Tumour necrosis factor, interleukin-6 and interleukin-10 are possibly involved in *Plasmodium vivax*-associated thrombocytopaenia in southern Pakistani population

Afsheen Raza¹, Muhammad Shahzeb Khan², Najia Karim Ghanchi¹, Ahmed Raheem¹ and Mohammad A Beg¹*

Abstract

Background: In Pakistan, *Plasmodium vivax* is endemic causing approximately 70% of the malaria cases. A number of haematological changes, especially thrombocytopaenia have been reported for *P. vivax*. Several host factors including cell-mediated immune cells, such as IL-1, IL-6 and IL-10 have been documented for *P. vivax*-induced thrombocytopaenia. However, study on correlation of cytokines and thrombocytopaenia in *P. vivax*, particularly in patients with severe signs and symptoms has not been reported from Pakistan.

Methods: A case control study to correlate TNF, IL-6 and IL-10 in healthy controls and thrombocytopaenic *P. vivax*-infected patients (both uncomplicated and complicated cases) from southern Pakistan was carried out during January 2009 to December 2011. One hundred and eighty two patients presenting with microscopy-confirmed asexual *P. vivax* mono-infection and 100 healthy controls were enrolled in the study at Aga Khan University Hospital, Karachi. Enzyme-linked immunosorbent assay (ELISA) was performed for determination of TNF, IL-6 and IL-10 levels.

Results: Out of 182 cases, mild thrombocytopaenia (platelet count 100,000-150,000 mm³) was observed in ten (5.5%), moderate (50,000-100,000 mm³) in 93 (51.1%), and profound thrombocytopaenia (<50,000 mm³) was detected in 79 (43.4%) patients. IL-6 and IL-10 levels were found approximately three-fold higher in the mild cases compared to healthy controls. Two-fold increase in TNF and IL-10 (p < 0.0001) was observed in profound thrombocytopaenic when compared with moderate cases, while IL-6 was not found to be significantly elevated.

Conclusion: Cytokines may have a possible role in *P. vivax*-induced thrombocytopaenia in Pakistani population. Findings from this study give first insight from Pakistan on the role of cytokines in *P.vivax*-associated thrombocytopaenia. However, further studies are required to understand the relevance of cytokines in manifestations of thrombocytopaenia in *P. vivax* malaria.

Keywords: *Plasmodium vivax*, Thrombocytopaenia, Cytokines

Background

Plasmodium vivax malaria is an important public health problem worldwide causing an estimated 80–215 million clinical cases annually [1]. Malaria is endemic throughout Pakistan with an estimated 4.5 million suspected cases reported by the World Health Organization (WHO). Both *P. vivax* and *Plasmodium falciparum* co-exist, with *P. vivax* being the major contributor (70%) of malaria burden in all areas [1].

Clinical symptoms commonly associated with vivax malaria include fever, malaise, chills, acute respiratory distress (ARDS), acute renal failure, coma, death, while frequent haematological disturbance observed include anaemia and thrombocytopaenia [2]. Various malaria-endemic countries, including Indonesia, Columbia, Kenya, India, and Pakistan, have documented high frequency of thrombocytopaenia in malaria patients [3-13]. Furthermore, case reports describing clinical manifestations of
thrombocytopaenia due to *P. vivax* have been described indicating the significance of the respective parameter in vivax malaria [14-21]. Recent studies have also highlighted the usefulness of thrombocytopaenia as a plausible clinical marker of malaria diagnosis with significant sensitivity, specificity, positive, and negative predictive values [22-24].

Thrombocytopaenia in *P. vivax* is frequently observed (24-94%) however; mechanisms associated with malaria thrombocytopaenia are not clear at present. Speculated mechanisms include coagulopathy, splenic sequestration of injured platelets, bone-marrow alterations, platelet aggregation, antibody-mediated platelet destruction and oxidative stress [3,25]. Association of cell-mediated immune cells, such as interleukin-1 (IL-1), IL-6, IL-10, tumour necrosis factor (TNF) and transforming growth factor-β (TGF-β) and thrombocytopaenia have been documented in various studies [3,26-28]. There is a paucity of baseline data on various aspects of *P. vivax*, including cytokine profile, correlation of immunological response and haematological manifestations. Therefore, the aim of this study was to determine and correlate baseline levels of TNF, IL-6 and IL-10 in healthy controls and thrombocytopaenic *P. vivax*-infected patients from southern Pakistan. The cytokines data presented in this study is part of ongoing project previously published baseline profiles of biomarkers in malaria patients. (37) In this study cytokine data was used for correlation with thrombocytopaenia.

