Supplementary Appendix for

The Origin and Early Evolution of the Legumes are a Complex
Paleopolyploid Phylogenomic Tangle closely associated with the
Cretaceous-Paleogene (K-Pg) Boundary

Authors:
Erik J.M. Koenen1*, Dario I. Ojeda2,3, Royce Steeves4,5, Jérémy Migliore2, Freek Bakker6, Jan J. Wieringa7, Catherine Kidner8,9, Olivier Hardy2, R. Toby Pennington6,10, Patrick S. Herendeen11, Anne Bruneau8 and Colin E. Hughes4

1 Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
2 Service Évolution Biologique et Écologie, Faculté des Sciences, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium
3 Norwegian Institute of Bioeconomy Research, Høgskoleveien 8, 1433 Ås, Norway
4 Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, Canada
5 Fisheries & Oceans Canada, Gulf Fisheries Center, 343 Université Ave, Moncton, NB E1C 5K4, Canada
6 Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
7 Naturalis Biodiversity Center, Leiden, Darwinweg 2, 2333 CR, Leiden, The Netherlands
8 Royal Botanic Gardens, 20a Inverleith Row, Edinburgh EH3 5LR, U.K.
9 School of Biological Sciences, University of Edinburgh, King’s Buildings, Mayfield Rd, Edinburgh, UK
10 Geography, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, U.K.
11 Chicago Botanic Garden, 1000 Lake Cook Rd, Glencoe, IL 60022, U.S.A.

* Correspondence to be sent to: Zollikerstrasse 107, CH-8008, Zurich, Switzerland; phone: +41 (0)44 634 84 16; email: erik.koenen@systbot.uzh.ch.
Methods S1. Discussion on fossils used for calibrating divergence time analyses.

Non-legume Eudicot Fossils

These were taken from Magallon et al. (2015) and are thoroughly discussed in the supplementary information of that article. The numbers listed in Table 1 are the same numbers as used in the Supplementary Information Methods 1 of Magallon et al. (2015). We have followed their fossil placements although our more limited taxon sampling means that some minimum ages are placed on deeper nodes. The only exception is the stem node of Fagales (calibration X14), which was here calibrated using the oldest fossil prior used by Xing et al. (2014). All minimum ages were updated to the latest version of the Geologic Time Scale (v. 4.0; Gradstein et al., 2012).

Legume Fossils

The selection of legume fossils used here for calibrating the divergence time estimation analyses differs from previous legume time tree studies (Lavin et al., 2005; Bruneau et al., 2008; Simon et al., 2009), both in the placement of fossils as well as in the minimum ages that some of these fossils represent. Calibrations Q2 and Z are used for the first time here. Calibrations A, D, F, G, I2, M2 and Q are labelled according to the schemes of Bruneau et al. (2008) and/or Simon et al. (2009), and differences from previous studies are discussed here. Other fossils used by Bruneau et al. (2008) and/or Simon et al. (2009) are not used here because of our sparser taxon sampling.
First, we did not fix the crown age of the family, which is critical as it is the most important node for which we want to estimate the age. The oldest definitive legume fossil, a fossil wood from the Early Paleocene of Patagonia (Brea et al., 2008), is used to set a minimum age on the stem node of the family at 63.5 Ma (calibration A, same node as in Bruneau et al. (2008) and Simon et al. (2009), but a new fossil and minimum age). This calibration is probably not very informative because of the long stem of the family, but it is included for completeness. The oldest crown group fossil, bipinnate leaves from the Late Paleocene of Colombia (Wing et al., 2009; Herrera et al., submitted), is placed on the stem node of Caesalpinioideae with a minimum age of 58 Ma (calibration Z), a new calibration that has not been used in previous studies. This calibration renders the calibration of the stem of Papilionoideae (which is sister to Caesalpinioideae), with fossil flowers of Barnebyanthus buchananensis from the Paleocene-Eocene boundary at 56 Ma (Crepet & Herendeen, 1992), redundant.

We find the interpretation of some Early and Middle Eocene fossils, that were used in previous studies to calibrate lineages within crown group Cercidoideae and Detarioideae (Bruneau et al., 2008; Simon et al., 2009) to be problematic. Bruneau et al. (2008: Table 3) already pointed out the large discrepancy in age estimates of Detarioideae between calibrated and non-calibrated analyses. Given that this subfamily has a very long stem lineage (Figs 2 & 3), placing Early to Middle Eocene fossils within the crown group would require very high inferred substitution rates along the stem lineage, while at the same time implying a relatively low substitution rate for the Detarioideae crown group lineages (see Results). Cercidoideae are also subtended by a long stem lineage, leading to similar, although less severe substitution rate discrepancies than in Detarioideae. We investigate and test this with molecular clock analyses with fixed local clocks, as described below. Here, we
discuss the interpretation of these fossils as either stem or crown relatives and how we have calibrated lineages from subfamilies Cercidoideae and Detarioideae.

Bauhinia-like bilobed leaves from the Eocene of Tanzania (c. 46 Ma) (Jacobs & Herendeen, 2004) were used by Bruneau et al. (2008) and Simon et al. (2009) to calibrate the stem lineage of *Bauhinia* s.l.. This leaf type is highly characteristic for Cercidoideae and therefore the fossil is certainly representative of the subfamily. However, even though this type of leaf is not found in *Cercis*, which has been found to be sister to the rest of the genera in the subfamily (Bruneau et al., 2008; Wang et al., 2018), it may not provide a strong apomorphy for crown group Cercidoideae. Leaves in *Bauhinia* s.l. are variously bifoliolate, bilobed or entire, implying that entire leaves like those of *Cercis* have evolved multiple times independently, leading to homoplasy. This means that the bilobed leaves may have been present in the most recent common ancestor (MRCA) or stem relatives of Cercidoideae, and evolved to having an entire lamina in *Cercis*. If the Tanzanian fossils are a possible stem-relative of Cercidoideae, we consider the oldest definitive crown group fossil evidence to be the recently described *Cercis* fossil leaves and fruits from the Late Eocene of Oregon (Jia & Manchester, 2014), at c. 36 Ma (calibration C, a slightly older minimum age than used by Bruneau et al. (2008) and Simon et al. (2009)).

Bifoliolate leaves from the same fossil site in Tanzania as the *Bauhinia* fossil were ascribed to *Aphanocalyx* (Detarioideae) (Herendeen & Jacobs, 2000) based on distinctive venation patterns, after comparing the leaves to all extant legume genera with bifoliolate leaves. The fossil was used to calibrate the stem lineage of that genus by Bruneau et al. (2008) and Simon et al. (2009). The genus is deeply nested within Detarioideae, also meaning that the difference between age estimates from calibrated and uncalibrated analyses is large (46.0 vs 4.4 Ma; Bruneau et al., 2008: Table 3). While venation patterns can be
diagnostic in many cases, they are often variable even within modern genera and likely to be homoplasious. Therefore, these fossils might also represent an extinct lineage, possibly a stem relative of Detarioideae, that had evolved similar leaf morphology to extant Aphanocalyx. Moreover, the author of the most recent taxonomic account of Aphanocalyx (Wieringa, 1999), Jan Wieringa, does not accept this fossil as belonging to the genus. It also does not fit with the morphology-based phylogeny of Aphanocalyx which shows that bifoliolate leaves have evolved recently and are derived within Aphanocalyx (Wieringa, 1999). In general, leaflet numbers are highly variable across Detarioideae, so relatives of fossils should not be sought only among other bifoliolate taxa.

