PATTERN RECOGNITION ON ORIENTED MATROIDS:
HALFSPACES, CONVEX SETS AND TOPE COMMITTEES

ANDREY O. MATVEEV

Abstract. The principle of inclusion-exclusion is applied to subsets of
maximal covectors contained in halfspaces of a simple oriented matroid
and to convex subsets of its ground set for enumerating tope committees.

Contents

1. Introduction
2. Relative Blocking in Boolean Lattices 3
3. Halfspaces and Tope Committees
4. Convex Sets and Tope Committees
5. Relative Blocking in Posets Isomorphic to the Face Lattices
 of Crosspolytopes 11
6. Tope Committees Containing no Pairs of Opposites
7. Relative Blocking in Principal Order Ideals of Binomial Posets
8. References

1. INTRODUCTION

Let \(\mathcal{M} = (E_t, \mathcal{T}) \) be a simple oriented matroid (it has no loops, parallel
or antiparallel elements) on the ground set \(E_t := \{1, \ldots, t\} \), with set of
topes \(\mathcal{T} \). Throughout we will suppose that \(\mathcal{M} \) is not acyclic.

The family \(\mathbf{K}_k^*(\mathcal{M}) \) of tope committees, of cardinality \(k \), \(3 \leq k \leq |\mathcal{T}| - 3 \),
for the oriented matroid \(\mathcal{M} \) is defined as the collection

\[
\mathbf{K}_k^*(\mathcal{M}) := \{ \mathbf{K}^* \subset \mathcal{T} : |\mathbf{K}^*| = k, |\mathbf{K}^* \cap \mathcal{T}_e^+| > \frac{k}{2} \quad \forall e \in E_t \},
\]

where \(\mathcal{T}_e^+ := \{ T \in \mathcal{T} : T(e) = + \} \) is the positive halfspace of \(\mathcal{M} \)
that corresponds to the element \(e \), see [6, 7, 8, 9]. The family of tope anti-
committees, of cardinality \(k \), for \(\mathcal{M} \) is denoted by \(\mathbf{A}_k^*(\mathcal{M}) \); by definition,
\(\mathbf{A}^* \in \mathbf{A}_k^*(\mathcal{M}) \) iff \(-\mathbf{A}^* \in \mathbf{K}_k^*(\mathcal{M}) \), where \(-\mathbf{A}^* := \{-T : T \in \mathbf{A}^* \} \).

Key words and phrases. Blocker, blocking set, binomial poset, Boolean lattice, convex
set, committee, face lattice of a crosspolytope, halfspace, inclusion-exclusion, oriented
matroid, relative blocking, tope.

2010 Mathematics Subject Classification: 05E45, 52C40, 90C27.
Denote by \(({\mathcal T}_k) \) the family of all \(k \)-subsets of the tope set \(\mathcal T \), and consider the families of tope subsets \(N^*_k(\mathcal M):=({\mathcal T}_k) - (K^*_k \cup A^*_k) \), \(3 \leq k \leq |\mathcal T| - 3 \), that is the families

\[
N^*_k(\mathcal M) := \{ N^* \subset \mathcal T : |N^*| = k, \quad N^* \text{ neither a committee nor an anti-committee} \} ;
\]

we have

\[
\#K^*_k(\mathcal M) = \#A^*_k(\mathcal M) = \frac{1}{2}(|\mathcal T| - \#N^*_k(\mathcal M)) , \quad 3 \leq k \leq |\mathcal T| - 3 .
\]

For an element \(e \in E_t \), we let \(\mathcal T^-_e := \{ T \in \mathcal T : T(e) = - \} \) denote the negative halfspace of \(\mathcal M \) that corresponds to the element \(e \). The family of all subsets, of cardinality \(j \), of the positive halfspace \(\mathcal T^+_e \) is denoted by \((\mathcal T^+_e)^j \) and, similarly, \((\mathcal T^-_e)^j \) denotes the family of \(j \)-subsets of the negative halfspace \(\mathcal T^-_e \).

The family of \((i+j) \)-sets \((\mathcal T^+_i)^j \oplus (\mathcal T^-_j) \) is defined as the family \(\{ A \cup B : A \in (\mathcal T^+_i)^j, B \in (\mathcal T^-_j) \} \).

On the one hand, \(K^*_k(\mathcal M) = \cap_{e \in E_t} \cup_{j=\lfloor (k+1)/2 \rfloor}^{\lfloor (k-1)/2 \rfloor} \left(\left(\mathcal T^+_e \right)^j \right) \), \(3 \leq k \leq |\mathcal T| - 3 \). On the other hand, a \(k \)-subset \(K^* \subset \mathcal T \) is a committee for \(\mathcal M \) iff

\[
\begin{align*}
&\text{the set } K^* \text{ contains no set from the family } \cap_{e \in E_t} \left(\left(\mathcal T^+_e \right)^j \right) ; \\
&\text{the set } K^* \text{ contains at least one set from each family } \left(\left(\mathcal T^+_e \right)^j \right), \\
&\quad e \in E_t \quad \text{— in other words, the collection } \left(\left(\mathcal T^+_e \right)^j \right) \text{ is a blocking family for the family } \{ \left(\mathcal T^+_1 \right), \ldots, \left(\mathcal T^+_m \right) \}, \text{ that is, } \#\left(\left(\mathcal T^+_e \right) \right) \cap \left(\left(\mathcal T^+_e \right)^j \right) > 0 , e \in E_t .
\end{align*}
\]

As a consequence, the collection \(K^*_k(\mathcal M) \) is the family of all blocking \(k \)-sets of topes for the family \(\cup_{e \in E_t} \left(\left(\mathcal T^+_e \right)^j \right), \) and a committee \(K^* \in K^*_k(\mathcal M) \) is minimal if any its proper \(i \)-subset \(\mathcal T^i \subset K^* \) is not a blocking set for the family \(\cup_{e \in E_t} \left(\left(\mathcal T^+_e \right)^j \right) \).

Based on these remarks, we calculate in Sections 3 and 4 the numbers \(\#K^*_k(\mathcal M) \) of general committees of cardinality \(k \), in several possible ways, by applying the principle of inclusion-exclusion [1] [1] to subsets of maximal covectors contained in halfspaces of the oriented matroid \(\mathcal M \); in Section 4, these calculations involve the convex subsets of the ground set of \(\mathcal M \). In Section 4 we find the numbers \(\#K^*_k(\mathcal M) \) of tope committees, of cardinality \(k \), which contain no pairs of opposites. Sections 2, 5 and 7 list auxiliary results.

