An Attenuated Duck Plague Virus (DPV) Vaccine Induces both Systemic and Mucosal Immune Responses To Protect Ducks against Virulent DPV Infection

Juan Huang, a,b Renyong Jia, a,b,c Mingshu Wang, a,b,c Bing Shu, a,b Xia Yu, a,b Dekang Zhu, b,c Shun Chen, a,b,c Zhongqiong Yin, c Xiaoyue Chen, b,c Anchun Cheng a,b,c

Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China

Duck plague (DP), also known as duck viral enteritis, is a worldwide disease caused by duck plague virus (DPV), a virus of the Herpesviridae family. DPV induces an acute disease with high mortality rates in flocks of ducks, geese, and swans (1–5). The virion of DPV is composed of an envelope and a spherical nucleocapsid which contains a double-stranded DNA. DPV can be transmitted among birds by direct contact with infected birds or indirect contact with a contaminated environment (2, 5–7). Ducks infected with DPV may die without any detectable symptoms or be observed with signs of photophobia, ataxia, and watery diarrhea and a marked reduction in egg production. The morbidity and mortality in domestic ducks can reach up to 100% (4).

Vaccination is a desirable method to prevent DPV infection (8). At present, two kinds of vaccines against DPV have been introduced to the market: attenuated and inactive vaccines (9, 10). In all cases, reports from field trials suggest that commercially available DPV vaccines significantly reduce mortality rates (9, 11, 12). An attenuated DPV vaccine was first studied in 1963, by Jansen et al., who lowered the virulence of DPV by passing it through numerous chicken embryos. Their study found that inoculated ducks could be protected against DPV challenge (13). Since then, this type of vaccine has been used extensively worldwide. Lam and Lin suggested that a humoral immune mechanism might play a role in protecting ducks in vivo and in vitro by using an attenuated DPV Sheridan-83 strain as an immunogen (14). Additionally, efficient protection induced by an attenuated DPV vaccine is dependent on the strain and concentration of DPV (10).

The route of vaccine administration is an important factor for vaccination efficiency (15, 16). The kinetics of the attenuated DPV vaccine strain CHa determined that subcutaneous administration had a larger effect on the vaccine virus distribution in tissue than the oral and nasal routes of administration did (17). The growth kinetics, back passages, residual virulence, excretion, and seroconversion of this strain have been investigated thoroughly (17–19). Briefly, the attenuated virus has a broad tissue tropism. Levels of DPV in organs peak at 90 min and then decline steadily after subcutaneous immunization with the attenuated DPV vaccine strain CHa. However, the vaccine virus can be detected by indirect immunohistochemistry until 18 weeks after immunization. Vaccinated ducks excrete virus, which can revaccinate the flock.

Systemic and mucosal immune responses are important in resisting and clearing viral infections (20, 21). Prior to this study, the immune responses after subcutaneous immunization with the DPV attenuated vaccine strain CHa had not been elucidated, and no conclusions about its protective effect could be established, since no challenge studies had been performed. The current study aimed to assess the immunogenicity of the attenuated DPV vac-
cine strain CHa after subcutaneous immunization and its protective effects against the lethal DPV strain CHv via oral challenge.

MATERIALS AND METHODS

Ducks. Eighty 7-day-old Tianfu ducks were purchased from a farm. Sera were evaluated by PCR and enzyme-linked immunosorbent assay (ELISA) to verify that the ducks were free of DPV and negative for antibodies against DPV, respectively. The ducks were handled in accordance with the animal protection law of the People’s Republic of China (draft dated 18 September 2009).

Vaccine and virus. DPV strain CHv (GenBank accession no. JQ647509) was obtained by A. Cheng in Sichuan Province, China (22). Currently, the virus is stored in the Avian Disease Research Center of the Sichuan Agricultural University of China (21). The DPV attenuated vaccine strain CHa is a modified live commercial vaccine (China Animal Husbandry Industry Co. Ltd.) that was the product of a DPV CHv isolate cultured in chicken embryo fibroblasts (CEF) for 80 serial passages (17).

