Running head: Auxin hypersensitivity inhibits soybean nodulation

Author for correspondence:
Senthil Subramanian,
Department of Plant Science,
South Dakota State University,
Brookings, SD, 57007

Phone: 605-688-5623
Fax: 605-688-4452
Email: Senthil.Subramanian@sdstate.edu

Journal research areas: Signaling and response
Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean

Marie Turnera, \dagger, Narasimha Rao Nizampatnama, \dagger, Mathieu Barona,b, Stéphanie Coppina,b, Suresh Damodarana, Sajag Adhikaria, Shivaram Poigai Arunachalama, Oliver Yuc, Senthil Subramaniana,d,*

a Department of Plant Science, d Department of Biology & Microbiology, South Dakota State University, Brookings, SD, USA 57007
b Ecole Nationale Supérieure Agronomique, Avenue de l’Agrobiopole, BP32607 Auzeville-Tolosane, France
c Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, USA, 63132
\dagger \text{These authors contributed equally}
\ast \text{To whom correspondence should be addressed}

Email: Senthil.Subramanian@sdstate.edu
Phone: 605-688-5623
Fax: 605-688-4452

\textbf{One sentence summary:} This research paper presents evidence to suggest that (i) there is very low auxin activity during soybean nodule initiation, (ii) hypersensitivity to auxin inhibits nodule development, and (iii) a regulatory feedback loop involving auxin and cytokinin is crucial for proper nodule development in soybean.
Foot notes:

Financial sources: This research was supported by funds from USDA-AFRI (Award#2010-65116-20514 to SS and OY), South Dakota Soybean Research and Promotion Council, South Dakota State University and SD Agricultural Experiment Station (to SS). Data for gene expression assays were obtained using instruments available at the South Dakota State University’s Functional Genomics Core Facility supported in part by the National Science Foundation/EPSCoR Grant No. 0091948 and by the State of South Dakota.

Present address for Marie Turner: Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, F- 31320 Castanet Tolosan, France
Present address for Shivaram Poigai Arunachalam: Department of Radiology, Mayo Clinic, Rochester, MN, USA, 55902
Present address for Oliver Yu: Conagen Inc., 1005 North Warson Rd, St Louis, MO, USA, 63132

Corresponding author: Senthil Subramanian (Senthil.Subramanian@sdstate.edu)
Abstract

Symbiotic root nodules in leguminous plants result from interaction between the plant and nitrogen-fixing rhizobia bacteria. There are two major types of legume nodules, determinate and indeterminate. Determinate nodules do not have a persistent meristem while indeterminate nodules have a persistent meristem. Auxin is thought to play a role in the development of both these types of nodules. However, inhibition of rootward auxin transport at the site of nodule initiation is crucial for the development of indeterminate nodules, but not determinate nodules. Using the synthetic auxin-responsive DR5 promoter in soybean, we show that there is relatively low auxin activity during determinate nodule initiation and that it is restricted to the nodule periphery subsequently during development. To examine if and what role auxin plays in determinate nodule development, we generated soybean composite plants with altered sensitivity to auxin. We over-expressed microRNA393 to silence the auxin receptor gene family and these roots were hyposensitive to auxin. These roots nodulated normally suggesting that only minimal/reduced auxin signaling is required for determinate nodule development. We over-expressed microRNA160 to silence a set of repressor ARF transcription factors and these roots were hypersensitive to auxin. These roots were not impaired in epidermal responses to rhizobia, but had significantly reduced nodule primordium formation suggesting that auxin hypersensitivity inhibits nodule development. These roots were also hyposensitive to cytokinin, and had attenuated expression of key nodulation-associated transcription factors known to be regulated by cytokinin. We propose a regulatory feedback loop involving auxin and cytokinin during nodulation.
Introduction

Auxin plays a crucial role in the initiation and development of a number of plant organs (reviewed in (Vanneste and Friml, 2009)). Auxin is perceived by a set of TIR1-like F-box proteins that form part of an SCF-type ubiquitin ligase complex (Ruegger et al., 1998; Dharmasiri et al., 2005; Kepinski and Leyser, 2005). Molecular and biochemical characterization of TIR1 in arabidopsis revealed that it directly binds auxin and aids in the degradation of Aux/IAA repressor proteins (Dharmasiri et al., 2005; Kepinski and Leyser, 2005). Aux/IAAs are short-lived nuclear proteins encoded in general by primary/early auxin response genes (Ulmasov et al., 1997). Aux/IAA proteins form protein complexes with auxin response factor (ARF) transcriptional activators and repress the expression of auxin-responsive genes (Reed, 2001; Tiwari et al., 2001; Tiwari et al., 2004). Dissociation of ARF-Aux/IAA protein complexes by TIR1 in an auxin-dependent manner results in auxin-responsive gene expression (Gray et al., 1999; Gray et al., 2001). The ARF gene family consists of both transcriptional activators and repressors that bind with specificity (at auxin response elements or auxREs) to promoters of primary/early auxin response genes. Repressor ARFs are capable of repressing gene expression with or without auxin (Ulmasov et al., 1999; Tiwari et al., 2003). It has been hypothesized recently that they are more likely to act independent of Aux/IAA proteins (Guilfoyle and Hagen, 2012). Presumably, repressor ARFs act independent of TIR1 as well and silencing their expression or degradation of repressor ARF proteins would result in auxin-responsive gene expression. There is clear genetic evidence for the role of specific auxin receptors, Aux/IAAs and ARFs (reviewed in (Vanneste and Friml, 2009)) as well as complex interaction networks among them (Vernoux et al., 2011) in governing plant development.

The role of auxin in root nodule development in leguminous plants is not completely understood. Legume nodules are specialized root lateral organs that result from symbiotic interaction between the plant and a compatible group of nitrogen-fixing soil bacteria collectively termed rhizobia (reviewed in (Murray, 2011)). Symbiosis begins with a chemical exchange between partners, which is the first step that determines host-specificity. Legume roots release specific flavonoid compounds that are recognized by compatible rhizobia species and in turn they synthesize and release lipochitooligosaccharide ‘nod’ signals. Perception of nod signals and
colonization of root hairs by rhizobia cells leads to root hair deformation and curling to entrap rhizobia. Subsequent invagination of the root hair cells forms specialized structures termed infection threads. Simultaneously, cell divisions occur in cortex and pericycle cell layers in preparation to form nodule primordia. Infection threads transport rhizobia into the developing nodules (formed by cortex cell divisions) where they differentiate into bacteroids and fix nitrogen. Ultimately, the two cell division foci merge and symplastic and vascular connections are formed enabling transport of nutrients to and from the mature nodules. There are two major types of nodules formed in legume roots: indeterminate and determinate (reviewed in (Hirsch, 1992; Sprent, 2007)). Indeterminate nodules are oblong and characterized by the presence of a persistent meristem. Examples of plants that form indeterminate nodules include temperate legumes viz. pea, Medicago truncatula and clover. In contrast, determinate nodules are spherical and lack a persistent meristem. There is no sustained cell division during determinate nodule development; cell expansion rather than cell division results in nodule growth. Examples of plants producing determinate nodules include tropical legumes viz. soybean, common bean, and Lotus japonicus. Additionally, indeterminate nodules arise from inner cortical cell layers whereas determinate nodules arise from outer/mid cortical cell layers. A number of different plant hormones including auxin and cytokinin are hypothesized or shown to play a role in the initiation and development of both these types of nodules (Hirsch and Fang, 1994; Ferguson and Mathesius, 2003; Ding and Oldroyd, 2009; Suzaki et al., 2013).

