Tip-induced excitonic luminescence nanoscopy of an atomically resolved van der Waals heterostructure

Luis E. Parra López, Anna Rostawska ★, Fabrice Scheurer, Stéphane Berciaud ★ & Guillaume Schull ★

The electronic and optical properties of van der Waals heterostructures are strongly influenced by the structuration and homogeneity of their nano- and atomic-scale environments. Unravelling this intimate structure–property relationship is a key challenge that requires methods capable of addressing the light–matter interactions in van der Waals materials with ultimate spatial resolution. Here we use a low-temperature scanning tunnelling microscope to probe—with atomic-scale resolution—the excitonic luminescence of a van der Waals heterostructure, made of a transition metal dichalcogenide monolayer stacked onto a few-layer graphene flake supported by a Au(111) substrate. Sharp emission lines arising from neutral, charged and localized excitons are reported. Their intensities and emission energies vary as a function of the nanoscale topography of the van der Waals heterostructure, explaining the variability of the emission properties observed with diffraction-limited approaches. Our work paves the way towards understanding and controlling optoelectronic phenomena in moiré superlattices with atomic-scale resolution.

Van der Waals (vdW) heterostructures made from stacks of two-dimensional (2D) materials, particularly semiconducting transition metal dichalcogenides (TMDs), are ideal systems for studying fundamental phenomena related to tightly bound electron-hole pairs (excitons) and their exploitation in atomically thin optoelectronic devices. The rich physics of excitons, trions (that is, charged excitons), and more complex many-body states has been addressed in TMDs and related vdW heterostructures through optical spectroscopy, particularly by recording their micro-photoluminescence (μPL) characteristics, with a diffraction-limited spatial resolution of typically ≤1 μm. These far-field optical studies have highlighted substantial spatial variations in the optical response of a given sample, due to inhomogeneities of the nanoscale environment, including strain gradients, dielectric disorder, localized defects and dopants. Taking advantage of these subtle structure–property relationships, periodic nanoscale moiré super-potentials resulting from the controlled rotational mismatch between stacked 2D layers have recently been used to tailor exciton physics, with potential outcomes for quantum simulation and quantum technologies. Understanding of such emergent phenomena requires addressing excitons and their local environment with a spatial resolution below the moiré wavelength (≤10 nm) and the exciton Bohr radius (~1 nm) (ref. 9), that is, two to three orders of magnitude below the optical diffraction limit.

Recently, attempts have been made to address excitons in TMDs with nanoscale resolution. In particular, tip-enhanced photoluminescence (PL) microscopy has been used to image strain gradients with a resolution of ~15 nm. In parallel, atomically resolved luminescence has been reported on single molecules using scanning-tunnelling-microscopy-induced luminescence (STML). The STML measurement consists of recording—in the far field—the light emitted at the scanning tunnelling microscope (STM) tip–sample junction under the application of a constant tunnelling current. This
method was recently applied to investigate excitonic emission from TMDs in ambient air\cite{21,22}. Under these conditions, atomic-scale resolution could not be attained, probably because of contamination and lack of mechanical and thermal stability. Attempts to address the excitonic properties of TMDs with STM in an ultrahigh vacuum at cryogenic temperatures have been reported\cite{21,22}, but the radiative recombination of excitons and trions was probably quenched by the strong interaction with the supporting metallic substrate\cite{23}.

In this Article, we demonstrate excitonic luminescence from a 2D semiconductor with nanoscale resolution provided by low-temperature STML. We show that a vdW heterostructure based on a TMD monolayer, decoupled from an Au(111) crystal by a few-layer graphene flake (FLG), allows for the preservation of its luminescence and ensures optimal STM imaging of surface atoms and moiré superlattices. Our results provide insights into the mechanisms leading to STM-induced luminescence in vdW heterostructures and further establish STM-based methods as a unique tool to correlate the optical response of low-dimensional systems to their nano- and atomic-scale environments.

