Clinical Presentation and outcome of acute disseminated encephalomyelitis in Saudi Arabia

Tertiary Center Experience

Bander Ali Aldamkh, MBBS, Abdalaziz F. Alamer, MBBS, Mohammed M. Altuwaijri, MBBS, Mohammed A. Ahrifai, MD, Waleed Altuwaijri, MD, Ahmed Alrumayyan, MD.

ABSTRACT

Objectives: To evaluate the clinical presentation of acute disseminated Encephalomyelitis (ADEM) in pediatric age group, treatments, and to assess the outcome at King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia.

Methods: The medical records of all patients younger than 18 years of age with a diagnosis of ADEM and treated at King Abdulaziz Medical City from January 1996 to December 2016 were collected. A total of 20 patients were included.

Results: Of 20 patients enrolled in our study, 13 (65%) were female. Autumn and summer were the most common seasons in which ADEM presented (60%); 19 (95%) patients had a history of preceding viral illnesses. Most common neurological deficits on presentation were weakness (85%), ataxia (45%), and nystagmus (45%). Cortical and subcortical lesions (60%) were the most common finding on cranial magnetic resonance imaging. Seventeen patients (85%) received steroid only. Only 16 patients continued with follow-up, with a mean duration of 7 months. All 16 patients improved: 11 patients were recovered and 5 patients still had a neurological deficit at the clinic visits. No patient had relapsed.

Conclusion: Most of the patients in this case series have an excellent outcome and attended follow-up visits and no disease relapses were identified. Further exploration of the disease is recommended.

Neurosciences 2019; Vol. 24 (2): 89-94
doi: 10.17712/nsj.2019.2.20180017

From the College of Medicine (Aldamkh B, Alamer, Altuwaijri, Ahrifai), King Saud bin Abdulaziz University for Health Sciences, from Pediatric Neurology (Alharthi, Al reduce), and from the Division of Neurology (Ahrifai, Altuwaijri, Alrumayyan), Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia.

Received 22th October 2018. Accepted 15th January 2019.
Acute disseminated encephalomyelitis (ADEM) is a demyelinating disorder of the white matter in the central nervous system (CNS) that is caused by an immune-mediated monophasic inflammatory attack. The incidence is higher in the pediatric age group, varying worldwide from 0.3-0.6 per 100,000 children per year.1,2 The pathogenesis in ADEM is not fully understood; the existing evidence suggests that the disease results from a reaction to myelin-derived antigens triggered by immunization or infection.3 Preceding vaccination or infection has been reported in 67% of cases in multiple cohort studies.4 The ADEM has been reported to occur more commonly in winter and spring because of the increased likelihood of infection at these times.5

The ADEM has a wide range of clinical presentations. Encephalopathy is usually the first clinical sign and develops suddenly, with alterations in consciousness, behavioral changes, or postictal symptoms that are unexplained by fever.6 From 2 to 8 days, the clinical presentation progressively worsens and deficits are maximized. Radiological findings are distinctive. The most common presenting feature on MRI is the presence of multiple bilateral T2-enhancing supratentorial white matter lesions. Accompanying lesions are often present in the thalamus and/or basal ganglia (40% of cases) and the brainstem and/or cerebellum (45% of cases).7-13

Most patients will make a good recovery after ADEM, though it usually takes 4-6 weeks. At follow-up, approximately 60-90% of individuals have minimal or no neurological deficits.4,6,14 The relapse rate for ADEM is between 2-29%.15 As it is a very uncommon disease worldwide and in Saudi Arabia, data on clinical presentation and outcome of ADEM are lacking. To address this information gap, we have explored the clinical features and patterns of ADEM in children and young people in Saudi Arabia.

Methods. This study is a retrospective chart review on pediatric patients with ADEM presenting to one tertiary center in Saudi Arabia from January 1st 1996 to 31st December 2016. King Abdulaziz Medical City (KAMC) is a tertiary Center located in Central Region in Saudi Arabia in Riyadh City with an average of 5,500 pediatric admissions per year in different wards.

