Extensive Abstract

1. **Introduction**

Today, many people in different parts of the world are overweight or obese. This condition is not limited to developed countries [1]. Besides storing energy for a long time, adipose tissue secretes many biological molecules such as adipokines that control physiological functions, including inflammation, energy homeostasis, and immunity [2]. These adipokines produce important regulators of adipose tissue development and significantly affect glucose metabolism in various body tissues. They are also useful on energy balance at a systematic level [3]. Various adipokines are secreted from adipose tissues, including adiponectin, resistin, retinol-binding protein-4, tumor necrosis factor-alpha (TNF-α), interleukin-2, omentin, chemerin, and visfatin...
Resistin is a peptide hormone whose level is high in obese people. This hormone is closely related to the atherosclerotic lesion, which causes impairment in glucose and lipid metabolisms [5-7]. Studies on the resistin in rats have shown that resistin links obesity to insulin resistance [8].

On the other hand, although obesity has been associated with increased levels of this hormone, some studies have not confirmed this association [9, 10]. Another secreted adipocytokine is visfatin, known as pre-B cell colony-enhancing factor or phosphoribosyltransferase [11]. Various studies have reported a positive association between changes in visfatin level and diseases such as obesity, diabetes, and kidney disease [12-14]. Besides, this adipokine is positively associated with insulin resistance [13, 14]. Another studied adipocytokine is chemerin, which has an essential role in invoking adipose tissue macrophages and causes inflammation of this tissue [15]. Plasma chemerin concentration is directly related to body mass index (BMI), blood glucose, fasting insulin, leptin, TNF-α, and interleukin-6 [16], and its serum level is higher in obese people. By connecting to its receptor, chemerin affects the immune system function [17].

Nowadays, exercise is used as a treatment method for metabolic syndrome, obesity, and insulin resistance [18]. Since changes in the concentration of adipokines are an early sign of reduced and inactive adipose tissue, exercise, and physical activity are crucial for weight loss [19]. Because of the importance of physical activity in the prevention and treatment of many diseases, it is one of the factors that improve vascular function by reducing fat and increasing the insulin sensitivity of tissues. The effect of exercise in different forms has been studied on the levels of resistin, visfatin, and chemerin in human and animal samples. However, conflicting results have been reported. In some studies, a decrease, and in others, no change or increase in their levels has been reported [19-23]. Most studies have used aerobic exercise to lose weight. Still, many people cannot participate in all physical activities because of heart disease, osteoarthritis, low back pain, high blood pressure, obesity, etc. In this regard, Pilates exercises that are performed in a sitting, lying, and standing position without walking or jumping [24] (thus reduce joint injuries) have received more attention.

Regarding the effect of physical activity on serum levels of resistin, visfatin, and chemerin, little research has been conducted in women. It is essential to conduct studies on women as a group in Iran who are more prone to obesity. Because of the few studies on the effect of Pilates on adipokine levels, especially in overweight women, this study aimed to evaluate the impact of a Pilates exercise program on serum levels of resistin, visfatin, and chemerin in overweight women in Iran.

2. Materials and Methods

This research is a quasi-experimental study with a pre-test-post-test design. The participants were 28 overweight women living in Alhavz City, Iran, aged 25-35 years with a BMI of 25-29 kg/m². They were selected using a purposive sampling method and based on the inclusion criteria (no any cardiovascular and kidney diseases, diabetes, physical and orthopedic injuries, no regular physical activity in the past 6 months, and having the ability to perform sports) and exclusion criteria (taking any medication or supplement, and having no cooperation during the study). All explanations about the study objectives and methods were given to the participants, and they were assured of the confidentiality of their information. They were free to leave the study at any time. Then, they were randomly divided into two groups of exercise (n=14) and control (n=14).

Table 1. The Pilates exercise protocol
Type of exercise
Exercises on a mat
Exercises with a ball
The exercise program consisted of 8 weeks of Pilates, three 60-minute sessions per week. Each session consisted of three parts: warming up, Pilates exercises, and cooling down. The exercises were first performed on a mat and then using stretch bands and balls (Table 1). The intensity and complexity of movements increased gradually. For warming up and cooling down, the perceived exertion rate of 8-10 was used, and then the rate increased from the first week to the last week. The exercises were conducted first in the standing position and then in sitting and lying positions. The women in the control group did not perform any exercise during this period.

Body height by stadiometer seca, body weight, and BMI through body composition analysis using In body 3 Analyzer, body fat percentage, Waist-to-Hip Ratio (WHR), and biochemical variables were measured first after 12-hour fasting state and before the start of the intervention and then 48 hours after the last session. It is done to avoid the possibility of the acute effect of the previous exercise session on blood variables. The subjects were told not to engage in strenuous activities until 48 hours before starting the first phase of blood sampling. The temperature and time of the first blood sampling were recorded for the next phase after the completion of the protocol. To measure the biochemical variables, 5 mL of blood was taken from the brachial vein of each subject between 8 and 9 AM. After centrifugation for 10 minutes at 3000 rpm, the blood serum was isolated and poured into special microtubes and stored at -70°C. An ELISA kit (Cusabio, Biotech Ltd., China) was used with a sensitivity of 0.08 ng/mL for measuring resistin level, a sensitivity of 7.5 ng/mL for measuring chemerin level, and a sensitivity of 0.1 ng/mL for measuring visfatin. Based on the self-report form, the subjects had a normal menstrual period and were not receiving drug treatment during the study period.

