Wavelet Transform based Multiple Image Watermarking Technique

R Nanmaran a,*, S Nagarajan b, R Sindhujac, Garudadri Venkata Sree Charan d, Venkata Sai Kumar Pokala e, S Srimathif, G Gulothungan g, A.S Vickramh, S Thanigaivel i

a, d, e, g Department of Bio Medical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Email-nanmaran326@gmail.com

b Department of Electronics & Communication Engineering, Saveetha Engineering College, Saveetha Institute of Medical and Technical Sciences, Chennai.

c Department of Electronics & Instrumentation Engineering, Annamalai University, Annamalai nagar, Tamilnadu-608002, India.

f Department of Electronics & Communication Engineering, Annamalai University, Annamalai nagar, Tamilnadu-608002, India.

h, i Department of Bio Technology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai.

Abstract: In satellite communication the information’s like frequency, Polarization, Data format, Timing information are need to be protected for secure communication. Digital watermarking is the technique which provides secure way of communication in which the secret information or watermark can be transmitted safely. Wavelet Transform is playing an increasingly important role in watermarking due to its good spatial-frequency characteristics, and its wide applications in the image and video coding standards. In this work a novel Hybrid Steerable Pyramid with Discrete Wavelet Transform (SP+DWT) based multiple watermarking is attempted for colour images. In order to increase the robustness of the algorithm Arnold transform and Fibonacci transform based image scrambler is applied to watermarks before embedding in to cover image. The performance of the proposed scheme is validated for various attacks, such as Gaussian noise, Salt & Pepper Noise, Rotation, Translation and Speckle Noise. The proposed method is withstood for all the noise attacks and the performance of the proposed algorithm is measured using Peak Signal to Noise Ratio (PSNR), Normalized Correlation (NC) and Similarity Measure (SM). Pearson Independent component Analysis (ICA) is applied at the receiving end to extract watermarks from the input image. To analyse the inclusion of image scrambler the results of proposed algorithm is compared with same algorithm without image scrambler applied. The performance of proposed technique is also compared with other wavelet transforms like Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT) and Integer Wavelet Transform (IWT). Simulation results such as PSNR, NC, SM shows that hybrid SP+DWT based watermarking technique and extraction using Pearson ICA results in high imperceptible, better security and robustness, when compared to DWT, WPT and IWT based watermarking and extraction using Pearson ICA.

Keywords: Wavelet transforms, Wavelet packet transform, Integer wavelet transform, Steerable Pyramid transform, independent component analysis

1. Introduction

The fast growth of innovations in the field of Multimedia and Digital Image Processing Technologies has led to the misuse of various processes such as copying and editing of digital content, which has led to the loss of secure information. This causes the data to be easily encroached upon. A classic example is where the content of an image can be tampered or remodeled, while transmitting over wireless media. Hence the conservation of the data has become a mandatory operation for the application of its use in the field of academics and industry [1]. This is achieved by the watermarking techniques. Digital image watermarking is a recent approach which is used to ensure integrity of medical, military and archival based data. The watermark that is embedded can be of any form namely, audio, text or image. These embedded watermarks are difficult to extract and are generally not
detectable. The embedding of watermark into a digital data produces degradation to the digital data irrespective of the invisibility of the watermark. Reversible watermarking is being used in order to extract the original digital data. This method proves to be superior to cryptography. Keeping all this aspects, in this work a novel wavelet based watermarking algorithm is developed for secure communication in satellite communication [2]. In multiple watermarking schemes more than two watermarks can be embedded and thus watermarking capacity can be improved. RGB and YUV color models are used for image analysis in this work. MATLAB software is used for simulation purpose.

2. Research methods

Initially steerable pyramid transform and discrete wavelet transform is used to decompose the input image in to 9 sub bands in steerable transform output stage and 4 sub bands at DWT output stage. Two of these DWT sub bands can be selected using noise visibility function and two watermarks are embedded in selected sub bands. Before embedding watermark in sub band Arnold transform is applied to watermark1 and Fibonacci transform is applied to watermark2. Then inverse steerable pyramid transform and inverse discrete wavelet transform is applied to concatenate sub bands which provide watermarked image [3].

