ON HADAMARD TYPE INEQUALITIES INVOLVING SEVERAL KIND OF CONVEXITY

ERHAN SET, M. EMIN ÖZDEMIR, AND SEVER S. DRAGOMIR

ABSTRACT. In this paper, we not only give the extensions of the results given in [7] by Gill et al. for log-convex functions, but also obtain some new Hadamard type inequalities for log-convex, \(m \)-convex and \((\alpha, m)\)-convex functions.

1. Introduction

The following inequality is well known in the literature as Hadamard’s inequality:

\[
\frac{f \left(\frac{a+b}{2} \right)}{2} \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2},
\]

where \(f : I \to \mathbb{R} \) is a convex function on the interval \(I \) of real numbers and \(a, b \in I \) with \(a < b \). This inequality is one of the most useful inequalities in mathematical analysis. For new proofs, noteworthy extension, generalizations and numerous applications on this inequality, see ([1], [4], [5], [6], [9], [12]) where further references are given.

Let \(I \) be an interval in \(\mathbb{R} \). Then \(f : I \to \mathbb{R} \) is said to be convex if for all \(x, y \in I \) and \(t \in [0, 1] \),

\[f(\lambda x + (1 - \lambda) y) \leq \lambda f(x) + (1 - \lambda) f(y) \]

(see [9, P.1]). Geometrically, this means that if \(K, L \) and \(M \) are three distinct points on the graph of \(f \) with \(L \) between \(K \) and \(M \), then \(L \) is on or below chord \(KM \).

Recall that a function \(f : I \to (0, \infty) \) is said to be log-convex function, if for all \(x, y \in I \) and \(t \in [0, 1] \), one has the inequality (see [9, P.3])

\[f \left(tx + (1 - t) y \right) \leq \left[f(x) \right]^t \left[f(y) \right]^{(1-t)}. \]

It is said to be log-concave if the inequality in (1.2) is reversed.

In [8], G. Toader defined \(m \)-convexity as follows:

Definition 1. The function \(f : [0, b] \to \mathbb{R} \), \(b > 0 \) is said to be \(m \)-convex, where \(m \in [0, 1] \), if we have

\[f(t x + m (1 - t) y) \leq t f(x) + m (1 - t) f(y) \]

for all \(x, y \in [0, b] \) and \(t \in [0, 1] \). We say that \(f \) is \(m \)-concave if \(-f \) is \(m \)-convex.

Denote by \(K_m (b) \) the class of all \(m \)-convex functions on \([0, b]\) for which \(f(0) \leq 0 \). Obviously, if we choose \(m = 1 \), definition (1) recaptures the concept of standard convex functions on \([0, b]\).

In [8], V. G. Miheșan defined \((\alpha, m)\)-convexity as in the following:

\[2000 \text{ Mathematics Subject Classification.} \quad 26A51, 26D07, 26D15. \]

Key words and phrases. log-convex functions, \(m \)-convex functions, \((\alpha, m)\)-convex functions, Hadamard’s inequality.

*corresponding author.
Definition 2. The function \(f : [0, b] \rightarrow \mathbb{R} \), \(b > 0 \), is said to be \((\alpha, m)\)−convex, where \((\alpha, m) \in [0, 1]^2\), if we have

\[
f(tx + m(1-t)y) \leq t^\alpha f(x) + m(1-t^\alpha)f(y)
\]

for all \(x, y \in [0, b] \) and \(t \in [0, 1]\).

Denote by \(K^m_\alpha(b) \) the class of all \((\alpha, m)\)−convex functions on \([0, b]\) for which \(f(0) \leq 0 \). It can be easily seen that for \((\alpha, m) = (1, m)\), \((\alpha, m)\)−convexity reduces to \(m\)−convexity and for \((\alpha, m) = (1, 1)\), \((\alpha, m)\)−convexity reduces to the concept of usual convexity defined on \([0, b]\), \(b > 0 \).

For recent results and generalizations concerning \(m\)−convex and \((\alpha, m)\)−convex functions, see [2], [3], [10].

