Efficient Online Bandit Multiclass Learning with $\tilde{O}(\sqrt{T})$ Regret

Alina Beygelzimer1, Francesco Orabona2, and Chicheng Zhang3

1Yahoo Research, New York, NY
2Stony Brook University, Stony Brook, NY
3University of California, San Diego, La Jolla, CA

February 28, 2017

Abstract

We present an efficient second-order algorithm with $\tilde{O}(\frac{1}{\eta} \sqrt{T})$ regret for the bandit online multiclass problem. The regret bound holds simultaneously with respect to a family of loss functions parameterized by η, for a range of η restricted by the norm of the competitor. The family of loss functions ranges from hinge loss ($\eta = 0$) to squared hinge loss ($\eta = 1$). This provides a solution to the open problem of (J. Abernethy and A. Rakhlin. An efficient bandit algorithm for \sqrt{T}-regret in online multiclass prediction? In COLT, 2009). We test our algorithm experimentally, showing that it also performs favorably against earlier algorithms.

1 Introduction

In the online multiclass classification problem, the learner must repeatedly classify examples into one of k classes. At each step t, the learner observes an example $x_t \in \mathbb{R}^d$ and predicts its label $\tilde{y}_t \in [k]$. In the full-information case, the learner observes the true label $y_t \in [k]$ and incurs loss $1[\tilde{y}_t \neq y_t]$. In the bandit version of this problem, first considered in [Kakade et al. 2008], the learner only observes its incurred loss $1[\tilde{y}_t \neq y_t]$, i.e., whether or not its prediction was correct. Bandit multiclass learning is a special case of the general contextual bandit learning [Langford and Zhang, 2008] where exactly one of the losses is 0 and all other losses are 1 in every round.

The goal of the learner is to minimize its regret with respect to the best predictor in some reference class of predictors, that is the difference between the total number of mistakes the learner makes and the total number of mistakes of the best predictor in the class. [Kakade et al. 2008] proposed a bandit modification of the Multiclass Perceptron algorithm [Duda and Hart, 1973], called the Banditron, that uses a reference class of linear predictors. Note that even in the full-information setting, it is difficult to provide a true regret bound. Instead, performance bounds are typically expressed in terms of the total multiclass hinge loss of the best linear predictor, a tight upper bound on its number of mistakes.

The Banditron, while computationally efficient, achieves only $O(T^{2/3})$ expected regret with respect to this loss, where T is the number of rounds. This is suboptimal as the Exp4 algorithm of [Auer et al. 2003] can achieve $\tilde{O}(\sqrt{T})$ regret for the 0-1 loss, albeit very inefficiently. [Abernethy and Rakhlin 2009] posed an open problem: Is there an efficient bandit multiclass learning algorithm that achieves expected regret of $\tilde{O}(\sqrt{T})$ with respect to any reasonable loss function?

1beygel@yahoo-inc.com
2francesco@orabona.com
3chichengzhang@ucsd.edu
1\(\tilde{O}(\cdot)\) hides logarithmic factors.
The first attempt to solve this open problem was by Crammer and Gentile [2013]. Using a stochastic assumption about the mechanism generating the labels, they were able to show a $O(\sqrt{T})$ regret, with a second-order algorithm.

Later, Hazan and Kale [2011], following a suggestion by Abernethy and Rakhlin [2009], proposed the use of the log-loss coupled with a softmax prediction. The softmax depends on a parameter that controls the smoothing factor. The value of this parameter determines the exp-concavity of the loss, allowing Hazan and Kale [2011] to prove worst-case regret bounds that range between $O(\log T)$ and $O(T^{2/3})$, again with a second-order algorithm. However, the choice of the smoothing factor in the loss becomes critical in obtaining strong bounds.

The original Banditron algorithm has been also extended in many ways. Wang et al. [2010] have proposed a variant based on the exponentiated gradient algorithm [Kivinen and Warmuth, 1997]. Valizadeh et al. [2011] proposed different strategies to adapt the exploration rate to the data in the Banditron algorithm. However, these algorithms suffer from the same theoretical shortcomings as the Banditron.

There has been significant recent focus on developing efficient algorithms for the general contextual bandit problem (Dudik et al., 2011, Agarwal et al., 2014, Rakhlin and Sridharan, 2016). While solving a more general problem that does not make assumptions on the structure of the reward vector or the policy class, these results assume that contexts or context/reward pairs are generated i.i.d., an assumption we do not make here.

In this paper, we follow a different route. Instead of designing an ad-hoc loss function that allows us to prove strong guarantees, we will propose an algorithm that simultaneously satisfies a regret bound with a strong bound.

2 Definitions and Settings

We first introduce our notation. Denote the rows of a matrix V of V by v_1, v_2, \ldots, v_k. The vectorization of V is defined as $\text{vec}(V) = [v_1, v_2, \ldots, v_k]^T$, which is a vector in \mathbb{R}^{kd}. We define the reverse operation of reshaping a $kd \times 1$ vector into a $k \times d$ matrix by $\text{mat}(V)$, using a row-major order. To simplify notation, we will use V and $\text{vec}(V)$ interchangeably throughout the paper. For matrices A and B, denote by $A \otimes B$ their Kronecker product. For matrices X and Y of the same dimension, denote by $<(X, Y) = \sum_{i,j} X_{i,j} Y_{i,j}$ their inner product. We use $\| \cdot \|$ to denote the ℓ_2 norm of a vector, and $\| \cdot \|_F$ to denote the Frobenius norm of a matrix. We use I_k to denote the vector in \mathbb{R}^k whose entries are all 1s.

We use $\mathbb{E}_{t-1}[-]$ to denote the conditional expectation given the observations up to time $t - 1$ and x_t, y_t, that is, $x_t = \{x_t, y_t, \ldots, x_{t-1}, y_{t-1}, \ldots, x_1, y_1\}$, the set of possible labels. In our setting, learning proceeds in rounds:

For $t = 1, 2, \ldots, T$:

1. The adversary presents an example $x_t \in \mathbb{R}^d$ to the learner, and commits to a hidden label $y_t \in [k]$.
2. The learner predicts a label $\hat{y}_t \sim p_t$, where $p_t \in \Delta^{k-1}$ is a probability distribution over $[k]$.
3. The learner receives the bandit feedback $I[y_t \neq y_t]$.

The goal of the learner is to minimize the total number of mistakes, $M_T = \sum_{t=1}^{T} I[y_t \neq y_t]$. We will use linear predictors specified by a matrix $W \in \mathbb{R}^{k \times d}$. The prediction is given by $W(x) = \arg \max_{i \in [k]} (W x)_i$, where $(W x)_i$ is the ith element of the vector $W x$, corresponding to class i.

A useful notion to measure the performance of a competitor $U \in \mathbb{R}^{k \times d}$ is the multiclass hinge loss

$$\ell(U, (x, y)) := \max_{i \neq y} [1 - (U x)_y + (U x)_i],$$

where $[\cdot]_+ = \max(\cdot, 0)$.

