Curbing Shocks to Corporate Liquidity: The Role of Trade Credit

Niklas Amberg
Sveriges Riksbank

Tor Jacobson
Sveriges Riksbank

Erik von Schedvin
Sveriges Riksbank and Centre for Economic Policy Research

Robert Townsend
Massachusetts Institute of Technology

Using data on liquidity shortfalls generated by the fraud and failure of a cash-in-transit firm, we demonstrate effects on firms’ trade credit usage. We find that firms manage liquidity shortages by increasing the amount of credit drawn from suppliers and decreasing the amount issued to customers. The compounded trade credit adjustments are on average of similar magnitude as corresponding adjustments in cash holdings, suggesting that trade credit positions are economically important sources of reserve liquidity for firms. The underlying mechanism in trade credit adjustments is in part due to shifts in overdue payments.

Suggestions from Vicente Cuñat, Hans Degryse, Tore Ellingsen, Daria Finocchiaro, Erik Gilje, Ali Hortaçsu (the editor), and three anonymous referees, as well as from seminar and conference participants at Finlands Bank, Katholieke Universiteit Leuven, Lund University, the 2015 Norges Bank Conference on Banking and Financial Intermediation, the Reserve Bank of Australia, Sveriges Riksbank, and the University of St Andrews have been very helpful in improving on earlier drafts of the paper. We are also grateful for the generous data
I. Introduction

Do firms use their trade credit positions to handle shortfalls in liquidity?\(^1\)

In an upstream perspective, Wilner (2000) and Cuñat (2007) propose that firms can draw reserve liquidity from their suppliers. Their idea is that firms experiencing a shock to liquidity can offset its effect by postponing payments on the trade credit claims held by their suppliers or, alternatively, by increasing the maturity of future trade credit contracts and that both measures will generate liquidity through increased accounts payable, without necessarily affecting the volume of input purchases.\(^2\) Suppliers may be willing to provide such reserve liquidity, given rents that are derived from the maintenance of long-term relationships. We argue that this liquidity insurance mechanism may operate symmetrically. Thus, in a downstream perspective, firms can draw reserve liquidity from their customers. That is, firms can manage the trade credit claims held on customers for this purpose, by reversing the measures that apply upstream, either by reducing net days in future trade credit contracts or by proactive monitoring and management of outstanding contracts to avoid overdue settlement of customer debts. Hence, the firm may thus seek to reduce its accounts receivable, unchanged sales notwithstanding. The economic importance of firms’ ability to extract liquidity from upstream and downstream counterparties in the supply chain to overcome liquidity shocks may well be on par with the significance of cash reserves and bank lines of credit. However, an empirical assessment of the extent to which firms rely on adjustment capacity at the trade credit margins is challenging, foremost because of the inherent difficulty in identifying liquidity shocks.

\(^1\) Trade credit positions give rise to sizable financial assets and liabilities on firms’ balance sheets. Jacobson and von Schedvin (2015) show that the average amount of accounts receivable and accounts payable, scaled by assets, are 16% and 11%, respectively, for Swedish firms. Such reliance on trade credit financing prevails across countries. For instance, Rajan and Zingales (1995) show that the corresponding numbers for receivables and payables are 18% and 15%, respectively, for a sample of US firms.

\(^2\) Boissay and Gropp (2013) empirically show that firms experiencing late customer payments are more likely to postpone their own payments to suppliers, illustrating that trade credit chains may function as an insurance mechanism against liquidity shocks.
that are uncorrelated with confounding factors, such as demand conditions in the supply chain.

In search of an idiosyncratic shock to corporate liquidity, we rely on the case of the Swedish cash-in-transit firm Panaxia, its fraudulent behavior initiated in the spring of 2010, and its subsequent failure in September 2012—with dire consequences for the clients. The fraud implied that Panaxia withheld the clients’ inflows of funds in breach of the parties’ contracts and hence imposed temporary liquidity shortfalls, whereas the failure imposed permanent losses. The liquidity losses were nonnegligible, taken as shares of the clients’ total assets, and it can be argued that the surprise element was almost complete, suggesting that these were outcomes of an event that make them close in nature to the concept of an economic shock. The Panaxia sequence of events provides an opportunity to form insights on firms’ management of liquidity shortfalls. We begin our empirical analyses by evaluating adjustments in aggregate accounting measures of the three liquidity sources concerned: cash holdings; the amount of trade credit drawn from suppliers, accounts payable; and the amount issued to customers, accounts receivable. We further exploit variation in bankruptcy loss size to assess the impact of variation in treatment and then proceed to evaluate whether constraints for external financing determine firms’ usage of the different liquidity sources in adverse circumstances. Finally, we examine the underlying mechanisms by considering whether adjustments in payables are associated with postponed settlement of trade credit debt to suppliers and, similarly, whether adjustments in receivables are related to intensified enforcement of repayment from overdue customers.

More generally, and as a basis for the empirical evaluation, we envision that firms in a risk-sharing network are subject to idiosyncratic, firm-specific shocks and to sectoral, or macro, aggregate shocks. If there were no obstacles to risk sharing, idiosyncratic shocks would be pooled within the network, leaving management of aggregate shocks to group-level cash management or to external, formal bank relationships. In practice, no doubt, there are obstacles that reduce the extent of risk sharing, such as limited information and limited commitment. In particular, firms may threaten noncooperation: for example, pulling out of the network if they are unwilling to provide the requisite liquidity of the implicit sharing rules. But such a threat might be mitigated by potential loss of established relationships within the current supply chain, given preestablished specificity in inputs, tailored monitoring technologies, and so on. Risk sharing is more valued the more specific such relationships are. Nevertheless, threats may not be sufficient, and on some paths of shock realizations firms will file legal claims for recovery or be forced themselves to consider bankruptcy. In sum, we are allowing both an ex ante risk-sharing perspective and an ex post contagion perspective simultaneously. This, then, is the overall
framework we have in mind, and plausible identification of risk sharing in data is the empirical quest of this paper.

We conduct the empirical analyses on data comprising three key components. First, the identities of clients and their claims at the time of Panaxia’s failure were obtained from records provided by the bankruptcy trustee and from four savings banks involved. Second, accounting data for the universe of Swedish corporate firms, covering the period of interest, were provided by the leading Swedish credit bureau, Upplysningscentralen (UC). Third, from the credit bureau UC, we also obtained data collected by the Swedish Enforcement Agency (Kronofogdemyndigheten; hereafter EA). These data contain information on all applications for the issuance of injunctions to enforce late trade credit payments in the Swedish corporate sector, and they specifically include details on the subsequent outcomes of such applications.

The nature and scope of the Panaxia sequence of events make Abadie and Imbens’s (2006) nearest-neighbor matching approach a suitable empirical setup for inference. A matching approach allows us to compare the adjustments in the outcome variables in response to the liquidity shortfalls imposed on the clients (the treated firms) with the adjustments undertaken by a group of matched control firms (the counterfactuals). In this framework, we carefully assess the plausibility of the underlying identifying assumptions to mitigate endogeneity concerns. The interpretation of the results may nevertheless hinge on the composition of treated firms, with respect to both the setting of this study—Swedish firms using a cash-in-transit (CIT) firm—and the particular sequence of events, which could have imposed a selection on the type of firms that were exposed to treatment. To shed light on potential selection concerns, we therefore detail how the prebankruptcy fraud was orchestrated by Panaxia’s management and the extent to which it affected the customer base over time.

Our baseline findings confirm that firms manage liquidity shortfalls by using their cash reserves and by increasing the amount of trade credit drawn from suppliers, as well as contracting the amount of trade credit issued to customers. In terms of economic importance, both trade credit margins play significant roles, although increases in accounts payable are more pronounced than reductions in accounts receivable. Moreover, the compounded adjustment at the two trade credit margins—the increase in drawn credit, plus the reduction in granted credit—is, on average, of a magnitude similar to the adjustment in cash holdings, suggesting that trade credit positions make for important sources of reserve liquidity, on par with cash reserves.

The complexity of the Panaxia events gives rise to differential treatments, which can be exploited to study heterogeneity in effects. A majority of the treated firms were exposed to both the liquidity shortfalls caused by the fraud and the subsequent bankruptcy losses, whereas a
subset of the treated firms were exposed to the fraud only; moreover, for the group of firms that incurred losses, we observe loss sizes. By using variation in loss size, we confirm the intuitively appealing notion that larger adjustments in cash and trade credit positions result when firms are exposed to more liquidity distress.

Moreover, our results suggest that credit constraints matter; adjustments in cash holdings and at the two trade credit margins can primarily be attributed to firms with a low to medium credit rating, whereas highly rated firms respond to the liquidity shortfalls by expanding their bank financing. This finding suggests that idiosyncratic liquidity shocks hitting financially constrained firms are, to some degree, being pooled by the trade credit networks—in line with the risk-sharing perspective. Another important insight is the joint reliance on cash reserves and trade credit adjustments for constrained firms. Our interpretation of the joint usage is that in situations when liquidity is scarce, credit-constrained firms can, by extracting liquidity from suppliers and customers, preserve the necessary cash reserves for executing prompt payments, such as expenditures for salaries or taxes. In other words, firms will need sufficient liquid means to service counterparties that are unwilling to extend credit. Hence, cash and trade credit adjustments are used as complements to manage liquidity.

Finally, our investigation of the mechanism underlying adjustments in trade credit positions using the data from the EA reveals that adjustments in accounts payable are in part due to increases in overdue payments. More specifically, the propensity to postpone settlement of trade credit payments beyond the due date increases significantly for firms that are hit by liquidity shortfalls, as reflected by these firms being subject to more applications for injunctions submitted by their suppliers. We are, however, unable to document significant increases in firms’ propensity to enforce existing overdue payments from customers, possibly reflecting that downstream liquidity adjustments are primarily made on the extension of new trade credit.

The applications for injunctions are associated with various outcomes of the enforcement process. We find that the significant increase in overdue claims held by the suppliers of treated firms predominantly results in a subsequent withdrawal of the case from the EA. Consistent with a risk-sharing view, this finding suggests a prevalence of cooperative outcomes.

3 Since trade credit is invariably bundled with purchases of input goods or services, there are limits to its usefulness for liquidity management. Even if a firm can expand its trade credit by postponing payments to its suppliers, it will still need liquidity—cash or bank financing—to cover expenditures to counterparties that are unwilling to extend credit, such as employees and tax authorities. Moreover, it is conceivable that shocks substantially larger than those generated by the Panaxia events could trigger additional and altogether different responses, such as sales of tangible or other assets.
in which the parties comply with the implicit rules of the trade credit network, despite an initial and formal involvement of the EA.

This paper aims to contribute to the vast literature on firms’ choices of cash holdings and liquidity management in general. Influential papers include Opler et al. (1999), Almeida, Campello, and Weisbach (2004), and Bates, Kahle, and Stulz (2009), which study firms’ choices of cash holdings in light of their access to external funding. Our paper is also close to that of Acharya, Davydenko, and Strebulaev (2012), who investigate the relationship between firms’ cash holdings and their default risks, suggesting a positive one. That is, all else equal, higher default risks incentivize firms to hold more cash, to safeguard against adverse cash flow shocks. We emphasize that firms—in addition to cash holdings and external financing—have trade credit liabilities and assets that can be used to improve their liquidity positions. To better understand how firms handle liquidity shocks, it is therefore important to also consider shifts at their trade credit margins.

