Review

Unique sex determination system in the silkworm, *Bombyx mori*: current status and beyond

By Susumu KATSUMA,*1 Takashi KIUCHI,*1 Munetaka KAWAMOTO,*1 Toshiaki FUJIMOTO*2 and Ken SAHARA*2

(Communicated by Teruhiko BEPPU, M.J.A.)

Abstract: The silkworm *Bombyx mori* has been used for silk production for over 5,000 years. In addition to its contribution to sericulture, *B. mori* has played an important role in the field of genetics. Classical genetic studies revealed that a gene(s) with a strong feminizing activity is located on the W chromosome, but this W-linked feminizing gene, called *Feminizer* (*Fem*), had not been cloned despite more than 80 years of study. In 2014, we discovered that *Fem* is a precursor of a single W chromosome-derived PIWI-interacting RNA (piRNA). Fem-derived piRNA binds to PIWI protein, and this complex then cleaves the mRNA of the Z-linked *Masculinizer* (*Masc*) gene, which encodes a protein required for both masculinization and dosage compensation. These findings showed that the piRNA-mediated interaction between the two sex chromosomes is the primary signal for the sex determination cascade in *B. mori*. In this review, we summarize the history, current status, and perspective of studies on sex determination and related topics in *B. mori*.

Keywords: sex determination, piRNA, silkworm, dosage compensation, *Wolbachia*

Diversity and conservation in insect sex determination

The mechanisms of sex determination in insects are surprisingly diverse. In dipterans, the signal for sex determination in *Drosophila melanogaster* is the number of X chromosomes, which reflects the dose of X-linked signaling elements.1) On the other hand, in hymenopteran insects, haploids and diploids become male and female, respectively.2) In lepidopteran insects, the W chromosome is known to possess a strong feminizing factor in the silkworm *Bombyx mori*.3),4) Recent progress in molecular biological techniques, such as deep sequencing by next-generation sequencers and genome editing methods, has enabled the identification of the primary genes involved in sex determination cascades in various insects, including a small RNA,5) a small protein (56 amino acid-long peptide),6) and an RNA-binding protein.7) These discoveries revealed that the primary factors for insect sex determination cascades are also diverse. However, in contrast to primary factors, the gene acting at the downstream end for sex differentiation is common between insects. This gene was first identified in *D. melanogaster* and is called *doublesex* (*dsx*).8) *dsx* is sex-specifically spliced and translated into sex-specific DSX proteins. DSX is a transcription factor that potentially binds to thousands of genome loci, leading to sex-specific gene expression and subsequent sexual differentiation.9)

The silkworm *Bombyx mori*: not only an industrial insect but also a model animal in genetic studies

Bombyx mori ("KAIKO" in Japanese; Fig. 1) is the only completely domesticated insect, which has been used for silk production for approximately 5,000 years.10) In addition to its industrial use, *B. mori* had been a model insect in genetic studies, until the fruit fly, *D. melanogaster* was established as a model organism. For example, *B. mori* was the first animal

*1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
*2 Laboratory of Applied Entomology, Faculty of Agriculture, Iwate University, Iwate, Japan.
† Correspondence should be addressed: S. Katsuma, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan (e-mail: katsuma@ss.ab.a.u-tokyo.ac.jp).

doi: 10.2183/pjab.94.014
©2018 The Japan Academy
through studies of which Mendelian laws were rediscovered. In 1906, Kametaro Toyama reported the Mendelian inheritance of the cocoon color of *B. mori*.\(^{11}\) In addition, Yoshimaro Tanaka discovered in 1916 that *B. mori* females have a W chromosome,\(^3\) and Haruo Hasimoto reported in 1933 that one copy of the W chromosome is sufficient for determining femaleness, regardless of the copy number of Z chromosomes.\(^4\) Thus, in the early 1900s, Japanese silkworm researchers made many epoch-making discoveries in the field of genetics.

