Biosimilars in paediatric inflammatory bowel disease

Joanna Sieczkowska-Golub, Dorota Jarzebicka, Grzegorz Oracz, Jaroslaw Kierkus

The introduction of biological treatments has changed disease outcomes for patients with inflammatory bowel disease. Biologicals have high efficacy, and can induce and maintain remission after failed responses to conventional immunosuppressive and/or steroid therapy. The increasing occurrence of severe disease at diagnosis has resulted in infliximab being more often introduced as the first-line treatment in a "top-down" approach. Besides their favourable efficacy and safety profile, biologicals have one significant disadvantage, which is their high cost. This results in many patients stopping therapy prematurely, with the maintenance phase being too short. This often leads to disease exacerbation shortly after treatment cessation. Every newly started course of biological therapy can induce production of anti-drug antibodies, which can result in treatment failure and possible allergic/anaphylactic reactions. The introduction of biological biosimilars was intended to greatly reduce therapy costs thus increasing the availability of these agents to more patients. It was also anticipated that biosimilars would prevent premature termination of therapy. Analyses of paediatric data suggest that biosimilar infliximabs are equally effective as the reference infliximab. Safety patterns also seem to be similar. Paediatric experience places cost-therapy reductions at around 10%-30%.

Key words: Biosimilars; Paediatric inflammatory bowel disease; Infliximab; Biological treatment; Crohn's disease; Ulcerative colitis

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Data on the use of biosimilars among paediatric patients are limited. Nevertheless, several original papers support adult findings that biosimilars are as effective and safe as the reference infliximab in this population.
in paediatric inflammatory bowel disease. *World J Gastroenterol* 2018; 24(35): 4021-4027 Available from: URL: http://www.wjgnet.com/1007-9327/full/v24/i35/4021.htm DOI: http://dx.doi.org/10.3748/wjg.v24.i35.4021

INTRODUCTION

Inflammatory bowel disease (IBD) includes Crohn’s disease (CD), ulcerative colitis (UC), and unclassified colitis. These diseases are characterised mainly by gastrointestinal symptoms, although extra-intestinal symptoms including general complications like mature or pubertal relapse and malnutrition can also occur. Therefore, it is very important to initiate effective treatment promptly. The introduction of biological therapies has dramatically changed treatment approaches and outcomes for patients with IBD. Biologics are medicinal products derived from living cell lines using recombinant DNA technology. At the beginning, biologics were reserved only for the most severe disease. However, the good safety profile of these agents has increasingly resulted in introduction shortly after diagnosis, especially in patients with poor prognostic factors. Early-onset IBD can have a more aggressive disease course[1,2]. Moreover, an increase in the incidence of paediatric IBD is being observed[3]. The first biologicals introduced to treat IBD patients were anti-tumour necrosis factor (TNF) inhibitors. TNFα is an inflammatory cytokine produced by immune cells. The anti-TNF-reference molecules available to treat children with IBD are adalimumab (Humira, AbbVie) and infliximab (Remicade, Janssen). Infliximab was introduced for adult patients with IBD in 1998, and was the first biological molecule used to treat this disease. In 2007, Hyams et al[4] reported high efficacy and safety for infliximab among paediatric CD patients. In 2012, this was also documented in children with UC[5]. The safety and efficacy of adalimumab for children was also proven prospectively by Hyams et al[6]. Similar results have been presented in other retrospective analyses[7].

