EXPLORING THE SPECTRAL SPACE OF LOW REDSHIFT QSOs

TODD A. BOROSON and TOD R. LAUER
National Optical Astronomy Observatory, Tucson, AZ 85719, USA; tyb@noao.edu, tlauer@noao.edu
Received 2009 March 23; accepted 2010 May 27; published 2010 June 24

ABSTRACT

The Karhunen–Loève (KL) transform can compactly represent the information contained in large, complex datasets, cleanly eliminating noise from the data and identifying elements of the dataset with extreme or inconsistent characteristics. We develop techniques to apply the KL transform to the 4000–5700 Å region of 9800 QSO spectra with z < 0.619 from the SDSS archive. Up to 200 eigenspectra are needed to fully reconstruct the spectra in this sample to the limit of their signal-to-noise (S/N). We propose a simple formula for selecting the optimum number of eigenspectra to use to reconstruct any given spectrum, based on the S/N of the spectrum, but validated by formal cross-validation tests. We show that such reconstructions can boost the effective S/N of the observations by a factor of 6 as well as fill in gaps in the data. The improved S/N of the resulting set will allow for better measurement and analysis of these spectra. The distribution of the QSO spectra within the eigenspace identifies regions of enhanced density of interesting subclasses, such as narrow-line Seyfert 1s. The weightings, as well as the inability of the eigenspectra to fit some of the objects, also identify “outliers,” which may be objects that are not valid members of the sample or objects with rare or unique properties. We identify 48 spectra from the sample that show no broad emission lines, 21 objects with unusual [O III] emission line properties, and nine objects with peculiar Hβ emission line profiles. We also use this technique to identify a binary supermassive black hole candidate. We provide the eigenspectra and the reconstructed spectra of the QSO sample.

Key words: methods: data analysis – methods: numerical – methods: statistical – quasars: emission lines

Online-only material: machine-readable and VO tables

1. A TOOL TO REPRESENT AND VISUALIZE THE INFORMATION IN LARGE DATASETS

The advent of large samples of QSO spectra, particularly from the Sloan Digital Sky Survey (SDSS; York et al. 2000), has allowed richer analyses of their properties than has been previously possible. At the same time, these datasets are too large for manual inspection and analysis of individual observations over the entire sample; thus, new tools are needed to understand their content. The information sought is sometimes related to common features and correlations among the characteristics of the sample, and it is sometimes related to the most extreme exceptions or outliers from these correlations. In either case, understanding how to reduce the dimensionality of the data can be helpful. We advance the method of the Karhunen–Loève (KL) transform (also called principal components analysis) as a powerful solution to this problem.

The spectra of QSOs are good examples of where this approach is needed and indeed KL transforms have already played an important role in their analysis. Although the spectra are dominated by common features, broad emission lines from abundant elements, narrow forbidden emission lines, resonance line absorption from intervening and associated material, the details of the physical processes at work are obscured by a complicated and unknown interplay among many parameters. No simplifying tool like the HR diagram has emerged for QSOs.

The KL transform creates a new set of orthogonal basis vectors, or eigenvectors, for a sample, ordered in decreasing importance in accounting for the sample variance. In the case of a sample that consists of spectra, these eigenvectors can be represented as eigenspectra, which convey a spectral view of the relationships inherent in the eigenvectors. The eigenvalue that corresponds to each eigenvector is a measure of the relative importance of that eigenvector in accounting for the variance within the sample. Highest weight goes to the features with the largest systematic variation within the sample and lower weight goes to the features in which noise or a unique spectral characteristic dominates. The commonality of features in QSO spectra indicates that their complexity is of much lower dimensionality than the number of spectral bins or the number of objects in a large sample. The KL transform can take advantage of that fact to concentrate the information in the dataset, which allows the de-noising of the data, as well as the identification of outliers.

For samples that are as large as several thousand spectra, it is of interest to quantify the variation within the entire ensemble to better understand the physical parameters that drive the variation. This type of analysis has been applied to QSO spectra by several researchers, including Francis et al. (1992), Shang et al. (2003), and Yip et al. (2004). These studies have emphasized the use of the eigenvectors to develop a physical understanding of the properties of the sample. However, the KL transform is a purely mathematical technique; thus, efforts to attribute physical meaning directly to the basis vectors have met with limited success.

We thus ignore the issue of what any particular eigenspectrum “means,” instead choosing to exploit the mathematics of the KL transform and the ensemble of the eigenspectra as a means to explore the sample as well as to represent the spectra of individual QSOs. This leads to the twin goals of this paper. First, because true sample-wide information is found in the most important (lowest) eigenvectors and the object-specific noise is relegated to the least important (highest) ones, the set of eigenvectors can be used to reconstruct the spectra without including much of the noise. That is, rather than processing the spectra with any number of general purpose linear filters to reduce noise, we will use the eigenspectra to isolate and preserve the information content in any given QSO.
A second goal is to detect outliers, that is, objects that are not easily or well described by the dominant eigenvectors of the sample. This allows the establishment of a sample with well-defined properties and the identification of objects that might have been mistakenly included, or might be particularly interesting due to rare or unusual properties. As we will show, there is some tension between the goals of providing a reduced noise representation of any individual QSO, while detecting other individual QSOs having properties that are rare within the sample.

