Complete Multi-Representations of Sets in a Computable Measure Space

Yongcheng Wu *
College of Mathematics and Physics
Nanjing University of Information Science and Technology
210044 Nanjing, China
macswu@163.com

In a recent paper, two multi-representations for the measurable sets in a computable measure space have been introduced, which prove to be topologically complete w.r.t. certain topological properties. In this contribution, we show them recursively complete w.r.t. computability of measure and set-theoretical operations.

1 Introduction

In computable analysis, computability concepts depend critically on representations of computational objects. Different representations of a same set of objects can be compared under two kinds of reductions: continuous reductions \(\leq_t \) and computable reductions \(\leq \), which are string functions transform names under one naming system to names under another one. Most interesting are the complete (multi-)representations among a naturally arising class of naming systems.

Definition 1.1. Let \(\Phi \) be a class of naming systems of a set \(X \). A naming system \(\delta \in \Phi \) is said topologically/(recursively) complete in \(\Phi \), iff \(\phi \leq_t \delta \) resp. \(\phi \leq \delta \) for any \(\phi \in \Phi \).

For instance, recall that a representation \(\delta \) is said admissible w.r.t. a topology \(\tau \) if it is topologically complete among all the continuous representations w.r.t. \(\tau \) and the Cantor topology on strings. Such admissible representations play important role in the topological approach to computable analysis.

Computability frameworks of Lebesgue measure and integration have been addressed by different schools in computable analysis. Ker-I Ko[7] used oracle Turing machines to represent real sets and functions and studied polynomial time complexity of them. Weihrauch[9] investigated computability of measures and integration on the unit interval in the type-2 theory of effectivity. Edalat[3, 4] constructed a domain theoretical framework for Lebesgue measures and integrals. Wu and Weihrauch[17] showed how to construct a measure from an abstract Stone integration. Wu and Ding[15,16] considered computability of measure and set-theoretical operations in the more general situation of a computable measure space as introduced by [17].

Recently, the author suggests another pair of multi-representations, \(\delta_{\mu} \) and \(\tilde{\delta}_{\mu} \), for the measurable sets in a computable measure space. They have been proven to be topologically complete in a certain sense, see [13]. In this paper, we will explore computability of measure and set-theoretical operations w.r.t. them. The results show that \(\delta_{\mu} \) entails stronger computability than any of the multi-representations applied in [15,16]. Such results give rise to the recursive completeness of \(\delta_{\mu} \). Then we will discuss computability of set operations w.r.t. \(\delta_{\mu} \) and show as a corollary the recursive completeness of \(\tilde{\delta}_{\mu} \). Proofs of the results are omitted in this extended abstract, which will be given in a separate paper.

*The author has been partially supported by DFG (Deutsche Forschungsgemeinschaft) and the Scientific Fund of NUIST(S8107319001).
2 Preliminaries

2.1 Limit relations

A limit (convergence) relation, say \(\rightarrow_X \), on a non-empty set \(X \), is a relation appointing points in \(X \) to sequences \((x_n) \) in \(X \), i.e. \(\rightarrow_X \subseteq X^\omega \times X \). If \((x_n) \rightarrow_X x \), we say that \((x_n) \) converges to \(x \), where \((x_n) \) is called a \(\rightarrow_X \)-convergent sequence and \(x \) is called a limit of \((x_n) \).

A pair \((X, \rightarrow_X) \) will be called a limit space if and only if the limit relation \(\rightarrow_X \) on \(X \) satisfies the following three axioms (cf. [6, 8]):

(L1) \((x) \rightarrow_X x \);

(L2) If \((x_n) \rightarrow_X x \) then \((x_{n_k}) \rightarrow_X x \), where \((x_{n_k}) \) is a subsequence of \((x_n) \);

(L3) If \((x_n) \) is a sequence such that any subsequence of \((x_n) \) has a subsequence converging to \(x \), then \((x_n) \) converges to \(x \).

