The Computational Complexity of the Lorentz Lattice Gas

J. Machta and K. Moriarty
Department of Physics and Astronomy
University of Massachusetts
Amherst, Massachusetts 01003-3720

October 27, 2018

Abstract

The Lorentz lattice gas is studied from the perspective of computational complexity theory. It is shown that using massive parallelism, particle trajectories can be simulated in a time that scales logarithmically in the length of the trajectory. This result characterizes the “logical depth” of the Lorentz lattice gas and allows us to compare it to other models in statistical physics.

1 Introduction

The Lorentz lattice gas is a simple but non-trivial model of single particle transport in a quenched random environment. Ernst and collaborators [1, 2, 3, 4] have used the Lorentz lattice gas to examine a number of interesting questions in nonequilibrium statistical physics. In this paper we will examine this model from the perspective of its computational complexity. Though this study may aid in the design of simulations, our primary motivation is to provide a new characterization of this model.

The Lorentz lattice gas can be described in the following way. A single particle moves with unit speed on a lattice. Some of the sites of the lattice are scatterers. In the absence of scatterers the particle moves in a straight line along one of the lattice directions but when it encounters a scatterer its velocity may be changed. Two broad classes of models can be distinguished, depending on whether the motion of the particle is deterministic or stochastic. For the stochastic Lorentz lattice gas each collision is a random event
whereas for the deterministic model the effect of the scatterer depends only on the incoming velocity. The behavior of these two classes is quite different [5] but the computational approach described below treats both on an equal footing.

Computational complexity is the branch of theoretical computer science that seeks to quantify the resources required to solve problems. In this study, we focus on parallel computation and ask the following question. Suppose we are supplied with a massively parallel computer and we are asked to generate representative Lorentz lattice gas trajectories of length t^*. How much time will this take?

First consider the time requirements for a straightforward and physically motivated parallel approach. We could connect the processors as a cellular automaton with every site of the lattice controlled by a processor. When a particle arrives at a given site the local processor passes the particle to the appropriate neighboring site. It is clear that this approach will require a computational time that scales as the physical time t^* and uses $O(L^d)$ locally connected processors where L is the system size and d the dimension. Suppose we are willing to employ many more processors and have them non-locally connected. Could we obtain a computation speed that is qualitatively faster? To answer this question and place it in context we must first briefly discuss computational complexity theory.

2 Computational Complexity

Due to space limitation it is impossible to provide more than the most superficial introduction here. The reader can find further information and details in a number of texts [6, 7] and monographs [8, 11, 12, 13]. A somewhat more detailed discussion of applications to problems in statistical physical can be found in Refs. [12, 13].

Complexity theory typically considers decision problems (i.e. problems with YES or NO answers) of varying size N. The size of the problem is defined as the number of bits required for the problem input. Complexity theory is usually expressed in terms of space and time requirements on Turing machines, however, equivalent formulations in terms of parallel computation (see for example [11, 14, 15]) are better suited to the (extensive) problems of statistical physics. The standard theoretical model of parallel computation is the ‘P-RAM’, consisting of a number of processors all running the same program and all connected to a global random access memory.
that can be accessed in unit time. The measure of computation time in the P-RAM model is unphysical because of the assumption of unit access time for any processor to any memory element. Nonetheless, this measure of time is interesting because it reveals the “logical depth” of the computation. The notion of logical depth is defined within an equivalent parallel computational model: “families of Boolean circuits.” A Boolean circuit is a collection of AND, OR and NOT gates connected together without feedback. A circuit has \(N \) inputs and a single output. The depth of the circuit is the longest path from an input to the output while the size is the number of connecting wires. To solve a problem with inputs of varying sizes, a family of circuits, one for each \(N \), is required. For parallel computation, the important resources are hardware (processors and memory for the P-RAM or, equivalently, the size of a Boolean circuit that solves the problem) and parallel time or, equivalently the depth of the corresponding Boolean circuit. The focus of this paper is on the resource of parallel time (logical depth).

A concrete example may help clarify the notion of P-RAM computation and how it can be applied in statistical physics. Consider an ordinary random walk on a lattice. At each time step the walker chooses one of the 2\(d \) lattice directions. Suppose the objective is to generate a sample random walk of length \(T \) on a lattice of size \(L^d \) with \(L = O(T) \). Let \(r(t) \) be the position of the walker at time \(t \) and let \(\delta r(t) \) be the random displacement of the walker at time \(t \). Then \(r(t) = r_0 + \delta r(1) + \cdots + \delta r(t) \) where \(r_0 \) is the initial position of the walker. The displacements are chosen from the unit vectors of the lattice. Random walk simulations using this approach can be recast as the following decision problem by taking the random displacements as inputs:

Random Walk (dimension \(d \))

Given: System size \(L \) and duration \(T \), displacements \(\{ \delta r(t)|t = 1, \ldots, T \} \) and an initial position \(r_0 \). A designated position \(r^* \) and time \(t^* \).

