Comparison of Shear-bond Strength of Composite Restoration to Intact Enamel of Primary Incisors Using Different Conditioners and Adhesive Systems

Ali Nozari1, Ali Heidari2, Ebrahim Azimi2, Azade Rafiee3

1 Department of Pediatric Dentistry, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
2 Student Research Committee, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
3 Department of Pediatric Dentistry, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Background: Esthetic demands among patients have led to the introduction of tooth-colored restorative materials. Composite resins bond to enamel applying acid etch technique. However, clinicians have tendency towards using adhesive systems with a simplified application procedure. The aim of the present study is to compare the shear-bond strength of composite restoration to intact enamel of primary incisors using different conditioners and adhesive systems. Materials and Methods: This experimental study was conducted at Shiraz University of Medical Sciences. 53 teeth were classified into 5 groups based on their bonding procedure. After composite build-up, specimens were placed in a universal testing machine at a cross-head speed of 1mm/min. Inter-group comparison of shear-bond strength to enamel was analyzed employing One-way-ANOVA and Tukey post-hoc test. Results: The highest shear-bond strength was related to the second (37% phosphoric acid etching + Margin Bond adhesive system), and the fifth group (37% phosphoric acid etch + Tokuyama Bond Force adhesive system). The lowest bond strength was related to the third group (Tokuyama Bond Force adhesive system alone) (P value = 0.00). Conclusion: Based on the results of the present study, surface pre-treatment with 37% PA accompanied by self-etching adhesive system, increased shear-bond strength in vitro. This method can be further studied in clinical settings. [GMJ. 2015;4(1):14-20]

Key Words: Shear-bond Strength; Enamel; Primary Incisor; Conditioner; Adhesive System

Introduction

Esthetic demands among patients have led to the introduction of tooth-colored restorative materials. Composite resins bond to enamel applying acid etch technique. However, dentin adhesion is not as predictable as enamel bond [1]. Adhesion mechanism is based on the penetration of resin molecules into enamel and dentin. Tooth composite adhesion strength is an important factor in clinical durability of composite restoration [2]. Proper enamel adhesion has been achieved by means of phosphoric acid (PA) etching.
Shear-bond Strength of Different Bonding Systems to Primary Incisors Enamel

Nozari A. studied investigated the effect of microten

Gardner et al. compared enamel etch patterns with simplified application procedure [18]. Studies have shown reliable and sufficient bond strength to dentin [15]. However, the efficacy of enamel bond strength is questionable [16]. Total etch adhesion systems are still considered as a golden standard among bonding systems [17]. However, clinicians have tendency towards using adhesive systems with simplified application procedure [18]. Gardner et al. compared enamel etch patterns achieved on orthodontic bonding area treated with PA and nitric acid (NA) at different etch times. Findings suggested that the use of PA provides a better-quality etch than NA for all three application times [19]. Lopes et al. compared shear-bond strength to enamel of 5 self-etching primer/adhesive systems, one total etch, and one-bottle adhesive system. In their study, they reported Clearfil Single-bond as a self-etching system, and Single-bond as a total etch system as having strongest bond strength to enamel [20]. Nagayassu et al. investigated the micro-shear-bond strength of different adhesives to human dental enamel. Only Adper Prompt L. Pop (a seventh generation adhesive system) revealed statistically lower bond strength compared to other adhesives [21]. Mine et al. studied bonding effectiveness of two contemporary self-etch adhesives to enamel and dentin, suggesting that Adper Easy bond, and Adper Scotch bond (new self-etch adhesives) bond strength to enamel and dentin were generally lower than that of control adhesive (Clearfil SE bond) [22]. Moura et al. studied the bond strength to enamel using self-etching adhesive system with different acids. They reported that the highest bond strength values for etch-and-rinse (total etch) adhesive system [23]. Brachket et al. investigated microten-sile dentin and enamel bond strength of recent self-etching resins. They concluded that adhesives with self-etching primers were as effective in bonding as positive control (total etch products) [24]. Miguez et al. suggested acid etching should be prior to the application of self-etching primer in order to produce higher bond strength to enamel rather than self-etching primer alone [25]. Poggio et al. also suggested surface pretreatment with PA to increase enamel bond strength of self-etch adhesives [26]. Nazari et al. also recommended pre-etching intact enamel surface prior to the application of adhesive instead of grinding to create a significantly rougher surface with higher bond strength [27]. Sabatini et al. suggested that the pre-etching step with PA adversely affected the dentin bond strength of self-etch adhesives, while providing improvement on enamel bond strength only for FL-Bond II (a two-step self-etch adhesive) [28]. Puetzfeld et al. investigated the effect of phosphoric acid and a self-etching adhesive on both short and long-term bond strengths.
of a light-curing sealant to unground primary and permanent enamels. They reported neither significant difference in bond strengths between phosphoric acid-etch and the self-etching adhesive groups, nor between 1-week and 1-year results (P>.05). However, the bond strengths to primary enamel were lower than those of permanent enamel [29]. Following controversies reviewed above, adhesive system and the type of the conditioner and lack of sufficient studies on primary dentition enamel/dentin bond strengths, researchers intended to compare the shear-bond strength of composite restoration to intact enamel of primary incisors using different conditioners, and adhesive systems.

