On arithmetical nature of Tichy-Uitz’s function

Jabitskaya E. N.

In [1] R. F. Tichy and J. Uitz introduced a one parameter family g_λ, $\lambda \in (0,1)$, of singular functions. When $\lambda = 1/2$ the function g_λ coincides with the famous Minkowski question mark function. In this paper we describe the arithmetical nature of the function g_λ when $\lambda = \frac{3 - \sqrt{5}}{2}$.

Key words: continued fractions, Minkowski’s function.

2000 Mathematical Subject Classification: 11J70.

1 Stern-Brocot sequences

We remind the definition of Stern-Brocot sequences $F_n, n = 0,1,2,\ldots$.

Consider the two-point set $F_0 = \{\frac{0}{1},\frac{1}{1}\}$. Let $n \geq 0$ and

$$F_n = \left\{0 = x_{0,n} < x_{1,n} < \ldots < x_{N(n),n} = 1\right\},$$

where $x_{j,n} = p_{j,n}/q_{j,n}$, $(p_{j,n}, q_{j,n}) = 1$, $j = 0, \ldots, N(n)$ and $N(n) = 2^n$. Then

$$F_{n+1} = F_n \cup Q_{n+1}$$

with

$$Q_{n+1} = \{x_{j-1,n} \oplus x_{j,n}, \quad j = 1, \ldots, N(n)\}.$$

Here

$$\frac{a}{b} \oplus \frac{c}{d} = \frac{a + b}{c + d}$$

is the mediant of the fractions $\frac{a}{b}$ and $\frac{c}{d}$.

The elements of Q_n can be characterized in the following way. A rational number $\xi \in [0,1]$ belongs to Q_n if and only if in the continued fraction expansion

$$\xi = [0; a_1, a_2, \ldots, a_m] = 0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots + \frac{1}{a_m}}}, \quad a_j \in \mathbb{N}, \ a_m \geq 2. \quad (1)$$

\footnote{Research is supported by RFBR grant No 09-01-00371-a}
the sum of partial quotients is exactly $n+1$:

$$S(\xi) := a_1 + \ldots + a_m = n + 1.$$

So \mathcal{F}_n consists of all rational $\xi \in [0,1]$ such that $S(\xi) \leq n+1$.

2 Tichy-Uitz’s singular functions

In [1] R. F. Tichy and J. Uitz considered a one parameter family g_λ, $\lambda \in (0,1)$, of singular functions. In this section we describe the construction of g_λ from [1]. This construction is an inductive one.

Given $\lambda \in (0,1)$ put

$$g_\lambda(0) = g_\lambda(0/1) = 0, \quad g_\lambda(1) = g_\lambda(1/1) = 1.$$

Suppose that $g_\lambda(x)$ is defined for all elements $x \in \mathcal{F}_n$. Then we define $g_\lambda(x)$ for $x \in \mathbb{Q}_{n+1}$. Each $x \in \mathbb{Q}_{n+1}$ is of the form $x = x_{j-1,n} \oplus x_{j,n}$ where $x_{j-1,n}$ and $x_{j,n}$ are consecutive elements from \mathcal{F}_n. Then

$$g_\lambda(x_{j-1,n} \oplus x_{j,n}) = g_\lambda(x_{j-1,n}) + (g_\lambda(x_{j,n}) - g_\lambda(x_{j-1,n})) \lambda.$$

So we have defined g_λ for all rational numbers from $[0,1]$. One can see that the function $g_\lambda(x)$ is a continuous function from $\mathbb{Q} \cap [0,1]$ to $[0,1]$. So it can be extended to a continuous function from the whole segment $[0,1]$ to $[0,1]$.

For every λ the function $g_\lambda(x)$ increases in $x \in [0,1]$. By the Lebesgue theorem $g_\lambda(x)$ is a differentiable function almost everywhere. Moreover, it is easy to see that $g_\lambda'(x) = 0$ almost everywhere (is the sense of Lebesgue measure). Certain properties of functions $g_\lambda(x)$ were investigated in [1]. Some related topics one can find in [6] and [7]. Here we should note that in the case $\lambda = 1/2$ the function $g_{1/2}(x)$ coincides with the famous Minkowski question mark function $?(x)$. This function may be considered as the limit distribution function for Stern-Brocot sequences \mathcal{F}_n. The aim of the present paper is to explain the arithmetical nature of the function $g_\lambda(x)$ when $\lambda = \frac{3-\sqrt{5}}{2}$.

