Breast cancer metastasis to the colon and rectum: Review of current status on diagnosis and management, Murad Bani Hani M.D., Bashir Attuwaybi, MD, Bryan Butler, MD

Abstract:
Approximately 5-10% of patients will harbor distant metastasis at the time of breast cancer diagnosis with about a third of these patients developing distant recurrence after optimal therapy. Breast cancer has an unusual metastatic pattern to the colon and rectum with incidence that may be underappreciated. Lobular breast cancer has a higher preponderance to this unusual metastatic pattern. Clinical manifestation is nonspecific with a long latency period and diagnosis requires a high index of suspicion. The management is not clearly defined. However, medical management with chemo and hormonal therapy seem to be favored likely because of overall metastatic burden at time of diagnosis. Radical colonic resection in selected patients with isolated colorectal metastasis has been well tolerated and may influence survival. A regimented screening colonoscopy in breast cancer patients with high-risk features may offer early diagnosis and
Breast cancer metastasis to the colon and rectum: Review of current status on diagnosis and management, Murad Bani Hani M.D., Bashir Attuwaybi, MD, Bryan Butler, MD

Colon and Rectal surgery

State University of New York at Buffalo

Abstract

Approximately 5-10% of patients will harbor distant metastasis at the time of breast cancer diagnosis with about a third of these patients developing distant recurrence after optimal therapy. Breast cancer has an unusual metastatic pattern to the colon and rectum with incidence that may be underappreciated. Lobular breast cancer has a higher preponderance to this unusual metastatic pattern. Clinical manifestation is nonspecific with a long latency period and diagnosis requires a high index of suspicion. The management is not clearly defined. However, medical management with chemo and hormonal therapy seem to be favored likely because of overall metastatic burden at time of diagnosis. Radical colonic resection in selected patients with isolated colorectal metastasis has been well tolerated and may influence survival. A regimented screening colonoscopy in breast cancer patients with high-risk features may offer early diagnosis and management.
Breast cancer metastasis to the colon and rectum: Review of current status on diagnosis and management, Murad Bani Hani M.D., Bashir Attuwaybi, MD, Bryan Butler, MD

Colon and Rectal surgery

State University of New York at Buffalo

Running title: Breast Cancer Metastasis to Colon and Rectum

Keywords: Breast cancer, Metastasis, Metastases to colorectum

Address correspondence to: Bryan Butler, MD Program Director, Colorectal Fellowship Program

Ph: (716) 862-1475
Fx: (716) 862-1212

e-mail: bbutler@buffalomedicalgroup.com
Abstract

Approximately 5-10% of patients will harbor distant metastasis at the time of breast cancer diagnosis with about a third of these patients developing distant recurrence after optimal therapy. Breast cancer has an unusual metastatic pattern to the colon and rectum with incidence that may be underappreciated. Lobular breast cancer has a higher preponderance to this unusual metastatic pattern. Clinical manifestation is nonspecific with a long latency period and diagnosis requires a high index of suspicion. The management is not clearly defined. However, medical management with chemo and hormonal therapy seem to be favored likely because of overall metastatic burden at time of diagnosis. Radical colonic resection in selected patients with isolated colorectal metastasis has been well tolerated and may influence survival. A regimented screening colonoscopy in breast cancer patients with high-risk features may offer early diagnosis and management.
Introduction

Breast cancer is the most common female malignancy affecting one in every eight female U.S. population during their lifetime. Although a highly treatable and curable disease with improvement in screening and multimodality treatment over the past few decades, it remains a highly morbid disease with potentially significant mortality. At the time of diagnosis, approximately 5-10% of patients will harbor lymph node or distant metastases. And even after optimal treatment for locally advanced disease with surgery and/or chemoradiation and endocrine therapy, about 30% will develop distant metastatic recurrence. Although breast cancer turn to be nonselective in its metastatic targets, the most commonly reported sites of distant metastasis include lungs, bone, liver, brain, soft tissue and adrenal glands. Metastasis usually occurs via lymphatic spread.

Gastrointestinal metastasis from breast origin is rare in clinical practice, but in autopsy series the occurrence varied from 8-35% with the stomach and proximal small intestines being the most common metastatic sites. Even though colonic metastasis mimicking primary colon cancer remains a relatively rare entity, emerging in approximately 1% of total colorectal cancers, its occurrence is being reported more often. The association between breast cancer metastasis to the colon and rectum and accordant implication remains to be determined. We sought to review the literature to garner the current status in the diagnosis and management of such colorectal metastasis.

Methods:

We initially performed a pubmed and google search of breast cancer metastases to the GI tract. Then the search criteria were advanced to exclusively identify metastasis to the colon and rectum. Papers were selected to include those with the most relevant clinical data such as demographics, breast cancer subtype and staging, hormonal and receptor status, treatment modality of both breast and colorectal lesions and ultimate outcome if any.
Discussion

Mounting evidence shows that the breast cancer gene mutation (BRCA-1) is associated with increased risks of colon cancer amongst other GI malignancies such as stomach and pancreas\(^7\). Based on this report, it is uncertain whether the colon cancer cases represent primary or metastatic colon cancer from the breast. Historically, metastatic breast cancer to the colon occurs rarely, but according to case series, its occurrence is probably more common and unrecognized than clinically appreciated. Breast cancer has a tendency to metastasize to the GI tract with previous reports sitting the stomach and small intestines amongst the most common sites.