Grouping, vaccination, and sampling. When the ducklings were 14 days old, they were randomly divided into groups A and B (40 ducks per group). The ducks from group A were subcutaneously immunized with a single dose of attenuated DPV vaccine (100% egg infective doses [EID$_{so}$]), while group B ducks were injected with 0.2 ml phosphate-buffered saline (PBS) and served as negative controls. All ducks from groups A and B were injected at weeks 1, 3, and 5. At weeks 1, 2, 3, 4, 5, 6, and 8 after the first immunization, three ducks from each group were randomly selected and sacrificed under anesthesia for the collection of the blood, spleen, liver, heart, duodenum, jejunum, ileum, cecum, rectum, and bursa of Fabricius, lung, trachea, harderian gland, and subcutaneous lymph nodes.

Treatment of samples. After the mesentery was removed, 1-cm sections of the jejunum, ileum, and cecum were collected and processed as tissue homogenates in 0.5 ml T-PBS, and 0.2 ml of T-PBS was added. The homogenates were centrifuged at 10,000 × g for 20 min at 4°C (21). Meanwhile, 0.5-g portions of the spleen, bursa of Fabricius, thymus, heart, liver, and cecum were collected and placed on ice. T-PBS was added to each supernatant, and the supernatants were collected as above. Bile and blood samples were centrifuged, and the supernatants were collected. The fluid supernatant samples were stored at −20°C until use.

Flow cytometry for analysis of CD4$^+$ T lymphocytes in peripheral blood. The lymphocytes in peripheral blood were collected by using lymphocyte separation medium (Huajing, Shanghai, China) according to the manufacturer’s instructions. Anti-duck CD4 monoclonal antibody (AbD Serotec Ltd., United Kingdom) or anti-duck CD8 monoclonal antibody (AbD Serotec Ltd., United Kingdom) was added to the separated lymphocytes (5 × 105) and incubated at 4°C for 30 min. Fluorescein isothiocyanate (FITC)-labeled goat anti-mouse IgG (AbD Serotec Ltd., United Kingdom) was then added for incubation at 4°C for 30 min.

RESULTS

Analysis of CD4$^+$ and CD8$^+$ T lymphocytes in peripheral blood. The peripheral blood lymphocytes collected and processed at 1, 2, 3, 4, 6, and 8 weeks were analyzed by flow cytometry. The results showed that the percentages of CD4$^+$ and CD8$^+$ T lymphocytes in the immunized group were significantly higher than those in the negative-control group (Fig. 1) (P < 0.01). The percentage of CD4$^+$ T lymphocytes increased from the 1st week (13.7%) to the 6th week (43.44%) but then dropped to a lower level (18.77%) at the 8th week (Fig. 1A). The levels of CD4$^+$ T lymphocytes in the

FIG 1 T lymphocytes in peripheral blood following subcutaneous immunization with the attenuated DPV vaccine strain CHa. (A) CD4$^+$ T lymphocytes in peripheral blood were collected at 1, 2, 3, 4, 6, and 8 weeks and analyzed by flow cytometry. (B) CD8$^+$ T lymphocytes in peripheral blood were collected at 1, 2, 3, 4, 6, and 8 weeks and analyzed by flow cytometry. The data presented are the mean values for three samples at each time point. *, P < 0.05 compared to control group; **, P < 0.01 compared to control group; ***, P < 0.001 compared to control group. PBLCs, peripheral blood lymphocytes.
negative-control group were maintained at a lower level and did not show significant alterations with time. The numbers of CD4⁺ T lymphocytes in the immunization group were 3 to 7 times higher than those in the negative-control group (Fig. 1A). In contrast, the values for CD8⁺ T lymphocytes did not show an increase but were maintained at a higher level after the first inoculation. The highest level of CD8⁺ T lymphocytes was presented at the 6th week, and it was almost 6 times that for the negative-control group (Fig. 1B). The results indicated that both CD4⁺ and CD8⁺ T lymphocytes from the vaccinated group reached higher levels than those in the negative-control group (P < 0.05), while the numbers of CD4⁺ T lymphocytes were larger than those of CD8⁺ T lymphocytes at the same time points.