The technique of the KL transform is well established. This paper demonstrates a new application of this technique to a particular dataset. This sample was chosen because of the richness of the region of the spectrum observed for these objects and because much study has already gone into the properties of the lines and continuum in this region. Section 2 describes the real application of the KL transform to the data and demonstrates the validity and power of the technique. Section 3 presents statistical measurements of the properties of the sample in the context of the eigenspace. Section 4 presents the outlier objects and discusses their properties. The conclusions are recounted in Section 5.

2. THE APPLICATION OF THE KL TRANSFORM TO THE SDSS QSOs

In practice, the application of the KL transform to a real dataset requires adoption of a number of assumptions and techniques due to the deficiencies and quirks of real data. An excellent description of these issues is presented by Connolly & Szalay (1999), who emphasize the use of the KL transform for filling in gaps or improving signal-to-noise (S/N) in individual objects within a sample.

2.1. The QSO Sample

The QSO sample is a low redshift subset from the fourth version of the SDSS Quasar Catalog (Schneider et al. 2007, SDSSQ4). This catalog is based on the fifth SDSS data release (DR5), and is limited to objects that have absolute I-band magnitude brighter than -22, and have at least one emission line with an FWHM larger than 1000 km s$^{-1}$. The QSOs having redshifts below 0.619 (9800 objects) were drawn from this catalog. This upper redshift cutoff allows complete coverage of the 4000–5700 Å rest-frame region.

The SDSS spectra cover the observed wavelength region 3800–9200 Å at a spectral resolution of $R \approx 2000$. Each reduced spectrum includes a calibrated flux vector, a noise vector, and a mask vector, the last of which indicates the regions in which data are missing or suspect due to processing problems or other effects. Derived quantities, including the galactic absorption in the SDSS photometric bands and the adopted redshift, are given in the FITS header. The sample is not statistically complete; some objects are selected as QSO candidates on the basis of broadband colors, while others are chosen on the basis of proximity on the sky to radio or X-ray sources.

Each spectrum was corrected for galactic absorption and re-binned to a common rest wavelength scale, covering the range 4000–5700 Å. The redshifts adopted are those from the SDSSQ4 catalog, which are based primarily on the SDSS spectro`d pipeline. These are derived by automatic identification of emission lines, which are constrained to have certain relative positions (Stoughton et al. 2002). The resulting redshifts represent a weighted average, and account, in a limited way, for the velocity offset seen in some emission lines in some QSOs (Gaskell 1982; Richards et al. 2002). Our rebinning used a logarithmic dispersion of $\delta \lambda / \lambda = 10^{-4}$, resulting in 1540 pixels per spectrum.

We computed an average S/N for each rebinned spectrum by averaging the ratio of each unmasked flux pixel to its corresponding noise pixel within the wavelength range of interest. These ratios range from 1.3 to 95, but 90% have a ratio larger than 6 and half have a ratio larger than 12.

2.2. Derivation of the Eigenspectra

We construct the eigenspectra from a subset of the sample comprising those QSOs with (1) average S/N above 25 in the 4000–5700 Å region and (2) no more than 100 pixels flagged as bad. This latter criterion prevents the possibility of the red end of the spectra of the higher redshift objects contributing excess noise or errors from poor subtraction of the OH bands that dominate the sky emission. These restrictions produced a sample of 1039 QSOs. These are distributed approximately uniformly over the luminosity range spanned by the entire sample, $-26.5 < M_i < -22.0$.

The process of producing the basis vectors includes several steps. Each spectrum is normalized by its scalar product (Connolly et al. 1995), and a 1039 × 1039 cross-correlation matrix, C, is calculated, representing the cross product of each spectrum with all the others. Singular value decomposition is then used to find the matrix, U, for which

$$U^T C U = \Lambda,$$

where Λ is a diagonal matrix, whose diagonal elements are the eigenvalues. The matrix U contains the eigenvectors as columns. These eigenvectors are multiplied by the input spectra to produce the eigenspectra of the system. We found that the first 200 eigenspectra were sufficient to represent the sample.

In practice, the presence of bad data or data gaps in the set of 1039 high S/N QSOs used to specify the eigenspectra required the derivation of the eigenspectra to be done iteratively. During the initial calculation of the eigenspectra, pixels that were flagged as bad in the mask array were not included in the calculation of the cross-correlation products. After the initial calculation of the eigenspectra was completed, the bad or missing data in any given input QSO spectrum were replaced with reconstructed data derived from the eigenspectra-based representation of the spectrum. The corrected spectra were then used to produce a new revised set of eigenspectra, which in turn were used to produce better reconstructions of the deleted data. This sequence was repeated until the corrections converged.

