Excessive cocaine use results from decreased phasic dopamine signaling in the striatum

Ingo Willuhn1–3, Lauren M Burgeno1,2, Peter A Groblewski2 & Paul E M Phillips1,2

Drug abuse is closely linked to the release of dopamine in the striatum1–2. However, drug use–related changes in dopamine neurotransmission vary in duration and subregion3–5. Slow increases in the extracellular concentration of dopamine in the VMS, stimulated by many drugs of abuse, including cocaine6, are assumed to reflect the reinforcing properties of drugs7, as animals regulate their rate of cocaine self-administration to maintain an elevated ambient dopamine concentration8. Within the VMS, overlapping putative roles of dopamine signaling in the core and shell subregions of the nucleus accumbens have been reported, but with an emphasis on the shell for mediating primary drug reward and the core for acting as a substrate of dopamine signaling in the core and shell subregions of the nucleus accumbens1,17, with an emphasis of shift from the limbic (VMS) to the lateral striatum, DLS)13, a striatal subregion that has been linked to the development of habitual and compulsive drug seeking14–16. Thus, the progression of drug taking beyond recreational use is considered to reflect the engagement of dopamine signaling in different striatal subregions1,17, with an emphasis of shift from the limbic (VMS) to the sensorimotor (DLS) striatum during the development of established drug-seeking behavior1,18. However, it is not known whether encoding of drug-related actions or stimuli by phasic dopamine changes as moderate drug-taking behavior escalates.

Rodent models that are deemed to best capture the transition from moderate drug use to addiction use protracted access to the drug19,20, such as extending access from 1 h (short access, ShA) to 6 h (long access, LgA) per day for a period of weeks21. Such a drug self-administration regimen is capable of producing escalated21 and compulsive22 drug seeking, among other cardinal symptoms that characterize substance dependence in humans23. Here we tested how LgA to cocaine affects the regional dynamics of phasic dopamine signaling in the striatum, previously characterized during stable ShA drug use13, to gain a better comprehension of the neurobiological mechanisms underlying escalation of drug use.

RESULTS

Phasic dopamine in the striatum diminishes during LgA

Male Wistar rats with indwelling intravenous catheters were trained to self-administer cocaine during daily ShA sessions and, after learning this operant behavior, were switched to LgA sessions in chambers equipped with two nose-poke ports. A nose poke into the active port elicited an infusion of cocaine (0.5 mg per kg body weight per infusion) and 20-s presentation of a light-tone stimulus on a fixed-interval (FI) 20 schedule of reinforcement. Responses in the second (inactive) nose-poke port, or in the active port during stimulus presentation (20-s time-out), were without programmed consequence. For purposes of reporting, nose-poke responses in the active port outside the time-out period (that is, those that elicited a cocaine infusion) are referred to as "active nose pokes" and those in the inactive port outside the time-out period as "inactive nose pokes." The number of active nose pokes significantly exceeded inactive nose pokes (main effect of nose-poke port, F1,23 = 383.2, P < 0.001; Fig. 1) during each week (P < 0.001). After the switch from ShA to LgA, cocaine intake significantly increased over time (main effect of week, F3,69 = 25.50, P < 0.001; Fig. 1), as consistently reported by many others24.

To assess the long-term dynamics of dopamine transmission, longitudinal neurochemical recordings were carried out simultaneously in the nucleus accumbens core of the VMS and in the DLS at chronically implanted microsensors25 using fast-scan cyclic voltammetry (see Supplementary Fig. 1 for histological verification of electrode placement). In the first week of LgA, we observed a transient increase...
in extracellular dopamine concentration in VMS following active responses ($P < 0.001$; Fig. 2a). This pattern of activation declined during LgA; dopamine release in the third week was significantly smaller than in the first ($P < 0.001$) and second ($P = 0.030$) weeks (main effect of week, $F_{2,72} = 10.23$, $P < 0.001$; Fig. 2b). Phasic dopamine release in the DLS emerged in the second week ($P = 0.006$; Fig. 2c) but was absent in the third week of LgA (main effect of week, $F_{2.51} = 3.474$, $P = 0.039$; active poke \times week interaction, $F_{2.51} = 4.021$, $P = 0.024$; Fig. 2c). These data show that phasic dopamine signals in VMS and DLS emerge sequentially at different stages of drug taking, similarly to what we reported for a ShA regimen\cite{13}. However, this signaling diminished in both regions over the course of LgA, a period over which it is known that the pharmacokinetics of intravenously administered cocaine do not change\cite{26,27}.