The roles of auxin in nodule initiation and development were hypothesized initially based on the effect of exogenous application of auxin or auxin transport inhibitors (Allen et al., 1953; Hirsch et al., 1989), subsequently based on the expression of reporter gene constructs (e.g. GH3:GUS (Mathesius et al., 1998; Boot et al., 1999; Pacios-Bras et al., 2003; Takanashi et al., 2011)) and more recently demonstrated through modulation of auxin transport using reverse-genetic tools (Subramanian et al., 2006; Wasson et al., 2006; Zhang et al., 2009). It was discovered very early that auxin transport inhibitors induce nodule-like structures in legume roots (Allen et al., 1953) including the induction of certain early nodulin genes (Hirsch et al., 1989) suggesting that auxin might initiate nodule development. Indeed, the expression of an auxin-responsive marker (GH3:GUS) was observed during nodule development in both determinate (L. japonicus (Pacios-Bras et al., 2003; Takanashi et al., 2011)) and indeterminate (white clover (Mathesius et al.,
nodule-producing legumes. However, the expression pattern was clearly distinct in the roots and other nodule tissues between the two types of nodules. For example, GH3:GUS expression was reduced in the vasculature rootward to the inoculation site, but increased in cortex cells around the site of rhizobial inoculation in white clover, an indeterminate nodule-forming legume (Mathesius et al., 1998). Subsequently, GH3:GUS expression was detected in the dividing primordium cells, but moved to the peripheral cells (presumably those forming the nodule vasculature) during differentiation. In contrast, GH3:GUS expression in the root vasculature was not reduced in response to rhizobial inoculation in *L. japonicus*, a determinate nodule-forming legume. Nevertheless, GUS expression was detected initially in the dividing cells, later in peripheral cells in nodule primordia, and in the nodule vasculature in mature nodules (Pacios-Bras et al., 2003; Takanashi et al., 2011). GH3:GUS expression pattern in root vasculature and measurement of auxin transport suggested that inhibition of rootward auxin transport might precede the initiation of indeterminate nodules, but not determinate nodules (Mathesius et al., 1998; Boot et al., 1999). We and others obtained clear genetic evidence for the role of auxin transport inhibition in nodule development by silencing the biosynthesis of flavonoids, a group of phenolic compounds that act as endogenous auxin transport inhibitors (Subramanian et al., 2006; Wasson et al., 2006; Zhang et al., 2009). These data conclusively demonstrated that inhibition of auxin transport in the roots at the site of nodule initiation is crucial for the development of indeterminate nodules, but not for determinate nodules. Other studies showed that components of auxin transport machinery (PIN2 and LAX) might play a role in the development of indeterminate nodules as well (de Billy et al., 2001; Huo et al., 2006). We concluded that the requirements of auxin distribution during primordium initiation/development are different between these two types of nodules (Subramanian et al., 2007).

Another line of evidence pointing towards a role for auxin in nodule development is the coordinate expression of microRNAs (miRNAs) regulating auxin signaling during this process in soybean (Subramanian et al., 2008) and other legumes (reviewed by (Simon et al., 2009; Bazin et al., 2012)). miRNAs are small non-coding RNAs that regulate the expression of protein coding genes primarily through post-transcriptional mechanisms and are known to play a vital role in plant development (reviewed in (Chen, 2009)). The expression of several auxin signaling components are regulated by miRNAs. For example, miR393 regulates members of the auxin
receptor *TIR1/AFB* gene family (Parry et al., 2009; Vidal et al., 2010; Si-Ammour et al., 2011), miR160 regulates members of the *ARF10/16/17* repressor ARF family (Mallory et al., 2005; Wang et al., 2005), miR167 regulates *ARF8* family (Wu et al., 2006) and miR390 regulates *ARF3* family (Fahlgren et al., 2006; Marin et al., 2010). In soybean roots, the expression of miR393 that regulates the *TIR1/AFB* auxin receptor gene family was transiently up-regulated whereas miR160 that regulates a group of repressor ARFs was down-regulated upon *Bradyrhizobium japonicum* inoculation. More recently, detailed analysis of the specific and sensitive auxin-inducible marker, DR5:GFP-NLS marker in *L. japonicus* showed that auxin induction during nodule primordium development might occur downstream of cytokinin perception (Suzaki et al., 2012). While all of these data strongly suggested that auxin signaling is regulated during nodule development, it was not known if and what role auxin plays during the development of symbiotic nodules, specifically determinate nodules. We sought to address this long-standing question by (i) monitoring the activity of the auxin-specific synthetic promoter DR5 during soybean nodule development and (ii) examining nodule development in soybean roots with altered auxin sensitivity.
Results

Auxin-inducible gene expression during root nodule initiation in soybean

We examined auxin-inducible gene expression during nodule development in soybean transgenic composite plants (Collier et al., 2005) using a marker gene construct where the synthetic auxin-responsive DR5 promoter (Ulmasov et al., 1997) drove the expression of the fluorescent protein tandem dimer Tomato (tdT; (Campbell et al., 2002)). To distinguish auto-fluorescence observed on the soybean root surface when using confocal microscopy, we examined DR5:tdT together with GFP driven by the constitutive super Ubiquitin promoter. The yellowish red tdT + GFP signal can be clearly distinguished from the bright red auto-fluorescence on the root surface. DR5:tdT expression was detected in the root meristem and columella cells of the root cap (Figure 1A) and lateral root (LR) primordia (Figure 1B). Treatment of the roots with exogenous auxin (1μM 2,4-D for 24h) resulted in an increased tdT expression domain at the root tips accompanied by a noticeable “swelling” of the root tips (Figure S1A & B). The expression pattern and auxin-responsiveness was consistent with what has been reported in arabidopsis and other species (e.g. (Ni et al., 2001; Ilina et al., 2012)) indicating that the construct was suitable for monitoring auxin-responsive gene expression in soybean composite plant roots.

We inoculated these plants with B. japonicum cells and examined DR5:tdT expression at 3, 7 and 14 days post inoculation (dpi). Surprisingly, we observed a much lower expression of DR5:tdT in the majority of nodule primordia and emerging nodules (Figure 1C). DR5:tdT expression was localized primarily to the nodule “apex”. The level of DR5:tdT expression in nodule primordia was so low that it could not be detected reliably by regular fluorescent microscopy (Figure S1E), but only by confocal microscopy. In contrast, DR5:tdT expression in the root tips and LR primordia was readily detectable by regular fluorescent microscopy (Figure S1 C & D). In transverse sections of mature nodules, DR5:tdT expression was detected closer to the nodule periphery primarily along the vasculature and was clearly absent from the central infection zone (Figure 1D).
We also examined DR5:GUS expression during nodule development, due to the relatively longer half-life and higher sensitivity of GUS. Consistent with results from confocal microscopy, we detected the expression of DR5:GUS in the majority of nodule primordia (Figure 1E) with intense staining closer to the nodule apex. In transverse-sections of mature nodules, DR5:GUS expression was limited to the nodule periphery and not detected in the infection zone (Figure 1F). Together, these observations suggested that (i) there is auxin activity during nodule initiation and development in soybean; but the level of auxin activity in nodule primordia is much lower compared to that in LR primordia, (ii) there is no or minimal auxin activity in the nodule infection zone during subsequent nodule development, and (iii) the majority of the auxin activity is localized around the vasculature in mature nodules.

Manipulating auxin sensitivity using miR393 and miR160

To examine the role of auxin in symbiotic nodule initiation in soybean, we sought to manipulate auxin signaling in transgenic composite plant roots by over-expressing miRNAs against the auxin receptor and a set of repressor ARF genes. We reasoned that this would help overcome functional redundancy usually associated with components of auxin signaling in classical genetic mutants (see Discussion). Secondly, we have previously shown that the levels of these miRNAs are influenced by *B. japonicum* inoculation in soybean (Subramanian et al., 2008). We over-expressed miR393 to silence the *TIR1/AFB* auxin receptor family and to obtain auxin hyposensitive plants. Over expression of miR393 precursor using the Cassava Vein Mosaic Virus CVP2 promoter (CsVMV, a kind gift from Dr Claude Fauquet, Donald Danforth Plant Science Center, St Louis, MO) resulted in increased levels of mature miR393 (Figure S2A) and a corresponding decrease in two of the three validated targets of this miRNA (Figure S2B). We over-expressed miR160 to silence a set of repressor ARFs belonging to *ARF10/16/17* family and to obtain auxin hypersensitive plants. Over expression of miR160 precursor also resulted in increased levels of the corresponding mature miRNA (Figure S2C) and a decrease in the levels of all nine validated targets (Figure S2D).

