Antimicrobial Activity of *Fejervarya* Skin Secretions (Anura: Dicroglossidae) in West Sumatra, Indonesia

Wila Karlina¹, Djong Hon Tjong¹*,², Dewi Imelda Roesma², Feskaharni Alamsjah², Muhammad Syukri Fadil²

¹Department of Biotechnology, Postgraduate Program, Andalas University, Padang, West Sumatera, Indonesia; ²Department of Biology, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, West Sumatera, Indonesia

Abstract

BACKGROUND: The emergence of pathogen microorganisms in recent years has developed antibiotic resistance. The resistance has increased morbidity, mortality, and the cost of medical care. Amphibian skin is rich in biologically active compounds. The compounds secreted from frog skin have the potential to be developed into new antimicrobial compounds to fight pathogenic bacteria and fungi.

AIM: This study aimed at analyzing the ability of compounds secreted from the skin of *F. cancrivora* and *F. limnocharis* in West Sumatera to inhibit the growth of Gram-negative bacteria, Gram-positive bacteria, antibiotic resistant bacteria, and fungi.

METHODS: This study used the diffusion method with paper discs for antimicrobial test of frog skin secretions.

RESULTS: Result from this study showed that the skin secretions of *F. cancrivora* and *F. limnocharis* in West Sumatera did not show any antimicrobial properties.

CONCLUSION: Skin secretions of *F. limnocharis* and *F. cancrivora* do not show any antimicrobial activity.

Introduction

The genus *Fejervarya* is widely distributed in Asia and consisting of 13 species [1]. Morphological characteristics of *Fejervarya* are divided into four different groups, which are large, medium, small, and mangrove types [2]. Kurniawan et al. (2014) reported that there are five species of *Fejervarya* in Indonesia, namely, *Fejervarya* cf. verruculosa, *Fejervarya* sp., *F. iskandari*, *F. limnocharis*, and *F. cancrivora*. *F. limnocharis* and *F. cancrivora* are widely distributed and sympatric in Sumatera, Kalimantan, and Java [3]. This two frog species are commonly found in rice fields, thus also known as rice field frogs [4].

Research on *F. cancrivora* and *F. limnocharis* in Indonesia and several other countries has been conducted by several researchers. The previous research mostly concerning the morphological variations, reproductive isolation mechanisms, and molecular phylogenetic relationships of *F. limnocharis* complex in Indonesia, Malaysia, and Japan [5], genetic relationships and reproductive isolation mechanisms between *F. limnocharis* complex in Indonesia (Java) and other Asian countries [6], *Fejervarya* (Anura: Dicroglossidae) phylogenetic [7], genetic variation, and evolutionary relationships of *F. cancrivora* in Indonesia and other Asian countries based on the analysis of allozymes and mitochondrial DNA sequences [8], the taxonomic status of three types of *F. cancrivora* from Indonesia and other Asian countries based on morphological observations and crossing experiments [9], also about genetic divergence and geographic distribution of *Fejervarya* in Indonesia based on mitochondrial 16s rRNA gene analysis [3]. Recent research has shown that frog skin secretion is a potent antimicrobial.

The emergence of pathogen microorganisms in recent years has developed antibiotic resistance which is a serious threat to public health [10]. The World Health Organization (2014) reported there are 50% of *E. coli*, Klebsiella, and *Staphylococcus* have been resistant to antibacterial, while Candida has been resistant to fluconazole [11]. The resistance has increased morbidity, mortality, and the cost of medical care [12]. Therefore, it is important to find new types of antimicrobial agents, and one of the sources is frog skin secretions.

