Seismicity Rate Changes and Geodetic Transients in Central Apennines

Blaž Vičič1, Abdelkrim Aoudia1, Alessandra Borghi1,2, Seyyedmaalek Momeni1, and Alessandro Vuan3
1The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, 2Istituto Nazionale Geofisica e Vulcanologia, sezione di Bologna, Bologna, Italy, 3National Institute of Oceanography and Applied Geophysics-OGS, Sgonico, Italy

Abstract Using template matching and GPS data, we investigate the evolution of seismicity and observable deformation in Central Apennines. Seismicity appears more persistent at the base of the seismogenic layer than in the shallower crust. Diffuse activity is reported on segments at depth, alternating along strike with apparent quiescence on segments that experienced one or more Mw6+ earthquakes in 1997, 2009, and 2016. Central Apennines are likely underlain by a sizeable shear zone with areas of diffuse seismicity bounding shallow normal faults where Mw6+ earthquakes occurred. The deformation observed at the surface seems to follow the seismicity variations at the base of seismogenic layer along the Apenninic chain. Principal and independent component analyses of GPS data exhibit a transient when the 2016 foreshock sequence starts. This transient propagated northward from the Campotosto fault up to the Alto Tiberina fault system and has likely loaded the Mw6+ 2016 earthquake sequence.

Plain Language Summary We use a nonstandard method for the detection of microseismicity at depth augmenting the available catalog. The enhanced seismicity distribution is coupled with the observable deformation on a geodetic network of continuous GPS to infer a better comprehension of the earthquake behavior. The earthquake patterns in Central Apennines reveal a segmentation at depth along an almost flat base of seismogenic layer with alternating low and high seismicity rate segments. The deformation recorded at the surface seems to follow the seismicity variations at the base of seismogenic layer along the Apenninic chain also determining a possible seismic-aseismic mode. We suggest that aseismic deformation has a fundamental role in the tectonic loading and that seismicity, even if heterogeneously distributed, could represent a tracer of it. This conclusion is also supported by the evidence of a transient propagating from south to north during the 2016 Central Italy sequence.

1. Introduction

Historical and recent destructive earthquakes in the Central Apennines, Italy (Amato et al., 1998; Chiaraluce et al., 2017; Rovida et al., 2011; Valoroso et al., 2013) occur mostly along the NW-SE trending system of normal faults, where 2 to 3 mm/year of extension perpendicular to the Apennines is accommodated (D’Agostino et al., 2011). The fault system is located above a delaminating Adria lithosphere (Aoudia et al., 2007; Chimera et al., 2003).

Central Apennines were recently struck by three destructive earthquake sequences, namely, Umbria-Marche 1997, L’Aquila 2009, and Amatrice-Visso-Norcia 2016–2017. A number of foreshocks and aftershocks were relocated using both continuous and temporary networks (Amato et al., 1998; Chiaraluce et al., 2011; Improta et al., 2019; Valoroso et al., 2013; Vuan et al., 2017) to depict the geometry of the system. The relocated catalogs of L’Aquila and Amatrice-Visso-Norcia sequences show a subhorizontal, east dipping shear zone (SZ) at the base of the seismogenic volume, between 8 and 12 km. The subhorizontal geometry of SZ is confirmed by focal solutions of foreshocks and aftershocks at the base of Campotosto and Monte Vettore faults (Chiaraluce et al., 2017; Improta et al., 2019; Valoroso et al., 2013). Seismic profiles and geologic cross sections show a horizontal SZ between 8 and 11 km as a transition from sedimentary into basement units (e.g., Porreca et al., 2018). This transition corresponds to the observed velocity changes underneath L’Aquila and Amatrice-Visso-Norcia sequences inferred by earthquake travelt ime tomography (Buttinelli et al., 2018; Chiarabba et al., 2018).
Before the L’Aquila 2009 mainshock, a foreshock sequence started in the area adjacent to the nucleation point of the Mw 6.3 mainshock (Valoroso et al., 2013). Sugan et al. (2014) identified three phases of foreshock migration toward the nucleation point of the 6 April 2009 mainshock, with one in mid-February interpreted as a slow-slip transient. The same transient was identified using GPS data by Borghi et al. (2016), who attributed it to a M6.1 slow-slip event. It was suggested that the transient took place over a subhorizontal SZ at the base of Paganica and Campotosto faults involving the lateral extent of the aftershock sequence. Before the Amatrice 24 August 2016 earthquake, Vuan et al. (2017) proposed that slip along the SZ increased the stress around the source area of the mainshock, contributing to the unlocking of the overlying normal faults.

