Cardiovascular diseases in mega-countries: the challenges of the nutrition, physical activity and epidemiologic transitions, and the double burden of disease

Simon Barquera, Andrea Pedroza-Tobias, and Catalina Medina

Purpose of review
There are today 11 mega-countries with more than 100 million inhabitants. Together these countries represent more than 60% of the world’s population. All are facing noncommunicable chronic disease (NCD) epidemic where high cholesterol, obesity, diabetes, and cardiovascular diseases are becoming the main public health concerns. Most of these countries are facing the double burden of malnutrition where undernutrition and obesity coexist, increasing the complexity for policy design and implementation. The purpose of this study is to describe diverse sociodemographic characteristics of these countries and the challenges for prevention and control in the context of the nutrition transition.

Recent findings
Mega-countries are mostly low or middle-income and are facing important epidemiologic, nutrition, and physical activity transitions because of changes in food systems and unhealthy lifestyles. NCDs are responsible of two-thirds of the 57 million global deaths annually. Approximately, 80% of these are in low and middle-income countries. Only developed countries have been able to reduce mortality rates attributable to recognized risk factors for NCDs, in particular high cholesterol and blood pressure.

Summary
Mega-countries share common characteristics such as complex bureaucracies, internal ethnic, cultural and socioeconomic heterogeneity, and complexities to implement effective health promotion and education policies across population. Priorities for action must be identified and successful lessons and experiences should be carefully analyzed and replicated.

Keywords
dyslipidemias, mega-countries, nutrition transition, obesity, physical activity

INTRODUCTION
Mega-countries are defined as countries with a population of at least 100 million inhabitants. Currently, there are 11 nations with this condition: China, India, USA, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Japan, and Mexico (in descending order). In addition, for this study we included three countries with population above 90 million inhabitants that might become eventually mega-countries; Philippines, Ethiopia, and Vietnam [1–3]. This group of highly populated countries is experiencing different stages of the epidemiologic, physical activity, and nutrition transitions and has heterogeneous sociodemographic, economic, and cultural conditions [4**]. However, they have also some common characteristics that make this classification useful for analysis from the health policy perspective to identify opportunities for prevention and control of noncommunicable chronic disease (NCDs). Among these, some of the most obvious are: large populations in which even small increases in the prevalence of diseases, have a major impact on thousands of inhabitants, the
KEY POINTS

- Mega-countries have a heterogeneous development and are experiencing different stages of the epidemiologic physical activity and nutrition transition with specific challenges.
- Reduction of sugar, salt, and saturated fat intake, SSBs, alcohol, and tobacco through taxation and other interventions is part of the necessary actions to curb the NCD epidemic in mega-countries.
- Low-cost interventions on primary prevention with statins, antihypertensive drugs, metformin, or a polypill are options that must be explored as additional alternatives in large populations for segments with poor access to primary healthcare.

During the last 3 decades, a number of factors such as economic growth, urbanization, trade agreements, and improvements in technology have resulted in an epidemiologic physical activity and nutrition transition, which is occurring at a different pace in mega-countries [11–14,15**,16,17]. On the one hand, there are countries at a stage of transition in which a small percentage of urbanization is observed and where undernutrition, high infant mortality rates, low life expectancy, and infections are still major public health problems. However, because of the size of their population, the relatively small but increasing prevalence of NCDs, including cardiovascular diseases (CVDs) and diabetes, are a major health and economic burden, countries in which obesity and NCDs are the main health problem, and countries facing an important double burden of both undernutrition and obesity and NCDs. Although some middle-income countries are experiencing a transition with important progress reducing the undernutrition prevalence, in the mega-country group there are more countries who will transition first to higher prevalences of obesity before controlling undernutrition [18–21]. Recently, low and middle-income countries have experienced an important shift reaching obesity prevalences similar to those of developed countries [22–24,25*] and while the increase in obesity has slowed down in the latter, there are no success stories on efforts to reduce the prevalence of this disease until now [26**]. Developed countries have been able to decrease mortality attributable to some risk factors such as high cholesterol, glucose, and blood pressure (BP), but low and middle-income countries are showing alarming increases [25*,27**,28]. A number of factors have contributed to the success in more developed countries, including the combined effect of decreased exposure to tobacco and alcohol consumption, improvements in diet (such as reductions in sodium, fat, and sugar intake), effective investments in preventive programs, physical activity promotion, increased availability of clean potable water, better detection of high-risk populations, improved treatment of CVD and risk factors, and diverse technological developments such as statins, antihypertensive and other drugs, and cardiovascular surgery procedures [14,29,30**,31,32*,33,34,35*,36–38]. However, these improvements have only been able to reduce cardiovascular mortality in Central and Western Europe; during the last decades, an absolute increase has been observed in the global rates of cardiovascular mortality [27**].

The purpose of this study is to describe some socioeconomic and demographic characteristics of this heterogeneous group of countries, the current status of the epidemiologic, physical activity, and nutrition transition, the double burden of disease and the challenges to control the rising NCD epidemic.

METHODS

For the current analysis, we considered the 11 mega-countries (countries with a population of at least 100 million inhabitants), which are in descending order: China, India, USA, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Japan, and Mexico. In addition, we included three countries with population above 90 million inhabitants that might eventually become mega-countries: Philippines, Ethiopia, and Vietnam [39].

Socioeconomic and demographic information

We obtained from the World Bank data site, the most recent international socioeconomic indicators available to characterize this group of countries [1].
We included gross domestic product (GDP) ‘per capita’ (2014), Gini index [a proxy measure of distribution of income within a country where 0 represents perfect equality whereas 100 implies perfect inequality (2010), except Brazil, India, and Philippines (2009) and Japan (2008)], annual population growth percentage (2014), life expectancy at birth (2013), urban population percentage (2014), physicians per 1000 inhabitants (2010), and percentage of literacy rate among population older than 15 years of age (2007–2011). We included some indicators of health and education infrastructure; health expenditure expressed as percentage the GDP (2014), health expenditure per capita (2014) and pupil/teacher ratio (2012–2013) except for Nigeria (2010) and Bangladesh (2011).

