The Most Common Herbs to Cure the Most Common Oral Disease: Stomatitis Recurrent Aphthous Ulcer (RAU)
1. Use of local and oral steroids that have effect on T-lymphocytes and reduce inflammation.
2. Use of local antibiotics, for example, chlorohexidine, benzidine.
3. Solving vitamin and mineral deficiency, such as B12, iron, folic acid, and avoidance of food allergens.
4. Other treatments such as amlexanox, a potent inhibitor of inflammation due to mast cells and neutrophils. Levamisol, talidomide are effective also (1, 2).

2. Evidence Acquisition

2.1. Viewpoints of Iranian Traditional Medicine (ITM) About Aphthous

Aphthous in traditional texts is very important, and a separate chapter is devoted to the topic of ulcers. We can search it as “Gholaa” (3). It is a kind of ulcer that affects the surface of the mouth and tongue, and it can even be exceeded inner layers of mouth tissue. In the definition of wounds, it is in the corrosive lesions groups and the deep infectious ulcers group (3).

2.2. Etiology of RAU in ITM

ITM divides RAU into three types based on the humors of the substance that created them: a) If the substance that causes aphthous is blood, there will be a warmth and inflammation around it; b) If the substance that causes aphthous is salty phlegm, the ulcer will be white with less pain compared with a bloody ulcer; c) If the substance that causes aphthous is burned black bile, the wound tends to be black. Based on these definitions and evidence, it seems that RAU can be of the phlegmatic type or the black bilotic type (3). Minor aphthous can be matched with the phlegmatic type. Of course, there is another type of oral ulcer, called corrosive lesions (Akele al-fam), in which many ulcers are propagated. These can be herpetic aphthous and they are caused due to irritants, and pungent and erosive mucus (3, 4).

2.3. RAU Treatment Protocol in ITM

After review of traditional medicine books, the aphthous treatment protocol is as follows: First, maturation of the substances in the lesion, then dissolution and dissection of the lesion. After that, creation of astringency in the weak member, and finally, disposal of the matter from it (3, 5).

Based on these studies, that were conducted thousands of years ago, plants were used without a suitable, equipped, and modern laboratory to analyze these plants. This is an indication of the academic ability of the traditional physicians. Since traditional medicine is based on the humors and temperament, and we still cannot really define them based on laboratory criteria using modern science, we decided to compare the new findings with the traditional findings, and match them to take a step towards the vindication of the traditional medicine.

2.4. Methods

In this study, we evaluated traditional books (Akbari medicine book, Axir-e-Azam, Sharh Al-Asbab va Al-Alamat book, the Aghili treatments book, Kamel Al-Sanaat, Makhzan Al-Advie and Al-Shamel fi Sanaate Tebbiye). We first studied the chapters on ulcers and oral diseases, and then searched the exact term of “gholaa” to describe the disease and learn of the medicinal plants that have been used in aphthous treatment for hundreds of years. After determination of the list of plants, we collected the temperament, usage, and mechanisms of these plants in the treatment of RAU from the herbal traditional books (Makhzan Al-Advie, Al-Shamel). Then we extracted the scientific names of these plants from botanical books. Finally, we collected new research, pharmacological mechanisms, and the effects of these plants by searching the scientific name of these plants in articles that were collected from databases such as Google Scholar, Science Direct, Scopus, Iranmedex, PubMed, and, with unlimited range. Then these plants were compared in a table.

3. Results

As can be seen in Table 1, the pharmacological effects of plants that are used in the treatment of RAU, consist of anti-inflammatory effects, analgesic, local anesthetic, antifungal, antibacterial, antiviral, and immunomodulatory (6). On the other hand, traditional effects that are mentioned in ITM books for these plants were tonic, astringent, cleansing, purified, resolvent, adsorbent, and diluting (4, 7).

Although there was not advanced equipment for identification of chemical components in plants, traditional physicians have explained their opinions about chemical components by the theory of the quadratic elements and confirmed the temperaments of plants. By comparing the traditional effects and modern pharmacological findings, some of these effects are matched to each other. For example, the term tonic in traditional medicine can be considered as an immunomodulatory effect (39), or the resolvent effect of the drugs in ITM may be the anti-inflammatory effect (40). Perhaps the maturation, purified, and cleansing effects of drugs in wound healing can be matched to the antibiotic effects. Based on the above explanations, for some plants in Table 1 there are no findings, and we can predict the anti-aphthous effect for them with research in this area.