![Fig.1. Flow chart of SPDWT based watermarking Algorithm](image1)

At the receiver end independent component analysis, Inverse Arnold transform, Inverse Fibonacci transform is applied to retrieve original watermarks which are shown in Fig.2.

2.1 Steerable Pyramid Transform

The Steerable Pyramid is a linear multi-scale, multi-orientation image decomposition that provides
A useful front-end for image-processing and computer vision applications [4]. The block diagram of the steerable pyramid based watermarking algorithm is shown in Fig.1. First, the image passes through high-pass \(H_0 \) and low-pass filter \(L_0 \). The low-pass sub image is then divided into a set of oriented band pass sub images using filters \(B_1, B_2, \ldots, B_K \) and a low pass sub image using filter, where \(k \) is the number of band pass filters [5]. Fig.2 shows decomposition and reconstruction of the steerable pyramid algorithm. In order to avoid aliasing in the band-pass part, the band-pass components are not down sampled. Therefore, the low pass sub band is sampled by a factor of 2 in the horizontal and vertical directions. The recursive construction of a pyramid is achieved by inserting a copy of the shaded portion of the diagram at the location of the solid circle [6]. The set of filters used in this linear decomposition are highly constrained. First of all, to ensure elimination of the aliasing terms, the filter should be band-limited.

\[\text{Fig.3. Graphical Illustrations of the Steerable Pyramid Transform} \]

In steerable pyramid decomposition, the image is pre processed by a high-pass pre filter and a low-pass pre-filter, to produce low and high sub-bands. The low-pass sub- band is then divided into a set of oriented band-pass sub-bands and a low-pass sub- band. This procedure is continued recursively by sub-sampling the lower low-pass sub-band by a factor of 2 along the rows and columns. If there are \(k \) band-pass filters, then the pyramid is over complete by a factor of \(4k/3 \).

2.2. Arnold transform

Arnold Transform (AT), proposed by Vladimir Arnold in 1960, is a chaotic map which when applied to a digital image randomizes the original organization of its pixels and the image becomes imperceptible or noisy [7]. However, it has a period \(p \) and iterated \(p \) number of times the original image reappears. The generalized form of Arnold's cat map can be given by the transformation as in equation (1).

\[
\begin{bmatrix}
X \\
Y
\end{bmatrix} = \begin{bmatrix}
2 & 1 \\
1 & 1
\end{bmatrix} \begin{bmatrix}
X \\
Y
\end{bmatrix} \mod (N)
\]

(1)

Where \(x, y \in \{0,1,2,\ldots,N-1\} \) and \(N \) is the size of a digital image

2.3. Fibonacci transform

The Fibonacci sequence is a sequence of integers given by the recurrence relation given by the equation (2).

\[
\begin{bmatrix}
X \\
Y
\end{bmatrix} = \begin{bmatrix}
F_i & F_{i+1} \\
F_{i+2} & F_{i+3}
\end{bmatrix} \begin{bmatrix}
X \\
Y
\end{bmatrix} \mod (N)
\]

(2)
Where \(x, y \in \{0,1,2,\ldots,N-1\}\), \(F_i\) is the \(i^{th}\) term of Fibonacci series and \(N\) is the size of a digital image.

2.4. Independent component analysis

The Pearson ICA algorithm is a mutual information-based method for blind separation of statistically independent source signals [8]. Data matrix \(X\) is considered to be a linear combination of statistically independent components and it is written by the equation (3) as

\[
X = AS
\]

Where \(A\) is a linear mixing matrix and the columns of \(S\) contain the independent components of which at most one has Gaussian distribution [9]. The goal of ICA is to find the mixing matrix \(W_d\) such that the output \(\hat{S}\) is an estimate of possibly scaled and permuted and source matrix \(S\) [10]. The de-mixing matrix is defined by the equation (4).

\[
\hat{S} = W_d X
\]

2.5. Performance Measures

Performance of proposed algorithm is determined by using three basic parameters namely Peak signal to noise ratio, Normalized correlation and Similarity measure [11]. The same parameters are also used to compare the different watermarking algorithms.

