Structure and Mechanism of Rhomboid Protease*

Published, JBC Papers in Press, April 12, 2013, DOI 10.1074/jbc.R112.422378
Ya Ha†, Yoshinori Akiyama‡, and Yi Xue§
From the†Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520 and the‡Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan

Rhomboid protease was first discovered in Drosophila. Mutation of the fly gene interfered with growth factor signaling and produced a characteristic phenotype of a pointed head skeleton. The name rhomboid has since been widely used to describe a large family of related membrane proteins that have diverse biological functions but share a common catalytic core domain composed of six membrane-spanning segments. Most rhomboid proteases cleave membrane protein substrates near the N terminus of their transmembrane domains. How these proteases function within the confines of the membrane is not completely understood. Recent progress in crystallographic analysis of the Escherichia coli rhomboid protease GlpG in complex with inhibitors has provided new insights into the catalytic mechanism of the protease and its conformational change. Improved biochemical assays have also identified a substrate sequence motif that is specifically recognized by many rhomboid proteases.

The Drosophila growth factor Spitz is synthesized with a C-terminal transmembrane (TM) domain that anchors it to the endoplasmic reticulum membrane. Cleavage of the TM domain by rhomboid protease is required for the release of Spitz into solution, which enables it to diffuse and bind to EGF receptors (EGFRs) in signal-receiving cells (1). Mutations in rhomboid and other essential genes in the EGF signaling pathway produce a fused and pointed head skeleton in the larva, which gave rise to their names (Rhomboid, Spitz, and Star) (2). Homologs of the fly rhomboid have now been identified in most prokaryotic and eukaryotic organisms (3, 4). As with other ancient enzyme families, rhomboid proteases and rhomboid-like proteins have acquired a wide range of biological functions during the course of evolution (e.g. see Refs. 1 and 5–11). The recent elucidation of the role of the protease in the infection of human cells by apicomplexan parasites Toxoplasma gondii and Plasmodium falciparum suggests that inhibition of rhomboid protease may have medical value (e.g. see Refs. 12–14). Because the functions of rhomboid proteases have been extensively reviewed (15–17), we will focus this minireview on the mechanism of the protease, an area in which significant progress has been achieved recently. This topic may also have broader implications because rhomboid protease, site-2 protease, and γ-secretase represent a distinct class of proteases called intramembrane-cleaving proteases (I-CLiPs) (18–20). Different from their soluble counterparts, the I-CLiPs operate within the hydrophobic environment of the lipid bilayer and specialize in cleaving membrane protein substrates. Rhomboid protease was the first intramembrane protease whose crystal structure was solved (21) and is presently the best characterized intramembrane protease in terms of structure and catalytic mechanism.

The membrane topology and three-dimensional structure of the catalytic core domain of the Escherichia coli rhomboid protease GlpG are shown in Fig. 1. The crystal structures of the E. coli protease and a related rhomboid from Haemophilus influenzae and Toxoplasma gondii have been studied by several groups (21–25). With the exception of a surface loop (L5) and one of the TM helices (S5), which we discuss below, the independently obtained structures, including one from lipid bicelles (26), are all very similar to each other. The catalytic core domain of GlpG is composed of six membrane-spanning segments (S1–S6), which harbor a number of highly conserved sequence motifs that are characteristic of the family (3). Crystallographic analyses revealed the fold of the membrane protein and showed that the HxxxN motif in S2 (His-150; Asn-154 in the E. coli protease), the GxSG motif near the N terminus of S4 (Ser-201), and the (A/G)H motif in S6 (His-254) are all essential elements of the active site of the enzyme. Ser-201 and His-254 are hydrogen-bonded to each other and form a rudimentary catalytic dyad. The other conserved motifs seem to play mainly a structural role; for example, the tight packing between S4 and S6 is made possible by a conserved small amino acid (A/G) at position 206 in S4 and the GxSG motif in S6. Besides the basic 6-TM configuration represented by E. coli GlpG, some rhomboid proteases, e.g. the mitochondrial rhomboid PARL and Drosophila Rhomboid-1, have an additional TM helix outside the core domain toward either the N terminus (1 + 6) or the C terminus (6 + 1) of the protein (4). Although their structures are not yet known, the 7-TM versions of the protease are expected to share the same basic catalytic mechanism.

