Black brane solutions related to non-singular Kac-Moody algebras

V. D. Ivashchuk1 and V. N. Melnikov2,

Center for Gravitation and Fundamental Metrology, VNIIMS, Ozyornaya ul. 46, Moscow 119361, Russia
Institute of Gravitation and Cosmology, Peoples’ Friendship University of Russia, Miklukho-Maklaya ul. 6, Moscow 117198, Russia

Abstract

A multidimensional gravitational model containing scalar fields and antisymmetric forms is considered. The manifold is chosen in the form $M = M_0 \times M_1 \times \ldots \times M_n$, where M_i are Einstein spaces ($i \geq 1$). The sigma-model approach and exact solutions with intersecting composite branes (e.g., solutions with harmonic functions and black brane ones) with intersection rules related to non-singular Kac-Moody (KM) algebras (e.g. hyperbolic ones) are considered. Some examples of black brane solutions are presented, e.g., those corresponding to hyperbolic KM algebras: $H_2(q,q) (q > 2)$, $HA_2^{(1)} = A_2^{++}$ and to the Lorentzian KM algebra P_{10}.
1 Introduction

In this paper, we consider certain classes of black brane solutions related to non-singular Kac-Moody algebras. At present, Kac-Moody (KM) Lie algebras [1, 2] play rather an important role in different areas of mathematical physics (see [3, 4] and references therein). We recall that KM Lie algebra is a Lie algebra generated by the relations [3]

\[[h_i, h_j] = 0, \quad [e_i, f_j] = \delta_{ij}h_j, \quad (1.1) \]
\[[h_i, e_j] = A_{ij}e_j, \quad [h_i, f_j] = -A_{ij}f_j, \quad (1.2) \]
\[(ade_i)^{1-A_{ij}}(e_j) = 0 \quad (i \neq j), \quad (1.3) \]
\[(adf_i)^{1-A_{ij}}(f_j) = 0 \quad (i \neq j). \quad (1.4) \]

Here \(A = (A_{ij}) \) is a generalized Cartan matrix, \(i, j = 1, \ldots, r \), and \(r \) is the rank of the KM algebra. It means that all \(A_{ii} = 2 \); \(A_{ij} \) for \(i \neq j \) are non-positive integers and \(A_{ij} = 0 \) implies \(A_{ji} = 0 \). In what follows, the matrix \(A \) is restricted to be non-degenerate (i.e. \(\det A \neq 0 \)) and symmetrizable, i.e. \(A = BD \), where \(B \) is a symmetric matrix and \(D \) is an invertible diagonal matrix.

If \(A \) is positive-definite (the Euclidean case) we get ordinary finite-dimensional Lie algebras [3, 4]. For non-Euclidean signatures of \(A \) all KM algebras are infinite-dimensional. Among these the Lorentzian KM algebras with pseudo-Euclidean signatures (\(- \)) of the Cartan matrix \(A \) are of current interest since they contain a subclass of the so-called hyperbolic KM algebras widely used in modern mathematical physics. Hyperbolic KM algebras are by definition Lorentzian Kac-Moody algebras with the property that, removing any node from their Dynkin diagram leaves one with a Dynkin diagram of the affine or finite type. The hyperbolic KM algebras were completely classified in [7, 8]. They have rank \(2 \leq r \leq 10 \). For \(r \geq 3 \) there is a finite number of hyperbolic algebras. For rank 10, there are four algebras, known as \(E_{10}, BE_{10}, CE_{10} \) and \(DE_{10} \). Hyperbolic KM algebras appeared in ordinary gravity [9] (\(F_3 = AE_3 = H_3 \)), supergravity: [10, 11] (\(E_{10} \)), [12] (\(F_3 \)), strings [13], oscillating behaviour near the singularity [14] (see also [15, 16], etc.

It has been proposed by P. West that the Lorentzian (non-hyperbolic) KM algebra \(E_{11} \) is responsible for a hidden algebraic structure characterizing 11D supergravity [17]. The same very extended algebra occurs in \(IIA \) [17] and \(IIB \) supergravities [18].

Here we briefly consider another possibility of utilizing non-singular (e.g. hyperbolic) KM algebras, suggested in our three papers [19, 20, 21]. This possibility also implicitly assumed in [22, 23, 24, 25, 26]. It is related to certain classes of exact solutions describing intersecting composite branes in a multidimensional gravitational model containing scalar fields and antisymmetric forms defined on (warped) product manifolds \(M = M_0 \times M_1 \times \ldots \times M_n \), where \(M_i \) are Ricci-flat spaces (\(i \geq 1 \)). From a pure mathematical point of view, these solutions may be obtained from sigma-models or Toda chains corresponding to certain non-singular KM algebras. The information about a (hidden) KM algebra is encoded in intersection rules which relate the dimensions of brane intersections with non-diagonal components of the generalized Cartan matrix \(A \) [27]. We deal here with generalized Cartan matrices of the form

\[A_{ss'} = \frac{2(U_s, U_{s'})}{(U_s, U_s)}. \quad (1.5) \]

\(s, s' \in S \), with \((U_s, U_s) \neq 0 \), for all \(s \in S \) (\(S \) is a finite set). Here \(U_s \) are the so-called brane (co-)vectors. They are linear functions on \(\mathbb{R}^N \), where \(N = n + l \) and \(l \) is the number of scalar fields. The indefinite scalar product \((, ,) \) [28] is defined on \((\mathbb{R}^N)^* \) and has the signature \((-1, +1, \ldots, +1) \) if all scalar fields have positive kinetic terms, i.e. there are no phantoms (or ghosts). The matrix \(A \) is symmetrizable. \(U^* \)-vectors may be put in one-to-one correspondence with simple roots \(\alpha_s \) of the generalized KM algebra after a suitable normalization.

For \(D = 11 \) supergravity [29] and ten-dimensional \(IIA \), \(IIB \) supergravities all \((U_s, U_s) = 2 \) [27, 30], and corresponding KM algebras are simply laced. It was shown in our papers [31, 32] that the inequality \((U_s, U_s) > 0 \) is a necessary condition for the formation of a billiard wall (if one approaches the singularity) by the s-th matter source (e.g., a fluid component or a brane).

The scalar products for brane vectors \(U_s \) were found in [28]

\[(U_s, U_s') = d_{ss'} + \frac{d_s d_{s'}}{2-D} + \chi_s \chi_{s'} < \lambda_s, \lambda_{s'}>, \quad (1.6) \]
where d_s and $d_{s'}$ are the dimensions of brane world volumes corresponding to branes s and s', respectively, $d_{ss'}$ is the dimension of the intersection of brane world volumes, D is the total space-time dimension, $\chi_s = +1, -1$ for electric or magnetic brane respectively, and $< \lambda_s, \lambda_{s'} >$ is the non-degenerate scalar product of the l-dimensional dilatonic coupling vectors λ_a and $\lambda_{a'}$ corresponding to branes s and s'.

The relations (1.5), (1.6) determine the brane intersection rules [27]:

$$d_{ss'} = d_{s's'}^0 + \frac{1}{2} K_{s's'} A_{ss'},$$ \hspace{1cm} (1.7)

$s \neq s'$, where $K_s = (U^s, U^s)$ and

$$d_{s's'}^0 = \frac{d_s d_{s'}}{D-2} - \chi_s \chi_{s'} < \lambda_s, \lambda_{s'} >$$ \hspace{1cm} (1.8)

is the dimension of the so-called orthogonal (or $(A_1 \oplus A_1)$-) intersection of branes following from the orthogonality condition [28]:

$$(U^s, U^{s'}) = 0,$$ \hspace{1cm} (1.9)

$s \neq s'$.

The relations (1.6) and (1.8) were derived in [28] under rather general assumptions: the branes were composite, the number of scalar fields l was arbitrary as well as the signature of the bilinear form $<.,.>$ (or, equivalently, the signature of the kinetic term for scalar fields), Ricci-flat factor spaces M_i had arbitrary dimensions d_i and signatures. The intersection rules (1.8) appeared earlier in [33, 34] for all $d_i = 1$ ($i > 0$) and $<.,.>$ being positive-definite.