The obtained data were analyzed in SPSS V. 23, considering a significance level of $P<0.05$. Mean, and the standard deviation was used for describing data. After reporting the normality of data distribution using the Shapiro-Wilk test and the equality of variances using Levene’s test, the paired t-test and ANCOVA were used to compare intra-group and inter-group variables, respectively.

3. Results

Table 2 presents the results related to anthropometric characteristics and body composition of the subjects. No significant differences were observed between the two groups regarding the anthropometric characteristics and body composition at baseline. The intra-group comparison

Characteristics	Group	Mean±SD	P	
	Pre-test	Post-test	Inter-group	Intra-group
Age (y)	Control	30.1±4.0		
	Experiment	29.6±3.4		
Height (cm)	Control	165.5±4.0		
	Experiment	165.7±3.3		
Weight (kg)	Control	74.6±3.4	73.8±4.1	0.093
	Experiment	77.1±3.2	74.9±3.3	0.004
BMI (kg/m²)	Control	26.5±0.9	26.8±1.1	0.96
	Experiment	28.0±0.8	27.5±1.1	0.005
Body fat percentage	Control	36.3±4.22	36.10±5.24	0.987
	Experiment	39.45±3.35	34.92±1.46	0.030
Waist-to-hip ratio	Control	0.96±0.02	0.98±0.05	0.094
	Experiment	0.95±0.05	0.91±0.08	0.010

* Significant difference (paired t-test); † Significant difference (ANCOVA).
showed that the mean weight (P=0.004), BMI (P=0.005), fat percentage (P=0.030), and WHR (P=0.010) decreased significantly after the intervention in the exercise group compared to controls. The inter-group comparison also showed that the mean weight (P=0.003), BMI (P=0.005), fat percentage (P=0.008), and WHR (P=0.002) decreased significantly after the intervention in the exercise group compared to controls.

As shown in Table 3, the results of the paired t-test showed a significant intra-group difference. They indicated that 8 weeks of Pilates exercise significantly reduced serum levels of resistin (P=0.001), visfatin (P=0.045), and chemerin (P=0.009). The results of ANCOVA showed a significant inter-group difference and indicated that 8 weeks of Pilates exercise significantly reduced serum levels of resistin (P=0.005), visfatin (P=0.034), and chemerin (P=0.025). There was also a significant decrease in insulin level in the exercise group after the intervention (Figure 1).

Table 3. Descriptive statistics and inter-group and intera-group comparison of resistin, visfatin, and chemerin levels in two groups before and after the intervention

Variables	Group	Mean±SD	P		
		Pre-test	Post-test	Inter-group	Intra-group
Resistin (ng/mL)	Control	6.14±1.14	6.07±0.31	0.654	0.005^
	Experiment	6.37±0.26	4.85±0.19	0.001^	
Visfatin (ng/mL)	Control	1.23±1.10	1.31±0.17	0.146	0.034^
	Experiment	1.33±1.11	0.91±0.30	0.045^	
Chemerin (ng/mL)	Control	1100.15±3.08	1068.07±4.35	0.700	
	Experiment	1009.83±3.39	780.08±3.84	0.009^	0.025^

* Significant difference (paired t-test); #Significant difference (ANCOVA).