Catalytic Mechanism and Inhibitor Binding

Based on sequence conservation and site-directed mutagenesis, it was recognized early that rhomboid proteases belong to the serine catalytic class (1). It was hypothesized initially that Ser-201, His-254, and Asn-154 (E. coli GlpG numbering) form a catalytic triad, a variant of the classical Ser–His–Asp triad (1), but later studies found that Asn-154 was not essential for enzymatic activity, suggesting that the catalytic apparatus might consist only of a Ser–His dyad (27, 28). This is now confirmed by the crystal structures (Fig. 1). The sequences (GxSG) surrounding the catalytic serines of rhomboid and chymotrypsin are similar (1), but this appears to be coincidental. The structure of rhomboid’s active site is very different from that of chymotrypsin.

* This work was supported, in whole or in part, by National Institutes of Health Grant GM082839 (to Y. H.).
† To whom correspondence may be addressed. E-mail: ya.ha@yale.edu.
‡ To whom correspondence may be addressed. E-mail: yakiyama@virus.kyoto-u.ac.jp.
§ The abbreviations used are: TM, transmembrane; EGFR, EGF receptor; I-CLiP, intramembrane-cleaving protease; DCF, 3,4-dichloroisocoumarin; DFP, diisopropyl fluorophosphate; CAPF, Carboxybenzyl-Ala(M-o-Pr)F.
A. topology model. The membrane-spanning segments (S1–S6) are represented by white boxes and sequentially labeled. The gray boxes represent the membrane. The locations of the conserved motifs are illustrated (3, 4). The active site residues are highlighted in red, and residues that play a structural role are highlighted in green. The topology of the (1 + 6)-type mitochondrial rhomboid PARL is opposite that of GlpG, with the extracellular loops now facing the mitochondrial matrix.

B. crystal structure of E. coli rhomboid GlpG (Protein Data Bank code 2IC8) (21). The TM helices are shown as coiled ribbons. The side chains of the catalytic dyad are shown as stick models. The dashed line represents a hydrogen bond. In B (back view), the two horizontal lines represent the approximate boundaries of the membrane. The lower half of L1 is embedded in the membrane. The N-terminal soluble domains of two prokaryotic rhomboids have been characterized by NMR (60–62).

C. topology model. The membrane-spanning segments (S1–S6) are represented by white boxes and sequentially labeled. The gray boxes represent the membrane. The locations of the conserved motifs are illustrated (3, 4). The active site residues are highlighted in red, and residues that play a structural role are highlighted in green. The topology of the (1 + 6)-type mitochondrial rhomboid PARL is opposite that of GlpG, with the extracellular loops now facing the mitochondrial matrix.

FIGURE 1. Catalytic core domain of rhomboid protease. A, topology model. The membrane-spanning segments (S1–S6) are represented by white boxes and sequentially labeled. The gray boxes represent the membrane. The locations of the conserved motifs are illustrated (3, 4). The active site residues are highlighted in red, and residues that play a structural role are highlighted in green. The topology of the (1 + 6)-type mitochondrial rhomboid PARL is opposite that of GlpG, with the extracellular loops now facing the mitochondrial matrix. B and C, crystal structure of E. coli rhomboid GlpG (Protein Data Bank code 2IC8) (21). The TM helices are shown as coiled ribbons. The side chains of the catalytic dyad are shown as stick models. The dashed line represents a hydrogen bond. In B (back view), the two horizontal lines represent the approximate boundaries of the membrane. The lower half of L1 is embedded in the membrane. The N-terminal soluble domains of two prokaryotic rhomboids have been characterized by NMR (60–62).

In chymotrypsin, the backbone amide of the first glycine of the GxSG motif is pointed into the active site and, together with the amide of the serine, forms the oxyanion-binding site of the protease (29); in rhomboid, the amide group of the glycine is pointed away from the active site and does not contribute to catalysis.

