Research Paper

Evaluating the Antiviral Activities of Human Cathelicidin LL-37 Peptide Against Rotavirus in Vitro

Zohreh Hosseini1, Angila Ataei-Pirkooh2, *Mohammad Bagher Habibi Najafi1, Masoud Yavarmanesh1

1. Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
2. Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Background
Rotavirus is the most prevalent cause of severe gastroenteritis, hospitalizations, and deaths among infants and young children, globally. No specific antiviral drug is available against rotavirus infection.

Objective
The current study aimed to assess the antiviral effect of human cathelicidin antimicrobial peptide LL-37 on rotavirus infection in vitro.

Methods
This study was conducted in the laboratory conditions of Iran University of Medical Sciences, in Tehran City, Iran. The neutral red assay was performed to assess the cytotoxicity of different concentrations of the peptide on the MA-104 cell line, and its antiviral activity was determined by TCID50 (50% tissue culture infective dose) assay.

Findings
According to the cytotoxicity results, viability maintained more than 90% up to the concentration of 50 μg/mL of LL-37 peptide. The antiviral assays results revealed that the concentration of 50 μg/mL LL-37 peptide could significantly reduce (3.36 log10 TCID50) the production of rotavirus progeny when administered before virus exposure (P= 0.0001). However, no inhibitory effect was detected after cell exposure to virus.

Conclusion
The obtained data suggested that LL-37 can be considered as a new antiviral agent for protecting infants and young children against gastroenteritis caused by rotaviruses. However, further in vivo investigations are required to confirm this finding.

Extended Abstract

1. Introduction
Rotavirus infection is the most common cause of severe gastroenteritis among children under 5; it is responsible for 440000 deaths worldwide annually. Currently, no effective antiviral drug or specific treatment exists for this infection [1, 2]. Hence, the development of novel therapeutics is of significant interest. The present in vitro study aimed to evaluate the antiviral activity of the only human cathelicidin LL-37 antimicrobial peptide against rotavirus infection.

2. Materials and Methods
The rotavirus stock was prepared by infecting the cell monolayers with the virus at the multiplicity of infection (MOI) of 1 (1 viral particle per cell). The infectious vi-
rus titer was then determined by tissue culture infectious dose 50 (TCID50), according to the Reed and Muench method [24]. We used the neutral red uptake assay to evaluate the cytotoxicity of LL-37 peptide on MA-104 cells. Optical density (OD) was subsequently measured at 550 nm using a microplate reader. We also examined the in vitro antiviral potency of the LL-37 against rotavirus infection before and after the infection.

For pre-treatment assay, the rotavirus stock was serially diluted in DMEM (dulbecco’s modified eagle medium) to prepare 100 TCID50/mL of rotavirus suspension. The media were then removed, and the cultured cells were washed with phosphate buffer saline (PBS). Next, the cells were pre-treated with the different non-cytotoxic concentrations of the LL-37 for 3 hours before the infection. After that, the peptide solutions were removed, and cells were washed with PBS, and then infected with 100 TCID50/mL of rotavirus. After one hour incubation, the inoculums were discarded, the cells were washed with PBS to remove any unattached virus, and overlaid with the serum-free medium at 37°C in 5% CO2 for 72 hours.

For post-treatment assay, the monolayers were washed with PBS and then incubated with 100 TCID50 of rotavirus suspension. After one hour incubation, the inoculums were discarded, and LL-37 in serum-free DMEM was added at various non-toxic concentrations. Finally, the treated cells were placed at 37°C in 5% CO2 for 72 hours.

The plates were being observed by inverted microscope daily to detect any prevention of cytopathic effect (CPE) by the peptide. At post-72 hours incubation time (when virus control produced an obvious CPE), virus titer was calculated by the TCID50 method. Statistical analyses were performed using the GraphPad Prism. Statistical significance was assessed using the one-way analysis of variance (ANOVA) and P-values less than 0.05 were considered statistically significant.

3. Results

The cells were treated with various peptide concentrations to examine cytotoxicity. According to the results, LL-37 (up to 50 μg/mL) produced no toxicity in MA-104 cells, and cell viability was maintained above 90% up to 50 μg/mL of LL-37. Therefore, LL-37 was used in activities related to antiviral assays (AVA) at concentrations showing ≤10% cytotoxicity. To assess the antiviral potential of LL-37 against rotavirus, different concentrations of the peptide before/after infection with rotavirus treated cells, and then assessed by determination of viral titer by TCID50 after 72 hours.

