices. With a different motivation in mind in contrast to [65], we consider the usual transfer matrix analytically continued to the mirror region as the asymptotic solution of the T-system. Despite differences in the physical interpretation, the same mathematical techniques are applicable.

5 There is another gauge in which the T-function on the boundary is a polynomial of a fixed degree.
Figure 1. The horizontal strip of the $\mathrm{su}(2|4|2)$-hook. The symbol □ means the TBA equation for the corresponding site is decomposed. Under analyticity assumptions, we can excise the nodes of □.

where α is either I or II, and it refers to two linearly independent pairs of Q-functions that solve the TQ-relations. Our notation is summarized in appendix A. The pair of variables $(\alpha_3^\alpha, \bar{\alpha}_3^\alpha)$ satisfy

$$1 + Y_{s-1|w} = (1 + \alpha_3^{(\gamma)})(1 + \bar{\alpha}_3^{(-\gamma)}),$$

where γ is a small parameter for regularization. The parameter γ is arbitrary as long as $0 < \gamma < 1$, and it facilitates numerical computation. The parametrization (1.1) means that the TBA equation for $Y_{M|w}$ ($M \geq s$) is decomposed into an infinite set of NLIE for auxiliary variables. Furthermore, under the assumptions on analyticity (3.21), (3.24) and (3.28), we can truncate the NLIE for auxiliary variables at finite s. This structure is summarized in figure 1.

Below we summarize the minimal set of NLIE in the case of the Konishi state in the $\mathfrak{sl}(2)$ at weak coupling. We use the mirror TBA equations to determine $Y_Q, Y_{M|w}, Y_s$, and also the exact Bethe equations to determine Bethe roots [12, 21]. The simplified TBA for $Y_{1|w}$ is given in [21], which we rewrite as

$$\log Y_{1|w} = \log (1 + \alpha_3^{(\gamma)})(1 + \bar{\alpha}_3^{(-\gamma)}) \ast s_K + \log \frac{1 - \frac{1}{g}}{1 - \frac{1}{g} s_K}. \tag{1.3}$$

The pair of parameters $(\alpha_3^\alpha, \bar{\alpha}_3^\alpha)$ are determined by

$$\log \alpha_3^\alpha = \log (1 + \alpha_3^\alpha) \ast K_f - \log (1 + \bar{\alpha}_3^\alpha) \ast K_f^{[2-2\gamma]} + \log (1 + Y_{1|w}^{(-\gamma)}) \ast s_K + J_3^{\alpha}, \tag{1.4}$$

$$\log \bar{\alpha}_3^\alpha = \log (1 + \bar{\alpha}_3^\alpha) \ast K_f - \log (1 + \alpha_3^\alpha) \ast K_f^{[-2+2\gamma]} + \log (1 + Y_{1|w}^{(\gamma)}) \ast s_K + \bar{J}_3^{\alpha}, \tag{1.5}$$

where $J_3^I = \bar{J}_3^I = 0$ and

$$J_3^{II} = -\log S_f(v) - \log S_f \left(v + \frac{2i(1 - \gamma)}{g} \right) - \pi i,$$

$$\bar{J}_3^{II} = +\log S_f(v) + \log S_f \left(v - \frac{2i(1 - \gamma)}{g} \right) + \pi i. \tag{1.6}$$
with possibly a multiple of $2\pi i$ in addition. The source terms (1.6) come from the branch cut
discontinuity of $\log (1 + a_1^2)$, $\log (1 + b_1^2)$ at the origin. These equations can be checked by
using the asymptotic solution shown in appendix C.

This paper is organized as follows. In section 2, we review the derivation of hybrid
NLIE in the XXX model, with a slight modification from [65]. In section 3, we derive hybrid
NLIE from TQ-relations in the horizontal strips of the $su(2|4|2)$-hook, which is of A_1 type.
Section 4 is for discussions. In the appendices, we summarize the notation, the relation
between TBA, Y- and T-system of AdS$_5 \times S^5$, and the asymptotic solutions of recursion
relations discussed in the main text.

2. Hybrid NLIE in the XXX model

As a warm-up, we revisit the derivation of hybrid NLIE in the XXX model at spin $k/2$ [65].

2.1. Quantum transfer matrix in the spin $k/2$ XXX model

The quantum transfer matrix (QTM) is a method to compute the free-energy of the spin $k/2$
XXX model at finite temperature without string hypothesis [77, 79]. In this method, we first
map the XXX model of size L to the two-dimensional vertex model of size $L \times R$, where
R is called the Trotter number [77, 79]. The time (or temperature) direction is replaced by
a discrete spatial direction. Then we consider states which look like

\[\phi_{\pm}(x) = (x \pm iR/2), \quad Q(v) = \prod_{i=1}^{M}(v-x_i). \]

Let us use the notation $f^{[\pm]}(v) = f(v+iQ), \ f^{\pm} = f^{(\pm1)}$. The elementary QTM $T_1(v)$ reads [65]

\[T_1(v) = e^{\beta H} \phi^{[-k+1]}_+ \phi^{[-k-1]}_- Q^{[1]} + e^{-\beta H} \phi^{[k+1]}_+ \phi^{[k-1]}_- Q^{[-1]}, \]

\[\phi_{\pm}(x) = (x \pm iu)^{R/2}, \quad Q(v) = \prod_{i=1}^{M}(v-x_j). \]

The QTM for higher representations satisfy the T-system equations (also called functional
relations among the fusion hierarchy) [17, 18, 24].

\[T_j^+ T_j^- = T_{j+1} + f_j, \quad f_j = \prod_{m=1}^{j} \prod_{\sigma=\pm} \phi_{\sigma}^{[\sigma-2m+1]} \phi_{\sigma}^{[\sigma]} \phi_{\sigma}^{[-2m+1]} \phi_{\sigma}^{[-\sigma]}, \]

with $j \geq 1$ and $T_0 = 1$. The temperature is related to the parameter u, which goes to zero in
the Trotter limit. An explicit form of $T_j(v)$ reads [65]

\[T_j(v) = \sum_{\ell=1}^{j+1} \psi_{\ell}^{(k)}(v, \ell) = \sum_{\ell=1}^{j+1} e^{\beta H(j+2-2\ell)} \psi_{\ell}^{(k)}(v, \ell) \frac{Q^{[j+1]} Q^{[-j-1]}}{Q^{[2\ell-3]} Q^{[2\ell-j-3]}}, \]

\[\psi_{\ell}^{(k)}(v, \ell) = \prod_{m=1}^{\ell} \phi_{\ell}^{[-j-2m]} \phi_{\ell}^{[-j-k-2m]} \times \prod_{m=1}^{j-\ell} \phi_{\ell}^{[-j-k-2m]} \phi_{\ell}^{[-j+k+2m]}. \]
The T-system (2.3) is invariant under the gauge transformation
\[
T_j \rightarrow g_{1}^{[j+1]} g_{2}^{-j} T_j, \quad f_j \rightarrow g_{1}^{[-j-1]} g_{2}^{[j+1]} g_{2}^{[-j-1]} f_j.
\]

2.2. Spinon variables

We define auxiliary variables by the top and the bottom component of the sum in (2.4),
\[
A_j(v) = \psi^{(k)}_j(v, j+1) = e^{-jB_H} \psi_j^{(k)}(v, j+1) \frac{Q^{[-j-1]}}{Q^{[x_j-j-1]}},
\]
\[
\bar{A}_j(v) = \psi^{(k)}_j(v, 1) = e^{jB_H} \psi_j^{(k)}(v, 1) \frac{Q^{[j+1]}{Q^{[-j-1]}}.
\]

By X and \bar{X} we denote independent degrees of freedom. We will call them conjugate, as they are sometimes (but not always) complex conjugate with each other.

It is straightforward to check the following pair of recursion relations:
\[
T_j^+ - A_j^+ = \frac{\bar{A}_{j-1}^+}{A_j} T_{j-1}, \quad T_j^- - \bar{A}_j^- = \frac{A_{j-1}^-}{A_j} T_{j-1}, \quad (j \geq 1),
\]
with $A_0 = \bar{A}_0 = T_0 = 1$. To maintain the full gauge symmetry of the T-system, we require that A_j, \bar{A}_j behave in the same way as T_j under the gauge transformation (2.5). The ratio of two gauge-covariant variables are gauge-invariant:
\[
\frac{T_j^+}{A_j^+} = 1 + b_j, \quad \frac{T_j^-}{A_j^-} = 1 + \bar{b}_j.
\]

Following the discussion of [65], we call A_j, \bar{A}_j or b_j, \bar{b}_j spinon variables, and (2.7) covariant recursions for spinons. In the literature, the right-hand side of (2.7) was recognized only as (something) $\times T_{j-1}$, with ‘something’ determined case by case. The new recursions (2.7) are the basis of the following discussions in this section.

The pair of recursions (2.7) with the definition of auxiliary variables (2.6) appear in various integrable models. For example, the QTM (2.1), (2.4) looks similar to the ordinary transfer matrix of the XXX model and the $O(4)$ model [69, 81]. They differ only by the form of the function $\psi_j^{(k)}(v, \ell)$. Not surprisingly, the pair of covariant recursions (2.7) are satisfied with the definition of (2.6).

In fact, the recursions (2.7) follow from A_1 TQ-relations, as discussed later in section 3.\footnote{The author thanks Zoltan Bajnok for these remarks and suggestion for this identification.}

Let us identify
\[
A_j^\alpha = \frac{Q_j^{\alpha-1}}{Q_{j-1}^{\alpha-1}} L_j, \quad \bar{A}_j^\alpha = \frac{Q_j^{-\alpha}}{Q_{j-1}^{-\alpha}} \bar{L}_j, \quad (\alpha = 1, II),
\]
where the index α refers to two linearly independent solutions of A_1 TQ-relations. In the (twisted) XXX model, the two sets of Q-functions are given by a polynomial of Bethe roots and holes as (2.2) [82–84]. The pair (A_j, \bar{A}_j) shown in (2.6) should correspond to the case of Bethe roots.

As shown in appendix C, one can solve the recursions (2.7) by using the asymptotic transfer matrix $T_{a,1}$ in the $\mathfrak{sl}(2)$ sector, with the definition of A’s similar to (2.6). This also means that the asymptotic transfer matrix $T_{a,1}$ in the $\mathfrak{su}(2)$ sector satisfies the recursions in the same way, because the transfer matrices in the $\mathfrak{sl}(2)$- and $\mathfrak{su}(2)$-sectors are related by the flip $T_{\alpha,s} \leftrightarrow T_{\alpha,a}$ with the interchange $\pm \leftrightarrow \mp$.
2.3. Decomposing the Y-system of the XXX model

Let us discuss the consequences of the covariant recursions for spinons (2.7).