Earlier biochemical studies using class-specific inhibitors led to the suggestion that rhomboid proteases might be different mechanistically from the other serine proteases; with the exception of 3,4-dichloroisocoumarin (DCI) (1, 27, 30), most inhibitors, including a few that have broad-spectrum activity, were found to be ineffective against rhomboid (30). Like the others, DCI reacts with the catalytic serine of the protease in a mechanism-dependent manner (31), but why it is the only compound that can broadly inhibit rhomboid could not be explained. Later studies showed that, depending on reaction conditions, even DCI does not always achieve complete inhibition, and efforts to visualize the covalent adduct of DCI with GlpG by x-ray diffraction were also unsuccessful (32). We now know that the crystallographic experiment failed because the covalent complex of DCI with GlpG is unstable (32). We know now that the crystallographic experiment failed because the covalent complex of DCI with GlpG is unstable (32). A critical breakthrough was made by Vinothkumar et al. (25), who finally found the right isocoumarin to work with. The new compound differs from DCI by having a methoxy substitution at position 3 and a 7-amino group; the binding of the new compound to GlpG is slightly different, so the catalytic histidine can now react with the C4 atom of the inhibitor to form an unbreakable bond (Fig. 2A). The finding quickly led to the first crystal structure of a protease-inhibitor complex; in the complex, Ser-201 is covalently bonded to the C1 atom of the inhibitor, confirming that the serine functions as a nucleophile and directly attacks the carbonyl carbon during catalysis (Fig. 2C). The resulting acyl-enzyme is the hallmark of the classical mechanism. Shortly afterward, the crystal structure of GlpG in complex with diisopropyl fluorophosphate (DFP), a classical serine protease inhibitor (Fig. 2B), was also solved. DFP phosphorylates the catalytic serine and stably inhibits the proteolytic activity of GlpG (33). DFP performed poorly in an earlier study (30), and the reason for the discrepancy between the two studies is unclear at this time. The covalent adduct of DFP with GlpG mimics the oxyanion-containing tetrahedral intermediate of the proteolytic reaction. In the crystal structure, the phosphoryl oxygen of the inhibitor is hydrogen-bonded to the main chain NH group of Ser-201 and the side chains of His-150 and Asn-154 (the HxxxN motif in S2) (Fig. 2D), suggesting that these groups may contribute to the stabilization of the oxyanion developed during peptide hydrolysis.

The exact binding mode of peptide to the protease active site is not yet known. A model currently favored by most researchers predicts that TM substrates approach the protease from the direction of TM helices S2 and S5 (22, 23, 32, 25, 34). The cleavage site of rhomboid protease is located near the N terminus of the TM domain of the substrate, and given the known position of the oxyanion hole, this would require the catalytic serine to attack the carbonyl carbon from the si-face of the peptide bond (32, 34), which is uncommon but not unprecedented (Fig. 2E) (35). The mutagenesis data showing that Ala-253 may contribute to the S1 pocket (where the side chain of the P1 residue binds) are consistent with this model (Fig. 2E, inset) (see below).

A clarification of the rhomboid protease catalytic mechanism will facilitate the development of rhomboid-specific inhibitors, which are potentially useful in medicine as adjunct therapy in treating apicomplexan infections (12–14). Because rhomboid protease uses the same chemical mechanism for catalysis as its soluble counterparts, modifying known serine protease inhibitors may represent a fruitful approach in this
endeavor. Even when high throughput screening is employed to discover novel compounds, the mechanistic knowledge will be helpful in evaluating early hits and in deciding which chemical classes are worth pursuing further. Both approaches were used in the recent discovery of the /H9252-lactam class of rhomboid inhibitors (36).

Conformational Change in the Protease and Substrate

The active site of rhomboid protease is hydrophilic and has to be closed initially to minimize unfavorable contact with the lipid molecules that surround the protein from the side. The TM domain of the rhomboid substrate also initially adopts a helical conformation incompatible with cleavage by the protease. Therefore, the protease and substrate must both undergo conformational changes before their productive binding can take place. In the absence of the crystal structure of a protease-substrate complex, the nature of these conformational changes has been debated.

