Prevalence of Diarrhoeagenic *Escherichia Coli* and Associated Risk Factors in Dug Wells in Ile-Ife, Southwestern Nigeria

Babatunde Odetoyn (odetoyn@yahoo.com)
Obafemi Awolowo University Faculty of Basic Medical Sciences

Olawumi Ogundipe
Obafemi Awolowo University Faculty of Basic Medical Sciences

Adebola Onanuga
Niger Delta University

Research article

Keywords: Diarrhoeagenic Escherichia coli, Drinking water, Risk factors, Diversity, Contamination

Posted Date: August 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-255440/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Diarrhoeagenic Escherichia coli (DEC) strains are common bacterial causes of morbidity and mortality in young children. Waterborne DEC could pose a potential health risk to humans through domestic use of contaminated water. However, epidemiological studies on DEC strains in drinking water are scarce in Nigeria. This study determined the prevalence, diversity and factors associated with the presence of DEC in dug wells in Ile-Ife, southwestern Nigeria.

Methods

We assessed 143 wells for safety by coliform count using the multiple tube technique. A standardized questionnaire was used to obtain relevant information about the wells and their owners. Contaminating isolates were identified as E. coli by amplifying their 16S rRNA gene. Five DEC pathotypes comprising enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC) enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC) and Shiga-toxin producing E. coli (STEC) were detected using two sets of multiplex PCR assays. Isolates diversity was determined by (GTG)5 Repetitive element palindromic PCR and Shannon diversity index. Multivariate logistic regression analysis was used to identify associated risk factors.

Results

Fifty-eight (40.6%) wells were contaminated by diarrhoeagenic E. coli. Wells with dirty platforms, damaged by erosion and sited near septic tanks significantly harboured DEC (p<0.05). There was a preponderance of STEC among the isolates with nine isolates carrying multiple diarrhoeagenic genes and 10 (17.2%) wells contaminated by multiple DEC strains. The (GTG)5-PCR fingerprinting assigned all DEC strains into six clades, with an overall Shannon diversity index of 18.87. A diverse profile was obtained among and between the isolates recovered from different sources.

Conclusions

The presence of DEC strains in drinking water highlights the risk to human health associated with the use of untreated water. There was a high degree of genetic diversity among the isolates implying multiple sources of contamination. There is a need for periodic sanitation and inspection of wells for cracks to prevent seepages and possible outbreaks of waterborne diseases.

Introduction

Diarrhoeal diseases are significant public health problems in developing countries.[1] Each year, they account for 3.6% of the total global burden of diseases and 1.5 million deaths. About 88% of this burden has been ascribed to inadequate hygiene, sanitation and a lack of potable water mostly in developing countries.[1, 2] Escherichia coli, a member of faecal coliforms has a significant place in water microbiology as an indicator of faecal pollution and a pathogen in drinking water. As a pathogen, it causes a variety of diseases ranging from urinary tract infections, sepsis, meningitis and bacteraemia to diarrhoea.[3]

Diarrhoeagenic E. coli (DEC) account for about 40% of episodes of acute diarrhoea in children in developing countries. They also play a significant causative role in diarrhoea in Nigeria, in both adults and children. Currently, there are eight pathotypes of DEC strains: enterotoxigenic, enterohaemorrhagic, enteroinvasive, enteropathogenic, enteroaggregative, diffusely adherent, cytotoxic distending toxin-producing and cell detaching E. coli. Each pathotype of DEC has a distinct set of virulence factors encoded in the plasmids or chromosome. The genes that encode these factors are conserved among strains that are isolated from diverse sources in different parts of the world.[4]

DEC strains are generally spread by a faecal-oral route which includes contaminated sources of water or food and may be implicated in outbreaks of waterborne diarrhoea. Escherichia coli can enter drinking water through inadequate or failing septic or sewage systems, runoff from land treated with animal wastes or used for animal feeding activities and wildlife. Identification of the source of pollution is critical for protecting source water quality and assessing the public health risk associated with contamination from a specific host source. Consequently, much progress has been made over the years to
develop many phenotypic and genotypic microbial source tracking (MST) methods which are recommended components of faecal pollution reduction strategies.\[5, 6\]

Nigeria is one of the countries in the world where about 90 million people do not have access to potable water and 130,000 children under the age of five die each year from preventable waterborne diseases as a result of uncoordinated efforts of multiple government agencies. The larger part of the population, particularly those in the rural and suburban communities resort to water from wells and streams for domestic purposes.\[2, 7\] Those wells which are hand dug are usually around two inches in diameter and about 25 feet deep. In Ile-Ife, most of the wells are shallow because of the high water table. Such wells are more prone to contamination by runoffs from nearby farmlands and seepages from domestic sanitary sewage because of their shallow depth. Well water is an untreated source for drinking and might harbour waterborne borne diseases. Consequently, the use of these sources of water is a health risk for this population.\[7, 8\]

Despite the risk posed by exposure to \textit{E. coli} contaminated water, very little data is available on this in Ile-Ife, and the pathogenic potential, diversity of implicated isolates and factors associated with their presence in drinking water remain unknown. Therefore this study determined the prevalence, diversity and factors associated with the presence of DEC in dug wells in Ile-Ife, Southwest Nigeria.

\section*{Methods}

\subsection*{Study location and design}

The study was done in Ife East Local Government Area, Ile-Ife, Osun State, Nigeria. Ife East Local Government Area is divided into six wards which are: Moore ward, Ilode ward 1, Ilode ward 2, Okerewe ward 1, Okerewe ward 2 and Okerewe ward 3. The sampling locations are shown on the map in Fig 1. Twenty-five samples were obtained from Moore ward, 18 samples from Ilode ward 1, 49 samples from Ilode ward 2, 31 samples from Okerewe ward 1, 9 samples from Okerewe ward 2 and 11 samples from Okerewe ward 3. Ile-Ife is an ancient city in South-western Nigeria with a population of 509, 035.\[9\] The city lies on Latitudes 7°28′N and 7°45′N and longitudes 4°30′E and 4°34′E. Ile-Ife is in the tropical wet and dry climate of West Africa with an average rainfall of 1,000 to 1,250 mm between March and October and average relative humidity of 75% to 100%. The residents use dug wells for their domestic and drinking purposes.

\subsection*{Study approval and Sample Collection}

This study was approved by the Health Research Ethics Committee (HREC), Institute of Public Health, Obafemi Awolowo University, Ile-Ife, Nigeria (HREC No: IPHOAU/12/863). Random sampling technique was used to include wells in this study. One hundred and forty-three water samples were collected from dug wells that were distributed across the wards between March and December 2019 based on the formula of Sullivan and Soe \[10\]. The wells were used by the residents for domestic purposes. Wells that have not been disinfected for two months were included in the study, while those that belonged to owners that did not give their consent, and wells that were recently disinfected were excluded. Before sample collection, informed written consent was used to obtain permission from well owners. All eligible consenting well owners were interviewed using a pretested structured questionnaire in order to obtain information on residence type, age and depth of wells, proximity of wells to septic tanks, house location, presence of septic tanks and proximity of livestock to wells. Additional demographic information including age, sex, occupation, level of education was also obtained. Two hundred ml of water were obtained by lowering a sterile bottle into each well with the aid of a rope tied around its neck. All samples were properly labelled, placed in an iced-packed box and transported to the laboratory for processing within 2hrs.

