K3 SURFACES WITH AN ORDER 50 AUTOMORPHISM

JONGHAE KEUM

Abstract. In any characteristic \(p \) different from 2 and 5, Kondō gave an example of a K3 surface with a purely non-symplectic automorphism of order 50. The surface was explicitly given as a double plane branched along a smooth sextic curve. In this note we show that, in any characteristic \(p \neq 2, 5 \), a K3 surface with a cyclic action of order 50 is isomorphic to the example of Kondō.

Let \(X \) be a K3 surface over an algebraically closed field \(k \) of characteristic \(p \geq 0 \). An automorphism \(g \) of \(X \) is called symplectic if it preserves any regular 2-form on \(X \), and purely non-symplectic if no power of \(g \) is symplectic except the identity.

In any characteristic \(p \geq 0, p \neq 2, 5 \), Kondō [8] gave an example of a K3 surface \(X_{50} \) with a purely non-symplectic automorphism \(g_{50} \) of order 50:

\[
(0.1) \quad X_{50} = (w^2 = x^6 + xy^5 + yz^5) \subset \mathbb{P}(1, 1, 1, 3),
\]

\[
(0.2) \quad g_{50}(x, y, z, w) = (x, \zeta_{50}^4 y, \zeta_{50}^2 z, \zeta_{50}^{25} w)
\]

where \(\zeta_{50} \in k \) is a primitive 50th root of unity. In characteristic \(p = 2 \) and \(5 \) the automorphism degenerates and the equation does not even define a K3 surface.

The result of this short note is the following.

Theorem 0.1. Let \(k \) be an algebraically closed field of characteristic \(p \neq 2, 5 \). Let \(X \) be a K3 surface defined over \(k \) with an automorphism \(g \) of order 50. Then

1. \(g \) is purely non-symplectic;
2. the pair \((X, \langle g \rangle)\) is isomorphic to the pair \((X_{50}, \langle g_{50} \rangle)\).

The first statement of Theorem 0.1 was proved in a previous paper [4, Lemmas 4.2 and 4.7].

Over \(k = \mathbb{C} \) the second statement of Theorem 0.1 was proved by Machida and Oguiso [9], under the assumption that \(g \) is purely non-symplectic. Our proof is characteristic free, does not use lattice theory and the holomorphic Lefschetz formula.

A similar characterization of K3 surfaces with a tame cyclic action of order 60 (resp. 66) was given in [5] (resp. [6]), where it was proven that for
such a pair \((X, \langle g \rangle)\) the K3 surface \(X\) admits a \(g\)-invariant elliptic fibration, thus can be given by a \(g\)-invariant Weierstrass equation. The case of order 50 is similar to the case of order 40 in [7], and the K3 surface admits a \(g\)-invariant double plane presentation.

Remark 0.2. (1) In characteristic 5 it was shown in the previous paper [4, Main Theorem and Lemma 9.6] that no K3 surface admits a cyclic action of order 25.

(2) In characteristic 2 there is a K3 surface with a cyclic action of order 50:

\[(0.3) \quad Y = (w^2 + x^3w = x^6 + xy^5 + y^5) \subset \mathbb{P}(1, 1, 1, 3),\]

\[(0.4) \quad f_{50}(x, y, z, w) = (x, \zeta_{25}^0 y, \zeta_{25} z, w + x^3)\]

where \(\zeta_{25} \in k\) is a primitive 25th root of unity. Is this the unique pair up to isomorphism in characteristic 2?

Notation

For a variety \(X\) with an automorphism \(g\), we use the following notation:

