The accuracy comparison of the RK-4 and RK-5 method of SEIR model for tuberculosis cases in South Sulawesi

N R Ramadhan¹, I Minggi² and S Side²

¹Student of Magister Mathematics, Universitas Negeri Makassar
²Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar

*Corresponding Author: syafruddin@unm.ac.id

Abstract. This research discusses about the accuracy of the 4th and 5th order Runge-Kutta methods (RK-4 and RK-5) as a numerical solution in the Susceptible-Exposed-Infected-Recovered (SEIR) mathematical model of Tuberculosis (TB) transmission in South Sulawesi. The data used are secondary data on the number of TB patients in South Sulawesi sourced from the South Sulawesi Health Office. The research begins by further examining the SEIR model on TB transmission, then looking for general solutions of the SEIR model with the 4th-order and 5th-order Runge-Kutta methods, parameter determination, simulation and results analysis. In this research, the movement graph is obtained from the SEIR model with real data. After analysing the numerical simulation, the accuracy of the 4th-order and 5th-order Runge-Kutta methods is compared, then the two methods are compared to observe a more accurate method. The result of this research shown that the simulation of SEIR model is accurate to predict TB cases in South Sulawesi. The Runge-Kutta method can used to observe trends in the spread of TB in South Sulawesi. The numerical simulation shown that the 5th-order more accurate than the 4th-order Runge-Kutta methods. The results of the modelling are simulated using Maple can predict the number of TB cases which can be used by the government as a consideration to prevent the spread of TB in South Sulawesi.

1. Introduction
The World Health Organization (WHO) 2009 states 9 million new Tuberculosis (TB) patients and 3 million deaths from TB worldwide, 95% of TB cases and 98% of deaths from TB occur in developing countries. Without handling and control over a period of 20 years, TB will kill 35 million people [1]. Seeing the condition, the WHO stated that TB became a global emergency since 1993 [2].

Based on data from South Sulawesi Health Minstry in 2011, TB disease number has reached 8,939 significant cases than the previous year, 7,783 cases. Takalar Regency ranks first number of cases with growth above 109%, following Pare-Pare 79%, Pinrang 75%, Makassar 70% and lowest Luwu 33% and Jeneponto 36%. The number of sufferers is due to various factors such as residential environment. In addition, the lack of home lighting makes the disease easy to spread. A TB sufferer is able to transmit to 10 people. Another factor is behavior. People with HIV/AIDS are very risky to Tuberculosis. Contribution of unhealthy behavior reaches 5-10% annually and the occurrence of nutritional malls [3]

Some researchers have made the model of infectious diseases [4-15], a TB-transmission model was conducted by [10,15], but had not yet searched for the numerical solution of the model, then the numerical solution using the perturbated method of the ascetic was carried out by [11, 13, 14], but did not find a model solution using Runge Kutta. Thus, this study will determine the numerical solution of
the SEIR model on transmission of TB using Runge Kutta method of order 4 and order 5 (RK-4 and RK-5). Parameter determination, analysis and simulation using secondary data number of TB cases in South Sulawesi. The result of the second numerical solution Runge Kutta method is then compared to see a more accurate method of controlling and handling TB transmission in South Sulawesi.

2. Method

This research is an applied study. SEIR mathematical model [15] was developed by conducting analysis and model simulation using Maple. The data used is the number of TB cases in South Sulawesi. The numerical solution of the SEIR model was obtained using Runge Kutta's Order 4 and order 5 methods. Furthermore, the numerical solutions of the SEIR model with Runge Kutta are compared with real data on the number of TB cases in South Sulawesi using Excel. Then both methods are compared to find out the RK-4 or RK-5 method, which is more accurate in predicting the number of TB cases in South Sulawesi.

3. Result and Discussion

3.1. SEIR Model for TB Transmission

The SEIR model that we use in this study is the SEIR model in tuberculosis transmission that has been previously studied by [15] in Figure 1.

