Constraints and analytical solutions of $f(R)$ theories of gravity using Noether symmetries

Andronikos Paliathanasis,¹ Michael Tsamparlis,¹ and Spyros Basilakos²,³

¹Faculty of Physics, Department of Astrophysics - Astronomy - Mechanics
University of Athens, Panepistemiopolis, Athens 157 83, Greece
²Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efesiou 4, 11527, Athens, Greece
³High Energy Physics Group, Dept. ECM, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Spain

We perform a detailed study of the modified gravity $f(R)$ models in the light of the basic geometrical symmetries, namely Lie and Noether point symmetries, which serve to illustrate the phenomenological viability of the modified gravity paradigm as a serious alternative to the traditional scalar field approaches. In particular, we utilize a model-independent selection rule based on first integrals, due to Noether symmetries of the equations of motion, in order to identify the viability of $f(R)$ models in the context of flat FLRW cosmologies. The Lie/Noether point symmetries are computed for six modified gravity models that include also a cold dark matter component. As it is expected, we confirm that all the proposed modified gravity models admit the trivial first integral namely energy conservation. We find that only the $f(R) = (R^2 - 2\Lambda)$ model, which generalizes the concordance Λ cosmology, accommodates extra Lie/Noether point symmetries. For this $f(R)$ model the existence of non-trivial Noether (first) integrals can be used to determine the integrability of the model. Indeed within this context we solve the problem analytically and thus we provide for the first time the evolution of the main cosmological functions such as the scale factor of the universe and the Hubble expansion rate.

PACS numbers: 98.80.-k, 95.35.+d, 95.36.+x
Keywords: Cosmology; dark energy; modified gravity

1. INTRODUCTION

The comprehensive study carried out in recent years by the cosmologists has converged towards a cosmic expansion history that involves a spatially flat geometry and a recent accelerating expansion of the universe (see [1–8] and references therein). From a theoretical point of view, an easy way to explain this expansion is to consider an additional energy component with negative pressure, usually called dark energy, that dominates the universe at late times. In spite of that, the absence of a fundamental physical theory, regarding the mechanism inducing the cosmic acceleration, has given rise to a plethora of alternative cosmological scenarios. Most of them are based either on the existence of new fields in nature (dark energy) or in some modification of Einstein’s general relativity (GR), with the present accelerating stage appearing as a sort of geometric effect (“geometrical” dark energy).

The necessity to preserve Einstein’s equations, inspired cosmologists to conservatively invoke the simplest available hypothesis, namely, a cosmological constant, Λ (see [9–11] for reviews). Indeed the so called spatially flat concordance ΛCDM model, which includes cold dark matter and a cosmological constant (Λ), fits accurately the current observational data and thus it is an excellent candidate model of the observed universe. Nevertheless, the identification of Λ with the quantum vacuum has brought another problem which is: the estimate that the vacuum energy density should be 120 orders of magnitude larger than the measured Λ value. This is the “old” cosmological constant problem [8]. The “new” problem [12] is related with the following question: why is the vacuum density so similar to the matter density at the present time?

Such problems have inspired many authors to propose alternative dark energy candidates (see [13] for review) such as $\Lambda(t)$ cosmologies, quintessence, k–essence, vector fields, phantom dark energy, tachyons and Chaplygin gas (see [14–30] and references therein). Naturally, in order to establish the evolution of the dark energy equation of state, a realistic form of $H(a)$ is required which should be constrained through a combination of independent dark energy probes.

On the other hand, there are other possibilities to explain the present accelerating stage. For instance, one may consider that the dynamical effects attributed to dark energy can be resembled by the effects of a nonstandard gravity theory. In other words, the present accelerating stage of the universe can be driven only by cold dark matter, under a modification of the nature of gravity. Such a reduction of the so-called dark sector is naturally obtained in the $f(R)$ gravity theories [31]. In the original nonstandard gravity models, one modifies the Einstein-Hilbert action with a general function $f(R)$ of the Ricci scalar R. The $f(R)$ approach is a relative simple but still a fundamental tool used to explain the accelerated expansion of the universe. A pioneering fundamental approach was proposed long ago, where $f(R) = R + mR^2$ [32]. Later on, the $f(R)$ models were further explored from different points of view in [32, 33, 35] and indeed a large number of functional forms of $f(R)$ gravity is currently available in the literature. It is interesting to mention here that subsequent investigations [35] confirmed that $1/R$ gravity is an unacceptable model because it fails to
reproduce the correct cosmic expansion in the matter era.

In this paper, we wish to test some basic functional forms of \(f(R) \) in the light of the Lie/Noether point symmetries. The idea to use Noether symmetries in cosmological studies is not new and indeed a lot of attention has been paid in the literature (see [37, 43]). Recently, we have proposed (see Basilakos et al. [48]) by applying the same approach to \(f(R) \) models to investigate which of the available \(f(R) \) models admit non-trivial Lie/Noether point symmetries and their connections.

In particular, the scope of the current article is (a) to provide analytical solutions for those equations in the framework of theoretical elements of the problem are presented in section 3. In section 4 we provide analytical solutions for those \(f(R) \) models which admit non trivial Lie/Noether point symmetries. Finally, we draw our main conclusions in section 5.

