Endodontic Management of Radix Entomolaris: Two Case Reports

ABSTRACT
Mandibular first molars show most of the anatomical variations not only in the number of canals but also in the presence of number of roots and their morphology. The presence of additional root either lingually or buccally in addition to two roots is one of the complex morphological variations. Diagnosis, identification, and treatment of these variations need adequate knowledge of root and root canal anatomy and configurations which can contribute to the better outcome. This case report discusses the endodontic treatment of two mandibular first molars with a radix entomolaris (RE), which are rare macrostructures. The prevalence, the external morphological variations, and internal anatomy of the RE are described.

Keywords: Distolingualis root, mandibular first molar, supernumerary root

INTRODUCTION
Successful outcome of root canal treatment is determined by the awareness, knowledge, and thorough cleaning and shaping of all the root canals before the root canal filling. Like the number of root canals, the number of roots may also vary. The third root in addition to the two roots of mandibular first molar was reported by Carabelli as Radix Entomolaris (RE).

Three rooted mandibular first molars deserve special attention as they are structurally different from that of the other two roots in either size or shape and even sometimes may vary in both. The occurrence of third root varies in different ethnic groups, with the incidence of <5% in Indian population.

The preliminary diagnosis of these variations is done routinely with radiographic techniques. Radiographic diagnosis plays a pivotal role in successful endodontic treatment, and when taken at different angulations gives information about extra canals or roots and aids in the better understanding of the anatomy of the root canal system and the treatment approach with sufficient knowledge and absolute clinical thoroughness for successful root canal treatment.

This case report discusses the diagnosis and successful endodontic management of two cases showing unusual root canal configuration in a mandibular first molar (36 and 46) showing three roots and four canals.

CASE REPORTS

Case 1
A 36-year-old male patient reported to the Department of Conservative Dentistry and Endodontics with a chief complaint of pain in lower-left back tooth region for 1 month.

Ratnakar P, Prahlad A Saraf, Thimmanagowda N Patil, Smita Karan
Department of Conservative Dentistry and Endodontics, HKE Society S N Institute of Dental Science and Research, Gulbarga, 1Department of Conservative Dentistry and Endodontics, PMNM Dental College and Hospital, Bagalkot, 2Department of Conservative Dentistry and Endodontics, Subbaiah Institute of Dental Sciences, Shimoga, Karnataka, 3Department of Dentistry, Shadan Medical College, Hyderabad, Telangana, India

Address for correspondence: Dr. Ratnakar P, Department of Conservative Dentistry and Endodontics, HKE Society S N Institute of Dental Science and Research, Gulbarga, Karnataka, India.
E-mail: pratnakar65@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Ratnakar P, Saraf PA, Patil TN, Karan S. Endodontic management of radix entomolaris: Two case reports. Endodontology 2018;30:163-5.
The patient revealed a history of mild intermittent pain for the past 1 month, which had increased in intensity during the past week. The patient reported prolonged sensitivity to hot and cold substances. The pain was spontaneous and aggravated particularly at night.

Clinical examination revealed deep occlusal carious lesions on mandibular first molar. The tooth 36 was tender to vertical percussion. The preoperative radiograph revealed radiolucency of carious lesion involving the pulp with respect to 36 [Figure 1a]. Based on the clinical and radiographic findings, a diagnosis of symptomatic irreversible pulpitis with symptomatic apical periodontitis with respect to 36 was made, informed consent was obtained, and endodontic treatment was initiated.

Case 2
A 27-year-old female patient reported to the Department of Conservative Dentistry and Endodontics with a chief complaint of pain in lower-right back tooth region for 2 months. The patient revealed a history of mild intermittent pain for the past 2 months, which had increased in intensity during the past 2 weeks. The patient reported prolonged sensitivity to hot and cold substances. The pain was spontaneous and aggravated particularly at night.

Clinical examination revealed deep occlusal carious lesions on mandibular first molar. The tooth 46 was tender to vertical percussion. The preoperative radiograph revealed radiolucency of carious lesion involving the pulp with respect to 46 with periapical radioopacity [Figure 2a]. Based on the clinical and radiographic findings, a diagnosis of symptomatic irreversible pulpitis with symptomatic apical periodontitis and condensing osteitis with respect to 46 was made, informed consent was obtained, and endodontic treatment was initiated.

Clinical management
Radiographic evaluation of the involved teeth revealed two completely formed roots with no indication of any variation in the root canal anatomy in 36 and 46. The teeth were anesthetized using lignocaine. After caries excavation, rubber dam isolation was done and access cavity was prepared on tooth 36 and tooth 46. On inspection with a DG-16 endodontic explorer initially, the pulp chamber floor revealed three canals – mesiobuccal, mesiolingual, and the distal. A search for the second distal canal was made by further exploration of the pulpal floor with a DG-16 endodontic explorer. A catch disto lingually unveiled the second distal orifice, and the access cavity was modified from a triangular form to a trapezoidal shape to include the distolingual canal.

