Accurate Least-Squares P_N Scaling based on Problem Optical Thickness for solving Neutron Transport Problems

Weixiong Zhenga,*, Ryan G. McClarrena

aTexas A&M Nuclear Engineering, 3133 TAMU, College Station, TX 77843-3133

Abstract

In this paper, we present an accurate and robust scaling operator based on material optical thickness (OT) for the least-squares spherical harmonics (LSP$_N$) method for solving neutron transport problems. LSP$_N$ without proper scaling is known to be erroneous in highly scattering medium, if the optical thickness of the material is large. A previously presented scaling developed by Manteuffel, et al. does improve the accuracy of LSP$_N$ in problems where the material is optically thick. With the method, however, essentially no scaling is applied in optically thin materials, which can lead to an erroneous solution with presence of highly scattering medium. Another scaling approach, called the reciprocal-removal (RR) scaled LSP$_N$, which is equivalent to the self-adjoint angular flux (SAAF) equation, has numerical issues in highly-scattering materials due to a singular weighting. We propose a scaling based on optical thickness that improves the solution in optically thick media while avoiding the singularity in the SAAF formulation.

Keywords: Least Square P_N, Neutron Transport Equation, Reactor Shielding, Optical Thickness, Scaling, Thick Diffusion Limit

*Corresponding author

Email addresses: zuxne2010@gmail.com (Weixiong Zheng), rgm@tamu.edu (Ryan G. McClarren)
1. Introduction

The finite element method is widely used in solving partial differential equations (PDEs) due to features such as geometric flexibility and extensibility to higher-order basis functions. Yet, for first-order hyperbolic PDEs, such as the neutron transport equation, the continuous finite element method (CFEM) cannot easily be used due to stability issues. This goaded the development of the discontinuous Galerkin finite element method, which has many more degrees of freedom. In addition, first-order systems can be difficult to solve using standard algebraic solvers[1], motivating the development of second-order forms of transport equation and corresponding solution techniques.

The least-square finite element method is an attractive alternative method in solving neutron transport equations. It fixes the well-posedness issues of the standard Galerkin method and recovers some features of Ritz-Galerkin procedures, such as a symmetric positive definite (SPD) system, and thus enables the use of continuous finite element methods for the first-order neutron transport equation. To combine least-squares finite elements with the P$_N$ method, however, the transport equation must be scaled before discretization in space and angle to obtain an accurate solution in thick diffusive regions[2, 3].

In order to improve the solution from LSP$_N$, Manteuffel, et al.[3, 2] developed a scaling operation for the LSP$_N$ method that we refer to as the thick media (TM) scaling. Two shortcomings for this scaling have been observed. Firstly, as the scaling is originally presented, the scaling has different units for different equations, though this can be addressed by proper multiplication by a characteristic length scale. The second issue is that for materials in the “thin” regime, i.e., $\sigma_t \ll 1$ cm, there is no scaling applied. Yet, in neutronics, especially shielding or detection problems, this can cause an issue when the optical thickness can be tens or hundreds of mean free paths (mfps.) although the macroscopic cross section is in the thin regime.

On the other hand, one could also scale the LSP$_N$ by the inverse of the removal operator. Such a scaling is equivalent to the self-adjoint angular flux
(SAAF)-P\textsubscript{N} equations discretized with CFEM. SAAF-P\textsubscript{N} is known to be accurate in diffusive media. Nevertheless, in highly scattering medium with vanishing absorption, such a scaling is nearly singular, which brings difficulty in preconditioning and the condition number of the resulting system could be large\cite{1, 4}.

To overcome the shortcomings of those two scalings, we propose an optical thickness based scaling that scales the moment system based on mean free paths of the material with high scattering ratio, and limits to SAAF-P\textsubscript{N}, for other materials. On one hand, for thick scattering medium with small cross sections, such a scaling still scales the zeroth moment equation; on the other hand, our new scaling is not singular when $\sigma_a \to 0$. As a result, the discretized system will not suffer from ill-conditioning in highly scattering media.

The outline of this paper is as follows. Section2 introduces the basics of one group neutron transport in 1D slab geometry with a least-squares discretization in space and spherical harmonics1 in angle; Section3 introduces several scalings compared in this work; Section4 presents numerical tests for the proposed method; Section5 concludes this study.

