The superior photocatalytic performance and DFT insights of S-scheme CuO@TiO₂ heterojunction composites for simultaneous degradation of organics

Hesham Hamad¹,², Mohamed M. Elsenety², Wagih Sadik³, Abdel-Ghaffar El-Demerdash³, Adel Nashed³, Amr Mostafa³ & Shaimaa Elyamny⁴

The necessity to resolve the issue of rapid charge carrier recombination for boosting photocatalytic performance is a vigorous and challenging research field. To address this, the construction of a binary system of step-scheme (S-scheme) CuO@TiO₂ heterostructure composite has been demonstrated through a facile solid-state route. The remarkably enhanced photocatalytic performance of CuO@TiO₂, compared with single TiO₂, which can consequence in the more efficient separation of photoinduced charge carriers, reduced the band gap of TiO₂, improved the electrical transport performance, and improved the lifetimes, thus donating it with the much more powerful oxidation and reduction capability. A photocatalytic mechanism was proposed to explain the boosted photocatalytic performance of CuO@TiO₂ on a complete analysis of physicochemical, DFT calculations, and electrochemical properties. In addition, this work focused on the investigation of the stability and recyclability of CuO@TiO₂ in terms of efficiency and its physical origin using XRD, BET, and XPS. It is found that the removal efficiency diminishes 4.5% upon five recycling runs. The current study not only promoted our knowledge of the binary system of S-scheme CuO@TiO₂ heterojunction composite photocatalyst but also shed new light on the design of heterostructure photocatalysts with high-performance and high stability.

Recently, the developments of demand for fabrication of new semiconductors with various characteristics have been grown by the dynamic progress of the chemical industry. TiO₂ has gotten a lot of interest in photocatalysis because of its strong oxidizing capability, long-term photostability and lack of toxicity¹,². However, the traditional photocatalysis using TiO₂ is restricted by various factors including the fast recombination of photogenerated electron (e⁻) and holes (h⁺), low absorption of solar light, and low photocatalytic activity on the conventional crystal facets, which meaningfully hinders the practical application till now, this problem is unsolved³,⁴. So, the formation of heterojunction donates the highly efficient separation of photo-generated e⁻/h⁺ pairs by modification of TiO₂ surface with other semiconductors can be an active strategy to boost the efficiency of photocatalysis process⁵.

Copper oxides have a narrow band gap and are a p-type semiconductor. Cupric oxide (CuO) and cuprous oxide (Cu₂O) are the two types of crystals of copper oxides⁶. CuO is a monoclinic phase, whereas Cu₂O has a cubic structure, which CuO is more thermostable than Cu₂O⁷. As a sensitizer of TiO₂, CuO is an appealing substance. As a result, the heterojunction between n-TiO₂ and p-CuO is mainly promising in this regard, as it

¹Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt. ²Department of Chemistry, Faculty of Science, Al-Azhar University, P.O. 11823, Nasr City, Cairo, Egypt. ³Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt. ⁴Electronic Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt. ⁵email: hhamad@srtacity.sci.eg
enables the separation and transit of photo-induced charge carriers in CuO@TiO₂, and subsequently minimizes the possibility of recombination and increases the photocatalytic capabilities. Due to the formation of CuO–TiO₂ p–n heterojunction, the photo generated holes migrate towards the interface, whereas the electrons migrate towards the bulk. As a result, the p–n junction is predictable in terms of charge carrier production and lifetime, which has a positive impact on the photocatalytic performance.

Recently, a step (S)-scheme heterojunction photocatalysts with spatially separated reduction and oxidation units is hot topic because the photoinduced electrons and holes accumulate in the semiconductor with the more negative conduction band (CB) position and the other semiconductor with the more positive valence band (VB) position, respectively, in the recently. Such a novel heterojunction ensures visible light absorption, enhanced charge separation, and higher charge carrier redox capacity all at the same time. Aside from the two semiconductors’ matching band structures, an intimate interfacial contact between them is critical for promoting the S-scheme charge transfer path across the interface.

Based on the above research background and assumptions, to date, no study has been focused on the photocatalytic application of a binary system of S-scheme CuO@TiO₂ heterojunction nanocomposite. Herein, the goal of this research was the demonstration of facile solid-state synthesis of a binary system of S-scheme CuO@TiO₂ heterojunction nanocomposite which was built by surface modification of TiO₂ by CuO. The heterojunction formed between TiO₂ and CuO induces the efficient separation of photogenerated e⁻/h⁺. We found that the surface modification strongly influences the properties of the produced photocatalyst (structure, composition, etc.) that are characterized by various physicochemical techniques and correlated with the photocatalytic performance of the samples. The enhancement of photocatalytic activity was proposed and explained in detail according to the mechanism of e⁻/h⁺ separation. In this inquiry, two crucial properties of CuO@TiO₂, namely stability, and reusability, were also examined, particularly in terms of industrial-scale application.

Results and discussions

Structural analysis. The structural characteristics of pure CuO and pure TiO₂ powder were characterized as the contrasts to binary CuO@TiO₂ heterostructure nanocomposites that shown in Fig. 1. The diffraction peaks at scattering angles (2θ) of 32.0, 35.95°, 38.21° and 48.34° were indexed to (1 1 0) (−1 −1 1), (1 1 1), and (2 0 2) planes of monoclinic structure of CuO, respectively, which corresponded to JCPDS No. 48-1548. Furthermore, the P-25 consists of anatase and rutile phases, matching very well with the confirmation of JCPDS No. 021-1272 and 021-1276, respectively. Pure TiO₂ and CuO peaks exhibit the high intensity and sharp nature, indicating pure crystalline nature. Other phases, such as impurities, Cu₂O or metallic Cu, are not present, indicating that pure CuO could be achieved by chemical and calcination methods. The findings show that the binary composite of CuO@TiO₂ heterostructures contains two-phase TiO₂ and CuO compositions after the solid state reaction. CuO@TiO₂ heterostructure nanocomposites show more XRD peaks than TiO₂, indicating that CuO is present on the surface of the TiO₂. The higher intensity of (−1 −1 1) and (111) diffraction peaks in CuO@TiO₂, could be due to the sheild effect from the CuO nanoparticles. However, a small gradual shift of the characteristic peak (101) of TiO₂ is observed towards a lower 2θ value after the formation of CuO@TiO₂, which could be attributed to partial substitution of titanium atom (ionic radius Ti⁴⁺, 0.074 nm) by the larger size of Cu atom (ionic radius Cu²⁺, 0.087 nm) at surface interaction, as we suggested and studied by DFT calculations. The same phenomena were studied and confirmed due substitution of 1 atom by another halogen of Br and Cl atoms in lead-free perovskites.

Moreover, it is vital to note that Raman spectroscopy is a surface-probing technique, whereas XRD samples analyze the bulk. As a result, Raman spectra revealed a surface modification caused by the vibrational mode. Figure 1b illustrates the Raman spectra of TiO₂, CuO and its binary composite CuO@TiO₂ heterostructure. In the Raman spectrum of TiO₂, the active vibrational modes are recognized as: (i) the symmetric membrane vibration of O–Ti–O in TiO₂ due to the doubly E₃ modes at 145 and 606 cm⁻¹; and (ii) the symmetric bending vibration of O–Ti–O due to the B₃₄ modes at 437 cm⁻¹, while the A₃₄ peak at 272 cm⁻¹ modes of CuO crystals, endorses the anatase-TiO₂ phase’s distinctive peaks as reported in the literature. After solid state reaction, the modification by CuO affected on the position of the Raman peaks associated with the B₃₄ and A₃₄ vibration modes and confirmed the structural phases of TiO₂ and CuO for binary CuO@TiO₂ heterostructure as shown in Fig. 1b. Additionally, there is a blue shift at 404 cm⁻¹ which established the robust interaction obtainable in CuO@TiO₂. Cu²⁺ has a lower valence than Ti⁴⁺, therefore oxygen vacancies and other crystalline defects generated at the surface of TiO₂ by CuO helped to explain the spectrum behavior. The structural and vibrational features of the TiO₂ lattice were altered when CuO was added, demonstrating that CuO and TiO₂ had a strong interaction between them. Surface defects like this could act as photoactive centers, improving the charge separation efficiency.