2
3 A History of Loss Functions

As outlined in the introduction, a critical choice in obtaining strong theoretical guarantees is the choice of the loss function. In this section we introduce and motivate a family of multiclass loss functions.

In the full information setting, strong binary and multiclass mistake bounds are obtained through the use of the Perceptron algorithm [Rosenblatt, 1958]. A common misunderstanding of the Perceptron algorithm is that it corresponds to a gradient descent procedure with respect to the (binary or multiclass) hinge loss. However, it is well known that the Perceptron simultaneously satisfies mistake bounds that depend on the cumulative hinge loss and also on the cumulative squared hinge loss, see for example [Mohri and Rostamizadeh, 2013]. Note also that the squared hinge loss is not dominated by the hinge loss, so, depending on the data, one loss can be better than the other.

We show that the Perceptron algorithm satisfies an even stronger mistake bound with respect to the cumulative hinge loss between 1 and 2.

Theorem 1. On any sequence \((x_1, y_1), \ldots, (x_T, y_T)\) with \(\|x_t\| \leq X\) for all \(t \in [T]\), and any linear predictor \(U \in \mathbb{R}^{k \times d}\), the total number of mistakes \(M_T\) of the multiclass Perceptron satisfies, for any \(q \in [1, 2]\),

\[
M_T \leq M_T^{1 - \frac{1}{2}} L_{MH,q}^{-\frac{1}{2}}(U) + \|U\|_F X \sqrt{2} \sqrt{M_T},
\]

where \(L_{MH,q}(U) = \sum_{t=1}^{T} \ell(W, (x_t, y_t))^q\). In particular, it simultaneously satisfies

\[
M_T \leq L_{MH,1}(U) + 2X^2\|U\|_F^2 + X\|U\|_F \sqrt{2L_{MH,1}(U)}
\]

and

\[
M_T \leq L_{MH,2}(U) + 2X^2\|U\|_F^2 + X\|U\|_F \sqrt{2L_{MH,2}(U)}.
\]

For the proof, see Appendix [B]

A similar observation was done by [Orabona et al., 2012] who proved a logarithmic mistake bound with respect to all loss functions in a similar family of functions smoothly interpolating between the hinge loss and the squared hinge loss. In particular, [Orabona et al., 2012] introduced the following family of binary loss functions

\[
\ell_\eta(x) := \begin{cases}
1 - \frac{2}{2-\eta} x + \frac{\eta}{2-\eta} x^2, & x \leq 1 \\
0, & x > 1.
\end{cases}
\]

where \(0 \leq \eta \leq 1\). Note that \(\eta = 0\) recovers the binary hinge loss, and \(\eta = 1\) recovers the squared hinge loss. Meanwhile, for any \(0 \leq \eta \leq 1\), \(\ell_\eta(x) \leq \max\{\ell_0(x), \ell_1(x)\}\), and \(\ell_\eta\) is an upper bound on 0-1 loss: \(\mathbf{1}\{x < 0\} \leq \ell_\eta(x)\). See Figure [4] for a plot of the different functions in the family.

Here, we define a multiclass version of the loss in (2) as

\[
\ell_\eta(U, (x, y)) := \ell_\eta \left((Ux)_y - \max_{i \neq y} (Ux)_i \right).
\]

Hence, \(\ell_0(U, (x, y)) = \ell(U, (x, y))\) is the classical multiclass hinge loss and \(\ell_1(U, (x, y)) = \ell^2(U, (x, y))\) is the squared multiclass hinge loss.

Our algorithm has a \(\tilde{O}(\frac{1}{\eta} \sqrt{T})\) regret bound that holds simultaneously for all loss functions in this family, with \(\eta\) in a range that ensure that \((Ux)_i - (Ux)_j \leq \frac{2-\eta}{\eta^2}, i, j \in [k]\). We also show that there exists a setting of the parameters of the algorithm that gives a mistake upper bound of \(\tilde{O}((L^\ast T)^{1/3} + \sqrt{T})\), where \(L^\ast\) is the cumulative multiclass hinge loss of the competitor, which is never worse that the best bounds in [Kakade et al., 2008].
4 Second Order Banditron Algorithm

This section introduces our algorithm for bandit multiclass online learning, called Second Order Banditron Algorithm (SOBA), described in Algorithm 1.

SOBA makes a prediction using the \(\gamma \)-greedy strategy: At each iteration \(t \), with probability \(1 - \gamma \), it predicts \(\hat{y}_t = \arg \max_{i \in [k]} (W_t x_t)_i \); with the remaining probability \(\gamma \), it selects a random action in \([k]\).

As discussed in Kakade et al. [2008], randomization is essential for designing bandit multiclass learning algorithms. If we deterministically output a label and make a mistake, then it is hard to make an update since we do not know the identity of \(y_t \). However, if randomization is used, we can estimate \(y_t \) and perform online stochastic mirror descent type updates [Bubeck and Cesa-Bianchi, 2012].

SOBA keeps track of two model parameters: cumulative Perceptron-style updates \(\theta_t = - \sum_{s=1}^{t} n_s g_s \in \mathbb{R}^{kd} \) and cumulative corrected data covariance matrix \(A_t = a I + \sum_{s=1}^{t} n_s z_s z_s^T \in \mathbb{R}^{kd \times kd} \). The classifier \(W_t \) is computed by matricizing over the matrix-vector product \(A_{t-1}^{-1} \theta_{t-1} \in \mathbb{R}^{kd} \). The weight vector \(\theta_t \) is standard in designing online mirror descent type algorithms [Shalev-Shwartz, 2011, Bubeck and Cesa-Bianchi, 2012]. The matrix \(A_t \) is standard in designing online learning algorithms with adaptive regularization [Cesa-Bianchi et al., 2005, Crammer et al., 2009, Duchi et al., 2011, Orabona et al., 2015]. The algorithm updates its model \((n_t = 1)\) only when the following conditions hold simultaneously: (1) the predicted label is correct (\(\tilde{y}_t = y_t \)), and (2) the “cumulative regularized negative margin” \(\sum_{s=1}^{t-1} n_s m_s + m_t \) is positive if this update were performed. Note that when the predicted label is correct we know the identity of the true label.

As we shall see, the set of iterations where \(n_t = 1 \) includes all iterations where \(\tilde{y}_t = y_t \neq \hat{y}_t \). This fact is crucial to the mistake bound analysis. Furthermore, there are some iterations where \(\tilde{y}_t = y_t = \hat{y}_t \) but we still make an update. This idea is related to “online passive-aggressive algorithms” [Crammer et al., 2006, 2009] in the full information setting, where the algorithm makes an update even when it predicts correctly but the margin of the prediction is too small.

Let’s now describe our algorithm more in details. Throughout, suppose all the examples are \(\ell_2 \)-bounded: \(\|x_t\|_2 \leq X \).

