iPTF 16asu: A LUMINOUS, RAPIDLY-EVOLVING, AND HIGH-VELOCITY SUPERNOVA

L. Whitesides1, R. Lunnan2,1, M. M. Kasliwal1, D. A. Perley3, A. Corsi4, S. B. Cenko5,6, N. Blagorodnova1, Y. Cao1, D. O. Cook1, G. B. Doran1, D. D. Frederiks3, C. Fremling2, K. Hurley6, E. Karamhmetoglu2, S. R. Kulkarni1, F. Masci8, P. E. Nugent11,12, A. Ritter13, A. Rubin14, V. Savchenko15, J. Sollerman2, D. S. Svinin4, F. Taddia4, P. Vreeswijk14, and P. Woźniak16

Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
1 The Oskar Klein Centre & Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
2 Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Browlow Hill, Liverpool L3 5RF, UK
3 Department of Physics and Astronomy, Texas Tech University, Box 41051, Lubbock, TX 79409-1051, USA
4 Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771, USA
5 Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA
6 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
7 IoFFE Institute, Politekhnicheskaya 26, St. Petersburg 194021, Russia
8 University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450, USA
9 Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125, USA
10 Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
11 Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
12 Department of Astronomy, University of California, 501 Campbell Hall, Berkeley, CA 94720-3411, USA
13 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
14 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
15 ISDC, Department of astronomy, University of Geneva, chemin d’egg, 16 CH-1290 Versoix, Switzerland
16 Los Alamos National Laboratory, MS-D466, Los Alamos, NM 87545, USA

Draft version June 19, 2017

ABSTRACT

Wide-field surveys are discovering a growing number of rare transients whose physical origin is not yet well understood. Here, we present optical and UV data and analysis of iPTF 16asu, a luminous, rapidly-evolving, high velocity, stripped-envelope supernova. With a rest-frame rise-time of just 4 days and a peak absolute magnitude of \(M_V = -20.4 \) mag, the light curve of iPTF 16asu is faster and more luminous than previous rapid transients. The spectra of iPTF 16asu show a featureless, blue continuum near peak that develops into a Type Ic-BL spectrum on the decline. We show that while the late-time light curve could plausibly be powered by \(^{56}\)Ni decay, the early emission requires a different energy source. Non-detections in the X-ray and radio strongly constrain any associated gamma-ray burst to be low-luminosity. We suggest that the early emission may have been powered by either a rapidly spinning-down magnetar, or by shock breakout in an extended envelope of a very energetic explosion.

In either scenario a central engine is required, making iPTF 16asu an intriguing transition object between superluminous supernovae, Type Ic-BL supernovae, and low-energy gamma-ray bursts.

Keywords: supernovae: general; supernovae: individual (iPTF16asu); gamma-ray burst: general; magnetars; shock waves

1. INTRODUCTION

Many new and unusual astrophysical transients have been discovered recently by wide-field surveys which regularly monitor the night sky. Supernovae (SNe) are traditionally classified based on their spectra (see Filippenko 1997 for a review) and fall into two main groups: Type II/Ibc SNe, which originate from core collapse of massive stars; and Type Ia SNe, which are produced by thermonuclear disruptions of white dwarfs. These SNe were often discovered in galaxy-targeted SN searches and occur on the timescale of a fortnight. However, with the advent of dedicated wide-field surveys with increased survey speeds, exotic types of SNe and other transient events are being discovered both inside and outside of galaxies (see Kasliwal 2012 for a review). These rare detections have necessitated the establishment of new categories of SNe such as Ca-rich gap transients (e.g., Perets et al. 2010), \(\dot{\gamma} \) explosions (e.g., Kasliwal et al. 2010), Intermediate Luminosity Red Transients (e.g., Prieto et al. 2008), and superluminous supernovae (e.g., Quimby et al. 2011) which demand different physical models than those previously used to explain SNe. The physics powering transient objects in our universe continues to be a rich topic of exploration.

This diverse landscape of transients is illustrated in Figure 1 shown in the phase space of rise time (explosion to peak) versus peak luminosity. Type Ia SNe, shown as a green diamond, act as standardizable candles with a tight range of luminosities and rise times (Hayden et al. 2010). Type II SNe, shown in cyan, are characterized by fast rise times but relatively low luminosities (Rubin et al. 2016). Type Ibc SNe, shown in magenta, are more heterogeneous but tend to rise more slowly and become brighter than Type II (Taddia et al. 2015); those with broad spectral features (Type Ic-BL), denoted as diamonds, generally reach higher peak luminosities than typical SNe Ibc (Corsi et al. 2012, 2017). Superluminous supernovae (SLSNe), shown in blue, are extremely bright transients with very long rise times (Quimby et al. 2011, Gal-Yam 2012).

Transients which rise and decay rapidly are difficult to detect, requiring a sufficiently high cadence over a...
sufficiently large volume, rapid triggering and follow-up. Improvements in these areas have enabled discovery of objects which populate this previously empty region of short time scales at a wide range of luminosities. Drout et al. (2014) searched the Pan-STARRS Medium Deep Survey for rapidly evolving transients, resulting in the sample of objects shown in yellow in Figure 1. Recently, Arcavi et al. (2016) presented another four rapidly-evolving objects (shown in blue), with intermediate luminosities between regular SNe and SLSNe. These objects are also similar in rise time and luminosity to SN 2011kl, a unique event which was associated with an ultra-long gamma-ray burst (GRB), shown in green. These objects are also similar in rise time and luminosities between regular SNe and SLSNe. iPTF 16asu was detected in a nightly-cadence g band experiment with iPTF, and we therefore have P48 data covering the time up to explosion as well as the early rise. Subsequent photometry was obtained with the automated 60-inch telescope at Palomar (P60; Cenko et al. 2006) in the $griz$ bands. Host-subtracted point-spread function (PSF) photometry was obtained using the Palomar Transient Factory Image Differencing and Extraction (PTFIDE) pipeline (Masci et al. 2017) on the P48 images, and the FPipe SEDM presented in Fremling et al. (2016) on the P60 images. Our last photometric observation came from the 3.58-m Telescopio Nazionale Galileo (TNG) and was processed through the FPipe. The photometry has been corrected for Galactic extinction following Schlafly & Finkbeiner (2011), with $E(B-V) = 0.029$ mag. Table 1 lists all photometric data, which is shown in Figure 2.

2.2. Photometry

iPTF 16asu was detected in a nightly-cadence g band experiment with iPTF, and we therefore have P48 data covering the time up to explosion as well as the early rise. Subsequent photometry was obtained with the automated 60-inch telescope at Palomar (P60; Cenko et al. 2006) in the $griz$ bands. Host-subtracted point-spread function (PSF) photometry was obtained using the Palomar Transient Factory Image Differencing and Extraction (PTFIDE) pipeline (Masci et al. 2017) on the P48 images, and the FPipe SEDM presented in Fremling et al. (2016) on the P60 images. Our last photometric observation came from the 3.58-m Telescopio Nazionale Galileo (TNG) and was processed through the FPipe. The photometry has been corrected for Galactic extinction following Schlafly & Finkbeiner (2011), with $E(B-V) = 0.029$ mag. Table 1 lists all photometric data, which is shown in Figure 2.

2.3. Spectroscopy

We obtained a sequence of eight low resolution spectra for iPTF 16asu using the DBSP on P200: the Andalucia Faint Object Spectrograph and Camera (ALFOSC)

Figure 1. Rest frame rise time (explosion to peak) versus peak absolute magnitude of a variety of types of SNe. iPTF 16asu, shown as a red star, is unique in its combination of high luminosity and fast rise time. Data from Hayden et al. (2010) (B band), Rubin et al. (2016) (R band), Drout et al. (2015) (r band), Hostessizadeh et al. (2017) (template), Barbary et al. (2019) (i band), Pastorello et al. (2010) (B band), Quimby et al. (2011) (u band), Lunnan et al. (2013) (r band), Inserra et al. (2013) (i band), Chomiuk et al. (2011) (z band), Drout et al. (2014) (r band), Arcavi et al. (2016) (r band), Green et al. (2015) (r band), Lunnan et al. (2015) (r band), Kasliwal et al. (2012) (r band), and Ofek et al. (2010) (NUV band). Where possible rise times are given in band closest to iPTF 16asu rest-frame g band.

iPTF 16asu was discovered by the intermediate Palomar Transient Factory Discovery Program (Law et al. 2009) Cao et al. 2016.
Radio Observations

We observed the field of iPTF 16asu with the Karl G. Jansky Very Large Array (VLA) on two epochs (Program VLA/16B-043; PI: A. Corsi). The first observation was carried out starting on 2016 June 13, 01:18:22 UT (MJD 57552), with the VLA in its B configuration. The second observation was carried out with the VLA in its A configuration, starting on 2017 January 10, 09:43:06 UT (MJD 57763). Both these observations were carried out in C-band (nominal central frequency of ~5 GHz), using the 8 bit configuration and 2 GHz nominal bandwidth. On both epochs we used 3C286 as bandpass and flux density calibrator, and J1300+1417 as phase calibrator. The total observing time was about 1 hr (including calibration and overhead) per epoch.

