Influence by zirconium plastic deformation at temperature of 4.2 K on zirconium crystal lattice structure and magnitude of superconducting transition temperature T_c

V. K. Aksenov, B. G. Lazarev, O. P. Ledenyov, V. I. Sokolenko, Ya. D. Starodubov and V. P. Fursa

National Scientific Centre Kharkov Institute of Physics and Technology, Academicheskaya 1, Kharkov 61108, Ukraine.

We have researched the effect of the zirconium deformation by the extension at the temperature of 4.2 K, with the subsequent heating up to the room temperature of 300 K, on both the zirconium crystal grating structure and the magnitude of superconducting transition temperature T_c, using the zirconium samples, synthesized by the method of the electron beam melting. In our opinion, a registered substantial increase of the critical temperature T_c (by 20%) is a result of both the superconductivity enhancement in the plastic deformation regions at the twin boundaries of the zirconium crystal grating and the effective change of the inter-electron attraction constant magnitude.

PACS numbers: 74.70.Ad, 74.25.Bt, 74.62.-c, 74.62.Dh.

Keywords: Zirconium (Zr), superconductivity, crystal lattice structure, crystal lattice defects, crystal lattice stability, low temperature plastic deformation at 4.2 K, electron attraction constant g, normal metal – superconductor (N-S) transition, critical temperature T_c, Barden Cooper Schrieffer (BCS) theory.

Introduction

Up to the present date, the influence by the crystal lattice defects on the superconducting transition temperature T_c has been established for a wide circle of superconductors. The researches in this field were stimulated by the Shal’nikov [1] research results on the metal films, deposited on the cold substrates, and by Khotkevich [2] research results on the bulk superconductors, strained at the low temperatures. However, most of the earlier research results did not include the microstructure studies.

Recently, the effects by the low temperature plastic deformation and by the defects, originated during the straining, on the superconducting transition temperature T_c of the vanadium and niobium (the transition metals with the bcc), have been researched [3-6]. It was shown that the transition temperature T_c increases substantially. Similar increase in the magnitude of the critical temperature T_c as a result of the low temperature deformation was also observed in the non-transition metals with the tetragonal (In and Sn [2, 7, 8]) and hexagonal (Ti [2]) crystal lattices. We are interested in the research on the influence by the low temperature straining of superconductor on the critical temperature T_c of superconductor with the hcp crystal lattice at the specified conditions, aiming to get a better understanding of the phenomenon in the general case of the metallic superconductors with the different crystal lattice types.

Synthesis of Samples for Experimental Measurements

The poly-crystal electron-beam-melted zirconium of purity of 99.95 wt. % of high plasticity was a main object of our research conducted at the low temperatures. As per our knowledge, the experimental researches on this type of zirconium have not yet been carried out, which is likely due to the difficulties that are associated with the low superconducting transition temperature in the initial state, $T_{c0} = 0.5 K$. In our case, the roll-treated ingot was sliced on a spark machine to obtain the zirconium samples, shaped as the double-ended blades with working part of 15 mm and 0.25 x 0.40 mm2 in the cross section. After the annealing in the vacuum of $1.3 x 10^4$ Pa at the temperature of 800°C for the time period of one hour, the mean grain dimension was about 50 µm.

