SOME ISSUES RELATED TO THE DIRECT DETECTION OF SUSY DARK MATTER.

J.D. VERGADOSA,B

ATheoretical Physics Division, University of Ioannina, Gr 451 10, Ioannina, Greece.

BT-DO, Theoretical Physics Division, LANL, Los Alamos, N.M. 87545.

Since the expected rates for neutralino-nucleus scattering are expected to be small, one should exploit all the characteristic signatures of this reaction. Such are: (i) In the standard recoil measurements the modulation of the event rate due to the Earth’s motion. (ii) In directional recoil experiments the correlation of the event rate with the sun’s motion. One now has both modulation, which is much larger and depends not only on time, but on the direction of observation as well, and a large forward-backward asymmetry. (iii) In non recoil experiments gamma rays following the decay of excited states populated during the Nucleus-LSP collision. Branching ratios of about 6 percent are possible.

1. Introduction

It is now established that dark matter constitutes about 30% of the energy matter in the universe. The evidence comes from the cosmological observations 1, which when combined lead to:

$$\Omega_b = 0.05, \Omega_{CDM} = 0.30, \Omega_\Lambda = 0.65$$

and the rotational curves 2. It is only the direct detection of dark matter, which will unravel the nature of the constituents of dark matter. In fact one such experiment, the DAMA, has claimed the observation of such signals, which with better statistics has subsequently been interpreted as modulation signals 3. These data, however, if they are due to the coherent process, are not consistent with other recent experiments, see e.g. EDELWEISS and CDMS 4.

Supersymmetry naturally provides candidates for the dark matter constituents. In the most favored scenario of supersymmetry the LSP can be simply described as a Majorana fermion (LSP or neutralino), a linear combination of the neutral components of the gauginos and higgsinos 5–8. We are not going to address issues related to SUSY in this paper, since
thou have already been addressed by other contributors to these proceedings. Most models predict nucleon cross sections much smaller than the present experimental limit $\sigma_S \leq 10^{-5}\text{pb}$ for the coherent process. As we shall see below the constraint on the spin cross-sections is less stringent.

Since the neutralino is expected to be non relativistic with average kinetic energy $< T > \approx 40\text{KeV}(m_\chi/100\text{GeV})$, it can be directly detected mainly via the recoiling of a nucleus (A,Z) in elastic scattering. In some rare instances the low lying excited states may also be populated. In this case one may observe the emitted γ rays.

In every case to extract from the data information about SUSY from the relevant nucleon cross section, one must know the relevant nuclear matrix elements. The static spin matrix elements used in the present work can be found in the literature.

Anyway since the obtained rates are very low, one would like to be able to exploit the modulation of the event rates due to the earth’s revolution around the sun. In order to accomplish this one adopts a folding procedure, i.e one has to assume some velocity distribution for the LSP. One also would like to exploit other signatures expected to show up in directional experiments. This is possible, since the sun is moving with relatively high velocity with respect to the center of the galaxy.

2. Rates

The differential non directional rate can be written as

$$ dR_{undir} = \frac{\rho(0)}{m_\chi} \frac{m}{A m_N} d\sigma(u,v) |v| $$

where $d\sigma(u,v)$ was given above, $\rho(0) = 0.3\text{GeV/cm}^3$ is the LSP density in our vicinity, m is the detector mass and m_χ is the LSP mass.

The directional differential rate, in the direction \hat{e} of the recoiling nucleus, is:

$$ dR_{dir} = \frac{\rho(0)}{m_\chi} \frac{m}{A m_N} |v| |\hat{v}.\hat{e}| \Theta(\hat{v}.\hat{e}) \frac{1}{2\pi} d\sigma(u,v) \delta\left(\frac{\sqrt{u}}{\mu_v \sqrt{2}} - \hat{v}.\hat{e}\right) $$

where $\Theta(x)$ is the Heaviside function and:

$$ d\sigma(u,v) = \frac{du}{2(\mu_v bv)^2} [\Sigma_S F(u)^2 + \Sigma_{spin} F_{11}(u)] $$

where u the energy transfer Q in dimensionless units given by

$$ u = \frac{Q}{Q_0} , \quad Q_0 = [m_\nu Ab]^{-2} = 40A^{-4/3} \text{MeV} $$
with b is the nuclear (harmonic oscillator) size parameter. $F(u)$ is the nuclear form factor and $F_{11}(u)$ is the spin response function associated with the isovector channel.

