Role of the promyelocytic leukaemia protein in cell death regulation

P Salomoni*1, M Dvorkina1 and D Michod1

The promyelocytic leukaemia gene PML was originally identified at the t(15;17) translocation of acute promyelocytic leukaemia, which generates the oncogene PML-retinoic acid receptor α. PML epitomises a subnuclear structure called PML nuclear body. Current models propose that PML through its scaffold properties is able to control cell growth and survival at many different levels. Here we discuss the current literature and propose new avenues for investigation.

Abbreviations: APL, acute promyelocytic leukaemia; CML, chronic myeloid leukaemia; DLCL, diffuse large cell lymphomas; ER, endoplasmic reticulum; FL, follicular lymphomas. Other studies have shown that PML expression is altered in many solid tumours. In this respect, the study by Gurrieri et al.11 showed that PML expression is absent in 17% of colon adenocarcinomas, 21% of lung tumours, 27% of prostate adenocarcinomas, 31% of breast adenocarcinomas, 49% of CNS tumours (100% medulloblastomas and over 90% oligodendrogial tumours), 49% of germ cell tumours and 68% of non-Hodgkin’s lymphomas (83% DLCL and 77% follicular lymphomas). Other studies have shown that PML expression

1Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
*Corresponding author: P Salomoni, Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6BT, UK. Tel: +44 20 769 0720; Fax: +44 20 769 6643; E-mail: p.salomoni@cancer.ucl.ac.uk
Keywords: Snail; HNF4α; miR-200; miR-34a; stemness

Received 26.9.11; revised 03.10.11; accepted 03.10.11; Edited by G Melino

Review

Role of the promyelocytic leukaemia protein in cell death regulation

P Salomoni*1, M Dvorkina1 and D Michod1

The promyelocytic leukaemia gene PML was originally identified at the t(15;17) translocation of acute promyelocytic leukaemia, which generates the oncogene PML-retinoic acid receptor α. PML epitomises a subnuclear structure called PML nuclear body. Current models propose that PML through its scaffold properties is able to control cell growth and survival at many different levels. Here we discuss the current literature and propose new avenues for investigation.

Abbreviations: APL, acute promyelocytic leukaemia; CML, chronic myeloid leukaemia; DLCL, diffuse large cell lymphomas; ER, endoplasmic reticulum; FL, follicular lymphomas. Other studies have shown that PML expression is altered in many solid tumours. In this respect, the study by Gurrieri et al.11 showed that PML expression is absent in 17% of colon adenocarcinomas, 21% of lung tumours, 27% of prostate adenocarcinomas, 31% of breast adenocarcinomas, 49% of CNS tumours (100% medulloblastomas and over 90% oligodendrogial tumours), 49% of germ cell tumours and 68% of non-Hodgkin’s lymphomas (83% DLCL and 77% follicular lymphomas). Other studies have shown that PML expression

1Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
*Corresponding author: P Salomoni, Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6BT, UK. Tel: +44 20 769 0720; Fax: +44 20 769 6643; E-mail: p.salomoni@cancer.ucl.ac.uk
Keywords: Snail; HNF4α; miR-200; miR-34a; stemness

Received 26.9.11; revised 03.10.11; accepted 03.10.11; Edited by G Melino

Review

Role of the promyelocytic leukaemia protein in cell death regulation

P Salomoni*1, M Dvorkina1 and D Michod1

The promyelocytic leukaemia gene PML was originally identified at the t(15;17) translocation of acute promyelocytic leukaemia, which generates the oncogene PML-retinoic acid receptor α. PML epitomises a subnuclear structure called PML nuclear body. Current models propose that PML through its scaffold properties is able to control cell growth and survival at many different levels. Here we discuss the current literature and propose new avenues for investigation.