Experimental Measurements Results

The straining of zirconium by the extension (up to 8 %) was performed at the temperature of 4.2 K at the rate of $2\cdot10^3$ sec$^{-1}$ on a setup, described in [9]. After the warm up to the room temperature and maintenance at this temperature for the time of 24 hours, we researched the defects structure of strained zirconium by the means of the transmission electron microscope as well as measured the critical temperature T_c of strained zirconium during its transition from the normal state to the superconducting state. The precise measurements of critical temperature T_c were conducted with the use of an experimental setup, based on the liquid Helium three (3He) cryostat. The temperatures from 1 K down to 0.35 K were produced by the pumping off vapors above the liquid 3He. The researched sample was placed in the liquid 3He, which ensured the good thermal contact and stabilization. The heat power of $\sim 10^4$ W was released in the sample during the measurements. The estimated Kapitza jump was such that it could be neglected in this experimental research.
The sample’s temperatures were found from the 3He vapor pressure measurements by the means of the McLeod manometer. The accuracies of determinations of both the absolute temperatures and the relative temperatures were 5·10^{-4} K and 5·10^{-5} K respectively. The superconducting transition was determined, using the four-probe measurement method. In order to minimize a possible influence by the Earth’s magnetic field, it was compensated by the two pairs of the Helmholtz coils to the level below 10^{-7}. The current was generated by the current source with the long time stability of not worse than 10^{-4}. The magnitude of measured current was 5·10^{-2} A. The increase of current did not result in the temperature changes in the cryostat and did not make a significant shift of superconducting transition temperature. The recording of the Normal metal – Superconductor (N-S) transition was performed by the nano-voltmeter F-118. Table 1 has the data on the magnitudes of measured changes of zirconium electrical resistance ratio R_{293K}/R_{1K}, the values of the zirconium normal state temperature T_N at the N-S transition, the values of the zirconium critical temperature T_C at the N-S transition, and the range of temperatures between the initial state of zirconium and the final state of zirconium after its low temperature plastic deformation at the temperature of 4.2 K and its annealing at the temperature of 300 K at the N-S transition.

Zirconium States	R_{293K}/R_{1K}	T_N, K	T_S, K	ΔT, K
Initial State	110	0.470±0.005	0.451±0.005	0.020
Final State	63	0.585±0.005	0.530±0.005	0.055

Tab. 1. Experimental measurements data:
1) magnitudes of zirconium electrical resistance ratio R_{293K}/R_{1K}, 2) zirconium normal state temperature T_N at N-S transition, 3) zirconium superconducting transition temperature T_C at N-S transition, 4) range of temperatures ΔT between temperature T_N in initial state and temperature T_S in final state at N-S transition of zirconium after its low temperature plastic deformation at temperature of 4.2 K and annealing at temperature of 300 K.

As it follows from the analysis of obtained experimental results, just as in the cases of the metals with the bcc lattice (Nb, V) and the tetragonal lattice (In, Sn), the low temperature plastic deformation of zirconium with the hcp crystal lattice, even with the subsequent heating up to the temperature of 300 K, does not result in a noticeable increase of the critical temperature T_C. In this case, the absolute increase of critical temperature T_C of zirconium was equal to \sim0.1 K, which is as big as 20 % of the initial value of critical temperature T_C. This value is bigger by an order of magnitude than the highest increase of the critical temperature T_C in the niobium and vanadium, where the ratio $\Delta T_C/T_C0$ after the heating up of samples amounted to 2-3%. In our experiments, we were unfortunately unable to directly measure the increase of the critical temperature T_C in zirconium during the process of low temperature straining without the interim heating up to the room temperature. It is clear that the effect of increase of the zirconium critical temperature T_C without the warm up to the room temperature will be much bigger and even comparable, for instance, with the effect, observed in rhenium [10], which also has the hcp crystal lattice.

As shown in [11], the deformation of the same purity zirconium at the temperature of 4.2 K is accompanied by an appearance of a number of the point, linear and planar defects; and the process of heating of researched samples up to the room temperature restores about 60 % of the magnitude of electrical resistance as a result of the annihilation, dissociation and removal of certain types of point defects and point defects clusters.

The research on the zirconium structure after its deformation by the extension of 8 % at the temperature of 4.2 K, using the electron microscopy, shows that the deformation develops via the slippage and twinning, and the later one is the predominant physical mechanism. The structure of zirconium exhibits the comparatively large twins as well as the stacks of parallel micro-twins as shown in Fig. 1. The accommodation zones in close proximity to the twin layer boundaries in zirconium are, as a rule, less pronounced, comparing to the niobium [6]. In the areas far from the twins, where the plastic deformation develops via the slippage, the average dislocation density amounts to the value of $\sim10^{10}$ cm^{-2}.

