SOME INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE DERIVATIVES OF n-TH ORDER ARE (α, m)-CONVEX

FENG QI, MUHAMMAD AMER LATIF, WEN-HUI LI, AND SABIR HUSSAIN

Abstract. In the paper, the authors find some new integral inequalities of Hermite-Hadamard type for functions whose derivatives of the n-th order are (α, m)-convex and deduce some known results. As applications of the newly-established results, the authors also derive some inequalities involving special means of two positive real numbers.

1. Introduction

It is common knowledge in mathematical analysis that a function $f : I \subseteq \mathbb{R} \to \mathbb{R}$ is said to be convex on an interval $I \neq \emptyset$ if
\[
(1.1) \quad f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)
\]
for all $x, y \in I$ and $\lambda \in [0, 1]$; If the inequality (1.1) reverses, then f is said to be concave on I.

Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex function on an interval I and $a, b \in I$ with $a < b$. Then
\[
(1.2) \quad f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}.
\]
This inequality is well known in the literature as Hermite-Hadamard integral inequality for convex functions. See [4, 10] and closely related references therein.

The concept of usually used convexity has been generalized by a number of mathematicians. Some of them can be recited as follows.

Definition 1.1 ([17]). Let $f : [0, b] \to \mathbb{R}$ be a function and $m \in [0, 1]$. If
\[
(1.3) \quad f(\lambda x + m(1 - \lambda)y) \leq \lambda f(x) + m(1 - \lambda)f(y)
\]
holds for all $x, y \in [0, b]$ and $\lambda \in [0, 1]$, then we say that $f(x)$ is m-convex on $[0, b]$.

Definition 1.2 ([9]). Let $f : [0, b] \to \mathbb{R}$ be a function and $(\alpha, m) \in [0, 1] \times [0, 1]$. If
\[
(1.4) \quad f(\lambda x + m(1 - \lambda)y) \leq \lambda^\alpha f(x) + m(1 - \lambda^\alpha)f(y)
\]
is valid for all $x, y \in [0, b]$ and $\lambda \in (0, 1]$, then we say that $f(x)$ is (α, m)-convex on $[0, b]$.

It is not difficult to see that when $(\alpha, m) \in \{(0, 0), (1, 0), (1, m), (1, 1), (\alpha, 1)\}$ the (α, m)-convex function becomes the α-star-shaped, star-shaped, m-convex, convex, and α-convex functions respectively.

The famous Hermite-Hadamard inequality (1.2) has been refined or generalized by many mathematicians. Some of them can be reformulated as follows.

2010 Mathematics Subject Classification. Primary 26D15; Secondary 26A51, 26E60, 41A55.

Key words and phrases. Hermite-Hadamard integral inequality; convex function; (α, m)-convex function; differentiable function; application; mean.
\textbf{Theorem 1.1} ([12, Theorem 3]). Let \(f : I^o \subset \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \(f''(x) \) is \(\alpha \)-convex on \([a, b]\) for some fixed \(q \geq 1 \). If \(|f''(x)|^q \) is \(m \)-convex on \([a, b]\) for some fixed \(q > 1 \) and \(m \in [0, 1] \), then

\[
\left| \frac{f'(a) + f'(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^2}{24} \left\{ \left[\lambda^2 + (1 + \alpha)(1 - \lambda)^3 + \frac{5\alpha - 3}{4} \right] |f''(a)| \right.
\]

\[
+ \left. \left[\lambda^4 + (2 - \alpha)\lambda^3 + \frac{1 - 3\alpha}{4} \right] |f''(b)| \right\}, \quad 0 \leq \lambda \leq \frac{1}{2}.
\]

\[
\left\{ \frac{(b-a)^2}{48} (3\lambda - 1) (|f''(a)| + |f''(b)|), \quad \frac{1}{2} \leq \lambda \leq 1. \right. \]

\textbf{Theorem 1.2} ([15, Theorem 4]). Let \(I \subseteq \mathbb{R} \) be an open interval and \(a, b \in I \) with \(a < b \), and let \(f : I \to \mathbb{R} \) be a twice differentiable mapping such that \(f''(x) \) is integrable. If \(0 \leq \lambda \leq 1 \) and \(|f''(x)| \) is convex on \([a, b]\), then

\[
\left| (\lambda - 1) \frac{f'(a) + f'(b)}{2} - \lambda \frac{f(a) + f(b)}{2} + \int_a^b f(x) \, dx \right|
\]

\[
\leq \frac{(b-a)^2}{24} \left\{ \left[\lambda^2 + (1 + \alpha)(1 - \lambda)^3 + \frac{5\alpha - 3}{4} \right] |f''(a)| \right.
\]

\[
+ \left. \left[\lambda^4 + (2 - \alpha)\lambda^3 + \frac{1 - 3\alpha}{4} \right] |f''(b)| \right\}, \quad 0 \leq \lambda \leq \frac{1}{2}.
\]

\[
\left\{ \frac{(b-a)^2}{48} (3\lambda - 1) (|f''(a)| + |f''(b)|), \quad \frac{1}{2} \leq \lambda \leq 1. \right. \]