Among the mentioned faults, the geometry and seismic potential of the Campotosto fault (Figures 1a and 1d) (hereafter Cf) for producing large earthquakes has been debatable, especially after the 2009 and 2016–2017 Mw5+ events (i.e., Cheloni et al., 2014, 2019; Chiaraluce et al., 2011; Falcucci et al., 2018; Gualandi et al., 2014; Valoroso et al., 2013).

Cf is situated in the western flank of the Laga Mountains, with a northwest strike, and dips toward the southwest with a listric geometry, as suggested from seismic data (Chiaraluce et al., 2011). Morphotectonic evidence confirms that Cf has different kinematics than its neighboring Paganica and Mount Vettore-Norcia faults toward the southeast and northwest, respectively (Falcucci et al., 2018). Cf is bounded at a depth of 10 km by SZ (Valoroso et al., 2013) and could be capable of producing an M6.4–6.6 earthquake (Falcucci et al., 2018). Two historical earthquakes on Cf were reported (Galadini & Galli, 2003) over the past ~8 ka, with ~1 m of minimum vertical slip.

We investigate both seismicity and deformation observed by the geodetic network of the Central Apennines. We exploit waveform similarity over 11 years from 2008 until the beginning of 2019 to define the spatial and

Figure 1. Studied area of Central Italy. (a) Map of destructive earthquakes since 1997 in the studied area. Beach ball colors refer to the same events in Figures 1a and 1b. Red lines represent causative faults responsible for the mainshocks. In green we plot the continuous GPS stations. (b) Triangles represent seismic stations used in this study. Black dots are earthquakes of 2009 L’Aquila and 2016 Amatrice-Visso-Norcia sequences. With green we show selected template earthquakes. (c and d) Cross sections over Amatrice-Visso-Norcia and L’Aquila epicentral areas. In (d) we show an idealized profile over the area with normal faults, mature listric faults, and shear zone.
temporal evolution of detected earthquakes within the SZ and its relation to the reactivated normal faults. To understand the geometry of Cf, we invert the extended source ruptures of eight (4.4 ≤ M ≤ 5.4) earthquakes of the 2009 and 2017 sequences (Figure 1b). We perform a principal component analysis and variational Bayesian independent component analysis of all available continuous GPS (cGPS) stations in the broader region of Central Apennines between 1 January 2015 and 24 August 2016 to detect possible geodetic transients and investigate their significance together with seismicity variations. We study the seismicity pattern of the SZ in the broader area of Central Apennines and compare it with our results.