According to the findings, LL-37, when cells were exposed to the peptide before virus infection, significantly inhibited the CPE associated with rotavirus infection in infected cells in vitro. That is LL-37 pre-treatment (50 μg/mL) of MA-104 cells resulted in a significant reduction of CPE as rotavirus shows a distinct CPE characterized by cell rounding, detachment of cells from the monolayer, and lytic foci. The CPE formation was affected by peptide pre-treatment of monolayers before infection. In contrast, treatment of rotavirus-infected MA-104 cells (post-infection) had minimal impact on rotavirus infection. Moreover, this pre-infection exposure of cells to LL-37 resulted in a significant, concentration-dependent reduction in infectivity when compared with the virus alone, so that three hours pre-treatment of cells with 50 μg/mL LL-37 before infection reduced virus titer by 3.36 log10 TCID50 compared to the virus control group (P=0.0001).

4. Conclusion

Differences in the efficacy of LL-37 at reducing rotavirus infection before and after the infection may be partly due to the time of addition and mainly to the LL-37 mode of action. One possible hypothesis may be masking of epithelial cell surface receptors, which prevents attachment and subsequent virus entry into the cells [27]. Although the present study has been one of the first attempts to examine the antiviral activity of LL-37 peptide against a non-enveloped virus, the specific mechanism(s) by which LL-37 acts against rotavirus is not fully understood yet. Some evidence suggests the involvement of activities other than direct damage to viral envelopes [30]. To sum up, it seems that LL-37 peptide may be utilized as a prophylactic agent in the management of acute rotavirus gastroenteritis. However, further in vivo investigations are required to confirm the present findings.

Ethical Considerations

Compliance with ethical guidelines

This research did not involve interaction with human samples.

Funding

This research is based on the Phd. thesis of Zohreh Hosseini in The Ferdowsi University of Mashhad financially supported this research (Proposal No. 39199).
Authors' contributions

Performed the experiments, collected the data, conceived, designed the analysis, and wrote the paper: Zohre Hosseini; Supervised the experiments, determined the study methods, identified the path for data collection, provided lab equipment, helped to resolve technical problems, and edited the paper: Angila Ataei-Pirkoh; Provided financial support, supervised the experiments, monitored research progress, suggested a timetable for writing up, gave guidance on research, and edited the paper: Mohammad Bagher Habibi Najafi; Helped in selecting topic, supervised the experiments, and checked progress regularly: Masoud Yavarmanesh.

Conflicts of interest

The authors declared no conflicts of interest.

Acknowledgements

The authors would like to thank Dr. Ahmad Tavakkoli for his technical assistance and help with this research over the past three years, and Dr. Davoud Javanmard for helpful advice and comments.
بررسی فعالیت ضد‌ویروسی پپتید کاتلیسیدین انسانی LL-37 بر روتوویروس در محیط برون‌تنی

پژوهش حسینی،* آنژیلا عطائی پیرکوه، مسعود یاورمنش، محمدباقر حبیبی نجفی

1- گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.
2- گروه ویروس شناسی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

مقدمه
روتوویروس، ویروس فاقد پوشش با ژنوم ریبونوکلئیک است. این ویروس حاصل اکتیوراسیون شبیه‌ی سری‌های یک‌پروتئینی گروه‌های انسانی می‌باشد.

روتوویروس، رتبه‌ی 1397 شهریور 31 تاریخ دریافت، 1397 آذر 22 تاریخ پذیرش، 1398 مرداد 10 تاریخ انتشار.

چیکیده
روتوویروس شایع‌ترین عامل اصلی از عفونت‌های حاد معده و روده در کودکان که با مواردی از بستری و زمینه مرگ و میر همراه است. هم‌اکنون هیچ داروی ضد‌ویروسی خاصی علیه عفونت ناشی از این ویروس وجود ندارد.

یافته‌ها
مطالعه با هدف ارزیابی اثرات ضد‌ویروسی پپتید کاتلیسیدین LL-37، در شرایط آزمایشگاهی در گروه ویروس شناسی دانشگاه علوم پزشکی ایران انجام شد. در این مطالعه، سلول‌های MA-104 بستری شدند و پس از آلودگی آن‌ها با ویروس، پپتید در فاصله آزمایشگاهی به شکل فیلم از سطح سلول‌ها وارد شد. پس از آلودگی سلول‌ها با ویروس، پپتید در فاصله آزمایشگاهی وارد سطح سلول‌ها شد. سلول‌ها در بالاترین غلظت مورد استفاده یافته‌ها، میکروگرم در میلی لیتر 50 درصد حفظ شدند.