VLA data were calibrated using the automated VLA calibration pipeline in CASA (McMullin et al. 2007). After visual inspection, additional flags were applied when needed. Images of the fields were produced using the CLEAN task (Högbom 1974).

We searched for a radio counterpart to iPTF 16asu within a 2”-radius circle centered on the iPTF position of iPTF 16asu. No radio source was detected within this region down to a 3σ limit of ~17 μJy at 6.2 GHz for both epochs.

2.5. UV and X-ray Observations

At the time of the first spectrum, iPTF 16asu resembled a very young SLSN, with its already high luminosity and blue spectrum indicating a high temperature. We therefore triggered our Swift program for SLSNe (GI-1215281; PI: R. Lunnan), and three epochs of Swift UVOT (Roming et al. 2005) and XRT (Burrows et al. 2005) data were obtained, at phases corresponding to 7.4, 13.4 and 19.2 days after explosion (see Section 3.1 for calculation of explosion date).

We reduced the Swift data using the HEASoft package provided by NASA18. UVOT photometry was performed using the task UVOTsource with an aperture of 5”, iPTF 16asu is detected in all filters except V band in the first observation, and undetected in all UVOT filters in the subsequent two epochs, due to the rapid fading of the SN. All UVOT photometry is listed in Table 1.

The XRT data were reduced with the Ximage software from the HEASoft package. No X-ray source is detected at the position of iPTF 16asu in either epoch. The 3σ upper limits correspond to 5.6 × 10^{-3} counts s^{-1}, 2.9 × 10^{-3} counts s^{-1} and 3.9 × 10^{-3} counts s^{-1}, respectively. Using WebPIMMS19 and assuming a Galactic nH of 2.2 × 10^{20} cm^{-2}, we find that 1 × 10^{-3} counts s^{-1} corresponds to 3.76 × 10^{-14} erg cm^{-2} s^{-1} (unabsorbed; 0.3-10 keV), assuming a power law model with an index of 2. At a redshift of z = 0.1874, our X-ray count limits translates to flux limits of 2.5 × 10^{-15} erg s^{-1}, 1.1 × 10^{-14} erg s^{-1} and 1.5 × 10^{-13} erg s^{-1} respectively.

2.6. Search for associated Gamma-Ray Burst

We searched the Gamma-Ray Coordinates Network (GCN) archives for any announced GRBs consistent with the location and best-fit explosion time of iPTF 16asu (Section 3.1). No announced GRB is consistent with the location and time of iPTF 16asu, also when extending the search to include bursts detected between the last iPTF non-detection and the first detection of iPTF 16asu. However, a weak burst was detected by Konus-Wind (KW; Aptekar et al. 1995) in the waiting mode on 2016 May 10.41, which is consistent with our best-fit explosion time of 2016 May 10.53 ± 0.17 days (see Section 3.1). The burst was observed by the KW S2 detector pointing the northern ecliptic hemisphere (nothing is seen in the opposite S1 detector), which is also consistent with the position of iPTF 16asu, but the burst source

18 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.

19 IDA is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.
position cannot be constrained more precisely from the KW data.

The burst light curve was recorded in three energy bands (20-76 keV, 76-305 keV, 305-1160 keV) with temporal resolution of 2.944 s. It shows a single emission episode with a duration of 126 s ($T_{50} = 56 \pm 11$ s and $T_{90} = 100 \pm 11$ s, both measured in the 20-300 keV energy band). Fitting the KW tree-channel time-integrated spectrum (measured from T0 to T0+126.592 s) by a simple power law yields the photon index of $2.35^{+0.18}_{-0.14}$, χ^2/ dof $= 2.7/1$. From this fit, the burst had an energy fluence of $8.25^{+1.60}_{-0.86} \times 10^{-6} \text{erg cm}^{-2}$ and a 2.944-s peak energy flux, measured from T0+73.6 s, of $2.41^{+1.02}_{-0.94} \times 10^{-7} \text{erg cm}^{-2}$ (both in the 20-1200 keV energy range). At the distance of iPTF 16asu, this fluence would correspond to an equivalent isotropic energy E_{iso} of 8.2×10^{50} erg. The fit with a power law with exponential cutoff model yields only an upper limit on spectrum peak energy: $E_p < 67$ keV.

During the KW burst, Swift was in SAA and the position of iPTF 16asu was Earth-occluded to it. However, the position of iPTF 16asu was not occulted for Fermi (and six GBM detectors had incident angles less than 60 deg). We analyze the Fermi-GBM continuous data, and find no emission in the 30-300 keV band coincident with KW burst. Given that the background of Fermi-GBM is considerably lower than KW, this implies that the KW burst came from a source Earth-occluded to Fermi, and therefore is not related to iPTF 16asu.

We also searched for a possible GRB in the INTEGRAL-SPI-ACS (SPI-ACS; von Kienlin et al. 2003) data covering the 75-8000 keV range and found no candidate event down to the 3 sigma level. Since KW and SPI-ACS were observing the whole sky during the interval of interest, upper limits on gamma-ray flux can be obtained. For the whole interval (excluding the KW burst), assuming a typical long GRB spectrum (the Band function with $\alpha = -1, \beta = -2.5$, and $E_p = 300$ keV), the corresponding KW and SPI-ACS limiting peak flux estimates are $\sim (1 - 4) \times 10^{-7} \text{erg cm}^{-2} \text{s}^{-1}$, both in the 10 keV - 10 MeV band at 3-10 s time scales.

We conclude therefore that there is no statistically significant evidence for a SN-associated GRB down to threshold of $10^{-7} \text{erg cm}^{-2} \text{s}^{-1}$. The associated isotropic peak luminosity limit is $L_{\text{iso}} \lesssim 10^{49} \text{erg s}^{-1}$ and total energy $E_{\text{iso}} \lesssim 10^{50}$ erg (both calculated in the 10 keV - 10 MeV energy range). Hence, from these limits, an accompanying low-luminosity GRB like GRB 980425 ($L_{\text{iso}} \sim 5 \times 10^{46} \text{erg s}^{-1}$, $E_{\text{iso}} \sim 10^{48}$ erg; Galama et al. 1998a) cannot be excluded. We return to discuss possible GRB models for iPTF 16asu in Section 4.3.

3. LIGHT CURVE ANALYSIS

3.1. Rise Time and Peak Luminosity

The light curves of iPTF 16asu are shown in Figure 4. The rise and peak are only sampled in g band, so we fit a second-order polynomial to the g band light curve near peak brightness to determine a best-fit explosion date, time of peak, and peak luminosity. The fit is shown in Figure 4 and the explosion and best fit peak dates are MJD 57518.53 \pm 0.17 and MJD 57523.25 \pm 0.14, respectively. Corresponding calendar dates are 2016 May 10.53 and 2016 May 15.25. Thus, the rise time (time of peak – time of explosion) is 3.97 \pm 0.19 days. The equation of line of best fit is $y = -3.7 \times 10^{-3} x^2 + 4.8 \times 10^{-10} x + 5.8 \times 10^{-8}$, where x is phase in days and y is flux (F_λ) in arbitrary units.

3.2. Light Curve Comparisons

iPTF 16asu inhabits an unusual location in rise time vs. luminosity parameter space (see Figure 1). In this section, we compare its light curve in more detail to objects in the literature that have been noted for their fast timescales and/or high luminosities. We corrected iPTF 16asu and all comparison objects for redshift using the following equations:

$$\lambda = \frac{\lambda_{\text{obs}}}{(1 + z)}$$

$$M_{AB} = m_{\text{obs}} - 5 \log_{10} \left(\frac{D_L}{10} \right) + 2.5 \log_{10}(1 + z)$$

Throughout this paper, we assume a flat ΛCDM cosmology with $\Omega_M = 0.286$ and $H_0 = 69.6 \text{ km s}^{-1} \text{Mpc}^{-1}$.

This is not a full K-correction, which is generally not available for many of our comparison objects due to lack of spectroscopic coverage. To facilitate comparisons we choose filters with rest wavelengths as closely corresponding to those of iPTF 16asu as possible. Figure 4 shows comparisons to the g band (left) and r band (right) light curves.