2 The model

2.1 The action

We consider a model governed by the action

$$S = \frac{1}{2 \kappa^2} \int_M d^D z \sqrt{|g|} \{ R[g] - 2 \Lambda - h_{\alpha\beta} g^{MN} \partial_M \varphi^\alpha \partial_N \varphi^\beta - \sum_{a \in \Delta} \frac{\theta_a}{n_a!} \exp[2 \lambda_a(\varphi)] (F^a)^2 \} + S_{GH},$$ \hspace{1cm} (2.1)

where $g = g_{MN} dz^M \otimes dz^N$ is the metric on the manifold M, dim $M = D$, $\varphi = (\varphi^a) \in \mathbb{R}^l$ is a vector of dilatonic scalar fields, $(h_{\alpha\beta})$ is a non-degenerate symmetric $l \times l$ matrix ($l \in \mathbb{N}$), $\theta_a \neq 0$,

$$F^a = dA^a = \frac{1}{n_a!} F^a_{M_1 \ldots M_{n_a}} dz^{M_1} \wedge \ldots \wedge dz^{M_{n_a}}$$

is an n_a-form ($n_a \geq 2$) on the D-dimensional manifold M, Λ is a cosmological constant and λ_a is a 1-form on \mathbb{R}^l: $\lambda_a(\varphi) = \lambda_{a\alpha} \varphi^\alpha$, $a \in \Delta$, $\alpha = 1, \ldots, l$. In (2.1) we denote $|g| = |\text{det}(g_{MN})|$, $(F^a)^2 = F^a_{M_1 \ldots M_{n_a}} F^a_{N_1 \ldots N_{n_a}} g^{M_1 N_1} \ldots g^{M_{n_a} N_{n_a}}$, $a \in \Delta$, where Δ is some finite set (for example, of positive integers), and S_{GH} is the standard Gibbons-Hawking boundary term [35]. In models with one time all $\theta_a = 1$ and the signature of the metric is $(-1, +1, \ldots, +1)$; κ^2 is the multidimensional gravitational constant.

2.2 The Ansatz for composite branes

Consider the manifold

$$M = M_0 \times M_1 \times \ldots \times M_n,$$ \hspace{1cm} (2.2)

with the metric

$$g = e^{2\gamma(x)} g^0 + \sum_{i=1}^n e^{2\gamma^i(x)} \hat{g}^i,$$ \hspace{1cm} (2.3)
where \(g^0 = g^0_{\nu\mu}(x)dx^\nu \otimes dx^\mu \) is an arbitrary metric with any signature on the manifold \(M_0 \) and \(g^i = g^i_{m,n_i}(y_i)dy^m_i \otimes dy^n_i \) is a metric on \(M_i \) satisfying the equation

\[
R_{m,n_i}[g^i] = \xi_ig^i_{m,n_i},
\]

(2.4)

\(m_i, n_i = 1, \ldots, d_i; \xi_i = \text{const}, i = 1, \ldots, n. \) Here \(\hat{g}^i = p^*_i g^i \) is the pullback of the metric \(g^i \) to the manifold \(M \) by the canonical projection: \(p_i : M \to M_i, i = 0, \ldots, n. \) Thus, \((M_i, g^i) \) are Einstein spaces, \(i = 1, \ldots, n. \) The functions \(\gamma, \phi^i : M_0 \to \mathbb{R} \) are smooth. We denote \(d_\nu = \dim M_\nu; \nu = 0, \ldots, n; \)

\[
D = \sum_{\nu=0}^n d_\nu.
\]

We assume all manifolds \(M_\nu, \nu = 0, \ldots, n, \) to be oriented and connected. Then the volume \(d_i \)-form

\[
\tau_i \equiv \sqrt{|g^i(y_i)|} dy^1_i \wedge \ldots \wedge dy^d_i,
\]

(2.5)

and signature parameter

\[
\varepsilon(i) \equiv \text{sign}(\det(g^i_{m_i,n_i})) = \pm 1
\]

(2.6)

are correctly defined for all \(i = 1, \ldots, n. \)

Let \(\Omega = \Omega(n) \) be a set of all non-empty subsets of \(\{1, \ldots, n\}. \) The number of elements in \(\Omega \) is

\[
|\Omega| = 2^n - 1.
\]

For any \(I = \{i_1, \ldots, i_k\} \in \Omega, i_1 < \ldots < i_k, \) we denote

\[
\tau(I) \equiv \hat{\tau}_{i_1} \wedge \ldots \wedge \hat{\tau}_{i_k},
\]

(2.7)

\[
\varepsilon(I) \equiv \varepsilon(i_1) \ldots \varepsilon(i_k),
\]

(2.8)

\[
M_I \equiv M_{i_1} \times \ldots \times M_{i_k},
\]

(2.9)

\[
d(I) \equiv \sum_{i \in I} d_i,
\]

(2.10)

Here \(\hat{\tau}_i = p^*_i \hat{\tau}_i \) is the pullback of the form \(\tau_i \) to the manifold \(M \) by the canonical projection: \(p_i : M \to M_i, i = 1, \ldots, n. \) We also put \(\tau(\emptyset) = \varepsilon(\emptyset) = 1 \) and \(d(\emptyset) = 0. \)

For fields of forms we consider the following composite electromagnetic ansatz:

\[
F^a = \sum_{I \in \Omega_{a,e}} F^{(a,e,I)} + \sum_{J \in \Omega_{a,m}} F^{(a,m,J)}
\]

(2.11)

where

\[
F^{(a,e,I)} = d\Phi^{(a,e,I)} \wedge \tau(I),
\]

(2.12)

\[
F^{(a,m,J)} = e^{-2\alpha_0(x)} * (d\Phi^{(a,m,J)} \wedge \tau(J))
\]

(2.13)

are elementary forms of electric and magnetic types, respectively, \(a \in \Delta, I \in \Omega_{a,e}, J \in \Omega_{a,m} \) and \(\Omega_{a,v} \subset \Omega, v = e, m. \) In \(\{2.13\} * = *[g] \) is the Hodge operator on \((M, g). \)

For scalar functions we put

\[
\varphi^a = \varphi^a(x), \quad \Phi^s = \Phi^s(x),
\]

(2.14)

\(s \in S. \) Thus \(\varphi^a \) and \(\Phi^s \) are functions on \(M_0. \)

Here and below

\[
S = S_e \sqcup S_m, \quad S_v = \sqcup_{a \in \Delta} \{a\} \times \{v\} \times \Omega_{a,v},
\]

(2.15)

\(v = e, m. \) Here and in what follows \(\sqcup \) means the union of non-intersecting sets. The set \(S \) consists of elements \(s = (a_s, v_s, I_s), \) where \(a_s \in \Delta \) is color index, \(v_s = e, m \) is the electro-magnetic index and the set \(I_s \in \Omega_{a,v} \) describes the location of a brane.

Due to \(\{2.12\} \) and \(\{2.13\} \)

\[
d(I) = n_a - 1, \quad d(J) = D - n_a - 1,
\]

(2.16)

for \(I \in \Omega_{a,e} \) and \(J \in \Omega_{a,m} \)(i.e., in the electric and magnetic case, respectively).
2.3 The sigma model

Let \(d_0 \neq 2 \) and

\[
\gamma = \gamma_0(\phi) = \frac{1}{2 - d_0} \sum_{j=1}^{n} d_j \phi^j, \tag{2.17}
\]
i.e., the generalized harmonic gauge (frame) is used.