First, using (2.7), we express \(T_{j+1} \) by \(T_{j-1} \) in two ways. The first expression is given through \(T_{j+1} \rightarrow T_{j} \rightarrow T_{j-1} \), while the second expression is through \(T_{j+1} \rightarrow T_{j} \rightarrow T_{j-1} \). Since both results are equivalent, we obtain the compatibility condition

\[
\Delta(A_j) = \Delta(\overline{A}_j) \equiv 1 + \overline{x}_j, \quad \Delta(X_j) \equiv \frac{X_j^+ X_{j+1}^-}{X_{j-1}^+ X_{j+1}^-}.
\] (2.10)

The operator \(\Delta \) is called discrete Laplacian. When this condition is satisfied, we obtain

\[
T_{j-1} T_{j+1} - (1 + \overline{x}_j) T_{j-1} T_{j+1} = A_j^+ \overline{A}_j^-,
\] (2.11)

which is equivalent to the \(T \)-system (2.7) if

\[
\overline{x}_j = 0, \quad f_j = A_j^+ \overline{A}_j^-.
\] (2.12)

We set \(\overline{x}_j \) to zero below, which is indeed true in all examples mentioned so far. Only then, the recursion pair (2.7) can be recognized as the linearization of the \(T \)-system. In the gauge-invariant language, equation (2.11) translates into

\[
(1 + b_j) (1 + \overline{b}_j) = 1 + Y_j, \quad 1 + Y_j \equiv \frac{T_{j-1} T_{j+1}}{f_j}.
\] (2.13)

Second, we rewrite the recursion in terms of \(b \)'s as

\[
b_j = \frac{\overline{A}_j^+ T_{j-1}}{A_j^+ \overline{A}_j^-} = \frac{1 + b_j}{1 + \overline{b}_j} (1 + b_{j-1}^+), \quad \overline{b}_j = \frac{A_j^+ T_{j-1}}{A_j^+ \overline{A}_j^-} = \frac{1 + \overline{b}_j}{1 + b_j} (1 + b_{j-1}^-). \] (2.14)

By taking the ratio (LHS)_{j+1}/(LHS)_{j} we find the following recursion:

\[
1 + \frac{1}{b_{j+1}} = \frac{1}{1 + b_j} \left(1 + \frac{1}{b_{j+1}} \right), \quad 1 + \frac{1}{b_{j+1}} = \frac{1}{1 + \overline{b}_j} \left(1 + \frac{1}{b_{j+1}} \right). \] (2.15)

Using (2.13) and (2.15), we can derive alternative expressions of gauge-invariant recursions:

\[
b_j (1 + \overline{b}_j) = \overline{b}_j (1 + b_{j+1}^+) = Y_j.
\] (2.16)

Let us count the number of gauge-invariant variables and the number of equations. The list of gauge-invariant variables is given by

\[
\{Y_1, Y_2, \ldots, Y_{j-1} \} \cup \left\{ \frac{b_j}{\overline{b}_j} \right\}.
\] (2.17)

We define \(Y \)-functions by

\[
1 + Y_m = \frac{T_m^- T_m^+}{f_m} \quad (m = 1, 2, \ldots, j - 1), \quad 1 + Y_m = (1 + b_m)(1 + \overline{b}_m) \quad (m = j),
\] (2.18)

where \(j \geq 1 \) is an arbitrary positive integer. Then, the \(T \)-system at site \(m \) is equivalent to the \(Y \)-system at site \(m \):

\[
Y_{m-1} Y_{m+1} = (1 + Y_{m-1})(1 + \overline{Y}_{m+1}) \quad (m = 1, 2, \ldots, j - 2),
\] (2.19)
where we used \(Y_0 = 0 \) and \(f_m f_m^* = f_{m-1} f_{m+1} \). There are \(j - 1 \) \(Y \)-functions and a pair of auxiliary variables, while there are only \(j - 1 \) equations in (2.19). Therefore, two equations are missing.

One equation comes from the product of (2.14) as
\[
b_j^* \bar{b}_j = (1 + b_{j-1}) (1 + \bar{b}_{j-1}) = 1 + Y_{j-1}. \tag{2.20}
\]
From the algebraic point of view, there is no other way to relate \((b_j, \bar{b}_j)\) with \(Y_{j-1} \). A closed set of equations can be obtained with the help of analyticity assumptions, which will be reviewed in section 2.4.

One may try to enclose the equations by extending the parameter list, like
\[
\{Y_1, Y_2, \ldots, Y_{j-1}\} \cup \left\{ \begin{array}{ll}
b_j & b_{j+1} \\
\bar{b}_j & \bar{b}_{j+1} \end{array} \right\}. \tag{2.21}
\]
Now two more variables \((b_{j+1}, \bar{b}_{j+1})\) are introduced compared to (2.17). They are constrained by recursion (2.15). Actually, it is possible to find more than two equations: equation (2.20) at \((j, j+1)\), the discrete Laplace equation for \((1 + b_j)\), and the \(Y \)-system at site \(j \). However, these extra equations never bring new constraints, because all of them follow from the algebraic relations we have already used. For example, the equation
\[
b_{j+1} \bar{b}_{j+1} = (1 + b_j) (1 + \bar{b}_j) = 1 + Y_j \tag{2.22}
\]
is a corollary of (2.13) and (2.15). The discrete Laplacian \(\Delta (1 + b_j) = 1 + 1/Y_j^* \) is a corollary of two recursions (2.14) and (2.16). The \(Y \)-system at site \(j \) follows from (2.16), (2.20) as
\[
Y_j^* Y_j^* = b_j^* (1 + \bar{b}_{j+1}) \bar{b}_j^* (1 + b_{j+1}) = (1 + Y_{j-1}) (1 + Y_{j+1}). \tag{2.23}
\]
Therefore, after having pondered over the parameter list (2.21), we again find that one variable is yet undetermined.

Similarly, we cannot get the one missing equation even if we extend the parameter list to
\[
\{Y_1, Y_2, \ldots, Y_{j-1}\} \cup \left\{ \begin{array}{ll}
b_j & b_{j+1} \ldots b_{j+\ell} \\
\bar{b}_j & \bar{b}_{j+1} \ldots \bar{b}_{j+\ell} \end{array} \right\}, \tag{2.24}
\]
as long as \(\ell \) is finite. When we take the limit \(\ell \to \infty \), we will just find that the \(Y \)-system (or TBA equations) for \(Y_{n \geq j} \) is decomposed into the NLIE for spinon variables.

2.4. Analyticity conditions in the XXX model

We derive two more equations from analyticity assumptions, following [65].

Let us evaluate the first equalities of (2.14) by using the explicit form of \(A \)'s (2.6):

\[
b_j = e^{\delta (j+1) \beta H} \frac{\psi_{\ell}^{(i)}(v + i, 1)}{\psi_{\ell}^{(i)}(v + i, j + 1) \psi_{\ell-1}^{(1)}(v, 1)} \frac{Q^{[\ell+2]}_{[\ell+1]}}{Q^{[\ell+1]}} T_{j-1} \equiv W_j \frac{Q^{[\ell+2]}_{[\ell+1]}}{Q^{[\ell]}_{[\ell]}} T_{j-1}, \tag{2.25}
\]

\[
\bar{b}_j = e^{-(j+1) \beta H} \frac{\psi_{\ell}^{(i)}(v - i, j + 1)}{\psi_{\ell}^{(i)}(v - i, 1) \psi_{\ell+1}^{(1)}(v, j)} \frac{Q^{[-\ell-2]}_{[-\ell]} T_{j-1} \equiv W_j \frac{Q^{[-\ell-2]}_{[-\ell]} T_{j-1}}{Q^{[\ell]}_{[\ell]} T_{j-1}}. \tag{2.26}
\]
We want to take the Fourier transform of the logarithmic derivative of these equations, denoted as
\[
\hat{d} f \equiv \int_{-\infty}^{\infty} dv e^{\delta v} \frac{\partial}{\partial v} \log f(v). \tag{2.27}
\]
The Fourier transform is well defined only if there are no poles nor branch cuts over the path of integration. As for the left-hand side of (2.25) and (2.26), we introduce the regularization

$$a_j(v) = b_j(v - iy), \quad i = 0, 1, \ldots, k,$$

with $\gamma > 0$ a small parameter, and take the Fourier transform on the real axis of $(a_j(v), b_j(v))$. As for the right-hand side, we assume the analyticity of each factor in (2.25) for $-\gamma \leq \text{Im} \, v \leq 0$, and similarly in (2.26) for $0 \leq \text{Im} \, v \leq +\gamma$. Then these equations become

$$\hat{a}_j(v) = e^{\gamma q} [\hat{a}_j W_j + \hat{a}_j Q^{[j+2]} + \hat{a}_j T_{j-1}],$$

$$\hat{b}_j(v) = e^{\gamma q} [\hat{b}_j \overline{W}_j + \hat{b}_j Q^{[-j-2]} + \hat{b}_j T_{j+1}].$$

We will see later that $\hat{a}_j Q^{[j+2]}$ and $\hat{b}_j Q^{[-j-2]}$ behave, in the limit $\text{Re} \, v \to +\infty$, as

$$\hat{a}_j Q^{[j+2]} = e^{-2q} \hat{a}_j Q^{[j]}, \quad \hat{b}_j Q^{[-j-2]} = e^{-2q} \hat{b}_j Q^{[-j]}.$$

Then, the corresponding terms in (2.29) behave, in the limit $\text{Re} \, q \to +\infty$, as

$$e^{2q} \hat{a}_j Q^{[j]} \sim \hat{a}_j (1 + b_j) \hat{s}_k(q), \quad e^{-2q} \hat{b}_j Q^{[-j]} \sim \hat{b}_j (1 + \overline{b}_j) \hat{s}_k(q),$$

which are exponentially growing. If one applies the inverse Fourier transform, one finds that the functions $(\log(1 + b_j), \log(1 + \overline{b}_j))$ are convoluted with the kernel which diverges exponentially as $\text{Re} \, v \to +\infty$. As discussed below, we use analyticity conditions such that both $\hat{a}_j Q^{[j]}$ and $\hat{b}_j Q^{[-j]}$ vanish in the region where the kernels are exponentially growing.

ANZC conditions. We fix a gauge for the symmetry of the T-system (2.5) by the explicit form of T_j in (2.4), and assume that in this gauge T-functions are analytic, nonzero and constant at infinity (ANZC), namely

$$T_j(v) \quad \text{is ANZC for} \quad -1 \leq \text{Im} \, v \leq 1, \quad 1 \leq j \leq k.$$

The upper bound for j comes from an empirical observation that $T_j(v)$ may have zeros around the lines $\text{Im} \, v = \pm (k + 2 - j) [65]$. Let D be a strip $\{\text{Im} \, v \leq 1\}$, and consider an integral running along the boundary of D. By virtue of the ANZC for $[\log T_j]'$, we find

$$0 = \int_{\partial D} dv \frac{e^{\gamma q}}{\gamma q} \log T_j(v) = e^{\gamma q} \hat{a}_j T_j(v - i) - e^{\gamma q} \hat{a}_j T_j(v + i),$$

$$= e^{\gamma q} \hat{a}_j ((1 + \overline{b}_j)(v)) \hat{s}_k(v - i) - e^{-\gamma q} \hat{a}_j ((1 + b_j)(v)) A_j(v + i).$$

We assume that the Fourier transform of the logarithmic derivative of each factor is unambiguous, namely $1 + b_j(v), 1 + \overline{b}_j(v), A_j(v + i) \text{ and } A_j(v - i)$ do not have poles nor branch cuts on the real axis of v. Then, we obtain

$$0 = e^{\gamma q} \hat{a}_j (1 + \overline{b}_j) - e^{-\gamma q} \hat{a}_j (1 + b_j) + e^{\gamma q} \hat{a}_j A_j(v + i) - e^{-\gamma q} \hat{a}_j A_j(v - i).$$

These assumptions are part of the analyticity conditions discussed later in (2.33) and (2.38).

