Publication Year	2019
Acceptance in OA@INAF	2020-12-30T17:08:07Z
Title	Investigating the origin of the faint non-thermal emission of the Arches cluster using the 2015-2016 NuSTAR and XMM-Newton X-ray observations
Authors	Kuznetsova, Ekaterina; Krivonos, Roman; Clavel, Maïca; Lutovinov, Alexander; Chernyshov, Dmitry; et al.
DOI	10.1093/mnras/stz119
Handle	http://hdl.handle.net/20.500.12386/29401
Journal	MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Number	484
Investigating the origin of the faint non-thermal emission of the Arches cluster using the 2015–2016 NuSTAR and XMM–Newton X-ray observations

Ekaterina Kuznetsova,1, *Roman Krivonos, 1, *, Maïca Clavel, 2, Alexander Lutovinov, 1,3 Dmitry Chernyshov, 4, JaeSub Hong, 5, Kaya Mori, 6, Gabriele Ponti, 7, John Tomsick 8, and Shuo Zhang 9

1 Space Research Institute of the Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia
2 Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
3 Higher School of Economics, Myasnitskaya 20, 101000 Moscow, Russia
4 I.E. Tamm Theoretical Physics Division of P.N. Lebedev Institute of Physics, Leninskii pr. 53, 119991 Moscow, Russia
5 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
6 Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA
7 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, Garching, D-85748, Germany
8 Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450, USA
9 MIT Kavli Institute, 77 Massachusetts Ave, Cambridge, MA 02139 USA

Accepted 2019 January 4. Received 2018 December 18; in original form 2018 October 23

ABSTRACT

Recent NuSTAR and XMM–Newton observations of the molecular cloud around the Arches stellar cluster demonstrate a dramatic change both in morphology and intensity of its non-thermal X-ray emission, similar to that observed in many molecular clouds of the Central Molecular Zone at the Galactic Center. These variations trace the propagation of illuminating fronts, presumably induced by past flaring activities of Sgr A*. In this paper, we present results of a long NuSTAR observation of the Arches complex in 2016, taken a year after the previous XMM+NuSTAR observations which revealed a strong decline in the cloud emission. The 2016 NuSTAR observation shows that both the non-thermal continuum emission and the Fe Kα 6.4 keV line flux are consistent with the level measured in 2015. No significant variation has been detected in both spectral shape and Fe Kα equivalent width EW_{6.4 keV}, which may be interpreted as the intensity of the Arches non-thermal emission reaching its stationary level. At the same time, the measured 2016 non-thermal flux is not formally in disagreement with the declining trend observed in 2007–2015. Thus, we cannot assess whether the non-thermal emission has reached a stationary level in 2016, and new observations, separated by a longer time period, are needed to draw stringent conclusions. Detailed spectral analysis of three bright clumps of the Arches molecular cloud performed for the first time showed different EW_{6.4 keV} and absorption. This is a strong hint that the X-ray emission from the molecular cloud is a mix of two components with different origins.

Key words: ISM: clouds – X-rays: individual: Arches cluster.

1 INTRODUCTION

The Arches cluster (Cotera et al. 1996; Serabyn, Shupe & Figer 1998) is a massive star cluster, which is located in the Galactic Center (GC) region at the projected angular distance of 28 pc from Sgr A*. The cluster contains more than 160 O-type stars with initial masses larger than 20 M⊙ and its average mass density is \sim 3 \times 10^9 M⊙pc^{-3} (Figer et al. 1999, 2002). The Arches core is about 9′ (∼0.35 pc at 8 kpc) in radius (Figer et al. 1999).

The first X-ray observation of the region around the Arches cluster with Chandra (Yusef-Zadeh et al. 2002) revealed its bright X-ray emission. This emission, characterized by the 6.7 keV Fe line, was detected in the narrow region consistent with the Arches cluster position (hereafter ‘the core’). The thermal emission of the cluster was attributed to the multiple collisions between strong winds of
massive stars (Yusef-Zadeh et al. 2002; Wang, Dong & Lang 2006; Capelli et al. 2011a). In addition to the cluster’s core emission, the extended emission of a different origin, spatially consistent with a nearby molecular cloud, was detected around the cluster (hereafter ‘the cloud’). The observed prominent Fe Kα line and the power-law continuum emission point out to its non-thermal nature (Wang et al. 2006; Tsujimoto, Hyodo & Koyama 2007; Capelli et al. 2011b; Tatischeff, Decourchelle & Maurin 2012; Krivonos et al. 2014, 2017; Clavel et al. 2014).

Two main hypotheses have been developed to explain the non-thermal emission from the Arches ‘cloud’ emission. The first approach implies irradiation of the molecular cloud by an external X-ray source. The possible X-ray sources inside or nearby the cloud have been excluded, based on the required X-ray luminosity (Capelli et al. 2011b) to explain the 6.4 keV line flux (Tatischeff et al. 2012; Krivonos et al. 2014). The sufficient luminosity could be provided by a nearby X-ray source, e.g. 1E1740.7–2942 (Churazov et al. 1993) or with the past activity of Sgr A*, as originally suggested by Sunyaev, Markovitch & Pavlinsky (1993) to explain the fluorescent line emission observed in the giant molecular cloud Sgr B2 in the GC region (see also Koyama et al. 1996; Sunyaev & Churazov 1998; Murakami et al. 2000; Revnivtsev et al. 2004; Terrier et al. 2010; Zhang et al. 2015). The hypothesis of the past Sgr A*’s flaring activity is also supported by the discovery of a propagation of Fe K echos in the Central Molecular Zone (CMZ), where Sgr A* is presumably the source of the illumination on the clouds (Ponti et al. 2010, 2013; Clavel et al. 2013; Ryu et al. 2013; Churazov et al. 2017a,b; Terrier et al. 2018).