Furthermore, some of these effects may be attributed to the compounds found in these plants, for example, the tannins in plants, due to their astringent effects, may strengthen organs and actually enhance the immunomodulatory effect (39). Or proanthocyanidins and saponins, which are found in plants, have anti-inflammatory and antioxidant properties. Therefore, they can be effective as a resolvent (40) in the healing of aphthous ulcers. Another important point in Table 1 is that based on temperament, these plants are divided into two groups: hot and dry, cold and dry.
Name	**Scientific Name**	**Use**	**Nature**	**Traditional Effects**	**Pharmacological Effects**
Myrtle	*Myrtus communis* (8)	Leaf (4, 5)	composite powers, cold component is more (4, 5)	Desiccant, purified Resolvent inflammation (4, 7)	Anti-inflammatory, antioxidant, absorbing free radicals, antibacterial, anti-geneotoxic, analgesic, reducing aphthous (6)
Arnebia root	*Arnebia asuncana* (8)	Gargle juice with honey (4, 5)	Hot and dry (4)	Desiccant, resolvent of humors (4, 7)	Not found
Safflower	*Carthamus tinctorius* (8)	Scrubbing with honey (infant’s aphthous) (4)	Hot dry (4, 5)	Maturative, resolvent (4)	Not found
Purslane	*Portulaca oleracea* (8)	Sprinkling powder (4)	Cool and wet with a little astringency (4)	Tonic, prevented the loss of pain stimulant, anti-inflammation (4, 7)	Anti-inflammatory, antioxidant, analgesic, wound healing (10)
Oak	*Quercus alba* (8)	Sprinkling burnt powder (4, 5)	Cool and dry (4, 5)	Desiccant, purified, deterrent, severe astringency (4, 7)	Not found
Mulberry	*Morus alba* (8)	Gargle with juice, rob (4, 5)	Hot and wet (4, 5)	Restraint, resolvent of inflammation, prevented the loss of hot substances (4, 7)	Anti-bacterial, antioxidant, anti-inflammatory, analgesic (with central effect) (11)
Jambul	*Eugenia jambolana* (8)	Rinsing of fruit (4)	Cool and dry (4)	-	Anti-inflammatory, anti-inflammatory (12)
Pomegranate flowers	*Punica granatum* (8)	Rinsing decoction with vinegar (4, 7)	Cool and dry (4, 7)	Desiccant, astringent, toxic, prevented the moisture flux, cicatrizant (4, 7)	Anti-inflammatory (COX2 inhibitory and reduce PGE2) (13)
Small caltrops	*Tribulus terrestris* (8)	Rinsing juice with honey (4, 5, 7)	Combined strengths (4)	Cleansing, desiccant, purification with refrigeration (4, 7)	Anti-inflammatory, analgesic, antinociceptive (saponin), anti-oxidant (14)
Sour	*Vitis vinifera* (8)	Dried extract (4)	Cool and dry (4)	Restrained, desiccant, (4, 7)	Analgesic, anti-inflammatory, leukotrienes biosynthesis inhibitor, His antagonist, COX-2 inhibitor (proanthocyanids) (15, 16)
Henna	*Lawsonia inermis* (8)	Rinsing decoction (4, 5)	Combined strengths willing to cold and drought (4)	Desiccant, cool, without pungency (4, 7)	Antiviral, anti-fungal, antibacterial, anti-inflammatory, analgesic (biopluum-bagin, lawarriti) (17)
Lettuce	*Lactuca sativa* (8)	Sprinkling burnt powder (4, 5)	Cool and dry (4)	Narcotic, hot steam rising toward mouth (4, 7)	Local analgesic, antinociceptive, anti-inflammatory (18)
Boxmyrtle, bayberry	*Myrica nagi* (8)	Rinsing decoction with wine (4, 8)	Hot and dry with cool power and astringent (4, 5, 7)	Desiccation of humidity, purified, astringent, tonic of organs of body (4, 7)	Antioxidant, anti-inflammatory, central analgesic (proanthocyanids and tannin) (11, 19)
Pomegranate flowers	*Punica granatum* (8)	Sprinkling powder of bark and rinsing decoction (4)	Cool and wet (4, 5)	Restrained, desiccant, purified, astringent, tonic, cleansing (4, 7)	Anti-inflammatory (COX2- inhibitory and reduce PEG2 by polyphenoles and tannins) (13)
Lice-bane or stavesacre	*Delphinium staphsagria* (8)	Decoction with honey (4, 7)	Hot and dry (4, 5, 7)	High cleansing, purified of phlegm (4, 7)	Not found
Sumac	*Rubus cotaria* (8)	Tooth powder of fruit (4, 5)	Cool and dry (4)	Diluting, attenuant, penetration (sourness), restraint, organization contractor, condenser, antihemorrhagic (4, 7)	Antimicrobial, analgesic, anti-oxidant, anti-inflammatory, antiviral, astringent, cyclo-oxygenase inhibitor (tannin) (20)
Basil	*Ocimum basilicum* (8)	Rinsing and chewing (4, 5)	Hot and dry (4, 5)	Resolvent of inflammation (4, 7)	Antioxidant, antinociceptive, analgesic, antifungal, anti-inflammatory, antiviral (uroelic acid) (21)
Saatar	*Zataria multiflora* (8)	Extract of fresh flower (4)	Hot and dry (4, 5)	Exsiccation of septic humors, astringent, resolvent of phlegm (4, 7)	Anti-bacterial, antifungal, analgesic, antioxidant, wound healing (20)
Sandals	*Pterocarpus santalinus* (8)	Timber with rosewater (4)	Cool and dry (4, 5)	Absorbent, tonic, refrigerant (4, 7)	Not found
Chalk	*Bambusa arundinacea* (8)	Sprinkling powder of stem and eating it (4, 5)	Cool and dry (4, 5)	Cool, dry, exsiccation, tonic, purified, resolving, absorbent of putrid humors (4, 7)	Anti-inflammatory, immunomodulatory (22)

