Marine natural product, Pyrrolo[1,2-α]pyrazine-1,4-dione, hexahydro-(C$_7$H$_{10}$N$_2$O$_2$) of antioxidant properties from Bacillus species at Lakshadweep archipelago

Mohan Gopi1,2,*, Nagarajan Balachandran Dhayanithi1, Karuppaiah Nanthini Devi1, Thipramalai Thankappan Ajith Kumar1

1Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai–608502, Tamil Nadu, India
2Centre for Marine Living Resources and Ecology–Field Research Station, Agatti Island–682553, Lakshadweep, India

1. Introduction

The biological cells produce free radicals generally by electron transfer reactions, which can be generated by enzymatic reactions or non–enzymatic reactions mediated metabolic function. Free radicals can be defined as molecules or molecular fragments containing one or more unpaired electrons in atomic or molecular orbital[1]. Oxidation reactions can produce free radicals, which start chain reactions and damage the cells. Uncontrolled production of free radicals which attack macromolecules such as membrane lipids, proteins and DNA may lead to many health problems such as cancer, diabetes mellitus, neurodegenerative and inflammatory diseases with severe tissue injuries[2]. Antioxidants terminate these chain reactions by removing free radical intermediates and inhibit other oxidation reactions by oxidizing themselves. Major oxidation reactions, which are capable of stabilizing free radicals, cause damage to the cells, resulting in the cells' nutritional defects and non–infectious disease of vertebrates and invertebrates.

Broadly defined, an antioxidant is a compound that inhibits...
or delays the oxidation of substrates even if the compound is present in a significantly lower concentration than the oxidized substrate[3]. The scavenging of reactive oxygen species (ROS) is one of possible mechanism of action. Others include the prevention of ROS formation by metal binding or enzyme inhibition. Chain breaking antioxidants prevent damage by interfering with the free radical propagation cascades. The antioxidant compounds can be recycled in the cell or irreversibly damaged, but their oxidation products are less harmful or can be further converted to harmless substances[4]. At the cellular and organism level the antioxidant actions are provided by numerous enzymes, ascorbic acid, uric acid glutathione, tocopherols and several others. Many compounds are of antioxidant activity in addition to their specialized physiological function[5].

ROS are continuously produced during normal physiologic events, and removed by antioxidant defense mechanisms[6]. There is a balance between ROS and antioxidant system in organisms. In unfavorable condition, ROS are overproduced, resulting in lipid peroxidation and oxidative stress[7]. The imbalance between ROS and antioxidant defense mechanisms leads to oxidative modification in cellular membrane or intracellular molecules. Various endogenous antioxidant defense mechanisms play an important role in the elimination of ROS and lipid peroxidation, and protect the cells against toxic effects of ROS and lipid peroxidation[8]. Therefore, the exploration and utilization of more effective antioxidant compounds from natural sources are desired.

The antioxidant activity of secondary metabolites has also been widely established in in vitro systems and involves several of the above mentioned mechanisms of action. Some antioxidant compounds are extracted easily from available sources, such as marine resources, agricultural and horticultural crops (fish meal, cephalopods, seaweeds, alga, spirulina, maize, buckwheat, grapevine, carrots, beetroot, citrus and tea leaves, etc)[6,8]. Pharmaceutical industries produced many synthetic antioxidants such as butylated hydroxytoluene, butylated hydroxyanisole, tert–butylhydroquinone and propyl gallate to inhibit peroxidation processes[9]. However, the use of these synthetic antioxidants must be strictly controlled due to potential health issues[10].

Marine sponges are known to be important sources of novel marine natural products. Sponge–associated microorganisms represent a treasure house of biodiversity for the discovery of marine natural products with biotechnological potential. A total of 18 Dysidea species have been analyzed to date, more than 400 originate from about thirty as yet un–described Dysidea species. Increasing importance of sponge’s species diversity is reflected in the diversity of produced secondary metabolites in recent times.

