A novel Field Effect Photodiode to control the output photocurrent and fast optical switching

Foad Sharafi1 · Ali A. Orouji1 · Mohammad Soroosh2

Received: 28 July 2021 / Accepted: 5 February 2022 / Published online: 16 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This paper presents a novel device called Field Effect Photodiode (FEPD) to overcome the inherent drawbacks of PIN Photodiode (PIN-PD) and control the output photocurrent. Also, the proposed PIN-PD can be applied as a fast optical switch that provides a desired $I_{\text{ON}}/I_{\text{OFF}}$ ratio for optical applications in the nanoscale regime. The proposed device combines a Metal Semiconductor Field Effect Transistor (MESFET) and a regular PIN-PD device that can convert the incident light with photon energy greater than the semiconductor’s bandgap to the regulated photocurrent by changing the gates bias which mounted over the absorption region. The significant parameters such: responsivity, output current in both the ON and OFF states, dark current, and $I_{\text{ON}}/I_{\text{OFF}}$ ratio that play key roles in the optical applications have been extracted. To extract and illustrate the electrical and optical results of both the regular PIN-PD and the proposed FEPD in this work, we have used TCAD tools as a semiconductor simulator.

Keywords PIN photodiode · Field effect photodiode · Absorption region · Photon energy · Internal quantum efficiency

1 Introduction
Photodiodes are optoelectronic devices that can absorb light and penetrate the absorbing region. The photon energy greater than the semiconductor’s bandgap energy excites electrons from the valance band to the conduction band, generating electron-hole pairs, and results in the output photocurrent (Chuang 1995; Shaban et al. 2018). For description this mechanism, we should seek some optical and physical phenomena; internal quantum
efficiency, extrinsic absorption mediated by defect, absorption coefficient, photoelectric effect, inter sub-band absorption in quantum well heterostructures, wavelength, intrinsic inter-band absorption in semiconductors, the intensity of incident light, and other phenomena (Bhattacharya 1997).

Regarding the limitation of conventional PIN photodiodes (PIN-PD) in some optical communication applications, we need devices that can work in high-speed switching and high output power (Xu et al. 2019). The PIN-PD was one of the most popular devices before the invention of the uni-traveling carrier photodiode devices (UTC-PD) (Wun et al. 2018; Song and Nagatsuma 2011). It is used for fiber-optic communications (Seeds and Williams 2006; Chattopadhyay 2011) since it has a broad bandwidth of 67 GHz and over 100 GHz. To explain the leak in the regular PIN-PD, we can mention the fact that since both electrons and holes are active carriers and the holes drift at a lower velocity, the main performance of the PIN-PD, such as bandwidth, effected by the velocity of the hole’s drift (Ito et al. 2002, 2004). Thus, it results in an inevitable trade-off between output power and other characteristics (Tucker et al. 1986).

This paper proposes a novel device named Field Effect Photodiode (FEPD) to overcome the weakness of PIN-PD and accurate control of the output photocurrent. Also, the proposed device can be applied as a fast optical switch that provides a desired I_{ON}/I_{OFF} ratio for optical applications in the nanoscale regime. The proposed device combines a Metal Semiconductor Field Effect Transistor (MESFET) and a regular PIN-PD structure (Sheikhian and Sharafi 2019; Raissi and Sheikhian 2008). This paper introduces a novel device with a simple structure and doping concentration that makes it suitable for fabrication by the standard process technology of the regular PIN photodiode and conventional MESFET structures despite two gates over the absorption region for the output current control (Sheikhian 2003, 2007).

