Disentangling the Mechanisms of Radiation-Induced Heart Disease in the Treatment of Breast Cancer

Eleonor Mezzaroma1, Elisabeth Weiss2, Ross Mikkelsen2, David A Gewirtz1, Justin Canada1, Egidio Del Fabbro1, Stefano Toldo4 and Antonio Abbate3

1School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
2Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA
3Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
4Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA

Commentary

The Clinical Problem

Early diagnosis and new treatment approaches have revolutionized the outcomes for women with breast cancer. Cancer-related mortality as well as disease recurrence has declined significantly [1]. Current successes are based on a multidisciplinary approach including surgery, systemic therapy and radiation therapy (XRT).

The use of XRT as adjuvant therapy provides a significant reduction in cancer recurrence. Despite these encouraging trends, however, overall mortality has decreased less than anticipated and remains unacceptably high as evident from childhood cancer patients treated for solid tumors and Hodgkin's lymphoma [2].

Clinical studies have shown that breast cancer patients treated with XRT have a significantly higher long-term (10-20 year) risk of cardiac death [3,4]. It has been estimated that XRT added to surgery reduces the cancer recurrence by 15% in 10 years and reduces the cancer-related mortality by 3.8% at 15 years [1]. However, in the same study the addition of XRT increased cancer-unrelated mortality by an absolute 0.8% vs surgery alone. This suggests that for every 4 patients that were saved from cancer-related death by XRT, 1 additional patient died of cancer-unrelated causes due to adverse effects of XRT (Figure 1) [1].

This concept, once considered paradoxical, is now viewed as a call for a change in treatment paradigm. The goal is to refine the intervention in order to maintain the anti-cancer efficacy while limiting the potential life-threatening toxicities and/or develop strategies to identify and treat early complications of breast cancer treatment. The ultimate is to have treatment strategies that will not compromise overall survival, while improving cancer-free survival.

Radiation-induced Cardiomyopathy

Radiation-induced cardiomyopathy is characterized by an impairment in left ventricular (LV) resting systolic function, contractile reserve, compliance and filling pattern, increased interstitial fibrosis, pericardial and valvular thickening, degeneration of the conduction system and premature or accelerated atherosclerosis (Figure 2)[5-8].

Historically, acute radiation injury consisted of acute pericarditis with or without myocarditis, and heart block due to injury to the conduction system. These effects were often transient. With the improvement in the radiation therapy, main side cardiac effects like acute pericarditis are now rarely seen, making the acute injury more commonly a subclinical effect [9]. Preclinical studies have shown that the initial injury initiates a series of events that culminate in the chronic changes observed in late radiation-induced cardiomyopathy [5,10-12]. In experimental models, myocardial and pericardial injury can be detected within days of treatment and is characterized by cell death and a reactive inflammatory response [10-12]. An impairment in cardiac function is evident in the acute and subacute phases, as a result of impaired contractile reserve [5,10]. In contrast to the acute injury, the late presentation of radiation-induced cardiomyopathy is related to a reparative fibrotic response in the pericardium, myocardium and valvular structures [6,13,14]. Radiation also accelerates atherosclerosis of the coronary arteries and increases the risk of obstructive coronary artery disease, acute myocardial infarction, and ischemic cardiomyopathy [6-8,14]. An analysis of myocardial fibrosis using cardiac magnetic resonance (or pathology) distinguishes the diffuse fibrotic response with preferential epicardial distribution seen with radiation injury from the regional subendocardial fibrotic response associated with acute myocardial infarction [15,16]. Progressive fibrosis leads to impaired diastolic function, which can culminate in constrictive pericarditis (if the pericardial fibrosis dominates), restrictive cardiomyopathy (if the myocardial fibrosis dominates), or a combination of the 2 forms [6]. Significant valve dysfunction from fibrosis is quite rare, while the effects of radiation injury on arrhythmias have not been completely characterized.

The mechanisms underlying radiation-induced cardiomyopathy

Figure 1: Effects of adjuvant radiation therapy (XRT) on cancer-related and cancer-unrelated mortality in patients with breast cancer. The addition of radiation therapy (XRT) to breast conserving therapy led to a reduction in cancer-related mortality, but increased cancer-unrelated mortality.

