Colorectal cancer, screening and primary care: A mini literature review

Athanassios Hadjipetrou, Dimitrios Anyfantakis, Christos G Galanakis, Miltiades Kastanakis, Serafim Kastanakis

Abstract

Colorectal cancer (CRC) is a common health problem, representing the third most commonly diagnosed cancer worldwide and causing a significant burden in terms of morbidity and mortality, with annual deaths estimated at 700000. The western way of life, that is being rapidly adopted in many regions of the world, is a well discussed risk factor for CRC and could be targeted in terms of primary prevention. Furthermore, the relatively slow development of this cancer permits drastic reduction of incidence and mortality through secondary prevention. These facts underlie primary care physicians (PCPs) being assigned a key role in health strategies that enhance prevention and prompt diagnosis. Herein, we review the main topics of CRC in the current literature, in order to better understand its pathogenesis, risk and protective factors, as well as screening techniques. Furthermore, we discuss preventive and screening policies to combat CRC and the crucial role served by PCPs in their successful implementation. Relevant articles were identified through electronic searches of MEDLINE and through manual searches of reference lists.

Key words: Colorectal cancer; Prevention; Diagnosis; Screening; Primary care

Core tip: Colorectal cancer (CRC) is a common health problem, causing a significant burden in terms of morbidity and mortality. However, if detected early, the disease is highly curable. Primary care physicians are therefore in a unique position to enhance prevention and prompt diagnosis. The purpose of this paper was to
review the main topics of CRC in the current literature to provide a more comprehensive understanding of its pathogenesis, risk and protective factors, as well as screening techniques.

Hadjipetrou A, Anyfantakis D, Galanakis CG, Kastanakis M, Kastanakis S. Colorectal cancer, screening and primary care: A mini literature review. World J Gastroenterol 2017; 23(33): 6049-6058 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i33/6049.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i33.6049

INTRODUCTION

Colorectal cancer (CRC) is a global health burden, accounting for almost 700000 deaths per year worldwide[1]. CRC is the third most commonly diagnosed cancer worldwide and second in Europe[1]. According to the World Health Organization GLOBOCAN database, in 2012, almost 1.4 million new cases of CRC were diagnosed and almost 70000 deaths occurred worldwide[2].

CRC global incidence and mortality rates appear to be substantially higher for males than for females, with 21 new cases and 10.5 deaths per 100000 population compared to 17.6 new cases and 9.2 deaths respectively. In males, CRC ranks third in incidence, following lung and prostate cancers, and in females it ranks second, following breast cancer[3,2].

There is an over 10-fold geographical variation of CRC incidence throughout the world[2]. The highest incidence rates are observed in Australia and New Zealand, with the estimated age-standardized rates being 44.8 per 100000 population in men and 32.2 in women; Europe and North America follow close behind. The lowest incidence is observed in Africa, with the rates in Western Africa being only 3.5 per 100000 in men and 3.0 in women[2,3,4].

Incidence trends reported for the past few decades have revealed very interesting findings. In the United States, overall CRC incidence has been declining since the mid-80s, right about the time that CRC screening was introduced[5-7]. In Europe, incidence trend patterns show great diversity among countries, mainly due to differences in screening policies and prevalence lifestyle risk factors between countries. The largest increase in incidence was observed in Central-Eastern Europe over the past few decades[8-12].

CRC incidence increases with age, and cases are fairly uncommon before the 4th decade of life[1,3,5]. This is the reason why most screening programs are targeted to people over 50 years old. Nevertheless, recent studies have revealed an alarming increase in incidence between the ages 40 to 44, prompting consideration of lowering the recommended screening age[13,14].

Mortality rates have progressively declined in most economically developed countries, in contrast with poorer regions of the world, where mortality is either stable or increasing[1,15]. This reflects the diversity in screening services accessibility, specialized care and lifestyle risk factors[11]. The highest reported mortality rates are in Central-Eastern Europe, although the highest incidence to mortality ratio is observed in Middle-Western Africa[1,10].

In this paper, we aimed to perform a narrative literature review and compile all of the up-to-date knowledge on the current CRC medical literature. Our main objective was to summarize all the available information and provide gastroenterologists and primary care physicians (PCPs) with a comprehensive background for a better understanding of the current evidence.

SEARCH STRATEGY

We conducted a literature search in the PubMed database, with publication date limited to between January 1996 and August 2016, using the following Medical Subject Heading (commonly known as MeSH) terms: “colorectal neoplasms”, “diagnosis”, “early detection of cancer”, “primary health care”. The search was limited to English language. Editorials, Letters to the Editor and Case Reports were excluded. Inclusion criteria for papers were CRC topics in prevention, screening, detection and diagnostics, as well as follow-up in primary care. The titles and abstracts of all papers identified by the electronic search were manually assessed by two researchers working independently (AH, DA). Disagreements between the two reviewers were infrequent and resolved by consensus or arbitration of a third reviewer (MK).

Full texts of the articles that were considered eligible for inclusion were also scrutinized in order to offer a better approach on CRC issues related to pathogenesis, screening, diagnosis and management, as were articles related to early detection in the primary care setting.

A total of 159 studies were identified and assessed for eligibility. Among them, 7 overlapped and were excluded. Four articles were also excluded due to topical relevance to other types of cancer. Finally, 148 articles were assessed in detail for study inclusion. From these, 42 were excluded for not meeting the inclusion criteria. Figure 1 summarizes the process of identification and selection of studies.