In [7], P.M. Gill et al. established the following results:

Theorem 1. Let \(f \) be a positive, log-convex function on \([a, b]\). Then

\[
\frac{1}{b-a} \int_a^b f(t) \, dt \leq L\left(f(a), f(b)\right)
\]

where

\[
L(p, q) = \frac{p - q}{\ln p - \ln q} \quad (p \neq q)
\]

is the Logarithmic mean of the positive real numbers \(p, q \) (for \(p = q \), we put \(L(p, p) = p \)).

For \(f \) a positive log-concave function, the inequality is reversed.

Corollary 1. Let \(f \) be positive log-convex functions on \([a, b]\). Then

\[
\frac{1}{b-a} \int_a^b f(t) \, dt \leq \min_{x \in [a, b]} \frac{(x - a) L(f(a), f(x)) + (b - x) L(f(x), f(b))}{b - a}.
\]

If \(f \) is a positive log-concave function, then

\[
\frac{1}{b-a} \int_a^b f(x) \, dx \geq \max_{x \in [a, b]} \frac{(x - a) L(f(a), f(x)) + (b - x) L(f(x), f(b))}{b - a}.
\]

For some recent results related to the Hadamard’s inequalities involving two log-convex functions, see [11] and the references cited therein. The main purpose of this paper is to establish the general version of the inequalities (1.3) and new Hadamard type inequalities involving two log-convex functions or two \(m\)-convex functions or two \((\alpha, m)\)-convex functions using elementary analysis.

2. Main Results

We start with the following Theorem.

Theorem 2. Let \(f_i : I \subset \mathbb{R} \rightarrow (0, \infty) \) \((i = 1, 2, ..., n)\) be log-convex functions on \(I \) and \(a, b \in I \) with \(a < b \). Then the following inequality holds:

\[
\frac{1}{b-a} \int_a^b \prod_{i=1}^n f_i(x) \, dx \leq L\left(\prod_{i=1}^n f_i(a), \prod_{i=1}^n f_i(b)\right)
\]
where \(L \) is a logarithmic mean of positive real numbers.

For \(f \) a positive log-concave function, the inequality is reversed.

Proof. Since \(f_i (i = 1, 2, ..., n) \) are log-convex functions on \(I \), we have

\[
(2.2) \quad f_i (ta + (1 - t) b) \leq [f_i (a)]^t [f_i (b)]^{1-t}
\]

for all \(a, b \in I \) and \(t \in [0, 1] \). Writing \((2.2) \) for \(i = 1, 2, ..., n \), multiplying the resulting inequalities it is easy to observe that

\[
(2.3) \quad \prod_{i=1}^{n} f_i (ta + (1 - t) b) \leq \left[\prod_{i=1}^{n} f_i (a) \right]^t \left[\prod_{i=1}^{n} f_i (b) \right]^{1-t} = \prod_{i=1}^{n} f_i (b) \left(\prod_{i=1}^{n} f_i (a) / f_i (b) \right)^t
\]

for all \(a, b \in I \) and \(t \in [0, 1] \).

Integrating inequality \((2.3) \) on \([0, 1]\) over \(t \), we get

\[
\int_0^1 \prod_{i=1}^{n} f_i (ta + (1 - t) b) \, dt \leq \prod_{i=1}^{n} f_i (b) \int_0^1 \left[\prod_{i=1}^{n} f_i (a) / f_i (b) \right] ^t \, dt.
\]

As

\[
\int_0^1 \prod_{i=1}^{n} f_i (ta + (1 - t) b) \, dt = \frac{1}{b-a} \int_a^b \prod_{i=1}^{n} f_i (x) \, dx
\]

and

\[
\int_0^1 \left[\prod_{i=1}^{n} f_i (a) / f_i (b) \right] ^t \, dt = \frac{1}{b-a} L \left(\prod_{i=1}^{n} f_i (a), \prod_{i=1}^{n} f_i (b) \right),
\]

the theorem is proved. \(\square \)

Remark 1. By taking \(i = 1 \) and \(f_1 = f \) in Theorem 2 we obtain \((1.3) \).

