Simultaneous infections by different *Salmonella* strains in mesenteric lymph nodes of finishing pigs

Victoria Garrido¹, Samanta Sánchez¹, Beatriz San Román¹, Ana Zabalza-Baranguá¹, Yasmin Díaz-Tendero², Cristina de Frutos², Raúl-Carlos Mainar-Jaime³ and María-Jesús Grilló¹*

Abstract

Background: Salmonellosis is a major worldwide zoonosis, and *Salmonella*-infected finishing pigs are considered one of the major sources of human infections in developed countries. Baseline studies on salmonellosis prevalence in fattening pigs in Europe are based on direct pathogen isolation from mesenteric lymph nodes (MLN). This procedure is considered the most reliable for diagnosing salmonellosis in apparently healthy pigs. The presence of simultaneous infections by different *Salmonella* strains in the same animal has never been reported and could have important epidemiological implications.

Results: Fourteen finishing pigs belonging to 14 farms that showed high salmonellosis prevalence and a variety of circulating *Salmonella* strains, were found infected by *Salmonella* spp, and 7 of them were simultaneously infected with strains of 2 or 3 different serotypes. Typhimurium isolates showing resistance to several antimicrobials and carrying mobile integrons were the most frequently identified in the colonized MLN. Four animals were found infected by *Salmonella* spp. of a single serotype (Rissen or Derby) but showing 2 or 3 different antimicrobial resistance profiles, without evidence of mobile genetic element exchange *in vivo*.

Conclusion: This is the first report clearly demonstrating that pigs naturally infected by *Salmonella* may harbour different *Salmonella* strains simultaneously. This may have implications in the interpretation of results from baseline studies, and also help to better understand human salmonellosis outbreaks and the horizontal transmission of antimicrobial resistance genes.

Keywords: *Salmonella*, Multiple infections, Pigs, Serotypes, Antimicrobial resistance

Background

Acute gastroenteritis caused by *Salmonella* spp. represents a Public Health concern because of its high welfare and socio-economical impact in developed countries [1,2]. In the USA, salmonellosis is the main cause of foodborne illness with 1,027,561 human cases of non-typhoidal salmonellosis in 2011, of which a total of 19,336 (1.9%) required hospitalization and 378 (1.95%) had a fatal outcome [1]. In the European Union (EU), salmonellosis is, after campylobacteriosis, the most common zoonosis, registering a total of 95,548 human cases in 2011 [3].

Besides laying hens and poultry, asymptomatically *Salmonella*-infected pigs are a major source of human salmonellosis [4-6], by intermittently shedding the pathogen in their faeces and thus contaminating pork and products thereof. However, faecal excretion is not necessarily indicative of a true infection of the animal. In fact, after being ingested, *Salmonella* may be present in faecal samples and pass through the pig gut lumen without invading the enterocytes. To cause active infection, *Salmonella* should invade the enterocyte barrier and reach the local lymphoid system [7]. Accordingly, the proper diagnosis of this infection in pigs requires the identification of this pathogen in the mesenteric lymph nodes (MLN). Thus, EU reference studies in finishing pigs have been based on the detection of *Salmonella* spp. in MLN at slaughter.

Pigs are considered susceptible to most of *Salmonella* serotypes and, although Typhimurium is the most common, a large variety of other serotypes are also reported in surveillance studies at farm level [5-8]. However, the presence of multiple infections in MLN of a single animal, although suggested, has never been confirmed.

* Correspondence: mariajesus.grillo@unavarra.es
1Animal Health, Instituto de Agrobiotecnología (CSIC-UPNA-Gobierno de Navarra), Pamplona, Spain
Full list of author information is available at the end of the article

© 2014 Garrido et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
An additional challenge for human health is the emergence of multi-antimicrobial resistant (AR) Salmonella strains and the subsequent spread of the AR clones [9]. Pigs and other domestic species are recognized as a primary reservoir of multi-AR bacteria, usually associated with the selective pressure exerted by antimicrobial treatments [10]. The emergence and spread of multi-AR Salmonella are often related to both the acquisition and the fixation of bacterial mobile genetic elements such as plasmids, transposons or integrons [11]. Five classes of integrons carrying antibiotic resistance gene cassettes have been reported so far [12]. Class 1 Integrons (IC1) are the most prevalent in the Enterobacteriaceae family, containing different AR gene cassettes (e.g. pse1 and aadA2, characteristic of Typhimurium phage-type DT104) that can be located either extrachromosomally or integrated in the Salmonella Genomic Island 1 (SGI1) [13]. Coexistence in the same animal of Salmonella strains showing different AR genes has been postulated to support the horizontal AR genetic exchange.