As outlined above, we associate a time-varying regularizer \(R_t(W) = \frac{1}{2} \|W\|_{A_{t-1}}^2 \), where \(A_t = a I + \sum_{s=1}^{t} n_s z_s z_s^T \) is a \(kd \times kd \) matrix and

\[
z_t = \sqrt{p_{t,y_t}} g_t = \frac{1}{\sqrt{p_{t,y_t}}} (e_{\tilde{y}_t} - e_{y_t}) \otimes x_t.
\]

Note that this time-varying regularizer is constructed by scaled versions of the updates \(g_t \). This is critical, because in expectation this becomes the correct regularizer. Indeed, it is easy to verify that, for any \(U \in \mathbb{R}^{kd} \),
Algorithm 1 Second Order Banditron Algorithm (SOBA)

Input: Regularization parameter $a > 0$, exploration parameter $\gamma \in [0,1]$.

1: Initialization: $W_1 = 0$, $A_0 = aI$, $\theta_0 = 0$
2: for $t = 1, 2, \ldots, T$ do
3: Receive instance $x_t \in \mathbb{R}^d$
4: $\hat{y}_t = \arg \max_{i \in [k]} (W_t x_t)_i$
5: Define $p_t = (1 - \gamma)e_{\hat{y}_t} + \frac{\gamma}{k} 1_k$
6: Randomly sample \hat{y}_t according to p_t
7: Receive bandit feedback $I[\hat{y}_t \neq y_t]$
8: Initialize update indicator $n_t = 0$
9: if $\hat{y}_t = y_t$ then
10: $\bar{y}_t = \arg \max_{i \in [k] \setminus \{y_t\}} (W_t x_t)_i$
11: $\varphi_t = \frac{1}{p_{\bar{y}_t}} (e_{\bar{y}_t} - e_{y_t}) \otimes x_t$
12: $z_t = \sqrt{p_m \varphi_t}$
13: $m_t = \frac{(W_t, z_t)^2 + 2(W_t, g_t)}{1 + z_t^T A_{t-1}^{-1} z_t}$
14: if $m_t + \sum_{s=1}^{t-1} n_s m_s \geq 0$ then
15: Turn on update indicator $n_t = 1$
16: end if
17: end if
17: Update $A_t = A_{t-1} + n_t z_t z_t^T$
19: Update $\theta_t = \theta_{t-1} - n_t g_t$
20: Set $W_{t+1} = \text{mat}(A_t^{-1} \theta_t)$
21: end for

Remark: matrix A_t is of dimension $k d \times k d$, and vector θ_t is of dimension $k d$; in line 20, the matrix multiplication results in a $k d$ dimensional vector, which is reshaped to matrix W_{t+1} of dimension $k \times d$.

In words, this means that in expectation the regularizer contains the outer products of the updates, that in turn promote the correct class and demotes the wrong one. We stress that it is impossible to get the same result with the estimator proposed in [Kakade et al. 2008]. Also, the analysis is substantially different from the Online Newton Step approach [Hazan et al. 2007] used in [Hazan and Kale 2011].

In reality, we do not make an update in all iterations in which $\hat{y}_t = y_t$, since the algorithm need to maintain the invariant that $\sum_{s=1}^{t-1} n_s m_s \geq 0$, which is crucial to the proof of Lemma 2. Instead, we prove a technical lemma that gives an explicit form on the expected update $n_t g_t$ and expected regularization $n_t z_t z_t^T$.

Define

$$q_t := 1 \left[\sum_{s=1}^{t-1} n_s m_s + m_t \geq 0 \right],$$

$$h_t := I[\hat{y}_t \neq y_t] + q_t I[\hat{y}_t = y_t].$$

Lemma 1. For any $U \in \mathbb{R}^{k d}$,

$$\mathbb{E}_{t-1} \left[n_t \langle U, g_t \rangle \right] = h_t \langle U, (e_{y_t} - e_{\bar{y}_t}) \otimes x_t \rangle,$$

$$\mathbb{E}_{t-1} \left[n_t (U, z_t)^2 \right] = h_t \langle U, (e_{y_t} - e_{\bar{y}_t}) \otimes x_t \rangle^2.$$
The proof of Lemma 1 is deferred to the end of Subsection 4.1.

Our last contribution is to show how our second order algorithm satisfies a mistake bound for an entire family of loss functions. Finally, we relate the performance of the algorithm that predicts \hat{y}_t to the γ-greedy algorithm.

Putting all together, we have our expected mistake bound for SOBA.

Theorem 2. SOBA has the following expected upper bound on the number of mistakes, M_T, for any $U \in \mathbb{R}^{k \times d}$ and any $0 < \eta \leq \min(1, \frac{2}{\max\{||u_i||_2+1\}})$,

$$E[M_T] \leq L_\eta(U) + \frac{a\eta}{2-\eta}||U||_F^2 + \frac{k}{\gamma\eta(2-\eta)}\sum_{t=1}^{T}E[z_t^T A_t^{-1} z_t] + \gamma T,$$

where $L_\eta(U) := \sum_{t=1}^{T} \ell_\eta(U, (x_t, y_t))$ is the cumulative η-loss of the linear predictor U, and $\{u_i\}_{i=1}^{k}$ are rows of U.

In particular, setting $\gamma = O(\sqrt{\frac{\eta d}{T} \ln T})$ and $a = X^2$, we have

$$E[M_T] \leq L_\eta(U) + O\left(X^2||U||_F^2 + \frac{k}{\eta} \sqrt{dT \ln T}\right).$$

Note that, differently from previous analyses [Kakade et al. 2008, Crammer and Gentile 2013, Hazan and Kale 2011], we do not need to assume a bound on the norm of the competitor, as in the full information Perceptron and Second Order Perceptron algorithms. In Appendix A, we also present an adaptive variant of SOBA that sets exploration rate γ_t dynamically, which achieves a regret bound within a constant factor of that using optimal tuning of γ.

We prove Theorem 2 in the next Subsection, while in Subsection 4.2 we prove a mistake bound with respect to the hinge loss, that is not fully covered by Theorem 2.

4.1 Proof of Theorem 2

Throughout the proofs, U, W_t, g_t, and z_t’s should be thought of as $kd \times 1$ vectors. We first show the following lemma. Note that this is a statement over any sequence and no expectation is taken.

Lemma 2. For any $U \in \mathbb{R}^{kd}$, with the notation of Algorithm 1, we have:

$$\sum_{t=1}^{T} n_t \left(2\langle U, -g_t \rangle - \langle U, z_t \rangle^2 \right) \leq a ||U||_F^2 + \sum_{t=1}^{T} n_t g_t^T A_t^{-1} g_t.$$

Proof. First, from line 14 of Algorithm 1 it can be easily seen by induction that SOBA maintains the invariant that

$$\sum_{s=1}^{t} n_s m_s \geq 0. \tag{4}$$

We next reduce the proof to the regret analysis of online least squares problem. For iterations where $n_t = 1$, define $\alpha_t = \frac{1}{\sqrt{p_{1:n_t}}}$ so that $g_t = \alpha_t z_t$. From the algorithm, $A_t = aI + \sum_{s=1}^{t} n_s z_s z_s^T$, and W_t is the ridge regression solution based on data collected in time 1 to $t - 1$, i.e., $W_t = A_t^{-1}(-\sum_{s=1}^{t-1} n_s g_s) = A_{t-1}^{-1}(-\sum_{s=1}^{t-1} n_s \alpha_s z_s)$.

