CATEGORIZING MODELS USING SELF-ORGANIZING MAPS: AN APPLICATION TO MODIFIED GRAVITY THEORIES PROBED BY COSMIC SHEAR

Agnès Ferté1,⋆, Shoubaneh Hemmati2, Daniel Masters2, Brigitte Montminy1,3, Peter L. Taylor1, Eric Huff1, and Jason Rhodes1

1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
2IPAC, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA and
3Tufts University, 419 Boston Ave, Medford, MA 02155

(Dated: October 27, 2021)

Abstract

We propose to use Self-Organizing Maps (SOM) to map the impact of physical models onto observables. Using this approach, we are able to determine how theories relate to each other given their signatures. In cosmology this will be particularly useful to determine cosmological models (such as dark energy, modified gravity or inflationary models) that should be tested by the new generation of experiments. As a first example, we apply this approach to the representation of a subset of the space of modified gravity theories probed by cosmic shear. We therefore train a SOM on shear correlation functions in the $f(R)$, dilaton and symmetron models. The results indicate these three theories have similar signatures on shear for small values of their parameters but the dilaton has different signature for higher values. We also show that modified gravity (especially the dilaton model) has a different impact on cosmic shear compared to a dynamical dark energy so both need to be tested by galaxy surveys.

1. INTRODUCTION

In many fields a large variety of theoretical models are proposed in the literature and are to be tested with current or future data. For example, in cosmology 74 inflation models were systematically tested in [Martin et al. 2014] using cosmic microwave background 2013 data from the Planck satellite [Ade et al. 2014], or in astrophysics, testing various models of exoplanets’ atmosphere will be one of the goals of experiments like the JWST as reviewed by [Madhusudhan 2019; Biller & Bonnefoy 2018]. Selecting only a subset of models to be tested given an observable is in some cases necessary as obtaining robust constraints can be time consuming, requires modeling developments specific to each theory or requires large computing power (to run Monte Carlo Markov Chains for instance). In this letter we address this challenge by presenting a new approach using unsupervised non-Gaussian dimensionality reduction algorithms in order to categorize models given observables. We especially use Self-Organizing Maps (SOMs) as they can produce 2-dimensional maps where models are assigned to cells preserving topology. Such mapping indeed allows to easily determine models that have different impacts on a given observable or missing models, and the effect of measurements on this mapping can also be added straightforwardly (but is not done in the present first study). This approach complements Principal Component Analysis (PCA) as SOMs are adequate for non-Gaussian reduction and visualization. As a first step and for purpose of example, we apply this approach to the case of modified gravity theories probed by cosmic shear.

Weak gravitational lensing is indeed a powerful probe of MG as shown early on in [Song 2005] demonstrating that some MG theories (in particular DGP as developed in [Dvali et al. 2000; Deffayet 2001; Deffayet et al. 2002]) can be distinguished from a dark energy using cosmic shear, and later in [Song 2006; Tsujikawa & Tatekawa 2008; Jain & Zhang 2008]. Tomographic cosmic shear corresponds to the correlation in redshift bins of the deformation of observed galaxy shapes due to weak lensing. It directly probes the matter distribution and is sensitive to the growth of large scale structures in the Universe, which depends on the laws of gravity. Deviations from GR were thus tested using cosmic shear data from CFHTLenS [Harnois-Déraps et al. 2015; Simpson et al. 2013; Ferté et al. 2019, KiDS [Joudaki et al. 2017; Tröster et al. 2021] and DES [Abbott et al. 2019] (in the later cases galaxy-galaxy lensing and clustering data were also used). Forecasts show these constraints will improve with future imaging surveys including the Euclid satellite [Martinelli et al. 2011; Euclid Collaboration 2020], LSST [that will be produced by the Rubin Observatory, The LSST Dark Energy Science Collaboration 2018; Hojjati et al. 2016; Ferté et al. 2019] and Roman space mission [Doré et al. 2019; Eifler et al. 2020, 2021].

One of the challenges faced by these future surveys is to decide which theories of MG to test amongst the large space of models developed in the literature, [Ishak et al. 2019] for instance prioritizes theories to be tested by LSST. The goal of the present approach is to complement past studies (for instance performing non-parametric reconstruction
Parameters varied and their range for the modified gravity models used to compute the SOM training data set (in the dilaton case, β_0 is fixed to $\Omega_{\Lambda,0}/\Omega_{m,0}$).