The substantial increase of the magnitude of the critical temperature T_C, observed in the zirconium, is in agreement with the earlier formulated considerations [12] on the relation between the change of the critical temperature T_C and the electron attraction constant g in the Barden Cooper Schrieffer (BCS) theory [13]. According to this theory, the critical temperature T_C, Debye temperature θ, and electron attraction constant g are interrelated as

$$T_C = 1.14\theta \exp(-1/\theta).$$

Taking to the account that $g = N(0)U$, where $N(0)$ is the density of electron states at the Fermi surface and U is the electron – lattice coupling constant, we can determine the variations of the electron attraction constant g by considering the changes of both $N(0)$ and U. The physical mechanism of the critical temperature shift was researched earlier, for instance: 1) by the introduction of the “donor” or “acceptor” impurities into the metal [14] or 2) by the influence of the hydrostatic pressure on the superconducting properties [15]. However, in the case of the deformation application, the appearing crystal lattice defects give rise to the new local and quasi-local crystal vibration modes [16], which can cause the constant U to change [17]. Under the appropriate conditions, the defects of a certain type such as the dislocations can make some changes in the value of $N(0)$ [18]. In the case of tight-binding superconductors with the big magnitude of the electron
attraction constant $g \approx 0.4$ (lead, mercury), the further increase of this constant is restricted by the crystal lattice stability [19]. In the weak binding superconductors with the small electron attraction constant g, the influence by the plastic deformation effect on the critical temperature T_C will be stronger. There are the increased ratios $\Delta T_C/T_{C0}$ in such metals as Zr, Re, Sn, Nb for which the electron attraction constants g are 0.15, 0.18, 0.25, 0.30 respectively [20].

The presently available theoretical models provide a possible insight on the role by the various types of defects and stresses on the critical temperature shift T_C. Taking into the consideration the fact that the dislocations and twin boundaries are the predominant defect types that appear in the zirconium crystal lattice after its low temperature deformation and subsequent heating up to the temperature of 300 K, let us evaluate the possible effect by these defects and by the relevant internal stress fields on the critical temperature T_C.

Let us suppose that, in the experiments with the zirconium, the increase of T_c is brought about by the internal stresses in the crystal lattice. The level of these internal stresses can be estimated, assuming that their action is similar to that of the hydrostatic pressure. Then, knowing the positive value $dT_C/dP \simeq 1.4 \times 10^7$ K/MPa in [21], we find that these stresses must be compressive and amount to ~ 7 MPa. Thus, the estimated stress is considerably higher than the yield stress of zirconium [22] and, hence, it can essentially be relaxed. Therefore, there is no reason to believe that a presence of stresses of described intensity can be a main source of the critical temperature increase. It is also not reasonable to think that these stresses, should they exist, could be homogeneous, resulting in a shift of the full superconducting state transition curve to the higher temperatures as it is observed experimentally. At the same time, the inhomogeneous elastic stresses of lower level, which relate to the deformation localization areas, are likely responsible for the smearing of the transition curve.

As shown in [23], the increase of T_c in the niobium is due to the electron attraction enhancement, which is facilitated by the dislocation vibrations within the valleys of the Peierls potential relief, in accordance with the Zaitsev theory, has the form

$$\Delta T_C' \approx \frac{\pi}{8} \left(\frac{c_t}{c_l} \right)^4 \frac{E_F m s}{G h} N_d,$$

where E_F is the Fermi energy, m is the electron mass at the Fermi surface, G is the shear modulus, h is the Plank constant, c_t and c_l are the transverse and longitudinal sound velocities, s is the effective sound velocity, a combination of the c_t and c_l in [23]. The equation (1) [23] has been derived with the use of expansion in a small parameter (proportional to T_{c0}^{-1}) of one of the terms that describe $\Delta T_C'$ within the framework of the theory in [24]. In view of the small value of T_{c0} in Zr, the approximation, that is allowable for Nb, is generally invalid, so that the eq. (1) can be employed only for an approximate estimation of the effect. To estimate the $\Delta T_C'$ in such a way, we use the approximation: $m \sim m^*(m^*$ is the cyclotron mass; in the case of zirconium: $m^* \sim 1.5 m_0$ [25], where m_0 is the electron mass) and put $c_t/c_l \approx 0.67$ (which is typical for metals). By substituting these values of m and c_t/c_l in eq. (1) as well as the known values $s \approx 5 \times 10^8$ cm/sec in [26]; $G = 3.27 \times 10^{11}$ Pa in [24]; $E_F \approx 7.9$ eV in [27], we finally obtain

