Glutathione, Cysteine, and D-Penicillamine Role in Exchange of Silver Metal from the Albumin Metal Complex

Nahed S. Alharthi, Haroon Khan, Fahad Jibran Siyal, Zahid Ali Shaikh, Shumaila Parveen Arain, Lienda Bashier Eltayeb, and Altaf Ali Mangi

1Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
2Gomal Centre of Pharmaceutical Sciences Faculty of Pharmacy Gomal University D.I. Khan, 29111, Pakistan
3Department of Pharmacology, Chandka Medical College, SMBB Medical University Larkana, 77150, Pakistan
4Department of Medicine, Chandka Medical College, SMBB Medical University Larkana, 77150, Pakistan
5Faculty of Pharmacy University of Sindh Jamshoro, 76060, Pakistan

Correspondence should be addressed to Nahed S. Alharthi; n.alharthi@psau.edu.sa

Received 8 June 2022; Revised 5 July 2022; Accepted 12 July 2022; Published 8 August 2022

Academic Editor: Nauman Rahim Khan

Copyright © 2022 Nahed S. Alharthi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The purpose of this study is to investigate the exchange reaction taking place among the bovine serum albumin (BSA), 5,5′-dithiobis-(2-nitrobenzoic acid (ESSE), reduced glutathione, N-acetylcysteine, D-penicillamine (thiolates), and silver metal (AgI). For this purpose, stock solutions of BSA and Ellman’s reagent were prepared by dissolving 264 mg of BSA in 5 ml of reaction buffer (0.1 M KH₂PO₄ at pH 7.8) and 23.8 mg of ESSE in 1.0 ml of reaction buffer which were mixed together. Mixture of BSA-AgI was prepared in a separate procedure by dissolving 0.17 mg of silver nitrate in 1 ml of reaction buffer and then dissolving BSA (200 mg) in the same solution of silver nitrate. Blocking of Cys-34 of BSA with AgI was confirmed by treating different dilutions of BSA-AgI (500 μM) solutions with the solutions of ESSE (85 μM) and ES- (85 μM) and recording the spectra (300–450) with a UV-visible spectrophotometer. The chromatographed AgI-modified BSA ((BSA-S)AgI) samples (typically 500 μM) were subsequently mixed with thiols (reduced glutathione, N-acetylcysteine, and D-penicillamine). AgI and modified BSA (typically 500 μM each) were treated with these low molecular weight thiols and allowed to react overnight followed by chromatographic separation (Sephadex G25). The redox reactions of AgI-modified BSA with various low molecular weight thiols revealed a mechanically important phenomenon. In the case of reduced glutathione and N-acetylcysteine, we observed the rapid release of a commensurate amount of Ellman’s anion, indicating that an exchange has taken place and low molecular weight thiols (RSH) substituted AgI species at the Cys-34 of BSA eventually forming disulfide (BSA-SSR) at Cys-34. It can be anticipated from the phase of study involving bovine serum albumin that low molecular weight thiols (reduced glutathione and N-acetylcysteine) take off AgI which are attached to proteins elsewhere in the physiological system, making these toxic metals free for toxic action.