First, we compare against the light curves of SNe noted for both their high luminosities and rapid timescales. These include: SN 2011kl (Greiner et al. 2015), a SN associated with the ultra-long gamma-ray burst GRB 111209A, plotted in black; and PTF10iam, SNLS04D4ec, SNLS05D2bk and SNLS06D1hc from Arcavi et al. (2016) plotted in cyan. In the g band as seen in Figure 5 (left), iPTF 16asu reaches a higher peak
luminosity than these transients by over half a magnitude. Measuring from rest-frame phase at $M_{\text{peak} - 1\text{mag}}$ to $M_{\text{peak} + 1\text{mag}}$, iPTF 16asu’s timescale is about two times shorter with $\tau_{\text{peak} - 1\text{mag}} = 10$ days. iPTF 16asu displays both a steeper rise and decay than the Arcavi et al. (2016) objects and SN 2011kl in the g band. However, iPTF 16asu resembles these objects more closely in the r band, shown in Figure 4 (right). The peak r band magnitude of iPTF 16asu is approximately the same as PTF10iam, SNLS05D2bk, and SNLS06D1hc and the slope of decay runs nearly parallel to that of SNLS06D1hc. Although we have no data on the rise in r band, iPTF 16asu has a similar peak magnitude to the Arcavi et al. (2016) objects and decays on the same timescale as SNLS06D1hc.

Next we compared the light curve to PS1-10bjp, PS1-11qr, PS1-12bv, and PS1-12brf, a sample of rapidly evolving transients from the Pan-STARRS1 Medium Deep Survey (Drout et al. 2014). The objects shown are the four most luminous objects from the “gold” sample, and are plotted in yellow in Figure 5. They have similar rise times and decay slopes to iPTF 16asu, but are much fainter. In the g band, PS1-11qr and PS1-12bv are the brightest of the Pan-STARRS1 objects reaching a peak magnitude of about -19.5 mag; thus iPTF 16asu is a magnitude brighter at peak. As seen in Figure 4, the shape of iPTF 16asu’s light curve is quite similar to that of PS1-10bjp and PS1-11qr. Early in the decay of iPTF 16asu, the slope is nearly parallel to that of PS1-10bjp; however, at late times PS1-10bjp decays more sharply than iPTF 16asu. Comparing these objects to the r band data is less instructive because iPTF 16asu’s rise was not captured in the r band and most of the Pan-STARRS1 objects do not have late-time data.

Finally, we compared to the SLSNe PTF11rks (Inserra et al. 2013) and PS1-10bjz (Lunnan et al. 2013), which are both on the lower-luminosity end of SLSNe. In the g band, iPTF 16asu reaches about the same peak absolute magnitude as PTF11rks. In the r band iPTF 16asu’s peak luminosity is about 0.5 mag dimmer than that of PTF11rks. However, the SLSNe have timescales several times longer than iPTF 16asu, as seen by the much broader peaks. Thus, while iPTF 16asu reaches similar luminosities as some SLSNe, it evolves on a very different timescale. iPTF 16asu stands out as a unique and surprising event, even amongst similar transients from the literature.

3.3. Blackbody Fits

We fit a blackbody to all epochs where we have observations in at least 3 filters, using Scipy least square optimization routines (Jones et al. 2001), as well as to our two earliest spectra. Only the day with Swift/UVOT detections (+3 days past peak) has data in more than 3 filters. The fit to the Swift photometry is shown in Figure 7. From this fit we obtain $T = 10800 \pm 250$ K and $R = (2.6 \pm 0.2) \times 10^{15}$ cm. This corresponds to a total blackbody luminosity of $(6.4 \pm 1.6) \times 10^{43}$ ergs s$^{-1}$.

Figure 8 shows the resulting derived temperatures and radii at all epochs. The overall trends show a cooling blackbody temperature and increasing radius. Fitting a straight line to the blackbody radii, we get a best-fit slope of 34500 ± 5400 km s$^{-1}$, indicating high average velocities.

3.4. Bolometric Light Curve

We construct a pseudo-bolometric light curve for iPTF 16asu by summing the observed flux on days where we have observations in at least three filters. We integrate over the observed spectral energy distribution (SED) using trapezoidal integration, interpolating to the edges of the observed bands. Since this only accounts for the observed flux, it constitutes a strict lower limit on the true bolometric luminosity.

Pre-peak photometry is only available in the g band so we approximate the rise of the pseudo-bolometric light curve by assuming a constant ratio of g band flux to total flux, i.e. a constant bolometric correction. This assumption is equivalent to assuming that the temperature on the rise is constant, and equal to the temperature measured from the earliest multiband data. Similarly, for the late-time observations with data only in the r band we estimate the total flux by using the same bolometric correction as from the latest date with data in ≥ 3 filters.

Figure 9 (left) shows the resulting pseudo-bolometric light curve. Using trapezoidal integration over time we
Figure 6. Blackbody fit of the two earliest spectra. The corresponding temperature and radius of the May 14, 2016 observation are $T=10528\pm322$ K and $R=(1.18\pm0.07)\times10^{15}$ cm. The corresponding temperature and radius of the May 16, 2016 observation are $T=10466\pm232$ K and $R=(7.05\pm0.03)\times10^{14}$ cm.

Figure 7. Blackbody fit of the Swift/UVOT and optical data, at a phase +3 days past peak. Triangle denotes a non-detection in the λ phase +3 days past peak. Triangle denotes a non-detection in the λ phase +3 days past peak. Figure 7 shows a comparison of PS1-12bv at peak compared to iPTF 16asu at peak. Unfortunately, comparison at late times is not possible, as there is no further follow-up spectroscopy on the Pan-STARRS events. Based on the limited spectroscopic data available we cannot rule out that they were caused by the same phenomenon as iPTF 16asu.

The next two spectra, taken at phases 8 and 10 days past maximum, still show an underlying blue continuum, but with broad features emerging. Such an evolution is reminiscent of GRB-SNe. To illustrate this we show a comparison to SN 2006aj/GRB 060218 (Modjaz et al. 2006) in Figure 11. SN 2006aj is of particular interest here because it is one of the few GRB-SNe that would not be ruled out by our radio and X-ray limits. We discuss GRB models for iPTF 16asu in detail in Section 6.3.

The three spectra taken at phases +17, +19 and +22 days post maximum are dominated by distinct, broad-line features, leading us to classify iPTF 16asu as a Type Ic-BL. Figure 12 shows a comparison of iPTF 16asu at +23 days after explosion (+19 days past peak) to SN 1998bw at +23 days after explosion (+19 days past peak), and features commonly identified in Type Ic-BL SNe are marked. Interestingly, the spectra of these events look very similar at roughly the same time after explosion, suggesting that iPTF 16asu may have a normal-timescale supernova component hidden underneath the luminous and rapidly-evolving peak.

It is also worth noting that the spectroscopic evolution of iPTF 16asu is different from the few objects in Drout et al. (2014) and Arcavi et al. (2016) with spectra at later phases: PS1-12bb showed a featureless continuum at phase +33 days, while PTF10aim showed broad Hα emission at phase +28 days. This spectroscopic diversity suggests that there are likely multiple physical mechanisms giving rise to light curves in this part of transient phase space.

Our final spectrum, taken at a phase +44 days past peak, is dominated by host galaxy light. We discuss the host galaxy properties in Section 5.

4.2. Velocities

Measuring velocities from Type Ic-BL spectra is challenging, since the lines are often blended due to the high velocities. In addition, different lines can give different velocities because these elements are formed and found at different radii in the expanding, ejected material. For iPTF16asu, we choose the strongest lines which are the Si II λ6355 Å line and the Fe II λ5169 Å line.
Figure 8. Blackbody temperature (left) and radius (right) as a function of time. We fit a blackbody to all epochs with photometry in at least three filters, as well as to the earliest two spectra. The slope of the radius over time gives an estimated expansion velocity of 35400 ± 5350 km s$^{-1}$. Open circles indicate points for which the covariance matrix would not converge to give error bars.

Figure 9. Left: Pseudo-bolometric light curve of iPTF 16asu. Luminosities obtained from data using the trapezoidal integration method. Right: Fit of the decline of iPTF 16asu’s light curve to a power law and an exponential. The power law (dashed blue) has a best-fit of $L \propto t^{-1.06\pm0.14}$ and the exponential (solid green) decays on a timescale of $\tau = 13.56 \pm 0.56$ days. The light curve decline is well fit by an exponential.

In the case of the Si II $\lambda 6355$ Å line we fit a parabola to find the minimum of the broad absorption feature. The corresponding wavelength is then used to determine velocities using the relativistic Doppler shift. The measured velocities are listed in Table 3.