8 Here $A_j(v + i)$ is equivalent to $A_j(v + i + i0)$, thanks to the analyticity assumption; similarly for $A_j(v - i)$. 9
The last two terms can be explicitly evaluated by using (2.6), as
\[0 = e^{+q} \hat{d}l(1 + b_j) - e^{-q} \hat{d}l(1 + b_j) + 2 \cosh q (\hat{d}l Q^{[+]} - \hat{d}l Q^{[-]}) + \omega_j(q). \] (2.36)

Next we assume that, for \(j \geq k, \)
\[Q^{[+]}(v) \text{ is ANZC for } \Im v \geq 0 \quad Q^{[-]}(v) \text{ is ANZC for } \Im v \leq 0. \] (2.38)

By closing the contour of the Fourier integral over the upper or lower half-plane, we find
\[\hat{d}l Q^{[+]}(q) = 0 \quad \text{for } \Re q > 0, \quad \hat{d}l Q^{[-]}(q) = 0 \quad \text{for } \Re q < 0. \] (2.39)

The assumption \(j \geq k \) comes from another empirical fact. It is expected that the zeros of \(Q \)-functions lie around \(\Im \omega_j \leq 0 \). Now by applying the analyticity (2.38) to (2.36), we obtain for \(j \geq k, \)
\[\hat{d}l Q^{[+]}(q) = \begin{cases} 0 & \text{Re } q > 0, \\ (+e^{-q} \hat{d}l(1 + b_j) - e^{+q} \hat{d}l(1 + b_j) - \hat{d}l \omega_j) \hat{s}_k(q) & \text{Re } q < 0, \end{cases} \] (2.40)

When \(q = 0, \) the Fourier transform (2.27) is equal to the difference
\[\hat{d}f(q = 0) = \log f(+\infty) - \log f(-\infty), \]

which is not so important in computing the inverse Fourier transform.

For later use, we apply the regularization (2.28) to \((1 + b_j), (1 + \overline{b}_j).\) Provided that
\[1 + b_j(v) \text{ is ANZC for } -\gamma \leq \Im v \leq 0, \quad 1 + \overline{b}_j(v) \text{ is ANZC for } 0 \leq \Im v \leq +\gamma, \] (2.41)
we obtain
\[\hat{d}l(1 + b_j) = e^{+q} \hat{d}l(1 + a_j), \quad \hat{d}l(1 + \overline{b}_j) = e^{-q} \hat{d}l(1 + \overline{a}_j). \] (2.42)

Derivation of NLIE. We shall set \(j = k \) to comply with the ANZC conditions of (2.33) and (2.38). Let us rewrite the \(T \)-function in equations (2.29) by \(T \)-functions using (2.33) and (2.18), as
\[e^{+q} \hat{d}l \omega_k = \hat{d}l W_k + e^{+q} \hat{d}l Q^{[+k]} - \hat{d}l Q^{[-k]} + \hat{d}l f_{k-1} + \hat{d}l (1 + Y_{k-1}) \hat{s}_k(q), \]
\[e^{-q} \hat{d}l \overline{\omega}_k = \hat{d}l \overline{W}_k + e^{-q} \hat{d}l Q^{[+k]} - \hat{d}l Q^{[-k]} + \hat{d}l f_{k-1} + \hat{d}l (1 + Y_{k-1}) \hat{s}_k(q), \] (2.43)

with \(f_{k-1} = T_{k-1} \). We then substitute the results (2.40), (2.42) into these equations, and find
\[\begin{align*}
\hat{d}l a_k &= \frac{e^{-|q|}}{2 \cosh q} \hat{d}l (1 + a_k) - \frac{e^{2q(1-\gamma)-|q|}}{2 \cosh q} \hat{d}l (1 + \overline{a}_k) + \frac{e^{-q}}{2 \cosh q} \hat{d}l (1 + Y_{k-1}) \\
&\quad + \frac{e^{-q}}{2 \cosh q} \hat{d}l W_k + \frac{e^{-q}}{2 \cosh q} \hat{d}l f_{k-1} + \frac{e^{2q(1-\gamma)-|q|}}{2 \cosh q} \hat{d}l \omega_k, \\
\hat{d}l \overline{a}_k &= \frac{e^{-|q|}}{2 \cosh q} \hat{d}l (1 + \overline{a}_k) - \frac{e^{2q(1-\gamma)-|q|}}{2 \cosh q} \hat{d}l (1 + a_k) + \frac{e^{-q}}{2 \cosh q} \hat{d}l (1 + Y_{k-1}) \\
&\quad + \frac{e^{q}}{2 \cosh q} \hat{d}l \overline{W}_k + \frac{e^{q}}{2 \cosh q} \hat{d}l f_{k-1} + \frac{e^{-2q(1-\gamma)-|q|}}{2 \cosh q} \hat{d}l \overline{\omega}_k.
\end{align*} \] (2.44)
The second lines of (2.44), (2.45) are known functions in the XXX model, so we can regard all of them as part of the source terms\(^{10}\). By applying the inverse Fourier transform, we obtain the missing equations for hybrid NLIE. The results can be summarized as

\[
\log a_k = \log(1 + a_k) \bullet K_f - \log(1 + \overline{a}_k) \bullet K_f^{[+2-2\gamma]} + \log \left(1 + Y_{k-1}^{[-\gamma]}\right) \bullet s_K + \text{(source)}, \tag{2.46}
\]

\[
\log \overline{a}_k = \log(1 + \overline{a}_k) \bullet K_f - \log(1 + a_k) \bullet K_f^{[-2+2\gamma]} + \log \left(1 + Y_{k-1}^{[+\gamma]}\right) \bullet s_K + \text{(source)}, \tag{2.47}
\]

where the analyticity of \(Y_{k-1}(v)\) for \(-\gamma \leq \text{Im } v \leq +\gamma\) is assumed, and the kernel \(K_f\) is defined by

\[
K_f(v) = \frac{1}{2\pi i} \frac{\partial}{\partial v} \log S_f(v), \quad S_f(v) = \frac{\Gamma \left(\frac{2-iv}{\gamma}\right) \Gamma \left(\frac{iv}{\gamma}\right)}{\Gamma \left(-\frac{v}{\gamma}\right) \Gamma \left(\frac{2v}{\gamma}\right)}. \tag{2.48}
\]

In the limit \(\gamma \to 0\) the kernels \(\bar{s}_K\) and \(K_f^{[\pm 2]}\) have a pole at the origin, and we need the principal value prescription as in (A.9). Numerical computation is easier if we leave \(\gamma > 0\) finite. The source terms can be fixed by considering the asymptotic behavior \(\text{Re } v \to \pm \infty\) \(^{[65]}\).

The two NLIE (2.47) provides a closed set of equations for the minimal parameter list (2.17). The product-type relation (2.20) is a corollary of (2.47):

\[
\log a_k^{[-1+\gamma]} \overline{a}_k^{[+1-\gamma]} = \log(1 + Y_{k-1}). \tag{2.49}
\]

Cancellation of the whole source terms can be checked from the explicit results of \(^{[65]}\).

3. Hybrid NLIE from TQ-relations

We will derive the hybrid NLIE starting from TQ-relations in the horizontal strips of the \(\mathfrak{su}(2|4|2)\)-hook. The TQ-relations will play the same role as the covariant recursions for spinons in section 2. Since we also use the TBA equations for the mirror AdS\(_5 \times S^5\) in the \(\mathfrak{sl}(2)\) sector, we assume that all \(Y\)- and \(T\)-functions are invariant under the interchange \((a, s) \leftrightarrow (a, -s)\).\(^{11}\)

3.1. TQ-relation from Wronskian

First of all, we rederive the TQ-relations in the horizontal strip \(s \geq 2\) of the \(\mathfrak{su}(2|4|2)\)-hook, starting from the Wronskian formula of \(^{[64]}\). The formula says that the \(T\)-functions \(T_{a,s}\) for \(a = 0, 1, 2\) are given by

\[
\begin{align*}
T_{0,s} &= Q_{T}^{[-s]}, \\
T_{1,s} &= Q_{1}^{[s]} Q_{T}^{[-s]} - Q_{T}^{[-s]} Q_{2}^{[s]} \quad (s \geq 1), \\
T_{2,s} &= Q_{12}^{[s]} Q_{T}^{[-s]} \quad (s \geq 2).
\end{align*}
\tag{3.1}
\]

By solving the \(T\)-system

\[
T_{a,s} T_{a,s}^\dagger = T_{a,s-1} T_{a,s+1} + T_{a-1,s} T_{a+1,s}, \tag{3.2}
\]

at \((a = 1, s \geq 2)\), we find

\[
Q_{12}^{[s]} = \det \begin{bmatrix} Q_{1}^{[s+1]} & Q_{2}^{[s+1]} \\ Q_{1}^{[-s]} & Q_{2}^{[-s]} \end{bmatrix}, \quad Q_{T}^{[s]} Q_{T}^{[-s]} = \det \begin{bmatrix} Q_{T}^{[-s-1]} & Q_{T}^{[s-1]} \\ Q_{T}^{[-s+1]} & Q_{T}^{[s+1]} \end{bmatrix}. \tag{3.3}
\]

\(^{10}\) These extra terms will be studied carefully in section 3.

\(^{11}\) Recall that \(T_{a,s}\) depend on the gauge choice. It is helpful to introduce \(\tau_a\) as in appendix B to discuss \(T_{a,s,b,c}\) and \(T_{a,s,b,c}\) in a symmetric way.
Given (3.1), one can derive the relations
\[Q_i^{[s-2]} T_{i,s} - Q_i^{[s]} T_{i,s-1} = Q_i^{[s-1]}, \]
\[Q_r^{[s+1]} T_{r,s} - Q_r^{[s]} T_{r,s+1}^{*} = Q_r^{[s]} (Q_r^{[s]} Q_r^{[s+1]})^{1/2}, \]
\[Q_r^{[s-2]} T_{r,s} - Q_r^{[s]} T_{r,s-1}^{*} = Q_r^{[s-1]}, \]
\[Q_r^{[s+2]} T_{r,s} - Q_r^{[s]} T_{r,s+1}^{*} = Q_r^{[s]} (Q_r^{[s]} Q_r^{[s+1]})^{1/2}. \]
(3.4)

for \(s \geq 2 \). They can be summarized as the TQ-relations of \(A_1 \) theory [60]:
\[Q_r^{[s-1]} T_{r,s} - Q_r^{[s]} T_{r,s-1} = Q_r^{[s-1]} L_{r,s}, \]
\[Q_r^{[s+1]} T_{r,s} - Q_r^{[s]} T_{r,s+1}^{*} = Q_r^{[s]} T_{r,s+1}, \]
where
\[L_{r,s} = Q_r^{[s-1]} \quad \text{and} \quad T_{r,s} = Q_r^{[s+1]} Q_r^{[s-1]} \]
(3.5)

and \(\alpha = I, II \) refers to
\[(Q_r^{[s]}, Q_r^{[s+1]}) = (Q_r^{[s]}, Q_r^{[s+1]}), \quad (Q_r^{[s]}, Q_r^{[s+1]}) = (Q_r^{[s]}, Q_r^{[s+1]}). \]
(3.7)

From (3.6) it follows that
\[T_{r,s} T_{r,s} = L_{r,s}^{+} T_{r,s}^{*} \quad (s \geq 2). \]
(3.8)

We wrote down the TQ-relations (3.5) in a covariant way; the equations maintain the full gauge symmetry of the T-system, as long as \(X_{1,s} \), i.e. any quantity with the lower index \((1, s) \), behaves in the same way as \(T_{1,s} \). One can apply any gauge transformation \(\Phi_{1,s} \) to them, and the equations remain invariant. Since the \(Q \)-functions were originally translationally invariant (\(X_{1,s} = X_{1,s}^{+}, X_{1,s} = X_{1,s}^{+} \)), the new \(Q \)-functions are now translationally invariant modulo gauge transformation:
\[\frac{L_{1,s}}{L_{1,s-1}^{+}} = \frac{Q_{r}^{[s]} \Phi_{1,s}}{Q_{r}^{[s+1]} \Phi_{1,s-1}}, \quad \frac{T_{1,s}}{T_{1,s-1}^{+}} = \frac{Q_{r}^{[s]} \Phi_{1,s}}{Q_{r}^{[s+1]} \Phi_{1,s-1}} = \frac{\Phi_{1,s}^{+}}{\Phi_{1,s}^{+}}, \quad \frac{\Phi_{1,s}}{\Phi_{1,s-1}^{+}} = 1. \]
(3.9)

These equations are valid for \(s \geq 3 \), because \((L_{1,s}, T_{1,s}) \) are not defined at \(s = 1 \). The last equation of (3.9) means that \(\Phi \) is a gauge degree of freedom.

