Measurement of the inclusive jet cross section in pp collisions at $\sqrt{s} = 2.76$ TeV

The CMS Collaboration*

Abstract

The double-differential inclusive jet cross section is measured as a function of jet transverse momentum p_T and absolute rapidity $|y|$, using proton-proton collision data collected with the CMS experiment at the LHC, at a center-of-mass energy of $\sqrt{s} = 2.76$ TeV and corresponding to an integrated luminosity of 5.43 pb$^{-1}$. Jets are reconstructed within the p_T range of 74 to 592 GeV and the rapidity range $|y| < 3.0$. The reconstructed jet spectrum is corrected for detector resolution. The measurements are compared to the theoretical prediction at next-to-leading-order QCD using different sets of parton distribution functions. This inclusive cross section measurement explores a new kinematic region and is consistent with QCD predictions.

Submitted to the European Physical Journal C

*See Appendix 9 for the list of collaboration members
1 Introduction

Jets are copiously produced in proton-proton (pp) collisions at the LHC. In the standard model, the hard-scattering interaction between partons inside the protons is described by perturbative quantum chromodynamics (QCD). Particle-level predictions, however, require a nonperturbative (NP) modeling of hadronization and multiple parton interactions in addition to the QCD calculation. The predicted rate and kinematics of jet production are sensitive to the composition of the proton described by the parton distribution functions (PDF) and to the strong coupling constant (α_S). The evolution of PDFs and α_S with the increase in the magnitude of the four-momentum transfer is determined by the renormalization group equations of perturbative QCD [1–3]. Precision measurements of inclusive jet production cross sections at different center-of-mass energies can be used to determine PDFs and α_S as well as to search for deviations in their behavior from QCD predictions [4]. Inclusive jet cross section measurements have been performed at the LHC [5–8] and at other high energy colliders [9–16].

In this study, the inclusive jet production cross section, $\sigma(pp \rightarrow \text{jet} + X)$, is measured as a function of the jet transverse momentum p_T and absolute rapidity $|y|$. The analysis is performed with data from pp collisions at $\sqrt{s} = 2.76$ TeV with the CMS experiment corresponding to an integrated luminosity of 5.43 pb$^{-1}$. Originally designed as a reference for heavy ion studies, this data set also provides an opportunity to close the wide gap in jet measurements between the Tevatron at 1.96 TeV and the LHC at 7 and 8 TeV. When combined with the cross section measurements at other center of mass energies the present measurement can be used to improve PDF constraints. The data presented in this paper are collected at low instantaneous luminosity conditions with, on average, 1.2 primary interactions per triggered event. The measured cross section is compared to the prediction from a next-to-leading-order (NLO) QCD calculation, performed using the NLOJET++ (v.4.1.3) generator [17, 18] implemented in the FASTNLO (v.2.1.0) framework [19]. NP contributions to the cross section are taken into account in the theoretical prediction; electroweak contributions are negligible [20].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid which provides a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimetry complements the coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [21].

3 Jet reconstruction and event selection

The particle-flow (PF) algorithm [22, 23] is used to reconstruct and identify individual particles in an event with optimally combined information from the various subsystems of the CMS detector. The particles are identified as: charged hadrons, neutral hadrons, muons, electrons, and photons. The PF candidates are combined into jets using the anti-k_T algorithm [24] as implemented in the FASTJET software package [25]. A wide reconstruction cone with a radius of 0.7 is used to reduce the sensitivity to final-state radiation. Particles identified as charged hadrons are assigned the pion mass, while neutral hadrons are considered massless and the four-vector...
Cross section measurement

The double-differential jet cross section is calculated as

\[
\frac{d^2\sigma}{dp_Tdy} = \frac{1}{\epsilon L_{\text{int,eff}}} \frac{N}{\Delta p_T (2 \cdot \Delta |y|)},
\]

where \(L_{\text{int,eff}} \) is the effective integrated luminosity corrected for trigger prescales, \(\epsilon \) is the overall reconstruction efficiency including the trigger and jet selection efficiencies, \(\Delta p_T \) and \(\Delta |y| \) are the sizes of a particular jet \(p_T \) and rapidity bin, and \(N \) is the number of jets in that bin. Six uniform bins in \(|y| \) are used between 0.0 and 3.0. The jet \(p_T \) values range from 74 to 592 GeV, with bin sizes increasing in proportion to the \(p_T \) resolution.
In order to facilitate the comparison of measurements with theoretical predictions, the jet p_T spectrum is corrected for detector effects. Since the p_T spectrum is steeply falling, the number of jets migrating out of a bin into the higher adjacent bin significantly exceeds the number of jets migrating to the lower adjacent bin. The unfolding procedure compensates for this effect and recovers the particle-level spectrum from the observed spectrum. The detector response function is determined using multijet events simulated with the PYTHIA6 (v.6.4, tune Z2) [27, 31] event generator. A detailed detector simulation is carried out using the GEANT4 software to model the particle interactions in the detector material.