History of studies on *B. mori* sex determination

The WZ sex determination system is found in a diverse range of animals, such as birds, reptiles, and lepidopteran insects. As mentioned above, Yoshimaro Tanaka discovered that *B. mori* females are heterogametic (WZ), whereas *B. mori* males are homogametic (ZZ).\(^3\) In addition, Haruo Hasimoto reported that the W chromosome determines the femaleness of *B. mori* irrespective of the number of Z chromosomes.\(^4\) After these major discoveries, however, no considerable developments were made in research on silkworm sex determination for about 70 years. In 2001, Toru Shimada *et al.* identified the *B. mori* homolog of *Drosophila* dsx from the database of the expressed sequence tags of *B. mori* and found that *B. mori* dsx (*Bmdsx*) is sex-specifically spliced as observed in *Drosophila* dsx.\(^{12}\) This was the first discovery of a dsx homolog in an insect outside the diptera. Transgenic approaches revealed that BmDSX acts at the downstream end of the sex differentiation cascade in *B. mori*.\(^{13},^{14}\) In addition, Hiroaki Abe *et al.* developed W chromosome-specific PCR markers and sequenced fragments of the W chromosome. They found that the W chromosome of *B. mori* is almost fully occupied by complete or incomplete units of transposable and repeat elements.\(^{15}\) Furthermore, Ken Sahara *et al.* developed a method for detection of the W chromosome of *B. mori* by fluorescence in situ hybridization (FISH) with bacterial artificial chromosome (BAC) probes.\(^{16}\) Furthermore, Masataka Suzuki *et al.* generated male and female cultured cell lines from embryos of a sex-limited black egg strain. Using these cell lines, they identified two factors, *Bombyx* homolog of IGF-II mRNA binding protein (*BmIMP*) and *Bombyx* homolog of P-element somatic inhibitor (*BmPSI*), both of which are involved in *Bmdsx* splicing.\(^{17},^{18}\) Having made these discoveries, Japanese researchers have played central roles in the progress of research in the field of sex determination in *B. mori*. However, despite the huge amount of trials conducted by entomologists, geneticists, and molecular biologists all over the world, a putative *B. mori* feminizer *Fem* located on the W chromosome was not identified until 2014.

Major obstacles to the discovery of the *B. mori* feminizing factor

We experienced three big obstacles to the discovery of the feminizing factor of *B. mori*. First, in this species, crossing-over events do not occur in

Fig. 1. Photographs of *B. mori*. Photographs of (A) 5th instar larvae; (B) cocoons; (C) pupae; and (D) adult moths of *B. mori*. In all panels, the female is on the left, and the male is on the right. Note that this is a sex-limited strain possessing larval marks only in females (A).
females. Therefore, it was impossible to narrow down the Fem-linked genomic region by conventional DNA marker-based positional cloning strategies. Second, the W chromosome of _B. mori_ is almost fully occupied by nested transposable and repeat elements,\(^1\) which prevented the construction of long accurate sequence scaffolds for this chromosome. Furthermore, the lack of accurate nucleotide sequences of the W chromosome was fatal to the identification of Fem by nucleotide sequence-based approaches. Third, no established method existed to distinguish the sexes of _B. mori_ embryos either visually or molecularly. Because _B. mori_ sex determination was believed to be established at an early stage of embryogenesis, we had to prepare the sexed RNAs to search Fem candidates by transcriptome-based strategies.

Our strategy to identify the _B. mori_ feminizing factor

In contrast to the Z chromosome, the W chromosome of _B. mori_ is almost completely occupied by selfish repetitive elements,\(^1\),\(^9\) most of which are considered to be precursors of PIWI-interacting RNAs (piRNAs). piRNAs are small RNAs whose length ranges from 23 to 30 nucleotides. They potentially act as sequence-specific guides for PIWI proteins that cleave target transposon-derived RNAs, resulting in repression of transposon activity.\(^2\),\(^3\)

Considering the transposon-dense nature of the W chromosome, we hypothesized that W chromosome-derived, female-specific or female-enriched piRNAs globally regulate the expression of the genes required for sexual differentiation in _B. mori_. To examine this possibility, we generated and characterized piRNA libraries prepared from pupal ovary and testis of wild-type and three _B. mori_ strains with a unique truncated W chromosomes. We found that female-enriched piRNAs were produced from transposons or repetitive sequences that were located within the sex-determining region of the W chromosome.\(^2\),\(^6\) However, at that time, we did not know which piRNAs are actually involved in sex determination and how they function in the sex determination cascade.