Table 1. The Plants Used in the Treatment of RAU in ITM and Traditional Effects Associated with Their Pharmacological Effects
Herb	Description	Properties	Effects
Lentil	*Lens culinaris* (7) Gargle with decoction (4, 5) In the heat, mild and dry (4)	Polyearthiness, dry, desiccant with dissolution and cleansing (4, 7)	Antioxidant, anti-inflammatory (proanthocyanidins) (23)
Blackberry	*Rubus sp.* (8) Chewing the leaves (4, 5) Combined strengths with overcome coldness and dryness (4)	Astringent, tonic with resolvent, cleansing (4, 7)	Analgesic, anti-inflammatory, wound healing (24)
Jujube	*Zizyphus jujuba* (8) Sprinkling powder of leaves and bark of stems (4, 7)	Hot and dry (4, 5) Desiccant, purified, absorbent (4, 7)	Anti-inflammatory, wound healing, burn ulcer healing (25)
Bramble	*Lyceum sp.* (8) Chewing the leaves (4, 5) Cool and dry (4, 5)	Astringent with resolvent, desiccant and tonic (4, 7)	Not found
Pistachio	*Pistacia vera* (8) Mastication of pistachio kernel (4, 7)	Hot and dry (4, 5) Deobstructant (opener), desiccant, cleansing, resolvent (4, 7)	Anti-inflammatory, antinociceptive, analgesic (alpha-pinen) (26)
Betel nut	*Areca catechu* (8) Fruit (4, 5) Cool and dry (4, 5)	Astringent, opener, tonic, reduced temperature and inflammatory (4, 7)	Antioxidant, analgesic, anti-inflammatory, antifungal, antimicrobial (tannin) (27)
Cardamom	*Elettaria cardamomum* (8) Seed (4, 5) Hot and dry (4, 5)	Resolvent, diluting (herness), cool astringent (earthiness), condenser, desiccant, absorbent of humors (4, 7)	Analgesic, anti-inflammatory, immunomodulatory (28)
Taro	*Colocasia antiquorum* (8) Sprinkling burnt powder for union (leaves and root) (4, 5)	Hot and wet (4, 5) Astringent, maturative swelling, union of ulcers and aphthous (4, 7)	Antifungal, COX1, COX2 inhibitory, anti-inflammatory (29)
Common centaury	*Centaurium erythraea* (8) Root decoction with rosewater (4)	Hot and dry in the third degree (4, 5) Desiccant without irritation, opener and cleansing and absorbent (4, 7)	Anti-inflammatory, analgesic, xanthin oxidase, antipyretic (30)
Catechu	*Acacia catechu* (8) Gum (adoritus-megma) (4) Cool and dry (4, 5)	Astringent, desiccant, styptic, restraint (4, 7)	Oral pathogen against, anti-inflammatory (cyclooxygenase and lipo-oxidase inhibitor) (31)
Camphor	*Cinnamomum camphora* (8) Gurgling of solution of gum plus rosewater (4)	Cool and dry (4, 5) Desiccant of humors that causes aphthous with overriding rising heat toward mouth (4, 7)	Anti-inflammatory, antioxidant, immunomodulatory, PGE2 suppressor (32)
Cubes	*Piper cubeba* (8) Chewing of fruit (4, 5) Hot and dry (4, 5)	Desiccant, cleansing and purified of oral ulcers and aphthous (4, 7)	Anti-inflammatory, analgesic (33)
Grape vine (resin)	*Vitis venifera* (8) Resin (4) Cool and dry (4, 5)	Humors-breakers (4, 7)	Not found
Borage	*Echium amoenum* (8) Sprinkling burnt powder of flower and leaves (4, 5)	Fresh: hot and wet Dried: hot and dry (4, 7) Alternative of mouth temperament, annihilator of mouth inflammatory and aphthous (4, 7)	Anti-inflammatory, analgesic, antioxidant (34)
Plantain	*Plantago magor* (8) Rinsing of root decoction or leaves decoction or mastication of leaves (4, 5)	Cool and dry (4, 5) Astringent and tonic, restraint, cleansing with resolvent and opener, hurdle of flowing of excretions (4, 7)	Anti-fungal and oral antimicrobial, analgesic, antinociceptive, (tannin) (35)
Lemon	*Citrus sp.* (8) Juice of lemon (4) Cool and dry (4, 5)	Astringent, resolvent of oral excretions because of hot (skin), cleansing/inner and sour part of it, attenuant viscose humors (4, 7)	Anti-inflammatory, analgesic (hesperidins), immunomodulatory (vit C, mast cells), decrease of release of histamines (glycoside-flavonan) (36)
Myrrh	*Commiphora myrrha* (8) Gum (4, 5) Hot and dry (4, 5)	Desiccant of infectious humors, tonic, purified, cleansing, high resolvent (fired parts and air parts), wound healing (4, 7)	Anti-inflammatory, analgesic (decreasing of PGE2), anti-inflammatory, anti-septic, antifungal, decreasing of buccal bleeding, reduce duration of aphthous (37)
Rose	*Rosa damascene* (8) Sprinkling powder of dry flower (4, 5) Combined strengths (4, 5)	Dry, astringent, desiccant because there is earthiness. Corruption the flowing of substances (4, 7)	Antibacterial, anti-inflammatory, analgesic, reduce of duration of aphthous, antinociceptive (15, 38)
Dryness causes desiccation and astringency (4, 5), and hotness causes maturation, dilution and resolution (4, 5), while coldness causes organ strengthening (4, 5).

