Nasopharyngeal Pneumococcal Density and Evolution of Acute Respiratory Illnesses in Young Children, Peru, 2009–2011

Roger R. Fan, Leigh M. Howard, Marie R. Griffin, Kathryn M. Edwards, Yuwei Zhu, John V. Williams, Jorge E. Vidal, Keith P. Klugman, Ana I. Gil, Claudio F. Lanata, Carlos G. Grijalva

We examined nasopharyngeal pneumococcal colonization density patterns surrounding acute respiratory illnesses (ARI) in young children in Peru. Pneumococcal densities were dynamic, gradually increasing leading up to an ARI, peaking during the ARI, and decreasing after the ARI. Rhinovirus co-infection was associated with higher pneumococcal densities.

Streptococcus pneumoniae commonly colonizes the nasopharynx of young children (1). Nasopharyngeal colonization density is relevant for transmission of bacteria and pathogenesis of pneumococcal diseases (2). Few studies have evaluated the longitudinal relationship between nasopharyngeal pneumococcal density and acute respiratory illnesses (ARIs). We examined the evolution of nasopharyngeal pneumococcal density surrounding ARIs in young children.

The Study

We performed sequential cross-sectional assessments from a prospective cohort study of Andean children in Peru (3). During 2009–2011, children <3 years of age from the District of San Marcos, Cajamarca, Peru, were assessed for ARIs during weekly household visits. The population was rural and had low incomes and limited access to healthcare (3,4). Use of 7-valent pneumococcal conjugate vaccine (PCV7) started in late 2009. Institutional review boards of Vanderbilt University (Nashville, TN, USA) and the Instituto de Investigacion Nutricional (Lima, Peru) approved the study.

An ARI episode was defined as the length of time a child had cough or fever (5,6). If a child was ill during a household visit, we assessed for pneumonia or lower respiratory tract infection using IMCI-WHO (Integrated Management of Childhood Illness–World Health Organization) criteria (5,7). If the child had an ARI during the preceding 7 days, we collected a nasal swab sample and tested it for respiratory viruses by reverse transcription PCR at Vanderbilt University (6,8–11). Nasopharyngeal swab samples were collected monthly without regard to ARI and tested at Emory University (Atlanta, GA, USA) by using quantitative PCR for pneumococcal density determinations. For this study, we used samples collected in 2009 and 2011, representing periods before and after routine PCV7 use (12) (online Technical Appendix, http://wwwnc.cdc.gov/EID/article/22/11/16-0902-Techapp1.pdf).

Nasopharyngeal samples were classified according to their collection time surrounding ARIs: peri-ARI periods included pre-ARI (8–14 or 1–7 days before an ARI) and post-ARI (1–7 or 8–14 days after an ARI). Samples outside these periods were considered non-ARI samples. We compared log-transformed pneumococcal nasopharyngeal densities of samples from ARI, peri-ARI, and non-ARI periods by using multivariable quantile regression with robust SEs and adjusting for relevant covariates.

In secondary analyses, we assessed the role of respiratory viruses on pneumococcal density in children with ARIs. Because detection of nonrhinovirus respiratory viruses in nasal swabs was infrequent, we grouped samples into 4 distinct groups: rhinovirus only, rhinovirus and other viruses, other viruses only, and negative for any viruses.

We examined the role of pneumococcal acquisition on pneumococcal density using pneumococci-positive nasopharyngeal samples from children who had a sample collected within the preceding 60 days. Samples were categorized as 1) new colonization if the prior sample was negative, 2) serotype persistence if the prior sample was the same serotype, and 3) serotype replacement if the prior sample was a different serotype. If either serotype was nontypeable or unknown, the pattern was considered undetermined.

We assessed 3,579 nasopharyngeal samples from 833 children: 450 (12.6%) were collected during ARIs, 956 (26.7%) during peri-ARI periods, and 2,173 (57.8%) during non-ARI periods. The median age was 1.39 years. The median duration for ARIs was 8 days (interquartile range [IQR] 5–13 days). According to IMCI-WHO criteria, 33 samples were associated with pneumonia or severe pneumonia (13) (Table).
Overall, 36.7% of nasopharyngeal samples were from children who had received ≥2 PCV7 doses and were considered vaccinated. Approximately 5.0% of samples were from children who had received aminopenicillins, cotrimoxazole, chloramphenicol, or furazolidone within the 7 days preceding sample collection.