Colonic and rectal metastases occur less frequently or are both less recognized and diagnosed. It appears that the latter seem more plausible and a great number of cases go undiagnosed. Two case reviews looking at pattern of metastatic breast cancer to the GI tract found colonic involvement in only 3% and 4% respectively\(^8\). However, autopsy series seem to suggest a higher incidence of up to 18% of gastric and colonic involvement than previously reported\(^9\).

The association between breast cancer subtype, stage, hormonal receptor status, molecular or genetic status and other variables, and risk of colonic metastasis remains to be demonstrated. Extrapolating trends from the literature shows that the subtype of the primary breast cancer appears to influence colonic metastasis. Lobular carcinoma, although comprising only 10% of all breast adenocarcinoma, represents the most frequent breast cancer subtype with predilection to metastasize to the intra-abdominal viscera including colon\(^1,5,6,10,11\). Even in patients with a mixed ductal and lobular type of breast carcinoma, the lobular histologic type is the one that favors the metastatic growth pattern in the colon lesions\(^12\). The reason why Gastrointestinal metastasis seems to be more frequent in lobular histology is unkown, but some authors think that it could be related to a particular tropism of lobular cells\(^1\) and loss of cell-cell adhesion molecule \(^5\).

Furthermore, After Literature review, reports on breast cancer metastasis to colon and rectum are poor and often limited to single case reports except for very few literature reviews.\(^1\)

Among the cases reported in the literature (Table 1 & 2), only nodal involvement was found to be consistently prominent in patients with colonic metastasis with only approximately 10% having been diagnosed with early stage breast cancer. These patients with node negative status at the time of initial diagnosis had a long latency period after index...
treatment prior to developing recurrent disease as metastasis to the colon. The impact of high risk features such as HER-2, ER/PR receptor and BRCA status remain to be determined as these were not often available for analysis.

The main pathway responsible for colonic disease is hematogenous dissemination, however peritoneal and lymphatic spread have been documented.

The clinical presentation of breast metastasis to colon or rectum is variable and nonspecific with symptoms indistinguishable from primary colorectal cancer or other GI pathologies such as inflammatory bowel disease. This in combination to often long latency after initial breast cancer diagnosis and treatment makes the differentiation between primary colorectal cancer and breast cancer metastasis to the colon challenging. The latency period in most case reports are variable ranging from 2 to 22 years with a median of 8.2 years with a few cases presenting synchronously. The interval between the diagnosis of lobular carcinoma and gastrointestinal metastasis can be up to 30 years.

The often delayed presentation may masquerade as primary colon or rectal tumors and therefore requires a high index of suspicion to facilitate early diagnosis and management.

CT features of breast cancer metastasis to gastrointestinal tract have been previously described as bowel mural thickening and bowel dilatation, which are nonspecific findings. Lau et al. presented a case with MRI features of breast cancer metastasis to rectum that maybe useful for distinction from typical primary rectal carcinoma. These features are: diffuse and relatively long segment concentric mural thickening of the rectum which involves submucosa, muscularis propria layers with sparing of mucosa which is reminiscent of a linfitus plastic pattern. Marked T2 hypointensity rather than intermediate to hyperintense appearance typical for rectal carcinoma, and a very mild restricted diffusion on the involved segment of the rectum.

Endoscopically, these metastatic lesions may mimic the aggressive phenotype of the lobular breast cancer with mucosal erosion, ulceration, and diffuse thickening. These endoscopic features may be indistinguishable from primary colorectal cancer. Moreover, mucosal nodularity and cobblestone-like thickening may mimic crohn’s disease. The diagnosis is predicated on a detailed pathologic and immunohistochemical (IHC) evaluation, and the pathologist’s awareness of the clinical history. Histologically, metastases to the colon and rectum are often nonglandular conglomerate nest of tumor cells with lack of mucosal dysplasia or atypia.
surround the infiltrating tumor. Pathologic criteria include infiltration of the srosal, muscular, and submucosal layers by cells, typically in an Indian file pattern, resulting in signet ring appearance. The absence of dyplasia or nuclear atypia in the colonic epithelium and the presence of infiltrating tumor cells surrounding the preexisting glands consistent with the diagnosis of metastasis.