Detection of IgA and IgG specific to DPV in serum. There were no clinical signs of disease or death after immunization during the entire experimental period. To determine the antibody pattern, the specific IgA and IgG antibodies against DPV were detected by ELISA (Fig. 2). The results showed that IgA and IgG levels were significantly higher in the experimental group than in the negative-control group (P < 0.05). The quantity of IgA was maintained at a high level after the first inoculation and did not change significantly until the third inoculation. The level of IgA reached a peak OD₄₅₀ of 0.346 at the 5th week and then decreased, but it was still higher than that of the control group at the 8th week (P < 0.01) (Fig. 2B).

Detection of specific IgA and IgG in organs. To assess the specific local antibodies against DPV, the DPV-specific IgA and IgG antibodies in different organs were evaluated by ELISA. The organs tested included the spleen, bursa of Fabricius, thymus, hardener gland, lung, trachea, liver, bile, duodenum, jejunum, ileum, cecum, and rectum.

Results showed that the local IgA antibody titers generated in the immunized group increased gradually in all organs from the 1st to the 5th weeks, with the highest IgA titers present in bile (Fig. 3). Among immune organs, the thymus showed the highest IgA levels from the 1st to the 5th weeks, with a peak at week 5, while IgA titers in the spleen, hardener gland, and bursa of Fabricius peaked at the 6th week (Fig. 3A). Local mucosal IgA antibody titers in digestive organs showed an upward trend from the 1st to the 6th weeks and reached the highest levels in the bile, duodenum, liver, jejunum, ileum, cecum, and rectum, with OD₄₅₀ values of 0.457, 0.281, 0.267, 0.213, 0.206, 0.212, and 0.221, respectively, at the 6th week (Fig. 3B). In respiratory organs, levels of lung IgA rose sharply from the 1st to the 6th weeks and peaked, with an OD₄₅₀ value of 0.369, at the 6th week. However, the levels of trachea IgA increased dramatically from the 1st to the 5th weeks and peaked, with an OD₄₅₀ value of 0.319, at the 5th week (Fig. 3C). As expected, samples from the nonvaccinated control group showed no specific local IgA responses in the spleen, bursa of Fabricius, thymus, hardener gland, lung, trachea, liver, duodenum, jejunum, ileum, cecum, and rectum (data not shown).

In a parallel experiment, the levels of specific IgG in organs were detected. As shown in Fig. 4, the local IgG antibody titers reflected similar trends in the spleen, thymus, hardener gland, and bursa of Fabricius. There was a similar pattern of local IgG responses in the liver, bile, and lung. Peak levels in immune organs were observed at the 6th week. However, there was an increasing trend of antibody levels in both the hardener gland and bursa of Fabricius during the experiment. Notably, in digestive organs, the specific IgG levels in liver and bile were significantly higher than those in the intestinal tract in the experimental vaccinated group (P < 0.01), and they reached a peak value at the 6th week, with OD₄₅₀ values of 0.616 and 0.518, respectively. Specific local anti-DPV IgG titers were barely detected in the duodenum, jejunum, ileum, cecum, and rectum (data not shown). In the respiratory system, local IgG responded in the lungs but not the trachea, and the titers of lung IgG reached their peak, with an OD₄₅₀ of 0.691, at the 6th week. IgG responses induced by the attenuated DPV vaccine were different in different organs, while the nonvaccinated group showed no specific local IgG responses (data not shown).

