Original research article

Predicting clinical outcome with phenotypic clusters in COVID-19 pneumonia: an analysis of 12,066 hospitalized patients from the Spanish registry SEMI-COVID-19.

Manuel Rubio-Rivas MD PhD 1*, Xavier Corbella MD PhD 1,2**, José María Mora-Luján MD 1, Jose Loureiro Amigo MD 3, Almudena López Sampalo MD 4, Carmen Yera Berquía MD 5, Pedro Jesús Esteve Atiénzar MD PhD 6, Luis Felipe Díez García MD 7, Ruth Gonzalez Ferrer MD 8, Susana Plaza Canteli MD 9, Antia Pérez Piñeiro MD 10, Begoña Cortés Rodríguez MD 11, Leyre Jorquer Vidal MD 12, Ignacio Pérez Catalán MD 13, Marta Leon Tellez MD 14, José Ángel Martín Oterino MD 15, María Candelaria Martín González MD 16, José Luis Serrano Carrillo de Albornoz MD 17, Eva García Sardon MD 18, José Nicolás Alcalá Pedrajas MD 19, Anabel Martin-Urda Diez-Canseco MD 20, Mª José Esteban Giner MD 21, Pablo Tellería Gómez MD 22, Ricardo Gómez-Huelgas MD PhD 23, José Manuel Ramos-Rincón MD PhD 24; for the SEMI-COVID-19 Network***.

Affiliation 1: Department of Internal Medicine, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, University of Barcelona, Barcelona, Spain; mrubio@bellvitgehospital.cat, xcorbella@bellvitgehospital.cat, jmora@bellvitgehospital.cat

Affiliation 2: Group of Evaluation of Health Determinants and Health Policies, Hestia Chair in Integrated Health and Social Care, School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain; xcorbella@bellvitgehospital.cat

Affiliation 3: Internal Medicine Department, Moisès Broggi Hospital, Sant Joan Despí, Barcelona, Spain; ahores@gmail.com

Affiliation 4: Internal Medicine Department, Regional University Hospital of Málaga, Málaga, Spain; almuc540@hotmail.com

Affiliation 5: Internal Medicine Department, Virgen de la Salud Hospital, Toledo, Spain; mamenyera@hotmail.com

Affiliation 6: Internal Medicine Department, San Juan de Alicante University Hospital, San Juan de Alicante (Alicante), Spain; pedroesteve82@gmail.com

Affiliation 7: Internal Medicine Department, Torrecárdenas Hospital, Almería, Spain; ldiez@telefonica.net

Affiliation 8: Internal Medicine Department, Tajo Hospital, Aranjuez (Madrid), Spain; ruthgferrer@gmail.com

Affiliation 9: Internal Medicine Department, Severo Ochoa University Hospital, Leganés (Madrid), Spain; susana.plaza@salud.madrid.org

Affiliation 10: Internal Medicine Department, Valle del Nalón Hospital, Riaño (Langreo, Asturias), Spain; antia.perez.pineiro@gmail.com

Affiliation 11: Internal Medicine Department, Alto Guadalquivir Hospital, Andújar (Jaén), Spain; bceres@ephag.es

Affiliation 12: Internal Medicine Department, Francesc de Borja Hospital, Gandia (Valencia), Spain; leyrjorvi@gmail.com

Affiliation 13: Internal Medicine Department, Castellón General University Hospital, Castellón de la Plana, Spain; nachocs13@gmail.com
Affiliation 14: Internal Medicine Department, Santa Bárbara Hospital, Soria, Spain; mleont@saludcastillayleon.es
Affiliation 15: Internal Medicine Department, Salamanca University Hospital Complex, Salamanca, Spain; jmoterino@saludcastillayleon.es
Affiliation 16: Internal Medicine Department, Canarias University Hospital, Santa Cruz de Tenerife, Spain; candemartin1983@gmail.com
Affiliation 17: Internal Medicine Department, Poniente Hospital, Almería, Spain; jserranocarrillo@hotmail.com
Affiliation 18: Internal Medicine Department, San Pedro de Alcántara Hospital, Cáceres, Spain; evagsardon@gmail.com
Affiliation 19: Internal Medicine Department, Pozoblanco Hospital, Pozoblanco (Córdoba), Spain; jnalcala58@hotmail.com
Affiliation 20: Internal Medicine Department, Palamós Hospital, Palamós (Girona), Spain; anabelmartinurda10canseco@gmail.com
Affiliation 21: Internal Medicine Department, Virgen de los Lirios Hospital, Alcoy (Alicante), Spain; mestebanginer@gmail.com
Affiliation 22: Internal Medicine Department, Valladolid Clinical University Hospital, Valladolid, Spain; pablotelleria92@gmail.com
Affiliation 23: Internal Medicine Department, Regional University Hospital of Málaga. Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain; ricardogomezhuelsgas@hotmail.com
Affiliation 24: Department of Clinical Medicine, Miguel Hernandez University of Elche (Alicante), Spain; jramosrincon@yahoo.es

* Correspondence: mrubio@bellvitgehospital.cat

**M. Rubio-Rivas and X. Corbella contributed equally as co-first authors of the study.

*** A complete list of the SEMI-COVID-19 Network members is provided in the Appendix.
Abstract: (1) Background: This study aims to identify different clinical phenotypes in COVID-19 pneumonia using cluster analysis and to assess the prognostic impact among identified clusters in such patients. (2) Methods: Cluster analysis including 11 phenotypic variables was performed in a large cohort of 12,066 COVID-19 patients, collected and followed-up from March 1, to July 31, 2020, from the nationwide Spanish SEMI-COVID-19 Registry. (3) Results: Of the total of 12,066 patients included in the study, most were males (7,052, 58.5%) and Caucasian (10,635, 89.5%), with a mean age at diagnosis of 67 years (SD 16). The main pre-admission comorbidities were arterial hypertension (6,030, 50%), hyperlipidemia (4,741, 39.4%) and diabetes mellitus (2,309, 19.2%). The average number of days from COVID-19 symptom onset to hospital admission was 6.7 days (SD 7). The triad of fever, cough, and dyspnea was present almost uniformly in all 4 clinical phenotypes identified by clustering. Cluster C1 (8,737 patients, 72.4%) was the largest, and comprised patients with the triad alone. Cluster C2 (1,196 patients, 9.9%) also presented with ageusia and anosmia; cluster C3 (880 patients, 7.3%) also had arthromyalgia, headache, and sore throat; and cluster C4 (1,253 patients, 10.4%) also manifested with diarrhea, vomiting, and abdominal pain. Compared to each other, cluster C1 presented the highest in-hospital mortality (24.1% vs. 4.3% vs. 14.7% vs. 18.6%; p<0.001). The multivariate study identified phenotypic clusters as an independent factor for in-hospital death. (4) Conclusion: The present study identified 4 phenotypic clusters in patients with COVID-19 pneumonia, which predicted the in-hospital prognosis of clinical outcomes.

Keywords: COVID-19; Cluster analysis; Prognosis; Phenotype

1. Introduction

Since January 2020, the COVID-19 pneumonia pandemic has spread across the globe. As of August 13th, 2020, 20,624,830 people have been infected worldwide and 749,424 people have died. Numerous studies have highlighted the clinical characteristics of the disease [1-3]. From the beginning, different clinical forms in presentation and prognosis have been intuited; however, these clinical forms have not been defined yet. Although some factors associated with poor prognosis are known [4], it is not clear which patients may present a worse evolution during hospitalization and why.

