The Cefazolin Inoculum Effect and the Presence of type A \textit{blaZ} Gene according to \textit{agr} Genotype in Methicillin-Susceptible \textit{Staphylococcus aureus} Bacteremia

Soon Ok Lee, Shinwon Lee, Sohee Park, Jeong Eun Lee, and Sun Hee Lee

Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea

ABSTRACT

Background: Recent data suggests the inoculum effect of methicillin-susceptible \textit{Staphylococcus aureus} (MSSA) against beta-lactam antibiotics and their association with functionality or genotypic variation of \textit{agr} locus.

Methods: MSSA blood isolates were collected at a tertiary care hospital in Korea from June 2014 to December 2017. The functionality of the \textit{agr} operon was measured by \textit{δ}-hemolysin assays. Multiplex PCR was performed to determine the \textit{agr} genotype. The cefazolin minimum inhibitory concentrations (MICs) at a high inoculum concentration (~5×10^7 CFU/ml) were compared to the MICs at a standard inoculum concentration (~5×10^5 CFU/ml) to identify strains with the cefazolin inoculum effect (CIE). The DNA sequencing of \textit{blaZ} gene was performed to classify the \textit{blaZ} genotype.

Results: Among the 195 MSSA blood isolates, \textit{agr} genotype I was most common (68.2%), followed by type III (16.4%), type IV (9.2%), and type II (6.2%). Sixty-seven (34.3%) MSSA isolates had dysfunctional \textit{agr}, but neither CIE nor \textit{blaZ} genotype was associated with dysfunctional \textit{agr}. The MSSA with \textit{agr} type III genotype exhibited significantly higher CIE positivity (\textit{agr} III 43.8% vs. non-\textit{agr} III 5.5%, $P < 0.01$) and erythromycin/clindamycin resistance. In the subgroup analysis of type A \textit{blaZ} possessing MSSA, almost all of the \textit{agr} III MSSA isolates exhibited CIE, while only 20% of non-\textit{agr} III isolates had CIE ($P < 0.01$).

Conclusion: In MSSA blood isolates, CIE might be associated with \textit{agr} genotype rather than with dysfunctional \textit{agr}.

Keywords: \textit{Staphylococcus aureus}; Quorum sensing; Cefazolin; Inoculum effect

INTRODUCTION

Some strains of methicillin-susceptible \textit{Staphylococcus aureus} (MSSA) exhibit the inoculum effect against cefazolin, an antibiotic widely used to treat bacterial infections [1, 2]. Cefazolin inoculum effect (CIE) is closely related to type A or C \textit{blaZ} MSSA isolates [3, 4]. Hence, the use of cefazolin for treating severe infections or large burden infections caused by CIE positive...
MSSA can lead to treatment failure [1, 3-6]. Cefazolin is frequently used as the antibiotic of choice for severe MSSA infections such as osteomyelitis and septic arthritis, due to its high tolerability and favorable dosing schedule [7, 8].

The accessory gene regulator (agr) locus is a quorum-sensing (QS) gene cluster and virulence regulator of S. aureus and can play an important role in virulence [9, 10]. Many studies have demonstrated that agr genotype can affect the antibiotic response of methicillin-resistant S. aureus (MRSA) [11-14]. Several studies have demonstrated that infection caused by MSSA with reduced vancomycin susceptibility was associated with poor clinical outcomes [15-18]. Further, Kok EY et al. reported that the reduced vancomycin susceptibility was associated with dysfunctional agr in MSSA bacteremia [19]. Although a previous study suggested that CIE could be associated with dysfunctional agr locus in MSSA bacteremia [20], there is a dearth of literature regarding agr genotype and its functional effects in MSSA. This study was aimed to demonstrate the association between the functionality or genotypic variation of agr locus in MSSA and the inoculum effect of beta-lactam antibiotics and its clinical significance.

MATERIALS AND METHODS

1. Bacterial isolates and clinical information
The MSSA blood isolates were collected at a 2000-bedded tertiary care hospital in Korea during June 2014 to December 2017. Only the first bloodstream isolate from each patient was included in the study. Isolation of S. aureus and antimicrobial susceptibility tests were performed at the clinical microbiology laboratory of our institute using an automated system. Demographic data and clinical information about the study participants were retrospectively collected by the review of medical records. The study protocol (IRB No. H1910-030-084) was approved by the IRB at Pusan National University Hospital. Informed consents were waived.

