Continuous controlled generalized fusion frames in Hilbert spaces

Prasenjit Ghosh
Department of Pure Mathematics, University of Calcutta,
35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
e-mail: prasenjitpuremath@gmail.com

T. K. Samanta
Department of Mathematics, Uluberia College,
Uluberia, Howrah, 711315, West Bengal, India
e-mail: mumpu_tapas5@yahoo.co.in

Abstract

We introduce the notion of continuous controlled g-fusion frame in Hilbert space which is the generalization of discrete controlled g-fusion frame and give an example. Some characterizations of continuous controlled g-fusion frame have been presented. We define the frame operator and multiplier of continuous controlled g-fusion Bessel families in Hilbert spaces. Continuous resolution of the identity operator on a Hilbert space using the theory of continuous controlled g-fusion frame is being considered. Finally, we discuss perturbation results of continuous controlled g-fusion frame.

Keywords: Frame, g-fusion frame, continuous g-fusion frame, controlled frame, controlled g-fusion frame.

2010 Mathematics Subject Classification: 42C15; 42C40; 46C07.

1 Introduction

In 1952, Duffin and Schaeffer [10] introduced frame for Hilbert space to study some fundamental problems in non-harmonic Fourier series. Later on, after some decades, frame theory was popularized by Daubechies et al. [8].

Frame for Hilbert space was defined as a sequence of basis-like elements in Hilbert space. A sequence $\{f_i\}_{i=1}^{\infty} \subseteq H$ is called a frame for a separable Hilbert space $(H, \langle \cdot, \cdot \rangle)$, if there exist positive constants $0 < A \leq B < \infty$ such that

$$A \| f \|^2 \leq \sum_{i=1}^{\infty} | \langle f, f_i \rangle |^2 \leq B \| f \|^2 \text{ for all } f \in H.$$

For the past few years many other types of frames were proposed such as K-frame [13], fusion frame [5], g-frame [27], g-fusion frame [16, 25] and K-g-fusion frame [1] etc. P. Ghosh and T. K. Samanta [15] have discussed generalized atomic subspaces for operators in Hilbert spaces.
Controlled frame is one of the newest generalization of frame. P. Balaz et al. [4] introduced controlled frame to improve the numerical efficiency of interactive algorithms for inverting the frame operator. In recent times, several generalizations of controlled frame namely, controlled K-frame [22], controlled g-frame [23], controlled fusion frame [19], controlled g-fusion frame [26], controlled K-g-fusion frame [24] etc. have been appeared. Continuous frames were proposed by Kaiser [17] and it was independently studied by Ali et al. [2]. At present, frame theory has been widely used in signal and image processing, filter bank theory, coding and communications, system modeling and so on.

In this paper, continuous controlled g-fusion frame in Hilbert space is presented and some of their properties are going to be established. We will see that any continuous controlled g-fusion frame is a continuous g-fusion frame and converse part is also true under some sufficient conditions. We consider the frame operator for a pair of continuous controlled g-fusion Bessel families. Multiplier of continuous controlled g-fusion Bessel families in Hilbert spaces is also discussed. Some useful results about continuous resolution of the identity operator on a Hilbert space using the theory of continuous controlled g-fusion frame is constructed. At the end, we study some perturbation results of continuous controlled g-fusion frame.

Throughout this paper, H is considered to be a separable Hilbert space with associated inner product $\langle \cdot, \cdot \rangle$ and \mathbb{H} is the collection of all closed subspace of H. (X, μ) denotes abstract measure space with positive measure μ. I_H is the identity operator on H. $\mathcal{B}(H_1, H_2)$ is a collection of all bounded linear operators from H_1 to H_2. In particular $\mathcal{B}(H)$ denotes the space of all bounded linear operators on H. For $S \in \mathcal{B}(H)$, we denote $\mathcal{N}(S)$ and $\mathcal{R}(S)$ for null space and range of S, respectively. Also, $P_M \in \mathcal{B}(H)$ is the orthonormal projection onto a closed subspace $M \subset H$. $\mathcal{G}\mathcal{B}(H)$ denotes the set of all bounded linear operators which have bounded inverse. If $S, R \in \mathcal{G}\mathcal{B}(H)$, then R^*, R^{-1} and SR are also belongs to $\mathcal{G}\mathcal{B}(H)$. $\mathcal{G}\mathcal{B}^+(H)$ is the set of all positive operators in $\mathcal{G}\mathcal{B}(H)$ and T, U are invertible operators in $\mathcal{G}\mathcal{B}(H)$.

2 Preliminaries

In this section, we recall some necessary definitions and theorems.

Theorem 2.1. (Douglas’ factorization theorem) [9] Let $S, V \in \mathcal{B}(H)$. Then the following conditions are equivalent:

(i) $\mathcal{R}(S) \subseteq \mathcal{R}(V)$.

(ii) $SS^* \leq \lambda^2VV^*$ for some $\lambda > 0$.

(iii) $S = VW$ for some bounded linear operator W on H.

Theorem 2.2. [7] The set $\mathcal{S}(H)$ of all self-adjoint operators on H is a partially ordered set with respect to the partial order \leq which is defined as for $R, S \in \mathcal{S}(H)$

$$R \leq S \iff \langle Rf, f \rangle \leq \langle Sf, f \rangle \quad \forall f \in H.$$
Definition 2.3. [20] A self-adjoint operator $U : H \to H$ is called positive if $\langle Ux, x \rangle \geq 0$ for all $x \in H$. In notation, we can write $U \geq 0$. A self-adjoint operator $V : H \to H$ is called a square root of U if $V^2 = U$. If, in addition $V \geq 0$, then V is called positive square root of U and is denoted by $V = U^{1/2}$.

Theorem 2.4. [20] The positive square root $V : H \to H$ of an arbitrary positive self-adjoint operator $U : H \to H$ exists and is unique. Further, the operator V commutes with every bounded linear operator on H which commutes with U.

In a complex Hilbert space, every bounded positive operator is self-adjoint and any two bounded positive operators can be commute with each other.

Theorem 2.5. [12] Let $M \subset H$ be a closed subspace and $T \in B(H)$. Then $P_M T^* = P_M T^* P_M$. If T is an unitary operator (i.e. $T^* T = I_H$), then $P_M T = T P_M$.

Definition 2.6. [20] Let $\{W_j\}_{j \in J}$ be a collection of closed subspaces of H and $\{v_j\}_{j \in J}$ be a collection of positive weights, $\{H_j\}_{j \in J}$ be a sequence of Hilbert spaces and let $\Lambda_j \in B(H, H_j)$ for each $j \in J$. Then $\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ is called a generalized fusion frame or a g-fusion frame for H respect to $\{H_j\}_{j \in J}$ if there exist constants $0 < A \leq B < \infty$ such that

$$A \|f\|^2 \leq \sum_{j \in J} v_j^2 \|\Lambda_j P_{W_j}(f)\|^2 \leq B \|f\|^2 \quad \forall f \in H. \quad (1)$$

The constants A and B are called the lower and upper bounds of g-fusion frame, respectively. If $A = B$ then Λ is called tight g-fusion frame and if $A = B = 1$ then we say Λ is a Parseval g-fusion frame. If Λ satisfies only the right inequality of (2) it is called a g-fusion Bessel sequence in H with bound B.

Define the space

$$l^2(\{H_j\}_{j \in J}) = \left\{ \{f_j\}_{j \in J} : f_j \in H_j, \sum_{j \in J} \|f_j\|^2 < \infty \right\}$$

with inner product is given by

$$\langle \{f_j\}_{j \in J}, \{g_j\}_{j \in J} \rangle = \sum_{j \in J} \langle f_j, g_j \rangle_{H_j}.$$

Clearly $l^2(\{H_j\}_{j \in J})$ is a Hilbert space with the pointwise operations $\| \|$.

Definition 2.7. [26] Let $\{W_j\}_{j \in J}$ be a collection of closed subspaces of H and $\{v_j\}_{j \in J}$ be a collection of positive weights. Let $\{H_j\}_{j \in J}$ be a sequence of Hilbert spaces, $T, U \in GB(H)$ and $\Lambda_j \in B(H, H_j)$ for each $j \in J$. Then the family $\Lambda_{TU} = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ is a (T, U)-controlled g-fusion frame for H if there exist constants $0 < A \leq B < \infty$ such that

$$A \|f\|^2 \leq \sum_{j \in J} v_j^2 \langle \Lambda_j P_{W_j}(T f), \Lambda_j P_{W_j}(U f) \rangle \leq B \|f\|^2 \quad \forall f \in H. \quad (2)$$
If $A = B$ then Λ_{TU} is called (T, U)-controlled tight g-fusion frame and if $A = B = 1$ then we say Λ_{TU} is a (T, U)-controlled Parseval g-fusion frame. If Λ_{TU} satisfies only the right inequality of (2) it is called a (T, U)-controlled g-fusion Bessel sequence in H.

