A class-wide phylogenetic assessment of Dothideomycetes

C.L. Schoch1, P.W. Crous2, J.Z. Groenewald2, E.W.A. Boehm2, T.I. Burgess1, J. de Gruyter2, A.N. Miller18, G.K. Gubler2, T. Hill2, H.A. Raja26, E. Rivas Plata10, 27, B. Robbertse1, C.H.T. Lumbsch10, L. Marvanová15, J.S. Mbatchou10, 16, A.H. McVay17, A. Moser39, G.K. Mugambi10, 19, 27, L. Muggia7, M.P. Nelsen10, 20, P. Nelson21, C.L. Schoch1*, P.W. Crous2, J.Z. Groenewald2, E.W.A. Boehm3, T.I. Burgess4, J. de Gruyter2, 5, G.S. de Hoog2, L.J. Dixon6, M. Grube7, C. Gueidan2, Y. Hara22, C. Hugenholtz5, M.-F. Kohn13, M.J. Wingfield31, A.R. Wood32, J.H.C.Woudenberg2, H. Yonezawa8, Y. Zhang24, J.W. Spatafora17

1 National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 2 CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, Netherlands; 3 Department of Biological Sciences, Murdoch University, Murdoch, 6150, Australia; 4 Plant Protection Service, P.O. Box 9102, 6700 HC Wageningen, The Netherlands; 5 USDA-ARS Systematic Mycology and Microbiology Laboratory, Beltsville, MD 20705, U.S.A.; 6 Institute of Plant Sciences, Karl-Franzens-Universitat Graz, Austria; 7 Faculty of Agriculture and Life Sciences, Hiroshima University, Bunkyo-cho 3, Hirokawa, Aomori 038-8561, Japan; 8 National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki 305-0005, Japan; 9 School of Science, Mae Fah Luang University, Tsad, Muang, Chiang Rai 57100, Thailand; 10 Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pathumthai Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 11 Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 12 Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden; 13 Czech Collection of Microorganisms, Institute of Experimental Biology, Faculty of Science, Masaryk University, Tjorného 14, Brno CZ-602 00, Czech Republic; 14 College of Liberal Arts and Sciences, DePaul University, 1 E. Jackson Street, Chicago, Illinois 60604, U.S.A.; 15 Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 U.S.A.; 16 Illinois Natural History Survey, University of Illinois, 1516 South Oak St, Champaign, IL 61820, U.S.A.; 17 National Museums of Kenya, Botany Dept., P.O. Box 45166, 00100, Nairobi, Kenya; 18 Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Chicago, Illinois 60637, U.S.A.; 19 University of Minnesota, Ecology, Evolution, and Behavior, 100 Ecology Building, St. Paul, MN 55108, U.S.A.; 20 Centro de Recursos Microbiológicos, Departamento de Ciencias de la Vida, Facultad de Ciencias e Tecnología, Universidad Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; 21 Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 22 Division of Microbiology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China; 23 IRG/PAF, Université Blaise Pascal, Bâtiment Biologie Végétale Recherche, 24 avenue des Landais, BP 80026, 63177 Aubière, France; 24 Department of Plant Biology, University of Illinois, 505 S. Goodwin Ave, Urbana, IL 61801, U.S.A.; 25 Department of Biological Sciences, University of Illinois-Chicago, 445 West Taylor Street (MC 066), Chicago, Illinois 60607, U.S.A.; 26 Departamento de Ingeniería y Ciencia de los Materiales, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; 27 DECODE, Università degli Studi della Tuscia, L’Aquila, Italy; 28 Fungus/Mushroom Resource and Research Center, Tottori University, Minami 4-101, Koyama, Tottori 680-8553, Japan; 29 Foresty and Agricultural Biotechnology Institute (FABI), Centre for Biotechnology in Biotechnology, Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0022, South Africa; 30 ARC – Plant Protection Research Institute, P Bag X5017, Stellenbosch, 7599, South Africa; 31 International Fungal Research Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, P.R. China

*Correspondence: Conrad L. Schoch, schoch2@ncbi.nlm.nih.gov

Abstract: We present a comprehensive phylogeny derived from 5 genes, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, for 356 isolates and 41 families (six newly described in this volume) of Dothideomycetes. All currently accepted orders in the class are represented for the first time in addition to numerous previously unplaced lineages. Subclass Pleosporomycetidae is expanded to include the aquatic order Jahuliales. An ancestral reconstruction of basic nutritional modes supports numerous transitions from saprobic life histories to plant associated and lichenised modes and a transition from terrestrial to aquatic habitats are confirmed. Finally, a genomic comparison of 6 dothideomycete genomes with other fungi finds a high level of unique protein associated with the class, supporting its delineation as a separate taxon.

Key words: Ascomycota, Pezizomycotina, Dothideomycetes, fungal evolution, lichens, multigene phylogeny, phylogenomics, plant pathogens, saprobes, Tree of Life.

INTRODUCTION

Multi laboratory collaborative research in various biological disciplines is providing a high level of interaction amongst researchers with diverse interests and backgrounds. For the mycological community, the “Assembling the Fungal Tree of Life” project (AFTOL) provided a platform for researchers from many different disciplines to collaborate on the fungal class wide phylogeny (Hibbett et al. 2007). This result is combined efforts and data from the other ends of the spectrum by also sampling intensively at foci of diversity between barcoding and the tree of life. With this in mind it is the aim of this paper and subsequent ones in this volume to present a comprehensive phylogeny of Dothideomycetes. This result is combined efforts and data from a diverse group of researchers to focus on systematic sampling, therefore developing a more robust fungal class wide phylogeny of Dothideomycetes. This is especially important as a framework for taxon sampling with relatively small numbers of sequence characters are also progressing in various barcoding projects (Seifert et al. 2007, Chase et al. 2008, Seifert 2009). It remains important to link these two ends of the spectrum by also sampling intensively at foci of interest between barcoding and the tree of life. With this in mind it is the aim of this paper and subsequent ones in this volume to provide a broadly sampled phylogeny at class level and below for Dothideomycetes. This result is combined efforts and data from a diverse group of researchers to focus on systematic sampling, therefore developing a more robust fungal class wide phylogeny of Dothideomycetes. This is especially important as a framework.
for comprehending how fungi have evolved as they shift ecological habitats and adapt to new environments and nutritional modes.

It is apparent that the assemblage of fungi, now defined as Dothideomycetes, exemplifies a dynamic evolutionary history. This is by far the largest and arguably most phylogenetically diverse class within the largest fungal phylum, Ascomycota (Kirk et al. 2008). It contains a heterogeneous group of fungi that subsist in the majority of the niches where fungi can be found. The best-known members of the group are plant pathogens that cause serious crop losses.

Species in the genera Cochliobolus, Didymella, Phaeosphaeria, Pyrenophora, Venturia, Mycosphaerella and Leptosphaeria, or their anamorphs, are major pathogens of corn, melons, wheat, barley, apples, bananas and brassicas respectively, in most areas of the world where they are cultivated. Other species are important pathogens in forestry e.g. species in the genera Botryosphaeria and Mycosphaerella and their anamorphs that attack economically important tree species.

Despite a large body of work containing taxonomic, phytopathological, genetic and genomic research, the majority of fungi hypothesised to be members of Dothideomycetes remain under-sampled within a systematic framework. Several studies performed during the course of the last four years have advanced our understanding of these fungi, but phylogenetic relationships of the saprobes, aquatic, asexual and lichenised species remain particularly poorly studied. Indeed, their conspicuous absence in phylogenetic analyses frustrates a broader understanding of dothideomycete evolution.

Dothideomycetes share a number of morphological characters with other fungal classes. It was recently formally described (Eriksson & Wink a 1997) replacing in part the long-recognised loculoascomycetes (Luttrell 1955). This redefinition of the loculoascomycetes was mainly prompted by DNA sequencing comparisons of ribosomal RNA genes (Berbee & Taylor 1992, Spatafora et al. 1995) that was subsequently expanded and confirmed (Berbee 1996, Silva-Hanlin & Hanlin 1999, Lindemuth et al. 2001, Lumbsch & Lindemuth 2001). These early phylogenetic studies demonstrated that loculoascomycetes, as it was defined, is not monophyletic, although contrary views exist (Liu & Hall 2004). Nevertheless the majority of analyses have shown that some loculoascomycete taxa, such as the "black yeasts" in Chaetothyriales as well as the lichenised Verrucariales, reside within Eurotiomycetes as subclass Chaetothyriomycetidae (Spatafora et al. 1995, Wink a et al. 1998, Geiser et al. 2006, Gueidan et al. 2008). The majority of the remaining loculoascomycete species are now placed in Dothideomycetes. Although finer morphological distinctions between the distantly related members of loculoascomycetes can be made, their synapomorphies remain elusive (Lumbsch & Huhndorf 2007). These findings all point to the fact that a number of loculoascomycete morphological characters are either retained ancestral traits or that they exhibit convergence due to similar selection pressures.

Traditionally the most important morphological characters used to define major groups in Ascomycota were the type of ascus, septation of ascospores, the morphology and development of the ascma, as well as the structure and organisation of the centrum. Dothideomycetes (and previously, loculoascomycetes) have fissitunicate (or functionally bitunicate) asc, that emerge from ascolocular development in preformed locules within vegetative tissue, that represents the ascma. The reproductive structures in ascolocular development are derived from cells before fusion of opposing mating types occurs and can contain one or several locules. This form of ascolocular development is in contrast to the ascohymenial development found in most other fungal classes. During ascohymenial development asci are generated in a hymenium and the reproductive structure is derived from cells after fusion of opposing mating types. The fissitunicate ascus has been described for more than a century, but the importance of ascolocular development was first emphasised in 1932 (Nannfeldt 1932). Importantly Nannfeldt’s concepts were also the basis for the Santesson’s integration of lichens into the fungal classification (Santesson 1952). In fissitunicate asci, generally, the ascospores are dispersed by the rupture of the thick outer layers (ectotunica) at its apex, allowing the thinner inner layer (endotunica) to elongate similar to a “jack in a box”. The elongated endotunica ruptures apically and releases the ascospores forcefully through the ascma opening. The spores are then released in the air, or in aquatic species, under water. Building on this work and that of others (Miller 1949), Luttrell proposed Loculoascomycetes, synonymous to Nannfeldt’s “Ascoloculares” (Luttrell 1955). Importantly, he proposed a correlation between fissitunicate asci and ascolocular development, also emphasising the importance of ascus morphology and dehiscence as well as the development of surrounding elements within the ascma.

Although the concept of a group of fungi (including the Dothideomycetes) with fissitunicate asci and ascocellular development has been accepted by several authors, much less agreement could be found on ordinal definitions in the era before molecular characters. This ranged from proposing a single order (von Arx & Müller 1975) to three (Müller & von Arx 1962), five (Luttrell 1951, 1955) six (Barr 1979), or seven (Barr 1987). Luttrell initially described a number of important development types centered on descriptions of all tissues inside the ascma (the centrum concept) and combined this with ascma structure to define his five orders (Luttrell 1951, 1955). Of Luttrell’s initial centrum concepts three are applicable to the Dothideomycetes as they are presently defined. Thus, the Pleospora type, the Dothidea type and the Elsinoc type centra correspond to the dothideomycete orders Pleosporales, Dothideales and Myriangiales, respectively. An important refinement to Luttrell’s ideas was introduced with the concept of the hamathecium by Eriksson (Eriksson 1981). This is defined as a neutral term for sterile hyphae or other tissues between the asci in the ascma (Kirk et al. 2008). For example, hamathecial types can include the presence or absence of pseudoparaphyses, which are sterile cells that extend down from the upper portion of the ascmaal cavity. They become attached at both ends, although the upper part may become free at maturity. Other important concepts introduced by Müller and von Arx (Müller & von Arx 1962) focused on the morphology of the ascma opening and ascus shape. The Dothidea type centrum in the type species of Dothidea, D. sambuci illustrates several typical dothideomycete morphologies (Fig. 1). These include the thick-walled fissitunicate asci produced within a multilocular stroma.