2. COSMOLOGY WITH A MODIFIED GRAVITY

Consider the modified Einstein-Hilbert action:

\[
S = \int d^4x\sqrt{-g}\left[\frac{1}{2k^2}f(R) + \mathcal{L}_m\right]
\]

(1)

where \(\mathcal{L}_m \) is the Lagrangian of dust-like (\(\rho_m = 0 \)) matter and \(k^2 = 8\pi G \). Now varying the action with respect to the metric\(^1\) we arrive at

\[
(1 + f')G^\mu_\nu - G^{\mu\alpha}f_{\alpha ; \nu} + \frac{2\Box f' - (f - Rf')}{2} \delta^\mu_\nu = k^2 T^\mu_\nu
\]

(2)

where the prime denotes derivative with respect to \(R \), \(G^\mu_\nu \) is the Einstein tensor and \(T^\mu_\nu \) is the energy-momentum tensor of matter. Based on the matter era we treat the expanding universe as a perfect fluid which includes only cold dark matter with 4-velocity \(U_\nu \). Thus the energy momentum tensor becomes \(T^\mu_\nu = -\rho_m g^\mu_\nu + \rho_m + p_m)U^\mu U_\nu \), where \(\rho_m \) and \(p_m \) = 0 are the energy density and pressure of the cosmic fluid respectively. The Bianchi identity \(\nabla^\mu T_{\mu\nu} = 0 \) leads to the matter conservation law:

\[
\dot{\rho}_m + 3H\rho_m = 0
\]

(3)

the solution of which is \(\rho_m = \rho_m a^{-3} \). Note that the over-dot denotes derivative with respect to the cosmic time \(t \), \(a(t) \) is the scale factor and \(H \equiv \dot{a}/a \) is the Hubble parameter.

Now, in the context of a flat FLRW metric with Cartesian coordinates

\[
ds^2 = -dt^2 + a^2(t)(dx^2 + dy^2 + dz^2)
\]

(4)

the Einstein’s tensor components are given by:

\[
G^0_0 = -3H^2, \quad G^0_\nu = -\delta^\nu_\mu (2\dot{H} + 3H^2).
\]

(5)

Inserting eqs. (4) into the modified Einstein’s field equations (2), for comoving observers, we derive the modified Friedmann’s equations

\[
3f' H^2 = k^2 \rho_m + f'R - \frac{f}{2} - 3H f'' R
\]

(6)

\[
2f' \dot{H} + 3f' H^2 = -2H f'' \dot{R} - \left(f'' \dot{R}^2 + f'' \ddot{R} \right) - \frac{f - Rf'}{2}
\]

(7)

Also, the contraction of the Ricci tensor provides the Ricci scalar

\[
R = g^{\mu\nu}R_{\mu\nu} = 6 \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} \right) = 6(2H^2 + \dot{H})
\]

(8)

Of course, if we consider \(f(R) = R \) then the field equations (2) boil down to the nominal Einstein’s equations a solution of which is the Einstein de Sitter model. On the other hand, the concordance \(\Lambda \) cosmology is fully recovered for \(f(R) = R - 2\Lambda \).

From the current analysis it becomes clear that unlike the standard Friedmann equations in Einstein’s GR the modified equations of motion (6) and (7) are complicated and thus it is difficult to solve analytically. However, the existence of non-trivial Noether (first) integrals can be used to simplify the system of differential equations (6) and (7) as well as to determine the integrability of the system (see section 4).

2.1. The \(f(R) \) functional forms

In order to solve the system of eqs. (6) and (7) we need to know a priori the functional form of \(f(R) \). Due to the

\(^1\) We use the metric i.e. the Hilbert variational approach.
absence of a physically well-motivated functional form for
the $f(R)$ parameter, there are many theoretical speculations in the literature. Bellow we briefly present various
$f(R)$ models whose free parameters, namely $(m,n,R_c) > (0,0,0)$, can be constrained from the current cosmological
data.

- The power law model \[f(R) = R - m/R^n \text{ .} \]

- The Amendola et al. \[f(R) = R - m R_c (R/R_c)^p \text{ .} \]

- The Hu & Sawicki \[f(R) = R - m R_c \left(\frac{R}{R_c} \right)^{2n} - 1 \text{ .} \]

- The Starobinsky \[f(R) = R - m R_c \tan(h(R/R_c) \text{ .} \]

- The Tsujikawa \[f(R) = R - m R_c \text{ .} \]

- The generalization of the ΛCDM model (hereafter Λ_0CDM model) \[f(R) = (R^k - 2\Lambda)^c \text{ .} \]

where the product bc is of order of unity $O(1)$ and $c \geq 1$. The latter inequality is due to the existence of the matter epoch.

Detailed analysis of these potentials exist in the literature, including their confrontation with the observational data (see \[\text{for extensive reviews.} \] We would like to stress here that within the context of the metric formalism the above $f(R)$ cosmological models must obey simultaneously the same strong conditions (for an overall discussion see \[\text{for extensive reviews.} \] Bellow these are: (i) $f' > 0$ for $R \geq R_0 > 0$, where R_0 is the Ricci scalar at the present time. If the final attractor is a de Sitter point we need to have $f' > 0$ and $R \geq R_1 > 0$, where R_1 is the Ricci scalar at the de Sitter point. (ii) $f'' > 0$ for $R \geq R_0 > 0$, (iii) $f(R) \approx R - 2\Lambda$ for $R \gg R_0$ and finally (iv) $0 < \frac{R''}{f'}(r) < 1$ at $r = -\frac{R'}{f'} = -2$.

Notice, that the power law $f(R)$ model fails with respect to condition (ii). The rest of the models satisfy all the above conditions and thus they provide predictions which are similar to those of the usual dark energy models, as far as the cosmic history (presence of the matter era, stability of cosmological perturbations, stability of the late de Sitter point etc.) is concerned. Finally, in an appendix we discuss more $f(R)$ models which however do not satisfy the conditions (i)-(iv) \[\text{.} \]

3. MODIFIED GRAVITY VERSUS SYMMETRIES

In Basilakos et al. \[\text{article we have proposed to use the} \]
the Noether symmetry approach as a model-independent criterion, in order to classify the dark energy models that adhere to general relativity. The aim of this work is along the same lines, attempting to investigate the non-trivial Noether symmetries (first integrals of motion) by generalizing the methodology of Basilakos et al. \[\text{for} \]
modified gravity models (see section 2.1). This can help us to understand better the theoretical basis of the $f(R)$ models as well as the variants from GR.