We assayed physiological responses to auxin in the roots of these plants by treating them with 0, 0.2 or 1.0 μM of the synthetic auxin analogue 2,4-D and examining root growth and the initiation
of LRs after one week. In the absence of exogenous auxin, we observed no statistically
significant difference between the vector control and miRNA over-expressing lines in either the
rate of root growth (Table S1A) or LR density (Table S1B). When treated with auxin, the
elongation of vector control roots was significantly inhibited in response to both levels of auxin
treatment (Table S1A) in a dose-dependent manner (Figure 2A). However, inhibition of root
growth in miR393 over-expressing (miR393ox) plants was significantly lower than that of vector
control at both levels of auxin treatment (Figure 2A; Table S1A) suggesting that these roots were
hyposensitive to auxin. In contrast, there was significantly enhanced inhibition of root growth in
miR160 over-expressing (miR160ox) plants relative to vector control plants at both levels of
auxin treatment (Figure 2A; Table S1A). This suggested that miR160ox roots were
hypersensitive to auxin. We also examined increase in LR density (both primordia and emerged
LRs) in response to auxin treatment in miR393ox and miR160ox roots. Vector control roots had
a significant increase in LR density in a dose-dependent manner in response to auxin (Figure 2B;
Table S1B). Similar to the response observed for inhibition of root elongation, miR393ox roots
displayed auxin hyposensitivity (reduced LR density vs vector control; Figure 2B; Table S1B)
where as miR160ox roots displayed auxin hypersensitivity (significantly higher LR density vs
vector control; Figure 2B; Table S1B).

In addition to the above physiological responses, we also assayed molecular responses to auxin
in miRox roots by examining the expression of DR5:GUS, the synthetic auxin-responsive
marker. In untreated vector control roots, expression of DR5:GUS (“auxin maximum”) was
observed primarily in the root cap columella and the root meristem (Figure 2C) consistent with
our DR5:tdT results. Treatment with 0.2μM or 1.0 μM 2,4-D for 12 h induced DR5:GUS
expression in a dose-dependent manner indicated by an expanded expression domain and darker
staining (Figure 2D & E). DR5:GUS expression in untreated miR393ox roots was similar or
slightly reduced compared to that in vector control roots (Figure 2D). However, auxin treatment
resulted in a notably reduced induction of DR5:GUS expression (Figure 2G & H) compared to
vector control roots indicating that these roots were insensitive/hyposensitive to auxin. In
contrast, DR5:GUS expression was clearly induced in miR160ox roots in response to auxin with
an expanded domain of expression and darker staining in the root tips (Figure 2J & K) compared
to vector control roots. This suggested that these roots were hypersensitive to auxin.
We also examined the expression of seven endogenous auxin-responsive marker genes in miRox roots by RT-qPCR (Table 1). Of these five were clearly induced by auxin in vector control roots. For example, a 40-fold induction of *GH3* expression was observed in response to treatment with 1μM 2,4-D for 6h in vector control roots (Table 1). Auxin induction of *GH3* was significantly attenuated in miR393ox roots (Table 1). On the other hand, in miR160ox roots, there was a significantly higher induction of GH3 in response to auxin (Table 1). Similarly, four of the six Aux/IAA genes examined were strongly induced by auxin treatment (*GmIAA1, IAA8, IAA13* and *IAA20*). Similar to *GH3*, auxin induction of all the four genes was significantly attenuated in miR393ox roots, compared to vector control (Table 1). Auxin induction of three of these genes was significantly enhanced in miR160ox roots (the exception being *GmIAA13*) compared to vector control (Table 1). In summary, at least four of the five auxin-inducible marker genes had an attenuated response in miR393ox roots and enhanced response in miR160ox roots. All the above results strongly indicate that miR393ox resulted in auxin hyposensitivity while miR160ox resulted in auxin hypersensitivity. We used these roots to examine the effect of altered auxin sensitivity on symbiotic nodule development.

Auxin hypersensitivity in the roots or nodule primordia inhibits nodulation

miR393ox and miR160ox composite plants were inoculated with *B. japonicum* cells and the extent of nodulation examined 14 dpi. Vector control roots had an average of 20.2 ± 1.8 nodules per root. The number of nodules on miR393ox roots (16.3 ± 2.2) did not significantly differ from that of vector control roots (Poisson distribution analysis) suggesting that auxin hyposensitivity did not significantly influence nodulation in soybean (Figure 3A). In contrast, miR160ox roots had significantly fewer nodules (19.7 ± 1.7 in vector control vs 9.6 ± 1.4 in miR160ox roots) suggesting that auxin hypersensitivity inhibited nodulation in soybean (Figure 3B). However, this experiment did not answer if this inhibition is a direct effect of auxin sensitivity on nodule tissues or a pleiotropic effect of altered auxin sensitivity in the root system. To address this question, we “mis-expressed” these miRNAs using the nodule-specific soybean ENOD40 promoter (Yang et al., 1993). When examined in composite plant roots using a ENOD40:tdT construct, soybean ENOD40 was not expressed or expressed at very low levels in uninoculated
Turner et al., Manuscript text

roots (including root tips and LRs), but highly expressed in nodule primordia, emerging nodules and mature nodules in soybean (Figure S3). Therefore, altered auxin sensitivity in roots mis-expressing these miRNAs would be limited to these target tissues. Composite plants mis-expressing miR393 (miR393mx) nodulated as efficiently as vector control plants (14.9 ± 2.2 vs. 17.4 ± 2.6 nodules per root respectively; Figure 3C) consistent with results from miR393ox plants. Interestingly, miR160mx plants had significantly less number of nodules compared to vector control roots (15.8 ± 2.4 vs 7.7 ± 1.0; Figure 3D) as observed in miR160ox plants. This suggested that auxin hypersensitivity during and at the sites of nodule primordia formation was sufficient to inhibit nodulation in soybean.

Auxin hypersensitivity did not affect root hair responses to rhizobia, but affected nodule primordium formation

We closely examined nodule development in miR160ox and miR160mx roots to identify which stage(s) of nodule development are influenced by auxin hypersensitivity. We used *B. japonicum* expressing a nptII:GUS construct (a kind gift from Dr. Gary Stacey, University of Missouri, Columbia, MO) to follow root hair colonization, infection thread development and nodule primordium formation. In vector control plants, there were 45 ± 7 infections per root that showed root hair deformation/curling responses and/or infection thread formation limited to the epidermal cells 5 dpi (Figure 4A; Figure S4A & B). There was no significant difference in the number of infections showing these responses in miR160ox (39 ± 5; P=0.52) or miR160mx (48 ± 7; P=0.72) plants (Figure 4A) suggesting that auxin hypersensitivity did not affect root hair colonization or deformation/curling responses in soybean. In addition to these infections, there were on average 5 ± 1 infections per root in vector control plants where the infection thread had proceeded further in to the cortex cells or had reached dividing primordia at 5 dpi (Figure 4B; Figure S4C & D). miR160ox roots had a significantly lower number of infections (2 ± 1) that showed this response (P=0.002; Figure 4B) but there was no significant difference between vector control and miR160mx (4 ± 1) roots (P=0.1; Figure 4B). This observation suggested that auxin hypersensitivity in the entire root system (resulting from miR160ox) inhibited infection thread growth in the cortex while auxin hypersensitivity in nodule-associated cells (resulting from miR160mx) did not affect this process.
We also counted the number of nodule primordia in these roots 8 dpi. Vector control roots had 3.9 ± 0.8 primordia per root (Figure 4C). Both miR160ox (1.3 ± 0.3) and miR160mx (2.2 ± 0.4) plants had significantly reduced number of nodule primordia (Figure 4C), but with different levels of severity indicated by statistical significance (P=0.0002 and 0.02 respectively). We conclude that auxin hypersensitivity in the entire root system (resulting from miR160ox) caused a severe inhibition of nodule primordium formation while auxin hypersensitivity in nodule-associated cells (resulting from miR160mx) was sufficient to cause a moderate inhibition of nodule primordium formation.