Gomes et al. (2007) reported that the compounds secreted from frog skin have the potential
to be developed into new antimicrobial compounds to fight pathogenic bacteria and fungi [13]. Amphibian skin is rich in biologically active compounds [14]. Amphibians secrete chemical compounds from skin glands that are scattered throughout the skin surface in response to stress and to protect themselves from predators [13], [15]. The chemical compounds contained in the amphibian skin glands are peptides, biogenic amines, steroids, alkaloids, and proteins [15], [16]. Research on the potential of antimicrobial compounds from frog skin secretions has been carried out by Afsar et al., (2011) who reported that Rana macrocnemis frog skin secretions in Turkey have antimicrobial activity on Bacillus cereus, B. subtilis, E. coli, Proteus vulgaris, Sarcina lutea, Enterobacter aerogenes, Salmonella typhimurium, S. aureus, and C. Albicans [10]. Wang et al. (2012) reported that the peptides isolated from the skin of Odorrana hainanensis frogs in China were able to inhibit the growth of Gram-positive bacteria, Gram-negative bacteria, and fungi [16]. Katerere et al. (2013) also reported that compounds secreted from frogs (Amietia fuscigula, Strongylopus grayi and Xenopus laevis) and toads (Amietophrynus pantherinus) skins in South Africa have an antifungal activity which can inhibit fungal growth [17]. However, research on the skin secretions of F. cancrivora and F. limnocharis in West Sumatra which have the potential to produce novel antimicrobial compounds is still unknown. In contrast, antimicrobial activity will contribute as a basic data to the future studies in the monitoring and potential to produce novel antimicrobial. Therefore, antimicrobial activity of F. cancrivora and F. limnocharis skin secretion in West Sumatra is needed.

Methods

Sample preparation and collection of frog secretions

Samples of F. limnocharis were collected directly around the Limau Manis rice fields, Pauh District, Padang City and F. cancrivora was collected in the Koto Baru area, Kubung District, Solok Regency. Frog samples were captured using the visual night encounter technique. Research on the antimicrobial test of Fejervarya frog skin secretions (Anura: Dicroglossidae) in West Sumatera was carried out from April to September 2019.

The collection of frog skin secretions was carried out according to the method used by Grant and Land (2002) which has been modified. Electrical stimulation using an electric applied shock directly to the frog samples [18]. The electric shock instrument (Transcutaneous Amphibian Stimulator/TAS) was made according to a modified design by Grant and Land (2002) [18]. This instrument was placed on the dorsal part of the frog. The applied voltage was in accordance with the SVL (Snout Vent Length) of each frog and given for 30 s. The glandular secretions resulted then scraped using a spatula and put into micro tube. Frog skin secretions of F. limnocharis used a 10% concentration and F. cancrivora used a pure 100% concentration. Secretions of F. limnocharis and F. cancrivora secretions were tested in different concentrations due to the small number of individuals and the lack of F. limnocharis skin secretions.

Test microorganisms and growth conditions

This study used bacterial and fungal samples for the antimicrobial test. Bacterial samples used were Escherichia coli O157, Pseudomonas aeruginosa ATCC 27853, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 25923, Entroboccus faecalis ATCC 29212, Listeria monocytogenes CFSAN004330, and Methycillin-Resistant Staphylococcus aureus (MRSA) while fungal sample used was Candida albicans. The microbial samples were obtained from Microbiology Laboratory, Biology Department, Andalas University, Padang.

The bacteria were cultured in Mueller-Hinton Agar (Oxoid) medium at 37°C for 24 h. Fungi were cultured in Sabouraud Dextrose Agar (Oxoid) medium at 30°C for 48 h.

Antimicrobial assay

An antimicrobial assay was carried out using agar diffusion method with paper disc based on the modified method of Afsar et al. (2011) [10], the modification was concerning the media and the concentration used. The microbial samples colonies were taken as much as 1–2 dose from the media, then it was suspended in a 0.85% NaCl physiological solution. Next, the solution was homogenized using vortex and the turbidity was adjusted with 0.5% Mc Farland solution which is equivalent to a cell density of 1.5 × 10⁸ colony forming unit/ml. Then, 100 µL of bacterial suspension was swab-tested using a cotton bud in a sterile petri dish containing the media. Each paper disc was dripped with 30 µL of frog skin secretion solution.

Chloramphenicol 30 mg.mL⁻¹ was used as a positive control for bacteria, 20% ketoconazole for fungi and DMSO 0.5% as a negative control. Bacterial cultures were incubated at 37°C for 20 h and fungal cultures were incubated at 30°C for 48 h. After incubation, the inhibition zone around the disc paper was observed. In this study, the whole testing was carried out with three replications.
Results

The antimicrobial assay on F. limnocharis skin secretions was done against five pathogenic bacteria including Gram-negative bacteria, Gram-positive bacteria, and antibiotic resistant bacteria. The test result did not show any antimicrobial ability. This was characterized by the absence of a clear zone/inhibition zone around the paper disc. The test result on positive control which were given chloramphenicol for bacteria and ketoconazole for fungi is shown in Figure 1.

