ON FINITE MARKED LENGTH SPECTRAL RIGIDITY
OF HYPERBOLIC CONE SURFACES AND THE
THURSTON METRIC

HUIPING PAN

ABSTRACT. We study the geometry of hyperbolic cone surfaces, possibly with cusps or geodesic boundaries. We prove that any hyperbolic cone structure on a surface of non-exceptional type is determined up to isotopy by the geodesic lengths of a finite specific homotopy classes of non-peripheral simple closed curves. As an application, we show that the Thurston asymmetric metric is well-defined on the Teichmüller space of hyperbolic cone surfaces with fixed cone angles and boundary lengths. We compare such a Teichmüller space with the Teichmüller space of complete hyperbolic surfaces with punctures, by showing that the two spaces (endowed with the Thurston metric) are almost isometric.

Keywords: finite marked length spectral rigidity; Teichmüller space; hyperbolic cone surfaces; Thurston metric.

AMS Mathematics Subject Classification (2010): 53C24, 51F99, 53B40.

1. INTRODUCTION

Let $S = S_{g,n}$ be an oriented surface of genus g with n boundary components. We shall consider hyperbolic cone metrics on S, that is, hyperbolic structure on S such that each boundary component is either a cone point (with cone angle strictly less than π), a puncture (i.e., a cone point with zero angle), or a simple closed geodesic with positive length. In this case, a boundary component Δ of S is associated with a generalized length function (also called boundary assignment) $\lambda(\Delta)$, defined by

$$
\lambda(\Delta) = \begin{cases}
-\theta, & \text{if } \Delta \text{ is a cone point of angle } \theta \in (0, \pi), \\
0, & \text{if } \Delta \text{ is a cusp}, \\
l, & \text{if } \Delta \text{ is a geodesic boundary of length } l > 0.
\end{cases}
$$

Date: September 13, 2018.
This work is partially supported by NSFC, No: 11271378.
1.1. Parametrization of Teichmüller space. Let $\mathcal{T}_{g,n}$ be the Teichmüller space of marked hyperbolic cone metrics on S. Given any $\Lambda = (\lambda_1, \ldots, \lambda_n) \in (-\pi, \infty)^n$, we let $\mathcal{T}_{g,n}(\Lambda)$ be the subspace of $\mathcal{T}_{g,n}$ corresponding to hyperbolic cone surfaces whose boundary components have fixed generalized lengths Λ.

It is well known [7] that the Teichmüller space $\mathcal{T}_{g,n}(0)$ can be parameterized by the geodesic lengths of finitely many specified simple closed curves. Moreover, Seppälä and Sorvali [24] proved that only $6g - 6 + 2n$ simple closed curves are required if $n \neq 0$. (For a closed surface of genus g, $6g - 5$ simple closed curves are needed, see Schmutz [22].) A natural question is whether these results still hold for our enlarged Teichmüller space $\mathcal{T}_{g,n}$. In §4.1, we prove that:

Theorem A. Let $S_{g,n}$ be a surface with $g \geq 1, n \geq 1$ or $g = 0, n \geq 6$. The Teichmüller space $\mathcal{T}_{g,n}$ can be parameterized by the geodesic lengths of finitely many non-peripheral simple closed curves (see Definition 2) of $S_{g,n}$. Moreover, the minimal number of these parameters is less than $12g - 12 + 32n$.

If $(g, n) \in \{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0)\}$, we call the surface $S_{g,n}$ exceptional. Otherwise, we call surface $S_{g,n}$ non-exceptional.

1.2. Comparisons of geometry between hyperbolic cone surfaces. Intuitively a cusp can be considered as a limit of cone points with angles tending to zero, or as a limit of geodesic boundaries with lengths tending to zero. We want to compare the geometries of hyperbolic cone surfaces under different assignments of cone angles and boundary lengths. In particular, we want to compare the geodesic lengths of simple closed curves on hyperbolic cone surfaces when we modify cone points or geodesic boundaries to cusps.

For a given pants decomposition $\Gamma = \{\gamma_1, \cdots, \gamma_{3g-3+n}\}$ and a collection of seams $\mathcal{B} = \{\beta_1, \cdots, \beta_k\}$, we define $F_{\Gamma,\mathcal{B}}$ by

$$F_{(\Gamma,\mathcal{B})} : \mathcal{T}_{g,n} \to \mathcal{T}_{g,n}(0)$$

$$(\Lambda, L, T) \mapsto (0, L, T),$$

where (Λ, L, T) and $(0, L, T)$ are the corresponding Fenchel-Nielsen (length-twist) coordinates (see Section 3). We denote the restriction of $F_{\Gamma,\mathcal{B}}$ on $\mathcal{T}_{g,n}(\Lambda)$ by $F_{\Gamma,\mathcal{B},\Lambda}$.

Theorem B (Length comparison inequalities). Let S be a non-exceptional surface, $\Gamma = \{\gamma_1, \cdots, \gamma_{3g-3+n}\}$ be a pants decomposition and $\mathcal{B} = \{\beta_1, \cdots, \beta_k\}$ be a collection of seams. There exist constants C, D depending on Λ such that for any $X \in \mathcal{T}_{g,n}(\Lambda)$, $X' = F_{\Gamma,\mathcal{B},\Lambda}(X)$ and any
isotopy class of non-peripheral simple closed curve $[\alpha]$,

\[
\begin{align*}
[l_X([\alpha]) - l_{X'}([\alpha])] & \leq D \sum_{j=1}^{3g-3+n} i([\alpha], [\gamma_j]), \\
\frac{1}{C} & \leq \frac{l_X([\alpha])}{l_{X'}([\alpha])} \leq C,
\end{align*}
\]

where $i(\cdot, \cdot)$ is the geometric intersection number, and $l_X([\alpha])$ is the length of the geodesic representative in $[\alpha]$. Moreover, $D \to 0, C \to 1$ as $\Lambda \to 0$.

1.3. The Thurston metric on $T_{g,n}(\Lambda)$. There is an asymmetric metric on $T_{g,n}(0)$ defined by

\[
d_{Th}(X_1, X_2) = \log \sup_{[\alpha] \in S(S)} \frac{l_{X_1}([\alpha])}{l_{X_2}([\alpha])},
\]

which is the so called *Thurston metric* [28].

We combine Theorem A with a generalized Mcshane’s identity on a hyperbolic cone surface due to Tam-Wong-Zhang [26] to show that

Theorem C. Let S be a non-exceptional surface. For any $X_1, X_2 \in T_{g,n}(\Lambda)$, if $l_{X_1}([\alpha]) \geq l_{X_2}([\alpha])$ for any $[\alpha] \in S(S)$, then $X_1 = X_2$.

As a result, we can define the Thurston metric on $T_{g,n}(\Lambda)$ for any $\Lambda \in (-\pi, \infty)^n$, using the formula (2). It would be interesting to compare the Thurston metric with the arc metric on $T_{g,n}(\Lambda)$, defined by Liu-Papadopoulos-Su-Théret [14].

Using Theorem B, we are able to prove that any two Teichmüller spaces $T_{g,n}(\Lambda), T_{g,n}(\Lambda')$ are almost isometric.

Theorem D (Almost-isometry). Let $\Lambda \in (-\pi, \infty)^n$ and let S be a non-exceptional surface. The map $F_{\Gamma; \mathcal{B}, \Lambda} : T_{g,n}(\Lambda) \to T_{g,n}(0)$ is an almost-isometry, i.e., there is a constant C depending on Λ such that

\[
d_{Th}(X_1', X_2') - C \leq d_{Th}(X_1, X_2) \leq d_{Th}(X_1', X_2') + C, \text{ for any } X_1, X_2 \in T_{g,n},
\]

where $X_1' = F_{\Gamma}(X_1)$ and $X_2' = F_{\Gamma}(X_2)$. Moreover, $C \to 0$ as $\Lambda \to 0$.

1.4. The Thurston boundary of $T_{g,n}(\Lambda)$. For the space $T_{g,n}(0)$, the Thurston boundary is naturally identified with $\mathcal{PML}(S)$, the space of projective classes of measured laminations ([7]). We will prove that this is also true in our settings. Denote by \mathbb{R}_+^n the set of non-negative functionals on the set of isotopy classes of non-peripheral simple closed curves (see Definition [2]).
Theorem E. Suppose $\Lambda \in (-\pi, \infty)^n$ and S is a non-exceptional surface. Let Ψ_Λ and Π be the maps defined as following:

\[
\Psi_\Lambda : \mathcal{T}_{g,n}(\Lambda) \longrightarrow \mathbb{R}^S_+ \\
X \mapsto (l_X([\alpha]))_{\alpha \in \mathcal{S}(S)},
\]

and

\[
\Pi : \mathbb{R}^S_+ \longrightarrow P\mathbb{R}^S_+ \\
(s_\alpha)_{\alpha \in \mathcal{S}(S)} \mapsto [(s_\alpha)_{\alpha \in \mathcal{S}(S)}].
\]

Then

(a) both Ψ_Λ and $\Pi \circ \Psi_\Lambda$ are embeddings, where $\mathcal{T}_{g,n}(\Lambda)$ is equipped with the topology induced by d_{Th} and \mathbb{R}^S_+ is equipped with the weak topology;

(b) $\mathcal{T}_{g,n}(\Lambda) \ni X_n \rightarrow \xi \in \mathcal{PML}(S) \iff \mathcal{T}_{g,n}(0) \ni F_{\Gamma,\mathcal{B},\Lambda}(X_n) \rightarrow \xi \in \mathcal{PML}(S)$. As a result, the boundary of $\mathcal{T}_{g,n}(\Lambda)$ in $P\mathbb{R}^S_+$ (i.e., the Thurston boundary of $\mathcal{T}_{g,n}(\Lambda)$) is homeomorphic to $\mathcal{PML}(S)$.

The paper is organized as following. In Section 2, we recall basic facts about hyperbolic cone surfaces. In Section 3, we study the Fenchel-Nielsen coordinates of the Teichmüller space $\mathcal{T}_{g,n}(S)$. In Section 4, we prove Theorem A and Theorem C. In Section 5, we compare the lengths of simple closed curves between hyperbolic cone surfaces and prove Theorem B. In Section 6, we prove Theorem D. In Section 7, we study some basic properties of the Teichmüller space $\mathcal{T}_{g,n}(\Lambda)$ and prove Theorem E.

Acknowledgements I would like to thank Lixin Liu and Weixu Su for their useful suggestions for improving this manuscript. I also thank the referee for numerous comments and suggestions.

2. Hyperbolic cone metrics

In this section, we study some basic properties of hyperbolic cone surfaces, with or without boundary, and with each cone angle less than π.

Definition 1 (4). A hyperbolic cone-surface is a two-dimensional manifold X, with or without boundary, which can be triangulated by hyperbolic triangles.

The singular locus $\text{Cone}(X)$ of a hyperbolic cone-surface X consists of interior point of X which have no neighbourhoods isometric to a
ball in the hyperbolic plane and boundary points which have no neighbourhoods isometric to a half ball in the hyperbolic plane. It follows that

- $\text{Cone}(X)$ is contained in the set of vertices of the hyperbolic triangulation of X, and it is a finite set;
- At each point of $\text{Cone}(X)$, there is a cone angle which is the sum of the angles of the dihedral angles of the triangles containing the point;
- $X\backslash\text{Cone}(X)$ has a smooth Riemannian metric of constant curvature -1, but this metric is incomplete if there is a cone point with positive cone angle;

In this paper, we are interested in the case where X satisfies the following requirements:

(a) X has at most n cone points and every cone angle is strictly smaller than π. In particular, a cone point with zero cone angle is called a cusp.

(b) Every boundary component of X consists of at most one geodesic.

Remark 1. To distinguish a positive cone angle point and the zero angle point, whenever we mention a cone point we mean a cone point with a positive cone angle.

Definition 2. A generalized boundary component of a cone surface X is a geodesic boundary component, a cusp, or a cone point. We denote by Σ_X the set of all generalized boundary components of X. A non-trivial simple closed curve on X is called non-peripheral if it is not homotopic to any generalized boundary component. A simple arc with endpoints on the generalized boundary components is called non-peripheral if it is not homotopic to any subarc of the generalized boundary components.

Definition 3. A marked hyperbolic cone surface is a pair (f, X), where X is a hyperbolic cone-surface, and $f : S \rightarrow X$ is a homeomorphism. Two marked hyperbolic cone-surfaces (f, X) and (f', X') are called equivalent if there is an isometry isotopic to $f \circ (f')^{-1}$.

