On Parity Functions in Conformal Field Theories

D. Altschüler¹, P. Ruelle² and E. Thiran²

¹ Département de Mathématiques
Université de Nantes
BP 92208
F–44322 Nantes Cedex 03, France

² Institut de Physique Théorique
Université Catholique de Louvain
B–1348 Louvain-La-Neuve, Belgium

Abstract

We examine general aspects of parity functions arising in rational conformal field theories, as a result of Galois theoretic properties of modular transformations. We focus more specifically on parity functions associated with affine Lie algebras, for which we give two efficient formulas. We investigate the consequences of these for the modular invariance problem.
1 Introduction and notations

Modular invariance has become a major tool in the ambitious program of classifying all rational conformal field theories (RCFT). At genus one, it is the statement that a RCFT can be put on a torus in a consistent way, so that e.g. the partition function should be well-defined over the conformal classes of tori [1]. Since the seminal ADE classification of the Wess–Zumino–Novikov–Witten (WZNW) models based on $\text{su}(2)$ [2], there has been much progress on this question, especially during the last few years, which have seen arithmetical techniques come into play. In particular, the technical analysis of the conditions expressing the modular invariance of the partition function on the torus has shown that the use of Galois theory leads to powerful restrictions. These restrictions are now usually referred to as parity selection rules. They have had a crucial role in various classification results, that of the $\text{su}(3)$–based WZNW being among the most convincing [3].

This paper is devoted to the study of general properties of the parity selection rules corresponding to the best–known RCFTs, namely the WZNW models. We will be slightly more general, and will consider theories with symmetry algebras given by isomorphic chiral affine Lie algebras. We give several formulas for the corresponding parity functions, and present some consequences of them.

We first fix the notations regarding affine Lie algebras (referring to [4] for further details) and recall their modular properties. We denote by \mathcal{G} a finite simple Lie algebra. The untwisted level k affine algebra $\hat{\mathcal{G}}_k$ based on \mathcal{G} is generated by \mathcal{G}–valued currents $J(z)$ satisfying the following commutation rules

\[
\left[\langle T^a, J(z) \rangle, \langle T^b, J(w) \rangle \right] = \left[\langle T^a, T^b \rangle, J(z) \rangle \right] \delta(z - w) + k\langle T^a, T^b \rangle \partial_z \delta(z - w),
\]

(1.1)

where $\{T^a\}$ is a set of generators for \mathcal{G}. When $k \geq 0$ is an integer, the algebra $\hat{\mathcal{G}}_k$ has a finite number of unitary irreducible representations $L(p)$, labelled by the strictly dominant weights of \mathcal{G} in the alcâve $P_{++}^n(\mathcal{G})$

\[
P_{++}^n(\mathcal{G}) = \left\{ p = (a_1, a_2, \ldots) : a_i > 0, \text{ and } \sum_i k_i^\vee a_i < n \right\},
\]

(1.2)

where k_i^\vee are the Kac labels given by the decomposition of the highest root into simple roots $\psi = \sum_i k_i^\vee \alpha_i$, and where we have set $n = k + h^\vee$ with $h^\vee = g \cdot \psi + 1$ the dual Coxeter number of \mathcal{G}, and g half the sum of the positive roots. The normalization of the scalar product is such that $\psi^2 = 2$. In the sequel we will almost exclusively use the integer n, called the height, instead of k. We let $\chi_p(\tau)$ be the specialized character of $L(p)$.

The alcâve P_{++}^n is an affine Weyl chamber, that is, it is the quotient of the weight lattice of \mathcal{G} minus the union of all affine walls by the action of the affine Weyl group $\hat{W}_n(\mathcal{G})$ of height n. Since the affine Weyl transformations \hat{w} have a well–defined parity, one can associate to any weight p a number $\varepsilon_n(\mathcal{G}; p)$ as follows:

\[
\varepsilon_n(\mathcal{G}; p) = \begin{cases} 0 & \text{if } p \text{ is in an affine wall,} \\ +1 & \text{if } \hat{w}(p) \in P_{++}^n \text{ for an even } \hat{w}, \\ -1 & \text{if } \hat{w}(p) \in P_{++}^n \text{ for an odd } \hat{w}. \end{cases}
\]

(1.3)
For obvious reasons, $\varepsilon_n(\mathcal{G}; p)$ will be called the affine parity of p (relative to $\hat{W}_n(\mathcal{G})$). It is well–defined on the weight lattice on account of the fact that $\hat{W}_n(\mathcal{G})$ fixes the set of affine walls, and has a free action elsewhere. It satisfies the following properties:

$$
\varepsilon_n(\mathcal{G}; \hat{w}(p)) = (\det \hat{w}) \varepsilon_n(\mathcal{G}; p), \quad \varepsilon_n(\mathcal{G}; p + n\alpha) = \varepsilon_n(\mathcal{G}; p) \text{ for any co–root } \alpha
$$

The Hilbert space of a conformal theory with symmetry algebra $\hat{G}_k \times \hat{G}_k$ consists of representations $L(p) \otimes L(p')$ taken with certain multiplicities $N_{p,p'}$

$$
\mathcal{H} = \bigoplus_{p,p'} N_{p,p'} (L(p) \otimes L(p')), \quad N_{p,p'} \in \mathbb{N}.
$$

When the theory is put on a torus of modulus τ, the partition function takes the form

$$
Z(\tau, \tau^*) = \sum_{p,p'} N_{p,p'} \chi_p(\tau) \chi_{p'}^*(\tau).
$$

Since two tori with moduli τ and $\frac{a\tau + b}{c\tau + d}$ for $(a, b, c, d) \in PSL(2, \mathbb{Z})$, are conformally equivalent, a consistency condition is that the partition function must be modular invariant, that is, $Z(\tau) = Z(\frac{a\tau + b}{c\tau + d})$. The modular group $PSL(2, \mathbb{Z})$ being generated by $\tau \rightarrow \tau + 1$ and $\tau \rightarrow \frac{1}{\tau}$, it is sufficient to check the invariance of $Z(\tau)$ under these two substitutions.

For affine Lie algebras, it is known that the characters carry a linear representation of the modular group [4] (the same is true of all known RCFTs, although no general proof exists). Explicitly, one has

$$
\chi_p(\tau + 1) = \sum_{p'} T_{p,p'} \chi_{p'}(\tau), \quad \chi_p(\frac{1}{\tau}) = \sum_{p'} S_{p,p'} \chi_{p'}(\tau).
$$

with T and S both symmetric and unitary. T is diagonal with roots of unity on the diagonal, while S is more complicated. The crucial property for what follows is that S, like T, has all its entries in a cyclotomic extension of the rationals (if one assumes the existence of unitary matrices S and T, this is in fact true in any RCFT, as proved in [3]). This implies that the algebraic extension $\mathbb{M} \equiv \mathbb{Q}(S_{p,p'})$ generated by the coefficients of S is a Galois extension with Abelian Galois group. \mathbb{M} contains the sub–field $\mathbb{L} \equiv \mathbb{Q}(S_{p,p'}/S_{p,q})$, of which \mathbb{M} is at most a quadratic extension (by $S_{p,q}$). The action on S of the Galois group of \mathbb{M} is particularly simple. Take $\sigma \in \text{Gal}(\mathbb{M}/\mathbb{Q})$. It has been shown [3] that σ induces a permutation of the weights in P^+_+, such that

$$
\sigma(S_{p,p'}) = \varepsilon_\sigma(p) S_{\sigma(p),p'} = \varepsilon_\sigma(p') S_{p,\sigma(p')}, \quad \varepsilon_\sigma(p) \in \{\pm 1\}.
$$

Because $S_{p,p'} \in \mathbb{L}$, the permutation of P^+_+ induced by σ is determined only through its restriction to $\text{Gal}(\mathbb{L}/\mathbb{Q})$. The numbers $\varepsilon_\sigma(p)$, called Galois parities, are not representations of the Galois group, but rather cocycles, satisfying $\varepsilon_{\sigma\sigma'}(p) = \varepsilon_\sigma(\sigma'(p)) \varepsilon_\sigma'(p)$. They are the central objects of this paper. In a general RCFT, the relations [1,8] are still valid if we take p and p' as labels for the set \mathcal{P} of primary fields.