2. Methods

2.1. Template Matching

We analyze the period from 2008 to the beginning of 2019 using only well-relocated foreshocks and aftershocks of 2009 (Valoroso et al., 2013) and 2016 (Vuan et al., 2017) mainshocks (Figure 1b). These selected events nucleated beneath the computed slip distribution of the mainshocks (Walters et al., 2018) within the SZ at depths between 10–12 km and 8–11 km for 2009 and 2016, respectively. The merged earthquake catalog (supporting information Figures S2 and S3) was used in template matching (Gibbons & Ringdal, 2006; Ross et al., 2019; Shelly et al., 2007) to detect collocated earthquakes and transients (Vičič et al., 2019) within the SZ. Daylong waveform data of selected stations (Figure 1b) are downsampled to 20 Hz and filtered between 2 and 8 Hz. For each event, we compute the theoretical S wave arrival time (Krischer et al., 2015) using a suitable velocity model (Herrmann et al., 2011) and trim the three-component data in 5 s waveforms centered on this arrival. We extract the templates for the four closest stations. The signal-to-noise ratio of templates is evaluated by using simple kurtosis-based test (Baillard et al., 2014). Templates that do not satisfy the kurtosis test, or are visually bad, are removed. Template matching detection algorithm as described in Vuan et al. (2018) is applied. For positive detection we set a threshold of 12 times median absolute deviation of the daily stacked cross-correlation function. We only select detected events with interevent times >3 s to not count the same events as multiple due to the detections from different templates. Selected detection inside this time window is the one with highest threshold value. The magnitude of the detection is calculated as the median value of the maximum amplitude ratio for all channels where a tenfold increase in amplitude corresponds to a unit increase in magnitude (Peng & Zhao, 2009).

2.2. Extended Source Inversion

We invert near-field three-component strong motion records of eight earthquakes (4.4 ≤ M ≤ 5.4) that occurred on the Cf during 2009 and 2017 sequences to study the kinematics of the ruptured area and constrain the geometry of Cf and discuss its seismogenic potential. The elliptical subfault approximation method (Di Carli et al., 2010; Momeni et al., 2019; Ruiz & Madariaga, 2013; Twardzik et al., 2012) is used to retrieve the robust features of the ruptures. For each rupture we look for the best waveform fit to the observations (Figures S1–S7 in Appendix A) and infer the geometry of the Cf along strike and dip. The details of our inversions are presented in Appendixes A and B.

2.3. GPS

We perform a detailed analysis of the available cGPS stations along the Central Apennines from the Alto Tiberina fault system (ATF) to the north and area of L’Aquila 2009 earthquake to the south (Figure 1a). The 2015–2017 time series of the selected stations are analyzed following the procedure described in Barzaghi and Borghi (2018) that includes the estimate of discontinuities due to station equipment changes, seismic events, periodic signals, and a linear velocity term. The temporal correlations among data have been considered as well. The data were spatially filtered to remove correlated noise using the principal component analysis (PCA), as suggested by Dong et al. (2006) in order to search for transients (Borghi et al., 2016; Gualandi et al., 2016). The residual coordinate time series were analyzed using different blind source separation methods (BSS), like Fast Independent Component Analysis (fastICA) and variational Bayesian independent component analysis (vbICA) (Choudrey & Roberts, 2003), as well as PCA. The methodology is described in the supporting information (Appendix C).
3. The 2009–2016 Sequences

3.1. Detected Earthquakes

To evaluate spatial and temporal evolution of earthquake activity within the SZ, we used 1,855 templates well distributed along strike and throughout the SZ beneath the causative faults of 2009 (10–12 km depth) and 2016–2017 (8–11 km depth) sequences (Figure 2a). We analyze the continuous waveform series from 2008 to 2019 and detect 38,229 new events in the SZ, ranging between $M_{\text{w}} -1.5$ and $M_{\text{w}} 4.7$ (Figures S2 and S8).

Figure 2b shows the along-strike space-time distribution of the newly detected earthquakes (cross-correlation values above 0.5). For the analysis, the whole SZ volume is divided into three subvolumes following the main normal faults: the Paganica fault (Pf), Cf, and the Mount Vettore-Norcia fault (Vf) (e.g., Basili et al., 2018). Beneath Pf, we detect the foreshocks (Figure S9) to the L'Aquila mainshock as reported in Sugan et al. (2014). After the L'Aquila mainshock, the detections exhibit a decay of aftershocks as in Chiaraluce et al. (2011). On the contrary, diffuse earthquakes with slow decay rate are reported within the SZ under the Cf (Figures 1a and 1d). We separate the templates of 2016 sequence into foreshocks and early aftershocks (Figures S4a and S4b) inherent to the 24 August earthquake covering an 80 km along-strike distance that includes Cf and Vf. For Cf, the detections reveal a high rate of activity, independent of the templates we use, over the 11 year time span. Underneath Vf (Figures 1a and 1c), very few new earthquakes are detected, except in its southeasternmost part, adjacent to Cf.

