Metallic iron for water treatment: Healing a research community

Chicgoua Noubactep

Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D - 37077 Göttingen, Germany.
Kultur und Nachhaltige Entwicklung CDD e.V., Postfach 1502, D - 37005 Göttingen, Germany.
e-mail: cnoubac@gwdg.de
Tel. +49 551 39 3191; Fax: +49 551 399379

Abstract

Despite two decades of intensive research on using metallic iron (Fe0) for environmental remediation and water treatment, basic concerns about their efficiency still prevail. This communication presents the basic idea of the view that challenges the prevailing paradigm on the operating mode of Fe0/H$_2$O systems. The alternative paradigm is in tune with the mainstream science on aqueous iron corrosion. Its large scale adoption will enable a scientifically based system design and increase the acceptance of this already proven efficient technology.

Keywords: Adsorption, Co-precipitation, Filtration, Water treatment, Zero-valent iron.

1 Introduction

The quest for an affordable (low-cost), applicable (low-maintenance) and efficient technology for water treatment has culminated in the development of metallic iron technology (‘Fe0 technology’). Fe0 is used both in the subsurface (reactive barriers) and above-ground treatment plants (Noubactep, 2013). Fe0 has been demonstrated efficient at several sites for the remediation of biological and chemical contamination. However, the operating mode of Fe0 is still not known (Crane and Scott, 2012; Noubactep, 2012; Noubactep et al., 2012; Togue-Kamga et al., 2012). This frustrating situation is currently endangering the spreading of this proven efficient technology (Mueller et al., 2011; Ruhl et al., 2012a). This communication argues that the major problem of the Fe0 technology is that scientists are working on an incorrect basis.
2 The original mistake
The Fe^0 technology was born with the premise that contaminants are reduced as fortuitously observed by Reynolds et al. (1990). From that time on, efforts were directed at identifying the reduction mechanism and the impact of relevant operational parameters thereon (Matheson and Tratnyek, 1994; Ruhl et al., 2012b). Moreover, any likely argument was suggested to justify how electron transfer occurs despite the presence of a (non conductive) diffusion layer (Noubactep, 2011). Any critical view was systematically ignored as presented in details elsewhere (Noubactep, 2011). This attitude has not changed despite the presentation of an alternative concept rationalizing the removal of non reducible species and microbial contamination. As an example, Chen et al. (2012) maintained that “although there are other mechanisms that likely contribute to organic contaminant removal by Fe^0 (3 references including Noubactep (2011)), there is substantial evidence from multiple investigators that the abiotic removal of TCE by Fe^0 largely follows the β-elimination pathway”. It is interesting to point out that Noubactep (2011) is entitled “Aqueous contaminant removal by metallic iron: is the paradigm shifting?” Actually, what is the relevance of the ‘substantial evidence from multiple investigators’ if the paradigm is shifting? This example alone evidences that some working researchers on Fe^0 technology are not willing to test new ideas. Fortunately, some other researchers have positively tested the new concept (e.g. Ghauch et al., 2011; Gheju and Balcu, 2011).

3 The true nature of metallic iron
It is frustrating to notice that equations similar to Eq. 1 are still written to rationalize contaminant reductive transformation.

$$\text{Fe}^0 + RX + H^+ \Rightarrow \text{Fe}^{2+} + RH + X$$ (1)

Where RX is a reducible alkyl halide and RH its reduced form. RH is less toxic than RX as a rule. RH is more biodegradable.
From the open literature on iron corrosion however, it is known that Fe\(^0\) is permanently covered by an oxide scale (Stratmann and Müller, 1994; Cole and Marney 2012; Wang et al. 2013). Even dissolved oxygen (O\(_2\)) can not quantitatively reach the iron surface such that iron is essentially corrodes by water (H\(^+\), Eq. 2) and O\(_2\) reduced by Fe\(^{2+}\) (Eq. 3) (Stratmann and Müller, 1994).

\[
\text{Fe}^0 + 2 \text{H}^+ \rightarrow \text{Fe}^{2+} + \text{H}_2 \quad (2)
\]

\[
\text{Fe}^{2+} + 1/4 \text{O}_2 + \text{H}^+ \rightarrow \text{Fe}^{3+} + 1/2 \text{H}_2\text{O} \quad (3)
\]

