The 2017 KIT IWSLT Speech-to-Text Systems for English and German

Thai-Son Nguyen, Markus Mueller, Matthias Sperber, Thomas Zenkel, Sebastian Stueker and Alex Waibel
Outline

- IWSLT 2017 ASR Tasks
- System Overview
- Setups
 - Feature Extraction
 - 4-gram and FFNN LM
 - GMM & DNN Systems
 - Speaker Adaption Models
- Results and Discussions
- Conclusion
IWSLT 2017 ASR

- English and German Lecture task
- TED talks and lecture talks.
- Various topics, spontaneous speaking style
- Not segmented
System Overview

Feature Extraction
- Speaker Adaptive Features
- Regular Features

GMM/DNN
- DNN1
- GMM1
- DNN2
- GMM2

Lattices Combination

Model Adaption
- DNN1'
- GMM1'
- DNN2'
- GMM2'

Vote

IWSLT 2017 ASR

System Overview

Evaluation Setups

Results

Conclusion

Thai-Son Nguyen - 2017 KIT IWSLT Speech-to-Text

Interactive Systems Lab - Institute for Anthropomatics and Robotics
Setups

- Feature Extraction
 - Bottleneck features
 - Speaker adaptive feature (SAF)

- Speaker Adaptation Models
 - GMMs and DNNs using SAF

- Language Models
 - 4-gram LM
 - Feed-forward LM
Feature Extraction

Pipeline for extracting Speaker Adaptive Feature (SAF)
Input Features for GMMs

- We used FBank and MFCC features to build two GMMs.
Input Features for DNNs

Also FBank and MFCC features for DNNs

Feature Extraction for DNNs
DNN & GMM Models

- **FFNNs**
 - 8k states of CD-Phone for English systems, 18k states for German systems
 - SAF-IMEL and SAF-MFCC

- **GMMs**
 - The same number of CD-Phone states
 - The same front-ends
Model Adaption

- Use transcriptions from the CNC system
- Align and eliminate the frames with confidence score less than 0.7
- GMMs
 - MLLR
- DNNs
 - An adapted DNN per speaker
 - Training one more epoch on the adaption data with a small learning rate
Training Data

About **480 hours** and **360 hours** for acoustic modeling of English and German systems

English acoustic modeling data

Source	# Amount
Quaero from 2010 to 2012	200 hours
Broadcast news [8]	80 hours
TED-LIUM v2 [9]	
excluding disallowed talks	203 hours
Total	**483 hours**

German acoustic modeling data

Source	# Amount
Quaero from 2009 to 2012	180 hours
Broadcast news	24 hours
Baden-Württemberg parliament	160 hours
Total	**364 hours**
System Training

- **Deep bottleneck network and FFNN network**
 - Input layer of 11-15 stacked frames
 - 5-6 hidden layers with 2000 units per layer
 - Bottleneck layer of 42 units
 - Fine-tuning with cross-entropy loss function
 - Newbob training schedule
Language Models

- **4-gram LM** from 7B words for English (150k vocab) and 2B words for German (300k vocab)

- **Feed-forward Neural Network LM**
 - 4 sigmoid layers of 600 units
 - 200-dimensional word embedding for the vocabulary size of 20k
 - To be used directly while decoding
English Lecture Task

System	tst2015
DNN(IMEL)	12.9
GMM(SAF-MFCC)	11.6
DNN(SAF-IMEL)	10.2
DNN(SAF-MFCC)	11.2
CNC	9.4
GMM(SAF-MFCC) adapted	9.3
DNN(SAF-IMEL) adapted	8.8
DNN(SAF-MFCC) adapted	9.3
Kaldi 4-gram LM rescored	9.3
ROVER	8.3

Results for English lecture task on tst2015 testset
German Lecture Task

System	dev2017
18k DNN(BSV BN-1MEL+T) NNLM	26.7
18k DNN(Mod-M2+1MEL+T)	27.1
10k DNN(SAF-BN-M2+T) NNLM	25.2
10k DNN(SAF-BN-1MEL+T) NNLM	25.7
CNC	24.5

Results for German lecture task on dev2017
Conclusion

- Used techniques
 - Speaker Adaptive Feature
 - Model Adaption
 - System Combinations
- WER results:
 - 8.3% on English tst2015
 - 24.5% on German dev2017