Statistics of cluster multiplicity and the nature of ultra high energy cosmic ray sources

Diego Harari, Silvia Mollerach and Esteban Roulet
CONICET, Centro Atómico Bariloche, Avenida Bustillo 9500, Bariloche, 8400, Argentina
E-mail: harari@cab.cnea.gov.ar, mollerach@cab.cnea.gov.ar and roulet@cab.cnea.gov.ar

Received 16 April 2004
Accepted 17 May 2004
Published 27 May 2004
Online at stacks.iop.org/JCAP/2004/i=05/a=010
DOI: 10.1088/1475-7516/2004/05/010

Abstract. We study in detail the properties of clusters of ultra-high energy cosmic ray events, looking in particular to their angular correlation function and the relative frequency of clusters with different multiplicities (e.g. doublets versus triplets or quadruplets), as well as the way in which these quantities should evolve for different ultra-high energy cosmic ray source scenarios as a function of the experimental exposure achieved. We identify some useful tools which can help to characterize the nature of the cosmic ray sources in a more precise way after a modest increase in statistics is achieved in the very near future, even before strong signals from individual sources become eventually observable.

Keywords: cosmic rays, ultra high energy cosmic rays

ArXiv ePrint: astro-ph/0404304
1. Introduction

In spite of the great effort made over the last decades to unravel the origin and nature of the cosmic rays (CRs) at ultra-high energies (UHE), most of the relevant questions related to them still remain unanswered [1]. Certainly, the main obstacle has been the scarcity of data, which is due to the smallness of the fluxes at the highest energies (e.g. $\sim1\text{ km}^{-2}\text{ yr}^{-1}$ for $E>10^{19}\text{ eV}$). The observed isotropy of CRs above the ankle (i.e. for $E>5\times10^{18}\text{ eV}$) suggests that at these energies CRs are of extragalactic origin, but the nature of these particles (whether they are protons, heavier nuclei, photons or even neutrinos with stronger interactions), the nature of their sources (e.g. steady ones such as active galactic nuclei jets, transient ones such as gamma ray burst (GRBs) or diffuse ones such as decaying topological defects) and the mechanism responsible for their acceleration in bottom-up scenarios or production in top-down ones (and hence the original source spectra) are all under strong debate. All these questions are further challenged by the (lack of) observation of the theoretically expected GZK suppression above $\sim6\times10^{19}\text{ eV}$, due to the attenuation that CR protons coming from far away sources should suffer due to their interactions with cosmic microwave background photons (or similarly due to the photodisintegration processes that would affect the propagation of heavier nuclei). Clearly a big boost in our understanding of these issues could be obtained if individual CR sources were identified, and this search is indeed the main purpose of the next generation of observatories, such as the Pierre Auger one now under completion.

There has been a lot of discussion during recent years about possible hints in the existing data of an excess of clustering in the highest energy range ($E>4\times10^{19}\text{ eV}$), that could be already indicating the possible emergence of the first strong CR sources out of a more diffuse background of unresolved sources. This excess clustering (with respect to the expectations from chance coincidences of an isotropic distribution) has been observed by the AGASA group [2] (which detected four doublets and one triplet within 2.5°, out of
Statistics of cluster multiplicity and the nature of UHE cosmic ray sources

a total of 57 events\(^1\)) and also in a combined analysis of data from several experiments \(^3\) (Yakutsk, Haverah Park, AGASA and Volcano Ranch, which obtained eight doublets and two triplets within 4\(^\circ\) out of a total of 92 events), although it does not seem to be present in Fly’s Eye or Hi Res data \(^4\).

In this work we will study in detail the properties of the event clusters expected in different scenarios of UHECR sources, with the aim of devising the most appropriate tools to discriminate among them. The results we obtain suggest that a modest increase in the present statistics (as could be achieved after one year of Auger observations) will allow us to significantly clarify the existing debate, even before any strong (and hence unambiguous) signal from an individual CR source is observed.

2. Clusters from chance coincidences

Before considering the possibility that the clusters are due to strong CR sources with large enough fluxes so as to have induced more than one event with the present experimental exposures, it is important to consider the expected clustering signal from just chance coincidences in the limit in which all events observed were produced by independent sources, which are too weak to produce by themselves an individual cluster (i.e., considering that there is a very large number of sources, all with a small chance of producing even a single event in the present experiments). As we show below, this probability depends strongly on the way the sources are distributed across the sky, and so we start with the simplest case of an isotropic distribution.

2.1. Isotropic sources

A commonly adopted measure of a clustering signal is obtained from the study of the angular correlation of pairs, \(dN_p/d\theta\), which gives the number of event pairs with angular separation between \(\theta\) and \(\theta + d\theta\) expected from a total number \(n\) of events. In the case of an isotropic distribution, for a surface detector with uniform exposure in right ascension \(\alpha\) (as resulting after several years of continuous running) and relative exposure in declination \(\omega(\delta)\), it can be written as

\[
\frac{dN_p}{d\theta} \propto \sin \theta \int d\Omega_1 \int d\Omega_2 \omega(\delta_1)\omega(\delta_2) \delta(\hat{\Omega}_1 \cdot \hat{\Omega}_2 - \cos \theta),
\]

(1)

where \(d\Omega_i = \cos \delta_i d\delta_i d\alpha_i\) and \(\delta_i\) has to be integrated over the declinations observable to the experiment. The normalization is such that the total number of pairs (i.e. integrating over \(\theta\)) is just \(n(n - 1)/2\).