Quantitative PCR detected *S. pneumoniae* in 68.9% of nasopharyngeal samples; 78.9% of ARI and 65.3% of non-ARI samples were positive (p = 0.06). Unadjusted log-transformed pneumococcal densities varied by ARI periods (online Technical Appendix).

Adjusted analyses showed that densities peaked during ARI than new colonization samples. The difference between serotype-replacement and serotype-persistence (p = 0.005) samples had higher density than new colonizations (5.14, IQR 3.56–6.24; n = 411), serotype replacement (5.49, IQR 4.53–6.44; n = 322), and serotype persistence (5.79, IQR 4.82–6.47; n = 489) were compared. In multivariable analysis, the only significant difference was between rhinovirus-only and virus-negative samples (p = 0.02) (Figure 2).

For the colonization patterns assessment, 2,479 (69.3%) nasopharyngeal samples had another sample collected ≤60 days before the current sample; the median time between samples was 28 days. The median log-transformed pneumococcal densities among samples that represented new colonizations (5.14, IQR 3.56–6.24; n = 411), serotype replacement (5.49, IQR 4.53–6.44; n = 322), and serotype persistence (5.79, IQR 4.82–6.47; n = 489) were compared. In multivariable analysis, serotype-replacement (p = 0.005) and serotype-persistence (p = 0.0003) samples had higher density than new colonization samples. The difference between serotype replacement and serotype persistence was not significant (p = 0.2).

Conclusions

Our findings demonstrate a dynamic evolution of pneumococcal densities before, during, and after ARI episodes among young children. We observed a gradual increase in pneumococcal density leading up to an ARI episode, peak density during symptomatic ARI, and a decrease in density post-ARI to levels similar to those in baseline non-ARI periods.

Our observations of higher densities during ARI than non-ARI episodes align with those in studies from Vietnam.
and South Africa (14, 15) and complement those assessments by illustrating the dynamic evolution of pneumococcal densities and the role of virus co-infections and pneumococcal colonization patterns. Unlike other studies that focused on hospitalized children, our community-based study showed relatively modest variations in nasopharyngeal pneumococcal density.

Rhinovirus detection was associated with increased pneumococcal density during ARI. Although we observed an even higher median pneumococcal density in samples co-infected with rhinovirus and other respiratory viruses, the number of observations was small and statistical power to demonstrate significant differences was limited.

Compared with new colonization in our study, serotype persistence and replacement were associated with higher pneumococcal density. Because many new colonizations might ultimately succumb to host mechanisms and fail to establish stable colonization (2), the observed lower densities might reflect a decline of pneumococcal populations as clearance evolved. Nevertheless, although statistically significant, the differences in density were relatively modest, and we cannot establish the precise time of colonization or clearance in our samples.

Our study has several limitations. ARI identification depended on the presence of cough or fever, which are subjective but widely used for routine ARI surveillance (5–7). Because our study used household-based rather than health facility–based surveillance, severe disease was infrequent, precluding detailed assessments of disease severity. Due to small numbers, we could not study serotype-specific pneumococcal densities. In addition, because the study was conducted in rural communities of Peru, caution is warranted when extrapolating our findings to other settings.

Our findings demonstrated that, among young children, nasopharyngeal pneumococcal density started increasing before the onset of ARI symptoms, peaked during symptomatic ARI, and decreased after symptoms subsided.
Rhino­vi­rus co-infection, sero­type persistence, and sero­type replacement were associated with in­creased nasopharyngeal pneumococcal density. Nasopharyngeal pneumococcal density is dynamic sur­round­ing ARI episodes and likely driven by complex virus–bacte­ria–host in­ter­ac­tions.