IHC staining will often be negative for CD20 and CDX2 which are key markers for primary colorectal cancers. More importantly, estrogen and progesterone receptors (ER/PR) are confirmatory of metastatic breast cancer. In rare case series, there has been a de-differentiation of the ER/PR hormonal status with conversion from ER/PR positive status in the primary breast cancer to ER/PR negative status in the colonic metastasis. The management of patients with breast cancer metastasis to the colon and rectum is under discussion with limited evidence to guide therapy. A multimodality approach with systemic therapy and surgical resection in selected patients seem to be favored. Systemic therapy is offered as first-line therapy in patients with widespread colonic and extra-gastrointestinal metastases. In a retrospective review by McLemore et al., the median overall survival after diagnosis was 28 months with no demonstrable survival benefit in patients who underwent palliative resection. However, treatment with systemic chemotherapy and/or hormonal therapy had a positive effect on survival. Other case series have cited survival up to 42 months after radical resection. It is likely that the poor prognosis of these patients is due to delayed presentation with overall high metastatic burden. With the advancement in chemotherapeutics in breast cancer management, survival has significantly increased. Therefore, future clinicians may experience an increasing incidence of this unusual breast cancer metastasis. More evidence is required to address factors that may potentially improve the quality of life, disease free and overall survival of breast cancer survivors with this unusual metastatic pattern to the colon and rectum.

High risk patients include those with a known genetic mutation (BRCA1 mutation), patients with lobular breast cancer, especially those with positive lymph nodes, patient with a known breast cancer with non specific GI symptoms or abnormal imaging.

High risk hormone receptor or molecular status remain to be demonstrated.

A protocol of surveillance colonoscopy may be offered to selected high-risk patients who may benefit from early diagnosis and initial of therapy.
Author (Reference)	Age	Subtype	Grade	Nodal status	Stage	Molecular /Genetics	Initial Breast cancer Treatment
Bamias et. al.	74	ILC	2	Pos	NR(pT2N3 M)	ER/PR -	MRM+ALND+CHEMO
Feng et. al.	49	IDC	NR	Pos	NR	NR	Mastectomy + chemo
Lima et. al.	74	NR	NR	NR	NR	NR	Mastectomy + Chemo
Hirano et. al.	55	IDC	NR	neg	NR	ER/PR/HER 2 -	Mastectomy + Chemo
Gifaldi et. al.	76	ILC	NR	neg	Stage 1	ER/PR Pos	Mastectomy
Zhou et. al.	45	IDC	3	Pos	pT2N2M1	ER/PR + HER2 -	Mastectomy + chemo + TAHBSO
Gerova et. al.	51	ILC	NR	Pos	pT1bN1 M0	ER/PR +	MRM + ALND + chemo + homonal
Voravud et. al.	72	ILC	NR	Pos	pT2N2M1	Unavailable	Hormonal
Koutsomanis et. al.	61	Undifferentiated	3	Pos	pT2N2M0	Negative	Mastectomy + Chemo
Eyres et. al.	59	IDC	NR	Neg	NR	NR	Mastectomy
Eyres et. al.	40	ILC	NR	NR	NR	NR	Mastectomy + Radiation
Defrawi et. al.	63	ILC	NR	Pos	pT3N1M0	NR	Mastectomy + Chemo
Uygun et. al.	43	Mixed	NR	Neg	T2N0M0	ER-neg /PR pos	Mastectomy ALND + chemorad
Haberstich et. al.	78	ILC	NR	Pos	Stage III	ER/PR +	MRM+ALND+ chemo
Michalopoulos et. al.	51	IDC	NR	NR	NR	NR	MRM+ALND+ chemo
Michalopoulos et. al.	47	ILC	NR	NR	NR	NR	MRM+chemo
Vaidya et. al.	51	IDC	NR	NR	NR	ER/PR +	WLE + ALND + Hormonal
Bar-Zohar et. al.	62	IDC	NR	Pos	Stage III	ER+	MRM + ALND + Chemo + hormonal
Shimonov et. al.	63	IDC	NR	Neg	T2N0M0	ER/PR -	WLE+ALND
Shimonov et. al.	67	IDC	NR	Neg	T1N0M0	NR	MRM
Shimonov et. al.	60	ILC	NR	Neg	T1N0M0	NR	MRM
Yokota et.	46	IDC	NR	Neg	Stage 1	ER/PR+	MRM + ALND +
Author (Reference)	Age	Subtype	Grade	Nodal status	Stage	Molecular /Genetics	Initial Breast cancer Treatment
------------------------	-----	---------	-------	--------------	-------	---------------------	---------------------------------
Bamias et. al.	74	ILC	2	Pos	NR(pT2N3M)	ER/PR -	MRM+ALND+CHEM
Feng et. al.	49	IDC	NR	Pos	NR	NR	Mastectomy + chemo
Lima et. al.	74	NR	NR	NR	NR	NR	Mastectomy + Chemo
Hirano et. al.	55	IDC	neg	NR	ER/PR/HER2 -	Mastectomy + Chemo	
Gifaldi et. al.	76	ILC	neg	Stage 1	ER/PR Pos	Mastectomy	
Zhou et. al.	45	IDC	3	Pos	pT2N2M1	ER/PR +	Mastectomy + chemo + TAHBSO
Gerova et. al.	51	ILC	NR	Pos	pT1bN1M0	ER/PR +	MRM + ALND + chemo + homonal
Voravud et. al.	72	ILC	NR	Pos	pT2N2M1	Unavailable	Hormonal
Koutsomisis et. al.	61	Undifferentiated	3	Pos	pT2N2M0	Negative	Mastectomy + Chemo
Eyres et. al.	59	IDC	NR	Neg	NR	NR	Mastectomy
Eyres et. al.	40	ILC	NR	NR	NR	NR	Mastectomy + Radiation
Defrawi et. al.	63	ILC	NR	Pos	pT3N1M0	NR	Mastectomy + Chemo
Study	Case Number	Primary Type	Stage	ER/PR Status	Treatment Details		
------------------------------	-------------	--------------	-------	--------------	------------------		
Uygun et. al.	43	Mixed	NR	Neg	T2N0M0, ER-neg/PR pos, Mastectomy ALND + chemorad		
Haberstich et. al.	78	ILC	NR	Pos	Stage III, ER/PR +, MRM+ALND+ chemo		
Michalopoulos et. al.	51	IDC	NR	NR	NR, NR, MRN+ALND+ chemo		
Michalopoulos et. al.	47	ILC	NR	NR	NR, ER/PR +, MRN+ALND+ chemo		
Vaidya et al.	51	IDC	NR	NR	ER/PR +, WLE + ALND + Hormonal		
Bar-Zohar et. al.	62	IDC	NR	Pos	Stage III, ER+, MRM + ALND + Chemo + hormonal		
Shimonov et. al.	63	IDC	NR	Neg	T2N0M0, ER-PR -, WLE+ALND		
Shimonov et. al.	67	IDC	NR	Neg	T1N0M0, NR, MRM		
Shimonov et. al.	60	ILC	NR	Neg	T1N0M0, NR, MRM		
Yokota et al.	46	IDC	NR	Neg	Stage I, ER/PR+, MRM + ALND + Hormonal		
Nieboer et al.	55	ILC	NR	Pos	ER/PR +, WLE + ALND		
Schwarz et. al.	NR	NR	NR	NR	NR, NR, NR, NR, NR, NR, NR		
Xiao-cong Zhou et. al.	54	IDC	3	Neg	Stage I, ER/PR +, HER2 -, MRM+ Chemo		
Ambroggi et. al.	40	IDC	2	Pos	NR, ER/PR +, HER2 -, Chemo+Endocrine		
Blachman-Braun et. al.	73	ILC	NR	NR	NR, ER+/PR-HER2 -, Bilateral mastectomy + chemo		
Li Ching Lau et. al.	61	ILC	NR	Stage 1	NR, Mastectomy		
Cho Ee Ng et. al.	56	ILC+IDC	NR	Pos	ER+, HER2-, Mastectomy+ chemo+Radiation		

