Concurrent Hepatitis C and B Virus and Human Immunodeficiency Virus Infections Are Associated With Higher Mortality Risk Illustrating the Impact of Syndemics on Health Outcomes

Zahid A. Butt,1,2,3,* Stanley Wong,2 Carmine Rossi,2 Mawuena Binka,2 Jason Wong,2,3 Amanda Yu,2 Maryam Darvishian,4 Maria Alvarez,2 Nuria Chapinal,4 Geoff Mckee,2 Mark Gilbert,2,3 Mark W. Tyndall,3 Mel Krajden,2,3,5 and Naveed Z. Janjua2,3

1School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, Canada, 2British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, 3School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada, 4BC Cancer Agency, Vancouver, British Columbia, Canada, 5BC CDC Public Health Laboratory, Vancouver, British Columbia, Canada

Background. Hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV) infections are associated with significant mortality globally and in North America. However, data on impact of concurrent multiple infections on mortality risk are limited. We evaluated the effect of HCV, HBV, and HIV infections and coinfections and associated factors on all-cause mortality in British Columbia (BC), Canada.

Methods. The BC Hepatitis Testers Cohort includes ~1.7 million individuals tested for HCV or HIV, or reported as a case of HCV, HIV, or HBV from 1990 to 2015, linked to administrative databases. We followed people with HCV, HBV, or HIV monoinfection, coinfections, and triple infections from their negative status to date of death or December 31, 2016. Extended Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for factors associated with all-cause mortality.

Results. Of 658 704 individuals tested for HCV, HBV, and HIV, there were 33 804 (5.13%) deaths. In multivariable Cox regression analysis, individuals with HCV/HBV/HIV (HR, 8.9; 95% CI, 8.2–9.7) infections had the highest risk of mortality followed by HCV/HIV (HR, 4.8; 95% CI, 4.4–5.1), HBV/HIV (HR, 4.1; 95% CI, 3.5–4.8), HCV/HBV (HR, 3.9; 95% CI, 3.7–4.2), HCV (HR, 2.6; 95% CI, 2.6–2.7), HBV (HR, 2.2; 95% CI, 2.0–2.3), and HIV (HR, 1.6; 95% CI, 1.5–1.7). Additional factors associated with mortality included injection drug use, problematic alcohol use, material deprivation, diabetes, chronic kidney disease, heart failure, and hypertension.

Conclusions. Concurrent multiple infections are associated with high mortality risk. Substance use, comorbidities, and material disadvantage were significantly associated with mortality independent of coinfection. Preventive interventions, including harm reduction combined with coinfection treatments, can significantly reduce mortality.

Keywords. all-cause mortality; coinfections; observational cohort; syndemics.

Globally, hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV) are major public health issues with approximately 71 million individuals with HCV, 257 million with HBV [1], and 36.9 million people with HIV [2]. In Canada, an estimated 230 000–450 000 individuals are infected with HCV [3], approximately 75 500 have HIV, and 285 000 have HBV [4, 5]. Independently, HCV, HIV, and HBV infections are associated with significant morbidity and mortality [6–8]. These viruses share common transmission routes and predisposing vulnerabilities to infection; therefore, co-occurrence of these infections is relatively high. Material and social deprivation, social vulnerabilities, and/or other conditions (eg, addictions, mental illness, tuberculosis [TB]) are common in those with HCV, HBV, and/or HIV [9, 10].

The interaction among HCV, HBV, and HIV infections is therefore likely driven by shared underlying socioeconomic, environmental, and political conditions, which increase the morbidity and mortality related to these infections. Population-level clustering of social and health conditions constitutes a “syndemic” [11], which enhances the adverse consequences of HIV, HCV, and HBV infections. Vulnerable and underserved populations, such as people who inject drugs (PWID) and gay, bisexual, and other men who have sex with men, immigrants, and indigenous populations, are disproportionately affected by HIV, HCV, and HBV [9, 12–14]. Estimating the
Among the British Columbians since 1990, the impact of HIV, hepatitis C virus (HCV), and hepatitis B virus (HBV) coinfections on mortality was studied through an analysis of the British Columbia Hepatitis Testers Cohort, a population-based cohort with up-to-date information on HIV, HCV, and HBV infections, concomitant risk factors, and mortality. This study aimed to address knowledge gaps and limitations identified in previous research by analyzing the British Columbia Hepatitis Testers Cohort, a large population-based cohort, with the objective of determining the impact of these syndemics, comorbid conditions, and substance use on all-cause mortality among British Columbians since 1990.

METHODS

The British Columbia Hepatitis Testers Cohort (BC-HTC) includes all individuals (~1.7 million individuals) tested for HCV or HIV at the BCCDC Public Health Laboratory (BCCDC-PHL) or reported as a confirmed case of HCV, HBV, HIV, or acquired immunodeficiency syndrome (AIDS), or active TB, since 1990. This cohort is linked with provincial healthcare administrative databases and registries, including medical visits, hospitalizations, prescription drugs, cancers, and deaths (Supplementary Table 1). Almost all HIV and HCV testing in BC is performed at the BCCDC-PHL. All dispensed prescriptions in BC are recorded in a central system called PharmaNet, regardless of the payer. Detailed cohort characteristics and related data are presented elsewhere [18].

Definitions

An individual testing positive for HCV antibodies, HCV RNA, or genotype or who was reported as an HCV case to public health was considered as an HCV case [18]. Of the 42,187 cases of HCV that were tested for all 3 infections, there were 36,820 cases who were HCV antibody positive only (data not shown). An individual reported as a case of HIV/AIDS, or who had a positive HIV laboratory test result, was considered a case. Additional HIV cases were ascertained through a validated algorithm based on 2 medical visits or 1 hospitalization of a condition associated with HIV/AIDS [18]. Hepatitis B virus cases included individuals with positive laboratory tests for HBV deoxyribonucleic acid or hepatitis B surface antigen, who received treatment for HBV, or individuals reported as HBV cases in the BC provincial registry (Supplementary Table 2). Active TB diagnoses were based on provincial and national guidelines [18]. Socioeconomic status was assessed using the Québec Index of Material and Social Deprivation, which is based on Canadian Census Data on small area units [9]. The deprivation index includes 6 indicators grouped along social and material dimensions and are produced from principal component analyses [19]. The material component consisted of indicators for education, employment, and income (persons without high school diploma, ratio employment-population ratio, and average personal income), whereas the social component comprised indicators related to marital status and family structure (persons living alone, persons separated, divorced or widowed, and single-parent families). Assessment of injection drug use (IDU) and problematic alcohol use was based on diagnostic codes (Supplementary Table 1) for medical visits and hospitalizations in respective databases. Ethnicity was classified on the basis of validated name recognition software Onomap, as reported previously [20]. The algorithm has high sensitivity and specificity for South Asian and East Asian peoples, with the exception of Filipinos. It may misclassify many ethnic groups, including people who would describe themselves as having mixed ethnicity, people whose surnames are not specific to an ethnic group, and people who adopt surnames of another ethnic group [21]. Onomap does not identify people with Indigenous ethnicity. Due to legislated forced assimilation in Canada during the 18th–20th centuries, Indigenous peoples’ names were routinely changed to biblical or other European names [22]. Thus, people of European ancestry and those with similar names were classified as Other in our study. Ethnicity was categorized as South Asian (eg, Pakistani, Indians, Bangladeshis, Nepali, and Sri Lankans), East Asian (eg, Chinese, Filipinos, Japanese, Korean and people from other South-East Asian countries), and Other (including Caucasian, Black individuals and people from Central Asian, Latin American, Pacific Islander, people of European ancestry and those with similar names, and West Asian countries).

