Differences in the fruit structure and the location and content of bioactive substances in *Viburnum opulus* and *Viburnum lantana* fruits

Agata Konarska¹ · Marcin Domaciuk²

Received: 26 November 2016/ Accepted: 29 May 2017 / Published online: 10 June 2017

© The Author(s) 2017. This article is an open access publication

Abstract Many *Viburnum* species are popular ornamental shrubs and, simultaneously, highly valued medicinal plants as a source of many bioactive compounds, including antioxidants. *Viburnum* bark, flowers, and fruits are widely used in traditional and folk medicine, and the fruits of some species are used as cooking ingredients. The knowledge of the microstructure of *Viburnum* fruits and the accumulation sites of bioactive substances in these organs is rather poor. Comparative analyses of the microstructure of ripe *V. opulus* and *V. lantana* drupes were carried out using light, scanning, and transmission electron microscopes. The location of various groups of metabolites in the fruits of both species was determined with the use of histochemical tests and fluorescence microscopy. Additionally, the major antioxidants, i.e. carotenoids, polyphenols, and flavonoids, were quantified and a number of morphometric traits of the drupes were presented. The *V. opulus* and *V. lantana* fruits were found to differ in some morphological traits and in many characteristics of the pericarp anatomy and ultrastructure. It was shown that the *Viburnum* fruits contained lipids and lipid compounds (carotenoids, essential oils, steroids, and saponins), polyphenols (tannins, flavonoids, and anthocyanins), pectins, and proteins. The fruits of *V. opulus* contained greater quantities of carotenoids, polyphenols, flavonoids, steroids, and pectins than the *V. lantana* drupes, whereas the latter were characterised by higher contents of essential oils, saponins, and proteins. The metabolites were located in different pericarp layers, but the greatest amounts were identified in the drupe skin.

Keywords *Viburnum* fruits · Bioactive substances · Carotenoids and polyphenols · Anatomy and ultrastructure · Histochemistry and fluorescence

Introduction

Viburnum opulus L. and *Viburnum lantana* L., i.e. representatives of the family Adoxaceae, are common in natural habitats on the European continent and in some regions of Asia and North Africa. The shrubs are primarily used as ornamental plants, although their medicinal properties have long been known. Furthermore, in many European and Asian countries, *V. opulus* fruits are considered edible (Velioglu et al. 2006; Česonienė et al. 2008; Łuczaj 2011), although raw *V. opulus* fruits have an astringent-bitter-sour taste and are considered slightly toxic because of the occurrence of saponin glycosides and viburnine (Soylak et al. 2002; Wang et al. 2008). Due to the presence of tannins, low pH, and inadequate taste, *Viburnum* fruits are not very attractive for frugivores; acting as chemical repellents, they deter predators and pathogens (Hernandez 2001; Cazetta et al. 2008).

Typically, the fruit in the family Adoxaceae is a fleshy drupe containing from three to five stones (*Sambucus*), but sometimes the drupe mesocarp is dry (*Adoxa*) (Donoghue et al. 2003). An exception is the one-seeded achene-like fruit in *Sindoxa* (Wu et al. 1981). The *Viburnum* fruit is a fleshy berry-like drupe, which has a single-seeded drupelet and

1 Department of Botany, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland

2 Department of Plant Anatomy and Cytology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
endospermic seeds (Jacobs et al. 2008). The drupes, ripening in August (*V. lantana*) or September (*V. opulus*), are consid-
ered persistent fruits, as they are not shed in autumn but re-
main on shrubs throughout winter, often until May or longer.

Although many reports of the content and chemical com-
position of phytochemicals produced by fruits of different *Viburnum* species are available, there is little or no scientific
evidence for the fruit micromorphology, anatomy, and ultra-
structure, as well as the location of these phytochemicals in
the fruit cells and tissues. To date, only some morphological traits of *Viburnum* fruits have been characterised, e.g. the number of
fruits per inflorescence (Česonienė et al. 2008) or on the shoot
(Özren et al. 2011), their size (Snow and Snow 1988), weight
(Comelissen et al. 1996), and some rheological traits, such as
dimensions, diameter, sphericity, bulk density, fruit density,
volume, terminal velocity, rupture strength, and porosity
(Akbulut et al. 2008), as well as the morphology and anatomy
drupelets and seeds (Jacobs et al. 2008; Kalyoncu et al. 2013).
The structure of the outer layers of the pericarp forming
fruit skin largely determines the resistance of these organs to
adverse external factors and exerts an impact on the intensity
of transpiration, which may lead to fruit wilting (Solovechenko
and Merzlyak 2003; Veraverbeke et al. 2003). In turn, the
presence of various pigments in skin cells determines the
attractiveness of the fruit to frugivores, which has an effect on
seed dispersal (Schaefer et al. 2008; Rodríguez et al. 2013).
Moreover, the morphoanatomical features of fruits and
seeds are a diagnostic value that can be helpful in expla-
nation of the ontogeny, evolution, and phylogeny of the
genus *Viburnum* (Donoghue 1983; Donoghue et al. 2003,
2004; Winkworth and Donoghue 2005; Jacobs et al. 2008,
2010). In turn, the identification of structures involved in
production and accumulation of secondary metabolites can be
used to develop strategies for maximisation of the
yields of these compounds.

The aim of the study was to compare the morphological,
histochemical, and ultrastructural diversity of the species and
demonstrate which pericarp parts are active in the accumula-
tion of several groups of biologically active substances, in
particular the health-promoting components. Additionally,
the content of the major antioxidant compounds, i.e. caroten-
oids, polyphenols, and flavonoids, was quantified.

Materials and methods

The *V. lantana* L. and *V. opulus* L. shrubs originated from the
Arboretum of the UMCS Botanical Garden in Lublin, SE
Poland (51° 15′ 44″ N, 22° 30′ 48″ E). In 2015, the full bloom
was noted in the first days of May for *V. lantana* and at the end
of May for *V. opulus*. Ripe, fully stained, firm fruits
(120 DPA—day post anthesis) of both species were chosen
for the investigations. Ripening fruits were counted in 20
inflorescences of each species. Fruit and seed weight
(*n* = 100) were determined using an analytical balance, and
fruit and seed length, width, and thickness (*n* = 20) were
measured with a calliper.

Transverse sections (perpendicular to the fruit axis) were
incised with razors from fragments of fresh fruits with the skin
sampled from the equatorial part. Next, they were analysed in
water under a light microscope (and in polarised light) Nikon
Eclipse E200 (Nikon, Japan) and after application of the his-
tochemical tests under a fluorescence microscope (FLM)
Nikon 90i equipped with digital camera (Nikon Fi1) and the
NIS-Elements Br 2 software. Additionally, permanent prep-
rations were made from unpeeled fruit segments and analysed
under light, scanning, and transmission electron microscopes.

Anatomy parameters

The following anatomical features of the pericarp were mea-
sured in hand-made sections (*n* = 20): the height and width
of epidermis and hypodermis cells, the thickness of the cuticle,
epidermis outer walls, periclinal hypodermis walls adjacent to
the epidermis, endocarp-forming sclerid walls, exocarp
(comprising epidermis and hypodermis), five peripheral layers
of the mesocarp located directly under the skin, and endocarp.
The number of mesocarp and endocarp layers was determined
as well.

