Ultralong dephasing times in solid-state spin ensembles via quantum control

Erik Bauch,1,* Connor A. Hart,1,* Jennifer M. Schloss,1,2,3 Matthew J. Turner,1,3 John F. Barry,1,4 Pauli Kehayias,1,5 Swati Singh,6 and Ronald L. Walsworth1,3,5,†

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
4Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420, USA
5Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
6Williams College, Department of Physics, 33 Campus Drive, Williamstown, Massachusetts 01267

Quantum spin dephasing is caused by inhomogeneous coupling to the environment, with resulting limits to the measurement time and precision of spin-based sensors. The effects of spin dephasing can be especially pernicious for dense ensembles of electronic spins in the solid-state, such as nitrogen-vacancy (NV) color centers in diamond. We report the use of two complementary techniques, spin bath driving, and double quantum coherence magnetometry, to enhance the inhomogeneous spin dephasing time (T_2^*) for NV ensembles by more than an order of magnitude. In combination, these quantum control techniques (i) eliminate the effects of the dominant NV spin ensemble dephasing mechanisms, including crystal strain gradients and dipolar interactions with paramagnetic bath spins, and (ii) increase the effective NV gyromagnetic ratio by a factor of two. Applied independently, spin bath driving and double quantum coherence magnetometry elucidate the sources of spin ensemble dephasing over a wide range of NV and bath spin concentrations. These results demonstrate the longest reported T_2^* in a solid-state electronic spin ensemble at room temperature, and outline a path towards NV-diamond DC magnetometers with broadband femtotesla sensitivity.

INTRODUCTION

Solid-state electronic spins, including defects in silicon carbide [1–5], phosphorus spins in silicon [6, 7], and silicon-vacancy [3, 8, 9] and nitrogen-vacancy (NV) centers [10] in diamond, have garnered increasing relevance for quantum science and sensing experiments. In particular, NV centers in diamond have been extensively studied and deployed in diverse applications facilitated by long NV spin coherence times [11, 12] at ambient temperature, as well as optical preparation and readout of NV spin states [10]. Many applications utilize dense NV ensembles for high-sensitivity DC magnetic field sensing [13, 14] and wide-field DC magnetic imaging [15–19], including measurements of single-neuron action potentials [13], paleomagnetism [10, 20], and current flow in graphene [18].

For NV ensembles, the DC magnetic field sensitivity is typically limited by dephasing of the NV sensor spins. In such instances, spin interactions with an inhomogeneous environment (see Fig. 1a) limit the experimental sensing time to the spin dephasing time $T_2^* \lesssim 1 \mu s$ [21–24]. Hahn echo and dynamical decoupling protocols can restore the NV ensemble phase coherence by isolating the NV sensor spins from environmental noise and, in principle, permit sensing times approaching the spin lattice relaxation ($T_1 \sim$ ms) [25–27]. However, these protocols restrict sensing to AC signals within a narrow bandwidth. For this reason, the development of high sensitivity, broadband magnetometers requires new approaches to extend T_2^* for NV ensembles while retaining the ability to measure DC signals.

To date, spin dephasing mechanisms for NV ensembles have not been systematically studied, as spatially inhomogeneous effects do not lead to single NV spin dephasing, which has traditionally been the focus of the NV-diamond literature [11, 28–30]. Here, we characterize and control the dominant NV spin ensemble dephasing mechanisms by combining two quantum control techniques, double quantum (DQ) coherence magnetometry [29, 30] and spin bath driving [31, 32]. We apply these techniques to three isotopically engineered 13C samples with widely varying nitrogen and NV concentrations. In combination, we show that these quantum control techniques can extend the NV spin ensemble T_2^* by more than an order of magnitude.

Several inhomogeneous spectral broadening mechanisms can contribute to NV spin ensemble dephasing in bulk diamond. First, the formation of negatively-charged NV$^-$ centers (with electronic spin $S = 1$) requires the incorporation of nitrogen into the diamond lattice. As a result, paramagnetic substitutional nitrogen impurities (P1 centers, $S = 1/2$) [33–35] typically persist at densities similar to or exceeding the NV concentration, leading to a ‘spin bath’ that couples to the NV spins via incoherent dipolar interactions, with a magnitude that can vary significantly across the NV ensemble. Second, 13C nuclei ($I = 1/2$) can be a considerable source of NV spin dephasing in diamonds with natural isotopic abundance (1.07%), with the magnitude of this effect varying spatially due to the random location of 13C within the diamond lattice [36, 37]. Such NV spin ensemble dephasing, however, can be greatly reduced through isotope engineering of the host diamond material [11].

* these authors contributed equally to this work
† rwalsworth@cfa.harvard.edu
Third, strain is well-known to affect the diamond crystal and the zero-magnetic-field splitting between NV spin states [38, 39]. The exact contribution of strain gradients to NV spin ensemble dephasing has not been quantified rigorously because strain varies throughout and between samples, and is in part dependent upon the substrate used for diamond growth [40, 41]. Furthermore, the interrogation of spatially large NV ensembles requires the design of uniform magnetic bias fields to minimize magnetic field gradients across the detection volume.

We assume that the relevant NV spin ensemble dephasing mechanisms are independent and can be summarized by Eqn. 1,

$$\frac{1}{T_2} \approx \frac{1}{T^2_{2}\{\text{NV-13C}\}} + \frac{1}{T^2_{2}\{\text{NV-N}\}} + \frac{1}{T^2_{2}\{\text{other spins}\}} + \frac{1}{T^2_{2}\{\text{strain grad.}\}} + \frac{1}{T^2_{2}\{\text{B-field grad.}\}} + \frac{1}{T^2_{2}\{\text{temp. fluctuations}\}} + \ldots,$$

(1)

where $T^2_{2}\{\cdot\}$ describes the T^2_{2}-limit imposed by a particular dephasing mechanism, and the "≈"-symbol indicates that individual dephasing rates add approximately linearly.

DQ magnetometry employs the $\{-1,+1\}$ sub-basis of the NV spin–1 system for quantum sensing. In this basis, noise sources that shift the $|±1\rangle$ states in common mode (e.g., strain inhomogeneities and spectrum drifts due to temperature fluctuations of the host diamond; fourth and sixth term in Eqn. 1, respectively) are suppressed by probing the energy difference between the $|+1\rangle$ and $|-1\rangle$ spin states. In addition, the NV DQ spin coherence accumulates phase due to an external magnetic field at twice the rate of traditional single quantum (SQ) coherence magnetometry, for which the $|0\rangle$ and $|+1\rangle$ (or $|-1\rangle$) spin states are probed. DQ magnetometry provides enhanced susceptibility to target magnetic field signals while also making the spin coherence twice as sensitive to magnetic noise, including interactions with the paramagnetic spin bath. We therefore use resonant radiofrequency control to decouple the bath spins from the NV sensors (second and third term in Eqn. 1). By employing both DQ magnetometry and spin bath driving with isotopically enriched samples, we elucidate and effectively eliminate the dominant sources of NV spin ensemble dephasing, realizing up to a $16\times$ extension of the ensemble T^2_{2} in diamond. These techniques are also compatible with Ramsey-based DC sensing, and we find up to an $8\times$ improvement in DC magnetic field sensitivity. Our results should enable broadband DC sensing using NV spin ensembles with spin interrogation times approaching those used in AC sensing; and may aid in the fabrication of optimized samples for a wide range of solid-state sensor species.

Figure 1. NV ensemble spectroscopy of diamond spin bath. (a) The inhomogeneously broadened electron spin resonance (ESR) linewidth of nitrogen-vacancy (NV) ensembles is a complex function of the local environment within the diamond sample, which includes a diverse bath of electronic and nuclear spins. Inset: Schematics of NV ensemble ESR spectra in the single quantum and double quantum bases, and for double quantum with spin-bath drive. (b) Spin-1 ground state of the NV center. (c) Imaging of the longitudinal strain component M_x of one NV orientation class across a 1-mm2 field of view for Sample B. An optical microscope image of the diamond surface (left) is included for reference with a red box outlining the field of view shown in the NV strain image. (d) NV double-electron-electron resonance (DEER) spectrum of Sample B, showing six nitrogen groups (1–6) attributed to 14N electronic spins with an external field $B_0 = 8.5$ mT aligned along a [111]-crystallographic axis (see main text). Linewidths are Fourier-broadened. The peaks labeled i and ii correspond to dipole-forbidden transitions of the 14N electronic spins ($\Delta m_i \neq 0$, see Suppl. XI). The simulated spectrum using the full nitrogen Hamiltonian is shown in red, with linewidth and amplitudes chosen to reflect the experimental data.

Double Quantum Magnetometry

The enhanced sensitivity to magnetic fields and insensitivity to common-mode noise sources in this DQ basis can be understood by considering the full ground-state Hamiltonian for NV centers, given by (neglecting the hyperfine interaction) [10],

$$H = D S_x^2 + \frac{\Omega_{NV}}{2\pi} B \cdot S + M_x S_x^2 + M_y (S_y S_x + S_z S_y) + M_z (S_z S_x - S_x S_z),$$

(2)

where $D \approx 2.87$ GHz is the zero-field spin-state splitting, $S = \{S_x, S_y, S_z\}$ are the dimensionless spin-1 operators,
We measured T_2^* values in the SQ and DQ bases, denoted $T_{2,SQ}^*$ and $T_{2,DQ}^*$ from here on, by performing a single- or two-tone $\pi/2 - \tau - \pi/2$ Ramsey sequence, respectively (see inset Fig. 2). In both instances, the ob-
Table I. Characteristics of Samples A, B, and C. The estimated values $T_{2,DQ}^{\text{est}}$ are calculated using the contributions of 13C and nitrogen spins as described in the main text. Reasonable agreement is found between the estimated $T_{2,DQ}^{\text{est}}$ and twice the measured $T_{2,DQ}^{\text{meas}}$ for consistent with the twice faster dephasing in the DQ basis. Values listed with a \sim symbol are order-of-magnitude estimates. For all samples, $[\text{NV}] \ll [\text{N}]$ and NV contributions to T_2^* can be neglected ($1 \text{ppm} = 1.76 \times 10^{17} \text{cm}^{-3}$).

Sample	[N]	^{13}C	$[\text{NV}]$	T_2^{meas}	$T_{2,\text{SQ}}^{\text{meas}}$	$T_{2,\text{DQ}}^{\text{meas}}$	$T_{2,\text{NV}}^{\text{meas}}$	$T_{2,\text{NV}}^{\text{meas}}-13\text{C}$	$T_{2,\text{NV}}^{\text{meas}}-(13\text{C}+\text{N})$	dM_z^{meas}/dL
A	$\lesssim 0.05$	0.01	3 $\times 10^{12}$	$\gtrless 630$	5 $-$ 12	34(2)	350	100	78	n/a
B	0.75	0.01	$\sim 10^{14}$	250 $-$ 300	1 $-$ 10	6.0(5)	23	100	19	0.0028
C	10	0.05	6 $\times 10^{15}$	15 $-$ 18	0.3 $-$ 1.2	0.60(2)	2	20	2	n/a

Strain-dominated dephasing (Sample A: low nitrogen density regime)

Experiments on Sample A ($[\text{N}] \lesssim 0.05 \text{ppm}$, ^{14}N) probed the low nitrogen density regime. In different regions of this diamond, the measured SQ Ramsey dephasing time varies between $T_{2,\text{SQ}}^{\text{meas}} \approx 5$ $-$ 12 μs, with $1 < p < 2$. Strikingly, even the longest measured $T_{2,\text{SQ}}^{\text{meas}}$ is $\sim 30 \times$ shorter than the calculated $T_{2,\text{SQ}}^{\text{est}}$ given by the nitrogen concentration of the sample ($\gtrsim 350 \mu$s, see Table I) and is approximately $10 \times$ smaller than the expected SQ limit due to 0.01% ^{13}C spins ($\approx 100 \mu$s). This discrepancy indicates that dipolar broadening due to paramagnetic spins is not the dominant NV dephasing mechanism. Indeed, the spatial variation in $T_{2,\text{SQ}}^{\text{meas}}$ and low concentration of nitrogen and ^{13}C spins suggests that crystal lattice strain inhomogeneity is the main source of NV spin ensemble dephasing in this sample. For the measured NV ensemble volume ($\sim 10^4 \mu$m3) and the reference strain gradient (Fig. 1c), we estimate a strain gradient limited dephasing time of $\sim 6 \mu$s, in reasonable agreement with the observed $T_{2,\text{SQ}}^{\text{meas}}$. Measurements in the DQ basis at moderate bias magnetic fields are to first order strain-insensitive, and therefore provide a means to eliminate the dominant contribution of strain to NV spin ensemble dephasing. Fig. 2 shows data for T_2^* in both the SQ and DQ bases for an example region of Sample A with SQ dephasing time $T_{2,\text{SQ}}^{\text{meas}} = 5.8(2) \mu$s and $p = 1.7(2)$. For these measurements, we applied a small 2.2mT bias field parallel to one NV axis (misalignment angle $< 3^\circ$) to lift the $|\pm 1\rangle$ degeneracy, and optimized the magnet geometry to reduce magnetic field gradients over the sensing volume.
(see Suppl. VI). In the DQ basis, we find $T_{2,\text{DQ}}^\ast = 34(2)\mu s$ with $p = 1.0(1)$, which is a $\sim 6\times$ improvement over the measured T_2^\ast in the SQ basis. We observed similar T_2^\ast improvements in the DQ basis in other regions of this diamond. Our results suggest that in the low nitrogen density regime, dipolar interactions with the 13C nuclear spin bath are the primary decoherence mechanism when DQ basis measurements are employed to remove strain and temperature effects. Specifically, the measured $T_{2,\text{DQ}}^\ast$ and p values in Sample A are consistent with the combined effect of NV dipolar interactions with (i) the 0.01% concentration of 13C nuclear spins ($T_2^\ast = (2 \pm 50)\mu s$) and (ii) residual nitrogen spins $[N] \sim 0.05$ ppm; with an estimated net effect of $T_{2,\text{DQ}}^\ast \sim 39\mu s$. Diamond samples with greater isotopic purity (12C$> 99.99\%$) would likely yield further enhancements in $T_{2,\text{DQ}}^\ast$.