2. One-Speed Neutron Transport Equation and Least Square Functionals

2.1. Transport equation with P_N approximation in angle

The one-speed neutron steady state transport equation with isotropic scattering for direction $\hat{\Omega}$ can be expressed as\cite{1}

\begin{equation}
\hat{\Omega} \cdot \nabla \psi(r, \hat{\Omega}) + \sigma_t \psi(r, \hat{\Omega}) = S\psi(r, \hat{\Omega}) + q(r, \hat{\Omega}),
\end{equation}

\begin{equation}
\psi(r, \hat{\Omega}) = \psi^{\text{inc}}, \quad \hat{r} \in \partial \mathcal{D} \quad \text{and} \quad \hat{n} \cdot \hat{\Omega} < 0
\end{equation}

1In 1D slab geometry, orthonormal Legendre polynomials, which is a special case of spherical harmonics, will be used instead.
where ψ is the angular flux, \vec{n} is the outward normal vector on the boundary ∂D and ψ^{inc} is the incident flux. We have written the scattering source, $S\psi(\vec{r}, \vec{\Omega})$, scalar flux, $\phi(\vec{r})$, and isotropic source Q, as

$$S\psi(\vec{r}, \vec{\Omega}) = \frac{\sigma_s \phi(\vec{r})}{4\pi}, \quad \phi(\vec{r}) = \int \frac{d\Omega}{4\pi} \psi(\vec{r}, \vec{\Omega}) \quad \text{and} \quad q(\vec{r}, \vec{\Omega}) = \frac{Q}{4\pi}. \quad (2)$$

It will be convenient to express Eq. (1) in operator form as

$$(L - S)\psi = q, \quad (3a)$$

with

$$L = \vec{\Omega} \cdot \nabla (\cdot) + \sigma_t. \quad (3b)$$

In this work, we will treat the angular variable, Ω, with the P_N method, i.e., the angular flux is expressed in terms of a truncated spherical harmonics expansion with the spherical harmonics written as $\{R_{m}^{l}(\vec{\Omega})\}_{m=0}^{l}, l \leq N, |m| \leq l$. The spherical harmonics are normalized such that:

$$\int\frac{d\Omega}{4\pi} R_{m}^{l}(\vec{\Omega}) R_{m'}^{l'}(\vec{\Omega}) = \delta_{ll'} \delta_{mm'}, \quad (4)$$

where δ is the Kronecker δ function. The P_N method is derived using a Galerkin procedure with the spherical harmonics as test and weight functions to obtain a system of equations with expansion coefficients $\phi_m^{l}(\vec{r})$, also called moments, as the unknowns\cite{5, 6}. That is, the transport equation is approximated as the system:

$$(L - S)\vec{\phi} = \vec{Q} \quad (5a)$$

$$L = \nabla \cdot A + \Sigma_t, \quad A = \sum_{\zeta=x,y,z} e_\zeta \int \frac{d\Omega}{4\pi} \Omega_\zeta R(\vec{\Omega}) R^\top(\vec{\Omega})$$

$$\Sigma_t = \text{diag}\{\sigma_t, \cdots, \sigma_t\} \quad \text{and} \quad \vec{Q} = \left(\frac{Q}{4\pi}, 0, \cdots, 0\right)^\top \quad (5b)$$

$$S = \text{diag}\{\sigma_t, 0, \cdots, 0\}, \quad (5c)$$

where \vec{R} is a column vector containing all spherical harmonics functions up to Degree N.

4
2.2. Least-squares functional of residuals and weak formulations

Least-squares finite element methods for the first-order PDE $L u = f$ start by defining a quadratic functional in some finite element space \mathcal{V}

$$J = \frac{1}{2} \int_{D} dV \ (Lu - f)^2,$$

(6)

which leads to the following minimization problem:

$$u = \min_{u} J, \quad u \in \mathcal{V}.$$

(7)

This results in the weak formulation in the spatial domain D as follows with any test function $v \in \mathcal{V}$:

$$\int_{D} dV \ L v L u = \int_{D} dV \ L v f$$

(8)

Using the least-squares method to solve transport method is similar to the procedure illustrated above. Define a least-squares functional in space-angle as the following:

$$J_0 = \frac{1}{2} \int_{\Omega} d\Omega \int_{D} dV \ ((L - S)\psi - q)^2 + \frac{1}{2} \int_{\partial D} d\Omega \int_{\partial \Omega} ds \ |\vec{n} \cdot \vec{\Omega}| (\psi - \psi^{inc})^2,$$

(9)

where $\psi(\vec{r}, \vec{\Omega}) = \sum_{l < N} \sum_{|m| < l} R^m_l(\hat{\Omega}) \phi^m_l(\vec{r})$ with $\phi^m_l(\vec{r})$ to be approximated moments spanned by user-defined finite element space. The term in this equation involving the half-range integral accounts for the boundary conditions.