Conclusion

Secondary colon and rectal cancer from breast cancer metastases is a rare, but increasingly reported, and unusual pattern of breast malignancy. Diagnosis requires a high index of suspicion as patients often present with a long latency period and nonspecific GI symptoms. The management is not clearly defined. However, medical management with chemo and hormonal
therapy seem to be favored likely because of overall metastatic burden at time of diagnosis. Radial colonic resection in selected patients with isolated colorectal metastasis has been well tolerated and may influence survival. A regimented screening colonoscopy in breast cancer patients with high-risk features may offer early diagnosis and management.

References

1. Massimo Ambrogi et. al. Metastasis Breast cancer to the gastrointestinal tract: Report of five cases and review of the literature. International Journal of Breast Cancer, 2012; Article ID 439023.

2. Cardoso F., Harbeck N., Fallowfield L. Locally recurrent or metastatic breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 23 (Supplement 7): vii11–vii19, 2012 doi:10.1093/annonc/mds232

3. Rugo HS, O'Shaughnessy JA, Perez EA. Clinical roundtable monograph. Current treatment options for metastatic breast cancer: what now? Clin Adv Hematol Oncol. 2011 Nov;9(11):1-16.

4. Cifuentes N, Pickren JW. Metastases from carcinoma of mammary gland: an autopsy study. J Surg Oncol. 1979; 11(3):193-205.

5. Choe Ee Ng et. al. Rectal Metastasis from Breast cancer: A rare Entity. International Journal of Surgery Case Reports. 13(2015) 103-105.

6. Michail Galanopoulos et. al. Secondary Metastatic lesions to colon and rectum. Ann Gastroenterol 2018;31(3): 282-287.

7. Thompson D, Easton DF; Breast Cancer Linkage C. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 2002;94:1358-1365.

8. Klein MS., Sherlock P., Gastric and colonic metastases from breast cancer. Am J Dig Dis. 1972; 17:881-
9. Graham, WP, III Goldman. L. Gastro-intestinal Metastases from Carcinoma of the Breast. Ann Surg. 1964 Mar; 159(3): 477–480

10. Taal BG, et. al. The spectrum of gastrointestinal metastases of breast carcinoma.

11. Ruben Blachman-Braun et. al. Widespread metastatic Breast cancer to the bowel: an unexpected finding during colonoscopy. Oxford Medical case reports, 2019;2,83-84.

