Supplemental information

Voltammetric and galvanostatic methods for measuring hydrogen crossover in fuel cell

Sida Li, Xuezhe Wei, Haifeng Dai, Hao Yuan, and Pingwen Ming
Figure S1. Fuel cell test bench, Related to STAR Methods.

Figure S2. Schematic diagram of electrochemical methods, Related to STAR Methods.
Figure S3. Signals of current response and voltage excitation in the staircase voltammetric experiment, Related to Figure 4.

Table S1. Quantities applied in the calculation of hydrogen crossover current, Related to STAR Methods.

Quantity name	Unit	Symbol	Value
Mole fraction of hydrogen gas	-	\(x_{H_2}\)	8.42\(\times 10^{-4}\) 8.29\(\times 10^{-4}\) 8.50\(\times 10^{-4}\) 8.71\(\times 10^{-4}\) 8.57\(\times 10^{-4}\)
Volumetric flow rate of nitrogen gas at STP	SCCM	\(Q_{N_2}\)	292.3
Density of nitrogen gas at STP	g·cm\(^{-3}\)	\(\rho_{N_2}\)	1.25\(\times 10^{-3}\)
Molecular weight of nitrogen gas	g·mol\(^{-1}\)	\(M_{N_2}\)	28
Number of electrons transferred in HOR	-	\(n\)	2
Faraday constant	C·mol\(^{-1}\)	\(F\)	96485
Table S2. Measured results by three methods, Related to Figure 4 and Figure 10.

Category	Measurement	Hydrogen crossover rate J_{H_2} (mol·s⁻¹)	Hydrogen crossover current I_{H_2} (A)
Direct detection method	#1	1.831×10^{-7}	35.34×10^{-3}
	#2	1.803×10^{-7}	34.79×10^{-3}
	#3	1.849×10^{-7}	35.67×10^{-3}
	#4	1.894×10^{-7}	36.55×10^{-3}
	#5	1.864×10^{-7}	35.97×10^{-3}
Average		1.848×10^{-7}	35.66×10^{-3}
Standard deviation		0.034×10^{-7}	0.66×10^{-3}
Slope K_w (Ω⁻¹)			
Potential step method	#1	87.25×10^{-3}	35.19×10^{-3}
	#2	87.43×10^{-3}	35.31×10^{-3}
	#3	86.35×10^{-3}	34.72×10^{-3}
	#4	86.81×10^{-3}	35.49×10^{-3}
	#5	87.49×10^{-3}	35.31×10^{-3}
Average		87.07×10^{-3}	35.20×10^{-3}
Standard deviation		0.48×10^{-3}	0.29×10^{-3}
PSM at RH45%	#1	89.89×10^{-3}	34.45×10^{-3}
	#2	88.12×10^{-3}	34.63×10^{-3}
	#3	88.99×10^{-3}	34.33×10^{-3}
	#4	88.23×10^{-3}	34.58×10^{-3}
	#5	89.00×10^{-3}	34.19×10^{-3}
Average		88.85×10^{-3}	34.44×10^{-3}
Standard deviation		0.71×10^{-3}	0.18×10^{-3}
PSM at RH40%	#1	92.09×10^{-3}	33.90×10^{-3}
	#2	91.60×10^{-3}	33.91×10^{-3}
	#3	91.58×10^{-3}	34.10×10^{-3}
	#4	92.27×10^{-3}	33.48×10^{-3}
	#5	92.26×10^{-3}	33.93×10^{-3}
Average		91.96×10^{-3}	33.86×10^{-3}
Standard deviation		0.35×10^{-3}	0.23×10^{-3}
PSM at RH35%	#1	95.17×10^{-3}	32.23×10^{-3}
	#2	94.75×10^{-3}	32.37×10^{-3}
	#3	95.34×10^{-3}	31.93×10^{-3}
	#4	95.05×10^{-3}	32.42×10^{-3}
	#5	94.82×10^{-3}	32.52×10^{-3}
Average		95.03×10^{-3}	32.29×10^{-3}
Standard deviation		0.24×10^{-3}	0.23×10^{-3}
Galvanostatic charging method	#1	89.35×10^{-3}	34.49×10^{-3}
	#2	92.11×10^{-3}	34.55×10^{-3}
	#3	90.58×10^{-3}	34.36×10^{-3}
	#4	91.25×10^{-3}	34.23×10^{-3}
	#5	89.91×10^{-3}	34.51×10^{-3}
Average		90.64×10^{-3}	34.43×10^{-3}
Standard deviation		1.09×10^{-3}	0.13×10^{-3}