The Alon-Tarsi number of Halin graphs

Zhiguo Li*, Qing Ye, Zeling Shao
School of Science, Hebei University of Technology, Tianjin 300401, China *†

Abstract

The Alon-Tarsi number of a graph G is the smallest k for which there is an orientation D of G with max outdegree $k - 1$ such that the number of Eulerian subgraphs of G with an even number of edges differs from the number of Eulerian subgraphs with an odd number of edges. In this paper, we obtain the Alon-Tarsi number of a Halin graph equals 4 when it is a wheel of even order and 3 otherwise.

Keywords: Alon-Tarsi number; list chromatic number; chromatic number; Halin graph

2000 MR Subject Classification. 05C15

1 Introduction

All graphs considered in this article are finite, and all graphs are either simple graphs or simple directed graphs. A k-list assignment of a graph G is a mapping L which assigns to each vertex v of G a set $L(v)$ of k permissible colors. Given a k-list assignment L of G, an L-coloring of G is a mapping ϕ which assigns to each vertex v a color $\phi(v) \in L(v)$ such that $\phi(u) \neq \phi(v)$ for every edge $e = uv$ of G. A graph G is k-choosable if G has an L-coloring for every k-list assignment L. The choice number of a graph G is the least positive integer k such that G is k-choosable, denoted by $ch(G)$.

In the classic article[1], Alon and Tarsi have obtained the upper bound for the choice number of graphs by applying algebraic techniques, which was later called the Alon-Tarsi number of G, and denoted by $AT(G)$ (See e.g. Jensen and Toft (1995) [2]). They have transformed the computation of the Alon-Tarsi number of G from algebraic manipulations to the analysis of the structural properties of G. Their characterization can be restated as follows. The Alon-Tarsi number of G, $AT(G)$, is the smallest k for which there is an orientation D of G with max
outdegree $k - 1$ such that the number of odd Eulerian subgraphs of G is not the same as the number of even Eulerian subgraphs of G.

As pointed out by Hefetz [3], the Alon-Tarsi number has some different features and we are interested in studying $AT(G)$ as an independent graph invariant. Let $\chi_p(G)$ be the paint number of G [4]. In [5], U. Schauz generalizes the result of Alon and Tarsi [1]: $ch(G) \leq \chi_p(G) \leq AT(G)$ for any graph G and the equalities are not hold in general. Nevertheless, it is also known that the upper bounds of the choice number and the Alon-Tarsi number are the same for several graph classes. For example, In [6], Thomassen has shown that the choice number of any planar graph is at most 5, and it was proved by Schauz in [7] that every planar graph G satisfies $\chi_p(G) \leq 5$. As a strengthening of the results of Thomassen and Schauz, X. Zhu proves that every planar graph G has $AT(G) \leq 5$ by Alon-Tarsi polynomial method and AT-orientation method [8]. It is of interest to find graph G for which these parameters are equal.

Furthermore, Grytczuk and X. Zhu have used polynomial method to prove that every planar graph G has a matching M such that $AT(G - M) \leq 4$ in [9], it implies a positive answer to the more difficult question — whether every planar graph is 1-defective 4-choosable [10]. Let $T_{m,n} = C_m \Box C_n$ be a toroidal grid, the first author et al. use the same method to show that the Alon-Tarsi number of $T_{m,n}$ equals 4 when m, n are both odd and 3 otherwise in [11]. T. Abe et al. prove that for a K_5-minor-free graph G, $AT(G) \leq 5$ [12], which generalizes the result of X. Zhu [8].

A Halin graph $H = T \cup C_n$ is a plane graph, where T is a tree with no vertex of degree two and at least one vertex of degree three or more, and C_n is a cycle connecting the pendant vertices of T in the cyclic order determined by the drawing of T. Vertices of C_n and $H - C_n$ are referred to as outer and inner vertices of H, respectively. In particular, a wheel graph is a Halin graph which contains only one inner vertex. In a wheel graph, if we delete an edge of C_n, the rest of the graph is called a fan.

