Probing the sensitivity to leptonic δ_{CP} in presence of invisible decay of ν_3 using atmospheric neutrinos

Lakshmi.S.Mohan1

1National Centre for Nuclear Research (NCBJ), Warsaw, Poland

(Dated: June 12, 2020)

Abstract

One of the main neutrino oscillation parameters whose value has not been determined very precisely is the leptonic δ_{CP} phase. Since neutrinos have a tiny but finite mass they can undergo decay both visibly and invisibly. The effect of invisible decay of the third mass eigen state ν_3 on the sensitivity to δ_{CP} is analysed here using atmospheric neutrino and anti-neutrino events. Effects of detector resolutions and systematic uncertainties are studied to identify the optimum resolutions and efficiencies required by a detector to obtain a significant sensitivity even in presence of decay.

*Electronic address: Lakshmi.Mohan@ncbj.gov.pl
I. INTRODUCTION

The value of the leptonic δ_{CP} phase is one of the most sought out unknowns in neutrino oscillation physics. Several accelerator based long baseline (LBL) experiments are taking data \cite{1, 2} and are being planned \cite{3, 4} to measure this quantity precisely. Since neutrino oscillations have proven that neutrinos have a tiny but finite mass, there is a possibility that they can decay. For Majorana neutrinos a possible decay mode allowed by Majoron model \cite{5, 6} is $\nu_i \rightarrow \nu_j + J$ or $\nu_i \rightarrow \bar{\nu}_j + J$, where ν_j and $\bar{\nu}_j$ are lighter neutrino and anti–neutrino states and J is mostly a singlet Majoron \cite{6, 7}. This decay can be visible or invisible depending on whether the final state contains an active neutrino or a sterile neutrino respectively. In this paper the effect of invisible decay will be studied. The lifetimes of ν_1 and ν_2 are tightly constrained by solar neutrino data \cite{8, 18}. Detailed discussions on constraining neutrino lifetimes via cosmology and astrophysical experimental scales are performed in \cite{19–34}. Many of these papers have considered the invisible neutrino decay scenario, especially the Majoron model. Analyses for invisible neutrino decay for accelerator long and medium baseline and atmospheric neutrino experiments have been carried out in \cite{35–43} to obtain the limits for ν_3 decay. The limits from visible decay in accelerator and reactor neutrino experiments are discussed in \cite{44–47}.

In this study the decay of ν_3 into a light sterile neutrino state with which it does not mix \cite{41, 48} is considered. So there will be the dominant oscillations plus subdominant invisible decay. The study presented in this paper is mainly concerned with neutrino energies and distances available for terrestrial experiments - the energies and baselines corresponding to atmospheric neutrino experiments. The invisible decay will cause a depletion of observable events in the detector. This decay is characterised by a parameter $\alpha_3 = m_3/\tau_3$, where m_3 and τ_3 are the mass and rest frame life time of ν_3 respectively. It has been shown in \cite{35-38, 42, 43} that invisible decay will affect the measurement of other oscillation parameters, especially θ_{23}. While the effect of decay on the measurement of δ_{CP} with LBL experiments has been studied in \cite{37}, this has not been studied in detail with atmospheric neutrinos. Atmospheric neutrinos offer a wide variety of baselines (from $\sim 15 \text{ km} – \sim 13000 \text{ km}$) and energies ($\sim 0.1–30.0 \text{ GeV}$) of neutrinos. Studies on sensitivity to δ_{CP} using sub-GeV atmospheric neutrinos have been conducted in \cite{49–51}. Low energy (sub-GeV) atmospheric neutrinos are a good probe for the effect of this invisible decay of ν_3 due to several reasons.

1. Measurement of δ_{CP} unambiguous of neutrino mass hierarchy - The measurement of neutrino oscillation parameters is affected by degeneracies. Presence of more parameters mean more degeneracies and ambiguities and neutrino mass hierarchy has not been determined yet. At sub-GeV energies δ_{CP} can be measured unambiguous of hierarchy \cite{49, 51}. This opens up the possibility of determining the effect of other parameters like α_3 on δ_{CP} measurement.

2. Effect of the invisible decay parameter α_3 is more at lower (sub-GeV) energies \cite{42}. Hence, in the absence of other degeneracies, its effects on δ_{CP} measurement will me more evident at these energies.

3. Statistics - The flux of atmospheric neutrinos are large at sub-GeV energies \cite{52, 54}. Hence there will be more number of events available for the study.

In this paper a study of how the presence of invisible decay of ν_3 affects the measurement of δ_{CP} with atmospheric neutrinos is conducted. The optimum detector configurations required
to achieve a good sensitivity to δ_{CP} even in the presence of α_3 is also studied. The effect of invisible decay on the oscillation probabilities and event spectra relevant for this study are discussed in Sections III. The process of event generation for different types of analyses are discussed in Section IV. Sensitivities to δ_{CP} in presence of decay for ideal and realistic cases in the absence and presence of systematic uncertainties are discussed in Sections IV and V respectively. Summary and conclusions are given in Section VI.