Model	Parameters	Prior range
f(R)	B_0	$[10^{-10}, 10^{-2}]$
Dilaton	ξ_0, β_0	$[10^{-6}, 5 \times 10^{-4}], 2.2$
Symmetron	ξ_+, β_+	$[10^{-6}, 10^{-4}], [0.5, 1.5]$

Table 1

2. SELF-ORGANIZING MAP OF MODIFIED GRAVITY PROBED BY COSMIC SHEAR

Self-Organizing Maps – Self-Organizing Maps, introduced in Kohonen [1982], are a class of unsupervised neural networks which learn and reduce dimensions (usually to 2 dimensions) of a higher dimensional data set while preserving the topology of the manifold. Dimensionality reduction makes SOMs perfect tools for visualization. The training of a SOM is an iterative process where weights of the neurons within the radius of the neighborhood function are updated according to their distance to the input data, where the neuron closest to the input data is called the Best Matching Unit (BMU). At the end of the training, the neurons are weighted so that they match the distribution of the input data.

In this letter we assume a fixed cosmology with cosmological models at the level of the cosmological observables, to inform future analyses. We do so by indicating how similar the signatures of different specific modified gravity theories are on cosmic shear, using Self-Organizing Maps. In this letter we assume a fixed cosmology with $\Omega_0 = 0.31, H_0 = 67, \Omega_b = 0.04, A_s = 2.1 \times 10^{-9}$, one massive neutrino with a mass of 0.06 eV. The training set is available on demand and the plotting code is available online.

In this work, we make predictions of the theoretical predictions of the cosmic shear real-space correlation functions at angular separation θ in redshift bins i and j, $\xi_{ij}^\pm(\theta)$ in various modified gravity (MG) theories, for different values of their parameters. We use the cosmological code CosmoSIS [Zuntz et al. 2015] to compute the theoretical predictions of cosmic shear, where the impact of modified gravity on the matter power spectrum is computed using the latest version of MGCAMB [Zucca et al. 2019] [Hojjati et al. 2011] [Zhao et al. 2009b], implemented in CosmoSIS. For the purpose of this study we assume a linear matter power spectrum. Indeed, while various approaches have been proposed to model non-linearities in modified gravity theories (see for example Mead et al. 2016; Bose et al. 2020; Thomas 2020), an alternative is to remove measurements of cosmic shear on non-linear scales for the cosmological analysis (as done in Abbott et al. 2019 for instance). In a similar way, we use the cosmic shear correlation functions in a range of θ roughly similar to the conservative scale cuts used for the constraints on deviations to GR in Abbott et al. 2019 [11]. We therefore use predictions of ξ_+ between 30 and 300 arcminutes and of ξ_- between 250 and 300 arcminutes for all redshift combinations.

We consider modified gravity theories that are readily available in MGCAMB and have a cosmological impact, following Hojjati et al. 2016. Cosmic shear correlation functions $\xi_{ij}^\pm(\theta)$ for 10 redshift bins (indexed by i and j) of the source galaxies (similar to what is expected for LSST or Euclid) are then computed for 100 different values of the MG parameters. These values are linearly spaced within a range that we choose to not be informed by astrophysical constraints as cosmological analyses often use such large priors. We use:

- $f(R)$ gravity parametrised by the Compton wavelength parameter B_0 [Song et al. 2007; Dossett et al. 2014], varying $\log_{10}(B_0)$ linearly between -10 and -2.
- the dilaton model [Damour & Polyakov 1994] [Brax et al. 2010] parametrized by the value of the force range and the coupling to matter today, respectively ξ_0 and β_0. We vary $\log_{10} \xi_0$ linearly between -6 and -3.3 (above this value our current pipeline gives non-physical shear correlated functions) for β_0 set to $\Omega_{\Lambda,0}/\Omega_{m,0} = 2.2$ as indicated in Hojjati et al. 2016 (for the scalar field to explain dark energy).
- the symmetron model \cite{Hinterbichler2010} parametrized by the force range ξ_\star, the scale factor at the time of the force activation a_\star and the coupling to matter β_\star. We vary $\log_{10}(\xi_\star)$ between -6 and -2 for β_\star set to 0.5, 1 and 1.5, while we fix a_\star for simplicity, as is done in \cite{Hojjati2016} for instance. We choose to set a_\star to 0.5.

Table 1 summarizes the varied parameters and their corresponding prior ranges for each of the considered MG theories. We therefore compute shear correlation functions for a total of 500 models.