The most recent dothideomycete class-wide morphological assessments were carried out by Barr (Barr 1979, 1987). Her subclasses were determined based on characters in the centrum, including the absence, presence and types of hamathecial tissues. Consistent with several earlier authors, Barr’s ordinal classifications were based on ascomatal shape (perithecoid or apothecioid) and manner in which nutrients are obtained by the fungus (Barr 1987). In addition to these characters she emphasised the importance of finer distinctions in the hamathecium such as the shape and structure of the pseudoparaphyses (Barr 1979, 1987).

The introduction of molecular phylogenies for Dothideomycetes (Berbee 1996) provided an opportunity to verify the significance
of various morphological characters used in the aforementioned classifications. The clearest correlation with a DNA sequence-based phylogeny was for the presence or absence of pseudoparaphyses, largely agreeing with the first orders proposed by Luttrell (Liew et al. 2000, Lumbsch & Lindemuth 2001). Barr’s concept of applying the shape of the pseudoparaphyses to define orders was rejected by molecular phylogenies (Liew et al. 2000). This set the stage for more comprehensive analyses incorporating protein data, and resulted in the definition of two subclasses, Pleosporomycetidae (pseudoparaphyses present) and the Dothideomycetidae (pseudoparaphyses absent; Schoch et al. 2006). Numerous orders and other taxa remained unresolved outside of these two subclasses.

The most recent class level phylogenetic analyses combining sequences from protein coding genes with ribosomal RNA sequences fortified the view that Dothideomycetes is a monophyletic group (Schoch et al. 2009a, b). Furthermore, strong support was found for a sister relationship between Dothideomycetes and the lichenised class Arthoniomycetes (Lumbsch et al. 2005, Spatafora et al. 2006, Schoch et al. 2009a). This clade was recently defined as a rankless taxon “Dothideomyceta” (Schoch et al. 2009a, b). The Arthoniomycetes consists of a single order (Arthoniales) of lichens and lichenicolous fungi (Ertz et al. 2009) that produce bitunicate asci in ascothymenial apothecia and was proposed as an intermediate group or “Zwischengruppe” (Henssen & Thor 1994). This placement raises intriguing questions regarding the origins of
ascocellular development and further illustrates the importance of including lichen-forming fungi in dothideomycete phylogenies.

While considerable progress has been made in defining these fungi the placement of Dothideomycetes in relation to the majority of other Ascomycota classes remains unresolved. Here, greater clarity would likely require a huge increase of characters from genome projects. In this regard, the first phylogenomic studies have shown low resolution for this relationship (Fitzpatrick et al. 2006, Kuramae et al. 2006, Robbertse et al. 2006). This could indicate a rapid radiation event, but more likely suggests taxon sampling bias. This latter view is supported by the fact that none of these studies has included lichenised species that represent about 25 % of the number of species in Ascomycota.

The authors of this volume have focused on two primary goals. These are to considerably expand the taxon sampling of existing orders by including saprobes, asexual species and other poorly sampled groups. Secondly we aim to sample widely within specific environmental niches and present a multigene phylogeny that exposes the highly diverse nature of Dothideomycetes.

MATERIAL AND METHODS

DNA extraction, amplification and sequencing

The majority of fungal cultures were obtained from the CBS culture collection and additional sources mentioned in other papers of this volume. DNA was also provided by authors of several papers presented in this volume and the reader is referred to Boehm et al. (2009a), Crous et al. (2009a), Suetrong et al. (2009) and Zhang et al. (2009). For additional details see Table 1 - see online Supplementary Information. Fungal genomic DNA was obtained by scraping mycelium from PDA plates. Samples were subsequently pulverised and the DNA was extracted using the FastDNA® kit and the FastPrep® instrument from MPI Biochemicals (Irvine, CA, U.S.A.). DNA amplifications were completed using Taq polymerase (GenScript, Piscataway, NJ, U.S.A.), with FailSafe™ PCR 2× PreMix E (Epigenetic, San Diego, CA, U.S.A.). Primers were used as noted in the Assembling the Fungal Tree of Life project (AFTOL; Schoch et al. 2009a). This resulted in DNA sequence data obtained from the small and large subunits of the nuclear ribosomal RNA genes (SSU, LSU) and three protein coding genes, namely the translation elongation factor-1 alpha (TEF1) and the largest and second largest subunits of RNA polymerase II (RPB1, RPB2). Primer sets used for these genes were as follows: SSU: NS1/NS4; LSU: LR0R/LR5; TEF1 983/2218R (initially obtained from S. Rehner: o cid.nace.org/research/deepphyaeae/EF1/primer.pdf); RPB2: RPB2-SF/RPB2-7cR; RPB1: RPB1-AcoRPB1-Cr (obtained from V. Hofstetter). Primer sequences are available at the WASABI database at the AFTOL website (aftol.org). PCRs for these genes were performed in various laboratories of the coauthors mentioned but the majority of reactions were run under conditions described previously (Luztoni et al. 2004, Schoch et al. 2008a). Two duplicate sets of sequences were inadvertently included in the analysis (indicated in Table 1).

Sequence alignment and phylogenetic analyses

Sequences were obtained from WASABAI (Kauff et al. 2007) as well as from previous publications (e.g. Lutzoni et al. 2004, Schoch et al. 2009a). Introns were removed and an initial core set of 171 taxa were aligned by using default options for a simultaneous method of estimating alignments and tree phylogenies, SATé (Liu et al. 2009). In order to consider codons without the insertion of unwanted gaps, protein coding fragments were translated in BioEdit v. 7.0.1 (Hall 2004) and aligned within SATé as amino acids. These were then realigned with their respective DNA sequences using the RevTrans 1.4 Server (Wernersson & Pedersen 2003). After the removal of intron sequences the alignment was examined manually in BioEdit with a shade threshold of 40 % and regions with high amounts of gap characters were excluded. This resulted in a reduction of 99 columns in the LSU data set, 118 in RPB1 and 162 in RPB2, for a total of 379. Nothing was removed for TEF1. In order to allow for the extension of our alignment as newly generated sequences became available from other studies in this volume, these were subsequently added to this core alignment with MAFFT v. 6.713 (Katoh et al. 2009). The E-INS-i setting, focused on high accuracy with a high percentage of unalignable regions such as introns, was applied and the SATé alignment was used as a seed. This resulted in a supermatrix of five genes (LSU, SSU TEF1, RPB1, RPB2) consisting of 52 % gaps and undetermined characters out of a total of 6 582 characters. GenBank accession numbers are shown in Table 1.

Conflict tests

Conflict tests on the initial core set of 204 taxa were conducted by selecting single gene data sets and doing comparisons on a gene by gene basis. This was done using the “bootstopping” criterion in RAxML v. 7.0.4 (Stamatakis et al. 2008) under the CIPRES v. 2.1 webportal to produce trees of comparative gene sets where all taxa have the gene present. Comparisons between all potential sets of gene trees with no missing taxa were done using a script (Kauff & Lutzoni 2002) obtained through the Lutzoni lab website and to detect present or absent taxa within clades with a cut-off bootstrap value of 70 %. This is described in more detail elsewhere (Miadlikowska et al. 2006, Schoch et al. 2009a).

Phylogeny

A phylogenetic analysis was performed using RAxML v. 7.0.4 (Stamatakis 2006) applying unique model parameters for each gene and codon. The dataset was divided in 11 partitions as previously described in Schoch et al. (2009a). A general time reversible model (GTR) was applied with a discrete gamma distribution and four rate classes following procedures laid out in Schoch et al. (2009). Ten thorough maximum likelihood (ML) tree searches were done in RAxML v. 7.0.4 under the same model, each one starting from a randomised tree. Bootstrap pseudo replicates were performed 2000 times using the fast bootstrapping option and the best scoring tree form 10 separate runs were selected. The resulting trees were printed with TreeDyn v. 198.3 (Chevenet et al. 2006). All alignments are deposited in TreeBASE. Additionally, the data sets were analyzed in GARLI v. 0.96 (Zwickl 2006) using the GTR-gamma-invariant model. In this case 200 bootstraps were run under default conditions.

Fig. 2A-C. (Page 5–7). Best scoring ML tree with RAxML and GARLI bootstrap values respectively above (green) and below (red) the nodes. Values below 50 % were removed and branches with more than 90 % bootstrap for both methods are thickened without values. Environmental sources relevant to the papers in this volume are indicated in the key (R-Rock; M-Marine; F-Freshwater; D-Dung; B-Bamboo). Nutritional characters are indicated by colour as per the key.
A class-wide phylogenetic assessment of Dothideomycetes

Key
- R Rock
- M Marine
- F Freshwater
- D Dung
- B Bamboo
- S Saprobe
- P Plant Associate
- A Saprobiotic
- L Lichenised
- O Other

Fig. 2A.
A class-wide phylogenetic assessment of Dothideomycetes

Key

R Rock
M Marine
F Freshwater
D Dung
B Bamboo

Table

Arthoniomycetes (outgroup)
Clade A
Myriangium duriae
Myriangium hispanicum
Microthyriaceae
Trypetheliaceae
Phaeotheliaceae

Clade B

Dothideomycetes
Clade C
Teratosporiaceae
Capnodiaceae
Davidiellaceae

Clade A

Myriangium plumbeum
Myriangium maculatum
Myriangium appendiculatum
Myriangium drummondii

Teratosporiaceae

Teratosporiaceae
Clade C
Capnodiaceae
Davidiellaceae

Fig. 2C.
Ancestral reconstruction

Ancestral reconstructions were performed in Mesquite v. 2.6 with character states traced over 2000 bootstrapped trees obtained with RAxML-MPI v. 7.0.4 (Stamatakis 2008). Following the phylogeny presented (Fig. 2) this reconstruction was performed with a maximum-likelihood criterion using the single parameter Mk1 model. Ancestral states were assigned to a node if the raw likelihood was higher by at least 2 log units than the likelihood value of the other ancestral state(s) according to default settings. Character states were also mapped using TreeDyn v. 198.3 (Chevenet et al. 2006), shown in Fig. 3. This is presented as a clockwise circular tree, starting with outgroup taxa. Only clades with more than two taxa of the same state are shown and bootstrap recovery was not considered in assigning character states. In applying the character states of saprobes (including rock heterotrophs), plant associated fungi (including pathogens, endophytes and mycorrhizae) and lichenised fungi the broad concepts presented were followed as laid out in Schoch et al. (2009a). Some character assessments were taken from Zhang et al. (2009; this volume). Ecological characters of sampling sources, terrestrial, fresh water and marine were assessed based on papers elsewhere in this volume (Sueterong et al. 2009, Shearer et al. 2009).

