Dynamics of hate based networks

Pawel Sobkowicz
Warsaw, Poland

Antoni Sobkowicz
Faculty of Physics, Warsaw University, Hoża 69, PL-00-681 Warsaw, Poland

We present a study of the properties of network of political discussions on one of the most popular Polish Internet forums. This provides the opportunity to study the computer mediated human interactions in strongly bipolar environment. The comments of the participants are found to be mostly disagreements, with strong percentage of invective and provocative ones. Binary exchanges (quarrels) play significant role in the network growth and topology. Statistical analysis shows that the growth of the discussions depends on the degree of controversy of the subject and the intensity of personal conflict between the participants. This is in contrast to most previously studied social networks, for example networks of scientific citations, where the nature of the links is much more positive and based on similarity and collaboration rather than opposition and abuse. The work discusses also the implications of the findings for more general studies of consensus formation, where our observations of increased conflict contradict the usual assumptions that interactions between people lead to averaging of opinions and agreement.

PACS numbers: 89.75.-s, 89.75.Da, 89.75.Hc

I. INTRODUCTION

Most of the studies of social networks concentrate on properties of groups formed due to attraction among participants. In such situations the links form between actors sharing some similarity, for example common interest (in the case of scientific collaboration networks or cross-linked Internet sites) or likeness of views (in the case of political associations). The networks of social interactions grow via preferential attachment on a ‘rich get richer’ principle. In most situations, differences and conflicting positions and opinions are viewed as limitations and barriers to such network formation. Frequent psychological reaction to meeting with someone who holds an opposing view is not an attempt to convince (phenomenon assumed widely in the “consensus formation” models), but rather cutting off the connection. In face-to-face encounters this avoidance limits growth of networks based on contrariness. Perhaps the most developed form of such direct ‘hate based networks’ might be long term family or tribal feuds. The advance of modern technologies has, however, provided an indirect contact field, where it is possible to express contrary views, hate-filled reactions and aggressive attacks without the risk of physical injury or personal danger. This ‘bravery of being out of range’ allows such networks to form and flourish. In this paper we present a study of specific networks that benefit and grow thanks to disagreements and hate.

A good example of such networks is offered by user comments to news items published on the Internet – feature common to most of the web portals today. The ease of access and anonymity that the Internet has provided greatly enhanced the number of people participating in such discussions. From the research point of view, such discussions are relatively easy to document and can provide necessary data for meaningful statistical work.

For our study we have chosen discussion forums at one of the most popular Internet portals and news sites in Poland, http://www.gazeta.pl. We may assume that participant XYZ in one discussion thread is the same person as participant XYZ in a different one. Of course this leaves open the possibility of a single real person using multiple Internet personalities. However, even with this limited trackability, it is possible to try to find hubs of communication, both in the comment writing and in reaction to published comments.

Our goal is to find if the change in motivations for linking from positive to negative changes the general network properties.
II. METHODS

The data for the study have been gathered using a dedicated program, written for the purpose of loading and initial analysis of the discussion threads at the selected site. The program performed automated tasks of data collection and cleaning and enabled the next step, which consisted of assigning political stance to discussion participants and to classification of the comments. This part of the analysis, by far most time consuming and cumbersome, had to be done by a human, by reading all the comments in a thread.

It should be noted that in almost all cases (with a single exception only), the whole discussions were actually linked not to the original news article but to the first comment. This is a result of operational process of the portal, and the fact that pushing the ‘comment’ button in typical situations links the post not to the original source but to the earliest existing post. To avoid spurious statistics this phenomenon has been corrected for by the program.

The participants were assigned three possible types (called nodeclass). The first was for commentators whose viewpoints were visibly in agreement with one of the two factions (nodeclasses A and B). The remaining participants, for whom it was impossible to clearly assign position were given nodeclass NA.

The comments were classified according to the following scheme:

- **Agr** - comment agrees with the covered material (either the original news coverage or the preceding comment in a thread);
- **Dis** - comment disagrees with the covered material (either the original news coverage or the preceding comment in a thread);
- **Inv** - comment is a direct invective and personal abuse of the previous commentator;
- **Prv** - provocation - comment is aimed at causing dissent, often only weakly related to the topic of discussion;
- **Neu** - comment is neutral in nature, neither in obvious agreement or disagreement;
- **Jst** - ‘just stupid’ comment, which is totally unrelated to the topic of discussion;
- **Swi** - comment signifying a switch in participant’s position leading to agreement between two previously opposing commentators.

Other works on computer mediated discussions in closed communities used different message classification themes, for example Jeong [1,2] has proposed grouping comments by categories such as ‘Arg’ – argument for a given thesis (corresponding to our Agr category); ‘But’ – a challenge (corresponding to our Dis category), ‘Expl’ – for posts giving explanations, and ‘Evid’ for posts giving factual evidence. In our case, the explanations and evidence posts were rather scarce, possibly due to political nature of the disputes. We have therefore opted for categorization that reflected the emotional nature of communication, rather than factual one.

