Changes in physical activity across pregnancy among Chinese women: a longitudinal cohort study

Yan Lü
Peking Union Medical College Hospital

Yahui Feng
peking union medical college

Shuai Ma
Peking union medical college

Yu Jiang
peking union medical college

liangkun ma (pto.pumchliangkunma@163.com)
Peking Union Medical College Hospital https://orcid.org/0000-0002-6756-9328

Research article

Keywords: Physical activity, Pregnancy, Change across pregnancy, Chinese women

Posted Date: October 1st, 2020

DOI: https://doi.org/10.21203/rs.3.rs-16255/v2

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background Sufficient physical activity (PA) during pregnancy is beneficial for a woman's health; however, the PA levels of Chinese women at different pregnancy stages are not clear. The aim of our study was to investigate PA changes during pregnancy and the association of population characteristics with PA change among Chinese women. Methods Data were obtained from 2485 participants who were enrolled in the multicentre prospective Chinese Pregnant Women Cohort Study. PA level was assessed in early pregnancy (mean=10, 5-13 weeks of gestation) and again in mid-to-late pregnancy (mean=32, 24-30 weeks of gestation) using the International Physical Activity Questionnaire short form (IPAQ-SF). Sufficient PA (≥600 MET min/week) in early pregnancy and insufficient PA in mid-to-late pregnancy indicated decreasing PA. Insufficient PA in early pregnancy and sufficient PA in mid-to-late pregnancy indicated increasing PA. The associations between demographic, pregnancy and health characteristics and PA changes were examined by multivariable logistic regression. Results Total energy expenditure for PA increased significantly from early (median=396 MET min/week) to mid-to-late pregnancy (median=813 MET min/week) (P<0.001), and 55.25% of the participants eventually had sufficient PA. Walking was the dominant form of PA. Women with sufficient PA levels in early pregnancy were more likely to have sufficient PA in mid-to-late pregnancy (OR=1.897, 95% CI: 1.583-2.274). Women in West China and those in Central China were most and least likely, respectively, to have increasing PA (OR=1.387, 95% CI: 1.078-1.783 vs. OR=0.721, 95% CI: 0.562-0.925). Smoking was inversely associated with increasing PA (OR=0.480, 95% CI: 0.242-0.955). Women with higher educational levels were less likely to have decreasing PA (OR=0.662, 95% CI: 0.442-0.991). Conclusions PA increased as pregnancy progressed, and walking was the dominant form of PA among Chinese women. Further research is needed to better understand correlates of PA change.

Methods

Study design and population

The CPWCS population was conveniently sampled from pregnant women who received early pregnancy evaluations within a certain month from July 2017 to November 2018 in 14 maternal and child healthcare hospitals and 10 academic hospitals located in 15 provinces of China (Supplementary Fig. 1). All the 24 hospitals were public hospitals, and the cost of perinatal health care was largely covered by the government maternity insurance program. The inclusion criteria were as follows: (1) age 16 years or above, (2) pregnancy 12 weeks, as estimated based on the last menstrual period; (3) permanent resident of the study recruitment district; (4) regular antenatal inspection with the intention of delivering in the study recruitment hospital; and (5) capable of online completion of the PA assessment. The exclusion criteria were as follows: (1) serious chronic diseases, including hypertension, diabetes, heart disease, renal disease, or other diseases that would restrict PA during pregnancy; and (2) multiple pregnancy. Written informed consent was obtained from all participants, and the study was approved by the ethics review committee of Peking Union Medical College (HS-1345).

Data on population characteristics were obtained at the initial recruitment clinic visit in early pregnancy. The PA level was assessed twice, with the first assessment conducted in early pregnancy at the recruitment clinic visit and the second conducted in mid-to-late pregnancy at a prenatal clinic visit after 24 weeks of gestation.
Among 4750 women meeting the inclusion criteria, 102 were excluded due to serious chronic diseases and 32 due to multiple gestation. A total of 1,994 declined to participate. Fifty participants could not recall their PA over the previous 7 days at the first PA assessment. A total of 2572 women completed the first PA assessment in early pregnancy. Seventy-five had a miscarriage or pregnancy termination between the two assessments. Twelve participants could not recall PA at the second PA assessment. A total of 2485 women with both PA information in early and mid-to-late pregnancy were finally included in the data analysis of the present study (Fig. 1).

Data collection procedures

Population characteristics

Population characteristics that are biologically plausible or historically reported to be associated with PA were considered as correlates investigated in our study. Demographic, pregnancy and health characteristics were obtained at the recruitment clinic visit. Demographic characteristics included age, residential region, ethnicity, educational level, annual household income and occupation. Residential regions were categorized into East, Central and West China according to the Chinese Health Statistics Yearbook. Pregnancy characteristics included parity and pregnancy plan. Smoking or drinking was defined as a history of smoking or drinking. According to the IPAQ-SF, TEE on PA ≥600 MET min/week is defined as “moderate level” [36], and WHO recommends a minimum of 600 MET min/week PA to realize a health benefit [17]. Therefore, we defined PA with TEE ≥600 MET min/week as sufficient PA and PA with TEE <600 MET min/week as insufficient PA. Sufficient PA in early pregnancy and insufficient PA in mid-to-late pregnancy indicated decreasing PA. Insufficient PA in early pregnancy and sufficient PA in mid-to-late pregnancy indicated increasing PA.