The cumulative number of events over time and their yearly contributions are reported in Figures S5 and S6. We observe that soon after the 2009 mainshock and its aftershock sequence (September 2009), the cumulative number of earthquakes within the SZ beneath Cf overtakes the cumulative number under the Pf. This is true throughout the years 2010–2015, with few exceptions when a small sequence starts along Pf (February 2011, February 2012, and March 2013). The cumulative number of earthquakes beneath Cf is steady over the years and characterizes the background seismicity with small increments over temporal fluctuations (van den Ende & Ampuero, 2020).

At the end of 2015, the number of detections increased beneath Vf, starting the foreshock sequence of the 24 August 2016 $M_{\text{w}} 6$ earthquake. Beneath Cf an intensive swarm took place during February 2016, located adjacent to the future termination of the mainshock slip distribution (Chiaraluce et al., 2017).
swarm, the SZ beneath VF becomes the most active segment. The diffuse aftershocks that followed the 24 August mainshock are beneath CF and VF, where most of the events took place. After the largest mainshock of 30 October, the activity beneath CF increases, and by the end of 2016 activity beneath PF starts to increase. Increased earthquake production in late December 2016 beneath CF signals the foreshock sequence of the 18 January 2017 Mw 5+ Campotosto earthquakes.

We observe (supporting information Figure S7) a slow (6 km/year) northwestward migration of seismicity from the SZ beneath PF toward the nucleation area of the 24 August 2016 mainshock. This is followed by a southeastward migration (0.2 km/day) from the 24 August 2016 nucleation area toward the hypocenters of Campotosto 2017 earthquakes similar to the observed migration of seismicity independent of the depth distribution reported by Sebastiani et al. (2019).

3.2. Rupture History for the Cf Moderate Earthquakes

The reported difference between coseismic and aseismic moment released along the CF during the 2009 and 2017 sequences (e.g., Cheloni et al., 2014, 2019) led to the detailed investigation of the coseismic slip and source geometry of Mw 5+ earthquakes on CF.

Seven of the events (except the subhorizontal 22 June 2009 ML 4.4 event along SZ) occurred on planes with strikes from 142° to 190°, on average 157°, dipping to the southwest (supporting information Appendix A Table A1). Our results confirm the listric geometry of CF with dip changing over depth from 50° to 30° (Figure S1).

All slip models cover an area of ~18 km per 12 km on the CF. The patches of maximum slip do not overlap, and the ruptures evolved mostly updip. Similar to the migration observed along the SZ after 2009 and 2016 sequence, also the 2009 and 2017 Campotosto Mw 5+ events follow a similar pattern and migrate from southeast toward northwest after 2009 and vice versa after 2016. Unilateral ruptures are confirmed by directivity in the accelerograms.

Source parameters of the 2009 sequence show an average strike of 152° and dip of 48° for the southeastern part of the CF. Scalar seismic moment of 1.73 * 10^{17} Nm for the three large aftershocks and the SZ event of 2009 are close to the value of 1.8 * 10^{17} Nm, obtained using point source inversion method by Scognamiglio et al. (2010). Using synthetic aperture radar (SAR) and GPS data, Cheloni et al. (2014) obtained a cumulative scalar seismic moment of 3.17 * 10^{17} Nm for coseismic and postseismic periods in 2009, and Gualandi et al. (2014) calculated an afterslip of a 2.9 * 10^{17} Nm released for 301 days after the 2009 mainshock. This suggests that most of the deformation was aseismic with half as postseismic considering negligible sum of the seismic moments released by the rest of the aftershocks (Falcucci et al., 2018).

