Spotted fever group rickettsiae (SFGR) detection in ticks following reported human case of Japanese spotted fever in Niigata Prefecture, Japan

Reiko Arai1,5*, Megumi Sato2,3*, Miwako Kato3, Junko Aoki1, Akiko Nishida1, Kaori Watanabe1, Chika Hirokawa1, Sumire Ikeda2, Kozo Watanabe3, Maria Angenica F. Regilme3, Marcello Otake Sato4,5 & Tsutomu Tamura1

Japanese spotted fever, a tick-borne disease caused by *Rickettsia japonica*, was firstly described in southwestern Japan. There was a suspicion of *Rickettsia japonica* infected ticks reaching the non-endemic Niigata Prefecture after a confirmed case of Japanese spotted fever in July 2014. Therefore, from 2015 to 2017, 38 sites were surveyed and rickettsial pathogens were investigated in ticks from north to south of Niigata Prefecture including Sado island. A total of 3336 ticks were collected and identified revealing ticks of three genera and ten species: *Dermacentor taiwanensis*, *Haemaphysalis flava*, *Haemaphysalis hystricis*, *Haemaphysalis longicornis*, *Haemaphysalis megaspinosaur*, *Ixodes columnae*, *Ixodes monospinosus*, *Ixodes nipponensis*, *Ixodes ovatus*, and *Ixodes persulcatus*. Investigation of rickettsial DNA showed no ticks infected by *R. japonica*. However, three species of spotted fever group rickettsiae (SFGR) were found in ticks, *R. asiatica*, *R. helvetica*, and *R. monacensis*, confirming Niigata Prefecture as a new endemic area to SFGR. These results highlight the need for public awareness of the occurrence of this tick-borne disease, which necessitates the establishment of public health initiatives to mitigate its spread.

Japanese spotted fever is a tick-borne disease caused by *Rickettsia japonica*; the disease was first described in Tokushima Prefecture in southwestern Japan and named by Mahara (1989; 1985)1. Clinically, the major complaints are fever after 2 to 8 days of tick bite and rash. In Japan, approximately 250 cases are reported mainly in the western area of Japan, and 16 deaths cases were reported for ten years from 2007 to 20162. With a wide spectrum of host ticks, *R. japonica* has been detected in eight species of ticks within three genera (*Haemaphysalis, Dermacentor* and *Ixodes*)3. Moreover, in recently described cases of Spotted Fever Group Rickettsiae (SFGR), the disease is caused by species other than *R. japonica*4,5.

The first cases of Japanese spotted fever in the northern part of the coastal area of the Sea of Japan were reported in 2014, in Fukui and Niigata Prefectures6,7. After an epidemiological investigation on the confirmed case of *Rickettsia japonica* occurred in Niigata Prefecture, the most probable place of contact with ticks was near the patient's house in an urban area despite no ticks were collected for identification. The last tick survey in Niigata Prefecture occurred in the '50s8, and it is unknown if there is a change in the endemic ticks’ species in the area. Therefore, there is a concern about the species and the habitat of the ticks harboring *R. japonica* in Niigata Prefecture which could spread the disease. This study was conducted to detect the tick prevalence and SFGR prevalence by species of ticks in Niigata Prefecture after the occurrence of a Japanese spotted fever human case.

1Niigata Prefectural Institute of Public Health and Environmental Sciences, 314-1 Sowa, Nishi-ku, Niigata 950-2144, Japan. 2Graduate School of Health Sciences, Niigata University, 2-746 Asahimachi-dori, Chuo-ku, Niigata 951-8518, Japan. 3Department of Civil and Environmental Engineering, Faculty of Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime 790-8577, Japan. 4Department of Tropical Medicine and Parasitology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan. 5These authors contributed equally: Reiko Arai, Megumi Sato, and Marcello Otake Sato. *Email: arai.reiko@pref.niigata.lg.jp; satomeg@clg.niigata-u.ac.jp
Methods

Area of the study and collection of ticks. The ticks were collected by flagging method in 38 sites from north to south of Niigata Prefecture including Sado island from June 2015 to November 2017, completing a total of 77 field surveys (Table 1, Fig. 1). Collection sites where humans were likely to be exposed to ticks such as parks, forests with hiking courses, and camping areas were chosen for sampling.

Ticks identification. Collected ticks were identified morphologically under stereoscope based on the key by Yamaguti and separated by the species, sex and growth stages, collection day and the collection sites. The ticks were separated in micro tubes and stored at −80 °C until further processing. The identification of ticks with insufficient morphologic characteristics was confirmed by DNA sequencing of the mitochondrial 16S rDNA gene, as previously described (data not shown).