Microstructure and elemental distribution. The microstructure of CuO and its binary system of CuO@TiO₂ heterostructure using SEM is shown in Fig. 2. Figure 2a provides an overview of the morphology of the CuO NPs which exhibit aggregated nanoparticles associated with irregular shape. In Fig. 2b, after solid state reaction, it revealed that the aggregated and interlinked nanocrystals, that aid in the intraparticle charge transfer. CuO nanoparticles also existed on the surface of TiO₂ nanoparticles.

The detailed morphology and microstructure of binary CuO@TiO₂ heterostructure nanocomposite were further investigated by high resolution transmission electron microscope (HR-TEM) and energy-dispersive X-ray spectroscopy (EDS). The corresponding HR-TEM image of CuO@TiO₂ heterostructure with different magnifications is presented at Fig. 2c–g. It is found that the extremely aggregated with irregularly shaped nanoparticles. The light gray regions are the TiO₂ microstructure, and the dark regions are CuO nanoparticles. This proved that the binary system of CuO@TiO₂ nanocomposite was crystalline in a uniform shape (not a physical mixture), but had the decoration of CuO on TiO₂ which formed the interface that leads to the CuO@TiO₂ heterojunction.
Furthermore, it is well understood that having a large number of homogenous nanopores is favorable because it allows for the quick transfer of light-excited carriers to the particle surface, substantially lowering the carrier recombination rate and speeding up the photocatalytic reactions25. The d-spacing value of TiO\textsubscript{2} was for the (101) and (110) crystal facets of TiO\textsubscript{2} had d-spacing values of 3.52 and 3.22 Å, respectively, whereas the (−110) crystal facets of CuO had d-spacing value of CuO was 2.45 Å (Fig. 2g). The heterojunction of CuO@TiO\textsubscript{2} is further confirmed by these findings26. The selected area electron diffraction (SAED) pattern in Fig. 2h presented the consistency with the monoclinic CuO {−1−11}, and {111} and P2\textsubscript{15} TiO\textsubscript{2} for anatase {101}, {200}, and {204} planes and rutile {110} and revealed its polycrystallinity demonstrating that both the planes are present as CuO@TiO\textsubscript{2} heterojunctions (Fig. 2h).

The elemental analysis in the binary system of CuO@TiO\textsubscript{2} nanocomposite were studied by energy-dispersive X-ray spectroscopy (EDS) mapping Fig. 3a endorses the existence of copper (Cu), titanium (Ti), and oxygen (O) elements with the inset displaying an atomic percentage proportion. The EDS mappings of each element are shown in Fig. 3b−e, and they clearly show that this Cu, Ti, and O species are homogeneously distributed throughout the entire selected area, demonstrating the continuous existence of O in the CuO particle and TiO\textsubscript{2} and further through their interface (Fig. 2e). This clearly illustrates the construction of the heterojunction between CuO and TiO\textsubscript{2}, which assists in the transfer of charges between the bands of two semiconductors, CuO and TiO\textsubscript{2}27.

Figure 1. (a) XRD and (b) Raman spectra of TiO\textsubscript{2}, CuO, and its binary CuO@TiO\textsubscript{2} heterojunction nanocomposites.
Chemical valence states. The chemical surface of pure TiO₂, pure CuO, and its binary system CuO@TiO₂ heterostructure was analyzed by XPS. The high resolution of XPS spectrum of Ti, O, and Cu is displayed in Fig. 4. The binding energy values can be utilized to infer information about Ti chemical and electronic structure states in TiO₂. As shown in Fig. 4a, the Ti 2p₃/₂ and Ti 2p₁/₂ peaks of Ti⁴⁺ ions in the lattice oxide have binding energies of 458.11 and 463.81 eV, respectively, for CuO@TiO₂. The Ti 2p₃/₂ and Ti 2p₁/₂ binding energies differ by 5.7 eV, indicating that Ti is mainly Ti⁴⁺. When compared to the binding energies of TiO₂, the small posi-
tive shifts of both Ti 2p\textsubscript{3/2} and Ti 2p\textsubscript{1/2} are meaningful of two distinct TiO\textsubscript{2} entities and suggest a variation in the electronic state of Ti in Ti–O3–29. Also, no additional peaks may be observed on the spectra of CuO@TiO\textsubscript{2} in the Ti 2p region, which indicates that the addition of CuO is not disturbing the TiO\textsubscript{2} lattice and both oxides exist as separate phases in presented materials30. It also confirms CuO to TiO\textsubscript{2} electron transport at CuO@TiO\textsubscript{2} heterojunction31. These results are supported by HRTEM. The only observed change in the Ti 2p XPS image is the decrease of intensity of the peaks, which is the natural consequence of the decreasing concentration of the TiO\textsubscript{2} in the materials with the addition of CuO.
Based on these assignments, the O1s region on the spectra of TiO2, CuO, and its binary system shows three peaks after deconvolutions, which resolved to three types of oxygen atoms, the lattice oxygen (OL), surface hydroxyl groups (OH), and surface oxygen vacancies (OV) (Supplementary Fig. S1). The position of OL is 529.44 and 529.46 eV for TiO2 and CuO, respectively. The property of OL was ascribed to the lattice O2− anions bonding to the metal cations in the Ti–O or Cu–O, has the lowest binding energy of O1s at 529.39 eV for CuO@TiO2. The broad shoulder at 530.53 eV was linked to the surface hydroxyl groups (OH) on the surface27, while at peak at 530.94 eV refers to the surface oxygen vacancies (OV)33. According to the calculation of peak areas, the concentration of OV is 35.87% over CuO@TiO2 is higher than CuO (22.89%) and TiO2 (13.32%), which is crucial for photocatalytic activity. The chemical composition of various types of oxygen and their percentages are summarized in Table 1.

Sample	OL (%)	OH (%)	OV (%)
TiO2	71.07	15.56	13.37
CuO	51.1	26.10	22.89
CuO@TiO2	24.36	39.77	35.87

Table 1. Species percentage and corresponding binding energies (in brackets, eV) were obtained for TiO2, CuO, and its binary system CuO@TiO2.

Figure 4. (a) High-resolution XPS scan of (a) Ti 2p, and (b) Cu 2p.
From Fig. 4b, there is two prominent peaks at 933.36 and 953.45 eV can be endorsed to Cu 2p3/2 and Cu 2p1/2, compared to 933.97 and 953.97 eV for CuO, respectively23. Also, two addition peaks at 942.66 and 962.2 eV can be assigned to the satellite peaks for Cu2+, compared to 941.67 and 962.46 for CuO, respectively. No Cu 2p peaks shift and no additional peaks are forming when TiO2 concentration is increasing in the CuO. The formation of Cu2+ species rather than Cu+ in the composite is confirmed by B.E gaps of 20.09 eV16. The higher binding energy comes from the upshift of Cu2p peak that shows the substantial interaction between CuO nanoparticles and TiO2 nanoparticles, which is consistent with the literature34,35. Furthermore, there is no peak that relates to Cu+ at around 932.7 eV, signifying that Cu species mainly exist as CuO. The existence of an unfilled Cu 3d shell corresponds to the Cu2+ species at the CuO surface, as seen by the shakeup satellite peaks with binding energy at 942.66 and 962.2 eV36. This is another proof to endorse the dominant surface copper is CuO in CuO@TiO2 heterostructure.

