**RESEARCH LETTER**
10.1029/2022GL101083

**Key Points:**
- Contrasting actinolite microstructures in talc-free and talc-bearing subduction interface metasomatic rocks record stress variations
- Stress amplification in actinolite from talc-actinolite schist results from high strain rate deformation of surrounding talc
- High strain rates reflect episodic slow slip localized in talc-actinolite schist under high pore fluid pressures during metasomatism

**Supporting Information:**
Supporting Information may be found in the online version of this article.

**Correspondence to:**
W. F. Hoover, wohoover@uw.edu

**Citation:**
Hoover, W. F., Condit, C. B., Lindquist, P. C., Moser, A. C., & Guevara, V. E. (2022). Episodic slow slip hosted by talc-bearing metasomatic rocks: High strain rates and stress amplification in a chemically reacting shear zone. *Geophysical Research Letters*, 49, e2022GL101083. https://doi.org/10.1029/2022GL101083

Received 31 AUG 2022
Accepted 19 OCT 2022

**Author Contributions:**
Conceptualization: W. F. Hoover, C. B. Condit
Data curation: W. F. Hoover
Formal analysis: W. F. Hoover
Funding acquisition: W. F. Hoover
Investigation: W. F. Hoover, P. C. Lindquist, A. C. Moser, V. E. Guevara
Methodology: W. F. Hoover
Project administration: W. F. Hoover
Resources: W. F. Hoover, C. B. Condit, P. C. Lindquist
Software: W. F. Hoover, C. B. Condit
Supervision: W. F. Hoover

© 2022, The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

---

**Episodic Slow Slip Hosted by Talc-Bearing Metasomatic Rocks: High Strain Rates and Stress Amplification in a Chemically Reacting Shear Zone**

**W. F. Hoover**¹, **C. B. Condit**¹, **P. C. Lindquist**¹, **A. C. Moser**², and **V. E. Guevara**³

¹University of Washington, Seattle, WA, USA, ²University of California, Santa Barbara, CA, USA, ³Amherst College, Amherst, MA, USA

**Abstract** Episodic tremor and slow slip (ETS) downdip of the subduction seismogenic zone are poorly understood slip behaviors of the seismic cycle. Talc, a common metasomatic mineral at the subduction interface, is suggested to host slow slip but this hypothesis has not been tested in the rock record. We investigate actinolite microstructures from talc-bearing and talc-free rocks exhumed from the depths of modern ETS (Pimu'nga/Santa Catalina Island, California). Actinolite deformed by dissolution-reprecipitation creep in the talc-free rock and dislocation creep ± cataclasis in the talc-bearing rock. This contrast results from stress amplification in the talc-bearing rock produced by high strain rates in surrounding weak talc. We hypothesize that higher strain rates in the talc-bearing sample represent episodic slow slip, while lower strain rates in the talc-free sample represent intervening aseismic creep. This work highlights the need to consider fluid-mediated chemical change in studies of subduction zone deformation and seismicity.

**Plain Language Summary** Episodic tremor and slow slip (ETS) are poorly understood styles of fault slip that occur just below the locked part of the megathrust fault where large subduction zone earthquakes occur. Chemical reactions at the depths of ETS can produce new and particularly weak minerals such as talc that change fault behavior but are rarely considered in studies of ETS. Modeling of rock deformation suggests that talc should host ETS fault slip, but this hypothesis has not been tested in the rock record. We investigated deformation of the mineral actinolite in talc-free and talc-bearing rocks exhumed from the depths of ETS in modern subduction zones on Pimu'nga/Santa Catalina Island (California) as a record of fault slip. Contrasting microstructures and deformation mechanisms in talc-free and talc-bearing rocks are best explained by differences in the rate of deformation (strain rate) between the two rock types. Lower strain rates in talc-free rocks likely record background creeping (aseismic) deformation and higher strain rates in talc-bearing rocks likely represent episodic slow slip events. This work suggests that talc may be a key host for slow slip and that future studies must account for new rock types formed by chemical reactions to accurately represent subduction zone deformation.

**1. Introduction**

Slow slip occurs at rates faster than aseismic creep but slower than seismic slip and is observed along the subduction interface below the seismogenic zone (e.g., Beroza & Ide, 2011). When occurring episodically alongside non-volcanic tremor, these phenomena are called episodic tremor and slip (ETS) and represent an integral, yet poorly constrained, part of the subduction seismic cycle (e.g., Bürgmann, 2018; Obara, 2002; Rogers & Dragert, 2003). Geophysical observations suggest that source regions of ETS are fluid-rich and subject to high pore fluid pressures (e.g., Audet et al., 2009; Delph et al., 2018; Hawthorne & Rubin, 2010; Houston, 2015), consistent with geologic evidence of abundant fluid-rock interaction in rocks exhumed from these regions (e.g., Bebout & Penniston-Dorland, 2016; Condit & French, 2022). Field and experimental studies have proposed viscous and frictional deformation mechanisms for slow slip in metasedimentary, metamafic, and ultramafic rocks, though frictional mechanisms are most consistent with low shear stresses and rheologic constraints (e.g., Condit et al., 2022; French & Zhu, 2017; Hayman & Lavier, 2014; Leeman et al., 2018; Phillips et al., 2020; Platt et al., 2018). However, the rheological impact of metasomatic transformation remains underexplored in many proposed mechanisms for slow slip.

Rheological modeling predicts that metasomatic talc-rich, and to a lesser extent chlorite-rich, rocks host slow slip by frictional sliding under elevated pore fluid pressures at low shear stresses (French & Condit, 2019). Talc-rich
rocks are common in exhumed paleosubduction interface mélanges where they are interpreted as the result of fluid-mediated reactions between chemically contrasting strong block and weak matrix lithologies (e.g., Bebout & Barton, 2002; Bebout & Penniston-Dorland, 2016; Gyomlai et al., 2021; King et al., 2003; Spandler et al., 2008). Talc has a low coefficient of friction and is velocity-strengthening to -neutral, making it a prime candidate to host slow slip if frictional deformation can be activated, and emphasizing the potential rheological impact of metasomatic minerals (Chen et al., 2017; Hirauchi et al., 2020; Misra et al., 2014; Moore & Lockner, 2004, 2008).