See [3] and references therein on acyclic, convex and free sets of oriented matroids.

One can associate to the oriented matroid \(\mathcal M \) various “\(\kappa^* \)-vectors” (and their flag generalizations) whose components are the numbers of its tope committees of the corresponding cardinality, for example:
Example 1.1. Let \(\mathcal{M} := (E_6, T) \) be the simple oriented matroid represented by its third positive halfspace

\[
\tau^+_5 := \{ - - + + + +, - + + - + +, + - + - + -, + + + + - -, + + + - - -, - + + - - -, - + + + - - \};
\]

a realization of its reorientation \(-\{1, 2\}\mathcal{M}, \) by a hyperplane arrangement in \(\mathbb{R}^3, \) is shown in [7, Figure 3.1].

The oriented matroid \(\mathcal{M} \) has 28 maximal covectors and 238012 tope committees —

\[\kappa^*(\mathcal{M}) = (0, 0, 3, 0, 144, 1, 1942, 22, 11872, 136, 37775, 386, 66454, 542)\]

— among which 4496 committees are free of opposites:

\[\hat{\kappa}^*(\mathcal{M}) = (0, 0, 3, 0, 111, 1, 778, 14, 1935, 24, 1448, 24, 158, 0)\, .\]

2. Relative Blocking in Boolean Lattices

Let \(A \) be a nontrivial antichain in the Boolean lattice \(\mathbb{B}(n) \) of rank \(n, \) and \(\Lambda^\perp \) the set of lattice complements of the elements of \(A \) in \(\mathbb{B}(n); \) \(\rho(\cdot) \) denotes the rank function, \(\mathbb{B}(T)^{(i)} := \{ b \in \mathbb{B}(n) : \rho(b) = i \} \) denotes the \(i \)th
layer of $\mathcal{B}(n)$, and $\mathcal{I}(C)$ stands for the order ideal of the lattice $\mathcal{B}(n)$ generated by its antichain C.

For a rational number r, $0 \leq r < 1$, and for a positive integer number k, consider the subset

$$I_{r,k}(\mathcal{B}(n), A) := \{ b \in \mathcal{B}(n) : \rho(b) = k, \rho(b \wedge \lambda) > r \cdot k \quad \forall \lambda \in A \} \subset \mathcal{B}(n)^{(k)}$$

(2.1)

that consists of the relatively r-blocking elements, of rank k, for the antichain A.

Set $\nu(r \cdot k) := \lfloor r \cdot k \rfloor + 1$ and consider an antichain $A \subset \mathcal{B}(n)$ such that $\rho(\lambda) \geq \nu(r \cdot k)$ and $n - \rho(\lambda) \geq k - \nu(r \cdot k) + 1$, for each element $\lambda \in A$, that is,

$$\lfloor r \cdot k \rfloor + 1 \leq \min_{\lambda \in A} \rho(\lambda) \quad \text{and} \quad \max_{\lambda \in A} \rho(\lambda) \leq n + \lfloor r \cdot k \rfloor - k . \quad (2.2)$$

If the antichain A satisfies constraints (2.2) then for an element $b' \in \mathcal{B}(n)^{(k)}$ we have $b' \not\in I_{r,k}(\mathcal{B}(n), A)$ iff $b' > d'$ for at least one element d' of rank $k - \nu(r \cdot k) + 1 = k - \lfloor r \cdot k \rfloor$ such that $d' \in \mathcal{I}(A^\perp)$; therefore, on the one hand,

$$|I_{r,k}(\mathcal{B}(n), A)| = \binom{n}{k} + \sum_{D' \subseteq \mathcal{B}(n)^{(k-\lfloor r \cdot k \rfloor) \cap \mathcal{I}(A^\perp)}} (-1)^{|D'|} \cdot \binom{n - \rho(\bigvee_{d' \in D'} d')}{n - k} . \quad (2.3)$$

On the other hand, for an element $b \in \mathcal{B}(n)$ the inclusion $b \in I_{r,k}(\mathcal{B}(n), A)$ holds iff for each element $\lambda \in A$ we have $\rho(b \wedge \theta_\lambda) > 0$, for any element $\theta_\lambda \in \mathcal{B}(n)^{(\rho(\lambda) - \nu(r \cdot k) + 1) \cap \mathcal{I}(\lambda)}$, that is,

$$b \in I_{r,k}(\mathcal{B}(n), A) \iff \rho(b \wedge \theta_\lambda) > 0 \quad \forall \theta_\lambda \in \mathcal{B}(n)^{(\rho(\lambda) - \lfloor r \cdot k \rfloor) \cap \mathcal{I}(\lambda)} \forall \lambda \in A ,$$

and we have

$$|I_{r,k}(\mathcal{B}(n), A)| = \binom{n}{k} + \sum_{D \subseteq \min \bigcup_{\lambda \in A(\mathcal{B}(n)^{(\rho(\lambda) - \lfloor r \cdot k \rfloor) \cap \mathcal{I}(\lambda)}) : |D|>0}} (-1)^{|D|} \cdot \binom{n - \rho(\bigvee_{d \in D} d)}{k} . \quad (2.4)$$

(2.3)

(where $\min \cdot$ stands for the set of minimal elements of a subposet) or, via Vandermonde’s convolution,

$$|I_{r,k}(\mathcal{B}(n), A)| = -\sum_{D \subseteq \min \bigcup_{\lambda \in A(\mathcal{B}(n)^{(\rho(\lambda) - \lfloor r \cdot k \rfloor) \cap \mathcal{I}(\lambda)}) : |D|>0}} (-1)^{|D|} \cdot \sum_{1 \leq h \leq k} \binom{\rho(\bigvee_{d \in D} d)}{h} \binom{n - \rho(\bigvee_{d \in D} d)}{k - h} . \quad (2.5)$$
One more inclusion-exclusion type formula for the cardinality of the set \(I_{r,k}(\mathbb{B}(n), A)\), for an antichain \(A\) such that \(\rho(\lambda) \geq \nu(r \cdot k)\), for all \(\lambda \in A\), is given in [10, (5.4)]: if
\[
[r \cdot k] + 1 \leq \min_{\lambda \in A} \rho(\lambda)
\] (2.6)
then
\[
|I_{r,k}(\mathbb{B}(n), A)| = \sum_{D \subseteq \mathbb{B}(n) \setminus (\{r \cdot k\} \cap \mathfrak{A}(A); |D| > 0)} (-1)^{|D|} \cdot \left(\sum_{C \subseteq A; D \subseteq \mathfrak{A}(C)} (-1)^{|C|} \left(n - \rho(\nu_{d \in D} d) \right) \right) .
\] (2.7)