In the case of the Fe II $\lambda 5169$ Å line, similar to other Type Ic-BL SNe, this line is blended with the neighboring Fe II $\lambda 4924$ and Fe II $\lambda 5018$ lines. Thus, we cannot simply fit the minimum of this feature to derive velocities. Instead, we use the convolution method developed by Modjaz et al. (2016) and Liu et al. (2016) to extract velocities from the Fe II $\lambda 5169$ Å line. The measured velocities are listed in Table 3. Figure 13 shows the Fe II velocities from iPTF 16asu compared to the sample of Ic and Ic-BL SNe from Modjaz et al. (2016), with velocities derived using the same method (and code). The velocities we measure for iPTF 16asu are high, comparable to the SNe Ic-BL that were associated with GRBs. We note that phase in this figure is measured with respect to maximum light – if iPTF 16asu has a “normal” SN component hidden underneath the blue, luminous peak, the supernova maximum would be later and iPTF 16asu would move left in this plot, but the basic conclusion that the velocities are comparable to SN Ic-BL with associated GRBs would be unchanged.

5. HOST GALAXY

The host galaxy of iPTF 16asu is detected both in the PTF templates and in Sloan Digital Sky Survey (SDSS; SDSS Collaboration et al. 2016) images. The observed SDSS magnitudes are $u' = 22.90 \pm 0.37$ mag, $g' = 22.10 \pm 0.09$ mag, $r' = 21.82 \pm 0.11$ mag, $i' = 21.43 \pm 0.11$ mag, and $z' = 21.25 \pm 0.28$ mag. At a redshift of $z = 0.1874$, this makes the host a dwarf galaxy, with an absolute magnitude $M_g \approx -17.5$ mag. We use the FAST code (Kriek et al. 2009) to fit a galaxy model to the observed photometry, using a Maraston (2005) stellar population...
Figure 10. Spectrum of PS1-12bv [Drout et al. 2014] at +7 d after explosion compared to iPTF 16asu at +5 d after explosion. iPTF 16asu spectrum from NOT. Host galaxy narrow emission lines have not been removed – note the feature at ∼ 5000 Å in the iPTF 16asu spectrum is narrow [O III] λλ 4959,5007 emission from the host galaxy that appears broadened here due to binning.

Figure 11. Spectrum of SN 2006aj [Modjaz et al. 2006] at +6 d after explosion compared to iPTF 16asu at +12 d after explosion. iPTF 16asu spectrum from TNG. Host galaxy narrow emission lines have not been removed.

Figure 12. Spectrum of SN 1998bw [Patat et al. 2001] at +18 d after explosion compared with iPTF 16asu at +23 d after explosion. Features commonly identified in SNe Ic-BL are marked. iPTF 16asu spectrum from Keck1+LRIS. Host galaxy narrow emission lines have not been removed.

Figure 13. Velocity evolution of iPTF 16asu, measured from the Fe II λ 5169 Å line (red points), compared against literature data of SNe Ic (green diamonds), SNe Ic-BL (blue squares), and SNe Ic-BL (yellow triangles) associated with GRBs. Data from Modjaz et al. (2016).

We use the Balmer decrement to calculate the host galaxy extinction, assuming Case B recombination (Osterbrock 1989). We measure a Hα/Hβ ratio of 3.5 ± 0.2, translating to a host extinction E(B − V) = 0.22 ± 0.06, assuming a standard Milky Way extinction curve with RV = 3.1 (Cardelli et al. 1989). Using the extinction-corrected Hα flux, we measure a star formation rate of 0.7 M⊙ yr⁻¹ (Kennicutt 1998). Given the stellar mass derived from the photometry, this corresponds to a specific star formation rate of 1.4 Gyr⁻¹.

We use pyMCZ [Bianco et al. 2016] to calculate the galaxy oxygen metallicity from the [O III], [O II], [N II], Ha and Hβ lines. pyMCZ is a Python-based implementation of up to 15 metallicity calibrators, updating the...
code given in Kewley & Dopita (2002) and Kewley & Ellison (2008) and with better treatment of statistical uncertainty from Monte Carlo sampling. While there is some scatter between the different strong-line metallicity estimators, they generally agree that the host galaxy of iPTF 16asu is low metallicity. For example, we find values of $12 + \log(O / H)$ to be $8.12^{+0.04}_{-0.07}$ on the Pettini & Pagel (2004) O3N2 scale, $8.22^{+0.18}_{-0.07}$ on the McGaugh (1991) scale, and $8.39^{+0.11}_{-0.05}$ on the Kobulnicky & Kewley (2004) R23 scale, to name three commonly used indicators. Using a solar oxygen abundance of $12 + \log(O / H) = 8.69 \pm 0.05$ (Asplund et al. 2009), this translates to a metallicity $Z \sim Z_{\odot}/4$.

Taken together, the host galaxy of iPTF 16asu was a low-mass, low-metallicity, starforming dwarf galaxy. Such an environment is not unusual for SN Ic-BL, which, in general, are found in lower-metallicity galaxies than other striped-envelope SNe; for example, the median metallicity of SN Ic-BL hosts in the compilation of Sanders et al. (2012) was $12 + \log(O / H) = 8.20$ on the Pettini & Pagel (2004) O3N2 scale. Other rare transients, such as long GRBs and SLSNe also show a preference for low-metallicity galaxies (e.g., Levesque et al. 2010 Lunnan et al. 2014 Perley et al. 2016). The high specific star formation rate and the strong [O III]λ5007 Å line (EW$_{5007} \simeq 87$ Å, rest-frame), in particular, is reminiscent of SLSN host galaxies (Leloudas et al. 2015). Interestingly, the same is not true for the rapidly evolving transients studied in Drout et al. (2014) and Arcavi et al. (2016), for both samples, the host galaxies were generally more massive galaxies near solar metallicity.

6. MODEL COMPARISONS

6.1. Nickel Decay

Most SNe Ic/Ic-BL are powered by the release of energetic photons from the radioactive decay of ^{56}Ni into ^{56}Co and finally ^{58}Fe. Since the late time spectra of iPTF 16asu look very similar to the spectra of other SNe Ic-BL (Section 4), we first consider whether the light curve of iPTF 16asu can be explained purely by the decay of ^{56}Ni.

Using the equations from Section 2 of Lyman et al. (2016), we compare our pseudo-bolometric light curve from Section 3.4 to the theoretical model for a ^{56}Ni decay powered light curve in Arnett (1982). The model takes two input parameters, diffusion time and ^{56}Ni mass. The ^{56}Ni mass predominantly affects the luminosity of the light curve, as a larger ^{56}Ni mass would indicate a larger total energy input, and the diffusion time controls the timescale over which the energy diffuses out, or the width of the peak. Figure 15 shows the bolometric light curve of iPTF 16asu plotted against an Arnett (1982) model with parameters $M_{\text{Ni}} = 0.55 M_{\odot}$ and $\tau_{\text{diff}} = 1.5$ days, assuming an opacity of $\kappa = 0.1 \text{ cm}^2 \text{ g}^{-1}$. As seen in Figure 15, the ^{56}Ni decay model does not fit both the sharp peak and steep decay well.

An ejecta mass of $M_{\text{ej}} = 0.06 M_{\odot}$ was calculated using this diffusion time along with an estimate of the kinetic energy. Since our spectra near peak are featureless, and thus we cannot measure a velocity, we used the average velocity (35000 km s$^{-1}$) derived from the evolution of the blackbody radii to calculate this kinetic energy. The ejecta mass is notably about ten times smaller than the amount of ^{56}Ni required to power this light curve, which is unphysical: the ^{56}Ni mass cannot be larger than the total ejecta mass, since it is necessarily part of the ejecta. Thus, we rule out spherically symmetric radioactive ^{56}Ni decay as the dominant energy source for iPTF 16asu.

The Arnett model considered above assumes spherical symmetry and a central energy source, i.e. that all the nickel is in the center. Therefore, we cannot rule out the possibility of ^{56}Ni-powered models for iPTF 16asu in a highly mixed or strongly asymmetric scenario (e.g., a jet), though more sophisticated modeling is outside of the scope of this paper.

Although ^{56}Ni decay alone cannot explain the light curve of iPTF 16asu, it may still contribute. Figure 16 shows iPTF 16asu’s light curve compared to other SNe Ic-BL from the literature. The light curve of SN 1998bw in the g and r bands is a good match to that of

Figure 14. Spectrum of the host galaxy of iPTF 16asu, taken with Keck+LIRIS at ~ 300 days after the SN explosion. Strong galaxy emission lines are marked.

