Identification and molecular mapping of a major quantitative trait locus underlying branch angle in soybean

Chancelor B. Clark1 · Weidong Wang1 · Ying Wang1,3 · Gabriel J. Fear1 · Zixiang Wen2,4 · Dechun Wang2 · Bo Ren1,5 · Jianxin Ma1

Received: 28 September 2021 / Accepted: 6 November 2021 / Published online: 15 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Key message A major quantitative trait locus (QTL) modulating soybean (Glycine max) branch angle was identified by linkage analysis using two bi-parental mapping populations with and without pedigree from wild soybean (Glycine soja).

Abstract Soybean branch angle is a critical architectural trait that affects many other traits of agronomic importance associated with the plant’s productivity and grain yield and is thus a vital consideration in soybean breeding. However, the genetic basis for modulating this important trait in soybean and many other crops remain unknown. Previously, we developed a recombinant inbred line (RIL) population derived from a cross between a domesticated soybean (Glycine max) variety, Williams 82, and a wild soybean (Glycine soja) accession, PI 479,752, and observed drastic variation in plant architecture including branch angle among individual RILs. In this study, one of the RILs possessing extremely wide branch angle (WBA) was crossed with an elite soybean cultivar (LD00-3309) possessing narrow branch angle (NBA) to produce an F2 population composed of 147 plants and F2-derived F3 families for inheritance analysis and QTL mapping. We found that branch angle is controlled by a major QTL located on chromosome 19, designated qGmBa1 and that WBA—derived from the wild soybean accession—is dominant over NBA. This locus was also detected as a major one underlying branch angle by QTL mapping using a subset of the soybean nested association mapping (SoyNAM) population composed of 140 RILs, which were derived from a cross between a landrace, PI 437169B, possessing WBA and an elite variety, IA3023, possessing NBA. Molecular markers located in the QTL region defined by both mapping populations can be used for marker-assisted selection of branch angle in soybean breeding.

Introduction

Plant architecture is defined as the three-dimensional organization of the plant body. For above-ground plant parts, this includes plant height, branch/tiller pattern, and the shape and position of leaves and reproductive organs (Reinhardt and Kuhlemeier 2002). Among these architectural traits, branch, tiller, and/or leaf angles are key determinants of canopy structure which directly affects light interception, photosynthetic efficiency, planting density, and ultimately plant productivity and grain yield in many crops (Burgess, 2019). Consequently, the optimization of these traits for enhanced ability of the plant to capture light energy and efficiently convert it into biomass over the course of the growing season has been a major goal in plant breeding (Tollenaar and Lee, 2002; Zhu et al. 2008).

Canopy architecture is often determined by distinct factors among different species. In cereal crops such as maize,
soya to the upright stem growth found in cultivated soy – procumbent growth without upright branches/stems in G. physiological modifications such as the transition from the Wang et al. 2019), resulting in drastic morphological and tion in branch angle among different varieties, as well as the grams. However, given the wide range of phenotypic varia-

widen the genetic base of elite cultivars, it is important to primarily due to the narrow genetic base of ancestral lines few decades have been slower than growers have expected, var (The U.S. National Plant Germplasm System).

Increases in soybean yield through breeding in the past several decades have been slower than growers have expected, primarily due to the narrow genetic base of ancestral lines used in soybean breeding programs (Hyten et al. 2006). To widen the genetic base of elite cultivars, it is important to bring new and diverse landraces into soybean breeding pro-

methods

Plant materials

Two bi-parental populations were employed in this study for inheritance analysis and mapping of QTL underlying branch angle. One population is composed of 147 F2 plants and F3 families derived from a cross between an NBA high-yielding soybean line LD00-3309 – one of the founder lines used to develop the soybean nested association mapping (SoyNAM) population (soybase.org/NAM), and a typical WBA recombinant inbred line 1890 (RIL1890) selected from a RIL pop-

ulation derived from a cross between a G. soja accession PI 479,752 and an IBA soybean cultivar Williams 82 (Swarm et al. 2019). The other population is composed of 140 RILs as a subset of the SoyNAM population derived from a cross between an NBA high-yielding soybean line IA3023 and a WBA soybean landrace PI 437169B.

