ADDENDUM TO THE PAPER “HYPERSURFACES WITH ISOMETRIC REEB FLOW IN COMPLEX HYPERBOLIC TWO-PLANE GRASSMANNIANS”

HYUNJIN LEE, MI JUNG KIM AND YOUNG JIN SUH

Abstract. We classify all of real hypersurfaces M with Reeb invariant shape operator in complex hyperbolic two-plane Grassmannians $SU_{2,m}/S(U_2 U_m)$, $m \geq 2$. Then it becomes a tube over a totally geodesic $SU_{2,m-1}/S(U_2 U_{m-1})$ in $SU_{2,m}/S(U_2 U_m)$ or a horosphere whose center at infinity is singular and of type $JN \in \mathfrak{J}N$ for a unit normal vector field N of M.

INTRODUCTION

Let us introduce a paper due to Suh [9] for the classification of all real hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannian $SU_{2,m}/S(U_2 U_m)$ as follows:

Theorem A. Let M be a connected orientable real hypersurface in complex hyperbolic two-plane Grassmannian $SU_{2,m}/S(U_2 U_m)$, $m \geq 3$. Then the Reeb flow on M is isometric if and only if M is an open part of a tube around some totally geodesic $SU_{2,m-1}/S(U_2 U_{m-1})$ in $SU_{2,m}/S(U_2 U_m)$ or a horosphere whose center at infinity is singular and of type $JN \in \mathfrak{J}N$ for a unit normal vector field N of M.

A tube around $SU_{2,m-1}/S(U_2 U_{m-1})$ in $SU_{2,m}/S(U_2 U_m)$ is a principal orbit of the isometric action of the maximal compact subgroup $SU_{1,m+1}$ of SU_{m+2}, and the orbits of the Reeb flow corresponding to the orbits of the action of U_1. The action of $SU_{1,m+1}$ has two kinds of singular orbits. One is a totally geodesic $SU_{2,m-1}/S(U_2 U_{m-1})$ in $SU_{2,m}/S(U_2 U_m)$ and the other is a totally geodesic $\mathbb{C}H^m$ in $SU_{2,m}/S(U_2 U_m)$.

When the shape operator A of M in $SU_{2,m}/S(U_2 U_m)$ is Lie-parallel along the Reeb vector field ξ, that is $\mathcal{L}_\xi A = 0$, we say that the shape operator is Reeb invariant. The purpose of this addendum is, by Theorem A, to give a complete classification of real hypersurfaces in $SU_{2,m}/S(U_2 U_m)$ with Reeb invariant shape operator as follows:

Main Theorem. Let M be a connected orientable real hypersurface in complex hyperbolic two-plane Grassmannian $SU_{2,m}/S(U_2 U_m)$, $m \geq 3$. Then the shape operator on M is Reeb invariant if and only if M is an open part of a tube around
some totally geodesic $SU_{2,m-1}/S(U_2\cdot U_{m-1})$ in $SU_{2,m}/S(U_2\cdot U_m)$ or a horosphere whose center at infinity is singular and of type $JN\in\mathfrak{q}N$ for a unit normal vector field N of M.

Moreover, related to the invariancy of shape operator, by using the result of Main Theorem, we have the following two corollaries.

Corollary 1. There does not exist any connected orientable real hypersurface in complex hyperbolic two-plane Grassmannian $SU_{2,m}/S(U_2\cdot U_m)$, $m \geq 3$, with \mathcal{F}-invariant shape operator.

Corollary 2. There does not exist any connected orientable real hypersurface in complex hyperbolic two-plane Grassmannian $SU_{2,m}/S(U_2\cdot U_m)$, $m \geq 3$, with invariant shape operator.

In previous corollaries, if the shape operator A of M in $SU_{2,m}/S(U_2\cdot U_m)$ satisfies a property of $\mathcal{L}_X A = 0$ on a distribution \mathcal{F} defined by $\mathcal{F} = \mathcal{C}^\perp \cup \mathcal{Q}^\perp$ (or for any tangent vector field X on M, resp.), then it is said to be \mathcal{F}-invariant (or invariant, resp.).

