Low-dye taping may enhance physical performance and muscle activation in basketball players with overpronated feet

Indy M. K. Ho 1,2*, Anthony Weldon 1, Natalia C. Y. Yeung 1, Jim T. C. Luk 1

1 Department of Sports and Recreation, Technological and Higher Education Institute of Hong Kong (THEi), Chai Wan, Hong Kong, 2 The Asian Academy for Sports and Fitness Professionals, Quarry Bay, Hong Kong

* indymankit@hotmail.com

Abstract

Background

Low-dye taping (LTD) is widely used by athletes and medical practitioners but the research regarding its impacts on athletic performance is lacking. This study investigated the effects of using low-dye taping on plyometric performance and muscle activities in recreational basketball players with overpronated feet.

Methods

Twelve collegiate males with at least three years basketball training experience and navicular drop (ND) value ≥10 mm performed the navicular drop, drop jump and countermovement jump tests. Surface electromyography of selected lower limb muscles were observed during bilateral free squat. All tests in non-taped (NT) and taped (TAP) conditions were counterbalanced using repeated crossover study design. Paired t-test with an alpha level of 0.05 and non-clinical magnitude-based decision (MBD) with standardized effects were used to analyze data.

Results

Contact time and reactive strength index (RSI) in the TAP condition were significantly shorter (p = 0.041) and higher (p<0.01) than the NT condition respectively. No significant difference in CMJ performance between NT and TAP was observed. MBD demonstrated clear effects on both ND (standardized effect: -1.54±0.24), flight time (standardized effect: 0.24±0.30), contact time (standardized effect: -0.27±0.21), RSI (standardized effect: 0.69±0.35) and eccentric activities of inferior gluteus maximus (standardized effect: 0.23±0.35), gluteus medius (standardized effect: 0.26±0.29) and tibialis anterior (standardized effect: 0.22±0.06).

Conclusions

LDT is effective in correcting overpronated feet by increasing ND height. Meanwhile, it provides a small increase in RSI and gluteal muscle activity during the eccentric (down) phase.
Introduction

Overpronation of the feet (flat feet) is a common foot malalignment issue where the medial longitudinal arch (MLA) is decreased, leading to increased medial plantar pressure [1]. It is reported that approximately 16.06% of Asian children aged 6 to 10 years old [2], and 13.6% of Indian adults aged 18 to 21 years old have an overpronation condition (>9 mm in navicular drop test) [3]. Research investigating the foot morphology of 196 intercollegiate athletes found that 14.4% were overpronated [4], indicating the commonality of overpronation in competitive sports. But no significant relationships were observed for athletes with overpronation issues and increased lower extremity injury prevalence [4]. Contrastingly other researchers have found associations between altered biomechanics due to lowered MLA and increased risk of chronic lower extremity injuries such as plantar fasciitis and patellofemoral pain syndrome [1, 5].

When the MLA collapses and lengthens, it directly impacts the kinetic chain of the lower limbs during weight-bearing activities (e.g., jumping and landing) [1–4]. Such issues may include tibial and femoral internal rotation, which are critical components of dynamic valgus [6, 7], which has been associated with lowered muscle activity of hip and knee stabilizers including the gluteus maximus and medius [8, 9]. Recent studies indicate a strong association between poor landing postures (hip internal rotation and valgus knee), decreased activation of knee stabilization muscles, and several common knee injuries such as anterior cruciate ligament (ACL) rupture, meniscus tear, and sprain on the medial collateral ligament in athletes [9, 10]. Therefore, overpronation may impact knee and hip kinematics during functional movements and increase the risk of knee injuries.

A common method and long-term solution to relieve undesirable stress produced by overpronation are using orthotic insoles to provide additional support to the MLA. However, tight-fitting specialized shoes (e.g., running spikes) and unfit orthotic insoles may cause additional discomfort and plantar pressure [11]. An alternative method to correct a dropped MLA is to apply low dye taping (LDT) on the plantar region, using several strips of rigid tape [12]. Research has shown that LDT significantly elevates the MLA in active asymptomatic people [13], reducing plantar pressure of the heel and medial forefoot in participants with >10 mm navicular drop (ND) [14]. Furthermore, evidence suggests that LDT can relieve pain in patients with plantar fasciitis [15]. Consequently, this evidence-informed method, in conjunction with anecdotal practice is widely accepted by practitioners in clinical settings [13, 15]. Although it is believed that knee and hip biomechanics may be improved through the correction of overpronation leading to a more efficient kinetic chain [7–10], the actual influence on proximal muscle activity, such as the gluteus maximus and gluteus medius, during functional activity is not fully understood or has been extensively studied.