2 FEPD structure and modeling

The proposed device structure in this work is generally based on self-aligned n-GaAs as an absorption region material with indium tin oxide (ITO) as Schottky metal gate electrodes. When the surface of the device is illuminated by optical radiation between intervals from 300 nm to 800 nm from an external source, it couples into the device through the transparent ITO metal contact as a Schottky-gate electrode to modulate the electrical and frequency characteristics of the device. Some limitations like increasing the recombination at the surface device lead to decreasing the absorption distance at shorter wavelengths and increasing dark current. Therefore, we tend to use the absorbing materials with bandgaps that are only modestly smaller than the energy of the incident photons to obtain the best efficiency and lower noise. For reaching the best results of the designed device, it should be noted that the detector designs, specifically engineered to ensure from the drift-dominated transport mechanism away from the illuminated surface area, have been demonstrated to improve the short-wavelength performance (Sun et al. 2003). For the combination of the mentioned factors; interested in the use of hetero-junction structure such GaAs/AlGaAs for high-speed detectors systems since mole fractions of Al_{x}Ga_{1-x}As provide a good match to the required bandgap and GaAs/AlGaAs hetero-junction provides acceptable lattice-matched materials either has a larger bandgap as a material in the absorption region as well as good electron transport properties and increasing the rate of the electron-hole pair generation.
To explain the reasons of using Gallium Arsenide as an absorption region material can be referred to the figure of merits this material such as the high electron mobility that enables superior high-frequency operation achieved and favor for using in the fast optical devices such GaAs lasers, Light Emitting Diode, Photodetectors, and Optical switches. Below the n-GaAs layer, we have set a layer of AlGaAs to ensure the separation of the hetero-junction interface from the doped GaAs region (Dagli 2003). This is critical if high electron mobility is to be achieved. To provide the lower parasitic capacitance, we have set SiO$_2$ as a substrate. The structures of the regular PIN photodiode and the proposed devices have illustrated in Fig. 1a and b.

To design the proposed, we have used two semiconductors, GaAs and AlGaAs, because these semiconductors have a direct energy bandgap and do not require phonon interactions (crystal lattice vibrations) for the necessary momentum to absorb photons. The reason for using the hetero-junction GaAs/AlGaAs was to have the highest lattice matching between the two materials. The substrate layer is made of SiO$_2$. The doping densities of the drain and source areas are n$^+$ and p$^+$ with a density of $10^{19}\times cm^{-3}$, respectively, and

![Fig. 1](image)

Fig. 1 a The regular PIN photodiode, b the novel field effect photodiode structures
the absorption region, which is the same as the depletion region, has n-type doping with a lightly doping concentration or intrinsic with a density of $10^{14} \times \text{cm}^{-3}$.

Due to some of the figure of merits of the indium tin oxide (ITO), such: transparent to visible light, relatively high electrical conductivity due to a low electrical resistivity of $\sim 10^{-4} \ \Omega \text{cm}$, a thin film of ITO can have an optical transmittance of greater than 80% (Chen et al. 2013). It can be used as a thin film for glass substrate for glass windows to conserve energy (Kim et al. 1999). We have chosen two transparent ITO Schottky gate electrodes mounted over the absorption region. To ensure the proper Schottky contacts, we have set a 4.67 eV for each contact as a work-function.

In choosing these contacts, it has been taken into account that the Schottky contact has the lowest contact with its substrate and thus increases the response speed of the device in optical applications and fast switching.

The adjacent gate electrode to the drain contact is a Gate- Drain (GD), and the adjacent gate electrode to the source contact is a Gate-Source (GS), respectively. Two gates are in the same length $L_{GD} = L_{GS}$ and are used to control the density of the carriers in the absorption region by changing their biases and polarities. For having the proper performance, both the gates must be located near together for the FEPD. In this paper, we have chosen the FEPD structure like asymmetrical structure, meaning that the source and drain lengths can have an equal length $L_D = L_S$.

3 FEPD simulations and operation modes

To simulate and extract the FEPD parameters, we have used TCAD tools as a semiconductor drift–diffusion solver. Models include Shockley–Read–Hall (SRH), Auger (AUGER), the dependence of the carrier mobility on the doping concentration, Lombardi mobility model (CVT), Bandgap narrowing, Fermi statistic dependence (FERMIDIRAC), and Lateral electric field-dependent mobility. To validate the accuracy of the simulation results, the TCAD simulator (Device Simulator ATLAS 2015) has been calibrated by experimental data (Jiang et al. 2016). We observed that there is a good agreement between the experimental results and the simulation data.