Next, we examined nodule development and maturation in miR160ox and miR160mx plants by classifying the number of nodules at 14 dpi into emerging and mature nodules (see Methods). Consistent with a reduction in the number of infection threads reaching the cortex and a severe reduction in the number of nodule primordia, miR160ox roots had a severe reduction in the number of emerging nodules compared to the vector control roots (12.4 ± 1.1 vs. 5.9 ± 0.9; Figure 5A). Interestingly, miR160mx roots also had a severe reduction in the number of emerging nodules (13.9 ± 2.0 vs. 7.2 ± 1.0; Figure 5C) even though these roots were unaffected in the number of infections reaching the cortex and had only a moderate reduction in the number of nodule primordia. This observation suggested that auxin hypersensitivity in nodule tissues might inhibit the development of nodule primordia into emerging nodules. Consistent with the severe reduction in emerging nodules, both miR160ox and miR160mx roots had a severe reduction in the number of mature nodules as well (Figure 5B & D). Together, our results suggest that auxin hypersensitivity resulting from ectopic expression of miR160 inhibits not only the formation of nodule primordia but also their subsequent development in soybean.

Roots over-expressing miR160 are hyposensitive to cytokinin

Our results suggested that hypersensitivity to auxin inhibits nodule primordium formation and it is known that cytokinin promotes this process (see Discussion). Since auxin and cytokinin are known to act antagonistically during a number of different plant developmental processes, we examined cytokinin sensitivity in roots over-expressing miR160. First we examined the
expression of AtARR5:GUS which has been used as a marker for cytokinin activity in legumes (Lohar et al., 2004). In untreated vector control roots, AtARR5:GUS expression was detected primarily in the root cap (Figure 6A), vasculature (Figure 6B) and at the base of LR primordia of mature root regions (not shown). There was no obvious difference in AtARR5:GUS expression between untreated vector control and miR160ox roots (Figure 6C & D). When roots were treated with 5 μM BAP for 6 hours, there was a clear induction of AtARR5:GUS expression in the root tip and vasculature of vector control roots (Figure 6E & F). In contrast, a very weak induction was observed in 160ox roots (Figure 6G & H). This suggested that these roots were indeed hyposensitive to cytokinin.

Next, we examined the expression of soybean orthologs of arabidopsis *ARR5* and *ARR9* in response to cytokinin. Some of these type-A RRs were shown to regulate nodule development in *M. truncatula* (Op den Camp et al., 2011). Based on BLASTx searches and previously published information, we identified 4 potential soybean orthologs for each of *AtARR5* and *AtARR9*. All eight genes were significantly induced by 5 μM BAP as early as 30 min in both vector control roots and miR160ox roots (Table 2). However, the level of cytokinin induction was significantly attenuated in 160ox roots compared to vector control for 6 of these RRs (Table 2). Together, these observations suggested that miR160ox roots were hyposensitive to cytokinin.

Finally, we sought to examine the influence of miR160ox on nodulation pathway genes dependent on cytokinin perception/activity. In *Lotus japonicus* and soybean, the expression of *NIN, NSP1, HAP2-1* and *HAP2-2* is induced during nodule development (Heckmann et al., 2011; Hayashi et al., 2012). *NIN* and *HAP2* are directly induced by cytokinin treatment and all these genes act downstream of cytokinin perception during nodule development in *L. japonicus*. We examined the expression of soybean orthologs of these genes along a time course of *B. japonicum* inoculation in vector control and miR160ox roots. The expression of *NIN* and *NSP1* increased moderately at 5 dpi and very highly at 8 dpi in response to *B. japonicum* inoculation (Figure 6E & F). In miR160ox roots the expression of *NIN* and *NSP1* also increased at moderate levels at 5 dpi, but their expression was much lower than in vector control roots at 8 dpi (Figure 6E & F). Between the two *HAP2* genes we examined, *HAP2-2* was induced at much higher levels compared to *HAP2-1* in response to *B. japonicum* inoculation in vector control roots.
(Figure 6G & H). The expression of these genes was lower in miR160ox roots compared to vector control roots along the entire time course (Figure 6G & H). However, the induction of HAP2-2 was affected to a larger extent in miR160ox roots compared to HAP2-1. We also examined the expression of two nodulation-inducible marker genes, ENOD40 (Yang et al., 1993) and FWL1 (Libault et al., 2010), at 0, 5 and 8 dpi in vector control and miR160ox roots. The expression of both ENOD40 and FWL1 was very low or undetectable at 0 dpi, but significantly increased at 5 and 8 dpi in vector control roots (Figure 6M & N). Consistent with reduced expression of NIN and NSP1 and reduced nodule primordia initiation, miR160ox roots had significantly lower expression of these genes in response to B. japonicum inoculation (Figure 6M & N).

Our data clearly show that over expression of miR160 resulted in hypersensitivity to auxin and hyposensitivity to cytokinin. Consistently, the expression of cytokinin-dependent nodulation genes was also reduced in miR160ox roots in response to B. japonicum inoculation. These results suggest that hypersensitivity to auxin and hyposensitivity to cytokinin results in impaired nodule development in soybean.
Discussion

There is relatively low auxin activity during determinate nodule initiation

Using the auxin-inducible marker gene constructs, DR5:tdT and DR5:GUS, we identified that there is low or transient auxin activity during soybean nodule initiation and development. Previous studies have also identified the expression of a different auxin-responsive marker gene construct (GH3:GUS) during the initiation of both determinate and indeterminate nodules (Mathesius et al., 1998; Pacios-Bras et al., 2003; Takanashi et al., 2011). However, subsequent sustained GH3:GUS expression in nodule primordia is detected only in indeterminate nodules since determinate nodules do not have a persistent nodule meristem. Recently, Suzaki et al (Suzaki et al., 2012) reported that the expression of DR5:GFP-NLS (where the marker gene gets localized to the nucleus, offering increased detectability) was observed in cortex cells dividing to form nodule primordia in *L. japonicus*, a determinate nodule-forming legume. Subsequently, DR5:NLS-GFP expression was limited to the periphery of nodule primordia and was absent in the rhizobium-colonized zone consistent with our results. Therefore, the use of markers with enhanced detectability (e.g. GFP-NLS) or stability (e.g. GUS) detected auxin-inducible gene expression during nodule initiation suggesting that it was low or transient. The observation that DR5:tdT was readily detectable in LR primordia and emerging LRs, but not in nodule primordia or nodules suggested that the level of auxin activity during determinate nodule initiation and development is much lower than that during LR initiation. In addition, it appears that an initial auxin maximum occurs during nodule primordium initiation and subsequently diminishes from the primordium in to the nodule periphery during nodule maturation (our results and those of Suzaki et al., 2012). We conclude that the requirement of auxin activity changes in a spatio-temporal manner during determinate nodule development.

We over-expressed or mis-expressed specific miRNAs to modulate auxin sensitivity in soybean roots. We reasoned that the use of miRNAs would overcome pitfalls of functional redundancy often associated with genetic mutants especially in auxin signaling. For example, while single order mutants of *ARF10, 16* or *17* show no obvious phenotypes in arabidopsis, triple order mutants or miR160 over-expressing lines (where all three of the *ARFs* are silenced) show...
obvious defects in plant development (Mallory et al., 2005; Wang et al., 2005). Similarly, multi-
order mutants show distinct and severe phenotypes compared to single order mutants of \textit{tir1} or \textit{afb} in arabidopsis (Parry et al., 2009). Phylogenetic analysis of soybean TIR1/AFB (Tribe
TribeMCL00611 in legumeIP) and ARF10/16/17 (TribeMCL00296 in legumeIP) families also
suggested similar functional redundancy among family members. Indeed, over expression of
miR393 resulted in auxin hyposensitivity in soybean roots as has previously been reported in
arabidopsis (Parry et al., 2009). However, the level of reduction in auxin sensitivity in miR393ox
arabidopsis plants is not as severe as observed in multi-order mutants of \textit{tir} and \textit{afb} likely due to
partial resistance of some of the target genes to miR393-mediated cleavage (Parry et al., 2009).
Unfortunately, soybean mutants with genetic lesions in \textit{TIR/AFB} genes are not available for such
a comparison to miR393ox roots. Nevertheless, reduced sensitivity to auxin in miR393ox
soybean roots resulted in reduced LR initiation, but did not affect nodule formation. Due to the
expression of \textit{DR5}:TdT along the vasculature in mature nodules, we also examined miR393ox
nodules under light microscope for any defects in vascular development. We observed no
obvious defects in vascular development in miR393ox nodules. This suggested that only minimal
TIR1/AFB activity is required for proper nodule formation and development in soybean (and
likely other determinate nodule-forming legumes as well). This is consistent with the reduced
level of auxin-responsive gene expression observed during determinate nodule formation.
Alternatively, TIR1/AFB-independent auxin signaling mechanisms (e.g. ABP1; (Jones et al.,
1998; Braun et al., 2008)) might govern determinate nodule formation and development.

