A circular version of Gödel’s T and its abstraction complexity

Anupam Das

University of Birmingham

Journées 2021 du GT Scalp
Fontainebleau
3rd November 2021
Cyclic proofs: a Curry-Howard perspective

A circular version of Gödel’s T

From models to interpretations

Conclusions
Motivating example: circular typing for Ackermann-Péter

Consider the functions $I \colon (N \to N) \to N \to N$ and $A \colon N \to N \to N$ given by:

- $I f _0 = f _1$
- $I f _s x = f (I f x)$
- $A _0 = s$
- $A _s x = I (A x)$

Can be written using only base types with 'circular' typing:

- $s \colon N \to N \times N, N \to N$
- $\cdot \colon N, N \to N$
- $\cdot \colon N \to N \times N, N \to N$

This appears to be non-wellfounded.

Why is the function well-defined?
Motivating example: circular typing for Ackermann-Péter

Consider the functions $I : (\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ and $A : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ given by:

\[
\begin{align*}
I f 0 &= f \, 1 \\
I f s x &= f (I f x) \\
A 0 &= s \\
A s x &= I (A x)
\end{align*}
\]
Consider the functions $I : (N \to N) \to N \to N$ and $A : N \to N \to N$ given by:

\[
\begin{align*}
I f^0 &= f^1 \\
I f^s x &= f(I f x) \\
A^0 &= s \\
A^s x &= I(A x)
\end{align*}
\]

Can be written using only base types with ‘circular’ typing:
Motivating example: circular typing for Ackermann–Péter

Consider the functions $I : (N \to N) \to N \to N$ and $A : N \to N \to N$ given by:

\[
\begin{align*}
I f 0 &= f 1 \\
I f s x &= f (I f x) \\
A 0 &= s \\
A s x &= I (A x)
\end{align*}
\]

Can be written using only base types with ‘circular’ typing:

- Apparently non-wellfounded.
- Why is the function well-defined?
There are now several distinct communities studying non-wellfounded reasoning. Some of these include:

Algebra / Type systems	Modal logic	Predicate logic
Linear logic + \(\mu, \nu \)	\(\mu \)-calculus	FOL + ind. dfns.
Kleene Algebra + \(\cap, \setminus, / \)	PDL & Game logic	Arithmetic

NB: formula expressivity increases left-to-right.

Some references:

- **Algebra and type systems**: [Santocanale '02], [Fortier & Santocanale '13], [Baelde, Doumane & Saurin '16], [D. & Pous '17, '18], [Kuperberg, Pinault & Pous '21].
- **Modal logics**: [Niwinski & Walukiewicz '96], [Afshari & Leigh '17], [Enqvist, Hansen, Kupke, Marti & Venema '19].
- **Predicate logic**: [Brotherston & Simpson '07], [Simpson '17], [Berardi & Tatsuta '17], [D. '20].
Are cyclic proofs and inductive proofs equally powerful?
Are cyclic proofs and inductive proofs equally powerful?

The situation in arithmetic is now well-understood:

Theorem (Simpson ’11)

Cyclic Arithmetic (CA) is equivalent to Peano Arithmetic (PA).

Theorem (D. ’20)

$I\Sigma_{n+1}$ and $C\Sigma_n$ prove the same Π_{n+1} theorems.
The Brotherston-Simpson conjecture

Are cyclic proofs and inductive proofs equally powerful?

The situation in arithmetic is now well-understood:

Theorem (Simpson ’11)

Cyclic Arithmetic (CA) is equivalent to Peano Arithmetic (PA).

Theorem (D. ’20)

$I\Sigma_{n+1}$ and $C\Sigma_n$ prove the same Π_{n+1} theorems.

What about type theories?
1 Cyclic proofs: a Curry-Howard perspective

2 A circular version of Gödel’s T

3 From models to interpretations

4 Conclusions
Church's simple type theory

Finite types:

\[\sigma, \tau ::= N \mid (\sigma \to \tau) \]

- **Language**: set of typed constants (always including equality \(=_{\sigma}\) at all \(\sigma\)).
- **Terms**: formed by typed application.
- **Theory**: set of axioms and rules (always including intensional equality).

