Cost analysis of an electricity supply chain using modification of price based dynamic economic dispatch in wheeling transaction scheme

Wahyuda1,2*, Budi Santosa1**, and Ahmad Rusdiansyah1***
1Department of Industrial Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo-Surabaya 60111, Indonesia
2Industrial Engineering Department, Universitas Mulawarman, Samarinda Indonesia

*‘wahyuda@gmail.com, **shima1907@yahoo.com, ***arusdian@ie.its.ac.id

Abstract. Deregulation of the electricity market requires coordination between parties to synchronize the optimization on the production side (power station) and the transport side (transmission). Electricity supply chain presented in this article is designed to facilitate the coordination between the parties. Generally, the production side is optimized with price based dynamic economic dispatch (PBDED) model, while the transmission side is optimized with Multi-echelon distribution model. Both sides optimization are done separately. This article proposes a joint model of PBDED and multi-echelon distribution for the combined optimization of production and transmission. This combined optimization is important because changes in electricity demand on the customer side will cause changes to the production side that automatically also alter the transmission path. The transmission will cause two cost components. First, the cost of losses. Second, the cost of using the transmission network (wheeling transaction). Costs due to losses are calculated based on ohmic losses, while the cost of using transmission lines using the MW-mile method. As a result, this method is able to provide best allocation analysis for electrical transactions, as well as emission levels in power generation and cost analysis. As for the calculation of transmission costs, the Reverse MW-mile method produces a cheaper cost than the Absolute MW-mile method.

1. Introduction
The restructuring of the electric power market has created a new deregulation. The deregulation transforms the original monopoly power system with vertical integration into a competitive system. Vertical integration, generation, transmission, and distribution are managed by one party [1]. Whereas in deregulation, the system is separate and competitive.

Deregulation divides the electricity market into 3 types: pool system, bilateral contract and hybrid system. Pool system is the most widely applied market systems. In this system, the parties involved are divided into Gencos, Transcos, Discos and managed by an ISO (Independent System Operator). As a producer, Gencos will offer price to market, as well as Discos. Discos are a term for a group of customers. Then ISO will determine the winner of the transaction. The ISO will also arrange the scheduling of each Gencos operation that is tailored to the network load for the security of the system. Bilateral is an electric market between two parties without involving ISO. Two parties, namely Gencos and Discos conduct transactions bilateral. The result of the agreement is the amount of electricity
transacted reported to ISO, then ISO will schedule shipments from producer to consumer tailored to network security [2]-[4].

This study discusses the allocation of electrical load on the bilateral contract. In this type of contract, the price agreement involves only two parties namely Gencos and Discos. Therefore, Gencos should be able to optimize the performance of plants owned so that it can produce low-cost electricity by minimizing fuel consumption. While Discos as the buyer will pay 2 types of costs, which is the cost of each kWh purchased and the cost of transmission. Transmission costs in the bilateral system are also known as wheeling transactions. There are 2 types of wheeling that is, own use and not own use. Wheeling for own use occurs when there are parties/customers who have their own power station in an area, and want to deliver electricity to its production facilities to other distant places. For that must use the network of the other party. Wheeling is not for own use when the party/customer wants to run electricity at his production facility, and for that he must buy electricity from other parties.

The type of wheeling used is not its own use. Deregulation enables all power companies to compete with each other to provide cheaper, quality power supplies. On the other hand, deregulation has also transformed the transmission system into a transportation service provider system. As a service function, the transmission should be able to provide transportation at a low cost, fair and transparent. Cheaper transportation is expected to reduce the total cost of electricity. Transparent transportation means that the fees paid by transportation service users can be clearly illustrated. Equitable transportation means that all transport service users are not subject to discriminatory treatment.