Corollary 2. Let \(f_i : I \subset R \to (0, \infty) \) \((i = 1, 2, ..., n) \) be log-convex functions on \(I \) and \(a, b \in I \) with \(a < b \). Then

\[
(2.4) \quad \frac{1}{b-a} \int_a^b \prod_{i=1}^{n} f_i (x) \, dx
\]

\[
\leq \min_{x \in [a,b]} \frac{(x-a) L \left(\prod_{i=1}^{n} f_i (a), \prod_{i=1}^{n} f_i (x) \right) + (b-x) L \left(\prod_{i=1}^{n} f_i (x), \prod_{i=1}^{n} f_i (b) \right)}{b-a}.
\]

If \(f_i \) \((i = 1, 2, ..., n) \) are a positive log-concave functions, then

\[
(2.5) \quad \frac{1}{b-a} \int_a^b \prod_{i=1}^{n} f_i (x) \, dx
\]

\[
\geq \max_{x \in [a,b]} \frac{(x-a) L \left(\prod_{i=1}^{n} f_i (a), \prod_{i=1}^{n} f_i (x) \right) + (b-x) L \left(\prod_{i=1}^{n} f_i (x), \prod_{i=1}^{n} f_i (b) \right)}{b-a}.
\]
Proof. Let \(f_i \) \((i = 1, 2, \ldots, n)\) be a positive log-convex functions. Then by Theorem 2 we have that
\[
\int_a^b \prod_{i=1}^n f_i(t) \, dt = \int_a^x \prod_{i=1}^n f_i(t) \, dt + \int_x^b \prod_{i=1}^n f_i(t) \, dt \leq (x - a) L \left(\prod_{i=1}^n f_i(a), \prod_{i=1}^n f_i(x) \right) + (b - x) L \left(\prod_{i=1}^n f_i(x), \prod_{i=1}^n f_i(b) \right)
\]
for all \(x \in [a, b] \), whence (2.4). Similarly we can prove (2.5). □

Remark 2. By taking \(i = 1 \) and \(f_1 = f \) in (2.4) and (2.5), we obtain the inequalities of Corollary 1.

We will now point out some new results of the Hadamard type for log-convex, \(m \)-convex and \((\alpha, m)\)-convex functions, respectively.

Theorem 3. Let \(f, g : I \to (0, \infty) \) be log-convex functions on \(I \) and \(a, b \in I \) with \(a < b \). Then the following inequalities hold:
\[
\left(\frac{a + b}{2}\right) f \left(\frac{a + b}{2}\right) g \left(\frac{a + b}{2}\right) \leq \frac{1}{2} \left[f \left(\frac{a + b}{2}\right) f \left(\frac{a + b}{2}\right) + g \left(\frac{a + b}{2}\right) g \left(\frac{a + b}{2}\right) \right]
\]

Proof. We can write
\[
\frac{a + b}{2} = \frac{ta + (1 - t) b}{2} + \frac{(1 - t) a + tb}{2}.
\]
Using the elementary inequality \(cd \leq \frac{1}{4} \left[c^2 + d^2 \right] \) \((c, d \geq 0 \text{ reals})\) and equality (2.7), we have
\[
f \left(\frac{a + b}{2}\right) g \left(\frac{a + b}{2}\right) \leq \frac{1}{2} \left[f^2 \left(\frac{a + b}{2}\right) + g^2 \left(\frac{a + b}{2}\right) \right]
\]
\[
= \frac{1}{2} \left\{ f^2 \left(\frac{ta + (1 - t) b}{2} + \frac{(1 - t) a + tb}{2}\right) + g^2 \left(\frac{ta + (1 - t) b}{2} + \frac{(1 - t) a + tb}{2}\right) \right\}
\]
\[
= \frac{1}{2} \left\{ \left[f \left(\frac{a + b}{2}\right) \right]^2 + \left[g \left(\frac{a + b}{2}\right) \right]^2 \right\}
\]
\[
= \frac{1}{2} \left[f \left(\frac{a + b}{2}\right) f \left(\frac{a + b}{2}\right) + g \left(\frac{a + b}{2}\right) g \left(\frac{a + b}{2}\right) \right].
\]
Since \(f, g \) are log-convex functions, we obtain

\[
\frac{1}{2} \left[f \left(ta + (1 - t) b \right) f \left((1 - t) a + tb \right) + g \left(ta + (1 - t) b \right) g \left((1 - t) a + tb \right) \right] \\
\leq \left\{ \frac{1}{2} \left[f \left(a \right) \right]^t \left[f \left(b \right) \right]^{1-t} \left[f \left(a \right) \right]^{1-t} \left[f \left(b \right) \right]^t + \left[g \left(a \right) \right]^t \left[g \left(b \right) \right]^{1-t} \left[g \left(a \right) \right]^{1-t} \left[g \left(b \right) \right]^t \right\}
\]

\[
= \frac{f \left(a \right) f \left(b \right) + g \left(a \right) g \left(b \right)}{2}
\]

for all \(a, b \in I \) and \(t \in [0, 1] \).