In summary, the surface of CuO@TiO2 photocatalyst is oxidized and functional groups such as OH are incorporated during the calcination. The oxygen vacancies in CuO@TiO2 form free electrons that lead to creating a reduced form of Ti species (e.g. Ti4+). This is endorsed by the blue shift of the B1g vibrational mode of TiO2 (as identified by Raman) and the negative shift of Ti 2p to lower binding energy (as identified by XPS). Based on the XRD, HR-TEM, XPS, and Raman spectroscopy observations, we endorse the existence of TiO2 and CuO and the successful fabrication of CuO@TiO2 heterostructure photocatalysts with strong interface interaction.

Textural properties. The textural nature of the catalyst CuO@TiO2 investigated using BET analysis. The results showed that it has a surface area of 19 m2/g, a total pore volume of 3.12 × 10–2 cm3/g, and a pore diameter of 6.08 nm. Based on the IUPAC classification, the nitrogen sorption isotherms for the catalyst display the type IV in the shape with H3 hysteresis loop and large adsorption of N2 at P/P0 > 0.8 (Fig. 5a). H3 loop indicates the
existence of large mesopores (2–50 nm) with few of micropores. Figure 5b depicts the plot of the BJH pore-size distribution of the catalyst CuO@TiO₂, which shows that it is essentially mesoporous. The low surface area of CuO@TiO₂ confirms the well-formed crystalline structure, which is extremely important for photocatalytic applications. The high pore volume of the CuO@TiO₂ increases the internal mass transfer and therefore improves the catalytic activity and enhances the photodegradation of AR8.

Optical properties. The band gap of TiO₂, CuO, and its binary CuO@TiO₂ heterostructure catalysts by using the tauc plot are shown in Fig. 6a. It represents the direct transition of band gap energy by plotting (αhυ)² versus hυ. As seen, the band gap for P-25 TiO₂ was correspondingly to 3.43 eV, which is caused by the intrinsic interband absorption of TiO₂. After sintering at high temperature, the Cu₂O color was changed to black, matching the color of the CuO semiconductor. After addition of CuO nanoparticles distinctively displays the lower optical band gap energy of 2.35 eV compared to CuO and TiO₂ of about 2.5 and 3.43 eV respectively. The smaller bandgap of CuO@TiO₂ heterostructure as compared to TiO₂ can be elucidated on the basis of (a) the quantum confinement phenomena, and (b) the existence of CuO favors the formation of oxygen vacancies and/or the partial reduction of Ti sites (as identified by XPS). Taking into account the reduction of Ti sites and/or oxygen vacancies acts as a new state localized in the decreasing of the bandgap. The incorporation of CuO in TiO₂ matrix results in the formation of two closely spaced conduction bands formed by the sharing of interfacial electrons and holes between Cu²⁺ and Ti⁴⁺. Therefore, the enhanced light absorption and interfacial charge transfer will be advantageous for improving the photocatalytic performance of the hybrid photocatalysts. As a result, the latter optical adsorption is extra proof for the presence of CuO classes in the CuO@TiO₂ heterostructure.

To determine the role of photogenerated electron–hole pairs in TiO₂, CuO, and its binary CuO@TiO₂ heterojunction, as well as to demonstrate the mechanism liable for the remarkable boosted photocatalytic degradation of pollutants. Photoluminescence (PL) studies were investigated. The fluorescence emission spectra of samples exhibited a broadband peak at 423 nm under the excitation of 350 nm (Fig. 6b). As we know, the fluorescence intensity of the catalysts tended to be inversely proportional to the rate of recombination rate of e⁻/h⁺. As a result, the fluorescence intensity of the pure TiO₂ and CuO is high, indicating a higher photogenerated electron–hole binding rate. The modification of TiO₂ by CuO was found to lower fluorescence intensity and more efficient separation of electron and hole by CuO@TiO₂ heterojunction that formed at the interface and therefore accounts for boosting the photocatalytic activity. It also accelerates the creation of e⁻, and extends the lifetime of e⁻/h⁺' lifetime, which was ascribed to the potential well made by the Cu⁴⁺ hetero-junction to trap electrons.

The separation of electrons and holes results from the electron transfer from TiO₂ to CuO nanoparticles at the interface of CuO (p-type) and the electron-rich of TiO₂ (n-type), which is one possible clarification for the suppressed charge recombination.

Electrochemical properties, EIS. To acquire profoundly thoughtful into the influence of CuO nanoparticles on behaviors of charge transport and reaction rate of the surface of binary system of CuO@TiO₂ composite, the estimation of electrochemical impedance spectroscopy (EIS) was achieved. It is well acknowledged that the smaller arc radius of the first semi circuit matches to a reduced electron-transfer resistance (the low-frequency semicircle), implying the high efficiency of separation and charge transfer, however second semi circuit is attributed to recombination resistance (the high-frequency semicircle) in p–n junction of photovoltaic devices in the fitting EIS spectra (Fig. 6c). The semicircular in EIS plots for all samples indicate the same behavior. Furthermore, the equivalent electrical circuit was shown as inset and the collected values of ohmic series resistance (Rₛ), charge transfer resistance (Rₓ), recombination resistance (Rₓ), and interface resistance were detailed in Table 2. Among all results the CuO@TiO₂ show a significantly smaller charge transfer resistance (Rₓ) (1372 Ω) than both of TiO₂ (1476 Ω) or CuO (3074 Ω), which suggests that CuO@TiO₂ has the fastest electron–transfer rate. Comparing with bare CuO and bare TiO₂, the binary system of CuO@TiO₂ suggests the higher separation efficiency of photoinduced e⁻/h⁺ pairs at the interface, faster interfacial charge transfer, and more efficient separation of electron–hole pairs. On the other hand, the CuO@TiO₂ shows higher recombination resistance than TiO₂ which confirms that the additional CuO interface of the binary system of CuO@TiO₂ prevents the excited electrons from recombination in TiO₂. It is worth to mention, that the equivalent electrical circuit present also very high interface resistance for both TiO₂ (315 Ω) and CuO (1383 Ω) compared to the binary system CuO@TiO₂ (4 Ω). Therefore, the lower charge transfers resistance and higher recombination resistance of CuO@TiO₂ favored a higher photocatalytic activity.

Computational calculations. The DFT calculations are commonly regarded as crucial to comprehending the behavior of chemical structures. We presented four possible configurations based on the XRD results (TiO₂, Cu@TiO₂, Ti@CuO, and CuO) that might exist as illustrated in Fig. 7. The computational calculations were performed to relax all possible structures and estimate the charge distribution and electronic properties as well. Along best-fit plane's charge density distributions for the four possible configurations were carried out. The resulting data display a small displacement of Ti/Cu positions along with the surface interaction of both materials and combined with an increase in a bond length of Ti–O and Cu–O for both Cu@TiO₂, Ti@CuO, respectively.

