Transient hidden chaotic attractors in a Hopfield neural system

Marius-F. Danca*
Department of Mathematics and Computer Science,
Avram Iancu University,
400380 Cluj-Napoca, Romania,
and
Romanian Institute of Science and Technology,
400487 Cluj-Napoca, Romania
Email: danca@rist.ro

Nikolay Kuznetsov
Department of Applied Cybernetics,
Saint-Petersburg State University, Russia
and
Department of Mathematical Information Technology,
University of Jyväskylä, Finland
email: nkuznetsov239@gmail.com

May 23, 2016

Abstract
In this letter we unveil the existence of transient hidden coexisting chaotic attractors, in a simplified Hopfield neural network with three neurons.

keyword Hopfield neural network; Transient hidden chaotic attractor; Limit cycle

1 Introduction
A Neural Network (NN) is a mathematical or computational model inspired by biological neural networks that consists of interconnected groups of neurons. Without chaotic behavior

*Corresponding author
neural systems cannot be adequately addressed and fully understood [1]. Neurobiological chaos, omnipresent in the brain, points out several possible approaches of understanding how the brain works and this is demonstrably so, in the somatosensory and the olfactory cortices [2]. Many NNs, such as discrete time NNs, or continuous (time-delayed) NNS, may behave chaotically.

The roles of chaos in this type of systems have been investigated in many papers in the last years [3–8].

Hopfield Neural Networks (HNN) are constructed from artificial neurons and represent particular cases of NNs inspired by spin systems. Even if it is not easy to be discovered, chaos and hyperchaos have been identified in many HNNs [9–25].

On the other side, the origin of transient chaos is well known: it is due to nonattracting chaotic saddles in phase space [26–37]. Transient chaos is a common phenomenon of many engineering, physical and biological systems. Compared with chaos, which is characterized as a long-term behavior, the transient chaos, is a phenomenon which appears when a nonlinear system behaves chaotically during some transient time interval which falls after that into a periodic attractor. These systems may initially exhibit an aperiodic behavior and sensitivity to initial conditions (i.e. “chaos”) and after a period of time, it settles down on a periodic orbit or fixed point. Such phenomena were observed in radio circuits [38], hydrodynamics [39], neural networks [40], standard models of nonlinear systems such as Rössler system [41], Lorenz system [42], experiments [43], maps [44], species extinction [45] and so on.

In some applications the transient chaos can be quite disastrous, as in situations of voltage collapse or species extinction. Therefore it is often desirable to sustain transient chaos, in the sense of maintaining the transient chaos. Thus, conversion of the transient chaos into sustained chaos, can avoid catastrophes related to sudden chaos collapses, even in the absence of external perturbations. (i.e. chaos anticontrol) [30,46].

In a recent paper [47] a new phenomenon of transient chaos, fundamentally different from the hyperbolic and nonhyperbolic transient chaos reported in the existing literature is revealed. This type of phenomenon appears in many systems (chemical reactions, binary star behavior, etc.) and it is likely far less predictable than has been previously thought: doubly transient chaos.

From the computational perspective point of view, based on the connection of their basins of attraction with equilibria in the phase space, it is natural to suggest the following attractors classification [48–52].

Definition 1. An attractor is called a self-excited attractor if its basin of attraction intersects with any open neighborhood of a stationary state (an equilibrium); otherwise, it is called a hidden attractor.

Self-excited attractors can be visualized numerically by a standard computational procedure, in which after a transient process, a trajectory starting from a point of a neighborhood of unstable equilibrium is attracted to the attractor, while the basin of attraction for a hidden attractor is not connected with any equilibrium. Therefore, for the numerical localization of hidden attractors it is necessary to develop special analytical-numerical procedures [49,53].

Hidden attractors can appear in systems with no-equilibria or in multistable systems with only stable equilibrium. Coexisting self-excited attractors in multistable systems can be found using a standard computational procedure, whereas there is no regular way to
predict the existence or coexistence of hidden attractors in a system (for various examples of multistable engineering systems refer to [54]).

To verify numerically that a chaotic attractor is hidden, one has to check that all trajectories starting in small neighborhoods of unstable equilibria, are either attracted by stable attractors, or diverge to infinity (see e.g. [50,53]).

In this paper we consider the case of a 3-neuron simplified HNN and we unveil its transient hidden chaotic attractors.

2 The simplified Hopfield neural network

The simplified 3-neuron HNN considered in this paper is modeled by the following ODEs

\[
\dot{x}_i = -x_i + \sum_{j=1}^{3} w_{ij} f(x_j), \quad i = 1, 2, 3,
\]

with \(f(x_j) = \tanh(x_j) \) and with the weight matrix [13]

\[
W = \begin{bmatrix}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33}
\end{bmatrix} = \begin{bmatrix}
2 & -1.2 & 0 \\
1.9995 & 1.71 & 1.15 \\
-4.75 & 0 & 1.1
\end{bmatrix}.
\]

and we show numerically that the system admits a new type of coexisting hidden attractors: transient hidden attractors\(^1\).