Negotiation of the canals was carried out with ISO size 6, 8, and 10 K files. Working length was determined using the Raypex 6 (VDW) apex locator with 15 No. K files and was verified using periapical radiograph. The working length radiograph taken with different horizontal angulations revealed the presence of a third root located distolingually [Figures 1b and 2b]. Cleaning and shaping was done using Protaper (Dentsple Maillifer) rotary files with respect to 36 and 46. All the canals were irrigated using 3% sodium hypochlorite solution and 17% Ethylene Diamine Tetra Acetate solution. The canals were finally flushed with sterile saline. Master cones were inserted to the working length and were confirmed radiographically [Figures 1c and 2c]. The canals were dried with paper points and obturation was performed followed by postobturation restoration. Final radiographs were taken to establish the quality of the obturation [Figures 1d and 2d].

DISCUSSION
A thorough knowledge of internal and external anatomy
coupled with a correct diagnosis, adequate cleaning, and shaping of the root canal system will normally lead to a successful outcome. The presence of RE or a radix paramolaris has clinical implications in endodontics, and an accurate diagnosis of these supernumerary roots can avoid complications or a “missed canal” during root canal treatment. Because RE is mostly situated in the same buccolingual plane as the distobuccal root, a superimposition of both roots can appear on the preoperative radiograph, resulting in an inaccurate diagnosis. A thorough inspection of the preoperative radiograph and interpretation of particular marks or characteristics, such as an unclear view or outline of the distal root contour or the root canal, can indicate the presence of a “hidden” RE. To reveal the RE, a second radiograph should be taken from a more mesial or distal angle (30°). The location of the orifice of the root canal of an RE also has implications for the opening cavity. The orifice of the RE is located distolingually to mesiolingually from the main canal or canals in the distal root. An extension of the triangular opening cavity to the distolingual results in a more rectangular or trapezoidal outline form. This way an accurate diagnosis can be made in the majority of cases.

Classification

Carlsen and Alexandersen (1990) classified RE into four different types based on the location of its cervical part:

1. **Type A:** The RE is located lingually to the distal root complex which has two cone-shaped macrostructures
2. **Type B:** The RE is located lingually to the distal root complex which has one cone-shaped macrostructure
3. **Type C:** The RE is located lingually to the mesial root complex
4. **Type AC:** The RE is located lingually between the mesial and distal root complexes.

De Moor et al. (2004) classified RE based on the curvature of the root or root canal:

1. **Type 1:** A straight root or root canal
2. **Type 2:** A curved coronal third which becomes straighter in the middle and apical third
3. **Type 3:** An initial curve in the coronal third with a second buccally oriented curve which begins in the middle or apical third.

Song et al. (2010) further added two more newly defined variants of RE:

1. **Small type:** Length shorter than half of the length of the distobuccal root
2. **Conical type:** Smaller than the small type and having no root canal within it.

In the present case report, the location and identification of the canal orifices were done by conventional methods using the DG-16 endodontic explorer, knowledge of the roots, and root canal anatomy along with that of the conventional periapical radiographs to determine the canal configuration. The RE in both the cases was found to be with straight root and root canal classified to be De Moors Classification Type I which was managed successfully.

CONCLUSION

Thorough knowledge and careful examination of the-floor of the pulp chamber with conventional radiographs with different angulations to determine the root canal anatomy, in clinical conditions, are essential parts of successful management of anatomical variations in endodontic treatment.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Souza-Flamini LE, Leoni GB, Chaves JF, Versiani MA, Cruz-Filho AM, Péricola JD, et al. The radix entomolaris and paramolaris: A micro-computed tomographic study of 3-rooted mandibular first molars. J Endod 2014;40:1616-21.
2. Calberson FL, De Moor RJ, Deroose CA. The radix entomolaris and paramolaris: Clinical approach in endodontics. J Endod 2007;33:58-63.
3. Attam K, Nawal RR, Utneja S, Talwar S. Radix entomolaris in mandibular first molars in Indian population: A review and case report. Case Rep Dent 2012;2012:594594.
4. Hasjem AA, Ahmed HM. Endodontic management of a mandibular first molar with unusual canal morphology. Eur Endod J 2017;2:5.
5. Fava LR, Weinfeld I, Fabri FP, Pais CR. Four second molars with single roots and single canals in the same patient. Int Endod J 2000;33:138-42.
6. Sarangi P, Uppin VM. Mandibular first molar with a radix entomolaris: An endodontic dilemma. J Dent (Tehran) 2014;11:118-22.
7. Parasara A, Gupta S, Zingade A, Parashar S. The radix entomolaris and paramolaris: A review and case reports with clinical implications. J Interdiscip Med Dent Sci 2015;3:1-5.
8. Mukhaimer R, Aziri Z. Incidence of radix entomolaris in mandibular first molars in Palestinian population: A Clinical investigation. Int Sch Res Notices 2014;2014:405601.