If one inserts the modular transformations of the characters in the partition function [4,6], and requires its modular invariance, one obtains the condition that the matrix N must
commute with T and S. Then by acting with an element σ of the Galois group of M on the equation $[N, S] = 0$, one obtains the important result that

$$N_{\sigma(p), \sigma(p')} = \varepsilon_\sigma(p) \varepsilon_\sigma(p') N_{p, p'}.$$ \hspace{1cm} (1.9)

The parity selection rules now follow from the requirement that the coefficients of N must be positive integers

$$\varepsilon_\sigma(p) \varepsilon_\sigma(p') = -1 \text{ for some } \sigma \text{ in } \text{Gal}(M/\mathbb{Q}) \implies N_{p, p'} = 0. \hspace{1cm} (1.10)$$

On the other hand, if $\varepsilon_\sigma(p) \varepsilon_\sigma(p') = +1$ for all σ, then $N_{p, p'}$ can be non-zero, in which case we will say that there is a coupling between p and p'.

Therefore, in order to know which $N_{p, p'}$ can be non-zero and which are to vanish, it is of paramount importance to solve the parity equation, i.e. to know all pairs of weights (p, p') that satisfy

$$\varepsilon_\sigma(p) = \varepsilon_\sigma(p'), \quad \text{for all } \sigma. \hspace{1cm} (1.11)$$

This equation is really the key ingredient to all known classification results, but (hence ?) is notoriously hard to solve.

These selection rules hold in any RCFT in which the characters transform in a unitary representation of the modular group. They put very strong restrictions on the multiplicities of the representations (of whichever algebra is present) that build the Hilbert space, thus on the field content of the theory. Note that they have a purely group theoretical origin, as the parity functions are fixed once the chiral algebras hence the characters are fixed. In case the left and right chiral algebras are not isomorphic, restrictions like (1.10) apply, if appropriate parity functions are used. We end this introductory section by making these functions explicit for affine Lie algebras.

In the case of affine Lie algebras, it is known that S is equal to

$$S_{p, p'} = \gamma(\mathcal{G}, n) \sum_{w \in W(\mathcal{G})} (\text{det}w) e^{-2\pi p \cdot w(p')/n}. \hspace{1cm} (1.12)$$

with W the finite Weyl group, and $\gamma(\mathcal{G}, n)$ a numerical constant. The numbers $S_{p, p'}$ belong to the cyclotomic extension $\mathbb{Q}(\zeta_{nQ})$ —ζ_m will denote a primitive m-th root of unity—, for some integer Q depending on \mathcal{G} (and possibly on n, see [4, 5]). The elements of $\text{Gal}(M/\mathbb{Q})$ are indexed by integers h coprime with nQ, i.e. by elements of \mathbb{Z}_{nQ}^*. The Euler function $\varphi(nQ)$ gives the order of \mathbb{Z}_{nQ}^*.

From the formula for $S_{p, p'}$, it is not difficult to compute the permutation of the alcôve induced by σ_h: $\sigma_h(p)$ is the only weight in the alcôve whose image by an affine Weyl transformation is the dilated weight hp (multiplication componentwise). In other words, there exists a unique $w_{h, p} \in W(\mathcal{G})$ and a unique co–root $\alpha_{h, p}$ of \mathcal{G} such that $\sigma_h(p) = w_{h, p}(hp) + n\alpha_{h, p}$. Moreover the Galois parity takes the value

$$\varepsilon_{\sigma_h}(p) = \frac{\gamma(\mathcal{G}, n)}{\gamma(\mathcal{G}, n)} \varepsilon_n(\mathcal{G}; hp), \hspace{1cm} (1.13)$$

which is an affine parity up a constant prefactor (itself a sign because $[\gamma(\mathcal{G}, n)]^2 \in \mathbb{Q}$). Since this prefactor does not depend on p, it clearly drops out of the selection rules (1.10) —it
would however matter if the chiral algebras were not isomorphic—, so we neglect it from now on (except in Section 3). Therefore the parity equation for affine Lie algebras takes the form

$$
\varepsilon_n(G; hp) = \varepsilon_n(G; hp'), \quad \forall h \in \mathbb{Z}_n^*.
$$

Note that the map $h \mapsto \sigma_h(\gamma(G,n)) = \pm 1$ is a homomorphism, so that the affine parity $\varepsilon_n(G; hp)$ itself is a cocycle.

An algorithm to compute the parity of an arbitrary weight can be given, that requires evaluating congruences on Dynkin labels and determinants of permutations (see [6] for $G = A_\ell$). It is not our purpose to describe that algorithm in the general case since, as we shall soon see, G parities can be reduced to the much simpler $su(2)$ parities, which we now make explicit.

In the Dynkin basis, an $su(2)$ weight is just an integer, and the weight lattice is \mathbb{Z}. The dual Coxeter number is $h^\vee = 2$ so that the alcôve at height n is the set

$$
P_{++}^n(su(2)) = \{ a \in \mathbb{Z} : 1 \leq a \leq n - 1 \}.
$$

The affine walls are the points of the ideal $n\mathbb{Z}$. The co-roots correspond to even integers, which implies that the parity function of $su(2)$ is periodic with period $2n$. Therefore it only depends on the residue modulo $2n$ of its argument, which we denote by $\langle a \rangle_{2n}$, taken between 0 and $2n - 1$. (More generally, we denote by $\langle x \rangle_y$ the residue of x modulo y, chosen in $[0, y - 1]$.) Putting all together, we find for any integer a

$$
\varepsilon_n(a) \equiv \varepsilon_n(su(2); a) = \begin{cases}
0 & \text{if } a = 0 \text{ mod } n, \\
+1 & \text{if } \langle a \rangle_{2n} < n, \\
-1 & \text{if } \langle a \rangle_{2n} > n.
\end{cases}
$$

This is confirmed by computing directly the action of the Galois group on the S matrix, given for $su(2)$ by $S_{a,a'} = \sqrt{\frac{2}{n}} \sin \frac{\pi aa'}{n}$. For later use, we collect the main properties of the $su(2)$ parity:

$$
\varepsilon_n(a) = \sgn(\sin \frac{\pi a}{n}) = 2 - \frac{\langle a \rangle_{2n} + \langle n - a \rangle_{2n}}{n}, \quad a \not\equiv n\mathbb{Z},
$$

$$
\varepsilon_n(a) = \varepsilon_n(n - a) = \varepsilon_n(a + 2n) = -\varepsilon_n(-a).
$$

To summarize, the main conclusion, as far as affine Lie algebras are concerned, is that the Galois parities coincide with the affine parities. Solving the parity equation \((1.14)\) is nonetheless extremely hard, which explains why the general solution is known for $su(2)$ and $su(3)$ only. For $su(2)$, the result is fairly simple, even though the proof is not completely straightforward, despite the deceptive simplicity of the parity function. In the case of $su(3)$, the parity equation is considerably more complex, and it is only recently that the general

\footnote{At the time the classification of affine $su(2)$ modular invariant partition functions was completed [8], the Galois symmetry of the S matrix had not yet been recognized, and consequently there was no parity equation. The now available general solution of the $su(2)$ parity equation would yield the result in a more efficient way.}
solution has been given \cite{7}, though in a totally different context. As noticed in \cite{8}, the $su(3)$ parity plays a fundamental role in the description of the Jacobian varieties of the complex Fermat curves, and it is in this geometric setting that, in disguise, the equation for $su(3)$ was solved in all generality (see \cite{8} for a review of the connections between the two problems). The $su(3)$ solution yields, as a special case, the solution for the $su(2)$ case. For higher rank algebras, virtually nothing is known about the parity equation.

It is our purpose here to suggest new directions, by showing that some of the properties that proved very useful for the $su(2)$ and $su(3)$ algebras, in fact go over to the other cases. One may also note that focussing on $su(2)$ parities is not only important for dealing with parities arising in affine algebras. They turn out to be relevant in other models as well. Good examples are provided by minimal conformal theories $\mathcal{M}(p,q)$, in which the Galois parities are just products of two $su(2)$ parities, taken at heights p and q. Because the S matrices in rational conformal theories are often related to sine functions, $su(2)$ parities inevitably emerge when acting with the Galois groups. This should be no surprise as most rational theories can be constructed as cosets of WZWN models.