The procedure for determining how a given QSO spectrum is represented by the eigenspectra should account for both the uncertainty in each pixel and the gaps or flagged bad regions in the spectrum. After normalization, a spectrum is projected onto the eigenspectra, using, for each pixel, a weight corresponding to $1/\sigma^2$, where σ is the element from the noise vector for that spectrum. Gaps (pixels masked as bad) are not included. The inclusion of the weights and gaps results in the basis spectra not being orthogonal and so a correction to these projections must be determined. This correction comes from the elements of the matrix that results by inverting the cross-correlation matrix of the eigenspectra, computed with the same weights and gaps (Connolly & Szalay 1999, Equation (5)). These corrected projections, a_i, allow the reconstruction of the given spectrum with some chosen number of the eigenspectra.
This reconstruction can be shown to minimize the χ^2 statistic:

$$\chi^2 = \sum_\lambda \left(f_\lambda - \sum_i a_i e_{i\lambda} \right)^2 / \sigma^2_\lambda,$$

where f_λ is the input spectrum and $e_{i\lambda}$ is the ith eigenspectrum. In practice, we used χ^2/ν, the reduced χ^2, where ν is the number of spectral pixels minus the number of eigenvectors used.

Ultimately, we are interested in producing a coherent sample that is well described by the optimum number of eigenspectra. It is thus necessary to make certain that objects that are not proper members of this sample do not contribute to the eigenspectra. Each input spectrum was reconstructed using an optimum number of eigenspectra derived from our analysis below. Objects that had a resulting χ^2/ν value larger than 1.5 were inspected and compared with the reconstruction. Seven of these objects were removed from the sample used to compute the eigenvectors (though they were retained in the overall sample and will be discussed below as outliers). Then, the process was then repeated with the remaining 1032 objects, producing the final set of eigenspectra.

Although it is not our goal to interpret the eigenspectra in a physical way, it is helpful to recognize some of their properties. Figure 1 shows the first four eigenspectra (which we term E1, E2, etc.). Note that the first eigenspectrum is the mean of all the normalized input spectra. It is the only eigenspectrum with a mean value that differs significantly from zero. We have chosen to retain the mean as the first eigenspectrum, but its unique meaning will be important. The second eigenspectrum shows features reminiscent of the Boroson & Green (1992) eigenvector-1 correlations; the narrow-line components are seen in a positive sense, while the Fe II emission is seen as negative.

The eigenvalues represent the amount of variance accounted for by each corresponding eigenvector. The first eigenvalue is very large, but it refers to the fraction of variance represented by the mean spectrum. After removing this from the sum, Figure 2 shows the cumulative fraction of variance compared to the mean spectrum that the inclusion of each successive eigenvector accounts for. Clearly the great bulk of the variance is captured by the first ~30 eigenspectra. The first 200 eigenspectra are available in tabular form electronically. Table 1 describes the content and format of each column.

2.3. Using the Eigenspectra to Reconstruct the QSO Spectra

One major goal is to use the eigenspectra to recover the best estimate of the underlying spectrum of a given individual QSO in the presence of noise, using the reconstruction algorithm presented in Equation (2) (also see the discussion in Connolly & Szalay 1999). A key part of the problem is to develop objective criteria to estimate how many eigenspectra, N_{opt}, will be used to represent the selected QSO. However, we also want to use the reconstructions to test whether or not the QSO might be an “outlier,” or an unusual member of the sample, the second major goal of our analysis. Ignoring this problem could drive us to make N_{opt} large enough to fit rare features in the spectrum, thus potentially suppressing our recognition of them. In contrast, detection of outliers means basing the set-size on generic properties, such as S/N of the QSO spectrum, rather than its specific goodness of fit.

Column	Format	Units	Label	Description
1	f7.2	Angstroms	Lambda	Wavelength of center of pixel
2	f10.6	...	E1	Value of eigenspectrum 1 pixel
3	f10.6	...	E2	Value of eigenspectrum 2 pixel
4	f10.6	...	E3	Value of eigenspectrum 3 pixel
201	f10.6	...	E200	Value of eigenspectrum 200 pixel

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms in the online journal. A portion is shown here for guidance regarding its form and content.)
Suppressing noise in the eigenspectra representation of a QSO means limiting the reconstruction to use only the lowest (most fundamental) eigenspectra so that the resulting spectra include as much of the “sample signal,” but as little of the noise as possible. The derivation of the eigenbasis vectors can produce as many eigenspectra as there are input spectra. If all eigenspectra are used to reconstruct the input spectra, then this reconstruction will result in spectra that are identical to the input spectra. The noise is unique to a given input spectrum so its contribution is relegated to the highest eigenspectra. However, real features that may be unique to a given object—or a small subset of the sample—will also be found only in the highest eigenspectra. It is important to remember that the set of spectra does not represent equivalent observations of objects from the same parent distribution. There are clearly objects with extreme properties and the spectra span a considerable range of S/N. Thus, we cannot adopt a single

Thus, we cannot adopt a single

Thus, we cannot adopt a single

Figure 3 shows the resulting distribution of optimum number of eigenspectra and the resulting distribution of estimated risk values for the entire QSO sample. Despite the fact that most of the variance is contained within the first few eigenspectra, dozens—up to 200—eigenspectra are needed to preserve all the information in the spectra. For the purposes of this study, reducing the noise and identifying the outliers, that is not a problem. The risk values are scaled such that they are similar to the χ^2/ν statistic; a value of unity indicates a fit that is consistent with the pixel-to-pixel uncertainties.
2.3.2. Basing the Reconstruction on Spectral S/N

While estimated risk provides the optimum number of eigenspectra, N_{opt}, required to fit any given QSO spectrum, “perfect” reconstruction of all QSOs in the sample compromises our second goal of finding rare or unusual objects—or even objects that should not have been included in the sample in the first place. We will thus not use the N_{opt} values directly, but to inform instead a general criterion for fitting the spectra based solely on their spectral S/N.