Let \(Y \) be a subset of \(X \). We say that \(Y \) is dense in the limit space \((X, \rightarrow_X) \), if and only if for every \(x \in X \) there exists a sequence \((y_n) \) in \(Y \) such that \((y_n) \rightarrow_X x \). Limit relations induce a natural notion of continuity: a function \(f : \subseteq X \rightarrow Y \) is said to be continuous w.r.t. limit relations \(\rightarrow_X \) and \(\rightarrow_Y \) iff \(f \) preserves convergent sequences (cf. [11, 24]). Sometimes this notion of continuity is called sequentially continuity to differ with that defined in terms of topologies.

2.2 Computable analysis

We briefly here the type-2 theory of effectivity, TTE for short, which is a representation-based approach to computable analysis. Let \(\Sigma \) be a finite alphabet with \(\{0, 1\} \subseteq \Sigma \). Let \(\Sigma^*, \Sigma^\omega \) be the set of finite resp. infinite strings over \(\Sigma \). On \(\Sigma^* \) we consider the discrete topology \(\tau_\Sigma \), and on \(\Sigma^\omega \) the Cantor topology \(\tau_C \) generated by the basis \(\{w\Sigma^\omega | w \in \Sigma^* \} \). In the following content, assume \(W, V, W_i, V_i \in \{\Sigma^*, \Sigma^\omega \} \) for all \(i \in \mathbb{N} = \{0, 1, 2, \ldots \} \). Our computational model is a Turing machine with a one-way output tape. As allowing no revisions on its output it is suitable for computing on infinite strings of symbols. For distinction, we call it a type-2 machine, TTM for short. A partial string function \(f : \subseteq W_1 \times W_2 \times \cdots \times W_n \rightarrow W_0 \) is called computable iff it is computed by a TTM. Of course, if the function value is an infinite string, the machine will write step by step each symbol of it and hence never halt. We agree with such an axiom, called the finiteness property of TTM: Each finite portion of the output is already determined by a finite portion of the input. This leads to the well-known result found firstly by Grzegorczyk [3]: Computable string functions are continuous, as formulated by [10] Theorem 2.2.3 in terms of TTE.

Computations on abstract objects are realized by a TTM via naming systems. A naming system for a nonempty set \(X \) is a surjective multi-function \(\delta : \subseteq W \rightarrow X \), which is called a notation if \(W = \Sigma^* \) or a (multi-)representation if \(W = \Sigma^\omega \). For any \(w \in \text{dom}(\delta) \), \(w \) will be called a \(\delta \)-name of \(x \in X \) if and when \(x \in \nu(w) \).

Definition 2.1 (continuity and computability induced by naming systems). Let \(\delta, \gamma \) be naming systems of sets \(X \) and \(Y \) respectively.

1. An element \(x \in X \) is called \(\delta \)-computable iff \(x \) has a computable \(\delta \)-name.
2. A subset \(Z \subseteq X \) is called \(\delta \)-open/r.e./decidable iff \(\delta^{-1}[Z] \) is open/r.e./decidable.
3. A \((\delta, \gamma) \)-realization of a multi-function \(f : \subseteq X \rightarrow Y \) is a (single-valued) string function \(F \) such that \(f(x) \cap \gamma(F(u)) \neq \emptyset \) for any \(\delta \)-name \(u \) of \(x \in \text{dom}(f) \).
4. In the above case, \(f \) is called \((\delta, \gamma) \)-computable(continuous) iff \(F \) is computable(continuous).
5. The above definitions can be extended to Cartesian productions and multi-variable multi-functions in a natural way.

The above definition generalizes the corresponding notions in [10].

Definition 2.2 (reducibility between naming systems). Let δ, γ be two naming systems of a set X.

1. δ is topologically/recursively reducible to γ, written $\delta \leq_t \gamma$ resp. $\delta < \gamma$ iff the identity on X is (δ, γ)-continuous/computable. (Equivalent to [11] Definition 24.2)

2. $\delta <_t \gamma$ denotes that $\delta \leq_t \gamma$ and $\gamma \not\leq_t \delta$. The meaning of $\delta < \gamma$ is defined accordingly.

