A NOTE ON BAND-LIMITED MINORANTS OF AN EUCLIDEAN BALL

FELIPE GONÇALVES

Abstract. We study the Beurling-Selberg problem of finding band-limited \(L^1\)-functions that lie below the indicator function of an Euclidean ball. We compute the critical radius of the support of the Fourier transform for which such construction can have a positive integral.

1. Introduction

For a given \(r > 0\) we denote by \(B^d(r)\) the closed Euclidean ball in \(\mathbb{R}^d\) centered at the origin with radius \(r > 0\). We simply write \(B^d\) when \(r = 1\). Define the following quantity

\[
\beta(d, r) = \sup_F \int_{\mathbb{R}^d} F(x) dx,
\]

where the supremum is taken among functions \(F \in L^1(\mathbb{R}^d)\) such that:

1. The Fourier Transform of \(F(x)\),
\[
\hat{F}(\xi) = \int_{\mathbb{R}^d} F(x) e^{2\pi ix \cdot \xi} dx,
\]

is supported in \(B^d(r)\);

2. \(F(x) \leq 1_{B^d}(x)\) for all \(x \in \mathbb{R}^d\).

We call such a function \(\beta(d, r)\)-admissible. A trivial observation is that \(F \equiv 0\) is \(\beta(d, r)\)-admissible, hence \(\beta(d, r) \geq 0\). Heuristically, such function \(F(x)\) should exist and its mass should be close to \(\text{vol}(B^d)\) when \(r\) is large. On the other hand, if \(r\) is small, the mass of \(F(x)\) should be close to zero and a critical \(r_d > 0\) should exist such that no function can beat the identically zero function for \(r \leq r_d\). For this reason we define

\[
r_d = \inf\{r > 0 : \beta(d, r) > 0\}
\]

and it is this critical radius that we want to study in this paper.

The problem stated in (1.1) has its origins with Beurling and Selberg which studied one-sided band-limited approximations for many different functions other than indicator functions with the purpose of using them to derive sharp estimates in analytic number theory (see the introduction of [9] for a nice first view). Although Selberg was one of the first to study the higher dimensional problem, it was first
systematically analyzed by Holt and Vaaler in the remarkable paper [7]. They were able to construct non-zero \(\beta(d,r) \)-admissible functions for any \(r > 0 \) and, most importantly, they established a fascinating connection of the \(d \)-dimensional problem with the theory of Hilbert spaces of entire functions constructed by de Branges (see [1]). They reduced the higher dimensional problem, after a radialization argument, to a weighted one-dimensional problem where the weight was given by a special function of Hermite-Biehler class, which in turn allowed them to use the machinery of homogeneous de Branges spaces to attack the problem. This new connection established by Holt and Vaaler started a new way of thinking about these kind of problems and ultimately inspired Littmann to completely solve the one-dimensional problem in [8] by using a clever argument based on a special structure of certain de Branges spaces. Finally, using the ideas introduced by Littmann in [8], the problem of minorizing the indicator function of a symmetric interval was completely solved in [2] in the de Branges space setting.

This paper was mainly motivated by the related problem where balls are substituted by boxes \(Q(r) = [-r,r]^d \) and where practically nothing is known (see [3]). The box minorant problem is harder since it is a truly higher dimensional problem, whereas for the ball we can make radial reductions that transform it in a one-dimensional problem. Another interesting similar question, connected with upper bounds for sphere packings in \(\mathbb{R}^d \), is studied in [6] (see also [4]), where the author constructs a minorant \(F(x) \leq 1_{B^d}(x) \) with Fourier transform non-negative and supported in \(B^d(\pi d/2,1) \) and such that it maximizes \(\hat{F}(0) \) among all functions with these properties.

1.1. Main Result. For any given parameter \(\nu > -1 \) let \(J_\nu \) denote the classical Bessel function of the first kind. We also denote by \(\{ j_{\nu,n} \}_{n \geq 1} \) its positive zeros listed in increasing order. The Bessel function of the first kind \(J_\nu \) can be defined in a number of ways. We follow the treatise [10] and define it for \(\nu > -1 \) and \(\Re(z) > 0 \) by

\[
J_\nu(z) = \left(\frac{z}{2} \right)^\nu \sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{z}{2} \right)^{2n}}{n! \Gamma(\nu + n + 1)}.
\]