Strain- and dipolar-dominated dephasing (Sample B: intermediate nitrogen density regime)

Although Sample B ($[N] = 0.75$ ppm, 14N) contains more than an order of magnitude higher nitrogen spin concentration than Sample A ($[N] \lesssim 0.05$ ppm), we observed SQ Ramsey dephasing times $T_{2,\text{SQ}}^\ast \approx 1 \sim 10\mu s$ in different regions of Sample B, which are similar to the results from Sample A. We conclude that strain inhomogeneities are also a significant contributor to NV spin ensemble dephasing in Sample B. Comparative measurements of T_2^\ast in both the SQ and DQ bases yield a more moderate increase in $T_{2,\text{DQ}}^\ast$ for Sample B than for Sample A. Example Ramsey measurements of Sample B are displayed in Fig. 3, showing $T_{2,\text{SQ}}^\ast = 1.80(6)\mu s$ in the SQ basis increasing to $T_{2,\text{DQ}}^\ast = 6.9(5)\mu s$ in the DQ basis, a $\sim 4\times$ extension. The observed $T_{2,\text{DQ}}^\ast$ in Sample B approaches the expected limit set by dipolar coupling of NV spins to residual nitrogen spins in the diamond ($T_{2,\text{N-NV}}^\ast / 2 = 12\mu s$), but is still well below the expected DQ limit due to 0.01% 13C nuclear spins ($\sim 50\mu s$).

Measuring NV Ramsey decay in both the SQ and DQ bases while driving the nitrogen spins, either via application of CW or pulsed RF fields [31, 32], is effective in revealing the electronic spin bath contribution to NV ensemble dephasing. With continuous drive fields of Rabi frequency $\Omega_N = 2\text{ MHz}$ applied to nitrogen spin resonances 1, 6, i, and ii (see Fig. 1d), we find that $T_{2,\text{SQ}+\text{Drive}}^\ast = 1.94(6)\mu s$, which only marginally exceeds $T_{2,\text{SQ}}^\ast = 1.80(6)\mu s$. This result is consistent with NV ensemble SQ dephasing being dominated by strain gradients in Sample B, rendering spin bath driving ineffective in the SQ basis. In contrast, DQ Ramsey measurements exhibit a significant additional increase in T_2^\ast when the bath drive is applied, improving from $T_{2,\text{DQ}}^\ast = 6.9(5)$ for $T_{2,\text{DQ}}^\ast$ to $T_{2,\text{DQ}+\text{Drive}}^\ast = 29.2(7)$ for $T_{2,\text{DQ}}^\ast$. This $\sim 16\times$ improvement over $T_{2,\text{SQ}}^\ast$ confirms that, for Sample B without spin bath drive, dipolar interactions with the nitrogen spin bath are the dominant mechanism of NV spin ensemble dephasing in the DQ basis. Note that the NV dephasing time for Sample B with DQ plus spin bath drive is only slightly below that for Sample A with DQ alone ($\sim 34\mu s$). We attribute this T_2^\ast limit in Sample B primarily to NV dipolar interactions with 0.01% 13C nuclear spins. There is also an additional small contribution from magnetic field gradients over the detection volume ($\sim 10^4\mu^3$) due to the four times larger applied bias field ($B_0 = 8.5\text{ mT}$), relative to Sample A, which was used in Sample B to resolve the nitrogen ESR spectral features (see Suppl. Table S3 and S4). We obtained similar extensions of T_2^\ast using pulsed driving of the nitrogen bath spins (see Suppl. X).

We also characterized the efficacy of CW spin bath driving for increasing T_2^\ast in both the SQ and DQ bases (see Fig. 4a). While $T_{2,\text{SQ}}^\ast$ remains approximately constant with varying Rabi drive frequency Ω_N, $T_{2,\text{DQ}}^\ast$ exhibits an initial rapid increase and saturates at $T_{2,\text{DQ}}^\ast = 27\mu s$ for $\Omega_N \gtrsim 1\text{ MHz}$ (only resonances 1, 6 are driven here). To explain the observed trend, we introduce a model that distinguishes between (i) NV spin ensemble dephasing due to nitrogen bath spins, which de-
pends upon bath drive strength Ω_N, and (ii) dephasing from drive-independent sources (including strain and 13C spins),

$$1/T_2^* = 1/T_{2,NV-N}(\Omega_N) + 1/T_{2,other}^*.$$

(4)

Taking the coherent dynamics of the bath drive into account (see Suppl. VIII), the data is well described by the functional form

$$1/T_{2,NV-N}(\Omega_N) = \Delta m \times \gamma_{NV-N} \frac{\delta_N^2}{\delta_N^2 + \Omega_N^2},$$

(5)

where $\Delta m = 1(2)$ is the change in spin quantum number in the SQ (DQ) basis and $\delta_N = \gamma_N/2\pi$ is the Lorentzian linewidth (half width at half max) of the nitrogen spin resonances measured through DEER ESR (Fig. 1d). Although we find that NV and nitrogen spins have comparable T_2^* ($\gamma_{NV-N} \approx \gamma_N$, see Suppl. XI), the effective linewidth δ_N relevant for bath driving is increased due to imperfect overlap of the nitrogen spin resonances caused by a small misalignment angle of the applied bias magnetic field.

Dipolar-dominated dephasing (Sample C: high nitrogen density regime)

Spin bath driving results for Sample C ($[N] = 10$ ppm, 15N) are shown in Fig. 4b. At this high nitrogen density, interactions with the nitrogen bath dominate NV spin ensemble dephasing, and $T_{2,\text{SQ}}^*$ and $T_{2,\text{DQ}}^*$ both exhibit a clear dependence on spin bath drive strength Ω_N. With no drive ($\Omega_N = 0$), we measured $T_{2,\text{DQ}}^* \approx T_{2,\text{SQ}}^*/2$, in agreement with dephasing dominated by a paramagnetic spin environment and the twice higher precession rate in the DQ basis [29, 30, 51]. Note that this result is in contrast to the observed DQ basis enhancement of T_2^* at lower nitrogen density for Samples A and B (Figs. 2 and 3). We also find that T_2^* in Sample C increases more rapidly as a function of spin bath drive amplitude in the DQ basis than in the SQ basis, such that $T_{2,\text{DQ}}^*$ surpasses $T_{2,\text{SQ}}^*$ with sufficient spin bath drive strength. We attribute the T_2^*-limit in the SQ basis (≈ 1.8 μs) to strain inhomogeneities in this sample, whereas the longest observed T_2^* in the DQ basis (≈ 3.4 μs) is in agreement with dephasing due to the 0.05$\%$ 13C and 0.5 ppm residual 14N spin impurities. The latter were incorporated during growth of this 15$\%$ sample (see Suppl. Table S5).

In Fig. 4c we plot $T_{2,NV-N}^* \equiv 2 \times T_{2,\text{DQ}}^*$ versus sample nitrogen concentration $[N]$ to account for the twice faster dephasing of the DQ coherence. To improve the range of $[N]$ coverage, we include DQ data for additional diamonds, Samples D ($[N] = 3$ ppm) and E ($[N] = 48$ ppm). To our knowledge, the dependence of the NV spin ensemble dephasing time on $[N]$ has not previously been experimentally reported. Fitting the data to the function $1/T_{2,NV-N}^* = A_{NV-N} \cdot [N]$ (red shaded region), we find the characteristic NV-N interaction strength for NV ensembles to be $A_{NV-N} = 2\pi \times 16.6(2.6)$ kHz/ppm [1/$A_{NV,NV} = 9.6(1.8)$ μs · ppm] in the SQ sub-basis. This value is about $1.8\times$ larger than the dipolar-estimate $\gamma_{e-e} = 2\pi \times 9.1$ kHz/ppm (black dashed-dotted line), which is used above in estimates of NV dephasing due to the nitrogen spin bath. We also performed numerical spin bath simulations for the NV-N spin system and determine the second moment of the dipolar-broadened single NV ESR linewidth [49, Ch. III and IV]. By simulating 10^4 random spin bath configurations, we extract the ensemble-averaged dephasing time from the distribution of the single NV linewidths [50]. The results of this simulation (black dashed line) are in excellent agreement with the experiment and confirm the validity of our obtained scaling for $T_{2,NV-N}^*$ (red shaded region). Additional details of the simulation are provided in Ref. [52].

Ramsey DC Magnetic Field Sensing

We demonstrated that combining the two quantum control techniques can greatly improve the sensitivity of Ramsey DC magnetometry. Fig. 4d compares the accumulated phase for SQ, DQ, and DQ plus spin bath drive measurements of a tunable static magnetic field of amplitude B_{DC}, for Sample B. Sweeping B_{DC} leads to a characteristic observed oscillation of the Ramsey signal $S \propto C \sin(\phi)$, where $C = C_0 \exp[-(\tau/T_2^*)^3]$ is the measurement contrast and $\phi = \Delta m \times \gamma_{NV} B_{DC} \tau$ is the accumulated phase during the free precession interval $\tau \approx T_2^*$. Choosing $T_{SQ} = 1.308$ μs and $T_{DQ+Drive} = 23.99$ μs (see Suppl. XII), we find a $36.3(1.9)\times$ faster oscillation period (at equal measurement contrast) when DQ and spin
Figure 4. Application of quantum control techniques to extend NV spin ensemble dephasing time (T_2^*) and increase DC magnetic field sensitivity. (a) Ramsey measurements of T_2^* in the single quantum (SQ, blue) and double quantum (DQ, black) bases for different spin-bath drive strengths (Rabi frequencies) for Sample B ([N] = 0.75 ppm) at $B_0 = 8.5$ mT. Black dashed-dotted line is calculated from a model of NV spins that are dipolar-coupled to a multi-component spin bath (Eqn. 4). The red solid line is a fit of the model to the T_2^* data (see main text for details). (b) Same as (a) but for Sample C ([N] = 10 ppm) and $B_0 = 10.3$ mT. (c) Measured $T_{2,N-NV}^* = 2 \times T_{2,DQ}^*$ as a function of nitrogen concentration for Samples B, C, D, E. Samples were selected to have a predominately electronic nitrogen (P1) spin bath using DEER ESR measurements. The black dashed-dotted line is the dipolar-interaction-estimated dependence of T_2^* on nitrogen concentration (Suppl. V). We fit the data using an orthogonal-distance-regression routine to account for the uncertainties in $[N]$ and T_2^*. A fit to the form $1/T_2^* = A_{N-NV}[N]$ yields $A_{N-NV} = 2\pi \times 16.6(2.6)$ kHz/ppm $[1/A_{N-NV} = 9.6(1.8) \mu s \cdot ppm]$. The red shaded region indicates the 95% standard error of the fit value for A_{N-NV}. The black dashed line is the expected scaling extracted from numerical simulations using a second-moment analysis of the NV ensemble ESR linewidth (see text for details). (d) Measured Ramsey DC magnetometry signal $S \propto C \sin(\phi(\tau))$ for Sample B, in the SQ and DQ bases, as well as the DQ sub-basis with spin-bath drive (see main text for details). There is a 36× faster oscillation in the DQ sub-basis with spin-bath drive compared to SQ with no drive. This greatly enhanced DC magnetic field sensitivity is a direct result of the extended T_2^*, with the sensitivity enhancement given by $2 \times \sqrt{\tau_{DQ+Drive}/\tau_{SQ}}$ at equal contrast. The slight decrease in observed contrast in the DQ + drive case for $|B_{DC}| > 0.05$ mT is a result of changes in the Zeeman resonance frequencies of the nitrogen spins due to the applied test field B_{DC}, which was not corrected for in these measurements.

bath driving are both employed, compared to a SQ measurement. This enhancement in phase accumulation, and hence DC magnetic field sensitivity, agrees well with the expected improvement ($2 \times \tau_{DQ+Drive}/\tau_{SQ} = 36.7$).

DISCUSSION

Our results (i) characterize the dominant spin dephasing mechanisms for NV ensembles in bulk diamond (strain and interactions with the paramagnetic spin bath); and (ii) demonstrate that the combination of DQ magnetometry and spin bath driving can greatly
extend the NV spin ensemble T_2^\ast. For example, in Sample B we find that these quantum control techniques, when combined, provide a $16.2 \times$ improvement in T_2^\ast. Operation in the DQ basis protects against common-mode inhomogeneities and enables an extension of T_2^\ast for samples with $[N] \lesssim 1 \text{ ppm}$. In such samples, strain inhomogeneities are found to be the main causes of NV spin ensemble dephasing. In samples with higher N concentration ($[N] \gtrsim 1 \text{ ppm}$), spin bath driving in combination with DQ sensing provides an increase of the NV ensemble T_2^\ast by decoupling paramagnetic nitrogen and other electronic dark spins from the NV spins. Our results suggest that quantum control techniques may allow the NV ensemble T_2^\ast to approach the bare Hahn echo coherence time T_2. Note that spin bath driving may also be used to enhance the NV ensemble T_2 in Hahn echo, dynamical decoupling [25, 26], and spectral decomposition experimental protocols [53].