The antimicrobial assay on F. cancrivora skin secretions used seven bacteria and one fungus consisting of Gram-negative bacteria, Gram-positive bacteria, antibiotics-resistant bacteria, and fungi. The test results did not show any antimicrobial ability. Figure 2 showed the absence of a clear zone around the paper disc.

Discussion

According to Figures 1 and 2, it can be concluded that skin secretions of F. limnocharis and F. cancrivora do not show any antimicrobial activity. Suhyana et al. (2015) reported that the skin secretions of Fejervarya limnocharis frogs in West Java showed relatively small antibacterial activity against S. pneumoniae multidrug resistant (MDR) SPN1307 [19]. Lu et al. (2007) also reported that cancrin peptides isolated from the skin secretions of F. cancrivora frogs living in mangrove swamps in Hainan, China had antimicrobial activity against E. coli ATCC25922, B. dysenteriae, S. aureus ATCC2592, and C. albicans ATCC2002 [20]. Song et al. (2009) reported that the peptides tigerinin-RC1 and tigerin-RC2 isolated from skin secretions of F. cancrivora frogs living in mangrove swamps in Hainan, China also exhibited antimicrobial activity against strain S. aureus ATCC25923, S. aureus ATCC43300, B. subtilis, E. coli ML-35P, P. aeruginosa PA01, P. aeruginosa ATCC27853, and C. albicans ATCC2002 [21]. The possibility of this result was due to the low concentration of protein contained in frog secretions compared to other bioactive compounds.
The low protein concentration was probably caused by the use of pesticides in agricultural areas in the habitat of F. cancrivora and F. limnocharis.

The uses of pesticides also lead to the thickening of the epidermis, damage to the skin histology, and a decrease in the number of glands in frogs. Some of these negative impact of pesticides use on frogs conditions were reported by several studies. The first negative impact is the thickening of the epidermis. Alina et al. (2010) reported that the skin of R. ridibunda injected with actara 25WG resulted in the thickening of epidermal layer [22] Musfar (2019) also reported that there was skin thickening on F. limnocharis frogs exposed to pesticides [23].

Second impact is the histological damage to the frog skin. Pasteris et al. (2006) reported that the skin of R. castebalana experienced edema, enlarged blood vessels, distortion of serous, and glandular glands in connective tissue; the occurrence of orthokeratosis (stratum corneum layer did not contain cell nuclei) in the epidermis; and the most of the connective tissue was separated in the stratum spongiosum [24]. In addition, Varga et al., (2019) also reported that short-term exposure to cadmium to the skin of Italian frogs (Pelophylax bergeri) resulted in the change in the structure of epidermis layer on the frog skin and induced cellular and molecular stress responses [25]. Furthermore, Musfar (2019) stated that there was skin damage in the form of edema in the compact stratum layer and hypertrophy in the epidermal layer of F. limnocharis frogs. The third impact is the decrease in the number of frog glands [23]. Musfar (2019) reported that the F. limnocharis frogs exposed to pesticides have less skin glands compared to those not exposed to pesticides [23].

Based on the previous researcher regarding the impact of pesticides, thus the absence of antimicrobial activity on the skin secretions of F. cancrivora and F. limnocharis frogs was suspected because the samples used were contaminated with pesticides. This is supported by Bruhl, Pieper and Weber (2011) that the permeable nature of frog skin can cause high absorption of pesticides through the skin. More than 83% of pesticides are absorbed through the dorsal and ventral skin [26].

Conclusion

Skin secretions of F. limnocharis and F. cancrivora do not show any antimicrobial activity.

Acknowledgments

This article is part of Wila Karlina's thesis, Biotechnology Study Program, Postgraduate Program, Andalas University. This research was financially supported by Skim Cluster of Graduate Teacher Acceleration (Skim Klaster Percepatan Guru Besar) No. 30/UN.16.17/PP.PGB/LPPM/2018. We also thanks Prof. Dr. sc. agr. Ir. Jamsari, MP., Prof. Mrs. drh. Hj. Endang Purwati Rahayuningsih, M.S., Ph.D. and Mrs. Prof. Dr. Marlina, M.S., Apt who gave a lot of input. Thanks also to Radila Utami, Mayfairus Sahira, Alponsin, Sah Putra Adrian, Roby Cahyadi, Nana Tri Agustina and the team who helped during this research.

