CYP3A4 and CYP11A1 Variants are Risk Factors for Ischemic Stroke: a Case Control Study

CURRENT STATUS: ACCEPTED

Ning Gao
Haikou People’s Hospital

Hong Tang
Haikou People’s Hospital

Ling Gao
Haikou People’s Hospital

Guolong Tu
Haikou People’s Hospital

Han Luo
Haikou People’s Hospital

Ying Xia
Central South University Xiangya Stomatological Hospital

Corresponding Author
ying_xia@163.com

DOI:
10.21203/rs.2.9456/v1

SUBJECT AREAS
Internal Medicine Specialties

KEYWORDS
Ischemic stroke, CYP3A4, CYP11A1, Polymorphism, Susceptibility
Abstract

Background

This study aimed to investigate the roles of CYP3A4 and CYP11A1 variants in ischemic stroke (IS) susceptibility among the Han Chinese population.

Methods

477 patients with IS and 493 healthy controls were enrolled. Seven single-nucleotide polymorphisms (SNPs) of CYP3A4 and CYP11A1 were genotyped by Agena MassARRAY. Odds ratio (OR) and 95% confidence intervals (CI) were calculated by logistic regression adjusted for age and gender.

Results

We found that CYP3A4 rs3735451 (OR = 0.81, p = 0.039) and rs4646440 (OR = 0.72, p = 0.021) polymorphisms decreased the risk of IS. CYP3A4 rs4646440 (OR = 0.74, p = 0.038) and CYP11A1 rs12912592 (OR = 1.58, p = 0.034) polymorphisms were correlated with IS risk in males. CYP3A4 rs3735451 (OR = 0.63, p = 0.031) and rs4646440 (OR = 0.57, p = 0.012) possibly weaken the IS susceptibility at age > 61 years. Besides, CYP3A4 rs4646437 (OR = 0.59, p = 0.029), CYP11A1 rs12912592 (OR = 1.84, p = 0.017) and rs28681535 (OR = 0.66, p = 0.038) were associated with IS risk at age ≤ 61 years. Haplotype analysis showed that CYP3A4 GT haplotype (rs4646440 and rs35564277) increased the susceptibility to IS (OR = 1.29, p = 0.033). CYP11A1 rs28681535 TT genotype was higher high-density lipoprotein cholesterol level than the GT and GG genotype (p = 0.027).

Conclusions

Our findings indicated that rs3735451, rs4646440, rs4646437 in CYP3A4 and rs28681535 in CYP11A1 might be protective factors for IS, while CYP11A1 rs12912592 polymorphism be a risk factor for IS in Chinese Han population.

Background

Stroke, a common multifactor neurological disease, is a common cause of death and severe disability in adults worldwide. The incidence of stroke is estimated to be more than 2 million people and more than one million people die from stroke-related causes every year in the Chinese population[1]. There
are huge economic and social burdens because of stroke in China, which remains particularly high in the northern and central regions[2]. Ischemic stroke (IS) is the most common type of stroke accounting for 80%-85% of all stroke cases[3]. According to epidemiologic studies, the incidence of IS in China is significantly higher than in developed countries[4]. The pathophysiological causes of IS are unclear, but the widely accepted concept is that IS is caused by the interaction between genetic and environmental factors[5]. To date, many studies have identified that gene polymorphisms modulate the pathophysiological processes of IS and confer a small to moderate risk [6-8].

Cytochrome P450s (CYPs) is a group of complexes and structurally related enzymes with diverse metabolic and biosynthetic activities. CYP epoxygenases is metabolizing arachidonic acid (AA) to biologically active epoxideicosatrienoidic acids (EETs), which exert vascular relaxation effects and have diverse protective roles in the cardiovascular system[9]. Previous studies have shown that plasma CYP metabolite levels, including EETs are associated with IS[10, 11]. CYP3A4 gene, located on chromosome 7q21.1, is a member of the CYP3A gene family, which participates in metabolizing arachidonic acid (AA) into epoxideicosatrienoic acids (EETs)[12]. CYP11A1 gene is located on chromosome 15q23-q24, and is involved in the metabolism of cholesterol and vitamin D, which associated with cardiovascular diseases[13, 14]. Consequently, studies concerning the possible association of CYP3A4 and CYP11A1 gene with IS may be particularly interesting for their potential biological significance.

However, few reports concerning the role of CYP3A4 and CYP11A1 polymorphisms on IS risk have been published yet. Therefore, we carried out a case-control study to explore whether polymorphisms in CYP3A4 and CYP11A1 contribute to the risk of IS in a Chinese Han population.