Diabetes, chronic kidney disease, heart failure, and hypertension were assessed using (1) a combination of International Classification of Diseases (ICD) diagnostic or procedure codes or (2) fee item codes from medical visits, hospital admissions, or prescription database, based on the British Columbia Chronic Disease Registry definitions (Supplementary Table 2). All-cause mortality was ascertained by using the ICD-10 codes (A00–R99; V01–Y99).

Statistical Analysis

For this analysis, study population included individuals that were tested for all 3 infections (HCV, HBV, and HIV). Individuals tested for 1 or 2 infections, but not all 3, were excluded from...
the cohort. The study population (n = 658,704) was classified as those who tested negative for HCV, HBV, and HIV infections (negative group), tested positive for HCV, but negative for HBV and HIV (HCV mono-infected), tested positive for HBV, but negative for HCV and HIV (HBV mono-infected), tested positive for HIV, but negative for HCV and HBV (HIV mono-infected), tested positive for HCV and HBV, but negative for HIV (HCV/HBV coinfected), tested positive for HCV and HIV, but negative for HBV (HCV/HIV coinfected), tested positive for HBV (HCV/HIV/coinfected), tested positive for HBV and HIV, but negative for HCV (HBV/HIV coinfection), and tested positive for all 3 infections (HCV/HBV/HIV triple infection). A time updated variable for infection groups was created to account for transition from no infection (negative group) to first, second, and third infection, respectively. This enabled us to account for the time spent in each infection group (negative, mono-infected, coinfected, or with triple infections).

We followed people with HCV, HBV, or HIV mono-infection, co-infections, and triple infections from their first negative test status to date of death or December 31, 2016 to estimate mortality rates. The Kaplan-Meier method was used to construct survival curves for infection groups. For comparison of survival curves, the log-rank test was used. Extended Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for factors associated with all-cause mortality. All analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC).

RESULTS

Of 658,704 individuals tested for HCV, HBV, HIV infections, there were 33,804 (5.13%) deaths during the study interval. Of these 658,704 individuals, 596,079 (90.5%) were negative for all infections, 34,807 (5.3%) were HCV mono-infected, 14,913 (2.3%) were HBV mono-infected, 4,846 (0.8%) were HIV mono-infected, 3,472 (0.5%) were positive for both HCV and HBV (HCV/HBV coinfected), 2,668 (0.4%) were positive for both HCV and HIV (HCV/HIV coinfected), 679 (0.1%) were positive for both HBV and HIV (HBV/HIV coinfection), and 1,240 (0.2%) were positive for all 3 infections (HCV/HBV/HIV triple infection). The majority of individuals in all infection groups were male, with the highest proportion among individuals with HBV/HIV co-infection (90.4%). Almost all infections and co-/triple infections were higher among Other ethnicity than other ethnicities, except HBV mono-infection, which was highest among East Asians (52.9%) (Table 1). Most of the infections were in individuals aged over 45 years, except HIV mono-infection (32.2%), HCV/HIV coinfection (38.4%), and HCV/HBV/HIV triple infection (38.8%), which were higher among the 35 to 44 age group. Among infection groups, IDU was highest among individuals with triple infection (84.0%), followed by HCV/HIV coinfection (68.7%), HCV/HBV coinfection (56.5%), and HCV mono-infection (41.6%). A similar trend was observed for problematic alcohol use (Table 1). Regarding chronic diseases, a higher proportion of type 2 diabetes was found among HCV/HBV-coinfected individuals (11.3%), followed by those with HBV/HIV coinfections (8.1%), and HCV mono-infection (7.9%). A higher proportion of chronic kidney disease was observed among individuals with triple infection (13.2%), HBV/HIV coinfection (11.5%), and HCV/HBV coinfection (9.8%), whereas hypertension was highest among individuals with HCV/HBV coinfections (26.4%), followed by HCV mono-infection (25.2%) and HBV/HIV coinfections (23.4%). Almost all groups had higher proportions living in socially and materially deprived areas (Q5 vs Q1), except individuals with HIV mono-infection, who were less materially deprived than the rest of the groups (Table 1).

The highest crude all-cause mortality rate per 1000 person-years was observed among individuals with HCV/HBV/HIV triple infection (31.3; 95% CI, 28.9–33.9), followed by HCV/HBV (19.4; 95% CI, 18.3–20.6), HCV/HIV (19.2; 95% CI, 18.0–20.6), and HBV/HIV coinfections (15.6; 95% CI, 13.3–18.2), and HCV (12.1; 95% CI, 11.8–12.4), HBV (6.7; 95% CI, 6.1–7.3), and HBV mono-infection (5.1; 95% CI, 4.8–5.4) (Table 2). Mortality was higher among males than females. Regarding ethnicity, mortality was higher among Other ethnicity in the HCV mono-infection, HBV/HIV coinfection, and triple infection groups, whereas it was higher among South Asians for the HBV and HIV mono-infected and HCV/HBV and HCV/HIV coinfection groups. Mortality was higher among all infection groups for people aged 45 years and above and highest for the triple infection group (35.2; 95% CI, 31.1–39.9). For IDU and problematic alcohol use, mortality was highest among the triple infection group but lower among HBV mono-infected for IDU and HIV–mono-infected for problematic alcohol use. Almost all infection groups had higher mortality with respect to diabetes and chronic kidney disease, except HIV mono-infected, which had lower mortality compared with the rest of the groups. A similar trend was noted for hypertension and heart failure. As expected, individuals living in more socially and materially deprived areas had higher mortality rates across all infection groups (Table 2). Survival in the triple infection group was lowest, followed by coinfections (HCV/HIV, HBV/HIV and HBV/HIV) and HCV, HCV, and HBV mono-infections (Figure 1). For the negative group, the survival curve showed a gradual decrease in survival over time, whereas for the triple infection group, survival decreased sharply at approximately 5 years of follow-up time and followed the same pattern throughout.
Table 1. Characteristics of Participants by HIV, HCV, and HBV Status in BC Hepatitis Testers Cohort, 1990–2015

