Incoherent dictionaries and the statistical restricted isometry property

Shamgar Gurevich and Ronny Hadani

Abstract—In this article we present a statistical version of the Candès-Tao restricted isometry property (SRIP for short) which holds in general for any incoherent dictionary which is a disjoint union of orthonormal bases. In addition, under appropriate normalization, the eigenvalues of the associated Gram matrix fluctuate around \(\lambda = 1 \) according to the Wigner semicircle distribution. The result is then applied to various dictionaries that arise naturally in the setting of finite harmonic analysis, giving, in particular, a better understanding on a remark of Applebaum-Howard-Searle-Calderbank concerning RIP for the Heisenberg dictionary of chirp-like functions.

Index Terms—Incoherent dictionaries, Statistical RIP, Wigner semicircle distribution, deterministic examples, Heisenberg-Weil representation.

I. INTRODUCTION

Digital signals, or simply signals, can be thought of as complex valued functions on the finite field \(\mathbb{F}_p \), where \(p \) is a prime number. The space of signals \(\mathcal{H} = \mathbb{C}(\mathbb{F}_p) \) is a Hilbert space of dimension \(p \), with the inner product given by the standard formula

\[
(f, g) = \sum_{t \in \mathbb{F}_p} f(t) \overline{g(t)}.
\]

A dictionary \(\mathcal{D} \) is simply a set of vectors (also called atoms) in \(\mathcal{H} \). The number of vectors in \(\mathcal{D} \) can exceed the dimension of the Hilbert space \(\mathcal{H} \), in fact, the most interesting situation is when \(|\mathcal{D}| \gg p = \dim \mathcal{H} \). In this set-up we define a resolution of the Hilbert space \(\mathcal{H} \) via \(\mathcal{D} \), which is the morphism of vector spaces

\[
\Theta : \mathbb{C}(\mathcal{D}) \rightarrow \mathcal{H},
\]

given by \(\Theta(f) = \sum_{\varphi \in \mathcal{D}} f(\varphi) \varphi \), for every \(f \in \mathbb{C}(\mathcal{D}) \). A more concrete way to think of the morphism \(\Theta \) is as a \(p \times |\mathcal{D}| \) matrix with the columns being the atoms in \(\mathcal{D} \).

In the last two decades [11], and in particular in recent years [3], [4], [5], [6], [7], [8], resolutions of Hilbert spaces became an important tool in signal processing, in particular in the emerging theories of sparsity and compressive sensing.

II. THE RESTRICTED ISOMETRY PROPERTY

A useful property of a resolution is the restricted isometry property (RIP for short) defined by Candès-Tao in [7]. Fix a natural number \(n \in \mathbb{N} \) and a pair of positive real numbers \(\delta_1, \delta_2 \in \mathbb{R}_{>0} \).

Definition II.-1: A dictionary \(\mathcal{D} \) satisfies the restricted isometry property with coefficients \((\delta_1, \delta_2, n) \) if for every subset \(S \subset \mathcal{D} \) such that \(|S| \leq n \) we have

\[
(1 - \delta_2) \|f\| \leq \|\Theta(f)\| \leq (1 + \delta_1) \|f\|,
\]

for every function \(f \in \mathbb{C}(\mathcal{D}) \) which is supported on the set \(S \).

Equivalently, RIP can be formulated in terms of the spectral radius of the corresponding Gram operator. Let \(G(S) \) denote the composition \(\Theta_S^* \Theta_S \) with \(\Theta_S \) denoting the restriction of \(\Theta \) to the subspace \(\mathcal{C}_S(\mathcal{D}) \subset \mathbb{C}(\mathcal{D}) \) of functions supported on the set \(S \). The dictionary \(\mathcal{D} \) satisfies \((\delta_1, \delta_2, n)\)-RIP if for every subset \(S \subset \mathcal{D} \) such that \(|S| \leq n \) we have

\[
\delta_2 \leq \|G(S) - I_{DS}\| \leq \delta_1,
\]

where \(I_{DS} \) is the identity operator on \(\mathcal{C}_S(\mathcal{D}) \).