3. \equiv_t and \equiv denote the equivalences induced by \leq_t and \leq respectively.

We take the so-called *tupling function* $\langle \cdot \rangle$ to encode a finite or infinite sequence of strings as one string (cf. [10] Definition 2.1.7). For $w \in \Sigma^*$ and $q \in W$, $w \sqsubseteq q$ denotes that w is a prefix of q and $w < q$ means $\langle w \rangle$ is a substring of q.

We will work with the following standard notations $\nu_\mathbb{N}$ of \mathbb{N}, $\nu_\mathbb{Q}$ of \mathbb{Q} and standard representations ρ of \mathbb{R}, $\overline{\rho}$ and $\overline{\rho}_>$ of $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}$ as defined in [10]. A ρ-name encodes essentially a converging sequence of rational intervals to represent the limit real. Concretely, $\rho\langle w_1, v_2, w_2, v_2, \ldots \rangle = x$ iff $([\nu_\mathbb{Q}(w_i), \nu_\mathbb{Q}(v_i)])$ is a converging sequence of intervals with a unique limit point x. ρc is the Cauchy representation of \mathbb{R} which uses a fast Cauchy sequence of rational numbers to represent a real. Concretely, $\rho c\langle w_1, w_2, \ldots \rangle = x$ iff $|\nu_\mathbb{Q}(w_i) - x| \leq 2^{-i}$ for any $i \geq 1$. In this case the rational sequence will be called a ρc-expansion of x. It is known that $\rho \equiv \rho c \equiv \overline{\rho}|^\mathbb{R}$, where $\overline{\rho}|^\mathbb{R}$ denotes $\overline{\rho}$ restricted to the range \mathbb{R}.

2.3 Measure theory

Let Ω be a non-empty set. A *ring* on Ω is a collection of subsets of Ω closed under the formation of finite unions and differences. An *algebra* (or *field*) on Ω is a ring on Ω that contains Ω. A σ-algebra (or σ-field) on Ω is an algebra on Ω which is closed under countable unions. Each set in a σ-algebra is called a measurable set. For any class \mathcal{E} of sets, the minimal σ-algebra including \mathcal{E} is called the σ-algebra generated by \mathcal{E}, written $\sigma(\mathcal{E})$.

Suppose \mathcal{A} is a σ-algebra on Ω. A *measure* on \mathcal{A} is an extended real function $\mu : \mathcal{A} \to [0, \infty]$ which is countably additive. In this case, the triple $(\Omega, \mathcal{A}, \mu)$ is called a measure space.

$A \triangle B := (A \setminus B) \cup (B \setminus A)$ is the symmetric difference of sets A and B. We write $A =^* B$ for $\mu(A \triangle B) = 0$ and $A \subseteq^* B$ for $\mu(A - B) = 0$. We shall use the following terminologies:

1. $\mathcal{A}_x := \{A \in \mathcal{A} : \mu(A) < \infty\}$.

2. $A_\infty := \mathcal{A}_x^c$.

3. $\mathcal{A}_{\text{inc}} := \{A \in \mathcal{A} : \mu(A) = \mu(A^c) = \infty\}$.

4. $\mathcal{A}_{\text{fin}} := \mathcal{A}_x - \mathcal{A}_{\text{inc}}$.

5. $A_n \nearrow A$ denotes that (A_n) is an increasing sequence of sets with $\lim_n A_n = A$.

6. $A_n \searrow A$ denotes that (A_n) is a decreasing sequence of sets with $\lim_n A_n = A$.
3 Computable measure space

Let Σ be a finite alphabet. Σ^* resp. Σ^ω denotes the class of finite resp. infinite strings over Σ. We take the discrete topology τ_ε on Σ^* and the Cantor topology τ_C on Σ^ω (Definition 2.2.2[10]).

