Dinoflagellate cysts from the Pannonian (late Miocene) “white marls” in Pécs-Danitzpuszta, southern Hungary

1KRIZMANIĆ, Krešimir, 2SEBE, Krisztina, 3,4MAGYAR, Imre

1INA – Oil Company Plc., Exploration & Production, Exploration & Upstream portfolio development, 10 000 Zagreb, Lovinčićeva 4, Croatia; kresimir.krizmanic@ina.hr
2University of Pécs, Department of Geology and Meteorology, 7624 Pécs, Ifjúság útja 6, Hungary; sebe@gamma.ttk.pte.hu, ORCID: 0000-0002-4647-2199
3MOL Hungarian Oil and Gas Plc., 1117 Budapest, Október huszonharmadika u. 18, Hungary; immagyar@mol.hu, ORCID: 0000-0002-9236-0040
4MTA-MTM-ELTE Research Group for Paleontology, Budapest, Hungary

Introduction

Pannonian (late Miocene) “white marls”, deposited in regions sheltered from siliciclastic sediment input in Lake Pannon, are widely distributed in the southern part of the Pannonian Basin. Having accumulated in an isolated water body, their stratigraphic subdivision is problematic and relies on a few groups of the endemic biota. Their fossil molluscs have been studied and utilized for biostratigraphy for over a century (e.g., GORJANOVIĆ-KRAMBERGER 1890, 1899; KOCH 1902; SREMAC 1981; VRSALJKO 1999; TER BORGH et al. 2013). The organic-walled microplankton, first of all dinoflagellate cysts and prasinophytes (green algae), also provide good stratigraphic markers in Lake Pannon deposits, but they are scarcely known from the “white marls.” A rich dinoflagellate cyst assemblage was reported from the
Našice outcrop in Slavonia, northeast Croatia, by Bakrač (2005) and Bakrač in Vasiljev et al. (2007), and some dinoflagellate cysts were presented from boreholes in SE Hungary by Sutó-Szentai in Magyar et al. (2004). Apart from these data, we are not aware of published dinoflagellate cyst assemblages from the Pannonian “white marls.”

The objective of this paper is the investigation of dinoflagellate cysts from the largest surface exposure of these rocks in Hungary, Pécs-Danitzpuszta, in order to provide biostratigraphic and additional paleoenvironmental data for the integrated stratigraphic evaluation of the section. Earlier attempts to recover dinoflagellate cysts from the layers of this outcrop all failed, but as our pilot samples gave promising results, a large set of samples was collected and investigated. Earlier dinoflagellate studies from drill cores in the neighbouring regions of SW Hungary (Sutó-Szentai 1982, 1989, 1994, 2000a, 2002) and the Drava basin (INA industrial reports by K. Krizmanić) provided a firm basis for the biostratigraphic evaluation of the dinoflagellate assemblages.

The complex sedimentological and paleontological investigation of the Pécs-Danitzpuszta Neogene sequence was supported by a Croatian–Hungarian bilateral research project; our brief report on the dinoflagellates of the marls is a contribution to this joint effort.

Geological setting

The outcrop is a sand pit, located within the administrative area of Pécs, in the eastern outskirts of the city (Figure 1). The pit, together with an exploratory trench excavated in its northwestern margin, expose a strongly tilted Badenian–Sarmatian–Pannonian marl-dominated succession in 80 m stratigraphic thickness, capped by Pannonian sands (Sebe et al. 2021).

Sampling, material and methods

During a field trip in 2017, two pilot samples were taken randomly for palynological analysis from the easily accessible uppermost part of the marl succession (Layers D219 and D221) (Figure 1). As the samples yielded a well-preserved dinoflagellate cyst association, the entire section was sampled in two steps. A total of 72 samples (D72 to D1) were taken from the Badenian–Pannonian succession exposed in the exploratory trench, representing the lower 37 m of the section (Figure 1). Forty-one samples were chosen for palynological preparation and subsequent palynological and palynofacies analysis. However, only four samples, all belonging to the Pannonian, contained dinoflagellate cysts, and only three were suitable for biostratigraphical and environmental interpretation. The upper part of the Pannonian marl succession (D101 to D226, representing 43 m stratigraphic thickness) was investigated in 23 samples. All slides were barren except sample D225 that contained an impoverished, poorly preserved dinoflagellate cyst assemblage. Due to their poor preservation the biostratigraphic or paleoecological evaluation was not possible.

