ABSTRACT

Without a doubt, plants take up toxic substances such as heavy metals which are transferred along the food chain. These constrain should not be overlooked due to the importance of vegetables in the human diet, hence this study was aimed to determine the heavy metal concentrations in green leafy vegetables from Oluku dumpsite and a nearby farm during the dry season (2020) and the rainy season (2021). In this study, samples (green leaves, water leaves, bitter leaves and fluted pumpkin leaves) were randomly collected and analyzed using the dry ashing method and atomic absorption spectrophotometry method. Results obtained showed that chromium and manganese concentrations were above the permissible limits set by FAO/WHO guideline values in all the samples, except bitter leaves which were within the FAO/WHO safe limit. The other heavy metals (mercury, lead, cobalt, cadmium and copper) analyzed were below the detectable limit of the atomic absorption spectrophotometer used. This study revealed that dumpsites and lands close to the dumpsite should not be used in the cultivation of vegetables because green leaves, water leaves and pumpkin leaves bioaccumulated chromium and manganese above the FAO/WHO safe limit for consumption.

Keywords: Atomic absorption spectrophotometry method, Dry ashing method, Dry season, Heavy metals, Rainy season, Vegetables
INTRODUCTION

Heavy metals are elements characterized by high atomic mass and high density of at least 5 g cm\(^{-3}\). They constitute an ill-defined group of organic chemicals that exhibit metallic properties including transition metals, metalloids, lanthanides, actinides, with five times the specific gravity of water (Sharma et al., 2014). Heavy metal is not toxic in itself, rather it is toxic when its concentration in plants and animals reaches a certain level. Studies have shown that cobalt, copper, iron, manganese, molybdenum, nickel and zinc only become harmful when their internal concentration reaches a certain level (Klaus, 2010). On the other hand, many of them, e.g., mercury, cadmium, arsenic, chromium, thallium, lead, etc. exert toxic effects at low concentrations (Peratta-Videa, 2009).

Soils contaminated with heavy metals have become one of the major environmental problems around the world (Gratao et al., 2015). One of the key sources of environmental contamination is improper solid waste management (Kimani, 2007). Uncontrolled disposal of solid waste generates serious heavy metals pollution occurring in the water, soil and plants (Vongdala et al., 2019). In developing countries open dumping of solid wastes in uncontrolled sites, open burning of waste fractions and the mismanagement of the leachate produced in final disposal sites are the main issues (Modak et al., 2015). For example in Abuja, the capital city of Nigeria, more than 250,000 tons of waste were generated per year in 2010, these waste were either dumped in open dumps, buried, or burnt. Leachate from the buried wastes flowed to the surface, especially during rainy seasons (Aderoju et al., 2018). Heavy metals contaminate farmland other than dumpsites through the application of fertilizers (Wei et al., 2020), pesticides (Alengebawy et al., 2021), bio-solids and manures (Li et al., 2019), wastewater (Bjuhr, 2007; Geoffrey et al., 2020).

Vegetables are an important part of the human diet because they contain nutrients such as proteins, vitamins and minerals with significant health benefits (Arif et al., 2016). There is an inherent tendency of plants to take up toxic substances including heavy metals that are subsequently transferred along the food chain (Singh et al., 2010). As a result, heavy metal contamination in vegetables should not be overlooked, as vegetables are important components of the human diet. One of the most critical aspects of food quality assurance is heavy metal contamination of food items (Khan et al., 2008). Heavy metals are primarily found in vegetable crops’ growth media (soil, air and nutrients solutions), where they are absorbed by the roots or foliage (Page and Feller, 2015). The toxic and detrimental imparts of heavy metals become apparent only when long-term consumption of contaminated vegetables occurs. Regular monitoring of heavy metals in vegetables should be performed to prevent excessive build-up of these heavy metals in the human food chain (Khanna and Khanna, 2011).

