Letters to Editor

Letters to Editor

they turned out to be lung overinflation and subcutaneous emphysema on computed tomography. In severe cases of lung overinflation, there is a minimal expansion of lung on inspiration leading to minimal lung sliding seen on US. It can be mistaken as a lack of lung sliding. Moreover, in subcutaneous emphysema, pockets of air in subcutaneous tissues make identification of pleural line difficult, leading to poor recognition of lung sliding. We suggest the use of power Doppler to identify lung sliding (power slide sign). Power Doppler is very sensitive and picks up subtle flow and movement. If there is lung sliding present, power Doppler will light up the sliding pleural line with color flow. This technique is helpful in cases of subtle sliding when direct visualization is difficult. However, any movement of patient’s body or probe during the examination may produce an artifact leading to an error in the judgment.

Finally, we agree with the authors that chest ultrasonography is a quick, bedside, noninvasive, and accurate modality in the diagnosis of PTX in critically ill mechanically ventilated patients.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

Swapnil Y. Parab, Sohan Lal Solanki
Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Mumbai, Maharashtra, India

Address for correspondence:
Dr. Swapnil Y. Parab,
13, Periyar, Anushakti Nagar, Mumbai - 400 094, Maharashtra, India.
E‑mail: swapnil.parab@gmail.com

References

1. Abdalla W, Elgendy M, Abdelaziz AA, Ammar MA. Lung ultrasound versus chest radiography for the diagnosis of pneumothorax in critically ill patients: A prospective, single blind study. Saudi J Anaesth 2016;10:265‑9.
2. Murphy M, Nagdev A, Sisson C. Lack of lung sliding on ultrasound does not always indicate a PTX. Resuscitation 2008;77:270.
3. Lichtenstein D, Meziere G, Biderman P, Gepner A. The “lung point”: An ultrasound sign specific to PTX. Intensive Care Med 2000;26:1434‑40.
4. Cunningham J, Kirkpatrick AW, Nicolaou S, Liu D, Hamilton DR, Lawless B, et al. Enhanced recognition of “lung sliding” with power color Doppler imaging in the diagnosis of PTX. J Trauma 2002;52:769‑71.

Hemodynamic disturbance during watertight dural closure? Mind the direction of saline irrigation!!!

Sir,
Hemodynamic disturbances can occur during neurosurgery due to raised intracranial pressure (ICP), stimulation of cranial nerve(s), inadequate anesthetic depth, seizures, venous air embolism, hypothalamic/brain stem manipulation, sudden enormous blood loss, and acid–base or electrolyte abnormalities.[1] There are very few reports in the available literature about hemodynamic disturbance occurring due to improper saline irrigation during dura mater closure. We report a case of hemodynamic disturbance during watertight dura mater closure in a patient of trigeminal neuralgia who underwent microvascular decompression (MVD).

A 24-year-old male with 63 kg was diagnosed to have trigeminal neuralgia and was scheduled for MVD. He did not have any cardiorespiratory abnormality and his systemic examination and routine investigations were normal. Intraoperatively, he had stable hemodynamics till the time of dural closure. The neurosurgeons attempted a watertight dural closure and they rapidly injected 10 ml of normal saline...
into the dural compartment. The initial injection of 5 ml saline did not produce any hemodynamic disturbance but remaining 5 ml was injected in a different trajectory which produced sudden bradycardia (heart rate dropped from 90 to 42 beats/min) and hypotension (invasive blood pressure dropped from 132/84 to 85/58 mmHg). The surgical team was asked to stop further saline injection, but the hemodynamic disturbance was persistent for more than 1 min and that normalized only after administration of 0.6 mg of injection atropine intravenously. Thereafter, the patient had stable vitals, his trachea was extubated at the end of the surgery, and was shifted to Intensive Care Unit for further management.