Disregarding the relative affinity of species of concern to iron oxides, the question arises why a RX, that is necessarily larger in size than O\(_2\) should diffuse through the oxide film. This question suggests that equations like Eq. 4 should be routinely used to model processes in Fe\(^0\)/H\(_2\)O systems.

\[
2 \text{Fe}^{2+} + \text{RX} + \text{H}^+ \rightarrow 2 \text{Fe}^{3+} + \text{RH} + \text{X}^- \quad (4)
\]

Next to Fe\(^{II}\) species as relevant reducing agent, future research should properly consider the volumetric expansive nature of iron oxidation in discussing the evolution of the porosity of Fe\(^0\) filtration systems (Caré et al., 2013). It may be difficult to admit, that the volumetric expansive nature of metal corrosion, that was presented 90 years ago (Pilling and Bedworth, 1923; Caré et al., 2008), has not been properly considered in discussing the decrease of the hydraulic conductivity of Fe\(^0\)/H\(_2\)O systems (Henderson et al., 2011; Ruhl et al., 2012; Jeen et al., 2013). The ongoing discussion considers H\(_2\) and foreign precipitates including CaCO\(_3\) and FeCO\(_3\) (Henderson et al., 2011; Henderson et al., 2013; Jeen et al., 2013) but not properly hydroxides and oxides. Overseeing the importance of volumetric expansion has let to various explanations of the fact that a pure Fe\(^0\) system is not sustainable. The best illustration is perhaps a recent paper by Ruhl et al. (2012b) evaluating the suitability of admixing Fe\(^0\) with anthracite, gravel, pumice and sand in fixed bed filters for TCE removal. The authors concluded that none of the four dual systems was applicable for the remediation of tested groundwater. This conclusion disregards the historical work of O’Hannesin and Gillham
O’Hannesin and Gillham (1998) demonstrated the efficiency of a 22:78 Fe\(^0\):sand weight ratio for the removal of TCE (and PCE). The reactive wall in Borden (Canada) was the first full-scale Fe\(^0\) reactive barrier.

4 Reactivity and efficiency of iron materials

Another important point is that the term ‘reactivity’ is confusing through the ‘Fe\(^0\) technology’ literature. Reactivity is per definition an intrinsic, invariable characteristic, a trend that can not be strictly quantified but can be assessed by standard protocols (if available). For example, the intrinsic reactivity of Fe\(^0\) can be assessed by the extent of H\(_2\) evolution under controlled conditions. It is essential to notice that the reactivity of a material does not depend on its amount or its proportion in a mixture. Accordingly, if a Fe\(^0\) material is mixed with an inert sand, its reactivity is not changed but the extent of its dissolution (e.g. coupled to H\(_2\) evolution) is modified as sand can not contribute to H\(_2\) generation nor to porosity loss. In other words, mixing sand and Fe\(^0\) is a tool to sustain the efficiency of the system (not the reactivity of Fe\(^0\)). Many reported discrepancies can be attributed to the randomly interchanged use of ‘reactivity’ and ‘efficiency’ (Miyajima, 2012). To clarify this semantic issue it could be stated that the efficiency is the expression of the reactivity as impacted by operational conditions.

5 Conclusion

The Fe\(^0\) research community is aware on the instability of the concept that contaminants are removed in Fe\(^0\)/H\(_2\)O systems by a reductive transformation (Liu et al. 2013) but is still not really willing to test new ideas. The situation is comparable to that of a person facing a blockade and being aware on it. Furthermore, the person can not recognize the way out of the blockade. Whenever this is the case, a professional assistance is needed: a modern psychologist or a traditional heeler? It seems that a heeler should intervene to redirect the Fe\(^0\) research community on the highway of iron corrosion.
References

Caré, S., Nguyen, Q.T., L'Hostis, V., Berthaud, Y., 2008. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar. Cement and Concrete Research 38, 1079–1091.

Caré, S., Crane, R., Calabro, P.S., Ghauch, A., Temgoua, E., Noubactep, C., 2013. Modelling the permeability loss of metallic iron water filtration systems. Clean – Soil, Air, Water, doi: 10.1002/clen.201200167.