Variables	Negative	HCV Monoinfected	HBV Monoinfected	HIV Monoinfected	HCV/HBV Coinfected	HCV/HIV Coinfected	HBV/HIV Coinfected	HCV/HBV/HIV Coinfected
Row Percent	596,079 (90.5)	34,807 (5.3)	14,913 (2.3)	4,846 (0.8)	3,472 (0.5)	2,668 (0.4)	679 (0.1)	1,240 (0.2)
Sex	336,952 (56.5)	12,536 (36.0)	7,350 (49.2)	737 (15.2)	1,179 (34.0)	752 (28.2)	65 (9.6)	405 (32.7)
Ethnicity	485,259 (81.4)	32,767 (94.1)	6,313 (42.3)	4,457 (91.9)	3,166 (81.2)	2,601 (97.5)	612 (90.1)	1,216 (98.0)
Age at Diagnosis	40,037 (26.0)	11,646 (33.5)	3,571 (24.0)	1,558 (32.2)	1,058 (30.5)	1,024 (38.4)	206 (30.3)	481 (38.8)
IDU	32,596 (5.5)	14,470 (41.6)	607 (4.1)	617 (12.7)	1,962 (56.5)	1,832 (68.7)	147 (21.7)	1,041 (84.0)
Problematic Alcohol Use	554,899 (93.1)	22,736 (65.3)	14,232 (95.4)	4,286 (88.4)	1,928 (55.5)	1,458 (54.7)	569 (83.8)	529 (42.7)
Active TB	1,180 (6.9)	12,071 (34.7)	681 (4.6)	560 (11.6)	1,544 (44.5)	1,210 (45.4)	110 (16.2)	711 (57.3)
Diabetes	570,057 (95.6)	32,049 (92.1)	13,972 (93.7)	4,545 (93.8)	3,081 (88.7)	2,538 (95.1)	624 (91.9)	1,155 (93.2)
Chronic Kidney Disease	26,022 (4.4)	2,758 (79.7)	941 (6.3)	301 (6.2)	391 (11.3)	130 (4.9)	55 (8.1)	85 (6.9)
Heart Failure	580,307 (97.4)	33,163 (95.3)	14,484 (97.1)	4,653 (96.0)	3,184 (87.1)	2,551 (95.6)	645 (95.0)	1,160 (93.6)
Hypertension	15,772 (2.7)	2,071 (6.0)	757 (5.1)	389 (8.0)	341 (9.8)	210 (7.9)	78 (11.5)	163 (13.2)
Material Deprivation	489,625 (82.1)	26,020 (74.8)	11,532 (77.3)	3,777 (77.9)	2,556 (86.5)	2,308 (86.5)	520 (76.6)	1,036 (83.6)
Unknown	145,211 (24.4)	4,498 (12.9)	2,651 (17.3)	1,707 (35.2)	449 (12.9)	447 (16.8)	235 (34.6)	200 (16.1)
Q1 (most privileged)	145,211 (24.4)	4,498 (12.9)	2,651 (17.3)	1,707 (35.2)	449 (12.9)	447 (16.8)	235 (34.6)	200 (16.1)
Q2	117,264 (19.7)	5,280 (15.2)	2,304 (15.5)	859 (17.7)	509 (14.7)	378 (14.2)	121 (17.8)	176 (14.2)
A similar pattern was observed for coinfections; however, a decrease in survival was less severe than that in the triple infection group. Multivariable extended Cox regression analysis demonstrated that individuals with HCV/HBV/HIV infections (adjusted hazard ratio [aHR], 8.9; 95% CI, 8.2–9.7) had highest risk of mortality followed by HCV/HIV (aHR, 4.8; 95% CI, 4.4–5.1), HBV/HIV (aHR, 4.1; 95% CI, 3.5–4.8), HCV/HBV (aHR, 3.9; 95% CI, 3.7–4.2), HCV (aHR, 2.6; 95% CI, 2.6–2.7), HBV (aHR, 2.2; 95% CI, 2.0–2.3), and HIV (aHR, 1.6; 95% CI, 1.5–1.7).

Individuals with IDU and problematic alcohol use, with mortality risk higher among those with problematic alcohol use (1.6 vs 1.2). Regarding chronic conditions, individuals with heart failure had the highest risk of mortality followed by chronic kidney disease, diabetes, and hypertension (Table 3).

Variables	Negative	HCV Monoinfected	HBV Monoinfected	HIV Monoinfected	HCV/HBV Coinfected	HCV/HIV Coinfected	HBV/HIV Coinfected	HCV/HBV/HIV Coinfected
Row Percent	596,079 (90.5)	34,807 (5.3)	149,132 (2.3)	484,682 (0.8)	347,202 (0.5)	266,804 (0.4)	679,071 (0.1)	1,240,071 (0.2)
Q3	114,823 (19.3)	60,471 (17.4)	256,582 (12.7)	625,12 (12.9)	542,156 (15.6)	314,115 (11.8)	88,126 (13.0)	115,932 (9.3)
Q4	115,011 (19.3)	81,177 (23.3)	312,510 (15.0)	728,150 (15.0)	793,226 (22.6)	356,201 (20.1)	95,140 (14.0)	222,179 (17.9)
Q5 (most deprived)	99,833 (16.8)	10,555 (30.3)	412,777 (27.7)	894,118 (5.5)	1,126,324 (36.1)	963,361 (31.9)	130,192 (19.2)	508,410 (11.9)

Social Deprivation

Unknown | 39,373 (0.7) | 310 (0.9) | 141 (1.0) | 33 (0.7) | 63 (1.8) | 30 (1.1) | 10 (1.5) | 19 (1.5) |
Q1 (most privileged)	104,933 (17.6)	35,255 (10.1)	31,666 (21.2)	402 (3.3)	134 (5.0)	57 (8.4)	46 (3.7)	
Q2	102,116 (17.1)	43,322 (12.4)	29,489 (19.8)	517 (10.7)	339 (8.8)	202 (7.6)	55 (8.1)	86 (6.9)
Q3	103,301 (17.3)	55,550 (16.0)	25,333 (17.0)	551 (11.4)	511 (14.7)	309 (11.6)	55 (8.1)	119 (9.6)
Q4	122,874 (20.6)	71,377 (20.5)	26,606 (17.5)	901 (18.6)	657 (18.9)	450 (16.9)	118 (17.4)	239 (19.3)
Q5 (most deprived)	158,918 (26.7)	13,953 (40.1)	3,518 (23.6)	2,442 (50.4)	1,592 (45.9)	1,543 (57.8)	384 (56.6)	731 (59.0)

Abbreviations: BC, British Columbia; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IDU, injection drug use; TB, tuberculosis.

