CO₂ emission affected by moisture content and aggregate sizes in a calcareous soil of Comarca Lagunera, Mexico

Martínez-Santiago Santos(1), Gerardo Sergio Benedicto-Valdés(1)*, Armando López-Santos(2), Hilda Victoria Silva-Rojas(3), Enrique Ojeda-Trejo(1) and Elsa Marcela Ramírez-López(4)

(1) Colegio de Postgraduados, Programa de Edafología, Campus Montecillo, Texcoco, Estado de México, México.
(2) Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Bermejillo, Durango, México.
(3) Colegio de Postgraduados, Producción de Semillas, Campus Montecillo, Texcoco, Estado de México, México.
(4) Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, México.

ABSTRACT: Soil CO₂ emissions are formed from biotic and abiotic processes related to organic carbon (SOC) and inorganic carbon (SIC), respectively. Calcareous soil has a high amount of SIC and occurs mainly in arid areas, and little is known about CO₂ emissions from aggregates of this soil. This study aims to evaluate the emission of CO₂ of aggregates from calcareous soil in the Comarca Lagunera, Mexico. Soil samples were taken from the layers of 0.00-0.15 and 0.15-0.30 m, and soil physical and chemical properties were determined. Aggregates distribution was obtained using the dry-sieving method. Macro (0.25–0.149 mm), meso (0.149–0.074 mm) and microaggregates (<0.074 mm) were selected for incubation in a dynamic closed system for 30 days under two moisture contents (15 and 30 %, dry weight basis). The CO₂ emissions were quantified using a non-dispersive infrared gas analyzer (IRGA). From total carbon measured, 97 % were found to be SIC. Soil texture is a sandy clay loam with a field capacity and a permanent wilting point of 27 and 17 %, respectively. From whole soil aggregates, 60 % were distributed in fractions lower than 0.25 mm diameter, which are highly erodible by the wind. Soil moisture content had a significant effect on the emission of CO₂. The highest accumulated CO₂ emission was registered in the superficial layer (0.00-0.15 m) within 0.25 mm aggregates (29.4 g m⁻² h⁻¹), which turned out higher than reported for similar areas. The CO₂ emissions were attributed to the dissolution - reprecipitation process of high concentrations of SIC present in soil, involving a considerable contribution of CO₂ to the atmosphere.

Keywords: soil respiration, soil incubation, soil carbonates, soil moisture.
INTRODUCTION

Soil contains two forms of carbon: SOC (soil organic carbon) and SIC (soil inorganic carbon) (Mikhailova et al., 2019), and it is considered the third-largest carbon deposit on the planet; therefore it has a key role in this element’s cycle (Wang et al., 2012). The amount of carbon stored is estimated to be 1220–1576 Pg for SOC and 700–1700 Pg for SIC in the first 1.00 m of soil (Guo et al., 2016). The largest amount of carbon in soil is stored organically, but in arid and semiarid areas, inorganic forms are more abundant, mainly in carbonates (Wang et al., 2012).

Soil CO$_2$ emissions comprise both biotic respiration related to SOC, and abiotic geochemical CO$_2$ exchange related to SIC (Wang et al., 2020). Incubation in a closed system is a common technique to measure CO$_2$ emission from soil (Pumpanen et al., 2000). As a main component of SOC, organic residues are used by the soil biotic component for its maintenance, a process known as mineralization in which CO$_2$ emissions are generated into the atmosphere (Kuzyakov, 2006). Environmental factors such as soil moisture regulate the mineralization of soil organic matter (SOM) since moisture deficiencies can suppress the activity of the microorganisms (Luo and Zhou, 2006).

Soil CO$_2$ emissions are commonly assumed in terms of SOC (Hannam et al., 2019), and SIC has been less studied, but it has currently taken relevance as it is identified as a clear contributor to CO$_2$ emissions, mainly in calcareous soils (Kuzyakov et al., 2018). Calcareous soils cover up to 30 % of earth’s surface and are characterized for having a higher amount of SIC than SOC (Dong et al., 2014). In Mexico, these soils are found predominantly in arid areas of the north (Krasilnikov et al., 2013).