Now consider the inverse problem, that is, to obtain \(Q \)-functions when \(T_{1,s} \) are given for a certain range of \(s \). If \((L_{1,s}, T_{1,s}) \) are also given, it reduces to the problem to solve some second-order difference equations [60]. To see this, we rearrange the first line (resp. the second line) of (3.5) into a difference equation for \(Q_r^{[s]} \) (resp. \(Q_r^{[s]} \)) as
\[\frac{L_{1,s}}{L_{1,s-1}^{+}} Q_r^{[s]} + \frac{L_{1,s}}{L_{1,s}^{+}} Q_r^{[s]} - \frac{R_{s}}{Q_r^{[s]}} Q_r^{[s-2]} = 0, \quad \frac{T_{1,s}}{T_{1,s-1}^{+}} Q_r^{[s]} + \frac{T_{1,s}}{T_{1,s}^{+}} Q_r^{[s]} - \frac{\mathcal{R}_{s}}{Q_r^{[s]}} Q_r^{[s-2]} = 0. \]
(3.10)

where
\[R_{s} = \frac{\Phi_{1,s}^{+}}{\Phi_{1,s}^{+} \left(\frac{L_{1,s} T_{1,s}^{[s-2]} + \frac{L_{1,s} T_{1,s}^{[s-2]}}{\Phi_{1,s}^{[s-2]}}} \right)}, \quad \mathcal{R}_{s} = \frac{\Phi_{1,s}^{+}}{\Phi_{1,s}^{+} \left(\frac{T_{1,s} T_{1,s}^{[s-2]} + \frac{T_{1,s} T_{1,s}^{[s-2]}}{\Phi_{1,s}^{[s-2]}}} \right)}. \]
(3.11)

In general, the second order difference equations have two linearly independent solutions, in agreement with (3.7).
In the spectral problem of AdS$_5 \times S^5$, we do not try to solve the difference equations (3.10), because we do not know the exact form of $(L_{1,s}, \overline{L}_{1,s})$. Instead, we will construct a set of hybrid NLIE from the covariant TQ-relations (3.5). To formulate hybrid NLIE, we use the analyticity data of the asymptotic solutions, which will be discussed in appendix C.2.

3.2. Decomposing TBA from TQ-relations

In this subsection, we decompose the TBA equations (or the Y-system) of A_1 theory using TQ-relations. Just like (2.9), we introduce the ‘spinon’ variables by

$$A_{1,s}^\alpha = \frac{Q_{1,s-1}^\alpha}{Q_{1,s-1}^\beta} L_{1,s}, \quad \overline{A}_{1,s}^\alpha = \frac{Q_{1,s-1}^\alpha}{Q_{1,s-1}^\beta} \overline{L}_{1,s}, \quad (s \geq 2, \, \alpha = I, \, II),$$

and simplify the covariant A_1 TQ-relations (3.5) as

$$T_{1,s}^+ - A_{1,s}^\alpha = \frac{\overline{A}_{1,s}^\alpha}{A_{1,s-1}^\alpha} T_{1,s-1}, \quad T_{1,s}^- - \overline{A}_{1,s}^\alpha = \frac{A_{1,s}^\alpha}{A_{1,s-1}^\alpha} T_{1,s-1}, \quad (s \geq 3).$$

The lower bound of s has increased by 1, because $(L_{1,s}, \overline{L}_{1,s})$ are defined only for $s \geq 2$.

Following section 2.3, let us define new gauge-invariant variables by

$$1 + b_s^\alpha = \frac{T_{1,s}}{A_{1,s}^\alpha \overline{A}_{1,s}^\alpha} = \frac{Q_{1,s-1}^\alpha}{Q_{1,s-1}^\beta} \frac{T_{1,s}}{L_{1,s}}, \quad 1 + \overline{b}_s^\alpha = \frac{\overline{T}_{1,s}}{A_{1,s}^\alpha \overline{A}_{1,s}^\alpha} = \frac{Q_{1,s-1}^\alpha}{Q_{1,s-1}^\beta} \frac{\overline{T}_{1,s}}{\overline{L}_{1,s}}, \quad (s \geq 2),$$

and count the number of variables and the number of equations. The Y-functions $Y_{1,M \geq s}$ are now replaced by

$$(1 + b_s^\alpha)(1 + \overline{b}_s^\alpha) = \frac{T_{1,s}}{T_{0,s} T_{2,s}} = 1 + Y_{1,M} \quad (\alpha = I, \, II).$$

This procedure corresponds to the middle part of figure 1, where the TBA equations are decomposed into new degrees of freedom.

Unfortunately, as discussed in section 2.3, there is always one more unknown variable than the number of equations that can be derived algebraically. For example, one can consider the general parameter list

$$\{Y_{1,2}, \ldots, Y_{1,s-1}\} \bigcup \left\{b_s^\alpha, b_{s+1}^\alpha, \ldots, b_{s+\ell}^\alpha, \overline{b}_s^\alpha, \overline{b}_{s+1}^\alpha, \ldots, \overline{b}_{s+\ell}^\alpha\right\} \quad (s \geq 3),$$

where α is either I or II. Just like (2.24), the equations cannot be closed as long as ℓ is finite. In other words, the equations can be closed if in the limit $\ell \to \infty$ we require that $\lim_{s \to \infty} b_s, \overline{b}_s$ approach the asymptotic functions. This conclusion is unchanged even if one includes both $\alpha = I, \, II$ in the above parameter list.

The shortage of one equation can be understood as follows. As we saw in section 3.1, the most general solution of the T-system or TQ-relations is given by fundamental Q-functions. However, it also implies that there is no equation which determines the fundamental Q-functions in an algebraic manner. To supply more constraints, we need to study analyticity conditions.

12 See [35, 46] for the discussion on boundary conditions of $Y_{a,s}$ as $a \to \infty$ or $s \to \infty$.

13 J. Phys. A: Math. Theor. 44 (2011) 235401 R Suzuki
3.3. Analyticity conditions in the horizontal strip

We repeat the discussion in section 2.4 in the case of the horizontal part of the \(su(2|4)\)-hook. Although the asymptotic \(Q\)-functions on the \(su(2|4)\)-hook are different from those of the XXX model, both of them have good analytic properties on the upper or lower half of the complex rapidity plane.

From (3.13), we can derive the relation

\[
\begin{align*}
\hat{a}_j^\alpha &= \frac{\hat{A}_j^\alpha \hat{T}_{1,j-1}}{\hat{A}_j^\alpha} = \frac{\hat{Q}_{1,j-1}^{[+2]} T_{1,j-1}}{\hat{Q}_{1,j-1}^{[+1]} L_{1,j-1}^{[+2]}}, \\
\hat{b}_j^\alpha &= \frac{\hat{A}_j^\alpha \hat{T}_{1,j-1}}{\hat{A}_j^\alpha} = \frac{\hat{Q}_{1,j-1}^{[-2]} T_{1,j-1}}{\hat{Q}_{1,j-1}^{[-1]} L_{1,j-1}^{[-2]}},
\end{align*}
\]

(3.17)

for \(s \geq 3 \). We take the Fourier transform of the logarithmic derivative. As for the left-hand side, we introduce the regularization

\[
\hat{a}_j^\alpha (v) = b_j^\alpha (v - \frac{i\gamma}{g}), \quad \hat{b}_j^\alpha (v) = \hat{b}_j^\alpha (v + \frac{i\gamma}{g}), \quad 0 < \gamma < 1,
\]

(3.19)

and take the Fourier transform on the real axis of \(a_j (v), \hat{a}_j (v) \). The upper bound of \(\gamma \) comes from the definition of \(b_j \) in (3.14); for instance, the variable \(L_{1,j}^{[\pm \gamma]} \) should stay on the upper half-plane. As for the right-hand side, we assume that each factor in (3.17) is analytic inside the strip \(-\frac{\gamma}{g} \leq \text{Im } v \leq 0\), and each factor in (3.18) is analytic inside the strip \(0 \leq \text{Im } v \leq \frac{\gamma}{g} \). Then we obtain, for \(s \geq 3 \),

\[
\hat{d} \hat{a}_j^\alpha = e^{-\gamma \hat{d}} \{ \hat{d} \hat{Q}_{1,j-1}^{[+2]} - \hat{d} \hat{Q}_{1,j-1}^{[+1]} \},
\]

\[
\hat{d} \hat{b}_j^\alpha = e^{\gamma \hat{d}} \{ \hat{d} \hat{Q}_{1,j-1}^{[-2]} - \hat{d} \hat{Q}_{1,j-1}^{[-1]} \}.
\]

(3.20)

Note that the terms \(\hat{d} \hat{Q}_{1,j-1}^{[+2]}, \hat{d} \hat{Q}_{1,j-1}^{[-2]} \) are again as dangerous as in (2.32).

\textbf{ANZC conditions.} We assume that the analyticity data of the relevant functions are the same as in the asymptotic case. The asymptotic expressions for \(T_{1,j}, L_{1,j}, L_{1,j} \) are discussed in appendix C. We use the gauge \(T_{1,j} = TH_{1,j} \) and set \(\Phi_{1,j} = 1 \).

Suppose that for \(s \geq 2 \),

\[
T_{1,j}(v) \text{ is ANZC for } -\frac{1}{g} \leq \text{Im } v \leq \frac{1}{g}.
\]

(3.21)

Following the same argument as before, and keeping in mind the definition of \(b_j \) in (3.14) and \(f^\pm \) in (A.1), we obtain

\[
0 = e^{\frac{s}{2} \hat{d} \hat{L}_{1,j}} - e^{-\frac{s}{2} \hat{d} \hat{T}_{1,j}}.
\]

(3.22)

If the Fourier transform of the logarithmic derivative of each factor is well defined, we get

\[
0 = e^{\frac{s}{2} \hat{d} (1 + \hat{b}_j^\alpha)} - e^{-\frac{s}{2} (1 + b_j^\alpha)} + 2 \cosh \left(\frac{\theta_{1,j}}{g} \right) (\hat{d} \hat{Q}_{1,j-1}^a - \hat{d} \hat{Q}_{1,j-1}^{a^*})
\]

(3.23)

Again, these assumptions are part of the analyticity conditions we will use below.

This is equivalent to \(\Theta_{1,j} = 1 \) in the notation of appendix C.
We also assume that for $s \geq 3$,
\[Q^a_{l,s-1}(v) \] is ANZC for $\text{Im } v \geq 0$,
\[\overline{Q}^a_{l,s-1}(v) \] is ANZC for $\text{Im } v \leq 0$,
\[L_{l,s-1}(v) \] is ANZC for $\text{Im } v \geq \frac{1}{g}$,
\[\overline{L}_{l,s-1}(v) \] is ANZC for $\text{Im } v \leq -\frac{1}{g}$.