We now refine formulas (2.3), (2.4) and (2.5) with the help of the Möbius function [11, 11], see below expressions (2.8), (2.9) and (2.10), respectively. Let \(X\) be a non-trivial antichain in the Boolean lattice \(\mathbb{B}(n)\). Denote by \(\mathcal{E}(\mathbb{B}(n), X)\) the sub-join-semilattice of \(\mathbb{B}(n)\) generated by the set \(X\) and augmented by a new least element \(\hat{0}\); the greatest element \(\hat{1}\) of the lattice \(\mathcal{E}(\mathbb{B}(n), X)\) is the join \(\bigvee_{x \in X} x\) in \(\mathbb{B}(n)\). The Möbius function of the lattice \(\mathcal{E}(\mathbb{B}(n), X)\) is denoted by \(\mu_{\mathcal{E}}(\cdot, \cdot)\).

Let \(A\) be a non-trivial antichain in the Boolean lattice \(\mathbb{B}(n)\) that complies with constraints (2.2). We have
\[
|I_{r,k}(\mathbb{B}(n), A)| = \binom{n}{k} + \sum_{z \in \mathcal{E}(\mathbb{B}(n) \setminus (\{r \cdot k\} \cap \mathfrak{A}(A^+)); z > \hat{0}} \mu_{\mathcal{E}}(\hat{0}, z) \cdot \left(n - \rho(z) \right) \right) .
\] (2.8)

\[
|I_{r,k}(\mathbb{B}(n), A)| = \binom{n}{k} + \sum_{z \in \mathcal{E}(\min \bigcup_{\lambda \in \mathfrak{A}(\mathbb{B}(n) \setminus (\{r \cdot k\} \cap \mathfrak{A}(\lambda)))); z > \hat{0}} \mu_{\mathcal{E}}(\hat{0}, z) \cdot \left(n - \rho(z) \right) \right) .
\] (2.9)

\[
|I_{r,k}(\mathbb{B}(n), A)| = -\sum_{z \in \mathcal{E}(\min \bigcup_{\lambda \in \mathfrak{A}(\mathbb{B}(n) \setminus (\{r \cdot k\} \cap \mathfrak{A}(\lambda)))); z > \hat{0}} \mu_{\mathcal{E}}(\hat{0}, z)
\]
\[
\cdot \sum_{1 \leq h \leq k} \left(\frac{\rho(z)}{h} \right) \left(\frac{n - \rho(z)}{k - h} \right) .
\] (2.10)

A companion formula to (2.7) is given in [10, (5.6)]: let \(A \subseteq \mathbb{B}(n)\) be an antichain that obeys constraint (2.6), and let \(C_{r,k}(\mathbb{B}(n), A)\) be the join-semilattice of all sets from the family \(\{\mathbb{B}(n) \setminus (\{r \cdot k\} + 1) \cap \mathfrak{A}(C) : C \subseteq A, |C| > 0\}\).
ordered by inclusion and augmented by a new least element \(\hat{0} \); the greatest element \(\hat{1} \) of the lattice \(C_{r,k}(B(n), \Lambda) \) is the set \(B(n)^{-} \cap \mathcal{I}(\Lambda) \). We denote the Möbius function of \(C_{r,k}(B(n), \Lambda) \) by \(\mu_C(\cdot, \cdot) \). We have

\[
|I_{r,k}(B(n), \Lambda)| = \sum_{X \in C_{r,k}(B(n), \Lambda): X > \hat{0}} \mu_C(\hat{0}, X) \cdot \sum_{z \in E(B(n), X): z > \hat{0}} \mu_C(\hat{0}, z) \cdot \left(\frac{n - \rho(z)}{n - k} \right). \tag{2.11}
\]

3. Halfspaces and Tope Committees

Let \(B(T) \) be the Boolean lattice of all subsets of the tope set \(T \), and \(\Upsilon := \{v_1, \ldots, v_k\} \subset B(T)^{(|T|/2)} \) its antichain whose element \(v_e \) represents in \(B(T) \) the \(e \)th positive halfspace \(T^+_e \) of the oriented matroid \(M \). The family \(K^+_k(M) \) of tope committees, of cardinality \(k, 3 \leq k \leq |T| - 3 \), for \(M \) is represented in the lattice \(B(T) \) by the antichain

\[
I_{\frac{k}{2}, k}(B(T), \Upsilon) := \{b \in B(T) : \rho(b) = k, \rho(b \land v_e) > \frac{k}{2}, \forall e \in E_t \} \subset B(T)^{(k)};
\]

thanks to axiomatic symmetry \(T = -T \), see \([1\] §4.1.1, (L1)]\), the cardinality of this set is

\[
|I_{\frac{k}{2}, k}(B(T), \Upsilon)| = \binom{|T|}{k} + \sum_{D \subseteq B(T)^{(|T|/2)} \cap \Upsilon(\Lambda) : |D| > 0} (-1)^{|D|} \cdot \left(\binom{|T| - \rho(\bigvee_{d \in D} d)}{|T| - k} \right), \tag{3.1}
\]

by \([23]\). Note that for an integer \(j, 1 \leq j \leq |T|/2 \), we have

\[
|B(T)^{(j)} \cap \Upsilon(\Lambda)| = -\sum_{A \in L_{\text{conv}}(M) - \{\hat{0}\}: A \text{ free}} (-1)^{|A|} \cdot \binom{|T^+_A|}{j},
\]