As noted above, the role of trade credit for firms’ liquidity management has partly been put forward by Cuñat (2007), who proposes that trade credit links function as a liquidity insurance mechanism by allocating liquidity from unconstrained suppliers to constrained customers in adverse situations, through delayed repayment of trade debt. Cuñat shows empirically that large declines in firms’ cash holdings are correlated with increases in their accounts payable. Bakke and Whited (2012) examine the impacts of cash shortfalls triggered by mandatory pension contributions on a wide set of firm characteristics. They find that liquidity shortfalls cause contractions in the amount of issued trade credit. Another closely related paper, by Garcia-Appendini and Montoriol-Garriga (2013), makes use of the recent financial crisis to gauge how an aggregate contraction in bank credit supply affected trade credit provisioning for US firms. Consistent with the redistribution view of trade credit, they find that cash-rich firms, as compared with cash-poor firms, issued more trade credit during the crisis and that firms with cash-rich suppliers, as compared with cash-poor suppliers, received more trade credit. To varying degrees, these papers all study redistribution of liquidity in trade credit chains—as we

4 The literature features what is known as the financing theory for the existence of trade credit, according to which credit is redistributed in trade credit chains from unconstrained firms to constrained counterparties; see Petersen and Rajan (1997) for a seminal contribution. In addition to the financing motive, a strand of the literature emphasizes other motives for the prevalence of trade credit. For example, Smith (1987) and Long, Malitz, and Ravid (1993) focus on the guarantee role played by trade credit in providing buyers time for verification of purchase quality. Moreover, see Giannetti, Burkart, and Ellingsen (2011) for a recent, comprehensive overview of trade credit theories.

5 Similar results are also documented by Love, Preve, and Sarria-Allende (2007), who evaluate the role of trade credit financing during crisis episodes in a set of emerging economies.
do. However, our paper provides several extensions. First, we furnish insights on the impact of liquidity shocks on firms’ cash holdings, accounts payable, accounts receivable, and bank financing simultaneously, thus enabling an evaluation of the relative importance of these liquidity sources for firms’ management of liquidity shortfalls. Second, our empirical setting—where liquidity shocks affect a small subset of firms in the economy—differs distinctly from that of previous papers that rely on aggregate shocks for identification. Thus, the Panaxia events allow for identification using the nearest-neighbor matching approach to precisely define a presumably comparable control group of firms that were unaffected by the shocks. In contrast, identification in a setting with aggregate shocks has to rely on exogenous variation in the impact of the shocks across firms. Moreover, our empirical framework is well suited to examine our overarching presumption: that risk sharing in trade credit networks enables firms to pool idiosyncratic shocks, whereas there should be less scope for risk sharing in situations where firms are exposed to shocks that are aggregate in nature. Hence, our results are complementary to earlier findings in the literature and contribute toward a deeper understanding of firms’ management of idiosyncratic shocks that feature elements of liquidity shortfalls, such as cash flow shocks—which have been widely considered in the corporate finance literature.

A partly related literature considers the role of liquidity provisioning within business groups; see, for example, Gopalan, Nanda, and Seru (2007), Samphantharak (2009), Karaivanov et al. (2012), and Almeida, Kim, and Kim (2015). Gopalan, Nanda, and Seru (2007), for example, show that firms belonging to business groups engage in risk sharing where intergroup cash transfers are used to support distressed firms within the group. On the household side, Kinnan and Townsend (2012) use data on rural Thai households and show that indirect access to bank financing, through interhousehold borrowing, mitigates income risk by reducing the association between income fluctuations and consumption. In analogy, our results suggest that firms engage in risk sharing through informal ties with their suppliers and customers in the supply chain. However, liquidity provisioning in trade credit networks is also associated with costs. Such costs have been highlighted in the financial network literature, arguing that counterparty exposures may cause shock propagation and—in extension—potential systemic failure; see, for example, Allen and Gale.

* The difficulty in separating liquidity shocks from confounding factors is a key challenge when assessing the role of trade credit for firms’ liquidity management. One such important factor is fluctuations in demand, which stem from the inherent link between trade credit arrangements and activities in the supply chain. The events considered in this paper provide a setting where the shocks are uncorrelated with conditions in the supply chain, whereas a corresponding separation becomes more cumbersome in the case of aggregate shocks.
(2000) and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015). Empirically, in a trade credit context, Jacobson and von Schedvin (2015) use Swedish firm data similar to our data to study firm failure propagation in trade credit chains. They show that suppliers who are exposed to credit losses due to failing customers are, in turn, subject to an elevated risk of failure. Hence, the financial networks of suppliers and customers arising through trade credit have two closely related features: ex ante risk sharing through liquidity provisioning, on the one hand, and ex post failure propagation, on the other.

The remainder of this paper is structured as follows. Section II outlines the Panaxia events, details our various data resources, and describes the empirical approach. Sections III and IV present the empirical analyses and results outlined above, on adjustments in cash holdings and at trade credit margins, and the underlying mechanisms for the latter, respectively. Section V concludes.

II. The Panaxia Events, Data, and Empirical Approach

The Panaxia events were extreme outcomes of criminal offenses that caused substantial hardship for the clients involved; however, they also generated suitable data for the questions we ask. In this section, we first describe, in some detail, the economics of the sequence of events and then provide an account of the construction of the data. Finally, we explain the empirical approach subsequently pursued.

A. The CIT Firm Panaxia, Its Fraud and Failure

Panaxia was one of three leading CIT firms operating in Sweden. It serviced its clients—mostly, but not exclusively, in the retail sector—by collecting their daily receipts at their premises. Collected receipts were then delivered to a bank depot for counting, and in 1–2 days, Panaxia credited the firms’ bank accounts for the due funds. That is, according to the contracts between Panaxia and its clients, the latter would, upon handing over the cash for transportation to the depot, hold a claim on the former until a transfer of funds to the clients’ bank accounts had been carried out within a maximum of 2 days.

In the 3-year period from 2006 to 2009, Panaxia expanded its operations forcefully; table 1 shows that sales grew from SEK (Swedish kronor) 197 million in 2006 to SEK 677 million in 2009, corresponding to a 244% increase. The quest for an increased market share was in part conducted

7 In our final sample, 65% of the Panaxia clients operated in the retail sector, 16% in the hotel and restaurant sector, and the remaining 19% in sectors such as wholesale, auto mechanics, health care, and transportation.
through an aggressive pricing strategy, which in turn contributed toward operational losses. According to table 1, profits started to decline in 2009, and large losses accrued in the following years. Because of the operational losses, Panaxia faced drastic contractions in the lending provided by its creditors; table 1 shows that the bank debt/assets ratio declined from 62.2% in 2008 to 42.8% in 2009 and that further reductions in external funding occurred in 2010 and 2011.

To counteract the contraction in external financing, Panaxia initiated funding of its operations using the clients’ funds that had been collected and counted at the depot but not yet transferred to clients’ bank accounts.

Initially, in 2009, the scale of the scam was such that the contracted time frame of 48 hours was not breached and clients remained unaffected. However, over time the practice of delayed transfers of client funds escalated, and in the months before the bankruptcy that was finally declared on September 5, 2012, clients could face waiting times as long as 10–12 days before Panaxia transferred due funds. Figure 1 shows the average number of bank days over time required by Panaxia to transfer the due funds generated in cash collection to their clients’ bank accounts. There is a distinct initial-level shift: the number of bank days increased from the agreed 2 days in the beginning of 2010 to 5 days toward the end of that year. From the beginning of 2011 and toward the bankruptcy event, there is a slightly upward-sloping trend, such that the average transfer time reached almost 6 days in the months before the failure. The sustainability of this Ponzi scheme hinged on Panaxia’s ability to maintain the size of its customer base through competitive pricing.

In rather cheeky and awkward wording, the innovative financing of operations was even mentioned in Panaxia’s 2009 annual report: “A strong contribution towards reducing the business group’s borrowing was made by a completely new arrangement for the funding of a large part of the cash-handling operations that entered into use in June.”
Sample selection is a potential concern for the analysis of the Panaxia sequence of events. That is, the prolonged period of delayed transfers in the prebankruptcy period may have introduced selection on type for clients that remained in relationships with Panaxia—such as financially weak firms—which could influence the scope of the empirical analysis. It is thus a fair question to ask whether the clients understood what was going on or reacted to the drastically increased transfer periods. They did react, but very few actually ended their contracts with Panaxia.9 The bankruptcy trustee describes a fraud setup where Panaxia’s CEO cleverly orchestrated and executed delayed transfers so as to avoid raising clients’ attention and annoyance. An example is the instruction to the customer support staff to inform complaining clients that transfer holdups were temporary and simply due to technical problems. Figure B1 shows the number of collected receipts at a monthly frequency for the period 2006–11. The

9 The bankruptcy trustee and the interim CEO, who took over management in the final months before the bankruptcy, independently verify by firm names that only two firms terminated their relationships with Panaxia in the prebankruptcy period. Their statements are confirmed by Panaxia’s annual financial reports for the period 2007–10, which provide examples of important clients recently enlisted or with whom new contracts had been signed. In total, 19 nonfinancial Swedish firms are listed over these four years, and all except for the two named firms were to become exposed clients in Panaxia’s bankruptcy in 2012.
expansion phase, from January 2006 to July 2008, is associated with a sharp increase in the number of collected receipts and is followed by a stable pattern hovering around 120,000 collected receipts in the period from July 2008 to December 2011, thus including the first two fraud years. Hence, figure B1 indicates that the number of clients remained stable from mid-2008. The persistence in the customer base in the period running up to the bankruptcy event mitigates selection concerns.

The interim CEO, who managed Panaxia in the final stages before the bankruptcy, offers three main reasons that help explain why virtually all clients upheld their relationships with Panaxia, despite prolonged transfer times: (1) Panaxia’s logistics worked very smoothly, and the clients appreciated the way on-site collections were carried out; (2) it is an extensive and cumbersome process to switch CIT firms; and (3) Panaxia’s owners—two of the main shareholders were banks, Forex Bank and Sparbanken 1826—enjoyed much and widespread credibility. Although fundamentally anecdotal in its nature, the CEO statement points to circumstances that are plausible underpinnings of the lengthy Panaxia fraud. Moreover, the general credibility of Panaxia can be further appreciated by considering the fact that Sveriges Riksbank (the central bank of Sweden), two years into the fraud episode in early 2012, signed an agreement with Panaxia for purchases of coin collection and distribution services. This agreement was in place up until the arrest of the CEO of Panaxia, shortly before the bankruptcy, although no services were ever purchased by the central bank. Finally, a common view held by clients and cited in the press following the bankruptcy concerned the absence of any expectations for a fraud of this magnitude from a large and well-established firm such as Panaxia. By and large, deception by Panaxia’s management, in combination with high switching costs and the general credibility of Panaxia and its main owners, are important factors in explaining the stickiness of the customer base, in spite of the prolonged transfer times caused by the fraud.