3.1 ON-state

By illuminating the absorption region with visible light with photon energy greater than n-GaAs layer bandgap on top of the FEPD, the absorbed photons transfer energy to the atoms of the radiated n-GaAs layer, moving these holes and electrons carriers to their conduction bands. Once there, the individual carrier may or may not contribute to the current flow (Graeme 1996). Carriers release within the absorption region and produce electron-hole pairs (EHP). By applying $V_D > 0$ while the source is grounded, the FEPD is in the reverse bias. In this case, the width of the depletion region increases, and the electric field causes more electrons to be transported to the drain contact and more holes transported to the source contact.

In the first mode, by biasing the $V_{GS} < 0$ while $V_{GD} > 0$, more generated holes accumulated under the GS contact, and more generated electrons accumulated under the GD contact. Here we have a $p^+-p-n-n^+$ structure and the FEPD works in its ON-state. Hence the magnitude of the output current versus optical wavelength of the FEPD in
its \textit{ON-state} is several orders of magnitude higher than in comparison with the regular PIN-PD, as shown in Fig. 2.

The collected charges at these contacts produce an electric signal in the external circuit. Fig. 3a, b illustrate the energy band diagrams of the regular PIN-PD and FEPD in the ON-state.

3.2 OFF-state

In the second mode, by biasing the $V_{GS} > 0$, $V_{GD} < 0$, $V_{D} > 0$ while the source remains grounded, the width of the depletion region increases due to reverse bias, and the electric field cause more electrons transported to the drain contact and more holes transported to the source contact. But regarding the gates bias; more generated holes accumulated under the GD contact, and more generated electrons accumulated under the GS contact. Here, we have a $p^+\text{-}n\text{-}p^+$ structure and the FEPD works in the \textit{OFF-state}, which considerably decreases the output current magnitude in the defined wavelength interval. Fig. 4 shows the energy band diagrams of the FEPD in the OFF-state.

Figures 5 and 6 illustrate the carrier densities versus device length of the FEPD in both the ON and OFF states, respectively.

According to the simulation results adopted from Fig. 5, the heavily doped regions in the source/drain of the novel FEPD change the potential distribution. Regarding the gates bias in the first mode ($V_{GS} < 0$ and $V_{GD} > 0$), we have a $p^+\text{-}p\text{-}n^+$ structure and the FEPD works in the ON-state. The gates induct a much higher potential barrier in the absorption region by changing the gate bias polarities in the second mode ($V_{GS} > 0$ and $V_{GD} < 0$). Hence, a large temporary reversed-junction and perfect $p^+\text{-}n\text{-}p^+$ structure have formed inside the novel FEPD as illustrated in Fig. 6.

The output current versus optical wavelength in the visible range results of simulating the FEPD in the OFF-state has been demonstrated in Fig. 7.

![Fig. 2 Output current versus optical wavelength of the FEPD in ON-state and the regular PIN-PD](image-url)
Fig. 3 Energy Band Diagrams for both the regular PIN-PD and novel FEPD in ON-state. Curves are extracted along a cutline from drain to source at the center of n-GaAs film. a Novel FEPD, b regular PIN-PD.

Fig. 4 Energy band diagrams for the novel FEPD in OFF-state. Curves are extracted along a cutline at the center of n-GaAs film.
Fig. 5 Carrier density of the novel FEPD. Curves are extracted along a cutline at the center of n-GaAs film in the ON-state.

Fig. 6 Carrier density of the novel FEPD. Curves are extracted along a cutline at the center of n-GaAs film in the OFF-state.

Fig. 7 Output current versus optical wavelength of the FEPD in the OFF-state.
3.3 ION/IOFF ratio

After calculating the ION and IOFF in both ON and OFF modes, we have obtained the main parameter of the proposed device, which has a high ION/IOFF ratio and plays a crucial role in the fast optical switching applications, as shown in Fig. 8.

Table 1 shows the various structures according to gates polarity and work modes for FEPD versus optical wavelength.