Processed in the standard way of palynological maceration (Moore et al. 1991), rock samples were washed in 7% hydrochloric acid (HCl), dried and ground in a laboratory crusher, weighed (100 g) and set for dissolution of carbonates (with 18% HCl) and silicates (with 40% HF). The organic residue...
was separated from undissolved inorganic mixture by treatment with a heavy liquid (ZnCl₂, s.g. 2.1 kg/l) and sieved through a 15 mm sieve. Finally, palynological slides were prepared using glycerin gelatin as the mounting medium.

Palynological slides were analysed by a Leitz Aristoplan light microscope and an Olympus DP 25 digital camera with the corresponding Stream Motion software for photography and documentation. An Olympus BX51 fluorescence light microscope was used for palynofacies characterisation and control of reworked palynomorphs.

For each sample, the Thermal Alteration Index (TAI) was determined. This is part of a visual kerogene analysis (Schwab 1990) where the colour of different palynofacies constituents, including sporomorphs, dinoflagellate cysts, acritarchs etc. under the transmitted light is expressed on a ten-step scale (1, 1+, 2–, 2, 2+, 3–, 3, 3+, 4–, 4). The colour is a function of paleotemperature, pressure, and geologic age, as well as that of structure, thickness, chemical composition and weathering of palynomorphs. The degree of thermal maturity is defined by colour change from pale yellow through brown to black (e.g., Staplin 1977).

Palynostratigraphic evaluation of the identified dinoflagellate cysts was based on the relevant literature (e.g., Sütő-Szentai 1988, 2000b; Lučić et al. 2001; Bakrač 2005; Bakrač et al. 2012; Soliman & Riding 2017) and on our own experience (K. K.) from hydrocarbon exploration boreholes in Croatia.

Results

The palynofacies and palynological assemblages of the samples are described in stratigraphic order, from bottom to top. The identified taxa are listed in Table I. Palynofacies and selected dinoflagellate cysts are illustrated in Figures 2 and 3.

Layer D25

Sample D25 contains abundant sedimentary organic particles in the rock macerate. Amorphous organic matter particles are rare in the palynofacies. Lignohumine clasts are mostly made up of smaller, black, fully oxidized woody fragments (inertinite). Liptinite components are abundant. They include some pollen grains and a lot of various, completely oxidized (transparent) dinoflagellate cysts. In the palynofacies, a significant amount of macerals is composed of bigger, brown, biostructured phytoclasts (vitritine) and cuticles, both immature (TAI 1–2). The most frequent dinoflagellate cysts are Lingulodinium machaerophorum (Deflandre & Cookson, 1955) Wall., 1967 (Figure 2A), Polysphaeridium zoharyi (Rossignol, 1962) Buja et al., 1980 (Figure 2B), Spiniferites sp., Achnosphaera sp., Operculodinium sp., Hystrichokolpoma sp. and Selenopemphix sp. (Table I).

Table I. Dinoflagellate cysts and green algae identified in the Pécs-Danitzpuszta samples

	D25	D3	D2	D1	D219	D221
Lingulodinium machaerophorum	X					
Polysphaeridium zoharyi	X					
Spiniferites pannonicus	X	X	X	X	X	
Spiniferites oblongus	X	X	X	X		
Spiniferites hennersdorfansis	X	X	X	X	X	
Spiniferites maiensis						
Spiniferites bentori granulatus						
Spiniferites sp.	X					
"Virgudinium asymmetricum"		X	X	X	X	
"Virgudinium foveolatum"	X					
"Virgudinium" sp.						
Pontiadinium pescvaradensis		X	X			
Pontiadinium obesum						
Pontiadinium sp.						
Impagidinium globosum						
Impagidinium spongianum						
Impagidinium sp.	X	X	X	X		
Selenopemphix sp.	X					
Nematosphaeropsis sp.						
Achnosphaera sp.	X					
Operculodinium sp.	X					
Hystrichokolpoma sp.						
Chrytosephaeridia sp.						
Spirogyra sp.		X			X	X
Botryococcus braunii		X			X	
Figure 2. Selected Pannonian dinoflagellate cysts and green algae from the Pécs-Danitzpuszta outcrop. The black scale bars represent 10 µm for each figure.