The cases were identified via specific codes through medical records. Charts were reviewed for information on the clinical features, investigations, and management of all patients between the age of 1 month to 18 years who presented with ADEM at KAMC, Riyadh, Kingdom of Saudi Arabia during the study period.

Inclusion criteria: 1. Age between 1 month and 18 years. 2. ADEM diagnosis was based on clinical basis of first polyfocal clinical demyelinating event with abnormalities on MRI suggestive of the diagnosis and does not match the criteria for dissemination in space and time for a diagnosis of Multiple Sclerosis. The exclusion criteria is evidence of central nervous system infection.

Twenty patients were included in the case series in total, with all patients admitted to the wards at KAMC and followed up in Neurology Clinics. Based on the limited sample size of 20, the margin of error of the outcome variable (complication of ADEM) was estimated to be ±18%, based on a 95% confidence level and an expected outcome of 50% for complications. All available cases were selected.

Charts were reviewed on an individual basis by the investigators for the following data: demographic characteristic; clinical presentation; preceding symptoms; laboratory tests; neurophysiological findings; imaging studies; and treatment. The data collected were entered in Microsoft Excel. Baseline demographics were presented as frequencies and percentages. The frequencies and percentages for categorical variables and mean ± standard deviation for the numerical variables were calculated. The main outcome variable was encephalopathy.

Ethical approval. The study was approved by the Institutional Review Board, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia.

Results. Out of the 20 patients enrolled in our study, 13 (65%) were female. The mean age at clinical presentation was 9.5±6 years (range 6 months–17 years). Autumn and summer were the most common

| Table 1 - The demographic data for the patients. |
|-----------------|--------|
| Variables | n (%) |
| Age (y) | 9.5±6 |
| Gender | |
| Female | 13 (65)|
| Male | 7 (35) |
| Season | |
| Autumn | 6 (30) |
| Summer | 6 (30) |
| Spring | 5 (25) |
| Winter | 3 (15) |

Disclosure. Authors have no conflict of interests, and the work was not supported or funded by any drug company.
The most common neurological deficit on presentation was pyramidal-tract-related weakness in 17 patients (85%), of whom nine (45%) had quadriaparesis, 7 (35%) had hemiparesis, and one (5%) had paraparesis. The second most common deficit, affecting 9 patients (45%), was cerebellar dysfunction, with patients presenting with ataxia, dysarthria, and nystagmus. Seven patients (35%) had seizures. Four patients (20%) had a decreased level of consciousness. Only 2 patients (10%) presented with cranial nerve deficit (one had bilateral facial nerve deficit, the other had sixth nerve deficit) (Table 2).

With regard to the laboratory results, cerebrospinal fluid (CSF) analysis was performed for 18 patients (90%) (the families of 2 patients refused the lumbar puncture procedure). The analysis showed pleocytosis in 12 patients (60%), with lymphocytic predominance in ten patients (50%). Six patients (30%) had high levels of protein in the CSF. All the patients had negative CSF bacterial cultures. Herpes simplex virus polymerase chain reaction (PCR) was performed for 10 patients (50%); only one patient had positive results where the patient has initial diagnosis of HSV encephalitis with good recovery on acyclovir treatment but 2 weeks after treatment she developed encephalopathy again with features of ADEM on brain MRI.

Cranial magnetic resonance imaging (MRI) was performed for all patients and was abnormal. Spinal MRI was performed for some patients. All patients had bilateral involvement with asymmetrical multiple hyperintense lesions on T2-weighted and fluid-attenuated inversion recovery (FLAIR) images. Cortical and subcortical lesions were the commonest, being present in 17 patients. Thalamic lesions were present in 9 patients. Lesions in the brainstem were present in 8 patients. Cerebellum lesions were present in 7 patients, and 5 patients had lesions in the spinal cord and basal ganglia (Table 3).