2. Cefazolin Susceptibility tests and inoculum effects
The cefazolin minimal inhibitory concentrations (MICs) were determined by a broth microdilution method using cation-adjusted Mueller-Hinton II broth (Becton, Dickinson and Company, Sparks, MD), according to Clinical and Laboratory Standards Institute (CLSI) guidelines, except for the inoculum size of the strains [21]. MICs of high inoculum (HI, ~5 x 10^7 CFU/ml) were compared to the standard inoculum (SI, ~5 x 10^5 CFU/ml) to identify the stains with the CIE. The MIC value of each isolate was measured by two independent researchers. S. aureus strain TX 0117 (a high-level producer of type A β-lactamase), S. aureus ATCC 29213 (known to produce small amounts of type A β-lactamase), and S. aureus ATCC 25923 (a β-lactamase negative strain) were used as controls [1, 22]. The CIE was defined as an increase in MICs to ≥16 μg/ml at high inoculums from the susceptible range of MIC at standard inoculum [23]. The MICs of vancomycin and linezolid were measured by the broth microdilution method and E-test (bioMérieux, Marcy-l’Étoile, France). The E-test was performed according to the manufacturer’s protocol. The data regarding susceptibility to agents other than cefazolin, vancomycin, and linezolid were collected through a review of medical record of microbiological data.

3. blaZ gene typing
Polymerase chain reactions (PCRs) were performed to amplify a 355-bp region within the blaZ gene by using the following primers: 5’-CAAGATGATATAAGTGCTTATTC-3’ and
5′-CATATGTTATTGCTTGCACCAC-3′ [3]. PCR products were analyzed by DNA sequencing, and results were analyzed using the NCBI BLAST web interface (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The β-lactamase type of each strain was classified based on the amino acid residues at positions 128 and 216 encoded by the blaZ gene [24].

4. **agr functionality test and agr/blaZ genotyping**
The functionality of the agr locus was measured by δ-hemolysin expression assays using *S. aureus* strain RN4220 as an indicator, and the absence of, or barely detectable, synergistic hemolysis was defined as agr dysfunction [25]. The genomic DNA of the isolates was extracted by the spin-column-based extraction method using a commercially available kit (Qiagen, Hilden, Germany). To determine agr group genotype, agr group specific multiplex PCR was performed using the primers that were previously described [26]. To determine blaZ gene genotype, PCR was performed using previously described primers and PCR products were analyzed by DNA sequencing [3].

5. **Statistical analysis**
R version 3.3.2 (R Foundation for Statistical Computing, Vienna, Austria) was used for all statistical analyses. Categorical variables were compared using Pearson’s chi-square test or Fisher’s exact test, and non-categorical variables were tested using the Mann-Whitney U-test or Kruskal Wallis test. All tests of significance were 2-tailed, and the results with *P* < 0.05 were considered statistically significant.

RESULTS
A total of 197 MSSA blood isolates were collected during the study period. The mean age of patients with MSSA bacteremia was 62.3 ± 20.3 years and 67% of these patients were males. Among the MSSA bacteremia patients, 54.3% had more than one comorbidity (mean Charlson comorbidity index score: 3.4 ± 2.5). The prevalence of the community-onset bacteremia was 57.4% and bones and joints were the most common site of infection (18.3%) followed by skin and soft tissues (15.2%).

From the 197 MSSA blood isolates, two samples were excluded from the analysis due to unclear agr genotype. In the remaining 195 isolates, genotype I was the most common (67.5%), followed by type III (16.2%), type IV (9.1%), and type II (6.1%). Sixty-eight MSSA isolates (34.5%) showed dysfunctional agr gene. We did not observe significant differences between the demographic and clinical characteristics between the 4 agr genotypes (Table 1). Although we observed a trend of association between agr type III positive MSSA bacteremia and skin and soft tissue infection, it was not statistically significant (Table 1).