3 Minkowski’s function $?(x)$

Let us consider the function $g_{1/2}(x) = ?(x)$. This function was introduced by Minkowski. As it follows from the definition of g_λ for $\lambda = 1/2$:

$$?(0) = ?(0/1) = 0, \quad ?(1) = ?(1/1) = 1.$$
and for \(x_{j-1,n}, x_{j,n} \in \mathcal{F}_n \)

\[\mathcal{M}(x_{j-1,n} \oplus x_{j,n}) = \frac{\mathcal{M}(x_{j-1,n}) + \mathcal{M}(x_{j,n})}{2}. \]

The definition of \(\mathcal{M}(x) \) for irrational \(x \) follows by continuity.

R. Salem in [2] found a new presentation for \(\mathcal{M}(x) \). If \(x \in (0, 1) \) is represented in the form of regular continued fraction

\[x = [0; a_1, a_2, \ldots, a_m, \ldots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_m + \frac{1}{\ddots}}}}}, \quad (2) \]

then

\[\mathcal{M}(x) = \frac{1}{2a_1 - 1} - \frac{1}{2a_1 + a_2 - 1} + \frac{1}{2a_1 + a_2 + a_3 - 1} - \ldots \quad (3) \]

For rational \(x \) the representation (2) and consequently (3) is finite.

Minkowski’s question mark function may be treated as the limit distribution function for Stern-Brocot sequences in the following sense:

\[\mathcal{M}(x) = \lim_{n \to \infty} \frac{\# \{ \xi \in \mathcal{F}_n : \xi \leq x \}}{\# \mathcal{F}_n} = \lim_{n \to \infty} \frac{\# \{ \xi \in \mathcal{F}_n : \xi \leq x \}}{2^n + 1}. \quad (4) \]

A finite formula for the right hand side of (4) was given by T. Rivoal in the preprint [3]. Various properties of Minkowski question mark function were investigated in papers [8] by A. Denjoy, [3] by P. Viader, J. Paradis, L. Bibiloni and in [4] by A. A. Dushistova, I. D. Kan and N. G. Moshchevitin.

4 General form of formula (3)

The formula (3) can be generalized on the whole family of functions \(g_{\lambda} \) in the following way.

Proposition Let \(x, \lambda \in (0, 1) \) and \(x = [0; a_1, \ldots, a_m, \ldots] \) is the regular continued fraction expansion of \(x \), then

\[g_{\lambda}(x) = \lambda^{a_1 - 1} - \lambda^{a_1 - 1}(1 - \lambda)^{a_2} + \lambda^{a_1 - 1}(1 - \lambda)^{a_2 - 1} \lambda^{a_3} - \ldots + \]

\[+ (-1)^{m+1} \lambda^{(1 \leq i \leq m, i \equiv 1 \mod 2)} \sum_{i=1}^{a_i - 1} (1 - \lambda)^{(1 \leq i \leq m, i \equiv 0 \mod 2)} a_i + \ldots. \quad (5) \]
Proof: By definition of \(g_\lambda \)

\[
g_\lambda(0) = 0, \quad g_\lambda(1) = 1
\]

and

\[
g_\lambda(x_{j-1,n} \oplus x_{j,n}) = g_\lambda(x_{j-1,n}) + (g_\lambda(x_{j,n}) - g_\lambda(x_{j-1,n})) \lambda,
\]

where \(x_{j-1,n} \) and \(x_{j,n} \) are consecutive elements from \(\mathcal{F}_n \). We can also rewrite the formula (6) in the form

\[
g_\lambda(x_{j-1,n} \oplus x_{j,n}) = g_\lambda(x_{j,n}) - (g_\lambda(x_{j,n}) - g_\lambda(x_{j-1,n})) (1 - \lambda).
\]

The equality

\[
g_\lambda(1/a_1) = \lambda^{a_1-1}
\]
follows from the formula (6) immediately since \(1/a_1 = 0 \oplus \ldots \oplus 0 \oplus 1 \) \(\text{times} (a_1-1) \) times.

