RATIONALITY OF ALGEBRAIC CYCLES OVER FUNCTION FIELD OF $\text{SL}_1(A)$-TORSORS

RAPHAEL FINO

Abstract. In this note we prove a result comparing rationality of algebraic cycles over the function field of a $\text{SL}_1(A)$-torsor for a central simple algebra A and over the base field.

Keywords: Chow groups, central simple algebras, principal homogeneous spaces.

Contents

1. Introduction 1
2. Preliminaries 2
3. Proof of the result 4
4. Exceptional projective homogeneous varieties 5
References 6

1. Introduction

Let A be a central simple algebra over a field F and let $\text{Nrd} : A^\times \to F^\times$ be the reduced norm homomorphism. We recall that the homomorphism $F^\times \to H^1(F, \text{SL}_1(A))$, associating to $c \in F^\times$ the $\text{SL}_1(A)$-torsor X_c given by the equation $\text{Nrd} = c$, is surjective (with kernel $\text{Nrd}(A^\times)$) – see [7, Proposition 2.7.3] for instance.

The main purpose of this note is to prove the following theorem dealing with rationality of algebraic cycles over function field of $\text{SL}_1(A)$-torsors.

Theorem 1.1. Let A be a central simple algebra of prime degree p over a field F and let X be a $\text{SL}_1(A)$-torsor. Then

(i) for any equidimensional F-variety Y, the change of field homomorphism

$$\text{CH}(Y) \to \text{CH}(Y_{F(X)}),$$

where CH is the integral Chow group, is surjective in codimension $< p + 1$.

(ii) it is also surjective in codimension $p+1$ for a given Y provided that the variety $X_{F(\xi)}$ does not have any closed point of prime to p degree for each generic point $\xi \in Y$.

The method of proof mainly relies on the following statement. This proposition is a version of the result [3, Lemma 88.5] slightly altered to fit our situation (see also the proof of [3, Proposition 2.8]).

Date: 2 September 2014.
2010 Mathematics Subject Classification. 14C25; 20G15.
Proposition 1.2 (Karpenko, Merkurjev). Let X be a smooth variety, and Y an equidimensional variety. Given an integer m such that for any nonnegative integer i and any point $y \in Y$ of codimension i the change of field homomorphism

$$\text{CH}^{m-i}(X) \to \text{CH}^{m-i}(X_{F(y)})$$

is surjective, the change of field homomorphism

$$\text{CH}^m(Y) \to \text{CH}^m(Y_{F(X)})$$

is also surjective.

The proof of Theorem 1.1 is given in Section 3. In Section 4, we describe how this theorem can be related to a similar result dealing with rationality of algebraic cycles over function field of projective homogeneous varieties under some groups of exceptional type.

Acknowledgements. This note has been conceived while I was visiting the University of Alberta and I would like to thank the Department of Mathematical and Statistical Sciences for the hospitality. I also would like to thank Nikita Karpenko for suggestions having considerably improved this note.

2. Preliminaries

2.1. Topological filtration and Chow groups. For any smooth variety X over a field F (in this paper, an F-variety is a separated scheme of finite type over F), one can consider the topological filtration on the Grothendieck ring $K_0(X)$, whose term of codimension i is given by

$$\tau^i(X) = \langle [\mathcal{O}_Z] | Z \hookrightarrow X \text{ and codim}(Z) \geq i \rangle,$$

where $[\mathcal{O}_Z]$ is the class in $K_0(X)$ of the structure sheaf of a closed subvariety Z. We write $\tau^{i/i+1}(X)$ for the successive quotients. We denote by pr^* the canonical surjection

$$\text{CH}^i(X) \rightarrow \tau^{i/i+1}(X),$$

where CH is the integral Chow group. By the Riemann-Roch Theorem without denominators the i-th Chern class induces an homomorphism in the opposite way $c_i : \tau^{i/i+1}(X) \to \text{CH}^i(X)$ such that the composition $c_i \circ pr$ is the multiplication by $(-1)^{i-1}(i-1)!$.

Note that for any prime p, one can also consider the topological filtration τ_p on the ring $K_0(X)/pK_0(X)$ by replacing $K_0(X)$ by $K_0(X)/pK_0(X)$ in the previous definition. In particular, we get that for any $0 \leq i \leq p$, the map $pr^*_p : \text{Ch}^i(X) \rightarrow \tau^{i/i+1}_p(X)$, where Ch is the Chow group modulo p, is an isomorphism.