We use some references [1], [2], [3], [4], and [5] to recall the Riemannian geometry of complex hyperbolic two-plane Grassmannians $SU_{2,m}/S(U_2\cdot U_m)$. And some fundamental formulas related to the Codazzi and Gauss equations from the curvature tensor of complex hyperbolic two-plane Grassmannian $SU_{2,m}/S(U_2\cdot U_m)$ will be recalled (see [6], [7], and [8]). In this addendum we give an important Proposition 1.1 and prove our Main Theorem in section 1. Lastly, we give a brief proof for Corollaries 1 and 2 by using our Main Theorem.

1. Proof of the Main Theorem

In order to give a complete proof of our Main Theorem in the introduction, we need the following Key Proposition. Then by virtue of Theorem A we give a complete proof of our main theorem.

Proposition 1.1. Let M be a real hypersurface in noncompact complex two-plane Grassmannian $SU_{2,m}/S(U_2\cdot U_m)$, $m \geq 3$. If the shape operator on M is Reeb invariant, then the shape operator A commutes with the structure tensor ϕ.

Proof. First note that

\[
(\mathcal{L}_\xi A)X = \mathcal{L}_\xi (AX) - A\mathcal{L}_\xi X
= \nabla_\xi (AX) - \nabla_{AX} \xi - A(\nabla_\xi X - \nabla_X \xi)
= (\nabla_\xi A)X - \nabla_{AX} \xi + A\nabla_X \xi
= (\nabla_\xi A)X - \phi A^2 X + A\phi AX
\]

for any vector field X on M. Then the assumption $\mathcal{L}_\xi A = 0$, that is, the shape operator is Reeb invariant if and only if $(\nabla_\xi A)X = \phi A^2 X - A\phi AX$.

On the other hand, by the equation of Codazzi in [9] and the assumption of Reeb invariant, we have

\[(\nabla_X A)\xi = \phi A^2 X - A\phi AX\]

\[+ \frac{1}{2} \left[\phi X + \sum_{\nu=1}^{3} \left\{ \eta_{\nu}(\xi) \phi_{\nu} X - \eta_{\nu}(X) \phi_{\nu} \xi + 3\eta_{\nu}(\phi X)\xi_{\nu} \right\} \right].\]

Now, let us take an orthonormal basis \(\{e_1, e_2, \cdots, e_{4m-1}\}\) for the tangent space \(T_xM, x \in M\), for \(M\) in \(SU_{2,m}/SU_{2,m}\). Then the equation of Codazzi gives

\[(\nabla_{e_i}A)X - (\nabla_X A)e_i = -\frac{1}{2} \left[\eta(e_i)\phi X - \eta(X)\phi e_i - 2g(\phi e_i, X)\xi \right.\]

\[+ \sum_{\nu=1}^{3} \left\{ \eta_{\nu}(e_i)\phi_{\nu} X - \eta_{\nu}(X)\phi_{\nu} e_i - 2g(\phi_{\nu} e_i, X)\xi_{\nu} \right\}\]

\[+ \sum_{\nu=1}^{3} \left\{ \eta(e_i)\eta_{\nu}(\phi X) - \eta(X)\eta_{\nu}(\phi e_i) \right\} \xi_{\nu},\]

from which, together with the fundamental formulas mentioned in [9], we know that

\[\sum_{i=1}^{4m-1} g((\nabla_{ei}A)X, \phi e_i)\]

\[= (2m - 1)\eta(X) + \frac{1}{2} \sum_{\nu=1}^{3} \left\{ g(\phi_{\nu} \xi, \phi_{\nu} X) - \eta_{\nu}(X) \text{Tr}(\phi_{\nu}) \right\}\]

\[+ \frac{1}{2} \sum_{\nu=1}^{3} \left\{ g(\phi_{\nu} \phi X, \phi_{\nu} \xi) + \eta(X)g(\phi_{\nu} \xi, \phi_{\nu} \xi) \right\}\]