Chen, L., Jin, S., Fallgren, P.H., Swoboda-Colberg, N.G., Liu, F., Colberg, P.J.S., 2012. Electrochemical depassivation of zero-valent iron for trichloroethene reduction. Journal of Hazardous Materials 239–240, 265–269.

Cole, I.S., Marney, D., 2012. The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils. Corrosion Science 56, 5–16.

Crane, R.A., Scott, T.B., 2012. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials 211–212, 112–125.

Ghauch, A., Abou Assi, H., Baydoun, H., Tuqan, A.M., Bejjani, A., 2011. Fe\(^0\)-based trimetallic systems for the removal of aqueous diclofenac: Mechanism and kinetics. Chemical Engineering Journal 172, 1033–1044.

Gheju, M., Balcu, I., 2011. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. Journal of Hazardous Materials 196, 131–138.

Henderson, A.D., Demond, A.H. 2011. Impact of solids formation and gas production on the permeability of ZVI PRBs. Journal of Environmental Engineering 137, 689–696.

Henderson A.D., Demond A.H. (2013): Permeability of iron sulfide (FeS)-based materials for groundwater remediation. Water Research, doi: 10.1016/j.watres.2012.11.044.

Jeen, S.-W., Yang, Y., Gui, L., Gillham, R.W., 2013. Treatment of trichloroethene and hexavalent chromium by granular iron in the presence of dissolved CaCO\(_3\). Journal of Contaminant Hydrology 144, 108 –121.
Liu, H., Wang, Q., Wang, C., Li, X-z., 2013. Electron efficiency of zero-valent iron for groundwater remediation and wastewater treatment. Chemical Engineering Journal 215–216, 90–95.

Matheson, L.J., Tratnyek, P.G., 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology 28, 2045–2053.

Miyajima, K., 2012. Optimizing the design of metallic iron filters for water treatment. Freiberg Online Geoscience 32, 60 pp.

Mueller N.C., Braun J., Bruns J., Cerník M., Rissing P., Rickerby D., Nowack B. (2011): Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research 19, 550–558.

Noubactep, C., 2011. Aqueous contaminant removal by metallic iron: is the paradigm shifting? Water SA 37, 419–425.

Noubactep, C., 2012. Relevant reducing agents in remediation Fe⁰/H₂O systems. Clean: Soil, Air, Water, doi:10.1002/clen.201200406.

Noubactep, C., Caré, S., Crane, R.A., 2012. Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollution 223, 1363–1382.

Noubactep, C., 2013. Metallic iron for water treatment: A critical review. Clean - Soil, Air, Water, doi: 10.1002/clen.201200502.

O’Hannesin, S.F., Gillham, R.W. 1998. Long-term performance of an in situ "iron wall" for remediation of VOCs. Ground Water 36, 164–170.

Pilling, N.B., Bedworth, R.E., 1923. The oxidation of metals at high temperatures. Journal Institute of Metals 29, 529–591.

Reynolds, G.W., Hoff, J.T., Gillham, R.W., 1990. Sampling bias caused by materials used to monitor halocarbons in groundwater. Environmental Science & Technology 24, 135–142.
Ruhl, A.S., Weber, A., Jekel, M., 2012a. Influence of dissolved inorganic carbon and calcium on gas formation and accumulation in iron permeable reactive barriers. Journal of Contaminant Hydrology 142–143, 22–32.

Ruhl, A. S., Ünal, N., Jekel, M., 2012b. Evaluation of two-component Fe(0) fixed bed filters with porous materials for reductive dechlorination. Chemical Engineering Journal 209, 401–406.

Stratmann, M., Müller, J., 1994. The mechanism of the oxygen reduction on rust-covered metal substrates. Corrosion Science 36, 327–359.

Togue-Kamga F., Btatkeu B.D., Noubactep C., Woafo P. (2012): Metallic iron for environmental remediation: Back to textbooks. Fresenius Environmental Bulletin 21, 1992–1997.

Wang, Z., Liu, J., Wu, L., Han, R., Sun, Y., 2013. Study of the corrosion behavior of weathering steels in atmospheric environments. Corrosion Science 67, 1–10.