Observation of an Excited Ω^- Baryon

J. Yelton,10 I. Adachi,19,15 J. K. Ahn,39 H. Aihara,85 S. Al Said,79,37 D. M. Asner,3 H. Atmacan,75 T. Aushev,54 R. Ayad,79 V. Babu,80 I. Badhrees,19,15 A. Bakich,78 V. Bansal,66 C. Belenov,14 M. Berger,26 V. Bhardwaj,46,44 D. Epifanov,4,54 J. E. Fast,66 B. G. Fulsom,66 R. Garg,67 V. Gaur,88 N. Gabyshev,4,64 A. Garmash,4,64 M. Gelb,35 A. Giri,25 P. Goldenzweig,35 D. Greenwald,82 E. Guido,32 J. Haba,19,15 K. Hayasaka,63 H. Hayashii,57 S. Hirose,55 W.-S. Hou,60 K. Inami,55 G. Inguglia,8 A. Ishikawa,83 R. Itoh,19,15 M. Iwasaki,7 P. Kondrashov,35 D. Kordyukov,49,81 A. Sokolov,30 E. Solov’eva,44,54 M. Starič,34 J. F. Strube,66 M. Sumihama,13 T. Sumiyoshi,87 K. Suzuki,76 M. Takizawa,73,20,71 E. Widmann,76 E. Won,39 H. Ye,8 C. Z. Yuan,28 Y. Yusa,63 S. Zakharov,44,54 Z. P. Zhang,72 V. Zhilich,4,64 V. Zhukova,44,53 and V. Zhulanov4,64

(Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191
3Brookhaven National Laboratory, Upton, New York 11973
4Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
5Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6Chonnam National University, Kwangju 660-701
7University of Cincinnati, Cincinnati, Ohio 45221
8Deutsches Elektronen–Synchronotron, 22607 Hamburg
9Duke University, Durham, North Carolina 27708
10Florida University, Gainesville, Florida 32611
11Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
12Justus-Liebig-Universität Gießen, 35392 Gießen
13Gifu University, Gifu 501-1193
14II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
15SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
16Gyeongsang National University, Chinju 660-701
17Hanyang University, Seoul 133-791
18University of Hawaii, Honolulu, Hawaii 96822
19High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
20J-PARC, Tsukuba 305-0801
21IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
22Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
23Indian Institute of Technology Bhuvaneshwar, Satya Nagar 751007
24Indian Institute of Technology Guwahati, Assam 781039
25Indian Institute of Technology Hyderabad, Telanγana 502285

0031-9007/18/121(5)/052003(7) 052003-1 Published by the American Physical Society
26 Indian Institute of Technology Madras, Chennai 600036
27 Indiana University, Bloomington, Indiana 47408
28 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
29 Institute of High Energy Physics, Vienna 1050
30 Institute for High Energy Physics, Protvino 142281
31 INFN—Sezione di Napoli, 80126 Napoli
32 INFN—Sezione di Torino, 10125 Torino
33 Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
34 J. Stefan Institute, 1000 Ljubljana
35 Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
36 King Abdullah City for Science and Technology, Riyadh 11442
37 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589
38 Korea Institute of Science and Technology Information, Daejeon 305-806
39 Korea University, Seoul 136-713
40 Kyoto University, Kyoto 606-8502
41 Kyungpook National University, Daegu 702-701
42 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay
43 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
44 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
45 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
46 Ludwig Maximilians University, 80539 Munich
47 Luther College, Decorah, Iowa 52101
48 University of Maribor, 2000 Maribor
49 Max-Planck-Institut für Physik, 80805 München
50 School of Physics, University of Melbourne, Victoria 3010
51 University of Mississippi, University, Mississippi 38677
52 University of Miyazaki, Miyazaki 889-2192
53 Moscow Physical Engineering Institute, Moscow 115409
54 Moscow Institute of Physics and Technology, Moscow Region 141700
55 Graduate School of Science, Nagoya University, Nagoya 464-8602
56 Università di Napoli Federico II, 80055 Napoli
57 Nara Women’s University, Nara 630-8506
58 National Central University, Chung-li 32054
59 National United University, Miaoli 36003
60 Department of Physics, National Taiwan University, Taipei 10617
61 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
62 Nippon Dental University, Niigata 951-8580
63 Niigata University, Niigata 950-2181
64 Novosibirsk State University, Novosibirsk 630090
65 Osaka City University, Osaka 558-8585
66 Pacific Northwest National Laboratory, Richland, Washington 99352
67 Panjab University, Chandigarh 160014
68 Peking University, Beijing 100871
69 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
70 Panjab Agricultural University, Ludhiana 141004
71 Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
72 University of Science and Technology of China, Hefei 230026
73 Showa Pharmaceutical University, Tokyo 194-8543
74 Soongsil University, Seoul 156-743
75 University of South Carolina, Columbia, South Carolina 29208
76 Stefan Meyer Institute for Subatomic Physics, Vienna 1090
77 Sungkyunkwan University, Suwon 440-746
78 School of Physics, University of Sydney, New South Wales 2006
79 Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
80 Tata Institute of Fundamental Research, Mumbai 400005
81 Excellence Cluster Universe, Technische Universität München, 85748 Garching
82 Department of Physics, Technische Universität München, 85748 Garching
83 Department of Physics, Tohoku University, Sendai 980-8578
84 Earthquake Research Institute, University of Tokyo, Tokyo 113-0032
85 Department of Physics, University of Tokyo, Tokyo 113-0033