*Past history of disease/risk factor.
Table 2. Mortality Rate Per 1000 Person Years by HCV, HBV, and HIV Infection Groups, BC Hepatitis Testers Cohort, 1990–2015

Variables	Negative n/Person Years	HCV Monoinfected n/Person Years	HBV Monoinfected n/Person Years	HIV Monoinfected n/Person Years	HCV/HBV Coinfected n/Person Years	HCV/HIV Coinfected n/Person Years	HBV/HIV Coinfected n/Person Years	HCV/HBV/HIV Coinfected n/Person Years										
	Mortality Rate (95% CI)	Mortality Rate (95% CI)	Mortality Rate (95% CI)	Mortality Rate (95% CI)	Mortality Rate (95% CI)	Mortality Rate (95% CI)	Mortality Rate (95% CI)	Mortality Rate (95% CI)										
All-Cause	23.19/6/12.1 (987/14)	473/71 (6.1–7.3)	10/7109.9	112/257 (18.3–20.6)	15/10 (18.0–20.6)	15/10 (18.2–20.6)	15/10 (18.2–20.6)	31.3 (28.9–33.9)										
Mortality Rate	3.4 (3.4–3.5)	5.1 (4.8–5.4)	12.1 (11.8–12.4)	6.7 (6.1–7.3)	15.6 (13.3–20.6)	15.6 (13.3–20.6)	15.6 (13.3–20.6)	31.3 (28.9–33.9)										
Sex																		
Female	8938/3/929 (1911/199)	30.2/96 275.5 (3.1 (2.7–3.4)	59/10 (454.6)	326/20 (560.715.9)	14/893.9 (15.7 (13.3–26.4)	190/662.2 (27.8 (24.2–32.1)												
Male	14/259/2 (830/381) 5 (5–5.1)	45/0/329 (13.7 (13.3–14.1)	796/37 (209.721.3)	145/9 (324.1 (15.6 (13.2–18.3)	33.1 (30.1–36.4)													
Ethnicity																		
South Asian	114/494 (2.4 (2.3–2.6)	64/8025.6 (8 (6.2–12.7)	19/2350.2 (8.1 (5.2–12.7)	24/1046.6 (22.9 (15.4–34.2)	9.420 (214 (11.2–41.2)	3/236.1 (12.7 (14.1–39.4)	0/150.2 (0)											
Asian Other	582/962 (6.19/503 21.3 (12.6–12.6)	444/66 (6.7 (6.1–7.4)	106/353 (250.8 (20 (18.8–21.2)	8/90/4 (189.8 (19.3 (18–20.7)	150/9 (296.4 (16.1 (13.7–18.9)	2/41.1 (12.4 (19.9–34.3)												
East Asian	132/777/000 (3) 90/12 (1.8–2.0)	10/2437.7 (2.1 (2.2–2.6)	35/3563 (9.8 (7.1–13.7)	8/61/25 (13.1 (6.5–26.1)	9/685/6 (8.8 (9.2–19.5)	5/237.1 (21.1 (8.8–50.7)												
Age at Diagnosis																		
<25	731/656 (692.8 (1.3 (1.2–1.4)	2144/41 694.9 (5.1 (4.5–5.9) 30/0/3390.7 (0.9 (6.3–1.3)	17/5767/1 (2.9 (18–4.7)	26/6260 (9.9 (6.8–14.6)	30/2692.9 (11.1 (7.8–15.9)	3/172.8 (17.4 (6.5–53.8)	9/7672 (11.7 (8.1–22.5)											
25–44	512/1966 (476.3 (0.8 (0.8–0.8)	90/8/137 646.8 (6.6 (6.2–7) 89/61500.7 (1.4 (12–1.8)	81/22 642.3 (6.1 (2.9–4.4) 36/13 494.6 (10.1 (8.5–11.9)	136/13 494.6 (10.1 (8.5–11.9)	23/1892.8 (22.1 (18.1–18.3)	118/461.3 (25.6 (21.4–30.6)												
45–80	221/1996/009 (1.1 (1.1–1.2)	1986/196 (676.6)	135/48/34 (16.5 (3.5–3.3)	151/24 805 (6.3 (5.3–4.4)	289/18 569.3 (13.9–432/16 673.120.5 (18.4–22.8)	31/340 (43.0 (14.1 (10.5–19.1)	247/751.5 (33.1 (29.3–37.6)											
>80	18/678/2 (280/7694 (8.2 (8.1–8.3)	33/10/153 (777.7)	21/5/1820 (6.0–12.3)	144/224/18 506.5 (13.8–13.8)	671/23 176.4 (29 (26.8–31.2)	296/11 896/124.9 (22.2–279.1)	90/5109.5 (17.6 (14.3–246/6979.7	35.2 (31.1–39.9)										
IDU																		
No	20/365/6 (314/561 (3.2 (3.2–3.3)	894/100 185 (4.1 (4.5–5.2)	375/61249 (6.1 (5.5–6.8)	42/242 789.0 (16.2 (19.0–16.2)	116/791.2 (31.7 (12.2–176.1)	74/3081.3 (24 (19.1–30.2)												
Yes	30/59/239.3 (305/928.8)	93/54/1.1 (9.7 (8.8–11.9)	98/9752 (10 (8.2–12.2)	62/22/9 977.9 (19.2–22.4)	23/305.2 (18.7 (13.8–25.2)	546/16 730.3 (32.6 (30–35.5)												
Variables	Negative	HCV Monoinfected	HBV Monoinfected	HIV Monoinfected	HCV/HBV Coinfected	HCV/HIV Coinfected	HBV/HIV Coinfected	HCV/HBV/HIV Coinfected										
----------------------------	----------	------------------	------------------	------------------	-------------------	-------------------	-------------------	-----------------------										
	n/Person	Mortality Rate (95% CI)																
Problematic Alcohol Use																		
No	18 005/6	2.9 (2.9–3.9)	337/332	10.1 (9.8–10.5)	832/184	4.5 (4.2–4.8)	350/282	5.6 (5.1–6.2)	500/31	14.5 (14.2–17.3)	360/23	15.5 (13.9–17.1)	1258/432	14.8 (14.2–17.7)				
Yes	5194/555	9.4 (9.1–9.6)	3044/196	15.5 (15–16.1)	155/10	14.8 (12.7–17.4)	1238718.8	14.1 (11.8–16.8)	622/26	21.8–466/19	623.2	25.5 (21.7–26)	34/1785.7	19.0 (13.6–26.8)				
Active TB																		
No	23 010/6	3.4 (3.4–3.5)	6383/526	180.1 (11.8–12.4)	968/192	5.4 (4.7–5.3)	460/70	6.6 (6–7.2)	1105/57	19.3 (18.2–20.5)	789/41	623.7	19 (17.7–20.3)	1562/10	579/18	651.1	31 (28.6–33.7)	
Yes	189/18	10.1 (8.8–11.7)	55/261	2.1 (16.1–27.4)	19/1928	9.9 (6.3–15.4)	13/9081	14.3 (8.3–17.4)	17/6984	24.3 (15.1–39.2)	37/1297	28.5 (20.7–39.4)	3/133.6	22.4 (12.2–69.6)	412/160.5	35.3 (26.4–48.8)		