The present study aimed to identify clinical phenotypes by cluster analysis in our large nationwide series of COVID-19 pneumonia and to create a predictive model related to a poor outcome.

2. Materials and methods

2.1. Study Design, Patient Selection, and Data Collection

A cluster analysis was performed in the large cohort of consecutive patients included in the Spanish registry SEMI-COVID-19, created by the Spanish Society of Internal Medicine (SEMI). This is a multicenter, nationwide registry with 109 hospitals registered so far. From March 1, to July 31, 2020, 12,066 hospitalized patients providing data of symptoms of COVID-19 upon admission were included in the Registry. All included patients were diagnosed by polymerase chain reaction (PCR) test taken from a nasopharyngeal sample, sputum or bronchoalveolar lavage.

All participating centers in the register received confirmation from the relevant Ethics Committees, including Bellvitge University Hospital (PR 128/20).
2.2. Treatments prescribed

The treatments received were in accordance with the medical guidelines available at the time of the pandemic [5-11]. In the absence of clinical evidence of any of the treatments at the initial time of the pandemic, their use was allowed off-label.

2.3. Outcomes definition

The primary outcome of the study was in-hospital mortality. The secondary outcome was the requirement of mechanical ventilation or intensive care unit (ICU) admission.

2.4. Statistical analysis

Categorical variables were expressed as absolute numbers and percentages. Continuous variables are expressed as mean plus standard deviation (SD) in case of parametric distribution or median [IQR] in the case of non-parametric distribution. Differences among groups were assessed using the chi-square test for categorical variable and ANOVA or Kruskal-Wallis test as appropriate for continuous variables. P-values< 0.05 indicated statistical significance.

The cluster analysis was performed by ascendant hierarchical clustering on the 11 variables previously selected by using Ward’s minimum variance method with Euclidean squared distance [12]. Results are graphically depicted by a dendrogram. The number of clusters was estimated by a visual distance criterion of the dendrogram. The cluster analysis model was included in a binary logistic regression, taking the two above-mentioned outcomes as dependent variables. Mortality among the groups was represented by the Kaplan-Meier curves with their logarithmic range test.

Statistical analysis was performed by IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp.

3. Results

3.1. General data and symptoms

A total of 12,066 patients were included in the study. General data of the whole cohort are summarized in Table 1. Patients were mostly males (7,052, 58.5%) and Caucasian (10,635, 89.5%). The mean age at diagnosis was 67 years (SD 16). The average number of days from symptom onset to hospital admission was 6.7 days (SD 7). The main pre-admission comorbidities were arterial hypertension (6,030, 50%), hyperlipidemia (4,741, 39.4%) and diabetes mellitus (2,309, 19.2%). The mean Charlson index among patients was 1.2 (SD 1.8). The most common symptoms (Table 2) were fever 10,346 (85.7%), cough (9,142, 75.8%), dyspnea (7,205, 59.7%), arthromyalgia (3,794, 31.4%), diarrhea (2,943, 24. 4%), headache (1,402, 11.6%), sore throat (1,191, 9.9%), ageusia (992, 8.2%), vomiting (891, 7.4%), anosmia (879, 7.3%), and abdominal pain (738, 6.1%).

3.2. Clustering analysis.

Despite most patients presenting with fever, cough, and/or dyspnea, 4 different clusters were identified. The main characteristics of each are shown in Tables 1-5. Cluster C1 (8,737 patients, 72.4%) comprised patients with the triad of fever, cough, and dyspnea, with no other predominant symptoms. Subjects grouped in cluster C1 tended to be elderly males with a higher prevalence of comorbidities. The time between symptom onset and admission was also shorter in this subgroup of patients, in comparison with the other identified clusters. One in ten C1 patients required ICU admission and a quarter of them died, representing the highest mortality rate among the 4 clusters.

Patients in the C2 cluster (1,196 patients, 9.9%) comprised patients predominantly presenting with
ageusia and/or anosmia, often accompanied by fever, cough, and/or dyspnea. Subjects grouped in the C2 cluster showed the lowest percentage of ICU admission and mortality rate. Cluster C3 (880 patients, 7.3%) included patients predominantly with arthromyalgia, headache, and/or sore throat presentations, often also accompanied by fever, cough, and/or dyspnea. Up to 9.7% of C3 patients required ICU admission and 14.5% died. Finally, subjects grouped in cluster C4 (1,253 patients, 10.4%) presented predominantly with diarrhea, vomiting, and/or abdominal pain, also often accompanied by fever, cough, and/or dyspnea. Of these, 8.5% required ICU admission and 18.6% died. This mortality rate of cluster C4 was second only to the C1.

Analytical results among clusters showed that PaO2/FiO2 at entry was a median 286 mmHg [229-338], being highest in the C2 cluster (281 mmHg vs. 305 vs. 295 vs. 295; p<0.001). Cluster C1 showed the highest values of C-reactive protein (CRP) (78 mg/l vs. 69 vs. 63 vs. 66; p<0.001), lactate dehydrogenate (LDH) (332 U/l vs. 309 vs. 330 vs. 331; p<0.001), ferritin (669 mcg/l vs. 634 vs. 587 vs. 620; p=0.051), interleukin-6 (IL-6) (37 pg/ml vs. 26 vs. 27 vs. 24; p<0.001), and D-dimer (680 ng/ml vs. 594 vs. 595 vs. 608; p<0.001).

3.3 Treatments and outcomes

The treatments received are shown in Table 4. As antiviral treatment, patients were treated with hydroxychloroquine (HCQ) (10,665, 88.6%), Lopinavir/ritonavir (LPV/r) (7,894, 65.7%), azithromycin (7,558, 62.9%) and remdesivir (60, 0.5%). As immunomodulatory treatments, they received corticosteroids (4,343, 36.2%), interferon (1,496, 12.5%) and tocilizumab (1,121, 9.3%). As anticoagulant treatment, patients received oral anticoagulation (384, 3.18%) or low-molecular-weight heparin (LMWH) at prophylactic doses (7,903, 65.9%), intermediate doses (815, 6.8%) or full doses (1,305, 10.9%).

Of the total 12,066, 1,038 (8.7%) patients required high-flow nasal cannula (HFNC), 641 (5.3%) non-invasive mechanical ventilation (NIMV), and 906 (7.5%) invasive mechanical ventilation (IMV). Admissions to the ICU numbered 1,120 patients (9.3%). Overall, the mortality rate was 20.9% (2,522 patients). The outcomes are shown in Table 5.

