Supplementary Materials for

Seismological evidence for the earliest global subduction network at 2 Ga ago

Bo Wan*, Xusong Yang, Xiaobo Tian*, Huaiyu Yuan, Uwe Kirscher, Ross N. Mitchell*

*Corresponding author. Email: wanbo@mail.iggcas.ac.cn (B.W.); txb@mail.iggcas.ac.cn (X.T.); ross.mitchell@mail.iggcas.ac.cn (R.N.M.)

Published 5 August 2020, Sci. Adv. 6, eabc5491 (2020)
DOI: 10.1126/sciadv.abc5491

This PDF file includes:

Sections S1 and S2
Figs. S1 to S7
Table S1
References
Supplementary Text

Section 1. Orosirian Orogenes

Widespread orogenesis of the Orosirian Period has been thoroughly reviewed by previous researchers (5, 33). Recent discoveries include mounting evidence for high-pressure/low-temperature (HP/LP) rocks (8, 9, 59). The polarities of those orogens of Laurentia without seismic constraints have been argued for geologically (60) and are depicted with slight transparency in Figure 5. Here we briefly provide more information on those HP/LP orogenic belts and note the availability of seismic profiles.

Trans-Hudson Orogen of Laurentia. The Trans-Hudson Orogen consists of four principal tectonic domains: the Thompson belt, the Reindeer zone, the Watham-Chipeyan batholith, and the Cree Lake zone (61). The Ungava Orogen of northern Quebec is interpreted as the continuation of the Trans-Hudson Orogen. Ref. (8) reported a HP/LP eclogite (2.50 ± 0.15 GPa, 735 ± 35°C) from 1.8 Ga in the Cape Smith thrust belt. In the adjacent region, a 2.0-Ga Purtuniqui ophiolite is also reported (38).

Wopmay Orogen of Laurentia. The Wopmay Orogen in the Northwest Territories of Canada was a short-lived collisional belt that developed between the Archean Slave craton and the Hottah Terrane between ~1.9 and 1.84 Ga. Seismic reflection and receiver function (RF) results indicate that Hottah Terrane underthrusts Slave craton (62).

The Nagssugtoqidian Orogen of Laurentia. The Nagssugtoqidian Orogen is an east-west trending orogen located in southeast Greenland. It is a 1.87-1.84 Ga collisional orogen that separates Archean cratons to the north and south. A 1.87 Ga eclogite (1.7-1.9 GPa, 740–810°C) has been reported in the orogen (63, 64).

Svecofennian Orogen of Baltica. The Svecofennian Orogen is an east-west striking belt in northern Baltica. One of the best-preserved Paleoproterozoic ophiolites, the 1.95 Ga Jormua ophiolite outcrops along the orogen in Finland (37). The 1.9 Ga Belomorian eclogite (1.8 GPa, 695–755°C) was also reported along the belt in Russia (65).

Yenisey belt of Siberia. The Yenisey belt is located along the southwestern margin of Siberia. A series of rock occurrences including an ultramafic complex, amphibolite, granulite, metacarbonate, and metapelitic in the Sharyzhalgai region is comparable to modern ophiolite sequences and has been interpreted as a Paleoproterozoic ophiolite (66).

Trans-North China Orogen of North China. The western North China block collided with the eastern North China block at ~1.85-1.80 Ga (5). RF studies indicate that the eastern block underthrusts the western block (67).

Section 2. Additional paleogeography considerations.