Crystallographic analyses of GlpG in complex with two classes of inhibitors suggest that the conformational change in the protease is likely subtle (25, 33, 37). The complex with Carboxybenzyl-Ala\(^{\alpha}(O-iPr)\)F (CAPF), which is the largest of these inhibitors, is illustrated in Fig. 3 (A and B). CAPF occupies the S’ side of the protease active site; it forms a covalent bond with the catalytic serine and extends toward the gap between TM helices S2 and S5 (37). Real TM substrate is expected to pass through this gap to enter into the active site. CAPF binding displaces a loop, which we called the L5 cap (32), from the substrate-binding cleft (the opening of the L5 cap also unblocks the gap between S2 and S5) but causes only minor movement in the TM helices. The lack of any major movement, especially in the TM region of the protease, was confirmed by a co-crystallization experiment in which the conformational change in the protease was not restricted by any preformed crystal lattice (38).

The discovery that rhomboid proteases can cleave not only peptide bonds initially buried within TM regions but also hydrophilic sequences outside the TM domains (28, 39, 40) led to a “top-down” model in which peptide substrates bend into the protease active site from above the membrane plane (Fig. 3D) (41). This represents a fundamental departure from the earlier hypothesis that substrate enters the protease laterally from inside the membrane bilayer. It is easy to visualize how this model may apply to cleavages in the solvent-exposed juxtamembrane region, but how about those that occur inside the TM domains? The crystal structures provide a possible clue; high resolution analysis, in which water and detergent molecules can be differentiated, revealed that the hydrophobic belt of the membrane protein (the part of the protein surface that contacts the hydrocarbon tails of the lipids) is quite thin (~20 Å), suggesting that the membrane is constricted around the
protease (41). This is supported by molecular dynamics simulations (42) and by studying the structure of the protein in lipid bicelles (where the detergent-solubilized protein is reconstituted into a local bilayer structure) (Fig. 3C) (26). The constriction of membrane around the protease may facilitate the partition (transfer) of the buried substrate cleavage site into aqueous solution or directly into the active site of the protease. Because most residues within the cleavage site, e.g., the glycines, have low hydrophobicity, such a transfer should not be too costly in terms of free energy (20, 43). It is hypothesized that, once outside the membrane, the helical peptide can easily unfold into a more extended conformation (its backbone can now form hydrogen bonds with water) and become susceptible to cleavage by the protease (the conformational change in the L5 loop will enable the peptide to pass through the S2-S5 gap without steric hindrance) (Fig. 3A).

The “S5 lateral gating” model offers a different explanation for the conformational change in the protease (22, 44, 45). The model was based on an earlier crystal structure of the apo-protease in which TM helix S5 is tilted drastically away from the other helices (22). This movement was thought to open a gate inside the membrane for substrate to enter the protease laterally. Mutations designed to weaken the interactions between S5 and S2 have been found to enhance the protease activity (44, 46). The large tilting movement of the S5 helix is not observed, however, in any of the protease-inhibitor complex structures solved later. Furthermore, a recent study showed that cross-linking S5 to S2 in the F153C/W236C double mutant (Figs. 2E and 3A) does not hinder the ability of the protease to cleave a TM substrate in both detergent solution and reconstituted membrane vesicles (38). Because the cross-linker physically blocks the path between the two helices, the new experiment demonstrated that the TM substrate is fully capable of climbing over residues 153 and 236 (Fig. 2E), thus avoiding the proposed lateral gate, to reach the active site.
MINIREVIEW: Structure and Mechanism of Rhomboid Protease

Substrate Specificity

Rhomboid proteases are unique among I-CLiPs, as substrate cleavage does not depend on prior ectodomain shedding of the substrate, which appears to be critical for determining substrate specificity in other I-CLiP families. Nonetheless, rhomboids specifically recognize their substrates; *Drosophila* Rhomboid-1 cleaves membrane-bound EGF ligand precursors (e.g. Spitz, Keren, and Gurken) but not similar membrane proteins (e.g. TGFα, Delta, and TGN38) (47). *Drosophila* Rhomboid-1 and AarA (a rhomboid homolog from the Gram-negative bacteria *Providencia stuartii*) act interchangeably in these organisms, and AarA and other bacterial rhomboids specifically cleave EGF ligand precursors, suggesting that rhomboids recognize their substrates via a common and specific mechanism (48). Understanding the principal determination of substrate specificity should promote identification of new rhomboid substrates and elucidation of the mechanism.