The function \(\omega(\delta)\) takes into account the declination dependence of the exposure of the experiment under consideration, and for a surface detector\(^2\) is given by \(^5\)

\[
\omega(\delta) \propto \cos b_0 \cos \delta \sin \alpha_m + \alpha_m \sin b_0 \sin \delta,
\]

(2)

\(^1\) We are not including in our discussion one event with energy slightly below \(4 \times 10^{19}\) eV, included by AGASA because it lead to an extra doublet.

\(^2\) For the air-fluorescence technique the exposure is more uniform in declination, but has also a dependence on right ascension (see e.g. \(^4\)).
where \(b_0 \) is the latitude of the experiment (e.g. \(b_0 = 35.8^\circ \) for AGASA) and

\[
\alpha_m = \begin{cases}
0 & \xi > 1 \\
a \cos \xi & -1 \leq \xi \leq 1 \\
\pi & \xi < -1
\end{cases}
\]

with \(\theta_m \) the maximum zenith angle of the CR showers considered (\(\theta_m = 45^\circ \) for the AGASA sample).

Potential point sources of UHECRs should manifest themselves through a significant enhancement above random expectations of the correlation function at values around and below the angular reconstruction accuracy. Energy-dependent deflections of CR trajectories by intervening magnetic fields may disperse the arrival directions, and thus clustering signals may be spread over larger angular scales. It thus proves convenient to analyse the integrated correlation function

\[
N_p(<\theta) = \int_0^\theta d\theta' dN_p/d\theta',
\]

which is simply the total number of event pairs which are separated by an angle smaller than \(\theta \) (albeit the most common practice is to look instead at the distribution \(dN_p/d\theta \)). The number of pairs at angles smaller than \(\theta \) is plotted in the upper panel in figure 1, for a total number of 57 events and for the AGASA exposure, and is compared with the AGASA data. The solid curve follows the mean value of 10 000 simulated isotropic random realizations. The error bars contain 95% of the results in the random realizations at each angular scale (the larger and smaller 2.5% portions were discarded). The points are the AGASA data. An excess of pairs with respect to random expectations is apparent at small angles (\(\theta < \) few degrees), which is related to the observation of four doublets and one triplet (corresponding to three additional pairs) at separations smaller than 2.5° in the AGASA data, while on average 1.45 doublets would be expected. The probability of getting seven or more pairs at \(\theta < 2.5^\circ \) in the random realizations is \(\sim 1.5 \times 10^{-3} \).

The angular correlation of pairs is the lowest order of a hierarchy of correlation functions. Additional information on the clustering process is encoded, for instance, in the distribution of clusters with different multiplicities. The middle and lower panels in figure 1 plot respectively the mean number of doublets, \(N_2(<\theta) \), and triplets, \(N_3(<\theta) \), in random realizations of 57 events with the AGASA exposure, compared with the AGASA data. The excess clustering at small angular scales in AGASA data is noticeable. The probability of forming four doublets at angular scales below 2.5° is \(\sim 0.06 \), and the probability of forming one triplet by chance is \(\sim 0.016 \). The probability of forming four doublets and one triplet is of course even smaller than that of forming seven pairs, and is of order \(\sim 9 \times 10^{-4} \).

Notice that while the number of event pairs in AGASA data shows no significant departures from isotropic expectations at angular scales larger than a few degrees, their distribution in clusters of different multiplicities deviates noticeably from the mean at angular scales roughly between 9° and 14°. The number of doublets is in deficiency and the number of triplets is in excess with respect to random isotropic realizations, at a probability level comparable to the small angular scale clustering signal. Spreading of arrival directions from point UHECR sources by magnetic fields and structure in their spatial distribution are among conceivable causes of such departures. We will come back

\[3\] The significance of these probabilities is a matter of debate [6]–[8], given its dependence on the size of the angular bin and the energy threshold.
Figure 1. Number of pairs (upper panel), doublets (middle) and triplets (lower) separated by an angle smaller than or equal to θ. The solid curves follow the mean of 10,000 random realizations of 57 events isotropically distributed with AGASA’s exposure. Error bars contain 95% of the results in the simulations. Points correspond to AGASA data above 4×10^{19} eV. Significant departures of the data from random expectations are apparent at angular scales smaller than a few degrees in all three plots, as well as at scales between 9° and 14° in the distribution of doublets and triplets (but not in the number of pairs).