Following the process of categorization we performed standard analyses typical for network systems. As the literature on the subject is very rich we refer here to the general overviews, for example Dorogovtsev and Mendes [3], Albert and Barabási [4], Newman [5], Newman et al. [6]. It should be noted that the average size of the network formed by posts related to a single news item was relatively small (from a few tens to a few hundreds of comments, thus the statistical spread of results for single discussion threads was rather significant.

In our analysis we have used publicly available program GUESS, developed and maintained by Eytan Adar http://graphexploration.cond.org/index.html, see also Adar [7], Adar and Miryung [8].

To understand the data we have developed a computer simulation model, which has resulted in quantitatively comparable system characteristics, allowing to understand the role of the most important factors driving the growth of comment networks. Details of the model are given in Section III-E. The programs and scripts used in analysis are available from the authors on request.

III. RESULTS

A. General statistics of discussions and temporal dynamics

The statistical properties of discussion threads depend, obviously, on the visibility of the news stories they relate to. Some of the news are featured on the portal opening page, so one would expect that this should influence the number of user comments. Our observations do not confirm these expectations – the advantage of the ‘front page news’ is not significant. The users activity does not follow editors choices. Within the in the Politics category each day, the portal carries between 5 and 20 news items each day. On a typical graphics display, a visitor sees 4–6 most recent news items (although the web page has also a ‘most commented’ section, allowing a short cut to older, but popular stories). While the ‘screen space’ and graphical clues give no preferences (order of presentation is strictly temporal), the number of comments spurred by each story varies significantly, depending on its content.

Discussion size distribution shows a definite fat-tail behaviour. In addition to news items that raise no commentary at all, and weakly commented ones (below 50-70 comments), there are quite a few mid-sized discussions (up to about 200 comments) and occasional extended discussions (between 200 and 500 posts).

The news-related discussions are, by their very nature, short-lived. While the portal allows to view and comment
on news backdating more than 2 weeks, the comment frequency vanishes rapidly with time. Usually, there are very few comments later than 24 hours after publication, and practically none after 48 hours. In fact, numerical analysis of the threads shows for many discussions a reasonably good fit with exponential decay timeline, with half-life of between 1 and 4 hours. There are exceptions to this, for example news which gain popularity many hours after publication (this happens usually for stories published at night and commented during business hours) or stories which get a ‘second life’ due to a quarrel between a few participants.

B. User and comment statistics

Our first task was to study the typical properties of the network of comments, namely the activity of users measured by their in-degree and out-degree statistics. It should be stressed here that network structure grows by addition of unique post-to-post links. Therefore translating the post-to-post network to a user-to-user one, by necessity, introduces multiple connections between users.

In our analysis we treat these connections as separate, which is reflected in several statistical properties. Out-degree \(k_o \) of a user, which corresponds to a number of comments a given he or she posts in a discussion (or cumulatively in many discussions), measures the ‘productivity’. We have attempted to fit the out-degree distributions for mid-sized and large discussions (where such measurements can be meaningful) with a modified power law \(P(k_o) = A(k_o + c_o)^{-\alpha} + H(k_o, \max - k_o) \). The first term has been used previously by Newman et al. [9] in their analysis of the connectivity of internet sites. The additional step function reflects existence of several users with exceptionally high number of posts; an explanation of their origin shall be presented in later part of the paper. It is interesting to note that for most discussions the value of the \(c_o \) constant is rather small (\(|c_o| < 1\)).

We turn next to user in-degree, \(k_i \). This measures not the author’s activity, but the response to his or her posts, in some way related to their ‘interest’ value, or to the amount of controversy they raise. We note that there are quite a few posts that do not elicit any comment, i.e. with in-degree equal to zero. Here also we obtained a reasonably good fit by using modified power law \(P(k_i) = A(k_i + c_i)^{-\alpha} + H(k_i, \max - k_i) \); however, the value of \(c_i \) is much larger. The power law exponent \(\alpha \) for in-degree is significantly larger than for the out-degree, indicating a much faster drop of the typical popularity than of productivity.

Interestingly, in almost all mid-sized and extended discussions we find small groups of participants with unusually high in-degree and out-degree values, much above the predictions of the power-law. These users are responsible for the need for additive step function part in the distribution. The explanation of their origin is simplified by observation that they are in many cases the same users. High numbers of the connections result not from the random process of preferential attachment (typical for internet sites or scientific citations), but from extended exchanges of posts between pairs of users. Needless to say, most of such exchanges are confrontational, filled with disagreements and abuse. For this reason, we’ll use the term ‘quarrels’ to describe them. Moreover, such verbal duels are easily visible in the graphical view of the comments web page. Because of this visibility, they attract additional comments from supporters of each of the quarrelling sides. Quarrels increase \(k_o \) and \(k_i \) of their participants and thus change the general degree distributions. Typically quarrels longer 5-7 exchanges take only between 3 and 7 percent of the total number of comments, but we have observed discussion threads where such the ratio was much higher, for example 21% of the 220 posts in a thread resulted from just two long exchanges.