Decrement in VMS dopamine correlates with drug intake

To test the relationship between the loss of dopamine signaling and escalation of drug consumption, we took advantage of individual differences in susceptibility to escalation of drug self-administration during the LgA regimen by separating animals into two groups depending on whether they exhibited significant escalation as based on linear regression of drug consumption over LgA sessions or not (Fig. 3a,b). Validation of this separation of animals demonstrated that non-escalated rats showed no significant increase in active nose pokes over the course of 3 weeks of LgA (main effect of week, $F_{2.51} = 0.633$, $P = 0.542$; Fig. 3b, left), whereas escalated rats increased their intake significantly (main effect of week, $F_{2.26} = 14.83$, $P < 0.001$; Fig. 3b, right; intake \times week interaction, $F_{3.44} = 4.674$, $P = 0.014$), making more active nose pokes than non-escalated animals during the third LgA week ($t_{2.2} = 2.307$, $P = 0.031$; Fig. 3b). Notably, escalated animals displayed an increased motivation to obtain cocaine, as demonstrated in a progressive-ratio task ($P = 0.028$; Supplementary Fig. 2). In escalated rats, there was a significant decline in dopamine release in the VMS (main effect of week, $F_{2.51} = 15.51$, $P < 0.001$; Fig. 3c, right, and Supplementary Fig. 3a). However, VMS dopamine release was stable in non-escalated rats (main effect of week, $F_{1.18} = 0.057$, $P = 0.945$; Fig. 3c, left, and Supplementary Fig. 4a), conferring significantly more phasic dopamine in the third week than in escalated rats (main effect of intake, $F_{1.69} = 6.444$, $P = 0.013$; Fig. 3d, left; intake \times week interaction, $F_{1.70} = 4.303$, $P = 0.042$). This difference in dopamine release between escalated and non-escalated rats was evident throughout the entire 6 h of self-administration ($t_{1.3} = 2.599$, $P = 0.013$). This difference did not result from a general decline in dopamine function in escalated animals, as dopamine release following non-contingent, experimenter-induced infusions of cocaine did not differ between non-escalated and escalated animals ($P = 0.605$; Supplementary Fig. 5a).

In contrast to the maintained phasic dopamine release in the VMS of non-escalating rats, we previously reported that there was a decrease in dopamine release in animals that had undergone 3 weeks of ShA of only 1 h per daily session\cite{13}. Therefore, we carried out further analyses on the data obtained from these ShA rats to permit a detailed characterization of the relationship between dopamine function and drug intake across animals who had undergone ShA or LgA cocaine self-administration. While there was not a significant escalation of the mean drug consumption across animals during ShA, there were individual differences, with a subset of animals (6 of 16) exhibiting significant escalation of drug intake over 3 weeks of ShA cocaine self-administration. Interestingly, VMS phasic dopamine in the third week of ShA cocaine self-administration in the group of animals who maintained stable drug consumption (that is, did not exhibit

Figure 1 Escalation of drug taking over the course of weeks. (a) Nose pokes into the active (filled circles) and inactive (open circles) ports (excluding pokes inside the time-out period) over 5 d of ShA training (gray background) and the first hour of 15 d of LgA (white background) cocaine self-administration ($n = 24$ rats). (b) The number of active nose pokes (filled bars) increased significantly across weeks (training versus first week, $P = 0.006$; first versus second week, $P = 0.003$; second versus third week, $P = 0.013$), whereas the number of inactive responses (open bars) remained stable. Data are mean \pm s.e.m. *$P < 0.05$, **$P < 0.01$, post hoc two-sided t-tests following two-way ANOVA.