Metabolites are derived through fermentation and purified by series of chromatography techniques and characterized for antioxidant properties by in vitro analysis. The pyrrole (which contains pyrrole ring containing metabolites derived from sponges have shown activity as growth inhibitors of various tumor cell lines, in particular against the human prostate cancer cell line LnCaP, larvicidal activity and inhibits bacterial fish pathogens and clinical pathogens. Hence, natural antioxidants are safe alternatives to synthetic products for use in the food industry. Therefore, the natural sources have been recognized as safe and effective antioxidants in the context of their efficiency and non–toxicity. Earlier, the sponges were collected at various depths in Agatti Island, Lakshadweep archipelago. The Pyrrol[1,2–a]pyrazine–1,4–dione, hexahydro– (C,H,N,O) was separated from the bacteria by standard method and it was published already. The present study is aimed to investigate the antioxidant property of purified bioactive compound from sponge associated bacteria Bacillus sp.

2. Materials and methods

2.1. Total antioxidant activity

Total antioxidant activity of the active compound Pyrrol[1,2–a]pyrazine–1,4–dione, hexahydro– (20, 40, 60, 80, 100 μg/mL) and ascorbic acid was determined according to the method of Foon et al[11]. Briefly, 0.3 mL of sample was mixed with 3.0 mL of reagent solution (0.6 mol/L sulphuric acid, 28 mmol/L sodium phosphate and 4 mmol/L L ammonium molybdate). Reaction mixture was incubated at 95 °C for 90 min under water bath. Absorbance of all the sample mixtures was measured at 695 nm. Ascorbic acid (20, 40, 60, 80, 100 μg/mL) was used as positive control.

2.2. a,α–diphenyl–α–picrylhydrazyl (DPPH) radical scavenging

Antioxidant potential of the active compound was determined on the basis of its scavenging activity of the stable DPPH free radical based on the method of Zakaria et al[12], where 100 μL of various concentrations of the active compound (25, 50, 75 and 100 μg/mL) were mixed with 290 μL DPPH solution (120 μmol/L) in ethyl acetate and incubated in darkness at 37 °C for 30 min. Absorbance was recorded at 517 nm. Inhibition of free radical by DPPH in percentage of inhibition (%) was calculated with the following equation:

\[\text{Percentage of Inhibition} \% = \left(\frac{A_{\text{blank}} - A_{\text{sample}}}{A_{\text{blank}}} \right) \times 100 \]

where, \(A_{\text{blank}} \) is the absorbance of the control reaction and \(A_{\text{sample}} \) is the absorbance of the test compound. The values of inhibition were calculated for the various concentrations of the active compound obtained from potential Bacillus species. Ascorbic acid (25, 50, 75 and 100 μg/mL) were used as positive controls and all the tests were carried out in triplicate. The IC₅₀ concentration (providing with 50% inhibition) values were calculated by using the dose inhibition curve in linear range by plotting the compound concentration versus the corresponding scavenging effect.
2.3. Scavenging of hydrogen peroxide (H\textsubscript{2}O\textsubscript{2})

Ability of the active compound and standard (ascorbic acid) to scavenge H\textsubscript{2}O\textsubscript{2} was determined according to the method of Gulcin et al[13]. Briefly, 40 mmol/L H\textsubscript{2}O\textsubscript{2} was prepared in phosphate buffer (pH 7.4) and the H\textsubscript{2}O\textsubscript{2} concentration was determined using spectrophotometer by measuring the absorption with the extinction coefficient for H\textsubscript{2}O\textsubscript{2} of 81 L/mol.cm. The active compound (25, 50, 75 and 100 \(\mu\)g/mL) and standard (25, 50, 75 and 100 \(\mu\)g/mL) was added to 0.6 mL of 40 mmol/L H\textsubscript{2}O\textsubscript{2} solution and the absorbance was read at 230 nm after 10 min incubation against a blank solution containing phosphate buffer without H\textsubscript{2}O\textsubscript{2}. The percentage of scavenging of H\textsubscript{2}O\textsubscript{2} was calculated as follows:

\[
\text{Scavenging effect (\%)} = \frac{A_{\text{cont}} - A_{\text{test}}}{A_{\text{cont}}} \times 100
\]

At 25 °C for 150 min. After incubation, 0.5 mL of the reaction mixture was mixed with 1 mL of sulfanilic acid reagent (0.33% sulfanilic acid in 20% glacial acetic acid) and allowed to stand for 5 min for complete diazotization. Then, 1 mL of naphthyl ethylene diamine dihydrochloride (0.1%) was added with the solution mixed. The mixture was allowed to stand for 30 min at 25 °C. A pink coloured chromophore developed to red at 540 nm against the corresponding blank solution. Ascorbic acid (25, 50, 75 and 100 \(\mu\)g/mL) was used as positive control. The NO scavenging activity of the purified compound was reported as % of scavenging and IC\textsubscript{50} was calculated as above.