Methods

Study design, settings and case definitions

A case control study using plasma samples from well characterized groups suffering from *P. vivax* infection including uncomplicated cases (n = 100), complicated cases (n = 82) and healthy controls (n = 100) was conducted during January 2009 to December 2011 at The Aga Khan University Hospital, Karachi. Baseline plasma levels of TNF, IL-6 and IL-10 in healthy controls and thrombocytopaenic *P. vivax*-infected patients from southern Pakistan. The cytokines data presented in this study is part of ongoing project previously published baseline profiles of biomarkers in malaria patients. (37) In this study cytokine data was used for correlation with thrombocytopaenia.

Methods

Study design, settings and case definitions

A case control study using plasma samples from well characterized groups suffering from *P. vivax* infection including uncomplicated cases (n = 100), complicated cases (n = 82) and healthy controls (n = 100) was conducted during January 2009 to December 2011 at The Aga Khan University Hospital, Karachi. Baseline plasma levels of TNF, IL-6 and IL-10 in healthy controls and thrombocytopaenic *P. vivax*-infected patients (both complicated and uncomplicated cases). Thrombocytopaenia was categorized as mild, moderate and profound on the basis of reference ranges used in The Aga Khan University and Hospital, Karachi.

Reference ranges for thrombocytopaenia:

- **Mild**: platelet count range between 100,000 mm3 and 150,000 mm3
- **Moderate**: platelet count range between 50,000 mm3 and 100,000 mm3
- **Profound**: platelet count range <50,000 mm3

Case definitions

Healthy controls

Individuals tested negative on screening test for Hepatitis B, C, human immunodeficiency virus (HIV), syphilis, malaria and having platelet counts >150,000 mm3 were recruited as healthy controls.

Uncomplicated malaria

Febrile patients tested slide and PCR positive for *P. vivax* infection but no malarial complication were recruited as uncomplicated cases.

Complicated malaria

Patients tested slide and PCR positive for *P. vivax* infection and admitted to the Aga Khan University Hospital, Karachi with one or more symptoms of complicated malaria (WHO guidelines) were enrolled as complicated cases.

Both complicated and uncomplicated cases were further stratified on the basis of thrombocytopaenia status. Cases and controls with no co-morbid/associated diagnosis were enrolled in the study. Pregnant women were excluded from the study.

Ethical considerations

The study was approved by the Ethical Review Committee of Aga Khan University Hospital and conducted in accordance with the Good Clinical Practice of Declaration of Helsinki [29]. Informed consent was obtained from enrolled patients.

Sample collection and microscopy

Approximately 2 ml of intravenous blood sample in EDTA tube was collected. Initial presence of malaria parasites was established by Leishman’s staining while further species identification was determined by Giemsa staining of thick and thin blood smears [30]. Plasma was collected by centrifuging remaining blood at 3,500 rpm for 15 minutes. Blood and plasma aliquots were stored at −80°C until further analysis. Platelet count of cases and controls was performed using coulter counter (Beckman Coulter Inc, USA).

DNA extraction and PCR

DNA was extracted from 200 μl of whole blood using QIAamp DNA Mini Kit according to manufacturer’s instructions (Qiagen, USA). Confirmation of *P. vivax* mono-infection was performed using a species-specific PCR [31].

ELISA for quantification of inflammatory cytokines

TNF, IL-6 and IL-10 were detected in plasma of healthy controls and cases by using standards and ELISA reagents obtained from Endogen (Rockford, IL, USA). Cytokines were measured using a sandwich ELISA technique according to the manufacturer’s instructions and as reported previously [32]. Recombinant human cytokine was used to obtain a dose response curve with a range of detection from 3.9-1,000 pg/ml. All experimental samples were tested in duplicate.
Statistical analysis
Data were entered in Microsoft Excel and Graph Pad Prism version 5.0 was used for performing further analysis. Arithmetical means and medians were calculated, where applicable, for all continuous baseline demographic variables. Kruskal-Wallis test with Dunn’s multiple comparison was used to compare concentrations of cytokines between study groups. Mann Whitney U test was used to verify differences between cases and controls. Correlation between cytokines and thrombocytopenia in complicated cases was performed using Spearman’s Rank correlation analysis.