\textbf{Theorem 1.3} ([11, Theorem 3]). Let \(b^* > 0 \) and \(f : [0, b^*] \to \mathbb{R} \) be a twice differentiable function such that \(f''(x) \) is \(\alpha \)-convex on \([a, b]\) for \((\alpha, m) \in [0, 1] \times [0, 1] \) and \(q \geq 1 \), then

\[
\left| \frac{f(a) + f(mb)}{2} - \frac{1}{mb-a} \int_a^{mb} f(x) \, dx \right|
\]

\[
\leq \frac{(mb-a)^2}{2} \left\{ 1 \right. \left. \right|^\frac{1}{q} \left\{ \frac{|f''(a)|^q}{(\alpha + 2)(\alpha + 3)} + m|f''(b)|^q \left[\frac{1}{6} - \frac{1}{(\alpha + 2)(\alpha + 3)} \right] \right\} \right. \right. \}

In recent years, some other kinds of Hermite-Hadamard type inequalities were generated in [1, 2, 3, 13, 14, 16, 20, 21, 22], for example. For more systematic information, please refer to monographs [4, 10] and related references therein.

In this paper, we will establish some new inequalities of Hermite-Hadamard type for functions whose derivatives of \(n \)-th order are \((\alpha, m)\)-convex and deduce some known results in the form of corollaries.

\section{A Lemma}

For establishing new integral inequalities of Hermite-Hadamard type for functions whose derivatives of \(n \)-th order are \((\alpha, m)\)-convex, we need the following lemma.
Lemma 2.1. Let $0 < m \leq 1$ and $b > a > 0$ satisfying $a < mb$. If $f^{(n)}(x)$ for $n \in \{0\} \cup \mathbb{N}$ exists and is integrable on the closed interval $[0, b]$, then

$$
(2.1) \quad \frac{f(a) + f(mb)}{2} - \frac{1}{mb - a} \int_a^{mb} f(x) \, dx - \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(mb-a)^k}{(k+1)!} f^{(k)}(a) = \frac{(mb-a)^n}{n!} \int_0^1 t^{n-1}(n-2t)f^{(n)}(ta + m(1-t)b) \, dt,
$$

where the sum above takes 0 when $n = 1$ and $n = 2$.

Proof. When $n = 1$, it is easy to deduce the identity (2.1) by performing an integration by parts in the integrals from the right side and changing the variable.

When $n = 2$, we have

$$
(2.2) \quad \frac{f(a) + f(mb)}{2} - \frac{1}{mb - a} \int_a^{mb} f(x) \, dx = \frac{(mb-a)^2}{2} \int_0^1 t(1-t)f''(ta + m(1-t)b) \, dt.
$$

This result is same as [11, Lemma 2].

When $n = 3$, the identity (2.1) is equivalent to

$$
(2.3) \quad \frac{f(a) + f(mb)}{2} - \frac{1}{mb - a} \int_a^{mb} f(x) \, dx - \frac{(mb-a)^2}{12} f''(a) = \frac{(mb-a)^3}{12} \int_0^1 t^2(3-2t)f^{(3)}(ta + m(1-t)b) \, dt,
$$

which may be derived from integrating the integral in the second line of (2.3) and utilizing the identity (2.2).

When $n \geq 4$, computing the second line in (2.1) by integration by parts yields

$$
\frac{(mb-a)^n}{n!} \int_0^1 t^{n-1}(n-2t)f^{(n)}(ta + m(1-t)b) \, dt
$$

$$
= -\frac{(n-2)(mb-a)^{n-1}}{n!} f^{(n-1)}(a) + \frac{(mb-a)^{n-1}}{(n-1)!} \int_0^1 t^{n-2}(n-1-2t)f^{(n-1)}(ta + m(1-t)b) \, dt,
$$