II. EFFECT IN VISIBLE DECAY ON OSCILLATION PROBABILITIES IN MATTER

A full 3-flavour oscillations + decay in matter scenario is considered here. The mass eigen state ν_3 decays invisibly via $\nu_3 \to \nu_s + J$, where J is a pseudo-scalar Majaron and ν_s is a sterile neutrino which does not mix with the three active neutrinos. Hence the mixing matrix U in vacuum will be:

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\ -c_{23} s_{12} - s_{23} s_{13} c_{12} e^{i \delta} & c_{23} c_{12} - s_{23} s_{13} s_{12} e^{i \delta} & s_{23} c_{13} \\ s_{23} s_{12} - c_{23} s_{13} c_{12} e^{i \delta} & -s_{23} c_{12} - c_{23} s_{13} s_{12} e^{i \delta} & c_{23} c_{13} \end{pmatrix},$$

(1)

where $c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$; θ_{ij} are the mixing angles and δ is the CP violating phase.

For true normal hierarchy, $m_s < m_1 < m_2 < m_3$, where m_s is the mass of ν_s and m_i are the mass of ν_i, i=1,2,3. In the presence of Earth matter, the three-flavour evolution equation will be:

$$\frac{d \tilde{\nu}_i}{dt} = \frac{1}{2E} [U \tilde{M}^2 U^\dagger + A_{\text{CC}}] \tilde{\nu},$$

(2)

$$\tilde{M}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 - i \alpha_3 \end{pmatrix}, \quad \text{and} \quad A_{\text{CC}} = \begin{pmatrix} A_{\alpha \beta} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

(3)

where E is the neutrino energy, $\alpha_3 = m_3/\tau_3$, is the decay constant in units of eV2, m_3 is the mass of ν_3 and τ_3 its rest frame life time and $A_{\alpha \beta}$ is the matter potential.

$$A_{\alpha \beta} = 2\sqrt{2} G_F n_e E = 7.63 \times 10^{-5} \text{eV}^2 \rho (\text{gm/cc}) E (\text{GeV})$$

(4)

where, G_F is the Fermi constant and n_e is the electron number density in matter and ρ is the matter density. For anti-neutrinos, both the sign of $A_{\alpha \beta}$ and the phase δ in Eq. (2) are reversed. Since the term α_3 appears in the propagation equation along with Δm_{31}^2 they should have the same unit. The conversion factor to make α_3 and Δm_{31}^2 have the same units (i.e eV2) is $1 \text{eV/s} = 6.58 \times 10^{-16} \text{eV}^2$.

Transition probabilities, especially are mainly responsible for the sensitivity to δ_{CP} [55–57]. Since $\Phi_{\nu_\mu}/\Phi_{\nu_e} (\Phi_{\nu_\mu}/\Phi_{\nu_e}) \approx 2 : 1$, the contribution to δ_{CP} sensitivity from $\nu_\mu \to \nu_e$ ($\bar{\nu}_\mu \to \bar{\nu}_e$) events will be more. The sensitivity to α_3 is more for $\nu_\mu \to \nu_\mu$ and $\bar{\nu}_\mu \to \bar{\nu}_\mu$ events, though their sensitivity to δ_{CP} is very low compared to the ν_ν like events. Hence not to leave out any contribution from any channel all 8 channels - $\nu_{e3}, \nu_{e3}, \nu_{\mu3}, \nu_{\mu3}$, where $\beta = e, \mu$ are studied for this analysis. The difference between the 3-flavour oscillation probabilities in matter with $\delta_{\text{CP}} = -90^\circ$ and $\delta_{\text{CP}} = 0^\circ$ is shown as oscillograms in Figs. 1 and 2. The oscillograms for the lower energy range 0.1–2.0 GeV are shown. The central values of the oscillation parameters used for the analysis are given in Table 1.
It can be seen from the Fig. 1 that α_3 has no significant effect on $P_{\mu e}$ and $\bar{P}_{\mu e}$. However, the minor changes in the several bins with the increase of α_3 value can add up to a small contribution to the δ_{CP} sensitivity. As seen in Fig. 2 α_3 does affect $P_{\mu \mu}$ and $\bar{P}_{\mu \mu}$ at very low energies, especially below $E_{\nu} = 0.4$ GeV. But the overall contribution of $P_{\mu \mu}$ and $\bar{P}_{\mu \mu}$ to δ_{CP} sensitivity is smaller compared to the electron like events. Atmospheric neutrino flux is lesser compared to accelerator based long base line experiments and neutrino physics experiments are low counting experiments. So even the smallest contribution to the sensitivity to a parameter cannot be neglected. Because of this, the study is done for events in the neutrino energy range 0.1–30 GeV. Normal hierarchy is assumed to be the true hierarchy. At low energies δ_{CP} measurement will be independent of hierarchy [49], but at higher energies (2.0–30 GeV) the effect of hierarchy will be present, hence the hierarchy is assumed to be known, for this study.

For low energies 0.1–1.0 GeV, both $P_{\mu e}$ and $\bar{P}_{\mu e}$ are affected by invisible decay. In the higher energy region, decay affects $P_{\mu e}$ in the resonance region. The effect of α_3 on $\bar{P}_{\mu e}$ is not as much as for the neutrino case. From this figure we can see that the measurement of δ_{CP} will be affected by the presence of α_3. The variation in sensitivity will depend on the value of α_3, a lesser sensitivity is expected for larger α_3 from electron like events.