\textbf{Auxin hypersensitivity inhibits determinate nodule development}

Over expression of miR160 resulted in a clear auxin hypersensitivity in soybean roots. Similar
observations have been made in arabidopsis as well. For example, miR160ox arabidopsis plants
had increased LR density (Wang et al., 2005) and proteins encoded by ARF10, 16 and 17
(targets of miR160) have been proposed to encode repressor ARF proteins (Mallory et al., 2005).
The presence of P and S-rich middle regions suggested that soybean ARF10/16/17 family
members might act as repressors as well (Figure S5). Indeed, a mutation in miR160 leading to
increased expression of \textit{ARF10}, 16 and 17 resulted in auxin-resistant phenotypes in arabidopsis
(Liu et al., 2010). In addition, miR160ox resulted in consumption of the root cap in arabidopsis
(Wang et al., 2005). Surprisingly, we observed intact root caps in soybean miR160ox roots when examined normally (e.g. Fig. 2) or through columella starch staining (not shown). It is possible that this difference is due to the different promoters used to drive over-expression of miR160 in Arabidopsis and soybean.

Results from miR160mx roots suggested that auxin hypersensitivity in nodule tissues causes only a moderate inhibition of primordium formation, but a severe inhibition of subsequent nodule development in soybean. What role does auxin play in nodule development? Signaling events during nodule development occur in two distinct phases, the first one in the epidermis in response to nod factor perception, and the second one in cortex cells following the activation of cytokinin signaling (Oldroyd et al., 2011). Auxin hypersensitivity does not appear to affect epidermal responses (Figure 4A), but clearly affects the second phase of events in the cortex influencing infection thread growth, primordium formation and subsequent development (Figure 4B & C). Does auxin regulate infection thread growth? We think this might be an indirect effect. Infection thread growth in the cortex is thought to be determined by cells dividing to form nodule primordia (Murray et al., 2007; Oldroyd and Downie, 2008). Therefore, it is likely that the lack of nodule primordia caused the arrest of infection thread growth in the cortex of miR160ox soybean roots. Consistent with this observation, a moderate reduction in primordium initiation did not affect infection thread growth in the cortex of miR160mx roots. We cannot exclude the possibility that auxin directly influenced rhizobial infection process similar to its effect on infection by bacterial pathogens in Arabidopsis (e.g. (Navarro et al., 2006; Cui et al., 2013)). However, while auxin sensitivity promotes susceptibility to bacterial pathogens, we observed inhibition of rhizobial infection threads suggesting that these mechanisms are not likely to be conserved.

What effect does auxin have on nodule initiation in the cortex? There is very low auxin-responsive gene expression during nodule initiation and it appears specifically in the apex region of nodule primordia (Figure 1C). We examined nodule initials (cell division foci) in vector control and miR160ox roots using roots expressing the DR5:GUS marker (Figure S6). The number of nodule initials per root was not significantly different between vector control and miR160ox roots at 3 dpi (2.7 ± 0.9 vs 2.0 ± 0.6 respectively; Poisson distribution analysis
We conclude that auxin hypersensitivity did not affect nodule initial cell divisions. During post-initiation stages of nodule development, the majority of auxin activity gets restricted to the nodule periphery and there is no or minimal auxin activity in the infection zone, at least in determinate nodule-forming legumes (Figure 1D; (Suzaki et al., 2012)). Interestingly, ENOD40 and DR5 have minimal overlap between their expression domains (Figure S3F vs Figure 1D). Therefore, it is likely that there was sustained auxin activity in the nodule initials / infection zone of miR160ox and miR160mx roots and this might have inhibited nodule development. We attempted to test this hypothesis by monitoring DR5:GUS expression during post-initiation stages of nodule development in miR160ox roots. Significantly reduced primordium formation in these roots precluded such an experiment. It appears that suppression of auxin concentration/sensitivity in specific nodule cell types, and/or the maintenance of a correct window of auxin concentration/sensitivity in specific cell types is crucial for proper development of the determinate nodule primordium.

It is currently not clear if auxin hypersensitivity inhibits indeterminate nodule formation. Auxin sensitive genotypes of *Medicago spp* nodulated faster and/or had more nodules (Kondorosi et al., 1993). Similarly, auto regulation-defective supernodulating mutants of *M. truncatula* display an increase in shoot to root long distance auxin transport (van Noorden et al., 2007) compared to wild-type plants. These results suggested that auxin promotes nodule formation in these species. On the other hand, an apparent auxin resistance resulting from silencing of CDC16, a cell-cycle component resulted in increased nodulation and reduced number of LRs in *M. truncatula* (Kuppusamy et al., 2009). Interestingly, auxin appears to play a crucial role during the infection process in actinorhizal nodules. The expression of auxin influx carriers and accumulation of auxin have been observed in Frankia-infected cells during nodule formation in *Casuarina glauca* (Peret et al., 2007; Perrine-Walker et al., 2010).

Auxin-cytokinin regulation of nodule development

Auxin and cytokinin antagonize each other in a number of different plant development processes including meristem/primordium development (e.g. shoot apical meristem, root meristem, LR primordia and leaf primordia; reviewed in (Su et al., 2011)). Do auxin and cytokinin play
opposite roles in nodule initiation as well? It is known that cytokinin promotes nodule primordium formation and development. For example, the cytokinin-responsive marker, AtARR5:GUS, is specifically induced in cortex cells dividing to form nodule primordia in *L. japonicus* (Lohar et al., 2004). Similarly, cytokinin insensitivity caused an inability to initiate nodule primordia in both *L. japonicus* (a determinate nodule forming legume; (Murray et al., 2007)) and *M. truncatula* (an indeterminate nodule forming legume; (Plet et al., 2011)). In clear agreement with these observations, gain of function mutations in *L. japonicus* LHK1 resulted in spontaneous nodule formation even in the absence of rhizobia (Tirichine et al., 2007). We show that miR160ox resulted in hypersensitivity to auxin, hyposensitivity to cytokinin and a reduction in nodule primordium formation. Interestingly, loss of cytokinin sensitivity in *L. japonicus* hit1-lhk1 mutant plants resulted in nodulation phenotypes similar to that of soybean miR160ox roots. While infection threads formed normally, nodule primordium initiation was significantly reduced in these mutants (Murray et al., 2007). Similarly, both miR160ox roots as well as *lhk1* mutants had an attenuated expression of *NIN* and *ENOD40* in response to rhizobial inoculation. Together, these results suggest that reduced nodulation in auxin hypersensitive miR160ox roots is due to the suppression of cytokinin activity. Is a balance between auxin and cytokinin (biosynthesis and/or signaling) crucial for proper nodule primordium development? Indeed, such a hypothesis was proposed recently by Oldroyd & colleagues (Oldroyd et al., 2011). However, such interactions are likely to be cell type- and developmental stage-specific. For example, it was discovered very early that addition of both auxin and cytokinin was necessary to initiate cell divisions opposite xylem poles in isolated pea cortex cell explants (Libbenga et al., 1973). Recent results indicate that auxin activity in nodule initial cells is under the control of both cytokinin and *NIN* in *L. japonicus*. In addition, auxin-inducible gene expression was observed during cortex cell divisions as well as in the “infection zone” of uncolonized spontaneous nodules in the cytokinin gain of function *snf2* mutants (Suzaki et al., 2012). Computer models (Deinum et al., 2012) as well as genetic evidence (Plet et al., 2011) also suggested that inhibition of auxin efflux by cytokinin is the most likely mechanism that leads to an auxin maximum during nodule initiation. These observations suggested that cytokinin might govern localized accumulation of auxin during nodule primordium initiation. Our results suggest that enhanced auxin sensitivity (potentially uncoupling its regulation by cytokinin) results in inhibition of nodule formation. In addition, despite the observation that *ENOD40* acts downstream of *NIN*...
during nodule development (Gronlund et al., 2005), we observed moderate reduction of
primordium development in ENOD40:miR160 roots. We hypothesize that a feedback loop
involving cytokinin, NIN, miR160 and auxin (Figure S7) governs proper nodule formation and
development.
Materials and methods