Evolution of nutritional modes

The ancestral reconstructions in Fig. 3 indicate that phytopathogenicity can be confined to a number of terminal clades throughout the tree and that these always reside within saprobic lineages. A maximum of seven transitions likely occurred in several lineages of the orders Pleosporales, Capnodiales and singular lineages in Myriangiales, Botryosphaeriales and Venturiaeae (also see in this volume; Crous et al. 2009a, Zhang et al. 2009). Several transitions to lichenisation have also occurred, although phylogenetic uncertainty may limit this to a minimum of two. Due to the use of lichenised Arthoniomycetes as outgroup a broader assessment is required to determine whether the Dothideomycetes evolved from a lichenised ancestor. Previous studies suggested that the saprobic habit is an ancestral trait but only with marginal support (Schoch et al. 2009a). Similar conclusions can be reached for the aquatic ecological characters – the majority of fresh water and marine clades reside within terrestrial clades as has been shown previously e.g. (Spatafora et al. 1998, Vijaykrishna et al. 2006). Transitions from a terrestrial life style to fresh water likely occurred at least three times and transitions to marine environments up to six times. Phylogenetic uncertainty for the placement of some marine clades can limit this to a minimum of four times (Fig. 2). Reversions from aquatic to terrestrial environments are rare, with one possible exception in the Lentitheciaceae where bambusicolous saprobes reside, nested within several fungi occurring in freshwater habitats (for additional details see Zhang et al. 2009; this volume). Phylogenetic resolution will have to improve to test this further.

An analysis of recently released genomes was compared to consider whether genome composition reinforces phylogenetic support for Dothideomycetes (Fig. 4). Relative to a clustering analysis of proteins from 52 sequenced fungi and Drosophila melanogaster, about 5 515 protein coding genes from Dothideomycetes shared protein clusters with proteins from other dothideomycete fungi only. This comprises roughly 8–11 % of the protein coding genes in each of six sequenced Dothideomycetes. The species profile of each protein cluster was used to assign a phylogenetically informed designation. The profiles most frequently seen were those of the most conserved proteins, namely clusters designated as having a shared Ophistontk phylogenetic profile. Among the more derived nodes of the Dothideomycetes, protein clusters were observed that had a species composition that could reflect the result of selection pressure on more distantly related fungi that share the same niche.

A phylogenomic profile (Fig. 4) of the proteins from six Dothideomycetes from the two largest orders seen in Fig. 1 is presented (Mycosphaerella graminicola, Mycosphaerella fijiensis, Phaeosphaeria nodorum, Alternaria brassicicola, Pyrenophora tritici-repentis, Cochliobolus heterostrophus). The highest percentage of proteins (excluding species specific proteins) were conserved outside kingdom Fungi (Ophistontk node, 23 %), followed by proteins specific for the Dokarya (14 %) and the Pezizomycotina (13 %). This breakdown was also prevalent within other Pezizomycotina classes. Approximately 8 % of the proteins from the six Dothideomycetes were conserved across and within derived nodes in this class. Relative to this analysis 28 % of the proteins were specific to the Dothideomycetes (including species specific proteins). The other class containing loculoascomyetes, Eurotiomycetes, had 19.5 % proteins characterised as class specific. This means the percentage dothideomycete specific proteins were about 8.5 % more. Eurotiomycetes in the analysis were mostly human pathogens, with most having no known sexual state whereas the Dothideomycetes in the analysis were all plant
Fig. 3. Simplified ancestral state reconstructions, showing potential transitions between character states. The same phylogeny as in Fig. 2A–C is shown, with the outgroups positioned at twelve o’clock and subsequent clades arranged in a clockwise manner. Characters were traced over 2 000 bootstrap trees and those that were recovered in the majority are coloured on the nodes. In the case of equivocal construction no colour was used (white). To simplify the figure, only clades with two or more neighbouring character states are shown.
pathogens and mostly with known sexual states. This breakdown of nutritional modes, although not comprehensive for these two classes, is somewhat representative. In Eurotiomycetes human pathogens are more diverse and plant pathogens uncommon, with the converse being true for Dothideomycetes. Both classes contain melanised species with similar morphologies and more comprehensive comparative studies need to expand sampling to incorporate species from the different nutritional modes for both classes.

Phylogenetic relationships

In the phylogram presented (Fig. 2) the two dothideomycete subclasses previously described based on presence or absence of pseudoparaphyses (Schoch et al. 2006) could be recovered with varying levels of bootstrap representation. Subclass Pleosporomycetidae previously included Pleosporales plus a single species, representing Mytiliniidae, namely Lophium mytilinum (Schoch et al. 2006). Taxon sampling for the Mytiliniidae was considerably expanded by Boehm et al. (2009b), with the addition of a number of new taxa, leading to the establishment of the Mytiliniidae. Likewise, extensive taxon sampling for the family Hysteriaceae led to a newly redefined Hysteriales also included in this subclass (Boehm et al. 2009a; this volume). It appears that persistent, hysterothecial carbonaceous ascomata that dehisce multiple times. It should be noted that the maturity of ascomata may play an important role in these assessments. Immature specimens may contain pseudoparaphyses that dehisce when mature and these characteristics need to be evaluated with more complete sampling of the numerous aparaphysate taxa still listed as incertae sedis. The second subclass, Dothideomycetidae, previously circumscribed based on the absence of pseudoparaphyses remains well supported (Fig. 2C).

The results of this study provided continued support for ten orders within class Dothideomycetes, namely Pleosporales, Hysteriales, Mytiliniidae, Patellariidae, Botryosphaerales, Jahnulales, Dothideales, Capnodiales, Myriangiales and Trypetheliales. The latter order was recently proposed (Aptroot et al. 2008) and represents the largest lichen forming clade in Dothideomycetes. Another recently proposed order, Botryosphaerales includes only the single family, Botryosphaeriaceae. The analysis (Fig. 2B), however, shows strong support for a narrower interpretation of the Botryosphaeriae, typified by Botryosphaeria dothidea and related genera, excluding a separate clade of species residing in Guignardia (with Phyllosticta anamorphs). Bagnieliixa examinens and Saccharomyces protea did not reside in either of the above clades, placed on early diverging branches. A more extensive taxon sampling is required to address the diversity in this order, which most likely will validate the separation of additional families. Another currently accepted order, Microthyriales, consisting of

Fig. 4. Pie chart showing relative numbers of unique proteins per genome according to taxonomic classification.
species occurring as saprobes or epiphytes on stems and leaves is represented in this study by only a single sample, *Microthryum microscopicum* (Fig. 2C). Members of this order are poorly represented in culture and have unusual thyrothecial ascomata that have a scutate covering comprising a thin layer of radiating cells. This structure is generally lacking a basal layer and is quite unlike any morphologies in other orders. This positioning adjacent to the plant parasitic Venturiaceae and coprophilic Phaeothriciaceae, is unexpected but since the single representative of the *Microthryales* is on a long branch this is a relationship that will require more intensive taxon sampling.

Additional families that could not be placed in an order are Tubeufiaceae and Glioniaceae (Fig. 2B). Species in Tubeufiaceae have superficial clustered ascomata and characteristic bitunicate asci with relatively long ascospores, often with helicosporous ascidiums. Members of Tubeufiaceae, which frequently occur in freshwater habitats include anamorph genera, such as *Helicoon* and *Helicodendron*, and are ecologically classified as aeroaquatic species. A few teleomorph taxa such as *Tubenula asiaca* occur on submerged wood (Tsui et al., 2007), and *Tubenula paludosa* occur on herbaceous substrates in wet habitats (Webster 1951). The Glioniaceae are saprobic; have dichotomously branched, laterally anastomosed pseudothecia and dehisce by an inconspicuous, longitudinal, but evaginated slit. They reside sister to the saprobic Family

Several other well supported clades representing families were evident in this study (Fig. 2). These include several families in Pleosporales, treated elsewhere (Zhang et al., 2009; this volume). Other clades have lower levels of support. For example Leptosphaeriaceae (Fig. 2A) have moderate bootstrap support and it is treated in the very broad sense here. There was also support for several newly described families treated in different papers within this volume. In Pleosporales these include Amniculicilaceae and Lentitheciaceae (Zhang et al. 2009; this volume). The Lindgomycetaceae (Shearer et al. 2009; this volume, Hirayama et al. 2010) encompassing a majority of species isolated from fresh water habitats. Two other novel families, Agilaceae and Merosphaeriaceae include mainly marine species (Suertrong et al. 2009; this volume). In addition to these, the sampling of a wide diversity of fungi on bamboo yielded the description of Tetraplosphaeriaceae (Tanaka et al. 2009; this volume). Another novel family, Dissoconiaceae, is proposed by Crous et al. 2009 (this volume) for foliicolous commensalists on Eucalyptus leaves, some of which are putative hyphomycetous and reside in Capnodiales.

Results of this study suggest that sampling within existing families also requires continued expansion as familial definitions in Dothideomycetes remains problematic. A paper focused on two families, with poor representation in molecular data sets, Melanommataceae and Lophiotomataceae addresses this in more detail (Mugambi & Huhndorf 2009; this volume). Numerous other clades in our tree remain without familial placement. This includes a diverse group in Capnodiales (Fig. 2C, clade C) a newly described group of hysterochaetous fungi in Pleosporales (Fig. 2A, clade G) and additional marine lineages (clades H, L, Fig. 2A). An interesting clade tentatively circumscribed by Zhang et al. (2009; this volume) as Massariaceae contains baeomycetous fungi and appears related to the lichenised Arthoniaceae (Fig. 2A).

Finally, a clade including Corynespora anamorphs (clade K, Fig. 2A) is placed for the first time, but without clear relationship to any other currently defined families. The genus *Corynespora* includes anamorphic fungi with tretic, percurrent, and acropetal conidiogenesis. The melanised, pseudoseptate conidia have a pronounced hilum from which the conidial germ tube emerges and are borne apically from solitaire, melanised conidiophores. Though nearly 100 species are described based on differences in morphology, considerable phenotypic plasticity within individual isolates complicates species recognition, and molecular analyses that may result in taxonomic clarification have not been done. *Corynespora* species fill a diversity of roles as saprobes, pathogens, and endophytes on and in woody and herbaceous plants, other fungi, nematodes, and human skin (Dixon et al. 2009). One of the species represented here, C. cassicola is an important pathogen of rubber. The teleomorphic fungi *Pleomassaria swidae* (Pleomassariaceae; Tanaka et al. 2005) and Corynesporaspora caryotae (Corynesporasporaceae; Sivanesan 1996) have unnamed *Corynespora* species as anamorphs. In this study, species currently placed in *Corynespora* are not monophyletic and are positioned in at least two families: Massarinaeae and Clade K (Fig. 2A).