Remark 2.1. Assume that X is a $\text{SL}_1(A)$-torsor and let p be a prime. One has $K_0(X) = \mathbb{Z}$ by the result [13] Theorem A] of I. Panin and consequently, for $i \geq 1$, the term $\tau^i(X)$ is equal to zero. Therefore, for any $1 \leq i \leq p$, one has $\text{Ch}^i(X) = 0$. Moreover, by the result [17] Theorem 2.7] of A. Suslin, one has $\text{Ch}^i(\text{SL}_p) = 0$ for any $i \geq 1$. Hence, for A of degree p (then there exists a splitting field of A of degree p), it follows by transfer argument that $p \cdot \text{Ch}^i(X) = 0$ for any $i \geq 1$. Therefore, for X a $\text{SL}_1(A)$-torsor, with A of prime degree p, one has $\text{CH}^i(X) = 0$ for any $1 \leq i \leq p$. Note that, by Proposition 1.2, this gives Theorem 1.1(i) already.
2.2. Brown-Gersten-Quillen spectral sequence. For any smooth variety X and any $i \geq 1$, the epimorphism pr^i coincides with the edge homomorphism of the spectral Brown-Gersten-Quillen structure $E_{2}^{i,-i}(X) \Rightarrow K_0(X)$ (see [16, §7]), that is to say

$$pr^i : CH^i(X) \simeq E_{2}^{i,-i}(X) \rightarrow \cdots \rightarrow E_{r+1}^{i,-i}(X) = \tau^{i+1}(X).$$

Assume that X is a $\text{SL}_1(A)$-torsor, with A of prime degree p. Then it follows from Remark 2.1 that $E_{r+1}^{i,-i}(X) = 0$ for $3 \leq i \leq p$. Consequently, one has $A^1(X, K_2) = \text{E}^{1,-2}(X)\text{.}$

Moreover, by the result [11] Theorem 3.4] of A. Merkurjev, for any smooth variety X, every prime divisor l of the order of the differential δ_r ending in $E_{p+1}^{p+1,-p-1}(X)$ is such that $l - 1$ divides $r - 1$. Therefore, for any prime p and $2 \leq r \leq p - 1$, the differential δ_r is of prime to p order. Assume furthermore that X is a $\text{SL}_1(A)$-torsor, with A of prime degree p. Since $p \cdot \text{CH}^{p+1}(X) = 0$ (see Remark 2.1), one deduce that, for $2 \leq r \leq p - 1$, the differential δ_r is trivial. Consequently, one has $\text{CH}^{p+1}(X) = \text{E}^{p+1,-p-1}(X)\text{.}$

Therefore, for X a $\text{SL}_1(A)$-torsor, with A of prime degree p, the differential δ_p in the BGQ-structure is a homomorphism

$$\delta : A^1(X, K_2) \rightarrow \text{CH}^{p+1}(X).$$

Remark 2.2. Let X be a principal homogeneous space for a semisimple group G. By [6] Part II, Example 4.3.3 and Corollary 5.4, one has $E_{2}^{0,-1}(X) = A^0(X, K_1) = F^\infty$ and the composition $F^\infty = K_1(F) \rightarrow K_1(X) \rightarrow A^0(X, K_1)$ of the pullback of the structural morphism with the inclusions

$$K_1^{(0/1)}(X) = E_{\infty}^{0,-1}(X) \subset \cdots \subset E_{3}^{0,-1}(X) \subset E_{2}^{0,-1}(X)$$

given by the BGQ spectral sequence, is the identity. Therefore, for any $i \geq 1$, the differential starting from $E_{i-1}^{0,-1}(X)$ is zero, i.e for any $i \geq 2$, one has

$$E_{i}^{i,-i}(X) = \tau^{i+1}(X).$$

In particular, for X a $\text{SL}_1(A)$-torsor, with A of prime degree p, one has $E_{p+1}^{p+1,-p-1}(X) = 0$, i.e the differential $\delta : A^1(X, K_2) \rightarrow \text{CH}^{p+1}(X)$ is surjective.

2.3. On the group $A^1(X, K_2)$. The proof in the next section will use the work of A. Merkurjev on the Rost invariant of simply connected algebraic groups (see [6] Part II). Let X be a $\text{SL}_1(A)$-torsor over F. The group $A^1(X_{F(X)}, K_2)$ is infinite cyclic with generator q and isomorphic to $A^1(\text{SL}_n, K_2)$ under restriction (where $n = \deg(A)$). Furthermore, the restriction map $r : A^1(X, K_2) \rightarrow A^1(X_{F(X)}, K_2)$ is injective with finite cokernel of same order as the element $R_{\text{SL}_1(A)}(X)$, where

$$R_{\text{SL}_1(A)} : H^1(F, \text{SL}_1(A)) \rightarrow H^3(F, Q/Z(2))$$

is the Rost invariant of $\text{SL}_1(A)$ (see [6] Theorem 9.10]). Moreover, the homomorphism $R_{\text{SL}_1(A)}$ is of order $\exp(A)$ by [6] Theorem 11.5).