Here, we investigate the role of talc in hosting ETS through a microstructural study of talc-bearing and talc-free subduction interface rocks from a terrane exhumed from the depths of ETS in modern subduction zones (Figures 1a and 1b). These rocks display contrasting amphibole microstructures that are best explained by stress amplification resulting from higher strain rates in talc-bearing rocks. These observations are consistent with episodic slow slip accommodated by frictional deformation in talc-bearing metasomatic rocks during periods of elevated pore fluid pressure.

2. Geologic Background

The Catalina Schist is an exhumed paleosubduction terrane exposed on Pimu'nga/Santa Catalina Island (California, Figure 1a; Platt, 1975). Peak temperature, pressure, and age decrease from the structurally highest to lowest units (Figure 1b; Grove & Bebout, 1995; Harvey, Penniston-Dorland, et al., 2021; Penniston-Dorland et al., 2018; Platt, 1975; Sorensen, 1986). Mélange zones in all units have been interpreted as paleosubduction interfaces formed through progressive metasomatism and mechanical mixing of block and matrix lithologies (e.g., Bebout & Barton, 1989, 2002; King et al., 2006; Penniston-Dorland et al., 2014; Sorensen & Barton, 1987; Sorensen & Grossman, 1989). The samples studied here were collected from a mélange zone separating the Lawsonite Blueschist (LBS) and Epidote Amphibolite (EA) units which reached peak metamorphic conditions of 200–350°C, 0.7–1.0 GPa and 500–596°C, 0.7–1.4 GPa, respectively (Figure 1b; Grove & Bebout, 1995; Harvey, Penniston-Dorland, et al., 2021). These conditions overlap with those inferred for ETS in active subduction zones (e.g., Condit et al., 2020, Figure 1b).

3. Field Context

The sampled mélange zone and adjacent LBS and EA were mapped to contextualize the microstructural observations (Figure 1c). Both the EA and LBS are composed of coherent seafloor lithostatigraphy containing meta-(pillow) basalts, metachert (garnet quartzite), and metasedimentary schists (Platt, 1976). The intervening mélange zone, ~100 m thick, contains blocks of EA metasedimentary rocks (metachert, graphitic, and mica schists) and variably altered garnet hornblendite in a metasomatized matrix (Figure 1c). No blocks of EA metabasalt or any LBS lithology were found in the mélange zone. The metasomatic mélange matrix is dominated by layers of talc ± actinolite and chlorite-actinolite schists and actinolitite from 10 to 100 s of cm thick (Figures 1d–1f). Talc ± actinolite schist is in contact with a serpentinite block and chlorite-actinolite schist is in contact with blocks of graphic schist and metachert (Figures 1e and 1f). Coherent layering in the mélange matrix is traceable up to ~100 m. Quartz veins are commonly observed cross-cutting actinolitite and chlorite-actinolite schist (Figures 1g and 1h). Representative samples of the chlorite- and talc-bearing mélange matrix were collected from a single outcrop to investigate their microstructures (Figure 1d).

4. Samples and Microstructures

4.1. Chlorite-Actinolite Schist

The chlorite-actinolite schist has a strong foliation defined by mm- to cm-scale layering of chlorite- and actinolite-rich domains. Microstructure and modal mineralogy are highly variable, but the dominant assemblage is chlorite, actinolite, and graphite and minor rutile, titanite, apatite, and talc (<1%). A cm-thick chlorite layer is made up of large (~750 μm) interlocking chlorite plates that are radially oriented and exhibit kinking and undulose extinction (Figure 2a). The boundaries of this radial chlorite layer are sharp with chlorite plates truncated against highly aligned actinolite ± chlorite rather than rotated into the foliation (Figure 2a). A large (1.5 mm) actinolite grain growing across this boundary is broken and rotated into the neighboring actinolite ± chlorite foliation (Figure 2b). Adjacent to the radial-chlorite layer are highly deformed actinolite ± chlorite domains.
Figure 1. Geologic context of the studied samples. (a) Geologic map of the Catalina Schist. (b) Pressure-temperature conditions of the Catalina Schist relative to modern subduction zone thermal gradients and conditions of modern episodic tremor and slip. (c) Map and interpretive cross-section of the sampled mélange. (d) Photo of the sampled outcrop showing outcrop (dashed lines) and inferred structural relationships of metasomatic lithologies (hammer for scale). (e) Photo of nearby talc-actinolite schist in contact with serpentine. (f) Photo of nearby chlorite-actinolite schist in contact with an Epidote Amphibolite metasedimentary sequence. (g and h) Field and hand sample photos of quartz veins in nearby actinolite.
Figure 2. Chlorite-actinolite schist: cross-polarized light photomicrographs (a–d) of microstructures. (a) Contrast between the highly strained actinolite (±chlorite) domain and relatively undeformed radial chlorite layer. (b) Rotation of actinolite statically grown across the radial chlorite layer boundary. (c) Aligned chlorite in a mixed-mineral domain. (d) Relict fabric in metasomatic actinolite overprinted by current foliation. (e and f) Aluminum chemical maps outlined in (g) and (h) showing zonation truncated at grain boundaries. Actinolite electron back-scatter diffraction data: (g and h) Maps of pixel misorientation to the grain mean showing limited intragrain misorientation in actinolite. (i and j) Crystallographic preferred orientation of actinolite.
These domains have reduced chlorite grain size and a strong foliation defined by aligned chlorite cleavage planes (Figure 2c), while actinolite-only domains have elongate to acicular textures (Figure 2a). Away from the radial-chlorite layer, actinolite domains range in texture from equant to elongate with relict composite fabrics discordant to the dominant foliation (Figure 2d).