Regarding the biomechanics of functional activities such as walking or running, the tightening of the plantar fascia may provide additional support to the MLA, as explained by the windlass mechanism [16]. However, the plantar fascia may be further lengthened during weight-bearing activity if the MLA collapses [17, 18]. A failed windlass mechanism in overpronated feet may affect the efficiency of absorbing ground reaction forces to produce forward propulsion during gait or accommodate uneven terrains [17]. Furthermore, it has been observed that...
overpronation may cause increased mobility or hypermobility of the first and midtarsal joints compared to those with normal foot alignment and stability, thus reducing the potential to transmit force [18]. Therefore, it is postulated that correcting a dysfunctional MLA may improve foot and ankle stiffness, and subsequently athletic performance. Vertical stiffness and utilization of the fast stretch-shortening cycle can be reliably assessed using a drop jump test and calculating the reactive strength index (RSI) by dividing flight time by ground contact time [19, 20]. Whereas, the slow stretch-shortening cycle (SSC) can be determined using a countermovement jump (CMJ). Although RSI and CMJ are widely used to monitor plyometric ability for various athletes [19, 20], no study has addressed the influence of correcting the MLA of athletes with overpronation using LDT, on jumping performance.

Although there are proposed benefits of applying LDT before physical activity, further scientific support is needed for the performance change in team sport athletes such as basketball players, as prior research has predominantly focused on foot stability, joint alignment, stance, and gait [21–24]. To the author’s knowledge, no previous studies measured the effects of correcting the MLA with LDT on athletic or plyometric performance. Therefore, this study aims to investigate the use of LDT to correct the MLA of recreational basketball athletes with overpronation, and investigate its effect on drop jump (including RSI) and CMJ performance, and lower extremity muscle activity during a bilateral squat.

Methods
Experimental approach to the problem
This study investigated how the application of LDT to correct overpronation effect on drop jump (including RSI) and CMJ performance, and lower extremity muscle activity during a bilateral squat. Participants performed all tests after non-taped (NT) and taped (TAP) conditions as a repeated crossover study design. All tests were completed in one day to maximize reliability [3]. Participants received treatment conditions (NT and TAP) in a counterbalanced order and completed tests as follows 1) drop jump, 2) CMJ and 3) bilateral squat with surface electromyography (sEMG). Muscles selected for surface EMG for the bilateral squat were superior gluteus maximus (SGMax), inferior gluteus maximus (IGMax), gluteus medius (GM), and tibialis anterior (TA). Participants were prescribed 5-minutes of rest after completing each test and another 30-minute rest was given between two conditions (NT and TAP).

Subjects. Twelve collegiate male recreational basketball players (age: 21.4±2.4 years [range: 19–28 years]; height: 174.5±8.2 cm; body fat: 12.4±3.6%) participated in this study. The inclusion criteria included: 1) a minimum of three years of basketball training experience (at least twice per week); 2) navicular drop (ND) ≥10 mm regarded as overpronation and; 3) body fat ≤17.5% for optimum sEMG signal. Participants with recent lower limb injury (within 12 months) or health conditions that could affect their performance or completion of this study, ND value ≤9 mm, and body fat >17.5% were not recruited. All participants completed a PAR-Q and informed consent form, and all experimental risks and benefits were disclosed. All participants passed an allergy test by putting adhesive rigid tape on the left ankle for at least 24 hours to ensure no adverse reactions. Participants were required to wear their competitive basketball shoes. This study was approved by the Human Research Ethics Committee.

Procedures. Warm-up. Before each performance test, a standardized dynamic warm-up protocol was used to increase body temperature and readiness of participants [25]. This included 30-seconds jogging, 30-seconds butt kick, 15 lunges on each leg, and 30 jumping jacks.

Navicular drop test. ND test procedures were adapted from Vinicombe et al. [26], which showed good intra-rater reliability with intraclass correlation coefficients (ICCs) between 0.94
to 0.96 [27, 28]. Participants placed their feet flat on the ground in a standing position and the navicular tuberosity was marked. To locate the ND value, participants stood naturally with weight evenly distributed on both feet, a blank card was placed perpendicular to the supporting surface against the navicular tuberosity, and the height of navicular tuberosity of the natural standing position was marked on the card. The subtalar joint neutral position was determined by putting the index finger and thumb on the medial and lateral aspects of the talus bone to palpate the talar head congruency and adjust the talar alignment until the neutral stance position was confirmed. The height of the navicular tuberosity in a neutral standing position was marked so the distance between two marks was measured as the ND value (Fig 1).

Low-dye taping. A standard LDT protocol was used to apply tape on participants’ feet [14, 29]. Participants washed and dried their feet before starting any taping procedure. Thereafter participants placed the foot over the edge of a plinth in a supine lying position, where a strip of 3.8-cm wide zinc oxide latex-free adhesive rigid tape (Strappal, BSN Medial, Hamburg, Germany) was applied from the lateral aspect of the head of the fifth metatarsal and ran around the posterior part of the calcaneus to the medial aspect of the head of the first metatarsal as the anchor. Three to five strips (depending on foot size) of rigid tape were applied from the lateral to the medial border of the foot, with the first strip starting from the plantar region of the
forefoot proximal to the metatarsal heads. Each subsequent strip of tape overlapped the distal piece of tape by approximately half the width until the final strip was at the bottom of the ankle joint. High tension was applied when each strip was pulled to the medial border of the midfoot to support the longitudinal arch. An additional strip of tape was applied similar to the first strip to further secure all previous strips adhered (Fig 2). The administrator verbally checked whether participants were comfortable after putting on shoes to confirm the completion of taping procedures.