Use of S/N as a guideline for understanding how many eigenspectra to fit to a noisy QSO spectrum makes objective sense. Noise introduces a source of variance to the spectra, at some point dominating the information contained in the higher eigenspectra, which on average capture increasingly small portions of the total variance. The number of eigenspectra needed thus ought to be related to the S/N of the spectra, with higher S/N justifying the use of more eigenspectra. Figure 4 shows the relationship between N_{opt} calculated as described above and the S/N of each spectrum. The red points show medians of subsets of the sample; these are very well approximated by a linear relationship:

$$N_{\text{opt}} = 30.54 + 1.35(S/N).$$

If we use this criterion to determine the number of eigenspectra needed to reconstruct the QSO spectra instead of that provided directly by estimated risk, we find that the average risk value for the sample only goes from 0.858 to 0.873, less than a 2% increase. The distribution of points in Figure 4 appears to show a wide range in the “true” N_{opt} as provided by estimated risk about this line, but since most of the variance is provided by the lowest eigenspectra (as is shown in Figure 2), this in practice means that the two different criteria for N_{opt} will produce only modest differences in the quality of the representations.

In passing, we also emphasize a highly practical motivation for using N_{opt} as provided by Equation (3). Calculation of estimated risk for the complete QSO sample is an intensive operation that required more than 500 hr of CPU time. For each QSO spectrum, we performed 25 reconstructions for each trial N_{opt} value, which itself could range from 1 to 200 (although we truncated the calculation early, once it was clear that the risk started increasing with the number of eigenspectra). Each reconstruction required the inversion of a matrix (up to 200×200). Given the $\sim 10^4$ spectra in the sample, we were required to perform $\sim 10^6$ matrix solutions. Evaluating the S/N for any QSO spectrum, in contrast, is trivial. For future work using eigenspectra reconstruction, this suggests an approach in which one uses only a small subset of the spectra to calibrate an S/N-based relationship via estimated-risk calculations, such as Equation (3), which is then used instead for the complete sample.

2.3.3. Eigenspectra Reconstruction of the QSO Spectra

Figures 5 and 6 demonstrate the effectiveness of using the eigenspectra reconstructions to improve the S/N of spectra. For each of these two figures, a high S/N spectrum was degraded by adding normally distributed noise. We chose to start with two spectra with very different appearances to show the range of spectral characteristics covered by the single set of eigenspectra. For each degraded spectrum, the new S/N determined how many eigenspectra to use. The reconstructed spectra are shown as black lines through the input spectra. At the bottom of each panel the difference between the reconstruction and the true (high S/N) spectrum is plotted. The panels list the measured S/N, the number of eigenspectra used, the resulting value of χ^2/ν, and the reciprocal of the rms departure of the reconstruction to the true spectrum. This last quantity is an effective S/N for the reconstruction; i.e., it is a measure of how well the reconstruction from the degraded low S/N spectrum reproduces the original, high S/N spectrum.

It is clear that this reconstruction technique provides an S/N boost of a factor of 5–7 at an input S/N of 6. The residuals show that the reconstructions provide a highly unbiased representation of the spectra, even in the presence of large amounts of noise. The residuals have very little low spatial-frequency power; note that even in the lowest S/N example shown in Figure 5, there are essentially no errors in the reconstructed widths and intensities of the lines, both broad and narrow. Looking at the other example in Figure 6, it is especially impressive that the subtle “corrugations” in both the red and blue Fe II complexes are recovered in the lowest S/N case. In contrast, many general linear filters that might be applied to reduce the noise would certainly broaden such features in both QSOs. In short, the eigenspectra reconstructions do extremely well at recovering the essential features in even very low S/N spectra.

After establishing the success of this technique with the high S/N subset that had been used to generate the eigenspectra, the entire sample of 9800 low-redshift quasars was reconstructed in this way. Examples of spectra with a range of S/N and spectral characteristics are shown in Figure 7. Original data are shown in green, except for regions flagged in the original data as bad, typically because of poor sky subtraction, which are plotted in red.

The weights with which the input spectra can be reconstructed are available in tabular form electronically. Table 2 gives the

1 Note that the χ^2/ν values for the high S/N spectra are low because their noise is included in the eigenspectra.
Figure 5. Effect of noise on the reconstruction using eigenspectra. The quasar shown is SDSS J105151.44−005117.6. Input data are shown in green where it is flagged as good, in red where it is flagged as bad. The black line through the data is the reconstructed fit. The black line near the bottom of each panel is the difference between the fit in that panel and the original spectrum. The top panel shows the original spectrum. Increasing amounts of Gaussian-distributed noise is added in the lower panels. Listed in each panel is the number of eigenspectra used for optimal reconstruction, the χ^2/ν value for the fit, the input S/N of the spectrum, and the effective output S/N. Note that the [OIII] line profiles are recovered with high fidelity, even in the lowest-S/N test.