A necessary condition of two marked hyperbolic cone surfaces to be equivalent is that they have the same numbers of cone points, of cusps and of geodesic boundaries. Denote by $\mathcal{T}_{g,n}(S)$ the space of equivalent classes of marked hyperbolic cone surfaces.

Remark 2. Since S is an oriented surface obtained by removing n points from a closed surface, a marked hyperbolic cone surface may induce an incomplete metric of curvature -1 on S. From now on,
whenever we talk about a hyperbolic cone metric on S, we mean its metric completion.

Next, we collect some basic properties of hyperbolic cone surfaces, for more details, we refer to [4], [5] and [26].

Proposition 2.1 ([5] [26]). Let X be a non-exceptional cone-surface.

(a) Every non-trivial simple closed curve on $X \setminus \Sigma_X$ is freely homotopic to either a unique simple closed geodesic or a unique cone point or a cusp.

(b) If two distinguished, non-trivial closed curves α and β intersect n times, their corresponding geodesic will intersect at most n times.

(c) Given two non-intersecting smooth simple curves α and β on S there is at least one geodesic path c between them such that $d(\alpha, \beta)$ is realized by c. Such a path c is perpendicular to α and β. If α and β are geodesic, in a free homotopy class of paths with end points moving on α and β, such a path c is unique. This property remains true for singular points in place of one or both geodesics.

Theorem 2.2 (Pants decomposition [5]). Let X be a non-exceptional cone-surface of genus g with n cone points $\Delta_1, \ldots, \Delta_n$. Let $\gamma_1, \ldots, \gamma_m$ be disjoint simple closed geodesics on M. Then the followings hold.

(a) $m \leq 3g - 3 + n$.

(b) There exist simple closed geodesics $\gamma_{m+1}, \ldots, \gamma_{3g-3+n}$ which together with $\gamma_1, \ldots, \gamma_m$ form a partition of S.

Denote by $[\alpha]$ the isotopy class of a simple closed curve α. Denote by $S(S)$ the set of isotopy classes of non-peripheral simple closed curves. From Proposition 2.1 it follows that every hyperbolic cone metric on S induces a functional on $S(S)$ defined by

$$l : \mathcal{T}_{p,n} \rightarrow \mathbb{R}_+^S$$

$$X \mapsto (l_X([\alpha]))_{[\alpha] \in S(S)};$$

where $l_X([\alpha])$ represents the length of the geodesic representative in $[\alpha]$, and where \mathbb{R}_+^S is the space of nonnegative functionals on $S(S)$. We equip \mathbb{R}_+^S with the weak topology.

Definition 4. The sequence $(l_X([\alpha]))_{[\alpha] \in S(S)}$ is called the marked length spectrum about non-peripheral simple closed curves of X, denoted by $\mathcal{MLSS}(X)$.
2.1. **Generalized Y-pieces.** A *Y-piece* is a sphere with three geodesic boundary components; a *V-piece* is a sphere with two geodesic boundary components and a cone point with cone angle less than π, or a sphere with two geodesic boundary components and a cusp; and a *Joker’s hat* is a sphere with a geodesic boundary component and two cone points with each cone angle less than π, or a sphere with a geodesic boundary component and two cusps, or a sphere with a geodesic boundary component, a cone point with cone angle less than π and a cusp. For convenience, all these pieces are called *generalized Y-pieces*.

2.2. **Generalized X-piece.** A generalized *X-piece* is a hyperbolic cone surface obtained by pasting together two generalized Y-pieces along two boundary geodesics of the same length. Let G be a V-piece with generalized boundary components $\gamma_1, \gamma_2, \gamma_3$. Let G' be a Joker’s hat with generalized boundary components $\gamma'_1, \gamma'_2, \gamma'_3$. Assume that γ_1, γ'_1 are geodesic boundary components and that they have the same length l. Recall that a generalized Y-piece consists of two isometric hyperbolic polygons. Choose an orientation of γ_1 (resp. γ'_1) such that G (resp. G') sits on the left. Parameterize γ_1 (resp. γ'_1) by arc length such that the basepoint ‘0’ is one of the two vertices of the corresponding polygon contained in γ_1 (resp. γ'_1). We paste G and G' along γ_1, γ'_1 with pasting condition:

\[\gamma_1(s) = \gamma'_1(tl - s), \ s \in \mathbb{R}/\sim, \ t \in \mathbb{R}, \]

where \sim represents an equivalent relation such that $s \sim s'$ if $s - s' = kl$ for some $k \in \mathbb{Z}$. In this way, we get a *VJ-piece* X':

\[X' \triangleq G \cup G' \ mod \ (3). \]

The curve γ_1 (γ'_1) is called the *waist* of the *VJ piece*.
By similar operations, we get \textit{YY-piece}, \textit{YV-piece}, \textit{YJ-piece}, \textit{VV-piece}, \textit{JJ-piece}. All these pieces are called generalized \textit{X-pieces}.

It follows from the pasting condition (3) that X^{t+1} is isometric to X^t, i.e. t is defined only in \mathbb{R}/\mathbb{Z}. To extend the domain of t from \mathbb{R}/\mathbb{Z} to \mathbb{R}, we need to add some “marking” to X^t (see §3).

2.3. \textbf{Hyperbolic geometry}. For convenience, we collect some identities of hyperbolic geometry which can be found in \cite{1} and \cite{8}.

\textbf{Lemma 2.3} (\cite{1},\cite{8}). \textit{Elementary formulae of hyperbolic geometry:}
• Tri-rectangle, see Fig. 2(a).
\[\cos \phi = \sinh a \sinh b. \]

• Pentagon, see Fig. 2(b).
\[\cosh c = -\cosh \alpha \cosh \beta \cos \theta + \sinh \alpha \sinh \beta, \]
\[\cos \theta = \sinh a \sinh b \cosh c - \cosh a \cosh b. \]

• Hexagon, see Fig. 2(c).
\[\cosh c = \sinh a \sinh b \cosh \gamma - \cosh a \cosh b. \]

• Quadrilaterals with two right angles, see 2(d).
\[\cosh d(M', N') = \cosh \rho_1 \cosh \rho_2 \cosh c - \sinh \rho_1 \sinh \rho_2, \]
where \(\rho_1 \) (resp. \(\rho_2 \)) represents oriented distance from \(M \) to \(M' \) (resp. from \(N \) to \(N' \)). If \(\rho_1 \rho_2 > 0 \), then
\[\cos \alpha = -\cos \beta \cosh c + \sin \beta \sinh c \sinh |\rho_2|. \]
and
\[\cosh c = -\cos \alpha \cos \beta + \sin \alpha \sin \beta \cosh d(M', N'). \]

• Convex pentagon with four right angles, see Fig. 2(e)
\[\cosh b = \sinh a \sinh b' - \cos \alpha \cosh a. \]

• The self-intersecting pentagon with four right angles, see Fig. 2(f)
\[\sinh c = \sinh \alpha \cosh b \cosh c' + \cosh a \sinh b. \]

3. The Fenchel-Nielsen coordinates

In this section, we study the Fenchel-Nielsen coordinates for the Teichmüller space \(\mathcal{T}_{g,n} \). First of all, we need to choose a coordinate system of curves on \(S_{g,n} \) which consists of the following date:

• a pants decomposition which is a set of non-peripheral, oriented simple closed curves \(\Gamma = \{ \gamma_1, ..., \gamma_{3g-3+n} \} \) such that \([\gamma_i] \neq [\gamma_j] \) if \(i \neq j \) and \(S \setminus \Gamma \) consists of pairs of pants \(\mathcal{R} = \{ R_i \}, \ i = 1, 2, ..., 2g - 2 + n \) (see Fig. 3);

• a set of seams \(\mathcal{B} = \{ \beta_1, \cdots, \beta_k \} \) which is a collection of disjoint non-peripheral simple closed curves or non-peripheral simple arcs such that the intersection of the union \(\bigcup_{j=1}^{k} \beta_j \) with any pair of pants \(R \in \{ R_1, \cdots, R_{2g-2+n} \} \) determined by the pants decomposition \(\Gamma \) is a union of three disjoint arcs connecting the boundary components of \(R \) pairwise.
Let R be a pair of pants with three oriented boundary components $\gamma_1, \gamma_2, \gamma_3$, and δ be the geodesic perpendicular to both γ_1 and γ_2. Let β be a simple arc on R connecting γ_1 and γ_2. There exists a homotopy H between δ and β which keeps the endpoints on the boundary of R. The twisting number of β at γ_1 is defined to be the signed displacement from $\delta \cap \gamma_1$ to $\beta \cap \gamma_1$ during the homotopy. The twisting number of β at γ_2 is defined similarly.

Now we define the twist parameter t_i of $X \in \mathcal{T}_{g,n}$ along $\gamma_i \in \Gamma$. Let $\beta_j \in \mathcal{B}$ be one of the two seams crossing γ_i. On each side of the geodesic representative of γ_i there is a pair of pants, and the geodesic representative of β_j gives an arc on each of these two pairs of pants. Let t_{il} and t_{ir} be the twisting numbers of each of these arcs on the left and right side of the geodesic representative of γ_i, respectively. The twist parameter of X along γ_i is defined to be:

$$t_i := \frac{t_{il} - t_{ir}}{l_X(\gamma_i)},$$

where $l_X(\gamma_i)$ represents the length of the geodesic representative of γ_i on X.

Remark 3. (1) The sign of the twist parameter of X along γ_i does not depend on the orientation of γ_i. Instead, it depends on the orientation of the surface.

(2) The twist parameters depend on the choice of seams \mathcal{B}. Let \mathcal{B}' be another set of seams and $\{t_i\}$ be the corresponding twist parameters. Then $t_i - t_i' \in \mathbb{Z}/2$. Moreover, the difference $t_i - t_i'$ is independent of X, it depends only on the seams \mathcal{B} and \mathcal{B}'.

Now we fix a coordinate system of curves (Γ, \mathcal{B}) and the corresponding pairs of pants \mathcal{R} for $S_{g,n}$. We construct a marked hyperbolic cone surface for any given $(6g - 6 + 3n)$-tuple $(\Lambda, L, T) \in (-\pi, \infty)^n \times \mathbb{R}^{3g-3+n} \times \mathbb{R}^{3g-3+n}$ as follows:

- $\Lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ is the boundary assignments for the generalized boundary components $\Delta_1, \ldots, \Delta_n$;
- $L = (l([\gamma_1]), l([\gamma_2]), \ldots, l([\gamma_{3g-3+n}]))$ is the lengths of the pants curves $[\gamma_1], \ldots, [\gamma_{3g-3+n}] \in \Gamma$;
- $T = (t_1, t_2, \ldots, t_{3g-3+n})$ is the twist parameters along $\gamma_1, \ldots, \gamma_{3g-3+n} \in \Gamma$.

Λ and L determine the geometry of each pair of pants $R_i \in \mathcal{R}$ and T determines how to paste them. For each $\gamma_i \in \Gamma$, there are two pairs of pants $R, R' \in \mathcal{R}$ (R and R' may be the same pair of pants) such that γ_i serves as a common boundary component of them. Then $t_i \in T$.
Figure 3. The hyperbolic cone surface X in this figure has one genus and eight generalized boundary components: three geodesic boundaries ($\Delta_1, \Delta_4, \Delta_6$), four cone points ($\Delta_2, \Delta_3, \Delta_7, \Delta_8$) and one cusp ($\Delta_5$). The pants curves (the red circles) decompose X into eight generalized Y-pieces. The set consisting of blue arcs and blue circle consist a set of seams.

determines how R and R' are pasted (for more details about Fenchel-Nielsen coordinates, we refer to [6, §10.6]).

The construction above actually defines a map $\Phi_{\Gamma, B}$ as below:

$$
\Phi_{\Gamma, B} : (\pi, \infty)^n \times \mathbb{R}_{+}^{3g-3+n} \times \mathbb{R}^{3g-3+n} \rightarrow T_{g,n}(S) \\
(\Lambda, L, T) \mapsto X.
$$

In the case that S is a closed surface, Φ_{Γ} is a bijection (also homeomorphism). We will show, by Theorem 4.1 in §4.1, that this is also true in our case. The $6g - 6 + 3n$-tuple (Λ, L, T) is called the Fenchel-Nielsen coordinates of X with respect to (Γ, \mathcal{B}), and the map $\Phi_{\Gamma, B}$ is called the Fenchel-Nielsen parametrization of $T_{g,n}(S)$ with respect to Γ and \mathcal{B}.