The aim of the present study was to ascertain whether different Salmonella serotypes and/or strains can be simultaneously isolated from the same animal.

Methods

Experimental design, Salmonella spp. isolation and serotyping

A total of 14 fattening pig farms identified previously [8] with high herd Salmonella-prevalence and showing multiple circulating strain types (serotypes and/or AR profiles) were selected for this study. One pig from each farm was randomly selected at the slaughter line in the abattoir. Animal handling and slaughtering procedures were performed according to the current national legislation (Law 32/2007, for animal care on holdings, transportation, testing and slaughtering). The whole intestinal package was removed from the selected carcasses at the evisceration point of the slaughter line, and MLN samples (25 grams from at least 5 MLN) were collected in a sterile plastic bag (Stomacher® 80, Seward Medical), transported at 4°C to the laboratory and immediately processed for Salmonella isolation. Isolation procedures were performed according to ISO 6579:2002/Amd 1:2007 rules [14], as described previously [8]. After selective growth (37°C, 24 h) on Xylose Lysine Deoxycholate Agar (XLD) and Brilliant Green Agar (BGA) plates, 10 presumptive Salmonella spp. colonies from each MLN sample were transferred from selective plates to agar, then tested biochemically (triple sugar iron, urease agar, indole reaction and L-lysine decarboxylation tests) and further confirmed by serotyping at the National Reference Laboratory Centre for Animal Salmonellosis (Madrid, Spain), following the Kauffmann-White Scheme [15].

Antimicrobial resistance

A total of 140 Salmonella colonies were tested by the Kirby-Bauer disk diffusion method [16] using the antimicrobials and concentrations recommended by the current EU legislation for harmonized monitoring of antimicrobial resistance of Salmonella in poultry and pigs [17], namely, Ampicillin and Amoxicillin plus Clavulanic acid (A), Chloramphenicol (C), Streptomycin (S), Gentamicin, Sulfisoxazole and Trimethoprim plus Sulfamethoxazole (Su), Tetracycline (T), Nalidixic acid (Nx), Enrofloxacin, and Cefotaxime (BD Diagnostics). E coli strain ATCC 25922, and serovar Typhimurium strains ATCC 14028 and DT104 were used as controls. Antimicrobial susceptibility was determined by measuring the inhibition halo generated after incubation (37°C, 24 h). Strains were classified as resistant or susceptible, according to the Clinical and Laboratory Standard Institute (CLSI) recommendations [18].

The presence of IC1 was analysed by PCR using the primers 5′CS-3′CS described previously [19], and the resulting amplicons were purified with a commercial kit (ATP), cloned in pGEM-T (Promega), and then sequenced (Secugen). DNA sequences were analysed by ExPASy protein translation (SIB Bioinformatics Resource Portal) followed by Protein Basic Local Alignment Search Tool (BLASTp, NCBI) analysis. The presence of SGI1 was also determined by PCR using U7-L12 and Lj-R1 primers specific for SGI1 left junction amplification [13].

Pulsed-Field Gel Electrophoresis (PFGE)

To identify simultaneous infections by different Salmonella strains in a pig, the strains isolated from each animal showing identical phenotypic (i.e. serotype and AR) and AR genotypic (i.e. IC1 and SGI1) characteristics, were analysed by PFGE, following the Pulse-Net protocol described by the Centre for Disease Control and Prevention [20]. Briefly, the agarose plugs containing DNA were digested with 30 U XbaI (New England Biolabs). DNA fragments were separated (14°C, 18 h, 200 V) in 1% agarose gels with 0.5X Tris borate EDTA buffer, using a Cheff-DR II System (BioRad), and DNA was stained with 5% aqueous ethidium bromide solution. Lambda Ladder (BioRad) was used as molecular weight marker, and the DNA obtained from serotype Braenderup was used as control. Salmonella strains showing less than 95% PFGE profile similarity were considered as different.