Average strike for the 2017 events (northwestern part of the CF) is 161°, while average dip is 35°, 13° less than Falcucci et al. (2018) from inversion of surface deformation measured from cGPS and DInSAR. In their study, the rake angle would play an important role in obtaining the dip angle, while in our inversions the rake was a well-retrieved parameter. The slip models distribute from depths of 2.5 to 10 km with a maximum slip of 0.49 m close to Falcucci et al. (2018). We obtain 7.98 * 10^{17} Nm of scalar seismic energy release during 2017 sequence close to the obtained value by Falcucci et al. (2018). Considering 0.4 * 10^{17} Nm of scalar seismic moment released by 3.5 < M < 4.9 aftershocks and the cumulative geodetic moment of 9.29 * 10^{17} Nm (Cheloni et al., 2019), we reach the same 35% contribution of aseismic strain release suggested by Cheloni et al. (2019).
The computed slip history of the Mw5+ events indicate that Cf is partially reactivated along its deeper extent and a rupture up to the surface would require a larger-magnitude earthquake as reported by paleoseismic observations (e.g., Galadini & Galli, 2003).

4. Central Apennines

4.1. Seismicity

We compare our newly constrained catalog with the Italian Seismic Bulletin (Figure 3). We remove earthquakes shallower than 12 km (removing fixed depth and shallow events) along the Central Apennines. We observe alternating high and low seismicity rate strands along the strike, showing similarities to our own findings in the SZ beneath Pf, Cf, and Vf. The areas of last moderate earthquakes in 1997, 2009, and 2016 correspond to strands where seismicity is less diffuse. The high seismicity rate segments are located in between, namely, Campotosto segment, North Mount Vettore segment (NVf), and Alto Tiberina segment (Anderlini et al., 2016).

4.2. GPS Analysis for Transient Detection

The central part of the network (Figure 1a), where the 2016 M6+ events nucleated, represents an empty zone since no stations were installed in that period or we do not have access to the data.

As the analyzed period is quite long (from 2012 to the middle of 2018) and is characterized by the important 2016 seismic sequence, we conducted our analysis dividing the time series into four different temporal windows. In this section we focus on the 2015–2016 and 2017–2018 temporal windows, but all the results of the other periods are reported in Appendix C.

Although the vbICA method has resulted to be efficient in finding the signal along the ATF (Gualandi et al., 2017, and Appendix C), we also applied the PCA method in the analysis of the period characterized by the 2016 seismic sequence, to find the average behavior of the stations and avoid local effects, which allow the vbICA to better identify the signals. We show the results (Figure 4) in terms of the second principal component (PC2) of the east component. We observe an increase of values starting at the beginning of 2016 with both northern (ATF) and southern (Campotosto) GPS station clusters contributing to the PC2. We repeat the analysis splitting the stations in the ATF and in the Campotosto part. Analyzing the two clusters separately allowed us to point out a similar behavior of the ATF and Campotosto stations but shifted in time: the Campotosto stations present this discontinuity in the first vbICA component on 7 January 2016, with a probability around 94% as detected by the Bayesian test inference (Appendix C), whereas the ATF stations present an analogous behavior 7 months later on 7 July with a probability of 98% (Figure 4).

The analysis of the last period, from the end of 2017 to April 2018, involves the cGPS stations set up after the Mw6.5 earthquake on 30 October 2016. The time series show (Appendix C Figure Sc6) the nonlinear effect of the postseismic deformation. Accordingly, we preferred not to fit the data using any functional models but
applied the PCA to describe the deformation. In Appendix C Figures Sc7 and Sc8 the north and east first principal components are reported. All the stations are affected by a common signal represented by the linear tectonic rate and the postseismic deformations; however, a discontinuity is present at the beginning of 2018. Soon after the discontinuity, the northern extension of the area affected by three M_w6+ earthquakes is hit by a series of M_w3.5+ earthquakes with the strongest $M_w4.5$ on 10 April 2018.