The detector is characterized by a response function that represents the probability density to reconstruct a jet with transverse momentum p_T^det when the particle-level jet transverse momentum is p_T^part. The response function is initially derived by calculating jet resolution in Monte Carlo (MC) simulation for every p_T and $|y|$ bin. Jet resolution in data is found to be worse than in simulations [32]. The response function is corrected for this defect by degrading the resolution by factors $c_{\text{data/MC}}$ that vary with $|y|$ as listed in Table 2.

Table 2: The factors used to scale jet resolution determined in simulations to match the resolution observed in data.

| $|y|$ | $c_{\text{data/MC}}$ |
|----------|---------------------|
| 0.0–0.5 | 1.079 ± 0.026 |
| 0.5–1.0 | 1.099 ± 0.028 |
| 1.0–1.5 | 1.121 ± 0.029 |
| 1.5–2.0 | 1.208 ± 0.046 |
| 2.0–2.5 | 1.254 ± 0.062 |
| 2.5–3.0 | 1.395 ± 0.063 |

The response matrix is constructed by convolving the response function with the p_T^part spectrum predicted by NLO QCD calculations and the CT10 PDF set [33]. (Results with other PDF sets are discussed in Sec. 6.) The response function is represented by a kernel density estimation (KDE) technique that accurately models the tails of the distribution. The theoretical p_T^part spectrum is fitted with an exponential of a continuously differentiable function (Akima spline) [34]. This spline function is sampled many times and convolved with the KDE response function to obtain the response matrix. The D'Agostini iterative unfolding method [35] is used, as implemented in the ROOUNFOLD software package [36]. The unfolding procedure is regularized by early termination of iterations; four iterations are performed in each rapidity bin.

5 Theoretical predictions

The theoretical predictions are derived at NLO using QCD calculations with NLOJET++ [17, 18], and corrected for the NP contributions from hadronization and multiple parton interactions. Electroweak corrections are negligible at 2.76 TeV according to the studies performed in Ref. [20]. The factorization and renormalization scales are set to the jet p_T ($\mu_F = \mu_R = p_T$). The theoretical predictions of the inclusive jet cross section are derived using five recent PDF sets at NLO, as listed in Table 3, with the central values of $\alpha_s(M_Z)$ for each PDF set. Most are determined in a variable-flavor number scheme, except for the ABM11 PDF set, which employs a fixed-flavor number scheme with the number of active flavors (N_f) set to 5 or 6. The details related to determination of the PDFs are described in the corresponding references.

The NP effects include hadronization of parton cascades leading to the formation of color neutral jets and multiple interactions of spectator partons within the colliding protons that can re-
Table 3: The PDF sets used for deriving cross section predictions are given with the number of active flavors (N_f), the values and ranges of $\alpha_S(M_Z)$ used for the fits, and corresponding references.

Base set	N_f	$\alpha_S(M_Z)$	$\alpha_S(M_Z)$ range	Reference
CT10	≤ 5	0.118	0.112–0.127	[33]
MMHT14	≤ 5	0.120	0.108–0.128	[37]
NNPDF3.0	≤ 6	0.118	0.115–0.121	[38]
HERAPDF1.5	≤ 5	0.1176	0.114–0.122	[39]
ABM11	5	0.118	0.110–0.130	[40]

The major experimental uncertainties in this analysis come from imperfect measurement of jet energy, limited precision in simulating jet energy resolution, and imprecise knowledge of integrated luminosity. The first source affects the jet spectrum observed in data, while the second modifies the detector response matrix used in the unfolding procedure. The third source, measured integrated luminosity, contributes an overall cross section uncertainty of 3.7% [45]. The uncertainty associated with the jet energy determination consists of several independent contributions identified in the process of deriving the jet energy corrections. These contributions are described in detail in Ref. [26]. The corresponding cross section uncertainty is 5–22% for the low-rapidity bins ($|y| < 2.5$), increasing to 78% in the highest rapidity bin ($2.5 \leq |y| < 3.0$). The jet energy resolution uncertainty is estimated using the uncertainties in the $c_{data/MC}$ scaling factors presented in Table 2. For the rapidity region $|y| < 2.5$, the corresponding cross section uncertainty is 2–3%, increasing to 22% for the most forward rapidity bin. The higher uncertainty at forward rapidities is caused by the significant increase in the jet energy and resolution uncertainties, and the more steeply falling p_T spectrum in comparison with the central rapidity region.

The energy offset due to additional interactions in the same bunch crossing (pileup) is small. For the lowest p_T jets considered (74 GeV) the pileup contributes an average of only 0.3% of the energy. This fraction decreases with increasing p_T. Consequently, pileup corrections are not required and the associated uncertainties are negligible. An uncertainty arising from the potential mismodeling of trigger and jet selection requirements is found to be 1%. The unfolding uncertainty due to the initial theoretical model is calculated by testing various models and finding the effect is negligible. The sum in quadrature of all experimental systematic uncertainties in the cross section is, on average, 6% at low rapidities ($|y| < 2.0$) and varies from 10% to 80% at higher rapidities ($2.0 \leq |y| < 3.0$), across the corresponding p_T ranges.