We put two restrictions on the sets of branes that guarantee the block-diagonal form of the energy-momentum tensor and the existence of the sigma-model representation (without additional constraints):

\[
\textbf{(R1)} \quad d(I \cap J) \leq d(I) - 2, \tag{2.18}
\]
for any \(I, J \in \Omega_{a,v}, \ a \in \Delta, \ v = e, m \) (here \(d(I) = d(J) \)) and

\[
\textbf{(R2)} \quad d(I \cap J) \neq 0 \text{ for } d_0 = 1, \quad d(I \cap J) \neq 1 \text{ for } d_0 = 3. \tag{2.19}
\]

It was proved in \cite{28} that equations of motion for the model \cite{24} and the Bianchi identities:

\[
d^F = 0, \tag{2.20}
\]
s \(\in S_m \), for fields from \((2.3), (2.11)-(2.14)\), under the restrictions \((2.18)\) and \((2.19)\), are equivalent to the equations of motion of the \(\sigma\)-model governed by the action

\[
S_{\sigma 0} = \frac{1}{2\kappa_0^2} \int d^6 x \sqrt{|g^0|} \left\{ R[g^0] - \hat{G}_{AB} g^{0\mu\nu} \partial_{\mu} \sigma^{A} \partial_{\nu} \sigma^{B} - \sum_{s \in S} \varepsilon_s \exp \left(-2U^s_\lambda \sigma^A \right) g^{0\mu\nu} \partial_{\mu} \Phi^s \partial_{\nu} \Phi^s - 2 \Phi^s \right\}, \tag{2.21}
\]
where \((\sigma^A) = (\phi^i, \varphi^\alpha), \ k_0 \neq 0\), the index set \(S \) is defined in \((2.15)\),

\[
V = V(\phi) = \Lambda e^{2\gamma(\phi)} - \frac{1}{2} \sum_{i=1}^{n} \xi_i d_i e^{-2\phi^i + 2\gamma(\phi)} \tag{2.22}
\]
is the potential,

\[
(G_{AB}) = \begin{pmatrix} G_{ij} & 0 \\ 0 & h_{\alpha\beta} \end{pmatrix} \tag{2.23}
\]
is the target space metric with

\[
G_{ij} = d_i \delta_{ij} + \frac{d_i d_j}{d_0 - 2} \tag{2.24}
\]
and co-vectors

\[
U^s_A = U^s_\lambda \sigma^A = \sum_{i \in I_s} d_i \phi^i - \chi_s \lambda_{a_s}(\varphi), \quad (U^s_A) = (d_i \delta_{I_s}, -\chi_s \lambda_{a_s}), \tag{2.25}
\]
s \(= (a_s, v_s, I_s) \). Here \(\chi_e = +1 \) and \(\chi_m = -1; \)

\[
\delta_{il} = \sum_{j \in l} \delta_{ij} \tag{2.26}
\]
is an indicator of \(i \) belonging to \(I \): \(\delta_{il} = 1 \) for \(i \in I \) and \(\delta_{il} = 0 \) otherwise; and

\[
\varepsilon_s = (-\varepsilon[g])^{(1-\chi_e)/2} \varepsilon(I_s) \theta_{a_s}, \tag{2.27}
\]
s \(\in S, \varepsilon[g] \equiv \text{sign det}(g_{MN}) \). More explicitly, \((2.27)\) reads

\[
\varepsilon_s = \varepsilon(I_s) \theta_{a_s} \text{ for } v_s = e; \quad \varepsilon_s = -\varepsilon[g] \varepsilon(I_s) \theta_{a_s} \text{ for } v_s = m. \tag{2.28}
\]

For finite internal space volumes \(V_i \) (e.g. compact \(M_i \)) and electric \(p \)-branes (i.e. all \(\Omega_{a,m} = \emptyset \)) the action \((2.21)\) coincides with the action \((2.4)\) when \(\kappa^2 = \kappa_0^2 \prod_{i=1}^{n} V_i \).
3 Solutions governed by harmonic functions

3.1 Solutions with a block-orthogonal set of U^s and Ricci-flat factor-spaces

Here we consider a special class of solutions to the equations of motion governed by several harmonic functions, where all factor spaces are Ricci-flat and the cosmological constant is zero, i.e., $\xi = \Lambda = 0$, $i = 1, \ldots, n$. In certain situations these solutions describe extremal black branes charged by fields of forms.

The solutions crucially depend upon scalar products of U^s-vectors (U^s, U'^s); $s, s' \in S$, where

$$(U, U') = G^{AB}U_AU'_B,$$ \hspace{1cm} (3.1)

for $U = (U_A), U' = (U'_A) \in \mathbb{R}^N$, $N = n + l$ and

$$(\hat{G}^{AB}) = \left(\begin{array}{cc} \delta^{ij} & 0 \\ 0 & h^{\alpha\beta} \end{array} \right)$$ \hspace{1cm} (3.2)

is the inverse matrix to the matrix G^{ij}. As in [36], we have

$G^{ij} = 0 \text{ for all } i, j, = 1, \ldots, n$.

The scalar products $\langle U^s, U'^s \rangle$ of the vectors U^s were calculated in [28] and are given by

$$\langle U^s, U'^s \rangle = \frac{d(I_s \cap I_{s'})}{d} + \frac{d(I_s) d(I_{s'})}{2 - D} + \chi_s \chi'_s \lambda_{a,\alpha} \lambda_{a,\beta} h^{\alpha\beta},$$ \hspace{1cm} (3.4)

where $(h^{\alpha\beta}) = (h, -1)^{-1}$, and $s = (a_s, v_s, I_s)$, $s' = (a_{s'}, v_{s'}, I_{s'})$ belong to S. This relation is very important one since it encodes brane data (e.g., intersections) via the scalar products of U-vectors.

Let

$$S = S_1 \sqcup \ldots \sqcup S_k,$$ \hspace{1cm} (3.5)

$S_i \neq \emptyset$, $i = 1, \ldots, k$, and

$$\langle U^s, U'^s \rangle = 0$$ \hspace{1cm} (3.6)

for all $s \in S_i$, $s' \in S_{j}$, $i \neq j$; $i, j = 1, \ldots, k$. The relation $\langle U^s, U'^s \rangle = 0$ means that the set S is a union of k non-intersecting (non-empty) subsets S_1, \ldots, S_k. According to (3.6) the set of vectors $(U^s, s \in S)$ has a block-orthogonal structure with respect to the scalar product (3.1), i.e., it splits into k mutually orthogonal blocks $(U^s, s \in S_i)$, $i = 1, \ldots, k$.

Here we consider exact solutions in the model (2.1) where vectors $(U^s, s \in S)$ obey the block-orthogonal decomposition (3.5), (3.6) with scalar products defined in (3.4) [19]. These solutions were obtained from the corresponding solutions to the σ-model equations of motion [19].

Proposition 1. Let (M, g^0) be Ricci-flat: $R_{\mu\nu}[g^0] = 0$. Then the field configuration

$$g^0, \quad \sigma^A = \sum_{s \in S} \xi_s U^sA \nu_s^2 \ln H_s, \quad \Phi^s = \frac{\nu_s}{H_s},$$ \hspace{1cm} (3.7)

$s \in S$, satisfies the field equations corresponding to the action (2.27) with $V = 0$ if the real numbers ν_s obey the relations

$$\sum_{s' \in S} \langle U^s, U'^s \rangle \nu_s \nu_{s'}^2 = -1$$ \hspace{1cm} (3.8)

$s \in S$, the functions $H_s > 0$ are harmonic, i.e. $\Delta [g^0] H_s = 0, s \in S$, and H_s coincide inside the blocks: $H_s = H_{s'}$ for $s, s' \in S_i, i = 1, \ldots, k$.

