Conditional symmetries and exact solutions of a nonlinear three-component reaction-diffusion model.

Roman Cherniha,1 Vasyl’ Davydovych2

a Institute of Mathematics, National Academy of Sciences of Ukraine, 3, Tereshchenkivs’ka Street, 01601 Kyiv, Ukraine

Abstract

Q-conditional (nonclassical) symmetries of the known three-component reaction-diffusion system [K. Aoki et al Theor. Pop. Biol. 50(1) (1996)] modeling interaction between farmers and hunter-gatherers are constructed for the first time. A wide variety of Q-conditional symmetries are found in an explicit form and it is shown that these symmetries are not equivalent to the Lie symmetries. Some operators of Q-conditional (nonclassical) symmetry are applied for finding exact solutions of the reaction-diffusion system in question. Properties of the exact solutions (in particular, their asymptotic behaviour) are identified and possible biological interpretation is discussed.

Keywords: reaction-diffusion system; hunter-gatherer–farmer system; Lie symmetry; Q-conditional symmetry; exact solution.

1 Introduction

In [1], a three-component model for describing the spread of an initially localized population of farmers into a region occupied by hunter-gatherers was introduced. Under some assumptions clearly indicated in [1], the spread and interaction between farmers and hunter-gatherers can be modeled as a reaction-diffusion (RD) process in the form of the three-component system of nonlinear PDEs. Recently, the model was used for mathematical description of some other phenomena. For example, a model describing language competition was derived in [2]. The model is based on the three-component system of nonlinear PDEs, which has the same structure as the system introduced in [1], however some coefficients have opposite signs. Notably, the model proposed in [2] is a modification of another model for language competition developed earlier in [3] (see also [4]).

Here we study the original model from the paper [1] used for modeling competition between farmers and hunter-gatherers. The work is a natural continuation of our recent paper [5], in which Lie symmetries and traveling fronts of this model have been studied. After the relevant

1E-mail: r.m.cherniha@gmail.com
2E-mail: davydovych@imath.kiev.ua
re-scaling (see [5] for details), the model takes the form of the nonlinear RD system

\[
\begin{align*}
 u_t &= d_1 u_{xx} + u(1 - u - a_1 v), \\
 v_t &= d_2 v_{xx} + a_2 v(1 - u - a_1 v) + uw + a_1 vw, \\
 w_t &= d_3 w_{xx} + a_3 w(1 - w) - a_4 uw - a_5 vw,
\end{align*}
\]

(1)

where \(u(t, x)\), \(v(t, x)\) and \(w(t, x)\) are non-dimensional densities of the three populations of initial farmers, converted farmers, and hunter-gatherers, respectively (hereafter the lower subscripts \(t \) and \(x \) mean differentiation w.r.t. these variables). Here (1) is called the hunter-gatherer–farmer (HGF) system and one is the main object of investigation in this paper. We naturally assume that the diffusivities \(d_1, d_2\) and \(d_3\) are positive constants. Other parameters are non-negative constant, excepting \(a_4\) that is a positive constant (otherwise the carrying capacity of farmers is zero [5]). Obviously, the HGF system (1) is not a particular case of the well-known diffusive Lotka–Volterra (DLV) system

\[
\begin{align*}
 u_t &= d_1 u_{xx} + u(a_1 + b_1 u + c_1 v + d_1 w), \\
 v_t &= d_2 v_{xx} + v(a_2 + b_2 u + c_2 v + d_2 w), \\
 w_t &= d_3 w_{xx} + w(a_3 + b_3 u + c_3 v + d_3 w),
\end{align*}
\]

(2)

because of the term \(uw\) in the second equation of (1). Notably, in the special case \(d_1 = d_2, a_1 \neq 0\) and \(a_2 = 1\), system (1) is reduced to the DLV system by the transformation \(u + a_1 v \rightarrow v\).

In contrast to our previous study [5], which is devoted to Lie symmetries, here we search for \(Q\)-conditional symmetry (nonclassical symmetry) of the HGF system (1). It is well-known that the notion of nonclassical symmetry was introduced in [6] and plays an important role in investigation of nonlinear PDEs (see, review [7] and monographs [8–10] for more details). In particular, having such symmetries in an explicit form, one may construct new exact solutions, which are not obtainable by the classical Lie algorithm.

The algorithm for finding \(Q\)-conditional symmetry (following [11], we use this terminology instead of nonclassical symmetry) of a given PDEs is based on the classical Lie method [12,13]. However, in contrast to the case of Lie symmetry, the corresponding system of determining equations (DEs) is nonlinear and its general solution can be found only in exceptional cases. So, obtaining an exhaustive description of \(Q\)-conditional symmetry of the given equation is a non-trivial and difficult task. As a result, scalar PDEs only were under study for a long time (see extensive reviews about this matter in Chapter 1 of [9]) because systems of DEs for systems of PDEs are much more complicated. To the best of our knowledge, there are only a few papers devoted to the search of \(Q\)-conditional symmetries for systems of PDEs published before 2010 [14–18]. A majority of such papers were published during the current decade [19–24]. It should be stressed that only the papers [14] (see section 4.1) and [22] are devoted to construct \(Q\)-conditional symmetry operators for a three-component PDE system while two-component systems only are under study in other papers. Notably, the conditional symmetries of the three-component Prandtl system derived in [14] coincide with the relevant Lie symmetries. In
paper [22], some Q-conditional symmetries of the three-component DLV system are found and it is shown that they are not obtainable by the classical Lie method. Here we make essential progress comparing with the papers cited above because all possible Q-conditional symmetries of the HGF system (1) are constructed in an explicit form.

It should be also mentioned that there is a further generalization of the notion of Q-conditional symmetry – generalized conditional symmetry – introduced in [25] (the terminology ‘conditional Lie-Bäcklund symmetry’ suggested in [26] has the same definition but one is rather misleading). Recently some two-component systems of evolution equations (including reaction-diffusion equations) have been studied using the generalized conditional symmetry method [27], [28].

The paper is organized as follows. In Section 2, the main theorem about Q-conditional symmetries of the HGF system (1) is proved. In Section 3, the most interesting (from applicability point of view) case of system (1) is examined. In particular, non-Lie ansätze are derived and applied for reducing the system in question to systems of ODEs. The reduced systems are analyzed in order to construct exact solutions, some highly nontrivial exact solutions are derived and their properties are studied. Finally, we briefly discuss the result obtained and present some conclusions in the last section.

2 Q-conditional symmetries of the HGF system (1)

First of all, we remind the reader that similarly to Lie symmetries, Q-conditional symmetries are constructed in the form of the first-order differential operators

$$Q = \xi^0(t, x, u, v, w)\partial_t + \xi^1(t, x, u, v, w)\partial_x + \eta^1(t, x, u, v, w)\partial_u + \eta^2(t, x, u, v, w)\partial_v + \eta^3(t, x, u, v, w)\partial_w, \quad (\xi^0)^2 + (\xi^1)^2 \neq 0,$$

where the coefficients ξ^0, ξ^1 and η^k ($k = 1, 2, 3$) should be found using the well-known criterion. Taking into account the property of the Q-conditional symmetries (operator can be multiplied by an arbitrary smooth function), operator (3) has essentially different forms in the cases $\xi^0 \neq 0$ and $\xi^0 = 0$, namely

$$Q = \partial_t + \xi(t, x, u, v, w)\partial_x + \eta^1(t, x, u, v, w)\partial_u + \eta^2(t, x, u, v, w)\partial_v + \eta^3(t, x, u, v, w)\partial_w, \quad (\xi^0)^2 + (\xi^1)^2 \neq 0,$$

and

$$Q = \partial_x + \eta^1(t, x, u, v, w)\partial_u + \eta^2(t, x, u, v, w)\partial_v + \eta^3(t, x, u, v, w)\partial_w.$$

It turns out that the systems of DEs for finding Q-conditional symmetries (4) and (5) are essentially different (see, e.g., [9, Section 1.4]). Hereafter we concentrate ourselves on the case $\xi^0 \neq 0$.

