The effect of carbon nanotubes on the curing processes of epoxy-amine compositions

Eduard Yagund1[0000-0002-0022-4763] and Ludmila Potapova1[0000-0002-5403-1836]

1Kazan State University of Architecture and Engineering, Kazan, Russia
E-mail: yagund1962@mail.ru

Abstract. The effects of the concentration and functionalization of carbon nanotubes on the degree of conversion of epoxy groups in epoxy-amine compositions based on ED-20 epoxy oligomer and the PEPA curing agent are studied. It has been shown that increasing the concentration of functionalized carbon nanotubes (CNT) from 0 to 0.5 % increases the degree of conversion of the epoxy groups during curing at a room temperature. Further increase in concentration CNT of up to 1 % does not effect on the reaction kinetics. For native CNT not established such a relationship. Explains such a pronounced effect on the f-CNT aminolysis reaction kinetics and ultimate degree of conversion of epoxy groups, apparently, the catalytic effect of oxygen-containing groups (hydroxyl, carboxyl, and others) grafted to the surface of CNTs and their direct involvement in the reaction. By optical microscopy showed that the size of the agglomerates of nanotubes were substantially higher in the native systems than in the system with the functionalized nanotubes. These results may be important for the development of creation of epoxy composites modified by nanoparticles.

Keywords: epoxy oligomers, epoxy-amine compositions, carbon nanotubes, ir-spectroscopy method.

1 Introduction
Epoxy resins are widely used in the production of structural and functional composite materials for various purposes, adhesives, sealants [1-6]. In this regard, the problem of increasing their physical, mechanical and operational characteristics is extremely urgent. One of the directions in which this problem can be solved is the modification of epoxy matrix by carbon nanotubes (CNTs) [7-12]. The effective influence of CNTs on the polymer matrix and the full disclosure of their potential properties can be achieved only if they are evenly distributed in the polymer matrix and the maximum polymer-CNT bond strength is ensured. For this, various methods of modifying the outer surface of nanotubes are used [13-18]. In this case, the effect of modified CNTs on the kinetics of curing of epoxy oligomers and on the degree of conversion of functional groups in the resulting composites is significant. Thus, this study is dedicated to the solution of this problem.

2 Methods
The effect of native (untreated) and functionalized multilayer carbon nanotubes (f-CNTs) on the kinetics of formation and the final degree of conversion of epoxy groups in a compositions based on the ED-20 epoxy oligomer cured by the polyethylene polyamine (PEPA) has been studied by IR spectroscopy method. Three types of nanotubes were used in the study: native nanotubes obtained on the laboratory plasmatron described in [19] (CNT-1), industrial native multilayer nanotubes of the Taunit brand (manufactured by NanoTechCenter LLC, Tambov City, Russia) (CNT-2) and functionalized multilayer nanotubes produced by the French corporation Arkema under the brand name «Graphistrength CS1-25» (CNT-3).

We studied the kinetics of the curing reaction of compositions containing from 0 to 1 wt % CNTs in the medium of an ED-20 epoxy oligomer, cured with a stoichiometric amount of PEPA, for 24 hours at room temperature, after which the samples were cured in an oven at 100o C for 4 hours. For preparing specimens based on CNT-1 and CNT-2, dry nanotubes were pre-grounded manually in an
agate mortar until the lumps were completely eliminated, after which the required amount of CNT was added into ED-20 in a water bath at 80°C for 6 hours with permanent stirring. For preparing samples based on CNT-3, the mass of granules, recalculated for the required amount of CNTs, was added into ED-20 and kept in the oven at 80°C for 12 hours. During this time, there was a complete swelling and partial dissolution of the granules in epoxy resin. After that, the composition was also mixed in a water bath at 80°C for 6 hours. A stoichiometric amount of PEPA was the composition cooled to room temperature immediately before recording the IR spectra.