Soil carbonates can naturally dissolve and release CO$_2$ into the atmosphere (Ramnarine et al., 2012), which has implications for the exacerbations of climate change (Raich and Tufekciogul, 2000). Luo and Zhou (2006) mention factors affecting soil CO$_2$ emissions, such as soil moisture, temperature, oxygen, nitrogen, texture, and pH. Monger et al. (2015) and Sanderman (2012) explained CO$_2$ emissions from calcareous soils by process of dissolution – reprecipitation of calcium carbonates, as shown in equation 1.

\[
\text{Respiration} \quad \text{Rain or irrigation} \\
\text{CO}_2 + \text{H}_2\text{O} \\
\uparrow \uparrow \\
\text{CaCO}_3 + \text{H}_2\text{CO}_3 \leftrightarrow \text{Ca}^{2+} + 2\text{HCO}_3^-
\]

Eq. 1

Carbonates are dissolved in carbonic acid to produce Ca$^{2+}$ and 2HCO$_3^-$ Reprecipitation implies the use of 2HCO$_3^-$ to form CaCO$_3$ again. However, reprecipitated carbonate does not capture atmospheric carbon because the source of calcium is the preexisting CaCO$_3$ and the CO$_2$ consumed in the reaction to form carbonic acid is released after reprecipitation of CaCO$_3$ (Drees et al., 2001).

Equation 1 shows the dissolution process – reprecipitation of carbonates, moisture content, whether by rain or irrigation, plays an important role. Several reports showed increases in CO$_2$ emissions in calcareous soils as soil moisture increases (Dong et al., 2014). Vargas et al. (2012) found high CO$_2$ emissions from soils in arid grasslands as a response to frequency and amount of rainfall as a source of moisture.

The arid areas of northern Mexico have been documented as fragile ecosystems, in which soil degradation due to changes in the ground cover makes them susceptible to wind erosion (López-Santos and Martínez-Santiago, 2015; Galloza et al., 2017). These soils are composed of aggregates with diameters less than 0.25 mm, considered a highly wind-erodible fraction (Shao, 2008; Zobeck and Van Pelt, 2014).
Comarca Lagunera is a region located in northern Mexico composed of five municipal areas of the state of Coahuila and ten municipal areas of the state of Durango (Guzmán-Soria et al., 2006), and cover a surface of 42,328.48 km², in which calcareous soils account for 32%. This study aimed to evaluate the emission of CO₂ from aggregates of calcareous soil in the Comarca Lagunera, Mexico, under two moisture contents.

MATERIALS AND METHODS

Sampling

Following the NOM-021-RECNAT-2000 (DOF, 2002), composite samples were taken from a calcareous soil in northern Mexico, at layers of 0.00-0.15 and 0.15-0.30 m, in the arid region known as Comarca Lagunera (Figure 1). Soil samples were taken in a zigzag pattern along an agricultural area of 80 hectares, 25° 53' 51" N and 103° 35' 37" W, where corn (Zea mays) was growing.

Determination of chemical and physical properties

The following physico-chemical and chemical properties were determined: pH and electric conductivity (EC) in a soil extract saturated with water, at a ratio of 1:2 (Alexakis et al., 2015); SOC determined by wet oxidation method (Walkley and Black, 1934); SIC determined by water displacement method (Horton and Newsom, 1953); soil total nitrogen (STN) by Kjeldahl method (Bremner, 1996) and carbon/nitrogen ratio (C/N).

The following physical properties were determined: bulk density (BD), using the clod method (Al-Shammary et al., 2018); particle density (PD), by pycnometer method (Flint and Flint, 2002); field capacity (FC) and permanent wilting point (PWP), by pressure plate

Figure 1. Calcareous soil sampling site in the Comarca Lagunera, Mexico.
and membrane method (Klute, 1986); texture, by the Bouyoucos method (Bouyoucos, 1951); distribution of net soil aggregates, using dry-sieving method (Díaz-Zorita et al., 2002) and mean weight diameter (MWD) (Kemper and Rosenau, 1986) using equation 2:

$$MWD = \sum_{i=1}^{n} x_i w_i$$

Eq. 2

in which MWD is the sum of products of the mean diameter (x_i) from each size intervals and corresponding intervals (w_i) (van Bavel, 1950).

Soil incubation and quantification of CO$_2$ emission

Based on a generalized random block experimental design (Addelman, 1969), 100 g of soil were incubated in 500 mL closed glass jars for 30 days. Layers of sampling (0.00-0.15 and 0.15-0.30 m) and macro (0.25–0.149 mm), meso (0.149–0.074 mm) and microaggregates (<0.074 mm) were considered. Two gravimetric moisture contents, 15 and 30 %, with three replicates, which represented the permanent wilting point (1500 kPa) and field capacity (33 kPa) were applied (Figure 2). Moisture levels were kept constant by weighing the glass jars every two days and adding distilled water to replace the losses due to evaporation. Potential CO$_2$ emission was quantified every two days using a PP Systems infrared gas analysis (IRGA) equipment (Hitchin, Herts, UK).

Statistical analysis

Cumulative CO$_2$ emission data were subjected to an analysis of variance (ANOVA) and the average values were compared using a Tukey test ($\alpha = 0.05$) with statistical software R (Version 3.6.1; Vienna, Austria).

