The creation of the first r-process peak elements; effects of beta decay rates and nuclear masses

Stylianos Nikas1,2, Gabriel Martinez Pinedo1,2, Andre Sieverding1,2,3

1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
2 Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, Schloßgartenstraße 2, 64289 Darmstadt, Germany
3 School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

Abstract. We present a study exploring the impact of nuclear masses and beta-decay rates on the creation of the first r-process peak. We explore a large range of conditions, matching the recent observations of the blue kilonova, and determine the appropriate conditions for creating the first r-process peak elements. We use the nuclear reaction code TALYS to calculate \((n, \gamma)\) reaction rates, and the GSINet code for reaction network calculations. We conclude that an electron fraction between 0.35 and 0.4 and entropy of (10-20) \(k_{\text{B}}/\text{baryon}\) should be considered to match the r-process residuals. Furthermore, we explore the impact of masses and beta-decays on the production of \(A \approx 80\) nuclei.

1. Introduction

Elements heavier than iron can be created through neutron-capture processes, namely the s-process and the r-process. The r-process nucleosynthesis is thought to be responsible for the creation of more than half of the heavy elements. The astrophysical environment under which the s-process operates is known \cite{1} but this is not the case for the r-process. Observations of ultra metal-poor (UMP) stars indicate that the r-process elemental abundances have contributions from at least two different sites. The elemental abundances in the atmosphere of UMP stars have a consistent pattern for \(Z \geq 56\). However, the abundances of light r-process elements \((Z<47)\) in these stars show variations. The two different contributions could be from different events in distinct astrophysical scenarios (i.e. supernova + neutron star mergers) or two different components of the same event (dynamical + post-merger ejecta).

Recent observations have established neutron star mergers (NSM) as a site of the r-process. Specifically, the observation of an NSM, and in particular, the electromagnetic counterpart \cite{2} that followed the gravitational wave detection GW170817 \cite{3, 4}, relates to the creation of lanthanides in the aftermath of NSMs. The observation of Sr at solar...
The creation of the first r-process peak elements; effects of beta decay rates and nuclear masses abundances \[5\] also provides evidence for the creation of the first r-process peak in the aftermath of NSM.

Several studies, considering conditions matching the ones of the observed NSM, have been conducted to investigate the creation of elements between the second and the third r-process peak. However, the creation of the first r-process peak is often overlooked. In the first part of this proceedings, we explore a range of astrophysical conditions for which the first r-process peak elements are created. In the second part, using the corresponding conditions, we estimate the impact of nuclear properties, like beta decay rates and nuclear masses, on the corresponding r-process pattern.

1.1. Interpretation of the kilonova observation

The electromagnetic counterpart following GW170817 was identified as a kilonova \[6, 7, 8, 9, 10\]. The energy released during the kilonova event results from the radioactive decay of r-process elements produced in the ejecta of the NSM. Observing the color of the EM turning from blue to red, we get indications for different opacities of the expanding material. The initial blue light emission indicates the absence of high opacity elements \[11, 12, 13, 14\], while the red color indicates that the medium is opaque. Lanthanides and actinides are known to have a complicated atomic structure. Thus their presence in the gas leads to high opacity \[15, 16, 17, 18\]. A distinction between lanthanide or actinide elements is not possible from the spectrum of the kilonova unless distinct spectrum lines of nuclei are identified. We focus on the early blue color component ejecta which corresponds to material that contains elements up to the second r-process peaks (lanthanide/actinide, free ejecta). The recent observation of Sr in the spectrum of the kilonova with solar r-process proportions provides direct evidence for the production of light elements in the aftermath of NSMs \[5\].

We examine the possibility of creating the total, or parts, of the first r-process peak in the aftermath of NSMs with the conditions speculated for the post-merger ejecta of a hyper massive neutron star that promptly collapses to a black hole. According to simulations, the post-merger ejecta, which account for roughly 0.001– 0.01 \(M_\odot\) \[19, 20, 21, 22, 23, 24, 25\], have an intermediate electron fraction \(Y_e \approx 0.25 \rightarrow 0.5\) \[20, 26\], an expansion timescale \(\tau\) of the order of milliseconds \[27, 28, 29, 30\] and moderate entropies in the range of \(S \approx 10 \rightarrow 30\) \(k_B/\text{baryon}\) \[31\]. This is consistent with observations of UMP stars since different initial masses of the NSM can result in different conditions of \(S\) and \(Y_e\) of the polar ejecta \[26\]. Subsequently, these different initial conditions will result in differences in the production of light elements.

