The Smallest Scale of Hierarchy Survey (SSH). II. Extended star formation and bar-like features in the dwarf galaxy NGC 3741: recent merger or ongoing gas accretion?

F. Annibali,1 C. Bacchini,2★ G. Iorio,2,3,4 M. Bellazzini,1 R. Pascale,1,5 G. Beccari,6
M. Cignoni7 L. Ciotti,5 C. Nipoti,5 E. Sacchi,1,8 M. Tosi,1 F. Cusano,1 S. Bisogni,9
A. Gargiulo,9 D. Paris10

1INAF - Osservatorio di Astrofisica e Scienza dello Spazio, Via Piero Gobetti, 93/3, I-40129 - Bologna, Italy
2INAF - Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, IT-35122 Padova, Italy
3Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, vicolo dell’Osservatorio 3, IT-35122, Padova, Italy
4INFN-Padova, Via Marzolo 8, I-35131 Padova, Italy
5Dipartimento di Fisica e Astronomia, Università di Bologna, via Piero Gobetti 93/2, I-40129 - Bologna, Italy
6ESO, Karl-Schwarzschild Strasse 2, D-80 Garching, Germany
7Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
8Leibniz-Institut fur Astrophysik Potsdam, An der Sternwarte 16, I-14482 - Potsdam, Germany
9INAF Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano, Via Alfonso Corti 12, 20133 - Milano, Italy
10INAF - Osservatorio Astronomico di Roma, via Frascati 33, 00078 Monte Porzio Catone (RM), Italy

ABSTRACT

Using Large Binocular Telescope deep imaging data from the Smallest Scale of Hierarchy Survey (SSH) and archival Hubble Space Telescope data, we reveal the presence of two elongated stellar features contiguous to a bar-like stellar structure in the inner regions of the dwarf irregular galaxy NGC 3741. These structures are dominated by stars younger than a few hundred Myr and collectively are about twice as extended as the old stellar component. These properties are very unusual for dwarf galaxies in the nearby Universe and difficult to explain by hydro-dynamical simulations. From the analysis of archival 21-cm observations, we find that the young stellar “bar” coincides with an HI high-density region proposed by previous studies to be a purely gaseous bar; we furthermore confirm radial motions of a few km/s, compatible with an inflow/outflow, and derive a steeply-rising rotation curve and high HI surface density at the center, indicating a very concentrated mass distribution. We propose that the peculiar properties of the stellar and gaseous components of NGC 3741 may be explained by a recent merger or ongoing gas accretion from the intergalactic medium, which caused gas inflows towards the galaxy center and triggered star formation a few hundred Myr ago. This event may explain the young and extended stellar features, the bar-like structure, the very extended HI disc and the central HI spiral arms. The high central HI density and the steeply rising rotation curve suggest that NGC 3741 may be the progenitor or the descendant of a starburst dwarf.

Key words: galaxies: dwarf – galaxies: formation – galaxies: interactions – galaxies: irregular – galaxies: individuals: NGC 3741, – galaxies: stellar content.

1 INTRODUCTION

In the Λ Cold Dark Matter (ΛCDM) cosmological scenario (Peebles et al. 1982), galaxies are assembled over time through the accretion of smaller systems (White 1978). Observational evidence of this hierarchical formation process is the presence of numerous satellites and stellar streams around massive galaxies in the Local Volume (e.g., Belokurov et al. 2006; McConnachie et al. 2009; Martinez-Delgado et al. 2010; Crnojević et al. 2016; Ibata et al. 2021; Malhan et al. 2021). Numerical simulations predict that the merger activity continues down to the lower mass scales of dwarf galaxies (Diemand et al. 2008; Wheeler et al. 2015; Deason et al. 2014); nevertheless, dwarf-dwarf galaxy mergers have received little attention from the observational point of view so far, mostly because of the difficulty in detecting very low surface brightness merger signatures around these systems. Merger or interaction events can strongly impact the evolution of dwarf galaxies, affecting their morphology and kinematics, and providing a viable mechanism to trigger gas flows toward the inner galaxy regions and, possibly, the onset of a starburst (Bekki 2008; Stierwalt et al. 2015; Carlin et al. 2016; Privon et al. 2017; Kado-Fong et al. 2020). A number of individual dwarf-dwarf merger
cases has been examined in the literature (Rich et al. 2012; Martínez-Delgado et al. 2012; Sand et al. 2015; Belokurov & Koposov 2016; Amorisco, Evans & van de Ven 2014; Annibali et al. 2016; Privon et al. 2017; Makarova et al. 2018; Johnston et al. 2019; Kallivayalil et al. 2018; Zhang et al. 2020), but only a few systematic searches for dwarfs companions have been conducted so far (Stierwalt et al. 2015; Higgs et al. 2016; Carlin et al. 2016; Paudel et al. 2018; Annibali et al. 2020; Kado-Fong et al. 2020).

The Smallest Scale of Hierarchy Survey (SSH; Annibali et al. 2020) is an observational campaign designed to characterize the frequency and properties of interaction and merging events around a large sample of dwarf galaxies. SSH exploits the high sensitivity and very large field of view (~23' × 23') of the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT). It provides deep g and r photometry for 45 late-type dwarfs at distances between ~1 and ~10 Mpc down to a surface brightness limit of μr ~ 31 mag arcsec−2. The SSH targets span a wide range in luminosity, from about twice the luminosity of the Large Magellanic Cloud (LMC) down to about 5 magnitudes fainter, and cover a wide range of density environments, from very isolated galaxies to group members. Photometry in two magnitudes fainter, and cover a wide range of density environments, the luminosity of the Large Magellanic Cloud (LMC) down to about 5 magnitudes fainter, and cover a wide range of density environments, from very isolated galaxies to group members. Photometry in two bands allows us to define the color-magnitude diagrams (CMDs) and to separate, for targets closer than ~4–5 Mpc, red giant branch (RGB) stars associated with the dwarf galaxy or with a potential satellite from background contaminants. This technique permits to reveal faint stellar substructures (e.g., streams and shells) or companions around the dwarfs. The LBC field of view translates into an explored physical region of ~7×7 kpc² to ~70×70 kpc², depending on the galaxy distance.

In this paper, we present new results for the galaxy NGC 3741 (see Table 1 for a summary of the main properties), which was observed as part of the SSH survey. NGC 3741 is a dwarf irregular (dIrr) galaxy located at a distance of ~3.2 Mpc (Tully et al. 2006; Dalcanton et al. 2009, i.e. 1″ ~15.7 pc) and has an absolute blue magnitude of MB = -13.2 (Cook et al. 2014). NGC 3741 belongs to the Canes Venatici I galaxy cloud, which is located at the periphery of the M 81 group. NGC 3741 is supposed to be quite undisturbed by other galaxies (Karachentsev et al. 2003, 2004), being at a de-projected distance of ~1.65 Mpc from M 81 (Karachentsev et al. 2002).