Results

Eight different serotypes were identified among the 140 Salmonella strains obtained. As shown in Table 1, serotypes Typhimurium, Rissen, Derby, and Kapamba were the most frequently isolated (46, 31, 20, and 16 strains, respectively) and widely distributed (in 8, 4, 2, and 3 animals, respectively). Fifty per cent of the pigs analysed (codes 1-7, Table 1) were found infected simultaneously by different
Salmonella strains, since 2 or 3 different serotypes were identified in each pig. Typhimurium was the serotype most frequently isolated (6 out 7) in these 7 pigs. Interestingly, serovar Kapemba was always found simultaneously with Typhimurium. The remaining 7 pigs were found infected with a single serotype.

Regarding phenotypic AR characteristics, pigs were infected with at least one multi-AR strain, and a total of 12 different AR profiles were identified (Table 1). The AR profile most frequently identified (46 strains) was ACSSuT, with or without additional resistance to Nx (Table 1). Ge- notypically, strains showing 3 types of IC1 were identified in 12 pigs (85.7%), showing amplicons of either 1000 bp (21 strains from 4 pigs), 2000 bp (64 strains from 9 pigs), or a double band of 1000 bp and 1200 bp each (18 strains from 2 pigs) (Table 1). These IC1 were absent in the 4 strains found susceptible to all antimicrobials as well as in the other 33 strains showing AR to one (aminopenicillins or tetracyclines) or several (SSu, SSuT or ACST) agents.

Amplicon sequencing allowed the identification of IC1 carrying 4 different AR gene cassettes: (i) blaOXA30-aadA1 contained in 2000 bp amplicons of Typhimurium strains; (ii) drfA2-aadA2 contained in 2000 bp amplicons of Goldcoast, Rissen and Bredeney; (iii) aadA1 contained in 1000 bp amplicons of Kapemba and Derby; and (iv) aadA2-pse1 contained in 1000 plus 1200 bp amplicons (Table 1). This latter IC1 was found only in Typhimurium strains, and associated with the ACSSuT penta-AR profile and the presence of SGI1. Accordingly, these strains showed the characteristicsof the DT104 phage-type. The remaining 28 Typhimurium strains (from 6 pigs) also showed the ACSSuT penta-AR profile but only the 2000 bp blaOXA30-aadA1 IC1 amplicon not associated with SGI1 was amplified (Table 1). Similarly, the 16 Kapemba strains (found in 3 pigs) were resistant to CSSuT and carried a single 1000 bp IC1 containing the aadA1 AR gene (animal codes 1-3, Table 1). Interestingly, in 4 out of the 7 pigs infected with a unique Salmonella serotype (animal codes 8-
11, Table 1), 2 or 3 different AR profiles were identified, regardless of the presence/absence and size/sequence of IC1 amplicons. This clearly indicates also the presence of different Salmonella strains infecting the same animal.

The remaining 3 pigs (animal codes 12-14, Table 1) were infected by a unique and homogeneous Salmonella strain, as confirmed by PFGE. Overall, 11 out of the 14 pigs studied were infected simultaneously by at least 2 different Salmonella strains.

Discussion

To the best of our knowledge, this is the first report in pigs demonstrating that the same animal may be naturally infected by multiple Salmonella strains. For this, a thorough microbiological analysis of MLN was carried out in a limited number of animals belonging to farms with high salmonellosis prevalence and where multiple circulating Salmonella strain types were previously identified. Although it was not the objective of this study, our results suggest that Salmonella co-infections may be quite common in pig herds with multiple Salmonella circulating strains.