For these values of \(\nu \), one can check that on the half space \(\{ \Re(z) > 0 \} \) the Bessel functions defined by (1.2) satisfy the differential equation

\[
z^2J''_\nu(z) + zJ'_\nu(z) + (z^2 - \nu^2)J_\nu(z) = 0,
\]

and that the following recursion relations hold

\[
J_{\nu-1}(z) - J_{\nu+1}(z) = 2J'_\nu(z),
\]

1 It is not the intention of this paper to give a survey of related articles on the subject, which is very rich and full of subtleties, the purpose here is to draw a straight line between what he have so far and what we want to show.
\[J_{\nu-1}(z) + J_{\nu+1}(z) = \frac{2\nu}{z} J_\nu(z). \]

In particular we have \(J_{-1/2}(z) = \sqrt{\frac{2}{\pi z}} \cos(z) \) and \(J_{1/2}(z) = \sqrt{\frac{2}{\pi z}} \sin(z) \), which implies that \(j_{-1/2} = \frac{\pi}{2} \) and \(j_{1/2} = \frac{\pi}{2} \). The following is the main result of this paper.

Theorem 1. We have \(r_d = \frac{j_{d/2-1,1}}{\pi} \).

Moreover, if \(j_{d/2-1,1} < \pi r < j_{d/2,1} \) then

\[\beta(d, r) = \frac{(2/r)^d}{|S^{d-1}|} \frac{\gamma_{\pi r}}{1 + \gamma_{\pi r}/d}, \]

where \(\gamma_{\pi r} = -\frac{\pi r J_{d/2-1}(\pi r)}{J_{d/2}(\pi r)} > 0 \). In particular we have

\[\beta(d, r) = \frac{\pi^{2d}}{r^{d-1}|S^{d-1}|} \left(r - \frac{j_{d/2-1,1}}{\pi} \right) + O_d \left(r - \frac{j_{d/2-1,1}}{\pi} \right)^2 \]

for \(r \) close to \(\frac{j_{d/2-1,1}}{\pi} \).

Remarks.

(1) It is known that \(j_{\nu,1} = \nu + 1.855757 \nu^{1/3} + O(\nu^{-1/3}) \) as \(\nu \to \infty \) (see [5, Section 1.3]). This implies that \(r_d = \frac{d}{2\pi} + \frac{1.855757}{27/4} d^{1/3} + O(d^{-1/3}) \) as \(d \to \infty \).

Heuristically, this means that if one wishes to non-trivially minorate (that is, beat the zero function) the indicator function of a ball of radius of order \(\sqrt{d} \) then one needs frequencies of order at least \(\sqrt{d} \).

(2) The first 5 values of \(r_d \) rounded up to 4 significant digits are the following: \(r_1 = 1/2, r_2 = 0.7655, r_3 = 1, r_4 = 1.220 \) and \(r_5 = 1.431 \).

(3) Explicit expressions for \(\beta(d, r) \) can also be tracked from [2, Theorem 5], but they involve sums of Bessel functions evaluated at Bessel zeros that can be quite complicated to grasp. Moreover, this is the case only when \(\pi r \) is a zero of \(J_{d/2-1}(z) \) or \(J_{d/2}(z) \). If that is not the case, then writing a formula for \(\beta(d, r) \) becomes pointless, since it will involve zeros of more complicated functions related to Bessel functions and this is not the purpose here.

2. Proof of Theorem 1

Step 1. The first step is to reduce the higher dimensional by considering only radial functions. We can apply [7, Lemmas 18 and 19] to reduce the \(d \)-dimensional problem to the following weighted one-dimensional problem

\[\beta(d, r) = \frac{|S^{d-1}|}{2} \sup_{F} \int_{\mathbb{R}} F(x)|x|^{d-1}dx, \]

where \(|S^{d-1}| \) denotes the surface area of the unit sphere in \(\mathbb{R}^d \) and the supremum is taken among functions \(F \in L^1(\mathbb{R}, |x|^{d-1}dx) \) such that:
(1) \(F(x) \) is the restriction to the real axis of an even entire function \(F(z) \) of exponential type at most \(2\pi r \), that is,
\[|F(z)| \leq Ce^{2\pi r|\text{Im } z|}, \quad z \in \mathbb{C} \]
for some constant \(C > 0 \);

(2) \(F(x) \leq 1_{[-1,1]}(x) \) for all \(x \in \mathbb{R} \).

In this framework the problem becomes treatable with the theory of de Branges spaces of entire functions. The latter generalize the well known Paley-Wiener spaces by using weighted norms given by Hermite-Biehler functions. In what follows we briefly review the construction of a special family of de Branges spaces called homogeneous spaces which were introduced by de Branges (see [1, Section 50] and [7, Section 5]). We refer to [7, Section 3] for a brief description of the general theory and also to [1, Chapter 2] for the full theory.