3.1. Boundary assignments and twist of a generalized X-piece.

First, we consider the boundary assignments of a generalized X-piece.
Figure 4. Constructions of generalized X–pieces by gluing two pairs of pants along two chosen boundaries and twisting to the left about length $t|\gamma|$. Orientations of curves: X sits on the left of Δ_3 and Δ'_3, the cone points Δ_2, Δ'_2 sit on the left of δ, Δ_2, Δ_3 sit on the left of γ, the orientation of a_3 (resp. a'_3) is chosen from Δ_3 (resp. Δ'_3) to γ.

Lemma 3.1 (Boundary assignments). Let X be a generalized X–piece with generalized boundary components $\Delta_2, \Delta'_2, \Delta_3, \Delta'_3$. If Δ_3, Δ'_3 are geodesic boundaries with given lengths λ_3, λ'_3, then the boundary assignments of Δ'_2, Δ_2 are determined by λ_3, λ'_3 and $\mathrm{MLSS}(X)$. Moreover, we need at most 28 fixed non-peripheral simple closed curves.

Proof. A generalized boundary can be a cone point, a cusp, or a closed geodesic. First, we consider the case that the Δ_2, Δ'_2 are cone points or cusps (see Fig. [4(a)]).

Let γ be a non-peripheral simple closed curve of X and $B = \{\beta_1, \beta_1', \beta_2, \beta_2'\}$ a collection of seams, where β_1 (resp. β_1') connects Δ_2 and Δ_3 (resp. Δ'_2 and Δ'_3) and β_2 (resp. β_2') connects Δ_3 and Δ'_3 (resp. Δ_2 and Δ'_2). Let δ be the simple closed curve homotopic to $\beta_2 \cdot \gamma'_3 \cdot (\beta_2)^{-1} \cdot \gamma_3$. The waist γ cuts X into two pairs of pants with the third boundaries Δ_1, Δ'_1, respectively. Let X_t be the generalized X–piece obtained by gluing these two pairs of pants along Δ_1, Δ'_1 with twist amount t with respect to B (see Fig. [4(b)]).

Denote by Tw^n_γ the n times Dehn twist along γ. Let δ_n be the simple closed curve obtained from δ by n times Dehn twist along γ, i.e. $\delta_n = Tw^n_\gamma \delta$. Denote by a_3 (resp. a'_3) the geodesic perpendicular to both Δ_3 and Δ_1 (resp. Δ'_3 and Δ'_1). All the directions (except}
for Δ_1, Δ'_1 are illustrated in Fig. 4. Let d^t and δ^t be the geodesic representatives of β_2 and δ on X_t, respectively.

With the notations above, we have the following formula which can be found in [1, Prop.3.3.11]

$$
\cosh \frac{1}{2} |\delta_n| = \sinh \frac{1}{2} \beta_3 \sinh \frac{1}{2} \beta_3 \{ \sinh |a_3| |a_3'| \cosh (t + n)|\gamma| + \cosh |a_3| - \cosh |a_3'| \cosh (\frac{1}{2} \beta_3) \cosh (\frac{1}{2} \beta_3),
$$

where $|\delta_n|, |a_3|, |a_3'|, |\gamma|, \beta_3, \beta_3'$ represent the lengths of the corresponding geodesic representatives.

Hence

$$
\cosh \frac{|\delta_1|}{2} - \cosh \frac{|\delta|}{2} = \sinh \frac{\lambda_3}{2} \sinh \frac{\lambda_3'}{2} \sinh |a_3| \sinh |a_3'| (\cosh (t |\gamma| + |\gamma|) - \cosh (t |\gamma|)),
$$

and

$$
\frac{\cosh \frac{|\delta_2|}{2} - \cosh \frac{|\delta_1|}{2}}{\cosh \frac{|\delta_1|}{2} - \cosh \frac{|\delta|}{2}} = \frac{\cosh (t |\gamma| + 2 |\gamma|) - \cosh (t |\gamma| + |\gamma|)}{\cosh (t |\gamma| + |\gamma|) - \cosh (t |\gamma|)}.
$$

From this we know that t is determined by $|\delta|, |\delta_1|, |\delta_2|$ and $|\gamma|$. Squaring (6) and rearranging, we have

$$
\sinh^2 \frac{\lambda_3}{2} \sinh^2 |a_3| = \sinh^2 \frac{|\gamma|}{2} \{ \cosh^2 \frac{|\gamma|}{2} \cos \cos \frac{\lambda_3}{2} \cosh \frac{\lambda_3}{2} - 1 \},
$$

where $-\lambda_2$ is the cone angle at the cone point Δ_2.

Set

$$
B_2 \triangleq 2 \cos \frac{\lambda_2}{2} \cosh \frac{\lambda_3}{2}, \quad C_2 \triangleq \cos^2 \frac{\lambda_2}{2} + \cosh^2 \frac{\lambda_3}{2} - 1;
$$

$$
B'_2 \triangleq 2 \cos \frac{\lambda_2'}{2} \cosh \frac{\lambda_3'}{2}, \quad C'_2 \triangleq \cos^2 \frac{\lambda_2'}{2} + \cosh^2 \frac{\lambda_3'}{2} - 1.
$$

Then

$$
(\cosh \frac{|\delta_1|}{2} - \cosh \frac{|\delta|}{2})^2 \sinh^4 \frac{|\gamma|}{2} \left[\cosh (t |\gamma| + |\gamma|) - \cosh (t |\gamma|) \right]^2
$$

$$
= \cosh^4 \frac{|\gamma|}{2} + (B_2 + B'_2) \cosh^3 \frac{|\gamma|}{2} + \left(C_2 + C'_2 + B_2B'_2 \right) \cosh^2 \frac{|\gamma|}{2}
$$

$$
+ \left(B_2C'_2 + B'_2C_2 \right) \cosh \frac{|\gamma|}{2} + C_2C'_2.
$$

Equation (18) is a linear equation about parameters $B_2 + B'_2, C_2 + C'_2 + B_2B'_2, B_2C'_2 + B'_2C_2$ and $C_2C'_2$.

Now, changing the pants decomposition curve from γ to $\gamma_k = Tw_k^i \gamma$, $k = \pm 1, \pm 2, \pm 3$, where Tw_k^n represents the n times Dehn twist along δ, we get six more linear equations about parameters $B_2 + B_2', C_2 + C_2' + B_2B_2', B_3C_2' + B_3'C_2$ and C_2C_2'.

Combining (11) and (12), we have the following formula (19)
\[
\cosh \frac{1}{2} |\gamma_k| = \sinh \left(\frac{1}{2} \lambda_3 \right) \sinh \left(\frac{1}{2} \lambda_2 \right) \{ \sinh |b_3| \cosh |b_2| \cosh (\tilde{t} + k) |\delta| \\
+ \cosh |b_3| \sinh |b_2| \} - \cos \left(\frac{1}{2} \lambda_2 \right) \cosh \left(\frac{1}{2} \lambda_3 \right),
\]
where b_3 (resp. b_2) is the length of the geodesic perpendicular to both Δ_3 and δ (resp. Δ_2 and δ), \tilde{t} represents the twist of X along δ.

It follows from (29) that if $\tilde{t} < 0$, then $|\gamma_{-3}|, |\gamma_{-2}|, |\gamma_{-1}|$ and $|\gamma_0|$ are pairwise different, if $\tilde{t} \geq 0$, then $|\gamma_3|, |\gamma_2|, |\gamma_1|$ and $|\gamma_0|$ are pairwise different. Hence, at least one of the following two matrices has non-zero determinant,
\[
\begin{pmatrix}
\cosh^3 \frac{\gamma_3}{2} & \cosh^2 \frac{\gamma_3}{2} & \cosh \frac{\gamma_3}{2} & 1 \\
\cosh^3 \frac{\gamma_2}{2} & \cosh^2 \frac{\gamma_2}{2} & \cosh \frac{\gamma_2}{2} & 1 \\
\cosh^3 \frac{\gamma_1}{2} & \cosh^2 \frac{\gamma_1}{2} & \cosh \frac{\gamma_1}{2} & 1 \\
\cosh^3 \frac{\gamma_0}{2} & \cosh^2 \frac{\gamma_0}{2} & \cosh \frac{\gamma_0}{2} & 1
\end{pmatrix},
\begin{pmatrix}
\cosh^3 \frac{\gamma_{-3}}{2} & \cosh^2 \frac{\gamma_{-3}}{2} & \cosh \frac{\gamma_{-3}}{2} & 1 \\
\cosh^3 \frac{\gamma_{-2}}{2} & \cosh^2 \frac{\gamma_{-2}}{2} & \cosh \frac{\gamma_{-2}}{2} & 1 \\
\cosh^3 \frac{\gamma_{-1}}{2} & \cosh^2 \frac{\gamma_{-1}}{2} & \cosh \frac{\gamma_{-1}}{2} & 1 \\
\cosh^3 \frac{\gamma_{-0}}{2} & \cosh^2 \frac{\gamma_{-0}}{2} & \cosh \frac{\gamma_{-0}}{2} & 1
\end{pmatrix}.
\]
It follows that there is a unique solution for the 4-tuple $(B_2 + B_3C_2' + C_2' + B_2B_2', B_3C_2 + B_3'C_2, C_2C_2')$. Further, the boundary assignments λ_2, λ_2' can be uniquely obtained from $B_2 + B_2'$ and C_2C_2'.

If δ_2 (resp. δ_2') is a geodesic, we need to find the corresponding equations similar to (16) and (17). Repeating the calculations above using (11) and (12), we find that the equation corresponding to (16) is exactly the same as (16), while the equation corresponding to (17) is a little bit different from (17) that $\cos \delta_2$ is replaced by $\cosh \frac{\lambda_2}{2}$.

It follows from equation (16) that, for each one of the seven curves $\{Tw_i^k \gamma : i = 0, \pm 1, \pm 2, \pm 3\}$, four curves (including $Tw_i^k \gamma$ itself) are involved to determine the twist parameter. Therefore, we need at most 28 curves.

The proof of Lemma 3.1 also proves that the twist amount of a generalized X–piece with respect to a waist and a collection of seams is determined by its marked length spectrum.

Lemma 3.2 (Twist). Let X be a generalized X–piece with generalized boundary components $\Delta_2, \Delta_2', \Delta_3, \Delta_3'$, and with boundary assignments $\Lambda = (\lambda_2, \lambda_2', \lambda_3, \lambda_3')$. Let (Γ, \mathcal{B}) be a coordinate system of curves of X. Then the twist parameter t is determined by Λ and $\text{MCSS}(X)$. Moreover, we need at most 4 non-peripheral simple closed curves.
(a) Figure 5. Figure (a) is a torus with one cone point and with no twist along \(\gamma \) with respect to \(\beta \), figure (b) is a torus with one cone point and with twist \(t \) along \(\gamma \) with respect to \(\beta \).

Proof. It follows immediately from (16). \qed

4. Marked length spectral rigidity over \(\mathcal{T}_{g,n} \)

4.1. Marked length spectral rigidity about simple closed curves.

In this section we investigate the relationship between the geometry of a hyperbolic cone surface and its marked length spectrum.

Theorem 4.1. Let \(S \) be a non-exceptional surface. \(S(S) \) is rigid over \(\mathcal{T}_{g,n}(S) \). More precisely, let \(X_1, X_2 \in \mathcal{T}_{g,n}(S) \), if \(l_{X_1}(\alpha) = l_{X_2}(\alpha) \) for any \(\alpha \in S(S) \), then \(X_1 = X_2 \).

Proof. We distinguish two cases.

Case 1. \(S \) is a torus with only one generalized boundary component. Let \(X \) be such a hyperbolic cone surface (see Fig. 5(a) and Fig. 5(b) for the case that the generalized boundary is a cone point). We prove for the case where the generalized boundary is a cone point. The other cases are similar. First, we choose a non-peripheral simple closed curve \(\gamma \) and a collection of seams \(\mathcal{B} = \{ \beta, \beta' \} \) where \(\beta \) is a non-peripheral simple closed curve which intersects \(\gamma \) only once (see Fig. 5(a)) and \(\beta' \) is a simple arc with endpoints on the generalized boundary component.
Then the curve system \((\{\gamma\}, \mathcal{B})\) defines a Fenchel-Nielsen coordinates of \(X\). Let \(X_t\) be the hyperbolic cone surface whose Fenchel-Nielsen coordinates are \((\lambda(X), l_X(\gamma), t)\), where \(\lambda(X)\) is the cone angle of \(X\) and \(l_X(\gamma)\) is the length of the geodesic representative of \(\gamma\) on \(X\).