12. Schwarz RE, Klimstra DS, Turnbull ADM (1998) Metastatic breast cancer masquerading as gastrointestinal primary. Am J Gastroenterol 93:111–114

13. J Carlos Villa Guzman et. al. Gastric and colon metastases from Breast Cancer: case report, review of the literature, and possible underlying mechanisms. Breast Cancer: Targets and therapy, 2017: 9 1-7.

14. Li Chang Lau et. al. Metastatic Breast cancer to the rectum A case report with emphasis on MRI features. Medicine (2017) 96: 17(e6739).

15. Barnias A., Baltayannis G. et. al. Rectal metastases from lobular carcinoma of the breast: Report of a case and literature review Ann Oncol (2001) 12 (5): 715-718

16. Zhou, Xiao-cong et al. Invasive ductal breast cancer metastatic to the sigmoid colon. World Journal of Surgical Oncology. 2012;10:256. doi:10.1186/1477-7819-10-256

17. Arslan C, Sari E, Aksoy S, Altundag K: Variation in hormone receptor and HER-2 status between primary and metastatic breast cancer: review of the literature. Expert Opin Ther Targets 2011, 15:21–30

18. McLemore EC, Pockaj BA et. al. Breast cancer: presentation and intervention in women with gastrointestinal metastasis and carcinomatosis. Ann Surg Oncol. 2005 Nov;12(11):886-94. Epub 2005 Sep 21.

19. Shimonov M, Rubin M. Metastatic breast tumors imitating primary colonic malignancies. Isr Med Assoc J. 2000;2:863–86415 Feng CL, Chou JW. et. al. Colonic metastasis from carcinoma of the breast presenting with colonic erosion. Endoscopy 2009; 41: E276-E277. DOI: 10.1055/s-0029-1215066

20. Alves de Lima DC, Alberti LR. Breast cancer metastasis to the colon. Endoscopy. 2011;43(Suppl 2 UCTN):E143–E144.

21. Hirano et. Al. Aphthous lesions of the colon as a manifestation of metastasized breast cancer. Endoscopy 2011; 43: E131-E132. DOI: 10.1055/s-0030-1256165.

22. Gifaldi AS, Petros JG, Wolfe GR. Metastatic breast carcinoma presenting as persistent diarrhea. J Surg Oncol. 1992;51:211–215.

23. Gerova VA, Tankova LT, Mihova AA, Drandarska IL, Kadian HO. Gastrointestinal metastases from breast cancer: report of two cases. Hepatogastroenterology. 2012;59(113):178–81

24. Voravud N, el-Naggar AK, Balch CM, Theriault RL. Metastatic lobular breast carcinoma simulating primary colon cancer. Am J Clin Oncol. 1992;15(4):365–369

25. Koutsomanis D, Renier JF, Ollivier R, Moran A, el-Haite AA. Colonic metastasis of breast carcinoma. Hepatogastroenterology. 2000;47:681–682.
26. Eyres KS, Sainsbury JR. Large bowel obstruction due to metastatic breast cancer: an unusual presentation of recurrent disease. Br J Clin Pract. 1990;44:333–334

27. Defrawi et. al. Breast cancer metastatic to the colon 20 years after bilateral mastectomy. Endoscopy 2006; 38: E1. DOI: 10.1055/s-2006-944605

28. Uygun K, Kocak Z, Altaner S, Cicin I, Tokatli F, et al. (2006) Colonic metastasis from carcinoma of the breast that mimics a primary intestinal cancer. Yonsei Med J 47(4): 578-582.

29. Haberstich R, et al. Anal localization as first manifestation of metastatic ductal breast carcinoma. Tech. Coloproctol. 2005;9(3):237–238

30. Michalopoulos A, et al. Metastatic breast adenocarcinoma masquerading as colonic primary. Report of two cases. Tech. Coloproctol. 2004;8(Suppl 1):135–137.

31. Vaidya JS, Mukhtar H, Bryan R. Colonic metastasis from a breast cancer- a case report and a few questions. Eur J Surg Oncol. 2002;28:463–464.

32. Bar-Zohar et. al. Breast Cancer Metastasizing to the Rectum. IMAJ 2001;3:624±625

33. Yokota T, et al. Metastatic breast carcinoma masquerading as primary colon cancer. Am. J. Gastroenterol. 2000;95(10):3014–3016.

34. Nieboer et. al. Rectal syndrome as first presentation of metastatic breast cancer. Am. J. Gastroenterol. 2000; 95:2138–2139

35. Schwartz RE, Klimstra DS, Turnbull ADM Metastatic breast cancer masquerading as gastrointestinal primary. Am J Gastroenterol, 1998; 93. 111-4.

