Maitra, SK; Gallo, H; Rowland-Payne, C; Robinson, D; Müller, H (2005) Second primary cancers in patients with squamous cell carcinoma of the skin. British journal of cancer, 92 (3). pp. 570-1. ISSN 0007-0920 DOI: https://doi.org/10.1038/sj.bjc.6602306

Downloaded from: http://researchonline.lshtm.ac.uk/13734/

DOI: 10.1038/sj.bjc.6602306

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Short Communication

Second primary cancers in patients with squamous cell carcinoma of the skin

SK Maitra*,1, H Gallo1, C Rowland-Payne2, D Robinson1 and H Møller1

1Thames Cancer Registry, Division of Cancer Studies, Guy’s, King’s and St Thomas’ School of Medicine, Capital House, 42 Weston Street, London SE1 3QD, UK; 2The London Clinic, 149 Harley Street, London W1N 2DE, UK

The occurrence of second primary cancers was explored in patients with squamous cell cancer of the skin (SCC). The excess incidence subsequent to SCC was mainly in cancers related to sunlight and smoking, and in lymphoproliferative malignancies, it was largest (10-fold) in salivary gland cancer.

British Journal of Cancer (2005) 92, 570–571. doi:10.1038/sj.bjc.6602306 www.bjcancer.com

Keywords: squamous cell; malignancy; neoplasm; skin; second primary

Malignant tumours of the skin are common cancers, typically affecting fair skinned racial groups (Armstrong and Kricker, 2001). The UV component of sunlight is regarded as the most important factor leading to squamous cell cancer (SCC). Other dominant risk factors are smoking and immunosuppression. A number of studies have found significantly increased risks of various second primary cancers in SCC patients (Frisch and Melbye, 1995; Levi et al, 1997; Wassberg et al, 1999; Askling et al, 1999; Hemminki and Dong, 2000; Hemminki et al, 2001; Efird et al, 2002). Some general patterns can be seen from these studies. There is an increased risk for the development of subsequent skin cancers, cancers of the lip, lungs, pharynx, larynx, the salivary glands and non-Hodgkin’s lymphoma.

We have examined the occurrence of primary cancer subsequent to the development of SCC.

RESULTS

There were 3359 cases of second primary cancers after SCC diagnosis, of which 2567 were in male patients and 792 were in female patients (Table 1). The SIR for the occurrence of any second primary cancer was 1.2 in both male and female subjects.

There was an increased risk for non melanoma skin cancer (BCC was not included). Risk for malignant melanoma was significantly increased in both male and female subjects (SIR male 3.0; female 2.9). Lip cancer risk was greatly elevated (SIR male 3.5; female 7.7). Relative risk of cancer of the pharynx was elevated, and statistically significantly so in female subjects. Risk of oesophagus cancer was increased in males, and colon cancer incidence was increased in both sexes. Salivary gland cancer risk was particularly elevated (SIR male 11.0; female 10.6).

The respiratory system in general was at an increased susceptibility to second primary cancers. Lung cancer occurrence was especially striking, not only due to the increased SIR values in both sexes (SIR male 1.3; female 1.2), but also because of the large absolute excess incidence. Lung cancer accounted for 24% of the total second primary cancer occurrence, and 28% of the excess burden of cancer in the cohort. The nasal cavity (and ear) was at a significantly increased risk in female subjects and laryngeal cancer displayed a significantly increased risk in male subjects.

There was an evident increase in occurrence of lymphoma and leukaemia. Hodgkin’s disease had a raised SIR value (1.4) in males only. However, non-Hodgkin’s lymphomas (comprising follicular,
Table 1 Standardised incidence ratios (SIR) and 95% confidence intervals for second cancers subsequent to SCC.