3. RESULTS AND DISCUSSION

SOM of modified gravity theories - After training the 6×6 square grid SOM on the training set described above, we map the training set on the SOM. Fig. 1 shows a two dimensional SOM grid with cells colored by the final number of models per neuron. In this figure and the following ones, cells in white correspond to cells with no models. The cell corresponding to the highest number of models lie in the left top corner (numbered 1 in Fig. 1 with a total of 132 models in this cell), which corresponds to General Relativity or small deviations to GR. This indicates that shear correlation functions for small values of the modified gravity parameters (B_0, ξ_0 and ξ_\star) are indistinguishable from GR.

Fig. 2 shows correlation functions $\xi_+^2(\theta)$ in redshift bin 2 for different cells (which are numbered from 1 to 3 in Fig. 1). The dotted and dashed lines for cells 2 and 3 show two different models associated to these two cells, while cell 1 presents negligible variations as the MG parameters are very small (e.g. the median of B_0 in cell 1 is 3.1×10^{-9}). We
also show for purpose of illustration the expected error bars on $\xi_{+}^{22}(\theta)$ from a survey like LSST (10 source redshift bin with 55 galaxies arcmin^{-2} and a total shape noise of 0.3 over 50% of the sky), which we computed using CosmoCov [Krause & Eifler 2017; Fang et al. 2020b,a].

Other cells correspond to the various modified gravity theories used in the training, so we show in Fig. 3 a different representation of this SOM, now highlighting only the cells corresponding to each MG theory. In this case, the cells are colored according to the median of the corresponding MG parameter in each cell. The panels correspond to $f(R)$ gravity, the dilaton and symmetron models from left to right, only showing the distribution of ξ_\star for $\beta_\star = 1$ in the symmetron model. The 3 theories have a large overlap in the top left part of the SOM for small values of the MG parameters. However, for larger values, the dilaton model correspond to cells different from ones corresponding to $f(R)$ and the symmetron model. This means the SOM is able to distinguish between the dilaton and other models based on tomographic cosmic shear correlation functions which indicates that its signature is different enough that it should be constrained by future analysis.

Application: does a dynamical dark energy have the same signature as MG theories? – Current and future galaxy surveys aim at testing if the equation of state w of dark energy varies with time. The equation of state in this case often follows [Linder 2003; Chevallier & Polarski 2001] i.e., is parametrized by w_0 (the value of w today) and w_a (its dependence with time) as: $w(a) = w_0 + w_a(1 - a(t))$ where $a(t)$ is the scale factor. We want to know if constraining a dynamical dark energy using cosmic shear is sufficient to explain signatures from MG theories, using the present SOM approach. To this end, we compute the shear correlation functions for different combinations of w_0 and w_a using the same pipeline as used in modified gravity replacing MGCamb by CAMB [Lewis et al. 2000; Howlett et al. 2012; Lewis 2014].

We thus produce a set of shear correlation functions corresponding to 96 combinations of (w_0, w_a) randomly sampled from the chosen priors: $[-1.5, -0.5]$ for w_0, $[-1, 1]$ for w_a. To do so we use the apriori sampler that is readily available in CosmoSIS. We then train a SOM on a combination of this data set and the shear in modified gravity data set described above. As depicted in Fig. 4, the resulting SOM shows the signature on cosmic shear of modified gravity theories (shown in the right panel) is different from the one from a dynamical dark energy (shown in the left panel). However, the pipeline failed for some combinations of w_0, w_a so we get 96 combinations instead of 100.

![Figure 3](image_url). SOM of modified gravity from Fig. 1 showing the median of the values of the parameter for each cell for $f(R)$ gravity, the dilaton (for $\beta_0 = 2.2$) and symmetron (for $\beta_\star = 1$) models from left to right.

![Figure 4](image_url). Number of models in each cell for (w_0, w_a) on the left panel and MG theories on the right panel of the 6×6 Self-Organizing Map grid trained on shear correlation functions $\xi_{+}^{22}(\theta)$ computed in (w_0, w_a) model and $f(R)$ gravity, dilaton and symmetron (for $\beta_\star = 0.5$, 1 and 1.5) models.
We have checked that the dilaton model in particular doesn’t overlap with a dynamical dark energy, except for parameters values close to GR. This indicates these MG theories would need to be constrained in addition to a dynamical dark energy in order to extract more information from cosmic shear.