4. Discussion

There is ample evidence that some hormones secreted by adipose tissue are involved in adipogenesis, energy metabolism, and inflammation [25-29]. Previous studies have reported the effect of exercise on the adipokines: resistin, visfatin, and chemerin [26-30]. The purpose of this clinical trial was to evaluate the impact of the Pilates exercise program on serum levels of resistin, visfatin, and chemerin in overweight women. The findings showed that the serum levels of all three adipokines were significantly reduced after the intervention. According to recent studies, resistin has been reported as a secretor of many proteins and is a new signal molecule that is reduced during adipogenesis [31]. In contrast to several studies in which the resistance levels increased or remained unchanged, its levels in the present study decreased significantly. Changes in weight and fat percentage are suggested as possible mechanisms to reduce resistin levels after exercise [26]. The result of the present study regarding the effect of exercise on resistin level and its reduction is consistent with the results of Sartor et al. [27], Gueugnon et al. [28], and Gorge et al. [29]. Still, it is against the findings of Jones et al. [30] and Kang et al. [31]. The decrease in body fat percentage and the decrease in serum level of resistin may be related to the body’s physiology in response to the type and duration of exercise [24]. In the study by Jones et al. [30], who examined the effect of 16 weeks of aerobic exercise with an intensity of 50%-85% maximum oxygen consumption, no weight loss was observed, but a decrease in body fat percentage was reported. To influence the body fat percentage, the intensity and duration of exercise should be considered so that fatty acids are used as a source of energy. The discrepancy between results may be the difference in duration/intensity/type of exercise and gender [24], which are factors affecting the production of resistin.
Another adipokine measured in the present study was visfatin, whose serum levels decreased after 8 weeks of Pilates exercise. Although the function of visfatin has not yet been fully elucidated, it may play a dual role. The first is the autocrine/paracrine function that facilitates the differentiation of fat cells into visceral adipose tissue [32]. Another issue is the endocrine role, which affects insulin sensitivity in peripheral tissues and glucose, and is thus involved in the development of obesity [32, 33]. In our study, the serum level of insulin also decreased after 8 weeks of Pilates exercise. One of the reasons for this decrease is the increase in insulin sensitivity, which reduces serum levels. Many studies have shown that physical activity reduces the serum level of visfatin [34-36]. For example, Haider et al. examined the effect of aerobic exercise on visfatin levels in 18 patients with type 1 diabetes. The exercise was performed on an ergometer exercise bike with an intensity of 60%-70% heart rate reserve for 2-4 months, each session for 1 hour. After exercise, visfatin levels in the experimental group decreased significantly, and this effect remained stable for 8 months after the end of the program [34]. Another study compared the effects of 8 weeks of strength and endurance training (8 weeks, 3 sessions per week) on plasma visfatin levels in middle-aged men. It showed that both strength and endurance trainings reduce plasma visfatin concentration in middle-aged men by lowering body fat percentage [35], which is consistent with our study. Plasma reduction of visfatin due to exercise is probably due to weight loss and body composition changes of overweight women. It can be seen that the decreased visfatin occurs after long-term exercise (8-12 weeks), which is not affected by gender or age. However, in the study by Taghian et al. [37], 12 weeks of aerobic exercise had no significant effect on serum levels of visfatin in obese women. This discrepancy may be due to differences in the exercise protocol, study population, duration and intensity of exercise, nutrition, age, race, etc. In general, long-term exercise with a specific intensity, such as Pilates, can alter visfatin levels and play a useful role in controlling overweight and obesity. Another biochemical factor measured in the present study was chemerin, whose level decreased significantly after 8 weeks of Pilates exercise. In a study on patients undergoing weight loss after surgery, serum chemerin levels significantly reduced after surgery, suggesting that it may mediate metabolic changes in obesity [38]. Experimental evidence indicates that reduced chemerin level or its receptor disrupts fat cell differentiation and alters the expression of vital genes involved in fat and glucose metabolism. Reports have also suggested an additional role for chemerin in various biological processes, including cell differentiation and proliferation, angiogenesis, renal function, and energy metabolism [39]. Studies have shown that serum chemerin levels increase in obese people compared to lean people. Chemerin circulation levels positively correlate with inflammatory markers such as TNF-α, interleukin-6, and C-reactive protein [40, 41]. Another study on 36 women with diabetes showed that the plasma levels of chemerin decreased significantly [41]. Another study on 35 overweight people with diabetes, 12 weeks of exercise also reduced serum chemerin levels. They showed that changes in chemerin concentration during 12 weeks were negatively associated with insulin sensitivity and positively correlated with changes in fasting blood sugar and total cholesterol [42]. This decrease in chemerin level in the mentioned studies is consistent with the results of the present study. However, in some studies, an increase in the chemerin level has been reported. For example, Chakaroun et al. in a study on the effect of 12 weeks of exercise (20-min warm-up, 20-min swimming, and 20-min cooling down) on obese people with type 2 diabetes, reported that the chemerin mRNA expression level was higher, especially in adipose tissue and correlated with circulating chemerin, BMI, body fat percentage, C-reactive protein, homeostasis model assessment of insulin resistance, and glucose infusion rate. This increase may be due to insulin resistance in these patients. The increase in mRNA supports the role of chemerin in increasing the mRNA in adipose tissue of obese people with type 2 diabetes [23], which is against our results. The reasons for this discrepancy are the duration of exercise and the patients' medical history.

It should be noted that chemerin response to exercise is influenced by various factors, especially when comparing subjects with different diseases. It seems that when the intensity of exercise is low, the chemerin level increases, but when the intensity of exercise is moderate or high, its level decreases. Some of the limitations of this study were different adaptive responses of women to the exercises, their individual differences, and diet. Therefore, coaches and sports professionals are advised to design training protocols more carefully.

5. Conclusion

Eight weeks of Pilates exercise improves anthropometric parameters and significantly reduces the resistin, visfatin, and chemerin levels in inactive, overweight women. Pilates can have an impact on metabolic status through increasing vagus nerve stimulation, reducing inflammatory cytokines (which play an essential role in chronic diseases), visceral fat, and oxidative stress, and improving insulin sensitivity. Perhaps one reason for these changes is the duration of exercise and reduced weight and BMI of women after Pilates. However, due to the lack of control over some factors such...
as nutrition and motivation, these results should be interpreted cautiously.

Ethical Considerations

Compliance with ethical guidelines

This study has been approved by the Ethics Committee of Ardabil University of Medical Sciences (Code: IR.ARUMS.REC.1398.114). It has a clinical trial Code IRCT20181203037718N1.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

Conceptualization and supervision: Mojdeh Khajehlandi and Lotfali Bolboli; Methodology: Mojdeh Khajehlandi; Investigation, writing original draft, and writing review & editing, funding acquisition and resources: All authors; Data collection: Mojdeh Khajehlandi and Behzad Zabihi; Data analysis: Sayeh Bolbol.

Conflicts of interest

The authors declared no conflict of interest.
This Page Intentionally Left Blank
بررسی تأثیر یک دوره تمرین ورزشی پیلاتس بر سطوح سرمی رزیستین، ویسفاتین، و کمرین

زنان دارای اضافه وزن

نویسنده مسئول
مژده خواجه لندی

اردبیل، دانشگاه محقق اردبیلی، دانشکده علوم تربیتی و روان‌شناختی، گروه فیزیولوژی ورزشی.

