The Role of TP53 Gene Codon 72 Polymorphism in Leukemia

A PRISMA-Compliant Systematic Review and Meta-Analysis

Xiao-Lan Ruan, Sheng Li, Xiang-Yu Meng, Peiliang Geng, Qing-Ping Gao, and Xu-Bin Ao

Abstract: The purpose of this meta-analysis was aimed to evaluate the association of tumor protein p53 (TP53) gene codon 72 polymorphism with leukemia susceptibility.

We searched PubMed to identify relevant studies, and 16 case-control studies from 14 published articles were identified as eligible studies, including 2062 leukemia patients and 5826 controls. After extracting data, odds ratio (OR) with the corresponding 95% confidence interval (95%CI) was applied to assess the association between TP53 codon 72 polymorphism and leukemia susceptibility. The meta-analysis was performed with the Comprehensive Meta-Analysis software, version 2.2.

Overall, no significant association between TP53 codon 72 polymorphism and leukemia susceptibility was found in this meta-analysis (Pro vs Arg: OR = 1.05, 95%CI = 0.90–1.21; Pro/Pro vs Arg/Arg: OR = 1.13, 95%CI = 0.84–1.52; Arg/Pro vs Arg/Arg: OR = 0.94, 95%CI = 0.76–1.15; [Pro/Pro + Arg/Pro] vs Arg/Arg: OR = 0.95, 95%CI = 0.80–1.21; Pro/Pro vs [Arg/Arg + Arg/Pro]: OR = 1.19, 95%CI = 0.93–1.51). Similar results were also found in subgroup analysis by ethnicity, source of controls, and types of leukemia (either acute myeloid leukemia or acute lymphocytic leukemia).

Our meta-analysis demonstrates that TP53 codon 72 polymorphism may not be a risk factor for acute leukemia; however, due to the limitations of this study, it should be verified in future studies.

INTRODUCTION

Leukemia is a group of hematological malignant clonal diseases involving genetic alterations.1,2 Generally, the overall incidence of leukemia appears to be rising.3,4 Multiple etiological factors have been revealed for leukemia, among which inherited DNA mutations and exposure to ionizing radiation, certain chemicals or cytotoxic therapy seem to be the most important internal and external contributors.5 DNA damage of hematopoietic progenitors induced by these factors may finally result in the development of leukemia, during which genetic variations corresponding to high-risk phenotypes are typically involved.6 As known, tumor protein p53 (TP53) plays a key role in preventing tumor formation through orchestrating a diversity of pathways such as activation of cell signaling transduction responses, DNA repair, and regulation of cell cycle progression and apoptosis.7,8 Generally, TP53 mutations are thought to be associated with carcinogenesis.9,10 Many studies have found that the TP53 played an important role during the development of leukemia.11–13 Among known TP53 polymorphisms, Arg72Pro (rs1042522), an amino acid substitution of arginine (Arg)—proline (Pro) at position 72, is one of the most widely studied polymorphisms.14 Hence, much attention has been paid to the issue whether TP53 Arg72Pro polymorphism is associated with leukemia susceptibility. In 2004, Bergamaschi et al reported that the allele A1 (proline residue, Pro72) was more frequent in patients with leukemia than in controls, and among leukemia patients who had no cytogenetic response than among responders.15 However, subsequent studies showed different results about TP53 Arg72Pro polymorphism and leukemia susceptibility. In this case, a meta-analysis is needed to pool these controversial findings.16

MATERIALS AND METHODS

Literature Search

A comprehensive search was conducted in PubMed databases for relevant published studies up to December 11, 2014 (updated on July 11, 2015). “Leukemia,” “Tumor Suppressor Protein p53,” and “polymorphism” were used as keywords.
Inclusion and Exclusion Criteria

Every study included in this meta-analysis had to meet the following criteria: (1) with case-control design; (2) investigating the association between TP53 gene Arg72Pro polymorphism and the susceptibility to leukemia, including acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), and chronic myeloid leukemia (CML); (3) the case group consisted of patients with leukemia confirmed by both clinical and laboratory examinations, whereas the control group consisted of healthy individuals, and their details were clearly reported; (4) with sufficient data for estimating the odds ratios (ORs) and 95% confidence intervals (95%CIs). In addition, articles were excluded according to the following criteria: (1) abstracts or unpublished records; (2) studies on nonhuman subjects; (3) studies in which the genotype frequencies were not reported and could not be calculated. As for overlapped publications, the most comprehensive one would be selected.