which is a recurrent formula

$$
S_{a,mb}(n) = -T_{a,mb}(n-1) + S_{a,mb}(n-1)
$$
on n, where

$$
S_{a,mb}(n) = \frac{1}{2} \frac{(mb-a)^n}{n!} \int_0^1 t^{n-1}(n-2t)f^{(n)}(ta + m(1-t)b) \, dt
$$

and

$$
T_{a,mb}(n-1) = \frac{1}{2} \frac{(n-2)(mb-a)^{n-1}}{n!} f^{(n-1)}(a)
$$

for $n \geq 4$. By mathematical induction, the proof of Lemma 2.1 is complete. □

Remark 2.1. Similar integral identities to (2.1), produced by replacing $f^{(k)}(a)$ in (2.1) by $f^{(k)}(b)$ or by $f^{(k)}(\frac{a+b}{2})$, and corresponding integral inequalities of Hermite-Hadamard type have been established in [8, 18, 19].

Remark 2.2. When $m = 1$, our Lemma 2.1 becomes [5, Lemma 2.1].
3. Inequalities of Hermite-Hadamard Type

Now we are in a position to establish some integral inequalities of Hermite-Hadamard type for functions whose derivatives of \(n \)-th order are \((\alpha, m)\)-convex.

Theorem 3.1. Let \((\alpha, m) \in [0, 1] \times (0, 1)\) and \(b > a > 0 \) with \(a < mb \). If \(f(x) \) is \(n \)-time differentiable on \([0, b]\) such that \(|f^{(n)}(x)| \in L([0, mb])\) and \(|f^{(n)}(x)|^p \) is \((\alpha, m)\)-convex on \([0, mb]\) for \(n \geq 2 \) and \(p \geq 1 \), then

\[
(3.1) \quad \left| \frac{f(a) + f(mb)}{2} - \frac{1}{mb - a} \int_a^{mb} f(x) \, dx \right| \leq \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(mb-a)^k}{(k+1)!} f^{(k)}(a)
\]

\[
\leq \frac{1}{2} \frac{(mb-a)^n}{n!} \left(\frac{n-1}{n+1} \right)^{1-1/p} \left\{ \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} |f^{(n)}(a)|^p \right. \\
+ m \left[\frac{n-1}{n+1} - \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} \right] |f^{(n)}(b)|^{1/p} \right\},
\]

where the sum above takes 0 when \(n = 2 \).

Proof. It follows from Lemma 2.1 that

\[
(3.2) \quad \left| \frac{f(a) + f(mb)}{2} - \frac{1}{mb - a} \int_a^{mb} f(x) \, dx \right| \leq \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(mb-a)^k}{(k+1)!} f^{(k)}(a)
\]

\[
\leq \frac{1}{2} \frac{(mb-a)^n}{n!} \int_0^1 t^{n-1}(n-2t)|f^{(n)}(ta + m(1-t)b)| \, dt.
\]

When \(p = 1 \), since \(|f^{(n)}(x)| \) is \((\alpha, m)\)-convex, we have

\[
|f^{(n)}(ta + m(1-t)b)| \leq t^n |f^{(n)}(a)| + m(1-t^n)|f^{(n)}(b)|.
\]

Multiplying by the factor \(t^{n-1}(n-2t) \) on both sides of the above inequality and integrating with respect to \(t \in [0, 1] \) lead to

\[
\int_0^1 t^{n-1}(n-2t)|f^{(n)}(ta + m(1-t)b)| \, dt \\
\leq \int_0^1 t^{n-1}(n-2t)\left[t^n |f^{(n)}(a)| + m(1-t^n)|f^{(n)}(b)| \right] \, dt \\
= |f^{(n)}(a)| \int_0^1 t^{n+\alpha-1}(n-2t) \, dt + m|f^{(n)}(b)| \int_0^1 t^{n-1}(n-2t)(1-t) \, dt \\
= \left(\frac{n}{n+\alpha} - \frac{2}{n+\alpha+1} \right) |f^{(n)}(a)| + m|f^{(n)}(b)| \left(\frac{n-1}{n+1} - \frac{n}{n+\alpha} + \frac{2}{n+\alpha+1} \right) \\
= \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} |f^{(n)}(a)| + m \left[\frac{n-1}{n+1} - \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} \right] |f^{(n)}(b)|.
\]

The proof for the case \(p = 1 \) is complete.
When $p > 1$, by the well-known Hölder integral inequality, we obtain

\begin{equation}
\int_0^1 t^{n-1}(n-2t)|f^{(n)}(ta + m(1-t)b)| \, dt \leq \left[\int_0^1 t^{n-1}(n-2t) \, dt \right]^{1-1/p} \left[\int_0^1 t^{n-1}(n-2t)|f^{(n)}(ta + m(1-t)b)|^p \, dt \right]^{1/p}.
\end{equation}