The precise position of Siberia in Nuna is much debated with models ranging between a tight fit or loose fit with respect to northern Laurentia. Both tight (33) and a loose fits (68) have been argued for on the basis of paleomagnetism. Recently, it has also been proposed that the Yangtze block of South China may fit in between Laurentia and Siberia in the loose-fit configuration (69). Given the ambiguity of paleomagnetic interpretations of the Siberia data at the moment, we opt for the tight-fit configuration due to the additional support from matching coeval large igneous provinces (55). We do note however, that our interpretation of widespread subduction-driven convergence during Nuna assembly is not dependent on this particular aspect of the reconstruction selected. In fact, the addition of the Yangtze block in between Laurentia and Siberia (69) would actually increase the widespread nature of the subduction-driven convergence of core constituents of Nuna. Future work including acquiring additional paleomagnetic poles can aim to resolve such reconstruction options.
Fig. S1. Example seismic event. Amplitude spectrum of raw seismic data from an event and its corresponding instrument response removed data. (A) Seismogram. (B) Spectrogram.
Fig. S2. Receiver Function (RF) time-domain records. (A-B) Two earthquakes from southwest (piercing points marked in Figure 1B by red crosses). (C-D) Earthquakes from southeast (blue crosses). Average RF is shown on right, where the direct P and the averaged Moho arrivals can be clearly seen at 0 and ~6 s, respectively. Vertical black dashed lines show the location of Station 1008 and 1089 used for tests in figure S5.
Fig. S3. Common Conversion Point (CCP) depth section computed from different V_p/V_s ratios. The distance between -14 and 156 km was stacked by only three coherent teleseismic events from the southwest, and the distance between 156 and 310 km was stacked by all the 16 teleseismic events. (A) The V_p/V_s ratio was fixed to 2.0, where V_p is < 5.8 km s$^{-1}$ (sedimentary layer) and varied for the basement (V_p > 5.8 km s$^{-1}$). In this case V_p/V_s is 1.7. (B) Same as A, but V_p/V_s is set to 1.73 for the basement. (C) Same as A, but V_p/V_s is set to 1.8 for the basement. (D) Moho depths picked for different V_p/V_s ratios, respectively.
Fig. S4. Common conversion point (CCP) depth section computed for events with different ranges of back-azimuths. (A) Topography along seismic profile. (B) CCP using all back-azimuths except no events from the northwest. (C) CCP using only back-azimuths from the southwest. Amplitude scale indicated by color scale in (C) is the same for the 2 sections.
Fig. S5. Dipping Moho and receiver function (RF) back-azimuthal variations. (A) Synthetic radial (left) and tangential receiver functions (right) computed for station 1008 using the model in Figure 3 and a 0.065 s km\(^{-1}\) slowness for all back-azimuths. (B) Synthetic RFs computed using the real data slowness and back-azimuth, and then averaged into 10° back-azimuth bins. (C) Real data plotted the same way as in B. Features other than the Moho are masked for simplicity. (D-F) Same as A-C, but for station 1089. Location of stations are marked in figure S2.
Fig. S6. A synthetic test to identity the origin of shallow structure. (A) Three continuous positive phases on the receiver function (RF) section. (B-C) Velocity models (left) and corresponding synthetic (right). RF without multiples (black line), RF with multiples (blue dash line), and RF with multiples but without Moho conversion (red dash line).
Fig. S7. Modern Himalayan Orogen and Orosirian Khondalite Orogen. A comparison of surface tectonics (left) and deep seismic structures (right) between modern northern India (top) and Orosirian northern North China (bottom). Modern Himalayan range and its receiver function (RF) image across the thrust belt and suture from 0-350 km along the profile of ref. (10). Tectonic map of western North China is from ref. (5). The deep RF image is at 0-300 km distance along the array of this study in figure S4C. The Moho dipping and deepening of the Himalayan thrust is comparable with that of the Khondalite thrust of North China. Further north, however, this part of North China has been reworked by later tectonic events. The mismatch between the two Mohos in the northern portion is either because the reworked part of the Orosirian Moho has detached some of its crust to shallow its Moho, and/or the modern Himalaya is overthickened and has not evolved yet to losing the lower part of its crust to stabilize.
Table S1. Teleseismic events used in this study

