Intensive management disrupts belowground multitrophic resources transfers in response to drought

Mathilde Chomel (mathilde.chomel@manchester.ac.uk)
University of Manchester https://orcid.org/0000-0001-5110-2355

Jocelyn Lavallee
University of Manchester

Nil Alvarez Segura
Eurecat Centre Tecnològic de Catalunya

Elizabeth Baggs
The University of Edinburgh https://orcid.org/0000-0003-2014-2148

Tancredi Caruso
University College Dublin

Francisco de Castro
AgriFood & Biosciences Institute

Mark Emmerson
Queens University Belfast

Matthew Magilton
University of Lincoln

Jennifer Rhymes
Centre for Ecology and Hydrology https://orcid.org/0000-0001-9347-9863

Heather Stott
University of Manchester

Franciska de Vries
University of Manchester https://orcid.org/0000-0002-6822-8883

David Johnson
University of Manchester https://orcid.org/0000-0003-2299-2525

Richard Bardgett
University of Manchester https://orcid.org/0000-0002-5131-0127

Article

Keywords: grassland, plant-soil interaction, pulse-labelling, root-derived C, Collembola, Acari, microorganisms, soil biodiversity, stable isotope

Posted Date: February 7th, 2022
Intensive management disrupts belowground multi-trophic resources transfers in response to drought

Mathilde Chomel1,2*, Jocelyn M. Lavallee2,3, Nil Alvarez-Segura1,4, Elizabeth M. Baggs1,5, Tancredi Caruso6,7, Francisco de Castro6,8, Mark C. Emmerson7, Matthew Magilton7,9, Jennifer M. Rhymes2,10, Heather Stott2, Franciska T. de Vries2,11, David Johnson1,2, and Richard D. Bardgett2

1. Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen AB24 3UU, UK
2. Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
3. Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
4. Department of Climate Change, EURECAT, Technological Centre of Catalonia, Spain
5. Global Academy of Agriculture and Food Security, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
6. School of Biological Sciences and Institute for Global Food Security, Queen’s University of Belfast, Belfast, UK
7. School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
8. AgriFood & Biosciences Institute, Belfast, UK.
9. School of Life Sciences, University of Lincoln, Lincoln, UK
10. Centre for Ecology and Hydrology, Environment Centre Wales, Bangor LL57 2UW, UK
11. Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
Abstract

Modification of soil food webs by historical land management may alter the response of ecosystem processes to climate extremes, but empirical support for this is limited and the mechanisms involved remain unclear. Here, we quantified how historical grassland management modifies transfers of recent photosynthate and soil nitrogen through plants and soil food web in response to drought, using in situ 13C and 15N pulse-labelling in paired intensively and extensively managed fields. We show that intensive management decreased plant carbon capture, its transfer through key components of food webs and soil respiration compared to extensive management. Drought only affected carbon transfer pathways in intensively managed grasslands, by increasing plant C assimilation but decreasing its transfer to plant roots, bacteria and Collembola. However, drought lowered the reduction of added nitrate to nitrous oxide in extensively managed grassland only. Our findings indicate that intensive management disrupts fluxes of recent photosynthates belowground, which impaired resistance of this process in response to drought. By contrast, extensive grassland management provides a greater potential to buffer impacts to drought by promoting the transfer of recent photosynthate belowground. Our work highlights that capture and rapid transfer of photosynthate through multitrophic networks is a key process for maintaining grassland resilience to drought.

Introduction
All organisms within ecosystems are interlinked by energy flows in complex multitrophic networks, and changes in the network structure modify these energy flows¹. Theoretical evidence suggests that shifts in food web structure play an important role in regulating the stability of soil functions following perturbations and impair their ability to buffer future extreme climatic events²–⁵. Grasslands are under threat from ongoing degradation caused by multiple co-occurring drivers, including management intensification and climate extremes⁶. Drought events are a recurring phenomenon in many ecosystems and are predicted to increase in frequency and intensity in the coming decades⁷,⁸. Consequently, there is a need to understand the interactions between these different drivers to inform sustainability policy aimed at protecting the multiple ecosystem services that grasslands provide⁶,⁹.

Intensive grassland management, characterised by the regular use of inorganic fertilisers and high livestock stocking densities, is known to decrease plant diversity¹⁰, decrease the abundance and diversity of arbuscular mycorrhizal (AM) fungi¹¹ and soil biota¹²,¹³, and induce shifts in the composition of soil microbial communities¹²–¹⁴. Such changes have important consequences for biogeochemical cycles because soil food webs associated with agricultural intensification, including shifts in the relative abundance of bacterial and fungal energy channels, are often linked with faster nutrient mineralisation rates, which could potentially contribute to greater losses of carbon (C) and nitrogen (N) from soil¹⁵–¹⁸. A critical gap in our knowledge concerns how shifts in food web structure and the relative abundance of fungi and bacteria modulate transfers of C from plants to below ground pools and fluxes, and the capture of growth-limiting nutrients by plants from soil energy channels.

Recent empirical studies indicate that intensive management can decrease the resistance to drought of plant productivity and soil respiration¹⁹,²⁰ of soil food web biomass¹⁹, and of C allocation to soil microbial communities²¹. However, it is becoming apparent that the stability of ecosystem functions in response to perturbations can only be understood if multiple trophic
levels and interactions among them are considered. As such, there is a need to study the role of food web structure from a multitrophic perspective, including plants and belowground organisms, in modulating the response of processes of C and N loss to perturbations, such as drought. Furthermore, while there is growing awareness of the importance of rhizodeposition as a driver of belowground energy flow and the structure and functions of soil food webs, it remains unclear how the resilience of this process to perturbations, such as drought, responds to changes in land use. These two major gaps in our knowledge are essential to facilitate reliable predictions of soil C and N cycling and sequestration in response to dual pressures of agricultural intensification and increased frequency and intensity of climate extremes.