Abbreviations: APL, acute promyelocytic leukaemia; CML, chronic myeloid leukaemia; DLCL, diffuse large cell lymphomas; ER, endoplasmic reticulum; FL, follicular lymphomas. Other studies have shown that PML expression is altered in many solid tumours. In this respect, the study by Gurrieri et al.11 showed that PML expression is absent in 17% of colon adenocarcinomas, 21% of lung tumours, 27% of prostate adenocarcinomas, 31% of breast adenocarcinomas, 49% of CNS tumours (100% medulloblastomas and over 90% oligodendrogial tumours), 49% of germ cell tumours and 68% of non-Hodgkin’s lymphomas (83% DLCL and 77% follicular lymphomas). Other studies have shown that PML expression

1Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
*Corresponding author: P Salomoni, Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6BT, UK. Tel: +44 20 769 0720; Fax: +44 20 769 6643; E-mail: p.salomoni@cancer.ucl.ac.uk
Keywords: Snail; HNF4α; miR-200; miR-34a; stemness

Received 26.9.11; revised 03.10.11; accepted 03.10.11; Edited by G Melino
PML Function(s)

PML has been proposed to transduce various growth suppressive signals. Several studies have implicated PML in the regulation of cellular senescence and programmed cell death. Most of them focused on PML nuclear splice variants,22 but it is becoming clear that cytoplasmic localisation of PML can affect growth suppression and cell death. This review will focus on the role of PML in cell death control and will discuss the impact of most recent discoveries in the field.

PML and death receptors. PML has been shown to regulate apoptosis induced by FAS ligand (FASL) and tumour necrosis factor (TNF) α, which are key regulators of immunity and inflammation.23–27 In particular, PML-deficient lymphocytes show decreased cell death following treatment with FASL.28 Furthermore, bone marrow cells from PML−/− animals are resistant to TNFα treatment. In both cases, this correlates with decreased caspase activation. It is worth noting that PML has been shown to regulate cell death in a caspase-independent manner, thus suggesting that its role is not confined to caspase-dependent cell death.29 Finally, PML role is not limited to FASL and TNF, as it has been shown to potentiate interferon α-triggered cell death through induction of TRAIL,30 a death receptor expressed in cancer cells.31–37

PML and pro-apoptotic transcription factors. More recent studies have shown that PML regulates the tumour suppressor p53, a major regulator of apoptosis.38–40 In particular, it controls p53 degradation through the inhibition of Mdm2, which is the major p53 E3 ubiquitin ligase.41–45 This function appears to be in part PML-NB independent and occurs through sequestration of Mdm2 into nucleoli, thus promoting p53 activation upon DNA damage.41 The PML-interacting protein DAXX46,47 has been shown to control p53 ubiquitylation by inhibiting MDM2 degradation.48,49 PML can also control p53 by promoting its acetylation50 and phosphorylation at multiple residues.53,51–53 C-terminal isoforms have been shown to negatively regulate PML function,54 thus suggesting that balance between nuclear and cytoplasmic isoforms could dictate the response to growth suppressive signals. PML can also regulate DNA damage response in a p53-independent manner. In this respect, PML is under the control of the ATM/Chk2 pathway for induction of cell death upon genotoxic stress.55,56 Finally, PML has been shown to regulate cell death induced by HIV infection.57 In particular, PML transduces ATM/p53-dependent pro-apoptotic signals in HIV-induced syncytia.58,59 Overall, these findings indicate that PML can regulate p53 function by acting at different levels of the p53 pathway. It remains to be established whether these different regulatory routes are stimulus- and/or tissue-specific.

PML regulates the function of other members of the p53 family. In this respect, PML has been shown to inhibit the degradation of the p53 family member p73.65–67 More recent studies have further dissected the functional consequences of PML/p73 interaction.58–71 Notably, the shorter, growth-potentiating isoform ΔN-p73 is regulated by the APL oncogene PML-RARα, thus adding another level of complexity.72 Finally, PML is known to regulate the remaining member of the family, p63,75–80 which has a key role in development and homeostasis of different epithelia.81

PML interacts also with c-Jun upon UV irradiation, and modulates its pro-apoptotic function through c-Jun-N-terminal kinase (JNK)-dependent phosphorylation.82 a pathway implicated in the regulation of apoptosis.67,83–85 UV causes dramatic PML-NB reorganisation, which leads to formation of multiple microspeckles positive for both phosphorylated c-Jun and PML.82 Interestingly, DAXX has been shown to regulate JNK in human fibroblasts,46 thus suggesting that PML could regulate the JNK/c-Jun pathway via DAXX.