Transcriptome profiling with molecularly sexed RNAs from _B. mori_ early embryos

To identify the genes or non-coding RNAs (i.e., piRNA precursors) involved in _B. mori_ sex determination, it was necessary to establish a method to obtain molecularly sexed RNA from early embryos whose sexes were visually indistinguishable. First, we managed to simultaneously prepare total RNA and genomic DNA from a single embryo using a commercially available phenol/guanidine isothiocyanate reagent (Fig. 2A). Using the genomic DNA, we established a method to molecularly sex the individual embryo using three W chromosome-specific PCR markers. Next, we examined the splicing pattern of _Bmdsx_ using total RNA of molecularly sexed embryos and found that female-
type splice variants of *Bmdsx* are the default transcripts during the early stages of development, and male-type splice variants appeared in male embryos at 21 h post-oviposition (hpo) (Fig. 2B). These results indicated that the feminizing factor is transcribed from the W chromosome before 21 hpo. Therefore, we performed deep sequencing of RNAs (RNA-seq) using molecularly sexed RNAs from embryos before and after 21 hpo (Fig. 2B), and identified a 767 base-long transcript that was expressed only in female embryos at any of the time points examined (Fig. 2C).

Identification of Feminizer, which produces a W chromosome-derived female-specific piRNA

Genomic PCR and RT-PCR experiments revealed that this female-specific transcript is a repetitive sequence on the W chromosome. We measured the copy number of this sequence using genomic DNA from three *B. mori* strains (N4, C108T, and p50T) and *B. mandarina*, a putative ancestor insect of *B. mori*. Quantitative PCR experiments revealed that the copy number of this repeat was more than 150 in all strains examined (Fig. 3A).

Next, to determine the location of this repeat on the W chromosome, we performed FISH using a plasmid containing the 767 base pair-long fragment (approx. 3.6 kilobase pairs in total) as a probe. We routinely use BAC or fosmid clones as a probe to obtain a clear signal in FISH, but in this case, we obtained an exceedingly clear signals on the W chromosome using a short DNA probe, strongly suggesting that this fragment is highly accumulated at a specific locus on the W chromosome (Fig. 3B).

The nucleotide sequence of this transcript showed no homology to any nucleotide sequences deposited in public databases. However, we noticed that the transcript was a precursor that produces a huge amount of a single 29-base-long female-specific piRNAs, when we applied this sequence to our in-house piRNA database (SilkBase, http://silkbase.ab.a.u-tokyo.ac.jp) (Fig. 4A). This piRNA was detected in piRNA libraries from *B. mori* ovaries, embryos, and the ovary-derived cell line BmN-4, but not in libraries from testes. To elucidate the function of this piRNA, we designed an inhibitor RNA and examined its efficacy using BmN-4 cells, which possess a complete piRNA biogenesis pathway and do not express male-type *Bmdsx* variants (control in Fig. 4B). The transfection of the inhibitor RNA, however, resulted in the production of the male-type splice variant of *Bmdsx* (inhibitor in Fig. 4B), indicating that this inhibitor functions properly, and the inhibition of this function of the piRNA leads to masculinization in ovarian cells. To determine the in vivo function of this piRNA, we injected the inhibitor RNA into early embryos and examined *Bmdsx* splicing. We found that the inhibition of this piRNA-mediated cascade resulted in the production of male-type *Bmdsx* variants in female embryos (Fig. 4C), indicating that this piRNA is the long-sought feminizing factor of *B. mori*. We renamed the 767 base-long piRNA precursor *Feminizer* (*Fem*).

piRNAs potentially act as sequence-specific guides for PIWI proteins that cleave target RNAs, such as transposable and repetitive RNAs. We next searched for targets of the *Fem* piRNA using a BLAST search with the genome information of male *B. mori* and identified one genomic locus that had significant homology with the *Fem* piRNA (see Fig. 5A). We experimentally confirmed the cleavage of this target mRNA at the predicted site in early embryos. Surprisingly, this mRNA was not transcribed from the repeat sequence but from the protein-coding sequence of the Z chromosome. We named this novel gene as *Masculinizer* (*Masc*).
piRNAs are known to be produced by a unique biogenesis pathway called the “ping-pong” cycle. This pathway requires the involvement of two different PIWI proteins, Siwi and BmAgo3 in B. mori (Fig. 4E).23,25) If Fem piRNA is generated by this system, Masc-derived piRNA should be produced from the Masc mRNA in female cells. Mapping of embryonic piRNAs to the Masc sequence revealed that the Masc mRNA produced a single piRNA species in embryos (Fig. 4D). Immunoprecipitation experiments also showed that Siwi and BmAgo3 preferably bind to Fem piRNA and Masc piRNA, respectively.5) Based on these results and observations, we concluded that Fem- and Masc-derived piRNAs are produced by the cleavage involving the Masc piRNA-BmAgo3 and Fem piRNA-Siwi complexes, respectively, which function at the starting point of the B. mori sex determination cascade (Fig. 4E).