Mode	Gate biases	Structure
ON	$V_{GD} = +3 \text{ V}$, $V_{GS} = -3 \text{ V}$	$p^+-p-n-n^+$
OFF	$V_{GD} = -3 \text{ V}$, $V_{GS} = +3 \text{ V}$	$p^+-n-p-n^+$

3.4 Dark current

Dark current is a sum of the various phenomena such as non-radiative currents generated by SRH recombination and band-to-band tunneling current. In some references, the dark current is considered as a leakage current in the absence of light. Fig. 9 shows the value of the dark current relative to the drain voltage for the gate biases, $V_{GS} = +3 \text{ V}$ and $V_{GD} = -3 \text{ V}$, in the off state and without the presence of radiation.

3.5 Spectral response in on and off modes

To better understand the concept of sensitivity of a photodiode, it is necessary to introduce a parameter called the spectral response, which is the change of the output signal as a function of the changes in the wavelength of the input signal. We have demonstrated this parameter according to the wavelength range of the absorbed photon and considering the different applied biases to the gates installed on the absorption region.
A novel Field Effect Photodiode to control the output photocurrent...

The spectral response of the device in the OFF state of the device has shown in Fig. 10 at the wavelength range from $\lambda = 300$ nm to $\lambda = 800$ nm.

Fig. 11 shows the spectral response of the device in the ON state at gates biases $V_{GS} = -3$ V and $V_{GD} = +3$ V at the wavelengths from $\lambda = 300$ nm to $\lambda = 800$ nm.

According to the magnitude of the spectral response in the ON-state and the wavelengths from $\lambda = 300$ nm to $\lambda = 800$ nm, it is observed that the device in the wavelengths below $\lambda = 520$ nm has shown good responses.

3.6 Bandwidth

For indicating the bandwidth of the device, we have simulated the proposed structure in the different values of the gate’s biases from the frequency range of 100 KHz to 100 GHz then the cutoff frequency occurred at about 10 GHz, where it accounts as a bandwidth of the device as mentioned in Fig. 12.
Fig. 11 Spectral response of the device in the ON state

![Spectral response of the device in the ON state](image)

Fig. 12 The device bandwidths in the different values of the gates biases

![Device bandwidths](image)

Table 2 Simulation results and structure details for novel FEPD in ON and OFF states

Quantity	Value
I_{ON} (A)	1.25×10^{-3}
I_{OFF} (A)	2.37×10^{-11}
I_{ON}/I_{OFF}	5.31×10^{7}
Light intensity (W/cm²)	2.6
Wavelength (µm)	$0.3 < \lambda < 0.8$
Source doping	$n^+ = 1 \times 10^{19}$ cm$^{-3}$
Drain doping	$p^+ = 1 \times 10^{19}$ cm$^{-3}$
Absorption region	1×10^{14} cm$^{-3}$
Thickness of n-GaAs film (tGaAs)	20 nm
Thickness of AlGaAs film (tAlGaAs)	80 nm
Thickness of Substrate SiO$_2$ (tSiO$_2$)	200 nm
Absorption region length	150 nm
Total length	270 nm
Internal quantum efficiency	73 %
The structure details and simulation results for the novel FEPD in ON and OFF states have demonstrated in Table 2.

3.7 State-of-the-art comparison

In the final section of this work, we have compared the typical characteristics of the recent published results (Song et al. 2021; Chen et al. 2020; Megherbi et al. 2021) with the proposed device, as shown in Table 3.

4 Conclusions

A competing interests declaration is mandatory for publication in this journal. Please confirm that this declaration is accurate, or provide an alternative. To control output current and fast optical switching of a regular PIN photodiode (PIN-PD), a novel device named Field Effect Photodiode (FEPD) was introduced in this paper. The proposed device can be fabricated by the standard technology of the regular PIN photodiode and conventional MESFET structures despite two Indium tin oxide (ITO) Schottky contact gates over the absorption region. For controlling an output current either properly turning the device off in the visible wavelength interval. The top layer is an n-GaAs that has an Eg = 1.44 eV. Below the n-GaAs layer, we have set a layer of AlGaAs. The GaAs/AlGaAs hetero-junction can provide acceptable lattice-matched materials regarding the larger bandgap for controlling the absorption in the structure as well as good electron transport properties. The simulation with TCAD tools software has been performed to obtain the output parameters in different bias and optical wavelength conditions. The I–V characteristics such as output current versus wavelength, carrier density, Internal Quantum Efficiency, energy band diagrams, ION and IOFF, ION/IOFF ratio, dark current, spectral response for the proposed FEPD and the regular PIN-PD and bandwidth of the device have extracted. The characteristics and the results were compared and shown graphically, then the novel FEPD exhibited good results to control and turn off the device output current. According to the results of simulating, to improve the output parameters; suggestions are provided below:

