EQUILIBRIUM POINTS FOR OPTIMAL INVESTMENT WITH VINTAGE CAPITAL

SILVIA FAGGIAN

Abstract. The paper concerns the study of equilibrium points, namely the stationary solutions to the closed loop equation, of an infinite dimensional and infinite horizon boundary control problem for linear partial differential equations. Sufficient conditions for existence of equilibrium points in the general case are given and later applied to the economic problem of optimal investment with vintage capital. Explicit computation of equilibria for the economic problem in some relevant examples is also provided. Indeed the challenging issue here is showing that a theoretical machinery, such as optimal control in infinite dimension, may be effectively used to compute solutions explicitly and easily, and that the same computation may be straightforwardly repeated in examples yielding the same abstract structure. No stability result is instead provided: the work here contained has to be considered as a first step in the direction of studying the behavior of optimal controls and trajectories in the long run.

Subj-class: Optimization and Control
MSC-class: 49J15, 49J20, 35B37.
Keywords: Linear convex control, Boundary control, Hamilton–Jacobi–Bellman equations, Optimal investment problems, Vintage capital.

1. Introduction

The paper concerns the study of equilibrium points of an infinite dimensional and infinite horizon boundary control problem for linear partial differential equations. More precisely, we take into account a state equation of type

\begin{equation}
\begin{aligned}
y' (\tau) &= A_0 y (\tau) + B u (\tau), \quad \tau \in [t, +\infty) \\
y (t) &= x \in H,
\end{aligned}
\end{equation}

where H is the state space, $y : [t, +\infty) \to H$ is the trajectory, U is the control space and $u : [t, +\infty) \to U$ is the control, $A_0 : D(A_0) \subset H \to H$ is the infinitesimal generator of a strongly continuous semigroup of linear operators $\{e^{\tau A_0}\}_{\tau \geq 0}$ on H, and the control operator B is linear and unbounded, say $B : U \to [D(A_0)]'$. Besides, we consider a cost functional given by

\begin{equation}
J_\infty (t, x, u) = \int_t^{+\infty} e^{-\lambda \tau} \left[g_0 (y (\tau)) + h_0 (u (\tau)) \right] d\tau
\end{equation}

\footnote{LUM “Jean Monnet”, Casamassima (Bari), I-70010.}
where the functions g_0 and h_0 are convex functions as better specified later.

More precisely, by *equilibrium points* we mean stationary solutions to the closed loop equation associated by Dynamic Programming to (1.1) that is

\[y(\tau) = e^{(\tau-t)A}x + \int_t^\tau e^{(\tau-\sigma)A}B(h_0^\ast)'(-B^*\Psi'(y(s)))d\sigma, \quad \tau \in [t, +\infty], \]

where h_0^\ast is the convex conjugate of h_0, Ψ is the value function of the optimal control problem for initial time $t = 0$, more precisely

\[\Psi(x) = Z_\infty(0, x) = \inf_{u \in L^p_t(0, +\infty; U)} J_\infty(0, x, u), \]

and

\[G(x) = (h_0^\ast)'(-B^*\Psi'(x)), \]

is the unique optimal feedback map, as shown in [30, 31]. Indeed the problem of minimizing $J_\infty(t, x, u)$ with respect to u over the Banach space

\[L^p(t, +\infty; U) = \{ u : [t, +\infty) \to U : \tau \mapsto u(\tau)e^{-\frac{A}{p}\tau} \in L^p(t, +\infty; U) \}, \quad p \geq 2, \]

was studied paper by Faggian and Gozzi in [30], and by Faggian in [31] by means of Dynamic Programming methods, deriving:

- existence and uniqueness for the associated Hamilton-Jacobi-Bellman (briefly, HJB) equation
- a feedback formula for optimal controls in terms of the spatial gradient of the value function,
- Pontryagin Maximum Principle.

All of these results are recalled in Section 2.

As a first result here, we give sufficient conditions for existence of equilibrium points in the general case, we apply such results to the problem optimal investment with vintage capital described in Section 3 (cfr. Section 4). Nevertheless the most interesting result of the paper is the explicit computation of equilibria for the economic problem in some relevant examples (Section 5). Indeed the challenging issue here is showing that a theoretical machinery such as optimal control in infinite dimension may be effectively used to compute solutions explicitly and easily, and that the same computation may be straightforwardly repeated in examples yielding the same abstract structure.

No stability result is instead provided. Under this respect, the work here contained has to be considered as a first step in the direction of studying the behavior of optimal controls and trajectories in the long run.

1.1. **Bibliographical notes.** It is well known that control problems with unbounded control operator B arise when we rephrase into abstract terms some boundary control problem for PDEs (or, more generally, problems with control on a subdomain). Indeed, we motivate our framework with the application to the economic problem of optimal investment with vintage capital in the framework by Barucci and Gozzi [12] [13] that we
describe in detail in Section 3. Similar problems with unbounded control operator have been discussed in a series of papers by this author and others. The unconstrained case has been studied both in the case of finite and infinite horizon [26, 27, 30] while [29] contains the finite horizon case with constrained controls. The (finite horizon) case with both boundary control and state constraints is treated in [28]. The case of infinite horizon (without constraints) has been treated in [30] and [31].

Some further references on boundary control in infinite dimension follow. We recall that such problems have been studied in the framework of classical/strong solutions and in that of viscosity solutions. Regarding Dynamic Programming in the classical/strong framework, the available results mainly regard the case of linear systems and quadratic costs (where HJB reduces to the operator Riccati equation). The reader is then referred e.g. to the book by Lasiecka and Triggiani [42], to the book by Bensoussan, Da Prato, Delfour and Mitter [14], and, for the case of nonautonomous systems, to the papers by Acquistapace, Flandoli and Terreni [2, 3, 4, 5]. For the case of a linear system and a general convex cost, we mention the papers by this author [24, 25, 26, 27]. On Pontryagin maximum principle for boundary control problems we mention again the book by Barbu and Precupanu (Chapter 4 in [11]).