The proportion of dysfunctional agr was significantly higher in agr type III than other genotypes. Further, the proportion of blaZ genotype varied significantly according to the agr type; type B blaZ was most common in agr type I, whereas type A blaZ was most common in agr type III. Furthermore, more than 40% of agr type III MSSA exhibited CIE, whereas less than 10% of other agr genotype MSSA exhibited CIE (*P* < 0.001). Significantly, resistance to erythromycin and clindamycin was most prominent in agr type III MSSA isolates (Table 1). The genotypes of blaZ and agr were significantly different between functional and dysfunctional agr positive MSSA (Table 2) isolates. However, we did not observe a statistically significant difference in the CIE positivity in these two groups (Table 2). The proportion of MSSA
isolates with reduced vancomycin MIC was similar in four *agr* types (Table 1). Similarly, the proportion of MSSA with reduced vancomycin MIC was not significantly different between the dysfunctional and functional *agr* group (Table 2).

Our results showed that among the four *agr* types, MSSA with the *agr* type III was associated with CIE. Isolates from *agr* III group exhibited a significantly higher CIE (40%) than the non-*agr* III group where only 5.5% isolates exhibited CIE (Fig. 1A). The *agr* III group also showed positive association with type A *blaZ* gene (Fig. 1B), and resistance to other antibiotics; erythromycin (Fig. 1C, 56.2% vs. 3.7%, *P* <0.001), clindamycin (43.8% vs. 2.5%, *P* <0.001), and high dose gentamicin (31.2% vs. 14.1%, *P* = 0.035).

Interestingly, all of the CIE-positive isolates had type A or type C *blaZ* genotype. Therefore, we performed a subgroup analysis of MSSA with type A and C *blaZ* genotype. In subgroup analysis of type A *blaZ* positive MSSA, our results showed that while more than 90% of *agr* III

Table 1. Comparison of demographic, clinical, and microbiological characteristics according to the *agr* genotype of methicillin-susceptible *Staphylococcus aureus* bacteremia isolates

	agr I (n = 133)	agr II (n = 12)	agr III (n = 32)	agr IV (n = 18)	*P* value
Male	90 (67.7%)	10 (83.3%)	23 (71.9%)	9 (50.0%)	0.243
Old age (Age≥65)	76 (57.1%)	3 (25.0%)	16 (50%)	8 (44.4%)	0.149
Community onset	79 (59.4%)	5 (41.7%)	19 (59.4%)	9 (50.0%)	0.596
Comorbidity					
Malignancy	17 (12.8%)	1 (8.3%)	3 (9.4%)	5 (27.8%)	0.264
Diabetes Mellitus	32 (24.1%)	2 (16.7%)	5 (15.6%)	3 (16.7%)	0.663
Chronic Kidney Disease	10 (7.5%)	0 (0.0%)	3 (9.4%)	1 (5.6%)	0.740
Chronic Liver Disease	7 (5.3%)	2 (16.7%)	1 (3.1%)	2 (11.1%)	0.289
High (≥3) Charlson's Index	87 (65.4%)	5 (41.7%)	17 (53.1%)	8 (44.4%)	0.124
High (≥2) SOFA score	76 (57.1%)	6 (50%)	19 (59.4%)	8 (44.4%)	0.713
High (≥2) Pitt score	22 (16.1%)	1 (8.3%)	5 (15.6%)	2 (11.1%)	0.838
Site of infection					
Skin, Soft tissue	18 (13.5%)	2 (16.7%)	8 (25.0%)	2 (11.1%)	0.409
Abscess, deep seated	22 (16.5%)	0 (0.0%)	7 (21.9%)	1 (5.6%)	0.196
Bone & Joint	27 (20.3%)	0 (0.0%)	8 (25%)	1 (5.6%)	0.116
Lung	16 (12%)	3 (25%)	3 (9.4%)	4 (22.2%)	0.351
Infective endocarditis	5 (3.8%)	1 (8.3%)	1 (3.1%)	0 (0.0%)	0.687
Primary bacteremia	37 (27.8%)	6 (50%)	6 (18.8%)	7 (38.9%)	0.160
agr dysfunction	45 (33.8%)	2 (16.7%)	18 (56.2%)	2 (11.1%)	0.005
blaZ type					<0.001
A	8 (6.0%)	1 (8.3%)	13 (40.6%)	5 (27.8%)	
B	53 (39.8%)	2 (16.7%)	1 (3.1%)	1 (5.6%)	
C	43 (32.3%)	4 (33.3%)	12 (37.5%)	8 (44.4%)	
D	5 (3.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	
blaZ negative	24 (18.0%)	5 (41.7%)	6 (18.8%)	4 (22.2%)	
Cefazolin InE	7 (5.3%)	1 (8.3%)	14 (43.8%)	1 (5.6%)	<0.001
Ampicillin/sublactam InE	90 (67.7%)	6 (50.0%)	24 (75.0%)	10 (55.6%)	0.313
Piperacillin/tazobactam InE	89 (66.9%)	5 (41.7%)	23 (71.9%)	7 (38.9%)	0.032
Erythromycin Resistance	4 (3.0%)	0 (0.0%)	18 (56.2%)	2 (11.1%)	<0.001
Clindamycin Resistance	3 (2.3%)	0 (0.0%)	14 (43.8%)	1 (5.6%)	<0.001
Ciprofloxacin Resistance	6 (4.5%)	0 (0.0%)	0 (0.0%)	1 (5.6%)	0.539
High dose Gentamicin Resistance	20 (15.0%)	0 (0.0%)	10 (31.2%)	3 (16.7%)	0.059
High (≥2) Vancomycin MIC (BMD)	4 (3.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0.593
High (≥2) Vancomycin MIC (E-test)	5 (3.8%)	0 (0.0%)	2 (6.2%)	0 (0.0%)	0.619
High (≥4) Linezolid MIC (BMD)	4 (3.0%)	0 (0.0%)	2 (6.2%)	1 (5.6%)	0.698
High (≥3) Linezolid MIC (E-test)	2 (1.5%)	1 (8.3%)	0 (0.0%)	1 (5.6%)	0.228