By per-step analysis in online least squares, [see, e.g., Orabona et al. 2012], we have that if an update is made at iteration t, i.e. $n_t = 1$, then

$$\frac{1}{2}((W_t, z_t) + \alpha_t^2(1 - z_t^T A_t^{-1} z_t)) - \frac{1}{2}((U, z_t) + \alpha_t^2) \leq \frac{1}{2}||U - W_t||_{A_t}^2 - \frac{1}{2}||U - W_{t+1}||_{A_t}^2.$$
Otherwise \(n_t = 0 \), in which case we have \(W_{t+1} = W_t \) and \(A_{t+1} = A_t \).

Denoting by \(k_t = 1 - z_t^T A_t^{-1} z_t \), by Sherman-Morrison formula, \(k_t = \frac{1}{1+z_t^T A_t^{-1} z_t} \). Summing over all rounds \(t \in [T] \) such that \(n_t = 1 \),

\[
\frac{1}{2} \sum_{t=1}^{T} n_t \left[(\langle W_t, z_t \rangle + \alpha_t)^2 k_t - (\langle U, z_t \rangle + \alpha_t)^2 \right] \\
\leq \frac{1}{2} \| U \|_{A_t}^2 - \frac{1}{2} \| U - W_{T+1} \|_{A_t}^2 \\
\leq \frac{a}{2} \| U \|_F^2 .
\]

We also have by definition of \(m_t \),

\[
(\langle W_t, z_t \rangle + \alpha_t)^2 k_t - (\langle U, z_t \rangle + \alpha_t)^2 \\
= m_t - 2 \langle U, g_t \rangle - \langle U, z_t \rangle^2 - \alpha_t^2 z_t^T A_t^{-1} z_t .
\]

Putting all together and using the fact that \(\sum_{t=1}^{T} n_t m_t \geq 0 \), we have the stated bound.

We can now prove the following mistake bound for the prediction \(\hat{y}_t \), defined as \(\hat{M}_T := \sum_{t=1}^{T} 1[\hat{y}_t \neq y_t] \).

Theorem 3. For any \(U \in \mathbb{R}^{k \times d} \), and any \(0 < \eta \leq \min(1, \frac{2}{\max \{ \| A_t \|_{X+T} \}}) \), the expected number of mistakes committed by \(\hat{y}_t \), denoted by \(\hat{M}_T \), can be bounded as

\[
\mathbb{E} \left[\hat{M}_T \right] \leq \sum_{t=1}^{T} \mathbb{E} \left[\eta \right] + \frac{a \eta \| U \|_F^2}{2 - \eta} + \frac{k \sum_{t=1}^{T} \mathbb{E} \left[z_t^T A_t^{-1} z_t \right]}{\gamma \eta (2 - \eta)} \\
\leq \sum_{t=1}^{T} \mathbb{E} \left[\eta \right] + \frac{a \eta \| U \|_F^2}{2 - \eta} + \frac{dk^2 \ln \left(1 + \frac{2T \eta^2}{a} \right)}{\gamma \eta (2 - \eta)} ,
\]

where \(\sum_{t=1}^{T} \mathbb{E} \left[\eta \right] \) is the \(\eta \)-loss of the linear predictor \(U \).

Proof. Using Lemma 2 with \(\eta \), we get that

\[
\sum_{t=1}^{T} n_t \left(2 \eta \langle U, -g_t \rangle - \eta^2 \langle U, z_t \rangle^2 \right) \leq a \eta^2 \| U \|_F^2 + \sum_{t=1}^{T} n_t g_t^T A_t^{-1} g_t .
\]

Taking expectations, using Lemma 1 and the fact that \(\frac{1}{p_t y_t} \leq k \), we have

\[
\mathbb{E} \left[\sum_{t=1}^{T} h_t \cdot 2 \eta \langle U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle \right] \\
\leq \mathbb{E} \left[\sum_{t=1}^{T} h_t \cdot \eta^2 (\langle U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle)^2 \right] + a \eta^2 \| U \|_F^2 + \frac{k}{\gamma} \sum_{t=1}^{T} \mathbb{E} \left[z_t^T A_t^{-1} z_t \right] .
\]

Add the terms \(\gamma (2 - \eta) \sum_{t=1}^{T} h_t \) to both sides and divide both term by \(\gamma (2 - \eta) \), to have

\[
\mathbb{E} \left[\sum_{t=1}^{T} h_t \right] \leq \mathbb{E} \left[\sum_{t=1}^{T} h_t f((U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t)) \right] + \frac{a \eta}{2 - \eta} \| U \|_F^2 + \frac{k}{\gamma} \sum_{t=1}^{T} \mathbb{E} \left[z_t^T A_t^{-1} z_t \right] ,
\]

where \(f(z) := 1 - \frac{z^2}{2 - \eta} + \frac{\eta}{2 - \eta} z^2 \). Taking a close look at the function \(f \), we observe that the two roots of the quadratic function are 1 and \(\frac{2 - \eta}{\eta} \), respectively. Setting \(\eta \leq 1 \), the function is negative between 1 and \(\frac{2 - \eta}{\eta} \).
and positive in \((-\infty, 1]\). Thus, if \(0 < \eta \leq \frac{2}{\max_i \|\mathbf{u}_i\|_2 X T}\), then for all \(i, j \in [k]\), \(\langle \mathbf{U}_i, (\mathbf{e}_i - \mathbf{e}_j) \otimes \mathbf{x}_t \rangle \leq \frac{2 - \eta}{\eta}\). Therefore, we have that
\[
f((\mathbf{U}_i, (\mathbf{e}_j - \mathbf{e}_j) \otimes \mathbf{x}_t)) = f((\mathbf{U}_i \mathbf{x}_t)_{y_t} - (\mathbf{U}_i \mathbf{x}_t)_{y_t}) \leq \ell_\eta ((\mathbf{U}_i \mathbf{x}_t)_{y_t} - (\mathbf{U}_i \mathbf{x}_t)_{y_t}) \leq \ell_\eta (\mathbf{U}_i (\mathbf{x}_t, y_t)) = \ell_\eta (\mathbf{U}, (\mathbf{x}_t, y_t)).
\]
where the first equality is from algebra, the first inequality is from that \(f(\cdot) \leq \ell_\eta (\cdot)\) in \((-\infty, \frac{2 - \eta}{\eta}]\), the second inequality is from that \(\ell_\eta (\cdot)\) is monotonically decreasing.

Putting together the two constraints on \(\eta\), and noting that \(\hat{M}_T \leq \sum_{t=1}^T h_t\), we have the first bound.

Lemma 3. If \(d \geq 1, k \geq 2, T \geq 2\), then
\[
\sum_{t=1}^T \mathbb{E}[z_t^T \mathbf{A}_t^{-1} z_t] \leq dk \ln \left(1 + \frac{2X^2 T}{a d k}\right).
\]
In particular, if \(a = X^2\), then the right hand side is at most \(dk \ln T\).