نشانی:
+98 (916) 8262683
md.khajehlandi@uma.ac.ir

هموستاز و سطوح آدیپوکاین های بدن تحت تأثیر فعالیت بدنی و اضافه وزن قرار گرفته، بدین ترتیب دستخوش تغییراتی می‌شوند.

اهداف
از این رو هدف از مطالعه حاضر بررسی تأثیر یک دوره تمرین ورزشی پیلاتس بر سطوح سرمی رزیستین، ویسفاتین، و کمرین زنان دارای اضافه وزن بود.

زنان دارای اضافه وزن داوطلبانه شرکت کردند و به طور تصادفی به دو گروه چهارده نفره 28 نفری تقسیم شدند. برنامه تمرینی پیلاتس به مدت هشت هفته (سه جلسه در هفته) در باشگاه ورزشی اهواز به اجرا درآمد.

ساعت پس از هفته هشتم تمرین بعد از 48 ساعت در این مدت اعضای گروه کنترل هیچ گونه فعالیت ورزشی نداشتند. نمونه های خونی قبل و بعد از 14-12 ساعت برای اندازه‌گیری سطوح سرمی رزیستین، ویسفاتین و کمرین از گروه های مورد مطالعه گرفته شد. از آزمون آماری تی وابسته جهت بررسی تغییرات درون گروهی متغیرها و از آزمون تحلیل کوواریانس جهت بررسی تغییرات بین گروه‌های مختلف استفاده شد. مقادیر به وسیله نرم‌افزار SPSS نسخه 16 کاهش معناداری نسبت به قبل از تمرین یافته بود.

نتایج تحقیق نشان داد که پس از یک دوره تمرین پیلاتس در گروه تمرین میزان تغییرات سطوح سرمی رزیستین، ویسفاتین و کمرین کاهش معناداری نسبت به قبل از تمرین داشتند. همچنین در مقایسه با گروه کنترل گروه تمرین نیز میزان تغییرات سطوح سرمی، ویسفاتین و کمرین کاهش معناداری داشتند.

بر اساس نتایج این پژوهش از جمله می‌توان به این نتیجه بود که پیلاتس یک عامل تحریکی کافی برای کاهش رزیستین، ویسفاتین و کمرین در زنان دارای اضافه وزن است و می‌تواند به عنوان یک برنامه تمرینی مناسب جهت کنترل سلامت و وضعیت فیزیولوژیک در زنان دارای اضافه وزن مورد توجه قرار گیرد.

کلیدواژه‌ها:
ورزش، رزیستین، ویسفاتین، کمرین، اضافه وزن

۱۳۹۷ آذر ۱۳۹۹
۱۳۹۷ آذر ۱۳۹۹
۱۳۹۷ آذر ۱۳۹۹

منبع
1. Adiponectin
2. Resistin
3. Retinol binding protein-4
4. Tumor necrosis factor alpha
5. Omentin
6. Chemerin
7. Visfatin
8. Interleukin-2
9. Adipokines of various adipose tissue
10. Leptin
11. Insulin
12. Glucose metabolism
13. Exercise
14. Weight loss
15. Healthy lifestyles
16. Sports science
آزمودنی ها به‌طور تصادفی در دو گروه آزمایش (قوچه‌نی) و همکاری نداشتند. می‌توانند از ادامه همکاری دست بکشند. سپس همچنین به آن‌ها اعلام شد که در هر زمان از تحقیق که تمایل به shooter گرفت به آن‌ها اطلاعات در اختیار آن‌ها قرار خواهد گرفت. اما بعد از مشاهده نقاط زمانی (نکاتی) از طرف دیگر بر اساس سیاست‌های این تحقیق به آن‌ها اطلاعات هرگونه اطلاعاتی که خدمات می‌دهند، چه در زمانی که از آن‌ها اطلاعات در اختیار آن‌ها قرار گرفت، به‌طور دقیق و واضح پیش‌بینی نمی‌شود. همین‌طور اطلاعات هرگونه اطلاعاتی که خدمات می‌دهند، چه در زمانی که از آن‌ها اطلاعات در اختیار آن‌ها قرار گرفت، به‌طور دقیق و واضح پیش‌بینی نمی‌شود.

RIXANN 1399, دوره 27, شماره 1

زنان از دیگر اطلاعاتی که خدمات می‌دهند، چه در زمانی که از آن‌ها اطلاعات در اختیار آن‌ها قرار گرفت، به‌طور دقیق و واضح پیش‌بینی نمی‌شود.
کشور چین با حساسیت پژوهشکده بیوشیمیایی (Cusabio،)<ref>پژوهشکده بیوشیمیایی</ref> در هفته آخر، سه مسترای کرکت در پس از اتمام پروتکل ثبت شد. بر اساس آزمون توصیف مشخص، وزن، شاخص توده بدن، برنامه ریزی و سطح سرم میکروزا خون، کنترل نیز نشسته و خوابیده هدایت شدند. افراد گروه کنترل نیز در این مدت هیچگونه فعالیت ورزشی نداشتند.