Alternatively, for orthonormal spherical harmonics, Varin\cite{9} provided an equivalent way of deriving the least-squares method through defining a least-squares functional for P_N system to replace the interior functional in Eq. (9):

$$J = \frac{1}{2} \int_{D} dV \ [(L - S)\vec{\phi} - \vec{Q})^2 + \frac{1}{2} \int_{\partial D} d\Omega \int_{\partial \Omega} ds \ |\vec{n} \cdot \vec{\Omega}| (\psi - \psi^{inc})^2,$$

(10)

\cite{7}See Ref. \cite{7} for the procedure of deriving weak formulation from a least-square functional.
The resulting weak form is:

\[
\int_D \left((L - S)\vec{v}^\top (L - S)\vec{\phi} + \int_{\partial D} \vec{v}^\top M^{-} \vec{\phi} \right) \, dV
\]

\[
= \int_D \left((L - S)\vec{v}^\top \vec{\phi} + \int_{\partial D} \vec{v}^\top q_{\text{inc}} \right) \, dV,
\]

where

\[M^{-} = \int_{\vec{n} \cdot \vec{\Omega} < 0} d\Omega \left| \vec{n} \cdot \vec{\Omega} \right| \vec{R} \vec{R}^\top \quad \text{and} \quad q_{\text{inc}} = \int_{\vec{n} \cdot \vec{\Omega} < 0} d\Omega \left| \vec{n} \cdot \vec{\Omega} \right| \vec{R} \vec{R}^\top \psi_{\text{inc}} \vec{\Omega},\]

which is solving the \(P_N\) equations with least-squares finite element method.

Eqs. (9) and (10) are very similar. In the remainder of this paper, however, we will utilize the latter formulation, i.e., defining a least-squares functional for the \(P_N\) system. The motivation is such that all types of scalings are then transformed to multipliers of different moment equations directly applicable to the weak forms instead of operators for angular flux.

2.3. Reciprocal removal scaled least-squares functional and weak formulations

The drawback of solving the transport equation using methods in Section 2.2 is that in highly scattering medium with moderate optical thickness, the solution is erroneous. In order to alleviate the solution in such a situation, one could define a scaling operator when defining the functional using the inverse of removal operator, i.e.

\[
\mathcal{J}_R = \frac{1}{2} \int_D dV \left((\Sigma_t - S)^{-1} \right) \left((L - S)\vec{\phi} - q \right)^2 + \frac{1}{2} \int_{\vec{n} \cdot \vec{\Omega} < 0} d\Omega \int_{\partial D} ds \left| \vec{n} \cdot \vec{\Omega} \right| (\psi - \psi_{\text{inc}})^2
\]

(13)

From this functional, one can derive the following weak-form:

\[
\int_D \left((L - S)\vec{v}^\top (\Sigma_t - S)^{-1} (L - S)\vec{\phi} + \int_{\partial D} \vec{v}^\top M^{-} \vec{\phi} \right) \, dV
\]

\[
= \int_D \left((L - S)\vec{v}^\top (\Sigma_t - S)^{-1} \vec{\phi} + \int_{\partial D} \vec{v}^\top q_{\text{inc}} \right) \, dV.
\]

(14)
This is equivalent to the weak form of the SAAF-P_N equations solved with CFEM. Ergo, with the proper weighting and discretization, LS and SAAF are equivalent.