We hypothesised that: (1) extensive grassland management promotes the transfer of photosynthetic C from plants to AM fungi and the decomposer food web, thereby lowering C and N losses as greenhouse gases (CO₂ and N₂O) and buffering C and N fluxes against drought; and (2) intensive management disrupts this coupling of C flow from plants to the soil food web, leading to greater soil C and N losses as CO₂ and N₂O and reduced resistance of C and N fluxes to drought.

We tested these hypotheses by simulating summer drought using rainfall shelters on paired extensively and intensively managed mesotrophic grasslands across three geographically distinct locations in northern England. In both control and drought plots, plant communities and soil food web (microorganisms and mesofauna) biomass and composition were determined. To investigate the short-term allocation of N and recently assimilated C belowground, we pulse-labelled plants with ^13C-CO₂, and soil with ^15N-NO₃ at the end of the simulated drought. We traced the incorporation of ^13C and ^15N into plant shoot and roots, microbial biomarkers, soil mesofauna and soil CO₂ and N₂O fluxes over a 20-day period.

Materials and methods
Field sites and experimental design

The field experiment was carried out in 2016 across a series of mesotrophic grasslands located in the Yorkshire Dales, northern England (mean annual temperature 7.3°C, mean annual precipitation 1382 mm). Three geographically distinct sites were selected, each with adjacent, paired grasslands (field) with a long term (>20 years) history of intensive or extensive grassland management on the same soils and of similar topography (see Table S1 for more details).

Extensively managed grasslands had not received any additions of inorganic fertiliser and had been grazed at low stocking densities by sheep or cattle (typically grazed at <1 livestock unit ha\(^{-1}\) y\(^{-1}\))\(^{30}\). Intensively managed grasslands received >100 kg N ha\(^{-1}\) y\(^{-1}\) and were grazed at high stocking densities or for longer (typically grazed at 2-3.5 livestock unit ha\(^{-1}\) y\(^{-1}\))\(^{30}\), and were cut for hay once a year\(^{30}\). In general, plant communities of the extensively managed grasslands were species-rich *Anthoxanthum odoratum-Geranium sylvaticum* hay meadows (MG3 or subcategories), whereas plant communities of intensively managed grasslands were species-poor and classified as *Lolium perenne-Cynosurus cristatus* (MG6, MG7, and subcategories), according to the UK National Vegetation Classification\(^{31}\). The soils were all humose loamy brown earth (pH ~5.47; 11.4 % total C; 0.76 % total N).

Drought was simulated by placing three transparent roofs (1.5 m * 1.3 m) alongside delimited control plots in each field for 60 days (17-19 of May – 17-19 of July 2016) designed to simulate a 100-year drought event\(^{32}\). In each plot a 40 cm metallic collar (hereafter “subplot”) was inserted into the first 7 cm of soil before the treatment was initiated. At the centre of this collar a smaller plastic collar of 11 cm diameter was inserted and vegetation inside it was clipped to allow measurement of gas fluxes from the soil only. After the removal of the shelters, each plot (control and drought) received four litres of water to release the drought and encourage photosynthetic activity and the isotopic labelling started as detailed below.
Isotopic labelling

Figure 1. Conceptual diagram of the grassland soil food web of this study with representation of the expected flow of 13C (blue) and 15N (yellow) through plants and trophic groups. The arrows represent resource transfer between trophic groups. The isotopic enrichment is expected to decrease at higher trophic levels of the food web. Pictures of soil mesofauna from P. Lebeaux (www.animailes.com) and M. Chomel.

We followed the movement of 13C and 15N into the plant shoots, through the soil community (microorganisms and mesofauna) and back to the atmosphere as CO$_2$ and N$_2$O emissions across a period of 20-days (Fig. 1). Five hours after the end of the drought, 130 ml of a solution of NH$_4$15NO$_3$ (Nitrate-15N, 98 atom%; CK Isotopes Ltd, Leicestershire, UK) was applied directly into the first 7 cm of soil with a side-hole needle by injecting into 20 locations within the subplots. The quantity injected was equivalent to the annual N deposition in the UK.
(20 kg N ha⁻¹). Three hours later, a composite soil sample was taken consisting of 3 x 1 cm diameter cores from each subplot. The following morning, vegetation in the same subplots were labelled with 99 atom% ¹³C-CO₂ (Sigma aldrich). We used an air-tight chamber constructed with a plastic bell cloche (approx. 20 L) equipped with 2 small fans to disperse the gas, and a rubber septum at the top to inject the gas. Prior to the start of the ¹³C labelling ca. 10:00 GMT, the photosynthetic rate was measured using an infrared gas analyser (EGM-4, PP Systems, Hitchin, UK) to determine the timing of the CO₂ injections. During approximately 2-3 hours, 25 mL of ¹³C-CO₂ were regularly injected through the septum for a total of 250 ml per subplot. The twelve subplots within a site (i.e. both extensive and intensive management regimes) were labelled at the same time. The three sites were labelled over 3 consecutives days for logistical reasons.

Immediately after the ¹³C-labelling, a small subsample of plant shoots (ca. 0.5 g), 3 small soil cores (1 cm diameter), and gas samples were taken from each plot. At 1, 2, 5, 10 and 20 days after the ¹³C-CO₂ pulse labelling, gas samples were taken and a fifth of the soil from the subplots (metal ring) was harvested (Figure S1). We refer to day 1 as being approximately 24h after ¹³C labelling and 36h after ¹⁵N addition. The holes created were filled back with sand to minimise gas exchange from the exposed surface and disturbance. Four supplementary cores outside the plots were taken per field to determine the ¹³C and ¹⁵N natural abundance signatures of each C and N pool.

Plants were divided into shoot and root fractions, washed (for the roots fractions only), oven dried at 60°C and weighed prior to analysis. All samples were analysed for total C and N content and δ¹³C and δ¹⁵N signatures using an elemental analyser (PDZ Europa ANCA-GSL, Sercon Ltd, Crewe, UK) coupled to a 20-20 isotope ratio mass spectrometer (Sercon Ltd, Crewe, UK). A portion of soil was sieved and freeze dried prior to the PLFA extractions. From
the remaining soil, mesofauna were extracted using Tullgren funnels over 7 days and stored in 70% ethanol.