4.2. Talc-Actinolite Schist

The talc-actinolite schist is composed of talc and actinolite with minor chlorite and inclusions of Cr-spinel in actinolite. This sample has weak compositional layering of talc- and actinolite-rich domains and a strong foliation defined by alignment of talc and actinolite. In talc-rich domains, foliation is defined by near-uniformly oriented talc cleavage planes and aligned actinolite porphyroclasts and aggregates (Figure 3a). In actinolite-rich domains, actinolite ranges from porphyroclastic to acicular in texture. Actinolite porphyroclasts and aggregates show distinct fracturing and disaggregation along basal cleavage planes in all domains (Figure 3b).

5. Compositional Zoning and Textural Data

5.1. Methods

A Thermo-Fisher/FEI Apreo-S scanning electron microscope equipped with an Oxford Instruments Symmetry electron backscatter diffraction detector and Ultim-Max 100 energy dispersive spectroscopy detector was used to map actinolite composition and crystallographic orientation. Analytical conditions and full data set are provided in the Supplementary information S1.

5.2. Actinolite Composition and Zonation

Amphibole compositions overlap in both samples and fall within the fields of actinolite, tremolite, and magnesio-hornblende (Supplementary Data S1; Leake et al., 1997). In the chlorite-actinolite schist, oscillatory zoning of Al, Fe, and Na in actinolite is often truncated by grain boundaries (Figures 2e and 2f). In the talc-actinolite schist, Cr and Al are enriched in actinolite porphyroclast rims, along fractures, and in domains of grain size reduction (Figures 3c and 3d).

5.3. Quantitative Analysis of Actinolite Microstructures

In the talc-free sample (chlorite-actinolite schist), intragrain misorientation in actinolite is minimal with ~80% of misorientations <1° (Figures 2g and 2h, 3e). In the talc-actinolite schist, amphibole grains exhibit abundant intragrain misorientations with ~70% of misorientations >1° (Figures 3e–3g). In the talc-actinolite schist misorientation gradients and subgrains are common, with the latter often developed along cleavage planes (Figures 3f and 3g). No difference was observed between actinolite microstructures in actinolite-rich versus sheet silicate-rich domains within either sample (Figures 2g and 2h, 3f and 3g). Both talc- and chlorite-rich samples have strong actinolite crystallographic preferred orientations (CPOs) with [001] point maxima within the foliation, and dominantly [100] point maxima perpendicular to the foliation with less frequent [100] girdles (Figures 2i and 2j, 3h and 3i). The orientations of [001] point maxima vary between textural domains suggesting multiple deformation mechanisms or fabrics.

6. Discussion

6.1. Subduction Interface Mélange Setting

The mapped mélange zone is characterized by a block-in-matrix texture and occurrence of hybrid lithologies comparable to other subduction interface mélanges of the Catalina Schist (e.g., Bebout & Barton, 1989; Sorensen & Barton, 1987). The absence of LBS lithologies in the mélange suggests limited deformation after underplating of the EA, including during juxtaposition with the LBS and exhumation, and that mélange deformation reflects EA peak metamorphic conditions (Figure 1c; Harvey, Walker, et al., 2021). The position of the studied mélange stratigraphically above a coherent EA slab section corroborates its origin as a paleosubduction interface (Figure 1c). Field relationships suggest that the talc-actinolite and chlorite-actinolite schist formed from
ultramafic and sedimentary protoliths, respectively, likely representing the reaction between overriding mantle wedge and downgoing slab sediments (Figures 1e and 1f). Truncation of actinolite zonation at deformed grain boundaries and chemical modification of actinolite along subgrain boundaries and in grain-size-reduced domains indicate that metasomatism and deformation of the mélange were concurrent (Figures 2e and 2f, 3c and 3d). Together, the pressure-temperature conditions of this coherent slab section, subduction interface setting, and...
co-occurring deformation and metasomatism of this mélange are ideal for investigating processes at the depths of ETS in modern subduction zones like Shikoku, Mexico, and Cascadia (Figure 1b; e.g., Condit et al., 2020).

6.2. Contrasting Talc and Chlorite Deformation

Talc and chlorite are both considered “weak” minerals but exhibit contrasting microstructures in these samples (e.g., Moore & Lockner, 2008; Okamoto et al., 2019). Talc cleavage planes are near-uniformly aligned in the talc-actinolite schist, suggesting talc may have accommodated significant strain by frictional sliding along [001] (e.g., Moore & Lockner, 2008, Figure 3a). In contrast, the ability of chlorite to accommodate high strain appears to have been highly dependent on orientation and phase mixing. In the radial-chlorite layer in the chlorite-actinolite schist, large radial plates of chlorite exhibit kinking and undulose extinction (Figure 2a). Given that dislocation glide and frictional sliding in chlorite are both reliant on the alignment of [001] planes, these microstructures are consistent with strain hardening due to unfavorable mineral alignment and a lack of recovery mechanisms (e.g., Okamoto et al., 2019). These microstructures suggest that the chlorite layer acted as a strong body that localized deformation into adjacent actinolite and actinolite + chlorite domains. Only in mixed actinolite + chlorite domains did chlorite grain size remain small, potentially facilitating reorientation and alignment of [001] to accommodate significant strain (Figure 2c). These microstructural contrasts between talc and chlorite highlight the complexity of sheet silicate deformation and the importance of orientation, texture, and grain size in determining their strength, often in contrast with constitutive relations (e.g., chlorite; Okamoto et al., 2019).

