Metagenomic reconstruction of nitrogen and carbon cycling pathways in forest soil:

Influence by different hardwood tree species

Charlene N. Kellya, Geoffrey W. Schwanerb, Jonathan R. Cummingc, Timothy P. Driscollc,#

Author Affiliations

aDivision of Forestry and Natural Resources, West Virginia University, Morgantown, West Virginia, USA.

bNational Ecological Observation Network, Aquatics, NEON Domain 07, Oak Ridge, Tennessee, USA.

cDepartment of Biology, West Virginia University, Morgantown, West Virginia, USA.

#Correspondence to: Timothy Driscoll, timothy.driscoll@mail.wvu.edu

Running title: Tree species influences on soil metagenome
Abstract

The soil microbiome plays an essential role in processing and storage of nitrogen (N) and carbon (C), and is influenced by vegetation above-ground through imparted differences in chemistry, structure, mass of plant litter, root physiology, and dominant mycorrhizal associations. We used shotgun metagenomic sequencing and bioinformatic analysis to quantify the abundance and distribution of gene families involved in soil microbial N and C cycling beneath three deciduous hardwood tree species: ectomycorrhizal (ECM)-associated Quercus rubra (red oak), ECM-associated Castanea dentata (American chestnut), and arbuscular mycorrhizal (AM)-associated Prunus serotina (black cherry). Chestnut exhibited the most distinct soil microbiome of the three species, both functionally and taxonomically, with a general suppression of functional genes in the nitrification, denitrification, and nitrate reduction pathways. These changes were related to low inorganic N availability in chestnut stands as soil was modified by poor, low-N litter quality relative to red oak and black cherry soils.

IMPORTANCE Previous studies have used field biogeochemical process rates, isotopic tracing, and targeted gene abundance measurements to study the influence of tree species on ecosystem N and C dynamics. However, these approaches do not enable a comprehensive systems-level understanding of the relationship between microbial diversity and metabolism of N and C below-ground. We analyzed microbial metagenomes from soils beneath red oak, American chestnut, and black cherry stands and showed that tree species can mediate the abundance of key microbial genes involved in N and (to a lesser extent) C metabolism pathways in soil. Our results highlight the genetic framework underlying tree species’ control over soil microbial communities, and below-ground C and N metabolism, and may enable land managers to select tree species to maximize C and N storage in soils.
Introduction

Soil communities established among roots, mycorrhizal fungi, and a diverse assemblage of microbiota — the soil microbiome — play pivotal roles in the capture, processing, and storage of environmental nitrogen (N) and carbon (C). The size, structure, and function of these communities are affected by changes in the dominant above-ground tree species (1), which influence the pools of available N and C through (a) alterations in the chemical composition of leaf litter (2–4), (b) alterations in the composition of root litter and exudates (5, 6), and (c) the introduction of different mycorrhizal species (7–9). These changes, in turn, can have a significant impact on overall forest productivity (10–12).

One important component of forest productivity is the influence of tree species on below-ground N cycling. Controls on N cycling play a large role in the C budget of ecosystems (12, 13) by influencing C storage both above- and below-ground (14, 15). Different tree species have been associated with divergent rates of ecosystem N cycling and loss (5, 16, 17), and such effects may be mediated by the formation of specific mycorrhizal fungal relationships below-ground (9, 12).

For example, soils beneath arbuscular mycorrhizal (AM)-associated species such as maple (Acer spp.), yellow poplar (Liriodendron tulipifera), and black cherry (Prunus serotina) exhibit increased N mineralization rates and availability of inorganic N relative to soils beneath ectomycorrhizal (ECM)-associated species such as oak (Quercus spp.) and spruce (Picea spp.) (18, 19). Changes to N cycling and availability may also arise from differences in soil microbial substrate quality, which has been shown to influence net NO₃-N production (18).

In some cases, high N availability can lead to a reduced richness and diversity of microbial genes that encode enzymes used to degrade recalcitrant C, leading to an increase in C storage in
litter and surface soils (20–22). In other cases, it may lead to greater microbial biomass and byproducts, increasing C storage via protected organo-mineral interactions on clay minerals particularly in subsurface soil (9, 23). These and related processes lead to substantial differences in soil C stocks beneath different tree species; in hardwood systems, these differences can range from minimal to up to 80-ton ha\(^{-1}\) when accounting for total C in soil and biomass (14, 24).

Although it is not evident how changes in dominant tree species contribute to long-term N retention and soil organic matter (SOM) storage, it is clear that changes in dominant above-ground vegetation lead to changes in soil nutrient cycling and C storage through their complex influence on the soil microbial community. Consequently, a systems-level understanding of soil microbiome functional capacity is necessary to fully appreciate the impact of above-ground species shifts that arise in response to ecosystem disruptions such as climate change, harvest, management influences, or species diversity loss via disease (14).

Soil microbial communities contribute to the global N cycle through a collection of interconnected biochemical pathways (25–28), including N mineralization, immobilization, and oxidation-reduction reactions, that interconvert between different species of N (Fig. 1). Historically, microbial N cycling has been estimated by measuring biogeochemical process rates of microbial N transformation and/or plant uptake of NO\(_3^-\), NH\(_4^+\), and organic N (29, 30). More recent studies have used quantitative polymerase chain reaction (qPCR) to measure the abundance of key functional genes involved in N cycling (28), including *amoA* (nitrification) (31, 32), *narG* (nitrate reduction) (33), *nirK* and *nirS* (nitrite reduction) (34), *norB* (NO reduction) (35), *nosZ* (N\(_2\O\) reduction) (36), and *nifH* (N\(_2\) fixation) (37). A growing body of evidence supports functional gene abundance as a useful index for predicting biogeochemical rates, particularly when applied to N process rates (33, 38–40).
In addition to N cycling, microbial communities also play an important role in soil C dynamics and storage (41) through their varied roles as scavengers, detritivores, plant symbionts, and pathogens. Differences in the functional roles of microbes determine nutrient availability, organic matter turnover, and ultimate C retention in soil (42–44) through differences in production of various extracellular enzymes used in C and nutrient scavenging and acquisition. There are few studies that have investigated the link between soil microbial genomic structure and the C cycle, although one such study (44) reported a strong relationship between functional genes or exoenzymes (including acetylglucosaminidase, amylase, and xylanase) and corresponding enzyme activities related to C degradation (N-acetyl-β-D-glucosaminide, α-D-glucopyranoside, and β-D-xylopyranoside, respectively).