Example (Combinatory Algebra)

Language:

\[
\begin{align*}
K_{\sigma \tau} & : \sigma \to \tau \to \sigma \\
S_{\rho \sigma \tau} & : (\rho \to \sigma \to \tau) \to (\rho \to \sigma) \to \rho \to \tau
\end{align*}
\]

Theory:

\[
\begin{align*}
K \ x \ y & = x \\
S \ x \ y \ z & = x \ z \ (y \ z)
\end{align*}
\]

Standard model \(\mathcal{N}\):

\[
\begin{align*}
N^{\mathcal{N}} & ::= \mathbb{N} \\
(\sigma \to \tau)^{\mathcal{N}} & ::= \{ f : \sigma^{\mathcal{N}} \to \tau^{\mathcal{N}} \}
\end{align*}
\]

Interpretations: take equational axioms as definitions left-to-right.
T extends combinatory algebra by **recursion combinators**:

$$\text{rec}_\sigma : \sigma \rightarrow (N \rightarrow \sigma \rightarrow \sigma) \rightarrow N \rightarrow \sigma$$

and (quantifier-free) axioms and rules:

$$\begin{align*}
\text{rec} f g 0 &= g \\
\text{rec} f g s x &= g x (\text{rec} f g x) \\
\neg s x &= 0 \\
\phi(0) &\Rightarrow \phi(s x) \\
\text{ind} &\Rightarrow \phi(t)
\end{align*}$$
System T

T extends combinatory algebra by **recursion combinators**:

$$\text{rec}_\sigma : \sigma \rightarrow (N \rightarrow \sigma \rightarrow \sigma) \rightarrow N \rightarrow \sigma$$

and (quantifier-free) axioms and rules:

$$\begin{align*}
\text{rec } f \ g \ O &= g \\
\text{rec } f \ g \ s \ x &= g \ x \ (\text{rec } f \ g \ x) \\
\neg s \ x &= 0 \\
s \ x &= s \ y \supset x = y
\end{align*}$$

Theorem (Gödel ’41)

T is **equiconsistent** with Peano Arithmetic.

\leadsto we can *trade off* quantifier complexity for abstraction complexity.
System T

T extends combinatory algebra by **recursion comonitors**:

$$\text{rec}_{\sigma} : \sigma \to (N \to \sigma \to \sigma) \to N \to \sigma$$

and (quantifier-free) axioms and rules:

\[
\begin{align*}
\text{rec } f \ g \ 0 &= g \\
\text{rec } f \ g \ sx &= g \ x \ (\text{rec } f \ g \ x) \quadدخل \ sx = 0 \quad دخل \ s \ x = 0 \quad دخل \ s \ y \supset x = y \\
\text{ind } \varphi(0) &\quad \varphi(x) \supset \varphi(sx) \\
\end{align*}
\]

Theorem (Gödel ’41)

T is equiconsistent with Peano Arithmetic.

⇝ we can trade off quantifier complexity for abstraction complexity.

Question

Can we interpret cyclic arithmetic (directly) in a circular version of T?
Each instance of a rule is construed as a constant.

....the map (derivations → terms) is continuous.
Equational axiomatisation

\[
\begin{align*}
\text{id} \ x & = x \\
\text{ex} \ t \bar{x} x y \bar{y} & = t \bar{x} y x \bar{y} \\
\text{wk} \ t \bar{x} x & = t \bar{x} \\
\text{cntr} \ t \bar{x} x & = t \bar{x} x x \\
\text{rec} \ s t \bar{x} 0 & = s \bar{x} \\
\text{rec} \ s t \bar{x} sz & = t \bar{x} z (\text{rec} \ s t \bar{x} z)
\end{align*}
\]

\[
\begin{align*}
\text{cut} \ s t \bar{x} & = t \bar{x} (s \bar{x}) \\
\text{L} \ s t \bar{x} y & = t \bar{x} (y (s \bar{x})) \\
\text{R} \ t \bar{x} x & = t \bar{x} x \\
\text{cond} \ s t \bar{x} 0 & = s \bar{x} \\
\text{cond} \ s t \bar{x} sz & = t \bar{x} z
\end{align*}
\]

NB: gives interpretations of constants in \(\mathbb{N} \), using **meta-level induction**.
Coterms and coderivations

We can generalise term trees and derivation trees to non-wellfounded counterparts:

Definition

- **coterms** are generated **coinductively** from constants and variables.
- **coderivations** are generated **coinductively** from the rules.

NB: The ‘coterm of a coderivation’ is **well-defined**, thanks to continuity.
We can generalise term trees and derivation trees to non-wellfounded counterparts:

Definition

- **coterms** are generated coinductively from constants and variables.
- **coderivations** are generated coinductively from the rules.

