Impact of COVID-19 lockdown and health risk modeling of polycyclic aromatic hydrocarbons in Onne, Nigeria

Charity Kelechi Lele · Olarewaju Michael Oluba · Oluyomi Stephen Adeyemi

Received: 11 June 2022 / Accepted: 19 October 2022 / Published online: 30 November 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract The people living in Onne are highly vulnerable to PAH exposure due to constant exposure to black soot through oral, dermal, and inhalation routes. This work aims to determine the PAHs profile of selected soils in Onne, to determine the health risks associated with PAHs exposure through the soil, and to determine the impact of reduced industrial and other activities on the PAHs profile and associated public health risks. This study evaluated 16 priority polycyclic aromatic hydrocarbon (PAHs) pollutants in soil samples from the four (4) major clans in Onne using a gas chromatography flame ionization detector (GC-FID) during and after the COVID-19 lockdown. The results showed a differential presence of PAHs during and after the lockdown. Of the 16 priority PAHs, 10 and 8 PAHs were respectively detected during and after the COVID-19 lockdown. High molecular weight PAHs such as benzo(k)fluoranthene and benzo(a)anthracene were major contributors during the lockdown, while low molecular weight PAHs such as naphthalene, acenaphthylene, and fluorene were present at higher levels after the lockdown. An assessment of health risk by incremental lifetime cancer risks revealed that the entire population of Onne might be at risk of cancer development across periods, though a higher risk was presented during the lockdown. In addition, children under the age of 18 may be at greater risk. To the best of our knowledge, there is no previous report on the impact of the COVID-19 lockdown on soil PAH profile and health risks, with particular attention to the Onne industrial host community. Earlier work considered the ecological risks of heavy metals on dumpsites in Onne. Taken together, the PAH-contaminated soil in Onne poses an immediate health concern. Therefore, reduced anthropological activities, as evident during the COVID-19 lockdown, may play a role in exposure and cancer risk reduction. While there may not be another lockdown due to the challenging impacts associated with a physical lockdown, firmly controlled economic activity can be a solution if embraced by stakeholders. The COVID-19-lockdown was encumbered with restricted movements and security checks, which limited the number of samples collected. However, the Local Government Council (Department of the Environment) granted permission...
for the researchers to work with a minimal threat to their lives.

Keywords PAHs · Toxic equivalent factor · Health risk modeling · Soil contamination

Introduction

PAHs are ubiquitous and persistent organic compounds (Achten & Hofmann, 2009; Ni et al., 2019). PAHs are produced frequently due to partial incineration of plant and animal remains (Sun et al., 2020; Zhang et al., 2019), are poorly soluble in water, and do not disappear quickly from the environment (Vane et al., 2014; Zhang et al., 2019). They can accumulate in biological and ecological food chains and are, therefore, easily accessible to humans (Singh & Agarwal, 2018). About 16 PAHs are classified by the United States Environmental Protection Agency (USEPA) as priority pollutants owing to their importance naphthalene, acenaphthylene, fluorene, acenaphthene phenanthrene, anthracene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3 cd) pyrene, fluoranthene, dibenzo(ah)anthracene, and benzo (g, h, and i) perylene (Zhang et al., 2019; Zhu et al., 2019). Seven of the 16 priority PAHs are tagged as possible or probable human carcinogens (Santonicola et al., 2017). PAHs arise from a variety of sources, including biomass, volcanic eruptions, and fires (Keith, 2015; Mihankhah et al., 2020). However, many of these chemicals are after-effects of human activities, particularly in urbanized cities. Coal and wood burning, gasoline and diesel oil burning, and industrial plants are sources of PAHs. In addition, spilled liquid fuels can contribute to most of the PAHs in the environment (Farrington, 2020). The presence of PAHs in soils and sediments is frequently linked to pyrogenic non-point sources such as the incomplete burning of (fossil) organic matter (Hindersmann & Achten, 2018). Oil spills are one possible source of point sources (Zhang et al., 2019).

Several studies have confirmed the presence of PAHs in soil (Abdel-Shafy & Mansour, 2016; Achten & Hofmann, 2009; Emoyan et al., 2020), water (Adetunde et al., 2018; Nwaichi & Ntorgbo, 2016), air (Akinrinade et al., 2020; Munyeza et al., 2019), and sediments (Edokpayi et al., 2016). Oral intake, inhalation, and skin interaction are the three main routes of human exposure to PAHs (Ferguson et al., 2020). Exposure to PAHs is also associated with various diseases and bodily disorders (Adekunle et al., 2017; Santonicola et al., 2017), especially cancer (Falcó et al., 2003; Santonicola et al., 2017).

Urban soil represents a significant part of the environment contaminated by PAH chemicals, which are hazardous to ecological and human health (Tarafdar & Sinha, 2018). The soil framework seems to be the primary sink for PAHs and, therefore, a prominent indicator of PAH contamination (Chandra et al., 2018; Emoyan et al., 2020; Tarafdar & Sinha, 2018). There is confirmation that anthropogenic activities related to urbanization and industrialization significantly affect pollution levels in cities (Kumar et al., 2014; Oliveira et al., 2019). Moreover, the terrain and nearby wind and tide speeds and the plant canopy can affect the transmission and deposition of chemicals, including heavy metals and PAHs (Abderrahmane et al., 2021; Pal & Hogland, 2022). Other physical and chemical characteristics such as pH, temperature, total organic matter, and moisture content of the soil can affect the accumulation of PAHs in the soil. Environmental PAHs are generally carcinogenic to man and other animals, though some PAHs, such as dibenz[a, h] anthracene, benzo[a]pyrene, and benzo [g, h, i] perylene, are categorized as mutagenic (Anyanwu et al., 2020; Yost et al., 2021). Exposure evaluation is a critical step in determining health risks to circumvent the harmful impact of PAHs on the environment. The USEPA multi-pathway exposure model is the principal strategy for assessing health risks globally (Tarafdar & Sinha, 2018).

Onne, Eleme, Rivers State is situated in the Niger Delta part of Nigeria, where industrialization is commonplace. Several studies have detected PAHs in the soil of an oil-rich region (Orisakwe, 2021; Sojinu et al., 2010; Ugochukwu et al., 2018). The quality of soil affects vegetables and other food crops grown in an industrial region, and thus PAHs can disseminate across the food chain. (Kumar et al., 2014).

In addition, there is a general concern about the impact of environmental pollutants from black soot deposits in the Niger Delta in Nigeria, mainly due to illegal petroleum exploration. This problem creates dissatisfaction among local people and other stakeholders (Orisakwe, 2021; Zabbe et al., 2017). Although a large body of work on PAHs’ contamination in the Nigerian Niger Delta is available, the COVID-19 lockdown provided a departure from the usual human lifestyle. After the outbreak of the COVID-19 virus in 2020, a total lockdown became
necessary in many countries (Mboera et al., 2020). The COVID-19 lockdown was accompanied by a decline in physical business, academic, and tourist activities around the world (Oyewola et al., 2022; Pahrudin et al., 2021). Consequently, it is important to explore whether the reduced human activities evident during the COVID-19 lockdown are affecting the concentration, distribution, sources, and potential health risks of PAHs across all areas in Onne, Nigeria. Therefore, this study sought to:

1. Determine the concentration of PAHs in soil samples in Onne
2. Assess the major sources and distribution of PAHs in Onne using already established diagnostic ratios.
3. Use the toxic equivalency factor and incremental lifetime cancer risk to assess the potential health risks associated with PAH-contaminated soils from Onne.
4. To evaluate the impact of the COVID-19 lockdown on concentrations, distribution, source attribution, and health risks of PAHs in Onne, Nigeria, by assessing changes in concentrations, sources, and distribution of PAHs during and after the lockdown.