BIOSIMILARS: SIMILAR BUT NOT IDENTICAL

Biosimilars are biological products that are highly similar to the reference drugs. Their similarity needs to be proven in terms of their characteristics, biological activity, immunogenicity, efficacy and safety. Biosimilars cannot be viewed as generics because generics must be identical to the reference products. In 2013, after the licences for infliximab had expired, the first biosimilar for IBD approved by the European Medicinal Agency (EMA) was biosimilar infliximab under the brand names Remsima (Celltrion, Inc, Incheon, South Korea) and Inflectra (Pfizer, New York, NY, United States). In April 2016, the Food and Drug Administration (FDA) also approved the use of biosimilars. To be approved, all new biologics require physicochemical analyses, animal studies, clinical evaluations and clinical trials for each proposed indication. The approval pathway is concerned mostly about clinical trials to confirm safety and efficacy. For approval of biosimilars, structural, analytical and *in vitro* similarity must be shown. A clinical trial is sufficient to prove conformity for only one indication. If equivalence is revealed, this indication can be extrapolated for all indications involving the reference drug[8]. Indeed, approval to use the biosimilar infliximab in IBD patients has been based on extrapolation. The clinical testing of biosimilar infliximab has been performed in rheumatologic diseases. A multicentre, double-blind, randomised phase I study (PLANETAS) compared the pharmacokinetics, safety and efficacy of the reference infliximab and the biosimilar infliximab (CT-P13) in 250 anti-TNF-naive ankylosing-spondylitis patients[9]. The pharmacokinetics of both infliximab molecules were equivalent. Further, the efficacy and safety profiles were both highly similar. “PLANETRA” was a multicentre, double-blind, randomised phase II study conducted among patients with rheumatoid arthritis[10]. The patients had concomitant therapy with methotrexate. The authors ascertained that the efficacy, safety and immunogenicity of both molecules were similar. Approval by extrapolation met with deep concern among gastroenterologists, and with reluctance to initiate use. This was reflected in the first European Crohn’s and Colitis Organisation (ECCO) recommendations[11]. Similar results for rheumatology were not considered sufficiently conclusive to ensure the safety and effectiveness of biosimilars in IBD patients. There was a suspicion that the different mechanisms of anti-TNF action, and especially the concomitant therapy used for rheumatic disease, might change the appearance of antibodies. Thus, the work undertaken in rheumatological conditions would not be suitable for proving the safety and efficacy of new biosimilars in IBD, especially for children. Non-clinical *in vitro* studies on CT-P13 highlighted the differences in FcgRIIIa-receptor binding, and in antibody-dependent cell-mediated cytotoxicity from the reference infliximab molecule[12]. Although the differences were considered to be clinically insignifcant in IBD patients, the problem was widely discussed in the context of patient safety and treatment efficacy[13,14]. An interesting study describing biological activities of CT-P13 and the reference infliximab has been published recently. Lim et al[15] used especially produced intestinal cells stimulated by a mixture of cytokines to start the inflammatory process to determine whether both drugs had similar functions *in vitro*. The research design included varying evaluations of the supposed anti-TNF action. Firstly, the suppression of pro-inflammatory cytokine secretion was detected. TNFα mobilised immune cells to the inflammatory site, which induced the extraction of inflammatory cytokines and mediators from epithelial and immune cells. Infliximab neutralised and inhibited soluble-TNFα, which had the effect of diminishing the expression of mediators[16]. Lim et al[15] detected that inhibition of the secretion of the pro-inflammatory cytokines, interleukin (IL)-6 and IL-8,
was similar with both infliximab forms. This research group also evaluated how neutralisation of soluble TNFα induced apoptosis of intestinal epithelial cells. The induction of apoptosis in monocytes and lymphocytes by infliximab is a significant action because of the diminished cytokine release, which leads to blockade of the inflammatory response\(^\text{[17]}\). The action of infliximab in neutralising soluble TNFα suppresses intestinal epithelial apoptosis. For this, both infliximab forms were shown to work similarly. Another comparison aim was examination of apoptosis and cytokine suppression, which is induced by reverse signalling when infliximab molecules bind to transmembrane TNFα. The authors detected that the infliximabs had similar ability to induce apoptosis, and both molecules demonstrated congruous dose-dependent cytokine suppression. Other tests revealed similar results for both infliximab molecules in the case of the promotion of regulatory macrophages. Based on their analyses, the authors verified an insignificant difference in antibody-dependent cell-mediated cytotoxicity\(^\text{[15]}\).