(3.24)

As corollaries, it follows that
\[\hat{d}l Q^a_{l,s-1}(q) = 0 \quad \text{for } \text{Re } q > 0, \]
\[\hat{d}l Q^a_{l,s-1}(q) = 0 \quad \text{for } \text{Re } q < 0, \]
\[\hat{d}l L^+_{l,s-1}(q) = 0 \quad \text{for } \text{Re } q > 0, \]
\[\hat{d}l \overline{L}^+_{l,s-1}(q) = 0 \quad \text{for } \text{Re } q < 0. \]

(3.25)

By using the analyticity and the translational properties (3.9) for the gauge $\Phi_{l,s} = 1$, we find
\[e^{-\gamma} \hat{d}l L^+_{l,s-1} = e^{-\gamma} \hat{d}l L^+_{l,s-1} = \hat{d}l L^+_{l,s-1}, \]
\[e^{\gamma} \hat{d}l \overline{L}^+_{l,s-1} = e^{\gamma} \hat{d}l \overline{L}^+_{l,s-1} = \hat{d}l \overline{L}^+_{l,s-1}. \]

Equation (3.23) leads to
\[\hat{d}l Q^a_{l,s-1} - \hat{d}l L^+_{l,s-1} \hat{q}_K(q) = \begin{cases} 0 & \text{Re } q > 0, \\ (-e^{\gamma} \hat{d}l (1 + b^a) + e^{\gamma} \hat{d}l (1 + b^a)) \hat{q}_K(q) & \text{Re } q < 0. \end{cases} \]
\[\hat{d}l \overline{Q}^a_{l,s-1} - \hat{d}l \overline{L}^+_{l,s-1} \hat{q}_K(q) = \begin{cases} 0 & \text{Re } q > 0, \\ (-e^{-\gamma} \hat{d}l (1 + b^a) + e^{-\gamma} \hat{d}l (1 + b^a)) \hat{q}_K(q) & \text{Re } q < 0. \end{cases} \]

(3.27)

We employ regularization (3.19) also for $(1 + b^a)$, $(1 + \overline{b}^a)$, assuming that
\[1 + b^a(v) \text{ is ANZC for } -\frac{\gamma}{g} \leq \text{Im } v \leq 0, \]
\[1 + \overline{b}^a(v) \text{ is ANZC for } 0 \leq \text{Im } v \leq +\frac{\gamma}{g}. \]

(3.28)

It follows that
\[\hat{d}l (1 + b^a) = e^{\gamma} \hat{d}l (1 + a^a), \]
\[\hat{d}l (1 + \overline{b}^a) = e^{-\gamma} \hat{d}l (1 + \overline{a}^a). \]

(3.29)

Derivation of NLIE. Let us rewrite the T-function into Y-function (3.15) using analyticity (3.21):
\[\hat{d}l T_{l,s-1} = (\hat{d}l L^+_{l,s-1} + \hat{d}l \overline{L}^+_{l,s-1} + \hat{d}l (1 + Y_{l,s-1})) \hat{q}_K(q), \quad s \geq 3. \]

(3.30)

Equation (3.20) then simplifies with the help of (3.24), and we obtain
\[e^{\gamma} \hat{d}l a^a = e^{\gamma} \hat{d}l Q^a_{l,s-1} - \hat{d}l L^+_{l,s-1} \hat{q}_K(q) \]
\[e^{-\gamma} \hat{d}l \overline{a}^a = e^{-\gamma} \hat{d}l Q^a_{l,s-1} - \hat{d}l \overline{L}^+_{l,s-1} \hat{q}_K(q) \]
\[e^{-\gamma} \hat{d}l a^a = e^{-\gamma} \hat{d}l Q^a_{l,s-1} - \hat{d}l L^+_{l,s-1} \hat{q}_K(q) \]
\[e^{\gamma} \hat{d}l \overline{a}^a = e^{\gamma} \hat{d}l Q^a_{l,s-1} - \hat{d}l \overline{L}^+_{l,s-1} \hat{q}_K(q). \]

(3.31)

We substitute (3.27) to these equations, keeping in mind that the terms in the square brackets are identical to the combination we found in (3.27). Recalling also (2.42), we find
\[\hat{d}l a^a = e^{-\frac{\gamma}{g}} \hat{d}l (1 + a^a) + e^{\frac{\gamma}{g}} \hat{d}l (1 + \overline{a}^a), \]
\[\hat{d}l \overline{a}^a = e^{-\frac{\gamma}{g}} \hat{d}l (1 + \overline{a}^a) - e^{\frac{\gamma}{g}} \hat{d}l (1 + a^a), \]
\[\hat{d}l a^a = e^{-\frac{\gamma}{g}} \hat{d}l (1 + a^a) - e^{\frac{\gamma}{g}} \hat{d}l (1 + \overline{a}^a), \]
\[\hat{d}l \overline{a}^a = e^{-\frac{\gamma}{g}} \hat{d}l (1 + \overline{a}^a) - e^{\frac{\gamma}{g}} \hat{d}l (1 + a^a). \]

(3.32)
The inverse Fourier transform gives

\[
\log \alpha_s^w = \log \left(1 + \alpha_s^w\right) \star K_f - \log \left(1 + \overline{\alpha}_s^w\right) \star K_f^{(s-2+2\gamma)} + \log \left(1 + Y_{1,l-1}^{[-\gamma]}\right) \star s_K + \text{(source)},
\]

\[
\log \overline{\alpha}_s^w = \log \left(1 + \alpha_s^w\right) \star K_f - \log \left(1 + \overline{\alpha}_s^w\right) \star K_f^{(s-2+2\gamma)} + \log \left(1 + Y_{1,l-1}^{[+\gamma]}\right) \star s_K + \text{(source)},
\]

(3.33)

where the kernel \(K_f \) is now defined by (A.7), and the source terms can be fixed by analyticity data, as done in the introduction.

In summary, the minimal parameter list for the horizontal strips of the \(su(2|4|2) \)-hook is

\[
\{Y_{1|w}, \ldots, Y_{s-2|w}\} \bigcup \left\{\alpha_s, \overline{\alpha}_s\right\} \quad (s \geq 3).
\]

(3.34)

We cannot remove \(Y_{1|w} \), because the pair \((\alpha_2, \overline{\alpha}_2) \) are not related to \(Y_{1,1} = -1/Y_\gamma \) in (3.20).\(^{15}\)

To determine \(\{Y_{1|w}, \ldots, Y_{s-2|w}\} \), we use the simplified TBA for \(Y_{M|w} \) \((M = 1, \ldots, s-3)\):

\[
\log Y_{1,M+1} = \log \left(1 + Y_{1,M}\right) \left(1 + Y_{1,M+2}\right) \star s_K + \delta_{M,1} \log \frac{1 - \frac{Y_\gamma}{Y_{1,1}}} {1 - \frac{Y_\gamma}{Y_{1,1}}},
\]

(3.35)

with \(Y_{0|w} = 0 \), and as for \(Y_{s-2|w} \):

\[
\log Y_{s-2|w} = \log \left(1 + Y_{s-3|w}\right) \left(1 + \alpha_s^{[+\gamma]}\right) \left(1 + \overline{\alpha}_s^{[\gamma]}\right) \star s_K + \delta_{s-2,1} \log \frac{1 - \frac{Y_\gamma}{Y_{1,1}}} {1 - \frac{Y_\gamma}{Y_{1,1}}}.\]

(3.36)

The NLIE (3.33) are used to determine \((\alpha_s, \overline{\alpha}_s) \).

4. Discussion

In this paper, we derived hybrid NLIE from two setups. The first setup was a pair of covariant recursions for spinons, and the second setup was \(A_1 \) TQ-relations. The \(A_1 \) TQ-relations appeared in the horizontal strips of the \(su(2|4|2) \)-hook. By combining TBA equations and the equations for auxiliary variables, we replaced the TBA equations for \(Y_{M|w} \) \((M \geq 2)\) by a couple of auxiliary variables. We used assumptions (3.21), (3.24) and (3.28).

The hybrid NLIE provides us with an efficient algorithm to compute the exact spectrum of \(AdS_5 \times S^5 \) string theory, both numerically and analytically. It is desirable to develop similar techniques to truncate the vertical strip \(a \geq 2 \) of the \(su(2|4|2) \)-hook by generalizing TQ-relations and hybrid NLIE for a higher-rank system \([60, 85, 86]\). In the horizontal strip, the analyticity data were relatively simple, and the source terms in NLIE have a simple structure.

In the vertical strip, however, the analytic structure would be much complicated.

It is interesting to clarify the physical and mathematical interpretation of new auxiliary degrees of freedom. Relation (1.2) suggests that the \(M|w \)-strings appearing in the string hypothesis of the mirror \(AdS_5 \times S^5 \) are bound states of two fundamental excitations, such as mesons and quarks. Moreover, the \(su(2|4|2) \)-hook is replaced by another hook as in figure 1, which would have a deeper relation with the representation theory of \(su(2|4|2) \), like [68]. Such observation might give us a hint in searching for the hidden structure of the mirror \(AdS_5 \times S^5 \) theory, along the line of [87–93].

\(^{15}\) In fact, we can find \(\frac{T_{1,1}}{\mathcal{C}_{1,1} \mathcal{F}_{1,1}} = 1 - \frac{Y_\gamma}{Y_{1,1}}, \) if we use the asymptotic formulæ of \(L_{1,s}, \overline{L}_{1,s} \) at \(s = 1 \).
There is a special gauge choice such that $T_{1,s} = s + K_s \ast f$ ($s \geq 1$). \(\text{(4.1)}\)

The unknown variable f is determined by solving \[1 + Y_{1,1} = \frac{T_{1,1} T_{1,3}^* T_{2,3}}{T_{2,2}^* T_{3,3}} = (1 + K_s^\ast \ast_{p,v} f + f/2)(1 + K_s^\ast \ast_{p,v} f + f/2) \] \[= (1 + K_s^\ast \ast_{p,v} f - f/2)(1 + K_s^\ast \ast_{p,v} f - f/2). \] \(\text{(4.2)}\)

The derivation of this equation has not been published anywhere. Equation \(\text{(4.2)}\), if true, allows us to truncate the horizontal strips of the asymptotic TBA equations, and this result is claimed to be consistent with the numerical data for the Konishi state for $0 \leq \lambda \leq 1000$.

It might also be possible to imagine more ansatzes different from \(\text{(4.1)}\) and derive different NLIE. In relation to such attempts for conjecturing an ansatz for T- or Y-functions, we would like to pose the following question.

Asymptotically, the T-functions $T_{1,s}(v)$ for $s \geq 1$ have branch cuts along $\text{Im}\, v = \pm \frac{1}{\sqrt{2} g}, \pm \frac{1+i0}{\sqrt{2} g}$. From the structure of TBA equations, we expect that the exact T-functions have the branch cuts on the same location. From the relation between Y and T in \(\text{(B.3)}\), the T-functions should have branch cuts in appropriate locations on the complex plane. Usually, $T_{1,s}(v)$ has branch cuts along $\text{Im}\, v = \pm \frac{1}{2}$. However, the dangerous functions $T_{1,1}^\pm$ and $T_{1,2}^\pm$ appear when we express $T_{2,3}^\pm, T_{3,3}$ of \(\text{(4.2)}\) in terms of $T_{1,s}$. Due to the branch cuts, we cannot neglect the gap $\delta T_{1,s}^{[\pm]} \equiv T_{1,s}^{[\pm]}(t) - T_{1,s}^{[\pm]}(0)$. For example, if we use ansatz \(\text{(4.1)}\) we find

\[T_{1,1} \left(v + \frac{1}{g} + i0 \right) = 1 + \int_{-\infty}^{\infty} dt \, K_0(t) f \left(v - t + \frac{1}{g} + i0 \right), \]

\[= 1 + \int_{-\infty}^{\infty} dt \, K_0(t) \, \delta f \left(v - t + \frac{1}{g} \right) + K_s^\ast \ast_{p,v} f + \frac{f}{2}. \] \(\text{(4.3)}\)

It is not clear how the gap $\delta T_{1,s}^{[\pm]}$ disappeared in \(\text{(4.2)}\). We expect that the gap must be determined by new equations in addition to \(\text{(4.2)}\). Then, the whole set of equations may no longer be closed.