It is known [2], [8] that the RIP holds for random dictionaries. However, one would like to address the following problem

1. [10], [9], [20], [21], [22], [23], [25], [24], [26], [27]:

 Problem II.-2: Find deterministic construction of a dictionary \(\mathcal{D} \) with \(|\mathcal{D}| \gg p \) which satisfies RIP with coefficients in the critical regime

\[
\delta_1, \delta_2 \ll 1 \quad \text{and} \quad n = \alpha \cdot p,
\]

for some constant \(0 < \alpha < 1 \).

III. INCOHERENT DICTIONARIES

Fix a positive real number \(\mu \in \mathbb{R}_{>0} \). The following notion was introduced in [9], [12] and was used to study similar problems in [26], [27]:

Definition III.-3: A dictionary \(\mathcal{D} \) is called incoherent with coherence coefficient \(\mu \) (also called \(\mu \)-coherent) if for every pair of distinct atoms \(\varphi, \phi \in \mathcal{D} \)

\[
|\langle \varphi, \phi \rangle| \leq \frac{\mu}{\sqrt{p}}.
\]

In this article we will explore a general relation between RIP and incoherence. Our motivation comes from three examples of incoherent dictionaries which arise naturally in the setting of finite harmonic analysis:

- The first example [18], [19], referred to as the Heisenberg dictionary \(\mathcal{D}_H \), is constructed using the Heisenberg representation of the finite Heisenberg group \(H(\mathbb{F}_p) \). The Heisenberg dictionary is of size approximately \(p^2 \) and its coherence coefficient is \(\mu = 1 \).
- The second example [15], [16], [17], which is referred to as the oscillator dictionary \(\mathcal{D}_O \), is constructed using the Weil representation of the finite symplectic group.

S. Gurevich is with the Department of Mathematics, University of California, Berkeley, CA 94720, USA. Email: shamgar@math.berkeley.edu.
R. Hadani is with the Department of Mathematics, University of Chicago, IL 60637, USA. Email: hadani@math.uchicago.edu.

Date: Sep. 1, 2008.
The oscillator dictionary is of size approximately p^5 and its coherence coefficient is $\mu = 4$.

- The third example [15], [16], [17], referred to as the extended oscillator dictionary D_{EO}, is constructed using the Heisenberg-Weil representation [28], [13] of the finite Jacobi group, i.e., the semi-direct product $J(\mathbb{F}_p) = SL_2(\mathbb{F}_p) \ltimes H(\mathbb{F}_p)$. The extended oscillator dictionary is of size approximately p^5 and its coherence coefficient is $\mu = 4$.

The three examples of dictionaries we just described constitute reasonable candidates for solving Problem [17-2]. They are large in the sense that $|\mathcal{D}| \gg p$, and empirical evidences suggest (see [1] for the case of \mathcal{D}_H) that they might satisfy RIP with coefficients in the critical regime [17-1]. We summarize this as follows:

Problem III.4: Do the dictionaries \mathcal{D}_H, \mathcal{D}_O and \mathcal{D}_{EO} satisfy the RIP with coefficients $\delta_1, \delta_2 \ll 1$ and $n = \alpha \cdot p$, for some $0 < \alpha < 1$?

IV. MAIN RESULTS

In this article we formulate a relaxed statistical version of RIP, called statistical isometry property (SRIP for short) which holds for any incoherent dictionary \mathcal{D} which is, in addition, a disjoint union of orthonormal bases:

$$\mathcal{D} = \bigcup_{x \in \mathcal{X}} B_x, \quad (IV-.2)$$

where $B_x = \{b_{x1}, \ldots, b_{xp}\}$ is an orthonormal basis of \mathcal{H}, for every $x \in \mathcal{X}$.