IR spectra were recorded by the Fourier IR spectrophotometer (Perkin-Elmer, Model Spectrum 65) using the Miracle ATR attachment (ZnSe crystal) in the area 4000-650 cm⁻¹ under standard recording conditions. Liquid compositions (before hardening) were applied directly to the ATR element. The cured samples in the form of tablets with a diameter of 2 cm and a thickness of about 2 mm were pressed against the crystal with a special clamp included in the set of the attachment. To prepare solid specimens, a liquid composition including an oligomer, CNTs, and a curing agent was molded into a special form of fluoroplastic and then cured according to the above regime. Since the adhesion of the epoxy polymer to the fluoroplastic is practically absent, the specimens were easily removed from the molds after curing. The same specimens were also used for microscopic studies. Kinetic measurements were carried out according to the procedure [20]. The fraction of unreacted epoxy groups was determined by normalizing the integral intensity (area) of the band of 915 cm⁻¹ of the epoxy ring [21] at time t to the intensity of the same band at time t₀. The time of the first measurement (approximately 5 min after the introduction PEPA into the mixture of ED-20 with CNTs) was taken as t₀. To control the optical contact of the sample with the crystal, on which the quality of the ATR spectrum depends strongly, we used the “internal standard” band — a characteristic doublet of 1606–1581 cm⁻¹ of benzene rings of the epoxy oligomer [22]. This band had equal intensity in all measured spectra. The mathematical processing of the spectra was carried out using the supplied software. After registration, an ATR correction was automatically carried out and the spectrum was transferred to the optical density scale. The integrated intensity (area) of the absorption band of the epoxy groups of 915 cm⁻¹ was calculated within the boundaries of 890–926 cm⁻¹ for all measured spectra.

To assess the degree of CNT agglomeration in the compositions, microscopic studies of extremely cured samples were carried out on a Biomed-4 optical microscope equipped with a DCM-510 digital attachment with a resolution of 5 Mpx for micrographs.

3 Results and Discussion
The kinetics of the curing of epoxy-amine compositions containing CNTs, including those using the IR spectroscopy method in the middle and near area, was previously studied in a number of papers [22-26]. However, most of these studies were largely limited to model systems based on DGEBA and low molecular weight di- or monoamines. In our study, we used industrial products: the epoxy oligomer ED-20 and the PEPA curing agent, which are widely used in practice.
Figure 1. IR spectra of a system containing 0.2 wt% CNT-3: before curing (1); after curing for 4 hours (2); 1 day (3); after curing at 100° C for 4 hours. (4).

Qualitative and quantitative changes in the IR spectra during curing of a composition containing 0.2 wt% CNT-3 are shown in Figure1 and Figure 2. As you can see, during the day of curing at room temperature there is a very significant decrease in the intensity of the band 915 cm\(^{-1}\), and after curing at 100° C it almost completely disappear in the spectrum. At the same time, for a composition not containing nanotubes, the degree of conversion of epoxy groups did not exceed 60%. According to the graphs (Figure 2B), it is seen that an increasing in the concentration of CNT-3 from 0 to 0.5 % leads to a monotonic increase in the degree of conversion of epoxy groups. It remains high (at least 90 % after 24 hours at room temperature for all systems with CNT-3 and almost 100 % for thermoset samples).
Figure 2. Temporal dependences of the conversion of epoxy groups in a system containing: 1 – 0.2 % of CNT-3, 2 – 0.2 % of CNT-2 and 3 – 0.2 % of CNT-1 (A); 1 – 0 %, 2 – 0.2 % of CNT-3, 3 – 0.5 % of CNT-3 and 4 – 1 % of CNT-3 (B).