1.2. The formation of the first r-process peak - connection to nuclear physics

The first r-process peak is the result of matter accumulating at the closed neutron shell of \(N = 50\). Due to the drastically lower \((n, \gamma)\) reaction rates of nuclei in the region of the closed neutron shell, neutron captures become slower and matter accumulates in this region. The competing \(\beta\)-decay half-lives of the nuclei in the region have similar
The creation of the first r-process peak elements: effects of beta decay rates and nuclear masses

![Figure 1](image)

Figure 1. Known masses and beta decay half-lives in the region of N=50. With blue we label the path of the r-process. The blue color coding corresponds to the abundance of each specific isotope at the freeze-out.

*timescales to neutron captures and photodisintegrations. Eventually, the matter that piles up at the closed neutron shell, will β-decay creating heavier elements with $Z'=Z+1$.

To model the exact path of the r-process we need the β-decay half-lives, and the corresponding neutron delayed emission probabilities of nuclei in the path of the r-process, as well as their cross sections for reactions at $E \leq 1$ MeV. These properties are very difficult to measure for unstable nuclei due to a number of experimental challenges (neutron targets are difficult to make, some of the nuclei are very short-lived, etc.). Modeling of the cross-sections is possible with the Hauser Feshbach statistical model which employs a number of assumptions. One of the key parameters entering the Hauser Feshbach calculations is the nuclear masses. The known beta-decays and masses in the region are summarized in Fig 1, together with the path of the r-process.

2. Methods

2.1. Estimating the appropriate astrophysical conditions

We investigate a large space of Y_e (electron fraction) and S (entropy): $0.26 \leq Y_e \leq 0.46$ and $10 \leq S \leq 100$ kB/baryon to account for all possible conditions of the post merger ejecta, as those were discussed in Section 1.1. Scenarios of production of the first r-process peak have already been investigated for higher entropies where α particles play a key role [32, 33, 34]. Here we focus on conditions that do not lead to an α-rich freeze out and in addition no lanthanides are produced.

We use the nuclear reaction network code GSINet [35] to follow the evolution of the abundances of nuclei in the expanding gas. The network contains approximately
The creation of the first r-process peak elements: effects of beta decay rates and nuclear masses

7000 nuclei and their corresponding reaction channels. Masses and beta decays are taken from [36], unless they are experimentally known [37]. We initialized calculations at Nuclear statistical equilibrium (NSE), treating initial electron abundance $Y_{e,0}$ and initial specific entropy (s_0) as free parameters to investigate. The initial temperature was set at $T_0 = 10$ GK and the expansion time scale is $\tau = 7$ ms. We use the equation of state of Timmes [38] to determine the corresponding density ρ, assuming NSE. We assume that the density evolution of the ejecta initially follows an exponential expansion and at later times homologous expansion [39]:

$$
\rho(t) = \begin{cases}
\rho_0 e^{-t/\tau} & \text{if } t \leq 3\tau \\
\rho_0 \left(\frac{3\tau}{t} \right)^3 & \text{if } t \geq 3\tau
\end{cases}
$$

2.2. Estimating the impact of nuclear masses and beta decay models to the first r-process peak.

Using the range of astrophysical conditions under which the first r-process peak is produced we check the impact of nuclear masses and beta decays. To estimate the impact of specific masses to the r-process abundance pattern, we used the recently measured 84Ga-85Ga [40]. First, we vary the masses using a Monte Carlo like approach within the corresponding uncertainty bands of AME16 [41] (200KeV and 300KeV respectively). The Monte Carlo sampling we use corresponds to pairs of 84Ga and 85Ga within 3σ uncertainty respecting the odd even staggering (i.e. $S_n(^{84}\text{Ga}) \leq S_n(^{85}\text{Ga})$). We use the nuclear reaction code TALYS to calculate the corresponding (n,γ) reaction rates and detailed balance to estimate the inverse rates (γ,n). The new reaction rates were then used in GSInet. The resulting abundances are then compared to the AME16 recommended values, and the new Ga measurements. We use AME16 and NUBASE16 [42] information when available experimentally. Theoretical masses are taken from FRDM [36].