The scalar cross section is given by:

$$\Sigma_S = \left(\frac{\mu_r}{\mu_r(p)} \right)^2 \sigma_{p,\chi}^S A^2 \left[\frac{1 + f_A^0}{f_A^0 A} \right]^2 \approx \sigma_{N,\chi,0}^S \left(\frac{\mu_r}{\mu_r(p)} \right)^2 A^2$$ \hspace{1cm} (4)

(since the heavy quarks dominate the isovector contribution is negligible). $\sigma_{N,\chi,0}^S$ is the LSP-nucleon scalar cross section. The spin Cross section is given by:

$$\Sigma_{\text{spin}} = \left(\frac{\mu_r}{\mu_r(p)} \right)^2 \sigma_{p,\chi,0}^{\text{spin}} \zeta_{\text{spin}} \sigma_{p,\chi,0} \approx \frac{1}{3(1 + \frac{f_A^0}{f_A^1})^2} S(u)$$ \hspace{1cm} (5)

$$S(u) \approx S(0) = \left[(\frac{f_A^0}{f_A^1} \Omega_0(0))^2 + 2 \frac{f_A^0}{f_A^1} \Omega_0(0) \Omega_1(0) + \Omega_1(0))^2 \right]$$ \hspace{1cm} (6)

f_A^0, f_A^1 are the isoscalar and the isovector axial current couplings at the nucleon level obtained from the corresponding ones given by the SUSY models at the quark level, $f_A^0(q)$, $f_A^1(q)$, via renormalization coefficients g_A^0, g_A^1, i.e. $f_A^0 = g_A^0 f_A^0(q), f_A^1 = g_A^1 f_A^1(q)$. These couplings and the associated nuclear matrix elements are normalized so that, for the proton at $u = 0$, yield $\zeta_{\text{spin}} = 1$. If the nuclear contribution comes predominantly from protons ($\Omega_1 = \Omega_0 = \Omega_p$), $S(u) \approx \Omega_p^2$ and one can extract from the data the proton cross section. If the nuclear contribution comes predominantly from neutrons ($\Omega_0 = -\Omega_1 = \Omega_n$) one can extract the neutron cross section. In many cases, however, one can have contributions from both protons and neutrons. The situation is then complicated, but it turns out that $g_A^0 = 0.1, g_A^1 = 1.2$ Thus the isoscalar amplitude is suppressed, i.e $S(0) \approx \Omega_p^2$. Then the proton and the neutron spin cross sections are the same.

3. Results

To obtain the total rates one must fold with LSP velocity and integrate the above expressions over the energy transfer from Q_{min} determined by the detector energy cutoff to Q_{max} determined by the maximum LSP velocity (escape velocity, put in by hand in the Maxwellian distribution), i.e. $v_{\text{esc}} = 2.84 \, v_0$ with v_0 the velocity of the sun around the center of the galaxy (229 km/s).
3.1. Non directional rates

Ignoring the motion of the Earth the total non directional rate is given by

$$R = \tilde{K} \left[c_{coh}(A, \mu_r(A)) \sigma_{p,\chi^0}^S + c_{spin}(A, \mu_r(A)) \sigma_{p,\chi^0}^{spin} \right]$$ \hspace{1cm} (7)

where \(\tilde{K} = \frac{\rho(0)}{m_e \sqrt{\langle v^2 \rangle}} \) and

$$c_{coh}(A, \mu_r(A)) = \left[\frac{\mu_r(A)}{\mu_r(p)} \right]^2 A t_{coh}(A), \quad c_{spin}(A, \mu_r(A)) = \left[\frac{\mu_r(A)}{\mu_r(p)} \right]^2 \frac{t_{spin}(A)}{A}$$ \hspace{1cm} (8)

where \(t \) is the modification of the total rate due to the folding and nuclear structure effects. It depends on \(Q_{min} \), i.e. the energy transfer cutoff imposed by the detector and \(a = [\mu_r b v_0 \sqrt{2}]^{-1} \). The parameters \(c_{coh}(A, \mu_r(A)), c_{spin}(A, \mu_r(A)) \), which give the relative merit for the coherent and the spin contributions in the case of a nuclear target compared to those of the proton, are tabulated in Table 1 for energy cutoff \(Q_{min} = 0, \ 10 \text{ keV} \). Via Eq. (7) we can extract the nucleon cross section from the data.