The mean duration of hospitalization was 22.6 ± 23.3 days. In total, 17 patients (85%) received steroid only: methylprednisolone was given at 20 or 30 mg/kg/day seasons in which ADEM cases presented, with 6 cases (30%) presenting in each, 5 cases (25%) presenting in spring and the remaining 3 cases (15%) in winter (Table 1).

A history of preceding viral illness was present in 19 patients (95%): upper respiratory tract infection symptoms in 12 patients (60%); fever in 12 patients (60%); headache in 5 patients (25%); and vomiting in 4 patients (20%). No patient had recently been vaccinated.

Table 2 - Preceding symptoms, and clinical and CSF findings. N=20

Variables	n	(%)
Preceding symptoms		
URTI	12	(60)
Fever	12	(60)
Headache	5	(25)
Vomiting	4	(20)
Neurological deficit		
Weakness	17	(85)
Cerebellar signs	9	(45)
Decreased level of consciousness	4	(20)
Cranial nerve deficit	2	(10)
Seizure	7	(35)
CSF analysis abnormalities		
Pleocytosis	12	(60)
High protein	6	(30)

Table 3 - The distribution of T2 and FLAIR lesions on MRI. N=20

Site of the lesion	n	(%)
Cortical and subcortical	17	(85)
Deep white matter	17	(85)
Periventricular white matter	2	(10)
Thalamus	9	(45)
Basal ganglia	5	(25)
Cerebellum	7	(35)
Brainstem	8	(40)
Spinal cord	5	(25)
Cervical	3	(60)
Thoracic	3	(60)
Lumbar	1	(20)

Figure 1 - Patient (1): diffuse patchy asymmetrical bilateral subcortical and deep white matter hyperintense signals in T2 (A) with diffusion restriction (B); follow up MRI after 7 months (C), deep white matter abnormal T2 signal residual lesions; Patient (2), diffuse extensive white matter high T2 signal (D), with no enhancement on T1(E), and remarkable improvement after 6 month(F).
Table 4 - Summary of all cases with a diagnosis of acute disseminated Encephalomyelitis at King Abdulaziz Medical City from January 1996 to 31st December 2016.