Suppose that the formula (5) is proved for \(x = [0; a_1, \ldots, a_m] \), then it is enough to prove it for \(y = [0; a_1, \ldots, a_m + 1] \) and for \(z = [0; a_1, \ldots, a_m, 2] \).

Let \(m \) is odd, then by applying formula (6) we get

\[
g_\lambda(y) = g_\lambda([0; a_1, \ldots, a_{m-1}] \oplus [0; a_1, \ldots, a_m]) =
\]

\[
= g_\lambda([0; a_1, \ldots, a_{m-1}]) + \lambda(\sum_{a_i \equiv 1 \pmod{2}} a_i - 1) (1 - \lambda) (1 - \lambda) \]

and by applying formula (7) we get

\[
g_\lambda(z) = g_\lambda([0; a_1, \ldots, a_{m+1}] \oplus [0; a_1, \ldots, a_m]) =
\]

\[
= g_\lambda([0; a_1, \ldots, a_m]) - (1 - \lambda)(g_\lambda([0; a_1, \ldots, a_m]) - g_\lambda([0; a_1, \ldots, a_m + 1])) =
\]

\[
= g_\lambda([0; a_1, \ldots, a_m]) - \lambda \sum_{a_i \equiv 1 \pmod{2} \pmod{2}} a_i (1 - \lambda)^2.
\]

For even \(m \) the proof is analogously.
5 Regular reduced continued fractions and
the main result

Any real number x can be expressed uniquely in the form

$$x = [b_0; b_1, b_2, \ldots, b_l, \ldots] = b_0 - \frac{1}{b_1 - \frac{1}{b_2 - \ldots - \frac{1}{b_l - \ldots}}}, \quad b_i \geq 2, \quad (10)$$

which is known as regular reduced continued fraction (eine reduziert-regelmassige Kettenbrouch [10], [9]).

For a rational number $x \in (0, 1)$ the representation (10) takes the form:

$$x = [1; b_1, \ldots, b_l]. \quad (11)$$

For such x we denote $L(x) = b_1 + \ldots + b_l$.

Analogously to the sequence F_n we define the sequence Ξ_n:

$$\Xi_n := \{0, 1\} \cup \left(\bigcup_{1 \leq k \leq n} \Theta_k \right),$$

where $\Theta_k = \{x \in \mathbb{Q} : L(x) = k + 1\}, \ k \geq 1$.

We arrange the elements of Ξ_n in the increasing order:

$$\Xi_k = \{0 = \xi_{1,n} < \xi_{2,n} < \ldots < \xi_{\sharp \Xi_n,n} = 1\}.$$

We would like to note that in the special case $\lambda = \tau^2$ formula (5) gives:

$$g_{\tau^2}(x) = \tau^{2a_1-2} - \tau^{2a_1+a_2-2} + \tau^{2a_1+a_2+a_3-2} - \ldots +$$

$$+ (-1)^{m+1} \tau^{\sum_{i=1}^{m} \alpha_i a_i - 2} + \ldots, \quad (12)$$

where

$$\alpha_m = \begin{cases} 1, & \text{if } m \text{ is even}, \\ 2, & \text{if } m \text{ is odd}. \end{cases}$$

For rational x the representation (12) is finite.

The Theorem 1 below is the main results of the present paper. It generalizes the formula [4] on the regular reduced continued fractions.
Theorem 1 Function \(g_\lambda \), where \(\lambda = \tau^2 = \frac{3-\sqrt{5}}{2} \), \(\tau = \frac{\sqrt{5}-1}{2} \) coincides with the distributional function of the sequence \(\Xi_n \), that is

\[
g_{\tau^2}(x) = \lim_{n \to \infty} \frac{\# \{ \xi \in \Xi_n : \xi \leq x \}}{\# \Xi_n}, \quad x \in (0, 1).
\]