For viscosity solutions and HJB equations in infinite dimension we mention the series of papers by Crandall and Lions [18] where also some boundary control problem arises. Moreover, for boundary control we mention Gozzi, Cannarsa and Soner [17] and the paper by Cannarsa and Tessitore [19] on existence and uniqueness of viscosity solutions of HJB. We note also that a verification theorem in the case of viscosity solutions has been proved in some finite dimensional case in the book by Yong and Zhou [44]. We finally mention the paper by Fabbri [23] where the author derives an existence and uniqueness result for the viscosity solution of HJB associated to optimal investment with vintage capital (with infinite horizon and without constraints), that is the application of Section 3 of the present paper, obtaining the results by making use of the specific properties of the state equation, while no result is there provided for the general problem.

We mention also some fundamental papers and books on the case of distributed control in the classical/strong framework such as the works by Barbu and Da Prato [7, 8, 9] for some linear convex problems, to Di Blasio [20, 21] for the case of constrained control, to Cannarsa and Di Blasio [16] for the case of state constraints, to Barbu, Da Prato and Popa [10] and to Gozzi [36, 37, 38] for semilinear systems.

Regarding applications, on control on a subdomain (boundary or point control) we refer the reader to the many examples contained in the books by Lasiecka and Triggiani [42], and by Bensoussan et al [14]. Moreover, for economic models with vintage capital the reader may see the papers by Barucci and Gozzi [12], [13], the papers by Feichtinger, Hartl, Kort, Veliov et al. [32, 33, 34, 35], and for population dynamic the book by Iannelli [41], the paper by Anița, Iannelli, Kim and Park [1], and the papers by Almeder, Caulkins, Feichtinger, Tragler, and Veliov [6] and references therein.
2. Preliminaries

We here recall all the relevant results that are needed in the sequel. The reader may find the proofs of all statements in [30, 31]. According to the notation there contained, if X and Y are Banach spaces, we denote by $|\cdot|_X$ the norm on X, by $|\cdot|$ the euclidean norm in \mathbb{R}, and we set

$$Lip(X;Y) = \{ f : X \to Y : [f]_L := \sup_{x,y \in X, \ x \neq y} \frac{|f(x) - f(y)|_Y}{|x - y|_X} < +\infty \}$$

$$C^1_{Lip}(X) := \{ f \in C^1(X) : [f']_L < +\infty \}$$

$$B_r(X,Y) := \{ f : X \to Y : |f|_{B_r} := \sup_{x \in X} \frac{|f(x)|_Y}{1 + |x|^r_X} < +\infty \}, \quad B_r(X) := B_r(X,\mathbb{R}).$$

Moreover we set

$$\Sigma_0(X) := \{ w \in B_2(X) : w \text{ is convex}, w \in C^1_{Lip}(X) \}$$

and, for $T > 0$

$$\mathcal{Y}([0,T] \times X) = \{ w : [0,T] \times X \to \mathbb{R} : w \in C([0,T],B_2(X)), w(t,\cdot) \in \Sigma_0(X), \forall t \in [0,T], \ w_x \in C([0,T],B_1(X)) \}$$

All the spatial derivatives above have to be intended as Frechét differentials.

Then we consider two Hilbert spaces V,V', being dual spaces, which we do not identify for reasons which are recalled in Remark 2.2 and we denote the duality pairing by $\langle \cdot,\cdot \rangle$. We set V' as the state space of the problem, and denote with U the control space, being U another Hilbert space. The state space is V' and the control space is U. For any fixed x in V' and $t > 0$ and $\tau \geq t$, the solution to the state equation in V' is given by variation of constant formula by

\begin{equation}
y(\tau) = e^{(\tau-t)A}x + \int_t^\tau e^{(\tau-\sigma)A}Bu(\sigma)d\sigma, \ \tau \in [t, +\infty[,
\end{equation}

while the target functional is of type

\begin{equation}
J_\infty(t,x,u) := \int_t^{+\infty} e^{-\lambda\tau}[g_0(y(\tau)) + h_0(u(\tau))]d\tau.
\end{equation}

We assume the following hypotheses hold:

Assumptions 2.1.
1. $A : D(A) \subset V' \to V'$ is the infinitesimal generator of a strongly continuous semigroup $\{e^{rA}\}_{r \geq 0}$ on V';
2. $B \in L(U,V')$;
3. there exists $\omega \geq 0$ such that $|e^{rA}x|_{\nu'} \leq e^{\omega r}|x|_{\nu'}, \forall r \geq 0$;
4. $g_0, \phi_0 \in \Sigma_0(V')$
5. h_0 is convex, lower semi–continuous, $\partial_u h_0$ is injective.
6. $h_0^*(0) = 0, h_0^* \in \Sigma_0(V)$;
7. \(\exists a > 0, \exists b \in \mathbb{R}, \exists p \geq 2 : h_0(u) \geq a|u|^p + b, \forall u \in U; \)
Moreover, either
8.a \(p > 2, \lambda > 2\omega. \)

or
8.b \(\lambda > \omega, \) and \(g_0, \phi_0 \in \mathcal{B}_1(V'). \)

Remark 2.2. We do not identify \(V \) and \(V' \) for in the applications the problem is naturally set in a Hilbert space \(H \), such that \(V \subset H \equiv H' \subset V' \) (with all bounded inclusions). Indeed, in order to avoid the discontinuities due to the presence of \(B \), as they appear in (1.1)(1.2), we work in the extended state space \(V' \) related to \(H \) in the following way: \(V \) is the Hilbert space \(D(A^*_0) \) endowed with the scalar product \((v|w)_V := (v|w)_H + (A^*_0v|A^*_0w)_H \), \(V' \) is the dual space of \(V \) endowed with the operator norm. Then assume that \(B \in L(U,V') \), and extend the semigroup \(\{e^{tA_0}\}_{t \geq 0} \) on \(H \) to a semigroup \(\{e^{tA}\}_{t \geq 0} \) on the space \(V' \), having infinitesimal generator \(A \), a proper extension of \(A_0 \). The reader is referred to [27] for a detailed treatment. The coefficient \(\omega \) could be any real number, but is assumed positive in order to avoid double proofs for positive and negative signs.

Remark 2.3. Note that the functions \(g \) and \(\varphi \) arising from applications usually appear to be defined and \(C^1 \) on \(H \), not on the larger space \(V' \). Then, we here need to assume that they can be extended to \(C^1 \)-regular functions on \(V' \) - which is a non trivial issue. We refer the reader to [26], [27] and [30] for a thorough discussion on this issue.