Using the sigma-model solution from Proposition 1 and the relations for contra-variant components [28].
defines the so-called "orthogonal" intersection rules (28) (see also (33, 34) for
rules (3.18) in this case have a simpler form (27):

\[s = (a_s, v_s, I_s), \text{ we get (33):} \]

\[
g = \left(\prod_{s \in S} H_s^{2d(I_s)} \right)^{1/(2-D)} \left\{ g^0 + \sum_{s \in S} \left(\prod_{s \in S} H_s^{2\epsilon_s v_s^2} \delta_{I_s} \right) g^1 \right\}, \tag{3.10} \]

\[
\varphi^a = - \sum_{s \in S} \lambda^a_s \epsilon_s v_s^2 \ln H_s, \tag{3.11} \]

\[
F^a = \sum_{s \in S} F^s \delta^a_{\alpha_s}, \tag{3.12} \]

where \(i = 1, \ldots, n, \alpha = 1, \ldots, l, a \in \Delta \)

\[
\mathcal{F}^s = \nu_s dH_s^{-1} \wedge \tau(I_s), \text{ for } v_s = e, \tag{3.13} \]

\[
\mathcal{F}^s = \nu_s (\ast_0 dH_s) \wedge \tau(I_s), \text{ for } v_s = m, \tag{3.14} \]

\(H_s \) are harmonic functions on \((M_0, g^0) \) which coincide inside the blocks (i.e., \(H_s = H_{s'} \) for \(s, s' \in S_i, \)
\(i = 1, \ldots, k \)) and the relations (3.8) on the parameters \(\nu_s \) are imposed. The matrix \(((U^s, U^{s'})) \) and the parameters \(\epsilon_s, s \in S, \) are defined in (3.10) and (2.27), respectively; \(\lambda^a_s = \hbar^{\alpha \beta} \lambda_{a, \alpha} \) \(\ast_0 = \ast [g^0] \) is the Hodge operator on \((M_0, g^0) \) and

\[
\tilde{I} = \{ 1, \ldots, n \} \setminus I \tag{3.15} \]

is the dual set. (In (3.14) we have redefined the sign of the parameter \(\nu_s. \))

3.2 Solutions related to non-singular KM algebras

Now we will study the solutions (3.10)-(3.14) in more detail and show that some of them may be related to non-singular KM algebras. We put

\[
K_s = (U^s, U^{s'}) \neq 0 \quad (3.16) \]

for all \(s \in S \) and introduce the matrix \(A = (A_{ss'}) \):

\[
A_{ss'} = \frac{2(U^s, U^{s'})}{(U^{s'}, U^{s'})}, \tag{3.17} \]

\(s, s' \in S. \) Here some ordering in \(S \) is assumed.

Using this definition and (3.11) we obtain the intersection rules (27)

\[
d(I_s \cap I_{s'}) = \Delta(s, s') + \frac{1}{2} K_{s'} A_{ss'}, \tag{3.18} \]

where \(s \neq s' \), and

\[
\Delta(s, s') = \frac{d(I_s) d(I_{s'})}{D - 2} - \chi_s \chi_{s'} \lambda_{a, \alpha} \lambda_{a', \beta} \hbar^{\alpha \beta} \tag{3.19} \]

defines the so-called “orthogonal” intersection rules (28) (see also (33, 34) for \(d_l = 1 \)).

In \(D = 11 \) and \(D = 10 \) (IIA and IIB) supergravity models, all \(K_s = 2 \) and hence the intersection rules (3.18) in this case have a simpler form (27):

\[
d(I_s \cap I_{s'}) = \Delta(s, s') + A_{ss'}, \tag{3.20} \]

where \(s \neq s' \), implying \(A_{ss'} = A_{s's} \). The corresponding KM algebra is simply-laced in this case.

For \(\det A \neq 0 \) relation (3.8) may be rewritten in the equivalent form

\[
- \epsilon_s v_s^2 (U^{s}, U^s) = 2 \sum_{s' \in S} A_{ss'} = b_s, \tag{3.21} \]
where \(s \in S \), and \((A^{ss'}) = A^{-1} \). Thus eq. (3.28) may be resolved in terms of \(\nu_s \) for certain \(\varepsilon_s = \pm 1 \), \(s \in S \). We note that due to (3.6) the matrix \(A \) has a block-diagonal structure and, hence, for any \(i \)-th block the set of parameters \((\nu_s, s \in S_i) \) depends on the matrix inverse to the matrix \((A_{ss'}; s, s' \in S_i) \).

Now we consider the one-block case such that the brane intersections are related to some non-singular KM algebras.

Finite-dimensional Lie algebras [20]

Let \(A \) be the Cartan matrix of a simple finite-dimensional Lie algebra. In this case \(A_{ss'} \in \{0, -1, -2, -3\} \), \(s \neq s' \). The elements of the inverse matrix \(A^{-1} \) are positive (see Ch. 7 in [4]) and hence we get from (3.21) the same signature relation as in the orthogonal case [28]:

\[
\varepsilon_s(U_s^a, U_s^b) < 0, \quad s \in S.
\]

If all \((U_s^a, U_s^b) > 0 \), we get \(\varepsilon_s < 0 \), \(s \in S \). Moreover, all \(b_s \) are positive integers:

\[
b_s = n_s \in \mathbb{N}, \quad s \in S.
\]

The integers \(n_s \) coincide with the components of the twice dual Weyl vector in the basis of simple co-roots (see Ch. 3.1.7 in [4]).

Hyperbolic KM algebras

Let \(A \) be a generalized Cartan matrix corresponding to a simple hyperbolic KM algebra. For hyperbolic algebras, the following relations are satisfied

\[
\varepsilon_s(U_s^a, U_s^b) > 0, \quad s \in S.
\]

since all \(b_s \) are negative in the hyperbolic case [37]:

\[
b_s < 0, \quad s \in S.
\]

For \((U_s^a, U_s^b) > 0 \) we get \(\varepsilon_s > 0 \), \(s \in S \). If \(\theta_{a_s} > 0 \) for all \(s \in S \), then

\[
\varepsilon(I_s) = 1 \quad \text{for} \quad v_s = e; \quad \varepsilon(I_s) = -\varepsilon(g) \quad \text{for} \quad v_s = m. \quad (3.26)
\]

For a pseudo-Euclidean metric \(g \) all \(\varepsilon(I_s) = 1 \), and hence all branes are Euclidean or should contain even number of time directions: 2, 4, ... For \(\varepsilon[g] = 1 \) only magnetic branes may be pseudo-Euclidean.

B\(_D\)-models. The \(B_D \)-model has the action [27]

\[
S_D = \int d^Dz \sqrt{|g|} \left\{ R[g] + g^{MN} \partial_M \varphi \partial_N \varphi - \sum_{a=4}^{D-7} \frac{1}{a!} \exp[2\varphi_a](F^a)^2 \right\}, \quad (3.27)
\]

where \(\varphi = (\varphi^1, \ldots, \varphi^l) \in \mathbb{R}^l \), \(\tilde{\lambda}_a = (\lambda_{a1}, \ldots, \lambda_{al}) \in \mathbb{R}^l \), \(l = D - 11 \), \(\text{rank}F^a = a \), \(a = 4, \ldots, D - 7 \). Here vectors \(\tilde{\lambda}_a \) satisfy the relations

\[
\tilde{\lambda}_a \tilde{\lambda}_b = N(a, b) - \frac{(a - 1)(b - 1)}{D - 2} = \Lambda_{ab}, \quad (3.28)
\]

\[
N(a, b) = \min(a, b) - 3, \quad (3.29)
\]

\(a, b = 4, \ldots, D - 7 \) and \(\tilde{\lambda}_{D-7} = -2\lambda_4 \). For \(D > 11 \) vectors \(\tilde{\lambda}_4, \ldots, \tilde{\lambda}_{D-8} \) are linearly independent. (It may be verified that the matrix \((\Lambda_{ab}) \) is positive-definite and hence the set of vectors obeying (3.28) does exist.)

The model (3.27) contains \(l \) scalar fields with a negative kinetic term (i.e., \(h_{a\beta} = -\delta_{a\beta} \) in (2.11)) coupled to several forms (the number of forms is \((l + 1) \)).