1. Introduction

Bovine serum albumin is a serum albumin protein derived from cows. It is often used as a protein concentration standard in lab experiments (Peters, [1]). Cow’s milk contains around 30–35 g of proteins per litre and includes more than 25 different proteins, but only some of them are known to be allergenic. BSA is also commonly used to determine the quantity of other proteins, by comparing an unknown quantity of protein to known amounts of BSA. The ALB gene encodes the most abundant protein in human blood. Albumin has a high affinity for fatty acids, hematin, and bilirubin and a broad affinity for small negatively charged aromatic compounds [2–4]. It forms covalent adducts with pyridoxyl...
phosphate, cysteine, glutathione, and various metals [5]. Heavy metals compromise normal brain development and neurotransmitter function, leading to long-term deficits in learning and social behavior. Albumin, the most abundant protein in mammalian blood plasma, is involved in binding, transport, and delivery of a range of endogenous and exogenous small molecules or ions, such as fatty acids and metal ions [6]. It was used because of its easy availability in my research lab, and second thing, there are numerous advantages of silver metal like its medical uses as wound dressings, creams, and an antibiotic coating on medical devices and strong antioxidant effect [4]. Additionally, because of its abundance, human serum albumin plays a significant role in the pharmacokinetic behavior of a variety of drugs, including drug half-life in the bloodstream, drug efficacy regulation, drug toxicity decrease, and drug targeting specificity improvement. Serum albumin has strong interactions with anionic and cationic ligands. Since the unconform bond is being metabolized and/or excreted from the body, the bound fraction will be released in order to maintain equilibrium. Since albumin is alcalotic, acidic and neutral drugs will primarily bind to albumin. If albumin becomes saturated, then these drugs will bind to lipoprotein (Sadler et al., 1994; [7]), such as metal ions. The redox state of serum albumin’s Cys-34 has been proposed to be important for its biological function. In plasma, it is not supported by enzymes (glutaredoxin) and the GSH-regenerating system (hexose monophosphate shunt) [8], and the thiolation/dethiolation process is almost exclusively sustained by albumin. BSA is a serum albumin protein derived from bovine blood by a proprietary heat shock treatment. The plasma used for the process is collected as a byproduct of the meat industry. BSA meets and exceeds the exacting standards demanded by diagnostic, biopharmaceutical, and research customers worldwide. Plasma albumin has a theoretical concentration of 0.6 mM, only one -SH group, and several disulfide bridges. The cysteinyl residue, located in a well-conserved region in position 34 in all mammalian species, has a low pKa (about 5–7) [9–11], because of a salt bridge, with His 39 that stabilizes the thiolate anion. It is well known that albumin -SH is not well exposed, which impedes development of its high potential reactivity related to its low pKa. Indeed, the reaction rate of albumin towards -SH reagents (ESSE) is lower than that of thiol with higher pKa. Compounds such as fatty acids that change albumin conformation, improving Cys-34 exposure, lead to higher reactivity of albumin -SH (Simplicio et al., 1985; [12]). The difference of pKa of thiols involved in protein–thiol–mixed disulfides is an important feature to determine the kind of reaction (substitution or dethiolation) and consequently the end products. The premise is that the slow exchange of species bound to Cys-34 is the basis for a mechanism by which toxic species can become widely distributed around the body. In this study, we have sought to briefly investigate these issues. Since the method for the fractionation of human serum albumin on DEAE-Sephadex A-50, which had been worked out by Janatova [13], appeared to give somewhat better resolution of the albumin components than other published fractionation systems, therefore, this procedure was adopted for the fractionation of the bovine albumin preparations. The reaction of thiolates with excess Ellman’s reagent (ESSE, 5,5′-dithiobis(2-nitrobenzoic acid)) is used for quantitative estimation of thiol by measuring the absorption due to Ellman’s thiolate (ES) at λ (412 nm). The reaction of thiolates with Sextess Ellman’s reagent is used for quantitative estimation of thiol by measuring the absorption at λ (412 nm) [14–16]. These metal-modified proteins have subsequently been challenged with thiolates (GSH, NAC, and Dpen) in an attempt to remove the metal and regenerate Cys-34. In the second phase of the study, we have metalated albumin with metals (silver nitrate (Ag+ species)). The disulfide exchange reactions occurring at Cys-34 of BSA with low molecular weight thiolates such as reduced glutathione (GSH), N-acetylcysteine (NAC), and D-penicillamine (Dpen) have been determined; in addition, the reduction of oxidized Cys-34 by these thiolates has also been studied in order to understand the reverse reaction. A reversible reaction is a chemical reaction where the reactants form products that, in turn, react together to give the reactants back. Reversible reactions will reach an equilibrium point where the concentrations of the reactants and products will no longer change. In this research, we have assessed the oxidative modification of and metal binding capacity of Cys-34 with heavy metals to investigate the ease with which it is possible to effect disulfide-thiol exchange at these sites or remove a metal bond at this position.

2. Experiment

All reagents were commercially obtained. Ellman’s reagent, bovine serum albumin (>98%, agarose gel electrophoresis lyophilised), and Sephadex (G25 coarse) were purchased from Sigma-Aldrich. UV-visible absorption spectra were recorded in a Unicam UV 300 spectrophotometer at room temperature. Thiols were made from haloalkanes by nucleophilic substitution of the halide ion by the sulphhydryl ion (HS−), which is an excellent nucleophile.

