Supporting information

A structural and energetic model for the slow-onset inhibition of InhA, an enzyme drug target from *Mycobacterium tuberculosis*

Huei-Jiun Li, Cheng-Tsung Lai, Pan Pan, Weixuan Yu, Nina Liu, Miguel Garcia-Diaz, Carlos Simmerling, Peter J. Tonge

Supplemental Methods: Description of X-ray crystallography and the computational approach.

Table S1: Data collection and refinement statistics for InhA structures in complex with inhibitors.

Table S2: Partial atomic charges of compounds

Figure S1: InhA in relevant liganded states (apo, binary and ternary (Fig. 3b) complexes) in the catalytic cycle that have been observed in the crystal structures.

Figure S2: Structures of the PT155 ternary complex.

Figure S3: Simulated annealing Fo-Fc omit maps in subunit 3 of PT155 complex structure

Figure S4: The substrate portal is blocked by helix-6 as a result of slow-onset inhibition.

Figure S5: Inhibition of InhA by helix-6 induced by a slow-onset inhibitor.

Figure S6: Low occupancy of open and closed conformations in the PT03 ternary complex

Figure S7: Helix-6 and 7 conformations along the open to closed reaction coordinate.

Figure S8: Refolding of InhA by diphenyl ether inhibitors

Figure S9: Large-scale refolding of InhA caused by the effect of the diphenyl ether inhibitors on interactions of helix-6 and helix-7 with strand-4, strand-5 and neighboring subunits.

Figure S10: PMF of 1ns InhA:NAD$:PT70$ complex.
Supplemental Methods

Crystallization and structure determination of InhA ternary complexes with PT92, PT10, PT91 and PT155. Crystals of the ternary complex formed between InhA, NAD+ and PT92 were obtained by incubating 5 mg/mL of InhA with 2 mM NAD+ and 800 µM PT92 in 8% DMSO for 2 hr at RT before mixing with an equal volume of reservoir solution containing 100 mM Bis-tris pH 6.4, 200 mM NaCl, 14% PEG 3350 and 4% DMSO in a hanging drop. Before freezing, the crystals were cryo-protected in the solution containing 100 mM Bis-tris pH 6.4, 310mM NaCl, 16% PEG 3350, 25% DMSO, 2 mM NAD+ and 800 µM PT92. Crystals of the ternary complexes formed between InhA, NAD+ and PT10 or PT91 were both obtained by incubating 10 mg/mL of InhA with 2 mM NAD+ and 2 mM inhibitor in 4% DMSO for 2 hr at RT before mixing with an equal volume of reservoir solution containing 100 mM ADA pH 6.8, 200-250 mM ammonium acetate, 14-16% PEG 4000 and 6% DMSO in a hanging drop. Crystals of the ternary complex formed between InhA, NAD+ and PT155 were obtained similarly with a reservoir solution containing 100 mM HEPES pH 8.0 and 32% Jeffamine ED-2001 pH 7.0 in a hanging drop. Two crystal forms were taken from the same drop without further cryo protection and flash frozen in liquid nitrogen. Diffraction data were collected at beamlines X29, X25 and X12C at NSLS. The image frames were indexed, integrated and scaled using HKL2000(1) and structures solved using MolRep.(2) Structure refinement was performed in Phenix.(3) Data collection and refinement statistics are given in Table S1.