Figure 2 Dopamine signaling in VMS and DLS over the course of weeks. A nose poke (dashed line) into the active port elicited an infusion of cocaine (0.5 mg/kg per infusion) paired with the presentation of an audiovisual stimulus (yellow box) during a 20-s time-out. (a) Phasic dopamine release in VMS following active nose-poke responses was observed during the first and second, but not third, weeks of LgA cocaine self-administration (first hour; $n = 18$ electrodes). (b) The average amplitude of dopamine release decreased over the course of weeks (first versus third week, $P < 0.001$; second versus third week, $P = 0.030$). (c) Phasic dopamine release in DLS following active nose-poke responses was observed during the second week of cocaine self-administration only (first hour; $n = 18$ electrodes). (d) Dopamine releases in the second week were greater in amplitude than those in the first and third weeks (first versus second week, $P = 0.014$; second versus third week, $P = 0.020$). Data are mean \pm s.e.m. *$P < 0.05$, **$P < 0.01$, ***$P < 0.001$, post hoc two-sided t-tests following two-way ANOVA.
significant escalation) was not significantly different from that of non-escalated animals in the third week of LgA (P = 0.741; Supplementary Fig. 5b). Animals that escalated their drug intake under ShA conditions exhibited lower rates of drug consumption (32.7 ± 3.9 versus 43.9 ± 3.1 infusions in the first hour, P = 0.017) and less attenuated dopamine release (P = 0.049; Supplementary Fig. 5b) than animals that escalated their intake under LgA conditions. Nonetheless, there was a nonsignificant trend for decreased VMS dopamine compared to that in their non-escalating counterparts (P = 0.094) and no significant interaction for dopamine release over time between ShA and LgA escalating rats (no intake × regimen interaction, F_{1,59} = 0.111, P = 0.740; Supplementary Fig. 5b).

Given these individual differences, we carried out regression analysis across all of the ShA and LgA rats to test for a direct relationship between dopamine levels and the escalation of drug taking, in a manner that the slope of escalation and dopamine release was detected in VMS, but not in DLS (ShA gray circles and LgA colored circles) rats pooled. Data are mean ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001, post hoc two-sided t-tests following ANOVA.

In contrast to that in the VMS, response-contingent dopamine release in the DLS did not differ between escalated and non-escalated LgA animals (main effect of intake, F_{1,43} = 0.472, P = 0.496; Fig. 3d, right, and Supplementary Figs. 3b and 4b), nor was there a significant relationship between the slope of escalation and dopamine release across animals that underwent ShA or LgA cocaine self-administration (r = −0.112, P = 0.649; Fig. 3e, right). Thus, whereas dopamine in the VMS correlated with the escalation of drug taking, we did not observe a similar correlation in the DLS, a brain region that has been widely associated with extended drug self-administration.14,16,18

L-DOPA restores VMS dopamine and de-escalates drug taking

Given this provocative correlation between neurochemistry and behavior, we hypothesized that the decline in phasic dopamine signaling was causal in producing escalation of drug taking, in a manner...
Figure 4 l-DOPA decreases escalated drug intake by replenishing VMS dopamine release. (a) Schematic of findings posing the question of whether l-DOPA will normalize LgA-induced escalation of drug-taking behavior by correcting the observed neurochemical deficit. Esc, escalation. (b) Escalated rats received an intravenous injection of the dopamine precursor l-DOPA (0, 10, 30, and 90 mg/kg) and DOPA decarboxylase inhibitor benserazide (2 mg/kg) 30 min before a self-administration session during the third week of LgA. (c,d) Administration of l-DOPA (30 mg/kg) and benserazide (2 mg/kg) restored escalation-related decremented phasic dopamine release in the VMS following active nose-poke responses. (e) l-DOPA infused into the VMS of escalated rats was effective at reducing drug consumption. Veh, vehicle control. Data are mean + s.e.m. *P < 0.05, **P < 0.001, one-sided t-tests or post hoc Newman-Keuls.