052003-2
Using data recorded with the Belle detector, we observe a new excited hyperon, an Ω^- candidate decaying into $\Xi^0 K^-$ and $\Xi^- K^0_S$ with a mass of 2024.4 ± 0.7 (stat) ± 0.6 (syst) MeV/c^2 and a width of $\Gamma = 6.4^{+2.5}_{-1.6}$ (stat) ± 1.6 (syst) MeV. The Ω^- is seen primarily in $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ decays.

DOI: 10.1103/PhysRevLett.121.052003

The Ω^- comprises three strange quarks. Its excited states have proved difficult to find. The Particle Data Group (PDG) [1] lists only one of them, the $\Omega(2250)$, in its summary tables, and it has a mass almost 600 MeV/c^2 higher than that of the ground state. In addition, the particle listings detail two other states for which the evidence of existence is considered to be “only fair,” and they are at even higher masses. The gap in the spectrum is surprising, as there are negative-parity orbital excitations of many other baryons approximately 300 MeV/c^2 above their respective ground states, and the quark model [2–5], Skyrme model [6], and lattice gauge theory [7] all predict a $J^P = \frac{1}{2}^-$ and $J^P = \frac{3}{2}^-$ pair of excited Ω^- states with masses in the 2000 MeV/c^2 region.

A particular feature of Ω^- baryons are their zero isospin which means that $\Omega^--\Omega^0\pi^0$ decays are highly suppressed, and this restricts the possible decays of excited states, with the largest expected decay mode for low-lying states being ΞK. Such decays are analogous to the $\Omega^0 \rightarrow \Xi^0 K^-$ decays recently discovered by the LHCb Collaboration [8] and confirmed soon after by the Belle Collaboration [9].

In this Letter, we present the results of a search for Ω^- using a data sample of e^+e^- annihilations, corresponding to an integrated luminosity of 980 fb$^{-1}$, recorded by the Belle detector [10] operating at the KEKB asymmetric-energy e^+e^- collider [11]. The analysis concentrates on data taken with the accelerator energy tuned for the production of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ resonances, with integrated luminosities of 5.7, 24.9, and 2.9 fb$^{-1}$, respectively. The decays of these narrow resonances proceed via gluons, and it has long been known that they contain an enhanced baryon fraction compared with continuum $e^+e^- \rightarrow q\bar{q}$ events [12–14].

We search for excited Ω^- decays into $\Xi^0 K^-$ and $\Xi^- K^0_S$ [15], with subsequent decays into $\Xi^0 \rightarrow \Lambda\pi^-$, $\Xi^- \rightarrow \Lambda\pi^0$, $K^0 \rightarrow \pi^+\pi^-$, $\Lambda \rightarrow p\pi^-$, and $\pi^0 \rightarrow \gamma\gamma$. An excited Ω^- would be expected to decay strongly, and, because of isospin symmetry, with almost equal branching fractions, into the above two decay modes, and they would likely dominate the decays of any Ω^- with a mass between the ΞK and $\Xi(1530)\bar{K}$ thresholds.

The Belle detector was a large solid-angle spectrometer comprising six subdetectors: the silicon vertex detector (SVD), the 50-layer central drift chamber (CDC), the aerogel Cherenkov counter (ACC), the time-of-flight scintillation counter (TOF), the electromagnetic calorimeter (ECL), divided into the barrel ECL in the central region and the forward and backward end caps at smaller angles with respect to the beam axis), and the K^0_L and muon detector. A superconducting solenoid produces a 1.5 T magnetic field throughout the first five of these subdetectors. The detector is described in more detail in Ref. [10]. Two inner detector configurations were used. The first comprised a 2.0 cm radius beam pipe and a 3-layer SVD and the second a 1.5 cm radius beam pipe and a 4-layer SVD and a small-cell inner CDC.