The fraud and failure of Panaxia were a sequence of events resulting in gradual deterioration of its clients’ liquidity positions through disruptions of their cash flows. The prebankruptcy period—characterized by an increased widening of the time window between collection of cash

\[10\] The service provided by Panaxia was to transfer clients’ excess cash, as generated by sales, from the transaction location—e.g., a store for a retail firm—to the clients’ bank accounts. The fraud therefore resulted in partial illiquidity of firms’ inflow of funds. Now, Swedish accounting rules give firms discretion in the choice between booking CIT directly under cash holdings and, alternatively, booking it as a short-term claim on the CIT firm. Prevalence of the former practice has implications for the measurement of adjustments in cash holdings; more specifically, our estimates may underestimate treated firms’ reliance on cash to balance the liquidity shocks in 2010 and 2011, but not in 2012. Appendix A provides a detailed outline of the accounting practices and how their usages affect the interpretation of estimated effects on cash holdings.
and final transferral of funds to clients’ accounts—successively shifted the clients toward a low-liquidity regime. More specifically, Panaxia’s prolonging of transfer time introduced lags in the inflow of clients’ cash flows. These lags gave rise to a mismatch in timing between the inflow of funds and the outflow of funds, such as payment of wages. In the postbankruptcy period, two things happened. First, final transfers of client funds held by Panaxia at the time of the bankruptcy were canceled. This implied that the clients faced an immediate and significant shock to their cash flows. Second, the bankruptcy also had implications for the solvency of the clients, albeit not immediately. The bankruptcy trustee faced the intricate issue of establishing the Panaxia clients’ rights with respect to the assets of the bankruptcy estate as well as the factual amount of remaining assets. The former—and unprecedented—issue required an external inquiry involving legal expertise, which implied that the final resolution of the bankruptcy was delayed well into the following year. Hence, the failure caused an immediate shock to clients’ liquidity, whereas the consequences for clients’ solvency were realized in the spring of 2013.

The scope of the fraud became clear in the investigation undertaken by the bankruptcy trustee for the resolution of the Panaxia bankruptcy. A fraction corresponding to 23% of held claims were recovered from the bankruptcy estate by the trustee. These recoveries were paid out in mid-2013 to clients that at the time were still holding claims, that is, had not been fully, or partially, compensated by other parties. Several top managers involved in the Panaxia fraud were convicted in the aftermath. In 2015 and 2016, the former CEO was sentenced to pay out large damages to the bankruptcy estate and to several years of imprisonment for fraud, embezzlement, and fraudulent accounting practice.

B. Data

In this subsection, we first outline how the Panaxia data were collected and structured and then describe the data sets obtained from the Swedish credit bureau, UC.

1. Panaxia Data

We have used data from three sources to construct the final Panaxia data set. The first source is the Lindahl law firm, appointed trustee of the Panaxia bankruptcy estate. The law firm provided two basic items: a name list of all firms holding claims on Panaxia and the size of each firm’s claim at the time of the bankruptcy in September 2012 (item 1) and a complete list of Panaxia’s collection sites on the bankruptcy date (item 2). “Collection sites” refer to the physical locations where Panaxia collected their clients’ proceeds; many Panaxia clients operated in multiple locations, for
example, retail firms running several stores. The second source is due to the four savings banks that covered the losses endured by their customers in the Panaxia bankruptcy. These banks provided the identities of the customers that were affected by the bankruptcy as well as the sizes of the losses that were covered by the banks (item 3). A third source is the business register Retriever, which contains annual financial reports for all incorporated firms in Sweden as well as some additional firm-level information. Retriever enables matching of the firm names provided by the law firm and 10-digit firm identities, known as organization numbers, which in turn allows for unambiguous matching with firm-level data on yearly balance sheets and applications for injunctions to settle unpaid trade credit, provided by the credit bureau UC, as described below.

Thus, the basis for the final data set is the list of names of firms that held claims on Panaxia at the time of the bankruptcy as provided by the law firm, that is, item 1. However, this list has two shortcomings. First, whereas the firm names on the list coincide, to a very large extent, with the unique legal and official names of the involved corporate firms, there are plentiful exceptions that required manual identification of the correct legal entity by means of internet searching, emails, and telephone contacts. Second, a number of corporate firms that were clients of Panaxia and indeed held claims at the time of the bankruptcy do not appear on the name list. The reason for this is twofold. (1) Firms that were indirectly clients of Panaxia, through their relationships with one of four regional savings banks, were fully and almost immediately compensated for their losses in the Panaxia bankruptcy by these savings banks.11 Hence, the list of firms includes the four savings banks holding claims after the bankruptcy event but not the 286 firms that were Panaxia clients in the period of postponed transfers, 2010–12. The identities and claim sizes for these 286 firms were given to us directly by the four banks under the information disclosure requirements stipulated by the Sveriges Riksbank Act. (2) The name list has two entries that held very large claims on

11 These firms had signed agreements directly with their savings banks, and the banks had in turn hired Panaxia to manage the transportation and depositing of the cash. Unlike the setup for other Panaxia clients—for which Panaxia collected the cash directly from the customer premises—these 286 firms delivered the cash themselves in secure deposit boxes, where Panaxia in turn collected the cash, and then counted and deposited it to the clients’ bank accounts. One of the four savings banks, Sparbanken 1826, was also one of the main owners of Panaxia. This circumstance could potentially influence our identification, if the loss that the bank incurred in turn affected its supply of credit to its customers. We assess the relevance of this potential bias in the empirical analysis by applying the following sample split and logic. If our baseline results are due to a credit contraction imposed by Sparbanken 1826, we should observe larger effects in 2012 for the group of treated firms that were customers of the savings banks, relative the other treated firms; if, instead, the results are due to the direct impact of the Panaxia fraud and failure, we should observe less pronounced effects in 2012 for the treated firms that were customers of the four savings banks, since these firms were fully compensated for their losses.
the Panaxia bankruptcy estate. It turns out that these entries refer to two franchisor groupings of pharmacies and convenience stores. Whereas we omit pharmacy franchisees from the analyses because they were predominantly start-ups in the treatment period and hence do not have financial statements for the pretreatment period, the convenience store franchisees’ identities and claims are included. The identities of the franchisees were obtained using the list of collection sites, item 2, whereas their claims had to be approximated.12

Furthermore, in this context it is also worthwhile to highlight another potential obstacle, which is similar to the franchise group problem discussed above. Two entries on the name list (item 1) relate to parent firms in business groups, whereas their subsidiaries are included in the list of collection sites (item 2). We include the two parent firms rather than their subsidiaries in the final data set and associate these parents with the consolidated financial statements pertaining to their respective business groups.

In total, our records cover 1,255 clients that held outstanding claims on Panaxia at the time it failed, arising from collections of daily proceeds that were never transferred to the clients’ bank accounts (see table B1 for an overview of the number of firms by type and data source). After omitting firms for which we cannot establish an identity (38), banks and financial firms (13), non–limited liability firms for which we do not have accounting data (173), pharmacies (131), which were mostly start-ups in the period 2010–11 as a result of a deregulation of the pharmacy market that took place midyear 2009, the franchisor that was indirectly exposed (1), and firms with missing accounting data for the period 2008–13 (289), we obtained a final sample of 610 firms.13 The average claim/assets ratio amounts to 7.9%. As noted above, the claim did not translate into losses for all firms; 494 firms incurred a loss, of which 234 franchisees were partly compensated by the franchisor and 116 firms

12 The franchisees’ claims were approximated in the following way. The franchisor informed us that they had covered 60% of their franchisees’ losses by extending a so-called market support to each firm. Now, the 2012 financial statements of the franchisees include a separate post for the amount of this market support; therefore, approximate measurements of the claims held on Panaxia at the time of the bankruptcy (market support divided by 0.6) can be obtained, as well as the losses suffered by the individual firms (claim on Panaxia multiplied by 0.4). The accuracy of this loss calculation was confirmed through contacts with a sample of franchise stores.

13 Panel A in table B1 provides an overview the number of firms by type and data source, and panel B shows the number of nonfinancial corporate firms over time. It is worth noting the large inflow of pharmacies after 2009, which is due to the deregulation of the pharmacy market; hence, we do not observe the preevent period for most of these firms, which motivates the omission. Furthermore, unreported tests show that the results are robust to the inclusion of the franchisor. Finally, in the final sample, we have also omitted one treated firm that displayed an abnormally large number of overdue payments in 2009. For this treated firm, the number of overdue payments was among the largest in the entire population of Swedish firms at the time.
were fully compensated by their banks. Because of the compensation, the average losses/assets ratio amounts to 4.3% for the group of firms that incurred losses.14

2. Financial Statements and Overdue Payments

The universe of Swedish corporate firms’ financial statements, provided by UC, constitutes the backbone of the panel data set analyzed below.15 The panel data set is obtained through merging of the Panaxia data with data on financial statements for the stock of Swedish aktiebolag. Aktiebolag are, by approximation, the Swedish equivalent of corporations in the United States or limited liability businesses in the United Kingdom. Swedish law requires every aktiebolag to hold a minimum of SEK 100,000 (approx. USD 15,000) in equity to be eligible for registration at Bolagsverket, the Swedish Companies Registration Office (SCRO). Swedish corporate firms are required to submit an annual financial statement to the SCRO, covering balance sheet and income statement data in accordance with European Union standards. As in many other countries, Swedish firms have considerable discretion in determining the time period covered by their financial statements, and a nonnegligible fraction concern fiscal periods that deviate from calendar years.16 We deal with this by interpolating the financial statements to align fiscal periods with calendar years.17 In addition, firms with total assets and real sales below SEK 100,000 (deflating by means of consumer prices, using 2010 as base year) are omitted. To

14 The Panaxia bankruptcy had dire consequences for its clients. For the group of non-financial corporations that did not get compensated by the savings banks or by the franchisor, we observe four failures in the last quarter of 2012, which corresponds to a quarterly bankruptcy frequency of 4/466 = 0.9%. This can be related to the bankruptcy frequency in the retail sector, which was 0.4% in the same quarter, suggesting that the imposed liquidity losses led to an elevated failure risk.

15 The financial statement data set, or close versions of it, has been used extensively in previous research; see Jacobson, Lindé, and Roszbach (2013), Giordani et al. (2014), and Jacobson and von Schedvin (2015).

16 Financial statements for Swedish firms in general span a 12-month period but do not necessarily coincide with calendar years. Deviations in the length of the fiscal period may occur in the start-up year or if the fiscal period is shifted, and in either case firms are allowed to apply a shorter or longer fiscal period (with a maximum of 18 months). It is not uncommon that fiscal periods start in months other than January. For example, out of the 610 treated firms in the Panaxia sample, 24% have financial statements with fiscal periods that differ from calendar years.

17 We apply the interpolation approach outlined by Giordani et al. (2014). More specifically, consider the case where a firm has an accounting period that ends in the middle of year t. The lengths of the accounting periods (in months) for the two statements that end and start in year t are given by N_t and N_{t+1}; the numbers of months that the two statements cover in year t are given by n_t and n_{t+1} (such that n_t + n_{t+1} = 12); and var_t and var_{t+1} are the variables obtained from each statement. The interpolated statement is then calculated as (n_t/N_t) × var_t + (n_{t+1}/N_{t+1}) × var_{t+1} for the set of flow variables and (n_t/12) × var_t + (n_{t+1}/12) × var_{t+1} for the set of stock variables. This principle is easily extended to the few cases where three statements pertain to a given calendar year.
avoid detrimental effects from outlier observations, all firm-specific variables are winsorized with respect to the 1st and the 99th percentiles. In the robustness evaluation of our baseline results, we discuss and assess the implications of the applied interpolation and winsorization schemes for our results.