3. Other scalings

The operator $(\sigma_t - S)^{-1}$ is singular and ill-posed for a pure scatterer [1]. As the scattering ratio approaches one, this operator is numerically ill-posed and can cause other issues, especially in multi-D applications, including degradation of preconditioning[4]. On the other hand, without a scaling, the LS method can be easily error-prone for optically thick problems[2, 3]. To overcome these issues, Manteuffel, et al. proposed a scaling using the following constants

$$\tau_0 = \begin{cases} 1.0, & \sigma_t < 1 \text{ cm}^{-1} \\ \sigma_t, & \sigma_t > 1 \text{ cm}^{-1}, \quad \text{and} \quad \sigma_t > 1/\sigma_a, \\ 1.0/\sigma_a, & \text{otherwise} \end{cases}$$

(15)

$$\tau_1 = \begin{cases} 1.0, & \sigma_t < 1 \text{ cm}^{-1} \\ 1/\sigma_t, & \text{otherwise} \end{cases}$$

(16)

and the scaling matrix Λ as the matrix representation of the corresponding scaling operator[10]:

$$\Lambda = \begin{bmatrix} \tau_0 \\ \tau_1 \\ \vdots \\ \tau_1 \end{bmatrix}$$

(17)

and the scaled least-squares formulation is:

$$\int_D dV \ ((L - S) \vec{v})^\top \Lambda (L - S) \vec{\phi} + \int_{\partial D} ds \ \vec{v}^\top M^- \vec{\phi}$$

$$= \int_D dV \ ((L - S) \vec{v})^\top \Lambda \vec{Q} + \int_{\partial D} ds \ \vec{v}^\top q_{inc}$$

(18)

We will call this scaling the thick media scaling.
3.1. An optical-thickness-based scaling

The least-squares method without scaling with optically-thick spatial cells does not preserve the asymptotic diffusion limit of neutron transport. The thick media scaling aims to alleviate the solution by increasing the scaling of the zeroth moment and decreasing the scaling of the other moments.

There are, however, several potential drawbacks of the thick media scaling. In neutronics, material cross sections are usually in thin regime, i.e. $\sigma_t < 1.0 \text{ cm}^{-1}$. Nonetheless, it does not necessarily mean the material is optically thin to neutrons, e.g. several meters of graphite shield. In fact, in situations such as shielding and detector problems, neutrons may need to pass through tens even hundreds of mean free paths to approach targets/detectors. If the material is with high scattering ratio but in thin regime, without a scaling, the least-squares method can fail. There are not many materials that fall in thick regime with high scattering ratio, so in neutronics the thick medium scaling is of limited usefulness despite its theoretical value in applying scaling to reduce simulation errors.

On the other hand, for the limited numbers of scattering media with $\sigma_t > 1 \text{ cm}$, like water, nevertheless, $\tau_0 = \sigma_t$ is fairly close to the value of $\tau_1 = 1/\sigma_t$. Moreover, in medium such as graphite and heavy water, for which $\sigma_t < 1 \text{ cm}^{-1}$ there is a small amount of scaling.

Simultaneously, the SAAF formulation, or equivalently the RR scaled least-squares, $1/\sigma_a$ can be extremely large\(^3\), which would potentially cause problems in multi-D calculations for heterogeneous problems.

Then we propose a scaling solely for neutron shielding problems based on the optical thickness (OT). We also give different scaling factors τ_0 and τ_1 to the zeroth and other moment equations, respectively. The scaling is satisfies the following requirements:

a. τ_0 should have the same units as τ_1;

\(^3\)For instance, heavy water has a macroscopic absorption cross section $3.3 \times 10^{-5} \text{ cm}^{-1}$ for room temperature (RT) neutrons and consequently $1/\sigma_a > 1.0 \times 10^4 \text{ cm}$.\(\text{[11]}\)
b. $\tau_0 \geq \tau_1$;

c. τ_0 is bounded in optically thick shielding problems with highly scattering medium.

We therefore propose the following scaling:

$$
\tau_0 = \begin{cases}
\sigma_t DL, & 1/\sigma_a > \sigma_t DL > 1/\sigma_t, \quad \text{and} \quad \sigma_a < 0.1\sigma_t \\
1/\sigma_a, & \text{otherwise}
\end{cases}
$$

$$\tau_1 = 1/\sigma_t,$$

where D is a measure of the size of the medium and L is a characteristic length.

For the tests in this study we use $L = \max(1.0 \text{ cm}, h)$. Overall, the scaling considered two factors affecting the scaling effectiveness, i.e., the medium optical thickness and local cell size. The formulation is such that in an optically-thick, scattering medium it gives a bounded, but non-zero, scaling to the zeroth moment equation.