Computational Methods

Initial pose of inhibitors. The initial pose of PT70 was taken from the first monomer of the InhA:NAD+:PT70 complex (PDB ID: 2X23(4)). For the other inhibitors, the initial poses were generated by the DOCK 6.3(5) suite of docking software. The procedure for preparing the binding-site has been described previously.(6) Briefly, a molecular surface of InhA was computed using the program DMS.(7) The program SPHGEN in DOCK 6.3 was used to generate a set of spheres in regions where the inhibitor atoms could potentially interact favorably with the receptor, and 39 spheres were used to guide inhibitor placement during flexible docking. The grid file was computed with a 0.3 Å grid space using the program GRID in DOCK 6.3. Default parameters were then used in the flexible docking. We assumed that the other analogues adopted similar positions to that found for PT70. Thus, the results with the lowest RMSD value in the diphenyl ether moiety were chosen as the initial structures for MD runs.
Molecular dynamics (MD) simulations. All MD simulations were performed in a monomer system using the AMBER10 suite of molecular dynamics programs. The initial closed and open structures were taken from the first monomers of InhA:NAD⁺:PT70 complex (PDB ID: 2X23(4)) and the InhA:NAD⁺:C16-NAC complex (PDB ID: 1BVR(8)), respectively. AMBER ff99SB and GAFF force field parameters were assigned to the protein and inhibitor, respectively. The force field parameters of the cofactor NAD⁺ were taken from other studies.(11, 12) The partial atomic charges of the inhibitors were computed using Gaussian98(13) with the HF/6-31G* basis set, followed by a two-stage RESP fitting approach (Table S2). (14, 15) Each InhA:NAD⁺:inhibitor complex was solvated in a truncated octahedral TIP3P water box with a minimum distance of 8 Å between the water box edge and solute, resulting in ~ 23,000 atoms in total. SHAKE was used to constrain bonds to hydrogen.(17) The particle mesh Ewald method was used for calculating electrostatic energy with an 8Å nonbonded cutoff. Each end-point structure, including the open and closed conformations, was then equilibrated separately using the following procedures. The first equilibration step involved 10,000 steps of steepest descent minimization with 100 kcal mol⁻¹ Å⁻² restraints on all the atoms except the water molecules and hydrogen atoms. The second step involved heating the system from 100 to 300 K under constant volume conditions over 100 ps with 100 kcal mol⁻¹ Å⁻² restraints on non-water and non-hydrogen atoms, followed by 100 ps with the same restraints at a constant temperature of 300 K and at 1 atm of pressure. The third step was 250 ps MD with restraint weight of 10 kcal mol⁻¹ Å⁻² on the non-water and non-hydrogen atoms at constant temperature of 300 K and 1 atm pressure. The following steps only restrained the backbone atoms and gradually reduced the restraint weight from 10 to 0.1 kcal mol⁻¹ Å⁻² at constant temperature of 300 K and 1 atm of pressure. This was carried out by 100 ps with 10 kcal mol⁻¹ Å⁻² restraint, followed by 100 ps with 1 kcal mol⁻¹ Å⁻² restraint, and 100 ps with a 0.1 kcal mol⁻¹ Å⁻² restraint. The last step of the equilibration was 250 ps of unrestrained MD.

PNEB simulation. The protocol for generation of conformational change pathways and associated free energy profiles using PNEB and umbrella sampling was adapted from our recent study of DNA damage recognition pathways.(19) The partial nudged elastic band (PNEB)(20) variant of the nudged elastic band simulation approach was used in this study to generate the transition path between the open and closed conformations. The equilibrated open and closed structures were assigned as the two end-point structures and 30 windows (including end-points) were used in the simulation. The NVT ensemble was used with PNEB. A spring force was applied to the backbone atoms of α-helix-6 and α-helix-7 (residues 196 to 223)
in the subsequent steps. In the first 40 ps, the system was equilibrated at 300 K with a Langevin collision frequency of 50 ps\(^{-1}\) and spring force of 20 kcal mol\(^{-1}\) Å\(^{-2}\). The next step was 100 ps equilibration at 300 K with a 20 ps\(^{-1}\) Langevin collision frequency and a spring force of 75 kcal mol\(^{-1}\) Å\(^{-2}\). After conformations were generated along the open-to-closed path, simulated annealing was used to optimize the local energy minimized path.\(^{(20)}\) This was performed by heating the system from 300 to 375 K gradually over 175 ps, and subsequently cooling back to 300 K gradually over 175 ps with a 20 ps\(^{-1}\) Langevin collision frequency and a spring force of 75 kcal mol\(^{-1}\) Å\(^{-2}\). A 20 kcal mol\(^{-1}\) Å\(^{-2}\) Cartesian restraint was applied to the backbone atoms from residues 2 to 195 and 225 to 268 to prevent protein unfolding during the heating process. After this simulated annealing process, a 600 ps run at 300K was performed with the same Langevin collision frequency and PNEB spring forces, with a 10 kcal mol\(^{-1}\) Å\(^{-2}\) Cartesian restraint was applied to the backbone atoms from residues 2 to 195, and 225 to 268.