Results
Baseline demographics
A total of 200 microscopically confirmed *P. vivax* cases were enrolled in the study. Amongst these, 182 samples tested PCR positive for *P. vivax* mono-infection and were thus further analysed. One-hundred healthy controls were also enrolled for the study.

Thrombocytopenia profile
Thrombocytopenia of varying intensity was detected in all cases. Out of 182 cases, mild thrombocytopenia was observed in ten (5.5%), moderate thrombocytopenia in 93 (51.1%), and profound thrombocytopenia was detected in 79 (43.4%) patients. Comparison of haematological parameters between moderate and profound thrombocytopenia groups showed significant decrease in haemoglobin and red blood cell count while other parameters did not show any significant difference between the study groups. Baseline demographics and haematological parameters of healthy controls and enrolled patients are given in Table 1.

Baseline cytokine levels between healthy controls, uncomplicated and complicated *Plasmodium vivax* thrombocytopenic cases
Median concentrations of TNF, IL-6 and IL-10 were compared between healthy controls and thrombocytopenic uncomplicated and complicated *P. vivax* cases. Comparison of TNF level between healthy controls and uncomplicated mild cases did not show any significant difference in mild thrombocytopenic group, while it was found to be elevated approximately two-fold in moderate and profound group. In complicated cases, TNF was found to be approximately three fold elevated in profound group. IL-6 was found to be 7 fold increased while IL-10 levels were found to be > 20 fold higher in the respective groups. Comparison of profound thrombocytopenia between uncomplicated and complicated cases showed a two-fold increase in TNF and IL-10 (*p < 0.0001*) while IL-6 was not found to be significantly elevated (Table 2).

Correlation of cytokines and thrombocytopenia in complicated *Plasmodium vivax* cases
Spearman Rank correlation analysis was performed in complicated *P. vivax* cases exhibiting mild, moderate and profound thrombocytopenia to determine whether complex interactions between cytokines and thrombocytopenia exist in complicated *P. vivax* cases. No significant correlation was observed between cytokines levels and mild thrombocytopenia. However, significant negative correlation was observed between IL-6 and IL-10 (*p = 0.02*) in moderate cases. In profound cases, highly significant positive correlation was observed between TNF and IL-10 (*p < 0.0001*) while highly significant negative correlation was observed between IL-6 and IL-10 (*p < 0.0001*) (Table 3).

| Table 1 Baseline demographics and hematological parameters of the study groups |
|---|-----------------|-----------------|-----------------|---------------|
| | Healthy Controls (HC) | Malaria cases (thrombocytopenia) | P value M vs P |
| | N | Mild (M) | Moderate (M) | Profound (P) |
| N | 100 | 10 | 93 | 79 |
| Haemoglobin | 12.29 ± 1.99 | 12.38 ± 1.80 | 12.65 ± 1.63 | 11.68 ± 2.19 | 0.002* |
| RBC | 4.38 ± 0.43 | 4.46 ± 0.69 | 4.39 ± 0.50 | 4.05 ± 0.70 | 0.000* |
| WBC | 5.94 ± 2.43 | 7.05 ± 2.31 | 5.99 ± 2.72 | 5.8 ± 3.11 | 0.658 |
| Neutrophils | 63.5 ± 15 | 59.38 ± 12.3 | 72.0 ± 13.78 | 68.44 ± 14.2 | 0.098 |
| Lymphocytes | 21.7 ± 11.4 | 26.56 ± 9.93 | 19.25 ± 11.16 | 22.27 ± 11.19 | 0.079 |
| Eosinophils | 0.97 ± 1.16 | 0.66 ± 0.55 | 0.62 ± 1.22 | 0.92 ± 0.96 | 0.554 |
| Monocytes | 8.98 ± 5.07 | 12.94 ± 3.24 | 7.62 ± 4.6 | 8.28 ± 5.42 | 0.387 |
| Platelets | 175 ± 45.78 | 102.60 ± 32.97 | 74.76 ± 27.1 | 32.17 ± 11.19 | 0.000* |

