Effects of long-term phosphorus addition on soil ratios of phosphomonoesterase to phosphodiesterase in three tropical forests

Taiki Mori1,3,\#, Senhao Wang1,2,\#, Cong Wang4, Ji Chen6,7,8, Cheng Peng1,2,5, Mianhai Zheng1,2, Juan Huang1,2, Faming Wang1,2, Zhanfeng Liu1,2, Jiangming Mo1,2, Wei Zhang1,2,*

1 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

2 Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China

3 Kyushu Research Center, Forestry and Forest Products Research Institute, FFPRI, Kurokami 4-11-16, Kumamoto 860-0862, Japan

4 State Key laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

5 University of Chinese Academy of Sciences, Beijing 100049, China

6 Department of Agroecology, Aarhus University, Tjele 8830, Denmark

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination, and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1093/jpe/rtac091.

© The Author(s) 2022. Published by Oxford University Press on behalf of the Institute of Botany, Chinese Academy of Sciences and the Botanical Society of China. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Aarhus University Centre for Circular Bioeconomy, Aarhus University, 8830 Tjele, Denmark

iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, 4000 Roskilde, Denmark

Taiki Mori and Senhao Wang have equal contributions to this work.

* Corresponding author: Dr. Wei Zhang. E-mail: zhangwei@scbg.ac.cn
Abstract

Soil microorganisms in tropical forests can adapt to P-poor conditions by changing the activity ratios of different types of phosphatases. We tested whether microorganisms in P-poor tropical forest soils increased the phosphomonoesterase (PME) to phosphodiesterase (PDE) activity ratio, because a one-step enzymatic reaction of monoester P degradation might be more adaptive for microbial P acquisition compared to a two-step reaction of diester P degradation. A continuous 10-year P addition experiment was performed in three tropical forests. The activities of PME and PDE, and their ratio in soil, were determined under the hypothesis that the P-fertilized plots—where P shortage is relieved—would have lower PME:PDE ratios than the unfertilized controls. We demonstrated that long-term P addition in tropical forest soil did not alter the PME:PDE ratio in primary and secondary forests, whereas P fertilization elevated the PME:PDE ratio in planted forest. These results were in contrast to previous results. The long-term, large-scale P fertilization in our study may have reduced litter- and/or throughfall-derived PDE, which negated the lowered PME:PDE ratio via exogenous P inputs.

Keywords: soil extracellular enzymes, phosphomonoesterase, phosphodiesterase, phosphorus fertilization, tropical forest
Introduction

Phosphorus (P) is an important nutrient in natural ecosystems because it is essential for living organisms. Tropical forests are P-poor ecosystems. P plays an important role in net primary production (Crevis et al., 1995; Kitayama and Aiba, 2002; Vitousek et al., 2010) and soil microbial activity (Cleveland et al., 2002; Liu et al., 2012), although soil microbial activity is not necessarily limited by P (Mori et al., 2019a, 2018). This is because tropical forest soils are deeply weathered and a large portion of the remaining P is present in occluded forms (Cross and Schlesinger, 1995). In such ecosystems, P acquisition by plants and/or microbes is largely dependent on turnover and recycling of organic P compounds (Hidaka and Kitayama, 2013; Mori, 2022; Turner and Engelbrecht, 2011) via the production of extracellular phosphatases involved in the breakdown of organic P (Chen et al., 2020; Nannipieri et al., 2011; Turner, 2008). Indeed, compared to other ecosystems, microbial investment in phosphatase in tropical forests is much larger relative to other types of enzymes due to lower soil P availability (Sinsabaugh et al., 2009; Turner and Wright, 2014; Waring et al., 2014).