Sample design and μPL mapping

Our measurements were performed on a vdW heterostructure made of a molybdenum diselenide (MoSe$_2$) monolayer stacked on top of a few layers (ranging from three to five) of FLG deposited onto a Au(111) substrate\cite{24} (Methods and Supplementary Section 1). Figure 1a–c shows a schematic of the STML experiment, an optical image of the MoSe$_2$/FLG/Au(111) heterostructure and an atomically resolved constant-current STM image, respectively. Here, akin to hexagonal boron nitride\cite{25}, the FLG provides a smooth substrate for the TMD and ensures electrical conduction. This configuration also uses the plasmonic properties of the Ag tip–Au substrate junction (Fig. 1a), which enhances radiative recombination in STML experiments\cite{26}.

We first report on the low-temperature μPL measurements recorded ex situ using a laser beam of ~1 μm diameter at various close-lying spots on the sample (Fig. 1b). The strikingly different μPL spectra (Fig. 1d) suggest sizeable inhomogeneities at the sub-micrometre scale. These inhomogeneities probably stem from thermal annealing performed before introducing the sample into the STM chamber (Methods).

Four main types of low-temperature μPL spectrum are identified on the MoSe$_2$/FLG/Au region (Fig. 1b and Supplementary Section 2). First, we observe the spectra dominated by a high-energy emission line near 1.65 eV, followed by a lower-intensity feature, about 30 meV below the main line (Fig. 1d, triangle). The main and lower-energy lines are assigned to the bright neutral exciton (X0) and negative trion (X$^-$), respectively\cite{27}. The negatively charged nature of the trion will be discussed below. Next, we also observe spectra that only display emission from the X0 line (Fig. 1d, square), as well as more complex spectra, showing several sharper, spatially dependent and spectrally diffusing features assigned to localized excitons\cite{28}, with possible contributions from (X0, X) pairs stemming from the nanoscale regions subject to distinct local strain fields (Fig. 1d, circle). Finally, redshifted X0 lines below 1.60 eV are also observed (Fig. 1d, star). These behaviours are directly related to the quality of MoSe$_2$/FLG and FLG/Au interfaces. When MoSe$_2$ and FLG are tightly coupled, we expect an efficient filtering effect to take place\cite{29,30}, which yields single-line spectra akin to the trace marked with square (Fig. 1d). Hence, the observation of X0 and X emission (Fig. 1d, triangle) suggests partial decoupling between the top MoSe$_2$ layer and the FLG/Au underneath. Dominant emission from localized states (Fig. 1d, circle) may stem from the local conformation of MoSe$_2$ to the underlying substrate made rougher by thermal annealing, as also observed in μPL measurements on MoSe$_2$ monolayers deposited onto a polycrystalline Au film\cite{31}. Finally, the large excitonic redshifts (Fig. 1d, star) are assigned to tensile strain due to the coupling between MoSe$_2$, FLG and the underlying Au substrate (Supplementary Section 2).

STM-induced excitonic luminescence

In such an heterogeneous landscape, STM allows probing the topography and luminescence from a localized area with a resolution down to the atomic scale. A typical STML spectrum recorded with the STM tip positioned on top of the atomically resolved region of the

Image Descriptions

Fig. 1 | STM-induced luminescence of MoSe$_2$/FLG/Au(111) heterostructure.

- **a.** Sketch of the STML experiment. Tunnelling electrons (black discs) may generate an exciton (bound electron-hole pair, sketched with red and blue discs), which may recombine by emitting a photon (wavy red arrow). The red halo corresponds to the plasmonic enhancement at the tip–sample junction.

- **b.** Optical microscopy image of the sample. The monolayer of MoSe$_2$ is highlighted in red and the FLG in black, whereas the underlying Au(111) covers the rest of the image. A. Atomically resolved constant-current STM image (V = −1.3 V and I = 10 pA) of the heterostructure surface. D. Normalized μPL spectra acquired on the different points of the heterostructure shown in b. E. STM spectrum recorded on MoSe$_2$/FLG/Au(111) in the cross-marked area in c, with V = −2.8 V and I = 90 pA. The labels X0, X$^-$ and X$^{-}$ in d and e denote the neutral, negatively charged and localized excitons, respectively. The FWHM of the X0 line is denoted as γ.

