Dysregulation of autophagy in human follicular lymphoma is independent of overexpression of BCL-2

Supplementary Material

Suppl Table 1: Information on FL patients used for qRT-PCR microarray

Vial ID	Gender	Age at diag	Date of Diagnosis	Date of transformation	Stage*	FLIPI score§	Date of the 1st treatment	Response*	Date of death	Cause of death†
F9835	M	56	20/06/1997	15/04/2008	II	1	15/04/2008	Progression	03/12/2008	NHL
F9220	M	57	01/04/2001	22/01/2008	IV	3	26/04/2001	CR(U) / GPR		
R8402	F	67	22/08/2005	26/04/2011	II	1	14/05/2010	CR		
T1979	F	74	01/12/2005	18/05/2009	IV	U	08/05/2009	Progression	08/07/2009	NHL
T5728	M	29	15/07/2011	13/02/2012	IV	2	02/03/2012	CR		
R9130	F	25	31/05/2007		II	1	04/07/2007	CR(U) / GPR		
T6697	M	48	24/03/2011		IV	2	21/03/2012	PR		
R0481	F	54	12/04/2002		IV	2	11/01/2005	CR(U) / GPR		
F5997	F	63	01/01/1998		IV	3	27/08/1998	Relapse	13/01/2005	NHL
F9713	F	89	31/08/2001		IV	2	14/09/2001	N/A	28/09/2002	N/A
T6713	M	62	07/03/2012		III	U	N/A			
R2856	M	76	06/10/2003		III	2	N/A	20/02/2006	Other	
T0167	F	74	15/04/2006		IV	U	N/A			

¶ Staging ranges from I to IV with a higher stage indicating more widespread disease. § The Follicular Lymphoma International Prognostic Index (FLIPI) score ranges from 1 to 4 where 1 = low risk (0-1 prognostic factor), 2 = intermediate risk (2 prognostic factors), 3 = high risk (3-5 prognostic factors) and 4 = not assessable; U = unknown. * CR= complete remission; CR(U)= undetermined complete remission; GPR= good partial remission; N/A= not applicable. † NHL= Non-Hodgkin lymphoma; N/A= not applicable.
Suppl Table 2: Information on DLBCL patients used for qRT-PCR microarray

Vial ID	Age at diagnosis	Gender	Date of diagnosis	Stage†	IPI score$^\$	Date of 1st treatment	Response*	Date of death	Cause of death†
R1542	26	F	23/12/2002	VI	1	15/01/2003	CR		
R8374	20	M	29/11/2006	V	1	15/12/2006	CR		
T1486	33	M	08/01/2009	IV	1	27/01/2009	CR		
T1485	55	M	13/01/2009	II	0	20/01/2009	CR		
T2628	58	M	23/07/2009	I	0	20/08/2009	CR		
T3531	60	M	21/12/2009	III	1	03/02/2010	CR		
R1723	55	F	28/01/2003	IV	2	28/02/2003	CR	02/01/2006	NHL
R8878	79	F	01/02/2007	IV	4	17/04/2007	Progression	18/03/2008	NHL
R9083	33	M	09/05/2007	III	3	15/05/2007	CR(U) / GPR	15/11/2007	NHL
R9515	80	M	16/08/2007	IV	4	16/08/2007	Stable disease	19/10/2007	Cardiac failure
T0082	18	F	15/01/2008	IV	1	01/02/2008	Progression		
T0978	58	M	12/08/2008	IV	4	22/08/2008	Progression		

† Staging ranges from I to VI with a higher stage indicating more widespread disease. $^\$ The International Prognostic Index (IPI) score ranges from 0 to 5, with 0 indicating absence of all prognostic factors and 5 indicating all prognostic factors are present. * CR= complete remission; CR(U)= undetermined complete remission; GPR= good partial remission. † NHL= Non-Hodgkin lymphoma.
Suppl Table 3: Summary of clinical characteristics of FL patients’ samples used for the TMA

No. of patients	Percentage
128	100

Age, years	No. of patients	Percentage
<60	77	60.16
≥60	51	39.84

Gender	No. of patients	Percentage
Male	64	50.00
Female	64	50.00

Stage at diagnosis	No. of patients	Percentage
I	14	10.94
II	14	10.94
III	20	15.53
IV-VI	71	55.47
Unknown	6	4.69