With the above values of weights, the system (1) reads

\[
\begin{align*}
\dot{x}_1 &= -x_1 + 2 \tanh(x_1) - 1.2 \tanh(x_2), \\
\dot{x}_2 &= -x_2 + 1.9995 \tanh(x_1) + 1.71 \tanh(x_2) + 1.15 \tanh(x_3), \\
\dot{x}_3 &= -x_3 - 4.75 \tanh(x_1) + 1.1 \tanh(x_3).
\end{align*}
\]

The sigmoid-like function \(\tanh(x) \), is used to approximate the switch discontinuity in \(x = 0 \), typically to neurons dynamics.

The HNN system (2) is symmetrical with respect to the origin and has the following equilibria

\[
X_0^* = (0, 0, 0), \quad X_{1,2}^* = \pm(0.493, 0.366, -3.267).
\]

The Jacobian is

\[
J = \begin{bmatrix}
1 - 2 \tanh^2(x_1) & -1.2 + 1.2 \tanh^2(x_2) & 0 \\
1.9995 - 1.9995 \tanh^2(x_1) & 0.71 - 1.71 \tanh^2(x_2) & 1.15 - 1.15 \tanh^2(x_3) \\
-4.75 + 4.75 \tanh^2(x_1) & 0 & 0.1 - 1.1 \tanh^2(x_3)
\end{bmatrix},
\]

and the eigenvalues of \(X_0^* \) are \(\lambda_1 = 1.942 \) and \(\lambda_{2,3} = -0.066 \pm 1.879i \) while the eigenvalues of \(X_{1,2}^* \) are \(\lambda_1 = -0.987 \) and \(\lambda_{2,3} = 0.538 \pm 1.286i \). Therefore, equilibria are unstable: one attracting focus saddle \((X_0^*)\), and two repelling focus saddles \((X_{1,2}^*)\).

\(^1\)Transient dynamics of hidden attractors in a 4D system are analyzed in [55].
3 Hidden transient attractors of HNN

The numerical integration of the HNN (2) is done with the Matlab differential solver ode45 with option opts = odeset('RelTol', 1e-9, 'AbsTol', 1e-9) which yields 8 decimals accurate results, over the time interval [0, T] with $T = 850$.

In Hopfield systems it is common to find transient chaos (see e.g. [13]). Generally, the duration of a chaotic transient behavior of many trajectories is rather short before they settle down on some periodic stable attractor [32]. However, in the case of the HNN, our various numerical tests reveal a relative long transient time [0, T^*], with $T^* = 500$, over which the system behaves chaotically along two coexisting transient chaotic attractors H_1 and H_2 (see Fig. 2 where $H_{1,2}$ are obtained with initial conditions $\pm (1.9, 3, 1)$).

For the initial conditions chosen inside small δ-vicinities of the unstable equilibria, with $\delta = 1.5E - 4$, the underlying trajectories are attracted by one of the two stable limit cycles C_1 (red plot) and C_2 (blue plot) respectively as shown by Figs. 3 and 4 where, for simplicity, in the detailed images only 50 trajectories are considered.

Trajectories starting from a δ-vicinity $V_{X_1^*}$ of X_1^* (Fig. 3), tend either to C_1 (light red plot), or to C_2 (light blue plot). This happens because X_1^* belongs to the separatrix of the basins of attractions of C_1 and C_2.

Fig. 4, where only the case of stable limit cycle C_2 is considered, reveals 50 trajectories starting inside a vicinity V_{X_2} of equilibrium X_2, which all are attracted by the stable cycle C_2. Similarly, all trajectories from small vicinities of X_1^* are attracted by C_1.

The shape of the trajectories starting within $V_{X_2^*}$ and $V_{X_1^*}$ are consistent with the equilibria type: the trajectories from vicinities $V_{X_{1,2}}$ exit by scrolling equilibria $X_{1,2}$ in the unstable two-dimensional manifold (see detailed image in Fig. 3), while the trajectories from the vicinity of X_0^* leave $V_{X_0^*}$ along the one-dimensional unstable manifold of X_0^* (detail in Fig. 4).

Concluding, by following intensive numerical tests, the underlying numerical analysis leads to the conclusion that the transient chaotic attractors $H_{1,2}$, are very likely to be hidden and could be called transient hidden chaotic attractors. For the numerical localization of hidden attractors, a special analytical-numerical procedure has been designed (see e.g. [53]). In this paper the initial conditions for transient hidden attractors $\pm (1.9, 3, 1)$, have been found by trial-and-error.