Histochemistry

The main classes of metabolites in the fresh fruit sections were
investigated using the following histochemical tests: Sudan III
and Sudan IV for total lipids (Pearse 1968; Brundrett et al.
1991), Nile Blue (Jensen 1962) for neutral and acidic lipids,
Nadi reagent (David and Carde 1964) for essential oils, potas-
sium dichromate (Gabe 1968) for tannins, ferric trichloride
(Johansen1940; Gahan 1984) for polyphenols, IKI solution
(Johansen 1940; Jensen 1962) for starch and proteins, and
Ruthenium Red (Johansen 1940; Jensen 1962) for pectin.

Fluorescence

The hand-cut cross-section through fresh fruits were also ex-
amined using fluorescence microscope equipped with a FITC
filter set (excitation light 465–495 nm and a barrier filter—
wavelength 515–555 nm), TRITC filter set (excitation light
525–565 nm and a barrier filter—wavelength 555–600 nm),
and Cy5 filter set (excitation light 590–650 nm and a barrier
filter—wavelength 663–738 nm) for autofluorescence of cu-
ticle and carotenoids, for the presence of flavonoids by induc-
tion of fluorescence with the fluorochromes Neutral Red (Conn 1977; Lulai and
Morgan 1992), and for the presence of terpenes containing steroids with the fluorochrome antimony trichloride (Mace et al. 1974).

For all the histochemical and fluorescence methods used, standard control procedures were carried out simultaneously following the suggestions of the respective authors.

Scanning electron microscopy

The fruit samples were not dried for the scanning electron microscopy (SEM) analyses, as conventional fixation of material used for scanning electron microscopy observations can alter or remove lipids forming the wax coating on the fruit surface (Konarska 2013). Immediately after fruit collection from the bushes, the external parts of the mature fruits with skin (n = 5) in the shape of cubes (3 mm × 3 mm × 2 mm) were cut out from the equatorial area perpendicularly to the main axis of the viburnum flesh with a stainless steel cutter. Next, they were mounted carefully onto aluminium stubs with a double-sided carbon tape. After coating with a 15-nm thick layer of gold, the samples were examined under a TESCAN/VEGA LMU scanning electron microscope at an accelerating voltage of 10 kV.

Light and transmission electron microscopy

To prepare permanent semi-thin and ultra-thin sections, small cubes of the fruits with skin with a volume of ca. 4 mm³ (n = 5) were fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer at pH 7.2 for 12 h at 4 °C temperature. Next, the sections were carefully washed three times in phosphate buffer and dehydrated in an ethanol series. For transmission electron microscopy (TEM), permanent samples were additionally fixed in 1% OsO₄ for 1.5 h and washed three times in distilled water. Next, samples for light microscopy (LM) and TEM observations were embedded in LR white resin (LR White acrylic resin, medium grade, Sigma-Aldrich) and polymerised at 60 °C. Semi-thin (a thickness range from 0.7 μm) and ultra-thin (70 nm thickness) sections were cut with glass knives with the use of a Reichert Ultracut S ultramicrotome. For general histology, semi-thin sections were stained with a 1% aqueous methylene blue-azure II solution (O’Brien and McCully 1981). Next, they were examined using a Nikon Eclipse E200 light microscope and measured with the use of the NIS-Elements Br 2 imaging software. Ultra-thin sections for TEM were stained with 0.5% aqueous solution of uranyl acetate in 0.5% acetic acid and lead citrate (Reynolds 1963). Observations and documentation were made using the FEI Technai G2 Spirit Bio TWIN transmission electron microscope at an accelerating voltage of 120 kV. A Megaview G2 Olympus Soft Imaging Solutions camera was used for capturing the images.

Foam test for saponins

Saponins in the fruits of the examined Viburnum species were detected with the so-called foam test (Klimek 2011; Pandey and Chandel 2014). Ten millilitres of boiling water were added to 0.5 g of the powdered raw material (skin or pulp) and allowed to cool down. Next, the tube with the content was shaken vigorously for ca. 10 s. The presence of saponins was evidenced by formation of a 1- to 10-cm high foam layer, which persisted for at least 10 min and did not disappear after addition of several drops of 2 n hydrochloric acid. Froth was classified for saponin content as follows: no froth = negative, froth less than 1 cm high = weakly positive, froth 1.2–2 cm = positive, and froth greater than 2 cm high = strongly positive.

Determination of carotenoid, polyphenol, and flavonoid contents

To determine the total content of carotenoids, samples of fresh fruit flesh with the skin (10 g) were homogenised and carotenoids were extracted with 80% acetone with addition of petroleum ether (1:1) until complete discolouration of the tissues. After removal of acetone with water, the ether extract was dried with anhydrous Na₂SO₄ and concentrated under reduced pressure at a temperature of 35 °C. The total content of carotenoids was determined in the extract with the colorimetric method as milligrams·100 g⁻¹ of fresh weight (Rutkowska 1981; Perucka 2004).

The total polyphenol content in the methanol fruit extracts of each species was estimated by application of Folin-Ciocalteu reagent according to the colorimetric method described by Singleton and Rossi (1965). Caffeic acid was used as a standard. The polyphenol concentration was expressed as caffeic acid equivalents in grammes·100 g⁻¹ of dry extract.

The flavonoid content in the fruit extracts of each species was determined with the spectrophotometer method according to the Polish Farmacopoeia (2002). Quercetin was used as a standard. The total content of flavonoids was expressed as equivalents of quercetin in grammes·100 g⁻¹ of dry extract.

Statistical analyses

Means and standard deviations (±SD) were calculated for all the measured parameters using the Excel 7.0 software (Microsoft, Redmond, Wash). Data were analysed by one-way analysis of variance (ANOVA) and Tukey’s multiple range test for comparison of means, using the Statistica 7.0 software (StatSoft, Inc., USA). Differences between species were considered statistically significant at the level of P ≤ 0.05.
Results

Morphometric traits of fruits

The *Viburnum* fruit is a single-seed drupe with remnants of the sepals and pistil located opposite to the fruit stalk. The ripe, almost spherical *V. opulus* fruits had an intense coral colour and were relatively firm, whereas the slightly elongated and flattened fruits of *V. lantana* were black and quickly lost firmness (Table 1; Fig. 1a, b). Compared with the *V. lantana* fruits, the number of *V. opulus* fruits in the inflorescences was by 15% lower, while the weight and size of the fruits in this species were twofold higher (Table 1). Although the seeds of both species had similar weight and size, they accounted for ca. 20% of the fruit weight in *V. opulus* and ca. 30% in *V. lantana* (Table 1). The seeds in both species were strongly flattened and were generally located slightly asymmetrically to the centre of fruit symmetry (Fig. 1c–f). The drupelet in *V. opulus* in the cross-section had a lenticular shape and the endocarp surface was smooth, whereas the cross section of the *V. lantana* drupelet exhibited corrugation and the presence of longitudinal grooves on its surface (Fig. 1c–f). The endocarp in *V. opulus* had a coral colour and consisted of five layers of drupelet cells. In *V. lantana*, it was beige-brown and had two more layers of sclereids. The thickness of the endocarps in the analysed *Viburnum* species was similar, but the lignified walls of *V. lantana* sclereids were twice as thick as in *V. opulus* (Table 1).