One can get a feeling about the number of clusters expected for different multiplicities by considering the following simplified model to describe the way clusters are produced by chance coincidences of random isotropic data (a similar approach was adopted in [9] to obtain the probabilities for observations of different numbers of clusters). Let us first ignore the possible effects of a non-uniform exposure, and let us divide the total solid angle Ω monitored by the experiment ($\Omega \simeq 7.2$ sr for AGASA when $\theta_{\text{max}} = 45^\circ$ is considered, i.e. the solid angle encompassed between $\delta = b_0 - \theta_{\text{max}} \simeq -10^\circ$ and
Statistics of cluster multiplicity and the nature of UHE cosmic ray sources

\[b_0 + \theta_{\text{max}} \simeq 80^\circ \] into \(N \) solid angle bins of characteristic size \(\Delta \Omega \simeq \pi \theta^2 \), so that \(N \simeq \Omega/\Delta \Omega \simeq 1050 \, (\Omega/2\pi)(2.5^\circ/\theta)^2 \) for small angles\(^4\). Now, we start adding events up to a total number \(n \) (\(n = 57 \) for the published AGASA data to which we want to compare), assuming that each event has the same probability \((p = 1/N) \) of falling into any of the independent solid angle bins. When two events fall into the same bin, this will then produce a doublet with characteristic separation smaller than \(\theta \). It is then simple to show that the average numbers of clusters \(\overline{N}_m(n) \) with a given multiplicity \(m \) (e.g. \(m = 2 \) for doublets, etc) after observing \(n \) events satisfy
\[\overline{N}_m(n + 1) = (1 - p) \overline{N}_m(n) + p \overline{N}_{m-1}(n) \] (4)
and hence they are just given by a binomial distribution
\[\overline{N}_m(n) = \binom{n}{m} p^{m-1}(1 - p)^{n-m}. \] (5)

In particular, one has
\[\overline{N}_1(n) = n \left(1 - \frac{1}{N}\right)^{n-1} \simeq n \exp(-n/N) \] (6)
\[\overline{N}_2(n) = \frac{n(n-1)}{2N} \left(1 - \frac{1}{N}\right)^{n-2} \simeq \frac{n^2}{2N} \exp(-n/N) \] (7)
\[\overline{N}_3(n) = \frac{n(n-1)(n-2)}{6N^2} \left(1 - \frac{1}{N}\right)^{n-3} \simeq \frac{n^3}{6N^2} \exp(-n/N) \] (8)
where the right-most expressions hold for \(n \gg 1 \). The exponential factors are actually only relevant when the total number of events becomes of the order of the number of available solid angle bins, since in this case most of the events appear in clusters and the multiplicity of the bins rapidly grows, suppressing the number of low multiplicity clusters. Clearly, by the time this happens at small angular scales, the discussion here will be redundant since already the statistics would have become large enough to allow the origin of the observed clustering to be clarified, and hence we will focus the discussion here mainly on the situation in which \(n \ll N \). In this case we see that the number of pairs grows quadratically with the number of events observed (and hence with the experimental exposure), the number of triplets grows as the third power and so on, as expected. On the other hand, the ratio between the number of triplets and doublets is \(\overline{N}_3(n)/\overline{N}_2(n) \simeq n/3N \), and is hence very small as long as \(n \ll N \), as should be the case at present for AGASA.

Hence, a generic prediction of clustering at small angular scales by chance coincidences of an isotropic distribution is that one expects first to see a growing number of doublets \((\propto E^2\), where \(E \) is the exposure achieved, and of course one expects \(n \propto E \)) with no clusters of higher multiplicities (except for very unlikely fluctuations). Then, when the total number of events becomes \(~(6N^2)^{1/3} \), triplets start to appear with a faster rate of growth \((\propto E^3\). When this happens the number of doublets is typically \(\overline{N}_2 \simeq N^{1/3} \), which is already not a small number. We see then that it is not only surprising to have four doublets in the AGASA data when \(1.5 \) \((~57^2/2000) \) were expected, but it is probably

\(^4\) \(N = (\Omega/2\pi)/(1 - \cos \theta) \) when \(\theta \) is not small enough.
even more surprising to have observed a triplet out of only 57 events. As an example, we show in figure 2 the average results obtained from many random isotropic realizations, taking into account a declination-dependent exposure such as that of AGASA, and plot the resulting number of pairs, doublets, triplets and quadruplets obtained (for $\theta < 2.5^\circ$) as a function of the number of events (solid curves). The main features just mentioned that result from the simple model (dashed curves) are clearly apparent.

The simple model predicts a smaller number of doublets with respect to the Monte Carlo results, what can be understood because the model with solid angle bins requires that each event be assigned to a unique cluster, and thus does not include properly all possible configurations. Consider as an example the case of three events aligned that lead to two doublets but not a triplet5. In this case, one of the events participates in two different doublets, but clearly no event can fall in two different angular bins simultaneously. The simple model also predicts an excess (at relatively small n) of triplets and quadruplets with respect to the Monte Carlo results. This can be understood because once two events are separated by an angle $< \theta$, to form a triplet the third event has to fall within a solid angle smaller, on average, than $\pi \theta^2$. Hence, the effective number of bins that define the probability of higher multiplicity clusters is larger than the value of N used to calculate the probability of forming doublets. At larger n, when clusters of multiplicity $m + 1$ start to form, the simple model predicts instead a defect of clusters of multiplicity m, for reasons analogous to those that explain the defect in doublets. Notice that this should

5 Alignment of events can be caused by energy-dependent deflections in magnetic fields, which makes it even more relevant to properly discriminate such a clustering signal.
also affect the probabilities obtained in [9]. The limitations of the simple model appear at smaller values of the number of events n when larger angular separations are considered, since the number of bins N becomes significantly smaller.