- \(\text{NS}(X)\) : the Néron-Severi group of \(X\);
- \(X^g = \text{Fix}(g)\) : the fixed locus of \(g\) in \(X\);
- \(e(g) := e(\text{Fix}(g)), \) the Euler characteristic of \(\text{Fix}(g)\) for \(g\) tame;
- \(\text{Tr}(g^*|H^*(X)) := \sum_{j=0}^{2\dim X} (-1)^j \text{Tr}(g^*|H^j_{et}(X, \mathbb{Q}_l))\);
- \([g^*] = [\lambda_1, \ldots, \lambda_{b_2}]\) : the list of eigenvalues of \(g^*|H^2_{et}(X, \mathbb{Q}_l)\) where \(b_2\) is the second Betti number of \(X\);
- \(\zeta_a\) : a primitive \(a\)-th root of unity in \(\mathbb{Q}_l\);
- \([\zeta_a : \phi(a)] \subset [g^*]\) : all primitive \(a\)-th roots of unity appear in \([g^*]\) where \(\phi(a)\) indicates the number of them;
- \([\lambda, r] \subset [g^*]\) : the eigenvalue \(\lambda\) repeats \(r\) times in \([g^*]\);
- \([\zeta_a : \phi(a)], r \subset [g^*]\) : the list \(\zeta_a : \phi(a)\) repeats \(r\) times in \([g^*]\).

1. Preliminaries

We first recall the following basic result used in the paper [4].

Proposition 1.1. (See [4] Proposition 2.1.) Let \(g\) be an automorphism of a projective variety \(X\) over an algebraically closed field \(k\) of characteristic \(p > 0\). Let \(l\) be a prime \(\neq p\). Then the following hold true.
(1) (See [3, 3.7.3].) The characteristic polynomial of $g^*|H^j_{\text{et}}(X, \mathbb{Q}_l)$ has integer coefficients for each j. The characteristic polynomial does not depend on the choice of cohomology, l-adic or crystalline. In particular, if a primitive m-th root of unity appears with multiplicity r as an eigenvalue of $g^*|H^j_{\text{et}}(X, \mathbb{Q}_l)$, then so does each of its conjugates.

(2) If g is of finite order, then g has an invariant ample divisor, and $g^*|H^2_{\text{et}}(X, \mathbb{Q}_l)$ has 1 as an eigenvalue.

(3) If X is a K3 surface, g is tame and $g^*|H^0(X, \Omega^2_X)$ has $\zeta_n \in k$ as an eigenvalue, then $g^*|H^2_{\text{et}}(X, \mathbb{Q}_l)$ has $\zeta_n \in \overline{\mathbb{Q}}_l$ as an eigenvalue.

The following is well known, see e.g., [1, Theorem 3.2].

Proposition 1.2. (Lefschetz fixed point formula) Let X be a smooth projective variety over an algebraically closed field k of characteristic $p > 0$ and let g be a tame automorphism of X. Then $X^g = \text{Fix}(g)$ is smooth and

$$e(g) := e(X^g) = \text{Tr}(g^*|H^*(X)).$$

Lemma 1.3. (See [5, Lemma 1.6].) Let X be a K3 surface in characteristic $p \neq 2$, admitting an automorphism h of order 2 with $\dim H^2_{\text{et}}(X, \mathbb{Q}_l)^h = 2$. Then h is non-symplectic and has an h-invariant elliptic fibration $\psi : X \to \mathbb{P}^1$, $X/(h) \cong F_e$

a rational ruled surface, and X^h is either a curve of genus 9 which is a 4-section of ψ or the union of a section and a curve of genus 10 which is a 3-section. In the first case $e = 0, 1$ or 2, and in the second $e = 4$. Each singular fibre of ψ is of type I_1 (nodal), I_2, II (cuspidal) or III, and is intersected by X^h at the node and two smooth points if of type I_1, at the two singular points if of type I_2, at the cusp with multiplicity 3 and a smooth point if of type II, at the singular point tangentially to both components if of type III. If X^h contains a section, then each singular fibre is of type I_1 or II.

Remark 1.4. If $e \neq 0$, the h-invariant elliptic fibration ψ is the pull-back of the unique ruling of F_e. If $e = 0$, either ruling of F_0 lifts to an h-invariant elliptic fibration.

The following easy lemmas also will be used frequently.

Lemma 1.5. (See [1, Lemma 2.10].) Let S be a set and $\text{Aut}(S)$ be the group of bijections of S. For any $g \in \text{Aut}(S)$ and positive integers a and b,

1. $\text{Fix}(g) \subset \text{Fix}(g^a)$;
2. $\text{Fix}(g^a) \cap \text{Fix}(g^b) = \text{Fix}(g^d)$ where $d = \gcd(a, b)$;
3. $\text{Fix}(g) = \text{Fix}(g^a)$ if $\text{ord}(g)$ is finite and prime to a.