Further evidence of Detarioideae from the Eocene is found at two localities within the Claiborne Formation in western Tennessee, USA. Fruits and leaflets from those sites are ascribed to the genus Crudia (Herendeen & Dilcher, 1990). As for the Aphanocalyx fossil, the affinities of the fossils were carefully evaluated before concluding that they are related to Crudia. Bruneau et al. (2008) and Simon et al. (2009) used this fossil to calibrate the stem of Crudia at 45 Ma, but as for the Aphanocalyx fossil age, an uncalibrated analysis finds a far younger age (6.9 Ma; Bruneau et al., 2008: Table 3). It is possible that in this case, an extinct detarioid lineage may have evolved morphological features similar to extant Crudia species independently. The raised venation on the fruit valves and twisted petiolules that most strongly resemble Crudia, for example, are both homoplasious across Detarioideae.

Fossil wood, flowers and amber of Aulacoxylon sparnacense, which has previously been interpreted as related to the extant genus Daniellia (Detarioideae), from the Early Eocene of the Paris basin (De Franceschi & De Ploëg, 2003), provide the most convincing evidence of fossils representing Early to Middle Eocene crown group members of Detarioideae. The fossil wood has vestured pits and resin canals, like modern resin-producing
Detarioideae and the amber deposits are chemically similar to the Dominican ambers. Bruneau et al. (2008) considered the wood and flowers similar to *Daniellia*, but suggested they could also belong to a different genus of resin-producing Detarieae. However, it is also possible that resin-production was already present in stem-relatives of Detarioideae. This is quite likely given that this trait is homoplasious across the resin-producing clade, having apparently been independently gained or lost several times, with only about half of the extant genera in the clade producing resin (Fougère-Danezan et al., 2007). If the production of resin evolved in the ancestral lineage of Detarioideae it would not require many more losses to account for the absence of the trait in the other lineages of the subfamily, because the resin-producing clade branches deeply within Detarioideae and the basal relationships of the subfamily are poorly resolved and understood (Bruneau et al., 2008; de la Estrella et al., 2018). Furthermore, the large majority of genera in the subfamily are confined to the large clade of Amherstieae, so perhaps only a single additional loss of the trait in the lineage leading to this clade could have produced this homoplasious pattern. This makes it possible that the Paris basin fossils belong to an extinct genus belonging to the stem group of Detarioideae. Therefore, the *Aulacoxylon* fossils can be used either to calibrate the stem node of the resin producing clade (calibration G², as was done by Bruneau et al., (2008) and Simon et al., (2009) or the stem node of Detarioideae (calibration G), with a minimum age of 53 Ma.

For the disputed age of Dominican amber (Iturralde-Vinent & MacPhee, 1996), an intermediate age of 24 Ma was chosen by Bruneau et al. (2008), which was followed by Simon et al. (2009), but it is preferable to not consider an intermediate age as a valid minimum, but rather to use the minimum age that was estimated for Mexican amber that includes flowers of *Hymenaea mexicana*, the extinct species that presumably produced the amber (Poinar & Brown, 2002), and we calibrate the Detarieae s.s. stem node with a
minimum age of 22.5 Ma (calibration F, a more inclusive node than in Bruneau et al. (2008) and Simon et al., (2009), and a different fossil age).

The calibration of the stem group of Styphnolobium and Cladrastis (calibration I2) is the same as used in Bruneau et al. (2008) and Simon et al. (2009), but the minimum age was updated to 37.8 Ma according to the latest version of the Geologic Time Scale (v. 4.0; Gradstein et al., 2012), representing the end of the Middle Eocene (end of the Bartonian). Calibration M2 is the same as used in Simon et al., (2009) but since Robinia itself is not sampled here, we place it on the stem node of the robinioid clade (represented here by Lotus japonicus) and update the minimum age to the Eocene-Oligocene boundary at 33.9 Ma.

Bruneau et al. (2008) and Simon et al. (2009) also set the ages of several fossil calibrations at the midpoint of the Eocene, at 45 Ma. This led to a bias that was observable in an LTT plot of legumes (Koenen et al., 2013), and here we prefer to use the minimum boundary ages for these fossils. Although most of these calibrations are not used in our analyses due to sparser taxon sampling, we use one of these fossils, Acacia-like polyads, to calibrate the minimum stem age of the clade including all Acacia s.l. segregates at 33.9 Ma, the Eocene-Oligocene boundary (calibration Q, same node but younger age than Bruneau et al., (2008) and Simon et al., (2009)). Finally, we add calibration Q2, based on Australian Oligocene polyads with pseudocolpi (Miller et al., 2013), which suggest affinity with Acacia s.s., and we calibrate the stem node of that genus with a minimum age of 23 Ma, the Oligocene-Miocene boundary.

Alternative Calibrations for Detarioideae and Cercidoideae
In the analysis with “alternative prior 1”, calibration C was replaced with a minimum age of 46 Ma on the stem of *Bauhinia*, based on fossil leaves from Tanzania (Herendeen & Jacobs, 2000; discussed above). Calibration G is applied on the stem of the resin-producing clade (i.e. the crown node of Detarioideae) instead of on the stem node of Detarioideae. Calibration H is taken from Bruneau et al. (2008) and Simon et al. (2009), and is added in the alternative analysis to specify a minimum age of 46 Ma on the stem of *Anthonotha*, based on fossil leaves assigned to the closely related genus *Aphanocalyx* from Tanzania (Herendeen & Jacobs, 2000; but see above).

References

Brea M., Zamuner A.B., Matheos S.D., Iglesias A., Zucof A.F. 2008. Fossil wood of the Mimosoideae from the early Paleocene of Patagonia, Argentina. *Alcheringa*. 32:427–441.

Bruneau A., Mercure M., Lewis G.P., Herendeen P.S. 2008. Phylogenetic patterns and diversification in the caesalpinioioid legumes. *Botany*. 86:697–718.

Crepet W.L., Herendeen PS. 1992. Papilionoid flowers from the early Eocene of southeastern North America. In: Herendeen P.S., Dilcher D.L., editors, *Advances in legume systematics part 4: The fossil record*. Richmond, UK: Royal Botanic Gardens, Kew. p. 43–55.

De Franceschi D., De Ploëg G. 2003. Origine de l’ambre des faciès sparnaciens (Éocène inférieur) du Bassin de Paris: le bois de l’ambre producteur. *Geodiversitas*. 25:633–647.

de la Estrella M., Forest F., Klitgård B., Lewis G.P., Mackinder B.A., de Queiroz L.P., Bruneau A. 2018. A new phylogeny-based tribal classification of subfamily Detarioideae, an
early branching clade of florally diverse tropical arborescent legumes. *Sci. Rep.* 8(1):6884.

Fougère-Danezan M., Maumont S., Bruneau A. 2007. Relationships among resin-producing Detarieae sl (Leguminosae) as inferred by molecular data. *Syst. Bot.* 32(4):748–761.

Gradstein F.M., Ogg J.G., Schmitz M.D., Ogg G.M. 2012. The Geologic Time Scale 2012. Boston, USA: Elsevier.