Definition 3.1. [17] A *computable measure space* is a quintuple $\mathcal{M} = (\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$ such that

1. $(\Omega, \mathcal{A}, \mu)$ is a measure space,
2. \mathcal{R} is a countable ring such that $\mathcal{A} = \sigma(\mathcal{R})$,
3. $\alpha : \Sigma^* \to \mathcal{R}$ is a notation of \mathcal{R} with recursive domain,
4. μ is (α, ρ)-computable,
5. $(A, B) \mapsto A \cup B$ and $(A, B) \mapsto A - B$ are computable w.r.t. α.

Therefore, a computable measure space $(\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$ is an abstract measure space $(\Omega, \mathcal{A}, \mu)$ associated with an information structure (\mathcal{R}, α), where \mathcal{R} is a countable ring generating the σ-algebra \mathcal{A} and α is a notation of \mathcal{R} w.r.t. which the measure μ and set-theoretical operations restricted to \mathcal{R} are computable.

Lemma 3.2. In the computable measure space $(\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$ with $\mu(\Omega) = \infty$, there exists a computable approximate sequence (C_n) and a computable partition sequence (D_n) of Ω so that

1. the multi-function $E \mapsto n$ with $E \subseteq C_n$ is $(\alpha, \nu_\mathbb{N})$-computable,
2. $\mu(D_n) \geq 2^n$ and $D_n = C_n - C_{n-1}$ with $C_0 := \emptyset$.

Proof. Firstly, let us construct effectively the sequence (C_n) from the elements in \mathcal{R}. Since $\text{dom}(\alpha)$ is recursive, let (w_n) be a recursive enumeration of $\text{dom}(\alpha)$. Let k be the minimal number such that $\mu(\bigcup_{i \leq k} \alpha(w_i)) \geq 2$. Denote $C_1 := \bigcup_{i \leq k} \alpha(w_i)$. Suppose for some n that C_i is defined for every $i \leq n$. Since $\Omega = \bigcup_i \alpha(w_i)$ and $\mu(\Omega) = \infty$, there exists a minimal number m such that $\mu(\bigcup_{i \leq m} \alpha(w_i) - C_n) \geq 2^{n+1}$. Let $C_{n+1} := \bigcup_{i \leq m} \alpha(w_i)$. So the sequence (C_n) is recursively constructed so that, for every $n \geq 1$,

$$C_n \subseteq C_{n+1}, \quad \mu(C_{n+1} - C_n) \geq 2^{n+1} \quad \text{and} \quad \Omega = \bigcup_n C_n. \tag{3.1}$$

Therefore, $C_n \not\subseteq \Omega$. Furthermore, since the measure, union and difference are computable w.r.t. α by Definition 3.1 an α-name of C_n can be computed for each $n \geq 1$ and therefore (C_n) is $(\nu_\mathbb{N}, \alpha)$-computable. Let us show claim 1. Given an α-name w of some set E, a number n can be found s.t. $w_n = w$ in the recursive sequence (w_n) as postulated above. This together with (3.1) implies $E \subseteq C_n$. Thus claim 1 holds. As for claim 2, it suffices to set $C_0 := \emptyset$ and $D_n := C_n - C_{n-1}$ for all $n \geq 1$. □

Assumption 3.3. For the remaining content, let $(\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$ be a computable measure space with $\mu(\Omega) = \infty$ and $(C_n), (D_n)$ denote respectively the computable sequences as specified in Lemma 3.2.

4 Completeness of the multi-representation $\delta\mu$

Definition 4.1. [13] The limit relation $(A_n) \to_\mu A$ for any sequence (A_n) and set A in \mathcal{A} is defined by that

1. $\lim_n \mu(A_n - A) = 0$,
2. $\lim_n \mu(A \cap B - A_n) = 0$ for any $B \in \mathcal{A}$.