PATHOGENESIS

The Adenoma-Carcinoma pathogenesis model is what gives endoscopic methods of screening the benefit of not only reducing mortality but also reducing incidence of CRC through early recognition and removal of adenomatous polyps from the colon[16]. The Adenoma-Carcinoma sequence applies to most CRCs and involves a sequential progression that takes, on average, a decade to occur. Many of the adenomas begin as small polyps that enlarge and become
risk of developing CRC than the general population. Members diagnosed with CRC are at 2–3 times greater.

Studies have shown that individuals having first-degree family history, in addition to the genetic syndromes thus far known, constitutes a very significant risk factor for the development of CRC, altogether accounting for 25% of cases, which appears to account for up to 70% [28]. The risk factors implicated in the mechanisms of sporadic disease are mainly environmental/acquired. Western lifestyle, cigarette smoking, alcohol intake, obesity and certain dietary habits are amongst the risk factors associated with increased risk for CRC [24,25,32–34].

PRIMARY PREVENTION

As expected, an important role in the etiology of CRC is attributed to lifestyle factors, since, as aforementioned, the majority of CRC cases are not associated with hereditary/familial factors [24,25,30]. Western lifestyle is a well-discussed risk factor for CRC, as it was readily observable by researchers that CRC incidence was consistently higher in industrialized countries [25]. This observation was further supported by the growing incidence in poorer regions as they adopted the western way of living [24,36].

Diet has been a popular subject of CRC research over the past few decades, both for its potential as a risk factor and as a protective factor. A number of researchers have argued the protective role of a diet high in fiber, with some studies showing a reduction in CRC incidence up to 50% [28–30]. Nevertheless, many recent reports have raised doubts about this argument, leaving the question of how protective dietary fibers really are, open for future prospective studies to answer [40,41]. Many authors have also asserted a protective role for calcium and vitamin D, as well as for other less verified dietary factors such as folate, vitamin B6, magnesium, garlic and omega 3 fatty acids [42–46]. On the other hand, frequent consumption of red meat and fat has been associated with increased risk for development of CRC [47–49].

Obesity has been consistently associated with increased risk for developing CRC, as well as with poorer outcomes following diagnosis [50–52]. In fact, a review of 29 studies reported that each 5 kg/m² incremental increase in body mass index is accompanied by CRC incidence increase of 24% in men and 9% in women [50]. In association with a healthy body weight, regular physical activity has been shown to reduce CRC incidence even more, with studies reporting up to 20%–30% lower risk [53,54].

Alcohol consumption as a risk factor for CRC has been a controversial subject, especially when referring to light and moderate consumption, but studies have consistently reported a higher risk for developing CRC among individuals with moderate to heavy consumption [55]. Tobacco smoking has been shown to double the risk of being diagnosed with a colon adenoma and to result to poorer outcomes following a cancer diagnosis, leading authors to recommend more intensive screening among smokers [24,56].

Although no accepted chemopreventive indications exist currently, many pharmaceutical agents have
shown preventive effects against CRC. Aspirin and COX-2 selective inhibitors are among the most investigated agents in regards to CRC prevention, and their regular use has shown ability to reduce incidence in individuals at both average and increased risk. In the general population, the risks from their use seem to outweigh the benefits, but many advocate their use in certain individuals at increased risk for colorectal neoplasia.

SCREENING/SECONDARY PREVENTION

The fact that most CRCs take years to develop - following the Adenoma - Carcinoma sequence - permits the reduction of CRC mortality through screening, either by early detection and removal of the cancer or by detecting and removing the precancerous lesions.

There are roughly three categories of screening tests for CRC: stool-based, imaging, and endoscopic tests. Although stool-based tests can reduce mortality rates by early detection of asymptomatic cancerous lesions, imaging and endoscopic tests are capable of further reducing CRC incidence by detecting precancerous lesions as well.

STOOL-BASED TESTS

Guaiac-based fecal occult blood test

Relying on the properties of alpha-guaiaconic acid, a phenolic compound extracted from Guaiacum trees, guaiac-based fecal occult blood test (gFOBT) can detect the presence of heme (of blood hemoglobin) in stool samples. Application of hydrogen peroxide onto guaiac paper causes alpha-guaiaconic acid to oxidize and turn blue. This reaction normally takes time, but heme (if present) catalyzes the reaction and within seconds a blue color change is visible. This bioreactive method was proposed as a screening test for CRC almost half a century ago and has become the most frequently used screen for CRC worldwide.

While the gFOBT is cost affordable and non-invasive, it unfortunately bears many disadvantages. The interpretation of the result is subject to observer bias. Also, the reaction can be catalyzed by any peroxidase, such as heme found in meat, and false-positive results can lead to unnecessary colonoscopies; although, strict dietary restrictions that were proposed in the past seem to now be proven unnecessary. False-negative results, on the other hand, can occur from ingestion of large doses of ascorbic acid (vitamin C). Aside from the dietary restrictions related to preparation for the gFOBT, the patient needs to provide three consecutive stool samples in order to achieve adequate sensitivity for occult blood. The reported sensitivity and specificity vary between studies and different manufacturer brands, and efforts to introduce new, more sensitive guaiac-based tests resulted in lower specificity.

Finally, this test cannot detect polyps, since they do not bleed, and its sensitivity for advanced adenoma is relatively low.

Fecal immunochemical test

Fecal immunochemical test (FIT) detects blood in stool by using a specific antibody against human hemoglobin. As such, FIT is not affected by diet or observer bias, giving it a greater specificity than gFOBT. Besides specificity, however, its sensitivity for both cancer and adenomas has been shown to be superior to that of gFOBT. According to a recent meta-analysis, the mean reported sensitivity and specificity for FIT detection of CRC is 79% and 94% respectively. In addition, FIT requires fewer samples than gFOBT, making it more convenient for patients and thus increasing compliance. Quantitative results can be provided with this method as well, facilitating the ability to determine positive cut-off points for different populations, patient characteristics, or system capabilities and resources.