Recurrence of user nicknames connected with quarrels in various threads has added plausibility to a hypothesis that they are largely due to the presence of ‘duellists’ – users seeking each other’s comments and joining in the fights. For such users the growth of \(k_i \) and \(k_o \) should be correlated. To test these ideas, we have performed cumulative statistical analysis for all participants in a set of 58 discussions. This has been done using assumption that the identity of real participants remains fixed to nicknames within the whole scope of the portal. Results are quite interesting. Out of almost 2000 users there were only a few with high values of in-degree (16 with \(k_i \geq 50 \)). Similarly, there were only 23 users with \(k_o \geq 50 \). Eleven users belonged to both these groups. The average out-degree was \(\langle k_o \rangle = 4.65 \), while in-degree (excluding references to the original news items to count only post-to-post links) was \(\langle k_i \rangle = 3.04 \).

In addition to duellists in the studied discussions we have found a group of hyperactive users specializing in abusive comments (known as trolls) who, while publishing a lot of comments, receive much smaller number of replies. For example one user has posted 236 times receiving only 51 replies. Although trolls post highly provocative comments they are frequently ignored – most users seem to know the rule ‘don’t feed the troll’.

Figure 1 shows the cumulative network topology for the 58 analysed discussions. There were 1977 users, 9135 posts, out of which 3194 were linked directly to news items. In the figures we have removed all such links, leaving only connections between the users. The two views focus on out-degree (upper panel) and in-degree. Multiple connections between pairs of users are colour and width coded, to emphasize binary exchanges. We can clearly see how a few of the users seem to dominate the whole forum. Figure 2 presents the cumulative distributions \(P(k_i) \) and \(P(k_o) \), as well as correlation between \(k_i \) and \(k_o \) values. The two quantities are highly correlated, with the correlation coefficient of 0.85.

From the texts of the comments we know that in many cases the motivation for posting was a drive to achieve
FIG. 1: Two views of the topology of the network connecting the users participating in 58 large and mid-size discussions within one month. Top panel: size of the nodes corresponds to outdegree of the user. Bottom panel: size of the node corresponds to indegree. Links width reflects the number of communications between the users – binary exchanges are clearly identifiable. Some users have been identified by their nicknames. This allows to identify notorious trolls (such as wrojz and koloratural), who have many posts but relatively few responses, and controversy leaders, such as tuskomatolek and junkier (who have more responses that the posts). Despite the fact that almost 2000 users have participated in the discussions, only a few of them dominate the exchanges, by their posting activity and by the concentration of responses, such as kralik111. A perfect example of a user whose participation in discussions is motivated by negation and abuse of a particular opponent is given by rooboy.
FIG. 2: Cumulative indegree and outdegree distributions for 58 Politics mid-size and large discussions over a period of 30 days. The third panel shows correlation between \(k_i \) and \(k_o \), with two squares indicating the notorious trolls, i.e. individuals posting a lot of comments but getting only a few answers. The triangles indicate the most active – and at the same time popular users, who could be called ‘controversy leaders’, receiving significantly more comments than they post. To be able to show the posts that have not resulted in any comment (with indegree equal zero) on the log-log scales we have artificially shifted them to \(k_i = 0.1 \).

...popularity (or at least notoriety). It is interesting to compare this notion with the observations of Huberman et al. [10], who identified the drive to achieve fame and visibility as one of the distinct factors determining the number of posts on YouTube. The authors have shown that ‘the productivity exhibited in crowdsourcing exhibits a strong positive dependence on attention. Conversely, a lack of attention leads to a decrease in the number of videos uploaded and the consequent drop in productivity, which in many cases asymptotes to no uploads whatsoever.’ This is supported in our case by the fact that the identities of the most productive and most commented on participants, summed over the set of threads are highly correlated (third panel in Figure 2). We observe a crowd of ‘one-comment’ participants and a few popular and prolific ones. Moreover, the *duellists* recognize each other and tend to join in the sub-threads with remarks of ‘Oh, it’s you again, you ***!’ which, of course, spur new rounds of abuse.

An interesting psychological observation is the existence of impersonators of ‘famous’ commentators. They choose a nickname that is on the first glance identical to the original one, for example by adding unobtrusive parts to the user name, such as changing from XYZ to XYZ – which often goes unnoticed. This is the most aggressive form of *trolling*. In most cases the views of the original user and the impostor are radically different. The troll’s intention is to create chaos and confusion, as an unsuspecting reader often finds comments with radically different views or even exchanges between apparently the same participant, quarrelling with himself.