SOFA, sequential organ failure assessment; InE, inoculum effect; MIC, minimum inhibitory concentration; BMD, broth microdilution.
isolates exhibited CIE, a very low proportion of non-\textit{agr} III isolates (10%) had CIE (Fig. 2A). Furthermore, CIE was also associated with erythromycin resistance (Fig. 2B). However, there was no significant association between the CIE and \textit{agr} functionality (Fig. 2C), and the functionality of \textit{agr} genotype was not associated with CIE in the subgroup analysis of type C \textit{blaZ} positive MSSA as well.

Table 2. Comparison of demographic, clinical and microbiological characteristics according to the functionality of \textit{agr} locus of methicillin-susceptible \textit{Staphylococcus aureus} bacteremia

\textit{agr} genotype	Functional \textit{agr} (n = 128)	Dysfunctional \textit{agr} (n = 67)	\textit{P} value
Type I	88 (68.8%)	45 (67.2%)	0.005
Type II	10 (7.8%)	2 (3.0%)	
Type III	14 (10.9%)	18 (26.9%)	
Type IV	16 (12.5%)	2 (3.0%)	
\textit{blaZ} type			0.034
A	14 (10.9%)	13 (19.4%)	
B	35 (27.3%)	22 (32.8%)	
C	50 (39.1%)	17 (25.4%)	
D	1 (0.8%)	4 (6.0%)	
\textit{blaZ} negative	28 (21.9%)	11 (16.4%)	
Cefazolin InE	13 (10.2%)	10 (14.9%)	0.455
Ampicillin/sulbactam InE	82 (64.1%)	48 (71.6%)	0.365
Piperacillin/tazobactam InE	78 (60.9%)	46 (68.7%)	0.364
Erythromycin Resistance	13 (10.2%)	11 (16.4%)	0.301
Clindamycin Resistance	9 (7.0%)	13 (14.6%)	0.228
Ciprofloxacin Resistance	3 (2.3%)	4 (6.0%)	0.375
High dose Gentamicin Resistance	20 (15.6%)	13 (19.4%)	0.640
High (\textgreater 2) Vancomycin MIC	3 (2.3%)	1 (1.5%)	\textgreater 0.999
High (\textgreater 2) Vancomycin MIC (E-test)	5 (3.9%)	2 (3.0%)	\textgreater 0.999
High (\textgreater 4) Linezolid MIC	4 (3.1%)	3 (4.5%)	0.939
High (\textgreater 3) Linezolid MIC (E-test)	3 (2.3%)	1 (1.5%)	\textgreater 0.999

SOFA, sequential organ failure assessment; InE, inoculum effect; MIC, minimum inhibitory concentration.