At the time of writing this manuscript, the authors are not aware of any written works specifically about Onne, with particular emphasis on the ongoing decades of exposure of the population to black soot due to illegal bunkering activities and multidimensional industrial and human activities in Onne, Nigeria. This research will improve our understanding of the general properties of PAHs in the soil samples in Onne and the attendant health risks. This will assist stakeholders to adopt efficient pollution mitigation approaches in Onne, Nigeria.

Materials and methods

Study area

Onne is among the ten communities in Eleme Local Government of Rivers State. It is located at longitudes and latitudes of 4.723816 and 7.151618° east. Alejor, Ekara, Agbeta, and Ogoloma are the four main clans that makeup Onne. It is situated between Okrika and Ogu in Rivers State (Fig. 1). The Nigerian Ports Authority

Fig. 1 Map depicting the different locations of Onne
(NPA), the Oil and Gas Free Zone (OGFZA), the Nigerian Navy Basic Training School, the Nigerian Naval College (officers), Integrated Logistics (intels), and Notore Chemicals (formerly the National Fertilizer Company of Nigeria) are located in Onne, thereby positioning the community as a key industrial hub of Rivers State. It is a semi-urban dwelling place for both indigenes and foreigners. The NPA is a center of attraction in Onne because it is one of the largest oil and gas-free zones supporting exploration and production in Nigeria. This port is responsible for 65% of all exported cargo via the Nigerian seaports. In addition to the oil and gas business, the port also operates several other businesses. Consequently, the port serves a variety of cargo needs. Onne settlement is about 1–2 km from the port. In the midst of heavy industries, natives use their land for agriculture, mechanical workshops, and residential areas, among other things.

Collection and pretreatment of soil samples

Multiple evenly spaced sampling sites utilized for mechanical workshops, farmland, NPA schools, churches, mosques, boundaries, and fertilizer company vicinities were used to collect soil samples. Four (4) different areas of Onne, namely Alejor, Ekara, Agbeta, and Ogoloma, were chosen, and the position of each location was recorded using a handheld Garmin GPS device. Using a soil auger at 0–25 cm depth, 5 sub-samples were collected 5 m apart in a triangular shape and mixed appropriately to prepare a composite sample for each site based on a previously established method (Tarafdar & Sinha, 2018; Wu et al., 2019). After the manual removal of non-soil particles, the samples were stored in an ice-filled cooler and then shipped to the International Energy Services Laboratory in Port Harcourt, Nigeria, for analysis. The soil samples were air dried in the lab for 3 days to maintain a constant weight throughout the test. A 2 mm stainless steel screen was used to sift the soil into uniform sizes and articles and to remove unwanted particles. Two composites, which consisted of five sub-soil samples, were collected from each of the communities, Alejor, Ekara, Agbeta, and Ogoloma, in July 2020 during the COVID-19 lockdown and in March 2021 after the lockdown.

Analytical procedures

All chemicals, including anhydrous sodium sulfate, dichloromethane, and activated silica gel, were analytical grade. Physicochemical properties of soil such as pH, temperature, electrical conductivity, moisture content, total organic matter content, and total organic matter were determined by established methods as reported (Emoyan et al., 2020). For PAH determination, 10 g of the sample was weighed into a clean 50-mL extraction bottle; 30 mL of dichloromethane (DCM, the extraction solvent) was added to the flask. The mixture was agitated by shaking for 2 min and allowed to settle. The extracted mixture was then passed through 42-size Whatman paper containing 5 g of activated silica gel and 5 g of the sodium sulfate into a vial and held ready for injection into the GC-FID.

Sample dilution

An aliquot (5 mL) of sample extract was diluted with 10 mL of dichloromethane.

Instrumentation

The carrier gas utilized was nitrogen (30 mL/min). The hydrogen and compressed air pressures were each 27.8 pounds per square inch (psi) at 35 mL per minute and 250 mL per minute, respectively. The results were scored using the sixteen (16) standard PAHs for the analysis. To rank the compounds, the retention times based on the standards were compared to those of a sample extract, while quantification incorporated individual PAH analysis. To ensure that all calculated PAHs are accurate, a blank analyte verification and an initial or trial demonstration were used to verify the method. The standards used for the analysis included naphthalene, 2-methyl naphthalene, acenaphthylene, fluorene, acenaphthene, phenanthrene, anthracene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indenol(1,2,3 cd) pyrene, fluoranthene, dibenzo(ah) anthracene, and benzo (g, h, and i) perylene.

Source allocation studies

Knowing the sources of PAHs makes it easier to determine how they are distributed in the environment. Commonly, the diagnostic ratio method is used to discriminate between different PAHs sources in the ecosystem (Edokpayi et al., 2016; Tobiszewski and Namieśnik (2012). Ratios include LPAHs/HPAHs (low molecular weight PAHs), Fla/(Fla + Pyr) (fluoranthene + pyrene), BaA/(BaA + PAHs)
+ Chr(chrysene), and Ant(anthracene)/(Ant + Phe) (phenanthrene). For instance, a ratio of LPAHs/HPAHs < 1 indicates pyrogenic origin, whereas a ratio > 1 point to a petrogenic source. A ratio of Fla/(Fla + Pyr) < 0.4 specifies a petrogenic source, a ratio between 0.4 and 0.5 indicates a coal, wood, or grass incineration source. For BaA/(BaA + CHR), a ratio < 0.2 signifies a petroleum source, a ratio between 0.2 and 0.35 indicates a mixed source, and a ratio > 0.35 shows a combustion source. Values of the Ant/(Ant + Phe) ratio are classified as either <0.1 or >0.1, representing petroleum and combustion sources, respectively (Brändli et al., 2007).

Soil pollution scales

To assess soil pollution levels, Maliszewska-Kordybach (1996) proposed that soil contaminated by PAHs could be classified into four levels: non-contaminated, weakly contaminated, contaminated, and heavily contaminated. Soil PAH concentrations less than 0.2 mg/kg are considered non-contaminated; concentrations between 0.2 and 0.6 mg/kg are considered weakly contaminated; concentrations between 0.6 and 1.0 mg/kg are considered contaminated; and concentrations greater than 1.0 mg/kg are considered heavily contaminated (Maliszewska-Kordybach, 1996).

Health risk assessment

Toxic equivalent concentration \((BaPeq) \) and incremental lifetime cancer risk

The health risk assessment model for carcinogenic risk was evaluated by the benzo(a)pyrene equivalent \((BaPeq) \) concentration and the incremental lifetime cancer risk \((ILCR) \) for carcinogenic risks. The \(BaPeq \) concentration with a toxic equivalent factor of one (1) is normally used as a basis for toxicity and carcinogenicity. This is because benzo(a)pyrene is the most extensively researched congener of PAHs. To appraise the hazardousness of soil samples, toxic equivalency factors \((TEFs) \) were adopted to produce toxic equivalent concentrations, i.e., \(BaPeq \), as reported earlier (Nisbet & LaGoy, 1992). To assess the potential toxicity of a PAH congener, its concentration was multiplied by the estimated TEF value (Appendix 1).

\[
\Sigma BaP_{eq} = \Sigma C_i \times TEF_i
\]

where \(BaP_{eq} \) is the equivalent concentration of benzo(a)pyrene, \(C_i \) is the concentration of PAH congener in soil, and \(TEF_i \) is the toxic equivalency factor of PAH congener relative to benzo(a)pyrene \((BaP) \). The carcinogenic potencies of PAHs were estimated by adding their \(BaPeq \) values and comparing them with a reference value (Canadian Council of Ministers of the Environment-CCME, 2010). Environmental PAHs pose a significant health risk. The USEPA (United States Environmental Protection Agency) model of the incremental lifetime cancer risks \((ILCR) \) model, as reported by Qu et al. (2020), was used for the cancer risks in soil samples. Cancer risk modeling considered three pathways of exposure, viz., oral, dermal, and inhalation. The risk evaluation considered four exposure populations: children (0–18 years), young adults (20–44 years), middle-aged (45–59 years), and the elderly (>60 years). Furthermore, the following equation was used:

\[
ILCR_{\text{ingestion}} = \frac{CS \times IR_{soil} \times EF \times ED \times CSF_{\text{ingestion}}}{BW \times AT \times 10^6}
\]

\[
ILCR_{\text{dermal}} = \frac{CS \times SA \times AF \times ABS \times EF \times CSF_{\text{dermal}}}{BW \times AT \times 10^6}
\]

\[
ILCR_{\text{inhalation}} = \frac{CS \times IR_{\text{air}} \times EF \times ED \times CSF_{\text{inhalation}}}{BW \times AT \times 10^6}
\]

The equation terms are defined as follows:

\(CS = \) toxic equivalent PAHs compound concentration in soil \((\text{mg/kg}) \).