A. The statistical restricted isometry property

Let \mathcal{D} be an incoherent dictionary of the form [IV-.2]. Roughly, the statement is that for $S \subset \mathcal{D}$, $|S| = n$ with $n = p^{1-\varepsilon}$, for $0 < \varepsilon < 1$, chosen uniformly at random, the operator norm $\|G(S) - I_{D_S}\|$ is small with high probability. Precisely, we have

Theorem IV-A.1 (SRIP property [14]): For every $k \in \mathbb{N}$, there exists a constant $C(k)$ such that the probability

$$\Pr\left(\|G(S) - I_{D_S}\| \geq p^{-\varepsilon/2}\right) \leq C(k) p^{-\varepsilon}\cdot. \quad (IV-A.1)$$

The above theorem, in particular, implies that probability $\Pr\left(\|G(S) - I_{D_S}\| \geq p^{-\varepsilon/2}\right) \to 0$ as $p \to \infty$ faster then p^{-l} for any $l \in \mathbb{N}$.

B. The statistics of the eigenvalues

A natural thing to know is how the eigenvalues of the Gram operator $G(S)$ fluctuate around 1. In this regard, we study the statistical properties of the normalized error term

$$E(S) = (p/n)^{1/2} \left(G(S) - I_{D_S}\right).$$

Let $\rho_{E}(S) = n^{-1} \sum_{i=1}^{n} \lambda_i$ denote the spectral distribution of $E(S)$ where λ_i, $i = 1, \ldots, n$, are the real eigenvalues of the Hermitian operator $E(S)$. The following theorem asserts that ρ_{E} converges in probability as $p \to \infty$ to the Wigner semicircle distribution ρ_{SC}.

Theorem IV-B.1 (Semicircle distribution [14]): We have

$$\lim_{p \to \infty} \rho_{E}(S) \to \rho_{SC}. \quad (IV-B.1)$$

Remark IV-B.2: A limit of the form (IV-B.1) is familiar in random matrix theory as the asymptotic of the spectral distribution of Wigner matrices. Interestingly, the same asymptotic distribution appears in our situation, albeit, the probability spaces are of a different nature (our probability spaces are, in particular, much smaller).

In particular, Theorems IV-A.1, IV-B.1 can be applied to the three examples \mathcal{D}_H, \mathcal{D}_O and \mathcal{D}_{EO}, which are all of the appropriate form [IV-.2]. Finally, our result gives new information on a remark of Applebaum-Howard-Searle-Calderbank [1] concerning RIP of the Heisenberg dictionary.

Remark IV-B.3: For practical applications, it might be important to compute explicitly the constants $C(k)$ which appears in (IV-A.1). This constant depends on the incoherence coefficient μ, therefore, for a fixed p, having μ as small as possible is preferable.

Acknowledgement. It is a pleasure to thank our teacher J. Bernstein for his continuous support. We are grateful to N. Sochen for many important discussions. We thank F. Bruckstein, R. Calderbank, M. Elad, Y. Eldar, and A. Sahai for sharing with us some of their thoughts about signal processing. We are grateful to R. Howe, A. Man, M. Revzen and Y. Zak for explaining us the notion of mutually unbiased bases.

REFERENCES

[1] Applebaum L., Howard S., Searle S., and Calderbank R., Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery. (Preprint, 2008).

[2] Baraniuk R., Davenport M., DeVore R.A. and Wakin M.B., A simple proof of the restricted isometry property for random matrices. Constructive Approximation, to appear (2007).

[3] Bruckstein A.M., Donoho D.L. and Elad M., "From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images", to appear in SIAM Review (2007).

[4] Compressive Sensing Resources. Available at http://www dsp.ece.rice.edu/cs/

[5] Candès E. Compressive sampling. In Proc. International Congress of Mathematicians, vol. 3, Madrid, Spain (2006).

[6] Candès E., Romberg J. and Tao T., Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509 (2006).