The characterization of functional genes in complex ecosystems traditionally has relied on primers to amplify and quantify selected gene targets. These approaches have yielded important insights; however, they do not provide a comprehensive view of microbial genetic capacity, nor are such studies able to assess the contribution of novel or uncultured species in ecosystem functioning. Recent advances in high-throughput DNA-based methods (e.g., metagenomics) have enabled the unbiased interrogation of entire soil microbial communities and have been applied to the functional characterization of soil microbiota in complex ecosystems, particularly in response to changing conditions such as elevated CO₂ (28). However, we know of no studies that have leveraged metagenomics to assess the effect of above-ground tree species on the functional profiles of below-ground microbial communities.

In the present study, we used shotgun metagenomic sequencing to quantify the abundance of gene families involved in soil microbial N and C cycling beneath replicated plots of three deciduous hardwood tree species: ECM-associated *Quercus rubra* (red oak), ECM-associated
Castanea dentata (American chestnut), and AM-associated Prunus serotina (black cherry). We hypothesized that gene abundance related to nitrification and denitrification in particular would be elevated in soil beneath cherry, due to its AM association and high N mineralization, and that these same genes would occur in lesser abundance in soil beneath chestnut, due to its ECM association and low N mineralization.

Methods

Study design

This study was conducted at Purdue University’s Martell Research Forest in West Lafayette, Indiana, USA (40° 26’ 42” N, 87° 01’ 47” W). This 2.4-hectare (ha) plantation of pure, non-hybrid northern red oak, American chestnut, and black cherry was planted in 2007 to study chestnut growth dynamics (45). Prior to 2007, plots were maintained in corn production. The plantation is comprised of seven species compositions: three pure stands (one for each species), three mixed stands of all species pair combinations, and a single mixed stand containing all three species. The present study was restricted to soil from pure stands of the three species, with tree spacing regimes of 1×1 meter (10,000 stems ha⁻¹, 5×5 meter plot size) and 2×2 meter (2,500 stems ha⁻¹, 10×10 meter plot size) spacing, resulting in eight plots comprising an experimental block, and replicated three times at the site (3 species, 2 densities, 3 replications; N = 18 plots). At the time of soil collection, trees were 10 years old. Mean tree diameter at breast height (DBH) was 7.10, 8.23, and 8.36 centimeters, and mean tree height was, 6.53, 6.49, and 4.46 meters for oak, chestnut, and cherry, respectively, across all plots. Plots were typically under closed canopy and all soil samples were collected beneath live, healthy trees within each plot.
Sampled soils are the Rockfield series: mildly acidic to nearly neutral, mainly silt loams with a clay content of approximately 20–32% (Soil Survey Staff), moderately productive, deep, and formed from silty outwash and loamy till. Soil profiles were similar at all three blocks, showing a 2–5 cm Ap-horizon (agriculturally disturbed), weak Bt-horizon development, and no significant surface organic O-horizon development. There were no measurable differences in current total soil C content, N content, or soil pH between species or spacing treatments, as analyzed by horizon (Ap, Bt1, Bt2) in 2017. Mean soil C across the plots was 5866 kg ha\(^{-1}\) and soil pH in the Ap-horizon was 5.76. From 1981–2010, mean annual temperature was 10.4\(^{\circ}\) C and mean annual precipitation was 970 mm (National Climatic Data Center 2018).

DNA extraction

Soil samples were collected in June 2017 with each sample compositied from four soil cores (0–15 cm) from each plot. Soils were transported on ice to the laboratory, immediately sieved to 2 mm, and stored at –80\(^{\circ}\) C. DNA was extracted using the DNeasy PowerSoil kit (Qiagen) with the following modifications: 0.5 g of soil was suspended in 500 µl of DNeasy PowerSoil lysis buffer, 250 µl of 0.2 mm stainless steel beads, and five 3.2-mm stainless steel beads, then homogenized for 5 minutes using a Bullet Blender tissue homogenizer (NextAdvance), centrifuged at 12,000 rpm for 8 minutes, and the supernatant used for DNA extraction. DNA was quantified by fluorimetry (Qubit 3.0, Invitrogen) and assessed for quality using a Nanodrop spectrophotometer (Thermo Scientific).

Metagenome sequencing and bioinformatic analysis

Approximately 500 ng of DNA from each sample (n=18) was submitted to the Department of Energy’s Joint Genome Institute (JGI) for metagenome sequencing, contig assembly, annotation, and gene copy number determination as described previously (46). Processed data were deposited
in the Integrated Microbial Genomes/Microbiomes (IMG/M) database (Table S1). Functional
gene abundance values for each metagenome were calculated as copies per 10^6 total protein coding
sequences (CDS) to allow for comparison across metagenomes of different sizes, and averaged
across replicate samples. Gene families involved in N and C cycling were identified using a
combination of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Enzyme
Classification (EC) identifiers. Statistical significance of differences in gene abundance between
metagenomes was assessed with one-way analysis of variance (ANOVA) and Tukey multiple
comparisons of means, following Shapiro-Wilk test for normality, using SAS JMP version 11.0.0
(SAS Institute, Cary, NC). Microbial diversity was assessed using total CDS assigned across 95
taxonomic classifications in IMG/M and normalized to 10^6 total metagenome CDS as described
for functional gene analysis. Overall differences between microbial communities under different
tree species were analyzed using principal components analysis (PCA) at the level of taxonomic
superkingdom (archaea, bacteria, eukaryota, and virus) using the prcomp method in R v3.5.1.

Results
Here we present our results in the context of microbial gene families that comprise seven N
cycle pathways (28): nitrification, denitrification, assimilatory nitrate reduction (ANRA),
dissimilatory nitrate reduction (DNRA), anerobic ammonium oxidation (anammox), N_2
fixation, and organic N metabolism (Fig. 1). We additionally report abundance data for nitrate and
nitrite transport genes, C metabolism genes, and twelve genes involved in stress responses. The
KEGG and EC numbers used to identify these gene families are shown in Table S6.