Now we consider the function

\[
\mathcal{M}(x) := \lim_{n \to \infty} \frac{\# \{ \xi \in \Xi_n : \xi \leq x \}}{\# \Xi_n}, \quad x \in (0, 1).
\]

Our purpose is to prove that \(\mathcal{M}(x) = g_\lambda \). Function \(\mathcal{M}(x) \) is increasing as a distribution function, so it is enough to prove that \(\mathcal{M}(x) \) coincides with \(g_{\tau^2}(x) \) for rational \(x \), that is

\[
\mathcal{M}(x \oplus y) = \mathcal{M}(x) + (\mathcal{M}(y) - \mathcal{M}(x)) \tau^2.
\]

for any two consecutive elements of \(\Xi_n \) for any \(n \).

6 Auxiliary results

The following result is well known. We present it without a proof.

Lemma 1 Let \(x \) is represented in the form \([I]\) and in the form \([II]\). To get the set \((b_1, \ldots, b_l)\) from \((a_1, \ldots, a_m)\) we should replace \(a_i \) by

1. \(2\ldots2\) if \(i \) is odd (empty string if \(a_i = 1 \)).
2. \(a_i + 2\) if \(i \) is even and \(i \neq m \).
3. \(a_i + 1\) if \(i \) is even and \(i = m \).

Lemma 2 For the number of elements in \(\Theta_n \) one has

\[
\# \Theta_1 = 1, \ \# \Theta_2 = 1, \ \# \Theta_{n+1} = \# \Theta_n + \# \Theta_{n-1},
\]

so \(\# \Theta_n = F_n \), where

\[
F_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{\sqrt{5}}
\]

is the \(n \)th Fibonacci number.
Proof. We prove the lemma by induction. Since \(\Theta_1 = \{1/2\}, \Theta_2 = \{2/3\} \), then the base of induction is true. Let us suppose that the lemma is true for \(k \leq n \) and \(x = [[1; b_1, \ldots, b_l]] \in \Theta_{n+1} \), then \(b_1 + \ldots + b_l = n + 2 \). There are two cases: either \(b_l = 2 \) or \(b_l \geq 2 \). In the first case \(b_1 + \ldots + b_{l-1} = n \), so \([[1; b_1, \ldots, b_{l-1}]] \in \Theta_{n-1} \), in the second case \(b_1 + \ldots + b_l - 1 = n + 1 \), so \([[1; b_1, \ldots, b_l - 1]] \in \Theta_n \). Thus we have one-one correspondence between \(\Theta_{n-1} \cup \Theta_n \) and \(\Theta_{n+1} \), and so \(\# \Theta_{n+1} = \# \Theta_n + \# \Theta_{n-1} \).

Definition 1 Let \(x, y, z \) be consecutive elements of \(\Xi_n \), \(y \in \Theta_n \). We denote the mediant \(x \oplus y \) by \(y^l \), the mediant \(y \oplus z \) we denote by \(y^r \).

Lemma 3 Let \(x, y, z \) be consecutive elements of \(\Xi_n \), \(y \in \Theta_n \), then \(y^l \in \Theta_{n+2} \), \(y^r \in \Theta_{n+1} \).

Proof. Let \(y = [[1; b_1, \ldots, b_s]] \). Then \(y^l = [[1; b_1, \ldots, b_s, 2]] \), \(y^r = [[1; b_1, \ldots, b_s + 1]] \).

Now let us construct an infinite tree \(D \) whose nodes are labeled by rationals in \((0, 1)\). We identify the nodes with the rationals they labeled by. The root is labeled by \(1/2 \). From node \(x \) come two arrows: the left arrow goes to \(x^l \) and the right arrow goes to \(x^r \). The nodes of the tree \(D \) are partitioned into levels. \(1/2 \) belongs to the level 1. If \(x \) belongs to the level \(n \), then \(x^r \) belongs to the level \(n + 1 \), and \(x^l \) belongs to the level \(n + 2 \) (figure 1).

![Figure 1: Infinite tree construction](image-url)
It follows from the construction of the tree that nodes from level \(n \) of \(D \) are marked by numbers from \(\Theta_n \). So \(x \) belongs to the level \(n \) if and only if \(x \in \Theta_n \).