If $\text{char}(F) = l$ is prime then the modulo l component $H^3(F, Z/lZ(2))$ of the Galois cohomology group $H^3(F, Q/Z(2))$ is the group $H^3_l(F)$ defined by K. Kato in [10] by means of logarithmic differential forms.
3. Proof of the Result

In this section, we prove the result of this note.

Theorem 3.1. Let A be a central simple algebra of prime degree p over a field F and let X be a $\text{SL}_1(A)$-torsor. Then

(i) for any equidimensional F-variety Y, the change of field homomorphism

$$\text{CH}(Y) \to \text{CH}(Y_{F(X)}),$$

where CH is the integral Chow group, is surjective in codimension $< p + 1$.

(ii) it is also surjective in codimension $p + 1$ for a given Y provided that the variety $X_{F(\zeta)}$ does not have any closed point of prime to p degree for each generic point $\zeta \in Y$.

Proof. We use notations and materials introduced in the previous section. One can assume that X does not have any rational point over F (or equivalently X does not have any closed point of prime to p degree, by the result [1] Theorem 3.3] of J. Black), if else there is nothing to prove. Note that in this situation, the central simple algebra A is necessarily a division algebra. We recall that conclusion (i) has already been proved (see Remark 2.1). According to Proposition 1.2, it suffices to show that $\text{CH}^{p+1}(X_{F(\zeta)}) = 0$ for each generic point $\zeta \in Y$ to get conclusion (ii). Since $X_{F(\zeta)}$ does not have any closed point of prime to p degree, it is enough to prove that $\text{CH}^{p+1}(X) = 0$.

Assume on the contrary that $\text{CH}^{p+1}(X) \neq 0$. Then $\delta : A^1(X, K_2) \to \text{CH}^{p+1}(X)$ is nonzero (since δ is surjective by Remark 2.2), i.e $E_{p+1}^{1,-2}(X)$ is strictly included in $E_{p}^{1,-2}(X) = A^1(X, K_2)$. We claim that this implies that, by denoting as q_X the generator of $A^1(X, K_2)$, one has $r(q_X) = q$. Indeed, otherwise one has $r(q_X) = p \cdot q$ by §2.3. Consequently, by denoting as c the corestriction morphism $A^1(\text{SL}_p, K_2) \to A^1(X, K_2)$, for any $i \geq 2$, one has $c(E_{i}^{1,-2}(\text{SL}_p)) = c(A^1(\text{SL}_p, K_2)) = A^1(X, K_2)$ (where the first identity is due to $\text{CH}^i(\text{SL}_p) = 0$ for any $i \geq 2$). In particular, one has $E_{p}^{1,-2}(X) = c(E_{p+1}^{1,-2}(\text{SL}_p)) \subset E_{p+1}^{1,-2}(X)$, which is a contradiction.

Therefore, we have shown that under the assumption $\text{CH}^{p+1}(X) \neq 0$, the generator q of $A^1(X_{F(X)}, K_2)$ is rational. Then it follows that the generator g of $\text{CH}^{p+1}(X_{F(X)})$ is also rational.

However, since $A_{F(X)}$ is a still a division algebra, by [3] Theorem 7.2 and Theorem 8.2], the cycle g^{p-1} in $\text{CH}_0(\text{SL}_1(A_{F(X)}))$ is nonzero and the latter group is cyclic of order p generated by the class of the identity of $\text{SL}_1(A_{F(X)})$. Thus, the degree of the rational cycle g^{p-1} is prime to p.

It follows that X has a closed point of prime to p degree, which is a contradiction.