Table 2

Author (Reference)	Age	Subtype	Grade	Nodal status	Stage	Molecular /Genetics	Initial Breast cancer Treatment
Bamias et. al.	74	ILC	2	Pos	NR(pT2N3M)	ER/PR -	MRM+ALND+CHEM
Feng et. al.	49	IDC	NR	Pos	NR	NR	Mastectomy + chemo
Lima et. al.	74	NR	NR	NR	NR	NR	Mastectomy + Chemo
Authors	Year	Type	Grade	ER/PR/HER2	Stage/TNM	Treatment	
------------------	------	------	-------	------------	-----------	--	
Hirano et. al.	2021	IDC	NR	ER/PR/HER2	Stage 1	Mastectomy + Chemo	
Gifaldi et. al.	2022	ILC	NR	ER/PR/HER2	pT2N2M1	Mastectomy + Hercept + TAHBSO	
Zhou et. al.	2023	IDC	3	ER/PR/HER2	pT1bN1M0	MRM + ALND + Chemo + Hormonal	
Gerova et. al.	2024	ILC	NR	ER/PR/HER2	Unavailable	Hormonal	
Voravud et. al.	2025	ILC	NR	ER/PR/HER2	pT2N2M1	Mastectomy + Chemo	
Koutsoumanis et.	2026	ILC	NR	ER/PR/HER2	pT2N2M0	Negative	
Eyres et. al.	2027	IDC	NR	ER/PR/HER2	NR	Mastectomy	
Eyres et. al.	2028	ILC	NR	ER/PR/HER2	NR	Mastectomy + Radiation	
Defrawi et. al.	2029	ILC	NR	ER/PR/HER2	NR	Mastectomy + Chemo	
Uygun et. al.	2030	Mixed	NR	ER/PR/HER2	T2N0M0	Mastectomy + ALND + Chemo + Hormonal	
Haberstich et.	2031	ILC	NR	ER/PR/HER2	Stage III	MRM + ALND + Chemo	
Michalopoulos et.	2032	IDC	NR	ER/PR/HER2	NR	MRM + ALND + Chemo	
Michalopoulos et.	2033	ILC	NR	ER/PR/HER2	NR	MRM + Chemo	
Vaidya et al.	2034	IDC	NR	ER/PR/HER2	NR	WLE + ALND + Hormonal	
Bar-Zohar et.	2035	IDC	NR	ER/PR/HER2	Stage III	MRM + ALND + Chemo + Hormonal	
Shimonov et.	2036	IDC	NR	ER/PR/HER2	T2N0M0	WLE + ALND + Hormonal	
Shimonov et.	2037	IDC	NR	ER/PR/HER2	T1N0M0	MRM	
Shimonov et.	2038	ILC	NR	ER/PR/HER2	T1N0M0	MRM	
Yokota et. al.	2039	IDC	NR	ER/PR/HER2	Stage 1	MRM + ALND + Hormonal	
Nieboer et. al.	2040	ILC	NR	ER/PR/HER2	NR	WLE + ALND	
Schwarz et. al.	2041	NR	NR	ER/PR/HER2	NR	NR	
Xiao-cong Zhou et.	2042	IDC	3	ER/PR/HER2	Stage I	MRM + Chemo	
Ambroggi et. al.	2043	IDC	2	ER/PR/HER2	NR	Chemo + Endocrine	
Study	Age	Tumor Type	Node Status	Stage	ER Status	HER2 Status	Treatment
---------------------	-----	------------	-------------	-------	-----------	-------------	------------------------------------
Blachman-Braun et. al.	73	ILC	NR	NR	NR	ER+/PR-HER2-	Bilateral mastectomy + chemo
Li Ching Lau et. al.	61	ILC	NR	Stage 1	NR	Mastectomy	
Cho Ee Ng et. al.	56	ILC + IDC	Pos	NR	ER+, HER2-	Mastectomy + chemo + Radiation	

