WILD SOLUTIONS OF THE NAVIER-STOKES EQUATIONS WHOSE SINGULAR SETS IN TIME
HAVE HAUSDORFF DIMENSION STRICTLY LESS THAN 1

TRISTAN BUCKMASTER, MARIA COLOMBO, AND VLAD VICOL

ABSTRACT. We prove non-uniqueness for a class of weak solutions to the Navier-Stokes equations which have bounded kinetic energy, integrable vorticity, and are smooth outside a fractal set of singular times with Hausdorff dimension strictly less than 1.

1. INTRODUCTION

Throughout this paper we consider the incompressible three dimensional Navier-Stokes equations:

\[\partial_t v + \text{div} (v \otimes v) + \nabla p - \Delta v = 0 \]
\[\text{div} v = 0 \]
\[v|_{t=0} = v_0 \]

posed on the torus \(T^3 = [-\pi, \pi]^3 \). We consider solutions of zero mean, i.e. \(\int_{T^3} v(x,t) dx = 0 \) for all \(t \in [0,T] \). The notion of weak solution of (1.1) that we work with in this paper is that of a distributional solution, which has bounded kinetic energy, and is strongly continuous in time:

Definition 1.1 (Weak solution). Given any zero mean initial datum \(v_0 \in L^2 \), we say \(v \in C^0([0,T);L^2(T^3)) \) is a weak solution of the Cauchy problem for the Navier-Stokes equations (1.3) if the vector field \(v(\cdot, t) \) is weakly divergence-free for all \(t \in [0, T] \), has zero mean, and

\[\int_{T^3} v_0 \cdot \varphi(\cdot,0) dx + \int_0^T \int_{T^3} v \cdot (\partial_t \varphi + (v \cdot \nabla) \varphi + \Delta \varphi) dx dt = 0 \]

holds for any test function \(\varphi \in C_0^\infty(T^3 \times [0,T)) \) such that \(\varphi(\cdot, t) \) is divergence-free for all \(t \).

In view of the \(C^0([0,T];L^2(T^3)) \) regularity, by [13] we have that the above defined weak solutions are also mild or Oseen solutions (see also [30, Chapter 6]) of the Navier-Stokes equations. That is, for \(t \in [0,T] \) we have

\[v(\cdot, t) = e^{t\Delta} v_0 + \int_0^t e^{(t-s)\Delta} \mathbb{P} H \text{div} (v(\cdot, s) \otimes v(\cdot, s)) ds. \] (1.2)

Here \(\mathbb{P} H \) is the Helmholtz projector and \(e^{t\Delta} f \) is the heat extension of \(f \). Our main result of this paper is as follows.

Theorem 1.1 (Main result). There exists a \(\beta > 0 \) such that the following holds. For \(T > 0 \), let \(u^{(1)}, u^{(2)} \in C^0([0,T];H^3(T^3)) \) be two strong solutions of the Navier-Stokes equations (1.1a)-(1.1b) on \([0,T] \), with data \(u^{(1)}(0,x) \) and \(u^{(2)}(0,x) \) of zero mean. There exists a weak solution \(v \) of the Cauchy problem to (1.1) on \([0,T] \) with initial datum \(v|_{t=0} = u^{(1)}|_{t=0} \), which has the additional regularity

\[v \in C^0([0,T];H^3(T^3) \cap W^{1,1+\beta}(T^3)) \],

and such that

\[v \equiv u^{(1)} \text{ on } [0,T/3], \quad \text{ and } \quad v \equiv u^{(2)} \text{ on } [2T/3,T] \].

Moreover, for every such \(v \) there exists a zero Lebesgue measure set of times \(\Sigma_T \subset (0,T) \) with Hausdorff (in fact box-counting) dimension less than \(1 - \beta \), such that

\[v \in C^\infty((0,T \setminus \Sigma_T) \times T^3) \].

In particular, the weak solution \(v \) is almost everywhere smooth.

The outline of the proof of Theorem 1.1 is given in Section 2, while the detailed estimates are done in Sections 3–5.
Remark 1.2 (Non-uniqueness of weak solutions for strong initial datum). Theorem 1.1 immediately implies that weak solutions of the Cauchy problem for the Navier-Stokes equation (1.1), cf. Definition 1.1, are not unique. The cheap way to see this is to take any $T > 0$, $u^{(1)} \equiv 0$, and $u^{(2)}$ to be any nontrivial mean-free solution of the Navier-Stokes equation on $[0, T]$ (e.g. a shear flow). Then the weak solution v given by Theorem 1.1 is nontrivial on $[0, T]$, and thus 0 is not the only weak solution with 0 initial datum. Conversely, we note that taking $u^{(1)}$ to be any nontrivial solution to the Navier-Stokes equation, and $u^{(2)} \equiv 0$, Theorem 1.1 gives a counterexample to backwards (in time) uniqueness for weak solutions of (1.1), in the sense of Definition 1.1.

More generally, we emphasize that Theorem 1.1 proves the non-uniqueness of weak solutions to the Cauchy problem for the Navier-Stokes equation (1.1) for any strong initial datum. To see this, consider any $v_0 \in H^3$ and take $T = c \|v_0\|^{-1}_{H^3}$, where $c > 0$ is a sufficiently small universal constant (cf. Proposition 3.1). Then there exists a unique solution $u^{(1)} \in C^0([0, T]; H^3)$ to the Cauchy problem (1.3) with datum v_0. Moreover $\|u^{(1)}(T)\|_{L^2} \leq \|v_0\|_{L^2}$. However, using Theorem 1.1 one can glue to this solution the shear flow $u^{(2)}(x_1, x_2, x_3, t) = (A e^{-t} \sin(x_2), 0, 0)$. Then if A is chosen such that $A e^{-T} > 2 \|v_0\|_{L^2}$, we have $\|v(T)\|_{L^2} = \|u^{(2)}(T)\|_{L^2} > \|v_0\|_{L^2} \geq \|u^{(1)}(T)\|_{L^2}$. Therefore v is a weak solution to (1.3) with datum v_0, but v is not equal to the smooth solution $u^{(1)}$ at time T.

While for the above argument we have considered $v_0 \in H^3$, it is clear that Theorem 1.1 also implies the non-uniqueness of weak solutions to the Cauchy problem for (1.1) for any initial datum for which one has unique local in time solvability of (1.1) (examples include $v_0 \in \dot{H}^{1/2}$ cf. [15], $v_0 \in L^3$ with zero mean cf. [24]; $v_0 \in BMO^{-1}$ which is small and has zero mean cf. [26]; see [29] for further details). Indeed, for any such initial datum the unique local in time solution $u^{(1)}$ is smooth in positive time, and hence for any $\varepsilon > 0$ we have $u^{(1)}(\cdot, \varepsilon) \in H^3$. We then apply Theorem 1.1 on the time interval $[\varepsilon, T]$, rather than $[0, T]$, in order to glue the strong solution to a shear flow with kinetic energy which is either strictly larger, or strictly less at time T.

1.1. Background. We make a few comments concerning different notions of solutions to the Navier-Stokes equation, other than those in Definition 1.1 (see [30] for a more detailed discussion). The weakest notion of solution to the Cauchy problem for (1.1) is that of a very weak solution: these are distributional solutions of (1.1) which only lie in $C^0_{\text{weak}}(0, T; L^2)$, and are weakly divergence free. However, one typically proves the existence of solutions which are stronger than this.

Indeed, for any L^2 initial datum v_0, Leray [31] constructed a distributional solution $v \in C^0_{\text{weak}}(0, \infty; L^2) \cap L^2(0, \infty; \dot{H}^1)$, and obeys the energy inequality $\|v(t)\|_{L^2}^2 + 2 \int_t^\infty \|\nabla v(\tau)\|_{L^2}^2 d\tau \leq \|v(s)\|_{L^2}^2$ for a.e. $s \geq 0$, and all $t > s$. See also the work of Hopf [18] on bounded domains. These are the Leray-Hopf weak solutions. One nice feature of Leray-Hopf weak solutions is that they possess epochs of regularity, i.e. many time intervals on which they are smooth. In fact, already Leray [31] made the observation that these weak solutions are almost everywhere in time smooth, since the putative singular set of times Σ_T has Hausdorff dimension $\leq 1/2$. This fact follows directly from two ingredients: the fact that for $v_0 \in H^1$ the maximal time of existence of a unique smooth solution is bounded from below by $c \|v_0\|_{H^1}^2$, and a Vitali-type covering lemma which may be combined with the $L^2_tH^1_x$ information provided by the energy inequality. Scheffer [42] went further to prove that the $1/2$-dimensional Hausdorff measure of Σ_T is 0. These results were strengthened to bounds on the box-counting dimension for Σ_T, cf. [41, 27]. See [30, 40] for further references.

Remark 1.3 (Weak solutions with partial regularity in time). We note that while the weak solutions constructed in Theorem 1.1 are not Leray-Hopf, they give the first example of a mild/weak solution to the Navier-Stokes equation whose singular set of times $\Sigma_T \subset (0, T]$ is both nonempty, and has Hausdorff (in fact, box-counting) dimension strictly less than 1. This is in contrast with the prior work [5], where Σ_T has dimension 1. It is in an interesting open problem to construct weak solutions to (1.1), in the sense of Definition 1.1, where the $1/2$-dimensional Hausdorff measure of the nonempty set of singular times is 0.

A fundamental step towards understanding the uniqueness and smoothness of weak solutions was to introduce the concept of a suitable weak solution, by Scheffer [42] and Caffarelli-Kohn-Nirenberg [6]. Suitable weak solutions obey a localized in space-time version of the energy inequality, and they have partial regularity in space and time: the putative singular set of points in space-time has 1-dimensional parabolic Hausdorff measure 0. See the reviews [40, 30] for more recent extensions and further references.

The uniqueness of suitable weak solutions or of Leray-Hopf weak solutions is an outstanding open problem. The weak-strong uniqueness result of Prodi-Serrin [39, 43] states that if there exists a weak/mild solution $v \in L^\infty_t L^2_x \cap
Theorem 1.5. \(\alpha\) in positive time. In [45] it was proven that slightly below the critical threshold (1.1) Here we consider the that the kinetic energy space is supercritical with respect to the natural scaling invariance associated to (1.1). In fact, the energy supercritical hyperdissipative Navier-Stokes equation.

\[
\text{solution } v \text{ is invariant under the Navier-Stokes scaling map } \lambda x, \lambda t. \text{ This solution } v \text{ is smooth except for a set of times of Hausdorff dimension } \nu < 1. \text{ The non-uniqueness of Leray-Hopf weak solutions may already be expected in the regularity class } L^3_t L^3_x. \text{ Compelling numerical evidence in support of this conjecture was recently provided by Guillod-Sverák [17]. A related interesting open problem is to establish the non-uniqueness of mild/weak solutions to (1.1) in the regularity class } C^0_t L^2_x H^1_x, \text{ for any } q \in [2, 3].
\]

We conclude this subsection by revisiting the non-uniqueness result of Remark 1.2, for rough initial datum:

Remark 1.4 (Non-uniqueness of very weak solutions for any \(L^2 \) initial datum). If instead of the weak solutions of Definition 1.1 we consider very weak solutions of (1.1), they only lie in \(C^0_t L^2_x \), then Theorem 1.1 implies that the non-uniqueness for the Cauchy problem holds for any \(L^2 \) initial datum of zero mean, within the class of very weak solutions. Indeed, for any such datum, by the work of Leray there exists at least one very weak solution \(u \) to the Cauchy problem for (1.1), which in fact is smooth most of the time. Pick any regular time \(t_0 > 0 \) of, and let \(v_0 = u(t_0) \in H^3 \). We then apply the argument of Remark 1.2 on the time interval \([t_0, t_0 + T]\), with \(u^{(1)} \) being the unique local in time smooth solution of (1.1) with initial datum \(v_0 \) at time \(t_0 \). Note that by weak-strong uniqueness we in fact have that the Leray solution \(u \) is equal to \(u^{(1)} \) on \([t_0, t_0 + T]\). In view of Theorem 1.1 we can construct a very weak solution \(v \) which is equal to \(u \) on \([0, t_0 + T/3]\), and equal to a shear flow of our choice on \([t_0 + 2T/3, T]\). This solution \(v \) is smooth except for a set of times of Hausdorff dimension < 1, and is different from the Leray solution \(u \).

1.2. The energy supercritical hypodissipative Navier-Stokes equation. The proof of Theorem 1.1 uses essentially that the kinetic energy space is supercritical with respect to the natural scaling invariance associated to (1.1). In fact, the proof applies mutatis mutandis to the energy supercritical \(\alpha\)-hyperdissipative Navier-Stokes equation

\[
\begin{align*}
\partial_t v + \nabla (v \otimes v) + \nabla p + (\nabla)^\alpha v &= 0 \\
\text{div } v &= 0 \\
v|_{t=0} &= v_0.
\end{align*}
\]

Here we consider the energy supercritical regime \(\alpha \in [1, 5/4)\). Indeed, (1.3) is invariant under the scaling map \(v(x, t) \mapsto v_\lambda(x, t) = \lambda^{2\alpha-1} v(\lambda x, \lambda^2 t)\), and the energy norm \(L^\infty_t L^3_x\) is invariant under this map for \(\alpha = 5/4\). Definition 1.1, with \(\Delta \varphi\) replaced by \(-(-\nabla)^\alpha \varphi\), gives the notion of a weak solution for (1.3). Our result is:

Theorem 1.5 (The hypodissipative problem). For \(\alpha \in [1, 5/4)\) there exists \(\beta = \beta(\alpha) > 0\) such that Theorem 1.1, and thus also Remark 1.2, holds with system (1.1) replaced by the more general system (1.3).

The system (1.3) was first considered by Lions in [32, 33] for \(\alpha\) in the critical and subcritical regime \(\alpha \geq 5/4\). Lions proved the existence and uniqueness of Leray-weak solutions, for any \(L^2\) initial datum. These solutions are regular in positive time. In [45] it was proven that slightly below the critical threshold \(\alpha = 5/4\) the existence of a globally regular solution still holds when the right-hand side of the first equation in (1.3) is replaced by a logarithmically supercritical operator. For \(\alpha \in [3/4, 1)\) and \((1, 5/4)\) partial regularity results à la Caffarelli-Kohn-Nirenberg were established in [25, 44] and [8]. These works show the existence of a weak solution whose putative singular set (in space-time) has \((5 - 4\alpha)\)-dimensional Hausdorff measure 0. In the opposite direction, the recent works [7, 12] prove the non-uniqueness of Leray-weak solutions to (1.3) in the parameter ranges \(\alpha < 1/5\), respectively \(\alpha < 1/3\). The non-uniqueness of weak solutions in the sense of Definition 1.1 is also shown to hold for \(\alpha < 1/2\).

We note that very recently, by adapting the arguments in [5], Luo and Titi [35] demonstrated the non-uniqueness of very weak solutions for (1.3) in the parameter range \(\alpha \in (1, 5/4)\). When compared to [35] the weak solutions constructed in this paper have the additional property that their set of singular times has Hausdorff dimension strictly less than 1. Together, the uniqueness result [33], the non-uniqueness results of [35], and of this work, confirm the well-posedness criticality of the exponent \(\alpha = 5/4\), within the class of weak solutions defined in Definition 1.1.

We give the proof of Theorem 1.5 for general values of \(\alpha < 5/4\). Theorem 1.1 follows by restricting to \(\alpha = 1\).

\footnote{The \(L^2_t L^3_x\) norm, for \(2/p + 3/q = 1\), is invariant under the Navier-Stokes scaling map \(v(x, t) \mapsto v_\lambda(x, t) = \lambda v(\lambda x, \lambda^2 t)\). Spaces that obey these properties are called scaling critical spaces. Since the Leray-Hopf energy space \(L^\infty_t L^2_x \cap L^3_t H^1_x\) obeys \(2/\infty + 3/2 = 2/2 + 3/6 = 3/2 > 1\), we may call the system (1.1) energy supercritical.}
The proof of Theorem 1.5 proceeds via a convex integration scheme based on the scheme introduced in [5], which is itself built on a long line of work initiated by De Lellis and Székelyhidi Jr. [10], culminating in the eventual resolution of Onsager’s conjecture by Isett [19] (cf. [11, 2, 1, 3, 9, 4, 20]). Such a scheme is used to inductively define a sequence of approximate solutions, converging to a weak solution of (1.3). The principal new idea of this paper is to create good regions in time where the approximate solutions are strong solutions to (1.3) and are untouched in later inductive steps. This is achieved by employing the method of gluing introduced by Isett [19] (cf. [4]). Taking the countable union of the good regions over each inductive step, one forms a fractal set, whose complement has Hausdorff dimension strictly less than 1. This is explained in detail in Section 2.1 and 2.2 below. The concept of good regions is partially inspired by similar concepts introduced in [1] (cf. [3]). An additional novelty of the present work is the introduction of intermittent jets which replace the intermittent Beltrami flows of [5] as the fundamental building blocks on which the convex integration scheme in based (see Section 2.3 and 4.1).

2. Outline of the proof

For every index $q \in \mathbb{N}$ we will construct a solution (v_q, \hat{R}_q) to the Navier-Stokes-Reynolds system

$$\begin{align*}
\partial_t v_q + \text{div} (v_q \otimes v_q) + \nabla p_q + (-\Delta)^{\alpha} v_q &= \text{div} \hat{R}_q \quad (2.1a) \\
\text{div} v_q &= 0, \quad (2.1b)
\end{align*}$$

where \hat{R}_q is a trace-free symmetric matrix. The pressure p_q is normalized to have zero mean on \mathbb{T}^3 and is explicitly given by the formula

$$p_q = \text{div} \Delta^{-1} \text{div} (\hat{R}_q - v_q \otimes v_q). \quad (2.2)$$

Here we use the convention that for a 2 tensor $S = (S^{ij})_{i,j=1}^3$ the divergence contracts on the second component, i.e. $(\text{div} S)^i = \partial_i S^{ij}$. The summation convention on repeated indices is used throughout.

Fix a sufficiently large integer $b = b(\alpha) > 0$.

2 Depending on this choice of b, fix a sufficiently small parameter $eta = \beta(\alpha, b) > 0$. In particular, $\beta b \ll 1$.

The size of the Reynolds stress \hat{R}_q will be measured in terms of a size parameter

$$\delta_q = \lambda_q \lambda_q^{-2\beta} \quad (2.3)$$

where λ_q is a frequency parameter defined by

$$\lambda_q = a(\beta b)$$

where $a \gg 1$ is an large real number to be chosen later. Note that $\delta_1 = \lambda_1^{-\beta} a^{\beta b}$ is large if a is sufficiently large.

For every $q \geq 0$ we assume that \hat{R}_q obeys the estimates

$$\begin{align*}
\|\hat{R}_q\|_{L^1(\mathbb{T}^3)} &\leq \lambda_q^{-\varepsilon_R} \delta_{q+1} \quad (2.4a) \\
\|\hat{R}_q\|_{H^3(\mathbb{T}^3)} &\leq \lambda_q^2 \quad (2.4b)
\end{align*}$$

for some $\varepsilon_R > 0$ to be chosen later, which depends only on the values of α, β, and b. For the approximate velocity field v_q, we assume that it obeys the estimates

$$\begin{align*}
\|v_q\|_{L^2(\mathbb{T}^3)} &\leq 2\delta_0^{1/2} - \delta_q^{1/2} \quad (2.5a) \\
\|v_q\|_{H^3(\mathbb{T}^3)} &\leq \lambda_q^4 \quad (2.5b)
\end{align*}$$

These inductive estimates will ensure that the approximate solutions v_q converge strongly in $C^0(0, T; L^2)$ to a weak solution v of the Navier-Stokes equation (1.3).

Consider $T > 0$ and fix the parameter sequences $\{\tau_q\}_{q \geq 0}$ and $\{\vartheta_q\}_{q \geq 1}$ defined in (2.7) and (2.8) below, which obey the heuristic bounds

$$\vartheta_{q+1} \ll \vartheta_q \ll \vartheta_q \ll 1. \quad (2.6)$$

For instance, it is sufficient to take $b(5 - 4\alpha) \geq 1000$, which verifies (4.43).