![Figure 1](image)

Figure 1. Human population diagram of the SEIR model of TB transmission

Based on the Figure 1, the human population divided by four compartment are Suspend, Exposed, Infected, and Recovered and the SEIR mathematical model of the TB transmission can be interpreted as follow:

\[
\begin{aligned}
\frac{dS_h}{dt} & = \mu_h N_h - (\sigma_h + \beta_h + \mu_h)S_h \\
\frac{dE_h}{dt} & = \sigma_h S_h - \gamma \phi_h I_h E_h - \phi_h E_h - \mu_h E_h \\
\frac{dI_h}{dt} & = \beta_h S_h + \phi_h E_h - (\mu_h + \delta_h)I_h \\
\frac{dR_h}{dt} & = \gamma \phi_h I_h E_h - (\mu_h + \varphi_h)I_i \\
\end{aligned}
\]

The initial values of the variable and parameter used in the SEIR model for TB disease in South Sulawesi presented in Table 1.
Table 1. Initial Values of SEIR Model for TBC transmission in South Sulawesi

Variable	Estimated Value	Source	Parameter	Estimated Value	Source
N_h	8034776	[13]	μ_h	3.5x10^{-4}	[13]
S_h	15073	[13]	σ_h	3.1 x10^{-3}	[13]
E_h	8060796	[13]	β_h	3.267 x10^{-3}	[13]
I_h	7087	[13]	ϕ_h	8.8 x10^{-2}	[13]
I_l	1417	[13]	$\gamma\phi_h I_h$	5.08 x10^{-5}	[13]
R_h	3771	[13]	δ_h	6.265 x10^{-4}	[13]

Based on the data and parameters in Table 1, the simulation model using Maple found the prediction of the SEIR model for TB transmission. Result of the simulation model are given by Table 2.

Table 2. Rate of case of transmission TBC based on SEIR model

t	S_h	E_h	I_h	I_l	R_h
0	0.00187597	0.006772654	0.000705682	0.000176358	0.00046934
1	0.002212239	0.006205958	0.001276469	0.000175686	0.00047547
2	0.002546258	0.005688153	0.001797053	0.000175045	0.00048501
3	0.002878084	0.005215108	0.002271856	0.000174429	0.00049760
4	0.003207602	0.004783027	0.002704945	0.000173830	0.00051317
5	0.003534957	0.004388443	0.003100026	0.000173242	0.00053125
6	0.003860121	0.004028193	0.003460479	0.000172662	0.00055169
7	0.004183109	0.003699368	0.003869411	0.000172087	0.00057428
8	0.004503934	0.003399296	0.004086669	0.000171515	0.00059883
9	0.004822612	0.003125549	0.004363842	0.000170942	0.00062516
10	0.005139156	0.002875902	0.004614298	0.000170369	0.00065314

3.2. Numerical Solutions of SEIR Models for TB transmission in South Sulawesi

3.2.1. Numerical Solution of SEIR Models for TB in South Sulawesi by RK-4
The standard formula of the RK-4 method as in Equation (6).

\[y_{r+1} = y_r + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \] \hspace{1cm} (6)

with
\[k_1 = hf(x, y) \]
\[k_2 = hf(x + \frac{1}{2}h, y + \frac{1}{2}k_1) \]
\[k_3 = hf(x + \frac{1}{2}h, y + \frac{1}{2}k_2) \]
\[k_4 = hf(x + h, y + k_3) \]

(7)

Then we have numerical solution of SEIR model by RK-4 shown by Table 3

T	S_h	E_h	I_h	I_i	R_h
0	15073	54417	5670	1417	3771
1	19178	50596	10258	1412	3820
2	23283	46776	14845	1406	3870
3	27387	42955	19433	1401	3919
4	31492	39135	24021	1395	3968
5	35597	35314	28608	1390	4017
6	39702	31494	33196	1385	4067
7	43807	27673	37783	1379	4116
8	47911	23853	42371	1374	4165
9	52016	20033	46959	1368	4215
10	56121	16212	51546	1363	4264

3.2.2. Numerical Solution of SEIR model for TB in South Sulawesi by RK-5

The standard formula of the RK-5 method as in Equation (8).
\[k_1 = hf(t_i, x_i) \]
\[k_2 = hf(t_i + \frac{h}{2}, x_i + \frac{k_1}{2}) \]
\[k_3 = hf(t_i + \frac{3h}{4}, x_i + \frac{3k_1 + k_2}{16}) \]
\[k_4 = hf(t_i + \frac{h}{2}, x_i + \frac{k_3}{2}) \]
\[k_5 = hf(t_i + \frac{3h}{4}, x_i + \frac{-3k_2 + 6k_3 + 9k_4}{16}) \]
\[k_6 = hf(t_i + h, x_i + \frac{k_1 + 4k_2 + 6k_3 - 12k_4 + 8k_5}{7}) \]

\[x_{i+1} = x_i + \frac{1}{90} (7k_1 + 32k_3 + 12k_4 + 32k_5 + 7k_6) \]

Then we have numerical solution of SEIR model by RK-4 shown by Table 4.