Methods

Study participants

A cohort of 477 IS patients and 495 control subjects were enrolled from Haikou People’s Hospital and the Affiliated Hospital of Yanan University in this study. All recruited subjects were unrelated ethnic Han Chinese. All the patients were identified as having newly diagnosed IS by at least two independent neurologists, according to the clinical signs and symptoms. All patients underwent brain
computed tomography (CT) scans and/or magnetic resonance imaging (MRI) as well as standardized clinical hematology, biochemistry and immunology examinations. Patients with a history of hematologic, coronary artery diseases, autoimmune diseases, systemic inflammatory diseases, blood diseases, or malignant tumors were excluded. The healthy individuals without the history of stroke, normal neurological examination results, and free from cardiovascular and cerebrovascular diseases, and immunological diseases, who received a physical examination in the same hospital, were recruited as controls. Demographic characteristics, clinical information and medications were collected with standardized questionnaires. The following clinical data were collected: age, gender, total protein, serum uric acid, blood glucose, total bilirubin, total cholesterol, triglyceride, low-density lipoprotein and high-density lipoprotein. This study protocol was approved by the Ethics Committee of Haikou People’s Hospital and was conducted according to the guidelines on the Declaration of Helsinki. Informed consent was obtained from all participants.

Sample collection and SNP genotyping

Blood samples were obtained from the peripheral veins and were stored in EDTA-coated tubes at -80°C until further analysis. Genomic DNA was isolated from peripheral blood samples using the GoldMag DNA Purification Kit (GoldMag Co. Ltd, Xi’an City, China) according to the manufacturer’s instructions. The DNA concentration and purity was determined using NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA). Four CYP3A4 SNPs (rs3735451, rs4646440, rs35564277 and rs4646437) and three CYP11A1 SNPs (rs1484215, rs12912592 and rs28681535) were selected based on the NCBI SNP database and minor allele frequencies (MAFs) > 5% in the 1000 Genomes Project data (http://www.internationalgenome.org/). In order to uncover the functional effects of CYP3A4 and CYP11A1 polymorphisms, online software for HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) was used. SNPs genotyping were performed using Agena MassARRAY system (Agena, San Diego, CA, U.S.A.) as previously described, and conducted by laboratory technicians blinded to the case-control status. The primers for PCR amplification and single base extension were designed based on the GenBank database using the
Assay Design 3.0 software (Supplementary Table 1). The genotyping results were calculated by Agena MassARRAY Typer 4.0 software. Approximately 5% of samples were randomly selected to repeat genotyping for quality control, and a 100% concordant was achieved.

Data analysis

Statistical analyses were performed using SPSS version 18.0 (SPSS Inc., Chicago, IL, USA) and PLINK software. Demographic data of patients and controls were compared using student's t-test and chi-square test. Hardy–Weinberg equilibrium (HWE) was examined via a goodness-of-fit χ^2 test to compare the observed genotype frequencies and the expected frequencies among the control subjects. The genotype and allele frequencies of the controls and IS patients were compared using the χ^2 test or Fisher’s exact test. The correlation between CYP3A4 and CYP11A1 polymorphisms and IS susceptibility was estimated by odds ratios (ORs) and 95% confidence intervals (CIs) using logistic regression analysis with adjustment for age and sex. Multiple inheritance models (genotype, dominant, recessive and log-additive) were estimated by PLINK software. Further, we calculated stratification factors using age (≤ 61 and > 61 years) and gender (male and female) to adjust for possible cofounders. Pairwise linkage disequilibrium (LD) between the selected SNPs was measured by Haploview software (version 4.2), and haplotype analyses were performed using the PLINK software. Finally, the association between the genotypes of CYP3A4 and CYP11A1 polymorphisms and clinical parameters was tested by covariance analysis (ANCOVA). A two-tailed p-value < 0.05 was considered as significant.

Results

In total, 477 IS patients (316 males and 161 females) and 493 control subjects (325 males and 168 females) were recruited. There were no significant differences between patients and controls in terms of gender ($p = 0.898$). The mean age was 64.13 ± 10.82 years for the patients with IS and 60.05 ± 6.56 years for the control subjects. Significant differences were also found in age distribution ($p < 0.001$), suggesting that age may have an effect on the etiology of IS. The total protein, serum uric acid, blood glucose, bilirubin, triglyceride, hemoglobin, cholesterol and low-density lipoprotein levels

5
in the IS patients were significantly different from those noted in the healthy control subjects. The clinical characteristics of the patients were described in Table 1.

Seven SNPs in \textit{CYP3A4} and \textit{CYP11A1} were successfully genotyped, and the average variant call rate was 99.6%. Detailed information and potential function of candidate SNPs were listed in Table 2. These intronic SNPs were associated with the regulation of promoter and/or enhancer histones, changed motifs, and selected eQTL hits, suggesting they might exert biology functions \textit{in silico}. MAF of all SNPs was higher than 5% of the study population. All SNPs were in HWE among the controls ($p > 0.05$).

