Comparative Analysis of Mined Reserve Tonnage on "M" Hill Between Mine Plan and Mining Realization

Djamaluddin1, Mulhadramy2, Nurliah Jafar*3

1 Department of Mining Engineering, Faculty of Engineering, Universitas Hasanuddin, Indonesia
2,3 Department of Mining Engineering, Faculty of Industrial Technology, Universitas Muslim Indonesia, Indonesia

*Correspondence e-mail: nurliah.jafar@umi.ac.id

ABSTRACTS
In mining activities, there is often a discrepancy between the plan and actual conditions in the field; if not identified early, this discrepancy will undoubtedly have the potential to cause losses if it continues to repeat itself. This study aimed to determine the factors driving the difference between the mine plan and mining realization. This research uses Pit design data, mine progress measurement data, material movement data, and two mine plan data, namely the backup plan model resulting from detailed exploration and the backup plan model data from the input drill results. From the results of the mine plan research, the closest to realization is the plan using input drill data with an average material movement difference of 10% and the difference in mined ore reserves an average of 12%. In comparison, detailed exploration data with an intermediate material movement difference of 12% to 42% and the contrast in mined ore reserves is 52% on average. The presence of overcuts influences this and the use of different densities.

ARTICLE INFO
Article History:
Received 02 May 2022
Revised 03 May 2022
Accepted 29 June 2022
Available 30 June 2022

Keyword:
Material Movement; Mine Plan; Reserve; Overcut; Input Drill

INTRODUCTION
To achieve optimal production, mining planning is carried out (Dzakir et al., 2022; Jafar, 2016; Yogi Pranata et al., 2017). To maintain the continuity of production, mining planning is carried out in the mining stages. Mining phasing provides information about locations to be mined in the future according to production targets (Febrylian, 2013; Thamsi, 2017; Thamsi et al., 2021).

In mining activities, there is often a discrepancy between the plan and actual conditions in the field, this discrepancy was found after a work meeting was held regarding comparative analysis between the mine plan and the realization of mining. Non-conformities that often occur include overcut (excess excavation), undercut (lack of excavation), and over stripping (stripping beyond the specified target position). If not identified early, this discrepancy can occur repeatedly and continue every month, and will potentially cause losses to the company (Ibrahim, 2014; Anwar et al., 2020, 2021).

The frequent occurrence of data discrepancies between mineral deposits and the realization when mining is carried out makes it important to conduct research on the factors that cause these differences. Therefore, researchers are interested in conducting research with the aim of knowing the factors that cause the difference between mine plans and mining realization (Afriandi, 2015; Dewanti, 2015; Mustika, 2016; Widodo, 2015).

METHODS
The method of data processing is done with the help of software on a computer (computing). Using Surpac 6.3 mining software assistance to calculate reserve tonnage using backup model block data using model block tools then report using topographical artist mining survey data which limits the model block at the top and pit design or pit limit limits the model block at the bottom, it can be the volume is known from the topography of the mine progress and the pit design or pit limit then the volume is
multiplied by the density to determine the tonnage, while to determine the mined production using mining survey data at the beginning of mining topographical artists limiting the model block at the top and mining survey at the end mining topographical artists, the volume between the initial topography and the final topography can be known, then the volume is multiplied by the density to determine the tonnage.

RESULTS AND DISCUSSION

M hill

Bukit M is a mining front that started producing ore in August 2015 to November 2015 in the first period then continued in April 2016 until now. The mining method used at Bukit M is the open-pit mining method, ie all mining activities are carried out above the earth's surface and are in direct contact with the outside air by means of an open pit, namely open-pit mining by digging ore deposits down to form a basin or pit. The limit of active mining openings on Bukit M is 4.77 Ha. can be seen in the following image:

![Figure 1. The area of the hill mining opening M](image)