Fruit micromorphology and anatomy

The surface of the drupe in *V. opulus* had a smooth cuticle with numerous horizontally and vertically oriented crystalline wax platelets (Fig. 1g–i). The vertical wax crystallites had different sizes and formed orderly rows. In turn, the *V. lantana* cuticle exhibited parallel striae and only horizontally oriented wax platelets (Fig. 1j, k). The epidermis of both species had stomata, which were nearly round and located on small protuberances in *V. opulus* (Fig. 1l–m) and slightly elongated and located at the epidermis level in *V. lantana* (Fig. 1n, o). The stomata in both species were either open or filled with epicuticular wax.

The pericarp in the drupes of both *Viburnum* species consisted of a skin (exocarp) formed of the epidermis and hypodermis, a fleshy mesocarp, and a lignified endocarp (Fig. 2a, e). The epidermal cells were five- or six-sided polygons in top view in both species. The cross-section revealed epidermis with a thickened outer wall covered by a massive

Characteristics (n = 20)	*V. opulus*	*V. lantana*
Number of fruits in raceme	68.40 ± 19.86a	81.45 ± 40.58b
Weight of 100 fruits (g)	42.86 ± 3.23a	21.77 ± 1.47b
Length of fruit (mm)	11.85 ± 0.74a	10.35 ± 3.33a
Width of fruit I (mm)	9.60 ± 0.39a	9.00 ± 0.67a
Width of fruit II (mm)	9.60 ± 0.39a	8.50 ± 0.55b
Weight of 100 drupelets (g)	3.60 ± 0.24a	3.77 ± 0.52a
Length of drupelet (mm)	6.92 ± 0.57a	6.55 ± 1.42a
Width of drupelet (mm)	6.01 ± 0.22a	5.62 ± 1.24b
Thickness of drupelet (mm)	1.10 ± 0.03a	1.14 ± 0.1a
Number of the endocarp layer	5 ± 1a	7 ± 1b
Thickness of the endocarp (μm)	108.09 ± 11.94a	111.67 ± 12.87a
Thickness of the endocarp sclereid cell wall (μm)	6.13 ± 0.82	13.29 ± 2.13
Thickness of the cuticle (μm)	5.30 ± 0.2a	6.45 ± 0.34b
Thickness of the outer epidermis cell wall (μm)	3.40 ± 0.14a	2.33 ± 0.16b
Height of the epidermis cell (μm)	29.03 ± 2.91a	40.05 ± 5.90b
Width of the epidermis cell (μm)	34.84 ± 4.14a	46.60 ± 11.01b
Height of the hypodermis cell (μm)	79.93 ± 16.39a	72.70 ± 10.71b
Width of the hypodermis cell (μm)	90.90 ± 23.84a	67.24 ± 16.60b
Thickness of the hypodermis cell wall (μm)	17.76 ± 3.51a	6.7 ± 2.03b
Thickness of the skin (μm)	109.59 ± 11.62a	113.49 ± 10.26a
Number of the mesocarp parenchyma layer	5–17a	5–17a
Thickness of five mesocarp parenchyma layers (μm)	806.91 ± 101.61a	633.18 ± 108.87b

Values are mean ± SD (standard deviation). Different letters within a line mean statistically significant differences (P ≤ 0.05)
The cuticle layer, which stained when treated with Sudan III and IV and emitted intense autofluorescence (Fig. 2b, c). The cuticle thickness in *V. opulus* was by 18% lower than that of the layer in *V. lantana*, whereas the thickness of the outer epidermis wall was by 48% higher in *V. opulus*. Moreover, the epidermis cells in *V. opulus* were shorter and narrower in the cross sections than those in *V. lantana* (Table 1).

Fig. 1 Morphology of the drupes and drupelets as well as the drupe surface of *V. opulus* (a, c, e, g–i, m, n) and *V. lantana* (b, d, f, j–l, o). a, b Ripened drupes collected in racemes. c, d Flattened *Viburnum* drupelets with a smooth surface (e) and longitudinal grooves (d). e, f Cross-sections through the pericarp and drupelets; note the lenticular shape (e) and corrugations of the drupelet (f). g–i Epidermis surface with numerous vertically oriented crystalline wax platelets (arrows). j, k Epidermis surface with parallel cuticular striae. i, m, n Oval stomata located on small protuberances. l, o Lenticular stomata located at the epidermis level; Eg exocarp, Me mesocarp, Dr drupelet, St stoma
The single-layered or sometimes double-layered (in *V. lantana*) hypodermis was composed of collenchyma cells with thickened periclin walls adjacent to the epidermis, particularly in *V. opulus* (Fig. 2b, d–g). The walls were almost threefold thicker in *V. opulus* than in *V. lantana*. Additionally, the hypodermis cells in *V. opulus* had a greater width and height than in *V. lantana* (Table 1, Fig. 2d–g). The epidermis and hypodermis cells in *V. lantana* exhibited tannin and/or anthocyanin complexes filling the vacuoles and forming a characteristic openwork pattern (Fig. 2f,g).

Due to the asymmetrical location of the drupelet to the centre of fruit symmetry, the number of mesocarp layers in both *Viburnum* species varied considerably along the drupe periphery, but did not differ between the analysed taxa. Parenchyma cells in the cross section were characterised by a nearly one third greater height in *V. opulus* than in *V. lantana* (Table 1, Fig. 2e–h). Intercellular spaces in *V. lantana*, which were visible between the parenchyma cells were relatively numerous, had greater sizes and irregular shapes, and were filled with a dark insoluble material (Fig. 2f,h). The fruit parenchyma also exhibited smaller and larger vascular bundles in both species, and calcium oxalate crystals were detected in deeper parenchyma layers in *V. lantana*.

Fruit pigments and location of other metabolites

Three types of pigments were detected in the fruits of the analysed *Viburnum* species: carotenoids, flavonoids, and anthocyanins. They were mainly located in the fruit skin and, less frequently, in the mesocarp cells. The *V. opulus* fruits had a coral colour due to the presence of flavonoids and carotenoids; in turn, anthocyanins, which masked the presence of carotenoids, dominated in *V. lantana*. Carotenoids filled numerous chromoplasts and emitted intense autofluorescence (Fig. 3a–c). The content of carotenoids in the *V. opulus* fruits was 10-fold higher than that in *V. lantana* (Table 2). Anthocyanins were dissolved in the vacuoles of the exocarp and peripheral mesocarp cells in *V. lantana* (Fig. 3d); in *V. opulus*, in turn, the pigments were usually located in the epidermis cells (Fig. 3f). Flavonoids were detected in the vacuoles of the *V. opulus* epidermis cells (Fig. 3e–g) and in the cuticle as well as in cell walls of both species, as shown by fluorochromes, which induced a greenish-yellow secondary fluorescence of this layer (Fig. 3h, i). The quantitative analysis revealed significantly higher content of flavonoids in the *V. opulus* fruits, in comparison with *V. lantana* (2).

Fluorescent microscopy and histochemical tests demonstrated that the skin cells in both species contained lipid droplets; they were less numerous and had smaller sizes in *V. opulus* and abundant and large in *V. lantana* (Fig. 4). The lipid droplets were present only in the epidermis cells in *V. opulus* (Fig. 4a–c) and in all pericarp layers in *V. lantana* (Fig. 4d–f). The lipids exhibited staining with Sudan III, IV, Nile Blue, and autofluorescence and fluorescence in the presence of Neutral Red (Table 3, Fig. 4a–e). Moreover, the cuticle and the outer wall of the epidermis cell in both species as well as the lipid droplets in *V. lantana* contained essential oils, which was confirmed by the staining reaction with Nadi reagent (Fig. 4f,g). In turn, the fluorescence of the lipid droplets in the presence of antimony trichloride in *V. opulus* indicated the presence of steroids (Table 3, Fig. 4c). The foam test confirmed the presence of saponins in the mesocarp in the drupes of both taxa but did not show the presence of these glycosides in the fruit skin. Based on the foam height, the content of saponins in *V. lantana* was found to be slightly higher than that in *V. opulus* (Table 3).