3 For instance, it is sufficient to require that $200 \beta b^2 \leq 5 - 4\alpha$. This verifies both (4.43) and (5.7).
In particular, for \(q \geq 1 \) we make the choices
\[
\vartheta_q = \lambda_{q-1}^{-7/4} \delta_q^{1/2}
\] (2.7)
and
\[
\tau_q = \vartheta_q \lambda_{q-1}^{-8/4} = \lambda_{q-1}^{-7-\epsilon/4} \delta_q^{1/2}.
\] (2.8)
For the special case \(q = 0 \) we set
\[
\tau_0 := \frac{T}{15}.
\]
For \(\vartheta_0 \) we do not need to assign a value.

In order to ensure that the singular set of times has Hausdorff dimension strictly less than 1, at every \(q \geq 0 \) we split the interval \([0, T]\) into a closed good set \(G^{(q)} \) and an open bad set
\[
B^{(q)} = [0, T] \setminus G^{(q)}
\]
which obey the following properties:

(i) \(G^{(0)} = [0, T/3] \cup [2T/3, T] \).

(ii) \(G^{(q-1)} \subset G^{(q)} \) for every \(q \geq 1 \).

(iii) \(B^{(q)} \) is a finite union of disjoint open intervals of length \(5\tau_q \).

(iv) For \(q \geq 1 \), the bad sets have measures which obey
\[
|B^{(q)}| \leq |B^{(q-1)}| \frac{10\tau_q}{\vartheta_q}.
\] (2.9)

(v) The velocity fields obey
\[
\text{if } t \in G^{(q)} \text{ for some } q' < q, \text{ then } v_q(t) = v_{q'}(t).
\] (2.10)

(vi) The residual Reynolds stress obeys
\[
\bar{R}_q(t) = 0 \text{ for all } t \in [0, T] \text{ such that } \text{dist}(t, G^{(q)}) \leq \tau_q.
\] (2.11)

Due to (2.11) and the parabolic regularization of the Navier-Stokes equation (cf. (3.4) below) we have that \(v_q \) is a \(C^\infty \) smooth exact solution of the Navier-Stokes equation on \(G^{(q)} \). In addition, (2.10) implies that \(v = v_q \) on \(G^{(q)} \setminus \{0\} \), and thus the limiting solution \(v \) is \(C^\infty \) smooth on \((G^{(q)} \setminus \{0\}) \times \mathbb{T}^3 \). This justifies that the singular set of times \(\Sigma_T \) obeys
\[
\Sigma_T \subset \bigcap_{q \geq 0} B^{(q)}.
\] (2.12)

It thus follows from (2.9) and the definitions of \(\tau_q \) and \(\vartheta_q \) in (2.7) and (2.8) that

\[
|B^{(q)}| \leq |B^{(0)}| \prod_{q' = 1}^q \frac{10\tau_{q'}}{\vartheta_{q'}} \leq 10^q T \prod_{q' = 0}^{q-1} \lambda_{q'}^{-8/4} \leq T 10^q a^{-\frac{\epsilon R (q-1)}{4(2b-1)}} \leq T 10^q \lambda_q^{-\frac{\epsilon R}{8(2b-1)}}.
\] (2.13)

Here we have also used the definition of \(\lambda_q \), and the fact that \(b > 2 \). To estimate the box-counting (Minkowski) dimension of \(\Sigma_T \), we note that for every \(q \geq 0 \), the set \(\Sigma_T \) is covered by \(B^{(q)} \), which itself consists of disjoint intervals of length \(5\tau_q \). Due to (2.13), the number of such intervals is at most
\[
T 10^q \lambda_q^{-\frac{\epsilon R}{8(b-1)}} (5\tau_q)^{-1}.
\]

By (2.12), and the super-exponential growth of \(\lambda_q \), we conclude that
\[
\dim_{\text{box}}(\Sigma_T) \leq \lim_{q \to \infty} \frac{\log(T) + q \log(10) - \frac{\epsilon R}{8(b-1)} \log(\lambda_q) - \log(5\tau_q)}{-\log(5\tau_q)}
\]
\[
= 1 - \lim_{q \to \infty} \frac{\frac{\epsilon R b}{8(b-1)} \log(\lambda_q) - \log(\tau_q)}{-\log(\tau_q)}
\]
\[
= 1 - \frac{\epsilon R b}{8(b-1)(7 + \epsilon R/4 + \beta b)} < 1 - \frac{\epsilon R}{64} < 1.
\] (2.14)

This implies that \(\Sigma_T \) also has box-counting dimension strictly less than 1.

\footnote{Observe that this condition is consistent with property (i) and the definition \(\tau_0 = T/15 \).}
Proposition 2.1 (Main Iteration Proposition). There exists a sufficiently small parameter \(\varepsilon = \varepsilon_R = \varepsilon_R(\alpha, b, \beta) \in (0, 1) \) and a sufficiently large parameter \(a_0 = a_0(\alpha, b, \beta, \varepsilon_R) \geq 1 \) such that for any \(a \geq a_0 \) satisfying the technical condition (2.24), the following holds: Let \((v_q, \dot{R}_q)\) be a pair solving the Navier-Stokes-Reynolds system (2.1) in \(T^3 \times [0, T] \) satisfying the inductive estimates (2.4a)–(2.5b), and a corresponding set \(G^{(q)} \) with the properties (i)–(vi) listed above. Then there exists a second pair \((v_{q+1}, \dot{R}_{q+1})\) solving (2.1) and a set \(G^{(q+1)} \) which satisfy (2.4a)–(2.5b) and (i)–(vi) with \(q \) replaced by \(q + 1 \). In addition we have that

\[
\|v_{q+1} - v_q\|_{L^2} \leq \delta^{1/2}_{q+1}. \tag{2.15}
\]

2.2. Gluing stage. The first stage of proving Proposition 2.1 is to start from the approximate solution \((v_q, \dot{R}_q)\) which obeys (2.4a)–(2.5b) and (2.11), and construct a new glued pair \((\bar{v}_q, \bar{R}_q)\), which solves (2.1), obeys bounds which are the same as (2.4a)–(2.5b) up to a factor of 2, but which has the advantage that \(\bar{R}_q \equiv 0 \) on \(T^3 \times B^{(q+1)} \).

Specifically, the new velocity field \(\bar{v}_q \) is defined as

\[
\bar{v}_q(x, t) = \sum_i \eta_i(t)v_i(x, t),
\]

where the \(\eta_i \) are certain cutoff functions with support in the intervals \([t_i, t_{i+1} + \tau_{q+1}]\) (with \(t_i = \partial_{q+1}t_i \)) that form a partition of unity (see (3.26) below), and the \(v_i \) are exact solutions of the Navier-Stokes equation with initial datum given by \(v_i(t_{i-1}) = v_q(t_{i-1}) \). Due to parabolic regularization, these exact solutions \(v_i \) are \(C^\infty \) smooth in space and time on the support of \(\eta_i \), so that \(\bar{v}_q \) inherits this \(C^\infty \) regularity. This is in contrast to \((v_q, \dot{R}_q)\), which is only assumed to be \(H^3 \) smooth. Trivially, in the regions where a cut-off \(\eta_i \) is identically 1, \(\bar{v}_q \) is an exact solution to (1.3).

Observe that property (2.11) ensures that \(v_q \) is already an exact solution of (1.3) on a large subset of \([0, T]\), namely the \(\tau_q \) neighborhood of \(G^{(q)} \). In particular if \(t_{i-1} \) and \(t_i \) both lie within this neighborhood, then by uniqueness of the Navier-Stokes equation in \(C^\infty H^3 \), we have \(v_i = v_{i+1} = v_q \) on the overlapping region \(\text{supp} \eta_i \eta_{i+1} \). Hence \(\bar{v}_q \equiv v_q \) is an exact solution here. In order to single out overlapping regions where \(\bar{v}_q \) is not necessarily an exact solution of (1.3) we introduce the index set

\[
C = \left\{ i \in \{1, \ldots, n_{q+1}\} : \text{there exists } t \in [t_{i-1}, t_{i+1} + \tau_{q+1}] \text{ with } \dot{R}_q(t) \neq 0 \right\}. \tag{2.16}
\]

We then define

\[
B^{(q+1)} = \bigcup_{i \in C \text{ or } i-1 \in C} (t_i - 2\tau_{q+1}, t_i + 3\tau_{q+1}). \tag{2.17}
\]

By the discussion above, it will follow that \(\bar{v}_q \) is an exact solution on the complement of \(B^{(q+1)} \), namely \(G^{(q+1)} \). We prove in Section 3 below that the above defined good and bad sets at level \(q + 1 \) obey the postulated properties (i)–(iv).

In Section 3 we prove the following proposition:

Proposition 2.2. There exists a solution \((\bar{v}_q, \dot{\bar{R}}_q)\) of (2.1), such that

\[
\bar{v}_q \equiv v_q \quad \text{on} \quad T^3 \times G^{(q)}, \tag{2.18}
\]

and moreover the velocity field \(\bar{v}_q \) satisfies:

\[
\|\bar{v}_q\|_{L^2} \leq 2t^{1/2} - \delta^{1/2}_q \tag{2.19a}
\]

\[
\|\bar{v}_q\|_{L^3} \leq 2\lambda^4_q \tag{2.19b}
\]

\[
\|\bar{v}_q - v_q\|_{L^2} \leq \delta^{1/2}_{q+1} \tag{2.19c}
\]

\[
\|\partial_t^M D^N \bar{v}_q\|_{L^\infty((\tau_{q+1}, 0); H^3)} \lesssim \tau_{q+1}^{-M} \partial_{q+1}^{M} \lambda^4_q \lesssim \tau_{q+1}^{-M-N} \lambda^4_q \tag{2.19d}
\]

and the stress tensor \(\dot{\bar{R}}_q \) satisfies:

\[
\dot{\bar{R}}_q(t) = 0 \quad \text{for all} \quad t \in (0, T] \quad \text{such that} \quad \text{dist}(t, G^{(q+1)}) \leq 2\tau_{q+1} \tag{2.20a}
\]

\[
\|\dot{\bar{R}}_q\|_{L^1} \leq \tau_{q+1}^{-1} \partial_{q+1}^{M-N} \lambda^{M-N} \lesssim \lambda^{-M-N} \delta_{q+1} \tag{2.20b}
\]

\[
\|\partial_t^M D^N \dot{\bar{R}}_q\|_{H^3} \lesssim \tau_{q+1}^{-M} \partial_{q+1}^{M} \lambda^4_q \lesssim \tau_{q+1}^{-M-N} \lambda^4_q \tag{2.20c}
\]

for all \(M, N \geq 0 \).
2.3. Convex integration stage. In this step we start from the pair \((\tau_0, \hat{R}_0)\), and construct a new pair \((v_{q+1}, \tilde{R}_{q+1})\) with \(\tilde{R}_{q+1}\) obeying (2.11) at level \(q + 1\), and which obeys the bounds (2.4a)–(2.5b) at level \(q + 1\).

The perturbation \(w_{q+1} := v_{q+1} - \tau_0\) will be constructed to correct for \(\tilde{R}_q\). Moreover, \(w_{q+1}\) will be designed to have support outside a \(\tau_{q+1}\) neighborhood of \(G^{(q+1)}\) – this ensures properties (v) and (vi) in Section 2.1 will be satisfied. As in [5], the perturbation \(w_{q+1}\) will consist of three parts: the principal part \(w_{q+1}^{(p)}\), the divergence corrector \(w_{q+1}^{(c)}\), and the temporal corrector \(w_{q+1}^{(t)}\).

The principal part \(w_{q+1}^{(p)}\) will be constructed as a sum of intermittent jets \(W_{\xi}(\ell)\) (defined in (4.4), Section 4.1). The use of intermittent jets replaces the use of intermittent Beltrami waves in [5]. The principal difference of intermittent jets from intermittent Beltrami waves is that their definition is in physical space rather than frequency space. Consequently, intermittent jets are comparatively simpler to define and they can be designed to have disjoint support, mimicking the advantageous support properties of Mikado flows, as introduced in [9]. We note that the intermittent variants of the \(d - 1\) dimensional Mikado flows found in [37, 36], lying in \(d\)-dimensional space, are insufficiently intermittent to be used as building block for a 3-D Navier-Stokes convex integration scheme.\(^5\) Intermittent jets are inherently 3-dimensional (in space), with the trade-off that they are time dependent. We note in passing that utilizing intermittent jets, it is likely that the convex integration results [37, 38] on the transport equation may be improved.

In the definition of \(w_{q+1}^{(p)}\), the intermittent jets \(W_{\xi}(\ell)\) will be weighted by functions \(a_{\xi}(\ell)\):

\[
w_{q+1}^{(p)} = \sum_{\xi} a_{\xi}(\ell) W_{\xi}(\ell),
\]

where \(a_{\xi}(\ell)\) are constructed such that

\[
div \left(w_{q+1}^{(p)} \otimes w_{q+1}^{(p)} + \hat{R}_q \right) \sim \frac{1}{\mu} \partial_{\ell} \mathbb{P}_H \mathbb{P} \neq 0 \left(\sum_{\xi} a_{\xi}^2 |W_{\xi}(\ell)|^2 \xi \right) + \text{(pressure gradient)} + \text{(high frequency error)}
\]

for some large parameter \(\mu\). As is typical in convex integration schemes, the high frequency error can be ignored since its contribution to \(\tilde{R}_{q+1}\) can be bounded using the gain associated with solving the divergence equation. The temporal corrector \(w_{q+1}^{(t)}\) is then defined to be

\[
w_{q+1}^{(t)} := -\frac{1}{\mu} \mathbb{P}_H \mathbb{P} \neq 0 \left(\sum_{\xi} a_{\xi}^2 |W_{\xi}(\ell)|^2 \xi \right),
\]

where \(\mathbb{P}_H\) is the Helmholtz projection, and \(\mathbb{P} \neq 0\) is the projection onto functions with mean zero. That is, \(\mathbb{P}_H f = f - \nabla(\Delta^{-1} \text{div} f)\) and \(\mathbb{P} \neq 0 f = f - f_{T^3}\). Hence we have

\[
div \left(w_{q+1}^{(p)} \otimes w_{q+1}^{(p)} + \hat{R}_q \right) + \partial_{\ell} w_{q+1}^{(t)} \sim \text{(pressure gradient)} + \text{(high frequency error)}.
\]

Finally, the divergence corrector \(w_{q+1}^{(c)}\) is designed such that \(\text{div} \left(w_{q+1}^{(p)} + w_{q+1}^{(c)} \right) \equiv 0\), and hence the perturbation

\[
w_{q+1} := w_{q+1}^{(p)} + w_{q+1}^{(c)} + w_{q+1}^{(t)}
\]

is divergence free.

The intermittent jets will be defined to have support confined to \((\ell_{\perp} \lambda_{q+1})^3\) many cylinders of diameter \(\sim \frac{1}{\lambda_{q+1}}\) and length \(\sim \frac{\ell_{\perp}}{\lambda_{q+1}}\). In particular, the support of \(w_{q+1}^{(p)}\) has measure \(\sim \ell_{\perp}^2\). Using the heuristic that \(\left\| w_{q+1}^{(p)} \right\|_{L^2}\) should be roughly the size \(\left\| \hat{R}_q \right\|_{L^1}^{1/2}\), by the \(L^p\) de-correlation result in Lemma 4.5 below, one would expect an \(L^p\) estimate on \(w_{q+1}^{(p)}\) of the form

\[
\left\| w_{q+1}^{(p)} \right\|_{L^p} \sim \ell_{q+1}^{1/2} \ell_{\perp}^{3/p-1} \ell_{\parallel}^{1/p-1/2}.
\]

\(^5\)For Navier-Stokes in dimensions greater than 3, they are however applicable, as demonstrated in [36].
Indeed we will prove estimate (2.22) for \(p = 2 \) and prove a slightly weaker estimate for \(1 < p < 2 \) (see Proposition 4.4). Utilizing (2.22), one may heuristically estimate the contribution of \((-\Delta)^{\alpha}u_{(p)q+1}^{(p)}\) to the new Reynolds stress \(\bar{R}_{q+1} \)
\[
\left\| \nabla^{-1}(-\Delta)^{\alpha}(w_{(p)q+1}^{(p)}) \right\|_{L^1} \sim \left\| u_{(p)q+1}^{(p)} \right\|_{W_{2\alpha-1,p}} \sim \delta^{1/2} \delta^{1/2(p-1/2)} \delta^{1/2(p-1/2)} \delta^{2\alpha-1} \,.
\]
with \(p > 1 \) arbitrarily close to \(1 \). Here we see the necessity of the 3-dimensionality of the intermittent jets.

In order to ensure that an identity of the form (2.21) holds, the cylinder supports of the intermittent jets will be shifting at a speed \(\ell_\perp \lambda_{q+1} \mu \). Heuristically, one would then expect that the contribution of \(\partial_t w_{(p)q+1}^{(p)} \) to \(\bar{R}_{q+1} \) is small, one would need to impose an upper bound on the choice of \(\mu \). One then needs to choose \(\mu \) carefully in order to balance different contributions to the Reynolds stress error. Explicitly, we will define the parameters \(\mu, \ell_\perp \) and \(\ell_\parallel \) by
\[
\mu = \frac{\lambda_{q+1}^{2\alpha-1} \ell_\perp}{\ell_\parallel}, \quad \ell_\perp := \frac{20a_{q+1}}{24}, \quad \text{and} \quad \ell_\parallel := \frac{20a_{q+1}}{24}.
\]
With these choices, we have
\[
\ell_\parallel^{-1} \ll \ell_\perp^{-1} \ll \lambda_{q+1},
\]
since \(\alpha < 5/4 \). For technical reasons, we will require that \(\lambda_{q+1} \ell_\parallel \in \mathbb{N} \). This may be achieved by assuming that
\[
a \frac{25 - 20a}{24} \in \mathbb{N},
\]
where we recall that we have previously assumed that \(b \in \mathbb{N} \).

2.4. **Proof of Theorem 1.5.** Let \(u^{(1)} \) and \(u^{(2)} \) be two zero mean solutions of the Navier-Stokes equations (with different, zero-mean initial data), as in the statement of the theorem. Also, let \(b, \beta, \epsilon_R \), and \(a_0 \) be as in Proposition 2.1. Let \(\eta: [0, T] \to [0, 1] \) be a smooth cutoff function such that \(\eta = 1 \) on \([0, 2T/5]\) and \(\eta = 0 \) on \([3T/5, T]\).

Define
\[
v_0(x,t) = \eta(t)u^{(1)}(x,t) + (1 - \eta(t))u^{(2)}(x,t),
\]
and
\[
\bar{R}_0 = \partial_t \eta \mathcal{R}(u^{(1)} - u^{(2)}) - \eta(1 - \eta)(u^{(1)} - u^{(2)}) \otimes (u^{(1)} - u^{(2)}),
\]
where \(a \otimes b \) denotes the traceless part of the tensor \(a \otimes b \), and \(\mathcal{R} \) is a standard inverse divergence operator acting on vector fields \(v \) which have zero mean on \(\mathbb{T}^3 \) as
\[
(\mathcal{R}v)^{k\ell} = (\partial_k \Delta^{-1}v^{\ell} + \partial_\ell \Delta^{-1}v^k) - \frac{1}{2}(\delta_{k\ell} + \partial_k \partial_\ell \Delta^{-1}) \delta^{\alpha} \Delta^{-1} v
\]
for \(k, \ell \in \{1, 2, 3\} \). The above inverse divergence operator has the property that \(\mathcal{R}v(x) \) is a symmetric trace-free matrix for each \(x \in \mathbb{T}^3 \), and \(\mathcal{R} \) is an right inverse of the divergence operator, i.e. \(\text{div}(\mathcal{R}v) = v \). When \(v \) does not obey \(\int_{\mathbb{T}^3} vdx = 0 \), we overload notation and denote \(\mathcal{R}v := \mathcal{R}(v - \int_{\mathbb{T}^3} vdx) \). Note that \(\nabla \mathcal{R} \) is a Calderón-Zygmund operator, and that \(\mathcal{R} \) obeys the same elliptic regularity estimates as \(|\nabla|^{-1} \).