Statistical analysis

The population characteristics of all women included in the study are described. Categorical data are expressed as frequencies and percentages. Continuous data are expressed as means, standard deviations (SDs), medians and interquartile ranges (IQRs). TEE on PA, energy expenditure on each type of PA, and the proportion of energy expenditure on each type of PA to TEE on PA were compared between early and mid-to-late pregnancy using the Wilcoxon signed-rank test. The proportions of women with sufficient PA levels were compared between early and mid-to-late pregnancy using McNemar’s test. Multivariable logistic regression was used to calculate the odds ratios (OR) and 95% confidence intervals (CI) to address the following: (1) associations between population characteristics and sufficient PA in mid-to-late pregnancy among all women included in the study, (2) associations between population characteristics and increasing PA among the subset of women with insufficient PA levels in early pregnancy, and (3) associations between population characteristics and decreasing PA among the subset of women with sufficient PA levels in early pregnancy. *P* values <0.05 were considered statistically significant. SPSS 22.0 (IBM, Armonk, NY, USA) was used for statistical analysis.

Results

Data on population characteristics were obtained at the recruitment clinic visit at a mean gestational age of 10 weeks, ranging from 5 to 13. The characteristics of 2485 women who had both PA information in early and mid-to-late pregnancy and 2056 women who failed to complete the PA assessment (with 1994 declining to participate and 62 being unable to recall PA) are compared in Table 1. Compared with those failing to complete the PA assessment, women completing the PA assessment were more likely to be located in East China or
have a university education or above, a higher medium income, a manual occupation, a nulliparous status, or a planned pregnancy (Table 1). The population characteristics by residential region are shown in Supplementary Table 1. There were significant differences in age, ethnicity, educational level, annual household income, occupation, parity and history of drinking between the three regional groups (Supplementary Table 1).

[Insert Table 1 here]

Change in PA across pregnancy

PA was assessed in early pregnancy at a mean gestational age of 10 weeks, ranging from 5 to 13, and reassessed in mid-to-late pregnancy at a mean gestational age of 32 weeks, ranging from 24 to 40. Table 2 shows that TEE on PA and energy expenditure on each type of PA increased significantly from early to mid-to-late pregnancy (P<0.001). The largest proportion of PA across pregnancy comprised walking (median, 100%). The proportion of women with sufficient PA levels also increased significantly from 32.72% to 55.25% from early to mid-to-late pregnancy (P<0.001). Among 1672 women with insufficient PA levels in early pregnancy, 836 (50.00%) remained insufficient, and 836 (50.00%) had increasing PA. Among 813 women with sufficient PA levels in early pregnancy, 537 (66.05%) maintained sufficient PA, and 276 (33.95%) had decreasing PA (see Fig. 2).

Table 2. Comparison of PA between early and mid-to-late pregnancy among Chinese pregnant women (n = 2485)

PA indicators	Early pregnancy	Mid-to-late pregnancy	P value		
	Mean (SD)	Median (IQR)	Mean (SD)	Median (IQR)	
TEE on PA (MET min/week)	791.93 (1057.56)	396.00 (66.00, 1152.00)	1193.14 (1283.51)	813.00 (356.40, 1411.00)	< 0.001
High-intensity PA					
Energy expenditure (MET min/week)	43.24 (327.85)	0.00 (0.00, 0.00)	86.16 (506.34)	0.00 (0.00, 0.00)	< 0.001
Proportion due to TEE on PA (%)	2.46 (11.79)	0.00 (0.00, 0.00)	2.96 (12.54)	0.00 (0.00, 0.00)	< 0.001
Medium-intensity PA					
Energy expenditure (MET min/week)	73.02 (316.18)	0.00 (0.00, 0.00)	124.45 (429.27)	0.00 (0.00, 0.00)	< 0.001
Proportion due to TEE on PA (%)	5.39 (16.04)	0.00 (0.00, 0.00)	7.03 (17.09)	0.00 (0.00, 0.00)	< 0.001
Walking					
Energy expenditure (MET min/week)	675.66 (862.19)	396.00 (49.50, 990.00)	982.53 (929.47)	693.00 (297.00, 1386.00)	< 0.001
Proportion due to TEE on PA (%)	92.15 (20.83)	100.00 (100.00, 100.00)	90.00 (22.06)	100.00 (100.00, 100.00)	< 0.001

Note: The Wilcoxon signed-rank test was used to compare PA indicators between early and mid-to-late pregnancy. A P value <0.05 was considered significant.