PML, PTEN and AKT. Recent evidence has implicated PML in the regulation of the PI-3K pathway at multiple levels.86 This work predominantly comes from the Pandolfi’s group. First, PML has been shown to promote PTEN nuclear localisation by affecting its interaction with HAUSP and its ubiquitylation status.87 Second, PML is able to inhibit Akt function by promoting its PP2A-dependent dephosphorylation.88 Notably, we have shown that PML interacts with another phosphatase PP1, and promotes PP1-dependent dephosphorylation of retinoblastoma protein (pRb) in neural stem cells.89 Finally, PML directly interacts with mTOR and induces its localisation to the PML-NBs, thus inhibiting its function. Taken together, these findings indicate that PML has an important role in regulation of the PI-3K pathway. In this respect, PML has been shown to regulate the intracellular degradation mechanism autophagy,90–103 which is negatively regulated by mTOR, and has been implicated in cancer development and longevity. It is
PML and transforming growth factor (TGF) β. TGFβ is known to control key tumour suppressive functions in normal cells, whereas in cancer cells it has been proposed to bear pro-metastatic functions. 104,105 The group led by Pier Paolo Pandolfi has shown that in PML-deficient fibroblasts the response to TGFβ is blunted, with both senescence and apoptosis being severely impaired.106 Surprisingly, this effect was mainly caused by loss of PML cytoplasmic isoforms (cPML). In particular, cPML regulates endosomal trafficking of TGFβ receptors by promoting the association of Smad2/3 and Smad anchor for receptor activation. Interestingly, this pathway can be modulated by nuclear retention of cPML via a mechanism involving TG-interacting factor (TGIF) and c-Jun.107,108 In turn, TGIF is inhibited by PML competitor for TGIF association (PCTA), thus activating cPML tumour suppressive function.108 A recent study has demonstrated that the nuclear corepressor SnoN, a known regulator of TGFβ, controls p53 stabilisation via interaction with PML and PML-NBs and independent of Smads.109 This study suggests that nuclear PML is also involved in regulation of the TGFβ pathway. Further research efforts are needed to fully dissect the role of different PML isoforms in regulation of this pathway.

PML and the endoplasmic reticulum. A very recent study from Pandolfi’s group has proposed a novel role for PML in the cytoplasm.110,111 PML appears enriched at the endoplasmic reticulum and at the mitochondria-associated membranes, which constitute ER-to-mitochondria communication sites involved in transport of Ca2+ and induction of apoptosis.110–112 At these sites, PML interacts with the 1,4,5-triphosphate receptor (IP3R), AKT and PP2A. In the absence of PML, AKT-dependent phosphorylation of IP3R is increased, whereas Ca2+ release from the ER is impaired, resulting in blunted apoptosis. These data suggest that PML can affect both nuclear and cytoplasmic functions of AKT through its interaction with PP2A, thus promoting its inactivation and apoptosis induction. Mitochondria act as crucial regulators of cell death through a complex interplay of pro- and anti-apoptotic proteins associated with these organelles. The tumour suppressor p53 has been demonstrated to localise to mitochondria and promote apoptosis via regulation of BCL-2 family members.113–118 It is conceivable that PML could regulate p53 not only in the nucleus but also in mitochondria. Further studies are needed to address a potential functional interaction between PML and p53 in mitochondria, and the impact of this interaction on BCL-2 family members and apoptosis induction.