Anamorph taxa

The previously mentioned *Dissoconiaceae* relies on taxonomic descriptions based on anamorph characters. This is a theme that is expected to continue for mitosporic taxa in *Dothideomycetes* as molecular data accelerates their integration. The artificial nature of the "higher" taxa of anamorphs e.g., deuteromycetes (*Kirk et al. 2001*) is now well recognised, but the integration of anamorphs into the phylogenetic classification of teleomorphs remains a significant challenge in fungal systematics (Shenoy et al. 2007). The correlation of teleomorphs and anamorphs (Seifert et al. 2000) is not always predictive but it has been applied in some genera within *Dothideomycetes*, e.g. *Botryosphaeria* and *Mycosphaerella* (Crous et al. 2006, 2009b). However, numerous examples underscoring anamorph convergence can be found throughout the class e.g. *Dictyosporium* (Tsui et al. 2006, Kodseue et al. 2008), *Mycosporidium* (Shenoy et al. 2006), *Cladosporium* (Crous et al. 2007b) and *Phoma* (Fig. 2A; Aveskamp et al. 2009, de Gruyter et al. 2009, Woudenberg et al. 2009) as well as *Fusicoccum* and *Diplodia* (Crous et al. 2006, Phillips et al. 2008). The use of large multigene phylogenies will be essential to bring taxonomic order to cryptic anamorph lineages.

Ecological diversity

Besides the unclassified diversity found in anamorphic genera, numerous ecological niches contain diverse lineages of fungi lacking systematically sampled molecular characters. Several examples of this knowledge gap can be found in papers in this volume. In this regard, the rock inhabiting fungi are amongst the least understood. These fungi exist ubiquitously as melanised, pseudoseptate conidia with a pronounced hilum from which the conidial germ tube emerges and are borne apically from solitaire, melanised conidiophores. Though nearly 100 species are described based on differences in morphology, considerable phenotypic plasticity within individual isolates complicates species recognition, and molecular analyses that may result in taxonomic clarification have not been done. *Corynespora* species fill a diversity of roles as saprobes, pathogens, and endophytes on and in woody and herbaceous plants, other fungi, nematodes, and human skin (Dixon et al. 2009). One of the species represented here, C. cassicola is an important pathogen of rubber. The teleomorphic fungi *Pleomassaria swidae* (Pleomassariaceae; Tanaka et al. 2005) and Corynesporaspora caryotae (Corynesporasporaceae; Sivanesan 1996) have unnamed *Corynespora* species as anamorphs. In this study, species currently placed in *Corynespora* are not monophyletic and are positioned in at least two families: Massarinaeae and Clade K (Fig. 2A).
Capnodiales, Pleosporales, Dothideales and Myriangiales, as well as some unclassified lineages of Dothideomycetes. Interestingly, some associated lineages were without clear placement within either Arthoniomycetes or Dothideomycetes. The rock isolates included in Fig. 2C illustrate a subsection of genetic diversity seen in these extremophiles, in particular for the Capnodiales, with two rock isolates-rich lineages Teratosphaeriaceae and Clade C (Fig. 2C). A more detailed analysis (Ruibal et al. 2009; this volume) allows for the presentation of hypotheses related to evolution of pathogenicity and lichenisation because these modes of nutrition are often found in close proximity of rock inhabiting fungal lineages.

The lichenised fungi allied with the Dothideomycetes represent another poorly sampled group of fungi. Several lichenised species remain etymographically placed after they were confirmed as members of Dothideomycetes based on DNA sequence data (Lumbsch et al. 2005, Del Prado et al. 2006). Although the number of species is comparatively small, their placement can play an important link in determining how transitions to and from lichenisation influenced dothideomycete evolution. Trypetheliaceae known for its anastomosing, branched pseudoparaphyses was until very recently still placed within Pyrenulales, an ascohymenial order in Eurotiomycetes, based on bitunicate asci and lense-shaped lumina in the ascospores (Del Prado et al. 2006). Attempts to resolve members of this family remain challenging as they tend to occur on long, rapidly evolving branches in our phylogenetic analyses, which often lead to artifacts. Nelsen et al. 2009 (this volume) demonstrate the occurrence of two additional lichen-forming lineages within Dothideomycetes representing the families Strigulaceae and Monoblastiaceae. The delineation of lichenised family Arthopyreniaceae should continue to be assessed given their placement with a clade containing bambusicolous fungi (Tanaka et al. 2009; this volume) and their non monophyly is also confirmed elsewhere (Nelsen et al. 2009; this volume). The relationship between the lichenised groups and bambusicolous genera Roussoella and Roussoellopsis (Didymosphaeriaceae; Ju et al. 1996, Lumbsch & Huhndorf 2007) is strongly supported, but their affinity is not fully understood due to their considerable morphological differences.

The fungi collected from marine and freshwater habitats contain yet more varied species that have not been assessed well within a molecular based framework. Their diversity is supported by the fact that whole orders (Jahnnulales) and several families, already mentioned, almost exclusively consist of species collected from these environments. A recent assessment of marine fungi tallied a number of more than 500 species with more than a fifth of these suggested to reside in Dothideomycetes (Jones et al. 2009). The number for fungi from fresh water habitats is somewhat lower (about 170 taxa).

Despite similarities in their preferred medium for spore dispersal (water) an examination of phylogenetic diversity within Dothideomycetes indicates that these groups of fungi tend to reside in divergent parts of the tree (Figs 2, 3). However, some exceptions may occur. For example, members of Aigialaceae are weakly supported to share ancestry with members of freshwater clade Lindgomycetaceae (Raja et al. 2010). The Jahnnulales represents another recently delineated aquatic lineage with an interesting mixture of fresh water and marine taxa. It was delineated based on molecular and morphological data (Inderbitzin et al. 2001, Pang et al. 2002) and now contains four genera and several species (Campbell et al. 2007). Previously, two anamorphic species in the Jahnnulales, Xylomyces rhizophorae (described from mangrove wood of Rhizophora) and X. chlamydosporus have been reported from mangroves and thus saline habitats (Kohlmeier & Volkman-Kohlmeier 1998). It has further been documented that X. chlamydosporus is the anamorph of Jahnul aquatica, a freshwater species (Sivichai, pers. comm.).

Marine Dothideomycetes generally exist in association with algae and plants in marine and brackish environments, usually with intertidal or secondary marine plants (e.g., mangroves). The majority of these fungi have been classified in families and genera that comprise mostly terrestrial species (e.g., Pleospora) and no definitive clades of marine Dothideomycetes have been identified. Here we find support for diverse aquatic lineages similar to the situation in Sordariomycetes. Papers by Suertong et al. 2009 (this volume) and Shearer et al. 2009 (this volume) continue to address this disparity by using multigene phylogenies to describe several lineages within a class wide context. In contrast, many marine members of the Dothideomycetes await interrogation at the DNA sequence level, especially the genera Belizeaza, Thalassoascomycetes, Lautospora and Loratospora, all exclusively marine taxa.

The final environmentally defined group sampled in this volume is the bambusicolous fungi. More than 1 100 fungal species have been described or recorded worldwide from bamboo (Hyde et al. 2002). Furthermore, their ecological specialisation as pathogens, saprophytes, and endophytes has been relatively well documented (e.g. Hino 1961). However, relatively few studies based on DNA sequence comparisons have been undertaken for many bambusicolous fungi. Several unique lineages, e.g. the Kumatotla bambusicolica-Ophiophaerella sasciosa clade in a freshwater lineage (Lentiltheiaceae) and the Roussoella-Roussoellopsis clade close to lichen-forming families could be found (Fig. 2). Particularly, a new family Tetraplophiaceae including five new genera characterised by a Tetraploa anamorph s. f. is introduced as a lineage of fungi with bamboo habitat (Tanaka et al. 2009; this volume). It is clear that much additional diversity within this group of fungi remains to be sampled using DNA sequence data.

A number of other niches remain poorly discussed in this volume. Coprophilous fungi occur in three families Delitschiaeae, Phaeotrichaceae, and Sporormiaceae (Figs 2A, C). These families are not closely related and it is clear that the fimicolous life style has arisen more than once in the Dothideomycetes. Also, many species from these groups are not strictly dung-inhabiting, but can be found on other substrates like soil, wood, and plant-debris. Interestingly, some are human pathogens, plant endophytes and lichenicolous fungi. As is true throughout the Ascomycota, a change in substrate is apparently not a substantial evolutionary step in these taxa (Kruys & Wedin 2009).

Additional observations

Several orders e.g. Dothideales, Myriangiales and Microthyriales have not been treated using the extensive systematic sampling that is true for studies treated in this volume. However, individual smaller studies continue to provide interesting and surprising results. One such example is the first described meristematic and endoconidial species residing in Myriangiales (Fig. 2C) reported by Tsuneda et al. (2008). These Endosporium species were isolated from very different substrates such as: poplar twigs and a dead bird. They also have a close relationship to a single lineage of rock inhabiting fungi. The nutritional shifts represented by these closely related species correlate well with scenarios described by Ruibal et al. 2009; this volume) for rock inhabiting fungi. Another melanised meristematic fungus, Sarconycmes crustaceus, isolated from pine trees appears in a similar position in a phylogeny presented in the aforementioned paper (Ruibal et al. 2009; this volume).
Another unusual species, *Catinella olivacea* is included in Fig. 2C, but without any clearly resolved position, diverging early to *Dothideomycetidae*. This species was initially placed in *Leotiomycetes*, due to their flattened apothecia, found on the underside of moist, well-decayed logs of hardwood. Asci are uniloculate but they appear to form after ascolocular development. As in the previous analysis, it was not possible to identify relationships between this species and any known order, although there are indications of a close relationship with the *Dothideomycetidae* (Greif et al. 2007).

The placement of the single asexual mycorrhizal lineage representing *Cenococcum geophilum* in the *Dothideomycetes* (LoBuglio et al. 1996), allied to members of the saprobic *Gliocniaeae* is intriguing (Fig. 2B; Boehm et al. 2009a; this volume). No resolved placement for this species in *Dothideomycetes* has been possible in the past. The results of this study were also unexpected because no biological data suggest a connection to the family. *Cenococcum* is a fungus that is intensively used in environmental studies and this could suggest a very interesting biology for members of the ostensibly saprobic *Gliocniaeae*. Results of this study advocate a more expansive sampling of *Cenococcum* in order to confirm this intriguing result.

CONCLUSIONS

One of the major obstacles in dothideomycete systematics remains the lack of a clear understanding of what species are members of the class based on morphology alone. Throughout most of the 20th Century, comparative morphological studies have been the only character on which to base phylogenetic relationships. The advent of large DNA-sequence data sets should allow for a substantially more accurate and allow dothideomycete biologists from disparate fields to have access to an agreed upon set of taxonomic names to aid communication. In addition, it should allow for a focus on under-sampled groups and clades (i.e. poorly sampled saprobos and others). A major task ahead will be to add asexual genera to present phylogenetic schemes, and integrate these into the existing familial and ordinal classification. As most of these asexual genera are in fact poly- and paraphyletic, their type species will need to be recollected to clarify their phylogenetic position. In addition to this, it appears that even some concepts of teleomorphic taxa will require extensive reconsideration. Finally, we should attempt to incorporate valuable biological information from past workers, such as the three mycologists to which this volume is dedicated, by reliably assessing culture and sequence identity. It is hoped that the papers in this volume will make a meaningful contribution towards these goals.

ACKNOWLEDGEMENTS

Authors from individual papers in this volume contributed to this work and specific acknowledgements to that regard can be found in individual papers. Work performed for this paper by the first author after 2008 was supported in part by the Intramural Research Program of the NIH, National Library of Medicine. Part of this work was also funded by grants from NSF (DEB-0717476) to J. W. Spatafora (and C.L. Schoch until 2008) and (DEB-0732993) to J.W. Spatafora and B. Robbertze.