where \(L_{\text{conv}}(M) \) denotes the meet-semilattice of \textit{convex subsets} of the ground set \(E_t \), and \(T^+_A := \bigcap_{a \in A} T^+_a \); \(\hat{0} \) denotes the least element of \(L_{\text{conv}}(M) \). Recall that from the algebraic combinatorial point of view \([2]\), the set \(B(T)^{(j)} \cap \Upsilon(\Lambda) \) is a \textit{subset} in the \textit{Johnson association scheme} \(J(|T|, j) := (X, \mathcal{R}) \) on the set \(X := B(T)^{(j)} \), with the partition \(\mathcal{R} := (R_0, R_1, \ldots, R_j) \) of \(X \times X \), defined by \(R_i := \{(x, y) : j - \rho(x \land y) = i\} \), for all \(0 \leq i \leq j \).
Reformulate observation (3.1) in the following way:

\[
\#K^*_k(M) = \#K^*_{|T|-k}(M) = \binom{|T|}{|T| - \ell} + \sum_{\mathcal{G} \subseteq \bigcup_{e \in E_t} (\mathcal{T} + e \cdot \left\lfloor \frac{|T|}{2} + 1 \right\rfloor / 2)} (-1)^{|\mathcal{G}|} \cdot \left(\frac{|T| - \sum_{G \in \mathcal{G}} |G|}{|T| - \ell} \right),
\]

(3.2)

where \(\ell \in \{k, |T| - k\} \); this formula counts the number of all blocking \(k \)-sets of topes for the family \(\bigcup_{e \in E_t} (\mathcal{T} + e \cdot \left\lfloor \frac{|T|}{2} + 1 \right\rfloor / 2) \), cf. (2.4), and it counts the number of all blocking \((|T| - k)\)-sets of topes for the family \(\bigcup_{e \in E_t} (\mathcal{T} + e \cdot \left\lfloor \frac{k}{2} + 1 \right\rfloor / 2) \).

We can also rewrite (3.1) by means of Vandermonde’s convolution in the form:

\[
\left| I_{1,k} (B(T), T) \right| = - \sum_{D \subseteq B(T) \cap \bigcup_{e \in E_t} \mathcal{T} + e \cdot \left\lfloor \frac{|T|}{2} + 1 \right\rfloor / 2} (-1)^{|D|} \sum_{1 \leq h \leq k} \rho(d \cdot D) \left(\frac{|T| - \sum_{d \in D} |d|}{h} \right)^{k - h - \rho(d \cdot D) / k},
\]

cf. (2.5), that is,

\[
\#K^*_k(M) = \#K^*_{|T|-k}(M) = - \sum_{\mathcal{G} \subseteq \bigcup_{e \in E_t} (\mathcal{T} + e \cdot \left\lfloor \frac{|T|}{2} + 1 \right\rfloor / 2)} (-1)^{|\mathcal{G}|} \rho(d \cdot \mathcal{G}) \sum_{\max\{1, \ell - |\mathcal{G}|, \min\{\ell, \sum_{G \in \mathcal{G}} |G|\} \leq h \leq \min\{\ell, \sum_{G \in \mathcal{G}} |G|\}} \left(\frac{|\mathcal{G}|}{h} \right)^{k - h - \rho(d \cdot \mathcal{G}) / k},
\]

(3.3)

where \(\ell \in \{k, |T| - k\} \).

If \(\mathcal{G} \) is a family of tope subsets then we denote by \(\mathcal{E}(\mathcal{G}) \) the join-semilattice \(\{ \bigcup_{F \in \mathcal{F}} F : \mathcal{F} \subseteq \mathcal{G}, \#\mathcal{F} > 0 \} \) composed of the unions of the sets from the family \(\mathcal{G} \) ordered by inclusion and augmented by a new least element \(\hat{0} \); the greatest element \(\hat{1} \) of the lattice \(\mathcal{E}(\mathcal{G}) \) is the set \(\bigcup_{G \in \mathcal{G}} G \). The Möbius function of the poset \(\mathcal{E}(\mathcal{G}) \) is denoted by \(\mu_{\mathcal{G}} (\cdot, \cdot) \).

Expressions (3.4) and (3.5) below refine formulas (3.2) and (3.3), respectively.

Proposition 3.1. The number \(\#K^*_k(M) \) of tope committees, of cardinality \(k \), \(3 \leq k \leq |T| - 3 \), for the oriented matroid \(M := (E_t, T) \), is:
\(\#K^*_k(M) = \#K^*_|T| - k(M) \)

\[
(3.4)
\]

where \(\ell \in \{ k, |T| - k \}. \)

(ii)

\[
\#K^*_k(M) = \#K^*_|T| - k(M) = - \sum_{\substack{G \in \mathcal{E}(U_{k \in E_1 \left(\frac{\ell}{|T| + 1} \right)}): |G| > 0 \}} \mu_e(\hat{0}, G) \cdot \sum_{\max(1, \ell - |T| + |G|) \leq h \leq \min(\ell, |G|)} \binom{|G|}{h} \binom{|T| - |G|}{\ell - h},
\]

\[
(3.5)
\]

where \(\ell \in \{ k, |T| - k \}. \)

Let \(C_{1, k} (\mathbb{B}(T), Y) \) be the join-semilattice of all sets from the family \(\{ \mathbb{B}(T)^{\left(\frac{(k+1)/2} \right)} \cap \mathcal{Y}(C) : C \subseteq Y, |C| > 0 \} \) ordered by inclusion and augmented by a new least element \(\hat{0} \). The greatest element \(\hat{1} \) of the lattice \(C_{1, k} (\mathbb{B}(T), Y) \) is the set \(B(T)^{\left(\frac{(k+1)/2} \right)} \cap \mathcal{Y}(Y) \). Similarly, for an element \(X \in C_{1, k} (\mathbb{B}(T), Y) \) we denote by \(\mathcal{E}(\mathbb{B}(T), X) \) the sub-join-semilattice of \(\mathbb{B}(T) \) generated by the set \(X \subseteq \mathbb{B}(T) \) and augmented by a new least element \(0 \). The Möbius functions of the posets \(C_{1, k} (\mathbb{B}(T), Y) \) and \(\mathcal{E}(\mathbb{B}(T), X) \) are denoted by \(\mu_C(\cdot, \cdot) \) and \(\mu_e(\cdot, \cdot) \), respectively.