Chimeric analysis of Spitz and TGFα/Delta indicated that a small luminal region of the Spitz TM segment is necessary and sufficient for cleavage by Rhomboid-1 (49). Mutational analysis of this region showed that the most important determinants are helix-destabilizing residues. Based on sequence similarity to this Spitz substrate motif, *T. gondii* micronemal adhesin was identified as a rhomboid substrate. Studies with model substrates have provided information on substrate specificity for the *E. coli* rhomboid homolog GlpG; in addition to helix-destabilizing residues around the cleavage site, those in the substrate TM region are critical for cleavage (50). Although it is thought that I-CLiPs cleave their substrates within the plane of the membrane, AarA and GlpG could cleave a substrate at the correct site when the cleavage site was moved into the juxtamembrane or membrane/extracytoplasm interface region by insertion of a hydrophilic linker sequence (39, 51), suggesting that they can cleave a substrate region exposed to the hydrophilic milieu. Helix-destabilizing residues in the substrate TM region may cause local unfolding, facilitating exposure of the membrane-embedded cleavage site via membrane thinning around the enzyme (41) and/or its presentation to the proteolytic active site. Random mutagenesis of residues on each side of the scissile bond (P1 and P1’ residues), combined with *in vivo* screening, showed that residues with a small side chain and with a small or negatively charged side chain are preferred at the P1’ and P1 sites, respectively, for proteolysis by GlpG (50). However, these substrate features were insufficient to predict new rhomboid substrates.

A more comprehensive mutational analysis of the region surrounding the cleavage site of TatA, a physiological substrate of AarA, identified a specific sequence motif commonly recognized by rhomboids (Fig. 4) (51). Freeman and co-workers (51) individually mutated 7 residues (from positions P5 to P2’) to 1 of 19 other amino acids and examined cleavage of mutated substrates by AarA. Residues at the P4, P1, and P2’ positions were the most sensitive to substitutions for *in vitro* and *in vivo* cleavage. P1 required small residues (Gly, Ala, Ser, and Cys), whereas P4 and P2’ required bulky hydrophobic residues (Val, Leu, Ile, Phe, and Trp), although small residues (Ala, Ser, Cys, and Thr) at P2’ also permitted cleavage. This motif was also recognized by other prokaryotic and eukaryotic rhomboid proteases. Moreover, a similar motif was found in other substrates, including Gurken and Spitz, and was cleavable by AarA. For cleavage of a substrate with an exposed cleavage site, there was a stricter requirement for this sequence motif around the cleavage site than for helix-destabilizing residues in the TM region.

Analysis of the complex formed between GlpG and an iso-coumarin inhibitor suggested the presence of pockets (S1 and S1’-binding subsites) that accommodate the side chains of P1 and P1’ residues (25). Mutations reducing the cavity size of the putative S1 pocket compromised cleavage of WT TatA (Ala at P1) but exerted weaker effects on cleavage of a mutant with a smaller residue at this position, TatA A8G, providing a structural explanation for preference for the P1 position. Screening with an algorithm based on the specificity matrix enabled identification of AarA substrates; among the 15 top-scored candidates, 38% were cleavable by AarA (51).

Although the proposed motif would provide a basis for substrate recognition by rhomboids in many cases, not all of the rhomboid substrates have this motif, and it is likely that other mechanisms for substrate recognition/cleavage may exist. For example, cleavage of thrombomodulin by Rhomboid-2 depends on its cytoplasmic rather than TM domain (52). Mitochondrial rhomboids may also recognize different substrate features (53). Although rhomboids have substrate preference for type I (N_out-C_in) single-spanning membrane proteins, type II (N_in-C_out) single-spanning membrane proteins (54, 55) and even multi-spanning membrane proteins can act as rhomboid substrates (56, 57). Thus, further studies are required to fully understand rhomboid substrate specificity.