The existence of multiple infections in the same animal suggests that pigs can be either infected simultaneously during a brief period either through one or multiple sources (i.e. food, water, environment, etc.) or re-infected along the different stages of their productive life (i.e. postweaning, growing, and finishing periods). The possibility of re-infection has been previously proposed in sows from which different Salmonella serotypes were isolated from faecal samples collected at different time points [21]. Nevertheless, the presence of the pathogen in faeces does not necessarily mean an active infection, as Salmonella can circulate passively through the animal’s gut lumen. Faecal culture results should be interpreted with caution since these samples can also be easily cross-contaminated during collection. In our study, however, the presence of Salmonella in MLN would reflect a true infection. In the present study, the possibility of MLN cross-contamination was very limited because (i) sampling was performed at different dates; (ii) we used single-use gloves and clothes, liquid disinfectant (DD445, A&B Laboratorios de Biotecnología) and sterilized instruments each time; (iii) MLN samples were individually collected in sterile plastic bags; and (iv) once in the laboratory, MLN samples were defatted and externally decontaminated through alcohol immersion and flaming, as recommended by the ISO method [8]. Thus, our results demonstrate the presence of active multiple infections as different Salmonella strains were isolated from MLN tissue, which could be colonised only after active enterocyte invasion [5].

Typhimurium and Rissen were the most prevalent Salmonella serotypes identified, which is in agreement with the findings of a large study performed previously in the same pig population [8]. It is worth to note that Kapemba was also found in a relative high frequency (11.4%) but always accompanied by Typhimurium. In contrast, Kapemba was rarely isolated at both individual (1.8%) and herd (3.7%) levels in the previous large study [8], and also in the baseline study carried out in the EU [5]. Such differences could be due to the different identification strategy used in these studies, since serotyping was performed exclusively on one colony from each animal in these large-scale studies.

For epidemiological purposes, the international standards recommend confirming the presence of Salmonella by typing one (up to 5) colony per sample [14]. Although this microbiological approach may be useful to confirm infection, it could easily overlook the presence of the less predominant strains, since the more prevalent ones appear to be always present in MLN co-infections (Table 1). Therefore, epidemiological studies based on the serotyping of a single bacterial colony, such as those focused on the eradication of specific serotypes (i.e. national control programmes against major zoonotic Salmonella serotypes) may be overrepresenting the prevalent strains and underestimating other potentially pathogenic but less predominant serotypes. Likewise, outbreak investigations would require the analysis of several colonies from the same animal to identify the main source of infection. Systematic screening of multiple colonies from individual pig samples could contribute to the trace back of many Salmonella outbreaks origin in humans [22].

The coexistence of Salmonella strains with different multi-AR profiles within the same pig as primary reservoir may have important epidemiological consequences. This can promote exchange and propagation of mobile genetic elements between bacterial strains that share the same biological niche in vivo. In this study, co-infections by Salmonella strains showing different AR profiles were relatively frequent, regardless of the serotype. In fact, most of animals studied (11 out 14) were simultaneously infected by strains showing 2 or 3 different AR profiles. The finding that pigs with co-infections showed different AR profiles against common antimicrobial agents suggested that genetic exchange could be taking place within the same animal, generating a genetic variability in Salmonella. Horizontal transfer of AR genes or IC1 was not observed in three animals (animal codes 3, 7 and 8, Table 1) harbouring both susceptible and multi-AR strains, but genetic exchanges could not be excluded in these animals [23].

SGH1 was detected only in Typhimurium strains from two animals (animal codes 6 and 12, Table 1) containing also the characteristic IC1 1000-1200 bp double band with the double ada2-psel gene cassette, and the typical penta-AR (ACCSuT or ACSSuTNx) of DT104 phagetype [13]. The widespread dissemination of Typhimurium DT104 clone was particularly relevant since it was first...
isolated in the early 80’s in UK cattle and subsequently reported worldwide in a wide variety of animal species including pigs, animal foodstuff, and humans [24,25]. Similarly, other emergent variants, such as the monophasic variant of Typhimurium DT193 phage type carrying the multi-AR ASSuT [26] have been detected, and epidemiological surveillance is therefore recommended [27].

IC1 genotypes are the most frequent carriers of AR genes in Salmonellae, but these genes could also be present in other integrons [28,29]. In fact, IC1 was not detected in some strains resistant to one (aminopenicillins or tetracycline) or more (SSu, SSuT or ACST) antimicrobial agents. However, a quick detection of AR strains is critical for a successful treatment in human beings. Thus, the IC1 PCR analysis of several Salmonella colonies from a Salmonella-positive sample should be considered as a suitable (quick, easy, low cost, and effective) screening approach for detecting multi-AR genetic mobile elements.