Alternatively, a fluorescent emission of the molecular cloud can be a result of bombardment by low-energy cosmic ray (CR) particles (Capelli et al. 2011b; Tatischeff et al. 2012). The steady non-thermal continuum and Fe Kα flux observed in the Arches cloud for a decade was initially considered as a strong evidence for the CR heating of the Arches molecular cloud (Tatischeff et al. 2012). However, a recently discovered time variability of the non-thermal power-law continuum and 6.4 keV line (Clavel et al. 2014), strongly contradicts the CR scenario (see e.g. Dogiel et al. 2014) for a significant fraction of this emission.

Using the 2015 XMM–Newton data set, Krivonos et al. (2017) showed that the Arches cloud experienced a strong emission decrease, along with a significant decrease of the Fe Kα equivalent width (EW). This could indicate either a change in the reflection geometry (illumination of different structures along the line of sight) or that the putative CR component has become more dominant. In any case, the question remains whether the non-thermal continuum and the 6.4 keV line emission will decrease to a zero flux level when the X-ray illuminating front leaves the molecular cloud or if some background CR heating takes place.

As discussed above, the variable component of the Arches complex non-thermal emission is generated by Thomson scattering of X-ray flare photons leaving the Arches cloud complex. Chernyshov et al. (2018) suggested that the other (possibly stationary) component can be caused by either i) Thompson scattering of photons from the same or a different X-ray flare, ii) another molecular cloud complex which is situated at large distance from the Arches cluster and on the same line of sight, or iii) the excitation of CR particles, however more restrictions must be satisfied. The authors argue that in case of a single cloud complex (i) the EW variations are likely associated with iron abundance changes in it during the flare moving across the cloud. For the second case with two different clouds (ii), Chernyshov et al. (2018) calculated the temporal delay of the Compton echo for the first variable component at about 100 yr. This is in agreement with Churazov et al. (2017a) who estimated X-ray flare event with 110 yr age. For the second variable component, the estimated time delay is about 230 yr (Chernyshov et al. 2018). It is more likely that these two components were caused by the different flares rather than the same flare. The suggestion of two different flares are consistent with scenario of two flares of Sgr A* 110 and 240 yr ago (Clavel et al. 2013; Chuard et al. 2018; Terrier et al. 2018).

Changes in the morphology of the Arches cluster cloud are similar to those seen for Sgr B2, where the non-thermal emission likely reaching the background level as well, revealing a substructure of two compact cores and a newly emerging cloud that confirms the propagation of the illuminating front(s) from an X-ray flare (Zhang et al. 2015). These similarities between the Arches cloud emission and GC molecular clouds (Krivonos et al. 2017) support the reflection mechanism of the non-thermal emission.

In this work, we analysed observations of the Arches cluster region with NuSTAR in 2015–2016 and XMM–Newton in 2015, with the aim to monitor the non-thermal emission around the cluster. Additionally, we carried out detailed spectral analysis of the emission clumps detected with XMM–Newton observations in 2015. The paper is structured as follows: in Section 2, we describe observations of the Arches cluster with NuSTAR in 2016 and outline the data analysis; 2016 NuSTAR data analysis morphology and spectral analyses are presented in Section 3; Section 4 contains the analysis of the combined NuSTAR and XMM–Newton 2015–2016 observations. We investigate the substructure of the Arches cloud non-thermal emission revealed by the 6.4 keV line emission clumps observed with XMM–Newton (Section 5). We discuss and summarize the obtained results in Section 6.

2 OBSERVATION AND DATA ANALYSIS

The Arches cluster region was observed in October 2016 during the NuSTAR Legacy survey1 of the Sgr A molecular clouds with a total exposure time of 150 ks. The list of the used NuSTAR observations is shown in Table 1.

Experiment	ObsID	Start Date	Exposure, s
XMM	0762250301	2015-09-27 15:48:39	114000
NuSTAR	40101001002	2015-10-19 06:21:08	107189
	40101001004	2015-10-25 13:56:08	107856
	40202001002	2016-10-28 13:16:08	150856

1https://www.nustar.caltech.edu/page/legacy_surveys
strongly contaminated by photons from the bright X-ray source GX 3+1, which forced us to exclude FPMB data in this work. Fig. 1 shows the FPMA image of the Arches cluster region in the full 3–79 keV energy band. Arches was observed at ~4 distance from the optical axis, which led to a somewhat efficiency decrease, however without a visible distortion of the point spread function (PSF).

It is worth noting that celestial coordinates of each photon registered by NuSTAR are subject to a systematic offset, which can be as high as 14′′ (Mori et al. 2015). We noticed an offset between the cluster’s centroid position and its catalogued coordinates at the level of 3–4′′. Similar to Krivonos et al. (2017), we performed an astrometric correction by shifting coordinates of each photon using a reference position of the Arches core, measured in the first observation of the Arches cluster region using 2D Gaussian model (Clavel et al. 2013). The fitting procedure estimates a spatial scale of the extended emission of the Arches cluster, we added a second 2D Gaussian model to the best-fit model to estimate a spatial extension of the cluster emission compared to that expected from the NuSTAR PSF. SHERPA performs spatial fitting of a data image using a 2D source model convolved with supplied instrumental PSF.