3
According to the standard criteria (see, e.g., [9, Section 2.2]), operator (4) is the Q-conditional symmetry (non-classical symmetry) for the HGF system (1) if the following invariance conditions are satisfied:

$$
\begin{align*}
Q_2(S_1) \big|_{\mathcal{M}} & \equiv Q_2 \left(d_1 u_{xx} - u_t + u(1 - u - a_1 v) \right) \big|_{\mathcal{M}} = 0, \\
Q_2(S_2) \big|_{\mathcal{M}} & \equiv Q_2 \left(d_2 v_{xx} - v_t + a_2 v(1 - u - a_1 v) + uw + a_1 vw \right) \big|_{\mathcal{M}} = 0, \\
Q_2(S_3) \big|_{\mathcal{M}} & \equiv Q_2 \left(d_3 w_{xx} - w_t + a_3 w(1 - w) - a_4 uw - a_5 vw \right) \big|_{\mathcal{M}} = 0,
\end{align*}
$$

where operator Q_2 is the second prolongation of the operator Q, the manifold

$$
\mathcal{M} = \{ S_1 = 0, S_2 = 0, S_3 = 0, Q(u) = 0, Q(v) = 0, Q(w) = 0 \}.
$$

The second prolongation of the operator Q has the form

$$
Q_2 = Q + \rho_1^1 \frac{\partial}{\partial u_{tt}} + \rho_2^1 \frac{\partial}{\partial u_{t}} + \rho_3^1 \frac{\partial}{\partial u_{w}} + \rho_1^2 \frac{\partial}{\partial v_{uu}} + \rho_2^2 \frac{\partial}{\partial v_{uw}} + \rho_3^2 \frac{\partial}{\partial v_{ww}} + \rho_1^3 \frac{\partial}{\partial w_{uu}} + \rho_2^3 \frac{\partial}{\partial w_{uw}} + \rho_3^3 \frac{\partial}{\partial w_{ww}},
$$

where the coefficients ρ^k and σ^k ($k = 1, 2, 3$) with the relevant indices are calculated by the well-known formulae (see, e.g., [9, 12, 13]).

Now we apply the rather standard procedure for obtaining system of DEs, using the invariance conditions (6). From the formal point of view, the procedure is the same as for Lie symmetry search, however, six (not three!) different derivatives, say u_{xx}, v_{xx}, w_{xx}, u_t, v_t and w_t, can be excluded using the manifold \mathcal{M}. After straightforward calculations, one arrives at the nonlinear system of DEs

$$
\begin{align*}
1) \ & \xi_u = \xi_v = \xi_w = 0, \\
2) \ & \eta_{uu}^k = \eta_{uv}^k = \eta_{uw}^k = \eta_{vw}^k = \eta_{ww}^k = 0, \quad k = 1, 2, 3, \\
3) \ & (d_1 - d_2) \xi_{u}^1 - 2d_1 d_2 \xi_{e}^1 = 0, \quad (d_1 - d_3) \xi_{u}^1 - 2d_1 d_3 \xi_{ew}^1 = 0, \\
4) \ & (d_1 - d_2) \xi_{v}^2 + 2d_1 d_2 \xi_{e}^2 = 0, \quad (d_2 - d_3) \xi_{v}^2 - 2d_2 d_3 \xi_{ew}^2 = 0, \\
5) \ & (d_1 - d_3) \xi_{w}^3 + 2d_1 d_3 \xi_{e}^3 = 0, \quad (d_2 - d_3) \xi_{w}^3 + 2d_2 d_3 \xi_{ew}^3 = 0, \\
6) \ & \xi_t - d_1 \xi_{xx} + 2d_1 \xi_{e}^1 + 2\xi_{xx} = 0, \\
7) \ & \xi_t - 2d_2 \xi_{xx} + 2d_2 \xi_{e}^2 + 2\xi_{xx} = 0, \\
8) \ & \xi_t - d_3 \xi_{xx} + 2d_3 \xi_{e}^3 + 2\xi_{xx} = 0,
\end{align*}
$$

(7)
where
\[C \]

\[\text{in the case when the functions } C, \xi, r \]

\[\text{conditional symmetry are linear w.r.t. } \]

\[(9) \text{ if and only if one and the corresponding operator(s) have the forms listed in Table 1.} \]

Remark 1 The nonlinear system \([7]\) is the system of DEs for the general RD system of the form

\[u_t = d_1 u_{xx} + C^1(u,v,w), \]
\[v_t = d_2 v_{xx} + C^2(u,v,w), \]
\[w_t = d_3 w_{xx} + C^3(u,v,w), \]

where \(C^k \) \((k = 1, 2, 3)\) are arbitrary smooth functions and \(d_k > 0 \). Here we examine this system in the case when the functions \(C^k \) \((k = 1, 2, 3)\) possess the form \([8]\).

Solving the linear subsystem 1)–2) of system \([7]\), one specifies the form of operator \([4]\) as follows

\[Q = \partial_t + \xi(t,x) \partial_x + (r^1(t,x)u + q^1(t,x)v + h^1(t,x)w + p^1(t,x)) \partial_u + \]
\[(r^2(t,x)v + q^2(t,x)u + h^2(t,x)w + p^2(t,x)) \partial_v + \]
\[(r^3(t,x)w + q^3(t,x)u + h^3(t,x)v + p^3(t,x)) \partial_w, \]

where \(\xi, r^k, q^k, h^k, p^k \) are unknown smooth functions at the moment. So, any operator of conditional symmetry are linear w.r.t. \(u, v \) and \(w \).

Now we formulate the main result of this section.

Theorem 1 System \([1]\) is invariant under \(Q \)-conditional symmetry operator(s) of the form \([9]\) if and only if one and the corresponding operator(s) have the forms listed in Table 1.
Table 1: Q-conditional symmetry operators of system (1)

Reaction terms	Restrictions	Operator(s)
$u(1 - u)$	$a_3 \neq 0$	$\partial_t + \mu \partial_x + (q^2 u + p^2) \partial_v$, $q^2 = (\alpha_1 + \alpha_2 e^{\frac{dt}{a_1}}) E(d_1, d_2)$, $p^2 = -\alpha_2 e^{\frac{dt}{a_1}} E(d_1, d_2)$
$\frac{d_2}{d_1} v(1 - u) + uw$		
$a_3 w(1 - w) - a_4 u w$		
$\frac{d_3}{d_1} u w - \frac{a_3 d_3}{d_1} u w$		
$\frac{d_3}{d_1} u w + a_4 v w$	$d_1 \neq d_2$	
$\frac{d_3}{d_1} u w - \frac{a_3 d_3}{d_1} u w$	$d_1 \neq d_3$	
$a_3 w(1 - w) - a_4 u w$		

2	$u(1 - u - a_1 v)$	$a_1 \neq 0$	$\partial_t - \frac{d_1}{d_1 - d_2} w (a_1 \partial_u - \partial_v) - \frac{d_3}{d_1 - d_2} w \partial_w$; $\partial_t - \frac{d_1}{a_1 (d_1 - d_3)} u (a_1 \partial_u - \partial_v) - \frac{(d_1 - d_3) d_3}{a_1 d_1 (d_1 - d_3)} u \partial_w$
$\frac{d_2}{d_1} v(1 - u - a_1 v) +$	$d_1 \neq d_2$		
$u w + a_1 v w$	$d_1 \neq d_3$		
$-\frac{d_3}{d_1} u w - \frac{a_3 d_3}{d_1} u w$			
$a_4 d_1 \neq d_3$			
$a_3 w(1 - w) - a_4 u w$			

3	$u(1 - u - a_1 v)$	$a_1 \neq 0$	$(d_1 - d_2) \partial_t + \frac{d_2}{a_1} (u - 1) + d_2 v + \frac{d_3 d_3}{a_4 d_1 - d_3} w) (a_1 \partial_u - \partial_v)$
$\frac{d_2}{d_1} v(1 - u - a_1 v) +$	$d_1 \neq d_2$		
$u w + a_1 v w$	$d_1 \neq d_3$		
$-\frac{d_3}{d_1} u w - \frac{a_3 d_3}{d_1} u w$			
$a_4 d_1 \neq d_3$			
$a_3 w(1 - w) - a_4 u w$			

4	$u(1 - u - a_1 v)$	$a_1 \neq 0$	$\partial_t + \left((\alpha_1 + \alpha_2 (a_4 d - d_3) e^t) u + \alpha_2 a_1 (a_4 d - d_3) e^t v + \alpha_2 a_1 d_3 e^t w + \alpha_2 (d_3 - a_4 d) e^t \right) (a_1 \partial_u - \partial_v)$
$\frac{d_2}{d_1} v(1 - u - a_1 v) +$	$d_1 = d_2 = d$		
$u w + a_1 v w$	$a_4 d \neq d_3$		
$-\frac{d_3}{d_1} u w - \frac{a_3 d_3}{d_1} u w$			
$a_3 w(1 - w) - a_4 u w$			

5	$u(1 - u - a_1 v)$	$a_1 \neq 0$	$\partial_t + \mu \partial_x + (\alpha_1 u + \alpha_2 e^t E(d_3, d) w) (a_1 \partial_u - \partial_v)$
$\frac{d_2}{d_1} v(1 - u - a_1 v) +$	$d_1 = d_2 = d$		
$u w + a_1 v w$	$d_1 \neq d_3$		
$-\frac{d_3}{d_1} u w - \frac{a_3 d_3}{d_1} u w$			
$a_3 w(1 - w) - a_4 u w$			