time	latitude	longitude	depth	mag	gcarc	baz
2019-04-22T09:11:12.013Z	14.9538	120.5149	21.84	6.1	26.4154	157.037
2019-04-23T05:37:53.147Z	11.759	125.2293	56	6.4	31.0168	150.411
2019-04-23T20:15:50.804Z	28.414	94.5988	14	5.9	17.1671	233.3
2019-04-29T14:19:52.499Z	10.8649	57.2283	10	6.3	54.8638	253.393
2019-05-03T07:25:29.171Z	-6.928	160.1389	10	6.2	65.5701	123.394
2019-05-04T01:05:09.527Z	12.3713	120.9321	10	5.7	28.9993	157.891
2019-05-04T21:02:10.594Z	1.9846	123.6614	327	5.7	39.725	158.596
2019-05-06T21:19:37.983Z	-6.9752	146.4486	146	7.1	57.4973	135.852
2019-05-14T12:58:26.074Z	-4.081	152.5694	10	7.5	58.6268	128.017
2019-05-16T01:23:59.424Z	-5.2257	152.6189	25.33	5.7	59.5686	128.778
2019-05-17T22:37:47.788Z	-4.5834	153.0098	21	5.9	59.2926	127.966
2019-05-18T01:51:30.078Z	-9.4947	108.6653	10	5.6	49.2824	181.953
2019-05-19T01:23:29.130Z	-21.6713	169.8042	20	6.3	82.8291	126.081
2019-05-19T14:56:50.691Z	-21.6074	169.4692	20	6.3	82.7363	126.286
2019-05-22T00:39:34.963Z	13.8921	92.9916	29	5.6	29.9488	215.041
2019-05-23T08:45:18.547Z	51.3631	-178.3306	27.79	6.1	49.3135	51.341

Notes: gcarc and baz are mean values of the great circle distance and back-azimuth in degrees, respectively.
REFERENCES AND NOTES

1. J. Korenaga, Initiation and evolution of plate tectonics on Earth: Theories and observations. *Annu. Rev. Earth Planet. Sci.* **41**, 117–151 (2013).

2. P. A. Cawood, C. J. Hawkesworth, S. A. Pisarevsky, B. Dhuime, F. A. Capitanio, O. Nebel, Geological archive of the onset of plate tectonics. *Philos. Trans. A Math. Phys. Eng. Sci.* **376**, 20170405 (2018).

3. R. J. Stern, Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. *Geology* **33**, 557–560 (2005).

4. M. Hopkins, T. Mark Harrison, C. E Manning, Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. *Nature* **456**, 493–496 (2008).

5. G. Zhao, S. Li, M. Sun, S. A. Wilde, Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: Record in the North China Craton revisited. *Int. Geol. Rev.* **53**, 1331–1356 (2011).

6. J. Ganne, V. De Andrade, R. F. Weinberg, O. Vidal, B. Dubacq, N. Kagambega, S. Naba, L. Baratoux, M. Jessell, J. Allibon, Modern-style plate subduction preserved in the Palaeoproterozoic West African craton. *Nat. Geosci.* **5**, 60–65 (2012).

7. B. Wan, B. F. Windley, W. Xiao, J. Feng, J. Zhang, Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent. *Nat. Commun.* **6**, 8344 (2015).

8. O. M. Weller, M. R. St-Onge, Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. *Nat. Geosci.* **10**, 305–311 (2017).

9. C. Xu, J. Kynický, W. Song, R. Tao, Z. Lü, Y. Li, Y. Yang, M. Pohanka, M. V. Galiova, L. Zhang, Y. Fei, Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. *Nat. Commun.* **9**, 2790 (2018).
10. J. Nábelek, G. Hetényi, J. Vergne, S. Sapkota, B. Kafle, M. Jiang, H. Su, J. Chen, B.-S. Huang; Hi-CLIMB Team, Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. *Science* **325**, 1371–1374 (2009).

11. X. Yuan, S. V. Sobolev, R. Kind, O. Oncken, G. Bock, G. Asch, B. Schurr, F. Graeber, A. Rudloff, W. Hanka, K. Wylegalla, R. Tibi, C. Haberland, A. Rietbrock, P. Giese, P. Wigger, P. Röwer, G. Zandt, S. Beck, T. Wallace, M. Pardo, D. Comte, Subduction and collision processes in the Central Andes constrained by converted seismic phases. *Nature* **408**, 958–961 (2000).

12. A. J. Calvert, Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone. *Nature* **428**, 163–167 (2004).

13. L. Zhao, A. Paul, S. Guillot, S. Solarino, M. G. Malusà, T. Zheng, C. Aubert, S. Salimbeni, T. Dumont, S. Schwartz, R. Zhu, Q. Wang, First seismic evidence for continental subduction beneath the Western Alps. *Geology* **43**, 815–818 (2015).

14. BABEL Working Group, Evidence for early Proterozoic plate tectonics from seismic reflection profiles in the Baltic shield. *Nature* **348**, 34–38 (1990).

