Biofabrication of vasculature in microphysiological models of bone

To cite this article: Ian T Whelan et al 2021 Biofabrication 13 032004

View the article online for updates and enhancements.
Biofabrication of vasculature in microphysiological models of bone

Ian T Whelan, E Moeendarbary, David A Hoey and Daniel J Kelly

E-mail: kellyd9@tcd.ie

Keywords: organ on chip, vascularisation, microphysiological systems, bone on chip

Abstract
Bone contains a dense network of blood vessels that are essential to its homoeostasis, endocrine function, mineral metabolism and regenerative functions. In addition, bone vasculature is implicated in a number of prominent skeletal diseases, and bone has high affinity for metastatic cancers. Despite vasculature being an integral part of bone physiology and pathophysiology, it is often ignored or oversimplified in in vitro bone models. However, 3D physiologically relevant vasculature can now be engineered in vitro, with microphysiological systems (MPS) increasingly being used as platforms for engineering this physiologically relevant vasculature. In recent years, vascularised models of bone in MPSs systems have been reported in the literature, representing the beginning of a possible technological step change in how bone is modelled in vitro. Vascularised bone MPSs is a subfield of bone research in its nascency, however given the impact of MPSs has had in in vitro organ modelling, and the crucial role of vasculature to bone physiology, these systems stand to have a substantial impact on bone research. However, engineering vasculature within the specific design restraints of the bone niche is significantly challenging given the different requirements for engineering bone and vasculature. With this in mind, this paper aims to serve as technical guidance for the biofabrication of vascularised bone tissue within MPS devices. We first discuss the key engineering and biological considerations for engineering more physiologically relevant vasculature in vitro within the specific design constraints of the bone niche. We next explore emerging applications of vascularised bone MPSs, and conclude with a discussion on the current status of vascularised bone MPS biofabrication and suggest directions for development of next generation vascularised bone MPSs.

1. Introduction
Despite the substantial contribution of animal models to drug discovery and basic biological research, their shortcomings as analogues of human (patho)physiology are now well recognised [1, 2]. In many cases, animal models are unsuitable analogues of human biology. For example, the human immune system [3, 4] and blood brain barrier [5, 6] cannot be modelled accurately with existing animal models. The poor predictive ability of such models, combined with their complexity and high development costs, has motivated the search for alternative approaches to model human biology. Animal testing is the gold standard in bone research, yet it is recognised that further development of in vitro systems to replace and augment animal models is needed [7, 8]. The routine use of animals in biomedical and engineering research is under increasing scrutiny, and much effort is now focussed on reducing animal numbers in research [9]. Due to the relative inaccessibility of primary human bone cells, the state of the art in vitro systems used to probe the mechanisms of bone physiology and pathology are typically 2D systems with immortalised cell lines derived from murine sources. Thus, the field of in vitro bone research stands to gain from development of more physiologically relevant human bone models.

Microphysiological systems (MPSs) are an emerging technology that involve the biofabrication of human organ systems at the microscale. These systems are similar to traditional cell culture systems in terms of ease of use and experimental control, but can add biological complexity in the form of
multiple cell types, complex tissue geometry, fluidic coupling of devices, mechanical stimulation, and vasculatisation. Bone is a highly complex organ, in which many of these aforementioned parameters are critical to its physiology. For example, osteocytes, the cells that comprise greater than 90% of cells in bone [10], are highly mechanically sensitive [11], and transduce mechanical stimuli to coordinate bone remodelling; a process disrupted in prominent diseases such as osteoporosis. Additionally, bone vasculature is tightly integrated in endochondral bone formation [12, 13], and bone tissue is a common secondary site for tumour cells to extravasate from the vasculature in metastasising breast and prostate cancer [14, 15]. Thus, the additional complexity offered by MPS systems may facilitate engineering more physiologically relevant bone models, and potentially lead to significant discoveries about the fundamentals of bone physiology and pathology.

Vasculature plays a key role in many (patho)physiological processes in bone (figure 1). Vascular invasion is a critical step in endochondral ossification (figure 1(A)), the process by which most bones develop prenatally, and grow and repair postnataally, as it drives the conversion of cartilaginous template into new bone. It is still not fully understood how vasculature drives this process, but insights into how it can be regulated could provide treatments for non-unions, chondrodysplasias and osteochondrosis. Bone remodelling is a key process where osteoblasts, osteoclasts and osteocytes maintain bone tissue health by continuous deposition and resorption. It is estimated that the whole skeleton turns over every 10 years [16], and this intricate process becomes dysregulated in conditions such as osteoporosis [17], Paget’s disease, and renal osteodystrophy [18]. We now know that vasculature plays a key role in bone remodelling by supplying the key growth factors and precursor cells to the bone remodelling unit [19] (figure 1(B)). Additionally, the vasculature plays host to the stem cell niche in bone marrow, which maintains the naïve phenotype of stem cells, which are important to many bone functions, including regeneration [20] (figure 1(C)). More recently, bone has been shown to play a significant role in glucose handling in humans [21], where undercarboxylated osteocalcin is released by bone resorbing osteoclasts and released into the circulation to exhibit endocrine effects on the testes and pancreas (figure 1(D)). Interestingly, dysregulated glucose handling in diabetes mellitus is associated with impaired blood flow, decreased vessel supply in long bones of rats, and has also been associated with increased risk of fractures in humans [22]. Finally, metastasising cancers of the breast and prostate have an affinity for bone tissue, with post mortem examination showing 70% of patients have bone metastases [23]. While still not fully understood, these findings suggest that bone tissue creates a niche that favours metastatic colonisation for circulating tumour cells (figure 1(E)). Common to all of the above is the central role that the vasculature plays in these biological processes in bone, yet it is poorly represented...
or absent from the majority of in vitro models of this organ.

The importance of incorporating vasculature in in vitro models is well recognised [24, 25] and over the last 10 years, numerous different approaches for fabricating microvascular networks in MPSs have been described [26]. However, engineering vascular networks within the constraints of a specific organ niche is significantly more challenging, and this is particularly the case in the context of bone [27, 28]. In light of this, the proceeding section describes the key considerations for developing physiologically relevant vasculature within the bone nice.

2. Considerations for prospective vascularised bone MPSs

The vascular component of a bone MPS can be engineered by approaches that largely fit into one of two categories; Top-down engineered vessels and bottom-up self-assembled vessels. Top-down engineered vasculature is achieved by fabricating pre-patterned lumen structures within MPS devices and subsequently coating the luminal surface with endothelial cells (ECs). A number of strategies exist for engineering vasculature by such methods, and have been reviewed elsewhere [29]. In contrast, vascular self-assembly relies on creating conditions to allow ECs to form physiologically relevant vascular networks, typically within a hydrogel, and is the most common method in MPS systems as this vasculature is more reflective of the in vivo condition. This can be achieved through vascular invasion into the gel in response to an angiogenic gradient in a process analogous to angiogenesis, or by spontaneous formation of vasculature in a process analogous to vasculogenesis. Naturally, the choice of which methods to use depends on the application; geometrical control of vessels is important for regulating fluid flow and shear stresses, or recreating the geometry of haversian canal within osteons. However, self-assembled vasculature is a more physiologically relevant analogue, and is the ideal endothelial niche to represent vasculature in these models. Thus the proceeding sections are a discussion of the pertinent factors in engineering this self-assembled vasculature in a bone context.

2.1. Cells

ECs are a heterogeneous population, with phenotypes that reflect their in vivo niche. Bone microvascular ECs would naturally be an ideal candidate for bone models, however while a bovine clonal EC line has been reported [30], it has not been used extensively, and no cells from human origin exist. However, it must be noted that bone ECs have shown to be sensitive to hormones involved in bone homeostasis, such as parathyroid hormone (PTH), where ECs from other sources have not [30], and bone ECs have been shown to express estrogen receptors, and to proliferate and show inhibited PTH responsiveness when treated with estrogen [31]. Despite the case for bone specific ECs, they are not used extensively, though modelling specific biological processes may require a specific bone derived EC.

At present, commercially available primary cell sources are most commonly used for the endothelial component of MPSs (table 1), including human umbilical vein ECs (HUVECs) and human microvascular ECs (HMVECs), and endothelial progenitor cells (EPCs). In addition, while much success in engineering microvascular networks has been reported using these primary cells, there has been increased interest recently on the use of induced pluripotent stem cells (iPSCs). This section aims to compare these cell types in the context of engineering the vascular component of a vascularised bone MPS.

2.1.1. Vasculature: endothelial cells

2.1.1.1. HUVEC/HMVEC

It is well documented that primary human ECs are not a homogeneous cell source, but vary depending on their origin [32–35]. A subset of ECs, namely HUVECs and HMVECs, are the two most ubiquitous primary EC types used in vascular network biofabrication. HUVECs (see table 1) have been used almost exclusively as the cell type for engineering vasculature within MPS. However, HMVECs from various origins (brain, lung and skin) are also used in vascular research for studying angiogenesis [36], metastatic intravasation [37], and engineering vasculature [38, 39]. Despite differences between ECs in general, evidences suggest that these two particular EC types may be functionally similar. For example, HUVECs and HMVECs behaved similarly, in terms of cell migration and morphogenesis, when subjected to various chemokines [40]. HUVECs and HMVECs also showed similar contractility and matrix invasion functions when seeded in a collagen lumen [38]. Furthermore, both cell types have also been shown to deposit similar amounts of basement membrane protein [41]. However, conflicting evidence arises in the context of barrier function. HMVECs were shown to display more continuous ZO-1 and occludin staining, higher transendothelial electrical resistance (TEER) and lower permeability compared to HUVECs [42]. In conflicting reports, HUVECs have exhibited lower permeability compared to HMVECs [37], and cerebral ECs [43]. A possible explanation for this inconsistency might be that in those conflicting studies, HMVECs were isolated from different sources of brain and skin.

2.1.1.2. Endothelial progenitor cells/endothelial colony forming cells (EPCs/ECFCs)

EPCs are circulating progenitor cells that can differentiate into all cell types of the capillary niche [44], making them an exciting prospect for vascular
Table 1. Construction parameters for microvascular network applications.

Application	ECM	Concentration	Mechanical stim	Cell type	Angiogenic stim	Ref.
Vascular network construction	Fibrin	1.25–10 mg ml\(^{-1}\) (final)	N/A	HUVEC	NHLF, SIP, VEGF, hNSC spheroids	[208]
Vascular and neuronal networks	Collagen	2.4 mg ml\(^{-1}\)	Applied 45 Pa hydrostatic head for perfusion	HUVEC, iPSC-EC, hNSC spheroids	BM-MSC	[55]
Breast cancer metastasis to bone	Fibrin	2.5 mg ml\(^{-1}\)	0.25 dyn cm\(^{-2}\)	HUVEC	NHLF	[183]
Vascular network construction	Fibrin	2.5 mg ml\(^{-1}\) fibrinogen	0.15 mg ml\(^{-1}\) col 1 aprotinin	NHLF	NHLFs	[209]
Vascular network construction	Fibrin + hydroxyapatite	Fibrin—not specified	HA (0.1%-0.5%)	HUVEC	NHLF	[147]
Vascular network construction	Fibrin	Interstitial and interluminal flow	N/A	NHLF, ECFCS	NHLF (EGM-2 MV-bFGF—VEGF)	[210]
Breast cancer—EC interaction	Collagen-fibrin	2.5 mg ml\(^{-1}\) fibrinogen	Pressure head driven flow	Spheroids 4:1: NHLF:HVECs U87MG HUVEC (3) 3:1:1 NHLF:HVECs: MCF-7	MCF-7 breast cancer cell spheroids	[211]
Vascular network construction	Collagen-fibrin	Collagen 3 mg ml\(^{-1}\) Gelatin 10% (w/v) Fibrin 10 mg ml\(^{-1}\)	<1 dyn cm\(^{-2}\) fluid shear stress	HUVECs and NHLF	NHLF	[179]
Vascular network construction	Fibrin	2.5 mg ml\(^{-1}\)	N/A	HUVEC, NHLF, BM-MSC/AD-MSC	NHLF/BM-MSC/AD-MSC	[86–88]
Vascular network construction	Fibrin	2.5–10 mg ml\(^{-1}\)	N/A	HUVEC, iPSC-EC hECSs hiPSCs iPSC	NHLF	[54]
Vascular network construction	Hyaluronic acid	Not specified	N/A	NHLF	N/A	[52]
Vascular network construction	PEG + MMP + CRGDS	20 mg ml\(^{-1}\)	N/A	HUVEC 10T1/2	EGM-2	[143]

network biofabrication. EPCs have been historically isolated and characterised using a variety of methods such as molecular sorting, adherence enrichment, and adherence depletion [45], and only recently have a set of molecular and functional requirements been established to isolate and characterise putative EPCs [46]. EPCs are colony forming cells that are restricted to the EC lineage, as evidenced by endothelial marker expression; ability to undergo 30 population doublings over 60 d of in vitro culture; form lumenised capillaries in vitro, and can anastomose to host vasculature in vivo [46]. Colony formation was a key development during the search for EPCs, thus the term endothelial colony forming cells (ECFCs) was
coined and represents EPCs isolated and characterised using this method. EPCs have been used as an EC source to fabricate vascularised tissue in a number of reports [47–49], however, their use as the endothelial component in MPSs is limited. There is one report that used blood outgrowth ECs, a less purified subset of EPCs, as a patient-specific cell source for modelling thromboinflammation. The authors found vessels engineered using these cells from diabetic patients exhibited a pro-thrombotic and pro-inflammatory phenotype which was not evident with cells from healthy patients [50]. EPCs may prove to be a valuable patient specific cell source for modelling specific conditions such as thromboinflammation in diabetes. However the lack of use of these cells within MPSs, the additional steps required to isolate and purify from a venous draw, and the variability that comes with these may limit their application until these issues are resolved.