4. Conclusions
Based on the actions of these plants, and based on their temperaments and this protocol, these plants are divided into two categories:
1- Plants that cure RAU by desiccation and purification, and maturation (4, 5).
2- Plants that cure RAU by astringency power and preventing of falling down the substances and will strengthen the organ (4, 5).

From the above, it is found that astringent herbs used to treat RAU are due to the presence of tannins, and therefore, they have immunomodulatory properties (39) and resinolants in ITM may be antioxidant and anti-inflammatory compounds, for example anthocyanin components. Although some of pharmacological effects cannot be matched to traditional effects, treatment of RAU can be justified by traditional effects.

Eventually the plants listed in Table 1 can be used as a prediction of RAU management. Of course, there is no evidence for curing RAU by some of these plants in allopathic medicine, and further investigations in this area could lead to the discovery of a new drug.

Acknowledgments
Thank you to the library of traditional medicine of Tehran University and the library of the research institute for Islamic and complementary medicine of Iran University.

Footnotes
Authors’ Contribution: Omid Saleghpour and Mohammad Reza Shamsardakei were supervisors and developed the original idea and the protocol. Shokouhsadat Hamedi researched and collected matters and wrote the manuscript. Dawood Hajighasemali helped with collecting. Zohreh Feyzabadi helped in changing the references to endnote format.

Funding/Support: This study was supported in part by a grant from the herbal and traditional medicine department in the research institute for Islamic and complementary medicine, Iran University of Medical Sciences, and the traditional medicine faculty in Tehran University of Medical Sciences.