6.3. Stress Variations in Actinolite

Actinolite shares similar compositional ranges and textures in both rocks yet exhibits strongly contrasting microstructures between rocks with or without volumetrically significant talc (>1%; Figures 2 and 3). In the talc-free sample, limited intragrain deformation and the truncation of chemical zoning at grain boundaries suggests dissolution-reprecipitation creep as the dominant deformation mechanism in actinolite (Figure 2e–2h; e.g., Condit & Mahan, 2018; Giuntoli et al., 2018; Imon et al., 2004; Lee et al., 2022; Soret et al., 2019). The strong CPO in this sample with [100] oriented perpendicular to the foliation suggests an additional contribution from rigid body rotation (Figures 2i and 2j; Berger & Stünitz, 1996; Getsinger & Hirth, 2014). Dissolution-reprecipitation creep is a commonly observed deformation mechanism in natural and experimental amphibole (e.g., Berger & Stünitz, 1996; Condit & Mahan, 2018; Getsinger & Hirth, 2014; Imon et al., 2004; Lee et al., 2022). This mechanism has been reported in a range of amphibole compositions and pressure-temperature conditions and would be expected given the low stresses and abundant fluids in this subduction interface setting (e.g., Bebout & Penniston-Dorland, 2016; Behr & Platt, 2013; Condit et al., 2022; Wassmann & Stöckhert, 2013).

In contrast, in the talc-bearing sample, intragrain deformation of actinolite is abundant with the development of misorientation gradients and subgrains, a strong CPO, and petrographically observed fracturing and disaggregation of actinolite porphyroclasts (Figure 3). These microstructures are scale-invariant between single actinolite crystals surrounded by talc, mm-scale actinolite aggregates in talc, and cm-scale actinolite-rich domains. Based on these microstructures, actinolite in the talc-bearing sample was dominantly deformed via dislocation creep with or without cataclasis (e.g., Babaie & La Tour, 1994; Imon et al., 2004; Soret et al., 2019). While cataclasis has been reported in many previous studies of amphibole deformation, dislocation creep is rare and has been associated with dry conditions, high temperatures, and high stresses and strain rates (e.g., Brückner & Trepmann, 2021; Diaz Aspiroz et al., 2007; Hacker & Christie, 1990; Soret et al., 2019). Thus, the actinolite microstructures observed in the talc-bearing sample are unusual because of the activation of dislocation creep at relatively low temperature, under fluid-rich conditions, and in the presence of weak talc.

For minerals with well-mapped deformation mechanisms such as quartz, olivine, and feldspar, the shift from dissolution-reprecipitation creep to dislocation creep is produced by an increase in stress, holding other variables constant (e.g., Goetze, 1978; Rutter & Brodie, 2004; Rybacki & Dresen, 2004). Amphibole deformation mechanisms are poorly constrained in pressure-temperature-stress-fluid-grain size-composition space and clearly complex, but the little published experimental deformation of amphibole revealed plastic deformation was activated at high stresses and strain rates (e.g., Brückner & Trepmann, 2021; Hacker & Christie, 1990; Rooney et al., 1975). In this framework, the observed actinolite microstructures are best explained by higher stresses experienced by actinolite in the talc-bearing sample compared to the talc-free sample. Given the overlapping
amphibole composition, grain size, and a shared pressure-temperature-fluid history for these adjacent mélangé matrix samples, local stress variations are the most likely explanation for the microstructural contrast.

### 6.4. Strain Rate Variations and Slow Slip

Local stress variations can occur in two-phase mixtures depending on the strength contrast between phases and the abundance of strong clasts versus weak matrix (e.g., Handy, 1990). For moderate clast fractions (>0.3), “jamming” of clasts creates load-bearing force chains that amplify clast stresses by 2–14×, depending on clast-matrix strength contrast (Beall et al., 2019a, 2019b; Cates et al., 1998; Webber et al., 2018). Even at low clast fractions (<0.1) and in the absence of clast-clast interaction, clast stress shadows, and the matrix itself, can impose stress on clasts resulting in stress amplification of 2–5× that on the matrix (Ioannidi et al., 2022; Ladd & Reber, 2020). These numerical models, experiments and geologic studies are scale independent, and are consistent with the microstructures observed here reflecting stress amplification in strong actinolite due to force-chain formation and/or stress transfer from the weak talc matrix.

Actinolite stress amplification is absent from the chlorite-actinolite schist despite similar or greater actinolite abundances, suggesting stress amplification is controlled by matrix mineralogy and its orientation. Actinolite grains are juxtaposed in force chains by matrix strain, and stress transferred from weak to strong phase undergoes time-dependent relaxation, so in both cases higher strain rates result in increased efficiency of stress amplification (e.g., Beall et al., 2019a; Ladd & Reber, 2020). Clast stress amplification is also dependent on clast-matrix viscosity contrast, so lower viscosity of talc relative to chlorite (or misalignment of chlorite [001]) could explain stress amplification only in the talc-bearing rock and would yield higher strain rates in talc (e.g., Beall et al., 2019a; Fagereng & Sibson, 2010; Moore & Lockner, 2008; Okamoto et al., 2019). Thus, multiple lines of reasoning suggest stress amplification in the talc-bearing sample and its absence in the talc-free sample reflects higher strain rates accommodated by weaker talc.

In this rheological model, variations in stresses experienced by actinolite act as a key microstructural recorder of higher strain rates accommodated by talc deformation relative to chlorite or actinolite in the chlorite-actinolite schist. This interpretation is consistent with the prediction that talc will partition high-strain-rate deformation via frictional sliding during slow slip at high pore fluid pressures (French & Condit, 2019). The uniform alignment of talc cleavage planes observed in the talc-bearing sample would enable this frictional mechanism, though diagnostic microstructures for frictional sliding in talc are poorly constrained. In this model, lower stress and strain rate deformation of actinolite and chlorite in talc-free rocks occurred during periods of slower deformation (aseismic creep), while high strain rate deformation of talc-rich rocks occurred during slow slip events (Figure 4).