2.1.1.3. Induced pluripotent stem cells
Recently, attention has been focussed on the application of iPSCs in tissue engineering and disease modelling. In the latter case, iPSCs represent a patient specific pluripotent cell source to study disease progression in multiple cell types and tissues, a paradigm also applicable to MPS. Aside from their self-renewing capacity, iPSCs retain the genetic backgrounds of the patients from which they were derived and may serve as a disease specific cell source. ECs derived from iPSCs (iPSC-ECs) have the ability to form vascular networks in vitro and in vivo, and display the molecular signature of mature vessels [52, 53]. While these results are promising, only recently a comparison between iPSC-ECs and primary ECs has been conducted [54]. The report compared isolated HUVECs, commercially available HUVECs, and two iPSC-EC cell sources and found that sprouting of iPSC-ECs was significantly attenuated compared to HUVECs, with the study citing reduced MMP-9 expression as a possible mechanism. iPSC-ECs also proliferate more slowly compared to ECs, which may hinder their utility in large scale MPS systems [55]. Finally, the endpoint of iPSC-EC differentiation has yet to be standardised, thus reported iPSC-ECs function in literature likely represent the function of a range of iPSC-EC phenotypes, depending on the specifics of the study in question.

2.1.2. Parenchyma: bone cells
The formation of vasculature in a vascularised bone MPS requires a support cell. In many applications, fibroblasts have been the support cell of choice as they readily facilitate formation of vascular networks and can be cultured up to high passages. However, the formation of vascular networks in a bone niche requires a more tissue relevant support cell type. The key parenchymal cells in mineralised bone tissue are the osteoclasts, osteoblasts and osteocytes, with bone marrow stromal cells (hBMSCs) the resident stem cell precursors of the latter two. These cells make up the bone remodelling unit and work in tandem to maintain bone homeostasis.

2.1.2.1. Osteoclasts
The exact relationship between vasculature and bone resorbing osteoclasts is not well understood. There is some evidence that suggests suppression of osteoclast formation with osteoprotegerin (OPG), an osteoclastogenesis inhibitor, in bone explants will dose-dependently inhibit angiogenesis [56]. Additionally, a recent study has shown that a subset of osteoclasts, the vessel associated osteoclasts, regulate anastomoses of type H vessels, the vessels found in the bone metaphysis, during growth plate resorption during bone growth [57]. Despite this, no in vitro studies have shed light on how osteoclasts specifically effect vascular network formation in vitro. This is surprising given that the effects of osteoporosis therapeutics typically target osteoclasts [58], but also effect angiogenesis and potentially cause osteonecrosis [59].

2.1.2.2. Osteoblasts
Osteoblasts line the bone surfaces and contribute to bone formation through secretion of the organic components of bone tissue including predominantly collagen type I, proteoglycans, glycoproteins and γ-carboxylated proteins [62]. Osteoblast function is dysregulated in conditions such as diabetes mellitus [63] and osteoporosis [64]. In vitro investigation of osteoblast function typically relies on the murine derived MC3T3 and MLO-A5 cell lines [65]. Human osteoblasts are far less common, but they are commercially available and protocols exist for their isolation [66]. Primary osteoblasts have been found to promote EC proliferation and formation of vessel structures [67]. Additionally, Ma et al have shown that primary human osteoblasts facilitate vessel formation in HUVECs in 2D culture [68]. Thus, though unproven, human osteoblasts may be able to supply the required factors for vascular network morphogenesis.

2.1.2.3. Osteocytes
Osteocytes comprise over 90% of the cells in mineralised bone tissue and are a key orchestrator of bone
function. Osteocytes are believed to be responsible for transduction of mechanical signals [69], orchestration of bone remodelling [70], and endocrine regulation of distant organs [71]. Thus, much of reported in vitro bone models attempt to recreate osteocyte function. The conditioned media from the osteocyte cell line MLO-Y4 has been shown to support vascularisation in vitro; having effects on EC proliferation and network formation [72,73]. Primary human osteocytes can be obtained by collection of late stage cells in serial digestion of trabecular bone in a chelating agent and collagenase [74]. However, it is difficult to yield large numbers of these cells, and they tend to de-differentiate in culture. As yet, no human analogue of the osteocyte exists, and development of such a model will be key for in vitro vascularised bone research.

2.1.2.4. Bone marrow stromal cells
Bone marrow derived multipotent stromal/stem cells (BM-MSCs) are the progenitors of both osteoblasts and osteocytes. They are commonly used in bone applications as they can be osteogenically committed either directly, or with initial chondrogenic priming before hypertrophic induction. To complement this, BMSCs have been widely studied, are more available than other human bone cell types, and have proven to facilitate vascular network formation. These, along with the fact that BMSCs are believed to be the precursors of osteoblasts and osteocytes, and originate from mural cells that induce network stabilisation, has made BMSCs the canonical cell type for generating bone in MPS systems.

Undifferentiated BM-MSCs facilitate vascular network formation in co-culture with ECs, and tend to differentiate toward a mural cell like phenotype; expressing α-SMA and migrating to the perivascular space [75,76]. These traits may be a promising means to promote vessel maturity in bone MPSs, as co-culture with pericytes has shown improved basement membrane production [77], decreased vessel permeability [77–79] and inhibition of vessel regression [80]. Upon differentiation, BM-MSCs exhibit a more osteoblastic phenotype, and this has been achieved in vascularised MPS systems by pre differentiating BM-MSCs in monolayers before MPS co-culture with ECs [81,82]. In this case BM-MSCs retain their osteoblastic phenotype; expressing osteocalcin and alkaline phosphatase (ALP). A key consideration for forming vascular networks using BM-MSCs is the cell ratio; high relative numbers of BM-MSCs relative to HUVECs (1:2) will form vascular networks, but will require additional vascular endothelial growth factor (VEGF) supplementation and 2D cell coverage in the media channels to facilitate limited perfusability [75]. However, the same group discovered subsequently that the relatively high number of MSCs used in these studies (1:2 BM-MSC:EC), a common ratio used with fibroblasts, was prohibitive of perfusability, and using a decreased relative number of BM-MSCs (1:10) resulted in the formation of perfusable networks [81,83]. The reason that BM-MSCs need to be in relatively low numbers to support perfusable vasculature is still unknown. Perhaps, as BM-MSCs are believed to be derived from pericytes [84], they may possess the documented stabilising nature of pericytes, such as their abrogating effects on VEGF [85].

One critical consideration for support cell selection is their effect on the proteolytic behaviour of ECs. Comparisons have been undertaken between BM-MSCs, adipose derived MSCs (AD-MSCs) and normal human lung fibroblasts (NHLFs), and their effects on the vasculogenic process in vitro (figure 2). In a 3D fibrin matrix co-culture with BM-MSCs, ECs critically rely on membrane bound metalloproteinases, specifically MMP-14 (MT-MMP), with MMP inhibition halting EC sprouting [86,87] (figure 2(B)). In contrast, with AD-MSCs and NHLFs, EC sprouting proceeds despite MMP inhibition. NHLFs and AD-MSCs promote ECs to remodel their extracellular matrix (ECM) during angiogenesis through both MMP and plasminogen activator/plasmin axis [88], requiring inhibition of both programs to halt sprouting. Thus, the choice of support cell type may influence the proteolytic mechanism by which ECS form vascular structures, which is a key consideration for both support cell and ECM selection, or use of inhibitors of these proteolytic processes in these systemsprematurely induce EC.

2.2. Soluble factors
In vivo, ECs lining stable blood vessels remain quiescent due to a balance of pro-angiogenic and antiangiogenic factors [89,90]. Vessel growth (pathological or otherwise) or regression is triggered when this balance is changed, and either pro- or antiangiogenic stimuli dominate. In vitro, ECs are grown and maintained in culture media that is typically supplemented with a number of these soluble angiogenic factors. Commercial EC growth media (EGM) can be broadly categorised into EGM and EGM–2. EGM–2 is low serum media typically supplemented with several angiogenic factors, such as VEGF, hydrocortisone, epidermal growth factor (EGF), insulin-like growth factor, ascorbic acid (AA), basic fibroblast growth factor (bFGF) and hepatocyte growth factor-B. EGM is intended for rapid EC growth and is also used as the medium to facilitate vascular network formation in 3D. In bone, osteogenesis and angiogenesis are inherently coupled, thus a number of bone cells secrete factors that that effect vascular network formation.
2.2.1. Angiogenic factors in bone

A number of angiogenic factors that regulate bone physiology in vivo may be of particular importance when recreating bone physiology in vitro. Evidence suggests VEGF is a key regulator of angiogenesis in bone tissue and differentiating osteoblasts [91], osteocytes [92], and bone ECs [93] have been shown to express this chemokine. FGF-2 is also expressed by osteoblasts [94], and induces osteoclastogenesis [95] and osteoclastic bone resorption [96]. More interestingly, a number of bone associated factors have been shown to have potent pro angiogenic effects. Bone morphogenetic proteins (BMPs) are crucial proteins in the development and maintenance of skeletal tissues. BMP-2 has been shown to induce angiogenesis in endothelial progenitor cells [97], and has also been shown to be a specific promotor of angiogenesis in developing cancers [98, 99]. BMP-7 has been to promote angiogenesis in a chick chorioallantoic membrane [100], and BMPs 2, 4 and 9 have also shown to have pro angiogenic effects [101].

RANKL and OPG are key factors in regulating bone resorption though their regulatory effects on osteoclasts, but also have different regulatory effects on angiogenesis. OPG, aside from its role in bone, is also produced by ECs, and is released when ECs are stimulated by TNF-α, suggesting OPG has a role in regulating inflammation [102]. OPG also maintains EC viability by blocking apoptosis [103], and induces angiogenic sprouting in an aortic ring model [104]. OPG has also been shown to stimulate colony formation in ECFCs [105]. The role of RANKL, the canonical ligand for OPG in bone, is less understood, as conflicting evidence exists on its angiogenic properties. RANKL was found to inhibit EC proliferation and angiogenesis [104] in vitro, but has also been show to promote angiogenesis in vivo [106] and has also been shown to have a role in promoting EC survival [107]. In summary, osteoclast inhibitor OPG appears to facilitate vessel formation, while the effects of its canonical ligand, RANKL, are less certain.