2.4. Nitric oxide radical (NO) scavenging activity

NO generated from sodium nitroprusside in aqueous solution at physiological pH interacted with oxygen to produce nitrite ions, which were measured by the Griess reaction[14]. About 3 mL of the reaction mixture containing 10 mmol/L sodium nitroprusside and the active compound (25, 50, 75 and 100 \(\mu\)g/mL) in ethyl acetate were incubated at 25 °C for 150 min. After incubation, 0.5 mL of the reaction mixture was mixed with 1 mL of sulfanilic acid reagent (0.33% sulfanilic acid in 20% glacial acetic acid) and allowed to stand for 5 min for complete diazotization. Then, 1 mL of naphthyl ethylene diamine dihydrochloride (0.1%) was added with the solution mixed. Then, 1 mL of naphthyl ethylene diamine dihydrochloride (0.1%) was added with the solution mixed. The mixture was allowed to stand for 30 min at 25 °C. A pink coloured chromophore developed to red at 540 nm against the corresponding blank solution. Ascorbic acid (25, 50, 75 and 100 \(\mu\)g/mL) was used as positive control. The NO scavenging activity of the purified compound was reported as % of scavenging and IC\textsubscript{50} was calculated as above.

2.5. Total reducing power

Total reducing capacity of active compound and standard (ascorbic acid) was determined according to the method of Prochazkova et al[15]. The purified compound (20, 40, 60, 80 and 100 \(\mu\)g/mL) in ethyl acetate (0.2 mol/L, pH 6.6) was mixed with 1% potassium ferric cyanide and the mixture was incubated at 50 °C for 20 min; 2.5 mL of 10% trichloroacetic acid was added to the mixture and centrifuged at 5000 r/min for 10 min. The upper layer of solution (2.5 mL) was mixed with 2.5 mL of distilled water and 0.5 mL of 0.1% FeCl\textsubscript{3} and the colour developed was measured at 700 nm. Ascorbic acid (20, 40, 60, 80 and 100 \(\mu\)g/mL) was used as positive control. The higher the absorbance of the reaction mixture was, the greater the reducing power was.

3. Results

3.1. Total antioxidant activity

Total antioxidant activity was calculated from the formation of green phosphate complex at acidic pH, which was measured using spectrophotometer at 695 nm. Interaction of free radicals with the active compound and standard ascorbic acid terminated the free radical cations and the results have been expressed in ascorbic acid equivalent (\(\mu\)g/mL). Total antioxidant value of the active compound at 20, 40, 60, 80 and 100 \(\mu\)g/mL was estimated at (0.60±0.08), (1.01±0.01), (1.60±0.01), (2.07±0.01) and (2.62±0.01) absorbance respectively at 695 nm (Figure 1).

![Figure 1. Total antioxidant activity of purified compound of Bacillus species and standard ascorbic acid.](image1)

3.2. DPPH free radical scavenging activity

DPPH scavenging activity of the active compound at 25, 50, 75 and 100 \(\mu\)g/mL was found to be (20.83±0.34)%, (42.66±0.36)%, (63.45±0.37)% and (85.43±0.38)% respectively (Figure 2). IC\textsubscript{50} of the active compound was 15.025 \(\mu\)g/mL, indicating its higher inhibiting and potential activity against free radicals than others. The ability of active compound to scavenge DPPH could also reflect its ability to inhibit the formation of free radicals. A linear increase in free radical scavenging ability of purified compound was observed with its increasing concentration.

![Figure 2. DPPH radical-scavenging activity of purified compound of Bacillus species and standard ascorbic acid.](image2)
3.3. \(\text{H}_2\text{O}_2 \) scavenging activity

Ability of the purified compound to scavenge \(\text{H}_2\text{O}_2 \) was determined and compared with that of ascorbic acid as standards (Figure 3). Active compound exhibited 15.96%, 32.64%, 45.75% and 63.27% scavenging effect on \(\text{H}_2\text{O}_2 \) at 25, 50, 75 and 100 \(\mu\text{g/mL} \) concentrations respectively. IC\(_{50}\) of the \(\text{H}_2\text{O}_2 \) scavenging activity of the compound was 23.73 \(\mu\text{g/mL} \). The active compound was capable of scavenging \(\text{H}_2\text{O}_2 \) in an amount dependent manner.