C. Comment classification

In addition to rather simple counting of links between posts and users we wanted to goal was to study the content and tone of these comments. Our intention was to check if the forum provided any chance of reaching a consensus, or even of decreasing the level of disagreement. This part of the evaluation required human evaluation, and the results of assignment of each comment to a given class are obviously less objective. In some cases we admit to being unable to classify a post, but in most cases the task was rather straightforward.

Due to extremely time consuming nature of the task, we have chosen 20 threads from the whole set of 58 full discussions. They contained between 20 and 250 posts. Table 1 presents percentages of various types of comments between the users (i.e. omitting the classification of comments addressed to the source messages). The reason for this omission was to decouple our analysis from the individual responses to the news article, which has served mostly to distinguish the nodeclass value. Aggressive posts (Dis, Prv, Inv) took almost 75% of all communications between users – and we should remember that provocative posts directed to the source news story also add to the ‘discussion temperature’. Agree-
ments between factions were extremely rare, and are only slightly more frequent between those users with declared opinion (nodeclass A,B) and the unidentified ones (NA nodeclass).

From detailed analysis of the discussions it is clear that sub-threads related to neutral posts usually died much faster than those due to confrontational or abusive ones. Long chains of invective-invective and invective-disagreement are very frequent, while exchanges between users of the same group agreeing with each other are usually shorter, rarely extending beyond 3-4 consecutive posts.

D. Factual and emotional content considerations

To see if these features are indeed characteristic for the strongly polarized political forum, we have gathered similar data for two other topics: sport and science. One would expect comparable level of emotions to be present for a sport column, while much lower level for science related news. As we can see from Fig. 6 in all three cases there is a main group of discussions, with size distribution $P(L)$ falling roughly in power law, but there are discussions with very high number of posts L. We are interested in the possible origins of such threads.

We note first that to our surprise, the sport forum has shown much faster fall with increasing thread size L, as well as much higher proportion of news items that do not attract any comment. This is most likely due to the fact that sports reporting consists of many items covering all disciplines (from soccer through tennis to NBA) and the interests of readers would be distributed over the disciplines. During the time we have been gathering our data a few major sports events took place (e.g Australian Open tournament, Handball World Championships), in which Polish participants were expected to be successful, and where high emotional reactions were present. Indeed, these were the news stories that resulted in high user participation, equaling in size those of the political forum. However, the topology of sport discussion networks of comments was different from the political ones. For example, the largest discussion, shortly after a dramatic win by the Polish team in the handball championships, involved 249 participants and 336 posts. But 203 users have posted only a single comment, attached to the source message and expressing their joy. The longest exchange involved just four posts. Upon reflection, the sport forum provides almost perfect contrast to the politics: it is not dominated by two factions and the moods and opinions of participants are usually in sync.

The main topic of our study, political comments with high degree of conflict, show a very different behaviour. There are significantly fewer news stories without any comment. Most of the stories with small response consist of weakly connected posts, which relate directly to the news source. But, as the size grows, the proportion of exchanges, duels and provocative output by trolls increases strongly. What is important, the proportion of disagreements is very high and the aggressive behaviour (abuse and provocations) increases even more strongly with the size of the discussion. Only in this forum we found large proportion of mid-sized ($L > 100$) discussions, fuelled by a mixture random, preferentially attached comments and quarrels.

Compared to sport discussions on science were at the other extreme. For the most part they are very short and rather dull, with practically no network structure. But, from time to time, a strictly scientific topic is translated by the users to one of highly loaded subjects. Such was the case of pre-natal research which was discussed from religious/ethical point of view. Story about details of last Ice Age was discussed with all the emotions due to current environmental issues. In such cases we have observed an even stronger dominance of binary exchanges in the general topology. First of all, the number of participants was usually much smaller than the number of posts, In one case only 12 people ‘produced’ 215 posts, with 8 of them responsible for 208 comments. Binary exchanges longer than 8 consecutive posts took 72% of the discussion. It should be noted that while the users disagreed with each other, only a few comments were abusive, and many used evidence, references and logical arguments. In another, smaller thread, a discussion between two participants consisted of 40 posts (out of a total of 117), while in yet another, two users have exchanged 41 posts (out of 178), most of them rather long and ‘scientific’ in spirit. Thus, we propose that when the topic of a science news is received by the readers as related to important worldview issue, the chance for localized conflict of pairs of users is very high. This is coupled with a natural barrier of accessibility (many participants in political discussions simply do not look into the science section at all), so that the proportion of the users capable of adding rational arguments to the discussion is higher.