RESULTS

Physical, physico-chemical and chemical properties

Average values for pH(H$_2$O) (8.1 ± 0.1) and EC (6.4 ± 1.6 dS m$^{-1}$) indicated moderate alkalinity and slight salinity (Smith and Doran, 1996; Chesworth, 2008). Average SIC accounted for 97.7 % of total average carbon with 166.8 ± 37.5 Mg ha$^{-1}$, whereas average SOC content accounted for only 2.3 % with 3.9 ± 0.7 Mg ha$^{-1}$. Total soil nitrogen (TSN) had an average concentration of 0.12 ± 0.01 % (1.2 ± 0.1 mg g$^{-1}$) that represents 2.4 ± 0.1 Mg ha$^{-1}$. The carbon/nitrogen ratio had an average value of 1.6 ± 0.2 (Table 1).

Average values of 1.4 ± 0.6 Mg m$^{-3}$ were for bulk density and 2.4 ± 0.1 Mg m$^{-3}$ for particle density; 27.5 ± 0.4 and 14.4 ± 0.4 % to field capacity and permanent wilting point, respectively (Table 2), which are according to sandy clay loam texture (Saxton and Rawls, 2006). For the Comarca Lagunera, Inzunza-Ibarra et al. (2018) reported similar values.

In both depths, 39.6 % of soil aggregates was distributed within a range of 6.36 to 0.25 mm, while the remaining 60.4 % was made up of aggregates with diameters below 0.25 mm (Table 3). The mean weight diameter (MWD) was 1.20 ± 0.3 units, and, according to Le Bissonnais (2016), shows a low condition of stability and moderate crusting.

Soil aggregates ≤0.25 mm, at both depths, 23.5 % were distributed in size intervals 0.25-0.149 mm, 48.5 % between 0.149-0.074 mm, 27.4 % in fractions between 0.074-0.043 mm and 0.6 % in fractions below <0.043 mm (Table 4).

CO$_2$ emission rate

General average emission of CO$_2$ for every two days under both moisture contents was 1.7 ± 0.2 g m$^{-2}$ h$^{-1}$, or using conversion units proposed by Lamptey et al. (2017), 10.7 ± 0.2 μmol m$^{-2}$ s$^{-1}$. Highest emission value was reached with 30 % of moisture content after 8 days of incubation (Figure 3b), with 2.1 ± 0.1 g m$^{-2}$ h$^{-1}$ (13.3 ± 0.3 μmol m$^{-2}$ s$^{-1}$), and
Figure 2. Generalized random block experimental design for soil incubation with two gravimetric moisture levels.

Table 1. Physico-chemical and chemical properties of soil samples from La Comarca Lagunera, Mexico

Layer	pH	EC	SOC	SIC	STC	STN	SOC	SIC	STC	STN	N	C/N
m		dm										
0.00-0.15	8.1	7.7	0.23	7.3	7.5	0.13	4.4	140.4	144.8	2.5	1.8	
0.15-0.30	8.0	5	0.16	9.1	9.3	0.11	3.4	193.3	196.7	2.3	1.5	
Avg	8.1	6.4	0.20	8.2	8.4	0.12	3.9	166.8	170.7	2.4	1.6	
±	±	±	±	±	±	±	±	±	±	±	±	
SD	0.1	1.6	0.05	1.1	1.2	0.01	0.7	37.5	36.7	0.1	0.2	

EC: electric conductivity; SOC: soil organic carbon; SIC: soil inorganic carbon; soil total carbon (STC) = SOC + SIC; STN: soil total nitrogen; C/N: carbon/nitrogen ratio; Avg: average; SD: standard deviation.

Table 2. Physical properties of soil samples from the Comarca Lagunera, Mexico

Layer	BD	PD	FC	PWP	Texture
m					
0.00-0.15	1.3	2.5	27.2	14.6	Sandy clay loam
0.15-0.30	1.4	2.4	27.7	14.1	Sandy clay loam
Avg	1.4	2.4	27.5	14.4	
±	±	±	±	±	
SD	0.6	0.1	0.4	0.4	

BD: bulk density; PD: particle density; FC: field capacity; PWP: permanent wilting point; Avg: average; SD: standard deviation.
Table 3. Distribution of aggregates and mean weight diameter of soil samples from La Comarca Lagunera, Mexico

Layer	Sieve (mm)	MWD							
	> 6.36	6.36-4.76	4.76-3.36	3.36-2	2-1	1-0.5	0.5-0.25	< 0.25	
m									%
0.00-0.15	7	0.1	1.7	2.8	5.8	9.6	6.9	66.0	0.9
0.15-0.30	11	0.9	4.7	5.1	7.3	10.4	5.9	54.8	1.5
Avg	9	0.5	3.2	3.9	6.6	10.0	6.4	60.4	1.2
SD	±	±	±	±	±	±	±	±	±

MWD: mean weight diameter; Avg: average; SD: standard deviation.