Furthermore, we showed that the combination of DQ magnetometry and spin bath driving allows improved DC Ramsey magnetic field sensing. The relative enhancement in photon-shot-noise-limited sensitivity (neglecting experimental overhead time) is quantified by $2 \times \sqrt{\zeta}$, where the factor of two accounts for the enhanced gyromagnetic ratio in the DQ basis and $\zeta \equiv T_2^\ast_{\text{DQ}}/T_2^\ast_{\text{SQ}}$ is the ratio of maximally achieved T_2^\ast in the DQ basis (with spin bath drive when advantageous) and non-driven T_2^\ast in the SQ basis. For Samples A, B, and C, we calculate $2 \times \sqrt{\zeta} = 5.2 \times, 8.1 \times$, and $3.9 \times$, respectively, using our experimental values. In practice, increasing T_2^\ast also decreases the fractional overhead time associated with NV optical initialization and readout, resulting in even greater DC magnetic field sensitivity improvements and an approximately linear sensitivity enhancement with ζ (see Suppl.XII). We expect that these quantum control techniques will remain effective when integrated with other approaches to optimize NV ensemble magnetic field sensitivity, such as high laser power and good N-to-NV conversion efficiency. In particular, conversion efficiencies of $1 \text{–} 30 \%$ have been reported for NV ensemble measurements [13, 21, 23, 54], such that the nitrogen spin bath continues to be a relevant spin dephasing mechanism.

There are multiple avenues for further improvement in NV ensemble T_2^\ast and DC magnetic field sensitivity, beyond the gains demonstrated in this work. First, the ^{13}C limitation to T_2^\ast, observed for all samples, can be mitigated via improved isotopic purity ($[^{13}\text{C}] > 99.99 \%$); or possibly through driving of the nuclear spin bath [55]. Second, more efficient RF delivery will enable faster spin bath driving (higher Rabi drive frequency Ω_N), which will be critical for decoupling denser nitrogen baths and thereby extending $T_2^\ast \propto \Omega_N^2/\delta_\text{N}^2 \propto \Omega_N^2/[N]^2$ (see Eqn. 5). Third, short NV ensemble T_2^\ast times have so far prevented effective utilization of more exotic readout techniques, e.g., involving quantum logic [56–58] or spin-to-charge conversion [59, 60]. Such methods offer greatly improved NV spin-state readout fidelity but introduce substantial overhead time, typically requiring tens to hundreds of microseconds per readout operation. The NV spin ensemble dephasing times demonstrated in this work ($T_2^\ast \gtrsim 20 \mu\text{s}$) may allow effective application of these readout schemes, which only offer sensitivity improvements when the sequence sensing time (set by T_2^\ast for DC sensing) is comparable to the added overhead time. We note that the NV ensemble T_2^\ast values obtained in this work are the longest for any electronic solid-state spin system at room temperature (see comparison Fig. S2) suggesting that state-of-the-art DC magnetic field sensitivity [13, 61] may be increased to $\sim 100 \text{ft}/\sqrt{\text{Hz}}$ for optimized NV ensembles in a diamond sensing volume $\sim (100 \mu\text{m})^3$ (see discussion on NV ensemble DC magnetic field sensitivity optimization in Barry et al. [13]). In conclusion, DQ magnetometry in combination with spin bath driving allows for order-of-magnitude increase in the NV ensemble T_2^\ast in diamond, providing a clear path to ultra-high sensitivity DC magnetometry with NV ensemble coherence times approaching T_2.

[1] Paul V Klimov, Abram L Falk, David J Christle, Viatcheslav V Dobrovitski, and David D Awschalom, “Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble,” Science Advances 1, e1501015-e1501015 (2015).

[2] Matthias Widmann, Sang-Yun Lee, Torsten Rendler, Nguyen Tien Son, Helmut Fedder, Seoyoung Paik, Liping Yang, Nan Zhao, Sen Yang, Ian Booker, Andrej Denisenko, Mohammad Jamali, S Ali Momenzadeh, Ilja Gerhardt, Takeshi Ohshima, Adam Gali, Erik Janzén, and Jörg Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nature Materials 14, 164–168 (2015).

[3] F. Joseph Heremans, Christopher G. Yalc, and David D. Awschalom, “Control of Spin Defects in Wide-Bandgap Semiconductors for Quantum Technologies,” Proceedings of the IEEE 104, 2009–2023 (2016).

[4] William F. Koehl, Berk Diler, Samuel J. Whiteley, Alexandre Bourassa, N. T. Son, Erik Janzén, and David D. Awschalom, “Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN,” Physical Review B 95, 035207 (2017).

[5] S A Tarasenko, A V Poshakinskiy, D Simin, V A Solntsov, E N Mokhov, P G Baranov, V. Dyakonov, and G. V. Astakhov, “Spin and Optical Properties of Silicon Vacancies in Silicon Carbide - A Review,” physica status solidi (b) 255, 1700258 (2018).

[6] Eisuke Abe, Alexei M. Tyryshkin, Shinichi Tojo, John J.L. Morton, Wayne M. Witzel, Akira Fuji moto, Joel W. Ager, Eugene E. Haller, Junichi Isoya, Stephen A. Lyon, Mike L.W. Thewalt, and Kohei M. Itoh, “Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei,” Physical Review B - Condensed Matter and Materials Physics 82, 121201.
[7] Alexei M Tyryshkin, Shinichi Tojo, John J L Morton, Helge Riemann, Nikolai V Abrosimov, Peter Becker, Hans-Joachim Pohl, Thomas Schenkel, Michael L W Thewalt, Kohei M Itoh, and S A Lyon, “Electron spin coherence exceeding seconds in high-purity silicon,” Nature Materials 11, 143–147 (2012).

[8] Christian Hepp, Tina Müller, Victor Waselowski, Jonas N. Becker, Benjamin Pingault, Hadwig Sternschulte, Doris Steinmüller-Nethl, Adan Gali, Jeronimo R. Maze, Mete Atatüre, and Christoph Becher, “Electronic Structure of the Silicon Vacancy Color Center in Diamond,” Physical Review Letters 112, 036405 (2014).

[9] Brendon C. Rose, Ding Hung, Zi-huai Zhang, Alexei M Tyryshkin, Sorawis Sangtawesin, Srikant Srinivasan, Lorne Loudin, Matthew L Markham, Andrew M Edmonds, Daniel J Twitchen, Stephen A Lyon, and Nathalie P. de Leon, “Observation of an environmentally insensitive solid state spin defect in diamond,” arXiv preprint (2017).

[10] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, and Lloyd C L Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Physics Reports 528, 1–45 (2013).

[11] Gopalakrishnan Balasubramanian, Philipp Neumann, Daniel Twitchen, Matthew Markham, Roman Kolesov, Norikazu Mizuochi, Junichi Isoya, Jocelyn Achard, Johannes Beck, Julia Tissler, Vincent Jacques, Philip R Hemmer, Fedor Jelezko, and Jörg Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Materials 8, 383–387 (2009).

[12] P. L. Stanwix, L. M. Pham, J. R. Maze, D. Le Sage, T. K. Yeung, P. Cappellaro, P. R. Hemmer, A. Yacoby, M. D. Lukin, and R. L. Walsworth, “Coherence of nitrogen-vacancy electronic spin ensembles in diamond,” Physical Review B 82, 201201 (2010).

[13] John F. Barry, Matthew J. Turner, Jennifer M. Schloss, David R. Glenn, Yuyu Song, Mikhail D. Lukin, Hongkun Park, and Ronald L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proceedings of the National Academy of Sciences 113, 14133–14138 (2016).

[14] David R. Glenn, Dominik B. Bucher, Junghyun Lee, Mikhail D. Lukin, Hongkun Park, and Ronald L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature 555, 351–354 (2018).

[15] D Le Sage, K Arai, David R Glenn, S J DeVience, L M Pham, L Rahn-Lee, M D Lukin, A Yacoby, A Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496, 486–489 (2013).

[16] David R Glenn, Kyunghoong Lee, Hongkun Park, Ralph Weissleder, Amir Yacoby, Mikhail D Lukin, Hakho Lee, Ronald L Walsworth, and Colin B Connolly, “Single-cell magnetic imaging using a quantum diamond microscope,” Nature Methods 12, 736–738 (2015).

[17] Linbo Shao, Ruishan Liu, Mian Zhang, Anna V. Shnedman, Xavier Audier, Matthew Markham, Harpreet Dhillon, Daniel J. Twitchen, Yun-Feng Xiao, and Mark Lončar, “Wide-Field Optical Microscopy of Microwave Fields Using Nitrogen-Vacancy Centers in Diamonds,” Advanced Optical Materials , 1075–1080 (2016).

[18] Jean-Philippe Tetienne, Nikolai Dotschuk, David A. Broadway, Alastair Stacey, David A. Simpson, and Lloyd C. L. Hollenberg, “Quantum imaging of current flow in graphene,” Science Advances 3, e1602429 (2017).

[19] David R. Glenn, Roger R. Fu, Pauli Kehayias, D. Le Sage, Eduardo A. Lima, Benjamin P. Weiss, and Ronald L. Walsworth, “Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope,” Geochemistry, Geophysics, Geosystems 18, 3254–3267 (2017).

[20] Roger R. Fu, Benjamin P. Weiss, Eduardo A. Lima, Pauli Kehayias, Jefferson F.D.F. Araujo, David R. Glenn, Jeff Gelb, Joshua F. Einsle, Ann M. Bauer, Richard J. Harrison, Guleed A.H. Ali, and Ronald L. Walsworth, “Evaluating the paleomagnetic potential of single zircon crystals using the Bishop Tuff,” Earth and Planetary Science Letters 458, 1–13 (2017).

[21] V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond,” Physical Review Letters 104, 070801 (2010).

[22] Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dreau, J. F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Physical Review Letters 107 (2011), 10.1103/PhysRevLett.107.220501.

[23] C. Grezes, B. Julsgaard, Y. Kubo, W. L. Ma, M. Stern, A. Bienfait, K. Nakamura, J. Isoya, S. Onoda, T. Ohshima, V. Jacques, D. Vion, D. Esteve, R. B. Liu, K. Mølmer, and P. Bertet, “Storage and retrieval of microwave fields at the single-photon level in a spin ensemble,” Physical Review A 92, 020301 (2015).

[24] Joonhee Choi, Soonwon Choi, Georg Kucsko, Peter C Maurer, Brendan J Shields, Hitoshi Sumiya, Shinobu Onoda, Junichi Isoya, Eugene Demler, Fedor Jelezko, Norman Y Yao, and Mikhail D Lukin, “Depolarization Dynamics in a Strongly Interacting Solid-State Spin Ensemble,” Physical Review Letters 118, 093601 (2017).

[25] G de Lange, Z H Wang, D. Riste, V V Dobrovitski, and R Hanson, “Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath,” Science 330, 60–63 (2010).

[26] L. M. Pham, N. Bar-Gill, C. Belthangady, D. Le Sage, P. Cappellaro, M. D. Lukin, A. Yacoby, and R. L. Walsworth, “Enhanced solid-state multi-spin metrology using dynamical decoupling,” Physical Review B - Condensed Matter and Materials Physics 86, 1–5 (2012).

[27] N Bar-Gill, L.M. Pham, A Jarmola, D Budker, and R.L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nature Communications 4, 1743 (2013).

[28] P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-Temperature Quantum Bit Memory Exceeding One Second,” Science 336, 1283–1286 (2012).

[29] Kejie Fang, Victor M. Acosta, Charles Santori, Zhihong Huang, Kohei M Itoh, Hideyuki Watanabe, Shinichi Shihata, and Raymond G. Beausoleil, “High-Sensitivity Magnetometry Based on Quantum Beats in Diamond Nitrogen-Vacancy Centers,” Physical Review Letters 110, 130802 (2013).

[30] H. J. Mamin, M. H. Sherwood, M. Kim, C. T. Ret-
ner, K. Ohno, D. D. Awschalom, and D. Rugar, “Multipulse Double-Quantum Magnetometry with Near-Surface Nitrogen-Vacancy Centers,” Physical Review Letters 113, 030803 (2014).

[31] Gji de Lange, Toeno van der Sar, Machiel Blok, Zhi-Hui Wang, Viatcheslav Dobrovitski, and Ronald Hanson, “Controlling the quantum dynamics of a mesoscopic spin bath in diamond,” Scientific Reports 2, 382 (2012).

[32] Helena S Knowles, Dhire M Kara, and Mete Atature, “Observing bulk diamond spin coherence in high-purity nanodiamonds,” Nature Materials 13, 21–25 (2014).

[33] W. V. Smith, P. P. Sorokin, I. L. Gelles, and G. J. Lasher, “Electron-spin resonance of nitrogen donors in diamond,” Physical Review 115, 1546–1552 (1959).

[34] R. J. Cook and D. H. Whiffen, “Electron Nuclear Double Resonance Study of a Nitrogen Centre in Diamond,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 295, 99–106 (1966).