Note that the coexistence of transient trajectories which start from $V_{X_1^*}$ and $V_{X_1^*}$, and reach the stable cycles $C_{1,2}$ with the stable cycles $C_{1,2}$, are ensured by the entrainment of limit cycles by chaos (see [59], where the replication of sensitivity and the existence of infinitely many unstable periodic solutions were rigorously proved and [60], where this result is applied in Hopfield systems). Based on this result, the transient hidden chaotic attractors $H_{1,2}$ differ from the transients to $C_{1,2}$. Moreover, they have different attraction basins: $H_{1,2}$ are generated starting from initial conditions $\pm (1.9, 3, 1)$, while $C_{1,2}$ are obtained with initial

\footnote{Matlab implicitly uses default values $ReTol = .001$ and $AbsTol = 0.000001$ and the approximate error at each step e_k is ensured to be: $e_k \leq max(ReTol \times x_k, AbsTol)$, for all k, where x_k is the value calculated at the node t_k (see e.g. [56] for the used Runge-Kutta and other numerical methods utilized by Matlab). In [57] it is suggested $ReTol = 10^{-\left(m+1\right)}$ for m precise digits of the required solution.}

\footnote{Related to length of the time interval, precautions should be considered since a too large time interval could lead to inaccurate numerical solutions (see e.g. [58] for the case of Lorenz system).}
points close to equilibria X_0^* and $X_{1,2}^*$. For $t > T^*$, $T_{1,2}$ vanish.

The transients of the HNN system seems to be deformed by the form of the coexisting limit cycles and unstable equilibria, thus H_1 and H_2 have a complex structure. So one may say that the behavior is rather natural here.

Since chaotic behavior in neural activity seems to be unavoidable, chaos control and anticontrol of these transient hidden chaotic attractors are an unexplored theme yet and they offer an exciting subject for future research.

References

[1] Skarda C A and Freeman W J 1987 Behav. Brain Sci. 10 161
[2] Freeman W J 2000 Neurodynamics: An exploration in mesoscopic brain dynamics (Berlin, Springer)
[3] Dror G and Tsodyks M 2000 Neurocomputing 32-33 365
[4] Nara S, Davis P, Kawachi M and Totsuji H 1995 Int. J. Bifurcat. Chaos 5 1205
[5] Cao J and Lu J 2006 Chaos 16 013133
[6] Aihara K, Takebe T and Toyoda M 1990 Phys. Lett. A 144 333
[7] Freeman W J 1992 Int. J. Bifurcat. Chaos 2 451
[8] Guckenheimer J and Oliva R A 2002 SIAM J. Appl. Dyn. Syst. 1 105
[9] Hopfield J J 1994 Proc. Nat. Acad. Sci. USA 81 3088
[10] Bersini H and Sener P 2002 Neural Networks 15 1197
[11] Bersini H 1998 Neural Networks 11 1017
[12] Li Q, Yang X S and Yang F 2005 Neurocomputing 67 275
[13] Yang X S and Yuan Q 2005 Neurocomputing 69 232
[14] Chen P-F, Chen Z-Q and Wu W-J 2010 Chinese Phys B 19 040509
[15] Yang X S and Huang Y 2006 Chaos 16 033114
[16] Huang W-Z and Huang Y 2011 Int. J. Bifurcat. Chaos 21 885
[17] Yuan Q, Li Q and Yang X-S 2009 Chaos Solitons Fractals 39 1522
[18] Yang X-S and Yuan Q 2005 Neurocomputing 69 232
[19] Huang W-Z and Huang Y 2008 Appl. Math. Comput. 206 1
[20] Li Q, Yang X-S and Yang F 2005 Neurocomputing 67 275
[21] Alonso H, Mendon T and Rocha P 2009 *Neural Netw.* **22** 450
[22] Peng-Sheng Z, Wan-Sheng T, and Jian-Xiong Z 2010 *Chinese Phys B* **19** 030514
[23] Yi-Fu F, Qing-Ling Z, and De-Zhi F 2012 *Chinese Phys B* **21** 100701
[24] Park M J and Kwon O M 2011 *Chinese Phys B* **45** 45013425
[25] Vasović N, Burić N, Todorović K, and Grozdanović I 2012 *Chinese Phys. B* **21**, 010203.
[26] Grebogi C, Ott E and Yorke J A 1983 *Phys. Rev. Lett.* **48** 1507
[27] Kantz H and Grassberger P 1985 Physica D **17** 75
[28] Kaplan J L and Yorke J A 1979 *Commun. Math. Phys.* **67** 93
[29] Yorke J A and Yorke E D 1979 *J. Stat. Phys.* **21** 263
[30] Shulenburger L, Lai Y-C, Yalçinkaya T and Holt R D 1999 *Phys. Lett. A* **260** 156
[31] Pianigiani G and Yorke J A 1979 *Trans. Am. Math. Soc.* **252** 351
[32] Nusse H E and Yorke J A 1989 *Physica D* **36** 137
[33] Bo-Cheng B, Zhong L and Jian-Ping X 2010 *Chinese Phys B* **19** 030510
[34] Hsu G-H, Ott E and Grebogi C 1988 *Phys. Lett. A* **127** 199
[35] Grebogi C, Ott E and Yorke J A1986 *Phys. Rev. Lett.* **57** 1284
[36] Hoff A, da Silva D T, Manchein C and Albuquerque H A 2014 *Phys. Lett. A* **378** 171
[37] Chang-Chun S, Qi-Cheng X and Ying S 2013 *Chinese Phys B* **22** 030507
[38] Zhu L, Raghu A and Lai Y-C 2001 *Phys. Rev. Lett.* **86** 4017
[39] Ahlerson G, Walden R W 1980 *Phys. Rev. Lett.* **44** 445
[40] Yang X-S, Yuan Q 2005 *Neurocomputing* **69** 232
[41] Dhamala M, Lai Y-C and Kostelich E J 2000 *Phys. Rev. E* **61** 6485
[42] Vadasz P 2010 *Appl. Math. Lett.* **23** 503
[43] Zhu L, Raghu A, and Lai Y-C 2001 *Phys. Rev. Lett.* **86** 4017
[44] Astaf’ev G B, Koronovskii A A and Hramov A E 2003 *Tech. Phys. Lett.* **923** 923
[45] McCann K and Yodzis P 1994 *Am. Nat.* **144** 873
[46] Dhamala M. and Lai Y-C 1999 *Phys. Rev. E* **59** 1646
[47] Motter A E, Gruiz M, Károlyi G and Tél T 2013 *Phys. Rev. Lett.* **111** 194101
[48] G. Bianchi, N.V. Kuznetsov, G.A. Leonov, M.V. Yuldashev, R.V. Yuldashev, 2015 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Limitations of PLL simulation: hidden oscillations in MATLAB and SPICE, 79-84 (2015) http://arxiv.org/pdf/1506.02484.pdf, http://www.mathworks.com/matlabcentral/fileexchange/52419-hidden-oscillations-in-pll