2.2.2. Effects of osteoinductive supplements on angiogenesis

Where required concurrently driving angiogenesis and osteogenesis of endothelial and mesenchymal precursors in vitro has proven challenging as it requires integrating the soluble factors required for each purpose. Osteogenic medium, for osteoblast and osteoblast precursors is typically high or low glucose essential medium supplemented with 10% FBS, 10–100 nM dexamethasone, 10 mM β-glycerophosphate, and 10–50 µg ml⁻¹ AA. The level of serum in osteogenic medium is higher than that of EGM (10% vs 2%–5%). This is a key consideration, as serum levels are mediators of tube formation. For example, serum levels are used as controls in Matrigel tube structure assays; low serum (5%), low supplement negative controls and high serum (10%) supplemented with FGF-1 and FGF-2 are used to decipher pro and anti-angiogenic activity [108]. Additionally, some evidence suggests that very high serum medium
(20%) can senesce [109]. Dexamethasone is a synthetic analogue of the natural glucocorticoid hydrocortisone, used in EGM, and comparatively has a much higher affinity for glucocorticoid receptors [110]. Hydrocortisone is used to increase EC sensitivity to EGF [111], while excessive stimulation of glucocorticoid receptors has been shown to cause oxidative stress in ECs [112]. β-glycerophosphate is a phosphatase inhibitor and phosphate ion source for the formation of calcium phosphates during osteogenesis. To date, there is no evidence of adverse effects of β-glycerophosphate or phosphate ions, at cell culture relevant levels, on ECs. Finally, AA, a vitamin and cofactor required for proper collagen synthesis [113], is required for both media. These observations would suggest that osteogenic differentiation and endothelial vascular morphogenesis can occur concurrently in vitro. However, concurrent differentiation of hBMSCs and vascular network formation in 3D has yet to be reported. In 2D, a range of optimised media have been reported for co-culture of hBMSCs and ECs, but these experiments rarely evaluate both angiogenic and osteogenic outcomes [114, 115]. Thus, an optimal media formulation has yet to be realised that can drive simultaneous vascular network formation and bone matrix deposition in 3D.

2.3. Extracellular matrix (ECM)

The ECM plays a central role in the formation of microvascular networks. During angiogenesis or vasculogenesis, the ECs exert pull-push forces on their surrounding ECM while cleaving and remodelling their environment as they migrate towards an angiogenic stimulus. The ECM can facilitate or hinder these processes; thus optimisation of ECM parameters is crucial for successfully vascularising a bone model. Engineering bone brings with it its own ECM and culture requirements, which adds an additional layer of complexity. Table 1 lists the matrix parameters used for constructing microvascular networks in MPS devices in both bone and applications in other organs, and will be referred to throughout the proceeding sections.

2.3.1. Matrix materials

Natural biodegradable materials are the most commonly used ECM analogues for forming vascular networks in MPS applications (table 1). Fibrin and collagen type I (herein referred to as collagen) have been used almost exclusively in the published literature, and are deemed the gold standard material by the American Heart Association for 3D in vitro evaluation of vascular biology [116]. Fibrin gels are typically fabricated using a final fibrinogen concentration between 2 and 10 mg ml⁻¹, as circulating levels of fibrinogen in human blood are of this magnitude [117, 118]. ECs express urokinase plasminogen activator during angiogenesis; a key driver of fibrin degradation. In addition to fibrin's degradeability, its degradation products, specifically fibrin fragment E, are generated during degradation and have potent angiogenic effects [119]. As fibrin matrix is canonically involved in acute healing, it is not present in appreciable levels in healthy bone tissue. However, fibrin is abundant at the site of bone fractures [120], and therefore may serve as an ideal material for engineering models of bone fracture healing. In addition, fibrin is becoming increasingly common in engineering bone implants for regeneration [121].

Collagen is another candidate ECM material that has been used for vascular network self-assembly in MPS systems [55], and is used in established angiogenesis assays such as the aortic ring assay [122]. Collagen is the primary structural protein in bone, and harbours the bone apatite crystals within the gap zones of the striated collagen fibrils [123]. In in vitro systems, acid extracted atelocollagen from rat tail is typically used, and when brought to within physiological range for pH and temperature, will undergo fibrillogenesis and form a gel. Conditions under which collagen gels are formed; such as pH, temperature, and ionic strength, effect the physical properties of the resulting gel such as mechanical strength, turbidity and pore architecture [124]. While collagen gel formation is thus sensitive to gelation conditions, studies that show these effects often use gelation conditions that exceed the practical boundaries of cell culture (e.g. gelation for 48 h at 4°C or gelation at pH 10). Despite this, ECs have been shown to be sensitive to alterations in collagen gel properties; collagen matrices with aligned fibre architecture enhances collagen IV, a key basement membrane protein, and lumen formation [125]. ECs have also shown to decrease lumen size and density in collagen gels of increasing weight fraction up to 2% w/w [126].

Collagen 1 is ubiquitous in bone research as it is the subject of metabolic and catabolic activity of the key bone cells, and the environment in which they reside in situ. For example collagen 1 peptides act as chemoattractants for monocytes, the osteoclast precursor, suggesting a role for collagen 1 fragments in osteoclast recruitment [127], and mineralized collagen fragments from the ECM promote osteoclast differentiation [128]. Osteoblasts are anchored to the bone surfaces and their differentiation is induced by the integrins activated upon collagen binding [129, 130]. Osteocytes reside in a collagen 1 rich matrix, and most evidence suggests that this 3D biomimetic matrix is superior for maintenance of osteocyte phenotype and genotype in in vitro culture [131, 132]. Like osteoblasts, BMSC osteogenic differentiation is also induced and enhanced when cultured in collagen gels [133], or with gels that mimic collagen motifs for specific integrin activation [134]. Thus, collagen is a very applicable material for engineering vascularised bone MPSs.
Composite blends of both collagen and fibrin may be an ideal material for generating vascularised bone. Rao et al compared collagen, fibrin and blends of both polymers [76], and suggested that a 40/60 mass ratio of collagen/fibrin was optimal for vascular network formation, with total network formation increasing proportionally with weight fraction of fibrin in the blend. This study, and others [135–137] additionally found that increasing matrix density (by increasing polymer concentration) impedes angiogenesis; resulting in shorter, thicker, and slower-growing sprouts. ECs change their sensitivity to VEGF depending on the elasticity of their substrate [138], which may partially account for this observation. However, there is also evidence to suggest these effects can be somewhat abrogated by introducing a supporting cell type into these denser matrices [137]. Critically, these composite gels have additionally been shown to support osteogenesis [139].

Natural materials such as fibrin and collagen are used throughout the literature as the canonical ECM analogues for creating vascular structures in MPS applications. However, an ideal ECM analogue would not have the natural donor variation inherent in biologically derived materials. While hydrogels based on synthetic polymers such as polyethylene glycol (PEG) [140], polyethylene oxide [141], and polyvinyl alcohol [142] have been used, they are less prevalent in applications requiring vascular network formation or osteogenesis within MPSs. Thus, it is likely that the availability and ease of use of the gold standard natural polymers outweighs any drawbacks of natural biological variation in current MPS applications. Despite this, PEG hydrogels have been used to create vascular networks within MPSs by modification with MMP degradable crosslinks. These materials have been used with HUVECs [143], and iPSECS [144], to successfully form vascular networks, and may be promising materials for vascularised bone engineering.

2.3.2. Matrix mineral functionalisation

When building bone models, a natural consideration is the incorporation of mineral into the matrix. Various calcium based ceramics are typical in bone tissue engineering as they support osteogenesis [145] but also provide mechanical support for load bearing [146]. In a vascularised bone MPS, ECM mineralisation must also not be detrimental to the formation of vascular networks. Jusoh et al showed that hydroxyapatite can be incorporated into fibrin gels within a MPS and that optimal concentration for vascular network formation was at 0.2% or 20 mg mL⁻¹ [147], and additionally found non-uniform hydrogel formation at concentrations exceeding 40 mg mL⁻¹. In a more general bone tissue engineering context, HDMECs cultured on various bioerodible ceramics formed vascular networks but required support from bone derived cells [148]. Chen et al have also found that the particular calcium phosphate chemistry is an important consideration; with increased relative amounts of β-tricalcium phosphate enhancing neovascularisation in vitro and in vivo [149]. In addition to the phases present in calcium phosphates, the materials can be doped with trace elements found in bone tissue. Ions such as strontium [150], magnesium [151], copper [152] and silicon [153] have been shown to have pro-angiogenic effects. Thus, ECM functionalisation with bone-like mineral components can be achieved without impeding vascular network formation.

2.3.3. Engineered cell-matrix interactions

Synthetic hydrogels hold promise for realising reproducible and repeatable vascularised bone models. However, such materials would require mimicking the favourable properties of natural materials such as collagen and fibrin. One approach to engineering such materials is to engineer matrix with an optimal ligand presentation to support vascular formation and osteogenesis. In a vascular context, integrins are heavily involved in EC growth, survival and migration in angiogenesis [154]. In fibrin gels, αvβ3 and α5β1 activation has been shown to be necessary for lumen formation in 3D [155, 156], and these same integrins have been shown to regulate EC invasion [157]. Additionally, αvβ5 is also a key integrin involved in EC invasion and differentiation in these same gels [158]. Currently, synthetic hydrogels are most commonly functionalised with an ECM mimicking peptides for biocompatibility and to allow cell adhesion. This is typically the Arg-Gly-Asp (RGD) peptide sequence, derived from fibronectin, and accounts for 89% of the cell adhesion motif of choice for synthetic ECM materials [159]. While the RGD motif can facilitate endothelial attachment and sprouting [160], networks are typically less interconnected and patent, thus its use is far less than that of natural biomaterials. However, evidence suggests that using integrin activation as biological cue in addition to a means to facilitate cell attachment, may be a promising strategy for vascular network engineering. Specifically, with the right combinations of integrins, ECs can be directed to develop functional vasculature [161]. Particularly, Li et al demonstrated that modifying fibrin with engineered fibronectin that preferentially binds αvβ1 or α5β3 promotes remarkably different vascular phenotype; with α3/α5β1 binding gels facilitating formation of organised space filling, and functional vasculature both in vitro and in vivo.

Integrins are also critical for supporting osteogenesis. Though many integrins are expressed by skeletal cells [162], only few are known to support bone formation. α5β1 is one such integrin, supporting osteoblast proliferation, differentiation and survival [163]. In addition, this integrin has been shown to be critical in the anabolic effects of mechanical loading,
and its expression is downregulated when loading is absent [164]. Furthermore, agonists of the α5β1 have been shown to induce osteogenesis in hBM-SCs [165]. Thus, a matrix engineered to express ligands for the key integrins involved in osteogenesis and angiogenesis could be a promising approach to engineer synthetic matrices for vascularised bone MPS applications.

ECM selection is critical for concurrently supporting vascular network formation and osteogenesis. To date the MPS models most relevant to generating vascularised bone have selected ECMs based on facilitating vascular network formation (table 1). Generally, fibrin and collagen matrices are used in low concentrations to facilitate EC migration. Development of vascularised bone MPSs will require further development of matrices using the principals outlined above, to support osteogenesis as well as network formation.

2.4. Mechanical environment

The influence of mechanics is a heavily researched area in bone biology [166], and different modes of mechanical stress are commonly applied to bone cells to investigate mechanotransduction. It is likely that vascularised bone models will require a mechanical component to appropriately model many bone physiological processes. In such cases, the vascular and bone component of a vascularised bone MPS will be concurrently under mechanical strain. It is therefore prudent to consider how the mechanical environment influences both processes.

2.4.1. Compression/tension

Compression and tension are often used as a means to simulate the mechanical environment of loaded bone as a strategy to improve engineered bone tissue and for probing mechanosensation of bone cells [167]. In an MPS context, compression has been used in a model of cartilage compression [168], and thus is a realisable means of incorporating mechanical function into a vascularised bone MPS. Other applications such as gut [169] and lung [170] MPSs have cells cultured on flexible membranes that are stretched in tension under actuation from vacuum pumps to simulate both peristalsis and breathing in their respective applications. Such a system could conceivably be used to incorporate mechanical signals into a vascularised bone device. While the effects of mechanical signals such as these have been extensively studied in MSCs [167], osteoblasts [171] and osteocytes [172], comparatively little is known about how such mechanical stimulation would effect vascular network formation or an established vascular network. Most of what is known about EC response to mechanical stimuli is derived from 2D experiments to mimic the monolayer in a large blood vessel. ECs respond to stretching by forming stress fibres perpendicular to the principle strain axis [173], signalling to neighbouring cells via calcium [174], and increasing proliferation [175]. However cyclical stretching of ECs also results in a loss of barrier integrity [176].

2.4.2. Fluid shear

Fluid shear is believed to be the principal means by which bone cells sense their environment. Osteocytes reside in a network in bone, connected by their cellular processes that traverse the bone tissue through canaliculi. External forces are transduced through fluid shear in these canaliculi which is sensed by the osteocyte, which in turn expresses factors to control bone formation, resorption, and angiogenesis [177]. Displacement of fluids due to compression, or interstitial flow imposed by pressure differentials will impart a shear stress on cells, thus shear is a key consideration for EC network formation in mechanically loaded applications.