Overall, studies in the last few years indicate that PML, through interaction with PP1 and PP2A phosphatases in the nucleus and the cytoplasm, could affect key tumour suppressive (pRB, see below) and oncogenic pathways (AKT). It remains to be established whether the function of p53 and c-Jun could also be modulated by PML-mediated regulation of PP1 and/or PP2A (Figure 1). Finally, it is conceivable that PML itself could be a target for PP1 and/or PP2A-mediated dephosphorylation as part of a positive or negative feedback loop.

PML Function in Stem Cells: what is the Contribution of Cell Death Regulation?

PML has emerged as an important factor regulating stem cell function within multiple tissues. In particular, our work has shown that PML regulates neural stem cell (NSC) function during corticogenesis by a mechanism involving PP1 and pRB.89 In the bone marrow, PML loss affects self-renewal in haemopoietic stem cells (HSCs) potentially through its action on the mTOR pathway.12 Finally, PML regulates mammary gland development and its loss results in skewing of mammary progenitor subtypes.119,120 It is presently unclear whether the phenotypes caused by PML loss in these different tissues is in part due to alterations of cell death. For instance, increased NSC number in PML+/− cortices could be because of increased cycling as well as decreased cell death. Vice versa, reduction in neuronal numbers in PML-deficient cortices could be because of increased cell death following commitment of neural progenitors to neuronal fate. In the haemopoietic system, the increased proliferation of PML+/− committed progenitors could be caused by impaired cell death (Figure 2). Finally, altered cell death pathways could explain the increased generation of ERα− luminal progenitors in PML-deficient mammary glands.108,109

The last few years of PML research have produced fascinating results. However, the increasing complexity of PML function and its promiscuous interactions raise a number of key questions: (i) Are these interactions tissue- or context-specific? (ii) Does PML work differently in normal cells versus immortalised or transformed cells? (iii) How is the interplay between cPML and nuclear functions regulated? The field is in need of more refined mouse models, such as knockin and conditional knockouts, which will help addressing these important points.
Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements. We thank other members of Salomoni's lab for their support. Furthermore, we thank Pierluigi Nicotera (DZNE, Bonn, Germany) for scientific discussion and support. PS, MD and DM are supported by the Samantha Dickson Brain Tumour Trust and the Wellcome Trust.