SNo	A/G	Pre-inf	Clinical presentation	MRI brain	treatment	Outcome
1	17y/M	URTI	SE, rt HP, ALC	Extensive sWM, dWM, CC body	MPD, PE	Mild Cognitive dysfunction and epilepsy
2	5y/M	URTI, Fever		Bilateral diffuse frontal and parietal sWM & dWM	MPD	Mild Cognitive dysfunction
3	7y/F	URTI, Fever, vomiting	Ataxia, ALC, rt CNVI&CNVII palsy, dysartheria	C spine, Thalamus Medulla, Pons, Brachium Pontis, cerebellum		normal
4	6.5 y/F	URTI, Fever, headache	Mild quadraparesis	Lt more than rt frontal and parietal sWM & dWM.	MPD	normal
5	11y/F	Fever, headache	Paraparesis & sensory level at T3	Bilateral scattered multiple supratentorial sWM & dWM & T-L spine.	MPD, IVIG,	normal
6	2y/F	URTI	Mild quadriparesis	Bilateral scattered multiple supratentorial sWM T spine.	MPD	normal
7	17y/F	URTI, headache	Ataxia, nystagmus, dysarthria and mild quadriaparesis	Bilateral scattered multiple supratentorial sWM & dWM, Thalamus, midbrain, pons	MPD	normal
8	6y/M	URTI	Paraparesis, sphincter dysfunction	Bilateral scattered multiple supratentorial sWM & dWM & Thalamus, C-T spine	MPD	normal
9	17y/F	URTI, Fever, headache	Mild quadraparesis	Bilateral scattered multiple supratentorial sWM & dWM & C spine, pons, medulla, cerebellum	MPD	dysarthria, ataxia
10	4.5y/F	Fever, Lethargy	Paraparesis, Seizure	Bilateral scattered multiple supratentorial sWM & dWM, pons, medulla	MPD	normal
11	11y/M	Diarrhea	Lt HP	Bilateral scattered multiple supratentorial sWM, midbrain, cerebellum, thalamus	MPD	normal
12	15y/F	Fever, headache, vomiting	Ataxia, dysarthria, nystagmus	Lt more than rt supratentorial dWM, lt thalamus, cerebellum	MPD	normal
13	17y/F	Fever, headache, vomiting	Ataxia, dysarthria, nystagmus	Bilateral scattered multiple supratentorial dWM, midbrain, pons, cerebellum		Lost Follow up
14	17y/M	URTI, Fever, vomiting	Ataxia, dysarthria, nystagmus, mild paraparesis	Bilateral diffuse multiple supratentorial sWM & dWM, Thalamus	MPD	normal
15	3y/F	Pneumonia	ALC, parapresis, Myoclonic seizures	Bilateral diffuse multiple supratentorial sWM & dWM, Thalamus, midbrain and pons.	MPD	Unable to stand
16	4.5y/F	Fever and vomiting	Lt HP, ataxia	Bilateral diffuse multiple supratentorial sWM & dWM, thalamus, pons, cerebellum	MPD	normal
17	2y/F	Fever, Irritability	Spastic quadraparesis, ALC, seizures.	Bilateral occipital and parietal sWM & dWM, Thalamus	MPD	Lost Follow up
18	15y/M	URTI	Ataxia, dysarthria	Bilateral scattered multiple supratentorial dWM, cerebellum	MPD	normal
19	12y/F	URTI, Fever	Ataxia, GTCS	Bilateral diffuse frontal and parietal sWM & dWM	MPD	normal
20	6m/M	URTI, Fever	GTCS	Bilateral diffuse frontal and parietal sWM & dWM	MPD	Lost Follow up

SE - Status epilepsy, RT - Right, LT - Left, HP - Hemiparesis, ALC - Altered level of consciousness, sWM - Subcortical white matter, dWM - Deep white matter, CC - Corpus collosum, MPD - Prednisolone, PE - Plasma Exchange, GTCS - Generalized Tonic-clonic seizure, C - Cervical, T- L - Thoracic-Lumbar, y -year, F- female, M - Male, URTI- Upper respiratory tract infections
over 3-5 days and oral prednisolone was then tapered over the following 2–6 weeks. One patient received methylprednisolone 20 mg/kg/day plus intravenous immunoglobulin (IVIG) 2g/kg over 5 days. Three patients (15%) received oral prednisolone at 1mg/kg/day for 1 week. Three patients did not receive any immunosuppressant therapy, with 2 receiving acyclovir. Ceftriaxone and acyclovir were also given to 5 patients (25%) who were treated with pulse steroid.

Only 16 patients continued with follow-up, with a mean duration of 7 months. All 16 patients improved: 11 patients were back to normal and 5 patients still had mild neurological deficit at the clinic visits mainly cognitive dysfunction. No patient relapsed and no death was encountered.

Discussion. This study found that 60% of ADEM cases presented during summer and autumn seasons, in contrast to previously reported studies worldwide in which ADEM was reported to occur most commonly during the winter and spring seasons. The predominance of females (65%) is, again, in contrast to the findings of other studies in pediatric cohorts, which reported ADEM to be more predominant in males (59%).

There is no clear explanation of these epidemiological findings in our study but this could be related to the small number but also it could be related to different predisposing preceding infections in our area but this needs prospective studies to clarify this finding.