Statistical Analysis

Relevant statistical analysis was performed using the Comprehensive Meta Analysis software (version 2.2; Biostat, Englewood, NJ).17,18 The OR and its 95% CI were used to assess the association under 5 genetic models: Pro vs Arg, Pro/Pro vs Arg/Arg, Arg/Pro vs Arg/Arg, Pro/Pro vs (Arg/Arg + Arg/Pro), and (Pro/Pro + Arg/Pro) vs Arg/Arg. Heterogeneity was evaluated by the Cochran’s Q statistic19 and the I^2 statistic.20 Data were pooled using a random-effects model. Subgroup analyses were also conducted according to ethnicity, types of leukemia, and source of controls. And sensitivity analysis was performed using the individual exclusion method. Potential publication bias was assessed by visual inspection of the funnel plots, and Egger’s test provided corresponding statistical evidence ($P < 0.05$ represented statistical significance).21,22

RESULTS

Results of Search and Study Characteristics

Of the 1073 records found initially, 16 case-control studies involving 2062 cases and 5826 controls from 14 research papers15,23–35 were ultimately included. A detailed flowchart presenting the selection process is shown in Figure 1. Table 1 exhibits the major characteristics of these 16 case-control studies, which comprised seven studies23–28,33 on AML, six26,27,29,32,34,35 on ALL, one30 on CLL, one15 on CML, and one31 on acute leukemia (AL). Ten studies were conducted in Asian populations23,25–27,29,31,33,34 and six in Caucasian populations.15,24,28,30,32,35 In terms of source of controls, 3 studies recruited controls from hospital (HB)25,28,29 and
TABLE 1. Characteristics of the Studies Included in the Meta-analysis

First Author (Year)	Country (Ethnicity)	Type	Source of Control	Total	AA	AP	PP	Total	AA	AP	PP	Genotype method	HWE
Nakano 2000	Japan (Asian)	AML	PB	200	82	93	25	188	59	95	34	PCR-SSCP	0.69
Bergamaschi 2004	Italy (Caucasian)	CML	PB	96	49	47	10	174	106	61	7	PCR-RFLP	0.63
Takeuchi 2005	Japan (Asian)	ALL	HB	87	33	38	16	89	32	37	20	PCR-RFLP	0.15
Kochethu 2006	UK (Caucasian)	CML	PB	203	119	62	22	97	44	40	13	PCR-RFLP	0.42
Ellis 2008	USA/UK (Caucasian)	AML	PB	171	95	66	10	302	171	112	181	Taqman/PCR-RFLP	0.81
Phang 2008	China (Asian)	AL	PB	44	13	25	6	160	56	72	32	PCR-RFLP	0.32
Xiong 2009	China (Asian)	AML	HB	231	52	127	52	128	39	64	25	PCR-RFLP	0.99
Do 2009	USA (Caucasian)	ALL	PB	114	50	45	19	414	234	154	26	Taqman/PCR-RFLP	0.92
Chauhan 2011	India (Asian)	AML	PB	120	32	66	22	202	47	114	41	PCR-RFLP	0.07
Dunna 2012a	India (Asian)	AML	PB	141	64	44	33	245	79	123	43	PCR-RFLP	0.68
Dunna 2012b	India (Asian)	ALL	PB	147	59	67	21	245	79	123	43	PCR-RFLP	0.68
Chauhan 2012a	India (Asian)	AML	PB	131	38	71	22	199	51	112	36	PCR-RFLP	0.06
Chauhan 2012b	India (Asian)	ALL	PB	99	28	43	28	199	51	112	36	PCR-RFLP	0.06
de Lourdes Perim 2013	Brazil (Caucasian)	ALL	PB	54	33	18	3	58	46	11	1	PCR-SSP	0.72
Chen 2013	China (Asian)	ALL	PB	174	39	90	45	356	113	183	60	PCR-RFLP	0.33
El-Danasouri 2014	Egypt (Caucasian)	AML	HB	50	20	20	10	50	14	31	5	PCR-RFLP	0.24