3.2. Asymptotics of the scaling

The standard asymptotic diffusion limit analysis\[12, 13\] makes the following scaling with $\epsilon > 0$:

$$
\sigma_a \rightarrow \epsilon \sigma_a, \quad \sigma_t \rightarrow \frac{1}{\epsilon} \sigma_t \quad \text{and} \quad q \rightarrow \epsilon q.
$$

A scheme is said to preserve the thick diffusion limit of the transport equation if it limits to a discretization of the diffusion equation as $\epsilon \rightarrow 0$ \[12, 14\]. Using SAAF with CFEM preserves the thick diffusion limit. Therefore, given the equivalence of the two forms, solving the RR-scaled least-square equations with continuous basis functions, c.f. Eq. (14), will preserve the thick diffusion limit.

To compare the scaling that yields SAAF, and our new scaling we will compare the two under the asymptotic scaling. Making the substitutions in Eq. (21) to the RR scaling gives

$$
\tau_0 = \frac{1}{\sigma_a} \rightarrow \frac{1}{\epsilon \sigma_a} \sim O\left(\frac{1}{\epsilon}\right) \quad \text{and} \quad \tau_1 = \frac{1}{\sigma_t} \rightarrow \frac{\epsilon}{\sigma_t} \sim O\left(\epsilon\right).
$$
In the same manner, given that $DL = O(1)$, the OT scaling becomes

$$\tau_0 = \sigma_t DL \rightarrow \frac{1}{\epsilon} \sigma_t DL \sim O\left(\frac{1}{\epsilon}\right) \quad \text{and} \quad \tau_1 = \frac{1}{\sigma_t} \rightarrow \frac{\epsilon}{\sigma_t} \sim O(\epsilon). \quad (23)$$

The OT scaling has the same orders as the RR scaling for different moment equations. Therefore, the scaling is expected to have a similar asymptotic behavior as RR scaling, or equivalently SAAF. We demonstrate this using 1-D slab geometry away from boundaries. For a discussion of the effect of the boundary terms, see Varin, et. al [8].

In 1-D slab geometry, the OT scaling leads to the following relationships for the first few orders of ϵ:

$$\phi^{(0)}_1 = 0 \quad (24a)$$

$$b\sigma_t DL \frac{\partial}{\partial x} R_D + \sigma_t (\sigma_a \sigma_t DL - 1) \left(\phi^{(1)}_1 + \frac{b}{\sigma_t} \frac{\partial}{\partial x} \phi^{(0)}_0 \right) = 0, \quad (24b)$$

$$R_D = -\frac{b^2}{\sigma_t} \frac{\partial^2}{\partial x^2} \phi^{(0)}_0 + \sigma_a \phi^{(0)}_0 - Q_0, \quad (24c)$$

where $b = \frac{1}{\sqrt{3}}$ is the normalization factor. In these equations, the values of σ_a and σ_t are independent. Therefore, the two terms in Eq. (24b) must hold individually:

$$\frac{\partial}{\partial x} R_D = \frac{\partial}{\partial x} \left(-\frac{b^2}{\sigma_t} \frac{\partial^2}{\partial x^2} \phi^{(0)}_0 + \sigma_a \phi^{(0)}_0 - Q_0 \right) = 0, \quad (25a)$$

$$\phi^{(1)}_1 + \frac{b}{\sigma_t} \frac{\partial}{\partial x} \phi^{(0)}_0 = 0. \quad (25b)$$

Equation (25b) is a version of the Fick’s law between $\phi^{(1)}_1$ and $\phi^{(0)}_0$. Equation (25a) is the correct diffusion equation. Therefore, we expect the OT scaling to provide accurate solutions in the thick diffusion limit. We will show this in numerical results next.

4Note that since we use orthonormal Legendre polynomial, $\phi_0 = \phi/\sqrt{2}$ and $Q_0 = Q/\sqrt{2}$
4. Numerical Tests

The numerical tests are carried out with the C++ open source finite element library deal.II\cite{dealII}.

4.1. Asymptotic test

The first test aims to numerically demonstrate the OT scaling preserves the thick diffusion limit as predicted in Section 3.2. It is a 1D slab problem with a thickness of 10 cm. Vacuum boundary conditions are imposed on both sides of the domain. The unscaled properties are: \(\sigma_a = 0.01 \text{ cm}^{-1} \), \(\sigma_t = 5 \text{ cm}^{-1} \) and \(q = 0.01 \). Figure 1 presents the OT-LSP results with different \(\epsilon \) when performing the property scaling in Eq. (21). A scheme preserving diffusion limit is expected to present a solution that approaches the diffusion solution as \(\epsilon \to 0 \).