[35] J H N Loubser and J A van Wyk, “Electron spin resonance in the study of diamond,” Reports on Progress in Physics 41, 1201–1248 (1978).

[36] N Mizuochi, P Neumann, F Rempp, J Beck, V Jacques, P Siyushev, K Nakamura, D J Twitchen, H Watanabe, S Yamasaki, F Jelezko, and J Wrachtrup, “Coherence of single spins coupled to a nuclear spin bath of varying density,” Physical Review B 80, 041201 (2009).

[37] A. Dréau, J.-R. Maze, M. Leslik, J.-F. Roch, and V. Jacques, “High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond,” Physical Review B 85, 134107 (2012).

[38] P. Jamonneau, M. Lesik, J. P. Tetienne, I. Alvizu, L. Mayer, A. Dréau, S. Kosen, J.-F. Roch, S. Pezzagna, J. Meijer, T. Teraji, Y. Kubo, P. Bertet, J. R. Maze, and V. Jacques, “Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond,” Physical Review B 93, 024305 (2016).

[39] Matthew E. Trushheim and Dirk Englund, “Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond,” New Journal of Physics 18, 123023 (2016).

[40] M. P. Gaukroger, P. M. Martineau, M. J. Crowder, I. Friél, S. D. Williams, and D. J. Twitchen, “X-ray topography studies of dislocations in single crystal CVD diamond,” Diamond and Related Materials 17, 262–269 (2008).

[41] Le Thi Mai Hoa, T. Ouisse, D. Chassende, M. Naamoun, A. Tallaire, and J. Achar, “Birefringence microscopy of unit dislocations in diamond,” Crystal Growth and Design 14, 5761–5766 (2014).

[42] Michael S J Ammerlaan and E. A. Burgemeister, “Reorientation of Nitrogen in Type-Ib Diamond by Thermal Excitation and Tunneling,” Physical Review Letters 47, 954–957 (1981).

[43] G Davies, “Dynamic Jahn-Teller distortions at trigonal optical centres in diamond,” Journal of Physics C: Solid State Physics 12, 2551–2566 (1979).

[44] Gordon Davies, “The Jahn-Teller effect and vibronic coupling at deep levels in diamond,” Reports on Progress in Physics 44, 787–830 (1981).

[45] T. Yamamoto, T. Umeda, K. Watanabe, S. Onoda, M. D. Markham, D. J. Twitchen, B. Naydenov, L. P. McGuinness, T. Teraji, S. Koizumi, F. Dolde, H. Fedder, J. Hombert, J. Wrachtrup, T. Oshima, F. Jelezko, and J. Isoya, “Extending spin coherence times of diamond qubits by high-temperature annealing,” Physical Review B - Condensed Matter and Materials Physics 88, 1–8 (2013).

[46] A. Abragam, The principles of nuclear magnetism (Clarendon Press, 1983) p. 599.

[47] V. V. Dobrovitski, A. E. Feiguin, D. D. Awschalom, and R. Hanson, “Decoherence dynamics of a single spin versus spin ensemble,” Physical Review B 77, 245212 (2008).

[48] E. R. MacQuarrie, T. a. Gosavi, a. M. Moehle, N. R. Jungwirth, S. a. Bhave, and G. D. Fuchs, “Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator,” Optica 2, 233 (2015).

[49] Erik Bauch, Paul Jungyun, Connor Hart, Swati Singh, Jennifer M. Schloss, Matthew J. Turner, John F. Barry, Linh Pham, Nir Bar-Gill, Susanne F. Yelin, and Ronald Walsworth, “Quantum coherence of NV center solid-state spins in diamond,” Manuscript in Preparation (2018).

[50] N. Bar-Gill, L.M. Pham, C. Belthangady, D. Le Sage, P. Cappellaro, J.R. Maze, M.D. Lukin, a. Yacoby, and R. Walsworth, “Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems,” Nature Communications 3, 858 (2012).

[51] Thomas Wolf, Philipp Neumann, Kazuo Nakamura, Hitoshi Suniwa, Takeshi Oshimsa, Junichi Isoya, and Jörg Wrachtrup, “Subpicotesla Diamond Magnetometry,” Physical Review X 5, 041001 (2015).

[52] P. London, J. Scheuer, J.-M. Cai, I. Schwarz, A. Retzker, M. B. Plenio, M. Katagiri, T. Teraji, S. Koizumi, J. Isoya, R. Fischer, L. P. McGuinness, B. Naydenov, and F. Jelezko, “Detecting and Polarizing Nuclear Spins with Double Resonance on a Single Electron Spin,” Physical Review Letters 111, 067601 (2013).

[53] L Jiang, J S Hodges, J R Maze, P Maurer, J M Taylor, D G Cory, P R Hemmer, R L Walsworth, A Yacoby, A S Zibrov, and M D Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326, 267–272 (2009).

[54] P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. R. Hemmer, J. Wrachtrup, and F. Jelezko, “Single-Shot Readout of a Single Nuclear Spin,” Science 329, 542–544 (2010).

[55] I. Lovechinsky, A. O. Sushkov, E. Urbach, N. P. de Leon, S. Choi, K. De Greve, J. Evans, R. Gertner, E. Bersin, C. Moller, L. McGuinness, F. Jelezko, R. L. Walsworth, H. Park, and M. D. Lukin, “Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic,” Science 351, 836–841 (2016).

[56] B. J. Shields, Q. P. Unterreithmeier, N. P. de Leon,
H. Park, and M. D. Lukin, “Efficient Readout of a Single Spin State in Diamond via Spin-to-Charge Conversion,” Physical Review Letters 114, 136402 (2015).

[60] Jean-Christophe Jaskula, Brendan J Shields, Erik Bauch, Mikhail D Lukin, Alexei S Trifonov, and Ronald L. Walsworth, “Improved quantum sensing with a single solid-state spin via spin-to-charge conversion,” ArXiv , 1–11 (2017).

[61] Georgios Chatzidrosos, Arne Wickenbrock, Lykourgos Bougas, Nathan Leefer, Teng Wu, Kasper Jensen, Yannick Dumeige, and Dmitry Budker, “Miniature Cavity-Enhanced Diamond Magnetometer,” Physical Review Applied 8, 044019 (2017).

[62] P Elleaume, O. Chubar, and J Chavanne, “Computing 3D magnetic fields from insertion devices,” in Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167), Vol. 3 (IEEE, 1998) pp. 3509–3511.

[63] V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K. M C Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications,” Physical Review B - Condensed Matter and Materials Physics 80, 1–15 (2009).

[64] Toyofumi Ishikawa, Kai-Mei C. Fu, Charles Santori, Victor M. Acosta, Raymond G. Beausoleil, Hideyuki Watanabe, Shinichi Shikata, and Kohei M. Itoh, “Optical and Spin Coherence Properties of Nitrogen-Vacancy Centers Placed in a 100 nm Thick Isotopically Purified Diamond Layer,” Nano Letters 12, 2083–2087 (2012).

[65] Georg Kucsko, Soonwon Choi, Joonhee Choi, Peter C Maurer, Hengyun Zhou, Renate Landig, Hitoshi Sumiya, Shinobu Onoda, Junich Isoya, Fedor Jelezko, Eugene Demler, Norman Y Yao, and Mikhail D Lukin, “Critical thermalization of a disordered dipolar spin system in diamond,” arXiv preprint (2016).

[66] M. J. R Hoch and E. C. Reynhardt, “Nuclear spin-lattice relaxation of dilute spins in semiconducting diamond,” Physical Review B 37, 9222–9226 (1988).

[67] Jun John Sakurai and Jim Napolitano, Modern quantum mechanics (Dorling Kindersley, 2014).

[68] Łukasz Cywiński, Roman M. Lutchyn, Cody P. Nave, and S. Das Sarma, “How to enhance dephasing time in superconducting qubits,” Physical Review B 77, 174509 (2008).

[69] A Cox, M E Newton, and J M Baker, “13 C, 14 N and 15 N ENDOR measurements on the single substitutional nitrogen centre (P1) in diamond,” Journal of Physics: Condensed Matter 6, 551–563 (1994).

[70] A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J. F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Physical Review B - Condensed Matter and Materials Physics 84, 1–8 (2011).

[71] Viktor Stepanov and Susumu Takahashi, “Determination of nitrogen spin concentration in diamond using double electron-electron resonance,” Physical Review B 94, 024421 (2016).

[72] Alexander M. Zaitsev, Optical Properties of Diamond (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001) p. 502.

[73] K. Beha, A. Batalov, N. B. Manson, R. Bratschitsch, and A. Leitenstorfer, “Optimum photoluminescence ex-

citation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond,” Physical Review Letters 109, 1–5 (2012).

[74] Claire Glover, M. E. Newton, P. M. Martineau, Samantha Quinn, and D. J. Twitchen, “Hydrogen Incorporation in Diamond: The Vacancy-Hydrogen Complex,” Physical Review Letters 92, 135502 (2004).

ACKNOWLEDGEMENTS

We thank David Le Sage for his initial contributions to this project. We thank Joonhee Choi, Soonwon Choi, and Renate Landig for fruitful discussions. This material is based upon work supported by, or in part by, the United States Army Research Laboratory and the United States Army Research Office under Grant No. W911NF1510548; the National Science Foundation Electronics, Photonics and Magnetic Devices (EPMD), Physics of Living Systems (PoLS), and Integrated NSF Support Promoting Interdisciplinary Research and Education (INSPIRE) programs under Grants No. ECCS-1408075, PHY-1504610, and EAR-1647504, respectively; and Lockheed Martin under award A32198. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award no. 1541995. CNS is part of Harvard University. P. K. acknowledges support from the Intelligence Community Postdoctoral Research Fellowship Program. J. M. S. was supported by a Fannie and John Hertz Foundation Graduate Fellowship and a National Science Foundation (NSF) Graduate Research Fellowship under Grant 1122374.

AUTHOR CONTRIBUTIONS STATEMENT

E. B., C. A. H., J. M. S., M. J. T., J. F. B., and R. L. W. conceived the experiments, C. A. H. and E. B. conducted the experiments and analyzed the results. P. K. provided the strain analysis. E. B. and S. S. provided the spin bath simulation. All authors contributed to and reviewed the manuscript. R. L. W. supervised the work.
Supplemental Materials: Ultralong dephasing times in solid-state spin ensembles via quantum control

CONTENTS

Introduction 1
Double Quantum Magnetometry 2
Spin Bath Driving 3

Results
Strain-dominated dephasing (Sample A: low nitrogen density regime) 3
Strain- and dipolar-dominated dephasing (Sample B: intermediate nitrogen density regime) 4
Dipolar-dominated dephasing (Sample C: high nitrogen density regime) 5
Ramsey DC Magnetic Field Sensing 6

Discussion 7

References 8

I. Experimental methods 1
II. Sample information (all samples) 3
III. Survey of dephasing times 3
IV. Strain contribution to T_2^* 3
V. Spin bath contribution to T_2^* 3
VI. Magnetic field gradient contribution to T_2^* 5
VII. NV Hamiltonian in single and double quantum bases
 Case 1: Zero strain, zero off-axis magnetic field 6
 Case 2: Non-zero strain, zero off-axis magnetic field 7
 Case 3: Non-zero off-axis magnetic field 7
VIII. Spin bath driving model 7
IX. 14N and 15N double electron-electron resonance spectra
 14N spectrum 8
 15N spectrum 9
X. Continuous versus pulsed spin bath driving 10
XI. NV and nitrogen spin resonance linewidth measurements 11
XII. DC magnetometry with DQ and spin-bath drive 13
 Acknowledgements 11
 Author contributions statement 11

I. EXPERIMENTAL METHODS

A custom-built, wide-field microscope collected the spin-dependent fluorescence from an NV ensemble onto an avalanche photodiode. Optical initialization and readout of the NV ensemble was accomplished via 532 nm continuous-wave (CW) laser light focused through the same objective used for fluorescence collection (Fig. 1a). The detection
volume was given by the 532 nm beam excitation at the surface (diameter \(\approx 20 \mu m \)) and sample thickness (100 \(\mu m \) for Samples A and B, 40 \(\mu m \) for Sample C). A static magnetic bias field was applied to split the \(| -1 \rangle \) and \(| +1 \rangle \) degeneracy in the NV ground state using two permanent samarium cobalt ring magnets in a Helmholtz-type configuration, with the generated field aligned along one [111] crystallographic axis of the diamond (\(\equiv \hat{z} \)). The magnet geometry was optimized using the Radia software package [62] to minimize field gradients over the detection volume (see Suppl. VI). A planar waveguide fabricated onto a glass substrate delivered 2 – 3.5 GHz microwave radiation for coherent control of the NV ensemble spin states. To manipulate the nitrogen spin resonances (see Fig. 1d), a 1 mm-diameter copper loop was positioned above the diamond sample to apply 100 – 600 MHz radiofrequency (RF) signals, synthesized from up to eight individual signal generators. Pulsed measurements on the NV and nitrogen spins were performed using a computer-controlled pulse generator and microwave switches.