Branch angle phenotyping

The 147 (LD00-3309 × RIL1890) F2 individuals and the two parental lines were grown in the field at the Agronomy Centre for Research and Education (ACRE) at Purdue University in West Lafayette, Indiana, United States, in 2015, and the F2-derived F3 families were grown in the field at ACRE in 2016 for branch angle evaluation. The 140 (IA3023 × PI 437169B) RILs were grown in the field at ACRE. Photos were taken of different representative individuals of the parental lines selected at 6, 8, 11, and 20 weeks post-planting to show the phenotypic differences across growth stages. The angles between two branches growing in opposite direc-

the plasticity of the trait under short photoperiod and adverse growing conditions such as greenhouse and winter nursery routinely used for accelerating soybean breeding, developing soybean cultivars with optimized branch angles for improved grain yields remains challenging. There is therefore a criti-
cal need to understand the genetic control of branch angle in soybean. Here, we report the identification and mapping of a major QTL modulating soybean branch angle using two distinct bi-parental populations.
were easily classified. Photos were also taken from 20 randomly selected F3 individuals for each of the three genotypes (homozygous for each parental allele and heterozygous, based on the peak marker) at the mapping region and merged together with 95% transparency to display the phenotypic differences among the three genotypes.

DNA isolation and genotyping

DNA of each F2 individual of the mapping population was extracted by mixing hypocotyls from 15–20 germinating F2:3 seeds. DNA of each RIL of the mapping population was extracted directly from the mixed leaf tissues of each RIL. DNA isolation was performed using a CTAB based method modified from Mace et al. (2013). The DNA samples of the (LD00-3309 × RIL1890) F2 mapping population and the parental lines were genotyped using the soybean 6 K single nucleotide polymorphism (SNP) chip (BARC-SoySNP6K) (Song et al., 2020, TPJ). The genotypic data of the 140 (IA3023 × PI437169B) RILs and the two parental lines were downloaded from SoyBase (www.soybase.org).

Approximately 15 F3:4 seeds derived from each individual F3 plant were germinated to generate seedlings, which were mixed for DNA isolation using the same method as above (Mace et al. 2013). DNA samples isolated from individual F4 families were used to represent DNA samples from individual F3 and were genotyped by Sanger sequencing of the fragments harboring the peak QTL SNP site (Chr19:1,163,245 bp) PCR-amplified from these DNA samples at the Purdue Genomics Core in West Lafayette, Indiana. The following two primers: 5′GTT GTT GCC TTT CCT AGT GCT AGA AGA ACG AC3′ and 5′AGC AAG TCT CCT AAA CAT ATG GTA CAC CAA TGTG3′ were used for both PCR and sequencing.

QTL mapping

To clean up the genotypic data for QTL mapping, all non-polymorphic markers between the parental lines, LD00-3309 and RIL18990, were removed. Then, markers with missing values for more than 50% of the individuals and markers with distorted segregation patterns in the (LD00-3309 × RIL18990) F2 population were removed. The same filtering was applied to the (IA3023 × PI437169B) mapping population.

QTL mapping was conducted separately using the two mapping populations described above and the R/qtl package (Broman et al. 2003). Composite interval mapping (CIM) was used to identify QTLs. 1000 permutations were performed for each population to determine the critical cutoff odds scores (LOD) at significance level α = 0.05. The 1.5 LOD drop method was applied to define the QTL confidence intervals and determine boundary markers.

Results

Branch angle variation in parent lines

The two parental lines, LD00-3309 and RIL1890 display clear distinction in branch angle (Fig. 1). The average branch angle of the NBA line LD00-3309, is 66.8° ± 2.2°, while the average branch angle of the WBA line RIL 1890 is 132.0° ± 2.4°. This large phenotypic difference developed over the course of the growing season, with no clear difference observed during the first six weeks after planting. The difference in branch angles between the two parental lines became apparent at 8 and 11 weeks after planting, and the phenotypic difference was most obvious at 20 weeks after planting.
planting when the leaves had fallen off and the plants were fully mature.