The histochemical reactions showed that polyphenols, in particular tannins, were located mainly in the fruit skin but rarely in the mesocarp. After application of potassium dichromate and ferric chloride, the polyphenols were stained with intense brown colour (Fig. 5a–c). Tannins were dissolved in the vacuolar sap; however, in *V. lantana*, tannins were also visible as sediments and/or large condensed deposits (Fig. 5c–e). The *V. opulus* fruits exhibited twofold higher content of polyphenols than the *V. lantana* drupes (Table 2).

Moreover, the epidermis, hypodermis, and some parenchymal cells located under the skin as well as polyphenol deposits in *V. lantana* were stained straw-yellow colour when treated with IKI, which revealed the presence of proteins in the deposits and pericarp tissues mentioned above (Table 2, Fig. 5d–
f). The fruits of the analysed *Viburnum* fruits, especially *V. opulus*, are also a rich source of pectins; this was confirmed by the reaction with Ruthenium red, which stained intensely the walls of all living cells of the drupe pericarp (Fig. 5g).
Ultrastructure of skin cells (TEM)

The cuticle on the surface of ripe *V. opulus* fruits was characterised by an amorphous structure throughout its thickness (Fig. 6a, b), whereas its structure varied distinctly in *V. lantana* (Fig. 6c–e). The ca. 500-nm thick outer layer, the so-called cuticle proper, in this species had a reticulate structure. Within the cuticle layer, located under the cuticle proper, a reticulate cuticle with small, densely arranged polysaccharide fibres formed an external layer, whereas the layer adjacent to the epidermis cell wall, the so-called internal layer, was characterised by the presence of large, massive fibres forming an orderly, usually periclinally oriented network. The anticlinal fibres were substantially thinner (Fig. 6c–e). A 0.4-to 0.6-μm-thick layer of epicuticular waxes was present on the surface of the *V. lantana* cuticle (Fig. 6c, d).

Table 2 The content of some secondary metabolites in the mature fruits of *Viburnum*

Compounds (in mg·100 g⁻¹)	*V. opulus*	*V. lantana*
Carotenoids	1.50 ± 0.41	0.15 ± 0.06
Polyphenols	12.30 ± 0.35	5.16 ± 0.15
Flavonoids	0.18 ± 0.04	< 0.023

Fig. 4 Fresh cross-sections across *V. opulus* (a–c, f) and *V. lantana* (d, e, g) pericarp subjected to different histochemical tests. a, d Staining with Sudan III; visible stained cuticle and lipid droplets (arrows). b Staining with Neutral Red under fluorescence; lipids visible in the cuticle and in the form of droplets (arrows). c Staining with antimony trichloride under fluorescence; steroids present in the lipid droplets (arrows) and epidermis. e Autofluorescence of lipid droplets (arrows). f, g Staining with Nadi reagent; essential oils presence in the cell wall and cuticle and in lipid droplets (arrows); Cu cuticle, Ep epidermis, Hy hypodermis, Pa parenchyma, Td tannin deposit, Ld lipid drop.
The epidermis and hypodermis cells in both species exhibited small, oval, or lenticular chromoplasts, which especially in *V. opulus* were characterised by loss of organisation and internal membrane structure and the presence of numerous, often merging vesicles (plastoglobules) with irregular shapes and usually electron-transparent content or an empty interior (Fig. 7a). In turn, the *V. lantana* chromoplasts were often elongated and, more frequently than in *V. opulus*, exhibited some small aggregated groups of thylakoid residues (Fig. 7b).

An internal membrane system forming characteristic compartments (secondary vacuoles) was observed in the primary vacuoles of epidermis cells in *V. opulus* (Fig. 8a–c). Numerous small (100 nm and less) electron-dense tannin deposits were located near the membranes of both types of vacuoles (Fig. 8a–c). In turn, the vacuoles in *V. lantana* hypodermis and/or epidermis cells exhibited electron-dense content, which had a phenolic nature, contained numerous electron-transparent vesicles (lacunae) with varied sizes and shapes filled with flocculent content (Fig. 8d–f).

Discussion

Fruit morphology

V. opulus and *V. lantana* differed in the number of fruits in the inflorescence as well as the ripening period, colour, and shape of the drupes. The *V. opulus* shrubs were characterised by a lower number of fruits per raceme as well as larger and heavier drupes than in *V. lantana*. Some researchers report similar results concerning the number and size of fruits in the analysed *Viburnum* species to those obtained in the present study (Snow and Snow 1988; Akbulut et al. 2008). Other authors claim that the number of fruits produced in the inflorescence or on the shoot in *Viburnum* largely depends on insolation, whereas fruit weight and size in this species are modified by environmental and climate conditions as well (Kollmann and Grubb 2002, Česoniënė et al. 2008). A similar diversity was found for the drupelets of the *Viburnum* species examined in this study, which were characterised by a different colour, shape, and surface as well as different proportions of the drupelet in the total fruit weight. Moreover, the *V. opulus* and *V. lantana* endocarps had different hardness although their thickness was similar. The *V. lantana* endocarp was formed of a larger number of layers of sclereids with thicker cell walls, which increased the content of lignin in this layer and, hence, the hardness of the drupelet in this species. The differences in the morphology of *V. opulus* and *V. lantana* drupelets have also been reported by other authors (Cornelissen et al. 1996, Kollmann et al. 1998). A large diversity of the structure and thickness of the drupe endocarp and seed testa in various *Viburnum* species and *Diervilla* and *Lonicera* clads, which are members of a closely related sister family Caprifoliaceae, has been described by Jacobs et al. (2008, 2009), who claim that the endocarp and seed testa structure are important taxonomic features that can be helpful in explanation of the evolution and phylogeny of these taxa.

Skin microstructure

The fruit surface in the analysed *Viburnum* species exhibited a considerable diversity of the crystalline wax structure and the cuticle structure and thickness. Crystalline wax in the form of horizontally and vertically oriented platelets was observed on the surface of the *V. opulus* drupes, whereas *V. lantana* exhibited only horizontal crystallites. In turn, the considerably thinner cuticle on the *V. opulus* drupes was characterised by an amorphous structure, and the thick cuticle layer in *V. lantana*

Table 3 Metabolites identified in *Viburnum* fruits by histochemical, fluorescence, and foam tests and their location and content

Metabolite	Reagent	*V. opulus*	*V. lantana*
Total lipids	Sudan III; Sudan IV; Neutral Red under fluorescence	+s	++sm
Acid and neutral	Nile Blue	+s	++sm
lipids			
Essential oils	Nadi reagent	+s	++sm
Steroids	Antimony trichloride under fluorescence	+s	+s
Carotenoids	Autofluorescence	++sm	+s
Saponins	Foam test	+m	+m
Polyphenols	Ferric trichloride	+s	+sm
Tannins	Potassium dichromate	+s	+s
Flavonoids	Aluminium chloride and magnesium acetate under fluorescence	+s	+s
Starch	IKI solution	−	−
Pectins and mucilage	Ruthenium Red	++sm	+sm
Proteins	IKI solution	−	+sm