\(CSF = \) carcinogenic slope factors (in milligrams of \(BaP \) per kilogram or milligrams per liter) for the three major pathways (oral, dermal, and inhalation): CSF ingestion, CSF dermal, and CSF inhalation. They are, respectively, 1.0–25.0 and 3.85 mg.kg.day\(^{-1}\) (Tarfad & Sinha, 2018).

\(IR_{soil} = \) soil ingestion rate in milligrams per day.

\(AF_{soil} = \) dermal adherence factor in milligrams per square centimeter.

\(IR_{air} = \) inhalation rate in cubic meters per day.

\(ED = \) exposure duration in years.

\(EF = \) exposure frequency in days per year (365 days per year).

\(BW = \) body weight \((\text{kg}) \).

\(AT = \) average life span in days.
PEF = particle emission factor in cubic meters per kilogram of soil.
SA = exposed skin surface area.
ABS = dermal absorption factor.

Since children are most vulnerable to environmental pollutants, the main issue was to identify the risks associated with this population (Wirnkor et al., 2019).

According to USEPA cancer risk classifying standards, an ILCR of less than 10^{-6} is considered practically safe, a value between 10^{-6} and 10^{-4} is considered low risk, and above 10^{-4} indicates a potentially high risk for significant health concerns (Qu et al., 2020; USEPA, 1996). The parameters imputed and used for the calculation are explained in Appendix 2.

Statistical analysis

Statistical analysis was performed using GraphPad Prism Software 9.00 (San Diego, CA, USA). Values are expressed as the mean ± SEM of 2 replicates. $P < 0.05$ was considered to be statistically significant. The student’s t-test was used to determine the difference between PAH concentrations during and after confinement, while Pearson’s correlation coefficient was used to determine the relationship between other physicochemical parameters and PAHs.

Results and discussions

Physicochemical parameters and PAHs in soil samples

The physicochemical parameters of the soil samples were assessed. The results of the mean values of the physicochemical parameters are summarized in Table 1. There was no consistency in the way the physicochemical properties changed, apart from temperature and conductivity, which showed a consistent increase in the four communities post-lockdown. The temperature ranged between 24.45 and 25.15 °C during the lockdown but increased to between 28 and 29 °C after the lockdown across the periods. Conductance range values were 17–19 during the lockdown and 20–36 after the lockdown. Tables 2 and 3 showed that Pearson correlation values were statistically not significant ($p > 0.05$).

Correlation studies by Pearson show that pH, conductance, moisture content, and total organic matter were positively associated with PAHs during lockdown (Table 2), whereas conductance and moisture content were the only parameters in positive association with PAHs after the lockdown (Table 3).

Table 4 illustrates the concentrations of individual PAHs in selected soil samples. Of the 16 priority PAHs assessed in this study, 10 PAHs were detected in Onne soils during the lockdown, while eight (8) PAHs were detected in post-lockdown soil samples. Student’s t-test analysis shows significant differences in mean total PAH concentrations in Alejor ($p < 0.0001$), Agbeta (1$p < 0.0001$), and Ogoloma (1$p < 0.005$), but not in Ekara. In summary, 75% of the soil samples tested showed significant changes in concentrations after the lockdown. Both low molecular weight PAHs (LPAHs) and high molecular weight PAHs (HPAHs) were detected, but the LPAHs predominated over the HPAHs in both periods. However, HPAHs were in higher concentrations during the lockdown than after the lockdown. For example, BaA and BKF recorded mean values of 0.41 ± 0.02 and 0.95 ± 0.05, respectively, during the lockdown but were absent after the lockdown (Table 4). In general, naphthalene was present in all samples from all four

Table 1	Physicochemical properties of soil during (1) and after (2) COVID-19 lockdown							
	Al¹	Al²	Ek¹	EK²	Aγ¹	Aγ₂	Oγ¹	Oγ₂
PAHs	2.02 ± 0.1	0.85 ± 0.25	1.14 ± 1.07	1.63 ± 0.32	2.03 ± 0.37	1.30 ± 0.32	1.82 ± 0.25	1.35 ± 0.10
pH	7.45 ± 1.35	6.1 ± 0.35	5.65 ± 0.45	6.1 ± 0.35	5.90 ± 0.0	6.0 ± 0.40	6.50 ± 0.60	6.1 ± 0.40
Temp °C	24.85 ± 0.35	29 ± 0.65	25.15 ± 0.05	28 ± 0.40	25.15 ± 0.05	28 ± 0.10	24.45 ± 1.05	28 ± 0.20
Cond	15.0 ± 1	20 ± 2.5	19.0 ± 5	23 ± 0.50	17.00 ± 1	20 ± 0.050	18.00 ± 10	36 ± 13
MC	12.50 ± 0.65	18 ± 1.9	13.80 ± 0.7	18 ± 1.6	12.37 ± 3.23	19 ± 1.5	13.80 ± 0.20	16 ± 2.5
TOC	2.27 ± 0.42	2.5 ± 0.63	2.71 ± 0.86	1.7 ± 0.090	4.07 ± 1.52	2.5 ± 0.035	1.61 ± 0.22	1.9 ± 0.86
TOM	6.86 ± 1.25	7.5 ± 1.9	8.21 ± 2.56	5.1 ± 0.29	12.31 ± 4.60	7.6 ± 0.095	4.86 ± 0.64	5.8 ± 2.6

¹ Alejor, Ek Ekara, Ag Agbeta, Og Ogoloma, Temp temperature, Cond conductivity, MC moisture content, TOM total organic matter
communities: Alejor, Ekara, Agbeta, and Ogoloma. During the lockdown, seven (7) PAHs were detected in all samples: naphthalene, fluorene, fluoranthene, acenaphthene, anthracene, benzo(a)anthracene, and benzo(k)fluoranthene. Pyrene was detected in Alejor, Agbeta, and Ogoloma but not in Ekara. On the other hand, phenanthrene was not detected in Ogoloma but was present in Alejor, Ekara, and Agbeta. Acenaphthylene was only detected in Ogoloma. In all, eight (8) PAHs were detected in Ekara, whereas nine (9) PAHs were detected in Alejor, Agbeta, and Ogoloma. In contrast, naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, and anthracene were detected in the four communities, whereas fluorene was detected in Ogoloma, and pyrene was detected in Alejor and Ogoloma. Pyrene was the only HPAH detected in a low quantity after the lockdown.