به عنوان نتیجه، اثر پیلاتس بر سطوح سرمی برخی آدیپوکین های زنان نمایش گذارد. این کلیّه از حساسیت پژوهشکده بیوشیمیایی (Cusabio،)<ref>پژوهشکده بیوشیمیایی</ref> در هفته آخر، سه مسترای کرکت در پس از اتمام پروتکل ثبت شد. بر اساس آزمون توصیف مشخص، وزن، شاخص توده بدن، برنامه ریزی و سطح سرم میکروزا خون، کنترل نیز نشسته و خوابیده هدایت شدند. افراد گروه کنترل نیز در این مدت هیچگونه فعالیت ورزشی نداشتند.

به عنوان نتیجه، اثر پیلاتس بر سطوح سرمی برخی آدیپوکین های زنان نمایش گذارد. این کلیّه از حساسیت پژوهشکده بیوشیمیایی (Cusabio،)<ref>پژوهشکده بیوشیمیایی</ref> در هفته آخر، سه مسترای کرکت در پس از اتمام پروتکل ثبت شد. بر اساس آزمون توصیف مشخص، وزن، شاخص توده بدن، برنامه ریزی و سطح سرم میکروزا خون، کنترل نیز نشسته و خوابیده هدایت شدند. افراد گروه کنترل نیز در این مدت هیچگونه فعالیت ورزشی نداشتند.

به عنوان نتیجه، اثر پیلاتس بر سطوح سرمی برخی آدیپوکین های زنان نمایش گذارد. این کلیّه از حساسیت پژوهشکده بیوشیمیایی (Cusabio،)<ref>پژوهشکده بیوشیمیایی</ref> در هفته آخر، سه مسترای کرکت در پس از اتمام پروتکل ثبت شد. بر اساس آزمون توصیف مشخص، وزن، شاخص توده بدن، برنامه ریزی و سطح سرم میکروزا خون، کنترل نیز نشسته و خوابیده هدایت شدند. افراد گروه کنترل نیز در این مدت هیچگونه فعالیت ورزشی نداشتند.
مبنی بر تأثیر تمرین بدنی بر آدیپوکاین‌های رزیستین، ویسفاتین

شواهد علمی بسیاری نشان می‌دهد که برخی از هورمون‌ها و کمربین به ترکیب کلیه معنی‌دار با سطح معنی‌داری از 0.05 تا 0.01 در گروه آزمایش در مقایسه با گروه کنترل (P<0.05) ثبت شد که در گروه آزمایش، نسبت خستگی و نیروی کنترل های فیزیکی، میزان انرژی بدنی، و سیستم‌های انرژی بدنی کاهش یافت. این نتایج نشان می‌دهد که تمرین بدنی برای کاهش میزان انرژی بدنی و بهبود سیستم انرژی بدنی مؤثر است.

جدول 1. نتایج تحقیق پیش از و پس از مدت هفته تمرین پیلاتس در گروه آزمایش و گروه کنترل و مقایسه دو گروه پیش از و پس از تمرین

متغیر	گروه	پیش از تمرین	پس از تمرین	P
عضلات چپ	کنترل	12.345	23.456	0.012
عضلات راست	کنترل	12.345	23.456	0.012
عضلات چپ	آزمایش	12.345	23.456	0.012
عضلات راست	آزمایش	12.345	23.456	0.012

* یکی از نقاط نگاه‌برنگ کلیه معنی‌دار با سطح معنی‌داری از 0.05 تا 0.01 در گروه آزمایش در مقایسه با گروه کنترل (P<0.05) ثبت شد که در گروه آزمایش، نسبت خستگی و نیروی کنترل های فیزیکی، میزان انرژی بدنی، و سیستم‌های انرژی بدنی کاهش یافت. این نتایج نشان می‌دهد که تمرین بدنی برای کاهش میزان انرژی بدنی و بهبود سیستم انرژی بدنی مؤثر است.

جدول 2. نتایج تحقیق پیش از و پس از مدت هفته تمرین پیلاتس در گروه آزمایش و گروه کنترل و مقایسه دو گروه پیش از و پس از تمرین

متغیر	گروه	پیش از تمرین	پس از تمرین	P
بکرین	کنترل	12.345	23.456	0.012
بکرین	آزمایش	12.345	23.456	0.012

* یکی از نقاط نگاه‌برنگ کلیه معنی‌دار با سطح معنی‌داری از 0.05 تا 0.01 در گروه آزمایش در مقایسه با گروه کنترل (P<0.05) ثبت شد که در گروه آزمایش، نسبت خستگی و نیروی کنترل های فیزیکی، میزان انرژی بدنی، و سیستم‌های انرژی بدنی کاهش یافت. این نتایج نشان می‌دهد که تمرین بدنی برای کاهش میزان انرژی بدنی و بهبود سیستم انرژی بدنی مؤثر است.
There is ample evidence that some hormones secreted by adipose tissue are involved in the regulation of energy balance and body weight.

Changes in weight and fat percentage are suggested as possible mechanisms to reduce resistin levels. In a study where the resistance was increased or remained unchanged, its levels in the present study decreased significantly.

That is reduced during adipogenesis [31]. In contrast to several studies in which the resistance was reduced, the serum levels of resistin, visfatin, and chemerin in overweight women. The findings showed that the serum levels of visfatin were reduced in response to exercise interventions.

* Significant difference (paired t test); # Significant difference (ANCOVA).

Comparing insulin level in two groups before and after the intervention

Figure 1.

Exercise	Control	
Pretest	Posttest	
Insulin (ng/mL)	6.00 ± 0.70	4.00 ± 0.50
Glucose (mg/dL)	90.00 ± 3.00	85.00 ± 3.00

There is a significant difference between groups.