Figure 6. As Figure 5, but for the object SDSS J170231.06+324719.6. Note that the subtle intensity variations in both the red and blue FeII complexes are still recovered in even the lowest-S/N test.
Figure 7. Examples of reconstructions using the eigenspectra. The original input data are shown in green (flagged as good) and red (flagged as bad). In each case, the optimum number of eigenspectra to be used for reconstruction is derived from the average S/N of the spectrum. Higher S/N input spectra warrant the inclusion of more eigenspectra in their reconstruction.

Table 2
Reconstruction Weights for the QSO Sample

Column	Format	Label	Description
1	a18	SDSS Name	SDSS DR5 object designation
2	f6.4	z	Redshift from SDSSQ4 catalog
3	f8.2	Norm	Normalization to units of 10^{-17} erg cm$^{-2}$ s$^{-1}$ Å$^{-1}$
4	i2	N	Number of eigenspectra to be used
5	f5.3	χ^2/ν	Cross-validation value (reduced chi-squared) of reconstructed spectrum
6	f7.4	a1	Weight for eigenspectrum 1
7	f7.4	a2	Weight for eigenspectrum 2
8	f7.4	a3	Weight for eigenspectrum 3
205	f7.4	a200	Weight for eigenspectrum 200

Notes. Only weights for eigenspectra up to N are given.

format of that data. Thus, this electronic table represents our best attempt at reconstructing the spectra of all the low-redshift QSOs in the SDSSQ4 catalog.

3. PROPERTIES OF THE SAMPLE IN THE EIGENSPACE

The multi-dimensional distribution of the eigenspectra coefficients or weights may contain interesting information about the overall properties of the sample, or reveal interesting sub-populations of the complete set. Visualization and analysis of the distribution of the sample in a hyperspace of large dimension is challenging; however, for the present case we are just interested in the gross distribution of the first few components, and so simple two-component plots suffice to show the most important details. Figure 8 plots the distribution of weights for eigenspectra 1–5. In all these plots, and several others showing higher components, the bulk of the points always falls within a cloud around (0,0), shown by dotted lines in each panel of Figure 8, with the exception of E1, which has a non-zero mean. Note that, in general, the distributions of weights are not symmetric or uniform, though there is no correlation between the weights on any pair of eigenspectra, by construction. The points that are obvious distant outliers in the panels of Figure 8 are frequently objects having large gaps in their spectra or spectra of very low S/N, but the overall impression that the clouds of points have extensions that might be characterized as tails or fans is accurate. We were curious whether these extensions might represent subsets of particular interest for studies that focus on a particular type of object, narrow-line Seyfert 1s (NLS1), for example. Thus, we cross-matched the
Panels show the distribution of weighting factors, a_i, for the entire sample of 9800 objects on eigenvectors 1–5. Dotted lines indicate the origin in each panel. The panels in the upper left show the density distributions as contours. The panels in the lower right show four subsets superposed on the entire sample (plotted as black dots). The green points are identified as NLS1s by Zhou et al. (2006); the red points are identified as radio-loud by Kimball & Ivezic (2008); the blue points are identified as objects having double-peaked Balmer lines by Strateva et al. (2003); and the magenta points are those which we select as lacking broad emission lines. The panels along the diagonal show the histogram of weighting factors for each eigenvector on a logarithmic scale.

SDSSQ4 sample with three lists from such studies: the Zhou et al. (2006) list of 2000 NLS1s drawn from SDSS Data Release 3, the Kimball & Ivezic (2008) list of 1300 QSOs detected by FIRST, NRAO VLA Sky Survey, WENSS, and SDSS, and the Strateva et al. (2003) list of 116 active galactic nuclei (AGNs) from an early SDSS release with double-peaked Balmer line profiles. Each of these lists includes some objects not contained within our overall sample, because of the redshift limit or luminosity limit or the allowance for non-stellar objects, and so the actual number cross-matched in each case is somewhat less than the full lists. To these three lists we added a fourth subset: those objects identified in Section 4 below as having narrow emission lines only in this spectral region. The objects cross-matched with each of these lists are shown as colored points in the lower right panels of Figure 8. It can be seen that these colored points are somewhat segregated; in most of these planes, NLS1s do not strongly overlap with radio-loud QSOs. Our intent is not to derive a formula or procedure for finding a particular type of object, but to point out that a rational starting point for such a procedure would be to examine the regions in which known objects of a particular type cluster. We note that this technique was used by Strateva et al. (2003) to enhance the density of candidate double-peaked profile objects within the sample they searched by a factor of 5.

3.1. A Search for Clusters in the Eigenspace

In all two-component projections of eigenspace that we examined, the parameters form a single aggregate; but out of concern that these plots were too crude to uncover multiple clusters in the much higher-dimensioned eigenspace, we attempted a simple search for such features based on binning the QSOs in a five-dimensional space defined by their E1–E5 coefficients. Since these are the most important coefficients, we would expect any clustering to be manifest in this sub-space.
Most of our candidate outliers came from those spectra which have a large risk value (or χ^2/ν) when reconstructed using the number of eigenspectra given by our linear S/N formula. We adopted a value of 1.50 for this threshold, but we stress that we found no value that clearly distinguished outliers. The adopted value created a subsample that was not onerous to inspect visually. This technique isolates both those objects whose spectra are not well fit and those that require significantly more eigenspectra before they were well fit.