In the last decade, a large number of experiments have been proposed in order to constrain dark energy and study its evolution. Naturally, in order to establish the evolution of the dark energy ("geometrical" in the current work) equation of state parameter a realistic form of $H(a)$ is required while the included free parameters must be constrained through a combination of independent DE probes (for example SNIa, BAOs, CMB etc). However, a weak point here is the fact that the majority of the $f(R)$ models appeared in the literature are plagued with no clear physical basis and/or many free parameters. Due to the large number of free parameters many such models could fit the data. The proposed additional criterion of Lie/Noether symmetry requirement is a physically meaningful full geometric ansatz, which could be employed in order to select amongst the set of viable models which satisfy this constraint. Practically for those $f(R)$ models which manage to survive from the comparison with the available cosmological data, our goal is to define a method that can further distinguish the $f(R)$ models on a more fundamental (eg. geometrical) level and at the same time provides first integrals which can be used to integrate the modified Friedmann’s equations.

According to the theory of general relativity, the space-time symmetries (Killing and homothetic vectors) via the Einstein’s field equations, are also symmetries of the energy momentum tensor. Due to the fact that the $f(R)$ models provide a natural generalization of GR one would expect that the theories of modified gravity must inherit the symmetries of the space-time as the usual gravity (GR) does.

Furthermore, besides the geometric symmetries we have to consider the dynamical symmetries, which are the symmetries of the field equations (Lie symmetries). If the field equations are derived from a Lagrangian then there is a special class of Lie symmetries, the Noether symmetries\[\text{, which lead to conserved currents or, equivalently,} \]
to first integrals of the equations of motion. The Noether integrals are used to reduce the order of the field equations or even to solve them. Therefore a sound require-

\[\text{Note that the Noether symmetries are a sub-algebra of the algebra defined by the Lie symmetries} \]
ment, which is possible to be made in Lagrangian theories is that they admit extra Noether symmetries. This assumption is model independent, because it is imposed after the field equations have been derived, therefore it does not lead to conflict with the geometric symmetries while, at the same time, serves the original purpose of a selection rule. Of course, it is possible that a different method could be assumed and select another subset of viable models. However, symmetry has always played a dominant role in Physics and this gives an aesthetic and a physical priority to our proposal.

In the Lagrangian context, we can easily prove that the main field equations (3) and (7), described in section 2, can be produced by the following Lagrangian:

\[
L = 6af^2 \dot{a}^2 + 6a^2 f'' \dot{a} \dot{R} + a^3 \left(f' \dot{R} - f \right)
\]

(15)

in the space of the variables \{a, R\}. Using eq.\((15)\) we obtain the Hamiltonian of the current dynamical system

\[
E = 6af^2 \dot{a}^2 + 6a^2 f'' \dot{a} \dot{R} - a^3 \left(f' \dot{R} - f \right)
\]

(16)

or

\[
E = 6a^3 \left[f H^2 - \frac{(f' \dot{R} - f)}{6} + RH f'' \right].
\]

(17)

Combining the first equation of motion (3) with eq.\((17)\) we find

\[
\rho_m = \frac{E}{2k^2} a^{-3}.
\]

(18)

The latter equation together with \(\rho_m = \rho_{m0} a^{-3}\) implies that

\[
\rho_{m0} = \frac{E}{2k^2} \Rightarrow \Omega_m \rho_{cr,0} = \frac{E}{2k^2} \Rightarrow E = 6\Omega_m H_0^2
\]

(19)

where \(\Omega_m = \rho_{m0}/\rho_{cr,0} \), \(\rho_{cr,0} = 3H_0^2/k^2\) is the critical density at the present time and \(H_0\) is the Hubble constant.

We note that the current Lagrangian eq.\((15)\) is time independent implying that the dynamical system is autonomous hence the Hamiltonian \(E\) is conserved (\(\partial_t E = \frac{dE}{dt} = 0\)). Therefore, all the \(f(R)\) functions described in section 2.1 admit the trivial Noether symmetry, namely energy conservation as they should.

3.1. Extra Lie and Noether symmetries

Here we briefly present only the main points of the method used to constraint the \(f(R)\) models. In particular, let us assume a modified gravity \(f(R)\) cosmological model which accommodates a late time “accelerated” expansion and it satisfies the strong conditions (i)-(iv) of section 2.1. We pose here a similar question with that proposed in Basilakos et al.\(^{18}\) article for the dark energy models that adhere to GR. For the modified gravity, namely \(f(R)\) that lives into a 2-dimensional Riemannian space \{a, R\} and which is embedded in the space-time, how many (if any) of the previously presented functional forms (see section 2.1) can provide non trivial Noether symmetries (or first integrals of motion)? As an example, if we find a modified gravity model (or a family of models) for which its \(f(R)\) admits non-trivial first integrals of motion with respect to the other \(f(R)\) cosmological models, then obviously this model contains an extra geometrical feature. Therefore, we can use this geometrical characteristic in order to classify this particular \(f(R)\) cosmological model into a special category (see also \(37, 40–42, 44, 45\)).

In order to compute the Lie/Noether point symmetries of equations of motion (3) and (7), we consider the Lagrangian\(^3\)\(^{15}\) as the sum of a kinetic energy and a conservative force field. The kinetic term defines a two dimensional metric in the space of \{a, R\}. Following standard lines (see \(18\) and references therein) the two dimensional metric takes the form

\[
d\tilde{s}^2 = 12a f' da^2 + 12a^2 f'' da dR
\]

(20)

while the “potential” is

\[
V(a, R) = -a^3 (f' \dot{R} - f).
\]

(21)

The signature of the metric eq.\((20)\) is +1 and the Ricci scalar is computed to be \(\dot{R} = 0\), therefore the space is the 2-d Euclidean space\(^3\). Using the kinematic metric \((20)\) we can utilize the plethora of results of Differential Geometry on collineations to produce the solution of the Lie/Noether point symmetry problem.