Supplementary Information

- Methods
- Supplementary Section 1

References

1. In press. 2. J. Phys. Chem. C 116, 17448–17455 (2012). 3. Nat. Nanotechnol. 8, 487–491 (2013).

Author Contributions

Article https://doi.org/10.1038/s41563-023-01494-4

Affiliation

Nature Materials | Volume 22 | April 2023 | 482–488

Correspondence

Nature Materials | Volume 22 | April 2023 | 482–488

Additional Information

Nature Materials | Volume 22 | April 2023 | 482–488
MoSe₂/FLG/Au heterostructure (Fig. 1c) is shown on Fig. 1e. This spectrum is characterized by a prominent emission line at 1.659 ± 0.001 eV with a lower-intensity feature at 1.630 ± 0.001 eV. These two lines have a full-width at half-maximum (FWHM) of 11 and 14 meV, respectively. A comparison with the μPL spectra discussed above allows assigning the high- and low-energy emission lines to X₀ and X⁻, respectively. This spectrum, along with the data discussed in Figs. 2–4, provide the sharpest emission lines achieved in STML measurements on TMDs and the first example where excitonic luminescence is obtained with the stability and cleanness required for atomically resolved imaging of the TMD atomic registry. We also note that the FLG interlayer preserves the low-temperature luminescence yield of MoSe₂, that would otherwise be massively reduced by non-radiative decay channels to the underlying Au substrate²⁹,³²,³³.

The X₀ FWHM fit from our STML spectra reaches values as low as 2.9 meV (Fig. 2e), translating into an exciton homogeneous lifetime of ~230 fs. The typical radiative lifetimes are 2 ps in hexagonal-boron-nitride-capped monolayer MoSe₂, deposited onto a transparent substrate²⁹. Thus, the STML linewidth may be understood as a reduced X₀ lifetime due to electronic coupling between MoSe₂ and FLG/Au, with additional contributions from Purcell enhancement, due to the plasmonic STM tip–sample junction²⁶.

We estimate a quantum yield of ~10⁻⁷ photon/electron (assuming a detection efficiency of ~10%)—a value that is orders of magnitude lower than for STML experiments on single molecules³⁴. This low-emission yield suggests an efficient non-radiative exciton decay, possibly due to the quenching of hot excitons by graphene, before their relaxation down to the light cone³⁵–³⁷. Alternatively, it may reflect an intrinsically weak exciton formation probability.

Probing an inhomogeneous nanoscale environment

STML can be used to identify inhomogeneities occurring at the scale of atoms up to a few hundreds of nanometres, and determine how they affect radiative recombination. To this end, we first recorded an STM image (Fig. 2a) on a typical area of the heterostructure that approximately corresponds to the area covered by a diffraction-limited laser spot. This image displays flat areas separated by ripples, folds and protrusions (Fig. 2a, arrows) that stem from the conformation of the heterostructure to the substrate. These so-called nano-bubbles, typically 1 nm high and 10 nm wide³⁸, correspond to areas where the TMD and FLG are slightly decoupled, most probably because of the remaining organic adsorbates at the interfaces among MoSe₂, FLG and Au. A pseudo-three-dimensional image of a typical protrusion located next to a flat area is provided in Fig. 2b.