Nitrogen cycle pathways
Overall, soils beneath chestnut showed significantly reduced denitrification and DNRA gene abundances compared to both oak and cherry. Mean abundance of nitrification genes was very low (<1 copy/10^6 CDS) regardless of tree species, and no genes involved in anammox were identified in any sample. Genes involved in N\textsubscript{2} fixation were also low in all soils regardless of tree species.

Nitrification. The conversion of NH\textsubscript{4}+ to NO\textsubscript{3}- proceeds via three oxidation steps catalyzed by the products of amo\textit{ABC} (ammonia monooxygenase), hao (hydroxylamine dehydrogenase), and nxr\textit{AB} (nitrite oxidoreductase) gene families. Abundances of amo\textit{ABC} and hao gene families were consistently low (<5 copies/10^6 CDS) to undetectable across all soils regardless of dominant tree species ([Fig. 2](#orange), Table S2A). We were unable to determine the abundance of nxr\textit{A} or nxr\textit{B} directly, as IMG/M does not distinguish between nxr\textit{AB} and nar\textit{GH}; consequently, we reference abundance values for nar\textit{G} and nar\textit{H} instead.

Denitrification. The reduction of NO\textsubscript{3}- to N\textsubscript{2} gas proceeds via four steps and produces several nitrogenous compounds with notable roles as air-polluting gases, including N\textsubscript{2}O and NO. Twelve microbial gene families involved in denitrification were included in our analysis, all of which were detectable in most samples (Table S2B). Overall, genes involved in denitrification were substantially reduced in soils beneath chestnut compared to both oak and cherry, even after normalization to total CDS ([Fig. 2](#green)). Gene families involved in the reduction of NO\textsubscript{2}- to NO (nir\textit{S}, nir\textit{K}) and NO to N\textsubscript{2}O (nor\textit{BC}) were significantly higher in soils beneath cherry compared to either ECM-associated species, although the abundance of nir\textit{S} was very low to undetectable in many samples regardless of species. nos\textit{Z}, the principal gene involved in reduction of N\textsubscript{2}O to N\textsubscript{2}, was elevated in soils beneath oak compared to chestnut.

Nitrate reduction. The reduction of NO\textsubscript{3}- to NH\textsubscript{4}+ ultimately leads to the incorporation of N into microbial biomass. DNRA is an anaerobic process in which NO\textsubscript{3}- is used as an electron
acceptor to oxidize and release energy from organic C. It is mediated by nitrate reductases
(narGHI, napABC) that form NO$_2^-$ and nitrite reductases (nrfAH, nirBD) that convert NO$_2^-$ to
NH$_4^+$. In all samples nirBD complex genes were consistently 2- to 10-fold more abundant than
nrfAH, regardless of species (Fig. 2 [light blue], Table S2C). In contrast, nrfAH genes were
significantly reduced in soils beneath chestnut compared to oak and cherry. Unlike DNRA, ANRA
is an energetically costly process and involves different families of nitrate (nasAB, narB) and
nitrite (nirA) reductases. The nitrate reductase catalytic subunit (nasA) was predominant in all
samples, and significantly enriched in soils beneath AM-associated cherry trees. In contrast, the
nitrite reductase nirA was slightly more abundant in chestnut-associated soils (Fig. 2 [dark blue]).

Annamox. Anaerobic ammonium oxidation is the process by which NH$_4^+$ and NO$_2^-$ are
metabolically combined to form N$_2$ gas. It is mediated by the gene families hzsA (hydrazine
synthesis) and hzo (hydrazine oxidoreductase). Neither hzsA nor hzo were detected in the
metagenomes of any of our soils (Table S2D), indicating no capacity for hydrazine synthesis and
anaerobic oxidation of ammonia.

Nitrogen fixation. The reduction of N$_2$ gas to biologically available NH$_4^+$ is carried out by the
nitrogenase complex encoded in the nifDKH operon. Abundance of these genes was measurable
but consistently low (<5 copies per 106 CDS) across all samples, regardless of tree species (Fig. 2
[yellow], Table S2D).

Nitrogen transport. The nrtABCD gene cluster encodes an ATP-binding cassette (ABC)-type
transporter capable of importing NO$_3^-$ or NO$_2^-$ from the extracellular environment. Genes in this
cluster were detected in all samples (Fig. 2 [gray], Table S2D) and were marginally more
abundant in soils beneath AM-associated cherry trees.
Organic N metabolism. Incorporation into microbial biomass is another important potential fate of soil N. Here we assayed several different pathways for organic N metabolism, including the conversion of NH$_4^+$ to glutamate (gltBD, gdhA, gdhB), glutamine (glnA), and urea (ureC). We observed no significant difference in the abundance of these genes between different tree species (Fig. 3, Table S3). The gene responsible for dissimilatory glutamate formation (gdhB) was markedly lower than other families across all metagenomes. Additionally, nao (nitroalkane oxidase) and nmo (nitronate monooxygenase) were absent from all samples, indicating that the degradation of nitroalkane compounds was not a significant source of N in these soils. The regulatory gene glnR, which represses glutamine synthesis from glutamate by glnA, was highly abundant in all soils.

Carbon metabolism genes

We analyzed 15 gene families encoding enzymes for C degradation, grouped by the type of compound they metabolize: starch, hemicellulose, cellulose, aromatics, chitin, and lignin (Fig. 4, Table S4). The most abundant C-metabolizing gene family across all soils was β-glucosidase (hemicellulose-degrading), roughly twice as prevalent than the next most abundant family, α-amylase (starch-degrading). Although high, the abundance of β-glucosidase was somewhat reduced in soils beneath cherry compared to both ECM species. Also reduced in soils beneath cherry was vanillate monooxygenase, an exoenzyme that degrades moderately recalcitrant aromatic compounds. In contrast, chitinase was slightly more abundant in cherry-associated soils compared to oak, with chestnut-associated soils containing intermediate levels. The cellulose degrading 1,4-β-cellobiosidase was also reduced beneath oak relative to both chestnut and cherry.

Stress response genes
We assayed a total of 12 gene families encoding enzymes related to general stress responses and found soils beneath chestnut trees had significantly higher numbers of choline dehydrogenase and catalase genes, and significantly reduced abundance of gentisate 1,2-dioxygenase and superoxide dismutase genes compared to cherry (Fig. 5, Table S5). No other differences between tree species were observed. Glycosylases were the most abundant stress response family across all soils.