Herendeen P.S., Dilcher D.L. 1990. Reproductive and vegetative evidence for the occurrence of *Crudia* (Leguminosae, Caesalpinioidae) in the Eocene of southeastern North America. *Bot. Gaz.* 151:402–413.

Herendeen P.S., Jacobs B.F. 2000. Fossil legumes from the Middle Eocene (46.0 Ma) Mahenge Flora of Singida, Tanzania. *Am. J. Bot.* 87:1358–1366.

Iturralde-Vinent M.A., MacPhee R.D.E. 1996. Age and paleogeographical origin of Dominican amber. *Science.* 273:1850–1852.

Jacobs B.F., Herendeen P.S. 2004. Eocene dry climate and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania. *Palaeogeogr. Palaeocl.* 213:115–123.

Jia H., Manchester S.R. 2014. Fossil Leaves and Fruits of *Cercis* L. (Leguminosae) from the Eocene of Western North America. *Int. J. Plant Sci.* 175:601–612.

Koenen E.J.M., De Vos J.M., Atchison G.W., Simon M.F., Schrire B.D., De Souza E.R., de Queiroz L.P., Hughes C.E. 2013. Exploring the tempo of species diversification in legumes. *S. Afr. J. Bot.* 89:19–30.

Lavin M., Herendeen P.S., Wojciechowski M.F. 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. *Syst. Biol.* 54:575–594.
Magallón S., Gómez-Acevedo S., Sánchez-Reyes L.L., Hernández-Hernández T. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. *New Phytol.* 207:437–453.

Miller J.T., Murphy D.J., Ho S.Y.W., Cantrill D.J., Seigler D. 2013. Comparative dating of *Acacia*: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records. *Aust. J. Bot.* 61:436–445.

Poinar Jr G.O., Brown A.E. 2002. *Hymenaea mexicana* sp. nov. (Leguminosae: Caesalpinioideae) from Mexican amber indicates Old World connections. *Bot. J. Linn. Soc.* 139:125–132.

Simon M.F., Grether R., de Queiroz L.P., Skema C., Pennington R.T., Hughes C.E. 2009. Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. *Proc. Natl. Acad. Sci. USA.* 106:20359–20364.

Wang Y.-H., Wicke S., Wang H., Jin J.-J., Chen S.-Y., Zhang S.-D., Li D.-Z., Yi T.-S. 2018. Plastid genome evolution in the early-diverging legume subfamily Cercidoideae (Fabaceae). *Front. Plant Sci.* 9:138.

Wieringa J.J. 1999. *Monopetalanthus* exit. A systematic study of *Aphanocalyx*, *Bikinia*, *Icuria*, *Michelsonia* and *Tetramerlinia* (Leguminosae, Caesalpinioideae). *Agric. Univ. Wagening. Pap.* 99(4):1–320.

Wing S.L., Herrera F., Jaramillo C.A., Gómez-Navarro C., Wilf P., Labandeira C.C. 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. *Proc. Natl. Acad. Sci. USA.* 106:18627–18632.

Xing Y.X., Onstein R.E., Carter R.J., Stadler T., Linder H.P. 2014. Fossils and a large molecular phylogeny show that the evolution of species richness, generic diversity and turnover rates are disconnected. *Evolution.* 68:2821–2832.
Table S1. Accession information for the taxa included in the chloroplast alignment.