6	$u(1 - u)$	$a_4 d_2 \neq a_2 d_3$	$(d_2 - d_3) \partial_t + \left(\alpha_1 v + \frac{d_3 (a_2 d_3 + a_1)}{a_4 d_2 - a_2 d_3} \right) w + (d_2 - d_3) v E(d_3, d) w, a_2 P(t, x) = 0$
$a_2 v(1 - u) + uw$	$a_2 d_1 \neq d_2$		
$-a_4 u w$	$d_2 \neq d_3$		

7	$u(1 - u)$	$a_4 d_2 \neq a_2 d_3$	$\partial_t + \mu \partial_x + (\alpha_1 v + h^2 w) \partial_v + \alpha_1 w \partial_w$, $h^2 = \alpha_2 \exp \left(\frac{a_4 d_2 + a_1 (d_2 - d_3)}{d_3} \right) E(d_3, d_2)$
$\frac{d_4}{d_3} v(1 - u) + uw$	$a_4 d_2 \neq a_2 d_3$		
$-a_4 u w$	$d_2 \neq d_3$		
Reaction terms	Restrictions	Operator(s)
8 \(u(1-u) \) \(\frac{d^2}{dt^2} v(1-u) + uw \) \(-a_4uw \)	\(a_4d_1 \neq d_3 \)	\(\partial_t + \mu \partial_x + (\alpha_1 v + q^2 u + p^2) \partial_v + \alpha_1 w \partial_w, \) \(q^2 = (\alpha_2 + \alpha_3 e^{\frac{dt}{d_1}}) E(d_1, d_2), \) \(p^2 = -\alpha_3 e^{\frac{dt}{d_1}} E(d_1, d_2); \) \((d_2 - d_3) \partial_t + (\alpha_1 v + \frac{d_3(d_2d_3 + d_1a_1)}{d_2(a_4d_1 - d_3)} w + \alpha_2u + \alpha_3 e^{\frac{dt}{d_1}} (u - 1)) \partial_v - \frac{d_3}{d_1} w \partial_w \)
9 \(u(1-u) \) \(\frac{d^2}{dt^2} v(1-u) + uw \) \(-\frac{d_3}{d_1} uw \)	\(d_2 \neq d_3 \)	\(\partial_t + \mu \partial_x + (\alpha_1 v + q^2 u + h^2 w + p^2) \partial_v + \alpha_1 w \partial_w, \) \(p^2 = -\alpha_3 e^{\frac{dt}{d_1}} E(d_1, d_2), \) \(q^2 = (\alpha_2 + \alpha_3 e^{\frac{dt}{d_1}}) E(d_1, d_2), \) \(h^2 = \alpha_4 \exp \left(\frac{d_2d_3 + \alpha_1d_1(d_2-d_3)}{d_1d_3} \right) \frac{t}{t} E(d_3, d_2) \)
10 \(u(1-u) \) \(\frac{d^2-d_3}{d^2-d_1} v(1-u) + uw \) \(-\frac{d_3}{d_1} uw \)	\(d_2 \neq d_3 \)	\(\partial_t + (\alpha_1 v + q^2 u) \partial_v + (\alpha_1 w + q^3 u + a_2) \partial_w, \) \(q^3 = \alpha_3 e^{-\frac{dt}{d_1}} - a_2, \) \(q^2 = -\frac{dt}{d_3} q^3; \) \(\partial_t + \left(\alpha_1 v + \frac{a_1d_1 + d_3}{d_3} w \right) \partial_v - \frac{d_3}{d_1} w \partial_w \)
11 \(u(1-u) \) \(a_2 v(1-u) + uw \) \(-\frac{d_3}{d_1} uw \)	\(a_2d_1 \neq d_2 \) \(a_2d_1 = d_2 - d_3 \) \(d_2 \neq d_3 \) \(a_2 P(t, x) = 0 \)	\(\partial_t + \left(\alpha_1 v - \frac{d_1 a_2}{a_2 d_1 - d_2} u + P(t, x) \right) \partial_v + \left(\alpha_2 (1-u) + \alpha_1 w \right) \partial_w + (d_2 - d_3) \partial_t - a_2 d_3 w \partial_w + \alpha_2 v \left(\frac{d_3}{a_2 d_1 - d_2} \frac{a_2 a_2 d_2 + d_3}{a_2 d_1 - d_2} w + P(t, x) \right) \partial_v + \left(\frac{d_3 a_2 d_2 - d_2 a_1}{a_2 d_1 - d_2} w + \alpha_1 e^{-\frac{dt}{d_1}} u \right) \partial_w \)
12 \(u(1-u) \) \(a_2 v(1-u) + uw \) \(-\frac{d_3}{d_1} uw \)	\(a_2 \neq 0 \) \(d_2 = d_3 = d \)	\(\partial_t + \mu \partial_x + (\alpha_1 v + q^2 u) \partial_v + (q^3 u + \alpha_1 w + p^3) \partial_w, \) \(q^2 = \alpha_3 E(d_1, d), \) \(q^3 = \frac{a_2 d_1 - d}{d_1} q^2, \) \(p^3 = \frac{d-a_2 d_1}{d_1} q^2 \)
13 \(u(1-u) \) \(uw \) \(-\frac{d_3}{d_1} uw \)	\(d_2 = d_3 = d \)	\(\partial_t + \mu \partial_x + (\alpha_1 v + q^2 u + h^2 w + P(t, x)) \partial_v + (q^3 u + \alpha_2 w + p^3) \partial_w, \) \(h^2 = \frac{d_1(a_1-a_2)}{d}, \) \(q^2 = (\alpha_3 e^{-\frac{dt}{d_1}} + \alpha_4) E(d_1, d), \) \(q^3 = -\frac{d}{d_1} q^2, \) \(p^3 = \frac{a_2 a_2 d_1}{d_1} E(d_1, d) \)
Remark 2 In Table 1 the function \(P(t, x) \) is an arbitrary solution of the linear diffusion equation \(P_t = d_2 P_{xx}, \) \(E(\delta_1, \delta_2) = \exp \left[\mu \frac{\delta_2 - \delta_1}{2\delta_1 \delta_2} \left(x + \mu \frac{\delta_2 - \delta_1}{2\delta_1} t \right) \right], \) while \(\alpha_i \) (\(i = 1, 2, 3, 4 \)) and \(\mu \) are arbitrary constants.

Remark 3 Some \(Q \)-conditional symmetry operators presented in the Table 1 are equivalent to the relevant Lie symmetry operators obtained in [5] provided arbitrary parameters satisfy additional restrictions. For example, operator from Case 6 with \(\alpha_1 = -a_2 d_3 \) is the linear combination of Lie symmetry operators \(\partial_t \) and \(v \partial_v + w \partial_w \) (see Case 1 of Table 1 [5]).

Remark 4 The HGF systems and relevant \(Q \)-conditional symmetry operators from Cases 4 and 5 of Table 1 can be reduced by the transformation

\[
\begin{align*}
 u^* &= a_1 w, \quad v^* = -(u + a_1 v), \quad w^* = e^{-t} u, \quad x^* = \frac{x}{\sqrt{d}} \quad (10)
\end{align*}
\]

to the subcases of Cases 7 and 5 from Table 2 [22], respectively.

Sketch of the proof. In order to prove the theorem, one needs to solve the system of equations 3)–11) from (7) under restrictions (8) on the function \(C_k \) and taking into account that unknown functions have the structure (see (9))

\[
\begin{align*}
 \xi &= \xi(t, x), \quad \eta^1 = r^1(t, x)u + q^1(t, x)v + h^1(t, x)w + p^1(t, x), \\
 \eta^2 &= r^2(t, x)v + q^2(t, x)u + h^2(t, x)w + p^2(t, x), \\
 \eta^3 &= r^3(t, x)w + q^3(t, x)u + h^3(t, x)v + p^3(t, x).
\end{align*}
\]

It turns out that essentially different solutions of equations 3)–11) from (7) are obtained depending on parameters \(d_k \) and \(a_i \) arising in the HGF system (11). All such solutions are identified in what follows.

