DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases

We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to describe the DNA methylation signature of chronic low-grade inflammation as measured by C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated with CRP. These CpG sites show correlation structures across chromosomes, and are primarily situated in euchromatin, depleted in CpG islands. These genomic loci are predominantly situated in transcription factor binding sites and genomic enhancer regions. Mendelian randomization analysis suggests altered CpG methylation is a consequence of increased blood CRP levels. Mediation analysis reveals obesity and smoking as important underlying driving factors for changed CpG methylation. Finally, we find that an activated CpG signature significantly increases the risk for cardiometabolic diseases and COPD.
In population-based studies, C-reactive protein (CRP)—an acute phase reactant—is commonly used as a proxy for chronic low-grade inflammation. Low-grade inflammation plays a key role in the development of a wide range of disease such as type 2 diabetes (T2D), coronary heart and other cardiovascular diseases, chronic obstructive pulmonary disease (COPD) as well as several psychological disorders such as post-traumatic stress syndrome, schizophrenia and depression. Prior studies have strongly linked elevated serum CRP to genetics, overweight and obesity, physical inactivity, fiber intake and smoking. However, the molecular mechanisms underlying the robust associations of CRP with these factors are not well-understood.

Epigenetic modifications such as the addition of a methyl group to a cytosine base of human DNA is commonly referred to as DNA methylation. This is a reversible process that affects gene expression. DNA methylation in white blood cells can be a consequence of exposure to risk factors such as subtle changes in regulatory regions of the genome in the setting of excess adiposity, smoking or a consequence of diseases like global changes of CpG methylation in cancer. These CpG methylation changes affect gene expression patterns of different human tissues, can be inherited across generations and differ between ethnicities.

In this study we performed a multi-ethnic epigenome wide association study (EWAS) on serum CRP in 22,774 participants. The large sample size of our study allowed us to create a reference list of CpGs robustly associated to CRP. In addition, our strategy could be used as a blueprint for generation of robust marker sets for any exposure similar to the field of genome wide association analysis. Our study suggests DNA methylation as consequences of CRP, identifies underlying factors of the signature such as BMI and smoking and gives a measure of the contribution to development of disease such as T2D and coronary artery disease.

Results
Multi-ethnic discovery. We found a total of 1765 markers significantly associated to serum CRP levels at a Bonferroni threshold ($P < 1 \times 10^{-7}$) in our multi-ethnic meta-analysis (Fig. 1A) on 22,774 samples. Those were subdivided into African American and African Ancestries (AA), European Ancestries (EA) and South Asian Ancestries (SAA). Thirty studies provided summary statistics about the association of CpG methylation with serum CRP. Our regression model was adjusted for age, sex, blood cell type composition and technical confounders. Effect sizes (Supplemental Fig. 2) were ranging from 0.50 ± 0.06 to 9.85 ± 0.29 logarithmic mg/L change in CRP per unit increase in DNA methylation in blood (scale for methylation 0–1, where 1 represents 100% methylation). We also standardized the regression coefficients from the multi-ethnic discovery, for example, one CpG near NF-kB inhibitor epsilon (NFKBIE) showed a decrease of 8 standard deviations of DNA methylation per standard deviations of logarithmic CRP. Standardized regression coefficients were ranging from 22.2 for a CpG near STK40 to −21.5 for a CpG not in vicinity of any gene (Supplementary Data 2). P values were ranging from 9.9×E−08 to 1.9×E−69.

We performed basic quality control of individual study DNA methylation association data, including replication within known CRP associated markers published by Ligthart et al. as well as correlation of effect sizes between studies (Supplemental Figs. 3 and 4). Mean age of participants ranged from 16 (NFBC1986) to 75.5 (CHS-W) years, BMI from 23.7 kg/m² (NFBC1986) to 32.9 kg/m² (BHS-W Median serum CRP values extended from 0.2 mg/L mg/L (NFBC1986) to 4 mg/L mg/L (EPIC Norfolk). Across all studies, 49.3% of the participants were female (Table 1).

To prevent reporting false positive signals due to bias and unwanted variation such as population stratification, we applied Genomic Control (see “Methods” and Fig. 1B). Additionally, we applied an alternative strategy to control for bias and inflation (Supplemental Figs. 8, 9 and Supplementary Data 2). Using this approach P-values were ranging from 2.2E−124 to 1.9×E−06, and we discovered a total of 144 additional CRP-associated markers given in Supplementary Data 3.

Next, we evaluated if the 1765 CRP-associated methylation markers were significant across three ancestries in our study (AA, EA, SAA), and whether there were ancestry-specific DNA methylation markers. We defined CpGs as replicating in ancestry-specific analysis if its P-value was below 0.05 and direction of effect was consistent in each ancestry-specific analysis. Among markers identified in the multi-ethnic meta-analysis, 1765 were significant and showed a consistent direction of effect in EA (100%, N = 14,568, 22 studies, alone, 1408 (79.7%, N = 3430, 3 studies) in AA and 1550 (87.8%, N = 2688, 1 study) in SAA meta-analyses (Fig. 1C, Supplementary Data 2). In addition, to the 1765 markers discovered in multi-ethnic meta-analysis, we identified 62 Bonferroni significant markers in the EA only (Supplementary Data 4) and 2 markers significant in SAA ancestries only (Supplementary Data 4).

To further investigate differences between different ancestries, we plotted Z-scores across the ancestry-specific meta-analysis (Supplemental Fig. 4). However, we did not find any statistically significant evidence for heterogeneity in multi-ethnic meta-analysis.

DNA methylation correlation structure. To determine which of the 1765 CRP-associated markers were independent and which were correlated, we assessed the DNA methylation correlation structure of these 1765 markers across 4 studies (N ~ 3920). We noticed that the correlation structure across the analyzed cohorts were similar despite of differences in mean age, ranging from 16 to 61 years, and detection platform (Supplemental Fig. 8). Furthermore, we found that the correlation structure between CRP-associated CpGs was consistent across chromosome borders (Fig. 2A). However, the biggest contribution to the observed correlation structure was the physical proximity between 2 or more CpGs. To better understand this contribution to the correlation structure we binned the correlation values according to their distance separately for each chromosome and displayed the results as boxplot (Fig. 2B). The Pearson correlation coefficients depended on the distance between CpGs, with a drop below 0.2 at about 5 kb. This average correlation value stayed stable for quite a distance throughout the genome. Thus, we decided to apply a 5 kb window to identify a set of independent uncorrelated loci. This strategy restricted our list of 1765 marker to a list of 1511 loci, which henceforth was used as input for any further analysis.