FLIPI	No. of patients	Percentage
1 (Low)	31	24.22
2 (Intermediate)	28	21.88
3 (High)	34	26.56
4 (Not assessable)	17	13.28
Unknown	19	14.84

Proceeded to transformation	No. of patients	Percentage
36	28.13	

Time to transformation yr	No. of patients	Percentage
0-5	44	34.385
6-10	37	28.915
>11	48	37.505

Cause of death	No. of patients	Percentage
Alive	51	39.84
NHL-specific death	64	50.00
Unrelated/Other disease	5	3.91
Unknown	8	6.25

¶ Staging ranges from I to IV with a higher stage indicating more widespread disease. § The Follicular Lymphoma International Prognostic Index (FLIPI) score ranges from 1 to 4 where 1 = low risk (0-1 prognostic factor), 2 = intermediate risk (2 prognostic factors), 3 = high risk (3-5 prognostic factors) and 4 = not assessable; U = unknown. Ʌ Percentages of transformed.
Suppl Table 4: Summary of clinical characteristics of DLBCL patients’ samples used for the TMA

	No. of patients	Percentage
Age, years		
<60	84	58.33
≥60	60	41.67
Gender		
Male	89	61.81
Female	55	38.19
Stage at diagnosis		
I	13	9.02
II	22	15.28
III	28	19.44
IV-VI	79	54.86
Unknown	2	1.38
B Symptoms		
Yes	44	30.56
No	69	47.92
Unknown	31	21.53
Serum LDH		
Normal	54	37.50
Elevated	57	39.58
Unknown	33	22.92
IPI score		
0 (Low)	23	15.97
1 (Low)	37	25.69
2 (Intermediate)	28	19.44
3 (High)	27	18.75
4-5 (High)	9	6.25
Unknown	20	13.89
Cause of death		
Alive	67	46.53
NHL-specific death	49	34.03
Unrelated/Other diseases	28	19.44

¶ Staging ranges from I to VI with a higher stage indicating more widespread disease; in some cases the stage was not clear at diagnosis and so none was assigned. ¥ B symptoms are weight low, fever and night sweats; yes indicates they were observed in patients; no indicates their absence. ⤵ The lactate dehydrogenase value was deemed elevated if it was greater than 480 U/L. § The International Prognostic Index (IPI) score ranges from 0 to 5, with 0 indicating absence of all prognostic factors and 5 indicating all prognostic factors are present; low, intermediate and high refer to risk groups based on IPI scores.
Suppl Table 5: List of primary antibodies and their dilutions

Name of antibody	Type	Company	Cat No	Application	Dilution
BCL-2	Mouse	Santa Cruz	sc-509	WB	1:1000
BCL-2	Mouse	DAKO	M0887	IH	1:200
BCL-xL	Rabbit	Santa Cruz	sc-634	WB	1:1000
Beclin-1	Mouse	Santa Cruz	sc-48341	WB	1:1000
				IH	1:250
GAPDH	Mouse	Cell Signaling	2118L	WB	1:2000
LC3B	Rabbit	Sigma	L7543	WB	1:1000
				IH	1:5000
SQSTM1/p62	Mouse	Santa Cruz	sc-28359	WB	1:1000
				IH	
Cathepsin D	Mouse	Sigma	C0715	IH	1:1000
CD68	Mouse	DAKO	M0814	IH	1:8000
TGM2	Rabbit	Abcam	Ab421	IH	1:750
APC-H7-CD20	Mouse	BD	641396	FC	2.5 µl/10^6 cells
FITC-CD3	Mouse	Biolegend	344804	FC	1 µl/10^6 cells
APC-H7-CD19	Mouse	Biolegend	302218	FC	2.5 µl/10^6 cells
PE-CD10	Mouse	Biolegend	312204	FC	2.5 µl/10^6 cells
APC-κ light chain	Mouse	Biolegend	31510	FC	20 µl/10^6 cells
PerCpCy5.5-λ light chain	Mouse	Biolegend	316618	FC	5 µl/10^6 cells

FC= flow cytometry; IH= immuno-histochemistry; WB= Western blotting
Suppl Table 6: Genes of autophagy machinery components