Vegetables can take up and accumulate heavy metals in quantities high enough to cause clinical problems to humans (Toth et al., 2016). Heavy metals are persistent in the environment and are subject to bioaccumulation in food chains. They are easily accumulated in edible parts of leafy vegetables as compared to grain or fruit crops (Mapanda et al., 2005). Therefore this study was aimed to ascertain the level of heavy metals contamination across the wet and dry seasons in green leafy vegetables; Water leaves (Talinum triangulare), Green leaves (Amaranthus hybridus), Fluted pumpkin leaves (Telfairia occidentalis) and Bitter leaves (Vernonia amygdalina), cultivated in a dumpsite and farmland close to the dumpsite.
The level of heavy metals contamination across the wet and dry seasons in green leafy vegetables; Water leaves (Talinum triangulare), Green leaves (Amaranthus hybridus), Fluted pumpkin leaves (Telfairia occidentalis) and Bitter leaves (Vernonia amygdalina), cultivated in a dumpsite and a farmland close to the dumpsite.

METHODOLOGY

STUDY AREA

This study was conducted on the Oluku waste dumpsite (Latitude 6.2298 0N and Longitude 5.5407 0E) near Benin in Ovia North East Local Government Area of Edo State, Nigeria.

SAMPLE COLLECTION

Vegetable samples of water leaves (Talinum triangulare), Green leaves (Amaranthus hybridus), Fluted pumpkin leaves (Telfairia occidentalis) and bitter leaves (Vernonia amygdalina) were randomly collected from Oluku waste dumpsite and a nearby vegetable farm in Benin, Edo State, Nigeria. Samples were collected with a clean stainless knife into a clean dry labelled polythene bag for each vegetable. Three samples of each vegetable were collected during the dry season and subsequently in the rainy season and were sent immediately to the Mycofarms laboratory at Isihor, Benin for analyses.

SAMPLE PREPARATION

The dry ashing method of Gul and Safdar (2009) was used to prepare the vegetable samples in which they were washed with tap water and de-Ionized water to remove air pollutants, followed by oven drying at 105°C for 8h to remove moisture. The dried samples were pulverized, using pestle and mortar, and then sieved through a 0.5 mm mesh size sieve to obtain a uniform particle size. Each vegetable sample was labelled and stored in a dry plastic container pre-cleaned with concentrated nitric acid to prevent heavy metal contamination prior to analysis with Atomic Absorption Spectrophotometer (AAS).

One gram of each vegetable sample was weighed into a crucible and ashed in a muffle furnace at 500°C for 3hours. The ashed samples were energized the next day by gently warming on an electric plate. Each sample was then dissolved in 20% HCl and filtered using Whatman No1 filter paper into a 1000ml volumetric flask and made up to the mark. The concentration of the elements of interest (Hg, Pb, Cr, Co, Cd, Mn and Cu) were determined under standard conditions for each element using standard stock solution. The sample solutions were diluted to bring the concentration of the element into a suitable range for analysis. The heavy metal contents were analyzed by Atomic Absorption Spectrophotometer (Solar 969 Univan series) using the Hill and Fisher method (2017).

DATA ANALYSIS

Data obtained were analyzed using Microsoft excel and results were expressed as mean ± standard deviation.

RESULTS AND DISCUSSION

Table 1 shows the concentrations (mg/kg) of mercury (Hg), lead (Pb), cobalt (Co), chromium (Cr), cadmium (Cd), manganese (Mn) and copper (Cu) in water leaves (Talinum triangulare) and Green leaves (Amaranthus hybridus) obtained from vegetables planted in a dumpsite. The concentrations of Hg, Pb, Co, Cd and Cu were not detected in the vegetable samples. Similar results were obtained for pumpkin leaves (Telfairia occidentalis) and bitter leaves (Vernonia amygdalina) from a farm land in Table 2, all in Benin. The fact that these heavy metals were not detected does not really mean they were not present in the vegetable samples but were found below the detection limit of the Atomic Absorption Spectrophotometer used in this study. In general, the concentrations of Cr and Mn which were detected were very high in the dry seasons when compared with the rainy season, these results are in agreement with
that of Oluyemi et al. (2008) which also observed higher levels of heavy metals in crops during the dry seasons. The concentrations of heavy metals detected in all the vegetable samples were in the order: Mn > Cr.

