The complete mitogenome of *Chrysopogon zizanioides* (L.) Roberty (Poaceae), with its phylogenetic analysis

Shuqiong Yang, Mengxin Li, Jingjing Yu, Debao Cai, Jun Zhang, Jiafei Liu and Jibao Chen

©Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Henan Provincial Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Henan Provincial Academician Workstation of Water Security, Nanyang Normal University, Nanyang, China; ©Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China

ABSTRACT

Vetiver grass (*Chrysopogon zizanioides*), is a perennial and tussock C4 grass from the genus *Chrysopogon* of Poaceae, which has been widely used as a natural and inexpensive resource for multifarious environmental applications. The complete mitogenome of *C. zizanioides* was 551,622 bp in length, containing 40 protein-coding genes (PCGs), 19 transfer RNA genes (tRNAs), and six ribosomal RNA genes (rRNAs). All PCGs started with ATG and stopped with TNN (TAA, TAG, and TGA). The overall nucleotide composition is: 28.2% A, 28.2% T, 21.7% G, and 21.9% C, with a biased A + T content of 56.4%. Phylogenetic analysis using 14 PCGs of 22 species showed that *C. zizanioides* display a close relationship with *Saccharum officinarum* (LC107874) and *Sorghum bicolor* (DQ984518) in Poaceae.

Introduction

Chrysopogon zizanioides (L.) Roberty, is a perennial and tussock C4 grass from the genus *Chrysopogon* of Poaceae, which has been widely cultivated in the tropics and subtropics of the world (Yaseen et al. 2014; Sigmon et al. 2017). *C. zizanioides* is a miracle grass that can tolerate extreme climatic and soil variations, which has been widely used as a natural and inexpensive resource for multifarious environmental applications, including conservation and detoxification of degraded soil and water and also for mitigation of flood and landslide disasters (Kemper 1993; Adams et al. 2004; Chakrabarty et al. 2015). To date, there have been more than 256 mitogenomes from land plants that have been curated or identified using tRNAscan-SE v2.0 (Bleasby and Waterhouse 1998). Moreover, the narrow genetic and genomic resources of *C. zizanioides* also obviously limited our understanding of this important C4 grass at the genome level. In this study, we first determined the complete mitogenome sequences of *C. zizanioides* using Illumina next-generation sequencing technology, and performed an analysis of the phylogenetic relationships among other 21 species with the available mitogenome data deposited in GenBank.

Materials and methods

The fresh leaves of *C. zizanioides* ‘Xiangnan 1’ were collected from Nanyang City, Henan Province, China (112°52′E, 33′00″N). The specimen was deposited at the Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province under the voucher number NYNU_C1102986400A, Nanyang Normal University, China (Jibao Chen, 2589425750@qq.com). Whole genome sequencing was conducted on Illumina HiSeq 3000 sequencing platform with 350 bp paired-end (Biomarker Technologies Corporation, Beijing, China). The mitogenome assembly of *C. zizanioides* was performed according to Lloyd Evans et al. (2019) using the reference mitogenome dataset of *S. officinarum* (LC107874) and *S. bicolor* (DQ984518). All mitochondrial protein-coding genes (PCGs), transfer RNA (tRNA), and ribosomal RNA (rRNA) genes were initially annotated using Blann. PCGs were further predicted or modified using NCBI ORFFinder and annotated by BLASTP searches against the NCBI NR. tRNAs were also predicted or identified using tRNAscan-SE v2.0 (Blesaby and Wootton 1990; Huang and Cronk 2015; Chan and Lowe 2019). The phylogenetic tree was reconstructed using the Bayesian analysis (BI) and maximum-likelihood (ML) analyses. The best-fit model of nucleotide substitution for sequences with the Bayesian information criterion (BIC) was determined by jModelTest 2.0.2 (Darriba et al. 2012). The Bayesian phylogenetic analysis was performed using MrBayes 3.2.5 (Ronquist et al. 2012). ML analysis was conducted using RAxML with the GTR + G + I model (Stamatakis 2014). Bootstrap values were calculated using 1000 replicates to assess node support.