Observe that the pair \((v_0, \bar{R}_0) \) obeys the Navier-Stokes-Reynolds system (2.1), for a suitable 0-mean pressure scalar \(p_0 \) which may be computed by solving a Poisson equation. Moreover, let \(a_0, \beta \) and \(b \) be as in Proposition 2.1. Then choosing \(a \geq a_0 \) sufficiently large, the pair \((v_0, \bar{R}_0) \) satisfies (2.4a)-(2.5b). From the definition (2.25), it follows that \(\bar{R}_0 \) is supported on the interval \([2\tau/5, 3\tau/5]\). Since by definition \(G^{(0)} = [0, T/3] \cup [2\tau/3, T] \) and \(r_0 = T/15 \), we obtain property (2.11).

For \(q \geq 1 \) we inductively apply Proposition 2.1. The bound (2.5b) and (2.15) and interpolation yields
\[
\sum_{q=0}^{\infty} \| v_{q+1} - v_q \|_{\bar{R}^{q'}} \leq \sum_{q=0}^{\infty} \| v_{q+1} - v_{q+1} \|_{L^2}^{1 - \beta'/\beta} \left(\| v_{q+1} \|_{H^3} + \| v_q \|_{H^3} \right)^{\beta'/\beta}
\]
\[
\lesssim \sum_{q=0}^{\infty} \lambda_{q+1}^{-\frac{2\beta - \beta'}{24}} \lambda_q^{\frac{4\beta'}{24}}
\]
\[
\lesssim 1,
\]
for \(0 \leq \beta' < \frac{3\beta}{8 + \beta} \), where the implicit constant is universal (independent of \(a \)). Hence there exists
\[
v := \lim_{q \to \infty} v_q \in H^{\beta'},
\]

Since \(\| \tilde{R}_q \|_{L^1} \to 0 \) as \(q \to \infty \), and since \(v_q \to v \) also in \(L_t^\infty L^2 + \beta''' \) for some \(\beta''' > 0 \), it is straightforward to show that \(v \) is a weak solution of the Navier-Stokes equation. Moreover, as a consequence of properties (i) and (v) from Section 2.1 and the definition of \(v_0 \) we have
\[
v = u^{(1)} \text{ on } [0, T/3], \quad \text{and} \quad v = u^{(2)} \text{ on } [T/3, T].
\]
The argument leading to (2.14) implies that the singular set of times of \(v \) has box-counting dimension (and hence Hausdorff dimension) less than \(\epsilon_{	ext{nf}/64} \). Finally, the claimed \(C^0 W^{1,1+\beta'''} \) regularity on \(v \), for some \(\beta''' > 0 \), follows from the maximal regularity of the heat equation (fractional heat equation if \(\alpha > 1 \)), once we note that \(\| \tilde{P}_H (v \otimes v) \|_{L_t^{1+\beta''''}} \lesssim \| v \|_{H^{\beta''''}}^2 \) if \(\beta'''' \) is chosen suitably small. The theorem then holds with \(\tilde{\beta} = \min \{ \beta'', \beta', \epsilon_{	ext{nf}/64} \} > 0 \).

3. Gluing step

3.1. Local in time estimates. It is well-known Navier-Stokes equations are locally (in time) well-posed in \(H^3 \), which is a scaling subcritical space. Moreover, away from the initial time, parabolic regularization takes place. We summarize these facts, in version that is suitable for the applications in this paper.

Proposition 3.1. Let \(v_0 = v|_{t=t_0} \in H^3(\mathbb{T}^3) \) have zero mean on \(\mathbb{T}^3 \), and consider the Cauchy problem for (1.3) with this initial condition. There exists a universal constant \(c \in (0, 1) \) such that if \(t_1 > t_0 \) is such that
\[
0 < t_1 - t_0 \leq \frac{c}{\| v_0 \|_{H^3}},
\]
then there exists a unique strong solution to (1.3) on \([t_0, t_1]\), and it obeys the estimates
\[
\sup_{t \in [t_0, t_1]} \| v(t) \|_{L^2} \leq 2 \int_{t_0}^{t_1} \| v(t) \|_{H^3}^2 \, dt \leq \| v_0 \|_{L^2}^2.
\]
Moreover, assuming that
\[
0 < t_1 - t_0 \leq \frac{c}{\| v_0 \|_{H^3} (1 + \| v_0 \|_{L^2}^2) \| v_0 \|_{H^3}^\alpha},
\]
we have that
\[
\sup_{t \in [t_0, t_1]} \| t - t_0 \|_{\mathbb{R}^3}^N \| \partial_t^M \partial_x^N v(t) \|_{H^3} \lesssim \| v_0 \|_{H^3},
\]
for any \(N \geq 0 \) and \(M \in \{0, 1\} \). The implicit constant may depend on \(\alpha, N, M \).

Proof of Proposition 3.1. The energy inequality gives a global in time control on \(\| v(t) \|_{L^2} \):
\[
\frac{1}{2} \frac{d}{dt} \| v(t) \|_{L^2}^2 \leq - \| v(t) \|_{H^3}^2.
\]
From the Gagliardo-Nirenberg-Sobolev and the Poincaré inequalities, and using that \(\nabla \cdot v = 0 \) we obtain
\[
\frac{1}{2} \frac{d}{dt} \| v \|_{H^3}^2 + \| \nabla v \|_{H^{3+\sigma}}^2 \lesssim \| v \|_{H^3}^2 \| \nabla v \|_{L^\infty} + \| v \|_{H^3} \| \Delta v \|_{L^4}^2 \lesssim \| v \|_{H^3}^3,
\]
which gives the bound (3.2b) for a time interval \([t_0, t_1]\) with \(t_1 \) that obeys (3.1). The bound (3.2b) is subcritical, in the sense that an \(L_t^\infty H^3_x \) a priori estimate is sufficient to establish the uniqueness of the solution. The higher regularity claimed in (3.4) follows from the mild form of the solution
\[
v(t) = e^{-(t-t_0)(-\Delta)^\alpha} v_0 + \int_{t_0}^{t} e^{-(t-s)(-\Delta)^\alpha} \tilde{P}_H \nabla (v(s) \otimes v(s)) \, ds,
\]
and properties of the fractional heat equation which may be derived from Plancherel.

Let us first focus on the case \(M = 0 \). For \(\alpha = 1 \), estimate (3.4) is well-known, and follows from the instantaneous gain of analyticity of the solution [14], or a small modification of the below argument. For \(\alpha > 1 \) we briefly sketch the argument. Using Galilean invariance, let us only consider the case \(t_0 = 0 \). From the inequality
\[
\| uv \|_{H^3} \lesssim \| u \|_{H^3} \| v \|_{L^\infty} + \| u \|_{L^\infty} \| v \|_{H^3} \lesssim \| u \|_{H^3} \| v \|_{L^2}^{1/2} \| v \|_{H^3}^{1/2} + \| u \|_{L^2}^{1/2} \| u \|_{H^3}^{1/2} \| v \|_{H^3},
\]
and properties of the fractional heat equation which may be derived from Plancherel.
the formulation (3.5) and the boundedness of the Leray projector \mathbb{P}_H on L^2, we obtain

$$ t \frac{2}{\alpha} \| D^\alpha v(t) \|_{H^3} \leq t \frac{2}{\alpha} \left\| D e^{-t((\Delta)^\alpha)} \right\|_{L^2} \| v_0 \|_{H^3} + t \frac{2}{\alpha} \int_0^t \left\| D^2 e^{-(t-s)((\Delta)^\alpha)} \right\|_{L^2} \| v(s) \|_{H^3}^{\frac{3}{2}} \| v(s) \|_{L^2}^{\frac{1}{2}} ds $$

$$ \lesssim \| v_0 \|_{H^3} \left(1 + t^{1-\frac{2\alpha}{\alpha}} \| v_0 \|_{H^3}^{\frac{3}{2}} \| v_0 \|_{L^2}^{\frac{1}{2}} \right) $$

$$ \lesssim \| v_0 \|_{H^3} \left(1 + t^{\frac{4\alpha-1}{2\alpha}} \| v_0 \|_{H^3}^{\frac{3}{2}} \| v_0 \|_{L^2}^{\frac{1}{2}} \right) $$

from which (3.4) with $N = 1$ and $M = 0$ follows in view of (3.3). In order to treat the case $N \geq 2$ and $M = 0$, we first note that for $1 \leq n \leq N - 1$ by induction on N we have

$$ \| D^n (v \otimes v) \|_{H^3} \lesssim \sum_{j=0}^n \| D^j v \otimes D^{n-j} v \|_{H^3} $$

$$ \lesssim \sum_{j=0}^n \| D^j v \|_{H^3} \| D^{n-j} v \|_{H^3}^{\frac{1}{2}} \| D^{n-j} v \|_{L^2}^{\frac{1}{2}} $$

$$ \lesssim \sum_{j=0}^{n-3} \| D^j v \|_{H^3} \| D^{n-j} v \|_{H^3}^{\frac{1}{2}} \| D^{n-j-3} v \|_{H^3}^{\frac{1}{2}} \| D^{n-2} v \|_{H^3} \| D^2 v \|_{H^3}^{\frac{1}{2}} \| v \|_{H^3}^{\frac{1}{2}} \| v \|_{L^2}^{\frac{1}{2}} $$

$$ + \| D^{n-1} v \|_{H^3} \| D v \|_{H^3}^{\frac{1}{2}} \| v \|_{H^3}^{\frac{1}{2}} \| v \|_{L^2}^{\frac{1}{2}} + \| D^n v \|_{H^3} \| v \|_{H^3}^{\frac{1}{2}} \| v \|_{L^2}^{\frac{1}{2}} $$

$$ \lesssim \| v_0 \|_{H^3}^2 \frac{t^{-\frac{2\alpha}{\alpha} + 1}}{\alpha} + \| v_0 \|_{H^3}^{\frac{3}{2}} \frac{t^{-\frac{2\alpha}{\alpha} + 1}}{\alpha} \| v_0 \|_{L^2}^{\frac{1}{2}} $$

Using the above estimate with $n = N - 1$ we obtain that

$$ t \frac{2}{\alpha} \| D^N v(t) \|_{H^3} \leq t \frac{2}{\alpha} \left\| D^N e^{-t((\Delta)^\alpha)} \right\|_{L^2} \| v_0 \|_{H^3} $$

$$ + t \frac{2}{\alpha} \int_0^t \left\| D^2 e^{-(t-s)((\Delta)^\alpha)} \right\|_{L^2} \| v(s) \|_{H^3} ds $$

$$ \lesssim \| v_0 \|_{H^3} + t \frac{2}{\alpha} \| v_0 \|_{H^3}^{\frac{3}{2}} \frac{t^{-\frac{2\alpha}{\alpha} + 1}}{\alpha} + \| v_0 \|_{H^3}^{\frac{1}{2}} \frac{t^{-\frac{2\alpha}{\alpha} + 1}}{\alpha} \| v_0 \|_{L^2}^{\frac{1}{2}} $$

from which (3.4) follows in view of (3.3).

To obtain the desired bounds for $M = 1$, let us consider the case $N = 0$ first. Using the equation, the already established bounds for $M = 0$ and $N \geq 0$, the Gagliardo-Nirenberg-Sobolev inequalities, and the fact that the Leray projector is bounded on L^2, we have that

$$ t \| \partial_t v(t) \|_{H^3} \leq t \| (-\Delta)^\alpha v(t) \|_{H^3} + t \| \nabla v(t) \|_{H^3} \| v(t) \|_{H^3}^{\frac{3}{2}} \| v(t) \|_{L^2}^{\frac{1}{2}} + t \| v(t) \|_{H^3}^{\frac{3}{2}} \| v(t) \|_{H^3}^{\frac{1}{2}} $$

$$ \lesssim \| v_0 \|_{H^3} + t^{1-\frac{2\alpha}{\alpha}} \| v_0 \|_{H^3}^{\frac{3}{2}} \| v_0 \|_{H^3}^{\frac{1}{2}} + t \| v_0 \|_{H^3}^{1/6} \| v_0 \|_{L^2}^{1/6} $$

and the desired bound follows from the assumption (3.3). The remaining cases $N \geq 1$ are treated in a similar manner, using the Leibnitz rule. We omit these details.

3.2. Stability estimates. In this section we estimate the difference between an approximate solution v_η and an exact solution of the Navier-Stokes equation. Let \mathcal{R} be the inverse divergence operator defined in (2.26). The main result is:
Proposition 3.2. Fix $\alpha \in [1, 5/4)$ and an integrability index $p_0 \in (1, 5/4)$. Assuming the parameter δ_0 is sufficiently large, depending on p_0, the following holds.

For $q \geq 0$, assume that (ν_q, \hat{R}_q) is a $C^0_t H^3_x$ smooth solution of (2.1) which obeys the estimates (2.4a)–(2.5b). Let $t_0 \in [0, T]$ and define

$$v_0 := \nu_q|_{t=t_0}.$$ Assume that $t_1 > t_0$ is such that $[t_0, t_1] \subset [0, T]$ and

$$0 < t_1 - t_0 \leq \delta_0^{-1} \lambda_q^{-4}.$$ (3.7)

Then, in view of (2.5b) and Proposition 3.1 there exists a unique $C^0_t H^3_x$ smooth zero-mean solution v of the Cauchy problem for (1.3) on $[t_0, t_1]$, with initial datum v_0. We claim that there exists a constant $C = C(p_0, \alpha) > 0$ such that for any $p \in [p_0, 2]$, we have that

$$\|v(t) - v_q(t)\|_{L^p} \leq C|t - t_0| \left(\left\| \nabla \hat{R}_q \right\|_{L^\infty([t_0, t_1]; L^p)} \right)$$ (3.8a)

$$\|\mathcal{R}v(t) - \mathcal{R}v_q(t)\|_{L^p} \leq C|t - t_0| \left(\left\| \hat{R}_q \right\|_{L^\infty([t_0, t_1]; L^p)} \right)$$ (3.8b)

holds for all $t \in (t_0, t_1)$.

In particular, letting

$$p_0 = 1 + \frac{\varepsilon_0}{32} \in (1, 5/4),$$ (3.9)

from the bounds (3.8a)–(3.8b) we obtain the following stability estimate:

Corollary 3.3. Fix $\alpha \in [1, 5/4)$. Assuming that $\alpha \geq 1$ is sufficiently large, depending only on ε_0, and if $t_1 \in (t_0, T)$ obeys (3.7), then we have the bounds

$$\|v\|_{L^\infty([t_0, t_1]; L^5)} \leq |t_1 - t_0| \lambda_q^5$$ (3.10a)

$$\|\mathcal{R}v\|_{L^\infty([t_0, t_1]; L^5)} \leq |t_1 - t_0| \lambda_q^{-\frac{2\varepsilon}{3} + \frac{1}{4}} \delta_{q+1}.$$ (3.10b)

Proof of Corollary 3.3. We show that estimates (3.8a)–(3.8b) imply the bounds (3.10a)–(3.10b). Recall the stress \hat{R}_q has zero mean. For $p \in (1, 2]$ and $\delta \in [0, 1]$ by interpolation we have the inequalities $\|\nabla |f|\|_{L^p} \lesssim \|f\|_{L^p}^{1-p} \|f\|_{W^{\frac{1}{p}, p}}^{\frac{1}{p}}$ and $\|f\|_{L^p} \lesssim \|f\|_{L^1} \|f\|_{L^\infty}^{1-\frac{1}{p}}$. Moreover, since $H^3 \subset L^\infty$ and $H^3 \subset W^{3, p}$, we obtain the Gagliardo-Nirenberg-type inequality

$$\|\nabla |\hat{R}_q|\|_{L^p} \lesssim \|\hat{R}_q\|_{L^1} \|\hat{R}_q\|_{H^3}^{1-\gamma},$$ (3.11)

with $\gamma = \frac{1}{p} - \frac{\delta}{3p}$. The implicit constant depends only on p and δ.

In order to prove (3.10a), we use (3.8a) and apply estimate (3.11) with $\delta = 1$ and $p = 2$. We obtain from (2.4a)–(2.4b) that

$$\|\nabla |\hat{R}_q|\|_{L^2} \lesssim (\lambda_q^{-\varepsilon_0} \delta_{q+1})^{\frac{3}{2} - \frac{\delta}{4}} \lambda_q^{7\left(\frac{3}{2} - \frac{\delta}{4}\right)},$$

from which estimate (3.10a) follows, since $\delta_{q+1} \leq \lambda_1^{\varepsilon_0}$, and ε_0 is sufficiently small. The leftover power of λ_q may be used to absorb any constants.

Similarly, in order to prove (3.10b), we use (3.8b), the bound (3.11) with $\delta = 0$ and $p = p_0$, and the embedding $L^{p_0} \subset L^1$, to obtain

$$\|\hat{R}_q\|_{L^1} \lesssim \|\hat{R}_q\|_{L^{p_0}} \lesssim (\lambda_q^{-\varepsilon_0} \delta_{q+1})^{\frac{1}{p_0}} \left(\lambda_q^{7\left(\frac{p_0-1}{p_0}\right)} \right) \lesssim (\lambda_q^{-\varepsilon_0} \delta_{q+1}) \left(\lambda_q^{7\left(\frac{p_0-1}{p_0}\right)} \right).$$
In the last inequality above we have used the definitions of δ_q+1 and λ_q, and the fact that $p_0 \geq 1$. Estimate (3.10b) follows from the assumption (3.9) on p_0, upon using the leftover power of λ_q to absorb the implicit constants.

Proof of Proposition 3.2. For simplicity, by temporal translation invariance it is sufficient to consider the case $t_0 = 0$.

In order to prove (3.8a) we let $u = v_q - v$ and $q = p_q - p$. Then $\text{div} u = 0, u|_{t=0} = 0$, and u obeys the equation
\begin{equation}
\partial_t u + (-\Delta)^q u = \text{Pdiv} \hat{R}_q - \text{Pdiv} (v \otimes u + u \otimes v_q),
\end{equation}
where \mathbb{P} is the Leray projector. Then, since $u(0) = 0$ the solution of (3.12) may be written in integral form as
\begin{equation}
u(t) = \int_0^t e^{-(t-s)(-\Delta)^q} \text{Pdiv} \left(\hat{R}_q - v \otimes u - u \otimes v_q \right)(s) ds.
\end{equation}

Next, we use that that for $p \in [1, 2], t > 0$, and any periodic function ϕ of zero mean we have that
\begin{align}
\left\| e^{-t(-\Delta)^q} \phi \right\|_{L^p} &\lesssim \| \phi \|_{L^p}, \\
\left\| \nabla e^{-t(-\Delta)^q} \phi \right\|_{L^p} &\lesssim \frac{1}{t^{\frac{\alpha}{2}}} \| \phi \|_{L^p},
\end{align}
where the implicit constant only depends on α. These estimates follow from L^1 bounds for the Green’s function of the fractional heat equation. We will also frequently use the Gagliardo-Nirenberg estimates
\begin{align}
\| \nabla \phi \|_{L^\infty} &\lesssim \| \phi \|_{L^2}^{\frac{1}{2}} \| \phi \|_{H^3}^{\frac{\alpha}{2}} \\
\| \phi \|_{L^\infty} &\lesssim \| \phi \|_{L^2}^{\frac{1}{2}} \| \phi \|_{H^3}^{\frac{1}{2}}
\end{align}
which hold for zero-mean periodic functions ϕ.