\[= (2m + 1)\eta(X) - \frac{1}{2} \sum_{\nu=1}^{3} \eta_{\nu}(X)\text{Tr}\phi_{\nu} - \sum_{\nu=1}^{3} \eta_{\nu}(\xi)\eta_{\nu}(X),\]

where the following formulas are used in the second equality

\[\sum_{\nu=1}^{3} g(\phi_{\nu} \xi, \phi_{\nu} X) = 3\eta(X) - \sum_{\nu=1}^{3} \eta_{\nu}(\xi)\eta_{\nu}(X),\]

\[\sum_{\nu=1}^{3} g(\phi_{\nu} \phi X, \phi_{\nu} \xi) = \sum_{\nu=1}^{3} \eta(X)\eta^2_{\nu}(\xi) - \sum_{\nu=1}^{3} \eta_{\nu}(\xi)\eta_{\nu}(X),\]

\[\sum_{\nu=1}^{3} \eta(X)g(\phi_{\nu} \xi, \phi_{\nu} \xi) = 3\eta(X) - \sum_{\nu=1}^{3} \eta^2_{\nu}(\xi)\eta(X).\]

Now let us denote by \(U\) the vector \(\nabla_{\xi} \xi = \phi A\xi\). Then using the equation \((\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi\) given in [9] and taking the derivative to the vector field \(U\) gives

\[\nabla_{ei} U = \eta(\xi) Ae_i - g(Ae_i, A\xi)\xi + \phi(\nabla_{e_i} A)\xi + \phi A(\nabla_{e_i} \xi).\]
Then naturally its divergence can be given by

\[
\text{div } U = \sum_{i=1}^{4m-1} g(\nabla_{e_i}U, e_i)
\]

(1.4)

\[
= h\eta(A\xi) - \eta(A^2\xi) - \sum_{i=1}^{4m-1} g((\nabla_{e_i}A)\xi, \phi e_i) - \sum_{i=1}^{4m-1} g(\phi Ae_i, A\phi e_i),
\]

where \(h\) denotes the trace of the shape operator of \(M\) in \(SU_{2,m}/SU_2U_m\). Now we calculate the squared norm of the tensor \(\phi A - A\phi\) as follows:

\[
\| \phi A - A\phi \|^2 = \sum_i g((\phi A - A\phi)e_i, (\phi A - A\phi)e_i)
\]

(1.5)

\[
= \sum_{i,j} g((\phi A - A\phi)e_i, e_j)g((\phi A - A\phi)e_i, e_j)
\]

\[
= \sum_{i,j} \left\{ g(\phi Ae_j, e_i) + g(\phi Ae_i, e_j) \right\} \left\{ g(\phi Ae_j, e_i) + g(\phi Ae_i, e_j) \right\}
\]

\[
= 2 \sum_{i,j} g(\phi Ae_j, e_i)g(\phi Ae_i, e_i) + 2 \sum_{i,j} g(\phi Ae_j, e_i)g(\phi Ae_i, e_j)
\]

\[
= 2 \div U - 2h\eta(A\xi) + 2 \sum_j g((\nabla_{e_j}A)\xi, \phi e_j) + 2\text{Tr}A^2,
\]

where \(\sum_i\) (respectively, \(\sum_{i,j}\)) denotes the summation from \(i = 1\) to \(4m - 1\) (respectively, from \(i, j = 1\) to \(4m - 1\)) and in the final equality we have used (1.4). From this, together with the formula (1.3), it follows that

\[
\text{div } U = \frac{1}{2} \| \phi A - A\phi \|^2 - \text{Tr}A^2
\]

(1.6)

\[
+ h\eta(A\xi) - 2(m + 1) + \frac{1}{2} \sum_{\nu=1}^{3} \eta_{\nu}(\xi)\text{Tr}\phi_{\nu} + \sum_{\nu=1}^{3} \eta_{\nu}^2(\xi).
\]

From (1.6), together with the assumption of Reeb invariant shape operator, we want to show that the structure tensor \(\phi\) commutes with the shape operator \(A\), that is, \(\phi A = A\phi\).