One of the most remarkable properties of NGC 3741 is the extent of the HI disc. Indeed, 21-cm observations with the Giant Meter-wave Radio Telescope (GMRT) by Begum et al. (2005) and with the Westerbork Synthesis Radio Telescope (WSRT) by Gentile et al. (2007) revealed that the diameter of the HI disc is ~14″ (~13 kpc) at HI column density N_{HI} ~ 10^{19} cm^{-2} (~ 0.1 M⊙ pc^{-2}). The HI disc diameter is ~21 times larger than the B-band half-light diameter, which is ~40″ or ~0.6 kpc (de Vaucouleurs et al. 1991). The total HI mass is M_{HI} ~ 1.3 × 10^{8} M⊙ (Gentile et al. 2007; Begum et al. 2008), which is about 3.4 times larger than the stellar mass (M∗ ~ 3.8 × 10^{7}, Weisz et al. 2011).

The decomposition of the rotation curve of NGC 3741 into the individual mass components (i.e. stellar disc, gas disc, and dark matter halo) indicates that the galaxy gravitational potential is dominated by dark matter (Begum et al. 2005; Gentile et al. 2007; Aller et al. 2017). The baryonic and dark matter mass estimates for NGC 3741 are consistent with scaling relations derived for dwarf galaxies (e.g. Thuan et al. 2016; McGaugh, Lelli, & Schombert 2016; Lelli et al. 2016; Iorio et al. 2017; Posti et al. 2018; Mancera Piña et al. 2019; Romeo 2020; Romeo et al. 2020). Gentile et al. (2007) analysed the kinematics of the HI disc and argued that the innermost part of the rotation curve is better reproduced by a core dark matter profile (in which case baryons dominate the inner gravitational potential) rather than by a cuspy one. Nevertheless, the high uncertainty in the inner rotation curve, due to the presence of non-circular motion implies that a cuspy dark matter halo cannot be definitively ruled out (e.g. Hayashi & Navarro 2006; Gentile et al. 2007; Randriamampandry et al. 2015; Oman et al. 2019).

Moreover, Gentile et al. (2007) found that, despite the overall symmetry of the velocity field, this is distorted by non-circular motions of the order of 5-13 km/s. These motions were ascribed to the presence of a HI bar in the inner regions (see also Begum et al. 2005; Banerjee et al. 2013) and ongoing accretion of gas in the outer parts of the galaxy. Another interesting feature of the HI disc of NGC 3741 is the presence of spiral arms originating from the bar region (Gentile et al. 2007; Begum et al. 2008; Ott et al. 2012). Interestingly, while the spiral arms and the bar are visible from the atomic gas distribution, no stellar counterpart is observed (e.g., Vaduvescu et al. 2005), suggesting that NGC 3741 is one of the few galaxies with purely gaseous bar and spiral arms. Bars may either form spontaneously as a consequence of disc instability (e.g. see Athanassoula 2013, for a review) or in response to an interaction with a galaxy companion (Gajda et al. 2018; Pettitt & Wadsley 2018). They can also be boosted and renewed by cold gas accretion (Combes 2014). However, the formation of purely gaseous bars remains a mystery. For instance, Gajda et al. (2018) used numerical simulations to investigate the formation of tidally-induced bars in gas-rich dwarf galaxies and found that, while bars are formed in the stellar component, no trace of the bar is found in the gaseous component.

Narrow-band Hα and UV imaging of NGC 3741 was obtained as part of the 11 Mpc Hα and Ultraviolet Galaxy Survey (11HUGS, Lee et al. 2007; Kennicutt et al. 2008). The star formation rate (SFR) estimates derived from the Hα and FUV luminosities are, respectively, 3.6 × 10^{-3} M⊙ yr^{-1} and 4.9 × 10^{-3} M⊙ yr^{-1} (Begum et al. 2008; Karachentsev & Kaisina 2013), in agreement with the SFR derived from CMDs of resolved stellar populations (Johnson et al. 2013; Weisz et al. 2011). The SFR and gas surface densities averaged within the stellar disc are compatible with the Kennicutt–Schmidt and extended Schmidt laws for spirals and dwarf irregular galaxies (Talbot & Arnett 1975; Dopita & Ryder 1994; Begum et al. 2008; Roychowdhury et al. 2015, 2017). Most of the Hα emission is confined within a central region of ~12″ radius (~0.19 kpc), where the azimuthally averaged HI column density is N_{HI} ~ 1.7 × 10^{21} cm^{-2} (~ 13.6 M⊙ pc^{-2}, Begum et al. 2008). However, the FUV emission extends to a larger galactocentric distance of ~120″ or ~1.9 kpc (see e.g. Roychowdhury et al. 2017), suggesting that star formation occurred within the last ~100 Myr also in regions of the HI disc which are father from the galaxy center. NGC 3741 was also ob-

Property	Value	Ref.
Distance	3.2 Mpc	1
Stellar mass	3.8 × 10^{7} M⊙	2
Exponential disk scale length	0.20 kpc	3
HI mass	1.3 × 10^{9} M⊙	4
Rotation velocity	50 km s^{-1}	3, 4
Inclination	68 ± 4°	4, 5
SFR	(4.3 ± 0.7) × 10^{-3} M⊙ yr^{-1}	6, 7
SFR surface density	3.2 × 10^{-2} M⊙ yr^{-1} kpc^{-2}	8
12 + log(O/H)	7.68 ± 0.03	9
served with Spitzer in the mid- (MIR) and far-infrared (FIR) as part of the Spitzer Local Volume Legacy Survey (Dale et al. 2009). From FUV-to-FIR spectral energy distribution fitting, Cook et al. (2014) derived a low internal dust extinction of $A_{FUV} = 0.047$ mag, in agreement with the observed trend of lower mass galaxies being less opaque than more massive ones. From spectroscopic observations of H II regions, Berg et al. (2012) measured an oxygen abundance of $12+\log(O/H)=7.68 \pm 0.03$ (i.e., $1/12$ solar metallicity), implying that NGC 3741 fits within the stellar mass-metallicity relation defined by dwarf galaxies (e.g., Berg et al. 2012; Pustilnik et al. 2016).

In this paper, we aim to understand the origin of the peculiar properties of NGC 3741 by comparing the stellar and the gas components of the galaxy. In Sect. 2, we present the new LBT images for NGC 3741 and analyse the stellar populations using both LBT and archival Hubble Space Telescope (HST) photometry. In Sect. 3, we use archival 21-cm observations to study the distribution and kinematics of the neutral gas. Sect. 4 provides a comparison between the properties of the stellar populations and the gas component and a discussion of the possible formation scenarios for NGC 3741. We give our summary in Section 5.

2 STELLAR POPULATIONS

In this section, we analyse LBT and HST photometric data of NGC 3741 in order to derive the age and spatial distribution of the stellar populations using resolved-star CMDs.

2.1 LBT data

NGC 3741 was observed with the LBC on the LBT in the g and r bands as part of the SSH survey (Annibali et al. 2020, hereafter Paper I). The left panel in Fig. 1 shows a 11’ x 11’ portion of the larger 25’ x 25’ imaged field of view, with superimposed the HI contours from the same WSRT data used in Gentile et al. (2007). Our deep LBC data reveal the presence of two prominent blue stellar features extending in the direction of the galaxy major axis. These features are well visible in the g, r color-combined image displayed in the right panel of Fig. 1: a southern triangle-shaped tail and a northern hook. The southern tail, which extends for ~10 kpc at NGC 3741’s distance, is aligned with the direction of the central HI high-density contour but is slightly offset to the west, as we show in more detail in Section 4.1.