Step 2. Let \(\nu > -1 \) be a parameter and consider the real entire functions \(A_\nu(z) \) and \(B_\nu(z) \) given by
\[
A_\nu(z) = \sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{z}{2} \right)^{2n}}{n!(\nu + 1)(\nu + 2)\ldots(\nu + n)} = \Gamma(\nu + 1) \left(\frac{1}{2}z \right)^{-\nu} J_\nu(z)
\]
and
\[
B_\nu(z) = \sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{z}{2} \right)^{2n+1}}{n!(\nu + 1)(\nu + 2)\ldots(\nu + n + 1)} = \Gamma(\nu + 1) \left(\frac{1}{2}z \right)^{-\nu} J_{\nu+1}(z).
\]
If we write
\[E_\nu(z) = A_\nu(z) - iB_\nu(z), \]
then \(E_\nu(z) \) is a Hermite–Biehler function, that is, it satisfies the following fundamental inequality
\[|E_\nu(z)| < |E_\nu(z)| \]
for all \(z \in \mathbb{C} \) with \(\text{Im } z > 0 \). It is also known that this function does not have real zeros, that \(E(iy) \in \mathbb{R} \) for all real \(y \) (that is, \(B_\nu(z) \) is odd and \(A_\nu(z) \) is even), that \(E_\nu(z) \) is of bounded type in the upper-half plane (that is, \(\log |E_\nu(z)| \) has a positive harmonic majorant in the upper-half plane) and \(E_\nu(z) \) is of exponential type 1. We also have that
\[c|x|^{2\nu+1} \leq |E_\nu(x)|^{-2} \leq C|x|^{2\nu+1} \]
for all \(|x| \geq 1 \) and for some \(c, C > 0 \). The homogeneous space \(\mathcal{H}(E_\nu) \) is then defined as the space of entire functions \(F(z) \) of exponential type at most 1 and such that
\[\int_{\mathbb{R}} |F(x)|^2 |E_\nu(x)|^{-2} dx < \infty. \]

2As an historical note, de Branges originally defined this space in another way but, in [7, Lemma 16], the authors showed that this is an equivalent definition.
Using standard asymptotic expansions for Bessel functions one can show that
\(A_\nu, B_\nu \notin \mathcal{H}(E_\nu) \). As a particular case, observing that \(E_{-1/2} = e^{-iz} \) we can deduce that \(\mathcal{H}(E_{-1/2}) \) coincides with the Paley-Wiener space of square integrable entire functions of exponential type at most 1.

These spaces are relevant to our problem since we have the following magical identity

\[
a_\nu \int_{\mathbb{R}} |F(x)|^2 |E_\nu(x)|^{-2} \, dx = \int_{\mathbb{R}} |F(x)|^2 |x|^{2\nu+1} \, dx \tag{2.2}
\]

for each \(F \in \mathcal{H}(E_\nu) \), where \(a_\nu = 2^{2\nu+1} \Gamma(\nu+1)^2/\pi. \) For our purposes we will need an identity analogous of (2.2), but which allow us to compute integrals instead of \(L^2 \)-norms. It can be derived as follows. Let \(F(z) \) be an entire function of exponential type at most 2 such that \(F(x) \leq 1_{[-t,t]}(x) \) for some \(t > 0 \) and \(F \in L^1(\mathbb{R}, |x|^{2\nu+1} \, dx). \)

Since \(G_n(x) = \left(\frac{\sin(x/n)}{x/n} \right)^n \) belongs to \(\mathcal{H}(E_\nu) \) for large \(n \) and it converges to 1 uniformly in compact sets as \(n \to \infty \), we have that \(4G_n(x)^2 - F(x) \geq 0 \) for all real \(x \) (if \(n \) is large and even) and this function has exponential type at most 2. This implies that \(4G_n(x)^2 - F(x) = H_n(x)E_n(x) \) for all \(z \in \mathbb{C} \), for some entire function \(H_n(z) \) of exponential type at most 1 (see [1 Theorem 13]). We conclude that \(H_n \in \mathcal{H}(E_\nu) \) and we obtain

\[
a_\nu \int_{\mathbb{R}} F(x) |E_\nu(x)|^{-2} \, dx = a_\nu \int_{\mathbb{R}} \left\{ 4G_n(x)^2 - |H_n(x)|^2 \right\} |E_\nu(x)|^{-2} \, dx
= \int_{\mathbb{R}} \left\{ 4G_n(x)^2 - |H_n(x)|^2 \right\} |x|^{2\nu+1} \, dx \tag{2.3}
= \int_{\mathbb{R}} F(x)|x|^{2\nu+1} \, dx.
\]