Besides, we explore the impact of the beta decays and beta delayed neutron emissions on the fine details of the pattern. First, we will use only theoretical data of β-decays from the FRDM model disregarding NUBASE16 to estimate the sensitivity of the fine details of the peak (local maximums at 80,84) to the β-decays. To get a better understanding of the impact of late neutron captures due to β-delayed neutron emissions we remove them in the next step. Finally, we discuss the impact of two specific measurements of β-delayed neutron emissions of 84Ga and 85Ga [43, 44] that are not included in the NUBASE16.
The creation of the first r-process peak elements; effects of beta decay rates and nuclear masses

Figure 2. Upper plot: Abundance of lanthanides color coded with red on Y_e vs S plot. Center plot: Abundance of α particles color coded with green. Lower plot: Abundance of first r-process peak elements color coded with blue. We contour with black the region where enough first r-process peak elements are created. With yellow we contour the limits of the Upper and Center plot.

3. Results

3.1. Astrophysical conditions

We find that lanthanides are created for $Y_e \leq 0.33$, as shown in the upper plot of Fig.2. Significant amounts of lanthanides are created for higher S even at moderate Y_e conditions (≈ 25 k$_B$/baryon).

Large amounts of α particles leading to α rich freeze-out are present for $S \geq 30$ and $Y_e \leq 0.45$. At higher Y_e alpha particles are present throughout the range of entropies we explored (middle plot Fig.2). Finally the first r-process peak elements are mostly produced in a rather narrow window between $0.32 \leq Y_e \leq 0.39$ at $S \leq 20$ (lower plot Fig.2). The range of Y_e becomes narrower and shifts to higher Y_e with higher entropy. Assuming that NSMs are responsible for the total production of first r-process elements we can further narrow the range of possible Y_e's by comparing with the r-process abundance pattern.

This can be seen in Fig. 3, where for $S = 15$ k$_B$/baryon, the region between the first and the second peak is overproduced, assuming a uniform distribution that includes $Y_e \leq 0.33$. Taking into account all the above we conclude that the first r-process peak can be made for $0.34 \leq Y_e \leq 0.40$ and $10 \leq S \leq 20$k$_B$/baryon. Assuming other distributions (i.e. Gaussian) we find similar conditions of $0.30 \leq Y_e \leq 0.42$.

The creation of the first r-process peak elements; effects of beta decay rates and nuclear masses

3.2. Impact of masses and β delayed neutron emissions

The uncertainty in masses of 84,85Ga within their AME16 error bars (200keV,300keV respectively) results to variations of the (n,γ) reaction rates (RR) of 83Ga - 86Ga of up to two orders of magnitude (Fig. 4).

The effect of the variations of the (n,γ) RR can be seen in the abundance pattern of Fig. 5. The newly measured Ga masses [40] establish the production of the peak at A=84 under the specific conditions.

Overproduction of A = 81 could be attributed to uncertainties in half-lives and β-delayed neutron emissions of neutron rich nuclei with A = 81, 82, 83. In our calculation, A = 81 is produced mainly from β-delayed neutron emission of 82Zn, whose half-life exhibits inconsistencies in the literature (228(10)ms [45], 178(2.5)ms [46], 155(20)ms [47]).

The effect of β-decay ratios can be seen in Fig. 6. By using purely theoretical values from FRDM for β-decays and β-delayed neutron emissions we observe underproduction of the peaks at A=80, 84. The results when we don’t allow for β-delayed neutron emissions (same Fig. magenta line) are similar. The main difference is the odd-even staggering at A=80-84. Differences of abundances between these calculations are due to the reshuffling of the matter, at later stages of nucleosynthesis, due to the emission and re-capture of neutrons. We note that all calculations in Fig. 6 were normalized at A=82 in order to have a meaningful comparison.

Changes on β - delayed neutron emission probabilities affect mainly the abundances of nuclei with the same A. Fig. 7 shows the impact of the updated data on 84,85Ga β-delayed emission probabilities. The increased P_{1n} (probability of emitting a neutron
The creation of the first r-process peak elements; effects of beta decay rates and nuclear masses

Figure 4. Variations in reaction rate (RR) of \((n,\gamma), (n,2n) \) and \((n,\alpha) \) of \(^{85}\text{Ga} \) due to the difference in masses used in Hauser-Feshbach calculations. The masses used correspond to AME16 mass recommendations of \(^{84,85}\text{Ga}\) within a 3\(\sigma\) uncertainty.

Figure 5. Final abundance pattern for \(Y_e \) 0.35-0.38. Error bars correspond to the uncertainties of AME16 \(^{84,85}\text{Ga}\) masses. The new measurement establishes the creation of peak at \(A=84 \). Figure is adapted from [40].
The creation of the first r-process peak elements; effects of beta decay rates and nuclear masses

Figure 6. Comparison between calculations using the standard input (NUBASE16+FRDM) (blue line), to calculations where only the FRDM model for β^- was used (green line), and finally calculations where (NUBASE16+FRDM) inputs were used for half-lives but β-delayed neutron emissions were set to 0 (magenta line).

after β decay) from 40% to 50% for 84Ga [43] and from 35% to 70% for 85Ga [44] results in differences in the production of $A=85 \approx 30\%$ and slight differences of $\approx 10\%$ for $A=84$.