Proof. □
Definition 4.2. [13] The multi-representation \(\delta_\mu : \subseteq \Sigma^\omega \Rightarrow \mathcal{A} \) is defined by that
\(A \in \delta_\mu (w_1, w_2, \ldots) \) iff the sequence \((A_n)\) with \(A_n := \alpha(w_n) \) satisfies the following conditions:
1. \((A_n) \rightarrow_\mu A \),
2. \(\forall n < m, \mu(A_n \triangle A_m) \leq 2^{-n} \) whenever \(A \in \mathcal{A}_s \),
3. \(\forall n < m, \mu(A_n - A_m) \leq 2^{-n}, \mu(A_m \cap C_n - A_n) \leq 2^{-n} \) and \(\mu(A_n) \geq 2^n \) whenever \(A \in \mathcal{A}_\infty \).

In this case, the sequence \((A_n)\) in \(\mathcal{R} \) is called a \(\delta_\mu \)-expansion of \(A \).

We see that \(\delta_\mu \) uses two different kinds of converging sequences under \(\rightarrow_\mu \) to represent respectively the finite measurable sets \(\mathcal{A}_s \) and the infinitely measurable sets \(\mathcal{A}_\infty \).

By Lemma [12] the computable sequence \((C_n)\) is indeed a \(\delta_\mu \)-expansion of \(\Omega \). Since \((E) \) is a \(\delta_\mu \)-expansion of any \(E \in \mathcal{R} \), it follows that \(\alpha \leq \delta_\mu \).

Theorem 4.3. [13] If \((A_n)\) is a \(\delta_\mu \)-expansion of \(A \), then \(A =^* \liminf_n A_n =^* \limsup_n A_n \), where \(=^* \) denotes equality almost anywhere.

Let \(\rightarrow_{\tau} \) denote the limit relation induced by the Cantor topology \(\tau \) on the infinite strings \(\Sigma^\omega \). \(\delta_\mu \) has the following topological completeness:

Theorem 4.4. [13] \(\delta_\mu \) is topologically complete in the class of \((\rightarrow_{\tau}, \rightarrow_\mu)\)-continuous multi-representations \(\phi \) of \(\mathcal{A} \) such that \(\mathcal{A}_\infty \) is \(\phi \)-open.

The following lemma guarantees that \(\delta_\mu \) can differentiates effectively \(\mathcal{A}_s \) from \(\mathcal{A}_\infty \), but cannot differentiate furthermore \(\mathcal{A}_{oo\omega} \) from \(\mathcal{A}_{oo\omega} \) even in the topological sense.

Lemma 4.5.

1. \(\Omega \) is \(\delta_\mu \)-computable, i.e. there exists a computable \(\delta_\mu \)-name of \(\Omega \).
2. \(\mathcal{A}_s \) and \(\mathcal{A}_\infty \) are decidable w.r.t. \(\delta_\mu \).
3. Both \(\mathcal{A}_{oo\omega} \) and \(\mathcal{A}_{oo\omega} \) are unopen and thus undecidable w.r.t. \(\delta_\mu \).

In [12], we have shown that it is impossible for any multi-representation \(\psi \) of \(\mathcal{A} \) to make the measure and set-theoretical operations computable on whole \(\mathcal{A} \). The following theorem is nearly a reformulation of [12, Theorem 4.4].

Theorem 4.6. Let \(\psi : \subseteq \Sigma^\omega \rightarrow \mathcal{A} \) be a multi-representation such that the measure \(\mu \) is \((\psi, \mathcal{P}_\rightarrow) \)-continuous. Then for any multi-representations \(\gamma, \delta \) of \(\mathcal{A} \), the following statements hold:
1. Intersection \(\cap \) restricted to \(\mathcal{A}_{oo\omega} \) is not \((\gamma, \delta, \psi) \)-continuous.
2. Difference \(- \) restricted to \(\mathcal{A}_{oo\omega} \) is not \((\gamma, \delta, \psi) \)-continuous.
3. Union \(\cup \) and complement \((\cdot) \) cannot be continuous w.r.t. \(\psi \) simultaneously.