2 Formulas for parities

We will present in this section two explicit formulas to compute the parity functions in affine algebras. They have very different flavours, one being multiplicative, the other additive. Perspectives offered by these formulas are investigated in the subsequent sections.

The first, multiplicative, formula relates the parity in any (untwisted) affine algebra to the parity function in the simplest of all, namely $su(2)$. For p a weight of G, not necessarily dominant, the following formula yields an expression for the parity of p relative to the affine Weyl group $\hat{W}_n(G)$

$$\varepsilon_n(G;p) = \prod_{\alpha>0} \varepsilon_nD(su(2); D\alpha \cdot p) = \prod_{\alpha>0} \text{sgn} \left(\sin \frac{\pi\alpha \cdot p}{n} \right), \quad (2.1)$$

where D is the smallest positive integer such that $D\alpha \cdot p \in \mathbb{Z}$ for all weights p and all roots α. Explicitly $D = 1$ for G simply–laced, $D = 2$ for $G = B_t, C_t, F_4$, and $D = 3$ for $G = G_2$.

The proof of the product formula (2.1) is not difficult. One may first check that both expressions coincide when p is in the fundamental alcôve $P^k_{++}(G)$ (clear because p in the alcôve implies $\alpha \cdot p \in [1, n-1]$), and then verify that they have the same transformation properties under the affine Weyl group. For the translational part, one uses, for any co–root α^\vee,

$$\frac{\varepsilon_n(G;p + na^\vee)}{\varepsilon_n(G;p)} = \prod_{\alpha>0} \frac{\varepsilon_nD(D\alpha \cdot p + nD\alpha \cdot a^\vee)}{\varepsilon_nD(D\alpha \cdot p)} = \prod_{\alpha>0} (-1)^{\alpha \cdot a^\vee} = (-1)^{2\alpha \cdot a^\vee} = +1. \quad (2.2)$$

For the finite Weyl part, one checks

$$\prod_{\alpha>0} \varepsilon_nD(D\alpha \cdot w(p)) = \prod_{\alpha>0} \varepsilon_nD(Dw^{-1}(\alpha) \cdot p) = (-1)^{\text{tw}} \prod_{\alpha>0} \varepsilon_nD(D\alpha \cdot p) = (\det w) \prod_{\alpha>0} \varepsilon_nD(D\alpha \cdot p), \quad (2.3)$$
with t_w the number of positive roots whose image under w are negative roots.

Alternatively one may obtain the formula (2.1) by acting with an element of the Galois group $\text{Gal}(M/Q)$ on the factorized form for the S matrix elements

$$S_{\theta,p}(G) = \gamma'(G) \prod_{\alpha > 0} S_{\theta,\alpha \cdot p}(su(2)),$$ \hspace{1cm} (2.4)

for some constant $\gamma'(G)$ that only depends on G.

Our second formula is additive and has a stronger arithmetical taste. According to the previous, multiplicative expression, parity functions in affine algebras are products of $su(2)$ parities $\varepsilon_n(\alpha \cdot p)$ (say when $D = 1$). As mentioned before, these $su(2)$ parities depend on the residues of their argument modulo $2n$. However, in the particular case $G = su(3)$, the parity function, a product of three $su(2)$ parities according to (2.1),

$$\varepsilon_n(su(3); p) = \varepsilon_n(a)\varepsilon_n(b)\varepsilon_n(a + b) = \varepsilon_n(a)\varepsilon_n(b)\varepsilon_n(n - a - b), \quad p = (a, b) \hspace{1cm} (2.5)$$

can also be written in a way that only involves residues modulo n. Indeed one may check that

$$\varepsilon_n(su(3); p) = \left\{ \begin{array}{c} +1 \\ -1 \end{array} \right\} \iff \langle a \rangle_n + \langle b \rangle_n + \langle n - a - b \rangle_n = \left\{ \frac{n}{2n} \right\}. \hspace{1cm} (2.6)$$

Since this additive formula proved extremely useful to solve the parity equation for $su(3)$ [11, 7], it is a natural question to see if it can be generalized. It can indeed be generalized, though not uniformly for all algebras, the resulting formulas being dependent of the structure of the root systems. They are primarily based on the following basic observation.

Lemma 1 Suppose that x_1, x_2, \ldots, x_m are integers in $\mathbb{Z} \setminus n\mathbb{Z}$ satisfying $\sum_i x_i = \delta n \mod 2n$, with $\delta = 0, 1$. Then

$$\varepsilon_n(x_1)\varepsilon_n(x_2)\ldots\varepsilon_n(x_m) = (-1)^\delta \left\{ \begin{array}{c} +1 \\ -1 \end{array} \right\} \iff \sum_i \langle x_i \rangle_n = \left\{ \frac{0}{n} \right\} \mod 2n. \hspace{1cm} (2.7)$$

Proof. Let μ be the number of indices i such that $\varepsilon_n(x_i) = -1$. Since for those i’s, $\langle x_i \rangle_n = \langle x_i \rangle_{2n} - n$, we get the following equalities modulo $2n$:

$$\sum_i \langle x_i \rangle_n = \sum_i \langle x_i \rangle_{2n} - \mu n = (\delta + \mu)n \mod 2n. \hspace{1cm} (2.8)$$

On the other hand, $\prod_i \varepsilon_n(x_i) = (-1)^\mu$, which proves the lemma. \blacksquare

This simple result is the key to the generalization of (2.6). Let us first consider the algebras $su(N)$, for N odd. Recall that a positive root α of $su(N)$ has level $|\alpha| = l$ if α is the sum of l simple roots, and that the set of positive roots of has the property that $\sum_{|\alpha| = l} \alpha = \sum_{|\alpha| = N - l} \alpha$. For a weight $p = (a_1, a_2, \ldots, a_{N-1})$, the product formula (2.1) says that the affine parity of p is the product of $su(2)$ parities $\varepsilon_n(\alpha \cdot p)$ over all positive roots. One can then satisfy the
hypothesis of Lemma 1 by replacing \(\varepsilon_n(p \cdot \alpha) \) by \(\varepsilon_n(n - p \cdot \alpha) \) for all positive roots of level bigger or equal to \(\frac{N+1}{2} \). Doing so, we obtain

\[
\varepsilon_n(su(N); p) = \prod_{\alpha > 0 \atop |\alpha| \leq (N-1)/2} \varepsilon_n(p \cdot \alpha) \prod_{\alpha > 0 \atop |\alpha| \geq (N+1)/2} \varepsilon_n(n - p \cdot \alpha), \quad N \text{ odd.} \tag{2.9}
\]

The relevant value of \(\delta \) is given by the number of positive roots whose level is bigger or equal to \(\frac{N+1}{2} \), namely \(\delta = \frac{N^2-1}{8} \mod 2 \). Thus the lemma yields the following.

Proposition 1 For \(N \geq 3 \) odd, one has

\[
\varepsilon_n(su(N); p) = (-1)^{(N^2-1)/8} \begin{cases} +1 \\ -1 \end{cases} \text{ iff } \sum_{\alpha > 0 \atop |\alpha| \leq (N-1)/2} \langle p \cdot \alpha \rangle_n + \sum_{\alpha > 0 \atop |\alpha| \geq (N+1)/2} \langle n - p \cdot \alpha \rangle_n = \begin{cases} 0 \\ n \end{cases} \mod 2n. \tag{2.10}
\]

For \(N = 3 \), it reproduces (2.7) because the sum \(\langle p \cdot \alpha_1 \rangle_n + \langle p \cdot \alpha_2 \rangle_n + \langle n - p \cdot (\alpha_1 + \alpha_2) \rangle_n \) can take only two values, \(n \) or \(2n \).

The same trick does not always work for other algebras, because it relies on the fact that the positive roots can be partitioned into two sets such that the sum of the roots in one set equals the sum of the roots in the other set. In fact, it is not so much the roots which matter, but their scalar products with \(p \). So the condition underlying the above proposition is the existence of two disjoint sets \(A \) and \(B \) such that \(\sum_{\alpha \in A} \alpha \cdot p = \sum_{\alpha \in B} \alpha \cdot p \). When this is not possible, there are two alternatives. Either one constrains the weight \(p \) so that it be possible, or one takes suitable multiples of the height \(n \). We illustrate it in \(su(4) \), which is the simplest case for which this occurs.