Protection studies. To assess the protective ability of the attenuated DPV vaccine, ducks from the vaccinated and unvaccinated groups were challenged with the virulent DPV strain CHV. The results indicated that unvaccinated ducks died quickly at day 3, with high fever, severe erosions in the digestive tract, and head and/or neck swelling. These are typical clinical manifestations of DP. As shown in Fig. 5, the mortality rate for nonvaccinated ducks was significantly higher than that for vaccinated ducks (P < 0.01), and no vaccinated ducks died.

DISCUSSION

This study was the first to investigate the systemic and mucosal immune responses to the attenuated DPV vaccine strain CHa ad-
ministered subcutaneously. To evaluate the immunogenicity of the vaccine, we measured cellular, humoral, and mucosal immunity in systemic organs. After assessing systemic organizational immune responses to the attenuated DPV vaccine, we concluded that the vaccine may be an efficient immunization for prevention of DP. In this study, the attenuated DPV vaccine was found to be effective at generating T cell, IgA, and IgG responses and could protect ducks completely against virulent DPV infection.

CD4^+ T lymphocytes play an important role in assisting CD8^+ T lymphocytes, and both have a relationship with viral clearance responses after infection with herpesviruses (25–27). Additionally, CD4^+ T cells have positive feedback with humoral immunity (28, 29). From our observations, the levels of both CD4^+ and CD8^+ T lymphocytes increased significantly after immunization with the attenuated vaccine. This demonstrated that the attenuated DPV vaccine, as an exogenous substance, could activate T lymphocytes and stimulate ducks to produce cell-mediated immune responses after vaccination. The reason for the number of CD4^+ T lymphocytes being higher than that of CD8^+ T lymphocytes may be the fact that CD4^+ T lymphocytes are the predominant factor in cellular immune responses (30–32).

Serum IgG and IgA play critical roles in humoral immunity against specific antigens (21, 33). In this study, the DPV attenuated vaccine enhanced production of both IgA and IgG antibodies. The results indicated that the DPV attenuated vaccine induced specific anti-DPV humoral immune responses. In addition, the levels of serum IgG were significantly higher than those of serum IgA. This suggested that IgG is the main antibody against DPV, which coincided with previous studies (8, 21).

Mucous membranes are an important barrier and react against most pathogenic microorganisms during the early infective stage (34). Thus, the mucosal immune response is considered the first line of defense, and its elicitation is highly desired for efficacy of a vaccine (35, 36). IgA is one kind of mucosal antibody that plays a...
key role in mucosal defense (37). In this study, the DPV attenuated vaccine strain CHA could induce systemic mucosal IgA and IgG responses.

This study found that not only local IgA but also local IgG might contribute to protecting ducks against DPV. Local IgA was present to mediate protection in all organs sampled, which was consistent with previous studies showing that IgA is an effector molecule of the mucosal immune system (38–40). The production and distribution of local IgA in various organs in the present study are consistent with DPV having extensive tropism in all organs and local cells which can be stimulated to secrete IgA (19, 41). On the other hand, local specific IgG antibodies could mediate protection against DPV as well. Our results indicated that high levels of DPV-specific mucosal IgG appeared in the spleen, bursa of Fabricius, thymus, hardener gland, lung, liver, and bile post-primary immunization. This demonstrated that local IgG antibodies could mediate protection, which was supported by the work of Mbawuike et al., who found mucosal IgG antibodies present in a protection assay with IgA−/− mice (42). There were high levels of antigen-specific IgG in humoral immune responses, but local IgG did not appear in the duodenum, jejunum, ileum, cecum, and rectum in the current study. The reason for the negative result for intestinal IgG antibody might be that antibodies of the IgG isotype alone failed to transfer from the serum to the mucosal lumen (43).

Systemic and mucosal immune responses might contribute to protecting ducks against DPV infection. This was supported in the present challenge study and coincides with the study of Yu et al. (21). Safety is a prerequisite when using live antigens as vaccines. present challenge study and coincides with the study of Yu et al. (21). Safety is a prerequisite when using live antigens as vaccines.