### 6.5. Comparison to Rheological Modeling and ETS

Partitioning of slow slip deformation into talc is hypothesized from rheological modeling when pore fluid pressures are high enough to activate frictional sliding (French & Condit, 2019). The development of the metasomatic talc-rich lithologies studied here is the direct result of abundant fluids that catalyzed and mediated chemical reactions (e.g., Bebout & Barton, 2002). Quartz veins in adjacent metasomatic actinolitite suggest periods of high pore fluid pressures in this already fluid-rich environment, consistent with evidence of high fluid pressures in modern and exhumed subduction interfaces (Figures 1g and 1h; Audet et al., 2009; Condit & French, 2022; Kodaira et al., 2004; Raimbourg et al., 2022). Thus, in this mélangé zone, the fluid pressure conditions of the rheological model for frictional deformation of talc are likely met, consistent with our interpretation that high strain rates in the talc-bearing sample may represent slow slip events.

Episodic slow slip in this suite of metasomatic rocks would result in alternating aseismic creep and slow slip consistent with our microstructural observations. In the chlorite-actinolite schist, lenses of metasomatic actinolite preserve relict fabrics recording earlier episodes of syn-reaction deformation (Figure 4). Likewise, the growth, and later rotation, of a large actinolite crystal across the boundary between an actinolite layer and the radial-chlorite layer indicates a cessation and reinitiation of deformation at this boundary (Figure 4). These textures provide direct evidence of intermittent static conditions in the chlorite-actinolite schist consistent with periodic partitioning of deformation into the talc-actinolite schist during slow slip controlled by pore fluid pressure magnitude and matrix strength.
6.6. Implications for ETS

We show here that talc-bearing rocks may have hosted episodic slow slip events in a paleosubduction zone. Constitutive relations, deformation experiments, and geologic studies suggest talc may be a ubiquitous host of deep slow slip (e.g., French & Condit, 2019; Moore & Lockner, 2008; Spandler et al., 2008). Talc is stable from seafloor to subarc conditions, is common in exhumed paleosubduction interfaces from a variety of depths and is formed by reaction between Si- and Mg-rich rocks (e.g., Bose & Ganguly, 1995; D’Orazio et al., 2004; Kim et al., 2010; Spandler et al., 2008). Juxtaposition of these rock types is most prevalent below the seismogenic zone (i.e., mantle wedge corner) where talc could host all deep episodic slow slip, but the broad stability, rheology, and ubiquity of metasomatic minerals, talc, and in its absence, chlorite, could make them important contributors to slow slip at a range of depths. Multiple lines of evidence for talc as the host of slow slip indicate a causal relationship between metasomatism and the rheological preconditions for slow slip. Metasomatism, and not closed system metamorphism, is required to produce these potential mineral hosts of deep slow slip. It is imperative that studies of deformation in subduction zones consider not only subduction zone inputs and their metamorphosed equivalents, but equally the lithologies produced by chemical reactions (e.g., Phillips et al., 2020). Ignoring these lithologies will result in spurious conclusions on the strength of the subduction interface and the host(s) of slow slip.
7. Conclusions

We document evidence of stress and strain rate variations in actinolite microstructures from subduction interface metasomatic rocks exhumed from the pressure-temperature conditions of modern episodic tremor and slow slip. Evidence for dislocation creep + cataclasism in the talc-bearing rock and dissolution-reprecipitation creep in the talc-free rock reflects stress amplification in the talc-bearing sample during high strain rate deformation of the surrounding tate. These higher strain rates are interpreted to reflect episodic slow slip events in the talc-bearing sample with lower strain rates in the talc-free sample during intervening aseismic creep. This work demonstrates the importance of considering metasomatism in studying subduction zone seismicity and its likely role in episodic tremor and slow slip.

Data Availability Statement

Plotted microstructural and geochemical data referenced in this paper are available in the Supplementary Information and the full dataset is available at https://doi.org/10.5281/zenodo.7236374. Data was processed using the open-source MTEX (v. 5.7.0) MATLAB toolbox.

Acknowledgments

These samples were collected on unceded lands of the Gabrieleno-Tongva and we offer this Land Acknowledgement to affirm their ongoing sovereignty in the face of settler-colonialism and as a commitment to support and advocate for equitable research on their lands. We thank the Catalina Island Conservancy for support with sample collection. This work was funded by NSF EAR-2053033 to Hoover. We thank J. Platt for an introduction to the field area and discussion of mapping, and M.E. French, A. Kotowski, C. Seyler, S. Peniston-Dorland, and the Penrose Conference on Slow Earthquakes for thoughtful comments that improved this work, and G. Prieto for editorial handling.

References

Audet, P., Bostock, M. G., Christensen, N. L., & Peacock, S. M. (2009). Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. *Nature*, 457(7225), 76–78. https://doi.org/10.1038/nature07630

Babaie, H. A., & La Tour, T. E. (1994). Semibrittle and cataclastic deformation of hornblende-quartz rocks in a ductile shear zone. *Tectonophysics*, 229(1-2), 19–30. https://doi.org/10.1016/0040-1951(94)90003-5

Beall, A., Fagereng, Å., & Ellis, S. (2019a). Fracture and weakening of jammed subduction shear zones, leading to the generation of slow slip events. *Geochemistry, Geophysics, Geosystems*, 20, 4869–4884. https://doi.org/10.1029/2019GC008481

Beall, A., Fagereng, Å., & Ellis, S. (2019b). Strength of strained two-phase mixtures: Application to rapid creep and stress amplification in subduction zone mélangé. *Geophysical Research Letters*, 46(1), 169–178. https://doi.org/10.1029/2018GL081252

Bebout, G. E., & Barton, M. D. (1989). Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California. *Geology*, 17(11), 976–980. https://doi.org/10.1130/0091-7613(1989)017<0976:FFMAT>2.3.CO;2