DNA extraction. The DNA extraction and purification were done individually for ticks in the adult stage. For ticks in larvae or nymph stages, the DNA was extracted individually or from a pool of 2 to 5 individuals. Ticks were thawed and homogenized using a cell crasher (FastPrep-24, M. P. Biomedicals) in tubes with six steel

No	Site	Elevation (m)
1	Mt. Nihonkoku	179–300
2	Mt. Shinbodake	560
3	Kawabe	20
4	Ohmineyama Park	80
5	Iijimino Park	20
6	Shiratori Park	190–220
7	Sekizawa Forest Park	130
8	Tainaida Campground	130
9	Sugiwara Park	130
10	Akasakiyama Forest Park	330
11	Kirinza Park	100
12	Aganogawa Line Natural Park	130
13	Mt. Kakuwa	140–250
14	Yoshigahira Natural Park	410
15	Gejougawa Dam Park	40
16	Happoudai ikos-no-mori	840
17	Umamichi Forest Park	400
18	Masugatayama Natural Park	550
19	Tsukiko Park	420
20	Mt. Hakkai	1200–1300
21	Ohsaki Dam Park	500
22	Okura Forest Park	540
23	Sakado Castle Ruins	280–320
24	Ikiawa Campground	600
25	Yuzawa Kogen	840–950
26	Niroku Park	580
27	Bijinbayashi Forest	310
28	Satogake Sports Field	20
29	Kujiranami	5
30	Akata Castle Ruins	50
31	Tanishama	230
32	Kuwadori Forest park	360–450
33	Takanomine Plateau Forest Park	230
34	Mt. Fudo	650
35	Takananigaike Campground	700
36	Mt. Myojo	430
37	Sugisek Pond	720
38	Mt. Dendai	700–930

Table 1. Tick collection sites and elevation in Niigata Prefecture. The Northern (Kaetsu), Central (Chuetsu) and Southern (Joetsu) areas of Niigata Prefecture corresponds to the collection sites 1 to 13, 14 to 30, and 31 to 36, respectively. Sado Island area corresponds to the collection sites 37 and 38.
beads of 3 mm diameter (Metal Bead Lysing Matrix, M. P. Biomedicals). DNA was purified using High Pure PCR Template Preparation Kit (Roche) according to the manufacturer’s instruction and stored at -80 °C until further processing.

PCR and sequencing analyses. To detect *Rickettsia* species, nested-PCR for the genus-common 17-kDa antigen gene (17-kDa), citrate synthase gene (*gltA*), spotted fever group (SFG)-specific outer membrane protein A gene (*rOmpA*) and outer membrane protein B gene (*rOmpB*) were targeted. Firstly, the nested PCR targeting 17-kDa protein, and positive samples were tested with another nested PCR targeting *gltA*; samples that were positive with both PCR assays were concluded as SFGR positive. Additionally, two other nested PCR assays targeting *rOmpA* and *rOmpB* were conducted, and the positive samples for four nested PCR were sequenced, and the *Rickettsia* spp. were identified.

The PCR primers used in this study are summarized in Table 29–13. PCR amplicons were purified using AMPure XP (Beckman Coulter Co., Japan) and sequenced directly using a Big Dye Terminator Cycle Sequence Kit (Applied Biosystems, USA) and Applied Biosystems 3500 Genetic Analyzer. The analyses of the obtained sequences were carried out using MEGA 5.214. The obtained sequences from this study and from DDBJ/EMBL/GenBank databases were aligned by Clustal W 2.0. Neighbor-joining phylogenetic tree construction and bootstrap analysis (1000 replicates) were performed according to the Kimura 2-parameter distances method.

Ethics approval and consent to participate. No ethical permissions were necessary for this study as the parasites were collected from the environment of public places.

Results

Tick species identification. A total of 3336 tick specimens were collected from the 38 sites in Niigata Prefecture (Fig. 1). 3308 ticks were identified to ten species under three genera, while 28 ticks could only be identified as *Haemaphysalis* spp. (Table 3). The highest frequency was obtained for *Haemaphysalis longicornis*, collected from 33 of 38 sites, followed by *Haemaphysalis flavas* from 24 sites, and *Ixodes ovatus* collected from 31 sites. These three species comprised 96.2% of all the collected ticks in this study. Other tick species collected were *Ixodes nipponensis* collected from 14 sites, *Dermacentor taiwanensis* from seven sites, *Ixodes monspinosus* from nine sites, *Ixodes persulcatus* from five sites, *Haemaphysalis megaspinosa* from three sites, *Ixodes columnae* from two sites, and *Haemaphysalis lyssicata* from one site (No. 13).
SFGR prevalence in collected ticks. From 1373 DNA samples of a total of 38 collection sites, 68 samples from 20 sites were positive for SFGR. The tick species presenting SFGR were: *H. flava*, *H. longicornis*, *I. monospinosus*, and *I. nipponensis*. Overall, the *Rickettsia* detection rate for all tested samples was 5.4%. SFGR positivity by species of ticks were 0.7% in *H. flava*, 8.4% in *I. ovatus*, 33.3% in *I. monospinosus* and 43.8% in *I. nipponensis* (Table 3). For *H. longicornis*, the positives samples in SFGR were from nymph and larval stage, but not from adult stage ticks.