Values represent medians ± standard deviation.
Reference units used:
Haemoglobin = gm/dl; RBC = 10^{12}/L; WBC = 10^{6}/L; Platelets = 10^{9}/L.
Neutrophils, lymphocytes, eosinophils, monocytes =%.
* = significant (p-value <0.05).
Comparison of severe symptoms with thrombocytopenia

Comparison of severe signs and symptoms in complicated cases with thrombocytopenia revealed that profound thrombocytopenia was most common in patients suffering from respiratory distress/pulmonary oedema and metabolic acidosis (Table 4) while moderate thrombocytopenia was observed in patients suffering from jaundice and haemoglobinuria.

Discussion

In this study, baseline levels of cytokines were examined in healthy controls, uncomplicated and complicated P. vivax cases exhibiting varying intensities of thrombocytopenia. Furthermore, cytokines levels were correlated with thrombocytopenia status in complicated cases to determine whether complex interactions exist between these molecules and manifestations of disease symptoms in thrombocytopenic P. vivax cases. In this study, thrombocytopenia was detected in all cases. Moderate and profound thrombocytopenia was most frequently observed (51.1 and 43.4%, respectively) while mild thrombocytopenia was observed in only 5.5% of the patients. This finding is consistent with previously reported observations from South America and south Asia where P. vivax is endemic [2]. Clinical complications such as disseminated intravascular coagulation (DIC), platelet associated IgG increase (PAIgG), immune thrombocytopenia purpura (ITP), acute renal failure, pulmonary oedema, splenomegaly, cerebral malaria, and seizures have been reported in P. vivax cases exhibiting profound thrombocytopenia [15-19,21]. In these cases, bleeding was observed in a few cases, indicating that thrombocytopenia in P. vivax does not always lead to bleeding complications. In this study, complications including metabolic acidosis, pulmonary oedema, jaundice, haemoglobinuria were observed in 45% (82/182) of the patients. Of these, profound thrombocytopenia was observed in 18% of the patients of which 11.2% suffered from respiratory distress/pulmonary oedema, while 6.8% suffered from metabolic acidosis. Moderate thrombocytopenia was observed in the remaining cases. Bleeding was observed infrequently in complicated cases exhibiting profound thrombocytopenia indicating that P. vivax-associated thrombocytopenia in Pakistan demonstrates a similar trend of low bleeding tendencies as observed worldwide.

To determine the role of cytokines in thrombocytopenia, baseline concentrations of pro- and anti-inflammatory cytokines TNF, IL-6, IL-10 were evaluated in healthy controls, uncomplicated and complicated P. vivax cases exhibiting mild, moderate and profound thrombocytopenia. A significant increase of TNF level was observed between uncomplicated and complicated cases exhibiting profound thrombocytopenia while no significant difference was observed between healthy controls and mild cases. This finding corroborates with previously reported data in which thrombocytopenia was observed in patients

Table 2 Comparison of cytokine levels between healthy controls, uncomplicated and complicated Plasmodium vivax cases

Cytokines	Healthy controls	Uncomplicated malaria	Complicated malaria	P-value UM vs CM				
	Mild	Moderate	Profound	Mild	Moderate	Profound		
TNF	178 (57–296)	165 (116–310)	235 (168–647)	482 (320–685)	177 (110–306)	249 (181–664)	652 (339–705)	<0.0001*
IL-6	87 (79–93)	215 (219–357)	229 (105–1,107)	313 (149–858)	238 (225–428)	253 (123–1,118)	438 (157–855)	0.352
IL-10	37 (21–88)	498 (316–825)	1,079 (428–2,152)	2,552 (995–6,400)	556 (326–886)	1,223 (459–2,269)	4,250 (958–6,750)	<0.0001*

Values represent medians with interquartile ranges (25th and 75th percentile). Mann–Whitney U test used to determine significant differences between groups.

* = significant (p-value <0.05).
** = highly significant.