Using (2.11), we obtain the expression

\[
|I_{1, k} (\mathbb{B}(T), Y)| = \sum_{X \in C_{1, k} (\mathbb{B}(T), Y): X > 0} \mu_C(\hat{0}, X) \cdot \sum_{z \in \mathcal{E}(\mathbb{B}(T), X): z > 0} \mu_e(\hat{0}, z) \cdot \binom{|T| - \rho(z)}{|T| - k}.
\]

(3.6)

Restate (3.6) in the following way:

Proposition 3.2. The number \(\#K^*_k(M) \) of tope committees, of cardinality \(k, 3 \leq k \leq |T| - 3 \), for the oriented matroid \(M := (E_1, T) \), is

\[
\#K^*_k(M) = \#K^*_|T| - k(M) = \sum_{\substack{G \in \{ U_{k \in E_1 \left(\frac{\ell}{|T| + 1} \right)}: E \subseteq E_2, |E| > 0 \} \}} \mu_C(\hat{0}, G) \cdot \sum_{\substack{G \in \mathcal{E}(G): 0 < |G| \leq \ell \}} \mu_e(\hat{0}, G) \cdot \binom{|T| - |G|}{\ell - |G|},
\]

(3.5)
where $\ell \in \{k, |T| - k\}$; $\mu_C(\cdot, \cdot)$ denotes the Möbius function of the family C defined as
$$
\mu_C(\cdot, \cdot) = \left\{ \begin{array}{ll}
0, & \text{if } 0 \in C \cap D, \\
(-1)^{|C-D|}, & \text{if } 0 \not\in C \cap D.
\end{array} \right.
$$

4. Convex Sets and Tope Committees

Let the antichain $\Upsilon := \{v_1, \ldots, v_t\} \subset B(T)^{\left\lfloor \frac{|T|}{2} \right\rfloor}$ again represent the family of positive halfspaces of the oriented matroid M in the Boolean lattice $B(T)$ of all subsets of the tope set T. We have

$$
|I_{T,k}(B(T), \Upsilon)| = \sum_{D \subseteq B(T)^{\left\lceil \frac{(k+1)}{2} \right\rceil}} (-1)^{|D|} \sum_{C \subseteq \Upsilon: D \subseteq \Upsilon(C)} (-1)^{|C|} \binom{|T| - \rho(D)}{|T| - k}, \quad 3 \leq k \leq |T| - 3 , \quad (4.1)
$$
cf. [27].

Consider the mapping

$$
\gamma_k : B(T)^{\left\lceil \frac{(k+1)}{2} \right\rceil} \cap \Upsilon(\Upsilon) \to L_{\text{conv}}(M),
\quad d \mapsto \max \{ A \in L_{\text{conv}}(M) : d \subseteq T_A^+ \}, \quad (4.2)
$$

that sends a $\left\lfloor \frac{(k+1)}{2} \right\rfloor$-subset of topes $d \in \Upsilon(\Upsilon)$ to the inclusion-maximum convex subset $A \subset E_t$ with the property $d \subseteq T_A^+$; we are actually interested in such a mapping to the subposet $L_{\text{conv}}, \geq_{\lceil \frac{(k+1)}{2} \rceil}(M)$, the order ideal of the semilattice $L_{\text{conv}}(M)$ defined as $L_{\text{conv}}, \geq_{\lceil \frac{(k+1)}{2} \rceil}(M) := \{ A \in L_{\text{conv}}(M) : |T_A^+| \geq \left\lceil \frac{(k+1)}{2} \right\rceil \}$.

Fix a nonempty subset $D \subseteq B(T)^{\left\lceil \frac{(k+1)}{2} \right\rceil} \cap \Upsilon(\Upsilon)$ and consider the blocker $B(\gamma_k(D))$ of the image $\gamma_k(D)$; if we let $\min_\gamma(D)$ denote the subfamily of all inclusion-minimal sets from the family $\gamma_k(D)$ then $B(\gamma_k(D)) = B(\min_\gamma(D))$.

Let $\Delta^*(D)$ be the abstract simplicial complex whose facets are the complements $E_t - B$ of the sets $B \in B(\min_\gamma_k(D))$ from the blocker of the Sperner family $\min_\gamma_k(D)$, and let $\Delta(D)$ be the complex whose facets are the complements $E_t - G$ of the sets $G \in \min_\gamma_k(D)$; if the complexes $\Delta(D)$ and $\Delta^*(D)$ have the same vertex set then $\Delta^*(D)$ is the Alexander dual of $\Delta(D)$. The reduced Euler characteristics $\bar{\chi}(\cdot)$ of the complexes satisfy the equality $\bar{\chi}(\Delta^*(D)) = (-1)^{|T|-1} \bar{\chi}(\Delta(D))$.

For a subset $C := \{v_{i_1}, \ldots, v_{i_j}\} \subseteq \Upsilon$ we have $D \subseteq \Upsilon(C)$ iff the collection of indices $\{i_1, \ldots, i_j\}$ is a blocking set for the family $\min_\gamma_k(D)$; therefore

$$
\sum_{C \subseteq \Upsilon: D \subseteq \Upsilon(C)} (-1)^{|C|} = (-1)^{|T|-1} \bar{\chi}(\Delta^*(D)).
$$

If $\bigcup_{F \in \min_\gamma_k(D)} F \neq E_t$ then the complex $\Delta^*(D)$ is a cone and, as a consequence, $\bar{\chi}(\Delta^*(D)) = 0$.

A.O. MATVEEV 9
Rewrite (4.1) in the following way:

\[
|I_{\mathcal{T}}^{\gamma}(\mathcal{B}(\mathcal{T}), \mathcal{Y})| = \sum_{D \subseteq \mathcal{B}(\mathcal{T})(\lfloor(k+1)/2\rfloor) \cap \mathcal{Y}} \left(-1 \right)^{|D|} \cdot \chi(\Delta(D)) \cdot \left(|T| - \rho(\vee_{d \in D} d) \right) \quad (4.3)
\]

note that singleton sets \(D \) := \{d\}, where \(d \in \mathcal{B}(\mathcal{T})(\lfloor(k+1)/2\rfloor) \cap \mathcal{Y} \), do not play a role in (4.3).