Umbrella sampling. Energy landscape plots were obtained using umbrella sampling (US). Two reaction coordinates (step and shear torsions) were used to describe the motion of α-helices 6 and 7 (Figure 5). In step torsion, point 1 is the center of mass (COM) of backbone atoms for residues 200–205. Point 2 is the backbone COM of residues 19–21 and 196. Point 3 is the backbone COM of residues 219–222. Point 4 is the backbone COM of residues 200–205. In shear torsion, points 1 and 4 are the Cβ of residue 203 and 215, respectively. Points 2 and 3 are the backbone COM of residues 98 and 158, respectively. A 2D grid along these 2 measures was constructed, using 3° increments in both step and shear torsions. The boundaries of the grid were determined from grid points sampled during the final PNEB run at 300K, with an extra 6° buffer region surrounding that sampled in PNEB, resulting in a total of 192 grid points. Initial structures for US windows were selected from the PNEB production trajectory snapshots with dihedral values closest to the respective window grid values. MD simulation in the NVT ensemble of 500 ps at 300 K using a Langevin thermostat with a collision frequency of 75.0 ps\(^{-1}\) was performed for each grid point. Structures were restrained to the two reaction coordinate values defining the grid point with a force constant of 1000 kcal mol\(^{-1}\) rad\(^{-2}\) s. The Weighted Histogram Analysis (WHAM)\(^{(22)}\) approach and analysis program\(^{(23)}\) were then used to generate the potential of mean force (PMF) from the umbrella sampling results. The convergence tolerance was set to zero during the WHAM calculation. Convergence of the free energy calculations was tested by extending the umbrella sampling of InhA:NAD\(^{+}\):PT70 complex for another 500 ps (Figure S10). There was no significant change in the free energy from 1ns run, thus 500ps umbrella sampling were run for other complexes.
Table S1. Data collection and refinement statistics for the structures of the InhA:NAD⁺:inhibitor ternary complexes.

PDB ID	InhA:NAD⁺:PT9 2	InhA:NAD⁺:PT15 5	InhA:NAD⁺:PT15 5	InhA:NAD⁺:PT1 0	InhA:NAD⁺:PT9 1
Data Collection					
Space group	P2₁,2₁,2₁	P2₁,2₁,2₁	2₁,2₁,2₁	P2₁,2₁,2₁	P2₁,2₁,2₁
Unit cell dimensions	72.85, 90.49, 161.83	89.27, 7.44, 182.58	88.94, 97.15, 187.81	88.83, 91.08, 148.91	74.84, 90.65, 164.44
a, b, c (Å)					
Redundancy	7.1 (4.8)	6.6 (5.1)	7.4 (7.3)	7.2 (6.7)	4.2 (3.5)
I/σI	18.3 (4.0)	17.6 (2.4)	13.6 (2.8)	22.4 (4.6)	20.9 (3.2)
R_merge (max)	0.084 (0.312)	0.110 (0.569)	0.167 (0.747)	0.080 (0.361)	0.062 (0.352)
Refinement					
Resolution (Å)	28.6-1.6	47.1-1.8	44.5-2.3	43.5-2.35	43.7-2.30
No. unique reflections	139747	136903	36121	50974	45401
Completeness (%)	98.4	99.4	98.3	99.9	89.8
R_work/R_free	0.171/0.188	0.158/0.177	0.172/0.205	0.166/0.220	0.194/0.244
No. monomers in asu	4	4	2	4	4
RMSD (max) from ideal values in					
Bond length (Å)	0.006 (0.059)	0.007 (0.051)	0.008 (0.062)	0.007 (0.062)	0.007 (0.070)
Bond angle (°)	1.2 (12.4)	1.2 (12.2)	1.1 (8.7)	1.1 (10.2)	1.1 (11.1)

