ABSTRACT
Objective: Gas chromatography-Mass spectrometry (GC-MS) is an analytical method that combines the features of gas-liquid chromatography and mass spectrometry to identify different substances within a test sample. Applications of GC-MS include drug detection, fire investigation, environmental analysis, explosives investigation, and identification of unknown samples.

Methods: The present study also relies on use of GC-MS for detection and interpretation of compounds present in N. sativa oil samples. Fixed oil was obtained through column chromatography of ethyl acetate fraction. The oil samples were subjected to GC-MS analysis which showed 5, 18, 12 and 20 compounds in four fixed oil samples respectively.

Results: The major components were linoleic acid, methyl ester (35.5%), oleic acid, methyl ester (15.007%), palmitic acid, methyl ester (8.208%).

Conclusion: Study concludes that in fixed oils, linoleic acid constitutes the major portion while oleic acid and palmitic acid also contributes in small quantity.

Keywords: Column chromatography, fixed oil, GC-MS, Nigella sativa.

INTRODUCTION
Plant-derived substances are now being widely used as medicines as these have recently become of great interest owing to their versatile applications. Medicinal plants are the richest natural bio-resource of drugs of traditional systems of medicine. With the advancement in research medicinal plants are considered a source of modern medicines, nutraceuticals, food supplements, folk medicines, pharmaceutical intermediates and chemical entities for synthetic drugs. Extraction (as the term is pharmaceutically used) is the separation of medicinally active portions of plant tissues using selective solvents through standard procedures. Oils are important sources of oils of nutritional, industrial and pharmaceutical importance. Non-conventional oilseeds are being considered because their constituents have unique chemical properties and may augment the supply of edible oils. The study of oilseeds for their minor constituents is useful in order to use both oil and minor constituents effectively.

Nigella sativa, which belongs to the family Ranunculaceae, commonly grows in Eastern Europe, the Middle East, and Western Asia. It is a small shrub with tapering green leaves and bearing white and purplish flowers. Its ripe fruit contains tiny black seeds, commonly known as black seeds in English. Seeds of N. sativa are frequently used in folk medicine in the Middle East and some Asian countries for the promotion of good health. Seeds are used for the treatment of various diseases including fever, the common cold, headache, asthma, rheumatic diseases, and microbial infections and to expel worms from the intestines as well as cancer. In addition, it is used as a flavoring additive to bread and pickles. The seeds contain a yellowish volatile oil, a fixed oil, proteins, amino acids, reducing sugars, mucilage, alkaloids, organic acids, tannins, resins, toxic glycoside, glycosidal saponins, crude fiber, minerals, and vitamins. The aim of the present study was to find the composition of fixed and volatile oils obtained from ethyl acetate fraction.

MATERIALS AND METHODS
Plant Material: The seeds of N. sativa were purchased from a local spice market of Peshawar, KPK Pakistan.
Plant Identification: The purchase seeds of N. sativa were identified by a botanist, Prof. Dr. Abdur Rashid, in Department of Botany, University of Peshawar, KPK Pakistan.
Extraction and fractionation: The seeds were grinded in a rotary mill and crude extract was obtained. This extract was fractionated with polar and non-polar solvents which were methanol, ethyl acetate, chloroform and n-hexane respectively. Then, each fractionated sample was concentrated in rotary evaporator and solvent was removed to obtain concentrated extract.

GC–MS analysis of fixed oil: A Shimadzu gas chromatograph, hyphenated to a QP2010 plus (Tokyo, Japan) mass spectrometer, outfitted with an auto-injector (AOC-20i) and auto sampler (AOC-20S) was used. The carrier gas used was Helium and a capillary column TRB-FFAP of specification: length, 30m, thickness; 0.250 µm, i.d.; 0.35mm and treated with polyethylene glycol was used for all chromatographic separations. Other GC–MS parameters are: pressure: 100KPa, temperature: 240°C, solvent cut time: 1.6 min, 1µl of standard and sample were injected into the column of GC. The injector operatory mode was a split mode, with a split ratio of 1:50, and 240°C as an injection temperature. Initially the column temperature was 50°C and was changed at the rate of 15°C for each minute and raised to 150°C. After 150°C, the rising rate of temperature was 2.5°C per minute and was raised to 175°C and was maintained for 5 minutes. Then, the rising rate of temperature was 2.5°C per minute at which the temperature was to 220°C.

MS scanning was executed from m/z 85 to m/z 380. GC–MS solutions software, provided by the supplier was used for the system control and acquiring the data. Compounds identification was carried out by the comparison of the relative retention times of the components and obtained mass spectra with standard mass spectra (from the NIST library, NIST 05).

Table 1: GC–MS analysis of *N. sativa* fixed oil (sample 1)
S. N.

1.
2.
3.
4.
5.