Cheaper power supplies can be achieved by minimizing fuel costs. A load allocation aimed at minimizing fuel costs using economic dispatch is present in [5]–Error! Reference source not found. Economic dispatch is also called static economic dispatch because it does not consider changes in the demand side. Economic dispatch that considers changing demand is called dynamic economic dispatch as in [3]. Error! Reference source not found.-Error! Reference source not found. However, the two types of models are not suited to the deregulation of the electricity market due to differences in purpose structure and function. Therefore, the price based dynamic economic dispatch (PBDED) model emerges. This model fits into market deregulation. In this model as the goal is to maximize profit as in [20]. All of the above models result in the allocation of loads with minimal cost. By reducing fuel costs, it is expected to reduce the final price of electricity so that it is competitive. Once electricity is produced, electricity must be transmitted through the transmission network. To be able to produce competing products then the transmission should also be available at a cheap price.

Transmission cost will be cheap, fair and transparent when the transmission costs can be presented in detail [22]. This can be realized by dividing the transmission operation into several parts according to the conditions. The condition of the transmission operation is that in order to reach the customer, the electricity generated by the generator must pass through several substations first connected by a network. There are many substations and paths, so that electricity will have many combinations of lines before it reaches the customer. This combination of paths and substations raises a new problem of losses on the network.

The loss in the transmission network is the loss of electrical energy due to the nature of the conductor used or known as ohmic losses. This loss is influenced by the magnitude of current and resistance. The losses on the transmission line can be approximated by a model proposed by Bamigbola et al. Error! Reference source not found.. In the model, the greater the distance between the plant and the load, the greater the loss occurs. This network loss causes the plant to produce more. This is a compensation for network losses that occurs so that the amount of energy produced equal to the energy demanded. Thus, the optimization should not only be on the production side, but also on the transmission side to minimize the total cost.

Thus, the total cost of a load allocation actually consists of 3 components. First, the cost of fuel consumption due to the load. Second, the cost of fuel consumption due to transmission losses. Third, the cost of transmission. This research proposes the development of PBDED model called Multi-Echelon PBDED. This model is a combination of 2 types of models that are multi-echelon models as in [24] and PBDED models as in [20]. The model can answer the goal of profit maximization by
minimizing fuel costs, minimizing transmission losses and minimizing transmission costs. The cost of transmission is determined based on the MW-mile method. Proposed models have been tried on systems with artificial data consisting of 3 generators, 3 substations, and 6 load centers. The result is a load allocation with detailed transmission costs and their impact on total costs and emissions.

2. PBDED model and multi-echelon distribution

The PBDED model aims to maximize profit with the following objective functions:

\[
\text{maximize } PF = RV - TC
\]

In this case,

\[
TC = \sum_{t=1}^{T} \sum_{m=1}^{M} C_i (P_{(i,t)} + ST_i)
\]

\[
RV = \sum_{t=1}^{T} \sum_{m=1}^{M} \sigma_g(t) (P_{(i,t)} I_{(i,t)})
\]

\[C_i: \text{production cost of unit } i, P_{(i,t)}: \text{Output of generator } i \text{ at time } t, I_{(i,t)} \text{ commit or not commit at time } t, ST_i \text{ start-up cost at time } t, i: \text{index generator. } N \text{ is the number of generating units.} \]

\[
\sigma_g(t) \text{ load forecasting at time } t, C_i(P_{(i,t)}) \text{ generation cost of unit } i
\]

1. Demand Constraint

\[
\sum_{i=1}^{N} P_{(i,t)} I_{(i,t)} \leq D_t \quad t = 1, ..., Tm
\]

2. Generator Constraint

\[
P_{\text{min}} \leq P_{(i,t)} I_{(i,t)} \leq P_{\text{max}}
\]

\[-DR_i \leq P_i - P_i^0 \leq UR_i
\]

\[
\text{max}\{P_i^0 - DR_i, P_{\text{min}}\} \leq P_i \leq \text{min}\{P_i^0 + UR_i, P_{\text{max}}\}
\]

3. Multi-echelon distribution model

Multi echelon distribution as in[24] as follows:

Minimize \[
\sum_{j} f_j X_j + \sum_{i} \sum_{j} \sum_{m} c_{ijm} Y_{ijm}
\]

Constraints \[
\sum_{i} \sum_{m} \sum_{k} Y_{ijm}^k \leq MX_j
\]

\[
\sum_{j} \sum_{m} Y_{ijm}^k \geq h_i^k
\]

\[
\sum_{i} \sum_{j} Y_{ijm}^k \leq S_m^k
\]

\[
Y_{ijm}^k \geq 0
\]

\[
X_j = 0, 1
\]

\[h_i^k = \text{Demand} \]

\[f_j = \text{fixed cost} \]

\[c_{ijm}^k = \text{production cost of unit } i \text{ at plant } m. \]

\[S_m^k = \text{Plant capacity.} \]

4. Proposed model using multi-echelon PBDED

The PBDED model has managed to maximize profit, but cannot present optimization of the transmission network, whereas the transmission network leads to the emergence of two types of costs. First, the costs which is caused by losses on the network. Second, the cost which is caused by the use of transmission (wheeling transaction). While in multi-echelon distribution model (formula 8 to 13), this model can present optimization on the distribution line, but it is less suitable for electricity. Therefore, to utilize the advantages of both models, this paper proposes a multi-echelon PBDED model. The objective function of this proposed model is the same as the formula (1) - (3) while the additional restrictions include:

\[
F = \sum_{t=1}^{T} \sum_{i=1}^{I} F_{it}(P_{it})
\]

\[
F_w = \sum_{t=1}^{T} \sum_{i=1}^{I} F_{it}(P_{it}) w
\]

\[
C_w = F_w - F + c_{ijt}^f + c_{ijkt}
\]

\[
F_{it}(P_{it}) = a_i P_{it}^2 + b_i P_{it} + c_i
\]
\[C_{ijt}^y = \frac{p_{ijt}^y}{p_{ijt}} z_{ij} \] \hspace{1cm} (20)

\[C_{jkt}^y = \frac{p_{jkt}^y}{p_{jkt}} z_{jk} \] \hspace{1cm} (21)

\[E_{it}(P_{it}) = \alpha_i P_{it}^2 + \beta_i P_{it} + \delta_i \] \hspace{1cm} (22)

The formula (16) is the cost of fuel with a regular load. The formula (17) is the cost of fuel when wheeling occurs. The formula (18) is the transmission cost. The formula (19) is a quadratic function of fuel costs. Formulas (20) and (21) MW-mile method calculations for transmission of 500 KV and 150 KV. While the formula (22) is a quadratic function of the resulting emissions.

5. Numerical experiment
Models are tried on systems with artificial data. The system consists of 3 generators, 3 substations and 6 loads, with the following details:

| Table 1. Distance between Generators and Transmission Stations 500 kV and 150 kV (in km) |
|----------------------------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|
GT1	GT2	GT3	GD1	GD2	GD3	GD4	GD5	GD6	
P1	50	300	500	10	5	30	15	20	15
P2	200	50	600	10	5	20	10	20	10
P3	200	600	50	30	20	5	10	20	30

Table 2. Generator Data
a

P1
P2
P3

Table 3. Load Data
Time (t)

1
2
3

6. Results
At base load, the total profit for 3 periods is Rp 31,836,139 (income Rp 69,650,728 Expenses Rp 37,814,589). Emissions 6,109,994 and losses of 15,153. With the utilization of the plant between 46 and 84%, except in the third period, the utilization of the plant reaches 100% for the 2nd plant. The low utilization will have a bad impact on the return on investment, but on the contrary, up to 100% utilization is at high risk due to electricity demand which fluctuates.

