Concentration of symplectic volumes on Poisson homogeneous spaces

Anton Alekseev Benjamin Hoffman Jeremy Lane Yanpeng Li

Abstract

For a compact Poisson-Lie group K, the homogeneous space K/T carries a family of symplectic forms ω_s^ξ, where $\xi \in t_+^*$, is in the positive Weyl chamber and $s \in \mathbb{R}$. The symplectic form ω^0_ξ is identified with the natural K-invariant symplectic form on the K coadjoint orbit corresponding to ξ. The cohomology class of ω^s_ξ is independent of s for a fixed value of ξ.

In this paper, we show that as $s \to -\infty$, the symplectic volume of ω^s_ξ concentrates in arbitrarily small neighborhoods of the smallest Schubert cell in $K/T \cong G/B$. This strengthens an earlier result of [10] and is a step towards a conjectured construction of global action-angle coordinates on $\text{Lie}(K)^* [4, Conjecture 1.1]$.

1 Introduction

Let K be a compact connected Lie group with maximal torus T and let $G = K^C$ denote its complexification. Let t denote the Lie algebra of T. As our results concern the homogeneous space K/T, we may assume without loss of generality that K is semisimple and simply connected.

The homogeneous space K/T carries an interesting family of symplectic structures ω^s_ξ parameterized by $s \in \mathbb{R}$ and elements of a positive Weyl chamber, $\xi \in t_+^*$. Following [13], the Iwasawa decomposition $G = AN_-.K$ defines dual Poisson-Lie groups (K, π_K) and (AN_-, π_{AN_-}). The symplectic leaves of π_{AN_-} are the orbits of the so-called dressing action of K on AN_-. Let $D_\xi \subset AN_-$ denote the dressing orbit through $\exp(\sqrt{-1}\xi)$, where $\xi \in t^*$ is identified with an element of t via the Killing form. For all $s \neq 0$ and $\xi \in t_+^*$, fix the K-equivariant identification of K/T with D_ξ such that $eT \mapsto \xi$ and define

$$\pi^s_\xi := s\pi_{AN_-}|_{D_\xi}, \quad \omega^s_\xi := (\pi^s_\xi)^{-1}.$$ \hspace{1cm} (1)

For $s = 0$ and $\xi \in t_+^*$, fix the K-equivariant identification of K/T with the coadjoint orbit Θ_ξ such that $eT \mapsto \xi$ and define ω^0_ξ to be the Kostant-Kirillov-Souriau symplectic form.

The family ω^s_ξ was studied in [1, 11] and has several nice properties. First, the action of K on K/T is Poisson: the action map $K \times K/T \to K/T$ is a Poisson map with respect to $s\pi_K$ and π^s_ξ for all s and ξ. In other words, $(K/T, \pi^s_\xi)$ is a Poisson homogeneous space for $(K, s\pi_K)$. Poisson homogeneous spaces for $(K, s\pi_K)$ were classified in [9]. Second, for a fixed value of ξ the forms ω^s_ξ are isotopic for all $s \in \mathbb{R}$ [1]. It follows that for fixed ξ and arbitrary s the forms ω^s_ξ are cohomologous. In particular, their symplectic (Liouville) volumes are the same:

$$\text{Vol}(K/T, \omega^s_\xi) = \text{Vol}(K/T, \omega^0_\xi).$$ \hspace{1cm} (2)

Keywords: Poisson-Lie groups, homogeneous spaces, coadjoint orbits, symplectic geometry

1Note that for $s < 0$, ω^s_ξ is the symplectic structure on K/T defined by $-s\pi_\lambda$, $\lambda = -s\sqrt{-1}\xi$, where π_λ is the Poisson structure defined by Lu in [11, Notation 5.11].
Let $B \subset G$ be the positive Borel subgroup (corresponding to t^*_+. The flag variety G/B is isomorphic to K/T and admits a stratification into Schubert cells BwB/B, indexed by elements w of the Weyl group. The smallest Schubert cell is the point $eB \in G/B$ and the biggest Schubert cell, Bw_0B/B, corresponding to the longest element $w_0 \in W$, is dense in G/B.

It follows from [11, Proposition 5.12] that the rescaled family of Poisson structures $s^{-1} \pi^s_\xi$ admits, for all ξ, a common limit π^∞ when $s \rightarrow -\infty$. The Poisson structure π^∞ coincides with the image of the standard Poisson structure π_K under the projection map $K \rightarrow K/T$ and its symplectic leaves are exactly the Schubert cells. Theorem 2.2 in [10] implies the following:

Theorem 1.1. Let \overline{U} be a compact subset of the big Schubert cell Bw_0B/B. Then, for any $\xi \in t^*_+$ and $\varepsilon > 0$, there exists $s_0 \in \mathbb{R}$ such that for $s \leq s_0$,

$$\text{Vol}(\overline{U}, \omega^s_\xi) < \varepsilon.$$

Proof. Fix $\xi \in t^*_+$ and identify K/T with the dressing orbit $D_{s\xi}$ as above, equipped with $s\pi_{AN_-}$. Let $\text{pr}_A: G \rightarrow A$ denote projection with respect to the Iwasawa decomposition $G = AN_-K$. Identify $t \cong t^*$ via the Killing form. With these identifications,

$$\Psi_s: K/T \rightarrow t^*, \quad kT \mapsto \frac{1}{s\sqrt{-1}} \log \text{pr}_A(k \exp(s\sqrt{-1}\xi)),$$

is a moment map for the action of T on $(K/T, \omega^s_\xi)$ by left multiplication, for all $s \neq 0$ [12, Theorem 4.13]. The T-fixed points, their weights, and their images under the moment map do not depend on s. Thus the Duistermaat-Heckman measure on the moment polytope defined by Ψ_s is independent of s.

Fix a compact subset $\overline{U} \subset Bw_0B/B$. By [10, Theorem 2.2], there exists $r > 0$ such that

$$\|\log \text{pr}_A(k \exp(s\sqrt{-1}\xi)) - s w_0 \sqrt{-1}\xi\| < r$$

for all $\xi \in t^*_+$, $s < 0$, and $k \in \overline{U}$. The norm $\|\cdot\|$ is taken with respect to the Killing form. It follows that for fixed $\xi \in t^*_+$ and all $s < 0$,

$$\|\Psi_s(kT) - w_0\xi\| = \left\|\frac{1}{s\sqrt{-1}} \log \text{pr}_A(k \exp(s\sqrt{-1}\xi)) - w_0\xi\right\| < \frac{r}{|s|}$$

for all $k \in \overline{U}$. Since the Duistermaat-Heckman is independent of s, this implies that $\text{Vol}(\overline{U}, \omega^s_\xi) < \varepsilon$ for all $s < 0$ sufficiently large.

In other words, any compact subset of the big Schubert cell is depleted of symplectic volume as $s \rightarrow -\infty$. Since total volume is constant for fixed ξ, this implies that the volume concentrates in a small neighborhood of the other Schubert cells.

Example 1.2. As an illustration of this phenomenon, consider the example of $K = SU(2)$. Identify $t^* = \mathbb{R}$ and $\xi \in t^*_+ = \mathbb{R}_{>0}$. Let $(z, \varphi) \in (-1,1) \times (0, 2\pi)$ be cylindrical coordinates on the unit-sphere $S^2 \subset \mathbb{R}^3$ and fix the K-equivariant identification of K/T with S^2 such that eT is identified with the pole $z = 1$. The family of symplectic forms is

$$\omega^s_\xi = \begin{cases} \frac{\sinh(2s\xi)}{2s(\cosh(2s\xi) + z \sinh(2s\xi))} \, dz \wedge d\varphi, & s \neq 0; \\ \xi \, dz \wedge d\varphi, & s = 0. \end{cases}$$

One can derive this formula, for instance, from [11, Example 5.4]. Note that $\omega^0_\xi = \xi \, dz \wedge d\varphi$ are the rotation-invariant area forms on S^2. We leave it as an exercise to the reader to show that the cohomology class of ω^s_ξ is indeed independent of s and that for $s \ll 0$ the volume concentrates near the pole $z = 1$, which was identified with the smallest Schubert cell, eB.