However, the obtained result was a characteristic only for samples with functionalized CNT-3. When dry native CNT-1 and CNT-2 were introduced into the systems, the conversion curves practically coincided with each other and with the curve for a system without CNTs (Figure 2A, graphs 2, 3 and Figure 2B, graph 1). The conversion of functional groups in extremely cured samples was not complete and amounted to about 64 % for systems with CNT-1 and 75 % for systems with CNT-2. This indicated that native nanotubes did not significantly affect the kinetics of the curing reaction at room temperature, and even in some cases prevent the complete opening of epoxy groups in thermoset samples. There are researches [27-29], where the effect of CNTs on the speed and final conversion of epoxy groups during curing of epoxy resins was discovered. In particular, it was shown in [27] by the DSC method that upon curing of epoxy resins in the presence of 0–5 % multilayer functionalized CNTs, the conversion corresponding to the maximum rate increased with an increase in the concentration of CNTs, i.e. with an increase in the total surface area of the modifier. A similar result was obtained in [28], where the effect of small additions of f-CNTs on the properties of an epoxy polymer cured by diaminodiphenylsulfone was studied.

It was found that in the range of CNT concentrations from 0.01 to 0.5 wt %, an extreme dependence of the dynamic elastic modulus and glass transition temperature on the modifier concentration is detected. This pronounced effect of functionalized CNTs on curing processes in [7] is explained by the fact that, due to the presence of a large number of oxygen-containing groups
(hydroxyl, carboxyl, etc.) on the surface of f-CNTs, the curing reaction acquires a catalytic character, and its rate can be 3-4 times higher than non-catalytic [17]. Another additional factor affecting the reaction rate and the conversion of epoxy groups according to [22] may be the formation of a large number of H-bonds between the functional groups of the epoxy oligomer and the surface of the modifier. In contrast, untreated nanotubes are prone to agglomerates due to their high surface energy and possibly static charge. Native nanotubes can form only weak van Der Waals interactions with the epoxy oligomer and are not able to catalyze the reaction. Agglomerates of nanotubes can also cause steric hindrance to the aminolysis of epoxy groups at high cure temperatures. Functionalized CNTs have a significant amount of active groups on the surface (predominantly carboxylic) directly involved in the reaction with epoxy groups, which determines a higher depth of the reaction both at room temperature and during thermosetting of systems.

To assess the degree of agglomeration of functionalized and native nanotubes in composites, microscopic studies of samples were carried out. Samples with a CNT content of more than 0.3 wt % were practically opaque; therefore, the measurements were limited to systems containing 0, 0.1, and 0.2 wt % CNTs. Microphotographs with a 400x magnification of the unmodified composition and systems containing 0.1 % of each type of CNT are shown in Figure 3. For the unmodified composition shown in Figure 3a, microbubbles of air are visible in the photo (marked by arrows). For systems containing CNTs, the agglomerates of nanotubes are clearly distinguishable in the photo, and the size of agglomerates for native CNT-1 was large (Figure 3b), and for CNT-2 it was much larger (Figure 3c) than for functionalized CNT-3 (Figure 3d). Obviously, the functionalization of nanotubes positively affects the degree of their dispersion in the polymer matrix, which ultimately leads to a higher conversion of epoxy groups.

![Microphotographs of compositions containing 0 % (a); 0.1 % CNT-1 (b); 0.1 % CNT-2 (c); 0.1 % CNT-3 (d). Magnification 400x.](image)

Figure 3. Microphotographs of compositions containing 0 % (a); 0.1 % CNT-1 (b); 0.1 % CNT-2 (c); 0.1 % CNT-3 (d). Magnification 400x.

4 Conclusion

Thus, the study of the effect of the concentration and functionalization of carbon nanotubes on the degree of conversion of epoxy groups in epoxy-amine compositions based on ED-20 and PEPA was carried out. It was shown that an increase in the concentration of functionalized CNTs from 0 to 0.5 % leads to an increase in the degree of conversion of epoxy groups upon curing at room temperature. A
further increase in concentration to 1 % does not affect the kinetics of the reaction. For native CNTs, no such dependence has been detected. This pronounced effect of f-CNTs on the kinetics of the aminolysis reaction and the final degree of conversion of epoxy groups is explained, apparently, by the catalytic effect of oxygen-containing groups (hydroxyl, carboxyl, etc.) grafted to the surface of CNTs and their direct participation in the reaction. It was shown by optical microscopy that the sizes of agglomerates of nanotubes were significantly higher in systems with native ones than in systems with functionalized nanotubes. These results can be significant in the development of nanoparticle modified epoxy composites.