E. Computer model and simulations

To get more detailed insight and control over the relative importance of the processes described above we

Intra-faction	Inter-faction	Factions-NA	Intra-NA
(A-A,B-B)	(A-B)	(A-NA, B-NA)	(NA-NA)
Agr 16.9%	0.6%	2.5%	0.6%
Dis 2.1%	32.8%	11.1%	1.2%
Inv 0.2%	17.1%	3.1%	0.7%
Prv 1.1%	2.7%	1.9%	0.2%
Neu 1.1%	0.8%	1.7%	0.2%
Jst 0.4%	0.0%	0.4%	0.1%
Swi 0.1%	0.0%	0.2%	0.1%

TABLE I: Statistics of comment type between various groups of users (two identified factions A and B and neutral or unidentifiable class NA).
have constructed a simplified computer model of the community and discussion process. We have tried to keep the model as simple as possible, to focus on the crucial aspects of the process. In the model discussion participants are simulated by agents with the following characteristics: nodeclass (we have kept only A and B classes, no unknowns or neutrals, although they are within the program capabilities) and activity class (high or low level of activity).

The simulation process is rather typical: agents are selected randomly, and then ‘choose’ the post they wish to comment on, from the set of earlier posts. Certain proportion of the agents look directly to the ‘source’ message. For others we use preferential attachment rules for probability of picking the target post. Specifically, the chance of choosing a post is proportional to its total degree (outdegree of a post is always 1, indegree may be quite high). After choosing the target post, the agent then decides whether or not to comment on it. The probability depends on the activity class and on the node-

class of the author of target remark. In the simplified model, agents of the same class would always agree with each other, while agents of different nodeclass would always disagree. To describe the tendency favouring negative responses, we have assumed that posting disagreeing comments is more probable by a factor of 2 than simple agreements. Active participants have higher probability of responding than passive ones. Simulation is run until preassigned number of posts are placed, at which time suitable statistics are measured.

Results of such model are presented Fig. 4. The indegree distribution shows some similarity with observations and good agreement with power-law distribution, expected for preferential attachment rules. On the other hand, outdegree shows significantly faster, exponential decrease rather than power-law. This is not surprising, as it corresponds to probabilistic choice of agents posting the comments. There are no agents with unusually high values of indegree and outdegree, nor is there any significant correlation between k_i and k_o. We conclude that
the model needs modification to be able to describe our observations.

The key enhancement of the model is an additional step in the simulation process. Specifically, after the agent has posted a comment, the ‘author’ of the target post is ‘given a chance’ to respond. The probability of such response is assumed higher than for a normal post (to reflect the situation when an agent might ‘feel personally interested’ in responding). If the response is placed, the roles of the agents are reversed, and again a chance for counter-response is evaluated. This chain is continued until one of the agents ‘decides’ to quit. The exchange between the two is decoupled from the rest of simulation and it is possible to derive simple analytical formulæ for the mean length of such exchange. Proper choice of response probabilities can be achieved by comparing the lengths of simulated and observed quarrels, and is partially independent measure of agreement between simulation and reality.

When the quarrels are added into the simulations, the results become much closer to the observations, as shown in Fig. 5. The similarity goes beyond the indegree and outdegree distributions and extends to details of the network structure, for example for the correlation coefficient between k_i and k_o. Thus, even though radically simplified (no neutral posts, fully polarized opinions of agents, simple process), the model yields results surprisingly close to reality.

We note that the computer model described above is able to reproduce the characteristic results for the three mentioned forums, by simple adjustments of probabilities of posting and entering into duel.

One of the reasons for the success of the simulations might be the fact that in large part of the analysed discussions people do behave like mindless automata. Many comments are almost automatic responses to abuse – in form of further abuse. Others are canned accusations of the supporters of the opposing political faction for being liars, thieves, idiots or worse. There are very few explanatory or evidence posts (unlike in topical forums where many users aim at helping each other). Even if such evidence appears, it is immediately, almost automatically questioned, as coming ‘from the other side’. In fact, after reading so many posts we could with high probability predict the character of the post by looking up the names of the participants, without reading the discussion.

IV. DISCUSSION

A. Citation networks

One of the topics where network approach has a long history of successful use is the analysis of scientific citations. On can refer here to Newman [11, 12, 13, 14], Redner [15], Silagadze [16], Gupta et al. [17] and Vazquez [18].

There are a lot of functional similarities between the internet forum discussions and research publication citations. In both cases the participants share some common interest, although not necessarily the viewpoint or opinion. In both cases communication is indirect, via links to messages or publications, rather than directly between people. Also, the lifetime of communication is limited. Of course the time-scales are vastly different (hours compared to years) but this is mitigated by the ease of posting a comment and resulting speed of reaction, compared to rather slow scientific publication process.

In addition to these similarities, there are, however, serious differences. Probably the most important are due to attitude. Science is a work of cooperation and even if authors hold opposing opinions on some topic, the publications usually reflect the common aim of getting closer to a true explanation. While it would be untrue to claim that there is no personal conflict in science (in private or even in public), there is little room for personal animosity in refereed publications. This lowers the level of emotional reactions. Moreover, there is no anonymity in scientific publications and due to collaborative nature of modern research the authors themselves form a complex network of interdependence. Lastly, the content of scientific publications is dominated by evidence and evaluation, and as depersonalised as possible.