Appendix A. Notations

We use the notation

\[g = \frac{\sqrt{\lambda}}{2\pi}, \quad f(v)^{[\pm]} \equiv f \left(v \pm \frac{im}{g} \mp i0 \right), \quad f(v)^\pm = f(v)^{[\pm]}!, \] \(\text{(A.1)}\)

\[x_s(v) = \frac{v}{2} \left(1 + \sqrt{1 - \frac{4}{v^2}} \right), \quad x(v) = \frac{1}{2} \left(v - i\sqrt{4 - v^2} \right). \] \(\text{(A.2)}\)

Let us define

\[\mathcal{R}_{(\pm)}(v) = \prod_{j=1}^{K} \sqrt{x(v) - x_{s,j}} - x_{s,j}^\pm, \quad \mathcal{B}_{(\pm)}(v) = \prod_{j=1}^{K} \frac{1}{x(v) - x_{s,j}} - x_{s,j}^\pm, \quad \mathcal{Q}(v) = \prod_{j=1}^{K} (v - u_j). \] \(\text{(A.3)}\)

\[\text{Note added.} \] After the submission to arXiv, we are reminded of the talk \[94\] in Stockholm. The claim is as follows. There is a special gauge choice such that $T_{1,s}$ is given by the ansatz

\[T_{1,s} = s + K_s \ast f. \] \(\text{(4.1)}\)

The unknown variable f is determined by solving

\[1 + Y_{1,1} = \frac{T_{1,1} T_{1,3}^* T_{2,3}}{T_{2,2}^* T_{3,3}} = (1 + K_s^\ast \ast_{p,v} f + f/2)(1 + K_s^\ast \ast_{p,v} f + f/2) \]

\[= (1 + K_s^\ast \ast_{p,v} f - f/2)(1 + K_s^\ast \ast_{p,v} f - f/2). \] \(\text{(4.2)}\)

Note that the gauge degree of freedom has already been fixed, when one uses an ansatz like \(\text{(4.1)}\). \(\text{\textcopyright 2011} \text{ J. Phys. A: Math. Theor. 44 (2011) 235401} \text{ R Suzuki} \)
where K is the number of physical excitations and $x_{\pm j}^\pm = x_j (u_j \pm \frac{i}{g})$. The rapidity u_j sits in the physical region of string theory. There are identities

$$R_{(\pm)}^m (v) B_{(\pm)}^m (v) = (-1)^K Q \left(v + \frac{i}{g} (m \mp Q_j)\right), \quad R_{(\pm)}^+ B_{(\pm)}^+ = R_{(\pm)}^- B_{(\pm)}^- = (-1)^K Q.$$ \hspace{1cm} (A.4)

Since $x(v) = x_j(v)$ for $\text{Im} \ v < 0$ and $1/x(v) = x_j(v)$ for $\text{Im} \ v > 0$, we observe that

$$R_{(\pm)} (v) \text{ have no zeros for } \text{Im} \ v > 0, \quad B_{(\pm)} (v) \text{ have no zeros for } \text{Im} \ v < 0.$$ \hspace{1cm} (A.5)

The zeros of $Q(v)$ lie on the real axis of v if there are no bound states. The branch cuts of R, B lie along the real axis of v. We use the kernel

$$s_K(v) = \frac{g}{4 \cosh \frac{\pi v}{2}}, \quad \tilde{s}_K = -s_K^*, \quad K_f(v) = \frac{1}{2 \pi i} \frac{\partial}{\partial v} \log S_f(v), \quad S_f(v) = \frac{\Gamma \left(\frac{g}{4}(v + \frac{2i}{g})\right) \Gamma \left(- \frac{g}{4}(v + \frac{2i}{g})\right)}{\Gamma \left(\frac{g}{4}(v - \frac{2i}{g})\right) \Gamma \left(- \frac{g}{4}(v - \frac{2i}{g})\right)}.$$

and the notation

$$F \ast K(v) = \int_{-\infty}^{\infty} dt \ F(t) \ K(v - t), \quad F \ast p.v. K(v) = \int_{-2}^{2} dt \ F(t) \ K(v - t).$$

Note that all kernels in (A.7) are symmetric, $K(v) = K(-v)$. The asymptotic behavior of $S_f(v)$ is $S_f(v) \to \mp i$ as $v \to \pm \infty$.

As for the convolution with \tilde{s}_K and $K_f^{[\pm]}$, one may use the principal-value prescription:

$$\log f \ast \tilde{s}_K = \frac{1}{2} \log f \mp \log f \ast p.v. \tilde{s}_K, \quad \log f \ast K_f^{[\pm]} = \mp \frac{1}{2} \log f + \log f \ast p.v. K_f^{[\pm]}, \quad \log f \ast K_f^{[-\pm]} = \pm \frac{1}{2} \log f + \log f \ast p.v. K_f^{[-\pm]}.$$ \hspace{1cm} (A.9)

Appendix B. Review of the Y-system and the T-system

Most of the mirror TBA equations on $\text{AdS}_5 \times S^5$, except for the exact energy and the exact Bethe roots, can be regarded as the Y-system on $\mathfrak{su}(2|4)/2$ supplemented by certain analyticity conditions. The canonical definition of the $\mathfrak{su}(2|4)/2$ Y-system is

$$Y_{a,s} \ Y_{a,s} = \frac{(1 + Y_{a,s+1})(1 + Y_{a,s-1})}{(1 + \frac{1}{Y_{a+1,s}})(1 + \frac{1}{Y_{a-1,s}})}, \quad v \in (-2, 2),$$

where (a, s) runs through the lattice points shown in figure B1.

We assume the interchange symmetry $(a, s) \leftrightarrow (a, -s)$ in what follows. The Y-functions $Y_{a,s}$ are defined by

$$Y_{1,1} \leftrightarrow -\frac{1}{v}, \quad Y_{2,2} \leftrightarrow -Y_{*,*}, \quad Y_{M+1,1} \leftrightarrow \frac{1}{Y_{M|v^w}}, \quad Y_{1,M+1} \leftrightarrow Y_{M|w},$$

$$Y_{Q,0} \leftrightarrow g Q.$$

\hspace{1cm} (B.2)
where we set chemical potentials to zero. We introduce the T-functions by

$$Y_{a,s} \equiv \begin{cases} \frac{T_{a,1}T_{a,-1}}{T_{a+1,0}T_{a-1,s}} & (s = 0) \quad \text{where} \quad \frac{T_a^+T_a^-}{T_{a+1}T_{a-1}} = 1, \\ \frac{T_{a+1}T_{a,s-1}}{T_{a+1,0}T_{a-1,s}} & (s \neq 0). \end{cases}$$ \hspace{1cm} (B.3)

The canonical Y-system (B.1) is then solved by the T-system which lives on the $\mathfrak{su}(2|4|2)$-hook,

$$T_{a,s}^+ T_{a,s}^- = T_{a+1,s} T_{a-1,s} + T_{a,s+1} T_{a,s-1} \quad (a \geq 1, \ s \neq 0),$$ \hspace{1cm} (B.4)

and the Y-system at $|s| = 0, 1$ is solved by

$$T_{a,0}^+ T_{a,0}^- = T_{a+1,0} T_{a-1,0} + T_{a,1} T_{a,-1} \quad (a \geq 1).$$ \hspace{1cm} (B.5)

We introduced an extra ‘gauge’ factor τ_a in order to take the asymptotic limit $\tau_a \rightarrow 0$ easily. By redefinition of $T_{a,s}$ ($s \neq 0$) one can recover the standard definition of the T-system, as will be discussed later.

T-functions vanish outside the $\mathfrak{su}(2|4|2)$-hook, $T_{-1,s} = T_3, Q = T_{Q,3} = 0$, for $s \in \mathbb{Z}, \ Q \geq 3$. Along the boundary of the hook, the T-system reduces to the discrete Laplace equation without the source term.

The T-system equations (B.4) and (B.5) are invariant under the gauge transformation

$$T_{a,s} \rightarrow S_1^{[a+1]} S_2^{[a-1]} S_3^{[-a+1]} S_4^{[-a-1]} T_{a,s},$$ \hspace{1cm} (B.6)

with τ_a left intact. We need two gauge degrees of freedom to impose the boundary conditions $T_{0,s} = 1$ for all s.

There are subtle points in the study of the exact spectrum from the Y- and T-system on the $\mathfrak{su}(2|4|2)$-hook, compared to the study from the mirror TBA equations on $\text{AdS}_5 \times S^5$. Firstly, the Y-system at the corner $(a, s) = (2, \pm 2)$ does not follow directly from the mirror TBA. To derive them, we have to use the parametrization (B.3) and the T-system (B.4) except at the corner. Then, the T- and Y-system at the corner can be derived from the equations in the neighborhood. Secondly, if the mirror rapidity v lies $(\infty, -2) \cup (2, \infty)$, the Y-system is no longer canonical, and we need to know the gap on branch cuts\(^\text{19}\).

Meaning of τ_a. There is no τ_a in the usual T-system, so one may wonder if the system above is equivalent to them. To show the equivalence we consider the following transformation\(^\text{20}\):

$$T_{a,s} \rightarrow \frac{T_{a,s}}{F_{a,s+1} F_{a,s+3} \cdots F_{a,s-3} F_{a,s-1}}, \quad s \geq 1,$$ \hspace{1cm} (B.7)

\(^\text{19}\) The Y-system remains canonical if we use $f^\pm = f(v \pm \frac{1}{g} + i0)$ or $f^\pm = f(v \pm \frac{1}{g} - i0)$ instead of (A.1)\(^\text{23}\).

\(^\text{20}\) We thank Sergey Frolov for the explanation of this subsection.

Figure B1. The $\mathfrak{su}(2|4|2)$-hook, whose boundaries lie along $(0, s)$, $(2, s)$, $(a, \pm 2)$.
The auxiliary variables in the vertical direction are defined by taking four terms out of invariant. We can also do a similar transformation with the change \(s \rightarrow -s \), so there are two independent sets of functions \(F^L_a \) and \(F^R_a \) which can be used for this purpose. \(Y_{a,0} \) transforms as

\[
Y_{a,0} \rightarrow \frac{\tau_a}{T_a} T_{a,1} T_{a,-1} \quad \text{as} \quad \tau_a \rightarrow \tau_a F_a^{-1} F_a^L T_{a,0} T_{a,-1,0}.
\]

Then, equation (B.4) is invariant, and (B.5) transforms as

\[
T_{a,0}^+ T_{a,0} = T_{a+1,0} T_{a-1,0} + \frac{\tau_a}{F_a} \left(F_a^{-1} F_a^L \right) T_{a,1} T_{a,-1}.
\]

Thus, if we choose \(F^L_a F^R_a = \tau_a \) we get the \(T \)-system in the usual form. This consideration shows that introducing \(\tau_a \) is just a matter of convenience.