3.4 Predictive model for mortality

A predictive study of uni- and multivariate logistic regression using in-hospital death as a dependent variable was performed. The predictors of mortality in the multivariate study were as follows: age [OR 1.07 (1.04-1.11)], gender (female) [OR 0.24 (0.10-0.56)], BMI [OR 1.09 (1.02-1.17)], Charlson index [OR 1.52 (1.30-1.78)], respiratory rate upon admission >20 bpm [OR 2.84 (1.33-6.05)], PaO2/FiO2 upon admission [OR 0.99 (0.98-1.00)], CRP [OR 0.99 (0.99-1.00)], LDH [OR 1.00 (1.00-1.00)], ferritin [OR 1.00 (1.00-1.00)], IL-6 [OR 1.00 (1.00-1.00)], and the phenotypic cluster. The C1 cluster was chosen as a reference. Clusters C2 [OR 0.91 (0.30-2.31)] and C3 [OR 0.18 (0.04-0.96)] had a better prognosis in the multivariate study. The C4 cluster was also observed to have a poor prognosis [OR 2.85 (0.88-9.22)].
3.5 Figures, Tables and Schemes

Figure 1. Dendrogram.
Table 1. General data between clusters

	All patients	C1	C2	C3	C4	p-value
	N=12,066	N=8,737	N=1,196	N=880	N=1,253	
Age yr, median [IQR]	68 [56-79]	70 [57-80]	61 [51-71]	64 [52-75]	67 [53-77]	<0.001
Gender, males n (%)	7,052 (58.5)	5,303 (60.8)	643 (53.8)	507 (57.6)	599 (47.9)	<0.001
Race						
Caucasian	10,635 (89.5)	7,820 (90.9)	1,023 (86.7)	738 (84.7)	1,054 (86)	
Black	43 (0.4)	35 (0.4)	3 (0.3)	1 (0.1)	4 (0.3)	
Hispanic	1,041 (8.8)	643 (7.5)	137 (11.6)	117 (13.4)	144 (11.7)	<0.001
Asian	59 (0.5)	41 (0.5)	2 (0.2)	6 (0.7)	10 (0.8)	
Others	100 (0.8)	62 (9.7)	15 (1.3)	9 (1)	14 (1.1)	
BMI, median [IQR]	28 [25-31]	28 [25-31]	28 [25-31]	28 [25-31]	28 [25-31]	0.426
Days from onset to admission, median [IQR]	7 [4-9]	6 [3-9]	8 [6-10]	7 [4-10]	7 [4-9]	<0.001
Smoking behaviour, n (%)						
Never	8,035 (69.7)	5,761 (69.2)	793 (68.7)	587 (69.4)	894 (74.3)	
Current smoker	567 (4.9)	414 (5)	64 (5.5)	41 (4.8)	48 (4)	0.027
Former smoker	2,930 (25.4)	2,153 (25.9)	297 (25.7)	218 (25.8)	262 (21.8)	
Comorbidity, n(%)						
Arterial hypertension	6,030 (50)	4,571 (52.4)	468 (39.1)	386 (43.9)	605 (48.4)	<0.001
Diabetes mellitus	2,309 (19.2)	1,774 (20.4)	177 (14.8)	156 (17.8)	202 (16.2)	<0.001
Hyperlipidemia	4,741 (39.4)	3,527 (40.4)	420 (35.1)	325 (37)	469 (37.5)	0.001
COPD	786 (6.5)	649 (7.4)	44 (3.7)	43 (4.9)	50 (4)	<0.001
Asthma	869 (7.2)	630 (7.2)	90 (7.5)	57 (6.5)	92 (7.4)	0.827
OSAS	751 (6.3)	574 (6.6)	57 (4.8)	48 (5.5)	72 (5.8)	0.057
Ischaemic cardiopathy	931 (7.7)	722 (8.3)	49 (4.1)	65 (7.4)	95 (7.6)	<0.001
Chronic heart failure	809 (6.7)	660 (7.6)	41 (3.4)	42 (4.8)	66 (5.3)	<0.001
Chronic kidney disease	696 (5.8)	550 (6.3)	36 (3)	36 (4.1)	74 (5.9)	<0.001
Chronic hepatopathy	440 (3.7)	330 (3.8)	46 (3.8)	22 (2.5)	42 (3.4)	<0.001
Active cancer	1,196 (9.9)	916 (10.5)	94 (7.9)	72 (8.2)	114 (9.1)	0.005
Autoimmune disease	277 (2.3)	195 (2.2)	33 (2.8)	19 (2.2)	30 (2.4)	0.701
Charlson index, median [IQR]	1 [0-2]	1 [0-2]	0 [0-1]	0 [0-1]	0 [0-2]	<0.001

BMI: body mass index. COPD: chronic obstructive pulmonary disease. OSAS: obstructive sleep apnea syndrome.
Table 2. Symptoms and physical examination between clusters

	All patients	C1	C2	C3	C4	p-value
	N=12,066	N=8,737	N=1,196	N=880	N=1,253	
Symptoms n(%)						
High-grade fever ≥38°C	7,915 (65.6)	5,672 (64.9)	843 (70.5)	598 (68)	802 (64)	<0.001
Low-grade fever <38°C	2,431 (20.1)	1,723 (19.7)	238 (19.9)	194 (22)	276 (22)	<0.001
Cough	9,142 (75.8)	6,501 (74.4)	993 (83)	766 (87)	882 (70.4)	<0.001
Dyspnea	7,205 (59.7)	5,340 (61.1)	727 (60.8)	492 (55.9)	646 (51.6)	<0.001
Arthromyalgia	3,794 (31.4)	2,432 (27.8)	569 (47.6)	370 (42)	423 (33.8)	<0.001
Sore throat	1,191 (9.9)	0	186 (15.6)	880 (100)	125 (10)	<0.001
Headache	1,402 (11.6)	730 (8.4)	292 (24.4)	202 (23)	178 (14.2)	<0.001
Anosmia	879 (7.3)	0	879 (73.5)	0	0	<0.001
Ageusia	992 (8.2)	0	988 (82.6)	0	4 (0.3)	<0.001
Diarrhea	2,943 (24.4)	1,654 (18.9)	473 (39.5)	181 (20.6)	635 (50.7)	<0.001
Vomiting	891 (7.4)	0	110 (9.2)	0	781 (62.3)	<0.001
Abdominal pain	738 (6.1)	0	79 (6.6)	0	659 (52.6)	<0.001
Heart rate upon admission, bpm median [IQR]	88 [77-100]	87 [76-100]	89 [79-100]	89 [78-100]	87 [77-100]	0.001
Respiratory rate upon admission >20x', n(%)	3,833 (32.5)	2,939 (34.4)	304 (26.1)	249 (28.9)	341 (28)	<0.001

Table 3. Lab tests between clusters

	All patients	C1	C2	C3	C4	p-value
	N=12,066	N=8,737	N=1,196	N=880	N=1,253	
PaO2/FiO2 upon admission, mmHg median [IQR]	286 [229-338]	281 [224-333]	305 [254-355]	295 [238-352]	295 [238-348]	<0.001
Lymphocytes x10^9/l	910 [680-1,280]	900 [660-1,270]	1,000 [700-1,310]	1,000 [715-1,300]	900 [630-1,210]	<0.001
CRP mg/l	74 [30-141]	78 [30-146]	69 [29-130]	63 [26-135]	66 [27-129]	<0.001
LDH U/l	329 [253-444]	332 [255-450]	309 [247-412]	330 [248-446]	331 [256-439]	<0.001
ALT U/l	30 [19-47]	29 [19-46]	32 [21-52]	31 [21-49]	30 [20-48]	<0.001
Ferritin mcg/l	655 [324-1,281]	669 [330-1,320]	634 [291-1,172]	587 [310-1,167]	620 [326-1,265]	0.051
IL6 pg/ml	33 [13-69]	37 [14-73]	26 [9-54]	27 [12-70]	24 [10-58]	<0.001
D-dimer ng/ml	654 [370-1,204]	680 [382-1,290]	594 [346-980]	595 [347-1,023]	608 [350-1,152]	<0.001

ALT: alanine transaminase. CRP: C-reactive protein. IL6: interleukin6. LDH: lactate dehydrogenase
Table 4. Treatments between clusters