15. F. A. Darbyshire, I. D. Bastow, L. Petrescu, A. Gilligan, D. A. Thompson, A tale of two orogens: Crustal processes in the Proterozoic Trans-Hudson and Grenville Orogens, eastern Canada. *Tectonics* **36**, 1633–1659 (2017).

16. L. Chen, Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. *Lithos* **120**, 96–115 (2010).

17. J.-W. Teng, F.-Y. Wang, W.-Z. Zhao, Y.-Q. Zhang, X.-K. Zhang, Y.-F. Yan, J.-R. Zhao, L. Ming, H. Yang, H.-S. Zhang, X.-M. Ruan, Velocity structure of layered block and deep dynamic process in the lithosphere beneath the Yinshan orogenic belt and Ordos Basin. *Chinese J. Geophys.* **53**, 67–85 (2010).

18. S. Jiao, I. C. W. Fitzsimons, J.-W. Zi, N. J. Evans, B. J. Mcdonald, J. Guo, Texturally controlled U–Th–Pb monazite geochronology reveals Paleoproterozoic UHT metamorphic evolution in the Khondalite belt, North China craton. *J. Petrol.* **2020**, egaa1023 (2020).
19. J. Ren, B. G. Niu, J. Wang, X. Jin, L. Xie, *International Geological Map of Asia (1: 5 000 000)* (2016).

20. B. Wan, S. Li, W. Xiao, B. F. Windley, Where and when did the Paleo-Asian ocean form? *Precambrian Res.* **317**, 241–252 (2018).

21. H. Zhao, S. Zhang, J. Ding, L. Chang, Q. Ren, H. Li, T. Yang, H. Wu, New geochronologic and paleomagnetic results from early Neoproterozoic mafic sills and late Mesoproterozoic to early Neoproterozoic successions in the eastern North China Craton, and implications for the reconstruction of Rodinia. *GSA Bulletin* **132**, 739–766 (2019).

22. L. Zhu, Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves. *Earth Planet. Sci. Lett.* **179**, 183–190 (2000).

23. J. P. Ligorría, C. J. Ammon, Iterative deconvolution and receiver-function estimation. *Bull. Seismol. Soc. Am.* **89**, 1395–1400 (1999).

24. J. F. Cassidy, Numerical experiments in broadband receiver function analysis. *Bull. Seismol. Soc. Am.* **82**, 1453–1474 (1992).

25. G. P. Hayes, K. P. Furlong, Abrupt changes in crustal structure beneath the Coast Ranges of northern California - developing new techniques in receiver function analysis. *Geophys. J. Int.* **170**, 313–336 (2007).

26. K. G. Dueker, A. F. Sheehan, Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. *J. Geophys. Res. Solid Earth* **102**, 8313–8327 (1997).

27. W. Xiao, B. F. Windley, S. Sun, J. Li, B. Huang, C. Han, C. Yuan, M. Sun, H. Chen, A tale of amalgamation of three Permo-Triassic collage systems in central Asia: Oroclines, sutures, and terminal accretion. *Annu. Rev. Earth Planet. Sci.* **43**, 477–507 (2015).

28. T.-Y. Zheng, Y.-M. He, J.-H. Yang, L. Zhao, Seismological constraints on the crustal structures generated by continental rejuvenation in northeastern China. *Sci. Rep.* **5**, 14995 (2015).
29. C. Yin, G. Zhao, J. Guo, M. Sun, X. Xia, X. Zhou, C. Liu, U–Pb and Hf isotopic study of zircons of the Helanshan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. *Lithos* **122**, 25–38 (2011).

30. A. Yin, C. S. Dubey, T. K. Kelty, A. A. G. Webb, T. M. Harrison, C. Y. Chou, J. Célérier, Geologic correlation of the Himalayan orogen and Indian craton: Part 2. Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya. *Geol. Soc. Am. Bull.* **122**, 360–395 (2009).

31. M. J. Kohn, Himalayan metamorphism and its tectonic implications. *Annu. Rev. Earth Planet. Sci.* **42**, 381–419 (2014).