The allele and genotype frequency distributions of the SNPs and their association with IS susceptibility were shown in Table 3 and Supplementary Table 2. \textit{CYP3A4} SNPs rs3735451 and rs4646440 were associated with reduced susceptibility of IS (Table 3). We found that individuals carrying rs3735451-C allele had a decreased risk of IS in allele model (OR = 0.81, 95% CI: 0.66-0.98, $p = 0.039$), genotype model (OR = 0.74, 95% CI: 0.57-0.97, $p = 0.029$), dominant model (OR = 0.73, 95% CI: 0.56-0.95, $p = 0.018$) and additive model (rs3735451 OR = 0.78, 95% CI: 0.63-0.96, $p = 0.019$), respectively. With rs4646440 GG genotype as reference, the presence of the GA genotype was associated with a significantly decreased risk of IS after adjustment for age and gender (GA vs. GG, OR = 0.72, 95% CI: 0.55-0.95, $p = 0.021$; GA-AA vs. GG, OR = 0.72, 95% CI: 0.55-0.94, $p = 0.017$, Table 3). Furthermore, rs4646440 polymorphism also might reduce the susceptibility to IS under additive model (OR = 0.77, 95% CI: 0.61-0.97, $p = 0.024$). Nevertheless, other polymorphisms in \textit{CYP3A4} and \textit{CYP11A1} did not relate to IS susceptibility (Supplementary Table 2).

We further analyzed whether the genotypic effects on IS risk were dependent on gender (Table 4). We found that \textit{CYP3A4} rs4646440 was associated with a decreased risk under the additive model (OR = 0.74, 95% CI: 0.56-0.98, $p = 0.038$), and showed a marginal p value in allele model (OR = 0.76, 95% CI: 0.58-1.00, $p = 0.050$) among males, which indicated insufficient evidence for claiming an association. \textit{CYP11A1} rs12912592 polymorphism also showed significant risk-increasing effects in the
heterozygote model (OR = 1.58, 95% CI: 1.04-2.42, \(p = 0.034 \)), and dominant model (OR = 1.56, 95% CI: 1.02-2.37, \(p = 0.039 \)).

In the stratification of age, CYP3A4 SNPs rs3735451 and rs4646440 were associated with the susceptibility to IS at age 61 years (Table 5). For rs3735451, the C allele carriers had a decreased risk of IS (OR = 0.63, 95% CI: 0.41-0.96, \(p = 0.031 \) for CT vs. TT genotypes; OR = 0.65, 95% CI: 0.43-0.97, \(p = 0.036 \) for CT-CC vs. TT genotypes) after adjusting for age and gender. For rs4646440, we found that the A allele was significantly associated with a reduced risk of IS (GA vs. GG, OR = 0.57, 95% CI: 0.37-0.88, \(p = 0.012 \); and GA-AA vs. GG OR = 0.60, 95% CI: 0.40-0.91, \(p = 0.017 \)). Among the population under the age of 61, we found that CYP3A4 rs4646437, CYP11A1 rs12912592 and rs28681535 were associated with IS risk. CYP3A4 rs4646437 and CYP11A1 rs28681535 polymorphisms were significantly associated with decreased risk for IS (rs4646437, OR = 0.59, 95% CI: 0.37-0.95, \(p = 0.029 \); and rs28681535, OR = 0.66, 95% CI: 0.45-0.98, \(p = 0.038 \)). Additionally, the carriers of the T allele at CYP11A1 rs12912592 appeared to have a higher risk of IS (T vs G, OR = 1.64, 95% CI: 1.04-2.61, \(p = 0.043 \); GT vs GG, OR = 1.84, 95% CI: 1.11-3.05, \(p = 0.017 \) and GT-TT vs GG, OR = 1.89, 95% CI: 1.15-3.12, \(p = 0.013 \)).

We next performed haplotype analyses, and the results showed that CYP3A4 rs4646440 was in strong linkage disequilibrium (LD) with rs35564277. Additionally, three CYP11A1 SNPs (rs1484215, rs12912592, and rs28681535) were in strong LD, as shown in Figure 1. We found that CYP3A4 GT haplotype conferred an increased risk of IS after adjusted by age and gender (OR = 1.29, 95% CI: 1.02-1.62, \(p = 0.033 \), Table 6).

Furthermore, we also assessed the association of the selected SNPs and clinical variables in patients (Table 7). Significant association was observed between the genotypes of the CYP3A4 SNPs rs3735451 and rs4646440 and the levels of total protein (\(p = 0.021 \) and \(p = 0.043 \), respectively). A significant association of CYP11A1 rs12912592 polymorphism with total bilirubin was identified (\(p = 0.025 \)). Besides, the TT genotype of CYP11A1 rs28681535 was higher high-density lipoprotein cholesterol
level than GT genotype and GG genotype (p = 0.027). However, there was no difference in the remaining lipid parameters among the genotypes of the selected SNPs (p > 0.05 for all).

Discussion
The aim of this investigation was to discover whether there was an association between the CYP3A4 and CYP11A1 polymorphisms and IS risk in Chinese population. In this study, we found that C allele and CT genotype of rs3735451 and GA genotype of rs4646440 in CYP3A4 were significantly associated with a reduced risk of IS in the overall. We further demonstrated that CYP3A4 rs4646440 was associated with a decreased risk of IS, whereas CYP11A1 rs12912592 was associated with a higher risk of IS in males. In addition, our study found that CYP3A4 rs3735451 and rs4646440 possibly contributed to the susceptibility to IS at age > 61 years, and rs4646437 in CYP3A4 and rs12912592 and rs28681535 in CYP11A1 were associated with the risk of IS at age 61 years. Interestingly, we found that CYP3A4 GT haplotype in the block (rs4646440 and rs35564277) was associated with an increased risk of IS after the adjustment for age and gender. Besides, the TT genotype of CYP11A1 rs28681535 was higher high-density lipoprotein cholesterol level than GT genotype and GG genotype (p = 0.027). To the best of our knowledge, this is the first study to demonstrate the association of these polymorphisms in CYP3A4 and CYP11A1 with IS risk in Chinese population.