A: Lingulodinium mackanoiiforme (Deplandre & Cookson, 1955) Wall 1967, D25; B: Polyphactoidium zoharyi (Rossignol, 1962) Buiak et al. 1980, D25; C: Spiniferites pannonicus (Süto-Szentai, 1986), Soliman & Riding 2017 (D219); D-G: Spiniferites oblongus (Süto-Szentai, 1986) Soliman & Riding 2017 (D, E: D219; F: D221; G: D3); H: Spiniferites hennersdorferi Süto-Szentai, 2017 (H: D221; I: D1); J: Botryococcus braunii Kützing, 1849 (D221); K-L: "Vérgudinium asymmetricum" Süto-Szentai, 2010 (D221); M: "Vérgudinium fusiformatum" Süto-Szentai, 1982 (D221); N: Spirogyra sp. Type II (D219); O: Spirogyra sp. Type I (D221); P-R: Pontiadinium pecsvaradensis Süto-Szentai, 1982 (P: D221; Q: D1; R: D3); S: Pontiadinium obesum Süto-Szentai, 1982 (D221)

2. ábra. Pannoniai dinoflagelláta ciszták és zöldalgák a pécs-danitzpusztaí felülnásból. A fekete aránymérték mindig is 10 µm-nek felel meg
Layer D3

The macerate of the rock sample is very rich in sedimentary organic matter. About 50% of the palynofacies is composed of amorphous organic matter. Lignohumine clasts make up about 20% of the organic residue composed mostly of brown, bigger, biostructured phytoclasts (vitrinite) and fewer black (inertinite) kerogen clasts. About 30% of the palynofacies is liptinite component made up of dinoflagellate cysts, green algae remnants (Spirogyra sp. and Botryococcus brauni) and different spores and pollen grains. Macerals are immature (TAI 2). The most frequent dinoflagellate cysts are Spiniferites pannonicus (Sütő-Szentai, 1986), Soliman & Riding, 2017, Spiniferites oblongus (Sütő-Szentai, 1986) Soliman & Riding, 2017, (Figure 2G), Spiniferites hennersdorfensis Soliman & Riding, 2017, Impagidinium sp., “Virgodinium asymmetricum” Sütő-Szentai, 2010 and Pontidiinium pecsvaradensis Sütő-Szentai, 1982 (Figure 2R) (Table I).

Layer D2

The sample is very rich in sedimentary organic matter (Figure 3A). Amorphous organic matter particles are predominant (ca. 50%). Lignohumine clasts make up ca. 10% of the palynofacies and they are mostly composed of black (inertinite) clasts. The liptinite component represents about 40% of the visible organic residue and it is made up of diverse chorate and proximate (dominant) dinoflagellate cysts, green algae remnants (abundant Spirogyra sp., Botryococcus brauni) and small sized brown, biostructured phytoclasts (vitrinite) and small black clasts (inertinite). About 10% of the palynofacies is lignohumine component made of diverse chorate and proximate dinoflagellate cysts, green algae remnants (Spirogyra sp.), and assorted pollen grains (mostly bisaccate conifer pollen). Macerals are immature (TAI 1-2).

Dinoflagellate cysts are represented mainly by Spiniferites pannonicus (Sütő-Szentai, 1986), Soliman & Riding, 2017, Spiniferites oblongus (Sütő-Szentai, 1986) Soliman & Riding, 2017, Spiniferites hennersdorfensis Soliman & Riding, 2017, Spiniferites sp., Impagidinium globosum Sütő-Szentai, 1985, Impagidinium spongianum Sütő-Szentai, 1985, Impagidinium sp., Chytroesphaeridia sp., “Virgodinium foveolatum” Sütő-Szentai 1982, “Virgodinium” sp., “Virgodinium asymmetricum” Sütő-Szentai, 2010, Pontidiinium pecsvaradensis Sütő-Szentai, 1982 and Pontidiinium sp. (Table I).

