Efficient metal-free strategies of polymerization of sterically hindered ionic monomer through the application of hard confinement and high pressure

Paulina Maksym¹,², Magdalena Tarnacka¹,², Andrzej Dzienia²,³, Kamila Wolnica¹,², Mateusz Dulski²,⁴, Karol Erfurt⁵, Anna Chrobok⁵, Andrzej Zięba⁶, Agnieszka Brzózka⁷, Grzegorz Sulka⁷, Rafał Bielas⁸, Kamil Kaminski¹,²*, Marian Paluch¹,²

¹ Institute of Physics, University of Silesia, ul. 75 Palku Piechoty 1, 41-500 Chorzow, Poland
² Silesian Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Palku Piechoty 1A, 41-500 Chorzow, Poland
³ Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-007 Katowice, Poland
⁴ Institute of Materials Science, University of Silesia, ul. 75 Palku Piechoty 1, 41-500 Chorzow, Poland
⁵ Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
⁶ School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland
⁷ Department of Physical Chemistry and Electrochemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
⁸ Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ul. M. Strzody 9, 44-100 Gliwice, Poland

*Corresponding author: e-mail paulina.maksym@smcebi.edu.pl; kamil.kaminski@smcebi.edu.pl phone number +48323497610

Supplementary Materials

Properties of AAO templates

Parameter	Value
Pore diameter [nm]	35
Pore density [cm⁻²]	6·10⁹
Pore period [nm]	143
Thickness of membranes	50µm

Table 1. Details concerning porosity, pore diameter and distribution of AAO membranes.
NMR measurements

1H NMR of P[OVIM][NTf$_2$] (600 MHz, DMSO-d$_6$) δ ppm = 8.40-9.10 (m, H$_{C'}$), 7.40-7.78 (m, H$_{D'}$), 6.75-7.20 (m, H$_{E'}$), 3.60-4.50 (m, H$_{B',F'}$), 1.80-2.30 (m, H$_{A'}$), 1.50-1.72 (m, H$_{G'}$), 1.10-1.45 (m, H$_{H',L'}$), 0.75-0.95 (m, H$_{M'}$).

Each monomer conversion was calculated by comparing the integrations of vinyl protons of the remaining monomers (5.42 and 5.95 ppm) with the integration of methyl protons for P[OVIM][NTf$_2$] at δ=0.75-0.95 ppm.

Figure 1. 1H NMR spectrum of the sample taken from the reaction mixture; p=800 MPa, example of XI.
GPC-LALLS measurements

Figure 1. Panel (a): GPC-LALLS chromatograms of P[OVIM][NTf₂] produced by free-radical high pressure polymerization at p = 500 MPa (gray line), p = 800 MPa (black line) and at p = 1200 MPa (dashed line); Panel (b): GPC-LALLS chromatograms of P[OVIM][NTf₂] obtained under confinement by RAFT (blue line) and free-radical polymerization (black line).

Measurements of samples prepared by polymerization at macroscale were carried out in THF containing 10 mM LiNTf₂ as the solvent at 35 °C and a flow rate of 1 mL/min. Note that in case of GPC measurements of polymers produced under nanoconfinement, the polymer sample recovered from the AAO templates by wash with THF was first freeze-dried under vacuum, then washed with water and again freeze-dried under vacuum. Measurements were carried out in 250 µL vial inserts with a flow rate 0.9 ml/min.