The chromatic number and choice number of Halin graphs are determined in [13] and [14], respectively. In this article, we obtain the exact values of Alon-Tarsi number of Halin graphs by constructing an AT-orientation method.

Main Theorem. For a Halin graph H, we have

$$AT(H) = \begin{cases}
4, & \text{if } H \text{ is a wheel of even order;} \\
3, & \text{otherwise.}
\end{cases}$$

2 Preliminaries

Definition 2.1. [1] A subdigraph H of a directed graph D is called Eulerian if $V(H) = V(G)$ and the indegree $d^-_H(v)$ of every vertex v of H in H is equal to its outdegree $d^+_H(v)$. Note that H might
not be connected. For a digraph D, we denote by $\mathcal{E}(D)$ the family of Eulerian subdigraphs of D. H is even if it has an even number of edges, otherwise, it is odd. Let $\mathcal{E}_e(D)$ and $\mathcal{E}_o(D)$ denote the numbers of even and odd Eulerian subgraphs of D, respectively. Let $\text{diff}(D) = |\mathcal{E}_e(D)| - |\mathcal{E}_o(D)|$. We say that D is Alon-Tarsi if $\text{diff}(D) \neq 0$. If an orientation D of G yields an Alon-Tarsi digraph, then we say D is an Alon-Tarsi orientation (or an AT-orientation, for short) of G.

Generally, it is difficult to determine whether an orientation D of a graph G is an AT-orientation. Nevertheless, in some cases this problem is very simple. Observe that every digraph D has at least one even Eulerian subdigraph, namely, the empty subgraph. If D has no odd directed cycle, then D has no odd Eulerian subdigraph, so D is an AT-orientation.

An acyclic orientation of an undirected graph is an assignment of a direction to each edge (an orientation) that does not form any directed cycle and therefore makes it into a directed acyclic graph. If D is an acyclic orientation of G, then D has no odd Eulerian subdigraph, so D is an AT-orientation. We denote the maximum outdegree of an acyclic orientation D by d_a. By the definition of $\text{AT}(G)$ we have the following:

Lemma 2.1. If a graph G has an acyclic orientation D with maximum outdegree d_a, then $\text{AT}(G) \leq d_a + 1$.

Definition 2.2. [15] A graph G is k-degenerate if there exists an ordering v_1, \ldots, v_n of vertices of G such that for $i = 1, \ldots, n$, the vertex v_i has at most k neighbors among $v_1, v_2, \ldots, v_{i-1}$.

Lemma 2.2. If a graph G is k-degenerate, then $\text{AT}(G) \leq k + 1$.

Proof. Suppose that G has degeneracy k and σ is a vertex ordering which witnesses this. By orienting each edge toward its endpoint that appears earlier in the vertex ordering, we can get an acyclic orientation with maximum outdegree k. By Lemma 2.1, $\text{AT}(G) \leq k + 1$.

Let $H = T \cup C_n$, where C_n is the cycle $v_1v_2\ldots v_nv_1$. Then every vertex of $V(C_n)$ is adjacent to exactly one vertex in $V(H) \setminus V(C_n)$, and every edge of $E(C_n)$ is adjacent to exactly two edge in $E(H) \setminus E(C_n)$. An inner vertex u of a Halin graph H is called special if it is a neighbor of a unique inner vertex. Let v_1, v_2, \ldots, v_k be the neighbors of u on C_n. If a Halin graph H is not a wheel, then $\{u, v_1, v_2, \ldots, v_k\}$ induces a fan and H contains at least two special inner vertices [13].

3 Proof of the main theorem

The proof will be completed by a sequence of lemmas.

Lemma 3.1. [14] Every Halin graph is 3-degenerate.
By Lemma 3.1 and Lemma 2.2, we have

Lemma 3.2. $\text{AT}(H) \leq 4$ for each Halin graph H.