A. Effect of invisible decay of ν_3 on the oscillated event spectra

The effect of the decay parameter α_3 on the oscillated event spectra for different values of α_3 and $\delta_{CP} = -90^\circ$ is shown in Fig. 3. The effect of α_3 in the lower (0.1–2.0 GeV) and higher (2.0–30.0 GeV) energy regions can be separated. For ν_e and $\bar{\nu}_e$ events, α_3 does not have any significant effect, both at lower and higher energies. But the oscillated event spectra get suppressed with increasing α_3 values for both ν_μ and $\bar{\nu}_\mu$ events. Thus, the sensitivity to δ_{CP} from ν_e and $\bar{\nu}_e$ events will not get affected much by α_3, but the minor sensitivity from ν_μ and $\bar{\nu}_\mu$ events will be. Electron like events are more sensitive to δ_{CP} than muon-like events.
FIG. 1: Top panels - $\Delta P_{\mu\mu}$ (left) for $\alpha_3 = 0$ eV2 (no decay) and (right) $\alpha_3 = 1 \times 10^{-5}$ eV2 in the neutrino energy range 0.1–2.0 GeV for true normal hierarchy. Bottom panels are for $\Delta \bar{P}_{\mu\mu}$.

like events. It can also be seen that the muon like events are more sensitive to α_3 especially at low energies. This shows that at low energies (0.1–2.0 GeV), ν_e and $\bar{\nu}_e$ events are well suited to probe δ_{CP} while low energy ν_μ and $\bar{\nu}_\mu$ events probe α_3 better. At higher energies the effects are not much, but the small contributions from all bins can add up together.
FIG. 2: Top panels - $\Delta P_{\mu\mu}$ (left) for $\alpha_3 = 0$ eV2 (no decay) and (right) $\alpha_3 = 1 \times 10^{-5}$ eV2 in the neutrino energy range 0.1–2.0 GeV for true normal hierarchy. Bottom panels are for $\Delta \bar{P}_{\mu\mu}$.

$\Delta P_{\mu\mu} = P_{\mu\mu}^{\delta \nu \rightarrow \delta \nu} - P_{\mu\mu}^{\delta \nu \rightarrow \delta \nu}$, $\alpha_3 = 0$ eV2, NH

$\Delta P_{\mu\mu} = P_{\mu\mu}^{\delta \nu \rightarrow \delta \nu} - P_{\mu\mu}^{\delta \nu \rightarrow \delta \nu}$, $\alpha_3 = 1 \times 10^{-5}$ eV2, NH

$\Delta \bar{P}_{\mu\mu} = \bar{P}_{\mu\mu}^{\delta \nu \rightarrow \delta \nu} - \bar{P}_{\mu\mu}^{\delta \nu \rightarrow \delta \nu}$, $\alpha_3 = 0$ eV2, NH

$\Delta \bar{P}_{\mu\mu} = \bar{P}_{\mu\mu}^{\delta \nu \rightarrow \delta \nu} - \bar{P}_{\mu\mu}^{\delta \nu \rightarrow \delta \nu}$, $\alpha_3 = 1 \times 10^{-5}$ eV2, NH
FIG. 3: Comparison of oscillated event spectra for different values of α_3 for $\delta_{CP} = -90^\circ$. Top panels are for ν_e and bottom panels are for $\bar{\nu}_e$ events. α_3 has no effect on the oscillated spectra in both the energy ranges.
FIG. 4: Comparison of oscillated event spectra for different values of α_3 for $\delta_{CP} = -90^\circ$. Top panels are for ν_μ and bottom panels are for $\bar{\nu}_\mu$ events. It is clear that α_3 affects the ν_μ and $\bar{\nu}_\mu$ spectra at low energies, which means that the sensitivity to δ_{CP} from these events, if any at all will be affected by α_3.
III. EVENT GENERATION AND χ^2 ANALYSIS

Simulated charged current (CC) $\nu_\mu, \bar{\nu}_\mu, \nu_e$ and $\bar{\nu}_e$ events on an isoscalar target are used for this study. For atmospheric neutrinos, $\nu_e \rightarrow \nu_e$ survived events along with those from $\nu_\mu \rightarrow \nu_e$ transitions contribute to the (CC) ν_e event spectrum in the detector:

$$N^e = t \times n_d \times \int d\sigma_{\nu_e} \times \left[P_{ee}^m \frac{d^2\Phi_e}{dE_\nu \, d \cos \theta_\nu} + P_{\mu e}^m \frac{d^2\Phi_\mu}{dE_\nu \, d \cos \theta_\nu} \right].$$

(5)

Here P_{ee}^m and $P_{\mu e}^m$ are the oscillation probabilities in matter in presence of decay. Here t is the exposure/run time, n_d is the number of targets available for interaction in the detector, $d\sigma_{\nu_e}$ is the neutrino interaction cross section which is differential in final state charged lepton energy (E_e) and/or direction $\cos \theta_e$, and $d\Phi_{\nu_\mu}$ ($d\Phi_{\nu_e}$) is the ν_μ (ν_e) flux. Similarly for $\bar{\nu}_e$ and ν_μ and $\bar{\nu}_\mu$ events also. Hereafter the charged current electron (muon) like events will be referred to as CCE (CCMU).