Table 4. Distribution of aggregates ≤0.25 mm of soil samples from the Comarca Lagunera, Mexico

Layer	Sieve				
	0.25-0.149 mm	0.149-0.105 mm	0.105-0.074 mm	0.074-0.043 mm	<0.043 mm
m	%				
0.00-0.15	23.7	14.3	40.9	20.9	0.2
0.15-0.30	23.4	13.1	28.7	33.9	0.9
Avg	23.5	13.7	34.8	27.4	0.6
SD	±	±	±	±	±

Avg: average; StD: standard deviation.

Figure 3. Average CO₂ emission rate under 15 % (a) and 30 % (b) moisture treatments for a calcareous soil in the Comarca Lagunera, Mexico.
the lowest, with 15% of moisture content, after 26 days (Figure 3a), with 1.3 ± 0.1 g m⁻² h⁻¹ (8.2 ± 0.6 μmol m⁻² s⁻¹).

Accumulated rate of CO₂ emission

The average accumulated emission of CO₂ of soil aggregates increased significantly by 2.5 g m⁻² h⁻¹ equivalent to 11%, from 22.5 ± 0.9 to 25 ± 1.1 g m⁻² h⁻¹, as soil moisture increased (Figure 4).

Accumulated emission of CO₂ by depth and aggregates size

Accumulated emission at a layer of 0.00-0.15 m was significantly higher in macroaggregates (0.250-0.149 mm), with a value of 26.4 ± 2 g m⁻² h⁻¹. Mesoaggregates (0.149-0.074 mm) had an emission of 24.4 ± 1.7 g m⁻² h⁻¹, and the microaggregates (<0.074 mm) had the lowest, with 22.7 ± 0.8 g m⁻² h⁻¹ (Figure 5). Accumulated CO₂ emission of soil macro, meso and microaggregates of the layer of 0.15-0.30 m were statistically similar to emissions from microaggregate at the layer of 0.00-0.15 (Figure 5).

Accumulated emission of CO₂ by aggregate size, layer and moisture content

Macroaggregates (0.25-0.149 mm) at 0.00-0.15 m layer with 30% moisture showed the highest accumulated emission with 29.4 ± 1.5 g m⁻² h⁻¹. The lowest emission was...
with microaggregates (<0.074 mm) and 15 % of moisture, and for 0.15-0.30 m layer, had value of 20.6 ± 1.5 g m⁻² h⁻¹ (Figure 6). As soil depth increases and moisture level decreases, less CO₂ is emitted, which is clear in aggregates of smaller diameters.

DISCUSSION

Soil properties of calcareous soils from the Comarca Lagunera

Calcareous soils of arid areas have alkalinity and salinity conditions (Zhao et al., 2016), as well as the presence of large amounts of SIC (Mikhailova et al., 2019) and low levels of SOC and STN (Aboukila et al., 2018), as detected in the present study (Table 1).

Values obtained for BD, FC and PWP of the calcareous soils of the Comarca Lagunera (Table 2) are similar to those previously reported by Inzunza-Ibarra et al. (2018). Distribution of soil aggregates shows that 60.4 % of total soil aggregates ≤0.25 mm (Table 3), which is associated with the low content of SOC that prevents the existence of organic binding agents (Qiu et al., 2015; Jia et al., 2019). This aggregates size (≤0.25 mm) is considered by Chepil (1953) as a highly wind-erodible fraction.

Emissions of CO₂ of calcareous soils from the Comarca Lagunera

Average CO₂ emission showed increases after the maximum emission, on day 20 (Figure 3), due to keeping the initial level of the moisture content, which has been documented as Birch effect (1958) and implies pulses in soil respiration rate when it is rehydrated. The Birch effect has been reported, both in controlled incubation (Göransson et al., 2013) and in the field (Yan et al., 2014).

In calcareous soils of the Comarca Lagunera, average CO₂ emissions were 10.70 μmol m⁻² s⁻¹, contrasting with studies reported for the Chihuahuan desert in the Big Bend National Park, where a CO₂ emission of 1.46 μmol m⁻² s⁻¹ was reported, despite soil contains 3.7 % (37 mg g⁻¹ of C) of SOC (Cable et al., 2011). Quantification of CO₂ emissions from soils considers primarily the degradation of SOC reserves (Kuzyakov, 2006), which integrates organic residues and soil microorganisms, as they are related to anthropogenic activities, but for arid zones, it must add the contribution of the SIC to CO₂ emissions (Zamanian et al., 2021), because the amounts of stored SIC exceed those of SOC by several times (Ferdush and Paul, 2021).