Methods and Materials

This experimental study was conducted at Shiraz University of Medical Sciences. 53 extracted primary incisors were collected. Crowns were cleaned of debris and soft tissue. Inclusion criteria for the present study were considered as intact non-caries enamel with no crack or fracture caused by extraction. Teeth were kept in 1% chloramines solution at room temperature during storage period. Teeth were, then, embedded in chemically-cure acrylic resin (Marlic Medical Industrial, Iran) cylinders. A specially fabricated cylindrical Teflon mold was filled with acrylic resin and allowed to cure thus encasing each specimen except for the labial surface. Each tooth was oriented with the labial surface parallel to shearing force. Before applying adhesive system, the labial surface of each specimen was cleaned with fluoride-free pumice in a rubber-polishing cup with a low speed handpiece for 10 seconds. Enamel surface was then rinsed with water to remove any pumice or debris, and then was dried with an oil-free air stream. Teeth were classified into 5 groups based on the bonding procedure (see table 1 for detailed information on materials). In the first group (n=10), etching was performed using 2.5% NA for 30 sec. and the Margin bond adhesive system. In the second group (n=11), etching was performed using 35% PA for 30 sec. and the Margin bond adhesive system. In the third group (n=11), enamel was treated with Tokuyama Bond Force (Tokuyama, Japan) using applicator with light pressure. In the fourth group (n=10), etching was applied using 10% maleic acid for 30 sec. and the Margin Bond system. In the fifth group (n=11), enamel surface was etched with phosphoric acid prior to the application of Tokuyama Bond Force adhesive system.

Table 1. Adhesive Systems Tested in Present Study

Material	Component	Type	General procedure
Tokuyama Bond Force	Phosphoric acid monomer, Bis-GMA\(^*\), triethylene glycol dimethacrylate, HEMA\(^*\), comphorquinone, alcohol, purified water	7th generation of adhesive bonding	Apply the adhesive using applicator – rub the adhesive using applicator under light pressure – light air for 5 seconds - blow the surface with strong air for 5 seconds – light – cured for 10
		5th generation of adhesive bonding	Apply a drop of MARGIN BOND on etched enamel, massage with a brush for 20s, blow with oil free compressed air, cure with halogen light for 20s
Margin Bond	Bis-GMA\(^*\), Bis-EMA\(^*\), TEGDMA\(^*\)		

*Bis-GMA = Bisphenol A Diglycidymethacrylate
*HEMA = Dihydroxymethylmethacrylate
*Bis-EMA = Bisphenol A Diethoxy methacrylate
*TEGDMA = Triethylenglycoldimethacrylate
After that, 1mm thick microhybrid composite resin (Denfil, Korea) was carefully placed over the enamel surface by packing composite into cylindrically-shaped materials with internal diameters of 2 mm and a height of 2 mm. Excess composite was carefully removed using an explorer. Composite was cured for 40 sec. using a Quartz-Tungsten-Halogen (QTH) lamp (ColtoLux75, Coltene Whaldent Inc, Switzerland) according to manufacturer’s instruction. After composite build-up, Teflon mold was removed and all specimens were kept in distilled water at 37°C for 24 hours. Then, specimens were placed in a universal testing machine (Zwick, Germany) at a crosshead speed of 1mm/min. The amount of weight needed to detach the composite was recorded and the bond strength was measured using the following formula:

\[
\text{Bond strength} = \frac{\text{force needed to debond the composite (kg) \times 9.8}}{\text{total surface area}}.
\]

Statistical Analysis

Results were interpreted with standard deviation. Inter-group comparison of shear-bond strength to enamel was analyzed employing One-way-ANOVA and Tukey post hoc test. Data were statistically analyzed using SPSS (Version 17, Chicago, IL, USA).

Results

This experimental study was conducted to compare shear-bond strength of composite restoration to intact enamel of primary incisors using different conditioners, and adhesive systems. The mean ± standard deviation of shear-bond strength of each group is illustrated in table 2. Result of ANOVA test showed a significant difference among experiment groups (p value = 0.00). Tukey post hoc test was employed to recognize significant differences among groups. Results of Tukey post hoc test are illustrated in table 3.

Based on the results shown in table 2, the highest shear bond strength is related to the second and fifth groups and the lowest bond strength is related to the third group (P = 0.00).