Layer D1

The sample is very rich in sedimentary organic matter. Amorphous organic matter makes up about 50% and lignohumine clasts about 20% of the palynofacies. The liptinite component is abundant and comprises 30% of the visible organic residue. The palynological assemblage is composed of diverse chorate and proximate (predominant) dinoflagellate cysts, green algae remnants (Spirogyra sp., Botryococcus brauni) and various pollen grains (mainly bisaccate). Pyrite inclusions in palynomorphs are common. Macerals are mechanically damaged and immature (TAI 1-2). The most frequent dinoflagellate cysts are Spiniferites pannonicus (Sütő-Szentai, 1986), Soliman & Riding, 2017, Spiniferites oblongus Sütő-Szentai, 1986, Spiniferites hennersdorfensis Soliman & Riding, 2017 (Figure 2F), Spiniferites sp., Achomospheara sp., Nematosphaeropsis sp., Operculodinium sp., Impagidinium sp., “Virgodinium asymmetricum” Sütő-Szentai, 2010 and Pontidiinium pecsvaradensis Sütő-Szentai, 1982 (Figure 2Q) (Table I).

Layer D219

The rock sample is very rich in sedimentary organic matter (Figure 3B, C). About 50% of the organic particles are represented by amorphous organic matter. Lignohumine clasts make up about 40% of the organic residue and it is composed mostly of smaller, black, opaque, completely oxidized woody tissue (inertinite). About 10% of the palynofacies is liptinite component made of diverse chorate and proximate dinoflagellate cysts, green algae remnants e.g., Spirogyra sp., Type II (Figure 2N) and Botryococcus brauni Kützing, 1849, various spores and abundant pollen grains. Macerals are mechanically damaged and contain no pyrite inclusions. The most numerous dinoflagellate cysts are Spiniferites pannonicus (Sütő-Szentai, 1986), Soliman & Riding, 2017 (Figure 2C), Spiniferites bentorii granulatus Fuchs & Sütő-Szentai, 1991, Spiniferites oblongus (Sütő-Szentai, 1986) Soliman & Riding, 2017 (Figure 2D, E), Spiniferites hennersdorfensis Soliman & Riding, 2017, “Virgodinium asymmetricum” Sütő-Szentai 2010 and Impagidinium sp. (Table I).

This sample is colloquially referred to as the Myrtle facies because of the abundant Myrica leaves found in this layer (Hably & Sebe 2016).

Layer D221

The sample is very rich in sedimentary organic matter (Figure 3D, E). Amorphous organic matter particles make up about 50%, and lignohumine kerogen clasts form 20% of the palynofacies. Lignohumine clasts are mainly large-sized brown, biostructured phytoclasts (vitrinite) and smaller black clasts (inertinite). About 30% of the organic residue is liptinite kerogen component composed of diverse chorate and proximate dinoflagellate cysts, green algae remnants Spirogyra sp. Type I (Figure 2O) and Botryococcus braunii Kützing, 1849 (Figure 2J), and rare spores and pollen grains (mostly bisaccate). The most common dinoflagellate cysts are Spiniferites pannonicus (Sütő-Szentai, 1986), Soliman & Riding, 2017, Spiniferites oblongus (Sütő-Szentai, 1986) Soliman & Riding, 2017, (Figure 2F), Spiniferites hennersdorfensis Soliman & Riding, 2017 (Figure 2H), Spiniferites maisensis Sütő-Szentai, 1994, Selenopemphi sp, Nematosphaeropsis sp., “Virgodinium asymmetricum” Sütő-Szentai, 2010 (Figure 2K, L), Impagidinium sp., “Virgodinium foveolatum” Sütő-Szentai, 1982 (Figure 2M), Pontidiinium obsenum Sütő-Szentai, 1982 (Figure 2S) and Pontidiinium pecsvaradensis Sütő-Szentai, 1982 (Figure 2P) (Table I).
Figure 3. Palynofacies of the samples. A: Very rich macerate from D2 with predominance of amorphous organic matter (ca. 50%) and liptinite kerogen components (ca. 40%); scale bar 50 µm; B: Palynofacies with abundant sedimentary organic matter in D219 in transmitted light; scale bar 200 µm; C: Same in fluorescent light; D: Palynofacies very rich in organic matter from D221 in transmitted light; scale bar 200 µm; E: Same in fluorescent light