Photometry of individual sources was performed independently on the stacked mosaic g and r images using PSFEX (Bertin & Arnouts 1996) and then the two catalogs were matched in coordinates and combined together. Selection cuts based on the SExtractor quality flag were applied for a first removal of spurious and badly-measured objects in the photometric catalog. Then, we used diagnostics based on the comparison between aperture and point spread function fitting magnitudes to remove very extended sources, likely background galaxies, as described in details in Paper I.

The r, $g - r$ CMD for sources measured within a 11’ x 11’ region centered on NGC 3741 is shown in Fig. 2. For comparison, the PARSEC stellar isochrones (Bressan et al. 2012), shifted to a distance of 3.2 Mpc and corrected for a foreground extinction of $E(B-V)=0.02$ (Schlafly & Finkbeiner 2011), have been overplotted on the CMD. The displayed models cover a wide range in stellar ages, from 10 Myr up to 10 Gyr old. The isochrone metallicity is $Z=0.001$, which
is consistent with the value expected from the oxygen abundance of
the ionised gas measured by Berg et al. (2012). The CMD is heavily
contaminated by background galaxies and foreground Milky Way
disc and halo stars: the former mainly populate the area indicated by
the cyan contours in the right panel at
disc and halo stars: the former mainly populate the area indicated by
the ionised gas measured by Berg et al. (2012). The CMD is heavily
consistent with the value expected from the oxygen abundance of
cluster.
the regions where background galaxies, and MW halo and disc stars tend to
while the latter dominate the CMD region at
and old (age
polygons indicate our selection of young (age
populated by young stars (age
HII region. The LBC image. The ACS pointing includes almost the entire southern
tail, but it samples just a portion of the northern hook.

The deep ACS I, B-I CMD for well photometred point-like sources (i.e., selected to have a Dolphot (Dolphin 2000) flag=0 and
sharpness\leq 0.07) is shown in Fig. 4. Thanks to the high spatial res-
olution and depth of the ACS data, the MS and blue core-He burning phases of stars with masses
are well separated in these CMDs. This allows for a finer age separation of the different stellar
topologies than with the LBT data. More specifically, we identify five regions in the CMD that correspond to different age intervals:

(i) the MS phase at B-I \leq 0.2 populated by stars younger than ~200 Myr;
(ii) a bright portion of the MS (upper MS) at I \leq 25 populated by stars younger than ~50 Myr;
(iii) the blue and red core He-burning (HeB) phases of massive and intermediate-mass stars with ages in the range 20-600 Myr;
(iv) the brightest portion of the red clump (RC) at B-I = 1.2 and 26 < I < 26.5 populated by HeB stars with ages of ~0.8-1 Gyr;
(v) a bright portion of the RGB, down to ~2 mag below the tip, which allows us to isolate stars older than 1-2 Gyr.

Figure 5 shows density maps for the spatial distribution of stars in these different age bins, although some contamination from back-
ground galaxies can not be excluded also in this case. The ACS data confirm the presence of a smooth and round-shaped distribution for the old (\geq 2 Gyr) stellar component, in agreement with the LBT data (sect. 2.1) and with the distribution of the 3.6\mu m emission (Fig. 6), which is a good tracer of the old stellar population. In Appendix A, we show that the old star counts are fitted with a Sersic-profile component with index m \sim 1.2, effective radius R_e \sim 20 arcsec or \sim 0.31 kpc (see also value by Lelli et al. 2016, from the 3.6\mu m band) and
M_g \sim -12.5 \pm 0.5, consistent with scaling relations derived for dwarf
spheroidal galaxies (e.g., Côté et al. 2008; Chen et al. 2010; Eigen-
helder et al. 2018). On the other hand, very young stars (<50 Myr) are
concentrated within a central, \sim 0.4 kpc diameter region, as also outlined by the H\alpha image from Kennicutt et al. (2008) shown in Fig. 6. Stars with ages between \sim 20 and \sim 600 Myr, and up to perhaps ~
found several and relatively bright artifacts in the channels surveyed VLA-ANGST (Ott et al. 2012), but we abandoned them, because we did also try to use the publicly available 21-cm data cubes from the

ternali 2015), which performs a tilted-ring model fitting directly on but the beam size is 18.9

southern tail and the portion of the northern hook covered by the 1 Gyr old, present an elongated distribution and populate both the southern tail and the portion of the northern hook covered by the ACS field of view, confirming the results from the LBT data. In particular, stars younger than ~200 Myr, which are very well sampled by the MS phase in the ACS CMD, exhibit a bar-like structure from which the tail and the hook appear to depart. Also the distributions of the FUV emission and NUV emission, which respectively trace stars younger than 100 Myr and 200 Myr (see Kennicutt & Evans 2012, and reference therein) resemble this "bar plus arms" configuration. Spiral galaxies often host a bar and spiral arms, making NGC 3741 a sort of "young spiral galaxy", but with two important differences. The first is, of course, the stellar mass of NGC 3741, which is much lower than the typical stellar mass of spiral galaxies. The second difference is that bars in spiral galaxies are typically made of old stars.

3 HI DISTRIBUTION AND KINEMATICS

We analysed the HI distribution and kinematics of NGC 3741 using the same 21-cm observations as Gentile et al. (2007), which were obtained with the WSRT (Tom Oosterloo, private communication). Because of minor differences in the data reduction, this data cube has velocity resolution of 4.1 \(\text{km s}^{-1} \), the same as Gentile et al. (2007), but the beam size is 18.9' x 13.8', which is slightly lower spatial resolution than their highest-resolution cube.\(^3\)

In our study, we used the software 3D Barolo\(^4\) (Di Teodoro & Fraternali 2015), which performs a tilted-ring model fitting directly on the data cube. This software models the galaxy emission by dividing the galactic disc into a series of concentric and co-planar rings with a given width. Each ring is described by four geometric parameters (i.e. the two centre coordinates, the inclination with respect to the line of sight \(i \), and the position angle PA) and four kinematic parameters (i.e. the systemic velocity of the galaxy \(V_{\text{sys}} \), the rotation velocity of the gas in circular orbits \(V_\text{rot} \), the gas velocity dispersion \(\sigma_{\text{HI}} \), and the radial velocity of the gas with non-circular motions \(V_\text{rad} \)). This model is iteratively fitted to the data cube in order to find the set of free parameters that minimises the residuals between the model and the observations. Prior to the residuals minimisation, 3D Barolo smoothes the galaxy model to the same resolution of the observations, allowing to take into account the beam smearing effect. It is worth to notice that, for each ring, 3D Barolo simultaneously fits the rotation velocity and the azimuthally averaged velocity dispersion. This markedly improves the reliability of velocity dispersion estimates with respect to 2D methods (e.g. 2nd-moment map of the data cube, stacking or pixel-by-pixel fitting of the line profiles) also for data with low signal-to-noise ratio (SNR).

For our modelling with 3D Barolo, we assumed a distance of 3.2 Mpc, \(V_{\text{sys}} = 229 \ \text{km s}^{-1} \) and the kinematic centre at (RA: 11h 36m 6.20s; DEC: 45d 17m 4.00s), which are fully compatible with the values reported in the literature (Gentile et al. 2007; Ott et al. 2012). Prior to the model fitting, 3D Barolo creates a mask and applies it to the data cube in order to isolate the galaxy emission. We created the mask by smoothing the data cube to a factor 2 lower resolution and selecting only the pixels with SNR > 3 in this low-resolution cube. This procedure allows us to include also the faint galactic emission in the masked cube used for modelling the HI kinematics.