\subsection*{Determination of well water quality}
The quality of the water samples was determined by coliform count using the multiple tube fermentation technique as described by Cheesbrough.[11] A three-tube most probable number (MPN) method was used to determine faecal contamination of well water using MacConkey broth (Oxoid Ltd., Basingstoke Hampshire, England) as the culture medium. Samples of 50ml, 10ml and 1ml of water were inoculated into corresponding dilution tubes with inverted Durham's tubes and incubated at 37°C for 24 hours. The tubes were observed for growth and gas production, and the MPN of coliforms in 100ml of water was determined by referring to McCrady's table and interpreted as “Excellent”, “Acceptable”, “Unacceptable” and “Grossly polluted”.

Detection of *Escherichia coli* in water samples

The Eijkman method was used to detect the presence of *E. coli* in the samples.[12] All positive bottles from the previous test were subcultured into fresh double strength and single strength MacConkey broth (Oxoid Ltd., Basingstoke Hampshire, England) and peptone water (Oxoid Ltd., Basingstoke Hampshire, England) and incubated at 37°C for 24 hours. The MacConkey bottles were checked after incubation for lactose fermentation (yellow colouration) and gas production (presence of a bubble in the Durham tubes). All positive MacConkey bottles were noted and three drops of Kovac's reagent were added to their corresponding peptone water bottles to detect indole (indicated by a red coloured ring). All positive samples were cultured on Eosin Methylene Blue Agar (Oxoid Ltd., Basingstoke Hampshire, England) plates and incubated aerobically at 37°C for 24 hours. Up to three distinct colonies showing green metallic sheen were aseptically picked and streaked onto Nutrient agar (NA) (Oxoid Ltd., Basingstoke Hampshire, England) plates which were, in turn, incubated aerobically at 37°C for 24 hours.[13] All suspected *E. coli* isolates were stored at -20°C in 20% glycerol broths for further examination.

Isolate resuscitation and DNA extraction

All isolates were subcultured from 20% glycerol broths on nutrient agar plates and incubated at 37°C for 24 hours. Three colonies were picked from each culture with the aid of a sterile inoculating loop and suspended in 50ul of sterile distilled water in an Eppendorf tube (Eppendorf AG, Hamburg, Germany) to extract the DNA of the isolates. The suspension was boiled for 10 minutes, kept on ice for 10 minutes, and centrifuged in a microcentrifuge (Haraues Sepatech GmBH, Germany) at 10,000 rpm for 10 minutes. [14] The supematant was transferred to a new Eppendorf tube after centrifugation and was used as a DNA template in polymerase chain reaction (PCR).

Molecular Identification of isolates by amplifying their 16SrRNA gene

All organisms suspected to be *E. coli* by their phenotypic characteristics were confirmed as *E. coli* by amplifying their 16S rRNA gene as described by Hassan *et al.* (Table1).[15] *E. coli* strain ATCC 25922 was used as the positive control while sterile distilled water was used as the negative control. A 25μl reaction mixture contained 12.5μL of One *Taq* Quick-Load 2XMaster mix with Standard Buffer (Bio Labs, New England), 10 pmol each of the primers (Inqaba, Biotec, South Africa), 2.4 μl of the DNA template and made up with Nuclease Free Water (BioConcept, Switzerland). Amplification conditions were as follows: Initial denaturation at 95°C for 5 min; 35 cycles of denaturation at 94°C for 45 s, annealing at 45°C for 45s, and extension at 72°C for 1 min; followed by a final extension at 72°C for 5 min. Each amplicon (10μL) was electrophoresed on a 1.5% agarose gel (Cleaver Scientific, United kingdom) pre stained with 0.5μg/mL Ethidium bromide in 1X Tris-Acetate-EDTA (TAE) buffer and viewed with a UVitec transilluminator (Avebury, Cambridge UK).

Detection of Diarrhoeagenic genes in the isolates

All isolates were screened for virulence genes characteristic of five pathotypes of diarrhoeagenic *E. coli* comprising enteroinvasive *E. coli* (EIEC), enteropathogenic *E. coli* (EPEC), enterotoxigenic *E. coli* (ETEC), enteroaggregative *E. coli* (EAEC)
and shiga toxin producing *E. coli* (STEC) as described by Aranda et al. [16] with modifications (Table 1). PCR was performed with a 20 µl reaction mixture containing 12.5µl One Taq Quick-Load 2X Master mix with Standard Buffer (Bio Labs, New England), 10 pmol each of PCR primers (Inqaba, Biotec, South Africa), 2.4 µl of the DNA template and made up with Nuclease Free Water (BioConcept, Switzerland).

Two PCR reaction assays were used to amplify the eaeA (intimin of EPEC), *bfpA* (bundle-forming pilus of EPEC), *stx1* and/or *stx2* (shiga toxins 1 and 2 of STEC), *eltB* and/or *estA* (enterotoxins LT and ST of ETEC), *ipaH* (invasion plasmid found in EIEC and *Shigella*) and pCVD (pCVD432 of EAEC). *E. coli* strains E2348/69, O42, H10407, EDL 933 and E137 served as positive controls for EPEC, EAEC, ETEC, STEC and EIEC respectively while sterile water was used as a negative control. All EPEC isolates that harbour *bfp* gene is classified as Typical EPEC (tEPEC). For PCR 1 (eae, CVD432, stx1, ipaH, ST): Amplification conditions were as follows: Initial denaturation at 95°C for 3 mins; 37 cycles of denaturation at 94°C for 30 s, annealing at 45°C for 30 s, and extension at 72°C for 1 min; followed by a final extension at 72°C for 7 min. For PCR 2 (stx2, bfp, LT): Amplification conditions were as follows: Initial denaturation at 94°C for 3 mins; 37 cycles of denaturation at 94°C for 45s, annealing at 39°C for 30 s, and extension at 72°C for 54 min; followed by a final extension at 72°C for 7 min. Each PCR product (10 µl) was electrophoresed on a 1.5% (w/v) agarose gel (Cleaver Scientific, United kingdom) in 1X Tris-Acetate-EDTA (TAE). Each amplicon (10µL) was electrophoresed on a 1.5% agarose gel (Cleaver Scientific, United kingdom) pre stained with 0.5µg/mL Ethidium bromide in 1X Tris-Acetate-EDTA (TAE) buffer and viewed with a UVitec transilluminator (Avebury, Cambridge UK).

Table 1

| PCR primers for diarrhoeagenic *Escherichia coli* and 16srRNA gene | | |
Determination of isolates relatedness and diversity

(GTG)5-PCR fingerprinting was performed as described by Khare et al.[17] The 15-mer primer (5’-GTGGTGGTGGTGGTGTGG-3’) was used to amplify the repetitive sequences in chromosomal DNA of *E. coli*. PCR was performed with a 25 µl reaction mixture containing 12.5uL One Taq Quick-Load 2X Master mix with Standard Buffer (Bio Labs, New England), 10 pmol each of the 15-mer primer (Inqaba Biotec, South Africa), 2.4 µl of the DNA template and made up with Nuclease Free Water (BioConcept, Switzerland). Amplification conditions were as follows: Initial denaturation at 95°C for 5 mins; 35 cycles of denaturation at 95°C for 60 s, annealing at 40°C for 60 s, and extension at 68°C for 8 min; followed by a final extension at 68°C for 8 min. Each PCR product (10 µl) was electrophoresed on a 1.5% (w/v) agarose gel (Cleaver Scientific, United kingdom) in 1X Tris Acetate-EDTA buffer (TAE).[18] Gels containing 5ul of 10ug/ml of ethidium bromide were visualized under ultraviolet (UV) light using a UVitec transilluminator (Avebury, Cambridge UK). Genetic relationships among *Escherichia coli* isolates were analysed using GelJ (Version 1.0).[19] The dendrogram was drawn with Paleontological Statistics (PAST) (Version 4.0) software using neighbour-joining clustering method.[20]

The genetic diversity of DEC isolates was calculated using the Shannon diversity index \(H\) formula.[21]
\[H' = - \sum_{i=1}^{s} p_i \ln p_i \]

\(i \) is the total number of isolates, \(s \) is the number of unique genotypes and \(p_i \) is the number of isolates sharing the same genotype.