	All patients N=12,066	C1 N=8,737	C2 N=1,196	C3 N=880	C4 N=1,253	p-value
HCQ, n (%)	10,665 (88.6)	7,564 (87.9)	1,130 (94.5)	770 (87.6)	1,111 (88.8)	<0.001
LPV/r, n (%)	(88.6)	5,640 (64.8)	783 (65.5)	610 (69.5)	861 (69)	0.002
Azithromycin, n (%)	7,894 (65.7)	5,407 (62.2)	835 (69.8)	510 (58)	806 (64.5)	<0.001
Remdesivir, n (%)	7,558 (62.9)	36 (0.4)	10 (0.8)	5 (0.6)	9 (0.7)	0.150
Interferon, n (%)	1,496 (12.5)	1,122 (13)	68 (5.7)	141 (16.1)	165 (13.2)	<0.001
Tocilizumab, n (%)	1,121 (9.3)	810 (9.3)	110 (9.2)	93 (10.6)	108 (8.7)	0.487
Corticosteroids, n (%)	4,343 (36.2)	3,254 (37.5)	399 (33.5)	273 (31.2)	417 (33.4)	<0.001
Heparin, n (%)	1,496 (12.5)	1,122 (13)	68 (5.7)	141 (16.1)	165 (13.2)	<0.001
Prophylactic LMWH	7,903 (65.9)	5,633 (65)	817 (68.5)	584 (66.6)	869 (69.7)	
Middle doses LMWH	815 (6.8)	589 (6.8)	97 (8.1)	49 (5.6)	80 (6.4)	
High doses LMWH	1,305 (10.9)	997 (11.5)	120 (10.1)	90 (10.3)	98 (7.9)	
Oral anticoagulation, n (%)	189 (1.6)	156 (1.8)	10 (0.8)	7 (0.8)	16 (1.3)	0.004
DOACs	195 (1.6)	157 (1.8)	10 (0.8)	10 (1.1)	18 (1.4)	

DOACs: direct oral anticoagulants. HCQ: hydroxychloroquine. LPV/r: lopinavir/ritonavir. LMWH: low-molecular weight heparin.

Table 5. Outcomes between clusters

	All patients N=12,066	C1 N=8,737	C2 N=1,196	C3 N=880	C4 N=1,253	p-value
Oxygenation/ventilation, n (%)	1,038 (8.7)	757 (8.8)	82 (6.9)	75 (8.5)	124 (10)	0.053
HFNC	641 (5.3)	485 (5.6)	46 (3.9)	44 (5)	66 (5.3)	0.094
NIMV	906 (7.5)	694 (8)	49 (4.1)	75 (8.6)	88 (7.1)	<0.001
ICU admission, n (%)	1,120 (9.3)	847 (9.7)	71 (5.9)	95 (10.8)	107 (8.5)	<0.001
Death, n (%)	2,522 (20.9)	2,109 (24.1)	51 (4.3)	129 (14.7)	233 (18.6)	<0.001

HFNC: high-flow nasal cannula. ICU: intensive care unit. IMV: invasive mechanical ventilation. NIMV: non-invasive mechanical ventilation.
Table 6. Risk factors of in-hospital mortality.

	Univariate analysis	p-value	Multivariate analysis	p-value
	OR (95%CI)		OR (95%CI)	
Age/year	1.09 (1.09-1.10)	<0.001	1.07 (1.04-1.11)	<0.001
Gender (female)	0.78 (0.71-0.86)	<0.001	0.24 (0.10-0.56)	0.001
BMI	1.02 (1.01-1.04)	<0.001	1.09 (1.02-1.17)	0.014
Comorbidity				
Arterial hypertension	3.07 (2.79-3.38)	<0.001	NS	
Diabetes mellitus	2.07 (1.87-2.29)	<0.001	NS	
Hyperlipidemia	1.80 (1.64-1.96)	<0.001	NS	
COPD	2.82 (2.43-3.27)	<0.001	NS	
Ischaemic cardiopathy	2.67 (2.32-3.07)	<0.001	NS	
Chronic heart failure	3.74 (3.23-4.32)	<0.001	NS	
Chronic kidney disease	3.18 (2.72-3.72)	<0.001	NS	
Chronic hepatopathy	1.57 (1.27-1.94)	<0.001	NS	
Active cancer	2.23 (1.96-2.53)	<0.001	NS	
Charlson index	1.37 (1.34-1.41)	<0.001	1.52 (1.30-1.78)	<0.001
Heart rate upon admission	1.00 (0.99-1.00)	0.278		
Respiratory rate upon admission >20x'	4.48 (4.08-4.92)	<0.001	2.84 (1.33-6.05)	0.007
PaO2/FiO2 upon admission	0.99 (0.99-0.99)	<0.001	0.99 (0.98-1.00)	0.001
Lab test upon admission				
Lymphocytes x10⁶/l	1.00 (1.00-1.00)	0.768		
CRP mg/l	1.01 (1.01-1.01)	<0.001	0.99 (0.99-1.00)	0.034
LDH U/l	1.00 (1.00-1.00)	<0.001	1.00 (1.00-1.00)	0.032
ALT U/l	1.00 (0.99-1.00)	0.792		
Ferritin mcg/l	1.00 (1.00-1.00)	<0.001	1.00 (1.00-1.00)	0.001
IL6 pg/ml	1.00 (1.00-1.00)	<0.001	1.00 (1.00-1.00)	0.020
D-dimer ng/ml	1.00 (1.00-1.00)	<0.001	1.00 (1.00-1.00)	0.054
Treatments during admission				
Remdesivir	1.16 (0.64-2.12)	0.623		
Tocilizumab	1.24 (1.07-1.43)	0.004	NS	
Corticosteroids	2.06 (1.89-2.26)	<0.001	NS	
Clusters				
C1	1 ref.		1 ref.	
C2	0.14 (0.11-0.19)	<0.001	0.91 (0.30-2.75)	0.865
C3	0.54 (0.45-0.66)	<0.001	0.18 (0.04-0.96)	0.044
C4	0.72 (0.62-0.84)	<0.001	2.85 (0.88-9.22)	0.082

BMI: body mass index. COPD: chronic obstructive pulmonary disease.
Figure 2. In-hospital mortality between clusters. Kaplan-Meier. Log-rank test p<0.001

4. Discussion

The present investigation shows data from the first study of phenotypic clusters in COVID-19 pneumonia. The source of data was the Spanish registry SEMI-COVID-19, whose characteristics have recently been published [13]. Our analysis showed the existence of 4 clusters with differentiated clinical peculiarities and different prognoses.

The general characteristics of age, gender, and comorbidities found in our study are consistent with those already described in the literature. Likewise, the treatments administered are in accordance with the study period covered by the record.

The triad of fever, cough, and dyspnea was present almost uniformly in all patients with COVID-19 pneumonia grouped in the 4 phenotypes. However, other particular symptoms may help clinicians to differentiate them. Cluster C1 does not usually present symptoms in addition to the triad of fever, cough, and dyspnea. Subjects grouped in the C2 cluster usually present with ageusia and/or anosmia in addition to the triad. Cluster C3 is characterized by the presence of concomitant
arthromyalgia, headache, and/or sore throat. Finally, the C4 cluster also manifests with digestive symptoms such as diarrhea, vomiting, and/or abdominal pain.

