Original Research Article

https://doi.org/10.20546/ijcmas.2017.611.134

Microsatellite Marker Based DNA Fingerprinting for Parentage Verification in Goat Breeds of Kashmir

Rumase A. Bhat1*, Mehraj uddin Reshi2, Sajad A. Beigh1, Wani A. Ahad1, Tarique A. Padder2, Nazir A. Ganai3, Mudasir Andrabi1 and Riaz A. Shah1

1Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alasteng, Ganderbal, SKUAST-Kashmir, India
2Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alasteng, Ganderbal, SKUAST-Kashmir, India
3Division of Animal Breeding and Genetics, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alasteng, Ganderbal, SKUAST-Kashmir, India

*Corresponding author

A B S T R A C T

Bhakerwal and Pashmina are local Kashmiri goat breeds usually reared by nomadic people and people of Changthang region of Ladakh respectively. They play promising role in alleviating poverty of this far flung region of the country. Adequate breeding and research have been done in these animals to increase their population and quality but parentage analysis and pedigrees record keeping has been a limitation since long time. Keeping this in view the present study was conducted to validate a panel of 8 microsatellite markers in 10 families of Bhakerwal and Pashmina breeds so that this limitation can be overcome and breeding and research of these breeds could be carried prudently in future.

Keywords: Microsatellites, Parentage analysis, PIC, Non-Exclusion probability.

Introduction

Correct pedigree recording is essential for genetic improvement programs in livestock species. Pedigree errors of about 10% may lead to reductions in selection response of two to three percent in dairy cattle (Visscher et al., 2002), while different studies have reported pedigree errors of up to 23% in cattle in several countries (Jiménez-Gamero et al., 2006). Goats are primarily farmed under extensive production systems and mating systems used by breeders taking part in the Stock Improvement Schemes primarily include group mating and flock mating. These mating practices limit accurate pedigree recording. Other factors that contribute to potential errors in identification of the parents include the use of large paddocks in extensive production systems (Bolormaa et al., 2008). So, correct parentage among breeding stock is a pre-requisite for an efficient breeding programme. Besides, parentage analysis finds its importance in paternity disputes in
animals. The markers revealing variation at DNA sequence level are referred as DNA markers which can be Restriction Fragment Length Polymorphism (RFLP), Randomly Amplified Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism (AFLP), Single Nucleotide Polymorphism (SNP), Variable Number Tandem Repeats (VNTRs) and Simple Sequence Repeats (SSRs). Microsatellite markers are used nowadays for DNA fingerprinting which are DNA sequences of one to six units repeated in tandem. Microsatellite markers are ideal for parentage verification because they are randomly distributed throughout the genome, commonly occurring in noncoding regions, and are selectively neutral. Microsatellite alleles also show codominant inheritance, making them relatively easy to score directly. Microsatellites can be identified by PCR amplification followed by amplicon scoring.

Amplicon scoring can be performed by amplicon sequencing, radiolabelled primers (probes), fluorescent dye labelled primers, metaphor gel electrophoresis or by denaturation or native PAGE. Using any of the above mentioned method the exact size of amplicon of different alleles is obtained which can be used for parentage verification.

Results and Discussion

Total numbers of alleles observed in present study were found to be 50. Maximum number of alleles per marker observed across the populations was 9 for BM4301. The mean numbers of alleles observed were 6.20. This mean explains high level of polymorphism of the studied microsatellites. Nearly similar observation were reported for Italian goat breeds (NA=6.5; Agha et al., 2008). However, average values observed in present study was lower than the Croatian spotted breed (NA=8.1; Jelena et al., 2011), the average value of seven Indian goat breeds (NA=8.1-9.7; Rout et al., 2008). The average PIC value was 0.7606. Non-exclusion probability determines the extent to which a particular individual could be considered parent and cannot be eliminated. Non-exclusion could be for one parent or other parent or together for a parent pair. The Combined Non-exclusion probability for first parent was found to be 0.998, for second parent it was found to be 0.9999 and for parent pair it was found to be 0.99999.
Table.1 Primer sequences for different microsatellites used for DNA fingerprinting

S. No	Microsatellite	Marker Primer sequences (5’-3’)	Reference
1	BM4301	F: CCACATGTCTCAAAGCAACG R: GGAAAAAGGCTTCTTTGTAGC	Stone et al., (1995)
2	INRA081	F: CGGCTCAGGTCCTCATCGG R: CCGAACCCAAAGATACTGACTC	Ihara et al., (2004)
3	MAF214	F: AAATGCAGGAGATCTGGGCAGG R: CACCTCCTCTGAGAATATAACATG	Buchanan et al., (1992)
4	ILSTS-022	F: TCTATACACATGTGCTGTGC R: CCTAAGGAGATCTCGCTGAC	Kemp et al., (1995)
5	oarJMP58	F: GAAGTCATTGAGGGTGCTAACC R: CTCTGAGAATATACCTCTCTGC	Lumsden et al., (1996)
6	ILSTS-019	F: AAGGGACCTCATGTAGAAGC R: ACTTTTGGACCGCTGATGC	Kemp et al., (1993)
7	ILSTS-030	F: CTGCAGTTTCTGCATATG R: CTTAGAAACCAACGGGTTG	Ma et al., (1996)
8	oarAE-129	F: GATCACAAAAGTGGATACACCGTG R: TCATGCACCTTAAGTGATAGAGATCGT	Penty et al., (1993)

Table.2 A summary of the non-exclusion probability of different markers for parentage verification

S. No	Locus	PNE-1	PNE-2	PNE-PP
1	BM4301	0.431	0.273	0.111
2	ILSTS 019	0.556	0.379	0.199
3	ILSTS022	0.716	0.546	0.372
4	ILSTS030	0.668	0.491	0.304
5	INRA081	0.536	0.361	0.185
6	MAF214	0.580	0.402	0.221
7	oarJMP58	0.627	0.448	0.262
8	oarAE129	0.506	0.334	0.161

CNE= Combined Non-Exclusion Probability.
PNE1 – Probability of Non-Exclusion for one candidate parent alone.
PNE2 – Probability of Non-Exclusion for one candidate parent and one known parent.
PNE-PP – Probability of Non-Exclusion when both parents are known.