For the brane worldvolumes we have the following dimensions (see (2.16)): \(d(I) = 3, \ldots, D - 8 \) for \(I \in \Omega_{a,c} \) and \(d(I) = D - 5, \ldots, 6 \) for \(I \in \Omega_{a,m} \). Thus there are \((l + 1) \) electric and \((l + 1) \) magnetic \(p \)-branes, \(p = d(I) - 1 \). In \(B_D \)-model all \(K_s = 2 \). (For \(B_{12} \)-model see [11].)
Example 1: $H_2(q_1, q_2)$ algebra [19]. Let

$$A = \begin{pmatrix} 2 & -q_1 \\ -q_2 & 2 \end{pmatrix}, \quad q_1 q_2 > 4,$$

$q_1, q_2 \in \mathbb{N}$. This is the Cartan matrix of the hyperbolic KM algebra $H_2(q_1, q_2)$ [3]. From (3.21) we get

$$\varepsilon_s \nu_s^2 (U^s, U^s) (q_1 q_2 - 4) = 2q_s + 4,$$

$s \in \{1, 2\} = S$.

An example of the $H_2(q, q)$-solution for B_D-model with two electric p-branes ($p = d_1, d_2$), corresponding to F^a and F^b fields and intersecting on a time manifold, is as follows [19]:

$$g = H^{-2/(q-2)} g^0 - H^{2/(q-2)} dt \otimes dt + \hat{g}^1 + \hat{g}^2,$$

$$F^a = \nu_1 dH^{-1} \wedge dt \wedge \hat{r}_1,$$

$$F^b = \nu_2 dH^{-1} \wedge dt \wedge \hat{r}_2,$$

$$\varphi = - (\hat{\lambda}_a + \hat{\lambda}_b)(q - 2)^{-1} \ln H$$

where $d_0 = 3, d_1 = a - 2, a = q + 4, a < b, d_2 = b - 2, D = a + b$, and $\nu_1^2 = \nu_2^2 = (q - 2)^{-1}$. The signature restrictions are: $\varepsilon_1 = \varepsilon_2 = -1$. Thus the space-time (M, g) should contain at least three time directions. The minimal D is 15. For $D = 15$ we get $a = 7, b = 8, d_1 = 5, d_2 = 6$ and $q = 3$.

4 Black brane solutions

In this section we consider spherically symmetric solutions with $d_0 = 1$ and $M_1 = S^{d_1}, g^0 = d\Omega_{d_1}^2$, where $d\Omega_{d_1}^2$ is the canonical metric on a unit sphere $S^{d_1}, d_1 \geq 2$. The manifold M_0 corresponds to a radial variable R. We put also $M_2 = \mathbb{R}, g^2 = -dt \otimes dt$, i.e., M_2 is a time manifold and

$$2 \in I_s, \quad \forall s \in S,$$

i.e., all branes have a common time direction t.

In [23], [24], [25], the following solutions with a horizon were obtained:

$$g = \left(\prod_{s \in S} H_s^{2h_s, d(I_s)/(D-2)} \right) \left\{ \left(1 - \frac{2\mu}{R^d} \right)^{-1} dR \otimes dR + R^2 d\Omega_{d_1}^2 \right\}$$

$$- \left(\prod_{s \in S} H_s^{-2h_s} \right) \left(1 - \frac{2\mu}{R^d} \right) dt \otimes dt + \sum_{s \in S} \left(\prod_{s \in S} H_s^{-2h_s, d_s, I_s} \hat{g}^i \right),$$

$$\exp(\varphi_0) = \prod_{s \in S} H_s^{h_s, x_s, \lambda_{as}}$$

where $F^a = \sum_{s \in S} \delta^a_{as} F^s$, and

$$F^s = - \frac{Q_s}{R d^s} \left(\prod_{s' \in S} H_{s'}^{-A_{s'}} \right) dR \wedge \tau(I_s),$$

$s \in S_e,$

$$F^s = Q_s \tau(I_s),$$

$s \in S_m.$

Here $Q_s \neq 0, h_s = K_s^{-1}, s \in S$, and the generalized Cartan matrix $(A_{s,s'})$ is non-degenerate.

The functions $H_s > 0$ obey the equations

$$\frac{d}{dz} \left(\frac{1 - 2\mu z}{H_s} \frac{d}{dz} H_s \right) = \tilde{B}_s \prod_{s' \in S} H_s^{-A_{s,s'},}$$

(4.6)
\begin{align}
H_s((2\mu)^{-1} - 0) &= H_{s0} \in (0, +\infty), \\
H_s(+0) &= 1,
\end{align}

\(s \in S \), where \(H_s(z) > 0, \mu > 0, z = R^{-d} \in (0, (2\mu)^{-1}) \), \(d = d_1 - 1 \) and \(\tilde{B}_s = \varepsilon_s K_s Q_s^2 / \tilde{d}^2 \neq 0 \).

There exist solutions to eqs. \((4.6)-(4.7)\) of polynomial type. The simplest example occurs in orthogonal case \([40, 27]\) (for \(d_i = 1 \) see also \([38, 39]\)):

\((U^s, U^{s'}) = 0\), for \(s \neq s', s, s' \in S \). In this case \((A_{s'}) = \text{diag}(2, \ldots, 2)\) is a Cartan matrix of the semisimple Lie algebra \(A_1 \oplus \ldots \oplus A_1 \) and

\[H_s(z) = 1 + P_s z \]

with \(P_s \neq 0 \), satisfying

\[P_s(P_s + 2\mu) = -\tilde{B}_s, \]

\(s \in S \).

In \([43, 44]\) this solution was generalized to the block-orthogonal case \([45, 46]\). In this case \((4.9)\) is modified as follows

\[H_s(z) = (1 + P_s z)^b_s, \]

where \(b_s \) are defined as follows

\[b_s = 2 \sum_{s' \in S} A^{ss'} \]

and parameters \(P_s \) coincide within blocks, i.e., \(P_s = P_{s'} \) for \(s, s' \in S_i \), \(i = 1, \ldots, k \). The parameters \(P_s \neq 0 \) satisfy the relations \([44, 26]\)

\[P_s(P_s + 2\mu) = -\tilde{B}_s / b_s, \]

\(s \in S \), and the parameters \(\tilde{B}_s / b_s \) coincide within blocks, i.e., \(\tilde{B}_s / b_s = \tilde{B}_{s'} / b_{s'} \) for \(s, s' \in S_i \), \(i = 1, \ldots, k \).

Finite-dimensional Lie algebras.

Let \((A_{s'}) \) be a Cartan matrix for a finite-dimensional semisimple Lie algebra \(\mathcal{G} \). In this case all powers in \((4.12)\) are positive integers which coincide with the components of twice the dual Weyl vector in the basis of simple co-roots \([4]\), and hence all functions \(H_s \) are polynomials, \(s \in S \).

Conjecture 1. Let \((A_{s'}) \) be a Cartan matrix for a semisimple finite-dimensional Lie algebra \(\mathcal{G} \). Then the solutions to eqs. \((4.6)-(4.8)\) (if any) have a polynomial structure:

\[H_s(z) = 1 + \sum_{k=1}^{n_s} P_s^{(k)} z^k, \]

where \(P_s^{(k)} \) are constants, \(k = 1, \ldots, n_s \); \(n_s = b_s = 2 \sum_{s' \in S} A^{ss'} \in \mathbb{N} \) and \(P_s^{(n_s)} \neq 0 \), \(s \in S \).

In the extremal case \((\mu = +0)\), an analogue of this conjecture was suggested previously in \([42]\). Conjecture 1 was verified for the \(A_m \) and \(C_{m+1} \) Lie algebras in \([24, 25]\). Explicit expressions for polynomials corresponding to the Lie algebras \(C_2 \) and \(A_3 \) were obtained in \([45]\) and \([46]\), respectively. Recently, a family of black brane type solutions in the model with multicomponent anisotropic fluid were found in \([48]\).