The presence of simultaneous infections by Salmonella strains of different serotype, serogroup and AR profiles could also have immunological implications on the host-pathogen interaction. Thus, if infections occur over time, our results may suggest a limited Genus-, serogroup- and species-specific protection of pigs after a primary Salmonella infection, but further studies are needed for a better understanding of the host-pathogen interactions. The existence of co-infections in a single animal and within the same herd may assist in the development of effective vaccines, therapeutics and control programmes against pig salmonellosis.

Conclusions
This study demonstrates the presence of simultaneous infections by different Salmonella strains in asymptomatic pigs. Systematic screening for multiple strains from individual MLN samples is a time-consuming strategy not routinely applied in laboratory protocols but essential to understanding both the pathogenesis and epidemiology of Salmonella infections in pigs. It may also be useful to trace back the origin of salmonellosis outbreaks in humans. Further studies in larger pig populations should be carried out to confirm that Salmonella co-infections are a common event in swine.

Competing interest
The authors declare that they have no competing interests.

Authors’ contributions
All authors participated in the draft of the manuscript. Moreover, VG, BSR, SS and AZB carried out the sampling collection in slaughterhouses, microbiological isolation, biochemical identification, antimicrobial resistance characterization, and PFGE studies; YDT and CDF carried out the serotyping; ROMU participated in the design of the study and discussion of results; and MIG conceived, designed, and coordinated the study, and wrote the final manuscript. All authors read and approved the final manuscript.

Acknowledgements
The work was financed by Gobierno de Navarra (project reference IQ14064RI1) and INIA (project reference RTA2007-63). Contracts were funded by UPNA (VG postdoctoral contract, and AZB predoctoral fellowship), EMUNDUS18 program (SS) and CSIC in collaboration with the European Social Fund (BSR “Programa IAE-Doc” contract). English support provided by Dr. Beatriz Amorena and Dr. José María Blasco is acknowledged.

Author details
1Animal Health, Instituto de Agrobiotecnología (CSIC-UPNA-Gobierno de Navarra), Pamplona, Spain. 2Central Veterinary Laboratory, MAGRAMA, Madrid, Spain. 3Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.

Received: 24 August 2013 Accepted: 3 March 2014 Published: 7 March 2014

References
1. Davies PR, Scott Hurd H, Funk JA, Fedorka-Cray PJ, Jones FT: The role of contaminated feed in the epidemiology and control of Salmonella enterica in pork production. Foodborne Pathog Dis 2004, 1:202–215.
2. EFSA: The community summary report on trends and sources of zoonoses. Zoonotic agents and food-borne outbreaks in European Union in 2008. EFSA J 2010, 1496:19–102.
3. EFSA-ECDC: The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in 2011. EFSA J 2013, 11:3196.
4. Pires SM, de Kreft L, Hald T: Estimation of the relative contribution of different food and animal sources to human Salmonella infections in the European Union. Scientific/Technical Report submitted to EFSA. 2011, EFSA-Q-2010-00685.
5. EFSA: Report of the task force on zoonoses data collection on the analysis of the baseline survey on the prevalence of Salmonella in slaughter pigs. Part A. EFSA J 2008, 135:1–111.
6. Mandisier G, Lambiri M, Polermi M, Passioutou M, Vatopoulos A: Phenotypic and molecular characterisation of multiresistant monophonic Salmonella Typhimurium (1,4,5,12:i:-) in Greece, 2006 to 2011. Euro Surveill 2013, 18:20496.
7. Berends BR, Urlings HA, Snijders JM, Van Knapen F: Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. Int J Food Microbiol 1996, 30:57–53.
8. Vico JP, Rol I, Gamdo V, San Roman B, Grilli MJ, Manar-Jarne RC: Salmonellosis in finishing pigs in Spain: prevalence, antimicrobial agent susceptibilities, and risk factor analysis. J Food Prot 2011, 74:1070–1078.
9. Van Duijkeren E, Wannet W, Houwers DJ, Van Pelt W: Salmonella enterica in pork production. J Bacteriol 2005, 187:2251–2256.
10. Wedel SD, Bender JB, Leano FT, Boxrud DJ, Hedberg C, Smith KE: Multidrug-resistance characteristics of Salmonella Typhimurium, Minnesota, 1997-2003. Emerg Infect Dis 2005, 11:1899–1906.
11. Carattoli A: Importance of integrons in the diffusion of resistance. Vet Res 2003, 34:243–259.
12. Collins CM, Kim MJ, Parmidige SR, Stokes HW, Hall RM: Characterization of the Class 3 integron and the site-specific recombinase system it determines. J Bacteriol 2002, 184:3017–3026.
13. Boyd DA, Peters GA, Ng L, Mulvey MR: Partial characterization of a genomic island associated with the multidrug resistance region of Salmonella enterica Typhimurium DT104. FEMS Microbiol Lett 2000, 189:205–209.
14. ISD: International Organisation for Standardisation 6579:2002/DAM 1:2007. Microbiology of Food and Animal Feeding Stuffs, Horizontal Method for the Detection of Salmonella spp. Annex D: Detection of Salmonella spp. in Animal Feaces and in Samples from the Primary Production Stage. Geneva, Switzerland, 2007.
15. Grimont PA, Weill FX: Antigenic formulae of the Salmonella serovars. Institute Pasteur and World Health Organisation; 2007.
16. Murray PR, Baron EJ, Jorgensen JH, Phaller MA, Yolken RH: Manual of Clinical Microbiology. Washington, DC: ASM, Press; 2003.
17. DOUE: Commission Decision of 12 June 2007 on a Harmonised monitoring of antimicrobial resistance in Salmonella in poultry and pigs, 2007/407/EC. Belgium: Official Journal of the European Union Brussels, 2007.
18. CLSI. Approved standard M2-A7 in performance standards for antimicrobial disk susceptibility tests. Wayne, Pa, USA; 2005.