Diabetes																		
No	16 578/6	2.6 (2.5–2.6)	537/488	11 (10–11.3)	711/182	3.9 (3.6–4.2)	393/664	5.9 (5.4–6)	912/51	11.5 (11.2–11.8)	789/40	685.8	19 (17.7–20.4)	1392332.4	14.9 (12.6–17.6)	576/18	364.4	31.4 (28.9–34)
Yes	6621/350	21.6 (21.1–22.1)	276/127	2.1 (19.3–24.4)	212/604	17.4 (14–21.7)	804588.7	23.3 (17–23)	208/45	22.6 (14.6–35)	41.4	35.9	30.4 (22.6–40.9)	44/1447.2	30.4 (22.6–40.9)			
Chronic Kidney Disease																		
No	15 900/6	2.5 (2.4–2.5)	551/498	11 (10.8–11.3)	763/1855	4.1 (3.8–4.4)	366/644	5.6 (5.1–6.2)	940/52	11.5 (11.1–11.9)	486/39	582.18	14.1 (13.1–19.8)	128/9572	14.3 (12–17)	532/17	154.1	31 (28.5–33.8)
Yes	7293/290	26 (25.4–26.6)	907/30	21.9 (28.3–32)	224/9725	23 (20.2–26)	107/6111	17.5 (14.5–21.2)	182/5337	34.1 (29.5–39.4)	100/343	39.4	22.6 (17.3–35)	88/2657.5	33.1 (26.9–40.8)			
Heart Failure																		
No	16 518/6	2.5 (2.5–2.5)	560/505	11 (10.8–11.4)	793/189	4.2 (3.9–4.5)	393/684	5.8 (5.2–6.4)	955/53	11.6 (10.8–11.6)	108/41	179.9	18.9 (17.1–19.8)	1412694.9	14.5 (12.3–17.2)	568/18	518.5	30.7 (28.3–33.3)
Yes	6681/169	39.3 (38.4–40.3)	818/23	490.134.5 (32.5–37.3)	194/5342	36.3 (31.5–41.8)	80/2860	28 (22.5–34.8)	167/4494	37.2 (31.9–43.2)	68/147	39.1 (30.8–49.5)	18/523.2	34.4 (21.7–54.6)	52/1293.1	40.2 (30.6–52.8)		
Variables	Negative	HCV Monoinfected	HBV Monoinfected	HIV Monoinfected	HCV/HBV Coinfected	HCV/HIV Coinfected	HBV/HIV Coinfected	HCV/HBV/HIV Coinfected										
-----------	----------	------------------	------------------	------------------	-------------------	-------------------	-------------------	----------------------										
	n/Person Years	Mortality Rate (95% CI)																
Hypertension	982/5 453 548.7	1.8 (1.8–2.1)	4192/395 463.4	10.6 (10.3–11.0)	494/148 114.6	3.3 (3.1–3.6)	301/53 851.4	5.6 (5.3–6.3)	756/42 428.5	17.6 (16.6–20.1)	707/36 924.1	19.1 (17.8–20.6)	116/47 483.6	15.5 (12.9–18.6)	522/16 269.5	32.1 (29.4–35.5)		
Yes	13 347/1 10.2	2226/13 332.7	16.7	493/46 704.4	10.6 (9.7–11.5)	172/17 149.5	10 (8.6–11.6)	366/1543 923.7	21.4 (20.0–22.9)	119/5996 8.8	19.8 (16.6–23.2)	432/734 15.7	11.7 (11.2–21.2)	963542 2.7	(2.2–3.7)			
Material Deprivation	8040/1 587 2.5	(2.5–2.6)	799/67 583.9	11.8 (11.7–12.3)	162/33 140.9	4.9 (4.2–5.7)	115/25 077.2	4.6 (3.8–5.5)	140/310 084.8	18.9 (16–22.3)	107/7104 15.1	12.5 (12.1–19.2)	473/625 13.9	(9.7–17.3)	863230 2.5	(2.0–3.1)		
Q2	3880/1 318 2.9	(2.9–3.0)	940/81 176	11.6 (11.6–12.3)	148/23 18.4	5.4 (4.3–5.9)	83/17 037.3	6.3 (5.1–7.9)	173/8 422.5	20.5 (17.7–23.8)	120/6198 19.4	(16.2–23)	32/1910 16.7	(11.1–23.7)	832904 28.6	(23–35.4)		
Q3	4554/1 305 3.5	(3.4–3.6)	1097/92 061	11.9 (11.2–12.3)	145/31 795.6	4.6 (3.9–5.4)	62/8918 25.6	6.9 (5.4–8.9)	164/9031 18.2	(15.6–21.2)	88/4993 17.6	(14.3–21.7)	23/1236 18.6	(12.4–25.8)	51/1879 2.7	(20.6–35.7)		
Q4	4899/1 317 3.7	(3.7–3.8)	1516/12 262.7	11.9 (11.6–12.3)	2184/0 614.6	5.4 (4.7–6.2)	80/10 385.6	7.7 (6.2–9.6)	227/13 263.5	17.1 (15.1–19.5)	166/871 19.1	(16.4–22.2)	21/1404 15.0	(19.8–22.9)	115/3458 33.3	(27.7–39.9)		
Q5 (most deprived)	5537/1 190 4.6	(4.5–4.8)	1991/160 431.8	12.4	308/58 614.7	5.3 (4.7–5.9)	127/13 077.3	9.7 (8.2–11.6)	398/18 754.421.2	(19.2–23.7)	314/1943 16.5	(11.6–23.3)	278/961 14.3	(23.9–35.1)	349/1879 3.4	(1–32.3)		
Social Deprivation	3031/1 170 2.6	(2.5–2.7)	579/50 971.6 11.4	(10.5–12.3)	155/40 996.7	3.8 (3.2–4.4)	38/5516.1	6.9 (5.5–9.5)	80/5 012.2	16 (12.8–19.9)	38/2103.3	18.1 (13.1–24.8)	109/401 10.6	(5.7–19.8)	23/703 32.7	(21.7–49.2)		
Q2	3247/1 158 2.8	(2.7–2.9)	731/65 365.3	11.2	209/39 15.7	5.3 (4.7–6.1)	57/7355.3	7.7 (6–10)	95/5821 16.3	(13.3–20.0)	58/3300.6	17.6 (13.6–22.7)	108/4229 11.9	(8.4–22.2)	34/15147 22.4	(16–31.4)		
Q3	3729/1 170 3.2	(3.1–3.3)	1029/85 391.1	12.1	175/33 118.9	5.3 (4.5–6.1)	61/8001.5	7.6 (5.9–9.8)	149/48874 17.6	(16.7–20.6)	106/5023.9	24.1 (17.4–31.0)	143/7278.2	19.6 (16.7–23.1)	26/740 14.9	(10–21.9)		
Q4	4773/1 390 3.4	(3.3–3.5)	1360/109 762.8	12.4 (11.7–12.0)	184/33 196.9	5.5 (4.8–6.1)	89/13 079.5	6.8 (5.5–8.4)	214/10 985.2	19.5 (17–22.3)	143/7278.2	16.7 (14.8–18.7)	26/740 14.9	(10–21.9)	110/962 27.8	(23–33.9)		
Q5 (most deprived)	8157/1 1629 4.5	(4.4–4.6)	264/212 595.2	12.4	258/46 660.5	5.5 (4.9–6.2)	222/06 646.6	6.1 (5.3–6.9)	564/26 564.821.2	(19.5–23.1)	473/24 722	19.1 (17.5–20.9)	95/5854.4	16.2 (13.3–20.7)	389/11 520.7	(20.6–37.3)		