NB: The ‘coterm of a coderivation’ is well-defined, thanks to continuity.

A coderivation is **regular** or **circular** if it has only finitely many distinct sub-coderivations.
We can generalise term trees and derivation trees to non-wellfounded counterparts:

Definition

- **coterms** are generated coinductively from constants and variables.
- **coderivations** are generated coinductively from the rules.

NB: The ‘coterm of a coderivation’ is well-defined, thanks to continuity.

A coderivation is **regular** or **circular** if it has only finitely many distinct sub-coderivations.

Semantics: Kleene-Herbrand-Gödel style partial functionals.
Let $f : \mathbb{N} \times \mathbb{N}^k \to \mathbb{N}$ and write $f_i(\vec{x}) := f(i, \vec{x})$.
Unbounded search $\mu x (f \ x = 0)$ is given by $H \ 0$ with:

$$H \ x \ := \ \text{cond} \ (f \ x) \ x \ (H \ s x)$$

H is computed by the following regular coderivation:
A totality criterion

σ^1 is an **immediate ancestor** of σ^2 if they are in the premiss and conclusion, resp., and have the ‘same colour’.

Definition (Threads and progress)

- A **thread** is a maximal path in the graph of immediate ancestry.
- An N-thread is **progressing** if it is infinitely often **principal** for cond.
- A coderivation is **progressing** if each infinite branch has a progressing N-thread.
A totality criterion

σ₁ is an immediate ancestor of σ² if they are in the premiss and conclusion, resp., and have the ‘same colour’.

Definition (Threads and progress)

- A thread is a maximal path in the graph of immediate ancestry.
- An N-thread is progressing if it is infinitely often principal for cond.
- A coderivation is progressing if each infinite branch has a progressing N-thread.

Definition (Circular systems)

CT is the simple type theory that has a symbol for every progressing regular coderivation, and is axiomatised by all previous equations (over coterms).

- Tₙ is the restriction of T allowing only types of level n in typing derivations.
- CTₙ is the restriction of CT allowing only types of level n in typing derivations.
Example: Ackermann-Péter

\[
A(0, y) := y + 1 \\
A(x + 1, 0) := A(x, 1) \\
A(x + 1, y + 1) := A(x, A(x + 1, y))
\]

NB. Not representable in T_0!
Example: Ackermann-Péter

\[
A(0, y) := y + 1 \\
A(x + 1, 0) := A(x, 1) \\
A(x + 1, y + 1) := A(x, A(x + 1, y))
\]

NB. Not representable in \(T_0\)! However:

\[
\begin{array}{c}
\frac{1}{\text{cut}} \quad \frac{\Rightarrow N}{N, N \Rightarrow N} \\
\frac{s}{N \Rightarrow N} \\
\frac{\text{wk}}{N, N \Rightarrow N} \\
\frac{\text{cond}}{N, N, N \Rightarrow N} \\
\frac{\text{cntr}}{N, N \Rightarrow N}
\end{array}
\]

\[
\begin{array}{c}
\frac{\Rightarrow N}{N, N \Rightarrow N} \\
\frac{N \Rightarrow N}{N, N \Rightarrow N} \\
\frac{\text{cut}}{N, N, N \Rightarrow N} \\
\frac{\Rightarrow N}{N, N \Rightarrow N}
\end{array}
\]

\[
\begin{array}{c}
\frac{1}{\text{cut}} \quad \frac{\Rightarrow N}{N, N \Rightarrow N} \\
\frac{N \Rightarrow N}{N, N \Rightarrow N} \\
\frac{\text{cond}}{N, N, N \Rightarrow N} \\
\frac{\text{cntr}}{N, N \Rightarrow N}
\end{array}
\]
Example: Ackermann-Péter

\[
\begin{align*}
A(0, y) & := y + 1 \\
A(x + 1, 0) & := A(x, 1) \\
A(x + 1, y + 1) & := A(x, A(x + 1, y))
\end{align*}
\]

NB. Not representable in T_0! However:

\[
\begin{align*}
\text{\(1\)} & \quad \frac{1 \Rightarrow N}{N, N \Rightarrow N} \\
\text{\(2\)} & \quad \frac{N \Rightarrow N}{N, N \Rightarrow N} \\
\text{\(3\)} & \quad \frac{N, N \Rightarrow N}{N, N, N \Rightarrow N}
\end{align*}
\]

Question

What is the relative abstraction complexity of functionals in T and CT?
Proposition (Well-definedness)

A progressing coderivation computes a well-defined total functional.
Proposition (Well-definedness)

A progressing coderivation computes a well-defined total functional.