The experimental energy gap results of diffuse reflectance spectra are inconsistent with the preformed band structure calculations (Fig. 8). The band diagram shows an indirect bandgap for TiO₂ and proposed Cu@TiO₂ (surface interaction) from X to G symmetry point, along with the crystal symmetry directions in the first Brillouin zone. Similarly, the findings reveal a direct bandgap for both CuO and Ti@CuO at the G symmetry point. Meanwhile, the computed bandgap values show a gradual decrease with increasing Cu and Ti substitution ratio in both surface interaction configurations of Cu@TiO₂ and Ti@CuO, respectively. Thus, the findings...
Figure 6. (a) Tauc plots of the band gap, (b) Photoluminescence spectra, and (c) EIS profile of photocatalysts.
Table 2. Ohmic resistance values obtained from the EIS analysis of TiO₂, CuO, and its binary system of CuO@TiO₂ heterojunction. (Where: R_s (series resistance), R_{ct} (charge transfer resistance), R_{rec} (recombination resistance)).

Photocatalyst	R_s (ohm)	R_{ct} (ohm)	R_{rec} (ohm)	$R_{interface}$ (ohm)	X^2
TiO₂	0.1	1476	1992	315	0.01
CuO	21	3074	1.6E+15	1382	0.01
CuO@TiO₂	46	1372	3391	4	0.001

Figure 7. (a) Simulated surface interaction of (a) CuO and TiO₂; Crystal structure unite cell of (b) both TiO₂ and CuO; charge density distribution at the best fit plan for both (c) TiO₂, (d) CuO and two proposed surface interaction Cu@TiO₂ and Ti@CuO as well (Cu–O and Ti–O bond length by angstrom Å).

Figure 8. Bandstructure digram of four proposed configurations (a) TiO₂; (b) Cu@TiO₂; (c) Ti@CuO; and (d) CuO.
confirm the UV–Vis results and also predict enhancing of the performance of prepared catalysts toward photodegradation applications.

However, the TDOS result (Fig. 9) for the configurations of TiO$_2$ and Cu@TiO$_2$ show a major contribution of antibonding d-orbital at the minimum CB and p-orbital at the maximum VB. For more clarifications, the partial density of state (PDOS) of Ti and O atoms of TiO$_2$ indicates that the main contribution at maximum VB depends on the p-orbital of O atoms. Meanwhile, the d-orbital of Ti at the minimum CB. Similarly, Cu doped Cu@TiO$_2$ refers to the contribution of the same orbital with a significant effect at minimum CB toward lower bandgap which clarifies the reason behind that.

The total density of state (TDOS) for CuO and Ti@CuO (Fig. 10) refer to a probability of (p and d) orbitals contributes in the VB and d-orbital at the minimum of the CB. However, PDOS of Oxygen (O), and Cupper (Cu) atoms of CuO show that at maximal VB, the main contribution is dependent on both p-orbital of O, and d-orbital of Cu atoms. Also, the p-orbital of Cu has a main contribution at the minimum conduction band without any sign of contribution of O atoms in conduction band. Likewise, Ti doped Ti@CuO at the surface interaction refer
to the same orbitals with a significant contribution at maximum VB. Thus, these results at the surface interaction of CuO–TiO₂ configuration predict that a significant enhancement of CB to decrease the band gap. However, because of the contribution of copper atoms to enhancement of maximum VB in the existence of the p-orbital of titanium atoms, could achieve the charge transfer due to S-scheme mechanism and resulting in an increase in the attract of excited electrons of CuO and the holes of TiO₂ as well, during photocatalytic degradation process.

Photocatalytic activity. *Kinetic studies.* The photocatalytic degradation of Acid Red 8 (AR8) aqueous solution was assessed using batch mode. Figure 11a shows the catalytic activities of without catalyst (UV only), TiO₂, CuO, and its binary CuO@TiO₂ heterojunction composites. The photocatalytic activity of the CuO@TiO₂ was found to be substantially higher than those of TiO₂ and CuO nanoparticles. The photocatalytic degradation of AR8 has also followed the pseudo-first-order kinetic model (Fig. 11b). Kinetic curves also highlight CuO@TiO₂ exhibits 3.08 and 4.11 times the photodegradation ability of CuO and TiO₂, respectively (Table 3). Also, the $t_{1/2}$ decreases with increasing the apparent rate constant (k_{app}) as shown in Table 3.

The low decomposition rates of CuO and TiO₂ nanoparticles could be attributed to the fast recombination of e^-/h^+ pairs and inefficient quantum yield during the photocatalytic processes. The superiority of CuO@TiO₂ binary system is due to the efficient charge transfer, enlarged light response range, and suppressed the photogenerated electron recombination that originated from the synergistic effects of two photocatalysts, TiO₂ and CuO that resulted from p-n heterojunction between p-type CuO and n-type TiO₂. Photogenerated holes diffuse from CuO (p-type) to TiO₂ (n-type) and electrons diffuse from TiO₂ to CuO due to the existence of carrier concentration gradients. An electric field is formed at the junction when it is in the equilibrium.

Photogenerated electrons can migrate the conduction band of TiO₂ (n-type) and holes to the valence band of CuO (p-type) during photocatalysis. The p–n CuO@TiO₂ heterojunction increases the photocatalytic activity by facilitating the separation of photogenerated electrons and holes. Additionally, the sensitization by CuO increased the optical absorption properties of TiO₂ and improved charge carrier lifetime in the system that leads to enhancing the photocatalytic activity of CuO@TiO₂. As indicated by XRD, HR-TEM, XPS, UV–Vis., PL, and
EIS characterizations as well as DFT investigations, heterojunction formation considerably influenced the photocatalytic activity of CuO@TiO2 due to its influences on the photocatalyst microstructure and band structure.

Quantum efficiency. The quantum yield can be detected by estimating the rate of disappearing of the reactant molecule or the formation of the product molecule divided by the photons absorbed per unit time, which can be used to quantify the heterogeneous catalysis. A considerable portion of the incident light is reflected or scattered by dispersed photocatalysts and is not absorbed by the dye solution. In most cases, there is no way to measure the amount of light absorbed by the photocatalyst experimentally. Another parameter frequently stated is the apparent quantum yield (Qapp), which avoids the challenges of estimating the quantum yields in the photocatalytic reaction.

Table 3 clarifies that Qapp for UV/CuO@TiO2 system is higher than that of the UV/TiO2 and UV/CuO systems. As a result of the poor quantum yield, CuO and TiO2 nanoparticles had the lowest photocatalytic activity.

Investigations of EEO. The economic analysis of photocatalysis is critical factor that accounts for a large portion of operating costs. As a result, it is vital to evaluate the photocatalytic process’ electrical energy consumption under experimental settings. Because it follows the pseudo first order kinetic model, the electrical energy per order (EEO) is a useful indicator of the photocatalysis process. The EEO enables a quick calculation of the cost of electrical energy and indicates the overall power needed. The treatment efficiency for the samples is evaluated using EEO values for comparative study.

The EEO values were calculated using the inverse of the slope of a plot of log (Co/C) versus UV dose (Fig. 11c). It was determined that the figure-of-merit method is appropriate for calculating the electrical energy efficiency. It is not only demonstrating the decline in the amount of electricity required by the photocatalytic system, but also the significant impact of the UV dose on the EEO in the process. From Table 3, the EEO values were established to be depending on the photocatalyst's nature. Furthermore, the EEO values of the UV/CuO@TiO2 system are lower than those of the blank UV/TiO2 or UV/CuO system, indicating that the lower energy consumption is attributable to the higher applied potential and formation of highly reactive radical species. In summary, these insights can be used to design photocatalytic systems that use less electrical energy, have a higher rate constant, and cost less to operate.