The Theorem is proved. \square

Remark 3.2. The end of the above proof shows in particular that for a division algebra A of prime degree p over a field F, the kernel of the Rost invariant $R_{\text{SL}_1(A)}$ is trivial. This is already contained in the result [12] Theorem 12.2] of A. Merkurjev and A. Suslin under the assumption $\text{char}(F) \neq p$. Indeed, let $\xi \in H^1(F, \text{SL}_1(A))$ and let X be the associated $\text{SL}_1(A)$-torsor. Assume that $R_{\text{SL}_1(A)}(\xi)$ is trivial. It follows then by §2.3 that the generator of $A^1(X_{F(X)}, K_2)$ is rational. As we have seen in the above proof, this implies that X has a rational point over F, i.e the cocycle ξ is trivial.
4. Exceptional projective homogeneous varieties

In this section, we describe how Theorem 1.1 implies a similar version of it for projective homogeneous varieties under a group of type F_4 or E_8. Namely, we give an alternative proof of Theorem 4.1 below. The following proof requires the characteristic of the base field to be different from p, with $p = 3$ when G is of type F_4 and $p = 5$ when G is of type E_8, although the original result [4, Theorem 1.1] is valid for arbitrary characteristic.

Let X be a nonsplit $\text{SL}_1(A)$-torus over a field F, with A a division algebra of prime degree p. There exists a smooth compactification \tilde{X} of X such that the Chow motive $\mathcal{M}(\tilde{X}, \mathbb{Z}/p\mathbb{Z})$ decomposes as a direct sum $R_p \oplus N$, where R_p is the indecomposable Rost motive associated with the symbol $[A] \cup (c) \in H^3(F, \mathbb{Z}/p\mathbb{Z}(2))$, with $c \in F^x \setminus \text{Nrd}(A^x)$ giving X, see [9, Theorem 1.1]. Note that the projective variety \tilde{X} is a norm variety of s.

Theorem 4.1. Let G be a linear algebraic group of type F_4 or E_8 over a field F of characteristic different from p, with $p = 3$ when G is of type F_4 and $p = 5$ when G is of type E_8, and let X' be a projective homogeneous G-variety. For any equidimensional variety Y, the change of field homomorphism

$$\text{Ch}(Y) \rightarrow \text{Ch}(Y_{F(X')}),$$

where Ch is the Chow group modulo p, is surjective in codimension $< p + 1$.

It is also surjective in codimension $p+1$ for a given Y provided that $1 \notin \text{deg } \text{Ch}_0(X'_{F(\zeta)})$ for each generic point $\zeta \in Y$.

Proof. Since the F-variety X' is A-trivial in the sense of [8, Definition 2.3], one can assume that G has no splitting field of degree coprime to p. Indeed, otherwise $1 \in \text{deg } \text{Ch}_0(X')$ by corestriction and this implies that $\text{Ch}(Y) \rightarrow \text{Ch}(Y_{F(X')})$ is an isomorphism in any codimension by A-triviality, see [8, Lemma 2.9].

Let us now write $G = G_0 \times G_0$ for a nontrivial cocycle $\xi \in H^1(F, G_0)$, with G_0 a split group of the same type as G. Then the motive $R_p(G)$ living on the Chow motive (with coefficients in $\mathbb{Z}/p\mathbb{Z}$) of X' given in [13, Theorem 5.17] is the Rost motive of the symbol $R_{G_0, p}(\xi) = [A] \cup (c) \in H^3(F, \mathbb{Z}/p\mathbb{Z}(2))$, where $R_{G_0, p}$ is the the modulo p component of the Rost invariant R_{G_0}, A is a division algebra of degree p and $c \in F^x \setminus \text{Nrd}(A^x)$ – see [13, §4] and [5, §14] (here the assumption char(F) $\neq p$ is needed).

Let us denote as X the nonsplit $\text{SL}_1(A)$-torus over F associated with c and as \tilde{X} its smooth compactification. We claim that X' has a closed point of prime to p degree over $F(\tilde{X})$ and vice versa.

Indeed, since \tilde{X} is a norm variety for $[A] \cup (c)$, the motive $R_p(G)$ decomposes as a sum of Tate motives over $F(\tilde{X})$. Therefore, the group $G_{F(\tilde{X})}$ is split by an extension of degree coprime to p and it follows that X' has a closed point of prime to p degree over $F(\tilde{X})$ (this is more generally true for any extension L/F over which \tilde{X} has a closed point of prime to p degree). Moreover, the motive $R_p(G)$ decomposes as a sum of Tate motives...
over $F(X')$ because G is split by $F(X')$. Consequently, \tilde{X} has a closed point of prime to p degree over $F(X')$.

It follows then (note that \tilde{X} is A-trivial by [3, Example 5.7]) that the right and the bottom homomorphisms in the commutative square

$$
\begin{array}{ccc}
Ch(Y) & \to & Ch(Y_{F(X)}) \\
\downarrow & & \downarrow \\
Ch(Y_{F(\tilde{X})}) & \to & Ch(Y_{F(\tilde{X} \times X')})
\end{array}
$$

are isomorphisms. Since $F(\tilde{X}) = F(X)$, Theorem 4.1 is now a direct consequence of Theorem 1.1. □

The following was pointed out to me by Philippe Gille.