First of all, one notes that equations 3)–8) of system (7) do not depend on \(u, v \) and \(w \), and take the form

\[
\begin{align*}
 (d_1 - d_2) \xi q^1 - 2d_1 d_2 q^1_x &= 0, \quad (d_1 - d_3) \xi h^1 - 2d_1 d_3 h^1_x = 0, \quad (11) \\
 (d_1 - d_2) \xi q^2 + 2d_1 d_2 q^2_x &= 0, \quad (d_2 - d_3) \xi h^2 - 2d_2 d_3 h^2_x = 0, \quad (12) \\
 (d_1 - d_3) \xi q^3 + 2d_1 d_3 q^3_x &= 0, \quad (d_2 - d_3) \xi h^3 + 2d_2 d_3 h^3_x = 0, \quad (13) \\
 d_1(\xi_{xx} - 2r^1_x) &= \xi_t + 2\xi_{xx}, \quad d_2(\xi_{xx} - 2r^2_x) = \xi_t + 2\xi_{xx}, \quad d_3(\xi_{xx} - 2r^3_x) = \xi_t + 2\xi_{xx}. \quad (14)
\end{align*}
\]

On the other hand, equations 9)–11) of system (7) can be splitted with respect to the
variables $u, v, w, uv, uw, vw, u^2, v^2$ and w^2. As a result, one obtains the system
\begin{align}
a_3 h^1 &= 0, \quad d_3 h^1 + (a_3 d_2 + a_1 d_3) h^2 = 0, \quad (a_5 d_2 - a_1 a_2 d_3) h^3 = 0, \quad (15) \\
a_1 (a_2 d_1 - d_2) q^1 &= 0, \quad d_2 (a_4 d_1 - 2 d_3) h^1 - a_1 d_2 d_3 h^2 - d_1 d_3 q^1 = 0, \quad (16) \\
d_2 (a_5 d_1 - a_1 d_3) h^1 - a_1 d_1 d_3 q^1 = 0, \quad (17) \\
d_1 (a_4 d_2 - a_2 d_3) h^3 + d_2 (a_5 d_1 - a_1 d_3) q^3 = 0, \quad (a_4 d_1 - d_3) q^3 = 0, \quad (18) \\
a_1 q^2 + r^1 + 2 \xi_x = 0, \quad (a_2 d_1 - d_2) q^2 - d_1 q^3 = 0, \quad (19) \\
d_3 h^3 + a_5 d_2 q^2 + 2 a_3 d_3 q^3 + a_4 d_2 (r^1 + 2 \xi_x) = 0, \quad (20) \\
d_1 h^3 - a_1 (2 a_2 d_1 - d_2) q^2 + a_1 d_1 q^3 - a_2 d_1 (r^1 + 2 \xi_x) = 0, \quad (21) \\
(a_2 d_1 - 2 d_2) q^1 - a_1 d_2 (r^2 + 2 \xi_x) = 0, \quad a_1 h^3 - a_2 q^1 - a_1 a_2 (r^2 + 2 \xi_x) = 0, \quad (22) \\
(2 a_3 d_2 + a_1 d_3) h^3 + a_4 d_2 q^1 + a_5 d_2 (r^2 + 2 \xi_x) = 0, \quad a_4 h^1 + a_5 h^2 = -a_3 (r^3 + 2 \xi_x), \quad (23) \\
a_2 d_3 h^1 - (a_5 d_2 - 2 a_1 a_2 d_3) h^2 - d_3 q^1 = a_1 d_3 (r^3 + 2 \xi_x), \quad (24) \\
(a_4 d_2 - a_2 d_3) h^2 + a_1 d_3 q^2 + d_3 (r^1 - r^2) + d_3 (r^3 + 2 \xi_x) = 0, \quad (25) \\
\end{align}

\begin{align}
d_1 r^1_{xx} - r^1_t - 2 r^1 \xi_x + 2 \xi_x + \left(\frac{d_1}{d_2} - 1 \right) q^1 q^2 + \left(\frac{d_1}{d_3} - 1 \right) h^1 q^3 - 2 p^1 - a_1 p^2 &= 0, \quad (26) \\
d_2 r^2_{xx} - r^2_t - 2 r^2 \xi_x + a_1 q^1 + \left(\frac{d_2}{d_1} - 1 \right) q^1 q^2 + \left(\frac{d_2}{d_3} - 1 \right) h^2 h^3 - a_2 p^1 - 2 a_1 a_2 p^2 + a_1 p^3 &= 0, \quad (27) \\
d_3 r^3_{xx} - r^3_t - 2 r^3 \xi_x + 2 a_3 q^1 + \left(\frac{d_3}{d_1} - 1 \right) h^1 q^3 + \left(\frac{d_3}{d_2} - 1 \right) h^2 h^3 - a_4 p^1 - a_5 p^2 - 2 a_3 p^3 &= 0, \quad (28) \\
d_1 q^1_{xx} - q^1_t - 2 q^1 \xi_x + \left(1 - \frac{a_2 d_1}{d_2} \right) q^1 + \left(\frac{d_1}{d_2} - 1 \right) q^1 r^2 + \left(\frac{d_1}{d_3} - 1 \right) h^1 h^3 - a_1 p^1 &= 0, \quad (29) \\
d_2 q^2_{xx} - q^2_t - 2 q^2 \xi_x + \left(a_2 - \frac{d_2}{d_1} \right) q^2 + \left(\frac{d_2}{d_1} - 1 \right) q^2 r^1 + \left(\frac{d_2}{d_3} - 1 \right) h^2 q^3 - a_2 p^2 + p^3 &= 0, \quad (30) \\
d_3 q^3_{xx} - q^3_t - 2 q^3 \xi_x + \left(a_3 - \frac{d_3}{d_1} \right) q^3 + \left(\frac{d_3}{d_1} - 1 \right) q^3 r^1 + \left(\frac{d_3}{d_2} - 1 \right) h^3 q^2 - a_4 p^3 &= 0, \quad (31) \\
\end{align}
\[d_1 h_{xx}^1 - h_t^1 - 2 h_x^1 \xi_x + \left(1 - \frac{a_3 d_1}{d_3} \right) h^1 + \left(\frac{d_1}{d_3} - 1 \right) h^1 r^3 + \left(\frac{d_1}{d_2} - 1 \right) h^2 q^1 = 0, \] (32)

\[d_2 h_{xx}^2 - h_t^2 - 2 h_x^2 \xi_x + \left(a_2 - \frac{a_3 d_2}{d_3} \right) h^2 + \left(\frac{d_2}{d_3} - 1 \right) h^2 r^3 + \left(\frac{d_2}{d_1} - 1 \right) h^1 q^2 + a_1 p^2 = 0, \] (33)

\[d_3 h_{xx}^3 - h_t^3 - 2 h_x^3 \xi_x + \left(a_3 - \frac{a_3 d_3}{d_2} \right) h^3 + \left(\frac{d_3}{d_2} - 1 \right) h^3 r^2 + \left(\frac{d_3}{d_1} - 1 \right) q^1 q^3 - a_5 p^3 = 0, \] (34)

\[d_1 p_{xx}^1 - p_t^1 - 2 p_x^1 \xi_x + p^1 + \left(\frac{d_1}{d_2} - 1 \right) p^2 q^1 + \left(\frac{d_1}{d_3} - 1 \right) h^1 p^3 = 0, \] (35)

\[d_2 p_{xx}^2 - p_t^2 - 2 p_x^2 \xi_x + a_2 p^2 + \left(\frac{d_2}{d_1} - 1 \right) p^1 q^2 + \left(\frac{d_2}{d_3} - 1 \right) h^2 p^3 = 0, \] (36)

\[d_3 p_{xx}^3 - p_t^3 - 2 p_x^3 \xi_x + a_3 p^3 + \left(\frac{d_3}{d_2} - 1 \right) p^1 q^3 + \left(\frac{d_3}{d_1} - 1 \right) h^3 p^2 = 0. \] (37)

Although the above system is very cumbersome, one is highly overdetermined because the equation number is much larger than number of unknown functions \(\xi, r^k, q^k, h^k \) and \(p^k \). Moreover, equations (15)–(18) are algebraic (not PDEs!). It allows us to identify all inequivalent solutions of system (15)–(37).

First of all, we note that the nonlinear system (11)–(37) in the case \(q^k = h^k = 0 \) \((k = 1, 2, 3) \) is reducible to the system of DEs for searching Lie symmetry operators. All possible Lie symmetries were found in [5] (see Table 1 therein).

Now we observe that a linear combination of equations (19) and (21) leads to \(d_3 h^3 = 0 \), i.e. \(h^3 = 0 \). Moreover, two essentially different cases, \(a_3 \neq 0 \) and \(a_3 = 0 \), follow from the first equation of (15).

Let us examine in details case \(a_3 \neq 0 \). Having \(h^3 = 0 \) and assuming \(a_3 \neq 0 \), equations (15)–(18), (19) and (20) immediately lead to

\[q^1 = q^3 = h^1 = h^2 = 0. \] (38)

Thus, one needs to set \(q^2 \neq 0 \) in order to find a non-Lie symmetry, therefore equations (19) and (20) produce restrictions

\[a_2 = \frac{d_2}{d_1}, \ a_5 = a_1 a_4. \] (39)
Moreover, using (38) we obtain $p^1 = p^3 = 0$ from equations (29), (31) and (33).