Fig. 7 shows the total intensity map and the velocity field obtained from the masked data cube. From the total intensity map in the left panel, we can see that the HI disc has two evident properties: i) the HI surface density is very high in the innermost regions, where \(\Sigma_{\text{HI}} \geq 26 \ \text{M}_\odot \ \text{pc}^{-2} \), and ii) inside the HI disc, two spiral arm-like structures seem to propagate from the galaxy center (see also Gentile...
et al. 2007). From the velocity field in the right panel, we see that
the kinematic major axis (PA $\approx 45^\circ$), which connects the regions
with extreme line-of-sight velocities (V_{LOS}), does not coincide with
the geometric major axis (PA $\approx 34^\circ$). Together with the distorted
iso-velocity contours, this suggests the presence of a warp. We note
that the offset between the systemic velocity and the line-of-sight
velocity along the minor axis is also a signature of radial motions
(e.g. Fraternali et al. 2002; Lelli et al. 2012b; Di Teodoro & Peek
2021), which might be ascribed to the presence of a bar, ongoing
gasaccretion,oranovaldistortionofthegravitationalpotential(e.g.
Schoenmakers et al. 1997; Schoenmakers 1999), it is not advis-
able to fit both the PA and V_{rad} at the same time. Hence, we first
run 3D Barolo assuming $V_{\mathrm{rad}} = 0$ km s$^{-1}$, and fitting V_{rot}, σ_{HI} and
PA. The comparison between the best-fit model and the observa-
tions is provided in the left panels of Fig. 8. From the pv-diagram
along the major axis (upper left panel in Fig. 8), we see that our
model reproduces fairly well the HI emission. However, we notice
some discrepancy in the pv-diagram along the minor axis (lower left
panel in Fig. 8); although the contours of the model emission grossly
reproduce the observations, there are regions (indicated by the green
arrows) where the HI emission is more extended than the model
contours, suggesting the presence of gas with anomalous kinematics.
In Appendix B, we show the rotation curve, the velocity dispersion
radial profile and the azimuthally averaged radial profile of the HI
surface density obtained for this first best-fit model.

We then built a second model by fixing the PA at 34° based on
the morphological major axis, and fitting V_{rot}, σ_{HI}, and V_{rad} (central
panels, Fig. 8). Compared to the previous case, the inclusion of radial
motions improves the modelling of the HI emission in the pv-diagram
along the minor axis, as indicated by the green arrows. The extent of
the observed emission is well reproduced by the model. The radial
profiles of V_{rot}, σ_{HI} and Σ_{HI} of this second model are compatible
within the uncertainties with the those obtained for the first model
(see Appendix B).

We also obtained a third best-fit model by fixing V_{rad} and fitting
V_{rot}, σ_{HI}, and PA in order to include both the warp and radial motions.
After various trials with different values of V_{rad}, we obtained a
satisfactory fit assuming $V_{\mathrm{rad}} = -5$ km s$^{-1}$ (see the right panels of
Fig. 8), which is consistent with the results of Gentile et al. (2007).
This model reproduces fairly well the HI emission and, in particular,
it is able to account for the HI with anomalous kinematics indicated
by the green arrows in the pv-diagram along the minor axis. From a
channel-by-channel inspection, we conclude that the second model
with radial motions but no warp and the third model with both the
warp and radial motions are equally good at reproducing the observ-
ations. The rotation curve and the radial profiles of σ_{HI} and Σ_{HI} of this third model are compatible with those of the previous models
(see Appendix B).

We note that these estimates of V_{rad} can be very uncertain, since
the superposition of emission at different line-of-sight velocities
can influence the determination of V_{rad}. This issue might be impor-
tant in the case of galaxies with a warp along the line of sight and for
significantly thick gas discs, which is likely the case of dwarf galax-
ies (e.g. Roychowdhury et al. 2010; Iorio et al. 2017; Patra 2020;
Bacchini et al. 2020). Since it is not known which side of the disc
is the closest to the observer, it is not possible to unambiguously
discern between gas inflow or outflow, hence the sign of derived V_{rad}
is also uncertain. If we assume that the HI spiral arms are trailing
with respect to the rotation direction, we can infer that the galaxy is
rotating clockwise and that the gas is inflowing with a median mass
inflow rate of the order of 0.1 M_{\odot}/yr, in agreement with the most

In order to avoid unrealistic discontinuities, we regularised the PA
radial profile by choosing the two-step fitting procedure of 3D Barolo
(two stage=True): after the first run, the PA profile is interpolated using
a 2nd-order polynomial function, which is then used in the second run to
remove a free parameter from the fit.
Figure 5. Stellar density maps for sources in the ACS catalog. The left upper panel shows the map for the totality of measured stars, while the other panels refer to stars in different age intervals according to the CMD-based selection of Fig. 4: stars younger than \(\sim 50\) Myr, younger than \(\sim 200\) Myr, with ages in the 20-600 Myr range, with ages of \(\sim 1\) Gyr, and older than \(\sim 2\) Gyr. The contours for the old, RGB population are superimposed for reference to all spatial maps. The dashed line denotes the ACS footprint. The identified stellar bar-like structure is indicated in the panel for ages \(\leq 200\) Myr.

recent estimates for star-forming galaxies in the local Universe (see Di Teodoro & Peek 2021).

4 DISCUSSION

In this section, we first compare the results obtained from the analysis of the stellar and the gaseous components. Then, we discuss possible evolution scenarios that can explain the peculiar properties observed in NGC 3741.

4.1 Comparison between stars and gas

In Figure 9, we compare the distribution of the stellar populations with different ages (see Sect. 2) with the HI distribution and kinematics (see Sect. 3), focusing on a 7’ x 7’ central galaxy region.
Figure 6. Archival observations of NGC 3741: from left to right, the panels show in the FUV emission and the NUV emission observed with GALEX (Lee et al. 2007), the Hα emission (Kennicutt et al. 2008) and the 3.6μm emission observed with Spitzer (Dale et al. 2009). The solid black contours indicate the distribution of different stellar populations selected from the HST CMD: MS stars with ages ≤ 200 Myr (first and second panels from the left), bright MS stars with ages ≤ 50 Myr (third panel), and RGB stars with ages > 2 Gyr (fourth panel from left). The black contours are at 2^k number of enclosed stars with $k = 1, 3, 5, \ldots 19$. The light grey contours are the HI iso-density contours (see Sect. 3), starting from 1 M_\odot pc$^{-2}$ and increasing with steps of 2 M_\odot pc$^{-2}$.

Figure 7. Left panel: HI total intensity map from WSRT observations. The white contours are the iso-density curves, which start at 1 M_\odot pc$^{-2}$ (roughly corresponding to the 3σ pseudo noise level in the total map; see Verheijen & Sancisi 2001; Lelli et al. 2014c) and increase with steps of 2 M_\odot pc$^{-2}$ up to 21 M_\odot pc$^{-2}$. The magenta bar shows the physical scale of the observations. Right panel: velocity field (only pixels with ΣHI ≥ 1 M_\odot pc$^{-2}$ are shown). The black curves are the iso-velocity contours spaced by ±5 km s$^{-1}$ from $V_{sys} = 228$ km s$^{-1}$ (thick contour). Solid and dashed curves are, respectively, for the receding side and the approaching side of the disc. The magenta dot shows the beam size. In both panels, the black cross indicates the kinematic centre.