\textbf{Figure 1.} (A) Proportion of cefazolin inoculum effect (CIE) positivity, (B) \textit{blaZ} genotype, (C) erythromycin resistance between \textit{agr} type III and non \textit{agr} type III methicillin susceptible \textit{Staphylococcus aureus}.
DISCUSSION

Our study demonstrated that the inoculum effect of MSSA against β-lactam antibiotics, such as cefazolin, ampicillin/sulbactam, and piperacillin/tazobactam was associated with the agr type III, which was also the second most prevalent agr genotype observed in our study. These findings are consistent with a previous study [20]. However, unlike an earlier study, which concluded that agr dysfunction of MSSA was independently associated with inoculum effect against cefazolin [20], our results showed that there was no association between agr functionality and inoculum effect against β-lactam antibiotics. Instead, we found that agr group III was significantly associated with CIE. Moreover, the association between the agr type and CIE was more apparent in the type A blaZ gene-positive MSSA isolates. Although type A blaZ genotype has been positively associated with CIE, it is not uncommon to find MSSA isolates with the type A blaZ gene that do not show CIE [3, 4, 27, 28]. In our study, almost all of the MSSA with agr type III and type A blaZ genotype exhibited CIE. Therefore, there is a possibility that agr type III can be a useful indicator to discriminate CIE positivity among type A blaZ positive MSSA isolates.

Our study further demonstrated that a higher proportion of agr type III MSSA showed clindamycin and macrolide resistance, and a majority of such isolates had type A blaZ genotype. Clindamycin and macrolide resistance of MSSA is associated with CIE, and the association between CIE and clindamycin and macrolide resistance was significant among MSSA with type A blaZ genotype [29]. Our results suggest that agr type III is closely related to CIE, and clindamycin and erythromycin resistance. Collectively, these results indicate that cefazolin should be used with caution in treating high-inoculum MSSA infection if the isolates exhibited resistance to clindamycin or erythromycin [23].

Earlier studies have demonstrated an association between dysfunctional agr locus and reduced susceptibility to vancomycin and an enhanced capacity to produce biofilms in MSSA [18, 30]. Further, many studies reported that irrespective of vancomycin use as a therapeutic agent, reduced susceptibility to vancomycin in MSSA affected treatment outcomes [17, 29, 31, 32]. Holmes NE et al. suggested that dysfunctional agr could be a predictor of high
vancomycin MIC in MSSA infections [33]. However, in our study, neither dysfunctional \textit{agr} nor \textit{agr} genotype variation was associated with reduced vancomycin susceptibility.

The reason for the close association between the \textit{agr} genotype with \textit{blaZ} genotype, the inoculum effect of β-lactam antibiotics, and resistance of non- β-lactam antibiotics is not known. However, some data regarding the association between certain toxin genes and certain \textit{agr} types is available. For instance, \textit{agr} type III is associated with menstrual toxic shock syndrome toxins, while \textit{agr} type IV genotype is associated with exfoliatins [34-36]. Jarraud S et al. suggested that the bacterial pathogenicity is a cumulative result of specific combinations of virulence and regulatory genes in the appropriate genetic background [35].

In light of the available scientific literature and our results, we propose that certain \textit{agr} alleles might associate with certain antibiotic resistance genes in a particular genetic background.

Although our study has some interesting and thought-provoking outcomes, it has several limitations. Firstly, our study was conducted at a single center in the southeastern region of Korea. Earlier studies have shown a varying prevalence of CIE positive MSSA or distribution of \textit{agr} type among clinical isolates [3, 20, 27, 37]. The inconsistent prevalence of CIE positive MSSA or distribution of \textit{agr} types suggested that CIE positivity and its association with \textit{agr} type could vary according to the geographic regions. Therefore, although our results form a credible reference for CIE positive MSSA and \textit{agr} types, they lack universal relevance, and therefore, should be applied cautiously to other geographical regions. Second, we used the δ-hemolysin assay to detect MSSA isolates with \textit{agr} dysfunction due to the convenience and lower cost than Northern blotting [38]. However, the δ-hemolysin assay may not be a sensitive marker for \textit{agr} dysfunction and has shown an ambiguous result in an earlier report [39]. However, to minimize the shortcomings of the assay, two independent researchers analyzed the assay results. Moreover, the assays were repeated in events where discrepancies were observed in the results.