The uncertainty in the theoretical cross section prediction is estimated from the PDF uncertain-
ties, the choice for the factorization and renormalization scales (μ_F and μ_R), and the variation in the modeling of NP corrections. The PDF uncertainty, for all PDF sets except NNPDF3.0, is calculated as the change in the cross section caused by varying decorrelated PDF parameters. The relevant PDF eigenvectors are provided in the PDF sets along with the central values. The uncertainty due to each parameter is determined at 68% confidence level (CL), and the resulting asymmetric uncertainties are combined in quadrature. In the case of NNPDF3.0, the PDF set contains an ensemble of replicas corresponding to one standard deviation in the PDF. The PDF uncertainty is calculated by evaluating the standard deviation in the cross section derived by using different replicas. The uncertainty due to the variation of the value of $\alpha_s(M_Z)$ in the PDF sets is found to be much smaller than other uncertainties (<1%) and is not included. The scale uncertainty is determined by varying the factorization and renormalization scales with respect to the nominal value ($\mu = \text{jet } p_T$) using the following combinations of (μ_F/μ, μ_R/μ) ratios: (0.5, 0.5), (1, 0.5), (0.5, 1), (1, 2), (2, 1), and (2, 2). The largest deviation from the nominal cross section, found separately in each p_T and $|y|$ bin, is taken to represent the scale uncertainty. The scale uncertainty is asymmetric and its distribution is skewed towards lower cross sections. The largest deviation from the average value of the C_{NP} correction factors, which are obtained with the PYTHIA6 and HERWIG++ generators as discussed in Section 5, is used as the measure of the NP modeling uncertainty. It contributes a 2–5.6% uncertainty in the cross section prediction. The uncertainties in the theoretical predictions differ for each PDF set considered, and typically vary in the 10–20% range over most of the kinematic region.

7 Results

The measured inclusive jet cross section and the theoretical predictions are compared in Figs. 1–3. In Fig. 1, the double-differential cross section is plotted as a function of jet p_T and $|y|$. The theoretical prediction obtained with the CT10 PDF set is shown as well. A more detailed comparison for all $|y|$ bins is presented in Fig. 2, where the ratios of data to theory using the CT10 PDF set are shown. Within the uncertainties, the data are well described by NLO QCD in the full kinematic range explored. In Fig. 3, the data are compared in a similar manner to the predictions from other PDF sets, normalized to the CT10 prediction. In general, all predictions describe the data well. Within experimental and theoretical (not shown) uncertainties, only the comparison to the prediction from the ABM11 PDF set exhibits slight differences between the data and theory, an effect that has been observed also in other measurements, e.g. Ref. [4].

8 Summary

A measurement of the double-differential inclusive jet cross section was presented. The data were collected by the CMS detector in pp collisions at $\sqrt{s} = 2.76$ TeV, with an integrated luminosity of 5.43 pb$^{-1}$. The measurement covers the jet kinematic ranges of $74 \leq p_T < 592$ GeV and $|y| < 3.0$.

A detailed study of the experimental and theoretical uncertainties has been performed. Contributions to the experimental systematic uncertainty were evaluated from the jet energy corrections, jet energy resolution, and integrated luminosity. Jet energy corrections dominate the experimental uncertainty, followed by smaller contributions from jet energy resolution and luminosity. The theoretical uncertainty is dominated by the missing higher-order corrections that were estimated by varying the renormalization and factorization scales, and the PDF uncertainty; the contribution of nonperturbative correction uncertainty is small.

The data are corrected for detector resolution and efficiencies. The measured cross sections are
Figure 1: The inclusive jet production cross section, measured at $\sqrt{s} = 2.76$ TeV, shown as a function of jet p_T in six $|y|$ bins, as indicated by different symbols. The statistical (systematic) experimental uncertainties are indicated by vertical error bars (filled bands). The measurements are compared to the NLO QCD prediction using CT10 PDF set. The theoretical uncertainties are represented by hatched bands.

compared to NLO QCD predictions obtained using different PDF sets. These cross section measurements test and confirm the predictions of QCD at $\sqrt{s} = 2.76$ TeV and extend the kinematic range compared to previous studies.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules / CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives / CEA,
Figure 2: The ratio of the measured inclusive jet production cross section (closed symbols) at $\sqrt{s} = 2.76$ TeV to the theoretical prediction using the CT10 PDF set is shown as a function of jet p_T in each measured $|y|$ range with the statistical (vertical error bars) and systematic (solid lines) experimental uncertainties. The total theoretical uncertainties are shown by the dash-dotted lines with the contribution from PDF uncertainties (hatched band).
Figure 3: The same data shown in Fig. 2 are presented showing comparisons to the NLO QCD predictions using a variety of PDFs, which are denoted by different line styles. The uncertainties corresponding to the QCD predictions are not shown. For simplicity, the NP corrections needed for the various QCD predictions have been applied to the data in this figure.
France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation.

Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS program of the National Science Center (Poland); the Compagnia di San Paolo (Torino); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.
References

[1] G. Altarelli and G. Parisi, “Asymptotic freedom in parton language”, Nucl. Phys. B 126 (1977) 298, doi:10.1016/0550-3213(77)90384-4.

[2] V. Gribov and L. Lipatov, “Deep inelastic ep scattering in perturbation theory”, Sov. J. Nucl. Phys. 15 (1972) 438.

[3] Y. L. Dokshitzer, “Calculation of the structure functions for deep inelastic scattering and e+e− annihilation by perturbation theory in quantum chromodynamics”, Sov. Phys. JETP 46 (1977) 641.

[4] CMS Collaboration, “Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at $\sqrt{s} = 7$ TeV”, Eur. Phys. J. C 75 (2015) 288, doi:10.1140/epjc/s10052-015-3499-1, arXiv:1410.6765.

[5] CMS Collaboration, “Measurements of differential jet cross sections in proton-proton collisions at $\sqrt{s} = 7$ TeV with the CMS detector”, Phys. Rev. D 87 (2013) 112002, doi:10.1103/PhysRevD.87.112002, arXiv:1212.6660.

[6] ATLAS Collaboration, “Measurement of inclusive jet and dijet production in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector”, Phys. Rev. D 86 (2012) 014022, doi:10.1103/PhysRevD.86.014022, arXiv:1112.6297.

[7] ATLAS Collaboration, “Measurement of the inclusive jet cross section in pp collisions at $\sqrt{s} = 2.76$ TeV and comparison to the inclusive jet cross section at $\sqrt{s} = 7$ TeV using the ATLAS detector”, Eur. Phys. J. C 73 (2013) 2509, doi:10.1140/epjc/s10052-013-2509-4, arXiv:1304.4739.

[8] ALICE Collaboration, “Measurement of the inclusive differential jet cross section in pp collisions at $\sqrt{s} = 2.76$ TeV”, Phys. Lett. B 722 (2013) 262, doi:10.1016/j.physletb.2013.04.026, arXiv:1301.3475.

[9] UA1 Collaboration, “Hadronic jet production at the CERN proton-antiproton collider”, Phy. Lett. B 132 (1983) 214, doi:10.1016/0370-2693(83)90254-X.

[10] UA1 Collaboration, “Measurement of the inclusive jet cross-section at the CERN pÃ-lbar collider”, Phys. Lett. B 172 (1986) 461, doi:10.1016/0370-2693(86)90290-X.

[11] UA2 Collaboration, “Observation of very large transverse momentum jets at the CERN pÃ-lbar collider”, Phys. Lett. B 118 (1982) 203, doi:10.1016/0370-2693(82)90629-3.

[12] UA2 Collaboration, “Measurement of the \sqrt{s} dependence of jet production at the CERN pp Collider”, Phys. Lett. B 160 (1985) 349, doi:10.1016/0370-2693(85)91341-3.

[13] CDF Collaboration, “Measurement of the inclusive jet cross section using the k_T algorithm in pÃ-lbar collisions at $\sqrt{s} = 1.96$ TeV with the CDF II Detector”, Phys. Rev. D 75 (2007) 092006, doi:10.1103/PhysRevD.75.092006, arXiv:hep-ex/0701051. [Erratum: doi:10.1103/PhysRevD.75.119901].

[14] CDF Collaboration, “Comparison of jet production in pÃ-lbar collisions at $\sqrt{s} = 546$ GeV and 1800 GeV”, Phys. Rev. Lett. 70 (1993) 1376, doi:10.1103/PhysRevLett.70.1376.
[15] D0 Collaboration, “Measurement of the inclusive jet cross section in p\overline{p} collisions at $\sqrt{s} = 1.96$ TeV”, *Phys. Rev. D* **85** (2012) 052006, doi:10.1103/PhysRevD.85.052006, arXiv:1110.3771.

[16] D0 Collaboration, “High-p$_T$ jets in p\overline{p} collisions at $\sqrt{s} = 630$ GeV and 1800 GeV”, *Phys. Rev. D* **64** (2001) 032003, doi:10.1103/PhysRevD.64.032003, arXiv:hep-ex/0012046.

[17] Z. Nagy, “Three-jet cross sections in hadron-hadron collisions at next-to-leading order”, *Phys. Rev. Lett.* **88** (2002) 122003, doi:10.1103/PhysRevLett.88.122003, arXiv:hep-ph/0110315.