In the context of network formation, a number of studies have demonstrated that ECs show reduced sprouting from engineered lumen when exposed to shear stress [178–180]. However, there is also evidence that low levels of shear stress (3 dyn cm⁻²) can actually improve network length [181], and even higher levels of shear stress (15 dyn cm⁻²) have also been reported to improve network formation [182]. Its difficult to understand the discrepancies in these results, however the change in nutrient and waste transport may at least partially account for them. In vivo, the shear stress experienced by recently anastomosed vessels induces vessel maturation; supporting a role for shear stress being inhibitory of vessel sprouting [182]. Thus, care must be taken not to over-expose ECs to shear during network formation as it may be detrimental.

Similarly, once vessels are formed, flow through the network imparts shear on the luminal side of the vessel walls. Shear stress in these situations is typically determined theoretically using the Poiseuille equation \(\frac{4Q\mu}{\pi r^4} \), where \(Q \) is the volume flow rate, \(\mu \) is the perfusate viscosity, and \(r \) is the radius of the lumen. The heterogeneous vessel lengths, branches and diameters in a self-assembled vascular network means the imposed flow is divided up amongst the multiple vascular routes. One approach to estimate shear stress in such networks has been to assume flow in the network is analogous to flow through multiple parallel pipes [183]. Shear stresses are important in regulating vessel maturity, and thus may be critical for generating long term vascularised bone cultures [184, 185].

The driving pressure required for perfusion can also expose ECs to interstitial flow. Pressure differences between the inlet and outlet in a porous medium, such as ECM, results in interstitial flow that has been shown to be a strong modulator of vascular network formation. When simultaneously exposed to a VEGF gradient and interstitial flow, ECs underwent angiogenic sprouting towards the higher
VEGF concentration, but invasion into the matrix was amplified by interstitial flow, irrespective of flow direction [180]. Similar results were observed in a more vasculogenic context, where ECs were seeded in a bulk hydrogel [186]. This study was subsequently expanded to investigate if the ECM composition (collagen/fibrin ratio) itself accounted for any of the effects of interstitial flow [187]. It was shown that the ECM composition had a significant effect on vasculogenesis under interstitial flow conditions, and this effect was particular to EC subtypes; concluding that the ECM used is a critical consideration when optimising interstitial flow regimes. From these studies, it is evident that interstitial flow can have an amplifying effect on angiogenesis. Furthermore, computational analysis from these studies has calculated that interstitial flow regimes should produce very low levels of shear stress on cells (0.03–0.1 dyne cm⁻²). The mechanism for the amplifying effects of interstitial flow is unknown, however, it has been hypothesised that it may help to determine the spatial distribution of MMPs and angiogenic factors as ECs degrade their matrix during angiogenesis [186].

2.4.3. Hydrostatic pressure
Hydrostatic pressure is another mode of mechanical stimulation believed to have a role in bone homeostasis, which has been incorporated into MPSs [188] and thus may be a feature of vascularised bone MPS applications. In a bone context, cyclic hydrostatic pressure induces osteogenesis in bone cell precursors [189]. The effect of this mode of mechanical stimulation is less known in ECs. Stimulation with hydrostatic pressure (6.6 kPa) has been shown to improve EC tube formation [190]. In addition, sustained hydrostatic pressure stimulated vascular EC proliferation [191]. Similarly, EC proliferation increased with increasing hydrostatic pressure between 6 and 18 kPa, but was shown to have a detrimental effect on VE-cadherin expression [192]. Thus, hydrostatic pressure may have a enhancing effect on EC proliferation and may indeed enhance network formation, however these effects have never been tested in a 3D context. However, consideration of barrier integrity is warranted when applying hydrostatic pressure, given its effects on VE-cadherin.

2.5. Oxygen
Oxygen tension is one of the key drivers of both vascular growth and osteogenesis. In vascular network biofabrication, the effects of oxygen tension are twofold: the direct effect of oxygen on ECs, and the indirect effect of oxygen tension on cells co-cultured with the ECs. Directly, ECs respond to oxygen fluctuations in vivo by activating vasoconstrictive or vasodilative mechanisms [193] to regulate oxygen delivery. In vitro, experiments in 2D suggest that short term exposure to hypoxia promotes protective mechanisms [194, 195], one of which being autocrine VEGF production [196], while prolonged exposure can be detrimental [194] and inhibitive of angiogenic sprouting [197]. In addition, ANG-2, an antagonist of vessel maturation, is upregulated with hypoxia exposure [198].

2.5.1. Dissolved oxygen
In more relevant, 3D systems, ECs are typically in co-culture, thus the direct effects of hypoxia on ECs are coupled with the indirect effects on the supporting cells. Hypoxia inducible factor 1 is an oxygen-sensitive transcriptional activator that induces the transcription of a catalogue of genes involved in angiogenesis [199]. Thus, many cell types will secrete a plethora of proangiogenic factors in response to hypoxia to promote EC survival and oxygen delivery through angiogenesis. BM-MSCs, the most prominent cell type for vascularised bone MPS applications, secrete a more potent angiogenic secretome when cultured in hypoxia compared to normoxia [200–202], and this secretome is chemotactic for ECs [203]. There is also some evidence to suggest hypoxia can rescue inhibition of network formation caused by dexamethasone [204], an essential component of osteogenic medium. The above data suggest that oxygen tension can have a large effect on both ECs and the cells that support them. However, it is unclear whether the effects are overall positive or negative.

2.5.2. Oxygen scavenging biomaterials
A recent paradigm in vascular network engineering involves developing gels that intrinsically produce a hypoxic environment through oxygen scavenging. While hypoxia is a key driving factor in engineering bone and other musculoskeletal tissues, it can be impractical to implement, particularly in multi organ MPS systems where different oxygen tensions are required. The Gerecht lab have produced gelatin and dextran based hydrogels with conjugated ferulic acid that consume oxygen during crosslinking, thus creating a temporary (from minutes to up to 12 h acellular) controlled hypoxic environment within the hydrogel [205, 206]. Interestingly, these gels have been shown to have a profound effect on the vascular morphogenesis of ECs. Firstly, ECFCs incapsulated in these gels did not form vascular networks after 3 d in thinner normoxic gels, whose thickness abrogated the oxygen scavenging effect, but formed interconnected lumenised structures in thicker gels where O₂ levels were maintained below 5% [205]. This effect was also seen in vivo, where hypoxia inducing hydrogels increased the density of new blood vessels surrounding the gel at 1, 3 and 5 d [205]. More recently, these gels have been used to demonstrate that ECFCs, when encapsulated at high density, form stable clusters at specific regions in the gel that corresponded to 1% O₂, and subsequently sprout in an inter-cluster manner into the surrounding matrix to form connected structures [207]. While these gels have not been used in
MPS systems to date, they may serve as a useful tool to induce hypoxia in a highly controllable manner in vascularised MPS systems, particularly when joining organ systems that require different oxygen tensions.

3. State of the art: vascularised bone models

The primary applications of MPS systems to date has been in organs involved in drug metabolism and toxicity: intestine, lungs, liver, and kidney. Development of secondary organ models are only recently becoming more prevalent. A complete model of drug metabolism in vitro will require models of secondary tissues, such as bone, that are not canonically involved in these processes, but can be the target of drug side effects [212]. Currently there is no canonical state of the art vascularised bone model that can fulfill this purpose, but development is ongoing. In addition to research in drug metabolism, a vascularised bone model would serve as an ideal platform to study specific bone pathologies in which vasculature plays an integral role. As already discussed, cancer metastasis has been a popular subfield of research using these models, given that bone is a common site for secondary tumours. Additionally, many of the most common bone pathologies result from a dysregulation of bone remodelling, thus the development of models of bone remodelling is reviewed below.

3.1. Cancer

Circulating tumour cells that have disseminated from a primary tumour commonly find a site to colonise in bone tissue and form a secondary tumour; particularly in breast and prostate cancer [15]. This phenomenon has motivated the development of models of bone physiology using tissue engineering principles to try and better understand this process. Bersini et al pre-differentiated BM-MSCs in monolayers before embedding them within a collagen matrix in an MPS as an analogue of bone tissue [82]. This model was vascularised by adding ECs to form an endothelialised channel parallel and adjacent to the bone channel. Breast cancer cells were found to extravasate through the endothelium into the bone matrix channel at higher rates compared to a control matrix, and found receptor CXCR2 and chemokine CXCL5 play a major role in this process. A similar study followed with an alternative MPS design, this time incorporating a physiologically relevant, self-assembled vascular network perfused with tumour cells. Again, this system showed that the bone mimicking environment favours metastasis, and additionally showed that adenosine is a key modulator of metastasis in skeletal tissues [81]. Hao et al created a similar model by using an osteoblast cell line, MC3T3-E1, to create osseous tissue within an MPS system, then seeded this with MDA-MB-231 and MDA-MB-231- BRMS (metastasis suppressed) breast cancer cells to monitor colonisation of the osseous tissue [213]. Using this model they found that metastasis suppressed cells actually colonise the osseous tissue more aggressively, but that metastasis is more frequently single cells, rather than micrometastatic cell clusters. Marturano-Kruik et al also created a vascularised bone model; seeding demineralised bone matrix (DBM) with undifferentiated hBMSCs and HUVECs [214]. HUVECs self assembled a vascular networks on the DBM, which was subsequently perfused with MDA-MB-231 breast cancer cells. These cancer cells assumed a slow proliferative, drug resistant phenotype when cultured with interstitial flow. The ability to analyse and quantify metastatic adherence, extravasation and colonisation non-destructively within a bone niche in real time is a clear advantage of these systems.

3.2. Bone remodelling

For MPS systems to augment significant advances in bone biology, creating a human in vitro model of bone remodelling will be essential. The coordinated actions of osteoclasts, osteoblasts and osteocytes underpin bone physiology and many of its most common pathologies, such as osteoporosis [17], Paget’s disease, and renal osteodystrophy [18]. As in many processes, vasculature is critical in bone remodelling, supplying the key nutrients and factors to the bone remodelling unit during turnover. Additionally, vascular impairment is believed to be a determining factor in poor and imbalanced bone formation observed in diabetes [19]. MPS modelling of bone remodelling is in its nascency. George et al fabricated remodelling on chip applications using a PDMS device that could mechanically stimulate osteocytes and provide flow conditioned media to cultures of osteoblasts and osteocytes [215]. Despite the relatively low number of published applications in bone remodelling on-chip, this field is intensely studied using conventional in vitro methods [8, 177]. Given the significance of vasculature in bone remodelling, MPS are an ideal platform to build more complex models of the crucial processes that contribute to the most common human skeletal conditions.

4. Current status and future directions

4.1. Established strategies for the biofabrication of vascularised bone MPS

A vascularised bone MPS that supports simultaneous vascular network formation and bone matrix deposition would represent an ideal bone analogue for many applications (figure 3). Such a system could indicate changes in bone anabolism as a result of novel therapies, or indicate potential adverse changes in bone vasculature, which is a hallmark of a number of bone diseases [19, 22, 216–219]. However, conditions optimal for facilitating osteogenesis can have an effect on vascular network formation; thus
developing such a system is challenging [27]. This limitation has led to innovative biofabrication methods for combining in vitro engineered bone tissue with self-assembled vascular networks for modelling vascularised bone.

4.1.1. Pre-MPS osteogenesis

The most prominent approach to generating concurrent vascularised networks and bone tissue in MPSs has been to differentiate hBMSCs in 2D separately before incorporating with ECs and culturing to facilitate vascular network formation [81, 82] (figure 4(A)). Once seeded in the MPS device, osteogenically differentiated hBMSCs can deposit bone related proteins such as osteocalcin and ALP, while also facilitating EC vasculogenesis. This approach is particularly suitable for metastatic cancer applications, for which it was designed, but may be limited in its application to other aspects of bone physiology. For example, osteogenesis and angiogenesis typically occur simultaneously in vivo in a process termed angiogenic–osteogenic coupling [220].