In summary, stool-based tests are non-invasive and inexpensive methods capable of detecting occult bleeding. However, they are practically incapable of detecting polyps, since the latter do not usually bleed, and they have low sensitivity for detecting adenomas. Consequently, their role in reducing CRC incidence is close to none, but their implementation as a screening tool can reduce CRC mortality by providing early recognition of cancerous lesions. Comparing the two methods, FIT appears superior in terms of sensitivity and specificity (for both CRC and adenomas) and in terms of patient compliance. It is reasonable then to expect that, although more expensive, FIT could be more cost-effective than gFOBT since it could prompt less unnecessary colonoscopies.

IMAGING TESTS

Double-contrast barium enema

In double-contrast barium enema (DCBE), the colon is studied through X-rays obtained after coating the mucosa with barium and distending the colon with air, both of which are inserted transrectal. The DCBE is considered a safe method and has been used frequently in the past, but its use has been dramatically reduced as novel imaging methods become available. The reported sensitivity of DCBE for large polyps (> 10 mm) is only about 50%, and false positive results can occur due to inadequate bowel preparation.

Computed tomographic colonography

This method was first described more than 20 years ago, and provides 2- and 3-dimensional endoluminal images of the colon upon reconstructing of computed tomography or magnetic resonance images of the air-
distended colon[75,76]. The reported diagnostic value of computed tomographic colonography (CTC) has varied between studies, but as newer techniques of CTC are developed it is closing in on colonoscopy in terms of sensitivity and specificity for detecting CRC[77]. In a recent meta-analysis, the overall sensitivity and specificity of CTC was 66.8% and 80.3% respectively, both lower than the values for colonoscopy. For polyps > 10 mm though, the meta-analysis showed greater sensitivity and specificity (91.2% and 87.3% respectively)[78]. CTC appears to be more preferred by patients than colonoscopy; in addition, it has a very low risk of bowel perforation and requires no sedation[79,80]. On the other hand, CTC requires follow-up colonoscopy after positive results (to perform excision/biopsy), exposes the patient to radiation, and the lack of standardized methods leads to variable diagnostic performance[77,78]. The need for aggressive bowel preparation has been an issue, but newer techniques have been reported involving laxative-free CTC using “fecal tagging” with an ingested contrast agent[81]. Many authors include in CTC’s advantages the potential of discovering extracolonic pathology in asymptomatic patients, but this argument is controversial since these findings can sometimes lead to unnecessary patient anxiety, costly investigations and overdiagnosis[82-83].

Colon capsule endoscopy

The colon capsule endoscopy (CCE) method for CRC screening was initially introduced in 2006, and roughly consists of swallowing a pill-shaped device which is capable of photographing the gastrointestinal tract as it passes through it[84]. Initially, CCE did not gain significant acceptance as a screening tool for CRC, mainly because of its cost and relatively low diagnostic value compared to colonoscopy[85]. After introduction of the second-generation CCE (CCE-2) in 2009, the subject of CCE has become very popular in the medical literature[86]. The reported average sensitivity and specificity for the CCE-2 is 86% and 71% respectively, and since 2012 it has been promoted as an acceptable screening method for CRC by the European Society of Gastrointestinal Endoscopy[87]. Compared to colonoscopy, CCE might be a lot more preferable for the patient, but it is more expensive, lacks excision/biopsy ability and requires very aggressive bowel preparation[85,88].

ENDOSCOPIC TESTS

Flexible sigmoidoscopy

Flexible sigmoidoscopy (FS) enables the trained physician to visualize the distal gastrointestinal tract up to the splenic flexure, using a flexible, 60 cm long endoscope[89]. FS requires only minimal bowel preparation, no diet restrictions and no sedation, and can be performed by non-gastroenterologists (e.g., PCPs) or even trained nurses[89-91]. Obviously, FS is unable to detect lesions in the proximal colon, which makes it lacking in sensitivity compared to colonoscopy[90]. In a meta-analysis, FS appeared to reduce CRC incidence and mortality among screened patients, by 32% and 50% respectively[92].

Colonoscopy

The traditional method of colonoscopy provides visualization of the entire large bowel and the distal part of the small bowel by using a flexible, 120-cm to 160-cm long endoscope[93]. It is considered by most the ‘gold standard’ in CRC screening, mainly because of its high sensitivity and specificity for detecting cancerous and precancerous lesions. It also provides the ability to excise or biopsy detected lesions during the same procedure[6,13,77,90]. Unfortunately, it is also an expensive method and not free of risk; it also requires sedation and extensive bowel preparation. The reported rate of major complications, such as bleeding or bowel perforation, is approximately 0.1%-0.2%, but could become significantly higher when excisions or biopsies are performed and in elderly or comorbid patients[93].

PREVENTION: SCREENING

IMPLEMENTATION AND THE ROLE OF PCPS

It is beyond doubt that the burden of CRC can be significantly reduced through primary and secondary prevention. Scientific research over the past few decades has offered, as aforementioned, a variety of options for CRC screening and a better understanding of risk and protective factors for the development of CRC. Unfortunately, underutilization of screening and a lack in preventive policies are being reported[94-98].