Taxon	Herbarium voucher	Genbank accession number	Comments
Abarema jupunba	M.F. Simon 1600 (CEN)	XXXXXXXXXXXX	Newly sequenced
Acacia koa	see Table S1.		Transcriptome
Acacia ligulata	LN555649.2		
Acrocarpus fraxinifolius		Transcriptome, available at https://ics.hutton.ac.uk/tropiTree/	
Adenanthera pavonina	Ambriansyah & Arifin AA295 (K)	XXXXXXXXXXXX	Newly sequenced
Afzelia africana	S.L.A. Donkpegan 27 (BRLU)	KX673213	
Afzelia bipindensis	S.L.A. Donkpegan 626 (BRLU)	XXXXXXXXXXXX	Newly sequenced
Ajuga reptans		KF709391	
Albizia adianthifolia	J.J. Wieringa 6278 (WAG)	XXXXXXXXXXXX	Newly sequenced
Albizia julibrissin	E. Koenen 601 (Z)	XXXXXXXXXXXX	Newly sequenced; Transcriptome
Anthonotha fragrans	see Table S1.		Newly sequenced; Transcriptome
Apios americana		KF856618	
Arabidopsis thaliana		AP000423	
Arachis hypogaea		KJ468094	
Arachis ipaensis		GBIW00000000	Transcriptome
Aralia undulata	R. Li 551 (KUN)	KC456163	
Archidendron lucidum	Wang & Lin 2534 (L)	XXXXXXXXXXXX	Newly sequenced
Astragalus membranaceus		Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq	
Astragalus propinquus		Transcriptome, OneKP: MYMP, available at	
Species	Accession Numbers	Transcriptome, available at	
-------------------------------	---	--	
Azadirachta indica	KF986530	http://dx.doi.org/10.5061/dryad.ff1tq	
Bauhinia tomentosa	see Table S1.		
Bituminaria bituminosa	see Table S1.	Transcriptome, OneKP: TVSH, available at http://www.onekp.com/public_data.html	
Bulnesia arborea	M.J. Moore 334 (FLAS)	EU002159, EU002172, EU002205, EU002275, EU002299, EU002388, EU002478, GQ998005-GQ998073, HQ664597	
Buxus microphylla	EF380351		
Calliandra hygrophiila	L.P. Queiroz 15542 (HUEFS)	XXXXXXXXXXXXXX	Newly sequenced
Carica papaya	EU431223		
Ceratonia siliqua	KJ468096		
Cercis canadensis	KF856619		
Chamaecrista fasciculata	see Table S1.	Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq	
Chidlowia sanguinea	J.J. Wieringa 4338 (WAG)	XXXXXXXXXXXXXX	Newly sequenced
Chrysobalanus icaco	KJ414480		
Cicer arietinum	EU835853		
Citrus sinensis	DQ864733		
Cladrastis lutea		Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq	
Codariocalyx motorius		Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq	
Coffea arabica	EF044213		
Taxon	Accession Information	Notes	
-------------------------------	--	--	
Cojoba arborea	M.F. Simon 1545 (CEN) XXXXXXXXXXXXX	Newly sequenced	
Colvillea racemosa	Kew living collection 1993-224 (K) XXXXXXXXXXXX	Newly sequenced	
Copaifera officinalis	Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq		
Cucumis sativus	AJ970307		
Daucus carota	DQ898156		
Desmanthus illinoiensis	Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq		
Dialium guineense	T. van Andel 4184 (WAG) XXXXXXXXXXXXX	Newly sequenced	
Dichrostachys cinerea	O. Maurin 256 (JRAU) XXXXXXXXXXXXX	Newly sequenced	
Dimorphandra macrostachya	J.R. Iganči 877 (RB) XXXXXXXXXXXX	Newly sequenced	
Diptychandra aurantiaca	J.R.I. Wood 26513 (K) XXXXXXXXXXXX	Newly sequenced	
Distemonanthus benthamianus	G. Dauby 728 (BRLU) XXXXXXXXXXXX	Newly sequenced	
Duparquetia orchidacea	J.J. Wieringa 7805 (L) XXXXXXXXXXXX	Newly sequenced	
Entada abyssinica	MSB 0133199 (K) XXXXXXXXXXXX	Newly sequenced; Transcriptome	
Entada rheedei	E. Koenen 496 (Z) XXXXXXXXXXXX	Newly sequenced	
Erythrophleum ivorensii	J.J. Wieringa 5487 (WAG) XXXXXXXXXXXX	Newly sequenced	
Erythrostemon gilliesii	R. Steeves 852 (MT) XXXXXXXXXXXX	Newly sequenced	
Eucalyptus grandis	HM347959		
Euonymus americanus	W. Judd 8071 (FLAS) EU002160, EU002170, EU002193, EU002277, EU002321, EU002409, EU002500, GQ998147-GQ998219, HQ664608	Newly sequenced	
Species	Accession Numbers	Status	
-------------------------	---	----------------------	
Fagopyrum esculentum	EU254477		
Faidherbia albida	O. Maurin 3495 (JRAU) XXXXXXXXXX Newy sequenced		
Garcinia mangostana	HQ331601, HQ331906, HQ332057, HQ848709, JX661816, JX661859, JX661902, JX661944, JX661980, JX662020, JX662065, JX662109, JX662151, JX662196, JX662237, JX662279, JX662320, JX662359, JX662399, JX662434, JX662467, JX662502, JX662543, JX662580, JX662622, JX662666, JX662710, JX662752, JX662799, JX662841, JX662880, JX662914, JX662955, JX662996, JX663032, JX663071, JX663104, JX663149, JX663196, JX663237, JX663280, JX663322, JX663365, JX663410, JX663583, JX663630, JX663677, JX663721, JX663763, JX663804, JX663841, JX663874, JX663915, JX663962, JX664006, JX664049, JX664091, JX664127, JX664165, JX664209, JX664252, JX664297, JX664341, JX664385,		
Species	Accession Numbers	Notes	
----------------------------	-------------------	--	
Gleditsia sinensis	JX664458, JX664495, JX664535, JX664580, JX664623, JX664659, JX664694, JX664726, JX664771, JX664812, JX664852, JX664895, JX664939, JX665004, KF783277, U92876, U92877, U92878	Transcriptome, OneKP: VHZV, available at http://www.onekp.com/public_data.html	
Gleditsia triacanthos		Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq	
Gliricidia sepium		Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq	
Glycine canescens	KC893635		
Glycine max	DQ317523		
Glycyrrhiza glabra	KF201590		
Glycyrrhiza lepidota		Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq	
Gompholobium polymorphum		Transcriptome, OneKP: VLN, available at http://www.onekp.com/public_data.html	
Gossypium hirsutum	DQ345959		
Guibourtia ehie	F. Tosso 272 (BRLU)	XXXXXXXXXXXXX	Newly sequenced
Guibourtia tussmannii		XXXXXXXXXXXXX	Newly sequenced
Guilfoylia monostylis	P.I. Forster 28103 (Z)	XXXXXXXXXXXXX	Newly sequenced
Gymnocalcis dioicus		Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq	
Haematoxylum brasiletto	KJ468097		
Helianthus annuus	DQ383815		
Species	Isotype/Collection	Accession	Status
--------------------------	--------------------	-----------	-------------
Hymenostegia brachyura	Zenker 4481 (WAG)	XXXXXXXX	Newly sequenced
Hymenostegia felicis	Jacques-Félix 5129 (WAG)	XXXXXXXX	Newly sequenced
Indigofera tinctoria		KJ468098	
Inga leiocalycina	T.D. Pennington 13822 (K)	KT428296	
Inga spectabilis	T.D. Pennington 15061 (K)	XXXXXXXX	Newly sequenced
Intsia bijuga		KX673214	
Lathyrus graminifolius		KJ806193	
Lathyrus sativus		HM029371	
Lens culinaris		KF186232	
Leucaena leucocephala		KT428297	
Libidibia coriaria		KJ468095	
Lotus japonicus		AP002983	
Lupinus luteus		KC695666	
Lupinus polyphyllus		KA027190	
Macadamia integrifolia		KF862711	
Manihot esculenta		EU117376	
Medicago hybrida		KJ850240	
Medicago truncatula		AC093544	
Microlobius foetidus	C.E. Hughes 1219 (FHO)	XXXXXXXX	Newly sequenced; Transcriptome
Millettia pinnata		JN673818	
Mimosa tenuiflora	L.P. Queiroz 15498 (HUEFS)	XXXXXXXX	Newly sequenced
Morus indica		DQ226511	
Nelumbo nucifera		JQ336993	
Nerium oleander	W. Judd 8076 (FLAS)	KJ953907	
Species	Accession Numbers	Status	
---------------------------------	--	----------------------	
Newtonia hildebrandtii	O. Maurin 2457 (JRAU) XXXXXXXXXXXX	Newly sequenced	
Oenothera biennis	EU262889		
Olea europaea	GU228899		
Oxalis latifolia	M.J. Moore 316 (FLAS) EU002165, EU002186, EU002186, EU002248, EU002282, EU002350, EU002438, EU002528, GQ998511-GQ998580, HQ664602, KF783277, U92876, U92877, U92878	Newly sequenced	
Pachyelasma tessmannii	J.J. Wieringa 5229 (WAG) XXXXXXXXXXXX	Newly sequenced	
Pachyrhizus erosus	KJ468100		
Paeonia obovata	KJ206533		
Parkia panurensis	J.R. Igançi 842 (RB) XXXXXXXXXXXX	Newly sequenced	
Pelargonium alternans	KF240617		
Peltophorum africanum	Koenen 601 (Z) XXXXXXXXXXXX	Newly sequenced	
Pentaclethra macrophylla	Galeuchet & Balthazar 10 (Z) XXXXXXXXXXXX	Newly sequenced	
Phaseolus vulgaris	DQ886273		
Piptadeniastrum africanum	E. Koenen 152 (WAG) XXXXXXXXXXXX	Newly sequenced	
Pisum sativum	HM029370		
Pithecellobium dulce	B. Marazzi 309 (?) XXXXXXXXXXXX	Newly sequenced	
Poeppigia procera	Hernández 558 (Z) XXXXXXXXXXXX	Newly sequenced	
Polygala lutea	EF489041		
Populus trichocarpa	KF753634		
Primula poissonii	KF753634		
Species	Accession	Notes	
---------------------------------	---------------	--	
Prioria balsamifera	XXXXXXXXXX	Newly sequenced; Transcriptome	
Prosopis alba		see Table S1.	
Prosopis glandulosa	KJ468101	Transcriptome	
Prunus persica	HQ336405		
Quercus rubra	JX970937		
Quillaja saponaria		Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq	
Ranunculus macranthus	DQ359689		
Robinia pseudoacacia	KJ468102		
Samanea saman	C.E. Hughes 421 (FHO) XXXXXXXXXX	Newly sequenced	
Sapindus mukorossi	KM454982		
Saraca indica	Kew living collection 2011-1421 (K) XXXXXXXXXX	Newly sequenced	
Schotia brachypetala	R. Steeves 846 (MT) XXXXXXXXXX	Newly sequenced	
Sedum sarmentosum	JX427551		
Senegalia ataxacantha	C. Jongkind 10603 (WAG) XXXXXXXXXX	Newly sequenced	
Senna hebecarpa		Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq	
Senna siamea		Transcriptome, available at https://ics.hutton.ac.uk/tropiTree/	
Sesbania macrantha		Transcriptome, available at https://ics.hutton.ac.uk/tropiTree/	
Sesbania sesban		Transcriptome, available at https://ics.hutton.ac.uk/tropiTree/	
Silene latifolia	JF715055		
Solanum lycopersicum	KP331414		
Styphnolobium japonicum	see Table S1.	Transcriptome, available at https://www.hindawi.com/journals/bmri/2014/75	
Species	Accession Number	Notes	
-------------------------------	------------------	--	
Swartzia emarginata	M.P. Morim 576 (RB)	XXXXXXXXXXXX Newly sequenced	
Tachigali odoratissima	M.P. Morim 562 (RB)	XXXXXXXXXXXX Newly sequenced	
Tamarindus indica		KJ468103	
Theobroma cacao		HQ244500	
Tipuana tipu		Transcriptome, available at https://ics.hutton.ac.uk/tropiTtree/	
Trachelium caeruleum		EU090187	
Trifolium aureum		KC894708	
Trifolium repens		KC894706	
Trochodendron aralioides		KC608753	
Vaccinium macrocarpon		JQ757046	
Vachellia tortilis	E. Koenen 603 (Z)	XXXXXXXXXXXX Newly sequenced	
Vicia faba		KF042344	
Vicia sativa		KJ850242	
Vigna radiata		GQ893027	
Vigna unguiculata		JQ755301	
Vitis vinifera		DQ424856	
Wisteria floribunda		Transcriptome, OneKP: RMWJ, available at http://www.onekp.com/public_data.html	
Xanthocercis zambesiaca		Transcriptome, available at http://dx.doi.org/10.5061/dryad.ff1tq	
Xanthophyllum eurhythnum	P. Herendeen H.416 (?)	XXXXXXXXXXXX Newly sequenced	
Xylica hoffmannii	E. Koenen 402 (Z)	XXXXXXXXXXXX Newly sequenced	
Zenia insignis	Averyanov et al. 5748 (?)	XXXXXXXXXXXX Newly sequenced	
Table S2. Accession information for the taxa included in the nuclear genomic and transcriptomic data set.