5. Conclusions

Analyzing 11 years of continuous waveforms recorded at multiple seismic stations in Central Italy allowed us to detect more than 38,000 earthquakes within the SZ. The detected events and their locations give us insight on the space-time behavior of the SZ underneath Pf, Cf, and Monte Vettore fault (Vf) before, after, and in between the recent Central Italy earthquake sequences. Pf and Vf are related to the 2009 M_w6.1 L’Aquila earthquake and the 2016 Amatrice-Visso-Norcia M_w6+ earthquakes, respectively, which ruptured shallow, SW dipping normal faults. Cf, located in between Pf and Vf, is affected in the aftermath of both 2009 and 2016 sequences with earthquakes of M_w5+. We observe different spatial and temporal patterns of earthquakes within the SZ underneath Pf, Cf, and Vf.

The seismicity rate within the SZ appears to be segmented from south to north along the strike of the fault system (Figure 3). SZ beneath Pf is experiencing an expected decay in its activity after the 2009 earthquake reaching a lower rate with very few events after 2014, while the adjacent SZ beneath Cf exhibits a far higher rate in its activity. The SZ beneath Vf shows a very low rate between 2009 up to the end of 2015 when it starts exhibiting a large foreshock sequence, also affecting SZ beneath Cf as well as the above normal faults, prior to the 2016 M_w6+ earthquakes.

Our study suggests that Central Apennines are underlain by a sizeable subhorizontal SZ that is segmented in its frictional and/or mechanical properties accommodating therefore low and high rates of seismicity at the base of the seismogenic layer. The low-rate seismicity segments are beneath high-angle normal faults responsible for the 1997, 2009, and 2016 earthquake sequences. The high-rate seismicity segments are beneath listric faults (e.g., Campotosto) and low-angle normal faults like Alto Tiberina (e.g., Chiaraluce et al., 2014).

Analyzing 19 cGPS stations show that the start of the 2016 foreshock sequence coincides with a clear geodetic transient that first affected Cf-Pf and later expanded northward affecting ATF. The foreshocks likely correspond to creeping patches accommodating aseismic slow slip in the preseismic period (e.g., Meng et al., 2015) combined with a gradual unlocking within the plate boundary (e.g., Schurr et al., 2014). The space-time correlations between the seismicity and the geodetic transient and their northward along-strike migrations are thus most likely due to an expanding/propagating slow slip along strike. These results together with the space distribution of the mainshocks show that, most likely, the northward expanding transient was accommodated differently by the reactivated fault system where less-coupled segments alternate with locked segments. Similar behavior is described in subduction zones (e.g., Radiguet et al., 2016; Rolandone et al., 2018). Furthermore, we argue that the geometry and the frictional properties of the segmented system affects the degree of interseismic coupling. This likely leads to differences in recurrence intervals and maximum magnitude between mature listric faults and younger high-angle normal faults as exhibited by the historical seismicity and paleoseismology across Central Apennines (e.g., Cinti et al., 2018; Falcucci et al., 2018; Galadini & Galli, 2003; Galli et al., 2019; Guidoboni et al., 2018).

Acknowledgments

The authors would like to thank Generali group and Generali Italia for the financial support. We would like to thank the Editor and the three reviewers for their useful comments that improved our original manuscript. PyMPA software (Vuan et al., 2018) development is partly supported by the project “Real-time earthquake risk reduction for a resilient Europe” (RISE), financed by the Horizon 2020 program of the European Commission.

Data Availability Statement

The data are available via the European Integrated Data Archive managed by Istituto Nazionale di Geofisica e Vulcanologia (INGV) (http://www.orfeus-eu.org/webdc3/) and Nevada Geodetic Laboratory (http://geodesy.unr.edu/index.php).