Organic P occurs in a variety of forms—including as diester P such as DNA, RNA, and phospholipids—but many previous studies only focused on the role of phosphomonoesterase (PME) and neglected other enzymes participating in P decomposition (Turner and Engelbrecht, 2011; Yokoyama et al., 2017, 2018). Diester P is degraded to orthophosphate by a two-step enzymatic reaction: initial hydrolysis from diester to monoester P by phosphodiesterase (PDE), and successive hydrolysis of monoester P into orthophosphate by PME (Turner and Haygarth, 2005; Yokoyama et al., 2017). Although organisms may adapt to P-poor conditions by altering the activity ratios of the two phosphatases, few studies have investigated differences in PME and PDE activities between P-poor and P rich conditions (Yokoyama et al., 2017).
Yokoyama et al. (2017) tested the impact of P fertilization on four different types of phosphatases in tropical lowland forests in Malaysian Borneo, and found that P addition substantially reduced PME activity in soils, although its impact on PDE activity was unclear. Based on this phenomenon, they proposed the following novel hypothesis: in P-poor tropical forests, soil microbes (and/or plants) increase P allocation for PME production relative to PDE, because P acquisition via a one-step enzymatic reaction with lower energy cost might be more adaptive in P-poor soils (Yokoyama et al. 2017). However, since their report, no studies have tested this hypothesis. In the present study, we used data from a long-term (10-year) continuous P addition experiment to test the hypothesis of Yokoyama et al. (2017). Based on their hypothesis, we predicted that P addition would decrease PME:PDE ratios, because P acquisition via one-step PME reactions might be more adaptive in P-poor tropical forest soils. The present study will increase our understanding of the adaptation of soil microorganisms to P-poor conditions in tropical forests.

Material and methods

The experiment was conducted in the Dinghushan Biosphere Reserve (DHSBR) in Guangdong Province, southern China (112°10’ E, 23°10’ N). The DHSBR experiences a monsoon climate. The annual mean temperature is 21.9°C and the annual precipitation measured from February 2015 to January 2016 was 2,431 mm (Zhou et al., 2018). There are three major forest types in the reserve: primary forest, secondary forest, and planted forest (Table S1). Soil in the reserve is lateritic red earth (Oxisols) formed from highly weathered sandstone (Mo et al., 2003). The soil properties of the three forests are shown in Table S2. In February 2007, control and P-fertilized plots (5 m × 5 m) were established with five replications (Liu et al., 2012). P (150 kg P ha⁻¹ yr⁻¹) in the form of NaH₂PO₄ was added twice
monthly. In December 2017, soil cores were taken from the surface soils (0–10 cm) and sieved through a 2-mm mesh. The samples were frozen at −20°C until use. PDE activity assays were conducted as described by Mori et al. (2020). Briefly, 1.0 g fresh soils and 50 mM acetate (100 mL, pH 5.0) were homogenized, and suspensions (500 µL) were then incubated with substrates labeled with 4-methylumbelliferone (4 h at 20°C in the dark). Fluorescence was determined by a microplate spectrophotometer (365 nm excitation and 450 nm emission filters). PME activities determined using the Michaelis–Menten equation were reported by Mori et al. (2022); we calculated PME:PDE ratios based on their results. The impact of P addition on PME:PDE ratios was tested by a one-way ANOVA. PME:PDE ratios were natural log-transformed before statistical analyses, which were performed using R (version 4.1.1; R Core Team, 2021).

Results and discussion

Long-term P addition in the three tropical forests significantly suppressed PDE activity (Table 1), which was consistent with previous studies. In primary and secondary forests, the decrease in PDE activity was similar to that in PME activity (Table 1), resulting in unaltered PME:PDE ratios (Fig. 1a, b). On the other hand, PME:PDE ratio was elevated by P fertilization in planted forest (Fig. 1c). These results were contrary to our initial hypothesis based on the prediction by Yokoyama et al. (2017) that P fertilization would result in lower PME:PDE ratios compared to unfertilized controls. The unchanged PME:PDE ratios also disagreed with several previous studies. According to Zhang et al. (2015), PME activity decreased as P availability increased, but PDE activity did not, which supports the hypothesis of Yokoyama et al. (2017). Lang et al. (2017) also observed the highest PME:PDE ratio in the most P-poor soil among five different forests.
The inconsistent response of PME:PDE ratios to P addition in this study might be attributed to the activities of PME and PDE derived from leaf litters and throughfall to P fertilization. The large amount (150 kg P ha\(^{-1}\) yr\(^{-1}\)) of P added in our study over a long period (10 years) should have increased the leaf P content (Zhu et al., 2015), and thus potentially reduced PDE activity in litter and/or PDE production by phyllosphere microbes providing ecoenzymes to soils, which could mask any decrease in the soil PME:PDE ratio (note that phyllosphere could be an important source of soil enzymes (Mori et al., 2019, 2021)) in primary and secondary forests (Fig. 1a, b) or even result in higher PME:PDE ratio in planted forest (Fig. 1c). This potential underlying mechanism requires the following assumptions: phosphatases from canopy leaves and litter make a large contribution to soil phosphatase activity; the decrease in PDE in leaves or the phyllosphere is larger than that in PME; and the responses of senescence-derived and phyllosphere microbe-derived PDE production to P fertilization depend on the duration and amount of P fertilization. Long-term P addition (9 years) in a Panamanian lowland tropical forest had similar results to those in our study: the ratio of PME to PDE was largely unchanged by P fertilization (Turner and Wright, 2014), consistent with our proposed underlying mechanism. Experiments targeting enzymes in litters or throughfall (Mori et al., 2019, 2021) are necessary to test this idea. More data and P amendment experiments are needed to clarify the effects of P fertilization on PME and PDE activities produced by soil microorganisms, plants, and phyllosphere microorganisms.
Funding