A STATEMENT OF BIOSIMILAR USE IN PAEDIATRICS

Shortly after biosimilars became available on the market, a statement was released about their use by the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the Paediatric IBD Porto Group. The paper was an expert opinion directed at paediatric gastroenterologists taking care of children with IBD. Because of the lack of clinical trials among IBD patients, the paper could not be regarded as containing strict recommendations, and was summarised in three propositions. Firstly, the authors advocated giving high priority to conducting paediatric trials with long-term follow-up, to support EMA decisions on biosimilar approvals for paediatric IBD. Secondly, the experts did not recommend switching patients to a biosimilar during sustained remission until clinical trials verifying the safety and efficacy of biosimilars in IBD were available. Thirdly, all participants agreed that post-marketing surveillance programmes measuring the efficacy, safety and immunogenicity in children with IBD, should be a mandatory requirement for the marketing of biologics and biosimilars for specific indications\(^\text{[18]}\).

INFLEXIMAB BIOSIMILAR EXPERIENCES

Induction and maintenance therapy with biosimilar infliximab

Regardless of the above-mentioned statement, in some centres biosimilars were used in paediatric IBD patients, mainly due to the unavailability of the originator molecule. Nevertheless, there are only a few studies reporting the use of biosimilars in children. A recently published multi-centre study involved 278 paediatric patients, who started infliximab-reference therapy (\(n = 175\)), infliximab biosimilars (\(n = 82\)) or adalimumab (\(n = 21\)). Unfortunately, in assessing infliximab efficacy with the Paediatric Crohn’s Disease Activity Index (PCDAI) score, only 24% (42/175) of the reference infliximab patients were assessed at baseline along with 35% (29/82) of the biosimilar infliximab group. At the 3-mo follow-up, the PCDAI scores were known only for 11% (19/175) and 18% (15/82) of the reference and biosimilar groups, respectively. Most of the reference infliximab (28/33 i.e., 85%) and biosimilar (19/22 i.e., 86%) groups presented with a response. Remission was achieved in 25/37 (68%) and 19/24 (79%), respectively. Some of the patients had their disease severity assessed by Physician’s Global Assessment (PGA), with an improvement also observed. Among this cohort no unexpected adverse events occurred, but six of the 121 (5%) patients assessed at the 3-mo follow-up experienced various conditions including a rash (2 patients), fever (2 patients), blood abnormality (1 patient) and difficulty in breathing (1 patient)\(^\text{[19]}\).

A study conducted among Polish paediatric patients assessed the induction efficacy of the biosimilar infliximab. The assessment involved 36 patients from three hospitals. Three induction doses were administered to 34/36 (94.4%) patients. Fourteen weeks after the first biosimilar dose was given, a clinical response was achieved in 31/36 (86%) patients, and remission in 24/36 (67%). Only one allergic reaction was reported during the drug infusion. Mild adverse events occurred, mainly upper-respiratory tract infections. No serious adverse events were observed\(^\text{[20]}\) (Table 1). Two of the above-mentioned studies compared their results to historical work in similar patient cohorts treated with the reference infliximab, with similar findings. The authors reported a similar efficacy and safety profile among both cohorts, treated with biosimilar and reference infliximabs. A study from the United Kingdom used 40 paediatric patients, most of whom were naïve for anti-TNF treatment. The cohort consisted of 29 CD and 11 UC patients, with almost all (95%) receiving concomitant therapy. The biosimilar infliximab induced remission in 14/21 (67%) patients. Significant decreases in PCDAI were observed. One patient presented with an infusion-associated allergic reaction\(^\text{[21]}\) (Table 1). As with the Polish cohort patients with allergic reactions, their reactions had been affected by prior exposure to originator infliximab.

Table 1 Treatment of Crohn’s disease paediatric patients with biosimilar infliximab

Study	Number of patients	PCDAI before treatment	Time of assessment after induction	Remission (%)
Richmond et al\(^\text{[22]}\)	29	27.5 (7.5-55)	12 wk	67
Chanchlani et al\(^\text{[24]}\)	29	28 (20, 40)	3 mo	79
Sieczkowska-Golub et al\(^\text{[25]}\)	36	32.5	14 wk	67

PCDAI: Paediatric Crohn’s Disease Activity Index.
The paediatric data are supported by studies in adults. To date, studies assessing the efficacy and safety of biosimilars have primarily been conducted among adult patients. Komaki et al.[22] presented a systematic review of 829 IBD patients from 11 observational studies. The patients either received biosimilar therapy from the beginning or were switched from the reference infliximab. The authors concluded that both infliximab molecules were highly similar in terms of safety and efficacy. Another systematic review, which aggregated data from 11 observational studies, was carried out by Radin et al.[23]. A total of 1007 patients were included. The authors did not observe any significant difference in efficacy or safety between the reference infliximab and the biosimilar CT-P13. There are no data on use of the new biosimilar infliximab Flixabi (Samsung Bioepis, United Kingdom) among children.