Using \(\Omega_1^2 = 1.22 \) and \(\Omega_2^2 = 2.8 \) for \(^{127}\text{I} \) and \(^{19}\text{F} \) respectively the extracted nucleon cross sections satisfy:

$$\frac{\sigma_{p,\chi^0}^{spin}}{\sigma_{p,\chi^0}^S} = \left[\frac{c_{coh}(A, \mu_r(A))}{c_{spin}(A, \mu_r(A))} \right] \frac{3}{\Omega_1^2} \Rightarrow \approx \times 10^4 \ (A = 127), \ \approx \times 10^2 \ (A = 19)$$ \hspace{1cm} (9)

It is for this reason that the limit on the spin proton cross section extracted from both targets is much poorer. For heavy LSP, \(\geq 100 \text{ GeV} \), due to the nuclear form factor, \(t_{spin}(127) < t_{spin}(19) \). This disadvantage cannot be overcome by the larger reduced mass (see Fig. 1). It even becomes worse, if the effect of the spin ME is included. For the coherent process, however, the light nucleus is no match (see Table 1 and Fig. 2).

3.2. Modulated Rates.

If the effects of the motion of the Earth around the sun are included, the total non directional rate is given by

$$R = \tilde{K} \left[c_{coh}(A, \mu_r(A)) \sigma_{p,\chi^0}^S(1 + h(a, Q_{min}) \cos \alpha) \right]$$ \hspace{1cm} (10)

and an analogous one for the spin contribution. \(h \) is the modulation amplitude and \(\alpha \) is the phase of the Earth, which is zero around June 2nd. The modulation amplitude would be an excellent signal in discriminating against background, but unfortunately it is very small, less than two per
Table 1. The factors $c_{19} = c_{\text{coh}}(19, \mu_r(19))$, $s_{19} = c_{\text{spin}}(19, \mu_r(19))$ and $c_{127} = c_{\text{coh}}(127, \mu_r(127))$, $s_{127} = c_{\text{spin}}(127, \mu_r(127))$ for two values of $Q = Q_{\text{min}}$.

Q (keV)	m_χ (GeV)
20	2080 2943 3589 4083 4471 5037 5428 6360
30	5.7 8.0 9.7 10.9 11.9 13.4 14.4 16.7
40	37294 63142 84764 101539 114295 131580 142290 162945
50	2.2 3.7 4.9 5.8 6.5 7.6 8.4 10.4
60	636 1314 1865 2302 2639 3181 3487 4419
70	1.7 3.5 4.9 6.0 6.9 8.3 9.1 11.4
80	0 11660 24080 36243 45648 58534 69545 83823
90	0 0.6 1.3 1.9 2.5 3.3 4.0 5.8
100	50 100 150 200
150	2.5 5.0 7.5 10.0 12.5
200	7.5 10.0 12.5 15.0

Figure 1. The coefficient $c_{\text{spin}}(A, \mu_r(A))$ as a function of the LSP mass. The dashed curves correspond to the 19F system (the short for $Q_{\text{min}} = 0$, and the long for $Q_{\text{min}} = 10$ keV). The solid curves correspond to the 127I (the thin for $Q_{\text{min}} = 0$ and the thick for $Q_{\text{min}} = 10$ keV).

Furthermore for intermediate and heavy nuclei, it can even change sign for sufficiently heavy LSP (see Fig. 3). So in our opinion a better signature is provided by directional experiments, which measure the direction of the recoiling nucleus.
3.3. Directional Rates.