Figure 15. Nickel-powered model fit to the light curve of iPTF 16asu, following Arnett (1982) and Lyman et al. (2016). Attempting to fit the sharp, luminous light curve with a ^{56}Ni model leads to an unphysical solution in which the derived ejecta mass is lower than the required nickel mass. The red dot-dashed curve shows the model with parameters $M_{\text{Ni}} = 0.35 M_{\odot}$ and $\tau_{\text{diff}} = 1.5$ days. The dotted gray line shows the model constrained by the last point with parameters $M_{\text{Ni}} = 0.1 M_{\odot}$ and $\tau_{\text{diff}} = 3.7$ days. For comparison, the bolometric light curve using $BV(RI)c$ bands of SN 1998bw (Clocchiatti et al. 2011) is plotted in black.

Figure 16. Nickel-powered model fit to the light curve of iPTF 16asu, following Arnett (1982) and Lyman et al. (2016). Attempting to fit the sharp, luminous light curve with a ^{56}Ni model leads to an unphysical solution in which the derived ejecta mass is lower than the required nickel mass. The red dot-dashed curve shows the model with parameters $M_{\text{Ni}} = 0.35 M_{\odot}$ and $\tau_{\text{diff}} = 1.5$ days. The dotted gray line shows the model constrained by the last point with parameters $M_{\text{Ni}} = 0.1 M_{\odot}$ and $\tau_{\text{diff}} = 3.7$ days. For comparison, the bolometric light curve using $BV(RI)c$ bands of SN 1998bw (Clocchiatti et al. 2011) is plotted in black.
iPTF16asu from ~ 15 to 40 days, which interestingly also corresponds to the time when their spectra are very similar (Figure 12), suggesting that the light curve of iPTF16asu could plausibly be dominated by a normal SN component at these times. Their late-time slopes deviate, mainly constrained by our last r band point at 60 days (Figure 16) – however, the decay rates of stripped-envelope SNe are heterogeneous, and could be explained by differences in opacity and/or asymmetry, affecting the degree of gamma-ray trapping (Wheeler et al., 2015; Dessart et al., 2017). Fainter SNe Ic-BL such as SN 2006aj and SN 2002ap are below the light curve of iPTF16asu at all times (Figure 16). Since the light curve shows only a single, smooth peak, any 56Ni decay contribution to the total luminosity must be sub-dominant to whatever is powering the main peak.

6.2. Magnetar

During the core collapse of a massive star, a highly magnetized ($B \approx 10^{14} - 10^{15}$ G), rapidly spinning neutron star called a magnetar can be formed. As the newborn magnetar spins down, rotational energy is released, and can significantly boost the luminosity of the SN if the spin-down time of the magnetar is comparable to the diffusion timescale through the ejecta (e.g., Kasen & Bildsten, 2010; Woosley, 2010; Metzger et al., 2015). Magnetar models have been suggested to explain highly luminous transients, including many SLSNe as well as SN 2011kl (Greiner et al., 2015; Bersten et al., 2016). iPTF16asu has a similar luminosity to SN 2011kl and some relatively low luminosity SLSNe (Figures 1, 5), and so we examine whether a magnetar model is able to explain the peculiar light curve of iPTF16asu.

As described in Kasen & Bildsten (2010), the hydrodynamic simulations for their magnetar model makes the simplifying assumption that all of the injected energy is thermalized spherically at the base of the ejecta (ignoring the possibility of anisotropic jet-like injection). They further assume homologous expansion, a shallow power law structure for interior density, and that radiation pressure dominates. An expanding bubble with a thin shell of swept up ejecta and a low density interior is formed due to central overpressure in the SN remnant, but rarely affects the outer layers of the SN ejecta. At late times the energy injected by the magnetar continues to heat the ejecta, as in 56Ni decay, but is no longer dynamically important. This process significantly affects the SN light curve.

The shape of the light curve in magnetar models depends on three parameters: P, the initial spin period; B, the strength of the magnetic field; and τ_{diff}, the diffusion timescale which is proportional to $M_{\text{ej}}^{1/2}$. Using the magnetar model fitting code from Kangas et al., 2016, we recover the parameters $B = (3.25 \pm 0.44) \times 10^{14}$ Gauss, $P = 10.40 \pm 0.62$ ms, and $\tau_{\text{diff}} = 1.59 \pm 0.06$ days. Manually tweaking the parameters slightly to obtain a better visual fit, we show the resulting fit to the bolometric light curve in Figure 17 with parameters $P = 9.95$ ms, $B = 3.15 \times 10^{14}$ G, and $\tau_{\text{diff}} = 1.8$ days, and assuming an opacity $\kappa = 0.1$ cm2 g$^{-1}$. As done in the 56Ni model, the diffusion time and average velocity from the blackbody fits are used to calculate an ejecta mass of $M_{\text{ej}} = 0.09 M_\odot$. The parameters allow for the energy and the timescale to essentially be tuned separately, making the magnetar model quite flexible and generating a tight fit to both the peak and decay of the bolometric light curve.

Although the magnetar model produces a light curve which fits iPTF16asu, the derived ejecta mass of our best fit is very low. Arcavi et al., 2016 derived similarly small ejecta masses for their rapidly-rising SNe events, which caused them to conclude the magnetar model was unlikely, while Greiner et al., 2015 concluded a magnetar was a likely explanation for SN 2011kl despite their low derived ejecta mass. For a SN Ic-BL caused by the core collapse of a massive star, a magnetar model with such a low ejecta mass would require an extreme stripping scenario to reduce the core mass. Furthermore, the Kasen & Bildsten (2010) magnetar model was tuned to...
The upper limits from 3 epochs of *Swift* data are shown in the left-hand panel of Figure 17. While data at earlier times would have been more constraining, the upper limits rule out the bulk of observed X-ray afterglows with $E_{\text{iso}} > 10^{52}$ ergs; however, weak or off-axis GRBs are not excluded by the X-ray data alone. Similarly, the right-hand panel shows the upper limits from our two epochs of VLA data. As evident from this figure, we can exclude a radio counterpart to iPTF 16asu as luminous as SN 1998bw or SN 2009bb, but we cannot exclude a lower-luminosity and/or faster-evolving radio counterpart such as SN 2006aj and SN 2010bh. If iPTF 16asu is associated with a GRB, then these limits suggest that it must be a faint ($E_{\text{iso}} < 10^{50}$ ergs) event. These constraints are consistent with the analysis from all-sky gamma-ray monitors (Section 2.6), as an on-axis burst at the distance of iPTF 16asu with ($E_{\text{iso}} > 10^{50}$ ergs) would have been seen by KW or SPI-ACS.

The most unusual characteristic of iPTF 16asu is its abrupt 4-day rise time in the optical. Such a rise time is extremely short in a SN context, but would be unprecedentedly long in a SN-GRB context, even though optical afterglow light curves do sometimes show a rise (e.g. GRB 970508; Galama et al. 1998b). To explain the shape of the optical light curve as a GRB afterglow, we therefore consider off-axis GRB models.

From the NYU Afterglow Library dataset of off-axis long GRBs at an observed wavelength of 3000 Å(10^{15} Hz), the models can reproduce a 3 to 6 day rise for an observer angle between 23 and 17 degrees, respectively (van Eerten et al. 2010). The dataset assumes a jet energy of 2×10^{51} ergs, a jet half opening angle of 11.5 degrees, and a homogeneous circumburst number density of 1 cm$^{-3}$. The parameters for an observer angle of 17 degrees produce a light curve with roughly the correct peak magnitude as iPTF 16asu; however, changing to an observed wavelength of 30 mm (10 GHz), these parameters produce a radio light curve orders of magnitude brighter than our radio limits. Similarly, considering the low-energy models from van Eerten & MacFadyen (2011), we find that parameters which satisfy the radio limits are inconsistently faint in the optical. The coarse grid of parameters used in van Eerten et al. (2010) does not allow us to make precise comparisons to their model, but indicates that while a 4 day optical rise could be constructed, our optical light curve and radio upper limits cannot be simultaneously satisfied by current models. A more thorough exploration of energy and density parameter space than is available in these model grids is necessary to determine whether GRB models can account for both the bright optical emission and the lack of X-ray and radio emission.