Data Analysis

Data analysis was done with R statistical software (Version 4.0.3). Cross tables were produced with the Grammar of Tables in R package. Pearson chi-square and binomial logistic regression models were used to test for association of variables with the presence of DEC in water.[22] The P-value for a significant association was set at \(\leq 0.05 \).

Results

Baseline Characteristics of the wells and their owners

Most of the wells were covered (\(n = 108; 75.5\% \)), some were partially covered (\(n = 20; 13.99\% \)), and a few were not covered (\(n = 15; 10.5\% \)). The majority of well owners were Christians (111, 78.7\%), artisans (100, 69.9\%), with secondary education (63, 50\%) and lived in tenement (81, 56.6\%). The mean age of the wells was 21 years and the average depth was 29.3 feet (Table 2).
Table 2
Baseline characteristics of wells and Owners

CHARACTERISTICS	OVERALL (N = 143)
WARDS	
ILODE 1	18 (12.6%)
ILODE 2	49 (34.3%)
MOORE	25 (17.5%)
OKEREWE 1	31 (21.7%)
OKEREWE 2	9 (6.3%)
OKEREWE 3	11 (7.7%)
AGE OF WELLS (mean ± SD) (Months)	20.6 ± 21.7
DEPTH OF WELLS (mean ± SD) (Feet)	29.3 ± 22.1
AGE OF OWNERS (mean ± SD) (Years)	45.8 ± 17
NUMBER OF YEARS IN RESIDENCE (mean ± SD) (Years)	14.2 ± 16.4
RELIGION	
CHRISTIANITY	111 (78.7%)
ISLAM	26 (18.4%)
TRADITIONALIST	4 (2.8%)
OCCUPATION OF OWNERS	
ARTISAN	100 (69.9%)
CIVIL SERVANT	28 (19.6%)
RELIGIOUS LEADER	5 (3.5%)
STUDENT	6 (4.2%)
UNEMPLOYED	4 (2.8%)
LEVEL OF EDUCATION	
PRIMARY	24 (19.0%)
SECONDARY	63 (50.0%)
TERTIARY	39 (31.0%)
RESIDENCE TYPE	
FLAT	62 (43.4%)
TENEMENT	81 (56.6%)
COVERED	
COVERED	108 (75.5%)
OPEN	15 (10.5%)
PARTIALLY COVERED	20 (14.0%)
PRESENCE OF SEPTIC TANK	
CHARACTERISTICS	OVERALL (N = 143)
---	-----------------------
NO	94/140 (67.1%)
YES	46/140 (32.9%)
KEEPING OF PETS	
NO	96/138 (69.6%)
YES	42/138 (30.4%)
DIRTY PLATFORM	
NO	104 (72.7%)
YES	39 (27.3%)
PROXIMITY OF LIVESTOCK TO WELL	
NO	102 (71.3%)
YES	41 (28.7%)
PROXIMITY OF WASTE DUMP SITE TO WELL	
NO	137 (95.8%)
YES	6 (4.2%)
PROXIMITY OF WELL TO FARM	
NO	133 (93.0%)
YES	10 (7.0%)
WELL DAMAGED BY EROSION	
NO	116 (81.1%)
YES	27 (18.9%)

Flat: is a self-contained housing unit; Tenement: a type of building shared by multiple dwellings; Traditionalist: someone who believes in and follows tradition; Dirty platform: a dirty concrete slab that covers the well

Contaminated wells and Isolated *Escherichia coli* strains

One hundred and ten (110, 76.9%) wells were contaminated with coliforms bacteria. Ilode ward 2 (36; 32.7%) had the highest number of contaminated wells while Okerewe ward 3 (6; 5.5%) had the fewest (Table 3).

A total of 169 *E. coli* strains were isolated from 98 wells of 110 contaminated wells. As shown in Table 3, 30 strains were isolated from the wells in Moore ward, 19 strains from Ilode ward 1, 56 strains from Ilode ward 2, 37 strains from Okerewe ward 1, 12 strains from Okerewe ward 2 and 15 strains from Okerewe ward 3.
Wards	Locations	Number of wells	Number of contaminated wells	E. coli Isolated	No of wells with E. coli	
Moore	Moore	6	4	7	4	
	Opa	5	4	3	2	
	Iloromu	1	0	0	0	
	Mokuro	12	11	17	8	
	Olopo	1	1	3	1	
Subtotal		5	25	20	30	15
Ilode 1	Oke atan	7	7	12	5	
	Lokore	10	9	6	4	
	Ayelabowo	1	1	1	1	
Subtotal		3	18	17	19	10
Ilode 2	Oke ogbo	31	22	27	17	
	Omitoto	7	5	10	5	
	ogooluwatan	10	9	19	8	
Subtotal		3	49	36	56	30
Okerewe 1	Iloro	3	0	0	0	
	okesoda	5	4	5	4	
	ayetoro	16	13	21	12	
	Oke ayetoro	3	3	3	2	
	gbodo	4	4	8	3	
Subtotal		5	31	24	37	21
Okerewe 2	Ita agbon	1	1	1	1	
	Otutu	2	2	4	2	
	Ajamopo	2	2	2	1	
	Iakanye	2	2	5	2	
	Itakogun	1	0	0	0	
Subtotal		5	9	7	12	6
Okerewe 3	ogbonya	11	6	15	8	
Subtotal		1	11	6	15	8
Total		22	143	110	169	98

Prevalence of Diarrhoeagenic Escherichia coli
The diversity and prevalence of diarrhoeagenic *E. coli* are illustrated Fig. 2, Tables 4 and 5.

Fifty-eight (40.6%) out of the 143 wells sampled for diarrhoeagenic *E. coli* were positive, yielding a total of 69 diarrhoeagenic *Escherichia coli* strains. Okerewe 1(14) had the highest number of wells that were contaminated with DEC, while Okerewe 3(5) had the least number. All detected EPEC isolates that harboured *bfp* gene was classified as Typical EPEC (tEPEC). There was a preponderance of STEC (n = 38; 55.1%) among the strains, followed by ETEC (n = 10; 14.5%). Five and two strains were both STEC/tEPEC and ETEC/STEC respectively. Multiple pathotypes of DEC were recovered from 10 (17.2%) wells in the sampled locations.

Table 4

Locations	Total sampled wells	No of wells with DEC Isolates	DEC EAEC	ETEC	EIEC	STEC	EPEC	STEC AND tEPEC	ETEC AND STEC	tEPEC, ETEC AND STEC	EAEC, tEPEC
Moore	25	13	15	0	1	0	12	2	0	0	0
Ilode 1	18	7	7	0	0	0	5	0	1	1	0
Ilode 2	49	13	14	0	0	1	9	2	1	1	0
Okerewe 1	31	14	16	0	6	2	3	2	0	3	0
Okerewe 2	9	6	9	1	2	0	5	0	0	0	1
Okerewe 3	11	5	8	0	1	1	4	1	0	0	0
Total	143	58	69	1	10	4	38	7	2	5	1