References
[1] Kausar A, Rafique I and Muhammad B 2016 Review of Applications of Polymer-Carbon Nanotubes and Epoxy-CNT Composites Polymer-Plastics Technology and Engineering 55(11) pp 1167-1191 DOI: 10.1080/03602559.2016.1163588
[2] Atif R, Shyha I and Inam F 2017 Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites Polymers 8(8) pp 12-36 DOI: 10.1016/j.compositesa.2017.01.007
[3] Paszkiewicz S, Pilawka R and Rosłaniec Z 2012 Epoxy composites with carbon nanotubes Advances in Manufacturing Science and Technology 36 pp 67-79
[4] Shashkeev K, Kondrashov S, Popkov O, Solovianchik L, Lobanov M, Nagornaya V, Soldatov M and Shevchenko V 2018 The effect of fluorosilicone modifiers on the carbon nanotube networks in epoxy matrix Journal of Applied Polymer Science 135(37) pp 287-301 DOI: 10.1002/app.46539
[5] Vaganov G, Yudin V, Vuorinen J and Molchanov E 2016 Influence of multiwalled carbon nanotubes on the processing behavior of epoxy powder compositions and on the mechanical properties of their fiber reinforced composites Polymer Composites 37(8) pp 2377-83 DOI: 10.1002/pc.23419
[6] Xin F, Zhai C, Guo C, Chen Y and Qian L 2019 Carbon nanotubes coated with phosphorus-nitrogen flame retardant and its application in epoxy thermosets Polymer-Plastics Technology and Materials 58(17) pp 1889-99 DOI: 10.1080/25740881.2019.1587769
[7] Kondrashov S, Marakhovskiy P, Mayorov I, Egorov A, Mansurova I, Yurkov G 2014 Influence of curing mode on formation of epoxy composite structure in the presence of carbon nanotubes Inorganic Materials: Applied Research 5(5) pp 516-52 DOI: 10.1134/S2075113314050104
[8] Gantayat S, Sarkar N, Prusty G, Rout D and Swain S 2018 Designing of Epoxy Matrix by Chemically Modified Multiwalled Carbon Nanotubes Advances in Polymer Technology 37(1) pp 176-184 DOI: 10.1002/adv.21654
[9] Garg M, Sharma S and Mehta R 2017 Role of curing conditions and silanization of glass fibers on carbon nanotubes (CNTs) reinforced glass fiber epoxy composites Composite Interfaces 24(2) pp 233-253 DOI: 10.1080/09276440.2016.1201373
[10] Yue L, Pircheraghi G, Monemian S and Manas-Zloczower I 2014 Epoxy composites with carbon nanotubes and graphene nanoplatelets. Dispersion and synergy effects Carbon 78 pp 268-278
[11] Ma P, Mo S, Tang B and Kim J 2010 Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites Carbon 48(6) pp 1824-34 DOI: 10.1016/j.carbon.2014.07.003
[12] Song Y and Youn J 2005 Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites Carbon 43(7) pp 1378-85 DOI: 10.1016/j.carbon.2005.01.007
[13] Yang S, Lin W, Huang Y, Tien H, Wang J, Ma C, Li S and Wang Y 2011 Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites Carbon 49(3) pp 793-803 DOI: 10.1016/j.carbon.2010.10.014
[14] Kim J, Seong D, Kang T and Youn J 2006 Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites Carbon 44(10) pp 1898-1905 DOI: 10.1016/j.carbon.2006.02.026