Hyperbolic KM algebras. Let \((A_{s'}) \) be a Cartan matrix for the infinite-dimensional hyperbolic KM algebra \(\mathcal{G} \). In this case, all powers in \((4.12)\) are negative, and hence we have no chance to get a polynomial structure for \(H_s \). Here we are led to an open problem of seeking solutions to the set of “master” equations \((4.6)-(4.7)\). These solutions determine special solutions to the Toda-chain equations corresponding to the hyperbolic KM algebra \(\mathcal{G} \).

Example 2. Black hole solutions for the KM algebras \(A_1 \oplus A_1, A_2 \) and \(H_2(q, q) \) \([47]\). Consider a 4-dimensional model governed by the action

\[S = \int_M d^4z \sqrt{|g|} \{ R[g] - \varepsilon g^{MN} \partial_M \varphi \partial_N \varphi - \frac{1}{2} e^{2\lambda \varphi} (F^1)^2 - \frac{1}{2} e^{-2\lambda \varphi} (F^2)^2 \} \]

\[(4.15) \]

Here \(F^1 \) and \(F^2 \) are 2-forms, \(\varphi \) is a scalar field and \(\varepsilon = \pm 1 \).
We consider a black brane solution defined on $\mathbb{R}_s \times S^2 \times \mathbb{R}$ with two electric branes s_1 and s_2, corresponding to the forms F^1 and F^2, respectively, with the sets $I_1 = I_2 = \{2\}$. Here \mathbb{R}_s is a subset of \mathbb{R}, $M_1 = S^2$, $g^1 = d\Omega^2_2$ is the canonical metric on S^2, $M_2 = \mathbb{R}$, $g^2 = -dt \otimes dt$ and $\varepsilon_1 = \varepsilon_2 = -1$.

The scalar products of the U-vectors are (we identify $U^1 = U^{s_i}$):

$$(U^1, U^1) = (U^2, U^2) = \frac{1}{2} + \varepsilon \lambda^2 \neq 0, \quad (U^1, U^2) = \frac{1}{2} - \varepsilon \lambda^2.$$

(4.16)

The matrix A from (3.17) is a generalized non-degenerate Cartan matrix if and only if

$$\frac{2(U^1, U^2)}{(U^2, U^2)} = -q,$$

or, equivalently,

$$\varepsilon \lambda^2 = \frac{2 + q}{2(2 - q)},$$

(4.17) (4.18)

where $q = 0, 1, 3, 4, \ldots$. This takes place if $\varepsilon = +1$ for $q = 0, 1$ and $\varepsilon = -1$ for $q = 3, 4, 5, \ldots$.

The first branch ($\varepsilon = +1$) corresponds to the finite-dimensional Lie algebras $A_1 \oplus A_1$ ($q = 0$), A_2 ($q = 1$) and the second one ($\varepsilon = -1$) to the hyperbolic KM algebras $H_2(q, q)$, $q = 3, 4, \ldots$. In the hyperbolic case, the scalar field φ is a phantom.

The black brane solution reads (see (4.2)-(4.4))

$$g = (H_1 H_2)^{\delta} \left\{ \left(1 - \frac{2 \mu}{R} \right)^{-1} dR \otimes dR + R^2 d\Omega^2_2 \right. - (H_1 H_2)^{-2h} \left(1 - \frac{2 \mu}{R} \right) dt \otimes dt \right\},$$

$$\exp(\varphi) = (H_1 / H_2)^{\varepsilon h},$$

$$F^s = \frac{Q_s}{R^2} H_s^{-2}(H_5)^q dt \wedge dR,$$

(4.19) (4.20) (4.21)

$s = 1, 2$. Here $h = (2 - q)/2$ and $\delta = 2, 1$ for $s = 1, 2$, respectively.

The moduli functions $H_s > 0$ obey the equations (see (4.6))

$$\frac{d}{dz} \left(\frac{(1 - 2 \mu z)}{H_s} \frac{d}{dz} H_s \right) = \frac{2Q^2_s}{q - 2} H_s^{-2}(H_5)^q,$$

(4.22)

with the boundary conditions $H_s((2\mu)^{-1} - 0) = H_{s0} \in (0, +\infty)$, $H_s(+0) = 1$, $s = 1, 2$. Here $\mu > 0$, $z = 1/R \in (0, (2\mu)^{-1})$. For $q = 0, 1$ the solutions to eqs. (4.22) with these boundary conditions were given in [23] [24] [25]. They are polynomials of degrees 1 and 2 for $q = 0$ and $q = 1$, respectively. For $q = 3, 4, \ldots$ the exact solutions to eqs. (4.22) are yet unknown.

In the special case $Q^2_1 = Q^2_2$ the metric coincides with that of the Reissner-Nordström solution [17].

Example 3: Black brane solution corresponding to the KM algebra $HA_2^{(1)} = A_2^{++}$.

Now we consider the B_{15}-model in 15-dimensional pseudo-Euclidean space of signature $(-, +, \ldots, +)$ with the forms F^4, \ldots, F^8.

Here we deal with four electric branes s_1, s_2, s_3, s_4 corresponding to the 6-form F^6. The brane sets are: $I_1 = \{1, 2, 3, 11, 12\}$, $I_2 = \{4, 5, 6, 11, 12\}$, $I_3 = \{7, 8, 9, 11, 12\}$, $I_4 = \{1, 4, 10, 11, 12\}$.

It may be verified that these sets obey the intersection rules corresponding to the hyperbolic KM algebra $HA_2^{(1)}$ with the Cartan matrix

$$A = \begin{pmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix},$$

(4.23)
is in agreement with the fact that the metric (4.24) has a singularity at the boundary conditions

\[\alpha_{\mu} > 0, \]

\(\text{Example 4: Black brane solution corresponding to the Lorentzian KM algebra} \)

This solution is valid when a special set of charges is considered:

The Hawking temperature in this case is \[T_H = (1 + P/2\mu)^{22}/(8\pi\mu). \] It diverges as \(\mu \to +0 \). This is in agreement with the fact that the metric (4.24) has a singularity at \(R = +0 \) if \(\mu = +0 \).

Example 4: Black brane solution corresponding to the Lorentzian KM algebra \(P_{10} \).
Now we consider another solution for the B_{15}-model in 15-dimensional pseudo-Euclidean space of signature $(-, +, ..., +)$ with the non-zero 6-form F^6.

Here we deal with ten electric branes $s_1, ..., s_{10}$ corresponding to the 4-form F^4. The brane sets are: $I_1 = \{1, 4, 7, 11, 12\}$, $I_2 = \{8, 9, 10, 11, 12\}$, $I_3 = \{2, 5, 7, 11, 12\}$, $I_4 = \{4, 6, 10, 11, 12\}$, $I_5 = \{2, 3, 9, 11, 12\}$, $I_6 = \{1, 2, 8, 11, 12\}$, $I_7 = \{1, 3, 10, 11, 12\}$, $I_8 = \{4, 5, 8, 11, 12\}$, $I_9 = \{3, 6, 7, 11, 12\}$, $I_{10} = \{5, 6, 9, 11, 12\}$.

These sets obey the intersection rules corresponding to the Lorentzian KM algebra P_{10} (we call it the Petersen algebra) with the following Cartan matrix

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 2 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & 0 & 0 & -1 & 0 & 2 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & -1 & 0 & 2 & 0 & 0 \end{pmatrix} \quad (4.32)$$

The Dynkin diagram for this Cartan matrix could be represented by the Petersen graph “a star inside a pentagon”. P_{10} is a Lorentzian KM algebra. It is a subalgebra of E_{10} [3].