CYP genes encode monooxygenases responsible for arachidonic acid metabolism, which is involved in cardiovascular diseases and stroke[15]. Numerous studies have suggested an association between genetic variants of CYP pathway genes and the risk of IS[16]. CYP3A4 gene encodes an enzyme, which involved in drug metabolism and synthesis of cholesterol, steroids and other lipids, and mediated the production of arachidonic acid metabolites [17, 18]. CYP11A gene, a member of CYP genes, encodes a cholesterol side chain cleavage enzyme (cytochrome P450 cholesterol side-chain cleavage, P450scc) that plays a major role in the control of steroidogenesis, by mediating the conversion of cholesterol to pregnenolone[19]. Dyslipidemia such as low concentration of high-density lipoprotein cholesterol (HDL-C), high levels of low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) was one of the most important risk factors of IS[20]. These lines of evidence have led
us to formulate the hypothesis that CYP3A4 and CYP11A1 could be of pathogenic importance in IS. Variations in the CYP3A4 or CYP11A1 genes may influence the gene expression, which might associate with the occurrence and progression of disease. In this study, we found that CYP3A4 (rs3735451, rs4646440 and rs4646437) and CYP11A1 (rs12912592 and rs28681535) polymorphisms were significantly associated with the risk of IS. These polymorphisms are located in the intron region, which might be associated with the regulation of promoter/enhancer histone, DNAse, proteins binding and changed motifs and/or selected eQTL hits. Several studies provided increasing evidence to support that intronic SNPs confer susceptibilities by affecting gene expression [21-23]. Therefore, we hypothesized that CYP3A4 or CYP11A1 polymorphisms may affect the expression of their genes to contribute to the risk of IS. However, further study is necessary to confirm this hypothesis.

Stroke is a sex-specific disease and the prevalence of stroke in women is lower than that in men [24, 25]. Stratified by gender, we noticed that CYP3A4 rs4646440 and CYP11A1 rs12912592 polymorphism affected IS risk in males but not in females, which indicate that this risk association presented sex difference and emphasize the importance of considering heterogeneity in genetic and stroke association studies. In addition, stroke is a late-onset disease and the rate is higher in older people [26, 27]. Our study found that CYP3A4 rs3735451 and rs4646440 possibly contributed to the susceptibility to IS at age > 61 years, and CYP3A4 rs4646437 and CYP11A1 rs12912592 and rs28681535 were associated with the risk of IS at age 61 years. These suggested the interactions between CYP3A4 and CYP11A1 polymorphisms and some environmental exposures (such as males, elder) contributed to the risk of IS.

Inevitably, our current study has some limitations to be considered. First, the inherent selecting bias and information bias could not be completely excluded for the group of patients with IS. Second, data deficiencies of some exposure factors such as obesity, smoking, and alcohol limited our ability to evaluate gene-environment interaction. Finally, explicit mechanisms of CYP3A4 and CYP11A1 polymorphism on development of IS are still bewildered and further research is needed. Despite the limitations mentioned above, the results of our present study provided scientific evidence of CYP3A4 and CYP11A1 gene with IS for the future studies.
Conclusions
To sum up, our study provided evidence that variants of CYP3A4 and CYP11A1 gene had a significant effect on the risk of IS in the Chinese Han population, which has not previously been reported. Our study may provide clues for the evaluation of individual susceptibility to IS and increase the understanding of the possible effect of CYP3A4 and CYP11A1 gene on the development of IS. However, the replication of this research in different populations and additional functional analysis is required to completely elucidate the roles by which CYP3A4 and CYP11A1 polymorphisms predispose for IS.

List Of Abbreviations
IS, ischemic stroke; SNP, single-nucleotide polymorphisms; OR, odds ratio; CI, confidence intervals; CYPs, cytochrome P450s; AA, arachidonic acid; EETs, epoxyeicosatrienoic acids; MAFs, minor allele frequencies; HWE, hardy-weinberg equilibrium; LD, linkage disequilibrium; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol

Declarations
Ethics approval and consent to participate
All participants were voluntary and provided written informed consent before taking part in this research. This study was approved by the Research Ethics Committee of Haikou People’s Hospital, and in compliance with the Declaration of Helsinki. The design and performance of this study involving human subjects were obviously described in a research protocol.

Consent for publication

Not applicable.

Availability of data and material
All the data regarding the findings are available within the manuscript. Anyone who is interested in the information should contact the corresponding author.

Competing interests
The authors declare that they have no conflict of interest.

Funding

This work is supported by National Natural Science Foundation of China (No.81760234).