2.1. Preparation of Stock Solutions of BSA and Ellman’s Reagent. Different literature reviews, a handbook on pharmaceutical calculations, and some other stuff were followed before proceeding to lab work. BSA 264 mg was dissolved in 5 ml of reaction buffer (0.1 M KH,PO4 at pH 7.8). Dissolution of BSA was achieved by slow vortexing to avoid bubbles. The volume of BSA solution was made 20 ml with reaction buffer to get stock solution (200 μM) of BSA. Stock solution of ESSE (60 mM) was prepared by dissolving 23.8 mg of ESSE in 1.0 ml of reaction buffer.

2.2. Concentration of BSA Standard Solution. 66.0 mg of BSA was dissolved in 20 ml of reaction buffer for preparation of standard solution (50 μM) of commercially purchased BSA (unchromatographed). This standard solution was then serially diluted with reaction buffer to obtain 10 μM, 20 μM, 30 μM, 40 μM, and 50 μM solutions of unchromatographed BSA. The UV spectra (250-350 nm) of the above five solutions of the BSA standard were recorded taking reaction buffer as a reference. Plotting the absorbance of the solution
at $\lambda$ (280 nm) gives a straight line ($R^2 = 0.999$). The concentration of protein in solution was calculated using Beer's law at $\lambda_{\text{max}} = 280$ nm and $\varepsilon = 43,824$ cm$^{-1}$ M$^{-1}$) (Peters, 1975). The absorbance of these known concentrations of the BSA standard was always used to adjust the working concentration of the column collected (chromatographed) albumin of unknown concentration.

2.3. Treatment of Ellman’s Modified Albumin (BSA-SSE) with Thiolytes. The appearance of the protein in the eluent was identified by testing the liquors with trichloroacetic acid (which precipitates denatured protein) whereupon collection commenced. Periodic sampling identified when the eluent was protein free. The residual Ellman’s reagent and anion (identified as a yellow band) were eluted second and were from the column with further aliquots of reaction buffer. To study the reduction of Cys-34, initially, BSA was chemically modified at Cys-34 by Ellman’s reagent (ESSE) to give a bovine serum albumin-SE mixed disulfide (BSA-SSE). Solutions of BSA (200 mg, 0.5 ml) and Ellman’s reagent (ESSE) (1 mg, 0.5 ml) in reaction buffer (0.1 M KH$_2$PO$_4$, pH 7.4) were mixed (vol. of the mixture = 1 ml) and allowed to react at room temperature overnight until absorbance at 412 nm was no longer changed. The solution was then carefully applied to a column (10 cm × 2 cm) packed with swollen Sephadex (G25 coarse). The mixture was eluted with reaction buffer. Ellman’s assay is a useful tool that can be used to determine the sulphydryl concentration of unknown solutions. It is done by following Beer’s law and the extinction coefficient of TNB.

The BSA-SSE solution collected as above was diluted (1 ml of chromatographed protein solution was diluted to 5 ml) to generate a solution of known concentration (typically, 500 $\mu$M, approximated from the working range of the known concentration of the BSA standard). The UV spectrophotometric spectrum (200–600 nm) was recorded. This BSA-SSE solution (typically, 500 $\mu$M) is separately titrated with 100, 200, 300, 400, and 500 $\mu$M of thiolytes (reduced glutathione, N-acetyl cysteine, and D-penicillamine) and each time allowed to react overnight. The spectra were recorded UV spectrophotometrically. The release of Ellman’s anion is assessed at $\lambda_{\text{max}} = 412$ nm ($\varepsilon = 14,150$ cm$^{-1}$ M$^{-1}$).

2.4. Blocking of the Cys-34 in BSA

2.4.1. Blocking the Cys-34 by Ag$^+$. Cysteines are unique among naturally occurring amino acids because of their thiol-containing side chain, which can undergo a variety of different nucleophilic reactions. The one-electron oxidation of a thiol(ate) group generates a thyl radical, which gives rise to a diverse range of oxidation products, including S-nitrosothiols. Mixture of BSA-Ag$^+$ was prepared in a separate procedure by dissolving 0.17 mg of silver nitrate in 1 ml of reaction buffer and then dissolving BSA (200 mg) in the same solution of silver nitrate. The mole ratio of BSA with silver nitrate is 3:1 (BSA:Ag$^+$, 3:1). The BSA-Ag$^+$ mixtures were allowed to react overnight. The BSA-Ag$^+$ mixtures were carefully applied to a swollen Sephadex (G25 coarse) packed column. The mixtures were collected for metal bound proteins (BSA-Ag$^+$) by eluting with reaction buffer. The collected samples were approximated (diluted) with reaction buffer to BSA-Ag$^+$ (125, 250, 375, and 500 $\mu$M) solutions by using the absorbance range of known concentrations of BSA standards. Blocking of Cys-34of BSA with Ag$^+$ was confirmed by treating different dilutions of BSA-Ag$^+$ (500 $\mu$M) solutions with the solutions of ESSE (85 $\mu$M) and ES$^-$ (85 $\mu$M) and recording the spectra (300-450) with a UV-visible spectrophotometer.