REFERENCES

Aptroot A, Lücking R, Sipman H, Umana L, Chaves J-L (2008). Pyrenomycous lichens with bitunicate asci. A first assessment of the lichen biodiversity inventory in Costa Rica. *Bibliotheca Lichenologica* 97: 1–162.

Anx von J, Müller E (1975). A re-evaluation of the bitunicate ascomycetes with keys to families and genera. *Studies in Mycology* 9: 1–159.

Aveskamp MM, Verkley GJM, Gruyter J de, Muraise MA, Perello A, et al. (2009). DNA phylogeny reveals polyphyley of *Phoma* section *Peyronelliae* and multiple taxonomic novelty. *Mycologia* 101: 359–379.

Barr ME (1976). A classification of *Leocluosporiales*. *Mycologia* 71: 935–957.

Barr ME (1987). *Proteus* to class *Leocluosporiales*. M.E. Barr Bigelow, Amherst, Massachusetts.

Berbee ML (1996). *Leocluosporiales* originate and evolution of filamentous ascomycete morphology based on 18S RNA gene sequence data. *Molecular Biology and Evolution* 13: 462–470.

Berbee ML, Taylor JW (1992). Two *Ascomycete* Classes Based on Fruit-body Characters and Ribosomal DNA Sequence. *Molecular Biology and Evolution* 9: 278–284.

Boehm EWA, Mugambi GK, Miller AN, Huhndorf SM, Marincowitz S, et al. (2009a). A molecular phylogenetic reappraisal of the *Hystiomyces*, *My营运iales* and *Gliocniaeae* (*Pleosporomycetidae, Dothideomycetes*) with keys to world species. *Studies in Mycology* 64: 49–83.

Boehm EWA, Schoch CL, Spatafora JW (2009b). On the evolution of the *Hystiomyces* and *My营运iales* (*Pleosporomycetidae, Dothideomycetes, Ascomycota*) using four nuclear genes. *Mycological Research* 113: 461–479.

Campbell J, Ferrer A, Raja HA, Sivichai S, Shearer CA (2007). *Phylogenetic lineages in the *Zwischengruppe**. Studies in *Mycology* 53: 1–32.

Croux PW, Braun U, Groenewald JZ (2007a). *Mycosphaerella* is polythetic. *Studies in Mycology* 58: 1–32.

Croux PW, Braun U, Schubert K, Groenewald JZ (2007b). Delimiting *Cladosporium* from morphologically similar genera. *Studies in Mycology* 58: 33–56.

Croux PW, Schoch CL, Hyde KD, Wood AR, Guinean C, et al. (2009). Phylogenetic lineages in the *Capnodiaceae*. *Studies in Mycology* 64: 17–47.

Croux PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, et al. (2006). Phylogenetic lineages in the *Botryosphaeriaceae*. *Studies in Mycology* 55: 235–253.

Croux PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC, et al. (2009b). Unraveling *Mycosphaerella*: do you believe in genera? *Persoonia* 23: 99–118.

Dixon LJ, Schlab RL, Penney Z, Dakoff LE (2009). Host Specialization and Phylogenetic Diversity of *Corynespora cassiicola*. *Phytopathology* 99: 1015–1027.

Eriksson OE (1981). The families of bitunicate ascomycetes. *Opera Botanica* 60: 1–220.

Eriksson OE, Wink K (1997). Outline of *Ascomycota*. *Mycocent*: www.umu.se/mycocent/M-outline.html.

Ertz D, Miadlikowska J, Lutzoni F, Dessein S, Raspe O, et al. (2009). Towards a new classification of the *Arthoniales* (*Ascomycota*) based on a three-gene phylogeny focussing on the genus *Opegrapha*. *Mycological Research* 113: 141–152.

Filipowicz DA, Logue ME, Stajich JE, Butler G (2006). A fungal phylogeny based on 42 complete genomes derived from super-tree and combined gene analysis. *BMC Evolutionary Biology* 6: 99.

Geiser DM, Guinean C, Miadlikowska J, Lutzoni F, Kauff F, et al. (2006). *Eurotomyces*: *Eurotomyces* and *Chaeothomyces* from the taxonomic literature. *Mycologia* 98: 1053–1064.

Gorbuschina AA, Kotlova ER, Shenshneva OA (2008). Cellular responses of microcolonial rock fungi to long-term desiccation and subsequent rehydration. *Studies in Mycology* 61: 91–97.

Gruyter J de, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, Croux PW (2009). Molecular phylogeny of *Phoma* and allied anamorph genera: towards a reclassification of the *Phoma* complex. *Mycological Research* 113: 508–519.

Greif MD, Gibas CFC, Tsuneda A, Currah RS (2007). *Ascomycota* development and phylogeny of an apothecioid dothideomycete, *Catinella olivacea*. *American Journal of Botany* 94: 1890–1899.

Guinean C, Rubial Villasenor C, Hoog GS de, Gorbuschina AA, Unteneirer WA, Lutzoni F (2008). A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. *Studies in Mycology* 61: 111–119.

Hall T, Biodet v.7.0.1. *Ips* Pharmaceuticals, 2004.

Henssen A, Thor G (1994). Developmental morphology of the “Zwischengruppe” between *Aschyothenules* and *Ascoloculeares*. In: *Ascomycete systematics.*
Problems and perspectives in the nineties (Hawskworth DL, ed.), Plenum Publishing Corporation, New York. 43–61.

Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research 111: 509–547.

Hino I (1961). Icones fungorum bambusicolorum japonicorum., Fuji Bamboo Garden, Gotobita.

Hirayama K, Tanaka K, Raja HA, Miller AN, Shearer CA (2010). A molecular phylogenetic assessment of Massarinia ingoldiana sensu lato. Mycologia 102: in press.

Hyde KD, Zhou DQ, Dalisay T (2002). Bambusicolous fungi: A review. Fungal Diversity 7: 1–14.

Inderbitzen-Pattison LM, Landvik S, Abdel-Wahab MA, Berbee ML (2001). Ailgouandziptiophaeae, a new family for two new tropical ascomycetes with unusually wide hyphae and dimorphic ascomata. American Journal of Botany 88: 52–61.

James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, et al. (2006). Reconstructing the early evolution of Fungi using a six- gene phylogeny. Nature 443: 818–822.

Jones EBG, Suerthorn S, Somrithipol S, Pang KL (2009). Classification of marine Ascomycetes, anamorphic taxa and Basidiomycota. Fungal Diversity 35: 1–167.

Ju YM, Rogers JD, Huhndorf SM (1996). Valsa and notes on Endoxylon, Pseudohydridina, Pseudovalsa, and Roussouella. Mycologia 58: 419–481.

Katoch K, Asiminen G, Toh H (2009). Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology 537: 39–64.

Kauff F, Cox CJ, Luttrell ES (2007). WASABI: An Automated Sequence Processing System for Multigene Phylogenies. Systematic Biology 56: 523–531.

Kauff F, Luttrell ES (2002). Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within orders relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution 25: 138–156.

Kim PCR, Cannon PF, David J, Stalpers JA (2001). Ainsworth and Bisby’s Dictionary of the Fungi. 9th ed. CAB International, 1203pp. Wallingford, U.K.

Kim PCR, Cannon PF, Minter DW, Stalpers JA (2008). Ainsworth and Bisby’s dictionary of the Fungi, 10th ed. CAB International, 2283pp. Wallingford, U.K.

Kodsupe R, Dharnasaran V, Aptroot A, Lumyong P, McKenzie EHC, et al. (2006). The family Plesosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA. Mycologia 98: 571–583.

Kodsupe R, Jeewon R, Vijaykrishna D, McKenzie EHC, Lumyong P, et al. (2008). Systematic revision of Tubufiaeaceae based on morphological and molecular data. Fungal Diversity 21: 105–145.

Kohmeyer J, Volkman-Kohmeyer B (1998). A new marine Xyloomyces on Rhizophora from the Caribbean and Hawaii. Fungal Diversity 1: 159–164.

Kruys Á, Wedin M (2009). Phylogenetic relationships and an assessment of the phylogenetic relationships of lichenized fungi in Dothideomyceta. Studies in Mycology 64: 134–144.

Palmer FE, Staley JT, Ryan B (1990). Ecophylogeny of microscopic fungi and lichens on rocks in Northeastern Oregon. New Phytologist 116: 613–623.

Pang KL, Abdel-Wahab MA, Sivich P, El-Sharouni M, Boussiba S, et al. (2002). Jahmoulales (Dothideomycetes, Ascomycota): a new order of lignicolous freshwater ascomycetes. Mycological Research 106: 1031–1042.

Prado RoJ, Schmitt I, Kauff F, Zück GC, Lumbsch HT (2006). Molecular data place Triphyllelae in Dothideomycetidae. Fungal Diversity Mycological Research 110: 511–520.

Phillips AJL, Alves A, Penicillium CR, Johnston PR, Ramaley A, et al. (2008). Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the Botryosphaeriaceae. Persoonia 21: 25–55.

Raja HA, Ferrer A, Miller AN, Shearer CA (2010). Freshwater Ascomycetes: Wicklowia aquatica, a new genus and species in the Pleosporales from Florida and Costa Rica. Mycologia. In press.

Robb Steele B, Reeves JB, Schoch CL, Spatafora JW (2006). A phylogenetic analysis of the Ascomycota. Fungal Genetics and Biology 43: 715–725.

Rubal C (2004). Isolation and characterization of melanized, slow-growing fungi from semi-arid rock surfaces in the Atacama desert. Ph.D. dissertation Universidad Autónoma de Madrid, Spain.

Rubal C, Guédan C, Seifert KA, Gams W, Crous PW, et al. (2006). Geosporiales. Mycological Research 110: 1041–1052.

Schoch CL, Sung GH, Lopez-Giraldez F, Townsend JP, Miadlikowska J, et al. (2009a). The Ascomycota Tree of Life: A Phyllum-wide Phylogeny Clarifies the Origin and Evolution of Fundamental Reproductive and Ecological Traits. Systematic Biology 58: 224–239.

Schoch CL, Wang Z, Townsend JP, Spatafora JW (2009b). Geosporidiales. Mycological Research 110: 129–138.

Seifert KA, Gams W, Crous PW, Samuels GJ (2000). Molecules, morphology and classification: towards monophyletic genera in Ascomycetes. Mycological Research 104: 145–153.

Shenoy BD, Jeewon R, Wu WP, Blatt DJ, Hyde KD (2006). Ribosomal and RPB2 DNA sequence analyses suggest that Sporicidum and morphologically similar genera are polyphyletic. Mycological Research 110: 916–928.
SUPPLEMENTARY INFORMATION

Table 1. Isolates of Dothideomycetes included in this study. Newly deposited sequences are shown in bold.