Plant material and DNA vectors: Three different pCAMGFP-promoter: Gateway® (GW) vectors were generated by cloning the respective promoters (DR5 (Ulmasov et al., 1997), CsVMV (described in (Graham et al., 2007)) or GmENOD40 (Yang et al., 1993)) in front of an attR1-ccdB-attR2 Gateway® cassette into pCAM-sUbi:GFP (described in (Subramanian et al., 2005)). pCAMGFP-DR5:tdT was generated through an LR clonase reaction between pDONR/Zeo-tdTomato (a kind gift from Dr Gary Stacey, University of Missouri, Columbia, MO) and pCAMGFP-DR5:GW. Precursors of miR393 (miRBaseID: MI0007216) and miR160 (miRBaseID: MI0001774) were cloned by PCR and subsequently by TOPO-TA cloning into pCR8/GW (Invitrogen Corporation). Over-expression and mis-expression constructs were generated using pCAMGFP-CsVMV:GW or pCAMGFP-Enod40:GW vectors respectively as the destination vector and pCR8/GW/miR393 or pCR8/GW/miR160 as the entry vector in an LR clonase (Invitrogen Corporation) reaction. miRox-DR5:GUS and miRox-AtARR5:GUS constructs were obtained by cloning a DR5:GUS cassette (a kind gift from Dr. Tom Guilfoyle, University of Missouri, Columbia, MO) or AtARR5:GUS cassette (cloned by amplifying AtARR5 upstream sequences; (D’Agostino et al., 2000)) into the miRox constructs above. Vectors were electroporated into Agrobacterium rhizogenes K599 cells and transgenic composite plants for gene expression analyses and miRNA over/mis-expression were generated as previously described (Collier et al., 2005) using two week-old soybean (Glycine max cv Williams82) seedlings. Transgenic roots of interest were identified using GFP epifluorescence.

Hormone response assays: For physiological assays, GFP positive transgenic composite plant roots were individually labeled with a Tough-Tags® polyester label and both root length and number of LR primordia + emerged roots were counted (0 day measurements). The use of GFP as a marker to identify transgenic roots enabled the identification of LR primordia under a fluorescent dissection microscope without clearing the roots. Composite plants were transferred to 4” pots containing a mixture of vermiculite-perlite (3:1) and watered with nutrient solution with or without 2,4-D. One week later, plants were uprooted and root length and number of total LRs (primordia + emerged) were counted on tagged roots (7 day measurements). The difference
in root length and number of total LRs (0 vs. 7 day measurements) were calculated for each root. Student’s t-test was used to compare different treatments and genotypes using Microsoft Excel.

For DR5:GUS and marker gene expression assays (auxin response), transgenic plants with tagged roots (see above) were transferred to sterile de-water with or without 0.2 or 1.0 μM 2, 4-D and incubated for 12 h (DR5:GUS) or 6 h (qPCR assays) at 25°C in the dark. For AtARR5:GUS and marker gene expression assays (cytokinin response), transgenic plants were treated with sterile de-water with or without 5.0 μM BAP for 1 h at 25°C in the dark. Histochemical localization of GUS was performed as described before (Jefferson et al., 1987). For gene expression assays, whole roots were harvested after auxin/cytokinin treatment, blot dried and immediately frozen in liquid N₂.

B. japonicum inoculation and nodulation assays: For nodulation assays, transgenic composite plants (3 weeks post transformation with the respective miRox or miRmx construct) were transferred to 4” pots containing a mixture of vermiculite-perlite (1:3), allowed to grow for one week (16h light; 25°C; 50% relative humidity) and inoculated with a suspension of *B. japonicum USDA110* (OD₆₀₀=0.08). Two weeks after inoculation, roots were harvested, GFP positive transgenic roots separated and observed under a dissection microscope for nodulation. Nodules appearing as “bumps” were classified as emerging nodules, and those that were round and pink were classified as mature nodules. Mock-inoculated composite plants were used as inoculation control in each experiment and no nodules were observed on these plants. Nodule numbers between different ox and mx roots and the respective controls were examined for statistically significant difference if any using zero-inflated Poisson distribution analysis in the statistical analysis package R. To examine rhizobial colonization and infection thread development, composite plants were inoculated as above with *B. japonicum* transformed with a nptII:GUS construct (a kind gift from Dr. Gary Stacey, University of Missouri, Columbia, MO). Tissue fixation and GUS staining to visualize rhizobial colonization and infection thread formation were performed as described previously (Loh et al., 2002). Nodule primordia were visualized by clearing roots in 10% bleach for 10 min. Since nodule primordium cell division occurs in the outer cortex in soybean, it is easy to distinguish nodule primordia from LR primordia. For gene expression assays, whole roots were harvested at appropriate time points, rinsed briefly in sterile
deionized water to remove vermiculite/perlite particles, blot dried and immediately frozen in liquid N\textsubscript{2}.

Microscopy: To examine DR5:tdT expression, mock- or *B. japonicum*-inoculated transgenic composites plant roots were observed under a laser confocal microscope (Olympus FV300) or a fluorescent compound microscope (Olympus AX70) at 3, 7, 10 and 14 dpi. Images shown in Figure 1A-D were obtained using the confocal microscope with the following settings (Channel 1: 488ex/515em for GFP; Channel 2: 568ex/635em for TdT; 1.5% gain; Kalman acquisition). To examine DR5:GUS expression, mock- and *B. japonicum* inoculated roots were stained for GUS activity (see above).

Gene expression assays: Total RNAs were isolated from transgenic roots using Trizol reagent and cDNAs prepared from 2 \(\mu \)g total RNA using oligo-dT and M-MuLV reverse transcriptase (NEB, Ipswich, MA). qPCR assays for gene expression were performed using a Stratagene MX3000P equipment (Stratagene, La Jolla, CA) and SYBR premix (Clontech, Mountain View, CA). Gene expression levels were normalized to that of GmActin using the ddCt method (Livak and Schmittgen, 2001) and further confirmed using two additional house-keeping genes, GmCONS7 and GmCONS15 (data not shown, (Libault et al., 2008)). Statistical analyses for pair-wise comparison of dCt values were done using Student’s t-test on Microsoft Excel. List of primers used for qPCR assays are presented in Tables S2 & 3.
Acknowledgements

We thank Dr. Gary Stacey (University of Missouri, Columbia, MO) for *B. japonicum* nptII:GUS cells and tdTomato vector, Dr. Tom Guilfoyle (University of Missouri, Columbia, MO) for the DR5 promoter, Dr. Claude Fauquet (Donald Danforth Plant Science Center, St Louis, MO) for the CsVMV promoter, Dr. Gemechis Djira (South Dakota State University) for suggestions on statistical analyses, Dr. Michael Hildreth (South Dakota State University) for guidance on microscopy, and Drs. Martin Crespi (CNRS, Gif sur Yvette, France), Ulrike Mathesius (Australian National University, Canberra, Australia) and Takuya Suzaki (National Institute for Basic Biology, Okazaki, Japan) for critical comments and suggestions on the manuscript. Assistance from Ms. Natalie Krier and Holly Pueppke for counting nodules is acknowledged.
Literature Cited:

Allen EK, Allen ON, Newman AS (1953) Pseudonodulation of Leguminous Plants Induced by 2-Bromo-3,5- Dichlorobenzoic Acid. Am J Bot 40: 429-435