In summary, we have two social phenomena which share some of the technical aspects of indirect, mediated communication, while differing strongly in psychological base and content. It is quite interesting to look for similarities and differences in the network structures of the two cases.

Scientific citation networks have been shown to exhibit modified power law statistics, especially for the large k_i part of the distribution of citations, for example Newman [19]. There are, however, also models using different forms of distribution. For example Redner [15] has initially postulated that the indegree of citation network is well modelled by stretched exponential $P(k_i) \sim \exp(-\beta k_i^\gamma)$ for low k_i values. The existence of hugely popular papers has been given various explanations. Some refer to content and importance, pointing out the actual distribution of frequency of citing (Simkin and Roychowdhury [20, 21, 22, 23]).

The general shape of indegree and outdegree distributions for citation networks and for internet discussions are remarkably close. The main difference is much more pronounced role of a few highly connected users in our case, which we attribute to quarrelling individuals – phenomenon absent in scientific publications, where such exchanges are relatively rare and procedurally limited to a single remark/response cycle. It is interesting to observe that the social network structure seems rather sta-
A very interesting analysis of the first mover advantage in scientific publications has appeared recently (Newman [24]). He has shown that there is significant bias promoting citations to early papers in a distinct field of research, suggesting, tongue-in-cheek, that it is a better strategy to write the first paper in the field than to write the best one. This bias is, in a sense, related to publication and citation mechanisms, not to actual content. But Newman’s points out that even where the first-mover effect is strong, a small number of later papers attract significant attention in defiance of advantage of the earlier ones.

Despite the fact that the motivation for posting is radically different, the same phenomenon is observed in the network discussions. The reason is again technical. Most

FIG. 4: Indegree and outdegree distributions obtained from computer simulations without quarrels. The third panel shows poor correlation between k_i and k_o.

FIG. 5: Indegree and outdegree distributions obtained from computer simulations. The third panel shows correlation between k_i and k_o.
of the heated exchanges are related with early posts. This is due to the way the discussion is visually fragmented into pages containing 100 posts – viewing the later comments requires more effort. Thus the late responses to the original news story are not immediately visible and at a disadvantage compared to early ones. Yet, if there is an interesting discussion, the reader can follow it by pressing the ‘next’ button, skipping the boundaries between cumulative displays. In such situation some posts might get high response rate despite their late timing.

B. Internet networks, blogs and hate groups

Similar comparison may be attempted between the comment networks and the ones formed by Internet web sites. Here again we find some resemblance and some differences. The most important differences are that web sites and their links are much more stable than comments – usually more thought is given by the authors when deciding what their pages should be linked to. Also, these links are usually driven by common interest and views. One seldom finds links to web sites showing opposite viewpoint – web pages offer a good example of a system where ‘birds of a feather group together’. The last difference might be that generally there is less emotion and more content in traditional web pages.

As in the case of citation networks, despite the differences mentioned above, the general statistical properties of discussion threads and web site links are remarkably universal. For example the modified power-law distribution of page degree is very similar to our case. The discussions share even more common features with blogs, where the personal and emotional content is dominant.

A study of blogging behaviour in strongly polarized environment of US 2004 Elections has been published by Adamic and Glance [25]. It has shown a lot of preference for strong links between blogs of the same political orientation – the links between opposing blogs were present, but not numerous, limited to about 15% of the total number of links. This stands in contract to our observations. An explanation that is plausible relies again on the differences mentioned above, the general statistical properties of discussion threads and web site links are remarkably universal. For example the modified power-law distribution of page degree is very similar to our case. The discussions share even more common features with blogs, where the personal and emotional content is dominant.

Another detailed study of blogging behaviour by Leskovec et al. [26] shows similar power law behaviour for the indegree and outdegree distribution, albeit with different exponent values. An important difference between the two systems is the lack of observed significant correlation between indegree and outdegree for the blogs, with k_i and k_o correlation coefficient of only 0.16, much lower than 0.85 in our networks dominated by bilateral exchanges. Leskovec et al. [26] propose a cascading model of blog links and provide data on relative probability of various patterns of link connections. The binary exchanges of our approach which would correspond to linear topology of the cascade model are relatively less probable in the blog case, where the cascades tend to be wide and not deep.