3. ábra. A vizsgált minták palinofáciese. A: Nagyon gazdag macerátum a D2 rétegből jelentős mennyiségű amorf szerves anyaggal (kb. 50%) és liptinittel (kb. 40%); az aránymérték 50 µm; B: A D219 réteg palinofáciese sok üledékes szerves anyaggal, áteső fényben; az aránymérték 200 µm; C: Ugyanaz fluoreszkáló fényben; D: A D221 réteg palinofáciese nagyon sok szerves anyaggal áteső fényben; az aránymérték 200 µm; E: Ugyanaz fluoreszkáló fényben
Discussion

Paleoenvironmental interpretation

Samples D3, D2, D1, D219 and D221 share a series of common features, including a high proportion of amorphous matter, lower lignohumine content, pyrite inclusions, mostly bissacate forms of pollen grains, and an abundance of dinoflagellates with a predominance of proximate dinoflagellate cysts. Thus, their palynofacies indicates a relatively distal, calm, occasionally oxygen-deficient, probably deep depositional environment (Steffen & Gorin 1993, Tyson 1995, Sluijs et al. 2005).

Biostratigraphic interpretation

The biocenosis and the detected dinoflagellate cysts of D25 bear resemblance to those of the late Sarmatian Polysphaeridium zoharyi–Lingulodinium machaerophorum Zone (Bakrač 2005, Bakrač et al. 2012), although both species may occur sporadically in the Pannonian. The thermal heterogeneity of the macerals as well as the completely oxidized dinoflagellate cysts may indicate reworking from Sarmatian or upper Badenian sediments. Forams, ostracods and mollusks all argue for a Pannonian age of D25.

The rest of the samples contained typical endemic Pannonian assemblages. Based on the presence of Pontiadinium pecsvaradensis and the lack of any younger zone markers, the D3 to D1 interval belongs to the P. pecsvaradensis Zone (e.g., Sutó-Szentai 1988, Bakrač et al. 2012) (Figure 1). In Croatia, this zone is traditionally assigned into the upper part of the Pannonian (s. str.), and is correlated with the so-called “Bantatica layers” (Congeria bantatica bearing marls; see in Lučić et al. 2001). Magyar et al. (1999b) argued that the P. pecsvaradensis Zone correlates with the older part of C5n magnetic polarity zone in several wells, and its age was estimated as 10.6–10.8 Ma (Magyar & Geary 2012) or 10.65–10.75 Ma (Botka et al. 2020).

Samples D219 and D221 did not yield any species unambiguously marking a zone younger than the P. pecsvaradensis Zone; even P. pecsvaradensis itself was missing in D219. Although Pontiadinium obesum and Spiniferites maiensis, both occurring in D221, are more common in the younger zones (traditionally correlated with the Pontian in Croatia, see Bakrač et al. 2012), they first appear in the Spiniferites oblongus Zone that underlies the P. pecsvaradensis Zone. Thus, the biostratigraphic position of these layers can be given as “P. pecsvaradensis Zone or younger”.

Conclusions

Six samples (out of the investigated 66) from the Pannonian marl succession of Pécs-Danitzpuszta contained well-preserved polyomorph assemblages. Samples D1 to D3 in the middle part of the succession yielded, among others, the dinoflagellate cyst Pontiadinium pecsvaradensis, a biostratigraphic marker species (P. pecsvaradensis Zone). Well-preserved material from the top of the succession failed to contain any species exclusively characterizing biozones younger than the P. pecsvaradensis Zone, thus these samples either belong to the P. pecsvaradensis Zone or they are younger.

Acknowledgements

Viktória Baranyi and an anonymous reviewer are thanked for their careful reviews and advice. This research was carried out within the framework of the Hungarian–Croatian bilateral project “Stratigraphy and correlation of Upper Miocene – Pliocene sediments along the Croatian–Hungarian border” (TÉT 16-1-2016-0004) and further supported by the OTKA/NKFIH (Hungarian National Research, Development and Innovation Office) project 116618. This is MTA-MTM-ELTE Paleo contribution No. 353.