The functional \(J_\infty(t;x,u) \) has to be minimized with respect to \(u \) over the set of admissible controls
\[
L^p_\lambda(t, +\infty; U) = \{ u : [t, +\infty) \to U ; \tau \mapsto u(\tau)e^{\lambda\tau} \in L^p(t, +\infty; U) \},
\]
which is Banach space with the norm
\[
\|u\|_{L^p_\lambda(t, +\infty; U)} = \int_t^{+\infty} |u(\tau)|^p e^{-\lambda\tau} d\tau = \|e^{\frac{\lambda(\cdot)}{p}} u\|_{L^p(t, +\infty; U)}.
\]

The value function is then defined as
\[
Z_\infty(t,x) = \inf_{u \in L^p_\lambda(t, +\infty; U)} J_\infty(t,x,u).
\]

As it is easy to check that
\[
Z_\infty(t,x) = e^{-\lambda t} Z_\infty(0,x)
\]
one may associate to the problem the following stationary HJB equation
\[
-\lambda \psi(x) + \langle \psi'(x), Ax \rangle - h_0^*(-B^*\psi'(x)) + g(x) = 0,
\]
whose candidate solution is the function \(Z_\infty(0, \cdot) \).

We will use the following definition of solution for equation (2.4).

Definition 2.4. A function \(\psi \) is a classical solution of the stationary HJB equation (2.4) if it belongs to \(\Sigma_0(V') \) and satisfies (2.4) for every \(x \in D(A) \).
Theorem 2.5. Let Assumptions 2.1 hold. Then there exists a unique classical solution \(\Psi \) to (2.4) and it is given by the value function of the optimal control problem, that is
\[
\Psi(x) = Z_\infty(0, x) = \inf_{u \in L^0_\pi(0, +\infty; U)} J_\infty(0, x, u).
\]

Once we have established that \(\Psi \) is the classical solution to the stationary HJB equation, and that it is differentiable, we can build optimal feedbacks and prove the following theorem.

Theorem 2.6. Let Assumptions 2.1 hold. Let \(t \geq 0 \) and \(x \in V' \) be fixed. Then there exists a unique optimal pair \((u^*, y^*)\). The optimal state \(y^* \) is the unique solution of the Closed Loop Equation
\[
y(\tau) = e^{(\tau-t)A}x + \int_t^\tau e^{(\tau-\sigma)A}B(h^*_0)'(-B^*\Psi'(y(s)))d\sigma, \quad \tau \in [t, +\infty].
\]

while the optimal control \(u^* \) is given by the feedback formula
\[
u^*(s) = (h^*_0)'(-B^*\Psi'(y^*(s))).
\]

Let \(x \in V' \) and \(t \geq 0 \) be fixed, and consider the dual system associated to (1.1), that is
\[
\pi'(\tau) = (\lambda - A^*_0)\pi(\tau) - g_0'(y(\tau)), \quad \tau \in [t, +\infty)
\]
where \(\pi : [t, +\infty) \to V \) (the dual variable, or co-state of the system) is the unknown, and \(y = y(\cdot; t, x, u) \) is the trajectory starting at \(x \) at time \(t \) and driven by control \(u \), given by (2.1). We assume such equation is also subject to the following transversality condition
\[
\lim_{T \to +\infty} \pi(T) = 0.
\]

We denote any solution of (2.6)(2.7) also by \(\pi(\cdot; t, x, u) \) or by \(\pi(\cdot; t, x) \) to remark its dependence on the data.

Definition 2.7. Let Assumptions 2.1 [1-7] be satisfied. We define the mild solution of (2.6)(2.7) as the function \(\pi : [t, +\infty) \to V \) given by
\[
\pi(\tau) = \int_{\tau}^{+\infty} e^{(A^*_0 - \lambda)(\sigma-\tau)}g'_0(y(\sigma))d\sigma.
\]

In the sequel we show that such definition is natural.

Lemma 2.8. Let Assumption 2.1 [1-7] be satisfied, and assume \(p \geq 2 \) and \(\lambda > 2\omega \). Then \(\pi \) given by (2.8) is well defined and belongs to \(C^0(t, +\infty; V) \).
Moreover:
(i) if \(p > 2 \) then \(\pi \in L^q_\lambda(t, +\infty; V) \);
(ii) if \(p = 2 \) then \(\pi \in L^{q+\varepsilon}_\lambda(t, +\infty; V) \cap L^2(t, T; V), \quad \forall \ T < +\infty, \; \varepsilon > 0 \).

Theorem 2.9. If \(\pi \in W^{1,1}(t, +\infty; V) \) satisfies (2.6) almost everywhere in \([t, +\infty)\) and (2.7) then \(\pi \) is given by (2.8), that is \(\pi \) is the mild solution of (2.6)(2.7).

Remark 2.10. Assume \(p \geq 2, \lambda > 2\omega \). Then:

\(\lambda \leq \omega p \) implies \(y \in L^r(t, +\infty; V') \) for all \(r < \frac{2}{p} \), and \(y \in L^\frac{2}{p}(t, T; V') \) for all \(T < +\infty \);

\(\lambda > \omega p \) implies \(y \in L^r(t, +\infty; V') \) for all \(r < p \), and \(y \in L^p(t, T; V') \) for all \(T < +\infty \).

Definition 2.11. Let Assumption 2.1 [1-7] be satisfied, and assume \(L \) in mild sense, along with \(u \) (2.9)

\[y'(t) = Ay(t) + Bu(t), \quad \tau \in [t, T); \quad y(t) = x \]

\[\pi'(\tau) = (\lambda - A^*_0)\pi(\tau) - g_0(y(\tau)), \quad \tau \in [t, T); \]

\[\lim_{s \to +\infty} \pi(s) = 0, \text{when } T = +\infty; \quad \pi(T) = 0, \text{when } T < +\infty \]

(2.9)

\[-B^*\pi(\tau) \in \partial h_0(u(\tau)), \text{ for a.a. } \tau \in [t, T). \]

Theorem 2.12. (Maximum Principle). Let Assumptions 2.1 [1-7] be satisfied, \(\lambda > 2\omega \). Then, for all \(p \geq 2 \) and \(T < +\infty \), the couple \((u^*, y^*) \) is optimal at \((t, x)\) - for the problem of minimizing (1.1)(2.2) - if and only if it is extremal.