4. CONCLUSION

We presented a new approach to categorize models using a dimensionality reduction algorithm such as Self-Organizing Map and applied it to the case of a subset of modified gravity theories, categorizing these theories through their impact on cosmic shear. This approach is a promising way to help guide analyses in the case of a large theory space, like in cosmology. In this paper we showed for instance that the signatures left on cosmic shear from $f(R)$ gravity, the dilaton and symmetron models are similar for small deviations from GR but the dilaton can be distinguished from the other models for larger parameters values, while signatures from $f(R)$ gravity are similar to the ones left by the symmetron model for $\beta_s = 1$. Moreover we showed MG theories have a different impact on cosmic shear compared to a dynamical dark energy, indicating that MG models should indeed be explored by future surveys such as LSST or Euclid in order to further exploit cosmic shear data.

However, this first analysis has several caveats: we assume a linear matter power spectrum, consider a fixed cosmology and we use theoretical predictions of the shear correlation functions $\xi_{\pm}(\theta)$ in finely binned θ. We will go beyond these assumptions in future work and develop several applications. As such, this approach can indeed be applied to other cases in cosmology such as cosmic inflation or any case of a large theory space in physics, in order to easily identify interesting directions of exploration.

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NMM0018D0004). In particular, this work was initiated with a JPL Data Science Pilot grant under a program run by Daniel Crichton and Richard Doyle who provided early support and advice. PLT acknowledges support for this work from a NASA Postdoctoral Program Fellowship. BM was supported by the JPL/Caltech Summer Undergraduate Research Fellowship Program. AF would like to thank Benjamin Giblin for indicating an issue in the implementation of MGCAMB in CosmoSIS to compute $f(R)$ gravity cosmic shear predictions and Joe Zuntz for his help to fix this issue: Xiao Fang for help with CosmoCov; members of the JPL Dark Sector group and of the cosmology group at Caltech for their support and inputs; and early audiences of this work for useful discussions.