Another property of the multiplets that result from chance coincidences of an isotropic distribution is that, once we take into account that the relative exposure is proportional to $\omega(\delta)$, and hence that the number of observed events should follow $dn/d\delta \propto \omega(\delta) \cos \delta$ (with the $\cos \delta$ factor just from the solid angle associated to δ), the distribution of event pairs on the sky should be proportional to $dN_p \propto \omega(\delta)^2 \cos \delta d\delta$, and similarly the number of triplets (including those in quadruplets and higher multiplets) should behave as $dN_t \propto \omega(\delta)^3 \cos \delta d\delta$, and so on. Hence, the high multiplicity clusters should appear more significantly concentrated at declinations close to the latitude of the experiment, where $\omega(\delta)$ is maximal. This also implies that taking into account the declination dependence of the exposure will slightly enhance the ratio N_3/N_2 (as well as the value of N_2 itself) with respect to the estimates made neglecting $\omega(\delta)$. We show in figure 3 the observed distribution (solid histogram) of events and of event pairs (dashed histogram) in AGASA data, together with the expectations from chance coincidences out of an isotropic distribution. It is clear that, although the angular distributions are consistent with the hypothesis of isotropic sources, there is an overall excess in the number of pairs with respect to expectations from chance coincidences.

2.2. Inhomogeneous source distribution

As is well known, the matter distribution in the local Universe is rather inhomogeneous, specially if we consider the neighbourhood where trans-GZK events may originate.
(distances < 100 Mpc). In this region indeed large voids are found, and most of the galaxies are distributed on large scale structures such as the great attractor, the supergalactic plane etc, which only cover a relatively small fraction of the sky (see e.g. figure 10 in [1]). If UHECR sources were to follow a similar distribution, this could have a significant impact on the statistics of the clustering produced by chance overlaps among different sources. For instance, if the sources were distributed uniformly over the sky but ‘avoiding voids’, so that the effective solid angle where sources can be found is smaller than Ω, one could repeat the reasoning of the previous section and find similar expressions but now with a smaller number \(N' \) of solid angle bins where clusters could be formed. More generally, if we substitute in the expressions of the previous section \(n/Ω \equiv ρ \), which would be the density of events per unit solid angle, it is clear that in the limit in which \(ρΔΩ \ll 1 \) the generalization of the expression for the number of doublets for the case in which the density of sources is not uniform becomes

\[
N_2(n) \simeq \frac{ΔΩ}{2} \int dΩ \rho^2
\]

If we now define the average density of events as

\[
\bar{ρ} = \frac{1}{Ω} \int dΩ ρ
\]

we obtain

\[
\overline{N}_2(n) \simeq \overline{N}_{2iso}(n)\langle(ρ/\bar{ρ})^2\rangle,
\]

where

\[
\overline{N}_{2iso}(n) = \frac{ΔΩ}{2} \bar{ρ}^2Ω
\]

is the average number of doublets expected from an isotropic distribution (the \(\overline{N}_2 \) computed in the previous section), while

\[
\langle(ρ/\bar{ρ})^2\rangle \equiv \frac{1}{Ω} \int dΩ (ρ/\bar{ρ})^2
\]

is a quantity bigger than unity. If one assumes that the distribution of UHECR sources somehow follows the distribution of visible matter, one expects that if the sources are indeed nearby (at least for trans-GZK events) there should be a significant non-uniformity in the arrival directions of the observed events, probably leaving void regions in the sky and with the events finally falling, once larger statistics will be attained, along large scale structures reminiscent of strips across the sky (at these energies, deflections due to magnetic fields are not expected to be large, at least for CR protons). Notice that, due to the limited statistics accumulated so far, such a picture is not inconsistent with current observations.

As a simple example, suppose that only a fraction \(ξ \) of the observed sky has a uniform distribution of sources, while the rest consists of void regions. This would lead to \(ρ = \bar{ρ}/ξ \) in the regions with sources and hence \(\langle(ρ/\bar{ρ})^2\rangle = 1/ξ \), which shows that a significant enhancement in the number of pairs can be achieved by distributing the sources anisotropically. This is understood since in the higher density regions the probability of forming a doublet by chance coincidences is greatly enhanced (\(\propto ρ^2 \)). An enhancement in the number of doublets was indeed reported in numerical simulations with
a structured source distribution \[10\]. An even more pronounced effect should also result for the probability of formation of triplets, which can similarly be shown to behave as
\[
N_3(n) \approx N_3^{iso}(n)((\rho/\bar{\rho})^3).
\] (14)

3. Clustering from individual sources

The alternative explanation that has been suggested for the observed clustering is that the events in each multiplet originated in the same sources, so that the doublets and triplets observed would correspond to the first manifestations of the brightest sources in the sky. In this scenario, the clusters produced by chance coincidences discussed in the previous section would just be a background for the signal searched, and the excess observed should be attributed to individual sources.

Given a source with a certain flux \(F\) (for energies above some specified threshold), the probability that it gives rise to a certain number \(m\) of events follows a Poissonian distribution \[11\]
\[
P_m(F) = \frac{m^m}{m!} e^{-m}
\] (15)
where the mean multiplicity is \(m = FE\), with \(E\) being the experimental exposure towards the direction of the source (for definiteness we will assume that the exposure is uniform over the whole sky, and just comment later on the effects of non-uniform exposures).