Association of population characteristics and PA change

Table 3 shows that women in West China (OR=1.247, 95% CI: 1.012-1.537; P=0.038) were most likely and that women in Central China (OR=0.747, 95% CI: 0.609-0.916; P=0.005) were least likely to have sufficient PA in mid-to-late pregnancy. Women with a smoking history (OR=0.551, 95% CI: 0.315-0.964; P=0.037) were less likely, and women with sufficient PA levels in early pregnancy (OR=1.897, 95% CI: 1.583-2.274; P<0.001) were more likely to have sufficient PA in mid-to-late pregnancy. Table 4 shows that in the subset of women with insufficient PA levels in early pregnancy, women in West China (OR=1.387, 95% CI: 1.078-1.783; P=0.011) were most likely, and women in Central China (OR=0.721, 95% CI: 0.562-0.925; P=0.010) were least likely to increase PA across their pregnancies. Women with a smoking history (OR=0.480, 95% CI: 0.242-0.955; P=0.036) were less likely to increase PA across their pregnancies. In the subset
of women with sufficient PA levels in early pregnancy, women with educational levels of university or above (OR=0.662, 95% CI: 0.442-0.991; *P*=0.045) were less likely to decrease PA across their pregnancies.

Discussion

To our knowledge, this is the first multicentre longitudinal cohort study to investigate changes in PA across pregnancy in a Chinese population. We found that PA levels increased from early to mid-to-late pregnancy and that more than half of the women eventually had sufficient PA as recommended. Walking was the dominant form of PA. Women with sufficient PA levels in early pregnancy were more likely to maintain or achieve sufficient PA across their pregnancies. PA levels varied in different regions of China, with women in the West being most likely and those in the Central being least likely to have sufficient and increasing PA. Habitual smoking was inversely associated with sufficient and increasing PA. Women with higher educational levels were less likely to decrease PA across the pregnancy.

Our study found that the proportion of pregnant women achieving the recommended PA level increased from 32.72% in early pregnancy to 55.25% in mid-to-late pregnancy. Studies investigating PA levels at different pregnancy stages are limited. In contrast to our study, studies of western populations showed that PA decreased or remained unchanged as pregnancy progressed [37, 38]. Regarding studies with Chinese populations, the proportion of women achieving the recommended level remained at a low level of 11% across the pregnancies of urban women from Tianjin [24] and increased from 53.8% in the first trimester to 61.4% in the third trimester among women from Chengdu [25]. But both of these studies were cross-sectional, and the changes in PA were concluded from different subsets of women. Our study was a multicentre study, and PA was surveyed in the same sample of women longitudinally at different pregnancy stages, resulting in a better representation of the Chinese population and in less bias. However, a large proportion of eligible women declined to participate or could not recall PA when being surveyed. We found that women who completed the PA assessment were more likely to have the characteristics that were reported to be positively associated with PA, such as a higher educational level. There may be a potential bias in that the population included in the final analysis consisted of those with a higher PA level. This may be part of the reason why our population had increasing PA across the pregnancy.

Our findings were consistent with those of one previous study using the IPAQ-SF, namely, that PA with medium or higher intensity contributed less to TEE during pregnancy [22]. Our study found that walking was the dominant form of PA. In this study, walking included all walking, namely, walking related to occupation, transportation, the household, exercise and leisure. Walking is the form of moderate-intensity PA indicated by the WHO recommendation and the form of exercise recommended by the American College of Obstetricians and Gynaecologist (ACOG) during pregnancy [1, 2, 17]. Chinese culture holds tight to traditional concepts of not walking fast, not running and not jumping during pregnancy, but walking is not restricted [30]. Therefore, it may be more reasonable and easier for prenatal healthcare providers to encourage women to walk appropriately to meet the sufficient level of 600 MET min/week than to persuade them to participate in other forms of PA.

It has been well documented that prepregnancy PA habits are strongly associated with PA levels during pregnancy [37, 38]. Our study found that women with sufficient PA levels at baseline were more likely to maintain or achieve sufficient PA across their pregnancies, further validating the fact that a good lifestyle is beneficial in the long term.

There were significant differences in the population characteristics among the three regional groups. Women in West China were more likely to have features favouring PA, such as a higher educational level, employment with a manual occupation and nulliparity, which may explain why they were more likely to have sufficient and increasing PA. The higher proportion of individuals of non-Han ethnicity may also play a role. More studies are required to clarify the regional difference in PA.

Among the other correlates investigated, a history of smoking was inversely associated with sufficient and increasing PA. The findings were consistent with other study data showing that smokers had a more sedentary lifestyle [39]. The combined risk of smoking and low PA levels may make women more vulnerable to adverse pregnancy outcomes.

A recent systematic review revealed that younger age, higher educational level, higher income, employment, nulliparity, and normal weight were positively associated with PA during pregnancy, but the correlations were weak [37]. However, our study found that except for educational level, these factors were not associated with changes in PA across pregnancy. In our study, women with higher educational level tended to maintain sufficient PA throughout the whole pregnancy.