T	S_h	E_h	I_h	I_i	R_h
0	15073	54417	5670	1417	3771
1	17775	49864	10256	1422	3820
2	20477	45310	14842	1426	3870
3	23179	40757	19428	1431	3919
4	25880	36204	24014	1436	3968
3.3. Accuracy comparison of the RK-4 and RK-5 Method of the SEIR for TB in South Sulawesi

The comparison of the mean errors in Table 3 and Table 4 is presented in Table 5.

Table 5. The number comparison error of the infected of infected population of TB in South Sulawesi

t	Sb	Eb	Ib	Ii	Rb
5	28582	31651	28600	1440	4017
6	31284	27098	33186	1445	4067
7	33986	22544	37772	1450	4116
8	36688	17991	42359	1455	4165
9	39390	13438	46945	1459	4215
10	42091	8885	51531	1464	4264

Based on the Table 5, the RK-5 method is more accurate than RK-4 method in calculating the number of suspect, infected of human populations, and the number of recovered populations. While the RK-4 method is more accurate than RK-5 method for calculating the number of populations that are exposed (have symptoms), and populations that are infected of infected (directly infected by bacteria).

3.4. Discussion

Research on the model of SIR and SEIR on transmission of TB by [10.15], model [10] divide the compartments into three namely suspected, infected and recovered while model [15] divide the compartments into four parts namely suspected, exposed, infected and recovered. The analysis result of SEIR Model using the Lyapunov function method. The result of this research is a model of SEIR, which simulated to get prediction of the number of TB cases in South Sulawesi that shown in Table 3 and Table 4, then obtained the numerical solution of SEIR model using method RK-4 and RK-5. The obtained result indicates that the RK-5 method is more accurate than the RK-4 method.

4. Conclusion

Based on the results and discussion can be concluded that the spread of TB can be formed in the math model SEIR, analysis and model simulation can predict the number of TB cases in South Sulawesi in the future. The model numeric solution SEIR transmission TB in South Sulawesi can be done using the RK-4 and RK-5 methods, the solution results show that the RK-5 method is more accurate than the RK-4 method, this is demonstrated in the trend of the smaller value Δξ compared to the RK-4 method.

Acknowledgements

We would like thank to Dikti No:052/SP2H/LT/DRPM/2020 for financial support, also thanks to Ministry of Health, South Sulawesi that supporting research data.

References

[1] Lisa P 2009 Analysis of the stability of the model of tuberculosis spread (Semarang: Universitas Diponegoro)
[2] Arfandi S 2012 Synergy Partnership in Tuberculosis Control (Makassar: Universitas Hasanudin)

[3] Hermi A 2012 TB mortality rate in South Sulawesi is high Online. http://www.aisyiyahsulselpeduli.com/2012/12/angka-penderita-tbc-di-sulsel-tinggi.html. [accessed 9 March 2014].

[4] Van Den P D, Lin W and Xingfu Z 2007 Math. Biosci. Eng. 4(2) 205

[5] Tracy A 2008 Spring Term

[6] Ashley T, Jacqueline S and John S 2010 Modeling the spread of Tuberculosis in a Closed Population Online. http://educ.jmu.edu/~strawbem/math_201/final_reports/Scotti_Takahashi_Spreadbury_Final.pdf. [accessed, 20 April 2014].

[7] Dontwi I. K, W Obeng-Denteh, E A Andam and L Obiri-Apraku 2014 Br. J. Math. Comput. Sci. 4(3) 402

[8] Idianto, Bayu and Nilamsari K 2013 Bul. ILM. Mat. Stat. Ter. 2(3) 173

[9] Queena K, Tjokorda B.O and I Made E.D 2012 e-J. Mat. 1(1) 52

[10] Syafruddin S 2015 Adv. Sci. Lett. 21(2) 137

[11] Rangkuti Y.M, Side S, and Noorani M.S.M 2014 J. Math. Fundam. Sci. 46A(1) 91

[12] Syafruddin S and M.S.M Noorani 2013 Int. J. Simul. Process Model. (IJSPM) 8(2/3) 177

[13] Side S, Pratama M.I, Ramadhan N.R, and Sanusi W 2020 Int. J. Sci. Technol. Res. 9(2) 816

[14] Ramadhan N.R., Side S, Sidjara S, Irwan, Sanusi W 2019. AIP Conf. Proc. 2192(1) 060015

[15] Side S, Mulbar U, Sidjara S, and Sanusi W 2017 AIP Conf. Proc. 1830(1)