Authors' contributions

The work presented here was carried out in collaboration between all authors. NG carried out the molecular genetic studies and drafted the manuscript. HT and LG designed the methods and experiments, performed the statistical analyses and interpreted the results. GT designed primers and performed the SNP genotyping experiments. HL collected clinical information about patients and performed the SNP genotyping experiments. YX conceived of the study, worked on associated data collection and their interpretation, participated in the design and coordination of the study, and funded the study. All authors read and approved the final manuscript.

Acknowledgements

We are grateful to the individuals who participated in this study. We also thank the clinicians and hospital staff from the Affiliated Hospital of Yanan University who contributed to the sample and data collection for this study.

References

1. Liu L, Wang D, Wong KS, Wang Y: Stroke and stroke care in China: huge burden, significant workload, and a national priority. Stroke 2011, 42(12):3651-3654.

2. Wang W, Jiang B, Sun H et al: Prevalence, Incidence, and Mortality of Stroke in China: Results from a Nationwide Population-Based Survey of 480 687 Adults. Circulation 2017, 135(8):759-771.

3. Loo KW, Gan SH: Burden of stroke in Malaysia. International journal of stroke : official journal of the International Stroke Society 2012, 7(2):165-167.
4. Bejot Y, Daubail B, Giroud M: Epidemiology of stroke and transient ischemic attacks: Current knowledge and perspectives. *Revue neurologique* 2016, 172(1):59-68.

5. Bevan S, Markus HS: Genetic profiles in ischaemic stroke. *Current atherosclerosis reports* 2013, 15(8):342.

6. Xue Y, Shi N, Zhang B et al: Genetic variant in ZFHX3 Gene on 16q22 associated with risk of stroke in Chinese Han population. *Int J Clin Exp Patho* 2016, 9:8650-8656.

7. Yu J, Luo D, Zhou F et al: Polymorphism of TNIP1 was associated with atherosclerotic ischemic stroke in southern Han Chinese but unrelated with telomere. *INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY* 2017, 10(3):3510-3516.

8. He J, Sun S, Zhang M et al: Association analysis of ALOX5 gene polymorphisms with stroke risk: a case-control study in a Chinese Han population. *INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY* 2016, 9(4):4432-4437.

9. Larsen BT, Gutterman DD, Hatoum OA: Emerging role of epoxyeicosatrienoic acids in coronary vascular function. *European journal of clinical investigation* 2006, 36(5):293-300.

10. Ward NC, Croft KD, Blacker D et al: Cytochrome P450 metabolites of arachidonic acid are elevated in stroke patients compared with healthy controls. *Clinical science (London, England : 1979)* 2011, 121(11):501-507.

11. Yi X, Liao D, Wu L et al: CYP Genetic Variants, CYP Metabolite Levels, and Symptomatic Carotid Stenosis in Ischemic Stroke Patients. *Journal of atherosclerosis and thrombosis* 2016, 23(5):621-631.

12. Yang X, Zhang B, Molony C et al: Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. *Genome research* 2010, 20(8):1020-1036.
13. Slominski AT, Li W, Kim TK et al: Novel activities of CYP11A1 and their potential physiological significance. *The Journal of steroid biochemistry and molecular biology* 2015, 151:25-37.

14. Vanga SR, Good M, Howard PA, Vacek JL: Role of vitamin D in cardiovascular health. *The American journal of cardiology* 2010, 106(6):798-805.

15. Huang H, Al-Shabrawey M, Wang MH: Cyclooxygenase- and cytochrome P450-derived eicosanoids in stroke. *Prostaglandins & other lipid mediators* 2016, 122:45-53.

16. Kim SK, Yim SV, Lee BC: Association between cytochrome P450 promoter polymorphisms and ischemic stroke. *Experimental and therapeutic medicine* 2012, 3(2):261-268.

17. Honda A, Miyazaki T, Ikegami T et al: Cholesterol 25-hydroxylation activity of CYP3A. *Journal of lipid research* 2011, 52(8):1509-1516.

18. Ayajiki K, Fujioka H, Toda N et al: Mediation of arachidonic acid metabolite(s) produced by endothelial cytochrome P-450 3A4 in monkey arterial relaxation. *Hypertension research : official journal of the Japanese Society of Hypertension* 2003, 26(3):237-243.

19. Katsumata N: Genetic defects in pregnenolone synthesis. *Pediatric endocrinology reviews : PER* 2012, 10 Suppl 1:98-109.

20. Wang IK, Liu CH, Yen TH et al: Cholesterol Levels Are Associated with 30-day Mortality from Ischemic Stroke in Dialysis Patients. *Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association* 2017, 26(6):1349-1356.

21. Seo S, Takayama K, Uno K et al: Functional analysis of deep intronic SNP rs13438494 in intron 24 of PCLO gene. *Plos One* 2013, 8(10):e76960.

22. Wang D, Sadee W: CYP3A4 intronic SNP rs35599367 (CYP3A4*22) alters RNA splicing.
Pharmacogenetics & Genomics 2016, 26(1):40-43.

23. Zhao H, Yang W, Qiu R et al: An intronic variant associated with systemic lupus erythematosus changes the binding affinity of Yinyang1 to downregulate WDFY4. Genes & Immunity 2012, 13(7):536.