Table 3 Correlation of cytokines with thrombocytopaenia in complicated Plasmodium vivax cases

	IL-6	IL-10	TNF-α
Mild			
IL-6	1.00	0.756	–0.108
IL-10	1.00	0.764	1.00
TNF-α			1.00
Moderate			
IL-6	1.00	–0.02*	–0.158
IL-10	1.00	0.158	1.00
TNF-α			1.00
Profound			
IL-6	1.00	–0.0001**	0.0001**
IL-10	1.00	0.336**	1.00

Spearman rank correlation was performed. p <0.05 considered significant.
* = significant.
** = highly significant.

Table 4 % positivity of thrombocytopaenia in complicated cases

Complications	No. of patients	% positivity
Pulmonary oedema/respiratory distress	31	11.2
Metabolic acidosis	20	6.8
Jaundice	26	21.8%
Haemoglobinuria	5	5.2%
exhibiting high TNF levels [33]. It has been postulated that TNF induced thrombocytopaenia is a result of platelet trapping and consumption that occurs in inflamed blood vessels [34]. In P. falciparum, this process is well documented and has been associated with immunologically mediated endothelial activation that allows platelet adherence via endothelial adhesion molecules on the blood lining [35]. In P. vivax, thrombocytopaenia due to platelet consumption via endothelial adherence/destruction and coagulopathy has also been documented [36,37]. Elevated levels of TNF in this study imply a similar role of this cytokine in P. vivax-associated thrombocytopaenia. However, further studies are required to understand the role of TNF in platelet consumption.

Insignificant increase in IL-6 levels (p value = 0.352) was observed in uncomplicated and complicated cases exhibiting profound thrombocytopaenia. This finding concurs with previous studies that document the role of IL-6 in platelet production [38,39]. Increased IL-6 levels have been reported in patients with reactive thrombocytosis [40–42]. Furthermore, administration of IL-6 in humans has been associated with increase in circulating platelet counts [43–49]. Thus, a finding of non-significant increase in IL-6 levels in mild, moderate and profound thrombocytopaenic cases implies that regulation of platelet production by IL-6 is disturbed in P. vivax cases leading to worsening thrombocytopaenia status.

A significant increase of IL-10 in moderate and profound uncomplicated and complicated P. vivax cases was observed in this study. This finding corroborates with previously reported data that reports elevated IL-10 levels in malaria thrombocytopaenia [3,25,33]. Furthermore, decreased platelet production in humans in response to administration of recombinant IL-10 has also been documented. The same study postulated that IL-10-induced reduction in platelet count is possibly due to reduction in platelet production [50]. It is possible that similar mechanism of reduced platelet production due to high IL-10 levels is responsible for P. vivax-associated thrombocytopaenia in this study. Regulatory cytokines, such as IL-10, are required to reduce the risk of severe disease or more tissue injury in malaria. Therefore, intrinsic IL-10 response induced in response to protecting the host against injury results in down regulation of platelet production mechanisms, thus leading to manifestation of thrombocytopaenia.

To understand complex interaction between cytokines and platelet counts in complicated cases, Spearman rank correlation analysis was performed. It was observed that negative correlation existed between IL-6 and IL-10 in both moderate and profound cases indicating that as IL-10 levels increase, IL-6 levels decrease leading to reduction/disturbance in platelet production. Consequently, this elevated anti-inflammatory bias results in aggravation of thrombocytopaenia in P. vivax cases. A significant positive correlation between IL-10 and TNF-α in profound cases further strengthens the role of respective cytokines in platelet consumption, trapping and dysregulation of platelet production. Thus, findings from this study corroborate previously reported data and indicate a possible role of pro- and anti-inflammatory cytokines in manifestation of thrombocytopaenia in P. vivax malaria.

Though this study was performed and analyzed keeping all aspects in perspective, however, there are certain limitations in this study. Reference ranges for thrombocytopaenia utilized for this study were derived from those used in The Aga Khan University laboratory. Secondly, parasitaemias and patient data, such as days of fever and temperature at admission, was not documented and, therefore, could not be used for analysis as done previously in other studies [5,51,52]. Hence, it was not possible to evaluate differences in parasitaemia in relation to thrombocytopaenia and cytokine levels. Furthermore, some studies have also reported age to significantly affect platelet count in malaria patients. In this study, the average age of the patients was between 33–42 years. Since no significant differences with respect to age were observed therefore data was not analyzed for age. However, to better understand the dynamics of thrombocytopaenia and cytokine levels future studies focusing on all these aspects in P. vivax is suggested.