Since the sun is moving around the galaxy in a directional experiment, i.e. one in which the direction of the recoiling nucleus is observed, one expects a strong correlation of the event rate with the motion of the sun. In fact the directional rate can be written as:

$$R_{dir} = \frac{\kappa}{2\pi} \tilde{K} [c_{coh}(A, \mu_r(A))\sigma^S_{p,\chi_0}(1 + h_m \cos(\alpha - \alpha_m \pi))]$$ \hspace{1cm} (11)$$

and an analogous one for the spin contribution. The modulation now is h_m, with a shift $\alpha_m \pi$ in the phase of the Earth α, depending on the direction of
Table 2. The parameters \(t, h, \kappa, h_m \) and \(\alpha_m \) for \(Q_{\min} = 0 \). The results shown are for the light systems. \(+x\) is radially out of the galaxy, \(+z\) is in the the sun’s motion and \(+y\) vertical to the plane of the galaxy so that \((x, y, z)\) is right-handed. \(\alpha_m = 0, 1/2, 1, 3/2 \) implies that the maximum occurs on June, September, December and March 2nd respectively.

type	\(t \)	\(h \)	dir	\(\kappa \)	\(h_m \)	\(\alpha_m \)
\(+z\)	0.068	0.227	1			
\(+(-)x\)	0.080	0.272	3/2(1/2)			
\(+(-)y\)	0.080	0.210	0 (1)			
\(-z\)	0.395	0.060	0			
all	1.00					
all	0.02					

\(\kappa/(2\pi) \) is the reduction factor of the unmodulated directional rate relative to the non-directional one. The parameters \(\kappa, h_m, \alpha_m \) strongly depend on the direction of observation. We prefer to use the observation. \(\kappa/(2\pi) \) is the reduction factor of the unmodulated directional rate relative to the non-directional one. The parameters \(\kappa, h_m, \alpha_m \) strongly depend on the direction of observation. We prefer to use the

\[
\text{Figure 4. The expected modulation amplitude } h_m \text{ for } A = 127 \text{ in a direction outward from the galaxy on the left and perpendicular to the galaxy on the right as a function of the polar angle measured from the sun’s velocity. For angles larger than } \pi/2 \text{ it is irrelevant since the event rates are tiny.}
\]

parameters \(\kappa \) and \(h_m \), since, being ratios, are expected to be less dependent on the parameters of the theory. In the case of \(A = 127 \) we exhibit the the angular dependence of \(h_m \) for an LSP mass of \(m_\chi = 100 \text{GeV} \) in Fig. 4. We also exhibit the parameters \(t, h, \kappa, h_m \) and \(\alpha_m \) for the target \(A = 19 \) in Table 2 (for the other light systems the results are almost identical). The asymmetry in the direction of the sun’s motion is quite large, \(\approx 0.97 \), while in the perpendicular plane the asymmetry equals the modulation. For a heavier nucleus the situation is a bit complicated. Now the parameters \(\kappa \) and \(h_m \) depend on the LSP mass as well (see Figs 5 and 6). The asymmetry and the shift in the phase of the Earth are similar to those of
the $A = 19$ system.

![Figure 5](image1.png) Figure 5. The parameter κ as a function of the LSP mass in the case of the $A = 127$ system, for $Q_{\text{min}} = 0$ expected in a plane perpendicular to the sun’s velocity on the left and opposite to the sun’s velocity on the right.

![Figure 6](image2.png) Figure 6. The modulation amplitude h_m in a plane perpendicular to the sun’s velocity on the left and opposite to the sun’s velocity on the right. Otherwise the notation is the same as in Fig 5.

3.4. Transitions to excited states

Incorporating the relevant kinematics and integrating the differential event rate dR/du from u_{min} to u_{max} we obtain the total rate as follows:

$$R_{\text{exc}} = \int_{u_{\text{exc}}}^{u_{\text{max}}} \frac{dR_{\text{exc}}}{du} (1 - \frac{u_{\text{exc}}^2}{u^2}) du, \quad R_{\text{gs}} = \int_{u_{\text{min}}}^{u_{\text{max}}} \frac{dR_{\text{gs}}}{du} du$$ \hspace{1cm} (12)

where $u_{\text{exc}} = \frac{\mu E_x A m_{\chi} Q_0}{y}$ and E_x is the excitation energy of the final nucleus, $u_{\text{max}} = \frac{(y/a)^2 - (E_x/Q_0)}{y}$, $y = v/\upsilon_0$ and $u_{\text{min}} = Q_{\text{min}}/Q_0$, Q_{min} (imposed by the detector energy cutoff) and $u_{\text{max}} = (y_{\text{esc}}/a)^2$ is imposed by the escape velocity ($y_{\text{esc}} = 2.84$).