Figure 5 l-DOPA prevents and reverses the escalation of drug intake. (a) Animals were trained to self-administer cocaine (ShA) and subsequently either switched to LgA or remained on ShA (n = 57 rats). Rats that received an intravenous injection of the dopamine precursor l-DOPA (30 mg/kg) before each LgA session during the first and second weeks (open purple circles) did not escalate their drug intake (first hour) compared to animals that received vehicle (filled purple circles). Upon cessation of l-DOPA treatment (third week), we observed no differences between these LgA groups. l-DOPA-induced changes in drug intake of ShA rats (orange circles) were not significant. (b) In another experiment, animals were trained to self-administer cocaine (ShA) and subsequently were either switched to LgA or remained on ShA (n = 55 rats). LgA-trained animals (purple circles) showed a significant increase in cocaine use compared to ShA-trained animals (orange circles) during the second week. During the third week, a subset of rats was treated with l-DOPA. In LgA animals (open purple circles), l-DOPA treatment decreased escalated cocaine intake. In ShA animals (open orange circles), l-DOPA treatment did not yield a significant change. (c) The differential effect of l-DOPA on active nose pokes (b) was more robust when animals were divided into escalated and non-escalated groups, instead of ShA and LgA. Data are mean + s.e.m. NS, P ≥ 0.05; *P < 0.05; **P < 0.01; post hoc two-sided t-tests following two-way ANOVA.
regimen, \(F_{1,53} = 5.968, P = 0.018\); Fig. 5a), with decreased cocaine intake in LgA animals \((P = 0.004)\) but not ShA animals \((P = 0.170; \) Fig. 5a), and without effect on inactive nose pokes \((\text{LgA}, P = 0.202; \text{ShA}, P = 0.101; \text{data not shown})\). Therefore, the l-DOPA treatment was effective at preventing escalation of drug consumption during LgA. However, upon treatment cessation, this effect did not endure \((P = 0.789; \) Fig. 5a). Second, we repeatedly administered l-DOPA on consecutive days in animals with established escalated drug consumption. Animals were trained to stably self-administer cocaine and subsequently were either switched to LgA or remained on ShA for 3 weeks. These animals were then treated with l-DOPA or saline before self-administration sessions in the third week (Fig. 5b). LgA-trained animals showed a significant increase in cocaine use during the first 2 weeks as compared to ShA-trained animals (main effect of regimen, \(F_{1,51} = 15.71, P < 0.001; \text{data not shown})\). l-DOPA treatment produced a regimen-specific effect (main effect of treatment, \(F_{1,51} = 5.303, P = 0.025; \text{main effect of regimen, } F_{1,51} = 11.88, P = 0.001; \) Fig. 5b), decreasing cocaine intake in LgA animals \((P = 0.048)\) but not ShA animals \((P = 0.210; \) Fig. 5b) without affecting inactive responding \((\text{LgA}, P = 0.641; \text{ShA}, P = 0.664)\). Notably, the differential effect of l-DOPA on active nose pokes was more robust when animals were divided into escalated and non-escalated groups, instead of ShA and LgA \((\text{escalated animals, } P = 0.005; \text{non-escalated animals, } P = 0.421; \) Fig. 5c), indicating that l-DOPA reduced escalated cocaine intake preferentially rather than affecting drug consumption per se, an interaction that developed over days \((\text{intake } \times \text{treatment (day 1) interaction, } F_{1,51} = 0.562, P = 0.457; \text{but intake } \times \text{treatment (day 5) interaction, } F_{1,51} = 4.091, P = 0.048)\). These differences between escalated and non-escalated subpopulations, as well as the de-escalating effects of acute and chronically administered l-DOPA, were also observed across all 6 h of self-administration \((\text{Supplementary Fig. 10})\). Together these findings demonstrate that phasic dopamine release decreases in animals that escalate their cocaine intake and that restoring it with repeated administration of the dopamine precursor l-DOPA prevents and reverses this escalation, providing evidence that decreased dopamine drives escalation of drug self-administration.

DISCUSSION

Here we investigated phasic dopamine release in the VMS and DLS during escalation of drug intake, a phenomenon that models a key diagnostic criterion for drug dependence\(^{21,22}\). Our findings demonstrate that escalation is associated with decreased dopamine signaling in both the VMS and DLS, with the decrement in dopamine in the VMS significantly correlated with the rate of escalation. This effect appears to be selective for phasic dopamine, as we did not observe comparable changes in tonic dopamine in the present study, in previous work using the same regimen in rats\(^{26,27}\) or in related self-administration models in nonhuman primates\(^{32,33}\). There have been several reports of reduced phasic dopamine function during drug withdrawal \((\text{tested between 18 h and } 7 \text{ d from the last self-administration session})\), which is associated with reduced sensitivity to cocaine\(^{34-37}\). While we observed a similar reduction in the dopamine response to cocaine between ShA and LgA rats \((\text{Supplementary Fig. 5a})\), this effect did not appear to be pertinent to escalation, as the neurochemical response to non-contingent cocaine was not different between rats that escalated and those that did not \((\text{no intake } \times \text{regimen interaction, } F_{1,34} = 1.964 P = 0.170; \text{Supplementary Fig. 5a})\). Similarly, peak changes in tonic dopamine concentration up to 90 s after contingent cocaine, presumably due to the pharmacological actions of cocaine, did not differ between the pre-escalated and escalated state within the same animals \((\text{Supplementary Fig. 8})\). Thus, the only aspect of dopamine transmission that we observed to predict escalation of drug intake was the phasic response that occurred immediately following an active nose poke, which is a conditioned response primarily to drug-associated cues\(^{9,11,13}\). This neurochemical response diminished in animals that escalated their drug intake, which is reminiscent of a normal learning process wherein dopamine release in the VMS elicited by a reward-related stimulus decreases as that stimulus becomes temporally predicted\(^{38,39}\). However, the attenuation of dopamine release during self-administration occurred much later in the learning process than would be expected for contingency learning, long after the acquisition of established drug taking. Moreover, in animals that did not escalate their drug intake, attenuation of phasic dopamine release did not take place, even though these animals exhibited asymptotic discriminative instrumental behavior.