Comparison with soil pollution criteria

The summation of PAH concentrations in the four communities in Onne revealed that the mean level of PAHs was 1.75 mg/kg and ranged between 1.14 and 2.04 mg/kg (Table 1) during the lockdown, while the mean value was 1.28 mg/kg and ranged between 0.85 and 1.35 mg/kg after the lockdown. Therefore, 100% of the soil’s concentrations in Alejor (2.02±0.1; 0.85±0.25 mg/kg), Ekara (1.14±1.07; 1.63±0.32 mg/kg), Agbeta (2.03±0.37; 1.30±0.32 mg/kg), and Ogoloma (1.82±0.25; 1.35±0.10 mg/kg) might be termed highly contaminated by PAHs based on the soil pollution scale (Maliszewska-Kordybach, 1996). Reduced industrial, commercial, and physical activity might have resulted in lower PAH after the COVID-19 lockdown. This work is in accordance with the report by Inam et al. (2016), which recorded 1.77 mg/kg PAHs in a mechanic shop at Uyo in the Niger Delta area of Nigeria. Other reports by Daniel et al. (2020) found a range of PAH concentrations between 214.83 and 537.22 mg/kg in urban soil samples used for mechanic work, and Onyedikachi et al. (2019) confirm the presence of PAHs above the WHO acceptable limit in the Niger Delta region of Nigeria. Separate studies on PAH concentrations in urban soils outside Nigeria showed that Greater London had values between 4 and 66 mg/kg (Vane et al., 2014), industrial areas of the Yangtze River Delta region in China had intermediate values of PAHs between 341.40 and 471.30 µg/kg and Moscow had <1 to 1 mg/kg (Vane et al., 2014). However, all of these values are within the acceptable WHO standard of 1 mg/kg.

The percentage composition of PAHs is illustrated (Figs. 2, 3, 4, and 5).

The fraction of low molecular weight PAHs significantly increased as NaP rose from 16.08% during lockdown to 22.65% after lockdown. Similarly, Acy and Ant

Table 2 COVID-19 lockdown Pearson correlation

	PAHs	pH	Temp	Cond	MC	TOC	TOM
PAHs	1	0.30	−0.19	0.36	0.02	−0.08	0.20
pH	1	−0.77	0.04	−0.33	−0.06	−0.05	
Temp	1	0.24	0.21	−0.15	−0.14		
Cond	1	−0.01	−0.10	0.13			
Moisture C	1	0.47	0.47				
TOC	1			0.96			
TOM	1			1			

Table 3 Post COVID-19 lockdown Pearson correlation

	PAHs	pH	Temp	Cond	MC	TOC	TOM
PAHs	1	−0.28	−0.83	0.28	0.18	−0.31	−0.45
pH	1	0.52	−0.41	−0.74	−0.21	0.45	
Temp	1	−0.07	−0.55	0.23	0.41		
Cond	1	0.01	0.31	−0.61			
MC	1	0.30	−0.42				
TOC	1		0.10				
TOM	1		1				
increased from 9.05 and 3.52% to 17.88 and 28.61% in Alejor. In Ekara, NaP showed a positive percentage increase from 11.63 to 25.83% after the COVID-19 lockdown. Flu also increased from 4.65 to 16.61%. However, Ant increased (2.33–20.30%) during and after the COVID-19 lockdown. This trend holds for Agbeta and Ogoloma, except for Phe and Ant, which showed a decrease in percentage composition in Agbeta after the lockdown.

Table 4
Concentration of PAHs congeners (mg/kg) during (1) and after (2) COVID-19 lockdown

PAHs (mg/kg)/ring no	AI1 (mg/kg)	AI2 (mg/kg)	EK1 (mg/kg)	EK2 (mg/kg)	Ag1 (mg/kg)	Ag2 (mg/kg)	Og1 (mg/kg)	Og2 (mg/kg)	
Nap2	0.32±0.03	0.19±0.19	0.20±0.20	0.42±0.08	0.46±0.19	0.411±0.016	0.20±0.04	0.49±0.02	
Acy3	-	0.15±0.08	-	0.28±0.06	-	-	0.27±0.00	0.02±0.02	0.29±0.02
Ace3	0.02±0.00	0.15±0.02	0.02±0.00	0.23±0.08	0.01±0.00	0.21±0.03	0.01±0.01	0.19±0.02	
Flu3	0.18±0.01	0.24±0.03	0.08±0.09	0.27±0.06	0.07±01	0.29±0.02	0.08±0.06	0.27±0.02	
Phe3	0.01±0.00	0.10±0.02	0.01±0.01	0.33±0.30	0.01±0.01	0.09±0.01	-	0.01±0.00	
Ant3	0.07±0.00	0.10±0.00	0.04±0.00	0.33±0.30	0.08±0.02	0.02±0.02	0.04±0.02	0.01±0.00	
Fla3	0.02±0.00	-	0.01±0.01	-	0.02±0.00	-	0.01±0.01	-	
Pyr/4	0.01±0.01	0.002±0.00	-	0.01±0.01	-	0.02±0.02	-	-	
BaA/4	0.41±0.02	-	0.21±0.17	0.17±0.15	1.06±0.75	-	-	-	
Total PAHs	2.02±0.1	0.85±0.25	1.14±1.07	1.63±0.32	2.03±0.37	1.30±0.32	1.82±0.25	1.35±0.10	
Total LPAHs	1.06±0.06	0.84±0.33	0.58±0.01	1.63±0.02	0.99±0.00	1.30±0.12	1.44±0.10	1.35±0.10	
Total HPAHs	0.95±0.01	0.002±0.00	0.56±0.01	0	1.03±0.00	0	0.38±0.00	0.003±0.00	
LPAHs/HPAHs	0	351	0.07	1.63	0	1.30	1.04	450	
WHO (mg/kg)	1	1	1	1	1	1	1	1	

Source allocation studies

The possible sources of PAHs were predicted using PAH diagnostic ratio indices. Inferences show that soil PAHs were a combination of several sources during the COVID-19 lockdown but were majorly petrogenic after the lockdown (Tables 5, 6, 7, and 8). The predominance of low molecular weight PAHs against high molecular weight PAHs indicates more petrogenic

Fig. 2 Percentage composition of PAHs in soil samples during and after the COVID-19 lockdown in Alejor. Legend: Nap = naphthalene, Acy = acenaphthylene, Ace = acenaphthene, Flu = fluorne, Phe = phenanthrene, Ant = anthracene, Fla = fluoranthene, Pyr = pyrene, BaA = benz(a)anthracene, and BKF = benzo(k)fluoranthene.
sources rather than pyrogenic sources. LPAHs are common in petroleum mixtures. This work is in conformity with similar studies in the Niger Delta, Nigeria (Emoyan et al., 2020; Osu & Asuoha, 2010). The Niger Delta part of Nigeria is well known for its oil exploration, heavy traffic movement, and other industrial activities (Orisakwe, 2021; Ugochukwu et al., 2018). This undoubtedly leads to oil spillage and pollution by spent petroleum products. The continuous vehicular movements in and out of the seaport combined with ongoing bunkering activities and diesel combustion in the industrial plants could also explain the fact that pyrogenic activities were common prior to lockdown, leading to HPAHs accumulation, which was evident in the higher percentage contribution of BaA and BKF in Alejor (20.60 and 47.74%); Ekara (23.84 and 52.23%); Agbeta (9.12 and 55.5%); Ogoloma (58.24 and 20.88%) (Figs. 2, 3, 4, and 5).

Although USEPA identified 16 PAHs as priority pollutants, 7 compounds, namely benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(ah)anthracene, and indeno(1,2,3-cd) pyrene are classified as probable human carcinogens (Abdel-Shafy & Mansour, 2016). The presence of benzo(a)anthracene and benzo(k)fluoranthene are pointers to higher health risks during the lockdown than after the lockdown.

PAH diagnostic ratios are routinely used to analyze soil samples, but they give no information about the stability of soil PAHs. The primary fate of PAHs in soils is atmospheric desorption (Feng et al., 2019; Liu et al., 2016), and diagnostic ratios can vary depending on the altitude of the soil sampling site (Jiang et al., 2009). PAHs may desorb: fluoranthene and pyrene desorb at comparable rates, although Phe desorbs more rapidly than Ant (Enell et al., 2005). LPAHs can be metabolized...
by endogenous bacteria and fungi, resulting in a (potentially selective) drop in concentration over time based on soil type, organic carbon and nutrient content, humidity, and aeration (Gerhardt et al., 2009).