Future Prospects

Since the landmark discovery that *Drosophila* Rhomboid-1 represents a new class of membrane-bound proteases (1), the field has expanded tremendously. The biological functions of many related rhomboid proteins are now known, and there is optimism that the pace of such discoveries will only quicken in the near future. The crystal structures of *E. coli* and *H. influenzae* GlpG proteins have provided a framework for in-depth
probing of the mechanism of action of the membrane protein. On this second front, future work needs to focus on the following areas. (i) The crystal structure of rhomboid protease in complex with a peptide substrate analog covering both S and S’ subsites has to be solved to explain the basis of the observed substrate specificity. (ii) The structure of the protease with a bound TM substrate is required to fully explain the nature of the conformational change in the enzyme. (iii) Complementing the structural characterizations, biological studies should be carried out to examine how rhomboid protease interacts with the lipid bilayer and how such interactions may influence the protease activity. (iv) The biochemical mechanism of the mitochondrial rhomboid PARL should be investigated more thoroughly (55, 58). PARL has an inverted catalytic core domain and, unlike the others, cleaves in the middle of a hydrophobic sequence downstream of the primary TM domain of the substrate. (v) T. gondii and P. falciparum rhomboids are also interesting subjects for future research because they play essential roles in the life cycles of two medically important parasites and demonstrate unique substrate specificities (14, 59).

REFERENCES

1. Urban, S., Lee, J. R., and Freeman, M. (2001) Drosophila Rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182
2. Mayer, U., and Nüsslein-Volhard, C. (1988) A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo. Genes Dev. 2, 1496–1511
3. Koonin, E. V., Makarova, K. S., Rogozin, I. B., Davidovic, L., Letellier, M. C., and Pellegrini, L. (2003) The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol. 4, R19
4. Lemberg, M. K., and Freeman, M. (2007) Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 17, 1634–1646
5. Stevenson, L. G., Strisovsky, K., Clemmer, K. M., Bhatt, S., Freeman, M., and Rather, P. N. (2007) Rhomboid protease AarA mediates quorum-sensing in Providence stuartii by activating TatA of the twin-argnine translase. Proc. Natl. Acad. Sci. U.S.A. 104, 1003–1008
6. McCubbin, G. A., Saurya, S., and Freeman, M. (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541
7. Cipolat, S., Rudka, T., Hartmann, D., Costa, V., Serneels, L., Craessaerts, K., Metzger, K., Frezza, C., Annau, W., D’Adamo, L., Derks, C., Dejaegere, T., Pellegrini, L., D’Hooge, R., Scorrano, L., and De Strooper, B. (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126, 163–175
8. Chao, J. R., Parganas, E., Boyd, K., Hong, C. Y., Opferman, J. T., and Ihle, J. N. (2008) Hax1-mediated processing of Htra2 by PAR allows survival of lymphocytes and neurons. Nature 452, 98–102
9. Zettl, M., Adrain, C., Strisovsky, K., Lastun, V., and Freeman, M. (2011) Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell 145, 79–91
10. Adrain, C., Zettl, M., Christova, Y., Taylor, N., and Freeman, M. (2012) Tumor necrosis factor signaling requires iRHom2 to promote trafficking and activation of TACE. Science 335, 225–228
11. Mellwain, D. R., Lang, P. A., Maretzyk, T., Hamada, K., Ohishi, K., Maney, S. K., Berger, T., Murthy, A., Duncan, G., Xu, H. C., Lang, K. S., Häussinger, D., Wakeham, A., Itie-Youten, A., Khokha, R., Ohashi, P. S., Blobel, C. P., and Mak, T. W. (2012) iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229–232