To prove the theorem, we need to show that the cone angle and the twist are determined by the lengths of non-peripheral curves. Let \(\beta_n\) be the curve obtained from \(\beta\) by \(n\) times Dehn twist along \(\gamma\). Then the twist of \(X\) along \(\gamma\) with respect to \(\beta_n\) is \(t + n\). Let \(t_{n,l}\) and \(t_{n,r}\) be the twist numbers of (geodesic representative of) \(\beta_n\) on the left and right side of (the geodesic representative of) \(\gamma\). It follows from the definition of twist parameter that \(t_{n,l} - t_{n,r} = (t + n) l_X(\gamma)\).

Cutting \(X\) along \(\gamma\), we get a pair of pants \(R\) where \(\gamma\) corresponds to two geodesic boundary components. By the definition of twist parameter, the length \(l_{X_0}(\beta)\) of \(\beta\) on \(X_0\) coincides with the shortest distance between these two geodesic boundary components. As a consequence, the cone angle \(\lambda(X)\) of \(X\) is determined by \(l_{X_0}(\beta)\) and \(l_X(\gamma)\). More precisely, it follows from (6) that

\[
\cos \frac{\lambda(X)}{2} = \sinh^2 \frac{l_X(\gamma)}{2} - \cosh l_{X_0}(\beta) - \cosh^2 \frac{l_X(\gamma)}{2}.
\]

Combining the definition of twist parameter and Equation (8), the length \(l_X(\beta_n)\) of \(\beta_n\) on \(X\) is

\[
l_X(\beta_n) = \cosh^{-1}(\cosh t_{n,l} \cosh t_{n,r} \cosh l_{X_0}(\beta) - \sinh t_{n,l} \sinh t_{n,r}).
\]

Hence

\[
\cosh l_X(\beta_n) = \inf_{s \in \mathbb{R}} \cosh s \sinh [(s - t - n)l_X(\gamma)] \cosh l_{X_0}(\beta) - \sinh s \sinh [(s - t - n)l_X(\gamma)]
\]

\[
= 2 \cosh \frac{(t+nl_X(\gamma))}{2} \cosh \frac{l_{X_0}(\beta)}{2} - 1.
\]

Therefore,

\[
\cosh \frac{l_X(\beta_n)}{2} = \cosh \frac{(t + n)l_X(\gamma)}{2} \cosh \frac{l_{X_0}(\beta)}{2}.
\]

Then

\[
\frac{\cosh \frac{l_X(\beta_2)}{2} - \cosh \frac{l_X(\beta_1)}{2}} {\cosh \frac{l_X(\beta_1)}{2} - \cosh \frac{l_X(\beta)}{2}} = \frac{\sinh \frac{(2t+3)l_X(\gamma)}{4}} {\sinh \frac{(2t+1)l_X(\gamma)}{4}}.
\]

From (20), (21) and (22), the twist parameter \(t\) and the cone angle \(\lambda(X)\) can be determined uniquely by \(l_X(\beta_2), l_X(\beta_1)\) and \(l_X(\gamma)\).

Case 2. \(S\) is not a torus with only one generalized boundary component. In this case, for each generalized boundary component \(\Delta_i\), we can find at least one generalized \(X\)--piece \(X_i\) such that at least two
of the generalized boundary components of \(X_i\) are non-peripheral simple closed curves of \(S\). It follows from Lemma 3.1 that the boundary assignments \(\Lambda = (\lambda_1, \lambda_2, ..., \lambda_n)\) of \(X_1, X_2\) are the same.

Next, we fix a pants decomposition \(\Gamma = \{\gamma_i\}_{i=1}^{3g-3+n}\) and a collection of seams \(B = \{\beta_1, \cdots, \beta_k\}\). To prove the theorem, it suffices to show that if \(l_{X_1}(\alpha) = l_{X_2}(\alpha)\) for every \(\alpha \in S(S)\) then \(X_1\) and \(X_2\) have the same Fenchel-Nielsen coordinates with respect to \((\Gamma, B)\). The pants lengths \(L = (l(\gamma_1), l(\gamma_2), ..., l(\gamma_{3g-3+n}))\) can be uniquely determined, and the boundary assignments \(\Lambda = (\lambda_1, \lambda_2, ..., \lambda_n)\) can also be uniquely determined as above. Finally, by Lemma 3.2, the twist parameters \(T = (t_1, t_2, ..., t_{3g-3+n})\) can also be uniquely determined. This completes the proof.

\[\square\]

In fact, the set \(S(S)\) is unnecessarily large for the rigidity of \(\mathcal{T}_{g,n}(S)\) in the case where \(S\) is a non-exceptional surface. From the proof of Lemma 3.2 and Lemma 3.1, we know that at most \(28n + 4(3g - 3 + n)\) non-peripheral simple closed curves are involved. We summarize this as following:

Theorem 4.2. There is a subset \(S'(S) \subset S(S)\) consisting of at most \(12g - 12 + 32n\) elements such that \(S'(S)\) is rigid over \(\mathcal{T}_{g,n}(S)\) provided that \(S\) is a non-exceptional surface.

Now Theorem A follows from Theorem 4.1 and Theorem 4.2.

Remark 4. In the case of closed surface, the subset \(S'(S)\) can be chosen such that it has \(6g - 5\) elements [22].

If we consider the subspace \(\mathcal{T}_{g,n}(\Lambda)\) of \(\mathcal{T}_{g,n}\), we get the following result.

Theorem 4.3. Suppose \(\Lambda \in (-\pi, \infty)^n\) and that \(S\) is a non-exceptional surface. Then \(S(S)\) is rigid over \(\mathcal{T}_{g,n}(\Lambda)\), i.e. if \(l_{X_1}(\alpha) = l_{X_2}(\alpha)\) holds for any \(\alpha \in S(S)\), then \(X_1 = X_2\).

Proof. The proof is similar to that of Theorem 4.1 except that we do not need to deal with the boundary assignments here.

\[\square\]

4.2. Generalized marked length spectral rigidity.

In [26], the authors proved a generalized McShane’s identity for length series of simple closed geodesics on a hyperbolic cone surface by studying “gaps” formed by simple-normal geodesics emanating from a distinguished cone point, cusp or boundary geodesic. For each pair of pants with
three generalized boundary components Δ_0, α, β, where Δ_0 is the distinguished generalized boundary component, they define a \textit{Gap function} $\text{Gap}(\Delta_0; \alpha, \beta)$ (see [26] for the definition of $\text{Gap}(\Delta_0; \alpha, \beta)$).

In the theorem below, a generalized simple closed geodesic is a simple closed geodesic, a cone point, or a cusp.

\textbf{Theorem 4.4 ([26])}. Let X be a hyperbolic cone-surface with all cone angles in $[0, \pi)$, and Δ_0 a distinguished generalized boundary component. Then one has either

\begin{equation}
\sum \text{Gap}(\Delta_0; \alpha, \beta) = \frac{\theta_0}{2},
\end{equation}

when Δ_0 is a cone point of cone angle θ_0; or

\begin{equation}
\sum \text{Gap}(\Delta_0; \alpha, \beta) = \frac{l_0}{2},
\end{equation}

when Δ_0 is a boundary geodesic of length l_0; or

\begin{equation}
\sum \text{Gap}(\Delta_0; \alpha, \beta) = \frac{1}{2},
\end{equation}

when Δ_0 is a cusp; where in each case the sum is over all pairs of generalized simple closed geodesics α, β on M which bound with Δ_0 an embedded pair of pants.

\textbf{Remark 5}. For any non-peripheral simple closed geodesic γ, there is a generalized simple closed geodesic γ' with $\gamma' \neq \gamma$, such that γ, γ' and Δ_0 bounds an embedded pair of pants. Hence γ appears in the left side of each identity (see Fig. 3).

Combining Theorem 4.1 and Theorem 4.4, we get the following generalized marked length spectral rigidity.

\textbf{Theorem C}. Suppose that $\Lambda \in (-\pi, \infty)^n$ and that S is a non-exceptional surface. Let $X_1, X_2 \in T_{g,n}(\Lambda)$. If $l_{X_1}(\{[\alpha]\}) \geq l_{X_2}(\{[\alpha]\})$ holds for every $[\alpha] \in S(S)$, then $X_1 = X_2$.

\textbf{Proof}. First, we take a cone point P_0 as the distinguished cone point Δ_0. If there is no cone point, we pick a cusp or a geodesic boundary component instead. Since $X_1, X_2 \in T_{g,n}(\Lambda)$, they share the same cone angles and boundary lengths, which lead to

\begin{equation}
\sum \text{Gap}_{X_1}(\Delta_0; \alpha, \beta) = \frac{\theta}{2} = \sum \text{Gap}_{X_2}(\Delta_0; \alpha, \beta),
\end{equation}

where the sum is over all pairs of generalized simple closed geodesics α, β on S which bound with P_0 an embedded pair of pants.
Note that each gap function is a strictly decreasing function about the length of each involved non-peripheral simple closed geodesic. Combining this with the assumption that \(l_{X_1}(\alpha) \geq l_{X_2}(\alpha) \), for any \(\alpha \in S(S) \), we have
\[
\sum \text{Gap}_{X_1}(\Delta_0; \alpha, \beta) \leq \sum \text{Gap}_{X_2}(\Delta_0; \alpha, \beta),
\]
with the equality holds if and only if \(l_{X_1}(\alpha) = l_{X_2}(\alpha) \) for any \(\alpha \in S(S) \) (by Remark 5 every \(\alpha \in S(S) \) is involved in the sum). Combining with (26) and (27), we have \(l_{X_1}(\alpha) = l_{X_2}(\alpha) \) for any \(\alpha \in S(S) \).

Now, the theorem follows directly from Theorem 4.3.

As an application, we can define the Thurston’s asymmetric metric on \(\mathcal{T}_{g,n}(\Lambda) \) for any \(\Lambda \in (-\pi, \infty)^n \).

Corollary 4.5 (the Thurston metric). Suppose \(\Lambda \in (-\pi, \infty)^n \) and that \(S \) is a non-exceptional surface. For any two points \(X_1, X_2 \in \mathcal{T}_{g,n}(\Lambda) \),
\[
d_{Th}(X_1, X_2) \triangleq \log \sup_{[\alpha] \in S(S)} \frac{l_{X_2}([\alpha])}{l_{X_1}([\alpha])}
\]
defines an asymmetric metric on \(\mathcal{T}_{g,n}(\Lambda) \), which is called the Thurston metric.

5. **Comparisons of geometry between hyperbolic cone surfaces**

In this section, we build a connection between a general hyperbolic cone surface and a punctured hyperbolic surface by comparing the lengths of the geodesic representatives of isotopy classes of non-peripheral simple closed curves on both surfaces. Before that, we prove some lemmas first.

Lemma 5.1. Assume \(c, c' > 0 \) and let \(d(c, \rho_1, \rho_2) \), \(f(c, \rho_1, \rho_2) \) be two functions of \(\rho_1, \rho_2 \) and \(c \) defined by
\[
cosh d(c, \rho_1, \rho_2) = f(c, \rho_1, \rho_2) \triangleq \cosh \rho_1 \cosh \rho_2 \cosh c - \sinh \rho_1 \sinh \rho_2.
\]
If
\[
\frac{1}{C} \leq \frac{\cosh c - 1}{\cosh c' - 1} \leq C
\]
for some \(C > 1 \). Then
(a)
\[
|d(c', \rho_1, \rho_2) - d(c, \rho_1, \rho_2)| \leq \arccosh C.
\]
(b)
\[
\frac{d(c, \rho_1, \rho_2)}{C} \leq \frac{d(c', \rho_1, \rho_2)}{C} \leq C.
\]
Proof. Part (a) follows from Lemma 5.2(a) and 5.3(a), part (b) follows from Lemma 5.2(b) and 5.3(b).

Lemma 5.2. Let \(x, y > 0 \).

(a) If

\[
\frac{1}{C} \leq \frac{\cosh x}{\cosh y} \leq C,
\]

then

\[|x - y| \leq \arccosh C.\]

(b) If

\[
\frac{1}{C} \leq \frac{\sinh x}{\sinh y} \leq C,
\]

then

\[\frac{1}{C} \leq \frac{x}{y} \leq C.\]

Proof. (a) Let \(F(y) \) be defined by

\[
cosh(y + F) = C \cosh y.
\]

Hence

\[
\frac{e^{y+F} + e^{-y-F}}{2} = C \cosh y,
\]

then

\[F(y) = \ln(C \cosh y + \sqrt{C^2 \cosh^2 y - 1}) - y,
\]

further,

\[F'(y) = \frac{C \sinh y}{\sqrt{C^2 \cosh^2 y - 1}} - 1 < 0.
\]

As a result,

\[F(y) \leq F(0) = \arccosh C.
\]

On the other hand,

\[\cosh x \leq C \cosh y = \cosh(y + F(y)).\]

It follows that

\[x - y \leq \arccosh C.
\]

By symmetry, we have \(y - x \leq \arccosh C \).