Hence, if \(dn_s/dF\) denotes the number density of sources leading to a flux between \(F\) and \(F + dF\), the average number of multiplets expected will be \[12\]
\[
N_m = \int_0^\infty dF \frac{dn_s}{dF} P_m(F).
\] (16)

On the other hand, the probability of finding \(k\) clusters of multiplicity \(m\) will also be Poisson distributed, i.e.
\[
P_m(k) = \frac{N_m^k}{k!} e^{-N_m}.
\] (17)

Regarding the source distribution function, the simplest situation would be to assume a uniform distribution of sources with similar intrinsic CR luminosities \(L\). In this case, if we further neglect for simplicity the effects of energy losses, the sources leading to a flux larger than \(F\) would just be those at a distance closer than \(d = \sqrt{L/4\pi F}\), which gives
\[
n_s(>F) = \frac{4}{3} \pi \rho_s \left(\frac{L}{4\pi F} \right)^{3/2},
\] (18)
with \(\rho_s\) the source volume density. Hence, in this case one finds
\[
\frac{dn_s}{dF} \propto F^{-5/2}.
\] (19)

Notice that this power law behaviour would lead to a divergent total flux if extrapolated down to very small fluxes (this is nothing else than Olber’s paradox), and it is clear that CR attenuation during propagation as well as the effects of the universe expansion and source evolution will ultimately smooth out the faint end of the source distribution. The simplest way to cure this is to just introduce a lower cut-off flux \(F_{\text{min}}\).
Statistics of cluster multiplicity and the nature of UHE cosmic ray sources

below which no sources contribute, and since we are mainly interested on the effects of the bright end of the distribution, our main conclusions will be independent of the particular way in which this cut-off is handled.

Another simple scenario which has been considered is that the CR sources are transient, as in the models of acceleration during GRBs. In this case, due to the energy-dependent time delays $\tau(E,d)$ suffered by CRs after traversing a distance d across a magnetized universe, a bursting source will be seen (neglecting energy losses and strong lensing effects) as a monochromatic flux at the observer, with an energy slowly decreasing with time but on a scale typically much longer than the duration of the experiments [13]. However, stochastic energy losses during CR propagation introduce a spread in time delays $\Delta \tau(d,E)$ which leads to the observation of CRs with a certain spread of energies at any given time, with $\Delta E/E \sim \Delta \tau/\tau$. Moreover, when strong magnetic lensing effects are present, so that a CR source is actually observed as a very large number of multiple images associated with different alternative paths from the source to the observer, this also introduces a spread in the energies of the particles observed at any given time. There are two ways in which these processes affect the number of sources above a given flux which can be observed at any given moment. First, the longer the spread in time delays, the more likely it becomes for a source to contribute to the CR fluxes during the period of observation; however, since the CRs produced in the burst will spread over a longer time interval, the flux will be more suppressed than the naive d^{-2} behaviour. As argued in [13], one expects $\Delta \tau \propto \tau \propto (d/E)^2$, and hence one has that $F \propto 1/(d^2 \Delta \tau) \propto d^{-4}$. Hence, the number of sources above a certain flux (i.e. within an associated distance $d \propto F^{-1/4}$) will be [13]

$$n_s(>F,E) \propto \frac{4}{3} \pi d^3 \Delta \tau \propto F^{-5/4}. \quad (20)$$

This gives a differential source density

$$\frac{dn_s}{dF} \propto F^{-9/4}. \quad (21)$$

In view of the previous results, we may then parametrize the source distribution with a simple power law

$$\frac{dn_s}{dF} = \frac{\alpha N_s}{F_{\text{min}}} \left(\frac{F_{\text{min}}}{F} \right)^{\alpha+1}, \quad (22)$$

with a lower cut-off at the minimum flux F_{min} and where N_s is the total number of sources above F_{min}. For the steady source model one has $\alpha = 3/2$ while for the bursting scenario $\alpha = 5/4$. For these simple scenarios one obtains, from equations (16) and (17), an expected average number of multiplets

$$\overline{N}_m = \frac{\alpha N_s}{m! \Gamma(m-\alpha, F_{\text{min}}E)}(F_{\text{min}}E)^\alpha \quad (23)$$

with $\Gamma(x,y)$ the incomplete gamma function. Since we are interested in cases where $1 < \alpha < 2$, one finds that as long as $E \ll F_{\text{min}}^{-1}$ (i.e. the faint sources have a small probability of leading to one event) the expected average number of event clusters (with $m \geq 2$) will have very little sensitivity to the second argument of the gamma function, leading to $\overline{N}_m \propto E^\alpha \Gamma(m-\alpha)/m!$, while the number of single events (not in clusters) does

\footnote{For transient sources, the flux should be considered in a given energy bin around E [13].}
Statistics of cluster multiplicity and the nature of UHE cosmic ray sources depend on the faint end of the source distribution\(^7\), having the approximate behaviour \(N_1 \simeq \alpha N_s E_{\text{min}} / (\alpha - 1)\). Clearly, these approximate behaviours cease to be valid when \(E \simeq F_{\text{min}}^{-1}\), but before that happens (as should be the case anyway for the next few years) one has that while the average number of individual events (which will be the majority) should grow approximately like \(E\), the number of clusters grows at a faster rate \(N_m \propto E^\alpha\). Of course the total number of events is expected to grow strictly proportionally to the exposure, as results from equation (16), since \(n \equiv \sum m N_m = F_{\text{tot}} E\), with \(F_{\text{tot}}\) the total flux. The fraction of events which are in multiplets (neglecting here chance coincidences) hence grows, as long as \(E \ll F_{\text{min}}^{-1}\), as \(E^{\alpha - 1}\).