(−) absent, (+) scare, (+) present, (++) very intense present, s skin, m mesocarp
had a reticulate structure and contained numerous polysaccharide fibres. The authors of the present study observed rapid wilting and softening of ripe *V. lantana* fruits, which made the surface wrinkly, while the *V. opulus* drupes retained firmness and attractiveness for a long time. Various authors report that the crystalline wax formed exclusively by horizontal platelets was less efficient in limiting fruit transpiration than vertical platelets, similar to the polysaccharide fibres in the cuticle, which promote a faster rate of water loss and fruit wilting and shrinkage than an amorphous cuticle deprived of this type of fibres (Peschel et al. 2003, Jeffree 2006). The drupes of *Sambucus* are characterised by absence of a wax coating as well, whereas an intense wax layer is visible on the surface of *Lonicera* berries (Hummer et al. 2012). Knoche (2015) reported that the presence of epicuticular waxes on the fruit surface is crucial for limitation of water loss, while transpiration through a cuticle devoid of wax can be highly intense. Moreover, Riederer and Schreiber (1995) and Konarska (2013) have shown that the thickness of the cuticle on the surface of other fruits is not correlated with cuticular water permeability. The exocarp of the fruits in the analysed *Viburnum* species was composed of one epidermis layer and usually single-layered hypodermis, whose walls in *V. lantana* were slightly thickened in comparison to *V. opulus*. The

Fig. 5 Fresh cross-sections across *V. opulus* (a) and *V. lantana* (b–g) fruits subjected to different histochemical tests. a, c Staining with potassium dichromate; tannins present in epidermis and hypodermis cells and in condensed deposits. b Staining with ferric chloride; polyphenols visible in epidermis cells. d–f Staining with the IKI solution; proteins accumulated in epidermis and hypodermis cells and in condensed deposits. g Staining with Rhutenium Red; pectins present in cell walls. Ep epidermis, Hy hypodermis, Pa parenchyma, Td tannin deposit, Ld lipid drop.
thinner hypodermis walls in *V. lantana* drupes may be the cause of rapid shrinking of the fruit surface in this species. Various authors claim that textural features of fruit hypodermis, e.g. wall thickness, cell-to-cell contact, and the amount of air spaces, modify strongly fruit resistance to compression and deformation (Allan-Wojtas et al. 2001; Taiz and Zeiger 2002; Chiabrando et al. 2009). Similar cell layers in the exocarp of *Sambucus nigra* (Adoxaceae) drupes were observed by Vandishev et al. (2013), who distinguished one–two layers of oval thin-walled cells with no intercellular spaces between them.

Lipophilic components

Various types of lipophilic components, i.e. carotenoids, essential oils, steroids, and saponins, were accumulated in the drupes of *V. opulus* and *V. lantana*. Similar to other fruit pigments, carotenoids were located mainly in the exocarp cells. The enhanced carotenoid accumulation in the ripening *Viburnum* drupes proceeded in parallel with transformation of chloroplasts into chromoplasts. The plastids had a form of globoid structures and exhibited partial or complete disappearance of thylakoid membranes. The plastids

![Fig. 6 Cuticle on the *Vopulus* (a, b) and *V. lantana* (c–e) fruit surface. a Fragment of epidermis cell with the cuticle. b Amorphous cuticle on the fruit surface. c Fragment of epidermis cell with a cell wall, cuticle, and epicuticular waxes. d, e Visible cuticle with amorphous cuticle proper and a reticulate cuticular layer with numerous polysaccharide fibres. Note the layer of epicuticular waxes; *EW* epicuticular wax, *Cu* cuticle, *CW* cell wall, *CP* cuticle proper, *CL* cuticular layer, *ECL* external cuticular layer, *ICL* internal cuticular layer, *V* vacuole](image)

![Fig. 7 Chromoplasts in the drupe epidermis cells of *V. opulus* (a) and *V. lantana* (b). a Visible oval chromoplast with numerous plastoglobules. b Lenticular chromoplast with plastoglobules and thylakoid remnants; *Pl* plastoglobule, *Th* thylakoids](image)
contained numerous plastoglobules, sometimes with an empty interior, which may have been caused by removal of carotene during fixation. As suggested by various authors, the chloroplasts-chromoplast transformation is the most frequent modification of plastids taking place in ripening fruits of various species (Schweiggert et al. 2011; Vázquez-Gutiérrez et al. 2011). Researchers who studied the interconversion of chloroplasts into chromoplasts noted that the process was manifested by degradation of the photosynthetic machinery and membrane degradation (Bonora et al. 2000; Fu et al. 2012). Blebs, numerous plastoglobules, and minute osmophytic globules were visible inside the degraded chloroplasts.
Bréhélin and Kessler (2008) and Egea et al. (2010) suggest that the numerous enlarged plastoglobulins in forming chromoplasts participate in carotenoid sequestration. A similar chromoplast structure as that observed in *Viburnum* was reported by other authors studying different fruits (Masia et al. 1992; Camara et al. 1995; Vázquez-Gutiérrez et al. 2011). As suggested by Ytterberg et al. (2006) and Walter and Strack (2011), carotenoid-accumulating structures can have a globular, crystalline, membranous, fibrillar, or tubular form in different plants. The authors of the present study have shown that the carotenoid content in the *V. opulus* fruits was 1.5 mg 100 g$^{-1}$, which was 10-fold higher than that in *V. lantana*. Different authors report a wide range of the carotenoid content from 1.25 to 6 mg 100 g$^{-1}$ in *V. opulus* and a substantially lower content in *V. lantana* (Schaefer et al. 2008; Česonienė et al. 2010). Neuhaus and Emes (2000) and Barsan et al. (2010) have shown that chromoplasts are not only sites of biosynthesis of carotenoids but also organelles involved in the synthesis of sugars, lipids, aromatic compounds, vitamins, and hormones. They also protect plants from high light stress and contribute to seed dispersal by providing the fruits with an attractive colour (Howitt and Pogson 2006).

Essential oils and steroids were accumulated in the form of lipid droplets in the cuticle and epidermal cell walls in both species and formed lipid droplets in all pericarp layers in *V. lantana*. In turn, saponins were detected only in the fruit mesocarp in both species. Different authors confirm the presence of these metabolites in *Viburnum* fruits but do not show their location site (Yılmaz et al. 2008; Kraujalytė et al. 2012). In contrast, Babuška-Roczniai and Roczniai (2010) have proved that phytosterols in other plants can be part of cell membranes and are present in the cytoplasm or lipid vacuoles in a free form and bound with glycocides, saponins, terpenes, and reserve lipids. Other authors have shown high content of lipids in *Viburnum* seeds as well as in *Sambucus* and *Lonicera* seeds (Palíková et al. 2008; Özrenk et al. 2011; Dulf et al. 2013).