(b) Let \(K(y) \) be a function of \(y \) defined by

\[
\sinh(yK) = C \sinh y.
\]

Hence

\[
\frac{e^{yK} - e^{-yK}}{2} = C \sinh y,
\]
then
\[K(y) = \frac{\ln(C \sinh y + \sqrt{1 + C^2 \sinh^2 y})}{y}, \]

further,
\[K'(y) = \frac{C \cosh y}{y \sqrt{1 + C^2 \sinh^2 y}} - \frac{\ln(C \sinh y + \sqrt{1 + C^2 \sinh^2 y})}{y^2}. \]

Setting \(K'(y_0) = 0 \), we have
\[K(y_0) = \frac{\ln(C \sinh y_0 + \sqrt{1 + C^2 \sinh^2 y_0})}{y_0} = \frac{C \cosh y_0}{\sqrt{1 + C^2 \sinh^2 y_0}} < C. \]

Note that
\[K(y) \to C, \text{ as } y \to 0 \quad \text{and} \quad K(y) \to 1, \text{ as } y \to \infty. \]

Therefore \(K(y) \leq C \) for any \(y \geq 0 \). Since \(\sinh x \leq C \sinh y = \sinh y K(y) \), \(x/y \leq C \). By symmetry, we also have \(y/x \leq C \).

\[\square \]

Lemma 5.3. Assume \(0 < c \leq c' \) and let \(f(c, \rho_1, \rho_2) \) be the function defined in Lemma 5.1 then

(a) \[\frac{f(c, \rho_1, \rho_2)}{f(c', \rho_1, \rho_2)} \geq \frac{\cosh c - 1}{\cosh c' - 1}. \]

(b) \[\frac{f(c, \rho_1, \rho_2)^2 - 1}{f(c', \rho_1, \rho_2)^2 - 1} \geq \left(\frac{\cosh c - 1}{\cosh c' - 1} \right)^2. \]

Proof. (a) Note that
\[\frac{f(c, \rho_1, \rho_2)}{f(c', \rho_1, \rho_2)} = \frac{\cosh \rho_1 \cosh \rho_2 \cosh c - \sinh \rho_1 \sinh \rho_2}{\cosh \rho_1 \cosh \rho_2 \cosh c' - \sinh \rho_1 \sinh \rho_2} = \frac{\cosh c' - \cosh c}{\cosh c' - \tanh \rho_1 \tanh \rho_2} \geq \frac{\cosh c' - \cosh c}{\cosh c' - 1} = \frac{\cosh c - 1}{\cosh c' - 1}. \]
(b) Observe that

\[
\frac{f(c, \rho_1, \rho_2)^2 - 1}{f(c', \rho_1, \rho_2)^2 - 1} = \frac{f(c, \rho_1, \rho_2) + 1}{f(c', \rho_1, \rho_2) + 1} \frac{f(c, \rho_1, \rho_2) - 1}{f(c', \rho_1, \rho_2) - 1} \geq \frac{f(c, \rho_1, \rho_2)}{f(c', \rho_1, \rho_2)} \frac{f(c', \rho_1, \rho_2)}{f(c, \rho_1, \rho_2)}.
\]

and

\[
\frac{f(c, \rho_1, \rho_2) - 1}{f(c', \rho_1, \rho_2) - 1} = 1 - \frac{\cosh c' - \cosh c}{\cosh c' - \frac{\sinh \rho_1 \sinh \rho_2 + 1}{\cosh \rho_1 \cosh \rho_2}}
\geq 1 - \frac{\cosh c' - \cosh c}{\cosh c' - 1} \quad \text{(since } \cosh(\rho_1 - \rho_2) \geq 1)
= \frac{\cosh c - 1}{\cosh c' - 1}.
\]

Then we have

\[
\frac{f(c, \rho_1, \rho_2)^2 - 1}{f(c', \rho_1, \rho_2)^2 - 1} \geq \left(\frac{\cosh c - 1}{\cosh c' - 1} \right)^2.
\]

Recall that a generalized boundary component \(\Delta \) is a cone point with cone angle \(\theta \in (0, \pi) \), a cusp, or a geodesic boundary of positive length. The assignment \(\lambda(\Delta) \) at a generalized boundary component is:

\[
\lambda(\Delta) = \begin{cases}
-\theta, & \text{if } \Delta \text{ is a cone point of angle } \theta \in (0, \pi), \\
0, & \text{if } \Delta \text{ is a cone point,} \\
l, & \text{if } \Delta \text{ is a geodesic boundary of length } l > 0.
\end{cases}
\]

Let \(V(\lambda_1, \lambda_2, \lambda_3) \) be a generalized Y-piece whose boundary assignments satisfy \(\Lambda = (\lambda_1, \lambda_2, \lambda_3) \in (0, \infty) \times (-\pi, \infty) \times (-\pi, \infty) \), and \(\Delta_1, \Delta_2, \Delta_3 \) be the three marked generalized boundary components. Let \(\zeta \) be an arbitrary simple arc with endpoints \(M, N \) on the geodesic boundary components (not a cone point nor a cusp). Assume that \(M \) is on \(\Delta_1 \) and \(N \) is on \(\Delta^N \in \{ \Delta_1, \Delta_2, \Delta_3 \} \). Denote by \(g_\zeta \) the geodesic representative in the corresponding homotopy class of \(\zeta \) relative to the endpoints, i.e. the endpoints \(M, N \) stay fixed during the homotopy, and by \(h_\zeta \) the geodesic representative in the homotopy class of \(\zeta \) relative to the geodesic boundaries of \(V(\lambda_1, \lambda_2, \lambda_3) \), i.e. the endpoints \(M, N \) stay at the geodesic boundaries during the homotopy process. Let \(l(\lambda_1, \lambda_2, \lambda_3, [\zeta]) \) be the length of \(g_\zeta \). Let \(h_\Lambda \) (resp. \(h_0 \)) be the length of \(h_\zeta \) on \(V(\lambda_1, \lambda_2, \lambda_3) \) (resp. \(V(\lambda_1, \lambda_2, 0) \) or \(V(\lambda_1, 0, 0) \), up to the situation in consideration).
Let the geodesic boundary Δ_1, Δ_N be oriented such that $V(\lambda_1, \lambda_2, \lambda_3)$ sits on the right of Δ_1 and on the left of Δ_N. Since g_ζ and h_ζ are homotopic relative to the boundaries of $V(\lambda_1, \lambda_2, \lambda_3)$, there is a homotopy H between g_ζ and h_ζ on $V(\lambda_1, \lambda_2, \lambda_3)$. Denote by ρ_M and ρ_N be the signed displacements of $h_\zeta \cap \Delta_1$ and $h_\zeta \cap \Delta_N$ during the homotopy process.

Remark 6. The assumption $\Lambda = (\lambda_1, \lambda_2, \lambda_3) \in (0, \infty) \times (-\pi, \infty) \times (-\pi, \infty)$ guarantees that Δ_1 is a geodesic boundary. The reason for this assumption is that the surface we are interested is not a sphere with three holes, which means that each pair of pants on the surface has at least one boundary component which is a non-peripheral simple closed curve.

Lemma 5.4. With notations above, we have

$$\cosh l(\lambda_1, \lambda_2, \lambda_3, [\zeta]) = \cosh \rho_M \cosh \rho_N \cosh h_\Lambda - \sinh \rho_M \sinh \rho_N.$$

Proof. We consider the case that $\Lambda = (\lambda_1, \lambda_2, \lambda_3) \in (0, \infty) \times (0, \infty) \times (-\pi, \infty)$, the proofs for the remaining cases are similar.

Recall that $V(\lambda_1, \lambda_2, \lambda_3)$ consists of two isometric pentagons pictured in Figure 6(b). Extend the geodesic g_ζ on $V(\lambda_1, \lambda_2, \lambda_3)$ to the hyperbolic plane as illustrated in Fig 6(c). Then the lemma follows from equation (8) for the quadrilateral. \square

The lemma below describes the comparisons of the geometry between a pair of general pants and a pair of pants which do not contain any cone point.

Lemma 5.5. With the notations above, we have the following estimates:

(a) If Δ_1, Δ_2 are geodesic boundaries, Δ_3 is a generalized geodesic boundary, then there exist $C_1, D_1 > 0$, which depend only on λ_3, such that

$$|[l(\lambda_1, \lambda_2, \lambda_3, [\zeta]) - l(\lambda_1, \lambda_2, 0, [\zeta])]| \leq D_1,$$

and

$$\frac{1}{C_1} \leq \frac{l(\lambda_1, \lambda_2, \lambda_3, [\zeta])}{l(\lambda_1, \lambda_2, 0, [\zeta])} \leq C_1.$$

Moreover, $D_1 \to 0, C_1 \to 1$ as $\lambda_3 \to 0$.

(b) If Δ_1 is a geodesic boundary, Δ_2 and Δ_3 are generalized geodesic boundaries with the same type, then there exist $C_2, D_2 > 0$, which depend only on λ_2, λ_3, such that

$$|[l(\lambda_1, \lambda_2, \lambda_3, [\zeta]) - l(\lambda_1, 0, 0, [\zeta])]| \leq D_2.$$
Figure 6. Figure (c) pictures the extension of g_ζ to the hyperbolic plane. The V-piece in Figure (a) consists of two isometric pentagons in Figure (b). If we record the edges of these two pentagons meet by g_ζ during the extension, the geodesic g_ζ in Figure (a) corresponds to a sequence $(\delta_1, a_2, h_\zeta, a_3, h_\zeta, \delta_2)$.

and

$$\frac{1}{C_2} \leq \frac{l(\lambda_1, \lambda_2, \lambda_3, [\zeta])}{l(\lambda_1, 0, 0, [\zeta])} \leq C_2.$$

Moreover, $D_2 \to 0, C_2 \to 1$ as $\lambda_2, \lambda_3 \to 0$.

(c) If Δ_1 is a geodesic boundary, Δ_2 and Δ_3 are generalized geodesic boundaries with different types, then there exist $C_3, D_3 > 0$, which depend only on λ_2, λ_3, such that

$$|l(\lambda_1, \lambda_2, \lambda_3, [\zeta]) - l(\lambda_1, 0, 0, [\zeta])| \leq D_3,$$
and

\[\frac{1}{C_3} \leq \frac{l(\lambda_1, \lambda_2, \lambda_3, [\zeta])}{l(\lambda_1, 0, 0, [\zeta])} \leq C_3. \]

Moreover, \(D_3 \to 0, C_3 \to 1 \), as \(\lambda_2 \to 0, \lambda_3 \to 0 \).

Remark 7.

(i) Here the point is that the estimates have nothing to do with the homotopy classes of \(\zeta \).

(ii) The estimates about the difference of corresponding lengths work for the situation where the lengths tend to infinity, while the estimates about the ratio of corresponding lengths works for the situation where the lengths tend to zero. Both of them will be used to prove the quasi-isometry of \(T_{g,n}(\Lambda) \) and \(T_{g,n}(0) \) and to solve various boundary problems.

Proof. For simplicity, we denote by \(h_\Lambda \) (resp. \(h_0 \)) the length of \(h_\zeta \) on \(V(\lambda_1, \lambda_2, \lambda_3) \) (resp. \(V(\lambda_1, \lambda_2, 0) \) or \(V(\lambda_1, 0, 0) \), up to the situation in consideration).

It follows from Lemma 5.4 that

\[
\begin{align*}
\cosh l(\lambda_1, \lambda_2, \lambda_3, [\zeta]) &= \cosh \rho_M \cosh \rho_N \cosh h_\Lambda - \sinh \rho_M \sinh \rho_N \\
\cosh l(\lambda_1, \lambda_2, 0, [\zeta]) &= \cosh \rho_M \cosh \rho_N \cosh h_0 - \sinh \rho_M \sinh \rho_N
\end{align*}
\]

for statement (a), and

\[
\begin{align*}
\cosh l(\lambda_1, \lambda_2, \lambda_3, [\zeta]) &= \cosh \rho_M \cosh \rho_N \cosh h_\Lambda - \sinh \rho_M \sinh \rho_N \\
\cosh l(\lambda_1, 0, 0, [\zeta]) &= \cosh \rho_M \cosh \rho_N \cosh h_0 - \sinh \rho_M \sinh \rho_N
\end{align*}
\]

for statement (b), (c).