Role of reactive oxygen species. To get insights into the photodegradation mechanism of AR8 dye over the CuO@TiO2 binary system and understand the role of photo-generated holes and radicals in the photodegradation process, the charge trapping studies were conducted. To explore the role of reactive oxygen species (ROS), the photocatalytic activity of CuO@TiO2 was greatly suppressed by the addition of EDTA, K2Cr2O7, benzoquinone (BQ), and tert-Butyl alcohol (TBA) as model scavengers to capture holes (h+), electron (e−), superoxide radical (O2−), and hydroxyl radical (OH), respectively.

The AR8 degradation efficiency by CuO@TiO2 in the existence of various scavengers is shown in Fig. 11d. Both BQ and TBA had stronger suppressing effects on the photocatalytic degradation of AR8 than that for EDTA and K2Cr2O7, suggesting that O2− and OH are the principal active species in the photocatalytic degradation of AR8 in the presence of a binary system of CuO@TiO2.

Based on the outcomes of the trapping tests, the following Eqs. (1–6) can be as a possible photodegradation mechanism of AR8 dye in the presence of CuO@TiO2 heterojunction.

Photocatalyst	k app (min−1)	t½ (min.)	EEO (kWh/m3)	Q app (%) (mol/Einstein)
TiO2	0.00909	77	769.2	0.782
CuO	0.01241	57.75	526.3	1.035
CuO@TiO2	0.03688	18.73	172.4	3.20

Table 3. Collective data of apparent rate constants, half lifetime, electrical energy per order, and apparent quantum yield for degradation of acid red 8 dye using TiO2, CuO, and its binary system of CuO@TiO2 heterojunction.
Stability and recyclability of CuO@TiO₂ photocatalyst. From the economic point of view, the stability and good recyclability are two essential features for large-scale application of photocatalysis. Using the same protocol, the degradation of AR8 were done on subsequent repeated cycles by reusing the CuO@TiO₂ collected after each cycle. Then, the degradation percentage was calculated in each run. The stability and recyclability of CuO@TiO₂ towards AR8 dye photodegradation were evaluated after five consecutive runs and the obtained data are presented in Fig. 12a. It is clear that the reduction in the removal efficiency was negligible (<4.5%), which denotes the nature of high stability after 5 cycles. Wherefore, CuO@TiO₂ is an economically suitable photocatalyst for industrial application from a practical point of view.

To evaluate the stability of CuO@TiO₂ photocatalyst, the XRD patterns were compared before and after the first cycle of the photocatalytic degradation of AR8 dye as shown in Fig. 12b. Obviously, the maintained structure after photocatalysis was evidenced by the unchanged XRD reflections. All peaks corresponding to the interpretation based on Fig. 1a, represent the stability of CuO@TiO₂.

As it is known, the porous structure is one of the most important requirements for the ideal photocatalysis process. Table 4 shows the textural nature of sample CuO@TiO₂ and its recycled sample after photocatalysis that was investigated by BET analysis (Fig. 5). There is a slight decrease in the surface area after recycling indicating low structural changes occurrence by recycling (Table 4). The pore volume and pore diameter were also slightly reduced. Even after the recycling, the catalyst still had a feasible pore diameter that can accommodate the flow of reactant intermediate molecules) through the photocatalyst during the reaction. S_{BET} surface area based on BET equation, S_{mic} micropores surface area, L_m micropore width, V_t total pore volume, V_{meso} mesopores volume.

To discuss the mechanism of the photocatalytic reaction for CuO@TiO₂, an XPS analysis was investigated the elemental valence states on the surface of CuO@TiO₂ before and after AR8 removal. The changes of element
The photocatalytic process introduced more oxygen vacancies on the surface of CuO@TiO2, which benefited the photogenerated holes on VB of TiO2 and the photogenerated electrons on CB of CuO are maintained, which achieved better charge separation62. The photogenerated processes were monitored using XPS to calculate the effective bandgap and effective quantum yield (Table 3). Also, the excitation energy increased, while the electron transition rate and electron–hole recombination rate significantly decreased in CuO@TiO2 over pure TiO2 (Table 4).

Table 4. Textural characteristics of the CuO@TiO2 before and after photocatalysis.

Samples	SBET (m² g⁻¹)	Smeso (m² g⁻¹)	LV (nm)	Vbulk (cm³ g⁻¹)	Pore diameter (nm)	Vmeso (cm³ g⁻¹)
Before	19	34	3.52	0.0312	6.08	0.0291
After	18	32	3.48	0.0291	6.01	0.0291

Structure activity correlation and proposed photocatalytic mechanism. The plausible mechanism of the photocatalytic degradation of AR8 dye over CuO@TiO2 heterojunction composite is proposed in Fig. 14 based on the aforementioned experimental findings and characterization analysis. In this system, upon direct irradiation, the e⁻/h⁺ pairs would be formed on both TiO2 and CuO. In the transfer process, the lifetime of the excited electrons and holes is extended, resulting in better quantum efficiency (Table 3).

Furthermore, this considerably improves the separation of the photogenerated electron–hole pairs and limits their quick recombination, resulting in CuO@TiO2 having a higher photocatalytic activity than TiO266. When the combination of TiO2 with CuO, an inner electrical field forms at the interface that facilitates improving the electron–hole separation62. Because of TiO2 of lower EF and connected with CuO of higher EF, the CuO@TiO2 heterojunction is formed. However, the electrons will transfer from CuO to the TiO2 easily until the EF at the interface tends to equilibrate. Concurrently, CuO shows downward interface band bending and is positively charged at the interface owing to loss of electrons; while TiO2 shows upward interface band bending and is negatively charged at the interface owing to an accumulation of electrons. Meanwhile, the electrons transfer creates an internal electric field at interfaces pointing from CuO to TiO2. When the CuO@TiO2 heterojunction is exposed to light, the CB of TiO2 and CuO are positively charged, denoting the influence of UV light on the nature of the Ti phase, in agreement with TiO2 results previously reported66. Despite the certain reduction observed the difference in BE between Ti 2p3/2 and Ti 2p1/2 components are always maintained at 5.7 eV.

According to the abovementioned results of the effect of reactive oxygen species and the results from XPS before and after photocatalysis, the ongoing electrons reduced dissolved oxygen, generating O₂⁻ (Eq. 2) and the following OH (Eq. 4) which was the governing active species for the pollutant attacking that consistent with the results of effect of scavengers (Fig. 11d). On the other hand, the holes stay in the VB of CuO that helps in the formation of OH· (Eq. 4) which was the governing active species for the pollutant attacking.

Because CuO@TiO2 has a lower EF than pure CuO, the CuO@TiO2 surface is more negatively charged, leading to the formation of a charged interface between CuO and TiO2. Overall, the p–n heterojunction may prevent the recombination of the photogenerated electrons from recombining with holes.

According to the abovementioned results of the effect of reactive oxygen species and the results from XPS before and after photocatalysis, the ongoing electrons reduced dissolved oxygen, generating O₂⁻ (Eq. 2) and the following OH (Eq. 4) which was the governing active species for the pollutant attacking that consistent with the results of effect of scavengers (Fig. 11d). On the other hand, the holes stay in the VB of CuO that helps in the formation of OH· (Eq. 4) which was the governing active species for the pollutant attacking.
conversion of OH^- to $\cdot\text{OH}$ which leads to the effective degradation of AR8 dye by the direct oxidation of photogenerated holes. The AR8 dye can be destroyed in two ways. (i) in the VB of CuO, the conversion of hydroxyl
anion (OH⁻) to hydroxyl radical (·OH) (Eq. 5); and (ii) the formed electrons from the CB of TiO₂ are transferred to the adsorbed oxygen (O₂ adsorbed) for generation of superoxide anion radical (·O₂⁻) (Eq. 2). Continuous production of highly strong oxidants (·O₂⁻ and ·OH) leads to the oxidation AR8 to CO₂ and H₂O₂.