12. Santos, J. M., Ferguson, D. J., Blackman, M. J., and Soldati-Favre, D. (2011) Intramembrane cleavage of AMA1 triggers Toxoplasma to switch from an invasive to a replicative mode. Science 331, 473–477
13. Bugulis, J. S., Brossier, F., Shuman, J., and Sibley, L. D. (2010) Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog. 6, e1000858
14. O’Donnell, R. A., Hackett, F., Howell, S. A., Trench, M., Struck, N., Krajnok, Z., Withers-Martinez, C., Gilberger, T. W., and Blackman, M. J. (2006) Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J. Cell Biol. 174, 1023–1033
15. Freeman, M. (2008) Rhomboid proteases and their biological functions. Annu. Rev. Genet. 42, 191–210
16. Hill, R. B., and Pellegrini, L. (2010) The PARL family of mitochondrial rhomboid proteases. Semin. Cell Dev. Biol. 21, 582–592
17. Urban, S. (2006) Rhomboid proteins: conserved membrane proteases with divergent biological functions. Genes Dev. 20, 3054–3068
18. Brown, M. S., Ye, J., Rawson, R. B., and Goldstein, J. L. (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398
19. Wolfe, M. S., and Koman, R. (2004) Intramembrane proteolysis: theme and variations. Science 305, 1119–1123
20. Ha, Y. (2009) Structure and mechanism of intramembrane protease. Semin. Cell Dev. Biol. 20, 240–250
21. Wang, Y., Zhang, Y., and Ha, Y. (2006) Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179–180
22. Wu, Z., Yan, N., Feng, L., Obersteiner, A., Yan, H., Baker, R. P., Gu, L., Jeffrey, P. D., Urban, S., and Shi, Y. (2006) Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol. 13, 1084–1091
23. Ben-Shem, A., Fass, D., and Bibi, E. (2007) Structural basis for intramembrane proteolysis by rhomboid serine proteases. Proc. Natl. Acad. Sci. U.S.A. 104, 462–466
24. Lemieux, M. J., Fischer, S. J., Cherney, M. M., Bateman, K. S., and James, M. N. (2007) The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis. Proc. Natl. Acad. Sci. U.S.A. 104, 750–754
25. Vinokthumar, K. R., Strisovsky, K., Andreeva, A., Christova, Y., Verhelst, S., and Freeman, M. (2010) The structural basis for catalysis and substrate specificity of a rhomboid protease. EMBO J. 29, 3797–3809
26. Vinokthumar, K. R. (2011) Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 407, 232–247
27. Lemberg, M. K., Menendez, J., Misik, A., Garcia, M., Koth, C. M., and Freeman, M. (2005) Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J. 24, 464–472
28. Maegawa, S., Ito, K., and Akiyama, Y. (2005) Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 44, 13543–13552
29. Fersht, A. (1999) Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, p. 29, Macmillan, New York
30. Urban, S., and Wolfe, M. S. (2005) Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. U.S.A. 102, 1883–1888
31. Harper, J. W., Hemmi, K., and Powers, J. C. (1985) Reaction of serine protease with substituted isocoumarins: discovery of 3,4-dichloroisocoumarin, a new general mechanism based serine protease inhibitor. Biochemistry 24, 1831–1841
32. Wang, Y., and Ha, Y. (2007) Open-cap conformation of intramembrane protease GlpG. Proc. Natl. Acad. Sci. U.S.A. 104, 2098–2102
33. Xue, Y., and Ha, Y. (2012) Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and disopropyl fluorophosphonate. J. Biol. Chem. 287, 3099–3107
34. Brooks, C. L., Lazareno-Saez, C., Lamoureux, J. S., Mak, M. W., and Lieu, M. I. (2011) Insights into substrate gating in H. influenzae rhomboid. J. Mol. Biol. 407, 687–697
35. Paetzel, M., Dalbey, R. E., and Strynadka, N. C. (1998) Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor. Nature 396, 186–190
36. Pierrat, O. A., Strisovsky, K., Christova, Y., Large, J., Ansell, K., Boulou, N.,
MINIREVIEW: Structure and Mechanism of Rhomboid Protease