Furthermore, there are two scenarios used for this model. Scenario 1 is a condition when a request occurs on GD1 (retailer1). Scenario 2, is a condition when additional demand occurs on GD4 (Retailer 2). The results of both scenarios are shown in the following table:

| Table 4. Profit, Emission and network loss for wheeling cases on GD1 and GD4 |
|-----------------------------|-----------------------------|-----------------------------|
t	Scenario 1 (on GD1)	Scenario 2 (on GD4)						
Revenue	Expense	Emission	Losses	Revenue	Expense	Emission	Losses	
1	21,203,763	10,386,790	2,222,548	4,936	21,250,202	10,464,871	2,226,951	4,967
2	27,020,181	15,894,890	2,900,362	6,108	27,095,314	16,004,907	2,915,597	6,137
3	26,029,078	14,547,499	2,335,343	5,311	26,057,472	14,557,974	2,343,724	5,328
Table 5. The cost of transmission with Reverse and Absolute MW mile on GD1 and GD4

Scenario	Reverse MW mile	Absolute MW mile	
	The difference between fuel costs	3,014,590	3,213,163
	wheeling 500 KV	33,202	33,664
	wheeling 150 KV	-14,733	-12,591
Total Cost	3,033,059	3,234,236	
The difference between fuel costs	3,014,590	3,213,163	
wheeling 500 KV	62,870	63,067	
wheeling 150 KV	27,207	28,929	
Total Cost	3,104,667	3,305,159	

With the same amount of load, both scenarios produce different profits. Profit on scenario 1 is bigger, that is Rp. 33,423,843. This profit is earned from income for 3 periods of Rp. 74,253,022. And fuel costs are Rp. 40,829,179. With total emissions of 7,458,252 and transmission losses is Rp. 16,355. Although scenario 1 generates a smaller total revenue than scenario 2, it produces a larger total profit. This is because scenario 1 can result in a more efficient allocation of loads with lower total cost (fuel costs) than scenario 2. This can also be seen from the resulting losses. Where losses in scenario 1 are smaller than scenario 2. Losses will increase generation fuel costs. Losses can be reduced by the selection of appropriate transmission routes through optimization. With regard to wheeling transaction, scenario 1 also provides a lower total transmission cost, which is Rp. 3,033,059 and Rp. 3,104,667 using Reverse MW-mile and Absolute MW-mile respectively.

The calculation of wheeling transaction using Reverse MW-mile method will result in lower total transmission cost, which is Rp. 33,202 on the transmission of 500 kV and -Rp. 14.733 on a 150 kV transmission. Negative signals on transmission costs mean a decrease in the amount of electricity that flows on the network. Negative transmission becomes revenue for transmission service users. Thus, additional demand (wheeling transaction) will be more advantageous if done on GD1 (retailer 1) than on GD4 (retailer 2).

7. Conclusions
The Multi Echelon Priced Based Dynamic Economic Dispatch method has successfully been built to maximize profit electrical allocation by presenting a more detailed and fair transmission cost calculation for the parties involved. Maximum profit can be obtained by two ways: first, maximizing revenue; and second, reducing fuel and transmission costs. This paper uses a reverse MW-mile and an absolute MW-mile method, based on 2 scenarios of wheeling transactions performed. The Reverse MW-mile method produced the cheapest transmission cost. In general, it can be concluded that transactions on GD1 (scenario 1) result in greater profit and lower transmission costs. Greater profits on scenario 1 are due to cheaper generation fuel costs and smaller losses.

References
[1] Wahyuda and Santosa B 2015 Dynamic Pricing in Electricity: Research Potential in Indonesia Procedia Manuf. 4 Iess pp 300–306
[2] Shivaie M and Ameli M T 2015 An environmental / techno-economic approach for bidding strategy in security-constrained electricity markets by a bi-level harmony search algorithm
Renew. Energy 83

[3] Liao G 2012 Integrated Isolation Niche and Immune Genetic Algorithm for solving Bid-Based Dynamic Economic Dispatch Electr Power Energy 42 pp 264–275

[4] Shahiddehpour M and Alomoush M 2001 Restructured Electrical Power Systems (New York: Marcel Dekker, Inc.)