2.4.2. Reaction of Thiolytes with Ag$^+$-Capped BSA. The protein samples of BSA-Ag$^+$ collected through swollen Sephadex (G25 coarse) packed column were mixed with thiolytes (reduced glutathione, N-acetylcysteine, and D-penicillamine) in separate procedures. Thiolytes were added to BSA-Ag$^+$ solutions in three equivalents to silver nitrate and allowed to react overnight. In separate procedures, the mixtures of BSA-Ag$^+$ and solutions with thiolytes (reduced glutathione, N-acetylcysteine, and D-penicillamine) were passed again through the clean Sephadex packed column and eluted with reaction buffer. The proteins (identified by testing the liquors with trichloroacetic acid) were eluted first and collected carefully to make sure that there are no free thiolyte species in the collected protein samples. Since thiolytes might be capable of taking off Ag$^+$ previously bound to BSA, rendering Cys-34 in BSA to be regenerated. The collected protein samples collected from the mixtures of BSA-Ag$^+$ with thiolytes (reduced glutathione, N-acetylcysteine, and D-penicillamine) were approximated (diluted) with reaction buffer to BSA-Ag$^+$/BSA-S (125, 250, 375, and 500 $\mu$M) by using the absorbance range of known concentrations of BSA standards. BSA-S$^-$ was then spectrophotometrically determined for free Cys-34 content by treating the protein dilutions with ESSE (85 $\mu$M). The release of Ellman’s anion is assessed at $\lambda_{\text{max}} = 412$ nm ($\varepsilon = 14,150$ cm$^{-1}$ M$^{-1}$).

3. Results and Discussion

The subject of the thiol-disulfide interchange reaction is an important one in biochemistry and has been discussed extensively elsewhere. It has been known since long that glutathione also reacts with other thiol compounds, including proteins, and forms mixed disulfides. The physiological significance of this reaction has, however, been recognized only recently [17]. The subject of the thiol-disulfide interchange reaction is an important one in biochemistry and has been discussed extensively elsewhere. Oxidative stress causes the modification of proteins and impairs their biological functions. Among the amino acids found in albumin, cysteine-34 (Cys-34) is the most susceptible to modification by oxidants. Glutathione, present in the millimolar range in cells, prevents reactive sulphydryls (Cys-34) of albumin from oxidative modification. It has been known since long that glutathione also reacts with other thiol compounds, including proteins, and forms mixed disulfides. The physiological significance of this reaction has, however, been recognized only recently [17]. Disulfide-reducing reagents are used in biochemistry for a number of purposes, especially in reduction of cysteine groups in albumin and in maintaining essential
Ellman’s reagent (ESSE) was the earliest reagent widely used for estimating the concentrations of protein of the μ30, 40, and 50 λ calculations from the absorbance of the used as the blank solution. Concentrations of protein were λ of unchromatographed BSA at λmax = 278 nm. The magnitude of the absorbance of the disulfide bond of the almost colourless reagent, with the concomitant liberation of the colored anion (Ellman’s anion (ES)) (Figure 2).

The pKa of the sulphydryl group of Ellman’s anion is low enough so that the sulphydryl group is essentially completely dissociated above pH 6.5. The magnitude of the absorbance at 412 nm is thus a measure of the sulphydryl content of the added thiol.

3.2. The Calculation of the Free Thiolate Content of BSA. The thiolate form of bovine serum albumin (BSA) typically comprises ~30-60% of the protein in the commercially available (unchromatographed) material. This value varies from batch to batch necessitating the calculation of the relative amount of thiolate present on the protein before the study can commence. The thiolate content of BSA is determined by the use of Ellman’s reagent (ESSE). The spectrophotometric assay of thios with Ellman’s reagent (ESSE) depends on the cleavage of the disulfide bond of the almost colourless reagent, with the concomitant liberation of the colored anion (Ellman’s anion (ES)) (Figure 2).