SFGR species identification and geographical prevalence. All the 1373 PCR amplicons of SFGR 17-kDa (410 bp) and *gltA* (342 bp) were sequenced, and none of them presented 100% identity with *R. japonica*. PCR targeting and sequencing of *rOmpA* (540 bp) and *rOmpB* (381 bp) were conducted with the DNA samples of adult ticks, then the *Rickettsia* spp. were identified using sequence data of 17-kDa, *gltA*, *rOmpA* and *rOmpB* (Fig. 2, Table 4).

A total of 25 out of 29 (89.6%) SFGR positive samples, including sample T16-159 (GenBank accession no. LC461065, LC461071 and LC461079) detected in *I. ovatus* presented 100% identity with *Rickettsia asiatica* IO-1 (AB114798, AF394901 and DQ113910) in 17-kDa, *gltA* and *rOmpB* sequences. None of the 29 samples amplified *rOmpA* in PCR. For sample T17-369 (LC461066, LC461073 and LC461081) and T17-163, *gltA* and *rOmpB* sequences yielded 100% identity with *R. asiatica* IO-1 and 99.8% identity for the 17-kDa. For the sample T15-117 (LC4610461060, LC461067 and LC461076) and T15-118 (LC461061, LC461068 and LC461077), 17 kDa and *rOmpB* amplicons were 100% identical to *R. asiatica* IO-1 whereas the sequences of *gltA* presented 99.4% and 98.8% identity for T15-117 and T15-118, respectively.

Table 2. Primer pairs used for SFGR detection and typing.

Primer Nucleotide sequence (5′-3′)	Target gene (amplicon size)	References
1st Rr17k.1p (forward)	TTTCAGAAATTCTCAAAGACCAT	9
1st Rr17k.539n (reverse)	TCAATCACAACCTTGCCAT	
2nd Rr17k.90p (forward)	GCCTTGGCAACTTCTAGTT	
2nd Rr17k.539n (reverse)	TCAATCACAACCTTGCCAT	
1st RpCs.870p (forward)	GACCATGAGGCAATGCTTCT	8,10
1st RpCs.1258n (reverse)	ATTCGAAAAGTGACACCTG	11,12
1st RR 190–70 (forward)	ATTCGAAAAGTGACACCTG	11,12
2nd RR 190–70 (reverse)	ATTCGAAAAGTGACACCTG	11,12
2nd 190-FN1 (forward)	AAGGCAATACCAAGGGCTC	
2nd 190-RN1 (reverse)	TGACAGTTTATATACCTC	
1st rompB OF (forward)	GTTAAATACGGCATCTGTAAT	13
1st rompB OR (reverse)	GTTAAATACGGCATCTGTAAT	13
2nd rompB SFG IF (forward)	GTTAAATACGGCATCTGTAAT	13
2nd rompB SFG/TG IR (reverse)	GTTAAATACGGCATCTGTAAT	13

Table 3. Prevalence of rickettsial genes detected from ticks by PCR. *Shown by no. pool (2 to 5 ticks/sample).*

