Intracardiac tumor as a rare manifestation of genetic syndromes—presentation of a family with Gorlin syndrome and a literature review

Krzysztof Szczuła1 • Ewa Makula2 • Anna Piórecka-Makula3 • Justyna Sicińska4 • Małgorzata Rydzanicz1 • Piotr Gasperowicz1 • Rafał Płoski1 • Bożena Werner3

Received: 3 July 2020 / Revised: 19 August 2020 / Accepted: 6 September 2020 / Published online: 22 September 2020 © The Author(s) 2020

Abstract
Intracardiac tumors in children are relatively rare, but their clinical consequences may include severe outflow tract obstruction, embolism, cardiac insufficiency, or rhythm disturbances. In some cases, the tumor may constitute part of a genetic condition and prompt additional investigations, as well as a modification of therapeutic management. Herein, we present a molecularly confirmed familial case of Gorlin syndrome with an early cardiac tumor as a presenting sign. We provide detailed clinical characteristics of the affected individuals and a useful review of syndromic causes of pediatric cardiac tumors in clinical practice.

Keywords Cardiac tumor • Fibroma • Gorlin syndrome • Familial • Exome sequencing

Introduction
Cardiac tumors are benign or malignant neoplasms that may originate in all the three layers of heart tissue (Uzun et al. 2007). Their frequency in fetal life is estimated at 0.14%, while postnatal population prevalence reaches 0.5% in cases of children evaluated for cardiac symptoms (Uzun et al. 2007; Beghetti et al. 1997; Linnemeier et al. 2015). About 90% of the primary cardiac neoplasms have benign characteristics. The most common type is rhabdomyoma (up to 60%) followed by teratoma, fibroma, and myxoma (Holley et al. 1995, Uzun et al. 2007; Tzani et al. 2017). In the majority of patients, intracardiac tumors are isolated findings on fetal or infantile echocardiogram, while in the rest, they are part of a genetic syndrome diagnosis (Vidaillet 1988).

Robert Gorlin estimated that in his series, close to 4% of all cardiac fibromas were part of nevoid basal cell carcinoma syndrome (NBCCS, Gorlin syndrome) (OMIM:109400) (Gorlin 1987). NBCCS is characterized by lamellar or early calcification of the falx, jaw keratocysts, palmar and/or plantar pits, and multiple and/or early-onset basal cell carcinomas (Gorlin 2004; Bree et al. 2011). Early diagnosis of the syndrome enables optimal personalized care. Majority of Gorlin syndrome cases are caused by mutations in PTCH1 (Patched1) gene, which is part of the Hedgehog (Hh) molecular pathway (Johnson et al. 1996).

Herein, we show a molecularly confirmed familial case of Gorlin syndrome consisting of an infant proband presenting with intracardiac tumor, polydactyly, and macrocephaly and the father with features of macrocephaly, mitten-type syndactyly of fingers, polydactyly, and maxillary cysts. We describe current and future targeted treatment options in our familial case and provide a review of syndromic causes of pediatric intracardiac tumors.

Family report
We present a case of an infant girl with multiple dysmorphic features and a cardiac tumor of unknown origin diagnosed...
postnatally. The girl was born preterm at 36 weeks’ gestational age with the birth weight of 4000 g by caesarean section due to maternal hypertension. The Apgar score was 3 and 5 at 1 and 5 min after birth, respectively. After initial resuscitation, the transthoracic echocardiography was performed revealing a tumor in the left ventricle. The neonate was referred to the department of pediatric cardiology for subsequent diagnostics.

On admission, the child was in a serious but stable condition with normal resting heart rate of 150 beats per minute (bpm) and arterial blood pressure of 81/68 mmHg. Blood oxygen saturation was 92–94%, and capillary refill time was normal. Macrocephaly with head circumference of 38.5 cm (> 97th centile), bilateral polydactyly of fingers with unilateral polydactyly of toes, and a natal tooth on lower gingiva were observed (Fig. 1a). Dyspnea signs were present with retractions of lower intercostal spaces and tachypnea (70/min). Heart auscultation revealed systolic murmur graded 2/6 on Levine scale heard over the whole heart. The liver edge was palpable 1.5 cm below the costal margin. The remaining physical examination was unremarkable.