2. We examined the 50 objects that were farthest from the origin of the eigenspace, using the first seven coefficients to compute a distance.

3. We identified the 50 objects that were the most “isolated” in eigenspace, that is, those that had the largest distances (based on the first seven coefficients) from their closest neighboring objects (as might be expected, this set had some overlap with objects identified by their distance from the origin).

The total number of candidate outliers selected by these three methods is 250 objects. Of the 100 objects identified by isolation or distance from the origin, 70 are not in the sample defined by the risk value alone, and 30 are selected by both poor fit and by one of the eigenspace criterion. None of these tests show a sharp distinction between what will be a contaminant and what will not. Any particular extreme characteristic may signify an object that is not a quasar or it may just be an object with rarely seen features. Additionally, some rarely seen features have important physical implications and some do not. And conversely, some contaminants are fit tolerably well despite their unusual features. Thus, there is no rigorous criterion for identifying objects that are unambiguously outliers, only procedures for producing subsets that may then be examined singly.

We visually examined the spectra of these 250 objects and we classified them into the following seven categories (number of objects): no broad lines (48), broad lines present but very weak (34), anomalous [O iii] line profiles (21), anomalous Hβ profile (9), other miscellaneous peculiarity in spectrum (3), bad region not masked properly (30), and no obvious specific problem (124). The last category includes objects that lie near the extrema of the characteristics represented by the high S/N objects that were used to construct the eigenspectra—for example, strong Fe ii emission, narrow broad lines, or relatively strong narrow [O iii] λ4363 emission. It also includes objects with strong galactic Na i D absorption. Note that the sum of the numbers above exceed 250 because 19 of the objects are counted in two categories, 16 with no broad lines and anomalous [O iii] line profiles, and three with weak broad lines and anomalous [O iii] profiles. Below we briefly describe the objects in these different categories. The objects in the first five categories listed above are identified in Table 3.

The objects with no broad lines should not have been in the SDSS QSO catalog, which has a requirement that at least one emission line must have a width greater than 1000 km s$^{-1}$. These objects fall into two categories: those that are type II quasars and those that are galaxies with strong emission lines photoionized by hot stars. Figure 10 shows a typical example of each of these. Among the type II quasars, a small fraction show broad Hα or broad Mg ii λ2800, two lines that were not included in the rest wavelength range that we analyzed.

A number of objects show quite weak broad Hβ. Although these are legitimately members of the quasar catalog, they are unusual either in having a very large Balmer decrement in

Figure 9. Entire sample (open black squares) in the e4–e6 plane, with objects classified as NLS1s by Zhou et al. (2006) plotted as solid green triangles. This plane appears to be especially well suited to selecting NLS1s from the rest of the sample. The small red rectangle shows the location of the region expanded in the upper right. Within that region, previously classified NLS1s are shown as solid green triangles, new points are plotted as open triangles—green if they are NLS1s, red if they are not. Note that nearly all of the objects within this box are NLS1s.

4. THE OUTLIERS

One of our goals in developing these tools is to identify those objects in the sample that are unique or unusual, either because they are not appropriately part of the sample, or because they are individually interesting objects. Finding these objects requires a two-step process: first, use of the mathematical tools to produce a subsample of candidates, and second, visual inspection and classification of the subsample. Thus, it is a combination of mathematical and astronomical knowledge that is required.

For the first step, we tried three algorithms for identifying outliers or contaminants:
Table 3