References

Amato, A., Azzara, R., Chiarabba, C., Climini, G. B., Cocco, M., di Bona, M., et al. (1998). The 1997 Umbria-Marche, Italy, earthquake sequence: A first look at the main shocks and aftershocks. Geophysical Research Letters, 25(15), 2861–2864. https://doi.org/10.1029/98GL51842
Anderlini, L., Serpelloni, E., & Belardinelli, M. E. (2016). Creep and locking of a low-angle normal fault: Insights from the Altotiberina fault in the northern Apennines (Italy). Geophysical Research Letters, 43, 4321–4329. https://doi.org/10.1002/2016GL068604

Aoudia, A., Ismail-Zadeh, A. T., & Romanello, F. (2007). Buoyancy-driven deformation and contemporary tectonic stress in the lithosphere beneath Central Italy. Terra Nova, 19(6), 490–495. https://doi.org/10.1111/j.1365-3121.2007.00776.x

Baillard, C., Crawford, W., Ballu, V., Hilbert, C., & Mangeney, A. (2014). Kurtosis-based P and S phase picker designed for local and regional seismic networks. Bulletin of the Seismological Society of America, 104(1). https://doi.org/10.1785/0120120347

Barzaghi, R., & Borghi, A. (2018). Theory of second order stationary random processes applied to GPS coordinate time-series. GPS Solutions, 22(3), 1–12. https://doi.org/10.1007/s10291-018-07484-6

Basili, R., Buratto, P., Fracassi, U., Kastelic, V., Maesano, F., Tarabusi, G., et al. (2018). Database of Individual Seismogenic Sources (DISS), Version 3.2. 1. A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. https://doi.org/10.6092/INGV.IT-DISS3.2.1

Borghini, A., Aoudia, A., Javed, F., & Barzaghi, R. (2016). Precursory slow-slip loaded the 2009 L’Aquila earthquake sequence. Geophysical Journal International, 205, 776–784. https://doi.org/10.1093/gji/ggw046

Buttinelli, M., Fezzi, G., Valeroso, L., De Gori, P., & Chiarabba, C. (2018). Tectonics inversions, fault segmentation, and triggering mechanisms in the Central Apennines normal fault system: Insights from high-resolution velocity models. Tectonics, 37, 4135–4149. https://doi.org/10.1029/2018TC005053

Cheloni, D., D’Agostino, N., Scognamiglio, L., Tinti, E., Bignami, C., Avallone, A., et al. (2019). Heterogeneous behavior of the Campotosto seismic gap in between the 2009 and 2016 Central Italy earthquake sequences. Geophysical Research Letters, 46, 6963–6971. https://doi.org/10.1029/2018GL077485

Chiaraluce, L., Di Stefano, R., Tinti, E., Scognamiglio, L., Michele, M., Casarotti, E., et al. (2017). The 2016 Central Italy earthquake seismicity: A first look at the mainshocks, aftershocks, and source models. Seismological Research Letters, 88(3), 757–771. https://doi.org/10.1785/101.020160221

Chiaraluce, L., Valeroso, L., Piccinini, D., Di Stefano, R., & De Gori, P. (2011). The anatomy of the 2009 L’Aquila normal fault system (Central Italy) imaged by high-resolution GPS and aftershock locations. Journal of Geophysical Research, 116, B12311. https://doi.org/10.1029/2011JB008352

Chimera, G., Aoudia, A., Sarasa, A., & Panza, G. F. (2003). Active tectonics in Central Italy: Constraints from surface wave tomography and source moment tensor inversion. Physics of the Earth and Planetary Interiors, 138(3–4), 241–262. https://doi.org/10.1016/S0031-9201(03)00152-3

Choudrey, R. A., & Roberts, S. J. (2003). Variational mixture of Bayesian independent component analyzers. Neural Computation, 15(1), 213–232. https://doi.org/10.1162/089976603321045766

Cinti, F., Cipriano, R., Blumetti, A. M., Chiarini, E., la Posta, E., Pantosti, D., et al. (2018). Evidence for surface faulting on the Campotosto fault system (Abruzzi Apennines, Central Italy). Tectonics, 37, 2758–2776. https://doi.org/10.1002/2017TC004780