Taxonomic distribution

Analysis of all microbial taxonomic groups by PCA revealed distinct separation between cherry-associated and chestnut-associated soil metagenomes (Fig. 6A); oak-associated soils were intermediate but slightly more aligned with cherry. A similar pattern was seen when taxa included only bacterial (Fig. 6B) and only eukaryotic groups (Fig. 6C). Viral (Fig. 6D) and archaeal (Fig. 6E) subsets were more homogeneous, possibly a consequence of their smaller group sizes (n=5 and n=8, respectively).

Discussion

Changes in dominant tree species are expected to occur in many locations due to climate change (47) and deliberate species introductions in plantation and restoration efforts (48). These changes are likely to alter soil microbial communities and the associated C and N dynamics below-ground; however, the extent and mechanism by which tree species exert influence on particular functional gene families involved in N and C metabolism is still poorly understood. In this study, we apply a combination metagenome sequencing and bioinformatic analysis to assess, for the first time, the impact of tree species differences on functional gene abundances in the soil microbiome in a comprehensive and unbiased manner. Overall, we show that tree species can mediate the
abundance of multiple key functional genes that encode for enzyme production in N and C metabolic pathways, and soils beneath chestnut exhibited the most distinct soil microbiomes, both functionally and taxonomically. The results of our study may facilitate the selection of tree species for land management purposes of N management and C storage.

Nitrogen cycle pathways

We identified significant differences in functional gene abundance as a result of tree species within the nitrification, denitrification, DNRA, and ANRA pathways (Fig. 2). Overall, gene abundance exhibited the greatest differences between soils beneath chestnut and cherry, while the gene abundance in soils beneath oak was generally intermediate between cherry and chestnut. This is supported by the significantly lower gene abundance values of amoA, narJ, nirK, norB, nosZ, narJ, napA, nirB, nrfA, nrfH, and nasA beneath chestnut relative to cherry. This data supports the stated hypothesis that abundance of functional genes related to nitrification and denitrification, in particular, would be elevated in soil beneath cherry. The soils beneath cherry exhibited the greatest N mineralization rates and NO$_3^-$ in leachate, indicating a rapid N cycle and high inorganic N availability (49). As other studies support, we relate the high inorganic N availability in cherry soil to its AM fungal association and relatively low C:N litter, as well as low NAG enzyme activity, indicating that N is not limiting microbial processes in soils beneath cherry.

Abundances of all genes within the nitrification pathway (amoABC, hao) were low, regardless of tree species, and amoA was not detected in either chestnut or cherry soils (Fig. 2). This is contrary to our hypothesis that cherry soil would have greater abundance of functional genes related to nitrification, relative to chestnut or cherry, which are both ECM-associated tree species. That no amoA was detected is surprising, as others have shown high numbers of gene copies from forest soils (up to 1.2 x 109 copies per g dry soil of AOA amoA) (50) and others have shown a
strong relationship between NO$_3^-$ production and *amoA* gene abundance (38). NO$_3^-$ production was indeed detected in our prior incubation study for soil and litter from each tree species. However, low *amoA* gene abundance from grassland soil has also been reported (28), with a much greater abundance of *nxrA* and *nxrB* gene copies within the nitrification pathway. Our analysis did not include *nxr* genes, as it was not recognized in the IMG/M gene or function processing, but considering other nitrite oxidoreductase genes (*narGH* genes shown in the denitrification pathway here) suggest no difference in nitrite oxidoreductase gene abundance as a function of tree species.

Within the denitrification pathway, chestnut soils had the lowest gene abundance for *narJ*, *nirK*, *norB*, and *nosZ* relative to cherry or oak. Low denitrification-related gene numbers in chestnut soil was expected and aligns with the low inorganic N availability in chestnut soils, as denitrification rates are low in N-limited soil (51). N limitation in chestnut soil is likely a function of the high C:N ratio of the leaf litter and evidenced by the higher NAG enzyme activity. *nirK* and *norB* gene abundance was greatest in cherry soil, while *narJ* and *nosZ* were similar in soils beneath cherry and oak. High *nirK* and *norB* in cherry soil, which encode for the reduction of nitrite and nitric oxide, respectively, supports our hypothesis that cherry, with relatively high inorganic N availability, would stimulate denitrification capacity. Additionally, an analysis of the *nirK:nosZ* ratio, which has been used to estimate endpoint N$_2$O production from soil (N$_2$O:N$_2$ ratio) (33, 40), suggests similar ratios across tree species and no difference in the capacity of these particular tree species to influence N$_2$O emission relative to N$_2$ gas through denitrification processes. Abundance of *nirK* was also much higher (10-fold or more) than *nirS* in all soils. *nirS:nirK* ratio may be related to the N$_2$O sink capacity of soil, with a higher N$_2$O consumption with increasing *nirS:nirK* ratio, related to the observation that *nosZ* occurs less frequently in genomes of strains with *nirK* relative to those with *nirS* (52).
Within the DNRA pathway, chestnut soil again exhibited the lowest abundance of several functional genes, including *narJ, napA, nirB, nrfA*, and *nrfH* relative to cherry or oak. The DNRA process is thought to play a role in N retention in forest soils by reducing NO$_3^-$ to NH$_4^+$ (53). The amount of inorganic N was consistently low in soil leachate from our incubation study from chestnut soil (49) and the relatively low abundance of DNRA-related genes in chestnut soil suggests low initial inorganic N availability through low C:N litter inputs, rather than N retention through DNRA processes. Relative abundance of NRA genes (greatest abundance of *nirB* nitrite reductase in DNRA and *nasA* nitrate reductase in ANRA, regardless of tree species) aligns with those from a metagenomic assessment of a Minnesota, USA grassland soil (28), but do not reflect those from a GeoChip microarray assessment of a Tennessee, USA forest soil (54), which exhibited greatest relative abundance of *narG* nitrate reductase in the DNRA pathway. Differences in relative abundance of these genes by location may be a function of the two methodologies (metagenomic and microarray) (55).

