Effectiveness of Pharmacological Intervention among Men with Infertility: A systematic review and network meta-analysis

Mr. Muhammad Nabeel Shahid* (Corresponding author and first author)

Affiliations:
1. Department of Pharmacy Practice, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, Selangor Malaysia
2. Department of Pharmacy Practice, Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, 54000, Lahore, Punjab, Pakistan.

Email address:
nabeelshahidk@hotmail.com

Dr. Tahir Mehmood Khan* (Co-corresponding author and Author)

Affiliations:
1. Department of Pharmacy Practice, Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, 54000, Lahore, Punjab, Pakistan.
2. School of Pharmacy, Monash University, Jalan Lagoon Selatan 45700, Selangor, Malaysia.

Email address:
tahir.khan@uvas.edu.pk

Dr. Chin Fen Neoh (Author)

Affiliations:

1. Department of Pharmacy Practice, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, Selangor Malaysia.

Email address:
chinfenneoh@gmail.com

Dr. Qi Ying Lean (Author)

Affiliations:
1. Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, Pulau Pinang, Malaysia.
2. Vector-Borne Diseases Research Group (VERDI), Pharmaceutical abd Life Sciences CoRe, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia.

Email address:
leanqiying@yahoo.com

Dr. Allah Bukhsh (Author)

Affiliations:

1. Department of Pharmacy Practice, Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, 54000, Lahore, Pakistan.

2. School of Pharmacy, Monash University, Jalan Lagoon Selatan 45700, Selangor, Malaysia.

Email address:
abukhsh@uvas.edu.pk

Dr. Mahmathi Karuppannan (Author)

Affiliations:

1. Department of Pharmacy Practice, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, Selangor Malaysia.

Email address:
mahmathi@uitm.edu.my
APPENDIX I: SEARCH STRATEGY

Search Term

Search Term	PubMed	Scopus	Cochrane Library	Embase	EBSCOhost	Ovid Medline	Google Scholar
"infertility"[MeSH Terms] OR "infertility"[All Fields]] AND ("oligospermia"[MeSH Terms] OR "oligospermia"[All Fields]) AND "humans"[MeSH Terms]	Result 5535 8200 207 4733 3049	4777 15					
Chosen 5499 4786 69 1810 403 4301							
"infertility"[MeSH Terms] OR "infertility"[All Fields]) AND ("azoospermia"[MeSH Terms] OR "azoospermia"[All Fields] OR "azospermia"[All Fields]) AND "humans"[MeSH Terms]	Result 4709 352 18 6523	3705 8351 80					
Chosen 2352 173 14 2212 641 4375							
("infertility"[MeSH Terms] OR "infertility"[All Fields]) AND ("oligospermia"[MeSH Terms] OR "oligospermia"[All Fields] OR "oligozoospermia"[All Fields]) AND "humans"[MeSH Terms]	Result 5992 5288 61	1494 1137 2672 15					
Chosen 236 2316 10 115 2212 641							
("infertility"[MeSH Terms] OR "infertility"[All Fields]) AND ("oligospermia"[MeSH Terms] OR "oligospermia"[All Fields] OR "oligoasthenoteratozoospermia"[All Fields]) AND "humans"[MeSH Terms]	Result 5677 1241 38 434	271 707 6					
Chosen 236 2316 10 115 2212 641							
("infertility"[MeSH Terms] OR "infertility"[All Fields]) AND ("semen"[MeSH Terms] OR "semen"[All Fields]) AND "humans"[MeSH Terms]	Result 10225 41244 876	13428 11509 21294 373					
Chosen 7123 22701 322 4288 1307 12591 257							
("infertility"[MeSH Terms] OR "infertility"[All Fields]) AND ("oligospermia"[MeSH Terms] OR "oligospermia"[All Fields] OR "oligoasthenoteratozoospermia"[All Fields]) AND "humans"[MeSH Terms]	Result 6036 7319 79	143 239 483 3					
Chosen 161 4161 20 33 1 181 2							
("infertility"[MeSH Terms] OR "infertility"[All Fields]) AND ("azoospermia"[MeSH Terms] OR "azoospermia"[All Fields] OR "azospermia"[All Fields]) AND "humans"[MeSH Terms]	Result 5521 1224 29	318 135 402 0					
Chosen 0 26 2 28 1 23 0							
("infertility"[MeSH Terms] OR "infertility"[All Fields]) AND ("oligospermia"[MeSH Terms] OR "oligospermia"[All Fields] OR "oligoasthenoteratozoospermia"[All Fields]) AND "humans"[MeSH Terms]	Result 5993 1119 29	93 52 333 3					
Chosen 1 7 0 4 3 2 2							
("infertility"[MeSH Terms] OR "infertility"[All Fields]) AND ("oligospermia"[MeSH Terms] OR "oligospermia"[All Fields] OR "oligoasthenoteratozoospermia"[All Fields]) AND "humans"[MeSH Terms]	Result 5677 317 1	30 17 95 0					
Chosen 0 2 0 4 0 0 0							
Condition	Result	Chosen					
--	---------	--------					
"infertility"[MeSH Terms] OR "infertility"[All Fields] AND ("genitalia"[MeSH Terms] OR "genitalia"[All Fields] OR "genital"[All Fields]) AND ("disease"[MeSH Terms] OR "disease"[All Fields])	4162	780					
"infertility"[MeSH Terms] OR "infertility"[All Fields] OR "subfertility"[All Fields] AND ("genitalia"[MeSH Terms] OR "genitalia"[All Fields] OR "genital"[All Fields]) AND ("disease"[MeSH Terms] OR "disease"[All Fields])	11781	1552					
"infertility"[MeSH Terms] OR "infertility"[All Fields] OR "subfertility"[All Fields] AND ("genitalia"[MeSH Terms] OR "genitalia"[All Fields] OR "genital"[All Fields]) AND ("disease"[MeSH Terms] OR "disease"[All Fields])	6508	321					
Subfertile[All Fields] AND ("oligospermia"[MeSH Terms] OR "oligospermia"[All Fields])	167	49					
Subfertile[All Fields] AND ("azoospermia"[MeSH Terms] OR "azoospermia"[All Fields] OR "azospermia"[All Fields])	107	10					
Subfertile[All Fields] AND ("oligospermia"[MeSH Terms] OR "oligospermia"[All Fields] OR "oligozoospermia"[All Fields])	189	1					
Subfertile[All Fields] AND ("oligospermia"[MeSH Terms] OR "oligospermia"[All Fields] OR "oligoasthenoteratozoospermia"[All Fields])	177	0					
Subfertile[All Fields] AND ("genitalia"[MeSH Terms] OR "genitalia"[All Fields] OR "genital"[All Fields]) AND ("disease"[MeSH Terms] OR "disease"[All Fields])	65	7					
Subfertile[All Fields] AND ("semen"[MeSH Terms] OR "semen"[All Fields])	747	131					
Subfertile[All Fields] AND ("oligospermia"[MeSH Terms] OR "oligospermia"[All Fields] OR ("low"[All Fields] AND "sperm"[All Fields] AND "count"[All Fields]) OR "low sperm count"[All Fields])	224	0					
Supplementary Table 1: Reasons for study exclusion after full-text assessment (n=607)