Figure 1. NuSTAR 3–79 keV image in Galactic coordinates of Sgr A molecular clouds region, including the Arches cluster, taken in 2016 (FPMA data only, exposure 150 ks). The extraction of the source and background spectra was done, respectively, in the circle \(R = 50'' \) and annulus \(70'' < R < 130'' \). Solid elliptical sky regions shows positions of selected Sgr A molecular clouds (Clavel et al. 2013). NGP 13 label denotes position of a hard X-ray source detected in the NuSTAR survey of the GC region (Hong et al. 2016). Small solid circle labelled CXOGCS J174555.8–284914 shows the position of corresponding X-ray source (Section 4.1). The image was smoothed using DMIMGADAPT task from CIAO-V.4.9 with the following parameters: tophat kernel, smoothing scales 1–20, the number of scales is 30, the minimum number of counts is 20.

We extracted spectrum of the Arches cluster complex, and corresponding response matrices, using the naproducts task, a part of NuSTAR Data Analysis Software package (NUSTARDAS V1.8.0), built in HEASOFT software (version 6.22). Note that in this paper, we often compare our results with those of Krivonos et al. (2017) who used older HEASOFT version 6.17. We checked that different versions do not introduce strong deviations to the results. The source extraction region was a circle with a radius of 50′′ positioned at the cluster position \(R.A. = 17^h 45^m 50.52^s, \) \(Dec. = -28^\circ 49' 22.41'' \) (Krivonos et al. 2014, 2017). The background spectrum was obtained from the annulus region within the radii range \(R = 70–130'' \) (see Fig. 1), excluding \(R = 15'' \) circular region of the source CXOGCS J174555.8–284914 (Law & Yusef-Zadeh 2004), as described in Section 4.1. The interactive spectral and 2D image analysis were done using XSPEC (Arnaud 1996) and SHERPA (Freeman, Doe & Siemiginowska 2001) tools included, respectively, in HEASOFT 6.22 and CIAO-V.4.9 (Fruscione et al. 2006) software packages.

3 NuSTAR OBSERVATIONS OF THE ARCHES CLUSTER IN 2016

3.1 2D image analysis

Since the Arches cluster demonstrated a strong drop of its non-thermal emission in 2007–2015 (Clavel et al. 2014; Krivonos et al. 2017), one would expect a further fall even below the detection threshold. The main question we address in this section is whether the Arches stellar cluster is still surrounded by the spatially extended emission, previously detected with NuSTAR in 2012–2015 (Krivonos et al. 2014, 2017). The NuSTAR angular resolution of 18″ (FWHM) does not allow us to directly resolve the emission around the cluster’s core. Therefore, we use a simple 2D image analysis with the SHERPA package to estimate a spatial extension of the cluster emission compared to that expected from the NuSTAR PSF.

We first analysed the 2016 NuSTAR 3–79 keV image of the Arches cluster region using 2D Gaussian model \(G1 \) with a fixed 4″ FWHM (PSF smearing effect) and free centre position, representing a point-like X-ray source. The model is represented in the SHERPA notation as \(\text{psf} (\text{gauss2d.G1})^* \text{const2d.bkg} \). where \(G1 \) is a 2D Gaussian, associated with the emission of the stellar cluster, \(\text{const2d.bkg} \) contains exposure map, and \(\text{const2d.bkg} \) component estimates the background count rate, in the assumption of a flat distribution. As shown in Fig. 1, the fitting area was limited by a circle with \(R = 50'' \) around the cluster’s centroid position and the background count rate was estimated in the annulus \(70'' < R < 130'' \) with the same centre position, excluding the circle region with \(R = 15'' \) of X-ray source CXOGCS J174555.8–284914 (Section 4.1). The difference between the 3–79 keV image and the extraction of the source and background spectra was examined, respectively, in HEASOFT 6.22 and CIAO-V.4.9 (Fruscione et al. 2006) software packages.

The fitting procedure estimates a spatial scale of the extended emission of the Arches cluster is not consistent with a point-like X-ray source (Law & Yusef-Zadeh 2004; Wang et al. 2006). To quantitatively estimate the spatial scale of the extended emission of the Arches cluster, we added a second 2D Gaussian model \(G2 \) with a free position and FWHM parameter. The list of free parameters of this new complex model includes the position of \(G1 \), the position and width of \(G2 \), and the flat background level. The extended model provides a good fit to the data, characterized by no strong deviations in the residuals, and fit statistics \(\chi^2 \approx 1 \). The fitting procedure estimates a spatial scale of the extended emission \(G2 \) as being \(32'' \) ± 7″ FWHM, which is significantly larger than the NuSTAR PSF (18″ FWHM). This result indicates that the spatially extended emission of the Arches cluster is still present in 2016. The position of the \(G2 \) extended component is shifted off by 13′′ ± 3″ from the position of the Arches stellar core (\(G1 \)), which also indicates that the extended emission is not associated with the stellar cluster.
3.2 Spectral analysis

As shown in the previous subsection, the extended emission, associated with the non-thermal radiation of the neutral or low-ionization state material of the molecular cloud, is still present around the stellar cluster. For quantitative evaluation, we perform a spectral analysis comparing the recent 2016 NuSTAR observations with previous results from Krivonos et al. (2017) based on the NuSTAR and XMM–Newton data acquired in 2015.