Within ANRA, *nasA* was most abundant for all tree species, and was significantly more abundant in cherry relative to either chestnut or oak. High *nasA* abundance in soils beneath cherry may be related to greater amount of NO$_3^-$ available to enter the process of assimilatory reduction to NH$_4^+$ for microbial biosynthesis (56) and ANRA is generally low when NH$_3$ is present (57). Greater abundance of *nasA* beneath cherry shown here fits within the mycorrhizal framework of nutrient cycling as cherry, an AM fungal-associated species, should engender greater microbial assimilation of nutrients and microbial biomass relative to ECM-associated species (12, 23).

As expected for these soils influenced by forest tree species, genes related to organic N metabolism were abundant (up to 677 normalized gene copies for *glnR*), but surprisingly did not vary by tree species. We expected variation in gene abundance related organic N metabolism,
particularly **glnR**, as **glnR** has been referred to as the central regulator of N metabolism and mediates the integration of C and N metabolism through uptake and utilization of non-phosphotransferase-system C compounds (58). There is evidence that **glnR** is inhibited in systems with N limitation (59) and is activated when N availability is high (60). However, others suggest that the rate-limiting step of organic matter decomposition is not the mineralization of amino acid to NH$_4^+$, but rather the previous step of depolymerization of proteins to oligopeptides (61–63). In the present soils, even given the relative differences in inorganic N availability, no difference in organic N metabolism gene abundance was detected and differences exhibited in N metabolism support that N metabolism is mediated by protein depolymerization.

For N$_2$ fixation, gene abundance for **nifH** was low and uniform between tree species. This is consistent with the low **nifH** abundance reported elsewhere (28) from grassland soils, although they also showed a significant increase of **nifH** with elevated CO$_2$, indicating **nifH** abundance can increase with N limitation. Others have also shown **nifH** gene pools to be sensitive to soil properties and plant cover, including total C, N, soil texture, and controls on inorganic N availability (64). That **nifH** abundance was low and uniform between tree species in the present study may be a function of the monoculture plantings and limited understory plant species present that are capable of forming N fixation symbioses and that the free-living N$_2$ fixing species (e.g., cyanobacteria, Azotobacter, Clostridium) were rare.

C metabolism genes, C degradation, and stress response

Between tree species, we document statistically significant differences of abundance of genes responsible for enzyme production to degrade starch (neopullanase), hemicellulose (β-glucosidase), and aromatic (vanillate) compounds. No differences occurred in cellulose, chitin, or lignin-degrading enzymes between tree species. It is surprising that the C-degradation pathways
were so similar between tree species given the differences in mycorrhizal associations and litter quality (tannin, lignin, C:N ratio) among tree species. Our hypothesis that the two ECM-associated tree species (chestnut, oak) would support a soil microbial community with high abundance of genes that encode for degradation of aromatic and lignin compounds, and the AM species (cherry) would support a high abundance of genes that encode for degradation of starch and hemicellulose compounds, was not strongly supported. While results show that chestnut soil had the greatest abundance for β-glucosidase and vanillate and the lowest abundance of neopullanase, difference in abundance of these were slight relative to soils beneath oak and cherry. Linking enzyme production to microbial community function remains challenging due the influence of “cheater” microbes that can utilize the byproducts of enzymatic breakdown, but do not synthesize the enzymes themselves (41), as well as the potential inhibition of enzyme activity by tannin compounds (65). However, the minimal differences in genes responsible for enzyme production for C degradation exhibited here are reflected in the soil incubation results showing similar total soil C, oxidizable C, C-degrading enzyme activity, and CO₂ respiration between tree species (49).

Four genes related to stress response exhibited variation by tree species, including choline dehydrogenase, catalase, gentisate dioxygenase, and superoxide dismutase, each of which are considered oxidoreductases. For example, catalase is an important cellular antioxidant enzyme that protects against oxidative stress and catalyzes the decomposition of hydrogen peroxide to water and oxygen. Catalase is commonly present in nature (66), and here catalase had the greatest abundance in chestnut soil. Similarly, superoxide dismutase also protects against reactive oxygen species. Superoxide dismutases are metalloenzymes that catalyze the dismutation of iron superoxide into oxygen and hydrogen peroxide. The superoxide radical production increases under
abiotic and biotic stresses, including drought (67) and had the lowest abundance in chestnut soil. Overall, differences in gene abundance related to stress response were slight.

Potential limitations of the study

Shotgun metagenomic sequencing, as opposed to microarray and PCR analyses, is largely considered to yield unbiased results of gene presence and abundance (68, 69) because it does not require amplification prior to sequencing. However, the ability to interpret results for genes that are present in low abundance (here, amoA, nifH, hzo, nirS, narB) may become constrained (28, 55), although these genes may still provide function to microbial metabolism. This sequence-based approach may mask the importance of low abundance genes, as dominant populations may be oversampled, resulting in underestimation of low abundant genes (55). To improve interpretation for low abundance gene families, it is suggested that greater sequencing depth is necessary (28) and shotgun metagenomic sequencing should be used in conjunction with additional microarray or qPCR techniques to acquire both relative abundance of functional genes and capture the diversity of poorly represented families. Other potential limitations that may occur in metagenomic sampling may result from inadequate number of samples (spatially, temporally) that may not represent the full microbial community (70). We present results for one point in time and attempted to capture spatial variability by creating homogenized, composite samples from 10 points across each sampling plot.

Conclusions

The results of our metagenomic analysis indicate that tree species can mediate the abundance of multiple key functional genes that encode for enzyme production in N metabolism pathways, and to a lesser degree for C metabolism, in soil. American chestnut exhibited the most distinct soil
microbiome, both functionally and taxonomically, with a general suppression of N-cycling functional genes related to low inorganic N availability as soil was modified by poor, low N litter quality in chestnut relative to black cherry and northern red oak. This study provides one of the first comparative metagenomic analysis of the soil microbiome as it is modified by particular tree species. Our results provide insight into the mechanisms and degree of change in soil N and C metabolism that may occur following changes in dominant forest tree species through species loss by disease, management, or shifts due to a changing climate.

Acknowledgements

This work was supported by a USDA NIFA McIntire-Stennis grant to CNK [award number 1008506], and a DOI Joint Genome Institute award to CNK and TPD [award number CSP 503303]. TPD was supported by start-up funding provided by West Virginia University. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

The authors wish to thank Douglass Jacobs and Brian Beheler of Purdue University for access to tree plantations and field assistance, and Miranda Harmon-Smith for project management assistance with sample processing at JGI.

