MULTI-WAVELENGTH HUBBLE SPACE TELESCOPE PHOTOMETRY OF STELLAR POPULATIONS IN NGC 288*

G. PIOTTO1,2, A. P. MILONE3,4,5, A. F. MARINO3, L. R. BEDIN2, J. ANDERSON6, H. JERJEN3, A. BELLINI6, AND S. CASSISI7

1 Dipartimento di Fisica e Astronomia, “Galileo Galilei” Università di Padova, Vicolo dell’Osservatorio 3, Padova I-35122, Italy; giampaolo.piotto@unipd.it
2 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padua, Italy; luigi.bedin@oapd.inaf.it
3 Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611, Australia; milone@mso.anu.edu.au, amarino@mso.anu.edu.au, jerjen@mso.anu.edu.au
4 Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands, Spain
5 Department of Astrophysics, University of La Laguna, E-38200 La Laguna, Tenerife, Canary Islands, Spain
6 Space Telescope Science Institute, 3800 San Martin Drive, Baltimore, MD 21218, USA; jayander@stsci.edu, bellini@stsci.edu
7 INAF-Osservatorio Astronomico di Collurania, via Mentore Maggini, I-64100 Teramo, Italy; cassisi@oa-teramo.inaf.it

Received 2013 April 15; accepted 2013 June 24; published 2013 August 29

ABSTRACT

We present new UV observations for NGC 288, taken with the WFC3 detector on board the Hubble Space Telescope, and combine them with existing optical data from the archive to explore the multiple-population phenomenon in this globular cluster (GC). The WFC3’s UV filters have demonstrated an uncanny ability to distinguish multiple populations along all photometric sequences in GCs thanks to their exquisite sensitivity to the atmospheric changes that are telltale signs of second-generation enrichment. Optical filters, on the other hand, are more sensitive to stellar-structure changes related to helium enhancement. By combining both UV and optical data, we can measure the helium variation. We quantify this enhancement for NGC 288 and find that the variation is typical of what we have come to expect in other clusters.

Key words: globular clusters: individual (NGC 288) – stars: Population II

Online-only material: color figures

1. INTRODUCTION

Recent observations with the Hubble Space Telescope (HST) have shown that the color–magnitude diagrams (CMDs) of globular clusters (GCs) are very different from our classical expectations of razor-thin sequences characteristic of single, old populations of stars. In particular, HST near-UV data has shown that most, if not all, GCs host multiple stellar populations, as evidenced by two or more intertwined sequences in the CMD that we can trace from the main sequence (MS), through the sub-giant branch (SGB), up the red-giant branch (RGB), and even along the horizontal branch.

From studies of several clusters, we have found that the different sequences can vary their color separation or even invert their relative colors, depending on the photometric-band combinations. These sequences correspond to stellar populations that have different abundances of light elements and helium. A comparison of the photometry with synthetic spectra can provide unique opportunities to estimate the helium content among the stellar populations (e.g., Milone et al. 2012b), even at the level of faint MS stars that are unreachable by spectroscopic investigations.

The cluster analyzed in this paper, NGC 288, is already known to host two populations of stars characterized by differences in light-element abundance (e.g., Shetrone & Keane 2000; Kayser et al. 2008; Smith & Langland-Shula 2009; Carretta et al. 2009; Pancino et al. 2010). The RGB of NGC 288 is bimodal when observed in appropriate ultraviolet filters and each RGB is populated by stars with different abundances of sodium and oxygen (Lee et al. 2009; Roh et al. 2011; Monelli et al. 2013).

In this paper, we combine new HST observations with archival data to investigate the evolutionary path of the multiple populations in NGC 288 along the MS, SGB, and RGB. By exploring a wide wavelength region ranging from the ultraviolet (~2750 Å) to the near infrared (~8140 Å), we will estimate the helium difference between the two main populations.

2. DATA AND DATA REDUCTION

To get the broadest possible perspective on NGC 288’s multiple populations, we consolidated photometry from a large number of HST images taken with the Wide Field Channel of the Advanced Camera for Surveys (ACS/WFC) and the ultraviolet/visible channel of the Wide-Field Camera 3 (WFC3/UVIS). Table 1 gives a list of the data sets we used. Most HST data are from the archive, with the exception of the proprietary images from GO-12605 (PI: Piotto), which were taken specifically for this project and are crucial for its success.