A similar conclusion can be reached by comparing the observed spectral properties of iPTF 16asu to typical GRB afterglows, which are well described by synchrotron radiation resulting in both a light curve and a spectrum consisting of several power law segments with associated indices (e.g. Sari et al. [1998]). If the featureless, blue spectra of iPTF 16asu are due to a GRB afterglow, we expect the spectrum to follow a power law ($F_{\nu} \propto \nu^{-\beta}$), with typical values of the power-law index β around 0.5-0.6 (e.g. Kann et al. [2010]). Fitting our first spectrum (at +3 days after explosion) with a power law, we find

Figure 17. Model 1, magnetar model best fit to the full light curve, shown in dashed green. Parameters are $P= 9.95$ ms, $B= 3.15 \times 10^{15}$ Gauss, and $\tau_{\text{diff}} = 1.8$ days. Model 2, magnetar model best fit with constrained $M_{\text{ej}} = 1M_\odot$ shown as a red line. Parameters are $P= 6.0$ ms, $B= 4.4 \times 10^{15}$ Gauss, and $\tau_{\text{diff}} = 8.7$ days. The pseudo-bolometric light curve using $BV(RI)_{c}$ bands of SN 1998bw (Clocchiatti et al. 2011) is plotted in dotted black to demonstrate how 56Ni decay may power the late-time light curve.

an ejecta mass of $M_{\text{ej}} = 5M_\odot$ and it is not clear that the assumptions of this model would remain valid in this low mass regime.

Another way for a magnetar model to produce a fast timescale peak, similar to that of iPTF 16asu, is to use a small period and a high magnetic field, thereby decreasing the spin-down time. When constraining the ejecta mass to be $M_{\text{ej}} = 1M_\odot$, we find the best fit parameters $P = 6.0$ ms, $B = 4.4 \times 10^{15}$ Gauss, and $\tau_{\text{diff}} = 8.7$ days. This fit is shown as a red line in Figure 17 and can also reproduce the fast rise and luminous peak of iPTF 16asu. However, this model declines too quickly to explain the entire light curve, and so one would need a two-component model (e.g. with the late-time powered by 56Ni, as was considered by Bersten et al. [2016] for SN 2011kl). Thus, despite the compelling light curve fit, we conclude that a magnetar model is unlikely to be the sole power source of iPTF 16asu, but remains a candidate for powering the peak emission if the late time light curve is powered by 56Ni.

6.3. Off-Axis GRB

Long GRBs are often associated with SNe Ic-BL, though not every SN Ic-BL has an accompanying GRB (see e.g. Woosley & Bloom [2006] for a review of the GRB-SN connection). GRBs are extremely energetic, relativistic and highly beamed explosions characterized by an initial flash of gamma-rays followed by an “afterglow” of radiation typically seen at wavelengths ranging from the X-ray to the radio. iPTF 16asu’s spectra and velocities are similar to those of SNe Ic-BL associated with GRBs (Section 4, Figures 11 and 12), and so we examine whether the excess blue emission at peak could be explained as a GRB afterglow.

Non-detections of iPTF 16asu in the X-ray and radio strongly constrain the allowable GRB parameter space.
a best-fit index $\beta = -0.5$, i.e. $F_\nu \propto \nu^{+0.5}$, which is inconsistent with a GRB-like spectrum. In contrast, the spectrum is well-fit by a blackbody (Figure 6). Similarly, if we compare our earliest X-ray upper limit to the corresponding point on the r band light curve, we derive a limit on the optical to X-ray spectral index $\beta_{OX} > 1.24$, whereas typical GRB afterglows show $\beta_{OX} \sim 0.5 - 1.0$ (Gehrels et al. 2008). We also note that the decline of the light curve is better fit by exponential decay than by a power law (Section 3.3, Figure 9 (right)).

While the properties of the luminous, blue peak of iPTF16asu do not seem to resemble a classical GRB afterglow (on- or off-axis), it is worth noting that low-luminosity GRBs like 060218 and 100316D showed thermal emission in addition to the weak synchrotron component (e.g. Campana et al. 2006; Starling et al. 2011). Thus, it is still possible that iPTF16asu could be a related phenomenon but with a significantly brighter thermal component. The origin of the thermal emission in low-luminosity GRBs is debated, though one possibility is that it is associated with shock breakout. We consider next whether such a model can also explain iPTF16asu.

6.4. Shock Cooling

The short timescales and blue colors of iPTF16asu are reminiscent of shock cooling transients, where the early light curve of a SN is powered by the cooling of the envelope following the breakout of the SN shock, usually followed by a second peak from the SN itself (e.g., SN 1993J; Wheeler et al. 1993). Such a shock cooling phase should be present in all SNe (Nakar & Sari 2010), but both the duration and the luminosity will depend on the structure of the progenitor star. Seeing a peak in both the red and the blue bands, as we do in iPTF16asu, is generally associated with shock breakout from extended material (Nakar & Piro 2014). Shock cooling models have been considered for other rapidly evolving transients (e.g., Ofek et al. 2010; Drout et al. 2014) as well as low-luminosity GRBs (e.g., Nakar 2015), so we consider here whether iPTF16asu could be explained by a shock cooling scenario.

Since the peak is seen in all bands, we consider the extended envelope model of Nakar & Piro (2014). Here, the mass in the extended envelope scales as $M_e \propto \kappa^{-1} \nu_{\text{peak}}^{2}$, and the effective radius of the material scales as $R_e \propto \kappa E_{\text{peak}} \nu_{\text{peak}}^{-2}$. For the rise time and peak luminosity measured for iPTF16asu, this suggests an envelope mass around ~ 0.5 M_\odot and a lower limit on the effective radius of the material of $\sim 2 \times 10^{12}$ cm, still assuming $\kappa = 0.1$ cm2 g$^{-1}$.

Piro (2015) developed this extended envelope further, and Figure 19 shows a fit of the model with the parameters $M_{\text{ej}} = 0.45$ M_\odot, $R_e = 1.7 \times 10^{12}$ cm, and $E = 3.8 \times 10^{51}$ ergs. In general, there is a degeneracy between the initial radius of the material and the energy deposited by the shock, but our high observed velocities suggest we are in the regime of a smaller radius and higher energy (Piro 2015). Since the energy deposited into the extended material is just a fraction of the total SN energy, if this model is correct it would imply a very high explosion energy, likely requiring a central engine.

Unlike many shock-breakout SNe, iPTF16asu exhibits only a single peak, so if the main light curve peak is powered by shock cooling, it must completely dominate the contribution from the underlying, normal SN light curve. The model shown in Figure 19 approximates the shock cooling light curve with a Gaussian, and is not expected to capture the decline of the light curve, which would depend on the density structure of the material. It does, however, demonstrate that an extended envelope model can produce a peak with a rise time and luminosity compatible with iPTF16asu. As seen in Figure 19, a
SN Ic-BL slightly less luminous than SN 1998bw, could be hidden underneath a luminous shock-breakout peak forming one continuous peak by the merging of the second SN peak with the decay of the first peak.

In Nakar (2015), SN 2006aj/GRB 060218 is modeled by shock breakout from energy deposited into an extended (> 100 R_\odot), low-mass (~0.01 M_\odot) envelope by a low-luminosity GRB. Thus, iPTF 16asu could have a similar explosion mechanism but with a significantly higher-mass envelope, producing a longer-duration and luminous peak. The presence of circumstellar material would also be consistent with the constraints on high-energy emission; indeed, it has been suggested that low-energy, soft GRBs like 060218 and 100316D have extended circumstellar material (Margutti et al. 2015).

7. SUMMARY

We present photometric and spectroscopic observations of the unique transient iPTF 16asu. The key observed properties can be summarized as follows:

- A rapidly evolving and luminous light curve, with a rise of 4.0 days to a high peak luminosity of 3.4×10^{43} erg s$^{-1}$. The decline is similarly fast, and is well fit by exponential decay with a characteristic timescale of 14 days.

- A blue and featureless spectrum near peak, that is well fit by a blackbody, using UV and optical data, with a temperature of $\sim 11,000$ K and radius of $\sim 2.5 \times 10^{15}$ cm.

- Broad spectroscopic features emerging on the decline, that are well matched to SNe Ic-BL. The velocities, as measured from the Fe II $\lambda 5169$ Å line, are comparable to SNe Ic-BL with accompanying GRBs.

- Non-detections in the X-ray (Swift/XRT), corresponding to limits of $(1 - 2) \times 10^{43}$ erg s$^{-1}$ and in the radio (VLA), corresponding to limits of $(1 - 2) \times 10^{28}$ erg s$^{-1}$. Non-detections by all-sky gamma-ray monitors similarly constrain any associated on-axis GRB to be low-energy ($E_{\text{iso}} < 10^{50}$ erg).

- A dwarf host galaxy, with a stellar mass of $\sim 5 \times 10^{8}$ M_\odot, a metallicity $Z \sim 0.3 Z_\odot$, and a star formation rate of ~ 0.7 M_\odot/yr.