Laboratory testing revealed anemias (hemoglobin concentration of 10.8 g/dL) and significantly increased NT-proBNP level (26,500 pg/ml) (the upper norm for NT-proBNP at 598 pg/ml was established by Lin et al. 2013). Tumor lysis laboratory markers (uric acid, potassium, lactate dehydrogenase) were within the normal limits. The 12-lead electrocardiogram (ECG) showed sinus rhythm with delayed intraventricular conduction and generalized repolarization abnormalities—inverted T waves in leads II, III, aVF, V4-V6, and low-amplitude T waves in leads I and aVL (Fig. 1b). The anteroposterior chest radiograph was suggestive of cardiomegaly with cardiothoracic ratio of around 0.7 (Fig. 1c).

Two-dimensional transthoracic echocardiography revealed a large bean-shaped tumor (size, 50 × 30 mm) attached to the posterolateral wall of left ventricle with the areas of hyper- and hypodensity (Fig. 1d). Moderate pericardial effusion with late diastolic compression of the right atrium was found. Patent ductus arteriosus (PDA) with diameter of 3.5 mm with left-to-right shunt coexisted with dilation of the pulmonary trunk and pulmonary arteries.

Cardiac magnetic resonance confirmed echocardiographical findings and revealed possible diaphragm and parietal pericardium invasion. Contractility of left ventricle wall was impaired by presence of the tumor mass. Peripheral contrast enhancement suggested the presence of tumor capsule, and the lack of central enhancement suggested necrosis. Additionally, oval mass (size, 16 × 10 mm) localized between the anterior and lateral wall of left ventricle with peripheral contrast enhancement similar to the main tumor was described; however, the connection between them could not be excluded. Imaging studies suggested rhabdomyoma, fibroma, or sarcoma.

Subsequent treatment included administration of spironolactone, furosemide, and captopril. Hemodynamically significant PDA was closed with PDA occluder. Signs of dyspnea decreased. Because of the high risk of thromboembolic events, cardiac tamponade, arrhythmia, and possible presence of metastases, the biopsy during the procedure was not performed.

Magnetic resonance imaging of central nervous system showed no tumors. Rhabdomyoma associated with tuberous sclerosis could still not be excluded; thus, therapy with sirolimus was started. After 4 weeks, no significant changes in tumor size were observed, and sirolimus therapy was discontinued. Pericardial drainage due to fluid accumulation was performed. Subsequent specimen cytology was negative for tumor cells.

Additionally, wide QRS extra beats were observed during hospitalization in the standard ECG monitoring. Twenty-four-hour Holter monitoring revealed a few episodes of ventricular tachycardia up to 200 bpm. Metoprolol was administered, and during subsequent tests, only single premature ventricular beats were observed. Pending genetic test results the infant was discharged in a good general condition.

The 29-year-old father of the proband girl presented with macrocephaly (head circumference 61 cm, > 97th centile) and frontal bossing, mitten-hand–type bilateral syndactyly, and unilateral postaxial hand polydactyly (Fig. 1e). He had a history of maxillary cyst surgery at age 22 (Fig. 1f). He had no other medical issues and otherwise was normal physically and intellectually.

Genomic testing

In the proband, exome sequencing (ES) was performed using *Nextera Flex for Enrichment* sample preparation kit combined with TruSeq DNA Exome (45 Mb) probes (Illumina, San Diego, CA, USA) according to the manufacturer’s instruction. Library was pair-end sequenced (2x 100 bp) on HiSeq 1500 (Illumina) to the mean depth 83×, 98.7% of target was covered ≥ 10×, and 94.4% was covered ≥ 20×. Bioinformatics analysis of raw ES data and variant prioritization were performed as previously described (Rydzanicz et al. 2019). Selected variants were further validated in the proband, her parents, and grandparents (father’s parents) by amplicon deep sequencing (ADS) performed using Nextera XT Kit (Illumina) and sequenced on HiSeq 1500 (Illumina).