Definition 2.8. [20] Let Λ_{TU} be a (T, U)-controlled g-fusion Bessel sequence in H with a bound B. The synthesis operator $T_C : K_{\Lambda_j} \rightarrow H$ is defined as

$$T_C \left(\left\{ v_j \left(T^* P_{W_j} \Lambda_j^* \Lambda_j P_{W_j} U \right)^{1/2} f \right\}_{j \in J} \right) = \sum_{j \in J} v_j^2 T^* P_{W_j} \Lambda_j^* \Lambda_j P_{W_j} U f,$$

for all $f \in H$ and the analysis operator $T_C^* : H \rightarrow K_{\Lambda_j}$ is given by

$$T_C^* f = \left\{ v_j \left(T^* P_{W_j} \Lambda_j^* \Lambda_j P_{W_j} U \right)^{1/2} f \right\}_{j \in J} \forall f \in H,$$

where

$$K_{\Lambda_j} = \left\{ \left\{ v_j \left(T^* P_{W_j} \Lambda_j^* \Lambda_j P_{W_j} U \right)^{1/2} f \right\}_{j \in J} : f \in H \right\} \subset l^2(\{H_j\}_{j \in J}).$$

The frame operator $S_C : H \rightarrow H$ is defined as follows:

$$S_C f = T_C T_C^* f = \sum_{j \in J} v_j^2 T^* P_{W_j} \Lambda_j^* \Lambda_j P_{W_j} U f \forall f \in H$$

and it is easy to verify that

$$\langle S_C f, f \rangle = \sum_{j \in J} v_j^2 \langle \Lambda_j P_{W_j} U f, \Lambda_j P_{W_j} T f \rangle \forall f \in H.$$

Furthermore, if Λ_{TU} is a (T, U)-controlled g-fusion frame with bounds A and B then $A I_H \leq S_C \leq B I_H$. Hence, S_C is bounded, invertible, self-adjoint and positive linear operator. It is easy to verify that $B^{-1} I_H \leq S_C^{-1} \leq A^{-1} I_H$.

Definition 2.9. [21] Let $F : X \rightarrow \mathbb{H}$ be such that for each $h \in H$, the mapping $x \rightarrow P_{F(x)}(h)$ is measurable (i.e. is weakly measurable), $v : X \rightarrow \mathbb{R}^+$ be a measurable function and $\{K_x\}_{x \in X}$ be a collection of Hilbert spaces. For each $x \in X$, suppose that $\Lambda_x \in B(F(x), K_x)$. Then $\Lambda_F = \{(F(x), \Lambda_x, v(x))\}_{x \in X}$ is called a generalized continuous fusion frame or a gc-fusion frame for H with respect to (X, μ) and v, if there exists $0 < A \leq B < \infty$ such that

$$A \| h \|^2 \leq \int_X v^2(x) \| \Lambda_x P_{F(x)}(h) \|^2 \, d\mu \leq B \| h \|^2 \forall h \in H,$$

where $P_{F(x)}$ is the orthogonal projection onto the subspace $F(x)$. Λ_F is called a tight gc-fusion frame for H if $A = B$ and Parseval if $A = B = 1$. If we have only the upper bound, we call Λ_F a Bessel gc-fusion mapping for H.

Let $K = \oplus_{x \in X} K_x$ and $L^2(X, K)$ be a collection of all measurable functions $\varphi : X \to K$ such that for each $x \in X$, $\varphi(x) \in K_x$ and $\int_X \|\varphi(x)\|^2 d\mu < \infty$.

It can be verified that $L^2(X, K)$ is a Hilbert space with inner product given by

$$\langle \phi, \varphi \rangle = \int_X \langle \phi(x), \varphi(x) \rangle d\mu$$

for $\phi, \varphi \in L^2(X, K)$.

Definition 2.10. [11] Let $\Lambda_F = \{(F(x), \Lambda_x, v(x))\}_{x \in X}$ be a Bessel gc-fusion mapping for H. Then the gc-fusion pre-frame operator or synthesis operator $T_{gF}^* : L^2(X, K) \to H$ is defined by

$$\langle T_{gF}(\varphi), h \rangle = \int_X v(x) \langle P_F(x) \Lambda_x^* (\varphi(x)), h \rangle d\mu$$

where $\varphi \in L^2(X, K)$ and $h \in H$. T_{gF} is a bounded linear mapping and its adjoint operator is given by

$$T_{gF}^* : H \to L^2(X, K), T_{gF}^*(h) = \{v(x) \Lambda_x P_F(x)(h)\}_{x \in X}, h \in H$$

and $S_{gF} = T_{gF} T_{gF}^*$ is called gc-fusion frame operator.

For each $f, h \in H$,

$$\langle S_{gF}(f), h \rangle = \int_X v^2(x) \langle P_F(x) \Lambda_x^* \Lambda_x P_F(x)f, h \rangle d\mu.$$

The operator S_{gF} is bounded, self-adjoint, positive and invertible operator on H.

Definition 2.11. [13] A sequence $\{T_x : H \to H : x \in X\}$ is said to be a continuous resolution of the identity operator on H if for each $f, g \in H$, the following are hold:

1. $x \to \langle T_x f, g \rangle$ is measurable functional on X.
2. $\langle f, g \rangle = \int_X \langle T_x f, g \rangle d\mu(x)$

3 Continuous controlled g-fusion frame

In this section, we give the continuous version of controlled g-fusion frame for H. Some of the recent results of controlled g-fusion frame are extended to continuous controlled g-fusion frame.

Definition 3.1. Let $F : X \to \mathbb{H}$ be a mapping, $v : X \to \mathbb{R}^+$ be a measurable function and $\{K_x\}_{x \in X}$ be a collection of Hilbert spaces. For each $x \in X$, suppose that $\Lambda_x \in \mathcal{B}(F(x), K_x)$ and $T, U \in \mathcal{GB}^+(H)$. Then $\Lambda_{TU} = \{(F(x), \Lambda_x, v(x))\}_{x \in X}$ is called a continuous (T, U)-controlled generalized fusion frame or continuous (T, U)-controlled g-fusion frame for H with respect to (X, μ) and v, if
(i) For each \(f \in H \), the mapping \(x \rightarrow P_{F(x)}(f) \) is measurable (i.e. is weakly measurable).

(ii) There exist constants \(0 < A \leq B < \infty \) such that

\[
A \| f \|^2 \leq \int_X v^2(x) \langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} T f \rangle \, d\mu_x \leq B \| f \|^2, \tag{3}
\]

for all \(f \in H \), where \(P_{F(x)} \) is the orthogonal projection onto the subspace \(F(x) \). The constants \(A, B \) are called the frame bounds.

Now, we consider the following cases:

(I) If only the right inequality of \(\Box \) holds then \(\Lambda_{TU} \) is called a continuous \((T, U)\)-controlled \(g \)-fusion Bessel family for \(H \).

(II) If \(U = I_H \) then \(\Lambda_{TU} \) is called a continuous \((T, I_H)\)-controlled \(g \)-fusion frame for \(H \).

(III) If \(T = U = I_H \) then \(\Lambda_{TU} \) is called a continuous \(g \)-fusion frame for \(H \).

Remark 3.2. If the measure space \(X = \mathbb{N} \) and \(\mu \) is the counting measure then a continuous \((T, U)\)-controlled \(g \)-fusion frame will be the discrete \((T, U)\)-controlled \(g \)-fusion frame.