The above statements hold accordingly while “continuous” replaced by “computable”.

Our studies on computability as well as incomputability of the set operations are included as one theorem:

Theorem 4.7.

1. \(\mathcal{A}_\infty \) is \(\delta_\mu \)-decidable.
2. The measure \(\mu \) is \((\delta_\mu, \mathcal{P}_\rightarrow) \)-computable.
3. Union \(\cup \) is computable w.r.t. \(\delta_\mu \).
4. Intersection is δ_μ-computable on $\{(A,B) : A \in \mathcal{A}_s, \text{ or } B \in \mathcal{A}_s, \text{ or } A \cap B \in \mathcal{A}_\infty\}$, but not on its complement $\{(A,B) : A,B \in \mathcal{A}_\infty \text{ and } A \cap B \in \mathcal{A}_s\}$.

5. Difference is δ_μ-computable on $\{(A,B) : A \in \mathcal{A}_s, \text{ or } A - B \in \mathcal{A}_\infty\}$, but not on its complement $\{(A,B) : A \in \mathcal{A}_s, \text{ and } A - B \in \mathcal{A}_s\}$.

6. Complement is δ_μ-computable on $\mathcal{A}_s \cup \mathcal{A}_\infty$, but not on \mathcal{A}_∞.

The above theorem shows that δ_μ entails computability of set operations beyond the domains not being falsified by the more or less general negative results as stated in Theorem 4.6. As a corollary, we have the following completeness theorem of δ_μ:

Corollary 4.8. δ_μ is complete in the class $\Phi_1(\mathcal{A})$ consisting of all naming systems ϕ of \mathcal{A} such that

1. $\alpha \leq \phi$,
2. \mathcal{A}_s is ϕ-decidable,
3. μ is (ϕ, \mathcal{P})-computable.
4. Intersection \cap is ϕ-computable on $\mathcal{A}_s \times \mathcal{A}_s$.
5. Symmetric difference \triangle is ϕ-computable on $\mathcal{A}_s \times \mathcal{A}_s$.

This theorem shows that δ_μ-names encode exactly sufficient and necessary information to entail the desired computability of the measure and set-theoretical operations.

5 **Completeness of the multi-representation δ_μ**

The measure μ induces the following probability measure $\tilde{\mu}$:

$$\tilde{\mu}(A) := \sum_{n=1}^{\infty} \frac{\mu(A \cap D_n)}{\mu(D_n)} 2^{-n} \quad (\forall A \in \mathcal{A}) \quad (5.2)$$

where (D_n) is the computable partition sequence of Ω as assumed in Assumption 3.3.

Definition 5.1. [13] The limit relation $\rightarrow_{\tilde{\mu}} \subseteq \mathcal{A}^\omega \times \mathcal{A}$ is defined by that, for any sequence (A_n) and set A in \mathcal{A}, $(A_n) \rightarrow_{\tilde{\mu}} A$ iff $\lim_n \tilde{\mu}(A_n \Delta A) = 0$.

Definition 5.2. [13] The multi-representation $\delta_{\tilde{\mu}} : \subseteq \mathcal{A}^\omega \Rightarrow \mathcal{A}$ is defined by that $A \in \delta_{\tilde{\mu}}(\omega_1, \omega_2, \ldots)$ iff, for $A_n := \alpha(\omega_n)$, $(A_n) \rightarrow_{\tilde{\mu}} A$ and $\tilde{\mu}(A_n \Delta A_m) \leq 2^{-n}$ for any $n < m$. In this case, the sequence (A_n) on \mathcal{R} is called a $\delta_{\tilde{\mu}}$-expansion of A.

$\delta_{\tilde{\mu}}$ is admissible w.r.t. $\rightarrow_{\tilde{\mu}}$, namely

Theorem 5.3. [13] $\delta_{\tilde{\mu}}$ is topologically complete among the ($\rightarrow_{\tau_c}, \rightarrow_{\mu}$)-continuous multi-representations of \mathcal{A}.

