Highly Efficient In$_2$S$_3$/WO$_3$ Photocatalysts: Z-Scheme Photocatalytic Mechanism for Their Enhanced Photocatalytic Water Pollutants Degradation under Visible Light Irradiation

Qingqing Qiua, Peng Zhua, Yao Liub, Tongxiang Lianga*, Tengfeng Xiec*, Yanhong Linc

aEngineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, PR China

bFaculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, PR China

cCollege of Chemistry, Jilin University, Changchun 130012, P. R. China
Figure. S1 XRD patterns of WI0, WI20, WI30, WI40 and WI50.

Figure. S2 The EDX mappings of WO$_3$.

Figure. S3 The EDX mappings of In$_2$S$_3$.

Figure S4. (a) UV-visible absorption spectra of Rh B solutions before and after photocatalytic degradation reaction under visible light irradiation in the presence of
WI40; (b) UV-visible absorption spectra of TCH solutions before and after photocatalytic degradation reaction under visible light irradiation in the presence of WI40.

Figure S5. The solution pH for (a) Rh B and (b) TCH degradation by WI40 under visible light irradiation.

Figure S6. Photocatalytic degradation performance of (a) WI40 and (b) the physical mixture of In$_2$S$_3$(40 wt %)/WO$_3$ for Rh B and TCH under visible light irradiation.
Figure S7. XRD patterns of WI40 before and after photocatalytic degradation reaction.