Abbreviations: BC, British Columbia; CI, confidence interval; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IDU, injection drug use; TB, tuberculosis.
meta-analyses on HIV/HBV coinfection [26] and HIV/HCV coinfection [27]. This highlights the need to account for the transition from no infection to infection status in analysis to accurately estimate the incremental risk of mortality, which has not previously been in other studies [16, 23]. Our study demonstrates the detrimental impact that each infection and subsequent coinfection plays with regards to mortality and the fact that the increased mortality is actually the result of both viral sequelae as well as behavioral activities that lead to infection acquisition [9]. This gradient in mortality risk by a number of infections highlights the potential impact of curing or suppressing 1 or more of these infections in reducing mortality by highly effective curative HCV treatments and suppressive HBV and HIV treatments. However, impact of treatments on mortality risk among people with multiple infections is not available yet and requires further studies. Therefore, morbidity and mortality reductions will require both timely treatment of infection, as well as ancillary harm reduction initiatives such as opioid substitution therapy and mental health counseling, to prevent infection [28], reinfection [29], and coinfection [30].

Other ethnicity, which consisted of predominantly Caucasian ethnicity, was significantly associated with, and at a higher risk for, all-cause mortality compared with other ethnicities, similar to another study on HIV/HCV coinfected veterans [31]. This may be due to increased IDU, alcohol use, and risk of HCV/HBV/HIV infection among Caucasians in the BC-HTC cohort, as reported previously [32]. This has important implications for public health interventions and health service delivery, which need to take into account the differential risk profiles of various ethnicities. We also found older age at diagnosis (>45 years) and IDU to be significantly associated with all-cause mortality, similar to the UK CHIC study [16] and others [23]. In our cohort, problematic alcohol use was independently associated with an elevated risk of mortality, reflecting the underlying increased risk of liver disease and liver-related mortality even without HCV, HBV, or HIV infection. This shows that more efforts are needed to address these behaviors.

Figure 1. Kaplan-Meier plot of the effect of hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV) infection groups on all-cause mortality.
needed to reduce harms in PWID as well as address problematic alcohol use irrespective of HCV, HBV, and HIV treatment.

Our study also documented increased mortality among individuals living in materially deprived areas, with an increasing risk for each quintile of deprivation. Socioeconomic indicators, such as poverty, are known to be associated with HCV mortality in the United States [33], and the relationship of socioeconomic disparity with HIV/AIDS mortality has been documented previously [34]. Individuals with low socioeconomic status face a multitude of barriers to treatment access, adherence, and continuum of care. The combination of socioeconomic disparity, syndemics, IDU, and problematic alcohol use within vulnerable populations lead to increased overall mortality [35].

Of note, individuals with any chronic condition had a higher risk of all-cause mortality; however, individuals with chronic kidney disease and heart failure had higher risk of mortality than those with diabetes and hypertension. A study on veterans with HIV infection and chronic kidney disease reported significantly higher mortality, which was more pronounced in individuals also coinfected with HCV [36]. A higher risk of mortality among those with heart failure is also concerning, because studies have identified an increased risk of heart failure among HIV-positive individuals independent of a prior diagnosis of coronary heart disease [37]. This becomes important in the context of coinfection with HBV [16], and particularly HCV, which has a higher risk of extrahepatic manifestations, including cardiovascular diseases and chronic kidney disease, leading to an increased risk of morbidity and mortality [8]. Screening for related chronic conditions at the time of testing for HIV, HCV, and HBV infections, combined with appropriate care management of those condition(s), would likely contribute to reduced morbidity and mortality among the affected populations.

To our knowledge, this is one of the largest study of HCV/ HIV/HBV triple infected individuals (n = 1240), which provides us with adequate power to elucidate the relationship of multiple infections to mortality with more precision. Furthermore, we evaluated the transition of infection status from no infection to coinfection and triple infection and its impact on mortality, which has not been done previously. We also assessed important factors related to mortality, such as ethnicity, alcohol use, and chronic conditions, which were not available in other studies [16, 23]. The purpose of our study was to assess all-cause mortality and its determinants, particularly focusing on coinfection/triple infection related mortality; therefore, we did not include liver- or drug-related mortality. It is likely that a proportion of all-cause mortality in our cohort is due to either drug- or liver-related mortality. Hepatitis B virus and HCV infections mainly affect the liver, and a major proportion of mortality is expected