Moreover, we also make use of a specialized data set provided by the credit bureau on applications for issuance of injunctions for settlement of overdue trade credit claims. These data were originally collected by the EA, which is the governmental institution that coordinates the administrative process of bankruptcy resolution; it is also responsible for the collection of private and public debt and hence provides legal support to trade creditors (suppliers) for the management of their unsettled trade credit claims. For the period 2007Q1–2013Q1, we observe, at a daily frequency, all Swedish corporate customers that are subject to applications for issuance of injunctions. In these data we observe the identity of the customer but not that of the issuer (supplier). However, for a shorter period, 2010Q1–2013Q1, we observe the identities of both parties for the universe of submitted applications for issuance of injunctions. Hence, for the shorter period, we can evaluate the degree to which firms try to enforce payments of overdue credit from their customers, whereas the longer period is informative about the extent to which firms postpone payments to their suppliers. Thus, the two data sets enable assessments of shifts in trade credit repayment behavior, both upstream and downstream.

C. Empirical Approach

Panaxia’s fraudulent scheme and failure are assumed to have negatively affected the liquidity positions of its corporate clients, and we are in particular interested in the effects on cash holdings and trade credit positions. To this end, in our baseline evaluation, we study outcome variables measuring cash and liquid assets, Cash/Assets, the amount of trade credit drawn from suppliers, Payables/Assets, and the amount of trade credit issued to customers, Receivables/Sales. As noted in section I and as is evident from the presentation of our data above, the Panaxia events involved a relatively small number of firms. This suggests a matching estimation framework in which we model the difference in differences in outcomes between firms exposed to the sequence of Panaxia events (the treated firms) and their counterfactuals, as obtained through matching

18 Normalizing accounts payable by assets and accounts receivable by sales is common practice in the trade credit literature; see, e.g., Petersen and Rajan (1997) and Cuñat (2007), who, as in our paper, evaluate effects of liquidity shocks on payables scaled by assets. For robustness, we also evaluate effects on accounts payable scaled by cost of goods sold.
with unexposed firms (the matched control firms). The objective is to calculate the average treatment effect for the treated firms (ATT) on the set of outcome variables, using the nearest-neighbor matching approach proposed by Abadie and Imbens (2006). The treatment period is taken to be 2010–12, which covers the 32-month period of lasting increases in transfer delays and the subsequent losses caused by the failure in September 2012. We apply the following matching-model specification. First, the Mahalanobis weighting matrix is selected to control for the differences in scale between the matching variables. Second, we use matching with replacement, which implies that a given control firm potentially can be matched to multiple treated firms.

Each treated firm is matched with one control firm, using a set of matching variables comprising firm-specific characteristics and a 5-digit industry classifier. We select our matching variables on the basis of covariates that are commonly used as control variables in the literatures on cash holdings and on trade credit. The selected set of matching variables is as follows: cash flow/assets ratio; log of assets; sales growth; debt/assets ratio; tangible assets/assets ratio; inventories/assets ratio; log of firm age; cash/assets ratio; payables/assets ratio; and receivables/sales ratio. The matching is performed with respect to the 2009 outcomes of the matching variables. We also match on 2008 outcomes of cash/assets, payables/assets, and receivables/sales.

Our aim is to gauge the impact of the postponed transfers, and subsequent losses, on treated firms. For this purpose, we consider the following difference-in-differences estimator of yearly adjustments in the treatment and posttreatment periods for the outcome variables:

$$\tau_t = \left(\bar{y}_t^{(1)} - \bar{y}_{t-1}^{(1)} \right) - \left(\bar{y}_t^{(0)} - \bar{y}_{t-1}^{(0)} \right),$$

where \(t = 2010, ..., 2013 \), \(\bar{y}_t^{(1)} \) is the mean of an outcome variable for the treated firms in year \(t \), and \(\bar{y}_t^{(0)} \) is the mean of the same outcome variable for the matched control firms in year \(t \). We calculate the yearly adjustments for the treatment period 2010–12 and for the posttreatment year 2013. In addition to yearly adjustments, we also calculate difference-in-differences estimators of cumulative adjustments over multiple years for the treatment and posttreatment periods:

$$T_t = \left(\bar{y}_t^{(1)} - \bar{y}_{2009}^{(1)} \right) - \left(\bar{y}_t^{(0)} - \bar{y}_{2009}^{(0)} \right),$$

where \(t = 2010, ..., 2013 \). These estimators of yearly and cumulative adjustments offer insights on how the liquidity shortfalls affect firms’ cash and trade credit positions. Following Cameron and Miller (2015), the standard errors are adjusted for clusters in the following two dimensions. First, standard errors are adjusted at the firm level for nonfranchisees and
at the franchisor level for franchisees. This accounts for the multiplicity of control firms as well as for a possible dependence among franchisees. Second, the standard errors are also adjusted at the level of matched pairs, to account for potential dependencies within pairs of treated and control firms.19

Our approach to inference is within a potential outcome framework and rests on two identifying assumptions: that of unconfoundedness and that of an overlap in covariate distributions; see Imbens and Wooldridge (2009) for a comprehensive overview. The unconfoundedness assumption asserts that treatment assignment is independent of potential outcomes, conditional on observable covariates. In our difference-in-differences setup, this is to say that in the absence of treatment, (not observable) changes in the outcome variables for the treated firms in the treatment period should coincide with (observed) changes for the control firms in this period. While the unconfoundedness assumption is untestable, its plausibility can be assessed. To this end, we examine the trends in the outcome variables for treated and control firms in the pre-treatment period; statistically indistinguishable trends favor the plausibility of unconfoundedness. If treated and control firms developed similarly in a period when factually neither were subject to treatment, then it is more plausible that they would have done so also in the treatment period had there been no treatment. The assumption of overlap in covariate distributions is more straightforward to evaluate. For this purpose, we follow Imbens and Rubin (2015) toward an assessment of the balance in covariate distributions across treated and control firms.20

The complexity of the Panaxia events gives rise to differential treatments of firms, which we can exploit to study heterogeneity in effects. That is, a subgroup of the treated firms were only exposed to the fraudulent scheme undertaken by Panaxia but did not suffer any losses in the bankruptcy in 2012, since they were fully compensated by their banks.

19 In a matching approach, the commonality in characteristics of a treated firm and its matched control firm implies that we should expect a dependence in outcomes over the treatment period—i.e., absent treatment, they are presumed to develop in a similar fashion. By cluster adjusting the standard errors at the level of matched pairs, we control for this dependence. In a recent paper, de Chaisemartin and Ramirez-Cuellar (2020) show that estimators may be biased if dependencies at the matched-pair level are not accounted for by means of cluster-adjusted standard errors.

20 Our empirical setup follows the commonly applied two-step procedure discussed by Ho et al. (2007), combining a preprocessing matching step to achieve covariate balance with a second-step regression estimator. In very recent work, Abadie and Spiess (2020) propose an approach to account for uncertainty in the matching step by first resorting to matching without replacement and then calculating standard errors adjusted for clustering at the level of matched pairs in the second step. To ensure that our results withstand control for the matching-step uncertainty, we include the Abadie and Spiess approach as an alternative specification in our analysis.
We use this differential treatment—comparing firms that received partial treatment with those receiving full treatment—to examine whether we observe larger adjustments in outcome variables when firms are exposed to more liquidity distress. In this vein, we also evaluate effects conditional on variation in loss size.

We proceed to examine cross-sectional heterogeneity in firm characteristics, using sample splits for differential impacts of liquidity shortfalls on treated firms’ liquidity management. Here we explore the notion that credit constraints matter for firms’ reliance on adjustments in cash and at the trade credit margins. We follow Farre-Mensa and Ljungqvist (2016) and use firm size and credit ratings as measures of financial constraints. Farre-Mensa and Ljungqvist show that small private firms and high-risk firms are more likely to face limited access to external financing. More specifically, for each split variable, we sort the firms into empirical distributions based on the 2009 outcomes of the split variable and construct two samples of firms: financially constrained and unconstrained. We then estimate and compare coefficients across the two samples, to assess the role played by credit constraints.

Finally, we propose to gauge the mechanisms underlying adjustments in payables and receivables, by considering a set of outcome variables related to overdue trade credit payments—both upstream and downstream. To this end, we use data from the EA on applications for the issuance of injunctions for settlement of outstanding claims. These data provide an opportunity to assess whether the treated firms, to a larger extent than the control firms, delayed payments to suppliers, that is, engaged in upstream adjustments. In other words, we examine whether treated firms’ upstream suppliers submitted more applications for issuance of an injunction to recover late payments than did the upstream suppliers of control firms. Symmetrically, we can also assess whether treated firms, to a greater extent than control firms, submitted applications for injunction issuance to recover customers’ overdue debt, that is, engaged in downstream adjustments. This analysis provides insights on whether adjustments in payables and receivables are associated with shifts in the enforcement of overdue payments on the underlying trade credit contracts.

III. Baseline Results on the Treatment Effects of Liquidity Shortfalls

This section presents applications of the Abadie and Imbens (2006) nearest-neighbor matching approach to estimate treatment effects on the Panaxia clients that were affected by the liquidity shortfalls generated in the fraud and subsequent failure. We first establish a set of baseline results and then consider, in turn, the relationship between treatment size and effect and the role of financial constraints.
A. Sample Compositions for Treated, Nontreated, and Matched Control Firms

Descriptive statistics for the matching variables are reported in table 2; Panels A, B, and C cover the treated firms, the nontreated firms, and the matched control firms, respectively. The nontreated-firm category refers to a weighted cross-industry average of the entire population of Swedish corporate firms, subject to the same eligibility restrictions that we apply to the treated firms and the matched control firms. The industry weights are given by the fraction of treated firms in each particular 5-digit industry. As noted above, we follow the guidelines in Imbens and Rubin (2015) for the appraisal of overlap in covariate distributions. Therefore, to assess magnitudes of differences in matching variables between the treated firms and the nontreated firms, on the one hand, and between the treated firms and the matched control firms, on the other hand, we calculate and report normalized differences, $D_{co,tr}$, in panels B and C. When covariate distributions for treated and nontreated firms are compared in panels A and B, the normalized differences indicate nonnegligible deviations in tangible assets, cash holdings, and accounts payable.\(^{21}\) Hence, the descriptive statistics indicate some, but not huge, differences in covariates between treated firms and our industry-weighted representation of nontreated firms.\(^{22}\) However, the presence of some deviation points toward a need to undertake matching to obtain credible counterfactuals.

Consistent with the overlap assumption, the results reported in panel C show that the matched control firms are very similar to the treated firms. In terms of normalized differences, there are only minor deviations between the treated and matched control firms. These results indicate that the matching procedure is achieving its objective of matching treated firms to otherwise similar control firms. Nevertheless, we subsequently apply a set of robustness tests to account for potential differences that may not necessarily be detected in a balance assessment.