The figure immediately emphasizes the significantly smaller spatial extension of the stellar components compared to the HI.

The bulk of the youngest stars (age ≤ 50 Myr) is concentrated within a central region of ≤ 1 kpc size and coincides with the highest density peak in the HI emission at ΣHI ≈ 26 M_\odot pc$^{-2}$. On the other hand, the bar-like structure, the “northern hook” and the “southern tail” (≤ 300 Myr old) are aligned along the direction of the HI disc major axis and are about three times more spatially extended than the youngest stellar population. The bar coincides with the high HI density region suggested in previous studies to be a purely gaseous bar (e.g. Begum et al. 2005; Gentile et al. 2007; Banerjee et al. 2013). The hook and the tail appear slightly (anti-clockwise) rotated with respect to the direction of the HI spiral arms emanating from the galaxy center. We notice that the tail is located at the same position of the strong distortion in the HI iso-velocity contours at 208-213 km s$^{-1}$.

MNRAS 000, 1–?? (2020)
Figure 8. Comparison between the HI observations and three best-fit models obtained with 3DBarolo using, for each column, different sets of parameters (see text for details). 1st and 2nd rows: pv-diagram along the kinematic major and minor axes, respectively (notice that, depending on the best-fit model, the pv-diagrams are for different axis orientations, which are indicated by Φ in each panel); the observed HI emission is shown in blue (the black contours are at $2.5 \times \sigma_{\text{hi}} \times 2^n$, with $\sigma_{\text{hi}} = 1.39$ mJy/beam being the noise in the data cube channels), while the model emission is shown by the red contours. The yellow points in the first row panels trace the rotation curve of the best-fit models. The green arrows in the second row panels indicate the emission at velocities compatible with non-circular motions. 3rd and 4th rows: PA and the radial velocity as a function of the galactocentric radius R for the best-fit models. The red points show either the best-fit parameters or the assumed values, while the red curves, when present, are the regularised profiles. The black dashed line indicates the median of the free parameters.

The oldest (age ≥ 2 Gyr) stellar population is also located at the center of the HI disc, but its distribution is round and does not appear to follow the HI morphology. It encompasses regions with HI densities from $\approx 26 \, M_{\odot} \, pc^{-2}$ down to $\approx 6 \, M_{\odot} \, pc^{-2}$ with increasing galactocentric distance. As discussed in Sect. 2, this old and spheroidal stellar component appears less spatially extended than the stars with age ≤ 200-300 Myr. This property is unusual for dIrrs, which often host extended or filamentary structures of young or intermediate-age stars, but these are typically less spatially extended than the old stellar component (see e.g. Tosi et al. 2001; Annibali et al. 2008; Tolstoy, Hill, & Tosi 2009; Momany et al. 2002; Annibali et al. 2013; Higgs et al. 2016; Sacchi et al. 2016; Cignoni et al. 2019; Annibali et al. 2020).

4.2 NGC 3741, a dwarf spiral galaxy?

The properties of NGC 3741 – i.e. the presence of an extended, rotationally supported HI disk, HI spiral arms, an old spheroidal stellar component, and extended younger stellar structures – could suggest that we are observing a low luminosity spiral galaxy with a prominent bulge and faint spiral arms. Indeed, NGC 3741’s stellar mass of $3.8 \times 10^7 \, M_{\odot}$ is about one order of magnitude lower than the stellar mass of the smallest known spiral galaxies (see e.g. the compilation in Calzetti et al. 2015), which would make this system a rare, extremely low-mass spiral galaxy. Dwarf galaxies are known to typically lack strong spiral structures, even in the presence of an extended, gaseous disk dominating the baryonic component. Ghosh & Jog (2018) suggest that in these systems the dark halo tends to suppress the growth of non axisymmetric perturbations in the gas components and that only occasional, weak spiral features (such as those observed in the HI disk of NGC 3741) can be triggered by tidal encounters or by gas accretion.
4.3 A gaseous and stellar bar in NGC 3741?

Previous authors (Begum et al. 2005; Gentile et al. 2007; Begum et al. 2008; Banerjee et al. 2013) ascribed the presence of radial motions in NGC 3741 to a purely gaseous bar, which can be tentatively identified as a central and elongated region with high HI density (see left panel in Fig. 7). However, purely gaseous bars are rarely observed: besides NGC 3741, the only other known cases are those of DDO 168 (Patra & Jog 2019) and NGC 2915 (Bureau et al. 1999).

Indeed, the elongated, bar-like structure made of intermediate-age stars (= 200-300 Myr) in the top right and bottom right panels of Fig. 9 may be the stellar counterpart of the gaseous bar previously detected in NGC 3741. However, a bar is not identified in the stellar population older than 2 Gyr, which constitutes more than 80% of the total stellar mass of NGC 3741 (Weisz et al. 2011) and exhibits a spheroidal distribution.

Stellar bars are thought to typically form as a consequence of disc instability (e.g. see Athanassoula 2013, for a review) but several studies have shown that a dominant dark matter halo tends to slow down bars (Debattista & Sellwood 1998) or even to prevent their formation (Mihos et al. 1997) in dwarf galaxies. Stellar and gaseous bars may also form as a consequence of tidal interactions (Gajda et al. 2018; Pettitt & Wadsley 2018) or gas accretion (Combes 2014). For instance, through N-body hydrodynamical simulations, Gajda et al. (2018) showed that stellar bars can be tidally induced by encounters with a massive host in dwarf galaxies that would otherwise be stable against bar formation for several Gyr. The hypothesis of a tidally induced bar in NGC 3741 is appealing also because of the relatively young ages of the stars organized in the elongated, bar-like structure, suggesting that a putative interaction may have occurred just a few hundred Myr ago.

According to Marasco et al. (2018), weak stellar bars can also form in dwarf galaxies if the dark matter halo is triaxial; this would also induce non-circular motions in the gas component. However, in this scenario, it seems difficult to explain the absence of a bar-like feature in the old stellar component of NGC 3741.

4.4 NGC 3741, the precursor/descendant of a starburst dwarf galaxy?

The HI analysis presented in this paper shows that NGC 3741 has a very high HI density at its centre and that the rotation curve rises steeply in the inner regions, which are properties typical of blue compact dwarf galaxies (BCDs). BCDs, sometimes also called starbursting dwarf galaxies), have higher central HI surface densities than "normal" dIrrs and steeply rising rotation curves (e.g. van Zee et al. 1998; Simpson & Gottesman 2000; Lelli et al. 2014b). These properties indicate a strong mass concentration at their centre, suggesting that the starburst is closely related to the central shape of the gravitational potential and to the inner concentration of gas (van Zee et al. 2001; Lelli et al. 2012a, b, 2014a, b). Moreover, Lelli et al. (2014a) identified a population of "compact" dIrrs with steeply rising circular velocities (similar to those of BCDs) but moderate star formation activity. These authors proposed that compact dIrrs are the best candidates for being either the progenitors or the descendants of BCDs. NGC 3741, which shows all the typical characteristics of BCDs with the important exception of the SFR, may fit into this scenario, as discussed in the following.