References

1. Carrara JE, Walter CA, Hawkins JS, Peterjohn WT, Averill C, Brzostek ER. 2018. Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Global Change Biology 24:2721–2734.
2. McClaugherty CA, Pastor J, Aber JD, Melillo JM. 1985. Forest Litter Decomposition in Relation to Soil Nitrogen Dynamics and Litter Quality. Ecology 66:266–275.

3. Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ. 1989. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant Soil 115:189–198.

4. Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ. 2009. Soil priming by sugar and leaf-litter substrates: A link to microbial groups. Applied Soil Ecology 42:183–190.

5. Lin G, McCormack ML, Ma C, Guo D. 2017. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytol 213:1440–1451.

6. Sun T, Hobbie SE, Berg B, Zhang H, Wang Q, Wang Z, Hättenschwiler S. 2018. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. PNAS 115:10392–10397.

7. Yin H, Wheeler E, Phillips RP. 2014. Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology and Biochemistry 78:213–221.

8. Averill C, Turner BL, Finzi AC. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. 7484. Nature 505:543–545.
9. Craig ME, Turner BL, Liang C, Clay K, Johnson DJ, Phillips RP. 2018. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Global Change Biology 24:3317–3330.

10. Peterjohn WT, Foster CJ, Christ MJ, Adams MB. 1999. Patterns of nitrogen availability within a forested watershed exhibiting symptoms of nitrogen saturation. Forest Ecology and Management 119:247–257.

11. Magill AH, Aber JD, Berntson GM, McDowell WH, Nadelhoffer KJ, Melillo JM, Steudler P. 2000. Long-Term Nitrogen Additions and Nitrogen Saturation in Two Temperate Forests. Ecosystems 3:238–253.

12. Phillips RP, Brzostek E, Midgley MG. 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol 199:41–51.

13. Resh SC, Binkley D, Parrotta JA. 2002. Greater Soil Carbon Sequestration under Nitrogen-fixing Trees Compared with Eucalyptus Species. Ecosystems 5:217–231.

14. Finzi AC, Breemen NV, Canham CD. 1998. Canopy Tree–Soil Interactions Within Temperate Forests: Species Effects on Soil Carbon and Nitrogen. Ecological Applications 8:440–446.

15. Schulp CJE, Nabuurs G-J, Verburg PH, de Waal RW. 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management 256:482–490.
16. Lovett GM, Weathers KC, Arthur MA. 2002. Control of Nitrogen Loss from Forested Watersheds by Soil Carbon:Nitrogen Ratio and Tree Species Composition. Ecosystems 5:712–718.

17. Christopher SF, Page BD, Campbell JL, Mitchell MJ. 2006. Contrasting stream water NO$_3^-$ and Ca$^{2+}$ in two nearly adjacent catchments: the role of soil Ca and forest vegetation. Global Change Biology 12:364–381.

18. Kelly CN, Schoenholtz SH, Adams MB. 2011. Soil properties associated with net nitrification following watershed conversion from Appalachian hardwoods to Norway spruce. Plant Soil 344:361–376.

19. Peterjohn WT, Harlacher MA, Christ MJ, Adams MB. 2015. Testing associations between tree species and nitrate availability: do consistent patterns exist across spatial scales? Forest Ecology and Management 358:335–343.

20. Whittinghill KA, Currie WS, Zak DR, Burton AJ, Pregitzer KS. 2012. Anthropogenic N Deposition Increases Soil C Storage by Decreasing the Extent of Litter Decay: Analysis of Field Observations with an Ecosystem Model. Ecosystems 15:450–461.

21. Ramirez KS, Craine JM, Fierer N. 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology 18:1918–1927.

22. Eisenlord SD, Freedman Z, Zak DR, Xue K, He Z, Zhou J. 2013. Microbial Mechanisms Mediating Increased Soil C Storage under Elevated Atmospheric N Deposition. Appl Environ Microbiol 79:1191–1199.
23. Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. 2013. The Microbial Efficiency-
Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil
organic matter stabilization: do labile plant inputs form stable soil organic matter? Global
Change Biology 19:988–995.

24. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW,
Minkkinen K, Byrne KA. 2007. How strongly can forest management influence soil carbon
sequestration? Geoderma 137:253–268.

25. Delwiche CC, Steyn PL. 1970. Nitrogen isotope fractionation in soils and microbial
reactions. Environ Sci Technol 4:929–935.

26. James Tiedje. 1988. Ecology of denitrification and dissimilatory nitrate reduction to
ammonium, p. 179–244. In Environmental Microbiology of Anaerobes. John Wiley &
Sons, Inc., New York.

27. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA,
Seitzinger SP, Sutton MA. 2008. Transformation of the Nitrogen Cycle: Recent Trends,
Questions, and Potential Solutions. Science 320:889–892.

28. Tu Q, He Z, Wu L, Xue K, Xie G, Chain P, Reich PB, Hobbie SE, Zhou J. 2017.
Metagenomic reconstruction of nitrogen cycling pathways in a CO₂-enriched grassland
ecosystem. Soil Biology and Biochemistry 106:99–108.

29. Schimel JP, Chapin FS. 1996. Tundra Plant Uptake of Amino Acid and NH₄⁺ Nitrogen in
Situ: Plants Complete Well for Amino Acid N. Ecology 77:2142–2147.
24

30. Hodge A, Campbell CD, Fitter AH. 2001. An arbuscular mycorrhizal fungus accelerates
decomposition and acquires nitrogen directly from organic material. Nature 413:297–299.

31. Holmes AJ, Costello A, Lidstrom ME, Murrell JC. 1995. Evidence that participate methane
monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS
Microbiol Lett 132:203–208.

32. Wang M, Huang G, Zhao Z, Dang C, Liu W, Zheng M. 2018. Newly designed primer pair
revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment
plants. Bioresource Technology 270:580–587.

33. Philippot L, Piutti S, Martin-Laurent F, Hallet S, Germon JC. 2002. Molecular Analysis of
the Nitrate-Reducing Community from Unplanted and Maize-Planted Soils. Appl Environ
Microbiol 68:6121–6128.

34. Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A, Philippot L. 2004.
Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. Journal
of Microbiological Methods 59:327–335.

35. Jung J, Yeom J, Han J, Kim J, Park W. 2012. Seasonal changes in nitrogen-cycle gene
abundances and in bacterial communities in acidic forest soils. J Microbiol 50:365–373.

