Introduction

At the end of 2019, novel coronavirus pneumonia (NCP) emerged in Wuhan and had spread rapidly. The pathogen was confirmed as novel coronavirus, which was officially named coronavirus disease-19 (COVID-19) by the World Health Organization (WHO) [1]. The clinical characteristics of COVID-19 include fever, respiratory symptoms, dyspnea, cough and pneumonia [2–5]. Currently, there is no specific antiviral treatment for COVID-19, using the agents which approved or in development for other viral infections is one of the potentially quickest ways to find treatment for this new viral infection. Favipiravir is an effective agent that acts as a nucleotide analog that selectively inhibits the viral RNA dependent RNA polymerase or causes lethal mutagenesis upon incorporation into the virus RNA. In view of recent studies and discussion on favipiravir, in this mini review we aimed to summarize the clinical trials studying the efficacy and safety of favipiravir in patients with COVID-19.
February 14, a clinical trial on favipiravir for the treatment of COVID-19 initiated by the Clinical Medical Research Center of the National Infectious Diseases and the Third People’s Hospital of Shenzhen achieved promising results. The preliminary results from a total of 80 patients (including the experimental group and the control group) indicated that favipiravir had more potent antiviral action than that of lopinavir/ritonavir. No significant adverse reactions were noted in the favipiravir treatment group, and it had significantly fewer adverse effects than the lopinavir/ritonavir group [7].

Studies of Favipiravir Conducted In Vitro

Nucleoside analogues in the form of adenine or guanine derivatives target the RNA-dependent RNA polymerase and block viral RNA synthesis in a broad spectrum of RNA viruses, including human coronaviruses. Favipiravir (T-705), a guanine analogue approved for influenza treatment, can effectively inhibit the RNA-dependent RNA polymerase of RNA viruses such as influenza, Ebola, yellow fever, chikungunya, norovirus and enterovirus [16], and a recent study reported its activity against 2019-novel corona virus. Chinese researchers who studied the effect of favipiravir in vitro (using Vero E6 cell line infected by SARS-CoV-2) found favipiravir to be effective in reducing viral replication (half-maximal effective concentration (EC50) = 61.88 μM, half-cytotoxic concentration (CC50) > 400 μM, selectivity index (SI) > 6.46) [21].

Clinical Trials

At least 18 different clinical trials for SARS-CoV-2 already registered in the Chinese Clinical Trial Registry (ChiCTR) and the International Clinical Trials Registry Platform (WHO ICTRP) propose to use favipiravir in the treatment of COVID-19 (▶Table 1). For example, patients with 2019-nCoV are being recruited in randomized trials to evaluate the efficacy of favipiravir plus interferon-α (ChiCTR2000029600), favipiravir plus baloxavir marboxil (an approved influenza inhibitor targeting the cap-dependent endonuclease) (ChiCTR2000029544) and favipiravir plus Chloroquine Phosphate (ChiCTR2000030987). In a recent publication, Cai and colleagues found that favipiravir showed significantly better treatment effects on COVID-19 in terms of disease progression and viral clearance indicate. They investigated the effect of favipiravir versus Lopinavir/Ritonavir on the treatment of COVID-19. They reported that favipiravir was independently associated with faster viral clearance and a higher improvement rate in chest imaging. Their findings suggested that favipiravir has significantly better treatment effects on COVID-19 in terms of disease progression and viral clearance, as compared with Lopinavir/Ritonavir [7]. In the recent study Chen and colleagues compare the efficacy and safety of favipiravir and arbidol to treat COVID-19 patients on clinical recovery rate of day
Table 1 Characteristics of clinical trials studying the efficacy and safety of favipiravir in patients with new coronavirus pneumonia (COVID-19).