Lemma 3.3. If H is a wheel of even order, then $\text{AT}(H) = 4$.

Proof. By Lemma 3.2, we know that $\text{AT}(H) \leq 4$. H has chromatic number 4, so $\text{AT}(H) \geq 4$. Hence $\text{AT}(H) = 4$.

![Fig.1 The graph $H = C_8 \cup u$.](image)

Lemma 3.4. Let H be a Halin graph with an even outer cycle, then $\text{AT}(H) = 3$.

Proof. Assume $H = T \cup C_n$, n is even. We know that $\text{AT}(H) \geq 3$ since $\chi(H) = 3$. It remains to show that $\text{AT}(H) \leq 3$. Consider the following two cases.

Case 1. H is a wheel with even outer vertices.

Since H is a wheel, H contains exactly one interior vertex u, $d(u) = n$, and $d(v_i) = 3$ for $i = 1, 2, \ldots, n$. Let D be an orientation of H in which the edges of H are oriented in such a way by orientating the outer cycle C_n in clockwise and orientating edge $v_i u$ as $(v_i, u), i = 1, 2, \ldots, n$ [See Figure 1]. D has no odd directed cycle, so D has no odd Eulerian subgraph and hence D is an AT-orientation with maximum outdegree 2. Therefore $\text{AT}(H) \leq 3$.

Case 2. H is not a wheel with even outer vertices.

Similarly, orient C_n in clockwise. For T, let X be the set of all the inner vertices that are adjacent to $V(C_n)$. All the arcs between $V(C_n)$ and X are oriented from $V(C_n)$ to X. The unoriented edges of T induce a subgraph, denoted by T_1. It is easy to see that T_1 has at least two leaves. Let L_1 and X_1 be the set of all the leaves of T_1 and all the vertices of T_1 that are adjacent to the leaves, respectively. All the arcs between L_1 and X_1 are oriented from L_1 to X_1. The unoriented edges of T_1 induce a subgraph, denoted by T_2. Let L_2 and X_2 be the set of all the leaves of T_2 and all the vertices of T_2 that are adjacent to the leaves, respectively. All the arcs between L_2 and X_2 are oriented from L_2 to X_2.

Fig.2 H is not a wheel and have even outer vertices.

Repeat this process until all edges of H are oriented or only one edge left unoriented, then the edge is oriented arbitrarily. Obviously D has no odd directed cycle, so D has no odd Eulerian subdigraph [See Figure 2]. It is easy to see that the followings hold: (1) D is an AT-orientation, (2) $d^+(v) \leq 1$ for each inner vertex v, (3) $d^+(v) = 2$ for each outer vertex v. Hence $AT(H) \leq 3$.

Lemma 3.5. [16] Assume that D is a digraph and $V(D) = X_1 \cup X_2$. For $i = 1, 2$, let $D_i = D[X_i]$ be the subdigraph of D induced by X_i. If all the arcs between X_1 and X_2 are from X_1 to X_2, then D is Alon-Tarsi if and only if D_1, D_2 are both Alon-Tarsi.

Lemma 3.6. Let H be a Halin graph with an odd outer cycle but not a wheel. Then $AT(H) = 3$.

Proof. Suppose that $H = T \cup C_n$, where n is odd. H has chromatic number 3, so we know that $AT(H) \geq 3$. It remains to show that $AT(H) \leq 3$. Similar to above lemma, we consider two cases.

Case 1. H has a special inner vertex u which is adjacent to an odd number of vertices of C_n.