Proof. Observe that
\[
\sum_{t=1}^T z_t^T \mathbf{A}_t^{-1} z_t \leq \frac{1}{|\mathbf{A}_T|} |\mathbf{A}_T| = \frac{dk \ln \left(1 + \frac{2X^2 T}{a d k}\right)}{a d k},
\]
where the first inequality is a well-known fact from linear algebra [e.g., Hazan et al. 2007, Lemma 11]. Given that the \(\mathbf{A}_T\) is \(kd \times kd\), the second inequality comes from the fact that the determinant of \(\mathbf{A}_T\) is maximized when all its eigenvalues are equal to \(\frac{\text{tr}(\mathbf{A}_T)}{d k} = a + \frac{\sum_{t=1}^T \|z_t\|^2}{d k} \leq a + \frac{2X^2 T}{a d k} \frac{\sum_{t=1}^T \|z_t\|^2}{d k}\). Finally, using Jensen’s inequality, we have that,
\[
\sum_{t=1}^T \mathbb{E}[z_t^T \mathbf{A}_t^{-1} z_t] \leq dk \ln \left(1 + \frac{2X^2 T}{a d k}\right).
\]
If \(a = X^2\), then the right hand side is \(dk \ln(1 + \frac{2T}{a d k})\), which is at most \(dk \ln T\) under the conditions on \(d, k, T\).

Proof of Theorem 2. Observe that by triangle inequality, \(1[\hat{y}_t \neq y_t] \leq 1[\hat{y}_t \neq \hat{y}_t] + 1[y_t \neq \hat{y}_t]\). Summing over \(t\), taking expectation on both sides, we conclude that
\[
\mathbb{E}[M_T] \leq \mathbb{E}[\hat{M}_T] + \gamma T.
\]
The first statement follows from combining the above inequality with Theorem 3.

For the second statement, first note that from Theorem 3 and Equation (6), we have
\[
\mathbb{E}[M_T] \leq L_\eta (\mathbf{U}) + \frac{a \eta \|\mathbf{U}\|_F^2}{2 - \eta} + \frac{dk^2 \ln \left(1 + \frac{2X^2 T}{a d k}\right)}{\gamma \eta} + \gamma T
\]
\[
\leq L_\eta (\mathbf{U}) + X^2 \|\mathbf{U}\|_F^2 + \frac{2d k^2 \ln T}{\gamma \eta} + \gamma T,
\]
where the second inequality is from that \(\eta \leq 1\), and Lemma 3 with \(a = X^2\). The statement is concluded by the setting of \(\gamma = O\left(\sqrt{\frac{kd \ln T}{T}}\right)\).
Proof of Lemma 4. We show the lemma in two steps. Let \(G_t := q_t 1[y_t = \hat{y}_t = \tilde{y}_t] \), and \(H_t := 1[y_t = \hat{y}_t \neq \tilde{y}_t] \). From line 14 of SOBA, we see that assumption is extremely unrealistic and we prefer not to pursue it.

First, we show that \(n_t = G_t + H_t \). Recall that SOBA maintains the invariant \(\tilde{m}_t \geq m_t \), hence \(\sum_{s=1}^{t-1} n_s m_s \geq 0 \).

- \(y_t = \hat{y}_t \neq \tilde{y}_t \). In this case, \(\hat{y}_t = \tilde{y}_t \), therefore \(\langle W_t, g_t \rangle \geq 0 \), making \(m_t \geq 0 \). This implies that \(\sum_{s=1}^{t-1} n_s m_s + m_t \geq 0 \), guaranteeing \(n_t = 1 \).

- \(y_t = \hat{y}_t = \tilde{y}_t \). In this case, \(n_t \) is set to 1 if and only if \(q_t = 1 \), i.e. \(\sum_{s=1}^{t-1} n_s m_s + m_t \geq 0 \).

This gives that \(n_t = G_t + H_t \).

Second, we have the following two equalities:

\[
E_{t-1}[H_t \langle U, g_t \rangle] = E_{t-1}\left[\frac{1[y_t = \hat{y}_t]}{p_t,y_t}1[y_t \neq y_t] \langle U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle\right] \\
= 1[y_t \neq y_t] \langle U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle,
\]

\[
E_{t-1}[G_t \langle U, g_t \rangle] = E_{t-1}\left[\frac{1[y_t = \hat{y}_t]}{p_t,y_t}1[y_t = y_t]q_t \langle U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle\right] \\
= 1[y_t \neq y_t]q_t \langle U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle.
\]

The first statement follows from adding up the two equalities above.

The proof for the second statement is identical, except replacing \(\langle U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle \) with \(\langle U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle^2 \).

4.2 Fall-Back Analysis

The loss function \(\ell_\eta \) is an interpolation between the hinge and the squared hinge losses. Yet, the bound becomes vacuous for \(\eta = 0 \). Hence, in this section we show that SOBA also guarantees a \(\tilde{O}(L_0(U)T^{1/3} + \sqrt{T}) \) mistake bound w.r.t. the multiclass hinge loss of the competitor. Thus the algorithm achieves a mistake guarantee no worse than the sharpest bound implicit in [Kakade et al. 2008].

Theorem 4. Set \(a = X^2 \) and denote by \(M_T \) the number of mistakes done by SOBA. Then SOBA has the following guarantees\(^3\)

1. If \(L_0(U) \geq (\|U\|_F^2 + 1)\sqrt{dk^2X^2T} \ln T \), then with parameter setting \(\gamma = \min(1, (dk^2X^2L_0(U)T\ln T)^{1/3}) \), one has the following expected mistake bound:

\[
E[M_T] \leq L_0(U) + O\left(\|U\|_F(dk^2X^2L_0(U)T)\ln T)^{1/3}\right).
\]

2. If \(L_0(U) < (\|U\|_F^2 + 1)\sqrt{dk^2X^2T} \ln T \), then with parameter setting \(\gamma = \min(1, (dk^2X^2\ln T)^{1/2}) \), one has the following expected mistake bound:

\[
E[M_T] \leq L_0(U) + O\left(k(\|U\|_F^2 + 1)X\sqrt{dT\ln T}\right).
\]

where \(L_0(U) := \sum_{t=1}^T \ell_0(U, (x_t, y_t)) \) is the hinge loss of the linear classifier \(U \).