Furthermore, figure 2 presents normalized means of the three outcome variables, for the treated, nontreated, and matched control firms in each year during the pretreatment period (2007–9), the treatment...
period (2010–12), and the posttreatment period (2013). Two features are apparent. First, when comparing treated with nontreated firms, the figure shows distinct deviations for cash holdings and accounts payable in the pretreatment period, which again highlights the need for matching to acquire credible counterfactual firms. Second, in the comparison of treated and control firms, we find that all three outcome variables display similar trends in the pretreatment period. Thereafter, in the treatment period, there is divergence in means between treated and control firms. We observe a relative increase in accounts payable for the treated firms as well as relative declines in accounts receivable and cash holdings. Thus, figure 2 provides initial evidence suggesting that treated firms used their cash holdings and trade credit margins to overcome the Panaxia liquidity shortfalls. Moreover, in the evaluation below we report formal tests of divergences in trends and verify that treated and control firms display trends in the outcome variables that are not significantly different in the pretreatment period.

TABLE 2

Descriptive Statistics for Treated, Nontreated, and Matched Control Firms

	A. Treated Firms	B. Nontreated Firms (weighted)	C. Matched control firms				
	Mean (1)	SD (2)	Mean (3)	SD (4)	Mean (6)	SD (7)	Mean (8)
Exposure:							
Exposure_{2012}/Assets_{2012}	.079	.108087	.141	-.033
Loss_{2012}/Assets_{2012}	.043	.051027	.269	.071
Firm characteristics:							
Assets_{2009} (M SEK)	33.355	76.413	8.851	91.406	27.446	69.623	.081
Sales growth_{2009}	.047	.297	.017	.552	.093	.207	.071
(Debt/Assets)_{2009}	.168	.247	.230	.270	-.239	.175	.235
(Tangible Assets/Assets)_{2009}	.200	.234	.302	.279	-.397	.216	.241
(Inventories/Assets)_{2009}	.276	.203	.248	.244	.127	.278	.206
Age_{2009}	14.887	16.796	15.971	13.566	14.093	14.992	.050
(Cash/Assets)_{2009}	.179	.173	.251	.229	-.356	.184	.183
(Payables/Assets)_{2009}	.242	.158	.162	.150	.518	.232	.155
(Receivables/Sales)_{2009}	.021	.041	.033	.073	-.206	.028	.042
(Cash/Assets)_{2008}	.179	.170	.246	.226	-.331	.181	.181
(Payables/Assets)_{2008}	.273	.191	.172	.157	.576	.264	.184
(Receivables/Sales)_{2008}	.022	.046	.033	.070	-.178	.029	.045
Observations	610	49,633	610				
No. of unique firms	610	49,633	482				

Note.—The descriptive statistics for nontreated firms in panel B are constructed using weights corresponding to the fraction of treated firms in each particular 5-digit industry. The loss variable is calculated on the basis of the group of treated firms that incurred losses in 2012. Δ_{t_c} denotes a normalized difference and is calculated as $(\bar{X}_t - \bar{X}_c)/[(S^2_t + S^2_c)/2]^{1/2}$, where \bar{X} is the mean, S is the standard deviation, and subindices t and c denote treated firms and control firms, respectively. The normalized differences in panels B and C compare covariate outcomes for treated firms with those of nontreated firms and matched control firms, respectively. Variable definitions are provided in table B2.
Fig. 2.—Means of balance sheet outcome variables: normalized means for the three main outcome variables: Cash/Assets, Payables/Assets, and Receivables/Sales, over the period 2007–13, for treated firms (solid line), nontreated firms (dash-dotted line), and matched control firms (dashed line). The values are normalized by 2009 outcomes. In each year, only pairs for which there are data on both treated and control firms are included. Means for nontreated firms are calculated using weights corresponding to the fraction of treated firms in each 5-digit industry.
B. Baseline Results

We now proceed with a presentation of our baseline estimation results. Table 3 reports the yearly and cumulative adjustments according to equations (1) and (2) for our three key outcome variables. Panel A shows results for cash holdings, Cash/Assets. The estimates of the yearly adjustment effects, τ_n, in columns 1–4 show statistically significant reductions in cash holdings in the first two years of the treatment period. The immediate response in 2010 is consistent with the prolonging of the transfer period, which reached 5 days already in December 2010; see figure 1.23

The cumulative effect estimates, T_n, show that the yearly declines in cash in 2010 and 2011 result in persistently lower cash holdings in the final year of the treatment period and the posttreatment year. In addition, to assess the plausibility of the unconfoundedness assumption, we test for differences in trends across treated and control firms in the pretreatment period, 2007–9. Column 5 shows test results indicating parallel cash holding trends, which supports unconfoundedness.24

Results for accounts payable, Payables/Assets, are reported in panel B. The estimates of the yearly adjustment effects, τ_n, reported in columns 1–4 show an increase in 2011 of 1.1 percentage points and a further increase of 1.8 percentage points in 2012. These yearly effects result in a cumulative adjustment effect, T_n, of 2.8 percentage points in 2012 and 2.8 percentage points in the posttreatment year. Moreover, column 5 indicates that treated and control firms follow parallel pretreatment trends with respect to accounts payable.

Panel C reports results for accounts receivable, Receivables/Sales. The estimates of the yearly adjustment effects point to an initial contraction of 0.3 percentage points in the first year of the treatment period and a further contraction of 0.6 percentage points in 2012. Accordingly, the estimates of the cumulative effects, T_n, show that the downward trend in receivables amounts to an accumulated reduction of 1 percentage point in 2012, which persists in the posttreatment year. Finally, the similarity in pretrends, documented in column 5, is in support of the underlying unconfoundedness assumption.

The point estimates of the cumulative adjustments in 2012, T_{2012}, suggest that the magnitude of the upstream adjustment is larger than that of

23 Variation in choice of accounting practices across the treated firms may affect the measurement of cash adjustments in 2010 and 2011, but not in 2012. In particular, the convention to book CIT under cash holdings leads to an underestimation of treated firms’ reliance on cash to balance the initial transfer delays. See app. A for a detailed discussion.

24 We apply the test of parallel pretrends proposed by Mora and Reggio (2015). More specifically, for the period 2007–13, we estimate the model $E[y_{it}] = \delta + \Sigma_{t=2008}^{2013}\gamma_t I_t + \gamma D_t + \Sigma_{t=2008}^{2013}\gamma_t I_tD_t$, where I_t is a time t year dummy and D_t is a treatment dummy. The Wald test statistic for parallel pretreatment trends concerns the joint significance of γ_{2008} and γ_{2009}.

-
the downstream adjustment. One obvious concern in a comparison of relative size for the two effects is that payables are scaled with assets, whereas receivables are scaled with sales. Scaling accounts receivable by assets instead provides a better ground for such a comparison; in an estimation using Receivables/Assets, we obtain a cumulative effect (t-value) in 2012, \(T_{2012} \), of \(-0.010\) (\(-1.9\)), which is similar to the estimate for sales-scaled receivables of \(-0.010\) (\(-3.3\)). A statistical test for the difference in absolute adjustment between Payables/Assets and Receivables/Assets shows that adjustments in payables indeed dominate receivables, with a \(p \)-value of .069. Furthermore, to gauge the relative importance of cash versus trade credit margins, we can compare the size of compounded adjustments in net trade credit positions (i.e., \((\text{Payables} - \text{Receivables})/\text{Assets})\) with the size of adjustments in cash holdings. The estimated cumulative adjustment (t-value) in net trade credit in 2012 is 0.039 (3.8). Testing for the difference in absolute value adjustment between cash

TABLE 3	Baseline Estimates				
	Treatment period	Posttreatment period	Test of parallel pretrends		
	2010 (1)	2011 (2)	2012 (3)	2013 (4)	\(p \)-Value (5)
A. \(y = \text{Cash}/\text{Assets} \)					
1. \(\tau_t \)	\(-0.020^{**}\)	\(-0.011^{*}\)	\(0.008\)	\(-0.009\)	\(0.832\)
	\((-2.4)\)	\((-1.9)\)	(1.2)	(-7)	
2. \(T_t \)	\(-0.020^{**}\)	\(-0.031^{***}\)	\(-0.024^{***}\)	\(-0.032^{***}\)	
	\((-2.4)\)	\((-3.8)\)	\((-3.1)\)	\((-2.8)\)	
B. \(y = \text{Payables}/\text{Assets} \)					
3. \(\tau_t \)	\(-0.001\)	\(0.011^{**}\)	\(0.018^{*}\)	\(0.000\)	\(0.648\)
	\((-2)\)	(2.4)	(1.7)	(.0)	
4. \(T_t \)	\(-0.001\)	\(0.01\)	\(0.028^{***}\)	\(0.028^{**}\)	
	\((-2)\)	(1.2)	(3.2)	(2.6)	
C. \(y = \text{Receivables}/\text{Sales} \)					
5. \(\tau_t \)	\(-0.003^{**}\)	\(-0.002\)	\(-0.006^{**}\)	\(0.000\)	\(0.291\)
	\((-2.1)\)	\((-1.0)\)	\((-2.5)\)	(.1)	
6. \(T_t \)	\(-0.003^{**}\)	\(-0.004^{*}\)	\(-0.010^{***}\)	\(-0.010^{***}\)	
	\((-2.1)\)	\((-2.4)\)	\((-3.3)\)	\((-3.1)\)	
No. of firms	610 treated, 610 matched control, 482 unique matched control				

Note.—Estimates of yearly adjustments, eq. (1), and cumulative adjustments, eq. (2), in cash holdings, accounts payable, and accounts receivable, over the treatment and posttreatment periods. The tests of parallel pretrends are conducted for the 2007–9 period and follow the approach proposed by Mora and Reggio (2015). Variable definitions are provided in Table B2. The \(t \)-values, reported in parentheses, are calculated using robust standard errors adjusted for clusters in two dimensions: first, at the firm level for nonfranchisees and the franchisor level for franchisees and, second, at the level of matched pairs.

* Statistically distinct from 0 at the 10% level.
** Statistically distinct from 0 at the 5% level.
*** Statistically distinct from 0 at the 1% level.
and net trade credit yields a p-value of .215, indicating that average adjustments at the two trade credit margins are jointly of a magnitude similar to the average adjustments in cash holdings.25

Although firms clearly make use of both upstream and downstream liquidity extraction—indeed independently or simultaneously—it is conceivable that operating the accounts payable margin may provide a more effective measure to raise liquidity and explains why we find that upstream adjustments dominate downstream adjustments. Through upstream adjustments, firms can readily offset liquidity shocks by immediate postponement of due payments to suppliers and withhold money until additional inflows of funds are obtained. If the amount of liquidity extracted upstream proves insufficient to offset the shock, the firm may continue to roll over its overdue trade credit debt until the impact of the original liquidity shock is neutralized. Intuitively, the ability of firms to roll over overdue trade credit debt hinges on their suppliers’ willingness to overlook late payments, that is, on the absence of obstacles to the functioning of (implicit) risk-sharing networks. In downstream adjustments, firms can extract liquidity by reducing the trade credit maturities in new contracts to prompt faster future payments from customers. But that will free up liquidity only with a lag. An alternative measure is to proactively manage outstanding claims, to avoid late payments from customers. The nature of firms’ trade credit margin adjustments warrants a closer study, and we therefore return to the matter of the underlying mechanisms in the next section.