4.1.2. Decellularised bone matrix

Decellularised bone matrix (DBM) has been used as a scaffold to recreate a vascularised bone-like niche to study cancer cell extravasation in a MPS device [214] (figure 4(B)). The channel in these devices contains bovine DBM and is seeded with hBMSCs and ECs to create a bone perivascular niche. The design of the system facilitates active perfusion of the engineered bone tissue, creating a distribution of flow velocities and shear stresses as a result of the trabeculae of the DBM. This supported ECs forming capillary networks throughout the bone matrix and hBMSCs adopting a perivascular role, mimicking one of their postulated roles in vivo [84]. The system could be seeded with cancer cells to investigate their growth and proliferation within a bone perivascular niche.

4.2. Prospective vascularised bone MPS biofabrication approaches

Vascularised bone MPSs have the potential to advance our understanding of bone biology and improve the efficacy of treatments for bone disease. While we have discussed the current applications of vascularised bone MPSs, the plethora of diseases and biological processes for which such systems could be applied will require further development of existing approaches and development of new innovative approaches to recreate this complex tissue niche. A number of bone tissue engineering techniques have
been developed that could be applied to developing such devices. Prospective methods for engineering vascularised bone using these techniques are shown in figure 5.

4.2.1. Organoids
Organoids are self-organising aggregates of stem cells that can differentiate to become analogues of human organ systems [221]. The potential for organoids to recapitulate organ function has seen them used in a number of MPS applications such as iPSC derived islet organoids [222], and iPSC derived human gastric organoids [223] to model pancreatic and gastric functions on chip respectively. In a bone context, the most prominent use of organoid technology is hBMSC aggregates that can form bone-like tissues; undergoing chondrogenic and subsequent hypertrophic differentiation in a process analogous to endochondral ossification that occurs in developing and regenerating bone [224, 225]. Similarly, hBMSCs can also be encapsulated in collagen microspheres to generate cartilage [226] and bone [227] in vitro. However, such organoids or cell microspheres have yet to be exploited to develop physiologically relevant MPS of human bone. Bone organoids or microspheres can be fabricated and differentiated separately to form a mineralised collagenous matrix and vascularised with ECs to create vascularised bone (figure 5(A)).

4.2.2. Bone ECM
In an alternative approach, ECM can be extracted from tissue and processed into a hydrogel for tissue engineering applications [228]. Such materials are deemed promising for recreating tissue specific environments. For example, Matrigel, a hydrogel material derived from murine tumours can recapitulate the tumour environment and thus has been useful for cancer modelling applications [229]. Similarly, bone ECM is inherently osteogenic and can drive osteogenesis of BMSCs and improves vessel infiltration in tissue engineering implants [230]. Thus, bone ECM is a promising approach to incorporate an inherently osteo-angiogenic scaffold material for vascularised bone MPS applications (figure 5(B)). However, as with all ECM derived scaffolds, the material is subject to donor variability, which would need to be addressed to facilitate clinical/commercial translation.

4.2.3. Controlled osteogenic factor delivery
Finally, the challenge of concurrently inducing osteogenesis of hBMSCs and vascular network formation of ECs may be addressed with spatially controlled osteogenesis (figure 5(C)). Specifically, microspheres loaded with osteogenic growth factors have been developed that can release factors necessary for hBMSC osteogenesis [231]. Such an approach could
be incorporated into MPS devices to locally induce osteogenesis while minimising effects vascular network formation.

4.3. Analysis
With vascularised bone MPS models becoming more prevalent in the literature, a critical and arguably underappreciated area for the development of predictive bone MPSs (and MPSs in general) is non-destructive analysis [232]. Traditional destructive analysis methods, such as PCR or immunofluorescence, are the classical methods for in vitro evaluation of biofabricated tissues. While these techniques are useful and necessary during application development, ideally, MPS systems should be engineered to maximise using non-destructive organ function readouts in real time. Such readouts reduce the raw materials required for experimentation, provide more information resolution in the time domain, and give instant feedback. Examples of this have been demonstrated in myoblast contraction in the neuromuscular junction [233], mitochondrial dysfunction in the liver [234], and human lung epithelium integrity using TEER [235]. In the context of vessels, ECs expressing fluorescent reporters do allow real time evaluation of network growth, and can allow processes such as extravasation [26] to be evaluated in real time. Non-destructive, functional readouts of bone will likely include non-destructive readouts of mineralisation [236], soluble indicators of bone formation and bone resorption.

4.4. MPS product design
Consideration of vascularised bone MPS design from the end user perspective will be essential to drive uptake of the technology. Most commonly, research MPSs are made from PDMS, are made in batch processes limited by the number of master moulds, and require expertise to fabricate and use. Additionally PDMS, though often considered inexpensive, is indeed an expensive material compared to alternative microfluidic materials such as polycarbonate, polymethylmethacrylate, polystyrene and cyclic olefin copolymer [237] when considering large scale production. Thus, these systems are typically far from high throughput, which is a pre-requisite for any systems aimed at drug or toxicity screening. However, companies are now bridging the gap between research and application in developing MPS technology in standard 96 and 284 well plate format, allowing screening of multiple experimental groups simultaneously [238]. These systems offer a means of studying biological processes such as angiogenesis [239], BBB function [240] and gut function [241], in a high throughput platform, that is currently being applied in pharmaceutical development [242].

In addition to throughput, material standardisation will be necessary for vascularised bone systems to become useful predictive tools. Typically, the main considerations are the donor to donor variability that inherently comes with the use of biologically derived ECM materials, media formulations that require FBS, and the use of primary cells. Currently, there has not been any reported work on the donor variation introduced by FBS in endothelial media, or the fibrinogen/collagen materials used as ECM analogues. However, variation in primary ECs network formation and the angiogenic properties of primary bone cells is well known [243–246]. Thus, development of suitable, well characterised EC lines and bone cells for a given application will be essential for translation.

5. Conclusion
Vascularised bone MPSs also provide an ideal platform to study the role of vasculature in key bone physiological and pathological processes. In addition, such systems may provide additional insights and principles for achieving engineered vascularised bone tissue grafts for therapeutic applications, which is still major challenge for the field. Engineering vascularised bone MPSs are likely to become more prominent given their potential, thus this review stands as guidance for concurrently engineering these two critical tissue niches for modelling the bone organ. We have also outlined some of the more high level considerations to be made for developing such systems to ensure their success and translatability into commercial use.

Data availability statement
No new data were created or analysed in this study.

ORCID iDs
Ian T Whelan @ https://orcid.org/0000-0002-9005-1439
David A Hoey @ https://orcid.org/0000-0001-5898-0409
Daniel J Kelly @ https://orcid.org/0000-0003-4091-0992

References
[1] Perrin S 2014 Preclinical research: make mouse studies work Nature 507 423–5
[2] Mak J W, Evaniew N and Ghert M 2014 Lost in translation: animal models and clinical trials in cancer treatment Am. J. Transl. Res. 6 114
[3] Mestas J and Hughes C C W 2004 Of mice and not men: differences between mouse and human immunology J. Immunol. 172 2731–8
[4] Seok J et al 2013 Genomic responses in mouse models poorly mimic human inflammatory diseases Proc. Natl Acad. Sci. 110 3507–12
[5] Warren M S, Zarangue N, Woodford K, Roberts I M, Tate E H, Feng B, Li C, Feusterlin T J, Gibbs J and Smith B 2009 Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human Pharmacol. Res. 59 404–13
[6] Syvanen S, Lindhe O, Palmer M, Kornum B R, Rahman O, Långström B, Knudsen G M and Hammarlund-Udenaes M 2008 Species differences in blood-brain barrier transport of three PET radioligands with emphasis on P-glycoprotein transport Drug Metab. Dispos. 37 635–43

[7] Schraum Macedo A, Cezaretti Feitosa C, Yoiti Kitamura Kawamoto F, Vinicus Tertuliano Marinho P, Dos Santos Dal-bó Í, Fiuza Monteiro B, Prado L, Bregadidi T, Antonio Covino Diamante G and Ricardo Atienza Ferrigno C 2019 Animal modeling in bone research—should we follow the white rabbit? Animal Models Exp. Med. 2 162–8

[8] Owen R and Reilly G C 2018 In vitro models of bone remodelling and associated disorders Front. Bioeng. Biotechnol. 6 134

[9] Understanding Animal Research 2019 Understanding animal research Understanding Animal Research (available at: www.understandinganimalresearch.org.uk/animals/three-rs/reduction/) (Accessed 10 January 2019)

[10] Schaffer M B and Kennedy O D 2012 Osteocyte signaling in bone Curr. Osteoporos. Rep. 10 118–25

[11] Klein-Nulend J and Bonevall I F 2020 The osteocyte Principles of Bone Biology 4th ed J P Bilezikian et al (New York: Academic) ch 6 pp 133–62

[12] Mackie E, Ahmed Y A, Tatarczuch L, Chen K-S and Mirams M 2008 Endochondral ossification: how cartilage is converted into bone in the developing skeleton Int. J. Biochem. Cell Biol. 40 46–62

[13] Hu D P, Ferro F, Yang F, Taylor A J, Chang W, Miclau T, Marcucio R S and Bahney C S 2017 Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes Development 144 221–34

[14] Chambers A F, Groom A C and MacDonald I C 2002 Dissemination and growth of cancer cells in metastatic sites Nat. Rev. Cancer 2 563–72

[15] Rüssard K M, Gay C V and Mastro A M 2008 The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev. 27 41–55

[16] Manolagas S C 2000 Birth and death of bone celiac basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis Endocr. Rev. 21 115–37

[17] Lerner U 2006 Bone remodeling in post-menopausal osteoporosis J. Dent. Res. 85 584–95

[18] Feng X and McDonald J M 2011 Disorders of bone remodeling Annu. Rev. Pathol. Mech. Disease 6 121–45

[19] Filipowska J et al 2017 The role of vasculature in bone development, regeneration and proper systemic functioning Angiogenesis 20 291–302

[20] Putnam A J 2014 The instructive role of the vasculature in stem cell niches Biomater. Sci. 2 1562–73

[21] Liu J-M, Rosen C J, Ducy P, Kousteni S and Karsenty G 2016 Regulation of glucose handling by the skeleton: insights from mouse and human studies Diabetes 65 3225–32

[22] Napoli N, Chandran M, Pierroz D D, Abrahamsen B, Schwartz A V and Ferrari S L 2017 Mechanisms of diabetes mellitus-induced bone fragility Nat. Rev. Endocrinol. 13 208

[23] Rubens R D 2000 Bone metastases: incidence and complications Cancer and the Skeleton (London: Martin Dunitz) pp 33–42

[24] Lee H, Chung M and Jeon N L 2014 Microvasculature: an essential component for organ-on-chip systems MRS Bull. 39 51–9

[25] Osaki T, Sivathavan V and Kamm R D 2018 Vascularized microfluidic organ-chips for drug screening, disease models and tissue engineering Curr. Opin. Biotechnol. 52 116–23

[26] Chen M B et al 2017 On-chip human microvasculature assay for visualization and quantitation of tumor cell extravasation dynamics Nat. Protocol 12 865

[27] Piroa A et al 2018 Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology Stem Cell Res. Ther. 9 112

[28] Correia C, Grayson W L, Park M, Hutton D, Zhou B, Guo X E, Niklasson L, Sousa R A, Reis R L and Vunjak-Novakovic G 2011 In vitro model of vascularized bone: synergizing vascular development and osteogenesis PLoS One 6 e208352

[29] Xie B, Zahn W, Guan L, Ai Y and Liang Q 2020 Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues Small 16 1902838

[30] Streeter E A, Ornborg R, Curcio F, Sakaguchi K, Marx S, Aurbach G D and Brandi M L 1989 Cloned endothelial cells from fetal bovine bone Proc. Natl Acad. Sci. USA 86 916–20

[31] Brandi M L, Crescillei C, Tanini A, Fedriani U, Agnusdei D and Gennari C 1993 Bone endothelial cells as estrogen targets Calcif. Tissue Int. 53 312–7

[32] Baumer Y, Burger S, Curry F E, Golenhofen N, Drenckhahn D and Waschke J 2008 Differential role of Rho GTPases in endothelial barrier regulation dependent on endothelial cell origin Histochem. Cell Biol. 129 179–91

[33] Gulati R, Jevremovic D, Peterson T E, Chatterjee S, Shah V, Vile R G and Simari R D 2003 Diverse origin and function of cells with endothelial phenotype obtained from adult human blood Circ. Res. 93 1023–5

[34] Lu L, Yang P Y, Rui Y C, Kang H, Zhang J, Zhang J P and Feng W H 2007 Comparative proteome analysis of rat brain and coronary microvascular endothelial cells Physiol. Rev. 86 159