The STML spectrum acquired on the flat area (Fig. 2c, orange) is characterized by an X₀ line at 1.590 ± 0.001 eV and by the absence of trion emission. The X₀ energy Eₓ₀ is lower than the STML spectrum (Fig. 1e), suggesting a sizeable tensile strain (Fig. 1d, star). Approximately 5 nm away, on top of the nano-bubble, the X₀ emission (in blue) is almost six times brighter, indicating reduced quenching by the underlying FLG. This spectrum displays an additional peak below the X₀ line, whose redshift (40 meV) is appreciably larger than the X⁻ binding energy (~30 meV; Fig. 1e). Since our sample is only weakly doped (Fig. 4a), this peak cannot be assigned to a charged exciton involving charge carriers at ~10 meV above the conduction band edge. It is, therefore, tentatively assigned to excitons localized near defects (X₁) (ref. ²⁸). Similarly, the STML spectra are strongly altered near larger heterogeneities such as ruptures and folds. An example is provided in Fig. 2d, where one observes a rupture in the heterostructure (blue cross) next to a flat area (orange cross). In the flat region, the STML spectrum is again characterized by a single, narrow emission line (2.9 meV FWHM; Fig. 2e) assigned to X₀. In contrast, the rupture region displays a complex spectrum, where several narrow (~700 μeV) resonances below the X₀ emission appear, probably arising from localized excitons²⁸. Similar lines have been attributed to optically active quantum dots that behave as single-photon sources³⁹–⁴¹. Overall, the data shown in Fig. 2 indicate that the μPL spectra spatially average the emission features from the nanoscale regions having distinct spectral responses and emission yields, a complexity that we are able to address owing to the nanometre resolution of STML.

STML on atomically resolved areas

Next, we evaluate how the atomic-scale landscape affects excitonic emission from the MoSe₂ monolayer. In Fig. 3a–c, we show atomically
resolved STM images of three flat regions of the heterostructure, separated by several nanometres from one another. The STM spectra (Fig. 3d) have been acquired in each region for the tip positions indicated in Fig. 3a–c. In Fig. 3a, the STM image reveals the atomic structure of the TMD as well as bright and dark regions indicating smooth height modulation over several nanometres. Here the STML spectra are not appreciably affected by these modulations, and are characterized by typical X₀ and X⁻ emission lines. In Fig. 3b,c, we distinguish a moiré pattern, suggesting a better quality of the MoSe₂/FLG interface than in Fig. 3a, consistent with the reduction in excitonic linewidth from 11 meV (Fig. 3a) to 9 meV (Fig. 3b) and 4 meV (Fig. 3c). The moiré period of 0.95 ± 0.02 nm (Fig. 3c) corresponds to a twist angle of 3.1° ± 0.3° between the MoSe₂ and FLG layers (Supplementary Section 3).

A smoother interface may also favour charge redistribution from the TMD to FLG flake, explaining the absence of X⁻ emission in Fig. 3b. Noteworthy, within a given nanoscale area, the STML spectra do not depend on the position of the tip with respect to the moiré pattern (Fig. 3c). Since the moiré period is slightly smaller than the typical exciton Bohr radius in TMDs (aₓ ≳ 1 nm)³⁸, possible moiré-induced spatial modulations of Eₓ₀ average out.

Two emission lines, separated by only 20 meV, are observed in the area imaged in Fig. 3c (Fig. 3d, dark yellow symbols). The X₀ line is strongly redshifted by 70 meV with respect to the data in Fig. 3a. Here an interpretation in terms of defect-induced emission can be ruled out as no atomic defects are imaged in Fig. 3c. We tentatively attribute this redshift to a combination of dielectric screening and tensile strain. Indeed, dielectric screening may redshift the excitons by several tens of millielectronvolts, as documented in TMD/graphene heterostructures. In addition, sample annealing may lead to microscopic protrusions in the Au substrate where tensile strain develops, as well as preserving excellent interfacial coupling, as testified by the observed moiré superlattice. This tightly coupled MoSe₂/FLG/Au stack may favour charge transfer from the TMD to FLG and Au substrate, a situation that prevents substrate-mediated charge transfer from MoSe₂ and trion formation. The data in Fig. 3 hint towards a key role of the MoSe₂/FLG and FLG/Au interfaces.