We reduced the 2016 NuSTAR observation of the Arches cluster and extracted source and background spectra from 50° circular and 70–130° annulus regions, respectively, as described in Section 2. The background-subtracted FPMA spectrum of the Arches cluster region is shown in Fig. 2. To fit the spectrum, we applied the same spectral model wabs × (APEC + Gaussian + powerlaw) used in Krivonos et al. (2017), which contains the thermal emission of the stellar cluster described by the collisionally ionized plasma emission model (APEC) and the non-thermal emission of the molecular cloud in the form of power-law and Gaussian 6.4 keV line. The thermal emission is characterized by kT, Z_{\odot}, and I_{K} parameters describing, respectively, the temperature in keV, the metallicity relative to the solar one, and the normalization in units of $10^{-10} \int n_{e} n_{H} dV/(4 \pi D^2)$, where n_{e} and n_{H} are the electron and proton number densities in units of cm$^{-3}$, and D is the cluster distance in cm. The metallicity was fixed at $Z = 1.7Z_{\odot}$ according to Tatischeff et al. (2012). The non-thermal emission is approximated by a powerlaw continuum and Fe 6.4 keV line, represented by a Gaussian with the width fixed at 0.1 keV. All the emission spectral components are subject to interstellar photo-electric absorption modelled with wabs in XSPEC. Due to limited energy response of the NuSTAR below 5 keV, the fitting procedure does not allow us to constrain the absorption, and we fixed it at $N_{H} = 9.5 \times 10^{22}$ cm$^{-2}$ (Tatischeff et al. 2012). The equivalent width (EW) of the 6.4 keV line was estimated with the SHERPA package with respect to the powerlaw component only. The fitting procedure demonstrated a strong correlation between components, causing a degeneracy of model parameters: plasma temperature kT and power-law photon index Γ.

To overcome this, for the following analysis, we fixed the APEC temperature at 2.4 keV, as measured by Krivonos et al. (2017) in 2015 NuSTAR observations. Best-fitting model parameters are listed in Table 2. For comparison with 2015 NuSTAR observations, we included in the table the best-fitting parameters of the same model adopted from Krivonos et al. (2017).

The spectral analysis of the NuSTAR observations of the Arches cluster complex in 2015 and 2016 does not demonstrate strong variations of both thermal emission of the cluster and non-thermal emission of the surrounding molecular cloud. The main parameters of the non-thermal emission, power-law slope and normalization, and EW of the iron 6.4 keV line, are consistent within uncertainties between the observations. We conclude that further observations of the Arches cluster region are needed to confirm or deny the stationary level of the Arches cloud non-thermal emission.

4 THE COMBINED 2015–2016 DATA SET

4.1 2D image analysis

Assuming that the morphology of the Arches extended emission has not significantly changed since 2015 (which is confirmed by spectral analysis, see previous section), we combined the NuSTAR observations from 2015 and 2016 into one data set, producing mosaic images in three energy bands: 3–79 keV, 3–10 keV and 10–20 keV, shown in Fig. 3. The full 3–79 keV band mosaic image reveals both the emission of the stellar cluster and the extended emission. The surface brightness distribution of the Arches in the 3–10 keV band is dominated by the stellar cluster. Finally, the hard 10–20 keV band highlights the distribution of the non-thermal emission around the Arches cluster.

We then repeated the 2D image analysis on the combined NuSTAR mosaic images, in order to better determine properties of the extended emission. The best-fit model and residuals of the fit for 3–79 keV energy band image are shown in Fig. 4. The residual image shows small-scale fluctuations with amplitude an order of magnitude less than the input 3–79 keV NuSTAR mosaic image. The positions of the residual fluctuations are spatially consistent with the 6.4 keV Arches cloud clumps described in Section 5. Note that we excluded the G1 Gaussian model from the fitting procedure in the 10–20 keV band due to negligible contribution of the thermal emission from the stellar cluster at energies above 10 keV. The best-fitting model parameters are shown in Table 3. In all three bands, the spatial size of the G2 component is larger than the NuSTAR PSF, which confirms the presence of the extended emission around the cluster above 10 keV. We checked that the centroid position of

![Figure 2](https://example.com/figure2.png)

Figure 2. The Arches cluster NuSTAR 2016 spectrum extracted from the 50° circle region around the cluster (detector module A only). Solid, dashed, dotted, and dash–dotted lines are the total model (see Table 2), thermal APEC, Fe Kα line, and non-thermal power-law components respectively.

Parameter	Unit	2015 yr	2016 yr	2015 & 2016
N_{H}	10^{22} cm$^{-2}$	9.5 (fixed)	9.5 (fixed)	9.5 (fixed)
kT	keV	2.4$^{+1.3}_{-0.4}$	2.4 (fixed)	2.4 (fixed)
I_{K}	see Section 3.2	9.2 ± 5.3	8.4$^{+2.1}_{-4.4}$	9.1$^{+1.2}_{-1.4}$
$\Delta E_{6.4 keV}$	keV	0.1 (fixed)	0.1 (fixed)	0.1 (fixed)
$E_{6.4 keV}$	keV	6.3 ± 1.1	6.3 ± 0.3	6.3 ± 0.1
$F_{6.4 keV}$	10^{-6} ph cm$^{-2}$ s$^{-1}$	2.6 ± 1.5	2.5$^{+1.3}_{-1.7}$	2.4 ± 1.2
$EW_{6.4 keV}$	eV	450 ± 150	580 ± 250	540 ± 140
Γ	2.4$^{+0.6}_{-0.3}$	2.7$^{+0.4}_{-0.5}$	2.6 ± 0.2	
$F_{3-20 keV}^{\text{pow}}$	10^{-13} erg cm$^{-2}$ s$^{-1}$	5.6$^{+1.2}_{-0.9}$	4.4$^{+2.1}_{-3.1}$	5.8 ± 0.8
χ^2/d.o.f.	0.97/364	0.82/204	0.91/574	
Investigating the Arches cluster non-thermal emission

Figure 3. The NuSTAR mosaic images of the Arches cluster region 2015–2016 in 3–79 keV (left), 3–10 keV (centre), and 10–20 keV (right) energy bands. The images are corrected for the exposure and adaptively smoothed with *dmimgadapt* task from CIAO-V.4.9 using a tophat kernel with parameters as for Fig. 1. The sky grid indicates Galactic coordinates in degrees. The solid circle with the radius of 15″ shows the position of the Arches stellar cluster. The 15″ dashed circle denotes the position of the hard X-ray point source CXOGCS J174555.8–284914.