The azimuthally averaged central HI surface density of NGC 3741 is ≈ 8 M⊙pc⁻² (see Appendix B) and its inner circular velocity gradient, defined as \(V_c(R_d)/R_d \) (with \(R_d \) being the exponential disc scale length), is \(\sim 50 \text{ km/s kpc}^{-1} \); both these values are consistent with...
the typical values of BCDs and compact dIrrs (Lelli et al. 2014a). For comparison DDO 87, a dIrr with HI mass and maximum circular velocity similar to those of NGC 3741, has a much lower inner HI surface density of \(\approx 3 \, M_\odot pc^{-2} \) and a lower inner velocity gradient of \(-22 \, km/s \, kpc^{-1}\). However, the average SFR surface density within the optical radius of NGC 3741 is \(\Sigma_{\text{SFR}} \approx 4 \times 10^{-3} \, M_\odot yr^{-1} \, kpc^{-2} \) (Lee et al. 2007; Kennicutt et al. 2008; Begum et al. 2008; Johnson et al. 2013; Roychowdhury et al. 2017), which is more typical of normal dIrrs rather than of strong starburst dwarfs (e.g., Tolstoy, Hill, & Tosi 2009; Cignoni et al. 2019).

What is the origin of the peculiar properties observed in NGC 3741? We suggest that a merger event or gas accretion from the intergalactic medium may be the cause. In fact, the HI disc of NGC 3741 is about seven times more extended than the stellar component, a property observed only in a few other dwarfs such as DDO 154 (e.g. Krumm & Burstein 1984; Iorio et al. 2017), NGC 4449 (Bajaja et al. 1994; Lelli et al. 2014b), NGC 2915 (Meurer et al. 1996) and I Zw 18 (e.g. Lelli et al. 2012a, 2014b). It has been suggested that these extended HI discs may accumulate from the accretion of cold gas, either through minor mergers or from gaseous filaments coming from intergalactic medium (see Sancisi et al. 2008, and references therein). In NGC 3741, this scenario is supported by the possible existence of a symmetric warp and by the presence of radial motions throughout the HI disc which seem to increase toward the galaxy outskirts. Under the assumption that the HI spiral arms are trailing with respect to the rotation direction, i.e. that the galaxy is rotating clockwise, the observed radial motions translate into an inflow of gas toward the galaxy center.

The anomalous extended young stellar components, i.e the “tail”, the “hook” and the bar-like stellar structure (superimposed to a bar-like gaseous over-density) seem to strengthen the accretion/merger hypothesis: these anomalous features may in fact originate from gas inflow toward the galaxy center that has triggered star formation a few hundred Myr ago. However, the uncertainties in the derived SFH (Weisz et al. 2011) do not allow us to confirm or exclude the occurrence of a major starburst in NGC 3741 a few hundred Myr ago and to evaluate if its strength was comparable to those typically observed in BCDs. It is also possible that this galaxy is now at the beginning of a star-bursting phase and ready to turn into a BCD.

5 SUMMARY AND CONCLUSIONS

Our study shows that NGC 3741 exhibits peculiar properties for dwarf galaxies, both in its stellar and in its gas components. LBT and HST imaging revealed the presence of a bar-like stellar structure from which two elongated features, that we dub the “northern hook” and the “southern tail”, appear to depart. This bar-hook-tail feature extends for \(\approx 3.5 \, kpc \) in the direction of the HI disc major axis, is dominated by stars a few hundred Myr old, and is about twice as extended as the old (age\(\geq 2 \, Gyr \)) stellar component. On the other hand, very young stars (age\(< 50 \, Myr \)) are confined to the central (\(\leq 1 \, kpc \)) region of the galaxy where the HI density is the highest. This configuration is quite uncommon among dwarf galaxies: i) although irregular, extended, or filamentary structures made of very young-to-several hundred Myr old stars are often present there, such features do not typically encompass the spatial distribution of the old stellar component; ii) since their potential is dominated by the dark matter halo, dwarf galaxies are thought to be quite stable against bar formation; iii) a bar composed of young stars, but not identified in the old stellar component, is quite unusual and difficult to explain. To investigate the origin of the peculiar stellar properties and their association with the gas, we performed a new analysis of HI archival data. The stellar bar coincides with a central, elongated region of high HI density suggested in previous studies to be a purely gaseous bar. The hook and the tail appear slightly (anti-clockwise) rotated with respect to the direction of the HI spiral arms emanating from the galaxy center. From the HI kinematics, we confirm the presence of HI radial motions (indicating an inflow/outflow).

The HI distribution and kinematics indicate that the surface density is very high at the galaxy centre, peaking at \(\approx 26 \, M_\odot pc^{-2} \), and that the rotation curve rises steeply in the inner regions, indicating a strong concentration of mass at the galaxy centre. These properties are typical of star-bursting blue compact dwarf galaxies, but less common for dwarf irregular galaxies with modest star formation rates, such as NGC 3741.

These results lead us to speculate that the unusual properties observed in NGC 3741 may be due to an advanced-stage merger with a low mass companion or to the accretion of gas from the intergalactic medium, which caused the gas to inflow towards the central regions and triggered star formation a few hundred Myr ago, forming two elongated young stellar features (the “tail” and the “hook”) and a central bar-like structure superimposed to a similarly elongated HI overdensity. This accretion/interaction event may also explain the presence of a very extended HI disc and of the central HI spiral arms. The high central HI density and the steeply rising rotation curve suggest that NGC 3741 may be the progenitor or the descendant of a starburst dwarf.

ACKNOWLEDGEMENTS

We would like to thank Filippo Fraternali for the invaluable help with the data interpretation and fruitful discussions on the results, and Tom Oosterloo for providing the reduced WSRT data cube and helping with its interpretation. We are much indebted to the anonymous referee for his/her extremely useful comments and suggestions. We acknowledge the support from the LBT-Italian Coordination Facility for the execution of observations, data distribution, and reduction. MB, FA, MC and MT acknowledge the financial support from INAF Main Stream grant 1.05.01.86.28 “SSH”. F. A., M.C. and M.T. acknowledge funding from INAF PRIN-SKA-2017 program 1.05.01.88.04.