Taxon	Source	Citation	
Acacia koa	Genbank BioProject: PRJNA268386	Ishihara et al.	
Acrocarpus fraxinifolius	TropiTree: https://ics.hutton.ac.uk/tropiTree/	Russel et al. 2014	
Afzelia bella	Genbank BioProject: XXXXXXXXXX	Newly sequenced	
Albizia julibrissin	Genbank BioProject: XXXXXXXXXX	Newly sequenced	
Alnus serrulata	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Amaranthus hypochondriacus	Phytozome v11: v1.0	Clouse et al. 2016	
Anthonotha fragrans	Genbank BioProject: XXXXXXXXXX	Newly sequenced	
Apios americana	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Aquilegia coerulea	Phytozome v11: v3.1	Filiault et al. 2018	
Arabidopsis thaliana	Phytozome v11: TAIR10	Lamesch et al. 2012	
Arachis ipaensis	Peanutbase.org: K30076.a1.M1	Bertioli et al. 2016	
Astragalus membranaceus	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Bauhinia tomentosa	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Bituminaria bituminosa	OneKP: TVSH	Wicket et al. 2014	
Cajanus cajan	http://gigadb.org/dataset/100028	Varshney et al. 2012	
Cannabis sativa	Genbank BioProject: PRJNA74271	van Bakel et al. 2011	
Carica papaya	Phytozome v11: ASGPBv4.0	Ming et al. 2008	
Castanea mollissima	https://www.hardwoodgenomics.org/Genome-assembly/1962958	Not available	
Cercis canadensis	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Chamaecrista fasciculata	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Cicer arietinum	http://gigadb.org/dataset/100076	Varshney et al. 2013	
Citrus sinensis	Phytozome v11: v1.1	Wu et al. 2014	
Scientific Name	Database Reference	Authors	
------------------------------	--	------------------	
Cladrastis lutea	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Codariocalyx motorius	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Copaifera officinalis	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Cucumis sativus	Phytozome v11: v1.0	Not available	
Desmanthus illinoensis	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Elaeocarpus photiniifolia	Genbank BioProject: PRJDA67329	Sugai et al. 2012	
Entada abyssinica	Genbank BioProject: XXXXXXXXXXXXX	Newly sequenced	
Eucalyptus grandis	Phytozome v11: v2.0	Bartholomé et al. 2015	
Fragaria vesca	Phytozome v11: v1.1	Shulaev et al. 2011	
Gleditsia triacanthos	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Glycine max	Phytozome v11: Wm82.a2.v1	Schmutz et al. 2010	
Glycyrrhiza lepidota	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Gossypium raimondii	Phytozome v11: v2.1	Paterson et al. 2012	
Gymnocladus dioicus	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Inga spectabilis	https://doi.org/10.5061/dryad.r9c12	Nicholls et al. 2015	
Juglans regia	https://www.hardwoodgenomics.org/Genome-assembly/2209485	Martínez-García et al. 2016	
Lactuca sativa	Genbank BioProject: PRJNA65477	Not available	
Lathyrus sativus	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Lens culinaris	Genbank BioProject: PRJNA65667	Kaur et al. 2011	
Linum usitatissimum	Phytozome v11: v1.0	Wang et al. 2012	
Lotus japonicus	http://www.plantgdb.org/LjGDB/	Sato et al. 2008	
Lupinus angustifolius	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Lupinus polyphyllus	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Manihot esculenta	Phytozome v11: v6.1	Bredeson et al. 2016	
Medicago truncatula	Phytozome v11: Mt4.0v1	Young et al. 2011	
Species	BioProject Details	Source	
-------------------------	--	-------------------	
Microlobius foetidus	Genbank BioProject: XXXXXXXXXX	Newly sequenced	
Mimulus guttatus	Phytozome v11: v2.0	Hellsten et al. 2013	
Morus notabilis	Genbank BioProject: PRJNA202089 (assembly version ASM41409v2)	He et al. 2013	
Nelumbo nucifera	Genbank BioProject: PRJNA264089 (assembly version 1.1)	Ming et al. 2013	
Paeonia lactiflora	Genbank BioProject: PRJNA245064	Zhang et al. 2015	
Panax ginseng	Genbank BioProject: PRJNA173906	Li et al. 2013	
Papaver somniferum	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Phaseolus vulgaris	Phytozome v11: v1.0	Schmutz et al. 2014	
Pisum sativum	Genbank BioProject: PRJNA211622	Duarte et al. 2014	
Polygala lutea	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Populus trichocarpa	Phytozome v11: v3.0	Tuskan et al. 2006	
Primula veris	https://doi.org/10.5061/dryad.2s200	Nowak et al. 2015	
Prioria balsamifera	Genbank BioProject: XXXXXXXXXX	Newly sequenced	
Prunus alba	Genbank BioProject: PRJNA218545	Torales et al. 2013	
Prunus persica	Phytozome v11: v2.1	International Peach Genome Initiative et al., 2013	
Punica granatum	Genbank BioProject: PRJNA231033	Ophir et al. 2014	
Quillaja saponaria	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Salix purpurea	Phytozome v11: v1.0	Zhou et al. 2018	
Senna hebecarpa	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Solanum tuberosum	Phytozome v11: v3.4	Sharma et al. 2013	
Styphnolobium japonicum	https://www.hindawi.com/journals/bmri/2014/750961/sup/	Zhu et al. 2014	
Theobroma cacao	Phytozome v11: v1.1	Motamayor et al. 2013	
Trifolium pratense	Genbank BioProject: PRJNA219226	Yates et al. 2014	
Tripterygium wilfordii	Genbank BioProject: PRJNA218574	Not available	
-----	--------------------------------	--------------------------	-------------------------
Vicia faba	Genbank BioProject: PRJNA81211	Kaur et al. 2012	
Vigna radiata	ftp://plantgenomics.snu.ac.kr/mungbean_data/	Kang et al. 2014	
Vitis vinifera	Phytozone v11: Genoscope.12X	Jaillon et al. 2007	
Xanthocercis zambesiaca	Dryad: http://dx.doi.org/10.5061/dryad.ff1tq	Cannon et al. 2015	
Zenia insignis	Genbank BioProject: PRJNA285444	Not available	