By Lemma 5.1 it suffices to prove that

\[\frac{1}{K} \leq \frac{\cosh h_\Lambda - 1}{\cosh h_0 - 1} \leq K \]

for some \(K \) that approaches 1 as we take the limit for each statement in the lemma.

We distinguish six cases. The statement (a) is obtained from the cases A-D, and the statement (b) is obtained from the cases E and F. By statement (a) and statement (b), we have statement (c).

Case A. \(\Delta_1, \Delta_2 \) are geodesic boundaries, \(\Delta_3 \) is a cone point or a cusp and \(N \in \Delta_2 \) (see Fig. 6(a)).

Using equation (6) for the pentagon pictured in Fig. 6(b), we have

\[\cosh h_\Lambda = \frac{\cosh \frac{\lambda_1}{2} \cosh \frac{\lambda_2}{2} + \cos \frac{|\lambda_3|}{2}}{\sinh \frac{\lambda_1}{2} \sinh \frac{\lambda_2}{2}}, \]
Figure 7. The arc ζ in the figures on the left are arbitrary geodesic arcs with endpoint on given boundary components, and h_ζ is the geodesic homotopic to ζ relative to the boundary components of V. Each figure on the right side is one of the two isometric polygons consisting the corresponding pair of pants on its left.

where λ_1 and λ_2 are the lengths of the geodesic boundaries Δ_1 and Δ_2 respectively, $|\lambda_3|$ is the cone angle of Δ_3. Hence

$$\frac{\cosh h_A - 1}{\cosh h_0 - 1} = \frac{\cosh \frac{\lambda_1 - \lambda_2}{2} + \cos \frac{|\lambda_3|}{2}}{\cosh \frac{\lambda_1 - \lambda_2}{2} + 1} \in \left[\frac{1 + \cos \frac{|\lambda_3|}{2}}{2}, 1 \right].$$

Case B. Δ_1, Δ_2 are geodesic boundaries, Δ_3 is a geodesic boundary and $N \in \Delta_2$.
Replace $\cos \frac{|\lambda_3|}{2}$ in case A by $\cosh \frac{|\lambda_3|}{2}$, we have

$$\frac{\cosh h_A - 1}{\cosh h_0 - 1} = \frac{\cosh \frac{\lambda_1 - \lambda_2}{2} + \cosh \frac{|\lambda_3|}{2}}{\cosh \frac{\lambda_1 - \lambda_2}{2} + 1} \in \left[1, \frac{1 + \cosh \frac{|\lambda_3|}{2}}{2}\right].$$

Case C. Δ_1, Δ_2 are geodesic boundaries, Δ_3 is a cone point or a cusp and $N \in \Delta_1$ (see Fig. 7(a)).

Using equation (5) for the right angled pentagon pictured in Fig. 7(a), we have

$$\cosh \frac{h_A}{2} = \sinh \frac{\lambda_2}{2} \sinh a,$$

where a is the length of the geodesic perpendicular to Δ_1 and Δ_2.

$$\cosh h_A - 1 = 2 \cosh^2 \frac{h_A}{2} - 2$$

$$= 2 \frac{\cosh^2 \frac{\lambda_2}{2} + 2 \cosh \frac{\lambda_1}{2} \cosh \frac{\lambda_3}{2} \cos \frac{|\lambda_3|}{2} + \cos^2 \frac{|\lambda_3|}{2}}{\sinh^2 \frac{\lambda_1}{2}},$$

and

$$\frac{\cosh h_A - 1}{\cosh h_0 - 1} = \frac{\cosh^2 \frac{\lambda_2}{2} + 2 \cosh \frac{\lambda_1}{2} \cosh \frac{\lambda_3}{2} \cos \frac{|\lambda_3|}{2} + \cos^2 \frac{|\lambda_3|}{2}}{\cosh^2 \frac{\lambda_2}{2} + 2 \cosh \frac{\lambda_1}{2} \cosh \frac{\lambda_3}{2} + 1}$$

$$\in \left[\cos^2 \frac{|\lambda_3|}{2}, 1\right].$$

Case D. Δ_1, Δ_2 are geodesic boundaries, Δ_3 is a geodesic boundary and $N \in \Delta_1$.

Replace $\cos \frac{|\lambda_3|}{2}$ in case C by $\cosh \frac{|\lambda_3|}{2}$, we have

$$\frac{\cosh h_A - 1}{\cosh h_0 - 1} = \frac{\cosh^2 \frac{\lambda_2}{2} + 2 \cosh \frac{\lambda_1}{2} \cosh \frac{\lambda_3}{2} \cos \frac{|\lambda_3|}{2} + \cosh^2 \frac{|\lambda_3|}{2}}{\cosh^2 \frac{\lambda_2}{2} + 2 \cosh \frac{\lambda_1}{2} \cosh \frac{\lambda_3}{2} + 1}$$

$$\in \left[1, \cosh^2 \frac{|\lambda_3|}{2}\right].$$

Case E. Δ_1 is a geodesic boundary, Δ_2, Δ_3 are cone points or cusps, and $N \in \Delta_1$ (see Fig. 7(b)).

We choose a quadrilateral with two adjacent vertices at Δ_1 and Δ_2, and two right angles at the endpoints of the opposite side ξ contained
in \(\Delta_1 \) (see the right figure of Fig. 7(b)). Let \(\xi_2, \xi_3 \) be the subsides of \(\xi \) divided by \(h_\zeta \). From (4) in Lemma 2.3, we have
\[
\cos \frac{\lambda_2}{2} = \sinh \frac{h_\Lambda}{2} \sinh |\xi_2|, \quad \cos \frac{\lambda_3}{2} = \sinh \frac{h_\Lambda}{2} \sinh |\xi_3|.
\]
Set \(l_\Lambda \triangleq (\sinh \frac{h_\Lambda}{2})^{-1} \), then
\[
\sinh |\xi_2| = l_\Lambda \cos \frac{\lambda_2}{2}, \quad \sinh |\xi_3| = l_\Lambda \cos \frac{\lambda_3}{2}.
\]
Note that \(|\xi_2| + |\xi_3| = \frac{\lambda_1}{2} \), hence
\[
\sinh \frac{\lambda_1}{2} = l_\Lambda \cos \frac{\lambda_2}{2} [1 + l_\Lambda^2 \cos^2 \frac{\lambda_3}{2}]^{1/2} + l_\Lambda \cos \frac{\lambda_3}{2} [1 + l_\Lambda^2 \cos^2 \frac{\lambda_2}{2}]^{1/2}.
\]
Set
\[
K \triangleq \max\{\cos \frac{\lambda_2}{2}, \cos \frac{\lambda_3}{2}\}, \quad k \triangleq \min\{\cos \frac{\lambda_2}{2}, \cos \frac{\lambda_3}{2}\}.
\]
Then we get
\[
2kl_\Lambda[1 + k^2 l_\Lambda^2]^{1/2} \leq \sinh \frac{\lambda_1}{2} \leq 2Kl_\Lambda[1 + K^2 l_\Lambda^2]^{1/2},
\]
which means that
\[
\frac{\sinh \frac{\lambda_1}{2}}{K} \leq l_\Lambda \leq \frac{\sinh \frac{\lambda_1}{2}}{k}.
\]
In particular,
\[
l_0 = \sinh \frac{\lambda_1}{4}.
\]
Therefore
\[
\frac{\cosh h_\Lambda - 1}{\cosh h_0 - 1} = \frac{\sinh^2 \frac{h_\Lambda}{2}}{\sinh^2 \frac{h_0}{2}} = \frac{l_0^2}{l_\Lambda^2} \in [k^2, K^2].
\]

Case F. \(\Delta_1 \) is a geodesic boundary, \(\Delta_2, \Delta_3 \) are geodesic boundaries, and \(N \in \Delta_1 \).

Replace \(\cos \frac{\lambda_2}{2} \) and \(\cos \frac{\lambda_3}{2} \) in case E by \(\cosh \frac{\lambda_2}{2} \) and \(\cosh \frac{\lambda_3}{2} \), we get
\[
\frac{\cosh h_\Lambda - 1}{\cosh h_0 - 1} = \frac{\sinh^2 \frac{h_\Lambda}{2}}{\sinh^2 \frac{h_0}{2}} = \frac{l_0^2}{l_\Lambda^2} \in [k^2, K^2],
\]
where
\[
K \triangleq \max\{\cosh \frac{\lambda_2}{2}, \cosh \frac{\lambda_3}{2}\}, \quad k \triangleq \min\{\cosh \frac{\lambda_2}{2}, \cosh \frac{\lambda_3}{2}\}.
\]
Remark 8. The estimates in Lemma 5.5 are optimal since all the equalities in the inequations can hold simultaneously.

Next, we compare the lengths of non-peripheral simple closed curves between hyperbolic cone surfaces based on Lemma 5.5.

Theorem B (Length comparison inequalities). Let S be a non-exceptional surface. There exist constants C, D depending on Λ such that for any $X \in T_{g,n}(\Lambda)$, $X' = F_{\Gamma, B, \Lambda}(X)$ and any isotopy class of non-peripheral simple closed curve $[\alpha]$,\[
\begin{align*}
[l_X([\alpha]) - l_{X'}([\alpha])] & \leq D \sum_{j=1}^{3g-3+n} i([\alpha], [\gamma_j]), \\
\frac{1}{C} & \leq \frac{l_X([\alpha])}{l_{X'}([\alpha])} \leq C,
\end{align*}
\]
where $i(\cdot, \cdot)$ is the geometric intersection number, and $l_X([\alpha])$ is the length of the geodesic representative in $[\alpha]$. Moreover, $D \to 0, C \to 1$ as $\Lambda \to 0$.

Proof. The pants decomposition Γ divides the surface S into $2g - 2 + n$ pairs of topological pants $R = \{R_1, ..., R_{2g-2+n}\}$. Let R_i^X be the restriction of X on R_i, α^X the geodesic representative of $[\alpha]$ on X, and α_i^X the union of restrictions of α^X on R_i^X, $i = 1, ..., 2g - 2 + n$ (see Fig. 8). The sum of the numbers of arcs in α_i^X on all pairs of pants is $\sum_{j=1}^{3g-3+n} i([\alpha], [\gamma_j])$. For any different $X, X' \in T_{g,n}(\Lambda)$, the geodesic representative α^X of α on X is usually not a geodesic representative of α on X'. We modify α^X as follows: for any $i = 1, ..., 2g - 2 + n$, replace each arc in α_i^X by its geodesic representative with respect to X' in its homotopy class relative to the endpoints. Denote by $\alpha^{XX'}$ the resulting
simple closed curve and by \(\alpha_i^{XX'} \) the restriction of \(\alpha^{XX'} \) on \(R_i^{X'} \). Recall that \(l_X([\alpha]) \) represents the length of the geodesic representative in \([\alpha]\), we denote by \(l_X(k) \) the length of any arc \(k \) on \(X \).

(a) From Lemma 5.5 we have

\[
l_X([\alpha]) - l_X([\alpha]) \leq l_X'(\alpha^{XX'}) - l_X([\alpha]) = \sum_{i=1}^{2g-2+n} [l_X'(\alpha_i^{XX'}) - l_X(\alpha_i^X)] \leq D \sum_{j=1}^{3g-3+n} i([\alpha], [\gamma_j]),
\]

where \(D = \max\{D_1, D_2, D_3\} \) and \(D_1, D_2, D_3 \) are the constants in Lemma 5.5. By interchanging the role of \(X \) and \(X' \), we get

\[
l_X([\alpha]) - l_X([\alpha]) \leq D \sum_{j=1}^{3g-3+n} i([\alpha], [\gamma_j]).
\]

Moreover, we have \(D \to 0 \), as \(\Lambda \to 0 \).

(b) Again from Lemma 5.5 we have

\[
l_X([\alpha]) \leq l_X'(\alpha^{XX'}) = \sum_{i=1}^{2g-2+n} l_{R_i^{X'}}(\alpha_i^{XX'}) \leq C l_X(\alpha^X) = C l_X([\alpha]),
\]

and

\[
l_X([\alpha]) = l_X'(\alpha^X') = \sum_{i=1}^{2g-2+n} l_{R_i^{X'}}(\alpha_i^{X'}) \geq C l_X(\alpha^{X'Y'}) = C l_X([\alpha]),
\]

where \(C = \max\{C_1, C_2, C_3\} \) and \(C_1, C_2, C_3 \) are the constants in Lemma 5.5. Moreover \(C \to 1 \), as \(\Lambda \to 0 \).

\[\Box\]

6. Almost-isometry between \(\mathcal{T}_{g,n}(\Lambda) \) and \(\mathcal{T}_{g,n}(0) \)

In this section, we prove Theorem D.