On average, SOC content was 0.20 % (2 mg g⁻¹), and most of the CO₂ emissions could be attributed to the dissolution of SIC, which was 8.2 % (82 mg g⁻¹). This situation has
been documented by Aryal et al. (2017) for calcareous soils of Mexican tropics, where the dissolution of carbonates is the main source of variation in CO$_2$ emission. Incubations of calcareous soil performed by Dong et al. (2013) found that CO$_2$ emissions are related to amounts of carbonates.

Soil moisture influences CO$_2$ emissions, involving biological activity on the decomposition of organic matter (Lellei-Kovács et al., 2011), and contributes to the process of dissolution - reprecipitation of carbonates (Equation 1) belonging to SIC (Monger et al., 2015). The CO$_2$ emitted by the degradation of SOC also can form carbonic acid, which intervenes in the dissolution of SIC (Cardinael et al., 2020).

In this study, soil moisture near field capacity (30 %) in macroaggregates of topsoil layer produced 29.4 g m$_{-2}$ h$_{-1}$ (185.3 μmol m$_{-2}$ s$_{-1}$), the highest accumulated emission of CO$_2$ (Figure 6), which represents a loss of 1.9 Mg ha$^{-1}$ of carbon in the soil, equal to 1.33 % of total carbon in the layer between 0.00-0.15 m. Considering calcareous soils under agricultural use in the Comarca Lagunera with an extension of 182,002.75 ha, soil carbon loss is around 349,445.3 Mg (349.45 Gg).

The CO$_2$ emissions from the topsoil layer (0.00-0.15 m) and macroaggregates are produced due to content of SOC and STN (Yu et al., 2014; Gomiero, 2016; Welemariam et al., 2018), which implies certain amount of labile organic carbon that microorganisms can mineralize (An et al., 2010). However, it is important to consider the CO$_2$ emissions resulting from the dissolution of SIC reserves (Zamanian et al., 2016). Besides, in calcareous soils, 60 to 80 % of the total CO$_2$ emissions are produced by the dissolution of the SIC (Ramnarine et al., 2012).

On the other hand, the acidification of agricultural soils due to ammonium fertilization leads to a CO$_2$ release by dissolving soil carbonates (Wu et al., 2009; Jin et al., 2018; Zamanian et al., 2018). In the Comarca Lagunera, agricultural management of fodder crops implies the use of higher rates (>300 kg ha$^{-1}$) of ammonia fertilizers than those required (González-Torres et al., 2016).

Sources of SOC and SIC play a crucial role in the aggregation and stability of the soil (Bronick and Lal, 2005; Su et al., 2010), and their loss could contribute to soil degradation (Ćirić et al., 2012). For soils of the Comarca Lagunera, given a scarce SOC most common aggregates have diameters less than 0.25 mm, and according to Chepil (1953) they are within the highly erodible fraction.

Actions to mitigate the increase in atmospheric CO$_2$ concentration related to carbon capture through SOC should be reviewed (Raza et al., 2021), mainly in calcareous soils, since the emission of CO$_2$ generated because of dissolution of the SIC reserve are considerable and influences the carbon cycle and global warming (Zamanian et al., 2018). To increase knowledge on calcareous soils in Mexico is needed, including additional studies about structural characteristics and chemical composition, with particular emphasis on SOC and SIC relationship.

CONCLUSIONS

Main soil aggregate size was ≤0.25 mm, which are characterized by being highly wind-erodible and typical of arid and semi-arid areas. Macroaggregates by retaining more moisture allowed the higher release of CO$_2$ in the surface layer. This study shows predominance of SIC over SOC and implies an increase in the proportion of CO$_2$ emissions into the atmosphere. The increase in CO$_2$ emissions was associated with the moisture content between permanent wilting point and field capacity. The results suggest SIC content in arid and semiarid areas could depend on the moisture content for the dissolution and reprecipitation process as a cause of CO$_2$ emissions.
ACKNOWLEDGMENTS

In loving memory PhD. David Espinosa-Victoria (1959-2020. ORCID: 0000-0003-3751-1058).

AUTHOR CONTRIBUTIONS

Conceptualization: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Gerardo Sergio Benedicto-Valdés (equal), Martínez-Santiago Santos (equal) and Hilda Victoria Silva-Rojas (equal).

Data curation: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Gerardo Sergio Benedicto-Valdés (equal), Hilda Victoria Silva-Rojas (equal) and Martínez-Santiago Santos (equal).