Sensitivity to δ_{CP} is studied for idealistic and realistic scenarios. The difference between these scenarios is given in Table. II.

Idealistic	Realistic
Perfect energy and direction resolution for the final state particles (nores)	Realistic energy for final state particles (wres)
Complete separation of ν_e ($\bar{\nu}_e$) like events from ν_μ ($\bar{\nu}_\mu$) like events	ν_e and ν_μ like events can be separated from each other
ν and $\bar{\nu}$ can be separated from each other (wcid)	No separation between ν and $\bar{\nu}$ (nocid)
Events binned in ($E_{obs}^\mu, \cos \theta_{obs}^\mu, E_{had}^\prime$) (3D)	Events binned in ($E_{obs}^\mu, \cos \theta_{obs}^\mu$) (2D)
No fluctuations	With fluctuations

TABLE II: Criteria for idealistic and realistic cases for sensitivity studies

Unoscillated charged current (CC) events for an exposure of 100 years in a 50 kton detector (500 kton-years) are simulated using the NUANCE [59] neutrino generator. Honda 3D fluxes [52–54] for atmospheric neutrinos are used and the target is assumed to be a generic isoscalar one. For the perfect case analyses presented in Section IV the following procedure is used to generate “data” and theory events. For “data” events, each event in the 100 year sample is oscillated individually applying the central values of the oscillation parameters given in Table I. This is then scaled down to the required number of years (10 years). For theory events, the 100 year sample is oscillated event by event by varying the parameters in their respective 3σ ranges given in the same table. This method has no fluctuations. For the realistic case, the 10 years of events are selected randomly from the unoscillated 100 year sample and oscillated individually with the central values in Table I to generate “data”. The remaining 90 years of events are oscillated with parameters in their 3σ ranges and scaled to 10 years to generate theory. This method thus takes into account the fluctuations.

A poissonian χ^2 analysis as described in [60] is performed with three final state observables $E_{\mu}^{obs}, \cos \theta_{\mu}^{obs}, E_{had}^{obs}$, which are the energy and direction of the observed muon and the energy of the observed hadron shower. The binning scheme is shown in Table III.

Systematic uncertainties are taken into account using pull method [60–67]. For the idealistic case where neutrino and anti-neutrino events can be separated from each other, the
Observable	Range	Bin width	No. of bins
E^{obs}_μ (GeV)	[0.1, 0.2]	0.1	1
	[0.2, 0.4]	0.1	1
	[0.4, 0.5]	0.1	1
	[0.5, 1.0]	0.3	2
	[1.0, 4.0]	0.5	6
	[4, 7]	1	3
	[7, 11]	4	1
	[11, 12.5]	1.5	1
	[12.5, 15]	2.5	1
	[15, 30]	15	1
$E^{\text{obs}}_{\mu_{\text{had}}}$ (GeV)	[0, 2]	1	2
	[2, 4]	2	1
	[4, 15]	11	1
$\cos \theta^{\text{obs}}_{\mu}$ (20 bins)	[-1.0, 1.0]	0.1	20
$E^{\text{obs}}_{\mu_{\text{had}}}$ (GeV)	[0.1, 0.2]	0.1	1
	[0.2, 0.4]	0.1	1
	[0.4, 0.5]	0.1	1
	[0.5, 1.0]	0.3	2
	[1.0, 4.0]	0.5	6
	[4, 7]	1	3
	[7, 11]	4	1
	[11, 12.5]	1.5	1
	[12.5, 15]	2.5	1
	[15, 30]	15	1

TABLE III: Bins of the three observables used for the analysis.

11 pull χ^2 analysis described in [60] is performed. For the realistic case when neutrino and anti-neutrino events cannot be separated from each other, the χ^2 described by Eqn. 10 of [49] is used. The parameters $\theta_{23}, |\Delta m^2_{32}|$ and α_3 are marginalised in their 3σ ranges. The other parameters θ_{12}, θ_{13} and Δm^2_{21} are measured precisely, so they are kept fixed in the analysis.

In the realistic case, the effect of final state lepton energy resolution on the sensitivity to δ_{CP} also is studied. For this, resolutions of the form [68]:

\[
\frac{\sigma}{E} = \frac{a\%}{\sqrt{E}} \oplus b\%
\]

were taken, where $a = 2.5$ and $b = 0.5$ for electrons and $a = 3$ for muons.

IV. RESULTS-IDEALISTIC CASE

Sensitivity studies with and without final state lepton energy resolutions The results of sensitivity studies with and without pulls and energy resolutions are obtained.

A. No pulls

Fig. [5] shows the sensitivity to χ^2 to the most ideal (and currently impractical) scenario. Several observations can be made from this figure.

- The sensitivity to δ_{CP} with CCE events is much higher than that with CCMU events as expected.
• While the sensitivity from CCE decreases with increase in the decay parameter, the sensitivity to δ_{CP} from CCMU events is slightly enhanced in the presence of invisible decay. The effect of α_3 is opposite on CCE and CCMU events.

• In the absence of systematic uncertainties, for a given α_3 value, energy resolution worsens the sensitivity only slightly.