Soil microbial community analysis

Soil microbial communities were characterised by the extraction of the phospholipid fatty acids (PLFAs), according to Buyer and Sasser method \(^3\). Details of the method can be found in Chomel et al. (2019). The δ^{13}C signatures of individual PLFAs and their quantification were analyzed by GC–C–IRMS using a GC Trace Ultra with combustion column attached via a GC Combustion III to a Delta V Advantage IRMS (Thermo Finnigan, Bremen, Germany; Thornton et al. 2011). The internal standard 19:0 phosphatidylcholine (Avanti Polar Lipids) added at the beginning of the extraction procedure was used for calculating concentrations. In summary, 36 PLFAs were identified in these samples, of which 20 microbial specific PLFAs comprising approximately 80% of the total concentration were used in subsequent data analysis. The fatty acids i15:0, a15:0, i16:0 and i17:0 were used as biomarkers for Gram positive bacteria; 16:1ω7, 18:1ω7, cy17:0 and cy19:0 were used as biomarkers of Gram-negative bacteria; and 15:0, 17:0 were used as general bacterial markers \(^3\). The fatty acids 10Me17:0 and 10Me18:0 were used as specific biomarkers of actinomycetes, and 17:1ω8c and 19:1ω8 were used as biomarkers of methane oxidizing bacteria \(^3\). Gram-positive, Gram-negative, and general bacterial markers were summed to give total bacterial PLFA. 18:2ω6,9 was used as a marker of fungi (Bååth, 2003; Bååth and Anderson, 2003) and 16:1ω5 was used as a marker of AM fungi \(^3\). Although 16:1ω5 is used widely for estimating AM fungal biomass, its use can lead to uncertainties because bacteria can contribute to this pool \(^3\). However, in our case, the 13C-enrichment of this PLFA was very distinct from all bacterial PLFAs, which gave confidence in its use to estimate AM fungal biomass and its 13C uptake. The δ^{13}C value of each PLFA molecule was corrected for the C added during derivatization using the formula...
\[\delta^{13}C_{PLFA} = \frac{C_{FAME} \times \delta^{13}C_{FAME} - C_{MeOH} \times \delta^{13}C_{MeOH}}{C_{PLFA}} \]

where \(C_{FAME} \), \(C_{MeOH} \), and \(C_{PLFA} \) denote the number of carbon atoms in the FAME, methanol, and PLFA, respectively, and \(\delta^{13}C_{FAME} \) and \(\delta^{13}C_{MeOH} \) are the measured \(^{12}\text{C}/^{13}\text{C} \) isotope ratios of the FAME and methanol, respectively (methanol \(\delta^{13}C = -29.3\%o \)). While the fungi are represented by only one PLFA, the bacterial community is represented by several PLFAs. To calculate an overall \(^{13}\text{C}\)-enrichment (atom\% excess) of bacterial PLFA, the net \(^{13}\text{C}\) of all individual bacterial PLFA were summed and divided by the sum of the net \(^{13}\text{C}\) of all individual bacterial PLFA using the following equation:

\[\text{Atom}^{13}\%C_{BacterialPLFA} = \frac{\sum (C_{PLFA_i} \times \text{atom}^{13}\%C_{PLFA_i})}{\sum C_{PLFA_i}} \]

Where \(C_{PLFA_i} \) is the amount of carbon from individual PLFA and \(\text{atom}^{13}\%C_{PLFA_i} \) is the \(^{13}\text{C}\)-enrichment of the individual PLFA.

Mesofauna

Individuals were counted and identified under a dissecting microscope to order and trophic group for Collembola \(^{36}\) and Acari \(^{37}\). Other invertebrates were separated according to taxa and trophic group. The biomass of each order/taxa was estimated by measuring the average body length (mm) per field, using the formula by Caruso and Migliorini \(^{38}\) for the mites and by Ganihar \(^{39}\) for the other orders. The samples were further grouped into 7 main trophic groups in order to have sufficient material to analyse \(^{13}\text{C}\) and \(^{15}\text{N} \): detritivorous Collembola, detritivorous mites (oribatid, astigmata and prostigmata mites), annelids, other detritivorous (detritivorous coleoptera, myriapoda and diptera larvae), herbivores (hemiptera and thysanoptera) predaceous mites (mesostigmata and predaceous prostigmata) and predaceous fauna (arachnida, chilopoda, predatory coleoptera and symphyla). Each of these groups was transferred into a tin capsule in 70 % ethanol, oven-dried and weighed prior to analysis. All the
samples were analysed for total C and N content and δ13C and δ15N using a Flash EA 1112 Series Elemental Analyser connected via a Conflo III to a DeltaPlus XP isotope ratio mass spectrometer (Thermo Finnigan, Bremen, Germany).

Gas samples

Gas samples were taken by placing a 1.2 L dark chamber over the gas sampling core. Immediately after the closure of the chambers, and after 10, 20, and 30 minutes, 15 mL gas samples were taken from the headspace of the chamber using a gas-tight syringe fitted with an SGE syringe valve and transferred into pre-evacuated 12 mL gas-tight vial (Labco Ltd. UK). At the last time point, an additional 120 mL gas sample was taken and stored in an He-flushed, pre-evacuated 120 ml gas bottle fitted with Silicone/PTFE septa (Supelco) for 15N-N\textsubscript{2}O analysis. CO\textsubscript{2} and N\textsubscript{2}O concentrations were analysed on all samples in a gas chromatograph 7890A GC (Agilent Technologies, USA) configured with a single channel using two detectors, an FID and a micro-ECD. The δ13C values of the samples from the last sampling point were analysed on a Picarro G2131-i Isotope and Gas Concentration Analyser (cavity ringdown spectrometer). The δ15N values of the samples from the last sampling point were analysed using a Sercon Ltd isotope ratio mass spectrometer following cryofocusing in an ANCA TGII gas preparation module (Sercon Ltd, Crewe, UK).