The mean concentration of Cr in Green leaves, Water leaves, Bitter leaves and pumpkin leaves during the dry season were 18.94, 115.94, 0.40 and 125.36 mg/kg respectively, these values were all higher than the FAO/WHO (2001) permissible limits of 1.3mg/kg of Cr in vegetables except that of bitter leaves which was within the FAO/WHO permissible limit. The values of Cr in these vegetables during the rainy seasons were 15.99, 113.48, 0.24 and 112.69 mg/kg respectively. Although these values in the rainy season were lower than that of the dry season, they were all higher than that of FAO/WHO (2001) permissible limits with the exception of bitter leaves which was within the permissible limits. The reasons for the high concentration of Chromium in green leaves, water leaves and pumpkin leaves can be attributed to the fact that its distribution and translocation in plants depends upon the plants species, the oxidation state of Chromium and also its concentration in the growth medium (Shahid et al., 2017). The United States Environmental Protection Agency (USEPA) listed Cr among the (14) most dangerous substances that can cause serious health issues in living organisms (EPA, 2000). Excessive Cr had been observed to reduce the uptake of essential minerals like iron, magnesium, phosphorus and calcium by making the sorption sites and forming Insoluble complexes (kabata-pendas and Szieke, 2015).

The mean concentration of manganese (Mn) in Green leaves, Water leaves, Bitter leaves and Pumpkin leaves during the dry seasons were 814.67, 844.90, 2.30 and 825.91 mg/kg respectively. These values were all above the FAO/WHO (2001) permissible limit of 500mg/kg except that of bitter leaves which was within the permissible limit. During the rainy season the values of 734.03, 813.23, 1.66 and 639.95 mg/kg were obtained, although lower than the dry season values. They were still higher than that of FAO/WHO (2001) permissible limit with only bitter leaves sample having a value within the safe limit. The high level of manganese in these vegetables could be as a result of high level of manganese in the soil which were bio accumulated by the vegetables (Khan et al., 2018). Researchers such as Sharma et al. (2006) and Yan et al. (2020) suggested that uptake of metals by plants is proportional to the compositional contents and bioavailability. According to Unver et al. (2015) by passing across the boundary of soil and root heavy metals increase in concentration in the crops.

High concentration of Mn is known to have hazardous effects on lungs and brains of humans (O’Neal and Zhang, 2015).

The low values of Mn in bitter leaves are in agreement with the report of Zafar et al. (2019) who also obtained low values of Mn in vegetables. From the results obtained it can be seen that bitter leaves did not bio accumulate chromium or manganese which suggests that the bitter leaves plant has a mechanism of detoxifying chromium and manganese after absorption from the soil in which it is growing.

CONCLUSION

Furthermore, the study indicated that the concentration of chromium and manganese found in the vegetables (Green leaves, Water leaves and Pumpkin leaves) from both the dumpsite and the farm land were above the FAO/WHO (2001) safe limit for consumption, while in bitter leaves the concentration of chromium and manganese were within the safe limit of the FAO/WHO (2001). Based on the ability of green leaves, water leaves and pumpkin leaves to bioaccumulate Cr and Mn in their leaves, they can be applied in phytoremediation of polluted soils. In addition, dumpsites and lands close to dumpsites should not be used in the cultivation of crops.
CONFLICT OF INTEREST

“The author declare that she has no conflicting interest”

REFERENCES

Aderoju, O. M., Dias, G. A. and Goncalves, A. J. (2018). A Gis-based analysis for sanitary landfill sites in Abuja, Nigeria. Environmental Science. Environmental Development and Sustainability 205(44): 1-24. Doi:10.1007/s10668-018-0206-z

Alengebawy, A., Adbelkhalek, S. T., Qureshi, S. R. and Wang, M. Q. (2021). Heavy metals and Pesticides toxicity in Agricultural soil and plants. Ecological risks and human health implications. Toxics 9: 1- 42. https://doi.org/10.3390/toxics9030042

Arif, N., Yadav, V., Singh, S., Ahmed, P., Mishra, R. K., Sharma, S., Tripath, D. K., Dubey, N., K. and Chauhan, D. K. (2016). Influence of high and low levels of plant beneficial heavy metal ions on plant growth and development Frontiers of Environmental Science, Environmental Toxicology 4:69 doi.103389/fenvs.2016.00069

Wei, B., Yu, J., Cao, Z., Meng, M., Yang, L. and Chen, Q. (2020). The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. International Journal of Environmental Research and Public Health 17(5159): 1-13. doi:10.3390/ijerph17155359

Bjuhr, J. (2007). Trace metals in soils irrigated with Waste Water in a periurban Area Downstream Hanoi City. Vietnam, Seminar paper, institution for markvetenskap, sveriges Lantrhuck-Sinivers: Tet (SLU), Uppsala, Sweden. pp.1-5.