STML mechanism

Finally, we jointly address the dependence of tunnelling current and STML spectra on the tip–sample bias V at the same sample spot. The exciton binding energy Eₓ₀ can, in principle, be estimated from the difference between the local electronic gap inferred from scanning tunnelling spectroscopy (STS) measurements and the optical gap determined by Eₓ₀. Figure 4a,b displays a differential conductance (dI/dV) spectrum and STML spectra recorded with increasing bias voltage, respectively. An electronic gap of 2.17 ± 0.04 eV is deduced from the STML spectrum (Supplementary Section 4), with onsets of the valence and conductance bands at −1.68 ± 0.03 and 0.49 ± 0.01 V, respectively, indicating weak n doping. This doping allows us to identify the trion introduced in Figs. 1–3 as negatively charged. As shown...
by the STML spectra in Fig. 4b, $E_{X0} = 1.637$ eV, leading to an energy difference of 533 ± 40 meV that is close to the value estimated on a similar system using a combination of STS and μPL. This value is, however, much larger than the state-of-the-art optical measurements of the excitonic binding energy (E_b) that converge towards 220 meV in hexagonal boron nitride-capped monolayer MoSe$_2$ (ref. 15) and -150 meV in hexagonal boron nitride-capped MoSe$_2$/1LG (ref. 29), respectively. Our data demonstrate that the inconsistency between the determinations of E_b based on the difference between the STS gap and E_{X0} versus all-optical measurements37 does not stem from spatial inhomogeneities, as both STS and optical measurements are local in our approach. We believe that the overestimation of E_b originates from the fact that higher-energy electronic states near the centre of the Brillouin zone of MoSe$_2$ (I) contribute more to the STS spectrum than the large in-plane momentum states at its edges (K and K$'$), which define the direct electronic gap in TMD monolayers41.

A combined analysis of the STS and STML spectra provides key insights into the STML mechanism. First, no STML could be observed under positive V. Second, from Fig. 4b, one can deduce an X_0 emission onset at $V_0 \approx -1.7$ V. Comparing the integrated intensity of the X_0 line as a function of V with the dI/dV spectrum (Fig. 4a, dots) reveals that the STML onset matches well with the onset of the positively charged (hole) resonance of the TMD (HR), suggesting that hole injection from the tip is a preliminary step towards excitonic luminescence. In Fig. 4c, we propose a simple mechanism inspired by a many-body approach developed to interpret the STML data of molecules42. Originally in its ground state (GS) (used as the origin of the energy scale), the system is approximated as a two-level system, where the low-energy level is occupied by an electron and the high-energy one is empty. At positive $V = 0.49$ V, an electron can tunnel from the tip to the TMD (Fig. 4c, orange arrow), which is driven into a negatively charged (electron) resonance (ER). This state is only transiently populated as the TMD can be efficiently driven back to the GS by the tunnelling of extra electrons to/from the tip (substrate). The ES→GS relaxation process can happen either by direct tunnelling from HR (ER) to GS or by forming an exciton (ES) that subsequently recombines radiatively (red dashed arrow). The rightward/leftward orange (black) arrows represent electrons tunnelling to/from the MoSe$_2$ layer from/to the tip (substrate). The ES→GS radiative recombination rate is enhanced at the tip-sample plasmonic cavity by the Purcell effect (red halo). Note that relaxation through exciton formation is only possible for HR due to energy conservation.

Conclusion and outlook

We have demonstrated STM-induced excitonic luminescence nanoscopy of an atomically resolved vdW heterostructure featuring...
short-period moiré superlattices. We directly reveal how the nanoscale environment influences the luminescence characteristics, leading to sizeable excitonic energy shifts and the emergence of emission from charged and localized excitons on areas separated only by a few nanometres. Previous studies on fluorescent dyes have demonstrated that STML with sub-molecular resolution can be achieved. Here, we have addressed an extended system, where the ESs are Wannier–Mott excitons that may diffuse over nano- to micrometer distances before recombining radiatively. Our measurements of localized excitons in spatially inhomogeneous areas (Fig. 2) reveal an upper bound of ~5 nm for the spatial resolution. Hyperspectral mapping of the STML signal provides a determination of the ultimate spatial resolution of our approach when applied to vdW heterostructures and will offer invaluable opportunities to explore exciton diffusion in the latter.