Given a subset \(D \subseteq \mathcal{B}(\mathcal{T})(\lfloor(k+1)/2\rfloor) \cap \mathcal{Y} \) such that \(\bigcup_{F \in \min \gamma_k(D)} F = E_t \), let \(\mathcal{S}(D) \) denote the family of the unions \(\{ \bigcup_{F \in F} : F \subseteq \min \gamma_k(D), \#F > 0 \} \) ordered by inclusion and augmented by a new least element \(\hat{0} \); the greatest element \(\hat{1} \) of the lattice \(\mathcal{S}(D) \) is the ground set \(E_t \). The reduced Euler characteristic \(\tilde{\chi}(\Delta(D)) = \sum_{F \subseteq \min \gamma_k(D)} (-1)^{\#F} \) of the complex \(\Delta(D) \) is equal to the Möbius number \(\mu_{\mathcal{S}(D)}(0, \hat{1}) \) and, in particular, to \((-1)^{\# \min \gamma_k(D)} \) when the sets in the family \(\min \gamma_k(D) \) are pairwise disjoint. Restate observation (4.3):

Proposition 4.1. The number \(\#K^*_k(\mathcal{M}) \) of tope committees, of cardinality \(k \), \(3 \leq k \leq |\mathcal{T}| - 3 \), for the oriented matroid \(\mathcal{M} := (\mathcal{E}_t, \mathcal{T}) \), is

\[
\#K^*_k(\mathcal{M}) = \#K^*_{|\mathcal{T}| - k}(\mathcal{M}) = \sum_{\mathcal{G} \subseteq \bigcup_{E_t \in E_t} \left(\lfloor(k+1)/2\rfloor \right)} \left(-1 \right)^{\#\mathcal{G}} \cdot \mu_{\mathcal{S}(\mathcal{G})}(0, \hat{1}) \cdot \left(|\mathcal{T}| - |\bigcup_{G \in \mathcal{G}} G| \right) \left(\ell - |\bigcup_{G \in \mathcal{G}} G| \right),
\]

where \(\ell \in \{k, |\mathcal{T}| - k\} \).

Consider the abstract simplicial complex whose facets are the positive halfspaces of the oriented matroid \(\mathcal{M} \). If some its relevant \((\lfloor(k+1)/2\rfloor - 1) \)-dimensional faces, sets from the family \(\bigcup_{e \in E_t} \left(\lfloor(k+1)/2\rfloor \right) \), are free — each of them is contained in exactly one facet \(\mathcal{T}^+_e \), for some element \(e \in E_t \) — then the Möbius numbers \(\mu_{\mathcal{S}(\mathcal{G})}(0, \hat{1}) \) in (4.3), under \(\ell := k \), are all equal to \((-1)^{\ell} \):

Corollary 4.2. Let \(k \) be an integer, \(3 \leq k \leq |\mathcal{T}| - 3 \). If for any family \(\mathcal{G} \subseteq \bigcup_{E_t \in E_t} \left(\lfloor(k+1)/2\rfloor \right) \) such that \(\bigcup_{F \in \min \gamma_k(\mathcal{G})} F = E_t \) and \(\bigcup_{G \in \mathcal{G}} G \leq k \), it holds \(|\gamma_k(G)| = 1 \), for any set \(G \in \mathcal{G} \), then the number \(\#K^*_k(\mathcal{M}) \) of tope
committees, of cardinality \(k \), for the oriented matroid \(\mathcal{M} := (E_t, T) \), is

\[
\#K_k^r(\mathcal{M}) = \#K_{|T|-k}^r(\mathcal{M}) = (-1)^t \sum_{\Omega \subseteq \cup_{i \in E_t} \left(r_{(k+1)/2} \right)} (-1)^{\|\Omega\|} \binom{|T| - \sum_{\Gamma \subseteq \cup_{G \in \mathcal{G}}} |G|}{k - \sum_{\Gamma \subseteq \cup_{G \in \mathcal{G}}} |G|} .
\]

5. Relative Blocking in Posets Isomorphic to the Face Lattices of Crosspolytopes

Consider a poset \(\mathcal{O}'(m) \), with the rank function \(\rho(\cdot) \), which is isomorphic to the graded face meet-semilattice of the boundary of a \(m \)-dimensional crosspolytope and is defined in the following way: the semilattice \(\mathcal{O}'(m) \) is composed of all subsets, free of opposites, of a set \(\{-m, \ldots, -1, 1, \ldots, m\} \), ordered by inclusion. We denote by \(\mathcal{O}(m) \) the lattice \(\mathcal{O}(m) := \mathcal{O}'(m) \cup \{1\} \), where \(1 \) is a new greatest element. Let \(A \subseteq \mathcal{O}'(m) \) be a nontrivial antichain in the lattice \(\mathcal{O}(m) \).

For a rational number \(r \), \(0 \leq r < 1 \), and for a positive integer number \(k \), we define the set \(I_r,k(\mathcal{O}'(m), A) \) of relatively \(r \)-blocking elements, of rank \(k \), for the antichain \(A \) in analogy with the sets \(I_r,k(\mathcal{B}(n), \cdot) \) for antichains in Boolean lattices, cf. \([2.1]\):

\[
I_r,k(\mathcal{O}'(m), A) := \{ b \in \mathcal{O}'(m) : \rho(b) = k, \rho(b \wedge \lambda) > r \cdot k \ \forall \lambda \in A \} \subseteq \mathcal{O}'(m)^{(k)},
\]

where \(\mathcal{O}'(m)^{(k)} \) is the \(k \)-th layer of the semilattice \(\mathcal{O}'(m) \).

On the one hand, we have

\[
|I_r,k(\mathcal{O}'(m), A)| = \sum_{X \in \mathcal{E}_r,k(\mathcal{O}'(m), A): X > \hat{0}} \mu_{\mathcal{E}}(\hat{0}, X) \cdot \sum_{z \in \mathcal{E}(\mathcal{O}'(m), X): z > \hat{0}} \mu_{\mathcal{E}}(\hat{0}, z) \cdot 2^{k - \rho(z)} \cdot 2^{m - \rho(z)} / (m - k) ,
\]