Variable	All-Cause Mortality	All-Cause Mortality	
	Crude HR 95% CI	Adjusted HR 95% CI	
Sex			
Female	1	1	
Male	2.31 (2.26–2.36)	1.52 (1.49–1.56)	
Infection Groups			
Negative	1	1	
HCV monoinfected	3.69 (3.59–3.79)	2.65 (2.57–2.73)	
HBV monoinfected	1.60 (1.50–1.71)	2.15 (2.01–2.29)	
HIV monoinfected	1.95 (1.78–2.14)	1.59 (1.45–1.74)	
HCV/HBV	7.03 (6.62–7.47)	3.95 (3.71–4.21)	
HCV/HIV	6.77 (6.31–7.26)	4.77 (4.43–5.13)	
HBV/HIV	6.63 (5.67–7.76)	4.06 (3.46–4.76)	
HCV/HBV/HIV	15.03 (13.86–16.29)	8.92 (8.20–9.71)	
Ethnicity			
South Asian	1	1	
Other	1.61 (1.53–1.70)	1.44 (1.36–1.52)	
East Asian	0.78 (0.73–0.84)	0.85 (0.79–0.91)	
Age at Diagnosis			
<25	1	1	
25–34	0.81 (0.76–0.87)	0.80 (0.74–0.85)	
35–44	1.30 (1.22–1.39)	1.09 (1.02–1.17)	
>45	5.19 (4.88–5.52)	3.24 (3.04–3.45)	
IDU	No	1	
Yes	2.50 (2.44–2.56)	1.25 (1.21–1.29)	
Problematic Alcohol Use	No	1	
Yes	3.24 (3.17–3.32)	1.82 (1.58–1.66)	
Active TB	No	1	
Yes	3.03 (2.73–3.35)	1.37 (1.23–1.52)	
Diabetes	No	1	
Yes	6.20 (6.05–6.36)	1.66 (1.62–1.71)	
Chronic Kidney Disease	No	1	
Yes	7.67 (7.49–7.86)	2.30 (2.23–2.37)	
Heart Failure	No	1	
Yes	11.09 (10.82–11.38)	2.87 (2.78–2.96)	
Hypertension	No	1	
Yes	3.86 (3.78–3.94)	1.26 (1.22–1.29)	
Material Deprivation	Q1 (most privileged)	1	
	Q2	1.17 (1.12–1.21)	1.10 (1.06–1.14)
	Q3	1.32 (1.27–1.37)	1.22 (1.17–1.26)
	Q4	1.48 (1.43–1.53)	1.25 (1.21–1.3)
	Q5 (most deprived)	1.87 (1.81–1.93)	1.36 (1.31–1.4)

Abbreviations: BC, British Columbia; CI, confidence interval; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; HR, hazard ratio; IDU, injection drug use; TB, tuberculosis.

*Past history of disease/risk factor.
to be liver related. However, co-occurrence of HIV, HCV, and HBV is related to syndemic factors such as substance use and socioeconomic marginalization [9, 10]; therefore, a significant proportion of these people die from substance use-related causes in addition to extrahepatic manifestations as shown in our earlier work related to HCV [38, 39]. Within this context, all-cause mortality captures the overall effect of these infections. Further studies should investigate the relative contribution of various causes of mortality in people with concurrent infections.

Because assessment of potential risk factors for all-cause mortality was based on diagnostic codes, misclassification of some of these variables is possible. Because assessment of potential risk factors (eg, alcohol use) was based on diagnostic codes, misclassification of these variables is possible. For example, the diagnostic code for problematic alcohol use would only capture alcohol misuse, and the potential impact of low or moderate alcohol consumption on the risk of mortality cannot be ascertained. We were also unable to evaluate the effect of HIV treatment on all-cause mortality, because data on anti-retroviral therapy is not available in our cohort. We also did not include HBV and HCV therapy in our analysis, because our study objective did not aim to assess the impact of therapy on all-cause mortality. However, because treatment of HCV and HIV has been shown to reduce all-cause mortality [17, 40], this cohort can be used to evaluate the impact of scaling up of these treatments. In addition, the study period was largely in the early direct-acting antiviral (DAA era), so results now for HCV might be different. Furthermore, since the cohort for analysis was selected from individuals tested for all 3 infections, the estimated mortality risk among this population may not be representative of the general population.

CONCLUSIONS

In conclusion, this is one of the largest studies reporting increased all-cause mortality among HCV, HBV, and HIV coinfected and triple infected individuals. Our findings indicate that Other ethnicity, IDU, problematic alcohol use, chronic conditions, and material disadvantage were significantly associated with all-cause mortality. The increased mortality observed in our study highlights the need for preventive strategies and early screening, diagnosis, and management of HCV, HIV, and HBV infections. In addition, multidisease health screening for related chronic conditions, and colocation of services, particularly harm reduction and mental health services, would contribute to reducing mortality among the HCV, HBV, and HIV affected populations.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyrighted and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Acknowledgments

We acknowledge the assistance of BCCDC, Provincial Health Services Authority (PHSA) Performance Measurement and Reporting, Information Analysts, Ministry of Health Data Access, Research and Stewardship, and Medical Services Plan (MSP), Discharge Abstract Database (DAD) and Medical Beneficiary and Pharmaceutical Services program areas, British Columbia (BC) Ministry of Health, and BC Cancer Agency, and their staff involved in data access and procurement and data management.

Disclaimer. All inferences, opinions, and conclusions drawn in this publication are those of the author(s) and do not necessarily reflect the opinions or policies of the (BC) Ministry of Health.

Financial support. This work was funded by BC Centre for Disease Control and Agencies contributing data to the study and the Canadian Institutes of Health Research (Grant Numbers NHC-348216 and PHE-337680 and PJT-156066).