Formal analysis: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Gerardo Sergio Benedicto-Valdés (equal), Hilda Victoria Silva-Rojas (equal) and Martínez-Santiago Santos (equal).

Funding acquisition: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Gerardo Sergio Benedicto-Valdés (equal), Hilda Victoria Silva-Rojas (equal) and Martínez-Santiago Santos (equal).

Investigation: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Gerardo Sergio Benedicto-Valdés (equal), Hilda Victoria Silva-Rojas (equal) and Martínez-Santiago Santos (equal).

Methodology: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Gerardo Sergio Benedicto-Valdés (equal), Hilda Victoria Silva-Rojas (equal) and Martínez-Santiago Santos (equal).

Project administration: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Gerardo Sergio Benedicto-Valdés (equal), Hilda Victoria Silva-Rojas (equal) and Martínez-Santiago Santos (equal).

Resources: Gerardo Sergio Benedicto-Valdés (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Hilda Victoria Silva-Rojas (equal) and Martínez-Santiago Santos (equal).

Software: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Gerardo Sergio Benedicto-Valdés (equal), Hilda Victoria Silva-Rojas (equal) and Martínez-Santiago Santos (equal).

Supervision: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Gerardo Sergio Benedicto-Valdés (equal), Hilda Victoria Silva-Rojas (equal) and Martínez-Santiago Santos (equal).

Validation: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Gerardo Sergio Benedicto-Valdés (equal), Hilda Victoria Silva-Rojas (equal) and Martínez-Santiago Santos (equal).

Visualization: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Enrique Ojeda-Trejo (equal), Gerardo Sergio Benedicto-Valdés (equal), Hilda Victoria Silva-Rojas (equal) and Martínez-Santiago Santos (equal).

Writing – original draft: Armando López-Santos (equal), Elsa Marcela Ramírez-López (equal), Gerardo Sergio Benedicto-Valdés (equal), Hilda Victoria Silva-Rojas (equal), Enrique Ojeda-Trejo (equal) and Martínez-Santiago Santos (equal).
Martínez-Santiago et al. CO₂ emission affected by moisture content and aggregate sizes in a...

Writing - review & editing: 🎨 Armando López-Santos (equal), 🎨 Elsa Marcela Ramírez-López (equal), 🎨 Gerardo Sergio Benedicto-Valdés (equal), 🎨 Hilda Victoria Silva-Rojas (equal), 🎨 Enrique Ojeda-Trejo (equal) and 🎨 Martínez-Santiago Santos (equal).

REFERENCES

Aboukila EF, Nassar IN, Rashad M, Hafez M, Norton JB. Reclamation of calcareous soil and improvement of squash growth using brewers’ spent grain and compost. J Saudi Soc Agric. 2018;17:390-7. https://doi.org/10.1016/j.jssas.2016.09.005

Addelman S. The generalized randomized block design. Am Stat. 1969;23:35-6. https://doi.org/10.2307/2681737

Alexakis D, Gotsis D, Giakoumakis S. Evaluation of soil salinization in a Mediterranean site (Agoulinitsa district-West Greece). Arab J Geosci. 2015;8:1373-83. https://doi.org/10.1007/s12517-014-1279-0

Al-Shammary AAG, Kouzani AZ, Kaynak A, Khoo SY, Norton M, Gates W. Soil bulk density estimation methods: A review. Pedosphere. 2018;28:581-96. https://doi.org/10.1016/S1002-0160(18)60034-7

An S, Mentler A, Mayer H, Blum WE. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena. 2010;81:226-33. https://doi.org/10.1016/j.catena.2010.04.002

Aryal DR, de Jong BHJ, Mendoza-Vega J, Ochoa-Gaona S, Esparza-Olguín L. Soil organic carbon stocks and soil respiration in tropical secondary forests in Southern Mexico. In: Field DJ, Morgan CLS, McBratney AB, editors. Global soil security. Switzerland: Springer; 2017. p. 153-65. https://doi.org/10.1007/978-3-319-43394-3_14

Birch HF. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil. 1958;10:9-31. https://doi.org/10.1007/BF00134734

Bouyoucos GJ. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron J. 1951;43:434-8. https://doi.org/10.2134/agronj1951.00021962004300090005x

Bremner JM. Nitrogen-total. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods of soil analysis: Part 3 Chemical methods. Madison: Soil Science Society of America Book Series; 1996. p. 1085-121.