The NV ESR measurement contrast (Fig. 2, 3, and 4d) is determined by comparing the fluorescence from the NV ensemble in the \(|0 \rangle \) state (maximal fluorescence) relative to the \(| +1 \rangle \) or \(| -1 \rangle \) state (minimal fluorescence) [10] and is defined as visibility \(C = \frac{\text{max} - \text{min}}{\text{max} + \text{min}} \). The DEER (Fig. 1d) and DC magnetometry contrast (Fig. 4d) are calculated in the same fashion, but are reduced by \(\approx 1/e \) since the best phase sensitivity in those measurements is obtained at \(\tau \approx T_2 \) and \(\tau \approx T_2^* \), respectively (see Suppl. XI and XII). For noise rejection, most pulse sequences in this work use a back-to-back double measurement scheme [27], where the accumulated NV spin ensemble phase signal is first projected onto the \(|0 \rangle \) state and then onto the \(| +1 \rangle \) (or \(| -1 \rangle \)) state. The contrast for a single measurement is then defined as the visibility of both sequences.
II. SAMPLE INFORMATION (ALL SAMPLES)

Information for all samples used in this study is summarized in Table S1.

Table S1. Detailed information for Samples A - E. Values with ∼ symbol are order-of-magnitude estimates. For all samples, [NV] ≪ [N] and NV contributions to T_2^* can be neglected (1 ppm = 1.76 × 10^{17} \text{cm}^{-3}).

Sample	[N] (ppm)	^{13}C (%)	[NV] (cm$^{-3}$)	T_2^* (μs)	T_2^*	T_2^*	T_2^*	T_2^*	T_2^*	dM_x (MHz/μm)
A	0.05	0.01	∼3×10^{12}	≥630	5-12	34	350	100	78	n/a
B	0.75	0.01	∼10^{14}	250-300	1-10	14	23	100	19	0.0028
C	10	0.05	∼6×10^{15}	15-18	0.3-1.2	0.6	2	20	2	n/a
D	3	<0.01	∼5×10^{15}	53	0.4	1.3	6	100	>6	n/a
E	48	1.1	∼1×10^{17}	1.8	0.07	0.12	0.3	1	0.2	n/a

III. SURVEY OF DEPHASING TIMES

In Fig. S2 we show a survey of inhomogeneous dephasing times for electronic solid-state spin ensembles.

IV. STRAIN CONTRIBUTION TO T_2^*

The on-axis strain component M_x in Sample B was mapped across a 1 × 1 mm area using a separate wide-field imager of NV spin-state-dependent fluorescence. A bias field $B_0 \sim 1.5 \text{mT}$ was applied to split the spin resonances from the four NV orientations. Measurements were performed following the vector magnetic microscopy (VMM) technique [19]. Eqn. 3 in the main text was used to analyze the measured NV resonance frequencies from each camera pixel (ignoring M_x and M_y terms as small perturbations, see Suppl. VII). This procedure yielded the average B_x, B_y, and B_z magnetic field components, as well as the M_z on-axis strain components for all four NV orientations in each camera pixel, corresponding to 2.42 μm × 2.42 μm transverse resolution on the diamond sample. Figure 1c of the main text shows the resulting map of the on-axis strain inhomogeneity M_z in Sample B for the NV orientation interrogated in this work. This map indicates an approximate strain gradient of 2.8 kHz/μm across the field of view. The estimated strain gradient was used for all samples, while recognizing the likely variation between samples and within different regions of a sample. Across a 20-μm diameter spot, the measured strain inhomogeneity corresponds to a T_2^* limit of ≈6 μs, which compares well with the measured variation in T_2^* for Samples A and B (see Table 1). Note that the contributions to M_z can be microscopic (e.g., due to nearby point defects) or macroscopic (e.g., due to crystal defects with size >10 μm). In addition, the VMM technique integrates over macroscopic gradients within the depth of field of the VMM microscope. For the present experiments the resolution along the z-axis (i.e., perpendicular to the diamond surface) is given approximately by the thickness of the NV-diamond layer. Consequently, the strain gradient estimate shown in Fig. 1c is a measure of M_z gradients in-plane within the NV layer, and strain gradients across the NV layer thickness are not resolvable in this measurement.

V. SPIN BATH CONTRIBUTION TO T_2^*

The NV spin ensemble T_2^* as a function of nitrogen concentration is estimated from the average dipolar coupling between electronic nitrogen spins, which is given by $\gamma_{e-e} = a \times \frac{\mu_0}{4\pi} g^2 \mu_B^2 / \hbar \langle r \rangle^3 \approx 2\pi \times 9.1 \cdot [\text{N}] \text{kHz/ppm}$, where μ_0 is the vacuum permeability, g is the electron g-factor, μ_B is the Bohr magneton, \hbar is the reduced Planck constant, $\langle r \rangle = 0.55[N]^{-1/3}$ is the average spacing between electronic nitrogen spins as a function of density [N] (in parts-per-million) within diamond [66], and a is a factor of order unity collecting additional parameters from the dipolar estimate such as the angular dependence and spin resonance lineshape of the ensemble [49]. A sample with [N] = 1 ppm has an estimated $T_2^* \approx 1/(2\pi \times 9.1 \text{kHz}) = 17.5 \mu$s using this dipolar estimate. Similarly, Table S1 gives the estimates T_2^* for Samples A, B, and C.
Figure S2. Inhomogeneous spin dephasing times. Experimental results from this work are compared to that of related spin defect systems (see legend). Inhomogeneous dephasing due to paramagnetic bath spins (e.g., nitrogen and 13C nuclear spins in diamond), strain fields and other effects limit T_2^ens at lower sensor-spin densities $\lesssim 1$. At higher sensor-spin densities approaching unity, spin-spin interaction places an upper bound on the ensemble dephasing time (red shaded area). This limit to T_2^* is estimated using γ_e (see Suppl. V) and a fractional sensor-spin density of 1 corresponds to $\sim 10^{23}$ cm$^{-3}$. Red arrows indicate improvement from the bare T_2^* as measured in the NV SQ basis and increase when DQ sensing and spin bath drive (where advantageous) are employed to suppress inhomogeneities. The maximal obtained T_2^* values for Sample A, B and C are multiplied by a factor of two to account for the twice higher gyromagnetic ratio in the NV DQ basis. The region in which individual, single spins are resolvable with confocal microscopy (~ 200 nm average spin separation) is shown in gray.

Uncertainties in nitrogen concentration $[N]$ used in Fig. 4c are estimated by considering: the values reported by the manufacturer (Element Six Inc.); fluorescence measurements in a confocal microscope (Sample A); and Hahn echo T_2 measurements using the calibration value $T_2(N) \simeq 165 \mu$s · ppm reported in Ref. [52] (Samples B and C). For example, for Sample B, Element Six reports $[N] = 1$ ppm, whereas the measured $T_2 = 300$ µs suggests $[N] = 0.5$ ppm. The average value is thus used: $[N] = 0.75 \pm 0.25$ ppm.

In the dilute 13C limit ($n_{^{13}C} \lesssim 1.1\%$, where $n_{^{13}C}$ is the 13C spin concentration in percent), the NV-13C contact interaction can be neglected and thus the NV ensemble ESR linewidth is expected to be linearly-dependent on the 13C concentration [6, 49], i.e., $1/T_2^{\text{NV-^{13}C}} = A_{\text{NV-^{13}C}} \cdot n_{^{13}C}$. An NV spin ensemble T_2^* measurement on a natural abundance sample with $n_{^{13}C} = 1.07\%$ therefore provides a reasonable lower-bound estimate for $A_{\text{NV-^{13}C}}$ from which the 13C contribution in our diamond samples can be calculated. Fig. S3 shows a DQ Ramsey measurement of a natural 13C abundance sample. Via a fit to the Ramsey data in the time domain, we extract $T_2^{\text{DQ}} = 445(30)$ ns and $p = 1.0(1)$. After correcting for the small contribution of 0.4 ppm nitrogen spins in the sample using the calibration found in Fig. 4c of the main text, we calculate $A_{\text{NV-^{13}C}} \approx 2 \pi \times 160$ kHz/% ($1/A_{^{13}C} \approx 1$ µs · %) from which we determine the NV-13C limits given in Table 1 and the main text of the paper.
VI. MAGNETIC FIELD GRADIENT CONTRIBUTION TO T_2^*

The NV-diamond epifluorescence microscope employs a custom-built samarium-cobalt (SmCo) magnet geometry designed to apply a homogeneous external field B_0 parallel to NVs oriented along the [111] diamond crystallographic axis. The field strength can be varied from 2 to 20 mT (Fig. S4a). SmCo was chosen for its low reversible temperature coefficient (-0.03%/K). Calculations performed using the Radia software package [62] enabled the optimization of the geometry to minimize B_0 gradients across the NV fluorescence collection volume. This collection volume is approximately cylindrical, with a measured diameter of ≈ 20 µm and a length determined by the NV layer thickness along the z-axis (40–100 µm, depending on the diamond sample; see descriptions in the main text).

Figure S4. Design of homogeneous magnetic bias field. (a) Magnet geometry used to apply an external B_0 field along one NV orientation within the diamond crystal (typically [111]) as modeled using Radia [62]. Red arrow depicts the NV orientation class interrogated in these experiments; black rectangle represents diamond sample approximately to scale. (b) Magnets are translated along three axes to measure the B_0 field strength (shift in ESR transition frequency) as a function of detuning from the origin ($x, y, z = 0$) where the origin is defined as the center of the collection volume. Solid lines depict Radia simulation results while plotted points correspond to measured values. Inset: Zoomed-in view for length scale relevant for NV fluorescence collection volumes used in this work.
To calculate the expected B_0 field strength along the target NV orientation, the dimensions and properties of the magnets were used as Radia input, as well as an estimated 3° misalignment angle of the magnetic field with the NV axis. We find good agreement between the calculated field strength and values extracted from NV ESR measurements in Sample B, over a few millimeter lengthscale. The simulation results and measured values are plotted together in Fig. S4b. The z-direction gradient is reduced compared to the gradient in the xy-plane due to a high degree of symmetry along the z-axis for the magnet geometry.

Using data and simulation, we calculate that the B_0 gradient at 8.5 mT induces an NV ensemble ESR linewidth broadening of less than 0.1 kHz across the collection volume of Sample B. This corresponds to a T_2^*-limit on the order of 1 ms. However, due to interaction of the bias magnetic field with nearby materials and the displacement of the collection volume from the magnetic field saddle point, the experimentally realized gradient for Sample B was found to contribute an NV ESR linewidth broadening ≈ 1 kHz (implying a T_2^*-limit $\approx 320 \mu$s), which constitutes a small but non-negligible contribution to the T_2^* values measured in this work. Ramsey measurements for Sample A were taken at four times smaller bias field; we estimate therefore $\approx 4\times$ better magnetic field homogeneity. For Sample C, with a layer thickness of 40 μm, the contribution of the magnetic field gradient at 10 mT to T_2^* was similar to that of Sample B.

VII. NV HAMILTONIAN IN SINGLE AND DOUBLE QUANTUM BASES

In this section we discuss the influence of strain and magnetic fields in the single quantum (SQ) and double quantum (DQ) bases by considering several limiting cases. We first discuss how common-mode noise sources, i.e., sources that shift the NV $|\pm 1\rangle$ and $|\pm 1\rangle$ energy levels in-phase and with equal magnitude, are suppressed in the DQ basis. We then discuss how off-NV-axis strain fields are suppressed even by moderate strain fields. Lastly, we discuss the effect of off-axis magnetic fields on the NV spin-state energy levels and T_2^*. We begin with the negatively-charged NV ground electronic state electronic spin ($S = 1$) Hamiltonian, which is given by [10] (neglecting hyperfine and quadrupolar effects):

$$H/\hbar = D S_x^2 + \frac{\gamma_{NV}}{2\pi} (B_x S_x + B_y S_y + B_z S_z) + M_z S_z^2 + M_x (S_y^2 - S_x^2) + M_y (S_x S_y + S_y S_z),$$

(S1)

where $D \approx 2.87$ GHz is the NV zero-field splitting due to spin-spin interactions, $\{B_x, B_y, B_z\}$ are the magnetic field components, $\{M_x, M_y, M_z\}$ collect strain and electric field components, $\{S_x, S_y, S_z\}$ are the dimensionless spin-1 operators, and $\frac{\gamma_{NV}}{\hbar} = \frac{\gamma_{NV}}{2\pi} \approx 28.025$ GHz/T is the NV gyromagnetic ratio. Using $M_1 = -(M_x + iM_y)$, $B_1 = \frac{1}{\gamma_{NV}} (B_x + iB_y)$, and the standard definitions for the spin operators $\{S_x, S_y, S_z\}$, Eqn. S1 reads in matrix form:

$$H/\hbar = \begin{pmatrix} D + M_z + \frac{\gamma_{NV}}{2\pi} B_z & \frac{\gamma_{NV}}{2\pi} B_1^* & M_1 \\ \frac{\gamma_{NV}}{2\pi} B_1 & 0 & \frac{\gamma_{NV}}{2\pi} B_1^* \\ M_1^* & \frac{\gamma_{NV}}{2\pi} B_1 & D + M_z - \frac{\gamma_{NV}}{2\pi} B_z \end{pmatrix}.$$

(S2)

Case 1: Zero strain, zero off-axis magnetic field

For zero strain/electric field ($\{M_x, M_y, M_z\} = 0$) and zero off-axis magnetic field ($B_1 = 0$), the Hamiltonian in Eqn. S2 is diagonal:

$$H_0/\hbar = \begin{pmatrix} D + \frac{\gamma_{NV}}{2\pi} B_z & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & D - \frac{\gamma_{NV}}{2\pi} B_z \end{pmatrix},$$

(S3)

and the energy levels are given by the zero-field splitting D and Zeeman energies $\pm \frac{\gamma_{NV}}{2\pi} B_z$,

$$E_{\{\pm 1, 0\}}/\hbar = \{D \pm \frac{\gamma_{NV}}{2\pi} B_z, 0\},$$

(S4)

where $\{ \pm 1, 0 \}$ are the Zeeman eigenstates

$$| + 1 \rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, | - 1 \rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \text{ and } | 0 \rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

(S5)
NV spin ensemble measurements in the DQ basis, for which the difference between the \(f_{-1} = E_{(0)\rightarrow-1\rightarrow} \) and \(f_{+1} = E_{(0)\rightarrow+1\rightarrow} \) transitions is probed (see Fig. 1b), are to first-order insensitive to inhomogeneities and fluctuations in \(D \) (e.g., due to drift in temperature), and other common-mode noise sources. However, DQ measurements are twice as sensitive to magnetic fields along \(B_z \). The DQ basis therefore provides both enhanced magnetic field sensitivity and protection against common-mode noise sources (for higher order effects see, e.g., the Supplement of Ref. [29]).