Figure 4. An example of 2D fitting procedure of the Arches cluster mosaic image. Small and large solid regions are G1 and G2 components of the best-fit Gaussian model with central positions and FWHM radii listed in Table 3, respectively. The fitting Zarea constrained by the \(R = 50″ \) circle region (large dashed circle) with excluded \(R = 15″ \) region of the source CXOGCS J174555.8–284914 (small dashed circle). a) The 3–79 keV NuSTAR mosaic image. b) The Best-fit spatial model of the Arches cluster complex in 3–79 keV energy band with two gaussians G1 and G2 convolved with the NuSTAR PSF. c) The same as plot b, but not convolved with the PSF. d) The residuals after subtracting best-fitting model smoothed with a tophat kernel (\(R = 3 \) px).

Table 3. The 2D-fitting procedure best-fit parameters with the 1σ errors of the 50″ central region of the Arches cluster for the 3–79, 3–10, and 10–20 keV energy bands, based on 2015–2016 data.

Parameter	3–79 keV	3–10 keV	10–20 keV
Centre RA (J2000)	17:45:50.52	17:45:50.54	
Centre Dec (J2000)	−28:49:22.39	−28:49:22.35	
FWHM	4″ (fixed)	4″ (fixed)	
Norm. \(\times 10^{-3} \)	3.7 ± 0.5	3.6 ± 0.5	
Cloud (2D Gaussian, G2)			
Centre RA (J2000)	17:45:51.47	17:45:51.35	17:45:52.05
Centre Dec (J2000)	−28:49:30.76	−28:49:29.71	−28:49:31.72
FWHM	41″.9 ± 3″.5	37″.5 ± 3″.5	61″.0 ± 14.1
Norm. \(\times 10^{-6} \)	63.8 ± 11.8	67.0 ± 15.2	6.1 ± 1.7

The extended G2 component in the 3–10 keV and 10–20 keV bands are consistent with each other within 3σ confidence interval, which points out to the same extended component detected in the soft and the hard energy bands, respectively. Note the G2 component is more extended in the 10–20 keV band compared to the 3–10 keV (see Table 3). This is mainly caused by lower statistics of the Arches non-thermal emission above 10 keV and nearby image fluctuations probably associated with the systematic noise. To estimate the level of the systematics, we analysed the source-free region of the 10–20 keV image and found that the relative non-statistical fluctuations can be as high as ∼15 per cent.

Fig. 3 also reveals an X-ray excess located ∼1′ to the east of the cluster, clearly seen in the full 3–79 keV and hard 10–20 keV band images. Its centroid position \(R.A. = 17^{h}45^{m}56.0^{s}, Dec. = -28^{\circ}49^{\prime}16.4^{\prime\prime} \) is consistent within 3σ uncertainty with the position of the X-ray source CXOGCS J174555.8–284914 (Yusef-Zadeh
et al. 2002; Law & Yusef-Zadeh 2004), as identified with the SIMBAD astronomical database (Wenger et al. 2000). The source, also labelled as A4 in Yusef-Zadeh et al. (2002), is highly absorbed ($N_{\mathtt{H}} \sim 4 \times 10^{23} \text{ cm}^{-2}$) and has a hard power-law like spectrum with a peak near the 6.4 keV Fe line (Law & Yusef-Zadeh 2004). To avoid a possible contribution from this source to the background count rate assessment, we excluded a 15′′ circular region around it from the spatial and spectral analysis.

4.2 Spectral analysis

To better estimate the model parameters, we simultaneously fitted the 2015 and 2016 data sets for the following spectral analysis. The last column of Table 2 shows the results of the fitting procedure with the same model used in Section 3.2, and Fig. 5 demonstrates the combined spectral fit. The best-fitting model parameters of the data sets are in general agreement with individual NuSTAR observations in 2015 and 2016.

To extend a spectral coverage to the low energies, and to determine the total line-of-sight absorption column density $N_{\mathtt{H}}$, we added spectrum based on XMM–Newton observation carried out on 27th September 2015 (Table 1), extracted from the same 50′′ circular region (Krivonos et al. 2017). The combined 2015 XMM–Newton and 2015–2016 NuSTAR broad-band spectrum of the Arches cluster region is shown in Fig. 6. The best-fitting model parameters with the free absorption parameter are listed in Table 4. The $N_{\mathtt{H}}$ value was determined as $(9.3 \pm 0.5) \times 10^{22} \text{ cm}^{-2}$, which is consistent with $N_{\mathtt{H}} = (9.5 \pm 0.3) \times 10^{22} \text{ cm}^{-2}$ measured by Tatischeff et al. (2012). The joint fit gives a solid measurement of the power-law $\Gamma = 2.21 \pm 0.15$ up to 30–40 keV, which is in agreement within 1σ uncertainty with $\Gamma = 2.03 \pm 0.16$ measured by Krivonos et al. (2017).