According to the thoughts presented above, the highly boosted photocatalytic activity of CuO@TiO₂ heterostructures compared to pure TiO₂ can be attributed to a number factors, including the intensification in the photo-absorption, perfection in the charge separation efficiency and direct oxidation of AR8 dye with CuO after the construction of p–n heterojunctions. The synergistic impact (for example, heterojunction-induced effects on CuO@TiO₂ photocatalysts) can aid to strengthen the separation of photo-generated electrons and holes (Fig. 14). As a result, the CuO@TiO₂ composites outperform ordinary TiO₂ in terms of photocatalytic activity. Another benefit for photocatalytic decomposition by CuO@TiO₂ heterojunction nanocomposite is to form electrons that help Ti³⁺ ions for extending the lifetime and improve the transfer of electrons at the p–n junction which suppresses the electron/hole recombination.

Materials and chemicals

TiO₂ (Degussa P 25, average particle size about 30 nm, 70% anatase form and of surface area about 50 m² g⁻¹) was purchased from Degussa company, Germany. CuCl₂·2H₂O, NaOH and glucose were purchased from Aldrich. All aqueous solutions were prepared using distilled water from the Millipore instrument. Acid red 8 dye with molecular formula C₁₈H₁₄N₂Na₂O₇S₂, and molecular weight of 480.42 g/mol, with λ max 508 nm was purchased from Fluka.

Synthesis of photocatalysts. CuO nanoparticles were prepared by free-template method by dissolving 1 g of copper precursor in 50 mL solvent (water/ethanol) under a constant stirring at room temperature. A precipitate was produced when NaOH solution (3 M, 10 mL) is added dropwise to the above solution. After being stirred for 5 min, d-glucose powder (0.2 g) was added into the dark precursor and the temperature was raised up to 70 °C with stirring for 15 min. The precipitate gradually turns into brick red and then it was allowed to cool to room temperature and the obtained precipitates were centrifuged. The precipitate was allowed to centrifuge twice more in de-ionized water and anhydrous ethanol, respectively. Finally, the precipitates product was dried at 50 °C overnight.

The S-scheme CuO@TiO₂ heterojunction nanocomposite was prepared through a solid-state reaction route. 50 wt. of Cu₂O nanoparticles were added to 50 wt.% TiO₂ which have been mixed uniformly and made fine by

Sample	O₂/O	O₃/O	O₂/O
Before	24.36	39.77	35.87
After	10.02	35.26	54.71

Table 5. The relative oxygen content for CuO@TiO₂ before and after photocatalysis.

Figure 14. Schematic illustration of the S-scheme transfer mechanism between TiO₂ and CuO (a) Before contact, (b) After contact, and (c) After contact in light. CB conduction band, VB valence band, EF fermi level.
grinding in ball mill for 2 h to get fine nanopowders. The resultant powders were calcined in air at 500 C for 3 h in an electric muffle furnace.

Correlation between physicochemical characteristics and photocatalytic activity. The detailed of physicochemical characterizations (S-1), evaluation of photocatalytic activity (S-2), intensity measurements (S-3), degradation kinetic (S-4), recycling and stability test (S-5), evaluation of apparent quantum yield \(Q_{app}\) and electrical energy per order \(E_{el}\) (S-6), detection of reactive species (S-7), electrochemical impedance spectroscopy (EIS) (S-8), and computational methodology (S-9) are stated in supporting information.

Conclusions

To the best of our knowledge, this is the first time we have shown that the fabrication of a binary system of S-scheme CuO@TiO\(_2\) heterojunction composite photocatalyst via a simple solid-state reaction is a promising strategy for boosting the photocatalytic degradation of toxic organics. The existence of heterojunction between TiO\(_2\) and CuO was demonstrated by the measurements of catalytic activity, including HRTEM, Raman, XPS, UV–Vis. PL and EIS. Also, the experimental optical results showed that the CuO@TiO\(_2\) reduced the band gap by shifting the band-gap of commercial TiO\(_2\) (3.43 eV) into a new band gap of CuO@TiO\(_2\) (2.35 eV) and DFT calculation explained that by details. The S-scheme CuO@TiO\(_2\) heterojunction composite, displaying the lowest PL intensity, shows the highest activity, and reveals the apparent quantum efficiency of 3.2%. The higher photocatalytic activity was qualified to the well-designed S-scheme CuO@TiO\(_2\) heterojunction, which remarkably aids the separation of photogenerated electrons and holes by the synergistic impacts at the interface of the catalyst components. Further, the most active species in the photodegradation of AR8 dye was detected as ‘OH and \(\cdot O_2^-\). However, the experimental results demonstrated that the \(h^+\) and \(e^-\) are also involved in the degradation process. The plausible degradation mechanism by p–n S-scheme CuO@TiO\(_2\) heterojunction was determined and discussed based upon detection of reactive oxygen species, PL and EIS, which found that the the electron transfer from CuO to TiO\(_2\), followed by hole transfer from TiO\(_2\) to CuO was attributed to be the most likely mode of charge transfer in the S-scheme CuO@TiO\(_2\) system. The recycling experiment revealed that the AR8 dye is diminished by 4.5% after five runs of CuO@TiO\(_2\). The result certified the suitable stability of CuO@TiO\(_2\) for long-term applications. Further theoretical work is currently underway to investigate the formation of S-scheme CuO@TiO\(_2\) heterojunction. Potentially, this study offers a new way for the strategy of the highly efficient S-scheme heterojunction photocatalyst for the effective degradation of organic pollutants in large scales.

Data availability

All data generated or analyzed during this study are included in this article (and its Supplementary Information file).