Using the (α, m)-convexity of $|f^{(n)}(x)|^p$ produces

\begin{equation}
\int_0^1 t^{n-1}(n-2t)|f^{(n)}(ta + m(1-t)b)|^p \, dt \leq \int_0^1 t^{n-1}(n-2t)[t^{\alpha}|f^{(n)}(a)|^p + m(1-t^\alpha)|f^{(n)}(b)|^p] \, dt
\end{equation}

\begin{equation}
= \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} |f^{(n)}(a)|^p + m\left[\frac{n-1}{n+1} - \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} \right] |f^{(n)}(b)|^p.
\end{equation}

Substituting (3.3) and (3.4) into (3.2) yields the inequality (3.1). This completes the proof of Theorem 3.1.

\textbf{Corollary 3.1.} Under conditions of Theorem 3.1,

(1) when $m = 1$, we have

\begin{equation}
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(b-a)^k}{(k+1)!} f^{(k)}(a) \left(\frac{1}{n} \right)^{1-1/p} \left(\frac{1}{(n+\alpha)(n+\alpha+1)} \right) |f^{(n)}(b)|^p
\end{equation}

\begin{equation}
\times \left\{ \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} |f^{(n)}(a)|^p + \left[\frac{n-1}{n+1} - \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} \right] |f^{(n)}(b)|^p \right\}^{1/p};
\end{equation}

(2) when $n = 2$, we have

\begin{equation}
\left| \frac{f(a) + f(mb)}{2} - \frac{1}{mb-a} \int_a^{mb} f(x) \, dx \right| \leq \frac{1}{b-a} \int_a^b f(x) \, dx \left(\frac{1}{3} \right)^{1-1/p} \left(\frac{2}{(\alpha + 2)(\alpha + 3)} \right)^{1/p} \left(\frac{1}{2} \right)^{1-1/p} \left(\frac{n}{n+1} \right)^{1-1/p} |f''(a)|^p + m \left[\frac{1}{3} - \frac{2}{(\alpha + 2)(\alpha + 3)} \right] |f''(b)|^p
\end{equation}

\begin{equation}
\times \left\{ \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} |f^{(n)}(a)|^p + \left[\frac{n-1}{n+1} - \frac{n(n-1) + \alpha(n-2)}{(n+\alpha)(n+\alpha+1)} \right] |f^{(n)}(b)|^p \right\}^{1/p};
\end{equation}

(3) when $m = \alpha = p = 1$ and $n = 2$, we have

\begin{equation}
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^2}{24} \left(|f''(a)| + |f''(b)| \right);
\end{equation}

(4) when $m = \alpha = 1$ and $p = n = 2$, we have

\begin{equation}
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^2}{12} \left(\frac{|f''(a)|^2 + |f''(b)|^2}{2} \right)^{1/2}.
\end{equation}

\textbf{Remark 3.1.} Under conditions of Theorem 3.1,

(1) when $n = 2$, the inequality (3.1) becomes the one (1.8) in [11, Theorem 3];

(2) when $\alpha = m = 1$, Theorem 3.1 becomes [5, Theorem 3.1].
Theorem 3.2. Let \((a, m) \in [0, 1] \times (0, 1) \) and \(b > a > 0 \) with \(a < mb \). If \(f(x) \) is \(n \)-time differentiable on \([0, b]\) such that \(|f^{(n)}(x)| \in L([0, mb]) \) and \(|f^{(n)}(x)|^p \) is \((a, m)\)-convex on \([0, mb]\) for \(n \geq 2 \) and \(p > 1 \), then

\[
(3.5) \quad \left| \frac{f(a) + f(mb)}{2} - \frac{1}{mb - a} \int_a^{mb} f(x) \, dx - \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(mb - a)^k}{(k+1)!} f^{(k)}(a) \right| \\
\leq \frac{1}{2} \frac{(mb - a)^n}{n!} \left[\frac{n^{q+1} - (n-2)^q + 1}{2(q+1)} \right]^{1/q} \left\{ \frac{1}{p(n-1) + \alpha + 1} |f^{(n)}(a)|^p \right. \\
+ \left. \frac{ma}{p(n-1) + \alpha + 1} |f^{(n)}(b)|^p \right\}^{1/p},
\]

where the sum above takes 0 when \(n = 2 \) and \(\frac{1}{p} + \frac{1}{q} = 1 \).