2
Proof of Theorem 1.3. Let U be an open neighborhood of the smallest Schubert cell eB. Then for any $\xi \in \mathfrak{t}^*_+$ and $\varepsilon > 0$, there exists $s_0 \in \mathbb{R}$ such that for $s \leq s_0$,

$$\text{Vol} \left(U, \omega^\varepsilon \right) > (1 - \varepsilon) \text{Vol} (K/T, \omega^\varepsilon) .$$

In other words, any compact subset of G/B not containing eB eventually gets depleted of symplectic volume as $s \to -\infty$.

The remainder of the paper is devoted to setting up the proof of Theorem 1.3, which is given below. Section 2 describes the dual Poisson-Lie group $(K^*, \pi_{K^*}) := (AN_-, \pi_{AN_-})$. There are two important maps defined for $s \neq 0$,

$$\mathcal{E}_s : \mathfrak{t}^* \to K^*$$

$$\mathcal{L}_s : \mathbb{R}^{r+m} \times T^m \to K^*$$

which are defined in Equations (5) and (9), respectively. Here $r = \dim (T)$, $2m = \dim (K/T)$, and T^m is a compact torus of dimension m. The map \mathcal{E}_s is a diffeomorphism. It is K-equivariant with respect to the coadjoint and dressing actions and has the property that $\mathcal{E}_s(\xi) = \exp(s \sqrt{-1} \xi)$ for all $\xi \in \mathfrak{t}^*$. The map \mathcal{L}_s is a diffeomorphism onto its image and the image of \mathcal{L}_s is an open dense subset of K^* that is independent of s. The intersection $\mathcal{L}_s(\mathbb{R}^{r+m} \times T^m) \cap \mathcal{E}_s(\Theta_\xi)$ is an open dense subset of $\mathcal{E}_s(\Theta_\xi)$ for all $\xi \in \mathfrak{t}^*_+$. Moreover, all the maps in the following diagram are Poisson:

$$(\Theta_\xi, \pi^\varepsilon_\xi) \hookrightarrow (\mathfrak{t}^*, \pi^s) = \mathcal{E}_s(s\pi_{K^*}) \xrightarrow{\mathcal{E}_s} (K^*, s\pi_{K^*}) \xleftarrow{\mathcal{L}_s} (\mathbb{R}^{r+m} \times T^m, \mathcal{L}_s^*(s\pi_{K^*})). \quad (3)$$

There is a distinguished open subset $PT(K^*) \subset \mathbb{R}^{r+m} \times T^m$ called the partial tropicalization of K^*, introduced in [2], equipped with a constant Poisson structure π_{PT}. As $s \to -\infty$, the Poisson structure $\mathcal{L}_s^*(s\pi_{K^*})$ converges to π_{PT} uniformly on certain subsets that exhaust $PT(K^*)$ (Section 2.3). Section 3 shows that the symplectic volume of the leaves of $\mathcal{L}_s^*(s\pi_{K^*})$ concentrates in $PT(K^*)$ as $s \to -\infty$ (Proposition 3.5). Section 4 contains the proof of Proposition 4.3, which says that, under the maps in (3), points of $PT(K^*)$ correspond to points near $\mathfrak{t}^*_+ \subset \mathfrak{t}^*$ when $s \ll 0$. This allows us to translate Proposition 3.5 into a statement about the symplectic volume of $(K/T, \omega^\varepsilon_\xi)$.

Proof of Theorem 1.3. Let $n_{s\xi} \subset \mathbb{R}^{r+m} \times T^m$ denote the preimage $(\mathcal{E}_s^{-1} \circ \mathcal{L}_s)^{-1}(\Theta_\xi)$, which is a symplectic leaf of $\mathcal{L}_s^*(s\pi_{K^*})$, and denote its symplectic form $\eta_{s\xi} = (\mathcal{E}_s^{-1} \circ \mathcal{L}_s)^*\omega^\varepsilon_\xi$. In Proposition 3.5, we prove that for all $\varepsilon > 0$, there is a compact subset $D_\varepsilon \subset PT(K^*)$ such that

$$\lim_{s \to -\infty} \text{Vol} \left(n_{s\xi} \cap D_\varepsilon, \eta_{s\xi} \right) \geq (1 - \varepsilon) \text{Vol}(n_{s\xi}, \eta_{s\xi}) = (1 - \varepsilon) \text{Vol} (K/T, \omega^\varepsilon_\xi) .$$

In Proposition 4.3, we show there exists $s_0 < 0$ such that for all $s \leq s_0$,

$$\mathcal{E}_s^{-1} \circ \mathcal{L}_s(n_{s\xi} \cap D_\varepsilon) \subseteq U .$$

Since $\mathcal{E}_s^{-1} \circ \mathcal{L}_s$ is a Poisson isomorphism, it preserves volumes of the symplectic leaves. Thus

$$\text{Vol} \left(U, \omega^\varepsilon_\xi \right) \geq \text{Vol} \left(\mathcal{E}_s^{-1} \circ \mathcal{L}_s(n_{s\xi} \cap D_\varepsilon), \omega^\varepsilon_\xi \right) = \text{Vol} \left(n_{s\xi} \cap D_\varepsilon, \eta_{s\xi} \right) .$$

Combining with the limit above completes the proof.
Figure 1: As $s \to -\infty$, volume of the symplectic leaves $n_{\xi} = (e_s^{-1} \circ \Sigma_s)^{-1}(O_{\xi})$ concentrates on subsets of $n_{\xi} \cap PT(K^*)$, illustrated in red. For s sufficiently large, the image of the red subset is contained in an arbitrarily small neighborhood of ξ, illustrated in blue.

A motivation for our study is provided by the following idea. There exist Poisson isomorphisms between \mathfrak{t}^* and K^* called Ginzburg-Weinstein isomorphisms after the authors of [8]. Given a Ginzburg-Weinstein isomorphism $\gamma: \mathfrak{t}^* \to K^*$, its scaling $\gamma^*(x) := \gamma(sx)$ is a Poisson isomorphism with respect to $\pi_\mathfrak{t}^*$ and $s\pi_K^*$. Composing γ^* with Σ_{s}^{-1} defines coordinates on every regular coadjoint orbit which are almost global action-angle coordinates for $s \ll 0$. Conjecturally, the $s \to -\infty$ limit of this composition defines global action-angle coordinates on the regular coadjoint orbits. This has already been shown to be true for $K = U(n)$, where for a certain choice of Ginzburg-Weinstein diffeomorphism and cluster seed, the limit is the classical Gelfand-Zeitlin system [4].

Acknowledgements. We are grateful to J.H. Lu and R. Sjamaar for their useful comments and discussions. Research of A.A., J.L. and Y.L. was supported in part by the grant MODFLAT of the European Research Council (ERC), by the grants number 178794 and 159581 of the Swiss National Science Foundation (SNSF) and by the NCCR SwissMAP of the SNSF. B.H. was supported by the National Science Foundation Graduate Research Fellowship under Grant Number DGE-1650441. A.A., B.H., and Y.L. express their gratitude for the hospitality and support of the Simons Center for Geometry and Physics, during their visit in 2018.

2 Background

Fix the following notation. Let G be a connected simply-connected semisimple complex Lie group of rank r. Fix a compact real form $K \subset G$ and a Cartan subgroup $H \subset G$, and let $(\cdot)^*: G \to G$ be the anti-involution of G under which elements $k \in K$ satisfy $k^{-1} = k^*$. Denote the Lie algebras of G, K, and H by \mathfrak{g}, \mathfrak{k}, and \mathfrak{h} respectively. Fix a choice of positive roots of \mathfrak{g} with respect to \mathfrak{h}. Denote the lattice of integral weights by P, and the semigroup of dominant integral weights by P_\dagger. We write $h \mapsto h^\mu \in \mathbb{C}^\times$ for the multiplicative character $H \to \mathbb{C}^\times$ determined by $\mu \in P$. Let $I = \{1, \ldots, r\}$ index the simple roots, $\alpha_i \in \mathfrak{h}^*$, the simple coroots, $\alpha_i^\vee \in \mathfrak{h}$, and the fundamental weights, ω_i, which by definition satisfy $\omega_i(\alpha_j^\vee) = \delta_{ij}$. Denote the Weyl group of G by W. Let $s_i \in W$ be the simple reflection generated by α_i and let w_0 be the longest element of W, with length denoted by m.