Problem: Is the particle at position \(r^* \) at time \(t^* \)?

Note that the problem size \(N \) here is \(O(T) \) because of the list of random displacements. Of course, the decision problem is only part of the full problem of simulating a random walk. The first task is to generate the random displacements by some means. Leaving aside the many interesting questions related to generating pseudo-random numbers, we assume that the required random numbers can be obtained in parallel in unit time. Furthermore, we are likely to be interested in the whole trajectory, not just whether the walk
visits a certain site at a certain time. To obtain the full trajectory up to time \(T \) we solve in parallel \(TL^d \) decision problems. This approach is extravagantly wasteful of hardware but does not increase the parallel time. Thus the overall logical depth of generating a random walk by the above method is essentially the same as for the above random walk decision problem.

The random walk decision problem is reduced to summing \(r_0 \) and the \(t^* \) displacements (additional complications arise if the walk encounters the boundary but they do not affect the conclusion). The result is then compared with \(r^* \). Since the problem size scales as \(T \), the problem may be solved on a conventional sequential computer in a time that is polynomial (in this case nearly linear) in the problem size. A problem that can be solved on a sequential computer (or Turing machine) in a time that is bounded by a polynomial in the problem size is said to be in the class \(\mathbf{P} \). The random walk problem is thus placed in the complexity class \(\mathbf{P} \).

Given a P-RAM however we can add \(n \) numbers much more quickly. The numbers are assumed to be in the first \(n \) elements of the global memory. The procedure requires \(n/2 \) processors. In the first step, each processor takes a distinct pair of numbers from memory, adds them and returns the sum to memory leaving \(n/2 \) partial summands. In subsequent steps processors are again assigned to add pairs of numbers returning them to memory. Since the number of partial summands is halved in each step, only \(O(\log n) \) steps are required to complete the summation. Here the problem size \(N \) is proportional to \(n \).

A problem that can be solved on a P-RAM using polynomially many (i.e. \(N^{O(1)} \)) processors in polylog (i.e. \(\log^{O(1)} N \)) time is said to be in the class \(\mathbf{NC} \). Note that \(\mathbf{NC} \subseteq \mathbf{P} \) since polynomially many processors running for polylogarithmic time can be simulated by a single processor running for polynomial time. Problems in \(\mathbf{NC} \) do not have much logical depth.

The above arguments show the random walk problem is in the class \(\mathbf{NC} \). Although the random walk takes physical time \(T \) to unfold, it can be generated using only \(O(\log T) \) logical steps. This result sets only an upper bound on the complexity of sampling random walks since we have not excluded the possibility that a different sampling method may be faster than adding up \(T \) numbers.
3 Fast parallel algorithm for the Lorentz lattice gas

The particle trajectory in the Lorentz lattice gas can be viewed as a path on a \(d + d + 1 \) dimensional lattice. A point on this lattice takes the form \((r, c, t)\) where \(r\) is a \(d\)-dimensional position vector with each co-ordinate taking integer values from 0 to \(L\) and \(c\) is the \(d\)-dimensional velocity vector. The particle is constrained to move along lattice directions with unit speed so the velocity vector has exactly one nonzero component that may be either +1 or −1. The time \(t\) can take any integer value from 0 to \(T\) and suppose that \(L = O(T)\).

The particle travels in a straight line along lattice directions unless it encounters a fixed scatterer. The set \(S = \{s_1, \ldots, s_M\}\) specifies the scatterer locations with each \(s\) being a distinct lattice site. When a particle encounters a scatterer its velocity is modified. Associated with each scatter and each time is an impulse variable \(\delta_k(t)\) that determines how the velocity is changed if the particle is at the \(k\)th scatterer at time \(t\). \(\delta\) may take values 0, 1, \ldots, \(2d - 1\) where '0' indicates forward scattering, '1' backscattering and the other values, scattering into one of the \(2(d - 1)\) transverse directions (defined relative to the incoming velocity). We will also use the operator notation \(R[\delta_k(t)]c\) for the new velocity after the scattering event. Let \(\Delta\) be the set of \(MT\) impulses. The Lorentz lattice gas decision problem is stated as follows:

Lorentz Lattice Gas (dimension \(d\))

Given: System size \(L\), duration \(T\), scatterer locations \(S\), impulses \(\Delta\) and an initial phase-space point \((r_0, c_0)\). A designated phase-space point \((r^*, c^*)\) and time \(t^*\).