There were several limitations in our study. First, the study might have bias due to the self-report measure used to assess PA. Second, the generalization of our results may be limited to convenience sampling. Third, our study population may have a higher PA level since only those who agreed to participate and could recall PA were finally included in the analysis. Fourth, the large time frame within which PA was surveyed (especially the second survey) was partly responsible for the large range of PA level. The difference in the time interval between two PA assessments may have an influence on the result of the PA change across the pregnancy. Finally, our study did not include discomfort during pregnancy and subjective factors, such as self-efficacy or perceived behavioural control, which might influence PA [29, 40]. Further analyses that include these factors as determinants of PA are needed.

Conclusions
To our knowledge, our study is the first multicentre longitudinal cohort study to investigate changes in PA across pregnancy among Chinese women. Our findings indicated that PA increased as pregnancy progressed, and that walking was the dominant form of PA. Further research is needed to better understand correlates of PA change and develop appropriate interventions for PA to improve maternal health among Chinese women.

Abbreviations

ACOG: American College of Obstetricians and Gynecologists; BMI: Body mass index; CI: Confidence interval; CPWCS: Chinese Pregnant Women Cohort Study; IPAQ-SF: International Physical Activity Questionnaire short form; IQR: Interquartile range; MET: Metabolic equivalent task; OR: Odds ratio; PA: Physical activity; SD: Standard deviation; TEE: Total energy expenditure; WHO: World Health Organization

Declarations

Ethics approval and consent to participate

The study was approved by the ethics review committee of Peking Union Medical College Hospital, the leading centre (HS-1345). Written informed consent was obtained from each participant.

Consent for publication

Not applicable

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

The study was supported by the Fundamental Research Funds for the Central Universities (Grant No. 3332018019). The funding body was not involved in the design of the study, in the collection, analysis, or interpretation of the data, or in writing of the manuscript.

Authors' contributions

YL, LM, and YJ conceptualized and designed the study; SM collected the data; YF performed the statistical analyses; and YL drafted the manuscript. All authors have approved the final version of the paper for publication.

Acknowledgements

The authors thank all of the study participants for their willingness to participate in this study. The authors thank AJE (http://www.aje.cn/) for the English language review.

References

1. World Health Organization. WHO guidelines approved by the guidelines review committee. Global recommendations on physical activity for health. Geneva, Switzerland: World Health Organization; 2010.
2. American College of Obstetricians and Gynecologists. ACOG committee opinion no. 650: physical activity and exercise during pregnancy and the postpartum period. Obstet Gynecol. 2015;126:e135-42.
3. Price BB, Amini SB, Kappeler K. Exercise in pregnancy: effect on fitness and obstetric outcomes-a randomized trial. Med Sci Sports Exerc. 2012;44:2263-9.
4. Kramer MS, McDonald SW. Aerobic exercise for women during pregnancy. Cochrane Database Syst Rev. 2006;CD000180. doi: 10.1002/14651858.CD000180.pub2.
5. Haakstad LA, Voldner N, Henriksen T, Bo K. Physical activity level and weight gain in a cohort of pregnant Norwegian women. Acta Obstet Gynecol Scand. 2007;86:559-64.
6. Jiang H, Qian X, Li M, Lynn H, Fan Y, Jiang H, et al. Can physical activity reduce excessive gestational weight gain? Findings from a Chinese urban pregnant women cohort study. Int J Behav Nutr Phys Act. 2012;9:12.

7. Kihlstrand M, Stenman B, Nilsson S, Axelson O. Water-gymnastics reduced the intensity of back/low back pain in pregnant women. Acta Obstet Gynecol Scand. 1999;78:180-5.

8. Dempsey JC, Sorensen TK, Williams MA, Lee IM, Miller RS, Dashow EE, et al. Prospective study of gestational diabetes mellitus risk in relation to maternal recreational physical activity before and during pregnancy. Am J Epidemiol. 2004;159:663-70.

9. Liu J, Laditka JN, Mayer-Davis EJ, Pate RR. Does physical activity during pregnancy reduce the risk of gestational diabetes among previously inactive women? Birth. 2003;35:188-95.

10. Saftlas AF, Logsdon-Sackett N, Wang W, Woolson R, Bracken MB. Work, leisure-time physical activity, and risk of preeclampsia and gestational hypertension. Am J Epidemiol. 2004;160:758-65.

11. Aune D, Saugstad OD, Henriksen T, Tonstad S. Physical activity and the risk of preeclampsia: a systematic review and meta-analysis. Epidemiology. 2014;25:331-43.

12. Domenjoz I, Kayser B, Boulvain M. Effect of physical activity during pregnancy on mode of delivery. Am J Obstet Gynecol. 2014;211:401.e1-11.

13. Ko YL, Chen CP, Lin PC. Physical activities during pregnancy and type of delivery in nulliparae. Eur J Obstet Gynecol Reprod Biol. 2016;199:374-80.

14. Barakat R, Pelaez M, Lopez C, Montejo R, Coteron J. Exercise during pregnancy reduces the rate of cesarean and instrumental deliveries: results of a randomized controlled trial. J Matern Fetal Neonatal Med. 2012;25:2372-6.