3.0.1 Example

Let \(H = \mathbb{R}^3 \) and \(\{ e_1, e_2, e_3 \} \) be an standard orthonormal basis for \(H \). Consider

\[
B = \{ x \in \mathbb{R}^3 : \| x \| \leq 1 \}.
\]

Then it is a measure space equipped with the Lebesgue measure \(\mu \). Suppose \(\{ B_1, B_2, B_3 \} \) is a partition of \(B \) where \(\mu(B_1) \geq \mu(B_2) \geq \mu(B_3) > 0 \). Let \(\mathbb{H} = \{ W_1, W_2, W_3 \} \), where \(W_1 = \text{span} \{ e_2, e_3 \} \), \(W_2 = \text{span} \{ e_1, e_3 \} \) and \(W_3 = \text{span} \{ e_1, e_2 \} \). Define

\[
F : B \rightarrow \mathbb{H} \quad \text{by} \quad F(x) = \begin{cases} W_1 & \text{if } x \in B_1 \\ W_2 & \text{if } x \in B_2 \\ W_3 & \text{if } x \in B_3 \end{cases}
\]

and

\[
v : B \rightarrow [0, \infty) \quad \text{by} \quad v(x) = \begin{cases} 1 & \text{if } x \in B_1 \\ 2 & \text{if } x \in B_2 \\ -1 & \text{if } x \in B_3. \end{cases}
\]

It is easy to verify that \(F \) and \(v \) are measurable functions. For each \(x \in B \), define the operator

\[
\Lambda_x(f) = \frac{1}{\sqrt{\mu(B_k)}} \langle f, e_k \rangle e_k, \quad f \in H,
\]
where k is such that $x \in B_k$. Let $T \(f_1, f_2, f_3\) = (2f_1, 3f_2, 5f_3)$ and $U \(f_1, f_2, f_3\) = \left(\frac{f_1}{2}, \frac{f_2}{3}, \frac{f_3}{4}\right)$ be two operators on H. Then it is easy to verify that $T, U \in \mathcal{GB}^+(H)$ and $TU = UT$. Now, for any $f = (f_1, f_2, f_3) \in H$, we have

\[
\begin{aligned}
\int_B v^2(x) \langle \Lambda_x P_F(x)U f, \Lambda_x P_F(x)T f \rangle \, d\mu_x \\
= \sum_{i=1}^3 \int_{B_i} v^2(x) \langle \Lambda_x P_F(x)U f, \Lambda_x P_F(x)T f \rangle \, d\mu_x \\
= f_1^2 + 4f_2^2 + \frac{5f_3^2}{4}.
\end{aligned}
\]

$\Rightarrow \|f\|^2 \leq \int_B v^2(x) \langle \Lambda_x P_F(x)U f, \Lambda_x P_F(x)T f \rangle \, d\mu_x \leq 4\|f\|^2$.

Thus, Λ_{TU} be a continuous (T, U)-controlled g-fusion frame for \mathbb{R}^3 with bounds 1 and 4.

Proposition 3.3. Let Λ_{TU} be a continuous (T, U)-controlled g-fusion Bessel family for H with bound B. Then there exists a unique bounded linear operator $S_C : H \to H$ such that

\[
\langle S_C f, g \rangle = \int_X v^2(x) \langle T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x)U f, g \rangle \, d\mu_x \quad \forall \ f, g \in H.
\]

Furthermore, if Λ_{TU} is a continuous (T, U)-controlled g-fusion frame for H then $AI_H \leq S_C \leq BI_H$.

Proof. Define the mapping $\Psi : H \times H \to \mathbb{C}$ by

\[
\Psi(f, g) = \int_X v^2(x) \langle T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x)U f, g \rangle \, d\mu_x \quad \forall \ f, g \in H.
\]
Then Ψ is a sesquilinear functional. Now, by Cauchy-Schwarz inequality, we have

$$|\Psi(f, g)| = \left| \int_X v^2(x) \left\langle \left(T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U \right)^{1/2} f, \left(T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U \right)^{1/2} g \right\rangle \, d\mu_x \right|$$

$$\leq \left(\int_X v^2(x) \left\| \left(T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U \right)^{1/2} f \right\|^2 \, d\mu_x \right)^{1/2} \times \left(\int_X v^2(x) \left\| \left(T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U \right)^{1/2} g \right\|^2 \, d\mu_x \right)^{1/2}$$

$$= \left(\int_X v^2(x) \left\langle \Lambda_x P_F(x) U f, \Lambda_x P_F(x) T f \right\rangle \, d\mu_x \right)^{1/2} \times \left(\int_X v^2(x) \left\langle \Lambda_x P_F(x) U g, \Lambda_x P_F(x) T g \right\rangle \, d\mu_x \right)^{1/2}$$

$$\leq B \left\| f \right\| \left\| g \right\| .$$

Thus, Ψ is a bounded sesquilinear functional with $\left\| \Psi \right\| \leq B$. Therefore, by Theorem 2.3.6 in [21], there exists a unique operator $S_C : H \to H$ such that $\Psi(f, g) = \langle S_C f, g \rangle$ and $\left\| \Psi \right\| = \left\| S_C \right\|$. Thus, for each $f, g \in H$, we have

$$\langle S_C f, g \rangle = \int_X v^2(x) \left\langle T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U f, g \right\rangle \, d\mu_x.$$

Now, for each $f \in H$, we have

$$\langle S_C f, f \rangle = \int_X v^2(x) \left\langle \Lambda_x P_F(x) U f, \Lambda_x P_F(x) T f \right\rangle \, d\mu_x$$

$$= \int_X v^2(x) \left\| \left(T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U \right)^{1/2} f \right\|^2 \, d\mu_x.$$

This verifies that S_C is a positive operator. Also, it is easy to verify that S_C is a self-adjoint. Furthermore, if $A_{T,U}$ is a continuous (T, U)-controlled g-fusion frame for H then by (3) it is easy to verify that $A_{I_H} \leq S_C \leq B_{I_H}$.

Theorem 3.4. Let $A_{T,U}$ be a continuous (T, U)-controlled g-fusion Bessel family for H with bound B. Then the mapping $T_C : L^2(X, K) \to H$ defined by

$$\langle T_C \Phi, g \rangle = \int_X v^2(x) \left\langle T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U f, g \right\rangle \, d\mu_x,$$
where for all \(f \in H \), \(\Phi = \left\{ v(x) \left(T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U\right)^{1/2} f \right\}_{x \in X} \) and \(g \in H \), is a linear and bounded operator with \(\| T_C \| \leq \sqrt{B}. \) Furthermore, for each \(g \in H \), we have

\[
T_C^* g = \left\{ v(x) \left(T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U\right)^{1/2} g \right\}_{x \in X}.
\]

Proof. For \(\Phi = \left\{ v(x) \left(T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U\right)^{1/2} f \right\}_{x \in X} \in L^2(X, K), \)

\[
\| T_C \Phi \| = \sup_{\| g \| = 1} |\langle T_C \Phi, g \rangle | = \sup_{\| g \| = 1} \left| \int_X v^2(x) \left(T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, g \right) d\mu_x \right|^{1/2} \leq \sup_{\| g \| = 1} \left(\int_X v^2(x) \left\| \left(T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U\right)^{1/2} g \right\|^2 d\mu_x \right)^{1/2} \| \Phi \|_2 \leq \sqrt{B} \| \Phi \|_2.
\]

This shows that \(T_C \) is a bounded linear operator with \(\| T_C \| \leq \sqrt{B}. \) Now, for each \(g \in H \) and \(\Phi \in L^2(X, K) \), we have

\[
\langle \Phi, T_C^* g \rangle = \langle T_C \Phi, g \rangle = \int_X v^2(x) \left(\left(T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U\right)^{1/2} f, \left(T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U\right)^{1/2} g \right) d\mu_x \leq \sup_{\| g \| = 1} \left(\int_X v^2(x) \left\{ v(x) \left(T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U\right)^{1/2} g \right\}_{x \in X} \right) \| \Phi \|_2.
\]

This completes the proof. \(\square \)

The operators \(T_C \) and \(T_C^* \) are called the synthesis operator and analysis operator of \(\Lambda_{TU} \), respectively.

In the following proposition, we will see that it is enough to check the continuous controlled \(g \)-fusion frame condition on a dense subset \(M \) of \(H \).

Proposition 3.5. Suppose that \((X, \mu) \) is a measure space with \(\mu \) is \(\sigma \)-finite and \(\Lambda_{TU} \) is a continuous \((T, U)\)-controlled \(g \)-fusion frame for a dense subset \(M \) of \(H \) having bounds \(A \) and \(B \). Then \(\Lambda_{TU} \) is a continuous \((T, U)\)-controlled \(g \)-fusion frame for \(H \) with same bounds.
Proof. Let \(\{ X_n \}_{n=1}^{\infty} \) be a sequence of disjoint measurable subsets of \(X \) such that
\[
X = \bigcup_{n=1}^{\infty} X_n \quad \text{with} \quad \mu(X_n) < \infty \quad \text{for each} \quad n \in \mathbb{N}.
\]
Let
\[
\Omega_m = \{ x \in X : m \leq \| \phi(x) \| < m+1, \forall \phi \in L^2(X,K) \}, \quad m \geq 0.
\]
It is easy to verify that for each \(m \geq 0, \Omega_m \) is a measurable set and
\[
X = \bigcup_{m=0}^{\infty} \bigcap_{n=1}^{\infty} (X_n \cap \Omega_m).
\]
If possible suppose that \(\Lambda_{T,U} \) is not a continuous \((T,U)\)-controlled \(g\)-fusion Bessel mapping for \(H \). Then there exists \(f \in H \) such that
\[
\int_X v^2(x) \langle \Lambda_x P_{F(x)}U f, \Lambda_x P_{F(x)}T f \rangle \, d\mu_x > B \| f \|^2.
\]
It follows that there exist finite subsets \(I, J \) such that
\[
\sum_{m \in I} \sum_{n \in J} \int_{X_n \cap \Omega_m} v^2(x) \langle \Lambda_x P_{F(x)}U f, \Lambda_x P_{F(x)}T f \rangle \, d\mu_x > B \| f \|^2. \tag{4}
\]
Let \(\{ f_k \} \) be a sequence in \(M \) such that \(f_k \to f \) as \(k \to \infty \). Then, we have
\[
\sum_{m \in I} \sum_{n \in J} \int_{X_n \cap \Omega_m} v^2(x) \langle \Lambda_x P_{F(x)}U f_k, \Lambda_x P_{F(x)}T f_k \rangle \, d\mu_x \leq B \| f_k \|^2,
\]
and therefore by Lebesgue’s Dominated Convergence Theorem, it is a contradiction of (4). Hence, \(\Lambda_{T,U} \) is a continuous \((T,U)\)-controlled \(g\)-fusion Bessel mapping for \(H \). So, the analysis operator \(T^*_C \) is well-defined for \(H \). Let \(f \in H \) be arbitrary and \(\{ f_k \} \) be a sequence in \(M \) such that \(f_k \to f \) as \(k \to \infty \). Then
\[
A \| f_k \|^2 \leq \| T^*_C f_k \|^2.
\]
Taking \(k \to \infty \), we get
\[
A \| f \|^2 \leq \| T^*_C f \|^2
\]
\[
= \int_X v^2(x) \langle \Lambda_x P_{F(x)}U f, \Lambda_x P_{F(x)}T f \rangle \, d\mu_x.
\]
This completes the proof.