24. Poorthuis MH, Algra AM, Algra A, Kappelle LJ, Klijn CJ: Female- and Male-Specific Risk Factors for Stroke: A Systematic Review and Meta-analysis. JAMA neurology 2017, 74(1):75-81.

25. Wang J, Ning X, Yang L et al: Sex differences in trends of incidence and mortality of first-ever stroke in rural Tianjin, China, from 1992 to 2012. Stroke 2014, 45(6):1626-1631.

26. Goldstein LB, Bushnell CD, Adams RJ et al: Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011, 42(2):517-584.

27. O’Donnell MJ, Xavier D, Liu L et al: Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet (London, England) 2010, 376(9735):112-123.

Tables
Table 1. Characteristics of patients with Ischemic Stroke and controls
Characteristics	Cases (n = 477)	Controls (n = 493)	p
Age, year (mean ± SD)	64.13 ± 10.82	60.05 ± 6.56	<0.001
Gender (M/F)	316/161	325/168	0.898
TP (g/L, mean ± SD)	65.57 ± 5.80	70.88 ± 5.61	<0.001
Serum uric acid (mol/L, mean ± SD)	284.53 ± 94.37	330 ± 80.27	<0.001
Blood glucose (mmol/L, mean ± SD)	6.33 ± 2.24	5.83 ± 1.44	0.001
TB (mol/L, mean ± SD)	13.63 ± 6.51	17.00 ± 5.94	<0.001
TG (mmol/L, mean ± SD)	1.59 ± 1.05	4.50 ± 0.92	<0.001
Hemoglobin (g/L, mean ± SD)	136.87 ± 22.77	147.76 ± 14.31	<0.001
TC (mmol/L, mean ± SD)	3.89 ± 1.03	1.79 ± 1.16	<0.001
HDL-C (mmol/L, mean ± SD)	1.09 ± 0.26	1.09 ± 0.23	0.871
LDL-C (mmol/L, mean ± SD)	1.81 ± 0.58	2.56 ± 0.71	<0.001

SD, standard deviation; TP, total protein; TB, total bilirubin; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

Table 2. The information about the candidate SNPs in CYP3A4 and CYP11A1
Gene	SNP ID	Chr: Position	Alleles (minor/major)	Frequency (MAF)	HaploReg		
					Case	Control	
CYP3A4	rs3735451	7:99758352	C/T	0.26	0.30	Motifs Changed, Selected eQTL hits	
CYP3A4	rs4646440	7:99763247	A/G	0.19	0.23	Promoter histone marks, Enhancer histone marks, DNase, Proteins bound, Motifs changed, Selected eQTL hits	
	rs35564277	7:99764813	C/T	0.06	0.07	Motifs Changed	
CYP3A4	rs4646437	7:99767460	A/G	0.11	0.13	Promoter histone marks, Enhancer histone marks, Motifs changed, Selected eQTL hits	
CYP11A1	rs1484215	15:74347768	T/C	0.18	0.18	Enhancer histone marks, Motifs changed, Selected eQTL hits	
CYP11A1	rs12912592	15:74363369	T/G	0.10	0.08	Enhancer histone marks, Motifs changed, Selected eQTL hits	
CYP11A1	rs28681535	15:74367268	T/G	0.43	0.45	Promoter histone marks, Enhancer histone marks, DNase, Motifs changed	

MAF: minor allele frequency; eQTL, expression quantitative trait loci.
Table 3. Relationships between *CYP3A4* and *CYP11A1* polymorphism and stroke risk

Gene SNP ID	Model	Genotype	Case	Control	Adjusted by age and gender	OR (95%CI)	p
CYP3A4	Allele	T	705	686	1.00	0.81 (0.66-0.98)	0.039
rs3735451	C	249	300				
	Genotype	TT	256	228	1.00		
	CT	193	230		0.74 (0.57-0.97)	0.029	
	CC	28	35		0.66 (0.38-1.14)	0.135	
	Dominant	TT	256	228	1.00		
	CT-CC	221	265		0.73 (0.56-0.95)		
	Recessive	TT-CT	449	458	1.00		
	CC	28	35		0.76 (0.45-1.29)		
	Log-additive	---	---	---	0.78 (0.63-0.96)	0.019	
CYP3A4	Allele	G	768	754	1.00	0.80 (0.64-1.00)	0.046
rs4646440	A	186	228				
	Genotype	GG	307	282	1.00		
	GA	154	190		0.72 (0.55-0.95)	0.021	
	AA	16	19		0.72 (0.36-1.45)	0.362	
	Dominant	GG	307	282	1.00		
	GA-AA	170	209		0.72 (0.55-0.94)		
Table 4. Relationships between *CYP3A54* and *CYP11A1* polymorphism and stroke risk according to the stratification by gender