19. Levesque C, Piche L, Larose C, Roy PH: PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 1995, 39:188–191.

20. Ribot EM, Fair MA, Gautorn R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ: Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 2006, 3:59–67.

21. Nollet N, Houf K, Dewulf J, De Kruif A, De Zutter L, Maes D: Salmonella in sows: a longitudinal study in farrow-to-finish pig herds. Vet Res 2005, 36:645–656.

22. CDC: Multiple-serotype Salmonella gastroenteritis outbreak after a reception Connecticut, 2009. MMWR Morb Mortal Wkly Rep 2010, 59:1093–1097.

23. Brewer MT, Xiong N, Anderson KL, Carlson SA: Effects of subtherapeutic concentrations of antimicrobials on gene acquisition events in Yersinia, Proteus, Shigella, and Salmonella recipient organisms in isolated ligated intestinal loops of swine. Am J Vet Res 2013, 74:1078–1083.

24. Besser TE, Goldoft M, Pritchett LC, Khakhria R, Hancock DD, Rice DH, Gay JM, Johnson W, Gay IM: Multiresistant Salmonella Typhimurium DT104 infections of humans and domestic animals in the Pacific Northwest of the United States. Epidemiol Infect 2000, 124:193–200.

25. Helms M, Ethelberg S, Molbak K: International Salmonella Typhimurium DT104 infections, 1992–2001. Emerg Infect Dis 2005, 11:859–867.

26. Antunes P, Mourao J, Pestana N, Peixe L: Leakage of emerging clinically relevant multidrug-resistant Salmonella clones from pig farms. J Antimicrob Chemother 2011, 66:2028–2032.

27. EFSA: Analysis of the baseline survey on the prevalence of Salmonella in holdings with breeding pigs in the EU, 2008. Part A: Salmonella prevalence estimates. EFSA J 2009, 7:93.

28. Carattoli A, Bertins A, Wits L, Falbo V, Hopkins KL, Thrall EJ: Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005, 63:219–228.

29. Guerra B, Junker E, Miko A, Helmuth R, Mendoza MC: Characterization and localization of drug resistance determinants in multidrug-resistant, integron-carrying Salmonella enterica serotype Typhimurium strains. Microb Drug Resist 2004, 10:83–91.

doi:10.1186/1746-6148-10-59
Cite this article as: Garrido et al.: Simultaneous infections by different Salmonella strains in mesenteric lymph nodes of finishing pigs. BMC Veterinary Research 2014 10:59.