Theorem 2.13. Let \((u^*, y^*) \) be optimal at \((0, x)\) and let \(\pi^*(\cdot; 0, x) \) be the associated co-state. Then

\[\Psi'(x) = \pi^*(0; 0, x). \]

Consequently,

\[\Psi'(y^*(\tau)) = \pi^*(\tau; \tau, y^*(\tau)). \]

3. The motivating example

We here describe our motivating example: the infinite horizon problem of optimal investment with vintage capital, in the setting introduced by Barucci and Gozzi [12][13], and later reprised and generalized by Feichtinger et al. [32, 33, 34], and by Faggian [26, 27]. The capital accumulation is described by the following system

\[
\begin{cases}
\frac{\partial y(\tau, s)}{\partial \tau} + \frac{\partial y(\tau, s)}{\partial s} + \mu y(\tau, s) = u_1(\tau, s), \quad (\tau, s) \in]t, +\infty[\times [0, \bar{s}] \\
y(\tau, 0) = u_0(\tau), \quad \tau \in]t, +\infty[\\
y(t, s) = x(s), \quad s \in [0, \bar{s}]
\end{cases}
\]

(3.1)

with \(t > 0 \) the initial time, \(\bar{s} \in [0, +\infty] \) the maximal allowed age, and \(\tau \in [0, T] \) with horizon \(T = +\infty \). The unknown \(y(\tau, s) \) represents the amount of capital goods of age \(s \) accumulated at time \(\tau \), the initial datum is a function \(x \in L^2(0, \bar{s}), \mu > 0 \) is a depreciation factor. Moreover, \(u_0 : [t, +\infty[\to \mathbb{R} \) is the investment in new capital goods (\(u_0 \) is the boundary control) while \(u_1 : [t, +\infty[\times [0, \bar{s}] \to \mathbb{R} \) is the investment at time \(\tau \) in capital.
goods of age s (hence, the distributed control). Investments are jointly referred to as the control $u = (u_0, u_1)$.

Besides, we consider the firm profits represented by the functional

$$ I(t, x; u_0, u_1) = \int_t^{+\infty} e^{-\lambda \tau} [R(Q(\tau)) - c(u(\tau))] d\tau $$

where, for some given positive measurable coefficient α, we have that

$$ Q(\tau) = \int_0^s \alpha(s) y(\tau, s) ds $$

is the output rate (linear in $y(\tau)$) R is a concave revenue from $Q(\tau)$ (i.e., from $y(\tau)$). Moreover we have

$$ c(u_0(\tau), u_1(\tau)) = \int_0^s c_1(s, u_1(\tau, s)) ds + c_0(u_0(\tau)) $$

with c_1 indicating the investment cost rate for technologies of age s, c_0 the investment cost in new technologies, including adjustment-innovation, c_0, c_1 convex in the control variables.

The entrepreneur’s problem is that of maximizing $I(t, x; u_0, u_1)$ over all state–control pairs $\{y, (u_0, u_1)\}$ which are solutions in a suitable sense of equation (3.1). Such problems are known as *vintage capital* problems, for the capital goods depend jointly on time τ and on age s, which is equivalent to their dependence from time and vintage $\tau - s$.

When rephrased in an infinite dimensional setting, with $H := L^2(0, s)$ as state space, the state equation (3.1) can be formulated as a linear control system with an unbounded control operator, that is

$$ y'(\tau) = A_0 y(\tau) + Bu(\tau), \quad \tau \in [t, +\infty[; $$

$$ y(t) = x, $$

where $y : [t, +\infty[\to H$, $x \in H$, $A_0 : D(A_0) \subset H \to H$ is the infinitesimal generator of a strongly continuous semigroup $\{e^{A_0 t}\}_{t \geq 0}$ on H with domain $D(A_0) = \{f \in H^1(0, s) : f(0) = 0\}$ and defined as $A_0 f(s) = -f'(s) - \mu f(s)$, the control space is $U = \mathbb{R} \times H$, the control function is a couple $u \equiv (u_0, u_1) : [t, +\infty[\to \mathbb{R} \times H$, and the control operator is given by $B u \equiv B(u_0, u_1) = u_1 + u_0 \delta_0$, for all $(u_0, u_1) \in \mathbb{R} \times H$, δ_0 being the Dirac delta at the point 0. Note that, although $B \not\in L(U, H)$, is $B \in L(U, D(A_0'))$. The reader can find in [12] the (simple) proof of the following theorem, which we will exploit in a short while.

Theorem 3.1. Given any initial datum $x \in H$ and control $u \in L^p(t, +\infty; U)$ the mild solution of the equation (3.2)

$$ y(s) = e^{(s-t)A} x + \int_t^s e^{(s-\tau)A} Bu(\tau) d\tau $$

belongs to $C([t, +\infty); H)$.

Following Remark 2.2, we then set
\[V = D(A^*_0) = \{ f \in H^1(0, \bar{s}) : f(\bar{s}) = 0 \} \]
and \(V' = D(A^*_0)' \). Regarding the target functional, we set
\[J_\infty(t, x; u) := -I(t, x; u_0, u_1), \]
with:
\[g_0 : V' \to \mathbb{R}, \ g_0(x) = -R(\langle \alpha, x \rangle), \]
\[h_0 : U \to \mathbb{R}, \ h_0(u) = c_0(u_0) + \int_0^{\bar{s}} c_1(s, u_1(s))ds. \]

Remark 3.2. Here the extension of the datum \(g_0 \) to \(V' \) is straightforward, as long as we assume that \(\alpha \in V \) and replace scalar product in \(H \) with the duality in \(V, V' \).

Note further that \(\omega = 0, \ \lambda > 0 \) (the type of the semigroup is negative and equal to \(-\mu \)). \(\square \)

As the problem now fits into our abstract setting, the main results of the previous sections apply to the economic problem when data \(R, c_0, c_1 \) satisfy Assumption 2.1[8.a] or [8.b]. In particular, such thing happens in the following two interesting cases:

- If we assume, for instance, that \(R \) is a concave, \(C^1 \), sublinear function (for example one could take \(R \) quadratic in a bounded set and then take its linear continuation, see e.g. [32, 34]), and \(c_0, c_1 \) quadratic functions of the control variable, then Assumption 2.1[8.b] holds.
- Assumption 2.1[8.a] is instead satisfied when \(R \) is, for instance, quadratic - as it occurs in some other meaningful economic problems - and \(c_0, c_1 \) are equal to \(+\infty \) outside some compact interval, and equal to any convex l.s.c. function otherwise. Such case corresponds to that of constrained controls (controls that violate the constrain yield infinite costs).