Mapping of the QTL, qGmBa1, modulating branch angle using a bi-parental F2 population and F3 progeny

The F2 population derived from LD00-3309 and RIL 1890 also showed large variations in branch angle; nevertheless, the majority of the F2 individuals appeared to possess branch angles similar to the two-parent lines. Thus, we simply categorized the F2 plants as either WBA or NBA, when they possessed branch angles greater or less than 90°, respectively. Of 147 F2 plants, 101 were classified as WBA while 46 were classified as NBA (Fig. 2a). This fits a 3:1 phenotypic segregation ratio ($\chi^2 = 3.10, p = 0.08$), suggesting that a single major locus is responsible for the branch angle variation observed in this population.

QTL mapping for branch angle was conducted using the phenotypic data of the 147 F2 plants and their genotypes at the 1,132 polymorphic SNP sites across the 20 soybean chromosomes. Consistent with the inheritance pattern, only a single major QTL modulate branch angle was detected (Fig. 2b). This QTL, designated qGmBa1, is located on the short arm of chromosome 19 and could explain 55% of the total phenotypic variation in the mapping population. SNP marker ss715633059 (physical position based on the version 2 assembly: chr19:1163245 (Chr19:1,163,245 bp) had the highest LOD value, 30.72, while marker chr19:922646 (Chr19:922,646) and marker chr19:1855442 (Chr19:1,855,442) defined boundaries of this QTL based on the 1.5 LOD drop method (Fig. 2c).

We further compared the average branch angle scores of the F3 families derived from the (LD00-3309 × RIL 1890) F2 plants of the three genotypes at the peak marker chr19:1163245 (Fig. 3). F3 plants with the LD00-3309 genotype (GG) had a score (66.8° ± 13.0°) that is very close to that (66.8° ± 2.2°) of LD00-3309, while F3 plants with the RIL1890 genotype (AA) had a score (132.0° ± 15.5°) that is very close to that (132.0° ± 2.4°) of RIL1890. We did not measure the branch angles of (LD00-3309 × RIL 1890) F1 plants as they were grown in the greenhouse, but the F3 plants with the (A/G) genotype had a score (129.3° ± 26.5°) that was close to that of the F3 plants with the (A/A) genotype. These observations further support the single-gene inheritance pattern of branch angle and that WBA is dominant over NBA.

Fig. 2 Phenotypic segregation of branch angles and QTL mapping using an F2 population derived from RIL1890 and LD00-3309. a) Frequencies of F2 plants showing wide branch angle (WBA) and narrow branch angle (NBA) which fits a 3:1 ratio ($\chi^2 = 3.10, p = 0.08$). b) Genome-wide QTL mapping detects a single major QTL modulating branch angle. The x-axis represents the 20 chromosomes of soybean, the y-axis shows the Lod scores, and the horizontal line is the cutoff LOD value at the significance level $\alpha = 0.05$ from 1000 permutations. c) The major QTL identified on chromosome 19 and physical positions of the markers. The vertical dashed lines define the boundaries of the QTL using the 1.5 LOD rule.
qGmBa1 was also identified by QTL mapping using a bi-parental RIL population

To determine whether the phenotypic variation in branch angle among cultivated soybeans is also modulated by qGmBa1, we performed QTL mapping using 140 RILs derived from a WBA landrace, PI437169B, and an NBA elite cultivar, IA3023 (Fig. 4a), which form one of 40 sub-populations of the SoyNAM population. The same criteria described above were used to phenotype branch angles of the (PI437169B × IA3023) RILs, and this phenotypic data was integrated with the available genotyping data for the 140 RILs and two-parent lines (Soybase.org/SoyNAM/). This identified a single major QTL on chromosome 19 (Fig. 4b), which is defined by marker chr19_1286696 (Chr19:1,286,696) at the left boundary. The next marker is Chr19_3291531, but LOD declines well before this, putting the right QTL boundary around 2 megabases (Fig. 4c). This QTL overlaps with the qGmBa1 region defined by the (LD00-3309 × RIL1890) population, suggesting they are the same QTL.