Drop jump test. To assess the RSI, participants performed drop jumps (DJ) from a 40 cm platform, which is a reliable height demonstrating low typical error in RSI (coefficient of variation = 3%; ICC = 0.95) and jump height (coefficient of variation = 2.8%; ICC = 0.98) variables [30]. A stiff-legged technique was adopted due to yielding higher RSI values with decreased ground contact time [31]. A contact mat connected to Kinematic Measurement System (KMS) (Version 2014.1.2, Fitness Technology, Australia) software was used to measure RSI, which was calculated by dividing flight time by ground contact time. Participants held their pelvis with palms and index fingers touching the anterior superior iliac spine (ASIS) to minimize arm swinging (Fig 3). Two practice trials were given before testing. Participants performed three drop jump trials with maximum effort, followed by 120-second rest. To standardize drop jump performance, subjects were instructed as follows; to initiate the drop "step out" with one foot without any jumping motion, to maximize the RSI "jump as high and fast as possible while keeping knee as straight as possible" upon contact with the mat and "stay on the mat" upon second landing to avoid any errors collecting data [30]. The highest RSI value of the three trials was used for statistical analysis.

Countermovement jump. To measure vertical jump height, participants performed a CMJ without arm swing, which has shown ICCs between 0.87–0.99 [32]. Two retractable tape measures were taped on a smooth, flat, and vertical surface to form a 3 m measuring tape. Participants wore a headband with reflective markers placed on the bottom border to standardize all measurements. The baseline height of each participant was recorded in a natural standing position and at the point of the measuring tape adjacent to the bottom edge of the headband at the forehead region. To perform the CMJ participants were instructed to hold the pelvis with palms and index fingers touching their ASIS to minimize arm swinging, squat down to their preferred depth, then immediately jump as high as possible without any head tilt. Two practice trials were given, and participants performed 3 CMJ trials with maximum effort, followed by 120 seconds of rest [33]. A Casio Ex-100 camera (Casio Computer Co., Ltd, China) was set at the highest point achieved during practice jumps. Thereafter, slow motion video capture (240 frames per second) was used to determine the maximal jump height of each CMJ trial, which was calculated as the highest point adjacent to the reflective marker on the headband subtracted by the standing height of each subject (Fig 4).

Bilateral squat. Participants stood with feet shoulder-width apart and arms reaching forward with full elbow extension. Two practice trials were given, then participants performed three trials of squat with 2 seconds eccentric (down) and 2 seconds concentric (up) tempo, controlled by an electronic metronome. Thighs were required to reach parallel to the floor at the lowest squatting position, which accurate judgment was supported by applying a strip of adhesive rigid tape between the greater trochanter and lateral epicondyle of the femur (Fig 5). One minute rest was prescribed between trials.

Surface electromyography. During each bilateral squat muscle activity of the SGMax, IGMx, GM, and TA were measured by a 16-channel Noraxon Myosystem 1400 surface EMG unit (Noraxon Inc, Arizona, USA) at a sample rate of 1000Hz. sEMG was measured using disposable sEMG silver-silver chloride (Ag/AgCl) electrodes of 57 mm in length and 35 mm in width with conductive wet gel inside (Blue Sensor T-00-S, Ambu Inc., Denmark). For each
Fig 2. The LD taping application.

https://doi.org/10.1371/journal.pone.0275178.g002
A pair of electrodes were placed with a center-to-center inter-electrode distance of 35 mm and secured with 3M™ Transpore™ surgical tape. Participants were required to shave the hair of the skin and clean it with an alcohol-soaked pad until the appearance of light redness to reduce skin impedance and optimize signal quality before electrode attachment [5].

Electrodes of the SGMax were placed superior and lateral to the line between the posterior superior iliac spine and the posterior greater trochanter, while the other two electrodes for IGMmax were attached inferior and medial to the same line [34]. TA electrodes were positioned at 1/3 of the distance on the line between the tip of the fibular head and medial malleolus while GM electrodes were fixed 1/3 of the distance between the greater trochanter and iliac crest [27, 35].
sEMG normalization. Before testing the bilateral squat, sEMG muscle activities of each muscle group being assessed were normalized using maximum voluntary isometric contraction (MVIC). The MVIC testing procedures were adopted from Kendall et al. The investigator applied manual resistance gradually until the maximum effort was attained by the participant and held for five seconds [36]. The MVIC tests of each muscle were repeated for three repetitions with one-minute rest between trials. The highest value of three repetitions was selected for further analysis. Consistent verbal encouragement was given to facilitate maximum effort throughout [35].