Proof sketch.

• Each rule preserves totality top-down, so preserves non-totality bottom-up.
• \(\Rightarrow \) we may build a leftmost ‘non-total’ infinite branch.
• Assign to a progressing \(N \)-thread the least natural numbers witnessing non-totality of the corresponding coderivations.
• This sequence will be monotone decreasing but cannot converge.
Outline

1. Cyclic proofs: a Curry-Howard perspective
2. A circular version of Gödel’s T
3. From models to interpretations
4. Conclusions
We may construe the equations of T and CT as a rewrite system:

\[
\begin{align*}
\text{id } x & \rightsquigarrow x \\
\text{ex } t \overrightarrow{x} x y \overrightarrow{y} & \rightsquigarrow t \overrightarrow{x} y x \overrightarrow{y} \\
\text{wk } t \overrightarrow{x} x & \rightsquigarrow t \overrightarrow{x} \\
\text{cntr } t \overrightarrow{x} x & \rightsquigarrow t \overrightarrow{x} x x \\
\text{cut } s t \overrightarrow{x} & \rightsquigarrow t \overrightarrow{x} (s \overrightarrow{x}) \\
\text{L } s t \overrightarrow{x} y & \rightsquigarrow t \overrightarrow{x} (y (r \overrightarrow{x})) \\
\text{R } t \overrightarrow{x} x & \rightsquigarrow t \overrightarrow{x} x \\
\text{rec } s t \overrightarrow{x} 0 & \rightsquigarrow s \overrightarrow{x} \\
\text{rec } s t \overrightarrow{x} sy & \rightsquigarrow t \overrightarrow{x} (\text{rec } s t \overrightarrow{x} y) \\
\text{cond } s t \overrightarrow{x} 0 & \rightsquigarrow s \overrightarrow{x} \\
\text{cond } s t \overrightarrow{x} sy & \rightsquigarrow t \overrightarrow{x} y
\end{align*}
\]

Write \approx for reflexive symmetric transitive closure of \rightsquigarrow.

Theorem (Confluence for CT, RCA0)

If $s \rightsquigarrow^* t_0$ and $s \rightsquigarrow^* t_1$ then there is some t with $t_0 \rightsquigarrow^* t$ and $t_1 \rightsquigarrow^* t$.

Confluence of T
Confluence of T

We may construe the equations of T and CT as a rewrite system:

\[
\begin{align*}
\text{id} & \ x \ \xrightarrow{\approx} \ x \\
\text{ex} & \ t \ \vec{x} \ x \ y \ \vec{y} \ \xrightarrow{\approx} \ t \ \vec{x} \ y \ x \ \vec{y} \\
\text{wk} & \ t \ \vec{x} \ x \ \xrightarrow{\approx} \ t \ \vec{x} \\
\text{cntr} & \ t \ \vec{x} \ x \ \xrightarrow{\approx} \ t \ \vec{x} \ x \ x \\
\text{cut} & \ s \ t \ \vec{x} \ \xrightarrow{\approx} \ t \ \vec{x} \ (s \ \vec{x}) \\
\text{L} & \ s \ t \ \vec{x} \ y \ \xrightarrow{\approx} \ t \ \vec{x} \ (y \ (r \ \vec{x})) \\
\text{R} & \ t \ \vec{x} \ x \ \xrightarrow{\approx} \ t \ \vec{x} \ x \\
\text{rec} & \ s \ t \ \vec{x} \ 0 \ \xrightarrow{\approx} \ s \ \vec{x} \\
\text{rec} & \ s \ t \ \vec{x} \ sy \ \xrightarrow{\approx} \ t \ \vec{x} \ (\text{rec} \ s \ t \ \vec{x} \ y) \\
\text{cond} & \ s \ t \ \vec{x} \ 0 \ \xrightarrow{\approx} \ s \ \vec{x} \\
\text{cond} & \ s \ t \ \vec{x} \ sy \ \xrightarrow{\approx} \ t \ \vec{x} \ y
\end{align*}
\]

Write \approx for reflexive symmetric transitive closure of $\xrightarrow{\approx}$.