*Corresponding author: Mezzaroma E, PhD, Research Instructor, Department of Pharmacotherapy and Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, 410 N 12th St, Box 980533, Richmond, VA, 23298, USA, Tel: + 8043988796; E-mail: emezzaroma@vcu.edu

Received June 17, 2015; Accepted July 23, 2015; Published July 30, 2015

Citation: Mezzaroma E, Weiss E, Mikkelsen R, Gewirtz DA, Canada J (2015) Disentangling the Mechanisms of Radiation-Induced Heart Disease in the Treatment of Breast Cancer. Transl Med 5: 152. doi:10.4172/2161-1025.1000152

Copyright: © 2015 Mezzaroma E, et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The preclinical studies may offer a valid platform to test potential therapeutic strategies to limit cardiac injury targeting these key signals and potentially reduce the cancer-unrelated mortality in breast cancer survivors. Current animal models are mainly developed in tumor-free subjects thus representing a limitation in the comprehension of the concomitant effects of therapies on tumor growth and cardio-protection.

Monitoring Radiation-induced Injury

Refinements in the XRT techniques, such as respiration management and more conformal dose delivery, allow for treatment schemes to be modified to reduce heart exposure [23]. With computed tomography (CT)-based radiotherapy planning, three-dimensional (3D), volumetric data and electron density information of the treatment area have become available. These are required for accurate dose calculation of the target volume and normal tissues to reduce damage in organs such as lungs and heart [6]. Other techniques as ‘intensity modulated RT’ or ‘proton and charged particle therapy’ are all focused on delivering the maximal dose to the target and minimize the dose to healthy tissues [6,24,25]. However, the effective benefit of these new techniques on long-term cardiac complications has not been evaluated yet. The heart is rarely entirely spared, and portions of the heart are often exposed to radiation treatments. Recent investigations have clearly shown a relation between radiation dose to the heart and long-term toxicity [3]. Even total doses of 2 Gray (Gy) or less were associated with an increase in the rate of cardiac events [3].

While new techniques have undoubtedly led to a reduction in acute XRT toxicity and encouraging reduction of the incidence of HF in a mid-term follow up [26], it is important to realize that clinically manifest XRT-induced cardiomyopathy is a late occurring event (often >10-20 years).

Commonly used tools to assess cardiac function (i.e. left ventricular ejection fraction [LVEF]) are notoriously insensitive to minor, and are thus unable to fully capture the extent of acute radiation-induced injury. Introducing more sensitive and quantitative protocols in the monitoring of breast cancer patients after radiation treatment may be helpful in identifying subjects at risk. Cardiac magnetic resonances (CMR) with delayed gadolinium-enhanced contrast allow detecting areas of loss of vascular integrity, edema or fibrosis and thus quantify the extent of the injury, even if small [15]. Cardiac structure abnormalities detected with cardiac imaging should also be correlated with biomarkers such as high-sensitivity cardiac troponin T and I assays or natriuretic peptides already been used to detect subclinical myocardial injury in patients undergoing chemotherapy [27-31].

Systemic Response in Radiation Treatment for Cancer

Despite the progress in cancer treatment, and the improved overall survival, many patients with breast cancer have impaired exercise tolerance/fatigue. The mechanisms underlying these limitations are not understood. Fatigue and impaired exercise tolerance in these patients are at least in part, independent of the treatment received, XRT versus chemotherapy [32,33].

Exercise intolerance and fatigue are also seen in various types of cancers, ranging from brain to colon cancer [32], and patients receiving radiotherapy are more likely to experience symptoms of fatigue [32,34-36]. These effects seem to be mediated by a systemic rather than localized response (Figure 3), a positive correlation has been observed between inflammatory markers and fatigue in cancer patients undergoing radiotherapy [34-36].

Systemic inflammation has been associated with transient cardiac dysfunction and HF through the action of soluble ‘cardiodepressant factors’ [20,37-39]. Intriguingly, ‘out of target’ effects of radiation (‘abscopal effects’) have been reported in patients with different types of cancer (localized or not in the mediastinum) [40-42], but these effects are not well characterized. It is necessary to define the mechanisms of the systemic response to radiation treatment for cancer, the role of inflammation and its correlation with fatigue and exercise intolerance.
The past decades have been characterized by a success in the
treatment of breast cancer and abatement of cancer-related mortality.
Breast cancer survivors, however, have still a significantly higher
cancer-unrelated mortality, often due to increased cardiovascular
disease; survivors also have significant impairment in quality of
life, primarily related to fatigue and exercise intolerance. Radiation-
induced cardiomyopathy is a clinical syndrome of impaired cardiac
function following radiation treatment. There is an urgent need for a
coordinated multi-disciplinary effort to better understand the cellular
and molecular mechanisms of radiation-induced cardiomyopathy,
to develop more sensitive tools to detect early injury and monitor
for progressive disease, and to develop novel therapeutic strategies
to preserve or improve cardiac function in breast cancer patients treated
with radiation therapy.