Taxon	voucher/culture¹	SSU	LSU	RPB1	RPB2	TEF1
Acanthostigma perpusillum	UAMH	AY856937	AY856892			
Aglaoespora profusa	CBS 123109	GU296130	GU301792			
Agialus grandis 1	2Q	GU296132	GU301794			
Agialus grandis 2	JK 5244A	GU296131	GU301793			
Agialus parvus	A6	GU296133	GU301795			
Aliquandostipite khaoyaiensis	CBS 118232	AF201453	GU301796	FJ238360		
Alternaria alternata	CBS 916.96	DQ678031	DQ678082	DQ677980	DQ677927	
Amniculicola parva	CBS 123092	GU296134	FJ35497			
Anteaglonium abbreviatum 1	ANM 925.1	Q221877	Q221875			
Anteaglonium abbreviatum 2	GKM 1029	Q221878	Q221875			
Anteaglonium globosum 1	SMH 5283	Q221911	Q221915			
Anteaglonium globosum 2	ANM 925.2	Q221875	Q221875			
Anteaglonium latirostrum	L100N 2	Q221875	Q221875			
Anteaglonium parvulum	SMH 5210	Q221907	Q221917			
Apiosporina collinsii	CBS 118973	GU296135	GU301798	GU357778		
Apiosporina morbosa	dimosp	EF114694	AY07733	AY407742		
Arthopyrenia salicis 1	1994 Coppins	Q221877	Q221875			
Arthopyrenia salicis 2	CBS 368.94	AY583389	AY583393			
Ascochyta pisi	CBS 126.54	DQ678018	DQ678070	DQ677913	DQ677913	
Ascoceratera mangicola	JK 5262C	GU296136	GU301799			
Asteromassaria pulchra	CBS 124082	GU296137	GU301800	GU371772	GU349066	
Astrothelium aggregata	MAFF 239486	AB524450	AB524581			
Astrophaeniella bakeniana	CBS 115556	GU301801	GU357752			
Astrothelium cinnamomeum	DUKE 000007	AY584052	DQ782896			
Autographina pinorum 1	CBS 302.71	GU371766	GU371766			
Autographina pinorum 2	CBS 174.90	GU296138	GU301802	GU357763	GU371737	GU349046
Aureobasidium pullulans	CBS 584.75	DQ711004	DQ711018	DQ71075	DQ710157	
Bagnisiella examinans	CBS 551.66	GU296139	GU301803	GU357776	GU371746	GU349056
Batcheloromyces proteae	CBS 110696	AY251102	EU19247			
Beverwykella pulmonaria	CBS 283.53	GU301804	GU301804			
Bimuria novae-zealandiae	CBS 107.79	AY016333	AY016356	DQ711159	DQ709175	DQ710787
Botryosphaeria dothidea	CBS 115476	DQ677998	DQ678051	DQ677944	DQ677637	
Botryosphaeria tsugae	CBS 418.64	AF271127	DQ676555	DQ676743		
Byssothecium sphaericoides	iFRDCC2053	GU296140	GU301805	GU56348	GU56283	
Byssothecium circinans	CBS 675.92	AY016333	AY016357	DQ677646	DQ677643	
Camarosporium quaternatum	CBS 483.95	GU296141	GU301806	GU357761	GU349064	
Capnobotryella reinispora	CBS 215.90	AY220613	GQ852582			
Capnomyces conicus	CBS 147.52	DQ47808	DQ477600	DQ471062	DQ477847	
Capnomyces salicinum	CBS 131.34	DQ47808	DQ477600	DQ477847	DQ477847	
Catenulostroma abietis (as Trimmatostroma abietis)	CBS 459.93	DQ678040	DQ678092	GU357796	DQ677933	
Catenulostroma elginense	CBS 111030	GU214517	EU19252			
Catinella olivacea	UAMH 10679	DQ915484	EF622212			
Cenococcum geophilum 1	HUNT A1	L76616	L76616			
Cenococcum geophilum 2	CGMONT	L76617	L76617			
Cenococcum geophilum 3	10	L76618	L76618			
Table 1. (Continued).

Taxon	voucher/culture	SSU	LSU	RPB1	RPB2	TEF1
Cercospora beticola	CBS 114656	DQ678039	DQ679001	DQ677932		
Chaetosphaerena nema hispidulum	CBS 216.75	EU754045	EU754144			
Cladosporium cladosporioides	CBS 170.54	DQ678004	DQ678057			
Cladosporium iridis (teleomorph Davidiella macrospora)	CBS 138.40	DQ08148				
Clathrospora elynae	CBS 196.54	GU296142	GU323214			
Cochliobolus heterostrophus	CBS 134.39	AY544727	AY544645	DQ247790	DQ497603	
Cochliobolus sativus	DAOM 226212	DQ677995	DQ677939			
Cylindrospora phlei	CBS 171.93	AYO16342	AYO16359			
Comminutispora agavaciensis	CBS 619.95	Y16999	EU981286			
Coniothyrium gardeniorum	CPC 14327	GU296143	GU301808	GU357772	GU371742	GU349052
Coniothyrium palmarum	CBS 400.71	DQ678008	DQ677956	DQ677903		
Corynespora cassicola 1	CBS 100822	GU296144	GU301808	GU357772	GU371742	GU349052
Corynespora cassicola 2	CCP	GU296145				
Corynespora olivacea	CBS 114450	GU301809	GU349014			
Corynespora smithii	CABI 5649b	GU323201	GU371804	GU349018		
Cryptothelium amazonum	47	GU327713	GU327731			
Cryptothelium pulchrum	63C	GU327714				
Cystooleus ebeneus 1	L348	EU048573	EU048580			
Cystooleus ebeneus 2	L315	EU048572				
Davidiella tassiana	CBS 399.80	DQ678022	DQ679074	GU357793	DQ677971	DQ677918
Delitschia cf. chaetomioides 1	GKM 325.2	GU390656				
Delitschia cf. chaetomioides 2	GKM 1283	GU385172				
Delitschia didyma 1 (duplicate)	UME 31411	DQ384090				
Delitschia didyma 2	UME 31411	AF242264	DQ384090			
Delitschia winteri	CBS 225.62	DQ678026	DQ778077	DQ677975	DQ677922	
Delphinella strobuligena	CBS 735.71	DQ470977	DQ471175	DQ471100		
Devoniasia staurophora	CBS 375.81	E137359	DQ081851			
Devoniasia striatiziae	CBS 123379	GU296146	GU301810	GU371738	GU349049	
Didymella bryoniae (as Phoma cucurbitacearum)	CBS 133.96	GU301863	GU371767			
Didymella exigua	CBS 183.55	GU296147	GU357800	GU371764		
Didymocrea sadasivani	CBS 438.65	DQ384103				
Diplodia mutia (teleomorph Botryosphaeria stevensii)	CBS 431.82	DQ678012	DQ677980	DQ677907		
Dissoconium aciculare	CBS 204.89	GU214523	GQ852587			
Dissoconium commune (teleomorph Mycosphaerella communis)	CBS 110747	GU214525	GQ852589			
Dissoconium dekkeri (teleomorph Mycosphaerella lateralis)	CBS 111282	GU214531	GU214425			
Dothidea hippophaës	CBS 188.58	U42745	DQ678048	GU357801	DQ677942	DQ677887
Dothidea insculpta	CBS 189.58	DQ247810	DQ247802	DQ471154	AF107800	DQ471081
Dothidea sambuci	DAOM 231303	AY544722	AY544681	DQ252854	DQ497606	
Dothiera cannabinae	CBS 737.71	DQ479933	DQ470984	DQ471182	DQ470936	DQ471107
Dothiera elliptica	CBS 736.71	GU301811	GU349013			
Dothistroma septosporum 1 (teleomorph Mycosphaerella pinii)	CBS 543.74	GU301853	GU371730			
Dothistroma septosporum 2	CBS 112498	GU214533	GQ852597			
Elsinio phaeolidi	CBS 222.50	DQ678041	DQ678094	GU357798	DQ677934	
Elsinio phaeolidi	CBS 165.31	DQ678042	DQ678095	GU357799	DQ677935	
Elsinio veneta	CBS 150.27	DQ767651	DQ767568	DQ767641		
Endosporium avianarium	UAMH 10530	EU304349	EU304351			
Taxon	voucher/culture¹	SSU	LSU	RPB1	RPB2	TEF1
---	------------------	----------------	----------------	----------------	----------------	----------------
Endosporium popul-tremuloidis	UAMH 10529	EU304346	EU304348	GU340912	GU340912	
Entodesmium rude	CBS 650.86	GU301812	GU340912			
Falciformispora lignatilis 1	BCC 21116	GU371835	GU371827	GU371820	GU371820	
Falciformispora lignatilis 2	BCC 21117	GU371834	GU371826	GU371819	GU371819	
Farlowiella carmichaeliana 2	CBS 179.73	GU296148				
Farlowiella carmichaeliana 1 (as anamorph Acrogenospora sphaerocephala)	CBS 164.76	GU296129	GU301791	GU357780	GU371748	GU340905
Floricola striata	JK 5678I	GU296149	GU301813	GU371758		
Friedmanniomyces endolithicus	CCFEE 522	DQ066715				
Friedmanniomyces simplex	CBS 116775	DQ066716				
Gibbera conferta	CBS 191.53	GU296150	GU301814	GU357758	GU340904	
Gloniopsis arciformis	GKM L166A	GU323180	GU323211			
Gloniopsis praelonga 1	CBS 112415	FJ161134	FJ161173	FJ161113	FJ161090	
Gloniopsis praelonga 2	CBS 123337	FJ161154	FJ161195	FJ161103	FJ161103	
Gloniopsis subrugosa	CBS 123346	FJ161170	FJ161210	GU371808	FJ161131	
Glonium circumserpentis 1	CBS 123342	FJ161168	FJ161208			
Glonium circumserpentis 2	CBS 123343	FJ161160	FJ161200	GU371806	FJ161126	FJ161108
Glonium stellatum	CBS 207.34	FJ161140	FJ161179	FJ161095		
Guignardia bidwellii	CBS 237.48	DQ678034	DQ678085	GU357794	DQ677983	
Guignardia citicarpa	CBS 102374	GU296151	GU301815	GU357777	GU340905	
Guignardia gauthieria	CBS 447.70	DQ678089	DQ677987			
Halomassarina ramunculicola 1 (as Massarina ramunculicola)	BCC 18404	GQ258638	GQ258653			
Halomassarina ramunculicola 2 (as Massarina ramunculicola)	BCC 18405	GQ258639	GQ258654			
Halomassarina thalassiae (as Massarina thalassiae)	JK 5262D	DQ678032	DQ677908	GU301816	GU340911	
Helicomyces roseus	CBS 283.51	DQ678032	DQ677908	GU340911		
Hortaea acidophila	CBS 113389	GU323202	GU357768			
Hortaea werneckii	CBS 708.76	GU296153	GU301818	GU357779	GU371747	GU340905
Hortaea werneckii	CBS 100496	GU296152	GU301817	GU371739	GU340905	
Hysterium angustatum	CBS 123334	FJ161167	FJ161207	FJ161129	FJ161111	
Hysterium barnarium 1	ANM 1405	GU323182	GU221885			
Hysterium barnarium 2	ANM 1442	GU323181	GU221884			
Hysterobrevium moni 1	CBS 123336	FJ161164	FJ161204			
Hysterobrevium moni 2	SMH 5273	GU301820	GU221936			
Hysterobrevium moni 3	GKM 1013	GU301819	GU397338			
Hysterobrevium smilacis 1	CBS 114601	FJ161135	FJ161174	GU357806	FJ161114	FJ161091
Hysterobrevium smilacis 2	SMH 5280	GU323183	GU221912	GU371810	GU371784	
Hysteropatella clavispora	CBS 247.34	DQ678006	AY541493	DQ767955	DQ767901	
Hysteropatella elliptica	CBS 935.97	EF495114	DQ767657	DQ767647	DQ767640	
Jahnula aquatica	R68-1	EF175633	EF175655			
Jahnula bipileata	F49-1	EF175635	EF175657			
Jahnula seychellensis	SS2113.1	EF175644	EF175665			
Julelia avicenniae 1	BCC 18422	GU371831	GU371823	GU371787	GU371816	
Julelia avicenniae 2	BCC 20173	GU371830	GU371822	GU371786	GU371815	
Kabatiella caulivora	CBS 242.64	EU167576	EU167576	GU357765		
Kalmusia scabrispora 1	MAFF 239517	AB524452	AB524593	AB539093	AB539106	
Kalmusia scabrispora 2	NBRC 106237	AB524453	AB524594	AB539094	AB539107	
Table 1. (Continued).