Case 2: Non-zero strain, zero off-axis magnetic field

For non-zero strain/electric field components, but negligible off-axis magnetic fields \((B_\perp \approx 0) \), the energy eigenvalues of the NV Hamiltonian (Eqn. S2) for the \(| \pm 1 \rangle \) states become

\[
E_{|\pm1\rangle}/\hbar = D + M_z \pm \sqrt{\left(\frac{7NV}{2\pi}B_z\right)^2 + ||M_\perp||^2}
\]

\[
\approx D + M_z \pm \frac{\gamma_{NV}B_z}{2\sqrt{2\pi}} ||M_\perp||^2 + O\left(\frac{(||M_\perp||^4)}{B_z^2}\right).
\]

From Eqn. S7 it follows that off-axis strain \((\propto ||M_\perp||) \) is suppressed by moderate on-axis bias fields by a factor \(\gamma_{NV}B_z/\pi \), as noted in the main text. Reported values for \(||M_\perp|| \) are \(\sim 10 \text{kHz} \) [29] and \(\sim 100 \text{kHz} \) [38] for single NV centers in bulk diamond, and \(\sim 7 \text{MHz} \) in nano-diamonds [38]. Fig. 1c in the main text shows that the measured on-axis strain \(M_z \) in Sample B varies by \(2-3 \text{MHz} \) (see Suppl. IV for details).

Case 3: Non-zero off-axis magnetic field

For non-zero off-axis magnetic field \((B_\perp \neq 0) \) we find the energy values for the NV Hamiltonian (Eqn. S1) by treating \(B_\perp \) as a small perturbation, with perturbation Hamiltonian \(\mathbf{V} \equiv \mathbf{H} - \mathbf{H}_0 \). To simplify the analysis we set \(M_\parallel = M_\perp = 0 \). Using time-independent perturbation theory (TIPT, see for example Ref. [67]), the corrected energy levels are then given by \(E_{|\pm1,0\rangle} \approx E_{|\pm1,0\rangle}^{(0)} + E_{|\pm1,0\rangle}^{(1)} + E_{|\pm1,0\rangle}^{(2)} + \ldots \), where \(E_{|\pm1,0\rangle}^{(0)} \) are the bare Zeeman energies as given in Eqn. S4 and \(E_{|\pm1,0\rangle}^{(k)} \) for \(k > 0 \) are the k-th order corrections. The energy corrections at first and second order are:

\[
E_{|\pm1,0\rangle}^{(1)} = \langle |1,0| V |\pm 1,0 \rangle = 0,
\]

and

\[
E_{|\pm1\rangle}^{(2)} = \frac{\sqrt{\langle |\pm1| V |\pm 1\rangle^2}}{E_{|\pm1\rangle} - E_{|\mp1\rangle}} + \frac{\langle |0| V |\pm 1\rangle^2}{E_{|\pm1\rangle} - E_{|\mp1\rangle}} = \frac{\|\gamma_{NV}B_\perp\|^2}{D + \frac{\|\gamma_{NV}B_\perp\|^2}{2\gamma_{NV}B_z}} \approx \frac{\|\gamma_{NV}B_\perp\|^2}{D},
\]

where we have used in the last two lines the fact that \(\frac{\|\gamma_{NV}B_\perp\|^2}{2\gamma_{NV}B_z} \ll D \) in our experiments. The new transition frequencies for \(E_{|0\rangle \rightarrow |\pm1\rangle} \) are then found to be

\[
f_{\pm1} \approx D + \frac{3\|\gamma_{NV}B_\perp\|^2}{D} \pm \frac{\gamma_{NV}B_z}{2\gamma_{NV}B_z}.
\]

From Eqn. S11 it follows that energy level shifts due to perpendicular magnetic fields are mitigated by the large zero-field splitting \(D \); and are further suppressed in the DQ basis, as they add (approximately) in common-mode. At moderate bias fields, \(B_z = 2-20 \text{mT} \), and typical misalignment angles of \(\theta \sim 3^\circ \) (or lower), we estimate a frequency shift of \(0.1-1 \text{kHz} \) in the SQ basis.

VIII. SPIN BATH DRIVING MODEL

The effective magnetic field produced by the ensemble of nitrogen spins is modeled as a Lorentzian line shape with spectral width \(B_\delta \) (half width at half max) and a maximum \(\gamma_{NV,N} \) at zero drive frequency \((\Omega_N = 0) \). This lineshape
is derived in the context of dilute dipolar-coupled spin ensembles using the methods of moments [49, Ch. III and IV] and is consistent with NV DEER linewidth measurements (see Suppl. XI). The limit to the NV ensemble T_2^* taking the bath drive into account is given by (see Eqn. 5 of main text)

$$1/T_{2,NV-N}(\Omega_N) = \Delta m \times \gamma_{NV-N} \frac{\delta N}{\delta N^2 + \Omega_N^2}. \quad \text{(S12)}$$

At sufficiently high drive strengths ($\Omega_N \gg \delta_N$), the nitrogen spin ensemble is coherently driven and the resulting magnetic field noise spectrum is detuned away from the zero-frequency component, to which NV Ramsey measure-

At sufficiently high drive strengths ($\Omega_N \gg \delta_N$), the nitrogen spin ensemble is coherently driven and the resulting magnetic field noise spectrum is detuned away from the zero-frequency component, to which NV Ramsey measure-

Nonetheless, $1/\Omega^2_N$ is captured by the Lorentzian model.

The limit to the NV ensemble T_2^* increases with Ω_N, however, the nitrogen spin ensemble is inhomogeneously driven and the dynamics of the spin bath cannot be described by coherent driving. Nonetheless, $1/T_2^*$ given by Eqn. S12 approaches γ_{NV-N} in the limit $\Omega_N \rightarrow 0$, which is captured by the Lorentzian model.

This model (Eqn. S12) is in excellent agreement with the data for Sample B ($[N] = 0.75$ ppm, $\delta_N \approx 11$ kHz), for which $\Omega_N > \delta_N$ for the range of drive strengths employed. $\Omega_N > \delta_N$ also holds when the slight mismatch of nitrogen spin resonances is taken into account, effectively increasing the nitrogen linewidth relevant for bath driving ($\delta_N \approx 60$ kHz, see discussion in main text). For Sample C ($[N] = 10$ ppm, $\delta_N \approx 150$ kHz), we find that the effective linewidth δ_N extracted from fitting the data in Fig. 4b is about 4x larger (≈ 600 kHz) than what is expected from the dipolar estimate even after account for the small B_0 misalignment angle and resultant slight mismatch of nitrogen spin resonance frequencies. We attribute this discrepancy to incoherent dynamics at drive strength $\Omega_N \sim \delta_N$. Indeed, we find that for Sample C at drive strengths $\Omega_N \lesssim \delta_N$ the Ramsey signals exhibit multi-exponential decay with slow and fast decay rates, consistent with a larger effective δ_N. To nonetheless enable a qualitative comparison with Sample B, in these instances the stretched exponential parameter is restricted to $p \geq 1$ when extracting the NV spin ensemble T_2^*. At drive frequencies $\Omega_N > \delta_N$, the observed Ramsey signal returns to a simple exponential decay, confirming the validity of our driving model in this regime for Sample C. A more complete driving model, beyond the scope of this work, should take into account the changes of spin bath dynamics at drive strengths $\Omega_N \sim \delta_N$.

IX. 14N AND 15N DOUBLE ELECTRON- ELECTRON RESONANCE SPECTRA

We account for the 14N and 15N spin resonances, observed in NV double electron-electron resonance (DEER) spectra (see Fig. 1d and S6), in terms of Jahn-Teller, hyperfine, and quadrupolar splittings. The relevant spin Hamiltonian for the substitutional nitrogen defect is given by [33–35, 69]

$$H_{P1}/h = \mu_B/h \mathbf{B} \cdot \mathbf{g} \cdot \mathbf{S} + \mu_N/h \mathbf{B} \cdot \mathbf{I} + \mathbf{S} \cdot \mathbf{A} \cdot \mathbf{I} + \mathbf{I} \cdot \mathbf{Q} \cdot \mathbf{I} \quad \text{(S13)}$$

where μ_B is the Bohr magneton, h is the Planck’s constant, $\mathbf{B} = (B_x, B_y, B_z)$ is the magnetic field vector, \mathbf{g} is the electronic g-factor tensor, μ_N is the nuclear magneton, $\mathbf{S} = (S_x, S_y, S_z)$ is the electronic spin vector, \mathbf{A} is the hyperfine tensor, $\mathbf{I} = (I_x, I_y, I_z)$ is the nuclear spin vector, and \mathbf{Q} is the nuclear electric quadrupole tensor. This Hamiltonian can be simplified in the following way: First, we neglect the nuclear Zeeman energy (second term above) since its contribution is negligible at magnetic fields used in this work (≈ 10 mT). Second, the Jahn-Teller distortion defines a symmetry axis for the nitrogen defect along any of the [111]-crystal axis directions [45, 47]. Under this trigonal symmetry (as with NV centers), and by going into an appropriate coordinate system, tensors \mathbf{g}, \mathbf{A}, and \mathbf{Q} are diagonal and defined by at most two parameters:

$$\mathbf{g} = \begin{pmatrix} g_\perp & 0 & 0 \\ 0 & g_\perp & 0 \\ 0 & 0 & g_\parallel \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} A_\perp & 0 & 0 \\ 0 & A_\perp & 0 \\ 0 & 0 & A_\parallel \end{pmatrix}, \quad \text{and} \quad \mathbf{Q} = \begin{pmatrix} P_\perp & 0 & 0 \\ 0 & P_\perp & 0 \\ 0 & 0 & P_\parallel \end{pmatrix} \quad \text{(S14)}$$

Here, g_\perp, g_\parallel, A_\perp, A_\parallel, P_\perp, and P_\parallel are the gyromagnetic, hyperfine, and quadrupolar on- and off-axis tensor components, respectively, in the principal coordinate system. Further simplifications can be made by noting that the g-factor is approximately isotropic [33], i.e., $g_\perp \approx g_\parallel \equiv g$, and that for exact axial symmetry the off-axis components of the quadrupole tensor, P_\perp, vanish [44]. Equation S13 may now be written as

$$H_{P1}/h = g \mu_B/h B_z S_z + A_\parallel S_z \cdot I_z + A_\perp (S_x \cdot I_x + S_y \cdot I_y) + P_\parallel (I_z^2 - I^3/3). \quad \text{(S15)}$$
Figure S5. 14N and 15N spin energy level diagram.

Figure S6. 14N and 15N DEER spectra. (a) Simulated (red) and measured (blue) 14N DEER spectra for Sample B ([N] = 0.75 ppm, 14N). Dipole-allowed nitrogen hyperfine transitions are labeled 1 - 6. Smaller peaks are attributed to degenerate forbidden hyperfine transitions ($\Delta m_I \neq 0$) of the off-axis nitrogen orientations. Frequencies are simulated using Eqn. S15 and plotted as Lorentzians with widths and amplitudes chosen to reflect the experimental data. Allowed hyperfine transitions have an approximate amplitude ratio of 1:3:1:3:3:1 (see main text). The Larmor frequency of an electronic spin without hyperfine shift ($g = 2$) is indicated as dashed black line. (b) Simulated (red) and measured (blue) 15N DEER spectrum for Sample C ([N] = 10 ppm, 15N). Dipole-allowed hyperfine transitions are labeled 1 - 4. Smaller peaks are attributed to forbidden 15N hyperfine transitions and $g = 2$ dark spins. The spectrum of a small abundance of 14N spins ($\approx 5\%$ of 15N density) is visible as well.

14N spectrum

14N has $S = 1/2$ and $I = 1$, leading to six eigenstates $|m_S = \pm 1/2, m_I = 0, \pm 1\rangle$. The corresponding three dipole-allowed transitions ($\Delta m_S = \pm 1, \Delta m_I = 0$, solid arrows) are shown in Fig. S5, along with the four first-order forbidden transitions ($\Delta m_S = \pm 1, \Delta m_I = \pm 1$, dashed arrows). A nitrogen defect in diamond undergoes a Jahn-Teller (JT) distortion, which defines a hyperfine quantization axis along any of the four [111] crystallographic directions, irrespective of the applied magnetic field. Taking all JT orientations into account, the full 14N spin resonance spectrum displays a total of 12 dipole-allowed resonances. By aligning the magnetic field along any of the
[111]-directions of the diamond crystal, the 12 transitions are partially degenerate and reduce to six visible transitions in an NV DEER measurement, with an amplitude ratio 1:3:1:3:1:3, as shown in Fig. 2b of the main text and Fig. S6a. We obtain the spectrum for the off-axis and degenerate JT orientations from Eqn. S15 by rotating the bias field by \(\theta = 109.471 \) around either the x or y axis, where \(\theta \) is the angle between any two crystallographic axes, i.e., taking \(\mathbf{B} \rightarrow \mathbf{R}_x \) or \(\mathbf{y}(\theta = 109.471^\circ) \cdot \mathbf{B} \).