Genes in the QTL region

The qGmBa1 region contains several genes which could be plausible candidates modulating lateral branch angle based upon the known functions of their Arabidopsis homologs. (Supplemental Table 3). Glyma.19g010200 is the homolog of ATMBD9, a methyl-CpG binding protein which regulates flowering and shoots branching in Arabidopsis (Peng et al. 2006). Glyma.19g010600 is homologous to AtSLO, a pentatricopeptide repeat protein, whose mutant shows branching defects (Hsieh et al. 2015). The homolog of Glyma.19g012300 in Arabidopsis is SUO, which is required for the activity of miR156 (Yang et al. 2012) that directly cleaves SPL14 transcripts and regulates plant architecture in rice (Jiao et al. 2010). Additionally, the region contains several genes involved in the biosynthesis and modification of cell wall components. These include Glyma.19g012100 and Glyma.19g015700, homologs of AXY4L/TBL22 and AXY8, respectively, which are required for the O-acetylation of hemicellulose xyloglucan and the fine structure of cell wall polysaccharides in Arabidopsis (Gille et al. 2011; Gunl et al. 2011), and Glyma.19g012700 and Glyma.19g016100, homologs of Arabidopsis LGT8 and CSLC4, respectively (Cocuron et al. 2007; Kong et al. 2011). Nevertheless, none of the previously identified genes modulating leave angles in grasses (Yu et al. 2007; Li et al. 2007; Ku et al. 2011; Wu et al. 2013; Zhang et al. 2014, 2018; Dong et al. 2016; Dzievit et al., 2018; Tian et al. 2019; Li et al. 2019) appear to have homologs in the defined GmBa1 region, suggesting the regulatory mechanisms underlying leave and branch angles are likely different. Fine mapping with a larger population is needed to pinpoint the candidate for qGmBa1.

Discussion

Soybean branch angle not only exhibits a great range of natural variation among different varieties, but is also influenced by planting date, planting density, and other environmental factors (Asanome and Ikeda 1998, Foroutan-pour et al. 1999; Schon and Blevins 1990; Settimi and Board 1998; Weaver et al 1991; Harder et al. 2007). As such, it is not easy to genetically dissect this trait and its inheritance pattern using a natural population through genome-wide association study (GWAS). By using two segregating populations each derived from two parental lines showing extreme difference in branch angle, we were able to reveal the inheritance pattern of the trait and demonstrate that this complex trait is modulated by a single major QTL, qGmBa1.

Although the same major QTL modulating branch angle was detected in both bi-parental populations, whether this QTL is the major one underlying natural variation in branch angle in natural soybean populations remains unknown. Nevertheless, a GWAS analysis of the SoyNAM population through high throughput phenotyping of canopy coverage using an unmanned aircraft system (UAS) identified a major
QTL on soybean chromosome 19 responsible for phenotypic variation in canopy coverage, and this QTL overlaps with the \textit{qGmBa1} region (Xavier et al. 2017). In addition, a more recent GWAS analysis of 399 diverse maturity group I soybean accessions reveals that branch angle and leaflet shape are major drivers of canopy coverage in soybean (Virdi et al. 2021). Together, these observations suggest that \textit{qGmBa1} is most likely to be the major player responsible for the natural variation in branch angle in soybean germplasm.

The GWAS analysis by Xavier et al. (2017) also suggests that the QTL underlying canopy coverage contributes to soybean grain yield, providing an increase of 47.3 kg/ha\(^2\). Their further variance analysis suggested that canopy coverage was a highly heritable trait with a promising genetic correlation with grain yield. If this QTL is indeed same as \textit{qGmBa1}, soybean branch angle would be a major contributor to grain yield by shaping canopy structure and coverage that affects photosynthetic efficiency and ultimately grain yield. As most elite soybean cultivars possess narrower branch angles than those found in most landraces, it is apparent that narrower branch angles, which allow for higher planting densities for increased yield (Harder 2007; Norman, 1989), have been the target for selection in modern soybean breeding. Marker-assisted selection for \textit{qGmBa1} or \textit{qGmba1} alleles will facilitate development of soybean cultivars with desirable branch angles as part of optimized plant architecture for enhanced plant productivity and grain yield in soybean.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00122-021-03995-9.