cf. \([2.1]\), where \(\mathcal{E}_r,k(\mathcal{O}'(m), A) \) denotes the join-semilattice of all sets from the family \(\{ \mathcal{O}'(m)^{(r-k+1)} \cap \mathcal{F}(C) : C \subseteq \Lambda, \ |C| > 0 \} \) ordered by inclusion and augmented by a new least element \(\hat{0} \); the greatest element \(\hat{1} \) of the lattice \(\mathcal{E}_r,k(\mathcal{O}'(m), A) \) is the set \(\mathcal{O}'(m)^{(r-k+1)} \cap \mathcal{F}(A) \). For an element \(X \in \mathcal{E}_r,k(\mathcal{O}'(m), A) \), the notation \(\mathcal{E}(\mathcal{O}'(m), X) \) is used to denote the sub-join-semilattice of the lattice \(\mathcal{O}(m) \) generated by the set \(X \subseteq \mathcal{O}'(m) \), with the greatest element of \(\mathcal{O}(m) \) deleted from it, and augmented by a new least element \(\hat{0} \). The Möbius functions of the posets \(\mathcal{E}_r,k(\mathcal{O}'(m), A) \),
and \(\hat{\mathcal{E}}(O'(m), X) \) are denoted by \(\mu_{\varepsilon}(\cdot, \cdot) \) and \(\mu_{\varepsilon}(\cdot, \cdot) \), respectively; \(\rho(\cdot) \) denotes the rank of an element in the poset \(O'(m) \).

On the other hand, we have

\[
|I_{r,k}(O'(m), A)| = \sum_{D \subseteq O'(m)^{(r-k)+1}} (-1)^{|D|} \sum_{C \subseteq A: D \subseteq \mathcal{D}(C)} (-1)^{|C|} \cdot 2^{k - \rho(\lor_{d \in D} d)} \cdot \left(\frac{m - \rho(\lor_{d \in D} d)}{m - k} \right),
\]

where \(G = (\mathcal{D}(\varepsilon), \mathcal{D}(\eta)) \) and \(\mathcal{D}(\varepsilon) \) is a family of tope subsets that are free of opposites then we denote \(\mathcal{D}(\varepsilon) \) by \(\mathcal{D}(\varepsilon) \). The lattice \(O(\mathcal{T}) := O'(\mathcal{T}) \cup \{ \hat{1} \} \) is the semilattice \(O'(\mathcal{T}) \) augmented by a new greatest element 1. We again turn to the mapping \(\gamma_k: \mathbb{B}(\mathcal{T})^{(\lceil (k+1)/2 \rceil)} \cap \mathcal{J}(\mathcal{Y}) \rightarrow L_{\text{conv}}(\mathcal{M}) \) defined in (4.1), and to the lattices \(\mathcal{S}(\cdot) \) considered in Section 4.

If \(G \) is a family of tope subsets which are free of opposites we then denote by \(\mathring{\mathcal{E}}(G) \) the join-semilattice \(\{ \bigcup_{F \in \mathcal{F}} F : \mathcal{F} \subseteq G, \# \mathcal{F} > 0, \bigcup_{F \in \mathcal{F}} F \text{ free of opposites} \} \) composed of the unions, free of opposites, of the sets from the family \(G \) ordered by inclusion and augmented by a new least element \(\hat{0} \); the Möbius function of the poset \(\mathring{\mathcal{E}}(G) \) is denoted by \(\mu_{\mathring{\mathcal{E}}}(\cdot, \cdot) \).

Formula (6.1) below is deduced from (5.1). Formulas (6.2) and (6.3) are deduced from (5.2); they are direct analogues of formulas (4.4) and (4.5), respectively. See also [9, Section 3].

Theorem 6.1. The number \(\#K_k^+(\mathcal{M}) \) of tope committees which are free of opposites, of cardinality \(k, 3 \leq k \leq |\mathcal{T}|/2 \), for the oriented matroid \(\mathcal{M} := (E_t, \mathcal{T}) \), is:

\[
\#K_k^+(\mathcal{M}) = \sum_{G \in \mathring{\mathcal{E}}(G)} \mu_{\mathring{\mathcal{E}}}(\hat{0}, G) \cdot \sum_{G \in \mathring{\mathcal{E}}(G)} \mu_{\mathring{\mathcal{E}}}(\hat{0}, G) \cdot 2^{k - |G|} \cdot \left(\frac{\frac{1}{2}|\mathcal{T}| - |G|}{k - |G|} \right), \quad (6.1)
\]
where \(\mu_C(\cdot, \cdot) \) denotes the Möbius function of the family \(\hat{C} := \{\hat{0}\} \)
\(\cup \{ \bigcup_{E \in E_t} \left(\frac{T_k^+}{(k+1)/2} \right) : E \subseteq E_t, |E| > 0 \} \) ordered by inclusion.

(ii)
\[
\#K_k^*(\mathcal{M}) = \sum_{\mathcal{G} \subseteq \bigcup_{E \in E_t} \left(\frac{T_k^+}{(k+1)/2} \right)} (-1)^{\#\mathcal{G}} \cdot \mu_S(\mathcal{G})(\hat{0}, \hat{1})
\]
\[
= \sum_{\mathcal{G} \subseteq \bigcup_{E \in E_t} \left(\frac{T_k^+}{(k+1)/2} \right)} (-1)^{\#\mathcal{G}} \cdot 2^{k-|\bigcup_{G \subseteq E} G|} \cdot \left(\frac{1}{2} |T| - \left| \bigcup_{G \subseteq E} G \right| \right) \cdot \left(k - \left| \bigcup_{G \subseteq E} G \right| \right). \tag{6.2}
\]

In particular, if for any family \(\mathcal{G} \subseteq \bigcup_{E \in E_t} \left(\frac{T_k^+}{(k+1)/2} \right) \) such that \(\bigcup_{G \subseteq E} G \) is free of opposites, \(\bigcup_{F \in \min \gamma_k(\mathcal{G})} F = E_t \) and \(|\bigcup_{G \subseteq E} G| \leq k \), it holds \(|\gamma_k(G)| = 1 \), for any set \(G \in \mathcal{G} \), then
\[
K_k^*(\mathcal{M}) = (-1)^t
\]
\[
\sum_{\mathcal{G} \subseteq \bigcup_{E \in E_t} \left(\frac{T_k^+}{(k+1)/2} \right)} (-1)^{\#\mathcal{G}} \cdot 2^{k-|\bigcup_{G \subseteq E} G|} \cdot \left(\frac{1}{2} |T| - \left| \bigcup_{G \subseteq E} G \right| \right) \cdot \left(k - \left| \bigcup_{G \subseteq E} G \right| \right). \tag{6.3}
\]

7. Relative Blocking in Principal Order Ideals of Binomial Posets

In this section we mention an analogue of formula (4.3) in the more general context of binomial posets.