[35] Zamora D O, Riviere M, Choi D, Pan Y, Planck S R, Rosenbaum J T, David L L and Smith J R 2007 Proteomic profiling of human retinal and choroidal endothelial cells reveals molecular heterogeneity related to tissue of origin Mol. Vis. 13 2058–65

[36] Chung S, Sudo R, Mack P J, Wm C-R, Vickerman V and Kamm R D 2009 Cell migration into scaffolds under co-culture conditions in a microfluidic platform Lab Chip 9 269–75

[37] Wong A D and Pearson P C 2014 Live-cell imaging of invasion and intravasation in an artificial microvessel platform Cancer Res. 74 4937–45

[38] Chrobak K M, Potter D R and Tien J 2006 Formation of perfused, functional microvascular tubes in vitro Microvasc. Res. 71 185–96

[39] Price G M, Wong K H K, Truslow J G, Leung A D, Rosenbaum J T, David L L and Smith J R 2007 Proteomic profiling of human retinal and choroidal endothelial cells reveals molecular heterogeneity related to tissue of origin Mol. Vis. 13 2058–65

[40] Chang S, Sudo R, Mack P J, Wm C-R, Vickerman V and Kamm R D 2009 Cell migration into scaffolds under co-culture conditions in a microfluidic platform Lab Chip 9 269–75

[41] Qi Y et al 2018 Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease Nat. Biomed. Eng. 2 453–63

[42] Man S, Ugbo E E, Williams K A, Tucky B, Callahan M K and Ransohoff R M 2008 Human brain microvascular endothelial cells and umbilical vein endothelial cells differentially facilitate leukocyte recruitment and utilize chemokines for T cell migration Clin. Dev. Immunol. 2008 1–8

[43] Adriani G, Ma D, Pavesi A, Kamm R D and Goh E L K 2017 A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier Lab Chip 17 448–59

[44] Nolan D J et al 2013 Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration Dev. Cell 26 204–19

[45] Chopra H, Hung M K, Kwong D L, Zhang C F and Pow E H N 2018 Insights into endothelial progenitor cells:
origin, classification, potentials, and prospects Stem Cells Int. 2018 1–24
[46] Peters E R 2018 Endothelial progenitor cells for the vascularization of engineered tissues Tissue Eng. B 24 1–24
[47] Chen X, Medja A S, Popson S A, Him L, Hughes C C W and George S C 2010 Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts Tissue Eng. A 16 855–94
[48] Peng J, Chen L, Peng K, Chen X, Wu J, He Z and Xiang Z 2019 Bone marrow mesenchymal stem cells and endothelial progenitor cells co-culture enhances large segment bone defect repair J. Biomed. Nanotechnol. 15 742–55
[49] Peters E B, Christoforou N, Leong K W, Truskey G A and West J I. 2016 Poly(ethylene glycol) hydrogel scaffolds containing cell-adhesive and protease-sensitive peptides support microvessel formation by endothelial progenitor cells Cell. Mol. Bioeng. 9 58–54
[50] Mathur T, Singh K A, R, Pandian N K, Tsai S-H, Hein T W, Gaharwar A K, Flanagan J M and Jain A 2019 Organ-on-chips made of blood: endothelial progenitor cells from blood reconstitute vascular thromboinflammation in vessel-chips Lab Chip 19 2500–11
[51] Richardson M R and Yoder M C 2011 Endothelial progenitor cells: quo vadis? J. Mol. Cell. Cardiol. 50 266–72
[52] Kusuma S et al. 2013 Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix Proc. Natl Acad. Sci. 110 12601–6
[53] Margariti A et al. 2012 Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels Proc. Natl Acad. Sci. 109 13795–8
[54] Bezenah J R, Kong Y P and Putnam A J 2018 Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures Sci. Rep. 8 2671
[55] Osaki T, Sivathanu V and Kamm R D 2018 Engineered 3D vascular and neuronal networks in a microfluidic platform Nature. 585 1–24
[56] Cackowski F C et al. 2010 Osteoclasts are important for bone angiogenesis blood J. Am. Soc. Hematol. 115 140–9
[57] Romeo S G, Alawi K M, Rodrigues J I, Singh A, Kusumbe A P and Ramasamy S K 2019 Endothelial protocytic activity and interaction with non-resorbing osteoclasts mediate bone elongation Nat. Cell. Biol. 21 430–41
[58] Drake M T, Clarke B L and Khosla S 2008 Bisphosphonates: mechanism of action and role in clinical practice Mayo Clin. Proc. 83 (Amsterdam: Elsevier) pp 1032–45
[59] Ziebart T, Pabst A, Klein M O, Kammerer P, Gauss L, Brillmann D, Al-Nawas B and Walter C 2011 Bisphosphonates: restrictions for vasculogenesis and angiogenesis inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro Clin. Oral. Investig. 15 105–11
[60] Henrikse K et al. 2012 Generation of human osteoclasts from peripheral blood Bone Research Protocols (Berlin: Springer) pp 159–73
[61] Gori F et al. 2000 The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated Endocrinology 141 4768–76
[62] Mackie E 2003 Osteoblasts: novel roles in orchestration of skeletal architecture Int. J. Biochem. Cell Biol. 35 1301–5
[63] Bouillon R et al. 1995 Influence of age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes endocrinology 123 J. Clin. Endocrinol. Metab. 80 1994–202
[64] Cohen A et al. 2011 Abnormal bone microarchitecture and evidence of osteoblast dysfunction in premenopausal women with idiopathic osteoporosis J. Clin. Endocrinol. Metab. 96 3095–105
[65] Rosser J and Bonevaid I. F 2012 Studying osteocyte function using the cell lines MLO-Y4 and MLO-A5 Bone Research Protocols (Berlin: Springer) pp 67–81
[66] Taylor S E B, Shah M and Orriss I R 2014 Generation of rodent and human osteoblasts Bonekey Rep. 3 855
[67] Hofmann A, Ritz U, Verrier S, Eglin D, Alini M, Fuchs S, Kirkpatrick C J and Rommens P M 2008 The effect of human osteoblasts on proliferation and neo-vein formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds Biomaterials 29 4217–26
[68] Ma B, Li M, Fuchs S, Bischoff I, Hofmann A, Unger R E and Kirkpatrick C J 2020 Short-term hypoxia promotes vascularization in co-culture system consisting of primary human osteoblasts and outgrowth endothelial cells J. Biomed. Mater. Res. A 108 7–18
[69] Qin L, Liu W, Cao H and Xiao G 2020 Molecular mechanisms in osteocytes Bone Res. 8 1–24
[70] Robling A G and Bonevaid I. F 2020 The osteocyte: new insights Annu. Rev. Physiol. 82 485–506
[71] Bonevaid I. F and Wacker M 2013 FGF23 production by osteocytes Pediatric Nephrol. 28 563–8
[72] Prasadam I, Zhou Y, Du Z, Chen J, Crawford R and Xiao Y 2014 Osteocyte-induced angiogenesis via VEGF–MAPK-dependent pathways in endothelial cells Mol. Cell. Biochem. 386 15–25
[73] Cheung W Y, Liu C, Tonelli-Zaarays R M L, Simmons C A and You L 2011 Osteocyte apoptosis is mechanically regulated and induces angiogenesis in vitro J. Orthop. Res. 29 523–30
[74] Prouix M, Schatz C, Wijenayaka A R, Findlay D M, Campbell D G, Solomon L B and Atkins G J 2016 Isolation of osteocytes from human trabecular bone Bone 88 64–72
[75] Jeon J S, Bersini S, Whislser J A, Chen M B, Dubini G, Charest J L, Moretti M and Kamm R D 2014 Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems Integr. Biol. 6 555–63
[76] Rao R R, Peterson A W, Cveccarelli J, Putnam A J and Stegemann J P 2012 Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials Angiogenesis 15 253–64
[77] Kim J, Chung M, Kim S, Jo D H, Kim J H and Jeon N L 2015 Engineering of a bio mimetic pericyte-covered 3D microvascular network PLoS One 10 e0133880
[78] Wang J D, Khafagy E-S, Khanfaer K, Takayama S, and ElSayed M E H 2016 Organization of endothelial cells, pericytes, and astrocytes into a 3D microfluidic in vitro model of the blood–brain barrier Mol. Pharm. 13 895–906
[79] Herland A, Van Der Meer A D, FitzGerald E A, Park T-E, Skeeboom J F and Ingber D E 2016 Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human brain–brain barrier on a chip PLoS One 11 e0150360
[80] Au P, Tam J, Fukumura D and Jain R K 2008 Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature Blood 111 4531–8
[81] Jeon J S, Bersini S, Gilardi M, Dubini G, Charest J L, Moretti M and Kamm R D 2015 Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation Proc. Natl Acad. Sci. 112 214–9
[82] Bersini S, Jeon J S, Dubini G, Arrigoni C, Chung S, Charest J L, Moretti M and Kamm R D 2014 A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone Biomaterials 35 2454–61
[83] Bersini S, Gilardi M, Arrigoni C, Talò G, Zanmai M, Zagra L, Caiani J. Clin. Endocrinol. Metab. 80 1994–202
[84] Stegemann J P 2012 Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in vitro Clin. Oral. Investig. 15 105–11
[85] Caplan A I 2017 New MSCs: mesCs as pericytes and gatekeepers J. Orthop. Res. 35 1151–9
[86] Korfi T, Kimmina S, Martiny-baron G and Augustin H G 2001 Blood vessel maturation in a 3-dimensional
spherical coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness FASEB J. 15 447–57

[86] Ghajar C M, Kachgal S, Kniazeva E, Mori H, Costes S V, George S C and Putnam A J 2010 Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms Exp. Cell Res. 316 813–25

[87] Kachgal S, Carsson B, Janson I A and Putnam A J 2012 Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1-MMP J. Cell. Physiol. 227 3546–55

[88] Kachgal S and Putnam A J 2011 Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms Angiogenesis 14 47–59

[89] Iruela-Arispe M L and Dvorak H F 1997 Angiogenesis: a dynamic balance of stimulators and inhibitors Thromb. Haemost. 78 672–7

[90] Holash J, Wiegand S J and Yancopulos G D 1999 New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF Oncogene 18 5356–62

[91] Schlaepпи J-M, Gutzwiller S, Finkenzeller G and Fournier B 1997 1, 25-dihydroxyvitamin D3 induces the expression of vascular endothelial growth factor in osteoblastic cells Endocr. Res. 23 213–20

[92] Juffer P, Jaspers R T, Lips P, Bakker A D and Klein-Nulend J 2012 Expression of Muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes Am. J. Physiol. Endocrinol. Metab. 302 E389–E95

[93] Shao E S et al 2009 Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors I and V in endothelial cells J. Blood Med. 3 379–89

[94] Globus R K, Plouet J and Gospodarowicz D 1989 Cultured bovine bone cells synthesize basic fibroblast growth factor and store it in their extracellular matrix Endocrinology 124 1539–47

[95] Nakagawa N et al 1999 Basic fibroblast growth factor induces osteoclast formation by reciprocally regulating the production of osteoclast differentiation factor and osteoclastogenesis inhibitory factor in mouse osteoblastic cells Biochem. Biophys. Res. Commun. 265 158–63

[96] Collin-Osdoby P et al 2002 Basic fibroblast growth factor stimulates osteoclast recruitment, development, and bone pit resorption in association with angiogenesis in vivo on the chick chorioallantoic membrane and activates isolated avian osteoclast resorption in vitro J. Bone Mineral Res. 17 1859–71

[97] Chen W-C et al 2018 BMP-2 induces angiogenesis by provoking integrin α6 expression in human endothelial progenitor cells Biochem. Pharmacol. 150 256–66

[98] Zuo W-H et al 2016 Promotive effects of bone morphogenetic protein 2 on angiogenesis in hepatocarcinoma via multiple signal pathways Sci. Rep. 6 37499

[99] Langenfeld E M and Langenfeld J 2004 Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors TUMI K22 grant CA99191-01A1 and UMDNJ foundation to J. Langenfeld Mol. Cancer. Res. 2 141–9

[100] Ramoshebi I N and Ripamonti U 2000 Osteogenic protein-1, a bone morphogenic protein, induces angiogenesis in the chick chorioallantoic membrane and synergizes with basic fibroblast growth factor and transforming growth factor-β1 Anatomical Rec. 259 97–107

