Acarologia is a quarterly journal of acarology, since 1959. Publishing on all aspects of the Acari.

All information:

http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia@supagro.inra.fr

Acarologia is proudly non-profit, with no page charges and free open access.

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions:
- Year 2018 (Volume 58): 380 €
- Previous volumes (2010-2016): 250 € / year (4 issues)

Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
PHYTOSEIID MITE DIVERSITY (ACARI: MESOSTIGMATA) AND ASSESSMENT OF THEIR SPATIAL DISTRIBUTION IN FRENCH APPLE ORCHARDS

Marie-Stéphane TIXIER1*, Ivson LOPES1, Guy BLANC2, Jean-Luc DEDIEU2, Serge KREITER1

(Received 08 August 2013; accepted 16 January 2014; published online 28 March 2014)

1 Montpellier SupAgro, UMR CBGP INRA/IRD/CIRAD/Montpellier SupAgro, Campus International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France. (*Corresponding author) tixier@supagro.inra.fr, kreiter@supagro.inra.fr
2 Bayer S.A.S, Bayer CropScience, 16 rue Jean-Marie Leclair, CS 90106, 69266 Lyon cedex 09, France. guy.blanc@bayer.com, jean-luc.dedieu@bayer.com

ABSTRACT — The present study reports the results of surveys carried out over two years in 173 apple orchards in France. Eleven species of Phytoseiidae were observed, among them three were dominant: Amblyseius andersoni, Kampimodromus aberrans and Typhlodromus (Typhlodromus) pyri. Cydnodromus californicus was also found but only in some orchards and nearly always in association with one of three dominant species. This observation confirms the faunal modification initiated more than ten years ago. Amblyseius andersoni was recorded in high densities in nearly all the regions considered. Typhlodromus (T.) pyri was also widespread, even if particularly frequent and abundant in the Rhône-Alpes region. Kampimodromus aberrans was localised in some regions; it was especially frequent and abundant in the Mediterranean region. An identification key containing the eleven reported species is provided. Taylor’s law was applied in order to characterize the Phytoseiidae distribution in apple orchards. The distribution is clearly aggregative, whatever the region and the Phytoseiidae species considered. Relationships between the occupation rate and the mean number of Phytoseiidae per leaf was established and an abacus was constructed to facilitate surveys and the counting during practical assessments of Phytoseiidae fauna in apple orchards.

KEYWORDS — Amblyseius andersoni; Kampimodromus aberrans; Typhlodromus pyri; aggregative distribution; biological control

INTRODUCTION

The mite family Phytoseiidae comprises several predator species which can effectively reduce densities of mite pests in various agrosystems (McMurtry and Croft 1997; Gerson et al. 2003). Most species of this family are generalist predators; they can feed on their prey (especially of the families Tetranychidae and Eriophyidae) but can also develop feeding on pollen, plant exudates, fungi and small insects (McMurtry and Croft 1997; Kreiter et al. 2005).

The family presently comprises more than 2,000 valid species widespread in the world (Moraes et al. 2004; Tixier et al. 2012). In France, more than one hundred species have been reported, especially in crops. However, their occurrence has not been equally studied in all agrosystems. The most well-known French acarofauna is that of vineyards (i.e. Kreiter et al. 2000, 2002; Tixier et al. 2002, 2005; Barber et al. 2006). However, despite the economic importance of apple orchards, little is known on the French Phytoseiidae fauna in this crop. Few
studies carried out more than ten years ago (Fauvel and Gendrier 1992; Fauvel et al. 1993; Bourgoin et al. 2002) showed the presence of *Typhlodromus* (*Typhlodromus*) *pyri* Scheuten, *Amblyseius andersoni* Chant, *Cydnodromus californicus* (McGregor) and *Kampimodromus aberrans* (Oudemans). However, these species were differently distributed depending on the regions considered. Furthermore, the augmentation of some species as *A. andersoni* in south-western France and *K. aberrans* in south-eastern was observed in the last survey in 2002. In other neighbouring countries as Italy, Spain and Switzerland, these same species are observed in apple orchards (Linder 2001; Miñarro et al. 2002; Iglesia et al. 2005; Duso et al. 2009).

The present work presents the results of surveys carried out in 173 apple orchards in several regions of France. The first aim of this survey was thus to determine the Phytoseiidae species encountered. For each species, a discussion on its biology, its occurrence in apple orchards sampled and the factors that could affect its presence is provided. An identification key to females is proposed to assist Phytoseiidae species diagnosis in French apple orchards.

The second aim was to determine the spatial distribution of Phytoseiidae into orchards. According to this spatial distribution, the third aim was to provide an optimal sampling method to assess their densities for practical and accurate counting.

MATERIALS AND METHODS

Sampling and species identification

One hundred and seventy-three apple orchards (planted with 24 different cultivars) in thirteen regions were sampled from May to September in 2011 and 2012 (Table 1, Figure 1). The number of orchards surveyed in each region was similar. Only one or two orchards have been sampled in Alsace, Centre, Haute-Normandie, Franche-Comté, Limousin and Poitou-Charentes. Thus for these regions, no conclusion would be drawn on the Phytoseiidae fauna.

Fifty leaves were collected in each plot. Each leaf was individually observed; Phytoseiidae were counted and collected for identification with a fine hair-brush. Then the females were mounted on slides in Hoyer’s medium and identified under
SPECIES	LOCALITY	REGION	LATITUDE	LONGITUDE	DATE
Amblyseius andrei	Aigues	Auvergne	44°57.25'N	4°24.41'E	22/06/2011
Typhlodromus	Aigues	Auvergne	44°57.25'N	4°24.41'E	22/06/2011
Phytoseius acariensis	Aigues	Auvergne	44°57.25'N	4°24.41'E	22/06/2011
Typhlodromus	Poitiers	Poitou-Charentes	44°50.43'N	0°52.46'E	22/06/2011
Typhlodromus	Poitiers	Poitou-Charentes	44°50.43'N	0°52.46'E	22/06/2011
Phytoseius acariensis	Poitiers	Poitou-Charentes	44°50.43'N	0°52.46'E	22/06/2011
Typhlodromus	Poitiers	Poitou-Charentes	44°50.43'N	0°52.46'E	22/06/2011
Phytoseius acariensis	Poitiers	Poitou-Charentes	44°50.43'N	0°52.46'E	22/06/2011