STEC- Shiga toxin producing *E. coli*, ETEC- Enterotoxigenic *E. coli*, EAEC-Enteroaggregative *E. coli*, EIEC – Enteroinvasive *E.coli*, EPEC- Enteropathogenic *E. coli* and Shiga-toxin producing *Escherichia coli*, tEPEC- typical EPEC (Isolates with only *bfp*)
S/N	Strain number	Pathotype	Genes	Locations	Wards
1.	111a	STEC	Stx2 + Eae	Ayelabola	Ilode 1
2.	92w	STEC AND tEPEC	Stx2 + Bfp	Lokore	Ilode 1
3.	Ds85cii	ETEC AND STEC	ST + Stx2	Lokore	Ilode 1
4.	Ds94dii	STEC	Stx2	Okeatan	Ilode 1
5.	Ds96cii	STEC	Stx2	Oke Atan	Ilode 1
6.	Ds97dii	STEC	Stx2	Oke Atan	Ilode 1
7.	Ds99eii	STEC	Stx2	Oke Atan	Ilode 1
8.	13bw	STEC	Stx1	Omitoto	Ilode 2
9.	18aw	STEC	Stx2	Oke Ogbo	Ilode 2
10.	37wi	STEC AND tEPEC	Stx2 + Bfp	Ogooluwatan	Ilode 2
11.	64ssbi	STEC	Stx2	Oke Ogbo	Ilode 2
12.	6ew	STEC	Stx2	Ogooluwatan	Ilode 2
13.	7350ml	STEC	Stx2	Omitoto	Ilode 2
14.	7b	STEC	Stx2	Ogooluwatan	Ilode 2
15.	Ds50c	STEC	Stx2	Oke Ogbo	Ilode 2
16.	Ds65aii	ETEC AND STEC	ST + Stx2	Oke Ogbo	Ilode 2
17.	Ds73e	tEPEC	Bfp	Omitoto	Ilode 2
18.	Ds76aiii	STEC	Stx2	Ogooluwatan	Ilode 2
19.	Ds79ci	EIEC	Ipah	Ogooluwatan	Ilode 2
20.	Ds80a	tEPEC	Bfp	Ogooluwatan	Ilode 2
21.	Ds80aiii	STEC	Stx1	Ogooluwatan	Ilode 2
22.	115	tEPEC	Bfp	Mokuro	Moore
23.	117	STEC	Stx2	Mokuro	Moore
24.	126	STEC	Stx1	Olopo	Moore
25.	108a	STEC	Stx2	Mokuro	Moore
26.	109a	ETEC	ST	Moore	Moore
27.	109b	STEC	Stx2	Mokuro	Moore
28.	114c	STEC	Stx1	Mokuro	Moore
29.	116a	STEC	Stx2	Mokuro	Moore
30.	119b	STEC	Stx2	Opa	Moore
31.	123a	STEC	Stx1	Mokuro	Moore
32.	123b	STEC	Stx2	Mokuro	Moore

* Isolates that are highlighted are from the same well
| S/N | Strain number | Pathotype | Genes | Locations | Wards |
|-----|---------------|-----------|-------|-----------|---------|
| 33 | 126c | STEC | Stx2 | Olopo | Moore |
| 34 | 23cwii | STEC | Stx2 | Opa | Moore |
| 35 | 4aw | tEPEC | Bfp | Moore | Moore |
| 36 | Ds122a | STEC | Stx2 | Mokuro | Moore |
| 37 | 124c | ETEC AND STEC | ST + Stx2 | Gbodo | Okerewe 1 |
| 38 | 125a | STHEC | Stx2 + Eae | Gbodo | Okerewe 1 |
| 39 | 130c | STHEC | Stx1 + Eae | Ayetoro | Okerewe 1 |
| 40 | 131b | tEPEC | Bfp | Ayetoro | Okerewe 1 |
| 41 | 132b | ETEC AND STEC | ST + Stx2 | Oke Soda | Okerewe 1 |
| 42 | 138b | tEPEC | Bfp | Ayetoro | Okerewe 1 |
| 43 | 139b | ETEC | ST | Ayetoro | Okerewe 1 |
| 44 | 142a | ETEC | ST | Ayetoro | Okerewe 1 |
| 45 | 142di | ETEC | LT | Ayetoro | Okerewe 1 |
| 46 | 143c | ETEC | ST | Oke Soda | Okerewe 1 |
| 47 | 154a | EIEC | Ipah | Ayetoro | Okerewe 1 |
| 48 | 154b | STEC | Stx2 | Ayetoro | Okerewe 1 |
| 49 | 69wii | ETEC AND STEC | ST + Stx2 | Ayetoro | Okerewe 1 |
| 50 | Ss145eii | ETEC | ST | Oke Ayetoro | Okerewe 1 |
| 51 | 142diii | ETEC | ST | Ayetoro | Okerewe 1 |
| 52 | Ds144cii | EIEC | Ipah | Oke Ayetoro | Okerewe 1 |
| 53 | 107a | ETEC | ST | Lakanye | Okerewe 2 |
| 54 | 127a | STEC | Stx1 | Otutu | Okerewe 2 |
| 55 | 127b | STEC | Stx2 | Otutu | Okerewe 2 |
| 56 | 128a | ETEC | ST | Otutu | Okerewe 2 |
| 57 | 128b | tEPEC, ETEC AND STEC | Bfp + St + Stx2 | Otutu | Okerewe 2 |
| 58 | 128c | STEC | Stx2 | Otutu | Okerewe 2 |
| 59 | 148a | STEC | Stx2 | Ajamopo | Okerewe 2 |
| 60 | 150b | STEC | Stx1 | Itakogun | Okerewe 2 |
| 61 | Ds42c | EAEC | Cvd432 | Itakogun | Okerewe 2 |
| 62 | 101a | STEC | Stx1 | Ogbonya | Okerewe 3 |
| 63 | 101b | EIEC | Ipah | Ogbonya | Okerewe 3 |
| 64 | 102b | tEPEC | Bfp | Ogbonya | Okerewe 3 |
| 65 | 103b | STEC | Stx2 | Ogbonya | Okerewe 3 |

* Isolates that are highlighted are from the same well
Factors associated with diarrhoeagenic Escherichia coli contamination of wells

Of the wells that were contaminated by DEC, 16 (28.6%) were undercut by erosion, 26 (46.4%) were sited near septic tanks, 24(42.9%) had dirty platforms, 22 were owned by those who keep pets, 39(69.6%) were used by those in a tenement, 19(33.9%) were sited near livestock and 40(71.4%) were owned by artisans. The average age and depth of the wells were 17.5 ± 22.2 (mean ± SD; Years) and 31.5 ± 23.5 (mean ± SD; Feet) respectively (Table 6).

Univariate analysis revealed that wells that were undercut by erosion (p = 0.018), sited near septic tanks (p = 0.005), had dirty platforms (p = 0.001), owned by those who kept pets (p = 0.035), used by those in tenement (p = 0.012) significantly harboured diarrhoeagenic E. coli.

The associated factors were further subjected to multivariate analysis using the binomial logistic regression model. Wells that were undercut by erosion (OR = 2.616, CI = 1.019–6.716, p = 0.046), sited near septic tank (OR = 2.611, CI = 1.131–6.027, p = 0.025), had dirty platforms (OR = 3.125, CI = 1.232–7.924, p = 0.016) were significantly associated with the presence of DEC in wells. However, there was no significant association between wells that were owned by those who kept pets (OR = 0.884, CI = 0.335–2.329, p = 0.803) and those used in tenement (OR = 1.115, CI = 0.418–2.977, p = 0.828) and the presence of diarrhoeagenic E. coli. (Table 7)

S/N	Strain number	Pathotype	Genes	Locations	Wards
66.	105a	ETEC	ST	Ogbonya	Okerewe 3
67.	105b	STEC	Stx2	Ogbonya	Okerewe 3
68.	152a	STEC	Stx2	Ogbonya	Okerewe 3
69.	152b	EPEC, EAEC	Cvd432 + Bfp	Ogbonya	Okerewe 3

* Isolates that are highlighted are from the same well
Table 6
Univariate analysis of risk factors for contamination with DEC