Let us take the inner product (1.1) with the Reeb vector field \(\xi\). Then we have

\[
g((\nabla_X A)\xi, \xi) = -g(A\phi AX, \xi) + \frac{1}{2} \sum_{\nu=1}^{3} \left\{ \eta_{\nu}(\xi)g(\phi_{\nu}X, \xi) + 3\eta_{\nu}(\phi X)g(\xi_{\nu}, \xi) \right\}
\]

(1.7)

\[
= -g(A\phi AX, \xi) + 2 \sum_{\nu=1}^{3} \eta_{\nu}(\xi)\eta_{\nu}(\phi X)
\]

\[
= g(AX, U) + 2 \sum_{\nu=1}^{3} \eta_{\nu}(\xi)\eta_{\nu}(\phi X).
\]
On the other hand, by applying the structure tensor ϕ to the vector field U, we have
\[\phi U = \phi^2 A\xi = -A\xi + \eta(A\xi)\xi = -A\xi + \alpha\xi, \]
where the function α denotes $\eta(A\xi)$. From this, differentiating and using the formula $(\nabla_X\phi)Y = \eta(Y)AX - g(AX,Y)\xi$ gives
\[(\nabla_X A)\xi = g(AX,U)\xi - \phi(\nabla_X U) - A\phi AX + (X\alpha)\xi + \alpha\phi AX. \]
Taking the inner product (1.8) with ξ and using $U = \phi A\xi$ gives
\[g((\nabla_X A)\xi, \xi) = g(AX,U) - g(A\phi AX, \xi) + (X\alpha) = 2g(AX,U) + (X\alpha). \]
Then, together with (1.7), it follows that
\[g(AX,U) - 2\sum_{\nu=1}^{3} \eta_\nu(\xi)\eta_\nu(\phi X) + (X\alpha) = 0. \]
Substituting (1.1) and (1.9) into (1.8) gives
\[\sum_{\nu=1}^{3} \eta_\nu(\xi)\eta_\nu(\phi X) + 3\eta_\nu(\phi X)\xi_\nu = \frac{1}{2}(m - 1) - \text{Tr}A^2 + \eta(A^2\xi) + h - \alpha^2 + \sum_{\nu=1}^{3} \eta_\nu^2(\xi) + \frac{1}{2} \sum_{\nu=1}^{3} \eta_\nu(\xi)\text{Tr}(\phi_\nu), \]
where in the first equality we have used the notion of \(\text{div} \). Then it follows that

\[
(1.12) \quad \text{div} U = -2(m + 1) - \text{Tr} A^2 + \alpha h + \sum_{\nu=1}^{3} \eta_{\nu}^2(\xi) + \frac{1}{2} \sum_{\nu=1}^{3} \eta_{\nu}(\xi) \text{Tr}(\phi \phi_{\nu}),
\]

where we have used \(\| U \|^2 = \eta(A^2 \xi) = \alpha^2 \) in (1.11).

Now if we compare (1.6) with the formula (1.12), we can assert that the squared norm \(\| \phi A - A \phi \|^2 \) vanishes, that is, the structure tensor \(\phi \) commutes with the shape operator \(A \). This completes the proof of our proposition.

Hence by Proposition 1.1 we know that the Reeb flow on \(M \) is isometric. From this, together with Theorem A we give a complete proof of our Main Theorem in the introduction.

\[\square\]

Remark 1.1. It can be easily checked that the shape operator of real hypersurfaces \(M \) in \(SU_{2,m}/S(U_2 U_m) \) is Reeb invariant, that is, \(\mathcal{L}_{\xi} A = 0 \) when \(M \) is locally congruent to a tube around some totally geodesic \(SU_{2,m-1}/S(U_2 U_{m-1}) \) in \(SU_{2,m}/S(U_2 U_m) \) or a horosphere whose center at infinity is singular and of type \(JN \subset 3N \) for a unit normal vector field \(N \) of \(M \). So the converse of our main theorem naturally holds.