We recall that the special projective algebra of the of the Euclidean 2d metric \((20)\) consists of the following vectors:

\[
K^1 = a \partial_a - 3f'/f'\partial_R, \quad K^2 = \frac{1}{a} \partial_a - \frac{1}{a^2} f'/f'' \partial_R, \quad K^3 = \frac{1}{a} \frac{f'}{f''} \partial_R
\]

\[
H^i = \frac{a}{2} \partial_a + \frac{1}{2} \frac{f'}{f''} \partial_R, \quad A^1 = f' \partial_a - \frac{1}{a} (f')^2 \partial_R
\]

\[
A^2 = \frac{a}{f''} \partial_R, \quad A^3 = a \partial_a, \quad A^4 = \frac{f'}{f''} \partial_R
\]

\[
P^1 = \frac{3}{2} a^2 f' \partial_a + 3 \frac{a}{2} f' (f')^2 \partial_R, \quad P^2 = \frac{3}{2} a^3 \partial_a + \frac{3}{2} a^2 f' \partial_R
\]

where \(K\) are Killing vectors (\(K^{2,3}\) are gradient), \(H\) is a gradient Homothetic vector, \(A\) are Affine collineations

\(^{3}\) In the appendix B we discuss the Noether symmetries in non flat \(f(R)\) models.

\(^{4}\) For the traditional dark energy models the signature of the two dimensional metric is −1 which means that the 2-d space is Minkowski \((3)\). Also all two dimensional Riemannian spaces are Einstein spaces implying that if \(R = 0\) the space is flat.
and \(P \) are special projective collineations. These are ten vectors whereas the projective algebra of the two dimensional flat space consists of eight vectors. It can be shown that the vectors \(K^1, H^3 \) are a linear combination of the affine vectors \(A^I, I = 3, 4 \).

Now we are looking for Noether symmetries beyond the standard one, \(\partial \). Utilizing the potential eq. (21) and the theorems 1 and 2 of [36], we find that among the \(f(R) \) models explored here (see section 2.1), only the \(\Lambda \) bc f theorems 1 and 2 of [36, 55] we find that among the standard one, model [61] with \((b, c) = (1, \frac{7}{8})\) admits extra Lie/Noether point symmetries. In particular the Lie point symmetries are

\[
X_{L_1} = A^3, \quad X_{L_2} = \left(c_1 e^{\sqrt{m} t} + c_2 e^{-\sqrt{m} t}\right) K^2
\]

where the quantity \(X_{L_2} \) is also Noether symmetry with gauge function

\[
g_{L_2} = 9 \sqrt{m} \left(c_1 e^{\sqrt{m} t} - c_2 e^{-\sqrt{m} t}\right) a \sqrt{R - 2\Lambda}
\]

where \(c_1, c_2 \) are constants and \(m = 2\Lambda/3 \). If we relax the condition of \(c \geq 1 \) we then discover a second \(\Lambda \) bc CDM model with \((b, c) = (1, \frac{7}{8})\) that accommodates two Lie point symmetries the \(X_{L_1} \) and the Noether point symmetry

\[
X_{L_3} = \left(c_1 e^{2\sqrt{m} t} - c_2 e^{-2\sqrt{m} t}\right) \partial_t
\]

with gauge function

\[
g_{L_3} = \frac{21}{4} \sqrt{m} \left(c_1 e^{2\sqrt{m} t} - c_2 e^{-2\sqrt{m} t}\right) a^3 (R - 2\Lambda)^{-\frac{3}{8}}
\]

We have to mention here that the \(f(R) = (R - 2\Lambda)^{7/8} \) model does not satisfy the condition (ii), namely \(f''(R) > 0 \).

To conclude the discussion we would like to stress that the novelty in this work is the fact that among the current modified gravity models (see section 2.1) only the \(\Lambda \) bc CDM model [61], which generalizes the concordance CDM model, admits extra Lie/Noether point symmetries. This implies that the \(\Lambda \) bc CDM model can be clearly distinguished from the other modified gravity models. Interestingly enough, the existence of the extra Lie/Noether point symmetries puts even further theoretical constrains on the free parameters of the \(\Lambda \) bc CDM model, \((b, c) = (1, \frac{7}{8})\) and \((b, c) = (1, \frac{7}{8})\). From now on, we focus on the latter \(f(R) \) models and in the next section we provide for a first time (to our knowledge) analytical solutions.

4. ANALYTICAL SOLUTIONS

Using the Noether symmetries and the associated Noether integrals we solve analytically the differential eqs. (39) and (77).

4.1. \(\Lambda \) bc CDM model with \((b, c) = (1, \frac{7}{8})\)

Inserting \(f(R) = (R - 2\Lambda)^{3/2} \) into eq. (14) we obtain

\[
L = 9a \sqrt{R - 2\Lambda} a^2 + \frac{9a^2}{2 \sqrt{R - 2\Lambda}} \dot{a} R + \frac{a^3}{2} (R + 4\Lambda) \sqrt{R - 2\Lambda}
\]

(24)

Changing now the variables from \((a, R)\) to \((x, y)\) via the relations:

\[
a = \left(\frac{9}{2}\right)^{-\frac{1}{4}} \sqrt{x}, \quad R = 2\Lambda + \frac{y^2}{x}, \quad (x, y) \neq (0, 0)
\]

the Lagrangian (24) and the Hamiltonian (10) become

\[
L = \dot{x} y + V_0 \left(y^3 + \bar{m} x y\right)
\]

(25)

\[
E = \dot{x} y - V_0 \left(y^3 + \bar{m} x y\right)
\]

(26)

where \(V_0 = 1/9 \) and \(\bar{m} = 6\Lambda \).

The equations of motion, using the the Euler-Lagrange equations, in the new coordinate system are

\[
\ddot{x} - 3V_0 y^2 - \bar{m} V_0 x = 0
\]

(27)

\[
\ddot{y} - \bar{m} V_0 y = 0.
\]

(28)

The Noether point symmetries (22) in the coordinate system \(\{x, y\} \) become

\[
X'_{L_2} = \left(c_1 e^{\omega t} + c_2 e^{-\omega t}\right) \partial_y
\]

(29)

where \(\omega = \sqrt{\bar{m} V_0} = \sqrt{2\Lambda/3} \) and the corresponding Noether Integrals are

\[
I_1 = e^{\omega t} \dot{y} - \omega e^{\omega t} y
\]

(30)

\[
I_2 = e^{-\omega t} \dot{y} + \omega e^{-\omega t} y.
\]

(31)

From these we construct the time independent first integral

\[
\Phi = I_1 I_2 = \dot{y}^2 - \omega^2 y^2.
\]

(32)

The constants of integration are further constrained by the condition that at the singularity \((t = 0)\), the scale factor has to be exactly zero, that is, \(x(0) = 0\). We consider the cases \(\Phi = 0 \) and \(\Phi \neq 0 \).