The pKa of the sulphydryl group of Ellman’s anion is low enough so that the sulphydryl group is essentially completely dissociated above pH 6.5. The magnitude of the absorbance at 412 nm is thus a measure of the sulphydryl content of the added thiol. The thiolate status of the BSA was assessed initially by titrating each of the ten sequentially different dilutions of BSA (50-500 μM) with Ellman’s reagent (85 μM) (Figure 3).

It is evident from the UV-visible spectra of unchromatographed BSA solutions (50-500 μM) that the initial four solutions (up to 200 μM) of unchromatographed BSA exhibited linearity; hence, BSA was assessed subsequently by titrating each of the ten sequentially different dilutions of BSA (20-200 μM) with Ellman’s reagent (85 μM) (Figure 4).

Since ESSE reacts with thios to give ES, the amount of ES reacted in solution represents the amount of thiol at the start of the reaction. Therefore, \( \lambda = 412 \text{ nm} \) (\( \varepsilon = 14,150 \text{ cm}^{-1} \text{ M}^{-1} \)).
was used for calculation of the thiolate content (Cys-34) of commercial BSA (unchromatographed). Rates of Cys-34 reduction were monitored by following the rise in absorbance at 412 nm for the release of ES−. Plotting the amount of Ellman’s anion released as the BSA concentration increases allows us to compensate for the natural absorbance of albumin at 412 nm (Figure 5) and hence gain an accurate value for its thiolate status. Using this approach, the BSA used here was found to be 53.9% in the thiolate form.

3.3. Treatment of BSA-SSE with Thiolates. Size exclusion chromatography (SEC) is used for separation of proteins (BSA) after reacting BSA with ESSE and subsequently with thiolates (reduced glutathione, N-acetylcysteine, and D-penicillamine). In size exclusion chromatography (SEC), the larger-sized molecules were essentially eluted first from the column. Size exclusion chromatography (SEC) separates polymer molecules according to their size in dilute solution, but what size to use has been a matter of debate for 35 years. In 1967, Benoit and coworkers found an excellent correlation between elution volume and a dynamically based molecular size, the hydrodynamic volume $V_H$, for a wide range of species and large-scale molecular architectures. However, both theory and simulations assume a thermodynamic separation principle. This assumption is based on experimental observations that elution volumes are independent of flow rates. Medium-sized molecules are relatively large compared to the pore size of the solid phase and therefore may find some pores in which they enter
and spend some time. Smaller-sized molecules have more pores that are accessible to them and therefore spend more time inside the pores relative to larger-sized molecules. Therefore, smaller molecules are eluted last and larger molecules are eluted first in size exclusion chromatography.

In order to completely access the -SH groups of the Cys-34 of the protein (BSA) by Ellman’s reagent, the BSA-SSE mixture was allowed for an overnight reaction. The BSA-SSE mixture was then eluted through the swollen Sephadex (G25 coarse) packed column. The assay method not only releases Ellman’s anion but generates a stoichiometric amount of BSA labelled with Ellman’s moiety at cysteine-34 (BSA-SSE, equation (1)). By taking advantage of this reaction, it is possible to synthesize significant amounts of BSA which has been capped with Ellman’s moiety. Thus, incubate albumin with a small excess of Ellman’s reagent overnight (based on the thiolate assay) followed by chromatographic separation (Sephadex G25); we obtained a solution of Ellman’s modified BSA in reaction buffer. The solution can be desalted and freeze-dried to give pure and concentrated BSA-SSE in reduced volume. Alternatively, the molar absorptivity of the solution at 280 nm can be used to give a suitable estimate of the protein concentration in the eluent sample. We are interested here in the ability of small thiolate species (glutathione, D-penicillamine, and N-acetylcysteine) to react with Cys-34 in its disulfide form, and as such, we opted to work with the protein solutions.

The chromatographed BSA-SSE sample (typically, 500 μM) is subsequently mixed with thiolates (reduced glutathione, N-acetylcysteine, and D-penicillamine). BSA-SSE (typically, 500 μM) is treated with reduced glutathione (100, 200, 300, 400, and 500 μM) and allowed to react overnight followed by chromatographic separation (Sephadex G25). Reactions of small thiolates with BSA-SSE mixed disulfides were accompanied by rapid massive substitution of ES− (leaving group) by RS− (entering group), marked by an increase in absorption at 412 nm because of free chromophore and an increase in BSA-SSR concentration. The reduction reactions of BSA-SSE with various small thiolos revealed a mechanically important phenomenon. We observed the rapid release of a commensurate amount of Ellman’s anion (Figure 6) indicating that an exchange has taken place leading us to hypothesize the following reaction adjustments, ultimately leading to the release of Ellman’s anion (ES−):

