Conjunctival myxoid stromal tumor of the palpebral conjunctiva: A case report

Pamela S. Martin a,*, Cooper D. Rodgers a, Aldo Fantin b, Gulsun Erdag b

a University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32608, USA
b North Florida / South Georgia Veterans Health System, 1601 SW Archer Rd., Gainesville, FL, 32608, USA

ARTICLE INFO

Keywords:
Palpebral
Conjunctiva
Myxoid
Stromal
Tumor

ABSTRACT

Purpose: To present the importance of considering conjunctival myxoid stromal tumors in the differential when evaluating eyelid lesions as these tumors could indicate undetected systemic syndromes including Zollinger-Ellison Syndrome, Carney complex, and other endocrine disorders.

Observations: We present the case of a 56-year-old Caucasian female who was evaluated for a solid cyst-like structure of the palpebral conjunctiva just temporal to, but not involving, the left lower eyelid punctum. The lesion was removed with histopathologic examination of the specimen revealing the lesion to be a myxoid spindle cell tumor, consistent with conjunctival myxoid stromal tumor.

Conclusions and Importance: Myxoid tumors are an abnormal proliferation of mesenchymal cells. These are most commonly found in the heart and less commonly in the bone, skin, and skeletal muscle. Myxoid tumors of the conjunctiva are a very rare reported finding and most reported cases involving the conjunctiva occur on the bulbar conjunctiva. Our patient was found to have a conjunctival myxoid stromal tumor of the palpebral conjunctiva. As these are rare lesions, we believe that considering this as a differential when evaluating eyelid margin lesions is important due to the association of these tumors with systemic conditions including Zollinger-Ellison Syndrome, Carney complex, and other Endocrine disorders.

1. Introduction

A myxoid tumor is a benign, abnormal proliferation of mesenchymal cells. These connective tissue tumors are most commonly found in the heart, skin, bone, skeletal muscle, nasal sinuses, the gastrointestinal tract, and the genitourinary system. Their occurrence on the conjunctiva is rare with one study reporting only twenty-eight cases between the years of 1988 and 2018. Even more rare within the subset of those occurring on the conjunctiva are those that occur on the palpebral conjunctiva as roughly 93% of previously reported cases of conjunctival myxomas were found on the bulbar conjunctiva. We present the rare case of a 56-year-old female with a slow-growing eyelid margin-involving conjunctival mass, which was identified histopathologically as a palpebral conjunctival myxoid stromal tumor.

2. Case presentation

Our patient is a 56-year-old year Caucasian female who was referred to our clinic for removal of an eyelid lesion. The patient stated that the lesion had been present for greater than one year and that during this time, it fluctuated in size, sometimes improving in size with warm compresses. The patient’s past ocular history was notable for blepharitis and dry eye syndrome; however, she had no history of prior eye surgery. Patient’s visual acuity was 20/20 in both eyes. External examination was remarkable for an elevated cyst of the left inferior eyelid margin, just temporal to the punctum with telangiectasias but no feeder blood vessels (Fig. 1). The clinical diagnosis was eyelid margin cyst.

The patient requested excision of the lesion as she was experiencing significant irritation. Due to the proximity of the lesion to the punctum, the patient was taken to the operating room for excision of the lesion. Wedge resection was considered, but ultimately not performed given the benign appearance of the lesion and the lesion location close to the lacrimal punctum. For the procedure, a 15-blade scalpel was used to perform a shave biopsy and was sent for histopathological evaluation. The tissue sample was fixed in formalin, embedded in paraffin, and 6-μm sections were obtained for routine Hematoxylin and Eosin stain and immunostaining. Histologic analysis revealed conjunctival mucosa containing proliferation of a singular spindle and round cells within a
They were negative for Sry-related HMG-Box gene 1 (Sox10), Cyto-
keratin AE1/AE3 (CK AE1/AE3), Smooth Muscle Actin (SMA), and
desmin. Alcian blue staining confirmed the presence of myxoid material
in the stroma (Fig. 3A). Based on morphology and immunostaining,
the lesion was diagnosed to be consistent with conjunctival myxoid stromal
tumor.