1. de The H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 2010; 10: 775–783.
2. Piazza F, Gurrieri C, Pandolfi PP. The theory of APL. J Exp Med 2002; 195: 165–170.
3. Salomoni P, Pandolfi PP. The role of PML in tumour suppression. Cell 2002; 108: 622–640.
4. Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of suppression. J Cell Biol 2000; 152: 611–620.
5. Rego EM, Wang ZG, Penuzzi D, He LZ, Cordon-Cardo C, Pandolfi PP. Role of promyelocytic leukaemia (PML) protein in tumour suppression. J Exp Med 2001; 193: 521–529.
6. Beloči K, Kindl K, Bernasola F, Dinsdale D, Cossarizza A, Melino G et al. Cytoplasmic function of mutant promyelocytic leukaemia (PML) and PML-retinoic acid receptor-alpha. J Biol Chem 2006; 281: 14465–14473.
7. Gurrieri C, Nafa K, Merghouth B, Bernardi R, Capodieci P, Biondi A et al. Mutations of the PML tumor suppressor gene in acute promyelocytic leukemia. Blood 2004; 103: 2386–2392.
8. Kurahashi S, Hayakawa F, Miyata Y, Yasuda T, Minami Y, Tszuki S et al. PAX5-PML acts as a dual dominant-negative form of both PAX5 and PML. Oncogene 2011; 30: 1822–1830.
9. Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 2004; 96: 269–279.
10. Ito K, Bernardi R, Morotti A, Matsukawa S, Saglio G, Ieda Y et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008; 453: 1072–1078.
11. Viale A, De Franco F, Oreth A, Cambiaggi V, Giullani V, Bossi D et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 2008; 457: 51–56.
12. Gambacorta M, Flenghi L, Fagiolini M, Pileri S, Leoncini L, Biglera B et al. Heterogeneous nuclear expression of the promyelocytic leukaemia (PML) protein in normal and neoplastic human tissues. Am J Pathol 1996; 149: 2023–2035.
13. Viale A, De Franco F, Oreth A, Cambiaggi V, Giullani V, Bossi D et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 2008; 457: 51–56.
14. Lee HE, Jee CD, Kim MA, Lee HS, Lee YM, Lee BL et al. Loss of promyelocytic leukaemia protein in human gastric cancers. Cancer Lett 2007; 247: 103–109.
15. Zhang P, Chiu W, Chow LT, Chan AS, Yim AP, Leung SF et al. Lack of expression for the suppressor PML in human small cell lung carcinoma. Int J Cancer 2000; 85: 599–605.
16. Koken MH, Linares-Cruz G, Quiggin F, Viron A, Cherbi-Alik MK, Sokolak-Thetop J et al. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene 1995; 10: 1315–1324.
17. Tatham MH, Geoffroy MC, Shem L, Pedanovna A, Hattensley N, Jaffray EG et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 2008; 10: 538–546.
18. Jeanne M, Lallemand-Breitenbach V, Ferli O, Koken M, Le Bras M, Duffort S et al. PML/RARA oxidation and arsenic binding initiate the antileukaemia response of As2O3. Cancer Cell 2010; 18: 68–80.
19. Ashkenazi A, Takahashi Y, Zhu J, Puvion-Dutilleul F, Guengan S, Janin A et al. Characterization of endogenous human promyelocytic leukaemia isoforms. Cancer Res 2006; 66: 6192–6198.
20. Debbarth KM, Kramer PH. Death receptors in chemotherapy and cancer. Oncogene 2004; 23: 2950–2966.
21. Fu S, Fass SC, Fritzsching B, Suri-Payer E, Krammer PH. Death receptor signaling and its function in the immune system. Curr Dir Autoimmun 2006; 9: 1–17.
22. Fodis S, Debbarth KM. Signaling through death receptors in cancer therapy. Curr Opin Pharmacol 2004; 4: 327–332.
23. Guardiola-Semaro F, Rossin A, Cahuacaz N, Lueken K, Melezer I, Malaffit S et al. Palmitoylation of human Fas modulates its cell death-inducing function. Cell Death Disease 2010; 1: e68.
24. Cheng JP, Betin VM, Weir H, Shelmami GM, Moss DK, Lane JD. Caspase cleavage of the Golgi stacking factor GRASP65 is required for Fas/CasD5-mediated apoptosis. Cell Death Disease 2010; 1: e62.