AA = individuals who do not inherit a mutant allele; AP = individuals who are heterozygote for the mutant allele; PP = individuals who are homozygote for the mutant allele; AML = acute myeloid leukemia; ALL = acute lymphocytic leukemia; CLL = chronic lymphocytic leukemia; CML = chronic myeloid leukemia; AL = acute leukemia; HB = hospital based; PB = population based; PCR-RFLP = polymerase chain reaction-restriction fragment length polymorphism; PCR-SSCP = polymerase chain reaction-single strand conformation polymorphism; PCR-SSP = polymerase chain reaction-sequence-specific primer; HWE = Hardy–Weinberg equilibrium.
TABLE 2. Pooled ORs and 95% CIs for the Association Between TP53 Gene Polymorphism and Leukemia Susceptibility

Subgroups	Pro vs Arg	Homozygous Model	Heterozygous Model	Dominant Model	
	N	OR(95%CI)	OR(95%CI)	OR(95%CI)	OR(95%CI)
Overall	16	1.06(0.90–1.21)	0.94(0.76–1.15)	0.77(0.64–0.94)	0.96(0.79–1.15)
Ethnicity					
Asian	10	0.97(0.84–1.13)	0.80(0.69–1.14)	0.77(0.56–1.08)	0.97(0.73–1.28)
Caucasian	6	1.22(0.88–1.69)	1.06(0.81–1.40)	0.93(0.69–1.26)	1.12(0.81–1.54)
Alleles	16	1.06(0.90–1.21)	0.94(0.76–1.15)	0.77(0.64–0.94)	0.96(0.79–1.15)
	7	1.24(0.93–1.65)	1.12(0.80–1.57)	0.93(0.62–1.40)	1.01(0.64–1.60)
	3	1.03(0.62–1.65)	1.00(0.55–1.85)	0.95(0.50–1.79)	0.95(0.59–1.57)
	3	1.08(0.86–1.36)	0.92(0.77–1.11)	0.95(0.72–1.28)	0.95(0.72–1.28)
	13	1.03(0.88–1.25)	0.94(0.80–1.13)	0.95(0.74–1.24)	0.93(0.74–1.24)

AMI-related AML	Acute myeloid leukemia, AML	Acute lymphocytic leukemia, ALL	Hospital-based population-based	Pro/Pro vs Arg/Arg	Pro/Pro vs Arg/Arg
		71.38	65.48	0.95(0.80–1.13)	0.93(0.80–1.13)

13 from general population (PB).15, 23, 24, 26, 27, 30–35 The genotype distributions of controls from all the included studies were consistent with HWE.

Meta-Analysis

Table 2 summarizes the main results of meta-analysis. Overall, no significant association was observed between TP53 Arg72Pro polymorphism and leukemia susceptibility (Pro vs Arg: OR = 1.19, 95% CI = 0.93–1.51). In subsequent subgroup analyses, the results showed that the TP53 Arg72Pro polymorphism was not associated with either AML or ALL, and this negative association persisted in other subgroup analyses, for example, by ethnicity or sources of controls (Table 2).

Sensitivity Analysis

No substantial alterations occurred during sensitivity analysis through omitting 1 included study each time (Figure 3 shows the result for the Pro/Pro vs Arg/Arg model), which demonstrates the robustness of the results.

Publication Bias

Begg’s funnel plot seemed symmetric for each genetic model, showing no significant publication bias (Figure 4 for Pro/Pro vs Arg/Arg model), which was confirmed with Egger’s test (Pro vs Arg, P = 0.68; Pro/Pro vs Arg/Arg, P = 0.96; Arg/Pro vs Arg/Arg, P = 0.59; [Arg/Pro + Arg/Arg] vs Arg/Arg, P = 0.81; Pro/Pro vs [Arg/Pro + Arg/Arg], P = 0.76).