Considering the patient’s phenotype and the characteristics of the variants, we prioritized four ultrarare variants in *ASH1L*, *CDKN2A*, *SIX4*, and *PTCH1* genes for verification and family study. Variants in *ASH1L*, *CDKN2A*, and *SIX4* were inherited from the healthy mother, while the variant in the *PTCH1* gene (hg38: g chr9:095459719-A>G, NM_000264.5:c.2768T>C, p.(Leu923Pro)) was inherited from the affected father. The p.(Leu923Pro) variant in PTCH1 was absent from the...
Therefore, we concluded that this variant occurred de novo in the proband’s father and was transmitted to the proband in an autosomal dominant manner of inheritance (Fig. 2). The p.(Leu923Pro) was absent in all queried databases, including an in-house database of >3000 ES of Polish individuals, and was predicted to be damaging by in silico predictors using by Varsome (Kopanos et al. 2019).

Discussion

Neonatal cardiac tumors are predominantly rhabdomyomas. Multiple tumors suggest the diagnosis of tuberous sclerosis while in case of single lesions, fibromas, myxomas, pericardial teratomas, and hemangiomas should be taken into account. Isolated cases constitute the majority of pediatric presentations of intracardiac tumors. In such individuals, both physical and intellectual developments remain unaffected. The management is restricted either to surgery in cases of ventricular outflow tract obstruction, embolism, and pulmonary/cardiac insufficiency or, most commonly, to monitoring cardiac function for a likely regression of the usually benign tumor. As the tumor shrinks in size, the foci of rest cells may create a background for rhythm disturbances (Mankad and Herrmann 2016). In the usually benign and slow-growing intracardiac tumors, sometimes, the parents have to be screened for
familial occurrences, e.g., familial myxoma syndrome. While rare, the genetic syndromes featuring intracardiac tumors present bigger challenges, both in terms of diagnosis and treatment. Our literature search on genetic conditions with intracardiac tumors revealed 10 fetal and pediatric entities that are shown in detail in Table 1. Apparently, there are distinct clinical features that prove helpful in establishing an early diagnosis of a certain genetic condition. Multiple tumors suggest an underlying tuberous sclerosis, especially in the setting of skin, kidney, and CNS typical findings. Cardiac tumors are also present as single occurrences in two other phakomatoses: Gorlin (NBCCS) syndrome and neurofibromatosis type 1 (NF1). In some conditions, establishing the pathological type of tumor may facilitate diagnosis. Myxoma at an early age, often multicentric and affecting any cardiac chamber, may imply the diagnosis of Carney complex in up to 23–32% of affected individuals (Vidalilet 1988; Bertherat et al. 2009). Cardiac lipoma suggests Cowden syndrome, while neurofibroma and paraganglioma point to NF1 and possible hereditary paraganglioma/pheochromocytoma syndromes, respectively. A critical implication of a syndromic intracardiac tumor diagnosis is a necessity for early-onset screening for extracardiac neoplasms in affected individuals. In 9 out of 10 conditions listed in Table 1, malignancies may arise as part of their clinical picture. Especially stringent guidelines for tumor screening have been established in Beckwith-Wiedemann syndrome characterized by bodily and internal organ overgrowth as well as embryonal tumors of liver and kidneys.