Some European countries still have not implemented national mass screening programs, and others that did have reported low participation rates[97,98]. In the United States, there has been a significant decrease in incidence and mortality following widespread implementation of screening, but the overall use of screening is still below national standards[94]. Additionally, it has been reported that uninsured people in the United States and people of low socioeconomic or educational status show much lower participation rates[99].

Many researchers have attempted to identify the causes of CRC screening underutilization and ways to enhance it. While the barriers and sites of potential improvement have been identified at the levels of the health care system and the patient, most of the authors have advocated for the key role of PCPs.

Patients, in many studies, have shown low awareness concerning CRC screening and its importance. In one particularly insightful study, by Aubin-Augé et al[97], some patients showed low interest in CRC
Despite the significant improvements in screening techniques and our understanding of risk and protective factors, CRC remains a major global health burden. PCPs face a unique challenge in their capabilities and efforts to alter this phenomenon; their role in implementing screening and preventive policies is key to reducing the burden of CRC.

CONCLUSION

Despite the significant improvements in screening techniques and our understanding of risk and protective factors, CRC remains a major global health burden. PCPs face a unique challenge in their capabilities and efforts to alter this phenomenon; their role in implementing screening and preventive policies is key to reducing the burden of CRC.

REFERENCES

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. *CA Cancer J Clin* 2015; 65: 87-108 [PMID: 25651787 DOI: 10.3322/caac.21262]

2. Global Burden of Disease Cancer Collaboration. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, Dandona L, Fleming T, Forouzanfar MH, Hancock J, Hay RJ, Hunter-Merrill R, Huynh C, Hosgood HD, Johnson CO, Jonas JB, Khubchandani J, Kumar GA, Kutz M, Lan Q, Larson HJ, Liang X, Lim SS, Lopez AD, Maclntyre MF, Mareczak L, Marquez N, Mokdad AH, Pinho C, Pournmalek W, Salomon JA, Sanabria JR, Sandar L, Sartorius B, Schwartz SM, Shackelford KA, Shibuya K, Stanaway J, Steiner C, Sun J, Takahashi K, Vollset SE, Vos T, Wagner JA, Wang H, Westerman R, Zeeb H, Zoecleker L, Abd-Allah F, Ahmed MB, Alabe S, Alam NK, Aldhahri SF, Alem G, Alemayehou MA, Ali R, Al-Raddad R, Amare A, Amoako Y, Artaman A, Asayesh H, Atinama N, Awadhi A, Saleem HB, Barac A, Bedi N, Bensendor I, Berhane A, Bernabé E, Betsu B, Binagwaho A, Boneya D, Campos-Nonato I, Cana-cilha-Oruela C, Catalá-López F, Chiang P, Chibueze C, Chitheer A, Choi JY, Cowie B, Damtew D, the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and cause-specific mortality for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. *JAMA Oncol* 2017; 3: 524-548 [PMID: 27918777 DOI: 10.1001/jamaoncol.2016.5688]

3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. *CA Cancer J Clin* 2011; 61: 69-90 [PMID: 21296855 DOI: 10.3322/caac.201007]

4. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national lifetime expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the Global Burden of Disease Study 2015. *Lancet* 2016; 388: 1459-1544 [PMID: 27733281 DOI: 10.1016/S0140-6736(16)31012-1]

5. Edwards BK, Ward E, Kohler BA, Ehemann C, Zauberg AG, Anderson RN, Jemal A, Schymura MJ, Lansdorp-Vogelaar I, Seeff LC, van Ballegooijen M, Goede SL, Ries LA. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. *Cancer* 2010; 116: 544-573 [PMID: 19998273 DOI: 10.1002/cncr.24760]

6. Zauberg AG, Landsorp-Vogelaar I, Knudsen AB, Wilschut J, van...
Ballegoojian, M, Kuntz KM. Evaluating test strategies for colorectal cancer screening: a decision analysis for the U.S. Preventive Services Task Force. *Ann Intern Med* 2008; 149: 659-669 [PMID: 18383711 DOI: 10.7326/0003-4819-149-9-20081104-00424]

Kohler BA, Ward E, McCarthy CJ, Schymura MJ, Ries LA, Ehemann C, Jemal A, Anderson RN, Ajani UA, Edwards BK. Annual report to the nation on the status of cancer, 1973-2007, featuring tumors of the brain and other nervous system. *J Natl Cancer Inst* 2011; 103: 714-736 [PMID: 21454908 DOI: 10.1093/jnci/djp4077]

Center MM, Ward E. International trends in colorectal cancer incidence rates. *Cancer Epidemiol Biomarkers Prev* 2009; 18: 1685-1694 [PMID: 19505990 DOI: 10.1158/1055-9965.EPI-09-0090]

Ait Ouakrim D, Pizot C, Boniol M, Malvezzi M, Boniol M, Negri E, Botta M, Jenkins MA, Bleihig B, Autier P. Trends in colorectal cancer mortality in Europe: retrospective analysis of the WHO mortality database. *BMJ* 2015; 351: h4970 [PMID: 26442928 DOI: 10.1136/bmj.h4970]

Zavoral M, Suchanek S, Majek O, Fric P, Minarikova P, Minarik M, Seifert B, Dusek L. Colorectal cancer screening: 20 years of development and recent progress. *World J Gastroenterol* 2014; 20: 3825-3834 [PMID: 24744575 DOI: 10.3748/wjg.v20.i14.3825]

Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. *CA Cancer J Clin* 2009; 59: 366-378 [PMID: 19987840 DOI: 10.3322/caac.200308]