[18] Z. Nagy, “Next-to-leading order calculation of three-jet observables in hadron-hadron collisions”, *Phys. Rev. D* **68** (2003) 094002, doi:10.1103/PhysRevD.68.094002, arXiv:hep-ph/0307268.

[19] D. Britzger, K. Rabbertz, F. Stober, and M. Wobisch, “New features in version 2 of the fastNLO project”, (2012). arXiv:1208.3641.

[20] S. Dittmaier, A. Huss, and C. Speckner, “Weak radiative corrections to dijet production at hadron colliders”, *JHEP* **11** (2012) 095, doi:10.1007/JHEP11(2012)095, arXiv:1210.0438.

[21] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[22] CMS Collaboration, “Particle–flow event reconstruction in CMS and performance for jets, taus, and E_T^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009.

[23] CMS Collaboration, “Commissioning of the particle–flow event reconstruction with the first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.

[24] M. Cacciari, G. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, *JHEP* **04** (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[25] M. Cacciari, G. Salam, and G. Soyez, “FastJet user manual”, *Eur. Phys. J. C* **72** (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[26] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, *JINST* **6** (2011) P11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[27] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, *JHEP* **05** (2006) 26, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[28] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[29] R. Field, “Early LHC underlying event data - findings and surprises”, in *22nd Hadron Collider Physics Symposium (HCP 2010)*, W. Trischuk, ed. Toronto, 2010. arXiv:1010.3558.

[30] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, *JHEP* **07** (2002) 012, doi:10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195.
References

[31] R. Field, “Min-bias and the underlying event at the LHC”, (2011). arXiv:1110.5530.

[32] CMS Collaboration, “Jet energy calibration in the 8 TeV pp data”, CMS Physics Analysis Summary CMS-PAS-JME-13-004, 2013.

[33] H. Lai et al., “New parton distributions for collider physics”, Phys. Rev. D 82 (2010) 074024, doi:10.1103/PhysRevD.82.074024, arXiv:1007.2241.

[34] H. Akima, “A new method of interpolation and smooth curve fitting based on local procedures”, J. ACM 17 (1970) 589, doi:10.1145/321607.321609.

[35] G. D’Agostini, “A multidimensional unfolding method based on Bayes’ theorem”, Nucl. Instrum. Meth. A 362 (1995) 487, doi:10.1016/0168-9002(95)00274-X.

[36] T. Adye, “Unfolding algorithms and tests using RooUnfold”, (2011). arXiv:1105.1160.

[37] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, “Parton distributions in the LHC era: MMHT 2014 PDFs”, Eur. Phys. J. C 75 (2015) 204, doi:10.1140/epjc/s10052-015-3397-6, arXiv:1412.3989.

[38] R. Ball et al., “Parton distributions for the LHC run II”, JHEP 04 (2015) 40, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849.

[39] H1 and ZEUS Collaborations, “Combined measurement and QCD analysis of the inclusive e±p scattering cross sections at HERA”, JHEP 01 (2010) 109, doi:10.1007/JHEP01(2010)109, arXiv:0911.0884.

[40] S. Alekhin, J. Blumlein, and S. Moch, “Parton distribution functions and benchmark cross sections at next-to-next-to-leading order”, Phys. Rev. D 86 (2012) 054009, doi:10.1103/PhysRevD.86.054009, arXiv:1202.2281.

[41] M. Bähr et al., “Herwig++ physics and manual”, Eur. Phys. J. C 58 (2008) 639, doi:10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883.

[42] S. Gieseke, C. Röhr, and A. Siödmok, “Colour reconnections in Herwig++”, Eur. Phys. J. C 72 (2012) 2225, doi:10.1140/epjc/s10052-012-2225-5, arXiv:1206.0041.

[43] B. Andersson, “The Lund model”, Nucl. Phys. A 461 (1987) 513, doi:10.1016/0375-9474(87)90510-0.

[44] B. R. Webber, “A QCD model for jet fragmentation including soft gluon Interference”, Nucl. Phys. B 238 (1984) 492, doi:10.1016/0550-3213(84)90333-X.

[45] CMS Collaboration, “Luminosity calibration for the 2013 proton-lead and proton-proton data taking”, CMS Physics Analysis Summary CMS-PAS-LUM-13-002, CERN, 2013.
9 The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der ÖAW, Wien, Austria
W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth\(^1\), V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler\(^1\), V. Knünz, A. König, M. Krammer\(^1\), I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady\(^2\), B. Rahbaran, H. Rohringer, J. Schieck\(^1\), R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz\(^1\)

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, J. Keaveney, S. Lowette, L. Moreels, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
P. Barria, H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, T. Maerschalk, A. Marinov, L. Perniè, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang\(^3\)