Theorem D (Almost-isometry). Suppose \(\Lambda \in (-\pi, \infty)^n \) and that \(S \) is a non-exceptional surface. Then \(F_{\Gamma, B, \Lambda} : \mathcal{T}_{g,n}(\Lambda) \to \mathcal{T}_{g,n}(0) \) is an
almost-isometry, i.e. there is a constant C depending only on Λ such that
\[d_{Th}(X_1', X_2') - C \leq d_{Th}(X_1, X_2) \leq d_{Th}(X_1', X_2') + C, \]
for any $X_1, X_2 \in T_{g,n}$, where $X_1' = F_{\Gamma, \Lambda}(X_1)$ and $X_2' = F_{\Gamma, \Lambda}(X_2)$. Moreover, $C \to 0$, as $\Lambda \to 0$.

Proof. It follows from Theorem B that
\[
\begin{align*}
d_{Th}(X_1, X_2) &= \sup_{[\alpha] \in S(S)} \log \frac{l_{X_2}([\alpha])}{l_{X_1}([\alpha])} \\
&\leq \sup_{[\alpha] \in S(S)} \log \frac{C l_{X_1'}([\alpha])}{C^{-1} l_{X_1}'([\alpha])} \\
&= d_{Th}(X_1', X_2') + 2 \log C,
\end{align*}
\]
and
\[
\begin{align*}
d_{Th}(X_1, X_2) &= \sup_{[\alpha] \in S(S)} \log \frac{l_{X_2}([\alpha])}{l_{X_1}([\alpha])} \\
&\geq \sup_{[\alpha] \in S(S)} \log \frac{C^{-1} l_{X_1'}([\alpha])}{C l_{X_1}([\alpha])} \\
&= d_{Th}(X_1', X_2') - 2 \log C.
\end{align*}
\]

It follows from Remark 3 that the map $F_{\Gamma, B, \Lambda}$ is independent of B. Instead, it depends on the choice of Γ, but the images of $X \in T_{g,n}(\Lambda)$ under different pants-compositions Γ, Γ' stay within a bounded distance, i.e.
\[
d_{Th}(F_{\Gamma, B, \Lambda}(X), F_{\Gamma', B', \Lambda}(X)) \leq 2C,
\]
where B' is a collection of seams with respect to Γ'.

Indeed, it follows from Theorem B that for any non-peripheral simple closed curve α, we have
\[
\frac{1}{C} \leq \frac{l_{\alpha}}{l_{F_{\Gamma, B, \Lambda}(X)}([\alpha])} \leq C,
\]
and
\[
\frac{1}{C} \leq \frac{l_{\alpha}}{l_{F_{\Gamma', B', \Lambda}(X)}([\alpha])} \leq C,
\]
where C is the constant from Theorem B. Hence,
\[
\frac{1}{C} \leq \frac{l_{F_{\Gamma, B, \Lambda}(X)}([\alpha])}{l_{F_{\Gamma', B', \Lambda}(X)}([\alpha])} \leq C,
\]
which induces
\[d_{Th}(F_{\Gamma, B, \Lambda}(X), F_{\Gamma', B', \Lambda}(X)) \leq 2C. \]

Besides, the composition map \(F_{\Gamma, B, \Lambda} \circ F_{\Gamma', B', \Lambda}^{-1} : \mathcal{T}_{g,n}(0) \to \mathcal{T}_{g,n}(0) \) defines an almost-isometry from \(\mathcal{T}_{g,n}(0) \) to itself.

7. Basic properties of \(\mathcal{T}_{g,n}(\Lambda) \)

In this section, we suppose that \(\Lambda \in (-\pi, \infty)^n \) and that the surfaces are admissible.

7.1. Topology on \(\mathcal{T}_{g,n}(\Lambda) \).

From the discussions in sections §2-§4, we know that the Teichmüller space \(\mathcal{T}_{g,n}(\Lambda) \) can be equipped with the following topologies:

- the topology induced from the functional space \(\mathbb{R}_+^5 \) over the space of isotopy classes of non-peripheral simple closed curves, where \(\mathbb{R}_+^5 \) is endowed with the weak topology;
- the topology induced from the Fenchel-Nielsen coordinates;
- the topology induced from the Thurston metric.

It follows from Theorem 4.1 that the first topology and the second topology are equivalent. The equivalence between the first topology and the third topology can be obtained from Theorem E.

7.2. Metric properties of \((\mathcal{T}_{g,n}(\Lambda), d_{Th}) \).

Let \(\tilde{d}_{Th}(X_1, X_2) \triangleq d_{Th}(X_2, X_1) \) and \(d_{sym}(X_1, X_2) \triangleq d_{Th}(X_1, X_2) + d_{Th}(X_2, X_1) \). We have the following basic properties.

Proposition 7.1. Suppose \(\Lambda \in (-\pi, \infty)^n \) and that \(S \) is a non-exceptional surface. Let \((\mathcal{T}_{g,n}(\Lambda), d_{Th}) \) be endowed with the topology induced by the metric \(d_{Th} \). Then

(a) \(d_{Th} \) is a proper metric on \(\mathcal{T}_{g,n}(\Lambda) \).
(b) \((\mathcal{T}_{g,n}(\Lambda), d_{Th}) \) is a geodesic metric space.
(c) The topologies on \(\mathcal{T}_{g,n}(\Lambda) \) defined by \(d_{Th} \), \(\tilde{d}_{Th} \) and \(d_{sym} \) are the same,

i.e. \(d_{Th}(X, X_n) \to 0 \iff d_{Th}(X_n, X) \to 0 \) as \(n \to \infty \).

Proof. (a) Since \(\mathcal{T}_{g,n}(\Lambda) \) is homeomorphic to \((-\pi, \infty)^n \times \mathbb{R}_+^{3g-3+n} \times \mathbb{R}_+^{3g-3+n} \), a subset of \(\mathcal{T}_{g,n}(\Lambda) \) is compact if and only if it is closed and bounded. It follows that \(d_{Th} \) is a proper metric.

(b) Suppose \(X_1, X_2 \in \mathcal{T}_{g,n}(\Lambda) \), it follows from (a) that the ball \(\{X \in \mathcal{T}_{g,n}(\Lambda) : d(X_1, X) \leq d(X_1, X_2)\} \) is a compact subset of \(\mathcal{T}_{g,n}(\Lambda) \). Now the existence of a geodesic connecting \(X_1 \) and \(X_2 \) in \(\{X \in \mathcal{T}_{g,n}(\Lambda) : d(X_1, X) \leq d(X_1, X_2)\} \) is a standard argument by applying the Ascoli-Arzela Theorem (see §1.6 in [1] for instance).
(c) The proof is similar to that in [12] and [19].

7.3. The Thurston’s boundary of $\mathcal{T}_{g,n}(\Lambda)$. A measured geodesic lamination is a geodesic lamination equipped with a transverse invariant measure (see [21] for the precise definition of measured laminations). The simplest example of a measured geodesic lamination is a weighted simple closed curve. A measured geodesic lamination (L, λ) can be viewed as a functions on the set of isotopy classes of non-peripheral simple closed curves via:

$$i_{(L, \lambda)} : \mathcal{S}(S) \longrightarrow [0, \infty)$$

$$[\alpha] \longmapsto \inf_{\bar{\alpha} \in [\alpha]} \lambda(\bar{\alpha}).$$

The value $\inf_{\bar{\alpha} \in [\alpha]} \lambda(\bar{\alpha})$ is called the intersection number of (L, λ) and $[\alpha]$. From now on, for simplicity, we just write λ instead of (L, λ) and denote the intersection number between λ and $[\alpha]$ by $i(\lambda, [\alpha])$.

Two measured geodesic laminations λ' and λ are called equivalent if $i(\lambda, [\alpha]) = i(\lambda', [\alpha])$ for all $[\alpha] \in \mathcal{S}(S)$. Denote by $\mathcal{ML}(S)$ the space of equivalence classes of measured geodesic laminations. The definition of intersection number induces an embedding of $\mathcal{ML}(S)$ into \mathbb{R}^S_+, the functional space of $\mathcal{S}(S)$. Let $\mathcal{PML}(S) \triangleq \mathcal{ML}(S)/\mathbb{R}_+$ be the projection of $\mathcal{ML}(S)$.

Theorem 7.2 ([7] The Thurston’s boundary of $\mathcal{T}_{g,n}(0)$). Let Ψ_0 and Π be the maps defined as following:

$$\Psi_0 : \mathcal{T}_{g,n}(0) \longrightarrow \mathbb{R}^S_+$$

$$X \longmapsto (l_X([\alpha]))_{\alpha \in \mathcal{S}(S)},$$

and

$$\Pi : \mathbb{R}^S_+ \longrightarrow \mathcal{P}\mathbb{R}^S_+$$

$$(s_\alpha)_{\alpha \in \mathcal{S}(S)} \longmapsto [(s_\alpha)_{\alpha \in \mathcal{S}(S)}].$$

Then

(a) both Ψ_0 and $\Pi \circ \Psi_0$ are embeddings, where $\mathcal{T}_{g,n}(0)$ is equipped with the topology induced by d_{Th} and \mathbb{R}^S_+ is equipped with the weak topology, i.e. the pointwise convergence topology;

(b) the boundary of $\mathcal{T}_{g,n}(0)$ in $\mathcal{P}\mathbb{R}^S_+$ is the projection of the space of measured lamination, i.e. $\partial_{Th} \mathcal{T}_{g,n}(0) = \mathcal{PML}(S)$.

Theorem E (The Thurston’s boundary). Suppose $\Lambda = (\lambda_1, ..., \lambda_n) \in (-\pi, \infty)^n$ and that S is a non-exceptional surface. Let Ψ_Λ and Π be the maps defined below:

$$\Psi_\Lambda : \mathcal{T}_{g,n}(\Lambda) \longrightarrow \mathbb{R}^S_+$$

$$X \longmapsto (l_X([\alpha]))_{\alpha \in \mathcal{S}(S)},$$

and

$$\Pi : \mathbb{R}^S_+ \longrightarrow P\mathbb{R}^S_+$$

$$(s_\alpha)_{\alpha \in \mathcal{S}(S)} \longmapsto [(s_\alpha)_{\alpha \in \mathcal{S}(S)}].$$

Then the followings hold.

(a) Both Ψ_Λ and $\Pi \circ \Psi_\Lambda$ are embeddings, where $\mathcal{T}_{g,n}(\Lambda)$ is equipped with the topology induced by d_{Th} and \mathbb{R}^S_+ is equipped with the weak topology, i.e., the pointwise convergence topology;

(b) Denote by $\partial \mathcal{T}_{g,n}(\Lambda)^{Th}$ the closure of $\mathcal{T}_{g,n}(\Lambda)$ in $P\mathbb{R}^S_+$. $\mathcal{T}_{g,n}(\Lambda) \ni X_n \longrightarrow \xi \in \partial \mathcal{T}_{g,n}(\Lambda)^{Th} \iff \mathcal{T}_{g,n}(\Lambda) \ni F_{\Gamma,\Lambda}(X_n) \longrightarrow \xi \in \mathcal{PML}(S)$, as a result, the boundary of $\mathcal{T}_{g,n}(\Lambda)$ in $P\mathbb{R}^S_+$ is the projection of the space of measured lamination, i.e., $\partial \mathcal{T}_{g,n}(\Lambda)^{Th} = \mathcal{PML}(S)$.

Proof. (a) Suppose that there is at least one cone point on the surface which we denote by Δ_3. The proof is almost exactly as it is for Theorem 7.2 with the addition that injectivity of Ψ_Λ follows from Theorem 4.1 and the injectivity of $\Pi \circ \Psi_0$ requires a new argument. Our discussion is divided into two cases.