2. Proof of Corollaries

From the definitions of three kinds of the invariancy of the shape operator \(A \) defined on \(M \) in the Introduction, namely invariant, \(\mathcal{F} \)-invariant and Reeb invariant shape operator, the notion of Reeb invariant is the most weakest condition. Thus from our Main Theorem, we assert that if a real hypersurface \(M \) in \(SU_{2,m}/S(U_2 U_m) \), \(m \geq 3 \), has \(\mathcal{F} \)-invariant (or invariant) shape operator, then \(M \) is locally congruent to a tube around some totally geodesic \(SU_{2,m-1}/S(U_2 U_{m-1}) \) in \(SU_{2,m}/S(U_2 U_m) \) or a horosphere whose center at infinity is singular.

Conversely, if we check whether a tube \(M_r \) of radius \(r \) around the totally geodesic \(SU_{2,m-1}/S(U_2 U_{m-1}) \) in \(SU_{2,m}/S(U_2 U_m) \) and a horosphere \(\mathcal{H} \) in \(SU_{2,m}/S(U_2 U_m) \) whose center at infinity is singular have the \(\mathcal{F} \)-invariant (or invariant) shape operator, then it does not hold. In fact, we get a contradiction for the case \((\mathcal{L}_{\xi_3} A)\xi_3 \). From such a view point, we can assert that the shape operator \(A \) of \(M_r \) (or \(\mathcal{H} \), respectively) satisfy neither the property of \(\mathcal{F} \)-invariant nor invariant shape operator.

Summing up these discussion, we give a complete proof of our Corollaries in the introduction.

\[\square\]

References

[1] J. Berndt and Y.-J. Suh, Hypersurfaces in noncompact complex Grassmannians of rank two, Internat. J. Math. 23 (2012), 1250103(35 pages).
[2] J. Berndt, H. Lee and Y.-J. Suh, Contact hypersurfaces in noncompact complex Grassmannians of rank two, Internat. J. Math. 24 (2013), 1350089(11 pages).
[3] S. Helgason, Homogeneous codimension one foliations on noncompact symmetric spaces, Groups and Geometric Analysis Math. Survey and Monographs, Amer. Math. Soc. 83 (2002), 1-40.
[4] S. Helgason, Geometric Analysis on Symmetric Spaces, The 2nd Edition, Math. Survey and Monographs, Amer. Math. Soc. 39, 2008.
[5] A. Martinez and J.D. Pérez, *Real hypersurfaces in quaternionic projective space*, Ann. Math. Pura Appl. 145 (1968), 355-384.

[6] J.D. Pérez and Y.J. Suh, *Real hypersurfaces of quaternionic projective space satisfying $\nabla U_i R = 0$*, Diff. Geom. and Its Appl. 7 (1997), 211-217.

[7] S. Montiel and A. Romero, *On some real hypersurfaces of a complex hyperbolic space*, Geometriae Dedicata 20 (1968), 245-261.

[8] M. Okumura, *On some real hypersurfaces of a complex projective space*, Trans. Amer. Math. Soc. 212 (1975), 355-364.

[9] Y.J. Suh, *Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians*, Advances in Applied Math. 50 (2013), 645-659.

YOUNG JIN SUH AND MI JUNG KIM
DEPARTMENT OF MATHEMATICS,
KYUNGRUPUK NATIONAL UNIVERSITY,
TAEGU 702-701, KOREA
E-mail address: yjsuh@knu.ac.kr

HYUNJIN LEE
THE CENTER FOR GEOMETRY AND ITS APPLICATIONS,
POHANG UNIVERSITY OF SCIENCE & TECHNOLOGY,
POHANG 790-784, KOREA
E-mail address: lhjibis@hanmail.net