Conclusions

Figure 3. Local and systemic effects of radiation therapy on the heart. Radiation
therapy (XRT) involving the radiation field (yellow) on the left induces myocardial injury mediated by the direct effects of the radiation on the
heart. This results in a local inflammatory response, with production of soluble
inflammatory mediators that act in an autocrine or paracrine fashion on cardiac
resident cells inducing further cardiac dysfunction. Radiation therapy sparing the
heart (right) has no direct cardiotoxicity, but induces a systemic inflammatory
response that can also impair cardiac function.

References
1. Darby S, McGale P, Correa C, Taylor C, Arniagada R, et al. (2011) Effect of
radiotherapy after breast-conserving surgery on 10-year recurrence and 15-
year breast cancer death: meta-analysis of individual patient data for 10,801
women in 17 randomised trials. Lancet 378: 1707-16.
2. Tukunena M, Guibout C, Oberin D, Doyon F, Mousanif A, et al. (2010) Role
of cancer treatment in long-term overall and cardiovascular mortality after
childhood cancer. J Clin Oncol 28: 1308-15.
3. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, et al. (2013)
Risk of ischemic heart disease in women after radiotherapy for breast cancer.
N Engl J Med 368: 987-98.
4. Bouillon K, Haddy N, Delaloge S, Garbay JR, Gari J, et al. (2011) Long-term
cardiovascular mortality after radiotherapy for breast cancer. J Am Coll Cardiol
57: 445-52.
5. Mezzaroma E, Di X, Graves P, Toldo S, Van Tassell BW, et al. (2012) A mouse
model of radiation-induced cardiomyopathy. Int J Cardiol 165: 231-3.
6. Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, et al. (2013)
Long-term cardiovascular toxicity in children, adolescents, and young
adults who receive cancer therapy: pathophysiology, course, monitoring,
management, prevention, and research directions: a scientific statement from
the American Heart Association. Circulation 128: 1927-95.
7. Davis M, Witteles RM (2014) Radiation-induced heart disease: an under-
recognized entity? Curr Treat Options. Cardio Med 16: 317-323.
8. H-Ici DO, Garot J (2011) Radiation-induced heart disease. Circ Heart Fail 4:
e1-e2.
9. Lo Q, Hee L, Batumalai V, Almman C, MacDonald E, et al. (2015) Subclinical cardiac
dysfunction detected by strain imaging during breast irradiation with persistent
changes 6 weeks after treatment. Int J Radiat Oncol Biol Phys. 92: 268-76.
10. Mezzaroma E, Mikkelsen RB, Toldo S, Mauro AG, Sharma K, et al. (2015) Role
of interleukin-1 in radiation induced cardiomyopathy. Mol Med 21: 210-218.
11. Monceau V, Pasinetti N, Schupp C, Pouzoulet F, Opolon P, et al. (2010)
Modulation of the Rho/ROCK pathway in heart and lung after thorax irradiation
reveals targets to improve normal tissue toxicity. Curr Drug Target 11: 1395-
1404.
12. Seemann I, Gabriels K, Visser NL, Hoving S, Je Poole JA, et al. (2012) Irradiation
induced modest changes in murine cardiac function despite progressive
structural damage to the myocardium and microvasculature. Radiother Oncol
103: 143-150.
13. Fajardo LF, Stewart JR, Cohn KE (1986) Morphology of radiation-induced heart
disease. Arch Pathol 86: 512-9.
14. Taurn NK, Haffty BG, Kostis JB, Goyal S (2015) Radiation-Induced Heart
Disease: Pathologic Abnormalities and Putative Mechanisms. Front Oncol 5:
39.
15. Lancellotti P, Nikomo VT, Badano LP, Bergler-Klein J, Bogaert J, et al. (2013)
European Society of Cardiology Working Groups on Nuclear Cardiology and
Cardiac Computed Tomography and Cardiovascular Magnetic Resonance;
American Society of Nuclear Cardiology; Society for Cardiovascular Magnetic
Resonance; Society of Cardiovascular Computed Tomography. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 14: 721-740.
16. Karamitsos TD, Francis JM, Myerson S, Selvanayagam JB, Neubauer S (2009)
The role of cardiovascular magnetic resonance imaging in heart failure. J Am
Coll Cardiol 54: 1407-24.
17. Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol
Res 58: 88-111.
18. Toldo S, Mezzaroma E, Mauro AG, Salloum F, Van Tassell BW, et al. (2014) The
Inflammosome in Myocardial Injury and Cardiac Remodeling. Antioxid Redox
Signal 22: 1146-61.
19. Martin M, Lefaix J, Delanian S (2000) TGF-beta1 and radiation fibrosis: a
master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys
47: 277-90.
20. Van Tassell BW, Toldo S, Mezzaroma E, Abbat A (2013) Targeting interleukin-1
e in heart disease. Circulation 128: 1910-23.
21. Yamold J, Brotoms M (2010) Pathogenic mechanisms in radiation fibrosis.
Radiol Oncol 67: 149-61.
22. Mezzaroma E, Mikkelsen BR, Toldo S, Sharma K, Sonnino C, et al. (2014)
Interleukin-18 in Radiation-induced Cardiomyopathy. Circulation 130: 14880.
23. Sung K, Lee KC, Lee SH, Ahn SH, Lee SH, et al. (2014) Cardiac dose reduction
with breathing adapted radiotherapy using self respiration monitoring system for
left-sided breast cancer. Radiat Oncol J 32: 84-94.
24. Davies I, Rumble RB, Bowen J, Dixon P, Wardie P (2012) Members of the IMRT
Indications Expert Panel. Intensity-modulated radiotherapy in the treatment of
breast cancer. Clin Oncol (R Coll Radiol) 24: 488-98.
25. Weber DC, Ares C, Lomax AJ, Kurtz JM (2006) Radiation therapy planning
with photons and protons for early and advanced breast cancer: an overview.
Radiat Oncol 20: 1-22.
26. Rutter CE, Chagpar AB, Evans SB (2014) Breast cancer laterality does not
influence survival in a large modern cohort: implications for radiation-related
cardiac mortality. Int J Radiat Oncol Biol Phys 90: 328-34.
27. Cardinale D, Salivati M, Sandri MT (2011) Role of biomarkers in cardiology.
Clin Chem Lab Med 49: 1937-1948.
28. Kozak KR, Hong TS, Sluss PM, Lewandowski EL, Aleryan SL, et al. (2008)
Cardiac blood biomarkers in patients receiving thoracic (chemo) radiation.
Lung Cancer 62: 351-5.
29. Sherwood MW, Kristin Newby L (2014) High-sensitivity troponin assays:
evidence, indications, and reasonable use. J Am Heart Assoc 3: e000403.
30. Nousiainen T, Jantunen E, Vanninen E, Remes J, Vuolteenaho O, et al. (1999)
Natriuretic peptides as markers of cardiotoxicity during doxorubicin treatment
for non-Hodgkin’s lymphoma. Eur J Haematol 62: 135-41.
31. Jingu K, Nemoto K, Kaneta T, Oikawa M, Ogawa Y, et al. (2007) Temporal
change in brain natriuretic Peptide after radiotherapy for thoracic esophageal
32. Bower JE (2014) Cancer-related fatigue—mechanisms, risk factors and treatments. Nat Rev Clin Oncol 11: 597-609.