Theorem 5.4. $\delta_\mu < \delta_{\tilde{\mu}}$, i.e. δ_μ is properly reducible to $\delta_{\tilde{\mu}}$.

$\delta_{\tilde{\mu}}$ entails the following computability:

Theorem 5.5.

1. $\tilde{\mu}$ is $(\delta_{\tilde{\mu}}, \rho)$-computable.
2. μ is $(\delta_{\tilde{\mu}}, \mathcal{P}_\infty)$-computable.
3. $(A,n) \mapsto \mu(A \cap C_n)$ is $(\delta_{\tilde{\mu}}, \mathcal{V}_n, \rho)$-computable.
4. Each set-theoretical operation is computable w.r.t. $\delta_{\tilde{\mu}}$.

As a corollary, we have

Corollary 5.6. $\delta_{\tilde{\mu}}$ is complete in the class $\Phi_2(\mathcal{A})$ consisting of all naming systems ϕ of \mathcal{A} such that

1. $\alpha \leq \phi$,
2. $\tilde{\mu}$ is (ϕ, ρ)-computable,
3. each set-theoretical operation is computable w.r.t. ϕ.

By this corollary, one can see that the equivalence class of $\delta_{\tilde{\mu}}$ does not depend on the computable sequence (D_n) employed in the definition of $\tilde{\mu}$.

Acknowledgement. The author wishes to thank the anonymous referees for their valuable questions and suggestions.

References

[1] G. Birkhoff (1936): *On the combination of topologies*. Fundamenta Mathematicae **26**:156-166.

[2] R.M. Dudley (1964): *On Sequential Convergence*. Transactions of the American Mathematical Society **112**:483-507.

[3] A. Edalat (1995): *Domain and integration*. Theoretical Computer Science **151**:163-193.

[4] A. Edalat (2009): *A computable approach to measure and integration theory*. Information and Computation **207**:642-659.

[5] A. Grezegorczyk (1955): *Computable functionals*. Fundamental Mathematics **42**:168-202.

[6] J.M.E. Hyland (1979): *Filter Spaces and Continuous Functionals*. Annals of Mathematical Logic **16**:147-182.

[7] K.-I. Ko (1991): *Complexity Theory of Real Functions*, Progress in Theoretical Computer Science, Birkhäuser, Boston.

[8] M. Menni and A. Simpson (2002): *Topological and Limit-Space Subcategories of Countably-Based Equi-logical Spaces*. Mathematical Structures in Computer Science **12**:739-770.

[9] K. Weihrauch (1999): *Computability on the probability measures on the Borel sets of the unit interval*. Theoretical Computer Science **219**:421-437.

[10] K. Weihrauch (2000): *Computable Analysis: an Introduction*, Springer-Verlag, Berlin, Heidelberg.

[11] K. Weihrauch (2008): *The computable multi-functions on multi-represented sets are closed under programming*. Journal of Universal Computer Science, **14**(6):801-844.

[12] Klaus Weihrauch, Yongcheng Wu & Decheng Ding (2009): *Absolutely non-computable predicates and functions in analysis*. Mathematical Structures in Computer Science, 19(1): 59-71.

[13] Yongcheng Wu (2010): *Limit relations and topologically complete multi-representations of measurable sets*, submitted.

[14] Yongcheng Wu & Decheng Ding (2005): *Computability of measurable sets via effective metrics*. Mathematical Logic Quarterly, **51**(6):543–559.

[15] Yongcheng Wu & Decheng Ding (2005): *Computability of measurable sets via effective metrics*. Math Logic Quarterly **51**(6):543-559.

[16] Yongcheng Wu & Decheng Ding (2006): *Computability of measurable sets via effective topologies*. Archive for Mathematical Logic, **45**:365–379.

[17] Yongcheng Wu & Klaus Weihrauch (2006): *A computable version of the Daniell-Stone theorem on integration and linear functionals*. Theoretical Computer Science, **359**(1-3):28-42.