Switching

Only two studies in paediatric patients reported their experiments involving changing the infliximab molecule during the same course of therapy (Table 2). The first study, conducted in Poland, concerned 39 patients, 32 of whom had CD while 7 had UC. All the patients who were over 16 years of age, and all parents needed to consent to continuation of therapy with biosimilars, due to the unavailability of the reference molecule. The young people had the drug change at different times in the maintenance phase, with none presenting during follow-up with disease exacerbation after biosimilar introduction. No serious adverse events occurred, and the incidence of mild adverse events did not differ before and after drug change[26] (Table 2). The second study, conducted in Korea, was a comparison of patients after the switch to biosimilars with those remaining on the reference infliximab therapy. The 74 patients were divided into two groups (the reference and biosimilar groups) who were followed-up for one year after therapy. Decisions on the treatment types were made by the patients and their guardians. The reference infliximab group comprised 36 patients (28 with CD and 8 with UC), while 38 (32 with CD and 6 with UC) elected to switch to CT-P13. Maintenance therapy of one-year duration was continued by 86.1% of the patients with the reference infliximab, and 92.1% with the biosimilar. Sustained remission was attained in 28/36 (77.8%) of the patients on the reference infliximab and 30/38 (78.9%) of the patients in the CT-P13-switch group. Eight of the patients taking part in the study did not finish the year of follow-up. Three achieved total remission and did not wish to continue with further therapy, three needed to change to adalimumab due to loss of response, and two were lost to follow-up. No serious adverse events or infusion-related reactions were observed[25] (Table 2). Several studies of adults assessed patients around the time of switching. Most of them aimed at assessing disease activity, safety and immunogenicity. None of the adult studies reported worsening disease after switching[26-31].

BIOSIMILAR ADALIMUMAB

The first biosimilar adalimumab appeared in India and was named ZRC-3197 (Exemptia - Zydus Cadila Healthcare Ltd.). A prospective, randomised, double-blind, multi-centre, parallel-group, active, controlled study among rheumatoid arthritis patients confirmed that the biosimilar adalimumab was similarly effective and tolerated as the reference molecule[32]. The licence for adalimumab in Europe expired. The currently available biosimilar substances approved by the EMA and FDA are presented in Tables 3 and 4. Many new biosimilars are in the pipeline[33]. To date, there appears to be no paper published on the use of the biosimilar adalimumab for IBD.

CHANGES IN KNOWLEDGE OF BIOSIMILARS

One year after the biosimilar infliximab became available clinically, Danese et al.[34] conducted an anonymous survey of gastroenterologists to assess their knowledge and perception about the biosimilars that were emer-
By making treatment available to a greater num-
 unnecess-ary to concerns about insufficient safety data24,25. Appre-

CONCLUSION

To date, published data on paediatric IBD remain limited. Nevertheless, the above-mentioned studies show that the efficacy and safety of biosimilars and the originator infliximab are similar. The results are comparable to data on adults.