It is also interesting to compute the ratio of expected number of clusters with different multiplicities,

\[
\frac{N_l}{N_m} \simeq \frac{m! \Gamma(l - \alpha)}{l! \Gamma(m - \alpha)} \quad (l, m \geq 2),
\]

and in particular for \(l = m + 1\) one obtains

\[
\frac{N_{m+1}}{N_m} \simeq \frac{(m - \alpha)}{(m + 1)} \quad (m \geq 2). \tag{25}
\]

Another related result is that

\[
\frac{\sum_{m=3}^{\infty} \frac{N_m}{N_2}}{N_2} \simeq \sum_{m=3}^{\infty} \prod_{l=3}^{m} \frac{(l - 1 - \alpha)}{l}. \tag{26}
\]

Notice that these ratios are independent of the total number of events \(\pi\), in contrast to the case of chance coincidences. On the other hand, the dependence on the distribution of the source fluxes is rather noticeable; for instance, for \(\alpha = 3/2\) the ratio in equation (26) is 0.33, while for \(\alpha = 5/4\) it becomes instead 0.60.

All these statistical quantities do not depend on whether the angular distribution of sources in the sky is isotropic or structured, as long as the average radial distribution does not differ much from uniformity. Of course fluctuations would affect these average behaviours, and they could come from a spread in the source luminosities, which could be either intrinsic or caused by magnetic lensing effects [17] (this could typically produce some clusters of larger than expected multiplicities), from fluctuations in the radial source density distribution, from small statistics, etc.

Regarding the effects of varying exposures, it is clear that in the regions of larger exposures the sources are expected to yield clusters of larger multiplicities on average, so that one expects that with large statistics, a uniform distribution of sources would lead to an average multiplicity varying as \(\omega(\delta)^\alpha\). On the other hand, the number of clusters (with multiplicities \(m \geq 2\), i.e. \(N_{\text{cl}} = \sum_{m \geq 2} N_m\), should follow the distribution \(\omega(\delta)^\alpha \cos \delta \, d\delta\). The expected shapes of these distributions for \(\alpha = 3/2\) are displayed in figure 4. We also included in the figure the histograms corresponding to the five clusters observed by AGASA, just for illustrative purposes. Clearly the statistics is still too scarce

\(^7\) Since our treatment of the faint end has been rather crude, one should not use statistics such as the number of single versus double events to get information on the number of sources contributing, and in this respect the parameter \(N_s\) just comes out as a normalization constant. An estimate of the number of sources producing CRs depends sensitively on the way the faint end is handled, and will require other general features of the CR sources, such as the luminosity distribution, to be understood as well [12], [14]–[16].
to draw any conclusion, but with more data this comparison could provide a useful check of the scenario with strong sources.

Notice that the total number of events (in clusters or not) should follow $dn \propto \omega(\delta) \cos \delta d\delta$ if the source distribution is isotropic, so that a deviation from this behaviour would be a clear signal of anisotropies, no matter what is the underlying reason for the clustering observed (i.e. chance coincidences versus strong sources).

4. Nearest neighbour distribution

Up to now we have discussed in detail the properties of the distribution of multiplets in the different possible clustering scenarios. One of the main criticisms of the statistics discussed has been the dependence on the angular binning of the data, as the results depend on its choice. We will discuss now another statistics to analyse small scale clustering, the frequency distribution of the angular distance to the nearest neighbours of each event, which avoids this problem\(^8\). Each event has a first, a second, and so on, nearest neighbour event, and the idea is to look at the distribution of their distances. This statistics has some advantages over the autocorrelation function of pairs when studying non-linear clustering, as it depends on the correlation functions of all orders. This is because the probability of finding no events at a distance smaller than a given angle depends on the correlation functions of all orders. This method has been used for example by Bahcall and Soneira to study the distribution of stars and the fraction of binaries and triples \cite{18}.

\(^8\) The dependence on the energy threshold adopted however still remains if this is not specified \textit{a priori}.
Figure 5. Cumulative distribution of the distance to the first (solid histogram) and second (dotted histogram) neighbour of the 57 AGASA events above 4×10^{19} eV. The dashed and dashed–dotted curves are the mean distributions for 10,000 random realizations of 57 events with AGASA exposure.

The cumulative distributions of the distances to the first and second neighbours for the 57 events of AGASA as a function of the angular distance are shown in the solid histogram of figure 5. The expected distribution for a sample of random points in the sphere has been computed by Scott and Stout [19]. However, in order to compare with the distribution of the AGASA data we have to take into account the incomplete sky coverage and inhomogeneous exposure. Thus, we used instead the results of 10,000 simulations of 57 random events with the AGASA exposure, the mean of which is shown in figure 5 (dashed curve). The AGASA distribution shows an excess of first neighbours at small angles, with a maximal departure at 2.5°, with the excess disappearing at angles slightly larger than 5°. This excess is clearly related to the excess of doublets and triplets at small angles discussed before. The cumulative histogram of the second neighbours (dotted histogram) also shows an extended excess with respect to random expectations (dash–dotted curve) from angles around 2.5° up to 15°, with a maximal deviation at 11°.