Acknowledgments We would like to thank Xutong Wang, Jingbo Duan, and Liyang Chen for help with harvesting soybean plants.

Author contributions JM designed research, CBC, WW, YW, GIF, ZW, and BR performed research, CBC, DW, and BR analyzed data, CBC and JM wrote the manuscript.
Funding This work was mainly supported by (# 2015–67013-22811, 2018–67013-27425) funded by the Agriculture and Food Research Initiative of the USDA National Institute of Food and Agriculture, and partially supported by Indiana Soybean Alliance.

Declarations

Conflict of interest The authors declare no conflict of interest.

Data availability All data presented in this manuscript are included in the supplemental tables. All materials are available to the public upon request and under material transfer agreement.

References

Agudamu TY, Tatsuhiko S (2016) Branch development responses to planting density and yield stability in soybean cultivars. Plant Prod Sci 19(3):331–339

Asanome N, Ikeda T (1998) Effect of branch directions & arrangement on soybean yield and yield components. J Agron Crop Sci 181:95–102

Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

Carter TE, Jr., Nelson RL, Sneller CH, Cui Z (2004) Genetic diversity in soybean. In: Shibis RM, Harper JE, Wilson RF, Shoemaker R (Eds.), Soybeans: improvement, production, and uses

Cocurion JC, Lerrouxel O, Drakaki G, Alonso AP, Liepmann AH, Keegstra K, Raikhel N, Wilkerson CG (2007) A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase. Proc Natl Acad Sci USA 104:8599–8571

Dzievit MJ, Li X, Yu J (2018) Dissection of leaf angle variation in maize through genetic mapping and meta-analysis. Plant Genome 12:1800244

Food and Agricultural Organization of the United Nations (FAO) (2018) Value of agricultural production. Available at http://www.fao.org/faostat/en/#data/QV.

Foroutan-pour K, Dutilleul P, Smith DL (1999) Soybean canopy development as affected by population density and intercropping with corn: fractal analysis in comparison with other quantitative approaches. Crop Sci 39:1784–1791

Gille S, Souza A, Xiong G, Benz M, Cheng K, Schultink A, Reca IB, Pauly M (2011) O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. Plant Cell 23:4041–4053

Gun M, Neumetzler L, Kraemer F, Souza A, Schultink A, Pena M, Wu Y, Pauly M (2011) AXY8 encodes an α-fucoside, underlying the importance of apoplastic metabolism on the fine structure of Arabidopsis cell wall polysaccharides. Plant Cell 23:4025–4040

Harder D, Sprague C, Renner K (2007) Effect of soybean row width and population on weeds, crop yield, and economic return. Weed Technol 21:744–752

Hsieh WY, Liao JC, Chang CY, Harrison T, Boucher C, Hsieh MH (2015) The SLOW GROWTH3 pentatricopeptide repeat protein is required for the splicing of mitochondrial NADH dehydrogenase subunit7 intron 2 in Arabidopsis. Plant Physiol 168:490–501

Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671

Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Li J (2010) Regulation of osmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

Khush G (2013) Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed 132:143–146

Kim MY, Van K, Kang YJ, Kim KH, Lee S-H (2012) Trazing soybean domestication history: from nucleotide to genome. Breed Sci 61:445–452

Kong Y, Zhou G, Yin Y, Xu Y, Pattathil S, Hahn MG (2011) Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases. Plant Physiol 155:1791–1805

Ku LX, Wei XM, Zhang SF, Zhang J, Guo SL, Chen Y (2011) Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PLOS One 6:e20621

Li P, Wang Y, Qian F, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J (2007) LAZY1 Controls rice shoot gravitropism through regulating auxin transport. Cell Res 17:402–410