Outliers	SDSS J
Objects with no broad lines	005621.72+003235.6 103951.49+643004.1 141718.61+341709.5
	010750.47−003552.9 104014.42+475454.7 142047.97+032557.2
	013416.34+001413.5 110500.54+112702.1 142209.95+250927.7
	020038.67−005954.5 110927.02+641833.3 142399.80+395935.3
	020665.71+010826.6 113023.80+115432.4 150407.51−024816.5
	022250.39−074709.4 115314.35+032658.5 152238.10+331325.8
	030822.35−01114.7 115718.34+600345.6 153246.68+495458.4
	032029.78+031536.3 121522.77+414621.0 155059.37+395029.5
	040144.54−060538.7 128245.74+500518.7 160661.42+272556.9
	081352.97+381602.5 132006.79+394319.3 163411.91+231348.1
	083454.89+553421.1 133309.87+154952.2 166353.37+245746.4
	085946.67+010812.6 135334.55+484953.9 171600.87+274414.3
	090226.89+300607.0 139758.47+050156.4 171642.60+311006.9
	091345.48+045628.2 141350.35−012439.3 224027.05+043474.7
	092252.45+515348.1 14559.16+414918.4 225108.53+011056.4
	094311.57+345615.8 15128.15−001016.9 230321.73+011056.4
Objects with weak broad Hβ	033408.38−004235.6 101557.61+483004.1 143241.11+430039.5
	073242.20+472918.8 102618.97+563249.2 155059.50+359915.7
	080413.87+470442.8 10844.66+506521.1 155059.89+031555.9
	082049.66+506521.1 110718.10+083442.8 160041.30+082309.7
	082857.99+074255.7 110844.10+462308.9 160926.83+083221.6
	084205.57+075925.5 121118.66+438103.8 211343.19−075017.6
	092501.78+274607.9 131945.96+053002.8 220408.40+113603.9
	092751.14+343103.6 132515.57+051056.4 224256.47+051552.2
	093728.59+053750.3 134303.59+521626.8 230004.46−095432.7
	094644.78+324143.4 14084.33+052355.8 230288.84+134553.4
	095906.59+510325.3 141956.65+060626.8 231645.07−001129.4
Objects with anomalous [OIII] profiles	005621.72+003235.6 094311.57+345615.8 122845.74+005018.7
	010750.47−003552.9 101034.28+372514.7 133550.35−012439.3
	032029.78+003153.6 103951.49+643004.1 143559.16+414918.4
	082857.99+074255.7 104014.42+474554.7 135128.15−001016.9
	083454.89+553421.1 113023.80+115432.4 142399.80+395935.3
	090226.89+300607.0 115718.34+600345.6 160641.42+272556.9
	092501.78+274607.9 121911.16+042905.9 224256.47+051552.2
Objects with anomalous Hβ profiles	031719.03−081702.9 094603.94+031923.6 160401.74+000657.5
	083223.36+555850.4 113238.41+011811.6 212123.90−081310.8
	093459.88+364555.5 113904.33+465651.1 230216.84+135723.5
Objects with miscellaneous anomalies	075057.26+353037.6 151036.74+51054.5 171702.90+312543.1

the broad lines or relatively weak broad line emission overall. Figure 11 shows two examples of these objects.

Several examples of objects that show unusual structure in the [OIII] lines are shown in Figure 12. Some of these show complex multiple peaks, often shifted to the blue from the systemic redshift. These lines are presumably caused by outflows driven by large-scale bursts of star formation (Hwan et al. 2007; Lipari et al. 2003; Veilleux et al. 1999). We note that SDSS J 101034.28+372514.7 is a new object in this class, showing [OIII] emission with five clear peaks from +440 to −1480 km s −1 relative to the systemic velocity of the object. Other objects show very broad or double emission lines with splittings of a few hundred km s −1. These may be due to one or more of four effects: (1) supernova-driven outflows or winds from massive starbursts (Heckman et al. 1990; Lipari et al. 2003), (2) biconical outflows from the AGN (Cecil et al. 2002), (3) biconical or complex radiation pattern that illuminates material with different velocities within the gravitational potential of the host galaxy (Wilson & Tsvetanov 1994; Pogge 1989), and (4) binary black hole systems (Zhou et al. 2004).

Several of the objects that exhibit peculiar Hβ profiles are shown in Figure 13. The phenomenon of offset or multiple peaks might be due to (1) non-uniform distribution of emitting material in the broad line region, (2) emission from the accretion disk surrounding the supermassive black hole (Eracleous & Halpern...
Figure 12. Four examples of objects with $\text{[O\textsc{iii}]} \lambda\lambda 4959, 5007$ lines having unusual structure or width. Each panel shows the nominal location of $\text{H}\beta$ and the $\text{[O\textsc{iii}]} \lambda\lambda 4959, 5007$ doublet. The objects in the top panels have broad $\text{H}\beta$ emission, while those in the lower panels do not.

Figure 13. Four examples of objects with unusual structure in the $\text{H}\beta$ line. Each panel shows the nominal location of $\text{H}\beta$ and the $\text{[O\textsc{iii}]} \lambda\lambda 4959, 5007$ doublet.
Figure 14. Three objects identified as miscellaneous outliers. The top two panels show objects with strong Balmer absorption from hot stars in the host galaxy. The bottom panel shows an object which is the superposition of a QSO at restshift 0.4494 and a galactic star.

We have demonstrated the usefulness of the KL transform for simplifying the information in large samples of QSO spectra. We have developed procedures for applying the KL transform to a restricted wavelength region in the spectra of 9800 QSOs from the SDSS, adopting a concept described by Connolly & Szalay (1999).

Rather than attempt to interpret the eigenspectra in terms of physical properties or processes, we take advantage of the mathematical aspects of the KL transform. Because the eigenvectors are ordered to account for decreasing fractions of the sample-wide variance, reconstruction of a spectrum using a limited number of eigenvectors can fill in gaps in the data or improve the S/N, provided that the spectrum represents a valid member of the ensemble used to create the eigenspectra. We have developed an S/N-based rationale for selecting the number of eigenvectors to be used for any given spectrum that results in an increase in S/N by as much as a factor of 6 in certain cases. The number of eigenspectra used ranged from 30 to 200 for our sample, as the S/N of the input spectra ranged from 1.3 to 95. The improved S/N in the resulting set allows for better measurement and analysis of the properties of low-z SDSS QSOs.

The eigenspace is not uniformly populated, and the plots of spectrum weights on pairs of eigenspectra show tails and plumes that represent the frequency of various spectral characteristics. Despite this lack of symmetry, we see no evidence for more than one cluster, which would have indicated one or more discontinuous subclasses of objects. Using the locations of the 9800 QSO spectra in our eigenspace, we show that subclasses of QSOs, e.g., NLS1s, are concentrated in certain regions. This allows an improvement in efficiency in searches for such objects.