نتیجه‌گیری
نتایج این مطالعه نشان می‌دهد که پپتید LL-37 می‌توان به عنوان یک عامل ضد‌ویروسی جدید مورد نظر در پیشگیری از عفونت روتاویروس در کودکان در نظر گرفته شود. با توجه به نتایج این مطالعه، بررسی‌های بیشتری در شرایط برون‌تنی (در موجود زنده) مورد نیاز است.

کلیدواژه‌ها: کاتلیسیدین، روتاویروس، پپتید LL-37 ضد‌ویروسی، گاستروانتیت.
به عنوان عامل ضدبیماری غلیظ‌داشتی موثری مطرح شده است که از طریق مهار کننده ویروس در داخل سلول میتوان یا از طریق بهبود ویروسی در خارج از سلول میکون. این اعمال به عنوان یک میکروبلیزاسیون از لحاظ مایع است و به‌طور کلی ممکن است به‌طور مراحل انجام شود.

متغیرهای شناخته‌شده با ازدحام رشته‌های از لحاظ آنتی‌بیوتیکی به طور گسترده بررسی شده است. این پپتیدها از درجه بندی تولید می‌شود و متقابلی با آنتی‌بیوتیک‌ها می‌باشند. در طول کار، میکروباژیک هسته ویروسی را می‌تواند در سلول‌های انسانی در حال تحقیق را نشان دهد.

پس از گزارش‌های اخیر، مایعات نسل‌های پیشینی از فعالیت ضدبیماری ویروس‌ها می‌تواند در بسیاری از موجودات زنده از پستانداران تا گیاهان و حتی گربه‌ها و انرژی‌ها باستحکام به طور گسترده، مقاومت‌های ضدبیماری را در سلول‌های خاصی ایجاد کند و به‌طور کلی می‌تواند در کنترل عفونت‌های ویروسی موثر باشد. کلیه این نتایج نشان‌دهنده است که از طریق مهار کننده ویروس در داخل سلول، مقاومت‌های ضدبیماری آنتی‌بیوتیکی ممکن است استفاده شود.

ملاحظه‌های در مورد مایعات نسل‌های اولیه ویروس‌ها می‌تواند در بسیاری از موجودات زنده از پستانداران تا گیاهان و حتی گربه‌ها و انرژی‌ها باستحکام به‌طور گسترده، مقاومت‌های ضدبیماری را در سلول‌های خاصی ایجاد کند و به‌طور کلی می‌تواند در کنترل عفونت‌های ویروسی موثر باشد. کلیه این نتایج نشان‌دهنده است که از طریق مهار کننده ویروس در داخل سلول، مقاومت‌های ضدبیماری آنتی‌بیوتیکی ممکن است استفاده شود.
در انکوباتور 24 مرجه سانتی‌گراد دهای چرالی پنجم دمای 37 درجه سانتی‌گراد دهای چرالی پنجم دمای 37 درجه سانتی‌گراد دهای چرالی پنجم در دمای 37 درجه سانتی‌گراد دهای چرالی پنجم در دمای 37 درجه سانتی‌گراد دهای چرالی پنجم...
نکات عیان: نتایج تحقیق‌های جدید یافته‌بوده است که سلول‌های اپیدمی‌پرسی چکن به روش درمان سه سطح معنی‌داری در مقیاس ۱۰۰۰ موجود بوده‌اند. همچنین، کاهش عیان در مقیاس ۵۰، ۷۵ و ۱۰۰ درصد معنی‌دار بوده‌است.

