Draft Genome Sequence of *Bacillus velezensis* Strain Marseille-Q1230, Isolated from a Stool Sample from a Severely Malnourished Child

Salimata Konaté, a,b Rita Zgheib, b,c Aminata Camara, a,b Ogobara Doumbo, d Abdoulaye Djimdé, d Abdoulaye Kassoum Koné, d Mahamadou Ali Théra, d Pierre-Edouard Fournier, c Maryam Tidjani Alou, a Didier Raoult, a,b Matthieu Million a,b

aAix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
bInstitut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
cAix-Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
dMalaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatologie, University of Bamako, Bamako, Mali

ABSTRACT *Bacillus velezensis*, a species first described in 2005, has been mostly associated with plants and the environment. To date, there is no genome available for this species from human samples. In this announcement, we present the genome of *Bacillus velezensis* strain Marseille-Q1230, which was isolated from a stool sample from a child suffering from severe acute malnutrition. The genome assembled into 15 contigs and had a size of 3,861,152 bp, with a GC content of 46.6%. A total of 3,716 protein-coding genes, including 3 antibiotic resistance genes and 92 RNAs, were predicted.

The genus *Bacillus*, a member of the phylum *Firmicutes*, includes more than 200 validly published species (https://lpsn.dsmz.de/genus/bacillus) (1). *Bacillus velezensis* was first isolated by Ruiz-García et al. from the Vélez River in Malaga, Spain (2), and possesses bactericidal (3, 4) and fungicidal (5) abilities, thus promoting plant growth and controlling wheat diseases (6). No previous studies have reported its presence in the human microbiome, as this species has been isolated only from plants or environmental samples (7, 8). Here, we present the genome sequence of a *B. velezensis* strain that was isolated from a human sample collected as part of a childhood malnutrition study in Mali; the study was approved by the Malian ethical committee (approval number 2014/46/CE/FMPOS). More specifically, *B. velezensis* strain Marseille-Q1230 was isolated from the stool of a severely malnourished Malian child <5 years of age using the culturomics approach, which is a high-throughput approach consisting of diversification and multiplication of culture conditions followed by rapid identification by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) (9, 10).

Genomic DNA of strain Marseille-Q1230 was extracted using the EZ1 biorobot (Qiagen) with the EZ1 DNA tissue kit before sequencing using the MiSeq platform (Illumina Inc., San Diego, CA, USA) with the paired-end strategy. The library was prepared following the workflow of the Nextera XT DNA library preparation kit (Illumina) (11). Automated cluster generation and paired-end sequencing with dual index reads were performed in a single 39-hour run (2 × 250 bp); 5.00 Gb of data was obtained from a 521-K/mm² cluster density, with 94.11% of clusters passing the quality control filters. Within this run, the index representation for strain Marseille-Q1230 was assessed as 5.09%. Finally, 10,125,033 paired-end reads were filtered according to read quality using FastQC v0.11.8 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc).

The resulting forward (113,107,188 bases) and reverse (113,148,534 bases) reads were assembled using SPAdes v3.14.0 (12). FastQC and SPAdes were used with default parameters. Strain Marseille-Q1230 was identified after the 16S rRNA gene

Citation Konaté S, Zgheib R, Camara A, Doumbo O, Djimdé A, Koné AK, Théra MA, Fournier P-E, Tidjani Alou M, Raoult D, Million M. 2021. Draft genome sequence of *Bacillus velezensis* strain Marseille-Q1230, isolated from a stool sample from a severely malnourished child. Microbiol Resour Announc 10:e00514-21. https://doi.org/10.1128/MRA.00514-21.

Editor Steven R. Gill, University of Rochester School of Medicine and Dentistry

Copyright © 2021 Konaté et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Matthieu Million, matthieumillion@gmail.com.