Database	Number of records
Review articles	203
Irrelevant articles (conference papers/proceedings, letter to the editor and study protocols)	194
Meta-Analysis	19
Surgical intervention articles	30
Systematic reviews	44
Does not meet selection criteria (details are as under)-	75
Not measured male patient data	37
Not measured the selected outcomes	51
Supplementary Figure 1: Overall meta-analysis for sperm concentration of included RCTs (n=29)

Study or Subgroup	Intervention Mean	Placebo Mean	Mean Difference	Risk of Bias
10 Michi 1985	7.62	3.02	4.60	A
14 Amiak 1987	0.68	24.33	-23.65	C
19a A. Nadizadeh 2012	17.47	13.06	4.41	D
22 Abdul Razzaq 2014	23	18.73	4.20	E
22a Nicola Cojocaru 2012	3.8	3.84	0.00	F
23a Martin Imhoff 2012	13.5	15.21	-1.71	G
24a Mohammad Reza Safarinejad 2012	28.7	4.6	24.10	A
25 Pusch 1984	6.75	14.56	-7.81	A
26 Mahanoud Hussein 2012	2	17	15	A
29a A. Nadizadeh 2011	-0.04	11.05	11.09	A
31a Hussein Ogunm 2009	7.8	13.42	-5.60	A
33a Murad 2001	5.1	20.1	-15.0	A
33a Murad 2001	7.6	27.85	-20.2	A
33a Murad 2001	-0.4	18.34	17.94	A
34a Mohammad Reza Safarinejad 2019	6.2	4.5	1.70	A
38a RobertsPard 2003	8.5	9.01	-0.50	A
41a Andrea et 2003	4.92	7.92	-3.01	A
44a Efros Carri 2003	2.5	5.73	3.23	A
45a Dimihibis 2003	34.4	295.56	-261.16	A
46a Wei Yee Yong 2002	4	140.73	-136.70	A
46a Wei Yee Yong 2002	4.5	190.81	-186.30	A
46a Wei Yee Yong 2002	4.5	85.99	-81.40	A
47a Carlo Foresta 2002	4.5	3.14	1.38	A
47a Carlo Foresta 2002	2.1	2.31	0.20	A
50a A. Kamiske 1998	1.2	10.52	-9.30	A
59a C. Kekke 1994	24	94.44	-70.44	A
63a V. KRAUJE 1992	2.1	12.92	-10.81	A
67a Yin man Eng 2015	1.7	6.05	-4.35	A
67a Yin man Eng 2015	1.6	3.38	-1.78	A
67a Yin man Eng 2015	1.4	9.01	-7.60	A
67a Yin man Eng 2015	10.1	6.44	3.68	A
72a Milt 2015	3.58	2.21	1.39	A
72a Milt 2015	1.76	2.04	-0.28	A
72a Milt 2015	3.23	2.57	0.66	A
74a Matus Tijh 2016	5.7	20.48	-14.65	A
76a A. FARRE 2015	3.74	6.89	-3.15	A
77a R. Sale 2010	8.6	11.3	-2.74	A
78a R. Parad 2013	13.4	7.5	5.90	A
80a Tinkov 2020	45	62.42	-17.40	A
80a Tinkov 2020	38	112.44	-74.40	A
80a Tinkov 2020	46	160.06	-114.00	A
80a Tinkov 2020	43	242.42	-199.00	A

Total (95% CI): 5997 100.00% 4.00 [3.54, 6.26]

Heterogeneity: I^2 = 11.31, Chi^2 = 33.44, df = 41 (P < 0.0001), I^2 = 6.1%

Test for overall effect: Z = 7.05 (P < 0.0001)

Risk of bias assessed:
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Selective reporting (reporting bias)
(D) Other bias
(F) Blinding of participants and personnel (performance bias)
(G) Blinding of outcome assessment (detection bias)
Supplementary Figure 2: Overall meta-analysis for sperm motility of included RCTs (n=29)
Supplementary Figure 3: Overall meta-analysis for sperm morphology of included RCTs (n=29)
Supplementary Figure 4: Sub-group meta-analysis (intervention based) for sperm concentration (n=29)