In our familial case, the final diagnosis was established by ES but combined clinical exam of the proband, and the father enabled inclusion of Gorlin syndrome in the differential diagnosis. The key symptoms present in the father were history of jaw cysts, macrocephaly, syndactyly, and polydactyly. Thus, this case best resembles Doede et al.’s description of an infant boy with macrocephaly and finger syndactyly and his mother with macrocephaly and facial fibromas (Doede et al. 2004). According to the authors, combined syndactyly of fingers and toes coupled with a cardiac tumor strongly suggests syndromic diagnoses. Indeed, the father of our proband had a complete syndactyly of the hands as well as unilateral polydactyly, and cardiac tumor with polydactyly was observed in the proband. Familial occurrence of Gorlin syndrome and the value of examining the probands’ parents were underlined by

Springer
Genetic syndrome	Clinical characteristics	Cardiac features	Inheritance	Gene/locus	OMIM	Literature
Tuberous sclerosis (TS)	Abnormalities of the skin (hypomelanotic macules, confetti skin lesions, facial angiofibromas, shagreen patches, fibrous cephalic plaques, ungual fibromas); brain (subependymal nodules, cortical dysplasias, and subependymal giant cell astrocytomas, seizures, intellectual disability/developmental delay, psychiatric illness); kidney (angiomyolipomas, cysts, renal cell carcinomas); heart (rhabdomyomas, arrhythmias); and lungs (lymphangioleiomyomatosis, multifocal micronodular pneumoendotheliomas)	Rhabdomyomas, especially if more than one in up to 50% of confirmed cases	Autosomal dominant	TSC1/TSC2	191100/613254	Sancak et al. (2005)
Gorlin syndrome (nevoid basal cell carcinoma syndrome) (NBCCS)	Multiple nevoid, cystic, pigmented or keratotic basalomas; Multiple jaw cysts; cystic alterations of long bones; costal anomalies, kyphoscoliosis, occult spina bifida, funnel chest; agenesis of corpus callosum, calcification of falx cerebri; edged skull, widened nasal bridge, hypertelorism; palmar and plantar keratosis; ovarian fibromas, male hypogonadism, hypotrichosis	Fibroma	Autosomal dominant	PTCH1, PTCH2, SUFU	109400	Bossert et al. (2006), Ritter et al. (2018), Watson et al. (2004), Doode et al. (2004), Foulkes et al. (2017)
Carney complex type 1 (CNC1)	Cardiac, endocrine, cutaneous, and neural myxomatous tumors; variety of pigmented lesions of the skin and mucosae	Myxoma at a young age (may be multicentric and affect any heart chamber)	Autosomal dominant	PRKAR1A	160980	Stratakis and Raygada (2003), Bertherat et al. (2009)
Carney complex variant?	Trismus, pseudocamptodactyly and freckling	Myxoma (familial?)	Autosomal dominant?	MYH6?	608837	Veugelers et al. (2004), Stratakis et al. (2004)
Beckwith-Wiedemann (BWS)	Overgrowth, macroglossia, omphalocele, hemihypertrophy	Rhabdomyoma or angiofibroma or hamartoma in the setting of macroscopy	Imprinting disorder	11p15 region (loci IC1 and IC2; CDKNIC, KCNQ10T1, KCNQ1, IGF2, H19 genes)	130650	Longardt et al. (2014), Reddy et al. (1972), Satgé et al. (2005)
Neurofibromatosis type 1	Characteristic skin changes, neurofibromas, optic gliomas	Neurofibroma	Autosomal dominant	17q11.2 micro-/deletions involving NF1	613675	Nguyen et al. (2013)
Birt-Hogg-Dube (BHD)	Lung cysts, colonic polyps, renal tumors	Rhabdomyoma	Autosomal dominant	FLCN	135150	Toro et al. (2008)
Hereditary paraganglioma-/pheochromocytoma syndromes (including Carney-Stratakis syndrome and Carney triad)	Paragangliomas, gastric stromal sarcomas or leiomyosarcomas, pulmonary chondromas	Paraganglioma	Autosomal dominant?	SDHB, SDHC, SDHD	606864, 604287	Mirakli et al. (2007)
Cowden syndrome (CS)	Macrolephaly, hamartomas, ovarian cysts, cancer	Lipoma	Autosomal dominant	PTEN	158350	Ceresa et al. (2010)
Familial myxoma	Atrial myxomas	Myxoma	Autosomal dominant	PRKAR1A	255960	Singh and Lansing (1996)
other authors. Ritter et al. reported jaw cysts in the father of an affected girl, and in Bosser et al.’s case, the mother of the proband had already been diagnosed with NBCCS (Ritter et al. 2018; Bossert et al. 2006).