Charged particles π^\pm, K^\pm, and p are selected using the information from the tracking (SVD, CDC) and charged-hadron identification (CDC, ACC, TOF) systems combined into a likelihood $\mathcal{L}(h_1: h_2) = \mathcal{L}_{h_1}/(\mathcal{L}_{h_1} + \mathcal{L}_{h_2})$, where h_1 and h_2 are p, K, and π as appropriate. Kaon candidates are defined as those with $\mathcal{L}(K:p) > 0.9$ and $\mathcal{L}(K:K) > 0.9$, which is approximately 83% efficient. For protons, the requirements are $\mathcal{L}(p:K) > 0.2$ and $\mathcal{L}(p:p) > 0.2$, while for charged pions $\mathcal{L}(\pi:p) > 0.2$ and $\mathcal{L}(\pi:K) > 0.2$; these requirements are approximately 99% efficient.

The π^0 candidates are reconstructed from two neutral clusters detected in the ECL, each consistent with being due to a photon and having an energy greater than 30 MeV in the laboratory frame (for those in the end cap calorimeter, the energy threshold is increased to 50 MeV).

Candidate $\Lambda(K^0_L)$ decays are made from $p\pi^-(\pi^+\pi^-)$ pairs with a production vertex significantly separated from

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
the average interaction point (IP) and a reconstructed invariant mass within 3.5 (5.0) MeV/c² of the peak values.

Each Ξ⁻ candidate is reconstructed by combining a Λ candidate with a π⁻ candidate. The vertex formed from these two is required to be at least 0.35 cm from the IP, to be a shorter distance from the IP than the Λ decay vertex, and to signify a positive Ξ⁻ flight distance. The Ξ⁰ → Λπ⁰ reconstruction is complicated by the fact that the π⁰ has negligible vertex position information. Combinations of Λ and π⁰ candidates are made, and then, assuming the IP to be the production point of the Ξ⁰, the sum of the Λ and π⁰ momenta is taken as the momentum vector of the Ξ⁰ candidate. The intersection of this trajectory with the reconstructed Λ trajectory is then found, and this position is taken as the decay location of the Ξ⁰ hyperon. The π⁰ is then remade from the two photons using this location as its point of origin. The reconstructed invariant mass of the π⁰ candidate must be within 10.8 MeV/c² of the nominal mass (approximately 94% efficient). To reduce the large combinatorial background, the momentum of the π⁰ candidate is required to be greater than 200 MeV/c. Combinations are retained if they have a decay location of the Ξ⁰ indicating a positive Ξ⁰ path length of greater than 2 cm but less than the distance between the Λ decay vertex and the IP. The refitting of the π⁰ at the reconstructed Ξ⁰ decay vertex improves the Ξ⁰ mass resolution by around 15%.

The resultant invariant mass plots for the Ξ⁰ and Ξ⁻ candidates are shown in Fig. 1. The red vertical arrows indicate the limits of the reconstructed invariant masses of the candidates retained for further analysis, which are ±5.0 and ±3.5 MeV/c² around the central values of the Ξ⁰ and Ξ⁻ mass peaks, respectively, which are each approximately 95% efficient. For the Ξ⁰, the value of the mass peak is 1.3155 GeV/c² and is higher than the PDG [1] value of 1.31486 ± 0.00020 GeV/c². This difference is later used in the estimate of the systematic uncertainty of the Ω⁻ resonance mass measurement.

The Ξ⁰ and Ξ⁻ candidates are kinematically constrained to their nominal masses [1] and then combined with K⁻ and K⁰ candidates, respectively. The two particle combinations are kinematically constrained to come from a common vertex at the IP, and the χ² of this is required to be consistent with the daughters being produced by a common parent. For the Ξ⁰K⁻ case, if there is more than one candidate with the same Λ and K⁻ but a different π⁰, the one with the higher Λ momentum is kept and others discarded to avoid double counting. This occurs around 3% of the time.

Figure 2 shows the Ξ⁰K⁻ and Ξ⁻K⁰ invariant mass distributions in data taken at the Ψ(1S), Ψ(2S), and Ψ(3S) resonance energies. Excesses are present in both distributions at around 2.01 GeV/c². It should be noted that real Ξ⁰K⁻ combinations have three units of strangeness and are therefore highly suppressed. In contrast, Ξ⁻K⁰ combinations may have one unit of strangeness and thus have a larger combinatorial background.