Conclusion
Findings from this study give an insight from Pakistan on the role of cytokines in P. vivax-associated thrombocytopaenia. However, further studies are required to understand the relevance of cytokines in manifestations of thrombocytopaenia in P. vivax malaria.

Competing interests
The authors have declared that they have no competing interests.

Authors’ contributions
AR designed and planned the study, performed ELISA, statistical analysis and interpretation as well as composed the manuscript. SK and NKG performed interpretation of data and reviewed the final draft. AHR performed all statistical analysis. MAB designed and planned the study, reviewed data analysis, interpretation and the final draft. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by Aga Khan University Research Council grant (grant ID: 102017P&M). We are thankful to the study participants for their participation. We are also grateful to The Aga Khan University for providing core facilities in MDL laboratory for performing experiments.

Author details
1Department of Pathology and Microbiology, Aga Khan University, Stadium Road, PO Box 3500, Karachi 74800, Pakistan. 2Dow University of Health Sciences, Civil Hospital, Karachi 74800, Pakistan.

Received: 24 May 2014 Accepted: 5 August 2014
Published: 16 August 2014
References

1. WHO: World Malaria Report 2011, eighth edition. Geneva: World Health Organization; 2011:246.

2. Lacerd MV, Mouro NP, Coelho HC, Santos JB: Thrombocytopenia in malaria: who cares? Mem Inst Oswaldo Cruz 2011, 106 Suppl 1:52–63.

3. Casali-Pascual CK, Newton CR, Peshu N, Roberts DL: Thrombocytopenia in falciparum malaria is associated with high concentrations of IL-10. Am J Trop Med Hyg 2006, 75:434–436.

4. Echeverri M, Tobon A, Alvarez G, Carmona J, Blair S: Clinical and laboratory findings of Plasmodium vivax malaria in Colombia, 2001. Rev Inst Med Trop Sao Paulo 2003, 45:29–34.

5. González BHH, De Donato M, Benitezito M, Gómez C, González L: Hematologic variations in patient with malaria caused by Plasmodium vivax before, during and after treatment. Rev Clin Med 2009, 50:187–201.

6. Jadhav UM, Patkar VS, Kadam NN: Changes in white blood cells and platelets in children with falciparum malaria: relationship to disease outcome. Br J Haematol 2002, 115:839–847.

7. Mohanty D, Ghosh K, Nandwani SK, Shetty S, Phillips C, Rizvi S, Parmar BD: Thrombocytopenia in Plasmodium vivax malaria with severe thrombocytopenia and bleeding manifestations in two children secondary to Plasmodium vivax. Pediatr 2010, 21:307–309.

8. Harish R, Gupta S: Thrombocytopenia in Plasmodium vivax malaria presenting with severe thrombocytopenia, cerebral complications and hydrocephalus. Indian J Pediatr 2009, 76:521–522.

9. Lacerd MV, Hipolito JR, Passos LN: Chronic Plasmodium vivax infection in a patient with splenomegaly and severe thrombocytopenia. Rev Soc Bras Med Trop 2008, 41:522–523.

10. Lacorda MV, Santos PD, Arcanjo AR, Alecrim WD, Alecrim MGC: Idiopathic thrombocytopenic purpura due to vivax malaria in the Brazilian Amazon. Acta Trop 2004, 90:187–190.

11. Parakh A, Agarwal N, Aggarwal A, Aneja A: Plasmodium vivax malaria in children: uncommon manifestations. Ann Trop Paediatr 2009, 29:253–256.

12. Song JY, Park CW, Jo YM, Kim JY, Kim JH, Yoon HJ, Kim CH, Lim CS, Cheong HM: Thrombocytopenia in malaria patients with severe thrombocytopenia and bleeding manifestations. J Pediatr Hematol Oncol 2009, 31:758–759.

13. Yamaguchi S, Kubota T, Yamagishi T, Okamoto K, Izumi T, Takada M, Kanou S, Suzuki M, Tsuichiy J, Naruse T: Severe thrombocytopenia suggesting immunological mechanisms in two cases of vivax malaria. Ann J Hematol 1997, 56:183–186.