1. In order to increase the efficiency of the device, which is directly related to the ability to receive incident photons on the surface of the absorption region, it is suggested to use an anti-reflection layer on the surface of the absorption region to receive maximum incident light power and prevent reflection.

2. One of the problems of all electronic and optoelectronic semiconductor devices is the noise caused in the process of mobility and transfer of electrons inside the material or passing from one material to another, which has its effect as heat or decreasing in the linear response of the device. For this device, it is suggested to use an area next to the absorption region as an augmentation or multiplication region, such as avalanche photodiode structures, which have an internal gain based on impact ionization.

3. Proposing to change the molar fraction of binary and ternary semiconductors used in the structure of the device and to obtain the best combination for designing the absorption region that is directly related to the molar mass of the semiconductor and can be an effective parameter. The amount of absorption and reduction of undesirable quantum effects is the light-absorbing layer.
| Device | Wavelength (µm) | Output current (A) | Dark current (A) | Responsivity (A/W) | 3-dB bandwidth (GHz) | Reference |
|------------------------------------|-----------------|--------------------|------------------|--------------------|----------------------|---------------------------|
| Germanium photodetector | 1.55 | 3×10^{-4} | 58×10^{-9} | 0.62 | 33 | Song et al. (2021) |
| InAs quantum dot avalanche photodetectors | 1.31 | Not reported | 1×10^{-10} | 0.234 | 2.26 | Chen et al. (2020) |
| 4H-SiC Photodiode | 0.38 | 6.7×10^{-10} | 38.6×10^{-13} | 0.204 | Not reported | Megherbi et al. (2021) |
| FEPD | 0.8 | 1.3×10^{-3} | 5.3×10^{-14} | 0.103 | 10 | This work |
Therefore, the proposed device can be designed in the new generations of optical digital and analog detectors and control output.

Funding The authors have not disclosed any funding.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

References

Bhattacharya, P.: Semiconductor optoelectronic devices’, 2nd edn. Prentice Hall, Upper Saddle River (1997) Chattopadhyay, G.: Technology, capabilities, and performance of low power terahertz sources. IEEE Trans. Terahertz Sci. Technol. 1, 33–53 (2011). https://doi.org/10.1109/TTHZ.2011.2159561

Chen, Z., et al.: Fabrication of highly transparent and conductive indium-tin oxide thin films with a high figure of merit via solution processing. Langmuir 29(45), 13836–13842 (2013). https://doi.org/10.1021/la4033282

Chen, B., Wan, Y., Xie, Z., Huang, J., Zhang, N., Shang, C., Norman, J., Li, Q., Tong, Y., Lau, K.M., Gossard, A.C., Bowers, J.E.: Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si. ACS Photonics (2020). https://doi.org/10.1021/acsphotonics.9b01709-Chuang, S.L.: Physics of optoelectronic devices’. Wiley, New York (1995)

Dagli, N.: High-speed photonic devices (series in optics and optoelectronics)’. Taylor & Francis, Milton Park (2003)

Device Simulator ATLAS: Silvaco International. Santa Clara (2015). www.silvaco.com

Graeme, J.: Photodiode amplifiers op-amp solutions’. McGraw Hill, New York (1996)

Ito, H., Furuta, T., Hirota, Y., Ishibashi, T., Hirata, A., Nagatsuma, T., Matsuo, H., Moguchi, T., Ishiguro, M.: Photonic millimetre-wave emission at 300 GHz using an antenna-integrated uni-travelling-carrier photodiode’. Electron. Lett. 38, 989–990 (2002). https://doi.org/10.1049/el:20020667