25. Wang ZG, Ruggiero D, Ronchetti S, Zhong S, Gaboli M, Rivi R et al. PML is essential for multiple apoptotic pathways. Nat Genet 1998; 20: 266–272.
26. Quiggin F, De Bels F, Koken M, Feunteun J, Ameisen JC, de The H. PML induces a novel caspase-independent death process. Nat Genet 1998; 20: 259–265.
27. Reis CR, Dahle O, Davis RE, Gabrielson OS, Rudikoff S, PML mediates IFN-alpha-induced apoptosis in myeloma by regulating TRAIL induction. Blood 2005; 105: 1290–1297.
28. Falschlehner C, Schaefer U, Walczak H. Following TRAIL’s path in the immune system. Immunology 2009; 127: 145–154.
29. Ashkenazi A. Redirecting cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 2008; 7: 1001–1012.
30. Schneider-Jakob S, Corazza N, Badmann A, Sider D, Stuber-Roos R, Keogh A et al. Synergistic induction of cell death in liver tumor cells by TRAIL and chemotherapeutic drugs via the Bcl-only proteins Bim and Bid. Cell Death Disease 2010; 1: e61.
31. Falschlehner C, Schaefer U, Walczak H. Following TRAIL’s path in the immune system. Immunology 2009; 127: 145–154.
32. Ashkenazi A. Redirecting cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 2008; 7: 1001–1012.
33. Reis CR, van der Stoot AM, Natoni A, Szegedzi E, Setroikromo R, Meijer M et al. Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants. Cell Death Disease 2010; 1: e63.
34. Schneider B, Munkel S, Krippeper-Heidenreich A, Grunwald I, Wels WS, Wajnt H et al. Potent antitumour activity of TRAIL through generation of tumor-targeted single-chain fusion proteins. Cell Death Disease 2010; 1: e68.
35. MacFarlane M, Inoue S, Kohaas SL, Majid A, Harper N, Kennedy DB et al. Chronic lymphocytic leukaemia cells exhibit apoptotic signalling via TRAIL-R1. Cell Death Disease 2005; 12: 773–782.
36. Harper N, MacFarlane M. Racombinant TRAIL and TRAIL receptor analysis. Methods Enzymol 2008; 446: 293–313.
37. Meley D, Spiller DG, White MR, McDowell H, Pizer B, See V. p53-mediated delayed NF-kappaB activity enhances etoposide-induced cell death in medulloblastoma. Cell Death Disease 2010; 1: e41.
38. Chipuk JE, Green DR. Dissecting p53-dependent apoptosis. Cell Death Disease 2006; 13: 994–1002.
39. Fricke M, O’Prey J, Tokovskey AM, Ryan KM. Phosphorylation of Puma modulates its apoptotic function by regulating protein stability. Cell Death Disease 2010; 1: e69.
40. Bernardi R, Scaglioni PP, Bergmann S, Hom HF, Vouwen KH, Pandolfi PP. PML regulates p53 stability by sequestering Mdm2 to the nucleus. Nat Cell Biol 2004; 6: 665–672.
41. Kuris S, Laitone N, Laiho M. Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocation. J Cell Sci 2003; 116: 3917–3925.
42. Louria-Hayon I, Grossman T, SonnovRV, Alsheich O, Pandolfi PP, Haupt Y. The promyelocytic leukaemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 2003; 278: 33134–33141.
43. Wei X, Yu ZK, Ramalingam A, Grossman SR, Yu JH, Bloch DB et al. Physical and functional interactions between PML and MDM2. J Biol Chem 2003; 278: 29286–29297.
67. Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A, Basu S. JNK
68. Klanrit P, Taebunpakul P, Flinterman MB, Odell EW, Riaz MA, Melino G
69. Mol Cell et al.
70. Perfettini JL, Nardacci R, Seror C, Raza SQ, Sepe S, Saidi H
71. Agostini M, Tucci P, Chen H, Knight RA, Bano D, Nicotera P
72. Barton CE, Johnson KN, Mays DM, Boehnke K, Shyr Y, Boukamp P
73. Cummins NW, Badley AD. Mechanisms of HIV-associated lymphocyte apoptosis: 2010.
74. Zhu H, Wu L, Maki CG. MDM2 and promyelocytic leukemia antagonize each other
75. Khelifi AF, D’Alcontres MS, Salomoni P. Daxx is required for stress-induced cell death and JNK activation. Cell Death Differ 2005; 12: 724–733.