In summary, our results showed that the positivity of CIE and resistance of clindamycin could be associated with \textit{agr} type III rather than \textit{agr} dysfunction in MSSA bacteremia isolates. These findings were more prominent among MSSA with type A \textit{blaZ}. Hence, we propose that Type A \textit{blaZ} genotype with \textit{agr} type III could be a useful indicator to genetically differentiate CIE positive MSSA isolates.

ACKNOWLEDGMENTS

This work has been summarized in an abstract (Abstract No. 5153) for the American Society for Microbiology, ASM Microbe 2019, San Francisco, CA, 2019. This work was funded by the National Research Foundation of Korea (NRF-2018R1A1A1A05079369) and Pusan National University Research Grant 2016.

REFERENCES

1. Nannini EC, Singh KV, Murray BE. Relapse of type A beta-lactamase-producing \textit{Staphylococcus aureus} native valve endocarditis during cefazolin therapy: revisiting the issue. Clin Infect Dis 2003;37:1194-8.

2. Brook I. Inoculum effect. Rev Infect Dis 1989;11:361-8.
3. Nannini EC, Strzyjewski ME, Singh KV, Bourgogne A, Rude TH, Corey GR, Fowler VG Jr, Murray BE. Inoculum effect with cefazolin among clinical isolates of methicillin-susceptible *Staphylococcus aureus*: frequency and possible cause of cefazolin treatment failure. Antimicrob Agents Chemother 2009;53:3437-41. PUBMED | CROSSREF

4. Lee S, Kwon KT, Kim HI, Chang HH, Lee JM, Choe PG, Park WB, Kim NJ, Oh MD, Song DY, Kim SW. Clinical implications of cefazolin inoculum effect and beta-lactamase type on methicillin-susceptible *Staphylococcus aureus* bacteremia. Microb Drug Resist 2014;20:568-74. PUBMED | CROSSREF

5. Nannini EC, Singh KV, Arias CA, Murray BE. *In vivo* effect of cefazolin, daptomycin, and nafcillin in experimental endocarditis with a methicillin-susceptible *Staphylococcus aureus* strain showing an inoculum effect against cefazolin. Antimicrob Agents Chemother 2013;57:4276-81. PUBMED | CROSSREF

6. Shin HH, Han S, Yim DS, Lee DG, Park C, Kim SH, Kwon JC, Hong KW, Park SH, Choi SM, Choi JH, Yoo JH. Efficacy of vancomycin against *Staphylococcus aureus* according to inoculum size in a neutropenic mouse infection model. Infect Chemother 2011;43:251-7.

7. Lee S, Choe PG, Song KH, Park SW, Kim HB, Kim NJ, Kim EC, Park WB, Oh MD. Is cefazolin inferior to nafcillin for treatment of methicillin-susceptible *Staphylococcus aureus* bacteremia? Antimicrob Agents Chemother 2011;55:5122-6. PUBMED | CROSSREF

8. Oh WS, Moon C, Chung JW, Choo EJ, Kwak YG, Kim SH, Ryu SY, Park SY, Kim BN. Antibiotic treatment of vertebral osteomyelitis caused by methicillin-susceptible *Staphylococcus aureus*: a focus on the use of oral beta-lactams. Infect Chemother 2019;51:284-94. PUBMED | CROSSREF

9. Painter KL, Krishna A, Wigneshwararaj S, Edwards AM. What role does the quorum-sensing accessory gene regulator system play during *Staphylococcus aureus* bacteremia? Trends Microbiol 2014;22:676-85. PUBMED | CROSSREF

10. Singh R, Ray P. Quorum sensing-mediated regulation of staphylococcal virulence and antibiotic resistance. Future Microbiol 2014;9:669-81. PUBMED | CROSSREF

11. Fowler VG Jr, Sakoulas G, McIntyre LM, Meka VG, Arbeid RD, Cabell CH, Strzyjewski ME, Eliopoulos GM, Reller LB, Corey GR, Jones T, Lucindo N, Yeaman MR, Bayer AS. Persistent bacteremia due to methicillin-resistant *Staphylococcus aureus* infection is associated with *agr* dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J Infect Dis 2004;190:1140-9. PUBMED | CROSSREF