References

1. Embil JA, Stephens RG, Manuel FR. Prevalence of recurrent herpes labialis and aphthous ulcers among young adults on six continents. Can Med Assoc J. 1975;113(7):827–30. [PubMed: 181018]
2. Shirzadi M. Epidemiology of recurrent aphtous stomatitis and co-related factors [Farsi]. J Med. 2011;324–31.
3. AzamKhan M. Akbor Azam. [Farsi]. Tehran, Iran: Institute of Medicine Studies and Islamic medicine press; 2004.
4. Aghili MH, Makhzan-Al. Advieh [Farsi]. Tehran. Iran: Tehran University of Medical Science Press; 2011.
5. Avicenna. Canon of Medicine. [Farsi]. Tehran, Iran: Soroosh Publisher; 1986.
6. Babaee N, Mansourian A, Momem-Heravi F, Moghadamnia A, Momem-Beitollahi J. The efficacy of a paste containing Myrtus communis (Myrtle) in the management of recurrent aphthous stomatitis: a randomized controlled trial. Clin Oral Investig. 2010;14(4):455–70. doi: 10.1007/s00784-009-0427-x. [PubMed: 19300244]
7. Ibn Al-Nafis. Al-Shamil fi Al-Tibb [Arabic]. Beirut, Lebanon: Cultural Foundation Publication; 1983.
8. Ghahreman A. Matching the Old Medical Plant Names With Scientific Terminology [Farsi]. Tehran, Iran: Tehran University press; 2011.
9. Popov AM, Li IA, Kang Di. Analogic properties of “CF” extracted from safflower (Carthamus tinctorius L.) seeds and potential for its use in medicine. Pharmaceutical Chemistry Journal. 2009;5(1):341–4. doi: 10.1016/j.pharmch.2009.02.033.
10. Chan K, Islam MW, Kamil M, Radhakrishnan R, Zakaria MN, Habibullah M, et al. The analgesic and anti-inflammatory effects of Portulaca oleracea L. subsp. Sativa (Haw.) Celak. Ethnopharmacol. 2000;73(3):445–51. [PubMed: 11099998]
11. Almeida RN, Navarro DS, Barbosa-Filho JM. Plants with central analgesic activity. Phytochemistry. 2010;71(4):210–22. doi: 10.1016/j.phytochem.2009.05.006. [PubMed: 11347571]
12. El-Shenawy SM. Evaluation of some pharmacological activities of ethanol extracts of seeds, pericarp and leaves of Eugenia jamalana in rats. Inflammopharmacology. 2009;17(2):35–92. doi: 10.1016/s0928-8881(09)70259-4. [PubMed: 19125675]
13. Murphy KN, Reddy VK, Vegiass M, Murphy UD. Study on wound healing activity of Punica granatum peel. J Med Food. 2004;7(2):256–9. doi:10.1089/10966200412241111. [PubMed: 15298776]
14. Heidari MR, Mehrabani M, Pardakhty A, Khazaeli P, Zakeri MJ, Yakhchali M, et al. The analogic effect of Tribulus terrestris extract and comparison of gastric ulcerogenesis of the extract with indomethacin in animal experiments. Ann N Y Acad Sci. 2007;1095:418–27. doi: 10.1016/j.ansan.2007.09.045. [PubMed: 17400545]
15. Surh YJ, Chun KS, Cha IH, Han SS, Keum YS, Park KY, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001;480-481:241-68. [PubMed: 11506818]
16. Varoni EM, Lodi G, Sardella A, Carrassi A, Iriti M. Plant polyphenols and oral health: old phytomedical for new fields. Curr Med Chem. 2012;19(9):1237-1240. [PubMed: 22763310]
17. Ali BH, Bashir AK, Tanira MM, Ariti M. Plant polyphenols and oral health: old phytomedical for new fields. Curr Med Chem. 2012;19(9):1237-1240. [PubMed: 22763310]
18. Sayyah M, Hadidi N, Kamalinejad M. Analgesic, anti-inflammatory and anti-microbial effects of Lawsonia inermis L. (henna) in rats. Pharmacology. 1995;50(6):356–63. [PubMed: 8969814]
19. Sayyah M, Hadidi N, Kamalinejad M. Analgesic, anti-inflammatory and anti-microbial effects of Lawsonia inermis L. (henna) in rats. Pharmacology. 1995;50(6):356–63. [PubMed: 8969814]
20. Shelby MR, Reddy VK, Veigas M, Murphy UD. Study on wound healing activity of Punica granatum peel. J Med Food. 2004;7(2):256–9. doi:10.1089/10966200412241111. [PubMed: 15298776]
21. Heidari MR, Mehrabani M, Pardakhty A, Khazaeli P, Zakeri MJ, Yakhchali M, et al. The analogic effect of Tribulus terrestris extract and comparison of gastric ulcerogenesis of the extract with indomethacin in animal experiments. Ann N Y Acad Sci. 2007;1095:418–27. doi: 10.1016/j.ansan.2007.09.045. [PubMed: 17400545]
22. Surh YJ, Chun KS, Cha IH, Han SS, Keum YS, Park KY, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001;480-481:241-68. [PubMed: 11506818]
23. Varoni EM, Lodi G, Sardella A, Carrassi A, Iriti M. Plant polyphenols and oral health: old phytomedical for new fields. Curr Med Chem. 2012;19(9):1237-1240. [PubMed: 22763310]
24. Ali BH, Bashir AK, Tanira MM, Ariti M. Plant polyphenols and oral health: old phytomedical for new fields. Curr Med Chem. 2012;19(9):1237-1240. [PubMed: 22763310]
25. El-Shenawy SM. Evaluation of some pharmacological activities of ethanol extracts of seeds, pericarp and leaves of Eugenia jamalana in rats. Inflammopharmacology. 2009;17(2):35–92. doi: 10.1016/s0928-8881(09)70259-4. [PubMed: 19125675]
26. Murphy KN, Reddy VK, Vegiass M, Murphy UD. Study on wound healing activity of Punica granatum peel. J Med Food. 2004;7(2):256–9. doi:10.1089/10966200412241111. [PubMed: 15298776]
27. Heidari MR, Mehrabani M, Pardakhty A, Khazaeli P, Zakeri MJ, Yakhchali M, et al. The analogic effect of Tribulus terrestris extract and comparison of gastric ulcerogenesis of the extract with indomethacin in animal experiments. Ann N Y Acad Sci. 2007;1095:418–27. doi: 10.1016/j.ansan.2007.09.045. [PubMed: 17400545]
28. Surh YJ, Chun KS, Cha IH, Han SS, Keum YS, Park KY, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001;480-481:241-68. [PubMed: 11506818]
29. Varoni EM, Lodi G, Sardella A, Carrassi A, Iriti M. Plant polyphenols and oral health: old phytomedical for new fields. Curr Med Chem. 2012;19(9):1237-1240. [PubMed: 22763310]
and change in the Mediterranean medical tradition: Ruta spp. (rutaceae) in Hippocratic medicine and present practices. *J Ethnopharmacol.* 2008;116(3):469-82. doi: 10.1016/j.jep.2007.12.013. [PubMed: 18276094]

