CASE REPORT
An 8-year-old boy presented to the neurology department. The parents complained that the child was becoming quieter. In addition, he was having difficulty in walking. This was associated with unsteady gait. There was no history of trauma. The child had a history of bacterial meningitis 2 years back for which he was treated and declared cured. Clinical examination was unremarkable except for reduced power (4/5) in both legs. CSF biochemistry, microscopy, and culture were within the normal limits. Magnetic resonance imaging (MRI) findings revealed bilateral frontal subdural CSF collections, suggestive of hygroma, more marked on the left side [Figure 1]. Similar collection was also noted in relation to the right cerebellum [Figure 1c and f]. As subdural hygroma are known to resolve spontaneously and there was no associated hydrocephalus, the clinician decided for a conservative medical management. Because of the parents concern the child was referred to Department of Nuclear Medicine for evaluation of cerebral perfusion.

ABSTRACT
Subdural hygroma is the collection of cerebrospinal fluid in the subdural space. Most often these resolve spontaneously. However, in cases with neurological complications surgical drainage may be needed. We here, present the case of an 8-year-old boy with post meningitis subdural hygroma. 99mTc-ehylene cysteine dimer (99mTc-ECD) hybrid single photon emission tomography/computed tomography (SPECT/CT) carried out in this patient, demonstrated the subdural hygroma as well as the associated cerebral hypoperfusion. If 99mTc-ECD SPECT/CT is integrated into management of these patients, it can help in decision making with respect to conservative versus surgical management.

Keywords: 99mTc-ehylene cysteine dimer, magnetic resonance imaging, single photon emission tomography/computed tomography, subdural hygroma

INTRODUCTION
Subdural hygroma is a subdural body of cerebrospinal fluid (CSF) collection, without blood. They can be caused by leakage of CSF following minor trauma in the setting of cerebral atrophy, following meningitis in children or more commonly after ventricular shunting.[1] Most of the subdural hygroma are small and clinically not significant. However, some of them can be large and cause compression and secondary neurological symptoms. Hence, it is important to detect the secondary effects of subdural hygroma on adjacent normal brain parenchyma early and intervene before it causes permanent damage. Brain perfusion single photon emission tomography (SPECT) can help in this regard.[2] We here present the case of a child with post meningitis subdural hygroma and highlight the role of 99mTc-ehylene cysteine dimer (99mTc-ECD) hybrid SPECT/CT can play in such a scenario.
ECD is an established method for assessment of cerebral perfusion, especially for detection of early changes. In the present patient, 99mTc-ECD brain perfusion SPECT showed hypoperfusion in bilateral frontal, parietal, and temporal cortices and provided the imaging correlate for patient symptoms. In addition, hybrid SPECT/CT can provide both structural and functional information in a single setting, as in the present case, thereby avoiding the need for a dedicated CT examination.

Most of the subdural hygroma resolve spontaneously and do not require surgical intervention. However, a subset of patients who develop compression symptoms will require surgical intervention to avoid permanent neurological sequelae. The decision to perform surgical intervention is guided by clinical and imaging findings. Combined structural and functional imaging in the form of 99mTc-ECD brain SPECT/CT may be especially advantageous for guiding surgical therapy. Different surgical interventions have been described to evacuate chronic subdural collections. These include transfontanel percutaneous aspiration, subdural drains, placement of bur hole(s) with or without a subdural drain, and shunting. While shunt placement typically provides good long-term success it has well-known early

DISCUSSION

Subdural hygroma is subdural accumulation of CSF, most commonly seen following head trauma or decompressive craniotomy. It has also been found to be associated with meningitis, the cause in present patient, and intrathecal chemotherapy. The factors contributing to the development of subdural hygroma are unknown, but there is probably an underlying disturbance of normal CSF absorption or an alteration of the dynamics of CSF circulation. Various theories have been proposed to outline the pathogenesis of subdural hygroma including, arachnoid rupture, arachnoid flap, blood-brain-barrier failure, and brain atrophy. The general consensus is on that of due to arachnoid membrane rupture or arachnoid flap leading to CSF accumulation in the subdural space. This CSF is trapped and remains there because of flap valve mechanism.