Bebout, G. E., & Barton, M. D. (2002). Tectonic and metasomatic mixing in a high-T, subduction-zone mélange — Insights into the geochemical evolution of the slab–mantle interface. *Chemical Geology*, 187, 79–106. https://doi.org/10.1016/S0009-2541(02)00019-0

Bebout, G. E., & Peniston-Dorland, S. C. (2016). Fluid and mass transfer at subduction interfaces – The field metamorphic record. *Lithos*, 240–243, 228–258. https://doi.org/10.1016/j.lithos.2015.10.007

Behr, W. M., & Platt, J. F. (2013). Rheological evolution of a Mediterranean subduction complex. *Journal of Structural Geology*, 54(c), 136–155. https://doi.org/10.1016/j.jsg.2013.07.012

Berger, A., & Stünitz, H. (1996). Deformation mechanisms and reaction of hornblende: Examples from the Bergell tonalite (Central Alps). *Tectonophysics*, 257(2-4), 149–174. https://doi.org/10.1016/0040-1951(95)00125-5

Beroza, G. C., & Ide, S. (2011). Slow earthquakes and nonvolcanic tremor. *Annual Review of Earth and Planetary Sciences*, 39(1), 271–296. https://doi.org/10.1146/annurev-earth-040809-152531

Bose, K., & Ganguly, J. (1995). Experimental and theoretical studies of the stabilities of talc, antigorite and phase A at high pressures with applications to subduction processes. *Earth and Planetary Science Letters*, 136(5-9), 109–121. https://doi.org/10.1016/0012-821x(95)00188-8

Brückner, L. M., & Trepmann, C. A. (2021). Stresses during pseudotachylyte formation – Evidence from deformed amphibole and quartz in fault rocks from the Silvretta basal thrust (Austria). *Tectonophysics*, 817(June), 229046. https://doi.org/10.1016/j.tecto.2021.229046

Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. *Earth and Planetary Science Letters*, 495, 112–134. https://doi.org/10.1016/j.epsl.2018.04.062

Cates, M. E., Wittmer, J. P., Bouchaud, J. P., & Claudin, P. (1998). Jamming, force chains, and fragile matter. *Physical Review Letters*, 81(18), 1841–1844. https://doi.org/10.1103/PhysRevLett.81.1841

Chen, X., Elwood Madden, A. S., & Reches, Z. (2017). The frictional strength of talc gouge in high-velocity shear experiments. *Journal of Geophysical Research: Solid Earth*, 122(5), 3661–3676. https://doi.org/10.1002/2016JB013676

Condit, C. B., & French, M. E. (2022). Geologic evidence of lithostatic pore fluid pressures the base of the subduction seismogenic zone. *Geophysical Research Letters*, 49. https://doi.org/10.1029/2022gl098862

Condit, C. B., French, M. E., Hayles, J. A., Yeung, L. Y., Chin, E. J., & Lee, C. A. (2022). Rheology of metasemidimentary rocks at the base of the subduction seismogenic zone. *Geochemistry, Geophysics, Geosystems*, 23, 1–32. https://doi.org/10.1029/2021gc010194

Condit, C. B., Guevara, V. E., Delph, J. R., & French, M. E. (2020). Slab dehydration in warm subduction zones at depths of episodic slip and tremor. *Earth and Planetary Science Letters*, 552, 116601. https://doi.org/10.1016/j.epsl.2020.116601

Condit, C. B., & Mahan, K. H. (2018). Fracturing, fluid flow and shear zone development: Relationships between chemical and mechanical processes in Proterozoic mafic dykes from southwestern Montana, USA. *Journal of Metamorphic Geology*, 36(2), 195–223. https://doi.org/10.1111/jmg.12289

Delph, J. R., Levander, A., & Niu, F. (2018). Fluid controls on the heterogeneous seismic characteristics of the Cascadia margin. *Geophysical Research Letters*, 45(20), 11021–11029. https://doi.org/10.1029/2018GL079518

Díaz Aspruzzo, M., Lloyd, G. E., & Fernández, C. (2007). Development of lattice preferred orientation in clinoamphiboles deformed under low-pressure metamorphic conditions. A SEM/EBSD study of metamabites from the Aracena metamorphic belt (SW Spain). *Journal of Structural Geology*, 29(4), 629–645. https://doi.org/10.1016/j.jsg.2006.10.010

D’Orazio, M., Boschi, C., & Brunelli, D. (2004). Talc-rich hydrothermal rocks from the St. Paul and Conrad fracture zones in the Atlantic Ocean. *European Journal of Mineralogy*, 16(1), 73–83. https://doi.org/10.1130/0835-0935-1221/2004/0016-0073

Fagereng, A., & Sibson, R. H. (2010). Mélange rheology and seismic style. *Geology*, 38(8), 751–754. https://doi.org/10.1130/G30868.1
Ferrari, L., Orozco-Esquível, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522–523, 122–149. https://doi.org/10.1016/j.tecto.2011.09.018

French, M. E., & Condit, C. B. (2019). Slip partitioning along an idealized subduction plate boundary at deep slow slip conditions. Earth and Planetary Science Letters, 528, 1158-28. https://doi.org/10.1016/j.epsl.2019.115828

French, M. E., & Zhu, W. (2017). Slow fault propagation in serpentinite under conditions of high pore fluid pressure. Earth and Planetary Science Letters, 472, 131–140. https://doi.org/10.1016/j.epsl.2017.06.009

Gertsinger, A. J., & Hirth, G. (2014). Amphibole fabric formation during diffusion creep and the rheology of shear zones. Geology, 42(6), 535–538. https://doi.org/10.1130/G35327.1

Giuntoli, F., Menegon, L., & Warren, C. J. (2018). Replacement reactions and deformation by dissolution and precipitation processes in amphibolites. Journal of Metamorphic Geology, 36(December 2017), 1263–1286. https://doi.org/10.1111/jmg.12445