Problem: Is the particle at phase-space point \((r^*, c^*)\) at time \(t^*\)?

The Lorentz lattice gas problem is clearly in the class \(P\) but it is not obvious that it is in \(NC\). The sequence of scattering events appears to be history dependent and the simple approach used for the ordinary random walk will not succeed here. Nevertheless, we now show that the Lorentz lattice gas decision problem is in the class \(NC\). We do this by sketching a P-RAM algorithm that runs in time \(\log N\) with \(N\) the problem size. The first step in the algorithm is the construction of a directed “phase-space-time” graph, \(G = (V, E)\) from the scatterer locations and impulses. \(G\) is
independent of the initial and final phase-space points. The set of vertices V of G are of the form (r, c, t), bounded in the obvious way by L and T. The directed edges E of G correspond to the possible dynamics of the particle. We write a directed edge from vertex v_1 to vertex v_2 as (v_1, v_2). The rules for constructing E are given below:

Free motion: If r is not a scatterer position then for each $0 \leq t < T$ and each c,
\[(r, c, t), (r + c, c, t + 1) \in E.\]

Scattering: If, for some k, $r = s_k$ then for each $0 \leq t < T$ and each c,
\[(r, c, t), (r + R[\delta_k(t)]c, R[\delta_k(t)]c, t + 1) \in E.\]

Boundary: The boundary conditions must be built into G. This is done in the obvious way.

The number of vertices in G is $|V| = 2dTL^d$. The directed edges can be described by a (sparse) $|V| \times |V|$ matrix with ones representing edges and zeroes otherwise. This matrix can be entered into memory in a few parallel steps using $|V|^2$ processors, one for each possible edge.

It is clear that a directed path exists from $(r_0, c_0, 0)$ to (r^*, c^*, t^*) if and only if a particle with initial position and velocity (r_0, c_0) will arrive at r^* with velocity c^* at time t^*. Thus, the computational task has been reduced to determining whether such a path exists. It turns out that this graph accessibility problem (GAP) is a well studied problem in complexity theory. It is known that GAP is in NC^3.

Here is a straightforward NC algorithm for GAP. This approach is not necessarily optimal but has a simple “renormalization group” flavor. Consider a directed graph with n vertices, $\{v_1, \ldots, v_n\}$. The adjacency matrix is an $n \times n$ matrix of 0’s and 1’s. Each entry represents a possible directed edge, (v_i, v_j) where a ‘1’ means the edge exists. The output of the algorithm is the connectivity matrix $C(v, v')$, also an $n \times n$ matrix of 0’s and 1’s where now a ‘1’ means that there is a directed path from v to v'. Initially the connectivity matrix is equal to the adjacency matrix. The algorithm requires n^3 processors, one for each triple (v_i, v_k, v_j) of vertices. The processor assigned to (v_i, v_k, v_j) reads the current connectivity matrix elements $(v_i, v_k), (v_i, v_j)$ and (v_k, v_j). The processor then answers the question of whether, on the basis of its information, there is a directed path from v_i to v_j. Explicitly, if either $C(v_i, v_j) = 1$ or both $C(v_i, v_k) = 1$ and $C(v_k, v_j) = 1$ then processor (v_i, v_k, v_j) writes a 1 to matrix element $C(v_i, v_j)$ otherwise it does nothing. Initially the connectivity matrix knows of all pairs of vertices connected by
paths of length one (i.e. the edges). After one step of the algorithm, the connectivity matrix knows of all pairs of vertices connected by paths of length two or less. After the kth step, the connectivity matrix knows of all directed paths of length 2^k or less. The algorithm stops as soon as no changes are made to the connectivity matrix. If two points are connected, there must be a path of length less than n, thus the algorithm is assured of halting after $O(\log n)$ parallel steps. Since the time is logarithmic and the number of processors is polynomial in the problem size it follows that GAP is in the complexity class NC. The GAP subroutine is the most complex part of solving the Lorentz lattice gas problem so it follows that the Lorentz lattice gas is also in NC. The parallel approach used here is quite similar to that employed for several growth models (e.g. the solid-on-solid model) [12].