13C and 15N calculations

The isotopic concentration data was converted from δ13C and δ15N values (‰) to atom % excess 13C and 15N by subtracting the atom % 13C and atom % 15N of unlabelled controls from each enriched sample 40. 13C- and 15N-enrichment is independent of the pool size and is indicative of the replacement of C or N from the pool by newly incorporated plant-derived 13C or fertiliser-derived 15N.
Although the plants were pulse-labelled with the same amount of 13C-CO$_2$, differences in photosynthetic and respiration rates caused the initial amount of 13C fixed to differ among subplots. To compare the relative transfer of 13C from the plant shoot into belowground C pool (roots, microorganisms and soil fauna) in the different systems, the results were expressed as a percentage of the initial plant shoot 13C enrichment.

The net incorporation of the 13C or 15N tracer into the different carbon/nitrogen pools for each subplot was calculated as:

$$\text{Net}^{13}\text{C pool}=\text{C pool} \times \text{atom }\%\text{ }^{13}\text{C pool}$$

where C pool is the amount of C in each pool (gC per subplot) and atom%13C pool is the atom % excess of 13C of each pool. The same equation is used for the net incorporation of the 15N, replacing 13C and C by 15N and N. In order to evaluate the recovery of the stable isotopes in the system, we calculated the fraction of the isotope in the different compartments as the ratio of the net incorporation amount in a compartment relative to the total initial uptake of 13C by the plant shoot or the total 15N label injected in the soil. These were calculated only for the relevant time point for which the enrichment was maximal: at day 1 for the plant and microorganisms and at day 5 for the soil fauna.

Data analysis

All analyses were performed using R software (version 4.1.0. R core Team, 2017). To assess the role of land management in driving the soil properties and plant biomass, we performed a principal component analysis (PCA). Principal coordinates analysis (PCoA) was applied to estimate the soil community structure using Bray–Curtis dissimilarities based on Hellinger transformed community data. A permutational multivariate analysis of variance (PERMANOVA) was performed with 999 permutations to assess whether there were significant differences among grassland management. Distance comparisons in
PERMANOVA can be sensitive to between-group differences in dispersions, so we used PERMDISP \(^4^3\) to determine whether the dispersions of each group around their group centroid were significantly different from one another.

To analyse the effect of land management on plant and soil organisms biomasses we used a mixed model with time and site as crossed random effects on data from control plots only \(^4^4\). To analyse the effect of land management on the \(^{13}\)C- and \(^{15}\)N-enrichment we used a mixed model with site as random effect and allowed different variance for each time point (with the function weights=varIdent(1|time)).

To quantify drought impacts, and its interaction with grassland management, we used an effect size calculated as the log Response Ratio (logRR), which quantifies the proportional difference between mean \(^{13}\)C- or \(^{15}\)N-enrichment in control and drought conditions \(^4^5\). On a log scale, an effect size of 0 means there is no difference, a positive value means a positive effect of drought, while a negative logRR means a negative effect of the drought. To increase robustness, and because the trend of the response variable over time was relatively similar, we used the average value of each replicate over time in our calculation of logRR. We then performed a t-test against a mean of 0.

Results

1) **Grassland management, soil food web composition and soil functioning**

Land management modified plant communities and soil properties, with greater aboveground plant biomass, soil pH, nitrate concentration, and bulk density, and lower water holding capacity and belowground plant biomass in intensively managed grasslands compared to extensively managed grasslands (Fig S2). The influence of land management on soil CO\(_2\) efflux was not consistent through the sampling period (interaction management*time, F=2.86, P =
0.0162, Fig S3), with higher CO$_2$ efflux in extensively managed compared to intensively managed grassland at time 0 and the opposite at day 20 (Fig S3). There was a trend of higher soil N$_2$O efflux in extensively managed grassland compared to intensively managed grassland on the first day after the pulse labelling, but this was not significant (interaction time*management, $P = 0.08$, Fig S3).

Figure 2. Principal coordinates analysis (PCoA) of soil food web communities from grasslands with different land management (extensive in orange, intensive in blue). The PCoA was based on Bray-Curtis distance using soil mesofauna abundances (individuals m$^{-2}$) and PLFA biomass (g m$^{-2}$). Grey arrows show the correlation vectors of the variables with the ordination. Significance was tested by Monte Carlo permutation against 999 random datasets and variables with $P > 0.05$ were kept (see table S2).
Collembola was the most abundant group (30,949 ± 3,718 ind.m⁻², 80% were within the entomobryomorpha group), followed by detritivorous mites (25,114 ± 2,772 ind.m⁻², 88% were oribatids) and predatory mites (20,094 ± 2,279 ind.m⁻²). Soil community composition differed significantly between extensive and intensive grassland (PERMANOVA, F = 5.12, P < 0.001). Despite this finding, there was substantial overlap in community composition (Fig. 2) and we detected significant differences in the distribution of data, with more dispersion in soil communities in extensive grassland (PERMISP, F = 9.1, P = 0.033). With the soil fauna pooled by trophic groups, the biomass of detritivorous mites (mainly Oribatids) was smaller (F = 7.03, P = 0.0096), while the biomass of other decomposers (mainly diptera larvae) was greater (F=9.08, P = 0.0034) in intensively managed compared to extensively managed grasslands (Figure S4). Intensive management did not have a significant impact on bacterial, fungal, AM fungal and actinobacteria biomass, nor the fungal/bacterial ratio across grassland sites (Fig S4).