Rewriting (2.8) and (2.9), we have

\[
f \left(a + b \right) \frac{1}{2} g \left(a + b \right) \frac{1}{2} \leq \frac{1}{2} \left[f \left(ta + (1 - t) b \right) f \left((1 - t) a + tb \right) + g \left(ta + (1 - t) b \right) g \left((1 - t) a + tb \right) \right]
\]

and

\[
\frac{1}{2} \left[f \left(ta + (1 - t) b \right) f \left((1 - t) a + tb \right) + g \left(ta + (1 - t) b \right) g \left((1 - t) a + tb \right) \right] \\
\leq \frac{f \left(a \right) f \left(b \right) + g \left(a \right) g \left(b \right)}{2}.
\]

Integrating both sides of (2.10) and (2.11) on \([0, 1]\) over \(t \), respectively, we obtain

\[
f \left(a + b \right) \frac{1}{2} g \left(a + b \right) \frac{1}{2} \leq \frac{1}{2} \left[f \left(x \right) f \left(a + b - x \right) + g \left(x \right) g \left(a + b - x \right) \right] dx
\]

and

\[
\frac{1}{2} \left[f \left(x \right) f \left(a + b - x \right) + g \left(x \right) g \left(a + b - x \right) \right] dx \\
\leq \frac{f \left(a \right) f \left(b \right) + g \left(a \right) g \left(b \right)}{2}.
\]

Combining (2.12) and (2.13), we get the desired inequalities (2.6). The proof is complete.

\[\square\]

Theorem 4. Let \(f, g : I \to (0, \infty) \) be log-convex functions on \(I \) and \(a, b \in I \) with \(a < b \). Then the following inequalities hold:

\[
2 f \left(a + b \right) \frac{1}{2} g \left(a + b \right) \frac{1}{2} \leq \frac{1}{b - a} \int_a^b \left[f^2 \left(x \right) + g^2 \left(x \right) \right] dx \\
\leq \frac{f \left(a \right) + f \left(b \right)}{2} L \left(f \left(a \right), f \left(b \right) \right) + \frac{g \left(a \right) + g \left(b \right)}{2} L \left(g \left(a \right), g \left(b \right) \right)
\]

where \(L \left(, , \right) \) is a logarithmic mean of positive real numbers.
Proof. From the inequality (2.10), we have
\[
\frac{f}{2} \left(a + \frac{b}{2} \right) g \left(a + \frac{b}{2} \right) \leq \frac{1}{2} \left[f \left(ta + (1 - t)b \right) f \left((1 - t)a + tb \right) \right.
\]
\[
\left. + g \left(ta + (1 - t)b \right) g \left((1 - t)a + tb \right) \right]
\]
for all \(a, b \in I \text{ and } t \in [0,1] \).

Using the elementary inequality \(acd \leq \frac{1}{2} \left[c^2 + d^2 \right] \) (\(c, d \geq 0 \) reals) on the right side of the above inequality, we have
\[
(2.15) \quad f \left(a + \frac{b}{2} \right) g \left(a + \frac{b}{2} \right) \leq \frac{1}{4} \left[f^2 \left(ta + (1 - t)b \right) + f^2 \left((1 - t)a + tb \right) \right.
\]
\[
\left. + g^2 \left(ta + (1 - t)b \right) + g^2 \left((1 - t)a + tb \right) \right].
\]