Data processing for sEMG. All raw data were processed with MyoResearch 3.8 software (Noraxon USA, Inc., Scottsdale, AZ) with full-wave rectified, band-pass filtered from 50 to 500 Hz, and smoothed via the root-mean-square (RMS) algorithm and 20-millisecond moving window. In the entire four seconds squat movement, the averaged peak activation of the initial two seconds of sEMG signals were regarded as the signals of eccentric (down) phase while the latter two seconds of sEMG signals were used to analyze the concentric (up) part of the squat.

Statistical analysis

All sEMG data were normalized as the percentage of MVIC (%MVIC) while mean values and SDs were calculated for all variables. Shapiro-Wilk test and visual inspection were applied to assess the normality of variables. The test-retest reliability was conducted with the ICC. Paired-sample t-tests with a significance level of <0.05 were calculated for variables between NT and TAP conditions. Non-clinical magnitude-based decision (MBD) and precision of estimation were used to assess differences between taped and non-taped conditions, via respective 90% confidence intervals and the standardized effect (mean difference divided by standardized unit as Cohen’s d). The smallest worthwhile difference was set at 0.2 and according to Hopkins et al. [37], thresholds for the magnitudes of effects were: 0.2, small; 0.6, moderate; 1.2, large; 2.0, very large; and 4.0, extremely large. The effects were unclear if the respective 90%
confidence intervals crossed the thresholds of the effect being substantially positive and negative by >5%. Otherwise, the effect was deemed clear with the percentage likelihood of effects being substantially negative, trivial, and substantially positive observed, and the associated qualitative inference was concluded. The probabilistic terms for classifying likelihood values were as follows: <0.5%, almost certainly not; 0.5%–5% very unlikely; 5%–25% unlikely; 25%–75% possibly; 75%–95% likely; 95%–99.5% very likely; >99.5% almost certainly [37]. All statistical analyses were conducted with RStudio software (version 1.2.5001; open-source program).

Results
All data were normally distributed (p>0.05). All tests showed good to excellent test-retest reliability (ICC: 0.75 to 0.97) except RSI in the NT condition (ICC = 0.61), eccentric sEMG value of IGMax in NT, SGMax, IGMax, and GM in TAP conditions (ICC: 0.52 to 0.70. The paired t-test indicated that the ND value after TAP was significantly lower than that of NT condition (p<0.01) (see Table 1). Paired t-tests showed that contact time after TAP condition was
significantly lower than that of NT (p = 0.041) while RSI of TAP condition was significantly higher (p < 0.01). The sEMG in terms of %MVIC of all muscles between NT and TAP conditions were shown no significant difference (p > 0.05) (Table 2).

The MBD results are presented in Figs 6 to 8, which shows when compared with NT, TAP provided a large effect on ND (standardized effect: -1.54 ± 0.24), small effect on flight time (standardized effect: 0.24 ± 0.30), small effect on contact time (standardized effect: -0.27 ± 0.21), moderate effect on RSI (standardized effect: 0.69 ± 0.35) and small effect on eccentric activities of IGMax (standardized effect: 0.23 ± 0.35), GM (standardized effect: 0.26 ± 0.29) and TA (standardized effect: 0.22 ± 0.06).

Discussion

Findings of this study revealed that LDT was effective in elevating the ND height for participants with overpronated feet, which was in line with the results from Holmes et al. [22]. Since the ND assesses the subtalar position [14, 22], the increase of ND height for people with dropped MLA, can therefore be considered “closer to subtalar neutral”. Although the current study did not measure the change of plantar pressure, Lange et al. [14] have demonstrated the successful reduction of medial plantar pressure during walking after applying LDT. Similar findings on improving medial heel or plantar pressure during other walking tasks, drop jumps and single leg squats were also reported recently [38, 39]. It is speculated if the enhanced drop

Table 1. Comparison between non-taped (NT) and taped (TAP) conditions in performance measures.

Variables	NT	TAP	Difference (TAP—NT)	d	p
Navicular drop (mm)	13.71 ± 2.73	9.03 ± 2.90	-4.68 ± 0.42	-1.54	0.001†
Countermovement jump (cm)	45.20 ± 7.06	45.00 ± 6.03	-0.13 ± 0.63	-0.02	0.837
Flight time of drop jump (ms)	439 ± 39.00	448 ± 33.6	9.50 ± 6.53	0.24	0.174
Contact time of drop jump (ms)	206 ± 30.9	197 ± 33.5	-9.33 ± 4.03	-0.27	0.041†
Reactive strength index	2.00 ± 0.24	2.22 ± 0.35	0.22 ± 0.06	0.69	0.005†

NT = non-taped; TAP = taped; Effect size was adjusted for small sample size.
†Significant difference between NT and TAP conditions.

https://doi.org/10.1371/journal.pone.0275178.t001

Table 2. Muscle activities between NT and TAP conditions (%MVIC)^.