شاخص	سلول‌های اپیدمی‌پرسی چکن	سلول‌های اپیدمی‌پرسی چکن	سلول‌های اپیدمی‌پرسی چکن
سلول‌های اپیدمی‌پرسی چکن	۱۰۰	۵۰	۷۵
سلول‌های اپیدمی‌پرسی چکن	۲۰۰	۵۰	۷۵
سلول‌های اپیدمی‌پرسی چکن	۳۰۰	۱۰	۷۵
سلول‌های اپیدمی‌پرسی چکن	۴۰۰	۳۰	۷۵
سلول‌های اپیدمی‌پرسی چکن	۵۰۰	۶۰	۷۵

نتایج تحقیق‌های جدید یافته‌بوده است که سلول‌های اپیدمی‌پرسی چکن به روش درمان سه سطح معنی‌داری در مقیاس ۱۰۰۰ موجود بوده‌اند. همچنین، کاهش عیان در مقیاس ۵۰، ۷۵ و ۱۰۰ درصد معنی‌دار بوده‌است.
بحث و نتیجه‌گیری

پپتید LL-37، یکی از پپتیدهای کاتیونیک کاتلیسیدین انسانی است که توسط گلوبول های سفید (عمداً نوتروفیل) و بسیاری از سلول‌های دیگر از جمله سلول‌های اپیتیلم و ماکروفلاژ تولید شده و در سیستم ایمنی انسان و ماکروفلاژ و کاتلیسیدین استفاده می‌شود. این پپتید به‌عنوان یک عامل ضدمیکروبی به طور خاص صدها از میکروب‌ها و ویروس‌ها به‌عنوان کنترل و تثبیت می‌شود. این پپتید در حضور غلظت‌های مورد استفاده به‌عنوان فعال‌کننده تیتر عفونت‌زایی ویروس به روش دُز عفونی کننده و TCID50(یک درصد در درصد 50 بر تیتر اولیه ویروس به روش دوز عفونی کننده) در میلی لیتر تعیین شد. نتایج آزمون سیستم سلول‌های MA-104 در 24 ساعت بود و نشان داد که در غلظت‌های مورد استفاده، پپتید فاقد اثر بود. در حالی‌که حیات ویروس در سیستم سلول‌های آلوده با پپتید، سه ساعت قبل از آلودگی سیستم کشت به روتاویروس به‌طور مؤثر فعالیت ویروس را تحت تأثیر قرار داده است و تیتر ویروس در مقایسه با کنترل به طور ملایم کاهش یافته است. این فرآیند به طور معلق کاسه‌شکنی پپتید LL-37 را تأیید کرده است.

شکل 1. اثر کاتلیسیدین LL-37 در پیش‌تیمار سلول‌های آلوده با روتاویروس به طور ملایم کاهش یافته است. تیتر ویروس در مقایسه با کنترل مقداری کاهش داشته است.

شکل 2. اثر کاتلیسیدین LL-37 در پیش‌تیمار سلول‌های آلوده با روتاویروس به طور ملایم کاهش یافته است. تیتر ویروس در مقایسه با کنترل مقداری کاهش داشته است.
کردن پیش‌بازدارنده بر روی سلول‌های MA-104 قابل توجهی نشان داد که با کارنامه‌ای از سایتوپاتیک ناشی از میکروب‌سوزی در کشت سلول‌های مخصوص شده است. طبق آزمایش‌های قبیل، این نوع با کاهش بروز اثرات سایتوپاتیک ناشی از روتاویروس در کشت سلول‌های مخصوص شده در این مطالعه مشخص شده است.

به طور خلاصه، مطالعه حاضر اولین تلاش برای اثبات فعالیت ضد‌ویروسی تنها عضو انسانی خانواده کاتلیسیدین، یعنی پپتید LL-37 با این پپتید، قبل از آلودگی سلول‌های MA-104 پیش‌بازدارنده سلول‌های SARS-CoV-2 می‌باشد.

30. Dengue fever
31. Respiratory syncytial virus (RSV)
32. Enveloped
33. Envelope
ملاحظات اخلاقی

پژوهش از اصول اخلاق پژوهش در انجام این پژوهش توسط نویسندگان رعایت شده است.

حمایت مالی

این پژوهش برگرفته از رساله دکتری زهره حسینی به شماره گرایش 1399 مصوب معاونت پژوهشی دانشگاه فردوسی مشهد است و با حمایت مالی دانشگاه فردوسی مشهد انجام گرفته است.

مشارکت نویسندگان

روش شناسی، انجام آزمون‌ها و اجرای پژوهش، تحلیل، تکمیل داده‌ها و تگذش مقاله زهره حسینی، مفهوم‌سازی اولیه، مدیریت و نظارت پروژه، اعتبارسنجی، تامین مالی و ویراستاری: محمدباقر حبیبی نجفی، نظارت بر اجرای تاکیدنی آزمایشگاهی و ویراستاری، ارزیالا متالی پیرکوه، مشارکت در تحقیقات و مفهوم‌سازی، تماش و ویراستاری پژوهش: مسعود پورورشانی.

تعارض منافع

بین نویسندگان این مقاله، هیچ گونه تعارض منافعی وجود ندارد.

مراجع

نویسندگان این مقاله، گروه ویروس شناسی پژوهشی و همکارانشان در اجرای این تحقیق، تشکر و قدردانی می‌کنند.
References

[1] Harzandi N, Samiee P, Dezfulian M. Molecular detection and genotyping of rotaviruses in children with acute gastroenteritis in Karaj hospital. J Qazvin Univ Med Sci. 2014; 18(4):21-7. [In Persian]

[2] Ataei-Pirkooh A, Shamsi-Shahrabadi M, Haghi-Ashtiani M. Incidence of coinfection between rotavirus and some enteropathogenic agents in children referred to children medical center hospital, Tehran 2009. Iran J Virol. 2011; 5(1):23-37. [DOI:10.21859/ijv.5.1.23]

[3] Kargar M, Akbarizadeh A, Yaghobi R. Epidemiological features of rotaviral, bacterial, and parasitic infections among hospitalized children in Jahrom (2006-2007). J Qazvin Univ Med Sci. 2011; 14(4):34-41. [In Persian]

[4] Karampatsas K, Osborne L, Seah ML, Tong CY, Prendergast AJ. Clinical characteristics and complications of rotavirus gastroenteritis in children in east London: A retrospective case-control study. Pub Libr Sci J. 2018; 13(3):e0194009. [DOI:10.1371/journal.pone.0194009] [PMID] [PMCID]

[5] Civa A, Francese R, Sinato D, Donalisio M, Cagno V, Rubiolo P, et al. In vitro screening for antiviral activity of Turkish plants revealing methanolic extract of Rinderia lanata var. lanata active against human rotavirus. BMC Complement Altern Med. 2017; 17(74):1-8. [DOI:10.1186/s12906-017-1560-3] [PMID] [PMCID]

[6] Glass RI, Jiang B, Parashar U. The future control of rotavirus disease: Can live oral vaccines alone solve the rotavirus problem? Vaccine. 2018; 36(17):2233-6. [DOI:10.1016/j.vaccine.2018.03.008] [PMID]

[7] Biswaro LS, Sousa MG, Rezende TM, Dias SC, Franco OL. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front Microbiol. 2018; 9(855):1-14. [DOI:10.3389/fmicb.2018.00855] [PMID] [PMCID]

[8] Gupta S, Bhatia G, Sharma A, Saxena S. Host defense peptides: An insight into the antimicrobial world. J Oral Maxillofac Surg Pathol. 2018; 22(2):239-44. [DOI:10.4103/jomfp.JOMFP_113_16] [PMID] [PMCID]

[9] Ghosh SK, Fong Z, Fujoka H, Lux R, McCormick TS, Weinberg A. Conceptual perspectives: Bacterial antimicrobial peptide induction as a novel strategy for symbiosis with the human host. Front Microbiol. 2018; 9(302):1-8. [DOI:10.3389/fmicb.2018.00302] [PMID] [PMCID]

[10] Chanu KV, Thakuria D, Kumar S. Antimicrobial peptides of buffalo and their role in host defenses. Vet World. 2018; 11(2):192-200. [DOI:10.14202/vetworld.2018.192-200] [PMID] [PMCID]

[11] Kuroda K, Okumura K, Isogai H, Isogai E. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential antitumor drugs. Front Oncol. 2015; 5(144):1-10. [DOI:10.3389/fonc.2015.00144] [PMID] [PMCID]

[12] Chen X, Zou X, Qi G, Tang Y, Guo Y, Si J, et al. Roles and mechanisms of human cathelicidin LL-37 in cancer. Cell Physiol Biochem. 2018; 47(3):1060-73. [DOI:10.1159/000490183] [PMID]

[13] Tsai PW, Yang CY, Chang HT, Lan CY. Human antimicrobial peptide LL-37 inhibits adherence of Candida albicans by interacting with yeast cell-wall carbohydrates. PLOS One. 2011; 6(3):e17755. [DOI:10.1371/journal.pone.0017755] [PMID] [PMCID]