Next we will see that continuous controlled \(g\)-fusion Bessel families for \(H \) becomes continuous controlled \(g\)-fusion frames for \(H \) under some sufficient conditions. Consider \(G : X \to \mathbb{H} \) be such that for each \(h \in H \), the mapping \(x \to P_{G(x)}(h) \) is measurable and \(w : X \to \mathbb{R}^+ \) be a measurable function.

Theorem 3.6. Let the families \(\Lambda_{T,U} = \{(F(x), \Lambda_x, v(x))\}_{x \in X} \) and \(\Gamma_{T,U} = \{(G(x), \Gamma_x, w(x))\}_{x \in X} \) be two continuous \((T,U)\)-controlled \(g\)-fusion Bessel families for \(H \) with bounds \(B \) and \(D \), respectively. Suppose that \(T_C \) and \(T^*_C \) be their synthesis operators such that \(T_C, T^*_C = I_H \). Then \(\Lambda_{T,U} \) and \(\Gamma_{T,U} \) are continuous \((T,U)\)-controlled \(g\)-fusion frame for \(H \).
Thus, Γ_{TU} bounds 1. This shows that Λ_{TU} is a continuous (T, U)-controlled g-fusion frame for H with bounds $1/D$ and B. Similarly, it can be shown that Γ_{TU} is a continuous (T, U)-controlled g-fusion frame for H.

In the next result, we construct continuous controlled g-fusion frame by using bounded linear operator.

Theorem 3.7. Let Λ_{TU} be a continuous (T, U)-controlled g-fusion frame for H with bounds A, B and $V \in B(H)$ be an invertible operator on H such that $V^* \text{ commutes with } T, U$. Then $\Gamma_{TU} = \left\{ (V F(x), \Lambda_x P_{F(x)} V^*, v(x)) \right\}_{x \in X}$ is a continuous (T, U)-controlled g-fusion frame for H.

Proof. Since $P_{F(x)} V^* = P_{F(x)} V^* P_{VF(x)}$ for all $x \in X$, the mapping $x \to P_{VF(x)}$ is weakly measurable. Now, for each $f \in H$, using Theorem 2.5, we have

$$\int_X v^2(x) \left\langle \Lambda_x P_{F(x)} V^* P_{VF(x)} U f, \Lambda_x P_{F(x)} V^* P_{VF(x)} T f \right\rangle d\mu_x$$

$$= \int_X v^2(x) \left\langle \Lambda_x P_{F(x)} V^* U f, \Lambda_x P_{F(x)} V^* T f \right\rangle d\mu_x$$

$$= \int_X v^2(x) \left\langle \Lambda_x P_{F(x)} U V^* f, \Lambda_x P_{F(x)} T V^* f \right\rangle d\mu_x$$

$$\leq B \| V^* f \| ^2 \leq B \| V \| ^2 \| f \| ^2 .$$

(5)

On the other hand, from (5), we get

$$\int_X v^2(x) \left\langle \Lambda_x P_{F(x)} V^* P_{VF(x)} U f, \Lambda_x P_{F(x)} V^* P_{VF(x)} T f \right\rangle d\mu_x$$

$$\geq A \| V^* f \| ^2 \geq A \| V^{-1} \| ^{-2} \| f \| ^2 \forall f \in H.$$

Thus, Γ_{TU} is a continuous (T, U)-controlled g-fusion frame for H.

Furthermore, for each \(f \in H \), using (5), we have
\[
\int_X v^2(x) \left< \Lambda_x P_{F(x)} V^* P_{V F(x)} U f, \Lambda_x P_{F(x)} V^* P_{V F(x)} T f \right> d\mu_x
= \int_X v^2(x) \left< \Lambda_x P_{F(x)} U V^* f, \Lambda_x P_{F(x)} T V^* f \right> d\mu_x
= \left< S_C V^* f, V^* f \right> = \left< V S_C V^* f, f \right>,
\]
where \(S_C \) is the corresponding frame operator for \(\Lambda T U \).

In particular, if \(V = S_C^{-1} \) then by the Theorem 3.7, the family \(\Lambda T U = \{ (S_C^{-1} F(x), \Lambda_x P_{F(x)} S_C^{-1}, v(x)) \}_{x \in X} \) is also a continuous \((T, U)\)-controlled \(g \)-fusion frame for \(H \). The family \(\Lambda^0 T U \) is called the canonical dual continuous controlled \(g \)-fusion frame of \(\Lambda T U \). It is easy to verify that the corresponding frame operator for \(\Lambda^0 T U \) is \(S_C^{-1} \).

A characterization of a continuous controlled \(g \)-fusion frame is given by in the next theorem.

Theorem 3.8. The family \(\Lambda T U \) is a continuous \((T, U)\)-controlled \(g \)-fusion frame for \(H \) if and only if \(\Lambda T U \) is a continuous \((T U, I_H)\)-controlled \(g \)-fusion frame for \(H \).

Proof. For each \(f \in H \), we have
\[
\int_X v^2(x) \left< \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} T f \right> d\mu_x = \left< T S_g F U f, f \right> = \left< S_g F T U f, f \right>
= \int_X v^2(x) \left< \Lambda_x P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} T U f, f \right> d\mu_x
= \int_X v^2(x) \left< \Lambda_x P_{F(x)} T U f, \Lambda_x P_{F(x)} f \right> d\mu_x,
\]
where
\[
\left< S_g F f, f \right> = \int_X v^2(x) \left< P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} f, f \right> d\mu_x.
\]
Hence, \(\Lambda T U \) is continuous \((T, U)\)-controlled \(g \)-fusion frame for \(H \) with bounds \(A \) and \(B \) is equivalent to:
\[
A \| f \|^2 \leq \int_X v^2(x) \left< \Lambda_x P_{W_x} T U f, \Lambda_x P_{W_x} f \right> d\mu_x \leq B \| f \|^2 \quad \forall f \in H.
\]
Thus, \(\Lambda T U \) is a continuous \((T U, I_H)\)-controlled \(g \)-fusion frame for \(H \) with bounds \(A \) and \(B \).
Corollary 3.9. The family Λ_{TU} is a continuous (T, U)-controlled g-fusion frame for H if and only if Λ_{TU} is a continuous $((TU)^{1/2}, (TU)^{1/2})$-controlled g-fusion frame for H.

The following theorem shows that any continuous controlled g-fusion frame is a continuous g-fusion frame and conversely any continuous g-fusion frame is a continuous controlled g-fusion frame under some conditions.

Theorem 3.10. Let $T, U \in \mathcal{G} \mathcal{B}^+(H)$ and $S_{gF}T = TS_{gF}$. Then Λ_{TU} is a continuous (T, U)-controlled g-fusion frame for H if and only if Λ_{TU} is a continuous g-fusion frame for H, where S_{gF} is the continuous g-fusion frame operator defined by

$$\langle S_{gF}f, f \rangle = \int_X v^2(x) \langle P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} f, f \rangle d\mu_x, \ f \in H.$$

Proof. First we suppose that Λ_{TU} is a continuous g-fusion frame for H with bounds A and B. Then for each $f \in H$, we have

$$A \| f \|^2 \leq \int_X v^2(x) \| \Lambda_x P_{F(x)} f \|^2 d\mu_x \leq B \| f \|^2.$$

Now according to the Lemma 3.10 of [3], we can deduced that

$$m m' A I_H \leq TS_{gF}U \leq M M' B I_H,$$

where m, m' and M, M' are positive constants. Then for each $f \in H$, we have

$$m m' A \| f \|^2 \leq \int_X v^2(x) \langle T P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, f \rangle d\mu_x \leq M M' B \| f \|^2$$

$$\Rightarrow m m' A \| f \|^2 \leq \int_X v^2(x) \langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} T f \rangle d\mu_x \leq M M' B \| f \|^2.$$

Hence, Λ_{TU} is a continuous (T, U)-controlled g-fusion frame for H.