In terms of prognosis, the C1 cluster showed the highest mortality rate (24.1%) in this large Spanish nation-wide series. It was followed by C4 (18.6%), C3 (14.7%), and finally C2 (4.3%). The crude survival study identified the C2 cluster as a cluster of good prognosis. The multivariate regression study showed a non-significant trend to better prognosis. Also identified the C3 cluster as another good prognostic subgroup, in addition to C2. In contrast, the C1 and C4 clusters were identified as the poorest prognosis clusters.

The risk factors recognized so far for poor prognosis have been repeated in several studies. The mainly reported risk factors are advanced age, male gender, higher BMI, and some analytical parameters such as PaO2/FiO2, lymphocyte count, CRP, LDH, ferritin, IL-6, and D-dimer. Certain comorbidities such as diabetes mellitus, arterial hypertension, or hyperlipidemia have also been suggested as poor prognostic factors but not identified to date.

Interestingly, the study presented here identifies the cluster phenotype as a new prognostic factor. Since clusters share common characteristics, sometimes it can be difficult to recognize which cluster a patient belongs to. However, in other many occasions, the clinical profile may be sufficiently evident to recognize the cluster, helping physicians to make clinical decisions based on prognostic information of the identified cluster.

To date, there are no published, peer-reviewed phenotypic cluster studies in the medical literature on COVID-19. A study of clusters in out-of-hospital population can be found in the medRxiv repository [14]. It is based on an app in which patients enter their symptoms. With these data and some other clinical data provided by the patient, a risk of respiratory support (defined as the need for oxygen therapy or mechanical ventilation) is deduced. It is therefore a predictor of hospitalization, we could say. We have some doubts as to whether the source of the data can be considered reliable since the data is not introduced by a doctor but by the patient himself. On the other hand, the fact that it is based on an app may represent a bias against the elderly population not accustomed to electronic devices. They identify 6 phenotypic clusters, with some similarity and overlap with the clusters presented in our study. It is an interesting tool, specially designed for general practitioners.

As for the generalization of our results, it should be noted that the data come from a developed European western country with a mostly Caucasian population and little representation of other ethnicities. Furthermore, it should also be taken into account that Spain has a universal-coverage public healthcare system, not comparable with some other developed and developing countries. On the other hand, proportionally speaking, Spain has one of the largest elderly populations in the world and, as is well known, age has been described as a fundamental factor in the poor prognosis of COVID-19 pneumonia [4]. These characteristics could influence the outcomes shown.

In order to speak properly, the definition of a true phenotype requires a consistent natural history, similar clinical and physiological characteristics, underlying pathobiology with identifiable biomarkers and genetics, and predictable response to general and specific therapies [15]. Accordingly, it would be necessary to study each of the present clinical clusters genetically and to verify that each cluster has a differentiated genetic background. In the literature, some studies attempted to phenotype patients with COVID-19 as a function of the immune response, and others
suggested phenotyping as a function of pathophysiology [16,17]. It would be interesting to combine all methods of phenotyping.

We believe that the identification of the present clusters may be of great help to clinicians in order to identify those cases with a better or worse prognosis, and thus direct more individualized therapeutic strategies. In this regard, we also believe that identification of phenotypes can serve as a guide for clinical trials, not evaluating new treatments in general, since not all subgroups of COVID-19 patients may benefit from the same therapeutic strategies. On the other hand, drugs previously discarded, but with a rational pathophysiological basis to be tested, should be reanalyzed to clarify their real efficacy, taking into account the different clinical spectrum of COVID-19 patients.

The main strength of this study is the identification of different phenotypic clusters in COVID-19 pneumonia from a very large sample of more than 12,000 patients from more than 100 hospitals. Among limitations, data were obtained from a retrospective register of a sole country, which means that some specific data could be missing or collected with some grade of heterogeneity.

5. Conclusions

In conclusion, the present study identified 4 phenotypic clusters that predicted in-hospital prognosis of clinical outcome in a large nationwide series of patients with COVID-19 pneumonia. Clusters associated with bad in-hospital prognosis were C1, in which subjects presented with the isolated triad of fever, cough, and dyspnea, and C4 also manifested with diarrhea, vomiting, and/or abdominal pain. In contrast, subjects grouped in the C2 cluster (manifested also with ageusia and/or anosmia) showed the best prognosis, together with cluster C3 (adding arthromyalgia, headache, and/or sore throat), which was second only to C2 showing a good outcome.

Acknowledgments

We gratefully acknowledge all the investigators who participate in the SEMI-COVID-19 Registry. We also thank the SEMI-COVID-19 Registry Coordinating Center, S&H Medical Science Service, for their quality control data, logistic and administrative support. The authors declare that there are no conflicts of interest.

Author Contributions: For research articles with several authors, a short paragraph specifying their individual contributions must be provided. The following statements should be used “Conceptualization, M.R.-R., X.C and J.M. M.-L.; methodology, M.R.; software, M.R.; validation, M.R.-R., X.C.; formal analysis, M.R.-R.; investigation, M.R.-R., X.C.; resources, R.G.-H., J.M.R.-R.; data curation, M.R.-R., X.C, J.M. M.-L., J.L.A., A.L.S., C.Y.B., V.G.G., L.F.D.G., R.G.F., S.P.C., S.F.C., B.C.R., L.J.V., I.P.C., M.L.T., J.A.M.O., M.C.M.G., J.L.S.C., E.G.S., J.N.A.P., A.M.-U.D.-C., M.J.E.G., P.T.G., R.G.-H., J.M.R.-R.; writing—original draft preparation, M.R.-R., X.C.; writing—review and editing, M.R.-R., X.C.; visualization M.R.-R., X.C.; supervision, M.R.-R., X.C, R.G.-H., J.M.R.-R.; project administration, J.M.R.-R. All authors have read and agreed to the published version of the manuscript.,” please turn to the CRediT taxonomy for the term explanation. Authorship must be limited to those who have contributed substantially to the work reported.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.
1. Zhou F, Yu T, Du R et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054-62.

2. Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) - China, 2020. China CDC Weekly. http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9b-f8a8db1a8f51. Accessed March 12, 2020.

3. Grasselli G, Zangrillo A, Zanella A et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020; 323: 1574-81.

4. Du RH, Liang LR, Yang CQ et al. Predictors of Mortality for Patients with COVID-19 Pneumonia Caused by SARS-CoV-2: A Prospective Cohort Study. Eur Respir J. 2020; 55: 2000524.

5. Gautret P, Cagier JC, Parola P et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020: 105949.

6. Cao B, Wang Y, Wen D et al. A Trial of Lopinavir-Ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382: 1787-99.

7. Grein J, Ohmagari N, Shin D et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. April 2020; 382: e101.

8. Capra R, De Rossi N, Mattioli F et al. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia. Eur J Intern Med 2020; 76: 31-5.

9. Campochiaro C, Della-Torre E, Cavalli G et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med 2020; 76: 43-9.

10. Morena V, Milazzo L, Oreni L et al. Off-label use of tocilizumab for the treatment of SARS-CoV-2 pneumonia in Milan, Italy. Eur J Intern Med 2020; 76: 36-42.

11. A RECOVERY Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report [published online ahead of print, 2020 Jul 17]. N Engl J Med. 2020;NEJMoa2021436. doi:10.1056/NEJMoa2021436

12. Husson F, Josse J, Pagès J. Principal component methods – hierarchical clustering – partitional clustering: why would we need to choose for visualizing data? Technical Report. 2010. http://math.agrocampus-ouest.fr/infoglueDeliverLive.