[14] Chomk M, Arvidsson I, Karpman D. The antimicrobial peptide cathelicidin protects mice from Escherichia coli O157: H7-mediated disease. PLOS One. 2012; 7(10):e46476. [DOI:10.1371/journal.pone.0046476] [PMID] [PMCID]

[15] Kanthawong S, Bolscher JG, Veerman EC, van Marle J, de Soet HJ, Nazmi K, et al. Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei. Int J Antimicrob Agents. 2012; 39(1):39-44. [DOI:10.1016/j.ijantimicag.2011.09.010] [PMID]

[16] Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH. Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides. 2011; 32(10):1996-2002. [DOI:10.1016/j.peptides.2011.08.018] [PMID]

[17] Alagarasu K, Patil P, Shil P, Seervi M, Kakade M, Tillo H, et al. In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides. 2017; 92:23-30. [DOI:10.1016/j.peptides.2017.04.002] [PMID]

[18] Bergman P, Walter-Jallow L, Broliden K, Agerberth B, Soderlund J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr HIV Res. 2007; 5(4):410-5. [DOI:10.2174/15701620778103947] [PMID]

[19] Vilas Boas LCP, de Lima LMP, Migliolo L, Mendes GD, de Jesus MG, Franco OL, et al. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. J Pept Sci. 2017; 108(2):e22871. [DOI:10.1002/bip.22871] [PMID]

[20] Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DY. Selective killing of vaccinia virus by LL-37: Implications for eczema vaccinatum. J Immunol. 2004; 172(3):1677-8. [DOI:10.4049/jimmunol.172.3.1673] [PMID]

[21] Uchio E, Inoue H, Kadonosono K. Anti-adenoviral effects of human cationic antimicrobial protein-18/LL-37, an antimicrobial peptide, by quantitative polymerase chain reaction. Korean J Ophthalmol. 2013; 27(3):199-203. [DOI:10.3341/kjo.2013.27.3.199] [PMID] [PMCID]

[22] Gordon YJ, Huang LC, Romanowski EG, Yates KA, Proskie RJ, McDermott AM. Human cathelicidin (LL-37), a multifunctional antimicrobial peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res. 2005; 30(5):385-94. [DOI:10.1080/0271368050934111] [PMID] [PMCID]

[23] Sousa FH, Casanova V, Findlay F, Stevens C, Svoboda P, Pohl J, et al. Cathelicidins display conserved direct antiviral activity against herpesvirus and aichi virus. J Immunol. 2004; 172(3):1763-7. [DOI:10.4049/jimmunol.172.3.1763] [PMID]

[24] Ramakrishnan MA. Determination of 50% endpoint titers using a simple formula. World J Virol. 2016; 5(2):85-86. [DOI:10.5501/wjv.v5.i2.85] [PMID] [PMCID]

[25] van Harten R, van Woudenberg E, van Dijk A, Haagsman H. Cathelicidins: Immunomodulatory antimicrobials. Vaccines. 2018; 6(3):63. [DOI:10.3390/vaccines6030063] [PMID] [PMCID]
[26] Barlow PG, Beaumont PE, Cosseau C, Mackellar A, Wilkinson TS, Hancock RE, et al. The human cathelicidin LL-37 preferentially promotes apoptosis of infected airway epithelium. Am J Respir Cell Mol Biol. 2010; 43(6):692-702. [DOI:10.1165/rcmb.2009-0250OC] [PMID] [PMCID]

[27] Hou M, Zhang N, Yang J, Meng X, Yang R, Li J, et al. Antimicrobial peptide LL-37 and IDR-1 ameliorate MRSA pneumonia in vivo. Cell Physiol Biochem. 2013; 32(3):614-23. [DOI:10.1159/000354465] [PMID]

[28] Tripathi S, Tecle T, Verma A, Crouch E, White M, Hartshorn KL. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J Gen Virol. 2013; 94(1):40-9. [DOI:10.1099/vir.0.045013-0] [PMID] [PMCID]

[29] Matsumura T, Sugiyama N, Murayama A, Yamada N, Shiena M, Asabe S, et al. Antimicrobial peptide LL-37 attenuates infection of hepatitis C virus. Hepatol Res. 2016; 46(9):924-32. [DOI:10.1111/hepr.12627] [PMID]

[30] Currie SM, Findlay EG, McHugh BJ, Mackellar A, Man T, Macmillan D, et al. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLOS One. 2013; 8(8):e73659. [DOI:10.1371/journal.pone.0073659] [PMID] [PMCID]