Jakovljevic M, Gutzwiller F, Schwenkglenks M, Milovanovic O, Rancic N, Varjacic M, Stojadinovic D, Dagovic A, Matter-Walstra K. Costs differences among monoclonal antibodies-based first-line oncology cancer protocols for breast cancer, colorectal carcinoma and non-Hodgkin’s lymphoma. *J BUON* 2014; 19: 1111-1120 [PMID: 25536624]

Eddy DM. Screening for colorectal cancer. *Ann Intern Med* 1990; 113: 373-384 [PMID: 2200231 DOI: 10.7326/0003-4819-113-5-373]

Davis DM, Marcati JE, Frattini JC, Prather AD, Mateka JJ, Giovannucci EL. Primary prevention of colorectal cancer: myth or reality? *J Natl Acad Sci USA* 2002; 99: 9433-9438 [PMID: 12093899 DOI: 10.1073/pnas.122612899]

Chan AT, Giovannucci EL. Primary prevention of colorectal cancer. *Gastroenterology* 2010; 138: 2029-2043.e10 [PMID: 20420944 DOI: 10.1053/j.gastro.2010.01.057]

Platz EA, Willett WC, Colditz GA, Rimm EB, Spiegelman D, Giovannucci E. Proportion of colon cancer risk that might be preventable in a cohort of middle-aged US men. *Cancer Causes Control* 2000; 11: 579-588 [PMID: 10977102 DOI: 10.1023/A:1008999232442]

GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet* 2016; 388: 1695-1724 [PMID: 27733284 DOI: 10.1016/S0140-6736(16)31679-8]

Wilschut JA, Steyerberg EW, van Leeuwen ME, Lansdorp-Vogelaar I, Habbema JD, van Ballegoojien M. How much colonoscopy screening should be recommended to individuals with various degrees of family history of colorectal cancer? *Cancer* 2011; 117: 4166-4174 [PMID: 21387272 DOI: 10.1002/jnci.26009]

Jasper KW, Tuohy TM, Nicholson DW, Burt RW. Hereditary and familial colon cancer. *Gastroenterology* 2010; 138: 2044-2058 [PMID: 20420945 DOI: 10.1053/j.gastro.2010.01.054]

Gala M, Chung DC. Hereditary colon cancer syndromes. *Semin Oncol* 2011; 38: 490-499 [PMID: 21810508 DOI: 10.1053/j.seminoncol.2011.05.003]

Zhang K, Civan J, Mukherjee S, Patel F, Yang H. Genetic variations in colorectal cancer risk and clinical outcome. *World J Gastroenterol* 2014; 20: 4167-4177 [PMID: 24764655 DOI: 10.3748/wjg.v20.i15.4167]

Burt RW, DiSario JA, Cannon-Albright L. Genetics of colon cancer: impact of inheritance on colon cancer risk. *Annu Rev Med* 1995; 46: 371-379 [PMID: 5978492 DOI: 10.1146/annurev.med.46.1.371]

Aleksandrova K, Pischon T, Jenab M, Bueno-de-Mesquita HB, Fedirko V, Norat T, Romaguera D, Knüppel S, Boutron-Ruault MC, Dossus L, Dartois L, Kaaks R, Li K, Tjønneland A, Overvad K, Quirós JR, Buckland G, Sánchez MJ, Dørronsero M, Clariaoude MJ, Barricarte A, Khaw KT, Wareham NJ, Bradbury KE, Trichopoulou A, Lagiou P, Trichopoulus D, Dallo P, Krogh V, Tumino R, Naccarati A, Panico S, Siriama ED, Peeters PH, Ljuslindner I, Johansson I, Ericson U, Ohlsson B, Weiderpass E, Skeie G, Borgh KB, Rinaldi S, Romieu I, Kong J, Gunter MJ, Ward HA, Riboli E, Boehl C. Combined impact of healthy lifestyle factors on colorectal cancer risk and clinical outcome. *Ann Rev Nutr* 2012; 32: 255-276 [PMID: 22367898 DOI: 10.1146/annurev.nutr.092711.083841]

Sandler RS. Epidemiology and risk factors for colorectal cancer. *Gastroenterol Clin North Am* 1995; 24: 717-735 [PMID: 8960089 DOI: 10.1016/S0099-8559(05)70271-5]

Bingham SA, Day NE, Luben R, Ferrari P, Silman N, Norat T, Clavel-Chapelon F, Kee E, Nieters A, Boeing H, Tjønneland A, Overvad K, Martinez C, Dørronsero M, Gonzalez CA, Key TJ, Trichopoulou A, Naska A, Vineis P, Tumino R, Krogh V, Bueno-de-Mesquita HB, Peeters PH, Berglund G, Hallmans G, Lund E, Skeie G, Kaaks R, Riboli E. European Prospective Investigation into Cancer and Nutrition. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study.
Hajdipetrou A et al. Colorectal cancer and primary care physicians

Lancet 2003; 361: 1496-1501 [PMID: 12737858 DOI: 10.1016/S0140-6736(03)13174-1]

36 Curado MP, Edwards B, Shin HR, Storm H, Ferlay J, Haunee M, Boyle P. Cancer incidence in five continents. Vol. IX. IARC Scientific Publications, No. 160. Lyon, IARC: 2007 Available from: URL: http://www.iarc.fr/en/publications/pdfs-online/epi/sp160/C19v09.pdf

37 Slattery ML, Boucher KM, Caan BJ, Potter JD, Ma KN. Eating patterns and risk of colon cancer. Am J Epidemiol 1998; 148: 4-16 [PMID: 9663397 DOI: 10.1093/aje/148.1.4-a]