EPA (Environmental Protection Agency), (2000). Effluent Limitations Guidelines, pretreatment standards, New source performance standards for the commercial hazardous waste combstor subcategory of the waste combstors point source category. Federal Register. The Daily Journal of the United States Government 65: 4360-4385.

FAO/WHO (2001). Codex Alimentarius Commission. Food additives and contaminants. Joint FAO/WHO food standards programme, ALINORM 01/12A. 300pp.

Gul, S and Safdar, M. (2009). Proximate composition and mineral analysis of cinnamon. Pakistan Journal of Nutrition 8(9): 1456-1460.

Gratao, P. L., Montaro, C. C., Tezotto, T., Cervalho, R. F., Alves, L. R., Peters, L. P. and Azevedo, R. A. (2015). Cadmium stress anti-oxidant responses and root to shoot communication in grafted tomato plants. Biometals 28(5): 893-716.

Khan, S., Cao, Q., Zheng, Y. M., Huang Y. Z. and Zhu, Y. G. (2008). Health risk of heavy metals in contaminated soils and food crops irrigated with waste water in Beijing, China, Environmental Pollution Series 152(3): 686-692.

Khan, Z. I., Ugulu, I., Ahmad, K., Yasmeen, S., Noorka, I. R., Mehmood, N. and Sher, M. (2018). Assessment of trace metal and metalloid accumulation and human health risk from vegetable consumtion through spinach and coriander specimens irrigated with the waste water. Bulletin of Environmental Containment and Toxicolog. 101(6):787-795. Doi: 10.1007/s00128-018-2448-8.

Khan, Z. I., Nisar, A., Ugulu, I., Ahmad, K., Wajid, K., Nadeem, M., Qureshi, T. M., Bashir, H., Munir, M., Noorka I. R., Nawaz, K., Shehzadi, M., Malik, I. S., Memona, H., Sana, M., Ashfaq, A., Abdullah, R., Iqbal, S., Batool, F., Rasheed, M. J. Z., Siddique, S., Mehmood, N., Abbas, T., Ullah, S. and Muqadas, H. (2019). Iron and manganese concentrations of vegetables grown in soil irrigated with waste water: Evaluation of health risk to the public, Pure and Applied Biology 1- 11, http://dx.doi.org/10.19045/bspb.2019.800009.

Khanna, S. and Khanna, P. (2011). Assessment of heavy metal contamination in different vegetables grown in and around urban areas. Research Journal of Environmental Toxicology, 5(1): 162-179.

Kimani, N. G. (2007). Implications of the Dandora Municipal Dumping Site in Nairobi, Kenya. Environmental Pollution and impacts on public health. (UNEP). Nairobi, Kenya. 14pp.
Kinuthia, G. K., Ngore, V., Beti, D., Lugalia, R., Wangila, A. and Kamau, L. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya community health implication. Scientific Reports 10:8434-8447 https://doi.org/10.1038/s41598-020-65359-5

Klaus, J.A. (2016). Definition of “Heavy metals” and their role in biological systems. Acta Physiological Plantarum. 32: 615-619. https://doi.org/10.1007/s11738-009-0455-4.

Li, F., Li, Z., Mao, P., Li, Y., McBride, M. B., Wu, J. and Zhuang, P. (2019). Heavy metal availability, bioaccessibility and leachability in contaminated soil. Effect of pig manure and earthworms. Environmental Science and Pollution Research 26(1): 20030-20039

Li, H., Wu, W., Min, X., Zhan, W., Fang, T., Dong, X. and Shi, Y. (2021). Immobilization and assessment of heavy metals in chicken manure compost amended with rice straw derived biochar. Environmental Science and Pollution Research 26(1): 20030-20039 doi:10.1007/s11738-020-2639594.2021.1885311

Mapanda, F., Mangwayana, E. N., Nyamangara, J. and Giller, K. E. (2005). The effects of long-term irrigation using water on heavy metal contents of soils under vegetables. Agriculture, Ecosystem and Environment 107(1): 151-156.