Tick species	No. positive/tested	Adult	Nympha	Larva	Total
	Female Male Subtotal	%	%	%	
D. taiwanensis	0/14 0/15 0/29 0.0	0/1	–	0/30	
H. flava	0/145 2/161 2/306 0.7	9/202	1/31	12/539	
H. hystricis	0/2 0/2 0.0	0/1	–	0/3	
H. longicornis	0/40 0/10 0/50 0.0	6/232	3/104	9/386	
H. megaspinosa	0/2 0/1 0.0	–	–	0/3	
Haemaphysalis spp.	0/1 0/1 0/2 0.0	0/1	0/11	0/14	
I. columnae	–	–	–	0/2	
I. monospinosus	3/11 1/1 4/12 33.3	0/1	0/1	0/4	
I. nipponensis	2/4 5/12 7/16 43.8	7/10	0/2	14/28	
I. ovatus	17/177 12/167 29/344 8.4	0/2	–	29/346	
I. persulcatus	0/2 0/5 0/7 0.0	0/1	–	0/8	
Total	22/398 20/373 42/771 5.4	22/451	4/151	68/1373	
I. ovatus was collected in 31 sites, though *R. asiatica* was detected from *I. ovatus* collected in 11 of these sites (Table 5, Fig. 3A). *I. ovatus* harboring *R. asiatica* were collected in the central and western part of the prefecture and Sado Island, but not from northeast and mountainous area of the prefectural border with Gunma (collection sites Nos. 20–22, 24–27). Overall, *R. asiatica* was detected in 8.4% of the *I. ovatus* adult samples; however, the infection rate varied by collection site such as in Sado Island (site No. 37 and 38 in total) with an infection rate of 50%, Mt. Kakuda (Site No. 13) with 36%, and in Satogaike Sports Field (Site No. 28) with 26%.

I. monospinosus was present in eight sites. From three sites (site No. 6, 9 and 10) in the northeast region of the prefecture, 4 out of 5 *I. monospinosus* presented *Rickettsia helvetica*. In the other five sites with *I. monospinosus*, *R. helvetica* was not found (Table 5, Fig. 3B). The four SFGR positive samples including sample T16-160 (LC461064, LC461072 and LC461080) from *I. monospinosus* adult ticks had 100% identity with *Rickettsia helvetica* IP382 (AB114817) in 17 kDa, *gltA* and *rOmpB* amplicons. None of the four samples amplified *rOmpA* in PCR.

From seven SFGR positive samples, including sample T16-54 (LC461062, LC461069, LC461074 and LC461078), which were detected in *I. nipponensis* adult ticks had 100% identity with *Rickettsia monacensis* IrR Munich (LN794217) in 17 kDa and *rOmpB* amplicons. The amplicons of 17 kDa showed 100% identity

Figure 2. Phylogenetic analysis for identification of species of *Rickettsiae* based on 450 nucleotides of 17 kDa gene (A), 382 nucleotides of *gltA* gene (B), 540 nucleotides of *rOmpA* gene (C) and 426 nucleotides of *rOmpB* gene (D). Sequence were aligned by using MEGA5 software (https://www.megasoftware.net). Neighbor-joining phylogenetic tree construction and bootstrap analysis were performed according to the Kimura 2-parameter distances method. Bold-face font indicate positive samples detected from ticks in this study (shown only representative sample no. from among detected SFGR).
with *Rickettsia tamurae* AT-1 (AF394896); however, the similarity of the *rOmpB* amplicons was 97.4% with *R. tamurae* AT-1 (AF394896). For *gltA* amplicons, the similarities were 99.7% with *R. monacensis* IrR Munich (LN794217) and 99.4% with *R. tamurae* AT-1 (AF394896). For *rOmpA* amplicons, the similarities were 99.3% with *R. monacensis* spp., the presence of *gltA*, *rOmpA*, *rOmpB*, and *rOmpA* regions; therefore, the seven SFGR samples including T16-54 detected in *I. nipponensis* adult ticks were concluded as *R. monacensis*. In *Ixodes* spp., the presence of *R. monacensis* was high as 43.8% in *I. nipponensis*, in ticks collected in 6 out of 9 sites (Table 5, Fig. 3C).

Two SFGR samples, including sample T16-116 (LC461063, LC461070, and LC461075), detected in *H. flava* adult presented the same sequences in 17 kDa, *gltA*, and *rOmpA* regions. Both of them did not amplify in *rOmpB* PCR. The similarity in the 17 kDa region was 99.8% with *Rickettsia* sp. Hf332 (AB114804) and *Rickettsia* sp.