Discussion

The highest shear bond strength is related to the second and fifth groups, and the lowest bond strength is related to the third group. High bond strength of the second group could be explained according to the results of Gardner *et al.* [19] study. Their findings suggested that use of PA provides a better-quality etching pattern than NA. Good-quality etches will result in longer resin tags which can then lead to higher bond strength to enamel structure. Lower bond strength of the fourth group in comparison with the second group could be explained according to Hermsen *et al.* investigation. Their study represented that PA removed more enamel than maleic acid significantly. Therefore, better bond strength is achieved using PA than maleic acid [30]. Lower bond strength of the third group in comparison with the second group could be explained according to Van Landuyt et al [13]. The bonding used in the present study had mild Ph. level (Ph> 2). Therefore, less enamel structure was removed and shear-bond strength to enamel was weak.

On the other hand, based on Devarasa *et al.*, the length of resin tags penetrating into enamel structure is shorter for self-etch adhesive systems than 37% PA. Consequently, weaker bond strength to enamel is expected for self-etch adhesive systems than 37% PA [31]. High bond strength of the fifth group is due

Group	Number	Mean	Standard Deviation	P value
Group 1	10	9.7468	0.51296	
Group 2	11	11.9619	0.69324	
Group 3	11	2.3603	0.28893	
Group 4	10	7.1417	0.64236	p<0.001
Group 5	11	11.9050	0.55281	
to application of PA prior to self-etching adhesive system to create longer resin tags in enamel structure. According to Nazari et al. [27], Meola et al. [32], and Shinchi [33] high bond strength of the fifth group is due to low Ph. level of PA (Ph< 1). This creates a more retentive enamel surface which, in turn, increases the shear-bond strength to enamel. It is hoped the present study leads to the establishment of a better-quality etching pattern with more reliable bonding strength. However, the present study faced some limitations; this research was conducted in vitro, while oral cavity is an unstable environment. Different chemicals such as acids and different thermal cycles in oral cavity can adversely affect bond strength to enamel. It would also be ideal to check more self-etching adhesives with different acidities and under circumstances more similar to oral cavity condition. Therefore, further studies are suggested in order to check the shear-bond strength of different adhesive systems in clinical settings.

Conclusion

The fifth generation adhesive systems with PA conditioners are still considered as a golden standard. However, clinicians have tendency towards using adhesive systems with simply applicable procedures[18]. Based on the results of the present study, surface pretreatment with 37% PA accompanied by a self-etching adhesive system, increases shear-bond strength in vitro. This method could further be studied in clinical settings.

Acknowledgment

Authors would like to thank the Vice-chancellor of Shiraz University of Medical Sciences for supporting this research. They would also like to thank Dr. M. Vossoughi for statistical analyses. This article was derived from Ali Heidari and Ebrahim Azimis’ thesis.

Table 3. Comparison of Inter-Group Mean Differences of Shear-bond Strengths

Dependent Variable	(I)GROUP	(J)GROUP	Mean Difference	P value
Shear Bond Strength (MPa)	2	1	-2.21511	0.031
	3	1	7.38651	0.00
	4	1	2.60510	0.09
	5	1	-2.15822	0.00
	1	2	2.21511	0.031
	3	2	9.60162	0.00
	4	2	4.82021	0.00
	5	2	0.5689	1.00
	1	3	-7.38651	0.00
	2	3	-9.60162	0.00
	4	3	-4.78141	0.00
	5	3	-9.54473	0.00
	1	4	-2.60510	0.09
	2	4	-4.82021	0.00
	3	4	4.78141	0.00
	5	4	-4.76332	0.00
	1	5	2/15822	0.038
	2	5	-0.05689	1.00
	3	5	9.54473	0.00
	4	5	4.76332	0.00
References