4. Summary

We conclude that it is possible to create the first r-process peak under conditions that may be realized in binary neutron star mergers. We estimated that Y_e and S in the range of $0.34 \leq Y_e \leq 0.40$ and $10 \leq S \leq 20$ are needed to create the first r-process peak without overproducing the region between the first and second r-process peak.

Assuming those astrophysical conditions we evaluated the impact of nuclear masses and specifically the 84,85Ga mass uncertainties to the formation of the first r-process peak showing that the newly measured masses allow for the formation of a local peak at $A = 84$ as seen in solar r-process abundance pattern. Furthermore, we estimated the effect of different β-decay half-lives and β-delayed emissions concluding that the fine structure of the peak is sensitive to changes in these quantities.
The creation of the first r-process peak elements; effects of beta decay rates and nuclear masses

Figure 7. Comparison between calculations using the standard input (NUBASE16+FRDM) compared to the measured latest measured values of β^{-} delayed neutron emissions for $^{84,85}\text{Ga}$

5. Acknowledgments

The authors wish to acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 279384907 – SFB 1245, “ChETEC” COST Action (CA16117), funded by COST (European Cooperation in Science and Technology) and HGS-Hire.

References

[1] G. Wasserburg et al. Nucleosynthesis in asymptotic giant branch stars: relevance for galactic enrichment and solar system formation. Astrophys J, 424:412–420, 1994.
[2] B. P. Abbott et al. Multi-messenger observations of a binary neutron star merger. The Astrophysical Journal Letters, 848(2):L12, 2017.
[3] B. P. Abbott et al. Gw170817: observation of gravitational waves from a binary neutron star inspiral. Physical Review Letters, 119(16):161101, 2017.
[4] B. P. Abbott et al. Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a. The Astrophysical Journal Letters, 848(2):L13, 2017.
[5] D. Watson et al. Identification of strontium in the merger of two neutron stars. Nature, 574(7779):497–500, 2019.
[6] L.-X. Li and B. Paczynski. Transient Events from Neutron Star Mergers. 507:L59–L62, November 1998.
[7] B. Metzger et al. Electromagnetic counterparts of compact object mergers powered by the
The creation of the first r-process peak elements; effects of beta decay rates and nuclear masses

radioactive decay of r-process nuclei. *Monthly Notices of the Royal Astronomical Society*, 406(4):2650–2662, 2010.

[8] L. F. Roberts et al. ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES. *Astrophys. J.*, 736(1):L21, jul 2011.

[9] A. Bauswein et al. Systematics of Dynamical Mass Ejection, Nucleosynthesis, and Radioactively Powered Electromagnetic Signals from Neutron-star Mergers. *Ann. Rev. Nucl. Part. Sci.*, 66(1):23–45, oct 2016.

[10] R. Fernández and B. D. Metzger. Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era. *Physical Review D*, 93(12):124046, 2016.

[11] P. Evans et al. Swift and nustar observations of gw170817: Detection of a blue kilonova. *Science*, 358(6370):1565–1570, 2017.

[12] S. J. Smartt and LIGOScientificCollaboration2017. A kilonova as the electromagnetic counterpart to a gravitational-wave source. *Nature*, 551(7678):75–79, oct 2017.

[13] E. Troja et al. A luminous blue kilonova and an off-axis jet from a compact binary merger at z=0.1341. jun 2018.

[14] M. Nicholl et al. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta. *Astrophys. J.*, 848(2):L18, oct 2017.

[15] N. R. Tanvir et al. The Emergence of a Lanthane-rich Kilonova Following the Merger of Two Neutron Stars. *Astrophys. J.*, 848(2):L27, oct 2017.

[16] R. Chornock et al. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Infrared Signatures of r-process Nucleosynthesis with Gemini-South. *Astrophys. J.*, 848(2):L19, oct 2017.

[17] E. Pian et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. *Nature*, pp. 1–16, oct 2017.

[18] D. Kasen et al. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. *Nature*, 551(7678):80–84, 2017.

[19] Y. Sekiguchi et al. Dynamical mass ejection from the merger of asymmetric binary neutron stars: Radiation-hydrodynamics study in general relativity. *Physical Review D*, 93(12):124046, 2016.