Received 18 May 2021
Accepted 28 July 2021
Published 19 August 2021
sequence was extracted from the genome and matched against the GenBank database using BLASTn (accessed 6 August 2020) (13). Strain Marseille-Q1230 exhibited 16S rRNA gene sequence similarity of 99% to multiple species from the *Bacillus subtilis* species complex. Because the 16S rRNA gene sequence failed to discriminate within the aforementioned species complex, we also used OrthoANI v0.93.1 software (14), core genome-based and *rpoB*-based phylogeny (15), and *recQ* sequence identities (determined by local BLASTn v2.9.0) (16). Both *rpoB* and *recQ* genes were extracted from the annotated genomes. All of these methods revealed a close relationship between strain Marseille-Q1230 and *B. velezensis*, as both *recQ* sequence identities and OrthoANI values were higher than the species-delineating thresholds (96.6% for *recQ* and 95% to 96% for OrthoANI) (Table 1 and Fig. 1) (14, 16). Therefore, phylogenetic and genomic analyses identified strain Marseille-Q1230 as *B. velezensis*.

Strain Marseille-Q1230 had a genome size of 3,861,152 bp (*N*\(_{50}\) value of 583,987 bp) assembled into 15 contigs, with a GC content of 46.6% and 29.3% coverage. Annotation with Prokka v1.13 software (17) predicted 3,716 protein-coding genes and 92 RNA genes

Table 1

Strain a	OrthoANI value (%) or *recQ* gene identity (%) b
1	100.00 77.33 70.24 97.82 94.47 77.04 86.42 94.07 99.95 77.26
2	75.64 100.00 71.06 77.09 77.41 87.31 77.83 77.51 77.39 80.57
3	66.29 67.18 100.00 70.43 70.37 70.96 70.54 70.48 70.29 70.75
4	98.54 75.36 66.29 100.00 94.35 77.00 86.47 94.05 97.84 77.08
5	95.28 74.56 66.05 95.17 100.00 77.00 86.11 93.98 94.44 77.45
6	75.99 84.84 67.92 75.75 74.70 100.00 77.46 77.07 77.06 79.56
7	85.69 73.42 67.10 85.35 85.13 76.91 100.00 86.82 86.59 78.39
8	94.94 75.87 65.77 94.44 77.54 75.54 75.69 100.00 94.10 77.32
9	100.00 75.64 66.29 98.54 95.28 75.99 85.69 94.94 100.00 77.37
10	77.02 79.77 67.39 76.80 76.37 77.82 78.37 77.19 77.02 100.00

a Strain 1, *Bacillus velezensis* KCTC 13012T; strain 2, *Bacillus halotolerans* FJAT-2398\(^1\); strain 3, *Bacillus xiamenensis* HYC-10\(^2\); strain 4, *Bacillus velezensis* Marseille-Q1230; strain 5, *Bacillus siamensis* KCTC 13613\(^1\); strain 6, *Bacillus subtilis* NCIB 3610\(^2\); strain 7, *Bacillus nakamurai* NRRL B-41091\(^1\); strain 8, *Bacillus amyloliquefaciens* DSM 7\(^2\); strain 9, *Bacillus velezensis* NRRL B-41580\(^2\); strain 10, *Bacillus atrophaeus* NRRL NR-213\(^3\).

b Pairwise OrthoANI values are shown in the upper half of the table and *recQ* gene identity values in the lower half.

Figure 1

(a) Phylogenetic tree inferred from a comparison of the *rpoB* gene sequences using the maximum likelihood method with 1,000 bootstrap replicates and the Kimura-2 parameter with MEGA X software (19). (b) Core genome-based phylogenetic tree generated from the alignment of 208 core genes for all of the compared strains, including strain Marseille-Q1230 (red). The core gene alignment was generated using Roary v3.13.0 with 80% identity (20). The tree was inferred with FastTree v2.1.10 (21). Genome accession numbers are indicated in parentheses. Type strains are indicated with a superscript T. Numbers at the nodes are bootstrap values. The scale bars indicate 10% sequence divergence.
REFERENCES

1. Parth AC, Sardar Carbase J, Meier-Kolthoff JP, Reimer LC, Göker M. 2020. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612. https://doi.org/10.1099/ijsem.0.004332.