Polyphenols

The presence of several groups of polyphenols, i.e. flavonoids, anthocyanins, and tannins, was detected in the drupes of the analysed *Viburnum* species. The polyphenols were mainly located in the fruit skin. The *V. opulus* drupes exhibited a twofold higher polyphenol content than in *V. lantana*. The presence of polyphenols in the epicuticular waxes and cuticle as well as the skin of various fruits has been revealed by other authors as well (Ušenik et al. 2013; Konarska 2014a, 2015). A similar amount of polyphenols in *V. opulus* fruits was shown by Rop et al. (2010) and Moldovan et al. (2012), whereas Sagdic et al. (2006) and Özrenk et al. (2011) demonstrated several-fold higher values of total phenolic compounds. In turn, Česonienė et al. (2010) reported that the content of phenolic compounds in fruit *V. opulus* cultivars had different values in the range from 75.3 to 146.0 mg 100 g$^{-1}$. Kollmann and Grubb (2002) suggested that the variable content of different metabolites in *Viburnum* fruits depends on environmental and climate conditions.

The authors of the present study have shown that flavonoids were present in the epidermis cells in the *V. opulus* drupes and in the cuticle in both species, and their total content in *V. opulus* was several-fold higher than in *V. lantana*, i.e. 0.18 mg 100 g$^{-1}$. The results of studies conducted by other authors confirm the presence of flavonoid pigments, i.e. quercetin and flavones, in *V. opulus* and *V. lantana* fruits (Velioglu et al. 2006) and as well as catechins, i.e. flavonoids with antioxidant properties (Yunusova et al. 2004). In turn, Rop et al. (2010) and Erdogan-Orhan et al. (2011) demonstrated that the content of flavonoids in *V. opulus* fruits was 0.1–0.5 mg 100 g$^{-1}$, whereas *V. lantana* fruits contained substantially lower amounts of these metabolites (0.05–0.2 mg 100 g$^{-1}$). As suggested by various researchers, the role of flavonoids contained in fruits is to provide protection of the fruit photosynthetic apparatus against UV-B-induced damage at strong sunlight (Solovchenko and Schmitz-Eiberger 2003) and to increase the cuticle stiffness (Tsubaki et al. 2012).

Based on the results of histochemical tests and LM and TEM observations, it was shown that the skin cell vacuoles and intercellular spaces in the mesocarp of the examined *Viburnum* species serve as tannin accumulation sites. Besides their soluble form, insoluble sediments of these compounds as well as condensed, electron-dense, different-size accretions, the so-called proanthocyanins, were observed. A similar location and form of tannins in the fruit pericarp of various species have also been observed by other authors (Hammouda et al. 2014; Konarska 2013, 2014b). Some researchers suggest that tannins can form stable complexes with proteins, carbohydrates, and fats (Jakobek 2015) as well as heavy metals, mucilage, and pectins (Ramaswamy et al. 2013; Zhao et al. 2013). Literature data indicate that tannins are particularly abundant in young, unripe fruits and are responsible for their astringent taste; during the fruit ripening period, their content declines as the compounds are hydrolysed into various sugars and acids or converted into other forms of secondary metabolic compounds (Robil and Tolentino 2015, Tessmer et al. 2016). Many authors agree that tannins repel herbivores and protect plants from pathogens (Lattanzio et al. 2006), and their presence can determine fruit attractiveness to potential seed dispersers (Kollmann and Grubb 2002). However, Cazetta et al. (2008) have detected high tannin contents in *Viburnum* drupes also in ripe fruits as the major cause of the unattractiveness of *Viburnum* fruits to frugivores (birds and mammals); therefore, the fruits can persist on the shrubs until spring.

In the skin cells of the analysed *Viburnum* drupes, anthocyanins were dissolved in the cell sap (*V. opulus*) and/or

© Springer
formed insoluble complexes with other metabolites, e.g. tannins and/or proteins (V. lantana). Similar location and forms of anthocyanins were described by Bernal et al. (2015) and Franceschinis et al. (2015), whereas the formation of concentrated spherule structures, containing anthocyanins at high concentrations, the so-called anthocyanic vacuolar inclusions, was reported by Conn et al. (2010) and Mizuno et al. (2015) in analyses of the skin of other fruits. Different authors show that anthocyanins are synthesised by multi-enzyme complexes that are localised at the cytoplasmic face of the endoplasmic reticulum (Winkel 2004); next, they accumulate at higher concentrations in several vesicles of different sizes in the cytoplasm and then they actively move alongside the tonoplast and accumulated in the vacuole (Gomez et al. 2011). Similar to Viburnum fruits, the fruit of various Sambucus and Lonicera species are a rich source of anthocyanins and phenolic compounds and exhibit a strong antioxidant capacity (Chaovanalakit et al. 2004; Wu et al. 2004; Ozgen et al. 2010).

Conclusions

The investigations have revealed a number of differences in the micromorphology, anatomy, and ultrastructure of V. opulus and V. lantana fruits. The differences involved fruit cuticle thickness and structure, cuticular wax structure, thickness of pericarp layers and cells contained therein, and thickness of the cell walls in these tissues. There were also differences in the content of pigments responsible for the fruit colour as well as the occurrence, location, and content of biologically active compounds. It has been documented that a majority of the metabolites analysed were located in the fruit skin. The V. opulus fruits have been shown to exhibit greater firmness and durability as well as health-enhancing values due to their content of carotenoids, flavonoids, and polyphenols, whereas the V lantana drupes contained greater amounts of proteins, essentials oils, and saponins. Carotenoids, anthocyanins, flavonoids, and tannins contained in the fruits of the analysed Viburnum species are valuable human and animal health-promoting compounds, as they have potent antioxidant activity that could reduce the risk of cancer and cardiovascular diseases. The results obtained represent advances in the knowledge of the Viburnum fruit microstructure and location of bioactive substances in two Viburnum species, which can provide a foundation for future studies aimed at a wider use of these metabolites for food, nutraceutical, and medicinal purposes. Furthermore, investigation of the fruit microstructure can improve our understanding of the relationship between the structure and tissue function and between the structure and accumulation of active substances.

Acknowledgements This work was supported by the Ministry of Science and Higher Education of Poland as part of the statutory activities (project OKB/DS/8) of the Department of Botany, University of Life Sciences in Lublin.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Akbilut M, Calisir S, Marakoglu T, Coklar H (2008) Chemical and technological properties of European cranberrybush (Viburnum opulus L.) fruits. Asian J Chem 20:1875–1885
Allan-Wojtas PM, Forney CF, Carbyn SE, Nicholas KUKG (2001) Microstructural indicators of quality-related characteristics of blueberries—an integrated approach. LWT-Food Sci Technol 34:23–32
Babuska-Rocznia M, Rocznia W (2010) The role of fitosterols in pharmacy and medicine. Farm Przegl Nauk 8:44–47
Barsan C, Sanchez-Bel P, Rombalci C, Egea I, Rossignol M, Kuntz M, Zouine M, Latché A, Bouzayen M, Pech JC (2010) Characteristics of the tomato chromoplast proteome revealed by proteomic analysis. J Exp Bot 61:2413–2431
Bernal FA, Orduz-Diaz LL, Cox-Barrera E (2015) Exploitation of the complexation reaction of ortho-dihydroxylated anthocyanins with aluminum (III) for their quantitative spectrophotometric determination in edible sources. Food Chem 185:84–89
Bonora A, Pancaldi S, Gualandri R, Basulo MP (2000) Carotenoid and ultrastructure variations in plastosid of Arum italicum Miller fruit during maturation and ripening. J Exp Bot 51:873–884
Brehelin C, Kessler F (2008) The plastoglobule: a bag full of lipid biochemistry tricks. Photochem Photobiol 84:1388–1394
Brundrett MC, Kendrick B, Peterson CA (1991) Efficient lipid staining in plant material with Sudan red 7B or Fluoral Yellow 088 in polyethylene glycol-glycerol. Biotech Histochem 66:111–116
Camara B, Huguene P, Bouvier F, Kuntz M, Monéger R (1995) Biochemistry and molecular biology of chromoplast development. Int Rev Cytol 163:175–247
Cazzetta E, Schaefer HM, Galetti M (2008) Does attraction to frugivores or defense against pathogens shape fruit pulp composition? Oecologia 155:277–286
Česoniénė L, Daubaras R, Viškeliš P (2008) Evaluation of productivity and biochemical components in fruit of different Viburnum accesions. Biologija 54:93–96
Česoniénė L, Daubaras R, Vencloviénė J, Viškeliš P (2010) Biochemical and agro-biological diversity of Viburnum opulus genotypes. Cent Eur J Biol 5:864–871
Chaovanalakit A, Thompson MM, Wroblewski RE (2004) Characterization and quantification of anthocyanins and polyphenolics in blue hensuckle (Lonicera caerulea L.). J Agric Food Chem 52:848–852
Charrière-Ladreux Y (1976) Répartition intracellulaire du sécrétariat flavonique de Populus nigra L. Planta 129:167–174
Chiabrando V, Giacalone G, Rolle L (2009) Mechanical behaviour and quality traits of highbush blueberry during postharvest storage. J Sci Food Agric 89:989–992
Conn HJ (1977) Conn’s biological stains. A handbook on the nature and uses of the dyes employed in the biological laboratory. Waverly Press, Baltimore