Goochie, C. (1978). The mechanisms of creep in olivine. Philosophical Transactions of the Royal Society of London - Series A: Mathematical and Physical Sciences, 288(1350), 99–119. https://doi.org/10.1098/rsta.1978.0008

Grove, M., & Bebout, G. E. (1995). Cretaceous tectonic evolution of coastal southern California: Insights from the Catalina Schist. Tectonics, 14(5), 1290–1308. https://doi.org/10.1029/95tc01931

Gyomlai, T., Agard, P., Marschall, H. R., Jolivet, L., & Gerdes, A. (2021). Metasomatism and deformation of block-in-matrix structures in Syros: The role of inheritance and fluid-rock interactions along the subduction interface. Lithos, 386–387, 105996. https://doi.org/10.1016/j.lithos.2021.105996

Hacker, B. R., & Christie, J. M. (1990). Brittle/ductile and plastic/cataclastic transitions in experimentally deformed and metamorphosed amphibolite. In Physical Monograph Series (Vol. 56, pp. 127–147). American Geophysical Union. https://doi.org/10.1029/90gm06p127

Handy, M. R. (1990). The solid-state flow of polymineralic rocks. Journal of Geophysical Research, 95(B6), 8647–8661. https://doi.org/10.1029/JB095iB06p08647

Harvey, K. M., Peninsula-Dorland, S. C., Kohn, M. J., Piccoli, P. M., Peninsula-Dorland, S. C., Kohn, M. J., & Piccoli, P. M. (2021). Assessing P-T variability in mélange blocks from the Catalina Schist: Is there differential movement at the subduction interface? Journal of Metamorphic Geology, 39(3), 271–295. https://doi.org/10.1111/jmg.12571

Harvey, K. M., Walker, S., Starr, P. G., Peninsula-Dorland, S. C., Kohn, M. J., & Baxter, E. F. (2021). A mélangé of subduction ages: Constraints on the timescale of shear zone development and underplating at the subduction interface. Catalina schist (CA, USA). Geochemistry, Geophysics, Geosystems, 22(9), 1–21. https://doi.org/10.1029/2021gc009790

Hawthorne, J. C., & Rubin, A. M. (2010). Tidal modulation of slow slip in Cascadia. Journal of Geophysical Research, 115(9), 1–15. https://doi.org/10.1029/2010JB007502

Hayman, N. W., & Zierer, L. L. (2014). The geologic record of deep episodic tremor and slip. Geology, 42(3), 195–198. https://doi.org/10.1130/G34990.1

Hirauchi, K.-I., Yamamoto, Y., den Hartog, S. A. M., & Niemeijer, A. R. (2020). The role of metasomatic alteration on frictional properties of amphibolites. Journal of Metamorphic Geology, 38(6), 793–805. https://doi.org/10.1111/jmg.12004

Ioannidi, P. I., Bogat, K., & Reber, J. E. (2022). The impact of meteorite rheology on stress concentration in embedded brittle clasts. Geochemistry, Geophysics, Geosystems, 23(5), 1–19. https://doi.org/10.1029/2021GC00127

Kim, Y., Clayton, R. W., & Jackson, J. M. (2010). Geometry and seismic properties of the subducting Cocos plate in central Mexico. Journal of Geophysical Research, 115(B9), 1–22. https://doi.org/10.1029/2009JB006094

Imon, R., Okada, T., & Kanagawa, K. (2004). Development of shape- and lattice-preferred orientations of amphibole grains during initial cataclastic deformation and subsequent deformation by dissolution-precipitation creep in amphibolites from the Byoke metamorphic belt, SW Japan. Journal of Structural Geology, 26(5), 793–805. https://doi.org/10.1016/j.jsg.2003.09.004

Ladd, C. R., & Reber, J. E. (2020). The effect of a liquid phase on force distribution during deformation in a granular system. Journal of Geophysical Research: Solid Earth, 125(8), 1–17. https://doi.org/10.1029/2020JB019771

Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., et al. (1997). Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 35(1), 219–246. https://doi.org/10.1127/cjm/90/30623

Lee, A. L., Stünitz, H., Soret, M., & Battisti, M. A. (2022). Dissolution precipitation creep as a process for the strain localisation in mafic rocks. Journal of Structural Geology, 155(3), 104850. https://doi.org/10.1016/j.jsg.2021.104850

Leeman, J. R., Marone, C., & Saffer, D. M. (2018). Frictional mechanics of slow earthquakes. Journal of Geophysical Research: Solid Earth, 123(9), 7931–7949. https://doi.org/10.1029/2018JB015768

Misra, S., Boutreaud, S., & Burg, J. P. (2014). Rheology of talc sheared at high pressure and temperature: A case study for hot subduction zones. Tectonophysics, 610, 51–62. https://doi.org/10.1016/j.tecto.2013.10.009

Moore, D. E., & Lockner, D. A. (2004). Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. Journal of Geophysical Research, 109(B3401), 1–16. https://doi.org/10.1029/2003JB002582

Moore, D. E., & Lockner, D. A. (2008). Talc friction in the temperature range 25°–400 °C: Relevance for fault-zone weakening. Tectonophysics, 449(1–4), 120–132. https://doi.org/10.1016/j.tecto.2007.11.039

Obra, K. (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296(5573), 1679–1681. https://doi.org/10.1126/science.1070378

Okamoto, A. S., Verberne, B. A., Niemeijer, A. R., Takahashi, M., Shimizu, I., Ueda, T., & Spiers, C. J. (2019). Frictional properties of simulated chloride gouge at hydrothermal conditions: Implications for subduction megathrusts. Journal of Geophysical Research: Solid Earth, 124(5), 4545–4565. https://doi.org/10.1029/2018JB017205