In these cases, Theorems 2.5, 2.6 hold true. In particular Theorem 2.6 states the existence of a unique optimal pair \((u^*, y^*) \) for any initial datum \(x \in V' \). Note that in general the optimal trajectory \(y^* \) lives in \(V' \). However, since the economic problem makes sense in \(H \), we would now like to infer that whenever \(x \) (the initial age distribution of capital) lies in \(H \), then the whole optimal trajectory lives in \(H \). Indeed, this is guaranteed by Theorem 3.1.

All these results allow to perform the analysis of the behavior of the optimal pairs and to study phenomena such as the diffusion of new technologies (see e.g. [12, 13]) and the anticipation effects (see e.g. [32, 34]). With respect to the results in [12, 13], here also the case of nonlinear \(R \) (which is particularly interesting from the economic point of view, as it takes into account the case of large investors) is considered. With respect to the results in [32, 34], here the existence of optimal feedbacks yields a tool to study more deeply the long run behavior of the trajectories, like the presence of long run equilibrium points and their properties.
4. Equilibrium points

We call \textit{equilibrium point} any stationary solution of the closed loop equation

\[y'(\tau) = Ay(\tau) + B(h_0^\ast)'(-B^*\Psi(y(\tau))), \]

that is any \(x \in V' \) such that

\[(4.1) \quad Ax + B(h_0^\ast)'(-B^*\Psi(x)) = 0. \]

Lemma 4.1. Let Assumptions 2.1 [1-7] be satisfied, \(p \geq 2 \), \(\lambda \geq 2\omega \). Any equilibrium point \(x \in D(A) \) satisfies

\[Ax + B(h_0^\ast)'(-B^*(\lambda - A_0^\ast)^{-1}g_0'(x)) = 0. \]

Proof. Let \(\bar{x} \) be a solution to (4.1). Then there exist a stationary solution \(\bar{p} \) to the co-state equation given by

\[\bar{p} := p^*(\tau; \bar{x}) = \int_\tau^\infty e^{(A_0^\ast - \lambda)(\sigma - \tau)}g_0' (\bar{x})d\sigma \equiv \int_0^\infty e^{(A_0^\ast - \lambda)^r}g_0' (\bar{x})dr = (\lambda - A_0^\ast)^{-1}g_0' (\bar{x}), \]

where the last equality holds by definition of \((\lambda - A_0^\ast)^{-1}\). \(\square \)

Whenever \(A \) proves invertible, then, equilibrium points can be regarded also as fixed points of the operator \(T : V' \to V' \), defined by

\[(4.2) \quad Tx := -A^{-1}B(h_0^\ast)'(-B^*\Psi(x)), \]

where \(\Psi \) is the unique strong solution of the HJB equation (2.4), or searched among fixed point of

\[(4.3) \quad Tx := -A^{-1}B(h_0^\ast)'(-B^*(\lambda - A_0^\ast)^{-1}g_0'(x)), \]

Lemma 4.2. Let Assumptions 2.1 [1-7] be satisfied and assume that

\[\lambda - \omega > \| (A_0^\ast)^{-1} \|_{L(H)} \| B \|_{L(V',U)}^2 \| (h_0^\ast)' \|_{[g_0']} \]

Then there exists a unique solution \(\bar{x} \in D(A) \) to (5.1).

To prove the assertion we need the following result.

Proposition 4.3. Assume that \(0 \in \rho(A_0^\ast) \) (that is, \((A_0^\ast)^{-1}\) is well defined and bounded in \(H \)). Then \(A^{-1} \) has bounded inverse on \(V' \), defined by the position

\[\langle A^{-1}f, \varphi \rangle_{V',V'} = \langle f, (A_0^\ast)^{-1}\varphi \rangle_{V,V}, \quad \text{for all } f \in V' \text{ and } \varphi \in V. \]

Moreover

\[\| A^{-1} \|_{L(V')} \leq \| (A_0^\ast)^{-1} \|_{L(H)}. \]
Proof. For all $f \in V'$ and $\varphi \in V$ we have
\begin{align*}
|\langle A^{-1}f, \varphi \rangle_{V,V'}| & = |\langle f, (A_0^*)^{-1}\varphi \rangle_{V,V'}| \\
& \leq |f|_{V'} |(A_0^*)^{-1}\varphi |_V \\
& = |f|_{V'} (|(A_0^*)^{-1}\varphi |_H + |A_0^*(A_0^*)^{-1}\varphi |_H) \\
& = |f|_{V'} (|(A_0^*)^{-1}\varphi |_H + |(A_0^*)^{-1}A_0^*\varphi |_H) \\
& \leq |f|_{V'} (|(A_0^*)^{-1}||_{L(H)} |\varphi |_V
\end{align*}
(4.4)

Proof. (Lemma 4.2) Define $T : V' \to V'$ as as in (4.2). Then T is Lipschitz continuous, with Lipschitz constant smaller than 1. Indeed, according to the content of the proof of Lemma 4.8 in [30] (with null final cost)

$$[\Psi'] \leq \frac{[g_0']}{\lambda - \omega}$$

so that

$$|Tx - Ty|_{V'} \leq \|(A_0^*)^{-1}\|_{L(H)} \|B\|_{L(V',U)}^2 [(h_0^*)'] \left[\frac{[g_0']}{\lambda - \omega}\right] |x - y|_{V'}. \tag{4.5}$$

In the particular case of the economic problem described in Section 3 and with the data there defined, the preceding result reads as follows.

Corollary 4.4. If

$$\lambda + \mu > \frac{1}{\mu} \ [(h_0^*)'] \ [R'] \ |\alpha|^2, \quad or \quad \lambda + \mu > \frac{\bar{s}}{\sqrt{2}} \ [(h_0^*)'] \ [R'] \ |\alpha|^2,$$

then there exists a unique equilibrium point for optimal investment with vintage capital described in Section 3.