Proof. It follows from Lemma 2.1 that

\[
(3.6) \quad \left| \frac{f(a) + f(mb)}{2} - \frac{1}{mb - a} \int_a^{mb} f(x) \, dx - \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(mb - a)^k}{(k+1)!} f^{(k)}(a) \right| \\
\leq \frac{1}{2} \frac{(mb - a)^n}{n!} \int_0^1 t^{n-1}(n - 2t)|f^{(n)}(ta + m(1-t)b)| \, dt.
\]

By the well-known Hölder integral inequality, we obtain

\[
(3.7) \quad \int_0^1 t^{n-1}(n - 2t)|f^{(n)}(ta + m(1-t)b)| \, dt \\
\leq \left[\int_0^1 (n - 2t)^q \, dt \right]^{1/q} \left[\int_0^1 t^{p(n-1)}|f^{(n)}(ta + m(1-t)b)|^p \, dt \right]^{1/p} \\
= \left[\frac{n^{q+1} - (n-2)^q + 1}{2(q+1)} \right]^{1/q} \left[\int_0^1 t^{p(n-1)}|f^{(n)}(ta + m(1-t)b)|^p \, dt \right]^{1/p}.
\]

Making use of the \((a, m)\)-convexity of \(|f^{(n)}(x)|^p\) reveals

\[
(3.8) \quad \int_0^1 t^{p(n-1)}|f^{(n)}(ta + m(1-t)b)|^p \, dt \\
\leq \int_0^1 t^{p(n-1)}|f^{(n)}(a)|^p + (m(1-t)^{\alpha})|f^{(n)}(b)|^p \, dt \\
= |f^{(n)}(a)|^p \int_0^1 t^{p(n-1)+\alpha} \, dt + m|f^{(n)}(b)|^p \int_0^1 t^{p(n-1)}(1-t^{\alpha}) \, dt \\
= \frac{|f^{(n)}(a)|^p}{p(n-1) + \alpha + 1} + \frac{ma}{p(n-1) + \alpha + 1} |f^{(n)}(b)|^p.
\]

Combining (3.7) and (3.8) with (3.6) results in the inequality (3.5). This completes the proof of Theorem 3.2. \(\square \)

Corollary 3.2. Under conditions of Theorem 3.2,
(1) when \(m = 1 \), we have
\[
\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx - \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(b-a)^k}{(k+1)!} f^{(k)}(a)
\leq \frac{1}{2} \frac{(b-a)^n}{n!} \left[\frac{n^{q+1} - (n-2)^{q+1}}{2(q+1)} \right]^{1/q} \left\{ \frac{1}{p(n-1) + \alpha + 1} |f^{(n)}(a)|^p + \frac{\alpha}{[p(n-1) + \alpha + 1] |f^{(n)}(b)|^p} \right\}^{1/p}.
\]

(2) when \(n = 2 \), we have
\[
\frac{f(a) + f(mb)}{2} - \frac{1}{mb-a} \int_a^{mb} f(x) \, dx
\leq \frac{(mb-a)^2}{2} \left(\frac{1}{q+1} \right)^{1/q} \left[\frac{1}{p+\alpha+1} |f''(a)|^p + \frac{ma}{(p+\alpha+1)(p+\alpha+1)} |f''(b)|^p \right]^{1/p};
\]

(3) when \(m = \alpha = 1 \) and \(n = 2 \), we have
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^2}{2(p+1)!} \frac{1}{(q+1)^{1/q}} \frac{1}{(q+1)} \left[\frac{1}{(q+1)} |f''(a)|^q + |f''(b)|^q \right]^{1/q},
\]
where \(\frac{1}{p} + \frac{1}{q} = 1 \).

Theorem 3.3. Let \((a, m) \in [0, 1] \times (0, 1)\) and \(b > a > 0 \) with \(a < mb \). If \(f(x) \) is \(n \)-time differentiable on \([0, b]\) such that \(|f^{(n)}(x)| \in L([0, mb]) \) and \(|f^{(n)}(x)|^p \) is \((a, m)\)-convex on \([0, mb]\) for \(n \geq 2 \) and \(p \geq 1 \), then
\[
\left| \frac{f(a) + f(mb)}{2} - \frac{1}{mb-a} \int_a^{mb} f(x) \, dx - \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(mb-a)^k}{(k+1)!} f^{(k)}(a) \right|
\leq \frac{(n-1)^{1-1/p}}{n!} \frac{(mb-a)^n}{2} \left\{ \frac{(n-2)(pm-p+\alpha) + 2(n-1)}{(pm-p+\alpha+1)(pm-p+\alpha+2)} |f^{(n)}(a)|^p + m \left[\frac{(n-1)(pm-2p+2)}{(pm-p+1)(pm-p+2)} - \frac{(n-2)(pm-p+\alpha) + 2(n-1)}{(pm-p+\alpha+1)(pm-p+\alpha+2)} \right] |f^{(n)}(b)|^p \right\}^{1/p},
\]
where the sum above takes 0 when \(n = 2 \).