At face value, our observations of declining dopamine release as drug use progresses appear to be at odds with several contemporary theories of addiction. Theories focusing on drug-induced incentive sensitization processes postulate increasing reactivity of the VMS dopamine system upon repeated exposure to drugs of abuse that mediates a sensitized response to drug and cue exposure\(^{40}\), a phenomenon that is specifically robust after LgA\(^{41}\). Theories on the role of aberrant learning and habit formation in drug addiction suggest that emerging dopamine signaling in the DLS increasingly assumes control over drug seeking\(^{1,14,16}\). Moreover, prominent computational models of addiction specifically implicate increased dopamine signaling to drug-associated cues as a driving force toward addiction\(^{42,43}\). Conversely, our findings appear to be more consistent with the dopamine depletion hypothesis of addiction, proposed by Dackis and Gold\(^{44}\), and related opponent-process theories\(^{21}\) that emphasize drug abuse–induced suppression of reward-related processes. Such suppression has been hypothesized to cause compensatory self-regulation of drug use to maintain a preferred level of drug intoxication\(^{21}\). Specifically, humans and animals compensate for lowered unit doses of cocaine with increased responding\(^{45,46}\). This process is regulated by dopamine transmission in the VMS\(^{8}\) and, consequently, lowering dopamine transmission (for example, by dopamine receptor antagonism) elicits an increase in the rate of drug consumption\(^{28,29}\). Therefore, the reduction in dopamine signaling that we observed during LgA may stimulate compensatory upregulation of drug intake to achieve the preferred level of intoxication. In support of this hypothesis, the reduction of dopamine in the VMS was most pronounced in animals that exhibited greater escalation of drug taking.

Thus, we reasoned that restoring dopamine transmission would attenuate escalation. Indeed, l-DOPA administration was effective at both preventing and reversing the escalation of drug intake. Notably, the effects of l-DOPA on drug use did not endure after termination of treatment, suggesting that it did not prevent the underlying neuroadaptation. Therefore, our data indicate that escalation is mediated by a process that is manifested through a decrease in phasic dopamine during drug taking. These findings provide mechanistic information for the use of l-DOPA in the clinical treatment of psychostimulant abuse, a strategy that has had some promising, but overall mixed, outcomes in a small number of recent clinical trials\(^{47}\). Specifically, since l-DOPA reduced escalated drug use without producing abstinence, we suggest it is better suited for harm-reduction approaches and, in particular, allowing addicts to regain a degree of control over their drug use while entering behavioral therapy programs. Overall, our findings reveal a decrement in phasic dopamine release that takes place during protracted drug access that mediates the shift from recreational to uncontrolled drug use.
METHODS
Methods and any associated references are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS
We thank S. Ng-Evans, C. Akers Sanford, C. Zietz, N. Murray and D. Hadidi for technical support and M. Arnold and J. Clark for feedback. This work was supported by German Research Foundation (Deutsche Forschungsgemeinschaft) grant WI 3643/1-1 (J.W.), awards from the Alcohol and Drug Institute (P.E.M.P.) and the provost of the University of Washington (P.E.M.P.), and US National Institutes of Health grants T32-DA027858 (L.M.B.), F32-DA033004 (P.A.G.), P01-DA015916 (P.E.M.P.), R21-DA021793 (P.E.M.P.) and R01-DA027858 (P.E.M.P.).