The discussions studied in this work are by no means the only examples of hate present in the vast space of the Internet. There are already works which study the network structure of ‘Hate groups’ (Chau and Xu [27], Chau et al. [28]). These studies are important for us for two reasons. First, they focus on bloggers, who enjoy a lot of freedom to express their opinions and emotions. Second, the authors use networking methods, similar to the ones employed here. The network of users is formed through formal subscriptions between blogs and through impromptu comments posted to each other. This last aspect corresponds directly to our situation. While the political views studied by Chau and Xu are probably more extreme than the ones of the readers of the www.gazeta.pl portal, the emotional reactions seem to be as strong. It is quite interesting that the degree distribution for the giant component of 273 nodes in Chau and Xu network exhibits power-law behaviour, $P(k) \sim k^{-\alpha}$ with exponent $\alpha \approx 1.38$.

C. Implications for consensus formation modelling

The last conclusion form our observation relates to a different domain. One of fast growing fields in sociology is the study of opinion formation (for recent review see Castellano et al. [29]). Most models use so called ‘agent based societies’ and assume that consensus in a society forms through a series of exchanges between agents. Depending on the model, the initial opinions of the agents are changed as a result of the interactions. Some models postulate a form of averaging of opinions towards a mean value (for example Deffuant et al. [30], Hegselmann and Krause [31]), others use assumption of one of the interacting agents switching his or her opinion to fit the others (Sznajd-Weron and Sznajd [32]). Consensus formation models have become very popular, unfortunately in large part the studies concentrate of mathematical formalisms or Monte Carlo simulations, and not on descriptions of real-life phenomena. The need of bringing simulations and models closer to reality has been realized and voiced quite a few times (Moss and Edmonds [33], Epstein [34], Sobkowicz [35]).

An interesting result from the present study is that the exchanges studied here (voicing of opinions in a quasi-anonymous medium) do not lead to consensus formation at all! If anything, the exchanges lead to increased rift between the participants. This effect should be studied in much details, as it possibly bears strongly on the usability of the models of consensus formation.
On one hand, we could assume that this is a phenomenon specific to computer mediated interactions, with their lack of face-to-face effects of increased responsibility, shyness, induced submissiveness and even sympathy. Anonymity and lack of fear of retribution might embolden the participants and also promote additional mischievousness (clearly visible in the presence of provocative posts). Thus one might assume that the studied form of exchanges is an exception to the general rules of opinions getting closer as result of interactions.

But everyday experience shows that also when people meet face-to-face, with full use of non-verbal and emotional communication, the clash of opinions seldom leads to an agreement or even weakening of differences. Both history and literature are full of examples of undying feuds, where acts of aggression follow each other, from Shakespearean Verona families to modern political or ethnic strife. Encounters and links between holders of conflicting opinions often lead to strengthening of opposing convictions – in some cases additionally leading to severing the links between individuals and groups.

The observations of the Internet discussions should therefore be augmented by sociological data on flesh-and-blood conflicts and arguments, and the dynamics of the opinion shifts. But even before such studies are done or referred to (which the present authors feel is beyond their competence) the basic assumptions of the sociophysical modelling of consensus formation should be reworked. This is a very interesting task, because ostensibly we are faced with two incompatible sets of observations:

- Even in the face of repeated information exchanges, with some of them using ‘hard data’ and evidence to support their viewpoint, participants in the Internet discussions tend to hold to their opinions, perhaps even strengthening their resolve with each exchange. Within the analysed subset of the discussions the conversion of opinion – even a simple agreement to a statement from opposing side – was virtually absent. Interactions do not seem to lead to opinion averaging or switching.

- Yet, most of the participants do have well defined opinions. These must have formed in some way. There are studies indicating genetic/biological base for some of the political tendencies (Jost et al. [30], Allford et al. [37], Amoedo et al. [38], Haidt and Graham [39]). So perhaps the participants in our discussions did have a built-in tendency to pick one of the sides of the divide, and to stick to it. Regardless of genetic considerations the political attitudes are thought to be dependant on fairly stable elements, such as childhood environment, which again decreases the chances of reaching a consensus. On the other hand the opinions on specific events, laws or people could not be neither genetically coded, not due to cultural formation – they must be reached quickly. Disputants, at one stage or the other become convinced that Mr X. is a hero – or a villain. Which means that there must be some effective mechanisms of opinion formation. Certainly, the Internet discussions do not provide such mechanism. The question is – how to describe such process in a ‘sociophysical’ framework, so far strongly preoccupied with a model that assumes that encounters can and do change our attitudes?

The persistence of differences of opinions exhibited in online discussions studied in this work stands in contrast to observations of Wu and Huberman [40, 41], who measured a strong tendency towards moderate views in the course of time for book ratings posted on Amazon.com. However, there are significant differences between book ratings and expression of political views. In the first case the comments are generally favourable and the voiced opinions are not influenced by personal feuds with other commentators. Moreover, the spirit of book review is a positive one, with the official aim of providing useful information for other users. This helpfulness of each of the reviews is measured and displayed, which promotes prosociality and ‘good’ behaviour. In the case of political disputes it is often the reception in one’s own community that counts, the show of force and verbal bashing of the opponents. The goal of being admired by supporters and hated by opponents promotes very different actions than in the cooperative activities. For this reason, there is little to be gained by a commentator when placing moderate, well reasoned posts – neither the popularity nor status is increased.