SNP ID	Model	Genotype	Male	Female	Male	Female							
			OR		OR								
			(95% CI)	p	(95% CI)	p							
		Allele	G	509	492	1.00	0.050	1.00	0.563				
			A	123	156	0.76	(0.58-1.00)	0.089	63	72	0.89	(0.61-1.29)	0.123
		Genotype	GG	202	183	1.00	0.117	105	99	1.00	0.226		
			GA	105	126	0.74	(0.53-1.05)	0.089	49	64	0.69	(0.43-1.11)	0.123
			AA	9	15	0.53	(0.22-1.27)	0.156	7	4	1.44	(0.40-5.15)	0.576
	Dominant	GG	202	183	1.00	0.052	105	99	1.00	0.188			
		GA-AA	114	141	0.72	(0.52-1.00)	56	68	0.74	(0.47-1.16)	0.024		

SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.

p values were calculated by logistic regression analysis with adjustments for age and gender.

p 0.05 means the data is statistically significant.
Genotype	Allele	CYP11A1 rs12912592									
Recessive	GG-GA	307	309	1.00	0.237	154	163	1.00	0.438		
AA	9	15	0.60	(0.25-1.41)	7	4	1.65	(0.47-5.81)			
Log-additive	---	---	---	0.74	(0.56-0.98)	0.038	---	---	0.83	(0.56-1.24)	0.371
CYP11A1 Allele	G	565	602	1.00	0.081	297	301	1.00	0.672		
T	67	50	1.43	(0.97-2.10)	25	29	0.87	(0.50-1.53)			
Genotype	GG	250	277	1.00	138	136	1.00				
GT	65	48	1.58	(1.04-2.42)	0.034	21	29	0.64	(0.34-1.19)	0.161	
TT	1	1	0.63	(0.04-10.19)	0.743	2	0	/	/		
Dominant	GG	250	277	1.00	0.039	138	136	1.00	0.224		
GT-TT	66	49	1.56	(1.02-2.37)	23	29	0.70	(0.38-1.28)			
Recessive	GG-GT	315	325	1.00	0.704	159	165	1.00	/		
TT	1	1	0.58	(0.04-9.45)	2	0	/				
Log-additive	---	---	---	1.51	(1.00-2.28)	0.051	---	---	0.78	(0.44-1.38)	0.393

SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.

p values were calculated by logistic regression analysis with adjustments for age and gender.
\(p \leq 0.05 \) indicates statistical significance.

Table 5. Relationships between \textit{CYP3A4} and \textit{CYP11A1} polymorphism and stroke risk according to the stratification by age

SNP ID	Allele/G genotype	>61			\leq61									
			OR (95% CI)	\(p \)		OR (95% CI)	\(p \)							
CYP3A4 rs3735451 T	403 287	1.00	0.063	302 399	1.00	0.217								
C	145 135	0.76	(0.58-1.01)	0.051	104 165	0.83	(0.62-1.11)							
TT	148 92	1.00		1.00	108 136	1.00								
CT	107 103	0.63	(0.41-0.96)	0.031	86 127	0.85	(0.58-1.24)							
CC	19 16	0.77	(0.35-1.70)	0.514	9 19	0.63	(0.27-1.47)							
CT-CC	126 119	0.65	(0.43-0.97)	0.036	95 146	0.82	(0.57-1.18)							
CYP3A4 rs4646440 G	439 314	1.00	0.051	329 440	1.00	0.334								
A	109 106	0.74	(0.54-1.00)	0.84	77 122	0.61	(0.61-1.16)							
GG	176 114	1.00		1.00	131 168	1.00								
GA	87 86	0.57	(0.37-0.88)	0.012	67 104	0.82	(0.56-1.21)							
AA	11 10	0.86	(0.33-2.25)	0.764	5 9	0.79	(0.26-2.44)							
GA-AA	98 96	0.60	(0.40-0.91)	0.017	72 113	0.82	(0.56-1.20)							
------------------	---	-----	---	---	---	---	---	---	---	---	---	---	---	---
	G	486	368	1.00	0.487	360	485	1.00	0.284					
rs46464														
37														
A	62	54	0.87	(0.59-1.28)	46	77	0.80	(0.55-1.19)	0.029					
GG	214	160	1.00		163	207	1.00							
GA	58	48	0.81	(0.49-1.32)	0.396	34	71	0.59	(0.37-0.95)	0.029				
AA	2	3	0.48	(0.06-3.65)	0.478	6	3	2.41	(0.57-10.25)	0.233				
GA-AA	60	51	0.79	(0.49-1.28)	0.335	40	74	0.67	(0.43-1.04)	0.073				
CYP11A1	G	498	376	1.00	0.659	364	527	1.00	0.043					
rs12912														
592														
T	50	42	0.90	(0.58-1.38)	42	37	1.64	(1.04-2.61)						
GG	226	168	1.00		162	245	1.00							
GT	46	40	0.93	(0.55-1.58)	0.798	40	37	1.84	(1.11-3.05)	0.017				
TT	2	1	0.53	(0.04-0.01)	0.629	1	0							
GT-TT	48	41	0.92	(0.55-1.54)	0.744	41	37	1.89	(1.15-3.12)	0.013				
CYP11A1	G	298	237	1.00	0.603	246	309	1.00	0.076					
rs28681														
535														
T	250	185	1.08	(0.83-1.39)	160	255	0.79	(0.61-1.02)						
GG	75	67	1.00		80	87	1.00							
GT	148	103	1.31		0.251	86	135	0.69	0.081					

21
SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.

p values were calculated by logistic regression analysis with adjustments for age and gender.

p 0.05 indicates statistical significance.