Variables	NT	TAP	Difference (TAP—NT)	d	p
ECCENTRIC					
SGMax	6.19 ± 5.21	6.99 ± 7.24	0.8 ± 0.68	0.12	0.268
IGMax	2.59 ± 1.30	2.96 ± 1.73	0.38 ± 0.32	0.23	0.266
GM	6.5 ± 1.83	7.17 ± 2.87	0.68 ± 0.42	0.26	0.135
TA	33 ± 15.70	36.8 ± 15.9	3.74 ± 2.70	0.22	0.193
CONCENTRIC					
SGMax	13.2 ± 5.49	12.8 ± 5.3	-0.46 ± 0.80	-0.08	0.577
IGMax	10.3 ± 3.45	10.4 ± 3.9	0.1 ± 0.45	0.03	0.825
GM	10.8 ± 4.76	11.3 ± 4.08	0.44 ± 0.67	0.09	0.528
TA	27.4 ± 14.6	30.3 ± 20.1	2.95 ± 2.95	0.16	0.339

*MVIC = maximum voluntary isometric contraction; SGMax = superior gluteus maximus; IGMax = inferior gluteus maximus; GM = gluteus medius; TA = tibialis anterior;
NT = non-taped; TAP = taped;
**Effect size was adjusted for small sample size.

https://doi.org/10.1371/journal.pone.0275178.t002
jump performance and muscle activity in our study are partly attributed to such plantar pressure change in our TAP condition. Further studies in this regard providing the full picture of the mechanism of how LDT potentially improves drop jump performance are warranted.

One of the important muscles to maintain subtalar stability and MLA during weight-bearing activities is the TA, which contributes to ankle dorsiflexion, deceleration of subtalar eversion, and resisting foot pronation [36, 40]. Participants with excessive foot pronation performing bilateral stability or squatting tasks without LDT may have decreased foot stability, causing higher demands on the TA to resist foot pronation [40]. Findings from Denyer et al. [41] study found no difference in TA activity during a bilateral standing task on a tilting
platform among individuals with excessive pronation, supination, or neutral foot structures. Despite different movement patterns, the present study demonstrated contrasting results, showing a small increase of TA activation during the eccentric (down) phase of a bilateral squat after LDT application. Performing bilateral weight-bearing tasks such as standing or squatting increased medial-lateral stability, when compared to single-leg tasks. Therefore, it is believed that additional demand on TA to maintain frontal plane stability was not needed for individuals who have a lowered MLA \[42\]. During the eccentric (down) phase of a squat, the TA is recruited for initiating ankle dorsiflexion and maintaining anterior-posterior stability. Excessive foot pronation without LDT support puts the TA in a lengthened position, which may decrease force production and subsequent muscle activation \[43\]. Similarly, in this study, small increases in IGMax and GM muscle activation were observed in the TAP condition during the eccentric (down) phase of a squat. The primary functions of IGMax and GM include hip external rotation and hip abduction, respectively. It is believed that squatting with overpronated feet could potentially increase the hip and knee internal rotation, and hence lengthen IGMax and GM muscles leading to decreased EMG signal \[43\], therefore, rectifying ND with LDT may promote foot supination, and tibial and hip external rotation \[6, 7\], and subsequently increase muscle activities by normalizing the length of the IGMax, GM, and TA.

When evaluating CMJ performance, the present findings showed no significant difference and trivial effects after using LDT. This is consistent with a recent study using foot orthoses to limit subtalar eversion and foot pronation in basketball players with or without flat feet. In their study, since only the lower limb biomechanics was altered but not the vertical jump performance \[44\], it was attributed to the stationary CMJ position and leading to only high reliance on the forefoot in push-off whereas other dynamic locomotions such as running and hopping have considerable midfoot and rearfoot motions. Moreover, as CMJ relies on explosive force production through triple extension (i.e., hip extension, knee extension, and ankle plantarflexion), only altering force production capabilities and kinematics in those relevant regions may affect the jumping performance \[45\]. However, our LDT was presumed to have no effect on the hip, knee, and ankle (talocrural joint) range of motion, meanwhile, a recent
study also proposed that the effect of only limiting inter-tarsal joints motion with LDT on vertical stiffness and hopping performance was insignificant [46]. In this study, although a small increase in IGMax, GM, and TA was observed during a slow-paced bilateral squat, such small beneficial changes induced by LDT were possibly inadequate to provide any visible kinetic or kinematic changes that would be reflected through CMJ performance.