\[
\begin{align*}
\text{BSA} - \text{SSE} + \text{RSH} &\rightarrow \text{BSA} - \text{SSR} + \text{ES}^- \\
\text{BSA} - \text{SSE} + \text{RSH} &\rightarrow \text{BSA} - \text{SH} + \text{ESSR} \\
\text{ESSR} + \text{BSA} - \text{SH} &\rightarrow \text{BSA} - \text{SSE} + \text{RSH} \\
\text{ESSR} + \text{BSA} - \text{SH} &\rightarrow \text{BSA} - \text{SSR} + \text{ES}^-
\end{align*}
\]

With excess thiols, two pathways for the reduction of BSA-SSE become apparent. When thiols (RSH) attack a disulfide, one sulfur atom in the disulfide bond is the electron acceptor and is incorporated into the new disulfide bond, while the other becomes a thiol. For example, the first step of the reaction can give either ES− and a BSA mixed disulfide adduct (BSA-SSR) or ESSR and the regenerated thiol form of BSA (equations (2) and (3)). The newly formed ESSR can then react further with BSA-SH (equations (4) and (5)). Ellman’s anion (ES−), the only product monitored, is the final product in each case and is reasonably stable due to its low pKa and the existence of several resonance forms.

The chromatographed sample of BSA-SSE (conc., approximately 500 μM) is treated with N-acetylcysteine (100, 200, 300, 400, and 500 μM) and allowed to react overnight followed by chromatographic separation (Sephadex G25). We observed the rapid release of a commensurate amount of Ellman’s anion (Figure 7) indicating that an exchange has taken place almost in the same fashion as observed with reduced glutathione.

These data, however, indicate that a significant portion of the GSH and NAC can form mixed disulfides with proteins in cells. Both the inhibition of glutathione biosynthesis and recycling would cause oxidative stress and elevated protein-GSH adducts. NAC is generally used to increase intracellular glutathione. Since GSH plays a major role in maintaining intracellular redox state, lowering GSH levels...
causes oxidative stress. Thus, the enhanced protein-GSH adducts might occur during the process of GSH depletion. Further examination would be required to clarify this.

In contrast to reduced glutathione and N-acetylcysteine, the reaction of BSA-SSE (typically, 500 μM) with D-penicillamine (100, 200, 300, 400, and 500 μM) produced no Ellman’s anion (Figure 8). D-Penicillamine is shown to be not able to substitute ES⁻ in the mixed disulfide (BSA-SSE).

The absorbance peak produced for Ellman’s anion (ES⁻) is relatively higher if ES⁻ of BSA-SSE is substituted by NAC compared to substitution by GSH. The peak produced for ES⁻ of BSA-SSE by Dpen was lower than peaks of the first two thiols (NAC and GSH).

When BSA-SSE reacted with the thiols, the substitution phase was identified by the release of ES⁻ being dethiolated from BSA-SSE. The difference in BSA-SSE dethiolation made it possible to establish the rank of ES⁻ substitution by NAC > GSH > DPen (Figure 9).

Studies reported elsewhere have shown that D-penicillamine does not exchange with its mixed disulfide of Ellman’s reagent to form penicillamine disulfide due to steric problems. This observation suggests that the nature of the protein pocket acts to prevent the release of entities bound at Cys-34. This observation, however, is also an important control for the reactions involving reduced glutathione and N-acetylcysteine. A result similar to that shown in Figures 6 and 7 might be expected from an exchange of thiolate with Ellman’s reagent loosely bound (H-bonded or hydrophobically associated) to the protein which remains in solution as a result of poor chromatographic separation. If either of these situations were present, an exchange reaction with D-penicillamine would be expected.

3.4. Blocking by Ag⁺ Species. The exchange experiments were carried out to explain protein substitution and dethiolation and more exactly to estimate fate of the metals in thiol disulfide exchange reactions. Metal-modified BSA mixtures were subjected to nucleophilic attack by thiolate anions (as the entering group). The -SH group (Cys-34) of BSA was blocked with Ag⁺ by separately incubating BSA solution with a small excess of silver nitrate overnight, followed by chromatographic separation (Sephadex G25); we obtained a solution of Ag⁺-modified BSA in reaction buffer. The chromatographed Ag⁺-modified BSA was incubated overnight with the solution of ESSE. ESSE was found to be not able to react with the Ag⁺-modified -SH groups of Cys-34 in BSA. Treatment with ESSE confirms that -SH groups of Cys-34 in BSA have been
effectively blocked by Ag⁺ as there is no release of ES⁻ in the UV-visible spectrum at 412 nm (Figure 10).