References

1. Frost DR. Amphibian Species of the World 6.0. New York: American Museum of Natural History; 2017. Available from: http://research.amnh.org/herpetology/-amphibia/index.html [Last accessed on 2019 Sep 17].

2. Islam MM, Khan MM, Djong TH, Alam MS, Sumida M. Genetic differentiation of the Fejervarya limnocharis complex from Bangladesh and other Asian countries elucidated by allozyme analyses. Zool Sci. 2008;25(3):261-72. https://doi.org/10.2108/zsj.25.261

PMid:18393563

3. Kurniawan N, Djong TH, Maideliza T, Hamidy A, Hasan M, Igawa T, et al. Genetic divergence and geographic distribution of frogs in genus Fejervarya from Indonesia Inferred from mitochondrial 16s rRNA gene analysis. Treubia. 2014;41:1-16. https://doi.org/10.14203/treubia.v41i0.361

4. Kusrimi M. Panduan Bergambar Identifikasi Ambil Jawa Barat. Bogor: Fakultas Kehutanan IPB dan Direktorat Konservasi Keaneekaragaman Hayati; 2013. https://doi.org/10.19081/jpsl.5.2.187

5. Tjong DH, Matseu M, Kuramoto M, Belabut DM, Sen YH, Nishioka M, et al. Morphological divergence, reproductive isolating mechanism, and molecular phylogenetic relationships among Indonesia, Malaysia, and Japan populations of the Fejervarya limnocharis Complex (Anura, Ranidae). Zool Sci. 2007;24(12):1197-212. https://doi.org/10.2108/zsj.24.1197

PMid:18271636

6. Tjong DH, Islam MM, Nishioka M, Matsui M, Ota H, Kuramoto M, et al. Genetic relationships and reproductive-isolation mechanisms among the Fejervarya limnocharis complex from Indonesia (Java) and Other Asian countries. Zool Sci. 2007;24(4):360-75. https://doi.org/10.2108/zsj.24.360

PMid:17867834

7. Kotaki M, Kurabayashi A, Matsui M, Kuramoto M, Djong TH, Sumida M. Molecular Phylogeny of the diversified frogs of Genus Fejervarya (Anura: Dicroglossidae). Zool Sci. 2010;27(5):386-95. https://doi.org/10.2108/zsj.27.386

8. Kurniawan N, Islam MM, Djong TH, Igawa T, Daicus MB, Yong HS, et al. Genetic divergence and evolutionary relationship in Fejervarya cancrivora from Indonesia and other Asian countries inferred from Allozyme and mtDNA sequence analyses. Zool Sci. 2010;27:222-33. https://doi.org/10.2108/zsj.27.222

PMid:20192690

9. Kurniawan N, Djong TH, Islam MM, Nishizawa T, Belabut DM, Sen YH, et al. Taxonomic status of three types of Fejervarya cancrivora from Indonesia and other Asian countries based on morphological observations and crossing experiments. Zool Sci. 2011;28(2):12-24. https://doi.org/10.2108/zsj.28.12
10. Afsar B, Afsar M, Kalyoncu F. Antimicrobial activity in the skin secretion of brown frog, Rana macrocnemis (Boulenger, 1885) collected from Turkey. Sci Res Essays. 2011;6(5):1001-4. https://doi.org/10.5897/SRE10.237

11. World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. France: World Health Organization Press; 2014.

12. Gulen TA, Guner R, Celikbilek N, Kses S, Tasyaran M. Clinical importance and cost of bacteremia caused by nosocomial multi drug resistant Acinetobacter baumannii. Int J Infect Dis. 2015;38(5):32-5. https://doi.org/10.1016/j.ijid.2015.06.014

13. Gomes A, Giri B, Saha A, Mishra R, Dasgupta SC, Debnath A, et al. Bioactive molecules from amphibian skin: Their biological activities with reference to therapeutic potentials for possible drug development. Indian J Exp Biol. 2007;45:579-93.

