Concept Form Adaptation in Human-Computer Dialog

Svetlana Stoyanchev and Amanda Stent
Department of Computer Science
Stony Brook University
Stony Brook, NY 11794-4400, USA
svetastenchikova@gmail.com, amanda.stent@gmail.com

Abstract

In this work we examine user adaptation to a dialog system’s choice of realization of task-related concepts. We analyze forms of the time concept in the *Let’s Go!* spoken dialog system. We find that users adapt to the system’s choice of time form. We also find that user adaptation is affected by perceived system adaptation. This means that dialog systems can guide users’ word choice and can adapt their own recognition models to gain improved ASR accuracy.

1 Introduction

Considerable research has now demonstrated that human dialog partners exhibit lexical and syntactic convergence; that is, that in a human-human conversation the participants become more similar in their use of language over time (Brennan and Clark, 1996; Lockridge and Brennan, 2002; Pickering and others, 2000; Reitter et al., 2006). Several Wizard-of-Oz studies have also shown evidence of convergence in human-computer dialog (Branigan and others, 2003; Brennan, 1996; Gustafson and others, 1997).

In recent work, we examined user adaptation to the system’s choice of verb and preposition using the deployed *Let’s Go!* spoken dialog system (Stoyanchev and Stent, 2009a). This was the first study to look at convergence with real users of a real dialog system and examined user adaptation to verbs and prepositions. The study described in this paper is a follow-on to our previous study.

1 In this paper, we use the term adaptation to indicate directional convergence, e.g. user adaptation to a system. We make no claims about the psycholinguistic models underlying this adaptation.

Here we look at user adaptation to the system’s choice of realization of task-related concepts. In this paper, we: (1) Confirm our previous results showing that users adapt to the system’s choice of words, using transcribed data rather than ASR output; (2) Show that adaptation can persist over time; and (3) Show that user adaptation is strengthened by perceived system adaptation.

In addition to providing further evidence of convergence in human-computer dialog, our results have implications for dialog system design. Currently, much dialog systems research is devoted to improving ASR accuracy, because this is a significant contributor to task success rates and to dialog length. One way to improve ASR accuracy is to use targeted language models. Since users adapt to the system’s choices of realization for task-related concepts, we can predict the user’s choice of realization and use this to adjust the ASR’s language model, improving ASR accuracy specifically on concept words. Another way to improve ASR accuracy is to guide the user into using words that are likely to be recognized correctly (Hockey and others, 2003; Sheeder and Balogh, 2003; Tomko and Rosenfeld, 2006). Our results imply that if the designer of a dialog system wants to improve ASR accuracy, system prompts should be designed to use word choices that are more recognizable; and, when possible, to be adaptive to the user’s choice of form for task-related concepts.

2 System

We conducted our experiment using the *Let’s Go!* deployed telephone-based spoken dialog system which provides information about bus routes in Pittsburgh (Raux and others, 2005). *Let’s Go!* answers the phones at the transit authority’s website outside of normal business hours. Its users are
Welcome to the CMU Let’s Go! Bus Information System. How may I help you?

I’d like to go to Forbes and Murray. Where are you leaving from?

Carnegie Mellon.

From Carnegie Mellon. What time would you like to leave?

Ten thirty p.m.

Leaving at ten thirty p.m.?

Yes

There are five buses running between Carnegie Mellon and Forbes and Murray...

Figure 1: Sample dialog with Let’s Go!

Time form	Example realizations	Frequency
TIME	four, five, six thirty...	31.1%
APM	four a.m., ten p.m., one fifteen p.m.	43.5%
POD	four in the morning/evening/afternoon/	4.6%
OCLOCK	five o’clock	16%
OTHER	four o’clock p.m., sixteen hundred hours	4.8%

Table 1: Time forms in users’ utterances and their relative frequencies in one month of Let’s Go! 2006 data.

We collected approximately 2000 dialogs with Let’s Go! using this setup. We used the ASR output to identify dialogs where a time appears in the ASR output at least twice. We manually transcribed 50 dialogs for each experimental condition. Some of these turned out not to contain mentions of time either before or after the system’s time confirmation prompt, so we excluded them.

In this work we investigate adaptation to the time concept because it has multiple different realizations, as shown in Table 1. This variability is not unique to time; however, it is the only task-related concept in Let’s Go! that is not usually realized using named entities (which exhibit less variability).

3 Method

In order to study adaptation, we need to identify a prime, a point in the conversation where one partner introduces a realization. In Let’s Go! the system always asks the user to specify a departure time. The user then typically says a time, which the system confirms (see Figure 1). We simulate an ASR error on the user’s response to the system’s time request, so that when the system confirms the departure time it confirms a time other than that recognized in the user’s response. To make the system’s error more realistic, the time in the simulated error is a time that is phonetically close to the time (hour and minute) recognized in the user’s response. The system’s confirmation prompt is our prime.

The system runs in one of the three conditions: SYS_TIME, SYS_APM, or SYS_POD. In each condition it uses the corresponding time format (TIME, APM, or POD as shown in Table 1). TIME is the most frequent form in the 2006 Let’s Go! corpus, but it is potentially ambiguous as it can mean either night or day. APM is the shortest unambiguous form. POD is longer and has a very low frequency in the 2006 Let’s Go! corpus.

We would have liked to also include OCLOCK in the experiment. However, due to resource limitations we had to choose only three conditions.

The most frequent user response to the system’s request to specify a departure time is “Now”; we exclude these from our experiment.
There are no statistically significant differences in the proportions of Usr:APM forms in Unprimed utterances for the different system conditions. The proportion of Usr:APM forms in First After utterances is significantly higher in the SYS_APM condition than in the SYS_TIME condition (p < .01), although not significantly different than in the SYS_POD condition. The proportion of Usr:APM forms in the All After utterances is significantly higher in the SYS_APM condition than in both the SYS_TIME and the SYS_POD conditions (p < .01). We conclude that there is user adaptation to system time form in the SYS_APM condition.