This study was supported by the National Natural Science Foundation of China (42077311 and 41731176), Grant-in-Aid for JSPS Postdoctoral Fellowships for Research Abroad (28.601), JSPS KAKENHI (JP19K15879) and a grant from The Sumitomo Foundation (153082).

Acknowledgments

We are grateful to the handling editor and anonymous reviewers for their insightful and constructive comments.
References

Chen, J., van Groenigen, K.J., Hungate, B.A., Terrer, C., van Groenigen, J.W., Maestre, F.T., Ying, S.C., Luo, Y., Jørgensen, U., Sinsabaugh, R.L., Olesen, J.E., Elsgaard, L., 2020. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Global Change Biology 26, 5077–5086. doi:10.1111/gcb.15218

Cleveland, C., Townsend, A., Schmidt, S., 2002. Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems 5, 680–691. doi:10.1007/s1002102000209

Crews, T.E., Kitayama, K., Fownes, J.H., Riley, R.H., Herbert, D.A., Mueller-dombois, D., Vitousek, P.M., 1995. Changes in Soil Phosphorus Fractions and Ecosystem Dynamics across a Long Chronosequence in Hawaii. Ecology 76, 1407–1424.

Cross, A.F., Schlesinger, W.H., 1995. A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems 64, 197–214.

Hidaka, A., Kitayama, K., 2013. Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species. Ecology and Evolution n/a-n/a. doi:10.1002/ece3.861
Kitayama, K., Aiba, S.I., 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90, 37–51. doi:10.1046/j.0022-0477.2001.00634.x

Lang, F., Krüger, J., Amelung, W., Willbold, S., Frossard, E., Bünemann, E.K., Bauhus, J., Nitschke, R., Kandeler, E., Marhan, S., Schulz, S., Bergkemper, F., Schloter, M., Luster, J., Guggisberg, F., Kaiser, K., Mikutta, R., Guggenberger, G., Polle, A., Pena, R., Prietzel, J., Rodionov, A., Talkner, U., Meesenburg, H., von Wilpert, K., Hölscher, A., Dietrich, H.P., Chmara, I., 2017. Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe. Biogeochemistry 136, 5–29. doi:10.1007/s10533-017-0375-0

Liu, L., Gundersen, P., Zhang, T., Mo, J., 2012. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biology and Biochemistry 44, 31–38. doi:10.1016/j.soilbio.2011.08.017

Mo, J., Brown, S., Peng, S., Kong, G., 2003. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. Forest Ecology and Management 175, 573–583. doi:10.1016/S0378-1127(02)00220-7

Mori, T., 2022. Greater impacts of phosphorus fertilization on soil phosphatase activity in tropical forests than in non-tropical natural terrestrial ecosystems: A meta-analysis. Pedobiologia 91–92, 150808. doi:10.1016/j.pedobi.2022.150808

Mori, T., Lu, X., Aoyagi, R., Mo, J., 2018. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Functional Ecology 32, 1145–1154. doi:10.1111/1365-2435.13043
Mori, T., Lu, X., Wang, C., Mao, Q., Wang, S., Zhang, W., Mo, J., 2019a. Is microbial activity in tropical forests limited by phosphorus availability? Evidence from a tropical forest in China. BioRxiv 575001. doi:10.1101/575001

Mori, T., Wang, S., Zhang, W., Mo, J., 2022. Microbial assembly adapted to low-P soils in three subtropical forests by increasing the maximum rate of substrate conversion of acid phosphatases but not by decreasing the half-saturation constant. European Journal of Soil Biology 108, 103377. doi:10.1016/j.ejsobi.2021.103377

Mori, T., Wang, S., Zhang, W., Mo, J., 2019b. A potential source of soil ecoenzymes: From the phyllosphere to soil via throughfall. Applied Soil Ecology 139, 25–28. doi:10.1016/j.apsoil.2019.02.004

Mori, T., Wang, S., Zhou, K., Mo, J., Zhang, W., 2021. Ratios of phosphatase activity to activities of carbon and nitrogen-acquiring enzymes in throughfall were larger in tropical forests than a temperate forest. Tropics 30, 25–29.