We return to (3.10a) and obtain that
\begin{align}
\| u(t) \|_{L^p} &\leq \int_0^t \left\| e^{-(t-s)(-\Delta)^q} \text{Pdiv} \left(\hat{R}_q - v \otimes u - u \otimes v_q \right)(s) \right\|_{L^p} ds \\
&\lesssim \int_0^t \left\| \nabla \hat{R}_q(s) \right\|_{L^p} + \frac{1}{(t-s)^{\frac{\alpha}{2}}} \| v \otimes u + u \otimes v_q \|_{L^p} ds \\
&\leq C_1 \int_0^t \left\| \nabla \hat{R}_q(s) \right\|_{L^p} + \frac{1}{(t-s)^{\frac{\alpha}{2}}} \left(\| v(s) \|_{L^\infty} + \| v_q(s) \|_{L^\infty} \right) \| u(s) \|_{L^p} ds,
\end{align}
for a suitable constant $C_1 > 0$ which only depends on p_0, since $p \in [p_0, 2]$ and $\alpha \in [1, 5/4]$. Next, we claim that if $t_1 > 0$ is chosen sufficiently small, depending on $\| v \|_{L^\infty}$ and $\| v_q \|_{L^\infty}$, then we have
\begin{equation}
\| u(t) \|_{L^p} \leq 2C_1 t \left\| \nabla \hat{R}_q(s) \right\|_{L^\infty([0,t_1];L^p)} \text{ for all } t \in (0, t_1].
\end{equation}
This estimate follows from Grönwall’s inequality, using the following bootstrap argument. Assuming that the bound (3.17) holds, we claim that the same estimate holds with the constant $2C_1$ replaced by the smaller constant $3C_1/2$. Indeed, inserting (3.17) in (3.16) we obtain
\begin{align}
\frac{\| u(t) \|_{L^p}}{2C_1 t \left\| \nabla \hat{R}_q(s) \right\|_{L^\infty([0,t_1];L^p)}} &\leq \frac{1}{2} + \frac{1}{t} \left(\| v \|_{L^\infty} + \| v_q \|_{L^\infty} \right) \int_0^t \frac{s}{(t-s)^{\frac{\alpha}{2}}} ds \\
&\leq \frac{1}{2} + \frac{2\alpha}{2\alpha - 1} \left(\frac{1}{t^{2\alpha - 1}} \right) \left(\| v \|_{L^\infty} + \| v_q \|_{L^\infty} \right).
\end{align}

Thus if we ensure that
\begin{equation}
4t_1^{2\alpha - 1} \left(\frac{1}{t^{2\alpha - 1}} \right) \left(\| v \|_{L^\infty} + \| v_q \|_{L^\infty} \right) \leq \frac{1}{4},
\end{equation}
then (3.18) shows that (3.17) holds with constant $3C_1/2$, as desired. However, by (3.15b) we know that
\begin{align}
\| v \|_{L^\infty} + \| v_q \|_{L^\infty} &\leq C_1 \left(\| v \|_{L^2}^{1/2} \| v \|_{H^3}^{1/2} + \| v_q \|_{L^2}^{1/2} \| v_q \|_{H^3}^{1/2} \right)
\end{align}
for some universal constant $C_1 > 0$, and further, using (2.5a), (2.5b), (3.2a) and (3.2b), we obtain that
\begin{align}
\| v \|_{L^\infty} + \| v_q \|_{L^\infty} &\leq C_1 \left(\| v_0 \|_{L^2}^{1/2} (2 \| v_0 \|_{H^3})^{1/2} + \| v_q \|_{L^2}^{1/2} \| v_q \|_{H^3}^{1/2} \right) \leq 4C_1 \delta_0^{1/4} \lambda_q^2,
\end{align}
To conclude, we use (3.7), which shows that the left side of (3.19) is bounded from above by

\[4(\delta_0^{-1}\lambda_q^{-1})^{2+\frac{1}{2\alpha}}4C_1\delta_0^{-1/\alpha}\lambda_q^{-2\alpha/\alpha+1} \leq 16C_1\delta_0^{-1/\alpha} \leq \frac{1}{4}. \]

by letting \(a \), and hence \(\delta_0 \), be sufficiently large. Here we have used that \(\alpha \geq 1 \), and that \(\delta_0, \lambda_q \geq 1 \). Thus, we have shown that (3.17) holds.

In order to prove (3.8b) we denote

\[z = \nabla^{-1}\text{curl} u. \]

Note that since \(\text{div} u = 0 \) we have \(\text{curl} z = -u \), and using the Calderón-Zygmund inequality we have \(\| R u(t) \|_{L^p} \lesssim \| z(t) \|_{L^p} \). Thus our goal is to obtain \(L^p \) estimates for \(z(t) \). We apply \(\nabla^{-1}\text{curl} \) to the equation obeyed by \(u \) (it is convenient to rewrite (3.12) without Leray projectors, and add a pressure gradient term, which is then annihilated by the \(\text{curl} \) operator) and obtain

\[
\begin{align*}
\partial_t z + v \cdot \nabla z + (-\Delta)\alpha z &= \nabla^{-1}\text{curl} \text{div} \hat{R}_q + [\nabla^{-1}\text{curl} , v \cdot \nabla]\text{curl} z + \nabla^{-1}\text{curl} (\text{curl} z \cdot \nabla q) \\
&= \nabla^{-1}\text{curl} \text{div} \hat{R}_q + \nabla^{-1}\text{curl} \text{div} ((z \times \nabla v) + \nabla^{-1}\text{curl} ((z \cdot \nabla) v) + \nabla^{-1}\text{curl} \text{div} ((z \times \nabla v)^T)).
\end{align*}
\]

(3.20)

For the last term on the right side of in (3.20) we have used the identity

\[(\text{curl} z \cdot \nabla) v_q = \text{div} \left(((z \times \nabla) v_q)^T \right), \]

which written for the \(i^{th} \) component is

\[((\text{curl} z \cdot \nabla) v_q)^i = \epsilon_{jkl} \partial_k z^j \partial_l v_q^i = \partial_k (\epsilon_{jkl} z^j \partial_l v_q^i) - \epsilon_{jkl} z^j \partial_k \partial_l v_q^i = \partial_k ((z \times \nabla) v_q)^{ki}. \]

Here we used that the transposition of two indices in \(\epsilon_{jkl} \) results in a \((-1) \) factor. Moreover, we have also spelled out the commutator term on the right side of (3.20) as

\[[\nabla^{-1}\text{curl} , v \cdot \nabla]\text{curl} z = \nabla^{-1}\text{curl} \text{div} ((z \times \nabla) v) + \nabla^{-1}\text{curl} \text{div} ((z \cdot \nabla) v), \]

which written for the \(i^{th} \) component is

\[((\nabla^{-1}\text{curl} , v \cdot \nabla)\text{curl} z)^i = \epsilon_{ijk} \nabla^{-1}\partial_j \left(v^m \partial_m (\text{curl} z)^k \right) + v^m \partial_m z^i \\
= \epsilon_{jkl} \epsilon_{mkn} \nabla^{-1}\partial_j \left(v^m \partial_m \partial_k \partial_n v_q^l \right) + v^m \partial_m z^i \\
= -\epsilon_{jkl} \epsilon_{mkn} \nabla^{-1}\partial_j \partial_m \left(\partial_k v^m \partial_n v_q^l \right) + \epsilon_{jkl} \epsilon_{mkn} \nabla^{-1}\partial_l \partial_m \left(v^m \partial_m z^n \right) + v^m \partial_m z^i \\
= -\epsilon_{jkl} \epsilon_{mkn} \partial_j \partial_m \left(\epsilon_{kln} \partial_n (v^m \partial_n v_q^l) \right) + \epsilon_{jkl} \epsilon_{mkn} \partial_l \partial_m \left(v^m \partial_m z^n \right) + v^m \partial_m z^i \\
= \epsilon_{jkl} \epsilon_{mkn} \partial_j \partial_m \left(\epsilon_{kln} \partial_n (v^m \partial_n v_q^l) \right) + \epsilon_{jkl} \epsilon_{mkn} \partial_l \partial_m \left(v^m \partial_m z^n \right) + v^m \partial_m z^i.
\]

Here we have also used that \(\epsilon_{jkl} = 0 \) if two of the indices \(i, j, \) or \(k \) repeat, and that \(\epsilon_{jkl} \epsilon_{mkn} = \delta_{in} \delta_{jl} - \delta_{il} \delta_{jn} \), where the \(\delta \)’s refer to the Kronecker symbol.

Using (3.20), upon placing the \(v \cdot \nabla z = \text{div} (v \otimes z) \) term on the right side, and using that \(z(t_0) = 0 \), the solution to (3.20) may be written in integral form as

\[
z(t) = \int_0^t e^{-(t-s)(-\Delta)\alpha} \left(\nabla^{-1}\text{curl} \text{div} \hat{R}_q + \nabla^{-1}\text{curl} \text{div} \left(((z \times \nabla) v_q)^T \right) - \text{div} (v \otimes z) \right)(s) ds \\
+ \int_0^t e^{-(t-s)(-\Delta)\alpha} \left(\nabla^{-1}\text{curl} \text{div} ((z \times \nabla) v) + \nabla^{-1}\text{curl} \text{div} ((z \cdot \nabla) v) \right)(s) ds.
\]

(3.21)
From (3.14a)–(3.14b) and the boundedness of Calderón-Zygmund operators on \(L^p \), similarly to (3.16) we conclude that

\[
\|z(t)\|_{L^p} \lesssim \int_0^t \left\| \mathcal{R}(s) \right\|_{L^p} + \left\| ((z \times \nabla) v_q)(s) \right\|_{L^p} + \frac{1}{(t-s)^\frac{\alpha}{2}} \left\| (v \otimes z)(s) \right\|_{L^p} + \left\| ((z \times \nabla) v)(s) \right\|_{L^p}
\]

\[
\leq C_1 t \left\| \mathcal{R}(s) \right\|_{L^\infty([0,t])} + C_1 \left(\left\| \nabla v_q \right\|_{L^\infty} + \left\| \nabla v \right\|_{L^\infty} \right) \int_0^t \left\| z(s) \right\|_{L^p} ds
\]

Therefore, if we ensure that \(t_1 \) is small enough so that

\[
\left\| \mathcal{R}(s) \right\|_{L^\infty((0,t_1])} \leq 1
\]

then (3.24) implies that

\[
t_1 \left(\left\| \nabla v_q \right\|_{L^\infty} + \left\| \nabla v \right\|_{L^\infty} \right) + t_1^{\frac{\alpha}{2}} \left\| v \right\|_{L^\infty} \leq \frac{1}{5},
\]

which shows that the bootstrap assumption was justified, and thus (3.23) holds on \([0,T]\). Denote by \(C_1 \) the universal constant in the Gagliardo-Nirenberg inequalities (3.15a)–(3.15b). By also appealing to (2.5a)–(2.5b), (3.2a)–(3.2b), and our assumption (3.7) for \(t_1 \), we obtain that the left side of (3.25) is bounded from above by

\[
\frac{\left\| \mathcal{R}(s) \right\|_{L^\infty((0,t_1])}}{2C_1 t} \leq \frac{1}{2} + \frac{2}{5} < 1
\]

once we ensure that \(a \), and hence \(\delta_0 \) is sufficiently large. This concludes the proof of (3.23). \(\square \)

3.3. **Proof of Proposition 2.2.** We first define a \(C^\infty \) smooth partition of unity \(\{ \eta_i \}_{i=0}^{n+1} \), such that \(0 \leq \eta_i \leq 1 \), and with

\[
\sum_{i=0}^{n+1} \eta_i(t) = 1, \quad \text{for every} \quad t \in [T/3, 2T/3].
\]

Denoting

\[
t_i = \partial_{q+1} i,
\]

this may be achieved by letting \(\eta_i \) also have the following properties:

(i) \(\eta_i \) has support in \([t_i, t_{i+1} + \tau_{q+1}]\)

(ii) \(\eta_i \) is identically 1 on \([t_i + \tau_{q+1}, t_{i+1}]\)

(iii) \(\eta_i \) satisfies the estimate

\[
\left\| \partial_{q+1}^M \eta_i \right\|_{L^\infty} \lesssim \tau_{q+1}^{-M},
\]

where the implicit constant is independent of \(\tau_{q+1}, \partial_{q+1}, \) and \(i \).
As a consequence of the above properties, we have that \(\eta_i \eta_j = 0 \) whenever \(|i - j| > 1 \), and

\[
\text{supp} (\eta_i \eta_j) \subset [t_i, t_i + \tau_q + 1].
\]

Having constructed the partition of unity \(\{ \eta_i \}_{i=0}^{n_q+1} \), we next construct exact solutions \(v_i \) of the Navier-Stokes equation for suitably defined datum.

For every \(1 \leq i \leq n_q+1 \) we define \(v_i(x, t) \) to be the unique smooth solution of the Cauchy problem for Navier-Stokes equation (1.3) with initial condition equal to \(v_q \) at \(t_{i-1} \):

\[
\begin{align*}
\partial_t v_i + \text{div}(v_i \otimes v_i) + \nabla p_i + (-\Delta)^\alpha v_i &= 0, \\
\text{div} v_i &= 0 \\
v_i(t_{i-1}) &= v_q(t_{i-1}).
\end{align*}
\]

In view of (2.5a)-(2.5b), and Proposition 3.1 this solution \(v_i \) is uniquely defined and obeys the estimates

\[
\begin{align*}
\|v_i(t)\|_{L^2} &\leq \|v_q(t_{i-1})\|_{L^2} \leq 2\delta_q^\alpha - \delta_q^{\alpha/2} \\
\|v_i(t)\|_{H^3} &\leq 2 \|v_q(t_{i-1})\|_{H^3} \leq 2\lambda_0^4 \\
|t - t_{i-1}|^{3/2} \|\partial_t^M D^N v_i(t)\|_{H^3} &\lesssim \lambda_q^4
\end{align*}
\]

for all \(N \geq 0, M \in \{0, 1\} \) and all \(t > t_{i-1} \) such that

\[
t - t_{i-1} \leq \frac{c}{4\lambda_0^4 \delta_0^{3/2}} \leq \frac{c}{\lambda_q^4 (1 + 2\delta_0^{3/2})^{\alpha - 1}},
\]

where \(c \in (0, 1) \) is the universal constant from (3.3), and \(\alpha \geq 1 \). Note that the definitions (2.3), (2.7), and the fact that \(\beta \leq 1 \), imply that

\[
\theta_{q+1} \equiv \frac{\delta_q^{3/2}}{\lambda_q^4} = \frac{\delta_0 \delta_q^{3/2}}{\lambda_q^4 \delta_0} \leq \frac{1}{\lambda_q^4 \delta_0} \leq \frac{1}{\lambda_q^4 \delta_0}.
\]

Therefore, assuming that \(\delta_0 = \lambda_0^2 \lambda_q^{-2} \beta \geq \lambda_0^2 \) is sufficiently large, depending on the universal constant \(c \), by (3.31) we have that

\[
3\theta_{q+1} \leq \frac{c}{8\lambda_q^4 \delta_0^{3/2}},
\]

which is consistent with (3.30). Therefore for all \(1 \leq i \leq n_q+1 \) the exact solutions \(v_i(x, t) \) are smooth and well-defined for all \(t \in (t_{i-1}, t_{i+2}] \supset \text{supp}(\eta_i) \). Moreover, since

\[
t \in \text{supp} (\eta_i) \implies 0 < t - t_{i-1} \leq 3\theta_{q+1},
\]

from (2.9c) we obtain the bound

\[
\sup_{t \in \text{supp}(\eta_i)} \|\partial_t^M D^N v_i(t)\|_{H^3} \lesssim \lambda_q^4 \theta_{q+1}^{\frac{N}{1 + \frac{3}{2}}} - M, \quad \text{for} \quad 1 \leq i \leq n_q+1,
\]

where the implicit constant depends only on \(N \geq 0 \) and \(M \in \{0, 1\} \).

At this stage we glue the solutions \(v_i \), together in order to construct \((\eta_q, \hat{R}_q) \). We define the divergence-free (note that the cutoffs \(\eta_i \) are only functions of time) velocity and the interpolated pressure as

\[
\eta_q(x, t) = \sum_{i=1}^{n_q+1} \eta_i(t) v_i(x, t), \quad \text{for all} \quad t \in [T/3, 2T/3],
\]

\[
\eta_q^{(1)}(x, t) = \sum_{i=1}^{n_q+1} \eta_i(t) p_i(x, t), \quad \text{for all} \quad t \in [T/3, 2T/3],
\]

where \(p_i \) is the pressure associated to the exact solution \(v_i \). Also we let

\[
\eta_q(x, t) = v_q(x, t) = v_0(x, t), \quad \text{for all} \quad t \in [0, T/3] \cup [2T/3, T],
\]

\[
\eta_q^{(1)}(x, t) = p_i(x, t) = p_0(x, t), \quad \text{for all} \quad t \in [0, T/3] \cup [2T/3, T].
\]

Here we have used that \([0, T/3] \cup [2T/3, T] = G^{(0)} \), and the inductive assumption (2.10).

Having defined \(\eta_q \), we next prove that (2.18) holds. For \(t \in G^{(0)} \), this holds by construction. In view of (3.26), it suffices to show that if for some \(i \in \{1, \ldots, n_q+1\} \) we have \(t \in \text{supp}(\eta_i) \cap G^{(0)} \), then \(v_i(t) = v_q(t) \). For
this purpose recall by (2.5b) and (2.11) that v_q is a strong solution of the Navier-Stokes equation for all t such that $\text{dist}(t, G^{(q)}) \leq \tau_q$. Moreover, v_i solves the Cauchy problem (3.28), so by the uniqueness of solutions in $C^0_t H^3_x$ of the Navier-Stokes equation, we only need to ensure that $\text{dist}(t_{i-1}, G^{(q)}) \leq \tau_q$. This follows from the fact that $t \in G^{(q)}$, and $0 < t - t_{i-1} \leq 3\tau_{q+1} \leq \tau_q$. The last inequality trivially holds by (2.7) and (2.8) for $q \geq 1$, and by taking a sufficiently large for $q = 0$. Thus, we have proven that (2.18) holds.

At this stage we show that the set $B(q+1)$ defined in (2.17), and hence implicitly $G^{(q+1)} = [0, T] \setminus B(q+1)$, obey properties (ii)–(iv) with q replaced by $q + 1$. In order to prove (ii), assume that $t \in G^{(q)} \cap (t_i - 2\tau_{q+1}, t_i + 3\tau_{q+1})$, for some $i \in \{1, \ldots, n_{q+1}\}$. Due to (2.11) we know that $\bar{R}_q(t') = 0$ for all $|t - t'| \leq \tau_q$. Since $\tau_q \geq 2\tau_{q+1} + 3\tau_{q+1}$, which holds by (2.7) and (2.8) $q \geq 1$, and by taking a sufficiently large for $q = 0$, we obtain that $\bar{R}_q \equiv 0$ on $[t_{i-1}, t_i + 1 + \tau_{q+1}]$. Hence, by the definition (2.16) we have that $i - 1 \notin \mathcal{C}$. Thus, $t \notin B^{(q+1)}$ and so $t \notin G^{(q+1)}$ as desired. Property (iii) holds by definition (2.17), since τ_{q+1} is much smaller than \bar{v}_{q+1}. In order to prove property (iv), we need to estimate the cardinality of the set \mathcal{C} defined in (2.16). By definition, if $i \in \mathcal{C}$, there exists $t \in [t_{i-1}, t_i + 1 + \tau_{q+1}]$ such that $\bar{R}_q(t) \neq 0$, and thus by property (2.11) we have $\text{dist}(t, G^{(q)}) > \tau_q$. Therefore, $B^{(q)} \supset (t - \tau_q, t + \tau_q) \supset [t_i, t_{i+1}]$. By the pigeonhole principle we obtain that

$$\text{card} (\mathcal{C}) \leq \frac{|B^{(q)}|}{\tau_{q+1}}.$$

Estimate (2.9) at level $q + 1$ then follows from (2.17).

At this stage we remark that property (v) will also hold at the end of the convex integration stage. For this purpose, we remark that in the convex integration stage we do not add a perturbation to the solutions on the good set $G^{(q+1)} \supset G^{(q)}$, i.e. $v_{q+1}(t) = \bar{v}_q(t)$ for $t \in G^{(q+1)} \supset G^{(q)}$. Assuming for the moment this feature of our construction, property (2.18) established above and the inductive (2.10) show that (2.10) holds at level $q + 1$.