Let us present a black brane solution for the configuration of 10 electric branes under consideration. The metric \ref{g} reads

$$g = \left(\prod_{s=1}^{10} H_s \right)^{5/13} \left\{ \left(1 - \frac{2\mu}{R} \right)^{-1} dR \otimes dR + R^2 d\Omega_2^2 \right\} \quad (4.33)$$

The form field

$$F^6 = -Q_1 R^{-2} H_1^{-2} H_2 H_5 H_{10} dR \wedge dt^1 \wedge dt^2 \wedge dx^1 \wedge dx^4 \wedge dx^7 \quad (4.34)$$

$$-Q_2 R^{-2} H_1 H_2^{-2} H_3 H_9 dR \wedge dt^1 \wedge dt^2 \wedge dx^8 \wedge dx^9 \wedge dx^{10}$$

$$-Q_3 R^{-2} H_3 H_2^{-2} H_7 H_5 dR \wedge dt^1 \wedge dt^2 \wedge dx^2 \wedge dx^5 \wedge dx^7$$

$$-Q_4 R^{-2} H_3 H_4^{-2} H_5 H_9 dR \wedge dt^1 \wedge dt^2 \wedge dx^4 \wedge dx^6 \wedge dx^{10}$$

$$-Q_5 R^{-2} H_1 H_4 H_5^{-2} H_8 dR \wedge dt^1 \wedge dt^2 \wedge dx^2 \wedge dx^3 \wedge dx^9$$

$$-Q_6 R^{-2} H_4 H_1 H_5^{-2} H_9 dR \wedge dt^1 \wedge dt^2 \wedge dx^4 \wedge dx^8$$

$$-Q_7 R^{-2} H_3 H_7^{-2} H_8 H_{10} dR \wedge dt^1 \wedge dt^2 \wedge dx^1 \wedge dx^3 \wedge dx^{10}$$

$$-Q_8 R^{-2} H_5 H_7 H_9^{-2} H_5 dR \wedge dt^1 \wedge dt^2 \wedge dx^4 \wedge dx^5 \wedge dx^8$$

$$-Q_9 R^{-2} H_2 H_5 H_9^{-2} dR \wedge dt^1 \wedge dt^2 \wedge dx^3 \wedge dx^6 \wedge dx^7$$

$$-Q_{10} R^{-2} H_1 H_5 H_7 H_5^{-2} dR \wedge dt^1 \wedge dt^2 \wedge dx^5 \wedge dx^6 \wedge dx^9.$$
where $Q_s \neq 0$, $s = 1, \ldots, 10$.

The scalar fields reads

$$\varphi^\alpha = \frac{1}{2} \lambda_{6\alpha} \ln \left(\prod_{s=1}^{10} H_s \right),$$

(4.35)

$\alpha = 1, 2, 3, 4$. Here $H_s > 0$ obey the equations

$$\frac{d}{dz} \left(\frac{1 - 2\mu z}{H_s} \frac{d}{dz} H_s \right) = 2Q_s^2 \prod_{s'=1}^{10} H_{s'}^{-A_{ss'}},$$

(4.36)

with the boundary conditions $H_s((2\mu)^{-1} - 0) = H_{s0} \in (0, +\infty)$, and $H_s(+0) = 1$, $s = 1, \ldots, 10$. Here $\mu > 0$, $z = R^{-1} \in (0, (2\mu)^{-1})$, and $(A_{ss'})$ is the Cartan matrix (4.23) for the KM algebra P_{10}.

Special 1-block solution. Now we consider a special 1-block solution. This solution is valid if a special set of charges is considered: $Q_s^2 = 2Q^2$ ($Q \neq 0$) in agreement to (4.28) and

$$b_s = 2 \sum_{s'=1}^{10} A_{ss'} = -2,$$

(4.37)

for $s = 1, \ldots, 10$. In this case the functions H_s are

$$H_s = H^{-2}, \quad H = 1 + P/R,$$

(4.38)

where $P(P+2\mu) = 2Q^2$. As in the previous case, we get a well-defined solution for $P = -\mu + \sqrt{\mu^2 + 2Q^2} > 0$ and $\mu > 0$.

The Hawking temperature in this case has the following form: $T_H = (1 + P/2\mu)^{10}/(8\pi\mu)$. It is smaller than that in the previous example but it also diverges as $\mu \to +0$. It is in agreement with the singularity of the metric (4.33) at $R = +0$ for $\mu = +0$.

5 Conclusions

We have considered several classes of exact solutions in multidimensional gravity with a set of scalar fields and fields of forms related to non-singular (e.g., hyperbolic) KM algebras.

The solutions describe composite electromagnetic branes defined on warped products of Ricci-flat, or sometimes Einstein, spaces of arbitrary dimensions and signatures. The metrics are block-diagonal, and all scale factors, scalar fields and fields of forms depend on points of some manifold M_0. The solutions include those depending on harmonic functions, and spherically-symmetric black-brane solutions. Our approach is based on the sigma-model representation obtained in [28] under rather a general assumption on intersections of composite branes (such that the stress-energy tensor has a diagonal structure).

We have also considered a class of black brane configurations with intersection rules [27] governed by an invertible generalized Cartan matrix corresponding to a certain generalized KM Lie algebra G. The “master” equations for moduli functions have polynomial solutions in the finite-dimensional case (according to our conjecture [24, 25]), while in the infinite-dimensional case we have only a special family of the so-called block-orthogonal solutions corresponding to semi-simple non-singular KM algebras. Certain examples of black brane solutions are presented, corresponding to the hyperbolic KM algebras: $H_2(q, q)$ ($q > 2$), $A_{2}^{(1)} = A_{2}^{++}$ and the Lorentzian KM algebra P_{10}.

The last two solutions (which are new) may be analyzed from the viewpoints (i) of post-Newtonian parameters β and γ corresponding to the 4-dimensional section of the metric and (ii) of thermodynamic properties of the black branes under consideration. These and some other tasks may be a subject of a separate publication.

Acknowledgments

This work was supported in part by grant NPK-MU (PFUR), Russian Foundation for Basic Research (Grant Nr. 09-02-00677-a) and by the FTsP “Nauchnie i nauchno-pedagogicheskie kadry innovatsionnoy Rossii” for the years 2009-2013.

14
References

[1] V.G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR. Ser. Mat., 32, 1323-1367 (1968).

[2] R.V. Moody, A new class of Lie algebras, J. Algebra 10, 211-230 (1968).

[3] V.G. Kac, Infinite-dimensional Lie Algebras (Cambridge University Press, Cambridge, 1990).

[4] J. Fuchs and C. Schweigert, Symmetries, Lie algebras and Representations. A graduate course for physicists (Cambridge University Press, Cambridge, 1997).

[5] V.V. Nikulin, On classification of hyperbolic systems of roots of rank 3, Proceedings of the Steklov Institute of Mathematics, 230 (3), 1241 (2000) (in Russian).

[6] M. Henneaux, D. Persson and P. Spindel, Spacelike Singularities and Hidden Symmetries of Gravity, Living Rev. Relativity, 11, 1-228, (2008).

[7] C. Saclioglu, Dynkin diagram for hyperbolic Kac-Moody algebras, J. Phys. A 22 (18), 3753-3769 (1989).

[8] S. de Buyl and C. Schomblond, Hyperbolic Kac Moody algebras and Einstein billiards, J. Math. Phys., 45 (12) 4464-4492 (2004).

[9] A. Feingold and I.B. Frenkel, Math. Ann. 263, 87 (1983).

[10] B. Julia, in Lectures in Applied Mathematics, 21, 355 (1985).

[11] S. Mizoguchi, E_{10} Symmetry in One Dimensional Supergravity, Nucl. Phys. B 528, 238-264 (1998); hep-th/9703160.

[12] H. Nicolai, Phys. Lett. B 276, 333 (1992).

[13] G. Moore, String duality, automorphic forms, and generalized Kac-Moody algebras, Nucl. Phys. Proc. Suppl. 67, 56-67 (1998); hep-th/9710198.

[14] T. Damour and M. Henneaux, E_{10}, BE_{10} and Arithmetical Chaos in Superstring Cosmology, Phys. Rev. Lett. 86, 4749-4752 (2001); hep-th/0012172.