In Fig. S6a, the simulated (degenerate) spectrum for \(^{14}\text{N}\) spins is shown together with experimental data from Sample B ([N] = 0.75 ppm). A magnetic field \(B_z = 95.5 \text{ mT} \) is applied along one of the [111]-orientations. For the simulation the following parameters have been used: \(g \mu_B / h \approx 2.8025 \times 10^4 \text{ MHz/T} \), where \(g = 2.0025 \) is the P1 electronic g-factor [33], \(\mu_B = 9.274 \times 10^{-24} \text{ J/T} \) is the Bohr magneton, \(h = 6.626 \times 10^{-34} \text{ Js} \) is Planck’s constant, \(A_\parallel = 114 \text{ MHz} \), \(A_\perp = 81.3 \text{ MHz} \) [33, 34, 69], and \(P_\parallel = -3.97 \text{ MHz} \) [34].

| \(^{14}\text{N} \) | \(A_\perp, A_\parallel \) | 114 MHz, 81.3 MHz [33, 34, 69] |
| \(P_\parallel \) | -3.97 MHz [34] |

| \(^{15}\text{N} \) | \(A_\parallel, A_\perp \) | -159.7 MHz, -113.83 MHz [69] |
| \(P \) | 0 (since \(I < 1 \)) |

Table S2. Summary of defect parameters used to simulate the nitrogen resonance spectrum using Eqn. S15.

\(^{15}\text{N} \) spectrum

\(^{15}\text{N} \) has \(S = 1/2 \) and \(I = 1/2 \), leading to the four eigenstates \(|m_S = \pm 1/2, m_I = \pm 1/2 \rangle \). The corresponding two dipole-allowed transitions \((\Delta m_S = \pm 1, \Delta m_I = 0) \), solid arrows) are shown in Fig. S5b, along with the two first-order forbidden transitions \((\Delta m_S = \pm 1, \Delta m_I = \pm 1) \), dashed arrows). The experimental NV DEER spectrum for Sample C ([\(^{15}\text{N}\)] = 10 ppm) is shown in Fig. S6b, along with a simulated \(^{15}\text{N} \) spectrum. For the \(^{15}\text{N} \) simulation we used \(B_0 = 9.8 \text{ mT} \), \(A_\parallel = -159.7 \text{ MHz} \), \(A_\perp = -113.83 \text{ MHz} \) [69], and \(P_\parallel = 0 \) (since \(I < 1 \)).

X. CONTINUOUS VERSUS PULSED SPIN BATH DRIVING

As described in the main text, both continuous (CW) and pulsed driving can decouple the electronic spin bath from the NV sensor spins (see Fig. S7). In CW driving, the bath spins are driven continuously such that they undergo many Rabi oscillations during the characteristic interaction time \(1/\gamma_{NV,N} \), and thus the time-averaged NV-N dipolar interaction approaches zero. For pulsed driving, \(\pi \)-pulses resonant with spin transitions in the bath are applied midway through the NV Ramsey free precession interval, to refocus bath-induced dephasing. Fig. S7a illustrates both methods for a given applied RF field with a Rabi frequency of \(\Omega_N \).

Although we treat CW driving in the main text in detail, we find experimentally that pulsed driving yields similar \(T_2^* \) improvements over the measured range of Rabi drives. For example, Fig. S7a compares \(T_2^* \) for Sample B for both schemes at maximum bath drive strength \(\Omega_N = 1.5 \text{ MHz} \) (for pulsed driving \(\tau_\pi \equiv 1/2\Omega_N \)). Both decoupling schemes result in comparable \(T_2^* \) improvements (13 – 15×) over the non-driven SQ measurement, which is shown for reference. We attribute the slightly lower max \(T_2^* \) achieved in pulsed driving to detunings of the RF drive from the spin resonances of the main nitrogen groups, leading to less efficient driving of the spin population (see next section). To study the efficacy of both driving schemes, we plot \(T_2^* \) as a function of Rabi drive \(\Omega_N \) in Fig. S7b. In the limit of \(\tau_\pi \approx T_2 \), pulsed driving resembles the CW case and both schemes converge to the same maximal \(T_2^* \).

Despite the similar improvements in \(T_2^* \) achieved using both methods, pulsed driving can reduce heating of the MW delivery loop and diamond sample - an important consideration for temperature sensitive applications. For this reason, pulsed driving may be preferable in such experiments despite the need for \(\pi \)-pulse calibration across multiple resonances.
XI. NV AND NITROGEN SPIN RESONANCE LINEWIDTH MEASUREMENTS

The NV and nitrogen (P1) ensemble spin resonance linewidths are determined using pulsed ESR and pulsed DEER NV spectral measurements, respectively, as shown in Fig. S8. Low Rabi drive strength and consequently long π-pulse durations can be used to avoid Fourier power broadening [70]. We find that nitrogen spin resonance spectra are typically narrower than for NV ensembles in the SQ basis, due to the effects of strain gradients in diamond on NV zero-field splittings.

For the spin bath driving model described in the main text (Eqn. 4), we are interested in the natural (i.e., non-power-boadened) linewidth δ_N of spin resonances corresponding to, for example, 14N groups 1–6 (see Fig. 2b in main text and Fig. S8a in Supplement). In Ref. [25] it was reported that the different 14N groups have approximately equal linewidth, i.e., that $\delta_{N,i} \approx \delta_N$. However, we find that the bias field B_z being only slightly misaligned (\sim3 degree) from one of the [111] crystal axes causes the three degenerate spin resonances to be imperfectly overlapped, leading to a larger effective linewidth.

In Fig. S8b and c we compare the NV pulsed DEER linewidths of 14N group 1 (a single resonance) with that of group 5 (three overlapped resonances) for different π_{bath}-pulse durations. At short π_{bath}-pulse durations (high MW powers), the linewidths are power broadened due to the applied microwave field, such that the measured linewidth is a convolution of the natural linewidth and the inverse duration of the π_{bath}-pulse [70]. At longer π_{bath}-pulse durations (reduced MW power), however, the measured linewidth approaches its natural width. In this instance, and for dipolar-limited linewidth broadening, the lineshape is Lorentzian with full width at half max $\Gamma = 1/\pi T_{2,\text{N}}^*$. At the longest π_{bath}-pulse durations used in this work, we find that group 1 consists of a narrow, approximately 25 kHz-wide peak. In contrast, group 5 reveals two peaks, consisting of two overlapped 14N transitions and one detuned transition, which is attributed to imperfect magnetic field alignment. The splitting between the two peaks in group 5 is $\approx 80 \text{ kHz}$, which we use as the effective 14N linewidth δ_N in Eqn. 4 of the main text, and which is consistent with the value extracted from fitting the spin-bath driving model to the data (see Fig. 4a, $\delta_{N,fit} \approx 60 \text{ kHz}$).
Figure S8. Comparison of nitrogen and NV spin resonance linewidths. (a) The pulsed DEER (left) sequence used for spin resonance measurements of the nitrogen spins and the pulsed ESR (right) sequence is used for NV SQ spin resonance measurements. (b) DEER spectrum from 150 to 400 MHz including all six nitrogen transitions and two forbidden transitions in Sample B. (c) DEER spectra of a single nitrogen transition are shown for three different bath π-pulse durations. A minimum measured linewidth of 26.8(2) kHz was recorded using a 144 µs π-pulse. (d) DEER spectra for a group containing three nearly degenerate off-axis nitrogen transitions. When bath π-pulses of 70 µs and 35 µs are used, two features are resolved corresponding to a single nitrogen transition detuned by 81 kHz from two nearly overlapped transitions. (e) Comparison of the NV ESR linewidth (black dots) and the DEER linewidth for a single nitrogen transition (diamonds) as a function of π-pulse duration for Sample B ([N] = 0.75 ppm). The fine, black dashed and red solid lines correspond to fits of the NV and nitrogen spin resonance linewidths to the functional form \(a/x + b \), where b is the saturation linewidth. The coarse, blue dashed line indicates the expected linewidth from the measured NV \(T_2^* \) in the DQ basis (assuming a Lorentzian linewidth). (f) Same as (e) but for Sample C ([N] = 10 ppm).

In Fig. S8e we compare the measured NV and \(^{14}\text{N}\) group 1 ensemble linewidths (full width at half max) for
Sample B as a function of π-pulse duration. For both species, the linewidth narrows at long π-pulse durations, as discussed above, reaching non-power-broadened (natural) values. Notably, the non-power-broadened NV linewidth [321(7) kHz, extracted from a fit to the data] is \(\sim 16 \times \) larger than the natural \(^{14}\)N linewidth [20.6(1.2) kHz]. This order-of-magnitude difference is a manifestation of the strong strain field gradients in this sample. Specifically, pulsed ESR measurements of the NV ensemble linewidth (see Fig. S8a) are performed in the SQ \{0, +1\} or \{0, −1\} sub-basis, and are therefore strain gradient limited. In contrast, nitrogen defects in diamond have \(S = 1/2 \), and thus do not couple to electric fields or strain gradients. As a consistency check, note that NV ensemble Ramsey measurements in Sample B, made in the DQ basis (with no spin-bath driving), yield a strain-independent dephasing time \(T_{2,\text{DQ}} = 6.9(5) \mu s \). This dephasing time, presumably limited by the nitrogen spin bath, implies a \(^{14}\)N spin resonance linewidth given by \(\frac{1}{2} \times 1/\pi T_{2,\text{DQ}} = 23(2) \text{ kHz} \), which is in good agreement with our pulsed DEER measurements and the natural \(^{14}\)N linewidth. Similar consistency is found for measurements of the NV and \(^{15}\)N ensemble spin resonance linewidths in Sample C, as shown in Fig. S8f. Such agreement across multiple samples is further evidence that the DQ \(T^*_2 \) value for NV ensembles is limited by the surrounding nitrogen spin bath, as discussed in the main text. Note that for our samples \([\mathrm{NV}] \ll [\mathrm{N}] \) and we can therefore ignore the back action of NVs onto nitrogen spins in the DEER readout. For denser NV samples, however, this back action has to be taken into account [71].

\[
\text{XII. DC MAGNETOMETRY WITH DQ AND SPIN-BATH DRIVE}
\]

Assuming a signal-to-noise ratio of unity, the minimum detectable magnetic field \(\delta B_{\text{min}} \) in a Ramsey measurement is given by [29]

\[
\delta B_{\text{min}} \approx \frac{\delta S}{\max|\frac{\partial S}{\partial B}|}, \tag{S16}
\]

where the Ramsey signal \(S \) is

\[
S = C(\tau) \sin(\gamma_{\text{NV}} B_{\text{DC}} \tau). \tag{S17}
\]

Here, \(C(\tau) = C_0 \exp\left(-\tau/T^*_2 \right) \) is the time-dependent measurement contrast defined via the NV spin-state-dependent fluorescence visibility (see Suppl. I), \(\gamma_{\text{NV}} \) is the NV gyromagnetic ratio, \(B_{\text{DC}} \) is the magnetic field to be sensed, and \(\tau \) is the sensing time during which the NV sensor spins accumulate phase. The term \(\max|\frac{\partial S}{\partial B}| \) is the maximum slope of the Ramsey signal,

\[
\max|\frac{\partial S}{\partial B}| = C(\tau) \gamma_{\text{NV}} \tau. \tag{S18}
\]

Assuming uncorrelated, Gaussian noise, \(\delta S = \sigma(\tau)/\sqrt{n_{\text{meas}}} \) is the standard error of the contrast signal, which improves with number of measurements \(n_{\text{meas}} \). Including a dead time \(\tau_D \) that accounts for time spent during initialization of the NV ensemble and readout of the spin-state-dependent fluorescence during a single measurement, \(n_{\text{meas}} = T/(\tau + \tau_D) \) measurements are made over the total measurement time \(T \). \(\delta B_{\text{min}} \) is then found to be

\[
\delta B_{\text{min}} = \frac{\sigma \sqrt{\tau + \tau_D}}{C(\tau) \gamma_{\text{NV}} \tau \sqrt{T}}; \tag{S19}
\]

and the sensitivity is given by multiplying \(\delta B_{\text{min}} \) by the bandwidth \(\sqrt{T} \) and including a factor \(\Delta m = 1(2) \) for the SQ (DQ) basis:

\[
\eta = \frac{\delta B_{\text{min}} \sqrt{T}}{\Delta m} = \frac{\sigma \sqrt{\tau + \tau_D}}{\Delta m \times C(\tau) \gamma_{\text{NV}} \tau}. \tag{S20}
\]