In the described proband and her affected father, we have identified through ES a missense variant NM_000264.4:c.2768T>C in the PTCH1 gene creating a substitution p.(Leu923Pro). According to Varsome, most missense changes in PTCH1 are of uncertain significance. However, this particular variant is absent from GnomAD or our in-house databases of variants, and in silico analyses are predictive of its pathogenicity. Moreover, the variant was excluded in healthy paternal grandparents of our proband. Thus far, somatic mutation p.Leu923Pro has only been found in childhood medulloblastomas as the Sonic Hedgehog (SHH) pathway is likely involved in progression of these tumors (Parsons et al. 2011; Iorgulescu et al. 2018). Medulloblastomas are part of the Gorlin syndrome where they may appear at ages 1–2 years, which is much earlier than expected in sporadic cases (Cowan et al. 1997). Thus, it may be reasonable to provide MRI brain imaging in such instances.

In summary, we present a familial case of Gorlin syndrome characterized by the presence of a rare intracardiac tumor in the proband. Clearly, the syndromic diagnosis enabled optimization of therapeutic management, and it may support introduction of specific prophylactic measures. Similar personalized management should be introduced once the diagnosis of any of the genetic syndromes presenting with primary intracardiac tumors and discussed here is reached.

Funding The study was supported by the National Science Centre (NCN) grants: 2017/27/B/NZ5/02223 and by the Statutory Grant (SUB.E160.19.004)

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Informed consent Written informed consent for all the genetic studies performed in the patient and the parents was obtained from the patient’s legal guardians (the parents).

Ethical approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethical Committee at the Warsaw Medical and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Banerjee S, Corless CL, Miettinen MM et al (2019) Loss of the PTCH1 tumor suppressor defines a new subset of plexiform fibromyxoma. J Transl Med 17:246. https://doi.org/10.1186/s12967-019-1995-z

Beghetti M, Gow RM, Haney I, Mawson W, Williams WG, Freedom RM (1997) Pediatric primary benign cardiac tumors: a 15-year review. Am Heart J 134(6):1107–1114. https://doi.org/10.1016/s0002-8703(97)70032-2

Bertherat J, Horvath A, Groussin S, Grabar S, Boikos S, Cazabat L, Libe R, Rene-Corail F, Stergiopulos S, Bourdeau I, Bei T, Clauser E, Calender A, Kirschner LS, Bertagna X, Carney JA, Stratakis CA (2009) Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PKRKA1): pheno-type analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab 94:2085–2091. https://doi.org/10.1210/jc.2008-2333

Bossert T, Walther T, Vondrys D, Gummert JF, Kostelka M, Mohr FW (2006) Cardiac fibroma as an inherited manifestation of nevoid basal-cell carcinoma syndrome. Tex Heart Inst J 33(1):88–90

Bree AF, Shah MR, BCNS Colloquium Group (2011) Consensus statement from the first international colloquium on basal cell nevus syndrome (BCNS). Am J Med Genet A 155A(9):2091–2097. https://doi.org/10.1002/ajmg.a.34128

Cereso F, Calarco G, Franzl E, Patane F (2010) Right atrial lipoma in patient with Cowden syndrome. Interact Cardiovasc Thorac Surg 11(6):803–804. https://doi.org/10.1515/icvts.2010.245001