Gene code	Full name	Function
AMBRA1	Autophagy/Beclin-1 regulator 1	Autophagic vacuole formation
ATG12	Autophagy related gene 12	Autophagic vacuole formation/co-regulator for autophagy and apoptosis
ATG16L1	Autophagy related gene 16-1	Autophagic vacuole formation/protein transport
ATG4 A, B, C, D	Autophagy related gene 4 A, B, C, D	Autophagic vacuole formation/protein targeting to vacuole/protein transport/with protease activity
ATG5	Autophagy related gene 5	Autophagic vacuole formation
ATG9A	Autophagy related gene 9A	Autophagic vacuole formation/protein transport
ATG9B	Autophagy related gene 9B	Autophagic vacuole formation
BECN1	Beclin-1	Autophagic vacuole formation/co-regulator of autophagy and apoptosis
GABARAP	GABA(A) receptor-associated protein	Autophagic vacuole formation/protein targeting to vacuole/protein transport/linking to lysosome
GABARAPL1	GABA(A) receptor-associated protein-like 1	Autophagic vacuole formation
GABARAPL2	GABA(A) receptor-associated protein-like 2	Autophagic vacuole formation/protein transport
IRGM	Immunity-related GTPase family, M	Autophagic vacuole formation
MAP1LC3A	Microtubule-associated protein 1 light chain 3-α (LC3A)	Autophagic vacuole formation
MAP1LC3B	Microtubule-associated protein 1 light chain 3-β (LC3B)	Autophagic vacuole formation
RGS19	Regulator of G-protein signaling 19	Autophagic vacuole formation
ULK1	Serine/threonine-protein kinase ULK1 (ATG1)	Autophagic vacuole formation
WIPI1	WD repeat domain, phosphoinositide interacting 1	Autophagic vacuole formation
ATG10	Autophagy related protein 10	Protein transport
ATG16L2	Autophagy related protein 16-2	Protein transport
ATG3	Autophagy related protein 3	Protein transport/ubiquitination
ATG7	Autophagy related protein 7	Protein transport/ubiquitination
RAB24	RAB24	Protein transport
DRAM1	DNA-damage regulated autophagy modulator 1	Linking to lysosome/co-regulator of autophagy and apoptosis
LAMP1	Lysosomal-associated membrane protein 1	Linking to lysosome and autophagy induction
NPC1	Niemann-Pick disease, type C1	Linking to lysosome
CTS B, D, S	Cathepsin B, D, S	Linking to lysosome
HDAC6	Histone deacetylase 6	Protein ubiquitination
Suppl Table 7: Genes for autophagy regulation