TABLE 1: Localities (and GPS coordinates) of the 173 French apple orchards and date where and when the eleven Phytoseiidae mite species have been observed.
SPECIES	LOCALITY	REGION	LATITUDE	LONGITUDE	DATE
Typhlodromus aureus	Alpes	PACA	45°19ʹ34.94ʺN	4°42ʹ5.47ʺE	18/07/2011
	Ballots Pays Basse-Normandie	50°51ʹ0.87ʺN	5°53.17ʺE	24/07/2012	
	Bessenay Rhône-Alpes	45°05ʹ17ʺN	5°56.46ʺE	04/07/2011	
	Bessières Rhône-Alpes	45°20ʹ01.3ʺN	3°25.84ʺE	28/06/2012	
	Bessières Rhône-Alpes	45°30ʹ15.47ʺN	5°26.46ʺE	23/06/2012	
	Ballots Pays Basse-Normandie	50°51ʹ0.87ʺN	5°53.17ʺE	24/07/2012	
	Bessenay Rhône-Alpes	45°05ʹ17ʺN	5°56.46ʺE	04/07/2011	
	Bessières Rhône-Alpes	45°20ʹ01.3ʺN	3°25.84ʺE	28/06/2012	
	Bessières Rhône-Alpes	45°30ʹ15.47ʺN	5°26.46ʺE	23/06/2012	
a phase contrast microscope at 400 × magnification (Leica DMLB, Leica Microsystèmes SAS, Reuil-Malmaison, France) using specific identification keys and original descriptions and re-descriptions (Tixier et al. 2008a, b; Tixier 2012; Akashi et al. 2012). The nomenclature used was that proposed by Chant and McMurtry (2007) in the last revision of the family except for the species Neoseiulus californicus, recently re-associated to the genus Cydnodromus (Tsolakis et al. 2012).

All Phytoseiidae found in apple orchard are generalist predators. Conversely to specific predators, their occurrence is usually not linked to their prey and no correlation is usually observed between densities of Phytoseiidae and preys (Slone and Croft 2001). Thus, species of Tetranychidae were not identified nor counted. Furthermore, their densities were usually very low.

Phytoseiidae distribution in apple orchards

In order to characterize Phytoseiidae distribution at the plot level, Taylor’s law has been used (Taylor 1961). This law relates the standard deviation (\(S^2 \)) to the mean (\(m \)) according to the following relation:

\[S^2 = am^b \]

When applying a log transformation, the latter relation describes a straight line (\(\log S^2 = \log(a) + b \times \log(m) \)), where \(b \) is the slope. The \(b \) value of this relation provides information on distribution: when \(b = 1 \), the species is randomly distributed, when \(b > 1 \) the distribution is aggregative and when \(b < 1 \), the distribution is regular. To establish such a relation and calculate the \(b \) value, the mean and the standard deviation of each plot have been calculated (and log transformed) and a simple correlation test has been applied (Statsoft 2008).

Characterisation of the sample size for optimal sampling

In order to define the number of leaves to be sampled in further surveys for characterising the number of Phytoseiidae in apple orchards (N), the following relation (Nachmann 1984) was applied:

\[N = am^{(b-2)}/E^2 \]

where \(a \) and \(b \) are Taylor’s law variables, \(m \) the mean, and \(E^2 \) the accepted error around the mean. We herein tested two errors: 10% and 20% of variation around the mean, i.e. for a mean of 0.5 Phytoseiidae/leaf that means that the samplings can provide estimation intervals of 0.45 – 0.55 and 0.4 – 0.6 Phytoseiidae/leaf, respectively.

RESULTS AND DISCUSSION

Species of Phytoseiidae in French apple orchards

One thousand, nine hundred and eighty-five specimens have been identified. Eleven species of Phytoseiidae have been observed. The list of species, localities and regions is provided in Table 1. Three species were particularly abundant and frequently observed: A. andersoni, K. aberrans and T. (T.) pyri (Table 2). Cydnodromus californicus was observed in several regions in medium densities, whereas the other seven species were observed in some plots but usually in low densities and in association with the three dominant species (Tables 2, 3). Apart from the three dominant species, only two (Euseius gallicus Kreiter and Tixier and Euseius stipulatus [Athias-Henriot]) have been found alone (not occurring with other Phytoseiidae species) in one and three plots, respectively (Tables 1 and 2). In most of orchards, the three dominant species were not found in association with each other (Table 3). The highest co-occurrence was found between T. (T.) pyri and A. andersoni co-found in 11 plots among the 173 sampled (Table 3). Cydnodromus californicus was always found with one of the three dominant species and highest co-occurrence was observed with A. andersoni (in 17 plots among the 20 in which C. californicus was found). Duso et al. (2009) reported the dominance of four species of Phytoseiidae in European orchards: A. andersoni, K. aberrans, T. (T.) pyri as in the present survey. However, they also reported the dominance of another species, Euseius finlandicus (Oudemans), rather rare in the apple orchards considered in our study.

Table 4 shows the cultivars on which the three dominant species have been found. No clear relationship between apple cultivar and Phytoseiidae species appears as the three dominant species have been found on the most common cultivars.

The list of the eleven species found is provided below with some information on their occurrence and biology.
Table 2: Densities and number of plots occupied for eleven Phytoseiidae species recorded in the 173 French apple orchards sampled.

Species	Densities (%)	Number of plots occupied
Amblyseius andersoni	748 (37.7)	86
Kampimodromus aberrans	627 (31.6)	43
Typhlodromus (Typhlodromus) pyri	421 (21.2)	40
Cydnodromus californicus	109 (5.5)	20
Euseius stipulatus	42 (2.1)	8
Euseius gallicus	13 (0.6)	4
Phytoseius horridus	11 (0.5)	1
Paraseiulus triporus	7 (0.3)	5
Typhlodromus (Anthoseius) rhenanoides	3 (0.1)	1
Typhlodromus baccettii	3 (0.1)	1
Euseius finlandicus	1 (0.05)	1

Table 3: Number of plots where two of the dominant species co-occurred in the 173 French apple orchards sampled.