3.5. Reaction of Thiolates with Ag⁺-Modified BSA. The chromatographed Ag⁺-modified BSA ((BSA-S)Ag⁺) samples (typically 500 μM) were subsequently mixed with thiolates (reduced glutathione, N-acetylcysteine, and D-penicillamine). Ag⁺ and modified BSA (typically 500 μM each) were treated with these low molecular weight thiolates and allowed to react overnight followed by chromatographic separation (Sephadex G25). The redox reactions of Ag⁺-modified BSA with various low molecular weight thiols revealed a mechanically important phenomenon. In the case of reduced glutathione and N-acetylcysteine, we observed the rapid release of a commensurate amount of Ellman’s anion (equations (6) and (7)) indicating that an exchange has taken place, and low molecular weight thiols (RSH) substituted Ag⁺ species at the Cys-34 of BSA eventually forming disulfide (BSA-SSR) at Cys-34. The obtained results lead us to elucidate the following reactions:

\[
\text{BSA} - S - Ag + RSH \rightarrow \text{BSA} - SSR + Ag⁺ \quad (6)
\]

\[
\text{BSA} - SSR + ESSE \rightarrow \text{BSA} - SSE + RS⁻ + ES⁻ \quad (7)
\]

With excess thiols, an exchange occurs at Cys-34 of BSA previously bound by Ag⁺. It is apparent that when RSH (GSH (Figure 11) or NAC (Figure 12)) attack Ag⁺-modified BSA, it binds to Cys-34 of BSA (forming BSA-SSR) and renders Ag⁺ previously bound to Cys-34 of BSA to be free. The subsequent treatment of ESSE with BSA-SSR produces larger bands (release reasonably stable ES⁻) in UV spectrophotometric spectra. Reduced Cys-34 was detected in the single-chain peptides, it was the byproduct, and overall the procedure was quite technical and comprehensive to handle.

After an overnight incubation of D-penicillamine with Ag⁺-modified BSA, the protein samples have been collected through chromatographic separation (Sephadex G25). In contrast to reduced glutathione and N-acetylcysteine, D-penicillamine was not able to take Ag⁺ from the -SH groups of Cys-34 in BSA (Figure 13).

A study was carried out by Mukhtiar et al. (2017) on the role of glutathione, cysteine and D-penicillamine in exchanging palladium and vanadium metals from albumin.
metal complex, and that was in good agreement with the current study since it is bound with albumin strongly and cannot be displaced by antioxidant like GSH, cysteine, and D-penicillamine. So exposure of human to these metals may disturb their normal physiology. Another study carried out by Jalilievand et al. (2009) on the cadmium(II) complex formation with cysteine and penicillamine is in disagreement with the current study that it only reveals differences between cysteine and penicillamine as ligands to the cadmium(II) ion that can explain why cysteine-rich metallothionines are capable of capturing cadmium(II) ions, while penicillamine, clinically useful for treating the toxic effects of mercury(II) and lead(II) exposure, is not efficient against cadmium(II) poisoning.

3.6. Statistical Analysis. The chi-square test was performed, and a p value of 0.002 showed significant results.

4. Conclusion
It can be anticipated from the phase of the study involving bovine serum albumin that low molecular weight thiols (reduced glutathione and N-acetylcysteine) take off Ag⁺ which are attached to proteins elsewhere in the physiological system, making these toxic metals free for toxic action. The low molecular weight thiols seem to be engaged in regeneration of Ag⁺-bound sulphydryls of protein across the living systems.

Data Availability
All datasets generated and analyzed during this study are included in the article.

Disclosure
This manuscript is taken from a master's thesis given in http://prr.hec.gov.pk/spui/handle/123456789/2716.

Conflicts of Interest
The authors declare that they have no conflict interests.

Authors’ Contributions
All of the authors listed have represented a tremendous guide and intellectual contribution to the study and have given their permission for it to be published.

Acknowledgments
This publication was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdul-Aziz University.