Data collection numbers for the highest resolution shell are given in parentheses.
Table S2: Partial atomic charges of compounds

PT3 partial atomic charges

Atom name (atom type)	Partial charge						
C1 (ca)	-0.223315	C2 (ca)	-0.007234	C3 (ca)	-0.229547	C4 (ca)	-0.211969
C5 (ca)	0.148221	C6 (ca)	0.285367	C7 (ca)	0.222865	C8 (ca)	-0.135579
C9 (ca)	-0.197672	C10 (ca)	-0.123410	C11 (ca)	-0.197672	C12 (ca)	-0.135579
C13 (c3)	-0.056773	C14 (c3)	0.002988	C15 (c3)	-0.002068	C16 (c3)	0.026176
H2 (ha)	0.155157	H3 (ha)	0.183429	H4 (ha)	0.137848	H5 (ha)	0.161508
H6 (ha)	0.136727	H7 (ha)	0.161508	H8 (ha)	0.137848	H9 (ho)	0.452110
H10 (hc)	0.041085	H11 (hc)	0.041085	H12 (hc)	0.010396	H13 (hc)	0.010396
H14 (hc)	0.009321	H15 (hc)	0.009321	H16 (hc)	-0.008443	H17 (hc)	-0.008443
H18 (hc)	0.006989	H19 (hc)	0.006989	H20 (hc)	0.006989		

PT70 partial atomic charges

Atom name (atom type)	Partial charge						
C1 (ca)	-0.305877	C2 (ca)	-0.005783	C3 (ca)	-0.207809	C4 (ca)	-0.182149
C5 (ca)	0.112182	C6 (ca)	0.269957	C7 (ca)	0.123130	C8 (ca)	-0.141905
C9 (ca)	-0.194331	C10 (ca)	-0.164129	C11 (ca)	-0.234181	C12 (ca)	0.111613
C13 (c3)	-0.192668	C14 (c3)	-0.013634	C15 (c3)	0.024577	C16 (c3)	-0.010196
C17 (c3)	-0.005967	C18 (c3)	0.065218	C19 (c3)	-0.045568	O1 (os)	-0.227720
O2 (oh)	-0.536475	H1 (ha)	0.166880	H2 (ha)	0.154695	H3 (ha)	0.166490
H4 (ha)	0.133435	H5 (ha)	0.156808	H6 (ha)	0.145586	H7 (ha)	0.161364
H8 (hc)	0.062701	H9 (hc)	0.062701	H10 (hc)	0.062701	H11 (ho)	0.419315
H12 (hc)	0.031061	H13 (hc)	0.031061	H14 (hc)	0.010100	H15 (hc)	0.010100
H16 (hc)	-0.000394	H17 (hc)	-0.000394	H18 (hc)	-0.02013	H19 (hc)	-0.02013
H20 (hc)	-0.017212	H21 (hc)	-0.017212	H22 (hc)	0.008652	H23 (hc)	0.008652
H24 (hc)	0.008652						
PT92 partial atomic charges

Atom name (atom type)	Partial charge						
C1 (ca)	-0.273248	C2 (ca)	-0.021360	C3 (ca)	-0.191209	C4 (ca)	-0.179507
C5 (ca)	0.121524	C6 (ca)	0.239883	C7 (ca)	0.272739	C8 (ca)	-0.159279
C9 (ca)	-0.184872	C10 (ca)	-0.155948	C11 (ca)	-0.072072	C12 (ca)	-0.107639
C13 (c3)	-0.036432	C14 (c3)	0.028997	C15 (c3)	-0.004680	C16 (c3)	-0.010591
C17 (c3)	0.056600	C18 (c3)	-0.043943	O1 (os)	-0.216836	O2 (oh)	-0.554134
Br1 (br)	-0.091016	H1 (ha)	0.157112	H2 (ha)	0.153929	H3 (ha)	0.157876
H4 (ha)	0.132010	H5 (ha)	0.163768	H6 (ha)	0.140505	H7 (ha)	0.138119
H8 (ho)	0.436221	H9 (hc)	0.040829	H10 (hc)	0.040829	H11 (hc)	0.069003
H12 (hc)	0.009003	H13 (hc)	-0.000839	H14 (hc)	-0.000839	H15 (hc)	0.000284
H16 (hc)	0.000284	H17 (hc)	-0.014184	H18 (hc)	-0.014184	H19 (hc)	0.008780
H20 (hc)	0.008780						