Taxon	voucher/culture	SSU	LSU	RPB1	RPB2	TEF1	
Karstenula rhodostoma	CBS 690.94	GU296154	GU301821	GU371788	GU349067		
Katutomota bambusicola	MAFF 239641	AB524454	AB524595	AB539095	AB539108		
Keisterella cladophila	CBS 104.55	GU296155	GU301822	GU371735	GU349043		
Kirschsteiniothelia elaterascus	A22-SA / HKUCC7769	AF653727	AY787934				
Kirschsteiniothelia maritima	CBS 221.60	GU323203				GU349001	
Laurea megasperma	AFTOL 2094						
Lentithecium aquaticum	CBS 123099	GU296156	GU301823	GU371789	GU349068		
Lentithecium arundinaceum	CBS 619.86	GU296157	GU301824			FJ795473	
Lentithecium fluviale	CBS 122367	GU296158	GU301825		GU349074		
Lepidosphaeria nicotiae	CBS						
Leptosphaeria biglobosa	CBS 303.51	GU301826				GU349010	
Leptosphaeria doliformi	CBS 505.75	GU296159	GU301827			GU349069	
Leptosphaeria dryadis	CBS 643.86	GU301828				GU349009	
Leptosphaerula argentinensis	CBS 569.94	GU301829	GU357759			GU349008	
Leptosphaerula australis	CBS 317.83	GU296160	GU301830	GU371790	GU349070		
Leptosphaeria macularis	DAOM 229267	DQ470993	DQ470946	DQ471136	DQ470894	DQ471062	
Leptoxypium fumago	CBS 123.26	GU296161	GU301831	GU357771	GU371741	GU349051	
Letendrea helminthicola	CBS 884.85	AYO16345	AY016362				
Letendrea padouk	CBS 485.70	GU296162	AY016951				
Lindgomycyes breviiappendiculata	HHUF 28193	AB521733	AB521748				
Lindgomycyes ingoldianus	ATCC_200398	AB521719	AB521736				
Lindgomycyes rotundatus	HHUF_27999	AB521723	AB521740				
Lophiotrema alpigenum	GKM 1091b			GU358193			
Lophiothecium arundinis	CBS 621.86	DQ782383	DQ782384	DQ782386	DQ782387		
Lophiothecium caulium 1	CBS 623.86	GU296163	GU301833	GU371791			
Lophiothecium caulium 2	CBS 624.86	GU301832				GU349007	
Lophiothecium compressum	IFRD 2014	GU296164	GU301834			FJ795457	
Lophiothecium creenatum	CBS 629.86	DQ678017	DQ678069	DQ677965	DQ677912		
Lophiothecium fuckeli	GKM 1063			GU385192			
Lophiotrema brunneosporum	CBS 123095	GU296165	GU301835			GU349071	
Lophiotrema lignicola	CBS 122364	GU296166	GU301836			GU349072	
Lophiotrema nucula	CBS 627.86	GU296167	GU301837			GU371792	GU349073
Lophium elegans	EB 0366	GU323184	GU323210				
Lophium mytilinum 1	CBS 114111	EF596819	EF596819				
Lophium mytilinum 2	CBS 269.34	DQ678030	DQ678081	DQ677979	DQ677926		
Loratospora aestuarii	JK 5535B	GU296168	GU301838			GU371760	
Macrophomina phaseolina	CBS 227.33	DQ678037	DQ678088	DQ677986	DQ677929		
Macrovarsaria megalospora 1	178150	FJ215707	FJ215701				
Macrovarsaria megalospora 2	178149	FJ215706	FJ215700				
Massaria anomia	CBS 591.78	GU296169	GU301839			GU371769	
Massaria platani	CBS 221.37	DQ678013	DQ678065	DQ677961	DQ677908		
Massarina arundinae 1	MAFF 239461	AB524455	AB524596	AB539096	AB539108		
Massarina arundinae 2	NBRC 106238	AB524456	AB524597	AB539097	AB524818		
Massarina eburnea	CBS 473.64	GU296170	GU301840	GU357755	GU371732	GU349040	
Massarina igniaria	CBS 845.96	GU296171	GU301841			GU371793	
Massariosphaeria grandispora	CBS 613.86	GU296172	GU301842	GU357747	GU371725	GU349036	
Taxon	voucher/culture¹	SSU	LSU	RPB1	RPB2	TEF1	
---	------------------	-------------	-----------	---------------	---------------	---------------	
Massariosphaeria paeospora	CBS 611.86	GU296173	GU301843	GU371794			
Massariosphaeria typicola 1	CBS 123126	GU296174	GU301844	GU371795			
Massariosphaeria typicola 2	KT 797	ABS21730	ABS21747				
Mauritiana rhizophore 1	BCC 28866	GU371832	GU371824	GU371796	GU371817		
Mauritiana rhizophore 2	BCC 28867	GU371833	GU371825	GU371797	GU371818		
Melanomma pulvis-pyrius 1	CBS 371.75	GU301845	GU371798	GU349019			
Melanomma pulvis-pyrius 2							
Microthryum microscopicum	CBS 115976	GU296175	GU301846	GU371734	GU349042		
Microxyphium aciculiforme	CBS 892.73	GU296176	GU301847	GU371736	GU349045		
Microxyphium citri	CBS 451.66	GU296177	GU301848	GU371727	GU349039		
Microxyphium theae	CBS 202.30	GU296178	GU301849	GU357781	GU349060		
Monosporangium innumerorum	CBS 345.50	GU296179	GU301850	GU348003			
Montagnula opulenta	CBS 168.34	AF164370	DQ678086	DQ677984			
Mycosphaerella endophytica	CBS 114662	GU214538	DQ246255				
Mycosphaerella euryapotami	JK 5586J	GU301852	GU371722				
Mycosphaerella graminicola 1	CBS 292.38	DQ678033	DQ677982				
Mycosphaerella graminicola 2	CBS 115943	GU214540	GU214436				
Mycosphaerella heimii	CBS 110682	GU214541	GQ852604				
Mycosphaerella laterosa	CBS 687.94	DQ848331	GU214444				
Mycosphaerella marksii	CBS 110942	GU214549	GQ852612				
Mycosphaerella punctiformis (anamorph Ramularia endophylla)	CBS 113265	DQ471017	DQ470902	DQ471092			
Myriangium duriaeae	CBS 260.36	AY016347	DQ678059	DQ677954	DQ677990		
Myriangium hispanicum	CBS 247.33	GU296180	GU301854	GU357775	GU371744	GU349055	
Mytilinidion acicola	EB 0349	GU323185	GU323209	GU371757			
Mytilinidion andinense	CBS 123562	FJ161159	FJ161199	FJ161125	FJ161107		
Mytilinidion californicum	EB 0385	GU323186	GU323208				
Mytilinidion mytilinellum	CBS 303.34	FJ161144	FJ161184	GU357810	FJ161119	FJ161100	
Mytilinidion resinicola	CBS 304.34	FJ161145	FJ161185	FJ161101	FJ161120		
Mytilinidion rhenanum	EB 0341	GU323187	GU323207				
Mytilinidion scolecosporum	CBS 305.34	FJ161146	FJ161186	GU357811	FJ161121	FJ161102	
Mytilinidion thujarum	EB 0268	GU323188	GU323206				
Mytilinidion tortile	EB 0377	GU323189	GU323205				
Neofusicoccum ribis (teleomorph Botryosphaeria ribis)	CBS 115475	DQ678000	DQ677947	DQ677983			
Neophaeosphaeria filamentosa	CBS 102202	GQ387516	GQ387577	GU357803	GU371773	GU349084	
Neottiosporina paspali	CBS 331.37	EU754073	EU754172	GU357812	GU371779	GU349079	
Oedohysterium insidens 1	CBS 238.34	FJ161142	FJ161182	FJ161118	FJ161097		
Oedohysterium insidens 2	ANM 1443	GU323190	GQ221882	GU371811	GU371785		
Oedohysterium sinense	CBS 123345	FJ161169	FJ161209	GU371807	FJ161130		
Opegrapha dolomiticosa	DUKE 0047528	DQ883706	DQ883714	DQ883732			
Ophiophaeosphaeria herpotricha	CBS 620.86	DQ678010	DQ677956	DQ677905			
Ophiophaeosphaeria asacola	MAFF 239644	AB524458	AB524599	AB539098	AB539111		
Otthia spiraeae 1	CBS 114124	EF204515	EF204498				
Otthia spiraeae 2	CBS 113091	EF204516	EF204499				
Paraconiothyrium mimitans	CBS 122788	EU754074	EU754173				

Table 1. (Continued).
Table 1. (Continued).