Site	Male	Female				
	Observed	Expected	SIR	Observed	Expected	SIR
Lip	10	2.9	3.5 (1.9–6.4)	3	0.4	7.7 (2.5–24.0)
Salivary gland	36	3.3	11.0 (8.0–15.3)	9	0.9	10.6 (5.5–20.3)
Oropharynx	3	1.2	2.6 (0.8–8.0)	2	0.2	11.3 (2.8–45.4)
Hypopharynx	3	1.4	2.2 (0.7–6.8)	4	0.7	5.7 (2.1–15.3)
Oesophagus	73	58.0	1.3 (1.0–1.6)	14	15.8	0.9 (0.5–1.5)
Stomach	137	139.0	1.0 (0.8–1.2)	35	33.1	1.1 (0.8–1.5)
Colon	187	159.3	1.2 (1.0–1.4)	83	70.9	1.2 (1.0–1.5)
Liver	22	15.1	1.5 (1.0–2.2)	3	3.4	0.9 (0.3–2.7)
Pancreas	69	69.0	1.0 (0.8–1.3)	30	26.2	1.1 (0.8–1.6)
Nasal cavity and ear	4	1.9	2.1 (0.8–5.6)	4	0.6	6.8 (2.5–18.1)
Larynx	46	27.6	1.7 (1.2–2.2)	3	1.9	1.5 (0.5–4.8)
Bronchus and lung	710	558.6	1.3 (1.2–1.4)	95	80.2	1.2 (1.0–1.4)
Skin malignant melanoma	48	15.8	3.0 (2.3–4.0)	24	8.3	2.9 (1.9–4.3)
Other skin neoplasms (excl. BCC)	83	80.7	1.0 (0.8–1.3)	24	16.1	1.5 (1.0–2.2)
Breast	3	4.4	0.7 (0.2–2.1)	140	146.7	1.0 (0.8–1.1)
Prostate	389	385.6	1.0 (0.9–1.1)	25	22.5	1.1 (0.8–1.6)
Bladder	154	167.4	0.9 (0.8–1.1)	1	1.5	0.7 (0.1–4.8)
Hodgkin’s disease	6	4.3	1.4 (0.6–3.1)	5	1.1	4.7 (2.0–11.3)
Follicular NHL	6	2.2	2.7 (1.2–6.0)	6	3.6	1.7 (0.7–3.7)
Diffuse NHL	18	10.2	1.8 (1.1–2.8)	6	3.6	1.7 (0.7–3.7)
Peripheral/cutaneous T-cell lymphoma	10	2.3	4.4 (2.3–8.1)	1	0.5	2.0 (0.3–13.9)
Other NHL	77	33.7	2.3 (1.8–2.9)	21	12.4	1.7 (1.1–2.6)
Lymphoid leukaemia	41	24.8	1.7 (1.2–2.3)	12	6.8	1.8 (1.0–3.1)
Myeloid leukaemia	31	24.3	1.3 (0.9–1.9)	10	7.1	1.4 (0.8–2.6)
Total Number of all cancers incl. those not shown above	2567	2118.4	1.2 (1.2–1.3)	792	648.0	1.2 (1.1–1.3)

DISCUSSION

This study confirms that there is a significantly increased relative risk of second primary cancers in individuals with SCC. The UV component of sunlight is widely believed to be the main risk factor for skin and lip cancer and this may explain the subsequent excess of malignant melanomas and SCCs of the lip.

It has been observed previously that the southern US (with higher exposure to UV radiation) has a significantly higher incidence of salivary gland cancer than the northern states (Spitz et al., 1988). In addition, it has been observed that there is an increased risk for melanoma and lip cancers subsequent to salivary gland cancer (Spitz et al., 1990). There is strong previous evidence for the association of skin cancers with non-Hodgkin’s lymphoma and leukaemias, implying a causative role of UV light (Adami et al., 1995). Non-Hodgkin’s lymphoma and SCC have been specifically associated, with the suggestion that UV radiation may have a suppressive effect on the immune system (Hall et al., 1995).

The great majority of the excess cancer occurrence in SCC is associated with smoking. This includes cancer of the lung, lip, salivary gland, oesophagus, larynx and pharynx, and leukaemia. This is consistent with the carcinogenic effects of smoking.

REFERENCES

Adami J, Frisch M, Yuen J, Glimelius B, Melbye M (1995) Evidence of an association between non-Hodgkin’s lymphoma and skin cancer. BMJ 310: 1491 – 1495

Armstrong BK, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Photobiol B 63: 8 – 18

Asking J, Sorensen P, Ekborn A, Frisch M, Melbye M, Glimelius B, Hjalgrim H (1999) Is history of squamous-cell skin cancer a marker of poor prognosis in patients with cancer? Ann Intern Med 131: 655 – 659

Efrid JT, Friedman GD, Habel L, Tekawa IS, Nelson LM (2002) Risk of subsequent cancer following invasive or in situ squamous cell skin cancer. Ann Epidemiol 12: 469 – 475

Frisch M, Melbye M (1995) New primary cancers after squamous cell skin cancer. Am J Epidemiol 141: 916 – 922

Hall P, Rosenthal J, Mattsson A, Einhorn S (1995) Non-Hodgkin’s lymphoma and skin malignancies – shared etiology? Int J Cancer 62: 519 – 522

Hemminki K, Dong C (2000) Subsequent cancers after in situ and invasive squamous cell carcinoma of the skin. Arch Dermatol 136: 647 – 651

Hemminki K, Jiang Y, Dong C (2001) Second primary cancers after anogenital, skin, oral, esophageal and rectal cancers: etiological links? Int J Cancer 93: 294 – 298

Levi F, Randimbison L, La Vecchia C, Erler G, Te VC (1997) Incidence of salivary gland cancer and risk of subsequent cancer following invasive or in situ squamous cell skin cancer. Ann Intern Med 131: 655 – 659

Spitz MR, Sider JG, Newell GR (1990) Salivary gland cancer and risk of subsequent skin cancer. Head Neck 12: 254 – 256

Spitz MR, Sider JG, Newell GR, Batsakis JG (1988) Incidence of salivary gland cancer in the United States relative to ultraviolet radiation exposure. Head Neck Surg 10: 305 – 308

Wassberg G, Thorn M, Yuen J, Ringborg U, Hakulinen T (1999) Second primary cancers in patients with squamous cell carcinoma of the skin: a population-based study in Sweden. Int J Cancer 80: 511 – 515