Appendix C. Asymptotic solutions

C.1. Asymptotic transfer matrix

We will discuss the \(su(2) \{2 \} \) transfer matrix for the totally symmetric representations on the level-1 vacuum, namely when there are no auxiliary Bethe roots among the physical excitations. Via analytic continuation of the rapidity into the mirror region, this transfer matrix generates the solution of the excite-state TBA equations for the \(sl(2) \) sector [21] in the asymptotic limit.

As discussed in [14, 96], such transfer matrices, here denoted by \(T_{a,1} \), are given by

\[
T_{a,1} = 1 + \frac{R[a-2]^{[s]}}{R[a]^{[s]}} B[a]^{[s]} + \sum_{k=1}^{a-1} \left(-2 + \frac{R[a-2k]^{[s]}}{R[a-2k]^{[s]}} + \frac{B[a-2k]^{[s]}}{B[a-2k]^{[s]}} \right) R[a]^{[s]} Q[a-1-2k].
\]

This formula consists of \(4a \) terms, and only four terms lie outside the sum. It is possible to include all terms under summation, as

\[
T_{a,1} = \sum_{k=0}^{a} \lambda_k^{(B1),a} + \sum_{k=1}^{a-1} \lambda_k^{(B2),a} - \sum_{k=0}^{a-1} \left(\lambda_k^{(F1),a} + \lambda_k^{(F2),a} \right),
\]

where

\[
\lambda_k^{(B1),a} = \frac{R[a-2k]^{[s]}}{R[a]^{[s]}} \frac{R[a]^{[s]}}{Q[a-1]^{[s]}}, \quad \lambda_k^{(B2),a} = \frac{B[a-2k]^{[s]}}{B[a-2k]^{[s]}} \frac{R[a-2k]^{[s]}}{Q[a-1]^{[s]}}, \quad \lambda_k^{(F1),a} = \frac{R[a]^{[s]}}{Q[a]^{[s]}}, \quad \lambda_k^{(F2),a} = \frac{R[a]^{[s]}}{Q[a]^{[s]}} Q[a-1].
\]

The auxiliary variables in the vertical direction are defined by taking four terms out of \(T_{a,1} \) as

\[
A_{a,1} = \gamma_a^{(B1),a} + \gamma_a^{(B2),a} - \gamma_a^{(F1),a} - \gamma_a^{(F2),a} = \frac{R[a]^{[s]}}{R[a]^{[s]}} \left(\frac{R[a]^{[s]}}{R[a]^{[s]}} + \frac{R[a]^{[s]}}{R[a]^{[s]}} - 2 \right),
\]

\[
\bar{A}_{a,1} = \gamma_a^{(B1),a} + \gamma_{a-1}^{(B2),a} - \gamma_a^{(F1),a} - \gamma_{a-1}^{(F2),a} = \frac{Q[a]^{[s]}}{Q[a-1]^{[s]}} \left(\frac{Q[a]^{[s]}}{Q[a]^{[s]}} + \frac{Q[a]^{[s]}}{Q[a]^{[s]}} - 2 \right).
\]

J. Phys. A: Math. Theor. 44 (2011) 235401

R Suzuki
It is easy to check that the covariant recursions (2.7) are satisfied for \(a \geq 2 \), under the condition \(X_{a,1} = 0 \).

As a corollary, we find
\[
T_{a,0}T_{a,2} = A_{a,1}^+ A_{a,1} \quad (a \geq 2),
\]
(C.5)
in consistence with (2.11).

The transfer matrices in the horizontal direction \(T_{1,s} \) are generated by the Bazhanov–Reshetikhin formula [97] (see also [14, 96, 98]):
\[
T_{a,s} \equiv \det \begin{pmatrix}
T_{a,1}^{[-s+1]} & T_{a,1}^{[-s+2]} & \cdots & T_{a,1}^{[-s+2]} & T_{a,1}^{[-s+1]} \\
T_{a+1,1}^{[-s+2]} & T_{a+1,1}^{[-s+3]} & \cdots & T_{a+1,1}^{[-s+1]} & T_{a+1,1}^{[-s+2]} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
T_{a,s}^{[-1]} & T_{a,s}^{[-3]} & \cdots & T_{a,s}^{[-2]} & T_{a,s}^{[-1]} \\
T_{a-1,s}^{[-2]} & T_{a-1,s}^{[-4]} & \cdots & T_{a-1,s}^{[-3]} & T_{a-1,s}^{[-2]}
\end{pmatrix},
\]
(C.6)
\[
T_{a,0} = 1, \quad T_{0,s} = 1, \quad T_{a<0,s} = 0.
\]

We compare the Wronskian formula (3.1) and the asymptotic transfer matrix \(T_{1,s} \) in the \(a(2) \) sector to find the asymptotic form of \(Q \)-functions. The result should agree with [64] modulo gauge transformation.

21 Furthermore, for each sum of (C.2) one can solve the recursion, e.g., \(r_{a,1}^{(a-1)} + A_{a,1} = \frac{r_{a,1}^{(a+1)}}{r_{a+1,1}^{(a-1)}} \).

22 Here \(\Phi_{1,s} \) means the gauge transformation from \(T_{1,s} \) in (C.6) to \(TH_{1,s} \) in (C.8). In the main text, \(\Phi_{1,s} \) means a general gauge transformation.

21
We begin with the relation
\[T_{0,s} T_{2,s} \equiv \frac{Q^{(s+2)} - R^{(s+1)}_t R^{(s-1)}_t}{Q^{(s+2)} - R^{(s+1)}_t R^{(s-1)}_t} (\Theta_{1,s} \bar{A}_{s,1})^* (\Theta_{1,s} \bar{T}_{s,1})^* = L_{1,s} \bar{T}_{1,s}. \]
(C.12)

There are many ways to define \(L_{1,s} \) and \(\bar{T}_{1,s} \). We choose the definition such that both \(L_{1,s} / \Theta_{1,s} \) and \(\bar{T}_{1,s} / \Theta_{1,s} \) are translationally invariant \((X_{1,s} = X_{1,s-1}, \bar{X}_{1,s} = \bar{X}_{1,s-1}) \) as
\[
\frac{L_{1,s}}{\Theta_{1,s}} = A_{s,1}^* = 1 + \frac{R^{(s+1)}_t R^{(s-1)}_t}{R^{(s+1)}_t R^{(s-1)}_t} - 2 \frac{R^{(s+1)}_t}{R^{(s+1)}_t},
\]
\[
\frac{\bar{T}_{1,s}}{\Theta_{1,s}} = \frac{Q^{(s+2)} - R^{(s+1)}_t R^{(s-1)}_t}{Q^{(s+2)} - R^{(s+1)}_t R^{(s-1)}_t} A_{s,1} = 1 + \frac{B^{(s+1)}_t B^{(s-1)}_t}{B^{(s+1)}_t B^{(s-1)}_t} - 2 \frac{B^{(s+1)}_t}{B^{(s+1)}_t},
\]
(C.13)

where we used the explicit form of \(A \)'s (C.4). We define auxiliary variables \((C_{1,s}, \bar{C}_{1,s})\) by
\[
C_{1,s} = \Theta_{1,s} \left(\frac{R^{(s+1)}_t}{R^{(s-1)}_t} - 1 \right), \quad \bar{C}_{1,s} = \Theta_{1,s} \left(1 - \frac{B^{(s+1)}_t}{B^{(s-1)}_t} \right),
\]
(C.14)

and \((U_{1,s}, \bar{U}_{1,s})\) by
\[
L_{1,s}^+ = \frac{1}{\Theta_{1,s}} \det \left(\begin{array}{cc} C_{1,s}^* & U_{1,s}^* \\ C_{1,s} & U_{1,s} \end{array} \right), \quad \bar{L}_{1,s}^- = \frac{1}{\Theta_{1,s}} \det \left(\begin{array}{cc} \bar{C}_{1,s}^* & \bar{U}_{1,s}^* \\ \bar{C}_{1,s} & \bar{U}_{1,s} \end{array} \right).
\]
(C.15)

The explicit form of \((U_{1,s}, \bar{U}_{1,s})\) can be obtained by solving the difference equations (C.15). The general solutions of these difference equations are
\[
U_{1,s} = - \Theta_{1,s} - \left\{ \frac{g}{2 i} \left(v + \frac{i s}{g} \right) + F_{1,s} \right\} C_{1,s}, \quad F_{1,s} = F_{1,s}^*,
\]
\[
\bar{U}_{1,s} = + \Theta_{1,s} - \left\{ \frac{g}{2 i} \left(v - \frac{i s}{g} \right) + \bar{F}_{1,s} \right\} \bar{C}_{1,s}, \quad \bar{F}_{1,s} = \bar{F}_{1,s}^*.
\]
(C.16)

We constrain two periodic functions \(F, \bar{F} \) by comparing \(T_{1,s} = \Theta_{1,s} \text{TH}_{1,s} \) in (C.8) with the Wronskian formula
\[
\text{TH}_{1,s} = \frac{1}{\Theta_{1,s}} (C_{1,s} \bar{U}_{1,s} - \bar{C}_{1,s} U_{1,s}),
\]
(C.17)

which gives
\[
\Psi_{1,s} \equiv F_{1,s} = \bar{F}_{1,s}, \quad \Psi_{1,s}^* = \Psi_{1,s}^*.
\]
(C.18)

The variable \(\Psi \) corresponds to the freedom of superposing two linearly independent solutions \(U \rightarrow U + \Psi C \). The Wronskian formulae (C.15), (C.17) do not change as long as \(\Psi^* = \Psi^* \), so we may set \(\Psi_{1,s} = 0 \). Therefore, the asymptotic formula (C.16) can be summarized as
\[
U_{1,s} = - \Theta_{1,s} - \frac{g}{2 i} \left(v + \frac{i s}{g} \right) C_{1,s}, \quad \bar{U}_{1,s} = + \Theta_{1,s} - \frac{g}{2 i} \left(v - \frac{i s}{g} \right) \bar{C}_{1,s}.
\]
(C.19)

Let us relate \((C, L, U)\) and the conjugates to the \(Q \)-functions in section 3.1. We can identify\(^{23}\)
\[
\begin{pmatrix} C_{1,s} \\ \bar{C}_{1,s} \\ U_{1,s} \\ \bar{U}_{1,s} \end{pmatrix} \simeq \begin{pmatrix} Q_{1}^{(s+1)} \\ \bar{Q}_{1}^{(s+1)} \\ Q_{2}^{(s+1)} \\ \bar{Q}_{2}^{(s+1)} \end{pmatrix}, \quad \begin{pmatrix} L_{1,s} \\ \bar{L}_{1,s} \end{pmatrix} \simeq \begin{pmatrix} Q_{1}^{(s-1)} \\ \bar{Q}_{1}^{(s-1)} \end{pmatrix},
\]
(C.20)

\(^{23}\) Such identification of \(C \)'s is motivated by the expression of [64]. Note that their definition of \(s(v) \) in the mirror region is opposite to ours.
where \(\simeq \) means that they are equal up to gauge transformation. One can also check that \((C, L, U)\) and the conjugates solve the difference equations (3.10). The determinant formula (C.15) turns out to be identical to (3.3) if \(Q_\mathcal{F} = -1 \).