[5] Niknam T, Mojarrad H D, Meymand H Z and Firouzi B B 2011 A new honey bee mating optimization algorithm for non-smooth economic dispatch Energy 36 (2) pp 896–908

[6] Singh N and Kumar Y 2015 Multiobjective Economic Load Dispatch Problem Solved by New PSO Hindawi 2015 pp 1–7

[7] Palanichamy C and Babu N S 2008 Analytical solution for combined economic and emissions dispatch Electr. Power Syst. Res. 78 pp 1129–1137

[8] Kumar R, Sadu A, Kumar R and Panda S K 2012 A novel multi-objective directed bee colony optimization algorithm for multi-objective emission constrained economic power dispatch Int. J. Electr. Power Energy Syst. 43 (1) pp 1241–1250

[9] Kumar R, Sharma D and Sadu A 2011 A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch Int. J. Electr. Power Energy Syst. 33 (1) pp 115–123

[10] Kumar S and Kumar S 2015 A Comparative Study of Solution of Economic Load Dispatch Problem in Power Systems in the Environmental Perspective Procedia - Procedia Comput. Sci. 48 1234567890 pp 96–100

[11] Zhou J, Wang C, Li Y, Wang P, Li C, Lu P and Mo L 2017 A multi-objective multi-population ant colony optimization for economic emission dispatch considering power system security Applied Mathematical Modelling 31 (45) pp 684-704

[12] Mandal B, Roy P K and Mandal S 2014 Economic load dispatch using krill herd algorithm International journal of electrical power & energy systems 31 (57) pp 1-10

[13] Vahidinasab V and Jadid S 2010 Joint economic and emission dispatch in energy markets: a multiobjective mathematical programming approach Energy 35 (3) pp 1497-504.

[14] Zhao X, Wu L and Zhang S 2013 Joint environmental and economic power dispatch considering wind power integration: Empirical analysis from Liaoning Province of China Renewable energy 52 pp 260-5

[15] Pandit M, Chaudhary V, Dubey H M and Panigrahi B K 2015 Multi-period wind integrated optimal dispatch using series PSO-DE with time-varying Gaussian membership function based fuzzy selection Int. J. Electr. Power Energy Syst 73 pp 259-72

[16] Nwulu N I and Xia X 2015 Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs. Energy Convers. Manag. 89 pp 963-74

[17] El-sobky B and Abo-elhaga Y 2014 Multi-objective economic emission load dispatch problem with trust-region strategy Electric Power Systems Research 108 pp 254-9

[18] Zhong H, Xia Q, Chen Y and Kang C 2015 Energy-saving generation dispatch toward a sustainable electric power industry in China Energy Policy 83 pp 14-25.

[19] Arriaga E, Lopez E, Lopez M, Blasco-Gimenez R, Roa C and Poloujadoff M 2015 A probabilistic economic dispatch model and methodology considering renewable energy, demand and generator uncertainties Electric Power Systems Research 121 pp 325-32

[20] Wu Z L, Ding J Y, Wu Q H, Jing Z X and Zhou X X 2016 Two-phase mixed integer programming for non-convex economic dispatch problem with spinning reserve constraints Electric Power Systems Research 140 pp 653-62

[21] Columbus C C and Simon S P 2013 Profit based unit commitment for GENCOs using parallel NACO in a distributed cluster Swarm and Evolutionary Computation 10 pp 41-58
[22] Wahyuda, Santosa B and Rusdiansyah A 2016 Load Allocation of Power Plant using Multi Echelon Economic Dispatch Annual Conference on Industrial and System Engineering (ACISE) pp 42–47
[23] Bamigbola O M, Ali M M and Oke M O 2014 Mathematical modeling of electric power flow and the minimization of power losses on transmission lines Applied Mathematics and Computation 241 pp 214-21
[24] Daskin M S 1995 Network and Discrete Location. Model, Algorithm, and Applications vol. 1 (Canada: John Wiley & Sons, Inc.)