The possible causes of sudden hemodynamic change in our case were inadequate anesthesia and/or analgesia, surgical manipulation of brain stem region, massive blood loss, or transient increase in ICP causing Cushing’s reflex. In our case, there were no signs of inadequate anesthesia/analgesia and there were no signs of brain stem manipulation intraoperatively. The total intraoperative blood loss was around 500 ml, and there was no sudden blood loss during the procedure. Transient increase in ICP (in the posterior fossa of the brain) due to saline injection leading to Cushing’s reflex is an unlikely cause of the event because Cushing’s reflex usually manifests as bradycardia and hypertension and the hemodynamic disturbance did not occur initially but occurred on injection of saline in a different trajectory. Hence, the most probable cause of sudden bradycardia and hypotension in our case was due to a stimulation of brain stem due to the injected saline.

The watertight closure of the dura mater is fundamental to intracranial procedures in neurosurgery and after the dural closure the cavity is irrigated with saline to check effective dural closure and to flush out the blood clots and air from the operative cavity. In our case, the direction of the saline jet was the initiating factor of hemodynamic disturbance. The saline jet injected in different trajectory probably hit the brain stem area stimulating either the trigeminal nucleus or the cardioinhibitory parasympathetic efferents of the nucleus ambiguous. Stimulation of nucleus or divisions of trigeminal nerve or stimulation cardioinhibitory parasympathetic efferents of the nucleus ambiguous can cause sudden bradycardia, hypotension.

Stimulation of trigeminal nerve nucleus in the brain stem can result in trigeminocardiac reflex (TCR) causing bradycardia and hypotension. Abrupt and sustained stimulation of trigeminal nerve nucleus is more likely to cause TCR, and TCR can cause sustained hemodynamic disturbances. Hence, the most probable explanation for the hemodynamic disturbance in our case was due to brainstem stimulation by saline jet resulting in TCR leading to hemodynamic disturbance.

This report cautions against blind injection of saline into dural cavity, especially in posterior fossa or cerebellopontine angle surgery. We suggest a slow injection of saline into dural cavity preferably away from brain stem region to avoid such catastrophic hemodynamic disturbances.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Surya Kumar Dube, Hirok Roy, Gyaninder P. Singh, Arvind Chaturvedi
Department of Neuroanaesthesiology, All India Institute of Medical Sciences, New Delhi, India

Address for correspondence:
Dr. Surya Kumar Dube,
Department of Neuroanaesthesiology, All India Institute of Medical Sciences, 7th Floor, C N Centre, New Delhi - 110 029, India.
E-mail: surya.dube@yahoo.co.in

References
1. Chowdhury T, West M. Intraoperative asystole in a patient undergoing craniotomy under monitored anesthesia care: Is it TCR? J Neurosurg Anesthesiol 2013;25:92-3.
2. Megyesi JF, Ranger A, MacDonald W, Del Maestro RF. Suturing technique and the integrity of dural closures: An in vitro study. Neurosurgery 2004;55:950-4.
3. Amirizde N, Darwish R. Hemodynamic instability during treatment of intracranial dural arteriovenous fistula and carotid cavernous fistula with Onyx: Preliminary results and anesthesia considerations. J Neurointerv Surg 2009;1:146-50.
4. Schaller B. Trigeminocardiac reflex. A clinical phenomenon or a new physiological entity? J Neurol 2004;251:658-65.
5. Guill CG, Sevelius GJ, Puggeri J, Myers FK. Vagal cardiomotor mechanisms in the hindbrain of the dog and cat. Am J Physiol 1968;214:258-62.
6. Blane VF, Hardy JF, Milot J, Jacob JL. The oculocardiac reflex: A graphic and statistical analysis in infants and children. Can Anaesth Soc J 1983;30:360-9.
7. Prabhakar H, Anand N, Chouhan RS, Bithal PK. Sudden asystole during surgery in the cerebellopontine angle. Acta Neurochir (Wien) 2006;148:699-700.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Access this article online
Website:
www.saudija.org
DOI:
10.4103/1658-354X.197352

How to cite this article: Dube SK, Roy H, Singh GP, Chaturvedi A. Hemodynamic disturbance during watertight dural closure? Mind the direction of saline irrigation!!!. Saudi J Anaesth 2017;11:122-3.
© 2017 Saudi Journal of Anesthesia | Published by Wolters Kluwer - Medknow