Bazin J, Bustos-Sanmamed P, Hartmann C, Lelandais-Briere C, Crespi M (2012) Complexity of miRNA-dependent regulation in root symbiosis. Philos Trans R Soc Lond B Biol Sci 367: 1570-1579

Boot KJM, van Brussel AAN, Tak T, Spaink HP, Kijne JW (1999) Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp nigra roots. Mol Plant-Microbe Interact 12: 839-844

Braun N, Wyrzykowska J, Muller P, David K, Couch D, Perrot-Rechenmann C, Fleming AJ (2008) Conditional repression of AUXIN BINDING PROTEIN1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell 20: 2746-2762

Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99: 7877-7882

Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25: 21-44

Collier R, Fuchs B, Walter N, Lutke K, Taylor C (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43: 449-457

Cui F, Wu S, Sun W, Coaker G, Kunkel B, He P, Shan L (2013) The Pseudomonas syringae Type III Effector AvrRpt2 Promotes Pathogen Virulence via Stimulating Arabidopsis Auxin/Indole Acetic Acid Protein Turnover. Plant Physiol 162: 1018-1029

D'Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124: 1706-1717
de Billy F, Grosjean C, May S, Bennett M, Cullimore JV (2001) Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol Plant-Microbe Interact 14: 267-277

Deinum EE, Geurts R, Bisseling T, Mulder BM (2012) Modeling a cortical auxin maximum for noduleation: different signatures of potential strategies. Front Plant Sci 3: 96

Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435: 441-445

Ding Y, Oldroyd GE (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4: 89-93

Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Current Biol 16: 939-944

Ferguson BJ, Mathesius U (2003) Signaling Interactions During Nodule Development. J Plant Growth Regul 22: 47-72

Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi Silencing of Genes for Elicitation or Biosynthesis of 5-Deoxyisoflavonoids Suppresses Race-Specific Resistance and Hypersensitive Cell Death in Phytophthora sojae Infected Tissues. Plant Physiol 144: 728-740

Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13: 1678-1691

Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414: 271-276

Gronlund M, Roussis A, Flemetakis E, Quaedvlieg NE, Schlaman HR, Umehara Y, Katinakis P, Stougaard J, Spaink HP (2005) Analysis of promoter activity of the early nodulin Enod40 in Lotus japonicus. Mol Plant-Microbe Interact 18: 414-427
Guilfoyle TJ, Hagen G (2012) Getting a grasp on domain III/IV responsible for Auxin Response Factor-IAA protein interactions. Plant Sci 190: 82-88

Hayashi S, Reid DE, Lorenc MT, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ (2012) Transient Nod factor-dependent gene expression in the nodulation-competent zone of soybean (Glycine max [L.] Merr.) roots. Plant Biotechnol J 10: 995-1010

Heckmann AB, Sandal N, Bek AS, Madsen LH, Jurkiewicz A, Nielsen MW, Tirichine L, Stougaard J (2011) Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol Plant-Microbe Interact 24: 1385-1395

Hirsch AM (1992) Developmental biology of legume nodulation. New Phytologist 122: 211-237

Hirsch AM, Bhuvaneswari TV, Torrey JG, Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci U S A 86: 1244-1248

Hirsch AM, Fang Y (1994) Plant hormones and nodulation: what's the connection? Plant Mol Biol 26: 5-9

Huo X, Schnabel E, Hughes K, Frugoli J (2006) RNAi Phenotypes and the Localization of a Protein::GUS Fusion Imply a Role for Medicago truncatula PIN Genes in Nodulation. J Plant Growth Regul 25: 156-165

Ilina EL, Logachov AA, Laplace L, Demchenko NP, Pawlowski K, Demchenko KN (2012) Composite Cucurbita pepo plants with transgenic roots as a tool to study root development. Annals of Botany 110: 479-489

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J 6: 3901-3907
Jones AM, Im KH, Savka MA, Wu MJ, DeWitt NG, Shillito R, Binns AN (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282: 1114-1117

Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446-451

Kondorosi E, Schultzze M, Savoure A, Hoffmann B, Dudits D, Pierre M, Allison L, Bauer P, Kiss GB, Kondorosi A (1993) Control of nodule induction and plant cell growth by Nod factors. In N EW, V DPS, eds, Advances in Molecular-Genetics of Plant-Microbe Interactions. Kluwer Academic Publishers, Dordrecht, pp 143-150

Kuppusamy KT, Ivashuta S, Bucciarelli B, Vance CP, Gantt JS, Vandenbosch KA (2009) Knockdown of CELL DIVISION CYCLE16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula. Plant Physiol 151: 1155-1166

Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008) Identification of Four Soybean Reference Genes for Gene Expression Normalization. Plant Genome 1: 44-54

Libault M, Zhang XC, Govindarajulu M, Qiu J, Ong YT, Brechenmacher L, Berg RH, Hurley-Sommer A, Taylor CG, Stacey G (2010) A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. Plant J 62: 852-864

Libbenga KR, Iren F, Bogers RJ, Schraag-Lamers MF (1973) The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta 114: 29-39

Liu X, Huang J, Wang Y, Khanna K, Xie Z, Owen HA, Zhao D (2010) The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J 62: 416-428
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408

Loh J, Lohar DP, Andersen B, Stacey G (2002) A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes. J Bacteriol 184: 1759-1766

Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J 38: 203-214

Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17: 1360-1375

Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22: 1104-1117

Mathesius U, Schlaman HRM, Spaink HP, Of Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14: 23-34

Murray JD (2011) Invasion by invitation: rhizobial infection in legumes. Mol Plant-Microbe Interact 24: 631-639

Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315: 101-104

Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312: 436-439
Ni DA, Wang LJ, Ding CH, Xu ZH (2001) Auxin distribution and transport during embryogenesis and seed germination of Arabidopsis. Cell Res 11: 273-278

Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59: 519-546

Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45: 119-144

Op den Camp RH, De Mita S, Lillo A, Cao Q, Limpens E, Bisseling T, Geurts R (2011) A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A response regulators. Plant Physiol 157: 2013-2022

Pacios-Bras C, Schlaman HR, Boot K, Admiraal P, Langerak JM, Stougaard J, Spaink HP (2003) Auxin distribution in Lotus japonicus during root nodule development. Plant Mol Biol 52: 1169-1180

Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estelle M (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci U S A 106: 22540-22545

Peret B, Swarup R, Jansen L, Devos G, Auguy F, Collin M, Santi C, Hocher V, Franche C, Bogusz D, Bennett M, Laplaze L (2007) Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. Plant Physiol 144: 1852-1862

Perrine-Walker F, Doumas P, Lucas M, Vaissayre V, Beauchemin NJ, Band LR, Chopard J, Crabos A, Conejero G, Peret B, King JR, Verdeil JL, Hocher V, Franche C, Bennett MJ, Tisa LS, Laplaze L (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154: 1372-1380

Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, Frugier F (2011) MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J 65: 622-633
Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6: 420-425

Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev 12: 198-207

Si-Ammour A, Windels D, Arn-Bouldoires E, Kutter C, Ailhas J, Meins F, Jr., Vazquez F (2011) miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves. Plant Physiol 157: 683-691

Simon SA, Meyers BC, Sherrier DJ (2009) MicroRNAs in the rhizobia legume symbiosis. Plant Physiol 151: 1002-1008

Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytologist 174: 11-25

Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4: 616-625

Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 9: 160

Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137: 1345-1353

Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48: 261-273

Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12: 282-285
Suzaki T, Ito M, Kawaguchi M (2013) Genetic basis of cytokinin and auxin functions during root nodule development. Front Plant Sci 4: 42

Suzaki T, Yano K, Ito M, Umehara Y, Suganuma N, Kawaguchi M (2012) Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development 139: 3997-4006

Takanashi K, Sugiyama A, Yazaki K (2011) Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta 234: 73-81

Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315: 104-107

Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15: 533-543

Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16: 533-543

Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13: 2809-2822

Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci U S A 96: 5844-5849

Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963-1971

van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144: 1115-1131
Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136: 1005-1016

Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guedon Y, Armitage L, Picard F, Guyomarce'h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7: 508

Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutierrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107: 4477-4482

Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17: 2204-2216

Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18: 1617-1629

Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133: 4211-4218

Yang WC, Katinakis P, Hendriks P, Smolders A, de Vries F, Spee J, van Kammen A, Bisseling T, Franssen H (1993) Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant J 3: 573-585

Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57: 171-183
Figure Legends:

Figure 1. Expression of the auxin-inducible marker gene constructs, DR5:tdTomato and DR5:GUS in soybean roots. (A-D) Expression of DR5:TdT and sUbi:GFP in root tips (A), lateral root primordia (B), emerging nodules (C), mature nodules (D). Panels A-C are confocal optical sections of whole mounts and D is a confocal image of hand-sectioned mature nodule. Cells expressing both DR5:TdT and sUbi:GFP appear yellow/reddish yellow (arrowheads) and root surface auto fluorescence appears bright red. (E & F) Expression of DR5:GUS in nodule primordia (E) and mature nodules (F). Image in (F) is that of a hand-sectioned mature nodule. Asterisks in D and F indicate the point of contact between the root and the nodule. Dotted lines in F mark the nodule vasculature. Scale bars in A-D = 100 μm and E & F = 200 μm.