Let T be the maximal torus of K which has Lie algebra $\mathfrak{t} = \mathfrak{h} \cap \mathfrak{k}$. Let $a = \sqrt{-1}t$ and denote the corresponding subgroup of G by A. Corresponding to the choice of positive roots, we have opposite maximal unipotent subgroups N_{\pm} with Lie algebras n_{\pm} as well as opposite Borel subgroups $B_{\pm} = HN_{\pm}$ with Lie algebras $\mathfrak{h} \oplus n_{\pm}$. Fix a set of Chevalley generators $F_i \in n_-$, $\alpha_i^\vee \in \mathfrak{h}$, $E_i \in n$, $i \in I$. Recall the Iwasawa decompositions $G = AN_+K$ and $\mathfrak{g} = n_- \oplus a \oplus \mathfrak{t}$.

Fix an invariant non-degenerate bilinear form (\cdot, \cdot) on \mathfrak{g}. The isomorphism $\mathfrak{t} \cong \mathfrak{t}^*$ determined by (\cdot, \cdot) embeds $\mathfrak{t}^+ \subseteq \mathfrak{t}^*$, as the image of \mathfrak{t}. Let $t^*_+ \subseteq \mathfrak{t}^*$ be the open cone such that $\sqrt{-1}t^*_+ \subseteq \mathfrak{h}^*$ is the interior of the real cone spanned by P_\dagger. We refer to both t^*_+ and $\sqrt{-1}t^*_+$ as the positive Weyl chamber.
2.1 Dressing orbits and compact Poisson-Lie groups

Recall that a Poisson-Lie group \((K, \pi)\) is a Lie group \(K\) equipped with a Poisson structure \(\pi\) such that the multiplication map \(K \times K \to K\) is Poisson (with respect to the product Poisson structure on \(K \times K\)). For example, the canonical Lie-Poisson structure \(\pi^*\) on the dual \(\mathfrak{t}^*\) of a Lie algebra \(\mathfrak{t}\) is linear, so \((\mathfrak{t}^*, \pi^*)\) is a Poisson-Lie group with respect to vector addition.

For \(G\) as above, both \(K\) and \(AN_\cdot\) have natural Poisson-Lie group structures defined as follows (see [13] for details). Let \(\Im(\cdot, \cdot)\) be the imaginary part of the fixed \(G\)-invariant non-degenerate bilinear form \(\langle \cdot, \cdot \rangle\). Then \(\mathfrak{t} \oplus \mathfrak{n}_-\) are isotropic subspaces with respect to \(2\Im(\cdot, \cdot)\), and \(2\Im(\cdot, \cdot)\) defines an isomorphism \(\mathfrak{n}_- \cong \mathfrak{t}^*\). This identification endows \(\mathfrak{t}\) and \(\mathfrak{t}^*\) with the structure of dual Lie bialgebras. Since \(K\) and \(AN_\cdot\) are simply connected, the Lie bialgebra structures on \(\mathfrak{t}\) and \(\mathfrak{t}^*\) integrate to define Poisson-Lie group structures \(\pi_K\) on \(K\) and \(\pi_{K^*}\) on \(AN_\cdot\), respectively. These Poisson-Lie group structures are dual, since they arise by integrating dual Lie bialgebras, thus one denotes \(K^* = AN_\cdot\), and refers to \((K^*, \pi_{K^*})\) as the dual Poisson-Lie group of \((K, \pi_K)\).

Both \(\mathfrak{t}^*\) and \(K^*\) have naturally defined \(K\) actions. The coadjoint action of \(K\) on \(\mathfrak{t}^*\) is defined in terms of the adjoint action by the equation

\[
\langle \text{Ad}^*_k \xi, x \rangle = \langle \xi, \text{Ad}_{k^{-1}} x \rangle, \quad k \in K, \xi \in \mathfrak{t}^*, \text{ and } x \in \mathfrak{t}.
\]

The coadjoint action preserves \(\pi_{\mathfrak{t}^*}\), and the symplectic leaves of \(\pi_{\mathfrak{t}^*}\) are the coadjoint orbits. The dressing action of \(K\) on \(K^*\) is defined by re-factorizing \(kb \in G\) according to the Iwasawa decomposition. If

\[
kb = b'k' \in AN_\cdot K, \quad k, k' \in K, \quad b, b' \in K^*,
\]

then the dressing action of \(k\) on \(b\) is defined as \(kb = b'\). The symplectic leaves of \(\pi_{K^*}\) are the dressing orbits. In other words, they are the joint level sets of the Casimir functions [13],

\[
C_i(b)^2 := \text{Tr} \left(\rho^\psi \left(bb^* \right) \right), \quad b \in K^*,
\]

where \(\rho^\psi\) is the fundamental irreducible \(G\)-representation with highest weight \(\omega_i \in P_\cdot\). The map \(\varphi: b \mapsto bb^*\) is a diffeomorphism of \(K^*\) onto the set \(S = \{ g \in G \mid g^* = g \}\).

There is a family of diffeomorphisms \(\xi_s: \mathfrak{t}^* \to K^*\) parameterized by \(s \neq 0\) [7]. Let \(\psi: \mathfrak{t}^* \to \mathfrak{t}\) be the \(K\)-equivariant isomorphism given by the fixed bilinear form on \(\mathfrak{g}\). Then, define

\[
\xi_s: \mathfrak{t}^* \xrightarrow{\psi} \mathfrak{t} \xrightarrow{\exp(2s\sqrt{-1}\psi)} S \xrightarrow{\varphi^{-1}} K^* = AN_\cdot.
\]

The map \(\xi_s\) is equivariant with respect to the coadjoint and dressing actions of \(K\). Let \(\Theta_\xi\) be the coadjoint orbit through \(\xi \in \mathfrak{t}_\cdot^*\). Denote by \(D_\xi\) the dressing orbit through \(\xi_s(\xi) = \exp \left(s\sqrt{-1}\psi(\xi) \right)\). Since \(\xi_s\) is \(K\)-equivariant, \(\xi_s(\Theta_\xi) = D_\xi\).

2.2 Cluster coordinates on double Bruhat cells

The double Bruhat cell determined by a pair of elements \(u, v \in W\), is the intersection

\[
G^{u,v} := BuB \cap B_- vB_- \subset G.
\]

In particular, we will consider \(G^{u_0v_0} = Bu_0B \cap B_-\) which is an open dense subset of \(B_-\).

Let \(G_0 = N_- H N\) be the open dense subset of elements in \(G\) that admit a Gaussian decomposition. For a dominant weight \(\mu \in P_+\), the principal minor \(\Delta_{\mu, \mu}\) is a regular function \(G \to \mathbb{C}\) uniquely determined by its value on \(G_0\):

\[
\Delta_{\mu, \mu}(n-hn) = h^\mu, \text{ for any } n_- \in N_-, h \in H, n \in N.
\]
For any two weights γ and δ of the form $\gamma = w\mu$, $\delta = v\mu$, for some $w, v \in W$, the **generalized minor** $\Delta_{w\mu, v\mu}$ is the regular function on G given by

$$\Delta_{\gamma, \delta}(g) = \Delta_{w\mu, v\mu}(g) = \Delta_{\mu, \mu}(\overline{w^{-1}g\overline{v}}), \text{ for } g \in G,$$

where \overline{w} is a specific lift of $w \in W$ to G as in [6, Equation 1.5].

Fix a reduced word $i = (i_1, \ldots, i_m)$, $i_j \in I$, for $w_0 = s_{i_1} \cdots s_{i_m}$. Let $R = R^- \cup R^+$, where $R^- = [-r, -1]$ and $R^+ = [1, m]$. For $1 < k < m$, let $v_k = s_{i_m} \cdots s_{i_{k+1}}$ and let $v_m = e$. For $k \in R^-$, let $i_k = -k$ and $v_k = w_0$. Consider the functions

$$\Delta_k := \Delta_{v_k \omega_k, \omega_k}, \quad k \in R.$$

The functions Δ_k form a seed for the upper cluster algebra structure on $\mathbb{C}[G^{w_0, e}]$ described in [5].

Being an upper cluster algebra implies that any $f \in \mathbb{C}[G^{w_0, e}]$ is a Laurent polynomial in the functions Δ_k. The functions Δ_k then determine an open embedding

$$\sigma(i) : (\mathbb{C}^\times)^{m+r} \to G^{w_0, e},$$

which is a (birational) inverse to

$$G^{w_0, e} \to \mathbb{C}^{m+r}; \quad g \mapsto (\Delta_{-r}(g), \ldots, \Delta_m(g)).$$

Note that there is no term Δ_k with index $k = 0$.