For \(p = (a, b, c) \) a general weight of \(su(4) \), the product formula yields

\[
\varepsilon_n(su(4); p) = \varepsilon_n(a)\varepsilon_n(b)\varepsilon_n(c)\varepsilon_n(a + b)\varepsilon_n(b + c)\varepsilon_n(a + b + c). \tag{2.11}
\]

One checks that if \(p \) is generic, there is no way to change some of the arguments as above, in such a way that they sum up to a multiple of \(n \). It is however possible if \(p \) is self–conjugate, \(a = c \), since by inserting \(\varepsilon_n^2(a) = 1 \), one has

\[
\varepsilon_n(su(4); p) = \varepsilon_n(b)\varepsilon_n(2a + b)\varepsilon_n^2(a) = \varepsilon_n(a)\varepsilon_n(a)\varepsilon_n(b)\varepsilon_n(n - 2a - b). \tag{2.12}
\]

A simple application of the lemma implies, for a self–conjugate weight \(p = (a, b, a) \), that

\[
\varepsilon_n(su(4); p) = +1 \quad \text{iff} \quad 2\langle a \rangle_n + \langle b \rangle_n + \langle n - 2a - b \rangle_n = n \mod 2n. \tag{2.13}
\]

If one wishes to keep a generic weight, the other way to proceed is to use the obvious identity \(\varepsilon_n(x) = \varepsilon_{2n}(2x) \), and then to insert \(\varepsilon_{2n}^2(a)\varepsilon_{2n}^2(c) = 1 \) in (2.11):

\[
\varepsilon_n(su(4); p) = \varepsilon_{2n}(2a)\varepsilon_{2n}(2b)\varepsilon_{2n}(2c)\varepsilon_{2n}(2a + 2b)\varepsilon_{2n}(2b + 2c)\varepsilon_{2n}(2a + 2b + 2c)\varepsilon_{2n}^2(a)\varepsilon_{2n}^2(c) = \\
\varepsilon_{2n}(2a)\varepsilon_{2n}(2b)\varepsilon_{2n}(2c)\varepsilon_{2n}(2a + 2b)\varepsilon_{2n}(2b + 2c)\varepsilon_{2n}^2(a)\varepsilon_{2n}^2(c) = \\
\varepsilon_{2n}(2n - 2b - 2c)\varepsilon_{2n}(2n - 2a - 2b - 2c)\varepsilon_{2n}(2n - a)\varepsilon_{2n}(2n - a). \tag{2.14}
\]
The lemma can be used once more to relate the affine parity of a general $su(4)$ weight to a sum of residues modulo $2n$. The price to pay is the larger number of residues that now enter the formulas.

For the other $su(N)$ algebras, N even, the first alternative (self–conjugate weights) works if $N = 0 \text{ mod } 4$, while the second works well for all N even. Similar formulas can be designed for all other simple Lie algebras.

In the following sections, we present some implications of the above multiplicative and additive formulas.

In Section 3, we show that they allow various cohomological interpretations, and implies certain relations between the field extensions \mathbb{M} and \mathbb{L}. In particular, as a sort of generalization of (2.1), we prove a formula expressing the affine parities for $su(2N + 1)$ as products of $su(2N)$ parities, which has a strong cohomological flavour.

In terms of computational efficiency, the formula (2.1) is much easier to handle than the previously known formula, which requires computing the parity of a Weyl transformation $[6]$. As we shall see in Section 4, it also clearly shows why certain non–trivial couplings are allowed by the parity selection rules, and how conversely, trivial solutions to the parity equation can give rise to non–trivial couplings, which could be otherwise hard to guess. Moreover, we relate the solutions of the parity equation to the existence of certain totally positive numbers in the field $\mathbb{Q}(\sin \frac{\pi}{n})$. This allows the construction of solutions which, we will argue, appear to be the generic solutions.

Finally in Section 5, we show that the additive formulas might reveal a new path into solving the parity equation. At present, this last approach appears more promising to us, in spite of the fact that difficult and deep arithmetical questions seem to emerge on the way.

3 Cohomological interpretations

In this section we give cohomological interpretations of the relations satisfied by the parities:

$$
\varepsilon_{\sigma\sigma'}(j) = \varepsilon_\sigma(j)\varepsilon_{\sigma'}(\sigma(j)) = \varepsilon_{\sigma'}(j)\varepsilon_\sigma(\sigma'(j)),
$$

(3.1)

where $\sigma, \sigma' \in \text{Gal}(\mathbb{M}/\mathbb{Q})$, and j labels the elements of \mathcal{P}, the finite set of chiral primary fields. The second equality follows from the fact that $\text{Gal}(\mathbb{M}/\mathbb{Q})$ is Abelian. We begin by reviewing some definitions of group cohomology, for which we adopt a multiplicative notation.

Let G be a group, and A be a multiplicative Abelian group. Assume that G acts on A by automorphisms, i.e. there is a homomorphism $\alpha : G \to \text{Aut}(A)$. For simplicity we write $g \cdot a$ instead of $\alpha(g)(a)$, where $g \in G$, $a \in A$. The set $C^n(G, A)$ of n–cochains is the Abelian group of functions which depend on n variables in G and with values in A:

$$
C^n(G, A) = \left\{ f : \underbrace{G \times \cdots \times G}_{n \text{ factors}} \to A \right\}.
$$

(3.2)

By definition, a 0–cochain is a fixed element of A, so that $C^0(G, A) = A$. One also defines coboundary operators $\delta_n : C^n \to C^{n+1}$, which, for $n = 0, 1$, are given explicitly by

$$
\left(\delta_0(a) \right)(g) = (g \cdot a)a^{-1}, \quad g \in G, \ a \in A,
$$

(3.3)
The group of 1–coboundaries is $B^1(G, A) = \text{Im}(\delta_0)$, whereas the group of 1–cocycles is $Z^1(G, A) = \ker(\delta_1)$. It is easy to see that $\delta_1 \circ \delta_0 = 1$, so that $B^1(G, A) \subset Z^1(G, A)$. The first cohomology group is then $H^1(G, A) = Z^1(G, A)/B^1(G, A)$.

Now consider a RCFT with the finite set \mathcal{P} of primary fields. Take $A = \{+1, -1\}^\mathcal{P}$ to be the multiplicative Abelian group of functions: $\mathcal{P} \to \{+1, -1\}$ (multiplication componentwise), and take $G = \text{Gal}(\mathbb{M}/\mathbb{L})$. As recalled in the Introduction, G acts on \mathcal{P} by permutations $j \mapsto \sigma(j)$, and thus also on A by $(\sigma \cdot a)(j) = a(\sigma(j))$. The first equality in (3.1) then translates into the property that the map $\varepsilon : G \to A$ defined by $\sigma \mapsto \varepsilon_\sigma(\cdot)$ is a 1–cocycle in $C^1(G, A)$.

Proposition 2 If ε is a coboundary, $\mathbb{M} = \mathbb{L}$.

Proof. We know that $\text{Gal}(\mathbb{M}/\mathbb{L})$ is the kernel of the restriction $\text{Gal}(\mathbb{M}/\mathbb{Q}) \to \text{Gal}(\mathbb{L}/\mathbb{Q})$, therefore if $\sigma \in \text{Gal}(\mathbb{M}/\mathbb{L})$, $\sigma(S_{ij}) = \varepsilon_\sigma(i)S_{ij}$, since the permutation of \mathcal{P} induced by σ is determined by its restriction to $\text{Gal}(\mathbb{L}/\mathbb{Q})$.

By the assumption on ε, $\varepsilon_\sigma(i) = a(\sigma(i))/a(i)$, for some $a \in A$, thus $\varepsilon_\sigma(i) = 1$ if $\sigma \in \text{Gal}(\mathbb{M}/\mathbb{L})$. Hence $\sigma(S_{ij}) = S_{ij}$ for all $\sigma \in \text{Gal}(\mathbb{M}/\mathbb{L})$.

Examples of RCFTs where ε is a coboundary include all models with the current algebra $su(N^2)$ at level 1. For these cases one easily checks that $\varepsilon_\sigma(p) = +1$ for all σ and all p in the alcôve, and indeed $S_{\varepsilon\varepsilon} = \frac{1}{2}$ implies $\mathbb{M} = \mathbb{L}(S_{\varepsilon\varepsilon}) = \mathbb{L}$. (Note that $\varepsilon_\sigma(\cdot)$ is the full parity defined in (3.3), and not the affine parity $\varepsilon_n(G; \cdot)$.) The converse is however not true: in models with current algebra $su(2)$ at even level, it is known that $\mathbb{M} = \mathbb{L}$ (see f.i. [9]) but ε is never a coboundary.