Hence, the system of DEs (11)–(37) for finding Q-conditional symmetries of the HGF system (1) with $a_3 \neq 0$ takes the form

$$r^2 = r^3 = -2\xi_x,$$ \hspace{1cm} (40)

$$\xi_t - 5d_2 \xi_{xx} + 2\xi_x = 0, \quad \xi_t - 5d_3 \xi_{xx} + 2\xi_x = 0,$$ \hspace{1cm} (41)

$$d_1(\xi_{xx} - 2r^1_x) = \xi_t + 2\xi_x,$$ \hspace{1cm} (42)

$$a_1q^2 + r^1 + 2\xi_x = 0,$$ \hspace{1cm} (43)

$$d_1r^1_{xx} - r^1_t - 2r^1\xi_x + 2\xi_x = 0,$$ \hspace{1cm} (44)

$$d_2r^2_{xx} - r^2_t - 2r^2\xi_x + 2d_2\frac{d_2}{d_1}\xi_x = 0,$$ \hspace{1cm} (45)

$$d_3r^3_{xx} - r^3_t - 2r^3\xi_x + 2a_3\xi_x = 0,$$ \hspace{1cm} (46)

$$(d_1 - d_2)q^2 + 2d_1d_2q^2_x = 0,$$ \hspace{1cm} (47)

$$d_2q^2_{xx} - q^2_t - 2q^2\xi_x + \left(\frac{d_2}{d_1} - 1\right)q^2r^1 = 0,$$ \hspace{1cm} (48)

$$d_2p^2_{xx} - p^2_t - 2p^2\xi_x + \frac{d_2}{d_1}p^2 = 0, \quad a_1p^2 = 0.$$ \hspace{1cm} (49)

The corresponding Q-conditional symmetry has the form

$$Q = \partial_t + \xi \partial_x + r^1u \partial_u + (r^2v + q^2u + p^2) \partial_v + r^3w \partial_w.$$

Let us integrate system (40)–(49). Substituting (40) into (45) and using the first equation of (41), one obtains the overdetermined system

$$\xi_t + 2\xi_x - 5d_2 \xi_{xx} = 0, \quad \xi_{tx} + 2\xi_x^2 - d_2 \xi_{xxx} + 2d_2\frac{d_2}{d_1}\xi_x = 0.$$

The general solution of this system is well-known (see (2.28) in [29]):

$$\xi = \mu,$$ \hspace{1cm} (50)

where μ is an arbitrary constant. Having (50), we immediately obtain from equations (40), (42)–(44)

$$r^2 = r^3 = 0, \quad r^1_t = r^1_x = 0, \quad a_1q^2 + r^1 = 0.$$

If $a_1 \neq 0$ then $d_1 = d_2$ (see (48)) and the general solution of system (40)–(49) leads to the operator

$$Q = \partial_t + \mu \partial_x + r^1 \left(u \partial_u - \frac{1}{d_1}u \partial_v\right).$$
This is nothing else but Lie symmetry operator (see Case 4 of Table 1 [5]).

If \(a_1 = 0 \) then the general solution of system (40)–(49) has the form

\[
\xi = \mu, \quad r^1 = r^2 = r^3 = 0, \quad q^1 = q^3 = h^k = 0 \quad (k = 1, 2, 3), \quad p^1 = p^3 = 0,
\]

\[
q^2 = \left(\alpha_1 + \alpha_2 e^{d_1 t} \right) \exp \left(\mu^2 \frac{(d_1 - d_2)^2}{4d_1^2d_2} t + \mu \frac{d_2 - d_1}{2d_1d_2} x \right),
\]

\[
p^2 = -\alpha_2 \exp \left(\left(\frac{d_2}{d_1} + \mu^2 \frac{(d_1 - d_2)^2}{4d_1^2d_2} \right) t + \mu \frac{d_2 - d_1}{2d_1d_2} x \right),
\]

where \(\alpha_1 \) and \(\alpha_2 \) are arbitrary constants. Thus, Case 1 of Table 1 is obtained and the case \(a_3 \neq 0 \) is completely examined.

The second generic case \(a_3 = 0 \) can be examined in a quite similar way. The second equations of (15) and (23)

\[
h^1 + a_1 h^2 = 0, \quad a_4 h^1 + a_5 h^2 = 0
\]

lead to the restriction \(a_5 = a_1 a_4 \) (otherwise \(h^1 = h^2 = 0 \Rightarrow q^1 = q^2 = q^3 = 0 \), so that only Lie symmetries can be derived).

Moreover, one notes from the first equation of (16) that two possibilities \(a_1 \neq 0 \) and \(a_1 = 0 \) should be analysed.

Let us assume that \(a_1 \neq 0 \). Equations (16), (18) and (19) lead to the restriction \((a_2 d_1 - d_2)(a_4 d_1 - d_3) = 0 \) (otherwise we obtain \(h^1 = h^2 = q^1 = q^2 = q^3 = 0 \)). Thus, we need to consider two subcases:

(i) \(a_2 d_1 - d_2 \neq 0 \Rightarrow a_4 d_1 = d_3; \) (ii) \(a_2 d_1 = d_2. \)

Subcase (i). From the first equation of (16) we find \(q^1 = 0 \), and, as result, \(p^1 = p^3 = 0 \) (see (29) and (34)). Integrating the first equation of (12), we find

\[
q^2 = \varphi(t) \exp \left(\int \frac{d_2 - d_1}{2d_1d_2} \xi(t, x) dx \right),
\]

were \(\varphi(t) \) is arbitrary smooth function, and \(q^3 = (a_2 - \frac{d_2}{d_1}) q^2 \) from the second equation of (19). Substituting the function \(q^3 \) into the first equation of (13), we have

\[
(d_2 - d_3) \varphi \xi = 0.
\]

If \(\xi = 0 \), then \(r^2 = 0 \) (see the first equation (22)) and

\[
q_2^2 = q_3^3 = h^1_x = h^2_x = 0 \quad (\text{see (11) – (13)}).
\]
Under the above equalities system (15)–(37) essentially simplifies and takes the form

\[q_t^2 + \left(1 - \frac{d_1}{d_3}\right) \left(a_2 - \frac{d_2}{d_1}\right) q^2 h^2 - p^2 = 0, \]
(51)

\[\left(a_2 - \frac{d_2}{d_1}\right) h_t^2 + a_1 \left(a_2 - \frac{d_2}{d_1}\right) \left(\frac{d_3}{d_1} - 1\right) h^2 q^2 + a_1 \frac{d_3}{d_1} p^2 = 0, \]
(52)

\[q_t^2 + \left(\frac{d_2}{d_1} - a_2\right) q^2 + a_1 \left(\frac{d_2}{d_1} - 1\right) (q^2)^2 + \left(a_2 - \frac{d_2}{d_1}\right) \left(1 - \frac{d_2}{d_3}\right) h^2 q^2 = 0, \]
(53)

\[\left(a_2 - \frac{d_2}{d_1}\right) q_t^2 + \frac{d_3}{d_1} \left(a_2 - \frac{d_2}{d_1}\right) q^2 + a_1 \left(a_2 - \frac{d_2}{d_1}\right) \left(\frac{d_3}{d_1} - 1\right) (q^2)^2 = 0, \]
(54)

\[h_t^2 - h^2 - \left(a_2 - \frac{d_2}{d_1}\right) \left(\frac{d_1}{d_3} - 1\right) (h^2)^2 = 0 \]
(55)

\[h_t^2 - a_2 h^2 - \left(a_2 - \frac{d_2}{d_1}\right) \left(\frac{d_2}{d_3} - 1\right) (h^2)^2 + a_1 \left(\frac{d_2}{d_1} - 1\right) h^2 q^2 - a_1 p^2 = 0, \]
(56)

and

\[q^1 = r^2 = p^1 = p^3 = 0, \quad p_t^2 = 0, \quad a_2 p^2 = 0, \]
\[r^1 = -a_1 q^2, \quad q^3 = \left(a_2 - \frac{d_2}{d_1}\right) q^2, \quad h^1 = -a_1 h^2, \quad r^3 = \left(a_2 - \frac{d_2}{d_1}\right) h^2. \]

Thus, we obtain the overdetermined nonlinear system of PDEs with two unknown functions \(q^2 \) and \(h^2 \) under the restriction \((q^2)^2 + (h^2)^2 \neq 0\) (otherwise only Lie symmetries can be derived). Note that this system is incompatible in the case \(q^2 h^2 \neq 0 \). Integrating system (51)–(56) for \(q^2 = 0, \ h^2 \neq 0 \) and \(h^2 = 0, \ q^2 \neq 0 \), we obtain first and second operators of Cases 2 of Table 1 respectively.

If \(\xi \neq 0 \), then only Lie symmetries can be obtained.

Subcase (ii) was examined in a similar way. As a result, Cases 3, 4 and 5 of Table 1 have been derived.

Thus, subcase \(a_1 \neq 0 \) is completely examined and Cases 2–5 of Table 1 were obtained.

Finally, the possibility \(a_1 = 0 \) was examined. Because three parameters \(a_1, a_3 \) and \(a_5 \) vanish, the system of DEs (15)–(37) simplifies essentially. As a result, Cases 6–13 of Table 1 were obtained in a straightforward way.

The sketch of the proof is now complete.