14. D'Acencment V, Landry P, Mueller L, Pecoud A, Genton B: Clinical and laboratory predictors of imported malaria in an outpatient setting: an aid to medical decision making in returning travelers with fever. Am J Trop Med Hyg 2002, 66:481–486.

15. Lawh TB: Can hematological parameters discriminate malaria from nonmalaria acute febrile illness in the tropics? Indian J Med Sci 2004, 58:239–244.

16. Patel U, Gandhi G, Friedman S, Niranjans S: Thrombocytopenia in malaria. J Natl Med Assoc 2004, 96:1212–1214.

17. Coelho HCLS, Pimentel JP, Nogueira PA, Costa FT, Siqueira AM, Melo GC, Monteiro VM, Malheiro A, Lacerda MV: Thrombocytopenia in Plasmodium vivax malaria is related to platelets phagocytosis. PLoS One 2006, 8636410.

18. Grau GE, Piguet PF, Greten D, Vesin C, Lambert PH: Immunopathology of thrombocytopenia in experimental malaria. Immunology 2008, 65:501–506.

19. Kaser A, Brandacher G, Steurer W, Kaser S, Offner FR, Zoller H, Theurl I, Wider M, Wolmar C, Ludwiczek O, Atkins MB, Mier JW, Tild H: Interleukin-6 stimulates thrombopoiesis through thrombopoietin, role in inflammatory thrombocytosis. Blood 2001, 98:2720–2725.

20. Wenisch C, Linnau KF, Loaoesuwarn S, Rumpold H: Plasma levels of the interleukin-6 cytokine family in persons with severe Plasmodium falciparum malaria. J Infect Dis 1999, 179:747–750.

21. Williams JR: The Declaration of Helsinki and public health. Bull World Health Organ 2008, 86:650–652.

22. Warhurst DC, Williams JE: Laboratory diagnosis of malaria. J Clin Pathol 1996, 49:533–538.

23. Snouvon GV, Jara W, Thaithong S, Brown KN: Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol 1993, 58:283–292.

24. Hussain RKA, Shahid F, Dcoli M, Jami B, Mehrmodd H, Dawood G, Dockrell HM: Cytokine profiles using whole-blood assays can discriminate between tuberculosis patients and healthy endemic controls in a BCG vaccinated population. J Immunol Meth 2002, 264:95–108.

25. Park JWP, Yeom JS, Huh AI, Cho YK, Ahn YJ, Min GS, Song GY, Kim YA, Ahn SY, Woo SY, Lee BE, Ha EH, Han HS, Yoo K, Seoh YJ: Serum cytokine profiles in patients with Plasmodium vivax malaria: a comparison between those who presented with and without thrombocytopenia. Ann Trop Med Parasitol 2003, 97:339–344.

26. Arima A: Fibrinolysis, inhibitors of blood coagulation, and monocyte derived coagulant activity in acute malaria. Fibrinolysis 2010, 20:1–14.

27. Moore AR, Wilkinson NJS, Mansfield J: Clinical and laboratory findings in acute malaria caused by various plasmodium species. J Pediatr Med 2009, 5:270–272.

28. Srivastava S, Ahmad S, Shirazi N, Kumar Verma S, Puri P: Changes in the total leukocyte and platelet counts in Papuan and non Papuan adults from northeast Papua infected with Plasmodium vivax. Mem Inst Oswaldo Cruz 2008, 103:157–160.

29. Harish R, Gupta S: Thrombocytopenia in Plasmodium vivax malaria with severe thrombocytopenia and bleeding manifestations. J Pediatr Hematol Oncol 2009, 31:758–759.

30. Harish R, Gupta S: Thrombocytopenia in Plasmodium vivax malaria presenting with severe thrombocytopenia, cerebral complications and hydrocephalus. Indian J Pediatr 2009, 76:521–522.

31. Lacerd MV, Hipolito JR, Passos LN: Chronic Plasmodium vivax infection in a patient with splenomegaly and severe thrombocytopenia. Rev Soc Bras Med Trop 2008, 41:522–523.

32. Lacorda MV, Santos PD, Arcanjo AR, Alecrim WD, Alecrim MGC: Idiopathic thrombocytopenic purpura due to vivax malaria in the Brazilian Amazon. Acta Trop 2004, 90:187–190.