In our series of 20 cases, preceding infection was seen in 95% of the cases, with pyramidal-tract related weakness in 85% followed by cerebellar signs in 45%. These findings were similar to a previous study from Argentina on a large group of patients of 84 cases. In another study from Australia on 31 cases, ataxia was the most common neurological sign. However, Seizures and change level of consciousness were seen less frequently in our study at 35% and 20% of cases respectively. Of particular interest is the relatively decreased proportion of patients who has change of level of consciousness during presentation in our study compared to other studies was presenting 46–83% of the largest reported pediatric cohorts. While similar to an other study reported by Gupte et al in 33%. As such, only these 20% would meet the proposed pediatric international MS Study Group definition for ADEM, which mandates the presence of encephalopathy; the rest would be considered to have isolated clinical syndrome. However, as the definition remains controversial, we did not apply it. Furthermore, seizures affected 35% of our cases which was considered a defferentiating feature from multiple sclerosis in one study where 6/24 ADEM and 0/26 MS cases had seizures at presentation.

With regards to neurological outcome, our cases showed a very good outcome with normal neurological outcome in the majority and minimal neurological dysfunction in the rest of cases came to follow up. Of interest no deaths, relapses nor severe deficit were seen at follow up. Good outcome has been reported in most of the studies ranging 57-92%. Other studies reported adverse outcome of significant neurological disability of 11-30% of cases. Mortality is rarely encountered in literature, in one study from USA by Leake et al, 2/42 (4.7%) of cases died due to severe brain edema and high intracranial hypertension. The overall very good outcome in most of our cases may be due to aggressive treatment with immunomodulation therapy that are started as soon as the diagnosis is suspected but it is possible that our cases is milder in severity compared to cases reported in the literature. Furthermore, the severe hemorrhagic form of ADEM called acute hemorrhagic leukoencephalitis which was reported to affect about 2% of cases was not encountered in our series.

The main limitation of this is the retrospective nature with inadequate documentation of information and the relatively short duration at follow up. However, multicenter prospective studies are needed to clarify these findings and study better the long term outcome particularly evolution to multiple sclerosis and long term subtle neurological deficit.

In conclusion, motor deficit rather than encephalopathy is the most presenting feature in this population of ADEM patients with excellent neurological outcome, however, further exploration of this disease is recommended.

Acknowledgment. We would like to thank eScienta (http://www.escienta.com/) for English language editing.