$$\Delta T_C' \sim 8 \times 10^{-14} N_d[K].$$

It is clear from eq. (2) that, even within the plastic strain localization areas (the accommodation zones in close proximity to the twin boundaries, where $N_d \sim 10^{11}$ cm$^{-2}$), the dislocation related increase of the critical temperature T_c will amount to $\sim 10^3$ K. This value is less than the experimental ΔT_c. It should be, however, kept in mind that the above estimation is of qualitative character. We also point out to the following circumstance. As shown in [18], in the metals with the special energy spectrum, where the Fermi level falls on the region with the discrete electron levels, localized on the dislocations, the variation of the pressure at the low temperatures originates the oscillations of the thermodynamic potential. As a result, a number of the thermodynamic quantities also oscillate. The oscillations of the critical temperature T_c were predicted within the framework of such an approach in [28]. Therefore, in agreement with the results in [28], the certain correction to the magnitude of the dislocation induced critical temperature increase is not excluded in the case of the zirconium with the dislocations at the stress of the entire ensemble of other defects. Thus, the
question of a more consistent theoretical treatment of the influence by the dislocations on the critical temperature T_C in the zirconium remains open.

The increase of the critical temperature T_C can also be a consequence of the localized superconductivity, associated with the twin boundaries. The possible physical mechanisms of such superconductivity are considered in the review [20]. The exact information about the fine structure of the real twin boundaries is needed to quantitatively compare the experimental results with the predictions of the localized superconductivity models in the case of zirconium and other superconductors as well.

Thus, in this research paper, we cannot give our preference to any particular physical mechanism of the critical temperature increase at the N-S transition in the zirconium. In our opinion, the significant research progress in the considered research field would be achieved, if the materials with the single type of defects could be researched.

Conclusion

We would like to note that the research results, presented in this research paper and in our previous publications, provide the multiple evidences that the registered increase of critical temperature T_C of zirconium, which occurs due to the low temperature plastic deformation, is typical for the pure metallic superconductors irrespective of their crystal lattice type. It is possible to suppose that the lower the ratio of the inter-electron attraction constant to the maximum value of this parameter, which is the characteristic of the tight binding superconductors ($g \approx 0.4$), the stronger the phonon spectrum softening and the bigger the electron-phonon coupling enhancement in the plastic deformation localization areas in the superconductor.

This experimental research is completed in the frames of the fundamental and applied superconductivity research program at the Schubnikov Cryogenic Laboratory at the National Scientific Centre Kharkov Institute of Physics and Technology (NSC KIPT) in Kharkov in Ukraine. This experimental research program is funded by the Ukrainian State Committee for the Science and Technologies.

This research paper was published in the Low Temperature Physics (FNT) in 1993 in [29].