Let \(P \) be a graded lattice of rank \(n \) which is a principal order ideal of some binomial poset. The factorial function \(B(k) \) of \(P \) counts the number of maximal chains in any interval of length \(k \) in \(P \). The number \(\left[\frac{j}{2} \right] \) of elements of rank \(i \) in an interval of length \(j \) in \(P \) is equal to \(\frac{B(j)}{B(2j)B(j-i)} \), see [11] §3.15.

Let \(\Lambda \) be a nontrivial antichain in the lattice \(P \). If \(r \) is a rational number, \(0 \leq r < 1 \), and \(k \) is a positive integer, then the set \(I_{r,k}(P, \Lambda) \) of relatively \(r \)-blocking elements, of rank \(k \), for the antichain \(\Lambda \) in \(P \), is defined as follows:
\[
I_{r,k}(P, \Lambda) := \{ b \in P : \rho(b) = k, \rho(b \wedge \lambda) > r \cdot k \quad \forall \lambda \in \Lambda \} \subseteq P^{(k)},
\]
where \(\rho(\cdot) \) is the rank function of \(P \), and \(P^{(k)} \) is the \(k \)th layer of \(P \).
Let $\mathcal{N}(A)$ be the abstract simplicial complex whose facets are the inclusion-maximal sets of indices $\{i_1, \ldots, i_j\}$ such that for the corresponding antichains $\{\lambda_{i_1}, \ldots, \lambda_{i_j}\} \subseteq A$ it holds $\lambda_{i_1} \land \cdots \land \lambda_{i_j} > 0$, where 0 is the least element of P. If the poset P is the Boolean lattice $\mathbb{B}(n)$ then the complex $\mathcal{N}(A)$ is the nerve of the corresponding Sperner family; see, e.g., [3, §10] on the topological combinatorics of the nerve.

Set $\nu(r \cdot k) := [r \cdot k] + 1$. Let
\[
\nu(r \cdot k) \colon P^{(\nu(r \cdot k))} \cap \mathcal{J}(A) \rightarrow \mathcal{N}(A),
\]
\[
d \mapsto \max \{ N \in \mathcal{N}(A) : d \leq \bigwedge_{i \in N} \lambda_i \}
\]
be the mapping that reflects an element d, of rank $\nu(r \cdot k)$, of the order ideal $\mathcal{J}(A)$ generated by the antichain A to the inclusion-maximum face of the complex $\mathcal{N}(A)$ with the property $d \leq \bigwedge_{i \in N} \lambda_i$.

Associate to a subset $D \subseteq P^{(\nu(r \cdot k))} \cap \mathcal{J}(A)$, such that $|\bigcup_{F \in \min c_{r,k}(D)} F| = |A|$, a poset $S(D)$ which is the family $\{\bigcup_{F \in \mathcal{F}} F : F \leq \min c_{r,k}(D), |\mathcal{F}| > 0\}$ ordered by inclusion, with a new least element 0 adjoined; here $\min c_{r,k}(D)$ denotes the subfamily of all inclusion-minimal sets from the image $c_{r,k}(D)$. Let $\mu_{S(D)}(0,1)$ denote the corresponding Möbius number, where 1 is the greatest element of $S(D)$.

Suppose that $\nu(r \cdot k) \leq \min_{\lambda \in A} \rho(\lambda)$. Since
\[
|I_{r,k}(P,A)| = \sum_{D \subseteq P^{(\nu(r \cdot k))} \cap \mathcal{J}(A) : |D| > 0} (-1)^{|D|}
\]
\[
\cdot \left(\sum_{C \subseteq A : \bigwedge_{D \subseteq \mathcal{J}(C)} \mu_{S(D)}(0,1) \cdot \left(\frac{n - \rho(\bigvee_{d \in D} d)}{n - k} \right) \right),
\]
by [10] (5.4), we have
\[
|I_{r,k}(P,A)| = \sum_{D \subseteq P^{(\nu(r \cdot k))} \cap \mathcal{J}(A) : 1 \leq |D| \leq \nu(r \cdot k), |\bigcup_{F \in \min c_{r,k}(D)} F| = |A|, \rho(\bigvee_{d \in D} d) \leq k} (-1)^{|D|} \cdot \mu_{S(D)}(0,1) \cdot \left(\frac{n - \rho(\bigvee_{d \in D} d)}{k - \rho(\bigvee_{d \in D} d)} \right).
\]

References

[1] M. Aigner, Combinatorial Theory, Classics in Mathematics, Reprint of the 1979 original, Springer-Verlag, Berlin, 1997.
[2] E. Bannai and T. Ito, Algebraic Combinatorics. I. Association Schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.
[3] A. Björner, Topological Methods, Chapter 34 in R. Graham, M. Grötschel and L. Lovász, editors, Handbook of Combinatorics. Vol. II, 1819–1872. Elsevier, Amsterdam, 1995.
A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, *Oriented Matroids*, Encyclopedia of Mathematics, 46, Cambridge University Press, Cambridge, 1993. Second edition 1999.

P.H. Edelman, V. Reiner and V. Welker, *Convex, Acyclic, and Free Sets of an Oriented Matroid*, Geometric Combinatorics (San Francisco, CA/Davis, CA, 2000), Discrete Comput. Geom., 27 (2002), no. 1, 99–116.

A.O. Matveev, *Pattern Recognition on Oriented Matroids: Layers of Tope Committees*, arXiv:math/0612369.

A.O. Matveev, *Pattern Recognition on Oriented Matroids: The Existence of a Tope Committee*, arXiv:math.CO/0607570.

A.O. Matveev, *Pattern Recognition on Oriented Matroids: Three-Tope Committees*, arXiv:0812.0156.

A.O. Matveev, *Pattern Recognition on Oriented Matroids: κ'-Vectors and Reorientations*, arXiv:1010.1836.

A.O. Matveev, *Relative Blocking in Posets*, J. Comb. Optim. 13 (2007), no 4, 379-403. Corrigendum: arXiv:math.CO/0411026.

R.P. Stanley, *Enumerative Combinatorics. Vol. 1*, Corrected reprint of the 1986 original. Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997.

E-mail address: andrey.o.matveev@gmail.com