C.B. acknowledges the financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 833824). Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration amongst institutions in the United States, Italy, and Germany. LBT Corporation partners are The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrophisica, Italy; LBT Beteiligungsellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University; and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA’s Astrophysics Data System.
DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

Allaert F., Gentile G., Baes M., 2017, A&A, 605, A55. doi:10.1051/0004-6361/201730402

Amorisco, N. C., Evans, N. W., & van de Ven, G. 2014, Nature 507, 335

Annibali, F., Aloisi, A., Mack, J., et al. 2008, AJ, 135, 1900. doi:10.1088/0004-6256/135/5/1900

Annibali, F., Cignoni, M., Tosi, M., et al. 2013, AJ, 146, 144

Annibali, F., Nipoti, C., Ciotti, L., et al. 2016, ApJ, 826, L27

Annibali, F., Beccari, G., Bellazzini, M., et al. 2020, MNRAS, 491, 5101

Athanassoula, E. 2013, Secular Evolution of Galaxies, 305

Bacchini C., Fraternali F., Iorio G., Pezzulli G., Marasco A., Nipoti C., 2020, A&A, 641, A70. doi:10.1051/0004-6361/202038223

Bajaja, E., Huchtmeier, W. K., & Klein, U. 1994, A&A, 285, 385

Banerjee, A., Patra, N. N., Chengalur, J. N., et al. 2013, MNRAS, 434, 1257. doi:10.1093/mnras/stt1083

Begum, A., Chengalur, J. N., & Karachentsev, I. D. 2005, A&A, 433, L1. doi:10.1051/0004-6361:200500026

Begum, A., Chengalur, J. N., Kennicutt, R. C., et al. 2008, MNRAS, 383, 809. doi:10.1111/j.1365-2966.2007.12592.x

Bekki, K. 2008, MNRAS, 388, L10. doi:10.1111/j.1745-3933.2008.00489.x

Belokurov, V. et al. 2006, ApJ, 642, L137

Belokurov, V. & Koposov, S. E. 2016, MNRAS, 456, 602

Berg, D. A., Skillman, E. D., Marble, A. R., et al. 2020, MNRAS, 491, 5101

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393

Bosma A., 1978, Ph.D. Thesis

Bresolin, F., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127

Bureau, M., Freeman, K. C., Pfitzner, D. W., et al. 1999, AJ, 118, 2158. doi:10.1086/301064

Calzetti, D., et al., 2015, ApJ, 149, 51

Carlin, J. L., Sand, D. J., Price, P., et al., 2016, ApJ, 828, L5

Chen, C.-W., Côté, P., West, A. A., et al. 2010, ApJS, 191, 1. doi:10.1088/0067-0049/191/1/1

Cignoni, M., Sacchi, E., Tosi, M., et al. 2019, ApJ, 887, 112. doi:10.3847/1538-4357/ab53d5

Ciotti, L. & Bertin, G. 1999, A&A, 352, 447

Combes, F. 2014, Structure and Dynamics of Disk Galaxies, 480, 211

Cook, D. O., Dale, D. A., Johnson, L. C., et al. 2009, ApJ, 703, 517. doi:10.1088/0004-637X/703/1/517

Deason, A., Wertz, A., & Garrison-Kimmel, S. 2014, ApJ, 794, 115

Debattista, V. P. & Sellwood, J. A. 1998, ApJ, 493, L5. doi:10.1086/311118

de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., Jr., et al. 1991, Third Reference Catalogue of Bright Galaxies. Springer, New York, NY (USA), 1991, 2091 p., ISBN 0-387-97552-7

Diemand, J., Kuhlen, M., Madau, P., et al. 2008, Nature, 454, 735

Di Teodoro E. M., Fraternali F., 2015, MNRAS, 451, 3021. doi:10.1093/mnras/stv1213

Di Teodoro E. M., Peek J. E. G., 2021, arXiv, arXiv:2110.01618

Dolphin, A. E. 2000, PASP, 112, 1383. doi:10.1086/316630

Dopita M. A., Ryder S. D., 1994, ApJ, 430, 163. doi:10.1086/174390

Eigenthaler, P., Puzia, T. H., Taylor, M. A., et al. 2018, ApJ, 855, 142. doi:10.3847/1538-4357/aaab60

Foreman-Mackey, D. and Hogg, D. W. and Lang, D. et al. 2013, PASP, 125, 306. doi:10.1086/670067

Fraternali F., van Moorsel G., Sancisi R., Oosterloo T., 2002, AJ, 123, 3124. doi:10.1086/340358

Gajda, G., Łokas, E. L., & Athanassoula, E. 2018, ApJ, 868, 100. doi:10.3847/1538-4357/aaeaf1

Gentile, G., Salucci, P., Klein, U., et al. 2007, MNRAS, 375, 199. doi:10.1111/j.1365-2966.2006.11283.x
Oman K. A., Marasco A., Navarro J. F., Frenk C. S., Schaye J., Benítez-Oh, S.-H., Hunter, D. A., Brinks, E., et al. 2015, AJ, 149, 180.

Momany, Y., Held, E. V., Saviane, I., et al. 2002, A&A, 384, 393. doi:10.1051/0004-6361:20020047

Oh, S.-H., Hunter, D. A., Brinks, E., et al. 2015, AJ, 149, 180. doi:10.1088/0004-6256/149/6/180

Oman K. A., Marasco A., Navarro J. F., Frenk C. S., Schaye J., Benítez-Llambay A., 2019, MNRAS, 482, 821. doi:10.1093/mnras/sty2687

Otto, J., Stilp, A. M., Warren, S. R., et al. 2012, AJ, 144, 123. doi:10.1088/0004-6256/144/4/123

Paudel, S., Smith, R., Yoon, S. J., et al. 2018, ApJS, 237, 36

Patra, N. N. & Jog, C. J. 2019, MNRAS, 488, 4942. doi:10.1093/mnras/stz2091

Patra N. N., 2020, MNRAS, 495, 2867. doi:10.1093/mnras/staa1353

Peebles, P., et al., 1982, AJ, 263, L15

Pettitt, A. R. & Wadsley, J. W. 2018, MNRAS, 474, 5645. doi:10.1093/mnras/stx3129

Posti L., Fraternali F., Di Teodoro E. M., Pezzulli G., 2018, A&A, 612, L6. doi:10.1051/0004-6361/201833091

Prigon, G. C., Stierwalt, S., Patton, D. R., et al. 2017, ApJ, 846, 74

Pustilnik, S. A., Pergelepsyyna, Y. A., & Kniazev, A. Y. 2016, MNRAS, 463, 670. doi:10.1093/mnras/stw2039

Randriamampandry T. H., Combes F., Carignan C., Deg N., 2015, MNRAS, 454, 3743. doi:10.1093/mnras/stv2147

Rich, R. M., et al., 2012, Nature 482, 192

Romeo, A. B. 2020, MNRAS, 491, 4843

Romeo, A. B., Agertz, O., & Renaud, F. 2020, MNRAS, 499, 5656.

Roychowdhury S., Chengalur J. N., Begum A., Karachentsev I. D., 2010, MNRAS, 404, L60. doi:10.1111/j.1745-3933.2010.00835.x

Roychowdhury, S., Huang, M.-L., & Kaufmann, G., et al. 2015, MNRAS, 449, 3700. doi:10.1093/mnras/stv515

Roychowdhury, S., Chengalur, J. N., & Shi, Y. 2017, A&A, 608, A24. doi:10.1051/0004-6361/201731083

Sacchi, E., Annibali, F., Cignoni, M., et al., 2016, ApJ, 830, 3

Sancisi, R., Fraternali, F., Oosterloo, T., et al., 2008, A&ARv, 15, 189. doi:10.1007/s10515-008-0010-0

Sand, D. J., Spekkens, K., Croomojević, D., Hargis, J. R., Willam, B., Strader, J., Grillmair, C. J., 2015, ApJ, 812, L13

Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103

Schoenmakers R. H. M., Franx M., de Zeeuw P. T., 1997, MNRAS, 292, 349. doi:10.1093/mnras/292.2.349