To describe the Arches non-thermal continuum in the combined 2015 XMM–Newton and NuSTAR spectrum, additionally to a simple power-law model, Krivonos et al. (2017) also applied CR-induced emission model developed by Tatischeff et al. (2012) and self-consistent X-ray reflection model REFLIONX (Ross & Fabian 2005). We checked that adding 2016 NuSTAR data set to the joint 2015 XMM–Newton and NuSTAR fit allows to better constrain the parameters of these models; however, the improvements are still not enough to significantly confirm or rule out either of them. For simplicity, we do not list the best-fitting results of physically motivated spectral models in this paper.

5 6.4 keV Clumps of the Arches Cloud

The broad-band NuSTAR spectral analysis of the Arches non-thermal X-ray emission has been previously performed in a wide circular region covering the stellar cluster itself and surrounding molecular cloud (see Sections 3 and 4, Krivonos et al. 2014, 2017). Other studies, mainly based on XMM–Newton observations, used an elliptical region excluding the stellar cluster (see ellipse parameters...
Investigating the Arches cluster non-thermal emission

Figure 7. The 6.4 keV (left) and 6.7 keV (right) line flux mosaic images constructed, respectively, in the 6.32–6.48 and 6.62–6.78 keV energy bands (XMM–Newton, 2015, Krivonos et al. 2017). The maps are continuum-subtracted and shown in Galactic coordinates. The solid ellipses represent the source spectrum extraction regions of the Arches cloud clumps. The cluster core emission bright in 6.7 keV line is shown by the dashed ellipse. The small dashed circle ($R = 15''$) indicates the position of the hard X-ray source CXOGCS J174555.8–284914 (Yusef-Zadeh et al. 2002; Law & Yusef-Zadeh 2004). The large dashed circle region ($R = 50''$) shows the source spectrum extraction region of the Arches cluster non-thermal emission (see Section 2). The images are adaptively smoothed using the DMIMGADAPT task from CIAO-V.4.9 with the following parameters: tophat kernel, smoothing scales 0.1–5, the number of scales is 10, the minimum number of counts is 20.

Region	RA (J2000)	Dec. (J2000)	Parameters	Area, arcsec2
Clump S	17:45:52.92	−28:50:21.30	26°, 44°, 130°	3556
Clump N	17:45:49.24	−28:48:54.65	20°, 33°, 169°	14371
Clump E	17:45:52.82	−28:49:25.35	13°, 22°, 162°	906
Excluded cluster	17:45:50.47	−28:49:15.70	16°, 29°, 177°	

Note. 1 The surface area of clump N is computed with the cluster region excluded.

in Tatischeff et al. 2012; Clavel et al. 2014; Krivonos et al. 2017). Thus, the spectral extraction region often included the whole Arches non-thermal emission, which was characterized by regular and extended shape, traced by iron 6.4 keV line flux (Tatischeff et al. 2012). Note that integrating the signal over large region may average emission having different trend and/or different origin (see e.g. Clavel et al. 2013). The smaller ellipse which was used in the previous XMM–Newton analysis may still be too large to understand the complexity of the current EW variation. To investigate this, we carried out new analysis of the clumps revealed in the 6.4 keV line using the 2015 XMM–Newton data.

We followed the procedure described in Krivonos et al. (2017) for analysing the XMM–Newton MOS1, MOS2, and PN data and extracted 2–7.5 keV spectra of three clumps S, N, and E (see Fig. 7) within elliptical regions, whose parameters are listed in Table 5. The regions are shown in Fig. 7. Note that for the clump N region we excluded the elliptical region containing the bright 6.7 keV line emission from the Arches cluster core. The spectra of clumps are shown in Fig. 8. Each spectrum was approximated with the XSPEC model $wabs \times (APEC + \text{Gaussian}_2^{6.4 \text{keV}} + \text{powerlaw}) + \text{Gaussian}_2^{6.4 \text{keV}}$, consistent with previous XMM–Newton study of the Arches non-thermal emission by Clavel et al. (2014). The spectral model includes the APEC thermal emission of the astrophysical plasma with $kT = 2.2 \text{keV}$ (chosen to mimic the combination of 1 and 7 keV plasma components in the Galactic center, Clavel et al. 2014), non-thermal power-law continuum with a fixed photon index $\Gamma = 1.6$ and unabsorbed Fe $K\alpha$ 6.4 keV line with a fixed width of 0.01 keV. Following Krivonos et al. (2017) we also added an absorbed Gaussian line at 2.45 keV, presumably belonging to the $K\alpha$ line from He-like Sulfur (S). The strength of photoelectric absorption is freely fitted for each clump individually. The equivalent width of the Gaussian lines was calculated with respect to the power-law component without absorption. The results of the fitting procedure are shown in Table 6.
The spectral properties of N and E emission are similar, including $EW_{6.4 keV}$, which indicates the same origin of the cloud emission. The clump S has the highest flux in the 6.4 keV line and continuum; however, its $EW_{6.4 keV}$ value (570 ± 50 eV) is smaller than for N and E (980 ± 170 eV and 830 ± 200, respectively). From the other side, the clump S has the largest size compared to the others. To estimate the surface brightness, we divided the observed 2–7.5 keV flux of each clump by the corresponding source extraction area as listed in Table 6.

6 DISCUSSION AND SUMMARY

In this paper, we present results of a long NuSTAR (150 ks) observation of the Arches complex in 2016. The complex includes a stellar cluster with a bright thermal ($kT \sim 2$ keV) X-ray emission and a nearby molecular cloud, characterized by an extended non-thermal X-ray continuum and fluorescent Fe Kα 6.4 keV line. Recent NuSTAR and XMM–Newton observations of the Arches non-thermal emission demonstrate a dramatic change both in morphology and intensity, and continuous observations are needed to shed light on the nature of the current low-level emission.