4. Campagnolo ER, Banerjee M, Panigrahy B, Jones RL. 2001. An outbreak of duck viral enteritis (duck plague) in domestic Muscovy ducks (Cairina moschata domestica) in Illinois. Avian Dis. 45:522–528. http://dx.doi.org/10.2307/1592999.

5. Cheng AC, Wang MS, Liu F. 2004. The preliminary application of PCR in research of clinical diagnosis and mechanisms of immunity and patho- logy of duck plague virus. Chin. J. Viral. 28:364–370.

6. Kaleta EF, Kuczka A, Kuhnhold C, Bonner BM, Hanka K, Redmann T, Yilmaz A. 2007. Outbreak of duck plague (duck herpes-virus enteritis) in numerous species of captive ducks and geese in temporal conjunction with enforced biosecurity (in-house keeping) due to the threat of avian influenza A virus of the subtype Asia H5N1. Dtsch. Tierarztl. Wochenchr. 114:3–11.

7. Yuan X, Qi X, Cheng A, Wang M, Zhu D, Jia R, Chen X. 2010. Intestinal mucosal immune response in ducklings following oral immunisation with an attenuated duck enteritis virus vaccine. Vet. J. 185:199–203. http://dx.doi.org/10.1016/j.tvjl.2009.04.011.

8. Lian B, Cheng A, Wang M, Zhu D, Luo Q, Jia R, Liu F, Han X, Chen X. 2011. Induction of immune responses in ducks with a DNA vaccine encoding duck plague virus glycoprotein C. Virol. J. 8:214. http://dx.doi.org/10.1186/1743-422X-8-214.

9. Shawsy SA, Sandhu TS. 1997. Inactivated vaccine for protection against duck virus enteritis. Avian Dis. 41:461–468. http://dx.doi.org/10.2307/1592206.

10. Kulkarni DD, James PC, Sulochana S. 1998. Assessment of the immune response to duck plague vaccinations. Res. Vet. Sci. 64:199–204. http://dx.doi.org/10.1016/S0034-5288(98)00125-4.

11. Toth TE. 1970. Active immunization of White Pekin ducks against duck virus enteritis (ducks plague) with modified-live virus vaccine: immuniza- tion of ducklings. Am. J. Vet. Res. 31:1275–1281.

12. Butterfield WK, Dardiri AH. 1969. Serologic and immunologic response of ducks to inactivated and attenuated duck plague virus. Avian Dis. 13:876–887. http://dx.doi.org/10.2307/1588595.

13. Jansen J, Sr, Kurst H, Wemmenhove R. 1963. The active immunization of duck plague. Tijdschr. Diergeneeskd. 88:927–932.

14. Koons KM, Lin WQ. 1990. Antibody-mediated resistance against duck enteritis virus infection. Can. J. Vet. Res. 54:380–383.

15. Sakamoto K, Anasuma H, Nakamura T, Kanno T, Sata T, Katano H. 2010. Immune response to intranasal and intraperitoneal immunization with Kaposi’s sarcoma-associated herpesvirus in mice. Vaccine 28:3325–3332. http://dx.doi.org/10.1016/j.vaccine.2010.02.091.

16. Gimeno IM, Cortes AL, Guy JS, Turpin E, Williams C. 2011. Replication of recombinant herpesvirus of turkey expressing genes of infectious laryn- gootraechitis virus in specific pathogen free and broiler chickens following in ovo and subcutaneous vaccination. Avian Pathol. 40:395–403. http://dx.doi.org/10.1080/03079457.2011.588196.

17. Qi X, Yang X, Cheng A, Wang M, Guo Y, Jia R. 2009. Replication kinetics of duck virus enteritis virus vaccine in ducklings immunized by the mucosal or systemic route using real-time quantitative PCR. Res. Vet. Sci. 86:63–67. http://dx.doi.org/10.1016/j.rvsc.2008.05.003.

