LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS CONTAINING SQUARE-FREE NUMBERS AND PERFECT POWERS OF PRIME NUMBERS

HELMUT MAIER AND MICHAEL TH. RASSIAS

(Communicated by Matthew A. Papanikolas)

ABSTRACT. We prove a modification as well as an improvement of a result of K. Ford, D. R. Heath-Brown and S. Konyagin concerning prime avoidance of square-free numbers and perfect powers of prime numbers.

1. INTRODUCTION

In their paper [2], K. Ford, D. R. Heath-Brown and S. Konyagin prove the existence of infinitely many “prime-avoiding” perfect k-th powers for any positive integer k.

They give the following definition of prime avoidance: an integer m is called prime-avoiding with constant c, if $m + u$ is a composite for all integers u satisfying

$$|u| \leq c \frac{\log m \log_2 m \log_4 m}{(\log_3 m)^2}.$$

In this paper, we prove the following two theorems:

Theorem 1.1. There is a constant $c > 0$ such that there are infinitely many prime-avoiding square-free numbers with constant c.

Theorem 1.2. For any positive integer k, there are a constant $c = c(k) > 0$ and infinitely many perfect k-th powers of prime numbers which are prime-avoiding with constant c.

2. PROOF OF THEOREM 1.1

We largely follow the proof of [2].

Lemma 2.1. For large x and $z \leq x^{\log_3 x/(10 \log_2 x)}$, we have

$$|\{n \leq x : P^+(n) \leq z\}| \ll \frac{x}{(\log x)^5},$$

where $P^+(n)$ denotes the largest prime factor of a positive integer n.

Proof. This is Lemma 2.1 of [2] (see also [8]).

Received by the editors May 14, 2015 and, in revised form, September 25, 2015 and October 23, 2015.

2010 Mathematics Subject Classification. Primary 11P32.

We denote by $\log_2 x = \log \log x$, $\log_3 x = \log \log \log x$, and so on.

©2016 American Mathematical Society
Lemma 2.2. Let \mathcal{R} denote any set of primes and let $a \in \mathbb{Z} \setminus \{0\}$. Then, for large x, we have

$$|\{p \leq x : p \not\equiv a \pmod{r} \ (\forall r \in \mathcal{R})\}| \ll \frac{x}{\log x} \prod_{p \in \mathcal{R}, p \leq x} \left(1 - \frac{1}{p}\right).$$

Note. Here and in the sequel p will always denote a prime number.

Proof. This is Lemma 2.2 of [2] (see also [4]).

Lemma 2.3. Let $N = \prod_{p \leq x} p$. Then there is $m_0 \in \mathbb{Z}$, such that for all $m \equiv m_0 \pmod{N}$ we have:

$$m + u \text{ is composite for } u \in [-y, y].$$

Proof. The argument for the proof appears in [8].

Proof of Theorem 1.1. We now consider the arithmetic progression

$$(*) \quad m = kN + m_0, \ k \in \mathbb{N}.$$

By elementary methods (see Heath-Brown [6] for references) the arithmetic progression $(*)$ contains a square-free number

$$(1) \quad m \leq N^{3/2+\varepsilon},$$

where $\varepsilon > 0$ is arbitrarily small.

By the prime number theorem, we have

$$(2) \quad N \leq e^{x+o(x)}.$$}

We know that $m + u$ is a composite number for $u \in [-y, y]$ (see [8]). By the estimates (1) and (2), we obtain

$$y \geq c \frac{\log m \log_2 m \log_4 m}{(\log_3 m)^2}$$

for a constant $c > 0$, which proves Theorem 1.1.

3. PRIMES IN ARITHMETIC PROGRESSIONS

The following definition is borrowed from [7].

Definition 3.1. Let us call an integer $q > 1$ a “good” modulus, if $L(s, \chi) \neq 0$ for all characters $\chi \mod q$ and all $s = \sigma + it$ with

$$\sigma > 1 - \frac{C_1}{\log [q(|t| + 1)]}.$$}

This definition depends on the size of $C_1 > 0$.

Lemma 3.2. There is a constant $C_1 > 0$ such that, in terms of C_1, there exist arbitrarily large values of x for which the modulus

$$P(x) = \prod_{p \leq x} p$$

is good.

Proof. This is Lemma 1 of [7].
Lemma 3.3. Let q be a good modulus. Then
\[\pi(x; q, a) \gg \frac{x}{\phi(q) \log x}, \]
uniformly for $(a, q) = 1$ and $x \geq q^D$.
Here the constant D depends only on the value of C_1 in Lemma 3.2.