Note that in the ideal case, \(\tau_D \ll \tau \), we have \(\frac{\tau_D + \tau_D}{\sqrt{\tau}} \approx 1/\sqrt{\tau} \) and the sensitivity \(\eta \) scales \(\propto \tau^{-1/2} \exp(\tau/T^*_2)^p \). The optimal sensing time in our Ramsey experiment is then \(\tau_{\text{opt}} \approx T^*_2/2 \) for \(p = 1 \). However, in the more realistic case, \(\tau_D \sim \tau \), the improvement of \(\eta \) with increasing \(\tau \) approaches a linear scaling and \(\eta \propto \tau^{-1} \exp(\tau/T^*_2)^p \) for \(\tau_D \gg \tau \). The optimal sensing time then becomes \(\tau_{\text{opt}} \approx T^*_2 \). Consequently, the measured increase in sensitivity may exceed the enhancement estimated from the idealized case without overhead time.
With Eqn. S20 we calculate and compare the sensitivities for the three measurement modalities (SQ, DQ, and DQ + spin-bath drive) applied to Sample B. Using $C \approx 0.026$, which remains constant for the three schemes (see Fig. S9a), sensing times $\tau_{SQ} = 1.308 \mu s$, $\tau_{DQ} = 6.436 \mu s$, and $\tau_{DQ,\text{drive}} = 23.99 \mu s$, standard deviations $\sigma_{SQ} = 0.0321$, $\sigma_{DQ} = 0.0324$, and $\sigma_{DQ,\text{drive}} = 0.0325$ calculated from 1 s of data, fixed sequence duration of $\tau + \tau_D = 70 \mu s$, and $\gamma_{NV} = 2\pi \times 28 \text{ GHz}/\text{T}$, the estimated sensitivities for the SQ, DQ and DQ+Drive measurement schemes are $\eta = 70.7$, 6.65, and 1.97 nT/√Hz, respectively. In summary, we obtain a $10 \times$ improvement in DC magnetic field sensitivity in the DQ basis, relative to the conventional SQ basis, and a $35 \times$ improvement using the DQ basis with spin bath drive. Note that this enhancement greatly exceeds the expected improvement when no dead time is present ($\tau_D \ll \tau$) and is attributed to the approximately linear increase in sensitivity with sensing times $\tau \lesssim \tau_D$. We also plot the Allan deviation for the three schemes in Fig. S9b showing a $\tau^{-1/2}$ scaling for a measurement time of ≈ 1 s and the indicated enhancements in sensitivity.

Figure S9. DC magnetic field sensing and Allan deviation. (a) DC magnetometry curves for SQ, DQ, and DQ with spin-bath driving in Sample B, produced by sweeping the magnitude of a coil-generated applied magnetic field (in addition to the fixed bias field) while the free precession interval τ is set to $\tau_{SQ} = 1.308 \mu s$ (blue, top), $\tau_{DQ} = 6.436 \mu s$ (black, middle), and $\tau_{DQ,\text{drive}} = 23.990 \mu s$ (red, bottom). Reproduced from Fig. 4d (b) Allan deviation using the same fixed τ values from (a) for measurements using SQ (blue), DQ (black), and DQ with driving (red). The external field strength was tuned to sit on a zero crossing of the respective DC magnetometry curves in (a) for sine magnetometry.

Lastly, we discuss an appropriate choice of spin concentrations in diamond and other sample material properties for enhanced-sensitivity magnetometry employing DQ coherence and spin bath driving. To simplify the discussion, we focus on the following combination of relevant parameters for NV magnetometry, which (in the appropriate limits discussed herein) is proportional to the photon-shot-noise-limited volume-normalized magnetic sensitivity η^V (see Suppl. of Ref. [13]), given by

$$\eta^V \propto \left[\Delta m \times \sqrt{n_{NV} \cdot [N] \cdot T_2^*[\langle N \rangle]} \right]^{-1} \equiv \eta_N. \quad (S21)$$

Here, $\Delta m = 1(2)$ in the SQ (DQ) basis, $[N]$ is the substituional nitrogen (P1) center concentration, $n_{NV} = [NV]/[N]$ is the normalized concentration of NV centers relative to the nitrogen concentration, and $T_2^*[\langle N \rangle]$ is the NV ensemble dephasing time in the sensing basis chosen (SQ or DQ). The quantity η_N describes the dependence of the sensitivity on nitrogen concentration $[N]$. Since the nitrogen concentration enters Eqn. S21 both explicitly and also through n_{NV} and T_2^*, we need to investigate Eqn. S21 for a range of $[N]$.

In the case of fixed n_{NV} and nitrogen-spin-bath-limited dephasing, i.e., $T_2^* \propto 1/[N]$, η_N remains constant as a function of $[N]$. In this simplistic picture, shorter T_2^* values may be exchanged for higher nitrogen (and thus NV center) concentrations and vice versa, with no effect on sensitivity. Such a discussion, however, neglects experimental overhead due to NV state initialization and readout, which is characterized by the dead time τ_D (see Eqn. S20). Since $T_2^* \lesssim 1 \mu s \lesssim \tau_D$ in a typical SQ NV ensemble experiment, increasing T_2^* through optimized sample fabrication, DQ coherence magnetometry, and/or spin bath driving is preferred, and larger sensitivity gains are obtained when compared to an equivalent increase in NV center concentration.

More generally, the ensemble T_2^* depends on numerous diamond-related parameters (including the concentration of spin impurities and strain fields) and external conditions (such as temperature fluctuations of the diamond sample...
and magnetic field gradients due to the applied bias field). Focusing on the parameters intrinsic to diamond, the relevant contributions to T_2^* are (compare to Eqn. 1 in main text)

$$1/T_2^* \approx 1/T_2^*\{NV^{13}\text{C}} \text{N}\} + 1/T_2^*\{NV-N\}(\Omega N) + 1/T_2^*\{NV-NV\}(N) + 1/T_2^*\{\text{strain}\} + ...$$

(S22)

where we added the term $1/T_2^*\{NV-NV\}$ to account for dephasing due to NV-NV dipolar interactions. This dephasing mechanism was neglected in the main text due to the low N-to-NV conversion efficiencies of Samples A, B, and C ($n_{NV} \ll 1$), but its contribution becomes relevant at increased conversion efficiencies intended for optimized diamond magnetometry. To model Eqn. S21 across a range of nitrogen concentrations, we now combine Eqns. S21 and S22 and include the dependence of $T_2^*\{NV-N\}(\Omega N)$ on bath drive strength ΩN (see Eqn. 5 in the main text). We also anticipate optimized diamond samples to be isotopically engineered with $T_2^*\{^{13}\text{C} = 0.01 \%\} \approx 100 \mu s$ (or longer) and to possess strain field gradients comparable to this work’s samples ($T_2^*\{\text{strain}\} \approx 5 \mu s$). N-to-NV conversion efficiencies of up to 30% have been reported for NV ensembles [54] suggesting that $n_{NV} \approx 0.4$ is feasible for an optimized diamond sample. The simulation results for η_N in this parameter regime are summarized in Fig. S10 for SQ (blue) and DQ coherence magnetometry (red) and plotted for spin bath drive strengths $\Omega N = 0$ (solid), 1, and 10 MHz (dashed).

![Figure S10](image-url)

Figure S10. η_N given by Eqn. S21, which is proportional to the NV ensemble volume-normalized magnetic field sensitivity, as a function of nitrogen ($P1$) center concentration $[N]$ for SQ (blue) and DQ (red) magnetometry with spin bath drive strengths $\Omega N = 0$ (solid), 1, and 10 MHz (dashed). Lower values correspond to higher sensitivities and vice versa. For the simulation we combine Eqns. S21 and S22 with the following parameters: $T_2^*\{^{13}\text{C} = 0.01 \%\} \approx 100 \mu s$, $T_2^*\{\text{strain}\} \approx 5 \mu s$, $T_2^*\{NV-N\}$ is given by Eqn. 5 of the main text, $n_{NV} = 0.4$, and $T_2^*\{NV-NV\}(N) = (A_{NV-NV} \cdot n_{NV} \cdot [N]/4)^{-1}$. Here, $A_{NV-NV} \approx 2A_{NV-N} \approx 2\pi \times 33 \text{kHz/ppm}$ due to the twice higher spin multiplicity of the NV centers [49, Ch. III and IV], and the factor 1/4 accounts for the fraction of NV centers used for sensing when all four NV orientations are distinguished. In this instance and assuming perfect optical initialization of NV centers, 3/4 of the NV centers are in the $m_s = 0$ spin state and do not contribute to dephasing during the sensing sequence. Grey shaded regions indicate approximate improvements in sensitivity for DQ magnetometry with drive over SQ magnetometry alone.

Without spin bath drive applied ($\Omega N = 0$) and at low nitrogen concentrations ($[N] \lesssim 1 \text{ ppm}$), η_N in Eqn. S21 is larger (i.e., sensitivity is reduced) for SQ magnetometry due to the T_2^*-limit imposed by strain gradients. In this lower nitrogen regime, working in the DQ basis leads to substantial improvements in sensitivity (i.e., smaller values and thus higher sensitivity). At higher nitrogen concentrations ($[N] \gtrsim 1 \text{ ppm}$), dipolar interactions with the spin bath dominate NV dephasing, strain contributions become negligible, and DQ coherence approaches a $\sqrt{2}$ enhancement in sensitivity over SQ coherence measurements. Note that the crossover between the low and high nitrogen regime is set by the strain contributions to T_2^* (here $\approx 5 \mu s$) and lower (higher) strain contributions shift the crossover to lower (higher) nitrogen concentrations.

With spin bath drive applied, however, we find that additional gains in sensitivity are obtained for both SQ and DQ coherence measurements. The largest improvements for η_N are obtained when DQ coherence measurements are employed at high spin bath drive strengths (1 – 10 MHz) and for an optimal nitrogen regime of 1 – 100 ppm. In practice, we expect the 1 – 10 ppm nitrogen regime to be optimal when all parameters relevant for magnetic sensing are considered. Herein we discuss additional parameters only qualitatively: i) The necessary Rabi frequency for effective spin bath driving increases linearly with nitrogen concentration, meaning the required RF power increases quadratically. Spin bath driving at high nitrogen concentrations becomes thus increasingly more challenging. ii)
Samples A, B, and C in the main text were selected to have a predominately electronic nitrogen (P1) spin bath. The incorporation of high nitrogen concentrations in diamond, however, can lead to a larger variety of nitrogen-related spin species in the bath, which include nitrogen-clusters, NV0, and NVH defects (for example see Refs. [72–74] and therein). A more diverse spin bath severely increases the complexity of the bath drive, eventually rendering it impractical. Finally, iii) there are indications that diamond samples with a high nitrogen content exhibit a larger fraction of NV0 centers. In such samples, the NV$^-$ measurement contrast C (see Eqn. S20) and, thus magnetic sensitivity, is diminished.

Summarizing, our analysis suggests that the 1–10 ppm nitrogen regime is optimal for high sensitivity magnetometry using NV ensembles but further work is required to quantitatively account for all parameters relevant for sensing. Note that the 2×, 4×, and 6× enhancement in sensitivity indicated in Fig. S10 for DQ with drive over SQ magnetometry alone, corresponds to a 4×, 16×, and 36× reduction in measurement time, respectively; and even larger relative enhancements in sensitivity should be realized when accounting for the experimental dead time τ_D in NV ensemble experiments.

XIII. DEPHasing CHANNELS PER SAMPLE

Table S3. NV spin ensemble dephasing mechanisms for Sample A. Individual contributions to dephasing are determined using the estimated/calibrated values described in the main text and Supplement (column 2). The data show good agreement between calculated and measured total dephasing times $T^{*}_{2, SQ}$ and $T^{*}_{2, DQ}$ (last two rows).

Channel	Magnitude	Dephasing 1/µs	Method
strain	0.0028 MHz/µm	0.190	estimate
14N	0.05 ppm	0.0029	dipolar estimate
13C	0.01%	0.01	calibration
magnetic field gradient @ 20 G	0.000056 MHz/G	0.00112	estimate
total SQ	0.2035	4.9	5 – 12 µs (measured)
total DQ ×2 (no strain)	0.014	71	68 µs (measured)

Table S4. NV spin ensemble dephasing mechanisms for Sample B. Similar to Sample A. Additionally, spin echo double-electron resonance (SEDOR) measurements were performed to estimate dephasing contributions from individual nitrogen resonance lines (for details see Ref. [31]).

Channel	Magnitude	Dephasing 1/µs	Method
strain	0.0028 MHz/µm	0.190	estimate
14N (allowed)	0.056	18	SEDOR
14N (forbidden)	0.0047	214	SEDOR
13C	0.01%	0.01	calibration
magnetic field gradient @ 85 G	0.000056 MHz/G	0.00474	estimate
total SQ	0.265	3.8	1 – 10 µs (measured)
total DQ ×2 (no strain)	0.076	13.1	13.8 µs (measured)
Table S5. NV spin ensemble dephasing mechanisms for Sample C, similar to Samples A and B.

Channel	Magnitude	Dephasing 1/µs	Dephasing µs	Method
strain	0.0028 MHz/µm	0.140	7	estimate
15N (allowed)	0.59	2	SEDOR	
15N (forbidden)	0.15	7	SEDOR	
14N (5% of N15)	0.0391	26	estimated	
13C	0.05%	0.05	20	calibrated
magnetic field gradient @ 100 G	0.000022 MHz/G	0.0022	446	estimate
total SQ	1.01	1.0	0.3 – 1.2 µs (measured)	
total DQ ×2 (no strain)	0.87	1.1	1.2 µs (measured)	