We now derive the formula for $\sup \bar{R}_q$. Note that on $[0, T/3] \supset [t_0, t_2]$ and on $[2T/3, T] \supset [t_n+1-1, t_{n+1}]$ we have that $\bar{v}_q = v_q$ is a smooth solution of the Navier-Stokes equation, and hence automatically

$$\bar{R}_q = 0 \quad \text{on} \quad [t_0, t_2] \cup [t_n+1-1, t_{n+1}],$$

For $i \geq 2$, on the interval $[t_i, t_{i+1}]$ we have

$$\bar{v}_q = (1 - \eta_i) v_i - 1 + \eta_i v_i$$

and similarly to [4, Section 4.2], we obtain

$$\partial_t \bar{v}_q + \text{div} (\bar{v}_q \otimes \bar{v}_q) + (-\Delta)^{\alpha} \bar{v}_q = \nabla p^{(1)}$$

$$= (1 - \eta_i) \partial_t v_i - 1 + \eta_i \partial_t v_i + \partial_t \eta_i (v_i - v_i - 1)$$

$$+ (1 - \eta_i)^2 \text{div} (v_i - 1 \otimes v_i) + \eta_i^2 \text{div} (v_i - v_i) + \eta_i (1 - \eta_i) \text{div} (v_i - v_i) = 0 \quad \text{on} \quad [t_i, t_{i+1}].$$

(3.35)

We observe that $v_i - v_i - 1$ has zero mean because the exact solutions of the Navier-Stokes equations $v_i, v_i - 1$ preserve their average in time, and v_i has zero mean by assumption. Hence we can apply the inverse divergence operator \mathcal{R} to $v_i - v_i - 1$ and for $i \in \{2, \ldots, n+1\}$ define the symmetric traceless 2-tensor

$$\mathcal{R}_q = \partial_t \eta_i \mathcal{R}(v_i - v_i - 1) - \eta_i (1 - \eta_i) (v_i - v_i - 1) \otimes (v_i - v_i - 1), \quad \text{for all} \quad t \in [t_i, t_{i+1}],$$

(3.36)

where we denote by $a \otimes b$ the traceless part of the tensor $a \otimes b$. We also define the scalar pressure

$$p_q = p_q^{(1)} - \eta_i (1 - \eta_i) \left(|v_i - v_i - 1|^2 - \int_{\mathbb{T}^3} |v_i - v_i - 1|^2 dx \right) \quad \text{for all} \quad t \in [t_i, t_{i+1}].$$

It follows from (3.35) that the pair $(\bar{v}_q, \mathcal{R}_q)$ defined by (3.33a) and (3.36) solves the Navier-Stokes-Reynolds system (2.1) on $[0, T]$ with associated pressure p_q.

Next, we prove that (2.20a) holds. Note that by construction we have $\eta_i \equiv 1$ on $[t_i + \tau_{q+1}, t_{i+1}]$ for all $i \in \{0, \ldots, n_{q+1}\}$, and on these sets we have $\partial_t \eta_i = \eta_i (1 - \eta_i) = 0$. Therefore, by (3.36) we have that $\mathcal{R}_q(t) = 0$ whenever $t \in [t_i + \tau_{q+1}, t_{i+1}]$ for some i. Thus it suffices to consider sets of times of the form $(t_i, t_i + \tau_{q+1})$. If $i \in \mathcal{C}$ or $i - 1 \in \mathcal{C}$, then there is nothing to prove since by definition (2.17), $\text{dist}((t_i, t_i + \tau_{q+1}), G^{(q+1)}) > 2\tau_{q+1}$.

16
Here we have used that by \(\lambda \) upon using the remaining power of \((2.20c)\) for obtain that \((3.29b)\) and \((2.5b)\) and the uniqueness of strong solutions to the Navier-Stokes equations that \(v_{i-1} = v_i = v_q \) on \((t_i, t_i + \tau_{q+1}) \). Thus by \((3.36)\) we have that \(\dot{R}_{q+1}(t) = 0 \) for \((t_i, t_i + \tau_{q+1}) \).

Since in the convex integration stage we do not change the stress on the set \(\{ t : \text{dist}(t, G^{(q+1)}) \leq \tau_{q+1} \} \), it follows from \((2.20a)\) that \(\dot{R}_{q+1}(t) = \ddot{R}_{q+1}(t) = 0 \) for all \(t \) such that \(\text{dist}(t, G^{(q+1)}) \leq \tau_{q+1} \). Thus \((2.11)\), and hence property (vi), will automatically hold at the end of the convex integration step.

In order to conclude the proof of Proposition 2.2, it remains to prove estimates \((2.19a)\)–\((2.19d)\) for \(\Gamma_q \) and \((2.20b)\)–\((2.20c)\) for \(\dot{\Gamma}_q \).

By \((3.26)\), \((3.29a)\), \((3.29b)\), and the definition of \(\bar{v}_q \) in \((3.33a)\), it follows that \((2.19a)\) and \((2.19b)\) hold for all \(t \in [T/3, 2T/3] \). By \((3.26)\), for all \(t \in [T/3, 2T/3] \) we have that

\[
\tau_q(x, t) - v_q(x, t) = \sum_{i=0}^{\eta_{q+1}} \eta_i(t) (v_i(x, t) - v_q(x, t)),
\]

and at each time \(t \) at most 2 terms in the sum are nonzero. Since \(v_i \) solves \((3.28)\), and since \(t \in \text{supp} (\eta_i) \) implies that \((3.30)\) holds, we may appeal to Corollary 3.3, with \(t_0 \) replaced by \(t_{i-1} \), and \(t_1 \) replaced by an arbitrary \(t \in \text{supp} \eta_i \). Here we note that condition \((3.7)\) is satisfied on \(\text{supp} (\eta_i) \) due to \((3.30)\). By \((3.10a)\), we obtain that

\[
\sup_{t \in \text{supp} (\eta_i)} \| v_i(t) - v_q(t) \|_{L^2} \leq 4 \theta_{q+1} \lambda_q^5.
\]

Since at most two terms appear in \((3.37)\), we may use the remaining power of \(\lambda_q^{-1} \) to absorb any constants, and \((2.19c)\) follows on \([T/3, 2T/3] \). Moreover, estimates \((2.19a)\)–\((2.19c)\) hold trivially on \([0, T/3] \cup [2T/3, T] \) by the inductive assumptions and definition \((3.34a)\). Thus, we have proven \((2.19a)\)–\((2.19c)\) on \([0, T] \).

Lastly, \((2.19d)\) follows from the definition \((3.33a)\), the Leibniz rule, estimate \((3.27)\) for the time derivatives landing on the cutoff functions \(\eta_i \), and estimate \((3.32)\) for the space and time derivatives landing on the \(v_i \). Here we have used that \(\tau_{q+1} \geq \vartheta^{-1} \). Thus we have established all the desired bounds for \(\tau_q \).

In order to prove the claimed \(L^1 \) estimate for \(\mathcal{B}^{(q)} \), i.e. \((2.20b)\), we appeal to the definition \((3.36)\). For the first term, we use \((3.27)\) and again appeal to Corollary 3.3, this time to estimate \((3.10b)\), to obtain that

\[
\| \partial_t \eta_i \mathcal{R}(v_i - v_{i-1}) \|_{L^1} \leq \| \partial_t \eta_i \|_{L^\infty} \left(\| \mathcal{R}(v_i - v_q) \|_{L^\infty(\text{supp}(\eta_i);L^1)} + \| \mathcal{R}(v_{i-1} - v_q) \|_{L^\infty(\text{supp}(\eta_i);L^1)} \right)
\]

\[
\leq \frac{\tau^{-1}_{q+1} \theta_{q+1} \lambda_q^{-\frac{3\beta}{2}}}{\delta_{q+1}}
\]

\[
\leq \frac{1}{2} \tau^{-1}_{q+1} \theta_{q+1} \lambda_q^{-\frac{3\beta}{2}} \delta_{q+1},
\]

upon using the remaining power of \(\lambda_q^{-\frac{3\beta}{2}} \) to absorb any constants. For the second term in \((3.36)\), we use \((3.10a)\) and obtain that

\[
\| \eta_i (1 - \eta_i) (v_i - v_{i-1}) \|_{L^1} \leq \| v_i - v_{i-1} \|_{L^\infty(\text{supp}(\eta_i);L^2)}^2
\]

\[
\leq 4 \| v_i - v_q \|_{L^\infty(\text{supp}(\eta_i);L^2)}^2
\]

\[
\leq \left(\theta_{q+1} \lambda_q \right)^2
\]

\[
\leq \frac{1}{2} \tau^{-1}_{q+1} \theta_{q+1} \lambda_q^{-\frac{3\beta}{2}} \delta_{q+1}.
\]

Here we have used that by \(\tau_{q+1} \leq \vartheta_{q+1} \), the definition \((2.7)\), and the fact that \(\varepsilon_R \leq 1 \), to conclude

\[
\theta_{q+1} \tau_{q+1} \leq \lambda_q^{-14} \delta_{q+1} \leq \lambda_q^{-1} \lambda_q^{-10-\frac{3\beta}{2}} \delta_{q+1},
\]

and using the leftover term \(\lambda_q^{-1} \) to absorb any implicit constants in \((3.39)\). Combined, \((3.38)\) and \((3.39)\) prove \((2.20b)\).
It remains to prove (2.20c). We return to (3.36). For the first term we use (3.32) and (3.27) to obtain
\[
\left\| \partial_t^M D^N (\partial_t \eta_R (v_i - v_{i-1})) \right\|_{H^3} \\
\lesssim \sum_{M'=0}^M \left\| \partial_t^{M-M'+1} \eta_l \right\|_{L^\infty} \left(\left\| \partial_t^{M'} D^N v_i \right\|_{L^\infty (\text{supp} (\eta_l); H^3)} + \left\| \partial_t^{M'} D^N v_{i-1} \right\|_{L^\infty (\text{supp} (\eta_{i-1}); H^3)} \right)
\]
\[
\lesssim \sum_{M'=0}^M \tau_{q+1}^{-M+M'} \lambda_q^{\frac{M}{q+1}} \tau_{q+1}^{-\frac{q}{q+1}} \lesssim \tau_{q+1}^{-M-1} \lambda_q^{\frac{M}{q+1}} ,
\]
since \(\tau_{q+1} \leq \theta_{q+1} \). This bound is consistent with (2.20c). For the second term in (3.36), since \(H^3 \) is an algebra we similarly obtain from (3.32) and (3.27) that
\[
\left\| \partial_t^M D^N (\chi_i (1 - \chi_i) (v_i - v_{i-1}) \otimes (v_i - v_{i-1})) \right\|_{H^3} \\
\lesssim \sum_{M'=0}^M \tau_{q+1}^{-M+M'} \left\| \partial_t^{M'} D^N ((v_i - v_{i-1}) \otimes (v_i - v_{i-1})) \right\|_{L^\infty (\text{supp} (\chi_i - 1); H^3)}
\]
\[
\lesssim \sum_{M'=0}^M \tau_{q+1}^{-M+M'} \lambda_q^{\frac{M}{q+1}} \tau_{q+1}^{-\frac{q}{q+1}} \lesssim \tau_{q+1}^{-M-1} \lambda_q^{\frac{M}{q+1}} ,
\]
where we have additionally used that \(\tau_{q+1} \leq \theta_{q+1} \leq \lambda_q^{-4} \), in view of (3.31).

To conclude the proof of Proposition 2.2, we note that the second inequality in (2.19d) and (2.20c), which bounds cost of a spatial derivative by \(\tau_{q+1}^{-1} \), instead of \(\theta_{q+1}^{-1/2} \), follows form the fact that \(\alpha \in [1, 5/4] \) and \(1 \leq \theta_{q+1}^{-1} \leq \tau_{q+1}^{-1} \).

4. Convex integration step: the perturbation

4.1. Intermittent jets. Let us recall the following result from [9]:

Lemma 4.1. For \(\alpha = 1, 2 \), there exists subsets \(\Lambda_\alpha \subset S^2 \cap Q^3 \) and smooth functions \(\gamma_\xi : \mathcal{N} \to \mathbb{R} \) such that
\[
R = \sum_{\xi \in \Lambda_\alpha} \gamma_\xi^2 (R) (\xi \otimes \xi)
\]
for every symmetric matrix \(R \) satisfying \(|R - \text{Id}| \leq 1/2 \).

For each \(\xi \in \Lambda_\alpha \), let us define \(A_\xi \subset S^2 \cap Q^3 \) to be an orthogonal vector to \(\xi \). Then for each \(\xi \in \Lambda_\alpha \), we have that \(\{ \xi, A_\xi, \xi \times A_\xi \} \subset S^2 \cap Q^3 \) form an orthonormal basis for \(\mathbb{R}^3 \). Furthermore, since the index sets \(\{ \Lambda_\alpha \}_{\alpha = 1, 2} \) are finite, there exists a universal natural number \(N_\Lambda \) such that
\[
\{ N_\Lambda \xi, N_\Lambda A_\xi, N_\Lambda \xi \times A_\xi \} \subset N_\Lambda S^2 \cap N^3 \quad (4.1)
\]
for every \(\xi \in \Lambda_\alpha \).

Let \(\Phi : \mathbb{R}^2 \to \mathbb{R}^2 \) be a smooth function with support contained in a ball of radius 1. Moreover, suppose \(\Phi \) is normalized such that if \(\phi = -\Delta \Phi \) then
\[
\frac{1}{4\pi^2} \int \phi^2 (x, y) \, dxdy = 1 . \quad (4.2)
\]
We remark that by definition \(\phi \) has mean zero. Define \(\psi : \mathbb{R} \to \mathbb{R} \) to be a smooth, mean zero function with support in the ball of radius 1 satisfying
\[
\frac{1}{2\pi} \int \psi^2 (z) \, dz = 1 . \quad (4.3)
\]
Let \(\phi_{\ell_\perp}, \Phi_{\ell_\perp} \) and \(\psi_{\ell_\parallel} \) be the rescalings
\[
\phi_{\ell_\perp} (x, y) := \frac{\phi \left(\frac{x}{\ell_\perp}, \frac{y}{\ell_\perp} \right)}{\ell_\perp}, \quad \Phi_{\ell_\perp} (x, y) := \frac{\Phi \left(\frac{x}{\ell_\perp}, \frac{y}{\ell_\perp} \right)}{\ell_\perp} \quad \text{and} \quad \psi_{\ell_\parallel} (z) := \frac{\psi \left(\frac{z}{\ell_\parallel} \right)}{\ell_\parallel^2}
\]
so that \(\phi_{\ell_\perp} = -\ell_\perp^2 \Delta \Phi_{\ell_\perp} \), where we will assume \(\ell_\perp, \ell_\parallel > 0 \) to be such that
\[
\ell_\perp \ll \ell_\parallel \ll 1 .
\]
By an abuse of notation, let us periodicize $\Phi_{\ell \perp}$ and $\psi_{\ell \parallel}$ so that the functions are treated as functions defined on \mathbb{T}^2 and \mathbb{T} respectively. For a large real number λ such that $\lambda \ell \perp \in \mathbb{N}$, we define $V_{\xi, \ell \perp, \ell \parallel, \lambda, \mu} : \mathbb{T}^3 \times \mathbb{R} \to \mathbb{R}$ by

$$V_{\xi}(t) := V_{\xi, \ell \perp, \ell \parallel, \lambda, \mu}(x, t) = \frac{1}{\lambda^2 N_\Lambda} \psi_{\ell \parallel} (N_\Lambda \ell \perp \lambda(x - \alpha_\xi) \cdot A_{\xi}, N_\Lambda \ell \perp \lambda(x - \alpha_\xi) \cdot (\xi \times A_{\xi})), $$

where here $\alpha_\xi \in \mathbb{R}^3$ are shifts that ensure that the set of functions $\{V_{\xi, \ell \perp, \ell \parallel, \lambda, \mu}\}$ have mutually disjoint support. In order for such shifts α_ξ to exist, we require that $\ell \perp$ to be sufficiently small, depending on the finite sets Λ_{α}.

Our intermittent jet is then defined to be

$$W_{\xi}(t) := W_{\xi, \ell \perp, \ell \parallel, \lambda, \mu}(x, t) = \psi_{\ell \parallel} (N_\Lambda \ell \perp \lambda(x - \alpha_\xi) \cdot A_{\xi}, N_\Lambda \ell \perp \lambda(x - \alpha_\xi) \cdot (\xi \times A_{\xi})), $$

From the definition, using (4.1) and $\ell \perp \lambda \in \mathbb{N}$, we have that $W_{\xi}(\xi)$ has zero mean, and $W_{\xi}(\xi)$ is $(\ell / \ell \perp \lambda)^3$-periodic. Moreover, by our choice of α_ξ, we have that the $W_{\xi}(\xi)$ have mutually disjoint support, i.e.

$$W_{\xi}(\xi) \otimes W_{\xi}(\xi') = 0 \quad \text{whenever} \quad \xi \neq \xi' \in \bigcup_{\alpha_\xi \in \{1,2\}} \Lambda_{\alpha}. \quad (4.5)$$

Note that the intermittent jets $W_{\xi}(\xi)$ are not divergence free, however assuming $\ell \perp \ll \ell \parallel$ then they be corrected by a small term, such that the sum with the corrector is divergence free. To see this, let us adopt the shorthand notation

$$\psi_{\xi}(t) := \psi_{\xi, \ell \perp, \ell \parallel, \lambda, \mu} := \psi_{\ell \parallel} (N_\Lambda \ell \perp \lambda(x - \alpha_\xi) \cdot A_{\xi}, N_\Lambda \ell \perp \lambda(x - \alpha_\xi) \cdot (\xi \times A_{\xi})), $$

and compute

$$ \text{curl} \text{ curl} V_{\xi}(\xi) = W_{\xi}(\xi) + \frac{1}{\lambda^2 N_\Lambda} \text{curl} \left(\Phi_{\xi}(\xi) \text{ curl} (\psi_{\xi}(\xi)) \right) + \frac{1}{\lambda^2 N_\Lambda} \nabla \psi_{\xi}(\xi) \times \nabla (\Phi_{\xi}(\xi)) . \quad (4.6)$$

Thus

$$\text{div} \left(W_{\xi}(\xi) + W^{(c)}_{\xi}(\xi) \right) \equiv 0. $$

Moreover, so long as $\ell \perp \ll \ell \parallel$ then $W^{(c)}_{\xi}(\xi)$ is comparatively small compared to $W_{\xi}(\xi)$. Observe that as a consequence of the normalizations (4.2) and (4.3) we have

$$\int_{\mathbb{T}^3} W_{\xi}(\xi) \otimes W_{\xi}(\xi) \, dx = \xi \otimes \xi. $$

We also note that by definition $W_{\xi}(\xi)$ is mean zero. As a consequence, using Lemma 4.1 we have

$$\sum_{\xi \in \Lambda_{\alpha}} \gamma^2_{\xi}(R) \int_{\mathbb{T}^3} W_{\xi}(\xi) \otimes W_{\xi}(\xi) \, dx = R, \quad (4.7)$$

for every symmetric matrix R satisfying $|R - \text{Id}| \leq 1/2$. By scaling and Fubini, we have the estimates

$$\|\nabla^N \Phi_{\xi}(\xi)\|_{L^p} \lesssim \ell^p_{\parallel}^{1/p - 1/2} \left(\frac{\ell \perp \lambda}{\ell \parallel} \right)^N \left(\frac{\ell \perp \lambda \mu}{\ell \parallel} \right)^M \quad (4.8)$$

$$\|\nabla^N \phi_{\xi}(\xi)\|_{L^p} \lesssim \ell^2_{\parallel}^{1/p - 1} \lambda^N \quad (4.9)$$

$$\|\nabla^N \partial_{\xi}^M W_{\xi}(\xi)\|_{L^p} \lesssim \lambda^2 \|\nabla^N \partial_{\xi}^M V_{\xi}(\xi)\|_{L^p} \lesssim \ell^2_{\parallel}^{1/p - 1/2} \left(\frac{\ell \perp \lambda \mu}{\ell \parallel} \right)^M , \quad (4.10)$$

where again here we have assumed

$$\ell^{-1} \ll \ell^{-1} \ll \lambda. $$

Finally, we note the essential identity

$$\text{div} \left(W_{\xi}(\xi) \otimes W_{\xi}(\xi) \right) = 2(W_{\xi}(\xi) \cdot \nabla \psi_{\xi}(\xi)) \phi_{\xi}(\xi) = \frac{1}{\mu} \phi_{\xi}(\xi) \partial_{\xi} \psi_{\xi}(\xi) \xi, \quad (4.11)$$
which follows from the fact that by construction we have that \(W(\xi) \) is a scalar multiple of \(\xi \),

\[
(\xi \cdot \nabla)\psi(\xi) = \frac{1}{\mu} \partial_t \psi(\xi),
\]

and \(\phi(\xi) \) is time-independent.