In order to have a measure of the significance of the first and second neighbour excesses, the natural choice would be to perform a Kolmogorov–Smirnov test. However, a necessary condition for this test is that the data be all independent, and the nearest neighbour separations between events are not independent variables (since often the nearest neighbour of an event has as nearest neighbour that event). Thus, we determine the significance of a given deviation D of the cumulative histogram from that expected from a random sample of the same number of events using Monte Carlo simulations and look for the fraction of the simulations with a deviation from the mean larger than the observed D. The first neighbour distribution shows a maximum deviation from the mean of the random simulations $D = 0.146$, with 6% of the simulations having larger deviations.
Statistics of cluster multiplicity and the nature of UHE cosmic ray sources

at any angle, while the second neighbour curve maximum deviation is $D = 0.246$, with 0.8% of the simulations showing larger deviations.

We have also checked the deviation of the mean angular separations to the first and second neighbours of the data from that expected for a random sample. While the AGASA data have first neighbour mean distance $\langle \theta_1 \rangle_{\text{AG}} = 9.66^\circ$, the mean for a random sample is $\langle \theta_1 \rangle_{\text{ran}} = 10.18^\circ$, with 25% of the simulations having values smaller than the AGASA one. For the second neighbours we find $\langle \theta_2 \rangle_{\text{AG}} = 13.57^\circ$, while $\langle \theta_2 \rangle_{\text{ran}} = 15.35^\circ$, with only 2.3% of the simulations having values smaller than AGASA’s mean value.

Let us note that the maximum deviation of the second neighbour distance cumulative distribution, that takes place at $\theta \simeq 11^\circ$, reflects the clustering at all smaller scales. In particular, the effect of the triplet is clearly seen in the rise of the histogram at 2.5°, which produces a shift in the whole curve. Also the excess of doublets at small angles is expected to affect the second neighbour distance distribution: the events entering the doublets will have their second neighbours at the mean distance at which singlets have their first neighbours. Then, we may ask whether the whole deviation of the second neighbours at 11° can be explained as a result of the excess of small scale clustering (triplet and doublets). To answer this, we performed a similar analysis, comparing the data with 10 000 simulations of 57 events, 53 of which are randomly thrown with the AGASA exposure, and the rest are forced to form a triplet and two doublets within 2.5° with some of the other events (chance alignments of random points are expected to produce 1.5 additional doublets on average at 2.5°). The resulting cumulative distributions for the first and second neighbour distances are shown in figure 6. The first neighbour distribution of the AGASA data is now in good agreement with the result of the simulations, as well as the small angle part of the second neighbour distribution. There remains however a deviation of this distribution with a maximum distance $D = 0.187$ at 11°, with 7.6% of the

Figure 6. The same as figure 5, but now the simulations have 53 events randomly thrown with AGASA exposure, and the remaining four events are forced to form one triplet and two doublets within 2.5° of the rest.
5. Discussion

We have seen that the statistics of clusters of events with different multiplicities is a very useful tool that may help characterize the nature of UHECR sources. We have analysed the way in which the relative number of clusters with different multiplicities, their change with increasing exposure, and their distribution with declination can help discriminate among alternative source scenarios. In particular, one of the most striking differences between the individual sources and chance coincidence scenarios for clustering is the expected hierarchy of the number of clusters with different multiplicities. For example, the ratio between the number of triplets or higher multiplets and doublets is \(\sim 1/3 \) for the steady source model (or 0.6 for the bursting one), while it is only \(\sim n/3N \) for the chance coincidences, where \(N \sim 10^3 (2.5^\circ/\theta)^2 \). If the clusters are dominated by individual sources, we see that with significant statistics this may even give a handle to discriminate between bursting and steady source scenarios. Moreover, the evolution of this ratio (which is proportional to the exposure for chance coincidences, while independent of it for individual sources) will give a further tool to discriminate among scenarios. On the other hand, the relative fraction of events in clusters (with respect to the unclustered ones) is only \(\sim n/2N \) for the chance coincidences of an isotropic distribution, but could be significantly enhanced if the distribution of sources is anisotropic. This should however be testable by studying the overall event distribution once higher statistics are achieved. In the case of clusters produced by individual sources, this fraction instead depends sensitively on the number of very faint sources present.

We have applied our analysis to the published set of 57 AGASA events above \(4 \times 10^{19} \) eV just for illustrative purposes, since it is clearly insufficient to draw definitive conclusions. Nevertheless, our results indicate that a modest increase in the number of events may already give much stronger hints about the source properties. In this respect, even the release of the latest AGASA data, which represents a 50% increase with respect to the published data, could have some impact. For instance, it would be natural to expect that the triplet becomes a quadruplet, and some doublets become triplets, if they are due to individual sources, while this would be very unlikely if they arose from chance coincidences.