32. V. Schulte-Pelkum, G. Monsalve, A. Sheehan, M R Pandey, S. Sapkota, R. Bilham, F. Wu, Imaging the Indian subcontinent beneath the Himalaya. *Nature* **435**, 1222–1225 (2005).

33. D. A. D. Evans, R. N. Mitchell, Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. *Geology* **39**, 443–446 (2011).

34. P. F. Hoffman, Speculations on Laurentia’s first gigayear (2.0 to 1.0 Ga). *Geology* **17**, 135–138 (1989).

35. L. Chen, B. Huang, Z. Yi, J. Zhao, Y. Yan, Paleomagnetism of ca. 1.35 Ga sills in northern North China Craton and implications for paleogeographic reconstruction of the Mesoproterozoic supercontinent. *Precambrian Res.* **228**, 36–47 (2013).

36. C. P. Conrad, C. Lithgow-Bertelloni, How mantle slabs drive plate tectonics. *Science* **298**, 207–209 (2002).

37. A. Kontinen, An early Proterozoic ophiolite—The Jormua mafic-ultramafic complex, Northeastern Finland. *Precambrian Res.* **35**, 313–341 (1987).

38. D. Scott, H. Helmstaedt, M. Bickle, Purtuniq ophiolite, Cape Smith belt, northern Quebec, Canada: A reconstructed section of Early Proterozoic oceanic crust. *Geology* **20**, 173–176 (1992).
39. R. N. Mitchell, W. Bleeker, O. van Breemen, T. N. Lecheminant, P. Peng, M. K. M. Nilsson, D. A. D. Evans, Plate tectonics before 2.0 Ga: Evidence from paleomagnetism of cratons within supercontinent Nuna. *Am. J. Sci.* **314**, 878–894 (2014).

40. W. Bleeker, The late Archean record: A puzzle in ca. 35 pieces. *Lithos* **71**, 99–134 (2003).

41. N. H. Sleep, Archean plate tectonics: What can be learned from continental geology? *Can. J. Earth Sci.* **29**, 2066–2071 (1992).

42. T. E. Johnson, M. Brown, N. J. Gardiner, C. L. Kirkland, R. H. Smithies, Earth’s first stable continents did not form by subduction. *Nature* **543**, 239–242 (2017).

43. F. A. Capitanio, O. Nebel, P. A. Cawood, R. F. Weinberg, P. Chowdhury, Reconciling thermal regimes and tectonics of the early Earth. *Geology* **47**, 923–927 (2019).

44. D. Abbott, W. Menke, Length of the global plate boundary at 2.4 Ga. *Geology* **18**, 58–61 (1990).

45. P. Olson, Mantle control of the geodynamo: Consequences of top-down regulation. *Geochem. Geophys. Geosyst.* **17**, 1935–1956 (2016).

46. S. Zhong, N. Zhang, Z.-X. Li, J. H. Roberts, Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. *Earth Planet. Sci. Lett.* **261**, 551–564 (2007).

47. C. Herzberg, K. Condie, J. Korenaga, Thermal history of the Earth and its petrological expression. *Earth Planet. Sci. Lett.* **292**, 79–88 (2010).

48. C. B. Keller, B. Schoene, Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. *Nature* **485**, 490–493 (2012).

49. R. M. Holder, D. R. Viete, M. Brown, T. E. Johnson, Metamorphism and the evolution of plate tectonics. *Nature* **572**, 378–381 (2019).

50. C. A. Langston, Structure under Mount Rainier, Washington, inferred from teleseismic body waves. *J. Geophys. Res. Solid Earth* **84**, 4749–4762 (1979).
51. Z. Liu, X. Tian, R. Gao, G. Wang, Z. Wu, B. Zhou, P. Tan, S. Nie, G. Yu, G. Zhu, X. Xu, New images of the crustal structure beneath eastern Tibet from a high-density seismic array. *Earth Planet. Sci. Lett.* **480**, 33–41 (2017).

52. J. Park, V. Levin, Receiver functions from regional *P* waves. *Geophys. J. Int.* **147**, 1–11 (2001).

53. A. W. Frederiksen, M. G. Bostock, Modelling teleseismic waves in dipping anisotropic structures. *Geophys. J. Int.* **141**, 401–412 (2000).