Figure 1 presents results for OT-LSP with different \(\epsilon \) using 10 cells. When \(\epsilon = 1 \), with which material properties are not scaled yet, the OT-LSP presents slightly different solution to the diffusion, which is reasonable since angular discretization between OT-LSP and diffusion are different. When decreasing \(\epsilon \), however, OT-LSP agrees with diffusion accurately. For other orders of \(P_N \) the results are similar and thus not shown. We also present the comparison between SAAF-\(P_N \) and OT-LSP as shown in Figure 2. Since SAAF-\(P_1 \) preserves the thick diffusion limit, the solution agrees with diffusion as well as OT-LSP. Therefore, the results demonstrate the OT-LSP as well as OT-LSP preserves the thick diffusion limit.

4.2. Thick problem with “thin” materials with high scattering

Figure 3 and 4 are two examples of scattering medium with moderate to large optical thickness. Figure 3 shows the results with natural carbon throughout the domain for room-temperature (RT) neutrons (\(\sigma_t = 0.385 \text{ cm}^{-1} \) and \(\sigma_a = 3.2 \times 10^{-4} \text{ cm}^{-1} \)). A unit source is imposed only in left half of the domain. A reflective boundary is imposed on left boundary. The overall thickness is over 40 mean free paths. The reference solutions use first-order \(S_8 \) using diamond difference with 13000 and 12000 cells, respectively. Figure 4 presents results
with heavy water with similar settings as natural carbon test. The problem is over 10 mean free paths ($\sigma_t = 0.449$ cm$^{-1}$ and $\sigma_s = 3.3 \times 10^{-5}$ cm$^{-1}$ [11]).

In both tests, the thick media scaling essentially imposes no scaling at all due to the fact that $\sigma_t < 1.0$ cm. The erroneous results indicate that even in problems with thin materials, scaling is necessary to preserve the solution accuracy. On the other hand, OT scaling presents comparable results to SAAF.

Table [1] presents the τ_0 for SAAF, thick media, and OT scalings. On one hand, with unit scaling, the thick media scaling sacrifices accuracy. On the other hand, the SAAF has τ_0 over 10^3 or even 10^4. In heterogeneous problems, this may induce several orders of scaling variations for different spatial regions, which might increase the risk of degrading linear solver performance and preconditioning efficiency. The OT scaling, however, makes a reasonable compromise that τ_0 is orders lower than SAAF-resembling scaling while reasonably preserving the accuracy in relatively thick scattering media.
4.3. 1D iron water problem

For a final test, we use a modified iron-water shielding problem. The problem consists of a water source on the left side (10 cm thick) with reflective boundary condition imposed on left, and a iron shield (10 cm thick) adjacent to the water source. Additionally, there is a layer of water on the right side of the problem (10 cm thick). The reference is generated with first-order S_8 using 12000 cells.

The material properties are from the thermal group in Ref. [10]. Both layers of water have an identical thickness of 32.759 mean free paths. As seen in Figure 5, unscaled LSP$_7$ presents a negative scalar flux in the right water shield. With the thick media scaling, the scalar flux is improved but still with the presence of negative answers. This problem is a deep penetration problem with nearly seven orders of change in scalar flux. The failure of these two methods demonstrate the necessity of constructing a proper scaling in this type of problems.
Figure 3: Natural carbon test with neutron at RT.

Table 1: τ_0 values for different scalings in carbon and heavy water tests.

Scalings/schemes	SAAF	TM	OT
τ_0 [cm]: carbon test	3.125×10^3	1.0	125.125
τ_0 [cm]: D$_2$O test	3×10^4	1.0	13.47

On the other hand, though τ_0 in OT differs from $1/\sigma_a$ in SAAF, both methods present comparably accurate solutions when the mesh is relatively fine as in Figure 5. With a coarser mesh, though solution accuracy decreases, especially in the right water shield, OT still presents a reasonably accurate solution in the other part of the domain.
5. Conclusion

In this paper, we formulated unscaled and scaled least-squares discretizations in space combined with P_N in angle (LSP_N) for solving neutron transport problems.