4.2. The perturbation. In this section we will construct the perturbation \(w_{q+1} \).

4.2.1. Stress cutoffs. Because the Reynolds stress \(\tilde{R}_q \) is not spatially homogenous, we introduce stress cutoff functions. We let \(0 \leq \bar{\chi}_0, \bar{\chi} \leq 1 \) be bump functions adapted to the intervals \([0, 4]\) and \([1/4, 4]\), such that together they form a partition of unity:

\[
\bar{\chi}_0(y) + \sum_{i \geq 1} \bar{\chi}_i(y) \equiv 1, \quad \text{where} \quad \bar{\chi}_i(y) = \bar{\chi}(4^{-i}y), \tag{4.12}
\]

for any \(y > 0 \). We then define

\[
\chi(i)(x, t) = \chi_{i,q+1}(x, t) = \bar{\chi}_i \left(\begin{pmatrix} \tilde{R}_q(x, t) \\ \lambda_q^{-i/8} \delta_{q+1} \end{pmatrix} \right) \tag{4.13}
\]

for all \(i \geq 0 \). Here and throughout the paper we use the notation \(\langle A \rangle = (1 + |A|^2)^{1/2} \) where \(|A| \) denotes the Euclidean norm of the matrix \(A \). By definition the cutoffs \(\chi(i) \) form a partition of unity

\[
\sum_{i \geq 0} \chi_i(y) \equiv 1 \tag{4.14}
\]

and we will show in Lemma 4.2 below that there exists an index \(i_{\text{max}} = i_{\text{max}}(q) \), such that \(\chi(i) \equiv 0 \) for all \(i > i_{\text{max}} \), and moreover that \(4^{i_{\text{max}}} \lesssim \tau_{q+1}^{-1} \).

4.2.2. The definition of the velocity increment. Recall that from Lemma 4.1, the functions \(\gamma(\xi) \) are well-defined and smooth in the \(1/2 \) neighborhood of the identity matrix. In view of (4.13), this motivates introducing the parameters \(\rho_i \) by

\[
\rho_i := \lambda_q^{-i/8} \delta_{q+1} 4^{i/2}, \quad \text{for all} \quad i \geq 0, \tag{4.15}
\]

which have the property that

\[
\frac{||\tilde{R}_q||}{\rho_i} \leq \frac{1}{4} \quad \text{on the support of} \quad \chi(i), \quad \text{for all} \quad i \geq 0.
\]

As such, for \(i \geq 0 \) we define the coefficient function \(a_{\xi,i,q+1} \) by

\[
a_{\xi}(x, t) := a_{\xi,i,q+1}(x, t) := \theta(t) \rho_i^{1/2} \chi_{i,q+1}(x, t) \gamma(\xi) \left(\text{Id} - \frac{\tilde{R}_q(x, t)}{\rho_i} \right), \tag{4.16}
\]

where \(\theta: [0, T] \to [0, 1] \) is a smooth temporal cut-off function with the following properties:

(i) \(\theta(t) = 1 \) for all \(t \) such that \(\text{dist}(t, G^{(q+1)}) \geq 2\tau_{q+1} \).

(ii) \(\theta(t) = 0 \) for all \(t \) such that \(\text{dist}(t, G^{(q+1)}) \leq \tau_{q+1} \).

(iii) \(||\theta||_{C^M} \lesssim \tau_{q+1}^{-M} \), where the implicit constant depends only on \(M \).

To see that a choice for \(\theta \) with property (iii) holding is possible, recall from (2.17) that the bad set \(B^{(q+1)} \) consists of a finite disjoint union of intervals of length \(5\tau_{q+1} \). From the first property above and (2.20a), we conclude that

\[
t \in \text{supp}(\tilde{R}_q) \quad \text{implies} \quad \theta(t) = 1. \tag{4.17}
\]

From the second property above we further obtain that

\[
t \in \text{supp}(\theta) \supset \text{supp}(a_{\xi}(\xi)) \quad \text{implies} \quad \text{dist}(t, G^{(q+1)}) > \tau_{q+1}. \tag{4.18}
\]

We note that as a consequence of (4.7), (4.14), (4.16), and (4.17) we have

\[
\sum_{i \geq 0} \int_{\mathbb{T}^3} \mathbb{W}(\xi) \otimes \mathbb{W}(\xi) dx = \theta^2 \sum_{i \geq 0} \rho_i \lambda_i^2 \text{Id} - \tilde{R}_q, \tag{4.19}
\]

which justifies the definition of the amplitude functions \(a_{\xi}(\xi) \). Note that \(\theta = 1 \) on the support of \(\chi(i) \) for any \(i \geq 1 \).
Hence which is by construction mean zero and divergence-free. The new velocity field summarizing their size and regularity:

\[W(\xi) := W_{\xi,\ell_\perp,\lambda,\mu}, \quad V(\xi) := V_{\xi,\ell_\perp,\lambda,\mu}, \quad \psi(\xi) := \psi_{\xi,\ell_\perp,\lambda,\mu}, \quad \Phi(\xi) := \Phi_{\xi,\ell_\perp,\lambda,\mu}, \quad \phi(\xi) := \phi_{\xi,\ell_\perp,\lambda,\mu} \]

where \(\ell_\perp, \ell_\parallel, \) and \(\mu \) are defined in (2.23). Importantly, we have from (2.24) that \(\lambda_\mu \in \mathbb{N} \) which ensures the periodicity of \(W(\xi), V(\xi), \Phi(\xi), \phi(\xi) \) and \(\psi(\xi) \). Observe that as a consequence of our parameter choices we have the useful inequality

\[\mu^{-1} \ell^{-1} \| \xi \|^{-1/2} = \lambda_\mu^{-1} \| \xi \|^{-1/2} \ll 1, \]

for all \(\alpha < 5/4 \).

The principal part of \(w_{q+1} \) is defined as

\[w^{(p)}_{q+1} := \sum_i \sum_{\xi \in \Lambda(i)} a(\xi) W(\xi), \]

(4.21)

where the sum is over \(0 \leq i \leq i_{\text{max}}(q) \). Here we write \(\Lambda(i) = \Lambda_{i \mod 2} \). Note that \(|i - j| \geq 2 \) implies \(\chi_i \chi_j = 0 \) and \(\xi \neq \xi' \) implies \(W(\xi) \otimes W(\xi') = 0 \). This implies that the summands in (4.21) have mutually disjoint supports. In order to fix the fact that \(w^{(p)}_{q+1} \) is not divergence free, we define an incompressibility corrector by

\[w^{(c)}_{q+1} := \sum_i \sum_{\xi \in \Lambda(i)} \text{curl} (\nabla a(\xi) \times V(\xi)) + \frac{1}{\lambda_\mu^2} \sqrt{\lambda_\mu} \nabla (a(\xi) \psi(\xi)) \times \text{curl} (\Phi(\xi) \psi(\xi)), \]

(4.22)

so that by a similar formula to (4.6)

\[w^{(p)}_{q+1} + w^{(c)}_{q+1} = \sum_i \sum_{\xi \in \Lambda(i)} \text{curl} (a(\xi) V(\xi)), \]

(4.23)

and thus

\[\text{div} \left(w^{(p)}_{q+1} + w^{(c)}_{q+1} \right) \equiv 0. \]

In addition to the incompressibility corrector \(w^{(c)}_{q+1} \), we introduce a temporal corrector \(w^{(t)}_{q+1} \), which is defined by

\[w^{(t)}_{q+1} := -\frac{1}{\mu} \sum_i \sum_{\xi \in \Lambda(i)} \mathbb{P}_{\mathbb{H}^q \neq 0} \left(a^2_{\xi}(\xi) \Phi(\xi) \psi^2_{\xi}(\xi) \right). \]

(4.24)

Finally, we define the velocity increment \(w_{q+1} \) by

\[w_{q+1} := w^{(p)}_{q+1} + w^{(c)}_{q+1} + w^{(t)}_{q+1}, \]

(4.25)

which is by construction mean zero and divergence-free. The new velocity field \(v_{q+1} \) is then defined as

\[v_{q+1} = \mathbb{P}_q + w_{q+1}. \]

(4.26)

Observe that as a consequence of (4.18) we have

\[t \in \text{supp} (w_{q+1}) \quad \Rightarrow \quad \text{dist}(t, G^{q+1}) > \tau_{q+1}. \]

(4.27)

Hence \(v_{q+1} = \mathbb{P}_q \) on \(G^{q+1} \) which we recall was required in Section 3.3 to deduce property (v) of Section 2.1 for \(G^{q+1} \). Moreover, property (vi) also follows as a consequence of (4.27) and (2.20a).

4.2.3. Estimates of the perturbation. This section closely mirrors [5, Section 4.4], and thus we omit most details where the estimates/proofs are mutatis-mutandis those from [5]. There is an analogy between the mollification parameter \(\ell \) in [5] and the time-scale \(\tau_{q+1} \) in this paper, in view of parabolic smoothing.

First, similarly to [5, Lemma 4.1 and 4.2] we state a useful lemma concerning the cutoffs \(\chi_{(i)} \) defined in (4.13), summarizing their size and regularity:
Lemma 4.2. For $q \geq 0$, there exists $i_{\text{max}}(q) \geq 0$ such that

$$\chi(i) \equiv 0 \quad \text{for all} \quad i > i_{\text{max}}.$$ \hspace{1cm} (4.28)

Moreover, for all $0 \leq i \leq i_{\text{max}}$ we have that

$$\rho_i \leq \lambda_1^{\beta} 4^{i_{\text{max}}} \leq \tau_{q+1}^{-2},$$ \hspace{1cm} (4.29)

and the bound

$$\sum_{i=0}^{i_{\text{max}}} \rho_i^{1/2} 2^{-i} \leq \lambda_q^{-\epsilon R/4} \delta_{q+1}^{1/2} \lambda_q^{1/2}$$ \hspace{1cm} (4.30)

holds. Additionally, for $0 \leq i \leq i_{\text{max}}$ we have

$$\|\chi(i)\|_{L^2} \lesssim 2^{-i},$$ \hspace{1cm} (4.31)

$$\|\chi(i)\|_{C^{N+1},i} \lesssim \tau_{q+1}^{-3N},$$ \hspace{1cm} (4.32)

for all $N \geq 1$, where the implicit constant only depends on N.

Proof of Lemma 4.2. The existence of i_{max} follows as a consequence of the bound

$$\|\tilde{R}_q\|_{L^\infty} \leq \lambda_q^{8},$$ \hspace{1cm} (4.33)

The bound (4.33) follows from (2.20b)–(2.20c) and the Gagliardo-Nirenberg inequality $\|f\|_{L^\infty} \lesssim \|f\|_{L^2}^{1/2} \|f\|_{H^{1/2}}^{2/3}$, which holds for any zero-mean periodic function $f \in H^3$, and the definition of τ_{q+1} in (2.8), and the fact that $\varepsilon_R \leq 1$. Indeed, we have

$$\|\tilde{R}_q\|_{L^\infty} \lesssim \left(\lambda_q^{-\epsilon R/4} \delta_{q+1}\right)^{1/3} \left(\tau_{q+1}^{-1} \lambda_q^{1/3}\right) = \lambda_q^{-\epsilon R/4} \delta_{q+1}^{1/2} \lambda_q^{1/2} = \lambda_q^{-\epsilon R/4}$$

and the remaining power of $\lambda_q^{-\epsilon R/4}$ may be used to absorb $\lambda_q^{-\epsilon R/4}$ and the implicit universal constant.

The first bound expressed in (4.29) follows from the definition of ρ_i in (4.15), the fact that by (2.3) we have $\delta_{q+1} \leq \lambda_1^{\beta}$, and the fact that α may be chosen sufficiently large to ensure that $4^{\alpha} \lambda_q^{-\epsilon R/4} \leq 1$. Next, we note that in view of the definition of $\chi(i)$, for any $i \geq 1$, if (x, t) is such that

$$\left\langle \lambda_q^{\epsilon R/4} \delta_{q+1}^{-1} \tilde{R}_q(x, t) \right\rangle < 4^{i-1} \lambda_q^{9}$$

then $\chi(i)(x, t) = 0$. Therefore, by the bound (4.33) and the fact that $\beta b \leq 1/4$, if $i \geq 1$ is such that

$$\left\langle \lambda_q^{\epsilon R/4} \delta_{q+1}^{-1} \lambda_q^{8} \right\rangle \leq \lambda_q^{9} < 4^{i-1} \lambda_q^{9}$$

then $\chi(i) \equiv 0$. Therefore, in view of the parameter inequality

$$\lambda_q^{9} \leq 4^{-2} \lambda_1^{\beta} \tau_{q+1}^{-2},$$

which holds in view of (2.8) and the fact that $\beta b \leq 1/4$, upon taking α to be sufficiently large, we may thus define

$$i_{\text{max}}(q) = \max \left\{ i \geq 0 : \lambda_1^{\beta} 4^i \leq \tau_{q+1}^{-2} \right\}.$$ \hspace{1cm} (4.28)

With this choice of i_{max} it from the above argument it follows that (4.28) holds. The bound on i_{max} claimed in the second inequality in (4.29) then follows from the above definition.

The bound (4.30) follows from the second estimate in (4.29) which gives an upper bound on i_{max}, the definition (4.15), and using that $\lambda_q^{-\epsilon R/4} \log_4 (\tau_{q+1}^{-2}) \leq 8 \lambda_q^{-\epsilon R/4} \log_4(\lambda_q)$ can be made arbitrarily small if α is chosen sufficiently large, depending on ε_R.

For $i = 0, 1$, the bound (4.31) follows from the fact that $\tilde{\chi}_0, \tilde{\chi} \leq 1$. For $i \geq 2$, we appeal to the definition of $\chi(i)$, Chebyshev’s inequality, and the L^1 estimate on \tilde{R}_q in (2.20b), to obtain that $\|\chi(i)\|_{L^1} \lesssim 4^{-i}$. The bound (4.31) follows by interpolation.
Here we have used (2.20c) and [2, Proposition C.1], applied to the composition with the smooth functions $\gamma_4(\cdot)$ and $\langle \cdot \rangle = \sqrt{1 + (\cdot)^2}$. Indeed, for any $i \geq 0$ we obtain
\[
\| \chi(i) \|_{C^{\nu}_{x,t}} \lesssim \left\| \langle \lambda^\nu R/4 \delta^{-1}_q \tau \rangle \right\|_{C^{\nu}_{x,t}} + \left\| \langle \lambda^\nu R/4 \delta^{-1}_q \tau \rangle \right\|_{C^{\nu}_{x,t}}^N \lesssim 1 + \lambda^\nu R/4 \delta^{-1}_q \tau \left(\| \tau \|_{C^{\nu}_{x,t}} \right)^N \]
\[
\lesssim 1 + \lambda^\nu R/4 \delta^{-1}_q \tau + \left(\lambda^\nu R/4 \delta^{-1}_q \tau \right)^N \lesssim 1 + \tau^{-N-2} + \tau^{-3N} \lesssim \tau^{-3N}. \]

Here we have used (2.8) to show that $\tau_{q+1} \leq 1$, and that $\lambda^\nu R/4 \delta^{-1}_q \tau \lesssim \lambda^{7+4/3} \delta^{-1/2} q^{-1} = \tau^{-1}$. \hfill \Box

Next, we recall from [5, Lemma 4.3] the following bounds on the coefficients $a_4(\xi)$.

Lemma 4.3. The bounds
\[
\begin{align*}
\| a_4(\xi) \|_{L^2} & \lesssim \rho_i^{1/2} 2^{-i} \lesssim \delta^{-1/2}_q, \\
\| a_4(\xi) \|_{L^\infty} & \lesssim \rho_i^{1/2} \lesssim \delta^{-1/2}_q 2^{q+1}, \\
\| a_4(\xi) \|_{C^{N}_{x,t}} & \lesssim \tau^{-3N-1}_q \quad (4.34)
\end{align*}
\]
hold for all $0 \leq i \leq i_{\text{max}}$ and $N \geq 1$.

Proof of Lemma 4.3. The bound (4.35) follows directly from the definitions (4.16) and (4.15), the boundedness of the functions θ, $\chi(i)$, and $\gamma_4(\cdot)$. Using also (4.31), the estimate (4.34) follows similarly. In order to prove (4.36), we apply derivatives to (4.16), use the bounds previously established in Lemma 4.2, use [2, Proposition C.1] and the bound (2.20c) for τ_q, combined with property $\| \theta \|_{C^M} \lesssim \tau^{-M}_{q+1}$. The additional factor of τ^{-1}_{q+1} when compared to (4.32) is to absorb the factor of $\rho^{1/2}_i$ via (4.29). \hfill \Box

As a consequence of Lemma 4.3 and the definitions (4.21), (4.22), and (4.24), we obtain the following bounds:

Proposition 4.4. The principal part and of the velocity perturbation, the incompressibility, and the temporal correctors obey the bounds
\[
\begin{align*}
\| w^{(p)}_{q+1} \|_{L^2} & \lesssim \frac{1}{2} \delta^2_q \quad (4.37) \\
\| w^{(p)}_{q+1} \|_{W^{N,p}} & \lesssim \tau^{-1}_q 2^{q+1} \lambda_{q+1}^N \quad (4.38) \\
\| w^{(p)}_{q+1} \|_{W^{N,p}} + \| w^{(p)}_{q+1} \|_{W^{N,p}} & \lesssim \mu^{-1} \tau^{-3}_q 2^{q+1} \lambda_{q+1}^N \lesssim \lambda_{q+1}^N \quad (4.39)
\end{align*}
\]
for $N \in \mathbb{N}$, and $p > 1$.

From the second estimate in (4.39) it is clear that the incompressibility and temporal correctors obey better estimates than the principal corrector.

In order to establish the bound (4.37), it is essential to use the fact that $a_4(\xi)$ oscillates at a frequency which is much smaller than that of $W_4(\xi)$, which allows us to appeal to the L^p de-correlation lemma [5, Lemma 3.6], which we recall here for convenience:

Lemma 4.5. Fix integers $M, \kappa, \lambda \geq 1$ such that
\[
\frac{2\pi \sqrt{3} \lambda}{\kappa} \leq \frac{1}{3} \quad \text{and} \quad \lambda^3 \left(\frac{2\pi \sqrt{3} \lambda}{\kappa^M} \right)^M \leq 1. \quad (4.40)
\]
Let $p \in \{1, 2\}$, and let f be a \mathbb{T}^3-periodic function such that there exists a constants C_f such that
\[
\| D^j f \|_{L^p} \leq C_f \lambda^j,
\]
for all $1 \leq j \leq M+4$. In addition, let g be a $(\mathbb{T}/\kappa)^3$-periodic function. Then we have that
\[
\| fg \|_{L^p} \lesssim C_f \| g \|_{L^p},
\]
holds, where the implicit constant is universal.
Using Lemma 4.5, the proofs of bounds (4.37)–(4.39) follow in the same spirit as that of [5, Proposition 4.5].