References – Irodalom

Bakrač, K. 2005: Palinološka karakterizacija naslaga srednjeg miocena jugozapadnog dijela Panonskog bazena [Palinology of the Middle and Upper Miocene deposits from the south-western parts of the Pannonian Basin]. – PhD Thesis. University of Zagreb, 173 p. (in Croatian with English summary)

Bakrač, K., Koch, G. & Sremac, J. 2012: Middle and Late Miocene palynological biozonation of the south-western part of Central Paratethys (Croatia). – Geologica Croatica 65, 207–222. https://doi.org/10.4154/GC.2012.12

Botka, D., Magyar, I., Csoma, V., Tóth, E., Šuian, M., Ruszkczay-Rüdiger, Zs., Chyba, A., Braucher, R., Sant, K., Čorić, S., Baranyi, V., Bakrač, K., Križmanić, K., Bartha, I. R., Szabó, M. & Silye, L. 2019: Integrated stratigraphy of the Gușterița clay pit: a key section for the early Pannonian (late Miocene) of the Transylvanian Basin (Romania). – Austrian Journal of Earth Sciences 112, 221–247. https://doi.org/10.17738/ajes.2019.0013

Gorjanović-Kramberger, K. 1890: Die praepontischen Bildungen des Agramer Gebirges. – Glasnik Hrvatskoga Naravoslovnoga Družtva 5, 151–163.

Gorjanović-Kramberger, K. 1899: Die Fauna der untern-pontischen Bildungen um Lendjica in Slavonien. – Jahrbuch der kaiserlich-königlichen geologischen Reichsanstalt 49, 125–134.
HABLY L. & SEBE K. 2016: A late Miocene thermophilous flora from Pécs-Danitzpuszta, Mecsek Mts., Hungary. – Neues Jahrbuch für Geologie und Paläontologie 279(3), 261–271. https://doi.org/10.1127/njgpa/2016/0554

Koch, A. 1902: Újabb adalékok a beosníci cseménymárga geo-paleontológiai vizsgaival. – Földtani Közlöny 32, 271–280.

Lučić, D., Sapić, B., Krizmanić, K., Prelogić, E., Britvić, V., Mesic, I. & Tadej, J. 2001: The Neogene evolution and hydrocarbon potential of the Pannonian Basin in Croatia. – Marine and Petroleum Geology 18, 133–147. https://doi.org/10.1016/S0264-8172(00)00038-6

Magyar, I. & Geary, D. H. 2012: Biostratigraphy in a late Neogene Caspian-type lacustrine basin: Lake Pannon, Hungary. – In: Baganz, O. W., Bartov, Y., Bohacs, K. & Nummedal, D. (eds): Lacustrine sandstone reservoirs and hydrocarbon systems. – American Association of Petroleum Geologists Memoir 95, 255–264. https://doi.org/10.1306/13291392M953142

Magyar, I., Geary, D. H. & Muller, P. 1999a: Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. – Palaeogeography, Palaeoclimatology, Palaeoecology 147, 151–167.

Magyar, I., Geary, D. H., Sütő-Szentai, M., Lantos, M. & Muller, P. 1999b: Integrated biostratigraphic, magnetostratigraphic and chronostratigraphic correlations of the Late Miocene Lake Pannon deposits. – Acta Geologica Hungarica 42, 5–31.

Magyar I., Juhász Gy., Szuromi-Korecz A. & Sütő-Szentai M. 2004: A pannoniai Tőtkomlói Mézmárga Tagozat kifejlődése és kora a Battonya-Pusztaföldvári-hátság környezetében. The Tőtkomlös Calcareaus Marl Member of the Lake Pannon sedimentary sequence in the Battonya-Pusztaföldvár region, SE Hungary. – Földtani Közlöny 133, 521–540.

Moore, P. D., Webb, J. A. & Collins, M. E. 1991: Pollen Analysis. – Blackwell Scientific Publications, Oxford, 216 p.

Schwab, K.W. 1990: Organic Petrology Seminar (Visual Kerogen Assessment). – Geol.-Strat., Inc., Houston Texas, Zeist, Nederlands.