Taxon	voucher/culture	SSU	LSU	RPB1	RPB2	TEF1
Patellaria atrata	CBS 958.97	GU296181	GU301855	GU357749	GU371726	GU349038
Patellaria cf. atrata 1	BCC 28876	GU371836	GU371828			
Patellaria cf. atrata 2	BCC 28877	GU371837	GU371829			
Phaeclium paspali	CBS 113093	GU214669	GU852627			
Phaeocryptopus gaeumannii 1	CBS 244.38	GU357766	GU371740			
Phaeocryptopus gaeumannii 2	CBS 267.37	EF114722	EF114698			
Phaeocryptopus nudus	CBS 182.58	GU296182	GU301856	GU357745	GU349034	
Phaeocryptopus winteri	CBS 267.37	GU371837	GU371828			
Phaeosclera dematoides	CBS 157.81	GU296184	GU301858	GU357764	GU349047	
Phaeosphaeria ammophila	CBS 114595	GU296185	GU301859	GU357746	GU371724	GU349035
Phaeosphaeria avenaria	DAOM 226215	AY544725	AY544684			
Phaeosphaeria brevispora 1	NBRC 106240	AB524460	AB524601			
Phaeosphaeria brevispora 2	MAFF 239276	AB524459	AB524600			
Phaeosphaeria canis	CBS 120249	GU371836	GU371828			
Phaeosphaeria eustoma	CBS 573.86	DQ780111	DQ78063			
Phaeosphaeria junicola	CBS 595.86	GU301861	GU349016			
Phaeosphaeria lucuta	CBS 308.79	GU301861	GU349004			
Phaeosphaeria nodorum	Broad Genome Genome Genome Genome Genome					
Taxon	voucher/culture¹	SSU	LSU	RPB1	RPB2	TEF1
-----------------------------------	------------------	---------	---------	----------	----------	----------
Pyrenophora phaeocomes	DAOM 222769	DQ499595	DQ49956	DQ497614	DQ497607	
Pyrenophora tritici-repentis 1	OSC 100066	AY544672				
Pyrenophora tritici-repentis 2	CBS 328.53					
Quadricrura septentrionalis	CBS 125429	AB524474	AB524615			
Quintaria lignatis	CBS 117700	GU296188	GU301865	GU371761		
Quintaria submersa	CBS 115553	GU301866	GU357751	GU349003		
Raccodium rupestrae 1	L423	EU048576	EU048581			
Raccodium rupestrae 2	L424	EU048577	EU048582			
Ramichloridium apiculatum	CBS 156.59	GU296189				GU371770
Ramichloridium ceroxiphilum	CBS 103.59	GU296190	GU301855			
Rasutoria tsugae	ratstk	EF114730	EF114705	GU371809		
Rhytidhysterum rufulum 2	CBS 306.38	GU296191	FJ469672	FJ238444		
Rhytidhysterion rufulum 1	GKM 361A	GU296192	GU301867			
Rimora mangrovei	JK 5246A	GU296193	GU301868	GU371759		
rock isolate TRN 111	CBS 118294	GU323193	GU323220	GU357783	GU371751	GU349088
rock isolate TRN 123	CBS 117932	GU323194	GU323219	GU357784	GU371753	
rock isolate TRN 137	CBS 118300	GU323195	GU323218	GU357782	GU371749	
rock isolate TRN 138	CBS 118301	GU323196	GU323217	GU371750		
rock isolate TRN 152	CBS 118346	GU323197	GU323223	GU371752		
rock isolate TRN 211	CBS 117937	GU323198	GU323222	GU357785	GU371754	
rock isolate TRN 235	CBS 118605	GU323199	GU357787	GU371756	GU349087	
rock isolate TRN 43	CBS 117950	GU323200	GU323221	GU357786	GU371755	GU349086
Roussellopsis tosaensis	MAFF 239636	AB524480	AB524621	AB539110	AB539114	
Saccharata proteae	CBS 115206	GU296194	GU301869	GU357753	GU371729	GU349030
Saccothecium sepincola	CBS 278.32	GU296195	GU301870	GU371745	GU349029	
Schismatomma decolorans	DUKE 0047570	AY548809	AY548815	DQ837155	DQ83725	
Schizothyrium poni 1	CBS 406.61	EF134949	EF134949			
Schizothyrium poni 2	CBS 486.50	EF134948	EF134948			
Schizothyrium poni 3	CBS 228.57	EF134947	EF134947			
Scorias spongiosa	CBS 325.33	DQ678024	DQ678075	DQ677973	DQ677920	
Setomelanomma hotnii	CBS 110217	GU296196	GU301871	GU371800	GU349028	
Setosphaeria monoceras	AYO16368	AYO16368				
Spencermartinsia viticola (teleomorph Botryosphaeria viticola)	CBS 117009	DQ678036	DQ678087	GU357795	DQ677985	
Sporormiella minima	CBS 524.50	DQ678003	DQ678056	DQ677950	DQ677897	
Stagonospora macrospycnida	CBS 114202	GU296198	GU301873	GU349026		
Styloothis puccinioides	CBS 193.58	AYO04324	FJ238427	DQ677886		
Sydowiella polyphora	CBS 118.29	DQ678005	DQ678058	GU357791	DQ677953	DQ677899
Table 1. (Continued).

Taxon	voucher/culture	SSU	LSU	RPB1	RPB2	TEF1
Teratosphaeria suberosa (as Mycosphaerella suberosa)	CPC 11032	GU214614	GQ852718			
Teratospheeria sassicola	MAFF 239677	AB524490	AB524631			
Thyridia rubronotata	CBS 419.85		GU301875	GU371728		GU349002
Trematelia halophila	JK 5517J	GU296201	GU371721			
Trematospheeria pertusa	CBS 122371	GU348999	GU301876	GU371801	GU349085	
Trichodilatiaia bispora1	CBS 262.69	GU349000	GU348996	GU371812	GU371802	GU349020
Trichodilatiaia bispora2 (duplicate)	CBS 262.69	GU296202				
Trichodilatiaia munkii	Kruys201	DQ384070	DQ384096			
Triplospheeria maxima	MAFF 239682	AB524496	AB524637			
Trypethelium nitidiusculum1	139	GU327728				GU327732
Trypethelium nitidiusculum2	AFTOL 2099		FJ267701			
Trypethelium tropicum	25	GU327730				
Tubeufia cerea	CBS 254.75	DQ471034	DQ470982	DQ471180	DQ470934	DQ471105
Tubeufia paludosa	CBS 120503	GU296203	GU301877	GU371731	GU349024	
Tubeufia paludosa (as anamorph Helicosporum phragmitis)	CBS 245.49	DQ767649	DQ767654	DQ767643	DQ767638	
Tyranosorus pinicola	CBS 124.88	DQ471025	DQ470974	DQ471171	DQ470928	DQ471098
Ulospora bilgramii	CBS 110020	DQ678025	DQ678076	DQ677974	DQ677921	
Venturia inaequalis 1	CBS 594.70	GU296205	GU301879	GU371757	GU349022	
Venturia inaequalis 2	CBS 815.69	GU296204	GU301878	GU357756	GU349023	
Venturia inaequalis 3 (as Spilocaea pomi)	CBS 176.42	GU348998				GU349089
Venturia populina	CBS 256.38	GU296206	GU323212	GU357769		
Verrucisorota daviesiae	CBS 116002	GU296207	GQ852730			
Verruculina enalia	JK 5253A	DQ678028	DQ678079	DQ677977	DQ677924	
Westerdykella angulata (as Eremodothis angulata)	CBS 610.74	DQ384067	DQ384105	GU371805	GU371821	
Westerdykella cylindrica	CBS 454.72	AYO16355	AYO04343	DQ471168	DQ470925	DQ497610
Westerdykella ornata	CBS 379.55	GU296208	GU301880	GU371803	GU349021	
Wettsteinina lacustris	CBS 618.86	DQ678023	DQ677972	DQ677919		
Wicklowia aquatica	AF289-1		GU045446			
Wicklowia aquatica	CBS 125634	GU266232	GU045445	GU371813		
Zasmidium cellare	CBS 146.36	EF137362	EU041878			
Zopfia rhizophila	CBS 207.26	DQ384096	DQ384104			

*BCC: Belgian Coordinated Collections of Microorganisms; CABI: International Mycological Institute, CABI-Bioscience, Egham, Bakahe Lane, U.K.; CBS: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; DUKE: Duke University Herbarium, Durham, North Carolina, U.S.A.; HHUF: Herbarium of Hiroaki University, Japan; IFMDCC: Culture Collection, International Fungal Research & Development Centre, Chinese Academy of Forestry, Kunming, China; MAFF: Ministry of Agriculture, Forestry and Fisheries, Japan; NBRC: NITE Biological Resource Centre, Japan; OSC: Oregon State University Herbarium, U.S.A.; UAMH: University of Alberta Microfungus Collection and Herbarium, Edmonton, Alberta, Canada; UME: Herbarium of the University of Umeå, Umeå, Sweden; Culture and specimen abbreviations: ANM: A.N. Miller; CPC: P.W. Crous; EB: E.W.A. Boehm; EG: E.B.G. Jones; GKM: G.K. Mugambi; JK: J. Kohlmeyer; KT: K. Tanaka; SMH: S.M. Huhndorf.
Table 2. Genomes used for phylogenetic profile. All are opisthokonts; remaining classifications used in Fig. 4 are indicated in columns: Do – Dothideomycetes, ED - Eurotiomycetes & Dothideomycetes, S – Saccharomyceta, A – Ascomycota, Di – Dikarya, MD - Mucoromycotina & Dikarya, CMD - Chytridiomycota, F - Fungi.

Genomes	Classifications
Alternaria brassicicola	Do, ED, S, A, Di, MD, CMD, F
Cochliobolus heterostrophus	Do, ED, S, A, Di, MD, CMD, F
Mycosphaerella fijensis	Do, ED, S, A, Di, MD, CMD, F
Mycosphaerella graminicola	Do, ED, S, A, Di, MD, CMD, F
Pyrenophora tritic-repentis	Do, ED, S, A, Di, MD, CMD, F
Stagonospora nodorum	Do, ED, S, A, Di, MD, CMD, F
Aspergillus fumigatus	ED, S, A, Di, MD, CMD, F
Aspergillus nidulans	ED, S, A, Di, MD, CMD, F
Aspergillus terreus	ED, S, A, Di, MD, CMD, F
Coccidioides immitis	ED, S, A, Di, MD, CMD, F
Histoplasma capsulatum	ED, S, A, Di, MD, CMD, F
Uncinocarpus reesii	ED, S, A, Di, MD, CMD, F
Ashbya gossypii	S, A, Di, MD, CMD, F
Botrytis cinerea	S, A, Di, MD, CMD, F
Candida albicans	S, A, Di, MD, CMD, F
Candida glabrata	S, A, Di, MD, CMD, F
Candida guilliermondii	S, A, Di, MD, CMD, F
Candida lusitaniae	S, A, Di, MD, CMD, F
Chaetomium globosum	S, A, Di, MD, CMD, F
Debaryomyces hansenii	S, A, Di, MD, CMD, F
Fusarium graminearum	S, A, Di, MD, CMD, F
Fusarium oxysporum	S, A, Di, MD, CMD, F
Fusarium verticilloides	S, A, Di, MD, CMD, F
Kluyveromyces lactis	S, A, Di, MD, CMD, F
Laccania bicolor	S, A, Di, MD, CMD, F
Lodderomyces elongisporus	S, A, Di, MD, CMD, F
Magnaporthie grisea	S, A, Di, MD, CMD, F
Nectria haematococca	S, A, Di, MD, CMD, F
Neurospora crassa	S, A, Di, MD, CMD, F
Pichia stipitis	S, A, Di, MD, CMD, F
Podospora anserina	S, A, Di, MD, CMD, F
Saccharomyces cerevisiae	S, A, Di, MD, CMD, F
Sclerotinia sclerotiorum	S, A, Di, MD, CMD, F
Sporobolomyces roseus	S, A, Di, MD, CMD, F
Trichoderma atroviride	S, A, Di, MD, CMD, F
Trichoderma reseei	S, A, Di, MD, CMD, F
Trichoderma virens	S, A, Di, MD, CMD, F
Verticillium dahliae	S, A, Di, MD, CMD, F
Yarrowia lipolytica	S, A, Di, MD, CMD, F
Schizosaccharomyces japonicus	A, Di, MD, CMD, F
Schizosaccharomyces octosporus	A, Di, MD, CMD, F
Schizosaccharomyces pombe	A, Di, MD, CMD, F
Coprinus cinereus	Di, MD, CMD, F
Cryptococcus neoformans	Di, MD, CMD, F
Phanerochaete chrysosporium	Di, MD, CMD, F
Genomes	Classifications
-------------------------------	-----------------
Postia placenta	Di
Puccinia graminis f. sp. tritici	MD
Ustilago maydis	CMD
Phycomyces blakesleeanus	F
Rhizopus oryzae	MD
Batrachochytrium dendrobatidis	CMD
Encephalitozoon cuniculi	F
Drosophila melanogaster	