Characteristics	NO (N = 87)	YES (N = 56)	Total (N = 143)	p value
WARDS				0.183¹
ILODE 1	11.0 (12.6%)	7.0 (12.5%)	18.0 (12.6%)	
ILODE 2	37.0 (42.5%)	12.0 (21.4%)	49.0 (34.3%)	
MOORE	13.0 (14.9%)	12.0 (21.4%)	25.0 (17.5%)	
OKEREWE 1	16.0 (18.4%)	15.0 (26.8%)	31.0 (21.7%)	
OKEREWE 2	4.0 (4.6%)	5.0 (8.9%)	9.0 (6.3%)	
OKEREWE 3	6.0 (6.9%)	5.0 (8.9%)	11.0 (7.7%)	
AGE OF WELL OWNERS (mean ± SD) (Years)	44.3 ± 16.3	48.1 ± 17.9	45.8 ± 17	0.200
NUMBER OF YEARS IN RESIDENCE (mean ± SD) (Years)	16.58 ± 18.6	12.7 ± 14.8	14.2 ± 16.4	0.168
AGE OF WELLS (mean ± SD) (Months)	25.4 ± 20.2	17.5 ± 22.2	20.6 ± 21.7	0.033
DEPTH OF WELLS (mean ± SD) (Feet)	25.8 ± 19.5	31.5 ± 23.5	29.3 ± 22.1	0.128
WELL DAMAGED BY EROSION				0.018¹
NO	76.0 (87.4%)	40.0 (71.4%)	116.0 (81.1%)	
YES	11.0 (12.6%)	16.0 (28.6%)	27.0 (18.9%)	
GENDER				0.053¹
FEMALE	70.0 (80.5%)	37.0 (66.1%)	107.0 (74.8%)	
MALE	17.0 (19.5%)	19.0 (33.9%)	36.0 (25.2%)	
RELIGION				0.621¹
CHRISTIANITY	69.0 (80.2%)	42.0 (76.4%)	111.0 (78.7%)	
ISLAM	14.0 (16.3%)	12.0 (21.8%)	26.0 (18.4%)	
TRADITIONALIST	3.0 (3.5%)	1.0 (1.8%)	4.0 (2.8%)	
LEVEL OF EDUCATION				0.334¹
PRIMARY	16.0 (20.5%)	8.0 (16.7%)	24.0 (19.0%)	
SECONDARY	35.0 (44.9%)	28.0 (58.3%)	63.0 (50.0%)	
TERTIARY	27.0 (34.6%)	12.0 (25.0%)	39.0 (31.0%)	
COVERED				0.227¹
COVERED	70.0 (80.5%)	38.0 (67.9%)	108.0 (75.5%)	
OPEN	7.0 (8.0%)	8.0 (14.3%)	15.0 (10.5%)	
PARTIALLY COVERED	10.0 (11.5%)	10.0 (17.9%)	20.0 (14.0%)	

¹Pearson chi-square test; ²Student t test; mFlat: is a self-contained housing unit; Tenement: a type of building shared by multiple dwellings; Traditionalist: someone who believes in and follows tradition; Dirty platform: a dirty concrete slab that covers the well
Characteristics	NO (N = 87)	YES (N = 56)	Total (N = 143)	p value
PRESENCE OF SEPTIC TANK				0.005¹
NO	64.0 (76.2%)	30.0 (53.6%)	94.0 (67.1%)	
YES	20.0 (23.8%)	26.0 (46.4%)	46.0 (32.9%)	
KEEPING OF PETS				0.035¹
NO	64.0 (76.2%)	32.0 (59.3%)	96.0 (69.6%)	
YES	20.0 (23.8%)	22.0 (40.7%)	42.0 (30.4%)	
PROXIMITY OF LIVESTOCK TO WELL				0.265¹
NO	65.0 (74.7%)	37.0 (66.1%)	102.0 (71.3%)	
YES	22.0 (25.3%)	19.0 (33.9%)	41.0 (28.7%)	
PROXIMITY OF WASTE DUMP SITE TO WELL				0.578¹
NO	84.0 (96.6%)	53.0 (94.6%)	137.0 (95.8%)	
YES	3.0 (3.4%)	3.0 (5.4%)	6.0 (4.2%)	
PROXIMITY OF WELL TO FARM				0.198¹
NO	79.0 (90.8%)	54.0 (96.4%)	133.0 (93.0%)	
YES	8.0 (9.2%)	2.0 (3.6%)	10.0 (7.0%)	
RESIDENCE TYPE				0.012¹
FLAT	45.0 (51.7%)	17.0 (30.4%)	62.0 (43.4%)	
TENEMENT	42.0 (48.3%)	39.0 (69.6%)	81.0 (56.6%)	
OCCUPATION				0.131¹
ARTISAN	60.0 (69.0%)	40.0 (71.4%)	100.0 (69.9%)	
CIVIL SERVANT	18.0 (20.7%)	10.0 (17.9%)	28.0 (19.6%)	
RELIGIOUS LEADER	2.0 (2.3%)	3.0 (5.4%)	5.0 (3.5%)	
STUDENT	6.0 (6.9%)	0.0 (0.0%)	6.0 (4.2%)	
UNEMPLOYED	1.0 (1.1%)	3.0 (5.4%)	4.0 (2.8%)	
DIRTY PLATFORM				<0.001¹
NO	72.0 (82.8%)	32.0 (57.1%)	104.0 (72.7%)	
YES	15.0 (17.2%)	24.0 (42.9%)	39.0 (27.3%)	
HOSPITALIZATION IN LAST YEAR				0.542¹
NO	67.0 (83.8%)	43.0 (79.6%)	110.0 (82.1%)	
YES	13.0 (16.2%)	11.0 (20.4%)	24.0 (17.9%)	

¹Pearson chi-square test; ²Student t test; mFlat: is a self-contained housing unit; Tenement: a type of building shared by multiple dwellings; Traditionalist: someone who believes in and follows tradition; Dirty platform: a dirty concrete slab that covers the well
Table 7
Multivariate Logistic regression models of DEC in the assessed wells

Predictor	N (%)	Odds ratio	Lower 95% Confidence Interval	Upper 95% Confidence Interval	P
Well damaged by erosion					
Yes	16.0 (28.6%)	2.616	1.019	6.716	0.046
No	11.0 (12.6%)				
Presence of septic tank					
Yes	26.0 (46.4%)	2.611	1.131	6.027	0.025
No	20.0 (23.8%)				
Dirty platform					
Yes	24.0 (42.9%)	3.125	1.232	7.924	0.016
No	15.0 (17.2%)				
keeping of pets					
Yes	22.0 (40.7%)	0.884	0.335	2.329	0.803
No	20.0 (23.8%)				
Residence type					
Tenement	39.0 (69.6%)	1.115	0.418	2.977	0.828
Flat	42.0 (48.3%)				

Characteristics

Characteristics	NO (N = 87)	YES (N = 56)	Total (N = 143)	p value
MARITAL STATUS				
MARRIED	75.0 (86.2%)	54.0 (96.4%)	129.0 (90.2%)	0.045
SINGLE	12.0 (13.8%)	2.0 (3.6%)	14.0 (9.8%)	

1Pearson chi-square test; 2Student t test; mFlat: is a self-contained housing unit; Tenement: a type of building shared by multiple dwellings; Traditionalist: someone who believes in and follows tradition; Dirty platform: a dirty concrete slab that covers the well