TIME There are no statistically significant differences in the proportions of Usr:TIME forms in Unprimed utterances for the different system conditions. The proportions of Usr:TIME forms in the First After utterances in the SYS_TIME condition is significantly higher than that in the SYS_APM condition (p < .01), but not significantly higher than that in the SYS_POD condition. The same is true of Usr:TIME forms in the All After utterances. We conclude that there is user adaptation to system time form in the SYS_TIME condition.

POD We did not find statistically significant differences in Usr:POD forms for the different system conditions in either the Unprimed, First After or All After data. Because this is the long unambiguous form, users may have felt that it would not be recognized or that it would be inefficient to produce it.

Figures 2 illustrates the effect of user adaptation on time form for the SYS_APM and SYS_TIME conditions.

4.2 The effect of system adaptation on user adaptation

Sometimes the user happens to use the same form in their initial specification of time that the system uses in its confirmation prompt. This gives the illusion that the system is adapting its choice of time form to the user. We examined whether users’ perception of system adaptation affected user adaptation in First After confirmation utterances.

For this analysis we used only the dialogs in the SYS_APM and SYS_TIME conditions since the POD form is rare in the Unprimed utterances. We distinguish between three possible user actions following the system’s confirmation prompt: 1) keep - use the same form as in the unprimed utterance; 2) adapt - switch to the same form as in the system’s confirmation prompt; and 3) switch - switch to a different form than the one used in the system’s confirmation prompt or in the unprimed utterance.

Table 3 shows the proportions for each possible user action. In the *adaptive* condition users are twice as likely to keep the time form than in the *non-adaptive* condition (81.8% vs. 37.5%). This difference is statistically significant (p < .001). In the non-adaptive system condition users who change time form are slightly more likely to switch (35.4%) than to adapt (29.1%).

These results suggest that when the system does not adapt to the user, the user’s choice is unpredictable. However, if the system adapts to the user, the user is likely to keep the same form. This

Table 2: Proportions of time forms in different system prompt conditions. The highest proportion among system conditions for each time form is highlighted. Occurrences of time forms other than the three examined time forms are excluded from this table. ♠ indicates a statistically significant difference from the highlighted value in the column (p < .05 with Bonferroni adjustment). ♣ indicates a statistically significant difference from the highlighted value in the column (p < .01 with Bonferroni adjustment).

Table 3: Proportions of user actions in First After confirmation utterances

4Usr:time-form refers to the occurrence of the time-form in a user’s utterance.
means that if the system can adapt to the user when
the user chooses a form that is more likely to be
recognized correctly, that provides positive rein-
fforcement, making the user more likely to use that
felicitous form in the future. Furthermore, if the
system does adapt to the user then it may be pos-
sible with high accuracy to predict the user’s form
for subsequent utterances, and to use this infor-
mation to improve ASR accuracy for subsequent
utterances (Stoyanchev and Stent, 2009b).

5 Conclusions and Future Work
In this paper, we analyzed user adaptation to a dia-
log system’s choice of task-related concept forms.
We showed that users do adapt to the system’s
word choices, and that users are more likely to
adapt when the system appears to adapt to them.
This information may help us guide users into
more felicitous word choices, and/or modify the
system to better recognize anticipated user word
choices. In future work we plan to analyze the
effect of ASR adaptation to user word choice on
speech recognition performance in spoken dialog.

References
H. Branigan et al. 2003. Syntactic alignment between
computers and people: The role of belief about men-
tal states. In Proceedings of the 25th Annual Confer-
ce of the Cognitive Science Society.

S. Brennan and H. Clark. 1996. Conceptual pacts and
lexical choice in conversation. Journal of Experi-
mental Psychology, 22(6):1482–1493.

S. Brennan. 1996. Lexical entrainment in spontaneous
dialog. In Proceedings of ISSTD, pages 41–44.

J. Gustafson et al. 1997. How do system questions
influence lexical choices in user answers? In Pro-
cedings of Eurospeech.

B. Hockey et al. 2003. Targeted help for spoken dia-
logue systems: intelligent feedback improves naive
users performance. In Proceedings of EAACL.

C. Lockridge and S. Brennan. 2002. Addressees’
needs influence speakers’ early syntactic choices.
Psychonomics Bulletin and Review, 9:550–557.

M. Pickering et al. 2000. Activation of syntactic prim-
ing during language production. Journal of Psy-
cholinguistic Research, 29(2):205–216.

A. Raux et al. 2005. Let’s go public! taking a spoken
dialog system to the real world. In Proceedings of
Eurospeech.

E. Reitter, J. Moore, and F. Keller. 2006. Priming of
syntactic rules in task-oriented dialogue and sponta-
neous conversation. In Proceedings of CogSci.

T. Sheeder and J. Balogh. 2003. Say it like you mean
it: Priming for structure in caller responses to a spo-
ken dialog system. International Journal of Speech
and Technology, 6:103–111.

S. Stoyanchev and A. Stent. 2009a. Lexical and syn-
tactic priming and their impact in deployed spoken
dialog systems. In Proceedings of NAACL.

S. Stoyanchev and A. Stent. 2009b. Predicting concept
types in user corrections in dialog. In Proceedings of
the EACL Workshop on the Semantic Representation
of Spoken Language.

S. Tomko and R. Rosenfeld. 2006. Shaping user input
in speech graffiti: a first pass. In Proceedings of
CHI.