Since \(f, g \) are log-convex functions, then we get
\[
(2.16) \quad \left[f^2 \left(ta + (1 - t)b \right) + f^2 \left((1 - t)a + tb \right) \right.
\]
\[
\left. + g^2 \left(ta + (1 - t)b \right) + g^2 \left((1 - t)a + tb \right) \right] \leq \left\{ \left[f \left(a \right) \right]^{2t} \left[f \left(b \right) \right]^{(2-2t)} + \left[f \left(a \right) \right]^{(2-2t)} \left[f \left(b \right) \right]^{2t} \right.
\]
\[
\left. + \left[g \left(a \right) \right]^{2t} \left[g \left(b \right) \right]^{(2-2t)} + \left[g \left(a \right) \right]^{(2-2t)} \left[g \left(b \right) \right]^{2t} \right\}
\]
\[
= \left[f^2 \left(b \right) \left[\frac{f \left(a \right)}{f \left(b \right)} \right]^{2t} + f^2 \left(a \right) \left[\frac{f \left(b \right)}{f \left(a \right)} \right]^{2t} \right.
\]
\[
\left. + g^2 \left(b \right) \left[\frac{g \left(a \right)}{g \left(b \right)} \right]^{2t} + g^2 \left(a \right) \left[\frac{g \left(b \right)}{g \left(a \right)} \right]^{2t} \right].
\]

Integrating both sides of (2.15) and (2.16) on \([0,1]\) over \(t \), respectively, we obtain
\[
(2.17) \quad 2f \left(a + \frac{b}{2} \right) g \left(a + \frac{b}{2} \right) \leq \frac{1}{b - a} \int_a^b \left[f^2 \left(x \right) + g^2 \left(x \right) \right] dx
\]

and
\[
(2.18) \quad \frac{1}{b - a} \int_a^b \left[f^2 \left(x \right) + g^2 \left(x \right) \right] dx
\]
\[
\leq \frac{1}{2} \left(f^2 \left(b \right) \int_0^1 \left[\frac{f \left(a \right)}{f \left(b \right)} \right]^{2t} dt + f^2 \left(a \right) \int_0^1 \left[\frac{f \left(b \right)}{f \left(a \right)} \right]^{2t} dt \right.
\]
\[
\left. + g^2 \left(b \right) \int_0^1 \left[\frac{g \left(a \right)}{g \left(b \right)} \right]^{2t} dt + g^2 \left(a \right) \int_0^1 \left[\frac{g \left(b \right)}{g \left(a \right)} \right]^{2t} dt \right)
\]
\[
= \frac{1}{2} \left(f^2 \left(b \right) \left[\frac{f \left(a \right)}{2 \log \frac{f \left(a \right)}{f \left(b \right)}} \right]^{2t} \bigg|_0^1 + f^2 \left(a \right) \left[\frac{f \left(b \right)}{2 \log \frac{f \left(b \right)}{f \left(a \right)}} \right]^{2t} \bigg|_0^1 \right.
\]
\[
\left. + g^2 \left(b \right) \left[\frac{g \left(a \right)}{2 \log \frac{g \left(a \right)}{g \left(b \right)}} \right]^{2t} \bigg|_0^1 + g^2 \left(a \right) \left[\frac{g \left(b \right)}{2 \log \frac{g \left(b \right)}{g \left(a \right)}} \right]^{2t} \bigg|_0^1 \right)
Proof. Since \(f(2.20) \leq 0 \)

Theorem 5. complete. \(\square \)

Combining (2.17) and (2.18), we get the required inequalities (2.14). The proof is complete.

Theorem 5. Let \(f, g : [0, \infty) \to [0, \infty) \) be such that \(fg \) is in \(L^1([a,b]) \), where \(0 \leq a < b < \infty \). If \(f \) is non-increasing \(m_1 \)-convex function and \(g \) is non-increasing \(m_2 \)-convex function on \([a, b]\) for some fixed \(m_1, m_2 \in (0, 1)\), then the following inequality holds:

(2.19) \[
\frac{1}{b-a} \int_a^b f(x) g(x) \, dx \leq \min \{ S_1, S_2 \}
\]

where

\[
S_1 = \frac{1}{6} \left[(f^2(a) + g^2(a)) + m_1 f(a) f \left(\frac{b}{m_1} \right)
+ m_2 g(a) g \left(\frac{b}{m_2} \right) + m_1^2 f^2 \left(\frac{b}{m_1} \right) + m_2^2 g^2 \left(\frac{b}{m_2} \right) \right]
\]

\[
S_2 = \frac{1}{6} \left[(f^2(b) + g^2(b)) + m_1 f(b) f \left(\frac{a}{m_1} \right)
+ m_2 g(b) g \left(\frac{a}{m_2} \right) + m_1^2 f^2 \left(\frac{a}{m_1} \right) + m_2^2 g^2 \left(\frac{a}{m_2} \right) \right].
\]

Proof. Since \(f \) is \(m_1 \)-convex function and \(g \) is \(m_2 \)-convex function, we have

(2.20) \[
f(ta + (1-t)b) \leq tf(a) + m_1(1-t) f \left(\frac{b}{m_1} \right)
\]

and

(2.21) \[
g(ta + (1-t)b) \leq tg(a) + m_2(1-t) g \left(\frac{b}{m_2} \right)
\]

for all \(t \in [0, 1] \). It is easy to observe that

(2.22) \[
\int_a^b f(x) g(x) \, dx = (b-a) \int_0^1 f(ta + (1-t)b) g(ta + (1-t)b) \, dt.
\]
Using the elementary inequality $cd \leq \frac{1}{2} \left(c^2 + d^2 \right)$ ($c, d \geq 0$ reals), (2.20) and (2.21) on the right side of (2.22) and making the charge of variable and since f, g is non-increasing, we have

\begin{equation}
\int_a^b f(x)g(x) \, dx
\end{equation}

\begin{align*}
&\leq \frac{1}{2} (b-a) \int_0^1 \left[\{f (ta + (1-t)b)\}^2 + \{g (ta + (1-t)b)\}^2 \right] \, dt \\
&\leq \frac{1}{2} (b-a) \int_0^1 \left[\left(tf (a) + m_1 (1-t) f \left(\frac{b}{m_1} \right) \right)^2 \\
&\quad + \left(tg (a) + m_2 (1-t) g \left(\frac{b}{m_2} \right) \right)^2 \right] \, dt \\
&= \frac{1}{2} (b-a) \left[\frac{1}{3} f^2 (a) + \frac{1}{3} m_1^2 f^2 \left(\frac{b}{m_1} \right) + \frac{1}{3} m_1 f (a) f \left(\frac{b}{m_1} \right) \\
&\quad + \frac{1}{3} g^2 (a) + \frac{1}{3} m_2^2 g^2 \left(\frac{b}{m_2} \right) + \frac{1}{3} m_2 g (a) g \left(\frac{b}{m_2} \right) \right] \\
&= \frac{(b-a)}{6} \left[(f^2 (a) + g^2 (a)) + m_1 f (a) f \left(\frac{b}{m_1} \right) \\
&\quad + m_2 g (b) g \left(\frac{b}{m_2} \right) + m_1^2 f^2 \left(\frac{a}{m_1} \right) + m_2^2 g^2 \left(\frac{a}{m_2} \right) \right].
\end{align*}

Analogously we obtain

\begin{equation}
\int_a^b f(x)g(x) \, dx
\end{equation}

\begin{align*}
&\leq \frac{(b-a)}{6} \left[(f^2 (b) + g^2 (b)) + m_1 f (b) f \left(\frac{a}{m_1} \right) \\
&\quad + m_2 g (b) g \left(\frac{b}{m_2} \right) + m_1^2 f^2 \left(\frac{a}{m_1} \right) + m_2^2 g^2 \left(\frac{a}{m_2} \right) \right].
\end{align*}

Rewriting (2.23) and (2.24), we get the required inequality in (2.19). The proof is complete.

