Is Fibreoptic Percutaneous Tracheostomy in ICU A Breakthrough

Ankit Agarwal, DK Singh

ABSTRACT

Background: In ICUs, bedside percutaneous tracheostomy (pct) is commonly performed, but it is associated with certain drawbacks as paratracheal placement, posterior tracheal wall injury and tracheoesophageal fistula. To address these fibreoptic bronchoscope (FOB) guided PCT was introduced. We aimed to compare both these methods.

Patients & Methods: We compared 60 age & sex matched patients into two groups of 30 each. In group 1 tracheostomy was performed by the conventional Ciaglia’s method. In group 2, a fibreoptic bronchoscope was used in addition with the aid of an assistant.

Results: The fiberoptic method took more time than the conventional method. (18±3min vs 15±2min (p=0.001)). The average no. of attempts at insertion of needle was 2.4 in group 1 and 1.2 in group 2 (p=0.001). The fall in SpO2 to <90% was seen in 1 patient in group 1 and in 6 patients in group 2, so much so that the procedure had to be abandoned in 2 patients.

Conclusion: FOB though definitely advantageous over CPCT in terms of lesser complications and being highly useful in the obese, short necked, and those with scar marks, is not without drawbacks such as requirement of additional staff and increased expenditure. The main being inability to be used in patients with low respiratory reserve. Overall it would be complimentary for any ICU to have FOB facility and must be used in select group of patients.

KEYWORDS:
was similar to group 1. A postprocedure chest Xray was performed in all as a precautionary measure.

The parameters observed included
- Duration of procedure from skin puncture to insertion of cannula
- No. of attempts at skin puncture
- Complications, if any
- Oxygen saturation
- Preprocedure & postprocedure arterial pH & pCO2.

Exclusion Criteria
- Age<18, >65
- Coagulation disorders

RESULTS

The fiberoptic method took more time than the conventional method. The mean time to perform the procedure was 15±2min in group 1 and 18±3min in group 2 (p=0.001). The average no. of attempts at insertion of needle was 2.2 in group 1 and 1.2 in group 2 (p=0.001) (Table 1). The fall in SpO2 to <90% was seen in 1 patient in group 1 and in 6 patients in group 2, so much so that the procedure had to be abandoned in 2 patients. The change in pH and pCO2 was within 10% in both the groups. Hemmorhage was seen in 3 patients in group 1 and 2 in group 2. 3 patients in group 1 suffered paratracheal placement, while none in group 2. In 1 patient in group 1 we encountered posterior tracheal wall injury leading to tracheoesophageal fistula formation (Table 2).

Parameters	Group 1	Group 2	p value
Duration (min)	15±2	18±3	0.001
Attempts	2.2	1.2	0.001
pH	7.34±0.04	7.35±0.06	0.12
pCO2	34±2	32±3	0.14

Complications	Group 1	Group 2
Fall in SpO2	1	6
Haemmorhage	3	2
Paratracheal Placement	3	0
Tracheoesophageal Fistula	1	0
DISCUSSION

FOB PCT took on an average more time than CPCT, but it required lesser no. of attempts and had no complications as regards to posterior tracheal wall injury or paratracheal placement. FOB did not offer any direct advantage in controlling haemorrhage. On the contrary it made the procedure more cumbersome by obscuring the view. Several reports state that fiberoptic tracheostomy is associated with hypercapnia and acidosis, with deleterious effects on ICT.\(^8,9\)

In our study, though in few patients there was repeated fall in O2 saturation, we did not encounter hypercapnia or acidosis, probably because we immediately withdrew the bronchoscope and administered 100% O2. Later on reviewing the records we found that this was because of low respiratory reserve due to underlying pathology such as ARDS. So FOB was not the primary cause of falling saturation.

FOB though definitely advantageous over CPCT in terms of lesser complications and being highly useful in the obese, short necked, and those with scar marks, is not without drawbacks such as requirement of additional staff and increased expenditure.\(^10\) The main being inability to be used in patients with low respiratory reserve. Overall it would be complimentary for any ICU to have FOB facility and must be used in select group of patients.

Authors disclosure: Authors have no conflict of interest & financial consideration to disclose.

REFERENCES

1. Boonsarngsuk V, Kiatboonsri S, Choothakan S. Percutaneous dilatational tracheostomy with bronchoscopic guidance: Ramathibodi experience. J Med Assoc Thai. 2007; 90: 1512-7.
2. Hedges S, Perkins V. Complications Following Percutaneous Tracheostomy Chest 2001; 120: 1751-1752.
3. Step-by-step guide to percutaneous tracheostomy [Online]. 2006 Nov 25; Available from: URL:http://www.trauma.org/index.php/main/category/C12/
4. Romero PC, Cornejo RR, Ruiz CM, Gálvez AR, Llanos VO, Tobar AE, et al. Fiberoptic bronchoscopy assisted percutaneous tracheostomy: report of 100 patients. Rev Med Chil. 2008; 136: 1113-20.
5. Peris A, Linden M, Pellegrini G, Anichini V, Di Filippo A. Percutaneous dilatational tracheostomy: a self drive control technique with videofiberoptic bronchoscopy reduces perioperative complications. Minerva Anestesiol 2009; 75: 21-5
6. Melloni G, Libretto L, Casiraghi M, et al. A Modified Percutaneous Tracheostomy Technique without Bronchoscopic Guidance: A Note of Concern. CHEST 2005: 128: 4050-51
7. Grigo AS, Hall NDP, Crerar-Gilbert AJ, et al. Rigid bronchoscopy-guided percutaneous tracheostomy. Br. J Anaesth. 2005; 95: 417-19
8. Reilly PM, Sing RF, Anderson HL, et al. Hypercarbia During Tracheostomy in the Head-Injured Patient: Comparison of Percutaneous Endoscopic, Percutaneous Doppler and Standard Tracheostomy. The Internet Journal of Emergency and Intensive Care Medicine. [Online] 1998 Apr 01; Available from: URL: http://www.ispub.com/journals/IJEICM/Vol2N2/hypercarb3.htm
9. Stocchetti N, Parma A, Lamperti M, et al. Neurophysiological Consequences of Three Tracheostomy Techniques: A Randomized Study in Neurosurgical Patients. J Neurosurg Anesthesiol 2000; 12: 307-13
10. Romeroa CM, Cornejo RA, Ruiz MH, Schwab WCl. Fiberoptic bronchoscopy-assisted percutaneous tracheostomy is safe in obese critically ill patients: A prospective and comparative study. J. Crit Care 2008 (Article in Press: Available online 11 September 2008)