Smiljanic, E., and Freeman, M. (2011) Monocyclic β-lactams are selective, mechanism-based inhibitors of rhomboid intramembrane proteases. ACS Chem. Biol. 6, 325–335

37. Xue, Y., Chowdhury, S., Liu, X., Akiyama, Y., Ellman, J., and Ha, Y. (2012) Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S’ subsites. Biochemistry 51, 3723–3731

38. Xue, Y., and Ha, Y. (2012) Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease. J. Biol. Chem. 10.1074/jbc.M112.438127

39. Maegawa, S., Koide, K., Ito, K., and Akiyama, Y. (2007) The intramembrane active site of GlpG, an E. coli rhomboid protease, is accessible to water and hydrolyses an extramembrane peptide bond of substrates. Mol. Microbiol. 64, 435–447

40. Adrain, C., Strisovsky, K., Zettl, M., Hu, L., Lemberg, M. K., and Freeman, M. (2011) Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep. 12, 421–427

41. Wang, Y., Maegawa, S., Akiyama, Y., and Ha, Y. (2007) The role of L1 loop in the mechanism of rhomboid intramembrane protease GlpG. J. Mol. Biol. 374, 1104–1113

42. Bondar, A. N., del Val, C., and White, S. H. (2009) Rhomboid protease dynamics and lipid interactions. Structure 17, 395–405

43. Engelman, D. M., Steitz, T. A., and Goldman, A. (1986) Identifying non-polar transblayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15, 321–353

44. Baker, R. P., Young, K., Feng, L., Shi, Y., and Urban, S. (2007) Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix S5 as the lateral substrate gate. Proc. Natl. Acad. Sci. U.S.A. 104, 8257–8262

45. Baker, R. P., and Urban, S. (2012) Architectural and thermodynamic principles underlying intramembrane protease function. Nat. Chem. Biol. 8, 759–768

46. Urban, S., and Baker, R. P. (2008) In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells. Biol. Chem. 389, 1107–1115

47. Urban, S., Schlieper, D., and Freeman, M. (2002) Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 12, 1507–1512

48. Gallio, M., Sturgill, G., Rather, P., and Kylsten, P. (2002) A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proc. Natl. Acad. Sci. U.S.A. 99, 12208–12213

49. Urban, S., and Freeman, M. (2003) Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol. Cell 11, 1425–1434

50. Akiyama, Y., and Maegawa, S. (2007) Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease. Mol. Microbiol. 64, 1028–1037

51. Strisovsky, K., Sharpe, H. J., and Freeman, M. (2009) Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol. Cell 36, 1048–1059

52. Lohi, O., Urban, S., and Freeman, M. (2004) Diverse substrate recognition mechanisms for rhomboids: thrombomodulin is cleaved by mammalian rhomboids. Curr. Biol. 14, 236–241

53. Schäfer, A., Zick, M., Kief, J., Steger, M., Heide, H., Duvezin-Caubet, S., Neupert, W., and Reichert, A. S. (2010) Intramembrane proteolysis of Mgm1 by the mitochondrial rhomboid protease is highly promiscuous regarding the sequence of the cleaved hydrophobic segment. J. Mol. Biol. 401, 182–193

54. Tsuuya, R., Wojtalla, A., Carmon, S., Yogev, S., Reich, A., Bibi, E., Merdes, G., Schejter, E., and Shilo, B. Z. (2007) Rhomboid cleaves Star to regulate the levels of secreted Spitz. EMBO J. 26, 1211–1220

55. Herlan, M., Bornhövd, C., Hell, K., Neupert, W., and Reichert, A. S. (2004) Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J. Cell Biol. 165, 167–173

56. Erez, E., and Bibi, E. (2009) Cleavage of a multi-spanning membrane protein by an intramembrane serine protease. Biochemistry 48, 12314–12322

57. Wan, C., Fu, J., Wang, Y., Miao, S., Song, W., and Wang, L. (2012) Exosome-related multi-pass transmembrane protein TSPα6 is a target of rhomboid protease RHBD1-induced proteolysis. PLoS ONE 7, e37452

58. Tatsuta, T., Augustin, S., Nolden, M., Friedrichs, B., and Langer, T. (2007) m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J. 26, 325–335

59. Baker, R. P., Wijetilaka, R., and Urban, S. (2006) Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog. 2, e113

60. Del Rio, A., Dutta, K., Chavez, J., Ubarretxena-Belandia, I., and Ghose, R. (2007) Solution structure and dynamics of the N-terminal cytosolic domain of rhomboid intramembrane protease from Pseudomonas aeruginosa: insights into a functional role in intramembrane proteolysis. J. Mol. Biol. 365, 109–122

61. Sherratt, A. R., Braganza, M. V., Nguyen, E., Ducat, T., and Goto, N. K. (2009) Insights into the effect of detergents on the full-length rhomboid protease from Pseudomonas aeruginosa and its cytosolic domain. Biochim. Biophys. Acta 1788, 2444–2453

62. Sherratt, A. R., Blais, D. R., Ghasriani, H., Pezacki, J. P., and Goto, N. K. (2012) Activity-based protein profiling of the Escherichia coli GlpG rhomboid protease delineates the catalytic core. Biochemistry 51, 7794–7803