\(^3\)Assuming the knowledge of \(\|U\|_F \) it would be possible to reduce the dependency on \(\|U\|_F \) in both bounds. However such assumption is extremely unrealistic and we prefer not to pursue it.
Proof. Recall that \(\hat{M}_T \) the mistakes made by \(\hat{y}_t \), that is \(\sum_{t=1}^{T} 1[\hat{y}_t \neq y_t] \). Adding to both sides of (5) the term \(\eta \mathbb{E}[\sum_{t=1}^{T} h_t] \) and dividing both sides by \(\eta \), and plugging \(a = X^2 \), we get that for all \(\eta > 0 \),

\[
\mathbb{E} \left[\sum_{t=1}^{T} h_t \right] \leq \mathbb{E} \left[\sum_{t=1}^{T} \left(1 - \langle U', (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle \right) + \sum_{t=1}^{T} h_t \cdot \frac{\eta}{2} \langle U', (e_{\hat{y}_t} - e_{y_t}) \otimes x_t \rangle \right] + \frac{\eta X^2}{2} \|U\|^2_F + \frac{d k^2}{2 \gamma \eta} \ln T
\]

\[
\leq \mathbb{E} \left[\sum_{t=1}^{T} \ell_0(U, (x_t, y_t)) + \left(\sum_{t=1}^{T} h_t + \frac{1}{2} \right) \cdot \eta \|U\|^2_F X^2 \right] + \frac{d k^2}{2 \gamma \eta} \ln T .
\]

where the first inequality uses Lemma\(\ref{lem:main} \), the second inequality is from Cauchy-Schwarz that \(\langle U', (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle \leq \|U\|_F \cdot \|e_{y_t} - e_{\hat{y}_t} \| \leq \|U\|_F \sqrt{2X} \) and that \((1 - \langle U', (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle) \leq \ell(U, (x_t, y_t)) \).

Taking \(\eta = \frac{d k^2}{\|U\|^2_F (\mathbb{E}[\sum_{t=1}^{T} h_t] + \frac{1}{2}) X^2} \), we have

\[
\mathbb{E} \left[\sum_{t=1}^{T} h_t \right] \leq L_0(U) + \sqrt{\|U\|^2_F \left(\mathbb{E} \left[\sum_{t=1}^{T} h_t \right] + \frac{1}{2} \right) \frac{d k^2 X^2}{2 \gamma \ln T}}.
\]

Solving the inequality and using the fact that \(\mathbb{E}[M_T] \leq \mathbb{E}[\hat{M}_T] + \gamma T \leq \mathbb{E}[\sum_{t=1}^{T} h_t] + \gamma T \), we have

\[
\mathbb{E}[M_T] \leq L_0(U) + \gamma T + O \left(\frac{d k^2 \|U\|^2_F X^2 \ln T}{\gamma} + \sqrt{L_0(U) \frac{d k^2 \|U\|^2_F X^2 \ln T}{\gamma}} \right).
\]

The theorem follows from Lemma\(\ref{lem:main} \) in Appendix\(\ref{app:main} \) taking \(U = \|U\|^2_F, H = d k^2 X^2 \ln T, L = L_0(U) \). \(\square \)

5 Empirical Results

![Figure 2: Error rates vs. the value of the exploration rate \(\gamma \) (top row) and vs. the number examples (bottom row). The x-axis is logarithmic in all the plots, while the y-axis is logarithmic in the plots in the second row. Figure best viewed in colors.](image-url)
We tested SOBA to empirically validate the theoretical findings. We used three different datasets from Kakade et al. [2008]: SynSep, SynNonSep, Reuters4. The first two are synthetic, with 10^6 samples in \(\mathbb{R}^{400} \) and 9 classes. SynSep is constructed to be linearly separable, while SynNonSep is the same dataset with 5% random label noise. Reuters4 is generated from the RCV1 dataset [Lewis et al., 2004], extracting the 665,265 examples that have exactly one label from the set \{CCAT, ECAT, GCAT, MCAT\}. It contains 47,236 features. We also report the performance on Covtype from LibSVM repository.\(^4\) We report averages over 10 different runs.

SOBA, as the Newton algorithm, has a quadratic complexity in the dimension of the data, while the Banditron and the Perceptron algorithm are linear. Following the long tradition of similar algorithms [Crammer et al., 2009; Duchi et al., 2011; Hazan and Kale, 2011; Crammer and Gentile, 2013], to be able to run the algorithm on large datasets, we have implemented an approximated diagonal version of SOBA, named SOBAdiag. It keeps in memory just the diagonal of the matrix \(A_t \) and on par or worse to the Banditron’s one. On the other hand, SOBAdiag has the best performance among the algorithms we have tested only algorithms designed to work in the fully adversarial setting. Hence, we tested the Banditron and the PNewtron, the diagonal version of the Newton algorithm in Hazan and Kale [2011]. The multiclass Perceptron algorithm was used as a full-information baseline.

In the experiments, we only changed the exploration rate \(\gamma \), leaving fixed all the other parameters the algorithms might have. In particular, for the PNewtron we set \(\alpha = 10, \beta = 0.01, \) and \(D = 1 \), as in Hazan and Kale [2011]. In SOBA, \(\alpha \) is fixed to 1 in all the experiments. We explore the effect of the exploration rate \(\gamma \) in the first row of Figure 5. We see that the PNewtron algorithm\(^5\) thanks to the exploration based on the softmax prediction, can achieve very good performance for a wide range of \(\gamma \).

It is important to note that SOBAdiag has good performance on all four datasets for a value of \(\gamma \) close to 1%. For bigger values, the performance degrades because the best possible error rate is lower bounded by \(\frac{k-1}{k} \gamma \) due to exploration. For smaller values of exploration, the performance degrades because the algorithm does not update enough. In fact, SOBA updates only when \(\hat{y}_t \neq y_t \), so when \(\gamma \) is too small the algorithms does not explore enough and remains stuck around the initial solution. Also, SOBA requires an initial number of updates to accumulate enough positive terms in the \(\sum_{t} n_t m_t \) in order to start updating also when \(\hat{y}_t \) is correct but the margin is too small.

The optimal setting of \(\gamma \) for each algorithm was then used to generate the plots in the second row of Figure 5, where we report the error rate over time. With the respective optimal setting of \(\gamma \), we note that the performance of PNewtron does not seem better than the one of the Multiclass Perceptron algorithm, and on par or worse to the Banditron’s one. On the other hand, SOBAdiag has the best performance among the bandits algorithms on 3 datasets out of 4.

The first dataset, SynSep, is separable and with their optimal setting of \(\gamma \), all the algorithms converge with a rate of roughly \(O\left(\frac{1}{T}\right)\), as can be seen from the log-log plot, but the bandit algorithms will not converge to zero error rate, but to \(\frac{2}{k} \gamma \). However, SOBA has an initial phase in which the error rate is high, due to the effect mentioned above.

On the second dataset, SynNonSep, SOBAdiag outperforms all the other algorithms (including the full-information Perceptron), achieving an error rate close to the noise level of 5%. This is due to SOBA being a second-order algorithm, while the Perceptron is a first-order algorithm. A similar situation is observed on Covtype. On the last dataset, Reuters4, SOBAdiag achieves performance better than the Banditron.