Masc protein is required for both masculinization and dosage compensation

The target of Fem piRNA, Masc, encodes a CCCH-tandem zinc finger protein that is conserved in lepidopteran insects (Fig. 5A).5) Transfection of Masc-GFP fusion cDNA into BmN-4 cells revealed...
Fig. 5. Masc is a masculinizing factor of *B. mori*. (A) Structure of the Masc protein. The locations of the two zinc fingers, NLS, and two conserved cysteines are indicated. Sequence of *Masc-R* mRNA and cleavage site by *Fem* piRNA-Siwi complex are also displayed. (B) Intracellular localization of the Masc protein. BmN-4 cells transfected with expression plasmids containing GFP or Masc-R-GFP were photographed at 72 h after the transfection. (C) Effect of the depletion of *Masc* mRNA on *Bmdsx* splicing in early embryos. The *Bmdsx* splicing pattern of embryos injected with siRNAs for GFP or Masc was determined at 72 h post-injection. (D) Effect of the overexpression of *Masc* on *Bmdsx* splicing in BmN-4 cells originating from the ovary. The *Bmdsx* splicing pattern of Masc cDNA-transfected BmN-4 cells was examined. MR-CS is a *Masc-R* derivative (*Masc-R-C301S*) expressing a Masc protein with a substitution of Cys301 to serine. M1 is a male cell line that originated from a male embryo of a sex-limited black egg strain and was used as a control. (E) Effect of the overexpression of *Masc* on *BmIMPM* expression in BmN-4 cells. The expression of *BmIMPM* in Masc cDNA-transfected BmN-4 cells was examined by RT-qPCR. (F) Effect of Masc-R overexpression on egg maturation. Pupal ovaries of the wild-type and a transgenic strain overexpressing *Masc-R* in fat body cells were compared. Bar, 2 mm.
that Masc is a nuclear protein (Fig. 5B). Motif prediction and mutagenesis experiments identified a bipartite nuclear localization signal (NLS) located between residues 274 and 290 of the Masc protein (Fig. 5A). To establish the function of Masc in sex determination, we performed RNA interference (RNAi) experiments using B. mori early embryos and successfully achieved the depletion of Masc mRNA. We found that all of the Masc-knocked down embryos exclusively expressed female-type splice variants of Bmdsx, even though they were male (Fig. 5C). In addition, the transfection of Fem piRNA-resistant Masc (Masc-R) cDNA, which possesses five nucleotide substitutions at the Fem piRNA-Siwi cleavage site but translates the same amino acid sequence as the Masc protein (Fig. 5A), resulted in the production of the male-type Bmdsx in BmN-4 cells (Fig. 5D). These results clearly showed that Masc is the masculinizing factor of B. mori.

To identify the amino acid residues of the Masc protein required for the masculinizing activity, we constructed a series of Masc cDNA derivatives and transfected them into BmN-4 cells in order to examine Bmdsx splicing patterns and male-specific BmIMP (BmIMP^{piRNA-resistant}) expression. We discovered that the two zinc finger domains (Fig. 5A) are dispensable for the masculinizing activity. We also revealed that the degree of nuclear localization is not associated with the masculinizing activity of the Masc protein. Furthermore, we identified two cysteines, Cys301 and Cys304, as the critical residues for the masculinizing activity (Fig. 5D, E), both of which are completely conserved in lepidopteran Masc proteins (Fig. 5A).

To examine the role of Masc protein at the organism level, we generated transgenic B. mori strains expressing Masc-R cDNA. We found that a strain weakly expressing Masc-R exhibited a partial female-to-male transition, i.e., abnormal ovaries with testis-like tissues containing sperm bundles. Another strain, in which Masc-R was abundantly transcribed in fat body cells, showed markedly reduced egg production in females, presumably because of a decrease in vitellogenin (egg yolk precursor protein) expression by Masc-R expression in fat body tissues (Fig. 5F). These results indicated that Masc is essential to the masculinization process in B. mori.