Study or Subgroup	Intervention Mean	SD	Teal	Mean	SD	Teal	Weight	Mean Difference	IV, Random	95% CI	Year	Mean Difference	IV, Random	95% CI	Risk of Bias
1.3.2 SERM															
10 Miki 1986	7.52	3.62	36	0.72	3.18	15	4.1%	6.30 [5.57, 7.23]	1985						
14 Miki 1989	8.06	2.43	16	1.4	24.24	6	6.3%	-0.72 [-1.155, 0.11]	1987						
23a W. H. PALE 1992	2.1	0.93	39	0.2	9.09	17	2.8%	1.90 [-0.89, 6.68]	1992						
33a Muller 2006	7.6	2.76	31	0.1	13.42	51	1.1%	7.50 [-265, 18.58]	2006						
33b Mural 2006	-0.6	1.84	30	0.1	13.42	51	1.5%	-0.50 [-1.78, 0.71]	2006						
33c Mural 2006	1.1	2.81	12	0.1	13.42	51	1.3%	5.01 [449, 14.98]	2006						
31a Husseini et al 2003	7.8	13.42	30	0.7	7.97	10	2.5%	7.10 [615, 126.09]	2003						
72a Milaj 2015	3.23	2.57	15	-2.4	2.72	19	4.1%	5.63 [3.39, 7.86]	2015						
72b Milaj 2015	5.26	2.61	34	-2.4	2.72	19	4.1%	5.96 [7.74, 12.32]	2015						

Heterogeneity: $I^2 = 0.02$, $H^2 = 0.08$, df = 8, (P = 0.43), $P = 15$
Test for overall effect: Z = 16.26 (P < 0.0001)

1.3.3 Hormone
25 Phool 1988
50a Akramosha 1989
47a Carlo Foletta 2002
44a Carlo Foletta 2003
45a Dimitriou 2003
39a Robertso 2006
47a R. Bolte 2010
29a Nicola Cucci 2012
78a R. Parodi 2013
67a Yim Men-Don 2015
78a Yim-mian Dong 2015
78a A. F. ABG 2015

Heterogeneity: $I^2 = 8.90$, $H^2 = 10.47$, df = 14, (P = 0.0001), $P = 0.97$
Test for overall effect: Z = 4.40 (P < 0.001)

1.3.6 Vitamins
48a Wal Yee Wong 2002
90a Tinkofildsen 2020

Heterogeneity: $I^2 = 0.00$, $H^2 = 0.08$, df = 3, (P = 0.99), $P = 0.05$
Test for overall effect: Z = 0.91 (P = 0.36)

1.3.7 Enzymes
9a C. H. A. 1994

Heterogeneity: not applicable
Test for overall effect: Z = 0.13 (P = 0.90)

1.3.8 Supplements
48a Wal Yee Wong 2002
48a Wal Yee Wong 2002
41a Andrea Ito 2004
34a Mohammad Reza Bariainzadeh 2000
26a A. Nasiriabadipour 2010
24a Mohammad Reza Baraminzadeh 2010
23a Meritum Intan 2012
19a A. Nasiriabadipour 2012
26 Mahdonz Heppen 2012
28a A. Ito 2012
74a Marnix Lipca 2016
22 Abdul Razzaq 2018
90a Tinkofildsen 2020

Heterogeneity: $I^2 = 20.00$, $H^2 = 12570$, df = 12, (P = 0.0000), $P = 91$
Test for overall effect: Z = 3.71 (P = 0.003)

Total (95% CI) 252
Heterogeneity: $I^2 = 11.31$, $H^2 = 32509$, df = 41, (P = 0.0000), $P = 87$
Test for overall effect: Z = 7.95 (P = 0.0001)
Test for subpop differences: $I^2 = 3.71$, df = 4 (P = 0.44), $P = 99$
Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Selective reporting (reporting bias)
(D) Other bias
(E) Blinding of participants and personnel (performance bias)
(F) Blinding of outcome assessment (detection bias)
(G) Incomplete outcome data (attrition bias)
Supplementary Figure 5: Sub-group meta-analysis (SERM type based) for sperm concentration (n = 6).

Study or Subgroup	Intervention	Placebo	Mean Difference	Risk of Bias											
Mean	SD	Total	Mean	SD	Total	IV, Random 95% CI	Mean Difference	IV, Random 95% CI	A	B	C	D	E	F	G
1.7.1 Tamoxifen	0.68	24.33	16	1.4	24.24	16	0.2%	-0.72 [17.55; 16.11]	2	2	2	2	2	2	2
33a Murat 2016	7.6	27.65	31	0.1	13.42	25	0.4%	7.50 [3.56; 19.58]	2	2	2	2	2	2	2
33a Murat 2016	-1.4	18.34	30	0.1	13.42	25	0.7%	-0.50 [1.89; 7.91]	2	2	2	2	2	2	2
33a Murat 2016	3.1	28.1	42	0.1	13.42	25	0.5%	5.00 [-4.96; 14.98]	2	2	2	2	2	2	2
63 a W. KRAISE 1992	2.1	12.82	39	0.2	8.09	37	2.3%	1.90 [2.69; 6.69]	2	2	2	2	2	2	2
72a Milat 2015	323	25.7	45	-2.4	2.72	29	32.6%	5.63 [4.39; 6.87]	2	2	2	2	2	2	2
72a Milat 2015	358	2.21	34	-2.4	2.72	29	32.9%	5.98 [4.74; 7.22]	2	2	2	2	2	2	2
Subtotal (95% CI)	237	166	69.6%	5.61 [4.75; 6.46]	2	2	2	2	2	2	2	2			