Relatedness and Diversity of DEC isolates

Repetitive PCR was used to determine the relatedness of the DEC isolates. A representative (GTG)5-PCR fingerprint picture is shown in Fig. 3. Isolates banding patterns ranged from 1 to 14 bands. Bands molecular weight varied from 100bp to 4706 bp. Forty-nine isolates were typed by (GTG)5 while certain isolates did not produce any band and appeared not typeable. The (GTG)5-PCR fingerprints dendrogram is shown in Fig. 4. All the isolates clustered together. Nevertheless, six clades of strains were observed along the axis from 0 to 45. Clade 5 had the highest number of strains (12/49; 24.5%), while clade 3 had the least number (3/49; 6.1%). Four STEC isolates (119b-Opa-Moore, 23cw-Opa-Moore, 96-Oke Atan-Iloide1 and 94-Oke Atan-Ilode1) from different locations and wards in the local government in Clade 5 are identical.
In all, the isolates were highly diverse as indicated by the Shannon diversity index \((H = 18.87)\). Isolates from Okerewe ward 1 \((H = 5.41)\) were the most diverse while those from Okerewe ward 3 were the least diverse \((H = 3.17)\). (Table 8)

Table 8

Source of strains	Total no. of strain types	Shannon diversity index \((H)\)
Moore	13	4.93
Ilode1	7	4.68
Ilode 2	9	4.93
Okerewe 1	12	5.41
Okerewe 2	6	4.60
Okerewe 3	2	3.17
All	49	18.87

Discussion

Diarrhoeal disease is a significant cause of morbidity and mortality in children worldwide and a high percentage of bacterial gastroenteritis is caused by diarrhoeagenic *E. coli* (DEC).\([1]\) In Nigeria, epidemiological studies of DEC isolates in drinking water are scarce. To the best of our knowledge, this is the first study in Nigeria that will investigate the occurrence of DEC in well water.

In this study, 169 *E. coli* strains were isolated from 98 out of 110 wells that were contaminated by coliform bacteria. All the isolates were screened for eight different diarrhoeagenic genes possessed by five *E. coli* pathotypes. We detected DEC in 58 wells in the six wards of the local government area. Our observation aligns with the reports of previous investigators which observed that drinking water can be a reservoir of DEC in the environment.\([23, 24]\) The prevalence of DEC in our study (40.6\%) is relatively higher than that of da Silva *et al.*\([25]\) (28.1\%) and Taomaneso *et al.*\([23]\) (33.3\%), but similar to 48\% reported by Ali *et al.*\([4]\) The prevalence of DEC pathotypes appears to vary according to geographical region probably due to different prevailing risk factors. Largely, the presence of potentially pathogenic *E. coli* in drinking water highlights the potential risk for environmental transmissibility of these strains in different parts of the world.

In order to identify the risk factors associated with the presence of DEC in water in the study environment, we used binomial logistic regression models to test for association. Our analysis revealed a significant relationship between the presence of DEC and wells that were damaged by erosion, located near septic tanks or had unclean platforms. Findings from previous studies have also highlighted these factors to have a significant association with water contamination.\([26–29]\) Siting of septic tanks near wells may result in leakages or seepages of faecal material into the wells thereby contaminating groundwater. This was evident in a study conducted in the United States that examined the seasonal association of septic tank distance and well contamination and discovered a strong link between decreasing distance and increasing coliform between septic tanks and wells. Similarly, a review of pit latrines and their impacts on groundwater quality by Graham *et al.* concluded that in order to avoid groundwater contamination, latrines and water sources should be at least 50 m apart.\([30]\) Also, cracks in the wells can expose wells to polluted storm water and agricultural runoffs. Hence, the knowledge of associated risk factors can provide information that can generate ideas for workable interventions.
We found that the prevalence of DEC pathotypes varied by location, probably due to the prevailing associated factors in each location. Okerewe ward 1 had the highest number of wells that were contaminated with DEC, while Okerewe 3 had the least number. Furthermore, multiple DEC pathotypes were recovered from eight wells in the sampled locations. Previous studies in Burkina Faso [31], Bangladesh [32] and Brazil [33] have reported similar findings, implying multiple sources of contamination of the wells.

All the five pathotypes of DEC that we sought were identified with a preponderance of STEC. The occurrence of STEC in drinking water has been reported globally [33, 34], along with outbreaks of waterborne disease caused by this pathotype [35, 36]. STEC are a public health issue because they can cause anaemia, uraemia, and renal failure, particularly in young children. Our findings are consistent with earlier research that found STEC in drinking water. [34, 37, 38] Our prevalence is higher than that of Elmonir et al. [24] in Egypt (33.3%). In contrast, none of the E. coli isolates from water samples in France was STEC. [39] Interestingly, our previous study on the prevalence of DEC in diarrheic children in this environment revealed a predominance of STEC among the pathotypes detected. [14] Therefore, our study indicates that STEC is prevalent in this environment, and that water might serve as its reservoir.

Most of our STEC harboured stx2, which has been linked to haemorrhagic colitis and haemolytic uraemic syndrome in humans. Even though eae is a key determinant of virulence in STEC infection, most of the stx2-positive isolates lacked it, apart from three isolates that harboured eae with stx2 and stx1. In light of the reported health risk associated with STEC, the detection of eae-negative STEC strains in our study could be a public health concern, as outbreaks of bloody diarrhoea and hemolytic-uremic syndrome (HUS) caused by STEC strains lacking the eae gene have been reported, implying that Shiga toxin is the primary virulence trait responsible for HUS. [33, 35] Furthermore, the stx2 gene has been shown to be more strongly linked with severe illness in humans than the stx1 gene, indicating its relevance in human infection.

ETEC, EAEC, EPEC have been linked with waterborne outbreaks of gastroenteritis. In our study, ETEC was second to STEC in terms of prevalence. Kambire et al. [40] found that 90% of E. coli isolated from water were ETEC which differs from the prevalence of 14.5% we got in our study, but higher than Rodrigues da Silva et al. [25] that reported less than 1%. EAEC strains have been linked with outbreaks of gastroenteritis in South Korea due to consumption of contaminated groundwater. [35] In this study, EAEC was the least prevalent pathotype. Also, a study conducted in South Africa, showed that only EAEC was found of all the DEC strains. [41] The EPEC strains are of two types; atypical EPEC (aEPEC) and typical EPEC (tEPEC). Humans are the only reservoir for tEPEC, which is spread by inter-human contact. Canizalez-Roman et al. [42] and Sidhu et al. [43] detected tEPEC in food and surface water respectively. The detection of only tEPEC in our study suggests that the wells were contaminated by humans. Open wells are usually fetched with dirty drawers and many people normally stand on the wells with their shoes to draw water; these practices normally expose the wells to human contact, which will eventually lead to contamination. The detection of EPEC as the third most prevalent pathotypes in our study shows that contaminated water can be a source of infection by this pathotype in humans.

EIEC is an important E. coli pathotype that causes watery diarrhoea and dysentery similar to Shigella in terms of pathogenesis. In this study, EIEC was detected in four (5.8%) DEC isolates. Compared with our findings, higher prevalence rates of EIEC have been reported from China (9.1%) [44] and Sudan (41.3%) [45] probably due to geographical differences.

Moreover, our results showed two and three combinations of diarrhoeagenic genes of different E. coli pathotypes isolated from some water samples: STEC and tEPEC (N= 2/58) (3.4%), ETEC and STEC (N = 5/58) (8.6%), tEPEC, ETEC and STEC (1/58) (1.7%), EAEC and tEPEC (1/58) (1.7%). Remarkably, this is the first study to report these combinations in waterborne DEC isolates. Other studies reported a different combination of genes from both EAEC and EHEC. [43, 46] This finding is of a public health concern as mixed infections usually involve more dehydration compared with episodes caused by a single DEC pathotype.