13. J M Casas-Rojo, J M Antón-Santos, J Millán-Núñez-Cortés, et al. Características clínicas de los pacientes hospitalizados con COVID-19 en España: resultados del Registro SEMI-COVID-19. Rev Clin Esp 2020; S0014-2565(20)30206-X. (DOI: https://doi.org/10.1016/j.rce.2020.07.003)
14. Sudre CH, Lee K, Lochlann MN, et al. Symptom clusters in Covid19: A potential clinical prediction tool from the COVID Symptom study app. medRxiv 2020.06.12.20129056; doi: https://doi.org/10.1101/2020.06.12.20129056

15. Haldar P, Berair R. Endotypes and asthma. In: Bernstein JS, Levy M, editors. Clinical asthma. Theory and practice. Boca Raton: CRC Press. 2014: 39-43.

16. Zhang B, Zhou X, Zhu C, et al. Immune Phenotyping Based on the Neutrophil-to-Lymphocyte Ratio and IgG Level Predicts Disease Severity and Outcome for Patients With COVID-19. Front Mol Biosci. 2020; 7: 157. doi: 10.3389/fmolb.2020.00157

17. Cherian R, Chandra B, Tung ML, Vuylsteke A. COVID-19 conundrum: Clinical phenotyping based on pathophysiology as a promising approach to guide therapy in a novel illness. Eur Respir J. 2020:2002135. doi: 10.1183/13993003.02135-2020

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Appendix. List of the SEMI-COVID-19 Network members

Coordinator of the SEMI-COVID-19 Registry: José Manuel Casas Rojo.

SEMI-COVID-19 Scientific Committee Members: José Manuel Casas Rojo, José Manuel Ramos Rincón, Carlos Lumbreras Bermejo, Jesús Millán Núñez-Cortés, Juan Miguel Antón Santos, Ricardo Gómez Huelgas.

SEMI-COVID-19 Registry Coordinating Center: S & H Medical Science Service.

Members of the SEMI-COVID-19 Group

H. U. 12 de Octubre. Madrid
- Paloma Agudo de Blas, Coral Arévalo Cañas, Blanca Ayuso, José Bascuñana Morejón, Samara Campos Escudero, María Carnevali Frias, Santiago Cossio Tejido, Borja de Miguel Campo, Carmen Díaz Pedroche, Raquel Diaz Simon, Ana García Reyne, Lucia Jorge Huerta, Antonio Lalueva Blanco, Jaime Laureiro Gonzalo, Carlos Lumbreras Bermejo, Guillermo Maestro de la Calle, Barbara Otero Perpiña, Diana Paredes Ruiz, Marcos Sánchez Fernández, Javier Tejada Montes.

H. U. Gregorio Marañón. Madrid
- Laura Abarca Casas, Álvaro Alejandro de Oña, Rubén Alonso Beato, Leyre Alonso Gonzalo, Jaime Alonso Muñoz, Christian Mario Amodeo Oblitas, Cristina Ausín García, Marta Bacete Cebrián, Jesús Baltasar Corral, Maria Barrientos Guerrero, Alejandro Bendala Estrada, María Calderón Moreno, Paula Carrascosa Fernández, Raquel Carrillo, Sabela Castañeda Pérez, Eva Cervilla Muñoz, Agustín Diego Chacón Moreno, Maria Carmen Cuenca Carvajal, Sergio de Santos, Andrés Enríquez Gómez, Eduardo Fernández Carracedo, María Mercedes Ferreiro-Mazón Jenaro, Francisco Galeano Valle, Alejandra García, Irene García Fernandez-Bravo, María Eugenia García Leoni, Maria Gomez Antunez, Candela González San Narciso, Anthony Alexander Gurjian, Lorena Jiménez Ibáñez, Cristina Lavilla Olleros, Cristina Llamazares Mendo, Sara Luis García, Víctor Mato Jimeno, Clara Millán Noales, Jesús Millán Núñez-Cortés, Sergio Moragón Ledesma, Antonio Muiño Miguez, Cecilia Muñoz Delgado, Lucia Ordieres Ortega, Susana Pardo Sánchez, Alejandro Parra Virto, María Teresa Pérez Sanz, Blanca Pinilla Llorente, Sandra Piqueras Ruiz, Guillermo Soria Fernández-Llamazares, Maria Toledano Macías, Neera Toledo Samaniego, Ana Torres do Rego, Maria Victoria Villalba Garcia, Gracia Villarreal, María Zurita Etayo.

Hospital Universitari de Bellvitge. L'Hospitalet de Llobregat
- Xavier Corbella, Narcís Homs, Abelardo Montero, Jose María Mora-Luján, Manuel Rubio-Rivas.

H. U. La Paz-Cantoblanco-Carlos III. Madrid
- Jorge Álvarez Troncoso, Francisco Armalich Fernández, Francisco Blanco Quintana, Carmen Busca Arenzana, Sergio Carrasco Molina, Aranzazu Castellano Candalija, Germán Daroca Bengoa, Alejandro de Gea Grela, Alicia de Lorenzo Hernández, Alejandro Díez Vidal, Carmen Fernández
Capitán, María Francisca García Iglesias, Borja González Muñoz, Carmen Rosario Herrero Gil, Juan
María Herrero Martínez, Víctor Hontañón, María Jesús Jaras Hernández, Carlos Lahoz, Cristina
Marcelo Calvo, Juan Carlos Martín Gutiérrez, Monica Martínez Prieto, Elena Martínez Robles,
Araceli Menéndez Saldaña, Alberto Moreno Fernández, Jose María Mostaza Prieto, Ana Noblejas
Mozo, Carlos Manuel Oñoro López, Esmeralda Palmier Peláez, Marina Palomar Pampyn, María
Angustias Quesada Simón, Juan Carlos Ramos Ramos, Luis Ramos Ruperto, Aquilino Sánchez
Purificación, Teresa Sancho Bueso, Raquel Sorriguieta Torre, Clara Itziar Soto Abanedes, Yeray
Untoria Tabares, Marta Varas Mayoral, Julia Vásquez Manau.

C. H. U. de Albacete. Albacete
Jose Luis Beato Pérez, María Lourdes Sáez Méndez.

Complejo Asistencial de Segovia. Segovia
Eva María Ferreira Pasos, Daniel Monge Monge, Alba Varela García.