Reference Data

1. Reserve block model year 2015
 - EMD cadangan spare block model filename: pmlbmgu1_nth.dm source: Exploration Mine Development (EMD)
 - Inpit drill spare block model
 - filename: new-bm.mdl source: Exploration, Mine Plan, & Survey (EMPS)

2. Pit Design
 - Pit design Bukit M, file name: pml9n-pid6-clip.dtm, source: Exploration, Mine Plan, & Survey (EMPS).

3. Measurement of M Hill Mine Progress
 a) Period 1: date: 02 September 2015 – 27 November 2015
 b) Period 2: date: 27 November 2015 – June 2016
4. Material Movement Data (Actual)
 a) Period 1: September – November 2015
 b) Period 2: April – June 2016

M Hill Reserve

Reserves are calculated using the detailed exploration block model (EMD) and the input drill block model (EMPS) using the same mine progress survey parameters on 02 September 2015 and the Bukit M pit design with the name pml9n-pid6-clip.dtm. Reserved research area locations can be seen in the table below:

Range Ni	Volume	Tonnes	Ni	Density
0.0 -> 1.29	62,526.00	112,523.00	1	1.8
1.3 -> 1.49	14,775.00	26,150.00	1.4	1.77
1.5 -> 1.79	12,415.00	21,635.00	1.7	1.75
1.8 -> 1.99	30,940.00	52,722.00	1.9	1.7
>2.0	43,327.00	73,682.00	2.2	1.7
Grand Total	163,983.00	286,713.00	1.5	

Range Ni	Volume	Tonnes	Ni	Density
0.0 -> 1.29	160,000.00	287,939.10	0	1.8
1.3 -> 1.49	-	-	0	1.77
1.5 -> 1.79	-	-	0	1.75
1.8 -> 1.99	3,281.00	5,590.85	1.95	1.7
>2.0	172,813.00	293,886.20	2.47	1.7
Grand Total	336,094.00	587,416.15	1.29	

Mined Reserve Production

Mined reserve production is the amount of laterite nickel ore that has been excavated or mined expressed in tons, to determine the tonnage of mined ore production based on planning, it can be determined using Surpac 6.3 software using block model data, pit design (pit limit), and mining progress. Meanwhile, to determine the actual tonnage of mined ore production using a weighbridge, by weighing the dump truck when it is loaded and when it is empty when it goes to the stockyard and when it returns from the stockyard.

Type Material	2015 Sep	2015 Okt	2015 Nov	2016 April	2016 Mei	2016 Juni
Waste	26012	28198	36792	19459	14036	6983
Ore	18,334	14,727	10,999	11,202	13,574	8,781
Tot Mat Move	44,346	42,926	47,791	30,661	27,610	15,765

Type Material	2015 Sep	2015 Okt	2015 Novr	2016 April	2016 Mei	2016 Juni
Waste						
Ore						
Tot Mat Move						

Copyright © 2022, Journal of Geology & Exploration, Page: 24
Movement Material Difference

Material movement difference is the amount of material movement difference in the form of waste and ore between mine plans (based on detailed exploration drilling and based on Inpit drill with mining realisation).

Based on Tables 3, 4, and 5, material movement from detailed exploration, material movement based on Inpit drill, and actual material movement of mining at Bukit M from September 2015 to November 2015 and April 2016 to June 2016 are stated in table 6 as follows:

Table 6. Material Movement

Material	Eksplorasi detail	Inpit drill	Aktual
Waste	44.346,00	62.972,75	76.961,80
Ore	42.926,00	75.212,07	89.853,68
Total	87.272,00	138.184,82	166.815,48

In table 6, it is known that the planning closest to actual mining is planning based on input drill, which can be seen in the following graph:

Figure 2. Material Movement Chart
Figure 3. Material Movement Difference

From the graph above, the input drill has the slightest difference, where the monthly average difference is 10%. In comparison, detailed exploration with an average monthly difference of 42% shows that the input drill has the closest material movement difference actual.