Despite the fast decrease observed in 2007–2015 (Krivonos et al. 2017), the NuSTAR observations in 2016 show that the non-thermal emission is still present around the Arches stellar cluster, as demonstrated by our spectral and spatial analysis. Furthermore, the 3–20 keV flux of the emission in 2016 remains at the same level as measured in 2015 without a significant change in the spectral shape. However, 1-year interval may not be long enough to see a strong flux variation, which is followed from the fact that the measured 2016 non-thermal flux is not in contradiction with the declining trend observed in 2007–2015 (Krivonos et al. 2017). The overall drop of the $EW_{6.4 keV}$ from ~0.9 keV in 2002–2015 to 0.6–0.7 keV in 2015 (Krivonos et al. 2017) has been confirmed at the same level in 2016. These results may indicate that the intensity of the Arches non-thermal emission reached its stationary level. At the same time, the declining trend predicts the 2016 flux at the level of $\Gamma_{20 keV} = 5.2^{+1.1}_{-0.9} \times 10^{-4}$ erg cm$^{-2}$ s$^{-1}$, which is consistent within the errors with our measurement $\Gamma_{2–20 keV} = 4.4^{+2.1}_{-1.2} \times 10^{-3}$ erg cm$^{-2}$ s$^{-1}$ in 2016 (Table 2). Thus, we cannot assess whether the non-thermal emission has reached a stationary level in 2016, and new observations, separated by a longer time period, are needed.

To better constrain the spectral properties of the Arches complex in this state, we constructed its broad-band spectrum using NuSTAR 2015–2016 and XMM–Newton 2015 observations, with the total exposure time of 350 ks and 114 ks, respectively. The joint fit gives a solid measurement of the power-law $\Gamma = 2.21 \pm 0.15$ up to 30–40 keV, which is, however softer than $\Gamma_1 = 2.03 \pm 0.16$ measured by Krivonos et al. (2017) in 2015 with the same XMM–Newton data set.

The rough 2D spatial analysis with NuSTAR shows that the morphology of the non-thermal emission in 2016 is still associated with molecular cloud and is not consistent with the possible emission of the stellar cluster.

Finally, we performed the spectral analysis of three bright Fe Kα line emission clumps of the Arches molecular cloud (Krivonos et al. 2017), based on XMM–Newton observations in 2015. The analysis showed different $EW_{6.4 keV}$ values for clumps S (570 ± 50 eV) and N-E (~900 eV). The clump S also demonstrates a weaker interstellar absorption than two others. This finding confirms that the X-ray emission from the molecular cloud is a combination of two components with different origins. The different EWs of the iron Kα

![Figure 8. The spectra of each clump obtained with XMM–Newton in 2015. Diamonds, circles, and squares represent MOS1, MOS2, and PN data, respectively. The spectra were extracted in the 2–7.5 keV energy range for all clumps except clump E for which energy range was 2–7.3 keV due to low statistics. The solid line represents best-fit model (wabs x (APEC + Gaussian$^{2.4 keV}$ + powerlaw) + Gaussian$^{6.4 keV}$) with the following components: thermal plasma (dashed), Sulfur 2.45 keV, and Fe 6.4 keV line emission (dotted) and non-thermal power-law continuum (dash–dotted).](https://academic.oup.com/mnras/article-lookup/10.1093/mnras/staa057)
line may also be produced by the different reflection geometry of the clumps. Chernyshov et al. (2018) favour the scenario of two Sgr A* flaring events, consistent with different 6.4 keV line EWs found in this work. This is also in agreement with the studies of other molecular clouds in the CMZ, which imply two Sgr A* flares (Clavel et al. 2013; Chuard et al. 2018; Terrier et al. 2018).

Further monitoring observations of the Arches complex are strongly needed to trace the on-going evolution of the clumps and to confirm the reached stationary level of the non-thermal emission of the whole Arches cloud region.

ACKNOWLEDGEMENTS

This work has made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory and funded by National Aeronautics and Space Administration (NASA), and observations obtained with XMM–Newton, an European Space Agency (ESA) science mission with instruments and contributions directly funded by ESA Member States and NASA. The research has made use of the NuSTAR Data Analysis Software jointly developed by the Agenzia Spaziale Italiana (ASI) Science Data Center (ASDC, Italy) and the California Institute of Technology. EK and RK acknowledge support from the Russian Basic Research Foundation (RFBR, grant 16-02-00294). GP acknowledges financial support from the Bundesministerium für Wissenschaft und Technologie/Deutsches Zentrum für Luft- und Raumfahrt (BWMV/DLR, FKZ 50 OR 1604) and the Max Planck Society. DC is supported by the grant RFBR 18-02-00075.