In our study, DEC isolates showed a high degree of diversity using The (GTG)5 rep-PCR typing (Shannon diversity index H = 18.87). Moreover, all the DEC isolates clustered together with six clades of strains observed. The isolates recovered within same region and those from other regions showed diverse genetic profiles. This extensive diversity among the DEC strains
isolated from different sources rules out between/within location transmissibility of isolates, and may also imply multiple sources of contamination in these locations. Likewise, several independent studies have reported the existence of diverse populations of *E. coli* in several hosts and environments.[5, 47] Clade 5 had the highest number of strains (12/50; 24%), while clade 3 had the least number (3/50; 6%). Four STEC isolates from different locations and wards in the local government in Clade 5 were identical. This implies that these isolates have either been maintained or circulated within a similar source of origin.

Conclusions And Recommendations

This study reports a high prevalence of DEC in well water with a preponderance of STEC. The presence of these pathogenic strains of *E. coli* in drinking water highlights the risk to human health associated with the use of untreated water. There was a high degree of genetic diversity among the isolates implying multiple sources of contamination thus emphasizing the need for periodic sanitation and inspection of wells for cracks to prevent seepages, runoff and possible outbreaks of waterborne diseases. In addition, owners of dug wells should be educated about the dangers of drinking contaminated water, the importance of well sanitation and the need to repair construction faults.

Abbreviations

DEC: Diarrhoeagenic *Escherichia coli*

ETEC: Enterotoxigenic *E. coli*

EAEC: Enteroaggregative *E. coli*

EIEC: Enteroinvasive *E. coli*

EPEC: Enteropathogenic *E. coli*

STEC: Shiga-toxin producing *E. coli*

MPN: Most probable number

MST: Microbial source tracking

PCR: Polymerase chain reaction

Declarations

Ethics approval and consent to participate

This study approval was obtained from the Health Research Ethics Committee (HREC), Institute of Public Health, Obafemi Awolowo University, Ile-Ife, Nigeria (HREC No: IPHOAU/12/863). There is no participation section for this study as it is not applicable.

** Consent for publication**

None. This manuscript does not contain any individual person's data.

Availability of data and materials

All data and materials of this study are included. If additional information is needed, please contact the author for requests.
Competing interests
The authors declare that they have no competing interests

Funding:
None

Authors’ contribution:
OB conceived the study, wrote the manuscript; FM performed the experiments, collected and analysed data, wrote the manuscript; OA analysed data, wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgment
We are grateful to the health workers of Osun state primary health centres Ile-Ife, Nigeria for their support.

Author Information
OB (PhD; Senior Lecturer)
Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.

OO (B.Sc; Postgraduate student)
Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria

OA (PhD; Associate Professor)
Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Bayelsa, Nigeria

References
1. Who WHO. Diarrhoeal disease. World Health Organization: WHO; 2017.
2. Peter AK, Uzal U. Combating diarrhoea in Nigeria: the way forward. The Millennium Development Goals (MDGs) Calls for a Reduction of Child Mortality by Two Third between 1990 and 2015, the Reality Is That Although Progress Is Been Made, Much More Remains to Be Done The Prevalence Rate of Diarrhoea in Nigeria Is 188% and Is a Menace in Sub-Sahara Africa; and in This Part of West African It Accounts for an Estimated 150,000 Deaths Yearly amongst Children under Five Due to Poor Hygienic and Sanitary Practices Diarrhoea's Status as the Second Leading Killer of Children under Five Is an Alarming Reminder of the Vulnerability of Children in Nigeria, Saving the Lives of Millions of Children at Risk of Death from Diarrhoea Is Possible with a Comprehensive Strategy That Ensures All Children in Need Receive Critical Prevention and Treatment Measures This Report Is Written with the Intent to Let Our Government Re-Focus Her Attention on the Prevention and Management of Diarrhoeal Diseases as Central to Improving Child Survival in the Country and Justify the Need to Embrace Sustainability Development Goals (SDGs) Set by WHO to Achieve Universal Access to Clean Water and Basic Sanitation, Which Is the Primary Preventive Measures to Reduce the Burden of Diarrhea in the Country 2018; Volume 6.
3. Invik J, Barkema HW, Massolo A, Neumann NF, Checkley S. Total coliform and Escherichia coli contamination in rural well water: analysis for passive surveillance. J Water Health. 2017;15:729–40.

4. Ali MMM, Mohamed ZK, Klena JD, Ahmed SF, Moussa TAA, Ghenghesh KS. Molecular characterization of diarrheagenic Escherichia coli from Libya. Am J Trop Med Hyg. 2012;86:866–71.

5. Healy-Profitós J, Lee S, Mouhaman A, Garabed R, Moritz M, Piperata B, Lee J. Neighborhood diversity of potentially pathogenic bacteria in drinking water from the city of Maroua, Cameroon. J Water Health. 2016;14:559–70.

6. García-Aljaro C, Blanch AR, Campos C, Jofre J, Lucena F. Pathogens, faecal indicators and human-specific microbial source-tracking markers in sewage. J Appl Microbiol 2018.

7. Oyedeji O, Olutiola PO, Owolabi KD, Adeojo KA. Multiresistant faecal indicator bacteria in stream and well waters of Ile-Ife City, Southwestern Nigeria: Public health implications. Journal of Public Health Epidemiology. 2011;3:371–81.

8. Fenwick A. Waterborne Infectious Diseases – Could They Be Consigned to History? Science. 2006;313:1077–81.

9. National Population Commission. Population distribution by sex state lgas and senatorial district 2006 census priority tables vol 3. 2006.

10. Sullivan KM, Soe MM. Sample Size for a Cross-Sectional, Cohort, or Clinical Trial Studies. 2007.

11. Cheesbrough M. District Laboratory Practice in Tropical Countries Part II. Cambridge University Press Pp. 2006;113:319–29.

12. Batty-Smith CG. The Eijkman test for faecal coli in the bacteriological examination of water supplies: A survey and discussion of the experimental work from 1929 to the present day with a study of 104 water samples and of 602 cultures. The Journal of Hygiene. 1942;42:55.

13. Hajna AA, Perry CA. A Comparison of the Eijkman Test with Other Tests for Determining Escherichia coli in Sewage. J Bacteriol. 1935;30:479–84.

14. Odetoyni BW, Hofmann J, Aboderin AO, Okeke IN. Diarrhoeagenic Escherichia coli in mother-child Pairs in Ile-Ife, South Western Nigeria. BMC Infectious Diseases 2015;16.

15. Hassan J, Parvej MS, Rahman MB, Khan MSR, Rahman MT, Kamal T, Nazir KNH. Prevalence and Characterization of Escherichia coli from Rectal Swab of Apparently Healthy Cattle in Mymensingh, Bangladesh. Microbes Health. 2014;3:12–4.

16. Aranda KRS, Fagundes-Neto U, Scalaletsky ICA. Evaluation of Multiplex PCRs for Diagnosis of Infection with Diarrheagenic Escherichia coli and Shigella spp. J Clin Microbiol. 2004;42:5849–53.

17. Khare N, Kaushik M, Martin JP, Mohanty A, Gulati P. Genotypic diversity in multi-drug-resistant E. coli isolated from animal feces and Yamuna River water, India, using rep-PCR fingerprinting. Environ Monit Assess. 2020;192:681.

18. Mohapatra BR, Broersma K, Mazumder A. Differentiation of fecal Escherichia coli from poultry and free-living birds by (GTG)5-PCR genomic fingerprinting. Int J Med Microbiol. 2008;298:245–52.

19. Heras J, Domínguez C, Mata E, Pascual V, Lozano C, Torres C, Zarazaga M. GelJ – a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics. 2015;16:270.

20. Hammer Ø, Harper DAT, Ryan PD. PAST: PALEONTOLOGICAL STATISTICS SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS. Palaeontological Association 2014.

