Cell Mechanics Modeling and Identification by Atomic Force Microscopy

Michael R. P. Ragazzon*, Marialena Vagia**, J. Tommy Gravdahl*

*Department of Engineering Cybernetics, Norwegian University of Science and Technology
**SINTEF ICT, Applied Cybernetics

IFAC Mechatronics, Loughborough, UK, September 5–8, 2016.
Introduction

— Biological cells are complex living beings – understanding them is essential in fields such as biology and medicine
— Mechanical properties of cells have been linked to cancer and other diseases
— Some existing results for identification of elasticity and viscosity
Introduction

— Biological cells are complex living beings – understanding them is essential in fields such as biology and medicine
— Mechanical properties of cells have been linked to cancer and other diseases
— Some existing results for identification of elasticity and viscosity
 ● ..mostly based on static contact theory
 ● with complicated relationships between measured signals and desired properties
Introduction

— Biological cells are complex living beings – understanding them is essential in fields such as biology and medicine
— Mechanical properties of cells have been linked to cancer and other diseases
— Some existing results for identification of elasticity and viscosity
 • mostly based on static contact theory
 • with complicated relationships between measured signals and desired properties

A new approach

Use identification techniques from control literature.
 ⇒ Flexible models which are dynamic in nature.
 ⇒ Greatly expand on existing results.
Introduction – Atomic Force Microscopy (AFM)

Sample

Cantilever

z-scanner

xy-scanner

Sample

Laser

Photo detector

Can use AFM as a force sensor.
Introduction – Atomic Force Microscopy (AFM)

— Can use AFM as a *force sensor*.
Outline

Introduction

System Modeling

Parameter Identification

Simulation Results

Conclusions and Future Work
System Overview

Need a model for the..
 — Cell sample
 — AFM cantilever dynamics
 — AFM tip geometry

Goal: Identification of cell model parameters

Once the system dynamics are in place, design a parameter identification scheme for the cell model parameters.
System Overview

Need a model for the..

- Cell sample
- AFM cantilever dynamics
- AFM tip geometry

Goal: Identification of cell model parameters

Once the system dynamics are in place, design a parameter identification scheme for the cell model parameters.
Cell Sample Modeling

— Lumped spring-damper elements along the lateral xy-axes.
Cantilever Dynamics and Tip Geometry
Cantilever Dynamics and Tip Geometry

Tip geometry, spherical model:

\[z_i = Z - \sqrt{R^2 - (X - x_i)^2 - (Y - y_i)^2} \] (1)
Cantilever Dynamics and Tip Geometry

Tip geometry, spherical model:
\[z_i = Z - \sqrt{R^2 - (X - x_i)^2 - (Y - y_i)^2} \] (1)

Cantilever dynamics, second-order oscillator:
\[M \ddot{Z} = KD + C \dot{D} + F_{\text{sample}} \] (2)
Sample Force

Spring and damping forces:

\[F_{ki} = k_i \ddot{z}_i, \quad F_{ci} = c_i \dot{z}_i \] \hspace{1cm} (3)

where \(\ddot{z}_i \triangleq z_i - z_i^0 \).
Sample Force

Spring and damping forces:

\[F_{ki} = k_i \ddot{z}_i, \quad F_{ci} = c_i \dot{z}_i \] \hspace{1cm} (3)

where \(\ddot{z}_i \triangleq z_i - z_i^0 \).

\[F_{\text{sample}} = \sum_{i \in \mathcal{W}} F_{ki} + F_{ci}. \] \hspace{1cm} (4)
Sample Force

Spring and damping forces:

$$F_{ki} = k_i \ddot{z}_i, \quad F_{ci} = c_i \dot{z}_i$$ \hspace{1cm} (3)

where $\ddot{z}_i \triangleq z_i - z_i^0$.

$$F_{\text{sample}} = \sum_{i \in \mathcal{W}} F_{ki} + F_{ci}.$$ \hspace{1cm} (4)

where the active set $\mathcal{W} = \mathcal{W}(X, Y, Z)$ is given by

$$\mathcal{W} = \left\{ i : \ddot{z}_i < 0 \land (X - x_i)^2 + (Y - y_i)^2 < R^2 \right\}.$$ \hspace{1cm} (5)
Sample Force

Spring and damping forces:

\[F_{ki} = k_i \ddot{z}_i, \quad F_{ci} = c_i \dot{z}_i \] (3)

where \(\ddot{z}_i \triangleq z_i - z_i^0 \).

\[F_{\text{sample}} = \sum_{i \in \mathcal{W}} F_{ki} + F_{ci} \] (4)

where the active set \(\mathcal{W} = \mathcal{W}(X, Y, Z) \) is given by

\[\mathcal{W} = \left\{ i : \ddot{z}_i < 0 \land (X - x_i)^2 + (Y - y_i)^2 < R^2 \right\} \] (5)

The parameters \(k_i, c_i, z_i^0 \) are to be estimated \(\forall i \).
System Overview

Cantilever-sample dynamics

Tip geometry

Sample force k, c

Parameter estimator $\hat{k}, \hat{c}, \hat{z}^0$

F_{sample}

Cantilever dynamics

X, Y

Z, \dot{Z}, D

U

D, U

Cell Mechanics Modeling and Identification
Outline

Introduction

System Modeling

Parameter Identification

Simulation Results

Conclusions and Future Work
Parameter Identification

Rewrite system to linear-in-the-parameters form:

\[(Cs + K)U - \left(Ms^2 + Cs + K \right) D = [c, k] \begin{bmatrix} s\tilde{Z} \\ \tilde{Z} \end{bmatrix} \tag{6} \]

\[w' = \theta^T \phi' \tag{7} \]
Parameter Identification

Rewrite system to linear-in-the-parameters form:

\[(Cs + K)U - \left(Ms^2 + Cs + K \right) D = [c, k] \begin{bmatrix} s\bar{Z} \\ \bar{Z} \end{bmatrix} \] \hspace{1cm} (6)

\[w' = \theta^T \phi' \] \hspace{1cm} (7)