38 Trock B, Lanza E, Greenwald P. Dietary fiber, vegetables, and colon cancer: critical review and meta-analyses of the epidemiologic evidence. J Natl Cancer Inst 1999; 82: 650-661 [PMID: 2150727 DOI: 10.1093/jnci/82.8.650]

39 Howe GR, Benito E, Castelletto R, Cornée J, Estève J, Gallagher RP, Iscovitch JM, Deng-ao J, Kaaks R, Kune GA. Dietary intake of fiber and decreased risk of colorectal cancer and rectum: evidence from the combined analysis of 13 case-control studies. J Natl Cancer Inst 1992; 84: 1887-1896 [PMID: 13341530 DOI: 10.1093/ CancRes/84.24.1887]

40 Park Y, Hunter DJ, Spiegelman D, Bergkvist L, Berrino F, van den Brandt PA, Buring JE, Colditz GA, Freudenheim JL, Fuchs CS, Giovannucci E, Goldbohm RA, Graham S, Harnack L, Hartman AM, Jacobs DR Jr, Kato I, Krogh V, Leitzmann MF, McCulloch ML, Miller AB, Pietinen P, Rohan TE, Schatzkin A, Willett WC, Wolk A, Zeleniuch-Jacquotte A, Zheng SM, Smith-Warner SA. Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies. JAMA 2005; 293: 2849-2857 [PMID: 16352992 DOI: 10.1001/jama.293.22.2849]

41 Koushik A, Hunter DJ, Spiegelman D, Beeson WL, van den Brandt PA, Buring JE, Calle EE, Cho E, Fraser GE, Freudenheim JL, Fuchs CS, Giovannucci EL, Goldbohm RA, Harnack L, Jacobs DR Jr, Kato I, Krogh V, Larsson SC, Leitzmann MF, Marshall JR, McCulloch ML, Miller AB, Pietinen P, Rohan TE, Schatzkin A, Sieri S, Virtanen MJ, Wolk A, Zeleniuch-Jacquotte A, Zheng SM, Smith-Warner SA. Fruit, vegetables, and colorectal cancer risk in a pooled analysis of 14 cohort studies. J Natl Cancer Inst 2007; 99: 1471-1483 [PMID: 17985473 DOI: 10.1093/jnci/djm155]

42 Martinez ME, Willett WC. Calcium, vitamin D, and colorectal cancer: a review of the epidemiologic evidence. Cancer Epidemiol Biomarkers Prev 1998; 7: 163-168 [PMID: 9488592]

43 Cho E, Smith-Warner SA, Spiegelman D, Beeson WL, van den Brandt PA, Colditz GA, Folsom AR, Fraser GE, Freudenheim JL, Giovannucci E, Goldbohm RA, Graham S, Miller AB, Pietinen P, Pottel JD, Rohan TE, Terry P, Toniolo P, Virtanen MJ, Willett WC, Wolk A, Wu K, Yuen SY, Zeleniuch-Jacquotte A, Hunter DJ. Dietary foods, calcium, and colorectal cancer: a pooled analysis of 10 cohort studies. J Natl Cancer Inst 2004; 96: 1015-1022 [PMID: 15240785 DOI: 10.1093/jnci/djh185]

44 Wu S, Feng B, Li K, Zhu X, Liang S, Liu X, Han S, Wang B, Wu K, Miao D, Liang J, Fan D. Fish consumption and colorectal cancer risk in women. Cancer Epidemiol Biomarkers Prev 2008; 17: 605-615 [PMID: 18242224 DOI: 10.1093/jnci/djj246]

45 Abrams J, Terry MB, Neugut AI. Cigarette smoking and the colorectal adenoma-carcinoma sequence. Gastroenterology 2008; 134: 617-619 [PMID: 18242224 DOI: 10.1053/j.gastro.2007.12.015]

46 Rothwell PM, Wilson M, Elwin CE, Norrving B, Algra A, Warlow CP, Meade TW. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 2010; 376: 1741-1750 [PMID: 20970847 DOI: 10.1016/S0140-6736(10)61543-7]

47 Barón JA, Sandler RS, Bresalier RS, Quan H, Riddell R, Lanas A, Bolognese JA, Oxenius B, Horgan K, Loftus S, Morton DG; APPROVe Trial Investigators. A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology 2006; 131: 1674-1682 [PMID: 17087947 DOI: 10.1053/j.gastro.2006.08.079]

48 Bawn J, Gerdes AM, Macrae F, Mecklin JP, Moeslein G, Olschew S, Eccles D, Evans DG, Maher ER, Bertario L, Bisgaard ML, Dunlop MG, Ho JW, Hodgson SV, Lindblom A, Lubinski J, Morrison PJ, Murday V, Ramesar R, Side L, Scott RJ, Thomas HJ, Vasek HF, Barker G, Crawford G, Elliott F, Movahedi M, Pylvänäinen K, Wijn J, Frode L, Lynch HT, Mathers JC, Bishop DT, CAPP2 Investigators. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial.
Aspects of virtual endoscopy. Endoscopy 1996; 28: 768-775 [PMID: 9007432 DOI: 10.1055/s-2007-1056033]

77 de Haan MC, van Gelder RE, Grasser A, Bipat S, Stoker J. Diagnostic value of CT-colonography as compared to colonoscopy in an asymptomatic screening population: a meta-analysis. Eur Radiol 2011; 21: 1747-1763 [PMID: 21455818 DOI: 10.1007/s00330-011-2104-8]