Regarding the drop jump performance, results from this study showed a significant and moderate increase in RSI, a small decrease in contact time, and a small increase in flight time. Although stiff-legged drop jumps limit hip and knee flexion during the landing phase, they provide similar EMG muscle activation to a soft-legged technique [31]. Therefore, it is postulated that the small increase in IGMax, GM, and TA muscle activity observed in the eccentric (down) phase of the bilateral squat exercise in TAP condition, may also occur during the squatting motion in the landing phase of a drop jump. Interestingly, Struzik et al., [46] recently demonstrated no significant change in vertical ankle stiffness and hopping performance before and after LDT application on healthy basketball players. Without observing the actual change in vertical stiffness, we also assumed vertical stiffness was maintained in both ND and TAP conditions in our study. However, their study did not mention the foot alignment of the subjects and also the change of foot pronation before and after LDT application, therefore it is inconclusive regarding the relationship between frontal foot stability and hopping performance. In this regard, Porter et al., [47] suggested that faster transitions between the eccentric landing phase and concentric jumping phase (i.e., amortization phase) could reduce the loss of elastic energy, and subsequently improve jumping performance and RSI scores. A potentially shortened amortization phase and faster ground contact time observed in this study could be explained through the additional support and rigidity of the subtalar and inter-tarsal joints with LDT. However, such proposed benefits were not observed in our CMJ test and we believe that, during the slow SSC task, the vertical jump performance is mostly dependent on the hip, knee, and ankle (talocrural joint) kinematics, and the vertical stiffness while the foot frontal plane stability and the force transmission efficiency in the amortization phase on the foot region, in such a jumping task with long duration, has become insignificant and negligible.

The present study is not without limitations. Since the force production, plantar pressure, and lower extremity joint angles during jumping tasks were not measured, the actual effects of LDT on foot functions, lower limb posture and kinematics, and the force output were not fully understood. To measure the actual CMJ value, our study has adopted a novel method using a video clip to observe the true jump height, however, this method has not been validated and compared with other recognized devices such as force plate or 3D measured displacement. Moreover, only sEMG activities of the slow unloaded squatting task were observed. Future research could measure the impact of LDT on the kinematics and joint angles achieved at the hip, knee, and ankle, as well as force output and EMG activities during the vertical jump and landing tasks. Additionally, investigating the change in plantar pressure, the center of balance, and the EMG activity of foot and ankle muscles during forefoot drop landing with or without LDT would add value to this field of research. Furthermore, our study did not measure the comfort level in NT and TAP conditions and therefore, the degree of impact from such factor on performance and muscle activity were not understood.

Practical applications

This study provides provisional evidence on the changes in lower extremity muscle activities during bilateral squat and jumping performance when using LDT on overpronated feet. Our findings offer conditioning coaches and therapists alternate techniques to potentially correct the foot alignment and enhance the fast SSC performance in drop jump without decreasing
the slow SSC performance in CMJ. Furthermore, it may give some benefits to the muscle activation of the gluteal group during squat-related activities.

Supporting information
S1 Data.
(XLSX)

Acknowledgments
The implementation of this research project was assisted by a group of year 4 sports therapy students. We especially thank Genie Tong, Kipper Lam, and Stan Chan for data collection.

Author Contributions
Conceptualization: Indy M. K. Ho, Natalia C. Y. Yeung.
Data curation: Natalia C. Y. Yeung.
Formal analysis: Indy M. K. Ho.
Investigation: Indy M. K. Ho, Natalia C. Y. Yeung.
Methodology: Indy M. K. Ho, Natalia C. Y. Yeung.
Project administration: Natalia C. Y. Yeung.
Software: Indy M. K. Ho.
Supervision: Indy M. K. Ho, Anthony Weldon, Jim T. C. Luk.
Validation: Indy M. K. Ho, Anthony Weldon, Jim T. C. Luk.
Visualization: Indy M. K. Ho.
Writing – original draft: Indy M. K. Ho, Anthony Weldon, Natalia C. Y. Yeung, Jim T. C. Luk.
Writing – review & editing: Indy M. K. Ho, Anthony Weldon, Jim T. C. Luk.

References
1. Lee SY, Hertel J. Effect of static foot alignment on plantar-pressure measures during running. J Sport Rehabil. 2012; 21:137–143. https://doi.org/10.1123/jsr.21.2.137 PMID: 22100503
2. Senadheera VV, Nawagamuwa BM, Nidhya K, et al. Prevalence and associated factors of flatfoot among 6 to 10 aged children in central province of Sri Lanka. Int. J. Physiother. 2016; 3:310–315.
3. Aenumulapalli A, Kulkarni MM, Gandotra AR. Prevalence of flexible flat foot in adults: a cross-sectional study. J Clin Diagn Res. 2017; 11: AC17–AC20. https://doi.org/10.7860/JCDR/2017/26566.10059 PMID: 28764143
4. Michelson JD, Durant DM, McFarland E. The Injury Risk Associated with Pes Planus in Athletes. Foot Ankle Int. 2002; 23:629–633. https://doi.org/10.1177/107110070202300708 PMID: 12146774
5. Konrad P. The ABC of EMG: a practical introduction to kinesiological electromyography. Noraxon Inc. USA, 2005:1–61.
6. Chinn L, Hertel J. Rehabilitation of ankle and foot injuries in athletes. Clin Sports Med. 2010; 29:157–167. https://doi.org/10.1016/j.crm.2009.09.006 PMID: 19945591
7. Khamis S, Dar G, Peretz C, et al. The relationship between foot and pelvic alignment while standing. J. Hum. 2015; 46:85–97. https://doi.org/10.1515/hukin-2015-0037 PMID: 26240652
8. Hollman JH, Ginos BE, Kozuchowski J, et al. Relationships between knee valgus, hip-muscle strength, and hip-muscle recruitment during a single-limb step-down. J Sport Rehabil. 2009; 18:104–117. https://doi.org/10.1123/jsr.18.1.104 PMID: 19321910
9. Lubahn AJ, Kernozek TW, Tyson TL, et al. Hip muscle activation and knee frontal plane motion during weight bearing therapeutic exercises. *Int J Sports Phys Ther.* 2011; 6:92–103. PMID: 21713231

10. Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. *Am J Sports Med.* 2006; 34:299–311. https://doi.org/10.1177/0363546505284183 PMID: 16423913

11. Verbruggen LA, Thompson MM, Durall CJ. The Effectiveness of Low-Dye Taping in Reducing Pain Associated With Plantar Fasciitis. *J Sport Rehabil.* 2018; 27:94–98. https://doi.org/10.1123/jsr.2016-0030 PMID: 27705070

12. Constantinou M, Brown M. *Therapeutic taping for musculoskeletal conditions.* Sydney, Australia: Churchill Livingstone, 2010.

13. Vicenzino B, Franetovich M, McPoil T, et al. Initial effects of anti-pronation tape on the medial longitudinal arch during walking and running. *Br J Sports Med.* 2005; 39:939–943. https://doi.org/10.1136/bjsm.2005.019158 PMID: 16306503

14. Lange B, Chipchase L, Evans A. The effect of Low-Dye taping on plantar pressures, during gait, in subjects with naviculardrop exceeding 10 mm. *J Orthop Sports Phy Ther.* 2004; 34:201–9. https://doi.org/10.2519/jospt.2004.34.4.201 PMID: 15128190

15. Landorf K, Radford JA, Keenan A, et al. Effectiveness of low-dye taping for short-term management of plantar fasciitis. *J Am Podiatr Med Assoc.* 2005; 95:525–30.

16. Hicks JH. The mechanics of the foot, II: the plantar aponeurosis and the arch. *J Anat* 1954; 88:25–30.

17. Bolgla LA, Malone TR. Plantar fasciitis and the windlass mechanism: a biomechanical link to clinical practice. *J Athl Train.* 2004; 39:77–82. PMID: 16598682

18. Cote KP, Brunet ME, Ganskeer DD, et al. Effects of pronated and supinated foot postures on static and dynamic postural stability. *J Athl Train.* 2005; 40:41–46. PMID: 15902323

19. Flanagan EP, Comyns TM. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. *Strength Cond J.* 2008; 30:32–38.

20. Maloney SJ, Fletcher IM. Lower limb stiffness testing in athletic performance: a critical review. *Sports Biomech.* 2018; 16:1–22. https://doi.org/10.1080/14763141.2018.1460395 PMID: 29768094

21. Harradine P, Herrington L, Wright R. The effect of Low Dye taping upon rearfoot motion and position before and after exercise. *J Oral Maxillofac Surg.* 2001; 11:57–60.

22. Holmes CF, Wilcox D, Fletcher JP. Effect of a modified, Low-Dye medial longitudinal arch taping procedure on the subtalar joint neutral position before and after light exercise. *J Orthop Sports Phy Ther.* 2002; 32:194–201. https://doi.org/10.2519/jospt.2002.32.5.194 PMID: 12014823

23. Keenan AM, Tanner CM. The Effect of High-Dye and Low-Dye taping on rearfoot motion. *J Am Podiatr Med Assoc.* 2001; 91:255–261. https://doi.org/10.7547/87507315-91-5-255 PMID: 11359891

24. Radford JA, Landorf KB, Buchbinder R, et al. Effectiveness of Low-Dye taping for the short-term treatment of plantar heel pain: A randomised trial. *BMC Musculoskeletal Disord.* 2006; 7:64. https://doi.org/10.1186/1471-2474-7-64 PMID: 16895612

25. Roden D, Lambson R, DeBeliso M. The effects of a complex training protocol on vertical jump performance in male high school basketball players. *J Sports Sci.* 2014; 2:21–26.

26. Vinicombe A, Rasovic A, Menz H. Reliability of navicular displacement measurement as a clinical indicator of foot posture. *J Am Podiatr Med Assoc.* 2001; 91:262–268. https://doi.org/10.7547/87507315-91-5-262 PMID: 11359892

27. Jeong S, Cynn H, Lee J, et al. Effect of modified clamshell exercise on gluteus medius, quadratus lumborum and anterior hip flexor in participants with gluteus medius weakness. *J Korean Soc Phys Med.* 2019; 14:9–19.