For $j \in \mathcal{P}$, we denote by $G_j = \{\sigma \in G \mid \sigma(j) = j\}$ the stabilizer of j. Note that since G is Abelian, $G_j = G_k$ if j and k belong to the same orbit \mathcal{O} of G in \mathcal{P}, thus it makes sense to define the stabilizer of an orbit \mathcal{O} by $G_\mathcal{O} = G_j$ with $j \in \mathcal{O}$. Let $\hat{G}_\mathcal{O}$ be the group of homomorphisms $G_\mathcal{O} \to \{+1, -1\}$.

Proposition 3 There is an embedding $H^1(G, A) \hookrightarrow \prod_\mathcal{O} \hat{G}_\mathcal{O}$, where the product is over all the orbits \mathcal{O}.

The proof of proposition 3 is based on the following lemma:

Lemma 2 ε is a coboundary if and only if for all $j \in \mathcal{P}$ and all $\sigma \in G_j$, $\varepsilon_\sigma(j) = 1$.

Proof. If we assume that ε is a coboundary, then it is obvious that $\varepsilon_\sigma(j) = 1$ if $\sigma(j) = j$. Assume now that $\varepsilon_\sigma(j) = 1$ for all $\sigma \in G_j$. We have to construct a function $a(j)$ such that $\varepsilon_\sigma(j) = a(\sigma(j))/a(j)$.

First we observe that the cocycle condition (3.1) implies that $\varepsilon_{\sigma\sigma'}(j) = \varepsilon_\sigma(j)$ if $\sigma' \in G_j$. Thus if we restrict j to lie in a certain orbit \mathcal{O}, $\varepsilon_\sigma(j)$ depends only on $\sigma \mod G_\mathcal{O}$, and we can think of σ as lying in $G/G_\mathcal{O}$.

2The field extensions \mathbb{M} and \mathbb{L} have been determined in [10] for the current algebras based on $su(N)$. Many of them have $\mathbb{L} = \mathbb{M}$.

9
Let us choose one particular element \(j_0 \) as the origin of \(O \). Every \(j \in O \) can be written in a unique way as \(j = \sigma \cdot j_0 \) for some \(\sigma \in G/G_O \). We define the restriction of \(a \) to \(O \) by \(a(j) = \varepsilon_{\sigma}(j_0) \). From (3.1) we get
\[
\varepsilon_{\sigma\sigma'}(j_0) = \varepsilon_{\sigma'}(j_0)\varepsilon_{\sigma}(\sigma' \cdot j_0),
\]
so that upon setting \(k = \sigma' \cdot j_0 \), we get
\[
\varepsilon_{\sigma}(k) = \varepsilon_{\sigma\sigma'}(j_0)/\varepsilon_{\sigma'}(j_0) = a(\sigma(k))/a(k). \tag{3.6}
\]

Proof of proposition 3. We consider the second equality in (3.1), and assuming that \(\sigma \in G_j \), we obtain \(\varepsilon_{\sigma}(j) = \varepsilon_{\sigma}(\sigma' \cdot j) \). Therefore if \(\sigma \in G_O \), \(\varepsilon_{\sigma}(\cdot) \) is constant on \(O \). Denote this constant by \(\varepsilon_{\sigma}(O) \). It is easy to see from (3.1) again, that \(\sigma \mapsto \varepsilon_{\sigma}(O) \) belongs to \(\hat{G}_O \). Thus we have now a map
\[
\tilde{\gamma} : Z^1(G, A) \to \prod_O \hat{G}_O. \tag{3.7}
\]
The easy direction of the lemma says that \(B^1(G, A) \subset \ker(\tilde{\gamma}) \), so that \(\tilde{\gamma} \) descends to a map
\[
\gamma : H^1(G, A) \to \prod_O \hat{G}_O, \tag{3.8}
\]
and the other direction says that in fact \(B^1(G, A) = \ker(\tilde{\gamma}) \), so that \(\gamma \) is injective. \(\blacksquare \)

We close this section by mentioning another product formula, relating the affine parities of \(su(2N) \) and \(su(2N+1) \). Formally, the formula says that, in the appropriate cohomology, the affine parity of \(su(2N+1) \) is the coboundary of the affine parity of \(su(2N) \), both algebras taken at the same height:
\[
\varepsilon_n\left(su(2N+1); (a_1, a_2, \ldots, a_{2N}) \right) = \left(\delta_{2N-1} \varepsilon_n\left(su(2N); \cdot \right) \right)^{2N-1} \varepsilon_n\left(su(2N); (a_1, \ldots, a_i + a_{i+1}, \ldots, a_{2N}) \right) \times \varepsilon_n\left(su(2N); (a_1, \ldots, a_{2N-1}) \right). \tag{3.9}
\]
It is only a formal coboundary since, on \(\mathbb{Z}^{2N-1} \), the parity \(\varepsilon_n(\cdot) \) takes the values \(\{0, +1, -1\} \), which is not a multiplicative group. Nevertheless, in terms of affine parities, it yields an identity whose proof is straightforward: the two expressions are equal to \(+1\) when \(p = (a_1, a_2, \ldots, a_{2N}) \) is in the alcôve \(P_{++}^n(su(2N+1)) \), and they transform the same way under the affine Weyl group \(\hat{W}_n(su(2N+1)) \). At this level of generality, these identities seem to be specific to the \(A_r \) series, even if other relations can be found. For instance, the \(su(5) \) parity for a general weight is the product of four \(su(3) \) parities, while a \(G_2 \) parity is the product of two \(su(3) \) parities.
4 Totally positive numbers

For affine Lie algebras, the parity equation (1.14) requires that we determine the pairs of weights p, p' that satisfy the following parity equation

$$\varepsilon_n(G; hp) \varepsilon_n(G; hp') = \prod_{\alpha>0} \varepsilon_n(\alpha \cdot hp) \varepsilon_n(\alpha \cdot hp') = +1, \quad \text{for all } h \in \mathbb{Z}^*_n. \quad (4.1)$$

From the formula (1.17), this is equivalent to solve

$$\sigma_h\left(\prod_{\alpha>0} \frac{\pi \alpha \cdot p}{n} \sin \frac{\pi \alpha \cdot p'}{n}\right) = \prod_{\alpha>0} \frac{\pi h \alpha \cdot p}{n} \sin \frac{\pi h \alpha \cdot p'}{n} > 0, \quad \forall h \in \mathbb{Z}^*_n. \quad (4.2)$$

In other words, the positive algebraic real number within the brackets in the l.h.s. must be such that its Galois conjugates are all positive. Such numbers are called totally positive. The previous equation can thus be interpreted by saying that $p, p' \in P_{++}(G)$ satisfy the parity rule iff $S_{\nu, p} S_{\nu, p'}$ is totally positive.

Obviously, sums, products and ratios of totally positive numbers are totally positive. A classical theorem about totally positive numbers is due to Landau and Hilbert (see e.g. [12]).

Theorem 1 A real algebraic number ξ is totally positive if and only if it is a sum of squares in $\mathbb{Q}(\xi)$.

The proof is easy. If ξ is a sum of squares, it is immediate that it is totally positive. Conversely, assume that ξ is totally positive. Let $P(x)$ be the minimal polynomial of ξ:

$$P(x) = x^n - a_1 x^{n-1} + a_2 x^{n-2} + \cdots + (-1)^n a_n. \quad (4.3)$$

Then the rational numbers a_i are all non-negative. The condition $P(\xi) = 0$ can be written:

$$\xi (a_{n-1} + a_{n-3} \xi^2 + \cdots) = a_n + a_{n-2} \xi^2 + \cdots \quad (4.4)$$

Set $\nu = a_{n-1} + a_{n-3} \xi^2 + \cdots$. Observe that $\nu \neq 0$ by the minimality of $P(x)$. Then we have:

$$\xi = \frac{1}{\nu^2} (a_{n-1} + a_{n-3} \xi^2 + \cdots)(a_n + a_{n-2} \xi^2 + \cdots) = \frac{1}{\nu^2} (b_0 + b_1 \xi^2 + \cdots), \quad (4.5)$$

where the b_i are positive rationals. Since a positive rational is easily seen to be a sum of rational squares, the proof is complete.