Proof. Utilizing Lemma 2.1, Hölder integral inequality, and the \((a, m)\)-convexity of \(|f^{(n)}(x)|^p \) yields
\[
\left| \frac{f(a) + f(mb)}{2} - \frac{1}{mb-a} \int_a^{mb} f(x) \, dx - \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(mb-a)^k}{(k+1)!} f^{(k)}(a) \right|
\leq \frac{1}{2} \frac{(mb-a)^n}{n!} \int_0^1 t^{n-1}(n-2t) |f^{(n)}(ta + m(1-t)b)| \, dt
\leq \frac{1}{2} \frac{(mb-a)^n}{n!} \left[\int_0^1 (n-2t) \, dt \right]^{1-1/p}
\times \left\{ \int_0^1 t^{p(n-1)(n-2t)} \left[|f^{(n)}(a)|^p + m(1-t^\alpha) |f^{(n)}(b)|^p \right] \, dt \right\}^{1/p}.
\]
This follows from applying the inequality (3.9) to the function $f(x) = x^r$.

Corollary 3.3. Under conditions of Theorem 3.3,

1. when $m = 1$, we have

$$
\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx = \frac{1}{2} \sum_{k=2}^{n-1} \frac{(k-1)(b-a)^k}{(k+1)!} \left(f^{(k)}(a) - f^{(k)}(b) \right)
\leq \frac{(n-1)^{1-1/p}}{2} \left\{ \frac{(n-2)(p-\alpha + 1)}{(p-\alpha + 1)(p-\alpha + 2)} \right\}^{1/p} + m \left\{ \frac{(n-2)(p-\alpha + 1)}{(p-\alpha + 1)(p-\alpha + 2)} \right\}^{1/p}.
$$

2. when $n = 2$, we have

$$
\frac{f(a) + f(mb)}{2} - \frac{1}{mb-a} \int_a^{mb} f(x) \, dx \leq \frac{2}{4} \left\{ \frac{(n-1)^{1-1/p}}{2} \left\{ \frac{(p+\alpha + 1)}{(p+\alpha + 1)(p+\alpha + 2)} \right\}^{1/p} + m \left\{ \frac{(p+\alpha + 1)}{(p+\alpha + 1)(p+\alpha + 2)} \right\}^{1/p} \right\}^{1/p}.
$$

3. when $m = \alpha = 1$ and $n = 2$, we have

$$
(3.11) \quad \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^2}{2^{2-1/p}} \left\{ \frac{(p+\alpha + 1)}{(p+\alpha + 1)(p+\alpha + 2)} \right\}^{1/p}.
$$

4. Applications to special means

It is well known that, for positive real numbers α and β with $\alpha \neq \beta$, the quantities

$$
A(\alpha, \beta) = \frac{\alpha + \beta}{2}, \quad G(\alpha, \beta) = \sqrt{\alpha \beta}, \quad H(\alpha, \beta) = \frac{2}{\frac{1}{\alpha} + \frac{1}{\beta}},
$$

$$
I(\alpha, \beta) = \frac{1}{e} \left(\frac{\beta^\alpha}{\alpha^\beta} \right)^{1/(\beta - \alpha)}, \quad L(\alpha, \beta) = \frac{\alpha - \beta}{\ln \alpha - \ln \beta}, \quad L_r(\alpha, \beta) = \left[\frac{\beta^{r+1} - \alpha^{r+1}}{(r+1)(\beta - \alpha)} \right]^{1/r}
$$

for $r \neq 0, -1$ are respectively called the arithmetic, geometric, harmonic, exponential, logarithmic, and generalized logarithmic means.

Basing on inequalities of Hermite-Hadamard type in the above section, we shall derive some inequalities of the above defined means as follows.