Potential conflicts of interest. M. K. has received grant funding via his institution from Roche Molecular Systems, Boehringer Ingelheim, Merck, Siemens Healthcare Diagnostics, and Hologic Inc. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. World Health Organization. Global Hepatitis Report 2017. Geneva: World Health Organization; 2017.
2. UNAIDS. Fact sheet–latest statistics on the status of the AIDS epidemic: UNAIDS; 2017. Available at: http://www.unaids.org/en/resources/fact-sheet. Accessed 1 September 2020.
3. Trubnikov M, Yan P, Archibald C. Estimated prevalence of hepatitis C virus infection in Canada, 2011. Can Commun Dis Rep 2014; 40:429–36.
4. Summary: estimates of HIV incidence, prevalence and proportion undiagnosed in Canada, 2014. Public Health Agency Canada 2015. Available at: https://www.canada.ca/content/dam/canada/health-canada/health-safety/communicable-diseases/hiv-aids-estimates-2014-vhi-sida-estimations/alt/hiv-aids-estimates-2014-vhi-sida-estimations-eng.pdf. Accessed 1 September 2020.
5. Schweitzer A, Horn J, Mikolajczyk RT, et al. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet 2015; 386:1546–55.
6. Ly KN, Hughes EM, Jiles RB, Holmberg SD. Rising mortality associated with hepatitis C virus in the United States, 2003-2013. Clin Infect Dis 2016; 62:1287–8.
7. Butt ZA, Wilkins MJ, Hamilton E, et al. Survival of HIV-positive individuals with hepatitis B and C infection in Michigan. Epidemiol Infect 2014; 142:2131–9.
8. Negro F, Forton D, Craxi A, et al. Extrahepatic morbidity and mortality of chronic hepatitis C. Gastroenterology 2015; 149:1345–60.
9. Butt ZA, Shrestha N, Wong S, et al.; BC Hepatitis Testers Cohort. A syndemic approach to assess the effect of substance use and social disparities on the evolution of HIV/HCV infections in British Columbia. PLoS One 2014; 12(18):138609.
10. McKee G, Butt ZA, Wong S, et al. Syndemic characterization of HCV, HBV, and HIV co-infections in a large population based cohort study. EClinicalMedicine 2018; 4:599–108.
11. Singer M, Bulled N, Ostrach B, Mendenhall E. Syndemics and the biosocial conception of health. Lancet 2017; 389:941–50.
12. Ferlatte O, Dulai J, Hottes TS, et al. Suicide related ideation and behavior among Canadian gay and bisexual men: a syndemic analysis. BMC Public Health 2015; 15:597.
13. Mizuno Y, Purcell DW, Knowlton AR, et al. Syndemic vulnerability, sexual and injection risk behaviors, and HIV continuum of care outcomes in HIV-positive injection drug users. AIDS Behav 2015; 19:684–93.
14. Andermann A. Outbreaks in the age of syndemics: new insights for improving Indigenous health. Can Commun Dis Rep 2017; 43:125–32.
15. Kovari H, Rauch A, Kouyos R, et al.; Swiss HIV Cohort Study. Hepatitis C infection and the risk of non-liver-related morbidity and mortality in HIV-Infected persons in the Swiss HIV Cohort Study. Clin Infect Dis 2017; 64:490–7.
16. Thornton AC, Jose S, Bhagani S, et al.; UK Collaborative HIV cohort (UK CHIC) steering committee. Hepatitis B, hepatitis C, and mortality among HIV-positive individuals. AIDS 2017; 31:2525–32.
17. Breskin A, Westreich D, Hurt CB, et al. The effects of hepatitis C treatment eligibility criteria on all-cause mortality among people with human immunodeficiency virus. Clin Infect Dis 2019; 69:1613–20.
18. Janjua NZ, Kuo M, Chong M, et al. Assessing hepatitis C burden and treatment effectiveness through the British Columbia Hepatitis Testers Cohort (BC-HTC):
design and characteristics of linked and unlinked participants. PLoS One 2016; 11:e0150176.
19. Pampalon R, Hamel D, Gamache P, et al. An area-based material and social deprivation index for public health in Québec and Canada. Can J Public Health 2012; 103:S17–22.
20. Binka M, Butt ZA, Wong S, et al. Differing profiles of people diagnosed with acute and chronic hepatitis B virus infection in British Columbia, Canada. World J Gastroenterol 2018; 24:1216–27.
21. Ryan R, Vernon S, Lawrence G, Wilson S. Use of name recognition software, census data and multiple imputation to predict missing data on ethnicity: application to cancer registry records. BMC Med Inform Decis Mak 2012; 12:3.
22. Joseph B. 21 Things You May Not Know About the Indian Act: Helping Canadians Make Reconciliation With Indigenous Peoples a Reality. Port Coquitlam: Indigenous Relations Press; 2018.
23. Zhang F, Zhu H, Wu Y, et al. HIV, hepatitis B virus, and hepatitis C virus co-infection in patients in the China National Free Antiretroviral Treatment Program, 2010–12: a retrospective observational cohort study. Lancet Infect Dis 2014; 14:1065–72.
24. Cheung CC, Ding E, Sereda P, et al. Reductions in all-cause and cause-specific mortality among HIV-infected individuals receiving antiretroviral therapy in British Columbia, Canada: 2001–2012. HIV Med 2016; 17:694–701.
25. Tsuchiya N, Pathipvanich P, Rojanawiwat A, et al. Chronic hepatitis B and C co-infection increased all-cause mortality in HAART-naive HIV patients in Northern Thailand. Epidemiol Infect 2013; 141:1840–8.
26. Nikolopoulos GK, Paraskevis D, Hatziitheodorou E, et al. Impact of hepatitis B virus infection on the progression of AIDS and mortality in HIV-infected individuals: a cohort study and meta-analysis. Clin Infect Dis 2009; 48:1763–71.
27. Chen TY, Ding EL, Seage III GR, Kim AV. Meta-analysis: increased mortality associated with hepatitis C in HIV-infected persons is unrelated to HIV disease progression. Clin Infect Dis 2009; 49:1605–15.
28. Ahamed K, Hayashi K, Nguyen P, et al. Effect of low-threshold methadone maintenance therapy for people who inject drugs on HIV incidence in Vancouver, BC, Canada: an observational cohort study. Lancet HIV 2015; 2:e445–50.
29. Islam N, Krajden M, Shoveller J, et al.; British Columbia Hepatitis Testers Cohort (BC-HTC) team. Incidence, risk factors, and prevention of hepatitis C reinfection: a population-based cohort study. Lancet Gastroenterol Hepatol 2017; 2:200–10.
30. Butt ZA, Shrestha N, Gesink D, et al. Effect of opioid-substitution therapy and mental health counseling on HIV risk among hepatitis C-infected individuals. Clin Epidemiol 2018; 10:1127–45.
31. Merriman NA, Porter SB, Brensinger CM, et al. Racial difference in mortality among U.S. veterans with HCV/HIV coinfection. Am J Gastroenterol 2006; 101:760–7.
32. Binka M, Butt ZA, Wong S, et al. Factors associated with HBV, HCV and HIV infection in British Columbia, Canada differ by ethnicity. Hepatology. 2018; 68:184–1353.
33. Ford MM, Desai PS, Maduro G, Laraque F. Neighborhood inequalities in hepatitis C mortality: spatial and temporal patterns and associated factors. J Urban Health 2017; 94:46–55.
34. McMahon J, Wanke C, Terrin N, et al. Poverty, hunger, education, and residential status impact survival in HIV. AIDS Behav 2011; 15:1503–11.
35. Adams JW, Bryant KJ, Edelman EJ, et al. Association of cannabis, stimulant, and alcohol use with mortality prognosis among HIV-infected men. AIDS Behav 2018; 22:1341–51.
36. Fischer MJ, Wyatt CM, Gordon K, et al.; VACS Project Team. Hepatitis C and the risk of kidney disease and mortality in veterans with HIV. J Acquir Immune Defic Syndr 2010; 53:222–6.
37. Butt AA, Chang CC, Kuller L, et al. Risk of heart failure with human immunodeficiency virus in the absence of prior diagnosis of coronary heart disease. Arch Intern Med 2011; 171:737–43.
38. Krajden M, Cook DA, Wong S, et al. What is killing people with hepatitis C virus infection? Analysis of a population-based cohort in Canada. Int J Drug Policy 2019; 72:114–22.
39. Rossi C, Jeong D, Wong S, et al.; BC Hepatitis Testers Cohort Team. Sustained virological response from interferon-based hepatitis C regimens is associated with reduced risk of extrahepatic manifestations. J Hepatol 2019; 71:116–25.
40. Carrat F, Fontaine H, Dorival C, et al.; French ANRS CO22 Hepather cohort. Clinical outcomes in patients with chronic hepatitis C after direct-acting antiviral treatment: a prospective cohort study. Lancet 2019; 393:1453–64.