Heterogeneity: Tau^2 = 0.00; Chi^2 = 1.34, df = 6 (P = 0.50), I^2 = 0%

Test for overall effect: Z = 12.91 (P < 0.00001)

1.7.2 Clomiphen

Study or Subgroup	Intervention	Placebo	Mean Difference	Risk of Bias											
Mean	SD	Total	Mean	SD	Total	IV, Random 95% CI	Mean Difference	IV, Random 95% CI	A	B	C	D	E	F	G
10 Milici 1986	782	36.2	56	1.72	3.18	45	28.7%	6.90 [5.57; 8.23]	2	2	2	2	2	2	2
31a Hussein Khanem 2009	7.8	13.42	30	0.7	7.97	30	1.7%	7.10 [1.51; 12.69]	2	2	2	2	2	2	2
Subtotal (95% CI)	86	75	30.4%	6.91 [5.62; 8.20]	2	2	2	2	2	2	2	2			

Heterogeneity: Tau^2 = 0.00; Chi^2 = 1.00, df = 1 (P = 0.95), I^2 = 0%

Test for overall effect: Z = 10.49 (P < 0.00001)

Risk of bias legend:
- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Selective reporting (reporting bias)
- (D) Other bias
- (E) Blinding of participants and personnel (performance bias)
- (F) Blinding of outcome assessment (detection bias)
- (G) Incomplete outcome data (attrition bias)
Supplementary Figure 6: Sub-group meta-analysis (Supplement type based) for sperm concentration (n = 12)
Supplementary Figure 7: Sub-group meta-analysis (intervention based) for sperm motility (n = 29)
Supplementary Figure 8: Sub-group meta-analysis (SERM type based) for sperm motility (n = 6).
Supplementary Figure 9: Sub-group meta-analysis (supplement type based) for sperm motility (n = 12).

Study or Subgroup	Intervention	Placebo	Mean Difference	Risk of Bias						
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		
1.16.4 Zinc Sulfate	22 Abdul Razzaq 2019	18	12.29	80	0	9	60	10.5%	19.00 [14.15, 21.85]	?
	26 Mahonem Russem 2012	16	7.55	37	0	7	37	10.9%	16.00 [12.68, 19.32]	?
	46a Vai Yee Vong 2002	6	80.66	23	0	89.59	26	0.5%	5.00 [13.14, 53.14]	?
	46b Vai Yee Vong 2002	2	86.29	24	0	89.59	25	0.4%	2.00 [47.24, 51.24]	?
	Subtotal (95% CI)	144	147	223%	16.78 [14.27, 19.29]	?				
	Heterogeneity: Tau^2 = 0.00; Chi^2 = 1.17; df = 3 (P = 0.76); I^2 = 0%									
	Test for overall effect: Z = 13.12 (P < 0.0001)									
1.16.5 CoQ10	19a A. Nadjarzadeh 2012	5.78	16.88	23	0.54	18.46	24	5.8%	5.24 [4.87, 15.35]	?
	24a Mohammad Reza Safarinejad 2012	35.8	2.7	101	25	2	102	12.1%	10.60 [10.15, 11.45]	?
	26a A. Nadjarzadeh 2011	5.78	16.87	23	0.51	17.29	24	6.0%	5.27 [4.50, 15.04]	?
	34a Mohammad Reza Safarinejad 2012	5.4	2.31	98	0.8	2.39	96	12.1%	4.10 [9.94, 5.26]	?
	Subtotal (95% CI)	245	360%	6.91 [1.94, 12.01]	?					
	Heterogeneity: Tau^2 = 18.09; Chi^2 = 11.98; df = 3 (P < 0.0001); I^2 = 96%									
	Test for overall effect: Z = 2.71 (P = 0.007)									
1.16.6 Carnitine	41a Andrea Iezzi 2004	7.94	11.66	30	6.47	8.41	26	9.3%	1.41 [-0.81, 3.63]	?
	Subtotal (95% CI)	30	26	9.3%	1.41 [-0.81, 3.63]	?				
	Heterogeneity: Not applicable									
	Test for overall effect: Z = 0.65 (P = 0.52)									
1.16.7 L-Carnitine	72a Milat 2015	1.63	3.16	20	-1.5	4.91	29	11.5%	3.31 [0.07, 5.53]	?
	74a Markus Lijórac 2016	9.2	18.2	156	15.2	16.31	143	10.4%	-8.01 [-19.91, 3.89]	?
	Subtotal (95% CI)	176	172	22.0%	-4.29 [-10.23, 1.75]	?				
	Heterogeneity: Tau^2 = 39.02; Chi^2 = 11.69; df = 1 (P < 0.0001); I^2 = 94%									
	Test for overall effect: Z = 0.29 (P = 0.77)									
1.16.8 Fish Oil	80a Tinkl,J. Olsen 2020	63.2	63.39	98	62.7	175.97	125	3.6%	0.50 [14.24, 15.24]	?
	Subtotal (95% CI)	98	125	3.6%	0.50 [14.24, 15.24]	?				
	Heterogeneity: Not applicable									
	Test for overall effect: Z = 0.07 (P = 0.94)									
1.16.9 ProEnrich	23a Martin Imlay 2012	16.5	18.69	132	9.5	34.3	73	6.8%	7.00 [-1.50, 15.50]	?
	Subtotal (95% CI)	132	73	6.8%	7.00 [-1.50, 15.50]	?				
	Heterogeneity: Not applicable									
	Test for overall effect: Z = 1.61 (P = 0.1)									