Gene code	Full name	Function
AKT1	v-akt murine thymoma viral oncogene homolog 1	Co-regulator of autophagy and apoptosis
APP	Amyloid beta (A4) precursor protein	Co-regulator of autophagy and apoptosis
ATG5	Autophagy related protein 5	Co-regulator of autophagy and apoptosis
BAD	BCL2-associated agonist of cell death (Bad)	Co-regulator of autophagy and apoptosis
BAK1	BCL2 antagonist/killer 1	Co-regulator of autophagy and apoptosis
BAX	Bcl-2 associated X protein	Co-regulator of autophagy and apoptosis
BCL2	B cell CLL/lymphoma 2	Co-regulator of autophagy and apoptosis
BCL2L1	BCL2 like 1	Co-regulator of autophagy and apoptosis
BID	BH3 interacting domain death agonist	Co-regulator of autophagy and apoptosis
BNIP3	BCL2/adenovirus E1B 19kDa interacting protein 3	Co-regulator of autophagy and apoptosis
CASP3, 8	Caspase-3, 8	Co-regulator of autophagy and apoptosis
CDKN1B	Cyclin-dependent kinase inhibitor 1B (p27)	Co-regulator of autophagy and apoptosis and cell cycle
CDKN2A	Cyclin-dependent kinase inhibitor 2A (p16)	Co-regulator of autophagy and apoptosis and cell cycle
CLN3	Battenin	Co-regulator of autophagy and apoptosis
CXCR4	Chemokine (C-X-C motif) receptor 4	Co-regulator of autophagy and apoptosis
DAPK1	Death-associated protein kinase 1	Co-regulator of autophagy and apoptosis
EIF2AK3	Eukaryotic translation initiation factor 2 alpha kinase 3	Co-regulator of autophagy and apoptosis and autophagy induction
FADD	Fas (TNFRSF6)-associated via death domain	Co-regulator of autophagy and apoptosis
FAS	Fas cell surface death receptor	Co-regulator of autophagy and apoptosis
HDAC1	Histone deacetylase 1	Co-regulator of autophagy and apoptosis
HTT	Huntingtin	Co-regulator of autophagy and apoptosis
IFNG	Interferon γ	Co-regulator of autophagy and apoptosis and cell cycle and autophagy induction
INS	Insulin	Co-regulator of autophagy and apoptosis
MAPK8	Mitogen-activated protein kinase 8	Co-regulator of autophagy and apoptosis
MTO1	Mechanistic target of rapamycin	Co-regulator of autophagy and apoptosis
NFKB1	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1	Co-regulator of autophagy and apoptosis
PIK3CG	Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit γ	Co-regulator of autophagy and apoptosis
PRKAA1	Protein Kinase, AMP-Activated, Alpha 1	Co-regulator of autophagy and apoptosis
PTEN	Phosphatase and tensin homolog	Co-regulator of autophagy and apoptosis and cell cycle
SNCA	Synuclein, alpha	Co-regulator of autophagy and apoptosis
SQSTM1	Sequestosome 1 (p62)	Co-regulator of autophagy and apoptosis
TGFBI	Transforming growth factor beta 1	Co-regulator of autophagy and apoptosis and cell cycle
TGM2	Transglutaminase 2	Co-regulator of autophagy and apoptosis
TNF	Tumour necrosis factor	Co-regulator of autophagy and apoptosis
TNFSF10	Tumour necrosis factor (ligand) superfamily, member 10	Co-regulator of autophagy and apoptosis
TP53	Tumour p53	Co-regulator of autophagy and apoptosis and cell cycle
RB1	Retinoblastoma 1	Co-regulator of autophagy and cell cycle
EIF4G1	Eukaryotic translation initiation factor 4 gamma, 1	Autophagy in response to other intracellular signals
ESR1	Estrogen receptor 1	Autophagy in response to other intracellular signals
GAA	Glucosidase, α; acid	Autophagy in response to other intracellular signals
Gene	Description	Function
--------------	--	-----------------------------------
HGS	Hepatocyte growth factor-regulated tyrosine kinase substrate	Autophagy in response to other intracellular signals
MAPK14	Mitogen-activated protein kinase 14	Autophagy in response to other intracellular signals
PIK3C3	Phosphatidylinositol 3-kinase, catalytic subunit type 3	Autophagy in response to other intracellular signals
PIK3R4	Phosphatidylinositol 3-kinase, regulatory subunit 4	Autophagy in response to other intracellular signals
RPS6KB1	Ribosomal protein S6 kinase, 70kDa, polypeptide 1	Autophagy in response to other intracellular signals
TMEM74	Transmembrane protein 74	Autophagy in response to other intracellular signals
ULRK2	Unc-51 like autophagy activating kinase 2	Autophagy in response to other intracellular signals
UVRAG	UV radiation resistance associated gene	Autophagy in response to other intracellular signals
HSP90AA1	Heat shock protein 90 alpha class A 1	Chaperone-mediated autophagy
HSPA8	Heat shock protein 8	Chaperone-mediated autophagy
Suppl Table 8: Validation of differentially expressed autophagy-related genes.

Gene code	FL	DLBCL				
	F.C. (Array)	P value	F.C. (V)	P value	F.C. (Array)	P value
BECN1	2.07	<0.005	1.46	0.06	1.23	0.46
MAP1LC3A	2.60	<0.005	2.08	<0.05	1.59	0.32
ATG4B	4.66	<0.005	2.72	<0.05	1.78	0.13
DRAM1	2.38	<0.05	1.05	0.18	4.24	<0.05
CTSD	2.41	<0.005	2.27	<0.05	4.14	<0.05

Samples used for validation were those previously analyzed in the unpurified PCR array; RA n=5, FL n=4, and DLBCL n=5. Primers used for validation were the same as for PCR array. RPLPO was used as the housekeeping gene. (Array) indicates the initial PCR array and (V) means validation. Validation samples were analyzed in triplicate and the average CT value of these triplicates used to calculate the RQ value provided standard deviation (SD) was <0.5. In cases where SD was >0.5, data was visualized and if a clear outlier was identified this value was excluded and the average of the remaining duplicates used. Data were normalized to averaged RPLPO, RQ values calculated using the average CT and the 2-ΔΔCT method as before and FCs calculated as previously described.