Species	Amblyseius andersoni	Kampimodromus aberrans	Typhlodromus (T.) pyri	Cydnodromus californicus
Amblyseius andersoni	-	-	-	-
Kampimodromus aberrans	3 plots	-	-	-
Typhlodromus(T.) pyri	11 plots	5 plots	-	-
Cydnodromus californicus	17 plots	3 plots	2 plots	-

Amblyseius andersoni was the most frequent and abundant species. It was observed in more than half of the orchards sampled, on 27 apple cultivars (among 34 sampled) and in nearly all the French regions sampled (Figure 1a, b). *Amblyseius andersoni* was dominant in seven of the regions sampled. We can thus question the occurrence of this species in such regions if the number of plots would have been higher. This species is quite common in agrosystems, especially in vineyards and apple orchards in Europe (*i.e.* Spain, Turkey, Switzerland, Slovenia and Italy) (Moraes et al. 1986). It is reported to feed and develop on tetranychid mites and to ensure efficient biological control of these mites (Duso and Camporese 1991; Genini et al. 1991; Koveos and Broufas 2000; Fischer and Mournut-Salesse 2005; Houten et al. 2005; Lorenzon et al. 2012). Some studies have also shown its ability to develop resistance to pesticides (*i.e.* Duso et al. 1992; Pozzebon et al. 2002; James 2002, 2003).

Euseius finlandicus has been observed in only
Table 4: Percentage of the four most important Phytoseiidae species occurring on the 28 apple cultivars in the 173 French orchards sampled in 2011 and 2012.

Cultivar	A. andersoni	T. (T.) pyri	K. aberrans	C. californicus
Akane	67.7	32.3		
Ariane	94.1		5.9	
Avrolles			100	
Blackburn	100			
Braeburn	54.8	15.4	28.8	1
Brookfield		50.7	49.3	
Canada	13.9	86.1		
Chanteclerc			100	
Douce Moen	90	10		
Early Red One	55.8	34.9	9.3	
Fuji	66.1	9.2	22.9	1.8
Gala	37.4	26.9	29.7	5.9
Galaxy	41	8.4	43.4	7.2
Golden	45.5	21.9	7	25.7
Goldrussk	33.3	66.7		
Granny Smith	29.9	11.5	56.3	2.3
Hillwell	100			
Idared	75	22.2	3	
Juliette			100	
Judor	50	50		
Kermmerien	66.7	17.5	15.9	
Melrose			100	
Mondial Gala	100			
Petit jaune	58.8	41.2		
Pink lady	41	47.5	11.5	
Prim Gold			100	
Redfield	48.9		51.1	
Reine des Reinettes	23.5	44.1	32.4	
Rosy Glow	83.3		16.7	
Royal Gala	87.9	3	9.1	
Scarlett Rouge	95		5	
Smoothee			100	
Starkimson	14	86		
Sundourner			100	
one orchard in North West France (Table 1). One specimen has been observed in this study, but this species is quite common in France, especially on uncultivated shrubs and trees but rarely in crops (Moraes et al. 1986, 2004). It is reported as a frequent species of apple orchards in Europe by Duso et al. (2009).

Euseius gallicus has been observed in four orchards located in the South-East of France (Table 1) on three apple cultivars. This species recently described has been reported from shrubs and trees. Nothing is known on its biology and it is morphologically close to _E. stipulatus_ (Okassa et al. 2009; Tixier et al. 2010).

Euseius stipulatus has been found in four orchards located in the South-East France (Table 1). This species is commonly found in the southern Europe. It is a very common species in crops, especially in citrus orchards (Ferragut and Escudero 1997; Sahraoui et al. 2012). Several studies have shown its ability to feed on pollen but also on pests such as _Tetranychus urticae_ (Koch) and _Panonychus citri_ (McGregor) (i.e. Ferragut et al. 1992; Abad-Moyano et al. 2009; Pina et al. 2012). It is usually found on plants with smooth leaves. In the present study, it has been reported on four apple cultivars, but essentially on Golden Delicious, whereas in other orchards with the same cultivar, other Phytoseiidae species have co-occurred.

Kampinodromus aberrans was the second most abundant and frequent species; it was found in 43 orchards and 16 apple cultivars. It was however less widespread than _A. andersoni_ (Figure 1a, b). Indeed, it was only present in four regions and it prevailed in Languedoc-Roussillon only. In Franche-Comté, _K. aberrans_ was the unique species sampled; however only one plot was considered. This species has a Palearctic distribution; it has been observed both in natural vegetation and crops, especially apple orchards and vineyards (i.e. Tixier et al. 1998, 2000; Kreiter et al. 2002; Duso et al. 2009). However, it is more often reported in untreated apple orchards than in commercial plots (Duso et al. 2009). In France, this species is the prevalent species in vineyards of southern France, whereas in the North _T. (T.) pyri_ prevails (Kreiter et al. 2000).

This southern distribution is similar to what has been presently observed in French apple orchards. Climatic conditions, especially dry conditions of Mediterranean climate might favour the presence of _K. aberrans_. However, this species has been reported from higher latitudes, as Germany, Ukraine and Slovakia in orchards (Schruft 1967, Jedlickova 1991, Kolodochka and Omeri 2007) and presently in North-East France, suggesting that other factors could explain its distribution. Duso et al. (2009) suggested that the occurrence of _K. aberrans_ in Italian apple orchards was linked to pesticide applications and tolerance to pesticides applied. Duso et al. (2009) also showed the importance of apple cultivar leaf characteristics on the occurrence of this latter species. In the present study, we can note that _K. aberrans_ was particularly abundant on cultivars “Reinette”, known to have hairy leaves and on the cultivar Chantecler. However this latter cultivar has only been sampled in Languedoc-Roussillon, thus it is impossible to determine if the dominance of _K. aberrans_ is due to cultivar or climatic conditions.