E-mail: ledenyov@kipt.kharkov.ua

1. A. Shal’nikov, Nature, vol. 142, p. 74, 1938; Journal Experimental Theoretical Physics (JETP), vol. 10, p. 630, 1940.
2. V. I. Khotkevich, Ph. D. Thesis, Kharkov, Ukraine 1952.
3. I. A. Gindin, M. B. Lazareva, V.I. Sokolenko, and Ya. D. Starodubov, in: Abstracts of 21st USSR Conference on Low Temperature Physics, Kharkov, Part 1, p. 167, 1980.
4. A. A. Gindin, V. I. Sokoleno, Ya. D. Starodubov, and M. B. Lazareva, Fizika Nizkih Temperatur (FNT), vol. 8, p. 664, 1982; Low Temperature Physics (FNT) vol. 8, p. 321, 1982.
5. V. S. Bobrov, S. N. Zorin, Pis’ma Zh. Eksp. Teor. Fiz., vol. 40, p. 345, 1984; JETP Letters, vol. 40, p. 1147, 1984.
6. V. K. Aksenov, I. A. Gindin, V. I. Sokolenko, and Ya. D. Starodubov, Fiz. Nizk. Temp., vol. 11, p. 93, 1985; Low Temperature Physics (FNT), vol. 11, p. 50, 1985.
7. M. B. Lazareva, Ya. D. Starodubov, Ukrainian Physics Journal, vol. 19, p. 318, 1974.
8. I. N. Khlustikov, A. I. Buzdin, Uspekhi Fizicheskikh Nauk (UFN), vol. 155, p. 47, 1988; Sov. Physics Usp., vol. 31, p. 47, 1988.
9. I. A. Gindin, S. F. Kravchenko, Ya. D. Starodubov, and G. G. Chechelnitskii, Pribory Tekhnika Eksperimenta, no. 2, p. 240, 1967.
10. N. E. Alekseevskii, M. N. Mikheeva, and N. A. Tulina, Zh. Eksp. Teor. Fiz., vol. 52, p. 875, 1967; Journal Experimental Theoretical Physics (JETP), vol. 25, p. 575, 1967.
11. I. A. Ginding, V. I. Sokolenko, and Ya. D. Starodubov, Fizika Metalov and Metalovedenie, vol. 50, p. 240, 1967.
12. B. G. Lazarev, E. E. Semenenko, in: Proceedings of V Bakuriani USSR – France Colloquium on Superfluidity and Superconductivity, Tbilisi, Georgia, vol. 2, p. 148, 1968.
13. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., vol. 108, p. 1175, 1957.
14. B. G. Lazarev, L. S. Lazareva, and V. I. Makarov, and T. A. Ignat’eva, Zh. Eksp. Teor. Fiz., vol. 46, p. 829, 1964; Journal Experimental Theoretical Physics (JETP), vol. 19, p. 566, 1964.
15. B. G. Lazarev, L. S. Lazareva, and V. I. Makarov, Zh. Eksp. Teor. Fiz., vol. 44, p. 328, 1963; Journal Experimental Theoretical Physics (JETP), vol. 17, p. 481, 1963.
16. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York – London, 1963.
17. O. V. Dolgov, E. G. Maksimov, Trudy FIAN, vol. 148, p. 3, 1983.
18. V. D. Natsik, L. G. Potemina, Zh. Eksp. Teor. Fiz., vol. 79, p. 2398, 1980; Journal Experimental Theoretical Physics (JETP), vol. 52, p. 1215, 1980.
19. S. V. Vonsovskii, Yu. A. Izumov, and E. Z. Kurmaev, Superconductivity of Transition Metals, Their Alloys and Compounds, Nauka, Moscow, Russian Federation, 1977.
20. V. I. Sokolenko, Ya. D. Starodubov, Fiz. Nizk. Temp., vol. 19, p. 951, 1993; Low Temperature Physics (FNT), vol. 19, p. 675, 1993.
21. K. Cohen, G. Gladstone, M. Jensen, and J. Schrieffer, Superconductivity of Semiconductors and Transition Metals, Dekker, NY, USA, 1969.
22. V. K. Aksenov, E. V. Karaseva, and Ya. D. Starodubov, *Metallophysics*, vol. 7, p. 43, 1985.
23. V. K. Aksenov, V. I. Sokolenko, and Ya. D. Starodubov, *Fiz. Nizk. Temp.*, vol. 19, p. 1083, 1993; *Low Temperature Physics*, vol. 19, p. 768, 1993.
24. R. O. Zaitsev, *Zh. Eksp. Teor. Fiz.*, vol. 54, p. 1445, 1968; *Journal Experimental Theoretical Physics (JETP)*, vol. 27, p. 723, 1968.
25. P. M. Everett, *Phys. Rev.*, vol. B6, p. 3559, 1972.
26. G. V. Samsonov (Editor), Physical and Chemical Properties of Elements. Handbook, *Naukova Dumka*, Kiev, Ukraine, 1965.
27. V. V. Nemoshkalenko, V. N. Antonov, Methods of Calculational Solid State Physics. The Band Theory of Metals, *Naukova Dumka*, Kiev, Ukraine, 1985.
28. V. D. Natsik, L. G. Potemina, *Fiz. Nizk. Temp.*, vol. 5, p. 533, 1979; *Low Temperature Physics (FNT)*, vol. 5, p. 258, 1979.
29. V. K. Aksenov, B. G. Lazarev, O. P. Ledenyov, V. I. Sokolenko, Ya. D. Starodubov and V. P. Fursa, Influence by zirconium plastic deformation at temperature of 4.2 K on zirconium crystal lattice structure and magnitude of superconducting transition temperature T_c, *Low Temperature Physics (FNT)*, vol. 19, no. 11, pp. 843-846, 1993.