3 Exact solutions of the HGF system

If one compares the HGF systems with the reaction terms arising in Table 1 with its general form (1) then it is clear that Cases 2–5 are the most interesting from the applicability point of view. In fact, all the other cases of Table 1 lead to the systems involving the autonomous

\[q^1 = r^2 = p^3 = 0, \quad p_t^2 = 0, \quad a_2 p^2 = 0, \]
\[r^1 = -a_1 q^2, \quad q^3 = \left(a_2 - \frac{d_2}{d_1}\right) q^2, \quad h^1 = -a_1 h^2, \quad r^3 = \left(a_2 - \frac{d_2}{d_1}\right) h^2. \]

Thus, we obtain the overdetermined nonlinear system of PDEs with two unknown functions \(q^2 \) and \(h^2 \) under the restriction \((q^2)^2 + (h^2)^2 \neq 0\) (otherwise only Lie symmetries can be derived). Note that this system is incompatible in the case \(q^2 h^2 \neq 0 \). Integrating system (51)–(56) for \(q^2 = 0, \ h^2 \neq 0 \) and \(h^2 = 0, \ q^2 \neq 0 \), we obtain first and second operators of Cases 2 of Table 1 respectively.

If \(\xi \neq 0 \), then only Lie symmetries can be obtained.

Subcase (ii) was examined in a similar way. As a result, Cases 3, 4 and 5 of Table 1 have been derived.

Thus, subcase \(a_1 \neq 0 \) is completely examined and Cases 2–5 of Table 1 were obtained.

Finally, the possibility \(a_1 = 0 \) was examined. Because three parameters \(a_1, a_3 \) and \(a_5 \) vanish, the system of DEs (15)–(37) simplifies essentially. As a result, Cases 6–13 of Table 1 were obtained in a straightforward way.

The sketch of the proof is now complete.
Fisher equation in the HGF system (1). The autonomous Fisher equation means that initial farmers \(u\) does not interact with converted farmers \(v\). So, it is unlikely that such systems can describe adequately the spread and interaction between farmers and hunter-gatherers.

Here we study in details the system with the reaction terms from Case 2 of Table 1 because this system admits two \(Q\)-conditional symmetries (i.e. possesses a wider symmetry) in contrast to those from Cases 3–5. Thus, we examine the system

\[
\begin{align*}
 u_t &= d_1 u_{xx} + u(1 - u - a_1 v), \\
 v_t &= d_2 v_{xx} + \frac{d_1 - d_2}{d_1 - d_3} v(1 - u - a_1 v) + uw + a_1 vw, \\
 w_t &= d_3 w_{xx} - \frac{d_2}{d_1} uw - \frac{a_1 d_3}{d_1} vw,
\end{align*}
\]

(57)

where \(a_1 \neq 0\), \(d_1 \neq d_2\) and \(d_1 \neq d_3\).

One can set \(a_1 = 1\) without losing a generality because of the transformation \(a_1 v \to v\), \(a_1 w \to w\), hence system (57) and its operators take the forms

\[
\begin{align*}
 u_t &= d_1 u_{xx} + u(1 - u - v), \\
 v_t &= d_2 v_{xx} + \frac{d_1 - d_2}{d_1 - d_3} v(1 - u - v) + uw + vw, \\
 w_t &= d_3 w_{xx} - \frac{d_2}{d_1} uw - \frac{d_3}{d_1} vw,
\end{align*}
\]

(58)

\[
\begin{align*}
 Q_1 &= \partial_t - \frac{d_1}{d_1 - d_2} w(\partial_u - \partial_v) - \frac{d_3}{d_1 - d_3} w\partial_w, \\
 Q_2 &= \partial_t - \frac{d_2}{d_1 - d_3} u(\partial_u - \partial_v) - \frac{(d_1 - d_2)d_3^2}{d_1(d_1 - d_3)^2} u\partial_w.
\end{align*}
\]

(59)

It can be easily checked using Theorem 1 [5] that system (58) admits the trivial Lie symmetry allowing to search only for plane wave solutions, in particular traveling fronts (see Section 4 [5]). Because operators (59) present non-Lie symmetries, we construct here exact solutions with more complicated structure.

It is well-known that using any \(Q\)-conditional symmetry, one can reduce the given two-dimensional system of PDEs to a system of ODEs via the same procedure as for classical Lie symmetries. Thus, to construct an ansatz corresponding to the operator \(Q\), the system of the linear first-order PDEs

\[
Q (u) = 0, \quad Q (v) = 0, \quad Q (w) = 0
\]

(60)

should be solved.

In the case of the operator \(Q_1\), system (60) takes the form

\[
\begin{align*}
 u_t &= -\frac{d_1}{d_1 - d_2} w, \\
 v_t &= \frac{d_1}{d_1 - d_2} w, \\
 w_t &= -\frac{d_3}{d_1 - d_3} w.
\end{align*}
\]

(61)
Solving system \((61)\), one obtains the ansatz
\[
\begin{align*}
 u &= \varphi_1(x) + \frac{d_1(d_1-d_3)}{d_3(d_1-d_2)} \varphi_3(x) \exp \left(\frac{d_3}{d_3-d_1} t \right), \\
 v &= \varphi_2(x) - \frac{d_1(d_1-d_3)}{d_3(d_1-d_2)} \varphi_3(x) \exp \left(-\frac{d_3}{d_3-d_1} t \right), \\
 w &= \varphi_3(x) \exp \left(\frac{d_3}{d_3-d_1} t \right),
\end{align*}
\]
where \(\varphi_1\), \(\varphi_2\) and \(\varphi_3\) are unknown functions.

In order to construct the reduced system, we substitute ansatz \((61)\) into \((58)\). Making the relevant calculations one arrives at the ODE system
\[
\begin{align*}
 d_1\varphi_1'' + \varphi_1 \left(1 - \varphi_1 - \varphi_2 \right) &= 0, \\
 d_2\varphi_2'' + \frac{d_2-d_1}{d_2-d_3} \varphi_2 \left(1 - \varphi_1 - \varphi_2 \right) &= 0, \\
 d_1\varphi_3'' - \varphi_3 \left(\varphi_1 + \varphi_2 + \frac{d_1}{d_3-d_1} \right) &= 0.
\end{align*}
\]
Using the same procedure for the operator \(Q_2\), we obtain the ansatz
\[
\begin{align*}
 u &= \varphi_1(x) \exp \left(\frac{d_3}{d_3-d_1} t \right), \\
 v &= \varphi_2(x) - \varphi_1(x) \exp \left(-\frac{d_3}{d_3-d_1} t \right), \\
 w &= \varphi_3(x) + \frac{d_1(d_1-d_3)}{d_1(d_1-d_2)} \varphi_1(x) \exp \left(\frac{d_3}{d_3-d_1} t \right),
\end{align*}
\]
and the ODE system
\[
\begin{align*}
 d_1\varphi_1'' - \varphi_1 \left(\frac{d_1}{d_3-d_1} + \varphi_2 \right) &= 0, \\
 d_2\varphi_2'' + \frac{d_2-d_1}{d_2-d_3} \varphi_2 \left(1 - \varphi_2 + \frac{d_1-d_3}{d_2-d_3} \varphi_3 \right) &= 0, \\
 d_1\varphi_3'' - \varphi_2\varphi_3 &= 0.
\end{align*}
\]

The ODE systems \((63)\) and \((65)\) are nonlinear systems, which are non-integrable. To the best of our knowledge, even particular solutions of these ODE systems are unknown. Thus, we consider some special cases allowing to construct their exact solutions.

Let us consider system \((63)\) with the additional restriction \(\varphi_2 = 1 - \varphi_1\), which essentially simplifies the system. Thus, we immediately obtain
\[
\begin{align*}
 \varphi_1 &= \alpha x + \beta, \\
 \varphi_2 &= -\alpha x + 1 - \beta,
\end{align*}
\]
where \(\alpha\) and \(\beta\) are arbitrary constants. Because \(\varphi_1 + \varphi_1 = 1\), the third equation of \((63)\) has the general solution
\[
\varphi_3 = c_1 \sin \left(\sqrt{D} x \right) + c_2 \cos \left(\sqrt{D} x \right), \quad D = \frac{d_3}{d_1(d_1-d_3)} > 0;
\]
Figure 1: Solution (67) of the HGF system (58) with $\alpha = 1/8$ (left) and $\alpha = 0$ (right). Other parameters are: $k = 1/4$, $\beta = 3/5$, $d_1 = 1$, $d_2 = 2$, $d_3 = 1/2$. The upper, middle and lower surfaces represent the functions u, v, and w, respectively.

$$\varphi_3 = c_1 e^{\sqrt{|D|} x} + c_2 e^{-\sqrt{|D|} x}, \quad D < 0$$
(hereafter c_1 and c_2 are arbitrary constants). Substituting the functions φ_1, φ_2 and φ_3 into ansatz (62), we observe that

$$(u, v, w) \rightarrow (\varphi_1, \varphi_2, 0) \text{ if } t \rightarrow \infty,$$

provided $d_1 > d_3$ (otherwise all the components tend to infinity with time).