Proof. This result, which is due to Gallagher [3], is Lemma 2 from [7]. \hfill \Box

4. Congruence conditions for the prime-avoiding number

Let x be a large positive number and y, z be defined as follows:

\[z = x^{c_1 \log_3 x / \log_2 x}, \quad y = c_2 \frac{x \log x \log_3 x}{(\log_2 x)^2}, \]

where c_1, c_2 are positive constants, to be chosen later.

Set $P(x) = \prod_{p \leq x} p$.

We will give a system of congruences that has a single solution m_0, with
\[0 \leq m_0 \leq P(x) - 1 \]
having the property that the interval $[m_0^k - y, m_0^k + y]$ contains only a few prime numbers.

Definition 4.1. We set

\[\mathcal{P}_1 = \{ p : p \leq \log x \text{ or } z < p \leq x/40k \}, \]
\[\mathcal{P}_2 = \{ p : \log x < p \leq z \}, \]
\[\mathcal{U}_1 = \{ u \in [-y, y], u \in \mathbb{Z}, p \mid u \text{ for at least one } p \in \mathcal{P}_1 \}, \]
\[\mathcal{U}_2 = \{ u \in [-y, y] : u \notin \mathcal{U}_1 \}, \]
\[\mathcal{U}_3 = \{ u \in [-y, y] : |u| \text{ is prime} \}, \]
\[\mathcal{U}_4 = \{ u \in [-y, y] : P^+(|u|) \leq z \}, \]
\[\mathcal{U}_5 = \{ u \in \mathcal{U}_3 : p \mid u + 2^k - 1 \text{ for } p \in \mathcal{P}_2 \}. \]

Lemma 4.2. We have
\[\mathcal{U}_2 = \mathcal{U}_3 \cup \mathcal{U}_4. \]

Proof. Assume that $u \in \mathcal{U}_2 \setminus \mathcal{U}_4$. Then by Definition 4.1 there is a prime number $p_0 \in \mathcal{P}_2$ with $p_0 \mid |u|$. Since $u \notin \mathcal{U}_1$, we have $p_0 > x/4$. Thus, there is no prime $p_1 \mid \frac{|u|}{p_0}$, since otherwise
\[|u| \geq p_0 p_1 > \frac{x}{4} \log x > y, \]
a contradiction. Thus $|u| = p_0$ and therefore $u \in \mathcal{U}_3$. \hfill \Box

Lemma 4.3. We have
\[|\mathcal{U}_4| \ll \frac{x}{(\log x)^4}. \]

Proof. This follows from Lemma 2.1. \hfill \Box
A trivial consequence of Lemma 2.2 is the following lemma:

Lemma 4.4. We can choose the constants c_1, c_2 such that

$$|U_6| \leq \frac{x}{30k \log x}.$$

For the next definitions and results we follow the paper [2]. For the convenience of the reader we repeat the explanations of [2].

Let k be odd. For each $u \in U$ associate with u a different prime $p_u \in \left(\frac{x}{40k}, x\right]$ such that $(p_u - 1, k) = 1$ (e.g. one can take $p_u \equiv 2 \pmod{k}$, if $k \geq 3$). Then every residue modulo p_u is a k-th power residue.

Let k be even. There do not exist primes for which every residue modulo p is a k-th power residue.

We maximize the density of k-th power residues by choosing primes p such that $(p - 1, k) = 2$, e.g., taking $p \equiv 3 \pmod{4k}$. For such primes p every quadratic residue is a k-th power residue.

Definition 4.5. Let

$$\tilde{P}_3 = \begin{cases}
\{p : \frac{x}{40k} < p \leq x, p \equiv 2 \pmod{k}\}, & \text{if } k \text{ is odd}, \\
\{p : \frac{x}{40k} < p \leq \frac{x}{2}, p \equiv 3 \pmod{4k}\}, & \text{if } k \text{ is even}.
\end{cases}$$

We now define the exceptional set U_6 as follows:

For k odd we set

$$U_6 = \emptyset.$$

For k even and $\delta > 0$, we set

$$U_6 = \left\{u \in [-y, y] : \left(\frac{-u}{p}\right) = 1 \text{ for at most } \frac{\delta x}{\log x} \text{ primes } p \in \tilde{P}_3 \right\}.$$

Lemma 4.6.

$$|U_6| \ll x^{1/2+2\varepsilon},$$

if δ is sufficiently small.