54. J. Park, H. Yuan, V. Levin, Subduction zone anisotropy beneath Corvallis, Oregon: A serpentinite skid mark of trench-parallel terrane migration? *J. Geophys. Res. Solid Earth* **109**, B10306 (2004).

55. R. E. Ernst, M. A. Hamilton, U. Söderlund, J. A. Hanes, D. P. Gladkochub, A. V. Okrugin, T. Kolotilina, A. S. Mekhonoshin, W. Bleeker, A. N. Le Cheminant, K. L. Buchan, K. R. Chamberlain, A. N. Didenko, Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. *Nat. Geosci.* **9**, 464–469 (2016).

56. J. L. Payne, M. Hand, K. M. Barovich, A. Reid, D. A. D. Evans, Correlations and reconstruction models for the 2500-1500 Ma evolution of the Mawson Continent. *Geol. Soc. Lond. Spec. Publ.* **323**, 319–355 (2009).

57. U. Kirscher, Y. Liu, Z. X. Li, R. N. Mitchell, S. A. Pisarevsky, S. W. Denyszyn, A. Nordsvana, Paleomagnetism of the Hart Dolerite (Kimberley, Western Australia)—A two-stage assembly of the supercontinent Nuna? *Precambrian Res.* **329**, 170–181 (2019).

58. S. A. Pisarevsky, S.-Å. Elming, L. J. Pesonen, Z.-X. Li, Mesoproterozoic paleogeography: Supercontinent and beyond. *Precambrian Res.* **244**, 207–225 (2014).

59. M. Brown, T. Johnson, Metamorphism and the evolution of subduction on Earth. *Am. Mineral.* **104**, 1065–1082 (2019).

60. P. Hoffman, The origin of Laurentia: Rae Craton as the backstop for proto-Laurentian amalgamation by slab suction. *Geosci. Canada* **41**, 313–320 (2014).
61. S. B. Lucas, A. Green, Z. Hajnal, D. White, J. Lewry, K. Ashton, W. Weber, R. Clowes, Deep seismic profile across a Proterozoic collision zone: Surprises at depth. *Nature* **363**, 339–342 (1993).

62. M. G. Bostock, Mantle stratigraphy and evolution of the Slave province. *J. Geophys. Res. Solid Earth* **103**, 21183–21200 (1998).

63. S. Müller, A. Dziggel, J. Kolb, S. Sindern, Mineral textural evolution and PT-path of relict eclogite-facies rocks in the Paleoproterozoic Nagssugtoqidian Orogen, South-East Greenland. *Lithos* **296-299**, 212–232 (2018).

64. A. P. Nutman, F. Kalsbeek, C. R. L. Friend, The Nagssugtoqidian orogen in South-East Greenland: Evidence for Paleoproterozoic collision and plate assembly. *Am. J. Sci.* **308**, 529–572 (2008).

65. H. L. Yu, L. F. Zhang, C. J. Wei, X. L. Li, J. H. Guo, Age and P–T conditions of the Gridino-type eclogite in the Belomorian Province, Russia. *J. Metamorphic Geol.* **35**, 855–869 (2017).

66. M. A. Gornova, O. M. Glazunov, Mantle peridotites and pyroxenites of the Saramta Massif of the Precambrian Sharyzhalgai gneiss-granulite complex. *Geol Geofiz* **40**, 1003–1015 (1999).

67. T. Zheng, L. Zhao, R. Zhu, New evidence from seismic imaging for subduction during assembly of the North China craton. *Geology* **37**, 395–398 (2009).

68. S. A. Pisarevsky, L. M. Natapov, T. V. Donskaya, D. P. Gladkochub, V. A. Vernikovsky, Proterozoic Siberia: A promontory of Rodinia. *Precambrian Res.* **160**, 66–76 (2008).

69. P. A. Cawood, W. Wang, T. Zhao, Y. Xu, J. A. Mulder, S. A. Pisarevsky, L. Zhang, C. Gan, H. He, H. Liu, L. Qi, Y. Wang, J. Yao, G. Zhao, M.-F. Zhou, J.-W. Zi, Deconstructing South China and consequences for reconstructing Nuna and Rodinia. *Earth Sci. Rev.* **204**, 103169 (2020).