Photometric and astrometric measurements of ACS/WFC exposures were obtained with the software program described by Anderson et al. (2008). This routine produces a catalog of stars over the field of view by analyzing an entire set of images simultaneously. It measures stellar fluxes independently of stars over the field of view by analyzing an entire set of exposure images simultaneously. It measures stellar fluxes independently of stars over the field of view by analyzing an entire set of exposure images simultaneously. It measures stellar fluxes independently of stars over the field of view by analyzing an entire set of exposure images simultaneously. It measures stellar fluxes independently of stars over the field of view by analyzing an entire set of exposure images simultaneously.

The WFC3/UVIS images were reduced as described in Bellini et al. (2010), with img2xym_UVIS_09×10, a software routine that is adapted from img2xym_WFI (Anderson et al. 2006). Astrometry and photometry were corrected for pixel area and geometric distortion as in Bellini & Bedin (2009) and Bellini et al. (2011). There are a few filters for which filter-specific distortion solutions are not yet available. For these filters (F395N, F467M, and F547M), we applied the solution for the closest available filter. This introduces...
small (0.05 pixel) errors in astrometry and negligible errors in photometry.

Since the main results of this paper require high-precision photometry, we limited our analysis to the well-measured subsample of stars. The software routine provides several quality indexes that can be used as diagnostics of the reliability of photometric measurements: (1) the rms of the individual position measurements about their mean after they have been measured in different exposures and transformed into a common reference frame (rms_x and rms_y); (2) o, the ratio between the estimated flux of the star in a 0.5 arcsec aperture and the flux from neighbor stars that has spilled over into the same aperture; and (3) q, the residuals to the PSF fit for each star (see Anderson et al. 2008 for details). To select the high-quality subsample of stars, we followed the approach described by Milone et al. (2009, Section 2.1). Photometry has been corrected for differential reddening by means of a procedure that has been adopted for several other projects and is described in detail in Milone et al. (2012b). Briefly, we define the fiducial MS for the cluster and then identify for each star a set of neighbors and determine their median offset relative to the fiducial sequence. This systematic color and magnitude offset, measured along the reddening line, is our estimate of the local differential-reddening value.

3. THE COLOR–MAGNITUDE DIAGRAM

A visual inspection of the CMDs that we obtain from the data sets listed in Table 1 indicates that the multiple populations along the MS, the RGB, and the SGB are best identified in the m_{F275W} versus m_{F336W} and m_{F336W} versus m_{F438W} CMDs shown in Figure 1. Panels (c) and (d) of the figure show a zoomed-in region around the MS and the RGB and reveal for the first time that both the cluster MS and RGB are split into two sequences. Each sequence contains

![Figure 1.](image)
approximately the same number of stars. In the following, we will use the same nomenclature for the two RGBs and MSs of NGC 288 as previously adopted in our previous works for the cases of 47 Tuc (Milone et al. 2012b), NGC 6397 (Milone et al. 2012a), and NGC 6752 (Milone et al. 2013). In these papers, we demonstrated that in the m_{F275W} versus $m_{F275W} - m_{F336W}$ CMD the blue- and the red-RGB stars are the progeny of blue- and red-MS stars, respectively. Here, for analogy, we indicate as MSa and RGBa the MS and RGB sequence with redder $m_{F275W} - m_{F336W}$ colors, while the blue MS and RGB are named MSb and RGBb, respectively. The double SGB is highlighted in Figure 1(e). The two SGBs are well separated in color (by ~ 0.05 mag) in the interval $-0.35 < m_{F336W} - m_{F438W} < -0.15$ and then merge together at $m_{F438W} \sim -0.15$ with the faint SGB evolving into RGBa.