Theorem (Confluence for CT, RCA$_0$)

If $s \xrightarrow{\approx}^* t_0$ and $s \xrightarrow{\approx}^* t_1$ then there is some t with $t_0 \xrightarrow{\approx}^* t$ and $t_1 \xrightarrow{\approx}^* t$.
Thanks to confluence, we can recast the model of hereditary recursive operations as a type structure HR on coterminals.
Thanks to confluence, we can recast the model of hereditary recursive operations as a type structure HR on coterminals. In particular, for any CT_n-coterm $t : \tau$:

Theorem ($\text{RCA}_0 + I\Sigma_{n+2}$)

$t \in \text{HR}_{\tau}$.
Thanks to confluence, we can recast the model of hereditary recursive operations as a type structure HR on coterminals. In particular, for any CT_n-coterm $t : \tau$:

Theorem (RCA$_0 + I\Sigma_{n+2}$)

$t \in \text{HR}_\tau$.

Proof idea.

- **Formalise** the totality argument wrt HR structure.
- **Well-definedness** of infinite branch achieved by *minimisation principles*.
- **Logical complexity** controlled by *arithmetical approximation* of progress.
Thanks to confluence, we can recast the model of hereditary recursive operations as a type structure \(HR \) on coterms. In particular, for any \(CT_n \)-coterm \(t : \tau \):

Theorem (RCA\(_0\) + I\(\Sigma_{n+2}\))

\[t \in HR_\tau. \]

Proof idea.

- **Formalise** the totality argument wrt \(HR \) structure.
- Well-definedness of infinite branch achieved by **minimisation principles**.
- Logical complexity controlled by **arithmetical approximation** of progress.

This implies that \(HR \) is a **model** of \(CT \).
Thanks to confluence, we can recast the model of hereditary recursive operations as a type structure \mathbb{HR} on coterms. In particular, for any CT_n-coterm $t : \tau$:

Theorem ($\mathsf{RCA}_0 + I\Sigma_{n+2}$)

$t \in \mathbb{HR}_\tau$.

Proof idea.

- Formalise the totality argument wrt \mathbb{HR} structure.
- Well-definedness of infinite branch achieved by minimisation principles.
- Logical complexity controlled by arithmetical approximation of progress.

This implies that \mathbb{HR} is a model of CT. In particular for any CT_n-coderivation t:

Corollary ($\mathsf{RCA}_0 + I\Sigma_{n+2}$)

t is weakly normalising wrt \leadsto.

NB: all results are *arithmetised* within fragments of *second-order arithmetic*.

We can apply well-known *program extraction* techniques in order to recover an *interpretation* of CT into T.
NB: all results are *arithmetised* within fragments of *second-order arithmetic*.

We can apply well-known *program extraction* techniques in order to recover an *interpretation* of CT into T.

Theorem (Interpretation)

If $CT_n \vdash s = t$ then $T_{n+1} \vdash s \approx t$.

Corollary (Computation at type 1)

Any *type 1 function* representable in CT_n is also representable in T_{n+1}.
Outline

1. Cyclic proofs: a Curry-Howard perspective
2. A circular version of Gödel’s T
3. From models to interpretations
4. Conclusions
By formalising a model of 'convertibility' à la Tait, we obtain:

Theorem (Strong normalisation)
Let t be representable in CT. Then

\[\text{ACA}_0 \]
proves that t is strongly normalising.

Via a form of cut-elimination and a realisation of the deduction theorem:

Theorem (Converse interpretation)

\[T_{n+1} \]
is interpreted into CT

\[T_n \]
(over the level \(n + 1 \) theory).

Corollary

\[T_{n+1} \] and CT

\[T_n \]
are equiconsistent.

By formalising termination of 'runs' along progressing coderivations in

\[\text{ACA}_0 \]
, we recover recursion along progressing coderivations directly in

\[T \]:

Theorem (Functional equivalence)

CT and T compute the same functionals, at all types.
By formalising a model of ‘convertibility’ à la Tait, we obtain:

Theorem (Strong normalisation)

Let t be representable in CT. Then ACA₀ proves that t is strongly normalising.
By formalising a model of ‘convertibility’ à la Tait, we obtain:

Theorem (Strong normalisation)

Let \(t \) be representable in \(CT \). Then \(\text{ACA}_0 \) proves that \(t \) is **strongly normalising**.

Via a form of cut-elimination and a realisation of the deduction theorem:

Theorem (Converse interpretation)

\(T_{n+1} \) is interpreted into \(CT_n \) (over the level \(n + 1 \) theory).