Phytozome is available at https://phytozome.jgi.doe.gov
OneKP data is available at http://www.onekp.com/public_data.html

References

Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS, et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet. 2016 Apr;48(4):438–446.

Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol. 2016 May;34(5):562–570.

Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, et al. The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly. Plant Genome. 2016 Mar;9:1.

Duarte J, Rivièreme N, Baranger A, Aubert G igoire, Burstin J, Cornet L, et al. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. BMC Genomics. 2014 Feb;15:126.

Filiault DL, Ballerini ES, Mandáková T, Aköz G, Derieg NJ, Schmutz J, et al. The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history. eLife. 2018 Oct;

He N, Zhang C, Qi X, Zhao S, Tao Y, Yang G, et al. Draft genome sequence of the mulberry tree Morus notabilis. Nat Commun. 2013;4:2445.

Hellsten U, Wright KM, Jenkins J, Shu S, Yuan Y, Wessler SR, et al. Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. PNAS. 2013 Nov;110(48):19478–19482.

Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007 Sep;449(7161):463–467.

Kaur S, Cogan NOI, Pemberton LW, Shinozuka M, Savin KW, Materne M, et al. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics. 2011 May;12:265.

Kaur S, Pemberton LW, Cogan NOI, Savin KW, Leonforte T, Paul J, et al. Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics. 2012 Mar;13:104.

Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012 Jan;40(Database):issue.

Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, et al. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics. 2013 Apr;14:245.
Martínez-García PJ, Crepeau MW, Puiu D, Gonzalez-Ibeas D, Whalen J, Stevens KA, et al. The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols. Plant J. 2016 Sep;87(5):507–532.

Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature. 2008 Apr;452(7190):991–996.

Ming R, VanBuren R, Liu Y, Yang M, Han Y, Li L-T, et al. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol. 2013 May;14(5):R41.

Moore MJ, Hassan N, Gitzendanner MA, Bruenn RA, Croley M, Vandeven A, et al. Phylogenetic Analysis of the Plastid Inverted Repeat for 244 Species: Insights into Deeper-Level Angiosperm Relationships from a Long, Slowly Evolving Sequence Region. International Journal of Plant Sciences. 2011 May;172(4):541–558.

Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. PNAS. 2010 Mar;107(10):4623–4628.

Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D, Cornejo O, et al. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod colour. Genome Biol. 2013 Jun;14(6):r53.

Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, et al. The genome of Eucalyptus grandis. Nature. 2014 Jun;510(7505):356–362.

Nicholls JA, Pennington RT, Koenen EJ, Hughes CE, Hearn J, Bunnefeld L, et al. Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae). Front Plant Sci. 2015 Sep;6.

Nowak MD, Russo G, Schlapbach R, Huu CN, Lenhard M, Conti E. The draft genome of Primula veris yields insights into the molecular basis of heterostyly. Genome Biol. 2015 Jan;16:12.

Ophir R, Sherman A, Rubinstein M, Eshed R, Sharabi Schwager M, Harel-Beja R, et al. Single-nucleotide polymorphism markers from de-novo assembly of the pomegranate transcriptome reveal germplasm genetic diversity. PLoS One. 2014 Feb;9(2):e88998.

Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012 Dec;492(7429):423–427.

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010 Jan;463(7278):178–183.

Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. 2014 Jun;46(7):707.

Sharma SK, Bolser D, de Boer J, Sønderkær M, Amoros W, Carboni MF, et al. Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3 (Bethesda). 2013 Nov;3(11):2031–2047.

Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, et al. The genome of woodland strawberry (Fragaria vesca). Nat Genet. 2011 Feb;43(2):109–116.

Sugai K, Setsuko S, Uchiyama K, Murakami N, Kato H, Yoshimaru H. Development of EST-SSR markers for Elaeocarpus photiniifolia (Elaeocarpaceae), an endemic taxon of the Bonin Islands. Am J Bot. 2012 Feb;99(2):84–87.
Torales SL, Rivarola MIximo, Pomponio MA, Gonzalez S, Fernández P, et al. De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species Prosopis alba. BMC Genomics. 2013 Oct;14:705.

Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006 Sep;313(5793):1596–1604.

van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, et al. The draft genome and transcriptome of Cannabis sativa. Genome Biol. 2011 Oct;12(10):R102.

Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol. 2013 Mar;31(3):240–246.

Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, et al. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA. 2009 Mar;106(10):3853–3858.

Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012 Nov;72(3):461–473.

Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA. 2014 Nov;111(45):E4859–E4868.

Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol. 2014 Jul;32(7):656–662.

Xi Z, Ruhfel BR, Schaefer H, Amorim AI, M, Sugumaran M, Wurdack KJ, et al. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. PNAS. 2012 Oct;109(43):17519–17524.

Yates SA, Swain MT, Hegarty MJ, Chernukin I, Lowe M, Allison GG, et al. De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics. 2014 Jun;15:453.

Young ND, Debelle F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 2011 Nov;480(7378):520–524.

Zhang J, Wu Y, Li D, Wang G, Li X, Xia Y. Transcriptomic analysis of the underground renewal buds during dormancy transition and release in “Hangbaishao” peony (Paeonia lactiflora). PLoS One. 2015 Mar;10(3):e0119118.

Zhou R, Macaya-Sanz D, Rodgers-Melnick E, Carlson CH, Gouker FE, Evans LM, et al. Characterization of a large sex determination region in Salix purpurea L. (Salicaceae). Mol Genet Genomics. 2018 Jul;1–16.

Zhu L, Zhang Y, Guo W, Xu X-J, Wang Q. De Novo Assembly and Characterization of Sophora japonica Transcriptome Using RNA-seq. Biomed Res Int. 2014 Jan;2014.
Table S3. Counts of bipartitions representing nodes A-H and conflicting bipartitions representing other subfamily relationships among 3,473 gene trees.