76. Shalom-Feuerstein R, Lena AM, Zhou H, De La Forest Divonne S, Van Bokhoven H, Cardi E et al. DeltaNp63α is an ectodermal gatekeeper of epidermal morphogenesis. Cell Death Differ 2011; 18: 887–896.
77. Vanbokhoven H, Melino G, Cardi E, Declercq W, p63, a story of mice and men. J Invest Dermatol 2011; 131: 1196–1207.
78. Ayton Y, Oren M. New plays in the p53 theater. Curr Opin Genet Dev 2011; 21: 86–92.
79. Mitchell G, Fillinger J, Sittadjody S, Avila J, Burd R, Limesand K. JGF1 activates cell cycle arrest following irradiation by reducing binding of DeltaNp63 to the p21 promoter. Cell Death Disease 2010; 2010: e50.
80. Ito K, Weber TA, Schafar B, Cardi E, Durlt F, Ou HD et al. The C-terminus of p63 contains multiple regulatory elements with different functions. Cell Death Disease 2010; 1: e6.
81. Bernassola F, Oberst A, Melino G, Pandolfo P. The promyelocytic leukaemia protein tumour suppressor functions as a transcriptional regulator of p63. Oncogene 2005; 24: 1193–1196.
82. Bernassola F, Pandolfo P. The promyelocytic leukaemia protein tumour suppressor functions as a transcriptional regulator of p63. Oncogene 2005; 20: 207–210.
83. Mann GM, Will H. Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ 2003; 10: 1290–1299.
84. Moller A, Sima H, Hofmann TG, Rueffer S, Klimczak E, Drobe W et al. PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Res 2003; 63: 310–317.
85. Sung KS, Lee YA, Kim ET, Lee SR, Ahn JH, Cho CI. Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53. Exp Cell Res 2011; 317: 1060–1070.
86. Bellodi C, Kindle K, Bernassola F, Cossarizza A, Disidato D, Melino G et al. A cytoplasmic phosphatase inhibits p53 function. Cell Cycle 2006; 5: 2896–2892.
87. Yang S, Kuo C, Bie JF, Kim MK. PML-independent apoptosis after DNA damage is regulated by the checkpoint kinase Chk5/Chk2. Nat Cell Biol 2002; 4: 865–870.
88. Mehta R, Ben-Yehoyada M, Reuven N, Shaul Y. c-Abl downregulates the slow phase of double-strand break repair. Cell Death Differ 2010; 1: e20.
89. Tzimmis NW, Bailey AD. Mechanisms of HIV-associated lymphocytic apoptosis. 2010. Cell Death Disease 2010; 329: 1–9.
90. Perfettini JL, Nardacci R, Seror C, Bourouba M, Subra F, Gros L et al. The tumor suppressor protein PML controls apoptosis induced by the HIV-1 envelope. Cell Death Differ 2009; 16: 288–311.
91. Perfettini JL, Nardacci R, Seror C, Raza SQ, Sadiq H et al. 53BP1 represses mitotic catastrophe in synapsis elicited by the HIV-1 envelope. Cell Death Differ 2010; 17: 811–820.
92. Agostini M, Tucci P, Chen H, Knight RA, Bano D, Nicotera P et al. p73 regulates maintenance of neural stem cell. Biochem Biophys Res Commun 2010; 403: 13–17.
93. Bernassola F, Salomoni P, Oberst A, Di Como CJ, Pagano M, Melino G et al. Ubiquitin-dependent degradation of p73 is inhibited by PML. J Exp Med 2004; 199: 1545–1557.
94. Dotz C, Bernassola F, Coutandin D, Cardi E, Melino G. p63 and p73, the ancestors of the p73 family. Cell Spring Harb Perspect Biol 2012; 3: a004887.
95. Gonzalez-Cano L, Herreros-Villanueva M, Fernandez-Alsina R, Ayuso-Accio A, Meyer G, Garcia-Verdugo JM et al. p63 deficiency results in impaired self renewal and premature neuronal differentiation of mouse neural progenitors independently of p53. Cell Death Disease 2010; 1: e109.
96. Klicki R, Niskanen-Chirou M, Tomasisi R, Bano D, Rufini A, Gregori F et al. p73: a multifunctional protein in neurobiology. Mol Neurobiol 2011; 43: 139–146.
97. Rufini A, Agostini M, Gregori F, Tomasisi R, Sayan BS, Niskanen-Chirou MV et al. p73 in cancer. Genes Cancer 2011; 2: 491–502.