Cydnodromus californicus was observed in twenty orchards and eleven cultivars but always at low densities (Table 4). It was mainly observed in Provence-Alpes-Côte d’Azur and Midi-Pyrénées (Table 1). It was the prevailing species in apple orchards in surveys carried out more than ten years ago (Bourgouin et al. 2002). This species tends thus to disappear in apple crops. This evolution is similar to what has been observed in vineyards (Kreiter et al. 2000). _Cydnodromus californicus_ has been often reported as a species usually present in highly treated plots because of its ability to develop resistance to pesticides (i.e. Fauvel and Bourgoin 1993; Castagnoli et al. 2005; Cloyd et al. 2006). The fact that this species has disappeared from French orchards and vineyards could be explained by the development of Integrated Pest Management practices and the decreasing of toxic pesticide applications. Duso et al. (2009) observed that _K. aberrans_ increased its densities in apple orchards when pesticides less toxic to Phytoseiids are used; it would be more competitive than other species. However, additional studies should be carried out to confirm
this hypothesis.

Paraseiulus triporus (Chant and Yoshida-Shaul) was found on five cultivars in five orchards located in South of France (Table 1). The densities were always low. This species is rather common in the entire West Palearctic region; it has been reported from apples in Sweden, Italy and The Netherlands (Moraes *et al.* 2004). Nothing is known on its biology.

Typhlodromus (*Anthoseius*) *rhenanoides* Athias-Henriot was found in one apple (cultivar Golden Delicious) orchard in South of France. It has been reported from apples only from Norway (Edland and Evans 1998). Nothing is known on its biology. It is a quite rare species only reported from crops. It is the second record of this species in France (Tixier *et al.* 2006).

Typhlodromus (*Typhlodromus*) *bacchetti* Lombardini was found in one apple orchard (cultivar Red Winter) in South of France. It has been reported from apples only from Norway (Edland and Evans 1998). Nothing is known on its biology. It is a quite rare species only reported from crops. It is the second record of this species in France (Tixier *et al.* 2006).

Typhlodromus (*Typhlodromus*) *pyri* was found in nearly all the regions, 40 orchards and 21 apple cultivars (Figure 1a, b). However, even if present in many regions, it was observed only in some plots. It is interesting to note the dominance of this species in the regions Rhône-Alpes and Basse-Normandie. This species is quite common in apple orchards and vineyards all over the world (Hardman *et al.* 1991; Moraes *et al.* 1986, 2004; Roda *et al.* 2003). Several studies have shown its ability to control mite pests and to resist somewhat to pesticide applications (*i.e.* Genini *et al.* 1991; Bonafos *et al.* 2007). Roda *et al.* (2003) showed that apple leaf pubescence could affect the densities of *T. (T.) pyri* because of pollen and fungi spore retention. In the present study, no clear effect of apple cultivar on its occurrence has been observed (Table 4).

Phytoseius horridus Ribaga was found in one apple orchard (11 specimens identified on the cultivar Karmerrien) in North West of France (Table 1). It is the first report of this species in France. It has also been observed on apples in Spain (Miñarro *et al.* 2002). Nothing is known on the biology of this west Palearctic species.

In order to assist the identification of the females of the Phytoseiidae species reported in apple orchards in France, an identification key is provided below.

Identification keys of eleven Phytoseiidae species reported in French orchards

1. Podonotal region of the dorsal shield, anterior to R1, with 4 pairs of lateral setae (j3, z2, z4 and s4); z3 and s6 are absent…….. Sub-family Amblyseiinae 3 — Podonotal region of the dorsal shield, anterior to R1 with 5 or 6 pairs of lateral setae (j3, z2, z4 and s4 always present); z3 and/or s6 are present…….. 2

2. Posterior "lateral" dorsal shield setae Z1, S2, S4 and S5 absent. Setae J2 and R1 absent. Setae Z4 much longer than 100 µm (108 µm); setae s4 much longer than 100 µm (148 µm).……………… Sub-family Phytoseiinae: *Phytoseius horridus* Ribaga — At least one of the setae Z1, S2, S4 or S5 is present…….. Sub-family Typhlodrominae 8

3. Sternal shield with median posterior projection, some forward "migration" of preanal setae JV2 and ZV2.………………………………..4 — Sternal shield without posterior projection, without forward "migration" of preanal setae JV2 and ZV2………………………………..6

4. Peritreme short, extending to z4. Spermatheca with a short calyx and a globular atrium………. *Euseius finlandicus* (Oudemans) — Peritreme long, extending at least to setae z2. Spermatheca with a long calyx…………………5

5. Dorsal shield reticulated, calyx of spermatheca tubular, elongated, vase-shaped…………………. *Euseius gallicus* Kreiter and Tixier — Dorsal shield not so reticulated, calyx of spermatheca tubular, elongated, calyx with parallel sides…………………. *Euseius stipulatus* (Athias-Henriot)
6. Setae S4 absent.

Kampimodromus aberrans (Oudemans)
— Setae S4 present.

7. Ratio setae s4: Z1 < 3.0:1.0; s4, Z4, and Z5 not greatly longer than other setae, never with wide sternal shield; J2 always present. Macrosetae are present on genu II and III.

Cynodromus californicus (McGregor)
— Ratio setae s4: Z1 > 3.0:1.0; wide sternal shield. s4, Z4, and Z5 markedly longer than other dorsal setae. J2 present. Macrosetae are present on genu II and III. Ratio of setae S2 (25 µm) / J2 (8 µm) is about 3. Calyx of spermatheca bell-shaped with nodular atrium. Three Macrosetae on leg IV, genu, tibia and tarsus, the longest (78 µm) on the Genu.

Amblyseius andersoni (Chant)

8. Setae z6 present, setae JV2 absent, ventrianal shield larger than wide with two pairs of preanal setae. Three solenostomes on the dorsal shield (gd2-gd6-gd9).

Paraseiulus triporus (Chant & Yoshida-Shaul)
— Setae z6 absent, setae JV2 present.

9. Setae S5 absent.

Typhlodromus (A.) rhenanoides Athias-Henriot
— Setae S5 present.

Typhlodromus (T.) pyri Scheuten
— Seven setae on the Genu II, peritreme extending at level z3, Z5 ranging between 32 and 48 µm.