A rather obvious and potentially important liquidity source for firms is bank lines of credit; see, for example, Sufi (2009). Whether the liquidity shortfalls considered here also yield effects on firms’ bank borrowing is therefore next evaluated by use of three balance sheet items: total bank debt and short- and long-term bank debt separately. In table B4, panels A–C present the respective yearly and cumulative treatment effects on these debt measures; no systematic adjustments are recorded over the event period, indicating that the firms do not turn to their banks first-hand to deal with liquidity shortfalls. We propose two potential explanations. First, the firms under consideration may, on average, be subject to binding financial constraints that limit their access to bank financing, therefore forcing them to instead use their cash holdings and trade credit margins. Second, Lins, Servaes, and Tufano (2010) argue that firms mainly use cash to handle cash flow shocks, whereas credit lines are primarily used to ensure funding for future investments. We study these explanations in more detail below, when we explore sources of cross-sectional heterogeneity.

25 We can further compare the average loss of 4.3%; see table 2, with the sum of the absolute adjustments in cash, payables, and receivables (scaling receivables with assets instead of sales), which amounts to $|T_{\text{Cash/Assets}}| + |T_{\text{Payables/Assets}}| + |T_{\text{Receivables/Assets}}| = 0.062$, with a 95% confidence band spanning 0.036 and 0.089. Thus, the liquidity losses and compounded adjustments are of similar magnitude.
To further validate our baseline results, we consider a set of alternative specifications reported in table 4. For these robustness analyses, we report the estimated cumulative treatment effects in 2012, which capture the full impact of the sequence of events related to the fraud and failure of Panaxia. First, we examine the extent to which our baseline results are influenced by the use of a matching procedure. This is carried out by estimating cumulative adjustments using all nontreated firms, instead of the matched control firms, as counterfactuals. Analogously to the calculations underlying table 2 and figure 2, weighted means for the nontreated firms are calculated using the fraction of treated firms in each 5-digit industry as weights. Row 2 in table 4 reports results where adjustments for treated firms are related to adjustments for all nontreated firms. Columns 1–6 show that the estimated effects for all outcome variables are statistically significant in 2012. The estimates carry the same signs but are slightly smaller, as compared with the baseline estimates; see row 1. However, tests for parallel pretreatment trends indicate deviations in cash holdings between treated and nontreated firms, emphasizing the importance of applying a matching approach.

Second, a potential concern is that remaining differences in postmatching characteristics may influence our results. To address this matter, we report results from bias-corrected matching estimators, where differences in matching-variable outcomes between treated and control firms are accounted for; see Abadie and Imbens (2011). Specifically, using the set of matched control firms only, we estimate the linear regression function, \(\mu_0(X) \), on the 13 matching covariates in table 2 and enter control firms into the regression with the same frequency as in matched pairs. The outcome variable for the control firms is then adjusted using the estimated function \(\hat{\mu}_0(X) \). Results in row 3 show that the bias-corrected effects are very similar to the baseline estimates, suggesting that the latter are not confounded by differences in characteristics across treated and control firms. In the proceeding accounting-ratio analysis, we complement the baseline estimates with bias-adjusted estimates to demonstrate that covariate deviations in matched observations do not affect the results. In addition to the bias-corrected estimates, we follow Crump et al. (2009) and restrict the estimation sample to matched pairs where differences in matching variables are small. We therefore consider the 50% closest matched pairs, with the purpose of further ensuring that the characteristics of the treated firms closely align with the ones for the matched control firms.

\[\Delta Y^{(0)} = \Delta Y^{(0)} + (\hat{\mu}_0(X) - \mu_0(X)) \]

In the calculations underlying eq. (2), the outcome variable for the matched control firms, \(\Delta Y^{(0)} \), is adjusted as follows: \(\Delta Y^{(0)} + (\hat{\mu}_0(X) - \mu_0(X)) \), where \(X \) denotes the covariate outcome for the control firm and \(\hat{\mu}_0(X) \) denotes the pair-specific covariate outcome for the treated firm. This adjustment thus controls for variation in the outcome variable that can be attributed to differences in covariates between the treated and matched control firms.
Table 4 Alternative Specifications	\(y = \text{Cash}/\text{Assets} \)	\(y = \text{Payables}/\text{Assets} \)	\(y = \text{Receivables}/\text{Sales} \)				
\(t \)	\(T_t^0 \) (1)	\(t \text{Value} \) (2)	\(T_t^0 \) (3)	\(t \text{Value} \) (4)	\(T_t^0 \) (5)	\(t \text{Value} \) (6)	\(\text{No. of Firms} \) (7)
1. Baseline estimates	2012 -0.024*** (-3.1)	0.028*** (3.2)	-0.010*** (-3.3)	610/610/482			
2. Nontreated as control group	2012 -0.016***,* (-3.0)	0.022*** (4.2)	-0.006*** (-3.9)	610/49,633			
3. Bias-adjusted estimates	2012 -0.025*** (-3.2)	0.029*** (3.3)	-0.012*** (-4.0)	610/610/482			
4. 50% best matches	2012 -0.041*** (-4.1)	0.029*** (2.4)	-0.009*** (-2.0)	305/305/245			
5. Payables scaled by COGS	2012 -0.016 (-1.2)	0.025*** (2.8)	-0.001***,* (-4.4)	109/109/44			
6. Truncated	2012 -0.019** (-2.1)	0.022*** (2.9)	-0.009*** (-2.6)	521/521/402			
7. Franchisees omitted	2012 -0.015 (-1.6)	0.029*** (2.8)	-0.008*** (-2.8)	376/376/362			
8. Pharmacies included	2012 -0.022*** (-2.9)	0.028*** (3.2)	-0.010*** (-3.3)	617/617/487			
9. Unbalanced	2012 -0.019** (-2.4)	0.043*** (4.6)	-0.010*** (-3.4)	641/641/505			
10. Nonstandardized accounting data	2012 -0.024*** (-2.6)	0.026*** (2.8)	-0.008** (-2.5)	610/610/482			
11. Accounting period ends in December	2010 -0.027*** (-2.7)	-0.003 (-3)	-0.004*** (-2.6)	465/465/359			
12. Accounting period ends before December	2010 0.002 (3)	0.003* (5)	0.002 (1.1)	147/147/146			
13. Bias-adjusted \(p \)-score matching	2012 -0.017** (-2.5)	0.059*** (5.6)	-0.007*** (-3.4)	610/610/610			

Note.—Estimates of cumulative adjustments, eq. (2), in 2012. Row 1 reports the baseline results from table 3; row 2 reports results where the nontreated firms are used as control group (means for nontreated firms are calculated using weights corresponding to the fraction of treated firms in each particular 5-digit industry); row 3 reports bias-adjusted estimators according to Abadie and Imbens (2011); row 4 reports results for the 50% closest matches; row 5 reports results for payables scaled by the cost of goods sold (COGS), where the sample is restricted to the pairs of treated and matched control firms that report COGS; row 6 reports results for a sample where the variables are truncated at the 1st and 99th percentiles; row 7 reports results where franchisee firms are omitted; row 8 reports results when pharmacies are included; row 9 reports results for an unbalanced panel; row 10 reports results using nonstandardized accounting data; row 11 reports cumulative effects in 2010 using nonstandardized accounting data for the subsample of treated firms with accounting periods that end in December; row 12 reports cumulative effects in 2010 using nonstandardized accounting data for the subsample of treated firms with accounting periods that end in months other than December; and row 13 reports results from propensity score matching, implemented with bias adjustment and without replacement. Variable definitions are provided in table B2. Column 7 reports the number of treated firms, matched control firms, and unique matched control firms, in that order. The \(t \) values, reported in parentheses, are calculated using robust standard errors adjusted for clusters in two dimensions: first, at the firm level for nonfranchisees and the franchisor level for franchisees and, second, at the level of matched pairs.

* Statistically distinct deviations in pretreatment trends at the 5% level.
** Statistically distinct from 0 at the 5% level.
*** Statistically distinct from 0 at the 1% level.
firms. Row 4 shows that the estimated treatment effects obtained in the restricted sample largely conform to the baseline results.

Third, following Petersen and Rajan (1997) and Cuñat (2007), accounts payable are scaled by firms’ total assets in the estimations underlying our baseline results. However, an alternative scaling is by cost of goods sold (COGS)—see, for example, Garcia-Appendini and Montoriol-Garriga (2013)—which may more closely reflect firms’ levels of economic activity and in particular better capture durations in underlying trade credit contracts. In the case of Swedish corporate firms, only a subset report COGS in their financial statements, which reduces our estimation sample to 109 treated firms when retaining pairs of treated and matched control firms where both parties convey this information in 2009 and 2012. In row 5, we note a positive and significant cumulative treatment effect for payables scaled by COGS, thus consistent with our baseline results. The estimated effects for the other outcome variables show an insignificant effect for cash holdings, whereas the effect for receivables is negative but inconclusive, because of differences in pretreatment trends. Unreported results for cumulative adjustments in short-term bank financing for this subsample indicate a positive and statistically significant estimate (t-value) of 0.006 (2.0). These results suggest that firms’ propensity to use an accounting method that discloses their COGS is potentially correlated with factors associated with their access to bank financing, which would also explain the adjustments in short-term bank financing rather than cash holdings.

Fourth, we evaluate whether our choice to winsorize the variables is of consequence and alternatively consider a truncation at the 1st and 99th percentiles. Row 6 shows that obtained estimates on truncated data are very similar to the baseline results.

Fifth, 234 of the treated firms are franchisees. To gauge the extent to which the franchisees influence the baseline results, we reestimate our

27 Swedish firms can choose between the cost-of-sales method and the nature-of-expense method when accounting for cash flows in their financial statements. The former method involves reporting COGS; the latter does not. In the treated group, 255 firms (42%) apply the cost-of-sales method.

28 In a similar vein, we also consider two alternative specifications. First, to evaluate the full number of treated firms that report COGS, we rematch targeting treated and control firms that report COGS, using the original set of matching variables and preoutcomes (2008 and 2009) of Payables/COGS, resulting in 255 treated and matched control firms. Because of postmatching differences in Payables/COGS in 2009 (Δ_2009 = 0.414), we apply a bias adjustment using the 15 matching covariates—following the same approach as for the results in row 3. The obtained estimate (t-value) of the cumulative adjustment, \(T_{2012} \), for Payables/COGS amounts to 0.020 (3.9). Second, we also consider accounts payable scaled by expenses (operating expenses minus salary expenses and other nongoods costs). We rematch, using the original set of 13 covariates, the preoutcomes of Payables/Expenses, and an indicator for the accounting method used. To control for postmatching differences, we apply a bias adjustment using all matching covariates, except for the accounting indicator, which is exactly matched. The 594 treated and matched control firms yield a cumulative adjustment, \(T_{2012} \), for Payables/Expenses of 0.012, with a t-value of 2.6.
models, omitting these firms. Row 7 reports results showing that the estimated effects for the two trade credit margins are slightly smaller but largely in line with the baseline results. The effect on cash holdings is negative but statistically insignificant.29 Thus, the reliance on trade credit margins to manage the liquidity shortfalls is a common feature for the nonfranchise and franchise firms alike.