Proof of Proposition 4.4. In order to prove (4.37), we use (4.34) when \(N = 0\), and (4.36) with \(\lambda_q^{N/p} \delta_q^{1/p} \leq \tau_q^{-1}\) for \(N \geq 1\), to conclude that
\[
\left\| D^{N} a(x) \right\|_{L^2} \lesssim \rho_i^{1/2 - 2^{-i} \tau_q^{-5N}},
\]
where the implicit constant depends only on \(N\). Since \(\mathcal{W}(\xi)\) is \((\tau_{\ell+1}^{1/2})^{3}\) periodic, in order to apply Lemma 4.5 with \(\lambda = \tau_q^{-5}\) and \(\alpha = \lambda_{q+1}^{-1}\), we first note that by (2.8) and (2.23), we have
\[
2\pi \sqrt{3} \lambda q^{-1} = 2\pi \sqrt{3} \tau_q^{-5} \lambda_{q+1}^{-1} \psi_{q+1} \lesssim 2\pi \sqrt{3} \lambda q^{35} + \frac{5\delta}{q+1} \lesssim \lambda q^{36} \lambda_{q+1}^{-2} \leq \lambda q \lambda_{q+1}^{-1} \psi_{q+1}^{N},
\]
by using that \(\beta\) is sufficiently small and \(b\) is sufficiently large, depending on \(\alpha\). For instance, we may take
\[
5\beta \leq \frac{5 - 4\alpha}{50} \quad \text{and} \quad \frac{36}{b} \leq \frac{5 - 4\alpha}{50}.
\]
In (4.42) we also used that \(\lambda_q^{1/2} 2\pi \sqrt{3} \lesssim 1\), once \(a\) is chosen sufficiently large. Therefore, after a short computation we see that the assumptions of Lemma 4.5 hold with the aforementioned \(\kappa\) and \(\lambda\), with \(M = 4\) in (4.40). Therefore, we only care about \(N \leq 4\) in (4.41), which also fixes the implicit constant in this inequality, and we may thus take \(C_f\) to be proportional to \(\rho_i^{1/2 - i}\). It thus follows from Lemma 4.5 and estimate (4.10) with \(M = N = 0\) and \(p = 2\) that
\[
\left\| a(x) \right\|_{L^2} \lesssim \rho_i^{1/2 - 2^{-i}} \left\| W(\omega) \right\|_{L^2} \lesssim \rho_i^{1/2 - 2^{-i}}.
\]
Upon summing over \(i \in \{0, \ldots, i_{\text{max}}\}\), and appealing to (4.30), we obtain that
\[
\left\| u^{(p)}_{q+1} \right\|_{L^2} \lesssim \delta_q^{1/2} \lambda_q^{q/2} \lesssim \frac{1}{2} \delta_q^{1/2},
\]
by using the small negative power of \(\lambda_q\) to absorb the implicit constants in the first inequality.

Consider the estimate (4.38). Observe that by definition (4.21), estimate (4.10) with \(M = 0\), and the bound (4.36), we have
\[
\left\| u^{(p)}_{q+1} \right\|_{W, N, p} \lesssim \sum_{i=0}^{i_{\text{max}}} \sum_{\xi \in \Lambda_{i}(\ell)} \sum_{N' = 0}^{N} \left\| a(x) \right\|_{C, N - N'} \left\| W(\omega) \right\|_{W, N', p} \lesssim \sum_{i=0}^{i_{\text{max}}} \sum_{\xi \in \Lambda_{i}(\ell)} \sum_{N' = 0}^{N} \tau_q^{-2(1/p - 1/2)/N'} \lambda_q^{N'} \lesssim \tau_q^{-2} \delta_q^{1/2} \lambda_q^{N'},
\]
(4.44)
Here we have again used (4.29) in order to sum over \(i\), and have used the bound \(\tau_q^{-3} \leq \lambda_q + 1\) which holds since \(\beta\) is small and \(b\) is large.

For the analogous bound on \(u^{(\epsilon)}_{q+1}\) by (4.8)–(4.10), estimate (4.36), the parameter estimates \(\tau_q^{-3} \leq \lambda_q + 1\) and \(\ell_\| \leq \ell\|\), and Fubini (recall that \(\psi(\xi)\) and \(\Phi(\xi)\) are functions of one and respectively two variables which are orthogonal to each other), we have
\[
\left\| \text{curl} \left(\nabla a(x) \times \mathcal{V}(\xi) \right) + \frac{1}{\lambda_q + 1} \nabla \left(a(x) \psi(\xi) \right) \right\|_{W, N, p} \lesssim \sum_{N' = 0}^{N+1} \left\| a(x) \right\|_{C, N + 2 - N'} \left\| V(\xi) \right\|_{W, N, p} + \frac{1}{\lambda_q + 1} \sum_{N' = 0}^{N - N' + 1} \left\| \psi(\xi) \right\|_{W, N, p} \Phi(\xi) \Phi(\xi) \left\| V(\xi) \right\|_{W, N, p} \lesssim \sum_{N' = 0}^{N+1} \tau_q^{-3(1/p - 1/2)/N'} \lambda_q^{N'} + \sum_{N' = 0}^{N - N' + 1} \tau_q^{-2(1/p - 1/2)/N'} \left(\frac{\ell_\| \lambda_q + 1}{\ell_\|} \right)^{N''} \lambda_q^{N'' - 1} \lambda_q^{N'},
\]
Summing over \(0 \leq i \leq i_{\text{max}}\) loses an additional factor of \(\tau_q^{-1}\), which yields the desired bound for the first term on the left of (4.39). Similarly, to estimate the summands in the definition (4.24) of \(w^{(I)}_{q+1}\) we use (4.8), (4.9), (4.36), the
and the definitions (4.25) and (4.26). Indeed, combining (4.37) with (4.39) with the definitions (4.45) and (4.46), and the inductive assumption (2.5a) at level $q+1$, we conclude
\[
\left\| \mu^{-1} \mathbb{P} H_{\delta} \right\|_{W^{p,\infty}} \lesssim \mu^{-1} \sum_{N'} N' \sum_{N^\prime=0}^N \left\| a_2(\xi) \phi_2(\xi) \psi_2(\xi) \right\|_{C^{N-N'}} \left\| \phi_2(\xi) \right\|_{W^{N-N',p}} \left\| \psi_2(\xi) \right\|_{W^{N^\prime-N'^{\prime},p}}
\]
\[
\lesssim \mu^{-1} \tau_{q+1}^{-2(2^q/p - 1) \ell_{q+1}^{1/p} - 1} \lambda_{q+1}^{2q+1} \left(\ell_{q+1} \lambda_{q+1} \right)^{N' - N''} \cdot
\]
\[
\lesssim \mu^{-1} \tau_{q+1}^{-2} \delta_{q+1}^{2/3} \tau_{q+1}^{3/2} \lambda_{q+1}^{2q+1} \cdot
\]
Summing in i loses a factor of τ_{q+1}^{-1} cf. (4.29), and we obtain the bound for the second term on the left of (4.39).

For the proof of (4.39), we additionally note that (4.20), (4.39) and (4.43) imply the parameter inequalities
\[
\tau_{q+1}^{-1} \leq \lambda_{q+1}^{3/4}, \quad \tau_{q+1}^{-3} \lambda_{q+1}^{-1} \leq \mu^{-1} \tau_{q+1}^{-1} \ell_{q+1}^{3/2} \lambda_{q+1}^{1/2}, \quad \text{and} \quad \mu^{-1} \tau_{q+1}^{-3} \ell_{q+1}^{3/2} \lambda_{q+1}^{1/2} \leq \lambda_{q+1}^{5/6},
\]
which concludes the proof of the proposition. \qed

The following bound shows that (2.15) holds, and collects a number of useful bounds for the cumulative velocity increment w_{q+1}, which in turn imply that (2.5a) and (2.5b) hold at level $q+1$.

Proposition 4.6. The bounds
\[
\left\| w_{q+1} \right\|_{L^2} \leq \frac{3}{4} \delta_{q+1}^{1/2} \tag{4.46}
\]
\[
\left\| v_{q+1} - v_q \right\|_{L^2} \leq \delta_{q+1}^{1/2} \tag{4.47}
\]
\[
\left\| w_{q+1} \right\|_{W^{1,p}} \lesssim \tau_{q+1}^{2} \delta_{q+1}^{1/2} \lambda_{q+1}^{1/2} \tag{4.48}
\]
\[
\left\| \partial_t w_{q+1} \right\|_{H^2} \lesssim \lambda_{q+1}^{5/2} \tag{4.49}
\]
hold for $1 < p \leq \infty$ and $s \geq 0$.

Before turning to the proof of the proposition, we note that estimate (4.47) and the inductive assumption (2.5a) at level q imply that
\[
\left\| v_{q+1} \right\|_{L^2} \leq 2 \delta_{q}^{1/2} - \delta_{q+1}^{1/2} \leq 2 \delta_{q}^{1/2} - \delta_{q+1}^{1/2}, \tag{4.50}
\]
which is a consequence of $2 \lambda_{q}^{3/4} \leq \lambda_{q+1}^{1/2}$. Thus, (2.5a) holds at level $q+1$. Similarly, from (2.19b) and (4.48) with $s = 3$ and $p = 2$, and the parameter inequality (4.45), we conclude
\[
\left\| v_{q+1} \right\|_{H^3} \lesssim \lambda_{q}^{4} + \tau_{q+1}^{3} \lambda_{q+1}^{2} \lesssim \lambda_{q+1}^{4} \lesssim \lambda_{q+1}^{5} \lesssim \lambda_{q+1}^{5}, \tag{4.51}
\]
where we have used that b is large and that $\alpha \in [1, 3/4)$. The remaining power of $\lambda_{q+1}^{1/2}$ may be used to absorb the implicit constant, and thus (2.5b) holds also at level $q+1$.

Similarly to (4.51), we establish two bounds which will be useful in Section 5 for the proof of Corollary 5.2. First, from (4.48) with $s = 9/2$ and $p = 2$, and (2.19d) with $M = 0$ and $N = 2$, it follows that
\[
\left\| v_{q+1} \right\|_{L^\infty(\gamma_{/3}, 2\gamma_{/3}; H^{9/2})} \lesssim \left\| w_{q+1} \right\|_{H^{9/2}} + \left\| \tau_{q} \right\|_{L^\infty(\gamma_{/3}, 2\gamma_{/3}; H^3)} \leq \tau_{q+1}^{2} \lambda_{q+1}^{3/2} + \tau_{q+1}^{2} \lambda_{q+1}^{4} \lesssim \lambda_{q+1}^{5}. \tag{4.52}
\]
Here we have also used the parameter inequality (4.45). Similarly, by (4.49) and the bound (2.19d) with $M = 1$ and $N = 0$ we obtain
\[
\left\| \partial_t v_{q+1} \right\|_{L^\infty(\gamma_{/3}, 2\gamma_{/3}; H^2)} \lesssim \left\| \partial_t w_{q+1} \right\|_{H^2} + \left\| \partial_t \tau_{q} \right\|_{L^\infty(\gamma_{/3}, 2\gamma_{/3}; H^3)} \lesssim \lambda_{q+1}^{5} \lesssim \lambda_{q+1}^{5}. \tag{4.53}
\]

Proof of Proposition 4.6. The estimates (4.46) and (4.47) are a direct consequence of the already established bounds and the definitions (4.25) and (4.26). Indeed, combining (4.37) with (4.39) with $p = 2$ and $N = 0$, we conclude that
\[
\left\| w_{q+1} \right\|_{L^2} \lesssim \left\| \partial_t w_{q+1} \right\|_{L^2} \lesssim \frac{1}{2} + \lambda_{q+1}^{\beta - \frac{5}{6}} \lesssim \frac{3}{4},
\]
since β is sufficiently small (see (4.43)). From (4.46) and (2.19c) we obtain
\[
\left\| v_{q+1} - v_q \right\|_{L^2} \lesssim \left\| \tau_{q} - v_q \right\|_{L^2} + \left\| w_{q+1} \right\|_{L^2} \lesssim \delta_{q+1}^{1/2},
\]
as desired. The estimate (4.48) with non-integer values of \(s\) follows by interpolation from the case \(s \in \mathbb{N}\). Comparing (4.38) with the second inequality in (4.39), we see that the bound for the principal corrector is the worst, since
\[
\tau_q^{-1} \lesssim 1 \leq \tau_{q+1}^{-1},
\]
and thus (4.48) follows directly.

Thus it is left to prove (4.49). An estimate on \(\partial_t w^{(p)}_{q+1}\) will clearly dominate an estimate on \(\partial_t w^{(c)}_{q+1}\). Hence it suffices to estimate \(\partial_t w^{(p)}_{q+1}\) and \(\partial_t w^{(c)}_{q+1}\). First consider \(\partial_t w^{(p)}_{q+1}\). From the bound (4.10) with \(N = 2, M = 1, p = 2\), estimate (4.36) with \(N = 3\), and the definition (2.23) of \(\mu\), we obtain
\[
\left\| \partial_t w^{(p)}_{q+1} \right\|_{H^2} \lesssim \sum_{i} \sum_{\xi \in \Lambda(i)} \left\| a_i(\xi) \right\|_{C^{\ell,2}_{x,t}} \left\| \partial_t W(\xi) \right\|_{H^2}
\]
\[
\lesssim \sum_{i=0}^{i_{\text{max}}} \tau_{q+1}^{10} \ell^\perp_1 \ell_\parallel^{-1} \lambda_{q+1}^3 \mu
\]
\[
\lesssim \tau_{q+1}^{-1} \lambda_{q+1}^2 + 2 \alpha + 2
\]
\[
\lesssim \lambda_{q+1}^5,
\]
where in the last inequality we used that (4.45) provides an upper bound for \(\tau_{q+1}^{-1}\), and that \(\alpha < 5/4\). In order to estimate \(\partial_t w^{(c)}_{q+1}\) we use estimates (4.8) and (4.9), Fubini, and the bound (4.36) to obtain
\[
\left\| \partial_t w^{(c)}_{q+1} \right\|_{H^2} \lesssim \mu^{-1} \sum_{i} \sum_{\xi \in \Lambda(i)} \left(\left\| a_i(\xi) \right\|_{C^{\ell,2}_{x,t}} \left\| \partial_t^2(\xi) \partial_t^2(\xi) \right\|_{H^2} + \left\| a_i(\xi) \right\|_{C^{\ell,2}_{x,t}} \left\| \partial_t^2(\xi) \partial_t^2(\xi) \right\|_{H^2} \right)
\]
\[
\lesssim \mu^{-1} \sum_{i=0}^{i_{\text{max}}} \sum_{\xi \in \Lambda(i)} \sum_{N=0}^{2} \left(\tau_{q+1}^{-8} \left\| \partial_t^2(\xi) \right\|_{H^{N}} \left\| \partial_t^2(\xi) \right\|_{H^{2-N}} + \tau_{q+1}^{-11} \left\| \partial_t^2(\xi) \right\|_{H^{N}} \left\| \partial_t^2(\xi) \right\|_{H^{N-2}} \right)
\]
\[
\lesssim \mu^{-1} \sum_{i=0}^{i_{\text{max}}} \left(\tau_{q+1}^{-8} \ell^\perp_1 \epsilon^2 \left(\ell_\parallel \lambda_{q+1}^4 \mu \right) \lambda_{q+1}^2 + \tau_{q+1}^{-11} \ell^\perp_1 \epsilon^2 \lambda_{q+1}^2 \right)
\]
\[
\lesssim \tau_{q+1}^{-9} \epsilon^3 \lambda_{q+1}^3 + \tau_{q+1}^{-12} \lambda_{q+1}^2 \epsilon^2 \lambda_{q+1}^2
\]
\[
\lesssim \lambda_{q+1}^5.
\]
Here we have used explicitly the parameter choice (2.23), the parameter inequality (4.20), the first bound in (4.45), the bound \(\epsilon^\perp_1 \leq \epsilon_\parallel \leq \lambda_{q+1}\), and the inequality \(i_{\text{max}} \lesssim \tau_{q+1}^{-1}\).

\[
\square
\]

5. Convex Integration Step: The Reynolds Stress

The main result of this section may be summarized as:

Proposition 5.1. There exists an \(\varepsilon_R > 0\) sufficiently small, and a parameter \(p > 1\) sufficiently close to 1, depending only on \(a, b, \text{ and } \beta\), such that the following holds: There exists a traceless symmetric 2 tensor \(\tilde{R}\) and a scalar pressure field \(\tilde{p}\), defined implicitly in (5.5) below, satisfying
\[
\partial_t v_{q+1} + \text{div} \left(v_{q+1} \otimes v_{q+1} \right) + \nabla \tilde{p} + (-\Delta)^{\alpha} v_{q+1} = \text{div} \tilde{R}, \quad \text{div} v_{q+1} = 0. \tag{5.1a, 5.1b}
\]

Moreover \(\tilde{R}\) obeys the bound
\[
\left\| \tilde{R} \right\|_{L_p} \lesssim \lambda_{q+1}^{-2\varepsilon_R} \delta_{q+2}, \quad \tag{5.2}
\]
where the constant depends on the choice of \(p\) and \(\varepsilon_R\), but is independent of \(q\), and \(\tilde{R}\) has the support property
\[
\text{supp} \tilde{R} \subset T^3 \times \left\{ t \in [0, T] : \text{dist}(t, G^{(q+1)}) > \tau_{q+1} \right\}. \tag{5.3}
\]

An immediate consequence of Proposition 5.1 is that the desired inductive estimates (2.4a) and (2.4b) and the support property (2.11) hold for the Reynolds stress \(R_{q+1}\), which is defined as follows.
Corollary 5.2. There exists a traceless symmetric 2 tensor \(\hat{R}_{q+1} \) and a scalar pressure field \(p_{q+1} \) such that the triple \((v_{q+1}, p_{q+1}, \hat{R}_{q+1})\) solves the Navier-Stokes-Reynolds system (2.1) at level \(q + 1 \). Moreover, the following bounds hold

\[
\|\hat{R}_{q+1}\|_{L^1} \leq \lambda_{q+1}^{-\epsilon_p} \delta_{q+2}, \quad (5.4a)
\]

\[
\|\hat{R}_{q+1}\|_{H^3} \leq \lambda_{q+1}^7, \quad (5.4b)
\]

and \(\hat{R}_{q+1}(t) = 0 \) whenever \(\text{dist}(t, G^{(q+1)}) \leq \tau_{q+1} \).

Proof of Corollary 5.2. With \(\hat{R} \) and \(\bar{p} \) defined in Proposition 5.1, we let

\[
\hat{R}_{q+1} = \mathcal{R}\mathcal{P}_H \text{div} \hat{R} \quad \text{and} \quad p_{q+1} = \bar{p} - \Delta^{-1} \text{div} \text{div} \hat{R}.
\]

It follows from (5.1) and the definitions of the inverse-divergence operator \(\mathcal{R} \) and of the Helmholtz projection \(\mathcal{P}_H \) that the \((v_{q+1}, p_{q+1}, \hat{R}_{q+1})\) solve the Navier-Stokes-Reynolds system (2.1) at level \(q + 1 \). Since the operator \(\mathcal{R}\mathcal{P}_H \text{div} \) is time-independent, the claimed support property for \(\hat{R}_{q+1} \), namely (5.11) at level \(q + 1 \), follows directly from (5.3).

With the parameter \(\rho > 1 \) from Proposition 5.1, using that \(\|\mathcal{R}\mathcal{P}_H \text{div} \|_{L^p \to L^p} \lesssim 1 \), we directly bound

\[
\|\hat{R}_{q+1}\|_{L^1} \lesssim \|\hat{R}_{q+1}\|_{L^p} \lesssim \|\hat{R}\|_{L^p} \lesssim \lambda_{q+1}^{-2\epsilon_p} \delta_{q+2}.
\]

The estimate (5.4a) then follows since the residual factor \(\lambda_{q+1}^{-\epsilon_p} \) can absorb any constant if we assume \(\alpha \) is sufficiently large. In order to prove (5.4b), we use equation (5.1), the support property of \(\hat{R}_{q+1} \) which implies that \(\text{supp} \hat{R}_{q+1} \subset \mathbb{T}^3 \times [T/3, 2T/3] \), and the bounds (4.50)–(4.53). Combining these, we obtain

\[
\|\hat{R}_{q+1}\|_{H^3} = \|\mathcal{R}\mathcal{P}_H (\text{div} \hat{R})\|_{H^3}
\lesssim \|\partial_t v_{q+1} + \text{div} (v_{q+1} \otimes v_{q+1}) + (-\Delta)_{\alpha} v_{q+1}\|_{L^\infty(T/3, 2T/3; H^3)}
\lesssim \|\partial_t v_{q+1}\|_{L^\infty(T/3, 2T/3; H^3)} + \|v_{q+1} \otimes v_{q+1}\|_{H^3} + \|v_{q+1}\|_{L^\infty(T/3, 2T/3; H^3)}
\lesssim \|\partial_t v_{q+1}\|_{L^\infty(T/3, 2T/3; H^3)} + \|v_{q+1}\|_{H^3} + \|\partial_t v_{q+1}\|_{L^\infty(T/3, 2T/3; H^3)} + \|v_{q+1}\|_{L^\infty(T/3, 2T/3; H^3)}
\lesssim \lambda_{q+1}^5 + \lambda_{q+1}^6 \delta_{q+1}^{1/4} + \lambda_{q+1}^5
\lesssim \lambda_{q+1}^{13/2}.
\]

For the dissipative term we have used that \(\alpha < 5/4 \), so that \(2\alpha + 2 < 9/2 \). Using the residual power of \(\lambda_{q+1}^{-\epsilon_p} \) we may absorb any constants and thus (5.4b) follows.