Total (95% CI) | 825 | 1789 | 100.0% | 6.61 [3.15, 9.86] | ? |

Risk of bias legend:
- A: Random sequence generation (selection bias)
- B: Allocation concealment (selection bias)
- C: Selective reporting (reporting bias)
- D: Other bias
- E: Blinding of participants and personnel (performance bias)
- F: Blinding of outcome assessment detection bias
- G: Incomplete outcome data (attrition bias)
Supplementary Figure 10: Sub-group meta-analysis (intervention based) for sperm morphology (n=29).
Supplementary Figure 11: Sub-group meta-analysis (hormone type based) for sperm morphology (n = 12)

Study or Subgroup	Intervention	Placebo	Mean Difference	Mean Difference	Risk of Bias	
1.2.7.1 FSH Disc < 200 IU						
22a Nicola Cicaculo 2012	13	7.11	8.1%	1.40 [-1.11, 3.93]	? ? ? ? ? ? ? ?	
44a Ettore Croppo 2003	52	8.03	4.7%	7.90 [0.50, 16.30]	? ? ? ? ? ? ? ?	
47a Carlo Fuesta 2002	-07	9.72	5.5%	-1.90 [-8.81, 5.03]	? ? ? ? ? ? ? ?	
4/7a Carlo Fuesta 2002	54	8.58	5.8%	4.20 [-2.33, 10.73]	? ? ? ? ? ? ? ?	
50a Arminshike 1998	02	7.06	7.6%	0.40 [-3.0, 3.32]	? ? ? ? ? ? ? ?	
67a Yin-man Ding 2015	64	8.51	7.0%	4.20 [-0.21, 8.64]	? ? ? ? ? ?	? ? ? ? ? ?
67a Yin-man Ding 2015	-25	3.48	7.5%	-4.70 [-8.44, -1.00]	? ? ? ? ? ?	? ? ? ? ? ?
67a Yin-man Ding 2015	61	11.43	6.7%	-3.90 [-1.0, 8.87]	? ? ? ? ? ?	? ? ? ? ? ?
76a A. FARRIG 2015	6.6	8.34	7.6%	6.36 [2.9, 9.75]	? ? ? ? ? ?	? ? ? ? ? ?
77a R. Selice 2010	22	7.78	8.0%	3.50 [0.6, 6.35]	? ? ? ? ? ?	? ? ? ? ? ?
Subtotal (95% CI)	373	306	58.5%	2.29 [0.0, 4.51]	? ? ? ? ? ?	? ? ? ? ? ?

Heterogeneity: Tau² = 7.67; Ch² = 26.26, df = 9 (P = 0.032); I² = 66%
Test for overall effect: Z = 2.01 (P = 0.04)

1.2.7.2 FSH Disc >= 200 IU						
38a Roberto Paradisi 2006	09	8.7	5.9%	2.60 [-3.6, 8.88]	? ? ? ? ? ?	? ? ? ? ? ?
67a Yin-man Ding 2015	44	11.43	6.7%	2.20 [-2.8, 7.20]	? ? ? ? ? ?	? ? ? ? ? ?
78a R. Paradisi 2013	02	7.45	6.7%	2.20 [-2.1, 7.75]	? ? ? ? ? ?	? ? ? ? ? ?
Subtotal (95% CI)	100	60	19.4%	2.53 [-0.51, 5.59]	? ? ? ? ? ?	? ? ? ? ? ?

Heterogeneity: Tau² = 0.00; Ch² = 0.03, df = 2 (P = 0.99; I² = 0%)
Test for overall effect: Z = 1.62 (P = 0.11)

1.2.7.3 Testosterone					
25 Push 1918	6.16	15.49	4.8%	5.86 [2.48, 14.20]	? ? ? ? ? ?
45a Davindenbo 2003	154	12.93	7.4%	17.40 [13.50, 21.30]	? ? ? ? ? ?
Subtotal (95% CI)	135	134	12.1%	12.24 [1.00, 23.49]	? ? ? ? ? ?

Heterogeneity: Tau² = 55.54; Ch² = 6.03, df = 1 (P = 0.01; I² = 83%)
Test for overall effect: Z = 2.13 (P = 0.03)

Total (95% CI) 608 500 100.0% 3.68 [0.9, 6.39]

Heterogeneity: Tau² = 22.07; Ch² = 80.44, df = 14 (P < 0.0001); I² = 83%
Test for overall effect: Z = 2.86 (P = 0.008)
Test for subgroup differences: Ch² = 2.90, df = 2 (P = 0.23), I² = 31.1%

Risk of bias

- **A** Random sequence generation (selection bias)
- **B** Allocation concealment (selection bias)
- **C** Selective reporting (reporting bias)
- **D** Other bias
- **E** Blinding of participants and personnel (performance bias)
- **F** Blinding of outcome assessment (detection bias)
- **G** Incomplete outcome data (attrition bias)
Supplementary Figure 12: Sub-group meta-analysis (supplement type based) for sperm morphology (n=12)