10. Heart Rate Recovery (HRR)
تمرین بر سطوح سرمی: نمره آزمون‌های هشت هفته تمرین ورزشی پیلاتس کاهش معناداری در سطوح رزیستین، ویسفاتین و کمرین زنان غیرفعال دارای اضافه وزن داشت. این تغییرات ممکن است تأثیر معنی‌داری در درمان اضافه وزن و چاقی داشته باشند.

از دیگر فاکتورهای بیوشیمیایی اندازه‌گیری شده در پژوهش حاضر کمرین بود که میزان آن پس از یک دوره تمرین کاهش محسوسی یافت. در پژوهش روی بیمارانی که تحت جراحی برای کاهش وزن قرار گرفته بودند، سطوح کمرین سرم به طور معنی‌داری پس از یک دوره تمرین کاهش یافت. اینکه کمرین و گروه آن در فرآیندهای بیولوژیکی مختلف، از جمله تمایز و تکثیر سلولی، آنژیوژنز، عملکرد کلیه و متابولیسم انرژی نیز ارائه شده است.

از محیطی‌های پژوهشی حاضر می‌توان به پایش میزان سطوح سرمی کمرین، این افزایش را از سیستم‌های ویسفاتین و رزیستین نشان می‌دهد که با افزایش تحریک عصب واگ و کاهش سایتوکین‌ها، کاهش چربی احشایی و کاهش استرس اکسیداسیون و بهبود شاید یکی از عوامل اصلی این تغییرات می‌باشد. از نظر نظری، کمرین به عنوان یک مکانیسم فعال در کاهش سطوح سرمی، ممکن است نقش مؤثری در کنترل اضافه وزن و چاقی داشته باشد.

نتیجه‌گیری

بر اساس نتایج مطالعه حاضر می‌توان یک پژوهش حاضر کمرین به وسیله پژوهشی‌های آزمون‌های زیرآزمایشی و کلاه‌های مناعی‌گیری، و سیستماتیک و کمی‌میزانی که در مطالعات دیگری که روی چندین واحد افزوده و میزان‌بندی داده بود، بیشتر از آن‌ها می‌باشد. خاصیت این موجودیت مربوط به این نشان می‌دهد که کمرین به عنوان یک سیستم معنی‌داری در کنترل پیشگیری از افزایش وزن و چاقی و همچنین در افزایش سطوح سرمی حائز می‌باشد.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش از محیطی‌های پژوهشی حاضر می‌توان به پایش میزان سطوح سرمی کمرین، این افزایش را از سیستم‌های ویسفاتین و رزیستین نشان می‌دهد که با افزایش تحریک عصب واگ و کاهش سایتوکین‌ها، کاهش چربی احشایی و کاهش استرس اکسیداسیون و بهبود

تمامی این تغییرات ممکن است تأثیر معنی‌داری در درمان اضافه وزن و چاقی داشته باشند.

ناخالصی‌ها

بر اساس نتایج مطالعه حاضر می‌توان بیان کرد که درکل باید بیان کرد که تمرینات طولانی‌مدت با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌مدت با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌مدت با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌مدت با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌مدت با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌مدت با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌مدت با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌مدت با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود و در حالتی که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین شود. اما درکل باید بیان کرد که تمرینات طولانی‌madt با حجم و شدت خاص می‌تواند باعث تغییر سطوح ویسفاتین و کمرین ش
سایه بلبل؛ بحث و نتیجه‌گیری: بهزاد ذبیحی.

تعارض منافع

نویسندگان بیان می‌کنند که هیچ گونه تعارض منافعی در لین مقاله وجود ندارد.

مژده خواجه لندی و همکاران. اثر پیلاتس بر سطوح سرمی برخی آدیپوکاین‌های زنان
References

[1] Sánchez-Muñoz C, Muros JJ, Cañas I, Courel-Ibáñez J, Sánchez-Alcaraz BI, Zabala M. Anthropometric and physical fitness profiles of world-class male paddle players. International Journal of Environmental Research and Public Health. 2020; 17(2):508. [DOI:10.3390/ijerph17020508] [PMID] [PMCID]

[2] Konigorski S, Janke J, Drogan D, Bergmann MM, Hierholzer J, Kaaks R, et al. Prediction of circulating adipokines levels based on body fat compartments and adipose tissue gene expression. Obesity Facts. 2019; 12(6):590-605. [DOI:10.1159/000502117] [PMID] [PMCID]

[3] Conde J, Scotece M, Gómez R, López V, Gómez Reino JJ, Lago F, et al. Adipokines: Biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. BioFactors. 2011; 37(6):413-20. [DOI:10.1002/biof.185]

[4] Gelsingcr C, Tischoncr A, Kaser S, Ebenbichler CF. [Adipokine update - new molecules, new functions [German]]. Wiener Medizinische Wochenschrift. 2010; 160(15-16):377-90. [DOI:10.1007/s10354-010-0781-6] [PMID]

[5] Aksoy DY, Cinar N, Harmanci A, Karakaya J, Yildiz BO, Usman A, et al. Serum resistin and high sensitive CRP levels in patients with subclinical hyperthyroidism before and after L-thyroxine therapy. Medical Science Monitor. 2013; 19:210-5. [DOI:10.12659/MSM.883847] [PMID] [PMCID]