Ghent University, Ghent, Belgium
K. Beernaert, L. Benucci, A. Cimmino, S. Cruyc, D. Dobur, A. Fagot, G. Garcia, M. Gul, J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva, M. Sigamani, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi\(^4\), O. Bondu, S. Brochet, G. Bruno, A. Caudron, L. Cear, D. Celaere, D. Favart, L. Forthomme, A. Giammanco\(^5\), A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Mertens, M. Musich, C. Nuttens, L. Perrini, K. Piotrzkowski, A. Popov\(^6\), L. Quertenmont, M. Selvaggi, M. Vidal Marono

Université de Mons, Mons, Belgium
N. Beliy, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, M. Hamer, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\(^7\), A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Szajdor, E.J. Tonelli Manganote\(^7\), A. Vilela Pereira
Universidade Estadual Paulista a, Universidade Federal do ABC b, S˜ao Paulo, Brazil
S. Ahujaa, C.A. Bernardesb, A. De Souza Santosb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona,8, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abad, J.C. Ruiz Vargas

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina9, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, S. Micanovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger10, M. Finger Jr.10

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
E. El-khateeb11,11, T. Elkafrawy11, A. Mohamed12, E. Salama13,11

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Coudenc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri,
The CMS Collaboration

A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.Ö. Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannegel, K.D. Trippkewitz, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, D. Gonzalez, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, D. Nowatschin, J. Ott, F. Pantaleo², T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, D. Rathjens, C. Sander, C. Scharf, P. Schleper, E. Schlieckau, A. Schmidt, S. Schumann, J. Schwandt, V. Sola, H. Stadie, G. Steinbrück, F.M. Stober, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Descroix, A. Dierlamm, S. Fink, F. Freisch, R. Friese, M. Giffels, A. Gilbert, D. Haitz, F. Hartmann², S.M. Heindl, U. Husemann, I. Katkov⁶, A. Kornmayer², P. Lobelle Pardo, B. Maier, H. Milden, M.U. Mozer, T. Müller, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, M. Schöneder, G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wörmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Psallidas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horvath¹⁹, F. Sikler, V. Veszpremi, G. Vesztergombi²⁰, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi²¹, J. Molnar, Z. Szillasi²

University of Debrecen, Debrecen, Hungary
M. Bartók²², A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S. Choudhury²³, P. Mal, K. Mandal, D.K. Sahoo, N. Sahoo, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, J.B. Singh, G. Walia

University of Delhi, Delhi, India
Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma
A. Abdulsalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India
T. Aziz, S. Banerjee, S. Bhowmik, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guhain, A. Gurti, S. Jain, G. Kole, S. Kumar, B. Mahakud, M. Maity, G. Majumder, K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida, T. Sarkar, N. Sur, B. Sutar, N. Wickramage

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, A. Kapoor, K. Kothekar, S. Sharma

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, C. Calabria, C. Caputo, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, G. Maggi, M. Maggi, M. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, L. Silvestris, R. Venditti

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, C. Battilana, A.C. Benvenuti, D. Bonacorsio, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi, R. Travaglini

INFN Sezione di Catania, Università di Catania, Catania, Italy
G. Cappello, M. Chiorboli, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbaglia, V. Ciulli, C. Cividino, R. D’Alessandro, E. Focardi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, L. Viliani

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbrì, D. Piccolo, F. Primavera

INFN Sezione di Genova, Università di Genova, Genova, Italy
V. Calvelli, F. Ferro, M. Lo Vetere, M.R. Monge, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
L. Brianza, M.E. Dinardo, S. Fiorendi, S. Gennai, R. Gerosa, A. Ghezzi, P. Govoni
S. Malvezzia, R.A. Manzonib,c, B. Marzocchib,d, D. Menascea, L. Moronia, M. Paganonib,c, D. Pedринia, S. Ragazzib,c, N. Redaellia, T. Tabarelli de Fatisb,d

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy

S. Buontempoa, N. Cavalloa,c, S. Di Guidald,e, M. Espositoa,b, F. Fabozzic,d, A.O.M. Ioriond,b, G. Lanzaa, L. Listaa, S. Meolaa,d,e, M. Merolaa, P. Paoluccia,2, C. Sciaccada,b, F. Thyssena

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy

P. Azzi,b, N. Bacchettaa, L. Benatoa,b, D. Bissellia,b, A. Boletteia,b, A. Branca,a,b, R. Carlinib,d, P. Checchiia, M. Dall’Ossoa,d,e, T. Dorigoa, F. Fanzagoda, F. Gasparinia,d, U. Gasparinia,b, F. Gonellaa, A. Gozzelinoa, K. Kanišcheva,c, S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,d,b, J. Pazzinin,d,e, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosi,a,b, S. Venturaa, M. Zanetti, P. Zottoa, A. Zucchettaa,b,2

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy

A. Braghieria, A. Magnani,a,b, P. Montagna,a,b, S.P. Rattia,b, V. Rea, C. Riccardia,b, P. Salvini,a, I. Vai,a,b, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy

L. Alunni Solestizia,b, G.M. Bileia, D. Ciangottomia,b, L. Fanob,a, P. Lariccia,a,b, G. Mantovanib, M. Menichelli, A. Saha, A. Santoccia,b,3

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy

K. Androsova,30, P. Azzurri,a, G. Bagliesia, J. Bernardinib, T. Boccali, R. Castaldia, M.A. Cioccia,30, R. Dell’Orsoa, S. Donatoa,c,2, G. Fedi, L. Foa,a,c, A. Giassi, M.T. Grippoa,30, F. Ligabuea,c, T. Lomtadzea, L. Martini,a,b, A. Messineoa,b, F. Palla, A. Rizzia,b, A. Savoy-Navarroa,31, A.T. Serbana, P. Spagnoloca, R. Tchekina, G. Tonelli,a,b, A. Ventura, P.G. Verdinia

INFN Sezione di Roma a, Università di Roma b, Roma, Italy

L. Baronea,b, F. Cavallini, G. D’imperioa,b,2, D. Del Rea,b,2, M. Diemoza, S. Gellia,a, C. Jorda, E. Longoa,b, F. Margaroli,a,b, P. Meridiania, G. Organtinib, R. Paramatti, F. Preia, F. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, P. Traczyka,b,2

INFN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy

N. Amapaneta, R. Arcidiaconoa,c,2, S. Argiroa,b, M. Arneodoa,c, R. Bellana, C. Biinoa, N. Cartiglia, M. Costaa,b, R. Covarelli,a,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b,2, B. Kiana,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoc, E. Monteii,a,b, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccioni, G.L. Pinna Angioni, F. Raveraa,b, A. Romeroa,b, M. Ruspa,c, R. Sacchiia,b, A. Solanaa,b, A. Staianoa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy

S. Belforte, V. Candelises, M. Casarasa, F. Cossutti, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, A. Schizzi, A. Zanetia

Kangwon National University, Chunchon, Korea

A. Kropivnitskaya, S.K. Nam

Kyungpook National University, Daegu, Korea

D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea

J.A. Brochero Cifuentes, H. Kim, T.J. Kim
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
S. Song

Korea University, Seoul, Korea
S. Choi, Y. Go, D. Gyun, B. Hong, H. Kim, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea
H.D. Yoo

University of Seoul, Seoul, Korea
M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu

Seungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali, F. Mohamad Idris, W.A.T. Wan Abdullah, M.N. Yusli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bailkowska, M. Bluji, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, A. Byyszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

Laboratorio de Instrumentacion e Fisica Experimental de Particulas, Lisboa, Portugal
P. Bargassa, C. Beirao Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho,
M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadrucio, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Laney, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
A. Bylinkin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. García-Abia, O. González Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Sastre, L. Sastre, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran
Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrilho, A. Calderon, J.R. Castiñeiras De Saa, P. De Castro Manzano, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, G.M. Berruti, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, R. Castello, G. Cerminara, M. D’Alfonso, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, B. Dorney, T. du Pree, D. Duggan, M. Dünser, N. Dupont, A. Elliott-Peisert, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschmann, M.J. Kortelainen, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, M.T. Lucchini, N. Magini, L. Malgeri, M. Mannelli, A. Martelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, M.V. Nemallapudi, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, D. Piparo, A. Racz, T. Reis, G. Rolandi, M. Rovere, M. Ruan, H. Sakulin, C. Schäfer, C. Schwik, M. Seidel, A. Sharma, P. Silva, M. Simon, P. Sphicas, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Triossi, A. Tsiour, G.I. Veres, N. Wardle, H.K. Wöhr, A. Zagozdzinska, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kottlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomte, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, L. Perrozzi, M. Quittnat, M. Rossini, M. Schönberger, A. Starodumov, M. Takahashi, V.R. Tavolaro, K. Theofilatos, R. Wallny

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amstler, L. Caminada, M.F. Canelli, V. Chiochia, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, F.J. Ronga, D. Salerno, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdynyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, U. Grundler, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Petrakou, J.f. Tsai, Y.M. Tzeng
Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, S. Cerci, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, E. Eskit, F.H. Gecit, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, M. Ozcan, K. Ozdemir, S. Ozturk, A. Polatoz, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, E.A. Yetkin, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen, F.I. Vardarlı

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olatiy, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, D. Futyan, G. Hall, G. Iles, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, A. Richards, A. Rose, C. Seez, A. Tapper, K. Uchida, M. Vazquez Acosta, T. Virdee, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlfs, L. Sulak, D. Zou
Brown University, Providence, USA
J. Alimena, E. Berry, D. Cutts, A. Ferapontov, A. Garabedian, J. Hakala, U. Heintz, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, R. Syarif

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova PANEVA, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Malberti, M. Olmedo Negrete, A. Shrinivas, H. Wei, S. Wimpenny, B. R. Yates