Human development index

The index was developed by the United Nations Development Programme more than 25 years ago. It is considered a better measure of development than monetary measures such as the GDP per capita [40,41]. It evaluates three dimensions: health and longevity through life expectancy; access to education through average school years, and standard of living through per capita income (Gross National Income per capita). The most recent human development index (HDI) information was used to classify the mega-countries in four levels of development according to United Nations Development Programme: very high (scores ≥0.8); high (scores ≥0.70 and <0.8); medium (scores ≥0.55 and <0.7); and low (scores <0.55) [42,43]. We later consolidated them in two groups: low and middle-HDI, and high and very high-HDI.

Prevalence of cardiovascular disease risk factors

Standardized prevalences of overweight and obesity (BMI ≥25 kg/m²) in adults and stunting (<−2 SD of height for age), a chronic undernutrition indicator in children under 5 years of age, were obtained from the WHO Global Health Observatory. In addition, prevalences of high cholesterol (≥5.0 mmol/l; 2008), high BP (SBP ≥140 and/or DBP ≥90 mmHg; 2014), and fasting blood glucose (≥7.0 mmol/l, 2014), alcohol (2010) and tobacco (2014) consumption (stratified by sex), and physical inactivity (2010) were obtained from the same source [44]. We used the estimated age-standardized sodium consumption (g per day) (2010) [45] and the estimated SSB consumption (servings/day; stratified by sex) in adults 30–40 years [46**].

Noncommunicable chronic diseases mortality and policy efforts

We used Global Burden of Disease data on percentage of age-adjusted mortality per 100 000 inhabitants during 2013, and the annual percentage change of age-standardized mortality from 1990 to 2013 to evaluate its association to country HDI. Finally, we described policy efforts to curve the NCD epidemic among mega-countries using available systematic reviews from the World Health Organization Global Health Observatory [44], the Global Observatory for Physical Activity [47] and the World Cancer Research Fund Nourishing framework site [48,49], in addition to a number of global and local country reports [50,51*,52–60].

RESULTS

Table 1 summarizes the basic economic and socio-demographic information of 14 countries included in this analysis (the 11 mega-countries plus three countries with population above 90 million inhabitants). All analyzed countries belong to three continents, Asia (9), America (3) and Africa (2). There is a very wide range of gross domestic product per capita (GDPc) from $46 405.2 in the USA to $25 kg/m² in Ethiopia (2014). Similarly, the range of HDI goes from the highest in the USA (0.91) to the lowest in Ethiopia (0.44). Using the United Nations Development Programme HDI categories there were three countries with low HDI (Pakistan, Nigeria and Ethiopia), five countries with medium HDI (Indonesia, Philippines, Vietnam, India, and Bangladesh), four countries with high HDI (Russia, Brazil, Mexico, and China) and two with very high HDI (USA and Japan). Once the HDI is adjusted for inequality, all country scores are lower, being Brazil, Nigeria, India, Mexico, and Bangladesh the ones in which the HDI reduction is higher. The Gini index, a proxy of income distribution, shows in ascending order that Brazil, Mexico, Philippines, Vietnam, and Nigeria are the countries with the highest income inequality. The percentage annual population growth was negative or less than one digit in five countries: Japan, Russia, China, USA, and Brazil whereas three countries (Nigeria, Ethiopia, and Pakistan), had an annual population growth of more than 2%. The highest life expectancy at birth was observed in Japan (83.3 years), followed by USA (78.8 years), and Mexico (76.5 years), the lowest one was observed in Nigeria (52.4 years), followed by Ethiopia (63.4 years) and Pakistan (66.0 years). Among these countries there are three with more than 80% urban population (Japan, USA, and Brazil), whereas there are five in which urban population is less than 40% (Ethiopia, India, Vietnam,
Indicator	Low middle HDI	High very high HDI
Human Development Index, 2014		
Category Human Development Index	Low	High
Population (million), 2014		
GDPc (2014) (constant USD 2005)		
Gini Index (2010)^a		
Inequality-adjusted Human Development Index, 2014		
Annual population growth (%), 2014		
Life expectancy at birth 2013 (years)		
Urban population (%), 2014		
Physician (per 1000 people), 2010		
Adult literacy rate population 15+ years, 2007–2011		
Health expenditure per capita (current USD$), 2014		
Health expenditure (% GDP), 2014		
Pupil/teacher ratio (2010-2013)^b		

GDPc, gross domestic product per capita.
Data obtained by World Bank (2016).

^aBrazil, India, Nigeria, and Philippines: Gini index 2009; Japan: Gini Index 2008.

^bNigeria: pupil/teacher ratio 2010; Bangladesh: pupil/teacher ratio 2010.
Bangladesh, and Pakistan). USA, Japan and Brazil had the highest health expenditure; USA, Indonesia, and Japan had the lowest pupil/teacher ratio.

To explore the level of coexistence of less than 5-year children stunting and adult overweight and obesity by country, a proxy of a phenomenon known as the double burden of malnutrition, a plot was constructed with the intersection between the national prevalence of both conditions (Fig. 1). All low/middle-HDI countries had stunting prevalences more than 20%; within this group India, Ethiopia, Pakistan, Bangladesh, and Indonesia had prevalences more than 40%. Only four mega-countries have stunting prevalences less than 10%: USA, Brazil, China, and Japan and four mega-countries have overweight/obesity prevalence under 20%; Ethiopia, Bangladesh, Vietnam, and India. Among the countries with the highest prevalence of overweight/obesity, Mexico has the highest prevalence of stunting. Similarly, among the countries with the highest prevalence of stunting, Nigeria has the highest prevalence of overweight/obesity being these countries the ones with higher double burden of malnutrition. China and Japan had the lowest combined prevalences of stunting and overweight.

Figure 2 groups the prevalences of high total cholesterol, overweight and obesity, high BP, and elevated fasting blood glucose by country divided in two groups by HDI classification (low/middle and high/very high HDI). In Japan, USA, Mexico, and Russia more than 50% of the population had high cholesterol levels, whereas in India, Bangladesh, Ethiopia, and Nigeria the prevalences were less than 30%. Overall, the prevalence of cholesterol and overweight/obesity is higher in countries in the high/very high HDI group. The three countries from the American continent (USA, Mexico, and Brazil), together with Russia are the ones with the highest prevalence of overweight and obesity with prevalences more than 50%, whereas the rest of the countries were less than 35%. On the other hand, the prevalences of high BP were higher in the low and middle-HDI group of countries whereas three countries had prevalences less than 20%; USA, Japan, and China. Finally, most of the countries had a prevalence of high blood glucose between 7 and 10%; Mexico and Japan were more than 10% whereas Vietnam, Nigeria, and Ethiopia had prevalences less than 5%.