Lemma 1.6. (See [1] Lemma 2.11.) Let $R(n)$ be the sum of all primitive n-th root of unity in \mathbb{Q} or in \mathbb{Q}_l, where $\gcd(l, n) = 1$. Then

$$R(n) = \begin{cases} 0 & \text{if } n \text{ has a square factor,} \\ (-1)^t & \text{if } n \text{ is a product of } t \text{ distinct primes.} \end{cases}$$

For an automorphism g of finite order of a K3 surface X, tame or wild, we write

$$\text{ord}(g) = m.n$$

if g is of order mn and the natural homomorphism $\langle g \rangle \to \text{GL}(H^0(X, \Omega^2_X))$ has kernel of order m and image of order n.

2. Proof: the Tame Case

Throughout this section, we assume that the characteristic $p > 0$, $p \neq 2, 5$. Let g be an automorphism of order 50 of a K3 surface. We first determine the list of eigenvalues of g^* acting on the second cohomology of X.

Lemma 2.1. $[g^*] \neq [1, 1, \zeta_{50} : 20]$.

Proof. Suppose that $[g^*] = [1, 1, \zeta_{50} : 20]$. Then

$$[g^{25*}] = [1, 1, -1.20], \quad e(g^{25}) = -16.$$

Thus $\text{Fix}(g^{25})$ is either a curve C_9 of genus 9 or the union of a smooth rational curve and a curve C_{10} of genus 10. Using Lemma 1.6 we compute

$$e(g) = 4$$

and

$$[g^{5*}] = [1, 1, (\zeta_{10} : 4)5], \quad e(g^5) = 9.$$

Note that

$$\text{Fix}(g^d) \subset \text{Fix}(g^{25})$$

for any d dividing 25. If $\text{Fix}(g^{25})$ is a curve C_9 of genus 9, then the action of g (resp. g^5) on C_9 has 4 (resp. 9) fixed points, hence the degree 25 cover $C_9 \to C_9/\langle g \rangle$ has 4 points of ramification index 25 and 5 points of ramification index 5, which contradicts the Hurwitz formula. By Lemma 1.3 the quotient surface $X/\langle g^{25} \rangle$ is isomorphic to the rational ruled surface F_4, X has a g^{25}-invariant elliptic fibration

$$\psi : X \to \mathbb{P}^1$$

and $\text{Fix}(g^{25})$ is the union of a section R and a curve C_{10} of genus 10 which is a 3-section of ψ. We also know that a fibre of ψ is of type I_0 (smooth), I_1 or II. The automorphism \bar{g} of F_4 induced by g preserves the unique ruling, so g preserves the elliptic fibration. Since \bar{g}^{25} acts trivially on F_4, g^{25} acts trivially on the base \mathbb{P}^1 and the orbit of a singular fibre under the action of $g|\mathbb{P}^1$ has length 1 or 5. Thus $g^5|\mathbb{P}^1$ fixes all singular fibres and g^5 fixes the singular points of all singular fibres. Since ψ has at least 12 singular fibres, g^5 fixes at least 12 points, contradicting $e(g^5) = 9$. □

Lemma 2.2. (1) $[g^*] = [1, -1, \zeta_{50} : 20]$

where the first eigenvalue corresponds to a g^*-invariant ample class;
In the same way as above, we see that

\[C_{\subspace} \text{ of } g \]

\[\text{Since } e \]

\[\text{then by Hodge index theorem} \]

\[\text{smooth rational curve. Since } e \]

\[\text{hence } d < \]

\[\text{points, } p \]

\[\text{Since } C \]

\[\text{Let } \]

\[\text{the result follows from Lemma 2.1.} \]

Proof. (1) By [4, Lemmas 4.2 and 4.7], \(g \) cannot be of order 2.25 or 5.10, hence is purely non-symplectic. By Proposition 1.1 the action of \(g^* \) on \(H^2_{et}(X, \mathbb{Q}) \) has \(\zeta_{50} \in \mathbb{Q}^* \) as an eigenvalue. Thus \([g^*] = [1, \pm 1, \zeta_{50} : 20] \) and the result follows from Lemma 2.1.