H. U. Puerta de Hierro. Majadahonda
Maria Álvarez Bello, Ane Andréis Eisenhofer, Ana Arias Milla, Isolina Baños Pérez, Javier Bilbao
Garay, Silvia Blanco Alonso, Jorge Calderón Parra, Alejandro Callejas Díaz, José María Camino
Salvador, Mª Cruz Carreño Hermández, Valentin Cuervas-Mons Martínez, Sara de la Fuente Moral,
Miguel del Pino Jimenez, Alberto Díaz de Santiago, Itziar Diego Yagüe, Ignacio Donate Velasco, Ana
Maria Duca, Pedro Durán del Campo, Gabriela Escudero López, Esther Expósito Palomo, Ana
Fernández Cruz, Esther Fiz Benito, Andrea Fraile López, Amy Galán Gómez, Sonia García Prieto,
Claudia García Rodríguez-Maimón, Miguel Ángel García Viejo, Javier Gómez Irusta, Edith Vanessa
Gutiérrez Abreu, Isabel Gutiérrez Martín, Ángela Gutiérrez Rojas, Andrea Gutiérrez Villanueva,
Jesús Herráiz Jiménez, Pedro Laguna del Estal, Mª Carmen Márquez Sáiz, Cristina Martín Martín,
María Martínez Urbistondo, Fernando Martínez Vera, Susana Mellor Pita, Patricia Mills Sánchez,
Esther Montero Hernández, Alberto Mora Vargas, Cristina Moreno López, Alfonso Ángel Moreno
Maroto, Víctor Moreno-Torres Concha, Ignacio Morrá De La Torres, Elena Múñez Rubio, Ana
Muñoz Gómez, Rosa Muñoz de Benito, Alejandro Muñoz Serrano, Jose María Palau Fayós, Ilduara
Pintos Pascual, Antonio Ramos Martínez, Isabel Redondo Cánovas del Castillo, Alberto Roldán
Montaud, Lucía Romero Imaz, Yolanda Romero Pizarro, Mónica Sánchez Santiuste, David Sánchez
Ortíz, Enrique Sánchez Chica, Patricia Serrano de la Fuente, Pablo Tutor de Ureta, Ángela Valencia
Alijo, Mercedes Valentín-Pastrana Aguilar, Juan Antonio Vargas Núñez, Jose Manuel Vázquez
Comendador, Gema Vázquez Contreras, Carmen Vizoso Gálvez.

H. Miguel Servet. Zaragoza
Gonzalo Acebes Repiso, Uxua Asín Samper, María Aranzazu Caudevilla Martínez, José Miguel
García Bruñén, Rosa García Fenoll, Jesús Javier González Igual, Laura Letona Giménez, Mónica
Llorente Barrio, Luis Sáez Comet.

H. U. La Princesa. Madrid
Ana María Alguacil Muñoz, Marta Blanco Fernández, Veronica Cano, Ricardo Crespo Moreno,
Fernando Cuadra García-Tenorio, Blanca Díaz-Tendero Nájera, Raquel Estévez González, María Paz
García Butenegro, Alberto Gato Diez, Verónica Gómez Caverzaschi, Piedad María Gómez Pedraza,
Julio González Moraleja, Raúl Hidalgo Carvajal, Patricia Jiménez Aranda, Raquel Labra González,
Áxel Legua Caparachini, Pilar Lopez Castañeyra, Agustín Lozano Ancín, Jose Domingo Martín
García, Cristina Morata Romero, María Jesús Moya Saiz, Helena Moza Moríñigo, Gemma Muñiz
Nicolas, Enriqueta Muñoz Platon, Filomena Oliveri, Elena Ortiz Ortiz, Raúl Perea Rafael, Pilar
Redondo Galán, María Antonia Sepulveda Berrocal, Vicente Serrano Romero de Ávila, Pilar
Toledano Sierra, Yamilex Urbano Aranda, Jesús Vázquez Clemente, Carmen Yera Bergua.

H. Santa Marina. Bilbao

H. del Henares. Coslada

H. U. Torrevieja. Torrevieja

H. U. La Fe. Valencia

H. San Pedro. Logroño
Hospital Universitario Ntra Sra Candelaria. Santa Cruz de Tenerife
Lucy Abella, Andrea Afonso Díaz, Selena Gala Aguilera García, Marta Bethencourt Feria, Eduardo Mauricio Calderón Ledezma, Sara Castaño Perez, Guillermo Castro Gainett, José Manuel del Arco Delgado, Joaquín Delgado Casamayor, Diego García Silvera, Alba Gómez Hidalgo, Marcelino Hayek Peraza, Carolina Hernández Carballo, Rubén Hernández Luis, Francisco Javier Herrera Herrera, Maria del Mar López Gamez, Julia Martí Daza, María José Monedero Prieto, María Blanca Monereo Muñoz, María de la Luz Padilla Salazar, Daniel Rodríguez Díaz, Alicia Tejera, Laura Torres Hernández.

H. U. San Juan de Alicante, San Juan de Alicante
David Balaz, David Bonet Tur, Pedro Jesús Esteve Atiénzar, Carles García Cervera, David Francisco García Núñez, Vicente Giner Galvañ, Angie Gómez Uranga, Javier Guzmán Martínez, Isidro Hernández Isasi, Lourdes Lajara Villar, Juan Manuel Núñez Cruz, Sergio Palacios Fernández, Juan Jorge Peris García, Andrea Riaño Pérez, José Miguel Seguí Ripoll, Philip Wikman-Jorgensen.

H. U. San Agustin, Avilés
Andrea Álvarez García, Víctor Arenas García, Alba Barragán Mateos, Demelsa Blanco Suárez, María Caño Rubia, Jaime Casal Álvarez, David Castrodá Copa, José Ferreiro Celeiro, Natalia García Arenas, Raquel García Noriega, Joaquín Llorente García, Irene Maderuelo Riesco, Paula Martínez García, Maria Jose Menendez Calderon, Diego Eduardo Olivo Aguilar, Marta Nataya Solís Marquínz, Luis Trapiella Martínez, Andrés Astur Treceño García, Juan Valdés Bécares.

H. de Mataró, Mataró
Raquel Aranega González, Ramon Boixeda, Carlos Lopera Mármo, Marta Parra Navarro, Ainhoa Rex Guzmán, Aleix Serrallonga Fustier.

H. U. Son Llàtzer, Palma de Mallorca
Andrés de la Peña Fernández, Almudena Hernández Milián.

H. Juan Ramón Jiménez, Huelva
Francisco Javier Bejarano Luque, Francisco Javier Carrasco-Sánchez, Mercedes de Sousa Baena, Jaime Díaz Leal, Aurora Espinar Rubio, Maria Franco Huertas, Juan Antonio García Bravo, Andrés Gonzalez Macias, Encarnación Gutiérrez Jiménez, Alicia Hidalgo Jiménez, Constantino Lozano Quintero, Carmen Mancilla Reguera, Francisco Javier Martínez Marcos, Francisco Muñoz Beamud, Maria Perez Aguilera, Alicia Perez Jiménez, Virginia Rodríguez Castaño, Alvaro Sánchez de Alazar del Rio, Leire Toscano Ruiz.

H. U. Reina Sofía, Córdoba
Antonio Pablo Arenas de Larriva, Pilar Calero Espinal, Javier Delgado Lista, María Jesús Gómez Vázquez, Jose Jiménez Torres, Laura Martín Piedra, Javier Pascual Vinagre, María Elena Revelles Vilchez, Juan Luis Romero Cabrera, José David Torres Peña.
Hospital Infanta Margarita. Cabra

María Esther Guisado Espartero, Lorena Montero Rivas, María de la Sierra Navas Alcántara, Raimundo Tirado-Miranda.

H. U. Virgen de las Nieves. Granada

Pablo Conde Baena, Joaquin Escobar Sevilla, Laura Gallo Padilla, Patricia Gómez Ronquillo, Pablo González Bustos, María Navío Botías, Jessica Ramírez Taboada, Mar Rivero Rodríguez.

Hospital Costa del Sol. Marbella

Victoria Augustín Bandera, María Dolores Martín Escalante.

Complejo Asistencial Universitario de León. León

Rosario Maria García Diez, Manuel Martín Regidor, Angel Luis Martínez Gonzalez, Alberto Muela Molinero, Raquel Rodríguez Diez, Beatriz Vicente Montes.

Hospital Marina Baixa. Villajoyosa

Javier Ena, Jose Enrique Gómez Segado.