Furthermore, we found an intriguing phenomenon that the depletion of Masc mRNA resulted in male-specific embryonic death (Fig. 6A). To reveal the reason for this male-specific lethality, we performed RNA-seq of Masc-knocked down embryos and found that most of the Z-linked genes, but not autosomal genes, were abnormally enhanced in Masc-knocked down male embryos (Fig. 6B). This clearly showed that the Masc protein is required for the repression of Z-linked genes, i.e., dosage compensation in B. mori embryos, and that the failure of this dosage compensation may cause male-specific embryonic death. The existence of dosage compensation in lepidopteran insects has been controversial because conflicting experimental results were reported in several lepidopteran insects. Therefore, our discovery was the first report to provide experimental evidence on the existence and importance of dosage compensation in lepidopteran insects, at least in the embryonic stage, and to identify the key factor essential for dosage compensation. In addition, we found that a transgenic B. mori strain ubiquitously expressing Masc-R exhibited a female-killing phenotype. A similar phenotype was also observed in ovary-derived BmN-4 cells transfected with Masc-R cDNA (Fig. 6C). These results suggested that the strong repression of Z-linked genes by Masc-R overexpression is toxic and results in cell death in females, but visible phenotypic defects are not induced in males. The expression of the Masc-R derivative protein with a single amino acid substitution at Cys301 did not affect the cell viability of BmN-4 cells (Fig. 6C), suggesting that Cys301 is an essential residue not only for masculinization but also for dosage compensation of the Masc protein.

How does Wolbachia establish the male-killing trait in moths?

Parasites have been shown to manipulate the behavior, reproduction, and development of their host insects for their own benefit. For example, a baculovirus is known to control the behavior of host caterpillars to spread progeny viruses in nature. On the other hand, Wolbachia, an endosymbiotic bacterium that infects a wide range of insect species, is an example of a parasite that manipulates the sex of its host’s progeny. Male-killing is one of the phenotypes that Wolbachia induces in host insects. Studies on Wolbachia-induced male-killing have been recently conducted mainly using Ostrinia moths. As described above, we observed that RNAi-mediated artificial depletion of Masc mRNA results in male-specific embryonic lethality in B. mori. We speculated that this phenomenon is the phenocopy of Wolbachia-induced male-killing in Ostrinia.
To test this hypothesis, we first attempted to collect *Ostrinia* moths infected with male-killing *Wolbachia* in the field around Tokyo area and obtained one *Ostrinia* female moth (Fig. 7A) that was *Wolbachia*-positive and produced only female progeny when crossed with *Wolbachia*-uninfected male moths (Fig. 7B). We then examined the expression level of *Masc* mRNA in early embryos and found a marked decrease in *Masc* mRNA in *Wolbachia*-infected *Ostrinia* embryos.\(^43\) We also observed a failure of the dosage compensation in *Wolbachia*-infected embryos. The male-specific embryonic death was rescued by injecting *in vitro*-transcribed *Masc* cRNA.\(^43\) These results indicated that *Masc* is the *Wolbachia’s* target for male-killing in lepidopteran insects, and thus a failure of dosage compensation by depleting *Masc* mRNA results in male-killing during embryogenesis (Fig. 7C).

Conclusion and perspective

In this review, we summarized the history and recent progress of research on *B. mori* sex determination. We discovered *Fem*, the precursor of a W chromosome-derived female-specific piRNA, as the feminizing factor of *B. mori*, and *Masc*, the target of *Fem* piRNA, as the factor that is essential for both masculinization and dosage compensation (Fig. 8). Further studies are required to elucidate whether a piRNA-mediated sex determination cascade also operates in other lepidopteran insects with a WZ/ZZ sex chromosome constitution. In addition, we are interested in the mechanism of sex determination in lepidopteran species that have a Z/ZZ (female/male) sex chromosome system. Such insects do not possess female-specific piRNAs, because of the absence of the W chromosome, suggesting that the amount of
Fig. 7. *Wolbachia* targets the *Masc* orthologue to establish male-killing in *Ostrinia* moths. (A) *Ostrinia* female moth infected with male-killing *Wolbachia*. (B) Brood sex ratios in a *Wolbachia*-infected matriline through five generations. (C) A proposed model for *Wolbachia*-induced male-killing in *Ostrinia*. In uninfected male *Ostrinia*, the expression of Masc protein is sufficient for dosage compensation and masculinization during male development (left panel). In *Wolbachia*-infected male *Ostrinia*, *Wolbachia* infection reduces the *Masc* mRNA level in early embryos, resulting in failure of dosage compensation and masculinization (right panel).