Study or Subgroup	Intervention Mean	Placebo Mean	Mean Difference	Risk of Bias
1.25.1 Zinc Sulphate				A
22 Abdul Razzaq 2018	12	11	6.6	?
26 Mahmoud Russein 2012	5	12	-3.7	?
48a Wai Yeong Yong 2002	-1	9.4	3.5	?
48a Wai Yeong Yong 2002	14.1	9.4	4.7	?
Subtotal (95%CI)	144	147	20.9	?
Heterogeneity/Tau²= 0.73; Chi²= 2.61; df= 3 (P < 0.0001); I² = 86% Test for overall effect: Z = 1.25 (P = 0.21)				
1.25.2 CoQ10				A
19a A. Nadjardeghi 2012	-0.91	23	4.92	?
24a Mohammad Reza Safarinejad 2012	17.6	101	14.8	?
26a A. Nadjardeghi 2011	-0.91	5.2	2.13	?
34a Mohammad Reza Safarinejad 2009	2.4	2.51	9.5	?
Subtotal (95%CI)	245	246	39.6	?
Heterogeneity/Tau²= 1.42; Chi²= 0.99; df= 3 (P = 0.01); I² = 73% Test for overall effect: Z = 1.73 (P = 0.032)				
1.25.3 Carnitine				A
41a Andrea Inf 2004	1.28	30	10.7	?
Subtotal (95%CI)	30	26	10.7	?
Heterogeneity/Not applicable				A
Test for overall effect: Z = 3.94 (P < 0.0001)				
1.25.4 L-Carnitine				A
72b Milat 2015	2.01	20	1.2	?
74a Markou Louvac 2016	9.6	151	7.7	?
Subtotal (95%CI)	176	172	10.1	?
Heterogeneity/Tau²= 3.19; Chi²= 2.41; df= 1 (P = 0.09); I² = 66% Test for overall effect: Z = 1.34 (P = 0.16)				
1.25.5 Fish Oil				A
80a Tinkold, Jensen 2020	7.5	98	6.6	?
Subtotal (95%CI)	125	125	6.6	?
Heterogeneity/Not applicable				A
Test for overall effect: Z = 0.50 (P = 0.32)				
1.25.6 Prostergl				A
23a Marti inntof 2012	11	132	3.3	?
Subtotal (95%CI)	132	73	3.2	?
Heterogeneity/Not applicable				A
Test for overall effect: Z = 3.95 (P < 0.0001)				
Total (95%CI)	R25	789	1.0	?
Heterogeneity/Tau²= 4.91; Chi²= 113.80; df= 12 (P = 0.00001); I² = 98% Test for overall effect: Z = 2.52 (P = 0.01) Test for subgroup differences: Chi²= 37.36; df= 5 (P < 0.0001); I² = 98.6%				

Risk of bias legend:
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Detection bias (reporting bias)
(D) Other bias
(E) Blinding of participants and personnel (performance bias)
(f) Blinding of outcome assessment (detection bias)
(G) Incomplete outcome data (attrition bias)
Supplementary Figure 13: Overall meta-analysis for total serum testosterone of included RCTs (n=17).

Supplementary Figure 14: Overall meta-analysis for total serum FSH of included RCTs (n=17).
Supplementary Figure 15: Sub-group meta-analysis (intervention based) for total serum testosterone (n = 12).
Supplementary Figure 16: Sub-group meta-analysis (supplement type based) for total serum testosterone (n = 3).

Study or Subgroup	Intervention Mean	SD	Total	Placebo Mean	SD	Total	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI	Risk of Bias						
									A	B	C	D	E	F	G
2.4.2: CoQ10															
24a Mohammad Reza Safarinejad 2012	19.6	4.6	101	16.7	4.4	102	57.0%	2.19 (1.86, 4.14)	5%						
24b Mohammad Reza Safarinejad 2019	2.8	5.5	98	0.2	4.7	98	22.2%	2.18 (1.16, 4.04)	10%						
Subtotal (95%)	199														
Heterogeneity: Tau² = 0.00; Chi² = 0.01, df = 1 (P = 0.76); I² = 0%															
Test for overall effect: Z = 5.79 (P < 0.0001)															
2.4.5: Hid Ch															
80a Tunkahadesan 2020	29.5	17.9	98	21.1	164.14	1125	0.9%	-0.50 (-10.72, 9.72)	10%						
Subtotal (95%)	98														
Heterogeneity: Not applicable															
Test for overall effect: Z = 0.10 (P = 0.92)															
Total (95%)	297														
Heterogeneity: Tau² = 0.00; Chi² = 0.48, df = 2 (P = 0.78); I² = 0%															
Test for overall effect: Z = 5.76 (P < 0.0001)															
Test for subgroup differences: Chi² = 3.94, df = 1 (P = 0.05), I² = 0%															
Risk of bias:															
A (Random sequence generation (selection bias))															
B (Allocation concealment (selection bias))															
C (Selective reporting (reporting bias))															
D (Other bias)															
E (Blinding of participants and personnel (performance bias))															
F (Blinding of outcome assessment (detection bias))															
G (Incomplete outcome data (attrition bias))															

Supplementary Figure 17: Sub-group meta-analysis (SERM type based) for total serum testosterone (n = 3).