Theorem 6. Let $f, g : [0, \infty) \to [0, \infty)$ be such that $f g$ is in $L^1 ([a,b])$, where $0 \leq a < b < \infty$. If f is non-increasing $(\alpha_1, m_1) -$convex function and g is non-increasing $(\alpha_2, m_2) -$convex function on $[a, b]$ for some fixed $\alpha_1, m_1, \alpha_2, m_2 \in (0,1]$. Then the following inequality holds:

\begin{equation}
\frac{1}{b-a} \int_a^b f(x)g(x) \, dx \leq \min \{ E_1, E_2 \}
\end{equation}
where

\[
E_1 = \frac{1}{2} \left[\frac{1}{2\alpha_1 + 1} f^2(a) + \frac{2\alpha_1^2}{(\alpha_1 + 1)(2\alpha_1 + 1)} m_1^2 f^2 \left(\frac{b}{m_1} \right)
+ \frac{2\alpha_1}{(\alpha_1 + 1)(2\alpha_1 + 1)} m_1 f(a) f \left(\frac{b}{m_1} \right) + \frac{1}{2\alpha_1 + 1} g^2(a)
+ \frac{2\alpha_2^2}{(\alpha_2 + 1)(2\alpha_2 + 1)} m_2^2 g^2 \left(\frac{b}{m_2} \right)
+ \frac{2\alpha_2}{(\alpha_2 + 1)(2\alpha_2 + 1)} m_2 g(a) \left(\frac{b}{m_2} \right) \right],
\]

\[
E_2 = \frac{1}{2} \left[\frac{1}{2\alpha_1 + 1} f^2(b) + \frac{2\alpha_1^2}{(\alpha_1 + 1)(2\alpha_1 + 1)} m_1^2 f^2 \left(\frac{a}{m_1} \right)
+ \frac{2\alpha_1}{(\alpha_1 + 1)(2\alpha_1 + 1)} m_1 f(b) f \left(\frac{a}{m_1} \right) + \frac{1}{2\alpha_1 + 1} g^2(b)
+ \frac{2\alpha_2^2}{(\alpha_2 + 1)(2\alpha_2 + 1)} m_2^2 g^2 \left(\frac{a}{m_2} \right)
+ \frac{2\alpha_2}{(\alpha_2 + 1)(2\alpha_2 + 1)} m_2 g(b) \left(\frac{a}{m_2} \right) \right].
\]

Proof. Since \(f \) is \((\alpha_1, m_1) \)-convex function and \(g \) is \((\alpha_2, m_2) \)-convex function, then we have

\[
f(ta + (1 - t)b) \leq t^{\alpha_1} f(a) + m_1 (1 - t^{\alpha_1}) f \left(\frac{b}{m_1} \right)
\]

and

\[
g(ta + (1 - t)b) \leq t^{\alpha_2} g(a) + m_2 (1 - t^{\alpha_2}) g \left(\frac{b}{m_2} \right)
\]

for all \(t \in [0, 1] \). It is easy to observe that

\[
\int_a^b f(x) g(x) \, dx = (b - a) \int_0^1 f(ta + (1 - t)b) g(ta + (1 - t)b) \, dt.
\]

Using the elementary inequality \(cd \leq \frac{1}{2} (c^2 + d^2) \) \((c, d \geq 0 \text{ reals}) \), (2.26) and (2.27) on the right side of (2.28) and making the charge of variable and since \(f, g \) is non-increasing, we have

\[
\int_a^b f(x) g(x) \, dx
\leq \frac{1}{2} (b - a) \int_0^1 \left[\{ f(ta + (1 - t)b) \}^2 + \{ g(ta + (1 - t)b) \}^2 \right] \, dt
\]

\leq \frac{1}{2} (b - a) \int_0^1 \left[\left(t^{\alpha_1} f(a) + m_1 (1 - t^{\alpha_1}) f \left(\frac{b}{m_1} \right) \right)^2
+ \left(t^{\alpha_2} g(a) + m_2 (1 - t^{\alpha_2}) g \left(\frac{b}{m_2} \right) \right)^2 \right] \, dt
\[
\begin{align*}
&= \frac{1}{2} (b - a) \left[\frac{1}{2\alpha_1 + 1} f^2(a) \\
&+ \frac{2\alpha_1^2}{(\alpha_1 + 1)(2\alpha_1 + 1)} m_1^2 f^2 \left(\frac{b}{m_1} \right) \\
&+ \frac{2\alpha_1}{(\alpha_1 + 1)(2\alpha_1 + 1)} m_1 f(a) f \left(\frac{b}{m_1} \right) + \frac{1}{2\alpha_2 + 1} g^2(a) \\
&+ \frac{2\alpha_2^2}{(\alpha_2 + 1)(2\alpha_2 + 1)} m_2^2 g^2 \left(\frac{b}{m_2} \right) \\
&+ \frac{2\alpha_2}{(\alpha_2 + 1)(2\alpha_2 + 1)} m_2 g(a) g \left(\frac{b}{m_2} \right) \right].
\end{align*}
\]