C.3. Analyticity data

We enlist the analyticity data of the asymptotic solution in the \(\mathfrak{sl}(2) \) sector. Since the two pairs of fundamental \(Q \)-functions \((C_{1,s},\overline{C}_{1,s})\) and \((U_{1,s},\overline{U}_{1,s})\) have almost the same analytic structure (like the location of poles and branch cuts), we denote them collectively by \((Q_{\alpha 1,s},\overline{Q}_{\alpha 1,s})\).

The location of poles is

\[
\begin{align*}
\text{TH}_{1,s}(v) & = \infty \quad \text{at} \quad v = u_j - \frac{i(s+1)}{g}, \\
L_{1,s}(v) & = \infty \quad \text{at} \quad v = u_j - \frac{i(s-1)}{g}, \\
Q_{\alpha 1,s}(v) & = \infty \quad \text{at} \quad v = u_j - \frac{i(s+1)}{g}.
\end{align*}
\]

The conjugate variables \(\overline{L}_{1,s}, \overline{Q}_{\alpha 1,s} \) are not singular on the top sheet of the complex plane for \(v \). The location of branch cuts is

\[
\begin{align*}
\text{TH}_{1,s}(v+i0) & \neq \text{TH}_{1,s}(v-i0) \quad \text{at} \quad \text{Im} \ v = \pm \frac{s}{g}, \\
L_{1,s}(v+i0) & \neq L_{1,s}(v-i0) \quad \text{at} \quad \text{Im} \ v = -\frac{s-2}{g}, -\frac{s}{g}, \\
\overline{L}_{1,s}(v+i0) & \neq \overline{L}_{1,s}(v-i0) \quad \text{at} \quad \text{Im} \ v = \pm \frac{s-2}{g}, \pm \frac{s}{g}, \\
Q_{\alpha 1,s}(v+i0) & \neq Q_{\alpha 1,s}(v-i0) \quad \text{at} \quad \text{Im} \ v = \mp \frac{s}{g}, \\
\overline{Q}_{\alpha 1,s}(v+i0) & \neq \overline{Q}_{\alpha 1,s}(v-i0) \quad \text{at} \quad \text{Im} \ v = \mp \frac{s}{g}.
\end{align*}
\]

In the limit \(\text{Re} \ v \to \pm \infty \), these functions approach a constant. In short, if \(s \geq 3 \), the quantities \((L, Q)\) are analytic in the upper half-plane, whereas \((\overline{L}, \overline{Q})\) are analytic in the lower half-plane. One has to be careful about \((L_{1,2}, Q_{1,1})\) and \((\overline{L}_{1,2}, \overline{Q}_{1,1})\) on the real axis.

As for the variables \((b_{\alpha}^s, \overline{b}_{\alpha}^s)\), we find the branch cuts at

\[
\begin{align*}
b_{\alpha}^s(v+i0) & \neq b_{\alpha}^s(v-i0) \quad \text{at} \quad \text{Im} \ v = \pm \frac{s-1}{g}, -\frac{s+1}{g}, \\
\overline{b}_{\alpha}^s(v+i0) & \neq \overline{b}_{\alpha}^s(v-i0) \quad \text{at} \quad \text{Im} \ v = \pm \frac{s-1}{g}, \pm \frac{s+1}{g}.
\end{align*}
\]

They do not have poles.

We find extra zeros for \(U_{1,s}, \overline{U}_{1,s} \)

\[
\begin{align*}
U_{1,s}(v) & = 0 \quad \text{at} \quad v = -\frac{i(r+s)}{g} \quad (r > 0), \\
\overline{U}_{1,s}(v) & = 0 \quad \text{at} \quad v = \frac{i(\overline{r}+s)}{g} \quad (\overline{r} > 0),
\end{align*}
\]

and similarly for \((b_{\alpha}^s, \overline{b}_{\alpha}^s)\). Both \(r, \overline{r} \) are far from the origin already at weak coupling, and they run away from the real axis as \(g \) increases. For other functions we do not find extra zeros, at least in the weak coupling.
References

[1] Maldacena J M 1998 The large N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231 (arXiv:hep-th/9711200)

[2] Yang C N and Yang C P 1969 Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction J. Math. Phys. 10 1115

[3] Gaudin M 1971 Thermodynamics of the Heisenberg–Ising ring for $\Delta \geq 1$ Phys. Rev. Lett. 26 1301

[4] Takahashi M 1972 One-dimensional Hubbard model at finite temperature Prog. Theor. Phys. 47 69

[5] Zamolodchikov A B 1990 Thermodynamic Bethe ansatz in relativistic models. Scaling three-state Potts and Lee–Yang models Nucl. Phys. B 342 695

[6] Ambjørn J, Janik R A and Kristjansen C 2006 Wrapping interactions and a new source of corrections to the spin-chain/string duality Nucl. Phys. B 736 288 (arXiv:hep-th/0510171)

[7] Arutyunov G and Frolov S 2007 On string S-matrix, bound states and TBA J. High Energy Phys. JHEP12(2007)024 (arXiv:0710.1568 [hep-th])

[8] Beisert N and Staudacher M 2005 Long-range $psu(2,2|4)$ Bethe ansätze for gauge theory and strings Nucl. Phys. B 727 1 (arXiv:hep-th/0504190)

[9] Beisert N 2008 The $SU(2|2)$ dynamic S-matrix Adv. Theor. Math. Phys. 12 945 (arXiv:hep-th/0511082)

[10] Arutyunov G and Frolov S 2009 String hypothesis for the $AdS_5 \times S^5$ mirror J. High Energy Phys. JHEP03(2009)152 (arXiv:0901.1417 [hep-th])

[11] Bombardelli D, Fioravanti D and Tateo R 2009 Thermodynamic Bethe ansatz for planar AdS/CFT; a proposal J. Phys. A: Math. Theor. 42 375401 (arXiv:0902.3930 [hep-th])

[12] Gromov N, Kazakov V, Kozak A and Vieira P 2010 Exact spectrum of anomalous dimensions of planar $\mathcal{N}=4$ supersymmetric Yang–Mills theory: TBA and excited states Lett. Math. Phys. 91 265 (arXiv:0902.4458 [hep-th])

[13] Arutyunov G and Frolov S 2009 Thermodynamic Bethe ansatz for the $AdS_5 \times S^5$ mirror model J. High Energy Phys. JHEP05(2009)068 (arXiv:0903.0141 [hep-th])

[14] Gromov N, Kazakov V and Vieira P 2009 Exact spectrum of anomalous dimensions of planar $\mathcal{N}=4$ supersymmetric Yang–Mills theory Phys. Rev. Lett. 103 131601 (arXiv:0901.3753 [hep-th])

[15] Volin D 2011 Quantum integrability and functional equations: applications to the spectral problem of AdS/CFT and two-dimensional sigma models J. Phys. A: Math. Theor. 44 124003 (arXiv:1003.4725 [hep-th])

[16] Volin D 2010 String hypothesis for $gl(n|m)$ spin chains: a particle/hole democracy arXiv:1012.3454 [hep-th]

[17] Kuniba A, Nakanishi T and Suzuki J 1994 Functional relations in solvable lattice models: 1. Functional relations and representation theory Int. J. Mod. Phys. A 9 5215 (arXiv:hep-th/9309137)

[18] Kuniba A, Nakanishi T and Suzuki J 1994 Functional relations in solvable lattice model: 2. Applications Int. J. Mod. Phys. A 9 5267 (arXiv:hep-th/9310060)

[19] Gromov N, Kazakov V and Tsuboi Z 2010 $PSU(2,2|4)$ character of quasiclassical AdS/CFT J. High Energy Phys. JHEP07(2010)087 (arXiv:1002.3981 [hep-th])

[20] Arutyunov G and Frolov S 2009 Simplified TBA equations of the $AdS_5 \times S^5$ mirror model J. High Energy Phys. JHEP11(2009)019 (arXiv:0907.2647 [hep-th])

[21] Arutyunov G, Frolov S and Suzuki R 2010 Exploring the mirror TBA J. High Energy Phys. JHEP05(2010)031 (arXiv:0911.2224 [hep-th])

[22] Cavaglia A, Fioravanti D and Tateo R 2011 Extended Y-system for the AdS_5/CFT_4 correspondence Nucl. Phys. B 843 302 (arXiv:1005.3016 [hep-th])

[23] Frolov S and Suzuki R 2009 Temperature quantization from the TBA equations Phys. Lett. B 679 60 (arXiv:0906.0499 [hep-th])

[24] Klümper A and Pearce P A 1992 Conformal weights of RSOS lattice models and their fusion hierarchies Physica A 183 304

[25] Dorey P and Tateo R 1996 Excited states by analytic continuation of TBA equations Nucl. Phys. B 482 639 (arXiv:hep-th/9607167)

[26] Dorey P and Tateo R 1998 Excited states in some simple perturbed conformal field theories Nucl. Phys. B 515 575 (arXiv:hep-th/9706140)

[27] Frolov S 2010 Talk on From Sigma Models to Four-Dimensional QFT (DESY, Hamburg, December 2010) pp 64–9 (http://qt/2010.desy.de/88901)

[28] Gromov N, Kazakov V and Vieira P 2010 Exact spectrum of planar $\mathcal{N}=4$ supersymmetric Yang–Mills theory: Konishi dimension at any coupling Phys. Rev. Lett. 104 211601 (arXiv:0906.4240 [hep-th])

[29] Frolov S 2011 Konishi operator at intermediate coupling J. Phys. A: Math. Theor. 44 065401 (arXiv:1006.5032 [hep-th])
[89] Boos H, Jimbo M, Miwa T, Smirnov F and Takeyama Y 2007 Hidden Grassmann structure in the Xxz model Commun. Math. Phys. 272 263 (arXiv:hep-th/0606280)
[90] Boos H, Jimbo M, Miwa T, Smirnov F and Takeyama Y 2009 Hidden Grassmann structure in the Xxz model: II. Creation operators Commun. Math. Phys. 286 875 (arXiv:0801.1176 [hep-th])
[91] Jimbo M, Miwa T and Smirnov F 2009 Hidden Grassmann structure in the Xxz model: III. Introducing Matsubara direction J. Phys. A: Math. Theor. 42 304018 (arXiv:0811.0439 [math-ph])
[92] Boos H, Jimbo M, Miwa T and Smirnov F 2010 Hidden Grassmann structure in the Xxz model: IV. CFT limit Commun. Math. Phys. 299 825 (arXiv:0911.3731 [hep-th])
[93] Jimbo M, Miwa T and Smirnov F 2010 Hidden Grassmann structure in the Xxz model: V. Sine-Gordon model arXiv:1007.0556 [hep-th]
[94] Gromov N (presented by V Kazakov) 2010 Talk at Conf. Integrability in Gauge and String Theory 2010 p 18 (Nordita, Stockholm, June 2010) (http://agenda.albanova.se/contributionDisplay.py?contribId=258&confId=1561)
[95] Klümper A 2008 Talk at Workshop on Integrable Quantum Systems (Dublin Institute for Advanced Studies, December 2008) http://www.stp.dias.ie/events/2008/DIAS_Integrability.shtml
[96] Arutyunov G, de Leeuw M, Suzuki R and Torrielli A 2009 Bound state transfer matrix for AdS$_5 \times S^5$ superstring J. High Energy Phys. JHEP10(2009)025 (arXiv:0906.4783 [hep-th])
[97] Bazhanov V and Reshetikhin N 1990 Restricted solid on solid models connected with simply based algebras and conformal field theory J. Phys. A: Math. Gen. 23 1477
[98] Beisert N 2007 The analytic Bethe ansatz for a chain with centrally extended su(2|2) symmetry J. Stat. Mech. 0701 P01017 (arXiv:nlin/0610017)