We also developed a novel scaling based on optical thickness of scattering medium which preserves the thick diffusion limit as demonstrated by an asymptotic test with continuous finite element basis functions. The scaling is such that in problems with tens to hundreds of mean free paths with highly scattering mediums such as heavy water and carbon the zeroth moment equation in LSP_N is scaled by a factor proportional to the optical thickness. Otherwise, reciprocal removal cross sections are used. The scaling improves Manteuffel, et al.'s TM scaling in highly scattering media. Also, the boundedness of the scaling will avoid the solving and preconditioning degradation which occurs to
Figure 5: 1D iron water problem with $h = 0.5$ cm.

SAAF-P$_N$ in multi-D applications in highly scattering mediums. In all the tests presented in this paper, the scaling is accurate and robust.

ACKNOWLEDGMENTS

This project is funded by Department of Energy NEUP research grant from Battelle Energy Alliance, LLC- Idaho National Laboratory, Contract No: C12-00281.

W. Zheng would thank Dr. Vincent M. Laboure for fruitful discussions and proofreading.
Figure 6: 1D iron water problem with $h = 1$ cm.

References

[1] J. E. Morel, J. M. McGhee, A Self-Adjoint Angular Flux Equation, Nuclear Science and Engineering 132 (1999) 312–325.

[2] T. A. Manteuffel, K. J. Ressel, Least-Squares Finite-Element Solution of the Nuetron Transport Equation in Diffusive Regimes, SIAM J. Numer. Anal 35 (2) (1998) 806–835.

[3] T. A. Manteuffel, K. J. Ressel, G. Strake, A Boundary Functional for the Least Squares Finite-Element Solution of Neutron Transport Problems, SIAM J. Numer. Anal 37 (2) (2000) 556–586.

[4] C. Drumm, Spherical Harmonics (Pn) Methods In The Sceptre Radiation Transport Code, in: ANS M&C2015, 2015, Nashville, TN, United States.
[5] W. Zheng, R. G. McClarren, Moment closures based on minimizing the residual of the {PN} angular expansion in radiation transport, Journal of Computational Physics 314 (2016) 682 – 699.

[6] V. M. Laboure, R. G. McClarren, C. D. Hauck, Implicit filtered {PN} for high-energy density thermal radiation transport using discontinuous galerkin finite elements, Journal of Computational Physics 321 (2016) 624 – 643.

[7] R. Lin, Discontinuous Discretization for Least-Squares Formulation of Singularity Perturbed Reaction-Diffusion Problems in One and Two Dimensions, SIAM J. NUMER. ANAL. 47 (1) (2008) 89–108.

[8] E. Varin, G. Samba, Spherical Harmonics Finite Element Transport Equation Solution Using a Least-Square Approach, Nuclear Science and Engineering 151 (2005) 167–183.

[9] E. Varin, Resolution de l’équation de transport neutronique par une méthode de moindres carrés en trois dimensions, Ph.D. dissertation, Ecole Centrale Paris, France (2001).

[10] K. J. Ressel, Least-Squares Finite Element Solution of the Neutron Transport Equation in Diffusive Regimes, Ph.D. dissertation, University of Colorado (1994).

[11] Z. Xie, H. Wu, S. Zhang, Nuclear Reactor Physics and Analysis, 1st Edition, Xi’an Jiaotong University Press, 2004.

[12] E. W. Larsen, J. E. Morel, W. F. Miller, Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes, J. Comput. Phys. 69 (2) (1987) 283–324. doi:10.1016/0021-9991(87)90170-7. URL http://dx.doi.org/10.1016/0021-9991(87)90170-7

[13] E. Olbrant, E. Larsen, M. Frank, B. Seibold, Asymptotic derivation and numerical investigation of time-dependent simplified equations, Journal of Computational Physics 238 (2013) 315 – 336.
[14] E. W. Larsen, J. E. Morel, Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II, J. Comput. Phys. 83 (1989) 212–236.

[15] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, T. D. Young, The deal.II library, version 8.2, Archive of Numerical Software 3.

[16] C. L. Castrianni, M. L. Adams, A Nonlinear Corner-Balance Spatial Discretization for Transport on Arbitrary Grids, Nuclear Science and Engineering 128 (1998) 278–296.