Fig. 8. The sex of *B. mori* is determined by the piRNA pathway. The piRNA-mediated pathway plays a critical role in the sex determination pathway of *B. mori*. Fem RNAs are transcribed from the sex-determination regions and are cleaved by the maternally transmitted *Masc* piRNA-BmAgo3 complex. The Fem piRNA-Siwi complex cleaves *Masc* mRNA, resulting in the accumulation of *Masc* piRNA and feminization.
Z-linked Masc mRNA should be determined by the number of Z chromosomes. We are now in the process of obtaining experimental evidence that supports the Z-counting hypothesis using Samia species.

At present, it remains unknown how the Masc protein transmits its signal to male-specific Bmdsx splicing. The Masc protein possesses two CCCH zinc fingers that presumably bind to nucleic acids, i.e., DNA or RNA. However, surprisingly, we showed that both of the two CCCH zinc fingers are dispensable for the masculinizing activity of the Masc protein. Instead, we found that two conserved cysteine residues are required for the masculinizing activity. It is necessary to investigate why these two cysteines are essential for the masculinizing activity of the Masc protein or not.

Our findings on the B. mori sex determination cascade provided an important hint regarding Wolbachia-induced male-killing in lepidopteran insects. Based on the results of embryonic RNAI of B. mori Masc mRNA, we identified the Ostrinia Masc ortholog as the target of Wolbachia for male-killing in Ostrinia moths (Fig. 7C). Our experiments revealed that Wolbachia infection reduces Masc mRNA at early embryonic stages, leading to male-specific embryonic death by a failure of dosage compensation. These results indicated that the genome of the male-killing Wolbachia encodes a factor(s) that negatively controls the level of host Masc mRNA. The identification of this factor will shed light on how Wolbachia has evolved to hijack the Masc-dependent, lepidopteran insect-specific sex determination cascade in the history of Wolbachia-host coevolution.

Acknowledgements

This work was supported by the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry (26034A) to SK, Grants-in-Aid for Scientific Research on Innovative Areas “Spectrum of the Sex: a continuity of phenotypes between female and male” (17H06431) to SK and TK and “Functional machinery for non-coding RNAs” (22115502) to SK, Grant-in-Aid for Scientific Research (A) (15H02482) to SK and TK, and Grant-in-Aid for Challenging Exploratory Research (15K14893) to SK.

References

1) Erickson, J.W. and Quintero, J.J. (2007) Indirect effects of ploidy suggest X chromosome dose, not the X:A ratio, signals sex in Drosophila. PLoS Biol. 5, e332.
2) Verhulst, E.C., van de Zande, L. and Beukeboom, L.W. (2010) Insect sex determination: it all evolves around transformer. Curr. Opin. Genet. Dev. 20, 376–383.
3) Tanaka, Y. (1916) Genetic studies in the silkworm. J. Coll. Agric. Sapporo 6, 1–33.
4) Hasimoto, H. (1933) The role of the W-chromosome in the sex determination of Bombyx mori. Jpn. J. Genet. 8, 245–247.
5) Kiuchi, T., Koga, H., Kawamoto, M., Shoji, K., Sakai, H., Arai, Y. et al. (2014) A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509, 633–636.
6) Criscione, F., Qi, Y. and Tu, Z. (2016) GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi. eLife 5, e19281.
7) Hall, A.B., Basu, S., Jiang, X., Qi, Y., Timoshesky, V.A., Biedler, J.K. et al. (2015) A male-determining factor in the mosquito Aedes aegypti. Science 348, 1268–1270.
8) Nagoshi, R.N., McKeown, M., Burtis, K.C., Belote, J.M. and Baker, B.S. (1988) The control of alternative splicing at genes regulating sexual differentiation in D. melanogaster. Cell 53, 229–336.
9) Clough, E., Jimenez, E., Kim, Y.A., Whitworth, C., Neville, M.C., Hempel, L.U. et al. (2013) Sex- and tissue-specific functions of Drosophila doublesex transcription factor target genes. Dev. Cell 31, 761–773.
10) Kurin, R. (2002) The Silk Road: Connecting Cultures, Creating Trust. Talk Story 21, 1–11.
11) Toyama, K. (1906) On the hybridology of the silkworm. Bull. Tokyo Imperial Univ. Coll. Agric. 7, 259–393.
12) Ohbayashi, F., Suzuki, M.G., Mita, K., Okano, K. and Shimada, T. (2003) A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 128, 145–158.
13) Suzuki, M.G., Funaguma, S., Kanda, T., Tamura, T. and Shimada, T. (2003) Analysis of the biological functions of a doublesex homologue in Bombyx mori. Dev. Genes Evol. 213, 345–354.
14) Suzuki, M.G., Funaguma, S., Kanda, T., Tamura, T. and Shimada, T. (2005) Role of the male BmDSX protein in the sexual differentiation of Bombyx mori. Evol. Dev. 7, 58–68.
15) Abe, H., Seki, M., Ohbayashi, F., Tanaka, N., Yamashita, J., Fuji, T. et al. (2005) Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx mori. Insect Mol. Biol. 14, 339–352.
16) Sahara, K., Yoshido, A., Kawamura, N., Ohnuma, A., Abe, H., Mita, K. et al. (2003) W-derived BAC probes as a new tool for identification of the W chromosome and its aberrations in Bombyx mori. Chromosoma 112, 48–55.