Health risk assessment

The health risks posed by PAH exposure are well researched (Abdel Shafy & Mansour, 2016; Canadian Council of the Ministers of the Environment-CCME, 2010; Adekunle et al., 2017; Santonicola et al., 2017). The health risk assessment model for carcinogenic risk was evaluated by the BaPeq concentration and the ILCR for carcinogenic risks. Toxic equivalent factors are used in the calculation (Appendix 1), while the details on how BaPeq concentration was calculated are provided in Supplementary information (1).

Health risk assessment

BaPeq concentration with a toxic equivalent factor of one (1) could be used as a basis for toxicity and carcinogenicity. To evaluate the hazardous potency of soil samples, toxic equivalency factors (TEFs) (Appendix 1) was used to produce toxic equivalent concentrations (BaPeq) for evaluation and quantification. BaPeq concentrations ranged from 0.01 to 0.02 mg/kg across Alejor, Ekara, Agbeta, and Ogoloma (Table 8). These values were below the 0.6 mg/standard allowed for PAH concentrations in soils (Canadian Council of the Ministers of the Environment-CCME, 2010). Based on these values, the soil likely does not pose any health risk due to BaPeq concentration.

The computed values of the ILCR of soil PAHs within the specified period are presented in Table 9. The order of the risk is children > middle aged > elderly > young adults during the lockdown and children > middle aged = elderly > young adults (Table 10). Children may have a greater risk of developing cancer later in their lifetime. The inhalation route is the most effective route of exposure across all ages of life. The oral route was the weakest means of cancer risk exposure, whereas the dermal route showed a weak likelihood of cancer risk across all ages. The inhalation route is evident as inhaled black soot from colloids in the noses of individuals in Onne accumulates over

Table 5 Computed source allocation of PAHs in Alejor soil samples during and after COVID-19 lockdown

Diagnostic ratios	Alejor during COVID-19 lockdown	Possible source	Alejor after COVID-19 lockdown	Possible source
LPAHs	0.001	Pyrogenic	351	Petrogenic
HPAHs	0.885	Pyrogenic	0.09	Petrogenic
LPAHs	0.65	Grass coal combustion	Not applicable	Not applicable
Hamme	1	Combustion	Not applicable	Not applicable

Table 5 Computed source allocation of PAHs in Alejor soil samples during and after COVID-19 lockdown

Fig. 5 Percentage composition of PAHs in soil samples during and after the COVID-19 lockdown in Ogoloma. Legend: Nap=naphthalene, Acy=acenaphthylene, Ace=acenaphthene, Flu=fluorene, Phe=phenanthrene, Ant=anthracene, Fla=fluoranthene, Pyr=pyrene, BaA=benz(a)anthracene, and BKF=benzo(k)fluoranthene.
time, hence gaining access to the systemic circulation of exposed people (Abdel-Shafy & Mansour, 2016). This present work contradicts the reports of Onyedikachi et al. (2019), where oral ingestion was the most effective exposure route in cancer risk assessment among other routes, such as inhalation and dermal routes of exposure. In addition, Parra et al. (2020) reported the dermal route as the most effective route of PAH exposure and that the elderly were more at risk, whereas our present study found that children are at higher risk. Some factors affect the mechanisms by which PAHs are absorbed in humans. For instance, the age and metabolism of the subject, routes of exposure, and environmental circumstances such as temperature, humidity, solar radiation, wind speed, and precipitation rates can influence PAH metabolism (Kim et al., 2013; Ma & Harrad, 2015).

However, according to the National Academy of Science, children are predisposed to PAH-associated health risks. The reasons can be both behavioral and physiological. Due to their young age, there can be a significant time lag between exposure to PAHs

Table 6 Computed source allocation of PAHs in Ekara soil samples during and after COVID-19 lockdown

Diagnostic ratios	Ekara during COVID-19 lockdown	Possible source	Ekara after COVID-19 lockdown	Possible source
LPAHs	0.069	Pyrogenic	1.63	Petrogenic
HPAHs				
Ant	0.84	Pyrogenic	0.7	Pyrogenic
Ant+Phe				
BaA	1	Combustion	Not applicable	Not applicable
BaA+Chr				
Fla	1	Grass coal combustion	Not applicable	Not applicable
Fla+Pyr				

Ant anthracene, BaA benz(a)anthracene, Phe phenanthrene,Chr chrysene, Fla fluoreanthene, Pyr pyrene

Table 7 Computed source allocation of PAHs in Agbeta soil samples during and after COVID-19 lockdown

Diagnostic ratios	Agbeta during COVID-19 lockdown	Possible source	Agbeta after COVID-19 lockdown	Possible source
LPAHs	0.009	Pyrogenic	1.3	Petrogenic
HPAHs	0.89	Pyrogenic	0.08	Petrogenic
Ant	1	Combustion	Not available	Not available
Ant+Phe				
BaA	0.71	Grass coal combustion	Not available	Not available
BaA+Chr				
Fla				
Fla+Pyr				

Ant anthracene, BaA benz(a)anthracene, Phe phenanthrene, Chr chrysene, Fla fluoreanthene, Pyr pyrene

Table 8 Computed source allocation of PAHs in Ogoloma soil samples during and after COVID-19 lockdown

Diagnostic ratios	Ogoloma during COVID-19 lockdown	Possible source	Ogoloma after COVID-19 lockdown	Possible source
LPAHs	1.03	Petrogenic	408	Petrogenic
HPAHs				
Ant	1	Pyrogenic	0.08	Petrogenic
Ant+Phe				
BaA	1	Combustion	Not applicable	Not applicable
BaA+Chr				
Fla	1	Grass coal combustion	Not applicable	Not applicable
Fla+Pyr				

Ant anthracene, BaA benz(a)anthracene, Phe phenanthrene, Chr chrysene, Fla fluoreanthene, Pyr pyrene

Table 9 Computed benzo(a)pyrene equivalent concentration of soil samples during and after COVID-19 lockdown

Soil media	Calculated BaPeq1(mg/kg)	Calculated BaPeq2(mg/kg)
Alejor	0.02	0.002
Ekara	0.01	0.005
Agbeta	0.01	0.002
Ogoloma	0.02	0.003
TBa(P)Eq	0.06	0.012

BaPeq1 benzo(a)pyrene equivalent concentration during COVID-19 lockdown, BaPeq2 benzo(a)pyrene equivalent concentration after COVID-19 lockdown
and the point at which toxic manifestations appear (Oliveira et al., 2019). Children also spend more time playing on the field, both at school and at home. Similarly, the poor electricity supply in Onne prevents the closure of windows, which would otherwise provide ventilation, in most classrooms in Onne, exposing young pupils and school children to polluted air. Again, their reduced body weight can allow PAHs to accumulate and have dangerous effects (Wang et al., 2011) Taken together, the present study supports the findings of Miller et al. (2010), which indicated that exposure to PAHs is more likely in children. To further substantiate the at-risk population, Perera et al. (2009) discovered a similar adverse relationship between intellect and PAH exposure during prenatal assessments up to 5 years of age.

Furthermore, the lack of adequately developed cytochrome P450 metabolizing enzymes in children could be a contributing factor (Björkman, 2006), while greater exposure to domestic and occupational PAHs is likely to increase the risk of toxicity in the working population. The senior population may be least in danger because the majority of them are no longer extremely active, whereas young adults’ higher level of exercise likely explains why they are at less risk than the other age groups.