[101] Dyer L A, P X and Patterson C 2014 The role of BMPs in endothelial cell function and dysfunction Trends Endocrinol. Metab. 25 472–80

[102] Zannettino A, Holding C A, Diamond P, Atkins G J, Kostakis F, Farrugia A, Gamble J, To L B, Findlay D M and Haynes D R 2005 Osteoprotegerin (OPG) is localized to the Weibel-Palade bodies of human vascular endothelial cells and is physically associated with von Willebrand factor J. Cell. Physiol. 204 714–23

[103] Pritzker L, Scatena M and Giachelli C 2004 The role of osteoprotegerin and tumor necrosis factor-related apoptosis-inducing ligand in human microvascular endothelial cell survival Mol. Biol. Cell 15 2834–41

[104] McGonigle J S, Giachelli C M and Scatena M 2009 Osteoprotegerin and RANKL differentially regulate angiogenesis and endothelial cell function Angiogenesis 13 33–46

[105] Boisson-Vidal C, Benslimane-Ahmim Z, Lokajczyk A, Dyer L A, Pi X and Patterson C 2014 The role of BMPs in osteoclast resorption J. Bone Marrow Res. 1 813–25

[106] Min J-K et al 2007 Receptor activator of nuclear factor (NF)-κB ligand (RANKL) increases vascular permeability: impaired permeability and angiogenesis in enOS-deficient mice Blood 109 1495–502

[107] Kim –H-H, Shin H S, Kwak J H, Ahn K Y, Kim J-H, Lee H J, Lee M-S, Lee Z H and Koh G Y 2003 RANKL regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway FASEB J. 17 1–7

[108] Ponce M L 2009 Tube formation: an in vitro matrigel angiogenesis assay Angiogenesis Protocols (Berlin: Springer) pp 183–98

[109] Bala K, Ambwani K and Gohil N K 2011 Effect of different mitogens and serum concentration on HUVEC morphology and characteristics: implication on use of higher passage cells Tissue Cell 43 216–22

[110] Church D B 2008 Drugs used in the treatment of adrenal dysfunction Small Animal Clinical Pharmacology (Amsterdam: Elsevier) pp 517–27

[111] Knodler A and Ham R G 1987 Optimized medium for clonal growth of human microvascular endothelial cells with minimal serum Vitro Cell. Dev. Biol. 23 481–91

[112] Iuchi T, Akaife M, Mitsui T, Ohshima Y, Shintani Y, Azuma H and Matsumoto T 2003 Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction Circ. Res. 92 81–87

[113] Vater C, Kasten P and Stiehler M 2011 Culture media for the differentiation of mesenchymal stromal cells Acta Biomater. 7 463–77

[114] Liu Y, Chan J K and Teoh S H 2015 Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems J. Tissue Eng. Regen. Med. 9 85–105

[115] Ma J, Van Den Beucken J J P, Yang F, Both S K, Cui F-Z, Pan I and Jansen J A 2011 Coculture of osteoblasts and endothelial cells: optimization of culture medium and cell ratio Tissue Eng. C 17 549–57

[116] Simons M et al 2015 State-of-the-art methods for evaluation of angiogenesis and tissue vascularization: a scientific statement from the American Heart Association Circ. Res. 116 e91–e132

[117] Clark R A 2013 The Molecular and Cellular Biology of Wound Repair (Springer)

[118] Weisel J W 2008 Enigmas of blood clot elasticity Science 320 456–7

[119] Thompson W, Smith E B, Stirk C M, Marshall F I, Stout A J and Kocchar A 1992 Angiogenic activity of fibrin degradation products is located in fibrin fragment E J. Pathol. 186 475–53

[120] Wang X, Friis T, Glatt V, Crawford R and Xiao Y 2017 Structural properties of fracture haemostoma: current status and future clinical implications J. Tissue Eng. Regen. Med. 11 2864–75

[121] Noori A, Ashrafi S J, Vaez-Ghaemi R, Hatamian-Zaremi A and Webster T J 2017 A review of fibrin and fibrin composites for bone tissue engineering Int. J. Nanomed. 12 4937

[122] Baker M, Robinson S D, Lechertier T, Barber P R, Tavora B, D’Amico G, Jones T D, Vojnovic B and Hodivala-Dilke K
2012 Use of the mouse aortic ring assay to study angiogenesis Nat. Protocol 7 89

[123] Nudelman F, Pieterse K, George A, Bomans P H H, Friedrich H, Brylika I J, Hillers P A J, De With G and Sommerdijk N A J M 2010 The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors Nat. Mater. 9 1004–9

[124] Achilli M and Mantovani D 2010 Tailoring mechanical properties of collagen-based scaffolds for vascular tissue engineering: the effects of pH, temperature and ionic strength on gelation Polymers 2 664–80

[125] McCoy M G, Wei J M, Choi S, Goerger J P, Zipfel W and Fischbach C 2018 Collagen fiber orientation regulates 3D vascular network formation and alignment ACS Biomater. Sci. Eng. 4 2967–76

[126] Cross V L, Zheng Y, Won Choi N, Verbridge S S, Sutermaster B A, Bonassar L J, Fischbach C and Strock A D 2010 Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro Biomaterials 31 8596–607

[127] Malone J et al 1982 Recruitment of osteoclast precursors by purified bone matrix constituents J. Cell Biol. 92 227–30

[128] Alippe Y, Wang C, Ricci B, Xiao J, Qu C, Zou W, Novack D V, Abru-Amor Y, Civitelli R and Mihalache G 2017 Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation Sci. Rep. 7 1–11

[129] Reyes C D and Garcia A J 2004 α2/31 integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation J. Biomed. Mater. Res. A 69 591–600

[130] Mizuno M, Fujisawa R and Kuboki Y 2000 Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-α2/31 integrin interaction J. Cell. Physiol. 184 207–13

[131] Skotte S, Gelinsky G and Bernhardt B 2019 In vitro Co-culture model of primary human osteoblasts and osteocytes in collagen gels Int. J. Mol. Sci. 20 1998

[132] Zhang C et al 2019 Studies on osteocytes in their 3D native matrix versus 2D in vitro models Curr. Osteoporos. Rep. 17 1–10

[133] Kundu A K and Putnam A J 2006 Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells Biochem. Biophys. Res. Commun. 347 347–57

[134] Becerra-Bayona S M, Guiga-Arguello V R, Russell B, Hoık M and Hahn M S 2018 Influence of collagen-based integrin α1 and α2 mediated signaling on mesenchymal stem cell osteogenesis in three dimensional contexts J. Biomed. Mater. Res. A 106 2594–604

[135] Edgar L T, Underwood C J, Guikley J E, Hoying J B and Weiss J A 2014 Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis PLoS One 9 e85178

[136] Shamloo A and Heilshorn S C 2010 Matrix density mediates polarization and luminal formation of endothelial sprouts in VEGF gradients Lab Chip 10 3061–8

[137] Ghajar C M, Chen X, Harris J W, Suresh V, Hughes C W, Nisato R E, Tille J-C, Jonczyk A, Goodman S L and Bayless K J 2003 Sphingosine-1-phosphate mediated signaling on human umbilical vein endothelial cell survival in a reduced nutrient environment Tissue Eng. A 19 548–57

[138] Li H and Chang J 2013 Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture systems through paracrine effect Acta Biomater. 9 6931–12

[139] Avramides C J, Garmy-Susini B and Varner J A 2008 Integrins in angiogenesis and lymphangiogenesis Nat. Rev. Cancer 8 604–17

[140] Bayless K J, Salazar R and Davis G E 2000 RGD-dependent vaculolation and lumina formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices Acta Biomater. 35 32–41

[141] Jordan A M, Kim S-E, Van De Voorde K, Pokorski J K and Korley L T 2017 In situ fabrication of fiber reinforced three-dimensional hydrogel tissue engineering scaffolds ACS Biomater. Sci. Eng. 3 1869–79

[142] Schmedlen R H, Masters K S and West J L 2002 Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering Biomaterials 23 4325–32

[143] Cuchiara M P, Gould D J, McHale M K, Dickinson M E and West J L 2012 Integration of self-assembled microvascular networks into bone marrow-stimulated PEG-based hydrogels Adv. Funct. Mater. 22 4511–8

[144] Randelli M R et al 2016 Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels Acta Biomater. 35 32–41

[145] Suzuki A N, Sartore A, Peters A, Motta A, Migliarese C, Kumbur M, Bulhime MP, Rychly J and Jameskirkpatrick C 2007 Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts of microcapillary-like structures on three-dimensional porous biomaterials Biomaterials 28 3965–76

[146] Chen Y, Wang J, Zhu X D, Tang Z R, Yang X, Tan Y F, Fan Y J and Zhang X D 2015 Enhanced effect of β3–tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence Acta Biomater. 11 435–48

[147] Gu Z, Xie H, Li L, Zhang X, Liu F and Yu X 2013 Application of stromium-doped calcium phosphate scaffold on angiogenesis for bone tissue engineering J. Mater. Sci. Mater. Med. 24 1251–60

[148] Maier J A, Bernardini D, Rayssiguier Y and Mazar A 2004 High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro Biochim. Biophys. Acta 1689 6–12

[149] Stähli C, Muja N and Nazhat S N 2013 Controlled copper ion release from phosphate-based glasses improves human umbilical vein endothelial cell survival in a reduced nutrient environment Tissue Eng. Am. J. Pathol. 156 1673–83

[150] Laurens N, Engelse M A, Jungersius C, Löwik C W, Van Hinsbergh V W M and Koolwijk P 2009 Single and combined effects of αvβ3- and αvβ5-integrins on capillary tube formation in a human fibroin matrix Angiogenesis 12 275–85

[151] Bayless K J and Davis G E 2003 Sphingosine-1-phosphate matrix elicits matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices Biochem. Biophys. Res. Commun. 312 903–13

[152] Nisato R E, Tille J-C, Jonczyk A, Goodman S L and Pepper M S 2005 αvβ3 and αvβ5 integrin antagonists inhibit angiogenesis in vitro Angiogenesis 6 105–19
[159] Huettner N, Dargaville T R and Forget A 2018 Discovering cell-adhesion peptides in tissue engineering: beyond RGD Trends Biotechnol. 36 372–85

[160] García J R, Clark A Y and Garcia A J 2016 Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects J. Biomed. Mater. Res. A 104 889–900

[161] Li S, Nih L R, Bachman H, Fei P, Li Y, Nam E, Dimatteo R, Carmichael S, Barker T H and Segura T 2017 Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability Nat. Mater. 16 953–61

[162] Bennett J, Carter D H, Alavi A L, Beresford J N and Walsh S 2001 Patterns of integrin expression in a human mandibular explant model of osteoblast differentiation Arch. Oral Biol. 46 229–38

[163] Marie P J 2013 Targeting integrins to promote bone formation and repair Nat. Rev. Endocrinol. 9 288

[164] Dufour C, Holy X and Marie P 2007 Skeletal unloading induces osteoblast apoptosis and targets α5β1/PI-3K-Bcl-2 signaling in rat bone Exp. Cell Res. 313 394–403

[165] Hamidouche Z, Fromigue O, Ringe J, Haupl T, Vaudin P, Pages J-C, Srouji S, Livne E and Marie P J 2009 Priming integrin α5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis Proc. Natl. Acad. Sci. 106 18587–91

[166] Verbruggen S W and McNamara L M 2018 Bone mechanochemistry in health and disease Mechanobiology in Health and Disease (Amsterdam: Elsevier) pp 157–214

[167] Kelly D J and Jacobs C R 2010 The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells Birth Defects Res. C 90 75–85

[168] Occhetta P, Mainardi A, Votta E, Vallmajo-Martin Q, Kolluru G K, Sinha S, Majumder S, Muley A, Siamwala J H, Brady R T, O’Brien F J and Hoey D A 2015 Mechanically induced osteoblast differentiation and osteogenesis in vitro Am. J. Physiol. Heart Circ. Physiol. 264 H2094–102

[169] Liu W F, Nelson C M, Tan J L and Chen C S 2007 Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells Circ. Res. 101 644–52

[170] Gordon E, Schimmel I and Frye M 2020 The importance of mechanical forces for in vitro endothelial cell biology Front. Physiol. 11 684