COST SAVINGS

The high efficacy and safety of biologics makes them the preferred therapy type. The main limitation of their use is high cost. Because of the expense of therapy, biologics are usually used in the most severe disease forms. Fur-

REFERENCES

1. Pigneur B, Seksik P, Viola S, Viala J, Beaugerie L, Girardet JP, Rueymmele FM, Cosnes J. Natural history of Crohn’s disease: comparison between childhood- and adult-onset disease. *Inflamm Bowel Dis* 2010; 16: 953-961 [PMID: 19834970 DOI: 10.1002/ibd.21152]

2. Van Limbergen J, Russell RK, Drummond HE, Aldhous MC, Round NK, Nimmo NR, Smith L, Gillett PM, McGrogan P, Weaver LT, Bisset WM, Mahdi G, Arnott ID, Satsangi J, Wilson DC. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. *Gastroenterology* 2008; 135: 1114-1122 [PMID: 18725221 DOI: 10.1053/j.gastro.2008.06.081]

3. Benchimol EI, Fortinsky R, Goody P, Van den Heuvel M, Van Limbergen J, Griffiths AM. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. *Inflamm Bowel Dis* 2011; 17: 423-439 [PMID: 20564651 DOI: 10.1002/ibd.21349]

4. Hyams J, Crandall W, Kugathasan S, Griffiths A, Olson A, Johanss J, Liu G, Travers S, Heuschkel R, Markowitz J, Cohen S, Winter H, Veereman-Wauters G, Ferr G, Baldassano R; REACH Study Group. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn’s disease in children. *Gastroenterology* 2007; 132: 863-873; quiz 1165-1166 [PMID: 17324398 DOI: 10.1016/j.gastro.2006.12.003]

5. Hyams J, Damaraju L, Blank M, Johanss J, Guzzo C, Winter HS, Kugathasan S, Cohen S, Markowitz J, Escher JC, Veereman-Wauters G, Crandall W, Baldassano R, Griffiths A; T72 Study Group. Induction and maintenance therapy with infliximab for children with moderate to severe ulcerative colitis. *Clin Gastroenterol Hepatol* 2012; 10: 391-399.e1 [PMID: 22155755 DOI: 10.1016/j.cgh.2011.11.026]

6. Hyams JS, Griffiths A, Markowitz J, Baldassano RN, Faubion WA Jr, Colletti RB, Dubinsky M, Kierkus J, Rosh J, Wang Y, Huang B, Bittle B, Marshall M, Lazar A. Safety and efficacy of adalimumab for moderate to severe Crohn’s disease in children. *Gastroenterology* 2012; 143: 365-374.e2 [PMID: 22602021 DOI: 10.1053/j.gastro.2012.04.046]

7. Russell RK, Wilson ML, Loganathan S, Bourke B, Kiparisri F, Mahdi G, Torrente F, Rodrigues A, Davies I, Thomas A, Akobeng AK, Fagbemi A, Hayer W, Spray C, Vaish S, Rogers P, McGrogan P, Heuschkel RB, Ayub NA, Green MA, Murphy MS, Rao P, Shah N, Ho GT, Naik S, Wilson DC. A British Society of Paediatric Gastroenterology, Hepatology and Nutrition survey of the effectiveness and safety of adalimumab in children with inflammatory bowel disease. *Aliment Pharmacol Ther* 2011; 33: 946-953 [PMID: 21342211 DOI: 10.1111/j.1365-2036.2011.04603.x]

8. Chang S, Hanauer S. Extrapolation and Interchangeability of Infliximab and Adalimumab in Inflammatory Bowel Disease. *Curr Treat Options Gastroenterol* 2017; 15: 53-70 [PMID: 28164249 DOI: 10.1007/s11938-017-0262-6]

9. Park W, Hrycay P, Jeka S, Kovalenko V, Lysenko G, Miranda P, Mikazane H, Gutierrez-Ureña S, Lim M, Lee YA, Lee SJ, Kim H, Yoo DH, Braun J. A randomised, double-blind, multicentre, parallel-group, prospective study comparing the pharmacokinetics, safety, and efficacy of CT-P13 and innovator infliximab in patients with ankylosing spondylitis: the PLANETAS study. *Ann Rheum Dis* 2013; 72: 1605-1612 [PMID: 23687259 DOI: 10.1136/annrheumdis-2012-203091]