Analogously we obtain

\[
(2.30) \quad \int_a^b f(x) g(x) \, dx \leq \frac{1}{2} (b - a) \left[\frac{1}{2\alpha_1 + 1} f^2(b) \\
+ \frac{2\alpha_1^2}{(\alpha_1 + 1)(2\alpha_1 + 1)} m_1^2 f^2 \left(\frac{a}{m_1} \right) \\
+ \frac{2\alpha_1}{(\alpha_1 + 1)(2\alpha_1 + 1)} m_1 f(b) f \left(\frac{a}{m_1} \right) + \frac{1}{2\alpha_2 + 1} g^2(b) \\
+ \frac{2\alpha_2^2}{(\alpha_2 + 1)(2\alpha_2 + 1)} m_2^2 g^2 \left(\frac{a}{m_2} \right) \\
+ \frac{2\alpha_2}{(\alpha_2 + 1)(2\alpha_2 + 1)} m_2 g(b) g \left(\frac{a}{m_2} \right) \right].
\]

Rewriting (2.29) and (2.30), we get the required inequality in (2.25). The proof is complete. □

Remark 3. In Theorem 6, if we choose \(\alpha_1 = \alpha_2 = 1 \), we obtain the inequality of Theorem 5.

References

[1] M. Alomari and M. Darus, On the Hadamard’s inequality for log-convex functions on the coordinates, *Journal of Inequalities and Applications*, vol. 2009, Article ID 283147, 13 pages, 2009.

[2] M. K. Bakula, M. E. Özdemir and J. Pečarić, Hadamard type inequalities for \(m \)-convex and \((\alpha, m)\) -convex functions, *J. Inequal. Pure & Appl. Math.*, 9(2008), Article 96.

[3] M. K. Bakula, J. Pečarić, and M. Ribičić, Companion inequalities to Jensen’s inequality for \(m \)-convex and \((\alpha, m)\) -convex functions, *J. Inequal. Pure & Appl. Math.*, 7(2006), Article 194.

[4] X.-M. Zhang, Y.-M. Chu and X.-H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its application, *Journal of Inequalities and Applications*, vol. 2010, Article ID 507560, 11 pages, 2010.

[5] C. Dinu, Hermite-Hadamard inequality on time scales, *Journal of Inequalities and Applications*, vol. 2008, Article ID 287947, 24 pages, 2008.

[6] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, *RGMIA Monographs*, Victoria University, 2000. [ONLINE: http://www.staff.vu.edu.au/RGMIA/monographs/hermite-hadamard.html].

[7] P.M. Gill, C.E.M Pearce and J. Pečarić, Hadamard’s inequality for \(r \)-convex functions, *J. Math. Anal. Appl.*, 215(1997), 461-470.
[8] V. G. Miheşan, A generalization of the convexity, *Seminar on Functional Equations, Approx. and Convex.*, Cluj-Napoca (Romania) (1993)

[9] D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis, *Kluwer Academic Publishers, Dordrecht*, 1993.

[10] M.E. Özdemir, M. Avcı and E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, *Appl. Math. Lett.* (2010), doi: 10.1016/j.aml.2010.04.037 (in press).

[11] B.G. Pachpatte, A note on integral inequalities involving two log-convex functions, *Math. Inequal. Appl.*, 7(4) (2004), 511-515.

[12] E. Set, M.E. Özdemir and S.S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, *Journal of Inequalities and Applications, Articles in Press* (2010).

[13] G. Toader, Some generalizations of the convexity, *Proc. Colloq. Approx. Opt. Cluj-Napoca*, (1984), 329-338.

 Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey

E-mail address: erhanset@yahoo.com

Graduate School of Natural and Applied Sciences, Ağrı İbrahim Çeçen University, Ağrı, Turkey

E-mail address: emos@atauni.edu.tr

Research Group in Mathematical Inequalities & Applications, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://www.staff.vu.edu.au/rgmia/dragomir/