Sample no	Collection site	Species	Stage/sex	Amplification of gene	Species of Rickettsiae	Sequence of gene
T16-159	No. 9	*I. ovatus*	Adult/M	No	Yes	Same as T16-159
T17-79	No. 13	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-81	No. 13	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-82	No. 13	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-702	No. 13	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-80	No. 13	*I. ovatus*	Adult/M	No	Yes	Same as T16-159
T17-418	No. 16	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-421	No. 16	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-402	No. 16	*I. ovatus*	Adult/M	No	Yes	Same as T16-159
T17-411	No. 16	*I. ovatus*	Adult/M	No	Yes	Same as T16-159
T17-442	No. 17	*I. ovatus*	Adult/M	No	Yes	Same as T16-159
T17-369	No. 18	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-371	No. 18	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-111	No. 28	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-112	No. 28	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T15-117	No. 28	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T15-118	No. 28	*I. ovatus*	Adult/M	No	Yes	Same as T16-159
T17-109	No. 28	*I. ovatus*	Adult/M	No	Yes	Same as T16-159
T17-163	No. 29	*I. ovatus*	Adult/M	No	Yes	Same as T16-159
T17-212	No. 30	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-269	No. 30	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-259	No. 30	*I. ovatus*	Adult/M	No	Yes	Same as T16-159
T17-510	No. 32	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-519	No. 32	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-507	No. 32	*I. ovatus*	Adult/M	No	Yes	Same as T16-159
T17-508	No. 32	*I. ovatus*	Adult/M	No	Yes	Same as T16-159
T17-477	No. 37	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-473	No. 38	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T17-474	No. 38	*I. ovatus*	Adult/F	No	Yes	Same as T16-159
T16-174	No. 6	*I. monospinosus*	Adult/F	No	Yes	Same as T16-160
T16-160	No. 9	*I. monospinosus*	Adult/F	No	Yes	Same as T16-160
T16-145	No. 10	*I. monospinosus*	Adult/F	No	Yes	Same as T16-160
T16-146	No. 10	*I. monospinosus*	Adult/M	No	Yes	Same as T16-160
T16-186	No. 6	*I. nipponensis*	Adult/M	Yes	Yes	Same as T16-54
T16-122	No. 13	*I. nipponensis*	Adult/M	Yes	Yes	Same as T16-54
T16-228	No. 15	*I. nipponensis*	Adult/M	Yes	Yes	Same as T16-54
T17-424	No. 16	*I. nipponensis*	Adult/M	Yes	Yes	Same as T16-54
T16-54	No. 28	*I. nipponensis*	Adult/F	Yes	Yes	Same as T16-54
T17-525	No. 32	*I. nipponensis*	Adult/F	Yes	Yes	Same as T16-54
T17-524	No. 32	*I. nipponensis*	Adult/M	Yes	Yes	Same as T16-54
T16-116	No. 13	*H. flava*	Adult/M	Yes	No	Rickettsia sp.
T16-209	No. 14	*H. flava*	Adult/M	Yes	No	Same as T16-116

Table 4. Confirmed species/genus of SFGR in this study by sequencing.
Hj126 (AB114810), and for gltA, the similarities were 99.7% with Rickettsia sp. Hf332 (AB114804) and 100% with Rickettsia sp. Hj126 (AB114810). For the rOmpA gene, there were no matched sequences in GenBank.

Discussion

The last tick survey in Niigata Prefecture was done in the ’50s. In this study, we collected D. taiwanensis, H. hystricis, H. megaspinosa, I. columnae, and I. monospinosus species not observed in the previous study, showing the presence of ticks may have been influenced by the environmental change and hosts movement (Sato et al., in preparation). This new ticks/host distribution pattern could bring the pathogen near to humans, facilitating the infection by tick-borne pathogens. SFGR was detected in ticks collected in 20 of 38 sites from all the collection sites in Niigata Prefecture. In 16 of 19 sites where SFGR positive ticks were not collected, there was a low number of collected ticks (lower than 20), and it might have influenced the SFGR detection rates, as seen in the low prevalence of the SFGR in ticks. To understand the SFGR prevalence in the prefecture, continuous tick collection is needed, especially in sites where the collection number is low. SFGR positivity in adult ticks in Niigata Prefecture was 5.6%, and it is similar to the positivity rate of the neighboring prefecture, Toyama, with 3.3%.

However, when the SFGR detection rate is compared to other prefectures, such as Fukui (22.0%) and six western prefectures including Shizuoka (21.6%) and Iwate (21.6%), the SFGR positivity in Niigata Prefecture is still low. In the western part of Japan, SFGR positivity was reported to be as high as 40.5% in H. longicornis; in contrast, in Hokuriku region of Honshu (incl. Niigata, Toyama, Ishikawa, and Fukui Prefectures), SFGR positivity rates are high in I. monospinosus, with 50% in Toyama16, 43.8% in Fukui16 and 43.8% in Niigata (this study). The tick species prevalence depends on the area/region, therefore the prevalence of the SFGR, and Rickettsia spp. could also vary. Rickettsia spp. have strong host-specificity and, SFGR detected in this study confirmed this feature. Ticks and Rickettsia sp. were: R. asiatica from I. ovatus, R. helvetica from I. monospinosus, and R. monacensis from I. nipponensis.