Clade	ML	>50% bootstrap support	>80% bootstrap support
bipartitions of best supported topology			
Leguminosae (node A)	2669	2254	1660
Cerc + Detar (node B)	744	325	48
Cercidoideae (node C)	1815	1705	1394
Detarioideae (node D)	3041	2918	2585
Pap + Caes + Dial (node E)	794	360	91
Pap + Caes (node F)	599	231	42
Caesalpinioideae (node G)	2114	1712	1151
Papilionoideae (node H)	2456	1957	1248
conflicting bipartitions			
Pap + Caes + Dial + Detar	625	258	34
Pap + Caes + Dial + Cerc	546	194	20
Caes + Dial	448	132	16
Pap + Dial	446	133	20
Dial + Detar	307	96	4
Dial + Cerc	295	93	7
Caes + Dial + Cerc + Detar	247	47	4
Pap + Caes + Cerc + Detar	234	46	2
Dial + Cerc + Detar	202	21	1
Caes + Detar	200	44	3
Pap + Dial + Cerc + Detar	196	29	4
Pap + Detar	189	41	2
Pap + Cerc	173	30	2
Caes + Cerc	163	37	2
Pap + Caes + Detar	153	27	1
Caes + Dial + Detar	134	11	0
Pap + Caes + Cerc	132	15	0
Caes + Cerc + Detar	127	14	0
Pap + Dial + Detar	122	12	1
Caes + Dial + Cerc	121	16	0
Pap + Cerc + Detar	115	9	0
Pap + Dial + Cerc	110	12	0
Table S4. Age intervals specified for the fossil calibration priors under different alternative priors.

Calibration	Definition	MRCA taxon 1	MRCA taxon 2	Prior	Alternative prior 1	Alternative prior 2			
eudicots									
26	CG eudicots	Aquilegia coerulea	Medicago truncatula	normal (mean 126.0, stdev 1.0)	normal (mean 126.0, stdev 1.0)	normal (mean 126.0, stdev 1.0)			
27	CG Ranunculales	Aquilegia coerulea	Papaver somniferum	uniform (min 113.0, max 126.0)	uniform (min 113.0, max 126.0)	uniform (min 113.0, max 126.0)			
38	CG Pentapetalae	Nelumbo nucifera	Medicago truncatula	uniform (min 100.0, max 126.0)	uniform (min 100.0, max 126.0)	uniform (min 100.0, max 126.0)			
48	SG Ericales	Primula veris	Solanum tuberosum	uniform (min 89.8, max 126.0)	uniform (min 89.8, max 126.0)	uniform (min 89.8, max 113.0)			
94	SG Myrtaceae	Eucalyptus grandis	Punica granatum	uniform (min 83.6, max 126.0)	uniform (min 83.6, max 126.0)	uniform (min 83.6, max 100.0)			
105	SG Brassicales	Carica papaya	Theobroma cacao	uniform (min 89.8, max 126.0)	uniform (min 89.8, max 126.0)	uniform (min 89.8, max 100.0)			
112	CG Rosaceae	Fragaria vesca	Prunus persica	uniform (min 49.4, max 126.0)	uniform (min 49.4, max 126.0)	uniform (min 49.4, max 66.0)			
116	SG Cannabaceae	Cannabis sativa	Morus notabilis	uniform (min 66.0, max 126.0)	uniform (min 66.0, max 126.0)	uniform (min 66.0, max 83.6)			
122	SG Juglandaceae	Alnus serrulata	Juglans regia	uniform (min 64.4, max 126.0)	uniform (min 64.4, max 126.0)	uniform (min 64.4, max 83.6)			
133	SG Populus	Populus trichocarpa	Salix purpurea	uniform (min 37.8, max 126.0)	uniform (min 37.8, max 126.0)	uniform (min 37.8, max 56.0)			
X14	SG Fagales	Alnus serrulata	Medicago truncatula	uniform (min 83.6, max 126.0)	uniform (min 83.6, max 126.0)	uniform (min 83.6, max 126.0)			
legumes									
A	SG Leguminosae	Medicago truncatula	Quillaja saponaria	uniform	uniform	uniform			
Column	Group	Genus 1	Species 1	Genus 2	Species 2	Genus 3	Species 3	Genus 4	Species 4
--------	-------	---------	-----------	---------	-----------	---------	-----------	---------	-----------
C	SG	Cercis	*Cercis canadensis*	Bauhinia	*Bauhinia tomentosa*	uniform	(min 36.0, max 126.0)	uniform	(min 63.5, max 126.0)
C&	SG	Bauhinia	*Bauhinia tomentosa*	Cercis	*Cercis canadensis*	uniform	(min 46.0, max 126.0)	uniform	(min 63.5, max 100.0)
F	CG	Resin-producing clade	*Copaifera officinalis*	Prioria	*Prioria balsamifera*	uniform	(min 22.5, max 126.0)	uniform	(min 63.5, max 83.6)
G	SG	Detarioideae	*Copaifera officinalis*	Bauhinia	*Bauhinia tomentosa*	uniform	(min 53.0, max 126.0)	uniform	(min 63.5, max 83.6)
G&	SG	Resin-producing clade	*Copaifera officinalis*	Anthonotha	*Anthonotha fragrans*	uniform	(min 53.0, max 126.0)	uniform	(min 63.5, max 126.0)
H&	CG	Amherstieae	*Afzelia bella*	Anthonotha	*Anthonotha fragrans*	uniform	(min 46.0, max 126.0)	uniform	(min 63.5, max 126.0)
I2	SG	Styphnolobium/Cladrastis	*Styphnolobium japonicum*	Medicago	*Medicago truncatula*	uniform	(min 37.8, max 126.0)	uniform	(min 63.5, max 83.6)
M2	SG	Robinioideae	*Lotus japonicus*	Medicago	*Medicago truncatula*	uniform	(min 33.9, max 126.0)	uniform	(min 63.5, max 83.6)
Q	SG	Acacieae/Ingeae	*Albizia julibrissin*	Prosopis	*Prosopis alba*	uniform	(min 33.9, max 126.0)	uniform	(min 63.5, max 83.6)
Q2	SG	Acacia s.s.	*Acacia koa*	Albizia	*Albizia julibrissin*	uniform	(min 23.0, max 126.0)	uniform	(min 63.5, max 83.6)
Z	SG	Caesalpioideae	*Albizia julibrissin*	Medicago	*Medicago truncatula*	uniform	(min 58.0, max 126.0)	uniform	(min 63.5, max 83.6)
Table S5. Node age estimates and priors (95% HPD intervals) of nodes A-H in the different analyses.