The subtree of \(D \) with root in the node \(x \) we denote by \(D^{(x)} \). The set of nodes of \(D \) from level 1 to level \(n \) we denote by \(D_n \). The set of nodes of \(D^{(x)} \cap D_n \) we denote by \(D^{(x)}_n \). Note that there exist a levels preserving isomorphism between \(D \) and \(D^{(x)} \). If \(x \) belongs to the level \(n \), then
\[
\#D^{(x)}_n = \#D_{m-n+1}.
\]

Besides
\[
\#D_n = \#\Theta_1 + \#\Theta_2 + \ldots + \#\Theta_n = F_1 + F_2 + \ldots + F_n = F_{n+2} - 1.
\]

7 Proof of Theorem 1

We remind that it is enough to prove (13) for any consecutive elements of \(\Xi_n \) \(x \) and \(y \).

To prove the equality (13) we consider the subtree \(D^{(x \oplus y)} \) of \(D \). Note that
\[
\{ \xi \in D^{(x \oplus y)} \} \cup \{ y \} = \{ \xi \in Q : x < \xi \leq y \}.
\]

Consequently
\[
M(y) - M(x) = \lim_{m \to \infty} \frac{\#\{ \xi \in \Xi_m : x < \xi \leq y \}}{\#\Xi_m} = \lim_{m \to \infty} \frac{\#D^{(x \oplus y)}_m}{\#D_m}.
\]

On the other hand
\[
M(x \oplus y) - M(x) = \lim_{m \to \infty} \frac{\#\{ \xi \in \Xi_m : x < \xi \leq x \oplus y \}}{\#\Xi_m} = \lim_{m \to \infty} \frac{\#D^{(x \oplus y)}_m}{\#D_m}.
\]

Let \(x \oplus y \in \Theta_k \), then \((x \oplus y)^l \in \Theta_{k+2} \). Therefore
\[
\frac{M(x \oplus y) - M(x)}{M(y) - M(x)} = \lim_{m \to \infty} \frac{\#D^{(x \oplus y)}_m}{\#D^{(x \oplus y)}_m} = \lim_{m \to \infty} \frac{\#D^{(x \oplus y)}_m}{\#D^{(x \oplus y)}_m} = \lim_{m \to \infty} \frac{\#D_{m-k+1}}{\#D_{m-k+1}} = \lim_{m \to \infty} \frac{F_{m-k+1}}{F_{m-k+3}} = \tau^2.
\]
References

[1] R. F. Tichy, J. Uitz. An extension of Minkowski’s singular function. — Appl. Math. Lett., 8 (1995), 39-46.

[2] R. Salem. On some singular monotonic functions which are strictly increasing. — Trans. Amer. Math. Soc. 53(1943), pp. 427-439.

[3] P. Viader, J. Paradis, L. Bibiloni. — A new light of Minkovski’s ?(x) function. J. Number Theory., 73 (1998), 212 -227.

[4] A. A. Dushistova, I. D. Kan and N. G. Moshchevitin. — Differentiability of the Minkovski question mark function. Preprint available at arXiv:0903.5537v1.pdf (2009)

[5] T. Rivoal. Suites de Stern-Brocot et fonction de Minkowski. — Preprint available at http://www-fourier.ujf-grenoble.fr/rivoal

[6] J. C. Alexander, D. B. Zagier. The entropy of certain infinitely convolved Bernoulli measures. — J. London Math. Soc., 44 (1991), 121-134.

[7] J. P. Graber, P. Kirschenhofer, R. F. Tichy. Combinatorial and arithmetical properties of linear numeration systems. — Combinatorica 22 (2) (2002) 245-267.

[8] A. Denjoy. Sur une fonction reelle de Minkowski. — J. Math. Pures Appl. 17(1938), pp. 105-151.

[9] O. Perron. Die Lehre von den Kettenbruchen. — Bd.I.Teuber, 1954.

[10] Yu. Yu Finkel’shtein. Klein polygons and reduced regular continued fractions. — Russian Mathematical Surveys (1993),48(3):198.