Conclusion

Despite the extensive reports of pollution in the Niger Delta, the Nigerian government has yet to develop a plan to deal with PAH pollution. To our ultimate knowledge, this is the first study to examine the cancer risks of PAHs originating in the Onne community and the impact of the COVID-19 lockdown. Exposure to soil-borne PAHs via eating, ingestion, contact with the skin, and inhalation in the general population of Onne may present potential health risk concerns. This health risk warrants further investigation through biological monitoring to facilitate concerted efforts to mitigate the potential hazards. For this reason, anthropological activities such as uncontrolled bush burning and illegal oil refining should be prohibited in Onne and nearby communities. Since PAH exposure is literally unavoidable through the soil, concerted efforts should be made to engage researchers, nonprofit-making organizations, and other stakeholders to make policies that check PAH exposure in Onne. More research should be directed at the exposed population. People can be made aware of the public health risks associated with PAHs to enable them to embrace helpful lifestyle changes, such as the avoidance of cigarette smoking, which may increase exposure risks.

Limitation of the study

Although risk characterization is essential in health risk assessment studies, risk modeling is limited in predicting risk due to the possibility that risks may be overestimated or underestimated compared to the actual situation. In addition, soil sampling and laboratory experimentation are rigorous and require special expertise and skills.

Acknowledgements The authors are grateful to the management of E&S Integrated Services Ltd., Owerri, for supporting this work. We appreciate International Energy Services Ltd., Port Harcourt, for providing their facility for this study.

Data availability Data will be made available upon request.

Declarations

Conflict of interest The authors declare no competing interests.

Table 10: Comparison of ILCR of Onne population during (a) and immediately (b) after COVID-19 lockdown

Population/route of exposure	Elderly	Middle aged	Young adult	Children
Oral ingestion^a	6.26E+02^a	6.26E−07^a	0.00000073^a	5.84E−06^a
Inhalation^b	3.1E+08^b	3.1E+08^b	3.62E+08^b	8.6E+08^b
Dermal contact^b	4.18E−07^b	3.88E−06^b	4.53E−06^b	2.99E−06^b
ILCR_Total_a	3.88E+08^a	5.88E+08^a	3.62E+08^a	8.66E+08^a
ILCR_Total_b	5.17E+07^a	5.17E+07^b	6.04E+06^b	1.43E+08^b
Appendix

Appendix 1 Toxic equivalency factors of 16 priority PAHs by Nisbet & LaGoy, 1992

PAHs/Code	Toxic equivalency factor
Naphthalene/Nap	0.001
Acenaphthylene/Acy	0.001
Acenaphthene/Ace	0.001
Fluorene/Flu	0.001
Phenanthrene/Phe	0.001
Anthracene/Ant	0.01
Fluoreanthene/FluAn	0.001
Pyrene/Pyr	0.001
Benz(a)anthracene, BaA	0.1
Chrysene/Chr	0.01
Benzo(a)pyrene/BaP	1
Benzo (b)fluoranthene/BbF	0.1
Benzo(k)fluoranthene/BKF	0.1
Benzo (g,h,I)perylene/BPy	0.1
Indenol(1,2,3−cd) pyrene/InP	0.01
Di benz (a,h) anthracene(DahA)	1

Appendix 2 Values of parameter used for incremental cancer risk calculation

Definition	Units	Children	Young adults	Middle age	Elderly	References
Exposure frequency	(EF) days/year	365	365	365	365	Peng et al., 2011
Exposure duration	(ED) year	6	20	45	70	USEPA, 2014
Average body weight	kg	15	60	70	70	Ohiozebau et al., 2016
Average time	AT (days)	2190	7300	25,550	25,550	Soltani et al., 2015
Inhalation rate IRi	M³/day	10	20	20	10	USEPA, 2011
Ingestion rate for soil IrS	Mg/day	200	100	100	100	USEPA, 2011
Exposed skin surface area (SA)	cm²	1150	2145	2145	2145	Qi et al., 2014
Inhalation rate (InhR)	M³/day	7.6	12.8	12.8	12.8	Qi et al., 2014
Particle emission factor (PEF)	M³/kg	1.36×10⁻⁹	1.36×10⁻⁹	1.36×10⁻⁹	1.36×10⁻⁹	USEPA, 2011
Skin to skin adherence factor (AF)	Mg/cm²-d	0.2	0.65	0.65	0.07	Wang et al., 2018; Qi et al., 2014
Dermal absorption factor ABS	Unitless	0.13	0.13	0.13	0.13	USEPA, 2011
Definition | Units | Children | Young adults | Middle age | Elderly | References
--- | --- | --- | --- | --- | --- | ---
Absorption factor for GIT water | Unitless | 1 | 1 | 1 | 1 | Qi et al., 2014
Carcinogenic slope factor (CSF) for ingestion, inhalation, and skin absorption | Mg/l/day | 7.3, 3.8, and 25 | 7.3, 3.8, and 25 | 7.3, 3.8, and 25 | Singh & Agarwal, 2018

References

Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. *Egyptian Journal of Petroleum*, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

Abderrahmane, B., Naima, B., Tarek, M., & Abdelghani, M. (2021). Influence of highway traffic on contamination of roadside soil with heavy metals. *Civil Engineering Journal*, 7(8), 1459–1471. E-ISSN: 2476–3055; ISSN: 2676–6957

Achten, C., & Hofmann, T. (2009). Native polycyclic aromatic hydrocarbons (PAH) in coals – A hardly recognized source of environmental contamination. *Science of the Total Environment*, 407(8), 2461–2473. https://doi.org/10.1016/j.scitotenv.2008.12.008

Adekunle, A. S., Oyekunle, J. A. O., Ojo, O. S., Maxakato, N. W., Olutona, G. O., & Obisesan, O. R. (2017). Determination of polycyclic aromatic hydrocarbon levels in Ife north local government area of Osun State, Nigeria. *Toxicology Reports*, 4, 39–48. https://doi.org/10.1016/j.toxrep.2016.10.002

Adetunde, O. T., Mills, G. A., Oluseyi, T. O., Oyeyiola, A. O., Olayinka, K. O., & Alo, B. I. (2018). Polycyclic aromatic hydrocarbon in vegetables grown on contaminated soils in a Sub Saharan tropical environment–Lagos, Nigeria. *Polycyclic Aromatic Compounds*. https://doi.org/10.1080/10406638.2018.1517807

Akinrinade, O. E., Stubbings, W., Abou-EIwaft Abdallah, M., Ayeyujo, O., Alani, R., & Harrad, S. (2020). Status of brominated flame retardants, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons in air and indoor dust in AFRICA: A review. *Emerging Contaminants*, 6(June 1998), 405–420. https://doi.org/10.1016/j.ecoun.2020.11.005

Anyanwu, I. N., Sikoki, F. D., & Semple, K. T. (2020). Quantitative assessment data of PAHs and N PAHs in core sediments from the Niger Delta. *Nigeria. Data in Brief*, 33, 106484. https://doi.org/10.1016/j.dib.2020.106484

Björkman, S. (2006). (2006) Prediction of cytochrome P450-mediated hepatic drug clearance in neonates, infants and children: How accurate are available scaling methods? *Clinical Pharmacy*, 45(1), 1–11. https://doi.org/10.2165/00003088-200645010-00001

Brändli, R. C., Bucheli, T. D., Kupper, T., Mayer, J., Stadelmann, F. X., & Tarradellas, J. (2007). Fate of PCBs, PAHs and their source characteristic ratios during composting and digestion of source-separated organic waste in full-scale plants. *Environmental Pollution*, 148(2), 520–528. https://doi.org/10.1016/j.envpol.2006.11.021

Canadian Council of Ministers of the Environment (CCME). (2010). Canadian soil quality guidelines (carcinogenic and other polycyclic aromatic hydrocarbons (PAHs) (revised). In *Environmental and Human Health Effects Scientific Criteria Document*.