Mined Ore Production Difference

The difference in Ore mined is the amount of difference in Ore mined between the mine plan (based on drilling carried out by Exploration Mine Development and based on drilling carried out by the Exploration, Mine Plan, & Survey work unit) and mining realisation.

Based on Tables 3, 4, and 5, it can be seen the number of ore mined from detailed exploration, the number of ore mined based on the Input drill, and the actual number of ore mined at Bukit M from September 2015 to November 2015 and April 2016 to June 2016 respectively. As stated in table 4.7 as follows:

	Ket	Sep	Okt	Nov	April	Mei	Juni
Eksplorasi detail	18,334.00	14,727.00	10,999.00	11,202.00	13,574.00	8,781.00	
Input drill	9,831.17	21,787.97	28,698.82	18,070.07	23,913.65	18,598.42	
Aktual	29,580.76	46,481.19	28,229.08	18,161.56	26,519.57	21,245.93	

In table 4.7, it is known that the planning closest to actual nickel ore (ore) mining is planning based on the input drill carried out by the Exploration, Mine Plan, & Survey (EMPS) work unit, which can be seen in the following graph:
Factors Causing Mine Plan Incompatibility and Mining Realization

1. The occurrence of excavation that exceeds the planned elevation (Overcut). The hole exceeds the designed elevation limit, as seen in the A-A' and B-B' cross sections (see Appendix P). The overcut can be seen in Figure 7, where the overcut is marked with a red circle. The actual mining conditions often occur overcut or overstriding because visual conditions in the field usually indicate ore deposits outside the planned mining limits or the planned mining elevation limits, which causes more ore tonnage in actual mining compared to mining plans.

2. There is a difference in density used to calculate the tonnage, where the mine plan uses a different density in each range of Ni levels, namely Ni 0.0-1.3 using a density of 1.80 Ni 1.3-1.5 using a density of 1.77 Ni 1.5-1.8 using a density of 1.75 Ni 1.8->2.0 using a density of 1.70. Meanwhile, the density loose used to calculate the tonnage mined uses a density of 1.58.
CONCLUSION
Based on the research that has been done, it can be concluded that:
1. From the results of the mine plan research, the closest to actual mining realization is planning using input drill data with an average material movement difference of 10% and the difference in mined ore reserves an average of 12%. In comparison, detailed export data with a difference in the middle material movement is 42%, and the difference in mined ore reserves is an average of 52%.
2. In the mining realization, the tonnage of ore is more significant than planning, with an average of 10% (input drill); this is influenced by the presence of overcuts, mining activities outside the designed mining limits, and the use of different densities.

ACKNOWLEDGMENT
The author’s gratitude goes to Mr Dwipa Armando and all Mining staff of PT. Antam UBPN SULTRA who has assisted in the form of opportunities, guidance and facilities during the research activity.
REFERENCE

Afriandi, D. (2015). Pemodelan Dan Estimasi Sumberdaya Nikel Laterit Daerah “X” Menggunakan Software Datamine Studio 3 Pada PT. Vale Indonesia Luwu Timur Sulawesi Selatan. *Jurnal Geomine*, 2(1). doi: 10.33536/jg.v2i1.32

Anwar, H., Thamsi, A. B., & Farid, M. F. (2021). Evaluasi Geometri Jalan Angkut Tambang Pada PT. Manakarra Multi Mining Provinsi Sulawesi Barat. *Matriks Teknik Sipil*, 9(1), 7. doi: 10.20961/mateksi.v9i1.47323

Anwar, H., Widodo, S., Alim, M. N., Umar, E. P., Lantara, D., Nurwaskito, A., & Thamsi, A. B. (2020). Analisis Losses pada Pemindahan Material Lgso di Front Penambangan Bukit Hilux Menuju Stockyard Pelabuhan PT Antam UBPN Sultra. *Jurnal Geomine*, 7(3), 218. doi: 10.33536/jg.v7i3.295