Cowan R, Hoban P, Kelsey A, Birch JM, Gattamaneni R, Evans DG (1997) The gene for the naevoid basal cell carcinoma syndrome acts
as a tumour-suppressor gene in medulloblastoma. Br J Cancer 76(2):141–145. https://doi.org/10.1038/bjc.1997.354

Curatolo P, Moavero R (2012) mTOR inhibitors in tuberous sclerosis complex. Curr Neuropatharmacol 10(4):404–415. https://doi.org/10.2174/157015912804143595

Doede T, Seidel J, Riede FT et al (2004) Occult, life-threatening, cardiac tumor in syndactylism in Gorlin Goltz syndrome. J Pediatr Surg 39(10):e17–e19. https://doi.org/10.1016/j.jpedsurg.2004.06.042

Foulkes WD, Kamihara J, Evans DGR, Brugières L, Bourdeaut F, Molenaar JJ, Walsh MF, Brodeur GM, Diller L (2017) Cancer surveillance in Gorlin syndrome and Rhabdoid tumor predisposition syndrome. Clin Cancer Res 23(12):e62–e67. https://doi.org/10.1158/1078-0432.CCR-17-0595

Gorlin RJ (1987) Nevoid basal-cell carcinoma syndrome. Medicine 66:98–113. https://doi.org/10.1097/00005792-198703000-00002

Gorlin RJ (2004) Nevoid basal cell carcinoma (Gorlin) syndrome. Genet Med 6(6):530–539. https://doi.org/10.1097/GIM.0000144188.15902.c4

Holley DG, Martin GR, Brenner JI (1995) Diagnosis and management of fetal cardiac tumors: a multicenter experience and review of published reports. J Am Coll Cardiol 26:516–520. https://doi.org/10.1016/0735-1097(95)80031-B

Iorgulescu JB, Van Ziffle J, Stevers M et al (2018) Deep sequencing of WNT-activated medulloblastomas reveals secondary SHH pathway activation. Acta Neuropathol 135(4):635–638. https://doi.org/10.1007/s00401-018-1819-x

Johnson RL, Rodman AL, Xie J, Goodrich LV, Bare JW, Bonifás JM, Quinn EH, Myers RM, Cox DR, Epstein EH Jr, Scott MP (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671. https://doi.org/10.1126/science.272.5268.1668

Kopanos C, Tsiliokas V, Kouris A et al (2019) VarSome: the human genomic variant search engine. Bioinformatics. 35(11):1978–1980. https://doi.org/10.1093/bioinformatics/bty897

Lin CW, Zeng XL, Jiang SH et al (2013) Role of the NT-proBNP level in the diagnosis of pediatric heart failure and investigation of novel combined diagnostic criteria. Exp Ther Med 6(4):995–999. https://doi.org/10.3892/etm.2013.1250

Linnemeier L, Benneyworth BD, Torrentine M, Rodefeld M, Brown J (2015) Pediatric cardiac tumors: a 45-year, single-institution review. World J Pediatr Congenit Heart Surg 6:215–219. https://doi.org/10.1177/2150135114563938

Longardt AC, Nonnenmacher A, Graul-Neumann L, Opgen-Rhein B, Henrich W, Bühler C, Häsüeman D (2014) Fetal intracardiac rhabdomyoma in beckwith-wiedemann syndrome. J Clin Ultrasound 42(9):569–573. https://doi.org/10.1002/jcu.22164

Mankad R, Herrmann J (2016) Cardiac tumors: echo assessment. Echo Res Pract 3(4):R65–R77. https://doi.org/10.1530/ERP-16-0035

Miraldi F, Taffon C, Toscano M, Barretta A (2007) Black cardiac paragangioma in a multiple paragangioma syndrome

Nguyen R, Mir TS, Kluwe L et al (2013) Cardiac characterization of 16 patients with large NF1 gene deletions. Clin Genet 84(4):344–349. https://doi.org/10.1111/cge.12072