FIGURE 1. Double burden of malnutrition in mega-countries: coexistence of stunting and overweight/obesity.

Stunting prevalence: height-for-age z scores less than 2 SD, obtained by the Global Health Observatory of the WHO, 2010-2011, except for India (2005–2006) and Brazil (2006–2007). Overweight and Obesity prevalence: BMI ≥ 25 kg/m², obtained by the Global Health Observatory of the WHO, 2010. Russia prevalence of stunting is not national representative of the under 5-year population.
When comparing risk factors for NCDs among mega-countries, the ones with the highest alcohol consumption were Russia, Japan, and USA with prevalences more than 15%. Five out of six countries in the high/very high-HDI group had prevalences more than 10%, only China had prevalence less than 10%. In contrast, with the exception of Nigeria (7%), all other low/middle-HDI mega-countries had prevalences less than 3%. Japan and USA had a physical inactivity prevalence above 30% whereas in India and Russia it was less than 15%. Tobacco is consumed more by men than by women. The

![Image of a figure showing prevalence of cardiometabolic risk factors in mega-countries by HDI category. HDI, human development index. Data obtained by the Global Health Observatory of the WHO.](image-url)
highest tobacco consumption prevalence in men was observed in Indonesia (76.2%) and Russia (59.0%), whereas in women it was observed in Russia (22.8%), USA (15.0%), and Brazil (11.3%). Sodium intake appears to be higher in Asian megacountries such as China, Japan, Vietnam, Philippines, and Russia. SSB servings per day were higher in Mexico followed by the USA in men and women, and were more consumed among high/very high-HDI countries (Table 2).

In Fig. 3, we present the annual percentage change of CVD, ischemic heart disease, ischemic stroke, and diabetes mellitus deaths 1990–2013. The four mortality causes show significant negative correlations to the HDI by megacountry.

DISCUSSION

Our analysis describes characteristics of 14 megacountries in which 64.8% of the global cardiovascular mortality occurs. This represents more than 11.2 million deaths per year. These countries have a heterogeneous development and are experiencing different stages of the epidemiologic, physical activity, and nutrition transition. Most of them are middle-income and have a low and middle-HDI. In these countries, the transition to an epidemiologic panorama dominated by NCDs is taking place, whereas high rates of undernutrition are still occurring. This double burden should be addressed with well coordinated intersectorial policies that allow access to traditional diets of better quality without shifting to diets rich in caloric-beverages, ultra-processed foods and high in sugar, fat, and salt [61–63]. Special attention to the promotion of breast-feeding and healthy weaning practices must be in place not only to protect from undernutrition but also from obesity later in life [64]. Some lessons from past experiences in developed countries can be helpful, in particular those of USA and Japan that share the complexities of large populations [14,65]. The recent emphasis on active living and healthier diets using mostly basic foods, avoiding junk food, fast food, and SSBs observed in these countries can be seen as an important step toward healthier lives and could be imported or reinforced in other megacountries in which the nutrition transition to unhealthy diets is not yet generalized [66,67]. Also, early detection, adequate treatment and other interventions to control risk factors such as high BP, cholesterol, and sugar must be analyzed, implemented with adequate monitoring and evaluation systems. Primary prevention using statins, antihypertensive drugs, or a polypill have showed promising results, and investments on exploring this option should be a priority in countries in which NCDs are increasing and large segments of the population have poor or no access to primary healthcare services [68,69,70,71,72–74]. Most megacountries have developed efforts to reduce consumption of tobacco, alcohol, and salt, and to promote appropriate breast-feeding practices and physical activity (Table 3) [13,14,15,16,47–49,51,52–55,57–60,75–77]. Among the most effective, taxes to tobacco, alcohol, and SSBs have demonstrated to reduce consumption of these unhealthy products and to be a powerful public health tool to complement other strategies to reduce NCDs [4,51,52–54,78,79,80–90]. Important evidence has been disseminated in the last years on the benefits of salt reduction to reduce CVDs [75,91–95]. In addition, regulation to decrease the use of other unhealthy ingredients such as sugar and saturated/trans fats, to improve food labels to help consumers do healthy choices, to control marketing to children, and to promote physical activity has been recognized as part of the necessary interventions to maximize the opportunity of people adopting healthy lifestyles [10,96–100,101,102,103,104,105–119].

These options are particularly important in middle-income countries, where the burden of NCDs is very high and there is an urgent need to identify complementary policies to achieve positive results whereas education, dissemination, promotion and other healthy behavior-oriented efforts, and longer term policies start to generate positive results too (Table 3 summarizes some of the main policy efforts to curve the NCDs epidemic in megacountries).

Overall, it is possible to organize the megacountries in three groups by transition stage. These stages are much correlated to diverse measurements of development: Group 1. The low/middle-HDI group has low GDPc, is mostly rural, and has a high prevalence of chronic undernutrition and very low prevalences of overweight and obesity. Group 2. The high HDI group is composed by four middle-income emerging economies. These countries have an epidemiologic panorama dominated by NCDs and have experienced rapid transitions in the last 3 decades in which most of them went from closed to open economies with international free trade agreements, rapid urbanization, and dramatic changes in lifestyles and food systems. Finally, Group 3 is composed by the two developed megacountries with very high-HDI, which are still facing important NCDs but show important progress in a number of indicators. These countries have more than four times the GDPc of any country in Group 2, the highest health expenditure per capita, are almost completely urban with very low rates of
Table 2. Major risk factors for the development of noncommunicable diseases in mega-countries