Ac­knowl­edg­ments
We are indebted to the com­mu­ni­ties of San Marcos, Cajamarca, Peru, for par­ti­ci­pat­ing in this study and to the field work­ers and field super­visors whose ef­forts in diffi­cult geog­ra­phic areas and har­sh weather con­di­tions en­abled the con­duct of this study. We also ac­knowledge the ap­proval and con­tin­u­ous sup­port of the Cajamarca Health Re­gion au­thor­i­ties.

This work was funded by a Van­der­bilt Uni­versity Clinical and Trans­la­tion­al Sci­ence Award (grant UL1 RR024975) from the Na­tion­al Insti­tu­tes of Health, an in­ves­ti­ga­tor-ini­ti­ated re­search grant from Pi­zer (IIR WS1898786 [0887X1-4492] to C.G.G. and IIR WS2079099 to J.E.V.); the Thrasher Re­search Fund (grant 02832-9 to C.G.G.); and a Thrasher Early Career Award (to L.M.H.).

C.G.G. has served as a con­sul­tant to Pi­zer in un­re­lated work. M.R.G. re­ceives grant in­fusing from Med­Immune. K.M.E. re­ceives grant in­fusing from No­var­is in un­re­lated work. J.V.W. serves on a Sci­entific Ad­visory Board for Quidel and an In­de­pen­dent Da­tav­al­o­ni­ng Com­mit­tee for Glaxo­SmithKline, neither re­lated to the pres­ent work. C.F.L. ser­ves as a Sci­entific Ad­visory to Ta­ke­da and Glaxo­SmithKline in sub­jects not re­lated to the pres­ent work. All au­thors have sub­mit­ted the In­ter­na­tion­al Com­mit­tee of Me­di­cal Jour­nal Ed­i­tors Form for Dis­clos­ure of Po­ten­tial Con­flicts of In­ter­est.

Mr. Fan is a me­di­cal stu­dent at Van­der­bilt Uni­versity School of Me­di­cine in Nash­ville, Ten­nes­see. His re­search in­ter­ests in­clude the epi­demio­lo­gy of res­pi­ra­tory in­fil­lan­ces and host–path­ogen in­ter­ac­tions.