We have also applied an alternative statistical tool to analyse UHECR clustering: the nearest neighbour distribution. It has the advantage over the pair autocorrelation method of being less sensitive to binning, and that it depends not just on the pair correlations but on correlations to all orders [20]. Applied to AGASA data, it gives an alternative measure of the small angular scale clustering, and also points to an excess of clustering with respect to random expectations which persists up to \(15^\circ \), that manifests in the second neighbour cumulative distribution (figure 5), and which is also hinted at by the defect of doublets and excess of triplets at scales up to \(15^\circ \) in figure 1. Angular spread of events in a cluster due to deflections by magnetic fields, and structure in the spatial distribution of simulations showing larger deviations. The mean distance to the second neighbour of the simulation is now reduced to \(\langle \theta_2 \rangle_{\text{ran}} = 14.5^\circ \), with 15% of the simulations showing values smaller than AGASA's. While the significance of the deviation is reduced by forcing the small scale clustering in the simulations, there remains however a hint of extra clustering at angular scales around \(10^\circ \) that may be due to point source events that have been deflected by magnetic fields, or to structure in the spatial distribution of sources.
of sources, are among conceivable causes of such a signal, which should be looked at with better statistics.

Acknowledgments

Work supported by ANPCyT, CONICET, Fundación Antorchas and the Guggenheim Foundation.

References

[1] Cronin J W, 2003 The highest-energy cosmic rays, TAUP 2003 (Seattle, USA) [astro-ph/0402487]
[2] Takeda M et al, Small scale anisotropy of cosmic rays above 10^{19} eV observed with the akeno giant air shower array, 1999 Astrophys. J. 522 225 [SPIRES] [astro-ph/9902239]
[3] Uchiyama Y, Nagano M, Takeda M, Lloyd-Evans J and Watson A A, Cluster analysis of extremely high-energy cosmic rays in the northern sky, 2000 Astropart. Phys. 13 151 [SPIRES] [astro-ph/9908193]
[4] Abbasi R U et al, 2004 Study of small-scale anisotropy of ultrahigh energy cosmic rays observed in stereo by HiRes, Preprint astro-ph/0404137
[5] Sommers P, Cosmic ray anisotropy analysis with a full-sky observatory, 2001 Astropart. Phys. 14 271 [SPIRES] [astro-ph/0004016]
[6] Tinyakov P G and Tkachev I I, Correlation function of ultrahigh energy cosmic rays favors point sources, 2001 Sov. Phys. JETP Lett. 74 1 [SPIRES] [astro-ph/0102101]
[7] Evans N W, Ferrer F and Sarkar S, Clustering of ultrahigh-energy cosmic rays and their sources, 2003 Phys. Rev. D 67 103005 [SPIRES] [astro-ph/0212533]
[8] Finley C B and Westerhoff S, 2003 On the evidence for clustering in the arrival directions of AGASA’s ultrahigh energy cosmic rays, Preprint astro-ph/0309159
[9] Goldberg H and Weiler T J, Clustering in highest energy cosmic rays: physics or statistics?, 2001 Phys. Rev. D 64 056008 [SPIRES] [astro-ph/0009378]
[10] Medina-Tanco G, Ultra-high energy cosmic rays: are they isotropic?, 2001 Astrophys. J. 549 711 [SPIRES] [astro-ph/0009336]
[11] Waxman E, Fisher K B and Piran T, The signature of a correlation between cosmic ray sources above 10^{19} eV and large-scale structure, 1997 Astrophys. J. 483 1 [SPIRES] [astro-ph/9604005]
[12] Dubovsky S L, Tinyakov P G and Tkachev I I, Statistics of clustering of ultra-high energy cosmic rays and the number of their sources, 2000 Phys. Rev. Lett. 85 1154 [SPIRES] [astro-ph/0001317]
[13] Miralda-Escudé J and Waxman E, Signatures of the origin of high-energy cosmic rays in cosmological gamma-ray bursts, 1996 Astrophys. J. 462 L59 [SPIRES] [astro-ph/9601012]
[14] Fodor Z and Katz S D, Ultra high energy cosmic rays from compact sources, 2001 Phys. Rev. D 64 023002 [SPIRES] [hep-ph/0007158]
[15] Isola C and Sigl G, Large scale magnetic fields and the number of cosmic ray sources above 10^{19} eV, 2002 Phys. Rev. D 66 083002 [SPIRES] [astro-ph/0203273]
[16] Blasi P and De Marco D, The small scale anisotropies, the spectrum and the sources of ultrahigh-energy cosmic rays, 2004 Astropart. Phys. 20 559 [SPIRES] [astro-ph/0307067]
[17] Harari D, Mollerach S and Roulet E, The toes of the ultra high energy cosmic ray spectrum, 1999 J. High Energy Phys. JHEP08(1999)022 [SPIRES]
Harari D, Mollerach S and Roulet E, Signatures of galactic magnetic lensing upon ultra high energy cosmic rays, 2000 J. High Energy Phys. JHEP02(2000)035 [SPIRES]
Harari D, Mollerach S, Roulet E and Sánchez F, Lensing of ultra high energy cosmic rays in turbulent magnetic fields, 2002 J. High Energy Phys. JHEP03(2002)045 [SPIRES]
[18] Bahcall J N and Sohn C Y, The distribution of stars to V = 16th magnitude near the north galactic pole: normalization, clustering properties, and counts in various bands, 1981 Astrophys. J. 246 122 [SPIRES]
[19] Scott D and Tout C A, Nearest neighbour analysis of random distributions on a sphere, 1989 Mon. Not. R. Astron. Soc. 241 109
[20] White S D M, The hierarchy of correlation functions and its relation to other measures of galaxy clustering, 1979 Mon. Not. R. Astron. Soc. 186 145