	Heavy drinking past 30 days^{a,b} % (95%CI)	Insufficiently active adults^{a,b} % (95%CI)	Use of tobacco products in population at least 15 years^a % (95%CI)	Estimated sodium intake (g/day)^b % (95%CI)	Estimated SSB (servings/day) 30–40 years old % (95%CI)	Year	Women	Men	Women	Men	Women	Men
Low/middle HDI												
Ethiopia	0.6 (0.0–1.2)	18.9 (4.9–50.1)	0.5 (0.2–0.8)	8.9 (6.0–12.1)	2.27 (1.95–2.67)	2015	0.26	0.28	0.14	0.15	0.43	0.47
Nigeria	7.0 (0.1–8.9)	22.3 (8.5–66.3)	1.1 (0.4–2.0)	17.4 (8.0–28.9)	2.82 (2.51–3.17)	2010	0.37	0.41	0.20	0.23	0.61	0.66
Pakistan	0.1 (0.0–0.3)	26 (7.2–62)	3.0 (1.8–4.2)	41.9 (29.7–57.3)	3.91 (3.32–4.66)	2010	0.66	0.73	0.35	0.40	1.44	1.20
Bangladesh	0.0 (0.0–0.2)	26.8 (25.9–27.8)	0.7 (0.4–1.0)	39.8 (30.6–50.1)	3.54 (2.98–4.21)	2010	0.19	0.21	0.10	0.11	0.39	0.37
India	1.6 (0.7–2.6)	13.4 (12.2–14.8)	1.9 (1.4–2.5)	20.4 (14.5–27.3)	3.72 (3.63–3.82)	2010	0.42	0.47	0.22	0.26	0.72	0.77
Philippines	1.6 (0.7–2.6)	15.8 (3.6–44.2)	8.5 (6.6–10.8)	43.0 (34.6–53.5)	4.29 (3.65–5.10)	2010	0.56	0.62	0.31	0.34	0.94	1.05
Vietnam	1.3 (0.4–2.1)	23.9 (16.6–32.9)	1.3 (0.9–1.6)	47.1 (35.7–58.5)	4.59 (3.81–5.46)	2010	0.32	0.35	0.18	0.20	0.54	0.57
Indonesia	2.4 (1.2–3.6)	23.7 (19.2–29.1)	3.6 (2.6–4.5)	76.2 (59.5–95.5)	3.36 (3.02–3.76)	2010	0.35	0.37	0.19	0.21	0.57	0.64
High/very high HDI												
China	7.5 (5.5–9.5)	24.1 (21.7–26.5)	1.8 (1.3–2.2)	47.6 (36.7–58.6)	4.83 (4.62–5.05)	2010	0.07	0.08	0.06	0.06	0.09	0.09
Brazil	12.2 (9.7–14.6)	27.8 (8–3.9)	11.3 (8.2–14.6)	19.3 (14.6–24.4)	4.11 (4.01–4.22)	2010	0.60	0.66	0.53	0.58	0.75	0.75
Mexico	10.9 (8.6–13.3)	26 (20.5–32.1)	6.6 (5.2–8.2)	20.8 (16.4–25.3)	2.76 (2.57–2.94)	2010	1.87	2.03	1.36	1.46	1.48	2.72
Russian Federation	19.3 (16.3–22.3)	9.5 (6.8–12.8)	22.8 (17.6–29.3)	59.0 (46.6–72.5)	4.17 (3.95–4.40)	2010	0.56	0.62	0.32	0.34	0.90	1.01
Japan	18.4 (15.4–21.3)	33.8 (11.1–71.6)	10.6 (8–13.4)	33.7 (25.9–41.6)	4.89 (4.71–5.08)	2010	0.38	0.45	0.32	0.38	0.44	0.51
USA	16.2 (13.4–19.0)	32.4 (29.8–35)	15.0 (12.1–18.1)	19.5 (15.7–23.6)	3.60 (3.50–3.70)	2010	1.43	1.65	1.25	1.44	1.88	1.88

^aWHO Global Health Observatory (2016).

^bAge-standardized estimates.

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.
undernutrition. However, these nations are also in an important need of alternative models to accelerate the prevention and control of NCDs.

Although low/middle-HDI countries in general will have a transition similar to the one experienced by high/very high countries, some characteristics might differ. For example, a number of countries such as Bangladesh, Ethiopia, Nigeria, Pakistan, and Indonesia have a predominant Islam religion where the practice of alcohol consumption is forbidden and therefore cirrhosis because of alcohol use is very low. The poor regulation in low and middle-HDI countries has allowed an important rise in tobacco consumption that has migrated to these nations when more developed ones installed strong regulations on marketing, labeling as well as tobacco taxes. Special attention must be placed in the generalized tobacco consumption in Indonesia where in addition 90% of active smokers report so in the house exposing other family members to second-hand smoke. International experiences could allow this country to overcome this unhealthy practice. All mega-countries report tobacco taxation, however, the total amount of tax is remarkably low in Ethiopia and Nigeria (<21%). Seven mega-countries have a total tax more than 60%; Bangladesh, Pakistan, India, and Philippines in the low/middle HDI group and Brazil, Mexico, and Japan in the high/very high HDI group. In addition, taxes are common in alcoholic beverages. Other policies and regulations such as legal minimum age for tobacco and alcohol, or designated areas for consumption have been implemented. Similarly a number of mega-countries are considering soda taxes as a potential option to decrease consumption. Mexico has adopted a 10% excise tax and a similar measure has been approved in some cities of USA [54,79].

Although most low/middle-income mega-countries have a relatively low prevalence of overweight and obesity, the WHO recommends the use of lower BMI cut points for Asian population as there is evidence of higher prevalences of diabetes and CVD at lower BMI levels [120]. Japan, with low obesity levels, has a high prevalence of hypercholesterolemia. It has increased with the epidemiologic/nutrition transition since the 1960s and currently the highest among the mega-countries. Similarly, the prevalence of high blood glucose in this country is the second highest. This reflects the need to intensify actions to prevent and control emerging risk factors while maintaining successful efforts to decrease others such as high BP [121]. The highest prevalence of overweight and obesity in the world is located in the American continent [26]. The two most obese mega-countries are also the ones with the highest SSBs number of servings per day [46]. SSBs are not only associated with obesity but also with diabetes.
Table 3. Current policy efforts to curve the non-communicable diseases epidemic among mega-countries