More broadly, STML offers exciting opportunities to unveil near-field charge and energy transfer and proximity effects in vdW heterostructures with unprecedented accuracy, offering outcomes in photonics, optoelectronics and nano-electronics. STML is also an ideal probe for correlated electronic phases and excitons in twisted-engineered heterostructures, starting with moiré-trapped interlayer excitons and trion formation in TMD heterobilayers, where the moiré period may approach 10 nm and hence may largely exceed the free-exciton Bohr radius. Finally, STML can be combined with tip-enhanced PL spectroscopy, possibly time resolved, to achieve a holistic picture of exciton physics in vdW materials at the atomic and sub-picosecond scales.

Online content
Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41563-023-01494-4.

References
1. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
2. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).
3. Shree, S., Paradisanos, I., Marie, X., Robert, C. & Urbaszek, B. Guide to optical spectroscopy of layered semiconductors. Rev. Mod. Phys. 90, 021002 (2018).
4. Harats, M. G., Kirchhof, J. N., Qiao, M., Greben, K. & Bolotin, K. Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2. Nat. Photon. 14, 324–329 (2020).
5. Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832–837 (2019).
6. Chow, P. K. et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano 9, 1520–1527 (2015).
7. Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831–2836 (2013).
8. Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).
9. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1706966 (2017).
10. Pommier, D. et al. Scanning tunneling microscope-induced excitonic luminescence of a two-dimensional semiconductor. Phys. Rev. Lett. 123, 027402 (2019).
11. Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).
12. Bonnet, N. et al. Nanoscale modification of WS2 trion emission by its local electromagnetic environment. Nano Lett. 21, 10178–10185 (2021).
13. Pêché, R. et al. Plasmonic-induced luminescence of MoSe2 monolayers in a scanning tunneling microscope. ACS Photonics 7, 3061–3070 (2020).
14. Peña Román, R. J. et al. Tunneling-current-induced local excitonic luminescence in p-doped WS2 monolayers. Nanoscale 12, 15460–15470 (2020).
15. Zhang, S. et al. Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nat. Commun. 13, 542 (2022).
16. Peña Román, R. J. et al. Tip-induced and electrical control of the photoluminescence yield of monolayer WS2. Nano Lett. 22, 9244–9251 (2022).
17. Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).
18. Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 531, 623–627 (2016).
19. Doppagne, B. et al. Vibronic spectroscopy with submolecular resolution from STM-induced electroluminescence. Phys. Rev. Lett. 118, 127401 (2017).
20. Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016).
21. Krane, N., Lotze, C., Lager, J. M., Reecht, G. & Franke, K. J. Electronic structure and luminescence of quasi-free-standing MoS2 nanopatches on Au(111). Nano Lett. 16, 5163–5168 (2016).
22. Schuler, B. et al. Electrically driven photon emission from individual atomic defects in monolayer WS2. Sci. Adv. 6, eabbb5980 (2020).
23. Velicky, M. et al. Strain and charge doping fingerprints of the strong interaction between monolayer MoS2 and gold. J. Phys. Chem. Lett. 11, 6112–6118 (2020).
24. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
25. Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).
26. Rostawskas, A. et al. Mapping Lamb, Stark, and Purcell effects at a chromophore-picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X 12, 011012 (2022).
27. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).
28. Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016).
29. Lorchat, E. et al. Filtering the photoluminescence spectra of atomically thin semiconductors with graphene. Nat. Nanotechnol. 15, 283–288 (2020).
30. Parra López, L. E. et al. Single- and narrow-line photoluminescence in a boron nitride-supported MoSe2/graphene heterostructure. C. R. Phys. 22, 77–88 (2021).
31. Wu, S. W., Nazin, G. V. & Ho, W. Intramolecular photon emission from a single molecule in a scanning tunneling microscope. Phys. Rev. B 77, 205430 (2008).
32. Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).
33. Srivastava, A. et al. Optically active quantum dots in monolayer WS2. Nat. Nanotechnol. 10, 491–496 (2015).
34. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).
35. Koperski, M. et al. Single photon emitters in exfoliated WSe₂ structures. Nat. Nanotechnol. 10, 503–506 (2015).
36. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).
37. Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).
38. Hill, H. M. et al. Exciton broadening in WSe₂/graphene heterostructures. Phys. Rev. B 96, 205401 (2017).
39. Goryca, M. et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields. Nat. Commun. 10, 4172 (2019).
40. Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).
41. Froehlicher, G., Lorchat, E. & Berciaud, S. Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Phys. Rev. X 8, 011007 (2018).
42. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).
43. Zhang, C. et al. Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe₂. Nano Lett. 15, 6494–6500 (2015).
44. Miwa, K. et al. Many-body state description of single-molecule electroluminescence driven by a scanning tunneling microscope. Nano Lett. 19, 2803–2811 (2019).
45. Doležal, J., Canola, S., Merino, P. & Švec, M. Exciton-trion conversion dynamics in a single molecule. ACS Nano 15, 7694–7699 (2021).
46. Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).
47. Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).
48. Tang, Y. et al. Simulation of Hubbard model physics in WSe₂/WS₂ moiré superlattices. Nature 579, 353–358 (2020).
49. Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).
50. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe₂/WSe₂ heterobilayers. Nature 567, 66–70 (2019).
51. Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).
52. Liu, E. et al. Signatures of moiré trions in WSe₂/MoSe₂ heterobilayers. Nature 594, 46–50 (2021).
53. Imada, H. et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science 373, 95–98 (2021).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2023
the sample remained excited in the linear regime.