Our results suggest possible future models of consensus formation that would take into account not only factors leading to convergence of opinions, but also their divergence. Nonlinear interplay between these tendencies might lead to interesting results, perhaps closer to actual social situations than it is today.

[1] A. C. Jeong, The American Journal of Distance Education 17, 25 (2003).
[2] A. C. Jeong, Distance Education 26, 367 (2005).
[3] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks From Biological Nets to the Internet and WWW (Oxford University Press, 2003).
[4] R. Albert and A. L. Barabási, Review of Modern Physics 74, 67 (2002).
[5] M. E. J. Newman, J. Stat. Phys. 101, 819 (2000).
[6] M. E. J. Newman, D. J. Watts, and S. H. Strogatz, Proc. Natl. Acad. Sci. USA 99, 2566 (2002).
[7] E. Adar, in CHI (2006), URL http://graphexploration.cond.org/chi2006/guess-chi2006.pdf
[8] E. Adar and K. Miryung, in ICSE (2007), URL
[9] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E 64, 026118 (2001).
[10] B. A. Huberman, D. M. Romero, and F. Wu, *Crowdsourcing, attention and productivity* (2008), URL http://arxiv.org/pdf/0809.3030v1.
[11] M. E. J. Newman, in *Complex Networks*, edited by E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai (Springer, Berlin, 2004), vol. 64, pp. 337–370.
[12] M. E. J. Newman, Physical Review E 64, 016131 (2001).
[13] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 98, 5955 (2001).
[14] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 101, 5200 (2004).
[15] S. Redner, Eur. Phys. J. B4, 131 (1998).
[16] Z. K. Silagadze, Complex Syst. 11, 487 (1997).
[17] H. Gupta, J. Campanha, and R. Pesce, Brazilian Journal of Physics 35, 981 (2005).
[18] A. Vazquez, *Statistics of citation networks*, http://arxiv.org/abs/cond-mat/0105031 (2001).
[19] M. E. J. Newman, Contemporary Physics 46, 323 (2005).
[20] M. V. Simkin and V. P. Roychowdhury, Complex Systems 14, 269 (2003).
[21] M. V. Simkin and V. P. Roychowdhury, Scientometrics 62, 367 (2005).
[22] M. V. Simkin and V. P. Roychowdhury, Annals of Improbable Research 24–27 (2005).
[23] M. V. Simkin and V. P. Roychowdhury, Significance 3, 179 (2006).
[24] M. E. J. Newman, *The first-mover advantage in scientific publication* (2008), URL http://arxiv.org/pdf/0809.0522v1.
[25] L. Adamic and N. Glance, in *Proceedings of the 3rd international workshop on Link discovery* (2005), pp. 36–43.
[26] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst, in *SIAM International Conference on Data Mining (SDM 2007)* (2007).
[27] M. Chau and J. Xu, International Journal of Human-Computer Studies 65, 57 (2007).
[28] M. Chau, H. Pokfulam, and J. Xu, in *Pacific-Asia Conference on Information Systems, Kuala Lumpur, Malaysia. Retrieved May* (2006), vol. 14, p. 2007.
[29] C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys. 81 591–646 (2009).
[30] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, Advances in Complex Systems 3, 87 (2000).
[31] R. Hegselmann and U. Krause, Journal of Artificial Societies and Social Simulation 5 (2002).
[32] K. Sznajd-Weron and J. Sznajd, Int. J. Mod. Phys. C 11, 1157 (2000).
[33] S. Moss and B. Edmonds, Journal of Artificial Societies and Social Simulation 8, 13 (2005).
[34] J. M. Epstein, Journal of Artificial Societies and Social Simulation 11, 12 (2008).
[35] P. Sobkowicz, Journal of Artificial Societies and Social Simulation 12, 11 (2009).
[36] J. Jost, J. Glaser, A. Kruglanski, and F. Sulloway, PSYCHOLOGICAL BULLETIN 129, 339 (2003).
[37] J. R. Allford, C. L. Funk, and J. R. Hibbing, American Political Science Review 99, 153 (2005).
[38] D. M. Amodio, J. T. Jost, S. L. Master, and C. M. Yee, Nat Neurosci 10, 1246 (2007).
[39] J. Haidt and J. Graham, Social Justice Research 20, 98 (2007).
[40] F. Wu and B. A. Huberman, in *Proceedings of the Workshop on Internet and Network Economics* (2008).
[41] F. Wu and B. A. Huberman, *Public discourse in the web does not exhibit group polarization* (2008), URL http://www.hpl.hp.com/research/scl/papers/opinion_expression.html.