Ito, H., Kodama, S., Muramoto, Y., Furuta, T., Nagatsuma, T., Ishibashi, T.: High-speed and high-output InP-InGaAs untravelling-carrier photodiodes’. IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004). https://doi.org/10.1109/JSTQE.2004.833883

Jiang, J., Xu, Z., Lin, J., Liu, G.L.: Lithography-free, low-cost method for improving photodiode performance by etching silicon nanocones as antireflection layer”. J. Sens. (2016). https://doi.org/10.1155/2016/4019864

Kim, H., Gilmore, C.M., Piqué, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B.: Electrical, optical, and structural properties of indium–tin oxide thin films for organic light-emitting devices. J. Appl. Phys. 86(11), 6451–6461 (1999). https://doi.org/10.1063/1.371708

Megherbi, M.L., Bencherif, H., Dehimi, L., Mallemace, E.D., Rao, S., Pezzimenti, F., Della Corte, F.G.: An efficient 4H-SiC photodiode for UV sensing applications. Electronics 10, 2517 (2021). https://doi.org/10.3390/electronics10202517

Raissi, F., Sheikhian, I.: Nanoscale transistor device with large current handling capability”’, European Patent EP1965437A1 (2008)

Seeds, A.J., Williams, K.J.: Microwave photonics. J. Lightwave Technol. 24, 4628–4641 (2006). https://doi.org/10.1109/JLT.2006.885578

Shaban, M., Zkria, A., Yoshitake, T.: Characterization and design optimization of heterojunction photodiodes comprising n-type ultra-nano-crystalline diamond/hydrogenated amorphous carbon composite and p-type Si. Mater. Sci. Semicond. Process. 86, 115–121 (2018). https://doi.org/10.1016/j.mssp.2018.06.028

Sheikhian, I., Raissi, F.: Simulation results for nanoscale field effect diode. IEEE Trans. Electron. Devices 54(3), 613–617 (2007). https://doi.org/10.1109/TED.2006.890600

Sheikhian, I., Raissi, F.: High-speed digital family using field effect diode’. IET Electron. Lett. 39(4), 345–347 (2003). https://doi.org/10.1049/el:20030251

Sheikhian, I., Sharaﬁ, F.: Improved nanoscale field effect diode. IET Circuits Devices Syst. 13(4), 544–547 (2019). https://doi.org/10.1049/iet-cds.2018.5138

Song, H.J., Nagatsuma, T.: Present and future of terahertz communications’. IEEE Trans. Terahertz Sci. Technol. 1, 256–263 (2011). https://doi.org/10.1109/TTHZ.2011.2159552
Song, J., Yuan, S., Cui, C., Wang, Y., Li, Z., Wang, A.X., Zeng, C., Xia, J.: High-efficiency and high-speed germanium photodetector enabled by multiresonant photonic crystal. Nanophotonics 10(3), 1081–1087 (2021). https://doi.org/10.1515/nanoph-2020-0455

Sun, Y., Campbell, J.C., Wang, S., Beck, A.L., Chen, A., Yulius, A., Woodall, J.M.: Drift-dominated InP photodetectors with high quantum efficiency. In: Proceedings of the international conference on indium phosphide and related materials, pp. 502–505. Piscataway, IEEE (2003). https://doi.org/10.1109/ICIPRM.2003.1205426

Tucker, R.S., Taylor, A.J., Burrus, C.A., Eisenstein, G., Wiesenfeld, J.M.: Coaxially mounted 67 GHz bandwidth InGaAs PIN photodiode. Electron. Lett. 22, 917–918 (1986). https://doi.org/10.1049/el:19860625

Wun, J.M., Wang, Y.W., Shi, J.W.: Ultrafast Uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies. IEEE J. Sel. Top. Quantum Electron. (2018). https://doi.org/10.1109/JSTQE.2017.2741106

Xu, J., Zhang, X., Kishk, A.: Design of high speed InGaAs/InP one-sided junction photodiodes with low junction capacitance. Opt. Commun. 437, 321–329 (2019). https://doi.org/10.1016/j.optcom.2018.12.085

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.