3. Discussion

A myxoma is a benign proliferation of cells of mesenchymal
origin.1–4 They are most commonly found in the heart, but can also
occur in the skin, bone skeletal muscle, nasal sinuses, gastrointestinal
tract, and genitourinary system.1–4 Myxoid lesions of the conjunctiva
have been called by several names, including “conjunctival myxoma,”
“conjunctival stromal tumor,” and “conjunctival myxoid stromal
tumor”1 with Qin et al. arguing that all “conjunctival stromal tumors
” and “conjunctival myxomas” be called “conjunctival myxoid stromal
tumors”.5 Additionally, prior to the emergence of conjunctival stromal
tumor as its own entity in 2012, all primary myxoid proliferations were
diagnosed simply as myxomas.1 Myxoid tumors of the conjunctiva are
a very rare entity. Milman et al. reported just 28 cases of conjunctival
myxoid lesions from 1988-20186 and Grossniklaus et al. reported 4 cases
out of 2455 (0.002%) conjunctival lesions and Shields et al. reported 1
case out of 1643 (<0.001%) conjunctival lesions to be conjunctival
myxoma.1,2 Histopathologically, these tumors are characterized by
abundant mucoid matrix, a meshwork of reticulin fibers, and a small
number of spindle-shaped and stellate-shaped cells.1,3 Immunohis-
tochemically, myxoid tumors typically display strong positive immu-
noreactivity to CD34 and vimentin while having negative S100, SOX10,
and SMA.1,2 Expression. The stroma stains strongly positive with Alcian
blue. CD34 is a cell surface marker found on hematopoietic stem cells
but is also a marker for solitary fibrous tumors. Cells of mesenchymal
or endothelial origin stain positively for vimentin. S100 and SOX10
staining help to identify melanocytes as well as Schwann cells and are
therefore useful in the diagnosis of melanoma and nerve sheath tumors,
respectively. Lastly, SMA staining is positive in myofibroblasts.

On review of the literature, the most common location of conjunc-
tival myxoid tumors is on the bulbar conjunctiva. Qin et al. reported on
ten patients with conjunctival myxoid stromal tumors with all ten tu-
mors occurring on the bulbar conjunctiva.3 Milman et al. conducted a
retrospective review of all cases of conjunctiva myxoma, conjunctival
stromal tumor, and reactive fibromyxoid proliferation diagnosed at
Wills Eye Hospital, Emory Eye Center, and Mayo Clinic from January 1,
1988 through January 1, 2018. During this review, there were found to
be just 28 patients with aforementioned lesions. 56% of lesions were
localized to the limbal conjunctiva, 24% to the bulbar conjunctiva, and
4% (1 tumor) to the tarsal conjunctiva with adjacent eyelid margin
involvement.4 It is because conjunctival myxoid stromal tumors are
most commonly found on the bulbar conjunctiva that our case is
important to consider. Our patient’s tumor was located on the palpebral
conjunctiva with involvement of the eyelid margin. With the majority of
these tumors occurring on the bulbar conjunctiva, the correct diagnosis
could be easily overlooked.