A. Case \(\Phi = 0 \).

We have the following sub-cases:

A.1. \(I_1 = I_2 = 0 \)

The solution of the system of equations (27)-(28) is

\[
x(t) = x_1 e^{\omega t} + x_2 e^{-\omega t}, \quad y(t) = 0
\]

(33)

and the Hamiltonian constraint gives \(E = 0 \) where \(x_{1,2} \) are constants. The singularity condition gives the constrain \(x_1 = -x_2 \). At late enough times the scale factor evolves as \(a^2(t) \propto x(t) \propto x_1 e^{\omega t} \). However, this particular solution is ruled out because it violates \(y(t) \neq 0 \).

A.2. \(I_1 = 0 \) \((I_2 \neq 0) \)
The solution of the system (27)-(28) is:

\[y(t) = \frac{I_2}{2\omega} e^{\omega t} \]
\[x(t) = x'_1 e^{\omega t} + x'_2 e^{-\omega t} + \frac{I_2^2}{4\omega^2 m} e^{2\omega t} \]

and the Hamiltonian constrain gives \(E = -x'_1 I_2 \omega \) where \(x'_{1,2} \) are constants. The singularity condition gives the constrain

\[x'_1 + x'_2 + \frac{I_2^2}{4\omega^2 m} e^{2\omega t} = 0 \]
(36)

At late times the solution becomes \(a^2(t) \propto x(t) \approx \frac{I_2^2}{4\omega^2 m} e^{2\omega t} \).

A.3. \(I_2 = 0 \) (I_1 \neq 0)

The solution of the system (27)-(28) is:

\[y(t) = -\frac{I_1}{2\omega} e^{-\omega t} \]
\[x(t) = \tilde{x}_1 e^{\omega t} + \tilde{x}_2 e^{-\omega t} + \frac{I_1^2}{4\omega^2 \tilde{m}} e^{-2\omega t} \]

and the Hamiltonian constrain gives \(E = \tilde{x}_1 I_1 \omega \) where \(\tilde{x}_{1,2} \) are constants. The singularity condition gives the constrain

\[\tilde{x}_1 + \tilde{x}_2 + \frac{I_1^2}{4\omega^2 \tilde{m}} = 0 \, . \]

This particular solution is not viable because in the matter era we have \(e^{-\omega t} \sim 0 \) implying that \(y(t) \sim 0 \).

B. Case \(\Phi \neq 0 \)

In this case the \(I_{1,2} \neq 0 \). The general solution of the system (27)-(28) is:

\[y(t) = \frac{I_2}{2\omega} e^{\omega t} - \frac{I_1}{2\omega} e^{-\omega t} \]
\[x(t) = x_{1G} e^{\omega t} + x_{2G} e^{-\omega t} + \frac{1}{4m\omega^2} (I_{2G} e^{\omega t} + I_{1G} e^{-\omega t})^2 + \frac{\Phi}{m\omega^2} \, . \]

The Hamiltonian constrain gives \(E = \omega (x_{1G} I_1 - x_{2G} I_2) \) where \(x_{1G,2G} \) are constants and the singularity condition results in the constrain

\[x_{1G} + x_{2G} + \frac{1}{4m\omega^2} (I_1 + I_2)^2 + \frac{\Phi}{m\omega^2} = 0 \, . \]

Interestingly, one can show that the general solution includes a proper matter era in which \(H(a) \propto a^{-3/2} \) (see appendix C). Also, at late enough times the solution becomes \(a^2(t) \propto x(t) \propto \frac{I_2^2}{4\omega^2 m} e^{2\omega t} \).

4.2. \(\Lambda \omega \text{CDM model with } (b, c) = (1, \frac{5}{8}) \)

Despite the fact that the current \(f(R) \) model is physically unacceptable due to \(f''(R) < 0 \), below we present its analytical solution for mathematical interest. In this case the Lagrangian eq. (35) of the \(f(R) = (R - 2\Lambda)^{7/8} \) model is written as

\[L = \frac{21a}{(R - 2\Lambda)^{3/2}} \dot{\bar{u}}^2 - \frac{21}{32} \frac{a^2}{(R - 2\Lambda)^{3/2}} \dot{\bar{R}} - \frac{1}{8} \frac{a^4}{(R - 2\Lambda)^{5/2}} (R - 16\Lambda) \]
(41)

We introduce the new coordinates \((u, v)\) by means of the transformations:

\[a = \left(\frac{21}{8} \right)^{-\frac{1}{4}} \sqrt{2} x, \quad R = 2\Lambda + \frac{x^4}{y^2}, \quad (x, y) \neq (0, 0) \]

and

\[x = \frac{1}{\sqrt{2}} u v, \quad y = \frac{1}{\sqrt{2}} u \, v \, . \]

In the coordinates \((u, v)\) the Lagrangian is

\[L = \frac{1}{2} u^2 - \frac{1}{2} v^2 \dot{u}^2 + V_0 m^2 u^2 + 2V_0 \frac{v^{12}}{u^2} \]
(42)

where \(m = -14\Lambda \), \(V_0 = -\frac{1}{2\Lambda} \) and the Hamiltonian:

\[E = \frac{1}{2} u^2 - \frac{1}{2} v^2 \dot{v}^2 - V_0 m^2 u^2 - 2V_0 \frac{v^{12}}{u^2} \]
(43)