33. Groenvold M, Petersen MA, Idler E, Bjorner JB, Fayers PM, et al. (2007) Psychological distress and fatigue predicted recurrence and survival in primary breast cancer patients. Breast Cancer Res Treat 105: 209-19.

34. Bower JE, Ganz PA, Tao ML, Hu W, Belin TR, et al. (2009) Inflammatory biomarkers and fatigue during radiation therapy for breast and prostate cancer. Clin Cancer Res 15: 5534-40.

35. Geinitz H, Zimmermann FB, Stoll P, Thamm R, Kaffenberger W, et al. (2001) Fatigue, serum cytokine levels, and blood cell counts during radiotherapy of patients with breast cancer. Int J Radiat Oncol Biol Phys 51: 691-8.

36. Greenberg DB, Gray JL, Mannix CM, Eisenthal S, Carey M (1993) Treatment-related fatigue and serum interleukin-1 levels in patients during external beam irradiation for prostate cancer. J Pain Symptom Manage. 8: 196-200.

37. Kumar A, Haery C, Parrillo JE (2000) Myocardial dysfunction in septic shock.

38. Van Tassell BW, Arena RA, Toldo S, Mezzaroma E, Azam T, et al. (2012) Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS One 7: e33438.

39. Van Tassell BW, Raleigh JM, Abbate A (2015) Targeting Interleukin-1 in Heart Failure and Inflammatory Heart Disease. Curr Heart Fail Rep 12: 33-41.

40. Van der Meeren A, Monti P, Vandamme M, Squiban C, Wysocki J, et al. (2005) Abdominal radiation exposure elicits inflammatory responses and abscopal effects in the lungs of mice. Radiat Res 63: 144-52.

41. Guthrie GJ, Roxburgh CS, Richards CH, Horgan PG, McMillan DC (2013) Circulating IL-6 concentrations link tumor necrosis and systemic and local inflammatory responses in patients undergoing resection for colorectal cancer. Br J Cancer 109: 131-7.

42. Tang C, Gomez DR, Wang H, Levy LB, Zhuang Y, et al. (2014) Association between white blood cell count following radiation therapy with radiation pneumonitis in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 88: 319-26.