DISCUSSION

Leukemia is a multifactorial and complex disease, and the genetic effect has been considered as an important element for its development.36 Many studies reported the effects of TP53 Arg72Pro polymorphism on the susceptibility of leukemia. In 2000, for the first time, Nakano et al performed a case-control study and reported that this polymorphism might decrease the risk of AML in Japanese population.23 However, similar results were not achieved by subsequent studies, and the association between TP53 Arg72Pro polymorphism and leukemia susceptibility is still controversial. In the present study, we collected all available published studies and performed meta-analysis to assess the relationship between TP53 Arg72Pro polymorphism and leukemia susceptibility, but no significant association was found in overall analysis. Furthermore, similar results were also found in subgroup analyses according to ethnicity, types of leukemia (either AML or ALL), and source of controls.

We are aware of a relevant published meta-analysis indicating that TP53 Arg72Pro polymorphism is not associated with leukemia susceptibility (5 studies).37 When stratified by ethnicity, a protective effect of the TP53 codon 72 Pro allele was found in Asians even with a small number of studies (331 cases and 437 controls).37 Compared with the previous meta-analysis, this meta-analysis grouped subgroups with more accuracy, involved more studies, and provided a more accurate association estimation.

There are some limitations in the present study. Significant heterogeneity, for example, appeared in most of the genetic models. Intersubtype heterogeneity may be frequent in meta-analyses of genetic association studies. However, its occurrence
may have certain relevance to different enrollment criteria for study subjects, diverse environmental circumstances, multiple interactions among genes and environment factors, and various genotyping methods. After stratified analyses by types of leukemia, source of controls and ethnicity, the significance of heterogeneity still could not be eliminated completely. In addition, considering variant pathogenetic mechanisms underlying leukemia development, we attempted to perform a comprehensive subgroup analysis stratified by types of leukemia, unfortunately, because of the limited number of studies, we cannot get reliable information and findings concerning chronic leukemia, and only performed stratified analyses on the association between TP53 Arg72Pro polymorphism and risk of ALL (n = 6), risk of AML (n = 7), and risk of other types of leukemia (n = 3) (Table 2). Therefore, as data from emerging new studies become available, future meta-analysis should address separately the association between genetic variants and different types of leukemia. Lastly, since the leukemia onset involves multiple genetic and environmental factors, although TP53 Arg72Pro polymorphism showed no independent significant association with the susceptibility of this disease, it may have influence on leukemia susceptibility in combination with other elements, which was not analyzed in our study due to the lack of sufficient data.

Study name	Odds ratio	Lower limit	Upper limit	Z-Value	Value
Nakano 2000	0.529	0.288	0.979	-2.028	0.043
Bergamaschi 2004	3.090	1.110	8.600	2.161	0.031
Takeuchi 2005	0.778	0.342	1.757	-0.609	0.543
Kochethu 2006	0.628	0.290	1.349	-1.197	0.231
Ellis 2008	0.997	0.510	1.947	-0.009	0.993
Phang 2008	0.808	0.280	2.332	-0.395	0.693
Xiong 2009	1.560	0.829	2.936	1.378	0.168
Do 2009	3.420	1.758	6.865	3.620	0.000
Chauhan 2011	0.788	0.397	1.564	-0.681	0.496
Dunna 2012a	0.947	0.541	1.660	-0.189	0.850
Dunna 2012b	0.854	0.351	1.217	-1.340	0.180
Chauhan 2012a	0.820	0.417	1.613	-0.574	0.566
Chauhan 2012b	1.417	0.721	2.784	1.010	0.312
de Lourdes Perim 2013	4.182	0.416	42.000	1.216	0.224
Chen 2013	2.173	1.278	3.695	2.865	0.004
El-Danasouri 2014	1.400	0.392	4.997	0.518	0.604
	1.133	0.844	1.521	0.830	0.406

Meta Analysis

FIGURE 2. Overall ORs for leukemia susceptibility and TP53 gene polymorphism under the Pro/Pro versus Arg/Arg model with random effects model. ORs = odds ratio.