D’Agostino, N., Mantenuto, S., D’Anastasio, E., Giuliani, R., Mattone, M., Calcaterra, S., et al. (2011). Evidence for localized active extension in the Central Apennines (Italy) from global positioning system observations. Geology, 39(4), 291–294. https://doi.org/10.1130/G31796.1

Di Carli, S., François-Holden, C., Peyrat, S., & Madariaga, R. (2010). Dynamic inversion of the 2000 Tottori earthquake based on elliptical subfault approximations. Journal of Geophysical Research, 115, B12238. https://doi.org/10.1029/2009JB006358

Dong, D., Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S., & Jamason, P. (2018). Spatio-temporal filtering using principal component analysis and Karhunen–Loève expansion approaches for regional GPS network analysis. Journal of Geophysical Research, 113, B03405. https://doi.org/10.1002/2007JB004806

Falconi, E., Gori, S., Bignami, C., Pietrantonio, G., Tarabusi, G., Moro, M., et al. (2018). The Campotosto seismic gap in between the 2009 and 2016–2017 seismic sequences of Central Italy and the role of inherited lithospheric faults in regional seismotectonic settings. Tectonics, 37, 2425–2445. https://doi.org/10.1002/2017TC004644

Galadini, F., & Galli, P. (2003). Paleoseismology of silent faults in the Central Apennines (Italy): The Mt. Vettore and Laga Mts. Faults. Geophysical Research Letters, 30(15), 1742–1745. https://doi.org/10.1029/2003GL017100

Gallieni, P., & Balbi, E. (2014). Abnormal stress drop of the 2009 L’Aquila earthquake (Central Italy) imaged by high-resolution foreshock and aftershock locations. Journal of Geophysical Research, 119, B12201. https://doi.org/10.1002/2014JB011813

Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G., Sgattoni, G., & Valensise, G. (2018). CFT5Med, Catalogo dei Forti Terremoti in Italia (461 AC-1997) e nell’area Mediterranea (760 AC-1500). https://doi.org/10.6092/INGV.IT-chisf

Herrmann, R. B., Malagnini, L., & Mumolo, I. (2011). Regional moment tensors of the 2009 L’Aquila earthquake sequence. Bulletin of the Seismological Society of America, 101(3), 975–993. https://doi.org/10.1785/101.020101814

Herrmann, R. B., Malagnini, L., & Mumolo, I. (2011). Regional moment tensors of the 2009 L’Aquila earthquake sequence. Bulletin of the Seismological Society of America, 101(3), 975–993. https://doi.org/10.1785/101.020101814
Sambridge, M. (1999b). Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble. Geophysical Journal International, 138(3), 727–746. https://doi.org/10.1046/j.1365-246x.1999.00900.x

Schmedes, J., Archuleta, R. J., & Lavallée, D. (2010). Correlation of earthquake source parameters inferred from dynamic rupture simulations. Journal of Geophysical Research, 115, B03304. https://doi.org/10.1029/2009JB006689

Silverii, F., D’Agostino, N., Borsa, A. A., Calcaterra, S., Gambino, P., Giuliani, R., & Mattone, M. (2019). Transient crustal deformation from karst aquifers hydrology in the Apennines (Italy). Earth and Planetary Science Letters, 506, 23–37. https://doi.org/10.1016/j.epsl.2018.10.019

Spudich, P., & Miller, D. P. (1990). Seismic site effects and the spatial interpolation of earthquake seismograms: Results using aftershocks of the 1986 North Palm Springs, California, earthquake. Bulletin of the Seismological Society of America, 80(6A), 1504–1532.

Wdowinski, S., Bock, Y., Zhang, J., Fang, P., & Genrich, J. (1997). Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research, 102(B8), 18,057–18,070. https://doi.org/10.1029/97JB01378