Received: 7 September 2021; Accepted: 21 January 2022

Published online: 09 February 2022

References

1. Hoffmann, M. R., Martin, S. T., Choi, W. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. *Chem. Rev.* **95**, 69–96 (1995).
2. Hamad, H. A., Sadik, W. A., Abd El-latif, M. M., Kashyout, A. B. & Feteha, M. Y. Photocatalytic parameters and kinetic study for degradation of dichlorophenol-indophenol (DCPIP) dye using highly active mesoporous TiO\(_2\) nanoparticles. *J. Environ. Sci.* **43**, 26–39 (2016).
3. Yang, L. et al. Photoelectrocatalytic oxidation of bisphenol A over mesh of TiO\(_2\)/graphene/Cu\(_2\)O. *Appl. Catal. B Environ.* **183**, 75–85 (2016).
4. Hamad, H. et al. On the interactions and synergy between phases of carbon–phosphorus–titanium composites synthesized from cellulose for the removal of the orange–G dye. *Materials* **11**, 1766 (2018).
5. Liu, L. et al. In situ loading of ultra-small Cu\(_2\)O particles on TiO\(_2\) nanosheets to enhance the visible-light photoactivity. *Nanoscale* **4**, 6351–6359 (2012).
6. Wojcieszak, D. et al. Investigations of structure and electrical properties of TiO\(_2\)/Cu\(_2\)O thin film heterostructures. *Thin Solid Films* **690**, 137558 (2019).
7. Al-Jawhari, H. A. A review of recent advances in transparent p-type Cu\(_2\)O-based thin film transistors. *Mater. Sci. Semicond. Process.* **40**, 241–252 (2015).
8. Ibrahim, M. M. et al. Direct Z-scheme of Cu\(_2\)O/TiO\(_2\) enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight. *Appl. Surf. Sci.* **479**, 953–962 (2019).
9. Wang, Y. et al. A unique Cu\(_2\)O/TiO\(_2\) nanocomposite with enhanced photocatalytic performance under visible light irradiation. *Ceram. Int.* **43**, 4866–4872 (2017).
10. Wu, J. et al. Photocatalytic oxidation of gas-phase Hg\(_6\) by carbon spheres supported visible-light-driven CuO–TiO\(_2\). *J. Ind. Eng. Chem.* **46**, 416–425 (2017).
11. Xue, F. et al. Unique S-scheme heterojunctions in self-assembled TiO\(_2\)/Cd\(_3\)Pb\(_2\) hybrids for CO\(_2\) photoreduction. *Nat. Commun.* **11**, 4613 (2020).
12. Xue, Q., Zhang, L., Cheng, B., Fan, J. & Yu, J. S-scheme heterojunction photocatalyst. *Chem* **6**, 1543–1559 (2020).
13. Arshad, A. et al. Solar light triggered catalytic performance of graphene-Cu\(_2\)O nanocomposite for waste water treatment. *Ceram. Int.* **43**, 10654–10660 (2017).
14. Hamad, H., El-Latif, M. A., Kashyout, A., Sadik, W. & Feteha, M. Optimizing the preparation parameters of mesoporous nanocrystalline titania and its photocatalytic activity in water: Physical properties and growth mechanisms. *Process Saf. Environ. Protect.* **98**, 390–398 (2015).
15. Kavayarasan, K. et al. Photocatalytic and photoelectrocatalytic performance of sonochemically synthesized CuO@TiO\(_2\) heterojunction nanocomposites. *Ultrason. Sonochem.* **51**, 223–229 (2019).
16. Shi, Q. et al. CuO@TiO\(_2\) heterojunction composites: An efficient photocatalyst for selective oxidation of methanol to methyl formate. *J. Mater. Chem. A* **7**, 2253–2260 (2019).
17. Hamad, H. A., Abdel El-latif, M. M., Khashoity, A. B., Sadik, W. A. & Feteha, M. Y. Synthesis and characterization of core–shell–shell magnetic (CoFe2O4–SiO2–TiO2) nanocomposites and TiO2 nanoparticles for the evaluation of photocatalytic activity under UV and visible irradiation. New J. Chem. 39, 3116–3128 (2015).
18. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystal. 32, 751–767 (1976).
19. ElseNEY, M. M. et al. Synthesis, characterization of [(CH3)2Si]3SnCl6 and [(CH3)2Si]3SnBr3 (n=1, 2) perovskites and use in dye-sensitized solar cells. Mater. Chem. Phys. 259, 122310 (2020).
20. Zedan, A. F., Allam, N. K. & AlQaradawi, S. Y. A study of low-temperature CO oxidation over mesoporous CuO–TiO2 nanotube catalysts. Catalysts 7, 129–146 (2017).
21. Munawar, Kh. et al. Single step fabrication of CuO–MnO–ZnO composite thin films with improved photoelectrochemical response. RSC Adv. 7, 15885–15893 (2017).
22. Navas, J. et al. Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2. Phys. Chem. Chem. Phys. 16, 3835–3845 (2014).
23. Segovia-Guzmán, M. O. et al. Green Cu2O/TiO2 heterojunction for glycerol photoferomizing. Catal. Today 349, 88–97 (2020).
24. Deng, C. et al. No reduction by CO over CuO supported on CeO2-Doped TiO2: The effect of the amount of a few CeO2. Phys. Chem. Chem. Phys. 17, 16092–16109 (2015).
25. Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: Synthesis, applications, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007).
26. Yan, L., Yang, L., Tao, F. & Luo, X. Highly efficient and stable CuO–TiO2 intermediate photocatalytic water splitting. Ceram. Int. 46, 9455–9463 (2020).
27. Chen, C. et al. Surface defect-engineered silver silicate/ceria p–n heterojunctions with a flower-like structure for boosting visible light photocatalysis with mechanistic insights. J. Colloid Interface Sci. 564, 442–453 (2020).
28. Hamad, H. et al. Functionalized cellulose for the controlled synthesis of novel carbon–Ti nanocomposites: physicochemical and photocatalytic properties. Nanomaterials 10, 729 (2020).
29. Zhou, W. et al. Enhanced photocatalytic degradation of xylene by blackening TiO2 nanoparticles with high dispersion of CuO. J. Hazard. Mater. 391, 121642 (2020).
30. Kubik, A. et al. Microwave-assisted synthesis of a TiO2–CuO heterojunction with enhanced photocatalytic activity against tetacycline. Appl. Surf. Sci. 520, 146344 (2020).
31. Severati, W. et al. Photoelectrocatalytic H2 evolution enhancement over CuO-decorated TiO2 nanocatalysts and promoting CuO degradation. J. Alloys Compd. 859, 157818 (2021).
32. Shan, Z. et al. Low-cost nanostructured electrode containing carbon, oxygen, and titanium for efficient oxygen evolution reaction. J. Am. Chem. Soc. 137, 11996–12003 (2015).
33. Ye, D., Wang, X., Liu, H. & Wang, H. Insights into the effects of sulfate species on CuO@TiO2 catalysts for NH3SCR reactions. Mol. Catal. 496, 111191 (2020).
34. Liu, Z. & Zhou, C. Improved photocatalytic activity of nano CuO-incorporated TiO2 granules prepared by spray drying. Prog. Nat. Sci. Mater. Int. 25, 334–341 (2015).
35. Fang, B., Xing, Y., Bonakdarpour, A., Zhang, S. & Wilkinson, D. P. Hierarchical Cu2O–TiO2 hollow microspheres for highly efficient photodriven reduction of CO2 to CH4. ACS Sustain. Chem. Eng. 3, 2381–2388 (2015).
36. Ying, L., Xu, Z. G. & Chu, Y. C. CuO nanocrystals/TiO2 microspheres film on a rotating disk containing long-afterglow phosphor for enhanced round-the-clock photocatalysis. Appl. Catal. B Environ. 224, 239–248 (2018).
37. Hamad, H. et al. Synthesis of TiO2 nanocrystals in mild synthesis conditions for the degradation of pollutants under solar light. Appl. Catal. B Environ. 241, 385–392 (2019).
38. Ali, R. M., Elkatory, M. R. & Hamad, H. A. Highly active and stable magnetically recyclable CuFe2O4 as a heterogeneous catalyst for efficient conversion of waste frying oil to biodiesel. Fuel 268, 117297 (2020).
39. Shi, Q., Li, Y., Zhan, E., Ta, N. & Shen, W. Anatase TiO2 hollow nanosheets: dual roles of Fe3+ formation mechanism, and thermal stability. CrystEngComm 16, 3431–3447 (2014).
40. Li, B., Hao, Y., Zhang, B., Shao, X. & Hu, L. A multifunctional noble-metal-free catalyst of CuO@TiO2 hybrid nanofibers. Appl. Catal. A Gen. 531, 1–12 (2017).
41. Reddy, N. L., Emini, S., Kumari, V. D. & Muthukonda, V. S. CuO quantum dots decorated TiO2 nanocomposite photocatalyst for stable hydrogen generation. Ind. Eng. Chem. Res. 57, 568–577 (2018).
42. Qamar, M. T., Aslam, M., Ismail, M. I., Salah, N. & Hameed, A. Synthesis, characterization, and sunlight mediated photocatalytic activity of CuO coated ZnO for the removal of nitrophenols. ACS Appl. Mater. Interfaces 7, 8757–8769 (2015).
43. Bashiri, R., Mohamed, N. M., Kait, C. F. & Sufian, S. Hydrogen production from water splitting using Cu2O/TiO2 nanoparticles: Effect of hydrolysis rate and reaction medium. Int. J. Hydrogen Energy 40, 6021–6037 (2015).
44. Kong, J., Rui, Z., Liu, S., Liu, H. & Ji, H. Homeostasis in CuO/SrTiO3 hybrid allows highly active and stable visible light photocatalytic performance. Chem. Commun. 53, 12329–12332 (2017).
45. Meng, A., Zhang, J., Xu, D., Cheng, B. & Yu, J. Enhanced photocatalytic H2 production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on 101 and 001 facets. Appl. Catal. B 198, 286–294 (2016).
46. Zha, Y. P., Ren, T. Z. & Yuan, Z. Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. Appl. Catal. B Environ. 7, 16850–16856 (2015).
47. Zhang, Y.-H., Liu, M.-M., Chen, J.-L., Xie, K.-F. & Fang, S.-M. dendritic branching Z-scheme Cu2O/TiO2 heterostructure photocatalysts for boosting H2 production. J. Phys. Chem. Solids 152, 109948 (2021).
48. Elseney, M. et al. Stability improvement and performance and reproducibility enhancement of perovskite solar cells following (FA/ MA/CA)Pb1-xBrx(CH3)2, SnPbI3 dimensional engineering. ACS Appl. Energy Mater. 3, 2465–2477 (2020).
49. Yan, L., Yang, F., Tao, Ch. Y., Luo, X. & Zhang, L. Highly efficient and stable CuO–TiO2 intermediate photocatalytic water splitting. Chem. Rev. 46, 9455–9463 (2020).
50. Motawea, M. et al. Mesoporous hierarchical ZrO2@rice straw-derived SiO2 nanocomposite for rapid adsorption and sunlight-driven photocatalytic degradation of methylene blue. Photochem. Photobiol. A Chem. 429, 117354 (2022).
51. Mekkey, S. D., Sultan, M. E., Elseney, M. M., Helal, A. & Esayed, B. A. Photocatalytic degradation of rhodamine B in the visible region using nanostructured CoAl12La2O3 (x = 0, 001, 003, 007, and 009) series: Photocatalytic activity and DFT calculations. Inorg. Chem. Commun. 136, 109177 (2022).
52. Elseney, M. M., Elsayed, B. A., Ibrahim, A. I. & Bedair, M. A. Photophysical, DFT and molecular docking studies of Sm(III) and Eu(III) complexes of newly synthesized coumarin ligand. Inorg. Chem. Commun. 121, 108213 (2020).
53. Lu, Y. et al. CuO nanocrystals/TiO2 microspheres film on a rotating disk containing long-afterglow phosphor for enhanced round-the-clock photocatalysis. Appl. Catal. B Environ. 224, 239–248 (2018).
54. Zelekew, O. A. & Kuo, D.-H. A two-oxide nanodiode system made of double-layered p-type Ag2O/n-type TiO2 for rapid reduction of 4-nitrophenol. Phys. Chem. Chem. Phys. 18, 4405–4414 (2016).
55. Lam, S.-M., Sin, J.-C., Abdallah, A. Z. & Mohamed, A. R. Photocatalytic degradation of resorcinol, an endocrine disruptor, by TiO2 and ZnO suspensions. Environ. Tехнол. 34, 1097–1106 (2013).
56. Sadik, W. A., El-Demerdash, A. M., Nashed, A. W., Mostafa, A. A. & Hamad, H. A. Highly efficient photocatalytic performance of CuO/TiO2 nanocomposite: Influence of various inorganic oxidants and inorganic anions. J. Mater. Res. Technol. 8, 5405–5414 (2019).