Figure 2. Physiological and molecular responses of miR393 and miR160 over-expressing soybean composite plant roots to exogenous auxin. (A-B) Relative root elongation (A) and lateral root density (B) in response to treatment with 0, 0.2 or 1.0 μM 2,4-D compared to untreated vector control roots. Data presented are average ± SE from at least 20 roots per data point. Asterisks in A and B indicate the level of statistically significant difference if any compared to vector control roots (* P<0.05, ** P<0.01, ***P<0.001). (C-K) DR5:GUS expression in root tips of untreated (C, F & I) and auxin-treated (D, G & J, 0.2 μM; E, H & K, 1.0 μM) vector control (C-E), miR393ox (F-H) and miR160ox (I-K) roots. Scale bars = 200μm. Number of independent transgenic roots showing the representative staining pattern out of the number of roots examined is indicated in each panel.

Figure 3. Nodulation in soybean composite plant roots over-expressing or mis-expressing (using the ENOD40 promoter) miR393 or miR160. Box plots showing distribution of nodule numbers per root in (A) miR393 over-expressing (miR393ox), (B) miR160 over-expressing (miR160ox), (C) miR393 mis-expressing (miR393mx) and (D) miR160 mis-expressing (miR160mx) roots compared to respective vector controls (VC). Data shown are from at least 80 roots for each construct. Boxes indicate data within the first and third quartiles and the thick black line indicates median. Potential outliers if any are depicted as circles. Asterisks indicate the level of
statistically significant difference if any compared to respective vector control roots (* P<0.05, ** P<0.01, *** P<0.001).

Figure 4. Early symbiotic responses in roots over-expressing or mis-expressing miR160. (A-C) Box plots showing the distribution of (A) root hair deformation or curling responses limited to the epidermis at 5dpi, (B) Infection thread growth in to the cortex at 5dpi and (C) nodule primordium initiation responses at 8dpi in vector control (VC), miR160 over-expressing (miR160ox) and miR160 mis-expressing (miR160mx) roots. Data shown are from at least 40 roots for each construct. Boxes indicate data within the first and third quartiles and the thick black line indicates median. Potential outliers if any are depicted as circles. Asterisks indicate the level of statistically significant difference if any compared to respective vector control roots (* P<0.05, ** P<0.01, *** P<0.001).

Figure 5. Nodule development in roots over-expressing or mis-expressing miR160. Box plots showing distribution of emerging (A & C) and mature (B & D) nodules per root in miR160 over-expressing (A & B; miR160ox) and miR160 mis-expressing (C & D; miR160mx) roots compared to respective vector control (VC) roots. Data shown are from at least 90 roots for each construct. Boxes indicate data within the first and third quartiles and the thick black line indicates median. Potential outliers if any are depicted as circles. Asterisks indicate the level of statistically significant difference if any compared to respective vector control roots (* P<0.05, ** P<0.01, ***P<0.001).

Figure 6. Expression of cytokinin-responsive gene expression in miR160ox roots. (A-D) Expression of AtARR5:GUS in root tips (A, C, E & G) and vasculature (B, D, F & H) of untreated (A-D) and cytokinin (5 μM BAP)-treated (E-H) vector control (A, B, E & F) and miR160ox (C, D, G & H) roots. Number of independent transgenic roots showing the representative staining pattern out of the number of roots examined is indicated in each panel. (I-N) Expression of cytokinin-dependent nodulation genes, NIN (I), NSP1 (J), HAP2-1 (K), HAP2-2 (L), ENOD40 (M) and FWL1 (N) along a time course of *B. japonicum* inoculation in vector control and miR160ox roots. Data presented are average ± SD of three replicates.
Table 1. Expression of selected marker genes in response to 1.0 μM 2,4-D in vector control, miR393ox and miR160ox roots

Marker gene	Expression (fold-change compared to untreated controls)		
	Vector control	miR393ox	miR160ox
GmGH3 (Glyma05g21680)	42.81 (40.04-45.78)	30.07 * (27.81-32.51)	115.09 ** (106.59-124.28)
IAA1 (Glyma10g32330)	4.62 (4.22-5.07)	3.06 ** (2.56-3.66)	8.11 ** (7.16-9.19)
IAA8 (Glyma09g33630)	5.50 (5.04-6.01)	3.85 * (3.12-4.74)	6.31 * (5.44-7.31)
IAA9 (Glyma01g24100)	1.94 (1.68-2.22)	1.62 (1.52-1.73)	1.56 (1.41-1.72)
IAA13 (Glyma17g12080.2)	231.25 (169.32-315.85)	74.03 ** (59.50-92.11)	97.46 * (75.11-126.45)
IAA14 (Glyma10g32340)	1.35 (1.23-1.49)	1.17 (1.04-1.32)	1.73 (1.56-1.93)
IAA20 (Glyma19g40970)	6.23 (5.27-7.37)	2.68 * (2.39-2.99)*	9.43 * (8.55-10.39)

Data shown are fold-change in gene expression relative to untreated (0 μM 2,4-D) controls. Original gene expression values were normalized to that of Actin and further confirmed using two additional house-keeping genes. Numbers in parenthesis indicate the range of possible fold change values based on standard deviation between replicates (two independent experiments). Asterisks indicate the level of statistically significant difference if any compared to vector control roots (Student’s t-test: * P<0.05, ** P<0.01).
Table 2. Expression of selected marker genes in response to 5.0 μM BAP in vector control and miR160ox roots

Marker gene	Expression (fold-change compared to untreated controls)	
	Vector control	miR160ox
GmRR5-1 (Glyma04g34820)	1.69 (1.28-2.23)	4.02 ** (3.28-4.91)
GmRR5-2 (Glyma06g19870)	8.01 (5.96-10.76)	3.07 ** (2.25-4.19)
GmRR5-3 (Glyma05g01730)	9.60 (8.21-11.23)	3.72 ** (2.93-4.23)
GmRR5-4 (Glyma17g10170)	4.53 (3.88-5.29)	3.52 * (2.94-4.22)
GmRR9-1 (Glyma04g29250.2)	7.64 (5.68-10.27)	4.50 ** (2.62-7.71)
GmRR9-2 (Glyma11g21650)	11.50 (9.93-13.32)	4.24 ** (4.00-4.49)
GmRR9-3 (Glyma13g26770)	4.39 (3.18-6.04)	3.82 * (3.05-4.78)
GmRR9-4a (Glyma15g37770)	11.99 (3.06-46.81)	9.13 (3.75-22.16)

Data shown are fold-change in gene-expression relative to untreated (0 μM BAP) controls. Original gene expression values were normalized to that of Actin and further confirmed using two additional house-keeping genes. Numbers in parenthesis indicate the range of possible fold change values based on standard deviation between replicates (two independent experiments). Asterisks indicate the level of statistically significant difference if any compared to vector control roots (Student’s t-test; * P<0.05, ** P<0.01). a Due to very low expression levels, this gene had poor reproducibility between replicate samples.