Typhlodromus (T.) baccetti Lombardini

Phytoseiidae distribution in apple orchards

A high and significant correlation was observed between log(m) and log(S2) ($R^2 = 0.96$, $P < 0.0001$), allowing to use the indices of Taylor’s law to characterise Phytoseiidae distribution. The slope value was 1.26 (Standard Error = 0.02), showing an aggregative distribution. Table 5 shows the parameters of the regression for different regions (where the number of plots was sufficient to carry out the analysis). In all the regions considered, the slope value was significantly higher than 1 (except in Aquitaine), showing an aggregated distribution. However, sometimes two species were co-occurring in a same plot. It is thus impossible to determine if the distributions of the two species are differ-

REGIONS	Number of plots	Mean (phytoseiidae/leaf)	R^2	P	b	SE
Provence-Alpes-Côte d’Azur	69	1.23	0.96	P < 0.0001	1.27	0.03
Midi-Pyrénées	20	0.78	0.95	P < 0.0001	1.32	0.07
Aquitaine	10	1.15	0.88	P < 0.0001	1.09	0.15
Basse-Normandie	8	0.04	0.97	P < 0.0001	1.37	0.05
Languedoc-Roussillon	19	2.54	0.92	P < 0.0001	1.39	0.09
Pays-de-Loire	12	1.07	0.99	P < 0.0001	1.21	0.03
Rhône-Alpes	18	1.01	0.92	P < 0.0001	1.26	0.09

SPECIES	Number of plots	Mean (phytoseiidae/leaf)	R^2	P	b	SE
Amblyseius andersoni	70	0.91	0.95	P < 0.0001	1.27	0.03
Typhlodromus pyri	34	1.06	0.92	P < 0.0001	1.23	0.06
Kampimodromus aberrans	38	2	0.96	P < 0.0001	1.31	0.04
ent. In order to assess the distribution of the three dominant species, only plots where one of these latter species represented 80% of the densities were considered and then the Taylor’s law was applied. The slope values obtained were significantly higher than 1 for the three species, showing a clear aggregated distribution for all of them (Table 5).

Table 6: Abacus relating the average number of Phytoseiidae per leaf and the occupation rate (at least one Phytoseiidae per leaf) obtained in seven regions in the 173 French apple orchards sampled.

Occupation rate	Average number of Phytoseiidae / leaf
5-10 %	0.1
15-20 %	0.2
25%	0.3
30%	0.4
35%	0.5
40%	0.6
45%	0.7
50%	1
55%	1.2
60%	1.6
> 65 %	> 2
> 80 %	> 4

Characterisation of the sample size for optimal sampling

As Phytoseiidae distribution is aggregated the number of leaves to be sampled should be important. To estimate the average densities of Phytoseiidae per leaf with an error of 10% around the mean, 260 leaves per orchard would have to be sampled. For practical work and producers, this is clearly not possible as too time consuming. However, with an error of 20% around the mean, the average number of apple leaves to be sampled would be 40. Below 40 leaves, the precision around the mean might be too low to estimate sufficiently accurately the densities of these predators. In order to simplify samplings, the relation between the average number of Phytoseiidae per leaf and the rate of leaves occupied by at least one mite has been assessed (Figure 3). The good correlation obtained ($R^2 = 0.88$) enables to establish an abacus to determine the average densities of Phytoseiidae when only their presence/absence of the leaves is assessed (Table 6).

Conclusion

This paper is the first one presenting such a great survey in apple orchards in France. It shows the importance of three species and their relative abundance. *Amblyseius andersoni* was clearly the dominant species whereas the samplings carried out ten years ago demonstrated the dominance of *C. californicus*. This survey confirms thus the fauna modification seemingly initiated ten years ago.

The prevalence of *A. andersoni* does not apply in all the regions. *Kampimodromus aberrans* is dominant in Languedoc-Roussillon and Franche-Comté whereas *T. (T.) pyri* prevails in Rhône-Alpes, Limousin, Poitou-Charentes and Basse-Normandie. However, in these three latter regions as well in Franche-Comté, the number of orchards sampled is too low to consider this distribution representative. However, it is clear that *K. aberrans* predominates in Mediterranean climates whereas *T. (T.) pyri* prevails in Rhône-Alpes. Cultural practices and climatic conditions could certainly explain such different localisations. *Kampimodromus aberrans* seems to be less affected by low relative hygrometry than the other two species (*K. aberrans*, $RH_{50} = 56\%$, *T. (T.) pyri* $RH_{50} = 58\%$, *A. andersoni* $RH_{50} = 62\%$) (Duso and Camporese 1991; Genini et al. 1991; Gambaro 1994). This could explain why *K. aberrans* has been mainly recorded in orchards of Languedoc-Roussillon (the driest region considered) and *A. andersoni* in more humid regions. However, as *K. aberrans* has also been found in North of France, as well as in North and central Europe (Moraes et al. 2004) and *A. andersoni* in Provence where humidity is quite low, other factors probably affect Phytoseiidae occurrence. For instance irrigation type but probably essentially pesticide applications could be involved. Kreiter et al. (2000) and Duso et al. (2009)
have indeed shown the importance of pesticide application to explain the distribution of Phytoseiidae in French vineyards and Italian apple orchards, respectively.

Furthermore, K. aberrans is usually observed on plants with hairy leaves (Kreiter et al. 2002), suggesting that apple cultivar could also affect the diversity of Phytoseiidae. Duso et al. (2009) also emphasized the influence of apple cultivar on Phytoseiidae densities, especially for the species K. aberrans. However, in the present case, cultivar does not seem to affect Phytoseiidae mite species occurrence. Other factors, such as cover-crop type, not much studied until now in French apple orchards could affect the Phytoseiidae diversity. Some studies in apple orchards but also in citrus orchards indeed showed exchange between plants in the interrows and trees (Alston 1994; Coli et al. 1994; Nyrop et al. 1994; Tuovinen 1994; Stanyard et al. 1997; Fitzgerald and Solomon 2004; Pereira et al. 2006; Aguilar et al. 2008, 2011; Mailloux et al. 2010). Nothing is known on the occurrence in inter-rows of the main Phytoseiidae species found on apple trees. Kampinodromus aberrans and T. (T.) pyri are essentially recorded on trees and shrubs but are little known from herbaceous plants. Amblyseius andersoni has been more frequently observed on herbaceous plants. The occurrence of such species in inter-rows should thus be studied especially to develop weeding practices for biological control improvement and natural enemy efficiency. Finally, this study shows the aggregative distribution of Phytoseiidae in apple orchards and provides useful information for improving samplings and more accurately determining Phytoseiidae densities on apple trees. In further surveys, it could be interesting to determine the relation between Tetranychidae and Phytoseiidae mites in order to propose decision rule for managing pesticide application.