• δ_{CP}^{test} values in the range $[-50^\circ, 110^\circ]$ can be excluded at 3σ with CCE events alone, even in presence of invisible decay (with $\alpha_3 = 1 \times 10^{-5}$ eV2). All values of δ_{CP} are allowed at 2σ from CCMU events, $\delta_{CP} = \sim [-40^\circ, 90^\circ]$ can be excluded at 1σ for all three values of α_3.

The major contribution to the δ_{CP} sensitivity comes from the lower energy region where the effect of α_3 is also high.

B. Effect of pulls

When systematic uncertainties are present the sensitivity decreases significantly for both CCE and CCMU events (for the idealistic CCE case this is very drasitc). For both CCE and CCMU, the sensitivities with finite detector resolutions are lesser than those with perfect resolutions even in the presence of all pulls. These are shown in Fig. 6.

• In the absence of any pull, effect of α_3 on the sensitivity was clearly visible, especially for CCE events. With all 11 pull, not only does the δ_{CP} sensitivity for each value of α_3 reduce, but the distinction between the sensitivities for different α_3 values disappear.
in the region $\delta_{CP} \sim [-90^\circ, -20^\circ]$. For a detector with perfect resolutions, the no-decay case will have the most sensitivity even in the presence of all pulls in the region $\delta_{CP} \sim [-20^\circ, 180^\circ]$. There is a mildly significant separation between the no-decay and with decay cases in this δ_{CP} region. The trends are similar with finite detector resolutions.

- For CCMU events with 11 pulls, the effects for all 3 α_3 values are similar until $\delta_{CP} \sim -40^\circ$. Unlike the CCE events the separation between the sensitivities with different α_3 values can be seen well in $\delta_{CP} \sim [-40^\circ, 180^\circ]$ in the zoomed in version. The trend is similar for a finite resolution case.

When the sum is taken, the region between $[-14^\circ - 44^\circ]$ is excluded at 2σ. Also adding the χ^2 contribution from CCMU events also restricts the region where α_3 affects δ_{CP} sensitivity to $[44^\circ - 180^\circ]$. Here there is a reduction in sensitivity when α_3 increases from 0 eV2 to larger values, but there is no change in sensitivity while increasing α_3 from 4.36×10^{-6} to 1×10^{-5} eV2.

But these differences are very small and will be very difficult to separately identify in a very realistic case. To understand which systematic uncertainty is driving the loss of sensitivity to δ_{CP} let us look at $\delta_{CP} \chi^2$ for perfect resolution cases. The uncertainties - those in tilt, flux ratio and cross section are switched on one each at a time. The results are shown in Fig[8]. From the figure it can be seen that the flux and cross section uncertainties alone can result in the reduction of χ^2 to about half of the no pull values for all three α_3 values. Out of flux and cross section, the cross section has more effect than the flux uncertainty on CCE events. When both these uncertainties are combined we lose a significant amount of sensitivity as seen from the 11 pulls case in Fig[6]. Hence it is important that, we measure the neutrino fluxes and cross sections precisely.
V. RESULTS-REALISTIC CASE

The results for the realistic cases are discussed in this section. Here the effect of fluctuations are taken into account and the detector cannot separate between neutrinos and anti-neutrinos. Since there is no $\nu - \bar{\nu}$ separation, only 5 pulls are there - those on flux (20%), cross section (10%), tilt (5%), overall (5%) and zenith angle (5%) uncertainties. For the 0.1–2.0 GeV energy range, all values of δ_{CP} are allowed at 2σ. The left panel of Fig. 9 shows this result. When all five uncertainties are present and their values are large, all values of δ_{CP} are allowed at 2σ for all values of α_3. Also all the large uncertainties wash away the effect of decay and there is no way to distinguish if decay has any effect on the δ_{CP} sensitivity (except in the range [−180°,−90°] where the sensitivity to δ_{CP} is higher for the no decay case compared to the other two α_3 values; but all of these are below 1σ and hence are not very significant). The right panel of Fig. 9 shows the sensitivity when there are lesser and smaller uncertainties. Here, only 3 uncertainties are considered - 5% in cross section, 5% overall uncertainty and 5% tilt. Not only do the the sensitivities increase with smaller and fewer uncertainties, but the effect of α_3 also becomes clearer between the no decay and the with decay cases. While the sensitivities of the with-decay cases are similar, the reduction in sensitivity with increase of α_3 from a no decay to with decay is visible here, although it is small. For $\alpha_3 = 0$ eV2 ($\alpha_3 = 4.36 \times 10^{-6}$ eV2) the δ_{CP} region $\sim[−8°,73°]$ ($\sim[14.5°,51°]$) is ruled out at 2σ. All values of δ_{CP} are allowed at 2σ for $\alpha_3 = 1 \times 10^{-5}$ eV2.

Thus, in presence of uncertainties, finite resolutions and fluctuations, the effect of invisible decay of ν_3 on δ_{CP} measurement is washed out. If we have to identify this effect, there should be a precise measurement of fluxes and cross sections as mentioned in Section IV B. It can also be seen that though the contribution of CCMU events itself is very small, adding it to the CCE χ^2 can improve the sensitivities slightly. Since every event is valuable in low counting experiments, it is worthwhile keeping these events in the analysis.
FIG. 8: Comparison of sensitivity χ^2 with $\delta_{CP}^{sel} = -90^\circ$ and true NH for CCE and CCMU events with pulls switched on one by one. Y-axes are not the same.