REFERENCES

Abbott, T. et al. 2019, Physical Review D, 99
Ade, P. A. R., Aghanim, N., Alves, M. I. R., et al. 2014, Astronomy & Astrophysics, 571, A1
Asaba, S., Hikage, C., Koyama, K., et al. 2013, Journal of Cosmology and Astroparticle Physics, 2013, 029–029
Biller, B. A. & Bonnefoy, M. 2018, Handbook of Exoplanets, 2107–2135
Bose, R., Cataneo, M., Tröster, T., et al. 2020, Mon. Not. Roy. Astron. Soc., 498, 4650
Brax, P., van de Bruck, C., Davis, A.-C., & Shaw, D. 2010, Phys. Rev. D, 82, 063519
Chevallier, M. & Polarski, D. 2001, International Journal of Modern Physics D, 10, 213–223
Damour, T. & Polyakov, A. 1994, Nuclear Physics B, 423, 532–558
Davidzon, I., Laigle, C., Capak, P. L., et al. 2019, Monthly Notices of the Royal Astronomical Society, 489, 4817
Deffayet, C. 2001, Physics Letters B, 502, 199, arXiv: hep-th/0010186
Deffayet, C., Dvali, G., & Gabadadze, G. 2002, Physical Review D, 65, 044023, arXiv: astro-ph/0105068
Doré, O., Hirata, C., Wang, Y., et al. 2019, arXiv: 1904.01174
Dossett, J., Hu, B., & Parkinson, D. 2014, Journal of Cosmology and Astroparticle Physics, 2014, 046, arXiv: 1401.3980
Dvali, G., Gabadadze, G., & Porrati, M. 2000, Physics Letters B, 485, 208
Eifler, T., Miyatake, H., Krause, E., et al. 2020, arXiv:2004.05227
Eifler, T., Simet, M., Krause, E., et al. 2021, Monthly Notices of the Royal Astronomical Society, stab533, arXiv: 2004.04702
Euclid Collaboration. 2020, Astronomy and Astrophysics, 642, A191
Fang, X., Eifler, T., & Krause, E. 2020a, Monthly Notices of the Royal Astronomical Society, 497, 2699–2714
Fang, X., Krause, E., Eifler, T., & MacCrann, N. 2020b, Journal of Cosmology and Astroparticle Physics, 2020, 010–010
Ferté, A., Kirk, D., Liddle, A. R., & Zuntz, J. 2019, Physical Review D, 99
Harnois-Dérap, J., Munshi, D., Valageas, P., et al. 2015, Monthly Notices of the Royal Astronomical Society, 454, 2722
Hemmati, S., Capak, P., Pourrahmani, M., et al. 2019, The Astrophysical Journal, 881, L14, arXiv: 1905.10379
Hinterbichler, K. & Khoury, J. 2010, Physical Review Letters, 104, 071103
Hojjati, A., Plahn, A., Zucca, A., et al. 2016, Physical Review D, 93
Hojjati, A., Pogosian, L., & Zhao, G.-B. 2011, Journal of Cosmology and Astroparticle Physics, 2011, 005, arXiv: 1106.4543
Hojjati, A., Zhao, G.-B., Pogosian, L., et al. 2012, Physical Review D, 85
Howlett, C., Lewis, A., Hall, A., & Challinor, A. 2012, JCAP, 1204, 027
Ishak, M., Baker, T., Bull, P., et al. 2019, Modified Gravity and Dark Energy models Beyond $w(z)$CDM Testable by LSST
Jain, B. & Zhang, P. 2008, Physical Review D, 78, 063503, arXiv: 0709.2375
Joudaki, S., Mead, A., Blake, C., et al. 2017, Monthly Notices of the Royal Astronomical Society, 471, 1259, arXiv: 1610.04606
Kohonen, T. 1982, Biological Cybernetics, 43, 59
Krause, E. & Eifler, T. 2017, Monthly Notices of the Royal Astronomical Society, 470, 2100–2112
Lewis, A. 2014, https://cosmologist.info/notes/CMGB.pdf
Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
Linder, E. V. 2003, Phys. Rev. Lett., 90, 091301
Linder, E. V. & Huterer, D. 2005, Physical Review D, 72
Madhusudhan, N. 2019, Annual Review of Astronomy and Astrophysics, 57, 617
Maehoven, P. H. & Hakala, P. J. 1995, The Astrophysical Journal Letters, 452, L77
Martin, J., Ringeval, C., & Vennin, V. 2014, Physics of the Dark Universe, 5, 75
Martinelli, M., Calabrese, E., De Bernardis, F., et al. 2011, Physical Review D, 83, 023012, arXiv: 1010.5755
Masters, D., Capak, P., Stern, D., et al. 2015, The Astrophysical Journal, 813, 53
Mead, A. J., Heymans, C., Lombriser, L., et al. 2016, Monthly Notices of the Royal Astronomical Society, 459, 1468–1488
Moosavi, V., Packmann, S., & Vallès, I. 2014, SOMPY: A Python Library for Self Organizing Map (SOM), GitHub [Online]. Available: https://github.com/sevamoo/SOMPY
Myles, J., Alarcon, A., Amon, A., et al. 2020, Dark Energy Survey Year 3 Results: Redshift Calibration of the Weak Lensing Source Galaxies
Raveri, M., Pogosian, L., Koyama, K., et al. 2021, A joint reconstruction of dark energy and modified growth evolution
Simpson, F., Heymans, C., Parkinson, D., et al. 2013, Monthly Notices of the Royal Astronomical Society, 429, 2249, arXiv: 1212.3339
Song, Y.-S. 2005, Physical Review D, 71, 024026, arXiv: astro-ph/0407489
Song, Y.-S. 2006, arXiv: astro-ph/0602598, arXiv: astro-ph/0602598
Song, Y.-S., Hu, W., & Sawicki, I. 2007, Physical Review D, 75

The LSST Dark Energy Science Collaboration. 2018, The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document.
Thomas, D. B. 2020, Physical Review D, 101
Tröster, T., Asgari, M., Blake, C., et al. 2021, KiDS-1000 Cosmology: constraints beyond flat ΛCDM
Tsujikawa, S. & Tatekawa, T. 2008, Physics Letters B, 665, 325, arXiv: 0804.3343
Wright, A. H., Hildebrandt, H., van den Busch, J. L., & Heymans, C. 2020, Astronomy & Astrophysics, 637, A100
Zhao, G.-B., Giannantonio, T., Pogosian, L., et al. 2010, Physical Review D, 81
Zhao, G.-B., Pogosian, L., Silvestri, A., & Zylberberg, J. 2009a, Physical Review Letters, 103
Zhao, G.-B., Pogosian, L., Silvestri, A., & Zylberberg, J. 2009b, Physical Review D, 79, 083513, arXiv: 0809.3791
Zucca, A., Pogosian, L., Silvestri, A., & Zhao, G.-B. 2019, Journal of Cosmology and Astroparticle Physics, 2019, 001, arXiv: 1901.05956
Zuntz, J., Paterno, M., Jennings, E., et al. 2015, Astronomy and Computing, 12, 45, arXiv: 1409.3409

This paper was built using the Open Journal of Astrophysics \LaTeX{} template. The OJA is a journal which provides fast and easy peer review for new papers in the \texttt{astro-ph} section of the arXiv, making the reviewing process simpler for authors and referees alike. Learn more at \url{http://astro.theoj.org}