78 Martín-López JE, Beltrán-Calvo C, Rodriguez-López R, Molina López T. Comparison of the accuracy of CT colonography and colonoscopy in the diagnosis of colorectal cancer. Colorectal Dis 2014; 16: OS2-089 [PMID: 24299052 DOI: 10.1111/ced.12506]

79 Lin OS, Kozarek RA, Gluck M, Jiraneck GC, Koch J, Kowdle KV, Irani S, Nguyen M, Dominitz JA. Preference for colonoscopy versus computerized tomographic colonography: a systematic review and meta-analysis of observational studies. J Gen Intern Med 2012; 27: 1349-1360 [PMID: 22700393 DOI: 10.1001/s11060-012-2115-4]

80 Berrington de Gonzalez A, Kim KP, Yee J. CT colonography: perforation rates and potential radiation risks. Gastrointest Endosc Clin N Am 2010; 20: 279-291 [PMID: 20451817 DOI: 10.1016/j.gcen.2010.02.003]

81 Zalis ME, Blake MA, Cai W, Hahn PF, Halpern EF, Kazmaz IG, Keroack M, Magee C, Nappi JP, Perez-Johnston R, Saltzman JR, Vij A, Yee J, Yoshida H. Diagnostic accuracy of laxative-free computed tomographic colonography for detection of adenomatous polyps in asymptomatic adults: a prospective evaluation. Ann Intern Med 2012; 156: 692-702 [PMID: 22586008 DOI: 10.7326/0003-4819-156-1020125150-00005]

82 Fletcher RH, Pignone M. Extracolonic findings with computed tomographic colonography: asset or liability? Arch Intern Med 2008; 168: 685-686 [PMID: 18413549 DOI: 10.1001/archinte.168.6.685]

83 Jakovljevic M, Rankovic A, Racic N, Jovanovic M, Ivanovic M, Gajovic O, Lazic Z. Radiology services costs and utilization patterns estimates in Southeastern Europe - A Retrospective Analysis from Serbia. Value Health Reg 2013; 2: 218-225 [DOI: 10.1016/j.vhri.2013.07.002]

84 Schoofs N, Devière J, Van Gossuin A. PillCam colon capsule endoscopy compared with colonoscopy for colorectal tumor diagnosis: a prospective pilot study. Endoscopy 2006, 38: 971-977 [PMID: 17058159 DOI: 10.1055/s-2006-948835]

85 Rokkas T, Papaxonis K, Triantafyllou K, Ladas SD. A meta-analysis evaluating the accuracy of colon capsule endoscopy in detecting colon polyps. Gastrointest Endosc 2010; 71: 792-798 [PMID: 20363421 DOI: 10.1016/j.gie.2009.10.050]

86 Eliakim R, Yassin K, Niv Y, Metzger Y, Lachter J, Gal E, Sapoznikov B, Konikoff F, Liechmann G, Friedman Z, Kopelman Y, Adler SN. Prospective multicenter performance evaluation of the second-generation colon capsule compared with colonoscopy. Endoscopy 2009; 41: 1026-1031 [PMID: 19967618 DOI: 10.1055/s-0029-1215360]

87 Spada C, Hassan C, Galmiche JP, Neuhaus H, Dumonceau JM, Adler S, Epstein O, Gay G, Pennazio M, Rex DK, Benamouzig R, de Franchis R, Delvaux M, Devière J, Eliakim R, Fraser C, Hagenmuller F, Herreras JM, Keuchel M, Macae F, Munoz-Nasva M, Ponchon T, Quintero E, Riccioni ME, Rondonotti E, Marro M, Sung JJ, Tajiiri H, Toth E, Triantafyllou K, Van Gossuin A, Costamagna G, European Society of Gastrointestinal Endoscopy. Colon capsule endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2012; 44: 527-536 [PMID: 22389230 DOI: 10.1055/s-0032-1291717]

88 Kwick WG, Jain YJ. Current Status and Research into Overcoming Limitations of Capsule Endoscopy. Clin Endosc 2016; 49: 8-15 [PMID: 26855917 DOI: 10.5946/ce.2016.49.1.8]

89 Fletcher RH. Rationale for combining different screening strategies. Gastrointest Endosc Clin N Am 2002; 12: 53-63 [PMID: 11916161 DOI: 10.1016/S1052-5157(03)00057-6]