ID	Public title	Country	Recruiting Status	Type	Registration time
ChiCTR2000029544	A randomized controlled trial for the efficacy and safety of Baloxavir Marboxi, Favipiravir tablets in novel coronavirus pneumonia (COVID-19) patients who are still positive on virus detection under the current antiviral therapy	China	Pending	Interventional	2020/02/03
ChiCTR2000029548	Randomized, open-label, controlled trial for evaluating of the efficacy and safety of Baloxavir Marboxi, Favipiravir, and Lopinavir-Ritonavir in the treatment of novel coronavirus pneumonia (COVID-19) patients	China	Pending	Interventional	2020/02/04
ChiCTR2000029600	Clinical study for safety and efficacy of Favipiravir in the treatment of novel coronavirus pneumonia (COVID-19)	China	Recruiting	Interventional	2020/02/06
ChiCTR2000030113	Randomized controlled trial for safety and efficacy of Favipiravir in the treatment of novel coronavirus pneumonia (COVID-19) with poorly responsive ritonavir/ritonavir	China	Recruiting	Interventional	2020/02/23
ChiCTR2000030254	the Efficacy and Safety of Favipiravir for novel coronavirus–infected pneumonia: A multicenter, randomized, open, positive, parallel-controlled clinical study	China	Completed	Interventional	2020/02/26
ChiCTR2000030894	Favipiravir Combined with Tocilizumab in the Treatment of novel coronavirus pneumonia (COVID-19) - A Multicenter, Randomized, Controlled Trial	China	Recruiting	Interventional	2020/03/16
ChiCTR2000030987	A Randomized Controlled Trial for Favipiravir Tablets Combine with Chloroquine Phosphate in the Treatment of Novel Coronavirus Pneumonia (COVID-19)	China	Recruiting	Interventional	2020/03/20
ChiCTR2000033491	Oral Favipiravir for Patients with Delayed SARS-Cov-2 viral RNA Clearance	China	Completed	Interventional	2020/06/02
EUCTR2020-001528-32-IT	Adaptive randomized trial for therapy of Coronavirus disease 2019 at home with oral antivirals	Italy	Recruiting	Interventional	24/06/2020
NCT04464408	Favipiravir Therapy in Adults with Mild COVID-19	Saudi Arabia	Not yet recruiting	Interventional	28/06/2020
JPNN-jRCTs0412000025	Phase II trial of combination therapy with favipiravir and corticosteroids for COVID-19	Japan	Recruiting	Interventional	01/07/2020
EUCTR2020-002106-68-GB	FLARE: Favipiravir ± Lopinavir: A RCT of Early antivirals	United Kingdom	ongoing	interventional	07/07/2020
IRTCT20150107020592N30	Prophylactic Favipiravir for Healthcare Workers in COVID-19 Pandemic	Iran	Recruiting	Interventional	10/07/2020
NCT04471662	Nelfinavir and Favipiravir Combination in Newly Diagnosed COVID19 Egyptian Patients	Egypt	Not yet recruiting	Interventional	13/07/2020
NCT04474457	Efficacy and Safety of Favipiravir in the Treatment of COVID-19 Patients Over 15 Years of Age	Turkey	Recruiting	Observational	15/07/2020
NCT04475991	Safety and Efficacy of Maraviroc and/or Favipiravir vs Currently Used Therapy in Severe COVID-19 Adults	Mexico	Not yet recruiting	Interventional	15/07/2020
NCT04478448	Bioequivalence Study of Favipiravir From Flupirava 200 mg Tablet (European Egyptian Pharmaceutical Industries, Egypt) Versus Avigan 200 mg Tablets (Man. by Toyama Chemical Co., Ltd Japan)	Egypt	Recruiting	Interventional	16/07/2020
NCT04501783	Study of Efficacy and Safety of TL-FVP-t vs. SOC in Patients with Mild to Moderate COVID-19	Russian Federation	Active, not recruiting	Interventional	05/08/2020
Favipiravir is known to be teratogenic; therefore, administration of alanine aminotransferase (ALT) and total bilirubin, and increased aspartate aminotransferase (AST), alkaline phosphatase (ALP), effects on hematopoietic tissues such as decreased red blood cell findings after administration of oral favipiravir included: adverse dose toxicity studies involving dogs, rats, and monkeys, notable the adverse reactions of this drug should be kept in mind. In repeat-value of this antiviral agent for COVID-19 treatment. Furthermore, to wait for more clinically valid evidence to confirm the positive reduction viral replication, with half-maximal effective concentrations (EC50) 61.88 μM [21]. Furthermore favipiravir, has been tested in clinical trials with Covid-19 patients in China. According to an open-label, non-randomized trial the results showed shorter viral clearance time than the control group that received lopinavir/ritonavir [7]. In addition another multicenter, open-labelled clinical trial reported that in moderate COVID-19 patients untreated with antiviral previously, favipiravir can be considered as a preferred treatment because of the higher clinical recovery rate of day 7 and more effectively reduced incidence of fever, cough besides some manageable antiviral-associated adverse effects [23]. However, data of the above studies indicate the efficacy of favipiravir, we need to wait for more clinically valid evidence to confirm the positive value of this antiviral agent for COVID-19 treatment. Furthermore, the adverse reactions of this drug should be kept in mind. In repeat-dose toxicity studies involving dogs, rats, and monkeys, notable findings after administration of oral favipiravir included: adverse effects on hematopoietic tissues such as decreased red blood cell (RBC) production, and increases in liver function parameters such as aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT) and total bilirubin, and increased vacuolization in hepatocytes. Testis toxicity was also noted [28]. Favipiravir is known to be teratogenic; therefore, administration of favipiravir should be avoided in women if pregnancy is confirmed or suspected [25] and toxicity information regarding favipiravir in humans is not readily available so the Ministry of Health, Labor and Welfare granted conditional marketing approval with strict regulations for its production and clinical use [29].