2) Effects of land management on \(^{13}\)C and \(^{15}\)N flow
Figure 3 Temporal dynamics of 13C in the plant shoot (upper panel), CO$_2$ (middle panel) and belowground pools (lower panel) following 13C pulse labelling of plant shoots (time 0). The heat map shows the 13C-enrichment in different pools and fluxes in grassland under extensive (left) or intensive (right) management. The plant shoot enrichment is expressed in atom% excess; to be able to compare the flux of C from the plant to belowground, all the other variables are expressed relative to the initial 13C fixed by the plants (relative 13C enrichment, %). Note difference in scales to visualise the relative enrichments. Results of the effect of the grassland management are reported with *** $P < 0.01$, ** $P < 0.01$, * $P < 0.05$, see Table S2 for details. Grey colour indicates no data available.
Figure 4 Temporal dynamics of ^{15}N atom % excess aboveground (upper panel) and belowground (lower panel) in plant and soil fauna following ^{15}N pulse labelling. The heat map shows the ^{15}N atom % excess in the different groups in grassland under extensive (left) or intensive (right) management. The two panels have different scales as the enrichment of aboveground nitrogen pools and fluxes is substantially greater than any of the below ground pools. There were no significant effects of grassland management: see Table S3 for statistical results. Grey colour indicates no data available.

Plant leaves in the intensively managed grassland were significantly less enriched in ^{13}C, consistently across the three sites, than in extensively managed grassland (Fig. 3, $P = 0.015$). The maximum ^{13}C-enrichment in plant shoots occurred at the end of the labelling period and was (on average) 0.55 and 0.39 atom% excess in extensively and intensively managed grassland, respectively. The enrichment decreased substantially 1 day after labelling to an
average of 0.13 and 0.11 atom% excess (Fig. 3). The uptake of 15N in plant shoots was
unaffected by grassland management, but increased gradually over two days after the labelling
and reached a plateau of 4.5-5 atom % excess (Fig 4). Land management had no detectable
influence on the 13C- or 15N-enrichment of plant roots (Fig. 4 and 5).

Among microorganisms, fungi had the highest enrichment of 13C, whereas among soil
fauna, Collembola had the highest enrichment of 13C (Fig. 3). 13C enrichment was greatest in
AM fungi and detritivorous mites in extensively managed compared to intensively managed
grassland (Fig 3, \(P < 0.05\), see Table S3). No management effects on 15N enrichment of soil
fauna were detected (Fig. 4, \(P > 0.05\), see Table S3). Although there was a greater 13C-
enrichment of the soil CO\textsubscript{2} efflux in extensively managed compared to intensively managed
grassland (\(P < 0.001\), Fig 4, Table S3), no difference in 15N-enrichment of N\textsubscript{2}O emissions was
detected.

3) \textit{Effect of land management on the response of C and N flow to drought}

During the rain exclusion, soil moisture was reduced on average by 56 ± 0.4 vol. % in
intensively managed grassland and 74 ± 0.4 vol. % in extensively managed grassland over the
last 27 days recorded (Fig S1).

In intensively managed grassland, the drought increased the biomass of microbial
communities and of detritivorous mites, but reduced the biomass of plant shoots and of other
detrivores (Fig. S5). In extensively managed grassland, the drought increased the biomass of
detrivorous mites and predatory mites, but decreased the abundance of actinobacteria PLFA
and biomass of Collembola (Fig. S5).
Figure 5. Response ratio of the drought effect on the 13C (A) or 15N (B) enrichment of the different pools in function of the grassland management (log (drought/control)). The sign (positive or negative) of the logRR corresponds to the direction of the drought effect on the 13C or 15N enrichment, while a response ratio of zero indicates no drought effect. LogRR significantly different from 0 are reported with *** $P < 0.001$, **$P < 0.01$, *$P < 0.05$, see table S4 for details.
In extensively managed grassland, drought had no detectable effect on the uptake of 13C by plants, its transfer to roots and the soil food web, or soil 13C-CO$_2$ efflux (Fig. 5, Table S4). However, in intensively managed grassland, drought increased plant shoot 13C enrichment (Fig. 5, Table S4, $P = 0.004$) and 13C relative enrichment of soil CO$_2$ efflux (Fig. 5, table S4, $P = 0.032$), but decreased its transfer to roots, bacteria and Collembola (Fig. 5, table S4, $P = 0.026$, 0.023, 0.0048, respectively). Drought had no impact on N fluxes to the plants and soil communities, and only reduced 15N transfer as N$_2$O efflux in extensively managed grassland compared to the control (Fig. 5, table S4, $P = 0.023$).

4) 13C and 15N allocation

One day after labelling, 26% of 13C fixed by plants remained in the shoots and 2.6% was recovered in the roots (Fig S6). A similar pattern was observed with the 15N tracer, for which 39% was on average recovered in the plant shoots and 12% in the plant roots (Fig S6) one day after the labelling. Intensive management decreased the 13C recovery in plant roots but increased the 15N recovery in plant shoots (Fig S6, Table S5).

Analysis of 13C and 15N pools revealed that in extensively managed grassland, soil fauna tended to store more photosynthesized carbon and fertiliser-derived N compared to intensively managed grassland (Fig S7). This pattern becomes even clearer when considering the relative allocation (Fig S6, panel C). Indeed, extensive management increased the 13C recovery in AM fungi, detritivorous mites and predatory mites, and the 15N recovery in detritivorous mites (Fig S6, Table S5, $P < 0.05$). Drought only decreased the recovery of the 15N in the plant roots (Fig S6, Table S5, $P < 0.001$) and had no significant effect on the recovery of the tracers in other C and N pools (Fig S6, Table S5, $P > 0.05$).
Discussion

Our findings on the reciprocal flow of C and N through plants and soil food webs shed new light on our understanding of how land management substantially modifies the response of multitrophic networks to drought, with consequences for the key ecosystem processes they regulate. We found that drought strongly affected fluxes of recent photosynthate belowground.
in the intensively managed grassland, indicating impaired resistance of this process, likely through a decoupling of above-below ground interactions (Fig. 6). In contrast, belowground fluxes of recent photosynthate in extensive grasslands were unaffected by drought, indicating greater potential to buffer impacts of climate extremes on above-below ground interactions.