33. Parakh A, Agarwal N, Aggarwal A, Aneja A: Plasmodium vivax malaria in children: uncommon manifestations. Ann Trop Paediatr 2009, 29:253–256.

34. Song JY, Park CW, Jo YM, Kim JY, Kim JH, Yoon HJ, Kim CH, Lim CS, Cheong HM: Two cases of Plasmodium vivax Malaria with the clinical picture resembling toxic shock. Am J Trop Med Hyg 2007, 77:609–611.

35. Thapa R, Biswas B, Malikic D, Sardar S, Modak S: Childhood Plasmodium vivax malaria with severe thrombocytopenia and bleeding manifestations. J Pediatr Hematol Oncol 2009, 31:758–759.

36. Yamaguchi S, Kubota T, Yamagishi T, Okamoto K, Izumi T, Takada M, Kanou S, Suzuki M, Tsuichiy J, Naruse T: Severe thrombocytopenia suggesting immunological mechanisms in two cases of vivax malaria. Ann J Hematol 1997, 56:183–186.

37. D’Acencment V, Landry P, Mueller L, Pecoud A, Genton B: Clinical and laboratory predictors of imported malaria in an outpatient setting: an aid to medical decision making in returning travelers with fever. Am J Trop Med Hyg 2002, 66:481–486.

38. Lawh TB: Can hematological parameters discriminate malaria from nonmalaria acute febrile illness in the tropics? Indian J Med Sci 2004, 58:239–244.

39. Patel U, Gandhi G, Friedman S, Niranjans S: Thrombocytopenia in malaria. J Natl Med Assoc 2004, 96:1212–1214.

40. Coelho HCLS, Pimentel JP, Nogueira PA, Costa FT, Siqueira AM, Melo GC, Monteiro VM, Malheiro A, Lacerda MV: Thrombocytopenia in Plasmodium vivax malaria is related to platelets phagocytosis. PLoS One 2006, 8636410.
46. Schrezenmeier H, Marsh JC, Stromeyer P, Müller H, Heimpel H, Gordon-Smith EC, Raghavachar A: A phase I/II trial of recombinant human interleukin-6 in patients with aplastic anaemia. Br J Haematol 1995, 90:283–292.

47. van Gameren MM WP, Mulder NH, Limburg PC, Groen HJ, Vellenga E, de Vries EG: Effects of recombinant human interleukin-6 in cancer patients: a phase I-II study. Blood 1994, 84:1434–1441.

48. Veldhuis GJWP, Steijler DT, van der Graaf WT, Groen HJ, Limburg PC, Mulder NH, de Vries EG: Toxicity and efficacy of escalating dosages of recombinant human interleukin-6 after chemotherapy in patients with breast cancer or non-small-cell lung cancer. J Clin Oncol 1995, 13:2585–2593.

49. Weber J, Yang JC, Topalian SL, Parkinson DR, Schwartzentubbe DS, Ettinghausen SE, Gunn H, Mixon A, Kim H, Cole D: Phase I trial of subcutaneous interleukin-6 in patients with advanced malignancies. J Clin Oncol 1993, 11:499–506.

50. Sosman JA, Verma A, Moss S, Sorokin P, Blend M, Bradlow B, Chachlani N, Cutler D, Sabo R, Nelson M, Bruno E, Gustin D, Viana M, Hoffman R: Interleukin 10-induced thrombocytopenia in normal healthy adult volunteers: evidence for decreased platelet production. Br J Haematol 2000, 111:104–111.

51. Maina RN, Walsh D, Gaddy C, Hongo G, Watumbi J, Otheno L, Jones D, Ogutu BR: Impact of Plasmodium falciparum infection on haematological parameters in children living in Western Kenya. Malar J 2010, 9 Suppl 3:S4.

52. Saravu K, Docherla M, Vasudev A, Shastry BA: Thrombocytopenia in vivax and falciparum malaria: an observational study of 131 patients in Karnataka, India. Ann Trop Med Parasitol 2011, 105:593–598.

doi:10.1186/1475-2875-13-323

Cite this article as: Raza et al.: Tumour necrosis factor, interleukin-6 and interleukin-10 are possibly involved in Plasmodium vivax-associated thrombocytopenia in southern Pakistani population. Malaria Journal 2014 13:323.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit