Journal Club
院内心停止に対する
低体温療法

2016/11/15
東京ベイ浦安市川医療センター
聖マリアンナ医科大学
岡本賢太郎
Association Between Therapeutic Hypothermia and Survival After In-Hospital Cardiac Arrest

Paul S. Chan, MD; Robert A. Berg, MD; Yuanyuan Tang, PhD; Lesley H. Curtis, PhD; John A. Spertus, MD, MPH; for the American Heart Association's Get With the Guidelines–Resuscitation Investigators
Introduction
背景①

・現行ガイドラインでは院内・院外心停止後の昏睡状態の患者に対してのtherapeutic hypothermiaもしくはtargeted temperature management(TTM)が推奨されている。

Circulation. 2015;132(18)(suppl 2):S465-S482.
AHAガイドライン2015

• 心肺停止後の意味のある発語のできない成人患者に対してはTTMを施行をする。院外VF/pVTに対しては(Class I, LOE B-R)、院外の非VF/pVT・院内心肺停止に対しては(Class I, LOE C-EO)。

• TTM施行中は32-36℃の範囲で一定の体温を維持する(Class I, LOE B-R)。

Circulation. 2015;132(18)(suppl 2):S465-S482.
背景②

・現時点で低体温療法が全生存率と良好な神経学的機能の生存率の改善を示したエビデンスがあるのは初期波形VFの院外心停止のみ。

* N Engl J Med. 2002;346(8):549-556.

* N Engl J Med. 2002;346(8):557-563.
Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.

- ヨーロッパの9病院ICUでのRCT
- 1996-2001年、18-75歳の273人(3246人)
- (心原性を疑う院外心停止患者で)初期波形VF・pVTに対して32-34℃で24時間のTTM
- Primary outcome
 6ヶ月以内の良好な神経学的予後(CPC評価)
- Secondary outcome
 6ヶ月以内の死亡率、7日以内の合併症

N Engl J Med. 2002;346(8):549-556.
Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.

TABLE 2. NEUROLOGIC OUTCOME AND MORTALITY AT SIX MONTHS.

Outcome	Normothermia	Hypothermia	Risk Ratio (95% CI)*	P Value†
Favorable neurologic outcome‡	54/137 (39)	75/136 (55)	1.40 (1.08–1.81)	0.009
Death	76/138 (55)	56/137 (41)	0.74 (0.58–0.95)	0.02

• 良好的神経学的予後だけでなく、死亡率にも改善が見られ、合併症には差が見られなかった

N Engl J Med. 2002;346(8):549-556.
Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.

• オーストラリアの4病院ICUでのRCT
• 1996-1999年、41-89歳の77人(85人)
• (心原性を疑う院外心停止患者で)初期波形VFに33℃で12時間のTTM

• Primary outcome
退院時の良好な神経学的機能(rehabilitation medicineの専門家が評価)

N Engl J Med. 2002;346(8):557-563.
Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.

Table 5. Outcome of Patients at Discharge from the Hospital

Outcome*	Hypothermia (N = 43)	Normothermia (N = 34)
Normal or minimal disability (able to care for self, discharged directly to home)	15	7
Moderate disability (discharged to a rehabilitation facility)	6	2
Severe disability, awake but completely dependent (discharged to a long-term nursing facility)	0	1
Severe disability, unconscious (discharged to a long-term nursing facility)	0	1
Death	22	23

- 退院時の神経学的機能の改善が見られた。

* N Engl J Med. 2002;346(8):557-563.
背景③

• 院内心停止後患者に対しての低体温療法のRCTはなく、少数の観察研究が存在するのみである。

 Neurocrit Care. 2012;16(3):406-412.
 Resuscitation. 2013;84(5):620-625.
 Circulation. 2015;132(22):2146-2151.
院内心停止患者を含んだ低体温療法の観察研究

研究	年	デザイン	患者数	対象	生存率	神経予後
Kory, et al	2012	後ろ向き観察研究	118人	初期波形問わず院内	N/A	有意差なし
Nichol, et al	2013	後ろ向き観察研究	8216人	初期波形問わず院内	有意差なし	有意差なし
Perman, et al	2015	後ろ向き観察研究	519人	non-shockable院内・院外	有意差あり (P<0.01)	有意差あり (P=0.04)

Data sources:
1. *Neurocrit Care.* 2012;16(3):406-412.
2. *Resuscitation.* 2013;84(5):620-625.
3. *Circulation.* 2015;132(22):2146-2151.
背景④

・加えて院内心停止の患者の80%以上が初期波形asystole・PEAのnon-shockable rhythmsであり、これらの患者群に対しての低体温療法の効果は議論の余地がある。

Resuscitation. 2012;83(2):188-196.
Does therapeutic hypothermia benefit adult cardiac arrest patients presenting with non-shockable initial rhythms?: A systematic review and meta-analysis of randomized and non-randomized studies.

- 初期波形non-shockableの患者に対しての低体温療法を評価した研究。
- 2005-2009年の2個のRCT・12個の観察研究をシステマティックレビューした。
- RCTと観察研究を別々にメタアナリシスしている。

Resuscitation. 2012;83(2):188-196.
Does therapeutic hypothermia benefit adult cardiac arrest patients presenting with non-shockable initial rhythms?: A systematic review and meta-analysis of randomized and non-randomized studies.

![Graph showing the effect of therapeutic hypothermia on 6 month mortality in randomized studies.](image)

Fig. 2. The effect of therapeutic hypothermia on 6 month mortality in randomized studies.

- RCTでは6ヶ月死亡率には有意差なし。

Resuscitation. 2012;83(2):188-196.
Does therapeutic hypothermia benefit adult cardiac arrest patients presenting with non-shockable initial rhythms?: A systematic review and meta-analysis of randomized and non-randomized studies.

Fig. 3. The effect of therapeutic hypothermia on in-hospital mortality in non-randomized studies.

Fig. 4. The effect of therapeutic hypothermia on neurological outcome in non-randomized studies.

Resuscitation. 2012;83(2):188-196.

- 観察研究では院内死亡率に有意差を認めた。

- 神経学的予後は傾向はあるが有意差を認めず。
近年では院外心停止においては36℃を目標としたTTM、いわゆる平温療法でも低体温療法と効果が変わらない可能性が示されている。

N Engl J Med. 2013;369(23):2197-2206.
Targeted temperature management at 33°C versus 36°C after cardiac arrest.

•ヨーロッパ・オーストラリアの36病院のICUでのRCT
•2010-2013年、51-77歳の患者939人(950人)
•心原性を疑う院外心停止患者に対して、介入群は33℃・対象群は36℃目標で24時間のTTM

•Primary outcome
研究終了時の全死亡率
•Secondary outcome
180日後の神経学的機能不良もしくは死亡

N Engl J Med. 2013;369(23):2197-2206.
Targeted temperature management at 33°C versus 36°C after cardiac arrest.

Table 2. Outcomes.

Outcome	33°C Group	36°C Group	Hazard Ratio or Risk Ratio (95% CI)*	P Value
Primary outcome: deaths at end of trial	235/473 (50)	225/466 (48)	1.06 (0.89–1.28)	0.51
Secondary outcomes				
Neurologic function at follow-up†				
CPC of 3–5	251/469 (54)	242/464 (52)	1.02 (0.88–1.16)	0.78
Modified Rankin scale score of 4–6	245/469 (52)	239/464 (52)	1.01 (0.89–1.14)	0.87
Deaths at 180 days	226/473 (48)	220/466 (47)	1.01 (0.87–1.15)	0.92

N Engl J Med. 2013;369(23):2197-2206.

- すべてのアウトカムで有意差はなく、サブ解析のshockable vs non-shockableも同様の結果となった。
本研究の目的

• 低体温療法と院内心停止患者における
 院内生存率と神経予後良好な生存率の関係
 を評価する。
PICO

• P：院内心停止後の患者
• I：低体温療法をする
• C：低体温療法をしない
• O：院内生存率、神経予後良好な生存率
Methods
Data Sources

- American Heart Association (AHA)がスポンサーを務める米国の院内心停止患者レジストリGWTG-Resuscitation registryを使用。

 Resuscitation. 2003;58(3):297-308.

- レジストリの変数・アウトカムはUtstein styleにて記録されており、記録のエラー率の中央値は2.4%。

 Circulation. 1997;95(8):2213-2239.
 Resuscitation. 2003;58(3):297-308.
Data Sources

• 65歳以上の患者に関しては、GWTG-Resuscitation registryは先行研究によってMedicareの入院患者情報とリンクしている。

 Am Heart J. 2009;157(6):995-1000.
 *
 N Engl J Med. 2013;368(11):1019-1026.

• ただしレジストリのMedicare利用患者のうちデータが利用可能のものは66.5%だった(前述の先行研究でも68.6%)。

 N Engl J Med. 2013;368(11):1019-1026.
Study Population①

- 2002年3月1日～2014年12月31日の期間で院内心停止後にROSCした18歳以上の患者を研究に組み入れた。

- 65歳以上の患者のうち、Medicareの入院情報が利用不可能な患者は除外した。
Study Population②

• (各施設が低体温療法が利用可能であったかが不確かなため)、低体温療法がなかった病院からの患者は除外した。

• 各病院で初めて院内心停止患者への低体温療法の使用が記録された後の症例のみを組み入れた。
Study Population③

• 低体温療法は昏睡患者に検討されるため、心肺停止時もしくは心肺停止後に人工呼吸管理されている患者群に限定した。

• 退院時の生存確認、多変量解析のための併存疾患の情報が欠損している患者は除外した。
Study Population④

・院外心肺停止になって来院し、その後院内心停止になっている患者は除外した。
Study Outcomes

• Primary outcome
 院内生存率(退院時の生存率)

• Secondary outcome
 退院時の神経学的予後が良好な生存率
 (Cerebral Performance Category score: 1-2)
 65歳以上患者の1年生存率、累計生存率
Cerebral Performance Category score

Note: If patient is anesthetized, paralyzed, or intubated, use “as is” clinical condition to calculate scores.

CPC 1	Good cerebral performance: conscious, alert, able to work, might have mild neurologic or psychologic deficit.
CPC 2	Moderate cerebral disability: conscious, sufficient cerebral function for independent activities of daily life. Able to work in sheltered environment.
CPC 3	Severe cerebral disability: conscious, dependent on others for daily support because of impaired brain function. Ranges from ambulatory state to severe dementia or paralysis.
CPC 4	Coma or vegetative state: any degree of coma without the presence of all brain death criteria. Unawareness, even if appears awake (vegetative state) without interaction with environment; may have spontaneous eye opening and sleep/awake cycles. Cerebral unresponsiveness.
CPC 5	Brain death: apnea, areflexia, EEG silence, etc.
Statistical Analysis①

• 2群のベースラインの違い
カテゴゴリカル変数はχ²検定、連続変数はt検定を使用し解析した。

• propensity score matching
2群をロジティック回帰モデルにて多変量解析し、傾向スコアを用いて低体温療法群に非低体温療法法群をマッチングした。
Statistical Analysis②

• 回帰モデルの共変量
 年齢、性別、人種、初期波形、心肺停止した場所、併存疾患(心不全・心筋梗塞の既往、心不全・心筋梗塞による入院、糖尿病、うつ病、脳梗塞、肺炎、転移性・血液悪性腫瘍)、心肺停止24時間以内の医学的状態(腎不全、肝不全、呼吸不全、低血圧、敗血症、代謝・電解質異常、心肺停止した時点での医学的介入(昇圧剤持続静注投与、ICD植え込み、血液透析))

• 同時に回帰モデルは心肺蘇生時間、心肺停止した日時(日勤帯vs当直帯)、曜日(平日 vs 週末)でも調整された。

 JAMA. 2008;299(7):785-792.
Statistical Analysis③

• マッチング後のバランス
 2群の共変量はStandardized Differenceが10%未満になるように調整した。

 J Clin Epidemiol. 2001;54(4):387-398.

• アウトカム
 マッチング後に低体温療法による院内生存率・退院時の神経学的予後が良好な生存率に関しての相対危険度を解析した。

 Common Statistical Methods for Clinical Research With SAS Examples. 2nd ed.
Statistical Analysis④

• 交互作用分析
低体温療法と生存率の関係が心肺停止時のリズムがshockable(VF・pulseless VT)かnon-shockable(asystole・PEA)かどうかで異なるかどうか解析した。
Statistical Analysis⑤

・1年生存率・累計生存率

1年生存の時点で傾向スコアを65歳以上の患者に割付けて、累計生存率に関してはマッチングを行った群で比較し、この組み合わせで1年生存率も解析している。
• Sensitivity analysis

Measurement of indication bias cannot be denied, and we performed an analysis of all patients who died within the first 24 hours.

(ex: Patients who are more severely ill are more likely to prefer hypothermia therapy)
Statistical Analysis

- Analysis Method
 Two-sided significance level 5% to establish the null hypothesis, and 95% confidence interval with robust standard error were analyzed.

- Software
 SAS version 9.2 (SAS Institute Inc)
 R version 2.10.0 (R Foundation for Statistical Computing)
Results
Patients from 674 hospitals with ROSC after index IHCA between March 1, 2002, and December 31, 2014

90,822 Excluded
- 31,565 Aged ≥65 y (owing to nonlinkage with Medicare data)
- 15,012 Sites without hypothermia
- 17,117 IHCA occurred before first hypothermia case at patient’s hospital
- 26,429 Not on mechanical ventilation at time of or after resuscitation from IHCA
- 69 Missing data on survival
- 28 Missing data on comorbidities
- 602 Initial cardiac arrest was out of hospital

26,183 Patients from 355 hospitals (1,568 treated with hypothermia)

1,524 Hypothermia-treated patients matched by propensity score to 3,714 non-hypothermia-treated patients
Derivation of the Study Cohort

• レジストリ内で674病院117005人の患者が院内心停止後にROSCしていることが同定された。

• 90822人の患者が除外された後、残った355病院26183人のうち1568人(6.0%)が低体温療法を施行されていた。

• 傾向スコアによるマッチングを行い、1524人の低体温療法患者に対して、3714人の非低体温療法患者をコントロール群として選出した。
Table 1. Comparison of Hypothermia-Treated and Non-Hypothermia-Treated Patients Before and After Propensity Score Matching

Characteristic	Before Propensity Score Matching	After Propensity Score Matching				
	Hypothermia (n = 1568)	No Hypothermia (n = 24,615)	P Value	Hypothermia (n = 1524)	No Hypothermia (n = 3714)	Standardized Difference, %
Demographics						
Age, mean (SD), y	61.5 (16.2)	63.9 (16.9)	<.001	61.6 (16.2)	62.2 (17.5)	3.2
Male, No. (%)	908 (57.9)	13,750 (55.9)	.11	892 (58.5)	2,120 (57.1)	1.7
Race, No. (%)	1,044 (66.6)	17,184 (69.8)	.07	1,015 (66.6)	25,48 (68.6)	5.0
White	377 (24.0)	5,315 (21.6)	.07	366 (24.0)	870 (23.4)	5.0
Black	147 (9.4)	2,116 (8.6)	.07	143 (9.4)	296 (8.0)	5.0
Cardiac arrest factors						
CPR duration, min	16.5 (18.7)	16.3 (19.0)	.78	16.5 (18.7)	16.3 (18.8)	2.7
Location of cardiac arrest, No. (%)	11.0 (8.0-22.0)	10.0 (8.0-21.0)	.09	11.0 (8.0-22.0)	11.0 (8.0-21.0)	NA
Intensive care unit	852 (54.3)	15,908 (64.6)	.01	830 (54.5)	2,208 (59.5)	8.3
Telemetry unit	126 (8.0)	2,495 (10.1)	.12	126 (8.3)	330 (8.9)	8.3
Nonmonitored hospital unit	152 (9.7)	2,248 (9.1)	<.001	149 (9.8)	347 (9.3)	8.3
Emergency department	254 (16.2)	2,046 (8.3)	.01	248 (16.3)	475 (12.8)	8.3
Procedural area	154 (10.5)	1,737 (7.1)	.09	154 (10.1)	319 (8.6)	8.3
Other	19 (1.2)	181 (0.7)	.68	17 (1.1)	35 (0.9)	1.7
Time of cardiac arrest, No. (%)						
Night, 11 PM to 6:59 AM	451 (28.8)	7,693 (31.3)	.04	436 (28.6)	1,101 (29.6)	1.3
Weekened	492 (31.4)	7,846 (31.9)	.68	481 (31.6)	1,171 (31.5)	0.1
Initial cardiac arrest rhythm, No. (%)						
Asystole	407 (26.0)	7,016 (28.5)	.01	397 (26.0)	1,000 (26.9)	0.1
Pulseless electrical activity	735 (46.9)	1,278 (51.9)	<.001	715 (46.9)	1,832 (56.9)	2.7
Ventricular fibrillation	253 (16.8)	2,548 (10.4)	<.001	254 (16.7)	500 (13.5)	2.7
Pulseless ventricular tachycardia	163 (10.4)	2,266 (9.2)	.04	158 (10.4)	382 (10.3)	2.7
Preexisting conditions, No. (%)						
Heart failure this admission	250 (15.9)	4,423 (18.0)	.04	244 (16.0)	581 (15.6)	0.3
Heart failure prior to admission	310 (19.8)	5,030 (20.4)	.53	304 (19.9)	717 (19.3)	0.4
MI this admission	346 (22.1)	3,804 (15.3)	<.001	338 (22.2)	728 (19.6)	5.2
MI prior to admission	252 (16.1)	3,600 (14.6)	.12	248 (16.3)	570 (15.3)	2.0
Hypotension‡	494 (31.5)	8,817 (35.8)	<.001	473 (31.0)	1,239 (33.4)	3.9
Respiratory insufficiency‡	826 (52.9)	13,828 (56.2)	<.001	797 (52.3)	2,915 (54.3)	2.3
Renal insufficiency‡	514 (32.6)	9,288 (37.7)	<.001	502 (32.9)	1,248 (33.6)	0.7
Hepatic insufficiency‡	106 (6.8)	2,300 (9.3)	<.001	103 (6.8)	307 (8.3)	4.5
Metabolic or electrolyte abnormality‡	310 (19.2)	5,197 (21.1)	.07	291 (19.1)	740 (19.9)	1.3
Diabetes mellitus‡	475 (30.3)	7,545 (30.7)	.77	462 (30.3)	1,062 (28.6)	2.4
Baseline depression in CNS function¶	216 (13.8)	3,341 (13.6)	.82	211 (13.8)	495 (13.3)	0.1
Major trauma	71 (4.5)	1,702 (6.9)	<.001	68 (4.5)	215 (5.8)	5.4
Acute stroke	80 (5.2)	1,125 (4.6)	.01	49 (3.2)	133 (3.6)	2.1
Pneumonia	227 (14.5)	4,304 (17.5)	.002	225 (14.8)	607 (16.3)	5.0
Sepsis§	263 (16.8)	5,402 (21.0)	<.001	258 (16.9)	716 (19.3)	4.6
Metastatic or hematologic	122 (7.8)	2,784 (11.3)	<.001	119 (7.8)	355 (9.6)	5.5
Interventions in place at time of arrest, No. (%)						
Continuous intravenous vasopressor	572 (36.5)	9,157 (37.2)	.57	554 (36.4)	1,371 (36.9)	1.1
Dialysis or extracorporeal filtration	53 (3.4)	1,144 (4.6)	.02	52 (3.4)	126 (3.4)	0.1
Preexisting ICD	31 (2.0)	444 (1.8)	.62	30 (2.0)	75 (2.0)	0.0

マッチング前

マッチング後
Baseline characteristics
マッチング前

・マッチング前は、低体温療法群の方が多少若く、CPR時間に差はないが心肺停止の場所はICUが少なく、ERが多かった。

・同時に初期波形はVFが多く、心筋梗塞での入院が多かった。低血圧、呼吸不全、腎不全、肝不全、外傷、脳梗塞、肺炎、敗血症、腫瘍の合併が少なかった。
Baseline characteristics
マッチング後

・傾向スコアアマッチングよって作成したモデルのバランスは良好(C統計量0.783)?!

・マッチング前に差があった共変量に関しても調整されている(Standardized Difference<10%)。

・364人の低体温療法患者(23.9%)・607人の非低体温療法患者(16.3%)で体温データが利用可能で、最低体温の中央値は前者で33.1℃(IQR:32.3-35.7)、後者で36.3℃(35.6-36.8)であった。
Survival to Discharge

低体温療法は院内生存率の低下と有意に関係していた。non-shockable・shockable群でも同様の傾向が見られた。

感度分析で心肺停止後24時間以上生存した患者(59.6%)に限っても同じ傾向だった。

Survival	Patients, No./Total No. (%)	Relative Risk With Hypothermia (95% CI)^a	Risk Difference With Hypothermia, % (95% CI)^b	P Value^c	P Value for Interaction^d
All cardiac arrests	417/1524 (27.4)	0.88 (0.80 to 0.97)	-3.6 (-6.3 to -0.9)	.01	
Nonshockable cardiac arrests	247/1112 (22.2)	0.87 (0.76 to 0.99)	-3.2 (-6.2 to -0.3)		.74
Shockable cardiac arrests	170/412 (41.3)	0.90 (0.77 to 1.05)	-4.6 (-10.9 to 1.7)		
低体温療法は神経予後良好な院内生存率の低下と有意に関係していた。nonshockable・shockable群でも同様の傾向が見られた。
感度分析でも同様の結果であった。ただし低体温療法群81名(5.3%)・非低体温群185名(5.0%)でデータ欠損があり除外となっている。
One-Year Survival

Table 3. One-Year Outcomes and Model Results

Cardiac Arrests	Patients With 1-y Survival, No./Total No. (%)	Cumulative Survival in First Year, Mean (95% CI), mo	Alive at 1 y	Risk Difference With Hypothermia, % (95% CI)	P Value	P Value for Interaction
	Hypothermia No Hypothermia	Hypothermia No Hypothermia	Relative Risk With Hypothermia (95% CI)	Risk Difference With Hypothermia, % (95% CI)		
All	100/706 (14.2) 286/2035 (14.1)	2.21 (1.89 to 2.53) 2.20 (2.02 to 2.39)	.92	1.00 (0.96 to 1.03) -0.1 (-3.1 to 2.9)	.94	.53
Nonshockable	60/537 (11.2) 184/1587 (11.6)	1.83 (1.49 to 2.16) 1.84 (1.65 to 2.04)	.93	1.01 (0.97 to 1.04) 0.5 (-2.7 to 3.6)		
Shockable	40/169 (23.7) 102/448 (22.8)	3.44 (2.65 to 4.23) 3.44 (2.97 to 3.91)	.99	0.97 (0.88 to 1.07) -2.2 (-9.7 to 5.4%)		

• マッチング後の患者のうち2741名（低体温療法群706名・非低体温療法群2035名）の情報がMedicareにあり、累計生存率・1年生存率ともに2群で有意差を認めず、nonshockable・shockable群でも同様であった。
Discussion
Discussion①:未知の交絡因子

• 本研究は後ろ向き観察研究であり、傾向スコアマッチングを用いているが未測定の交絡因子を排除が問題となる。

⇨感度分析では結果は修飾されず、低体温療法群の方が24時間以内に亡くなった割合は少なく、予後不良な患者ほど低体温療法されている訳ではない模様。
Discussion②:患者の選択

• 本研究は低体温療法のプロトコルを用いず、昏睡状態の患者を、心肺停止時もしくはその後に人工呼吸管理にあるという言わば”surrogate”で見つけてている。

⇒ただし両群のCPR時間の中央値は16分間であるため、非昏睡状態の患者はそれほど多くはない?!
Discussion③:体温データ

• 本研究での低体温療法群の最低体温(中央値)は33.1℃だが、21%の患者においてガイドラインで推奨されている下限の32℃を下回っている。

⇨体温データが使用可能なのかが低体温療法群のわずか23.9%のみで、どのような低体温療法(体温・時間)が行われたのか不透明である。
Discussion④:院外心停止のRCT

・レジストリ終了1年前の2013年12月に院外心停止のRCT(NEJM, 33℃Vs36℃)が出版されており、非低体温療法群に36℃でTTMしている患者群が入っている。

⇒期間が短いためおそらくそれほど多い割合ではないと予想されるが、本研究の結果の結果を修飾している可能性はある。
Discussion⑤その他

- 両群5%程度ではあるが神経所見のデータに欠損値が存在する。

- レジストリ参加病院と非参加病院の患者層の違いは否定できないが、かなり多様な患者層ではある。

⇒結局のところ結果の検証のために、プロトコルに則ったRCTが必要！
Conclusions

• 米国の大規模レジストリを用いた本研究においては、院内心停止に対しての低体温療法は院内生存率及び神経予後良好な生存率の低下と有意に関係していた

• 本研究には多くのlimitationがあるため、今後のRCTによる結果の検証が必要である。
著者の見解

• そもそも低体温療法が生存率を改善しないという結果は、頭部外傷や髄膜炎に対しての結果と同様に妥当かもしれない。

⇒院内心停止は蘇生に有利であり、低酸素脳症によるフリーラジカル性の再灌流障害を抑制するという低体温療法の理論的な利益が限られてしまう可能性がある。
私見①

• 低体温療法が神経予後のために“首から下”を危険にさらす治療であるということは集中治療医は以前から認識している。

• 無作為な低体温療法患者群で生存率が悪くなるという結果よりも、神経予後が良好な生存率が悪くなるという結果の方がよりインパクトが大きいと考える。
私見②

• 本研究の統計学的手法の部分に関しては評価が難しいが、明らかなlimitationも多いため内部の妥当性は高くないと判断する。

• 現在低体温療法自体が下火になりつつあるが、観察研究の本研究を決定打にするのは時期尚早かもしれない。
当院での今後の対応

• 医原性の場合もある院内心停止においては、常に低体温療法をしないというプラクティスをするにはまだエビデンスは十分ではないが、これまで以上に低体温療法のリスクに目を向けて適応を判断するべきか。