This means that one parent could be taken as a parent with 0.998 probability, the other with 0.999 probability and parent pair could be determined using these 8 microsatellite markers with 0.9999 probability. Same was reported by Luikart et al., (1999) by using 22 microsatellite markers in fluorescent multiplexes. These results suggest that the DNA typing method has high potential for parentage verification. The conclusions drawn are that 8 microsatellites were highly polymorphic and proved very useful for DNA fingerprinting in goats, the study can be extended to include more microsatellites and can be extended to other species of animals, the panel of microsatellite markers studied is hereby validated for checking and correcting the pedigree records of goats which is expected to increase the accuracy of selection and selection response leading to efficient genetic improvement.

Acknowledgement

I am thankful to Department of Biotechnology (GOI) which provided me fellowship and contingency grant under HRD programme during my study.
References

Agha, S.H., Pilla, F. and Galal, S. 2008. Genetic diversity in Egyptian and Italian goat breeds measured with microsatellite polymorphism. J Animal Breeding and Genetics. 125,194-200.

Bolormaa, S., Ruvinsky, A., Walkden-Brown, S. and Van der Werf, J. 2008. DNA-based parentage verification in two Australian goat herds. Small Rumin. Res. 80, 95-100.

Buchanan, F.C., Swarbrick, P.A. and Crawford A.M. 1992. Ovine Microsatellites at the MAF214, Oarfcb19, Oarfcb20, Oarfcb48, Oarfcb129 and Oarfcb226 Loci. Animal Genetics. 23, 85.

Ihara, N., Mizoshita, K., Takeda, H. and Sugimoto, M. 2004. A Comprehensive Genetic Map of the Cattle Genome Based on 3,802 Microsatellites. Genome Research.14, 1987.

Jelena R, Mioc B, Curkovic M, Pavic V, Ivankovic A, Medugorac I. 2011. Genetic diversity measures of the Croatian spotted goat. Acta Vet (Beograd). 61, 373-382.

Jiménez-Gamero, I., Dorado, G., Muñoz-Serrano, A., Analla, M. and Alonso-Moraga, A. 2006. DNA microsatellites to ascertain pedigree-recorded information in a selecting nucleus of Murciano-Granadina dairy goats. Small Ruminant Research. 65, 266–273.

Kemp, S. J., Hishida, O., Wambugu, J., Rink, A., Longeri, M. L. and Teale, A. J. 1993. A panel of polymorphic bovine, ovine and caprine microsatellite markers. Anim. Genet. 26, 299-306.

Kemp, S. J., Hishida, O., Wambugu, J., Rink, A., Longeri, M. L. and Teale, A. J. 1995. A panel of polymorphic bovine, ovine and caprine microsatellite markers. Anim. Genet. 32, 211-218.

Luikart, G., Biju-Duval, M. P., Erturgrul, O., Zagdsureu, Y., Maudet, C. and Taberlet, P. 1999. Power of 22 Microsatellite markers in Fluorescent Multiplexes for Parentage testing in Goats. Animal Genetics 30, 431-438.

Lumsden, J.M., Lord, E.A. and Montgomery, G.W. 1996. Characterization and Linkage Mapping of Ten Sheep Microsatellite Markers Derived From a Sheep X Hamster Cell Hybrid. Animal Genetics. 27, 203.

Ma, R.Z., Russ, I., Park, C., Heyen, D.W., Beever, J.E., Green, C.A. and Lewin, H.A. 1996. Isolation and characterization of 45 polymorphic microsatellites from the bovine genome. Anim Genet. 27, 43-47.

Penty, J. M., Henrya, H. M., Ede, J. and Crawford, A. M. 1993. Ovine microsatellites at the OarAE16, OarAE54, OarAE57, OarAE119 and OarAE129 loci. Anim. Genet. 24,219.

Rout, P. K., Joshi, M. B., Mandal, A., Laloe, D., Singh, L. and Thangaraj, K. 2008. Microsatellite-based phylogeny of Indian domestic goats. BMC Genetics.9, 11.

Sambrook, J. And Russel, T. 2001. Molecular Cloning: A Laboratory Manual. 2nd Edn. Cold Spring Harbor, Cold Laboratory Press, New York, USA.

Stone, M. I., Ozkan, E., Kok, S., Tuna, Y. T. and Gurcan, E.K. 1995. Genetic characterization of indigenous Anatolian water buffalo breed using microsatellite DNA markers. J. Tekirdag Agri. Faculty. 2, 240 –244.

Visscher, P.M., Woolliams, J.A., Smith, D. and Williams, J.L. 2002. Estimation of pedigree errors in the UK dairy population using microsatellite markers and the impact on selection. Journal of Dairy Science. 85, 2368–2375.

How to cite this article:

Rumase A. Bhat, Mehraj uddin Reshi, Sajad A. Beigh, Wani A. Ahad, Tarique A. Padder, Nazir A. Ganai, Mudasir Andrabi and Riaz A. Shah. 2017. Microsatellite Marker Based DNA Fingerprinting for Parentage Verification in Goat Breeds of Kashmir. Int.J.Curr.Microbiol.App.Sci. 6(11): 1131-1134. doi: https://doi.org/10.20546/ijcmas.2017.611.134