[6] Ding Q, White SP, Ling C, Zhou W. Resistin and cardiovascular disease. Trends in Cardiovascular Medicine. 2011; 21(1):20-7. [DOI:10.1016/j.tcm.2012.01.004] [PMID]

[7] Banerjee RR, Rangwala SM, Shapiro JS, Sophie Rich A, Rhoades B, Qi Y, et al. Regulation of fasted blood glucose by resistin. Science. 2004; 303(5661):1195-8. [DOI:10.1126/science.1092341] [PMID]

[8] Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001; 409:307-12. [DOI:10.1038/35053000] [PMID]

[9] Domínguez Coello S, Cabrera de León A, Almeida González D, González Hernández A, Rodríguez Pérez MC, Fernández Ramos N, et al. Inverse association between serum resistin and insulin resistance in diabetes. Diabetes Research and Clinical Practice. 2008; 82(2):256-61. [DOI:10.1016/j.diabres.2008.08.001] [PMID]

[10] Lee JH, Chan JL, Yiannakouris N, Kontogianni M, Estrada E, Seip R, et al. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: Cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. The Journal of Clinical Endocrinology & Metabolism. 2003; 88(10):4848-56. [DOI:10.1210/jc.2003-030519] [PMID]

[11] Lulu S, Kebaoq N, Kara M, Bal C. Relationship between adipocytokinethes and cardiovascular risk factors in patients with type 2 diabetes mellitus. Experimental and Therapeutic Medicine. 2012; 4(1):113-20. [DOI:10.3892/etm.2012.557] [PMID] [PMCID]

[12] Pagano C, Pilon C, Olivier M, Mason P, Fabris R, Serra R, et al. Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans. The Journal of Clinical Endocrinology & Metabolism. 2006; 91(8):3165-70. [DOI:10.1210/jc.2006-0361] [PMID]

[13] Berndt J, Jöding N, Kralisch S, Kovacs P, Fasshauer M, Schö n MR, et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes. 2005; 54(10):2911-6. [DOI:10.2337/diabetes.54.10.2911] [PMID]

[14] Sun G, Bishop J, Khalili S, Vasdev S, Gill V, Pace D, et al. Serum visfatin concentrations are positively correlated with serum triacylglycerols and down-regulated by overfeeding in healthy young men. The American Journal of Clinical Nutrition. 2007; 85(2):399-404. [DOI:10.1093/ajcn/85.2.399] [PMID]

[15] Mac Dougald OA, Burant CF. The rapidly expanding family of adipokines. Cell Metabolism. 2007; 6(3):159-61. [DOI:10.1016/j.cmet.2007.08.010] [PMID]

[16] Muoio DM, Newgard CB. Obesity-related derangements in metabolic regulation. Annual Review of Biochemistry. 2006; 75:367-401. [DOI:10.1146/annurev.biochem.75.103004.142512] [PMID]

[17] Stejskal D, Karpisek M, Hanulova Z, Svestak M. Chemerin is an independent marker of the metabolic syndrome in a Caucasian population: a pilot study. Medical Research Papers. 2008; 152(2):217-21. [DOI:10.5507/bp.2008.033] [PMID]

[18] Choi KM, Kim TN, Yoo HI, Lee KW, Cho GJ, Hwang TG, et al. Effect of exercise training on A-FABP, lipocalin-2 and RBP4 levels in obese women. Clinical Endocrinology. 2009; 70(4):569-74. [DOI:10.1111/j.1365-2265.2008.03374.x] [PMID]

[19] Venjojärvi M, Wasenius N, Manderos O, Heinonen OJ, Hernelahti M, Lindholm H, et al. Nordic walking decreased circulating chemerin and leptin concentrations in middle-aged men with impaired glucose regulation. Annals of Medicine. 2013; 45(2):162-70. [DOI:10.3109/07853890.2012.772020] [PMID]

[20] Duzova H, Gullu E, Cicek G, Kosal BK, Kayhan B, Gullu A, et al. The effect of exercise induced weight-loss on myokines and adipokines in overweight sedentary females: steps-aerobics vs. jogging-walking exercises. The Journal of Sports Medicine and Physical Fitness. 2018; 58(3):295-308. https://www.researchgate.net/profile/Hall-Duezova/publication/335207140

[21] Lee KJ, Shin YA, Lee KY, Jun TW, Song W. Aerobic exercise training-induced decrease in plasma visfatin and insulin resistance in obese female adolescents. International Journal of Sport Nutrition and Exercise Metabolism. 2010; 20(4):275-81. [DOI:10.1123/ijsnem.20.4.275] [PMID]

[22] Bo S, Ciccone G, Baldi I, Gambino R, Mandrile C, Durazzo M, et al. Plasma visfatin concentrations after a lifestyle intervention were directly associated with inflammatory markers. Nutrition, Metabolism and Cardiovascular Diseases. 2009; 19(6):423-30. [DOI:10.1016/j.numecd.2009.08.001] [PMID]

[23] Chakaroun R, Raschpichler M, Klötting N, Oberbach A, Flehmig G, Kern M, et al. Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism. 2012; 61(5):706-14. [DOI:10.1016/j.metabol.2011.10.008] [PMID]