For our purposes it is adequate to estimate the ratio of the rate to the excited state divided by that to the ground state (branching ratio) as a
function of the LSP mass. This can be cast in the form:

\[
BRR = \frac{S_{\text{exc}}(0) \Psi_{\text{exc}}(u_{\text{exc}}, u_{\text{umax}}) [1 + h_{\text{exc}}(u_{\text{exc}}, u_{\text{umax}}) \cos \alpha]}{S_{g}(0) \Psi_{g}(u_{\text{min}}) [1 + h(u_{\text{min}}) \cos \alpha]} \tag{13}
\]

in an obvious notation. \(S_{g}(0)\) and \(S_{\text{exc}}(0)\) are the static spin matrix elements. As we have seen their ratio is essentially independent of supersymmetry, if the isoscalar contribution is neglected. For \(^{127}\)I it was found to be about 2. The functions \(\Psi\) are given as follows:

\[
\Psi_{g}(u_{\text{min}}) = \int_{u_{\text{min}}}^{(y/a)^2} \frac{S_{g}(u)}{S_{g}(0)} F_{11}^{g}(u) \left[\psi(a\sqrt{u}) - \psi(y_{\text{esc}}) \right] du \tag{14}
\]

\[
\Psi_{\text{exc}}(u_{\text{exc}}, u_{\text{umax}}) = \int_{u_{\text{exc}}}^{u_{\text{umax}}} \frac{S_{\text{exc}}(u)}{S_{\text{exc}}(0)} F_{11}^{\text{exc}}(u) \left[\psi(a\sqrt{u}(1+u_{\text{exc}}/u)) - \psi(y_{\text{exc}}) \right] du \tag{15}
\]

The functions \(\psi\) arise from the convolution with LSP velocity distribution. The obtained results are shown in Fig. 7.

![Figure 7](image-url)

Figure 7. The ratio of the rate to the excited state divided by that of the ground state as a function of the LSP mass (in GeV) for \(^{127}\)I. We assumed that the static spin matrix element of the transition from the ground to the excited state is a factor of 1.9 larger than that involving the ground state, but the functions \(F_{11}(u)\) are the same. On the left we show the results for \(Q_{\text{min}} = 0\) and on the right for \(Q_{\text{min}} = 10\) keV.

4. Conclusions

Since the expected event rates for direct neutralino detection are very low\(^{5,8}\), in the present work we looked for characteristic experimental signatures for background reduction, such as:

Standard recoil experiments. Here the relevant parameters are \(t\) and \(h\).
For light targets they are essentially independent of the LSP mass17, essentially the same for both the coherent and the spin modes. The modulation is small, $h \approx 0.2\%$, but it may increase as Q_{min} increases. Unfortunately, for heavy targets even the sign of h is uncertain for $Q_{\text{min}} = 0$. The situation improves as Q_{min} increases, but at the expense of the number of counts.

Directional experiments16. Here we find a correlation of the rates with the velocity of the sun as well as that of the Earth. One encounters reduction factors $\kappa/2\pi$, which depend on the angle of observation. The most favorable factor is small, $\approx 1/4\pi$ and occurs when the nucleus is recoiling opposite to the direction of motion of the sun. As a bonus one gets modulation, which is three times larger, $h_m = \approx 0.06$. In a plane perpendicular to the sun’s direction of motion the reduction factor is close to $1/12\pi$, but now the modulation can be quite high, $h_m \approx 0.3$, and exhibits very interesting time dependent pattern (see Table 2. Further interesting features may appear in the case of non standard velocity distributions15.