A simultaneous fit applied to the two distributions is shown in Fig. 2 and uses fitting functions where the signal functions are Voigtian functions (Breit-Wigners convolved with a Gaussian resolution functions) and the background functions second-order Chebyshev polynomials. The masses and intrinsic widths of the two Voigtian functions are kept the same. The resolution functions are obtained from Monte Carlo (MC) events, generated using EvtGen [16] with the Belle detector response simulated using the GEANT3 [17] framework, and parametrized as Gaussian distributions with widths of 2.27 MeV/c² for Ξ⁰K⁻ and 1.77 MeV/c² for Ξ⁻K⁰. The fit is made to the binned invariant mass distributions with a large number of small bins, using the maximum-likelihood method. A convenient test of the goodness-of-fit is the χ² per degree of freedom (χ²/d.o.f.) for the distribution plotted in 2.5 MeV/c² bins. The signal yields, mass, intrinsic width, and χ²/d.o.f. resulting from this fit are listed in Table I. We calculate the statistical significance of the signal by excluding the peaks from the fit, finding the change in the log-likelihood (Δ|ln(L)|) and converting this to a p-value taking into account the change in d.o.f. This is then converted to an
effectivene of standard deviations \(n_\sigma \), and for this simultaneous fit, we find \(n_\sigma = 8.3 \).

Table I also lists results obtained from fitting to each of the two distributions separately. The signals in the \(\Xi^0 K^- \) and \(\Xi^- K_S^0 \) mass distributions have significances of \(n_\sigma = 6.9 \) and \(n_\sigma = 4.4 \), respectively, and have statistically compatible masses and widths.

We have performed a series of checks to confirm the stability of the signal peak. Reasonable changes to the selection criteria of the daughter particles produce changes in the signal yield consistent with statistics. It would be surprising if an \(\Omega^- \) were not also produced in continuum \(e^+ e^- \rightarrow q\bar{q} \) events. In Fig. 3, we present mass distributions as in Fig. 2 but for the remainder of the Belle data, which comprise a total of 946 fb\(^{-1} \) taken mostly at the \(\Upsilon(4S) \) energy but also in the continuum below and above this energy as well as at the \(\Upsilon(5S) \). For the fits shown in Fig. 3, we use second-order Chebyshev background functions together with signal functions with mass and width fixed to the values found in the \(\Upsilon(1S, 2S, 3S) \) data. Both distributions show excesses in the signal region, and their statistical significances are listed in Table I.

Taking into account the detection efficiency of the two modes, we use the results of the simultaneous fit to the \(\Upsilon(1S, 2S, 3S) \) data to calculate the branching fraction ratio \(\mathcal{R} = [B(\Omega^- \rightarrow \Xi^0 K^-)/B(\Omega^- \rightarrow \Xi^- K_S^0)] = 1.2 \pm 0.3, \) where statistical uncertainties dominate. With perfect isospin symmetry, this ratio would be 1, but the isospin mass splitting of the \(\Xi \) and \(K \) doublets will lead to an increase of up to approximately 15% depending on the spin associated with decay. The obtained value of \(\mathcal{R} \) is consistent with the expectation.

The significance of the observation is largely unaffected by systematic uncertainties associated with the limited knowledge of the resolution and momentum scale of the detector. However, the use of different background functions can change the significance values. If we replace the background functions by third-order Chebyshev polynomials, the significance of the signal in the simultaneous fit is reduced to \(n_\sigma = 7.2 \). We take this value as the signal significance including systematic uncertainties. We also investigated the possibility of a further signal at around a mass of 1.95 GeV/c\(^2 \) where the data show an excess of events. This excess is not statistically significant \((n_\sigma < 3 \), and its inclusion in the fit makes a negligible change to the significance of the signal at 2.012 GeV/c\(^2 \).

The dominant systematic uncertainty of the mass measurement is due to the masses of the \(\Xi^0 \) and \(\Xi^- \) hyperons, which enter almost directly into the calculation of the \(\Omega^- \) mass. Conservatively, we take the difference between the reconstructed \(\Xi^0 \) mass and the PDG value 0.6 MeV/c\(^2 \). The Belle charged-particle momentum scale is very well understood, and the uncertainty in the \(\Omega^- \) mass measurement due to this is much smaller than 0.6 MeV/c\(^2 \). Similarly, changing the fit function to a relativistic Breit-Wigner has negligible effect on the mass value.

MC simulation is known to reproduce the resolution of mass peaks within 10% over a large number of different systems. The resultant systematic uncertainty in \(\Gamma \) from this source is \(\pm 0.37 \) MeV. Changing the background shapes to third-order Chebyshev polynomials changes the measured value of \(\Gamma \) by 1.6 MeV, and this is the dominant contributor to the systematic uncertainty of the width.