VI. SUMMARY AND CONCLUSIONS

Low energy (sub GeV) atmospheric neutrino oscillations are very interesting and can help us understand the neutrino oscillation parameters \cite{19,51,69} and new physics scenarios like invisible neutrino decay. The effect of invisible decay of ν_3, which is a new physics scenario, on the measurement of δ_{CP}, which is a standard neutrino oscillation parameter, using atmospheric neutrinos in the energy ranges 0.1–2.0 GeV and 0.1–30.0 GeV are studied for idealistic and realistic cases. In the absence of systematic uncertainties and with a detector having perfect resolutions the effect of α_3 is identifiable. The major contribution to the sensitivity χ^2 is from the energy range 0.1–2.0 GeV for both CCE and CCMU events. CCE events contribute more to δ_{CP} sensitivity. Sensitivity decreases (increases) with increase (de-
crease) in α_3 for CCE (CCMU). Presence of systematic uncertainties reduce the sensitivities drastically - flux and cross section uncertainties are mainly responsible for this reduction. In the realistic case, any effect of invisible decay is washed out and the sensitivity is practically the same for all values α_3 if there are large and more uncertainties. For smaller and fewer uncertainties the sensitivity improves and the effect of invisible decay is also discernible to a certain extend. The main uncertainties which affect the sensitivity are again those in flux and cross sections. Finite detector resolutions and fluctuations also contribute to the worsening of the sensitivity. Hence the limitations in the detector resolution and systematic uncertainties can result in the non-identification of the effect of invisible decay if ν_3 indeed decays in nature. i.e, even if decay can affect the sensitivity to δ_{CP}, with a detector without a high energy resolution and uncertainties in fluxes and cross sections we will not be able to identify that effect at all. This means that we need detectors with better energy resolutions and especially for atmospheric neutrinos where the fluxes cannot be controlled, a precise measurement of the neutrino–anti-neutrino fluxes [?]. CCMU events get more affected by α_3 than CCE events, especially in the very low energy bins. From the oscillograms in Fig.2 this is clearly visible at energies between $\sim 0.1–0.2$ GeV. To probe these energies, a detector with a very fine energy resolution is required. Also the separation of other events which can act as a background to the CCMU events in this extremely low energy range should also be possible. This study is beyond the scope of this paper and has to be done in a detailed manner elsewhere. In conclusion, invisible decay of ν_3, if it exists in nature will have an effect on δ_{CP} measurement using atmospheric neutrinos. But this can be measured perfectly only in a very idealistic scenario or atleas in a case where we have good resolutions and lesser and fewer systematic uncertainties.
VII. ACKNOWLEDGEMENT

I acknowledge Prof. James Libby, Indian Institute of Technology Madras (IITM) and IITM Dept. of Physics where I started doing this work. I thank Prof. D. Indumathi, The Institute of Mathematical Sciences (IMSc) for the unoscillated NUANCE data and pull files. Many thanks to IMSc system administrators for the help with Nandadevi cluster on which the simulations for this paper were run. I dedicate this paper to all the medical staff, doctors, nurses, health workers, first responders, care givers, essential service providers and all other people who have been bravely helping others during Covid-19 pandemic.

[1] K. Abe et al., “Constraint on the matter–antimatter symmetry–violating phase in neutrino oscillations”, Nature 580 7803, 339-344 (2020).
[2] M. A. Acero et al., “First Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOνA”, Phys. Rev. Lett. 123 15, 151803 (2019).
[3] Babak Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE”, Fermilab-Pub-20-024-ND, Fermilab-Design-2020-01, arXiv:2002.02967 [physics.ins-det] (2020).
[4] Jose R. Alonso, “DAEδALUS: A novel approach in the search for CP-violation in the neutrino sector”, Neutel 2011, 321-330 (2011).
[5] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, “Are there real goldstone bosons associated with broken lepton number?”, Phys. Lett. B 98, 265 (1981).
[6] G. B. Gelmini and M. Roncadelli, “Left–handed neutrino mass scale and spontaneously broken lepton number”, Phys. Lett. B 99, 411 (1981).
[7] G. B. Gelmini and J. W. F. Valle, “Fast invisible neutrino decays”, Phys. Lett. B 142, 181 (1984).
[8] A. Acker and S. Pakvasa, “Solar neutrino decay”, Phys. Lett. B 320, 320 (1994).
[9] Z. G. Berezhiani, G. Fiorentini, M. Moretti, and A. Rossi, “Fast neutrino decay and solar neutrino detectors”, Z. Phys. C 54, 581 (1992).
[10] Z. G. Berezhiani, M. Moretti, and A. Rossi, “Matter induced neutrino decay and solar antineutrinos”, Z. Phys. C 58, 423 (1993).
[11] S. Choubey, S. Goswami, and D. Majumdar, “Status of the neutrino decay solution to the solar neutrino problem”, Phys. Lett. B 484, 73 (2000).
[12] A. Bandyopadhyay, S. Choubey, and S. Goswami, “MSW mediated neutrino decay and the solar neutrino problem”, Phys. Rev. D 63, 113019 (2001).
[13] A. S. Joshipura, E. Masso, and S. Mohanty, “Constraints on decay plus oscillation solutions of the solar neutrino problem”, Phys. Rev. D 66, 113008 (2002).
[14] A. Bandyopadhyay, S. Choubey, and S. Goswami, “Neutrino decay confronts the SNO data”, Phys. Lett. B 555, 33 (2003).
[15] J. M. Berryman, A. Gouvea, and D. Hernandez, “Solar neutrinos and the decaying neutrino hypothesis”, Phys. Rev. D 92, 073003 (2015).
[16] R. Picoreti, M. M. Guzzo, P. C. de Holanda, and O. L. G. Peres, “Neutrino decay and solar neutrino seasonal effect”, Phys. Lett. B 761, 70 (2016).
[17] J. A. Frieman, H. E. Haber, and K. Freese, “Neutrino mixing, decays and supernova 1987A”,
Guo-yuan Huang and Shun Zhou, “Constraining neutrino lifetimes and magnetic moments via solar neutrinos in the large xenon detectors”, JCAP 02 024 (2019).