12. Kang CK, Cho JE, Choi YJ, Jung Y, Kim NH, Kim CJ, Kim TS, Song KH, Choe PG, Park WB, Bang JH, Kim ES, Park KU, Park SW, Kim NJ, Oh MD, Kim HB. *agr* dysfunction affects staphylococcal cassette chromosome mec type-dependent clinical outcomes in methicillin-resistant *Staphylococcus aureus* bacteremia. Antimicrob Agents Chemother 2015;59:3125-32. PUBMED | CROSSREF

13. Park SY, Chong YP, Park HI, Park KH, Moon SM, Jeong JY, Kim MN, Kim SH, Lee SO, Choi SH, Woo JH, Kim YS. *agr* Dysfunction and persistent methicillin-resistant *Staphylococcus aureus* bacteremia in patients with removed eradicable foci. Infection 2013;41:111-9. PUBMED | CROSSREF

14. Schweizer ML, Furuno JP, Sakoulas G, Johnson JK, Harris AD, Shadell MD, McGregor JC, Thom KA, Perencevich EN. Increased mortality with accessory gene regulator (*agr*) dysfunction in *Staphylococcus aureus* among bacteremic patients. Antimicrob Agents Chemother 2011;55:1082-7. PUBMED | CROSSREF

15. Castón JJ, González-Gasca F, Porras L, Illescas S, Romero MD, Gijón J. High vancomycin minimum inhibitory concentration is associated with poor outcome in patients with methicillin-susceptible *Staphylococcus aureus* bacteremia regardless of treatment. Scand J Infect Dis 2014;46:783-6. PUBMED | CROSSREF

16. San-Juan R, Viedma E, Chaves F, Lalunea A, Fortún J, Loza E, Pujol M, Ardanuy C, Morales I, de Cueto M, Resino-Fox E, Morales-Cartagena A, Rico A, Romero MP, Orellana MA, López-Medrano F, Fernández-Ruiz M, Aguado JM. High MICs for vancomycin and daptomycin and complicated catheter-related bloodstream infections with methicillin-susceptible *Staphylococcus aureus*. Emerg Infect Dis 2016;22:1057-66. PUBMED | CROSSREF

17. Sullivan SB, Austin ED, Stump S, Mathema B, Whittier S, Lowy FD, Uhlemann AC. Reduced vancomycin susceptibility of methicillin-susceptible *Staphylococcus aureus* has no significant impact on mortality but results in an increase in complicated infection. Antimicrob Agents Chemother 2017;61:eii: e00316-17. PUBMED | CROSSREF
18. Viedma E, Sanz F, Orellana MA, San Juan R, Aguado JM, Otero JR, Chaves F. Relationship between agr dysfunction and reduced vancomycin susceptibility in methicillin-susceptible Staphylococcus aureus causing bacteraemia. J Antimicrob Chemother 2014;69:51-8.

19. Kok EY, Vallejo JG, Sommer LM, Rosas L, Kaplan SL, Hulten KG, McNeil IC. Association of vancomycin MIC and molecular characteristics with clinical outcomes in methicillin-susceptible Staphylococcus aureus acute hematogenous osteoarticular infections in children. Antimicrob Agents Chemother 2018;62:e00084-18.

20. Wi YM, Park YK, Moon C, Ryu SY, Lee H, Ki HK, Cheong HS, Son JS, Lee JS, Kwon KT, Kim JM, Ha YE, Kang CI, Ko KS, Chung DR, Peck KR, Song JH. The cefazolin inoculum effect in methicillin-susceptible Staphylococcus aureus blood isolates: their association with dysfunctional accessory gene regulator (agr). Diagn Microbiol Infect Dis 2015;83:286-91.

21. Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 7th ed. Wayne, PA; CLSI; 2008.

22. Kernodle DS, McGraw PA, Stratton CW, Kaiser AB. Use of extracts versus whole-cell bacterial suspensions in the identification of Staphylococcus aureus beta-lactamase variants. Antimicrob Agents Chemother 1990;34:420-5.

23. Song KH, Jung SI, Lee S, Park S, Kiem SM, Lee SH, Kwak YG, Kim YK, Jang HC, Kim YS, Kim HI, Kim CJ, Park KH, Kim NJ, Oh MD, Kim HB; The Korea INFectious Diseases (KIND) study group. Characteristics of cefazolin inoculum effect-positive methicillin-susceptible Staphylococcus aureus infection in a multicentre bacteraemia cohort. Eur J Clin Microbiol Infect Dis 2017;36:285-94.