University of California, Santa Barbara, Santa Barbara, USA
J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, M. Derdzinski, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech, C. Welke, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, San Diego, La Jolla, USA
J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, M. Derdzinski, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech, C. Welke, F. Würthwein, A. Yagil, G. Zevi Della Porta

California Institute of Technology, Pasadena, USA
D. Anderson, A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, A. Gaz, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, U. Nauenberg, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, W. Sun, S.M. Tan, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, P. Wittich

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness,
The CMS Collaboration

E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, S.V. Gleyzer, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, P. Milenovic, G. Mitselmakher, D. Rank, R. Rossin, L. Shchutska, M. Snowball, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, H. Kalakhety, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, Z. Wu, M. Zakaria

The University of Iowa, Iowa City, USA
B. Bilki, W. Clarida, K. Dilsiz, S. Durgut, S. Durgut, D.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
I. Anderson, B.A. Barnett, B. Blumenfeld, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, M. Osherson, J. Roskes, A. Sady, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, R.P. Kenny III, D. Majumder, M. Malek, M. Murray, S. Sanders, R. Stringer, Q. Wang

Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA
D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, A. Baty, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulian, Y. Iiyama, G.M. Innocenti, M. Klute,
D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, K. Klapoetke, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, R. Bartek, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, D. Knowlton, I. Kravchenko, F. Meier, J. Monroy, F. Ratnikov, J.E. Siado, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood, J. Zhang

Northwestern University, Evanston, USA
S. Bhattacharya, K.A. Hahn, A. Kubik, J.F. Low, N. Mucia, N. Odell, B. Pollack, M. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, N. Dev, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, W. Ji, T.Y. Ling, B. Liu, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H.W. Wulsin

Princeton University, Princeton, USA
O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, C. Palmer, P. Pirové, H. Saka, D. Stickland, C. Tully, A. Zuranski

University of Puerto Rico, Mayaguez, USA
S. Malik

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, K. Jung, A. Kumar, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak
Rice University, Houston, USA
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, P. Tan, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, USA
J.P. Chou, E. Contreras-Campana, D. Ferencek, Y. Gershtein, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, A. Lath, K. Nash, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
M. Foerster, G. Riley, K. Rose, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali, A. Castaneda Hernandez, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, V. Krutelyov, R. Mueller, I. Osipenkov, Y. Pakhotin, R. Patel, A. Perloff, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gorrula, R. Janjam, W. Johns, C. Maguire, Y. Mao, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, J. Wood, F. Xia

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin - Madison, Madison, WI, USA
D.A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, T. Sarangi, A. Savin, A. Sharma, N. Smith, W.H. Smith, D. Taylor, P. Verwilligen, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
4: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
5: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
6: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
7: Also at Universidade Estadual de Campinas, Campinas, Brazil
8: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
9: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
10: Also at Joint Institute for Nuclear Research, Dubna, Russia
11: Also at Ain Shams University, Cairo, Egypt
12: Also at Zewail City of Science and Technology, Zewail, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Tbilisi State University, Tbilisi, Georgia
16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
17: Also at University of Hamburg, Hamburg, Germany
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at Eötvös Loránd University, Budapest, Hungary
21: Also at University of Debrecen, Debrecen, Hungary
22: Also at Wigner Research Centre for Physics, Budapest, Hungary
23: Also at Indian Institute of Science Education and Research, Bhopal, India
24: Also at University of Visva-Bharati, Santiniketan, India
25: Also at King Abdulaziz University, Jeddah, Saudi Arabia
26: Also at University of Ruhuna, Matara, Sri Lanka
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Purdue University, West Lafayette, USA
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
34: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at California Institute of Technology, Pasadena, USA
40: Also at University of Belgrade, Belgrade, Serbia
41: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
42: Also at National Technical University of Athens, Athens, Greece
43: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
44: Also at National and Kapodistrian University of Athens, Athens, Greece
45: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
46: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
47: Also at Adiyaman University, Adiyaman, Turkey
48: Also at Mersin University, Mersin, Turkey
49: Also at Gaziosmanpasa University, Tokat, Turkey
50: Also at Ozyegin University, Istanbul, Turkey
51: Also at Izmir Institute of Technology, Izmir, Turkey
52: Also at Marmara University, Istanbul, Turkey
53: Also at Kafkas University, Kars, Turkey
56: Also at Istanbul Bilgi University, Istanbul, Turkey
57: Also at Yildiz Technical University, Istanbul, Turkey
58: Also at Hacettepe University, Ankara, Turkey
59: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
60: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
61: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
62: Also at Utah Valley University, Orem, USA
63: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
64: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
65: Also at Argonne National Laboratory, Argonne, USA
66: Also at Erzincan University, Erzincan, Turkey
67: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
68: Also at Texas A&M University at Qatar, Doha, Qatar
69: Also at Kyungpook National University, Daegu, Korea