We conclude this section by recalling how generalized minors appear in matrix entries of representations of G. A dominant integral weight $\mu \in P_+$ can be written uniquely as

$$\mu = \sum_{i \in I} c_i(\mu)\omega_i, \quad c_i(\mu) \in \mathbb{Z}_{\geq 0}.$$

Then the function $\Delta_{w_0\mu, \mu}$ can be written as

$$\Delta_{w_0\mu, \mu} = \prod_{i \in I} \Delta_{w_0\mu, \omega_i}^{c_i(\mu)}.$$ (7)

One can check that

$$h \cdot \Delta_{w_0\mu, \mu} \cdot h' = h^{-w_0\mu}h'\Delta_{w_0\mu, \mu}, \quad E_i \cdot \Delta_{w_0\mu, \mu} = \Delta_{w_0\mu, \mu} \cdot E_i = 0 \text{ for } i \in I,$$

where $h, h' \in H$, and G acts on $\mathbb{C}[G]$ in the standard way

$$(g \cdot f)(x) = f(g^{-1}xh), \quad g, h, x \in G, \quad f \in \mathbb{C}[G].$$

For a sequence of indices $j = (j_1, \ldots, j_n)$ in I, write $F_j = F_{j_1}F_{j_2} \cdots F_{j_n} \in U(\mathfrak{g})$. Recall that the functions $F_j \cdot \Delta_{w_0\mu, \mu} \cdot F_k$ arise from representations of G as follows. Let $(V, \rho : G \to \text{GL}(V))$ be the irreducible G-module with highest weight μ. Let v_1, \ldots, v_n be a weight basis of V, where H acts on v_j with weight $\text{wt}(v_j) \in \mathfrak{h}^*$, and assume $\text{wt}(v_1) = \mu$ and $\text{wt}(v_n) = w_0\mu$. Let $\rho_{j,k}(g)$ be the (j, k)-entry of the matrix for $\rho(g)$ with respect to the basis $\{v_j\}$. Then $\rho_{n,1} = c \Delta_{w_0\mu, \mu}$, for some $c \in \mathbb{C}^\times$. We may choose the weight basis such that $c = 1$. Each $\rho_{j,k}$ is a linear combination of terms of the form $F_j \cdot \Delta_{w_0\mu, \mu} \cdot F_k$, where j and k are such that

$$h \cdot (F_j \cdot \Delta_{w_0\mu, \mu} \cdot F_k) \cdot h' = h^{-\text{wt}(v_j)}(h')^{\text{wt}(v_k)}(F_j \cdot \Delta_{w_0\mu, \mu} \cdot F_k)$$ (8)

for all $h, h' \in H$.
2.3 The partial tropicalization and its symplectic leaves

Recall from Section 2.1 that $K^* = AN_\omega$. Let $S = \{k \in R \mid v_k \omega_{i_k} \neq \omega_{i_k}\}$. Then $|R \setminus S| = r$, and $\Delta_k(K^*) \subset \mathbb{R}_+$ if and only if $k \in R \setminus S$. The collection of functions

$$\{\Delta_k \mid k \in R\} \cup \{\Delta_k \mid k \in S\}$$

define a real coordinate system on an open dense subset of K^*. Equip $\mathbb{R}^{r+m} \times \mathbb{T}^m$ with coordinates (λ_R, φ_S), where $\lambda_R = (\lambda_k)_{k \in R}$ and $\varphi_S = (\varphi_k)_{k \in S}$.

There is a Poisson manifold $(PT(K^*), \pi_{PT})$, called the partial tropicalization of K^*, which was introduced in [2]. As a manifold, $PT(K^*)$ is defined as

$$PT(K^*) := C \times \mathbb{T}^m \subset \mathbb{R}^{r+m} \times \mathbb{T}^m,$$

where C is an open convex polyhedral cone of dimension $r + m$ defined by inequalities described in [6] and [2, Theorem 6.24]. The definition of C depends on the choice of reduced word i fixed in Section 2.2. More precisely, C is the set of points $x \in \mathbb{R}^{m+r}$ satisfying an inequality $\Phi^i(x) > 0$, where $\Phi^i : \mathbb{R}^{m+r} \rightarrow \mathbb{R}$ is a certain piecewise-linear function called the tropical Berenstein-Kazhdan potential.

The Poisson structure π_{PT} is constant in the coordinates (λ_R, φ_S). The symplectic leaves of $PT(K^*)$ are the joint level sets of the coordinates $\lambda_{R^-} = (\lambda_{r}, \ldots, \lambda_{-1})$ [3, Theorem 6.5].

There is a correspondence between symplectic leaves of $PT(K^*)$ and regular coadjoint orbits of K, which we now describe. To each $\xi \in \mathfrak{t}_\omega^*$, we associate $\lambda_{R^-} \in \mathbb{R}^r$ with coordinates

$$\lambda_{-i} = (w_0\omega_i, \sqrt{-1}\xi) \text{ for } i = -r, \ldots, -1.$$

Denote the symplectic leaf of $PT(K^*)$ that is the fiber of λ_{R^-} by P_ξ. The corresponding coadjoint orbit is Θ_ξ. For each fixed value of $s \neq 0$, the leaf P_ξ also corresponds to the dressing orbit D_{λ_ξ}, defined in Section 2.1.

Each symplectic leaf $P_\xi \subset PT(K^*)$ inherits a symplectic form from π_{PT} denoted by ν_ξ.

Theorem 2.1. [3, Theorem 6.11] The symplectic volume of (P_ξ, ν_ξ) equals the symplectic volume of the coadjoint orbit $\Theta_\xi \subset \mathfrak{t}^*$ equipped with the Kirillov-Kostant-Souriau symplectic form:

$$\text{Vol}(P_\xi, \nu_\xi) = \text{Vol}(\Theta_\xi, \omega_\xi).$$

Remark 2.2. Although [3, Theorem 6.11] is only stated for leaves parameterized by regular dominant integral weights, the theorem here follows by scaling and continuity.

In order to compare the Poisson structures of $PT(K^*)$ and K^*, we define the detropicalization map $\Sigma_s : PT(K^*) \rightarrow K^*$ as follows. For $s < 0$, let

$$\Sigma_s(\lambda_R, \varphi_S) = \sigma(1) \left(e^{s\lambda_{-r}}(-1)^{s-r}, \ldots, e^{s\lambda_{m}}(-1)^{s-m} \right),$$

where we understand $\varphi_k = 0$ on the right hand side if $k \notin S$. Denote $b_s = \Sigma_s(\lambda_R, \varphi_S)$.

Remark 2.3 (Conventions). We follow the conventions of [3, 6] for (partial) tropicalization, which are opposite to those of [2]. We consider $K^* \subset B_\omega$, as in [3], rather than $K^* \subset B$, as in [2], and take the limit $s \rightarrow -\infty$. This accounts for the minus signs in (9).

The Casimir functions for K^* are related to the coordinates λ_R, φ_S by the detropicalization map via r equations (one for each Casimir function):

$$C_i(b_s) = \text{Tr}(\rho^{\omega_i}(b_s b_s^*)^2) = \sum_j \rho^{\omega_i}_{j,i}(b_s b_s^*) = \sum_{j,k} |\rho^{\omega_i}_{j,k}(b_s)|^2$$

$$= \sum_{j,k} \left| \sum_{i,j} c_{i,j}(F_j \Delta_{w_0i,\omega_i} F_j)(b_s) \right|^2$$

$$= |\Delta_{w_0i,\omega_i}(b_s)|^2 \left(1 + \sum_{j,k} \left| \sum_{i,j} c_{i,j} \frac{(F_j \Delta_{w_0i,\omega_i} F_j)(b_s)}{\Delta_{w_0i,\omega_i}(b_s)} \right|^2 \right).$$

(10)
Since \(b_s = \Sigma_s(\lambda, \varphi_S) \), the last line on the right side can be rewritten as a Laurent polynomial in the functions \(e^{s\lambda_k - \sqrt{-1}pk} \). The term \(|\Delta_{w_0\omega_i}(b_s)|^2 = e^{2s\lambda_i} \) dominates the expression for \(s \ll 0 \), and the exponents in the other terms are controlled by their distance from the boundary of \(C \), as follows.