The theoretical models \([2–7]\) predict a \(J^P = \frac{1}{2}^- \) and \(J^P = \frac{3}{2}^- \) pair of excited \(\Omega^- \) states in this mass region but with large differences in their mass predictions. Our value

\[R = 1.2 \pm 0.3, \]

\[n_\sigma = 8.3. \]

\[\Xi^0 K^- \]

\[\Xi^- K^0_S \]

\[1.2 \pm 0.3. \]

\[8.3. \]

\[1.2 \pm 0.3. \]

\[8.3. \]

\[\Xi^0 K^- \]

\[\Xi^- K^0_S \]

\[1.2 \pm 0.3. \]

\[8.3. \]

\[\Xi^0 K^- \]

\[\Xi^- K^0_S \]

\[1.2 \pm 0.3. \]

\[8.3. \]
FIG. 3. The (a) $\Xi^0 K^-$, (b) $\Xi^0 \pi$ invariant mass distributions in data taken at energies other than $\Upsilon(1S), \Upsilon(2S)$, and $\Upsilon(3S)$ resonance energies. The curves show the result of independent fits to the two distributions with masses and widths fixed to those found by the fit shown in Fig. 2.

is, in general, closer to the those for the $J^P = \frac{3}{2}^-$ state. We also note that an $\Omega^-\pi^-$ with $J^P = \frac{1}{2}^-$ is restricted to decay to ΞK via a d wave, whereas a state with $J^P = \frac{1}{2}^-$ could decay via an s wave. Thus, the rather narrow width observed implies that the $\frac{3}{2}^-$ identification is more likely.

In summary, we have reported the observation of a new resonance, which we identify as an excited Ω^- baryon, found in the decay modes $\Omega^-\pi^-\to \Xi^0 K^-$ and $\Omega^-\pi^-\to \Xi^- K^0_S$. The measured mass of the resonance is $[2012.4\pm 0.7 \text{ (stat)}\pm 0.6 \text{ (syst)}] \text{ MeV}/c^2$, and its width $\Gamma = [6.4^{+2.4}_{-2.0} \text{ (stat)}\pm 1.6 \text{ (syst)}] \text{ MeV}$. This new resonance has a mass $340 \text{ MeV}/c^2$ higher than the ground state, and thus helps fill the large gap in the Ω^- spectrum between the ground state and the already observed excited states. It is found primarily in the decay of the narrow resonances $\Upsilon(1S), \Upsilon(2S)$, and $\Upsilon(3S)$.

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for valuable computing and Science Information NETwork 5 (SINET5) network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council; Austrian Science Fund under Grant No. P 26794-N20; the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, and No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); Fudan University Grants No. JIH5913023, No. IDH5913011/003, No. JIH5913024, and No. IDH5913011/002; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Instituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2014R1A2A2A01005286, No. 2015R1A2A2A01003280, No. 2015H1A2A1033649, No. 2016R1D1A1B01010135, No. 2016K1A3A7A90005 603, and No. 2016R1D1A1B02012900; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project and the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Grant of the Russian Federation Government, Agreement No. 14.W03.31.0026, the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Basque Government (Grant No. IT956-16) and Ministry of Economy and Competitiveness (MINECO) (Juan de la Cierva), Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U. S. Department of Energy and the National Science Foundation.

[1] K. Olive et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016), and 2017 update.
[2] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
[3] R. N. Faustov and V. O. Galkin, Phys. Rev. D 92, 054005 (2015).
[4] U. Loring, B. Metsch, and H. Petry, Eur. Phys. J. A 10, 447 (2001).
[5] M. Pervin and W. Roberts, Phys. Rev. C 77, 025202 (2008).
[6] Y. Oh, Phys. Rev. D 75, 074002 (2007).
[7] G. Engel, C. B. Lang, D. Mohler, and A. Schäfer (BGR Collaboration), Phys. Rev. D 87, 074504 (2013).
[8] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118, 182001 (2017).
[9] J. Yelton et al. (Belle Collaboration), Phys. Rev. D 97, 051102 (2018).
[10] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); see also detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 4D011 (2012).
[11] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013), and references therein.
[12] S. Behrends et al. (CLEO Collaboration), Phys. Rev. D 31, 2161 (1985).

[13] H. Albrecht et al. (ARGUS Collaboration.), Z. Phys. C 39, 177 (1989).

[14] R. Briere et al. (CLEO Collaboration), Phys. Rev. D 76, 012005 (2007).

[15] Throughout this Letter, the inclusion of the charge-conjugate decay mode is implied unless otherwise stated.

[16] D. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[17] R. Brun et al. GEANT3.21, CERN Report DD/EE/84-1, 1984.