[49] Leonov G A and Kuznetsov N V 2013 Int. J. Bifurcat. Chaos 23 1330002

[50] Leonov G, Kuznetsov N. and Mokaev T 2015 Eur. Phys. J. Special Topics 224 1421

[51] Leonov G A, Kuznetsov N V and Vagaitsev V I 2011 Phys. Lett. A 375 2230

[52] Sprott J C, Jafari S, Pham V-T and Hosseini Z S 2015 Phys. Lett. A 379 2030

[53] Leonov G A, Kuznetsov N V and Vagaitsev V I 2012 Physica D 241 1482

[54] Pisarchik A and Feudel U 2014 Physics Reports 540 167

[55] Xiao-Yu D, Chun-Biao L, Bo-Cheng B and Hua-Gan W 2015 Chinese Phys. B 24 050503

[56] Shampine L F, Gladwell I and Thompson S 2003 Solving ODEs with MATLAB Cambridge (Univ. Press, Cambridge)

[57] Brenan K E, Campbell S L and Petzold L R 1996 Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (SIAM Classics in Applied Mathematics, 14) (SIAM, Philadelphia)

[58] Kehlet B. Logg A arXiv:1306.2782v1 [math.NA] 12 Jun 2013 http://arxiv.org/abs/1306.2782

[59] Akhmet M U and Fen M O 2014 J. Nonlinear Sci. 24 411

[60] Akhmet M and Fen M O 2014 Neurocomputing 145 230

[61] Chaudhuri U and Prasad A 2014 Phys. Lett. A 378 713
Figure 1: Transient hidden chaotic attractors H_1 and H_2 of HNN.
Figure 2: Time series of the first component x_1. (a) Transient hidden chaotic attractor H_1, for $t \in [0, T^\ast]$, starting from $(1.9, 3, 1)$. For $t > T^\ast$, chaos vanishes. (b) Stable cycle C_1.
Figure 3: Stable cycles C_1 (red plot) and C_2 (blue plot). Chaotic trajectories $H_{1,2}$ (light red and light blue plots) starting from vicinity $V_{X_0^*}$, are attracted either by C_1, or C_2 (see also the upper-right detail).
Figure 4: Trajectories starting from vicinity V_{X_2} (light blue plot) are attracted by C_2 (blue plot).