deviation over the noise level of each spectrum. (Fig. 4a) was acquired on a flat MoSe2 area at a constant height with a spectra (STS) on a clean Ag(111) surface. The tip quality is attested by a confocal microscopy setup. A linearly polarized continuous-wave at a temperature of 14 K in an optical cryostat coupled to a home-built vacuum (~10−5 mbar). The μPL response of our sample was studied in a vacuum, from the underlying Au substrate, and it simultaneously provides a smooth interface with MoSe2. In addition, the photophysics of MoSe2 coupled to mono- or few-layer graphene are largely similar, with only a slight increase in luminescence quenching as the number of graphene layers augments.

μPL characterization
The μPL response of our sample was studied in a vacuum (−10−5 mbar) at a temperature of 14 K in an optical cryostat coupled to a home-built confocal microscopy setup. A linearly polarized continuous-wave laser beam at a wavelength of 532 nm (2.33 eV) was used and the μPL signal was collected in the backscattering geometry and dispersed on a liquid-nitrogen-cooled charge-coupled device array using a 500 nm monochromator equipped with a grating with 150 grooves mm−1. To avoid thermal and mechanical drifts, hyperspectral PL mapping was performed using a short acquisition time per spectrum (1 s). A sufficiently high PL signal could be obtained using a moderate laser intensity of 30 μW μm−2 at the sample. In these conditions, we could verify that the sample remained excited in the linear regime.

STM and STML measurements
STM-based measurements were performed in a low-temperature (6 K) Unisoku STM operating in an ultrahigh vacuum and allowing optical measurements. The first lens (numerical aperture of 0.55), mounted on a three-axis piezo-controller, was used to collect and collimate the light emitted at the tip–sample junction. The emitted photons were redirected outside of the vacuum chamber through successive windows and viewports, and then refocused into an optical fibre connected to a monochromator coupled to a liquid-nitrogen-cooled charge-coupled device array, as done for the μPL measurements. Three different gratings were used, yielding spectral resolutions ranging from 0.60 down to 0.06 nm. Silver STM tips (prepared by preliminary indentations in a Ag(III) sample) were used to optimize the plasmonic response of the junction and enhance the radiative recombination rate at the tip–sample junction. To evaluate the quality, we recorded the dl/dV spectra (STS) on a clean Ag(III) surface. The tip quality is attested by a visible Ag(III) surface state in the STS measurement. The STS spectrum (Fig. 4a) was acquired on a flat MoSe2 area at a constant height with a current setpoint of I = 30 pA and a modulation voltage Vmod = 20 mV. The error bars in the STML data (Fig. 4a) correspond to one standard deviation over the noise level of each spectrum.

Data analysis
All the μPL and STML spectra presented in this work present both raw (light grey line) and smoothed (solid coloured line) data. Unless specified in the text, all the spectra were fit using Voigt profiles.

Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability
Source data necessary to reproduce the results shown in the Article and Supplementary Information are available via figshare at https://doi.org/10.6084/m9.figshare.21913017. Additional data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Acknowledgements
We thank M. Chong, B. Dopagne, G. Froehlicher, A. Gloppe, E. Le Moal, E. Lorchat and T. Neuman for fruitful discussions. We are grateful to the IPCMS mechanical workshop, particularly H. Sumar, as well as V. Speisser, M. Romeo and the STnano cleanroom staff for technical support. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 771850) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 894434. We acknowledge financial support from the Agence Nationale de la Recherche under grant ATOEMS ANR-20-CE24-0010. This work of the Interdisciplinary Thematic Institute QMat, as part of the ITI 2021 2028 program of the University of Strasbourg, CNRS and Inserm, was supported by IdEx Unistra (ANR 10 IDEX 0002), as well as by SFRI STRAT US project (ANR 20 SFRI 0012) and EUR QMAT ANR-17-EURE-0024 under the framework of the French Investments for the Future Program. S.B. acknowledges support from the Indo-French Centre for the Promotion of Advanced Research (CEFIPRA) and from the Institut Universitaire de France (IUF).

Author contributions
S.B. and G.S. initiated and supervised the project. L.E.P.L., A.R., F.S. and G.S. built the STML setup. L.E.P.L. fabricated the sample and performed all the PL and STML measurements, with input from A.R., S.B. and G.S. L.E.P.L., S.B. and G.S. analysed the experimental data. All the authors discussed the results and contributed to the editing of the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41563-023-01494-4.

Correspondence and requests for materials should be addressed to Stéphane Berciaud or Guillaume Schull.

Peer review information Nature Materials thanks Libai Huang, Lukas Novotny and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Item	Confirmed
The exact sample size \((n)\) for each experimental group/condition, given as a discrete number and unit of measurement	☑️
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly	☐️
The statistical test(s) used AND whether they are one- or two-sided	☑️
Only common tests should be described solely by name; describe more complex techniques in the Methods section.	☑️
A description of all covariates tested	☐️
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons	☐️
A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)	☑️
For null hypothesis testing, the test statistic (e.g. \(F, t, r\)) with confidence intervals, effect sizes, degrees of freedom and \(P\) value noted	☑️
Give \(P\) values as exact values whenever suitable.	☑️
For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings	☐️
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes	☐️
Estimates of effect sizes (e.g. Cohen’s \(d\), Pearson’s \(r\)), indicating how they were calculated	☑️

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Far-field optical measurements were performed using custom built optical setups and in particular a Cryo Industries of America continuous flow optical cryostat. STM studies were performed using a commercial UNISOKU system with optical access and a Nanonis control electronics. Princeton Instruments CCD cameras (Pylon and SPEC 10) and monochromators were used for all measurements of luminescence (photoluminescence and STM-induced luminescence). Our setups were controlled using custom made graphical user interfaces, either using Labview (version 10) or Python version 2.

Data analysis

The data were analysed using custom made Matlab (R2020) routines together with the origin pro software (version 2019).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Source data necessary to reproduce the results shown in the main figures and supporting information file are available on a figshare repository https://doi.org/10.6084/m9.figshare.21913017. Additional data are available from the corresponding authors upon reasonable request.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender	n/a
Population characteristics	n/a
Recruitment	n/a
Ethics oversight	n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [x] Life sciences
- [] Behavioural & social sciences
- [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	This is a physical sciences study. We have worked on one custom designed sample.
Data exclusions	No data exclusion was performed
Replication	We have probed many different regions of our sample to explore the diversity and reproducibility of the observed phenomena described in our manuscript.
Randomization	No applicable
Blinding	Not applicable

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
Materials & experimental systems

- Antibodies
- Eukaryotic cell lines
- Palaeontology and archaeology
- Animals and other organisms
- Clinical data
- Dual use research of concern

Methods

- ChIP-seq
- Flow cytometry
- MRI-based neuroimaging