Proof. In the case of the economic problem we have $\|B\| \leq 1$, $\omega = -\mu$. By means of Hille-Yosida Theorem

$$\|(A_0^*)^{-1}\|_{L(H)} \leq \frac{1}{\mu}.$$

If we show that moreover

$$\|(A_0^*)^{-1}\|_{L(H)} \leq \frac{\bar{s}}{\sqrt{2}},$$

the rest of the proof is straightforward. Recall that $D(A_0^*) = \{ f \in H^1(0, \bar{s}) : f(\bar{s}) = 0 \}$, moreover

$$(A_0^*)^{-1}f(s) = - \int_s^{\bar{s}} e^{-\mu(\sigma-s)} f(\sigma) d\sigma.$$
By means of Hölder inequality one derives
\[|(A_0^*)^{-1}f|^2_H = \int_0^s \left| \int_s^\bar{s} e^{-\mu(\sigma-s)} f(\sigma) d\sigma \right|^2 d\bar{s} \]
\[\leq \frac{1}{2\mu} \int_0^s \left(1 - e^{-2\mu(\bar{s}-s)} \right) |f|_{L^2(s, \bar{s})}^2 d\bar{s} \]
\[\leq |f|_H^2 \frac{1}{2\mu} \left(\bar{s} - \frac{1 - e^{-2\mu\bar{s}}}{2\mu} \right) \]
\[\leq |f|_H^2 \frac{\bar{s}^2}{2}. \]

Instead if \(\mu = 0 \) we have
\[|(A_0^*)^{-1}f|^2_H \leq \int_0^s \left(\frac{\bar{s}}{2} - \frac{(\bar{s} - \sigma)^2}{2} \right) |f(\sigma)|^2 d\sigma \leq \frac{\bar{s}^2}{2} |f|^2_H. \]

Remark 4.5. If
\[c(u) = \int_0^s [\beta_1(s)u^2_1(s) + q_1(s)u_1(s)] ds + [\beta_0 u^2_0 + q_0 u_0], \quad R(Q) = bQ - Q^2, \]
the preceding are implied respectively by
\[\lambda + \mu > \frac{1}{\mu} \left(1 + \frac{1}{\beta_0} \right) \left(\int_0^s \alpha(s)^2 ds + \int_0^s \alpha'(s)^2 ds - \mu \alpha(0)^2 \right) \]
and
\[\lambda + \mu > \frac{\bar{s}}{\sqrt{2}} a \left(1 + \frac{1}{\beta_0} \right) \left(\int_0^s \alpha(s)^2 ds + \int_0^s \alpha'(s)^2 ds - \mu \alpha(0)^2 \right). \]
The statement derives from
\[[g^0] = 2a|\alpha|^2_U, \quad [(h^0)^*]' = \|M_{\frac{1}{\beta_0}}\|_{L(U)} \leq \frac{1}{2} \left(1 + \frac{1}{\beta_0} \right), \]
where \(M_{\frac{1}{\beta_0}} \) is the operator described in (5.2) in the next section.

5. Explicit Formulae for Equilibrium Points for Vintage Capital with Convex-Linear Cost

Throughout the subsection we assume that \(h_0 \) is given by
\[h_0(u) = (M_\beta u|u|)_U + (q|u|)_U \]
\[= \int_0^s u_1(s) [\beta_1(s)u_1(s) + q_1(s)] ds + u_0[\beta_0 u_0 + q_0] \]
where \(\beta = (\beta_0, \beta_1) \in R \times L^\infty(0, \bar{s}), \) with \(\beta_1(s), \beta_0 \geq \epsilon \geq 0, q = (q_0, q_1) \in R \times L^2(0, \bar{s}) \equiv U, \)
and \(M_\beta : U \to U \) is given by
\[M_\beta u(s) := (\beta_0 u_0, \beta_1(s)u(s)). \]
Then it is easy to show that

\[h^*_0(u) = (M_{\frac{u}{4\beta_1}}(u - q))u, \]

(5.3)
\[
= \int_0^s \frac{1}{4\beta_1(s)}[u_1(s) - q_1(s)]^2 ds + \frac{1}{4\beta_0} [u_0 - q_0]^2
\]
so that

\[(h^*_0)'(u) = M_{\frac{u}{4\beta_1}}(u - q),\]

more explicitly

\[(h^*_0)'(u)(s) = \left(\frac{1}{2\beta_0} [u_0 - q_0]; \frac{1}{2\beta_1(s)}[u_1(s) - q_1(\cdot)] \right). \]

Lemma 5.1. Let (5.1) be satisfied, and \(R \in C^1(\mathbb{R}) \), with \(R' \) Lipschitz-continuous. Moreover, we set

\[w_1 = -A^{-1}BM_{\frac{1}{2\beta_1}}B^*(\lambda - A_0^*)^{-1}\alpha, \quad \text{and} \quad w_2 = A^{-1}BM_{\frac{1}{4\beta_0}}q. \]

Then there exists an equilibrium point \(x \in H \) if and only if there exists a real number \(\eta \) satisfying

\[\eta = R'((\alpha, w_2 + \eta w_1)). \]

In that case

\[x = w_2 + \eta w_1. \]

Moreover, if \(R'' \leq 0 \), then such equilibrium point does exist and is unique.

Remark 5.2. Note that \(w_1 \) and \(w_2 \) may be explicitly computed. According to the notation in [12], we set

\[\bar{\alpha}(s) = (\lambda - A_0^*)^{-1}\alpha(s) = \int_s^\infty e^{-(\mu+\lambda)(\sigma-s)}\alpha(\sigma)d\sigma \]

the discounted return associated with a unit of capital of vintage \(s \), and see that

\[w_1(s) = -[A^{-1}BM_{\frac{1}{2\beta_0}}B^*(\lambda - A_0^*)^{-1}\alpha](s) \]
\[= -[A^{-1}BM(\bar{\alpha}(0), \bar{\alpha})](s) \]
\[= -\left[A^{-1}B \left(\frac{\bar{\alpha}(0)}{2\beta_0}, \frac{\bar{\alpha}(\cdot)}{2\beta_1(\cdot)} \right) \right](s) \]
\[= -\frac{\bar{\alpha}(0)}{2\beta_0} [A^{-1}\bar{\delta}_0](s) - [A^{-1} \frac{\bar{\alpha}(\cdot)}{2\beta_1(\cdot)}](s) \]
\[= \frac{\bar{\alpha}(0)}{2\beta_0} e^{-\mu s} + \int_0^s e^{-\mu(s-\sigma)} \frac{\bar{\alpha}(\sigma)}{2\beta_1(\sigma)} d\sigma. \]