Filter each side to make the system proper, such that

\[\frac{w'}{\Lambda(s)} = [c, k] \begin{bmatrix} s\bar{Z} \\ \bar{Z} \end{bmatrix} \] \hspace{1cm} \Lambda(s) \hspace{1cm} (8)

\[w = \theta^T \phi \] \hspace{1cm} (9)
Parameter Estimator

Least squares method with forgetting factor (Ioannou and Sun, 1996):

\[
\hat{w} = \hat{\theta}^T \phi \tag{10}
\]

\[
\varepsilon = (w - \hat{w})/m^2 \tag{11}
\]

\[
m^2 = 1 + \alpha \phi^T \phi \tag{12}
\]

\[
\dot{\theta} = P \varepsilon \phi \tag{13}
\]

\[
\dot{P} = \begin{cases}
\beta P - P \frac{\phi \phi^T}{m^2} P, & \text{if } \|P\| \leq R_0 \\
0, & \text{otherwise}
\end{cases} \tag{14}
\]

\[
P(0) = P_0 \tag{15}
\]
Parameter Estimator

Least squares method with forgetting factor (Ioannou and Sun, 1996):

\[\hat{w} = \hat{\theta}^T \phi \]
\[\varepsilon = (w - \hat{w})/m^2 \]
\[m^2 = 1 + \alpha \phi^T \phi \]
\[\dot{\hat{\theta}} = P \varepsilon \phi \]
\[\dot{P} = \begin{cases}
\beta P - P \frac{\phi \phi^T}{m^2} P, & \text{if } \|P\| \leq R_0 \\
0, & \text{otherwise} \end{cases} \]

\[P(0) = P_0 \]

Guarantees exponential convergence of \(\hat{\theta} \to \theta \) if the signal vector \(\phi \) is persistently exciting (PE).
Persistency of Excitation (PE)

Theorem 1

Apply the cantilever input signal

\[U = u_0 + a \sin (\omega_0 t) \] \hspace{1cm} (16)

for any positive constants \(a, \omega_0 \), and let the constant \(u_0 \) be small enough such that the cantilever tip is in contact with the surface, i.e. \(\ddot{z} < 0 \forall t \). Then \(\phi \) is persistently exciting (PE) and \(\hat{\theta} \rightarrow \theta \) exponentially fast.
Outline

Introduction

System Modeling

Parameter Identification

Simulation Results

Conclusions and Future Work
Simulation Results – Topography

(a) Simulated topography z^0

(b) Identified topography \tilde{z}^0

Topography parameters mapped to the spatial domain.
Simulation Results – Damping constants

Damping parameters mapped to the spatial domain, (a) simulated vs. (b) identified.
Simulation Results – Spring constants

Spring constant parameters mapped to the spatial domain, (a) simulated vs. (b) identified.

NTNU
Norwegian University of Science and Technology
Simulation Results – Parameter Convergence

Parameter convergence during tap.

\[
\begin{align*}
N_s &= m^c \\
N &= m^k^c
\end{align*}
\]

\[
U = \frac{1}{10^7}
\]
Outline

- Introduction
- System Modeling
- Parameter Identification
- Simulation Results
- Conclusions and Future Work
Conclusions

— Presented a new, dynamic approach for identifying mechanical properties of soft samples.
— Control law designed to guarantee exponential convergence of parameters.
— Future iterations hold promise for use as part of a medical diagnostic tool.

Future Work

— Can easily extend our model to capture additional phenomena.
— Clear advantage with modeling & identification approach.
— E.g. coupling between elements to describe the cell membrane, or nonlinear springs and dampers.
— By future experiments: investigate how well the data fits our model.
— Iterate on model to capture more of the dynamics in the data (data-driven modeling approach).

Questions?

www.ntnu.no
Conclusions

— Presented a new, dynamic approach for identifying mechanical properties of soft samples.
— Control law designed to guarantee exponential convergence of parameters.
— Future iterations hold promise for use as part of a medical diagnostic tool.

Future Work

— Can easily extend our model to capture additional phenomena.
 • Clear advantage with modeling & identification-approach.
 • E.g. coupling between elements to describe the cell membrane, or nonlinear springs and dampers.
— By future experiments: investigate how well the data fits our model.
 • Iterate on model to capture more of the dynamics in the data ⇒ data-driven modeling approach.
Conclusions

— Presented a new, dynamic approach for identifying mechanical properties of soft samples.
— Control law designed to guarantee exponential convergence of parameters.
— Future iterations hold promise for use as part of a medical diagnostic tool.

Future Work

— Can easily extend our model to capture additional phenomena.
 • Clear advantage with modeling & identification-approach.
 • E.g. coupling between elements to describe the cell membrane, or nonlinear springs and dampers.
— By future experiments: investigate how well the data fits our model.
 • Iterate on model to capture more of the dynamics in the data \(\Rightarrow \) data-driven modeling approach.

Questions?
References

P A Ioannou and J Sun. *Robust adaptive control*. Prentice Hall, Upper Saddle River, NJ, 1996.

Michael R P Ragazzon, Marialena Vagia, and Jan Tommy Gravdahl. Cell Mechanics Modeling and Identification by Atomic Force Microscopy. In *7th IFAC Symposium on Mechatronic Systems*, Loughborough, UK, 2016.