Transitions to Excited states. We find that branching ratios for transitions to the first excited state of ^{127}I is relatively high, about 10%. The modulation in this case is much larger $h_{\text{exc}} \approx 0.6$. We hope that such a branching ratio will encourage future experiments to search for characteristic γ rays rather than recoils. Acknowledgments: This work was supported in part by the European Union under the contracts RTN No HPRN-CT-2000-00148 and MRTN-CT-2004-503369. Part of this work was performed in LANL. The author is indebted to Dr Dan Strottman for his support and hospitality.
References

1. S. Hanary et al, Astrophys. J. 545, L5 (2000); J.H.P Wu et al, Phys. Rev. Lett. 87, 251303 (2001); M.G. Santos et al, ibid 88, 241302 (2002); P.D. Maukopf et al, Astrophys. J. 536, L59 (2000); S. Mosi et al, Prog. Nucl. Part. Phys. 48, 243 (2002); S.B. Ruhl et al, astro-ph/0212229; N.W. Halverson et al, Astrophys. J. 568, 38 (2002); L.S. Sievers et al, astro-ph/0205287; G.F. Smoot et al, (COBE data), Astrophys. J. 396, (1992) L1; A.H. Jaffe et al, Phys. Rev. Lett. 86, 3475 (2001); D.N. Spergel et al, astro-ph/0302209.
2. G. Jungman, M. Kamionkowski and K. Griest, Phys. Rep. 267, 195 (1996).
3. R. Bernabei et al., INFN/AE-98/34, (1998); it Phys. Lett. B 389, 757 (1996); Phys. Lett. B 424, 195 (1998); B 450, 448 (1999).
4. A. Benoit et al, [EDELWEISS collaboration], Phys. Lett. B 545, 43 (2002); V. Sanglar, [EDELWEISS collaboration]; D.S. Akerib et al, [CDMS Collaboration], Phys. Rev D 68, 082002 (2003); arXiv:astro-ph/0405033.
5. A. Bottino et al., Phys. Lett B 402, 113 (1997). R. Arnowitt. and P. Nath, Phys. Rev. Lett. 74, 4952 (1995); Phys. Rev. D 54, 2394 (1996); hep-ph/9902237; V.A. Bednyakov, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, Phys. Lett. B 329, 5 (1994).
6. M.E. Gómez and J.D. Vergados, Phys. Lett. B 512, 252 (2001); hep-ph/0012020. M.E. Gómez, G. Lazarides and C. Pallis, Phys. Rev. D 61, 123512 (2000) and Phys. Lett. B 487, 313 (2000); M.E. Gómez and J.D. Vergados, hep-ph/0105115.
7. J.D. Vergados, J. of Phys. G 22, 253 (1996); T.S. Kosmas and J.D. Vergados, Phys. Rev. D 55, 1752 (1997).
8. A. Arnowitt and B. Dutta, Supersymmetry and Dark Matter, hep-ph/0204187; E. Accomando, A. Arnowitt and B. Dutta, hep-ph/0211417.
9. J.D. Vergados, P. Quentin and D. Strottman, (to be published)
10. M.T. Ressell et al., Phys. Rev. D 48, 5519 (1993); M.T. Ressell and D.J. Dean, Phys. Rev. C 56 (1997) 535.
11. P.C. Divari, T.S. Kosmas, J.D. Vergados and L.D. Skouras, Phys. Rev. C 61 (2000), 044612-1.
12. A.K. Drukier, K. Freese and D.N. Spergel, Phys. Rev. D 33, 3495 (1986); K. Freese, J.A Friedman, and A. Gould, Phys. Rev. D 37, 3388 (1988).
13. J.D. Vergados, Phys. Rev. D 58, 103001-1 (1998); Phys. Rev. Lett 83, 3597 (1999); Phys. Rev. D 62, 023510 (2000); Phys. Rev. D 63, 06351 (2001).
14. J.I. Collar et al, Phys. Lett. B 275, 181 (1992); P. Ullio and M. Kamionkowski, JHEP 0103, 049 (2001); P. Belli, R. Cerulli, N. Fornego and S. Scopel, Phys. Rev. D 66, 043503 (2002); A. Green, Phys. Rev. D 66, 083003 (2002).
15. B. Morgan, A.M. Green and N. Spooner, astro-ph/0408047.
16. D.P. Snowden-Ifft, C.C. Martoff and J.M. Burwell, Phys. Rev. D 61, 1 (2000); M. Robinson et al, Nucl.Instr. Meth. A 511, 347 (2003)
17. J.D. Vergados, Phys. Rev. D 67 (2003) 103003; ibid 58 (1998) 10301-1; J.D. Vergados, J. Phys. G: Nucl. Part. Phys. 30, 1127 (2004).