Sixth, row 8 reports results where pharmacies are included in the estimation sample. The reason why inclusion of pharmacies adds seven more treated firms is that most pharmacies were start-ups in 2010 and 2011 (see table B1), which implies that a large share have missing accounting information for parts of the 2008–13 period. However, when including the pharmacies for which we do have adequate information, we obtain estimated effects that are very similar to the baseline results.

Seventh, row 9 concerns results for an unbalanced panel, where we relax the baseline eligibility restriction that observations on outcome variables must be available for both treated and control firms in every year of the treatment and posttreatment periods and instead impose that outcome variables must be nonmissing in 2012, which increases the number of treated firms from 610 to 641. There is a marked difference in that the estimated treatment effect on payables is substantially enhanced for the unbalanced panel. A potential explanation for the stronger results is that the treated firms eliminated from the unbalanced panel were more distressed. Hence, these results indicate that our baseline estimates of payables adjustments are, if anything, conservative.

Eighth, for a large fraction of firms—24% of the treated firms—the fiscal period ends in a month other than December. To account for this, we use interpolated financial statements, so that fiscal periods align with calendar years; see the discussion in section II.B.2. To ensure that the interpolation procedure does not affect our results, we estimate cumulative effects on nonstandardized data. Row 10 shows that the effects obtained from this exercise are very close to the baseline estimates. Furthermore, rows 11 and 12 concern aspects of timing for the Panaxia events. One potential worry in using interpolated accounting statements is that the timing of the liquidity shortfalls may not be fully captured by our baseline estimates. For instance, effects in 2010 should primarily be observed for treated firms for which the fiscal period ends in December, since the marked upward shift in transfer times took place in the last quarter that year; see figure 1. To investigate the significance of these circumstances, we estimate T_{2010} on two subsamples concerning treated firms with fiscal

29 The p-value of cash holdings is .12, and the estimate is not statistically different from the baseline effect reported in row 1. Unreported estimates (t-value) show an increase in short-term bank financing of 0.008 (1.8), suggesting that the group of nonfranchise firms also used bank financing to manage liquidity shortfalls.
year ends in December, in row 11, and treated firms with fiscal year ends occurring in months other than December, in row 12. Consistent with the baseline effects reported in table 3, the estimates reported in rows 11 and 12 show that the adjustments in cash holdings and receivables are statistically significant for firms with fiscal years ending in December, but no significant effects are obtained for the other group. Thus, these results render further support to the notion that our estimates indeed capture the liquidity shortfalls imposed by the Panaxia fraud.

Finally, Abadie and Spiess (2020) propose that uncertainty regarding the matching process can be accounted for by first applying matching without replacement and then calculating cluster-adjusted standard errors at the level of matched pairs. Following their suggestion, row 13 reports results from a propensity score matching without replacement—using the same set of matching variables as in the baseline specification—with standard errors adjusted in two dimensions: first, at the matched-pair level and, second, at the firm level for nonfranchisees and the franchisor level for franchisees. To account for postmatching deviations in covariate outcomes between treated and matched control firms, we apply the bias correction outlined above; see the description of the results in row 3. The results reported in row 13 are consistent with the baseline results in showing statistically significant downward shifts in cash holdings and receivables and an upward shift in payables.

To sum up, our baseline results show that the retention of client funds and the subsequent bankruptcy-related losses caused Panaxia’s clients to reduce their cash holdings, increase the amount of trade credit drawn from suppliers, and contract the amount of trade credit issued to customers. In terms of magnitudes, the joint impact at the two trade credit margins is on par with adjustments in cash holdings, and upstream trade credit adjustments dominate downstream adjustments. Thus, trade credit is an important source of reserve liquidity for firms.

C. Responses Conditional on Loss Size

Magnitudes of adjustments in cash and at the trade credit margins should depend positively on the size of firms’ incurred losses in the Panaxia failure. That is, whereas the fraud in postponing transfers of funds to client accounts is certainly expected to have a negative impact on firms’ liquidity positions, the point-in-time realization of a large loss when Panaxia finally went bankrupt should yield a larger negative and more persistent impact. This conjecture is examined next, and we consider two cases: first, firms that incurred losses versus those who incurred no losses; and second, firms’ responses conditional on the size of their losses. For the first case, we divide the treated firms into two groups: firms that were fully compensated by their banks in 2012 and firms that incurred losses in 2012. Thus,
the two groups experienced similar fraud treatments in 2010 and 2011—delayed transfers—but a differential treatment in the bankruptcy year 2012. However, the small number of compensated firms, 116 observations, introduces limitations for the analysis by restricting statistical power.

Panel A in table 5 reports cumulative treatment effects in 2012 for the two groups; columns 1 and 2 cover treated firms that were fully compensated in 2012 and columns 3 and 4 treated firms that incurred losses in 2012. Rows 1–3 report estimates for the baseline specification and rows 4 and 5 estimates for the baseline specification with bias adjustment. The results show more pronounced adjustment effects on all three outcome variables for the group of firms that incurred losses, as compared with the group of compensated firms. Nevertheless, although statistically significant effects are primarily observed for the group of firms that incurred losses, effects are not statistically larger for firms that incurred losses; see columns 5 and 6.

For a broader picture of the responses to differential treatments in the two groups, table B5 reports yearly adjustments and cumulative effects over the full treatment and posttreatment periods. The table shows that the group of compensated firms displayed a downward shift in cash holdings in 2011 and a subsequent reversal in 2012. A similar pattern is observed for accounts payable, where the cumulative adjustments indicate an increase in 2011 followed by an insignificant accumulated effect in 2012. These results thus suggest that the group of compensated firms responded to the liquidity shortfalls induced by the initial fraud treatment. For the group of firms that incurred losses, the results show initial adjustments along all three margins during the fraud treatment in 2010 and 2011, followed by further adjustments along the two trade credit margins in response to the bankruptcy event in 2012.

30 The largest of the four savings banks, Sparbanken 1826, was, as noted above, one of the largest owners of Panaxia—which may implicate our identification approach. However, the results showing that effects in 2012 primarily pertain to the group of treated firms that were not savings bank customers mitigate a concern that our baseline results in table 3 are influenced by a potential credit contraction imposed by Sparbanken 1826.

31 Following the vast literature related to the cash flow sensitivity of investments, we have also considered the presence of real effects by exploring cumulative adjustments in investments. In the posttreatment year, we observe no effects on tangible assets for the fully compensated firms, whereas firms that incurred losses exhibit a statistically significant reduction relative to the control firms. Hence, the failure losses are also associated with real effects for affected firms.

A subgroup of the firms that did incur losses in the 2012 bankruptcy went on to receive final disbursements from the remaining assets of the bankruptcy estate in 2013, amounting to 25% of their claims at the bankruptcy date. Unreported results for these firms on cumulative effects at the two trade credit margins indicate increases in the amount of trade credit received and contractions in the amount of trade credit issued in 2012. However, in 2013, corresponding point estimates are smaller and statistically insignificant, which is consistent with a mitigating effect from the disbursements that this subgroup received in that year.
Table 5
TREATMENT EFFECTS CONDITIONAL ON LOSS SIZE

A. Estimates of Cumulative Adjustments (Eq. [2]) in 2012

Treatment Effects Conditional on Loss Size	Incurred Bankruptcy Losses in 2012					
	No	Yes	t-Test			
T\textsubscript{2012}	(1)	(2)	(3)	(4)	(5)	(6)
Baseline specification:						
1. y = Cash/Assets	.015 (-.8)	.026*** (-2.9)	No loss ≤ Loss	.297		
2. y = Payables/Assets	.021 (1.5)	.029*** (2.9)	Loss ≤ No loss	.319		
3. y = Receivables/Sales	-.008 (-1.6)	-.010*** (-3.0)	No loss ≤ Loss	.353		
Baseline specification with bias adjustment:						
4. y = Cash/Assets	-.016 (-.9)	-.027*** (-3.1)	No loss ≤ Loss	.283		
5. y = Payables/Assets	.020 (1.4)	.028*** (2.8)	Loss ≤ No loss	.314		
6. y = Receivables/Sales	-.008* (-1.7)	-.012*** (-3.4)	No loss ≤ Loss	.274		
No. of firms	116/116/116	494/494/367				

B. Estimations of Equation (3)

Outcome Variable	Cash/Assets	Payables/Assets	Receivables/Sales	Cash/Assets	Payables/Assets	Receivables/Sales
	(7)	(8)	(9)	(10)	(11)	(12)
Event\textsubscript{t} × (Loss/Assets)\textsubscript{2012}	-.002 (-.0)	.206** (2.3)	-.052*** (-2.0)	-.157 (-.5)	.949*** (5.4)	-.063 (-1.2)
Event\textsubscript{t} × (Loss/Assets)\textsubscript{2012}	.996 (.5)	.4789*** (-3.5)	.072 (.2)			
Marginal effect at the mean	-.071 (-.6)	.537*** (6.5)	-.057* (-2.0)
No. of firms	610/610/482					

Note.—Panel A reports estimates of cumulative adjustments, eq. (2), in 2012 for the subsample of treated firms that were fully compensated for bankruptcy losses in 2012 (cols. 1, 2) and for the subsample of treated firms that incurred losses in 2012 (cols. 3, 4). Rows 1–3 report estimates for the baseline specification and rows 4 and 5 those for the baseline specification with bias adjustment. The \(p \)-values refer to one-sided tests for differences in coefficients between the subsamples. Panel B reports results from estimations of eq. (3). Variable definitions are provided in table B2. The bottom row of each panel reports the numbers of treated firms, matched control firms, and unique matched control firms, in that order. The \(t \)-values, reported in parentheses, are calculated using robust standard errors adjusted for clusters in two dimensions: first, at the firm level for nonfranchisees and the franchisor level for franchisees and, second, at the level of matched pairs.

* Statistically distinct from 0 at the 10% level.
** Statistically distinct from 0 at the 5% level.
*** Statistically distinct from 0 at the 1% level.
Our analysis can take one step further by evaluating whether the magnitudes of treatment effects depend on the size of the incurred losses, that is, the second case of differential treatment mentioned above. Our conjecture is that larger losses are associated with larger adjustments at the three margins. To assess this conjecture, we estimate the following version of the baseline difference-in-differences specification:

$$y_{i,t} = \beta_0 + \beta_1 \times \text{Event}_t + \beta_2 \times \left(\frac{\text{Loss}}{\text{Assets}}\right)_{i,2012} + \beta_3 \times \text{Event}_t \times \left(\frac{\text{Loss}}{\text{Assets}}\right)_{i,2012} + \epsilon_{i,t},$$

where $y_{i,t}$ denotes one of the three dependent variable; Event_t is a dummy variable that takes the value one in 2012 and zero otherwise; and $\frac{\text{Loss}}{\text{Assets}}_{i,2012}$ is firm i’s incurred bankruptcy loss scaled by total assets in 2012. The model is estimated on data from 2009 and 2012 for the full sample of firms. The coefficient of interest, β_3, thus captures the relationship between loss size and subsequent adjustment in the dependent variable. Furthermore, to account for nonlinearity, results are also reported for an augmented version of the model including a squared term of the loss variable. Two-way cluster-adjusted standard errors are calculated according to our baseline specification.