AUTHOR CONTRIBUTIONS
I.W. and P.E.M.P. designed research, I.W., L.M.B. and P.A.G. performed research, and I.W. analyzed data; I.W. and P.E.M.P. wrote the paper.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Evertt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).
2. Di Chiara, G. & Bassareo, V. Reward system and addiction: what dopamine does and doesn’t do. Curr. Opin. Pharmacol. 7, 69–76 (2007).
3. Di Chiara, G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav. Brain Res. 137, 75–114 (2002).
4. Ito, R., Dalley, J.W., Howes, S.R., Robbins, T.W. & Evertt, B.J. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine during cocaine-seeking behavior in rats. J. Neurosci. 20, 7489–7495 (2000).
5. Ito, R., Dalley, J.W., Robbins, T.W. & Evertt, B.J. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci. 22, 6247–6253 (2002).
6. Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats.Proc. Natl. Acad. Sci. USA 85, 5274–5278 (1988).
7. Wise, R.A. & Bozarth, M.A. A psychomotor stimulant theory of addiction. Psychol. Res. 94, 469–492 (1987).
8. Wise, R.A. et al. Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology (Berl.) 120, 10–20 (1995).
9. Phillips, P.E.M., Stuber, G.D., Heien, M.L., Wightman, R.M. & Carelli, R.M. Subsecond dopamine release promotes cocaine seeking. Nature 442, 614–618 (2003).
10. Stuber, G.D., Rotman, M.F., Phillips, P.E.M., Carelli, R.M. & Wightman, R.M. Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Psychopharmacology (Berl.) 19, 145–155 (2014).
11. Calipari, E.S., Ferris, M.J., Zimmer, B.A., Roberts, D.C. & Jones, S.R. Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Psychopharmacology (Berl.) 38, 2385–2392 (2013).
12. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).
13. Clark, J.J., Collins, A.L., Sanford, C.A. & Phillips, P.E.M. Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training. J. Neurosci. 33, 3526–3532 (2013).
14. Robinson, T.E. & Berridge, K.C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291 (1993).
15. Ferraro, C.R. et al. Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biol. Psychiatry 58, 751–759 (2005).
16. Redish, A.D. Addiction as a computational process gone awry. Science 306, 707–710 (2004).
17. Keramati, M. & Gutkin, B. Imbalanced decision hierarchy in addicts emerging from drug-hijacked dopamine spiraling circuit. PLoS ONE 8, e61489 (2013).
18. Dacks, C.A. & Gold, M.S. New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci. Biobehav. Rev. 9, 469–477 (1985).
19. Lynch, W.J. et al. A paradigm to investigate the regulation of cocaine self-administration in human cocaine users: a randomized trial. Psychopharmacology (Berl.) 185, 306–314 (2006).
20. Pickens, R. & Thompson, T. Cocaine-reinforced behavior in rats: effects of reinforcement magnitude and fixed-ratio size. J. Pharmacol. Exp. Ther. 161, 122–129 (1968).
21. Mari, N.M. & Levin, F.R. Psychostimulant treatment of cocaine dependence. Psychiatr. Clin. North Am. 35, 425–439 (2012).
ONLINE METHODS

Animals. Adult male Wistar rats from Charles River (Hollister, CA, USA) weighing between 300 g and 400 g were housed individually and kept on a 12-h light/12-h dark cycle (lights on at 0700) with controlled temperature and humidity with food and water available ad libitum. All animal use was approved by the University of Washington Institutional Animal Care and Use Committee, and surgical procedures were performed under aseptic conditions. For the voltammetry experiments, 50 animals underwent surgery, of which 29 maintained catheter patency throughout the experiments, had at least one functional and histologically verified electrode, and passed behavioral criteria (see below). For the pharmacological experiment, 28 of 32 rats that underwent catheter implantation maintained intravenous catheter patency and were used in the study. Animals were counterbalanced into experimental groups based upon their self-administration rate during ShA pre-experimental training. Sample sizes are similar to those reported in previous publications.13

Sterotoxic surgery. Rats were anesthetized with isoflurane, placed in a stereotaxic frame, administered the nonsteroidal anti-inflammatory carprofen (5 mg/kg, subcutaneously) and placed on an isothermal pad to maintain body temperature. The scalp was swabbed with alcohol and Betadine, bathed with a mixture of lidocaine (0.5 mg/kg) and bupivacaine (0.5 mg/kg), and incised (5 mg/kg, subcutaneously) and placed on an isothermal pad to maintain body temperature during the surgery. Rats were housed in a controlled environment (light/12-h dark cycle (lights on at 0700) with controlled temperature and humidity) with food and water available ad libitum. Each rat was held individually in a sound-attenuated outer chamber. Rats (3–4 months old) were trained to self-administer cocaine (Sigma, St. Louis, MO, USA). Both drugs were dissolved in saline and infused intravenously at a volume of 1 ml/kg body weight. t-DOPA was administered 30 min before session start at 0, 10, 30 or 90 mg/kg, whereas benzerazide was given consistently at 2 mg/kg irrespective of the t-DOPA dose administered. In a first set of studies (dose response), rats were treated with t-DOPA on a single day (Fig. 4). None of the t-DOPA doses used inhibited general performance or caused dyskinesia. To avoid potentially confounding effects of repeated t-DOPA administration, rats were treated without t-DOPA treatment following ‘1-DOPA sessions’. In a second set of studies, animals were treated with t-DOPA before each self-administration session for a period of up to 2 weeks (Fig. 5). In a third set of studies, rats that exhibited escalated cocaine self-administration during LgA, the effects of bilateral infusion of t-DOPA (25–50 μg dissolved in 0.5 μl ACSF into each hemisphere; 0.25 μl/min; Sigma, St. Louis, MO, USA) and ACSF into VMS on drug-taking behavior were examined. On infusion days, the dummy cannula was replaced with a 33-gauge infusion cannula that protruded 1.0 mm beyond the guide cannula. Infusions were given 10 min before session start. After the infusions, the cannulas were left in place for 2 min before removal to allow diffusion of the drug.