Let v_1, v_2, \ldots, v_k be the neighbors of u on C_n and k is odd. Then $\{u, v_1, v_2, \ldots, v_k\}$ induces a fan, denoted by G_1. Assume $G_2 = H - V(G_1)$. The subgraph G_1 has an orientation D_1 as the following way: orient the edge $v_i v_{i+1}$ as (v_i, v_{i+1}), for $1 \leq i \leq k - 1$, the edge uw_1 as (u, v_1), and the edge $v_j u$ as (v_j, u) for $j = 2, 3, \ldots, k$. Observe that $uw_1 v_2 \ldots v_i u$ is an odd directed cycle when i is even, and $uv_1 v_2 \ldots v_i u$ is an even directed cycle when i is odd, for $2 \leq i \leq k$. Hence D_1 contains $k - 1$ directed cycles. Specifically D_1 contains $\frac{k-1}{2}$ odd directed cycles and $\frac{k-1}{2}$ even directed cycles. It is easy to see that the arc (u, v_1) is contained in all directed cycles. Since Eulerian subdigraph is the arc disjoint union of directed cycles and empty subdigraph is an even Eulerian subdigraph, D_1 has $\frac{k-1}{2}$ odd Eulerian subgraphs and $\frac{k-1}{2}$ even Eulerian subdigraphs. $\text{diff}(D_1) = |E_e(D_1)| - |E_o(D_1)| = 1 \neq 0$. Therefore D_1 is an AT-orientation of G_1.

Denote $X = \{v_{k+1}, v_{k+2}, \ldots, v_n\}$, and let X_1 be the set of all the vertices in $V(G_2) - X$ that are adjacent to X. G_2 has an orientation D_2 that for each $k + 1 \leq i \leq n - 1$, orient edge $v_i v_{i+1}$ as (v_i, v_{i+1}). All the arcs between X and X_1 are oriented from X to X_1. The unoriented edges of G_2 induce a subgraph, denoted by T_1. Let L_1 and X_2 be the set of all the leaves of T_1 and all the
vertices of T_1 that are adjacent to the leaves, respectively. All the arcs between L_1 and X_2 are oriented from L_1 to X_2. The unoriented edges of T_1 induce a subgraph, denoted by D. Let L_2 and X_3 be the set of all the leaves of T_2 and all the vertices of T_2 that are adjacent to the leaves, respectively. All the arcs between L_2 and X_3 are oriented from L_2 to X_3. Repeat this process until all edges of G_2 are oriented or only one edge left unoriented, then the edge is oriented arbitrarily. It is obvious that D_2 is an acyclic orientation, hence $\text{diff}(D_2) = |E_e(D_2)| - |E_o(D_2)| \neq 0$, D_2 is an AT-orientation of G_2.

Let v be the unique inner vertex which is adjacent to u, $u \in V(G_1)$ and $v \in V(G_2)$. Let D be obtained from $D_1 \cup D_2$ by adding arcs $(u, v), (v_1, v_n)$ and (v_k, v_{k+1}). Such that all the arcs between G_1 and G_2 are oriented from G_1 to G_2 [See Figure 3]. By Lemma 3.5, D is an AT-orientation. It is easy to see that $d^+_D(v) \leq 2$ for every $v \in V(G)$. Hence $AT(H) \leq 3$.

Case 2. All special inner vertices of H are adjacent to an even number of vertices of C_n.

Let u be a special inner vertex, v_1, v_2, \ldots, v_k be the neighbors of u on C_n. \{u, v_1, v_2, \ldots, v_k\} induces a fan, denoted by G_1. Let $G_2 = H - V(G_1)$. The subgraph G_1 has an orientation D_1 as the following way: orient the edge $v_{i-1}v_i$ as (v_i, v_{i-1}) for $2 \leq i \leq k$, and the edge v_ju as (v_j, u) for $j = 1, 2, \ldots k$. Observed that D_1 is an acyclic orientation, so D_1 is an AT-orientation of G_1.