Corollary

\(T_{n+1} \) and \(CT_n \) are **equiconsistent**.
By formalising a model of ‘convertibility’ à la Tait, we obtain:

Theorem (Strong normalisation)

Let \(t \) be representable in \(CT \). Then \(\text{ACA}_0 \) proves that \(t \) is **strongly normalising**.

Via a form of **cut-elimination** and a realisation of the **deduction theorem**:

Theorem (Converse interpretation)

\(T_{n+1} \) is interpreted into \(CT_n \) (over the level \(n + 1 \) theory).

Corollary

\(T_{n+1} \) and \(CT_n \) are **equiconsistent**.

By **formalising termination** of ‘runs’ along progressing coderivations in \(\text{ACA}_0 \), we recover **recursion** along progressing coderivations directly in \(T \):

Theorem (Functional equivalence)

\(CT \) and \(T \) compute the **same functionals**, at all types.
Summary and open questions

We interpreted CT_n into T_{n+1} and vice-versa, and showed various equivalences. See https://arxiv.org/abs/2012.14421 for details.

Related work: Kuperberg, Pinault & Pous '21 have also considered a variation of CT-terms:

- Affine progressing coterms \approx primitive recursive functions (at type 1).
- Progressing coterms \approx primitive recursive functionals (at type 1).

Future work:

- Proof interpretations from arithmetic to type systems. [w.i.p. with Thomas Powell].
- Extensions by arbitrary inductive definitions. [w.i.p. with Lukas Holter Melgaard], cf. also [Berardi & Tatsuta '18].
- Cyclic implicit complexity based on ramified recursion. [w.i.p. with Gianluca Curzi]

Thank you.
Summary and open questions

We interpreted CT_n into T_{n+1} and vice-versa, and showed various equivalences. See https://arxiv.org/abs/2012.14421 for details.

Related work:
- Kuperberg, Pinault & Pous '21 have also considered a variation of CT-terms:
 - Affine progressing coterms \approx primitive recursive functions (at type 1).
 - Progressing coterms \approx primitive recursive functions also (at type 1).

Future work:
- Proof interpretations from arithmetic to type systems. [w.i.p. with Thomas Powell]
- Extensions by arbitrary inductive definitions. [w.i.p. with Lukas Holter Melgaard], cf. also [Berardi & Tatsuta '18].
- Cyclic implicit complexity based on ramified recursion. [w.i.p. with Gianluca Curzi]

Thank you.
We interpreted CT_n into T_{n+1} and vice-versa, and showed various equivalences. See https://arxiv.org/abs/2012.14421 for details.

Related work:
Kuperberg, Pinault & Pous ’21 have also considered a variation of CT-terms:
- **Affine** progressing coterms \approx primitive recursive functions (at type 1).
- Progressing coterms \approx primitive recursive functionals (at type 1).
Summary and open questions

We interpreted CT_n into T_{n+1} and vice-versa, and showed various equivalences. See https://arxiv.org/abs/2012.14421 for details.

Related work:
Kuperberg, Pinault & Pous ’21 have also considered a variation of CT-terms:
- **Affine** progressing coterms \approx primitive recursive functions (at type 1).
- Progressing coterms \approx primitive recursive functionals (at type 1).

Future work:
- **Proof interpretations** from arithmetic to type systems. [w.i.p. with Thomas Powell].
- Extensions by arbitrary inductive definitions. [w.i.p. with Lukas Holter Melgaard], cf. also [Berardi & Tatsuta ’18].
- Cyclic implicit complexity based on ramified recursion. [w.i.p. with Gianluca Curzi]
Summary and open questions

We interpreted CT_n into T_{n+1} and vice-versa, and showed various equivalences. See https://arxiv.org/abs/2012.14421 for details.

Related work:

Kuperberg, Pinault & Pous ’21 have also considered a variation of CT-terms:

• Affine progressing coterms \approx primitive recursive functions (at type 1).
• Progressing coterms \approx primitive recursive functionals (at type 1).

Future work:

• Proof interpretations from arithmetic to type systems.
 [w.i.p. with Thomas Powell].
• Extensions by arbitrary inductive definitions.
 [w.i.p. with Lukas Holter Melgaard], cf. also [Berardi & Tatsuta ’18].
• Cyclic implicit complexity based on ramified recursion.
 [w.i.p. with Gianluca Curzi]

Thank you.