![Figure 3. \(\text{H}_2\text{O}_2 \) scavenging activity of purified compound of Bacillus species and standard ascorbic acid.](image)

3.4. \(\text{NO} \) scavenging activity

Active compound decreased the amount of nitrite generated from the decomposition of sodium nitroprusside in vitro. \(\text{NO} \) scavenging ability of the active compound at 25, 50, 75 and 100 \(\mu\text{g/mL} \) was (35.26±0.19)%,(38.17±0.20)%,(40.67±0.20)% and (41.81±0.23)% respectively and it was lower than that of ascorbic acid (Figure 4). IC\(_{50}\) of \(\text{NO} \) scavenging activity of the active compound was 41.70 \(\mu\text{g/mL} \).

![Figure 4. \(\text{NO} \) radical scavenging effect of purified compound of Bacillus species and standard ascorbic acid.](image)

3.5. Total reducing power

Reducing activity of the active compound increased with increasing concentration of the samples (Figure 5). Reducing power of the active compound was weaker than that of the standard compound (ascorbic acid). The reducing capacity of a compound from Fe\(^{3+}\)/ferric cyanide complex to the ferrous form may serve as a significant indicator of its antioxidant capacity. A linear increase in reducing power with increasing concentration of active compound was observed. Purified ethyl acetate compound showed significant reducing power compared to standard ascorbic acid.

![Figure 5. Total reducing power of purified compound of Bacillus species and standard ascorbic acid.](image)

4. Discussion

The natural resources of both potential and established antioxidants are vast. Some antioxidant compounds are extracted from easily available sources, such as marine resources, agricultural and horticultural crops (fish meal, cephalopods, seaweeds, algae, spirulina, maize, buckwheat, grapevine, carrots, beetroot, citrus, tea leaves, etc.), or medicinal plants. The trend started find out bioactive molecules produced by bacteria, fungi, algae and many others[16]. The complex and rather expensive in vitro technology needed for products may be obtained from abundant and cheap sources. The necessary conditions that make using biotechnological methods for the production of secondary metabolites through bacteria economically viable have been firmly established: high economic value, sufficient production can be made, long-lasting availability and some natural sources of antioxidant (rare/endangered/overexploited species), and difficult cultivation[17]. The media composition has to be optimized for both an intensive biomass increase and the production of the desired metabolite.

The present study revealed total antioxidant activity of active compound and the standard ascorbic acid (20, 40, 60, 80, 100 \(\mu\text{g/mL} \)) at 695 nm. The active compound exhibited effective antioxidant activity at all concentrations. At 100 \(\mu\text{g/mL} \), the total antioxidant ability of active molecule from sponge isolate on free radicals was similar to that of
standard. The antioxidant activity of purified ethyl acetate compound increased with increasing concentration, which was similar to that of standard ascorbic acid. Our results are in accordance with the report of Kumaqi et al.[18]. A compound PC-766 B isolated from marine actinomycetes Nocardia brasiliensis exhibited dose dependent antioxidant activity. Takamatsu et al.[19] reported that Cymopo and avrainvilleol, a meromonomerpeptide compound isolated from marine sponges, exhibited antioxidant activity with the IC50 value of 4.0-6.1 μmol/L.

In this study, spectrum value gives the reductive capability of purified compound compared with ascorbic acid. A linear increase in reducing power with increasing concentration of active compound was observed, and the reducing power of the active compound was weaker than that of ascorbic acid. The purified compound was capable of scavenging H2O2 in an amount dependent manner. The scavenging activity of purified compound with standard ascorbic acid ([25–100] μg/mL) shows purified compound (100 μg/mL) exhibits a IC50 of scavenging activity of 23.73 μg/mL. The prior study also reported that sponge extract superoxide scavenging inhibition and H2O2 induced DNA strand scission protection was observed with the compound strobilin–felixinin, sesterterpene isolated from marine sponges[10].

Other examples of recently reported antioxidant activities of in vitro cultured, polyphenol rich plants include: Curcuma longa mass propagation on a thin film rocker system where significant and clone dependent DPPH scavenging were noted[20]; Cistanche deserticola cell suspensions producing antioxidant phenylethanoid glycosides were also assayed by a DPPH test[21]; Stevia rebaudiana, the herbal sweetener, callus extracted with water and methanol had higher antioxidant activity than the leaves of field grown plants, which correlated with the higher levels of flavonoids and total polyphenols[22].