Schoenmakers R. H. M., 1999, PhDT

Simpson, C. E. & Gottesman, S. T. 2000, AJ, 120, 2975. doi:10.1086/316879

Stierwalt, S., Besla, G., Patton, D., et al., 2015, ApJ, 805, 2

Talbot R. J., Arnott W. D., 1975, ApJ, 197, 551. doi:10.1086/153543

Thuan, T. X., Goehring, K. M., Hibbard, J. E., et al., 2016, MNRAS, 463, 4268

Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371

Tosi, M., Sabbi, E., Bellazzini, M., et al., 2001, AJ, 122, 127

Tully, R. B., Rizzi, L., Dolphin, A. E., et al. 2006, AJ, 132, 729. doi:10.1086/505466

Van de Ven, G., Franx M., de Zeeuw P. T., 1996, A&A, 308, 78

Vanden Bosch, M. F., et al., 2002, MNRAS, 329, 557

Vandertome, F., et al. 2018, ApJ, 852, 111. doi:10.3847/1538-4357/abfcc2

Vandertome, F., et al. 2019, ApJ, 887, 141. doi:10.3847/1538-4357/aaa338

Vandertome, F., et al. 2020, MNRAS, 498, 2807. doi:10.1093/mnras/stz3283

Vandertome, F., et al. 2021, MNRAS, 504, 3729. doi:10.1093/mnras/stab2093

Vandertome, F., et al. 2022, MNRAS, 514, 3053. doi:10.1093/mnras/stac859

Weisz, D. R., Dalcanton, J. J., Williams, B. F., et al. 2011, ApJ, 739, 5. doi:10.1088/0004-637X/739/1/5

Weisz, D. R., Dalcanton, J. J., Williams, B. F., et al. 2011, ApJ, 739, 5. doi:10.1088/0004-637X/739/1/5

Wheeler, C. et al. 2015, MNRAS, 453, 1305

White, S. D. M. & Rees, M. J. 1978, MNRAS, 183, 341

Zhang, H.-X., Smith, R., Oh, S.-H., et al. 2020, arXiv:2007.15667

APPENDIX A: PROJECTED MASS PROFILE OF THE OLD STELLAR COMPONENT

We fitted the old stellar component (projected) mass profile using individual star counts. To do this, we started from the HST ACS photometric catalog described in Section 2.2 and selected RGB stars down to 2 mag fainter than the RGB tip. We assume that star counts on the RGB trace the old stellar mass. We considered only stars with galacto-centric distances between 20 arcsec and 85 arcsec: star

MNRAS 000, 1–77 (2020)
counts within 20 arcsec from the galaxy centre are highly affected by incompleteness due to severe crowding, while star counts beyond 85 arcsec can be significantly affected by background galaxies' contamination. The counts were binned into $N=13$ concentric circular annuli centred on the galaxy nominal centre. Thus the profile consists of a set of $D = \{R_i, n_i, \delta n_i\}$ points, with $i = 1, \ldots, N$, where R_i is the average distance of the i-th bin, n_i the stellar counts in that bin and δn_i the associated Poisson error. To derive the system effective radius (i.e. the distance on the plane of the sky that contains half of the stellar mass) we fit the profile with a Sérsic model

$$n(R) = n_0 \exp \left(b_m \left(\frac{R}{R_e} \right)^{\frac{1}{n}} \right).$$

(A1)

where n_0 is the normalization, R_e the effective radius, m the Sérsic index and b_m as in equation 18 of Ciotti & Bertin (1999). To explore the parameter space, we used a Markov Chain Monte Carlo (MCMC) method. The log-likelihood of the model $\ln L(\xi|D)$, defined by the parameter vector $\xi = \{n_0, R_e, m\}$, given the data D, is

$$\ln L(\xi|D) = -\frac{1}{2} \sum_{i=1}^{N} \left(\frac{n(R_i) - n_i}{\delta n_i} \right)^2.$$

(A2)

We ran 16 chains, each evolved for 4000 steps, we used a Metropolis-Hastings sampler (Metropolis et al. 1953; Hastings 1970) to sample from the posterior, and we used flat priors over the models’ free parameters. The MCMC was run by means of the `emcee` library (Foreman-Mackey et al. 2013). We eliminated the first 2000 steps of each chain as conservative burn-in and we used the remaining steps to build the posterior distributions over the model’s free parameters. According to our fit, the estimated effective radius is $R_e = 19.65^{+1.61}_{-1.89}$ arcsec, while the Sérsic index is $m = 1.17^{+0.20}_{-0.16}$, where the quoted errors have been computed as the 16-th and 84-th percentiles of the corresponding marginalized one dimensional distributions. The result of the fit is shown in the left panel of Fig. A1. Since the more external bins may be contaminated by stars of the Tail, we tested our estimate of R_e also fitting the projected number density profile with bins in a smaller radial range of 20 arcsec < R < 50 arcsec (right panel). Although with larger errors, the inference over the models’ free parameters is consistent with the previous case, especially for the estimate of the effective radius ($R_e = 20.42^{+2.83}_{-4.63}$, $m = 1.06^{+1.04}_{-0.38}$). In the end, we estimate the total magnitude of the old stellar component from the fitted profile parameters. To this purpose, we first perform aperture photometry on the LBT images deriving a surface brightness of $\mu_g = 26.3 \pm 0.3$ mag arcsec$^{-2}$ and $\mu_r = 26.5 \pm 0.3$ mag arcsec$^{-2}$ in an external galaxy region at $40'' < R < 45''$ not contaminated by young stars; then, once the Sersic profile is normalized to these values, we derive total magnitudes of $M_g = -12.5 \pm 0.3$ and $M_r = -12.3 \pm 0.3$ for the old stellar component.

APPENDIX B: RADIAL PROFILES OF THE HI DISTRIBUTION AND KINEMATICS

This section provides the HI rotation curve, the radial profile of the HI velocity dispersion, and the azimuthally averaged radial profile of the HI surface density for the three best-fit models presented in Sec. 3. These profiles are shown in Fig. B1, where we also provide a comparison with the HI rotation curve from Allaert et al. (2017), the HI velocity dispersion from Gentile et al. (2007), and the HI surface density from Begum et al. (2008). The rotation curves and the velocity dispersion radial profiles of our models are perfectly in agreement, within the uncertainties, with each other and with the literature (i.e. Gentile et al. 2007; Allaert et al. 2017). We note that, beyond $R \approx 4$ kpc, the velocity dispersion profile derived by Gentile et al. (2007) from the second moment map of the WSRT data cube is slightly lower than our profiles, but the associated uncertainties are not available. The HI surface density obtained by Begum et al. (2008) from the GMRT data cube is only grossly similar to our profile, but this could be due to the different data and masking method.
Figure A1. Fit to the old component stellar profile. Red squares denote the observed RGB counts, while the solid line is our best fit. The grey shaded area delimits the 16-th and 84-th percentile region of uncertainty. The fit in the left panel was obtained considering all star counts within a galacto-centric distance of 20 arcsec < R < 85 arcsec, while the fit to the right was restricted to a smaller 20 arcsec < R < 50 arcsec range.

Figure B1. HI rotation curve (left), radial profile of the HI velocity dispersion (centre), and azimuthally averaged radial profile of the HI surface density (right) for the three best-fit models obtained using 3D Barolo. The blue, green, and magenta curves in the three panels are the HI rotation curve from Allaert et al. (2017), the HI velocity dispersion profile from Gentile et al. (2007) and the HI surface density from Begum et al. (2008), respectively.