36. Henry S, Bru D, Stres B, Hallet S, Philippot L. 2006. Quantitative Detection of the nosZ
Gene, Encoding Nitrous Oxide Reductase, and Comparison of the Abundances of 16S
rRNA, narG, nirK, and nosZ Genes in Soils. Appl Environ Microbiol 72:5181–5189.
37. Rösch C, Bothe H. 2005. Improved Assessment of Denitrifying, N₂-Fixing, and Total-Community Bacteria by Terminal Restriction Fragment Length Polymorphism Analysis Using Multiple Restriction Enzymes. Appl Environ Microbiol 71:2026–2035.

38. Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M. 2012. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14:993–1008.

39. Ding J, Zhang Y, Deng Y, Cong J, Lu H, Sun X, Yang C, Yuan T, Van Nostrand JD, Li D, Zhou J, Yang Y. 2015. Integrated metagenomics and network analysis of soil microbial community of the forest timberline. 1. Scientific Reports 5:7994.

40. Jha N, Saggar S, Giltrap D, Tillman R, Deslippe J. 2017. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture. Biogeosciences 14:4243–4253.

41. Trivedi P, Anderson IC, Singh BK. 2013. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology 21:641–651.

42. Lal R. 2009. Sequestering Atmospheric Carbon Dioxide. Critical Reviews in Plant Sciences 28:90–96.

43. King GM. 2011. Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends in Microbiology 19:75–84.
44. Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC, Zhou J, Singh BK. 2016. Microbial regulation of the soil carbon cycle: Evidence from gene-enzyme relationships. ISME Journal 10:2593–2604.

45. Gauthier M-M, Zellers KE, Löf M, Jacobs DF. 2013. Inter- and intra-specific competitiveness of plantation-grown American chestnut (*Castanea dentata*). Forest Ecology and Management 291:289–299.

46. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D, Tennessen K, Palaniappan K, Szeto E, Pillay M, Chen I-MA, Pati A, Nielsen T, Markowitz VM, Kyrpides NC. 2016. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4). Stand Genomic Sci 11:17.

47. Fei S, Desprez JM, Potter KM, Jo I, Knott JA, Oswalt CM. 2017. Divergence of species responses to climate change. Science Advances 3:e1603055.

48. Jacobs DF, Dalgleish HJ, Nelson CD. 2013. A conceptual framework for restoration of threatened plants: the effective model of American chestnut (*Castanea dentata*) reintroduction. New Phytologist 197:378–393.

49. Schwaner GW, Kelly CN. 2019. American chestnut soil carbon and nitrogen dynamics: Implications for ecosystem response following restoration. Pedobiologia 75:24–33.

50. Onodera Y, Nakagawa T, Takahashi R, Tokuyama T. 2010. Seasonal change in vertical distribution of ammonia-oxidizing archaea and bacteria and their nitrification in temperate forest soil. Microbes Environ 25:28–35.
Mohn J, Schürmann A, Hagedorn F, Schleppi P, Bachofen R. 2000. Increased rates of denitrification in nitrogen-treated forest soils. Forest Ecology and Management 137:113–119.

Jones CM, Spor A, Brennan FP, Breuil M-C, Bru D, Lemanceau P, Griffiths B, Hallin S, Philippot L. 2014. Recently identified microbial guild mediates soil N₂O sink capacity. Nature Climate Change 4:801–805.

Paula FS, Rodrigues JLM, Zhou J, Wu L, Mueller RC, Mirza BS, Bohannan BJM, Nüsslein K, Deng Y, Tiedje JM, Pellizari VH. 2014. Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Molecular Ecology 23:2988–2999.

Yu H, He Z, Wang A, Xie J, Wu L, Nostrand JDV, Jin D, Shao Z, Schadt CW, Zhou J, Deng Y. 2018. Divergent Responses of Forest Soil Microbial Communities under Elevated CO₂ in Different Depths of Upper Soil Layers. Appl Environ Microbiol 84.

Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L. 2015. High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats. mBio 6(1): e02288-14.

Yergeau E, Kang S, He Z, Zhou J, Kowalchuk GA. 2007. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. The ISME Journal 1:163–179.
57. Kurczy ME, Forsberg EM, Thorgersen MP, Poole FL, Benton HP, Ivanisevic J, Tran ML, Wall JD, Elias DA, Adams MWW, Siuzdak G. 2016. Global Isotope Metabolomics Reveals Adaptive Strategies for Nitrogen Assimilation. ACS Chem Biol 11:1677–1685.

58. Liao C-H, Yao L, Xu Y, Liu W-B, Zhou Y, Ye B-C. 2015. Nitrogen regulator GlnR controls uptake and utilization of non-phosphotransferase-system carbon sources in actinomycetes. PNAS 112:15630–15635.

59. Schumacher MA, Chinnam N babu, Cuthbert B, Tonthat NK, Whitfill T. 2015. Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis. Genes Dev 29:451–464.

60. Wray LV, Fisher SH. 2008. Bacillus subtilis GlnR contains an autoinhibitory C-terminal domain required for the interaction with glutamine synthetase. Molecular Microbiology 68:277–285.

61. Schimel JP, Bennett J. 2004. Nitrogen Mineralization: Challenges of a Changing Paradigm. Ecology 85:591–602.

62. Jan MT, Roberts P, Tonheim SK, Jones DL. 2009. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biology and Biochemistry 41:2272–2282.

63. Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A. 2014. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. 1. Nature Communications 5:3694.
64. Poly F, Ranjard L, Nazaret S, Gourbière F, Monrozier LJ. 2001. Comparison of nifH Gene Pools in Soils and Soil Microenvironments with Contrasting Properties. Appl Environ Microbiol 67:2255–2262.

65. Adamczyk B, Karonen M, Adamczyk S, Engström MT, Laakso T, Saranpää P, Kitunen V, Smolander A, Simon J. 2017. Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biology and Biochemistry 107:60–67.

66. Lemanowicz J. 2019. Activity of selected enzymes as markers of ecotoxicity in technogenic salinization soils. Environ Sci Pollut Res 26:13014–13024.