The present study observed total phenolic content of cultured, polyphenol rich plants include: Curcuma longa mass propagation on a thin film rocker system where significant and clone dependent DPPH scavenging were noted[20]; Cistanche deserticola cell suspensions producing antioxidant phenylethanoid glycosides were also assayed by a DPPH test[21]; Stevia rebaudiana, the herbal sweetener, callus extracted with water and methanol had higher antioxidant activity than the leaves of field grown plants, which correlated with the higher levels of flavonoids and total polyphenols[22].

The present study observed total phenolic content of the purified compound obtained by using Folin–cioacaltiu reagent and the results are expressed as ascorbic acid. The phenol content of purified compound (100 μg/mL) was observed. A linear increase in free radical scavenging ability of purified compound was observed with increasing concentration I(%) value 15.025 mg/mL. DPPH radical scavenging by antioxidants has been attributed to their hydrogen donating ability of –OH and –CH3 groups. The activity of the compounds corresponds to the number of hydrogen atoms available for donation by hydroxyl groups[23]. The DPPH method is based on the reduction of DPPH, a stable free radical. With the odd electron, the free radical DPPH gives a maximum absorption at 517 nm by visible spectroscopy (purple color). As the odd electron of the radical becomes paired off in the presence of a hydrogen donor, e.g., a free radical scavenging antioxidant, the absorption strength is decreased, and the resulting de-colorization (yellow color) is stoichiometric with respect to the number of electrons captured[24]. This reaction has been widely used to investigate the free radical scavenging ability of pure compounds or act as hydrogen donors.

The present result suggested that the compound “Pyrrol” and the structure Pyrrolo[1,2–a]pyrazine–1,4–dione, hexahydro– isolated from sponge associated Bacillus species could be beneficial to help reduce oxidative damages in cell induced by oxygen radicals, and effectively used as potential antioxidants. The antioxidant activity of Bacillus species compound may be attributed to connecting radicals and the radical chain reaction. The antioxidant mechanisms of this purified compound are complex and required further investigation.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors are grateful to authorities of Annamalai University for providing facilities and the Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Government of India for financial support.

Comments

Background

There is growing interest in analyzing compounds from natural sources with potential antioxidant and anti-inflammatory properties. The present study aimed to investigate the antioxidant capabilities of a purified and bioactive compound isolated from the bacteria Bacillus sp. associated to a sponge.

Research frontiers

The present research work evaluates the antioxidant activity of Pyrrolo[1,2–a]pyrazine–1,4–dione, hexahydro–extracted from the bacteria Bacillus sp. associated to the sponge Dysidea fragilis. These antioxidant capabilities were assessed by estimating different biochemical parameters such as total antioxidant activity, radical and hydrogen peroxide scavenging and total reducing power.

Related reports

Many natural compounds obtained from aquatic organisms
have demonstrated an antioxidant capability that could be useful against stressful situations. Between these compounds it can be found terpenes or polyphenols.

Innovations and breakthroughs

The present results evidenced that Pyrrolo[1,2-alpyrazine–1,4-dione, hexahydro–isolated from a sponge associated Bacillus sp. has in vitro antioxidant properties that could be beneficial to help reduce oxidative damages in cells.

Applications

This scientific study suggests the potential role of this compound as an adjuvant in therapies against several diseases in which oxidative stress could be implicated. However, the antioxidant mechanisms of this purified compound are complex and required further investigation.

Peer review

The present manuscript is interesting and shows the potential antioxidant effects of a new compound isolated from a Bacillus sp.

References

[1] Suguna A, Bragadeeswaran S, Nataraian E, Mohanraj M. Studies on antioxidant properties of starfish Luidia maculata (Muller & Troschel, 1842) off Parangipettai, Southeast coast of India. J Coast Life Med 2014; 26(6): 466–470.

[2] Ngo DH, Wijesekara I, Vo TS, Ta QV, Kim SK. Marine foodderived functional ingredients as potential antioxidants in the food industry: an overview. Food Res Int 2011; 44(2): 523–529.

[3] Ngo DH, Vo TS, Ngo DN, Wijesekara I, Kim SK. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Int J Biol Macromol 2012; 51(4): 378–383.