98. Tomasisi R, Mak TW, Melino G. The impact of p33 and p73 on aneuploidy and cancer. Trends Cell Biol 2008; 18: 244–252.
99. Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knobel A, Basu S. JNK phosphatases Yes-associated protein (YAP) to regulate apoptosis. Cell Death Disease 2010; 1: e29.
100. Solano A, Mijatovic E, Bicalho SA, Cardi E, Melino G et al. The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA Damage. Mol Cell 2005; 18: 447–459.
101. Downward J, Basu S. YAP and p73: a complex affair. Mol Cell 2008; 32: 749–750.
102. Lapi E, Di Agostino S, Donzelli S, Gai H, Domany E, Rechavi G et al. PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell 2008; 32: 803–814.
103. Klarić R, Pauha-Saupert P, Flintemaur MB, Odell EW, Raza MA, Melino G et al. PML involvement in the p73-mediated EIA-induced suppression of EGFR and induction of apoptosis in head and neck cancers. Oncogene 2008; 28: 3499–3512.
104. Manardi S, Pelosi A, Piccininone D, Riccio R, Fontemaggi G, Diveno D et al. DeltaNp73 is a transcriptional target of the PML/RARalpha oncoprotein in myeloid differentiation. Cell Death Disease 2007; 14: 1968–1971.
105. Barton CE, Johnson KN, Mays DM, Boehnke K, Shyr Y, Boukamp P et al. Novel p63 target genes involved in paracrine signaling and keratinocyte differentiation. Cell Death Disease 2010; 1: e74.
106. Yuan M, Luong P, Hudson C, Gudmundsdottir K, Basu S. c-Abl phosphorylation of DeltaNp63α plays a critical role for cell viability. Cell Differ Death 2010; 18: 1487–1499.
106. Lin HK, Bergmann S, Pandolfi PP. Cytoplasmic PML function in TGF-beta signalling. Nature 2004; 431: 205–211.
107. Seo SR, Ferrand N, Faresse N, Prunier C, Abecassis L, Pessah M et al. Nuclear retention of the tumor suppressor cPML by the homeodomain protein TGIF restricts TGF-beta signaling. Mol Cell 2006; 23: 547–559.
108. Faresse N, Colland F, Ferrand N, Prunier C, Bourgeade MF, Atfi A. Identification of PCTA, a TGIF antagonist that promotes PML function in TGF-beta signalling. EMBO J 2008; 27: 1804–1815.
109. Pan D, Zhu Q, Luo K. SnoN functions as a tumour suppressor by inducing premature senescence. EMBO J 2009; 28: 3500–3513.
110. Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski M et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 2010; 330: 1247–1251.
111. Pinton P, Giorgi C, Pandolfi PP. The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ 2011; 18: 1450–1466.
112. Green DR, Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature 2009; 458: 1127–1130.
113. Tomyama A, Tachibana K, Suzuki K, Seino S, Sunayama J, Matsuda K et al. MEK-ERK-dependent multiple caspase activation by mitochondrial proapoptotic Bcl-2 family proteins is essential for heavy ion irradiation-induced glioma cell death. Cell Death Disease 2010; 1: e60.
114. Wabnitz GH, Goursot C, Jahraus B, Kirchgesaner H, Hellwig A, Klemke M et al. Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells. Cell Death Disease 2010; 1: e58.
115. Flanagan L, Sebastia J, Tufty LP, Spring A, Lichawska A, Devocelle M et al. XIAP impairs Smac release from the mitochondria during apoptosis. Cell Death Disease 2010; 1: e49.
116. Esposito MD. Bcl-2 antagonists and cancer: from the clinic, back to the bench. Cell Death Disease 2010; 1: e37.
117. Li W, Ferguson BJ, Khaled WT, Tevendale M, Stingl J, Pol V et al. PML depletion disrupts normal mammary gland development and skews the composition of the mammary luminal cell progenitor pool. Proc Natl Acad Sci USA 2009; 106: 4725–4730.
118. Li W, Rich T, Watson CJ. PML: a tumor suppressor that regulates cell fate in mammary gland. Cell Cycle 2009; 8: 2711–2717.