2. Ruiz-García C, Béjar V, Martínez-Checa F, Llamas I, Queseda E. 2005. Bacillus licheniformis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. Int J Syst Evol Microbiol 55:191–195. https://doi.org/10.1099/ijsem.0.03310-0.

3. Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borris R. 2018. Bacillus velezensis F2B42 in 2018: the Gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol 9:2491. https://doi.org/10.3389/fmicb.2018.02491.

4. Yoo Y, Seo D-H, Lee H, Cho E-S, Song N-E, Nam TG, Nam Y-D, Seo M-J. 2020. Pepper bacterial spot control by Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the field in Korea. Int J Syst Evol Microbiol 70:2069–2076. https://doi.org/10.1099/ijsem.0.001463.

5. Wambacq E, Audenaert K, Hofte M, De Saeger S, Haesaert G. 2018. Inhibitory effect of Bacillus velezensis on biofilm formation by Streptococcus mutans. J Biotechnol 298:57–63. https://doi.org/10.1016/j.jbiotec.2019.04.009.

6. Kang X, Zhang W, Cai X, Zhu T, Xue Y, Liu C. 2018. Bacillus velezensis as antagonist towards Penicillium roqueforti s.l. in silage: in vitro, in vivo evaluation, and in vivo evaluation. J Appl Microbiol 125:986–996. https://doi.org/10.1111/jam.13944.

7. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 31:3691–3692. https://doi.org/10.1093/bioinformatics/btu659.

8. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e10821. https://doi.org/10.1371/journal.pone.0010821.

9. Roux J, Lescure F, Taupin J-F, Robert G, Fournier P-E, Raoult D. 2012. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185–1193. https://doi.org/10.1111/1469-0691.12023.

10. Lagier J-C, Dubourg G, Million M, Cadoret F, Billen M, Fenollar F, Levassuer A, Rolain J-M, Fournier P-E, Raoult D. 2018. Culturing the human microbiota and culturomics. Nat Rev Microbiol 16:540–550. https://doi.org/10.1038/s41579-018-0041-0.

11. Anani H, Raoult D, Fournier P-E. 2019. Whole-genome sequence of Haloimonadites lingquangensis strain P8956. Microbiol Resour Announc 8:e00699-19. https://doi.org/10.1128/MRA.00699-19.

12. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prijibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0201.

13. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. https://doi.org/10.1089/10665270075081478.

14. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes PG, et al. 2018. Haloimonadites lingquangensis sp. nov. Genome sequence of Haloimonadites lingquangensis strain P8956. Microbiol Resour Announc 8:e00699-19. https://doi.org/10.1128/MRA.00699-19.

15. Wambacq E, Audenaert K, Hofte M, De Saeger S, Haesaert G. 2018. Inhibitory effect of Bacillus velezensis on biofilm formation by Streptococcus mutans. J Biotechnol 298:57–63. https://doi.org/10.1016/j.jbiotec.2019.04.009.

16. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 31:3691–3692. https://doi.org/10.1093/bioinformatics/btu659.

17. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 31:3691–3692. https://doi.org/10.1093/bioinformatics/btu659.

18. Roux J, Lescure F, Taupin J-F, Robert G, Fournier P-E, Raoult D. 2012. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185–1193. https://doi.org/10.1111/1469-0691.12023.

19. Lagier J-C, Dubourg G, Million M, Cadoret F, Billen M, Fenollar F, Levassuer A, Rolain J-M, Fournier P-E, Raoult D. 2018. Culturing the human microbiota and culturomics. Nat Rev Microbiol 16:540–550. https://doi.org/10.1038/s41579-018-0041-0.

20. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes PG, et al. 2018. Haloimonadites lingquangensis sp. nov. Genome sequence of Haloimonadites lingquangensis strain P8956. Microbiol Resour Announc 8:e00699-19. https://doi.org/10.1128/MRA.00699-19.

21. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. https://doi.org/10.1371/journal.pone.0009490.