Because the asymptotic behavior (66) is plausible from the applicability point of view, we concentrate ourselves on this case. Assuming for a simplicity that $c_1 = k(d_2 - d_1)D > 0$, $c_2 = 0$, $k > 0$ and substituting the functions φ_1, φ_2 and φ_3 into ansatz (62), we obtain exact solution of the HGF system (67)

$$
\begin{align*}
 u &= -k \sin \left(\sqrt{D} x \right) \exp (-d_1 D t) + \alpha x + \beta, \\
 v &= k \sin \left(\sqrt{D} x \right) \exp (-d_1 D t) - \alpha x + 1 - \beta, \\
 w &= k(d_2 - d_1)D \sin \left(\sqrt{D} x \right) \exp (-d_1 D t).
\end{align*}
$$

(67)

All the components of solution (67) are bounded and nonnegative in the domain

$$\Omega = \left\{ (t, x) \in (0, \infty) \times \left(0, \frac{\pi}{\sqrt{D}} \right) \right\}$$
if the additional restrictions
\[
\max \left\{ 0, k - \frac{\alpha \pi}{2 \sqrt{D}} \right\} \leq \beta \leq 1 - \frac{\alpha \pi}{\sqrt{D}}, \text{ if } \alpha \geq 0,
\]
\[
\max \left\{ -\frac{\alpha \pi}{\sqrt{D}}, k - \frac{\alpha \pi}{2 \sqrt{D}} \right\} \leq \beta \leq 1, \text{ if } \alpha < 0,
\]
take place. Notably, the asymptotic behavior \((66)\) takes the form
\[
(u, v, w) \to (\beta, 1 - \beta, 0) \text{ if } t \to \infty
\]
in the border case \(\alpha = 0\). Here the point \((\beta, 1 - \beta, 0)\) is nothing else but a steady-state point of system \((58)\).

Solution \((67)\) has a clear biological interpretation and describes such interaction between farmers and hunter-gatherers that hunter-gatherers disappear while the initial and converted farmers coexist. Moreover, the population of initial farmers is increasing with time, while the number of converted farmers is decreasing. An examples of the solution are presented in Fig. 1.

We also point out that the components of solution \((67)\) obey the property \(u + v = 1\). Interestingly, the same property possess numerical solutions presented in Fig.2 [1] (see curves for the components \(F\) and \(C\) excepting a vicinity of the point \(x = l\)). We note that the curves representing \(F\) and \(C\) vanish at the point \(x = l\) because the zero Dirichlet conditions are used in [1], hence the property \(F + C = 1\) is not valid in the vicinity of the point \(x = l\) (in contrast to our solution \((67)\)).

Now we turn to the reduced system \((65)\) and assume that the functions \(\varphi_2\) and \(\varphi_3\) are linearly dependent. One notes that second and third equations of system \((65)\) coincide if the restriction
\[
\varphi_3 = \frac{d_3(d_2 - d_1)}{d_1(d_1 - d_3)}(\varphi_2 - 1)
\]
takes place. Thus, we obtain the single ODE
\[
d_1\varphi_2'' = \varphi_2(\varphi_2 - 1).
\]
The general solution of the nonlinear equation \((70)\) can be found in the parametric form [30]:
\[
\varphi_2 = \pm \frac{3}{2} y, \ x = \sqrt{d_1} \int \frac{dy}{\sqrt{c_1 \pm y^3 - y^2}} + c_2.
\]
Here the constant \(c_2\) can be removed by applying the space translation \(x - c_2 \to x\). Moreover, we can obtain the exact solution of equation \((70)\) in an explicit form for some correctly-specified values of \(c_1\). For instance, solution \((71)\) with \(c_1 = 0\) and \(c_1 = \frac{4}{27}\) has the forms
\[
\varphi_2 = \frac{3}{2} \left(1 + \tan \frac{x}{2 \sqrt{d_1}} \right)
\]
and
\[\varphi_2 = \frac{1}{2} \left(-1 + 3 \tanh^2 \frac{x}{2\sqrt{d_1}} \right), \] (73)
respectively. Thus, the solution of the HGF system (58) corresponding to the function \(\varphi_2 \) from (72) have the form
\[u = \varphi_1(x) \exp \left(\frac{d_3}{d_3 - d_1} t \right), \]
\[v = \frac{3}{2} \left(1 + \tan^2 \frac{x}{2\sqrt{d_1}} \right) - \varphi_1(x) \exp \left(\frac{d_3}{d_3 - d_1} t \right), \]
\[w = \frac{d_3(d_3 - d_1)}{2d_1(d_1 - d_3)} \left(1 + 3 \tan^2 \frac{x}{2\sqrt{d_1}} \right) + \frac{d_3(d_3 - d_1)}{d_1(d_1 - d_3)} \varphi_1(x) \exp \left(\frac{d_3}{d_3 - d_1} t \right), \] (74)
where the function \(\varphi_1(x) \) is an arbitrary solution of the linear ODE
\[d_1 \varphi''_1 - \varphi_1 \left(\frac{3d_3 - d_1}{2(d_3 - d_1)} + \frac{3}{2} \tan^2 \frac{x}{2\sqrt{d_1}} \right) = 0. \] (75)
It turns out that equation (75) can be reduced to the hypergeometric equation:
\[z(z - 1) \psi''(z) - \left(z + \frac{1}{2} \right) \psi'(z) - \frac{1}{2} \left(1 - \frac{3d_3 - d_1}{d_3 - d_1} \right) \psi(z) = 0 \] (76)
by the substitution \[z = \sin^2 \frac{x}{2\sqrt{d_1}}, \quad \psi(z) = \cos^2 \frac{x}{2\sqrt{d_1}} \varphi_1(x). \] (77)
Thus, the general solution of the equation (76) can be presented in the form of the hypergeometric functions.

Equation (76) is integrable in terms of elementary functions provided diffusivities \(d_1 \) and \(d_3 \) have some correctly-specified values. For example, this equation with \(d_3 = \frac{5}{9} d_1 \) has the solution \(\psi(z) = (1 - z)^{\frac{3}{2}} \). Thus, using formulae (64), (69), (73), (74), (77) and transformation \(x \to \sqrt{d_1} x \), we obtain the exact solution
\[u = c_1 \cos^3 \frac{x}{2} \exp \left(-\frac{5}{4} t \right), \]
\[v = \frac{3}{2} \left(1 + \tan^2 \frac{x}{2} \right) - c_1 \cos^3 \frac{x}{2} \exp \left(-\frac{5}{4} t \right), \]
\[w = \frac{5(d_3 - d_1)}{8} \left(1 + 3 \tan^2 \frac{x}{2} \right) + c_1 \frac{5(1-d)}{4} \cos^3 \frac{x}{2} \exp \left(-\frac{5}{4} t \right) \] (78)
of the HGF system
\[u_t = u_{xx} + u(1 - u - v), \]
\[v_t = dv_{xx} + \frac{9d - 5}{4} v(1 - u - v) + uw + vw, \]
\[w_t = \frac{5}{9} w_{xx} - \frac{5}{9} uw - \frac{5}{9} vw, \] (79)
where $d = \frac{4}{\pi}$. Now we observe that the exact solution (78) possesses the asymptotic behavior

$$(u, v, w) \to \left(0, \frac{3}{2} \left(1 + \tan^2 \frac{x}{2}\right), \frac{5(d - 1)}{8} \left(1 + 3 \tan^2 \frac{x}{2}\right)\right) \text{ if } t \to \infty.$$

In contrast to the exact solution (67), a possible interpretation of (78) says that the initial farmers disappear while the hunter-gatherers and converted farmers coexist. Moreover, the limiting distribution of the hunter-gatherers and converted farmers is nonconstant. The corresponding domain, in which all the components of solution (78) are bounded and nonnegative, can be easily specified if one sets $d > 1$ and $0 < c_1 \leq \frac{1}{2}$. Of course, this scenario looks unrealistic, however we have shown mathematically that the HGF model with some coefficients (for example as specified in (79)) admit a complete disappearance of the initial farmers.

Applying a similar procedure for the function φ_2 from (73), the exact solutions

$$u = \cosh^3 \frac{x}{2} e^{\frac{3}{4} t},$$
$$v = \frac{1}{2} \left(1 + 3 \tanh^2 \frac{x}{2}\right) - \cosh^3 \frac{x}{2} e^{\frac{3}{4} t},$$
$$w = \frac{27(d - 1)}{8} \left(1 - \tanh^2 \frac{x}{2}\right) + \frac{9(d - 1)}{4} \cosh^3 \frac{x}{2} e^{\frac{3}{4} t}$$

and

$$u = \sinh \frac{x}{2} \cosh^3 \frac{x}{2} e^{4t},$$
$$v = \frac{1}{2} \left(1 + 3 \tanh^2 \frac{x}{2}\right) - \sinh \frac{x}{2} \cosh^3 \frac{x}{2} e^{4t},$$
$$w = 6(d - 1) \left(1 - \tanh^2 \frac{x}{2}\right) + 4(d - 1) \sinh \frac{x}{2} \cosh^3 \frac{x}{2} e^{4t}$$

of the HGF system (58) have been constructed. The exact solution (80) is valid if $d_1 = 1$, $d_2 = d$ and $d_3 = \frac{9}{5}$, while (81) is valid if $d_1 = 1$, $d_2 = d$ and $d_3 = \frac{1}{3}$. We note that solutions (80) and (81) are growing unboundedly with time, therefore their biological interpretation is questionable.