2.5.1. Peak signal to noise ratio (PSNR):

PSNR is used to evaluate the quality of the watermarked image and it is defined in equation (5) as

\[
PSNR = 10 \log_{10} \frac{255^2}{\text{MSE}}
\]

Where Mean Square Error (MSE) is given by the equation (6) as

\[
\text{MSE} = \frac{1}{K} \sum_{k=1}^{K} |W_{1k} - W_{2k}|
\]

Where \(W_{1k}\) is original watermark and \(W_{2k}\) is extracted watermark

2.5.2. Normalized correlation (NC):

It provides the correlation between original watermark image and extracted watermark image and how these two images look similar [12]. High value of normalized correlation indicate high imperceptible. It is mathematically given in equation (7)

\[
NC = \frac{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} W_1(m, n) \cdot W_2(m, n)}{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} W_2^2(m, n)}
\]

Where \(W_1(m, n)\) is the original watermark image and \(W_2(m, n)\) is extracted watermark image at the receiver.
2.5.3 Similarity measure (SM):
This measure provides the quantitative measure of degree of match between two images. Here the matching is between original watermark and extracted watermark [13].

It is mathematically given in equation (8)

\[
SM = \frac{W_1 W_2}{\sqrt{W_1 . W_2}} \tag{8}
\]

Where \(W_1 \) is the original watermark image and \(W_2 \) is extracted watermark image at the receiver.

3. Simulation Results
In this work, the cover image of size 900 x 800 (PET) is taken as input image as shown in Fig.3. Input image which is in RGB is converted into Y, U, V components are shown in Fig.4, Fig.5 and Fig.6. Two watermarks with secret information of size 64 x 64 are considered as shown in Fig.7 and Fig.9. Image scrambling techniques like Arnold transform, Fibonacci transform are applied to watermarks is shown in Fig.8 and Fig.10. 2 scales and 4 orientations steerable pyramid transform and followed by one level decomposition of approximation image using DWT are shown in Fig. 11 and Fig.12, respectively.
Fig. 8. Watermark 1

Fig. 9. Arnold transform of Watermark 1

Fig. 10. Watermark 2

Fig. 11. Fibonacci transform of Watermark 2

Fig. 12. 2 scale 4 orientation Steerable pyramid
Decomposition

Fig. 13. Discrete wavelet transform
Decomposition
First, the Y component of the input image is transformed into steerable pyramid coefficients by using specific values of scales and directions. Edges and high textured area must then be extracted. Indeed, with the steerable pyramid transform, edges and textures are usually well confined to larger magnitude coefficients in the different sub-bands resulting in 2 scales and 4 orientations. 1 approximation and 8 detail coefficients are finally obtained from above mentioned scales and orientations. Next step is to send approximation image to one level wavelet transform to obtain four sub-bands. Now the author selects 2 sub-bands to embed the watermarks. Here in this work, HL2 and LH2 sub-bands are selected to embed watermarks using the Equation (9) and Equation (10).

\[I'(HL_2) = HL_2(i,j) + E(HL_2) \cdot \alpha \cdot (1 - NVF(i,j)) \cdot W(i,j) + \frac{E(HL_2)}{10} \cdot \alpha \cdot NVF(i,j) \cdot W(i,j) \]

\[I'(LH_2) = LH_2(i,j) + E(LH_2) \cdot \alpha \cdot (1 - NVF(i,j)) \cdot W(i,j) + \frac{E(LH_2)}{10} \cdot \alpha \cdot NVF(i,j) \cdot W(i,j) \]

The range of embedding parameter \(\alpha \) lies between 0 and 1. By trial and error method, the value of \(\alpha \) is chosen as 0.3 to ensure the invisibility and robustness in terms of PSNR and Similarity Measure values, respectively. The watermarked image is obtained by using Inverse DWT first and then Inverse SP. Then the resulting Y component and RGB watermarked image are shown in Fig.14 and Fig.15. Also the watermark robustness is examined with various attacks like Gaussian Noise, Salt & Pepper Noise, Mixed Noise and Translation noise are shown in Fig.16, Fig.17, Fig.18 and Fig.19 respectively.