Mori, T., Zhou, K., Wang, C., Wang, S., Wang, Y., Zheng, M., Lu, X., Zhang, W., Mo, J., 2020. Effects of 14-year continuous nitrogen addition on soil arylsulfatase and phosphodiesterase activities in a mature tropical forest. Global Ecology and Conservation 22. doi:10.1016/j.gecco.2020.e00934

Nannipieri, P., Giagnoni, L., Renella, G., 2011. Phosphorus in Action: Role of Phosphatase Enzymes in Soil. pp. 215–243. doi:10.1007/978-3-642-15271-9

Sinsabaugh, R.L., Hill, B.H., Follstad Shah, J.J., 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–799. doi:10.1038/nature08632
Turner, B.L., 2008. Resource partitioning for soil phosphorus: A hypothesis. Journal of Ecology 96, 698–702. doi:10.1111/j.1365-2745.2008.01384.x

Turner, B.L., Engelbrecht, B.M.J., 2011. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103, 297–315. doi:10.1007/s10533-010-9466-x

Turner, B.L., Haygarth, P.M., 2005. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Science of the Total Environment 344, 27–36. doi:10.1016/j.scitotenv.2005.02.003

Turner, B.L., Wright, S.J., 2014. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117, 115–130. doi:10.1007/s10533-013-9848-y

Vitousek, P.M., Sanford, R.L., 1986. Nutrient Cycling in Moist Tropical Forest. Annual Review of Ecology and Systematics 17, 137–167. doi:10.1146/annurev.es.17.110186.001033

Waring, B.G., Weintraub, S.R., Sinsabaugh, R.L., 2014. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117, 101–113. doi:10.1007/s10533-013-9849-x

Yokoyama, D., Imai, N., Kitayama, K., 2017. Effects of nitrogen and phosphorus fertilization on the activities of four different classes of fine-root and soil phosphatases in Bornean tropical rain forests. Plant and Soil. doi:10.1007/s11104-017-3225-x

Yokoyama, D., Mori, T., Wagai, R., Hiradate, S., Kitayama, K., 2018. Characteristics of phosphorus fractions in the soils derived from sedimentary and serpentinite rocks in lowland tropical rain forests, Borneo. Soil Science and Plant Nutrition. doi:10.1080/00380768.2017.1421018
Zhang, X., Dong, W., Dai, X., Schaeffer, S., Yang, F., Radosevich, M., Xu, L., Liu, X., Sun, X., 2015. Science of the Total Environment Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer. Science of the Total Environment, The 536, 59–67. doi:10.1016/j.scitotenv.2015.07.043

Zhou, K., Lu, X., Mori, T., Mao, Q., Wang, C., Zheng, M., Mo, H., Hou, E., Mo, J., 2018. Effects of long-term nitrogen deposition on phosphorus leaching dynamics in a mature tropical forest. Biogeochemistry. doi:10.1007/s10533-018-0442-1

Zhu, F., Lu, X., Liu, L., Mo, J., 2015. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests. Scientific Reports 19–21. doi:10.1038/srep07923
	Primary forest	Secondary forest	Planted forest			
	Control	P-added	Control	P-added	Control	P-added
PME activity §,*	5279.9 (840.2)	1103.7 (124.9)	2540.4 (332.6)	553.0 (63.9)	933.4 (171.9)	522.0 (62.3)
(µg g soil$^{-1}$hr$^{-1}$)						
PDE activity *	270.4 (53.6)	59.0 (4.3)	108.5 (10.2)	27.5 (2.8)	84.0 (11.9)	29.8 (5.1)
(µg g soil$^{-1}$hr$^{-1}$)						
PME:PDE	19.5	18.7	23.4	20.1	11.1	17.5

Values are means with standard errors in parentheses (n = 5). § Data from Mori et al. (2022).

* Significant differences in a linear mixed-effect model with forest type as a random effect ($p < 0.001$).
Figure legends

Figure 1: Effects of P addition on the ratio of phosphomonoesterase (PME) and phosphodiesterase (PDE) activities (PME:PDE ratio) in (a) primary forest, (b) secondary forest, and (c) planted forest. Data are illustrated using box plots (n = 5). Statistically significant differences were detected by one-way ANOVA. N.S., not statistically significant. PME:PDE ratios were natural log-transformed before statistical analyses. Means and standard errors are shown in Table 1.