Table 6. Haplotype frequencies and their associations with stroke risk

	Frequency	OR (95% CI)	p value	Frequency	OR (95% CI)	p value			
TT	51	1.10 (0.61-1.99)	0.743	37	0.60 (0.36-1.02)	0.061			
GT-TT	199	1.25 (0.81-1.95)	0.318	123	0.66 (0.45-0.98)	0.038			
Gene	SNP	Haplotype	Frequency	Crude analysis	Adjusted by age and gender				
------	-----	-----------	-----------	----------------	-----------------------------				
			Case	Control	OR (95% CI)	p	OR (95% CI)	p	
CYP3A4	rs4646440	rs35564277	AC	0.94	0.93	1.26 (0.88-1.78)	0.203	1.28 (0.89-1.83)	0.185
	rs4646440	rs35564277	AT	0.86	0.84	1.20 (0.92-1.55)	0.177	1.23 (0.94-1.61)	0.123
	rs4646440	rs35564277	GT	0.80	0.77	1.25 (1.00-1.56)	0.053	1.29 (1.02-1.62)	0.033
CYP11A1	rs1484215	rs12912592, rs28681535	CGT	0.43	0.45	0.93 (0.78-1.28)	0.449	0.92 (0.77-1.11)	0.397
	rs1484215	rs12912592, rs28681535	CTG	0.90	0.92	0.80 (0.58-1.11)	0.182	0.83 (0.59-1.15)	0.265
	rs1484215	rs12912592, rs28681535	TGG	0.82	0.81	1.04 (0.82-1.31)	0.756	1.00 (0.79-1.27)	0.982
	rs1484215	rs12912592, rs28681535	CGG	0.29	0.29	1.03 (0.85-1.25)	0.748	1.03 (0.84-1.25)	0.780

CYP3A4 block comprises the two closely linked SNPs rs4646440 and rs35564277. *CYP11A14* block comprises the three closely linked SNPs rs1484215, rs12912592, and rs28681535. OR: odds ratio; 95% CI: 95% confidence interval. *p* values were calculated using logistic regression analysis with and without adjustment by gender and age; *p* < 0.05 indicates statistical significance.

Table 7: Comparisons of clinical characteristics among patients with different genotypes of selected SNPs
	TT	TC	CC	p	AA	AG	GG	p	
TP (g/L)	66.16	64.65	66.79	6.09	66.98	64.60	66.02	5.92	0.043
Serum uric acid (mol/L)	290.64	279.93	260.83	72.42	0.247	1.03	0.021	0.583	
Blood glucose (mmol/L)	6.36	6.22	6.77	3.19	0.484	6.75	6.35	6.29	7.34
TB (mol/L)	13.78	14.95	13.36	5.23	13.62	6.75	0.237		
TG (mmol/L)	1.55	1.65	1.53	1.22	0.596	1.79	1.60	1.57	0.771
Hemoglobin (g/L)	137.07	137.51	130.46	31.22	0.395	133.57	136.82	21.38	0.842
TC (mmol/L)	3.93	3.89	3.65	1.19	0.464	3.92	3.76	3.96	0.98
HDL-C (mmol/L)	1.10	1.09	1.03	0.37	0.494	1.01	1.07	1.11	0.203
LDL-C (mmol/L)	1.82	1.82	1.66	0.56	0.446	1.80	1.76	1.84	0.375
Characteristics	CYP11A1 rs129125	92	CYP11A1 rs286815	35					
	TT	GT	GG	p	TT	GT	GG	p	
TP (g/L)	65.50	65.32	65.64	6.78	6.72	6.62	6.46	5.83	0.946
Serum uric acid (mol/L)	245.50	290.63	284.76	92.30	0.744	2810	284.04	96.95	0.749
Blood glucose (mmol/L)	4.93	6.57	6.27	2.23	0.397	6.85	6.26	6.22	0.644
TB (mol/L)	9.33	12.02	14.05	6.84	13.71	14.23	12.75	4.68	0.117
TG (mmol/L)	0.76	1.65	1.57	0.99	0.342	1.33	1.63	1.63	0.293
Hemoglobin (g/L)	130.67	136.46	136.94	21.84	0.885	137.54	136.85	22.92	0.932
TC (mmol/L)	3.64	3.97	3.89	1.02	0.774	3.96	3.95	3.81	0.97

24
SNP	1	2	3	4	5	6	7	8
HDL-C (mmol/L)	1.21	1.07	1.09	0.57	1.16	1.08	1.06	0.02
LDL-C (mmol/L)	1.86	1.84	1.81	0.87	1.88	1.83	1.75	0.31

SNP, single nucleotide polymorphism; TP, total protein; TB, total bilirubin; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol. *p* < 0.05 indicates statistical significance.

Figures

![Figure 1](image.png)

Figure 1

Haplotype block map for SNPs in CYP3A4 (A) and CYP11A1 (B) gene.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Supplementary Table.docx