References

1. Chang-hui Xiong, Yan Yan, Zhen Liao, Shi-hui Peng, Hai-rong Wen, Yan-xia Zhang, et al. Epidemiological characteristics of acute disseminated encephalomyelitis in Nanchang, China: a retrospective study. **BMC Public Health** 2014; 14: 111.
2. Torisu H, Kira R, Ishizaki Y, Sanefuji M, Yamaguchi Y, Yasumoto S, et al. Clinical study of childhood acute disseminated encephalomyelitis, multiple sclerosis, and acute transverse myelitis in Fukuoka Prefecture, Japan. **Brain Dev** 2010; 32: 454-462.
3. Tolley ND, Tsunoda I, Fujinami RS. DNA vaccination against Theiler's murine encephalomyelitis virus leads to alterations in demyelinating disease. **J Virol** 1999; 73: 993-1000.
4. Koelman DL, Mateen FJ. Acute disseminated encephalomyelitis: current controversies in diagnosis and outcome. **J Neurol** 2015; 262: 2013-2024.
5. Erol I, Özkale Y, Alkan Ö, Alehan F. Acute disseminated encephalomyelitis in children and adolescents: a single center experience. Pediatr Neurol 2013; 49: 266-273.
6. Krupp LB, Tardieu M, Amato MP, Banwell B, Chitnis T, Dale RC, et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler 2013; 19: 1261-1267.
7. Singh PD, Ray M, Singh S, Khandelwal NK. Acute disseminated encephalomyelitis in North Indian children: clinical profile and follow-up. J Child Neurol 2006; 21: 851-857.
8. Mikaeloff Y, Caridade G, Husson B, Suissa S, Tardieu M. Neuropediatric KIDSEP Study Group of the French Neuropediatric Society. Acute disseminated encephalomyelitis cohort study: prognostic factors for relapse. Eur J Pediatr Neurol 2007; 11: 90-95.
9. De Seze J, Debouverie M, Zephir H, Lebrun C, Blanc F, Bourg V, et al. Acute fulminant demyelinating disease: a descriptive study of 60 patients. Arch Neurol 2007; 64: 1426-1432.
10. Panicker JN, Nagaraja D, Koomar JM, Subbakrishna DK. Descriptive study of acute disseminated encephalomyelitis and evaluation of functional outcome predictors. J Postgrad Med 2010; 56: 12.
11. Ketelslegers IA, Visser IE, Nieveboom RF, Boon M, Catsman- Berrevoets CE, Hintzen RQ. Disease course and outcome of acute disseminated encephalomyelitis is more severe in adults than in children. Mult Scler 2011; 17: 441-448.
12. Marchioni E, Ravaglia S, Montomoli C, Tavazzi E, Minoli L, Baldanti F, et al. Postinfectious neurologic syndromes A prospective cohort study. Neurology 2013; 80: 882-889.
13. Marchioni E, Ravaglia S, Piccolo G, Furione M, Zardini E, Franciotta D, et al. Postinfectious inflammatory disorders subgroups based on prospective follow-up. Neurology 2005; 65: 1057-1065.
14. Mar S, Lenox J, Benzinger T, Brown S, Noetzel M. Long-term prognosis of pediatric patients with relapsing acute disseminated encephalomyelitis. J Child Neurol 2010; 25: 681-688.
15. Borras-Novell C, García Rey E, Perez Baena LF, Jordan García I, Carcella Cahiz D, Cambra F. Therapeutic plasma exchange in acute disseminated encephalomyelitis in children. J Clin Apheresis 2015; 30: 335-339.
16. Tenembaum S, Chamois N, Feijerman N. Acute disseminated encephalomyelitis: a long-term follow-up study of 84 pediatric patients. Neurology 2002; 59: 1224-1231.
17. Hynson JL, Kornberg AJ, Coleman LT, Shield L, Harvey AS, Kean MJ. Clinical and neuroradiologic features of acute disseminated encephalomyelitis in children. Neurology 2001; 56: 1308-1312.
18. Sadek AA, Mohamed MA, Abou-Taleb A, Mohammed MI. Pattern and Outcome of Acute Disseminated Encephalomyelitis (ADEM) in Children: Experience in a Tertiary Center, Upper Egypt. Electron Physician 2016; 8: 2679-2685.
19. Gupte G, Stonehouse M, Wasmmer E, Coad NA, Whitehouse WP. Acute disseminated encephalomyelitis: a review of 18 cases in childhood. J Paediatr Child Health 2003; 39: 336-342.
20. Gulay Alper, Rock Heyman, Li Wang. Multiple sclerosis and acute disseminated encephalomyelitis diagnosed in children after long-term follow-up: comparison of presenting features. Dev Med Child Neurol 2009; 51: 480-486.
21. Mikaeloff Y, Caridade G, Husson B, Suissa S, Tardieu M. Acute disseminated encephalomyelitis cohort study: prognostic factors for relapse. Eur J Paediatr Neurol 2007; 11: 90-95.
22. Dale RC, de Sousa C, Chong WK, Cox TC, Harding B, Neville BG. Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children. Brain 2000; 123 Pt 12: 2407-2422.
23. Murthy JM, Yangala R, Meena AK, Reddy JJ. Clinical, electrophysiologic and magnetic resonance imaging study of acute disseminated encephalomyelitis. J Assoc Physicians India 1999; 47: 280-283.
24. Leake JA, Albani S, Kao AS, Senac MO, Billman GF, Nespeca MP, et al. Acute disseminated encephalomyelitis in childhood: epidemiologic, clinical and laboratory features. Pediatr Infect Dis J 2004; 23(8): 756-764.