Because we observed coherent DNA methylation patterns across chromosomes (Fig. 2A), we attempted to identify clusters within our set of 1511 independent loci. We used a density-based algorithm that suggested two correlation clusters within the analyzed data (Fig. 2C). Mapping these group assignments back to the original data (color code in Fig. 2A), we found that this assignment reflected the actual correlation values for most of the CpGs. Next, we looked into overlaps of the CpGs within each correlation cluster (Fig. 2C) with genomic features. We found similar distributions of the two clusters in broad genomic features such as CpG islands, gene bodies, distance to transcription start sites, and HiC. However, we found differences in more specific genomic features, we detected 22% of cluster 1 CpGs being...
Fig. 1 Results of multi-ethnic meta-analysis. Panel A is a circos plot representation of the multi-ethnic meta-analysis. Outermost track is chromosome number followed by ideogram. The second track in blue is the Manhattan plot of the CpG CRP association results. Next track (in orange and light green) are effect sizes of CpG CRP associations, where orange represents positive associations and light green negative. Track represented in brown track color with enhancer regions as defined by Roadmap project. Panel B is a qqplot of the genomic control corrected P-values from the multi-ethnic meta-analysis. Panel C shows replication rates of 1765 across ancestries. Each bar gives the number of replicated CpGs across ancestries indicated as dots below the barplot. Horizontal bars reflect the total number of replicated CpGs per ancestry group.

Driving forces of the CRP CpG association: Mendelian Randomization analyses. CpG methylation can be a transient state. Thus, we studied whether or not CpG methylation of the 1511 loci were causal for the altered serum CRP levels or if differences in CpG methylation is a consequence of altered CRP levels. It has been shown for BMI and Crohn’s disease that differences in CpG methylation were a consequence of the investigated trait. Applying a similar strategy, we performed a 2-sample Mendelian Randomization followed by a triangulation analysis (“Methods”). We combined genetic and epigenetic data from more than 7000 participants derived from 11 studies. We identified 709 valid genetic instruments for CRP associated CpG sites (Supplementary Data 6), and found 8 loci showing Bonferroni significant effects of their genetic instruments on CRP levels. Thus, suggesting a causal effect of these 8 CpGs on serum CRP levels. We further investigated the overall association between CpG instruments and serum CRP levels in a triangulation analysis, with the following basic assumption: If the effect of a CpG on serum CRP is causal, it is possible to predict the effect of the genetic instrument (CpG-specific SNP) on CRP via the combination of the effect of the same SNP on CpG methylation and CpG methylation on CRP. This association is shown as scatter plot. (Fig. 3C; Supplementary Data 7). The analysis did not suggest an overall causal effect of CpG methylation on serum CRP levels (Fig. 3C).

We further investigated if these 709 CpGs might be a consequence of altered serum CRP levels, but did not find Bonferroni significant associations between our genetic instruments for CRP and CpG methylation. This suggests no causal effects of CRP on any individual CpG (Supplementary Data 8). Triangulation analysis, however, revealed that the majority of CpGs predicted the observed effects. We observed a Pearson Rho of 0.17 ($P = 8.23e−06$) (Fig. 3D; Supplementary Data 8) and the sign test revealed a P value of 1.27e−05, suggesting a causal effect of serum CRP levels on the majority of CpGs.

CpGs associated to serum-CRP

-Replication across ancestries

① A

② B

③ C

-log(10)P.value	positive association	in CpG island	negative association	in enhancer region

RELAX (also known as nuclear factor NF-kappa-B p65 subunit) binding sites as opposed to 7.8% in cluster2 CpGs (see below). Overlaps to GO terms suggest different functional contributions of the 2 correlation sets (see below). The DNA methylation risk score analysis, however, did not show significant different effects of cluster1 CpGs or cluster2 CpGs on clinically relevant phenotypes (Supplementary Data 23).

Sensitivity analysis. To evaluate the stability of the presented association results, we compared the base model to a model additionally adjusted for BMI across all studies. All 1765 markers showed consistent effect directions. The Pearson’s correlation between Z-scores (denoted ρ (Z-scores)) from these two models was 0.985 (Fig. 3A). Out of 187 published BMI-associated CpGs, we found 120 CpGs within our list of 1511 loci. In a subset of cohorts (see methods), we evaluated possible influences of other risk factors on the CpG CRP associations. For BMI adjusted model effect sizes were ranging from 0.241 ± 0.151 to 6.648 ± 0.482 logarithmic mg/L change in CRP per unit increase in DNA methylation in blood with consistent direction of effect. We did not observe any significant changes in the distribution of Z-scores when adjusting for additional risk factors such as smoking, lipids, insulin, BMI, hip circumference, and waist circumference. (see methods, Supplemental Fig. 9). We observed a total of 22 CpGs that changed the effect direction in at least one model in the sensitivity analysis. (Supplementary Data 5). A total of 140 CpGs had a nominal significant P value of heterogeneity, of which one marker had a Bonferroni significant P-value of heterogeneity.

DNA methylation risk score analysis, however, did not show significant different effects of the 1511 CRP CpG associations, where orange represents positive associations and light green negative. Track represented in brown track color with enhancer regions as defined by Roadmap project. Horizontal bars reflect the total number of replicated CpGs per ancestry group.

We further investigated if these 709 CpGs might be a consequence of altered serum CRP levels, but did not find Bonferroni significant associations between our genetic instruments for CRP and CpG methylation. This suggests no causal effects of CRP on any individual CpG (Supplementary Data 8). Triangulation analysis, however, revealed that the majority of CpGs predicted the observed effects. We observed a Pearson Rho of 0.17 ($P = 8.23e−06$) (Fig. 3D; Supplementary Data 8) and the sign test revealed a P value of 1.27e−05, suggesting a causal effect of serum CRP levels on the majority of CpGs.
Fig. 2 Correlation structure of CRP-associated CpG methylation. Panel A gives meta-analyzed correlation values (Pearson Rho) across 4 cohorts. Displayed are all CRP-associated CpGs from a genomic region from chromosome 5 alongside with CRP-associated CpGs on chromosome 6. CpG ids are color-coded according to correlation clusters. Panel B CpGs correlation depending on distance. Correlation values were binned according to their distance to each other. X-axis gives distance between CpGs. Y-axis gives Pearson Rho observed each distance bin. In blue font, we plotted mean and standard errors of Person Rho values. Panel C is a UMAP representation of correlation values of the 1511 independent loci. Dots are color-coded according to their correlation cluster membership.
Mendelian Randomization highlighted complex associations between serum CRP levels and CpG methylation. Sensitivity showed that BMI attenuates but not abrogates the effect of CRP on DNA methylation (Fig. 3) and overlaps with published BMI-associated CpGs. We observed a similar situation for smoking (Supplementary Data 5). To better understand those relationships between these traits and our data, we performed a mediation analysis. Mediation analysis was first performed on a small subset of data testing 6 different models (“Methods,” Supplementary Data 9), which pointed towards 2 models for further exploration (Fig. 3B): CRP being the mediator of a CpG methylation caused by BMI or by smoking (Fig. 3B). We used data from 4 cohorts (N ~ 3192) and performed mediation analyses according to Baron Kenney (“Methods,” Fig. 3B). To avoid violation of assumption made by Baron Kenny approach we restricted the analysis to loci with a nominal significant C-path and A-path (Fig. 3) and only report mediation if the indirect effect (C’-path–C-path) is negative. We found 1136 CpGs associated to BMI (nominally significant), of which 729 (64.1%) show a significant P-value for CRP mediating the effect of BMI effects on DNA methylation, with 213 loci reaching Bonferroni significance (Supplementary Data 2, 10).