Recall that \(C \) is the set of points \(x \in \mathbb{R}^{m+r} \) satisfying the inequality \(\Phi^i(x) > 0 \). For \(\delta > 0 \), let \(C^\delta \subset C \) be the set of points \(x \in \mathbb{R}^{m+r} \) which satisfy the inequality \(\Phi^i > \delta \). Then,

Proposition 2.4. \([2, \text{Theorem 4.13 and Lemma 6.17}]\) For \((\lambda, \varphi) \in C^\delta \times \mathbb{T}^m\), each term

\[
\left| \sum_{i,j} c_{ij} \frac{(F_i \Delta_{w_0\omega_i}(F_j))(b_s)}{\Delta_{w_0\omega_i}(b_s)} \right| = O(e^{sd}).
\]

Here and throughout, a function \(f(s) \) is in \(O(g(s)) \), \(g(s) \geq 0 \), if there exists \(c > 0 \) such that

\[-cg(s) \leq f(s) \leq cg(s).\]

As a direct consequence of Proposition 2.4 and Equations \((10)\), we have:

Corollary 2.5. \([3, \text{Remark 6.6}]\) For all \(\xi \in t^*_+ \) and \((\lambda, \varphi) \in P_\xi \), and for each \(i = 1, \ldots, r \),

\[
\lim_{s \to -\infty} \frac{1}{s} \log \circ C_{\xi} \circ \Sigma_s(\lambda, \varphi_S) = \lambda_{-i} = (w_0\omega_i, \sqrt{-1}\xi).
\]

Remark 2.6. Corollary 2.5 says that points \(\Sigma_s(P_\xi) \) in the image of a tropical leaf under the detropicalization map approach the corresponding scaled dressing orbit \(D_{s\xi} \) in the limit \(s \to -\infty \). It is useful to note that points in \(\Sigma_s(P_\xi) \) will concentrate near a certain region of \(D_{s\xi} \), not the entire orbit: there are points in the preimages of the scaled dressing orbits \(\Sigma_s^{-1}(D_{s\xi}) \) that remain far away from \(PT(K^*) \), even as \(s \to -\infty \) (see Figure 2).

3 Symplectic volumes of the leaves of \(\pi_s \)

In this section we study volumes of the symplectic leaves of the Poisson bivector

\[
\pi_s := (\Sigma_s)^*(s\pi_{K^*}).
\]

Note that the pullback of a bivector under a diffeomorphism is by definition the pushforward under the inverse diffeomorphism. The symplectic leaves in question are submanifolds of \(\mathbb{R}^{r+m} \times \mathbb{T}^m \). Roughly, for \(s \ll 0 \) each of these leaves has a piece which lies inside \(PT(K^*) = C \times \mathbb{T}^m \), close to the corresponding leaf of \(\pi_{PT} \) (Section 3.1). For \(s \ll 0 \), the volume of the symplectic leaves concentrate there (Proposition 3.5). This is illustrated in Figure 2.

Let us first establish some notation. Each symplectic leaf of \(\pi_s \) is the preimage under \(\Sigma_s \) of a dressing orbit. We denote the leaf and its symplectic form by

\[
\eta_{s\xi} := \Sigma_s^{-1}(D_{s\xi}), \quad \eta_{s\xi} := (\pi_s)^{-1}.
\]

There is a corresponding symplectic leaf \(P_\xi \) of \(PT(K^*) \) equipped with \(\nu_\xi \), as described in Section 2.3. Recall, for \(\xi \in t^*_+ \),

\[
P_\xi := \{(\lambda, \varphi) \in PT(K^*) \mid \lambda_{-i} = (w_0\omega_i, \sqrt{-1}\xi), i = -r, \ldots, -1 \},
\]

which is a product of an open polytope (a fiber in \(C \) of projection to the first \(r \) coordinates) times a torus.

We will often reference the open subset \(P^\delta := P_\xi \cap (C^\delta \times \mathbb{T}^m) \) and its closure \(\overline{P}_{\xi}^\delta \).
Figure 2: Volume of the symplectic leaves $N_{s\xi}$ of π_s concentrates on the part of $N_{s\xi}$ that is close to the corresponding tropical leaf, P_ξ.

3.1 The implicit function theorem argument

Consider the map
\[F_{s\xi} = (f_{r-1}, \ldots, f_{-1}): \mathbb{R}^r \times \mathbb{R}^m \times \mathbb{T}^m \to \mathbb{R}^r \]
with coordinates f_{-i} defined by composing the detropicalization map (9) with the Casimir functions (4) on K^*,
\[f_{-i}(\lambda_R, \varphi_S) = \frac{1}{s} \log \circ C_i \circ L_s(\lambda_R, \varphi_S). \]

The fiber $F_{s\xi}^{-1}(\lambda_R)$ is the symplectic leaf $N_{s\xi}$. The following lemma will allow us to apply the implicit function theorem at certain points in $N_{s\xi}$.

Lemma 3.1. For all $(\lambda_R, \varphi_S) \in C_\delta \times \mathbb{T}^m$, the derivatives
\[D_{\lambda_R} F_{s\xi} = I_r + O(e^{2s\delta}); \]
\[D_{\lambda_R} F_{s\xi} = O(e^{2s\delta}); \]
\[D_{\varphi_S} F_{s\xi} = O(e^{2s\delta}). \]

(Here I_r is the $r \times r$ identity matrix and $O(e^{s\delta})$ denotes a matrix of the appropriate dimensions whose entries are $O(e^{2s\delta})$ as functions of s.)

Proof. By the formula for f_{-i}, Equations (10), and the comment directly following Equations (10),
\[e^{2sf_{-i}(\lambda_R, \varphi_S)} = e^{2s\lambda_{-i}} \left(1 + \sum_{j,k} c_{j,k} e^{2sL_{j,k}(\lambda_R, \varphi_S)} \right). \]

for $-i = -r, \ldots, -1$, constants $c_{j,k}$, and some linear combinations $L_{j,k}(\lambda_R, \varphi_S)$. Differentiating these equations gives
\[\frac{\partial f_{-i}}{\partial \lambda_k} = e^{2s(\lambda_{-i} - f_{-i}(\lambda_R, \varphi_S))} \left(\delta_{-i,k} + \sum_{j,k} \left(\frac{\partial L_{j,k}}{\partial \lambda_k} + \delta_{-i,k} \right) c_{j,k} e^{2sL_{j,k}(\lambda_R, \varphi_S)} \right); \]
\[\frac{\partial f_{-i}}{\partial \varphi_k} = e^{2s(\lambda_{-i} - f_{-i}(\lambda_R, \varphi_S))} \sum_{j,k} \frac{\partial L_{j,k}}{\partial \varphi_k} c_{j,k} e^{2sL_{j,k}(\lambda_R, \varphi_S)}. \]

Here $\delta_{-i,k}$ is the Kronecker-delta function. By Proposition 2.4, for $(\lambda_R, \varphi_S) \in C_\delta \times \mathbb{T}^m$,
\[e^{2s(\lambda_{-i} - f_{-i}(\lambda_R, \varphi_S))} = 1 + O(e^{2s\delta}); \]
\[e^{2sL_{j,k}(\lambda_R, \varphi_S)} = O(e^{2s\delta}), \]
which completes the proof. \(\diamondsuit\)
Fix an arbitrary element \(p = (\lambda_R^-, \lambda_R^+, \varphi_S) \in \mathcal{P}_\xi \) and consider the subspace
\[
S_p := \mathbb{R}^r \times \{ \lambda_R^+ \} \times \{ \varphi_S \} \subseteq \mathbb{R}^r \times \mathbb{R}^m \times T^m.
\]
By an intermediate value theorem argument, we can show that for \(s \ll 0 \), \(\mathcal{N}_{s\xi} \) intersects \(S_p \) near \(p \):

Lemma 3.2. For all \(\xi \in t^*_+ \) and for all \(\delta, \upsilon > 0 \) sufficiently small, there exists \(s_0 < 0 \) such that for all \(s \leqslant s_0 \) and \(p \in \mathcal{P}_\xi^\delta \), the intersection \(S_p \cap \mathcal{N}_{s\xi} \cap B_\upsilon(\mathcal{P}_\xi) \) is non-empty (see Figure 3).

\[
\text{Figure 3: The intersection described in Lemma 3.2. The intersection of } \mathcal{N}_{s\xi} \text{ with the shaded region is locally the graph of a function defined on } \mathcal{P}_\xi^\delta \text{ (Proposition 3.3). In the figure, } \mathcal{P}_\xi^\delta \text{ is the thick part of } \mathcal{P}_\xi.
\]

Proof. Consider the equivalent problem of showing there is a \(s_0 \) such that for all \(s \leqslant s_0 \) and \(p \in \mathcal{P}_\xi^\delta \), the submanifold \(L_s(\mathcal{S}_p \cap B_\upsilon(\mathcal{P}_\xi)) \) intersects the dressing orbit \(\mathcal{D}_{s\xi} \). Since dressing orbits are joint level sets of the Casimir functions \(C_i \), showing this intersection is non-empty is equivalent to showing that \(\lambda_R^- \) is contained in the image of \(\mathcal{S}_p \cap B_\upsilon(\mathcal{P}_\xi) \) under the map \(F_{s\xi} \) defined in Equations (11) and (12).