15. Dinas PC, Koutedakis Y, Flouris AD. Effects of exercise and physical activity on depression. Ir J Med Sci. 2011;180:319-25.

16. Anderson E, Shivakumar G. Effects of exercise and physical activity on anxiety. Front Psychiatry. 2013;4:27.

17. World Health Organization. Global physical activity questionnaire (GPAQ) analysis guide. https://www.who.int/ncds/surveillance/steps/resources/GPAQ_Analysis_Guide.pdf.

18. U.S. Department of Health and Human Services. Physical activity guidelines for Americans. 2008. https://health.gov/paguidelines/2008/.

19. Kirkby R, Birmingham R. Exercise in pregnancy: psychological benefits. Aust J Prim Health. 1996;2:48-60.

20. Filhol G, Bernard P, Quantin X, Espian-Marcais C, Ninot G. [International recommendations on physical exercise for pregnant women]. Gynecol Obstet Fertil. 2014;42:856-60.

21. Fell DB, Joseph KS, Armon BA, Dodds L. The impact of pregnancy on physical activity level. Matem Child Health J. 2009;13:597-603.

22. Padmapriya N, Shen L, Soh SE, Shen Z, Kwek K, Godfrey KM, et al. Physical activity and sedentary behavior patterns before and during pregnancy in a multi-ethnic sample of Asian women in Singapore. Matern Child Health J. 2015;19:2523-35.

23. Pearce EE, Evenson KR, Downs DS, Steckler A. Strategies to promote physical activity during pregnancy: a systematic review of intervention evidence. Am J Lifestyle Med. 2013;7. doi: 10.1177/1559827612446416.

24. Zhang Y, Dong S, Zuo J, Hu X, Zhang H, Zhao Y. Physical activity level of urban pregnant women in Tianjin, China: a cross-sectional study. PLoS One. 2014;9:e109624.

25. Xiang M, Zhang J, Liang H, Zhang Z, Konishi M, Hu H, et al. Physical activity and dietary intake among Chinese pregnant women: an observational study. BMC Pregnancy Childbirth. 2019;19:295.

26. Ribeiro CP, Milanez H. Knowledge, attitude and practice of women in Campinas, Sao Paulo, Brazil with respect to physical exercise in pregnancy: a descriptive study. Reprod Health. 2011;8:31.

27. Redmond ML, Dong F, Frazier LM. Does the extended parallel process model fear appeal theory explain fears and barriers to prenatal physical activity? Womens Health Issues. 2015;25:149-54.

28. Haakstad LA, Voldner N, Bø K. Stages of change model for participation in physical activity during pregnancy. J Pregnancy. 2013;2013:193170.

29. Downs DS, Devlin CA, Rhodes RE. The power of believing: salient belief predictors of exercise behavior in normal weight, overweight, and obese pregnant women. J Phys Act Health. 2015;12:1168-76.

30. Lee DT, Ngai IS, Ng MM, Lok IH, Yip AS, Chung TK. Antenatal taboos among Chinese women in Hong Kong. Midwifery. 2009;25:104-13.

31. Zhou B, Cooperative Meta-Analysis Group Of China Obesity Task Force. Predictive values of body mass index and waist circumference to risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci. 2002;15:83-96.

32. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2002;35:318-31.

33. Ko YL, Chen CP, Lin PC. Physical activity during pregnancy and type of delivery in nulliparae. Eur J Obstet Gynecol Reprod Biol. 2016;199:374-80.

34. Campion EW, Dunsdon KA, Baker IA, Kazamiasz A. Exercise during pregnancy reduces the rate of cesarean and instrumental deliveries: results of a randomized controlled trial. J Matern Fetal Neonatal Med. 2012;25:2372-6.

35. Dinas PC, Koutedakis Y, Flouris AD. Effects of exercise and physical activity on depression. Ir J Med Sci. 2011;180:319-25.

36. Anderson E, Shivakumar G. Effects of exercise and physical activity on anxiety. Front Psychiatry. 2013;4:27.

37. World Health Organization. Global physical activity questionnaire (GPAQ) analysis guide. https://www.who.int/ncds/surveillance/steps/resources/GPAQ_Analysis_Guide.pdf.

38. U.S. Department of Health and Human Services. Physical activity guidelines for Americans. 2008. https://health.gov/paguidelines/2008/.

39. Kirkby R, Birmingham R. Exercise in pregnancy: psychological benefits. Aust J Prim Health. 1996;2:48-60.

40. Filhol G, Bernard P, Quantin X, Espian-Marcais C, Ninot G. [International recommendations on physical exercise for pregnant women]. Gynecol Obstet Fertil. 2014;42:856-60.

41. Fell DB, Joseph KS, Armon BA, Dodds L. The impact of pregnancy on physical activity level. Matem Child Health J. 2009;13:597-603.

42. Padmapriya N, Shen L, Soh SE, Shen Z, Kwek K, Godfrey KM, et al. Physical activity and sedentary behavior patterns before and during pregnancy in a multi-ethnic sample of Asian women in Singapore. Matern Child Health J. 2015;19:2523-35.