![Fig.14. Y component of watermarked image](image1)

![Fig.15. Watermarked image](image2)

![Fig.16. Gaussian noise attacked](image3)

![Fig.17. Salt & Pepper noise attacked](image4)
To extract the watermark, blind source separation technique Pearson ICA is proposed and implemented and the watermarks are extracted from various attacks are tabulated in Appendix.3. Hence, the performance of ICA mentioned above is evaluated in terms of Similarity Measure and Normalized Correlation for without scrambling and with scrambling are tabulated in Appendix.1. The results of SPDWT is compared with different wavelet based watermarking algorithms namely Discrete wavelet transform, Wavelet packet transform and Integer wavelet transform and it is tabulated in Appendix.2. From the comparison it is noted that SPDWT produces better PSNR, Similarity Measure as well as Normalized Correlation than DWT, WPT and IWT techniques for all the attacks.

The comparison results of proposed algorithm with other wavelet transform is presented in Fig.20, Fig.21, and Fig.22.

Fig.20. PSNR plot of wavelet based transform techniques
4. Conclusion

A Hybrid steerable pyramid transform with discrete wavelet transform is developed for secure communication. Image scrambling methods namely Arnold transform and Fibonacci transform were developed and applied on two watermarks to improve the watermark strength. For watermark extraction Pearson independent component analysis is developed. Developed watermarking algorithm is tested against various noise attacks and algorithm can withstand for all noise attacks. High PSNR, Normalized correlation, Similarity measure shows the high robustness, high imperceptibility of algorithm. Simulation results show that hybrid SPDWT based watermarking technique and extraction using Pearson ICA results in high imperceptible, better security and robustness, when compared to DWT, WPT and IWT with Pearson ICA. This is due to the shift invariant characteristic which results in the existence of redundant data that introduces over complete representation of the input sequence as hybrid SPDWT has linear multi-scale, multi-orientation image decomposition characteristics. Hence, it is concluded that hybrid SPDWT with Pearson ICA is superior to other transforms methods.
References

[1] Jayaraman, S., Esakkirajan and Veerakumar, T., *Digital Image Processing*, Tata McGraw-Hill Education, Newyork, 2011.

[2] Fadoua Drira, Florence Denis and Atilla Baskurt (2004), Image Watermarking Technique based on Steerable Pyramid Transform, *Proceedings of SPIE - The International Society for Optical Engineering*, Doha, Qatar, Aug., pp. 187-194.

[3] Nanmaran, R. and Thirugnanam, G. (2018), Multiple Image Watermarking based on Hybrid Steerable Pyramid with DWT and Extraction using ICA, *International Journal of Research and Analytical Reviews*, Vol. 5(4), Dec., pp. 563-568.

[4] Freeman, W. and Adelson, E. (2001), The Design and Use of Steerable Filters, *IEEE Transactions on Pattern Analysis and Machine Intelligence*, Vol. 13(9), Sep., pp. 891-906.

[5] Mardanpour, Malihe and Mohammad Ali ZareChahooki (2016), Robust Hybrid Image Watermarking based on Discrete Wavelet and Shearlet Transforms, *International Journal of Network Security*, Vol.10(2), Feb., pp.1603-1626.

[6] Azz El Arab El Hossainia, Mohamed El Aroussib, Khadija Jamalic, Samir Mbarkid and Mohammed Wahbie (2014), A New Robust Blind Watermarking Scheme Based on Steerable Pyramid and DCT using Pearson Product Moment Correlation, *Journal Of Computers & Electrical Engineering*, Vol. 9(10), Oct., pp. 2315 – 2327.

[7] Sachin Gaur and Vinay Kumar Srivastava (2012), A Hybrid RDWT-DCT and SVD based Digital Image Watermarking Scheme using Arnold Transform, Proceedings of 4th International Conference on Signal Processing and Integrated Networks, Dubai, UAE, Aug., pp. 320-336.

[8] Hajisami, Abolfazl and Shahrokghaemmaghami (2010), Robust Image Watermarking using Independent Component Analysis, *Proceedings of 3rd International Conference on Information Processing (ISIP)*, Lebanon, Sep., pp. 363-367.