Case A. S has at least two generalized boundary components, say Δ_2, Δ'_2. Since S is a non-exceptional surface, there is a generalized X-piece on S such that Δ_2, Δ'_2 are its two generalized boundary components, and the remaining two generalized boundary components, denoted by Δ_3, Δ'_3 are geodesic boundaries. Without loss of generality, we assume that Δ_2, Δ'_2 are cone points. Let γ be a waist of this X-piece and δ be a simple closed curve which separates Δ_2, Δ'_2 from Δ_3, Δ'_3. Let β (resp. β') be a simple arc connecting Δ_2 and Δ'_2 which sits on the pants bounded by Δ_2, Δ'_2 and δ (connecting Δ_3 and Δ'_3 which sits on the pants bounded by Δ_3, Δ'_3 and δ). Hence $\{\delta, \beta, \beta'\}$ consists a coordinate system of curves which gives a Fenchel-Nilsen coordinates of X. Let δ_n be a simple closed curve obtained from δ by n times Dehn twist along γ. Denote by a_2 (resp. a'_2) the geodesic arc perpendicular to both Δ_2 and γ (resp. Δ'_2 and γ).
Combining (8) and (10), we have the following formula
\begin{equation}
\cosh \frac{t_X([\delta_n])}{2} = \sin(\frac{|\lambda_2|}{2}) \sin(\frac{|\lambda_2'|}{2}) \{ \cosh |a_2| \cosh |a_2'| \cosh(t + n)l_X([\gamma]) \\
+ \sinh |a_2| \sinh |a_2'| \} - \cos(\frac{|\lambda_2'|}{2}) \cos(\frac{|\lambda_2|}{2}),
\end{equation}
where \(t \) represents the twist of \(X \) with respect to \{\delta, \beta, \beta'\}.

So we have
\begin{equation}
\lim_{n \to \infty} \frac{\cosh \frac{t_X([\delta_n])}{2}}{\cosh n l_X([\gamma])} = \sin \frac{|\lambda_2|}{2} \sin \frac{|\lambda_2'|}{2} \cosh |a_2| \cosh |a_2'|,
\end{equation}
where \(|\lambda_2|, |\lambda_2'|\) represent the cone angles at \(\Delta_2, \Delta_2' \), respectively.

Hence
\begin{equation}
\lim_{n \to \infty} e^{\frac{t_X([\delta_n])}{2} - n l_X([\gamma])} = \sin \frac{|\lambda_2|}{2} \sin \frac{|\lambda_2'|}{2} \cosh |a_2| \cosh |a_2'|.
\end{equation}
The left side and the right side of (30) can be viewed as two functions over \(\mathcal{T}_{g,n}(\Lambda) \). Denote these two functions by \(F(X), G(X) \) respectively. It follows from (30) that
\begin{equation}
\sinh |a_2| = \frac{\cos \frac{|\lambda_2|}{2} + \cos \frac{|\lambda_2'|}{2} \cosh \frac{t_X([\gamma])}{2}}{\sin \frac{|\lambda_2|}{2} \sin \frac{t_X([\gamma])}{2}},
\end{equation}
which means that \(|a_2|\) is a decrease function of \(l_X([\gamma]) \). Similarly, \(|a_2'|\) is a decrease function of \(l_X([\gamma]) \). Therefore \(G(X) \) is a decrease function of \(l_X([\gamma]) \). If there were \(X, X' \in \mathcal{T}_{g,n}(\Lambda) \) and \(k > 1 \) such that \(l_{X'}([\alpha]) = kl_X([\alpha]) \) holds for any \([\alpha] \in S(S)\), then \(F(X') > F(X) \). On the other hand, \(G(X) \) is a decrease function of \(l_X([\gamma]) \), then \(G(X') < G(X) \) (note that \(|\lambda_2'|\) and \(|\lambda_2|\) are fixed). But this is impossible since \(F(X) = G(X) \) for any \(X \in \mathcal{T}_{g,n}(\Lambda) \).

Case B. The surface \(S \) has only one generalized boundary component. In this case, if \(S \) has genus at least two, we can choose two non-peripheral simple closed curves \(\gamma_1, \gamma_2 \) which cut \(S \) into two pieces, one of which, say \(S_1 \), has one genus and two geodesic boundary components. Let \(X' \) be the restriction of \(X \) on \(S_1 \). \(X' \) is a hyperbolic surface. Following the method used in the proof of [7, Prop.7.12], we obtain the injection of \(\Pi \circ \Phi \). It remains to consider the case that \(S \) is a torus with only one generalized boundary component \(\Delta_3 \). Let \(\gamma, \beta \) be two simple closed curves on \(S \) such that \(i([\alpha], [\beta]) = 1 \) (see Fig. 5(a)), and let \(\beta_n \) be the simple closed curve obtained from \(\beta \) by \(n \) times Dehn twist along \(\gamma \). From (21), we have
\begin{equation}
\lim_{n \to \infty} e^{t_X([\beta_n]) - n l_X([\gamma])} = \frac{\cosh^2 \frac{t_X([\gamma])}{2} + \cos \frac{|\lambda_2|}{2}}{\sinh^2 \frac{t_X([\gamma])}{2}},
\end{equation}
which also implies that there is no \(X' \in T_{g,n}(\Lambda)\) and \(k > 0\) such that \(l_{X'}(\alpha) = kl_X(\alpha)\) for any \(\alpha \in S(S)\) (note that \(|\lambda_3|\) is fixed).

(b) Suppose that \(T_{g,n}(\Lambda) \ni X_n \rightarrow \xi \in \partial T_{g,n}(\Lambda)^{Th}\), then for any given \(\alpha \in S(S)\) there exists \(t_n > 0\) such that \(t_n l_{X_n}(\alpha) \rightarrow \xi(\alpha)\) as \(n \rightarrow \infty\).

We claim that \(t_n \rightarrow 0\) as \(n \rightarrow \infty\). Note that \(X_n\) leaves every compact subset of \(T_{g,n}(\Lambda)\), it follows from the properness of \(\Psi\) that there is at least one \(\alpha \in S(S)\) such that \(l_{X_n}(\alpha) \rightarrow \infty\) as \(n \rightarrow \infty\), which proves the claim since \(t_n l_{X_n}(\alpha) \rightarrow \xi(\alpha)\) for a finite number \(\xi(\alpha)\).

Combining this with the estimates in Theorem B, we have

\[
\lim_{n \rightarrow \infty} t_n l_{F_{\Gamma,\Lambda}(X_n)}(\alpha) = \lim_{n \rightarrow \infty} t_n l_{X_n}(\alpha) + \lim_{n \rightarrow \infty} t_n [l_{F_{\Gamma,\Lambda}(X_n)}(\alpha) - l_{X_n}(\alpha)] = \lim_{n \rightarrow \infty} t_n l_{X_n}(\alpha) = \xi(\alpha),
\]

which means that \(F_{\Gamma,\Lambda}(X_n) \rightarrow \xi\) as \(n \rightarrow \infty\). From Theorem 7.2 we get \(\partial T_{g,n}(0)^{Th} = \mathcal{PML}(S)\). Therefore \(F_{\Gamma,\Lambda}(X_n) \rightarrow \xi \in \mathcal{PML}(S)\). By interchanging the roles of \(X_n\) and \(F_{\Gamma,\Lambda}(X_n)\), we get the inverse direction statement, that is, if \(F_{\Gamma,\Lambda}(X_n) \rightarrow \xi \in \mathcal{PML}(S)\), then \(X_n \rightarrow \xi \in \partial T_{g,n}(\Lambda)^{Th}\).

\[
\square
\]

REFERENCES

[1] Buser P., Geometry and spectra of compact Riemann surfaces. Reprint of the 1992 edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2010.
[2] Casson A. and Bleiler S. A., Automorphisms of surfaces after Nielsen and Thurston, Cambridge University Press, 1988.
[3] Choi Y. and Rafi K., Comparison between Teichmüller and Lipschitz metrics. J. Lond. Math. Soc. (2) 76, no. 3, 739-756 (2007).
[4] Cooper D., Hodgson C. D. and Kerckhoff S. P., Three-dimensional orbifolds and cone-manifolds. MSJ Memoirs, 5. Mathematical Society of Japan, Tokyo, 2000.
[5] Dryden E. B. and Parlier H., Collars and partitions of hyperbolic cone-surfaces. Geom. Dedicata 127 , 139-149 (2007).
[6] Farb B. and Margalit D., A primer on mapping class groups, Princeton Mathematical Series Vol. 49, Princeton University Press, 2012.
[7] Fathi A., Laudenbach F. and Poénaru V., Thurston’s work on surfaces, translated from French by Djun Kim and Dan Margalit, Mathematical Notes, Princeton University Press, 2013.
[8] Fenchel W., Elementary geometry in hyperbolic space. de Gruyter Studies in Mathematics, 11. Walter de Gruyter Co., Berlin, 1989.
[9] Hamenstädt U., Length functions and parameterizations of Teichmüller space for surfaces with cusps. Ann. Acad. Sci. Fenn. Math. 28, no. 1, 75-88 (2003).
[10] Hamenstädt U., Parametrizations of Teichmüller space and its Thurston boundary. Geometric analysis and nonlinear partial differential equations, 81–88, Springer, Berlin, 2003.
[11] Husemoller D., Fiber bundles, third edition, Graduate Texts in Mathematics, Vol 20, Springer, 1993.
[12] Liu L., On the metrics of length spectrum in Teichmüller space, Chinese J. Contemp. Math. 22(1),31-36 (1999).
[13] Liu L., The non-quasi-isometry of the Teichmüller metric and the Thurston pseudometric. (Chinese) Chinese Ann. Math. Ser. A 20 (1999), no. 1, 67–70; translation in Chinese J. Contemp. Math. 20 (1999), no. 1, 31-36
[14] Liu L., Papadopoulos A., Su W. and Théret G., On length spectrum metrics and weak metrics on Teichmüller spaces of surfaces with boundary. Ann. Acad. Sci. Fenn. Math. 35, no. 1, 255-274 (2010).
[15] Liu L., Papadopoulos A., Su W. and Théret G., On the classification of mapping class actions on Thurston’s asymmetric metric. Math. Proc. Cambridge Philos. Soc. 155, no. 3, 499-515 (2013).
[16] Luo F. and Stong R., Lengths of simple loops on surfaces with hyperbolic metrics, Geometry & Topology 6 (2002), no. 2, 495C521.
[17] Papadopoulos A. and Su W., Thurston’s metric on Teichmüller space and the translation lengths of mapping classes, arXiv:1509.06499
[18] Papadopoulos A. and Su W., On the Finsler structure of Teichmüller’s metric and Thurston’s metric. Expo. Math. 33, no. 1, 30-47 (2015).
[19] Papadopoulos A. and Théret G., On the topology defined by Thurston’s asymmetric metric. Math. Proc. Cambridge Philos. Soc. 142, no. 3, 487-496 (2007).
[20] Papadopoulos A. and Théret G., On Teichmüller’s metric and Thurston’s asymmetric metric on Teichmüller space. Handbook of Teichmüller theory. Vol. I, 111-204, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007.
[21] Penner R. C. and Harer J. L., The combinatorics of train tracs. Ann. of Math. stud. 125, Princeton University Press, 1992.
[22] Schnutz P., Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen. (German) [The parametrization of Teichmüller space by geodesic length functions] Comment. Math. Helv. 68, no. 2, 278-288 (1993).
[23] Seppälä M. and Sorvali T., On geometric parametrization of Teichmüller spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 515-526 (1985).
[24] Seppälä M. and Sorvali T., Parametrization of Teichmüller spaces by geodesic length functions. Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986), 267–284, Math. Sci. Res. Inst. Publ., 11, Springer, New York, 1988.
[25] Sun Z., Marked length spectra and areas of non-positively curved cone metrics, Geom. Dedicate 178, 189-194 (2015).
[26] Tan S. P., Wong, Y. L. and Zhang, Y., Generalizations of McShanes identity to hyperbolic cone-surfaces. J. Diff. Geom., 72, 73-112 (2004).
[27] Théret G., À propos de la métrique asymétrique de Thurston sur l’espace de Teichmüller d’une surface. [Asymmetric Thurston metric on the Teichmüller space...
of a surface} Thèse, Université Louis Pasteur (Strasbourg I), Strasbourg, 2005. Prépublication de l’Institut de Recherche Mathématique Avancée [Prepublication of the Institute of Advanced Mathematical Research], 2005/8. Université Louis Pasteur. Institut de Recherche Mathématique Avancée, Strasbourg (2005).

[28] Thurston W. P., Minimal stretch maps between hyperbolic surfaces, preprint, arXiv:math/9801039v1.

[29] Walsh C., The horoboundary and isometry group of Thurston’s Lipschitz metric. Handbook of Teichmüller theory. Vol. IV, 327C353, IRMA Lect. Math. Theor. Phys., 19, Eur. Math. Soc., Zürich, 2014.

[30] Wu Y., Whirly 3-Interval Exchange Transformations, arXiv:1403.6568

School of Mathematical Science, Fudan University, 200433, Shanghai, P. R. China

E-mail address: panhp@fudan.edu.cn