Conn S, Franco C, Zhang W (2010) Characterization of anthocyanic vacuolar inclusions in *Vitis vinifera* L. cell suspension cultures. Planta 231:1343–1360

Cornelissen JHC, Castro-Diez P, Hunt R (1996) Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J Ecol 84:755–765

David R, Carde JP (1964) Coloration différentielle des pseudophyllodes de *Pin* maritime au moyen du réactif de Nadi. C R Acad Sci Paris, Ser D 258:1338–1340

Donoghue MJ (1983) The phylogenetic relationships of *Viburnum* subgenus. Smithsonian Institution Press, Washington, D.C.

Donoghue MJ, Baldwin BG, Li J, Winkworth RC (2004) Viburnum phylogeny based on chloroplast trnK intron and nuclear ribosomal ITS DNA sequences. Syst Bot 29:188–198

Dulf FV, Oroian I, Vodnar DC, Socaciu C, Pintea A (2013) Lipid classes and fatty acid regiodistribution in triacylglycerols of seed oils of two *Sambucus* species (*S. nigra* L. and *S. ebulus* L.). Molecules 18:11768–11782

Egea I, Barsan C, Bían W, Purgatíño E, Latché A, Chervín C, Bouzayen M, Pech JC (2010) Chromoplast differentiation: current status and perspectives. Plant Cell Physiol 51:1601–1611

Erdogan-Orhan I, Altun ML, Sever-Yilmaz B, Saltan G (2011) Anti-acetylcholinesterase and antioxidant activities of the major components (saliadin, amentoflavone, and chlorogenic acid) and the extracts of *Viburnum opulus* and *Viburnum lantana* and their total phenol and flavonoid contents. J Med Food 14:434–440

Franceschinis L, Sette P, Schebor C, Salvatori D (2015) Color and bioactive compounds characteristics on dehydrated sweet cherry products. Food Bioprocess Tech 8:1716–1729

Fu X, Kong W, Peng G, Zhou J, Azam M, Xu C et al (2012) Plastid structure and carotenogenic gene expression in red-and-white-fleshed loquat (*Eriobotrya japonica*) fruits. J Exp Bot 63:341–354

Gabe M (1968) Techniques histologiques. Masson, Paris

Gahan PB (1984) Plant histochemistry and cytochemistry: an introduction. Academic Press, London

Gomez C, Conejero G, Torregrosa L, Cherynin V, Terrier N, Ageorges A (2011) In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J 67:960–970

Guérin HP, Delaveau PG, Paris RR (1971) Localisations histochimiques: II: Procédés simples de localisation de pigments flavoniques. Application à quelques Phanérogames. Bull Soc Bot France 118:29–36

Hammouda H, Alvarado C, Bouchet B, Kalthoum-Chérif J, Trabelsi-Ayadi M, Guyot S (2014) Tissue and cellular localization of tannins in Tunisian dates (*Phoenix dactylifera* L.) by light and transmission electron microscopy. J Agric Food Chem 62:6650–6654

Hernandez A (2001) Are wayfaring tree (*Sorbus domestica* D.) fruits during ontogeny. Botany 79:589–602

Hernandez A (2010) Chromoplast differentiation: current status and perspectives. Plant Cell Physiol 51:1601–1611

Jacobs B, Lens F, Smets E (2009) Evolution of fruit and seed characters in the *Diervilla* and *Lonicera* clades (Caprifoliaceae, Dipsacales). Ann Bot 104:253–276

Jacobs B, Huysmans S, Smets E (2010) Evolution and systematic value of fruit and seed characters in Adoxaceae (Dipsacales). Taxon 59:850–866

Jakobek L (2015) Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem 175:556–567

Jeffere CE (2006) The fine structure of the plant cuticle. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell Publishing Ltd, p.11–125

Jensen WA (1962) Botanical histochemistry principles and practice, 1st edn. WH Freeman and Company, San Francisco

Johansen DA (1940) Plant microtechnique, 1st edn. McGraw Hill, New York

Kalyoncu I, Ersoy N, Elibemir AY, Karali ME (2013) Some physicochemical characteristics and mineral contents of gilaburu (*Viburnum opulus* L.) fruits in Turkey. In: Proceedings of World Academy of Science, Engineering and Technology. World Academy of Science, Engineering and Technology (WASET) 78, p.1369

Klimk B (2011) Analiza fitochimiczna roślinnych substancji leczniczych. Wyd. Uniwersytetu Łódzkiego, Łódź

Knoche M (2015) Water uptake through the surface of fleshy soft fruit: barriers, mechanism, factors, and potential role in cracking. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer Verlag, Tokyo, p.147–166

Kollmann J, Grubb PJ (2002) *Viburnum lantana* L. and *Viburnum opulus* L. (*V. lobatum* Lam., *Opulus vulgaris* Borkh.) J Ecol 90:1044–1070

Kollmann J, Coomes DA, White SM (1998) Consistencies in post-dispersal seed predation of temperate fleshy-fruited species among seasons, years and sites. Funct Ecol 12:683–690

Konarska A (2013) The structure of the fruit peel in two varieties of *Malus domestica* Borkh. (Rosaceae) before and after storage. Protoplasma 250:701–714

Konarska A (2014a) Morphological, histological and ultrastructural changes in fruit epidermis of apple *Malus domestica* cv. Ligol (Rosaceae) at fruit set, maturity and storage. Acta Biol Crac Ser Bot 56:35–48

Konarska A (2014b) Differences in the structure of fruit buds in two apple cultivars with particular emphasis on features responsible for fruit storability and quality. Acta Sci Pol Hortorum Cultus 13:91–105

Konarska A (2015) Morphological, anatomical, and ultrastructural changes in *Vaccinium corymbosum* fruits duringontogeny. Botany 93:589–602