The Euler-Lagrange equations provide the following equations of motion:

\[\ddot{u} + \frac{u}{v^2} \dot{v}^2 - \frac{V_0 m}{4} u + 4V_0 \frac{v^{12}}{u^3} = 0 \]
(44)

\[\ddot{v} - \frac{2}{u} \dot{u} \dot{v} - \frac{1}{v^2} \dot{v}^2 + 24V_0 \frac{v^{13}}{u^4} = 0 \, . \]

The Noether symmetries (23) become

\[X_{L_3} = \left(\frac{c_1}{\lambda} e^{2\lambda t} - \frac{c_2}{\lambda} e^{-2\lambda t} \right) \partial_t + \left(c_1 e^{2\lambda t} + c_2 e^{-2\lambda t} \right) u \partial_u \, . \]

where \(\lambda = \frac{1}{2} \sqrt{\frac{m}{V_0}} = \frac{1}{2} \sqrt{\frac{\lambda}{3}} \). The corresponding Noether Integrals are

\[I_+ = \frac{1}{\lambda} e^{2\lambda t} E - e^{2\lambda t} u \dot{u} + \lambda e^{2\lambda t} u^2 \]
(47)

\[I_- = \frac{1}{\lambda} e^{-2\lambda t} E + e^{-2\lambda t} u \dot{u} + \lambda e^{-2\lambda t} u^2 \, . \]

(48)

Following [52] we construct the following time independent integral using a combination of the first integrals [43, 47] and [48]:

\[\phi = \frac{u^4}{v^2} \dot{v}^2 + 4V_0 v^{12} \, . \]

(49)
The first integral ϕ is called the Ermakov-Lewis invariant\(^5\). Using the Ermakov-Lewis Invariant, the Hamiltonian \((50)\) and equation \((40)\) are written:
\[
\frac{1}{2} v^2 - \frac{V_0}{m} u^2 - \frac{1}{2} \frac{\phi}{u^2} = E \quad (50)
\]
\[
u - \frac{V_0 m}{u} + \frac{\phi}{u^3} = 0. \quad (51)
\]
The solution of \((51)\) has been given by Pinney \cite{64} and it is the following:
\[
u (t) = \left(u_1 e^{2 \lambda t} + u_2 e^{-2 \lambda t} + 2u_3 \right)^\frac{1}{2} \quad (52)
\]
where u_{1-3} are constants such as
\[
\phi = 4 \lambda^2 \left(u_3^2 - u_1 u_2 \right). \quad (53)
\]
From the Hamiltonian constrain \((49)\) and the Noether Integrals \((47,48)\) we find
\[
E = -2 \lambda u_3 \ , \ I_+ = 2 \lambda u_2 \ , \ I_- = 2 \lambda u_1.
\]
Replacing \((52)\) in the Ermakov-Lewis Invariant \((49)\) and assuming $\phi \neq 0$ we find:
\[
\nu (t) = 2 \sqrt[6]{\phi} e^{-A(t)} \left(4 V_0 + e^{-12A(t)} \right)^{-\frac{1}{6}} \quad (54)
\]
where
\[
A(t) = \arctan \left(\frac{2 \lambda}{\sqrt{\phi}} (u_1 e^{2 \lambda t} + u_3) \right) + 4 \lambda^2 u_1 \sqrt{\phi}. \quad (55)
\]
Then the solution is
\[
x(t) = 2^{-\frac{1}{6}} \phi^{-\frac{1}{2}} e^{-A(t)} \left(4 V_0 + e^{-12A(t)} \right)^{-\frac{1}{6}} \times \left(u_1 e^{2 \lambda t} + u_2 e^{-2 \lambda t} + 2u_3 \right)^\frac{1}{2} \quad (56)
\]
where from the singularity condition $x(0) = 0$ we have the constrain $u_1 + u_2 + 2u_3 = 0$, or
\[
2 E - (I_+ + I_-) = 0. \quad (57)
\]
At late enough time we find $A(t) \simeq A_0$, which implies $\nu^2(t) \propto x(t) \propto e^{\lambda t}$.

In the case where $\phi = 0$ equations \((50)\) \((51)\) describe the hyperbolic oscillator and the solution is
\[
u (t) = \sinh \lambda t \ , \ 2 E = \lambda^2. \quad (58)
\]
From the Ermakov-Lewis Invariant we have
\[
u (t) = \left(\frac{\lambda \sinh \lambda t}{\lambda v_1 \sinh \lambda t - 2 \sqrt{V_0} e^{-2 \lambda t}} \right)^\frac{1}{6} \quad (59)
\]
where v_1 is a constant. In this case the solution is
\[
x(t) = \frac{1}{\sqrt{2}} \left(\frac{\lambda \sinh^2 \lambda t}{\lambda v_1 \sinh \lambda t - 2 \sqrt{V_0} e^{-2 \lambda t}} \right)^\frac{1}{6} \quad (60)
\]
At late times the scale factor varies $a^2(t) \propto x(t) \propto e^{\lambda t}$.

\textbf{5. CONCLUSIONS}

In the literature the functional forms of $f(R)$ of the modified $f(R)$ gravity models are mainly defined on a phenomenological basis. In this article we use the Noether symmetry approach to constrain these models with the aim to utilize the existence of non-trivial Noether symmetries as a selection criterion that can distinguish the $f(R)$ models on a more fundamental (eg. geometrical) level. Furthermore the resulting Noether integrals can be used to provide analytical solutions.

In Basilakos et al. \cite{48} we have utilized the Noether symmetry approach to study the dark energy (quintessence or phantom) models within the context of scalar field FLRW cosmology. Overall the combination of the work of Basilakos et al. \cite{48} with the current article provide a complete investigation of the Noether symmetry approach in cosmological studies. From both works it becomes clear that the Noether symmetry approach could provide an efficient way to discriminate either the "geometrical" (modified gravity) dark energy models or the dark energy models that adhere to general relativity. This is possible via the geometrical symmetries of the FLRW space-time in which both GR and modified gravity (or scalar field) live.