PT155 partial atomic charges

Atom name (atom type)	Partial charge						
C1 (ed)	-0.438965	C2 (cc)	0.053087	C3 (cd)	-0.207546	C4 (cc)	0.026918
C5 (c)	0.628641	C6 (c3)	-0.133660	C7 (ca)	0.171512	C8 (ca)	-0.260329
C9 (ca)	-0.206477	C10 (ca)	0.290422	C11 (ca)	-0.303745	C12 (ca)	0.055573
C13 (c3)	-0.125502	C14 (c3)	-0.009664	C15 (c3)	-0.004296	C16 (c3)	-0.020813
C17 (c)	-0.002104	C18 (c3)	0.032576	C19 (c3)	-0.136894	N1 (na)	0.019303
N2 (nh)	-0.908259	O1 (os)	-0.284312	O2 (o)	-0.601764	H1 (ha)	0.145029
H2 (h4)	0.230152	H3 (h1)	0.083804	H4 (h1)	0.083804	H5 (h1)	0.083804
H6 (ha)	0.208299	H7 (ha)	0.157432	H8 (ha)	0.172183	H9 (hc)	0.045560
H10 (hc)	0.045560	H11 (hc)	0.045560	H12 (hn)	0.378067	H13 (hn)	0.378067
H14 (hc)	0.045818	H15 (hc)	0.045818	H16 (hc)	0.015768	H17 (hc)	0.015768
H18 (hc)	0.002572	H19 (hc)	0.002572	H20 (hc)	0.006981	H21 (hc)	0.006981
H22 (hc)	0.014048	H23 (hc)	0.014048	H24 (hc)	0.031192	H25 (hc)	0.031192
H26 (hc)	0.031192						
Figure S1. InhA in relevant liganded states (apo, binary and ternary (Fig. 3b) complexes) in the catalytic cycle that have been observed in the crystal structures.