25. Jena BK, Rathia B, Kar S. Wound healing potential of Ziziphus xylopyrus Willd. (Rhamnaceae) stem bark ethanol extract using in vitro and in vivo model. *J Drug Delivery Ther.* 2012;2(6):41-6.

26. Orhan I, Kupeli E, Aslan M, Kartal M, Yesilada E. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L. *J Ethnopharmacol.* 2006;103(1-2):235-40. doi: 10.1016/j.jep.2005.10.023. [PubMed: 16337351]

27. Bhandare AM, Kshirsagar AD, Vyawahare NS, Hadambar AA, Thorve VS. Potential analgesic, anti-inflammatory and antioxidant activities of hydroalcoholic extract of Areca catechu L. nut. *Food Chem Toxicol.* 2010;48(12):3412-7. doi: 10.1016/j.fct.2010.09.013. [PubMed: 20849967]

28. Majdalawieh AF, Carr RI. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). *J Med Food.* 2010;13(2):371-81. doi: 10.1089/jmf.2009.1131. [PubMed: 19932161]

29. Arias BA, Ramon-Laca L. Pharmacological properties of citrus and their ancient and medieval uses in the Mediterranean region. *J Ethnopharmacol.* 2005;97(1):89-95. doi: 10.1016/j.jepharm.2004.10.019. [PubMed: 15652288]

30. Groppo FC, Bergamaschi Cde C, Cogo K, Franz-Montan M, Motta RH, de Andrade ED. Use of phytotherapy in dentistry. *Phytother Res.* 2004;18(5):343-57. doi: 10.1002/ptr.1475. [PubMed: 15173991]