1. Nikhil V, Singh V, Chaudhry S. Comparative evaluation of bond strength of three contemporary self-etch adhesives: An ex vivo study. Contemp Clin Dent. 2011;2(2):94-7.
2. BUONOCORE MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res. 1955;34(6):849-53.
3. Torii Y, Ito K, Nishitani Y, Ishikawa K, Suzuki K. Effect of phosphoric acid etching prior to self-etching primer application on adhesion of resin composite to enamel and dentin. Am J Dent. 2002;15(5):305-8.
4. Tay FR, Gwinnett JA, Wei SH. Micromorphological spectrum of acid-conditioned dentin following the application of a water-based adhesive. Dent Mater. 1998;14(5):329-38.
5. Ferrari M, Goracci G, García-Godoy F. Bonding mechanism of three “one-bottle” systems to conditioned and unconditioned enamel and dentin. Am J Dent. 1997;10(5):224-30.
6. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, et al. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent. 2003;28(3):215-35.
7. Söderholm KJ, Guelmann M, Bimstein E. Shear-bond strength of one 4th and two 7th generation bonding agents when used by operators with different bonding experience. J Adhes Dent. 2005;7(1):57-64.
8. Tay FR, Pashley DH. Aggressiveness of contemporary self-etching systems. I. Depth of penetration beyond dentin smear layers. Dent Mater. 2001;17(4):296-308.
9. Moszner N, Salz U, Zimmermann J. Chemical aspects of self-etching enamel-dentin adhesives: a systematic review. Dent Mater. 2005;21(10):895-910.
10. Pashley DH, Tay FR. Aggressiveness of contemporary self-etching adhesives. Part II: etching effects on unground enamel. Dent Mater. 2001;17(5):430-44.
11. Swift EJ, Perdigao J, Heymann HO. Bonding to enamel and dentin: a brief history and state of the art. 1995. Quintessence Int. 1995;26(2):95-110.
12. Tay FR, Pashley DH. Water treeing--a potential mechanism for degradation of dentin adhesives. Am J Dent. 2003;16(1):6-12.
13. Van Landuyt KL, Kanumilli P, De Munck J, Peumans M, Lambrechts P, Van Meerbeek B. Bond strength of a mild self-etch adhesive with and without prior acid-etching. J Dent. 2006;34(1):77-85.
14. Uekusa S, Yamaguchi K, Miyazaki M, Tsubota K, Kurokawa H, Hosoya Y. Bonding efficacy of single-step self-etch systems to sound primary and permanent tooth dentin. Oper Dent. 2006;31(5):569-76.
15. Yazici AR, Celik C, Ozgunaaltay G, Dayangac B. Bond strength of different adhesive systems to dental hard tissues. Oper Dent. 2007;32(2):166-72.
16. Yazici AR, Yildirim Z, Ertan A, Ozgunaaltay G, Dayangac B, Antonom SA, et al. Bond strength of one-step self-etch adhesives and their predecessors to ground versus unground enamel. Eur J Dent. 2012;6(3):280-6.
17. Peumans M, De Munck J, Van Landuyt KL, Poitevin A, Lambrechts P, Van Meerbeek B. A 13-year clinical evaluation of two three-step etch-and-rinse adhesives in non-carious class-V lesions. Clin Oral Investig. 2012;16(1):129-37.
18. Walter R, Swift EJ, Boushell LW, Braswell K. Enamel and dentin bond strengths of a new self-etch adhesive system. J Esthet Restor Dent. 2011;23(6):390-6.
19. Gardner A, Hobson R. Variations in acid-etch patterns with different acids and etch times. Am J Orthod Dentofacial Orthop. 2001;120(1):64-7.
20. Lopes GC, Marson FC, Vieira LC, de Caldeira AM, Baratieri LN. Composite bond strength to enamel with self-etching primers. Oper Dent. 2004;29(4):424-9.
21. Nagayassu MP, Shintome LK, Arana-Chavez VE, Fava M. Micro-shear-bond strength of different adhesives to human dental enamel. J Clin Pediatr Dent. 2011;35(3):301-4.
22. Mine A, De Munck J, Cardoso MV, Van Landuyt KL, Poitevin A, Kuboki T, et al. Bonding effectiveness of two contemporary self-etch adhesives to enamel and dentin. J...
23. Moura SK, Reis A, Pelizzaro A, Dal-Bianco K, Loguercio AD, Arana-Chavez VE, et al. Bond strength and morphology of enamel using self-etching adhesive systems with different acidities. J Appl Oral Sci. 2009;17(4):315-25.

24. Brackett WW, Tay FR, Looney SW, Ito S, Haisch LD, Pashley DH. Microtensile dentin and enamel bond strengths of recent self-etching resins. Oper Dent. 2008;33(1):89-95.

25. Miguez PA, Castro PS, Nunes MF, Walter R, Pereira PN. Effect of acid-etching on the enamel bond of two self-etching systems. J Adhes Dent. 2003;5(2):107-12.

26. Poggio C, Scribante A, Della Zoppa F, Colombo M, Beltrami R, Chiesa M. Shear-bond strength of one-step self-etch adhesives to enamel: effect of acid pretreatment. Dent Traumatol. 2013.

27. Nazari A, Shimada Y, Sadr A, Tagami J. Pre-etching vs. grinding in promotion of adhesion to intact enamel using self-etch adhesives. Dent Mater J. 2012;31(3):394-400.

28. Sabatini C. Effect of phosphoric acid etching on the shear-bond strength of two self-etch adhesives. J Appl Oral Sci. 2013;21(1):56-62.

29. Peutzfeldt A, Nielsen LA. Bond strength of a sealant to primary and permanent enamel: phosphoric acid versus self-etching adhesive. Pediatr Dent. 2004;26(3):240-4.

30. Hermsen RJ, Vrijhoef MM. Loss of enamel due to etching with phosphoric or maleic acid. Dent Mater. 1993;9(5):332-6.