(2) follows from (1), since \(e(g^{25}) = -18 \) and the invariant subspace of \(g^*|H^2_{et}(X, \mathbb{Q}) \) has dimension 1.

(3)-(5) We compute

\[[g^{5*}] = [1, -1, (\zeta_{10} : 4), 5], \quad e(g^5) = 7, \]

\[[g^{10*}] = [1, 1, (\zeta_5 : 4), 5], \quad e(g^{10}) = -1. \]

Since \(e(g^{10}) < 0 \), \(\text{Fix}(g^{10}) \) contains a curve of genus > 1. Since the invariant subspace of \(g^{5*}|H^2_{et}(X, \mathbb{Q}) \) has dimension 2, \(\text{Fix}(g^{10}) \) contains at most one smooth rational curve. Since \(e(g^5) = 7 \), \(\text{Fix}(g^5) \) consists of 7 points of \(C_{10} = \text{Fix}(g^{25}) \). Suppose \(\text{Fix}(g^{10}) \) contains a rational curve \(R \). Then

\[\text{Fix}(g^{10}) = R \cup D_{d+3} \cup \{2d + 1 \text{ points}\}, \quad d \geq 0. \]

Since \(C_{10} \cap D_{d+3} \subset \text{Fix}(g^{25}) \cap \text{Fix}(g^{10}) = \text{Fix}(g^5) \), we have

\[C_{10}D_{d+3} \leq 7, \]

then by Hodge index theorem

\[18(2d + 4) = C_{10}^2D_{d+3}^2 \leq (C_{10}D_{d+3})^2 \leq \tau^2, \]

hence \(d < 0 \), absurd. Thus \(\text{Fix}(g^{10}) \) cannot contain a rational curve and

\[\text{Fix}(g^{10}) = D_{d+2} \cup \{2d + 1 \text{ points}\}, \quad d \geq 0. \]

In the same way as above, we see that \(C_{10}D_{d+2} \leq 7. \) Then by the Hodge index theorem

\[18(2d + 2) = C_{10}^2D_{d+2}^2 \leq (C_{10}D_{d+2})^2 \leq \tau^2, \]

hence \(d = 0 \) and \(6 \leq C_{10}D_2 \). Let

\[q \in \text{Fix}(g^{10}) \]

be the isolated point. Then \(g(q) = q \) and \(g^5 \) fixes 6 points on \(D_2 \). Then \(C_{10}D_2 \leq 6 \) as \(C_{10} \cap D_2 \subset \text{Fix}(g^{25}) \cap \text{Fix}(g^{10}) = \text{Fix}(g^5) \). Thus \(C_{10}D_2 = 6. \) Let \(p_1, \ldots, p_6 \) be the 6 intersection points of \(C_{10} \) and \(D_2 \). Then \(g^5 \) fixes the 7 points, \(p_1, \ldots, p_6 \) and \(q \). This proves (3) and (4). Since \(e(g) = 2 \), the action of \(g \) on \(\{p_1, \ldots, p_6\} \) fixes one and rotates five, proving (5) \(\square \)
Proof of the second statement of Theorem 0.1

Lemma 2.2 plays a key role in the proof. We modify the proof of [9, Section 4]. The quotient

$$X/\langle g^{25} \rangle$$

is a smooth rational surface with Picard number 1, hence is isomorphic to P^2. The branch curve

$$B := \bar{C}_{10} \subset P^2$$

is a smooth sextic and the image

$$L := \bar{D}_2 \subset P^2$$

of D_2 is a line. Let

$$\bar{p}_i, \bar{q} \in P^2$$

be the images of p_i and q. Choose coordinates x, y, z of P^2 such that

$$L = (z = 0), \quad \bar{q} = (0, 0, 1).$$

Our automorphism g induces an automorphism \bar{g} of P^2. The fixed locus of \bar{g}^5 is the image of