24. Voladri RK, Kernodle DS. Characterization of a chromosomal gene encoding type B beta-lactamase in phage group II isolates of Staphylococcus aureus. Antimicrob Agents Chemother 1998;42:3163-8.

25. Sakoulas G, Eliopoulos GM, Moellering RC Jr, Wennersten C, Venkataraman L, Novick RP, Gold HS. Accessory gene regulator (agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 2002;46:1492-502.

26. Lina G, Boutite F, Tristan A, Bes M, Etienne J, Vandenesch F. Bacterial competition for human nasal cavity colonization: role of Staphylococcal agr alleles. Appl Environ Microbiol 2003;69:18-23.

27. Livorsi DJ, Crispell E, Satola SW, Burd EM, Jerris R, Wang YF, Farley MM. Prevalence of blaZ gene types and the inoculum effect with cefazolin among bloodstream isolates of methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 2012;56:4474-7.

28. Lee SH, Park WB, Lee S, Park S, Kim SW, Lee JM, Chang HH, Kwon KT, Choe PG, Kim NJ, Kim HB, Oh MD. Association between type A blaZ gene polymorphism and cefazolin inoculum effect in methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 2016;60:6928-32.

29. Aguado JM, San-Juan R, Lalueza A, Sanz F, Rodriguez-Otero J, Gómez-Gonzalez C, Chaves F. High vancomycin MIC and complicated methicillin-susceptible Staphylococcus aureus bacteremia. Emerg Infect Dis 2011;17:1099-102.

30. Mirani ZA, Aziz M, Khan MN, Lal I, Hassan NU, Khan SI. Biofilm formation and dispersal of Staphylococcus aureus under the influence of oxacillin. Microb Pathog 2013;61-62:66-72.

31. Pillai SK, Wennersten C, Venkataraman L, Eliopoulos GM, Moellering RC, Karchmer AW. Development of reduced vancomycin susceptibility in methicillin-susceptible Staphylococcus aureus. Clin Infect Dis 2009;49:1169-74.

32. Cervera C, Castañeda X, de la Maria CG, del Rio A, Moreno A, Soy D, Pericas JM, Falces C, Armero Y, Almela M, Ninot S, Pare JC, Mestres CA, Gatell JM, Marco F, Miro JM; Hospital Clinic Endocarditis Study Group. Effect of vancomycin minimal inhibitory concentration on the outcome of methicillin-susceptible Staphylococcus aureus endocarditis. Clin Infect Dis 2014;58:1668-75.
33. Holmes NE, Turnidge JD, Munckhof WJ, Robinson JO, Korman TM, O’Sullivan MV, Anderson TL, Roberts SA, Warren SJ, Coombs GW, Tan HL, Gao W, Johnson PD, Howden BP. Genetic and molecular predictors of high vancomycin MIC in Staphylococcus aureus bacteremia isolates. J Clin Microbiol 2014;52:3384-93.

PUBMED | CROSSREF

34. Ji G, Beavis R, Novick RP. Bacterial interference caused by autoinducing peptide variants. Science 1997;276:2027-30.

PUBMED | CROSSREF

35. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 2002;70:631-41.

PUBMED | CROSSREF

36. Jarraud S, Lyon GI, Figueiredo AM, Lina G, Vandenesch F, Etienne J, Muir TW, Novick RP. Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J Bacteriol 2000;182:6517-22.

PUBMED | CROSSREF

37. Rincón S, Reyes J, Carvajal LP, Rojas N, Cortés F, Panesso D, Guzmán M, Zurita J, Adachi JA, Murray BE, Nannini EC, Arias CA. Cefazolin high-inoculum effect in methicillin-susceptible Staphylococcus aureus from South American hospitals. J Antimicrob Chemother 2013;68:2773-8.

PUBMED | CROSSREF

38. Zygmunt DJ, Stratton CW, Kernodle DS. Characterization of four beta-lactamases produced by Staphylococcus aureus. Antimicrob Agents Chemother 1992;36:440-5.

PUBMED | CROSSREF

39. Wright JS 3rd, Jin R, Novick RP. Transient interference with staphylococcal quorum sensing blocks abscess formation. Proc Natl Acad Sci U S A 2005;102:1691-6.

PUBMED | CROSSREF