6 Discussion and Future Work

In this paper, we study the problem of online multiclass learning with bandit feedback. We propose SOBA, an algorithm that achieves a regret of \(O\left(\frac{1}{\eta} \sqrt{T}\right) \) with respect to \(\eta \)-loss of the competitor. This answers a COLT open problem posed by Abernethy and Rakhlin [2009]. Its key ideas are to apply a novel adaptive

\(^4\)https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

\(^5\)We were unable to make the PNewtron work on Reuters4. For any setting of \(\gamma \) the error rate is never better than 57%. The reason might be that the dataset RCV1 has 47,236 features, while the one reported in Kakade et al. [2008]; Hazan and Kale [2011] has 346,810, hence the optimal setting of the 3 other parameters of PNewtron might be different. For this reason we prefer not to report the performance of PNewtron on Reuters4.
regularizer in a second order online learning algorithm, coupled with updates only when the predictions are correct. SOBA is shown to have competitive performance compared to its predecessors in synthetic and real datasets, in some cases even better than the full-information Perceptron algorithm. There are several open questions we wish to explore:

1. Is it possible to design efficient algorithms with mistake bounds that depend on the loss of the competitor, i.e. \(\mathbb{E}[M_T] \leq L_0(U) + \tilde{O}(\sqrt{kdL_0(U)} + kd) \)? This type of bound occurs naturally in the full information multiclass online learning setting, e.g. multiclass Perceptron mistake bound (see Theorem [1]), or in multiarmed bandit setting, e.g. [1].

2. Are there efficient algorithms that have a finite mistake bound in the separable case? Kakade et al. [2008] provides an algorithm that performs enumeration and plurality vote to achieve a finite mistake bound in the finite dimensional setting, but unfortunately the algorithm is impractical. Notice that it is easy to show that in SOBA \(\hat{y}_t \) makes a logarithmic number of mistakes in the separable case, with a constant rate of exploration, yet it is not clear how to decrease the exploration over time in order to get a logarithmic number of mistakes for \(\tilde{y}_t \).

References

J. Abernethy and A. Rakhlin. An efficient bandit algorithm for \(\sqrt{T} \)-regret in online multiclass prediction? In COLT, 2009.

A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. E. Schapire. Taming the monster: a fast and simple algorithm for contextual bandits. ICML, pages 1638–1646, 2014.

P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learning algorithms. J. Comput. Syst. Sci., 64(1):48–75, 2002.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1):48–77, January 2003.

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order Perceptron algorithm. SIAM Journal on Computing, 34(3):640–668, 2005.

K. Crammer and C. Gentile. Multiclass classification with bandit feedback using adaptive regularization. Machine learning, 90(3):347–383, 2013.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive algorithms. Journal of Machine Learning Research, 7(Mar):551–585, 2006.

K. Crammer, A. Kulesza, and M. Dredze. Adaptive regularization of weight vectors. In Advances in neural information processing systems, pages 414–422, 2009.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

R. O. Duda and P. E. Hart. Pattern classification and scene analysis. John Wiley, 1973.

M. Dudík, D. J. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin, and T. Zhang. Efficient optimal learning for contextual bandits. In UAI 2011, pages 169–178, 2011.

E. Hazan and S. Kale. Newton: an efficient bandit algorithm for online multiclass prediction. In Advances in Neural Information Processing Systems, pages 891–899, 2011.
Adaptive Tuning of the Exploration Rate

In Theorem 2 we have presented a tuning of γ that guarantees a regret of the order of $\tilde{O}(\frac{1}{2^\sqrt{T}})$. However, this setting requires to upper bound the sum of the quadratic terms with a worst case bound. In this section, we develop an adaptive strategy for the tuning of the exploration rate γ that guarantees an optimal bound w.r.t. to the tightest sum of the quadratic terms.

First, we make rate dependent of the time, i.e. γ_t. Our aim is to choose γ_t in each time step in order to minimize the excess mistake bound $E\left[\sum_{t=1}^{T} \gamma_t + \frac{1}{\eta(2-\eta)} \sum_{t=1}^{T} \frac{1}{\gamma_t z_t^T A_t^{-1} z_t}\right]$. The main result is that, adaptively setting γ_t's would result in a bound within (roughly) a constant factor of that obtained by the best fixed γ in hindsight. We start with a technical lemma.
Lemma 4. Let $c_1, \ldots, c_T \in [0, b]$ be a sequence of real numbers, $a > 0$, and define $\gamma_t = \min \left(\sqrt{\frac{b + \sum_{s=1}^{t-1} c_s}{t}}, 1 \right)$. We have,

$$\sum_{t=1}^{T} \left(\gamma_t + a \frac{c_t}{\gamma_t} \right) \leq (2 + 2a)\sqrt{T} \left(b + \sum_{t=1}^{T} c_t + a \sum_{t=1}^{T} c_t \right).$$

Proof. First, note that

$$\sum_{t=1}^{T} \gamma_t \leq \sum_{t=1}^{T} \sqrt{\frac{b + \sum_{s=1}^{t-1} c_s}{t}} \leq \sqrt{b + \sum_{t=1}^{T} c_t} \sum_{t=1}^{T} \frac{1}{t} \leq 2\sqrt{T} \sum_{s=1}^{T} c_s.$$

Second, using the elementary chain of inequalities $\max(a, b) \leq a + b, \forall a, b \geq 0$, we have that

$$\sum_{t=1}^{T} \frac{c_t}{\gamma_t} = \sum_{t=1}^{T} \max \left(\frac{c_t \sqrt{t}}{b + \sum_{s=1}^{t-1} c_s}, c_t \right) \leq \sum_{t=1}^{T} \sqrt{T} \frac{c_t}{b + \sum_{s=1}^{t-1} c_s} + \sum_{t=1}^{T} c_t \leq \sqrt{T} \sum_{t=1}^{T} \frac{c_t}{\sum_{s=1}^{t} c_s} + \sum_{t=1}^{T} c_t \leq 2\sqrt{T} \sum_{s=1}^{T} c_s + \sum_{t=1}^{T} c_t,$$

where the last inequality uses Lemma 3.5 of Auer et al. [2002]. Combining the two inequalities, we get the desired result.

Built upon the lemma above, we show that, tailored to our setting, the adaptive tuning would result in a bound within a constant factor of that achieved by the best fixed γ in hindsight.

Theorem 5. Running SOBA with the adaptive setting of $\gamma_t = \min \left(\sqrt{k(\gamma_t^{s^{-1}} - 1)A^{-1}z_t}, 1 \right)$ and $a = X^2$, we have that

$$\mathbb{E}[M] \leq L_\eta(U) + O \left(X^2\|U\|_F^2 + \frac{1}{\eta}(\sqrt{dk^2T \ln T} + dk \ln T) \right).$$

Proof Sketch. Following the same proof as Theorem 3, we get that

$$\mathbb{E}[\hat{M}_T] \leq L_\eta(U) + \frac{a\eta\|U\|_F^2}{2 - \eta} + \frac{1}{\eta(2 - \eta)} \mathbb{E} \left[\sum_{t=1}^{T} k \gamma_t \frac{x_t A_t^{-1} z_t}{\gamma_t} \right].$$

Meanwhile by triangle inequality,

$$\mathbb{E}[M_T] \leq \mathbb{E}[\hat{M}_T] + \mathbb{E} \left[\sum_{t=1}^{T} 1[\gamma_t \neq \gamma_t^*] \right] \leq \mathbb{E}[\hat{M}_T] + \mathbb{E} \left[\sum_{t=1}^{T} \gamma_t \right].$$