43. Pearce EE, Evenson KR, Downs DS, Steckler A. Strategies to promote physical activity during pregnancy: a systematic review of intervention evidence. Am J Lifestyle Med. 2013;7. doi: 10.1177/1559827612446416.

44. Zhang Y, Dong S, Zuo J, Hu X, Zhang H, Zhao Y. Physical activity level of urban pregnant women in Tianjin, China: a cross-sectional study. PLoS One. 2014;9:e109624.

45. Xiang M, Zhang J, Liang H, Zhang Z, Konishi M, Hu H, et al. Physical activity and dietary intake among Chinese pregnant women: an observational study. BMC Pregnancy Childbirth. 2019;19:295.

46. Ribeiro CP, Milanez H. Knowledge, attitude and practice of women in Campinas, Sao Paulo, Brazil with respect to physical exercise in pregnancy: a descriptive study. Reprod Health. 2011;8:31.

47. Redmond ML, Dong F, Frazier LM. Does the extended parallel process model fear appeal theory explain fears and barriers to prenatal physical activity? Womens Health Issues. 2015;25:149-54.

48. Haakstad LA, Voldner N, Bø K. Stages of change model for participation in physical activity during pregnancy. J Pregnancy. 2013;2013:193170.

49. Downs DS, Devlin CA, Rhodes RE. The power of believing: salient belief predictors of exercise behavior in normal weight, overweight, and obese pregnant women. J Phys Act Health. 2015;12:1168-76.

50. Lee DT, Ngai IS, Ng MM, Lok IH, Yip AS, Chung TK. Antenatal taboos among Chinese women in Hong Kong. Midwifery. 2009;25:104-13.

51. Zhou B, Cooperative Meta-Analysis Group Of China Obesity Task Force. Predictive values of body mass index and waist circumference to risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci. 2002;15:83-96.

52. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381-95.

53. Macfarlane D.J, Lee CC, Ho EY, Chan KL, Chan DT. Reliability and validity of the Chinese version of IPAQ (short, last 7 days). J Sci Med Sport. 2007;10:45-51.

54. Deng HB, Macfarlane D.J, Thomas GN, Lao XQ, Jiang CQ, Cheng KK, et al. Reliability and validity of the IPAQ-Chinese: the Guangzhou biobank cohort study. Med Sci Sports Exerc. 2008;40:303-7.
37. Garland M, Wilbur J, Semanik P, Fogg L. Correlates of physical activity during pregnancy: a systematic review with implications for evidence-based practice. Worldviews Evid Based Nurs. 2019;16:310-8.

38. Gaston A, Cramp A. Exercise during pregnancy: a review of patterns and determinants. J Sci Med Sport. 2011;14:299-305.

39. Efendi V, Ozalevli S, Naz I, Kilinc O. The effects of smoking on body composition, pulmonary function, physical activity and health-related quality of life among healthy women. Tuberk Toraks. 2018;66:101-8.

40. Cramp AG, Bray SR. A prospective examination of exercise and barrier self-efficacy to engage in leisure-time physical activity during pregnancy. Ann Behav Med. 2009;37:325-34.

Tables

Table 1. Comparison of population characteristics between women who completed and failed to complete the PA assessment
Characteristics	Women who completed both PA assessments in early and mid-to-late pregnancy (n=2585)	Women failed to complete the PA assessment (n=2056)	P value
Demographic characteristics			
Age (years)			0.058
<25	314 (12.64)	299 (14.27)	
25-29	1274 (51.27)	991 (48.20)	
30-34	638 (25.67)	568 (27.63)	
≥35	259 (10.42)	198 (9.63)	
Residential region			<0.001
East	936 (37.67)	556 (27.04)	
Central	770 (30.99)	795 (38.67)	
West	779 (31.35)	705 (34.29)	
Ethnicity			0.213
Han	2345 (94.37)	1922 (93.48)	
Minority	140 (5.63)	134 (6.52)	
Educational level			<0.001
High school or below	700 (28.17)	757 (36.82)	
University or above	1785 (71.83)	1299 (63.18)	
Annual household income (RMB Yuan)			0.003
Low income (<80,000)	553 (22.25)	518 (25.19)	
Lower medium income (80,000-109,999)	679 (27.32)	608 (29.57)	
Higher medium income (110,000-199,999)	485 (19.52)	333 (16.20)	
High income (>200,000)	768 (30.91)	597 (29.04)	
Occupation			<0.001
Unemployed	592 (23.82)	548 (26.68)	
Manual occupation	1375 (55.33)	1001 (48.73)	
Non-manual occupation	518 (20.85)	505 (24.59)	
Pregnancy characteristics			<0.001
Parity			
Nulliparity	1517 (61.05)	1109 (53.94)	
Multiparity	968 (38.95)	947 (46.06)	
Pregnancy planning			<0.001
Planned	1849 (74.41)	1406 (68.39)	
Unplanned	636 (25.59)	650 (31.61)	
Health characteristics			0.855
Pre-pregnancy BMI (kg/m²)			
<18.5	325 (13.08)	275 (13.38)	
18.5-23.9	1595 (64.19)	1327 (64.54)	
≥24	565 (22.74)	454 (22.08)	
History of smoking			0.334
No	2424 (97.55)	1996 (97.08)	
Yes	61 (2.45)	60 (2.92)	
Table 3. Associations between population characteristics and sufficient PA in mid-to-late pregnancy