Table 2: GC–MS analysis of *N. sativa* fixed oil (sample 2)
S. N.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Table 3: GC–MS analysis of *N. sativa* fixed oil (sample 3)
S. N.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

RESULTS AND DISCUSSION

Four samples of fixed oils were obtained and were subjected to GC–MS analysis. GC–MS analysis confirmed the presence of various compounds in fixed oils in different ratio. GC–MS analysis of fixed oils is illustrated in Figure 1, 2, 3 and 4 respectively. The graphs are also illustrated in tabular forms in Table 1, Table 2, Table 3 and Table 4 respectively.
Current study have reported the chemical composition of fixed oils of *N. sativa*. GC-MS analysis of oils confirmed the presence of various compounds in them. Four samples of fixed oils were obtained and subjected to GC-MS analysis. In the first sample, all methyl esters were present in very small quantity (Table 1). GC-MS analysis of second sample showed that linoleic acid was the major component which was 10% followed by oleic acid and palmitic acid which are 3.76% and 2.38% respectively while other compounds were in small quantity (Table 2). Analysis of third sample showed that various methyl esters were present but in small amounts (Table 3).

GC-MS analysis of fourth sample explored that linoleic acid (35.55%) was the major component while oleic acid (15.007%), palmitic acid (8.20%) and stearic acid (1.877%) were also present. Many other components were present in minute quantities (Table 4).

CONCLUSION

Study concludes that in fixed oils, linoleic acid constitutes the major portion while oleic acid and palmitic acid also contributes in small quantity. Many other components are also present in very minute amount.

Table 4: GC-MS analysis of *N. sativa* fixed oil (sample 4)

S. N.	Name	R. Time	Area	Conc. (%)
1.	C6:0; Hexanoic acid, methyl ester	2.945	12976	0.039
2.	C8:0; Caprylic acid, methyl ester	40744	1355	0.002
3.	C12:0; Lauric acid, methyl ester	8.085	5679	0.007
4.	C13:0; Tridecanoic acid, methyl ester	9.187	1808	0.002
5.	C14:0; Myristic acid, methyl ester	10.180	109863	0.128
6.	C15:0; Pentadecanoic acid, methyl ester	11.641	20937	0.025
7.	C15:1; Pentadecenoic acid, methyl ester	12.017	11790	0.065
8.	C16:0; Palmitic acid, methyl ester	13.448	7199712	8.208
9.	C16:1; Palmitoleic acid, methyl ester	13.895	29472	0.165
10.	C17:0; Margaric acid, methyl ester	15.513	31426	0.038
11.	C17:1; Heptadecenoic acid, methyl ester	15.956	2716	0.015
12.	C18:0; Stearic acid, methyl ester	17.897	1621340	1.877
13.	C18:1c; Oleic acid, methyl ester	18.354	3590155	15.007
14.	C18:1n9t; Elaidic acid, methyl ester	18.506	9657037	35.555
15.	C18:2n6t; Linoleic acid, methyl ester	19.742	99458	0.353
16.	C18:3n3; Linolenic acid, methyl ester	21.689	32240	0.126
17.	C20:0; arachidic acid, methyl ester	24.637	70834	0.086
18.	C20:1c; 11-Eicosenoic acid, methyl ester	25.215	55869	0.245
19.	C20:2c; 11,14-Eicosadienoic acid, methyl ester	26.970	432857	1.518

Figure 1: Graphical representation of GC-MS analysis of sample 1
Figure 2: Graphical representation of GC-MS analysis of sample

Figure 3: Graphical representation of GC-MS analysis of sample 3

Figure 4: Graphical representation of GC-MS analysis of sample 4
AUTHOR’S CONTRIBUTION
The manuscript was carried out, written, and approved in collaboration with all authors.

CONFLICT OF INTEREST
No conflict of interest associated with this work.

REFERENCES
1. Ncube NS, Afolayan AJ, Okoh AI. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol 2008; 7: 1797-1806. https://doi.org/10.1186/1472-6882-6-11
2. Ramadan MF, Morsel JT. Analysis of glycolipids from black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) oil seeds. Food Chem 2003; 80:197-204. https://doi.org/10.1016/S0308-8146(02)00254-6
3. Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res 2003; 17: 299-305.
4. El-Din K, El-Tahir H, Bakeet DM. The Black Seed Nigella sativa Linnaeus - A mine for multi cures: A plea for urgent clinical evaluation of its volatile oil. J Taibah Univ Med. Sci 2006; 1: 1-19. https://doi.org/10.1016/S1686-7668(06)70003-8
5. Randhawa MA, Alghamdi MS. Anticancer Activity of Nigella sativa (Black Seed). Am J Chin Med 2011; 39: 1075-1091. https://doi.org/10.1142/S0192415X1100941X
6. Ramadan MF. Nutritional value, functional properties and nutraceuticals applications of black cumin (Nigella sativa L.): an overview. Int J Food Sci Tech 2007; 42: 1208-1218. https://doi.org/10.1111/j.1365-2621.2006.01417.x
7. Ullah H, Rauf A, Ullah Z, Anwar M, Shah AUH, Uddin G, Ayub K. Density functional theory and phytochemical study of Pistagremic acid. Spectrochim. Acta A: Mol. Biomol. Spectrosc 2014; 118: 210-214. https://doi.org/10.1016/j.saa.2013.08.099