Step 3. Taking \(\nu = d/2 - 1 \), we can apply the change of variables \(x \mapsto x/(\pi r) \) in (2.1) and use identity (2.2) to reduce the problem of minorizing the indicator function of an Euclidean ball to the following final form

\[
\beta(d, r) = \frac{(2/r)^d}{\pi^{d/2-1}} \Lambda^r_{E_{d/2-1}}(\pi r),
\]

where

\[
\Lambda^r_{E_{d/2-1}}(\pi r) = \sup_F \int_{\mathbb{R}} F(x)|E_{d/2-1}(x)|^{-2} \, dx
\]

and the supremum is taken among functions \(F \in L^1(\mathbb{R}, |E_{d/2-1}(x)|^{-2} \, dx) \) such that:

1. \(F(x) \) is the restriction to the real axis of an even entire function \(F(z) \) of exponential type at most 2;
2. \(F(x) \leq 1_{[-\pi r, \pi r]}(x) \) for all \(x \in \mathbb{R} \).

The above problem was completely solved in [2]. By all the previous discussion in Step 2, we can apply [2 Theorem 5 (i) and (iv)] to the function \(E_{d/2-1}(z) \) (it actually can be applied to any \(E_\nu(z) \)) to derive that \(\pi r_d = j_{d/2-1, 1} \). Moreover, if
$jd_{d/2-1,1} < \pi r < jd_{d/2,1}$ then [2] Theorem 5 (iv) also give us that

$$\Lambda_{E_{d/2-1}}^- (\pi r) = \pi \gamma_{\pi r} \frac{1}{1 + \gamma_{\pi r}/d},$$

where $\gamma_{\pi r} = -\frac{\pi r J_{d/2-1}(\pi r)}{J_{d/2}(\pi r)} > 0$. A simple Taylor expansion leads to

$$\Lambda_{E_{d/2-1}}^- (\pi r) = \pi^2 r (\pi r - jd_{d/2-1,1}) + O((\pi r - jd_{d/2-1,1})^2)$$

and we finally obtain that

$$\beta(d, r) = \frac{\pi^2 2d}{\pi^d-1 |S^{d-1}|} \left(r - \frac{jd_{d/2-1,1}}{\pi} \right) + O\left(\frac{jd_{d/2-1,1}}{\pi} \right)^2.$$

References

[1] L. de Branges, *Hilbert Spaces of Entire Functions*, Prentice-Hall Series in Modern Analysis, 1968.

[2] E. Carneiro, V. Chandee, F. Littmann and M. B. Milinovich, Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function, J. Reine Angew. Math. Journal 725 (2017), 143-182.

[3] J. Carruth, N. Elkies, F. Gonçalves and M. Kelly, On Selberg’s Box Minorant Problem, (preprint at arXiv:1702.04579 [math.CA]).

[4] H. Cohn and N. Elkies, New upper bounds on sphere packings I, Annals of Mathematics 157 (2003), 689-714.

[5] A. Elbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials, Journal of Computational and Applied Mathematics 133 (2001), issues 1-2, 65-83.

[6] D. V. Gorbachev, Extremal problem for entire functions of exponential spherical type, connected with the Levenshtein bound on the sphere packing density in \mathbb{R}^n (Russian), Izvestiya of the Tula State University. Ser. Mathematics. Mechanics. Informatics. 6 (2000) 71-78.

[7] J. J. Holt and J. D. Vaaler, The Beurling-Selberg extremal functions for a ball in Euclidean space, Duke Math. J., Volume 83 (1996), no. 1, 263-248.

[8] F. Littmann, Quadrature and extremal bandlimited functions, SIAM J. Math. Anal. 45 (2013), no. 2, 732-747.

[9] J. D. Vaaler, Some extremal functions in Fourier analysis, Bulletin of American Mathematical Society 12 (1985), no. 2, 183-216.

[10] G. N. Watson, *A Treatise on the Theory of Bessel Functions*. Second Edition. Cambridge University Press, Cambridge, 1966.

University of Alberta, Mathematical and Statistical Sciences, CAB 632, Edmonton, Alberta, Canada T6G 2G1

E-mail address: felipe.goncalves@ualberta.ca

URL: sites.ualberta.ca/~goncalve