In the context of $f(R)$ models, following the general methodology of \cite{46} (see also the references therein), the Noether symmetries are computed for 6 modified gravity models that contain also a dark matter component. The main results of the current paper can be summarized in the following statements (see sections 3 and 4):

\begin{itemize}
 \item We verified that all the $f(R)$ models studied here, admit the trivial first integral, namely energy conservation, as they should.
 \item Among the 6 modified gravity models only the $f(R) = (R^2 - 2\Lambda R)$ model with $(b,c) = (1,\frac{1}{2})$ provides a cosmic history which is similar to those of the usual dark energy models [see conditions (i)-(iv) in section 2.1] and at the same time it admits extra integrals of motion. In general, we propose that the $f(R)$ models that simultaneously obey the conditions (i)-(iv), fit the cosmological data and admit extra Noether symmetries (integral of motions) should be preferred along the hierarchy of modified gravity models. Of course, one has to test the $f(R) = (R - 2\Lambda)^{3/2}$ model against the cosmological data (SNIa, BAOs and CMB shift parameter). Such an analysis is in progress and will be published elsewhere. Therefore the ΛCDM modified gravity model appears to be a promising candidate for describing the physical properties of "geometrical" dark energy. We argue that although the ΛCDM model \cite{61} was phenomenologically selected in order to extend the concordance Λ cosmology, it appears from the current analysis that it has a strong geometrical basis.
\end{itemize}

\(5\) An alternative way to compute the Ermakov-Lewis invariant is with the use of dynamical Noether symmetries \cite{46}. The corresponding dynamical Noether symmetry is $X_D = u^2 \partial_u$.\]
• Section 4 provides for a first time (to our knowledge) analytical solutions in the light of Λ_mCDM model that include also a non-relativistic matter (cold dark matter) component.

Acknowledgments. We would like to thank the referee for useful comments and suggestions. A.P. has been partially supported from ELKE (grant 11112) of the University of Athens. S.B. wishes to thank the Dept. ECM of the University of Barcelona for the hospitality, and the financial support from the Spanish Ministry of Education, within the program of Estancias de Profesores e Investigadores Extranjeros en Centros Españoles (SAB2010-0118).

Appendix A: Additional $f(R)$ models which admit extra Lie/Noether point symmetries

From the mathematical point of view and for the completeness of the present study, we would like to give the form of all $f(R)$ functions which admit extra Lie/Noether point symmetries but do not pass the conditions (i)-(iv).

• If $f(R)$ is arbitrary we have the Lie point symmetries

$$X_{L_{1,2}} = l_1 \partial_t + l_2 a \partial_a$$

and the sole Noether point symmetry ∂_t with Noether integral (constant of motion) the Hamiltonian E.

• If $f(R) \simeq R^2$ the dynamical system admits the extra Lie point symmetries

$$X_{L_3} = \frac{1}{a} \partial_a - \frac{2R}{a^2} \partial_R, \quad X_{L_4} = t \left(\frac{1}{a} \partial_a - \frac{2R}{a^2} \partial_R \right)$$

$$X_{L_5} = t \partial_t - 2R \partial_a$$

and the extra Noether point symmetries

$$X_{N_2} = \frac{1}{a} \partial_a - \frac{2R}{a^2} \partial_R, \quad X_{N_3} = \frac{1}{a} \partial_a - \frac{2R}{a^2} \partial_R$$

$$X_{N_4} = 2t \partial_t + \frac{4}{3} a \partial_a - 4R \partial_R.$$

with corresponding Noether Integrals

$$I_2 = \frac{d}{dt} \left(a \sqrt{R} \right), \quad I_3 = \frac{d}{dt} \left(a \sqrt{R} \right) - a \sqrt{R}$$

$$I_4 = 2tE - 6a^2 \dot{a} \sqrt{R} - 6 \frac{a^3 \sqrt{R}}{R} \dot{R}.$$

• If $f(R) \simeq R^2$ the dynamical system admits the extra Lie point symmetries

$$X_{L_6} = 2t \partial_t - 4R \partial_R, \quad X_{L_7} = t^2 \partial_t + t \left(\frac{a}{2} \partial_a - 4R \partial_R \right)$$

and the extra Noether point symmetries

$$X_{N_5} = 2t \partial_t + \frac{a}{2} \partial_a - 4R \partial_R, \quad X_{N_6} = t^2 \partial_t + t \left(\frac{a}{2} \partial_a - 4R \partial_R \right)$$

with corresponding Noether Integrals

$$I_5 = 2tE - \frac{21}{8} \frac{d}{dt} \left(a^3 \sqrt{R} \right) + \frac{21}{8} a^3 \sqrt{R}.$$

• If $f(R) \simeq R^n$ (with $n \neq \frac{3}{2}, \frac{7}{2}$) the dynamical system admits the extra Lie point symmetry

$$X_{L_8} = -\frac{1}{2(n-1)} t \partial_t + \frac{1}{n-1} R \partial_R$$

and the extra Noether point symmetry

$$X_{N_7} = 2t \partial_t + \left(\frac{2}{3} a (2n-1) \partial_a - 4R \partial_R \right)$$

with Noether Integral

$$I_7 = 2tE - 8na^2 R^{n-1} \dot{a} (2-n) - 4na^3 R^{n-2} \dot{R} (2n-1) (n-1).$$

Finally with the above analysis we would like to give the reader the opportunity to appreciate the fact that the Lie/Noether point symmetries provided in the current appendix can be seen as an extension of those found by Vakili [16].

Appendix B: Noether symmetries in spatially non flat $f(R)$ models

In this appendix we study further the Noether symmetries in non flat $f(R)$ cosmological models. Briefly, in the context of a FRW spacetime the Lagrangian of the overall dynamical problem and the Ricci scalar are

$$L = 6f'(a \dot{a}^2 + f'' \dot{R} a^2 \dot{a} + a^3 (f' R - f) - 6K a f'),$$

$$R = 6 \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + K}{a^2} \right)$$

where K is the spatial curvature. Note that the two dimensional metric is given by eq. (20) while the "potential" in the Lagrangian takes the form $V(a,R) = -a^3 (f' R - f) + Ka f'$. Based on the above equations and using the theoretical formulation presented in section 3, we find
that the $f(R)$ models which admit non trivial Noether symmetries are: $f(R) = (R - 2 \Lambda)^{3/2}$, $f(R) = R^{3/2}$ and $f(R) = R^2$. Notice, that the $f(R) = (R - 2 \Lambda)^{7/8}$ does not accept an analytical solution.