[7] Candès E., and Tao T., Decoding by linear programming. IEEE Trans. on Information Theory, 51(12), pp. 4203 - 4215 (2005).

[8] Donoho D., Compressed sensing. IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289 – 1306 (2006).

[9] Donoho D.L. and Elad M., Optimally sparse representation in general (non-orthogonal) dictionaries via l_1 minimization. Proc. Natl. Acad. Sci. USA 100, no. 5, 2197–2202 (2003).

[10] DeVore R. A., Deterministic constructions of compressed sensing matrices. J. Complexity 23 (2007), no. 4-6, 918–925.

[11] Daubechies I., Grossmann A. and Meyer Y., Painless non-orthogonal wavelets. J. Math. Phys., 27 (5), pp. 1271-1283 (1986).

[12] Elad M. and Bruckstein A.M., A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases. IEEE Trans. On Information Theory, Vol. 48, pp. 2558-2567 (2002).

[13] Subr R. A., Deterministic constructions of compressed sensing matrices. J. Complexity 23 (2007), no. 4-6, 918–925.

[14] Gurevich S. and Hadani R., The geometric Weil representation . Selecta Mathematica, New Series, Vol. 13, No. 3. (December 2007), pp. 465-481.

[15] Gurevich S. and Hadani R., The statistical restricted isometry property and the Wigner semicircle distribution of incoherent dictionaries. Submitted to the Annals of Applied Probability (2009).

[16] Gurevich S., Hadani R. and Sochen N., The finite harmonic oscillator and its associated sequences. Proceedings of the National Academy of Sciences of the United States of America, in press (2008).
[16] Gurevich S., Hadani R., Sochen N., On some deterministic dictionaries supporting sparsity. *Special issue on sparsity, the Journal of Fourier Analysis and Applications. To appear (2008).*

[17] Gurevich S., Hadani R., Sochen N., The finite harmonic oscillator and its applications to sequences, communication and radar. *IEEE Transactions on Information Theory*, vol. 54, no. 9, September 2008.

[18] Howe R., Nice error bases, mutually unbiased bases, induced representations, the Heisenberg group and finite geometries. *Indag. Math. (N.S.)* 16, no. 3-4, 553–583 (2005).

[19] Howard S. D., Calderbank A. R. and Moran W. The finite Heisenberg-Weyl groups in radar and communications. *EURASIP J. Appl. Signal Process.* (2006).

[20] Howard S.D., Calderbank A.R., and Searle S.J., A fast reconstruction algorithm for deterministic compressive sensing using second order Reed-Muller codes. *CISS* (2007).

[21] Indyk P., Explicit constructions for compressed sensing of sparse signals. *SODA* (2008).

[22] Jafarpour S., Efficient Compressed Sensing using Lossless Expander Graphs with Fast Bilateral Quantum Recovery Algorithm. *arXiv:0806.1799* (2008).

[23] Jafarpour S., Xu W., Hassibi B., Calderbank R., Efficient and Robust Compressive Sensing using High-Quality Expander Graphs. *Submitted to the IEEE transaction on Information Theory* (2008).

[24] Xu W. and Hassibi B., Efficient Compressive Sensing with Deterministic Guarantees using Expander Graphs. *Proceedings of IEEE Information Theory Workshop, Lake Tahoe* (2007).

[25] Saligrama V., Deterministic Designs with Deterministic Guarantees: Toeplitz Compressed Sensing Matrices, Sequence Designs and System Identification. *arXiv:0806.4958* (2008).

[26] Tropp J.A., On the conditioning of random subdictionaries. *Appl. Comput. Harmonic Anal.*, vol. 25, pp. 1–24, 2008.

[27] Tropp J.A., Norms of random submatrices and sparse approximation. *Submitted to Comptes-Rendus de l’Académie des Sciences* (2008).

[28] Weil A., Sur certains groupes d’opérateurs unitaires. *Acta Math. 111, 143-211* (1964).