3.1. Population Ratio

In order to measure the fraction of stars in each MS, we followed the procedure illustrated in Figure 2, again using techniques developed in previous studies (e.g., Piotto et al. 2007, 2012). The left panel shows the m_{F275W} versus $m_{F275W} - m_{F336W}$ CMD of Figure 1(a), zoomed in around the MS region, in the interval of $20.65 < m_{F275W} < 23.2$, where the bimodal distribution is most evident. The MS ridge line is marked in red. To determine it, we started by selecting a sample of MS stars by means of a hand-drawn, first-guess ridge line. We calculated the median color and the median magnitude of MS stars in bins that were 0.3 magnitude tall. We then interpolated these median points with a spline and did an iterated sigma-clipping of the “verticalized” MS (middle panel). In order to obtain the “verticalized” MS of the middle panel, we subtracted from each star the color of the fiducial line at the same F275W magnitude level, obtaining a $\Delta (m_{F275W} - m_{F336W})$ value. The right panels of Figure 2 show the histograms of the distribution of $\Delta (m_{F275W} - m_{F336W})$ for six F275W magnitude intervals.

Finally, in each magnitude interval, we fit the histogram with a pair of Gaussians, colored green (for the redder peak) and magenta (for the bluer peak). Hereafter, these colors will be consistently used to distinguish the MSa and MSb populations and their post-MS progeny. From the areas under the Gaussians we estimate that $54\% \pm 3\%$ of the stars belong to the MSa and $46\% \pm 3\%$ to MSb. The errors were computed from the rms of the values obtained for the six intervals. In the WFC3/UVIS field of view, which includes the central part of the cluster with radial distance smaller than ~ 1.2 core radii, the two MSs have almost the same number of stars in each magnitude interval, within the statistical uncertainties.

In Figure 3, in order to extend the study of stellar populations to the RGB and determine the fraction of RGBa and RGBb stars, we show the $m_{F336W} - m_{F438W}$ versus $m_{F275W} - m_{F336W}$ two-color diagram, where the RGB of NGC 288 is clearly split into two sequences. Here, we analyze only RGB stars with $m_{F606W} < 17.85$. Note that stars are selected on the basis of their F606W magnitude (in order to avoid any bias introduced by the strong luminosity difference between RGBa and RGBb stars in the ultraviolet filters). The red line is the hand-drawn fiducial line for the RGB. It separates RGBa stars (on the bottom-left) from RGBb stars (on the upper-right). We subtracted the corresponding color of the fiducial line from the

![Figure 2](image-url)
Figure 3. Panel (a): $m_{F275W} - m_{F336W}$ vs. $m_{F336W} - m_{F438W}$ two-color diagram for RGB stars. The continuous red line is the fiducial line for the RGB. Panel (b): "verticalized" $m_{F275W} - m_{F336W}$ vs. $\Delta(m_{F336W} - m_{F438W})$ diagram. Panel (c): histogram of the distribution of $\Delta(m_{F336W} - m_{F438W})$ for the stars shown in the middle panel. The two components of the best-fitting dual-Gaussian function are colored green and magenta. Panel (d): Na–O anticorrelation for RGB stars by Carretta et al. (2009). Stars for which only sodium abundance are available are arbitrarily plotted at [O/Fe] = 0.85. In panels (a) and (d), RGBa and RGBb stars for which both spectroscopic and photometric measurements are available are plotted with green and magenta circles, respectively. Panel (e): histogram of the [Na/Fe] distribution for RGBa (green) and RGBb stars (magenta). (A color version of this figure is available in the online journal.)

$m_{F336W} - m_{F438W}$ color of each star, obtaining a $\Delta(m_{F336W} - m_{F438W})$ index. The "verticalized" $m_{F275W} - m_{F336W}$ versus $\Delta(m_{F336W} - m_{F438W})$ diagram is plotted in panel (b) of Figure 3, while panel (c) shows the histogram of the $\Delta(m_{F336W} - m_{F438W})$ distribution. The histogram is fitted with the sum of two Gaussians, colored in green and magenta as in Figure 2. From the area under the Gaussians, we determined that RGBa stars include 57% ± 5% RGB stars, with the remaining 43% ± 5% stars populating the RGBb. In this case, we simply associated a Poisson error to the fraction of stars in each population. Within 1σ uncertainty, these are the same fractions as for the MSa and MSb stars. From the weighted mean of the values obtained from the MS and RGB analysis, we determine that population "a" contains 55% ± 3% and population "b" 45% ± 3% of the total number of stars in the central region analyzed in this paper.