ACKNOWLEDGEMENTS

We thank all the technical staff of Bayer crop Science and all the farmers who carried out the samplings and sent us the apple leaves for analyses.

REFERENCES

Abad-Moyano R., Pina T., Ferragut F., Urbaneja A. 2009 — Comparative life-history traits of three phytoseid mites associated with Tetranychus urticae (Acari: Tetranychidae) colonies in clementine orchards in eastern Spain: implications for biological control — Exp. Appl. Acarol. 47(2): 121-132. doi:10.1007/s10493-008-9197-z

Aguilar E.F., Ibanez G.M.V., Pascual R.S., Hurtado M., Jacas J.A. 2011 — Effect of ground cover management on spider mites and their phytoseid natural enemies in Clementine mandarin orchards (II): Top-down regulation mechanisms — Biol. Contr. 59: 171-179.

Aguilar E.F., Pascual R.S., Hurtado R.M., Jacas, J.A. 2008 — The effect of ground cover management on the biological control of Tetranychus urticae (Acari: Prostigmata) in Clementine — Proceedings of the 3rd international symposium on biological control of Arthropods, New Zealand: 355-365.

Akashi-Hernandez F., Kreiter S., Tixier M.-S. 2012 — The first electronic polytomous key to species of the genus Typhlodromus (Antheus) (Acari: Phytoseiidae) of the world — Zootaxa 3451: 46-59.

Alston D.G. 1994 — Effect of apple orchard floor vegetation on density and dispersal of phytophagous and predatory mites in Utah — Agr. Ecosys. Environ. 50: 73-84. doi:10.1016/0167-8809(94)90126-0

Barzar Z., Tixier M.-S., Cheval B., Kreiter S. 2006 — Effects of agroforestry on phytoseiid mite communities (Acari: Phytoseiidae) in vineyards in the South of France — Exp. Appl. Acarol. 40(3-4): 175-188. doi:10.1007/s10493-006-9044-z

Bonafos R., Serrano E., Auger P., Kreiter S. 2007 — Resistance to deltamethrin, lambda-cyhalothrin and chlorpyrifos-ethyl in some populations of Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari:Phytoseiidae) from vineyards in the south-west of France — Crop Protoc. 26: 169-172.

Castagnoli M., Liguori M., Simoni S., Duso C. 2005 — Toxicity of some insecticides to Tetranychus urticae, Neoseiulus californicus and Tydeus californicus — Bio-Control 50: 611-622.

Chant D.A., McMurtry J.A. 2007 — Illustrated keys and diagnoses for the genera and sub-genera of the Phytoseiidae of the World — Indira Publishing House: 220 PP.

Cloyd R.A., Galle C.L., Keith S.R. 2006 — Compatibility of three miticides with the predatory mites Neoseiulus californicus McGregor and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) — Hort. Science 41(3): 707-710.

Coli W.M., Ciurlino E.A., Hosmer T. 1994 — Effect of undestroy and border vegetation composition on
phytophagous and predatory mites in Massachusetts commercial apple orchards — Agr. Ecosys. Environ. 50: 49-60. doi:10.1016/0167-8809(94)90124-4

Duso C., Camporese P. 1991 — Developmental times and oviposition rates of predatory mites Typhlodromus pyri and Amblyseius andersoni (Acari: Phytoseiidae) reared on different foods — Exp. Appl. Acarol. 13: 117-128. doi:10.1007/BF01193662

Duso C., Fanti M., Pozzebon A., Angeli G. 2009 — Is the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae) a candidate for the control of phytophagous mites in European apple orchards? — BioControl 54: 369-382. doi:10.1007/s10526-008-9177-6

Edland T., Evans G.O. 1998 — The genus Typhlodromus (Acari: Mesostigmata) in Norway — Eur. J. Entomol. 95: 275-295.

Escudero L.A., Chorazy A. 2012 — First record of Amblydromalus limonicus (Acari: Phytoseiidae) from Spain — Intern. J. Acarol. 38(6): 545-546. doi:10.1080/09583150.2012.699101

Fitzgerald J.D., Solomon M.G. 2004 — Can flowering plants enhance numbers of beneficial arthropods in UK apple and pear orchards? — BioControl Science and Technology 14(3): 291-300. doi:10.1080/09583150410001665178

Fauvel G., Bourgouin B. 1993 — Etat actuel de la résistance aux insecticides et acaricides dans les populations de Neoseiulus californicus Mc Gregor (Acari : Phytoseiidae) en vergers de pommiens dans le midi de la France — Proceedings of the Conference internationale sur les ravageurs en agriculture, Montpellier, FRA (1993-12-07 - 1993-12-09).

Fauvel G., Gendrier J. P. 1992 — Problems met in the establishment of phytoseiids in apple orchards of South-eastern France — Acta Phytopathol. Entomol. Hungar. 27 (1-4): 223-232.

Fauvel G., Bourgouin B., Perron G., Rouzet J. 1993 — Importance de la colonisation des vermes de pommié et pêcher du sud de la France par Neoseiulus californicus (Mc Gregor) et conséquences pour la lutte biologique contre l’araignée rouge Panonychus ulmi Koch (Acari: Phytoseiidae, Tetranychidae) — Annales ANPP, 2-3: 587-596.

Ferragut F., Escudero A. 1997 — Taxonomy and distribution of predatory mites belonging to the genus Euseius Wainstein 1962, in Spain (Acari, Phytoseiidae) — Bol. Sanidad Vegetal 23(2): 227-235.