Theorem 4.1. Let $r \in (-\infty, 0) \cup [1, \infty) \setminus \{-1\}$ and $b > a > 0$. Then, for $p, q > 1$,

$$
|A(a^r, b^r) - [L_r(a, b)]^r| \leq \frac{(b-a)^2(r-1)}{2(p+1)^{1/p}(q+2)^{1/q}} \left[a^{(r-2)q} + \frac{b^{(r-2)q}}{q+1} \right]^{1/q},
$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. This follows from applying the inequality (3.9) to the function $f(x) = x^r$.

\square
Theorem 4.2. Let $r \in (-\infty, 0) \cup [1, \infty) \setminus \{-1\}$ and $b > a > 0$. Then, for $p \geq 1$,\hspace{1cm}
\begin{equation}
|A(a^r, b^r) - [L_r(a,b)]^r| \leq \frac{(b-a)^2 r(r-1)}{2^{1-1/p}} \left(\frac{(p+1)a^{(r-2)p} + 2b^{(r-2)p}}{(p+1)(p+2)(p+3)} \right)^{1/p}.
\end{equation}
\hspace{1cm}
Proof. This follows from applying the inequality (3.11) to the function $f(x) = x^r$. \hfill \Box

Theorem 4.3. Let $r \in (-\infty, 0) \cup [1, \infty) \setminus \{-1\}$ and $b > a > 0$. Then\hspace{1cm}
\begin{equation}
|A(a^r, b^r) - [L_r(a,b)]^r| \leq \frac{(b-a)^2 r(r-1)}{24} A(a^{r-2}, b^{r-2}).
\end{equation}
\hspace{1cm}
Proof. This follows from applying the inequality (3.11) for $p = 1$ to the function $f(x) = x^r$. \hfill \Box

Theorem 4.4. Let $b > a > 0$. Then for $p, q > 1$ we have\hspace{1cm}
\begin{equation}
\left| \frac{1}{H(a,b)} - \frac{1}{L(a,b)} \right| \leq \frac{(b-a)^2}{(p+1)^{1/p}(q+2)^{1/q}} \left[\frac{1}{a^{3p} b^{3q}} + \frac{1}{(q+1)b^{3q}} \right]^{1/q},
\end{equation}
where $\frac{1}{p} + \frac{1}{q} = 1$.\hspace{1cm}
Proof. This follows from applying the inequality (3.9) to the function $f(x) = \frac{1}{x}$. \hfill \Box

Theorem 4.5. Let $b > a > 0$. Then for $p \geq 1$ we have\hspace{1cm}
\begin{equation}
\left| \frac{1}{H(a,b)} - \frac{1}{L(a,b)} \right| \leq \frac{(b-a)^2 r(r-1)}{2^{1-1/p}[(p+2)(p+3)]^{1/p}} \left[\frac{1}{a^{3p} b^{3q}} + \frac{2}{(p+1)b^{3p}} \right]^{1/p}.
\end{equation}
\hspace{1cm}
Proof. This follows from the inequality (3.11) to the function $f(x) = x^r$. \hfill \Box

Theorem 4.6. Let $b > a > 0$. Then we have\hspace{1cm}
\begin{equation}
\ln \frac{I(a,b)}{G(a,b)} \leq \frac{(b-a)^2}{24} A\left(\frac{1}{a^2}, \frac{1}{b^2} \right).
\end{equation}
\hspace{1cm}
Proof. This follows from applying the inequality (3.11) for $p = 1$ to the function $f(x) = - \ln x$. \hfill \Box

Remark 4.1. This paper is a combined version of the preprints [6, 7].

Acknowledgements. The authors would like to thank Professors Bo-Yan Xi and Shu-Hong Wang at Inner Mongolia University for Nationalities in China for their helpful corrections to and valuable comments on the original version of this paper.

References

[1] R.-F. Bai, F. Qi, and B.-Y. Xi, Hermite-Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions, Filomat 27 (2013), no. 1, 1–7; Available online at http://dx.doi.org/10.2298/FIL1301001B, 2
[2] S.-P. Bai, S.-H. Wang, and F. Qi, Some Hermite-Hadamard type inequalities for n-time differentiable (α, m)-convex functions, J. Inequal. Appl. 2012, 2012:267, 11 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2012-267, 2
[3] L. Chun and F. Qi, Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, J. Inequal. Appl. 2013, 2013:451, 10 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2013-451, 2
[4] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Type Inequalities and Applications, RGMIA Monographs, Victoria University, 2000; Available online at http://rgmia.org/monographs/hermite_hadamard.html, 1, 2
[5] D.-Y. Hwang, Some inequalities for n-time differentiable mappings and applications, Kyungpook Math. J. 43 (2003), no. 3, 335–343, 3, 5
[6] M. A. Latif and S. Hussain, New inequalities of Hermite-Hadamard type for n-time differentiable \((\alpha, m)\)-convex functions with applications to special means, RGMIA Res. Rep. Coll. 16 (2013), Art. 17, 12 pages; Available online at http://rgmia.org/v16.php. 9