Bronick CJ, Lal, R. Soil structure and management: A review. Geoderma. 2005;124:3-22. https://doi.org/10.1016/j.geoderma.2004.03.005

Cable JM, Ogle K, Lucas RW, Huxman TE, Loik ME, Smith SD, Tissue DT, Ewers BE, Pendall E, Welker JM, Charlet TN, Cleary M, Griffith A, Nowak RS, Rogers M, Steltzer H, Sullivan PF, van Gestel NC. The temperature responses of soil respiration in deserts: A seven desert synthesis. Biogeochemistry. 2011;103:71-90. https://doi.org/10.1007/s10533-010-9448-z

Cardinael R, Chevallier T, Guenet B, Girardin C, Cozzi T, Pouteau V, Chenu C. Organic carbon decomposition rates with depth and contribution of inorganic carbon to CO₂ emissions under a Mediterranean agroforestry system. Eur J Soil Sci. 2020;71:909-23. https://doi.org/10.1111/ejss.12908

Chepil WS. Factors that influence clod structure and erodibility of soil by wind: I. Soil texture. Soil Sci. 1953;75:473-84.

Chesworth W. Encyclopedia of soil science. Dordrecht: Springer; 2008. https://doi.org/10.1007/978-1-4020-3995-9

Ćirić V, Manojlović M, Nešić L, Belić M. Soil dry aggregate size distribution: Effects of soil type and land use. J Soil Sci Plant Nut. 2012;12:689-703. https://doi.org/10.4067/S0718-95162012005000025

Díaz-Zorita M, Perfect E, Grove JH. Disruptive methods for assessing soil structure. Soil Till Res. 2002;64:3-22. https://doi.org/10.1016/S0167-1987(01)00254-9
Martínez-Santiago et al. CO₂ emission affected by moisture content and aggregate sizes in a...
Klute A. Water retention: Laboratory methods. In: Klute A, editor. Methods of soil analysis: Part 1 Physical and mineralogical methods. Madison: American Society of Agronomy, Soil Science Society of America; 1986. p. 635-62.

Krasilnikov P, Gutiérrez-Castorena MC, Ahrens RJ, Cruz-Gaistardo CO, Sedov S, Solleiro-Rebolledo E. The soils of Mexico. Dordrecht: Springer; 2013. https://doi.org/10.1007/978-94-007-5660-1

Kuzyakov Y. Sources of CO₂ efflux from soil and review of partitioning methods. Soil Biol Biochem. 2006;38:425-48. https://doi.org/10.1016/j.soilbio.2005.08.020

Kuzyakov Y, Horwath WR, Dorodnikov M, Blagodatskaya E. Review and synthesis of the effects of elevated atmospheric CO₂ on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol Biochem. 2018;128:66-78. https://doi.org/10.1016/j.soilbio.2018.10.005

Lamprey S, Li L, Xie J, Zhang R, Lou Z, Cai L, Liu J. Soil respiration and net ecosystem production under different tillage practices in semi-arid Northwest China. Plant Soil Environ. 2017;63:14-21. https://doi.org/10.17221/403/2016-PSE

Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur J Soil Sci. 2016; 67: 11-21. https://doi.org/10.1111/ejss.12311

Lellei-Kovács E, Kovács-Láng E, Botta-Dukát Z, Kalapos T, Emmett B, Beier C. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. Eur J Soil Biol. 2011;47:247-55. https://doi.org/10.1016/j.ejsoil.2011.05.004

López-Santos A, Martínez-Santiago S. Use of two indicators for the socio-environmental risk analysis of Northern Mexico under three climate change scenarios. Air Qual Atmos Health. 2015;8:331-45. https://doi.org/10.1007/s11869-014-0286-3

Luo Y, Zhou X. Soil respiration and the environment. San Diego: Academic Press; 2006. https://doi.org/10.1016/B978-0-12-088782-8.X5000-1

Mikhailova EA, Groshans GR, Post CJ, Schlautman MA, Post GC. Valuation of total soil carbon stocks in the contiguous United States based on the avoided social cost of carbon emissions. Resources. 2019;8:157. https://doi.org/10.3390/resources8040157

Monger HC, Kraimer RA, Khresat SE, Cole DR, Wang X, Wang J. Sequestration of inorganic carbon in soil and groundwater. Geology. 2015;43:375-8. https://doi.org/10.1130/G36449.1

Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niiniistö S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grünzweig JM, Reth S, Subke JA, Savage K, Kutash W, Østreng G, Ziegler W, Østreng G, Ziegler W, Anthoni P, Lindroth A, Hari P. Comparison of different chamber techniques for measuring soil CO₂ efflux. Agr Forest Meteorol. 2000;123:159-76. https://doi.org/10.1016/j.agrformet.2003.12.001