Ferragut F., Laborda R., Costa-Comelles J., Garcia-Mari F. 1992 — Feeding behaviour of Euseius stipulatus and Typhlodromus phialatus on the citrus red mite Panonychus citri (Acari: Phytoseiidae, Tetranychidae) — Entomophaga 37(4): 537-543. doi:10.1007/BF02372323

Fischer S., Mourrut-Salesse J. 2005 — L’acariose bronzée de la tomate en Suisse (Aculops lycopersici: Acari, Eriophyidae) — Revue Suisse de Viticulture, Arboriculture et Horticulture 37(4): 227-232.

Gambaro P.I. 1994 — The importance of humidity in the development and spread of Amblyseius andersoni Chant (Acarina, Phytoseiidae) — Boll. Zool. Agr. Bachic. 26(2): 241-248.

Genini M., Klay A., Baumgartner J., Delucchi V., Bailod M. 1991 — Etudes comparatives de l’influence de la temperature et de la nourriture sur le développement de Amblyseius andersonii, Neoseiulus fallacis, Galendromus occidentalis et Typhlodromus pyri (Acari: Phytoseiidae) — Entomophaga 36(1): 139-154. doi:10.1007/BF02377464

Gerson U., Smiley R.L., Ochoa T. 2003 — Mites (Acari) for pest control — Blackwell Science, Oxford, United Kingdom.

Hardman J.M., Rogers R.E.L., Nyrop J.P., Frish T. 1991 — Effect of pesticide applications on abundance of European red mite (Acari: Tetranychidae) and Typhlodromus pyri (Acari: Phytoseiidae) in Nova Scotian apple orchards — J. Econ. Entomol. 84(2): 570-580.

Houten Y.M. van, Ostlie M.L., Hoogerbrugge H., Bolckmans K. 2005 — Biological control of western flower thrips on sweet pepper using the predatory mites Amblyseius cucumeris, Iphiseius degenerans, A. andersonii and A. swirskii — Bull. OILB/SROP 28(1): 283-286.

Iglesia L. de la, Santiago Y., Moreno C.M., Perez A., Pelaez H., Prado N. de, Cepela S., Ferragut F. 2007 — Phytoseiid mites (Acari: Phytoseiidae) associated to fruit trees, apple and pear trees, and vineyard from El Bierzo, Leon (north-west of Spain) — Bol. Sanidad Vegetal, Plagas 33(1): 3-13.

James D.G. 2002 — Selectivity of the acaricide, bifenzate, and aphicide, pymetrozin, to spider mite predators in Washington hops — Intern. J. Acarol. 28: 175-179. doi:10.1080/01647954.2002.10644292

James D.G. 2003 — Toxicity of imidacloprid to Galendromus occidentalis, Neoseiulus fallacis and Amblyseius andersoni (Acari: Phytoseiidae) from hops in Washington State, USA — Exp. Appl. Acarol. 31: 275-281. doi:10.1023/B:APPA.0000010383.33351.2f

Jedlickova, J. 1991 — Faunistic records from Czechoslovakia — Acta Entomologica Bohemoslov, 88: 340.

Kolodochka L.A., Omeri I.D. 2007 — Species diversity and distribution of plant-inhabiting phytoseiid mites (Parasitiformes, Phytoseiidae) in Kaniv Reserve — Entomophaga 37(4): 95: 275-295.

Koveos, D.S., Broufas, G.D. 2000 — Functional response of Euseius finlandicus and Amblyseius andersoni to Panonychus ulmi on apple and peach leaves in the laboratory — Exp. Appl. Acarol. 24(4): 247-256. doi:10.1023/A:1006431703013

Acarologia 54(1): 97-111 (2014)
Tixier M.-S. et al.

Kreiter S., Tixier M.-S., Auger P., Muckenstrum N., Sentenac G., Doublet B., Weber M. 2000 — Phytoseid mites of vineyards in France — Acarologia 41(4): 75-94.

Kreiter S., Tixier M.-S., Barbar Z. 2005 — Les phytoseïdes se mettent en quatre. Les différentes catégories fonctionnelles de ces prédateurs et leur utilité en agriculture en France — Phytophama-La défense des végétaux 586: 42-46.

Kreiter S., Tixier M.-S., Croft B.A., Auger P., Barret D. 2002 — Plants and leaf characteristics influencing the predaceous mite, Kanzimordromus aberrans (Oudemans), in habitats surrounding vineyards (Acari: Phytoseiidae) — Environ. Entomol. 31: 648-660. doi:10.1603/0046-225X-31.4.648

Linder C. 2001 — Contrôle de l’acarien rouge Panonychus ulmi (Koch) et de son prédateur Typhlodromus pyri Scheuten en arboriculture: la méthode du pourcentage de feuilles occupées à l’épreuve du temps — Revue Suisse de Viticulture, Arboriculture et Horticulure 33(6): 311-315.

Lorenzon M., Pozzebon A., Duso C. 2012 — Effects of potential food sources on biological and demographic parameters of the predatory mites Kanzimordromus aberrans, Typhlodromus pyri and Amblyseius andersoni — Exp. Appl. Acarol. 58(3): 259-278. doi:10.1007/s10493-012-9580-7

Mailloux J., Le Bellec F., Kreiter S., Tixier M.-S., Dubois P. 2010 — Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupean citrus orchards — Exp. Appl. Acarol. 52: 275-290. doi:10.1007/s10493-010-9367-7

McMurtry J.A., Croft B.A. 1997 — Life-styles of phytoseiid mites and their roles in biological control — Ann. Rev. Entomol. 42: 291-321. doi:10.1146/annurev.ento.42.1.291

Minarro M., Dapena E., Ferragut F. 2002 — Phytoseid mites (Acari: Phytoseiidae) in plantations of apples in Asturias — Bol. Sanidad Vegetal, Plagas 28(2): 287-297.

Moraes G.J.de, McMurtry J.A., Denmark H.A. 1986 — A catalog of the mite family Phytoseiidae - References to taxonomy, synonymy, distribution and habitat — EM-BRAPA - DDT: 353 pp.