[171] Wittkowski C, Reilly G C, Lacroix D and Perrault C M 2016 In vitro bone cell models: impact of fluid shear stress on bone formation Front. Bioeng. Biotechnol. 4 47

[172] Lee V K, Kim D Y, Ngo H, Lee Y, Seo L, Yoo -S-S, Vincent P A and Dai G 2014 Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology Cell. Mol. Bioeng. 7 460–72

[173] Song J W and Munn L L 2011 Fluid forces control endothelial sprouting Proc. Natl Acad. Sci. 108 15342–7

[174] Ueda A, Koga M, Ikeda M, Kudo S and Tanishita K 2004 Effect of shear stress on microvessel network formation of endothelial cells with in vitro three-dimensional model Am. J. Physiol. Heart Circ. Physiol. 287 H994–H1002

[175] Kolluru G K, Sinha S, Majumder S, Muley A, Siamwala J H, Gupta R and Chatterjee S 2010 Shear stress promotes nitric oxide production in endothelial cells by sub-cellular delocalization of eNOS: a basis for shear stress mediated angiogenesis Nitric Oxide 22 304–15

[176] Kim S, Lee H, Chung M and Jeon N L 2013 Engineering of functional, perfusable 3D microvascular networks on a chip Lab Chip 13 1489–500

[177] Melchiotti A J, Bracaglia L G, Kimmerer L K, Hibino N and Fisher J P 2016 In vitro endothelialization of biodegradable vascular grafts via endothelial progenitor cell seeding and maturation in a tubular perfusion system biomec Tate Tissue Eng. C 22 663–70

[178] Zohar B, Blinder Y, Moooney D J and Levenberg S 2017 Flow-induced vascular network formation and maturation in three-dimensional engineered tissue ACS Biomater. Sci. Eng. 4 1265–71

[179] Helm C L, Fleury M E, Zisch A H, Boschetti F and Swartz M A 2005 Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism Proc. Natl Acad. Sci. USA 102 15779–84

[180] Helm C L, Zisch A and Swartz M A 2007 Engineered blood and lymphatic capillaries in 3D VEGF-fibrin-collagen matrices with intestinal flow Biotechnol. Bioeng. 96 167–76

[181] Liu M-C, Shih H-C, Wu J-G, Weng T-W, Wu C-Y, Lu J-C and Tung Y-C 2013 Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations Lab Chip 13 1743–53

[182] Stavenschi E et al 2018 Physiological cyclic hydrostatic pressure induces osteogenic lineage commitment of human bone marrow stem cells: a systematic study Stem Cell Res. Ther. 9 1–13

[183] Yoshihiko D, Funamoto K, Sato K, Sato M and Lim C T 2020 Hydrostatic pressure promotes endothelial tube formation through aquaporin 1 and Ras-ERK signaling Commun. Biol. 3 1–11

[184] Schwartz E A, Bizos R, Medow M S and Gerritsen M E 1999 Exposure of human vascular endothelial cells to sustained hydrostatic pressure stimulates proliferation: involvement of the eNOS signaling Circ. Res. 84 313–22

[185] Ohashi T, Sugaya Y, Sakamoto N and Sato M 2007 Hydrostatic pressure influences morphology and expression of VE-cadherin of vascular endothelial cells J. Biomech. 40 2399–405

[186] Kulandavelu S, Balkan W and Hare J M 2015 Regulation of oxygen delivery to the body via hypoxic vasodilation Proc. Natl Acad. Sci. 112 6254–5

[187] Baldea I, Teacoe I, Olteanu D E, Vaida-Voievod C, Chilcici A, Sirbu A, Filip G A and Chilcici S 2018 Effects of different hypoxia degrees on endothelial cell culture in three-dimensional microfluidic device Mech. Ageing Dev. 172 45–50

[188] Namki I, Brogi E, Kearney M, Kim E A, Wu T, Couffinhal T, Vartiovirta I and J. 2019 Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells J. Biol. Chem. 270 31189–95

[189] Domigan C K et al 2015 Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy J. Cell Sci. 128 2236–48

[190] Lee V K, Lanzi A M, Ngo H, Yoo -S-S, Vincent P A and Dai G 2014 Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology Biomaterials 35 8092–102
Nauta T D et al 2016 HIF-2α expression regulates sprout formation into 3D fibrin matrices in prolonged hypoxia in human microvascular endothelial cells PLoS One 11 e0160700

Mandriota S J and Pepper M S 1998 Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia Circ. Res. 83 852–9

Ke Q and Costa M 2006 Hypoxia-inducible factor-1 (HIF-1) Mol. Pharmacol. 70 1469–80

Crisostomo P R, Wang Y, Markel T A, Wang M, Lahm T and Meldrum D R 2008 Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by an NFκB-but not JNK-dependent mechanism Am. J. Physiol. Cell Physiol. 294 C675–82

Madrigal M, Rao S K and Riordan N H 2014 A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods J. Tradit. Med. 12 260

Ferreira J R, Teixeira G Q, Santos S G, Barbosa M A, Almeida-Portada G and Gonçalves R M 2018 Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning Front. Immunol. 9 2587

Quade M, Münch P, Lode A, Duin S, Vater C, Gabrielyan A, Rösen-Wolf F and Gelinsky M 2020 The secretome of hypoxia conditioned hMSC loaded in a central depot induces chemotaxis and angiogenesis in a biomimetic mineralized collagen bone replacement material Adv. Healthcare Mater. 9 1901426

Chai M et al 2020 Hypoxia alleviates dexamethasone-induced inhibition of angiogenesis in cocultures of HUVECs and rBMSCs via HIF-1α Stem Cell Res. Ther. 11 1–13

Park K M and Gerecht S 2014 Hypoxia-inducible hydrogels Nat. Commun. 5 1–12

Park K M, Blatchley M R and Gerecht S 2014 The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen-consuming reaction Macromol. Rapid Commun. 35 1968–75

Blatchley M R et al 2019 Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis Sci. Adv. 5 eaau7518

Whisker J A, Chen M B and Kamm R D 2012 Control of perfusable microvascular network morphology using a multiculture microfluidic system Tissue Eng C 20 543–52

Lee H, Kim S, Chung M, Kim J H and Jeon N L 2014 A bioengineered array of 3D microvessels for vascular permeability assay Microvasc. Res. 91 90–8

Moya M L, Hsu Y-H, Lee A P, Hughes C C W and George S C 2013 In vitro perfused human capillary networks Tissue Eng C 19 730–7

Nashimoto Y et al 2017 Engineering a Three-dimensional Tissue Model with a Perfusable Vasculature in a Microfluidic Device (Piscataway, NJ: IEEE)

Compston J 2018 Glucocorticoid-induced osteoporosis: an update Endocrine 61 7–16

Hao S, Ha L, Cheng G, Wan Y, Xia Y, Sosnoski D M, Mastra A M and Zheng S-Y 2018 A spontaneous 3D bone-on-a-chip for bone metastasis study of breast cancer cells Small 14 1702787

Marturano-Kruik A et al 2018 Human bone peripheral niche-on-a-chip for studying metastatic colonization Proc. Natl Acad. Sci. 201714282

George E L, Truesdell M L, York S L and Saunders M M 2018 Lab-on-a-chip platforms for quantification of multicellular interactions in bone remodeling Exp. Cell Res. 365 1066–18

Chen J, Hendriks M, Chaitis A, Ramanasamy S K and Kusumbe A P 2020 Bone vasculature and bone marrow vascular niches in health and disease J. Bone Miner. Res. 35 2103–20

Peng J et al 2016 Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice Connect. Tissue Res. 57 277–89

Stabley J N, Prishy B R, Behnke J B and Delp M D 2015 Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat J. Endocrinol. 225 47

Guerrado E and Caso E 2016 The physiopathology of avascular necrosis of the femoral head: an update Injury 47 S10–S26

Grossol A et al 2017 It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration Front. Bioeng. Biotechnol. 5 68

Takahashi T 2019 Organoids for drug discovery and personalized medicine Annu. Rev. Pharmacol. Toxicol. 59 447–62

Tao T, Wang Y, Chen W, Li Z, Su W, Guo Y, Deng P and Qin J 2019 Engineering human islet organoids from iPSCs using an organ-on-chip platform Lab Chip 19 948–58

Lee K K, McCauley H A, Broda T R, Kofron M J, Wells J M and Hong C I 2018 Human stomach-on-a-chip with luminal flow and peristaltic-like motility Lab Chip 18 3079–85

Scotti C, Tononarelli B, Papadimitropoulos A, Schererich A, Schauer S, Schauerte A, Lopez-Rios J, Zeller R, Barbero A and Martin I 2010 Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering Proc. Natl Acad. Sci. 107 7253–56

Sheeley E J, Mesallati T, Kelly L, Vinardell T, Buckley C T and Kelly D J 2015 Tissue engineering whole bones through endochondral ossification: regenerating the distal phalanx Biodes. Open Access 4 229–41

Hui T, Cheung K M C, Cheung W L, Chan D and Chan B P 2008 In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration Biomaterials 29 3201–12

Chan B P, Hui T Y, Wong M Y, Yip K H K and Chan G C F 2010 Mesenchymal stem cell-encapsulated collagen microspheres for bone tissue engineering Tissue Eng C 16 225–35

Sawkins M J, Bowen W, Dhadda P, Markides H, Sidney L E, Taylor A J, Rose F R A J, Badylak S F, Shakesheff K M and White L J 2013 Hydrogels derived from demineralized and decellularized bone extracellular matrix Acta Biomater. 9 7865–73

Benton G, Arnaoutova I, George J, Kleinman H K and Koblinski J 2014 Matrigel: from discovery and ECM mimicry to assays and models for cancer research Adv. Drug Deliv. Rev. 79 3–18

Freeman E, Browne D C, Nulty J, Von Evas S, Grayson W L and Kelly D J 2019 Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering Eur. Cell. Mater. 38 168–87

Shi X et al 2010 Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro Eur. J. Pharm. Sci. 39 59–67

Capulli A, Tian K, Mehandru N, Bukhta A, Choudhury S F, Suchyta M and Parker K K 2014 Approaching the in vitro Clinical: engineering organs on chips Lab Chip 14 3181–6

Santhanam N et al 2018 Stem cell derived phenotypic human neuromuscular junction model for dose response evaluation of therapeutics Biomaterials 166 64–78

Bavli D, Prill S, Ezra E, Levy G, Cohen M, Vinken M, Vanfleteren J, Jaeger M and Nahmis Y 2016 Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction Proc. Natl Acad. Sci. 113 E2231–E2240

Henry O Y, Villeneuve R, Cronce M J, Leineweber W D, Benz M A and Ingber D E 2017 Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function Lab Chip 17 2264–71
[236] Baugh I M, Liu Z, Quinn K P, Osseiran S, Evans C L, Huggins G S, Hinds P W, Black I D and Georgakoudi I 2017 Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve disease Nat. Biomed. Eng. 1 914–24
[237] Tsao C-W 2016 Polymer microfluidics: simple, low-cost fabrication process bridging academic lab research to commercialized production Micromachines 7 225
[238] Trietsch S J et al 2017 Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes Nat. Commun. 8 1–8
[239] Van Duinen V, Zhu D, Ramakers C, Van Zonneveld A J, Vulto P and Hankemeier T 2019 Perfused 3D angiogenic sprouting in a high-throughput in vitro platform Angiogenesis 22 157–65
[240] Wevers N R et al 2018 A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport Fluids Barriers CNS 15 23
[241] Lo Sasso G et al 2020 P006 3D multicellular intestine-on-a-chip model for disease modelling and drug discovery J. Crohn’s Colitis 14 S132–33
[242] Reardon S 2015 Organs-on-chips’ go mainstream Nature 523 266
[243] Pennings I et al 2019 Effect of donor variation on osteogenesis and vasculogenesis in hydrogel cocultures J. Tissue Eng. Regen. Med. 13 433–45
[244] Zhukareva V, Obrocka M, Houle J D, Fischer I and Neuhuber B 2010 Secretion profile of human bone marrow stromal cells: donor variability and response to inflammatory stimuli Cytokine 50 317–21
[245] Walter M N et al 2015 Human mesenchymal stem cells stimulate EaHy926 endothelial cell migration: combined proteomic and in vitro analysis of the influence of donor-donor variability J. Stem Cells Regen. Med. 11 18
[246] Phinney D G et al 1999 Donor variation in the growth properties and osteogenic potential of human marrow stromal cells J. Cell. Biochem. 75 424–36