Proof. Each u may be written uniquely in the form

$$u = s2^a u_1^2 u_2,$$

where $s = \pm 1$, $a \in \{0, 1\}$ and u_2 is odd and square-free.

From $p \equiv 3 \pmod{4k}$, it follows by the law of quadratic reciprocity, that

$$\left(\frac{2}{p}\right) = -1, \quad \left(\frac{-1}{p}\right) = -1.$$

Therefore

$$\left(\frac{-u}{p}\right) = -s(-1)^{\frac{u_2 - 1}{2}} \left(\frac{2^a}{p}\right) \left(\frac{p}{u_2}\right).$$

We consider the sum

$$S = \sum_{u \in U} \left| \sum_{p \in \tilde{P}_3} \left(\frac{-u}{p}\right) \right|^2.$$

Given u_2, there are at most $\sqrt{y/u_2} \leq \sqrt{y}$ choices for u_1.
Each of the eight possibilities for the choices $s \in \{-1, 1\}$, $a \in \{0, 1\}$, $u_2 \equiv 1$ or $3 \pmod{4}$ leads to a coefficient of $\left(\frac{p}{u_2} \right)$ on the right hand side of (*) that is independent of p.

Thus, we have

$$S \ll y^{1/2} \sum_{u_2 \leq y} \left| \sum_{p \in \tilde{P}_3} \left(\frac{p}{u_2} \right) \right|^2 \ll_{\varepsilon} x^{5/2+\varepsilon}$$

by Lemma 2.3 of [2].

If $u \in U_6$, then clearly

$$\left| \sum_{p \in \tilde{P}_3} \left(-\frac{u}{p} \right) \right| \geq \eta \frac{x}{\log x}$$

with $\eta = \eta(k) > 0$.

It follows that $|S| \gg |U_6|(x/\log x)^2$, and consequently that

$$|U_6| \ll \varepsilon x^{1/2+2\varepsilon}.$$
The set of congruences is then defined by
\[(C_4) \quad m_0 \equiv 1 \pmod{p}, \quad p \in \mathcal{P}_4.\]

Lemma 4.10. The congruence systems \((C_1) - (C_4)\) and the condition \(1 \leq m_0 \leq P(x) - 1\) determine \(m_0\) uniquely. We have \((m_0, P(x)) = 1\).

Proof. The uniqueness follows from the Chinese Remainder Theorem. The coprimality follows, since by the definition of \((C_1) - (C_4)\) \(m_0\) is coprime to all \(p\), with \(0 < p \leq x\).

Lemma 4.11. Let \(m \equiv m_0 \pmod{P(x)}\). Then \((m, P(x)) = 1\) and the number
\[m^k + (u - 1)\]
is a composite for all \(u \in [-y, y] \setminus \mathcal{U}_6\).

Proof. For \(u \in \mathcal{U}_1\), there is \(p \in \mathcal{P}_1\) with \(p \mid u\). Therefore, since by Definition 4.9 the system \((C_1)\) implies that \(m_0 \equiv 1 \pmod{p}\), we have
\[m^k + (u - 1) \equiv m_0^k + (u - 1) \equiv 1 + u - 1 \equiv 0 \pmod{p},\]
i.e.,
\[p \mid m^k + (u - 1).\]
For \(u \in \mathcal{U}_3, u \notin \mathcal{U}_5\), there is \(p \in \mathcal{P}_2\) with \(p \mid u + 2^k - 1\).

Since by \((C_2)\) \(m_0 \equiv 2 \pmod{p}\), we have
\[m_0^k + (u - 1) \equiv 2^k - 2^k \equiv 0 \pmod{p},\]
i.e.,
\[p \mid m^k + (u - 1).\]
There is only one remaining case, namely \(u \in \mathcal{U}_7/\mathcal{U}_6\), and one uses \((C_3)\). \(\square\)

5. **Conclusion of the proof of Theorem 1.2**

Now let \(x\) be such that \(P(x)\) is a good modulus in the sense of Definition 3.1. By Lemma 3.2 there are arbitrarily large such elements \(x\). Let \(D\) be a sufficiently large positive integer. Let \(\mathcal{M}\) be the matrix with \(P(x)^{D-1}\) rows and \(U = 2 \lfloor y \rfloor + 1\) columns, with the \(r, u\) element being
\[a_{r,u} = (m_0 + rP(x))^k + u - 1,\]
where \(1 \leq r \leq P(x)^{D-1}\) and \(-y \leq u \leq y\).