[9] Jin, Cong, Ting Su and Liang-Gang Pan (2007), Multiple Digital Watermarking Scheme based on ICA, *Proceedings of IEEE 8th International Conference on Image Analysis for Multimedia Interactive Services*, Jordan, Sep., pp.70-80.

[10] Thirugnanam, G. and Arulselvi, S. (2010), ICA based Digital Image Watermarking based on Redundant Discrete Wavelet Transform, *Journal of Image and Video Processing*, Vol.2(3), Jul.-Sep., pp.315-326.

[11] Nasrin Makbol, M. and Bee EeKhoo (2014), A New Robust and Secure Digital Image Watermarking Scheme based on Integer Wavelet Transform and singular value decomposition, *Journal of Digital Signal Processing and Applications*, Vol.33 (5),May, pp. 134–147.

[12] Nasrin Makbol, M. and Bee EeKhoo (2014), A New Robust and Secure Digital Image Watermarking Scheme based on Integer Wavelet Transform and singular value decomposition, *Journal of Digital Signal Processing and Applications*, Vol.33 (5),May, pp. 134–147.
Appendix

Appendix 1. Comparison of Performance Measures of SPDWT with and without Image Scrambling Technique

Input Images	PSNR(dB)	Similarity Measure	Normalized Correlation			
	SPDWT without image scrambling	SPDWT with image scrambling	SPDWT without image scrambling	SPDWT with image scrambling	SPDWT without image scrambling	SPDWT with image scrambling
Watermarked image	48.1294	50.6392	0.9721	0.9996	0.9717	0.9912
Gaussian noise attack	45.2831	48.4039	0.9528	0.9790	0.9421	0.9798
Salt & Pepper noise attack	45.9821	49.8293	0.9512	0.9810	0.9574	0.9823
Rotation noise attack	44.3295	48.9279	0.9487	0.9772	0.9467	0.9798
Translation noise attack	45.2981	48.2109	0.9472	0.9743	0.9426	0.9790
Mixed Noise attack	43.2091	47.0923	0.9429	0.9723	0.9309	0.9712
Appendix 2. Comparison of Performance Measures of DWT/WPT/IWT/SPDWT with Image Scrambling Technique

Input Images	DWT	WPT	IWT	SPDWT								
	PSNR (dB)	SM	NC	PSNR (dB)	SM	NC	PSNR (dB)	SM	NC	PSNR (dB)	SM	NC
Watermarked image	41.2986	0.9178	0.9193	45.2987	0.9337	0.9387	47.1286	0.9617	0.9621	50.6392	0.9996	0.9912
Gaussian noise attack	39.3209	0.8852	0.8865	42.5490	0.9198	0.9248	45.8432	0.9535	0.9592	48.4039	0.9790	0.9798
Salt & Pepper noise	39.1209	0.8921	0.8912	43.7632	0.9298	0.9284	45.3098	0.9582	0.9597	49.8293	0.9810	0.9823
translation attack	39.2908	0.8872	0.8976	42.6392	0.9226	0.9126	44.9965	0.9407	0.9492	48.9279	0.9772	0.9798
Mixed Noise attack	38.2218	0.8803	0.8817	42.1830	0.9167	0.9102	43.2965	0.9472	0.9412	47.0923	0.9723	0.9712
Appendix-3-Extracted Watermarks from Various Attacks

ATTACKS	Extracted Watermark 1 by proposed technique	Extracted Watermark 2 by proposed technique
Gaussian noise attack	![Image](g1)	![Image](g2)
(Noise density = 0.3)	![Image](g3)	![Image](g4)
Salt & Pepper noise attack	![Image](g5)	![Image](g6)
(Noise density = 0.2)	![Image](g7)	![Image](g8)
Rotation noise attack	![Image](g9)	![Image](g10)
(45˚)	![Image](g11)	![Image](g12)
Translation noise attack	![Image](g13)	![Image](g14)
(30x30)	![Image](g15)	![Image](g16)
Mixed Noise attack	![Image](g17)	![Image](g18)
(σ=10, σ = 40%)	![Image](g19)	![Image](g20)