[7] W.-H. Li and F. Qi, Hermite-Hadamard type inequalities of functions whose derivatives of n-th order are \((\alpha, m)\)-convex, available online at http://arxiv.org/abs/1308.2948v1. 9

[8] W.-H. Li and F. Qi, Some Hermite-Hadamard type inequalities for functions whose n-th derivatives are \((\alpha, m)\)-convex, Filomat 27 (2013), no. 8, 1575–1582; Available online at http://dx.doi.org/10.2298/FIL1308575L. 3

[9] V. G. Miheşan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993. (Romania) 1

[10] C. P. Niculescu and L.-E. Persson, Convex Functions and their Applications, CMS Books in Mathematics, Springer-Verlag, 2005. 1, 2

[11] M. E. Özdemir, M. Avci, and H. Kavurmaci, Hermite-Hadamard-type inequalities via \((\alpha, m)\)-convexity, Comput. Math. Appl. 61 (2011), no. 9, 2614–2620; Available online at http://dx.doi.org/10.1016/j.camwa.2011.02.053. 2, 3, 5

[12] M. E. Özdemir, M. Avci, and E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett. 23 (2010), no. 9, 1065–1070; Available online at http://dx.doi.org/10.1016/j.aml.2010.04.037. 2

[13] F. Qi, Z.-L. Wei, and Q. Yang, Generalizations and refinements of Hermite-Hadamard’s inequality, Rocky Mountain J. Math. 35 (2005), no. 1, 235–251; Available online at http://dx.doi.org/10.1216/rmjm/1181069779. 2

[14] F. Qi and B.-Y. Xi, Some integral inequalities of Simpson type for GA-\(\epsilon\)-convex functions, Georgian Math. J. 20 (2013), no. 4, 775–788; Available online at http://dx.doi.org/10.1515/gmj-2013-0043. 2

[15] M. Z. Sarikaya and N. Aktan, On the generalization of some integral inequalities and their applications, available online at http://dx.doi.org/10.1016/j.jmcn.2011.05.026. 2

[16] Y. Shuang, Y. Wang, and F. Qi, Some inequalities of Hermite-Hadamard type for functions whose third derivatives are \((\alpha, m)\)-convex, J. Comput. Anal. Appl. 17 (2014), no. 2, 272–279. 2

[17] G. Toader, Some generalizations of the convexity, Univ. Cluj-Napoca, Cluj-Napoc. 1985, 329–338. 1

[18] S.-H. Wang and F. Qi, Inequalities of Hermite-Hadamard type for convex functions which are \(n\)-times differentiable, Math. Inequal. Appl. 17 (2014), in press. 3

[19] S.-H. Wang, B.-Y. Xi, F. Qi, Some new inequalities of Hermite-Hadamard type for \(n\)-time differentiable functions which are \(m\)-convex, Analysis (Munich) 32 (2012), no. 3, 247–262; Available online at http://dx.doi.org/10.1524/anly.2012.1167. 3

[20] B.-Y. Xi, R.-F. Bai, and F. Qi, Hermite-Hadamard type inequalities for the \(m\)- and \((\alpha, m)\)-geometrically convex functions, Aequationes Math. 84 (2012), no. 3, 261–269; Available online at http://dx.doi.org/10.1007/s00010-011-0114-x. 2

[21] B.-Y. Xi and F. Qi, Some inequalities of Hermite-Hadamard type for \(h\)-convex functions, Adv. Inequal. Appl. 2 (2013), no. 1, 1–15. 2

[22] B.-Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl. 2012 (2012), Article ID 980438, 14 pages; Available online at http://dx.doi.org/10.1155/2012/980438. 2

(Qi) Department of Mathematics, School of Science, Tianjin Polytechnic University, Tianjin City, 300387, China; College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China

E-mail address: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com
URL: http://qifeng618.wordpress.com

(Latif) College of Science, Department of Mathematics, University of Hail, Hail 2440, Saudi Arabia
E-mail address: m.amer.latif@hotmail.com, m.alatif@uoh.edu.sa

(Li) Department of Mathematics, School of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
E-mail address: wen.hu.i11@yahoo.com, wen.hu.i1102@gmail.com

(Hussain) Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan
E-mail address: sabirhus@gmail.com