Oftentimes, conjunctival myxoid tumors are clinically misdiagnosed
as cysts. Other differentials for these lesions include apocrine mixed
tumor, nevus, amelanotic melanoma, fibrous histiocytoma, lymph-
angioma, myxoid neurofibroma, spindle cell lipoma, solitary fibrous
tumor, rhabdomyosarcoma, pseudotumor, fibromyxoma, superficial
angiomyxoma, cutaneous benign mixed tumor, and myxoid liposarcoma.1,2–9 Histopathology and immunohistochemistry are impor-
tant in distinguishing these lesions. Apocrine mixed tumors display
epithelial and mesenchymal components while staining positive for
CD10, S100, α-SMA, and p64.10 Neurofibromas are tumors of neural
origin and express S100. Other fibrohistiocytic tumors (fibrous histo-
cytoma, angiomyxoma, myxoma, solitary fibrous tumor) can be distin-
guished from the myxoid stromal tumor by their morphologic growth
pattern and cytologic features. Additionally, CD34 is negative in these
tumors. Solitary fibrous tumors express CD34, however, morphologic
features (thick collagen fibers) are different from the myxoid stromal
tumor. The importance of considering conjunctival myxoid tumors in
the differential stems from its association with Carney complex, Zol-
linger Ellison Syndrome, and other systemic endocrine disorders.1,11,12
Carney complex is an Autosomal Dominant condition that is charac-
terized by two or more of the following: mucocutaneous pigmentation,
myxomas – cardiac, mammary, or cutaneous –, endocrine hyperactivity,
pituitary adenoma, unusual testicular tumors, psammomatous mela-
notic schwannoma.1 The conjunctival myxomas associated with Carney
complex typically present prior to embolic events that occur secondary
to cardiac myxomas, which is what makes the diagnosis of these
conjunctival lesions crucial. The treatment for these lesions should be
complete excision with full histopathological and immunohistochemical
evaluation. With excision, reported local recurrence is rare. A workup
for Carney complex should include biopsy of any suspicious skin lesions
or myxomas and bloodwork testing for endocrine abnormalities,
including Cushings’s syndrome (serum cortisol levels), growth hormone
hypersecretion (serum growth hormone levels), and thyroid disorders
(thyroid stimulating hormone, free T4, T3). There are not specific sur-
veillance guidelines for monitoring Carney complex, but the following

Fig. 1. A) External photo of the left eye with eyelid lesion adjacent to the lower eyelid punctum. B) External photo of the left eye with eversion of the lower eyelid
revealing lesion involvement of the palpebral conjunctiva.
are recommendations to perform to monitor the disease: annual echocardiogram for cardiac myxomas, annual thyroid ultrasound for thyroid nodules, annual testicular ultrasound in boys before puberty, annual measurement of 24-h urinary free cortisol excretion, annual measurement of insulin-like growth factor-1 and prolactin, and transabdominal ultrasound in women at the time of diagnosis. In addition to its association with Carney complex, conjunctival myxoid tumors can also occur in association with Zollinger-Ellison syndrome, which is caused by gastric acid hypersecretion resulting in severe acid-related peptic disease and diarrhea. The source of the gastrin production is by either a duodenal or a pancreatic neuroendocrine tumor (gastrinoma). This syndrome should be suspected in any individual with multiple or treatment-resistant peptic ulcers; peptic ulcers distal to the duodenum; peptic ulcer disease and diarrhea; enlarged gastric folds; or multiple endocrine neoplasia type 1 (MEN1). Diagnosis of this syndrome can be made by collecting fasting serum gastrin levels, which will be elevated, in the setting of a low gastric pH.

4. Conclusion

This case report of a conjunctival myxoid stromal tumor of the palpebral conjunctiva presents an uncommon scenario as 93% of reported conjunctival myxomas occur on the bulbar conjunctiva. Our patient’s lesion was clinically diagnosed to be a cyst and was excised due to patient preference. If not for histopathologic evaluation and immunohistochemical analysis, a diagnosis of myxoid stromal tumor would have been missed. In a patient with Carney Complex, diagnosis of these lesions is of the utmost importance as the conjunctival myxoid tumors are often seen prior to the onset of ischemic events in the eye as the result of cardiac myxomas. Therefore, when evaluating conjunctival lesions, even lesions of the palpebral conjunctiva, the differential diagnosis of conjunctival myxoid stromal tumor should always be considered.

Patient consent

Written consent to publish this case has not been obtained. This report does not contain any personal identifying information.

Acknowledgements and disclosures

No funding or grant support
Authorship

All authors attest that they meet the current ICMJE criteria for Authorship.

Declaration of competing interest

The following authors have no financial interests to disclose: PSM, CDR, AF, GE.

Acknowledgements

None.