Our previous studies of 47 Tuc and NGC 6397 have demonstrated that any two-color diagram made from the combination of a near-ultraviolet filter (such as F225W or F275W), the F336W filter, and a blue filter (such as F390W, F435W, or F438W) is particularly efficient at disentangling stellar populations with different light-element abundances (Milone et al. 2012a, 2012b). These photometric shifts can be interpreted in the light of spectroscopic observations.

Carretta et al. (2009) have analyzed GIRAFFE spectra of ~130 stars, 25 of which are in common with the HST data set of this paper. The spectroscopic targets are represented with large circles in Figure 3 and are colored green and magenta according to their membership in the RGBa or the RGBb. The Na–O anticorrelation from Carretta and collaborators is reproduced in panel (d), while stars for which oxygen-abundance measurements are not available are arbitrarily plotted at the flagged value of [O/Fe] = 0.85. The histogram distributions of [Na/Fe] for RGBa (green) and RGBb stars (magenta) are shown in panel (e). Similar to what is observed in the other GCs studied with a similar approach, we find that population "a" stars are Na-poor and O-rich, in contrast to population "b" stars, which are depleted in oxygen and enhanced in sodium.

3.2. A Multiwavelength Analysis of the Double MS

By combining archive and proprietary data, we have access to 11 different photometric bands to build CMDs for NGC 288. We used the UV and blue photometry displayed in Figure 1 to select the members of populations "a" and "b" and then plotted their positions in the CMDs obtained with all possible color combinations. UV photometry has proven to be essential to separate the two populations because of its sensitivity to light-element variations (Marino et al. 2008). On the other hand, optical CMDs are sensitive to He content and allow us to use the color separation of the CMD sequences (MS and RGB) to estimate their average helium difference. In particular, as shown by Sbordone et al. (2011), filters redder than F435W are marginally affected by differences in C N O abundances, while they are sensitive to the helium content of the two MSs.
Once we have selected the members of the two populations using the UV color–color diagrams, the optical photometry allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content. Helium is extremely difficult to measure by spectroscopy in GC stars. Our procedure allows us to estimate the He content.
Figure 5. Observed $m_X - m_{F814W}$ color separation between MSa and MSb (left panel) and between RGBb and RGBa (right panel) for the available filters (magenta filled circles). The red asterisks indicate the synthetic colors corresponding to the best-fitting models. The color distances between the MS and RGB fiducials are measured at reference magnitude $m_{F814W}^\text{cut} = 19.75$ and $m_{F814W}^\text{cut} = 16.75$, respectively. (A color version of this figure is available in the online journal.)

Table 2

Sequence	m_{F814W}^cut	T_{EFF} (Pop a)	log g (Pop a)	T_{EFF} (Pop b)	log g (Pop b)	Y (Pop a)	Y (Pop b)	ΔY
MS	19.35	6077	4.50	6100	4.49	0.248	0.262	0.014
MS	19.55	5966	4.54	5994	4.54	0.248	0.264	0.016
MS	19.75	5840	4.58	5861	4.58	0.248	0.259	0.011
MS	19.95	5701	4.62	5730	4.62	0.248	0.261	0.013
MS	20.15	5558	4.65	5583	4.65	0.248	0.259	0.011
RGB	16.75	5535	3.32	5347	3.31	0.248	0.265	0.017
RGB	17.25	5450	3.55	5463	3.54	0.248	0.260	0.012
Average						0.248	0.261	0.013 ± 0.001

Note. The helium difference is listed in the last column, while the average ΔY is given in the list line.

4. SUMMARY

We used multi-band HST photometry covering a wide range of wavelengths to study the multiple stellar populations in NGC 288. Once again, UV photometry has proven essential to allowing us to separate distinct stellar populations. For the first time, our photometry shows that this cluster’s MS splits into two branches and we find that this duality is repeated along the SGB and the RGB, similar to what has been observed in other GCs. We calculated theoretical stellar atmospheres for MS stars, assuming different chemical composition mixtures, and compared the predicted colors through the HST filters with our observed colors.