The first report of R. asiatica was in Fukushima Prefecture in 1993, described as Rickettsia sp. IO-1 in I. ovatus with subsequent reports in other areas. Moreover, R. asiatica was detected in other tick species, such as H. flavus, H. japonica, and H. hystricis, showing a diverse ticks host preference. Regarding mammalian hosts, R. asiatica was detected in blood samples of Japanese deer (Cervus nippon); however, the pathogenicity in these hosts is unknown. SFGR detection in I. ovatus in the neighboring prefecture is varied, with rates of 0.0% in Toyama, 7.9% in Fukui, and 8.4% in Niigata (this study). Also, in this case, the positivity rates may vary according to

Table 5. Prevalence of rickettsial genes detected from adult ticks by collection sites. The Northern (Kaetsu), Central (Chuetsu) and Southern (Joetsu) areas of Niigata Prefecture corresponds to the collection sites 1 to 13, 14 to 30, and 31 to 36, respectively. Sado Island area corresponds to the collection sites 37 and 38.

| Species | Site no | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | Total |
|---------|---------|
| I. monospinosus | – | – | – | 1/2 | – | 0/2 | – | – | – | – | – | 0/1 | – | – | 0/1 | – | – | 0/1 | – | – | – | – | – | – | – | – | – | – | – | 4/12* |
| I. nipponensis | – | – | – | 1/2 | – | – | – | – | – | – | – | 1/1 | 1/1 | – | – | 0/1 | – | – | 0/1 | – | 1/2 | – | 1/2 | – | 2/4 | – | – | – | – | – | – | – | – | 7/16 |
| I. ovatus | 0/4 | 0/3 | 0/0 | 0/1 | 0/4 | 0/4 | 0/1 | 2/4 | 0/23 | 0/5 | 6/23 | 1/4 | 2/4 | 0/15 | 0/1 | 0/1 | 0/2 | 0/11 | 0/32 | 0/1 | 5/19 | 1/6 | 3/28 | 6/33 | 0/4 | 0/11 | – | – | 1/4 | 2/2 | 2/34 | 2/34 |

Figure 3. Niigata prefecture map with the sites where adult stages of Ixodes spp. were collected (Circles), and the occurrence of SFGR (filled circle: SFGR Positive sites, open circle: SFGR Negative sites). From the left, “A” corresponds to I. ovatus and Rickettsia asiatica sites; “B” corresponds to I. monospinosus and R. helvetica sites, and “C” are the I. nipponensis and R. monacensis sites. Maps created using the Geographical Survey Institute Map Vector from the Geospatial Information Authority of Japan (https://maps.gsi.go.jp/).
the number of sampling sites and sampling size. It is not clear if the *R. asiatica* positivity is influenced by the ecology of *I. ovatus*, environmental factors, or ticks’ susceptibility for pathogens. Continuous research is needed including studies on environmental change and ticks endemicity.

R. helvetica was reported in Fukui Prefecture, and it is also detected in *I. ovatus*, *I. persulcatus*, and *H. japonica*. In this study, *R. helvetica* was detected only from *I. monopinosis*, with a positivity rate of 33.3%. In Toyama Prefecture, *R. helvetica* was detected from 2 of 4 *I. monopinosis*. In this study, *R. helvetica* positive *I. monopinosis* was present only in the northeast area of Niigata Prefecture (Site No 6, 9 and 10) (Fig. 3B); however, there was a limited number of *I. monopinosis* adults (N = 12), present in 8 out of 38 collection sites. To confirm these host specificity and region preferences, further tick collection and field surveys are necessary.

There is only one report of SFRG detected from *I. nipponensis* in the Toyama prefectural area, reported as *Rickettsia* sp. In56. In this study, seven samples were positives to SFRG in *I. nipponensis* with 100% identity with *Rickettsia* sp. In56 (AB114819, AB114820) in gltA and rOMP regions. Therefore *Rickettsia* sp. In56 might be *R. monacensis*. In Europe, *R. monacensis* is indicated as a spotted fever pathogen and was also isolated from a spotted fever patient in Korea. The tick species harboring *R. monacensis* is *Ixodes ricinus* in Europe, and in China, the same pathogen was described in *I. persulcatus* and *Ixodes sinensis*. In Korea, similar to this study, *R. monacensis* was detected from *I. nipponensis*. In this study, *I. nipponensis* presented the highest SFRG positivity in all the collected tick species; SFRG positive *I. nipponensis* were found from 7 out of 10 sites, indicating *R. monacensis* might be widely prevalent in Niigata Prefecture.