Peacock, S. M. (2009). Thermal and metamorphic environment of subduction zone episodic tremor and slip. Journal of Geophysical Research: Solid Earth, 114(B8), 1–9. https://doi.org/10.1029/2008JB005978
Penniston-Dorland, S. C., Gorman, J. K., Bebout, G. E., Piccoli, P. M., & Walker, R. J. (2014). Reaction rind formation in the Catalina Schist: Deciphering a history of mechanical mixing and metasomatic alteration. *Chemical Geology*, 384, 47–61. https://doi.org/10.1016/j.chemgeo.2014.06.024

Penniston-Dorland, S. C., Kohn, M. J., & Piccoli, P. M. (2018). A mélangé of subduction temperatures: Evidence from Zr-in-rutile thermometry for strengthening of the subduction interface. *Earth and Planetary Science Letters*, 482, 525–535. https://doi.org/10.1016/j.epsl.2017.11.005

Phillips, N. J., Motofushi, G., Ujije, K., & Rowe, C. D. (2020). Evidence of localized failure along altered basaltic blocks in tectonic mélangé at the updip limit of the seismogenic zone: Implications for the shallow slow earthquake source. *Geochemistry, Geophysics, Geosystems*, 21(7), 1–17. https://doi.org/10.1029/2019GC008839

Platt, J. P. (1975). Metamorphic and deformational processes in the Franciscan complex, California: Some insights from the Catalina schist terrane. *Bulletin of the Geological Society of America*, 86(10), 1337–1347. https://doi.org/10.1130/0016-7606(1975)86<1337:MADPM>2.0.CO;2

Platt, J. P. (1976). *The petrology, structure, and geologic history of the Catalina Schist Terrin*, Southern California. University of California.

Platt, J. P., Grove, M., Kimbrough, D. L., & Jacobson, C. E. (2020). Structure, metamorphism, and geodynamic significance of the Catalina Schist terrane. *In Geological Society of America field guide* (Vol. 59, pp. 165–195). Geological Society of America.

Platt, J. P., Xia, H., & Schmidt, W. L. (2018). Rheology and stress in subduction zones around the aseismic/seismic transition. *Progress in Earth and Planetary Science*, 5(1), 24. https://doi.org/10.1186/s40645-018-0183-8

Raimbourg, H., Famin, V., Canizarès, A., & Le Trong, E. (2022). Fluid pressure changes recorded by trace elements in quartz. *Geochemistry, Geophysics, Geosystems*, 23(10), e2022GC010346. https://doi.org/10.1029/2022GC010346

Rogers, G., & Dragert, H. (2003). Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. *Science*, 300(5627), 1942–1943. https://doi.org/10.1126/science.1084783

Rooney, T. P., Riecker, R. E., & Gavasci, A. T. (1975). *Hornblende deformation features*. *Geology*, 26(11), 2011–2023. https://doi.org/10.1130/0091-7613(1975)3<1337:MADPIT>2.0.CO;2

Rutter, E. H., & Brodie, K. H. (2004). Experimental grain size-sensitive flow of hot-pressed Brazilian quartz aggregates. *Journal of Structural Geology*, 26(11), 2011–2023. https://doi.org/10.1016/j.jsugr.2004.04.006

Rybach, E., & Dresen, G. (2004). Deformation mechanism maps for feldspar rocks. *Tectonophysics*, 382(3–4), 173–187. https://doi.org/10.1016/j.tecto.2004.01.006

Sorensen, S. S. (1986). Petrologic and geochemical comparison of the blueschist and greenschist units of the Catalina schist terrane, southern California. *Blueschists and Eclogites*, 59–76. https://doi.org/10.1130/0016-7613(1986)96<0059:PCOTBS>2.0.CO;2

Sorensen, S. S., & Barton, M. D. (1987). Metasomatism and partial melting in a subduction complex: Catalina Schist, southern California. *Geology*, 15, 115–118. https://doi.org/10.1130/0091-7613(1987)15<0115:MPMCS>2.0.CO;2

Sorensen, S. S., & Grossman, J. N. (1989). Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California. *Geochimica et Cosmochimica Acta*, 53(1987), 3155–3177. https://doi.org/10.1016/0016-7037(89)90096-3

Soret, M., Agard, P., Idefonse, B., Dubacq, B., Prigent, C., & Rosenberg, C. (2019). Deformation mechanisms in mafic amphibolites and granulites: Record from the Semail metamorphic sole during subduction infancy. *Solid Earth*, 10(5), 1733–1755. https://doi.org/10.5194/se-10-1733-2019

Spandler, C., Hermann, J., Faure, K., Mavrogenes, J. A., & Arculus, R. J. (2008). The importance of talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélangé of New Caledonia. *Contributions to Mineralogy and Petrology*, 155(2), 181–198. https://doi.org/10.1007/s00410-007-0336-2

Wassmann, S., & Stöckhert, B. (2013). Rheology of the plate interface – Dissolution precipitation creep in high pressure metamorphic rocks. *Tectonophysics*, 608, 1–29. https://doi.org/10.1016/j.tecto.2013.09.030

Webber, S., Ellis, S., & Fagurek, A. (2018). “Virtual shear box” experiments of stress and slip cycling within a subduction interface mélangé. *Earth and Planetary Science Letters*, 488, 27–35. https://doi.org/10.1016/j.epsl.2018.01.035

van Keken, P. E., Wada, I., Abers, G. A., Hacker, B. R., & Wang, K. (2018). Mafic high-pressure rocks are preferentially exhumed from warm subduction settings. *Geochemistry, Geophysics, Geosystems*, 19, 2934–2961. https://doi.org/10.1029/2018GC007624

**References From the Supporting Information**

Bachmann, F., Hielsher, R., & Schaeber, H. (2010). Texture analysis with MTEX – Free and open source software toolbox. *Solid State Phenomena*, 160, 63–68. https://doi.org/10.4028/www.scientific.net/SSP.160.63

Hawthorne, F. C., & Oberli, R. (2007). Classification of the amphiboles. *Reviews in Mineralogy and Geochemistry*, 67(1997), 55–88. https://doi.org/10.2138/rmg.2007.67.2