Moraes G.J., McMurtry J.A., Denmark H.A., Campos C.B. 2004 — A revised catalog of the mite family Phytoseiidae — Zootaxa 434: 1-494.

Nachman G. 1984 — Estimates of mean population density and spatial distribution of Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acarina: Phytoseiidae) based on proportion of empty sampling units — J. An. Ecol. 21: 903-913.

Nyrop J.P., Minns J.C., Herring C.P. 1994 — Influence of ground cover on dynamics of Amblysieus fallacis Garman (Acarina; Phytoseiidae) in New York apple orchards — Agric. Ecosys. Environ. 50: 61-72. doi:10.1016/0167-8809(94)90125-2

Pereira N., Ferreira M.A., Sousa M.E., Franco J.C. 2006 — Mites, Lemon trees and ground cover interactions in Mafra region — Bull. OILB/SROP 29(3): 143-150.

Okassa M., Tixier M.-S., Cheval B, Kreiter S. 2009 — Molecular and morphological evidence for new species status within the genus Euseius (Acari: Phytoseiidae) — Can. J. Zool. 87: 689-698. doi:10.1139/Z09-057

Papaioannou-Souliotis P., Markoyiannaki-Printziou D., Zegnis G. 2000 — Observations on acarofauna in four apple orchards of Central Greece. II. Green cover and hedges as potential sources of phytoseiid mites (Acari: Phytoseiidae) — Acarologia 41(4): 411-421.

Pina T., Sargolo P., Urbanjca J.A. 2012 — Effect of pollen quality on the efficacy of two different life-style predatory mites against Tetranychus urticae in citrus — Biol. Contr. 61(2): 176-183.

Pozzebon A., Duso C., Pavanetto E. 2002 — Side effects of some fungicides on phytoseid mites (Acari, Phytoseiidae) in north-Italian vineyards — Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz 75: 132-136.

Roda A., Nyrop J., English-Loeb G. 2003 — Leaf pubescence mediates the abundance of non-preyfood and the density of the predatory mite Typhlodromus pyri — Exp. Appl. Acarol. 29: 193-211. doi:10.1023/A:1025874722092

Sahraoui H., Lebdi Grissa K., Kreiter S., Douin M., Tixier M.-S. 2012 — Phytoseid mites in Tunisian Citrus orchards — Acarologia 52(4): 433-452.

Schrut G. 1967 — Das Vorkommen rauberischer Milben aus der Familie Phytoseiidae (Acari: Mesostigmata) auf Reben. III. Beitrag über Untersuchungen zur Faunistik und Biologie der Milben (Acari) an Kultur-Reben (Vitis sp.) — Die Wein-Wissenschaft 22: 184-201.

Slone D.H., Croft B.A. 2001 — Species association among predaceous and phytophagous apple mites (Acari: Eriophyidae, Phytoseiidae, Stigmaeidae, Tetranychidae) — Exp. Appl. Acarol. 25: 109-126. doi:10.1023/A:1010640631355

Stanyard M.J., Foster R.E., Gibb T.J. 1997 — Effects of orchard ground cover and mite management options on the population dynamics of European red mite (Acari: Tetranychidae) and Amblysieus fallacis (Acari: Phytoseiidae) in apple — J. Econ. Entomol. 90(2): 595-603.

StatSoft France 2008 — STATISTICA version 7.1. — www.statsoft.fr.
Taylor L.R. 1961 — Aggregation, variance and the mean — Nature 189: 732-735.

Tuovinen T 1994 — Influence of surrounding trees and bushes on the phytoseiid mite fauna on apple orchard trees in Finland — Agric. Ecosys. Environ. 50: 39-47. doi:10.1016/0167-8809(94)90123-6

Tixier M.-S. 2012 — Polytomic identification key of species of *Typhlodromus* (*Typhlodromus*) — (http://www1.montpellier.inra.fr/CBGP/phytoseiidae/Typhlodromuskeypresentation.html)

Tixier M.-S., Kreiter S., Cheval B., Guichou S., Chapuis A., Auger P., Bonafos R. 2002 — Colonisation par les Phytoséiides d’une jeune vigne en agroforesterie : influence des alentours non cultivés — Phytoma - La Défense des Végétaux 555: 28-31.

Tixier M.-S., Kreiter S., Cheval B., Perrotin B. 2005 — Les espèces de phytoséiides présentes dans les vignobles du Languedoc-Roussillon et les facteurs qui affectent leur densité et leur diversité — Progr. Agric. Vitic. 122: 463-467.

Tixier M.-S., Kreiter S., Croft B.A., Cheval B. 2008a — *Kampimodromus aberrans* (Acari: Phytoseiidae) from USA: morphological and molecular assessment of its identity — Bull. Entomol. Res. 98: 125-134. doi:10.1017/S0007485307005457

Tixier M.-S., Kreiter S., Douin M., Moraes G.J. 2012 — Rates of description of *Phytoseiidae* (Acari: Mesostigmata): space, time and body size variations — Biodivers. Conserv. 21: 993-1013. doi:10.1007/s10531-012-0235-0

Tixier M.-S., Guichou S., Kreiter S. 2008b — Morphological variation of the species *Neoseiulus californicus* (McGregor) (Acari: Phytoseiidae): importance for diagnostic reliability and synonymies — Invert. System. 22: 453-469.

Tixier M.-S., Kreiter S., Okassa M., Cheval B. 2010 — A new species of the genus *Euseius* Wainstein (Acari: Phytoseiidae) from France — J. Nat. hist. 44: 241-254. doi:10.1080/00222930903383529

Tixier M.-S., Kreiter S., Cheval B 2006 — Immigration of phytoseiid mites from surrounding uncultivated areas in a newly planted vineyard — Exp. Appl. Acarol. 39: 227-242. doi:10.1007/s10493-006-9010-9

Tsolakis H., Tixier M.-S., Kreiter S., Ragusa S. 2012 — The genus concept within the family Phytoseiidae (Acari: Parasitiformes). Historical review and phylogenetic analyses of the genus *Neoseiulus* Hughes — Zool. J. Linn. Soc. 165: 253-273. doi:10.1111/j.1096-3642.2011.00809.x

Copyright