17) Suzuki, M.G., Imanishi, S., Dohmae, N., Nishimura, T., Shimada, T. and Matsumoto, S. (2008) Establishment of a novel in vivo sex-specific splicing assay system to identify a trans-acting factor that negatively regulates splicing of Bombyx mori dsx female exons. Mol. Cell. Biol. 28, 333–343.

18) Suzuki, M.G., Imanishi, S., Dohmae, N., Asanuma, M. and Matsumoto, S. (2010) Identification of a male-specific RNA binding protein that regulates sex-specific splicing of Bmdsx by increasing RNA binding activity of BmPSI. Mol. Cell. Biol. 30, 5776–5786.

19) Koike, Y., Mita, K., Suzuki, M.G., Maeda, S., Abe, H., Oseoegawa, K. et al. (2003) Genomic sequence of a 320-kb segment of the Z chromosome of Bombyx mori containing a kettin ortholog. Mol. Genet. Genomics 269, 137–149.

20) Ghildiyal, M. and Zamore, P.D. (2009) Small RNAs as guardians of the genome. Cell 136, 656–668.

21) Malone, C.D. and Hannon, G.J. (2009) Small RNAs as guardians of the genome. Cell 136, 656–668.

22) Kawaoika, S., Kadota, K., Arai, Y., Suzuki, Y., Fujii, T., Abe, H. et al. (2011) The silkworm W chromosome is a source of female-enriched piRNAs. RNA 17, 2144–2151.

23) Kawaoika, S., Hayashi, N., Suzuki, Y., Abe, H., Sugano, S., Tomari, Y. et al. (2009) The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. RNA 15, 1258–1264.

24) Suzuki, M.G., Suzuki, K., Aoki, F. and Ajimura, M. (2012) Effect of RNAi-mediated knockdown of the Bombyx mori transformer-2 gene on the sex-specific splicing of Bmdsx pre-mRNA. Int. J. Dev. Biol. 56, 693–699.

25) Kawaoika, S., Minami, K., Katsuma, S., Mita, K. and Shimada, T. (2008) Developmentally synchronized expression of two Bombyx mori Pwi subfamily genes, SIWI and BmAGO3 in germ-line cells. Biochem. Biophys. Res. Commun. 367, 755–760.

26) Katsuma, S., Sugano, Y., Kiuchi, T. and Shimada, T. (2015) Two conserved cysteine residues are required for the masculinizing activity of the silkworm Masc protein. J. Biol. Chem. 290, 26114–26124.

27) Sugano, Y., Kokusho, R., Ueda, M., Fujimoto, M., Tsutsumi, N., Shimada, T. et al. (2016) Identification of a bipartite nuclear localization signal in the silkworm Masc protein. FEBS Lett. 590, 2256–2262.

28) Sakai, H., Sumitani, M., Chikami, Y., Yahata, K., Uchino, K., Kiuchi, T. et al. (2016) Transgenic expression of the piRNA-resistant masculinizer gene induces female-specific lethality and partial female-to-male sex reversal in the silkworm, Bombyx mori. PLoS Genet. 12, e1006203.

29) Walters, J.R., Hardcastle, T.J. and Jiggins, C.D. (2015) Sex chromosome dosage compensation in Heliconius butterflies: Global yet still incomplete? Genome Biol. Evol. 7, 2545–2559.

30) Smith, G., Chen, Y.R., Blissard, G.W. and Briscoe, A.D. (2014) Complete dosage compensation and sex-biased gene expression in the moth Manduca sexta. Genome Biol. Evol. 6, 526–537.