[24] Khajehlandi M, Bolboli L, Siahkuhian M, Nikseresht F. [Effect of 12 weeks of Pilates training on the serum levels of interleukin-6, C- reactive protein and tumor necrosis factor-a in inactive overweight women (Persian)]. Medical Journal of Tabriz University of Medical Sciences and Public Health. 2020; 42(1):56-64. [DOI:10.34172/mj.2020.020] [PMID]

[25] Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Annals of the New York Academy of Sciences. 2010; 1212(1):61-19. [DOI:10.1111/j.1749-6632.2010.05875.x] [PMID] [PMCID]

[26] Balducci S, Zanuso S, Niccoli A, Fernando F, Cavallo S, Cardelli P, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutrition, Metabolism and Cardiovascular Diseases. 2010; 20(8):608-17. [DOI:10.1016/j.numecd.2009.04.015] [PMID]
[27] Sartor F, de Morree HM, Matschke V, Marcra SM, Milousis A, Thom JM, et al. High-intensity exercise and carbohydrate-reduced energy-restricted diet in obese individuals. European Journal of Applied Physiology. 2010; 110(5):893-903. [DOI:10.1007/s00421-010-1571-y] [PMID]

[28] Guesgnon C, Mougín F, Simon-Rigaud ML, Regnard J, Nègre V, Du- mauillon G. Effects of an in-patient treatment program based on regular exercise and a balanced diet on high molecular weight adiponectin, resistin levels, and insulin resistance in adolescents with severe obesity. Applied Physiology, Nutrition, and Metabolism. 2012; 37(4):672-9. [DOI:10.1139/h2012-045] [PMID]

[29] Jorge MLMP, de Oliveira VN, Resende NM, Paraiso LF, Calixto A, Diniz ALD, et al. The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism. 2011; 60(9):1244-52. [DOI:10.1016/j.metabol.2011.01.006] [PMID]

[30] Jones TE, Basilio JL, Brophy PM, McCammon MR, Hickner RC. Long-term exercise training in overweight adolescents improves plasma peptide YY and resistin. Obesity. 2009; 17(6):1189-95. [DOI:10.1038/oby.2009.11] [PMID]

[31] Kang J, Robertson RJ, Hagberg JM, Kelley DE, Goss FL, Dasilva SG, et al. Effect of exercise intensity on glucose, and insulin metabolism in obese individuals and obese NIDDM patients. Diabetes Care. 1996; 19(4):341-9. [DOI:10.2337/diacare.19.4.341] [PMID]

[32] El-Mesallamy HO, Kassem DH, El-Demerdash E, Amin AI. Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2 diabetes mellitus. Metabolism: Clinical and Experimental. 2011; 60(1):63-70. [DOI:10.1016/j.metabol.2010.04.008] [PMID]

[33] Mohammad Domieh A, Khajehlandi A. Effect of 8 weeks endurance training on plasma visfatin in middle-aged men. Brazilian Journal of Biomotricity. 2010; 4(3):174-9. https://www.redalyc.org/articulo.oa?id=93021660004

[34] Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. The Journal of Clinical Endocrinology & Metabolism. 2006; 91(4):1578-81. [DOI:10.1210/jc.2005-2248] [PMID]

[35] Mohammadi Domieh A, Khajehlandi A. The effect of eight weeks of aerobic exercises on visfatin, IL-6 and TNF-α in female Sprague Dawley Rats (Persian). Razi Journal of Medical Sciences. 2014; 20(116):35-44. http://rjms.iums.ac.ir/article-1-2943-en.html

[36] Choi KM, Kim JH, Cho GI, Baik SH, Park HS, Kim SM. Effect of exercise training on plasma visfatin and eotaxin levels. European Journal of Endocrinology. 2007; 157(4):437-42. [DOI:10.1530/EJE-07-0127] [PMID]

[37] Taghian F, Zolfaghary M, Hedayati M. Effect of 12 weeks aerobic exercise on visfatin level and insulin resistance in obese women (Persian). Razi Journal of Medical Sciences. 2014; 20(116):35-44. http://rjms.iums.ac.ir/article-1-2943-en.html

[38] Sell H, Divoux A, Poitou C, Basdevant A, Bouillot JL, Bedossa P, et al. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. The Journal of Clinical Endocrinology & Metabolism. 2010; 95(6):2892-6. [DOI:10.1210/jc.2009-2374] [PMID]

[39] Ernst MC, Sinal CI. Chemerin: At the crossroads of inflammation and obesity. Trends in Endocrinology & Metabolism. 2010; 21(11):660-7. [DOI:10.1016/j.tem.2010.08.001] [PMID]

[40] Parlee SD, Ernst MC, Muruganandan Sh, Sinal CI, Goralski KB. Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-α. Endocrinology. 2010; 151(6):2590-602. [DOI:10.1210/en.2009-0794] [PMID]

[41] Lloyd JW, Evans KA, Zerfass KM, Holmstrup ME, Kanaley JA, Keslacy S. Effect of an acute bout of aerobic exercise on chemerin levels in obese adults. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2016; 10(1):37-42. [DOI:10.1016/j.dsx.2015.04.010] [PMID] [PMCID]

[42] Kim SH, Lee SH, Ahn KY, Lee DH, Suh YJ, Cho SG, et al. Effect of lifestyle modification on serum chemerin concentration and its association with insulin sensitivity in overweight and obese adults with type 2 diabetes. Clinical Endocrinology. 2014; 80(6):825-33. [DOI:10.1111/cen.12249] [PMID] [PMCID]