Country	Tobacco^a	Alcohol^b	Salt^c (SI/SR)^d	SSBs^e	Breastfeeding^f	National plan to promote physical activity
Low/middle HDI						
Bangladesh	T: 76%, AVE: 61%, VAT: 1.5%	LMA: No, VAT: 15%, ET: N/A	Yes/Yes	–	EB: 97.8%, EBF < 6m: 42.9%, BFP: yes	Yes
Ethiopia	T: 18.77%, AVE: 13.9%, VAT: 4.87%	LMA: 1By, VAT: 15%, ET: b50%, w50%, s100%	Yes/–	–	EB: 96%, EBF < 6m: 49%, BFP: yes	N/A
Nigeria	T: 20.63%, AVE: 15.87%, VAT: 4.76%	LMA: 1By, VAT: 5%, ET: b2%, w2%, s2%	Yes/–	–	EB: 97.3%, EBF < 6m: 13.1%, BFP: yes	No
Pakistan	T: 60.70%, SE: 46.17%, VAT: 14.53%	LMA: 2ly, VAT: No, ET: N/A	Yes/–	–	EB: 94.3%, EBF < 6m: 37.1%, BFP: –	N/A
India	T: 60.39%, SE: 42.45%, AVE: 1.27%, VAT: 16.67%	LMA: subnational, VAT: No, ET: N/A	Yes/–	–	EB: 95.7%, EBF < 6m: 46.4%, BFP: yes	Yes
Indonesia	T: 53.40%, SE: 40.91%, AVE: 4.09%, VAT: 8.40%	LMA: 2ly, VAT: 10%, ET: N/A	Yes/Yes Considering tax MUFB	–	EB: 95.2%, EBF < 6m: 32.4%, BFP: –	Yes
Philippines	T: 74.27%, SE: 63.55% VAT: 10.71%	LMA: 1By, VAT: 12%, ET: N/A	Yes/Yes Considering tax MUFB	–	EB: 87.7%, EBF < 6m: 34%, BFP: yes	N/A
Vietnam	T: 41.59%, SE: 32.50% VAT: 9.09%	LMA: 1By, VAT: 10%, ET: b45%, w45%, s45%	Yes/Yes	–	EB: 97.7%, EBF < 6m: 16.9%, BFP: yes	Yes
High/very high HDI						
Brazil	T: 64.94%, SE: 20.87%, AVE: 8.10%, VAT: 25%, OT: 10.97%	LMA: 1By, VAT: N/A, ET: b6%, w6%, s5%	–/Yes	Considering tax MUFB	EB: 96.4%, EBF < 6m: 39.8%, BFP: yes	Yes
China	T: 44.43%, SE: 0.60%, AVE: 29.30%, VAT: 14.53%	LMA: No, VAT: 17%, ET: bN/A, w1%, s2%	Yes/Yes	MUFB	EB: –, EBF < 6m: –, BFP: yes	Yes
Mexico	T: 65.87%, SE: 15.56%, AVE: 36.52%, VAT: 13.79%	LMA: 1By, VAT: 16%, ET: b25%, w25%, s50%	Yes/Yes	Approved tax MUFB	EB: 92.3%, EBF < 6m: 20.3%, BFP: yes	Yes
Russian Federation	T: 47.63%, SE: 23.88%, AVE: 8.50%, VAT: 15.25%	LMA: 1By, VAT: 18%, ET: N/A	Yes/–	–	EB: –, EBF < 6m: –, BFP: yes	No
Japan	T: 64.36%, SE: 56.95%, VAT: 7.41%	LMA: 20y, VAT: 5%, ET: b5%, w5%, s5%	–/Yes	–	EB: –, EBF < 6m: 21% BFP: yes	Yes
United States	T: 42.54%, SE: 37.38% VAT: 5.16%	LMA: 2ly, VAT: No, ET: b$3.75, w$0.72%, l$0.2	–/Yes	Approved tax in 1 city. Considering tax in other states MUFB	EB: 73.9%, EBF < 6m: 13.6%, BFP: yes	Yes

HDI, human development index; N/A, not available; NCD, noncommunicable diseases.

^aTobacco: (taxes on the most sold brand of cigarettes (% of retail price)), T – total, ADE – Ad valorem excise, SE – Specific excise, VAT – value added tax, OT – Other taxes.

^bAlcohol: (LMA – legal minimum age, ET – excise tax as a percent of the retail price of alcoholic beverages. B – beer, w – wine, s – spirits, l – liquor) $ per gallon.

^cSalt (SI – salt iodization, SR – salt reduction).

^dMUFB – Marketing of unhealthy foods and beverages to children.

^eBreastfeeding (EB – ever breastfed, EBF < 6m – exclusive < 6 months breastfeeding, BFP – breastfeeding promotion).
Table 4. Stages of the nutrition transition and challenges for mega-countries to address the burden of non-communicable chronic diseases