In the tree T, any two vertices are connected by exactly one path, so there is a unique xv_n-path in T connecting x and v_n, where $x \in V(G_2) \setminus v_n$. G_2 has an orientation D_2 that for $k + 2 \leq i \leq n$, orient the edge $v_{i-1}v_i$ as (v_i, v_{i-1}), and let every xv_n-path be a directed path from x to v_n. It is obvious that all the edges of G_2 are oriented. Denote w is the unique vertex in T which is adjacent to v_n, the arc (w, v_n) is contained in all xv_n-directed paths. In G_2, all directed circles are made up of v_iv_n-directed path in T and v_nv_i-directed path in C_n, for $k + 1 \leq i \leq n - 1$. D_2 has an even number of directed cycles. Empty subdigraph is an even Eulerian subdigraph of D_2, hence $|E(D_2)|$ is odd. $\text{diff}(D_2) = |E_e(D_2)| - |E_o(D_2)| \neq 0$, so D_2 is an AT-orientation of G_2.

Let v be the unique inner vertex which is adjacent to u, $u \in V(G_1)$ and $v \in V(G_2)$. Let D be obtained from $D_1 \cup D_2$ by adding arcs $(v, u), (v_n, v_1)$ and (v_{k+1}, v_k). Obviously all the arcs between G_1 and G_2 are oriented from G_2 to G_1 [See Figure 4]. In a similar way as case 1, we can get $AT(H) \leq 3$.

![Fig.3 The Halin graph H for n = 9 and k = 3.](image-url)
Corollary 3.7. For a Halin graph H, we have
\[
\chi(H) = ch(H) = \chi_P(H) = AT(H) = \left\{\begin{array}{ll}
4, & \text{if } H \text{ is a wheel of even order;} \\
3, & \text{otherwise.}
\end{array}\right.
\]

References

[1] Alon N, Tarsi M. Colorings and orientations of graphs[J]. Combinatorica, 1992, 12(2): 125-134.

[2] Jensen T R, Toft B. Graph coloring problems[M], Wiley, New York, 1995.

[3] Hefetz D. On two generalizations of the Alon-Tarsi polynomial method[J]. Journal of Combinatorial Theory Series B, 2011, 101: 403-414.

[4] Zhu X D. On-line list coloring of graphs[J]. The Electronic Journal of Combinatorics, 2009, 16(1): 3665-3677.

[5] Schauz U. A paintability version of the Combinatorial Nullstellensatz and list colorings of k-partite k-uniform hypergraphs[J]. The Electronic Journal of Combinatorics, 2010, 17(1): 3940-3946.

[6] Thomassen C. Every planar graph is 5-choosable[J]. Journal of Combinatorial Theory Series B, 1994, 62(1): 180-181.

[7] Schauz U. Mr. Paint and Mrs. Correct[J]. The Electronic Journal of Combinatorics, 2009, 16(1): R77, 1-18.

[8] Zhu X D. The Alon-Tarsi number of planar graphs[J]. Journal of Combinatorial Theory Series B, 2019, 134: 354-358.
[9] Grytczuk J, Zhu X D. The Alon-Tarsi number of a planar graph minus a matching[J]. Journal of Combinatorial Theory Series B, 2020, 145: 511-520.

[10] Eaton N, Hull T. Defective List Colorings of Planar Graphs[J]. Bull.inst.combin.appl, 1999, 25(25):79-87.

[11] Li Z G, Shao Z L, Petrov F, et al. The Alon-Tarsi number of a toroidal grid[J]. arXiv preprint arXiv:1912.12466, 2019.

[12] Abe T, Kim S J, Ozeki K. The Alon-Tarsi number of K_5-minor-free graphs[J]. arXiv preprint arXiv:1911.04067, 2019.

[13] Li H X, Zhang Z F, Zhang J X. On the colouring of Halin graphs[J]. Journal of Shanghai Institute of Railway Technology, 1994, 15(1): 19-24.

[14] Wang W F, Lih K W. List coloring Halin graphs[J]. Ars Combinatoria, 2005, 77: 53-63.

[15] Cai L Z, Zhu X D. Game chromatic index of k-degenerate graphs[J]. Journal of Graph Theory, 2000, 36(3): 144-155.

[16] Zhu X D, Balakrishnan R. Combinatorial Nullstellensatz: With Applications to Graph Colouring[M]. Chapman and Hall/CRC, 2021.