Implantation of intravenous catheters. Rats were anesthetized with isoflurane, administered the nonsteroidal anti-inflammatory carprofen (5 mg/kg, subcutaneously) and placed on an isothermal pad to maintain body temperature. Catheters were made of Silastic tubing with an outer diameter of 0.6 mm and attached to a hub at one end (distal to vein insertion; Plastics One, Roanoke, VA, USA), occluded by ‘dummy’ cannulas of equal length, were bilaterally implanted to target the VMS. Electrodes and guide cannulas were secured with craniospinal cement anchored to the skull by screws. Following surgery, rats were administered the long-acting, nonsteroidal anti-inflammatory carprofen (5 mg/kg, subcutaneously) and placed on an isothermal pad to maintain body temperature until ambulatory. All animals were implanted with intravenous catheters during a separate surgery 1 week later.

Cocaine self-administration. Self-administration sessions were conducted between 0900 and 1700 h. Rats learned to self-administer cocaine (Sigma, St. Louis, MO, USA) in a modular operant chamber (Med Associates, VT, USA) equipped with two nose-poke response devices (port with integrated cue lights) located on adjacent panels of the same wall and with a house light and speakers to provide pure-tone and white-noise stimuli. The operant chamber was housed in a sound-attenuated outer chamber. Rats (3–4 months old) were trained to obtain cocaine following an operant response on an FI20 reinforcement schedule. Nose poking in the active port (side counterbalanced between animals) resulted in an immediate intravenous infusion of cocaine (0.5 mg/kg over about 10 s) paired with a 20-s presentation of an audiovisual stimulus (illumination of the light inside the nose-poke port and tone; conditioned stimulus, CS). During CS presentation, a 20-s time-out was imposed, during which nose poking did not result in further drug infusion or any other programmed consequences. Drug availability during the session was signified by white noise and illumination of the house light. To control for response specificity, nose poking of the second (inactive) port was monitored but was never reinforced. Following pretraining sessions with a criterion of five or more active responses per session on two successive sessions for inclusion in the study, rats were given daily access to cocaine for 1 h per day (short access; ShA) for 1 week and then 6 h per day (long access; LgA) for 3 weeks (5 d per week). The number of sessions to reach criterion varied between animals from two to five sessions. Behavioral results from a previously reported control group13 were used as a baseline to compare behavioral data from rats undergoing LgA cocaine self-administration to rats trained under a ShA regimen of an equal number of days.

t-DOPA and benzerazide administration. t-DOPA (1,3,4-dihydroxyphenylalanine) was given in combination with the peripherally acting DOPA decarboxylase inhibitor benzerazide to decrease peripheral breakdown of t-DOPA (both from Sigma, St. Louis, MO, USA). Both drugs were dissolved in saline and infused intravenously at a volume of 1 ml/kg body weight. Coke was given 30 min before session start at 0, 10, 30 or 90 mg/kg, whereas benzerazide was given consistently at 2 mg/kg irrespective of the t-DOPA dose administered. In a first set of studies (dose response), rats were treated with t-DOPA on a single day (Fig. 4). None of the t-DOPA doses used inhibited general performance or caused dyskinesia. To avoid potentially confounding effects of repeated t-DOPA administration, rats were treated without t-DOPA treatment following ‘1-DOPA sessions’. In a second set of studies, animals were treated with t-DOPA before each self-administration session for a period of up to 2 weeks (Fig. 5). In a third set of studies, rats that exhibited escalated cocaine self-administration during LgA, the effects of bilateral infusion of t-DOPA (25–50 μg dissolved in 0.5 μl ACSF into each hemisphere; 0.25 μl/min; Sigma, St. Louis, MO, USA) and ACSF into VMS on drug-taking behavior were examined. On infusion days, the dummy cannula was replaced with a 33-gauge infusion cannula that protruded 1.0 mm beyond the guide cannula. Infusions were given 10 min before session start. After the infusions, the cannulas were left in place for 2 min before removal to allow diffusion of the drug.