Country group	Characteristics	What could be expected in the next decades?	What priorities must be addressed to diminish the burden of NCDs?
Low-Middle HDI Pattern 3 of the nutrition transition	Mostly rural/labor-intensive work low sedentarism Epidemiologic panorama dominated by under nutrition, but even low prevalence of NCDs represent a significant burden Increasing prevalence trends of NCDs (obesity, high blood cholesterol, blood pressure and blood sugar) Elevated population growth Starchy, high fiber, hydration mostly with water Increasing consumption of tobacco	Increasing urbanization trend. Decrease in physical activity associated with shifts to lower labor-intensive occupations and active transportation. Decreasing prevalence of stunting. Increasing prevalence of NCDs associated to national growth, trade and shifts in the food systems with low priority and resources from the governments and health sector to respond. Higher prevalence of CVD at lower BMI levels than in higher HDI megacountries Tobacco consumption becoming major public health problem in particular among males Increasing consumption of processed foods, sugar-sweetened beverages and fast food Alcohol consumption not expected to increase in most of these countries due to Muslim religion practices	Raise priority of NCDs in development of national policies Improve/develop surveillance and monitoring systems for NCDs Implement policies to promote adequate urban planning focused on active communities, active transportation and public transportation Disincentives for use of cars. Promotion of physical activity to compensate for increasingly sedentary jobs Reinforcement/Implementation of taxes and strict regulation to disincentive tobacco consumption Promotion and incentives to reinforce/maintain adequate breastfeeding practices Policies and incentives to maintain and value traditional foods and diets as the key to adequate nutrition. Guidelines for healthy hydration and disincentives to the development of SSBs industry. Introducing/improving nutrition education with emphasis on the unhealthy effects of high added sugar, salt and saturated/trans fats intake
High HDI Pattern 4 of the nutrition transition	Mostly urban/physical activity very low Epidemiologic panorama dominated by NCDs (obesity, high blood cholesterol, blood pressure and blood sugar) High tobacco, SSBs, fast foods and processed foods consumption. Poor potable water availability Poor public transportation, inadequate/insufficient public parks Lack of adequate regulations to protect children from unhealthy food and beverage marketing Transnational food companies lobbying against health policy attempts to modify food environment	Increasing urbanization, often without proper urban planning. Decrease in physical activity (due mostly to shifts in labor) and active transportation Decreasing prevalence of stunting. NCDs recognized as the main public health problem however lack of comprehensive policies to tackle the epidemic Tobacco consumption remains a major public health problem with increases in consumption by vulnerable groups (young adults, women, low-income, ethnic minorities) Increasing consumption of processed foods, sugar-sweetened beverages, fast food Imported low-cost solutions to control CVD risk factors such as statins, antihypertensive drugs and aspirin will become more available	Raise priority of NCDs in design of national policies with a multisectoral approach. Develop monitoring systems to evaluate progress in NCDs prevention and control at global, regional and national levels Promote a strong focus on urban planning considering active transportation, walkability and active living. Disincentives such as taxes and regulation for the use of cars and incentives for use of public transportation Continuing/improving efforts to reduce tobacco, SSBs and alcohol consumption: taxation, marketing and labeling regulations. Avoid subsidies on unhealthy ingredients/avoid policies that increase availability of sugar, high fructose and other caloric sweeteners, salt and saturated fats intake
Country group	Characteristics	What could be expected in the next decades?	What priorities must be addressed to diminish the burden of NCDs?
---------------	-----------------	---	---
Very High HDI	Mostly urban/physical activity very low however increasing, particularly on higher socioeconomic segments, Epidemiologic panorama dominated by obesity and NCDs, however, reductions in smoking, SSBs and other risk factors	Trends on implementation of creative national policies to improve food environment (soda tax, ultra processed food marketing and labeling regulation, physical activity promotion)	Improve health care response to the rapid rise in NCDs: review and update health care curricula and training, massive education campaigns, early detection, and effective treatment and control
Pattern 5 of the Nutrition Transition	Vulnerable groups such as low socio economic sectors, women, adolescents and minorities with higher exposure to unhealthy lifestyles: tobacco consumption, ultra processed foods, SSBs, fast foods, inactive transportation, poor access to incentives for physical activity	Develop creative solutions to address the NCDs burden such as: national soda taxation programs, strong healthy lifestyles programs, labeling and marketing regulations, polypill interventions in populations with poor access to health care, etc. Import effective initiatives and technology	Develop international trade agreements that include healthy lifestyle considerations
Japan, USA	Effective solutions to control some CVD risk factors such as statins, antihypertensive drugs and aspirin widely available at low cost to the vast majority of population	Effective solutions to control some CVD risk factors such as statins, antihypertensive drugs and aspirin widely available at low cost to the vast majority of population	Strengthen national policies and plans for the prevention and control of NCDs
	Decreasing trend in consumption of processed foods, sugar-sweetened beverages and fast food franchises in particular on higher socioeconomic segments of the population	Urban planning improving, with emphasis on walkability, active living, sustainability and environment. Stabilization/saturation equilibrium/slow reduction of obesity and NCDs	Promote research for the prevention and control of NCDs at global and national levels
	Unhealthy products migrating to emerging, less regulated markets in other countries	Vulnerable groups such as low socio economic sectors, women, adolescents and minorities with higher exposure to unhealthy lifestyles: tobacco consumption, ultra processed foods, SSBs, fast foods, inactive transportation, poor access to incentives for physical activity	Continued improvement of environments to promote healthy lifestyles with emphasis on vulnerable groups (such as low-income population, disadvantaged ethnic groups, women and adolescents), to reduce inequalities in health
	Control of emerging risk factors must be emphasized (high cholesterol and glucose in Japan; high tobacco consumption and sugar-sweetened beverages consumption in USA). Priority to low-income population and other disadvantaged minorities and vulnerable groups	Urban planning improving, with emphasis on walkability, active living, sustainability and environment. Stabilization/saturation equilibrium/slow reduction of obesity and NCDs	Import effective national policies implemented in High HDI countries such as soda tax, ultra processed front-of-pack labeling, cycling paths, nation wide physical fitness programs, etc.
	Prioritize social responsibility and fair trade of companies attempting to sell unhealthy products overseas	Urban planning improving, with emphasis on walkability, active living, sustainability and environment. Stabilization/saturation equilibrium/slow reduction of obesity and NCDs	Control of emerging risk factors must be emphasized (high cholesterol and glucose in Japan; high tobacco consumption and sugar-sweetened beverages consumption in USA). Priority to low-income population and other disadvantaged minorities and vulnerable groups

CVD, cardiovascular disease; HDI, human development index; NCD, noncommunicable chronic disease; SSB, sugar-sweetened beverage.

*Patterns of the nutrition transition according to Popkin (2015).
dyslipidemias, metabolic syndrome, CVDs, and dental health among other health problems [29,122–128]. Russia and Mexico are the mega-countries with the largest percentage of mortality because of CVD and diabetes, respectively. Bangladesh has the highest CVD and diabetes-aggregated mortality among the low/middle-HDI group (Fig. 4).

Finally, it is important in large economies to consider the implications of trade and other macro policies on individual behavior. Shifts in the food system, including prices, distribution, accessibility and quality occur, as consequences of macro policies such as trade, subsidies/incentives and agricultural policies. This in turn, tends to have effects on population health that must be considered by policy makers as one of the components of the decision analysis [7,8,129,130].

CONCLUSION

The annual percentage change (1990–2013) of CVD, ischemic heart disease, ischemic stroke, and diabetes mortality shows a significant negative trend by HDI of the mega-countries, suggesting that lower HDI mega-countries are shifting to higher mortality by these causes whereas higher HDI are stabilizing. The characteristics of the transition has been described and analyzed and the available information must

FIGURE 4

Percentage of deaths attributable to cardiovascular disease and diabetes in mega-countries (2013). Data obtained by Institute for Health Metrics and Evaluation (IHME). GBD Compare. Seattle, WA: IHME, University of Washington, 2016.