Abbreviations
- ILC: Invasive Lobular carcinoma
- IDC: Invasive Ductal carcinoma
- NR: Not recorded
- MRM: Modified Radical mastectomy
- ALND: Axillary Lymph node dissection
- WLE: Wide local excision
- Pos: positive
- Neg: Negative
| Author (Reference) | Latency(years) | Presentation | GI Site | Treatment | Outcome (Years) | | |
|---|---|---|---|---|---|---|---|
| Bamias et. al. | 8 | Constipation, Tenesmus | Rectum | Neoadjuvant + Hartmans | Alive |
| Feng et. al. | 2 | Abdominal pain | Transverse colon | NR | NR |
| Lima et. al. | 7 | Melena and diarrhea | Ascending colon | Neoadjuvant + Hormonal + Extended right colectomy | NR |
| Hirano et. al. | 22 | Screening Colonoscopy | Ascending + transverse colon | Chemo | NR |
| Gifaldi et. Al. | 10 | Colonoscopy | Transverse colon | Extended R hemi + hormonal | Remission (2) |
| Zhou et. al. | 9 | Abdominal pain | Sigmoid colon | NR | NR |
| Gerova et. al. 5 | 5 | Abdominal pain + Melena | Rectum | Palliative care | Died |
| Voravud et. al. | 1 | Screening Colonoscopy | Splenic flexure | Extended L hemi + hormonal | NR |
| Koutsomani s et. Al.| 3 | Melena + Anemia | NR | NR | NR |
| Eyres et. al. | 19 | Large bowel obstruction | Sigmoid colon | Sigmoidectomy + Hormonal | NR |
| Eyres et. al. | 15 | Abdominal pain | Cecum | Ileocectomy + chemo | NR |
| Defrawi et. al. | 20 | Diverticulitis | Sigmoid colon | Left Hemicolecotomy | NR |
| Uygun et. al. | 3.5 | Abdominal pain | Ascending colon | Right hemicolecotomy | NR |
| Haberstich et. al. | 0 | Hematochezia | Anus | APR | Remission (2) |
| Michalopoulos et. al.| 4 | Melena | Transverse colon | Extended Right hemicolecotomy | Remission (3) |
| Michalopoulos et. al.| 10 | Partial bowel obstruction | Tranverse colon | Colectomy + chemo + hormonal | Remission (2) |
| Vaidya et al. | 5 | Large bowel obstruction | Descending colon | Palliative Hemicolecoty + Chemo | NR |
| Author(s) | Cases | Symptoms | Site | Treatment | Outcome |
|----------------------------|-------|---|--------------------|------------------------------------|----------|
| Bar-Zohar et. al. | 6 | Constipation, abdominal pain | Rectum | Chemorad | NR |
| Shimonov et. al. | 2 | Change in bowel habits | Sigmoid colon | Left Hemicolecotomy | Remission(3) |
| Shimonov et. al. | 6 | Constipation, tenesmus | Sigmoid colon | Sigmoidectomy | Died |
| Shimonov et. al. | 12 | Abdominal distention | Rectum | APR | Remission(2) |
| Yokota et. al. | 10 | Screening colonoscopy | Ascending colon | Right hemicolecotomy | NR |
| Nieboer et. al. | NR | NR | Rectum | Chemo | Remission(2) |
| Schwarz et. al. | NR | NR | NR | NR | NR |
| Xiao-cong Zhou et. al. | 9 | Abdominal pain | Sigmoid Colon | Chemo + hormonal | NR |
| Ambroggi et. al. | 0 | Rectal Bleeding | Rectum | Chemo+endocrine+Radiation | Alive |
| Blachman-Braun et. al. | 15 | Colitis | All colon | None | NR |
| Li Ching Lau et. al. | 11 | Change in bowel habit | Rectum | Divertingcolostomy+Radiation+hormonal | NR |
| Cho Ee Ng et. al. | 5 | Screening Colonoscopy | Rectum | Chemotherapy | NR |
| Author (Reference) | Age | Subtype | Grade | Nodal status | Stage | Molecular /Genetics | Initial Breast cancer Treatment |
|--------------------|-----|---------|-------|--------------|-------|---------------------|--------------------------------|
| Bamias et. al. | 74 | ILC | 2 | Pos | NR(pT2N3M) | ER/PR - MRM+ALND+CHEMO |
| Feng et. al. | 49 | IDC | NR | Pos | NR | NR | Mastectomy + chemo |
| Lima et. al. | 74 | NR | NR | NR | NR | NR | Mastectomy + Chemo |
| Hirano et. al. | 55 | IDC | NR | neg | NR | ER/PR/HER2 - | Mastectomy + Chemo |
| Gifaldi et. al. | 76 | ILC | NR | neg | Stage 1| ER/PR Pos | Mastectomy |
| Zhou et. al. | 45 | IDC | 3 | Pos | pT2N2M1| ER/PR + | Mastectomy + chemo + TAIBSO |
| Gerova et. al. | 51 | ILC | NR | Pos | pT1bN1M0| ER/PR + | MRM + ALND + chemo + homonal |
| Voravud et. al. | 72 | ILC | NR | Pos | pT2N2M1| Unavailable | Hormonal |
| Koutsomisis et. al.| 61 | Undifferentiated | 3 | Pos | pT2N2M0| Negative | Mastectomy + Chemo |
| Eyres et. al. | 59 | IDC | NR | Neg | NR | NR | Mastectomy |
| Eyres et. al. | 40 | ILC | NR | NR | NR | NR | Mastectomy + Radiation |
| Defrawi et. al. | 63 | ILC | NR | Pos | pT3N1M0| NR | Mastectomy + Chemo |
| Uygun et. al. | 43 | Mixed | NR | Neg | T2N0M0| ER-neg/PR pos | Mastectomy ALND + chemorad |
| Haberstich et. al. | 78 | ILC | NR | Pos | Stage III| ER/PR + | MRM+ALND+chemo |
| Michalopoulos et. al. | 51 | IDC | NR | NR | NR | NR | MRM+ALND+chemo |
| Michalopoulos et. al. | 47 | ILC | NR | NR | NR | NR | MRM+chemo |
| Vaidya et. al. | 51 | IDC | NR | NR | NR | ER/PR + | WLE + ALND + Hormonal |
| Bar-Zohar et. al. | 62 | IDC | NR | Pos | Stage III| ER+ | MRM + ALND + Chemo + hormonal |
| Shimonov et. al. | 63 | IDC | NR | Neg | T2N0M0| ER/PR - | WLE+ALND |
| Shimonov et. al. | 67 | IDC | NR | Neg | T1N0M0| NR | MRM |
| Shimonov et. al. | 60 | ILC | NR | Neg | T1N0M0 | NR | MRM |
|------------------|----|-----|----|-----|--------|----|------|
| Yokota et. al. | 46 | IDC | NR | Neg | Stage 1 | ER/PR+ | MRM + ALND + Hormonal |
| Nieboer et. al. | 55 | ILC | NR | Pos | NR | ER/PR+ | WLE + ALND |
| Schwarz et. al. | NR | NR | NR | NR | NR | NR | NR |
| Xiao-cong Zhou et. al. | 54 | IDC | 3 | Neg | Stage I | ER/PR+, HER2- | MRM+ Chemo |
| Ambroggi et. al. | 40 | IDC | 2 | Pos | NR | ER/PR+ HER2- | Chemo+Endocrine |
| Blachman-Braun et. al. | 73 | ILC | NR | NR | NR | ER+/PR-HER2- | Bilateral mastectomy + chemo |
| Li Ching Lau et. al. | 61 | ILC | NR | NR | Stage 1 | NR | Mastectomy |
| Cho Ee Ng et. al. | 56 | ILC + IDC | NR | Pos | NR | ER+, HER2- | Mastectomy+ chemo+Radiation |