In particular, inserting $f(R) = (R - 2 \Lambda)^{3/2}$ into the Lagrangian and changing the variables from (a, R) to (x, y) [see section 4.1] we find

$$L = \dot{x}y + V_0 (y^3 + \bar{m} xy) - \bar{K}y \quad (B1)$$

$$E = \dot{x}y - V_0 (y^3 + \bar{m} xy) + \bar{K}y \quad (B2)$$

where $\bar{K} = 3(6^{1/3} K)$. Therefore, the equations of motion are

$$\ddot{x} - 3V_0 y^2 - \bar{m}V_0 x + \bar{K} = 0$$

$$\dot{y} - \bar{m}V_0 y = 0 .$$

The constant term \bar{K} appearing into the first equation of motion is not expected to affect the Noether symmetries (or the Integrals of motion). Indeed we find that the corresponding Noether symmetries coincide with those of the spatially flat $f(R) = (R - 2 \Lambda)^{3/2}$ model [see eqs. (22), (30), (31), (32)]. However, in the case of $K \neq 0$ (or $\bar{K} \neq 0$) the analytical solution for the x-variable is written as $x_K(t) \equiv x(t) + \frac{2}{\bar{K}}$, where $x(t)$ is the solution of the flat model $K = 0$ (see section 4.1). Note that the solution of the y-variable remains unaltered (see section 4.1 or eq. C4). As expected, in the spatially flat regime $K = 0$ the current equations reduce those equations of section 4.1.

Similarly, in the case of $f(R) = R^{3/2}$ and $f(R) = R^2$ the Noether symmetries can be found in appendix A. Of course, we again confirm that all the proposed modified gravity models with $K \neq 0$ accommodate the trivial first integral $\partial_t E = 0$ (energy conservation).

Appendix C: Testing the analytical solutions

In this appendix we would like to test the validity of our analytical solutions in the case of $f(R) = (R - 2 \Lambda)^{3/2}$ model. Bellow we investigate the behavior of the Hubble parameter in the matter dominated era. First of all inserting $\rho_m = \rho_{m0}a^{-3}$ (see our eq.15) into the modified Friedmann equation (see eq.2) we get:

$$H^2 = k^2 \rho_{m0}a^{-3} \frac{3f'}{3f} + \frac{fR - f}{6f'} + \frac{Hf'' f'}{f'} . \quad (C1)$$

Obviously, in order to reveal the evolution of the Hubble parameter in the matter era, in which the evolution of the matter density dominates the global dynamics, we have to understand the evolution of the first and the third term in eq. (C1). Using $R = 2 \Lambda + \frac{\rho_m}{3}$ (see the transformations in section 4.1) we have, after some simple algebra, that

$$\frac{k^2 \rho_{m0}a^{-3}}{3f'} = 2k^2 \rho_{m0}a^{-3} \frac{2k^2}{9} \frac{\rho_{m0}a^{-3} (\frac{x}{y^2})^{1/2}}{(R - 2 \Lambda)^{1/2}} \quad (C2)$$

$$\frac{f'' f'}{f'} = \frac{\dot{R}}{2(R - 2 \Lambda)} = \frac{d(y^2/x)/dt}{2(y^2/x)} . \quad (C3)$$

For the benefit of the reader we repeat here the general solution of the system:

$$y(t) = \frac{I_2}{2 \omega} e^{\omega t} - \frac{I_1}{2 \omega} e^{-\omega t} \quad (C4)$$

$$x(t) = x_1 G e^{\omega t} + x_2 G e^{-\omega t} + \frac{1}{4 \bar{m} \omega^2} (I_2 e^{\omega t} + I_1 e^{-\omega t})^2 + \frac{I_1 I_2}{\bar{m} \omega^2} \quad (C5)$$

where $I_{1,2} \neq 0$ are the Noether Integrals.

Inserting the general solution into eqs. (C2), (C3) and using at the same time that $e^{\omega t} \sim 1$ we find

$$\frac{k^2 \rho_{m0}a^{-3}}{3f'} \rightarrow \frac{2k^2}{9} \rho_{m0}a^{-3} (\frac{x}{y^2})^{1/2} \rightarrow \frac{2k^2 \bar{m}}{9} \rho_{m0}a^{-3}$$

$$\frac{f'' f'}{f'} \sim \frac{d(y^2/x)/dt}{2(y^2/x)} \sim e^{-\omega t} \ll 1 .$$

Obviously, inserting the above results into the modified Friedmann equation eq. (C1) one can easily show that in the matter dominated era the evolution of the Hubble parameter tends to its nominal form namely $H(a) \rightarrow a^{-3/2}$.

[1] M. Tegmark, et al., Astrophys. J., 606, 702, (2004)
[2] D.N. Spergel, et al., Astrophys. J. Suplem., 170, 377, (2007)
[3] T.M. Davis et al., Astrophys. J., 666, 716, (2007)
[4] M. Kowalski, et al., Astrophys. J., 686, 749, (2008)
[5] M. Hicken et al., Astrophys. J., 700, 1097, (2009)
[6] E. Komatsu, et al., Astrophys. J. Suplem., 180, 330, (2009); G. Hinshaw, et al., Astrophys. J. Suplem., 180, 225, (2009); E. Komatsu, et al., Astrophys. J. Suplem., 192, 18, (2011)
[62] L. Amendola, D. Polarski and S. Tsujikawa, Intern. Journal of Modern Physics D, 16, 1555 (2007)

[63] A. Barnes, Class. Quantum Gravity 10, 1139 (1993)

[64] Pinney E., Proc. Am. Math. Soc. 1, 681 (1950)