Conversely, suppose that Λ_{TU} is a continuous (T, U)-controlled g-fusion frame
for H with bounds A and B. Now, for each $f \in H$, we have

$$A \| f \|^2 = A \left\| (TU)^{1/2} (TU)^{-1/2} f \right\|^2$$

$$\leq \left\| (TU)^{1/2} \right\|^2 \int_X v^2(x) \left\langle \Lambda_x P_{F(x)} U (TU)^{-1/2} f, \Lambda_x P_{F(x)} T (TU)^{-1/2} f \right\rangle d\mu_x$$

$$= \left\| (TU)^{1/2} \right\|^2 \int_X v^2(x) \left\langle U^{1/2} T^{-1/2} P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U^{1/2} T^{-1/2} f, f \right\rangle d\mu_x$$

$$= \left\| (TU)^{1/2} \right\|^2 \int_X v^2(x) \left\langle U^{-1/2} T^{1/2} S_{gF} U^{1/2} T^{-1/2} f, f \right\rangle = \left\| (TU)^{1/2} \right\|^2 \left\langle S_{gF} f, f \right\rangle$$

$$= \left\| (TU)^{1/2} \right\|^2 \int_X v^2(x) \left\langle P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} f, f \right\rangle d\mu_x$$

$$\Rightarrow \frac{A}{\left\| (TU)^{1/2} \right\|^2} \| f \|^2 \leq \int_X v^2(x) \| \Lambda_x P_{F(x)} f \|^2 d\mu_x.$$

On the other hand, it is easy to verify that

$$\int_X v^2(x) \| \Lambda_x P_{F(x)} f \|^2 d\mu_x = \left\langle (TU)^{-1/2} (TU)^{1/2} S_{gF} f, f \right\rangle$$

$$= \left\langle (TU)^{1/2} S_{gF} f, (TU)^{-1/2} f \right\rangle = \left\langle S_{gF} (TU) (TU)^{-1/2} f, (TU)^{-1/2} f \right\rangle$$

$$= \left\langle TS_{gF} U (TU)^{-1/2} f, (TU)^{-1/2} f \right\rangle = \left\langle S_C (TU)^{-1/2} f, (TU)^{-1/2} f \right\rangle$$

$$\leq B \left\| (TU)^{-1/2} \right\|^2 \| f \|^2.$$

Thus, Λ_{TU} is a continuous g-fusion frame for H. This completes the proof. \qed

4 Frame operator for a pair of continuous controlled g-fusion Bessel families

In this section, the frame operator for a pair of continuous controlled g-fusion Bessel families in H is considered and some properties are going to be established. Also, we present multiplier of continuous controlled g-fusion Bessel families in H. We start this section by giving continuous resolution of the identity operator on H.

Let Λ_{TU} be a continuous (T, U)-controlled g-fusion frame for H with the
corresponding frame operator S_C. Then for each $f, g \in H$, we have
\[
\langle f, g \rangle = \langle S_C S_C^{-1} f, g \rangle = \langle S_C^{-1} S_C f, g \rangle
\]
\[
= \int_X v^2(x) \langle T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U S_C^{-1} f, g \rangle \, d\mu_x
\]
\[
= \int_X v^2(x) \langle S_C^{-1} T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U f, g \rangle \, d\mu_x.
\]
Thus, the families of bounded operators $\{ T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U S_C^{-1} \}_{x \in X}$ and $\{ S_C^{-1} T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U \}_{x \in X}$ are continuous resolution of the identity operator on H.

Theorem 4.1. Let Λ_{TU} be a continuous (T, U)-controlled g-fusion frame for H with frame bounds A, B and S_C be its corresponding frame operator. Assume that S_C^{-1} commutes with T and U. Then $\{ v^2(x) T^* P_F(x) \Lambda_x^* T_x U \}_{x \in X}$ is a continuous resolution of the identity operator on H, where $T_x = \Lambda_x P_F(x) S_C^{-1}$, $x \in X$. Furthermore, for each $f \in H$, we have
\[
\frac{A}{B^2} \| f \|^2 \leq \int_X v^2(x) \langle T_x U f, T_x T f \rangle \, d\mu_x \leq \frac{B}{A^2} \| f \|^2.
\]
Proof. For $f, g \in H$, we have the reconstruction formula for Λ_{TU}:
\[
\langle f, g \rangle = \int_X v^2(x) \langle T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U S_C^{-1} f, g \rangle \, d\mu_x
\]
\[
= \int_X v^2(x) \langle T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) S_C^{-1} U f, g \rangle \, d\mu_x
\]
\[
= \int_X v^2(x) \langle T^* P_F(x) \Lambda_x^* T_x U f, g \rangle \, d\mu_x.
\]
Thus, $\{ v^2(x) T^* P_F(x) \Lambda_x^* T_x U \}_{x \in X}$ is a continuous resolution of the identity operator on H. Since Λ_{TU} is a continuous (T, U)-controlled g-fusion frame for H with frame bounds A and B, for each $f \in H$, we have
\[
\int_X v^2(x) \langle T_x U f, T_x T f \rangle \, d\mu_x
\]
\[
= \int_X v^2(x) \langle \Lambda_x P_F(x) S_C^{-1} U f, \Lambda_x P_F(x) S_C^{-1} T f \rangle \, d\mu_x
\]
\[
= \int_X v^2(x) \langle \Lambda_x P_F(x) U S_C^{-1} f, \Lambda_x P_F(x) T S_C^{-1} f \rangle \, d\mu_x
\]
\[
\leq B \| S_C^{-1} f \|^2 \leq B \| S_C^{-1} \|^2 \| f \|^2 \leq \frac{B}{A^2} \| f \|^2.
\]
On the other hand, for each \(f \in H \), we have

\[
\int_X v^2(x) \langle T_x U f, T_x T f \rangle \, d\mu_x \geq A \left\| S^{-1}_C f \right\|^2 \geq \frac{A}{B^2} \| f \|^2.
\]

This completes the proof. \(\square \)

Next we will see that a continuous controlled \(g \)-fusion Bessel family becomes a continuous controlled \(g \)-fusion frame by using a continuous resolution of the identity operator on \(H \).

Theorem 4.2. Let \(\Lambda_{TT} \) be a continuous \((T, T)\)-controlled \(g \)-fusion Bessel family in \(H \) with bound \(B \). Then \(\Lambda_{TT} \) is a continuous \((U, U)\)-controlled \(g \)-fusion frame for \(H \) provided \(\{ v^2(x) T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U \}_{x \in X} \) is a continuous resolution of the identity operator on \(H \).

Proof. Since \(\{ v^2(x) T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U \}_{x \in X} \) is a continuous resolution of the identity operator on \(H \), for \(f, g \in H \), we have

\[
\langle f, g \rangle = \int_X v^2(x) \langle T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, g \rangle \, d\mu_x.
\]

By Cauchy-Schwartz inequality, for each \(f \in H \), we have

\[
\| f \|^4 = (\langle f, f \rangle)^2 = \left(\int_X v^2(x) \langle T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, g \rangle \, d\mu_x \right)^2
\]

\[
= \left(\int_X v^2(x) \langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} T f \rangle \, d\mu_x \right)^2
\]

\[
\leq \int_X v^2(x) \| \Lambda_x P_{F(x)} U f \|^2 \, d\mu_x \int_X v^2(x) \| \Lambda_x P_{F(x)} T f \|^2 \, d\mu_x
\]

\[
\leq B \| f \|^2 \int_X v^2(x) \langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} U f \rangle \, d\mu_x
\]

\[
\Rightarrow \frac{1}{B} \| f \|^2 \leq \int_X v^2(x) \langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} U f \rangle \, d\mu_x.
\]

On the other hand, for each \(f \in H \), we have

\[
\int_X v^2(x) \langle \Lambda_x P_{F(x)} U f, \Lambda_x P_{F(x)} U f \rangle \, d\mu_x
\]

\[
= \int_X v^2(x) \langle \Lambda_x P_{F(x)} TT^{-1} U f, \Lambda_x P_{F(x)} TT^{-1} U f \rangle \, d\mu_x
\]

\[
\leq B \| T^{-1} U f \|^2 \leq B \| T^{-1} \|^2 \| U \|^2 \| f \|^2.
\]
Thus, Λ_{TT} is a continuous (U, U)-controlled g-fusion frame for H. Similarly, it can be shown that if Λ_{TT} is a continuous (U, U)-controlled g-fusion Bessel family in H then Λ_{TT} is also a continuous (T, T)-controlled g-fusion frame for H. \[\square\]

Suppose $G : X \to \mathbb{H}$ be a weakly measurable function, $w : X \to \mathbb{R}^+$ be a measurable function and for each $x \in X$, $\Gamma_x \in B(G(x), K_x)$ and Γ_{UU} denotes the family $\{(G(x), \Gamma_x, w(x))\}_{x \in X}$. Now, we present the frame operator for a pair of continuous controlled g-fusion Bessel families.