18. Shen FX, Ma GP, Cheng AC, Wang MS, Li GF, Sun KF, Chang H, Zhu DK, Jia RY, Huang J, Shu B, Zhu D, Liu Q, Gao X, Lin M, Yin Z, Wang M, Chen S, Yang W, Chun X, Cheng A. 2012. Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Vet. Res. 43:56. http://dx.doi.org/10.1186/1297-9716-43-56.

19. Wu Y, Cheng A, Wang M, Yang Q, Zhu D, Jia R, Chen S, Zhou Y, Wang
X, Chen X. 2012. Complete genomic sequence of Chinese virulent duck enteritis virus. J. Virol. 86:5965. http://dx.doi.org/10.1128/JVI.00529-12.

23. Lohning M, Hegazy AN, Pinschwer DD, Busse D, Lang KS, Hofer T, Radbruch A, Zinkernagel RM, Hengartner H. 2008. Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med. 205:53–61. http://dx.doi.org/10.1084/jem.20071855.

24. Beinke S, Phee H, Clingen JM, Schlessinger J, Matloubian M, Weiss A. 2010. Proline-rich tyrosine kinase-2 is critical for CD8 T-cell short-lived effector fate. Proc. Natl. Acad. Sci. U. S. A. 107:16234–16239. http://dx.doi.org/10.1073/pnas.1011556107.

25. Doymaz A, Sallusto F. 2012. CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis. J. Virol. 86:5784–5791. http://dx.doi.org/10.1128/JVI.06797-11.

26. Phares TW, Stohlman SA, Hwang M, Min B, Hinton DR, Bergmann CC. 2012. CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis. J. Virol. 86:2416–2427. http://dx.doi.org/10.1128/JVI.07287-12.

27. Huang et al. 2011. Serum IgA responses against pertussis and anti-glycan antibodies in IgA nephropathy: role of mucosal immune system. Adv. Otorhinolaryngol. 72:60–63. http://dx.doi.org/10.1055/s-0034-13710001.

28. Oku H, Yuki N, Nochii T, Kodama T, Meij I, Kurokawa S, Takahashi Y, Nanno M, Nakanishi U, Takaiwa F, Honda T, Kiyono H. 2010. Secretory IgA-mediated protection against V. cholerae and heat-labile enterotoxin-producing enterotoxiogenic Escherichia coli by rice-based vaccine. Proc. Natl. Acad. Sci. U. S. A. 107:8794–8799. http://dx.doi.org/10.1073/pnas.0914111107.

29. Mestecky J, Raska M, Novak J, Alexander RC, Moldoveanu Z. 2010. Antibody-mediated protection and the mucosal immune system of the genital tract: relevance to vaccine design. J. Reprod. Immunol. 85:81–85. http://dx.doi.org/10.1016/j.jri.2010.02.003.

30. Boullier S, Tanguy M, Kadaoui K, Caubet C, Sansonetti P, Corthesy B, Phalipon A. 2009. Secretory IgA-mediated neutralization of Shigella flexneri prevents intestinal tissue destruction by down-regulating inflammatory circuits. J. Immunol. 183:5879–5885. http://dx.doi.org/10.4049/jimmunol.0901838.

31. Xuefeng Q, Xiaoan Y, Anzhun C, Mingshu W, Dekang Z, Zengong J. 2008. The pathogenesis of duck virus enteritis in experimentally infected ducks: a quantitative time-course study using TaqMan polymerase chain reaction. Avian Pathol. 37:307–310. http://dx.doi.org/10.1080/03079450802043775.

32. Mbawuike IN, Pacheco S, Acuna CL, Switzer KC, Zhang Y, Harriman GR. 1999. Mucosal immunity to influenza without IgA: an IgA knockout mouse model. J. Immunol. 162:2520–2537.

33. Thompson EC. 2012. Focus issue: structure and function of lymphoid tissues. Trends Immunol. 33:255. http://dx.doi.org/10.1016/j.ti.2012.05.001.