$$\text{Fix}(g^5) \cup \text{Fix}(g^{20}) = \text{Fix}(g^{20}) = \text{Fix}(g^{10}),$$

thus

$$\text{Fix}(\bar{g}^5) = L \cup \{ \bar{q} \}.$$

The fixed locus of \bar{g} is the image of

$$\text{Fix}(g) \cup \text{Fix}(g^{24}) = \text{Fix}(g^{24}) = \text{Fix}(g^{2}) = \{ p_6, q, q_1, q_2 \}$$

where q_1 and q_2 are two points of D_2 which are interchanged by g, thus

$$\text{Fix}(\bar{g}) = \{ \bar{p}_6, \bar{q}, \bar{q}_1 \}.$$

We further may assume that

$$\bar{p}_6 = (0, 1, 0), \quad \bar{q}_1 = \bar{q}_2 = (1, 0, 0).$$

From these, we infer that

$$\bar{g}(x, y, z) = (x, \zeta^{20}_{25}y, \zeta^{j}_{25}z)$$

for some j. Since \bar{g} has order 25, $5 \nmid j$. The monomials x^6 and xy^5 are \bar{g}-invariant. We know that the branch $B = \bar{C}_{10}$ is a smooth sextic. Thus there must exist a \bar{g}-invariant monomial of the form $y^a z^{6-a}$. Then $20a + j(6-a) \equiv 0 \mod 25$. Since $5 \nmid j$, $a = 1$ and $j = 5i + 1$ for some i. Then

$$(\zeta^{j}_{25})^{20} = (\zeta^{5i+1}_{25})^{20} = \zeta^{20}_{25},$$

we may assume that $j = 1$. The branch B is defined by $x^6 + \alpha xy^5 + \beta yz^5 = 0$ for some non-zero α and β. Replacing y and z by a scalar multiple, we may assume that $\alpha = \beta = 1$. Now the surface X and the automorphism g are defined by

$$X : w^2 = x^6 + xy^5 + yz^5$$

$$g(x, y, z, w) = (x, \zeta^{20}_{25}y, \zeta^{25}_{25}z, -w).$$
3. Proof: the Complex Case

We may assume that X is projective, since a non-projective complex K3 surface cannot admit a non-symplectic automorphism of finite order ([11], [10]) and its automorphisms of finite order are symplectic, hence of order ≤ 8. Now the same proof goes, once $H^2_{et}(X, \mathbb{Q}_l)$ is replaced by $H^2(X, \mathbb{Z})$ and Proposition 1.2 by the usual topological Lefschetz fixed point formula.

References

[1] P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976) 103–161.
[2] I. Dolgachev, J. Keum, Finite groups of symplectic automorphisms of K3 surfaces in positive characteristic, Ann. of Math. 169 (2009) 269-313.
[3] L. Illusie, Report on crystalline cohomology, in: Algebraic Geometry, Arcata 1974, in: Proc. Sympos. Pure Math. vol. 29, AMS, 1975, pp. 459–478.
[4] J. Keum, Orders of automorphisms of K3 surfaces, [arXiv:1203.5616] [math.AG]
[5] J. Keum, K3 surfaces with an order 60 automorphism and a characterization of supersingular K3 surfaces with Artin invariant 1, Math. Res. Lett. 21 (2014) 509-520.
[6] J. Keum, K3 surfaces with an automorphism of order 66, the maximum possible, J. Alg. 426 (2015) 273-287.
[7] J. Keum, Order 40 automorphisms of K3 surfaces, to appear in Advanced Studies in Pure Math., volume for Mukai 60.
[8] S. Kondô, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan 44 (1992) 75–98.
[9] N. Machida, K. Oguiso, On K3 surfaces admitting finite non-symplectic group actions, J. Math. Sci. Univ. Tokyo 5 (1998) 273–297.
[10] V. V. Nikulin, Finite groups of automorphisms of Kählerian surfaces of type K3, Uspehi Mat. Nauk 31 (1976), no. 2; Trans. Moscow Math. Soc., 38 (1980) 71-135.
[11] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., vol.439, Springer, 1975.