Thus in order to solve the parity equation for affine algebras, we look for products of sines, in even number, which can be written as sums of squares in $\mathbb{Q}(\sin \frac{\pi}{n})$.

For n an integer and d a divisor of n, the identity $1 - X^d = \prod_{j=0}^{d-1} (1 - \zeta_d^{j} X)$ implies a number of product relations labelled by an integer a

$$\sin \frac{\pi ad}{n} \prod_{j=0}^{d-1} \sin \frac{\pi (a + jn/d)}{n} = 2^{1-d} (\sin \frac{\pi ad}{n})^2, \quad d|n, \ 1 \leq a \leq d - 1. \quad (4.6)$$
The right-hand side is manifestly totally positive, and so is the left-hand side:

$$\sigma_h \left(\sin \frac{\pi a d}{n} \prod_{j=0}^{d-1} \sin \frac{\pi (a + jn/d)}{n} \right) > 0. \quad (4.7)$$

In order to convert this statement into identities involving parities, one simply remembers that $$\sin \frac{\pi x}{n}$$ lies in $$\mathbb{Q}(\zeta_{4n})$$, so that the Galois group acts on it by

$$\sigma_h(\sin \frac{\pi x}{n}) = i\sigma_h(-i) \sin \frac{\pi h x}{n} = i\sigma_h(-i) \varepsilon_n(hx) \sin \frac{\pi (hx)n}{n}. \quad (4.8)$$

Thus the positivity of a Galois conjugate is not only determined by an $$su(2)$$ parity, but can be affected by a sign $$i\sigma_h(-i)$$. These signs (which depend on $$h$$) drop out when $$\sigma_h$$ acts on an even number of sines, but otherwise give extra contributions when the number of sines is odd.

If $$d$$ is odd, the number of sines is even, and (4.7) leads to identities between $$su(2)$$ parities

$$R_n(d, a) \equiv \varepsilon_n(had) \prod_{j=0}^{d-1} \varepsilon_n(ha + hjn/d) = +1, \quad \forall h \in \mathbb{Z}_n^*, \ d \ odd. \quad (4.9)$$

If $$d$$ is even, we multiply the identity (4.6) by a positive rational sine, say $$\sin \frac{\pi f}{n} \in \mathbb{Q}$$, thereby preserving the total positivity. The resulting identities now involve an even number of sines, and can be turned into identities among parities

$$R_n(d, a, f) \equiv \varepsilon_n(hf) \varepsilon_n(had) \prod_{j=0}^{d-1} \varepsilon_n(ha + hjn/d) = +1, \quad \forall h \in \mathbb{Z}_n^*, \ d \ even. \quad (4.10)$$

The allowed values $$f = \frac{n}{2}, \frac{n}{6}$$ and $$\frac{5n}{6}$$ are the only rationals such that $$\sin \frac{\pi f}{n}$$ is a strictly positive rational number.

Thus we have succeeded in writing many identities $$R_n(d, a)$$ and $$R_n(d, a, f)$$ involving $$su(2)$$ parities, which can be used to give solutions to the parity equation in affine algebras. Here the main problem is precisely to recast these identities in the form (4.1), in which the arguments of the parities are related to the weights $$p, p'$$ in a very specific way. It is nevertheless instructive to see how the known solutions of the parity equation can be understood in terms of the above relations.

First of all, because the parity function for $$\mathcal{G}$$ is a product of parities for $$su(2)$$, one can solve the parity equation (4.1) by equating the $$\varepsilon_n$$’s by pairs. These rather trivial solutions can lead to non–trivial couplings in terms of the weights, and it turns out that many apparently non–trivial couplings are in fact trivial in this sense. For instance in $$su(5)$$, it was found in F, and checked the hard way, that the identity $$p = (1, 1, 1, 1)$$ can couple, for even $$n$$, to the following three weights $$p' = (1, \frac{n}{2} - 2, \frac{n}{2} - 2, 1), (\frac{n}{2} - 3, 1, 1, \frac{n}{2} - 3)$$, and $$(\frac{n}{2} - 3, 2, 2, \frac{n}{2} - 3)$$.\(^3\)

\(^3\)Indeed, $$\sin \frac{\pi x}{n} = -\frac{1}{2}(\zeta_{2n}^x - \zeta_{2n}^{-x}) = -\frac{1}{2}(\zeta_{4n}^{2x} - \zeta_{4n}^{-2x-n}).$$
To see that these three weights indeed satisfy the parity equation with p amounts to verify respectively the identities
\[
\begin{align*}
\varepsilon_n(2h) \varepsilon_n(n - 2h) \varepsilon_n(4h) \varepsilon_n(n - 4h) &= +1, \quad \forall h, \\
\varepsilon_n(4h) \varepsilon_n(n - 4h) &= +1, \quad \forall h, \\
\varepsilon_n(2h) \varepsilon_n(n - 2h) &= +1, \quad \forall h,
\end{align*}
\]
(4.11)
(4.12)
(4.13)
simple consequences of the symmetry (1.18) of the function ε_n. These three couplings appear in the $su(5)$ exceptional invariants due to conformal embeddings, at height $n = 8, 10$ and 12.

Many of the allowed couplings which are not trivial in the sense of the previous paragraph follow from the relations (4.9) and (4.10). For instance in $su(3)$ at height n, the coupling of $(1, 1)$ to $(1, \frac{n}{2})$ is allowed due to the identity
\[
\varepsilon_n(h) \varepsilon_n(2h) \varepsilon_n(\frac{nh}{2}) \varepsilon_n(\frac{nh}{2} + h) = +1,
\]
(4.14)
which is nothing but the identity $R_n(2, 1, \frac{n}{2})$. Similarly the coupling of $(1, 2)$ to $(2, \frac{n}{3} - 1)$ is a consequence of $R_n(3, 1)$.

Aoki [7] has determined, for all integers n except 32 values between 3 and 180, all pairs p, p' of $su(3)$ weights which satisfy the parity equation. His result shows that, besides the trivial solutions, all the others follow from the identities (4.8) and (4.10), and products thereof. The same pattern holds in higher rank algebras, and points to the genericity of the solutions provided by these identities. That they do not exhaust the solutions follows from a concrete example: in $su(3)$ at height $n = 15$, the weights $(1, 1)$ and $(1, 5)$ are allowed to couple, due to the identity
\[
\varepsilon_{15}(h) \varepsilon_{15}(2h) \varepsilon_{15}(5h) \varepsilon_{15}(6h) = +1,
\]
(4.15)
which does not seem to follow from the product relations R_n.

The use of these to solve parity equations for affine algebras remains a delicate matter, as subtle cancellations among individual parities must take place. A good (but still mild) illustration of this is provided by $su(4)$ at height $n = 14$, where there is a coupling between $(1, 1, 1)$ and $(1, 2, 7)$, due to three mechanisms: cancellations of pairs of identical ε_n, the symmetry $\varepsilon_n(x) = \varepsilon_n(n - x)$ and the relation $R_{14}(2, 2, 7)$.

5 Bernoulli numbers

In this section, we propose a second approach, based on the additive formulas of Section 2. It is not entirely new, since the corresponding formula (2.6) for $su(3)$ was at the root of the works of Aoki [7], and of Koblitz and Rohrlich [11]. With the additive formulas developed in Section 2, the method can be extended to any affine algebra. The new feature that appears when one goes beyond $su(2)$ and $su(3)$, is the presence of a congruence (all expressions are valued in a finite ring). As we shall see, this is the source of difficult arithmetical problems, which somehow embody the difficulties inherent to high rank algebras.

Our purpose here is not to report on the results we have obtained so far by following this approach, since they are not conclusive at the moment. They however suggest that this
path is well suited for dealing with higher algebras. Here we will briefly explain the method and give a feeling for the problems that arise. A detailed and more complete account will appear elsewhere.

The parity equation, expressing the equality of a number of parities \(\varepsilon_n(\mathcal{G}; hp) = \varepsilon_n(\mathcal{G}; hp') \), is what we want to solve. The additive formulas, like those of Prop. 1 in Section 2, give an expression for each of these parities as a sum of residues modulo some integer. Thus the typical problem is to find, for given and fixed \(n \), all integers \(x_i, y_i \) satisfying:

\[
\sum_i \langle hx_i \rangle_n = \sum_i \langle hy_i \rangle_n \mod 2n, \quad \forall h \in \mathbb{Z}_n^*.
\] (5.1)

The integers \(x_i, y_i \) will eventually be related to the weights \(p \) and \(p' \) through their scalar products with positive roots of \(\mathcal{G} \).

The basic idea is to write the equation (5.1) in the basis of characters of \(\mathbb{Z}_n^* \), so we begin by recalling what these are.

Characters modulo \(n \) are homomorphisms of the multiplicative group \(\mathbb{Z}_n^* \), i.e. they are multiplicative functions \(\theta \), satisfying \(\theta(hh') = \theta(h)\theta(h') \) for all \(h, h' \in \mathbb{Z}_n^* \), and of norm equal to 1. In concrete terms, if we write \(\mathbb{Z}_n^* = x_i \mathbb{Z}_{m_i} \) as a product of cyclic groups, every element can be uniquely expressed as \(h = \prod_i g_i^{a_i} \), with \(g_i \) a generator of \(\mathbb{Z}_{m_i} \). An arbitrary character is labelled by a set of integers \(a_i \), taken modulo \(m_i \), and takes the simple form

\[
\theta(h) = \zeta_{m_1}^{a_{t_1}} \zeta_{m_2}^{a_{t_2}} \ldots, \quad 0 \leq a_i \leq m_i - 1.
\] (5.2)

The character is even or odd depending on whether \(\theta(-1) = +1 \) or \(-1 \). If all \(m_i \) are chosen to be even integers, a character being even or odd means \(\sum_i a_i = 0 \) or 1 modulo 2.

A character of \(\mathbb{Z}_n^* \) may be extended to \(\mathbb{Z}_n \) (the set of all integers modulo \(n \)), by setting \(\theta(t) = 0 \) if \(t \) is not in \(\mathbb{Z}_n^* \). If \(n \mid N \), it may be further lifted to \(\mathbb{Z}_N \) by periodicity modulo \(n \) (not forgetting the coprimality condition\(^4\)), in which case we say that the resulting character of \(\mathbb{Z}_N \) is induced by a character of \(\mathbb{Z}_n \). A character of \(\mathbb{Z}_n \) is called primitive if it is not induced by a character of a subgroup of \(\mathbb{Z}_n \). A character modulo \(n \) is said to have conductor \(f \) if it is induced by a primitive character modulo \(f \) (so \(f \mid n \)). Loosely speaking, a character of conductor \(f \) truncates its argument modulo \(f \), and so the conductor of a character is its period.

Let us come back to the parity equation (5.1). It says that

\[
\sum_i \langle hx_i \rangle_n - \sum_i \langle hy_i \rangle_n = 2nF(h \mid x_i, y_i),
\] (5.3)

for some integral function \(F \). Because \(\langle -x \rangle_n = n - \langle x \rangle_n \), the left–hand side is an odd function of \(h \), and so is the function \(F \). Multiplying by \(\theta(h) \), a character modulo \(n \), and summing over \(h \) yields zero if \(\theta \) is an even character, while it gives a multiple of 2 if \(\theta \) is odd\(^5\). One obtains

\[
\sum_i \sum_{h \in \mathbb{Z}_n^*} \langle hx_i \rangle_n \theta(h) - \sum_i \sum_{h \in \mathbb{Z}_n^*} \langle hy_i \rangle_n \theta(h) = 0 \mod 4n.
\] (5.4)

\(^4\)For instance, the character modulo 3 defined by \(\theta(1) = 1, \theta(2) = -1 \), can be extended modulo 6 by setting \(\theta(1) = 1, \theta(5) = -1 \).

\(^5\)By this is meant that \(\sum_h F(h \mid x_i, y_i) \theta(h) \) is an algebraic integer, lying in the principal ideal \((2) \) of some cyclotomic integer ring.
The change from a congruence modulo $2n$ to one modulo $4n$ is crucial for what follows.

It is important to realize that the equation (5.4) takes place in the ring of integers of the cyclotomic extension $\mathbb{Q}(\zeta_{\varphi(n)})$ (containing the values of θ). Thus the congruence involved is a condition in the finite ring $\mathbb{Z}(\zeta_{\varphi(n)}/(4n))$. By a previous remark, it is identically satisfied if θ is an even character, so from now on, we concentrate on the odd ones.

The equation (5.4) is a sum of terms of the form $\sum_{h} \langle hx \rangle_n \theta(h)$. Let us first compute this number when x is coprime with n (invertible modulo n). For convenience, we include a factor $\frac{1}{n}$, and obtain, by a simple change of variable,

$$\frac{1}{n} \sum_{h \mod n} \langle hx \rangle_n \theta(h) = \frac{1}{n} \sum_{t \mod n} \langle t \rangle_n \theta(x^{-1}t) = \theta^*(x) B_{1,\theta}^n, \quad (5.5)$$

where $B_{1,\theta}^n$ is a generalized Bernoulli number (see f.i. [13])

$$B_{1,\theta}^n = \frac{1}{n} \sum_{t=1}^{n} t \theta(t). \quad (5.6)$$

If x is not coprime with n, the calculation is only slightly more complicated. If we set $\text{GCD}(x,n) = \frac{n}{e}$ and $\tilde{x} = \frac{x}{(n/e)}$ (so that \tilde{x} is coprime with e), a little calculation shows that for a character modulo n of conductor f, the above sum is equal to

$$\frac{1}{n} \sum_{h \mod n} \langle hx \rangle_n \theta(h) = \begin{cases} 0 & \text{if } f \nmid e, \\ \frac{\varphi(n)}{\varphi(e)} B_{1,\theta}^e \theta^*(\tilde{x}) & \text{if } f \mid e. \end{cases} \quad (5.7)$$

Using these results, the parity equation in the form (5.4) is a congruence modulo 4 (we have divided by n) for a sum of terms comprising Bernoulli numbers, various factors related to gcd’s, and values of characters. Instead of writing the complete equation in the general case, which does not pose any problem but the notation, we take a simple example, and write it explicitly in the case of $su(4)$.

To simplify a bit more, we take in $su(4)$ two self–conjugate weights (a, b, a) and (a', b', a'), and assume that $a, b, 2a+b, a', b', 2a'+b'$ are all coprime with n (this last assumption simplifies the notation, but is actually the most difficult situation). From (2.13), the congruences we must solve are simple to write out

$$\frac{1}{2} B_{1,\theta}^n \left[2\theta^*(a) + \theta^*(b) - \theta^*(2a+b) - 2\theta^*(a') - \theta^*(b') + \theta^*(2a'+b') \right] = 0 \mod 2, \quad \text{for all odd } \theta. \quad (5.8)$$

Solving them requires looking more closely at the Bernoulli numbers.

As it turns out, Bernoulli numbers have received an enormous attention for decades, because of the extremely important role they play in algebraic number theory. It would be an impossible task for us to make a review of their properties. Instead, we will mention, without proof\footnote{For some of the results mentioned in the text, we have provided our own proof, although we have no doubt that they can be found somewhere in the mathematical literature.}, those which we feel are relevant for our problem.
A first observation is that the congruence (5.8) is between algebraic integers. The reason is very simple. The first congruence we wrote down, equation (5.1), is the equality of two sums of residues, which are equal to 0 or to \(n \) modulo \(2n \) (as follows from the lemma of Section 2). But since in any case, they are both equal to 0 modulo \(n \), the congruence (5.1) is in fact trivial modulo \(n \). When multiplied by \(\theta(h) \) and summed over \(h \), it yields (5.2), which must therefore be identically satisfied modulo \(2n \). It means that the equation (5.8) is identically satisfied modulo 1, i.e. that the left-hand side is an algebraic integer. Thus the non-trivial part is entirely contained in a congruence modulo 2.

Technically, these observations are reflected by specific properties of the Bernoulli numbers \(B_{1,\theta}^n \). Indeed, one can show that most of them are not only algebraic integers, despite the factor \(\frac{1}{n} \) in their definition, but are also equal to 0 modulo 2. In other words, many numbers \(\frac{1}{2}B_{1,\theta}^n \) are integral. The precise conditions under which this is true are not simple to state, but a sufficient condition is that the conductor of \(\theta \) should not be a prime power.