(a)-(d) Chain A, B, C, D from PDB structure 2IED, apo InhA S94A.(24) (e) PDB structure 2AQ8, InhA binary complex in space group P6_22.(25) (f) InhA binary complex in space group C22_1, chain C. (g) InhA binary complex from PDB structure 1BVR,(8) chain D. (h) InhA binary complex from PDB structure 1BVR, chain E. Light pink, green and yellow show different subdomains in the same InhA subunit. Despite the structural variations in the vicinity of helix-6, I202, L207 or the substrate are positioned against the green loop, which keeps helix-6 away from strand-4 so that the ACP portal remains open.
Figure S2. Structures of the PT155 ternary complex. Unlike the ternary complex of slow-onset diphenyl ethers, the open structure becomes dominant in the ternary complex of PT155. Each panel shows one of the chains from the two structures of the complex. (a) chain B in the I2_12_1_2 crystal, (b) chain C in the P2_1_2_1 crystal (chain D is essentially identical), (c) chain A in the P2_1_2_1 crystal, (d) chain B in the P2_1_2_1 crystal, (e) chain A in the I2_12_1_2 crystal.
Figure S3. Simulated annealing Fo-Fc omit maps in chain C of PT155 complex structure from the P2₁2₁2₁ crystal
Figure S4: The substrate portal is blocked by helix-6 as a result of slow-onset inhibition. (a) InhA in complex with NAD* and the substrate analogue, C16-NAC (spheres) (PDB 1BVR, chain A). (b) InhA in complex with NAD* and PT70 (PDB 2X23, chain B) superimposed to the structure of enzyme-substrate complex. Only ligands from the enzyme-substrate complex are shown in (b), showing that C16-NAC is visible in (a) and obscured in (b). The opening between helix-6 (cyan), strand-4 (yellow) and the grey domain is the proposed space where ACP docks to InhA and delivers the fatty acyl substrate into the active site.
Figure S5. Inhibition of InhA by helix-6 induced by a slow-onset inhibitor. (a) Ordered buffer molecules (blue and pink stick) from PT155 ternary complex structure 12, chain B, superimposed on the substrate ternary complex structure, 1BVR. The bound substrate analogue from the structure is shown as black stick (b) The substrate analogue from 1BVR, and buffer components as well as the inhibitor (cyan) from the PT155 ternary complex structure in (a) are superimposed on the PT70 ternary complex structure where PT70 is not shown. Residues on helix-6 overlapping with the hypothetical natural substrate are shown in red.
Figure S6. Low occupancy of open and closed conformations in the PT03 ternary complex
Figure S7: Helix-6 and 7 conformations along the open to closed reaction coordinate. Structures are taken from (1) the binary complex (2AQ8, red),(25) (2) PT155 ternary complex (P2,2,2, chain C/D, green), (3) PT92 ternary complex (chain B, blue), (4) PT10 ternary complex (chain A, yellow), (5) PT70 ternary complex (2X23 chain B, purple). (4) The composite figure is shown in the main text (Figure 7).
Figure S8. Refolding of InhA by diphenyl ether inhibitors
(a) PDB structure 2AQ8 with re-modeled 2-methyl-2,4-pentanediol (MPD) in the active site; (b) the initial complex represented by chain C of the PT155 ternary complex structure; (c) the intermediate complex represented by chain B of the PT92 ternary complex structure; (d) the intermediate complex represented by chain A of the PT10 ternary complex structure; (e) the final complex represented by chain B of the PT70 ternary complex structure 2X23.(4)
Figure S9. Large-scale refolding of InhA caused by the effect of the diphenyl ether inhibitors on interactions of helix-6 and helix-7 with strand-4, strand-5 and neighboring subunits. Left panels show two sets of helix-6 and helix-7 and right panels zoom into one subunit. Left: (a) binary complex structure 2AQ8. (b) ternary complex of PT92, chain B in yellow. (c) ternary complex of PT70, chain B in yellow. The tetramer is colored by chain (by subunit). The SBL of the yellow and pink subunit is in red and green, respectively. Right: (a) binary complex PDB 2AQ8; (b) PT92 ternary complex chain B; (c) PT70 ternary complex PDB 2X23 chain B. SBL is in magenta ribbon, strand-4 in green, strand-5 in blue, and the C-terminus from the separate yellow subunit in the tetramer is in orange.
Figure S10. PMF of 1ns InhA:NAD⁺:PT70 complex. There is no significant change in the free energy from 1st 500ps, 2nd 500ps and 1ns runs.
References

1. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode, *Meth. Enzymol.* 276, 307-326.
2. Vagin, A., and Teplyakov, A. (1997) MOLREP: an automated program for molecular replacement, *J. Appl. Crystallogr.* 30, 1022-1025.
3. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution, *Acta Crystallogr.* 66, 213-221.
4. Luckner, S. R., Liu, N., Am Ende, C. W., Tonge, P. J., and Kisker, C. (2010) A slow, tight-binding inhibitor of InhA, the enoyl-ACP reductase from *Mycobacterium tuberculosis*, *J. Biol. Chem.* 285, 14330-14337.
5. Lang, P. T., Brozell, S. R., Mukherjee, S., Pettersen, E. F., Meng, E. C., Thomas, V., Rizzo, R. C., Case, D. A., James, T. L., and Kuntz, I. D. (2009) DOCK 6: combining techniques to model RNA-small molecule complexes, *RNA* 15, 1219-1230.
6. Mukherjee, S., Balius, T. E., and Rizzo, R. C. (2010) Docking validation resources: protein family and ligand flexibility experiments, *J Chem Inf Model* 50, 1986-2000.
7. DMS; UCSF Computer Graphics Laboratory: San Francisco, CA. [http://www.cgl.ucsf.edu/](http://www.cgl.ucsf.edu/Overview/software.html).
8. Rozwarski, D. A., Vilcheze, C., Sugantino, M., Bittman, R., and Sacchettini, J. C. (1999) Crystal Structure of the *Mycobacterium tuberculosis* Enoyl-ACP Reductase, InhA, in Complex with NAD+ and a C16 Fatty Acyl Substrate, *J. Biol. Chem.* 274, 15582-15589.
9. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters, *Proteins* 65, 712-725.
10. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004) Development and testing of a general amber force field, *J. Comput. Chem.* 25, 1157-1174.
11. Pavelites, J. J., Gao, J. L., Bash, P. A., and Mackerell, A. D. (1997) A molecular mechanics force field for NAD(+), NADH, and the pyrophosphate groups of nucleotides, *J. Comput. Chem.* 18, 221-239.
12. Walker, R. C., de Souza, M. M., Mercer, I. P., Gould, I. R., and Klug, D. R. (2002) Large and fast relaxations inside a protein: Calculation and measurement of reorganization energies in alcohol dehydrogenase, *J. Phys. Chem. B* 106, 11658-11665.

13. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A. (2004) Gaussian 03, Revision C.02, *Gaussian, Inc., Wallingford CT*.

14. Cornell, W. D., Cieplak, P., Bayly, C. I., and Kollman, P. A. (1993) Application of resp charges to calculate conformational energies, hydrogen-bond energies, and free-energies of solvation, *J. Am. Chem. Soc.* 115, 9620-9631.

15. Bayly, C. I., Cieplak, P., Cornell, W. D., and Kollman, P. A. (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges - the resp model, *J. Phys. Chem.* 97, 10269-10280.

16. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water, *J Chem Phys* 79, 926-935.

17. Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C. (1977) Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes, *J Comput Phys* 23, 327-341.

18. Cheatham, T. E., Miller, J. L., Fox, T., Darden, T. A., and Kollman, P. A. (1995) Molecular-Dynamics Simulations on Solvated Biomolecular Systems - the Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, Rna, and Proteins, *J Am Chem Soc* 117, 4193-4194.
19. Bergonzo, C., Campbell, A. J., de Los Santos, C., Grollman, A. P., and Simmerling, C. (2011) Energetic Preference of 8-oxoG Eversion Pathways in a DNA Glycosylase, *J. Am. Chem. Soc.* 133, 14504-14506.

20. Bergonzo, C., Campbell, A. J., Walker, R. C., and Simmerling, C. (2009) A Partial Nudged Elastic Band Implementation for Use With Large or Explicitly Solvated Systems, *Int. J. Quantum Chem.* 109, 3781-3790.

21. Mathews, D. H., and Case, D. A. (2006) Nudged elastic band calculation of minimal energy paths for the conformational change of a GG non-canonical pair, *J. Mol. Biol.* 357, 1683-1693.

22. Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., and Kollman, P. A. (1992) THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method, *J Comp Chem* 13, 1011-1021.

23. Grossfield, A. (2007) WHAM: the weighted histogram analysis method", version 2.0.4, http://membrane.urmc.rochester.edu/content/wham.

24. Dias, M. V., Vasconcelos, I. B., Prado, A. M., Fadel, V., Basso, L. A., de Azevedo, W. F., Jr., and Santos, D. S. (2007) Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis, *J. Struct. Biol.* 159, 369-380.

25. Oliveira, J. S., Pereira, J. H., Canduri, F., Rodrigues, N. C., de Souza, O. N., de Azevedo, W. F., Jr., Basso, L. A., and Santos, D. S. (2006) Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis, *J. Mol. Biol.* 359, 646-666.