67. Molina-Rueda JJ, Tsai CJ, Kirby EG. 2013. The Populus Superoxide Dismutase Gene Family and Its Responses to Drought Stress in Transgenic Poplar Overexpressing a Pine Cytosolic Glutamine Synthetase (GS1a). PLOS ONE 8:e56421.

68. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG. 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS 109:21390–21395.

69. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics, from sampling to analysis. 9. Nature Biotechnology 35:833–844.

70. Zhou J, Kang S, Schadt CW, Garten CT. 2008. Spatial scaling of functional gene diversity across various microbial taxa. PNAS 105:7768–7773.
Table 1. Parameters and process rates from a one-year incubation of litter and soil associated with three tree species. Adapted from Schwaner & Kelly (2019). Superscript letters indicated significant difference (p<0.05) by ANOVA and Tukey’s HSD; see Methods for details.

	Red oak	**American chestnut**	**Black cherry**
	Quercus rubra	*Castanea dentata*	*Prunus serotina*
Soil pH	5.7 (0.1)	5.8 (0.1)	5.8 (0.1)
Soil C:N	10.9 (0.3)	11.1 (0.3)	10.4 (0.3)
N mineralization (mg kg⁻¹)	12.0 (0.9)ᵃ	7.8 (0.9)ᵇ	11.5 (1.5)ᵃ
DOC in leachate (mg kg⁻¹)	26.6 (1.2)ᵃ	32.2 (1.2)ᵇ	29.7 (1.4)ᵃᵇ
Respiration (g C m⁻²)	292.7 (17.8)	274.9 (10.5)	269.5 (14.2)
Oxidizable C (mg kg⁻¹)	258.7 (17.5)	284.5 (21.5)	230.7 (22.1)
Litter mass loss (%)	11.6 (0.9)ᵃ	19.0 (1.0)ᵇ	14.2 (1.2)ᵃ
Initial lignin content	46.9 (0.8)ᶜ	43.0 (0.9)ᵇ	52.9 (0.8)ᵃ
Initial tannin content	5.7 (0.4)ᶜ	6.7 (0.5)ᵇ	10.8 (0.9)ᵃ
Litter C:N	26.2 (0.6)ᶜ	40.8 (1.0)ᵇ	33.0 (0.1)ᵃ
NAG enzyme (mmol h⁻¹ g⁻¹)	1.9 (0.2)ᵇ	2.0 (0.2)ᵇ	0.9 (0.6)ᵃ
BG enzyme (mmol h⁻¹ g⁻¹)	17.4 (1.2)	14.7 (1.4)	14.0 (1.6)
BG:NAG	10.7 (1.3)ᵃ	7.9 (1.3)ᵃ	15.7 (1.0)ᵇ
Figures

Fig. 1. Nitrogen metabolism pathway illustrating gene families responsible for transformation between N species.
Figure 1
Fig. 2. Mean abundance values (n=6) of gene families involved in nitrification (orange), denitrification (green), DNRA (light blue), ANRA (dark blue), N₂ fixation (yellow), and N transport (gray). The total number of genes in each sample was normalized by the number of protein-coding genes in the genome and scaled to 10⁶. Red text denotes genes with a significant difference in abundance by tree species (p<0.1 using ANOVA and Tukey's; see Methods). Blue: soils beneath oak; orange: soils beneath chestnut; red: soils beneath cherry. See Table S6 for database accession identifiers for each gene.
Figure 2

N fixation
- amoA
- amoB
- amoC
- hao
- nrrA
- nrrB
- narG
- narH
- narJ
- nirK
- nirS
- norB
- norC
- nosZ

Denitrification
- napA
- napB
- napC
- nirK
- nirS
- norB
- norC
- nosZ

DNRA
- nrrA
- nrrH
- nirB
- nirD
- nasA
- nasB

ANRA
- nrrA
- nrrB
- nirA

N transport
- nrtA
- nrtB
- nrtC

Circles represent the following:
- Oak
- Chestnut
- Cherry

Significance levels:
- $p = 0.003$
- $p = 0.060$
- $p = 0.085$
- $p = 0.009$
- $p = 0.037$
- $p = 0.028$
- $p = 0.015$
Fig. 3. Mean abundance values (n=6) of gene families involved in organic N decomposition. Data normalization and color scheme according to Fig. 2.
Figure 3

- **Glu formation (low NH$_4^+$)**
 - gltB
 - gltD

- **Assimilatory Glu formation**
 - gdhA

- **Dissimilatory Glu formation**
 - gdhB

- **Gln formation**
 - glnA
 - glnR

- **Urea synthesis**
 - ureC

Legend:
- Oak
- Chestnut
- Cherry
Fig. 4. Mean abundance values (n=6) of gene families involved in carbon metabolism. Data normalization and color scheme according to Fig. 2.
Fig. 5. Mean abundance values (n=6) of gene families involved in stress response. Data normalization and color scheme according to **Fig. 2**.
Figure 5
Fig. 6. Principal components analysis of taxonomic groups occurring within all metagenomes (n=18) and clustered by tree species. Blue: soils beneath oak; orange: soils beneath chestnut; red: soils beneath cherry. A. All taxa combined (n=95). B. Bacterial taxa (n=56). C. Eukaryotic taxa (n=23). D. Viral taxa (n=5). E. Archaeal taxa (n=8).
Figure 6
Supplemental Material

All supplemental data for this study can be downloaded from the chestnut_metagenome repository on github (https://github.com/wvu vectors/soil_metagenome).

Table S1. Metadata for study samples present in the Integrated Microbial Genomes/Metagenomes database.

Table S2. Normalized abundance values for 36 genes involved in (A) nitrification, (B) denitrification, (C) nitrate reduction, and (D) anammox, N fixation, and N transport. All values were normalized to total metagenome CDS counts and multiplied by 10^6.

Table S3. Normalized abundance values for 7 genes involved in organic N metabolism. All values were normalized to total metagenome CDS counts and multiplied by 10^6.

Table S4. Normalized abundance values for 16 genes involved in C metabolism. All values were normalized to total metagenome CDS counts and multiplied by 10^6.

Table S5. Normalized abundance values for 12 genes involved in stress response. All values were normalized to total metagenome CDS counts and multiplied by 10^6.

Table S6. Gene names and database identifiers used in this study. EC: Enzyme Classification; KO: Kyoto Encyclopedia of Genes and Genomes. Colors signify functional group as defined in Fig. 1.