Re­fer­ences
1. Simell B, Auranen K, Käyhty H, Gol­d­blatt D, Dagan R, O’Brien KL; Pneumococcal Car­riage Group. The funda­men­tal link be­tween pneumococcal car­riage and di­s­ease. Ex­pert Rev Vaccines. 2012;11:841–55. http://dx.doi.org/10.1586/erv.12.53
2. Siegel SJ, Weiser JN. Me­cha­nisms of bacte­rial colo­ni­za­tion of the res­pi­ra­tory tract. Annu Rev Me­di­cine. 2015;69:425–44. http://dx.doi.org/10.1146/annurev­micro­9­01014­104209
3. Budge PJ, Pi­zer MR, Edwards KM, Wil­liams JV, Ver­astegui H, Hart­inger SM, et al.; RESPIRA-PERU Group. A house­hold-based study of ac­ute vi­ral res­pi­ra­tory illness­es in An­dean chil­dren. Pi­zer In­fect Dis J. 2014;33:443–7. http://dx.doi.org/10.1097/ INF.0000000000000135
4. Grijalva CG, Pi­zer MR, Edwards KM, Wil­liams JV, Gil AI, Ver­astegui H, et al. Coh­ort pro­file: the study of res­pi­ra­tory pathogens in An­dean chil­dren. Int J Epidemiol. 2014;43:1021–30. http://dx.doi.org/10.1093/ije/dyt065
5. Lanata CF, Rudan I, Boschi-Pinto C, Tomaskovic L, Cherian T, We­ber M, et al. Me­thod­o­lo­gical and qual­ity is­su­es in epidemio­lo­gical studies of acute lower res­pi­ra­tory in­fil­lan­ces in chil­dren in de­vel­op­ing coun­tries. Int J Epidemiol. 2004;33:1362–72. http://dx.doi.org/10.1093/ije/dyh229
6. Po­eh­ling KA, Edwards KM, We­ber GA, Sza­l­l ­getty P, Sta­ta MA, Iwan­e MK, et al.; New Vaccine Surveillance Net­work. The un­der­recog­nized bur­den of in­fluenza in young chil­dren. N Engl J Med. 2006;355:31–40. http://dx.doi.org/10.1056/NEJ­ Moa054869
7. Gove S; the WHO Work­ing Group on Guide­lines for In­teg­rated Man­age­ment of the Sick Child. In­teg­rated man­age­ment of child­hood illness by outpa­tient health work­ers: tech­ni­cal ba­sis and over­view. Bull World Health Organ. 1997;75 (Suppl 1):7–24.
8. Griffin MR, Walker FJ, Iwan­e MK, We­ber GA, Sta­ta MA, Erd­man DD; New Vaccine Surveillance Net­work Study Group. Epidemi­o­lo­gy of res­pi­ra­tory in­fil­lan­ces in young chil­dren: insig­ni­fic­ant from the new vaccine surveil­lan­ce network. Pi­zer In­fect Dis J. 2004;23(Suppl):S188–92. http://dx.doi.org/10.1097/01.inf.000014660.53024.64
9. Kodani M, Yang G, Con­klin LM, Travis C, Whi­ney CG, Anderson LJ, et al. Ap­pli­ca­tion of Taq­Man low-den­si­ty ar­rays for simul­taneous de­tec­tion of mul­ti­ple res­pi­ra­tory path­ogens. J Clin Me­di­cine. 2011;49:2175–82. http://dx.doi.org/10.1128/JCM.02270-10
10. Klem­enc J, As­ad Ali S, John­son M, Tolf­es­on SJ, Tal­bot HK, Har­tert TV, et al. Real-time re­verse tran­scripta­tion PCR assay for im­proved de­tec­tion of hu­man meta­neu­moven­mu­rus. J Virol. 2012;54:371–5. http://dx.doi.org/10.1016/j.jcv.2012.05.005
11. Lu X, Hol­loway B, Dare RK, Kuy­pers J, Yagi S, Whi­ley JV, et al. Real-time re­verse tran­scripta­tion–PCR assay for com­pre­hen­sive de­tec­tion of hu­man rhinovi­ruses. J Clin Me­di­cine. 2008;46:533–9. http://dx.doi.org/10.1128/JCM.01739-07
12. Han­ke CR, Grijal­va CG, Cho­hua S, Pl­etz MW, Horn­berg C, Ed­wards KM, et al. Bacte­rial de­ser­ti­va­tion and anti­bi­otic re­sis­tance of pneumococ­cal stra­ins from the nas­opharynx of Per­uvian chil­dren be­fore and af­ter pneumococ­cal con­jug­ate vi­ruses. Pi­zer In­fect Dis J. 2016;35:432–9. http://dx.doi.org/10.1097/INF.00000000000001030
13. World Health Or­ga­ni­za­tion. Re­vised WHO clas­si­fi­ca­tion and treat­ment of pneu­mo­nia in chil­dren at health fac­ili­ties: epi­demio­lo­gy sum­maries. Gene­va: the Or­ga­ni­za­tion; 2014.
14. Yu HT, Yosh­ida LM, Suz­uki M, Nguyen HA, Nguyen CD, Nguyen AT, et al. As­so­ci­ation be­tween nasopharyngeal load of Strepto­coccus pneu­mo­niae, vi­ral coinfection, and radiolog­i­cally con­firmed pneu­mo­nia in Vi­et­na­mese chil­dren. Pi­zer In­fect Dis J. 2011;30:11–8. http://dx.doi.org/10.1016/j.jcv.2011.12.005
15. Wol­ter N, Tem­pia S, Co­hen C, Mad­hi SA, Ven­ter M, Mu­yes J, et al. High nasopharyngeal pneumococcal density, in­creased by vi­ral coinfection, is as­so­ci­ated with in­vas­ive pneumococ­cal pneu­mo­nia. J Infec­t Dis. 2014;210:1649–57. http://dx.doi.org/10.1093/infdis/jiu326

Address for correspondence: Carlos G. Grijalva, De­part­ment of Health Policy, Van­der­bilt Uni­versity School of Me­di­cine, 2600 Village at Van­der­bilt, 1500 21st Ave, Nash­ville, TN, USA, 37212; email: Carlos.grijalva@vanderbilt.edu