Subdural hygroma can be seen on CT; however, the differentiation form subdural hematoma or cerebral atrophy is not always possible. Contrast enhanced MRI is useful for differentiating the two entities. However, conventional MRI is not able to assess the impact of the subdural hygroma on underlying brain parenchyma. Functional imaging in the form of perfusion SPECT has been shown to be useful to assess these changes secondary to extracerebral fluid collection. SPECT with 99mTc-ECD is an established method for assessment of cerebral perfusion, especially for detection of early changes. In the present patient, 99mTc-ECD brain perfusion SPECT showed hypoperfusion in bilateral frontal, parietal, and temporal cortices and provided the imaging correlate for patient symptoms. In addition, hybrid SPECT/CT can provide both structural and functional information in a single setting, as in the present case, thereby avoiding the need for a dedicated CT examination.
and late complications. The minicraniotomy technique may be superior to the burr-hole method, especially in children and was employed in the present case.

The present report highlights the potential role of 99mTc-ECD brain perfusion SPECT/CT in a case of post meningitis subdural hygroma. Integration of 99mTc-ECD brain perfusion SPECT/CT in management of such patients can help in decision making with respect to conservative versus surgical management.

REFERENCES

1. De Bonis P, Sturiale CL, Anile C, Gaudino S, Mangiola A, Martucci M, et al. Decompressive craniectomy, interhemispheric hygroma and hydrocephalus: A timeline of events? Clin Neurol Neurosurg 2013 Jan 3 [Epub ahead of print]. doi: 10.1016/j.clineuro.2012.12.011.

2. Shirane R, Satoh S, Ogawa A, Yoshimoto T, Maruoka S. Early and delayed SPECT images of extracerebral fluid collection in infants using 123I-N-isopropyl-p-iodoamphetamine. Childs Nerv Syst 1993;9:443-7.

3. Aarabi B, Hesdorffer DC, Ahn ES, Aresco C, Scales TM, Eisenberg HM. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg 2006;104:469-79.

4. Idowu OE, Olumide AA. Hydrocephalus and subdural effusion with extracranial extension complicating meningitis. J Trop Pediatr 2010;56:348-50.

5. Lokireddy P, Dyer MJ. Bilateral subdural hygromas following intrathecal methotrexate. Br J Haematol 2011;155:536.

6. Lee KS, Baek WK, Park YT, Yun IG. The pathogenesis and fate of traumatic subdural hygroma. Br J Neurosurg 1994;8:551-8.

7. McCheney KW, Yeakley JW, Fenstermacher MJ, Baird SH, Bonmati CM. Subdural hygroma versus atrophy on MR brain scans: “the cortical vein sign”. AJNR Am J Neuroradiol 1992;13:1335-9.

8. Urama G, Hashimoto K, Abo M. A new method for evaluation of mild traumatic brain injury with neuropsychological impairment using statistical imaging analysis for Tc-ECD SPECT. Ann Nuel Med 2013;27:187-202.

9. Aarabi B, Chesler D, Maulucci C, Blacklock T, Alexander M. Dynamics of subdural hygroma following decompressive craniectomy: A comparative study. Neurosurg Focus 2009;26:E8.

10. Klomo P Jr, Matthews A, Lew SM, Zwienenberg-Lee M, Kaufman BA. Minicraniotomy versus burr holes for evacuation of chronic subdural collections in infants: a preliminary single-institution experience. J Neurosurg Pediatr 2011;8:423-9.

How to cite this article: Sharma P, Mishra A, Arora G, Tripathi M, Bal C, Kumar R. Post meningitis subdural hygroma: Anatomical and functional evaluation with 99mTc-ethylene cysteine dimer single photon emission tomography/computed tomography. Indian J Nucl Med 2013;28:23-5.

Source of Support: Nil. Conflict of Interest: None declared.
Copyright of Indian Journal of Nuclear Medicine is the property of Medknow Publications & Media Pvt. Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.