We then evaluated possible effects of smoking on DNA methylation mediated by CRP (Fig. 3B). We found 386 markers associated to CRP also associated to smoking. Out of this set, we observed the effect of smoking on DNA methylation being mediated by CRP for 82 loci (21.2%) of which 32 loci reach Bonferroni significance levels (Supplementary Data 11).

CRP associated CpGs in genomic and biological context. Next, we evaluated if the CpG methylation signature was enriched within certain genomic features. We performed an over-representation analysis that mimicked the DNA methylation variation structure of our 1511 loci (“Methods”). We compared
the genomic positions of the CpG methylation signatures to histone modifications, DNase hypersensitivity, and chromatin model from the Roadmap project\(^2\) as well as Hi-C data\(^4\) and Encode Transcription factor binding sites\(^5\) (Fig. 4A). We found that CRP-associated CpGs were enriched within gene bodies but were depleted around transcription start sites (Fig. 4A; Supplementary Data 12). We further found CpG markers enriched in euchromatin and depleted in heterochromatin (Hi-C compartments, Supplementary Data 12, 13, 14, 15, 16, 17, 18). Analysis of Roadmap’s chromatin model showed 30% of all CRP-associated CpGs situated within enhancer regions, whereas very few CpGs were on EZH2 binding sites, indicating a minor impact of CpG islands on the presented DNA methylation signatures (Figs. 1, 4A).

We mapped the CRP methylation signature to histone marks across various tissues, however, did not find distinct evidence for one tissue driving the CRP CpG signatures (Supplemental Figs. 10, 11; Supplementary Data 12, 13, 14, 15, 16, 17, 18). Mapping the CRP-specific DNA methylation signature to transcription factor binding sites revealed about 40% of loci being situated on Polymerase II subunit A binding site (POLR2A). This suggests DNA methylation is a key regulator of Polymerase II transcribed genes. Furthermore, we investigated the association between gene expression and CRP-specific CpG signature (“Methods”). Out of 1,511 CRP-associated loci 9% of CpGs were significantly associated with gene expression. 22 CpGs showed a positive association, whereas for the majority of CpGs (84 CpGs) an inverse relationship prevailed. This set of 106 CpGs was
CRP associated CpGs in the clinical context. Finally, we investigated the impact of CRP-associated CpGs on clinically relevant phenotypes. We created a beta weighted risk score, following the same approach as for the polygenic risk scores in GWAS analysis. Associations between CRP DNA methylation signatures and clinically relevant phenotypes were evaluated in the studies separately and then combined in a meta-analysis (Fig. 5). There were no associations between cancer and the CpG risk score, however, we found the CRP risk score positively associated to weight, BMI, and waist circumference ($P < 6 \times 10^{-7}$; Supplementary Data 23). The CRP DNA methylation risk score was also positively associated to several other inflammation markers including IL6, IL1RA, and tumor necrosis factor receptor (TNFR) ($P < 0.05$, Supplementary Data 23). We found strong associations of CRP DNA methylation risk score to lung function (FEV1, FVC) as well as COPD and receipt of chemotherapy among breast cancer patients (Fig. 5B). Finally, we found strong associations of the CRP-associated methylation risk score with the tested cardiometabolic traits (Fig. 5A). We calculated the adjusted relative risk based on published relative life risk for cardiometabolic traits (“Methods”). This may be interpreted as follows: A full activation of the CRP DNA methylation risk score as given in Fig. 5A indicates the theoretical maximum impact of the discovered CpG on these clinically relevant traits. For this, the CRP-associated CpGs would be either fully methylated or unmethylated according to their direction of effect. This is, however, very unlikely to happen for one single individual. Thus, we also calculated the risk conveyed by one percent change in the DNA methylation risk score. The increased relative risk per one percent increased DNA methylation risk score was 1.007% for COPD, 1.7% for T2D, 2.9% for myocardial infarction 4.3% coronary artery disease, and 0.2% for hypertension. For continuous traits such as FEV1, FVC, systolic BP, and blood glucose estimates from linear regression including confidence intervals are given.

Discussion
With a sample size of 22,774 this epigenome wide association study on CRP, an important marker for chronic low-grade inflammation, is one of the largest EWAS efforts thus far. In this study, we identified a set of significantly associated CpGs that was 10× larger than in previously published EWAS16,27,28. Our analysis strategy in this study can be summarized as follows: To maximize power in this analysis we use a sparse regression model including only technical confounders. Next, we apply genomic control procedure, a conservative approach more typically performed in genome wide association studies29 (Fig. 1B), to prevent from false positive associations between blood CRP levels and DNA methylation. This allows us to use the maximum available sample size in the regression analyses that can be taken forward in the downstream analyses. Within the study, we then work towards a better understanding of the driving forces of the CRP DNA methylation association. We perform Mediation and Mendelian Randomization analysis to understand the potential causal connection between DNA methylation, blood CRP levels, BMI, and smoking. Finally, we present a DNA methylation risk score analysis, without any underlying assumptions, based on all CRP-associated CpGs, alongside with more fine-grained, analysis stratified for the analysis results of the study (Supplementary Data 2). Applying this strategy, the presented marker sets replicated well across ancestries (Fig. 1C; Supplemental Fig. 7) and proved to be stable in various sensitivity analyses (Fig. 3A; Supplemental Fig. 9) and alternative meta-analysis strategies (Supplemental Fig. 4, Supplementary Data 3).

One of the most interesting questions in terms of DNA methylation is its causal vs. consequential role: does the observed changed DNA methylation pattern contribute to risk for the associated trait, or is it a consequence? Mendelian Randomization, in which we use single nucleotide polymorphisms (SNP) as proxies for the individual CpG or the investigated trait, can help

![Fig. 5 Associations of CRP DNA methylation signature to clinically relevant phenotypes.](https://doi.org/10.1038/s41467-022-29792-6)
to answer this question30. If the SNPs associated with the CpGs discovered in this study are associated with CRP as well, we can infer a causal effect of the CpGs on chronic inflammation. In this case, DNA methylation would be the cause of changed serum CRP levels. Similar inference can be made with SNPs associated with chronic inflammation. This classical Mendelian Randomization can be extended to a triangulation analysis31, which is especially useful for DNA methylation studies. In triangulation analysis, the effect size of the instrument-outcome association should match the combined effect size of the instrument-exposure association and exposure-outcome association. It has been shown that BMI as well as Crohn’s disease cause DNA methylation changes10,22. Our Mendelian Randomization results suggest that the observed DNA methylation are likely a consequence of low-grade inflammation (Fig. 3D). These results, however, are less striking than similar results observed for BMI and Crohn’s disease. This might be due to the increased number of markers evaluated in this study compared to previous studies or due to the complex relationship between low-grade inflammation and metabolic syndrome, smoking, stress, and many other factors32.