28. O’Sullivan K, Kennedy N, O’Neill E, et al. The effect of Low-Dye taping on rearfoot motion and plantar pressure during the stance phase of gait. *BMC Musculoskeletal Disord.* 2008; 9:111. https://doi.org/10.1186/1471-2474-9-111 PMID: 18710520

29. Russo S, Chipchase L. The effect of Low Dye taping on peak plantar pressures of normal feet during gait. *Aust J Physiother.* 2001; 47:239–244. https://doi.org/10.1016/s0004-9514(14)60271-3 PMID: 11722292

30. Markwick WJ, Bird SP, Tufano JJ, et al. The intraday reliability of the reactive strength index calculated from a drop jump in professional men’s basketball. *Int J Sport Physiol. Journal* 2015; 10:482–488. https://doi.org/10.1123/ijsspp.2014-0265 PMID: 25394213

31. Guy-Cherry D, Alanazi A, Miller L, et al. Landing styles influences reactive strength index without increasing risk for injury. *Sports Med Int Open.* 2018; 2:E35–E40. https://doi.org/10.1055/a-0608-4280 PMID: 30591115
32. Richman ED, Tyo BM, Nicks CR. Combined Effects of Self-Myofascial Release and Dynamic Stretching on Range of Motion, Jump, Sprint, and Agility Performance. *J Strength Cond Res*. 2018; 33:1795–1803.

33. Kipp K, Kiely MT, Geiser CF. Reactive strength index modified is a valid measure of explosiveness in collegiate female volleyball players. *J Strength Cond Res*. 2016; 30:1341–7. https://doi.org/10.1519/JSC.0000000000001226 PMID: 27494053

34. Selkowitz DM, Beneck GJ, Powers CM. Comparison of electromyographic activity of the superior and inferior portions of the gluteus maximus muscle during common therapeutic exercises. *J Orthop Sports Phy Ther*. 2016; 46:794–799. https://doi.org/10.2519/jospt.2016.6493 PMID: 27494053

35. Sacco IC, Gomes AA, Otuzi ME, et al. A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions. *J Neurosci Methods*. 2009; 180:133–137. https://doi.org/10.1016/j.jneumeth.2009.02.017 PMID: 19427540

36. Kendall FP, McCreary EK, Provance PG, et al. *Muscles testing and function with posture and pain*. 5th ed. Baltimore, MD: Lippincott Williams and Wilkins, 2005.

37. Hopkins WG, Marshall SW, Batterham AM, et al. Progressive statistics for studies in sports medicine and exercise science. *Med Sci Sports Exerc*. 2009; 41:3–13. https://doi.org/10.1249/MSS.0b013e31819b5ecb PMID: 19092709

38. Huang YP, Peng HT, Wang X, Chen ZR, Song CY. The arch support insoles show benefits to people with flatfoot on stance time, cadence, plantar pressure and contact area. *PLoS One*. 2020; 15(8): e0237382. https://doi.org/10.1371/journal.pone.0237382 PMID: 32817709

39. Rathleff MS, Richter C, Brushej C, et al. Custom-Made Foot Orthoses Decrease Medial Foot Loading During Drop Jump in Individuals With Patellofemoral Pain. *Clin J Sport Med*. 2016; 26(4):335–337. https://doi.org/10.1097/JSM.0000000000000262 PMID: 26509568

40. Murley GS, Menz HB, Landorf KB. Foot posture influences the electromyographic activity of selected limb muscles during gait. *J Foot Ankle Res*. 2009; 2:35.

41. Denyer JR, Hewitt NLA, Mitchell ACS. Foot structure and muscle reaction time to a simulated ankle sprain. *J Athl Train*. 2013; 48:326–330. https://doi.org/10.4085/1062-6050-48.2.15 PMID: 23675791

42. Kurz E, Faude O, Roth R, et al. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors. *Eur J Appl Physiol*. 2017; 118:239–247. https://doi.org/10.1007/s00421-017-3764-0 PMID: 29188450

43. Worrell TW, Karst G, Adamczyk D, et al. Influence of Joint Position on Electromyographic and Torque Generation During maximal Voluntary Isometric Contractions of the Hamstrings and Gluteus Maximus Muscles. *J Orthop Sports Phy Ther*. 2001; 31:730–740. https://doi.org/10.2519/jospt.2001.31.12.730 PMID: 11767248

44. Ho M, Kong PW, Chong LJ, Lam WK. Foot orthoses alter lower limb biomechanics but not jump performance in basketball players with and without flat feet. *J Foot Ankle Res*. 2019; 12:24. https://doi.org/10.1186/s13047-019-0334-1 PMID: 3104012

45. McMahon JJ, Murphy S, Rej SJE et al. Countermovement-Jump-Phase Characteristics of Senior and Academy Rugby League Players. *Int J Sport Physiol Journal*. 2017; 12:803–811. https://doi.org/10.1123/ijssp.2016-0467 PMID: 27918658

46. Struzik A, Stawarz M, Zawadzki J. The effect of low-Dye taping on hopping performance in handball players. *Acta Bioeng Biomech*. 2020; 22(3):3–8. PMID: 33518734

47. Porter GK Jr, Kaminski TW, Hatzel B, et al. An examination of the stretch-shortening cycle of the dorsiflexors and extensors in uninjured and functionally unstable ankles. *J Athl Train*. 2002; 37:494–500. PMID: 12937573