Voltammetric measurements and analysis. For dopamine detection by fast-scan cyclic voltammetry during experimental sessions (recordings performed during two sessions per week), chronically implanted carbon-fiber microsensors were connected to a head-mounted voltammetric amplifier, interfaced with a PC-driven data-acquisition and analysis system (National Instruments, TX, USA) through an electrical swivel (Med Associates, VT, USA) that was mounted above the test chamber. Voltammetric scans were repeated every 100 ms to achieve a sampling rate of 10 Hz. During each voltammetric scan, the potential at the carbon-fiber electrode was linearly ramped from −0.4 V versus Ag/AgCl to +1.3 V (anodic sweep) and back (cathodic sweep) at 400 V/s (8.5 ms total scan time) and held at −0.4 V between scans. When dopamine is present at the surface of the electrode, it is oxidized during the anodic sweep to form dopamine-β-quinone (peak reaction detected at approximately +0.7 V), which is reduced back to dopamine in the cathodic sweep (peak reaction detected at approximately −0.3 V). The ensuing flux of electrons is measured as current and is directly proportional to the number of molecules that undergo electrolysis. Voltammetric data was band-pass filtered at 0.025–2000 Hz. The background-subtracted, time-resolved current obtained from each scan provided a chemical signature characteristic of the analyte, allowing resolution of dopamine from other substances. Dopamine was isolated from the voltammetric signal by chemometric analysis using a standard training set based on electrochemically stimulated dopamine release detected by chronically implanted electrodes. Dopamine concentration was estimated on the basis of the...
average postimplantation sensitivity of electrodes. Before analysis of average concentration, all data were smoothed with a five-point within-trial running average. The concentration of dopamine was averaged over 7 s (approximate duration of the observed phasic signal) following the operant response (post-response) or noncontingent presentation of the CS and was compared to the average concentration over the 2 s before the operant response (baseline). The CS was presented noncontingently during every recording sessions conducted in the second and third weeks (twice per session for 20 s each), but not during the first week to avoid interference with the associative conditioning between drug delivery and the cue during a period where this association was presumably still developing.

Statistical analysis. Individual electrochemical signals were averaged across self-administration session and then across animals and weeks to increase statistical power. Signals were compared using multivariate ANOVAs with response, brain region, cocaine intake and week as factors. For comparison with electrochemical data, behavioral data were also binned into weeks. For l-DOPA experiments, behavioral data (averaged across days if administered on consecutive days) of a respective drug treatment (no treatment, l-DOPA dose or vehicle) were analyzed using multivariate ANOVAs with drug treatment, training regimen, cocaine intake and week as factors. In case of significant main effects or interactions, post hoc analyses were conducted and P values were adjusted according to the Holm-Bonferroni correction method for multiple testing. Plots were made using Prism (GraphPad Software, La Jolla, CA, USA). Statistical analyses were carried out using SPSS, version 17.0 (Chicago, IL, USA), and Prism. Data are appropriate for parametric statistical analysis. Data collection and analysis were not performed blind to the conditions of the experiments.

Histological verification of recording sites. On completion of experimentation, animals were anesthetized with an intraperitoneal injection of ketamine (100 mg/kg) and xylazine (20 mg/kg). In animals with electrode implants, recording sites were marked with an electrolytic lesion (300 V) before transcardial perfusion with saline followed by 4% paraformaldehyde. Brains were removed and postfixed in paraformaldehyde for 24 h and then rapidly frozen in an isopentane bath, sliced on a cryostat (50-µm coronal sections, −20 °C), and stained with cresyl violet to aid visualization of anatomical structures and the electrode-induced lesion or infusion sites.

48. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, 1998).
49. Phillips, P.E.M. & Wightman, R.M. Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. Trends Analyt. Chem. 22, 509–514 (2003).
50. Wright, S.P. Adjusted P-Values for simultaneous inference. Biometrics 48, 1005–1013 (1992).