Definition 4.3. Let Λ_{TT} and Γ_{UU} be continuous (T, T)-controlled and (U, U)-controlled g-fusion Bessel families for H with bounds B and D, respectively. Then the operator $S_{\Lambda T \Gamma U} : H \to H$ defined by

$$
\langle S_{\Lambda T \Gamma U} f, g \rangle = \int_X v(x)w(x) \langle U P_{G(x)} \Gamma_x^* \Lambda_x P_{F(x)} T f, g \rangle \, d\mu_x,
$$

is called the frame operator for the pair of continuous controlled g-fusion Bessel families Λ_{TT} and Γ_{UU}.

Theorem 4.4. Let $S_{\Lambda T \Gamma U}$ be the frame operator for the pair of continuous (T, T)-controlled and (U, U)-controlled g-fusion Bessel families Λ_{TT} and Γ_{UU} with bounds B and D, respectively. Then $S_{\Lambda T \Gamma U}$ is well-defined and bounded operator with $\|S_{\Lambda T \Gamma U}\| \leq \sqrt{BD}$.

Proof. Let $f, g \in H$. Then by Cauchy-Schwartz inequality, we have

$$
\| \langle S_{\Lambda T \Gamma U} f, g \rangle \| = \left| \int_X v(x)w(x) \langle U P_{G(x)} \Gamma_x^* \Lambda_x P_{F(x)} T f, g \rangle \, d\mu_x \right|
$$

$$
\leq \int_X v(x)w(x) \left| \langle \Lambda_x P_{F(x)} T f, \Gamma_x P_{G(x)} U g \rangle \right| \, d\mu_x
$$

$$
\leq \int_X v(x)w(x) \| \Lambda_x P_{F(x)} T f \| \| \Gamma_x P_{G(x)} U g \| \, d\mu_x
$$

$$
\leq \left(\int_X v^2(x) \| \Lambda_x P_{F(x)} T f \|^2 \, d\mu_x \right)^{1/2} \left(\int_X w^2(x) \| \Gamma_x P_{G(x)} U g \|^2 \, d\mu_x \right)^{1/2}
$$

$$
\leq \sqrt{BD} \| f \| \| g \|.
$$

Thus, $S_{\Lambda T \Gamma U}$ is a well-defined and bounded operator with $\|S_{\Lambda T \Gamma U}\| \leq \sqrt{BD}$. \[\square\]

In particular, for $T = U = I_H$, the operator $S_{\Lambda \Gamma} : H \to H$ defined by

$$
\langle S_{\Lambda \Gamma} f, g \rangle = \int_X v(x)w(x) \langle P_{G(x)} \Gamma_x^* \Lambda_x P_{F(x)} f, g \rangle \, d\mu_x,
$$

$f, g \in H$.
is well-defined bounded operator. Also, for each \(f, g \in H \), we have

\[
\langle S_{ATGU} f, g \rangle = \int_X v(x) w(x) \langle U P_{G(x)} \Gamma_x^* \Lambda_x P_{F(x)} T f, g \rangle \, d\mu_x
\]

\[
= \int_X v(x) w(x) \langle f, T P_{F(x)} \Lambda_x^* \Gamma_x P_{G(x)} U g \rangle \, d\mu_x = \langle f, S_{TUAT} g \rangle
\]

and hence \(S_{TATU}^* = S_{TUAT} \).

Theorem 4.5. Let \(S_{ATGU} \) be the frame operator for the pair of continuous \((T, T)\)-controlled and \((U, U)\)-controlled \(g\)-fusion families \(\Lambda_{TT} \) and \(\Gamma_{UU} \) with bounds \(B \) and \(D \), respectively. Then the following statements are equivalent:

(i) \(S_{ATGU} \) is bounded below.

(ii) There exists \(K \in B(H) \) such that \(\{T_x\}_{x \in X} \) is a continuous resolution of the identity operator on \(H \), where \(T_x = v(x) w(x) K U P_{G(x)} \Gamma_x^* \Lambda_x P_{F(x)} T \), \(x \in X \).

If one of the given conditions hold, then \(\Lambda_{TT} \) is a continuous \((T, T)\)-controlled \(g\)-fusion frame for \(H \).

Proof. (i) \(\Rightarrow \) (ii) Suppose that \(S_{ATGU} \) is bounded below. Then for each \(f \in H \), there exists \(A > 0 \) such that

\[
\|f\|^2 \leq A \|S_{ATGU} f\|^2 \Rightarrow \langle I_H f, f \rangle \leq A \langle S_{ATGU}^* S_{ATGU} f, f \rangle
\]

\[
\Rightarrow I_H^* I_H \leq A S_{ATGU}^* S_{ATGU}.
\]

So, by Theorem 2.1, there exists \(K \in B(H) \) such that \(K S_{ATGU} = I_H \).

Therefore, for each \(f, g \in H \), we have

\[
\langle f, g \rangle = \langle K S_{ATGU} f, g \rangle = \int_X v(x) w(x) \langle K U P_{G(x)} \Gamma_x^* \Lambda_x P_{F(x)} T f, g \rangle \, d\mu_x.
\]

Thus, \(\{T_x\}_{x \in X} \) is a continuous resolution of the identity operator on \(H \), where \(T_x = v(x) w(x) K U P_{G(x)} \Gamma_x^* \Lambda_x P_{F(x)} T \), \(x \in X \).

(ii) \(\Rightarrow \) (i) Since \(\{T_x\}_{x \in X} \) is a continuous resolution of the identity operator on \(H \), for each \(f, g \in H \), we have

\[
\langle f, g \rangle = \int_X v(x) w(x) \langle K U P_{G(x)} \Gamma_x^* \Lambda_x P_{F(x)} T f, g \rangle \, d\mu_x = \langle K S_{ATGU} f, g \rangle.
\]

Thus, \(I_H = K S_{ATGU} \). So, by Theorem 2.1, there exists some \(\alpha > 0 \) such that \(I_H I_H^* \leq \alpha S_{ATGU}^* S_{ATGU} \) and hence \(S_{ATGU} \) is bounded below.
Last part: First we suppose that \(S_{\Lambda T \Gamma U} \) is bounded below. Then for all \(f \in H \), there exists \(M > 0 \) such that \(\| S_{\Lambda T \Gamma U} f \| \geq M \| f \| \) and therefore by (\ref{eq:inequality}), we have

\[
M^2 \| f \|^2 \leq \| S_{\Lambda T \Gamma U} f \|^2 \leq D \left(\int_X v^2(x) \| \Lambda_x P_{F(x)} T f \|^2 \, d\mu_x \right)^{1/2}
\]

\[
\Rightarrow \frac{M^2}{D} \| f \|^2 \leq \int_X v^2(x) \langle \Lambda_x P_{F(x)} T f, \Lambda_x P_{F(x)} T f \rangle \, d\mu_x
\]

Hence, \(\Lambda_{TT} \) is a continuous \((T, T)\)-controlled \(g\)-fusion frame for \(H \) with bounds \(M^2 / D \) and \(B \). Similarly, it can be shown that \(\Gamma_{UU} \) is a continuous \((U, U)\)-controlled \(g\)-fusion frame for \(H \) with bounds \(M^2 / B \) and \(D \).

Next, we suppose that the given condition (\textit{ii}) holds. Then for each \(f, g \in H \), we have

\[
\langle f, g \rangle = \int_X v(x) w(x) \langle K U P_{G(x)} \Gamma_x^* \Lambda_x P_{F(x)} T f, g \rangle \, d\mu_x, \ K \in \mathcal{B}(H).
\]

By Cauchy-Schwarz inequality, for each \(f \in H \), we have

\[
\| f \|^2 = \langle f, f \rangle = \int_X v(x) w(x) \langle K U P_{G(x)} \Gamma_x^* \Lambda_x P_{F(x)} T f, f \rangle \, d\mu_x
\]

\[
= \int_X v(x) w(x) \langle \Lambda_x P_{F(x)} T f, \Gamma_x P_{G(x)} U K^* f \rangle \, d\mu_x
\]

\[
\leq \left(\int_X v^2(x) \| \Lambda_x P_{F(x)} T f \|^2 \, d\mu_x \right)^{1/2} \left(\int_X w^2(x) \| \Gamma_x P_{G(x)} U K^* f \|^2 \, d\mu_x \right)^{1/2}
\]

\[
\leq \sqrt{D} \| K^* f \| \left(\int_X v^2(x) \| \Lambda_x P_{F(x)} T f \|^2 \, d\mu_x \right)^{1/2}
\]

\[
\Rightarrow \frac{1}{D \| K \|^2} \| f \|^2 \leq \int_X v^2(x) \langle \Lambda_x P_{F(x)} T f, \Lambda_x P_{F(x)} T f \rangle \, d\mu_x
\]

Therefore, in this case \(\Lambda_{TT} \) is also a continuous \((T, T)\)-controlled \(g\)-fusion frame for \(H \).

\[\blacksquare\]

Theorem 4.6. Let \(\Lambda_{TT} \) and \(\Gamma_{UU} \) be continuous \((T, T)\)-controlled and \((U, U)\)-controlled \(g\)-fusion frames for \(H \) and \(T, U, S_{\Lambda} + S_{\Gamma} \in \mathcal{G}\mathcal{B}^+(H) \) such that they are commutes with each others. Then \(S_{\Lambda_{TT}U} + S_{\Gamma_{UU}T} \) is a positive operator.
Proof. For each $f, g \in H$, we have
\[
\langle (S_{T \Gamma U} + S_{\Gamma U T}) f, g \rangle \\
= \int_X v^2(x) \langle U P_G(x) \Gamma_x^* \Lambda_x P_F(x) T f, g \rangle d\mu_x + \int_X v^2(x) \langle T P_F(x) \Lambda_x^* \Gamma_x P_G(x) U f, g \rangle d\mu_x \\
= \langle U S_{\Gamma A} T f, g \rangle + \langle T S_{\Gamma A} U f, g \rangle = \langle U S_{\Gamma A} T f, g \rangle + \langle U S_{\Gamma A} T f, g \rangle \\
= \langle U (S_{\Gamma A} + S_{\Gamma A}) T f, g \rangle.
\]
This shows that $S_{T \Gamma U} + S_{\Gamma U T} = U (S_{\Gamma A} + S_{\Gamma A}) T$. Since T, U and $S_{\Gamma A} + S_{\Gamma A}$ are positive and commutes with each other. Therefore, $S_{T \Gamma U} + S_{\Gamma U T}$ is a positive operator. \qed

Theorem 4.7. Let Λ_T and Γ_U be continuous (T, T)-controlled and (U, U)-controlled g-fusion Bessel families for H with bounds B and D, respectively. Let $m \in L^\infty(X, \mu)$. Then the operator $M_{m, \Lambda_T, \Gamma_U} : H \to H$ defined by
\[
\langle M_{m, \Lambda_T, \Gamma_U} f, g \rangle = \int_X m(x) v(x) w(x) \langle T P_F(x) \Lambda_x^* \Gamma_x P_G(x) U f, g \rangle d\mu_x,
\]
for $f, g \in H$, is well-defined and bounded operator.

Proof. For each $f, g \in H$, we have
\[
|\langle M_{m, \Lambda_T, \Gamma_U} f, g \rangle| = \left| \int_X m(x) v(x) w(x) \langle T P_F(x) \Lambda_x^* \Gamma_x P_G(x) U f, g \rangle d\mu_x \right| \\
\leq \int_X |m(x)| |v(x)| |w(x)| \| \Lambda_x P_F(x) T g \| \| \Gamma_x P_G(x) U f \| d\mu_x \\
\leq \| m \|_\infty \left(\int_X v^2(x) \| \Lambda_x P_F(x) T g \|^2 d\mu_x \right)^{1/2} \left(\int_X w^2(x) \| \Gamma_x P_G(x) U f \|^2 d\mu_x \right)^{1/2} \\
\leq \| m \|_\infty \sqrt{B D} \| f \| \| g \|.
\]
Thus, $M_{m, \Lambda_T, \Gamma_U}$ is a well-defined and bounded operator with $\| M_{m, \Lambda_T, \Gamma_U} \| \leq \| m \|_\infty \sqrt{B D}$. \qed

Now, multiplier of continuous controlled g-fusion Bessel families in Hilbert spaces is presented.

Definition 4.8. Let Λ_T and Γ_U be continuous (T, T)-controlled and (U, U)-controlled g-fusion Bessel families for H with bounds B and D, respectively. Let $m \in L^\infty(X, \mu)$. Then the operator $M_{m, \Lambda_T, \Gamma_U} : H \to H$ defined by
\[
\langle M_{m, \Lambda_T, \Gamma_U} f, g \rangle = \int_X m(x) v(x) w(x) \langle T P_F(x) \Lambda_x^* \Gamma_x P_G(x) U f, g \rangle d\mu_x,
\]
for $f, g \in H$, is called the continuous (T, U)-controlled g-fusion Bessel multiplier of Λ_{TT}, Γ_{UU} and m.

For each $f, g \in H$, we have

$$
\langle M_{m, \Lambda T, \Gamma U} f, g \rangle = \int_X m(x) v(x) w(x) \langle T P_F(x) \Lambda_x^* \Gamma_x P_G(x) U f, g \rangle \, d\mu_x
$$

and hence $M_{m, \Lambda T, \Gamma U}^* = M_{m, \Gamma U, \Lambda T}$.

Theorem 4.9. Let $M_{m, \Lambda T, \Gamma U}$ be the continuous (T, U)-controlled g-fusion Bessel multiplier of Λ_{TT}, Γ_{UU} and m. Assume $\lambda \in (0, 1)$ such that

$$
\| f - M_{m, \Lambda T, \Gamma U} f \| \leq \lambda \| f \| \quad \forall f \in H.
$$

Then Λ_{TT} and Γ_{UU} are continuous (T, T)-controlled and (U, U)-controlled g-fusion frame for H.

Proof. For each $f \in H$, we have

$$(1 - \lambda) \| f \| \leq \| M_{m, \Lambda T, \Gamma U} f \| = \sup_{\| g \| = 1} \langle M_{m, \Lambda T, \Gamma U} f, g \rangle
$$

$$
= \sup_{\| g \| = 1} \int_X m(x) v(x) w(x) \langle T P_F(x) \Lambda_x^* \Gamma_x P_G(x) U f, g \rangle \, d\mu_x
$$

$$
\leq \sup_{\| g \| = 1} \| m \|_\infty \left(\int_X v^2(x) \| \Lambda_x P_F(x) T g \|^2 \, d\mu_x \right)^{1/2} \times
$$

$$
\left(\int_X w^2(x) \| \Gamma_x P_G(x) U f \|^2 \, d\mu_x \right)^{1/2}
$$

$$
\leq \| m \|_\infty \sqrt{B} \left(\int_X w^2(x) \| \Gamma_x P_G(x) U f \|^2 \, d\mu_x \right)^{1/2}
$$

$$
= \frac{(1 - \lambda)^2}{B \| m \|_\infty^2 \| f \|^2} \leq \int_X w^2(x) \langle \Gamma_x P_G(x) U f, \Gamma_x P_G(x) U f \rangle \, d\mu_x.
$$

Thus, Γ_{UU} is a continuous (U, U)-controlled g-fusion frame for H. Similarly, it can be shown that Λ_{TT} is a continuous (T, T)-controlled g-fusion frame for H.

\[\square \]
5 Perturbation of continuous controlled g-fusion frame

In frame theory, one of the most important problems is the stability of frame under some perturbation. P. Casazza and Christensen [6] have generalized the Paley-Wiener perturbation theorem to perturbation of frame in Hilbert space. P. Ghosh and T. K. Samanta [14] discussed stability of dual g-fusion frame. In frame theory, one of the most important problems is the stability of frame under some perturbation. P. Casazza and Christensen [6] have generalized the Paley-Wiener perturbation theorem to perturbation of frame in Hilbert space. P. Ghosh and T. K. Samanta [14] discussed stability of dual g-fusion frame.

Theorem 5.1. Let Λ_{TU} be a continuous (T, U)-controlled g-fusion frame for H with bounds A, B and $\Gamma_{TU} = \{(G(x), \Gamma_x, v(x)) \}_x \in X$. If there exist constants $\lambda_1, \lambda_2, \mu$ with

$$0 \leq \lambda_1, \lambda_2 < 1, \ A (1 - \lambda_1) - \mu \int_X v^2(x) d\mu_x > 0$$

such that for each $f \in H$,

$$0 \leq \langle T^* (P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} - P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)}) U f, f \rangle$$

$$\leq \lambda_1 \langle T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, f \rangle + \lambda_2 \langle T^* P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} U f, f \rangle + \mu \|f\|^2$$

then Γ_{TU} is a continuous (T, U)-controlled g-fusion frame for H.