Remark 4.2. Let G_0 a split group of type E_8 over a 5-special field F (i.e F has no proper extension of degree coprime to 5) of characteristic $\neq 5$. The above proof gives rise to a new argument for the triviality of the kernel of the Rost invariant modulo 5

$$H^1(F, G_0) \to H^3(F, \mathbb{Z}/5\mathbb{Z}(2)).$$

This result is originally due to Vladimir Chernousov (under the assumption $\text{char}(F) \neq 2, 3, 5$, see [2, Theorem]).

Indeed, since F is 5-special, for any nontrivial cocycle $\xi \in H^1(F, G_0)$, the group ξG_0 has no splitting field of degree coprime to 5. Then, as we have seen in the proof, there is a division algebra A of degree 5 such that $R_{G_0,5}(\xi)$ is equal to a symbol $[A] \cup (c)$ associated with a nonsplit $\text{SL}_1(A)$-torsor X. The injectivity of $R_{G_0,5}$ follows now from Remark 3.2.

References

[1] Black, J. Zero cycles of degree one on principal homogeneous spaces. *Journal of Algebra* 335, 1 (2011), 232–246.

[2] Chernousov, V. Remark on the (mod 5)-invariant of serre for groups of type E_8. *Math. Notes.* 56, 1 (1994), 730–733.

[3] Elman, R., Karpenko, N., and Merkurjev, A. *The algebraic and geometric theory of quadratic forms*, vol. 56 of *American Mathematical Society Colloquium Publications*. American Mathematical Society, Providence, RI, 2008.

[4] Fino, R. Rationality of cycles over function field of exceptional projective homogeneous varieties. *J. Ramanujan Math. Soc.* 29, 1 (2014), 119–132.

[5] Garibaldi, S. Cohomological invariants: exceptional groups and spin groups. *Memoirs Amer. Math. Soc.* 200, 937 (2009). With an appendix by Detlev W. Hoffmann.

[6] Garibaldi, S., Merkurjev, A., and Serre, J.-P. *Cohomological invariants in Galois cohomology*, vol. 28 of *University Lecture Series*. Amer. Math. Soc., 2003.

[7] Gille, P., and Szamuely, T. *Central simple algebras and Galois cohomology*, vol. 101 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 2006.

[8] Karpenko, N., and Merkurjev, A. On standard norm varieties. *Ann. Sci. Éc. Norm. Sup. (4)* 46, fascicule 1 (2013), 175–214.

[9] Karpenko, N., and Merkurjev, A. Motivic decomposition of compactifications of certain group varieties. *www.math.uni-bielefeld.de/lag/man/528.html* (22 Feb 2014), 18 pages. (Preprint).

[10] Kato, K. Galois cohomology of complete discrete valuation fields. *Lect. Notes in Math.*, 967 (1982), 215–238.
[11] Merkurjev, A. Adams operations and the Brown-Gersten-Quillen spectral sequence. In Quadratic forms, linear algebraic groups, and cohomology, vol. 18 of Dev.Math. Springer, New York, 2010, pp. 305–313.

[12] Merkurjev, A., and Suslin, A. K-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR, 46 (1982), 1011–1046.

[13] Nikolenko, S., Semenov, N., and Zainoulline, K. Motivic decomposition of anisotropic varieties of type F_4 into generalized Rost motives. J. of K-theory 3, 1 (2009), 114–124.

[14] Panin, I. Splitting principle and K-theory of simply connected semisimple algebraic groups. Algebra i Analiz 10, 1 (1998), 88–131. translation in St. Petersburg Math. J. 10 (1999), n°1, 69-101.

[15] Petrov, V., Semenov, N., and Zainoulline, K. J-invariant of linear algebraic groups. Ann. Sci. Ec. Norm. Sup. (4) 41, 6 (2008), 1023–1053.

[16] Quillen, D. Higher algebraic K-theory. I. (1973). vol. 341 of Lecture Notes in Math., pp. 85–147.

[17] Suslin, A. A. K-Theory and K-cohomology of certain group varieties. Advances in Soviet Mathematics 4 (1991), 53–74.

UMPC Sorbonne Universités, Institut de Mathématiques de Jussieu, Paris, FRANCE

Web page: www.math.jussieu.fr/~fino
E-mail address: raphael.fino at imj-prg.fr