We have explored several ways of identifying objects that are unique or rare. Such objects are of interest either because they are not valid members of the sample and should be removed, or because they are extreme examples of important phenomena that may provide insight into our understanding of the physics. Such objects may be selected for having extreme values of one or more eigenvector weights, for being in isolated regions of the eigenspace, or for having χ^2 or risk values that indicate a poor fit.

Adopting a risk value of 1.5 as the threshold indicating an unsatisfactory fit and adding objects that are far from nearest neighbors or far from the origin of the eigenspace, we identified 250 objects for visual inspection. Removing those objects with poor data, we are left with 126 objects that we classify into several categories. Some of these—objects with no broad emission lines—should not have been included in the quasar catalog. Others are physically interesting objects, including objects with complex or offset emission line profiles, and one object, SDSS J153636.22+044427.0, which may be a merging black hole binary system.

We thank Andy Connolly for a helpful conversation during the time that we were developing the software. We thank an anonymous referee who pointed us toward the technique of cross-validation, and Joey Richards for helping us through the implementation and interpretation of this technique. This work utilized several software packages that are made available free and we wish to thank the individuals or groups that produced them and made them available. The software that we developed to find the eigenvectors and reconstruct the spectra...
is based on a program (pca_public.f) written and distributed by Paul Francis. The initial processing of the SDSS FITS spectra was done using IRAF, which is distributed by the National Optical Astronomy Observatory (NOAO). Much of the exploration of the eigenspace was done using TOPCAT, currently developed and supported by the Astrogrid project in the UK. Finally, much of the visual inspection of the spectra and their reconstructions, and the production of the final figures used SM, written by Robert Lupton and Patricia Monger. NOAO is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

This paper has made use of the data from the SDSS. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

REFERENCES

Boroson, T. A., & Green, R. F. 1992, ApJS, 80, 109
Boroson, T. A., & Lauer, T. R. 2009, Nature, 457, 53
Cecil, G., Dopita, M. A., Groves, B., Wilson, A. S., Ferruit, P., Pécontal, E., & Binette, L. 2002, ApJ, 568, 627
Chornock, R., et al. 2010, ApJ, 709, L39
Connolly, A. J., & Szalay, A. S. 1999, AJ, 117, 2052
Connolly, A. J., Szalay, A. S., Bershady, M. A., Kinney, A. L., & Calzetti, D. 1995, AJ, 110, 1071
Decarli, R., Dotti, M., Falomo, R., Treves, A., Colpi, M., Kotilainen, J. K., Montuori, C., & Uslenghi, M. 2009, ApJ, 703, L76
Eracleous, M., & Halpern, J. P. 1994, ApJS, 90, 1
Francis, P. J., Hewett, P. C., Foltz, C. B., & Chaffee, F. H. 1992, ApJ, 398, 476
Gaskell, C. M. 1982, ApJ, 263, 79
Hastie, T., Tibshirani, R., & Friedman, J. H. 2001, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (New York: Springer)
Heckman, T. M., Armus, L., & Miley, G. K. 1990, ApJS, 74, 833
Hwan, H. S., Serjeant, S., Lee, M. G., Lee, K. H., & White, G. J. 2007, MNRAS, 375, 115
Kimball, A. E., & Ivezic, Z. 2008, AJ, 136, 684
Lauer, T. R., & Boroson, T. A. 2009, ApJ, 703, L930
Lipari, S., Terlevich, R., Daz, R. J., Taniguchi, Y., Zheng, W., Tsvetanov, Z., Carranza, G., & Dottori, H. 2003, MNRAS, 340, 289
Pogge, R. W. 1989, ApJ, 345, 730
Richards, G. T., Vanden Berk, D. E., Reichard, T. A., Hall, P. B., Schneider, D. P., SubbaRao, M., Thakar, A. R., & York, D. G. 2002, AJ, 124, 1
Schneider, D. P., et al. 2007, AJ, 134, 102
Shang, Z., Wills, B. J., Robinson, E. L., Wills, D., Laor, A., Xie, B., & Yuan, J. 2003, ApJ, 586, 52
Stoughton, C., et al. 2002, AJ, 123, 485
Strateva, I. V., et al. 2003, AJ, 126, 1720
Tang, S., & Grindlay, J. 2009, ApJ, 704, 1189
Veilleux, S., Kim, D., & Sanders, D. 1999, ApJ, 522, 113
Wasserman, L. 2006, All of Nonparametric Statistics (New York: Springer)
Wilson, A. S., & Tsvetanov, Z. I. 1994, AJ, 107, 1227
Wrobel, J. M., & Laor, A. 2009, ApJ, 699, L22
Yip, C. W., et al. 2004, AJ, 128, 2603
York, D. G., et al. 2000, AJ, 120, 1579
Zhou, H., Wang, T., Yuan, W., Lu, H., Dong, X., Wang, J., & Lu, Y. 2006, ApJ, 166, 128
Zhou, H., Wang, T., Zhang, X., Dong, X., & Li, C. 2004, ApJ, 604, L33