4 Discussion

We have seen that both the ordinary random walk and the Lorentz lattice gas yield natural decision problems that can be solved in logarithmic parallel time though the approach needed for the Lorentz lattice gas is considerably more sophisticated. There is a fine-grained distinction between the complexity of the two problems. The GAP algorithm used in the solution of the Lorentz lattice gas implicitly assumes the "concurrent read concurrent write" (CRCW) P-RAM model. The CRCW P-RAM allows all processors to attempt to write to a single memory element at the same time. The CRCW P-RAM model is equivalent to families of Boolean circuits with gates having arbitrary fan-in. The fan-in of a gate is the number of incoming logical values. If we restrict our gates to fan-in two, then an extra power of $\log N$ appears in the parallel time requirement for GAP. On the other hand, adding N numbers does not use this feature of arbitrary fan-in. The conclusion of all this is that the Lorentz lattice gas algorithm is slightly more complex than the random walk algorithm. Specifically, the Lorentz lattice gas problem is in the class AC^1 (solvable by a family of arbitrary fan-in circuits of depth $O(\log N)$ and polynomial size) while the random walk problem is in the class NC^1 (solvable by a family of fixed fan-in circuits of depth $O(\log N)$) [9]. These and the other complexity classes described above are easily seen to be related as follows [9]:

$$\text{NC}^1 \subseteq \text{AC}^1 \subseteq \text{NC} \subseteq \text{P}$$

(1)
Although it is widely believed that each of these inclusions is strict, these conjectures have not been proved. Even assuming the above conjectures, our results provide only upper bounds on the complexity of sampling the trajectories of the random walk and Lorentz lattice gas models. Although it seems unlikely, there may be a wholly different sampling method associated with a less complex decision problem. Furthermore, if one wishes to sample the locations of the particle at a given time and not whole trajectories, less complex approaches may be available if the spatial probability distribution is known. The simplest example of this is an ordinary random walk in a bounded space where, after a long time, all sites are visited with equal probability. Sampling the locations of the walker in this limit is trivial and requires only constant parallel time.

The logical depth of the Lorentz lattice gas is roughly comparable to that of a variety of growth models in statistical physics such as the Eden model and invasion percolation [12], all of which are associated with problems in the complexity class NC. These models display less logical depth than diffusion limited aggregation which apparently requires more than polylogarithmic parallel time to simulate [13]. It would be interesting to extend this study to related dynamical systems such as the continuum Lorentz gas and many-body lattice gases.

Acknowledgements

This work was supported in part by National Science Foundation Grant DMR-9311580. We thank Ray Greenlaw for useful comments.

References

[1] M. H. Ernst and G. A. van Velzen. Lattice Lorentz gas. *J. Phys. A: Math. Gen.*, 22:4611, 1989.

[2] M. H. Ernst and G.A. van Velzen. Long-time tails in lattice Lorentz gases. *J. Stat. Phys.*, 57:455, 1989.

[3] H. van Beijeren and M. H. Ernst. Diffusion in Lorentz lattice gas automata with backscattering. *J. Stat. Phys.*, 70:793, 1993.
[4] M. H. Ernst, J. R. Dorfman, and D. Jacobs. Mean-field theory for Lyapunov exponents and Kolmogorov-Sinai entropy in Lorentz lattice gases. *Phys. Rev. Lett.*, 74:4416, 1995.

[5] E. G. D. Cohen and F. Wang. Novel phenomena in Lorentz lattice gases. *Physica A*, 219:56, 1995.

[6] J. E. Hopcroft and J. D. Ullman. *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley, 1979.

[7] H. R. Lewis and C. H. Papadimitriou. *Elements of the Theory of Computation*. Prentice-Hall, 1981.

[8] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. *Limits to Parallel Computation: P-completeness Theory*. Oxford University Press, 1995.

[9] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwan, editor, *Handbook of Theoretical Computer Science*, volume A: Algorithms and Complexity, page 68. M.I.T. Press/Elsevier, 1990.

[10] M. R. Garey and D. S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman & Co., New York, 1979.

[11] A. Gibbons and W. Rytter. *Efficient Parallel Algorithms*. Cambridge University Press, 1988.

[12] J. Machta and R. Greenlaw. The parallel complexity of growth models. *J. Stat. Phys.*, 77:755, 1994.

[13] J. Machta and R. Greenlaw. The computational complexity of generating random fractals. *J. Stat. Phys.*, 82:1299, 1996.

[14] H. Venkateswaran. Circuit definitions of nondeterministic complexity classes. *SIAM Journal on Computing*, 21:655, 1992.

[15] D. A. M. Barrington and N. Immerman. Time, hardware, and uniformity. In *Structure in Complexity Theory: Ninth Annual Conference*, page 176, 1994.