Combining the two inequalities above, we get

$$\mathbb{E}[M_T] \leq L_\eta(U) + \frac{a\eta\|U\|_F^2}{2 - \eta} + \mathbb{E} \left[\frac{1}{\eta(2 - \eta)} \sum_{t=1}^{T} k \gamma_t \frac{x_t A_t^{-1} z_t}{\gamma_t} + \sum_{t=1}^{T} \gamma_t \right].$$
We take a closer look at the last term. Lemma 4 with $c_t = k z_t^T A_t^{-1} z_t \in [0, k]$, $b = k$, $a = \frac{1}{\eta(2-\eta)}$, implies that

$$
\sum_{t=1}^T \gamma_t + \sum_{t=1}^T \frac{k}{\eta(2-\eta)} z_t^T A_t^{-1} z_t \leq \left(2 + \frac{2}{\eta(2-\eta)} \right) \sqrt{T} \sqrt{k(1 + \sum_{t=1}^T z_t^T A_t^{-1} z_t)} + \frac{1}{\eta(2-\eta)} k(1 + \sum_{t=1}^T z_t^T A_t^{-1} z_t) .
$$

Taking the expectation of both sides and using Lemma 3, we get that the last term on the right hand side is at most $\frac{12}{\eta} (\sqrt{dk^2 T \ln T} + dk^2 \ln T)$. This completes the proof. \[\square\]

B Deferred Proofs

Proof of Theorem 1 Let $p \geq 2$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Denote by b_t the indicator variable that multiclass Perceptron makes an update, i.e. makes a mistake. We have:

$$
\langle W_{T+1}, U \rangle
\leq \|W_{T+1}\|_F \|U\|_F
= \|U\|_F \sqrt{\|W_T\|^2 + 2b_t \langle W_T, (e_{yr} - e_{\hat{y}_r}) \otimes x_T \rangle + 2b_t^2 \|x_T\|_2}
\leq \|U\|_F \sqrt{\|W_T\|^2 + 2b_t^2 \|x_T\|_2}
\leq \ldots
\leq \|U\|_F \sqrt{2 \sum_{t=1}^T b_t^2 \|x_t\|_2}
\leq \|U\|_F X \sqrt{2} \sqrt{\sum_{t=1}^T b_t^2}
= \|U\|_F X \sqrt{2} \sum_{t=1}^T b_t
$$
Also, we have, that

\[
\langle W_{T+1}, U \rangle = \sum_{t=1}^{T} b_t \langle U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle \\
= \sum_{t=1}^{T} b_t [1 - \langle U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle] \\
\geq \sum_{t=1}^{T} b_t [1 - |\langle U, (e_{y_t} - e_{\hat{y}_t}) \otimes x_t \rangle|_+] \\
\geq \sum_{t=1}^{T} b_t - \sum_{t=1}^{T} b_t \ell(U, (x_t, y_t)) \\
\geq \sum_{t=1}^{T} b_t - \left(\sum_{t=1}^{T} b_t^p \right)^{\frac{1}{p}} \left(\sum_{t=1}^{T} \ell(U, (x_t, y_t))^q \right)^{\frac{1}{q}} \\
= \sum_{t=1}^{T} b_t - \left(\sum_{t=1}^{T} b_t \right)^{\frac{1}{p}} \left(\sum_{t=1}^{T} \ell(U, (x_t, y_t))^q \right)^{\frac{1}{q}}.
\]

Putting all together we have

\[
\|U\|_F X \sqrt{2} \sqrt{\sum_{t=1}^{T} b_t} \geq \sum_{t=1}^{T} b_t - \left(\sum_{t=1}^{T} b_t \right)^{\frac{1}{p}} L_{MH,q}(U)^{\frac{1}{q}}(U).
\]

Noting that \(\sum_{t=1}^{T} b_t\) is equal to number of mistake \(M_T\), we get the stated bound.

Lemma 5. Suppose we are given positive real numbers \(L, T, H, U\) and function \(F(\gamma) = \min(T, L + \gamma T + \frac{U}{\gamma} + \sqrt{\frac{U H L}{\gamma}})\), where \(\gamma \in [0, 1]\). Then:

1. If \(L \leq (U + 1)\sqrt{HT}\), then taking \(\gamma^* = \min(\sqrt{\frac{H}{T}}, 1)\) gives that \(F(\gamma^*) \leq L + 3(U + 1)\sqrt{HT}\).

2. If \(L > (U + 1)\sqrt{HT}\), then taking \(\gamma^* = \min((\frac{HT}{U})^{\frac{1}{2}}, 1)\) gives that \(F(\gamma^*) \leq L + 2(\sqrt{U} + 1)(HLT)^{\frac{1}{2}}\).

Proof. We prove the two cases separately.

1. If \(T \leq H\), then \(\gamma^* = 1\), \(F(\gamma^*) \leq T \leq L + 3(U + 1)\sqrt{HT}\).

 Otherwise, \(T > H\). In this case, \(\gamma^* = \sqrt{\frac{H}{T}}\). We have that

 \[
 F(\gamma^*) = L + \gamma^* T + \frac{U}{\gamma^*} + \sqrt{\frac{U H L}{\gamma^*}} \\
 = L + \sqrt{HT} + U \sqrt{HT} + \sqrt{UL \sqrt{HT}} \\
 \leq L + (U + 1)\sqrt{HT} + L + U \sqrt{HT} \\
 \leq L + 3(U + 1)\sqrt{HT}.
 \]

 where the first inequality is from that arithmetic mean-geometric mean inequality, the second inequality is by the assumption on \(L\).
2. If $HL > T^2$, then $\gamma^* = 1$, $F(\gamma^*) \leq T \leq (HLT)^{\frac{1}{2}}$.

Otherwise, $HL \leq T^2$. In this case, $\gamma^* = \left(\frac{HL}{L^2}\right)^{\frac{1}{2}}$. We have that

$$F(\gamma^*) = L + \gamma^* T + \frac{UH}{\gamma^*} + \sqrt{\frac{UHL^*}{\gamma}}$$

$$= L + \left(\frac{HL}{L^2}\right)^{\frac{1}{2}} + UH^{\frac{1}{2}} L^{\frac{1}{2}} + \sqrt{U} (HLT)^{\frac{1}{2}}$$

$$\leq L + (\sqrt{U} + U^{\frac{1}{2}} + 1) (HLT)^{\frac{1}{2}}$$

$$\leq L + 2(\sqrt{U} + 1) (HLT)^{\frac{1}{2}}.$$

where the first inequality is from algebra and the condition on L, implying $UH^{\frac{1}{2}} T^{\frac{1}{2}} L^{-\frac{1}{2}} \leq (HLT)^{\frac{1}{2}} U (\frac{HL}{L^2})^{\frac{1}{2}} \leq U^{\frac{1}{2}} (HLT)^{\frac{1}{4}}$, the second inequality is from that $U^{\frac{1}{2}} \leq \sqrt{U} + 1$.

□