Qiu L, Wei X, Gao J, Zhang X. Dynamics of soil aggregate-associated organic carbon along an afforestation chronosequence. Plant Soil. 2015;391:237-51. https://doi.org/10.1007/s11104-015-2415-7

Raich JW, Tufekciogul A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry. 2000;48:71-90. https://doi.org/10.1023/A:100612006616

Rammarine R, Wagner-Riddle C, Dunfield KE, Voroney RP. Contributions of carbonates to soil CO₂ emissions. Can J Soil Sci. 2012;92:599-607. https://doi.org/10.4141/cjss2011-025

Raza S, Zamanian K, Ullah S, Kuzyakov Y, Virto I, Zhou J. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. J Clean Prod. 2021;315:128036. https://doi.org/10.1016/j.jclepro.2021.128036

Sanderman J. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agr Ecosyst Environ. 2012;155:70-7. https://doi.org/10.1016/j.agee.2012.04.015

Saxton KE, Rawls WJ. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J. 2006;70:1569-78. https://doi.org/10.2136/sssaj2005.0117
Shao Y. Physics and modelling of wind erosion. 2nd ed. Netherlands: Springer; 2008. v. 37. https://doi.org/10.1007/978-1-4020-8895-7

Smith JL, Doran JW. Measurement and use of pH and electrical conductivity for soil quality analysis. In: Doran JW, Jones AJ, editors. Methods for assessing soil quality. Madison: Soil Science Society of America; 1996. p. 169-85.

Su YZ, Wang XF, Yang R, Lee J. Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China. J Environ Manage. 2010;91:2109-16. https://doi.org/10.1016/j.jenvman.2009.12.014

van Bavel CHM. Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Sci Soc Am J. 1950;14:20-3. https://doi.org/10.2136/sssaj1950.036159950014000C0005x

Vargas R, Collins SL, Thoney ML, Johnson JE, Brown RF, Natvig DO, Friggens MT. Precipitation variability and fire influence the temporal dynamics of soil CO₂ efflux in an arid grassland. Glob Change Biol. 2012;18:1401-11. https://doi.org/10.1111/j.1365-2486.2011.02628.x

Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29-38.

Wang X, Wang J, Zhang J. Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China. PLoS One. 2012;7:e44334. https://doi.org/10.1371/journal.pone.0044334

Wang ZY, Xie JB, Wang YG, Li Y. Biotic and abiotic contribution to diurnal soil CO₂ fluxes from saline/alkaline soils. Sci Rep. 2020;10:5396. https://doi.org/10.1038/s41598-020-62209-2

Welemariam M, Kebede F, Bedadi B, Birhane E. Effect of community-based soil and water conservation practices on soil glomalin, aggregate size distribution, aggregate stability and aggregate-associated organic carbon in northern highlands of Ethiopia. Agric Food Secur. 2018;7:42. https://doi.org/10.1186/s40066-018-0193-1

Wu H, Guo Z, Gao Q, Peng C. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China. Agr Ecosyst Environ. 2009;129:413-21. https://doi.org/10.1016/j.agee.2008.10.020

Yan L, Chen S, Xia J, Luo Y. Precipitation regime shift enhanced the rain pulse effect on soil respiration in a semi-arid steppe. PLoS One. 2014;9:e104217. https://doi.org/10.1371/journal.pone.0104217

Yu P, Li Q, Jia H, Li G, Zheng W, Shen X, Diabate B, Zhou D. Effect of cultivation on dynamics of organic and inorganic carbon stocks in Songnen plain. Agro J. 2014;106:1574-82. https://doi.org/10.2134/agronj14.0113

Zamanian K, Pustovoytvov K, Kuzuyakov Y. Pedogenic carbonates: Forms and formation processes. Earth-Sci Rev. 2016;157:1-17. https://doi.org/10.1016/j.earscirev.2016.03.003

Zamanian K, Zarebanadkouki M, Kuzuyakov Y. Nitrogen fertilization raises CO₂ efflux from inorganic carbon: A global assessment. Glob Change Biol. 2018;24:2810-7. https://doi.org/10.1111/gcb.14148

Zamanian K, Zhou J, Kuzuyakov Y. Soil carbonates: The unaccounted, irrecoverable carbon source. Geoderma. 2021;384:114817. https://doi.org/10.1016/j.geoderma.2020.114817

Zhao W, Zhang R, Huang C, Wang B, Cao H, Koopal LK, Tan W. Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. Catena. 2016;139:191-8. https://doi.org/10.1016/j.catena.2016.01.003

Zobeck TM, Van Pelt RS. Wind erosion. In: Hatfield JL, Sauerm TJ, editors. Soil management: building a stable base for agriculture. Madison: American Society of Agronomy and Soil Science Society of America; 2014. p. 209-27.