Proof. For each $f \in H$, we have

$$\int_X v^2(x) \langle T^* P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} U f, f \rangle d\mu_x$$

$$= \int_X v^2(x) \langle T^* (P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} - P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)}) U f, f \rangle d\mu_x +$$

$$+ \int_X v^2(x) \langle T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, f \rangle d\mu_x$$

$$\leq (1 + \lambda_1) \int_X v^2(x) \langle T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, f \rangle d\mu_x + \mu \|f\|^2 \int_X v^2(x) d\mu_x$$

$$+ \lambda_2 \int_X v^2(x) \langle T^* P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} U f, f \rangle d\mu_x$$

$$\Rightarrow (1 - \lambda_2) \int_X v^2(x) \langle T^* P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} U f, f \rangle d\mu_x$$

$$\leq (1 + \lambda_1) \int_X v^2(x) \langle T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, f \rangle d\mu_x + \mu \|f\|^2 \int_X v^2(x) d\mu_x.$$

$$\Rightarrow \int_X v^2(x) \langle \Gamma_x P_{G(x)} U f, \Gamma_x P_{G(x)} T f \rangle d\mu_x \leq \left[\frac{(1 + \lambda_1) B + \mu \int_X v^2(x) d\mu_x}{(1 - \lambda_2)} \right] \|f\|^2.$$
On the other hand, for each $f \in H$, we have

$$\int_X v^2(x) \left< T^* P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} U f, f \right> \, d\mu_x \geq \int_X v^2(x) \left< T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, f \right> \, d\mu_x - \int_X v^2(x) \left< T^* \left(P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} - P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} \right) U f, f \right> \, d\mu_x.$$

$$\Rightarrow (1 + \lambda_2) \int_X v^2(x) \left< T^* P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} U f, f \right> \, d\mu_x \geq (1 - \lambda_1) \int_X v^2(x) \left< T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, f \right> \, d\mu_x - \mu \| f \|^2 \int_X v^2(x) \, d\mu_x.$$

$$\Rightarrow \int_X v^2(x) \left< \Gamma_x P_{G(x)} U f, \Gamma_x P_{G(x)} T f \right> \, d\mu_x \geq \frac{(1 - \lambda_1) A - \mu \int_X v^2(x) \, d\mu_x}{(1 + \lambda_2)} \| f \|^2.$$

Thus, Γ_{TU} is a continuous (T, U)-controlled g-fusion frame for H. \hfill \Box

Corollary 5.2. Let Λ_{TU} be a continuous (T, U)-controlled g-fusion frame for H with bounds A, B and $\Gamma_{TU} = \{(G(x), \Gamma_x, v(x))\}_{x \in X}$. If there exists constant $0 < D \int_X v^2(x) \, d\mu_x < A$ such that for each $f \in H$,

$$0 \leq \left< T^* \left(P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} - P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} \right) U f, f \right> \leq D \| f \|^2$$

then Γ_{TU} is a continuous (T, U)-controlled g-fusion frame for H.

Proof. For each $f \in H$, we have

$$\int_X v^2(x) \left< \Gamma_x P_{G(x)} U f, \Gamma_x P_{G(x)} T f \right> \, d\mu_x = \int_X v^2(x) \left< T^* P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} U f, f \right> \, d\mu_x$$

$$= \int_X v^2(x) \left< T^* \left(P_{G(x)} \Gamma_x^* \Gamma_x P_{G(x)} - P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} \right) U f, f \right> \, d\mu_x + \int_X v^2(x) \left< T^* P_{F(x)} \Lambda_x^* \Lambda_x P_{F(x)} U f, f \right> \, d\mu_x$$

$$\leq \left(B + D \int_X v^2(x) \, d\mu_x \right) \| f \|^2.$$
On the other hand,

\[
\int_X v^2(x) \left\langle T^* P_G(x) \Gamma_x^* \Gamma_x P_G(x) U f, f \right\rangle \, d\mu_x \\
\geq \int_X v^2(x) \left\langle T^* P_F(x) \Lambda_x^* \Lambda_x P_F(x) U f, f \right\rangle \, d\mu_x - \\
- \int_X v^2(x) \left\langle T^* \left(P_G(x) \Gamma_x^* \Gamma_x P_G(x) - P_F(x) \Lambda_x^* \Lambda_x P_F(x) \right) U f, f \right\rangle \, d\mu_x \\
\geq \left(A - D \int_X v^2(x) \, d\mu_x \right) \| f \|^2 \quad \forall f \in H.
\]

This completes the proof.

References

[1] R. Ahmadi, G. Rahimlou, V. Sadri and R. Zarghami Farfar, Constructions of K-g fusion frames and their duals in Hilbert spaces, Bull. Transilvania Un. Brasov, 13(62), No. 1, (2020), 17-32.

[2] S. T. Ali, J. P. Antonie and J. P. Gazeau, continuous frames in Hilbert spaces, Annals of Physics 222, (1993), 1-37.

[3] N. Assila, S. Kabbaj and B. Moalige, Controlled K-fusion frame for Hilbert space, arXiv: 2007.05110v1.

[4] P. Balazs, J. P. Antonie and A. Grybos, Weighted and controlled frames: mutual relationship and first numerical properties, Int. J. Wavelets, Multiresolution Info. Proc., 14 (2010), No. 1, 109-132.

[5] P. Casazza and G. Kutyniok, Frames of subspaces, Cotemporary Math, AMS 345 (2004), 87-114.

[6] P. Casazza and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl., 3 (1997), 543-557.

[7] O. Christensen, An introduction to frames and Riesz bases, Birkhauser (2008).

[8] I. Daubechies, A. Grossmann and Y. Mayer, Painless nonorthogonal expansions, Journal of Mathematical Physics 27 (5) (1986) 1271-1283.

[9] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17, 413-415 (1966).

[10] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72, (1952), 341-366.
Continuous controlled g-fusion frame

[11] M. H. Faroughi, A. Rahimi and R. Ahmadi, *GC-fusion frames*, Methods of Functional Analysis and Topology, Vol. 16 (2010), no. 2, pp. 112-119.

[12] P. Gavruta, *On the duality of fusion frames*, J. Math. Anal. Appl. 333 (2007) 871-879.

[13] L. Gavruta, *Frames for operator*, Appl. Comput. Harmon. Anal. 32 (1), 139-144 (2012).

[14] P. Ghosh and T. K. Samanta, *Stability of dual g-fusion frame in Hilbert spaces*, Methods of Functional Analysis and Topology, Vol. 26, no. 3, pp. 227-240.

[15] P. Ghosh and T. K. Samanta, *Generalized atomic subspaces for operators in Hilbert spaces*, Mathematica Bohemica, Accepted.

[16] P. Ghosh and T. K. Samanta, *Generalized fusion frame in tensor product of Hilbert spaces*, Journal of the Indian Mathematical Society, Accepted.

[17] G. Kaiser, *A Friendly Guide to Wavelets*, Birkhauser (1994).

[18] M. Khayyami and A. Nazari, *Construction of continuous g-frames and continuous fusion frames*, Sahand Communications in Mathematical Analysis (SCMA) Vol. 4 No. 1 (2016), 43-55.

[19] A. Khosravi and K. Musazadeh, *Controlled fusion frames*, Methods Funct. Anal. Topol. 18 (3), 256-265.

[20] E. Kreyzig, *Introductory Functional Analysis with Applications*. Wiley, New York (1989).

[21] G. J. Murphy, *C^* Algebras and Operator Theory*, Academic Press, San Diego, 1990.

[22] M. Nouri, A. Rahimi and Sh. Najafizadeh, *Controlled K-frames in Hilbert spaces*, Int. J. Anal. Appl. 4 (2015), No. 2, 39-50.

[23] A. Rahimi and A. Fereydooni, *Controlled g-frames and their g-multipliers in Hilbert spaces*, Analele Stiintifice Ale Universitatii Ovidius Constanta Seria Matematica 21 (2), 223-236.

[24] G. Rahimlou, V. Sadri and R. Ahmadi, *Construction of controlled K-g-fusion frame in Hilbert spaces*, U. P. B. Sci. Bull., Series A, Vol. 82, Iss. 1, 2020.

[25] V. Sadri, Gh. Rahimlou, R. Ahmadi and R. Zarghami Farfar, *Generalized Fusion Frames in Hilbert Spaces*, Submitted, arXiv: 1806.03598v1 [math.FA] 10 Jun 2018.

[26] H. Shakoory, R. Ahamadi, N. Behzadi and S. Nami, *(C, C')-Controlled g-fusion frames*, Submitted (2018).

[27] W. Sun, *G-frames and G-Riesz bases*, Journal of Mathematical Analysis and Applications 322 (1) (2006), 437-452.