Fix \(\delta > 0 \) (small enough that \(\mathcal{P}_\xi^\delta \) is nonempty). By Corollary 2.5, for \(\epsilon > 0 \) sufficiently small,
\[
\lim_{s \to -\infty} f_{-i}(\lambda_{-r}, \ldots, \lambda_{-r} \pm \epsilon, \ldots, \lambda_{-1}, \lambda_R^+, \varphi_S) = \lambda_{-i} \pm \epsilon.
\]
Thus, for all \(p \in \mathcal{P}_\xi^\delta \), there is a \(s_p \) such that for \(s \leqslant s_p \), the map \(F_{s\xi} \) satisfies the assumptions of the Poincaré-Miranda Theorem on the box
\[
[\lambda_{-r} - \epsilon, \lambda_{-r} + \epsilon] \times \cdots \times [\lambda_{-1} - \epsilon, \lambda_{-1} + \epsilon] \times \{ \lambda_R^+ \} \times \{ \varphi_S \} \subseteq S_p.
\]
Take \(\epsilon > 0 \) sufficiently small so that the box is contained in \(\mathcal{S}_p \cap B_\upsilon(\mathcal{P}_\xi) \) and, without loss of generality (making \(\upsilon \) smaller if necessary), assume that \(\mathcal{S}_p \cap B_\upsilon(\mathcal{P}_\xi) \subset C^{\delta/2} \times T^m \) for all \(p \in \mathcal{P}_\xi^\delta \). It follows by the Poincaré-Miranda theorem that \(\lambda_R^- \) is contained in the image of the box under the map \(F_{s\xi} \) for \(s \leqslant s_p \).

By transversality of the intersection of \(\mathcal{S}_p \) and \(\mathcal{N}_{s\xi} \) at points in \(C^{\delta/2} \times T^m \), for \(s \) less than some \(s' \) (Lemma 3.1), each \(p \in \mathcal{P}_\xi^\delta \) has a neighborhood \(U_p \) such that for \(p' \in U_p \) and \(s \leqslant s_p \), the intersection \(\mathcal{S}_{p'} \cap \mathcal{N}_{s\xi} \cap B_\upsilon(\mathcal{P}_\xi) \) is non-empty. Passing to a finite subcover \(U_{p_k}, k = 1, \ldots, n \) and letting \(s_0 = \min \{ s', s_{p_k} \} \) completes the proof.

Define
\[
\mathcal{U}_{\xi, \delta} := \bigcup_{p \in \mathcal{P}_\xi^\delta} S_p.
\]
From this point forward, take \(v > 0 \) sufficiently small so that \(U_{\xi, \delta} \cap B_v(\partial\xi) \subset C^{\delta/2} \times T^m \). The region \(U_{\xi, \delta} \cap B_v(\partial\xi) \) is shaded blue in Figure 3.

Proposition 3.3. For all \(\delta > 0 \) and \(s \leq s_0 \) as in Lemma 3.2, the intersection \(N_{s\xi} \cap U_{\xi, \delta} \cap B_v(\partial\xi) \) is locally the graph of a function

\[
g_s : \mathcal{P}_\xi^\delta \to \mathbb{R}^r.
\]

Proof. Combine Lemmas 3.1, 3.2, and the implicit function theorem. \(\diamond \)

3.2 Comparing symplectic volumes on the leaves of \(\pi_s \)

In this subsection, we compare the symplectic volumes of \((\mathcal{P}_\xi, \nu_\xi) \) and \((N_{s\xi}, \eta_{s\xi}) \). By Proposition 3.3, the intersection of \(N_{s\xi} \) with \(U_{\xi, \delta} \cap B_v(\partial\xi) \) is locally the graph of a function \(g_s \), i.e. locally there is a diffeomorphism

\[
G_s : \mathcal{P}_\xi^\delta \to N_{s\xi}, \quad (\lambda_R, \varphi_S) \mapsto (g_s(\lambda_{R+}, \varphi_S), \lambda_{R+}, \varphi_S)
\]

Lemma 3.4. For \(s \leq s_0 \) as in Lemma 3.2, at points in \(N_{s\xi} \cap U_{\xi, \delta} \cap B_v(\partial\xi) \subset C^{\delta/2} \times T^m \),

\[
(G_s)_* \nu_\xi = \eta_{s\xi} + O(e^{s\delta})
\]

(here \(O(e^{s\delta}) \) denotes a 2-form whose coefficients in coordinates \((\lambda_R, \varphi_S) \) are \(O(e^{s\delta}) \) as functions of \(s \)).

Proof. Fix \(p = (\lambda_R, \varphi_S) \in \mathcal{P}_\xi^\delta \). By the implicit function theorem, for all \((X, Y) \in T_p \mathcal{P}_\xi^\delta = \mathbb{R}^m \times \mathbb{R}^m \),

\[
D_p G_s(X, Y) = \left(-(D_{\lambda_R} F_{\xi})^{-1}(D_{\lambda_R} F_{\xi} X + D_{\varphi_S} F_{\xi} Y), X, Y \right)
\]

The constant bivector \(\pi_{PT} \) has the form

\[
\pi_{PT} = \sum_k X_k \wedge Y_k
\]

for some \(X_k, Y_k \in T_p \mathcal{P}_\xi^\delta \). By Lemma 3.1 and the formula for \(D_p G_s \) above, we find \((G_s)_* \pi_{PT} = \pi_{PT} + O(e^{s\delta}) \), where \(O(e^{s\delta}) \) denotes a bivector whose coefficients in coordinates \((\lambda_R, \varphi_S) \) are \(O(e^{s\delta}) \) as functions of \(s \). The 2-form \((G_s)_* \nu_\xi = ((G_s)_* \pi_{PT})^{-1} = \pi_{PT}^{-1} + O(e^{s\delta}). \)

On the other hand, by the proof of [2, Theorem 6.18], at \(G_s(p) \in C^{\delta/2} \times T^m \),

\[
\eta_{s\xi} = (\pi_s)^{-1} = \left(\pi_{PT} + O(e^{s\delta}) \right)^{-1} = \pi_{PT}^{-1} + O(e^{s\delta}). \diamond
\]

Finally, we show that for \(s \ll 0 \), the symplectic volume of \(N_{s\xi} \) is concentrated on the piece that lies in \(C^{\delta/2} \times T^m \).

Proposition 3.5. For \(\xi, \delta, \nu, \) and \(s \leq s_0 \) as in Lemma 3.2, the symplectic volume of \(N_{s\xi} \cap U_{\xi, \delta} \cap B_v(\partial\xi) \subset C^{\delta/2} \times T^m \) satisfies the inequalities

\[
\text{Vol}(N_{s\xi}, \eta_{s\xi}) \geq \text{Vol}(N_{s\xi} \cap U_{\xi, \delta} \cap B_v(\partial\xi), \eta_{s\xi}) \geq \text{Vol}(N_{s\xi}, \eta_{s\xi}) - \text{Vol}(P_{\xi} \setminus \mathcal{P}_\xi^\delta, \nu_\xi) + O(e^{s\delta}).
\]

Note that \(\text{Vol}(P_{\xi} \setminus \mathcal{P}_\xi^\delta, \nu_\xi) \to 0 \) as \(\delta \to 0 \).