To put DNA methylation into context with other risk factors for low-grade inflammation we performed a mediation analysis. We observed more Bonferroni significant markers than previous studies33,34 by a factor of about 10, and assessed a total of 6 different mediation models (“Methods”, Supplementary Data 9). We observed that a large proportion of the CRP-associated DNA methylation was caused by BMI (Fig. 3B) and a smaller fraction of the described CpG signature was caused by smoking.

The CRP DNA methylation signature includes a mixture of CpGs with evidence that they may play a central role in many cardiovascular and other diseases and CpGs that may be consequences of inflammation. One of the strongest markers for BMI CRP mediation is PHOSPHO1 (cg02650017). We found evidence that association of this marker, previously linked to BMI16, is actually due to the effect of BMI on CRP (Supplementary Data 9, C2 path for cg02650017 not significant). Similarly, we discovered that MPRIP methylation (cg23842572), which was associated with smoking in a previous large-scale study associated to smoking35 was also mediated by CRP. Interestingly, the very same CpG (cg23842572) is also associated with all-cause mortality36.

Similar to other complex trait DNA methylation association studies we detected low-grade inflammation associated CpGs predominantly located in open chromatin structures37,38, enhancers, and other regulatory regions in the genome and depleted in CpG island and related structures (Fig. 1A, 4). We replicated the published association between increased DNA methylation at AIM2 and lower serum CRP levels and lower expression of AIM220. Additionally, our study suggests that this effect is due to a BMI \textrightharpoonup CRP \textrightharpoonup DNA methylation (Supplementary Data 9, C2 path for cg10636246 not significant). Furthermore, we observed decreased DNA methylation associated with higher levels of CRP and higher expression levels of NOD2, an established maker for chronic inflammation39, which again was due to a BMI \textrightharpoonup CRP \textrightharpoonup DNA methylation mediation effect (Fig. 3B; Supplementary Data 9, cg01243823).

Our cluster analysis of correlation coefficients showed two distinct groups. We observed the most pronounced differences between correlation clusters within RELA binding site methylation (\emph{NF-kBp65} subunit, Fig. 4). GO term enrichment showed enrichment of Immune system processes for both clusters and enrichment of metabolic processes for cluster 2 (Fig. 4). A recent study suggests mutual regulation of overnutrition and inflammation by \emph{NF-kB}40, which fits very well to the GO term enrichments observed for cluster 2. Similarly, other studies showed that RELA binding sites are not only controlling Immune system associated genes but can also control triglyceride levels and lipogenesis41,42. Finally, the vast majority of RELA binding sites is linked to epigenetic regulators43 such H3K27ac, H3K4me both of which are closely linked to changes in DNA methylation13,14. Thus, we speculate that cluster 2 might reflect this mutual regulation of overnutrition and inflammation.

The connection between low-grade inflammation and adverse health outcomes is well established45–47, thus we investigated if CpG methylation caused by low-grade inflammation explains these associations. On a global level, creating a DNA methylation risk score, we found strong evidence for this notion. However, individual DNA methylation changes also suggest this. In a large-scale nested case control study Chambers, JC et al.48 identified 5 CpGs affecting T2D risk. All 5 CpGs were associated with CRP in this study and thus included in our risk score. The DNA methylation signal of two markers, PHOSPHO1 and SOCS3, were caused by a BMI \textrightharpoonup CRP \textrightharpoonup DNA methylation mediation. This highlights the important contribution of inflammation to T2D development and the importance of our findings to improve the understanding of existing data and how this dataset can serve as a reference for research into chronic inflammation. Similarly to T2D, we find four out of the six top markers associated with FEV1/FVC in a recent large scale meta-analysis49. The signal from one marker in the \emph{AHRR} gene could be back traced to a smoking \textrightharpoonup CRP \textrightharpoonup DNA methylation mediation effect found in our study.

This study has limitations: We assayed DNA methylation in blood and thus we naturally investigated rather the consequences of changed CRP levels than the causes, as CRP is primarily synthesized in the liver50 and adipose tissue51. Our study provides only a snapshot of DNA methylation changes associated with chronic inflammation, as we were limited to loci present on the Illumina Infinium Human Methylation450 Bead chips. The fact that more than 100,000 probes are situated on CpG islands52, which as we and others28,37 showed, further decreases the number of actual analyzed genomic loci. Due to limited data availability, we investigated only a small number of possible underlying reasons for the CRP-associated DNA methylation changes. Apart from smoking and BMI there might be other risk factors that actually drive the CRP signature32. This large scale setting, however, gives rise to other challenges, including the risk of false positives due to technical as well as unknown biological influences alongside with cellular heterogeneity53, which can be amplified in larger samples.

The strengths of our study are its sample size and its multi-ethnic discovery combined with a stringent analysis controlling for unwanted variation, allowing conclusions relevant for public health and disease management to be drawn. The large number of samples guaranties stable, reproducible results. The novel discovered signature shows higher replication rates across ancestries than earlier EWAS on CRP with smaller sample sizes20. Furthermore, studies included in meta-analysis used different data normalization strategies and different microarray technologies, which makes the resulting DNA methylation signature very generalizable and likely to be reproducible in many contexts.

Since DNA methylation is a reversible process53, our low-grade inflammation-associated DNA methylation signatures could serve as a valuable tool to monitor if changes in lifestyle are effectively decreasing the risk of adverse health outcomes. They could be used to monitor the efficacy of personalized interventions or may even pave the way for new epigenetic treatments. In a healthy population the DNA methylation signature can be applied as a proxy for chronic inflammation, and serve as an indicator for the transition between metabolically healthy obesity and obesity that most likely lead to adverse health outcomes.
In conclusion, we identified a robust set of CpGs associated with chronic inflammation in a large-scale multi-ethnic discovery analysis. Our analysis suggests that the discovered DNA methylation signature was largely a consequence of chronic inflammation that can be traced back to a mosaic of underlying driving factors such as smoking and BMI. The presented DNA methylation signature could be applied to understand the influence of low-grade inflammation in any existing or novel epigenome-wide association study and we hope that this large-scale meta-analysis inspires similar efforts to produce reliable signature for other complex traits. Most importantly, our study suggests that a sizable proportion of the impact from low-grade inflammation on the risk of heart disease, hypertension, T2D, and COPD is conveyed by DNA methylation, which implies that these effects might be reversible when changing the underlying causes such as BMI and smoking.

Methods

Study populations. The study comprised of 22,774 participants from 30 independent cohorts. The 25 participating studies of European Ancestry are AIRWAVE, ARIES, BHS-W, BIOS-CODAM, BIOS-LLS, BIOS-NTR, BIOS-PAN, CARDIOGENICS, CHS-W, EstBB-CTG, EPIC Norfolk, EPICOR, ESTHER-1a, ESTHER-1b, FHS, KORA, LBC, LLG, NFBC1966, NFBC1986, ROTTEDMANN, SHIP-Trend, TWINS-UK, YFS; the four studies of African Ancestries (AA) are ARIC, BHS-R, CHS-B, GENOA; and the one study of South Asian Ancestries is LOLIPOP. Participants with log blood CRP levels outside median ± 4x standard deviation were excluded from analysis.