J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler, “Decay of High-Energy Astro-physical Neutrinos”, Phys. Rev. Lett. 90, 181301 (2003).

M. Maltoni and W. Winter, “Testing neutrino flavor mixing plus decay with neutrino telescopes”, J. High Energy Phys.07 064 (2008).

G. Pagliaroli, A. Palladino, F. L. Villante and F. Vissani, “Testing nonradiative neutrino decay scenarios with IceCube data”, Phys. Rev. D 92, 113008 (2015).

M. Bustamante, J. F. Beacom and K. Murase, “Testing decay of astrophysical neutrinos with incomplete information”, Phys. Rev. D 95, 063013 (2017).

S. Pakvasa, A. Joshipura and S. Mohanty, “Explanation for the Low Flux of High-Energy Astrophysical Muon Neutrinos”, Phys. Rev. Lett 110, 171802 (2013).

M. White, G. Gelmini and J. Silk, “Structure formation with decaying neutrinos”, Phys. Rev. D 51, 2669 (1995).

S. Hannestad and G. Raffelt, “Constraining invisible neutrino decays with the cosmic microwave background”, Phys. Rev. D 72, 103514 (2005).

S. Hannestad, “Structure formation with strongly interacting neutrinos – implications for the cosmological neutrino mass bound”, J. Cosmol. Astropart. Phys. 02 (2005) 011.

M. Escudero and M. Fairbairn, “Cosmological constraints on invisible neutrino decays revisited”, Phys. Rev. D 100, 103531 (2019).

A. G. Doroshkevich and M. Yu. Khlopov, “Formation of structure in the Universe with unstable neutrinos”, Mon. Not. Roy. astr. Soc 211, 279–282 (1984).

A. G. Doroshkevich, M. Yu. Khlopov and A. A. Klypin, “Large–scale structure formation by decaying massive neutrinos”, Mon. Not. Roy. astr. Soc 239, 923–938 (1989).

A. Doroshkevich, A. Klypin and M. Khlopov, “Cosmological Models with Unstable Neutrinos”, Soviet Astronomy 32, 127 (1988).

Pasquale D. Serpico, “Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime”, Phys. Rev. Lett 98, 171301 (2007).

Jeff A. Dror, “Discovering leptonic forces using nonconserved currents”, Phys. Rev. D 101, 095013 (2020).

A. Abdullahi and P. B. Denton2, “Visible Decay of Astrophysical Neutrinos at IceCube”, arXiv:2005.07200v1 [hep-ph] (2020).

Z. Chacko, A. Dev, P. Du, V. Poulinb and Y. Tsai, “Cosmological limits on the neutrino mass and lifetime”, J. High Energ. Phys. 2020 20 (2020).

M. C. Gonzalez-Garcia and M. Maltoni, “Status of oscillation plus decay of atmospheric and long-baseline neutrinos”, Phys. Lett. B 663, 405 (2008).

R. A. Gomes, A. L. G. Gomes, and O. L. G. Peres, “Constraints on neutrino decay lifetime using long-baseline charged and neutral current data”, Phys. Lett. B 740, 345 (2015).

S. Choubey, S. Goswami and D. Pramanik, “A study of invisible neutrino decay at DUNE and its effects on θ_{23} measurement”, J. High Energ. Phys.2018, 55 (2018).

S. Choubey, D. Dutta and D. Pramanik, “Invisible neutrino decay in the light of NOvA and T2K data”, J. High Energ. Phys. 2018, 141 (2018).