Sebe, K., Konrád, Gv., Sztánó A. 2021: An exceptional surface occurrence: the middle to upper Miocene succession of Pécs-Danitzpuszta (SW Hungary). – Földtani Közlöny 151/3, 235–252.

Sluijs, A., Pross, J. & Brinkhuis, H. 2005: From greenhouse to icehouse: organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. – Earth-Science Reviews 68, 28–315. https://doi.org/10.1016/j.earscirev.2004.06.001

Soldan, A. & Riding, J. B. 2017: Late Miocene (Tortonian) gonvaulacaceous dinoflagellate cysts from the Vienna Basin, Austria. – Review of Palaeobotany and Palynology 244, 325–346. https://doi.org/10.1016/j.revpalbo.2017.02.003.

Sremac, J. 1981: Some new and less known species of molluscs of the Croatica-beds and the Banatica-beds in northern Croatia. – Annals of the Hungarian Geological Institute 157–167.

Staplin, F.L. 1977: Interpretation of thermal history from color of particulate organic matter – a review. – Palynology 1, 9–18. https://doi.org/10.1080/01916122.1977.9989146

Steffen, D. & Gorin, G. 1993: Palynofacies of the Upper Tithonian – Berriasian Deep-sea Carbonates in the Vocontian Trough (SE France). – Bull. Centres Rech. Exploration-Prod. Elf Aquitaine 17/1, 235–245, 1 Pl., Boussens.

Sütő-Szentai, M. 1982: Organic microplanktonic and spomorphous remains from the Pannonian from the borehole Tengelic 2. – Annales of the Hungarian Geological Institute 65, 205–233.

Sütő-Szentai, M. 1988: Microplankton zones of organic skeleton in the Pannonian s. I. stratum complex and in the upper part of the Sarmatian strata. – Acta Botanica Hungarica 34, 339–35.

Sütő-Szentai, M. 1989: Microplankton flora of the Pannonian sequence of the Szentlőrinc-XII structure exploratory well. – Földtani Közlöny 119, 31–43.

Sütő-Szentai, M. 1994: Microplankton associations of organic skeleton in the surroundings of Villány Mts. – Földtani Közlöny 124, 451–478.

Sütő-Szentai, M. 2000a: Examination for Microplanctons of organic skeleton in the area between the Mecsek and the Villány Mountains (S Hungary Somberek No2 borehole). Szervesvázú mikroplankton vizsgálatok a Mecsek és a Villányi hegyseg közötti területen (Somberek 2. sz. fúrás). – Folia Comloensis 8, 157–167.

Sütő-Szentai, M. 2000b: Organic walled microplankton zonation of the Pannonian s.l. in the surroundings of Kaskantyú, Paks and Tengelic (Hungary). – Annual Report of the Geological Institute of Hungary 1994–1995/II, 153–175.

Sütő-Szentai, M. 2002: Analysis of microplanktons of organic skeleton from borehole Nagykőzár 2 (S Hungary). – Folia Comloensis 11, 93–110.

Ter Borgh, M., Vasiljev, I., Stoica, M., Knežević, S., Matenco, L., Krugman, W., Rundić, L. & Cloetingh, S. 2013: The isolation of the Pannonian basin (Central Paratethys): new constraints from magnetostratigraphy and biostratigraphy. – Global and Planetary Change 103, 99–118. https://doi.org/10.1016/j.gloplacha.2012.10.001.

Tyson, R. V. 1995: Sedimentary organic matter. Organic facies and palynofacies. – Chapman and Hall, London, 591 p.

Vasiljev, I., Bakrač, K., Kovačić, M., Abdul Aziz, H. & Krugman, W. 2007: Palaeomagnetic results from the Sarmatian/Pannonian boundary in North-Eastern Croatia (Vranović section, Našice quarry). – Geologia Croatica 60, 151–163.

Vrsaljko, D. 1999: The Pannonian palaeoecology and biostratigraphy of molluscs from Kostanjek – Medvednica Mt., Croatia. – Geologia Croatica 52, 9–27. https://doi.org/10.4154/GC.1999.02

Manuscript received: 08/06/2021