Remark 3.6. In the proof of Theorem 1.3, we choose \(\delta, \nu > 0 \) sufficiently small and let \(D_x \) be the closure of \(U_{\xi, \delta} \cap B_v(\partial\xi) \subset C^{\delta/2} \times T^m \).
Proof. The first inequality follows since volume is monotonic. By Proposition 3.3 and Lemma 3.4,
\[N_\delta \cap U_{\xi,\delta} \cap B_v(P_\xi) \] is locally the image of a diffeomorphism \(G_\delta \) with domain in \(P^\delta_\xi \) and \((G_\delta)_* \nu_\xi = \eta_\delta + O(e^{\delta}) \), so
\[\text{Vol}(N_\delta \cap U_{\xi,\delta} \cap B_v(P_\xi),\eta_\delta) \geq \text{Vol}(P^\delta_\xi,\nu_\xi) + O(e^{\delta}). \]

By definition of \(P^\delta_\xi = P_\xi \cap (C^\delta \times T^m) \),
\[\text{Vol}(P^\delta_\xi,\nu_\xi) = \text{Vol}(P_\xi,\nu_\xi) - \text{Vol}(P_\xi \setminus P^\delta_\xi,\nu_\xi). \]

Finally, by Theorem 2.1,
\[\text{Vol}(P_\xi,\nu_\xi) - \text{Vol}(P_\xi \setminus P^\delta_\xi,\nu_\xi) + O(e^{\delta/2}) = \text{Vol}(N_\delta,\eta_\delta) - \text{Vol}(P_\xi \setminus P^\delta_\xi,\nu_\xi) + O(e^{\delta}). \]

\[\square \]

4 Preimages of points in \(PT(K^*) \)

The goal of this section is to show that for a fixed value of \(\xi \in t^*_+ \) and \(s \ll 0 \), if \(\mathcal{E}_s(\text{Ad}_k^* \xi) \in \mathcal{L}_s(PT(K^*)) \), then \(\text{Ad}_k^* \xi \) must be close to \(\xi \) in the coadjoint orbit \(O_\xi \).

Fix a faithful irreducible representation \((\rho,V) \) of \(G \). Let \(n = \dim(V) \), and fix a Hermitian inner product on \(V \) which is preserved by \(\rho(K) \). For the representation \(V \), fix a unitary weight basis \(v_1, \ldots, v_n \).

Consider the wedge product \(\langle \rho^l, \wedge^k V \rangle \) of the representation \((\rho,V) \). Note that \(\wedge^k V \) has basis
\[\{ v_1 := v_1 \wedge \cdots \wedge v_i \mid I = (i_1, \ldots, i_l) \text{ and } i_1 < \cdots < i_l \}. \]

We can reorder the unitary weight basis \(\{ v_l \} \) so that, for all \(l \in [n] \), the vector \(v_{[l]} = v_1 \wedge \cdots \wedge v_l \) is a minimal weight vector of \(\wedge^l V \). For \(I, J \subset [n] \) with \(|I| = |J| = l \), denote by \(\Delta_{I,J} \) the \(l \times l \) minor of elements of \(GL(V) \) in the basis \(v_i \), with rows \(I \) and columns \(J \). Define the map
\[p_{\xi}^*: PT(K^*) \to t^*_+; \quad x \in P_\xi \mapsto \xi. \]

Lemma 4.1. Let \(l \in [n] \), and let \(J \subset [n] \) with \(|J| = l \) and \([l] \not= J \). For all \(\delta > 0 \) and \(s < 0 \), define
\[U_s = \{ k \in K \mid \mathcal{E}_s(\text{Ad}_k^* \xi) \in \mathcal{L}_s(p) \text{ for some } p \in C^\delta \times T^m, \xi \in p_{\xi}^*(C^\delta \times T^m) \}. \]

Then there exists \(a > 0 \) such that for all \(k \in U_s \),
\[|\Delta_{[l],J}(\rho(k))| \leq ae^{\delta}, \]

in the unitary weight basis \(\{ v_i \} \).

Proof. Let \(\text{wt}(v_{[l]}) = w_0 \zeta \), where \(\zeta \in P_+ \) is a dominant weight, and consider the irreducible sub-representation \(G \cdot v_{[l]} \) of \(\wedge^l V \) which is generated by \(v_{[l]} \). Then in this subrepresentation, \(v_{[l]} \) will be of lowest weight. Let \(L \) denote the index of the highest weight vector of this subrepresentation. It follows that \(\text{wt}(v_{[l]}) = \zeta \). Write the matrix entries of \(\rho^l(g) \) in the basis \(\{ v_1 \} \) as \(\rho^l_{1,1}(g) \). Note that
\[\rho^l_{1,1}(g) = \Delta_{[l],1}(\rho(g)). \]

Because \(v_{[l]} \) is of lowest weight in the subrepresentation \(G \cdot v_{[l]} \), we have
\[\rho^l(g)v_{[l]} = \sum_{w_0 \zeta < \text{wt}(v_{[l]})} \rho^l_{1,1}(g)v_{1}, \]

where the sum on the right hand side is over weight vectors \(v_{1} \) such that \(w_0 \zeta - \text{wt}(v_{1}) \) is a negative weight or \(J = [l] \). In other words, \(\rho^l_{1,1}(g) = 0 \) unless \(w_0 \zeta < \text{wt}(v_{1}) \) or \(J = [l] \).

Using the definition of the dressing action and the fact that the map \(\mathcal{E}_s \) is \(K \)-equivariant, we have
\[k \cdot (\mathcal{E}_s(\xi))^2 \cdot k^* = \mathcal{E}_s(\text{Ad}_k^* \xi) \cdot \mathcal{E}_s(\text{Ad}_k^* \xi)^* \cdot k^* . \]
Rewrite (15) as

\[k \cdot d_s^2 \cdot k^* = b_s \cdot b_s^* \] \hspace{1cm} (16)

where \(d_s = \exp\left(s\sqrt{-1}\psi(\xi)\right) \) and \(b_s = \Sigma_s(p) \).

Let us apply the representation \(\rho^\delta \) to both sides of (16), and consider the \([\ell],[l]\)-entry of these matrices. Using the fact that \(\{y_k\} \) is a unitary basis for \(\wedge^2 V \), matrix multiplication and (14) gives us:

\[
\sum_{u_0\zeta < \text{wt}(v_\ell)} |\rho^\delta_{[\ell],[l]}(k^*)|^2 \cdot |\rho^\delta_{[\ell],[l]}(d_s)|^2 = \sum_{u_0\zeta < \text{wt}(v_\ell)} |\rho^\delta_{[\ell],[l]}(b_s^*)|^2. \hspace{1cm} (17)
\]

Since \(\rho^\delta(k) \cdot \rho^\delta(k^*) = \rho^\delta(kk^*) = 1 \), we have

\[
\sum_{u_0\zeta < \text{wt}(v_\ell)} |\rho^\delta_{[\ell],[l]}(k^*)|^2 = 1. \hspace{1cm} (18)
\]

Rewrite (18) as

\[|\rho^\delta_{[\ell],[l]}(k^*)|^2 = 1 - \sum_{u_0\zeta < \text{wt}(v_\ell)} |\rho^\delta_{[\ell],[l]}(k^*)|^2 \]

and plug it into (17). After rearranging, we get

\[
|\rho^\delta_{[\ell],[l]}(d_s)|^2 = \sum_{u_0\zeta < \text{wt}(v_\ell)} |\rho^\delta_{[\ell],[l]}(b_s^*)|^2 + \sum_{u_0\zeta < \text{wt}(v_\ell)} |\rho^\delta_{[\ell],[l]}(k^*)|^2 \cdot \left(|\rho^\delta_{[\ell],[l]}(d_s)|^2 - |\rho^\delta_{[\ell],[l]}(d_s)|^2 \right). \hspace{1cm} (19)
\]

Since \(u_0\zeta < \text{wt}(v_\ell) \) and the terms \(|\rho^\delta_{[\ell],[l]}(d_s)|^2 - |\rho^\delta_{[\ell],[l]}(d_s)|^2 \) are positive, by discarding terms on the right hand side of (19), one has for any \(J \) with \(u_0\zeta < \text{wt}(v_\ell) \),

\[|\rho^\delta_{[\ell],[l]}(d_s)|^2 > |\rho^\delta_{[\ell],[l]}(b_s^*)|^2 + |\rho^\delta_{[\ell],[l]}(k^*)|^2 \cdot \left(|\rho^\delta_{[\ell],[l]}(d_s)|^2 - |\rho^\delta_{[\ell],[l]}(d_s)|^2 \right). \]

Hence

\[
|\rho^\delta_{[\ell],[l]}(k^*)|^2 < \frac{|\rho^\delta_{[\ell],[l]}(d_s)|^2 - |\rho^\delta_{[\ell],[l]}(b_s^*)|^2}{|\rho^\delta_{[\ell],[l]}(d_s)|^2 - |\rho^\delta_{[\ell],[l]}(d_s)|^2} = \frac{1 - |\rho^\delta_{[\ell],[l]}(b_s^*)|^2}{1 - |\rho^\delta_{[\ell],[l]}(d_s)|^2}. \hspace{1cm} (20)
\]