Sensitivity analysis was performed in AIRWAVE, NFBC1966, NFBC1986 and LOLIPOP. Mediation analysis and correlation analysis were performed in AIRWAVE, NFBC1966, NFBC1986, and KORA. SNP associations for Mendelian Randomization analysis were retrieved from meta-analysis performed in AIRWAVE, KORA, NFBC1966, NFBC1986, and the BBMRI cohorts consisting of BIOS-CODAM, BIOS-LLS, BIOS-NTR, BIOS-PAN, ROTTEDMANN, and LLG. Analysis assessing association between clinical phenotypes and a CRP DNA methylation risk score were run in AIRWAVE, KORA, FHS, SHIP, and YFS.

Methylation measurements and quality control. DNA methylation was measured in whole blood using the Illumina450K or EPIC platform. Each cohort conducted their own quality control and normalization of DNA methylation data, as detailed in the Supplementary Data 1. The methylation beta (β) values were defined as $\beta = \frac{M}{M + U}$. Cohorts excluded DNA methylation markers above study specific detection P value threshold (predominantly $P < 10^{-15}$) alongside with samples failing to produce a significant amount of markers below the detection P value threshold (predominant call rate filter was 95%). Each cohort added technical covariates such as principal components of control probes, chip, chip row/column, bisulphite conversion batch etc. to the regression model as necessary in their dataset.

Cohort-specific CRP DNA methylation associations. Regressions were performed for each CpG individually using lm function as implemented in base R. The main regression model was: $\log(CRP) \sim DNAmeth + age + sex + estimated blood cell count + technical covariates$

For the sensitivity study, we added BMI to model and present results from this regression in the sensitivity analysis section. Overview of individual cohort specific covariates as well as cohort design, ethnicity, and sample numbers are given in Table 1. Blood cell count was estimated according to Housman et al.54 as implemented in R package minfi55.

Meta-analysis and Genomic control procedure. Meta-analysis was performed to combine results from all cohorts. We performed initial quality control and sanity checks individually on every study. In this context, replication rates of blood CRP markers reported in Lifcht S. et al.56 as well as differences in effect sizes between studies were assessed (Supplementary Figs. 1 and 2). Meta-analysis was performed to identify DNA methylation markers associated to blood CRP levels. The analysis was restricted to autosomal markers on the Illumina Human Methylation 450K BeadChip. Further, we excluded probes if they: (i) had a SNP in last 10 bp of the probe sequence (ii) were flagged as cross reactive probes56. This left 403,019 CpG sites for analysis in our meta-analysis. Effect sizes and standard errors of the 30 studies were combined using inverse variance weighting method as implemented in METAL software. We applied genomic control in and genomic control out to control for population stratification and other unmeasured confounding factors in the analysis.57 Genomic control out was achieved by correcting P values for the inflation factor lambda. Genomic control procedure was also applied in all sensitivity analyses and the multi-ethnic replication analysis. For the multi-ethnic replication analysis meta-analysis was performed separately for each ancestry. We defined CpGs as replicating in ancestry-specific analyses if the P-value was below 0.05. As sensitivity analysis, we performed the meta-analysis using the R-package BACON21 with default settings. To calculate standardized regression coefficients (normalization to standard deviations of lnCRP and DNA methylation) we combined the standard deviations of CpGs across all cohorts. Standard deviation of the samples were combined across studies (N = 7403, ARIES, ARIC, EPICOR, LOLIPOP, NFBC1966, NFBC1986). Standardized regression coefficients were then calculated as follows $\text{Coeff} = \frac{(\text{Coeff}_{\text{raw}} - \mu)}{\sigma}$, where $\text{Coeff}_{\text{raw}}$ is the unstandardized regression coefficient for the specific marker. μ and σ are the mean and standard deviation of all markers' coefficients. Coeff values were then used to calculate $\text{Coeff}_{\text{standard}}$ which weights correlation coefficients based on sample size. Overall correlation structures between cohorts were very similar (Supplementary Fig. 3). To determine whether or not correlation of DNA methylation values is depending on genomic distance we binned correlation data into 13 bins depending on their distance to each CpG. Bins were: 1–5 kb in 1 kb intervals then 10, 20, 50, 100, 150, 300, 450, and >450 kb. Correlation between each CpG to any other CRP-associated CpG for every chromosome separately was combined and then represented as boxplot (Fig. 2). For any further analysis inclusive cluster analysis, we restricted the set of CRP-associated markers to a set of 1511 independent CpG loci applying a 5 kb window (Supplementary Data 2). For this, we took the CpG marker with the lowest P-value for CPR association within a 5 kb forward to in depth analysis.

Correlation cluster. Correlation cluster analysis is based on meta-analyzed Pearson Rho values for 1511 independent CpG loci. We reduced correlation matrix to 2 UMAP dimension and calculated shared nearest neighbors using DBscan package. SNNclust density estimation was performed in a neighborhood size of $k = 35$, minimum points in cluster were 35, and eps parameter was 7.

Sensitivity analysis. To test the robustness of our CRP-associated markers and to find out whether or not the CRP-associated blood DNA methylation pattern may be driven by other metabolic risk factors we compared the summary statistics of the 1765 markers discovered with our base model $\text{CRP} \sim DNAmeth + age + sex + technical covariates + WBC estimates$ to the base model further adjusted with additional risk factors. To determine if a marker signal may be influenced by an additional risk factor we looked at 4 measures: 1. Does the direction of effect change? 2. Do Z-scores between models correlate; 3. Do we observe a significant difference in the coefficients of association (heterogeneity P-value); 4. Where possible: Is the marker part of a published list associated with the risk factor. BMI as additional risk factor was evaluated in all participating studies. Further risk factors were evaluated in a subset of studies (AIRWAVE, NFBC1966, NFBC1986, and LOLIPOP). Coefficients of subsequent models are compared to coefficients derived from the base model of those four studies. The following models were analyzed in our Sensitivity analysis. model 2s = base model + smoking status + packyears; model 3s = base model + waist circumference; model 4s = base model + hip circumference; model 5s = base model + total cholesterol; model 6s = base model + triglyceride; model 7s = base model + insulin; model 8s = base model + BMI + smoking status + packyears + waist circumference + hip.

Residualisation of DNA methylation values. For Mediation analysis, CRP DNA methylation risk score analysis as well as when looking for CpG instruments in our Mendelian randomization analysis we wanted to remove all unwanted variation from the DNA methylation values. To achieve this, we regressed out covariates known to influence the DNA methylation data from the quantile normalized DNA methylation beta values. The regression model was as follows: $\text{DNAmeth} \sim age + sex + CDMT + NK + Bcell + Mono + Neu + Eos + batch + [\ldots]$.

A pipeline integrated with PCACORR we applied the first 10 principal components of the control probe PCs.