Jian Tang, Tse-Chun Wang and Yibing Zhang, “Invisible neutrino decays at the MOMENT experiment”, J. High Energ. Phys. 2019, 4 (2019).
[40] A. Ghoshal, A. Giarnetti and D. Meloni, “Neutrino invisible decay at DUNE: a multi-channel analysis”, arXiv:2003.09012v1 [hep-ph] (2020).
[41] S. Choubey, and S. Goswami, “Is neutrino decay really ruled out as a solution to the atmospheric neutrino problem from Super-Kamiokande data?”, Astroparticle Physics 14 67–78 (2000).
[42] S. Choubey, S. Goswami, C. Gupta, S. M. Lakshmi and T. Thakore, “Sensitivity to neutrino decay with atmospheric neutrinos at the INO-ICAL detector”, Phys. Rev. D 97, 033005 (2018).
[43] P. F. de Salas, S. Pastor, C. A. Ternes, T. Thakore, M. Tørtola “Constraining the invisible neutrino decay with KM3NeT–ORCA”, Phys. Lett. B 789, 472–479 (2019).
[44] P. Coloma and O. L. G. Peres, “Visible Neutrino decay at DUNE”, arXiv:1705.03599 (2017).
[45] A. M. Gago, R. A. Gomes, A. L. G. Gomes, J. Jones-Prez and O. L. G. Peres, “Visible neutrino decay in the light of appearance and disappearance long-baseline experiments”, J. High Energ. Phys. 2017, 22 (2017).
[46] Y. P. Porto–Silva, S. Prakash, O. L. G. Peres, H. Nunokawa, H. Minakata, “Constraining visible neutrino decay at KamLAND and JUNO”. arXiv:2002.12134 [hep–ph] (2020).
[47] M. V. Ascencio–Sosa, A. M. Calatayud–Cadenillas, A. M. Gago and J. Jones–Prez, “Matter effects in neutrino visible decay at future long-baseline experiments”, Eur. Phys. J. C 78, 809 (2018).
[48] V. D. Barger, J. G. Learned, S. Pakvasa and T. J. Weiler, “Neutrino Decay as an Explanation of Atmospheric Neutrino Observations”, Phys. Rev. Lett. 82, 2640 (1999).
[49] D. Indumathi, S. M. Lakshmi, and M. V. N. Murthy, “Hierarchy independent sensitivity to leptonic δ_{CP} with atmospheric neutrinos”, Phys. Rev. D 100, 115027 (2019).
[50] K. J. Kelly, P. A. N. Machado, I. Martinez–Soler, S. J. Parke and Y. F. Perez–Gonzalez, “Sub–GeV Atmospheric Neutrinos and CP Violation in DUNE”, Phys. Rev. Lett. 123, 081801 (2019).
[51] A. Ioannisian, S. Pokorski, J. Rosiek, M. Ryczkowski, “Analytical description of CP violation in oscillations of atmospheric neutrinos traversing the Earth”, arXiv:2005.07719 [hep–ph] (2020).
[52] M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, “Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data”, Phys. Rev. D 75, 043006 (2007).
[53] M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, “Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model”, Phys. Rev. D 83, 123001 (2011).
[54] M. Honda, M. S. Athar, T. Kajita, K. Kasahara, and S. Midorikawa, “Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model”, Phys. Rev. D 92, 023004 (2015).
[55] K. Kimura, A. Takamura and H. Yokomakura, “Exact formula of probability and CP violation for neutrino oscillations in matter”, Phys. Lett. B 537, 86 (2002).
[56] M. Honda et al., “A simple parameterization of matter effects on neutrino oscillations”, arXiv:hep-ph/0602115.
[57] P. I. Krastev and S. T. Petcov, “Resonance amplification and T–violation effects in three-neutrino oscillations in the Earth”, Phys. Lett. B 205, 84 (1988).
[58] I. Esteban, M. C. Gonzalez–Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, “Global analysis of three–flavour neutrino oscillations: synergies and tensions in the determination of θ_{23}, δ_{CP}, and the mass ordering”, J. High Energ. Phys. 2019, 106 (2019).
[59] D. Casper, “The nuance neutrino physics simulation and the future”, Phys. Proc. Suppl. 112, 161 (2002).

[60] Lakshmi. S.Mohan and D. Indumathi, “Pinning down neutrino oscillation parameters in the 2–3 sector with a magnetised atmospheric neutrino detector: a new study”, Eur. Phys. J. C 77:54 (2017).

[61] M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, “Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model”, Phys. Rev. D 83, 123001 (2011).

[62] J. Kameda, “Detailed studies of neutrino oscillations with atmospheric neutrinos of wide energy range from 100 MeV to 1000 GeV in Super-Kamiokande”, PhD Thesis, University of Tokyo, September 2002.

[63] M. Ishitsuka, “L/E analysis of the atmospheric neutrino data from Super-Kamiokande”, PhD Thesis, University of Tokyo, February 2004.

[64] M. C. Gonzalez–Garcia, M. Maltoni, “Atmospheric neutrino oscillations and new physics”, Phys. Rev. D 70, 033010 (2004).

[65] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A. M. Rotunno, “Solar neutrino oscillation parameters after first KamLAND results”, Phys. Rev. D 67, 073002 (2003).

[66] P. Huber, M. Lindner, W. Winter, “Superbeams vs. neutrino factories”, Nucl. Phys. B 645, 3–48 (2002).

[67] M. M. Devi, T. Thakore, S. K.Agarwalla and Amol Dighe, “Enhancing sensitivity to neutrino parameters at INO combining muon and hadron information”, JHEP 10, 189 (2014).

[68] M. Shiozawa (Super-Kamiokande Collaboration), “Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector”, Nucl. Instrum. Methods Phys. Res., Sect. A 433, 240 (1999).

[69] O. L. G. Peres and A. Yu. Smirnov, “Oscillations of very low energy atmospheric neutrinos”, Phys. Rev. D 79, 113002 (2009).