[20] Y. Sekiguchi et al. Dynamical mass ejection from binary neutron star mergers: Radiation-hydrodynamics study in general relativity. *Physical Review D*, 91(6):064059, 2015.

[21] K. Hotokezaka et al. Synchrotron radiation from the fast tail of dynamical ejecta of neutron star mergers. *The Astrophysical Journal*, 867(2):95, 2018.

[22] A. Bauswein et al. SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS. *Astrophys. J.*, 773:78, aug 2013.

[23] D. Radice et al. Dynamical mass ejection from binary neutron star mergers. *Monthly Notices of the Royal Astronomical Society*, 460(3):3255–3271, 2016.

[24] T. Dietrich et al. Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the mass ratio. *Physical Review D*, 95(2):024029, 2017.

[25] L. Bovard et al. r-process nucleosynthesis from matter ejected in binary neutron star mergers. *Physical Review D*, 96(12):124005, 2017.

[26] K. Kawaguchi et al. Diversity of kilonova light curves. *arXiv preprint arXiv:1908.05815*, 2019.

[27] B. D. Metzger and R. Fernández. Red or blue? a potential kilonova imprint of the delay until black hole formation following a neutron star merger. *Monthly Notices of the Royal Astronomical Society*, 441(4):3444–3453, 2014.

[28] A. Perego et al. Neutrino-driven winds from neutron star merger remnants. *Monthly Notices of the Royal Astronomical Society*, 443(4):3134–3156, 2014.

[29] M.-R. Wu et al. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers. *Monthly Notices of the Royal Astronomical Society*, 463(3):2323–2334, 2016.
The creation of the first r-process peak elements; effects of beta decay rates and nuclear masses

[30] J. Lippuner and L. F. Roberts. SkyNet: A Modular Nuclear Reaction Network Library. , 233:18, December 2017.
[31] A. Perego et al. Thermodynamics conditions of matter in neutron star mergers. arXiv preprint arXiv:1903.07898, 2019.
[32] F. Montes et al. Nucleosynthesis in the early galaxy. The Astrophysical Journal, 671(2):1685, 2007.
[33] A. Arcones and F. Montes. Production of light-element primary process nuclei in neutrino-driven winds. The Astrophysical Journal, 731(1):5, 2011.
[34] J. Bliss et al. Survey of astrophysical conditions in neutrino-driven supernova ejecta nucleosynthesis. The Astrophysical Journal, 855(2):135, 2018.
[35] J. d. J. Mendoza-Temis et al. Nuclear robustness of the r process in neutron-star mergers. , 92(5):055805, November 2015.
[36] P. Möller et al. Nuclear ground-state masses and deformations: Frdm (2012). Atomic Data and Nuclear Data Tables, 109:1–204, 2016.
[37] M. Wang et al. The ame2016 atomic mass evaluation (ii). tables, graphs and references. Chinese Physics C, 41(3):030003, 2017.
[38] F. X. Timmes and F. D. Swesty. The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the helmholtz free energy. The Astrophysical Journal Supplement Series, 126(2):501, 2000.
[39] J. Lippuner and L. F. Roberts. r-process lanthanide production and heating rates in kilonovae. The Astrophysical Journal, 815(2):82, 2015.
[40] M. Reiter et al. Mass measurements of neutron-rich gallium isotopes refine production of nuclei of the first r-process abundance peak during gw170817. arXiv preprint arXiv:1810.11561, 2018.
[41] W. Huang et al. The ame2016 atomic mass evaluation (i). evaluation of input data; and adjustment procedures. Chinese Physics C, 41(3):030002, 2017.
[42] G. Audi et al. The nubase2016 evaluation of nuclear properties. Chinese physics C, 41(3):030001, 2017.
[43] D. Verney et al. Pygmy gamow-teller resonance in the n= 50 region: New evidence from staggering of β-delayed neutron-emission probabilities. Physical Review C, 95(5):054320, 2017.
[44] K. Miernik et al. β-delayed neutron emission from ga 85. Physical Review C, 97(5):054317, 2018.
[45] M. Madurga et al. New Half-lives of r-process Zn and Ga Isotopes Measured with Electromagnetic Separation. Physical Review Letters, 109(11):112501, September 2012.
[46] Z. Y. Xu et al. β-Decay Half-Lives of Co76,77, Ni79,80, and Cu81: Experimental Indication of a Doubly Magic Ni78. Physical Review Letters, 113(3):032505, July 2014.
[47] M. F. Alshudifat et al. Reexamining Gamow-Teller decays near 78Ni. , 93(4):044325, April 2016.