31) Harrison, P.W., Mank, J.E. and Wedell, N. (2012) Incomplete sex chromosome dosage compensation in the Indian meal moth, Plodia interpunctella, based on de novo transcriptome assembly. Genome Biol. Evol. 4, 1118–1126.

32) Walters, J.R. and Hardcastle, T.J. (2011) Getting a full dose? Reconsidering sex chromosome dosage compensation in the silkworm, Bombyx mori. Genome Biol. Evol. 3, 491–504.

33) Zha, X., Xia, Q., Duan, J., Wang, C., He, N. and Xiang, Z. (2009) Dosage analysis of Z chromosome genes using microarray in silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 39, 315–321.

34) Suzuki, M.G., Shimada, T. and Kobayashi, M. (1999) Bm kettin, homologue of the Drosophila kettin gene, is located on the Z chromosome in Bombyx mori and is not dosage compensated. Heredity 82, 170–179.

35) Suzuki, M.G., Shimada, T. and Kobayashi, M. (1998) Absence of dosage compensation at the transcription level of a sex-linked gene in a female heterogametic insect, Bombyx mori. Heredity 81, 275–283.

36) Hoover, K., Grove, M., Gardner, M., Hughes, D.P., McNeil, J. and Slavicek, J. (2011) A gene for an extended phenotype. Science 333, 1401.

37) Kamita, S.G., Nagasaka, K., Chua, J.W., Shimada, T., Mita, K., Kobayashi, M. et al. (2005) A baculovirus-encoded protein tyrosine phosphatase gene induces enhanced locomotory activity in a lepidopteran host. Proc. Natl. Acad. Sci. U.S.A. 102, 2584–2589.

38) Katsuma, S., Koyano, Y., Kang, W., Kokusho, R., Kamita, S.G. and Shimada, T. (2012) The baculovirus uses a captured host phosphatase to induce enhanced locomotory activity in host caterpillars. PLoS Pathog. 8, e1006244.

39) Werren, J.H., Baldo, L. and Clark, M.E. (2008) Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751.

40) Kageyama, D. and Traut, W. (2004) Opposite sex-biased gene expression in the moth Heliconius erato. Insect Biochem. Mol. Biol. 34, 321.

41) Sugimoto, T.N., Fujii, T., Kayukawa, T., Sakamoto, H. and Ishikawa, Y. (2010) Expression of a double-sex homologue is altered in sexual mosaics of Ostrinia scapulalis moths infected with Wolbachia. Insect Biochem. Mol. Biol. 40, 847–854.

42) Sugimoto, T.N. and Ishikawa, Y. (2012) A male-killing Wolbachia carries a feminizing factor and is associated with degradation of the sex-determining system of its host. Biol. Lett. 8, 412–415.
Fukui, T., Kawamoto, M., Shoji, K., Kiuchi, T., Sugano, S., Shimada, T. et al. (2015) The endosymbiotic bacterium Wolbachia selectively kills male hosts by targeting the masculinizing gene. PLoS Pathog. 11, e1005048. (Received Jan. 9, 2018; accepted Feb. 19, 2018)

Profile

Susumu Katsuma was born in 1973 in Osaka prefecture, Japan. He graduated from the Faculty of Agriculture, The University of Tokyo in 1995. He received a M.S. degree in 1997 and a Ph.D. degree in 2003 from the Graduate School of Agricultural and Life Sciences, The University of Tokyo. From 1997 to 2003, he worked at the Discovery Research Laboratories, Nippon Shinyaku Co. Ltd., as a researcher. He then worked as a project assistant professor at the Institute for Chemical Research, Kyoto University, from 2003, and became an associate professor in the Graduate School of Agricultural and Life Sciences, The University of Tokyo, in 2005. He has been studying host–pathogen interactions mainly using lepidopteran insects and their pathogens. He has also focused on the PIWI-interacting RNA (piRNA)-mediated immune system against selfish elements and recently discovered a sex-determining piRNA in Bombyx mori, which has brought him into the “sex determination” field. He received the 10th Japan Prize in Agricultural Sciences, Achievement Award for Young Scientists from The Foundation of Agricultural Sciences of Japan in 2011, 25th Award for Young Scientists from The Japanese Society of Sericultural Science in 2013, 13th JSPS Prize from the Japan Society for the Promotion of Science in 2017, and a JSSS Award from The Japanese Society of Sericultural Science in 2018.