Node Clade	A	B	C	D	E	F	G	H
Standard prior								
Marginal prior	79.37 - 109.20	54.56 - 99.48	36.00 - 80.55	28.91 - 87.21	73.77 - 106.04	68.16 - 101.69	56.31 - 95.76	58.85 - 96.39
UCLN	65.47 - 86.45	57.50 - 80.75	36.00 - 53.97	25.47 - 42.98	63.51 - 84.73	60.64 - 81.67	54.11 - 74.49	55.19 - 73.58
RLC	73.46 - 81.18	68.06 - 75.69	39.34 - 46.74	31.52 - 36.43	69.77 - 77.35	68.05 - 75.45	55.76 - 63.75	49.05 - 54.38
strict clock	66.94 - 69.55	60.45 - 63.87	36.00 - 36.66	26.25 - 28.71	65.60 - 68.22	64.90 - 67.48	56.01 - 59.12	56.89 - 59.47
FLC 3 clocks	65.99 - 68.85	60.79 - 64.20	36.00 - 36.85	27.69 - 30.59	63.77 - 66.52	62.78 - 65.43	56.09 - 59.04	47.39 - 50.03
FLC 6 clocks	65.74 - 68.81	60.70 - 64.40	36.00 - 36.86	27.53 - 30.94	63.53 - 66.47	62.57 - 65.43	56.10 - 59.20	47.24 - 49.86
FLC 8 clocks	64.63 - 67.64	60.24 - 64.79	36.00 - 52.41	27.00 - 49.18	62.72 - 65.61	61.86 - 64.65	55.53 - 58.51	46.98 - 49.60
Alternative prior 1 (Bruneau et al. 2008 for Cercidoideae and Detarioideae)								
Marginal prior	81.60 - 110.20	63.87 - 103.63	46.00 - 85.81	53.00 - 90.89	75.00 - 106.55	69.90 - 103.35	57.41 - 97.38	60.69 - 98.39
FLC 8 clocks	64.81 - 67.96	64.06 - 67.35	57.35 - 63.89	55.38 - 63.49	63.08 - 65.94	62.16 - 64.90	55.73 - 58.76	46.96 - 49.59
Alternative prior 2 (tighter maxima)								
Marginal prior	73.30 - 96.56	56.01 - 83.60	36.00 - 71.11	28.75 - 75.30	66.75 - 90.79	64.04 - 83.60	53.37 - 81.05	54.12 - 79.22
UCLN	66.92 - 76.45	60.43 - 72.34	36.01 - 50.55	39.85 - 52.84	63.48 - 71.28	61.45 - 69.38	54.20 - 63.50	47.59 - 55.25
Alternative prior 3 (reduced taxon sampling)								
Marginal prior	72.85 - 106.32	53.45 - 95.52	36.00 - 78.70	29.28 - 85.30	64.01 - 100.04	58.03 - 91.93	38.95 - 83.49	46.50 - 86.28
UCLN	64.72 - 79.69	57.35 - 75.43	36.00 - 53.18	25.40 - 39.20	62.29 - 76.62	60.08 - 74.12	49.28 - 66.70	49.68 - 64.63
Figure S1. ML topology as inferred by RAxML from amino acid alignment of chloroplast genes under the LG4X model. Numbers on nodes indicate bootstrap percentages estimated from 1000 replicates.
Figure S2. Bayesian majority-rule consensus tree inferred with Phylobayes from amino acid alignment of chloroplast genes under the CATGTR model. Numbers on nodes indicate posterior probabilities (pp) from 9000 post-burn-in MCMC cycles.
Figure S3. ML topology as inferred by RAxML from nucleotide alignment of chloroplast genes under the GTR + G model. Numbers on nodes indicate bootstrap percentages estimated from 1000 replicates.
Figure S4. Bayesian majority-rule consensus tree inferred with Phylobayes from nucleotide probabilities (pp) from 9000 post-burn-in MCMC cycles. Numbers on nodes indicate the posterior alignment of chloroplast genes under the CATGTR model.
Figure S5. ML topology as inferred by RAxML from a concatenated alignment of 1,103 nuclear genes, under the LG4X model. Numbers on nodes indicate Internode Certainty All (ICA) values, as estimated from gene trees of the same 1,103 genes.
Figure S6. Bayesian gene jackknifing majority-rule consensus tree inferred with Phylobayes from a concatenated alignment of 1,103 nuclear genes. Numbers on nodes indicate posterior probabilities (pp), averaged over 500 posterior trees each, for 25 replicates (12,500 posterior trees in total).
Figure S7. Phylogeny estimated under the multi-species coalescent with ASTRAL. Support values indicated represent local posterior probability (blue rectangles) and quartet support (yellow rectangles).
Figure S8. Examples of homolog clusters with gene duplications in legumes that passed the bootstrap filter. Yellow stars behind nodes indicate locations of gene duplications, numbers on nodes indicate bootstrap support. The plotted gene trees are extracted from (A) cluster3675_1rr_1rr, showing a duplication subreducing Detarioideae, (B) cluster1032_1rr_1rr, showing a duplication subreducing Papilionoideae, (C) cluster1248_1rr_1rr and (D) cluster2941_1rr_1rr, both with a duplication subreducing the legume family. Trees for (E) cluster51_7rr_1rr and (F) cluster544_1rr_1rr show evidence of more than one duplication, including one specific to Papilionoideae in the former.
Figure S9. Numbers of gene duplications mapped across the phylogeny. The topology used is the ML topology of the nuclear concatenated alignment of 1,103 genes, duplications were counted from 8,038 homolog clusters. Numbers above branches (with blue background) and below branches (with yellow background) represent numbers of duplications and numbers of homolog trees with duplications, without or with a bootstrap filter of 50%, respectively.
Figure S10. Chronogram estimated under the UCLN clock model. Numbers behind nodes indicate 95% HPD intervals. Substitution rate is indicated by colored branches, as indicated by the color legend, in substitutions per site per million years. Fossil calibrations as listed in Table 1 are indicated by blue labeled circles.
Figure S11. Chronogram estimated under the UCLN clock model, with alternative prior 2. Numbers behind nodes indicate 95% HPD intervals. Substitution rate is indicated by colored branches, as indicated by the color legend, in substitutions per site per million years. Fossil calibrations as listed in Table 1 are indicated by blue labeled circles.
Figure S12. Chronogram estimated under the RLC model. Numbers behind nodes indicate 95% HPD intervals. Substitution rate is indicated by colored branches, as indicated by the color legend, in substitutions per site per million years. Fossil calibrations as listed in Table 1 are indicated by blue labeled circles.
Figure S13. Chronogram estimated under the FLC3 model. Numbers behind nodes indicate 95% HPD intervals. Clock partitions are indicated by colored branches. Fossil calibrations as listed in Table 1 are indicated by blue labeled circles.
Figure S14. Chronogram estimated under the FLC6 model. Numbers behind nodes indicate 95% HPD intervals. Cock partitions are indicated by colored branches. Fossil calibrations as listed in Table 1 are indicated by blue labeled circles.
Figure S15. Chronogram estimated under the FLC8 model. Numbers behind nodes indicate 95% HPD intervals. Cock partitions are indicated by colored branches. Fossil calibrations as listed in Table 1 are indicated by blue labeled circles.
Figure S16. Chronogram estimated under the FLC8 model, with alternative prior 1. Numbers behind nodes indicate 95% HPD intervals. Clock partitions are indicated by colored branches. Fossil calibrations as listed in Table 1 are indicated by blue labeled circles, with alternative calibrations as red circles.
Figure S17. Chronogram estimated under the STRC model. Numbers behind nodes indicate 95% HPD intervals. Fossil calibrations as listed in Table 1 are indicated by blue labeled circles.
Figure S18. Substitution rates as estimated in FLC8 analyses for the different clock partitions. Boxplots for each partition for (A) alternative prior 1 and (B) the “normal” prior setting. Colors correspond to the partitions as shown in Figs 5, S14, S15 and S18.
Figure S19. Root-to-tip lengths per taxon with partitions of fixed local clocks indicated. Pruned taxa with outlier root-to-tip lengths are indicated with an X, partitions are indicated with colors. (A) FLC3, (B) FLC6, (C) FLC8.