14. Govender T, Dawood A, Esterhuyse AJ, Katerere DR. Antimicrobial properties of the skin secretion of frogs. S Afr J Sci. 2012;108(5/6):25-30. https://doi.org/10.4102/sajs.v108i5/6.795

15. Siano A, Gatti PI, Imaz MS, Zerbini E, Simonetta AC, Lajmanovich R, et al. A Comparative study of the biological activity of skin and granular gland secretions of Leptodactylus latrans and Hypsiboas pulchellus from Argentina. Records Nat Prod. 2014;8(2):128-35. https://doi.org/10.1021/np4009317

16. Wang R, Zhou Y, Chen T, Zhou M, Wang L, Shaw C. Identification and functional analysis of a novel trytophyllin peptide from the skin of the red-eyed leaf frog, Agalychnis callidryas. Int J Biol Sci. 2015;11(2):209-19. https://doi.org/10.7150/ijbs.10143

17. Katerere D, Dawood RA, Esterhuyse AJ, Vismer HF, Govender T. Antifungal activity of epithelial secretions from selected frog species of South Africa. Afr J Biotechnol. 2013;12(45):6411-8. https://doi.org/10.5897/AJB2013.12036

18. Grant JB, Land B. Transcutaneous amphibian stimulator (TAS): A device for the collection of amphibian skin secretions. Herpetol Rev. 2002;33(1):38-41.

19. Suhanya J, Artika IM, Safari D. Activity of skin secretions of frog Fejervarya limnocharis and Limnonectes macrodon against Streptococcus pneumoniae multidrug resistant and molecular analysis of species F. limnocharis. Curr Biochem. 2015;2(2):90-103. https://doi.org/10.29244/cb.2.2.99-112

20. Lu Y, Mab Y, Wang X, Liang J, Zhang C, Zhan K, et al. The first antimicrobial peptide from sea amphibian. Mol Immunol. 2008;45(3):678-81. https://doi.org/10.1016/j.molimm.2007.07.004

21. Song Y, Lu Y, Wang L, Yang H, Zhang K, Lai R. Purification, characterization and cloning of two novel tigerinin-like peptides from skin secretions of Fejervarya cancivora. Peptides. 2009;30(7):1228-32. https://doi.org/10.1016/j.peptides.2009.03.020

22. Alina P, Christina PM, Octavian D, Gabriel MA, Cristina PM. Histological changes induced by the action of Actara 25 WG insecticide in Rana ridibunda, Pallas 1771. Muzeul Olteniei Craiova. Oltenia. Studii si comunicari. Stiintele Naturii. Tom. 2010;26(2):165-8.

23. Musfar A. Analisis Histologi Kulit Fejervarya limnocharis Bouie pada Areal Pertanian Yang Terpapar Pestisida Di Jorong Teluk Anjalai, Kabupaten Solok, [Histological analysis of the skin of Fejervarya limnocharis Bouie on Pesticide-Exposed Agricultural Areas in Jorong Teluk Anjalai, Solok Regency], Bachelor Andalas University; 2019. https://doi.org/10.24252/bio.v4i2.3245

24. Pasteris SE, Buhler ML, Nader-Macias ME. Microbiological and histological studies of farmed-bullfrog (Rana catesbeiana) tissues displaying red-leg syndrome. Aquaculture. 2006;251:11-8. https://doi.org/10.1016/j.aquaculture.2005.05.007

25. Varga JF, Bui-Marinos MP, Katzenback BA. Frog skin innate immune defences: Sensing and surviving pathogens. Front Immunol. 2019;9:3128-49. https://doi.org/10.3389/fimmu.2018.03128

26. Bruhl CA, Pleper S, Weber B. Amphibian at risk? Susceptibility of terrestrial amphibian life stages to pesticides. Environ Toxicol Chem. 2011;30(11):2465-72. https://doi.org/10.1002/etc.650

PMid:21186942

PMid:17821852

PMid:10143

PMid:25561903

PMid:10.5897/AJB2013.12036

PMid:30692997

PMid:30692997

PMid:10.1016/j.aquaculture.2005.05.007

PMid:10.3389/fimmu.2018.03128

PMid:10.1002/etc.650