[15] T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, topical review, Class. Quantum Grav. 20, R145-R200 (2003); hep-th/0212256.

[16] V.D. Ivashchuk and V.N. Melnikov, On billiard approach in multidimensional cosmological models, Grav. Cosmol. 15, No. 1, 49-58 (2009); arXiv: 0811.2786.

[17] P. West, E11 and M theory, Class. Quant. Grav. 18 (2001) 4443; hep-th/0104081.

[18] I. Schnakenburg and P. West, Kac-Moody symmetries of IIB supergravity, Phys. Lett. B 517 (2001) 421, hep-th/0107181.

[19] V.D. Ivashchuk and V.N. Melnikov, Majumdar-Papapetrou Type Solutions in Sigma-model and Intersecting p-branes, Class. Quantum Grav. 16, 849 (1999); hep-th/9802121.

[20] M.A. Grebeniuk and V.D. Ivashchuk, Sigma-model solutions and intersecting p-branes related to Lie algebras, Phys. Lett. B 442, 125-135 (1998); hep-th/9805113.

[21] V.D. Ivashchuk, S.-W. Kim and V.N. Melnikov, Hyperbolic Kac-Moody algebra from intersecting p-branes, J. Math. Phys. 40, 4072-4083 (1998); Erratum ibid. 42, No 11 (2001); hep-th/9803006.

[22] V.D. Ivashchuk and S.-W. Kim, Solutions with intersecting p-branes related to Toda chains, J. Math. Phys. 41 (1), 444-460 (2000); hep-th/9907019.

[23] V.D. Ivashchuk and V.N. Melnikov, P-brane black Holes for General Intersections, Grav. Cosmol. 5, No 4 (20), 313-318 (1999); gr-qc/0002085.

[24] V.D. Ivashchuk and V.N. Melnikov, Black hole p-brane solutions for general intersection rules, Grav. Cosmol. 6, No 1 (21), 27-40 (2000); hep-th/9910041.

[25] V.D. Ivashchuk and V.N. Melnikov, Toda p-brane black holes and polynomials related to Lie algebras, Class. Quantum Grav. 17, 2073-2092 (2000); math-ph/0002048.

[26] V.D. Ivashchuk and V.N. Melnikov, Exact solutions in multidimensional gravity with antisymmetric forms, topical review, Class. Quantum Grav. 18, R82-R157 (2001); hep-th/0110274.

[27] V.D. Ivashchuk and V.N. Melnikov, Multidimensional classical and quantum cosmology with intersecting p-branes, J. Math. Phys., 39, 2866-2889 (1998); hep-th/9708157.

[28] V.D. Ivashchuk and V.N. Melnikov, Sigma-model for the Generalized Composite p-branes, Class. Quantum Grav. 14, 3001-3029 (1997); Corrigenda ibid. 15 (12), 3941 (1998); hep-th/9705036.
[29] E. Cremmer, B. Julia, and J. Scherk, *Phys. Lett.* **B76**, 409 (1978).

[30] F. Englert and L. Houart, *G++* invariant formulation of gravity and M-theories: Exact intersecting brane solutions, *JHEP* **0405**, 059 (2004); [hep-th/0405082](http://arxiv.org/abs/hep-th/0405082).

[31] V.D. Ivashchuk and V.N. Melnikov, Billiard representation for multidimensional cosmology with multicomponent perfect fluid near the singularity, *Class. Quantum Grav.* **12**, 809 (1995); [gr-qc/9407028](http://arxiv.org/abs/gr-qc/9407028).

[32] V.D. Ivashchuk and V.N. Melnikov, Billiard representation for multidimensional cosmology with intersecting p-branes near the singularity, *J. Math. Phys.*, **41**, No 8, 6341-6363 (2000); [hep-th/9904077](http://arxiv.org/abs/hep-th/9904077).

[33] I.Ya. Aref’eva and O.A. Rytchkov, Incidence Matrix Description of Intersecting p-brane Solutions, *Am. Math. Soc. Transl.* **201**, 19-38 (2000); [hep-th/9612236](http://arxiv.org/abs/hep-th/9612236).

[34] R. Argurio, F. Englert and L. Hourant, Intersection rules for p-branes, *Phys. Lett.* **B 398**, 61 (1997); [hep-th/9701042](http://arxiv.org/abs/hep-th/9701042).

[35] G.W. Gibbons and S.W. Hawking, *Phys. Rev.* **D 15**, 2752 (1977).

[36] V.D. Ivashchuk, V.N. Melnikov and A.I. Zhuk, *Nuovo Cimento* **B 104**, 575 (1989).

[37] M. Gaberdiel, D. Olive and P. West, A class of Lorentzian Kac-Moody algebras, *Nucl. Phys.* **B 645** (2002) 403; [hep-th/0205068](http://arxiv.org/abs/hep-th/0205068).

[38] I.Ya. Aref’eva, M.G. Ivanov and I.V. Volovich, Non-extremal intersecting p-branes in various dimensions, *Phys. Lett.* **B 406**, 44-48 (1997); [hep-th/9702079](http://arxiv.org/abs/hep-th/9702079).

[39] N. Ohta, Intersection rules for non-extreme p-branes, *Phys. Lett.* **B 403**, 218-224 (1997); [hep-th/9702164](http://arxiv.org/abs/hep-th/9702164).

[40] K.A. Bronnikov, V.D. Ivashchuk and V.N. Melnikov, The Reissner-Nordström Problem for Intersecting Electric and Magnetic p-Branes, *Grav. Cosmol.* **3**, No 3 (11), 203-212 (1997); [gr-qc/9710054](http://arxiv.org/abs/gr-qc/9710054).

[41] N. Khviengia, Z. Khviengia, H. Lü and C.N. Pope, Towards a field theory of F-theory, *Class. Quantum Grav.* **15**, 759-773 (1998); [hep-th/9703012](http://arxiv.org/abs/hep-th/9703012).

[42] H. Lü, J. Maharana, S. Mukherji and C.N. Pope, Cosmological Solutions, p-branes and the Wheeler De Witt Equation, *Phys. Rev.* **D 57**, 2219-2229 (1997); [hep-th/9707182](http://arxiv.org/abs/hep-th/9707182).

[43] K.A. Bronnikov, Block-orthogonal Brane systems, Black Holes and Wormholes, *Grav. Cosmol.* **4**, No 1 (13), 49 (1998); [hep-th/9710207](http://arxiv.org/abs/hep-th/9710207).

[44] V.D. Ivashchuk and V.N. Melnikov, Multidimensional cosmological and spherically symmetric solutions with intersecting p-branes. In Lecture Notes in Physics, Vol. 537, "Mathematical and Quantum Aspects of Relativity and Cosmology Proceedings of the Second Samos Meeting on Cosmology, Geometry and Relativity held at Pythagoreon, Samos, Greece, 1998, eds: S. Cotsakis, G.W. Gibbons., Berlin, Springer, 2000; [gr-qc/9901001](http://arxiv.org/abs/gr-qc/9901001).

[45] M.A. Grebeniuk, V.D. Ivashchuk and S.-W. Kim, Black-brane solutions for C_2 algebra, *J. Math. Phys.* **43**, 6016-6023 (2002); [hep-th/0111219](http://arxiv.org/abs/hep-th/0111219).

[46] M.A. Grebeniuk, V.D. Ivashchuk and V.N. Melnikov, Black-brane solution for A_3 algebra, *Phys. Lett.* **B 543**, 98-106 (2002); [hep-th/0208083](http://arxiv.org/abs/hep-th/0208083).

[47] V.D. Ivashchuk, V.N. Melnikov, On brane solutions related to non-singular Kac-Moody algebras, *SIGMA* **5**(2009), 070, 34 pages; arxiv: 0810.0196.

[48] V.D. Ivashchuk, On analogues of black brane solutions in the model with multicomponent anisotropic fluid, *Phys. Lett.* **B 693**, 399-403 (2010); arxiv: 1001.4053.