Dewanti, A. (2015). Analisis Produksi Material Sipil Dan Overburden Pada Disposal Area PT. Vale Indonesia, Tbk. *Jurnal Geomine*, 2(1). doi: 10.33536/jg.v2i1.26

Dzakir, L. O., Amir, M. K., Prianata, Y. L. O., & Kadar, M. I. (2022). Analisis Perbandingan Kadar MgO Dan SiO2 Pada Nikel Kadar Rendah di Kabupaten Kolaka dan Kabupaten Kolaka Utara. *Jurnal Geomine*, 10(1), 43–50. doi: 10.33536/jg.v10i4.1080

Febrylian, F.C (2013). *Rekonsiliasi Penambangan Antara Perencanaan tambang Jangka Pendek Dengan Realisasi Berdasarkan Block Model Dan Peta Topografi Periode Semester 1-2013 Di Site Tanjung Buli Ubp Nikel Maluku Utara, PT. Antam (Persero) Tbk.* Prosiding TPT PERHAPI 2013, Yogyakarta. PERHAPI.

Jafar, N. (2016). Analisis Perbandingan Kandungan Unsur Nikel (Ni) Dan Besi (Fe) Dari Data Titik Bor Dengan Realisasi Penambangan. *Jurnal Geomine*, 4(2). doi: 10.33536/jg.v4i2.53

Hustrulid, W., and Kuchta, M. (1995). *Open Pit Mine Planning and Design Volume 1 Fundamental*, A.A. Brookfield, Netherland. Balkema.

Ibrahim, Eddy., Suawardi, F.R., dan Musmualim. (2014). *Mining Reconciliation Between Monthly Mining Plan With Realization at Swakelola B2 Mine PT. Bukit Asam (Persero)*, Tbk. Palembang. Jurusan Teknik Pertambangan, Fakultas Teknik, Universitas Sriwijaya.

Mustika, R. (2016). Estimasi Sumberdaya Nikel Laterit Dengan Metode Inverse Distance Weighting (Idw) Pada PT. Vale Indonesia, Tbk. Kecamatan Nuha Provinsi Sulawesi Selatan. *Jurnal Geomine*, 1(1). doi: 10.33536/jg.v1i1.11

Simanjuntak, T.O., Surono dan Sukido. (1993). *Geologi Lembar Kolaka Sulawesi Tenggara*, Bandung. Pusat Penelitian dan Pengembangan Geologi.

Syahputra, H. (2012). *Rekonsiliasi Sequence Penambangan Perencanaan Jangka Panjang dengan Kondisi Aktual Studi Kasus Pit Selatan Tambang Senakin PT. Arutmin*. Prosiding TPT PERHAPI 2012, Jakarta. PERHAPI.

Thamsi, A. B. (2017). Estimasi Cadangan Terukur Endapan Nikel Laterit Cog 2,0% Menggunakan Metode Inverse Distance Pada Pt. Teknik Alum Service, Blok X. *Jurnal Geomine*, 4(3), 128–130. doi: 10.33536/jg.v4i3.77

Thamsi, A. B., Jafar, N., & Fauzie, A. (2021). Analisis Pengaruh Morfologi Pada Pembentuk Nikel Laterit Pt Prima Sentosa Alam Lestari Kabupaten Morowali Provinsi Sulawesi Tengah. *Jurnal GEOSAPTA*, 7(2), 75–78. doi: 10.20527/jg.v7i2.9114

Widodo, S. (2015). Studi Perbandingan Antara Metode Poligon Dan Inverse Distance Pada Perhitungan Cadangan Ni PT. Cipta Mandiri Putra Perkasa Kabupaten Morowali. *Jurnal Geomine*, 3(1). doi: 10.33536/jg.v3i1.16

Yogi Pranata, R., Djamaluddin, D., Asmiani, N., & Thamsi, A. B. (2017). Analisis Perbandingan Kadar Nikel Berdasarkan Perencanaan Realisasi Penambangan. *Jurnal Geomine*, 5(3). doi: 10.33536/jg.v5i3.146