(5.4)

Similarly, one shows that

\[w_2(s) = \frac{q_0}{2\beta_0} e^{-\mu s} + \int_0^s e^{-\mu(s-\sigma)} \frac{q_1(\sigma)}{2\beta_1(\sigma)} d\sigma. \]
Proof. In the case of the economic problem, \(D(A) = H \), so that the operator \(T : H \to H \) defined in (4.3) is given by

\[
Tx = -A^{-1}BM(-B^*\bar{p} - q)
= -R'(\langle \alpha, x \rangle)A^{-1}BM\mathbf{B}^*(\lambda - A_0^*)^{-1}\alpha + A^{-1}BMq
= R'(\langle \alpha, x \rangle)w_1 + w_2.
\]

(5.5)

Hence

\[
Tx = x \iff x - w_2 = R'(\langle \alpha, x \rangle)w_1
\]

which is true if and only if \(x - w_2 = \eta w_1 \) for some \(\eta \in \mathbb{R} \), that is if and only if

(5.6)

\[
\eta = R'(\langle \alpha, w_2 + \eta w_1 \rangle).
\]

The last assertion is straightforward, as \(\langle w_1, \alpha \rangle \geq 0 \). □

From the preceding Lemma one derives the following results.

Lemma 5.3. Let assumptions (5.1) be satisfied, and set \(c_1 := \langle \alpha, w_1 \rangle, \ c_2 := \langle \alpha, w_2 \rangle \).

Then there exists a unique equilibrium point \(\bar{x} \) in each of the following cases:

(i) If \(R(Q) = -aQ^2 + bQ \), then

\[
\bar{x} = w_2 - \frac{2ac_2 - b}{1 + 2ac_1}w_1;
\]

(ii) If \(R(Q) = \ln(1 + Q) \), for \(Q \geq 0 \) and \(R(Q) = Q \) for \(Q < 0 \), then

\[
\bar{x} = w_2 + \frac{\sqrt{(1 + c_2)^2 + 4c_1} - (1 + c_2)}{2c_1}w_1
\]

(iii) If \(R(Q) = (1 + Q)^\gamma - 1 \), with \(\gamma \in (0, 1) \), for \(Q \geq 0 \) and \(R(Q) = \gamma Q \) for \(Q < 0 \), then \(\bar{x} = w_1 + \bar{\eta}w_2 \) where \(\bar{\eta} \) is the unique positive solution of

\[
\eta = \frac{\gamma}{(1 + c_1\eta + c_2)^{1-\gamma}}.
\]

Remark 5.4. Results similar to those contained in Lemma 5.1, and 5.3 may be proved also in the case \(h_0(u) = |u|_U^p, \ p \geq 2 \).

References

[1] Anița, S.; Iannelli, M.; Kim, M.J.; Park, E.J. Optimal Harvesting for Periodic Age-dependent Population Dynamics. SIAM J. Appl. Math. 1998, 58 (5).

[2] P. Acquistapace, F. Flandoli, and B. Terreni, Initial boundary value problems and optimal control for nonautonomous parabolic systems, SIAM J. Control Optimiz, 29 (1991), 89–118.

[3] P. Acquistapace, B. Terreni, Infinite horizon LQR problems for nonautonomous parabolic systems with boundary control, SIAM J. Control Optimiz, 34 (1996), 1–30.

[4] P. Acquistapace, B. Terreni, Classical solutions of nonautonomous Riccati equations arising in parabolic boundary control problems, Appl. Math. Optim., 39 (1999), 361–409.

[5] P. Acquistapace, B. Terreni, Classical solutions of nonautonomous Riccati equations arising in Parabolic Boundary Control problems II, Appl. Math. Optim., 41 (2000), 199–226.
[6] Ch. Almeder, J.P. Caulkins, G. Feichtinger and G. Tragler. *Age-structured single-state drug initiation model cycles of drug epidemics and optimal prevention programs*, to appear in Socio-Economic Planning Sciences.

[7] V. Barbu, G. Da Prato, “Hamilton–Jacobi Equations in Hilbert Spaces,” Pitman, London, 1983.

[8] V. Barbu, G. Da Prato, *Hamilton-Jacobi equations in Hilbert spaces; variational and semigroup approach*, Ann. Mat. Pura Appl., IV, 42 (1985), 303-349.

[9] V. Barbu, G. Da Prato, *A note on a Hamilton-Jacobi equation in Hilbert space*, Nonlinear Anal., 9 (1985), 1337–1345.

[10] V. Barbu, G. Da Prato and C. Popa, *Existence and uniqueness of the dynamic programming equation in Hilbert spaces*, Nonlinear Anal., n. 3., 7 (1983), 283-299.

[11] V. Barbu, Th. Precupanu, “Convexity and Optimization in Banach Spaces,” Editura Academiei, Bucharest, 1986.

[12] E. Barucci, F. Gozzi, *Technology Adoption and Accumulation in a Vintage Capital Model*, J. of Economics, Vol. 74, no. 1, pp.1–30, 2001.

[13] E. Barucci, F. Gozzi, *Investment in a Vintage Capital Model*, Research in Economics, Vol 52, pp.159–188, 1998.

[14] A. Bensoussan, G. Da Prato, M.C. Delfour, S.K. Mitter, “Representation and Control of Infinite Dimensional Systems,” Vol. 1 & 2, Birkhäuser, Boston, 1993.

[15] R. Boucekkine, L.A. Puch, O. Licandro, F. del Rio *Vintage capital and the dynamics of the AK model*, J. Econ. Theory 120, No. 1, 39-72 (2005).

[16] P. Cannarsa, G. Di Blasio, *A direct approach to infinite dimensional Hamilton–Jacobi equations and applications to convex control with state constraints*, Diff. Int. Eq., 8 (1995), no. 2, 225–246.

[17] P. Cannarsa, F. Gozzi, H.M. Soner, *A dynamic programming approach to nonlinear boundary control problems of parabolic type*. J. Funct. Anal. 117 (1993), no. 1, 25–61.