[4] Sreejameole KL, Radhakrishnan CK. Antioxidant and cytotoxic activities of ethyl acetate extract of the Indian green mussel Perna viridis. Asian J Pharm Clin Res 2010; 3(6): 197–201.

[5] Devi GK, Manivannan K, Thirumaran G, Rajathi FA, Anantharaman P. In vitro antioxidant activities of selected seaweeds from Southeast coast of India. Asian Pac J Trop Med 2011; 4: 205–211.

[6] Park YS, Jung ST, Kang SG, Heo BG, Arancibia-Avila P, Toledo F, et al. Antioxidants and proteins in ethylene–treated kiwifruits. Food Chem 2008; 107: 640–648.

[7] Raptaa P, Polovkaa M, Zaliberaa M, Breierova E, Zitnanovac I, Marovad I, et al. Scavenging and antioxidant properties of compounds synthesized by carotenogenic yeasts stressed by heavy metals–EPR spin trapping study. Biophys Chem 2005; 116: 1–9.

[8] Matkowski A. Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 2008; 26: 548–560.

[9] Aneiros A, Garateix A. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 803: 41–53.

[10] Cousins M, Adelberg J, Chen F, Rieck J. Antioxidant capacity of fresh and dried rhizomes from four clones of turmeric (Curcuma longa L.) grown in vitro. Ind Crops Prod 2007; 25: 129–135.

[11] Foon TS, Ai LA, Kuppusamy P, Yusoff MM, Govindan N. Studies on in vitro antioxidant activity of marine edible seaweeds from the east coastal region of Peninsular Malaysia using different extraction methods. J Coast Life Med 2013; 1(3): 193–198.

[12] Zakaria NA, Ibrahim D, Sulaiman SF, Supardy NA. Assessment of antioxidant activity, total phenolic content and in vitro toxicity of Malaysia red seaweed, Acanthophora spicifera. J Chem Pharm Res 2011; 3(3): 182–191.

[13] Gulein I, Oktay M, Kirecci E, Kufrevioglu OI. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seeds extracts. Food Chem 2003; 83: 371–382.

[14] Prabhu K, Bragadeeswaran S. Antibacterial activity of starfish Scleraster equestris from Southeast Coast of India. J Coast Life Med 2013; 1(3): 210–216.

[15] Prochazkova D, Bousova I, Wilhelmina V. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011; 82(4): 513–523.

[16] Dhayanithi NB, Kumar TT, Balasubramanian T, Tissera K. A study on the effect of using mangrove leaf extracts as a feed additive in the progress of bacterial infections in marine ornamental fish. J Coast Life Med 2013; 1(3): 217–224.

[17] Park SY, Lim HK, Lee S, Cho SK, Park S, Cho M. Biological effects of various solvent fractions derived from Jeju Island red sea cucumber (Stichopus japonicus). J Korean Soc Appl Biol Chem 2011; 54(5): 718–724.

[18] Kumagai K, Fukui A, Tanaka S, Ikemoto M, Moriuchi K, Nabeshima S. PC–766B, a new macrolide antibiotic produced by Nocardia brasiliensis. II. Isolation, physico–chemical properties and structures elucidation. J Antibiot (Tokyo) 1993; 46: 1139–1144.

[19] Takamatsu S, Hodges TW, Rajhbandari I, Gerwick WH, Hamann MT, Nagle DG. Marine natural products as novel antioxidant prototypes. J Nat Prod 2003; 66: 605–608.

[20] Jiang YH, Ryu SH, Ahn EY, You S, Lee BJ, Jung JH, et al. Antioxidant activity of (8E,13Z, 20Z)–strobinin/(7E,13Z, 20Z)–felixin from a marine sponge Psammocinia sp. Nat Prod Sci 2004; 10: 272–276.

[21] Cheng XY, Wei T, Guo B, Ni W, Liu CZ. Cistanche deserticola cell suspension cultures: phenylethanoid glycosides biosynthesis and antioxidant activity. Process Biochem 2005; 40: 3119–3124.

[22] Tadhani MB, Patel VH, Subhash R. In vitro antioxidant activities of Sterea rebaudiana leaves and callus. J Food Compost Anal 2007; 20: 323–329.

[23] Shimada K, Fujikawa K, Yahara K, Nukamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 1992; 40: 945–948.

[24] Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181: 1199–1200.