The effect of drought on plant C assimilation and its allocation belowground differed between the two grassland management types. Despite decreases in aboveground biomass, drought increased plant shoot C uptake and decreased C transfer to roots in intensively managed grassland, but had no impact on these C transfers in extensively managed grassland. This finding is consistent with recent reports of greater resistance and faster recovery of plants in abandoned relative to managed grasslands due to larger belowground root and fungal networks in the former, which improves water access compared to intensively managed grasslands. In our study, the greater uptake of C by plants in intensively managed relative to extensively managed grasslands could be a compensatory effect following the release of the drought. Indeed, fast-growing plants, which dominate the plant community of intensively managed grasslands, typically have an ability to open their stomata more quickly when drought is released compared to slow-growing plant species, which dominate the plant community in extensively managed grasslands. Our results confirmed that intensive management reduces plant diversity and promotes species with lower root-to-shoot ratio. These differences are explained by the fact that intensive management promotes fast-growing plant species, which store resources in roots to facilitate regrowth after cutting, while extensive management promotes plants that invest in root growth, rather than storage, to access soil resources. However, in our study, historic management intensity had no detectable effect on root 13C enrichment, indicating a similar rate of root C allocation of newly incorporated photosynthates in both management regimes, despite large differences in their biomass allocation.
Fungi and Collembola were a major conduit of recent photosynthate-derived C; on average 5.8% of fungal C and 7.6% of Collembola C came from plant photosynthate at their enrichment peak. The high 13C-enrichment of non-mycorrhizal fungal PLFA compared to the AM fungal PLFA is surprising, and implies an important role of non-mycorrhizal fungi in channelling plant-derived C into the soil food web, supporting other recent findings $^{48-51}$, and reflecting that saprotrophic fungi form a significant portion (20–66%) of microbial biomass in a grassland rhizosphere 52. Although the recovery of the 13C tracer was greater in bacterial PLFA compared to AM fungal or general fungal PLFA (see Fig. S5), the conversion of PLFA to biomass is higher for fungi, and this means the absolute amount of 13C in bacterial biomass was less than for fungal biomass (11.8 nmol of the PLFA 18:2ω6,9 = 1 mg of fungal C while 363.6 nmol of total bacterial PLFA = 1 mg bacterial C). A greater proportion of plant-derived C was recovered in AM fungi in extensively managed compared to intensively managed grassland, despite similar biomass in the two systems. This pattern may be due to enhanced demand or efficiency of C uptake by AM fungi in extensive relative to intensive managed grasslands. Similar results have been found for non-mycorrhizal fungi during the course of nature restoration on abandoned arable land, where fungal biomass was not impacted, but enhanced efficiency of C uptake by the fungi was observed during nature restoration 50. Our results show that the fungal energy channel has a more important role in extensively managed grassland and promotes the retention of recently assimilated C in soil 19,48.

Drought decreased the flow of 13C through several components of the food web, notably bacteria and Collembola. Collembola are more sensitive to drought than other soil fauna and often reduce their grazing activity in response to drought 29. Bacteria grow quickly and are more sensitive to drought and other stresses than fungi $^{53-58}$. Furthermore, fungi are able to create
large hyphal networks that facilitate nutrient and water transfer over long distances, and indirectly benefit plants by exploring water-filled soil pores not accessible to plant roots. Our findings also indicate that soil activity (including roots and soil organisms) depends less on C derived from recent photosynthate in intensively managed compared to extensively managed grasslands. This finding can be explained partially by the fact that there is less root biomass, and so less C input belowground, in intensive systems. Furthermore, our results show that there is less plant-derived C transfer to AM fungi and oribatid mites in intensively managed grassland, supporting the idea that intensive management modifies food web structure and decreases the flow of energy though AM fungi. Rewetting at the end of the drought period led to an increase of respiratory losses of recent C from the ecosystem in intensively managed grassland. During drought, C pools may accumulate and become metabolically available for roots and microbes upon rewetting. In addition, microbes can become potentially active after drought within hours upon rewetting; they can resuscitate from dormancy, and depending on the duration of drought, they can start to regrow within one to several days. In extensive grassland there was marginal greater emission of 15N-N_2O (which we attribute primarily to the nitrate reducing processes of denitrification and nitrate ammonification) immediately after the ammonium nitrate was injected into the soil and during the following day (Figure S3). This contradicts the general idea that intensive management of soil enhances the production of N_2O. This is likely to reflect the higher C availability in extensively managed grassland providing the reductant for more sustained nitrate reduction. Moreover, in extensive grassland, drought did not modify N_2O efflux, but it decreased its 15N-enrichment compared to the control (in intensive grassland, there was a significant effect at day 1 only). Soil moisture has consistently been shown to be one of the most important parameters affecting soil oxygenation and thus determining N_2O production rates, and may
change the microbial source of measured N\textsubscript{2}O 72. Under drought, higher concentrations of O\textsubscript{2} in soil pores may favour ammonia oxidation of unlabelled NH\textsubscript{4} resulting in 14N-dilution of the 15N-NO\textsubscript{3} pool, and of the subsequent N\textsubscript{2}O emission. Surprisingly, 15N transfer to plants and soil organisms was unaffected by land management and drought, suggesting that soil driven processes of resource transfer are more buffered against perturbations compared to plant-driven processes.

Conclusion

Our findings show that intensive land management impaired the resistance of plant-derived C flow to drought, likely through a decoupling of above-below ground interactions. Moreover, our study demonstrates how the interplay between land management and climate extremes regulates bidirectional flows of nutrients through multitrophic networks. Surprisingly, grassland management and drought had little influence on the soil N flow, and N\textsubscript{2}O emissions were only higher after the drought in extensively managed grassland. By contrast, grassland management alters the ability of plants and soil organisms fuelled by recent photosynthate to buffer the response of C process to an extreme event. Our findings demonstrate that capture and rapid transfer of photosynthate through multitrophic networks is a key process for maintaining grassland resilience to drought. This highlights the need for future studies to examine trade-offs of grassland management intensities for various climate change scenarios (e.g. drought), which will identify resilient grassland management practices that can deliver sustainable food security in the face of climate change.