In *Rickettsia* sp. Hj126 (AB114803) and *Candidatus Rickettsia principis* Kh-79 _Hj* (MG544986), 2 SFRG detected in adult *H. flava*, the gltA region presented 100% identity and were classified as genotypes III by Ishikura’s categorization (Fig. 2). The SFRG of the genotype III detected in Japan, presented the same characteristics of the two SFRG detected in this study, indicating SFRG of the genotype III might be widely prevalent in Japan.

In this study, *R. japonica* was not detected in the ticks, despite having a case of Japanese spotted fever in 2014, and *D. taiwanensis* and *H. hystricis* are known vectors for *R. japonica* were collected. More widespread sampling and/or larger sample size could be necessary to detect a low prevalent species in the arthropod hosts. Additionally, from a clinical point of view, the implementation of serology and DNA isolation might improve the diagnosis and management of patients with spotted fever like illnesses, as recommended in Europe in case of Mediterranean spotted fever like patients.

Three causative agents of human spotted fever *R. asiatica*, *R. helvetica*, and *R. monacensis*, were detected in this study. The major SFRG positive ticks were *Ixodes* spp. followed by *Haemaphysalis* spp. High tick-pathogen specificity was also observed in *Ixodes* sp. and *Rickettsia* sp.

Continuous precaution is recommended in activities where there is a potential risk of contact with ticks, and the healthcare system should be aware of spotted fever, particularly since Niigata Prefecture can now be considered an SFRG endemic area and human cases may be occurring.

Data availability

All data generated or analysed during this study are included in this published article.

Received: 7 August 2020; Accepted: 16 December 2020
Published online: 28 January 2021