We discuss various energy sources to explain the above observed properties. We find that 56Ni decay, as in an ordinary SN Ic-BL, is adequate to explain the late time photometry. It is also consistent with the observed spectra and non-detections in the X-ray and radio bands. However, attempting to fit the rapid rise and luminous peak solely with 56Ni decay gives the unphysical result that $M_{\text{Ni}} > M_{\text{ej}}$. Hence we considered two different hypotheses to explain the early data.

First we considered a magnetar model. The magnetar model either requires a very small ejecta mass ($0.086 M_\odot$) in order to fit the sharp rise or a high magnetic field ($B = 4.4 \times 10^{15}$ G) that decreases the spin-down time. The latter would require that the late time data is explained by radioactive decay of 56Ni.

Next we find that shock cooling can also explain the fast rise and high luminosity with a dense envelope ($M_e = 0.45 M_\odot$, $R_e = 1.7 \times 10^{12}$ cm) and high injected energy ($E_e = 3.8 \times 10^{51}$ erg). The required energetics in this model also implies an underlying central engine. Shock cooling through the envelope has been seen in the low-luminosity SN 2006aj/GRB 060218. Our spectra and kinematics are also more similar to SNe Ic-BL associated with GRBs. Our radio and X-ray limits constrain the energy (E_{iso}) of any associated GRB to be $< 10^{50}$ erg. Regardless of whether or not there was a GRB, the late time light curve is reasonably fit by 56Ni decay.

Both of the above scenarios suggest that iPTF 16asu was an engine-driven supernova, making it an intriguing transition object between SLSNe, low-luminosity GRBs, SNe Ic-BL, and objects like SN 2011kl. We hope that new discoveries from the next generation of wide-field surveys (e.g. Zwicky Transient Facility; Belin et al. 2015) will enable us to find more objects like iPTF 16asu and more conclusively determine the origins of such fast and luminous transients.

We thank Iair Arcavi, Maria Drout, Avishay Gal-Yam, Raffaella Margutti, and Maryam Modjaz for helpful discussions and comments. R.L. acknowledges helpful discussions at the MIAPP workshop “Superluminous Supernovae in the Next Decade”, supported by the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence “Origin and Structure of the Universe”. We thank Harish Vedantham, Vikram Ravi and Anna Ho for assisting with the observations presented in this paper. The Intermediate Palomar Transient Factory project is a scientific collaboration among the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin, Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the
Physics and Mathematics of the Universe. This work was supported by the GROWTH project funded by the National Science Foundation under Grant No 1545949. This work is partially based on data acquired with the Swift GO program 1215281 (grant NNX16AN84G, PI Lunnan). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. A.C. acknowledges support from the National Science Foundation CAREER award n. 1455090. D.S. and D.F. gratefully acknowledge support from RSF grant 17-12-01378. This work made use of the data products generated by the NYU SN group, and released under DOI:10.5281/zenodo.587677, available at https://github.com/nyusngroup/SESNspectraLib

On this mountain. We are most fortunate to have the opportunity to conduct observations from this mountain.

REFERENCES

Aptekar, R. L., Frederiks, D. D., Golenetskii, S. V., et al. 1999, Space Sci. Rev., 71, 265
Arcavi, I., Wolf, W. M., Howell, D. A., et al. 2016, ApJ, 819, 35
Arnett, W. D. 1982, ApJ, 253, 785
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Barbary, K., Dawson, K. S., Tokita, K., et al. 2009, ApJ, 690, 1358
Bellm, E. C., Kowalski, S. R., & ZTF Collaboration. 2015, in American Astronomical Society Meeting Abstracts, Vol. 225, American Astronomical Society Meeting Abstracts, 328.04
Bersten, M. C., Benvenuto, O. G., Orellana, M., & Nomoto, K. 2007, ASP Conf. Ser., ed. R. A. Shaw, F. Hill, & D. J. Bell (San Francisco, CA), 376, 127
Corsi, A., Ofek, E. O., Gal-Yam, A., et al. 2012, ApJ, 747, L5
Corsi, A., Cenko, S. B., Kasliwal, M. M., et al. 2017, ArXiv e-prints, arXiv:1706.00045
Corsi, A., Frail, D. A., Roderberg, A. M., et al. 2011, ApJ, 743, 114
Clocchiatti, A., Suntzeff, N. B., Covarrubias, R., & Candia, P. 2011, AJ, 141, 161
Dessart, L., Hillier, D. J., Yoon, S.-C., Waldman, R., & Livne, E. 2017, ArXiv e-prints, arXiv:1703.08932
Drott, M. R., Chornock, R., Soderberg, A. M., et al. 2014, ApJ, 794, 23
Drout, M. R., Chornock, R., Soderberg, A. M., et al. 2014, ApJ, 794, 23
Evans, P. A., Beardmore, A. P., Page, K. L., et al. 2007, A&A, 469, 379
Faber, S. M., Phillips, A. C., Kibrick, R. I., et al. 2003, in Proc. SPIE, Vol. 4841, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, ed. M. Iye & A. F. M. Moorwood, 1657–1669
Filippenko, A. V. 1997, ARA&A, 35, 309
Foley, R. J., Papenkova, M. S., Swift, B. J., et al. 2003, PASP, 115, 1220
Fremling, C., Sollerman, J., Taddia, F., et al. 2016, A&A, 593, A68
Gal-Yam, A. 2012, Science, 337, 927
Galama, T. J., Vreeswijk, P. M., van Paradijs, J., et al. 1998a, Nature, 395, 670
Galama, T. J., Groot, P. J., van Paradijs, J., et al. 1998b, ApJ, 497, L13
Gehrels, N., Barthelmy, S. D., Burrows, D. N., et al. 2008, ApJ, 689, 1161
Greiner, J., Mazzali, P. A., Kann, D. A., et al. 2015, Nature, 523, 388
Hayden, B. T., Garnavich, P. M., Kessler, R., et al. 2010, ApJ, 712, 350
Högbom, J. A. 1974, A&AS, 15, 417
Hosseinzadeh, G., Arcavi, I., Valenti, S., et al. 2017, ApJ, 836, 158
Inserra, C., Smartt, S. J., Jerkstrand, A., et al. 2013, ApJ, 770, 132
Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open source scientific tools for Python, [Online; accessed today],
Kangas, T., Blagorodnova, N., Mattila, S., et al. 2016, ArXiv e-prints, arXiv:1611.10207
Kann, D. A., Klose, S., Zhang, B., et al. 2010, ApJ, 720, 1513
Kann, D. A., Schady, P., Oliveses E., F., et al. 2016, ArXiv e-prints, arXiv:1606.06791
Kasen, D., & Bildsten, L. 2010, ApJ, 717, 245
Kasliwal, M. M. 2012, PASA, 29, 482
Kasliwal, M. M., Kulkarni, S. R., Gal-Yam, A., et al. 2010, ApJ, 723, L98
Kasliwal, M. M., Kulkarni, S. R., Delany, R. G., et al. 2009, PASP, 121, 1395
Leloudas, G., Schulze, S., Krühler, T., et al. 2015, MNRAS, 449, 917
Levesque, E. M., Berger, E., Kewley, L. J., & Bagley, M. M. 2010, AJ, 139, 694
Liu, Y.-Q., Modjaz, M., Bianco, F. B., & Graur, O. 2016, ApJ, 827, 90
Lunnan, R., Chornock, R., Berger, E., et al. 2013, ApJ, 771, 97
Lunnan, R., Kasliwal, M. M., Cao, Y., et al. 2017, ApJ, 836, 60
Lyman, J. D., Bersier, D., James, P. A., et al. 2016, MNRAS, 457, 328
Maraston, C. 2005, MNRAS, 362, 799
Margutti, R., Guidorzi, C., Lazzati, D., et al. 2015, ApJ, 805, 159
Masci, F., Laher, R. R., Rebbapragada, U. D., et al. 2017, PASP, 129, 014002
McGaugh, S. S. 1991, ApJ, 380, 140
McKee, C. F., & Ostriker, E. J. 1977, ApJ, 218, 398
McMullin, J. F., Waters, B. S., Schiebel, D., Young, W., & Golap, K. 2007, ASP Conf. Ser., ed. R. A. Shaw, F. Hill, & D. J. Bell (San Francisco, CA), 376, 127
Observation (MJD)	Date	Phase^a	Filter	Magnitude^b	Telescope
57508.32	-12.50	g	> 20.61	P48	
57510.27	-10.87	g	> 20.89	P48	
57510.30	-10.84	g	> 20.80	P48	
57510.33	-10.82	g	> 20.91	P48	
57511.26	-10.03	g	> 20.78	P48	
57511.29	-10.00	g	> 20.72	P48	
57511.32	-9.98	g	> 20.53	P48	
57512.26	-9.18	g	> 21.05	P48	
57512.29	-9.16	g	> 20.82	P48	
57512.32	-9.14	g	> 21.09	P48	
57513.25	-8.35	g	> 20.96	P48	
57513.28	-8.33	g	> 20.96	P48	
57513.31	-8.30	g	> 20.72	P48	
57519.26	-3.29	g	20.43 ± 0.13	P48	
57519.29	-3.27	g	> 20.29	P48	
57519.32	-3.24	g	> 20.01	P48	
57520.25	-2.46	g	19.80 ± 0.12	P48	
57520.28	-2.43	g	19.69 ± 0.08	P48	
57521.26	-1.61	g	19.34 ± 0.09	P48	
57521.29	-1.58	g	19.25 ± 0.09	P48	
57521.32	-1.56	g	19.28 ± 0.09	P48	
57525.40	1.88	g	19.38 ± 0.09	P60	
57527.34	3.51	g	19.51 ± 0.07	P60	
57535.33	10.24	g	20.43 ± 0.09	P60	
57538.34	12.78	g	20.87 ± 0.05	P60	
57540.30	14.42	g	21.01 ± 0.07	P60	
57544.21	17.72	g	21.49 ± 0.08	P60	
57545.25	18.60	g	21.48 ± 0.11	P60	
57545.26	18.61	g	21.14 ± 0.09	P60	
57546.31	19.49	g	21.69 ± 0.13	P60	
57551.35	23.73	g	> 22.09	P60	
57560.26	31.24	g	> 20.29	P60	
57560.20	48.03	g	> 21.69	P60	
57581.23	48.90	g	> 21.19	P60	
57584.24	51.43	g	> 21.49	P60	
57587.18	53.91	g	> 21.69	P60	
57587.88	54.50	g	> 23.09	TNG	
57592.33	3.51	r	19.60 ± 0.09	P60	
57535.32	10.23	r	20.19 ± 0.07	P60	
57540.27	14.40	r	20.34 ± 0.04	P60	
57541.18	15.17	r	20.40 ± 0.12	P60	
57541.18	15.17	r	20.36 ± 0.07	P60	
57544.19	17.70	r	20.55 ± 0.05	P60	
57544.25	17.75	r	20.55 ± 0.04	P60	
57544.26	17.76	r	20.37 ± 0.03	P60	
57545.23	18.58	r	20.65 ± 0.07	P60	
57545.23	18.58	r	20.61 ± 0.09	P60	
57546.29	19.47	r	20.64 ± 0.05	P60	
57551.32	23.71	r	20.89 ± 0.13	P60	
57554.24	26.17	r	21.09 ± 0.15	P60	
57554.25	26.17	r	21.00 ± 0.12	P60	
57560.24	31.22	r	> 20.83	P60	
57570.22	39.62	r	21.73 ± 0.20	P60	
57573.21	42.14	r	22.06 ± 0.14	P60	
57577.25	45.55	r	> 21.13	P60	
57580.19	48.02	r	> 21.53	P60	
57581.22	48.89	r	> 21.13	P60	
57584.23	51.42	r	> 20.03	P60	
57587.17	53.90	r	> 21.03	P60	
57587.90	54.52	r	23.01 ± 0.15	TNG	
57593.21	58.99	r	> 21.73	P60	
57596.21	61.51	r	> 21.43	P60	
57525.40	1.88	i	19.57 ± 0.14	P60	
57527.33	3.51	i	19.66 ± 0.07	P60	
57535.33	10.24	i	19.87 ± 0.05	P60	
57538.33	12.77	i	20.09 ± 0.05	P60	
57540.28	14.41	i	20.29 ± 0.06	P60	
57544.20	17.71	i	20.46 ± 0.05	P60	
57544.21	17.72	i	20.43 ± 0.05	P60	
57544.26	17.77	i	20.43 ± 0.06	P60	
57545.24	18.59	i	20.48 ± 0.11	P60	
57545.25	18.59	i	20.46 ± 0.10	P60	
57546.29	19.48	i	20.68 ± 0.08	P60	
57551.33	23.72	i	> 20.84	P60	