CONTACT Jibao Chen 2589425750@qq.com Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Henan Provincial Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Henan Provincial Academician Workstation of Water Security, Nanyang Normal University, Nanyang, China

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Results and discussion

The complete sequence size of *C. zizanioides* mitogenome was 551,622 bp in length (GenBank accession no. MN635785), which is well within the size range observed in the completely assembled other Poaceae mitogenomes. The overall nucleotide composition is: 28.2% A, 28.2% T, 21.7% G, and 21.9% C, with a biased A + T content of 56.4%. It presents a typical gene set of 40 PCGs, 19 tRNA genes, and six rRNA genes. All PCGs started with the conventional initiation codon of ATG, 22 of them used TAA, 10 PCGs (*atp9*, *ccmC*, *ccmFN*, *cob*, *mttB*, *matR*, *nad7*, *rps1*, and *rps3*) used TAG, and eight PCGs (*atp1*, *ccmB*, *ccmFC*, *cox3*, *nad4*, *rps2*, *rps12*, and *rps13*) used TGA as the termination codon. All 19 tRNAs could fold into a classical cloverleaf structure except for *trnY*-GTA, *trnS*-GCT, and *trnS*-TGA, with their length ranging from 71 bp (*trnC-GCA*) to 91 bp (*trnS-TGA*). The lengths of *rrn5*, *rrn18*, and *rrn26* were 118 bp, 1960 bp, and 3516 bp, including the *rrn5* and *rrn18* existed in a cluster.

The nucleotide sequences of 14 PCGs were used to understand the phylogenetic relationships of *C. zizanioides* with other 21 species using the ML method. Phylogenetic relationships obtained using the ML method were identical to those obtained using the BI analysis. The consensus topology of phylogenetic trees for 22 species extremely highly support that *C. zizanioides*, *S. officinarum*, and *S. bicolor* are a sister group (Figure 1).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Youth Research Project of Nanyang Normal University [2020QN004], Ph.D. Scientific Research Project of Nanyang Normal University [2019ZX027], and the Key Scientific Research Project of Higher Education of Henan Province [20B210016].

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI athttps://www.ncbi.nlm.nih.gov/ under the accession no. MN635785. The associated BioProject, SRA, and BioSample numbers are PRJNA752393, SRR15371682, and SAMN20594899, respectively.

References

Adams RP, Habte M, Park S, Daftorn MR. 2004. Preliminary comparison of vetiver root essential oils from cleansed (bacteria- and fungus-free) versus non-cleansed (normal) vetiver plants. Biochem Syst Ecol. 32(12):1137–1144.

Bleasby AJ, Wootton JC. 1990. Construction of validated, non-redundant composite protein sequence databases. Protein Eng. 3(3):153–159.

Chakrabarty D, Chauhan PS, Chauhan AS, Indoliya Y, Lavanja UC, Nautiyal CS. 2015. *De novo* assembly and characterization of root transcriptome in two distinct morphotypes of vetiver, *Chrysopogon zizanioides* (L.) Roberty. Sci Rep. 5:18630.

Chan PP, Lowe TM. 2019. trnRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol. 1962:1–14.

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 9(8):772–772.

Huang DI, Cronk QCB. 2015. Planr: a command-line application for annotating plastome sequences. Appl Plant Sci. 3(8):1500026.

Figure 1. Phylogenetic relationships between *C. zizanioides* and 21 other species based maximum-likelihood method. All GenBank accession numbers of each species were listed in the phylogenetic tree. *Phoenix dactylifera* (NC_016740) and *Cocos nucifera* (NC_031696) were used as outgroup.
Kemper WD. 1993. Vetiver grass: a thin green line against erosion. J Soil Water Conserv. 48(5):426.
Lloyd Evans D, Hlongwane TT, Joshi SV, Riaño Pachón DM. 2019. The sugarcane mitochondrial genome: assembly, phylogenetics and transcriptomics. Peer J. 7:e7558.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.
Sigmon BA, Adams RP, Mower JP. 2017. Complete chloroplast genome sequencing of vetiver grass (Chrysopogon zizanioides) identifies markers that distinguish the non-fertile ‘Sunshine’ cultivar from other accessions. Ind Crop Prod. 108:629–635.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.
Yaseen M, Singh M, Ram D. 2014. Growth, yield and economics of vetiver (Vetiveria zizanioides L. Nash) under intercropping system. Ind Crop Prod. 61:417–421.