90 Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of...
randomised controlled trials and observational studies. BMJ 2014; 348: g2467 [PMID: 24922745 DOI: 10.1136/bmj.g2467]
91 Shum NF, Lui YL, Choi HK, Lau SC, Ho JW. A comprehensive training programme for nurse endoscopist performing flexible sigmoidoscopy in Hong Kong. J Clin Nurs 2010; 19: 1891-1896 [PMID: 20920016 DOI: 10.1111/j.1365-2702.2009.03093.x]
92 Elmunzer BJ, Hayward RA, Schoenfeld PS, Saini SD, Deshpande A, Waljee AK. Effect of flexible sigmoidoscopy-based screening on incidence and mortality of colorectal cancer: a systematic review and meta-analysis of randomized controlled trials. PLoS Med 2012; 9: e1001352 [PMID: 23226108 DOI: 10.1371/journal.pmed.1001352]
93 Lee SH, Park YK, Lee DJ, Kim KM. Colonoscopy procedural skills and training for new beginners. World J Gastroenterol 2014; 20: 16984-16995 [PMID: 25493011 DOI: 10.3748/wjg.v20.i45.16984]
94 Centers for Disease Control and Prevention (CDC). Vital signs: Colorectal cancer screening, incidence, and mortality--United States, 2002-2010. MMWR Morb Mortal Wkly Rep 2011; 60: 884-889 [PMID: 21734636]
95 Meissner HI, Breen N, Klabunde CN, Vernon SW. Patterns of colorectal cancer screening uptake among men and women in the United States. Cancer Epidemiol Biomarkers Prev 2006; 15: 389-394 [PMID: 16649234 DOI: 10.1158/1055-9965.EPI-05-0678]
96 Viguier J, Calazel-Benque A, Eisinger F, Pivot X. Organized colorectal cancer screening programmes: how to optimize efficiency among general practitioners. Eur J Cancer Prev 2011; 20 Suppl 1: S26-S32 [PMID: 21245677 DOI: 10.1097/01.ejj.0000391567.49006.aff]
97 Aubin-Augier I, Mercier A, Lebeau JP, Baumann L, Peremans L, Van Royen P. Obstacles to colorectal screening in general practice: a qualitative study of GPs and patients. Fam Pract 2011; 28: 670-676 [PMID: 21551256 DOI: 10.1093/fampra/cmq020]
98 Lionis C, Petelos E. Early detection of colorectal cancer: barriers to screening in the primary care setting. Fam Pract 2011; 28: 589-591 [PMID: 22087034 DOI: 10.1093/fampra/cmq110]
99 Centers for Disease Control and Prevention (CDC). Cancer screening - United States, 2010. MMWR Morb Mortal Wkly Rep 2012; 61: 41-45 [PMID: 22278157]
100 Holden DJ, Jonas DE, Porterfield DS, Reuland D, Harris R. Systematic review: enhancing the use and quality of colorectal cancer screening. Ann Intern Med 2010; 152: 668-676 [PMID: 20338870 DOI: 10.7326/0003-4819-152-10201005180-00239]
101 Brown ML, Potosky AL. The presidential effect: the public health response to media coverage about Ronald Reagan’s colon cancer episode. Public Opin Q 1990; 54: 317-329 [PMID: 10109111 DOI: 10.1086/269209]
102 Noar SM, Willoughby JF, Myrick JG, Brown J. Public figure announcements about cancer and opportunities for cancer communication: a review and research agenda. Health Commun 2014; 29: 445-461 [PMID: 23845155 DOI: 10.1080/10410236.2013.825789]
103 Twine C, Barthelmes L, Gateley CA. Kylie Minogue’s breast cancer: effects on referrals to a rapid access breast clinic in the UK. Breast 2006; 15: 667-669 [PMID: 16730988 DOI: 10.1016/j.breast.2006.03.006]
104 Camilli L, Ferroni E, Cendales BJ, Pezzarossi A, Furnari G, Borgia P, Guasticchi G, Giorgi Rossi P. Methods to increase participation Working Group. Methods to increase participation in organised screening programmes: a systematic review. BMC Public Health 2013; 13: 464 [PMID: 23663511 DOI: 10.1186/1471-2458-13-464]
105 Giorgi Rossi P, Camilli L, Cogo C, Federici A, Ferroni E, Furnari G, Giordano L, Grazzini G, Iossa A, Jimenez B, Palazzi M, Palazzo F, Spada T, Senore C, Borgia P, Guasticchi G. [Methods to increase participation in cancer screening programmes]. Epidemiol Prev 2012; 36: 1-104 [PMID: 22418841]
106 Baron RC, Melillo S, Rimer BK, Coates RJ, Kerner J, Habarta N, Chattopadhyay S, Sabatino SA, Elder R, Leeks KJ, Task Force on Community Preventive Services. Intervention to intervene recommendation and delivery of screening for breast, cervical, and colorectal cancers by healthcare providers a systematic review of provider reminders. Am J Prev Med 2010; 38: 110-117 [PMID: 20175666 DOI: 10.1016/j.amepresp.2009.09.031]
107 Arroyave AM, Penananda KE, Lewis CL. Organizational change: a way to increase colon, breast and cervical cancer screening in primary care practices. J Community Health 2011; 36: 281-288 [PMID: 20835777 DOI: 10.1007/s10900-010-9309-7]
108 Kelly B, Hornik R, Romantian A, Schwartz JS, Armstrong K, DeMichele A, Fishbein M, Gray S, Hull S, Kim A, Nagler R, Niederdeppe J, Ramirez AS, Smith-McLallen A, Wong N. Cancer information scanning and seeking in the general population. J Health Commun 2010; 15: 734-753 [PMID: 21045030 DOI: 10.1080/10810730.2010.514029]
109 Walsh JM, Posner SF, Perez-Stable EJ. Colon cancer screening in the ambulatory setting. Prev Med 2002; 35: 209-218 [PMID: 12202062 DOI: 10.1006/pmed.2002.1059]
110 Sahin MK, Aker S, Arslan HN. Barriers to Colorectal Cancer Screening in a Primary Care Setting in Turkey. J Community Health 2017; 42: 101-108 [PMID: 27516067 DOI: 10.1007/s10900-016-0235-1]
111 Jakovljevic M, Vukovic M, Chen CC, Antunovic M, Dragojevic-Simic V, Velickovic-Radovanovic R, Djendji MS, Jankovic N, Rankovic A, Kovacevic A, Antunovic M, Milovanovic O, Markovic V, Dasari BN, Yamada T. Do Health Reforms Impact Cost Consciousness of Health Care Professionals? Results from a Nation-Wide Survey in the Balkans. Balkan Med J 2016; 33: 8-17 [PMID: 26966613 DOI: 10.5152/balkanmedj.2015.15869]
112 Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097 [PMID: 19621072 DOI: 10.1371/journal.pmed.1000097]