[15] Thostenson E and Chou T 2006 Processing-structure-multi-functional property relationship in carbon nanotube-epoxy composites Carbon 44(14) pp 3022-29 DOI: 10.1016/j.carbon.2006.05.014

[16] Irzhac V I 2011 Epoxy Composite Materials with Carbon Nanotubes Russ. Chem. Rev 80(8) pp 787-806

[17] Badamshina E R, Gafurova M P and Estrin Ya I 2010 Modification of Carbon Nanotubes and Synthesis of Polymeric Composites Involving the Nanotubes Russ. Chem. Rev 79(11) pp 945-979

[18] Karpov A 2016 Theses in the area of nanotechnologies and nanomaterials: novelties and practical application Nanotechnologies in Construction - A Scientific Internet-Journal 8(2) pp 82-103

[19] Ganieva G R, Timerkaev B A, Yakhin R G, Yagund E M and Potapova L I 2015 Technology Decomposition of Heavy Hydrocarbons Arc Discharge Innovative Science 2(4) pp 14-16

[20] Yagund E M, Maklakov L I, Stroganov V F and Savchenko V N 1989 Determining the degree of Conversion of Functional Groups Directly into the Zone of Contact with Substrate and Adhesive. Proceedings of VI All-Union Coordination Meeting for the Spectroscopy of Polymers (Minsk) p 140

[21] Mertzel E and Koenig J 1986 Epoxy Resins and Composites. Part II. Application of FT-IR and NMR to Epoxy Resins 2 Advances in polymer sciences 75 pp 73-112

[22] Semoto T, Tsuji Y, Tanaka H, Yoshizawa K 2013 Role of Edge Oxygen Atoms on the Adhesive Interaction between Carbon Fiber and Epoxy Resins Journal Phys.-Chem, Part C 117 pp 24830-35 DOI: 10.1021/jp407835d

[23] Rigail-Cedeno A, Sung Chong S P Fluorescence and IR 2005 Characterization of Epoxy Cured with Aliphatic Amines Polymer 46(22) pp 9378-84

[24] Gonzales M G, Cabanelas J C and Baselga J 2012 Application of FTIR on Epoxy Resins – Identification, Monitoring the Curing Process, Phase Separation and Water Uptake Infrared Spectroscopy – Materials Science, Engineering and Technology, Chapter 13 pp 261-284 DOI: 10.5772/36323

[25] Nicolic G, Zlatcovic S, Cacic M, Cacic S, Lacnjevac C and Rajic Z 2010 Fast Fourier Trasform IR Characterization of Epoxy Systems Crosslinked with Aliphatic and Cycloaliphatic Polyamine Adducts Sensors 10 pp 684-696 DOI: 10.3390/s100060684

[26] Kuznetsova L M, Potapova L I, Yagund E M and Yakhin R G 2015 Research of the Influence of Carbon Nanotubes on the Conversion of Epoxy Groups in Epoxy-Aminogen Compositions Izvestiya KGASU 34(4) pp 273-279

[27] Xiongfei Xie, Binghua Liu, Zuanru Yuan, Jianyi Shen and Rongshi Cheng 2004 Cure kinetics of carbon nanotube-tetrafunctional epoxy nanocomposites by isothermal scanning calorimetry Journal Polym. Sci, Part B. Polym. Physics 42 pp 3701-12 DOI: 10.1002/polb.20220

[28] Deev I S, Anoshkin I V, Rakov E G and Irzhak V I 2014 Modification of Epoxy Polymers Small Additions of Carbon Nanotubes Visokomolek. soed. Ser. A 56(3) pp 316-322

[29] Visco A, Calabrese L and Milone C 2009 Cure Rate and Mechanical Properties of a DGEBA Epoxy Resins Modified with Carbon Nanotubes Reinforced Plastics and Composites 28 pp 937-949 DOI: 10.1177/0731684407087560