Country	Cardiovascular Disease	Diabetes
Ethiopia	26.7 (380.3)	2.4 (34.4)
Nigeria	21.6 (289.3)	1.9 (25.6)
Pakistan	35.6 (422.3)	4.0 (48.0)
Bangladesh	40.7 (428.7)	3.5 (36.9)
India	31.0 (387.6)	2.6 (32.9)
Philippines	37.6 (406.4)	4.5 (48.6)
Vietnam	38.3 (207.9)	2.5 (17.6)
Indonesia	39.1 (401.1)	4.9 (50.5)
China	42.0 (304.1)	1.4 (10.2)
Brazil	33.3 (252.0)	4.7 (35.2)
Mexico	24.4 (179.5)	9.4 (69.2)
Russia	55.6 (536.8)	0.5 (4.6)
Japan	26.6 (109.7)	0.7 (2.9)
United States	30.8 (183.3)	2.8 (16.6)

TABLE: Age-standardized percent of deaths (% (age-standardized deaths per 100 000 habitants))
Hyperlipidaemia and cardiovascular disease

allow the health and policy-planning sector to identify priorities to diminish the burden of disease. Table 4 summarizes characteristics, expected epidemiological panorama and priorities for low/middle, high/very high-HDI megacountries.

Acknowledgements

None.

Financial support and sponsorship

The work was carried out with support from the International Development Research Centre (INFORMAS project no. 107–731-001). Additional funding was provided by NIH-Fogarty RO3 project no. TW009061 and an unrestricted research grant from Sanofi-Aventis to the National Institute of Public Health.

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

** of special interest

* of outstanding interest

1. The World Bank. World Bank Open Data: The World Bank Group; 2016 http://data.worldbank.org/ [Accessed 4 April 2016].

2. Douglas KA, Yang G, McQueen DV, Psuka P. Mega country health promotion network surveillance initiative. In: McQueen DV, Psuka P, editors. Global behavioral risk factor surveillance. Boston, MA: Springer US; 2003. pp. 179–198.

3. Department of Noncommunicable Disease Prevention and Health Promotion WHOW. Mega Country Health Promotion Network Meeting on Diet, Physical Activity and Tobacco. Geneva: World Health Organization (WHO) 2003 Contract No.: WHO/NMH/NPH/NCP/03.05.

4. Popkin BM. Nutrition transition and the global diabetes epidemic. Curr Diab Rep 2015; 15:64.

This reference has an updated description of the epidemiologic transition theory and interpretation.

5. World Health Organization Department of NCD, Prevention, Health Promotion, Mega country health promotion network behavioural risk factor surveillance guide. World Health Organization (WHO); 2002.

6. Barquera S. Respuesta de la Organizacion Mundial de la Salud al rapido crecimiento de las enfermedades cronicas: reunion de la red de los mega-paises. Salud publica de Mexico 2002; 44:79–80.

7. Collier R. Liberal trade laws linked to obesity. CMAJ 2014; 186:290.

8. Prief S, Hattersley L, Snowdon W, et al. Monitoring the impacts of trade agreements on food environments. Obes Rev 2013; 14 (Suppl 1):120–134.

9. Sacks G, Swinburn B, Kraak V, et al. A proposed approach to monitor private-sector policies and practices related to food environments, obesity and noncommunicable disease prevention. Obes Rev 2013; 14 (Suppl 1):38–48.

10. Popkin BM. Bellagio Meeting g. Bellagio Declaration 2013: countering Big Behavioural Change. New York, NY: UNDP; 2013 http://hdr.undp.org/en/humandev [Accessed 4 April 2016].

11. Popkin BM. Understanding the nutrition transition. Urbanisation and health Metr 2013; 11:1063.

12. Ng SW, Howard AG, Wang HJ, et al. The physical activity transition among adults in China: 1991–2011. Obes Rev 2014; 15 (Suppl 1):27–36.

The study examines aspects of the physical activity transition in one of the largest megacountries in the world.
Cardiovascular diseases in mega-countries Barquera et al.

70. Fletcher K, Mant J, McManus R, Hobbs R. Programme Grants for Applied Research, The Stroke Prevention Programme: a programme of research to inform optimal stroke prevention in primary care. Southampton (UK); NIHR Journals Library Copyright (c) Queen’s Printer and Controller of HMSO 2016. This work was produced by Fletcher et al. under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Co-ordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

71. Selak V, Harwood M, Raina Elley C, et al. Polypill-based therapy likely to reduce ethnic inequities in use of cardiovascular preventive medications: Findings from a pragmatic randomised controlled trial. Eur J Prev Cardiol 2016; doi: 10.1177/2047448516637196. [Epub ahead of print] Discussion on the value of polypill as an alternative to reduce CVD in vulnerable populations.

72. Chrysant SG, Chrysant GS. Usefulness of the polypill for the prevention of cardiovascular disease and hypertension. Curr Hypertens Rep 2016; 18:14.

73. Wald NJ, Luteijn JM, Morris JK, et al. Cost-benefit analysis of the polypill in the primary prevention of myocardial infarction and stroke. Eur J Epidemiol 2016; 31:415–426.

74. Lafleur M, Spiering W, Visseren FL, Grobbee DE. Multifactorial prevention of cardiovascular disease in patients with hypertension: the cardiovascular polypill. Curr Hypertens Rep 2016; 18:40.

75. Cappuccio FP, Capewell S, Lincoln P, McPherson K. Policy options to reduce population salt intake: a modelling study. BMJ; 348:g2408. 2014.

76. Misra A, Ngan P, Hills AP, et al. Consensus physical activity guidelines for Asian Indians. Diabetes Technol Ther 2012; 14:93–98.

77. Hidayat B, Thahtany H. Cigarette tax and public health: Evidence in 187 countries of high consumption of SSBs, a major driver of the NCD epidemic. PLoS Med 2014; 11:e1001530. Review of evidence in 187 countries on the effects of sugar-sweetened beverages on public health.

78. Selvaraj S, Srivastava S, Karan A. Price elasticity of tobacco products among economic classes in India, 2011-2012. BMJ Open 2015; 5:e008180. Review of tobacco price elasticity in India.