From Proposition 2.4, because \(p \in C^\delta \times \mathbb{T}^m \), we have

\[C_s(b_s) = |\Delta_{w_{\gamma_j},\omega_i}(b_s)| \left(1 + O(e^{2s\delta}) \right). \]

On the other hand, from (15), for \(s < 0 \),

\[C_s(b_s)^2 = \text{Tr}(\rho^\omega(d_s^2)) = \sum_j c_j e^{2s(\gamma_j,\sqrt{-1}\xi)} = e^{2s(w_{\gamma_j}\omega_i,\sqrt{-1}\xi)} \left(1 + O(e^{2s\delta}) \right). \]

Here, the weights \(\gamma_j \) are those which appear in the representation \(\rho^\omega \), and \(c_j = 1 \) when \(\gamma_j \) is the extremal weight \(w_{\gamma_j}\omega_i \). The last equality holds because, by assumption, \(\xi \in \text{pr}_{\omega}(C^\delta \times \mathbb{T}^m) \), which in turn guarantees that \((\alpha_i,\sqrt{-1}\xi) > \delta \) for all \(i \in I \).

Combining the previous two equations, since \(e^{s(w_{\gamma_j}\omega_i,\sqrt{-1}\xi)} = \Delta_{w_{\gamma_j}\omega_i,w_{\gamma_j}\omega_i}(d_s) \), we have

\[\left| \frac{\Delta_{w_{\gamma_j}\omega_i,w_{\gamma_j}\omega_i}(b_s)}{\Delta_{w_{\gamma_j}\omega_i,w_{\gamma_j}\omega_i}(d_s)} \right|^2 - 1 = O(e^{2s\delta}), \hspace{1cm} \text{for all } i \in I. \]
For $\zeta \in P_+$, by using (7) we get

$$\left| \frac{\Delta_{w_0\zeta,\zeta}(b_s)}{\Delta_{w_0\zeta,\zeta}(d_s)} \right|^2 - 1 = O(e^{2\delta}),$$

for $s \ll 0$. By the discussion at the end of Section 2, we know

$$\rho_{[l],[l]}^l = c\Delta_{w_0\zeta,\zeta} \quad \text{and} \quad \rho_{[l],[L]}^l = c\Delta_{w_0\zeta,\zeta}$$

for some $c \in \mathbb{C}^\times$. By (21) and (20), we find $|\Delta_{[l],J}(\rho(k))| = |\Delta_{J,[l]}(\rho(k^s))| = O(e^{s\delta})$. \hfill \Diamond

Lemma 4.2. Let $g: (-\infty, 0) \to U(n)$ be an element of $U(n)$ depending on a parameter s. Assume there exists $\delta > 0$ such that

$$|\Delta_{[l],J}(g(s))| = O(e^{s\delta}) \quad \text{for all } l \in [n] \text{ and all } J \subset [n] \text{ with } |J| = l \text{ and } [l] \neq J.$$

Then, the matrix entries satisfy $|g_{i,j}(s)| = O(e^{s\delta})$ for all $i \neq j$.

Proof. We proceed by induction on i. When $i = 1$, we have $|g_{1,j}| = O(e^{s\delta})$ for $j \neq 1$. Assume the statement is known for $1, \ldots, i - 1$. By induction hypothesis and the fact that g is unitary, we have

$$1 - |g_{i,j}| = O(e^{s\delta}) \text{ for } j < i.$$

By taking inner product of the i^{th} row with the previous rows and again using the fact that g is unitary, we have $|g_{i,j}| = O(e^{s\delta})$ for $j < i$. For $j > i$, consider the minor $\Delta_{[i],J}(g)$, where $J = \{1, \ldots, i-1, j\}$. By assumption, $|\Delta_{[i],J}(g)| = O(e^{s\delta})$. Expanding this minor along the j^{th} column and applying the induction hypothesis, we have that $|g_{i,j}| = O(e^{s\delta})$. \hfill \Diamond

Recall that $N_{s\xi}$ is the preimage $(E_s^{-1} \circ \mathcal{S}_s)^{-1}(\Theta_s)$.

Proposition 4.3. For all $\xi \in \ell_*^+$, if $U \subset \Theta_s$ is an open subset with $\xi \in U$, then for all sufficiently small $\delta > 0$, there exists $s_0 \in \mathbb{R}$ so that, for all $s \leq s_0$,

$$E_s^{-1} \circ \mathcal{S}_s \left(N_{s\xi} \cap (C^\delta \times T^m) \right) \subseteq U.$$

Proof. Fix $\xi \in \ell_*^+$, $U \subset \Theta_s$ open with $\xi \in U$, and $\delta > 0$ sufficiently small so that $\xi \in pr_{t_*}(C^\delta \times T^m)$. Observe that for all $s < 0$,

$$U'_s = \{ k \in K \mid \mathcal{S}_s(Ad_k^* \xi) \in \mathcal{S}_s(N_{s\xi} \cap (C^\delta \times T^m)) \} \subseteq U_s.$$

By Lemma 4.1, there exists $a > 0$ such that for all $k \in U'_s$,

$$|\Delta_{[l],J}(\rho(k))| \leq ae^{s\delta}.$$

By Lemma 4.2 and since ρ faithful, there exists $s_0 < 0$ such that for all $s \leq s_0$,

$$E_s^{-1} \circ \mathcal{S}_s \left(N_{s\xi} \cap (C^\delta \times T^m) \right) \subseteq U.$$ \hfill \Diamond
References

[1] A. Alekseev, *On Poisson actions of compact Lie groups on symplectic manifolds*, J. Differential Geom. 45 (1997), pp. 241–256.

[2] A. Alekseev, A. Berenstein, B. Hoffman, Y. Li (2018) “Poisson Structures and Potentials”. In: Kac V., Popov V. (eds), *Lie Groups, Geometry, and Representation Theory*. Progress in Mathematics, vol 326. Birkhauser, Cham.

[3] A. Alekseev, A. Berenstein, B. Hoffman, and Y. Li, *Langlands duality and Poisson-Lie duality via cluster theory and tropicalization*, arXiv: 1806.04104.

[4] A. Alekseev, J. Lane, and Y. Li, *The U(n) Gelfand-Zeitlin system as a tropical limit of Ginzburg-Weinstein diffeomorphisms*, Phil. Trans. R. Soc. A 376: 20170428 (2018), DOI 10.1098/rsta.2017.0428.

[5] A. Berenstein, S. Fomin, and A. Zelevinsky, *Cluster algebras III: upper bounds and double Bruhat cells*, Duke Math. J. 126 (2005), no. 1, pp. 1–52, DOI 10.1215/S0012-7094-04-12611-9.

[6] A. Berenstein, and D. Kazhdan, *Geometric and unipotent crystals II: from unipotent bicrystals to crystal bases*, Contemp. Math. 433 (2007), Providence, RI, pp. 13–88.

[7] H. Flaschka and T. S. Ratiu, *A convexity theorem for Poisson actions of compact Lie groups*, Ann. scient. Éc. Norm. Sup. 4 (1996), no. 29, pp. 787–809.

[8] V. L. Ginzburg and A. Weinstein, *Lie-Poisson structure on some Poisson Lie groups*, J. Amer. Math. Soc. 5 (1992), no. 2, 445–453.

[9] E. Karolinsky, *The classification of Poisson homogeneous spaces of compact Poisson Lie groups*, Mat. Fiz. Anal. Geom. 3 (1996), no. 3/4, pp. 274–289.

[10] M. Liao and T. Y. Tam. *Weight distribution of Iwasawa projection*, Differ. Geom. Appl. 53 (2017), pp. 97–102.

[11] J. H. Lu, *Classical dynamical r-matrices and homogeneous Poisson structures on G/H and K/T*, Comm. in Math. Phys. 212 (2000), pp. 337–370.

[12] J. H. Lu and T. Ratiu, *On the nonlinear convexity theorem of Kostant*, J. Amer. Math. Soc. 4 (1991), no. 2, pp. 349–363.

[13] J. H. Lu, A. Weinstein, *Poisson-Lie groups, dressing transformations and Bruhat decompositions*, J. Differential Geom. 31 (1990), no. 2, pp. 501–526.