Study or Subgroup	Intervention Mean	SD	Total Mean	Placebo Mean	SD	Total Mean	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI	Risk of Bias						
									A	B	C	D	E	F	G
2.6.2: Tamoxifen															
14 Altunkah 1887	3.42	1.32	18	1.05	16	16	8.9%	3.42 (2.59, 5.25)							
33a Murat 208	1.12	0.24	42	-0.02	0.2	25	28.7%	1.15 (0.84, 2.62)							
33a Murat 208	1.07	0.22	30	-0.02	0.2	25	28.7%	1.10 (0.89, 2.11)							
33a Murat 208	1.4	0.24	31	-0.02	0.2	25	28.7%	1.43 (1.31, 1.55)							
63a A & K, KRA/SE 1992	3.32	1.32	39	0.2	2	37	5.1%	2.70 (1.55, 3.87)							
Subtotal (95%)	158	128	100%	158	128	100%	1.50 (1.20, 1.79)								
Heterogeneity: Tau² = 0.16; Chi² = 51.94, df = 4 (P < 0.0001); I² = 92%															
Test for overall effect: Z = 9.86 (P < 0.0001)															
Total (95%)	158	128	100%	158	128	100%	1.50 (1.20, 1.79)								
Heterogeneity: Tau² = 0.16; Chi² = 51.94, df = 4 (P < 0.0001); I² = 92%															
Test for overall effect: Z = 9.86 (P < 0.0001)															
Test for subgroup differences: Not applicable															
Risk of bias:															
A (Random sequence generation (selection bias))															
B (Allocation concealment (selection bias))															
C (Selective reporting (reporting bias))															
D (Other bias)															
E (Blinding of participants and personnel (performance bias))															
F (Blinding of outcome assessment (detection bias))															
G (Incomplete outcome data (attrition bias))															
Supplementary Figure 18: Sub-group meta-analysis (intervention based) for total serum FSH (n = 12).

Study or Subgroup	Intervention Mean	SD	Total Mean	SD	Total Weight	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI	Year	Risk of Bias
2.10.2 Hormones									
25 Fuchs 1988	-0.68	1.99	23	0.43	2.15	2t 8.3% -1.11 [2.03, -0.13] 1988			
51 A. Kamitsuke 1998	3.7	2.67	34	-0.5	3.1	3t 6.2% 4.20 [2.9, 5.61] 1998			
38a Robert/Paradisi 2006	1.7	1.67	15	0.2	1.61	1t 6.3% 1.90 [0.01, 3.18] 2006			
77a R. Selkoe 2010	1.6	1.91	15	-0.2	1.67	1t 6.4% 1.40 [0.5, 2.25] 2010			
78a H. Paradies 2013	-0.1	1.28	45	0.2	1.67	1t 6.4% 0.10 [0.2, 1.02] 2013			
5 Helo 2015	4.1	8.92	13	3.5	42.24	1t 0.5% 0.60 [22.29] 24.12 2015			
Subtotal (95% CI)								216	
Heterogeneity: Tau² = 2.75; Ch² = 43.69, df = 5 (P = 0.00001); P = 98%									
Test for overall effect: Z = 1.56 (P = 0.11)									

2.10.3 Vitamins									
80a TimakolUnsen 2020	2.8	1.99	23	2.7	16.74	11t 6.3% 0.10 [-1.5, 1.35] 2020			
80a TimakolUnsen 2020	2.7	7.86	20	2.7	16.74	11t 6.2% 0.00 [-1.5, 1.45] 2020			
80a TimakolUnsen 2020	2.7	4.32	75	2.7	16.74	11t 6.2% 0.00 [-1.3, 1.38] 2020			
Subtotal (95% CI)								310	
Heterogeneity: Tau² = 0.00; Ch² = 0.01, df = 2 (P = 0.99); P = 1%									
Test for overall effect: Z = 0.10 (P = 0.92)									

2.10.4 SERM									
14 Alnoklev 1997	3.54	2.8	16	0	2.28	1t 6.1% 3.54 [1.7, 5.31] 1997			
63 a R. KRAUS 1992	0.5	4.49	9	-0.7	3.72	3t 6.0% 1.20 [0.5, 2.05] 1992			
33a Munt 2001	6.3	4.1	4	0.3	2.67	2t 6.1% 6.00 [4.8, 7.26] 2008			
33a Munt 2001	1.2	2.33	3	0.3	2.67	2t 6.2% 0.00 [0.3, 2.23] 2008			
33a Munt 2001	7.1	4.66	3	0.3	2.67	2t 6.0% 6.80 [4.6, 8.74] 2008			
Subtotal (95% CI)								158	
Heterogeneity: Tau² = 6.69; Ch² = 60.69, df = 4 (P = 0.00001); P = 90%									
Test for overall effect: Z = 3.00 (P = 0.003)									

2.10.5 Supplements									
34a Mohammad-Reza Safarinejad 2019	-6.4	1.8	9	0.2	4.15	9t 6.3% -6.20 [-7.3, -5.04] 2009			
24a Mohammad-Reza Safarinejad 2012	9.6	3.6	10	16	4.2	10t 6.3% -8.80 [-7.9, -5.72] 2012			
80a TimakolUnsen 2020	2.4	3.95	10	2.7	16.74	11t 6.3% -0.20 [-1.5, 0.95] 2020			
Subtotal (95% CI)								217	
Heterogeneity: Tau² = 11.65; Ch² = 6844, df = 4 (P < 0.00001); P = 97%									
Test for overall effect: Z = 2.22 (P = 0.029)									

| Total (95% CI) | | | | | | | | 971 | |
| Heterogeneity: Tau² = 11.48; Ch² = 43.91, df = 16 (P < 0.0001); P = 96% |
| Test for overall effect: Z = 0.80 (P = 0.42) |
| Test for subgroup differences: Ch² = 14.98, df = 3 (P = 0.002); P = 79.9% |

Risk of bias rated:
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Selective reporting (reporting bias)
(D) Other bias
(E) Blinding of participants and personnel (performance bias)
(F) Blinding of outcome assessment (detection bias)
(G) Incomplete outcome data (attrition bias)
Supplementary Figure 19: Sub-group meta-analysis (SERM type based) for total serum FSH (n = 3).