Parsons DW, Li M, Zhang X et al (2011) The genetic landscape of the childhood cancer medulloblastoma. Science. 331(6016):435–439. https://doi.org/10.1126/science.1198056

Reddy JK, Schimke RN, Chang CH et al (1972) Beckwith-Wiedemann syndrome. Wilms’ tumor, cardiac hamartoma, persistent visceromegaly, and glomeruloneogenesis in a 2-year-old boy. Arch Pathol 94:523

Ritter AL, Granquist EJ, Iyer VR, Izumi K (2018) Cardiac fibroma with ventricular tachycardia: an unusual clinical presentation of nevoid basal cell carcinoma syndrome. Mol Syndromol 9(4):219–223. https://doi.org/10.1159/000489056

Rydzanicz M, Wachowska M, Cook EC et al (2019) Novel calcineurin A (PPP3CA) variant associated with epilepsy, constitutive enzyme activation and downregulation of protein expression. Eur J Hum Genet 27(1):61–69. https://doi.org/10.1038/s41431-018-0254-8

Sanca O, Nellist M, Goedbloed M et al (2005) Mutational analysis of the TSCI and TSC2 genes in a diagnostic setting: genotype-phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet 13(6):731–741. https://doi.org/10.1038/sj.ejhg.5202140

Satgé D, Vidalo E, Desfanges F, de Geeter B (2005) A third case of cardiac neoplasia in a fetus with Beckwith-Wiedemann syndrome: epidural angiofibroma. Fetal Diagn Ther 20(1):44–47. https://doi.org/10.1159/000081368

Scanlan D, Radio SJ, Nelson M et al (2008) Loss of the PTH1 gene locus in cardiac fibroma. Cardiovasc Pathol 17(2):93–97. https://doi.org/10.1016/j.carpath.2007.08.001

Singh SD, Lansing AM (1996) Familial cardiac myxoma - a comprehensive review of reported cases. J Ky Med Assoc 94(3):96–104

Stratakis CA, Raygada M, Carney Complex. 2003 Feb 5 [Updated 2018 Aug 16]. In: Adam MP, Ardinger HH, Pagon RA, et al. editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1286/

Stratakis CA, Bertherat J, Carney JA (2004) Mutation of perinatal myosin heavy chain in cardiac fibroma. Cardiovasc Pathol 17(2):93–97. https://doi.org/10.1016/j.carpath.2007.08.001

Stratakis CA, Rangayana C, Carney Complex. 2003 Feb 5 [Updated 2018 Aug 16]. In: Adam MP, Ardinger HH, Pagon RA, et al. editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1286/

Toro JR, Wei MH, Glenn GM et al (2008) BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dubé syndrome: a new series of 50 families and a review of published reports. J Med Genet 45(6):321–331. https://doi.org/10.1136/jmg.2007.054304

Tzani A, Doulamis IP, Mylonas KS, Avgerinos DV, Nasioudis D (2017) Cardiac tumors in pediatric patients: a systematic review. World J Pediatr Congenit Heart Surg 8(5):624–632. https://doi.org/10.1177/2150135117723904

Uzun O, Wilson DG, Vujanic GM, Parsons JM, De Giovanni JV (2007) Cardiac tumors in children. Orphanet J Rare Dis 2:11. https://doi.org/10.1186/1750-1172-2-11

Veugelers M, Bressan M, McDermott DA et al (2004) Mutation of perinatal myosin heavy chain associated with a Carney complex variant. N Engl J Med 351(5):460–469. https://doi.org/10.1056/NEJMoa040584

Vidaillet HJ Jr (1988) Cardiac tumors associated with hereditary syndromes in children. J Am Coll Cardiol 26:516–520. https://doi.org/10.1016/0735-1097(95)80031-B

Watson J, Depasquale K, Ghaderi M, Zwillenberg S (2004) Nevoid basal cell carcinoma syndrome and fetal rhabdomyoma: a case study. Ear Nose Throat J 83:716–718

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.