Lu M, Zhou F, Xie CX, Li MS, Xu YB, Marilyn W, Zhang SH (2007) Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas 29:1131–1138

Mace ES, Buahirwalla KK, Buahirwalla HK, Crouch JH (2003) A High-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21:459–460

Manilla-Perez MB, Fernandez MGS (2017) Differential manipulation of leaf angle throughout the canopy: current status and prospects. J Exp Bot 68:5599–5717

Norman JM, Cambell GS (1989) Canopy Structure. In: Pearcy RW, Ehleringer JR, Mooney HA, Rudend PW (eds) Plant physiol ecol. Springer, Dordrecht

Pendleton JWS, GE, Winter SR, Johnston TJ, (1968) Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis. Agron J 60:422–424

Peng M, Cui Y, Bi YM, Rothstein SJ (2006) AtMBD9: A Protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis. Plant J 46:282–296

Reinhardt D, Kuhlemeyer C (2002) Plant architecture. EMBO Rep 3:846–851

Schon MK, Blevins DG (1990) Foliar boron applications increase the final number of branches and pods on branches of field-grown soybeans. Plant Physiol 92:602–607

Settini JR, Board JE (1998) Photoperiod and planting date effects on the spatial distribution of branch development in soybean. Crop Sci 28:259–263

Swarm SA, Sun L, Wang X, Wang B, Brown PF, Ma J, Nelson RL (2019) Genetic dissection of domestication-related traits in soybean through genotyping-by-sequencing of two interspecific mapping populations. Theor Appl Genet 132:1195–1209

Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365:658–654

Tollenaar M, Lee EA (2002) Yield potential, yield stability and stress tolerance in maize. Field Crops Res 75:161–169

Truong SK, McCormick RF, Rooney WL, Mullet JE (2015) Harnessing genetic variation in leaf angle to increase productivity of Sorghum Bicolor. Genetics 201:1229–1238

Virdi KS, Sreekanta S, Dobbels A, Haaning A, Jarquin D, Stupar RM, Lorenz AJ, Muehlbauer GJ (2021) Branch angle and leaflet shape are associated with canopy coverage in soybean. Sci Rep. https://doi.org/10.1038/s41598-020-71167-5

Wang X, Chen L, Ma J (2019) Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication. Genome Biol 20:22
Weaver DB, Akridge RL, Thomas CA (1991) Growth habit, planting
date, and row spacing effects on late planted soybean. Crop Sci
31:805–810

Wu X, Tang D, Li M, Wang K, Cheng Z (2013) Loose plant architec-
tureI, an INDETERMINATE DOMAIN protein involved in shoot
gravitropism, regulates plant architecture in rice. Plant Physiol
161:317–329

Xavier A, Hall B, Hearst AA, Cherkauer KA, Rainey KM (2017)
Genetic architecture of phenomic-enabled canopy coverage in
Glycine max. Genetics 206:1081–1089

Yang L, Wu G, Poethig RS (2012) Mutations in the GW-repeat protein
SUO reveal a developmental function for microRNA mediated
translational repression in Arabidopsis. Proc Natl Acad Sci USA
109:315–320

Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang
X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus
controlling tiller angle in rice. Plant J 52:891–898

Zhang J, Ku LX, Han ZP, Guo SL, Liu HJ, Zhang ZZ, Cao LR, Cui XJ,
Chen YH (2014) The ZmCLA4 gene in the qLA4-I QTL controls
leaf angle in maize (Zea mays L.). J Exp Bot 65:5063–5076

Zhang N, Yu H, Yu H, Cai Y, Huang L, Xu C, Xiong G, Meng X, Wang
J, Chen H, Liu G, Jing Y, Yuan Y, Liang Y, Li S, Smith SM, Li J,
Wang Y (2018) A core regulatory pathway controlling rice tiller
angle mediated by the LAZY1-dependent asymmetric distribution
of Auxin. Plant Cell 30:1461–1475

Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency
with which photosynthesis can convert solar energy into biomass?
Curr Opin Biotech 19:153–159

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.