[18] M.G. Crandall, P.L. Lions, *Hamilton–Jacobi equations in infinite dimensions. Part I: Uniqueness of viscosity solutions*, J. Funct. Anal., 62 (1985), 379–396;
Part II: Existence of viscosity solutions, J. Funct. Anal., 65 (1986), 368–405;
Part III, J. Funct. Anal., 68 (1986), 214–247;
Part IV: Hamiltonians with unbounded linear terms, J. Funct. Anal., 90 (1990), 237–283;
Part V: Unbounded linear terms and B-continuous solutions, J. Funct. Anal., 97, 2, (1991), 417–465;
Part VI: Nonlinear A and Tataru’s method refined, Evolution equations, control theory, and biomathematics, Han sur Lesse, (1991), 51-89, Lecture Notes in Pure and Appl. Math., 155, Dekker, New York, 1994;
Part VII: The HJB equation is not always satisfied, J. Funct. Anal., 125 (1994), 111–148.

[19] P. Cannarsa, M.E. Tessitore, *Infinite dimensional Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type*, SIAM J. Control Optim., 34 (1996), 1831–1847.

[20] G. Di Blasio, *Global solutions for a class of Hamilton-Jacobi equations and Dirichlet boundary conditions in parabolic type*, SIAM J. Control Optim., 8 (1985/86), no. 3-4, 261–300.

[21] G. Di Blasio, *Optimal control with infinite horizon for distributed parameter systems with constrained controls*, SIAM J. Control & Optim., 29 (1991): no. 4, 909-925.

[22] G. Fabbri, F. Gozzi, *Vintage Capital in the AK growth model: a dynamic programming approach*, Working paper 20060610-SSRN-id893784. Submitted.

[23] G. Fabbri, *A viscosity solution approach to the infinite dimensional HJB equation related to boundary control problem in transport equation*, submitted (http://www.citebase.org/abstract?id=oai:arXiv.org:math/0606115).

[24] S. Faggian, *Boundary control problems with convex cost and Dynamic Programming in infinite dimension. Part I: the maximum principle*, to appear in Diff. and Int. Eq.
[25] S. Faggian, Boudary control problems with convex cost and Dynamic Programming in infinite dimension. Part 2: the HJB equation, submitted
[26] S. Faggian, Regular solutions of Hamilton–Jacobi equations arising in Economics, to appear.
[27] S. Faggian, Applications of dynamic programming to economic problems with vintage capital, to appear in Dynamics of Continuous, Discrete and Impulsive systems.
[28] S. Faggian, Hamilton–Jacobi equations arising from boundary control problems with state constraints, submitted
[29] S. Faggian, F. Gozzi On the dynamic programming approach for optimal control problems of PDE’s with age structure, Math. Pop Stud., Vol 11, n. 3–4, 2004, pp.233–270.
[30] S. Faggian, F. Gozzi, Dynamic programming for infinite horizon boundary control problems of PDEs with age structure, , submitted.
[31] S. Faggian, Maximum Principle for Linear-Convex Boundary Control Problems applied to Optimal Investment with Vintage Capital http://arxiv.org/abs/0711.3694
[32] G. Feichtinger, G. Tragler, and V.M. Veliov, Optimality Conditions for Age–Structured Control Systems, J. Math. Anal. Appl. 288(1), 47-68, 2003.
[33] G. Feichtinger, R.F. Hartl, P.M. Kort, and V.M. Veliov, Dynamic investment behavior taking into account ageing of the capital goods, Dynamical systems and control, 379–391, Stability Control Theory Methods Appl., 22, Chapman & Hall/CRC, Boca Raton, FL, 2004.
[34] G. Feichtinger, R.F. Hartl, P.M. Kort, and V.M. Veliov. Anticipation Effects of Technological Progress on Capital Accumulation: a Vintage Capital Approach, J. Econom. Theory 126 (2006), no. 1, 143–164.
[35] G. Feichtinger, R. Hartl, and S. Sethi. Dynamical Optimal Control Models in Advertising: Recent Developments. Management Sci., 40:195226, 1994.
[36] F. Gozzi, Some results for an optimal control problem with a semilinear state equation I, Rendiconti dell’Accademia Nazionale dei Lincei, n. 8, 82 (1988), 423-429.
[37] F. Gozzi, Some results for an optimal control problem with a semilinear state equation II, Siam J. Control and Optim., n. 4, 29 (1991), 751-768.
[38] F. Gozzi, Some results for an infinite horizon control problem governed by a semilinear state equation, Proceedings Vorau, July 10-16 1988; editors F.Kappel, K.Kunisch, W.Schappacher; International Series of Numerical Mathematics, Vol. 91, Birkhäuser - Verlag, Basel, 1989, 145-163.
[39] F. Gozzi, C. Marinelli, Stochastic optimal control of delay equations arising in advertising models, Da Prato, Giuseppe (ed.) et al., Stochastic partial differential equations and applications – VII. Papers of the 7th meeting, Levico, Terme, Italy, January 5–10, 2004. Boca Raton, FL: Chapman & Hall/CRC. Lecture Notes in Pure and Applied Mathematics 245, 133-148 (2006).
[40] F. Gozzi, A. Swiech, X.Y. Zhou, A corrected proof of the stochastic verification theorem within the framework of viscosity solutions, Siam J. Control and Optim., 43 (2005), no. 6, 2009–2019.
[41] Iannelli, M. Mathematical Theory of Age–Structured Population Dynamics. Giardini Editore: Pisa, 1995.
[42] I. Lasiecka, R. Triggiani, “Control Theory for Partial Differential Equations: Continuous and Approximation Theory,” Vol I. Abstract parabolic systems. Encyclopedia of Mathematics and its Applications, 74. Vol II. Abstract hyperbolic-like systems over a finite time horizon; Encyclopedia of Mathematics and its Applications; CambridgeUniversity Press: Cambridge, 2000, 74-75.
[43] C. Marinelli Optimal advertising under uncertainty, PHD thesis, Columbia University, 2003.
[44] J. Yong, X.Y. Zhou, “Stochastic controls. Hamiltonian systems and HJB equations. Applications of Mathematics,” 43. Springer-Verlag, New York, 1999.