Chandra, I., Linthoingamb, N., Li, J., & Zhang, G. (2018). Science of the total environment polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: Implication on source apportionment and toxicological effect. *Science of the Total Environment*, 616–617, 223–235. https://doi.org/10.1016/j.scitotenv.2017.10.313

Daniel, U. I., Utuh, I. A., & Nwaichi, E. O. (2020). Profile of polycyclic aromatic hydrocarbons in soil environment around selected auto-technicians’ workshop in Obio-Akpor, Rivers State Nigeria. *Journal of Environmental Protection*, 11(05), 399.

Edokpayi, J. N., Odiyo, J. O., Popoola, O. E., & Msagati, T. A. M. (2016). Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District, South Africa. *International Journal of Environmental Research and Public Health*, 8, 135. https://doi.org/10.3390/ijerph13040387

Emoyan, O. O., Onocha, E. O., & Tesi, G. O. (2020). Concentration assessment and source evaluation of 16 priority polycyclic aromatic hydrocarbons in soils from selected vehicle-parks in southern Nigeria. *Scientific African*, 7, e00296. https://doi.org/10.1016/j.sciaf.2020.e00296

Enell, A., Reichenberg, F., Ewald, G., & Warfvinge, P. (2005). Desorption kinetics studies on PAH contaminated soil under varying temperatures. *Chemosphere*, 6(10), 1529–1538.

Falcó, G., Domingo, J. L., Llobet, J. M., Teixidó, A., Casas, C., & Müller, L. (2003). Polycyclic aromatic hydrocarbons in foods: Human Exposure through the Diet in Catalonia. *Spain. Journal of Food Protection*, 66(12), 2325–2331. https://doi.org/10.4315/0362-028X-66.12.2325

Farrington, J. W. (2020). Need to update human health risk assessment protocols for polycyclic aromatic hydrocarbons in seafood after oil spills. *Marine Pollution Bulletin*. https://doi.org/10.1016/j.marpolbul.2019.110744

Feng, B., Li, L., Xu, H., Wang, T., Wu, R., Chen, J., Zhang, Y., Liu, S., Ho, S. S. H., Cao, J., & Huang, W. (2019). PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. *Journal of Environmental Sciences*, 77, 11–19. https://doi.org/10.1016/j.jes.2017.12.025

Ferguson, A., Solo-Gabriele, H., & Mena, K. (2020). Assessment for oil spill chemicals: Current knowledge, data
gaps, and uncertainties addressing human physical health risk. *Marine Pollution Bulletin, 150*, 110746. https://doi.org/10.1016/J.MARPOLBUL.2019.110746

Gerhardt, K. E., Huang, X. D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. *Plant Science, 176*(1), 20–30.

Hindersmann, B., & Achten, C. (2018). Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs, BPCA and alkylated PAHs. *Environmental Pollution, 242*, 1217–1225.

Inam, E., Ibanga, F., & Essien, J. (2016). Bioaccumulation and cancer risk of polycyclic aromatic hydrocarbons in leafy vegetables grown in soils within automobile repair complex and environ in Uyo, Nigeria. *Environmental Monitoring and Assessment, 188*(12), 1–9. https://doi.org/10.1007/S10661-016-5695-3/TABLES/6

Jiang, Y. F., Wang, X. T., Wang, F., Jia, Y., Wu, M. H., Sheng, G. Y., & Fu, J. M. (2009). Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai. *China. Chemosphere, 75*(8), 1112–1118.

Keith, L. H. (2015). The source of U.S. EPA’s sixteen PAH priority pollutants. *Polycyclic Aromatic Compounds, 35*(2–4). https://doi.org/10.1080/10400663.2014.892868

Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons(PAHs) and their human health effects. *Environment International, 60*, 71–80. https://doi.org/10.1016/j.envint.2013.07.019

Kumar, S. N., Verma, P., Bastia, B., & Jain, A. K. (2014). Health risk assessment of polycyclic aromatic hydrocarbons: A review. *Jakraya Journal of Pathology and Toxicology, 1*(1), 16–30. https://doi.org/10.1016/j.jptj.2013.07.019

Liu, M., Feng, J., Hu, P., Tan, L., Zhang, X., & Sun, J. (2016). Spatial-temporal distributions, sources of polycyclic aromatic hydrocarbons (PAHs) in surface water and suspended particulate matter from the upper reach of Huaihe River, China. *Ecological Engineering, 95*, 143–151.

Ma, Y., & Harrad, S. (2015). Spatiotemporal analysis and human exposure assessment on polycyclic aromatic hydrocarbons in indoor air, settled house dust, and diet: A review. *Environment International, 84*, 7–16. https://doi.org/10.1016/j.envint.2015.07.006

Maliszewska-Kordybach, B. (1996). Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. *Applied Geochemistry, 11*(1–2), 121–127.

Mboera, L. E. G., Akipede, G. O., Banerjee, A., Cuevas, L. E., Czypionka, T., Khan, M., & Urassa, M. (2020). Mitigating lockdown challenges in response to COVID-19 in Sub-Saharan Africa. *International Journal of Infectious Diseases, 96*, 308–310. https://doi.org/10.1016/j.ijid.2020.05.018

Mihankhah, T., Saeedi, M., & Karbassi, A. (2020). Contamination and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban dust from different land uses in the most populated city of Iran. *Ecotoxicology and Environmental Safety, 187*(August 2019), 109838. https://doi.org/10.1016/j.ecoenv.2019.109838

Miller, R. L., Garfinkel, R., Lendor, C., Hoepner, L., Li, Z., Romanoff, L., & Whyatt, R. M. (2010). Polycyclic aromatic hydrocarbon metabolite levels and pediatric allergy and asthma in an inner-city cohort. *Pediatric Allergy and Immunology, 21*(2p1), 260–267. https://doi.org/10.1111/j.1399-3038.2009.00980.x.Polycyclic

Munyeza, C. F., Rohwer, E. R., & Forbes, P. B. C. (2019). A review of monitoring of airborne polycyclic aromatic hydrocarbons: An African perspective. *Trends in Environmental Analytical Chemistry, 24*, e00070. https://doi.org/10.1016/j.teac.2019.e00070

Ni, W., Yang, W., Jin, L., Liu, J., Li, Z., Wang, B., & Ren, A. (2019). Levels of polycyclic aromatic hydrocarbons in umbilical cord and risk of orofacial clefts. *Science of the Total Environment, 678*, 123–132. https://doi.org/10.1016/j.scitotenv.2019.04.040

Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). *Regulatory Toxicology and Pharmacology, 16*(3), 290–300. https://doi.org/10.1016/0273-2300(92)90009-X

Nwaichi, E. O., & Ntorgbo, S. A. (2016). Assessment of PAHs levels in some fish and seafood from different coastal waters in the Niger Delta. *Toxicology Reports, 3*, 167–172. https://doi.org/10.1016/j.toxrep.2016.01.005

Oiozebau, E., Tendler, B., Codling, G., Kelly, E., Giesy, J. P., Jones, P. D. (2016). Potential health risks posed by polycyclic aromatic hydrocarbons in muscle tissues of fishes from the Athabasca and Slave Rivers, Canada. *Environmental Geochemistry and Health, 10*. https://doi.org/10.1007/s10653-016-9815-3

Oliveira, M., Slezakova, K., Delerue-Matos, C., Pereira, M. C., & Moraes, S. (2019). Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. *Environment International*. https://doi.org/10.1016/j.envint.2018.12.052

Onyedikachi, U. B., Belonwu, C. D., Wegwu, M. O., Ejiofor, E., & Awah, M. F. (2019). Sources and cancer risk exposure of polycyclic aromatic hydrocarbons in soils from industrial areas in Southeastern, Nigeria. *Journal of Chemical Health Risks, 9*(3), 203–216.