Table 1

Log of iPTF 16asu Photometric Observations
Table 1 — Continued

Observation Date (MJD)	Phase* (rest-frame days)	Filter	Magnitudeb	Telescope
57554.25	26.18	i	20.82 ± 0.16	P60
57554.26	26.19	i	20.73 ± 0.12	P60
57560.25	31.23	i > 20.55	P60	
57570.23	39.63	i > 21.25	P60	
57573.21	42.15	i > 21.75	P60	
57580.20	48.03	i > 20.64	P60	
57581.22	48.89	i > 21.14	P60	
57584.23	51.43	i > 20.05	P60	
57584.26	51.45	i > 20.75	P60	
57587.17	53.90	i > 21.25	P60	
57587.89	54.51	i > 21.14	P60	
57593.22	58.99	i > 20.95	P60	
57596.21	61.51	i > 21.14	P60	
57527.29	3.47	V > 19.48	Swift	
57527.29	3.47	B 19.45 ± 0.2	Swift	
57527.29	3.47	U 19.6 ± 0.14	Swift	
57527.29	3.47	UVW1 20.52 ± 0.14	Swift	
57527.29	3.47	UVW2 21.8 ± 0.19	Swift	
57534.33	9.4	V > 18.95	Swift	
57534.33	9.4	B 19.61	Swift	
57534.33	9.4	U > 20.37	Swift	
57534.33	9.4	UVW1 > 21.46	Swift	
57534.33	9.4	UVW2 > 22.46	Swift	
57534.33	9.4	UVM2 > 22.48	Swift	

a Phase is in rest-frame days relative to bolometric maximum light.

Table 2
Log of iPTF 16asu Spectroscopic Observations

Observation Date (rest-frame days)	Phase*	Instrument	Grating	Filter	Wavelength (Å)	Resolution (Å)	Exp. Time (s)	Airmass
2016 May 14.30	−0.73	P200+DBSP	None	600/4000	3101–9199	1.30	600	1.21
2016 May 16.06	+0.75	NOT+ALFOSC	GRISM 4	None	3478–9662	3.35	2400	1.35
2016 May 24.97	+8.25	TNG+DOLORES	LR-B + LR-R	None	3315–10330	2.65	2100	1.09
2016 May 27.36	+10.27	P200+DBSP	None	600/4000	3600–10297	1.30	1800	1.69
2016 Jun 04.39	+17.03	Keck2+DEIMOS	600ZD	GG455	4550–9649	0.65	1000	1.29
2016 Jun 07.36	+19.53	Keck1+LRIS	400/3400, 400/8500	None	3072–10285	1.55	950	1.17
2016 Jun 10.42	+22.11	Keck1+LRIS	400/3400, 400/8500	None	3101–10290	1.55	980	1.71
2016 Jul 06.30	+23.92	Keck1+LRIS	400/3400, 400/8500	None	3067–10289	1.55	2400	1.30
2017 Apr 29.39	+294.04	Keck1+LRIS	400/3400, 400/8500	None	3063–10318	1.55	2400	1.02

a Phase is in rest-frame days relative to bolometric maximum light.

Table 3
Spectral Line Velocities of iPTF 16asu

Observation Date (rest-frame days)	Phase*	Fe II Velocity (1000 km s$^{-1}$)	Fe II Broadening (1000 km s$^{-1}$)	Si II Velocity (1000 km s$^{-1}$)
2016 May 24.97	+8.25	28.3$^{+1.1}_{-1.3}$	5.5$^{+1.0}_{-1.2}$	
2016 May 27.36	+10.27	29.5$^{+1.0}_{-1.4}$	5.9$^{+1.0}_{-1.3}$	23.3
2016 Jun 04.39	+17.03	25.7$^{+0.3}_{-0.4}$	5.1$^{+0.3}_{-0.4}$	19.8
2016 Jun 07.36	+19.53	21.6$^{+0.4}_{-0.5}$	4.4$^{+0.4}_{-0.5}$	19.2
2016 Jun 10.42	+22.11	22.0$^{+0.3}_{-0.3}$	4.3$^{+0.3}_{-0.3}$	16.8

a Phase is in rest-frame days relative to bolometric maximum light (MJD 57523.25).
Line	Flux (10^{-16} erg s^{-1} cm^{-2})
[O II] 3727	3.50 ± 0.10
[Ne III] 3869	0.62 ± 0.08
Hγ 4341	0.56 ± 0.07
Hβ 4861	1.41 ± 0.08
[O III] 4959	1.91 ± 0.12
[O III] 5007	5.72 ± 0.09
Hα 6563	5.01 ± 0.09
[N II] 6583	0.24 ± 0.10
[S II] 6717	0.66 ± 0.13
[S II] 6731	0.41 ± 0.14