Mendelian Randomization analysis. We performed a Mendelian Randomization analysis to better understand the reasons for the differential DNA methylation associated to CRP. For this, we defined a set of 1511 differential methylation loci associated to blood CRP levels. This analysis was performed based on in genetic data retrieved from 11 participating cohorts: AIRWAVE, BIOS-CODAM, BIOS-LLS, BIOS-NTR, BIOS-PAN, BIOS-BS, NFBC1966, NFBC1986, and KORA totaling a sample number of $N = 7005$. We performed analysis to investigate two Hypotheses:

1. DNA methylation is causal for CRP changes
2. DNA methylation is a consequence of changed CRP levels.

To test hypothesis 1, we needed to find instruments for DNA methylation. For this, we regressed DNA methylation value of every CpG against all SNPs present in
“cis” of the concordant CpG. The cis-region of every sentinel CpG was defined, as it’s chromosomal position was < 500 kb.

Regiaion analysis was performed using rvests software. We applied a dominant inheritance model a using linear mixed model. The model included a kinship matrix to adjust for cryptic relatedness and population stratification, as well as estimated blood cell counts, age, and sex. Regressions were run individually in each cohort. Results were combined using METAL software in the inverse variance weighted mode. A valid instrument must have a genome wide significant SNP and CpG association ($P < 5 \times 10^{-8}$). For the association to the CRP we extracted coefficients and standard errors from the most recent CRP GWAS. Furthermore, we excluded SNPs with a direct effect on the CRP. That is if SNP \rightarrow CRP + lnCRP gives a direct association between SNP and lnCRP if we add CRP as covariance to the model. Again, this association were determined separately in every cohort using rvests software and results were combined using METAL. A direct effect was defined as significant if the P value of association was below Bonferroni threshold for 1511 tests (3.3e−05). We used the ratio method to determine significance in the Mendelian Randomization analysis as implemented in the R package MendelianRandomization where

$MR_{beta} = \frac{BETA_{CpG-SNP}}{BETA_{CRP-SNP}}$

To test hypothesis 2, we used the latest published GWAS on CRP (Ligthart, 2018) to define a set of instruments for CRP. In contrast to testing to hypothesis 1 where we rely on large scale GWAS summary statistics for the association to our outcome (CRP). As there is currently no large scale GWAS summary statistics for Illumina 450k CpGs as an outcome available, we created a CRP polygenic risk score starting 52 SNPs. To generate a beta weighted risk score we used PLINK version 1.9. Next, we regressed the risk score against every sentinel CpG under an additive model. CpG \rightarrow CRP + age + sex + blood cell estimates + genetic PC [1,10]. Again, association testing was performed in every cohort separately and results combined using METAL software. Furthermore, we excluded SNPs with a direct effect on the outcome (CpG). For direct effect estimation we regressed every CRP-associated SNP against DNA methylation levels of the 1511 sentinel CpGs adding CRP as an additional model. Bonferroni threshold was for 52 SNP > 1511 CpGs ($P < 6.4 \times 10^{-7}$). All SNP associations with any CpG were excluded from the polygenic risk score. We found valid instruments for 709 CpGs which were used in this Mendelian Randomization. To retrieve a comparable result for both hypothesis, we also restricted the CRP causes CpG changes direction of the MR to 709 CpGs. We used the ratio method to determine significance in the Mendelian Randomization analysis as implemented in the R package MendelianRandomization where

$MR_{beta} = \frac{BETA_{CRP-SNP}}{BETA_{CpG-SNP}}$

Mendelian Randomization triangulation. Next, we wanted to understand if there is general trend for all CRPs to be cause or consequence of blood CRP levels. For this, we applied a triangulation approach: The effect of the instrument on the outcome (observed effect) should equal the product of the effect of the instrument on the exposure and the effect of the exposure on the outcome. For hypotheses 1, the observed effect is CRP \rightarrow SNP and the predicted effect is the product of the effects of DNA methylation on the SNPs and CRP on DNA methylation. For hypotheses 2 the observed effect is DNA methylation \rightarrow GR (polygenic CRP risk score) and the predicted effect is the product of effects of CRP \rightarrow GR and CRP \rightarrow DNA methylation. If the observed effect is mediated through the predicted effect those will correlate.

Mediation analysis. We performed a mediation analysis to better understand our CRP-associated DNA methylation markers. We followed the analysis framework as suggested by Baron Kenny (Fig. 3B). We assessed the results of four regressions:

- path: CRP \rightarrow BMI + covariates,
- b-path: DNAmeth \rightarrow CRP + BMI + covariates,
- c-path: DNAmeth \rightarrow BMI + covariates (total effect),
- Δ-path: DNAmeth \rightarrow BMI + CRP + covariates.

From this we can assess the indirect effect which is ab/b. Values of this multiplication were compared to $-c$ which should give the same result. Next, we performed an Aroian Sobel test to assess the significance of the indirect effect. Briefly, we extracted coefficients and standard errors from a path regressions and calculated a Z score as follows: $z_{sobel} = (ab/b)$\bigg/\sqrt{(6b^2S_e^2/(2b^2S_e^2)) + (a^2S_e^2)}$, where S_e is the variance calculated separately. Z score was calculated only if the indirect effect was negative and we saw a significant association ($P < 0.05$) between BMI and the tested CpG. For this analysis we excluded all samples with BMI values outside of mean (BMI) +/- 4 * 1SD(BMI). We tested 6 different mediation models in NFB1986. Model 1: BMI \rightarrow CRP \rightarrow DNAmeth; Model 2: CRP \rightarrow DNAmeth; Model 3: SMOKING \rightarrow CRP \rightarrow DNAmeth; Model 4: BMI \rightarrow DNAmeth \rightarrow CRP; Model 5: CRP \rightarrow DNAmeth \rightarrow BMI; Model 6: SMOKING \rightarrow DNAmeth \rightarrow CRP (Supplemental results Table 1). For model selection, we evaluated if one or more assumption for Mediation analysis according to Baron Kenny were violated. As given in Supplemental Data 10 we did not find any significant association for model 4 and therefore, we have a negative indirect effects and model 6 did not produce results, because path C association between Smoking and CRP was not significant in NFB1986. This left only model 1 and model 3 that did not violate assumption necessary to perform a meaningful mediation analysis. Additionally, incorporating published literature into the model selection process we were able to rule out that BMI causal for increased levels of blood CRP, on a local level BMI causes alterations in DNA methylation patterns as well as CRP causing changes in alteration in DNA methylation pattern (this study). This makes models 2, 4, 5, and 6 highly unlikely as at least one of their path according to Baron Kenny is in conflict with the findings of these studies.

Thus, we extended the analysis to AIRWAVE, NFBC1986 and KORA cohort (N = 3192) for model 1 and model 3. To achieve this we ran all regressions (pathA to pathC) separately for each cohort and combined the effect sizes and standard errors using inverse variance weighted approach. The meta-analyzed results were then the basis for mediation analysis according to Baron Kenny.

Association to Gene-expression. In Framingham Heart study a total of $n = 2.648$ participants had DNA methylation data (Illumina 450k array) and Gene expression data (Affymetrix Human Exon Array) available. The quality control process is described in a published manuscript. To retrieve association between expression and DNA methylation we performed linear regression analysis Geneex \rightarrow CpG + sex + age + houseman celltype + Principal Components and other technical covariates. From this we can assess the indirect effect which is ab/b. Values of this multiplication were compared to $-c$ which should give the same result. Bonferroni significant association are given in Supplementary Data 19.