History of drinking	0.088	
No	2356 (94.81)	1925 (93.63)
Yes	129 (5.19)	131 (6.37)

Note: The chi-square test was used to compare the population characteristics between women who completed both PA assessments and those who failed to complete the PA assessment. A P value <0.05 was considered significant, and significant values are marked with bold text.

* Bonferroni correction was applied for multiple testing.

a Women who completed the PA assessment were more likely to be located in East compared with Central ($P<0.001$) or West China ($P<0.001$).

b Women who completed the PA assessment were more likely to have a higher medium income than a lower medium income ($P=0.001$) or a low income ($P=0.003$).

c Women who completed the PA assessment were more likely to be employed with a manual occupation than unemployed ($P=0.001$) or employed with a non-manual occupation ($P<0.001$).
Characteristics	Sufficient PA in mid-to-late pregnancy (n=1373)	N (%)	OR (95%CI)	P value
Demographic characteristics				
Age (years)				
<25	158 (11.51)	1.00		
25-29	730 (53.17)	1.212 (0.922, 1.592)	0.168	
30-34	342 (24.91)	1.068 (0.783, 1.457)	0.677	
≥35	143 (10.42)	1.186 (0.808, 1.743)	0.384	
Residential region				
East	527 (38.38)	1.000		
Central	368 (26.80)	0.747 (0.609, 0.916)	0.005	
West	478 (34.81)	1.247 (1.012, 1.537)	0.038	
Ethnicity				
Han	1296 (94.39)	1.000		
Minority	77 (5.61)	0.976 (0.677, 1.408)	0.898	
Educational level				
High school or below	371 (27.02)	1.000		
University or above	1002 (72.98)	1.023 (0.818, 1.279)	0.842	
Annual household income (RMB Yuan)				
Low income (<80,000)	295 (21.49)	1.000		
Lower medium income (80,000-109,999)	359 (26.15)	0.950 (0.745, 1.211)	0.680	
Higher medium income (110,000-199,999)	288 (20.98)	1.185 (0.901, 1.557)	0.224	
High income (>200,000)	431 (31.39)	1.096 (0.853, 1.409)	0.472	
Occupation				
Unemployed	316 (23.02)	1.000		
Manual occupation	756 (55.06)	0.888 (0.702, 1.124)	0.324	
Non-manual occupation	301 (21.92)	1.089 (0.838, 1.415)	0.525	
Pregnancy characteristics				
Parity				
Nulliparity	856 (62.35)	1.000		
Multiparity	517 (37.65)	0.926 (0.759, 1.131)	0.452	
Pregnancy planning				
Planned	1038 (75.60)	1.000		
Unplanned	335 (24.40)	0.938 (0.773, 1.139)	0.520	
Health characteristics				
Prepregnancy BMI (kg/m2)				
<18.5	183 (13.33)	1.069 (0.829, 1.377)		
18.5-23.9	883 (64.31)	1.000		0.608
≥24	307 (22.36)	1.035 (0.842, 1.272)	0.746	
History of smoking				
No	1349 (98.25)	1.000		
Yes	24 (1.75)	0.551 (0.315, 0.964)	0.037	
History of drinking				
No	1304 (94.97)	1.000		
Yes	69 (5.03)	1.046 (0.714, 1.531)	0.819	
Table 4. Associations between population characteristics and increasing or decreasing PA across pregnancy

PA level in early pregnancy	Count (Percentage)	OR (95% CI)	P-value
Insufficient	836 (60.89)	1.000	
Sufficient	537 (39.11)	1.897 (1.583, 2.274)	< 0.001

Note: OR was adjusted for the rest of the variables in the table. A P value <0.05 was considered significant, and significant values are marked with bold text.
Characteristics