Kraujalytė V, Leitner E, Venskutonis PR (2012) Chemical and sensory characterisation of aroma of *Viburnum opulus* fruits by solid phase microextraction-gas chromatography–olfactometry. Food Chem 132:717–723

Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the barrier, mechanism, factors, and potential role in cracking. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer Verlag, Tokyo, p.147–166

Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the barrier, mechanism, factors, and potential role in cracking. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer Verlag, Tokyo, p.147–166

Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the barrier, mechanism, factors, and potential role in cracking. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer Verlag, Tokyo, p.147–166

Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the barrier, mechanism, factors, and potential role in cracking. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer Verlag, Tokyo, p.147–166

Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the barrier, mechanism, factors, and potential role in cracking. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer Verlag, Tokyo, p.147–166

Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the barrier, mechanism, factors, and potential role in cracking. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer Verlag, Tokyo, p.147–166

Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the barrier, mechanism, factors, and potential role in cracking. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer Verlag, Tokyo, p.147–166

Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the barrier, mechanism, factors, and potential role in cracking. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer Verlag, Tokyo, p.147–166
Moldovan B, David L, Chișbora C, Cimpoiu C (2012) Degradation kinetics of anthocyanins from European cranberrybush (Viburnum opulus L.) fruit extracts. Effects of temperature, pH and storage solvent. Molecules 17:11655–11666

Neuhaus HE, Emes MJ (2000) Non-photosynthetic metabolism in plastids. Annu Rev Plant Biol 51:111–140

O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Theramcarphi Pty Ltd, Melbourne

Ozgen M, Scheereens JC, Reese RN, Miller RA (2010) Total phenolic, anthocyanin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accessions. Phocag Mag 6:198–203

Özren TK, Gündoğdu M, Keskın N, Kaya T (2011) Some physical and chemical characteristics of galabur (Viburnum opulus L.) fruits in Erzincan region. İğdır Üniv Inst Sci Technol 1:9–14

Palkíková L, Heinrich J, Bednář P, Marhol P, Křen V, Cvik L et al (2008) Constituents and antimicrobial properties of blue honeysuckle: a novel source for phenolic antioxidants. J Agric Food Chem 56: 11883–11889

Pandey A, Chandel E (2014) In vitro evaluation of antibacterial activity of Calendula officinalis against mdr pathogens. World J Pharm Pharm Sci 3:879–898

Pearse AGE (1968) Histochemistry: theoretical and applied, 3d edn. Churchill Livingstone, Edinburgh

Perucka I (2004) Changes of carotenoid contents during ripening of pepper fruits and ethephon treatment. Acta Sci Pol Technologia Alimentaria 3:85–92

Peschel S, Beyer M, Knoche M (2003) Surface characteristics of sweet cherry fruit: stomata-number, distribution, functionality and surface wetting. Sci Hortic 97:265–278

Polish Farmacopoeia VI (2002) Polskie Towarzystwo Farmaceutyczne. Warszawa, p 150

Ramasswamy N, Samatha T, Srinivas P, Chary RS (2013) Phytochemical screening and TLC studies of leaves and petioles of Oroxylum indicum (L.) Kurz an endangered ethno medicinal tree. Int J Pharm Life Sci 4:2306–2313

Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

Riederer M, Schreiber L (1995) Waxes - the transport barriers of plant cuticles. In: Hamilton RJ (ed) Waxes: chemistry, molecular biology and functions. Oily, Dundee, pp 131–156

Robil JLM, Tentolino VS (2015) Histological localization of tannins at different developmental stages of vegetative and reproductive organs in Medinilla magnifica (Melastomataceae). Flora 217:82–98

Rodríguez A, Alquézar B, Pena L (2013) Fruit aromas in mature fleshy fruits and ethephon treatment. Acta Sci Pol Technologia Alimentaria 12:92–98

Rob PM, Marx P,LS, Bachelet CM, De Deken M, Lelievre S (2007) Astringent cultivars. Postharvest Biol Technol 120:52–60

Salvador A (2016) Microstructural changes while persimmon fruits and seeds for raw material quality control. Bulletin of Peoples Friendship University of Russia. Series Agronomy and Animal Industries 3:13–21

Sagdic O, Aksoy A, Ozkan G (2006) Evaluation of the antibacterial and antioxidant properties of blue honeysuckle: a novel source for phenolic antioxidants. J Agric Food Chem 56: 11883–11889

Soylak M, Elict L, Saracoglu S, Divrikli U (2002) Chemical analysis of fruit juice of European cranberry bush. Asian J Chem 14:135–138

Taliz L, Zeiger E (2002) Plant physiology. Sinauer Associates, Sunderland

Tessmer MA, Besada C, Hernandez I, Apezzato-da-Glória B, Quiles A, Salvador A (2016) Microstructural changes while persimmon fruits mature and ripen. Comparison between astringent and non-astringent cultivars. Postharvest Biol Technol 120:52–60

Vázquez-Gutiérrez JL, Quiles A, Hernandez I, Pérez-Munuera I (2011) Changes in the microstructure and location of some bioactive compounds in persimmons treated by high hydrostatic pressure. Postharvest Biol Technol 61:137–144

Velioglu SY, Ekici L, Poyrazoglu ES (2006) Phytochemical composition of European cranberrybush (Viburnum opulus L.) berries and astringency removal of its commercial juice. Int J Food Sci Agric 93:681–692

Vandishew VV, Pavlova ME, Serdechnaya OI, Miroshnikova EA, Surkov VA (2013) The description of Sambucus nigra L. ripe and dry fruit and seeds for raw material quality control. Bulletin of Peoples Friendship University of Russia. Series Agronomy and Animal Industries 3:13–21

Veraverbeke EA, Verbven P, Van Oostveldt P, Nicolai BM (2003) Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp. Mitis (Wallr.)) during storage: part 1. Model development and determination of diffusion coefficients. Postharvest Biol Technol 30:75–88

Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692

Wang LQ, Chen YG, Xu JJ, Liu Y, Li XM, Zhao Y (2008) Compounds of Viburnum species and their biological activities. Chem Biodivers 5:1879–1899

Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

Winkworth RC, Donoghue MJ (2005) Viburnum phylogeny based on combined molecular data: implications for taxonomy and biogeography. Am J Bot 92:653–666

Wu CY, Wu ZL, Huang RF (1981) Antarctopyrenum sinadoxa (Melastomataceae). Flora 217:82–98

Yilmaz N, Yayli N, Misir G, Karaoglu S, Yayli N (2008) Chemical composition and their antioxidant capacity. J Agric Food Chem 52:4477–4482

Yilmaz N, Yaylı N, Misir G, Karagöz S, Yaylı N (2006) Chemical composition, and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52: 7846–7856

Yilmaz N, Yaylı N, Misir G, Karagöz S, Yaylı N (2008) Chemical composition, and antimicrobial activities of the essential oils of Viburnum opulus, Viburnum lantana and Viburnum orientale. Asian J Chem 20:3324–3330

Ytterberg AJ, Peltier JB, Van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chloroplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

Yunussova SG, Karimova AR, Tsyrlina EM, Yunusov MS, Denisenko ON (2004) Change on storage of biological activity of Viburnum opulus seed components. Chem Nat Comp 40:349–351

Zhou YL, Diao HJ, Zong W (2013) Nature of pectin–protein–catechin interactions in model systems: pectin–protein–catechin interactions. Food Sci Technol Int 19:153–165