10. Yoo DH, Hrycay P, Miranda P, Ramirete E, Piotrowski M, Shevchuk S, Kovalenko V, Prodanovic N, Abello-Banfi M, Gutierrez-Ureña S, Morales-Olazabal L, Lee M, Jimenez R, Zamani O, Lee SJ, Kim H, Park W, Müller-Ladner U. A randomised, double-blind, parallel-group study to demonstrate equivalence in efficacy and safety of CT-P13 compared with innovator infliximab when coadministered with methotrexate in patients with active rheumatoid arthritis: the PLANETRA study. *Ann Rheum Dis* 2013; 72: 1613-1620 [PMID: 23687260 DOI: 10.1136/annrheumdis-2012-203090]
Danese S, Gomollon F; Governing Board and Operational Board of ECCO. ECCO position statement: the use of biosimilar medicines in the treatment of inflammatory bowel disease (IBD). J Crohns Colitis 2013; 7: 586-589 [PMID: 23623738 DOI: 10.1016/j.jcrohns.2013.03.011]

Jung SK, Lee KH, Jeon JW, Lee JW, Kwon BO, Kim YJ, Bae JS, Kim DI, Lee SY, Chang SJ. Physicochemical characterization of Remsima. MAbs 2014; 6: 1163-1177 [PMID: 25517302 DOI: 10.4161/mabs.32221]

Russell RK, Irving P, Probert C. Biosimilars: what’s around the corner? Frontline Gastroenterol 2015; 6: 262-263 [DOI: 10.1161/flgastro.2015.100587]

Ha CY, Kornbluth A. A Critical Review of Biosimilars in IBD: The Confluence of Biologic Drug Development, Regulatory Requirements, Clinical Outcomes, and Big Business. Inflamm Bowel Dis 2016; 22: 2513-2526 [PMID: 27564646 DOI: 10.1097/MIB.0000000000000886]

Lim KJ, Lee SJ, Kim S, Lee SY, MS Park, YA Choi, EJ Lee, EB Jun, HK Choi, JM Lee, S Kwon KS, Lim BP, Jeon MS, Shin EC, Choi YS, Fadim AE, Picard O, Yavoz M, Ben-Horin S, Chang SJ. Comparable Immune Function Inhibition by the Infliximab Biosimilar CT-P13: Implications for Treatment of Inflammatory Bowel Disease. J Crohns Colitis 2017; 11: 593-602 [PMID: 28453766 DOI: 10.1097/ECCJ.0000000000000811]

Guo Y, Lu N, Bai A. Clinical use and mechanisms of infliximab treatment on inflammatory bowel disease: a recent update. Biomed Res Int 2013; 2013: 581631 [DOI: 10.1155/2013/581631]

Zeissig S, Bojarski C, Buegel N, Mankertz J, Zeitz M, Fromm M, Schulze JK. Downregulation of epithelial apoptosis and barrier repair in active Crohn’s disease by tumour necrosis factor alpha antibody treatment. Gut 2004; 53: 1295-1302 [PMID: 15306588 DOI: 10.1136/gut.2003.036362]

de Ridder L, Waterman M, Turner D, Bronsky J, James AE, Dias JA, Strisciuglio C, Ruedenme FF, Levine A, Lione LM, Ahn CC, Stallberg J, Hauer AC, Buer LC, Mouna BA, Vancarova MA, Warren DJ, Medus AW, Hevik IK. Switching from Remicade® to the Biosimilar CT-P13 in Inflammatory Bowel Disease Patients: A Prospective Observational Cohort Study. J Crohns Colitis 2016; 10: 1287-1293 [PMID: 27095751 DOI: 10.1093/jcc/jjw087]

Smit LJ, Derix LA, de Jong DJ, Boshuizen R, van Esch AA, Drenth JPH, Hoenjen F. Long-Term Clinical Outcomes Following a Switch from Remicade® to the Biosimilar CT-P13 in Inflammatory Bowel Disease. J Crohns Colitis 2016; 10: 1277-1286 [PMID: 27095751 DOI: 10.1093/jcc/jjw087]

Argüelles-Arias F, Guerra Veloz MF, Perea Amarillo R, Vilches-Arenas A, Castro Laria L, Maldonado Pérez B, Charro Benallal D, Benitez Roldán A, Merino V, Ramirez G, Calleja-Hernández MA, Cañedo Alvarez A, Romeo Gómez M. Switching from reference infliximab to CT-P13 in patients with inflammatory bowel disease: 12 months results. Eur J Gastroenterol Hepatol 2017; 29: 1290-1295 [PMID: 28902041 DOI: 10.1097/MEG.0000000000000953]