Acknowledgements
The project was funded by a grant that formed part of the NERC Soil Security Programme (ref. NE/M017028/1), which was initiated and led by RDB in collaboration with DJ, TC, FdV, EB and ME. We are very grateful to the landowners and farmers for allowing us to perform our experiment and sample their fields. We also thank Lucy Frotin and Juliette Papelard for help in the lab and field, L. Harrold for plant and N$_2$O isotope analysis, and B. Thornton and G. Martin for the PLFA and soil fauna isotope analysis.

Author contribution

MC, JL, FdC, RDB, DJ, ME, TC, FdV and EB conceived and designed the experiment. MC, JL, FdC, NA, JR and MM set-up the main experiment, MC and NA performed the pulse labelling and field sampling. MM identified soil fauna, MC, NA, and HS performed laboratory analyses. MC statistically analysed the data and led writing the manuscript in close consultation with DJ, TC and RDB and with discussions and contributions from all authors.

ORCID

Mathilde Chomel 0000-0001-5110-2355

Jocelyn M. Lavallee 0000-0002-3028-7087

Jennifer M. Rhymes 0000-0001-9347-9863

Tancredi Caruso 0000-0002-3607-9609

Franciska T. Vries 0000-0002-6822-8883

Elizabeth M. Baggs 0000-0003-2014-2148

David Johnson 0000-0003-2299-2525
REFERENCES

1. Buzhdygan, O. Y. et al. Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. *Nat Ecol Evol* **4**, 393–405 (2020).

2. Moore, J. C., de Ruiter, P. C. & Hunt, H. W. Influence of productivity on the stability of real and model ecosystems. *Science* **261**, 906–908 (1993).

3. de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, Patterns of Interaction Strengths, and Stability in Real Ecosystems. *Science* **269**, 1257–1260 (1995).

4. Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. *Nature* **442**, 265–269 (2006).

5. Rooney, N. & McCann, K. S. Integrating food web diversity, structure and stability. *Trends in Ecology & Evolution* **27**, 40–46 (2012).

6. Bardgett, R. D. et al. Combatting global grassland degradation. *Nat Rev Earth Environ* **1–16** (2021) doi:10.1038/s43017-021-00207-2.

7. Reichstein, M. et al. Climate extremes and the carbon cycle. *Nature* **500**, 287–295 (2013).

8. Seneviratne, S. I. et al. Weather and Climate Extreme Events in a Changing Climate. in *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change* (Cambridge University Press, 2021).
9. Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. *Nat Sustain* **1**, 441–446 (2018).

10. Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. *Ecology Letters* **18**, 834–843 (2015).

11. Vályi, K., Rillig, M. C. & Hempel, S. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. *New Phytologist* **205**, 1577–1586 (2015).

12. Bardgett, R. D. & Cook, R. Functional aspects of soil animal diversity in agricultural grasslands. *Applied Soil Ecology* **10**, 263–276 (1998).

13. Postma-Blaauw, M. B., de Goede, R. G. M., Bloem, J., Faber, J. H. & Brussaard, L. Soil biota community structure and abundance under agricultural intensification and extensification. *Ecology* **91**, 460–473 (2010).

14. de Vries, F. T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. *Soil Biology and Biochemistry* **38**, 2092–2103 (2006).

15. Bardgett, R. D. & McAlister, E. The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. *Biol Fertil Soils* **29**, 282–290 (1999).

16. Bardgett, R. D., Streeter, T. C. & Bol, R. Soil Microbes Compete Effectively with Plants for Organic-Nitrogen Inputs to Temperate Grasslands. *Ecology* **84**, 1277–1287 (2003).

17. Gordon, H., Haygarth, P. M. & Bardgett, R. D. Drying and rewetting effects on soil microbial community composition and nutrient leaching. *Soil Biology and Biochemistry* **40**, 302–311 (2008).
18. de Vries, F. T. et al. Extensive management promotes plant and microbial nitrogen retention in temperate grassland. *PLoS One* **7**, e51201 (2012).

19. de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. *Nature Climate Change* **2**, 276 (2012).

20. Ingrisch, J. et al. Land Use Alters the Drought Responses of Productivity and CO2 Fluxes in Mountain Grassland. *Ecosystems* **21**, 689–703 (2018).

21. Karlowsky, S. et al. Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions. *J Ecol* **106**, 1230–1243 (2017).

22. Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. *Ecology Letters* **10**, 522–538 (2007).

23. Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. *Ecology Letters* **21**, 9–20 (2018).

24. Ruf, A., Kuzyakov, Y. & Lopatovskaya, O. Carbon fluxes in soil food webs of increasing complexity revealed by C-14 labelling and C-13 natural abundance. *Soil Biology & Biochemistry* **38**, 2390–2400 (2006).

25. Pollierer, M. M., Langel, R., Koerner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. *Ecology Letters* **10**, 729–736 (2007).

26. Eissfeller, V. et al. Incorporation of plant carbon and microbial nitrogen into the rhizosphere food web of beech and ash. *Soil Biology & Biochemistry* **62**, 76–81 (2013).

27. Gilbert, K. J. et al. Exploring carbon flow through the root channel in a temperate forest soil food web. *Soil Biology and Biochemistry* **76**, 45–52 (2014).
28. Goncharov, A. A., Tsurikov, S. M., Potapov, A. M. & Tiunov, A. V. Short-term incorporation of freshly fixed plant carbon into the soil animal food web: field study in a spruce forest. *Ecological Research* **31**, 923–933 (2016).

29. Chomel, M. *et al.* Drought decreases incorporation of recent plant photosynthate into soil food webs regardless of their trophic complexity. *Global Change Biology* **25**, 3549–3561 (2019).

30. Ward, S. E. *et al.* Legacy effects of grassland management on soil carbon to depth. *Global Change Biology* **22**, 2929–2938 (2016).

31. Rodwell, J. S. *British Plant Communities.* (Cambridge University Press, 1998).

32. Cole, A. J. *et al.* Grassland biodiversity restoration increases resistance of carbon fluxes to drought. *Journal of Applied Ecology* **56**, 1806–1816 (2019).

33. Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. *Applied Soil Ecology* **61**, 127–130 (2012).

34. Frostegård, Å., Bååth, E. & Tunlio, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. *Soil Biology and Biochemistry* **25**, 723–730 (1993).

35. Olsson, P. A., Thingstrup, I., Jakobsen, I. & Bååth, E. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. *Soil Biology and Biochemistry* **31**, 1879–1887 (1999).

36. Hopkin, S. P. *A Key to the Collembola (springtails) of Britain and Ireland.* (FSC, 2007).

37. Krantz, G. W. & Walter, D. E. *A Manual of Acarology.* (Texas Tech Universtty Press, 2009).

38. Caruso, T. & Migliorini, M. Euclidean geometry explains why lengths allow precise body mass estimates in terrestrial invertebrates: The case of oribatid mites. *Journal of Theoretical Biology* **256**, 436–440 (2009).
39. Ganihar, S. R. Biomass estimates of terrestrial arthropods based on body length. *J. Biosci.* **22**, 219–224 (1997).

40. Johnson, D., Vachon, J., Britton, A. J. & Helliwell, R. C. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs. *New Phytologist* **190**, 740–749 (2011).

41. Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. *Oecologia* **129**, 271–280 (2001).

42. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. *Austral Ecology* **26**, 32–46 (2001).

43. Anderson, M. J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. *Biometrics* **62**, 245–253 (2006).

44. Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. *Mixed Effects Models and Extensions in Ecology with R*. (Springer, 2009).

45. Hedges, L. V., Gurevitch, J. & Curtis, P. S. The Meta-Analysis of Response Ratios in Experimental Ecology. *Ecology* **80**, 1150–1156 (1999).

46. Ingrisch, J., Karlowsky, S., Hasibeder, R., Gleixner, G. & Bahn, M. Drought and recovery effects on belowground respiration dynamics and the partitioning of recent carbon in managed and abandoned grassland. *Global Change Biology* **26**, 4366–4378 (2020).

47. Henry, C. *et al.* A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. *Nat Commun* **10**, 3398 (2019).

48. Deyn, G. B. D., Quirk, H., Oakley, S., Ostle, N. J. & Bartgett, R. D. Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. *Biogeosciences* (2011).
49. Pausch, J. *et al.* Small but active – pool size does not matter for carbon incorporation in below-ground food webs. *Sci Total Environ* **30**, 479–489 (2016).

50. Morriën, E. *et al.* Soil networks become more connected and take up more carbon as nature restoration progresses. *Nat Commun* **8**, 14349 (2017).

51. Li, Z. *et al.* The flux of root-derived carbon via fungi and bacteria into soil microarthropods (Collembola) differs markedly between cropping systems. *Soil Biology and Biochemistry* **160**, 108336 (2021).

52. Joergensen, R. Ergosterol and microbial biomass in the rhizosphere of grassland soils. *Soil Biology & Biogeochemistry* **32**, 647–652 (2000).

53. Schimel, J., Balser, T. C. & Wallenstein, M. Microbial Stress-Response Physiology and Its Implications for Ecosystem Function. *Ecology* **88**, 1386–1394 (2007).

54. Strickland, M. S. & Rousk, J. Considering fungal:bacterial dominance in soils – Methods, controls, and ecosystem implications. *Soil Biology and Biochemistry* **42**, 1385–1395 (2010).

55. Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. *Ecology* **93**, 930–938 (2012).

56. Holden, S. R. & Treseder, K. K. A meta-analysis of soil microbial biomass responses to forest disturbances. *Front Microbiol* **4**, 163 (2013).

57. Guhr, A., Borken, W., Spohn, M. & Matzner, E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. *PNAS* **112**, 14647–14651 (2015).

58. de Vries, F. T. *et al.* Soil bacterial networks are less stable under drought than fungal networks. *Nature Communications* **9**, 3033 (2018).

59. Allen, M. F. Mycorrhizal Fungi: Highways for Water and Nutrients in Arid Soils. *Vadose Zone Journal* **6**, 291–297 (2007).
61. Leake, J. R., Ostle, N. J., Rangel-Castro, J. I. & Johnson, D. Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. *Applied Soil Ecology* **33**, 152–175 (2006).

62. Barnard, R. L., Osborne, C. A. & Firestone, M. K. Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. *ISME J* **9**, 946–957 (2015).

63. Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. *Nat Rev Microbiol* **9**, 119–130 (2011).

64. Meisner, A., Bååth, E. & Rousk, J. Microbial growth responses upon rewetting soil dried for four days or one year. *Soil Biology and Biochemistry* **66**, 188–192 (2013).

65. Meisner, A., Rousk, J. & Bååth, E. Prolonged drought changes the bacterial growth response to rewetting. *Soil Biology and Biochemistry* **88**, 314–322 (2015).

66. Blazewicz, S. J., Schwartz, E. & Firestone, M. K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. *Ecology* **95**, 1162–1172 (2014).

67. Baggs, E. m., Rees, R. m., Smith, K. a. & Vinten, A. j. a. Nitrous oxide emission from soils after incorporating crop residues. *Soil Use and Management* **16**, 82–87 (2000).

68. Le Roux, X., Bardy, M., Loiseau, P. & Louault, F. Stimulation of soil nitrification and denitrification by grazing in grasslands: do changes in plant species composition matter? *Oecologia* **137**, 417–425 (2003).
684. Morley, N. & Baggs, E. M. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. *Soil Biology and Biochemistry* **42**, 1864–1871 (2010).

685. Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? *Philosophical Transactions of the Royal Society B: Biological Sciences* **368**, 20130122 (2013).

686. Davidson, E. A. & Kanter, D. Inventories and scenarios of nitrous oxide emissions. *Environ. Res. Lett.* **9**, 105012 (2014).

687. Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. *Biol Fertil Soils* **41**, 379–388 (2005).
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Chomeletal2022.Supmat.docx