21. Byappanahalli MN, Whitman RL, Shively DA, Ferguson J, Ishii S, Sadowsky MJ. Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan. Water Res. 2007;41:3649–54.

22. R Core Team. R: A language and environment for statistical computing. 2019.

23. Taonameso S, Mudau LS, Traoré AN, Potgieter N. Borehole water: a potential health risk to rural communities in South Africa. Water Supply. 2019;19:128–36.

24. Elmonir W, Abo Remela EM, Alwakil Y. Diversity, virulence and antibiogram traits of Escherichia coli recovered from potable water sources in Gharbia, Egypt. J Water Health. 2020;18:430–8.
25. da Silva CR, Sanches MS, Macedo KH, Dambrozio AML, da Rocha SPD, Navarro A, Pelayo JS. Molecular and phenotypic characterization of diarrheagenic Escherichia coli isolated from groundwater in rural areas in southern Brazil. J Water Health. 2019;17:597–608.

26. Oguntoko O, Aboderin OJ, Bankole AM. Association of water-borne diseases morbidity pattern and water quality in parts of Ibadan City, Nigeria. Tanzania J Hlth Res 2010; 11.

27. Raji MIO, Ibrahim YKE. Prevalence of waterborne infections in Northwest Nigeria: A retrospective study. Journal of Public Health Epidemiology. 2011;38:382–5.

28. Sedhain P. Water, sanitation, socioeconomic status and prevalence of waterborne diseases: a cross-sectional study at Makwanpur district, Nepal. UiT Norges arktiske universitet; 2014.

29. Gwimbi P, George M, Ramphalile M. Bacterial contamination of drinking water sources in rural villages of Mohale Basin, Lesotho: exposures through neighbourhood sanitation and hygiene practices. Environ Health Prev Med. 2019;24:33.

30. Graham JP, Polizzotto ML. Pit Latrines and Their Impacts on Groundwater Quality: A Systematic Review. Environ Health Perspect. 2013;121:521–30.

31. Bonkoungou IJO, Somda NS, Traoré O, Zoma BS, Garba Z, Drabo KM, Barro N. DETECTION OF DIARRHEAGENIC ESCHERICHIA COLI IN HUMAN DIARRHEIC STOOL AND DRINKING WATER SAMPLES IN OUAGADOUGOU, BURKINA FASO. AJID 2021; 15:53–58.

32. Talukdar PK, Rahman M, Rahman M, Nabi A, Islam Z, Hoque MM, Endtz HP, Islam MA. Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolates from household water supply in Dhaka, Bangladesh. PLoS One. 2013;8:e61090.

33. Lascowski KMS, Guth BEC, Martins FH, Rocha SPD, Irino K, Pelayo JS. Shiga toxin-producing Escherichia coli in drinking water supplies of north Paraná State, Brazil. J Appl Microbiol. 2013;114:1230–9.

34. Crespo-Medina M, Greaves I, Hunter PR, Minnigh H, Ramírez-Toro G. Detection of Shiga toxin-encoding genes in small community water supplies. Journal of Water and Health 2020; jwh2020236.

35. Park J, Kim JS, Kim S, Shin E, Oh K-H, Kim Y, Kim CH, Hwang MA, Jin CM, Na K, Lee J, Cho E, Kang B-H, Kwak H-S, Seong WK, Kim J. A waterborne outbreak of multiple diarrhoeagenic Escherichia coli infections associated with drinking water at a school camp. International Journal of Infectious Diseases. 2018;66:45–50.

36. Schack RM, Handby M, Gregory J, Subasinghe N, Coutts SP. A fatal case of Shiga toxin-producing Escherichia coli linked to a private drinking water supply. Commun Dis Intell 2020; 44.

37. Shojaei M. Virulence Factors of Shiga-Toxigenic Escherichia coli in Drinking Water of Shahrekord, Iran. 2017; 4.

38. Abia A, Schaefer L, Ubomba-Jaswa E, Le Roux W. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa. International Journal of Environmental Research Public Health. 2017;14:320.

39. Madec J-Y, Haenni M, Ponsin C, Kieffer N, Rion E, Gassilloud B. Sequence type 48 escherichia coli carrying the blaCTX-M-1 IncI1/ST3 plasmid in drinking water in france. Antimicrob Agents Chemother. 2016;60:6430–2.

40. Kambire O, Adingra AA, Yao KM, Ko-Nevry R Prevalence of Virulence Genes Associated with Diarrheagenic Pathotypes of Escherichia coli Isolates from Water, Sediment, Fish, and Crab in Aby Lagoon, Côte d'Ivoire. International Journal of Microbiology 2017; 2017:1–8.

41. Navab-Daneshmand T, Friedrich MND, Gächter M, Montealegre MC, Mlambo LS, Nhiwatiwa T, Mosler H-J, Julian TR. Escherichia coli Contamination across Multiple Environmental Compartments (Soil, Hands, Drinking Water, and Handwashing Water) in Urban Harare: Correlations and Risk Factors. Am J Trop Med Hyg. 2018;98:803–13.

42. Canizalez-Roman A, Gonzalez-Nuñez E, Vidal JE, Flores-Villaseñor H, León-Sicairos N. Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico. Int J Food Microbiol. 2013;164:36–45.

43. Sidhu JPS, Ahmed W, Hodgers L, Toze S. Occurrence of Virulence Genes Associated with Diarrheagenic Pathotypes in Escherichia coli Isolates from Surface Water. Appl Environ Microbiol. 2013;79:328–35.
44. Huang S-W, Hsu B-M, Su Y-J, Ji D-D, Lin W-C, Chen J-L, Shih F-C, Kao P-M, Chiu Y-C. Occurrence of diarrheagenic Escherichia coli genes in raw water of water treatment plants. Environ Sci Pollut Res Int. 2011;19:2776–83.

45. Moglad EH, Jalil Adam OAE, Alnosh MM, Altayb HN. Detection of virulence genes of diarrheagenic Escherichia coli strains from drinking water in Khartoum State. J Water Health 2020.

46. Trung NV, Nhung HN, Carrique-Mas JJ, Mai HH, Tuyen HT, Campbell J, Nhung NT, Van Minh P, Wagenaar JA, Mai NTN, Hieu TQ, Schultsz C, Hoa NT. Colonization of Enteroaggregative Escherichia coli and Shiga toxin-producing Escherichia coli in chickens and humans in southern Vietnam. BMC Microbiol. 2016;16:208.

47. Paulshus E, Kühn I, Möllby R, Colque P, O'Sullivan K, Midtvedt T, Lingaas E, Holmstad R, Sørum H. Diversity and antibiotic resistance among Escherichia coli populations in hospital and community wastewater compared to wastewater at the receiving urban treatment plant. Water Res. 2019;161:232–41.

Figures

Figure 1
Figure 2

A gel picture showing diarrhoeagenic genes of isolates Lane 1: Water (Negative); Lane 2: E. coli 042 (CVD432-630bp); Lane L: 100bp ladder; Lane 3: E. coli EDL 933 (stx1-180bp, stx2-255bp); Lane 4: E. coli ; Lane 5: E. coli H10407 (LT-450bp); Lane 6: E. coli; Lane 7: E. coli E2348 (bfp-326bp); Lane 8: E. coli H10407 (ST-190bp and LT-450bp); Lane 9: E. coli; Lane 10: E. coli (LT-450bp); Lane 11: E. coli (eae-917bp); Lane 12: E. coli (stx2-255bp); Lane 13: E. coli E137 (ipaH-600bp)

Figure 3

A gel picture of GTG5 PCR fingerprints of DEC isolates
Figure 4

Neighbour-joining dendrogram clusters of (GTG)5-fingerprints of strains with their locations.