Abbreviations

ILC: Invasive Lobular carcinoma
IDC: Invasive Ductal carcinoma
NR: Not recorded
MRM: Modified Radical mastectomy
ALND: Axillary Lymph node dissection
WLE: Wide local excision
Pos: positive
Neg: Negative
Author (Reference)	Latency (years)	Presentation	GI Site	Treatment	Outcome (Years)
Bamias et. al.	8	Constipation, Tenesmus	Rectum	Neoadjuvant + Hartmans	Alive
Feng et. al.	2	Abdominal pain	Transverse colon	NR	NR
Lima et. al.	7	Melena and diarrhea	Ascending colon	Neoadj + Hormonal + Extended right colectomy	NR
Hirano et. al.	22	Screening Colonoscopy	Ascending + transverse colon	Chemo	NR
Gifaldi et. Al.	10	Colonoscopy	Transverse colon	Extended R hemi + hormonal	Remission (2)
Zhou et. al.	9	Abdominal pain	Sigmoid colon	NR	NR
Gerova et. al. 5	5	Abdominal pain + Melena	Rectum	Palliative care	Died
Voravud et. al.	1	Screening Colonoscopy	Splenic Flexure	Extended L hemi + hormonal	NR
Koutsomani s et. Al	3	Melena + Anemia	NR	NR	NR
Eyres et. al.	19	Large bowel obstruction	Sigmoid colon	Sigmoidectomy + Horomonal	NR
Eyres et. al.	15	Abdominal pain	Cecum	Ileocecostomy + chemo	NR
Defrawi et. al.	20	Diverticulitis	Sigmoid colon	Left Hemicolecotomy	NR
Authors	Score	Symptom	Site	Procedure	Outcome
--------------------	-------	------------------------------	-------------------	---------------------------------------	---------
Uygun et. al.	3.5	Abdominal pain	Ascending colon	Right hemicolectomy	NR
Haberstich et. al.	0	Hematochezia	Anus	APR	Remission (2)
Michalopoulos et. al.	4	Melena	Transverse colon	Extended Right hemicolectomy	Remission (3)
Michalopoulos et. al.	10	Partial bowel obstruction	Tranverse colon	Colectomy + chemo + hormonal	Remission (2)
Vaidya et al.	5	Large bowel obstruction	Descending colon	Palliative Hemicolecotomy + Chemo	NR
Bar-Zohar et al.	6	Constipation, abdominal pain	Rectum	Chemorad	NR
Shimonov et. al.	2	Change in bowel habits	Sigmoid colon	Left Hemicolecotomy	Remission (3)
Shimonov et. al.	6	Constipation, tenesmus	Sigmoid colon	Sigmoidectomy	Died
Shimonov et. al.	12	Abdominal distention	Rectum	APR	Remission (2)
Yokota et. al.	10	Screening colonoscopy	Ascending colon	Right hemicolecotomy	NR
Nieboer et. al.	NR	NR	Rectum	Chemo	Remission (2)
Schwarz et. al.	NR	NR	NR	NR	NR
Xiao-cong Zhou et. al.	9	Abdominal pain	Sigmoid Colon	Chemo + hormonal	NR
Ambroggi et. al.	0	Rectal Bleeding	Rectum	Chemo+endocrine+Radiation	Alive
Blachman-Braun et. al.	15	Colitis	All colon	None	NR
Li Ching Lau et. al.	11	Change in bowel habit	Rectum	Divertingcolostomy+ Radiation+hormonal	NR
Cho Ee Ng et. al.	5	Screening Colonoscopy	Rectum	Chemotherapy	NR