Jorgensen KK, Olsen IC, Goll GL, Lorentzen M, Bolstad N, Haavardsholm EA, Lundin KEA, Mork C, Jahnson K, Kvien TK, NOR-SWITCH study group. Switching from originator infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab (NOR-SWITCH): a 52-wk, randomised, double-blind, non-inferiority trial. Lancet 2017; 389: 2304-2313 [PMID: 28502609 DOI: 10.1016/S0140-6736(17)30668-5]

Jani RH, Gupta R, Bhatia G, Rathi G, Ashok Kumar P, Sharma R, Kumar U, Gauri LA, Jadhav P, Bartakke G, Haridas V, Jain D, Mendiarrista SK. A prospective, randomized, double-blind, multicentre, parallel-group, active controlled study to compare efficacy and safety of biosimilar adalimumab (Certolizumab PEGademum) in patients with rheumatoid arthritis. Int J Rheum Dis 2016; 19: 1157-1168 [PMID: 26176644 DOI: 10.1111/jtr.12711]

Rawla P, Sunkara T, Raj JP. Role of biologics and biosimilars in inflammatory bowel disease: current trends and future perspectives. J Inflamm Res 2018; 11: 215-226 [PMID: 29844695 DOI: 10.2147/JIR.S165330]

Danese S, Fiorino G, Michetti P. Changes in Biosimilar Knowledge among European Crohn’s Colitis Organization [ECCO] Members: An Updated Survey. J Crohns Colitis 2016; 10: 1362-1365 [PMID: 27112706 DOI: 10.1093/jcc/jjw090]

Broszysz V, Rencz F, Péntek M, Baji P, Lakatos PL, Gulács L. A budget impact model for biosimilar infliximab in Crohn’s disease in Bulgaria, the Czech Republic, Hungary, Poland, Romania, and Slovakia. Expert Rev Pharmacoecon Outcomes Res 2016; 16: 119-125 [PMID: 26162458 DOI: 10.1586/14737167.2015.1067142]

Rencz F, Gulács L, Péntek M, Gecke KB, Dignass A, Halfvarson J, Gomollon F, Baji P, Peyrin-Biroulet L, Lakatos PL, Broszysz V. Cost-utility of biological treatment sequences for luminal Crohn’s disease in Europe. Expert Rev Pharmacoecon Outcomes Res 2017; 17: 597-606 [PMID: 28434387 DOI: 10.1080/14737167.2017.1322509]

Siewczkowska-Golub J et al. Biosimilars in paediatric IBD
Jha A, Upton A, Dunlop WC, Akehurst R. The Budget Impact of Biosimilar Infliximab (Remsima®) for the Treatment of Autoimmune Diseases in Five European Countries. *Adv Ther* 2015; 32: 742-756 [PMID: 26343027 DOI: 10.1007/s12325-015-0233-1]

38 Biosimilars of Infliximab. Accessed July 20, 2018 Available from: URL: http://gabionline.net/Biosimilars/General/Biosimilars-of-infliximab

39 Biosimilars of Adalimumab. Accessed June 29, 2018 Available from: URL: http://gabionline.net/Biosimilars/General/Biosimilars-of-adalimumab

40 EMA Approves Adalimumab and Trastuzumab Biosimilars. Accessed June 8, 2018 Available from: URL: http://www.gabionline.net/Biosimilars/News/EMA-approves-adalimumab-and-trastuzumab-biosimilars

41 CDER List of Licensed Biological Products with (1) Reference Product Exclusivity and (2) Biosimilarity or Interchangeability Evaluations to Date. Accessed August 8, 2018 Available from: URL: https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/ApprovalApplications/TherapeuticBiologicApplications/Biosimilars/UCM560162.pdf

P- Reviewer: Triantafillidis JK S- Editor: Gong ZM L- Editor: AE- Editor: Yin SY