C. H. U. de Ferrol. Ferrol

Hortensia Alvarez Diaz, Tamara Dalama Lopez, Estefania Martul Pego, Carmen Mella Pérez, Ana Pazos Ferro, Sabela Sánchez Trigo, Dolores Suarez Sambade, María Trigas Ferrin, Maria del Carmen Vázquez Friol, Laura Vilariño Maneiro.

Hospital Torrecárdenas. Almería

Luis Felipe Díez García, Iris El Attar Acedo, Bárbara Hernandez Sierra, Carmen Mar Sánchez Cano.

Hospital Clinic Barcelona. Barcelona

Júlia Calvo Jiménez, Aina Capdevila Reniu, Irene Carbonell De Boule, Emmanuel Coloma Bazán, Joaquim Fernández Solà, Cristina Gabara Xancó, Joan Ribot Grabalosa, Olga Rodríguez Núñez.

Hospital del Tajo. Aranjuez

Ruth Gonzalez Ferrer, Raquel Monsalvo Arroyo.

Hospital Insular de Gran Canaria. Las Palmas G. C.

Marina Aroza Espinar, Jorge Orihuela Martín, Carlos Jorge Ripper, Selena Santana Jiménez.

H. U. Severo Ochoa. Leganés

Yolanda Casillas Viera, Lucia Cayuela Rodríguez, Carmen de Juan Alvarez, Gema Flox Benitez, Laura García Escudero, Juan Martin Torres, Patricia Moreira Escriche, Susana Plaza Canteli, M Carmen Romero Pérez.
Hospital Alto Guadalquivir. Andújar
Begoña Cortés Rodríguez.

Hospital Valle del Nalón. Riaño (Langreo)
Sara Fuente Cosío, César Manuel Gallo Álvaro, Julia Lobo García, Antía Pérez Piñeiro.

H. Francesc de Borja. Gandia
Alba Camarena Molina, Simona Cioaia, Anna Ferrer Santolalia, José María Frutos Pérez, Eva Gil
Tomás, Leyre Joquer Vidal, Marina Llopis Sanchis, M Ángeles Martínez Pascual, Alvaro Navarro
Batet, Mari Amparo Perea Ribis, Ricardo Peris Sanchez, José Manuel Querol Ribelles, Silvia
Rodriguez Mercadal, Ana Ventura Esteve.

H. U. del Vinalopó. Elche
Francisco Amorós Martínez, Erika Ascuña Vásquez, Jose Carlos Escribano Stablé, Adriana
Hernández Belmonte, Ana Maestre Peiró, Raquel Martínez Goñi, M. Carmen Pacheco Castellanos,
Bernardino Soldan Belda, David Vicente Navarro.

H. G. U. de Castellón. Castellón de la Plana
Jorge Andrés Soler, Marián Bennasar Remolar, Alejandro Cardenal Álvarez, Daniela Diaz Carlotti,
María José Esteve Gimeno, Sergio Fabra Juana, Paula García López, María Teresa Guinot Soler,
Daniela Palomo de la Sota, Guillem Pascual Castellanos, Ignacio Pérez Catalán, Celia Roig Martí,
Paula Rubert Monzó, Javier Ruiz Padilla, Nuria Tornador Gaya, Jorge Usó Blasco.

C. H. U. de Badajoz. Badajoz
Rafael Aragon Lara, Inmaculada Cimadevilla Fernandez, Juan Carlos Cira García, Gema María
García García, Julia Gonzalez Granados, Beatriz Guerrero Sánchez, Francisco Javier Monreal
Periáñez, María Josefa Pascual Perez.

H. Santa Bárbara. Soria
Marta Leon Tellez.

C. A. U. de Salamanca. Salamanca
Gloria María Alonso Claudio, Víctor Barreales Rodríguez, Cristina Carbonell Muñoz, Adela Carpio
Pérez, María Victoria Coral Orbes, Daniel Encinas Sánchez, Sandra Inés Revuelta, Miguel Marcos
Martín, José Ignacio Martín González, José Ángel Martín Oterino, Leticia Moralejo Alonso, Sonia
Peña Balbuena, María Luisa Pérez García, Ana Ramon Prados, Beatriz Rodríguez-Alonso, Ángela
Romero Alegría, María Sanchez Ledesma, Rosa Juana Tejera Pérez.

H. U. Quironsalud Madrid. Pozuelo de Alarcón (Madrid)
Pablo Guisado Vasco, Ana Roda Santacruz, Ana Valverde Muñoz.

H. U. de Canarias. Santa Cruz de Tenerife
Julio Cesar Alvisa Negrín, José Fernando Armas González, Lourdes González Navarrete, Iballa Jiménez, Maria Candelaria Martín González, Esther Martín Ponce, Miguel Nicolas Navarrete Lorite, Paula Ortega Toledo, Onán Pérez Hernández, Alina Pérez Ramírez.

H. U. del Sureste. Arganda del Rey
Jon Cabrejas Ugartondo, Ana Belén Mancebo Plaza, Arturo Noguerado Asensio, Bethania Pérez Alves, Natalia Vicente López.

H. de Poniente. Almería
Juan Antonio Montes Romero, Encarna Sánchez Martín, Jose Luis Serrano Carrillo de Albornoz, Manuel Jesus Soriano Pérez.

H. Parc Tauli. Sabadell
Francisco Epelde, Isabel Torrente

H. San Pedro de Alcántara. Cáceres
Angela Agea Garcia, Javier Galán González, Luis Gámez Salazar, Eva García Sardon, Antonio González Nieto, Itziar Montero Díaz, Selene Núñez Gaspar, Alvaro Santaella Gomez.

H. de Pozoblanco. Pozoblanco
José Nicolás Alcalá Pedrajas, Antonia Márquez García, Inés Vargas.

H. Virgen de los Lirios. Alcoy (Alicante)
Mª José Esteban Giner.

Hospital Doctor José Molina Orosa. Arrecife (Lanzarote)
Virginia Herrero García, Berta Román Bernal.

Hospital de Palamós. Palamós
Maricruz Almendros Rivas, Miquel Hortos Alsina, Anabel Martin-Urda Diez-Canseco.

Hospital Clínico Universitario de Valladolid. Valladolid
Xjoylin Teresita Egües Torres, Sara Gutiérrez González, Cristina Novoa Fernández, Pablo Tellería Gómez.

H. U. Puerta del Mar. Cádiz
José Antonio Girón González, Susana Fabiola Pascual Perez, Cristina Rodríguez Fernández-Viagas, Maria José Soto Cardenas.

Hospital de Montilla. Montilla
Ana Cristina Delgado Zamorano, Beatriz Gómez Marín, Adrián Montaño Martínez, Jose Luis Zambrana García.
H. Infanta Elena. Huelva
María Gloria Rojano Rivero.

H. Virgen del Mar. Madrid
Thamar Capel Astrua, Paola Tatiana García Giraldo, María Jesús González Juárez, Victoria Marquez Fernández, Ada Viviana Romero Echevarry.

Hospital do Salnes. Vilagarcía de Arousa
Vanesa Alende Castro, Ana María Baz Lomba, Ruth Brea Aparicio, Marta Fernández Morales, Jesus Manuel Fernández Villar, María Teresa López Monteagudo, Cristina Pérez García, Lorena María Rodríguez Ferreira, Diana Sande Llovo, María Begoña Valle Feijoo.