References

1. Demirci H, Shields CL, Eagle RC, Shields JA. Report of a conjunctival myxoma case and review of the literature. Arch Ophthalmol. 2006;124(5):735–738. https://doi.org/10.1001/archophthalmol.124.5.735.
2. Sharma Neharika, et al. Conjunctival myxoma - atypical presentation of a rare tumour: case report and review of literature. 13 May 2015. BMC Ophthalmol. 2016;16(1):54. https://doi.org/10.1186/s12886-016-0233-1.
3. Rao Kini, Calicut Anuradha, Nayal Bhavna. Conjunctival myxoma—a case report. Malays J Med Sci : MJMS. 2013;20(1):92–94.
4. Milman T, Salomao DR, Ida CM, et al. Conjunctival myxoid lesions: clinical-pathologic MULTIPARAMETRIC analysis, including molecular genetics (an AMERICAN ophthalmological society thesis). Am J Ophthalmol. 2019;205:115–131. https://doi.org/10.1016/j.ajo.2019.04.027.
5. Qin X, Jin Z, Wang Y, Zhang Z. Conjunctival Myxoid stromal TUMOUR: a distinctive clinicopathological and IMMUNOHISTOCHEMICAL study. Br J Ophthalmol. 2018;103(9):1259–1265. https://doi.org/10.1136/bjophthalmol-2018-312747.
6. Hervig MC, Wells JR, Grossniklaus HE. Conjunctival stromal tumor: report of 4 cases. Ophthalmology. 2012;119(4):682–687. https://doi.org/10.1016/j.ophtha.2011.09.024.
7. Lee YH, Kim JM, Kim J, Lee SB. Fibromyxoma of the Tarsus: a case report. Ophthalmic Plast Reconstr Surg. 2018;34(1). https://doi.org/10.1097/ TOP.0000000000000957.
8. Mandeville JT, Roh JH, Woog JJ, et al. Cataneous benign MIXED TUMOR (chondroid syringoma) of the EYELID: clinical presentation and management. Ophthalmic Plast Reconstr Surg. 2004;20(2):110–116. https://doi.org/10.1097/01. top.0000173577.65340.e5.
9. Satter EK. Solitary superficial angiomyxoma: an infrequent but distinct soft TISSUE TUMOR. J Cutan Pathol. 2009;36:56–59. https://doi.org/10.1111/j.1600-0560.2008.01216.x.
10. Azari-Yam A, Abirshami M. Apocrine mixed tumor of the eyelid: a case report. Diagn Pathol. 2016;11(1). https://doi.org/10.1186/s13000-016-0485-5.
11. Ramaesh K, Wharton SB, Dhillon B. Conjunctival myxoma, Zollinger-Ellison syndrome and abnormal thickening of the inter-atrial septum: a case report and review of the literature. Eye. 2001 Jun;15(Pt 3):309–312. https://doi.org/10.1038/ eye.2001.50.PMID:11450727.
12. Yuen HK, Cheuk W, Luk FO, Wat CS, Auyeung K, Lam DS. Solitary superficial ANGIOMYXOMA in the eyelid. Am J Ophthalmol. 2005;139(6):1141–1142. https://doi.org/10.1016/j.ajo.2004.12.019.
13. Cowen EW. Carney complex. In: Hand JL, ed. UpToDate; 2021. Retrieved https://www.uptodate.com/contents/carney-complex?search=carney%20complex&source=search_result&selectedTitle=1~23&usage_type=default&display_rank=1. Accessed January 26, 2022.
14. Bergsland E, Zollinger-Ellison syndrome (gastrinoma): clinical manifestations and diagnosis. In: Feldman M, ed. UpToDate; 2021. Retrieved https://www.uptodate.com/contents/zollinger-ellison-syndrome-gastrinoma-clinical-manifestations-and-diagnosis?search=zollinger%2Eellison%20syndrome&source=search_result&select edTitle=1~109&usage_type=default&display_rank=1. Accessed February 8, 2022.