5.1. Proof of Proposition 5.1. Recall that \(v_{q+1} = w_{q+1} + \tau_{q} \), where \(\tau_{q} \) is defined in Section 3.3 and \((\tau_{q}, \hat{R}_{q}) \) solve (2.1). Using (4.25) we obtain

\[
\text{div} \hat{R} - \nabla \bar{p} = (-\Delta)^\alpha w_{q+1} + \partial_t (w^{(p)}_{q+1} + w^{(c)}_{q+1}) + \text{div} (\tau_{q} \otimes w_{q+1} + w_{q+1} \otimes \tau_{q})
\]

\[
+ \text{div} \left((w^{(c)}_{q+1} + w^{(t)}_{q+1}) \otimes w_{q+1} + w^{(p)}_{q+1} \otimes w^{(c)}_{q+1} + w^{(t)}_{q+1} \right)
\]

\[
+ \text{div} (w^{(p)}_{q+1} \otimes w^{(p)}_{q+1} + \hat{R}_{q}) + \partial_t w^{(t)}_{q+1}
\]

\[
=: \text{div} \left(\hat{R}_{\text{linear}} + \hat{R}_{\text{corrector}} + \hat{R}_{\text{oscillation}} \right) + \nabla q. \quad (5.5)
\]

Here, the linear error and corrector errors are defined by applying \(\mathcal{R} \) to the first and respectively second line of (5.5), while the oscillation error is defined in Section 5.1.3 below. The zero mean pressure \(q \) is defined implicitly in a unique way.

Besides the already used inequalities between the parameters, \(\ell_\perp, \ell_\parallel \) and \(\lambda_{q+1} \), we shall use that if \(\rho \) is sufficiently close to \(1 \) the following bounds hold:

\[
\tau_{q+1}^{-5} \lambda_{q+1}^{-2\alpha - 1} \ell_\perp^{-1} \ell_\parallel^{\rho - 1/2} + \tau_{q+1}^{-5} \lambda_{q+1}^{1-2\alpha} \ell_\parallel^{\rho - 1/2} \ell_\perp^{-1/2}
\]

\[
+ \tau_{q+1} \lambda_{q+1}^{-3} \ell_\parallel^{\rho - 2} \ell_\perp^{-1} + \tau_{q+1}^{-6} \lambda_{q+1}^{1-2\alpha} \ell_\parallel^{\rho - 1/2} \ell_\perp^{-2} \lesssim \lambda_{q+1}^{-2\epsilon_p} \delta_{q+2}. \quad (5.6)
\]
To see this, we appeal to the bound (4.45) for τ_{q+1}^{-1} and the parameter choices (2.23) to conclude that the left side of (5.6) is bounded from above as

$$
\ell_{q+1}^{2p-2} \ell_{q+1}^{p-1} \left(\tau_{q+1}^{-5} \lambda_{q+1}^{2q-1} \ell_{q+1}^{p-1} + \tau_{q+1}^{-5} \lambda_{q+1} \ell_{q+1} - \tau_{q+1}^{-6} \lambda_{q+1}^{q+1} \ell_{q+1} - \tau_{q+1}^{-6} \lambda_{q+1}^{2q+1} \ell_{q+1} \right)
$$

$$
\lesssim \ell_{q+1}^{2p-2} \ell_{q+1}^{p-1} \tau_{q+1}^{-6} \left(\lambda_{q+1}^{2q-1} \ell_{q+1}^{p-1} + \lambda_{q+1} \ell_{q+1} - \lambda_{q+1}^{q+1} \ell_{q+1} + \lambda_{q+1}^{2q+1} \ell_{q+1} \right)
$$

$$
\lesssim \ell_{q+1}^{2p-2} \ell_{q+1}^{p-1} \lambda_{q+1}^{3(5-4a)} \left(\lambda_{q+1}^{5-4a} + \lambda_{q+1} \ell_{q+1} + \lambda_{q+1}^{2q+1} \ell_{q+1} \right)
$$

$$
\lesssim \ell_{q+1}^{2p-2} \ell_{q+1}^{p-1} \lambda_{q+1}^{3(5-4a)}
$$

where in the last inequality we have chosen p sufficiently close to 1, depending only on α. To conclude the proof of (5.6), note that

$$
\lambda_{q+1}^{2q+1} \delta_{q+2} \geq \lambda_{q+1}^{2-2} \lambda_{q+2} \geq \lambda_{q+1}^{2-2} \alpha
$$

and therefore if we ensure that ε_R and β are sufficiently small, depending on α and b, only such that

$$
2\varepsilon_R b + 2\beta b^2 \leq \frac{5 - 4\alpha}{100},
$$

then the three estimates above imply (5.6).

5.1.1. The linear error. In order to prove (5.2), we first estimate the contributions to \tilde{R} coming from $\tilde{R}_{\text{linear}}$. Recalling (4.23), the bounds (2.19b), (4.10), (4.36), and (4.48), we obtain

$$
\left\| \tilde{R}_{\text{linear}} \right\|_{L^p} \lesssim \left\| \mathcal{R}((-\Delta)^\alpha w_{q+1}) \right\|_{L^p} + \left\| \mathcal{R}(\partial_t (w_{q+1}^p + w_{q+1}^c)) \right\|_{L^p} + \left\| \mathcal{R} \text{div} (\tau_q \otimes w_{q+1} + w_{q+1} \otimes \tau_q) \right\|_{L^p}
$$

$$
\lesssim \left\| w_{q+1} \right\|_{W^{2q+1,p}} + \sum_i \sum_{\xi \in \Lambda_i} \left\| \partial_t \mathcal{R} \text{curl} \left(a(\xi) V(\xi) \right) \right\|_{L^p} + \left\| \partial_t \mathcal{R} \text{curl} \left(a(\xi) V(\xi) \right) \right\|_{L^p}
$$

$$
\lesssim (1 + \left\| \tau_q \right\|_{L^\infty}) \left\| w_{q+1} \right\|_{W^{2q+1,p}} + \sum_i \sum_{\xi \in \Lambda_i} \left\| \partial_t a(\xi) \right\|_{C_{2q+1}^2} + \left\| \partial_t V(\xi) \right\|_{W^{1,p}} + \left\| a(\xi) \right\|_{C_{2q+1}^2} \left\| V(\xi) \right\|_{W^{1,p}}
$$

$$
\lesssim \lambda_{q+1}^{2q-1} \lambda_{q+1}^{-1} \left\| \tau_{q+1}^{2q-2} \ell_{q+1}^{p-1} \ell_{q+1}^{p-1} \right\|_{L^p}.
$$

Here we have used the definition of μ from (2.23), and the parameter inequalities $\lambda_{q+1}^{2q-1} \lesssim \tau_{q+1}^{-1} \lesssim \lambda_{q+1}^{\gamma/2}$. By (5.6), the above estimate is consistent with (5.2).

5.1.2. Corrector error. Next we turn to the errors involving correctors. Appealing to estimates (4.38) and (4.39) of Proposition 4.4, we have

$$
\left\| \tilde{R}_{\text{corrector}} \right\|_{L^p} \lesssim \left\| \mathcal{R} \text{div} \left((w_{q+1}^c + w_{q+1}^t) \otimes w_{q+1} + w_{q+1}^p \otimes (w_{q+1}^c + w_{q+1}^t) \right) \right\|_{L^p}
$$

$$
\lesssim \left\| w_{q+1}^c + w_{q+1}^t \right\|_{L^p} \left\| w_{q+1} \right\|_{L^{2q+1}} + \left\| \tau_{q+1}^{-5} \ell_{q+1}^{p-3} \ell_{q+1}^{p-3} \right\|_{L^p}
$$

$$
\lesssim \tau_{q+1}^{-5} \lambda_{q+1} \left\| \tau_{q+1}^{2q-2} \ell_{q+1}^{p-1} \right\|_{L^p}.
$$

In the last inequality we have appealed to the definition (2.23). Due to (5.6) this estimate is sufficient for (5.2).
5.1.3. Oscillation error. In this section we estimate the remaining error, $\tilde{R}_{\text{oscillation}}$, which obeys
\[
\text{div} \left(\tilde{R}_{\text{oscillation}} \right) + \nabla P = \text{div} \left(w_{q+1}^{(p)} \otimes w_{q+1}^{(p)} + \tilde{R}_q \right) + \partial_t w_{q+1}^{(f)},
\]
where P is a suitable pressure. From the definition of $w_{q+1}^{(p)}$ in (4.21) and of the coefficients a_ξ in (4.16), using the disjoint support property of the intermittent jets (4.5), the fact that $\Lambda_{(1)} \cap \Lambda_{(2)} = \emptyset$, and appealing to the identity (4.19), we have
\[
\text{div} \left(w_{q+1}^{(p)} \otimes w_{q+1}^{(p)} \right) + \text{div} \tilde{R}_q = \sum_{i,j} \sum_{\xi \in \Lambda_{(1)}, \xi' \in \Lambda_{(1)}} \text{div} \left(a_\xi a_{\xi'} W_\xi \otimes W_{\xi'} \right) + \text{div} \tilde{R}_q
\]
\[
= \sum_{i} \sum_{\xi \in \Lambda_{(1)}} \text{div} \left(a_\xi^2 W_\xi \otimes W_\xi \right) + \text{div} \tilde{R}_q
\]
\[
= \sum_{i} \sum_{\xi \in \Lambda_{(1)}} \text{div} \left(a_\xi^2 \mathbb{P}_{\geq \lambda_{q+1}} W_\xi \otimes W_\xi \right) + \text{div} \tilde{R}_q
\]
\[
= \sum_{i} \sum_{\xi \in \Lambda_{(1)}} \text{div} \left(a_\xi^2 \mathbb{P}_{\geq \lambda_{q+1}} W_\xi \otimes W_\xi \right) + \nabla \left(\theta^2 \sum_{i \geq 0} \rho_i \lambda_{i}^2 \right).
\]

Here we use that since W_ξ is $(T/\ell_\perp, L)^3$-periodic, the minimal separation between active frequencies of $W_\xi \otimes W_\xi$ and the 0 frequency is given by $\lambda_{q+1} \ell_\perp$. That is, $\mathbb{P}_{\neq 0} (W_\xi \otimes W_\xi) = \mathbb{P}_{\geq \lambda_{q+1}} \ell_\perp/2 (W_\xi \otimes W_\xi)$. We further split
\[
E_{(\xi,1)} = \mathbb{P}_{\neq 0} \left(\mathbb{P}_{\geq \lambda_{q+1}} \ell_\perp/2 (W_\xi \otimes W_\xi) \nabla \left(a_\xi^2 \right) \right) + \mathbb{P}_{\neq 0} \left(a_\xi^2 \text{div} \left(W_\xi \otimes W_\xi \right) \right)
\]
\[
=: E_{(\xi,1)} + E_{(\xi,2)}.
\]

The term $\mathcal{R}E_{(\xi,1)}$, which is the first contribution to $\tilde{R}_{\text{oscillation}}$, is estimated by using that the coefficient functions a_ξ are essentially frequency localized inside of the ball of radius $\tau_\pm^{-3} \ll \lambda_{q+1} \ell_\perp$, in view of (4.36). More precisely, by Lemma 4.3 we are justified to use [5, Lemma B.1], with the parameter choices $\lambda = \tau_\pm^{-3}$, $C_\alpha = \tau_\pm^{-5}$, $\kappa = \lambda_{q+1} \ell_\perp/2$, and L sufficiently large, to conclude
\[
\|\mathcal{R}E_{(\xi,1)}\|_{L^p} \lesssim \|\nabla^{-1} E_{(\xi,1)}\|_{L^p}
\]
\[
\lesssim \|\nabla^{-1} \mathbb{P}_{\neq 0} \left(\mathbb{P}_{\geq \lambda_{q+1}} \ell_\perp/2 (W_\xi \otimes W_\xi) \nabla \left(a_\xi^2 \right) \right)\|_{L^p}
\]
\[
\lesssim \tau_\pm^{-5} \lambda_{q+1} \ell_\perp \left(1 + \frac{\tau_\pm^{-6}}{L^2} \right) \|W_\xi \otimes W_\xi\|_{L^p}
\]
\[
\lesssim \tau_\pm^{-5} \lambda_{q+1} \ell_\perp \|W_\xi\|_{L^{2p}} \|W_\xi\|_{L^{2p}}
\]
\[
\lesssim \tau_\pm^{-5} \lambda_{q+1} \ell_\perp^{2/p} L^{3/2}. \]

In the last inequality above we have used estimate (4.10), and in the second to last inequality we have used that by taking L sufficiently large, for instance $L = 4$ is sufficient in view of the first inequality in (4.45) and the definition of ℓ_\perp in (2.23), we have $\tau_\pm^{-6} \tau_\pm^{-1} \ll 1$. Summing these contributions over $0 \leq i \leq i_{\text{max}}$ costs an additional factor of τ_\pm^{-1}, and from the third term in (5.6) we obtain the the bound for $\mathcal{R}E_{(\xi,1)}$ is consistent with (5.2).

We are left to estimate the contribution from the $E_{(\xi,2)}$ term. From identity (4.11) we have that
\[
E_{(\xi,2)} = \frac{1}{\mu} \mathbb{P}_{\neq 0} \left(a_\xi^2 \phi_\xi \partial_t \psi_\xi \right) - \frac{1}{\mu} \partial_t \mathbb{P}_{\neq 0} \left(a_\xi^2 \phi_\xi^2 \psi_\xi \right) - \frac{1}{\mu} \mathbb{P}_{\neq 0} \left(\partial_t a_\xi^2 \phi_\xi^2 \psi_\xi \right).
\]
Hence, summing in ξ and i, pairing with the $\partial_t w_{q+1}^{(\ell)}$ present in (5.9), recalling the definition of $w_{q+1}^{(\ell)}$ in (4.24), and noting that $\text{Id} - P_H = \nabla (\Delta^{-1} \text{div})$, we obtain
\[
\sum_{i} \sum_{\xi \in A_{1}(i)} E_{(\xi, i)} + \partial_t w_{q+1}^{(\ell)} = \frac{1}{\mu} \sum_{i} \sum_{\xi \in A_{1}(i)} (\text{Id} - P_H) \partial_t P_{\neq 0} \left(a_{(\xi)}^2 \phi_{(\xi)}^2 \psi_{(\xi)}^2 \xi \right) - \frac{1}{\mu} \sum_{i} \sum_{\xi \in A_{1}(i)} P_{\neq 0} \left(\partial_t (a_{(\xi)}^2) \phi_{(\xi)}^2 \psi_{(\xi)}^2 \xi \right)
\]
\[
= \nabla q - \frac{1}{\mu} \sum_{i} \sum_{\xi \in A_{1}(i)} P_{\neq 0} \left(\partial_t (a_{(\xi)}^2) \phi_{(\xi)}^2 \psi_{(\xi)}^2 \xi \right),
\]
where $q = \frac{1}{\mu} \sum_{i} \sum_{\xi \in A_{1}(i)} \Delta^{-1} \text{div} \partial_t P_{\neq 0} \left(a_{(\xi)}^2 \phi_{(\xi)}^2 \psi_{(\xi)}^2 \xi \right)$ is a pressure term. At last, we estimate the second contribution to $R_{oscillation}$ by using (4.8), (4.9), Fubini, (4.29), and (4.36), to obtain
\[
\left\| R \left(\frac{1}{\mu} \sum_{i} \sum_{\xi \in A_{1}(i)} P_{\neq 0} \left(\partial_t (a_{(\xi)}^2) \phi_{(\xi)}^2 \psi_{(\xi)}^2 \xi \right) \right) \right\|_{L^p_{t}} \lesssim \frac{1}{\mu} \sum_{i} \sum_{\xi \in A_{1}(i)} \left\| \partial_t (a_{(\xi)}^2) \phi_{(\xi)}^2 \psi_{(\xi)}^2 \xi \right\|_{L^p_{t}}
\]
\[
\lesssim \frac{1}{\mu} \sum_{i} \sum_{\xi \in A_{1}(i)} \left\| a_{(\xi)}^2 \right\|_{C^{1}_{t,x}} \left\| a_{(\xi)} \right\|_{L^\infty} \left\| \phi_{(\xi)}^2 \right\|_{L^{2p}_{t}} \left\| \psi_{(\xi)}^2 \right\|_{L^{2p}_{t}}
\]
\[
\lesssim \mu^{-1} \sum_{i=0}^{i_{\text{max}}} \tau_{q+1}^{-5} \xi_{L}^{-5} \xi_{\perp}^{-5} \xi_{\perp}^{1/p-1}
\]
\[
\lesssim \tau_{q+1}^{-6} \Lambda_{q+1}^{1-2a} \xi_{L}^{1-2a} \xi_{\perp}^{1/1-2a}.
\]
In the last equality above we have used the definition of μ. Using the bound for the last term in (5.6), we conclude that the above estimate is consistent with (5.2), which shows that $R_{oscillation}$ also obeys this inequality.

5.1.4. The temporal support of \tilde{R}. In order to conclude the proof of Proposition 5.1, we need to show that (5.3) holds. From (5.5) it follows that
\[
\text{supp} \tilde{R} \subset \text{supp} \tilde{w}_{q+1}^{(p)} \cup \text{supp} \tilde{w}_{q+1}^{(c)} \cup \text{supp} \tilde{w}_{q+1}^{(t)} \cup \text{supp} \tilde{R}_{q}.
\]
By (2.20a) we know that $\tilde{R}_{q}(t) = 0$ whenever $\text{dist}(t, G^{(q+1)}) \leq 2\tau_{q+1}$, while by property (4.18) we have that $a_{(\xi)}(t) = 0$ whenever $\text{dist}(t, G^{(q+1)}) \leq \tau_{q+1}$. By their definitions, the principal (4.21), incompressibility (4.22), and temporal correctors (4.24), are composed only of terms which contain the coefficient functions $a_{(\xi)}$, and thus, similarly to (4.27) we have that $w_{q+1}^{(p)}(t) = w_{q+1}^{(c)}(t) = w_{q+1}^{(t)}(t) = 0$ whenever $\text{dist}(t, G^{(q+1)}) \leq \tau_{q+1}$. This proves (5.3).

ACKNOWLEDGMENTS

The work of T.B. has been partially supported by the NSF grant DMS-1600868. V.V. was partially supported by the NSF grant DMS-1652134 and an Alfred P. Sloan Research Fellowship.

REFERENCES

[1] T. Buckmaster. Onsager’s conjecture almost everywhere in time. Comm. Math. Phys., 333(3):1175–1198, 2015.
[2] T. Buckmaster, C. De Lellis, P. Isett, and L. Székelyhidi, Jr. Anomalous dissipation for $1/5$-Hölder Euler flows. Annals of Mathematics, 182(1):127–172, 2015.
[3] T. Buckmaster, C. De Lellis, and L. Székelyhidi, Jr. Dissipative Euler flows with Onsager-critical spatial regularity. Comm. Pure Appl. Math., 69(9):1613–1670, 2016.
[4] T. Buckmaster, C. De Lellis, L. Székelyhidi Jr, and V. Vicol. Onsager’s conjecture for admissible weak solutions. Comm. Pure Appl. Math., 72(2):229–274, 2019.
[5] T. Buckmaster and V. Vicol. Nonuniqueness of weak solutions to the Navier-Stokes equation. Annals of Mathematics, 189(1):101–144, 2019.
[6] L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math., 35(6):771–831, 1982.
[7] M. Colombo, C. De Lellis, and L. De Rosa. Ill-posedness of Leray solutions for the Hypodissipative Navier-Stokes equations. Comm. Math. Phys., 362(2):659–688, 2018.
[8] M. Colombo, C. De Lellis, and A. Massaccesi. The generalized Caffarelli-Kohn-Nirenberg theorem for the hyperdissipative Navier-Stokes system. Comm. Pure Appl. Math., 73(3):609–663, 2020.
[9] S. Daneri and L. Székelyhidi, Jr. Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Rational Mech. Anal., 224(2):471–514, 2017.