Orisakwe, O. E. (2021). Crude oil and public health issues in Niger Delta, Nigeria: Much ado about the inevitable. *Environmental Research, 194*(January), 110725. https://doi.org/10.1016/j.envres.2021.110725

Osu, C., & Asuoha, A. N. (2010). Polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) contamination of soils in automobile mechanic workshops in port-harcourt Metropolis, Rivers State, Nigeria. *Journal of American Science, 6*(9), 242–246. http://www.americanscience.org

Oyewola, O. M., Ajide, O. O., Osunbunmi, I. S., & Oyewola, Y. V. (2022). Examination of students’ academic performance in selected mechanical engineering courses prior-to-and-during COVID-19 era. *Emerging Science Journal, 6*, 247–261.

Pah rudin, P., Liu, L. W., Li, S. Y., & Supryadi, D. I. (2021). Addressing the Impact of COVID-19 and non-pharmaceutical for perception tourism using frequentist PLS-SEMs. *Emerging Science Journal, 5*, 197–214.
Pal, D., & Hogland, W. (2022). An overview and assessment of the existing technological options for management and resource recovery from beach wrack and dredged sediments: An environmental and economic perspective. *Journal of Environmental Management*, 302, 113971.

Parra, Y. J., Oloyede, O. O., Pereira, G. M., de Almeida Lima, P. H. A., da Silva Caumo, S. E., Morenikeji, O. A., & de Castro Vasconcellos, P. (2020). Polycyclic aromatic hydrocarbons in soils and sediments in Southwest Nigeria. *Environmental Pollution*, 259, 113732.

Peng, C., Chen, W. P., Liao, X. L., Wang, M. E., Ouyang, Z. Y., Jiao, W. T., et al. (2011). Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. *Environmental Pollution*, 159(3), 802–808. https://doi.org/10.1016/j.envpol.2010.11.003

Perera, F. P., Li, Z., Whyatt, R., Hoepner, L., Wang, S., Camann, D., & Rauh, V. (2009). Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. *Pediatrics*, 124(2), 195–202. https://doi.org/10.1542/peds.2008-3506

Qi, H., Li, W. L., Zhu, N. Z., Ma, W. L., Liu, L. Y., Zhang, F., & Li, Y. F. (2014). Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China. *Science of Total Environment*, 491-492, 100–107. https://doi.org/10.1016/j.scitotenv.2014.01.119

Qu, Y., Gong, Y., Ma, J., Wei, H., Liu, Q., Liu, L., & Chen, Y. (2020). Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in. *Environmental Pollution*, 260, 114016. https://doi.org/10.1016/j.envpol.2020.114016

Santonicola, S., De Felice, A., Cobelli, L., Passariello, N., Peluso, A., Murru, N., & Mercogliano, R. (2017). Comparative study on the occurrence of polycyclic aromatic hydrocarbons in breast milk and infant formula and risk assessment. *Chemosphere*, 175, 383–390. https://doi.org/10.1016/j.chemosphere.2017.02.084

Singh, L., & Agarwal, T. (2018). Polycyclic aromatic hydrocarbons in diet: Concern for public health. *Trends in Food Science and Technology*, 79, 160–170. https://doi.org/10.1016/j.tifs.2018.07.017

Sojini, O. S. S., Wang, J. Z., Sonibare, O. O., & Zeng, E. Y. (2010). Polycyclic aromatic hydrocarbons in sediments and soils from oil exploration areas of the Niger Delta. *Nigeria. Journal of Hazardous Materials*, 174(1–3), 641–647. https://doi.org/10.1016/j.jhazmat.2009.09.099

Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Lahijanzadeh, A. R., Jaafarzadeh, N., & Kermani, M. (2015). Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. *Science of the Total Environment*, 505, 712–723. https://doi.org/10.1016/j.scitotenv.2014.09.097

Sun, C., Qu, L., Wu, L., Wu, X., Sun, R., & Li, Y. (2020). Advances in analysis of nitrated polycyclic aromatic hydrocarbons in various matrices. *Trends in Analytical Chemistry*, 115878. 1016/j.trac.2020.115878org/10.

Tarfadar, A., & Sinha, A. (2018). Public health risk assessment with bioaccessibility considerations for soil PAHs at oil refinery vicinity areas in India. *Science of the Total Environment*. https://doi.org/10.1016/j.scitotenv.2017.10

Tobiszewski, M., & Namiešnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission-sources. *Environmental Pollution*, 162,110–119. https://doi.org/10.1016/j.envpol.2011.10.025

Ugochukwu, U. C., Ochonogor, A., Jidere, C. M., Agu, C., Nkloagu, F., Ewoh, J., & Okwu Delunzu, V. U. (2018). Exposure risks to polycyclic aromatic hydrocarbons by humans and livestock (cattle) due to hydrocarbon spill from petroleum products in Niger-delta wetland. *Environmental International*, 115(2), 38–47. https://doi.org/10.1016/j.envint.2018.03.010

United States. Hazardous Site Control Division, United States. Environmental Protection Agency. Office of Solid Waste, & Emergency Response. (1996). Soil screening guidance: User’s guide. *United States, Environmental Protection Agency, Office of Solid Waste and Emergency Response*. https://doi.org/10.1016/j.apgeochem.2014.09.013

United States Environmental Protection Agency. (2011). Toxicics release inventory. Available from: http://www.epa.gov/tri/index/htm

USEPA. (2014). Priority pollutant list.gov. Retrieved December 22, 2018, from https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf

Vane, C. H., Kim, A. W., Beriro, D. J., Cave, M. R., Knights, K., Moss-hayes, V., & Nathanail, P. C. (2014). Applied geochemistry polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. 51, 303–314.

Wang, C., Yang, Z., Zhang, Y., Zhang, Z., & Cai, Z. (2018). PAHs and heavy metals in the surrounding soil of a cement plant Co-Processing hazardous waste. *Chemosphere*, 210, 247–256. https://doi.org/10.1016/j.chemosphere.2018.06.177

Wang, W., Huang, M. J., Kang, Y., Wang, H. S., Leung, A. O., Cheung, K. C., & Wong, M. H. (2014). USEPA. (2014). Priority pollutant list.gov. Retrieved December 22, 2018, from https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf

Wirnkor, V. A., Ngozi, V. E., Ajero, C. M., Charity, L. K., Ngozi, O. S., Ebere, E. C., & Emeka, A. C. (2019). Bio-monitoring of concentrations of polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. *Science of the Total Environment*, 409(21), 4519–4527. https://doi.org/10.1016/j.scitotenv.2011.07.030

Wu, H., Sun, B., & Li, J. (2019). Polycyclic aromatic hydrocarbons in sediments / soils of the rapidly urbanized lower reaches of the River. *International Journal of Environmental Research and Public Health Article*, 16, 2302.

Yost, E. E., Galizia, A., Kapraun, D. F., Persad, A. S., Vulimiri, S. V., Angrish, M., & Druwe, I. L. (2021). Health effects of naphthalene exposure: A systematic evidence map and analysis of potential considerations for dose–response evaluation. *Environmental Health Perspectives*, 129(7), 076002.

Zabbey, N., Sam, K., & Onyebuchi, A. T. (2017). Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges. *Science of the Total Environment*, 586, 952–965. https://doi.org/10.1016/j.scitotenv.2017.02.075
Zhang, Y., Peng, C., Guo, Z., Xiao, X., & Xiao, R. (2019). Polycyclic aromatic hydrocarbons in urban soils of China: Distribution, influencing factors, health risk and regression prediction. *Environmental Pollution*, 254, 112930. https://doi.org/10.1016/j.envpol.2019.07.098

Zhu, Y., Duan, X., Qin, N., Lv, J., Wu, G., & Wei, F. (2019). Science of the total environment health risk from dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in a typical high cancer incidence area in southwest China. *Science of the Total Environment*, 649, 731–738. https://doi.org/10.1016/j.scitotenv.2018.08.157

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.