Let \(N_0(x, k)\) be the number of perfect \(k\)-th powers of primes in the column
\[C_1 = \{a_{r,1} : 1 \leq r \leq P(x)^{D-1}\}.\]

Since \(P(x)\) is a good modulus, we have by Lemma 3.2 that
\[(5.1) \quad N_0(x, k) \geq C_0(k) \frac{P(x)^{D-1}}{\log(P(x)^{D-1})}.\]

Let \(\mathcal{R}_1\) be the set of rows \(R_1\), in which these powers of primes appear. We now give an upper bound for the number \(N_1\) of rows \(R_r \in \mathcal{R}_1\), which contain primes.

We observe that for all other rows \(R_r \in \mathcal{R}_1\), the element
\[a_{r,1} = (m_0 + rP(x))^k\]
is a prime avoiding \(k\)-th power of the prime \(m_0 + rP(x)\).
Lemma 5.1. For sufficiently small c_2, we have

$$N_1 \leq \frac{1}{2} N_0(x,k).$$

Proof. For all v with $v-1 \in \mathcal{U}_6$, let

$$T(v) = \{ r : 1 \leq r \leq P(x)^{D-1}, m_0 + rP(x) \text{ and } (m_0 + rP(x))^k + v - 1 \text{ are primes} \}.$$ We have

(5.2) $$N_1 \leq \sum_{v \in \mathcal{U}_6} T(v).$$

A standard application of sieves gives

(5.3) $$T(v) \ll P(x)^{D-1} \prod_{x<p \leq P(x)} \left(1 - \frac{1}{p}\right) \prod_{x<p \leq P(x)} \left(1 - \frac{\rho(p)}{p}\right).$$

By Lemma 3.1 of [2], we have

$$\prod_{x<p \leq P(x)} \left(1 - \frac{\rho(p)}{p}\right) \ll_{k,\varepsilon} |v|^{-\varepsilon} \frac{\log x}{\log P(x)}.$$ Lemma 5.1 now follows from (5.2), (5.3) and the bound for $|\mathcal{U}_6|$.

This completes the proof of Theorem 1.2.

Acknowledgement

We would like to thank the referee for very valuable comments which improved the presentation of the paper.

References

[1] Alina Carmen Cojocaru and M. Ram Murty, *An introduction to sieve methods and their applications*, London Mathematical Society Student Texts, vol. 66, Cambridge University Press, Cambridge, 2006. MR2200366 (2006k:11184)

[2] K. Ford, D. R. Heath-Brown, and S. Konyagin, *Large gaps between consecutive prime numbers containing perfect powers*, In: Analytic Number Theory. In honor of Helmut Maier's 60th birthday, (eds. C. Pomerance and M. Th. Rassias), Springer, New York, 2015, pp 83-92.

[3] P. X. Gallagher, *A large sieve density estimate near $\sigma = 1$*, Invent. Math. 11 (1970), 329–339. MR0279049 (43 #4775)

[4] H. Halberstam and H.-E. Richert, *Sieve methods*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1974. London Mathematical Society Monographs, No. 4. MR0424730 (54 #12689)

[5] G. H. Hardy and E. M. Wright, *An introduction to the theory of numbers*, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR568909 (81i:10002)

[6] D. R. Heath-Brown, *The least square-free number in an arithmetic progression*, J. Reine Angew. Math. 332 (1982), 204–220, DOI 10.1515/crll.1982.332.204. MR656864 (83i:10057)

[7] Helmut Maier, *Chains of large gaps between consecutive primes*, Adv. in Math. 39 (1981), no. 3, 257–269, DOI 10.1016/0001-8708(81)90003-7. MR614163 (82g:10061)
[8] R. A. Rankin, *The Difference between Consecutive Prime Numbers*, J. London Math. Soc. **S1-13**, no. 4, 242, DOI 10.1112/jlms/s1-13.4.242. MR1574971

Department of Mathematics, University of Ulm, Helmholtzstrasse 18, 8901 Ulm, Germany

E-mail address: helmut.maier@uni-ulm.de

Department of Mathematics, ETH-Zürich, Rämistrasse 101, 8092 Zürich, Switzerland – and – Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000

E-mail address: michail.rassias@math.ethz.ch, michailrassias@math.princeton.edu