79. Lee JM, Chen MG, Hwang TC, Yeh CY. Effect of cigarette taxes on the price elasticity of tobacco products among economic classes in India, 2011-2012. BMJ Open 2015; 5:e008180. Review of tobacco price elasticity in India.

80. Mortensen MB, Afzal S, Nordestgaard BG, Falk E. Primary prevention with statins or greater risk of cardiovascular disease. BMJ 2015; 351:h7008. Discussion on the potential use of statins to prevent CVD in adults that must be considered on national policies.

81. Selak V, Harwood M, Raina Elley C, et al. Polypill-based therapy likely to reduce ethnic inequities in use of cardiovascular preventive medications: Findings from a pragmatic randomised controlled trial. Eur J Prev Cardiol 2016; doi: 10.1177/2047448516637196. [Epub ahead of print] Discussion on the value of polypill as an alternative to reduce CVD in vulnerable populations.

82. Krauss MJ, Cavazos-Rehg PA, Plunk AD, et al. Polypill-based therapy likely to reduce ethnic inequities in use of cardiovascular preventive medications: Findings from a pragmatic randomised controlled trial. Eur J Prev Cardiol 2016; doi: 10.1177/2047448516637196. [Epub ahead of print] Discussion on the value of polypill as an alternative to reduce CVD in vulnerable populations.
Hyperlipidaemia and cardiovascular disease

94. Bibbins-Domingo K. The institute of medicine report sodium intake in populations: assessment of evidence: summary of primary findings and implications for clinicians. JAMA Intern Med 2014; 174:136–137.

95. Barquera S, Appel LJ. Reduction of sodium intake in the Americas: a public health imperative. Rev Panam Salud Publica 2012; 32:251–252.

96. Te Morenga L, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2013; 346:e7492.

97. Micha R, Mozaffarian D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids 2010; 45:893–905.

98. Mozaffarian D, Fahimi S, Singh GM, et al. Global sodium consumption and death from cardiovascular causes. N Engl J Med 2014; 371:624–634.

99. Pan American Health Organization (PAHO). Recommendations from a Pan American Health Organization Expert Consultation on the Marketing of Food and Non-Alcoholic Beverages to Children in the Americas. Washington, DC: 2011. Contract No.: ISBN: 978-92-75-11638-8.

100. World Health Organization (WHO). Set of recommendations on the marketing of foods and nonalcoholic beverages to children. Washington DC: 2010.

101. Theodore FL, Tolentino-Mayo L, Hernandez-Zeuli E, et al. Falls of the self-regulation of advertisements directed at children on Mexican television. Pediatr Obes 2016. doi: 10.1111/j.ips.12144. PubMed PMID: 27135300.

Recent evidence of lack of usefulness of self-regulatory programs to control marketing of food and beverages to children.

102. Sacks G, Rayner M, Swinburn B. Impact of front-of-pack ‘traffic-light’ nutrition labelling on consumer food purchases in the UK. Health Promot Int 2009; 24:344–352.

103. Galbraith-Emami S, Lobstein T. The impact of initiatives to limit the advertising of food and beverage products to children: a systematic review. Obes Rev 2013; 14:960–974.

104. Barrera LH, Rothenberg SJ, Barquera S, Cifuentes E. The toxic food environment around elementary schools and childhood obesity in Mexican cities. Am J Prev Med 2016; Epub 2016/04/07. doi: 10.1016/j.amepre.2016.02.021. PubMed PMID: 27050412.

Evidence of the importance of the environment around schools to improve healthy nutrition in developing populations.

105. Gosslee W, Macdiarmid KA. Marketing foods and beverages: why licensed commercial characters should not be used to sell healthy products to children. Pediatrics 2007; 119:1255–1256.

106. Swinburn B, Sacks G, Lobstein T, et al. The ‘Sydney Principles’ for reducing the commercial promotion of foods and beverages to children. Public Health Nutr 2008; 11:881–886.

107. Sharma LL, Teren SP, Brownell KD. The food industry and self-regulation: standards to promote success and to avoid public health failures. Am J Public Health 2010; 100:240–246.

108. Potvin Kent M, Dubois L, Wanless A. Self-regulation by industry of marketing is having little impact during children’s preferred television. Int J Pediatr Obes 2011; 6:401–408.

109. Dutton DJ, Campbell NR, Elliott L, McLaren L. A ban on marketing of foods/ beverages to children: the who, why, what and how of a population health intervention. Can J Public Health 2012; 103:100–102.

110. Cairns G, Angus K, Hastings G, Caraher M. Systematic reviews of the evidence on the nature, extent and effects of food marketing to children. A retrospective summary. Appetite 2013; 62:209–215.

111. Lobstein T. Research needs on food marketing to children. Report of the StanMark project. Appetite 2013; 62:185–186.

112. Carter MA, Signau L, Edwards R, et al. Food, fizzy, and football: promoting unhealthy food and beverages through sport: a New Zealand case study. BMC Public Health 2013; 13:126.

113. Bragg MA, Yanamadala S, Roberts CA, et al. Athlete endorsements in food marketing. Pediatrics 2013; 132:805–810.

114. Kelly B, King L, Baur L, et al. Monitoring food and non-alcoholic beverage promotions to children. Obes Rev 2012; 13 (Suppl 1):59–69.

115. Jenkins G, Madhvanis N, Signau L, Bowes S. A systematic review of persuasive marketing techniques to promote food to children on television. Obes Rev 2014; 15:281–293.

116. Mallarino C, Gomez LF, Gonzalez-Zapata L, et al. Advertising of ultra-processed foods and beverages: children as a vulnerable population. Rev Saude Publica 2013; 47:1006–1010.

117. Standing Committee on Childhood Obesity Prevention; Food and Nutrition Board; Institute of Medicine. Challenges and opportunities for change in food marketing to children and youth: workshop summary. Washington DC: The National Academy of Sciences; 2013.

118. Kelly B, Hebden L, King L, et al. Children’s exposure to food advertising on free-to-air television: an Asia-Pacific perspective. Health Promot Int 2014; 31:144–152.

119. Rayner M, Wood A, Lawrence M, et al. Monitoring the health-related labelling of foods and nonalcoholic beverages in retail settings. Obes Rev 2013; 14 (Suppl 1):70–81.

120. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004; 363:165–168.