Conclusion
Favipiravir might be crucial for ensuring an efficient treatment, decrease mortality and allow early discharge in relation to Covid-19. However more clinical studies are urgently needed to evaluate the efficacy and safety of this antiviral nucleoside for COVID-19 treatment.

Author Contributions
M Ghasemnejad-Berenji; literature review and writing the manuscript writing the original draft of the review article. S. Pashapour: literature review and revising the review article.

Conflict of Interest
The authors declare that they have no conflict of interest.

References
[1] Ai J-W et al. Optimizing diagnostic strategy for novel coronavirus pneumonia, a multi-center study in Eastern China. medRxiv 2020; 2020.02.13.20022673
[2] Lai C-C et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents 2020; 105924
[3] Sohrabi C et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery 2020; 76: 71–76
[4] Wang D et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus--infected pneumonia in Wuhan, China. Jama 2020; 323: 1061–1069
[5] Zhang JJ et al. Clinical characteristics of 140 patients infected by SARS-CoV-2 in Wuhan, China. Allergy 2020; 75: 1730–1741
[6] Yao TT et al. A Systematic Review of Lopinavir Therapy for SARS Coronavirus and MERS Coronavirus-A Possible Reference for Coronavirus Disease-19 Treatment Option. Journal of Medical Virology 2020; 92: 556–561
[7] Cai Q et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering 2020; https://10.1016/j. eng.2020.03.007. Online ahead of print.
[8] Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus–infected pneumonia, a multi-center study in Eastern China. medRxiv 2020; 323: 1061–1069
[9] Furuta Y et al. In vitro and in vivo activities of anti-influenza virus compound T-705, Antimicrobial Agents and Chemotherapy 2002; 46: 977–981
[10] Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discovers & Therapeutics 2020; 14: 58–60
[11] Baranovich T et al. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. Journal of Virology 2013; 87: 3741–3751
[12] Furuta Y et al. Mechanism of action of T-705 against influenza virus. Antimicrobial Agents and Chemotherapy 2005; 49: 981–986

[13] Jin Z et al. The ambiguous base-pairing and high substrate efficiency of T-705 (favipiravir) ribofuranosyl 5′-triphosphate towards influenza A virus polymerase. PLOS One 2013; 8: e68347

[14] Smee DF et al. Intracellular metabolism of favipiravir (T-705) in uninfected and influenza A (H5N1) virus-infected cells. Journal of Antimicrobial Chemotherapy 2009; 64: 741–746

[15] Vanderlinden E et al. Distinct effects of T-705 (favipiravir) and ribavirin on influenza virus replication and viral RNA synthesis. Antimicrobial Agents and Chemotherapy 2016; 60: 6679–6691

[16] Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy, Series B 2017; 93: 449–463

[17] Gowen BB et al. In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections. Antimicrobial Agents and Chemotherapy 2007; 51: 3168–3176

[18] Saffronet D et al. The broad-spectrum antiviral favipiravir protects guinea pigs from lethal Lassa virus infection post-disease onset. Scientific Reports 2015; 5: 14775

[19] Rocha-Pereira J et al. Favipiravir (T-705) inhibits in vitro norovirus replication. Biochemical and Biophysical Research Communications 2012; 424: 777–780

[20] Sidwell RW et al. Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice. Antimicrobial Agents and Chemotherapy 2007; 51: 845–851

[21] Wang M et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 2020; 30: 269–271

[22] Furuta Y et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Research 2013; 100: 446–454

[23] Chen C et al. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. medRxiv 2020; Preprint posted March 27, 2020

[24] Lipsitch M, Swerdlow DL, Finelli L. Defining the epidemiology of Covid-19—studies needed. New England Journal of Medicine 2020; 382: 1194–1196

[25] Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Research 2018; 153: 85–94

[26] Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacology & Therapeutics 2020; 107512

[27] Mendenhall M et al. T-705 (favipiravir) inhibition of arenavirus replication in cell culture. Antimicrobial Agents and Chemotherapy 2011; 55: 782–787

[28] Avigan (favipiravir) Review Report. Pharmaceuticals and Medical Devices Agency, 2014

[29] Nagata T et al. Favipiravir: a new medication for the Ebola virus disease pandemic. Disaster Medicine and Public Health Preparedness 2015; 9: 79–81