When \(\theta \) is such that \(\frac{1}{2}B_{1,\theta}^n \) is integral, the equation (5.8) simplifies further to become

\[
\frac{1}{2}B_{1,\theta}^n \left[\theta^*(b) + \theta^*(2a + b) + \theta^*(b') + \theta^*(2a' + b') \right] = 0 \mod 2. \tag{5.9}
\]

The main difficulty that arises when one tries to solve equations like (5.8) or the previous one, is to calculate the gcd of \(\frac{1}{2}B_{1,\theta}^n \) and 2. Clearly the most favourable case is when the two numbers are coprime, because one can then divide by \(\frac{1}{2}B_{1,\theta}^n \) and study the conditions under which the sum of characters vanishes. Although that part may not be straightforward, we think it should be tractable, since after all, it is merely a matter of having a certain sum of roots of unity that vanishes. Even if exotic solutions can occur, the generic solutions are expected to be the trivial ones, namely \(a' = a \) and \(b' = b \) (up to some automorphisms).

To see if half the Bernoulli numbers are coprime with 2, and if not, to calculate their gcd, is much more delicate. Even worse is the fact that they can vanish (as complex numbers). Indeed a standard identity gives the Bernoulli numbers associated to non-primitive characters in terms of those pertaining to primitive characters. If \(\theta \) has conductor \(f \), and if \(\theta_0 \) is the character modulo \(f \) that induces \(\theta \), then the formula is

\[
B_{1,\theta}^n = B_{1,\theta_0}^f \prod_{\text{prime } p|n} (1 - \theta_0(p)). \tag{5.10}
\]

It is known that Bernoulli numbers associated to primitive characters are non-zero as complex numbers, so \(B_{1,\theta_0}^f \neq 0 \), but the product over the prime divisors of \(n \) may force a zero (this can only happen if \(n \) is not a prime power). As to the congruence modulo 2, \(\frac{1}{2}B_{1,\theta}^n \) can have a common divisor with 2, either because \(\frac{1}{2}B_{1,\theta}^f \) has one, or else because some \((1 - \theta_0(p)) \) divides 2. All these questions lead to rather non-trivial arithmetical questions in cyclotomic extensions.

7A particular instance where it is not true is when \(n \) is a power of an odd prime \(p \). Then \(B_{1,\theta_0}^f \) is not integral, but there is a unique prime ideal \(\pi \) in \(\mathbb{Q}(\zeta_{\varphi(f)}) \), lying above \(p \), such that \(\pi B_{1,\theta_0}^f \) is integral. In this situation, the announced triviality of the congruence modulo \(n \) is fulfilled because the various characters in (5.8) add up to something equal to 0 modulo \(\pi \).
It is however intriguing to note that the generalized Bernoulli numbers appear in a remarkable formula expressing what is called the relative class number h^- of cyclotomic fields. If h_n and h^+_n denote respectively the class number of $\mathbb{Q}(\zeta_n)$ and of $\mathbb{Q}(\cos \frac{2\pi}{n})$, the relative class number of $\mathbb{Q}(\zeta_n)$ is their quotient, $h^-_n = h_n / h^+_n$. This number, also an integer as it turns out, can be computed from the formula

$$h^-_n = \hat{Q} n \prod_{\theta \text{ odd primitive}} (-\frac{1}{2} B^n_{1,\theta}),$$

(5.11)

where \hat{Q} is a numerical factor, equal to 1 if n is a power of 2, 2 if n is an odd prime power or if n is even, and 4 otherwise. From this formula, one can see that to determine the GCD of $\frac{1}{2} B^n_{1,\theta}$ and 2 amounts to say something about the power of 2 that divides the relative class number of cyclotomic fields. In this respect, Iwasawa’s theory of \mathbb{Z}_p-extensions could provide some help.

Certainly, one cannot hide the fact that hard and maybe deep problems lie on the way towards the solution of the parity equation. However, one should emphasize the fact that these problems, mostly concerned with Bernoulli numbers, are not specific to the situation that we chose as illustration. If one follows the approach presented here, be it in $su(4)$ or in another algebra, one ends up with equations like (5.8) or (5.9), the solution of which requires basically two steps. One involves the Bernoulli numbers themselves, more precisely their modular properties; the other is an equation saying that certain values of characters add up to zero. Only this second part depends on which algebra we treat and which kind of weights. The first part is universal, algebra independent. This may be a happy coincidence as it is probably more difficult.

We can illustrate this by displaying the analogous equation for $su(8)$, at height n. We make the same assumptions as for $su(4)$, namely we take two self-conjugate weights (a, b, c, d, c, b, a) and $(a', b', c', d', c', b', a')$. As before we assume that all linear combinations of the Dynkin labels that appear are coprime with n. Then the equivalent of (5.3) involves a sum of only eight characters

$$\frac{1}{2} B^n_{1,\theta} \left[\theta^*(d) + \theta^*(2c+d) + \theta^*(2b+2c+d) + \theta^*(2a+2b+2c+d) + \text{same primed} \right] \equiv 0 \pmod{2},$$

(5.12)

valid for all odd characters which are such that $\frac{1}{2} B^n_{1,\theta}$ is integral.

Without minimizing the difficulties, we believe that it is a very positive and encouraging feature of the approach presented here.

8If K is a number field, i.e. a finite algebraic extension of \mathbb{Q}, the fractional ideals of K form an Abelian group, where the identity is just the ring of integers of K. One defines an equivalence relation by saying that two ideals α and β are equivalent if $\alpha \beta^{-1}$ is principal (generated by a single element of K). One can show that the quotient of the group of ideals by this relation is a finite group, called the ideal class group. Its order is the class number of K, and is among the most important numbers characterizing K.

9Interestingly, if we take two self-conjugate weights of $su(5)$, we obtain the same equation as for $su(4)$ (with b replaced by $2b$): the two weights $(a, 2b, a)$ and $(a', 2b', a')$ satisfy the parity equation for $su(4)$ if (a, b, b, a) and (a', b', b', a') satisfy the parity equation for $su(5)$. One easily convinces oneself that the same holds within all pairs of algebras $su(4\ell)$ and $su(4\ell + 1)$, if one restricts to self-conjugate weights.
Acknowledgements

D.A. would like to thank the Institute for Theoretical Physics in Louvain-la-Neuve for hospitality extended to him during visits. This work was completed while he was staying at the Institute of Theoretical Physics, ETH Zürich, and was supported by the Fonds National Suisse. He thanks both institutions.

References

[1] J. Cardy, Nucl. Phys. B270 (1986) 186–204.
[2] A. Cappelli, C. Itzykson and J.-B. Zuber, Commun. Math. Phys. 113 (1987) 1–26.
 A. Kato, Mod. Phys. Lett. A2 (1987) 585–600.
[3] T. Gannon, Commun. Math. Phys. 161 (1994) 233–264.
[4] V.G. Kac, *Infinite dimensional Lie algebras*, 3rd edition, Cambridge University Press, Cambridge 1990.
[5] A. Coste and T. Gannon, Phys. Lett. B323 (1994) 316–321.
[6] P. Ruelle, E. Thiran and J. Weyers, Nucl. Phys. B402 (1993) 693–708.
[7] N. Aoki, Amer. J. Math. 113 (1991) 779–833.
[8] M. Bauer, A. Coste, C. Itzykson and P. Ruelle, J. Geom. Phys. 22 (1997) 134–189.
[9] E. Buffenoir, A. Coste, J. Lascoux, P. Degiovanni and A. Buhot, Ann. Inst. Poincaré, Theor. Phys. 63 (1995) 41–79.
[10] T. Gannon and M.A. Walton, *On fusion algebras and modular matrices*, Cambridge preprint DAMTP–97–101, q-alg/9709039.
[11] N. Koblitz and D. Rohrlich, Can. J. Math. XXX (1978) 1183–1205.
[12] C. L. Siegel, *Gesammelte Abhandlungen*, Band I.
[13] L. Washington, *Introduction to Cyclotomic Fields*, Springer, New York 1982.
[14] L. Carlitz, Bull. Math. Soc. 65 (1959) 68–69.