Study or Subgroup	Intervention Mean	SD	Total	Mean	SD	Total	Weight	Mean Difference	IV, Random, 95% CI	Risk of Bias
Tamoxifen										
14 Altinkay 1387	3.54	2.8	16	2.28	16	16	19.9%	3.54 [1.77, 3.13]		
31a Murat 20B	7.1	4.56	30	0.26	25	25	19.9%	7.10 [4.86, 4.74]		
33a Murat 20B	6.3	4	42	0.26	25	25	20.0%	6.30 [4.38, 6.12]		
33a Murat 20B	1.2	2.33	31	0.26	25	25	20.0%	1.20 [0.43, 2.23]		
63 a W. Kisuana SE1992	0.5	4.49	39	0.73	37	37	19.7%	0.50 [-0.65, 1.05]		
Subtotal (95% CI)	**159**		**128**	**128**	**100.3%**	**3.06** [1.27, 6.05]				
Heterogeneity: Tau = 6.66; Chi² = 40.68, df = 4 (P < 0.0001), P = 90%										
Test for overall effect Z = 2.00 (P = 0.033)										
Test for subgroup differences: Not applicable										

Supplementary Figure 20: Sub-group meta-analysis (Hormone type based) for total serum FSH (n = 6)

Study or Subgroup	Intervention Mean	SD	Total	Mean	SD	Total	Weight	Mean Difference	IV, Random, 95% CI	Risk of Bias
FSH 500 IU										
34a Alkamehski 1998	17.2	2.67	34	-1.4	31	31	9.2%	18.60 [2.75, 4.61]		
71a R. Balss 2010	16.1	1.91	70	1.2	21	21	0.9%	17.30 [1.50, 2.25]		
Subtotal (95% CI)	**104**		**66**	**66**	**39.5%**	**2.74** [0.64, 4.64]				
Heterogeneity: Tau = 3.57; Chi² = 11.10, df = 1 (P = 0.000099), P = 91%										
Test for overall effect Z = 1.96 (P = 0.05)										
Test for subgroup differences: Not applicable										

FSH 500 IU

Study or Subgroup	Intervention Mean	SD	Total	Mean	SD	Total	Weight	Mean Difference	IV, Random, 95% CI	Risk of Bias
34a Robertson 2006	17	1.97	15	-1.2	16	16	9.2%	18.20 [0.61, 3.19]		
71a R. Balss 2013	-0.1	1.2	45	1.67	30	30	0.0%	-0.10 [0.62, 1.02]		
Subtotal (95% CI)	**60**		**30**	**30**	**10.0%**	**0.94** [-0.82, 2.67]				
Heterogeneity: Tau = 1.29; Chi² = 4.98, df = 1 (P = 0.033), P = 90%										
Test for overall effect Z = 1.05 (P = 0.29)										
Test for subgroup differences: Not applicable										

Testosterone

Study or Subgroup	Intervention Mean	SD	Total	Mean	SD	Total	Weight	Mean Difference	IV, Random, 95% CI	Risk of Bias
25 Pusch 1918	-0.1	1.59	20	0.13	21	21	0.9%	-0.13 [-0.20, -0.06]		
Subtotal (95% CI)	**20**		**20**	**20**	**10.0%**	**0.13** [-0.20, -0.06]				
Heterogeneity: Not applicable										

Anastrozole

Study or Subgroup	Intervention Mean	SD	Total	Mean	SD	Total	Weight	Mean Difference	IV, Random, 95% CI	Risk of Bias
5 Helo 2015	4.1	8.92	13	5.4	13	13	0.4%	4.60 [22.22, 24.12]		
Subtotal (95% CI)	**206**		**137**	**137**	**10.0%**	**1.24** [0.25, 2.27]				
Heterogeneity: Tau = 2.75; Chi² = 43.50, df = 6 (P = 0.00001), P = 90%										
Test for overall effect Z = 1.58 (P = 0.01)										
Test for subgroup differences: Chi² = 9.24, df = 2 (P = 0.03), P = 67.5%										

Risk of bias

- Random sequence generation (selection bias)
- Allocation concealment (selection bias)
- Selective reporting (reporting bias)
- Other bias
- Blinding of participants and personnel (performance bias)
- Blinding of outcome assessment (detection bias)
- Incomplete outcome data (attrition bias)
| Section/topic | # | Checklist item | Reported on page # |
|---------------|---|---|-------------------|
| TITLE | | | 01 |
| Title | 1 | Identify the report as a systematic review, meta-analysis, or both. | 01 |
| ABSTRACT | | | 03-04 |
| Structured summary | 2 | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | 03-04 |
| INTRODUCTION | | | 03-06 |
| Rationale | 3 | Describe the rationale for the review in the context of what is already known. | 03-05 |
| Objectives | 4 | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS). | 06 |
| METHODS | | | 06-08 |
| Protocol and registration | 5 | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number. | 08 |
| Eligibility criteria | 6 | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. | 07 |
| Information sources | 7 | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched. | 06 |
| Search | 8 | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated. | 06 |
| Study selection | 9 | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis). | 07 |
| Data collection process | 10 | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators. | 07 |
| Data items | 11 | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made. | 07 |
| Risk of bias in individual studies | 12 | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. | 07 |
| Summary measures | 13 | State the principal summary measures (e.g., risk ratio, difference in means). | 07 |
| Synthesis of results | 14 | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis. | 07 |
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	07
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	07
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	08
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	08
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	09
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	09
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	09-13
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	09
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	09-13
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	15-17
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	17
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	17-18
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	18