Modak, P., Wilson, D. C. and Velic, C. (2015). Waste Management’s global status in global waste management outlook, 1st Edn, Chapter 3. UNEP, Athens, Greece. 346pp

Oluyemi, E. A., Fenyuit, G. J., Oyekunle, J. A. O. and Ogungfowokan, A. O. (2008). Seasonal variations in soil and some selected crops at a landfill in Nigeria. African Journal of Biotechnology 7(5): 88-96.

O’Neal, S. L. and Zhang, W. (2015). Manganese toxicity upon overexposure: a decade in Review. Current Environmental Health Reports 2(3): 315 – 328.

Peratta-Videa, J. R., Lopez, M. L., Narayan M., Saupe, G. and Gardea-Torresday, J. (2009). The biochemistry of Environmental heavy metal uptake by plants implications for the food chain. International Journal of Biochemistry and Cell Biology 41(8-9): 1665-1677 doi 10.1016/I.biocel.2009.03.005.

Page, V. and Feller, U. (2015). Heavy metals in crop plants: Transport and Redistribution processes on the whole plant level. Agronomy 5(1):447–463, doi:10.3390/agronomy5030447

Sharma, B., Singh, S. and Siddiqi, N. J. (2014). Biomedical implications of heavy metals induced imbalanced in redox systems. Biomedical Research International 1-26 doi:10.1155/2014/640754.

Sharma, R. I., Agarwal, M. and Marshall F. (2006). Heavy metal contamination in vegetables grown in waste water irrigated areas of Varanasi, India, Bulletin of Environmental Contaminants and Toxicology 77 (2): 312-328.

Singh, A., Sharma, R. K., Agarwal, M. and Marshall, F. M. (2010). Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated areas of Varanasi. Indian International Society for Tropical Ecology 51(1): 375-387.

Toth, G., Hermann, T., Da Silva, M. R. and Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International 88: 299 – 309.

Unver, M. C., Ugulu, I., Durian, N., Baslar, S. and Durham, Y. (2015). Heavy metal contents of Malva Sylvestris sold as edible greens in the local market of Izmir. Ekoloji, 24(96). 13-25. https://doi.org/10.5053/080.

Vongdata, N., Tran, H. D., Xuan, T. D., Teschke, R. and Khanh, T. D. (2019). Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. International Journal of Environmental Research and. Public Health 1: 16-22:

Yan, A., Wang, Y., Tan, S. N., Yusof, M. L. M, Ghosh, S. and Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal polluted land. Frontiers of plant science 11:359. https://doi.org/10.3389//fpls2020.00359.
TABLES

Table 1: Bioaccumulation of heavy metals (mg/kg) in vegetable samples during the dry and rainy seasons in a dump site.

Heavy Metals	Green leaves	Water leaves	FAO/WHO permissible limits	
	Dry season	Rainy season	Dry season	
Hg	ND	ND	ND	0.5
Pb	ND	ND	ND	2.0
Cr	18.94 ± 1.22	15.99 ± 0.64	115.98 ± 1.08	1.3
Co	ND	ND	ND	50
Cd	ND	ND	ND	0.02
Mn	814.67 ± 2.38	734.03 ± 83/30	844.90 ± 1.48	500

Table 2: Bioaccumulation of heavy metals (mg/kg) in vegetable samples during dry and rainy seasons in a vegetable farm

Heavy metals	Bitter leaves	Pumpkin leaves	FAO/WHO permissible limits	
	Dry season	Rainy season	Dry season	
Hg	ND	ND	ND	0.5
Pb	ND	ND	ND	2.0
Cr	0.40 ± 0.03	0.24 ± 0.02	125.36 ± 2.35	1.3
Co	ND	ND	ND	50
Cd	ND	ND	ND	0.02
Mn	2.30 ± 0.08	1.66 ± 0.22	825.91 ± 4.93	500
Cu	ND	ND	ND	10

ND = Not detected

Results are means ± Standard deviations of three replicates per sample in mg/kg