REFERENCES

Arnaud K. A., 1996, in Jacoby G. H., Barnes J., eds, Astronomical Society of the Pacific Conference Series Vol. 101, Astronomical Data Analysis Software and Systems V. Astronomical Society of the Pacific, San Francisco, p. 17

Capelli R., Warwick R. S., Cappelluti N., Gillessen S., Predehl P., Porquet D., Czesla S., 2011a, A&A, 525, L2

Capelli R., Warwick R. S., Porquet D., Gillessen S., Predehl P., 2011b, A&A, 530, A38

Chernyshov D. O., Ko C. M., Krivonos R. A., Dogiel V. A., Cheng K. S., 2018, ApJ, 863, 85

Chuard D. et al., 2018, A&A, 610, A34

Churazov E. et al., 1993, ApJ, 407, 752

Churazov E., Khabibullin I., Sunyaev R., Ponti G., 2017a, MNRAS, 465, 45

Churazov E., Khabibullin I., Sunyaev R., Ponti G., 2017b, MNRAS, 471, 3293

Clavel M., Terrier R., Goldwurm A., Morris M. R., Ponti G., Soldi S., Trap G., 2013, A&A, 558, A32

Clavel M., Soldi S., Terrier R., Tatischeff V., Maurin G., Ponti G., Goldwurm A., Decourchelle A., 2014, MNRAS, 443, L129

Cotera A. S., Erickson E. F., Colgan S. W. J., Simpson J. P., Allen D. A., Burton M. G., 1996, ApJ, 461, 750

Dogiel V. A., Chernyshov D. O., Kiselev A. M., Cheng K.-S., 2014, Astroparticle Physics, 54, 33

Figer D. F. et al., 2002, ApJ, 581, 258

Figer D. F., Kim S. S., Morris M., Serabyn E., Rich R. M., McLean I. S., 1999, ApJ, 525, 750

Freeman P., Doe S., Siemiginowska A., 2001, in Starck J.-L., Murtagh F., 2006, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, SPIE Press, Orlando, Florida, United States. p. 62701V

Harrison F. A. et al., 2013, ApJ, 770, 103

Hong J. et al., 2016, ApJ, 825, 132

Koyama K., Maeda Y., Sonobe T., Takeshima T., Tanaka Y., Yamauchi S., 1996, PASJ, 48, 249

Krivonos R. et al., 2017, MNRAS, 468, 2822

Krivonos R. A. et al., 2014, ApJ, 781, 107

Law C., Yusef-Zadeh F., 2004, ApJ, 611, 858

Madsen K. K., Christensen F. E., Craig W. W., Forster K. W., Gefenstette B. W., Harrison F. A., Miyasaka H., Rana V., 2017, J. Astron. Telescopes, Instrum. Syst., 3, 3

Mori K. et al., 2015, ApJ, 814, 94

Murakami H., Koyama K., Sakano M., Tsujimoto M., Maeda Y., 2000, ApJ, 534, 283

PONTI G., TERRIER R., GOLDWURM A., BELANGER G., TRAP G., 2010, ApJ, 714, 732

TABLE 6. Best-fitting model parameters of three non-thermal emission clumps around the Arches stellar cluster measured with XMM–Newton in 2015. The model is described in XSPEC notation as \(\text{wabs} \times \text{(APEC} + \text{Gaussian}^{6.4\text{keV}} + \text{powerlaw}) + \text{Gaussian}^{6.4\text{keV}} \).

Parameter	Unit	Clump S	Clump N	Clump E
\(N_\text{H}\)	\(10^{22} \text{cm}^{-2}\)	5.5 \(\pm 0.5\)	7.2 \(\pm 1.0\)	8.2 \(\pm 1.1\)
\(I_G\)		0.9 \(\pm 0.5\)	1.7 \(\pm 0.6\)	1.3 \(\pm 0.5\)
\(E_{6.4\text{keV}}\)	keV	2.45 \(\pm 0.01\)	2.46 \(\pm 0.03\)	2.37 \(\pm 0.07\)
\(N_{6.4\text{keV}}\)	\(10^{-6} \text{ph cm}^{-2} \text{s}^{-1}\)	5.3 \(\pm 1.9\)	4.3 \(\pm 2.1\)	4.9 \(\pm 4.0\)
\(E_{2.45\text{keV}}\)	eV	260 \(\pm 40\)	710 \(\pm 150\)	1500 \(\pm 400\)
\(E_{4.2\text{keV}}\)	keV	6.39 \(\pm 0.02\)	6.39 \(\pm 0.03\)	6.35 \(\pm 0.03\)
\(N_{4.2\text{keV}}\)	\(10^{-6} \text{ph cm}^{-2} \text{s}^{-1}\)	2.6 \(\pm 0.4\)	1.4 \(\pm 0.3\)	1.2 \(\pm 0.3\)
\(E_{6.4\text{keV}}\)	eV	570 \(\pm 50\)	980 \(\pm 170\)	830 \(\pm 200\)
\(N_{6.4\text{keV}}\)	\(10^{-5} \text{ph keV}^{-1} \text{cm}^{-2} \text{s}^{-1}\)	9.1 \(\pm 0.8\)	2.9 \(\pm 0.7\)	3.0 \(\pm 0.6\)
\(F_{6.4\text{keV}}\)	\(10^{-13} \text{erg cm}^{-2} \text{s}^{-1}\)	3.35 \(\pm 0.28\)	1.08 \(\pm 0.27\)	1.30 \(\pm 0.22\)
\(S_{6.4\text{keV}}\)	\(10^{-17} \text{erg cm}^{-2} \text{s}^{-1} \text{arcsec}^{-2}\)	9.4 \(\pm 0.8\)	7.5 \(\pm 1.7\)	14.3 \(\pm 2.4\)
\(C\)		1.02 \(\pm 0.05\)	0.72 \(\pm 0.06\)	1.1 \(\pm 0.1\)
\(\chi^2/d.o.f.\)		1.33/151	1.18/54	1.07/53

\(\text{Note. 1) } S_{6.4\text{keV}} = \text{the flux in the 2–7.5 keV band divided on the clump region area. } C \text{ denotes cross-normalization factor between MOS1/MOS2 and PN data.}\)
This paper has been typeset from a \TeX\/\LaTeX\ file prepared by the author.