The observed color differences between the double MS and RGB of NGC 288 are consistent with two populations with different helium and light-element content. In particular, population “a,” which contains slightly more than half of the stars in NGC 288, corresponds to the first stellar generation with primordial He and O-rich/Na-poor stars, while population “b” is made of stars enriched in He by $\Delta Y = 0.013 \pm 0.001$ (internal error) and Na, but depleted in O. High-precision HST photometry allows us to estimate the He content difference at an accuracy beyond reach of spectroscopy.

A.P.M. and H.J. acknowledge the financial support from the Australian Research Council through Discovery Project grant DP120100475. S.C. is grateful for financial support from...
PRIN-INAF 2011 “Multiple Populations in Globular Clusters: their role in the Galaxy assembly” (PI: E. Carretta). Support for this work has been provided by the IAC (grant 310394), and the Education and Science Ministry of Spain (grants AYA2007-3E3506, and AYA2010-16717). G.P. acknowledges partial support by the Università degli Studi di Padova CPDA101477 grant. J.A. and A.B. acknowledge support from STSCI grant GO-12605

REFERENCES

Anderson, J., Bedin, L. R., Piotto, G., Yadav, R. S., & Bellini, A. 2006, A&A, 454, 1029
Anderson, J., & King, I. R. 2006, Instrument Science Report ACS 2006-01, 34 pp. 1
Anderson, J., Sarajedini, A., Bedin, L. R., et al. 2008, AJ, 135, 2055
Bedin, L. R., Cassisi, S., Castelli, F., et al. 2005, MNRAS, 357, 1038
Bellini, A., Anderson, J., & Bedin, L. R. 2011, PASP, 123, 622
Bellini, A., & Bedin, L. R. 2009, PASP, 121, 1419
Bellini, A., Bedin, L. R., Piotto, G., et al. 2010, AJ, 140, 631
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009, A&A, 505, 117
Castelli, F. 2005, MSAIS, 8, 25
Harris, W. E. 1996, AJ, 112, 1487
Harris, W. E. 2010, arXiv:1012.3224

Ivans, I. I., Sneden, C., Kraft, R. P., et al. 1999, AJ, 118, 1273
Kayser, A., Hilker, M., Grebel, E. K., & Willemsen, P. G. 2008, A&A, 486, 437
Kurucz, R. L. 2005, MSAIS, 8, 14
Lee, J.-W., Kang, Y.-W., Lee, J., & Lee, Y.-W. 2009, Natur, 462, 480
Marino, A. F., Villanova, S., Piotto, G., et al. 2008, A&A, 490, 625
Milone, A. P., Bedin, L. R., Piotto, G., & Anderson, J. 2009, A&A, 497, 755
Milone, A. P., Marino, A. F., Piotto, G., et al. 2012a, ApJ, 745, 27
Milone, A. P., Marino, A. F., Piotto, G., et al. 2013, ApJ, 767, 120
Milone, A. P., Piotto, G., Bedin, L. R., et al. 2012b, A&A, 540, A16
Monelli, M., Milone, A. P., Stetson, P. B., et al. 2013, MNRAS, 431, 2126
Pancino, E., Rejkuba, M., Zoccali, M., & Carrera, R. 2010, A&A, 524, A44
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2004, ApJ, 612, 168
Pietrinferni, A., Cassisi, S., Salaris, M., Percival, S., & Ferguson, J. W. 2009, ApJ, 697, 275
Piotto, G., Bedin, L. R., Anderson, J., et al. 2007, ApJL, 661, L53
Piotto, G., Milone, A. P., Anderson, J., et al. 2012, ApJ, 760, 39
Roh, D.-G., Lee, Y.-W., Joo, S.-I., et al. 2011, ApJL, 733, L45
Sbordone, L., Bonifacio, P., & Castelli, F. 2007, in IAU Symp. 239, Convection in Astrophysics, ed. F. Kupka, I. Roxburgh, & K. Chan (Cambridge: Cambridge Univ. Press), 71
Sbordone, L., Salaris, M., Weiss, A., & Cassisi, S. 2011, A&A, 534, A9
Shetrone, M. D., & Keane, M. J. 2000, AJ, 119, 840
Siriani, M., Jee, M. J., Benítez, N., et al. 2005, PASP, 117, 1049
Smith, G. H., & Langland-Shults, L. E. 2009, PASP, 121, 1054
Villanova, S., & Geisler, D. 2011, A&A, 535, A31