4 Conclusions

In this paper, Q-conditional (nonclassical) symmetry of the non-linear three-component system (1) used for describing the spread of farmers into a region occupied by hunter-gatherers was under study. The main result is formulated in Theorem 1 and it says that there are exactly 13 inequivalent systems of the form (1) admitting Q-conditional symmetry operators of the form (4). The result is rather unusual because the corresponding nonlinear system of DEs (see (7)-(8)) was fully integrated without any additional restrictions. For example, the nonlinear system of DEs corresponding to the three-component DLV system was not solved in [22] but only under the restriction that the symmetries in question are Q-conditional symmetries of the
first type (see the definition in [19]). A natural question arises: Why conditional symmetry of a more complicated system can be easier identified than the DLV system [2]? We have the following hypothesis: systems involving PDEs with the same structure (the DLV system is a typical example) possesses a wider conditional symmetry comparing with those involving equations with different structures. Roughly speaking, a symmetric structure of PDE systems leads to a wider symmetry.

It is interesting that two systems among the HGF systems admitting Q-conditional symmetry are reducible to the three-component DLV systems. It occurs in Cases 4 and 5 of Table 1 that the local substitution (10) reduces the corresponding systems to those arising in Cases 7 and 5 of Table 2 [22]. However, all other systems of the form (11) with the reaction terms listed in Table 1 are not reducible to any DLV system. It means that the relevant Q-conditional symmetries are indeed new and cannot derived from those presented in [22].

Each Q-conditional symmetry listed in Table 1 can be applied for reduction of the relevant HGF system to a system of ODEs and search for exact solutions. Here the symmetries listed in Case 2 of Table 1 were examined in order to find exact solutions of system (58) because the latter is the most interesting among others from both mathematical and applicability point of view. As a result several solutions in explicit form were derived (see formulae (67), (78), (80) and (81)). The most interesting among them is the exact solution (67), which describes plausible scenarios of interaction between the three populations and possesses (with correctly-specified parameters) similar properties to numerical solutions presented in the pioneering work [1]. In particular, the solution predicts the scenario when hunter-gatherers disappear while the initial and converted farmers coexist and their densities tend with time (see formula (68)) to the steady-state point of system (58).

Finally, we point out that the following problem is still open: to find Q-conditional symmetries of the HGF system in the so-called no-go case, i.e. to construct operators of the form (5). Our experience in the case of two-component reaction-diffusion systems [24] says that some progress can be done in this direction if one applies the definition of Q-conditional symmetry of the first type [19]. Another possibility is to use the method of heir equations introduced in [31].

References

[1] K. Aoki, M. Shida, N. Shigesada, Travelling wave solutions for the spread of farmers into a region occupied by hunter-gatherers, Theoretical Population Biology 50(1) (1996) 1–17.

[2] B. Straughan, Shocks and acceleration waves in modern continuum mechanics and in social systems, Evol. Equat. Contr. Theor. 3 (2014) 541–555.

[3] A. Kandler, R. Unger, J. Steele, Language shift, bilingualism and the future of Britain’s Celtic languages, Phil. Trans. R. Soc. B 365 (2010) 3855–3864.
[4] A. Kandler, R. Unger, Modeling language shift. In Diffusive spreading in nature, technology and society, Springer, Cham, 2018, pp. 351–373.

[5] R. Cherniha, V. Davydovych, A hunter-gatherer-farmer population model: Lie symmetries, exact solutions and their interpretation, Euro. J. Appl. Math. 30 (2019) 338–357.

[6] G.W. Bluman, J.D. Cole, The general similarity solution of the heat equation, J. Math. Mech. 18 (1969) 1025–1042.

[7] G. Saccomandi, A personal overview on the reduction methods for partial differential equations, Note di Matematica 23 (2005) 217–248.

[8] G.W. Bluman, A.F. Cheviakov, S.C. Anco, Applications of symmetry methods to partial differential equations, Springer, New York, 2010.

[9] R. Cherniha, V. Davydovych, Nonlinear reaction-diffusion systems — conditional symmetry, exact solutions and their applications in biology, Lecture Notes in Mathematics 2196, Springer, Cham, 2017.

[10] R. Cherniha, M. Serov, O. Pliukhin, Nonlinear reaction-diffusion-convection equations: Lie and conditional symmetry, exact solutions and their applications, Chapman and Hall/CRC, New York, 2018.

[11] W. Fushchych, W. Shtelen, M. Serov, Symmetry analysis and exact solutions of equations of nonlinear mathematical physics, Academic Publishers, Kluwer, 1993.

[12] P.J. Olver, Applications of Lie groups to differential equations. Springer, Berlin, 1986.

[13] L.V. Ovsiannikov, The Group Analysis of Differential Equations, Academic, New York, 1980.

[14] F. Allassia, M.C. Nucci, Symmetries and heir equations for the laminar boundary layer model, J. Math. Anal. Appl. 201 (1996) 911–942.

[15] T. Barannyk, Symmetry and exact solutions for systems of nonlinear reaction-diffusion equations, Proc. Inst. Math. Nat. Acad. Sci. Ukraine 43 (2002) 80–85.

[16] R. Cherniha, O. Pliukhin, New conditional symmetries and exact solutions of reaction-diffusion systems with power diffusivities, J. Phys. A: Math. Theor. 41 (2008) 185208.

[17] R.M. Cherniha, M.I. Serov, Nonlinear systems of the Burgers-type equations: Lie and Q-conditional symmetries, ansatze and solutions, J. Math. Anal. Appl. 282 (2003) 305–328.

[18] S. Murata, Non-classical symmetry and Riemann invariants, Int. J. Non-Lin. Mech. 41 (2006) 242–246.
[19] R. Cherniha, Conditional symmetries for systems of PDEs: new definition and their application for reaction-diffusion systems, J. Phys. A: Math. Theor. 43 (2010) 405207.

[20] D.J. Arrigo, D.A. Ekrut, J.R. Fliss, Le Long, Nonclassical symmetries of a class of Burgers’ systems, J. Math. Anal. Appl. 371 (2010) 813–820.

[21] R. Cherniha, V. Davydovych, Conditional symmetries and exact solutions of the diffusive Lotka–Volterra system, Math. Comput. Modelling. 54 (2011) 1238–1251.

[22] R. Cherniha, V. Davydovych, Lie and conditional symmetries of the three-component diffusive Lotka–Volterra system, J. Phys. A: Math. Theor. 46 (2013) 185204.

[23] M. Torrisi, R. Tracinà, Exact solutions of a reaction-diffusion system for Proteus mirabilis bacterial colonies, Nonlinear Anal. Real World Appl. 12 (2011) 1865–1874.

[24] R. Cherniha, V. Davydovych, Nonlinear reaction-diffusion systems with a non-constant diffusivity: conditional symmetries in no-go case, Appl. Math. Comput. 268 (2015) 23–34.

[25] A.S. Fokas, Q.M. Liu, Generalized conditional symmetries and exact solutions of nonintegrable equations. Theor. Math. Phys. 99 (1994), 571–582.

[26] R. Z. Zhdanov, Conditional Lie-Bäcklund symmetry and reduction of evolution equations. J. Phys. A: Math. Gen. 28 (1995), 3841–3850.

[27] L.N. Ji, C.Z. Qu, Conditional Lie–Bäcklund symmetry of evolution system and application for reaction–diffusion system. Stud. Appl. Math. 133 (2014), 118–149.

[28] J.P. Wang, L.N. Ji, Conditional Lie–Bäcklund symmetry, second-order differential constraint and direct reduction of diffusion systems. J. Math. Anal. Appl. 427 (2015), 1101–1118.

[29] D.J. Arrigo, J.M. Hill, P. Broadbridge, Nonclassical symmetries reductions of the linear diffusion equation with a nonlinear source, IMA Jour. Appl. Math. 52 (1994) 1–24.

[30] A.D. Polyanin, V.F. Zaitsev, Handbook of exact solutions for ordinary differential equations, CRC Press Company, Boca Raton, 2003.

[31] M.C. Nucci, Iterations of the non-classical symmetries method and conditional Lie-Bäcklund symmetries. J. Phys. A: Math. Gen. 29 (1996), 8117–8122.