FIGURE 3. Forest plot of sensitivity analysis (Pro/Pro vs Arg/Arg model).
Despite the above-mentioned limitations, the results in the present meta-analysis still had certain reliability. First, there was no significant publication bias among selected studies. Second, none among included studies had crucial impact on overall results, which indicated the stability of the outcomes. And last, the meta-analysis itself presents a more powerful tool compared with any single study.

In conclusion, although TP53 gene polymorphism has been confirmed to be associated with increased risk of some malignancies, this meta-analysis suggests that TP53 codon 72 polymorphism may not be independently associated with leukemia susceptibility, especially for AML and ALL. In the future, larger-scale case-control studies are needed to further investigate the association between genetic variants and different types of leukemia separately.

REFERENCES

1. Satoh Y, Matsumura I, Tanaka H, et al. C-terminal mutation of RUNX1 attenuates the DNA-damage repair response in hematopoietic stem cells. Leukemia. 2012;26:303–311.
2. Li SY, Ye JY, Liang EY, et al. Association between MTHFR C677T polymorphism and risk of acute lymphoblastic leukemia: a meta-analysis based on 51 case-control studies. Med Sci Monit. 2015;21:740–748.
3. Chen J, Liu Y, Cai QQ, et al. Type D personality parents of children with leukemia tend to experience anxiety: the mediating effects of social support and coping style. Medicine (Baltimore). 2015;94:e627.
4. Kowalczyk J, Nurzynska-Flak J, Armata J, et al. Incidence and clinical characteristics of second malignant neoplasms in children: a multicenter study of a polish pediatric leukemia/lymphoma group. Med Sci Monit. 2004;10:CR117–122.
5. Weng Y, Lu L, Yuan G, et al. p53 codon 72 polymorphism and hematological cancer risk: an update meta-analysis. PLoS One. 2012;7:e45820.
6. Descatha A, Jenabian A, Conso F, et al. Occupational exposures and haematological malignancies: overview on human recent data. Cancer Causes Control. 2005;16:939–953.
7. Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9:701–713.
8. Hainaut P, Wiman KG. 30 years and a long way into p53 research. Lancet Oncol. 2009;10:913–919.
9. Zeng XT, Luo W, Geng PL, et al. Association between the TP53 codon 72 polymorphism and risk of oral squamous cell carcinoma in Asians: a meta-analysis. BMC Cancer. 2014;14:469.
10. Tsui IF, Poh CF, Garnis C, et al. Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. Int J Cancer. 2009;125:2219–2228.
11. Schulz E, Kashofer K, Heitze R, et al. Preexisting TP53 mutation in therapy-related acute myeloid leukemia. Ann Hematol. 2015;94:527–529.
12. Sasca D, Hahnle PS, Szybinski J, et al. SIRT1 prevents genotoxic stress-induced p53 activation in acute myeloid leukemia. Blood. 2014;124:121–133.
13. Abdel Hamid TM, El Gamal MM, Ibadet GT, et al. Clinical impact of SNP of P53 genes pathway on the adult AML patients. Hematologics. 2015;20:328–335.
14. Ara S, Lee PS, Hansen MF, et al. Codon 72 polymorphism of the TP53 gene. Nucleic Acids Res. 1990;18:4961.
15. Bergamaschi G, Merante S, Orlandi E, et al. TP53 codon 72 polymorphism in patients with chronic myeloid leukemia. Haematologica. 2004;89:868–869.
16. Zeng X, Zhang Y, Kwong JS, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med. 2015;8:2–10.
17. Li S, Zeng XT, Ruan XL, et al. Association between XPD Lys751Gln polymorphism and bladder cancer susceptibility: an updated and cumulative meta-analysis based on 6,836 cases and 8,251 controls. Mol Biol Rep. 2014;41:3621–3629.
18. Zeng XT, Liu DY, Kwong JS, et al. Meta-analysis of association between interleukin-1beta C-511T polymorphism and chronic periodontitis susceptibility. J Periodontol. 2015;1:1–16.
19. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–1558.
20. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560.
21. Ruan XL, Li S, Zeng XT, et al. No association between cytochrome P450 2D6 gene polymorphism and risk of acute leukemia: evidence based on a meta-analysis. Chin Med J (Engl). 2013;126:3750–3753.
22. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634.