Characteristics	Insufficient PA in early pregnancy (n=1674)	Sufficient PA in early pregnancy (n=813)							
	OR (95% CI)	P value	OR (95% CI)	P value					
	n (%)	n (%)							
Demographic characteristics									
Age (years)									
<25	103 (12.32)	122 (14.59)	1.00	0.178	34 (12.32)	55 (10.24)	1.00		
25-29	442 (52.87)	405 (48.44)	1.251 (0.904, 1.731)	1.000	139 (50.36)	28(53.63)	0.911 (0.542, 1.530)	0.724	
30-34	204 (24.40)	218 (26.08)	1.105 (0.763, 1.601)	0.598	78 (28.26)	138 (25.70)	1.103 (0.615, 1.978)	0.742	
≥35	87 (10.41)	91 (10.89)	1.107 (0.699, 1.754)	0.664	25 (9.06)	56 (10.43)	0.775 (0.375, 1.601)	0.491	
Residential region									
East	309 (36.96)	309 (36.96)	1.00	0.010	100 (36.23)	218 (40.60)	1.00		
Central	215 (25.72)	308 (36.84)	0.721 (0.562, 0.925)	1.387 (1.078, 1.783)	0.011	82 (29.71)	166 (30.91)	1.048 (0.716, 1.532)	0.811
West	312 (37.32)	219 (26.20)	1.387 (1.078, 1.783)	0.011	82 (29.71)	166 (30.91)	1.048 (0.716, 1.532)	0.811	
Ethnicity									
Han	788 (94.26)	790 (94.50)	1.00	0.799	259 (93.84)	508 (94.60)	1.00		
Minority	48 (5.74)	46 (5.50)	0.944 (0.606, 1.471)	17 (6.16)	29 (5.40)	1.084 (0.558, 2.106)	0.811		
Educational level									
Senior school or below	244 (29.19)	245 (29.31)	1.00	0.348	84 (30.43)	127(23.65)	1.00		
University or above	592 (70.81)	591 (70.69)	0.879 (0.671, 1.150)	192 (69.57)	410(76.35)	0.662 (0.442, 0.991)	0.045		
Annual household income (RMB Yuan)									
Low income (<80,000)	183 (21.89)	196 (23.44)	1.00	0.910	62 (22.46)	112(20.86)	1.00		
Lower medium income (80,000-109,999)	226 (27.03)	239 (28.59)	1.017 (0.759, 1.353)	1.345 (0.964, 1.875)	0.081	55 (19.93)	110(20.48)	1.086 (0.669, 1.763)	0.740
Higher medium income (110,000-199,999)	178 (21.29)	142 (16.99)	1.345 (0.964, 1.875)	0.081	55 (19.93)	110(20.48)	1.086 (0.669, 1.763)	0.740	
High income (>200,000)	249 (29.78)	259 (30.98)	1.087 (0.801, 1.474)	0.593	78 (28.26)	182(33.89)	0.896 (0.565, 1.419)	0.639	
Occupation									
Unemployed	206 (24.64)	217 (25.96)	1.00	0.597	166 (60.14)	310(57.73)	1.221 (0.795, 1.876)	0.362	
Manual occupation	446 (53.35)	453 (54.19)	0.926 (0.696, 1.232)	1.104 (0.809, 1.505)	0.533	51 (18.48)	117(21.79)	0.978 (0.592, 1.616)	0.931
Non-manual occupation	184 (22.01)	166 (19.86)	1.010 (0.809, 1.505)	0.533	51 (18.48)	117(21.79)	0.978 (0.592, 1.616)	0.931	
Pregnancy characteristics									
Parity									
Nulliparity	527 (63.04)	493 (58.07)	1.00	0.297	168 (60.87)	330(61.45)	1.00		
Multiparity	309 (36.96)	343 (41.03)	0.881 (0.694, 1.118)	108 (39.13)	207(38.55)	0.888 (0.613, 1.288)	0.532		
Pregnancy planning									
Planned	629 (75.24)	614 (73.44)	1.00	0.921	197 (71.38)	409(76.16)	1.00		
Unplanned	207 (24.76)	222 (26.56)	0.988 (0.781, 1.250)	79 (28.62)	128(23.84)	1.218 (0.860, 1.725)	0.266		
Health characteristics									
Pre-pregnancy BMI (kg/m²)									
<18.5	103 (12.32)	111 (13.28)	0.953 (0.701, 1.297)	0.761	31 (11.23)	80(14.90)	1.709 (0.439, 1.143)	0.158	
18.5-23.9	534 (63.88)	532 (63.64)	1.00	0.359	65 (23.55)	108(20.11)	1.152 (0.787, 1.687)	0.467	
≥24	199 (23.80)	193 (23.09)	1.123 (0.877, 1.437)	0.359	65 (23.55)	108(20.11)	1.152 (0.787, 1.687)	0.467	
History of smoking									
No	821 (98.21)	806 (96.41)	1.00	0.036	269 (97.46)	528(98.32)	1.00		
Yes	15 (1.79)	30 (3.59)	0.480 (0.242, 0.955)	7 (2.54)	9(1.68)	1.446 (0.515, 4.061)	0.484		
	No	791 (94.62)	784 (93.78)	1.000	268 (97.10)	513(95.53)	1.000		
---	---	---	---	---	---	---	---		
Yes	45 (5.38)	52 (6.22)	0.917	0.701	8 (2.90)	24(4.47)	0.615	0.253	

Note: OR was adjusted for the rest of the variables in the table. A P value <0.05 was considered significant, and significant values are marked with bold text.

Figures

Figure 1
Flow chart of the study

Figure 2
The proportions of women with sufficient and insufficient PA levels in early and mid-to-late pregnancy

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTable1.docx
- SupplementaryTable1.docx
- supplementaryFigure1.docx
- supplementaryFigure1.docx