Overrepresentation analysis. We wanted to determine the overlaps between our 1511 CRP-associated loci and publicly available lists of genomic features such as Histone Modifications, Transcription factor binding sites, and chromatin states. For this, we performed permutation tests. First, we assessed the number of overlaps between our 1511 CRP-associated markers and a genomic feature of interest. Then we sampled 10,000 sets of 1511 markers. For every set of 1511 marker we recorded the number of overlaps to the genomic feature of interest. Those 10,000 overlaps created our H0 distribution. We calculated an empirical P value separately based on either the number of entries with higher or the number of entries with lower overlap in our H0 distribution compared to our observed number of overlaps recorded within the 1511 CRP-associated loci. Additionally, we calculated a Fisher P value based on the mean of the overlap distribution and the observed overlap. We collected the mean and standard errors of for each CpG from most studies in this EWAS. 90% of standard errors were between 0.007 and 0.075. SD values in this range were binned the SD data into 0.005 intervals. For generation of 10,000 random sets of markers we used the equal numbers of markers within each standard error bin as overlap for the CRP-associated loci.

We calculated overlaps to the CpG annotation as given in the Illumina Manifest file. We retrieved DNaseI-accessible sites from Encode project (http://www. enwencode.org/proj/hotspot), specifically gapped peaks from Release 9 called with MACSv2.0.10. For histone marks (H3K9 and H3K27) were retrieved gapped peak from Roadmap project for a collection of 127 tissues and cell lines as well as probabilities for Roadmap 15 state chromatin model for selected cell lines. Encode Transcription factor binding sites were retrieved from UCSC browser (genome.ucsc.edu/cp-bin/hgTrack détail= hg19&g= wgEncodeRel36BSsClusteredV3). Next, we mapped Illumina 450k probes to the GWAS catalog hits (downloaded 20170626) of traits having 50 or more hits recorded in the catalog. We allowed a window of 1MB to match the 450k probes to each GWAS catalog entry and removed one or more hits in case they were overlapping. Finally, we retrieved chromosome conformation capture data (HiC) as described by Bing Ren et al. (2015). Supplementary Figures 10 and 11 give a representative result for two enrichment analyses. Over representation analysis was performed with several subsets of the data: all loci, BMI mediated loci, smoking mediated loci, loci that cause CRP changes, correlation cluster 1 and cluster 2.

Association to clinical phenotypes. We calculated one risk score per subset of loci in AIRWAVE, ARIES, FHS, KORA, SHIP-Trend, and YFS. A total of 7 risk scores per phenotype was produced. These are: all loci, BMI mediated loci, smoking mediated loci. CpGs identified to affect serum CRP levels, correlation cluster 2, loci that correlate with changes in expression in cis. We calculated a beta weighted risk score using the coefficients from the multi-ethnic discovery analysis (similar to a polygenic risk score in GWAS).

For each participant in every study:

$CPGriskSCORE = \sum CPg \times \beta_{cpg} \times \gamma_{cpg}$

Then we performed logistic regression model (glm() option in R) for each $CPGriskCORE$ against each outcome. Depending on the availability of phenotypes across cohorts we combined the effect sizes and standard errors using inverse variance weighted approach as implemented in METAL software. We present meta analyzed effect sizes (log[OR]) and P-values from logistic regression. Odd ratios were transformed to produce adjusted relative risk estimates:

$RR = odds\ ratio^{1} - (lifetime\ risk) + (life\ time\ risk \times odds\ ratio)$
We used lifetime risk estimates from current literature: COPD 11.45%61, T2D 39.9%62, MI 24.8%63, CAD 40.15%64 and Hypertension 81%65.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The individual participant data included in this project are generally not publicly available due to data protection laws, but can be applied from the individual studies on reasonable request. Information about the individual studies analyzed in this manuscript can be found in the supplementary information. The summary statistics from the meta-analyses are available on figshare website (https://doi.org/10.6084/m9.figshare.19180676.v1).

Code availability

All code for data cleaning and analysis associated with the current submission is available at https://github.com/Mwielscher/EWAS_CRP.

Received: 5 July 2021; Accepted: 31 March 2022; Published online: 03 May 2022

References

1. Danesh, J. et al. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 321, 199–204 (2000).
2. Dehghan, A. et al. Risk of type 2 diabetes attributable to C-reactive protein and other risk factors. Diabetes Care 30, 2695–9 (2007).
3. Schmidt, M. L. et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): A cohort study. Lancet 353, 1649–52 (1999).
4. Saukkonen, T. et al. Adipokines and inflammatory markers in elderly subjects with high risk of type 2 diabetes and cardiovascular disease. Sci. Rep. 8, 12816 (2018).
5. Danesh, J. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 350, 1387–897 (2004).
6. Leuzzi, G. et al. C-reactive protein level predicts mortality in COPD: a systematic review and meta-analysis. Eur. Respir. Rev. 26, 160070 (2017).
7. Kim, J. et al. A double-hit of stress and low-grade inflammation on functional brain network mediates posttraumatic stress symptoms. Nat. Commun. 11, 1898 (2020).
8. Valkanova, V., Ebmeier, K. P. & Allan, C. L. CRP, IL-6, and depression: A systematic review and meta-analysis of longitudinal studies. J. Affect. Disord. 150, 736–44 (2013).
9. Ligthart, S. et al. Genome analyses of >200,000 individuals identify 58 loci for inflammatory bowel disease. Nature 518, 242–246 (2015).
10. Nakamura, T. et al. Genome-wide association study of type 2 diabetes in Japanese population. JAMA 312, 2353–61 (2014).
11. Madsen, N. B. et al. C-reactive protein and inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin. Exp. Immunol. 147, 227–35 (2007).
12. Kracht, M., Muller-Ladner, U. & Schmitt, M. L. Mutual regulation of metabolic processes and proinflammatory NF-kappaB signaling. J. Allergy Clin. Immunol. 146, 694–705 (2020).
13. Gruber, P. J., Torres-Rosado, A., Wolak, M. L. & Leff, T. Apo CII gene transcription is regulated by a cytokine inducible NF-kappa B element. Nucleic Acids Res. 22, 2417–22 (1994).
14. Baker, R. G., Hayden, M. S. & Ghosh, S. NF-kappaB, inflammation, and metabolic disease. Cell Metab. 13, 11–22 (2011).
15. Charlet, J. et al. Bivalent regions of cytomegalovirus and HSK27 acetylation suggest an active role for DNA methylation at enhancers. Mol. Cell 62, 422–431 (2016).
16. Okitsu, C. Y. & Hsieh, C. L. DNA methylation dictates histone H3K4 methylation. Mol. Cell Biol. 27, 2746–57 (2007).
17. Prins, B. P. et al. Investigating the causal relationship of C-reactive protein with 32 complex somatic and psychiatric outcomes: A large-scale cross-consortium mendelian randomization study. PLoS Med. 13, e1001976 (2016).
18. Bautista, L. E. Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. J. Hum. Hypertens. 17, 223–30 (2003).
19. Wielscher, M. et al. Genetic correlation and causal relationships between cardio-metabolic traits and lung function impairment. Genome Med. 13, 104 (2021).
20. Chambers, J. C. et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: A nested case-control study. Lancet Diabetes Endocrinol. 3, 526–534 (2015).
21. Ouchi, N. et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 107, 671–4 (2003).
Author contributions