References

1. Mahara, E., Fujita, H. & Sato, T. 11 cases of Japanese spotted fever and first report of the Tsutsugamushi disease in Tokushima Prefecture. *J. Ipm. Assoc. Infect. Dis.* 63, 963–964 (1989).
2. National Institute of Infectious Diseases. Agents surveillance. *Report.* 38, 110–112 (2017).
3. Ando, S. & Fujita, H. Diversity between spotted fever group rickettsia and ticks as vector. *Med. Entomol. Zool.* 64, 5–7 (2013).
4. Takada, N. et al. Rapid report of spotted fever diagnosed first in the southern part of Fukui Prefecture, referring to endemic factors and cases around Wakasa Bay. *Med. Entomol. Zool.* 66, 60 (2015).
5. Arai, R. et al. Investigation of rickettsia in ticks collected in the area around Japanese spotted fever patient confirmed first time in Niigata Prefecture. *Med. Entomol. Zool.* 68, 70–74 (2017).
6. Saito, Y. Studies on Ixodid ticks part I. On ecology, with reference to distribution and seasonal occurrence of Ixodid Ticks in Niigata Prefecture. *Acta Med. Biol. (Niigata)* 7, 193–209 (1959).
7. Yamaguti, N., Tipton, V.J., Keegan Hugh, L., et al. Ticks of Japan, Korea, and the Ryukyu Islands. *Brigham Young Univ. Sci. Bull. Biol. Ser.* 15, 1 (1971).
8. Takano, A. et al. Construction of a DNA database for ticks collected in Japan: Application of molecular identification based on the mitochondrial 16S rDNA gene. *Med. Entomol. Zool.* 65, 13–21 (2014).
9. Ishikura, M. et al. Phylogenetic analysis of spotted fever group rickettsiae based on gltA, 17-kDA, and rOMP genes amplified by nested PCR from ticks in Japan. *Microbiol. Immunol.* 47, 823–832 (2003).
10. Regnery, R. L., Spruill, C. L. & Plikaytis, B. D. Genotypic identification of rickettsiae and estimation of interspecies sequence divergence for portions of two rickettsial genes. *J. Bacteriol.* 173, 1576–1589 (1991).
11. Fourrier, P.-E., Roux, V. & Raoult, D. Phylogeographic analysis of spotted fever group rickettsiae by study of the outer surface protein rOMPx. *Int. J. Syst. Bacteriol.* 48, 839–849 (1998).
12. Paddock, C. D. et al. *Rickettsia parkeri*: A newly recognized cause of spotted fever rickettsiosis in the United States. *Clin. Infect. Dis.* 38, 805–811 (2004).
13. Choi, Y.-I. et al. Spotted fever group and typhus group rickettsioses in humans, South Korea. *Emerg. Infect. Dis.* 11, 237–244 (2005).
14. Tamura, K. et al. MEGAS: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28, 2731–2739 (2011).
15. Yamauchi, T. et al. Survey of tick fauna possessing the ability to act as vectors of rickettsiosis in Toyama Prefecture, Japan. *Med. Entomol. Zool.* 60, 23–31 (2009).
16. Ishiguro, F. et al. Survey of the vectorial competence of ticks in an endemic area of spotted fever group rickettsioses in Fukui Prefecture, Japan. *Microbiol. Immunol.* 52, 305–309 (2008).
17. Gaowa, et al. *Rickettsiae* in ticks, Japan, 2007–2011. *Emerg. Infect. Dis.* 19, 338–340 (2013).
18. Fujita, H., Fournier, P. E., Takada, N., Saito, T. & Raoult, D. *Rickettsia asiatica* sp. nov., isolated in Japan. *Int. J. Syst. Evol. Microbiol.* **56**, 2365–2368 (2006).
19. Ishikura, M., Fujita, H., Ando, S., Matsuura, K. & Watanabe, M. Phylogenetic analysis of spotted fever group rickettsiae isolated from ticks in Japan. *Microbiol. Immunol.* **46**, 241–247 (2002).
20. Iljinä, T. *et al.* Serological and molecular survey of *Rickettsia* infection in cattle and sika deer in a pastureland in Hidaka District, Hokkaido, Japan. *Jpn. J. Infect. Dis.* **61**, 315–317 (2008).
21. Takada, N., Ishiguro, F., Fujita, H. The first case of spotted fever in Fukui Prefecture, suggesting serologically as *R. helvetica* infection. *JASR.* **27**, 40–41 (2006).
22. Jado, I. *et al.* *Rickettsia monacensis* and human disease. *Emerg. Infect. Dis.* **13**, 1405–1407 (2007).
23. Madeddu, G. *et al.* *Rickettsia monacensis* as cause of Mediterranean spotted fever-like illness, Italy. *Emerg. Infect. Dis.* **18**, 702–704 (2012).
24. Kim, Y.-S. *et al.* First isolation of *Rickettsia monacensis* from a patient in South Korea. *Microbiol. Immunol.* **61**, 258–263 (2017).
25. Li, W. *et al.* Molecular identification of spotted fever group *Rickettsia* in ticks collected in central China. *Clin. Microbiol. Infect.* **15**, 279–280 (2009).
26. Scarpulla, M. *et al.* Molecular detection and characterization of spotted fever group *Rickettsia* in ticks from Central Italy. *Ticks Tick Borne Dis.* **7**, 1052–1056 (2016).
27. Ye, X. *et al.* Vector competence of the tick *Ixodes sinensis* (Acari: Ixodidae) for *Rickettsia monacensis*. *Parasit. Vectors* **7**, 512. https://doi.org/10.1186/s13071-014-0512-8 (2014).
28. Noh, Y. *et al.* Molecular detection of *Rickettsia* species in ticks collected from the southwestern provinces of the Republic of Korea. *Parasit. Vectors* **10**, 20. https://doi.org/10.1186/s13071-016-1955-x (2017).
29. Sato, K., Takano, A., Gaowa, A. S. & Kawabata, H. Epidemics of tick-borne infectious disease in Japan. *Med. Entomol. Zool.* **70**, 3–14 (2019).
30. Madeddu, G. *et al.* Mediterranean spotted fever-like illness in Sardinia, Italy: a clinical and microbiological study. *Infection* **44**, 733–738 (2016).

Acknowledgements

We would like to thank to alumni of School of Health Sciences, Niigata University; Miyuki Hashimoto, Mika Yokoyama, Hiro Watanabe, Yoichi Abiko, Manaka Oyanagi, Sayaka Ishizuka and Mami Sato of Graduate School of Health Sciences, Niigata University alumni for contribution for tick collection. Thanks to Prof. Ian Kendrich of the Institute of Biology, College of Science, University of The Philippines, for kindly reading and improving the manuscript.

Author contributions

Conceptualization: M.S., M.O.S., T.T. Formal analysis: M.S., M.O.S., T.T., K.W. Investigation: R.A., M.K., J.A., A.N., K.W., C.H., S.I. T.T., K.W., M.A.F.R., M.O.S., M.S. Methodology: M.S., M.O.S., T.T., K.W. Project administration: M.S., T.T. Resources: R.A., M.K., J.A., A.N., K.W., C.H., S.I. T.T., K.W., M.A.F.R., M.O.S., M.S. Supervision: T.T., M.S. Writing—original draft: R.A., M.O.S., M.S., T.T. Writing—review & editing: R.A., M.O.S., M.S., T.T. Acknowledgements: M.S., M.O.S., T.T. This work was supported by JSPS KAKENHI Grant Number 16K00569.

Funding

This work was supported by JSPS KAKENHI Grant Number 16K00569.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to R.A. or M.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021