References
[1] T. Peters, All About Albumin. Biochemistry, Genetics, and Medical Applications, Academic Press, San Diego, CA, 1996.
[2] P. B. Kandagal, S. Ashoka, J. Seetharamappa, S. M. Shaikh, Y. Jadegoud, and O. B. Ijare, “Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, no. 2, pp. 393–399, 2006.
[3] A. Mallick, S. C. Bera, S. Maiti, and N. Chattopadhyay, “Fluorometric investigation of interaction of 3-acetyl-4-o xo-6,7-dihydro-12H indolo-[2,3-a] quinoline with bovine serum albumin,” Biochemical Chemistry, vol. 112, no. 1, pp. 9–14, 2004.
[4] S. F. Sun, B. Zhou, H. N. Hou, Y. Liu, and G. Y. Xiang, “Studies on the interaction between oxaprozin-E and bovine serum albumin by spectroscopic methods,” International Journal of Biological Macromolecules, vol. 39, no. 4–5, pp. 197–200, 2006.
[5] J. W. Kelly, “The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways,” Current Opinion in Structural Biology, vol. 8, no. 1, pp. 101–106, 1998.
[6] P. J. Sadler and J. H. Viles, “H and 113Cd NMR investigations of Cd²⁺ and Zn²⁺ binding sites on serum albumin: competition with Ca²⁺, Ni²⁺, Cu²⁺, and Zn²⁺,” Inorganic Chemistry, vol. 35, no. 15, pp. 4490–4496, 1996.
[7] A. Mallick, S. C. Bera, S. Maiti, and N. Chattopadhyay, “Fluorometric investigation of interaction of 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinoline with bovine serum albumin,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, no. 2, pp. 393–399, 2006.
[8] D. P. Simplicio, S. Frosali, R. Priorà et al., “Biochemical and biological aspects of protein thiolation in cells and plasma,” Antioxidants & Redox Signaling, vol. 7, no. 7–8, pp. 951–963, 2005.
[9] K. G. Lewis, L. Bercovitch, S. W. Dill, and L. Robinson-Bos- ton, “Acquired disorders of elastic tissue: part I. Increased elastic tissue and solar elastotic syndromes,” Journal of the American Academy of Dermatology, vol. 51, no. 1, pp. 1–21, 2004.
[10] R. Narazaki, M. Hamada, K. Harada, and M. Otagiri, “Covalent binding between bucillamine derivatives and human serum albumin,” Pharmaceutical Research, vol. 13, no. 9, pp. 1317–1321, 1996.
[11] E. Nathan and S. E. Pedersen, “Dialysis encephalopathy in a non-dialysed uraemic boy treated with aluminium hydroxide orally,” Acta Paediatrica Scandinavia, vol. 69, no. 6, pp. 793–796, 1980.
[12] Y. A. Gryzunov, A. Arroyo, J. L. Vigne et al., “Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper–albumin complexes from antioxidants to prooxidants,” Archives of Biochemistry and Biophysics, vol. 413, no. 1, pp. 53–66, 2003.
[13] J. Janatova, Ph. D. Thesis, Institute of Organic Chemistry Ary Electrophoretic Analyses, and Dr. Walter Scheider for Perand Biochemistry, Czechoslovak Academy of Sciences, 1965.
[14] G. L. Ellman, “Tissue sulfhydryl groups,” Archives of Biochemistry and Biophysics, vol. 82, no. 1, pp. 70–77, 1959.
[15] A. F. S. A. Habeeb, “[37] Reaction of protein sulfhydryl groups with Ellman’s reagent,” in Methods in enzymology, vol. 25, pp. 457–464, Academic Press, 1972.
[16] P. W. Riddles, R. K. Andrews, R. L. Blakeley, and B. Zerner, “Jack bean urease VI. Determination of thiol and disulfide content: reversible inactivation of the enzyme by the blocking of the unique cysteine residue,” Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, vol. 743, no. 1, pp. 115–120, 1983.
[17] P. Klatt and S. Lamas, “Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress,” European Journal of Biochemistry, vol. 267, no. 16, pp. 4928–4944, 2000.
[18] P. C. Jocelyn, “Spectrophotometric assay of thiols,” in *Methods in enzymology*, vol. 143, pp. 44–67, Academic Press, 1987.

[19] H. F. Gilbert and V. McLean, “Molecular and cellular aspects of thiol-disulfide exchange,” *Advances in Enzymology and Related Areas of Molecular Biology*, vol. 63, pp. 69–69, 1990.