57. Bi, Q., Gao, Y., Dang, Ch., Wang, Z. & Xue, J. Study on the photoelectrocatalytic performance of a WO3 thin film electrode by constructing a BiO/WO3 heterojunction. CryEngComm 21, 6744–6757 (2019).

58. Shokry, H., Elkady, M. & Hamad, H. Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: Operational parameters and mechanism study. J. Mater. Res. Technol. 8, 4477–4488 (2019).

59. Wu, Y. et al. Constructing NiFe-LDH wrapped Cu3O nanocube heterostructure photocatalysts for enhanced photocatalytic dye degradation and CO2 reduction via Z-scheme mechanism. J. Alloys Compd. 831, 154723 (2020).

60. Zhang, T. et al. Effect of Cu doping on the SCR activity over the Cu0.633–xTiO2 (m = 0.01, 0.02 and 0.03) catalysts. Appl. Catal. B Environ. 250, 251–261 (2019).

61. Pal, J., Sasmal, A. K., Ganguly, M. & Pal, T. Surface plasmon effect of Cu and presence of n–p heterojunction in oxide nanocomposites for visible light photocatalysis. J. Phys. Chem. C 119, 3780–3790 (2015).

62. Trang, T. N. Q. et al. A high-efficiency photoelectrochemistry of Cu2O/TiO2 nanotubes based composite for hydrogen evolution under sunlight. Compos. B Eng. 174, 106969 (2019).

63. Cheng, C. et al. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 33, 2100317 (2021).

64. Wang, L., Cheng, B., Zhang, L. & Yu, J. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 17, 2103447 (2021).

65. Meng, A. et al. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. Appl. Catal. B Environ. 289, 120039 (2021).

66. He, F., Meng, A., Cheng, B., Flo, W. & Yu, J. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 41, 9–20 (2020).

67. Geng, Z. et al. Incorporation of CuO nanocrystals into TiO2 photonic crystal for enhanced UV–visible light driven photocatalysis. J. Alloy. Compd. 644, 734–741 (2015).

68. Bai, X., Ma, L., Dai, Z. & Shi, H. Electrochemical synthesis of p-Cu2O/n-TiO2 heterojunction electrode with enhanced photoelectrocatalytic activity. Mater. Sci. Semicond. Proc. 74, 319–328 (2018).

69. Xia, Z., Li, C., Zhang, L., Xing, M. & Zhang, J. Synergistic effect of Cu2O/TiO2 heterostructure nanoparticle and its high H2 evolution activity. Int. J. Hydrog. Energy 39, 6345–6353 (2014).

Acknowledgements

The authors are deeply grateful to both the City of Scientific Research and Technological Applications (SRTA-City) and Alexandria University in Egypt for supporting and facilitating this study. H. Hamad also acknowledges the Faculty of Science, Warsaw University for the computer services.

Author contributions

H.H.: Conceptualization, methodology, investigation, software, validation, formal analysis, visualization, data curation, funding acquisition, writing—original draft, writing—reviewing & editing, resources, supervision, project administration. M.E.: Formal analysis, visualization, data curation, writing—reviewing & editing; W.S.: Methodology, investigation, formal analysis; A.-G.E.-D.: Investigation; A.N.: Investigation; A.M.: Methodology, investigation, formal analysis, S.E.: Methodology, investigation, validation, formal analysis, funding acquisition.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-05981-7.

Correspondence and requests for materials should be addressed to H.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022