First draft of manuscript and scripting all analysis codes: M.W., Writing team: M.W., M.-R.J., B.K., R.J., A.D., M.-R.J., and P.R.M.; sensitivity analysis: M.W., R.M., and O.R.; Mendelian randomisation: M.W., B.K., R.J., A.D., M.-R.J., and P.R.M.; analysis: M.W., B.B.; gene expression analysis: R.J.; risk score analysis: M.W., B.K., R.J., A.D., M.-R.J., Pooja R. Mandaviya3,4, Brigitte Kuehnel5, Roby Joehanes6,7, Rima Mustafa8,1, Oliver Robinson9,1, Yan Zhang8, Barbara Bodinier10,1, Esther Walton11,9,10, Pashupati P. Mishra11,12,13, Pascal Schlosser14,1, Ropy Wilson15,1, Pei-Chien Tsai16,15, Saranya Palaniswamy17,17, Riccardo E. Marioni18, Giovanni Fiorito19,20, Giovanni Cugliari21, Ville Karhunen22,1, Mohsen Ghanbari22,23, Bruce M. Psaty24,25,26, Marie Loh27,1, Joshua C. Bis28, Benjamin Lehne1,17,29, Saraon Sotoodehnia30, Ian J. Deary29,30, Marc Chadeau-Hyam1, Jennifer A. Brody28, Alexia Cardona30,31, Elizabeth Selvin31,32, Alicia K. Smith33, Andrew H. Miller33, Mylin A. Torres35, Eirini Marouli36, Xin Gao37, Joyce B. van Meurs38, Johanna Graf-Schindler32,8, Wolfgang Rathmann39, Wolfgang Koenig40,41, Annette Peters42,5,39, Wolfgang Weninger2, Matthias Farlik2, Tao Zhang41, Wei Chen42, Yujing Xia15, Alexander Teumer43,44, Matthias Nauck44,45, Hans J. Grabe46, Marcus Doerr44,47, Terho Lehtimäki11,12,13, Weihua Guan48, Lili Milani49, Toshiko Tanaka50, Krista Fisher49,51, Lindsay L. Waite52, Silva Kasela49, Paolo Vineis120, Niek Verweij53, Pim van der Harst54, Licia Iacoviello55,56, Carlotta Sacerdote57, Salvatore Panico58, Vittorio Krogh59,60.
Rosario Tumino, Evangelia Tzala, Giuseppe Matullo, Mikko A. Hurme, Olli T. Raitakari, Elena Colicino, Andrea A. Baccarelli, Mika Kähönen, Karl-Heinz Herzig, Shengxu Li, BIOS consortium, Karen N. Conneely, Jaspal S. Kooper, Anna Kötting, Bastiaan T. Heijmans, Panos Deloukas, Caroline Relton, Ken K. Ong, Jordana T. Bell, Eric Boerwinkle, Paul Elliott, Hermann Brenner, Marian Beekman, Daniel Levy, Melanie Waldenberger, John C. Chambers, Abbas Dehghan & Marjo-Riitta Järvelin

1Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. 2Department of Dermatology, Medical University of Vienna, Vienna, Austria. 3Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands. 4Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands. 5Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany. 6Framingham Heart Study, Framingham, MA, USA. 7Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA. 8Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany. 9Department of Psychology, University of Bath, Bath, UK. 10Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK. 11Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. 12Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. 13Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland. 14Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany. 15Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK. 16Department of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan. 17Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Pentti Kaiterannkatu 1, Linnanmaa, Oulu, Finland. 18Centre for Genetic and Experimental Medicine, University of Edinburgh, Edinburgh, UK. 19Laboratory of Biostatistics, Department of Biomedical Sciences, University of Sassari, Sassari, Italy. 20MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK. 21Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. 22Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. 23Department of Genetics, Mashhad University of Medical Sciences, Mashhad, Iran. 24Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA. 25Department of Health Services, University of Washington, Seattle, WA, USA. 26Lee Kong Chian School of Medicine, Mandai Road, Singapore, Singapore. 27Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA. 28Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK. 29MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK. 30Dept. of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. 31Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. 32Departments of Gynecology and Obstetrics & Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA. 33Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia. 34Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA. 35William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK. 36Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany. 37Deutsches Herzzentrum München, Technische Universität München, Munich, Germany. 38German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany. 39Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany. 40Department of Biostatistics, School of Public Health, Shandong University, Jinan, China. 41Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA. 42Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany. 43DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany. 44Institute of Clinical and Experimental Medicine, University Medicine Greifswald, Greifswald, Germany. 45Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany. 46Division of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany. 47Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA. 48Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia. 49Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA. 50Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia. 51HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA. 52Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands. 53Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands. 54Department of Epidemiology and Prevention, IRCCS NEURONED, Pozzilli, IS, Italy. 55Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMEDE), University of Insubria, Varese-Como, Italy. 56Unit of Cancer Epidemiology, Città della Salute e della Scienza Hospital and Centre for Cancer Prevention, Turin, Italy. 57Dipartimento di Medicina Clinica e Chirurgia Federico II University, Naples, Italy. 58Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. 59Cancer Registry and Histopathology Department, "Civic - MPP Anezzo" Hospital, ASP Ragusa, Ragusa, Italy. 60Department of Biomedical Sciences, University of Turin, Turin, Italy. 61AOU Città della Salute e della Scienza di Torino, Turin, Italy. 62Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. 63Research centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland. 64Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland. 65Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland. 66Department of Environmental and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 67Department of Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA. 68Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland. 69Research Unit of Biomedical, Medical Research Center, Faculty of Medicine, University of Oulu, and Oulu University Hospital, Oulu, Finland. 70Department of Gastroenterology and Metabolism, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland. 71Children’s Minnesota Research Institute, Children’s Minnesota, Minneapolis, MN, USA. 72Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA. 73Department of Cardiology, Imperial College London, London, UK. 74National Heart and Lung Institute, Imperial College London, London, UK. 75Department of Genetics, Ealing Hospital, London North West Healthcare NHS Trust, Southall, UK. 76Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands. 77Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA. 78Human Genome Sequencing Center, Baylor College of Medicine,
Houston, Houston, TX, USA. MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK. Imperial Biomedical Research Centre, Imperial College London, London, UK. British Heart Foundation, BHF, Centre for Research Excellence, Imperial College London, London, UK. Network Aging Research, Heidelberg University, Heidelberg, Germany. Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands. UK Dementia Research Institute at Imperial College London, London, UK. Unit of Primary Care, Oulu University Hospital, Oulu, Finland. Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK. A list of authors and their affiliations are provided in the Supplementary Material.

✉email: matthias.wielscher@meduniwien.ac.at; m.jarvelin@imperial.ac.uk