FIGURE 4. Funnel plot for publication bias (Pro/Pro vs Arg/Arg model).
23. Nakano Y, Naoe T, Kiyoi H, et al. Poor clinical significance of p53 gene polymorphism in acute myeloid leukemia. *Leuk Res*. 2000;24:349–352.

24. Ellis NA, Huo D, Yildiz O, et al. MDM2 SNP309 and TP53 Arg72Pro interact to alter therapy-related acute myeloid leukemia susceptibility. *Blood*. 2008;112:741–749.

25. Xiong X, Wang M, Wang L, et al. Risk of MDM2 SNP309 alone or in combination with the p53 codon 72 polymorphism in acute myeloid leukemia. *Leuk Res*. 2009;33:1454–1458.

26. Chauhan PS, Ihsan R, Mishra AK, et al. High order interactions of xenobiotic metabolizing genes and P53 codon 72 polymorphisms in acute leukemia. *Environ Mol Mutagen*. 2012;53:619–630.

27. Dunna NR, Vure S, Sailaja K, et al. TP53 codon 72 polymorphism and risk of acute leukemia. *Asian Pac J Cancer Prev*. 2012;13:347–350.

28. El-Danasouri NM, Ragab SH, Rasheed MA, et al. MDM2 SNP309 and p53 codon 72 genetic polymorphisms and risk of AML: an Egyptian study. *Ann Clin Lab Sci*. 2014;44:449–454.

29. Takeuchi S, Matsushita M, Tsukasaki K, et al. P53 codon 72 polymorphism is associated with disease progression in adult T-cell leukaemia/lymphoma. *Br J Haematol*. 2005;131:552–553.

30. Kochethu G, Delgado J, Pepper C, et al. Two germ line polymorphisms of the tumour suppressor gene p53 may influence the biology of chronic lymphocytic leukaemia. *Leuk Res*. 2006;30:1113–1118.

31. Phang BH, Linn YC, Li H, et al. MDM2 SNP309 G allele decreases risk but does not affect onset age or survival of Chinese leukaemia patients. *Eur J Cancer*. 2008;44:760–766.

32. Do TN, Ucisik-Akkaya E, Davis CF, et al. TP53 R72P and MDM2 SNP309 polymorphisms in modification of childhood acute lymphoblastic leukemia susceptibility. *Cancer Genet Cytogenet*. 2009;195:31–36.

33. Chauhan PS, Ihsan R, Yadav DS, et al. Association of glutathione S-transferase, EPHX, and p53 codon 72 gene polymorphisms with adult acute myeloid leukemia. *DNA Cell Biol*. 2011;30:39–46.

34. Chen J, Zhu B, Li Y. Genetic variations in MDM2 and P53 genes confer risk for adult acute lymphoblastic leukemia in a Chinese population. *DNA Cell Biol*. 2013;32:414–419.

35. de Lourdes Perim A, Guembarovski RL, Oda JM, et al. CXCL12 and TP53 genetic polymorphisms as markers of susceptibility in a Brazilian children population with acute lymphoblastic leukemia (ALL). *Mol Biol Rep*. 2013;40:4591–4596.

36. Legrand F, Renneville A, Macintyre E, et al. The spectrum of FIP1L1-PDGFRA-associated chronic eosinophilic leukemia: new Insights based on a survey of 44 cases. *Medicine*. 2013;92:273–284.

37. Francisco G, Menezes PR, Eluf-Neto J, et al. Arg72Pro TP53 polymorphism and cancer susceptibility: a comprehensive meta-analysis of 302 case-control studies. *Int J Cancer*. 2011;129:920–930.