Panel B in table 5 shows estimation results for equation (3). The linear version of the model is reported in columns 7–9 and the version of the model augmented with a squared term in columns 10–12. To enhance interpretability of the effect magnitudes obtained from the nonlinear model, we complement the coefficient estimates with marginal effects calculated at the mean (MEMs), where the mean is set to 4.3%—which is the mean loss for the group of firms that incurred losses; see table 2. Column 7 shows an insignificant relationship between the size of a loss and the associated adjustment in cash holdings, whereas columns 8 and 9 show that larger losses are associated with significantly larger increases in payables as well as larger decreases in receivables, in a statistical sense. Moreover, the results in columns 10–12 suggest that nonlinearities matter. For accounts payable, as shown by the MEMs, the positive relationship is substantially larger, as compared with the linear model, whereas the effects at the cash and accounts receivable margins are similar to the estimates from the linear model. Hence, these results indicate that the trade credit margins indeed played an important role in absorbing the

32 Comparing the R^2 for the linear model in col. 8 with that for the nonlinear model in col. 11 shows an increase from 8.5% to 10.7%, which, according to an F-test, indicates a statistically significant increase at the 1% level. Controlling for nonlinearities thus matters for the inference of the accounts payable margin.
impact of the incurred losses and that the larger the loss, the larger were resulting adjustments.33

In sum, these results shed additional light on the consequences of the bankruptcy event for the exposed firms. Diminishing effects in 2012 for the group of firms that were only exposed to the fraud, in combination with more pronounced effects on the outcome variables for firms that incurred larger losses, corroborate the presumption that overall we are capturing adjustments in the outcome variables that are associated with increased liquidity needs.

D. The Role of Financial Constraints

In this subsection, we set out to investigate the idea that firms’ ability to access external funding may be important for their liquidity management and for shocks to liquidity in particular. To this end, we apply a set of sample splits to the sample of treated firms that incurred losses in the Panaxia bankruptcy and estimate equation (2) for subsamples differing in the degree of credit constraints, as measured by firm size and credit rating.34 More specifically, we sort the firms into an empirical distribution based on their 2009 outcomes of the split variable and then construct two subsamples: for each split variable, firms in the top three deciles of the distribution are classified as unconstrained and firms in the bottom seven deciles as constrained. The main reason for using the full sample—and not the more commonly applied approach of comparing the top three deciles against the bottom three—is to preserve the number of observations in an already small sample, in the interest of preserving statistical power. Another reason is that, because of the sample composition, firms in the bottom seven deciles of our sample would most likely be classified as constrained when applying cutoffs used in studies that consider public firms. Our reported estimates concern cumulative treatment effects in 2012—capturing the full impact of the Panaxia sequence of events—using the baseline specification, with and without bias adjustment. For robustness, in table B7, we also report results for a symmetric sample split, comparing firms in the top three deciles with firms in

33 A potential concern when estimating the more elaborate eq. (3) is that the loss variable is correlated with firm-specific factors, such as firm size. This could imply that the loss variable reflects adjustments for treated firms with a specific set of characteristics, rather than the actual impact of the incurred loss. One way to control for this is to estimate eq. (3) with matched pair × time fixed effects. These fixed effects absorb adjustments that are particular to each treated firm and its matched control firm. Table B6 shows that, if anything, the effects along all margins become more pronounced once we account for time-varying matched-pair fixed effects.

34 We select our split variables on the basis of Farre-Mensa and Ljungqvist (2016), who show that small private firms and high-risk firms are likely to be subject to external funding constraints.
the bottom three deciles of the size and rating distributions. These results are briefly discussed below.

Panel A in table 6 shows results when splitting the sample with respect to the size of treated firms, where small and medium-sized firms are classified as constrained and large firms as unconstrained. The first result, emerging in rows 1 and 5, is that the negative effects for cash holdings can be attributed to constrained firms, whereas no significant effects are observed for unconstrained firms, whose point estimates are close to zero. The reported p-value indicates that treatment effects are significantly different for small and medium-sized firms versus large firms. However, test results for the two trade credit margins, reported in rows 2, 3, 6, and 7, show no statistically significant differences in effects between the two groups.

Panel B shows results for sample splits based on firms’ credit ratings; firms associated with high bankruptcy risk are classified as constrained, whereas low-risk firms are classified as unconstrained. The estimated effects display a pronounced difference between the two subsamples. For cash holdings, reported in rows 1 and 5, the coefficients are negative and statistically significant for constrained firms and insignificant for unconstrained ones. The estimates are nevertheless not statistically different from each other. Rows 2, 3, 6, and 7 show that constrained firms increase the amount of trade credit drawn and contract the amount of trade credit issued, whereas the coefficients for unconstrained firms are close to zero and insignificant. The t-tests indicate that the effects at the two trade credit margins are significantly more pronounced for constrained firms. Finally, estimates in rows 4 and 8 show that unconstrained firms tend to use significantly more short-term bank financing, as compared with the constrained firms.

In table B7, we report results for the alternative sample split classification that compares effect outcomes for constrained firms in the bottom three deciles with unconstrained firms in the top three. These are broadly in line with the results in table 6 and show that for both constraint measures, the magnitudes of the estimated effects tend to increase for constrained firms when the stricter classification is applied. However, the reported t-tests for differences in estimated effects across the two groups of firms become slightly less pronounced. For example, the difference in treatment effect on accounts payable between constrained and unconstrained firms for the rating constraint measure becomes statistically insignificant for the unadjusted baseline specification, whereas it remains significant for the bias-adjusted estimates.

In sum, although not conclusive, these results are consistent with the presumption that financially unconstrained firms may access external financing to handle liquidity shocks, whereas constrained firms have to rely on internal funds, in combination with liquidity extraction from suppliers and customers. That is, constrained firms facing the task of
TABLE 6
Treatment Effects Conditional on Credit Constraints

	A. Firm Size		B. Rating				
	Constrained (C)	Unconstrained (U)	t-Test	Constrained (C)	Unconstrained (U)	t-Test	
	T_{2012}	T_{2012}	t-Value	H_0 p-Value	T_{2012}	t-Value	H_0 p-Value
	(1)	(3)	(4)	(5)	(7)	(9)	(11)
Baseline Specification							
1. $y =$ Cash/Assets	-.036*** (-3.4)	-.001 (-.0)	U < C .012	-.029*** (-3.1)	-.017 (-1.0)	U < C .012	
2. $y =$ Payables/Assets	.035*** (2.8)	.016 (1.6)	C < U .110	.037*** (2.9)	.012 (1.1)	C < U .041	
3. $y =$ Receivables/Sales	-.011** (-2.4)	-.008** (-2.5)	U < C .274	-.013** (-2.8)	-.003 (-1.4)	U < C .025	
4. $y =$ Short-Term Bank Debt/Assets	-.003 (-.7)	.007 (1.0)	U < C .010	-.004 (-1.1)	.011** (2.2)	U < C .006	
Baseline Specification with Bias Adjustment							
5. $y =$ Cash/Assets	-.036*** (-3.3)	-.011 (-.9)	U < C .066	-.033*** (-3.5)	-.016 (-.9)	U < C .206	
6. $y =$ Payables/Assets	.026** (2.1)	.023** (2.3)	C < U .421	.036*** (2.9)	.012 (1.1)	C < U .055	
7. $y =$ Receivables/Sales	-.013*** (-2.9)	-.008*** (-2.7)	U < C .180	-.015*** (-3.2)	-.003 (-1.3)	U < C .010	
8. $y =$ Short-Term Bank Debt/Assets	.001 (2)	.010 (1.5)	U < C .016	-.002 (-.5)	.012*** (2.4)	U < C .013	
Number of Firms (Treated/Matched Control/Unique Matched Control)	346/346/232	148/148/140	347/347/243	148/148/137			

Note.—This table reports estimates of cumulative adjustments, eq. (2), for cash holdings, accounts payable, accounts receivable, and short-term bank debt, in 2012. Rows 1–4 report estimates for the baseline specification. Rows 5–8 report estimates for the baseline specification with bias adjustment. The models are estimated on subsamples classified with respect to treated firms’ total assets (panel A) or credit ratings (panel B). For each classification variable, firms in the bottom seven deciles are classified as constrained and firms in the top three as unconstrained. The p-values refer to one-sided tests for differences in coefficients between the subsamples. Variable definitions are provided in table B2. The t-values, reported in parentheses, are calculated using robust standard errors adjusted for clusters in two dimensions: first, at the firm level for nonfranchisees and the franchisor level for franchisees and, second, at the level of matched pairs.

** Statistically distinct from 0 at the 5% level.

*** Statistically distinct from 0 at the 1% level.
managing liquidity shocks may draw extra liquidity from suppliers and customers so as to sustain sufficient cash reserves for the purpose of executing prompt payments, such as ongoing expenses for salaries and taxes. In other words, constrained firms balance liquidity extraction from counterparties in the supply chain with the use of liquid assets to handle payments where liquid means are required—indicating that these liquidity sources operate as complements.

IV. Mechanisms

In the previous section, we demonstrated that liquidity shortfalls are related to adjustments in treated firms’ trade credit positions. In this section, we probe the underlying duration adjustments in trade credit arrangements. More specifically, in an upstream perspective, a duration shift can be obtained by a prolongation of the trade credit contract maturity but also effectively through a temporary default on due outstanding debt. Symmetrically, shorter maturities on new contracts downstream will reduce trade credit duration, as will active attempts to enforce payment on due credit extended to customers. For lack of data on trade credit contracts, we cannot examine shifts in contracted net days; hence, we resort to studying temporary defaults and enforcements of payment related to trade credit.

The analysis in this section is close in spirit to the one by Boissay and Gropp (2013), who document that firms pass on liquidity shocks through chains of defaults. Our analysis differs with respect to the nature of the shocks considered—in our case, originating outside of the supply chain and therefore uncorrelated with demand conditions—and in the assessment of how overdue claims are resolved.

A. Measurement of Mechanisms

Whereas postponement of payments to suppliers and enforcement of customers’ trade credit payments may well be privately conducted matters between trade credit parties, such actions will every so often involve a third party, the EA, and leave behind publicly available records. The EA offers legal support to Swedish trade creditors (suppliers) for the management of their unsettled trade credit claims. The creditor can submit an application to the EA for the issuance of an injunction for settlement of the outstanding claim. If the application is approved, the EA will then notify the debtor for prompt payment within a fortnight and take further measures to enforce payment should the debtor persist in dishonoring the claim after notification. Applying for an injunction for settlement is normally the creditor’s last resort and typically occurs when a claim has been overdue for an extended period—several weeks or longer.
We have, from the EA, obtained data on applications for the issuance of injunctions for settlement of outstanding claims submitted by the universe of Swedish corporate firms. The data include details on the date of submission and the identities of involved parties, so that unambiguous merging with the treated and control firms of the Panaxia events is straightforward. The merged data set provides an opportunity to assess whether treated firms, to a greater extent than control firms, have been subject to applications for injunction issuance due to unpaid trade credit, that is, the upstream perspective. We can also consider the downstream perspective and examine whether treated firms, to a greater extent than control firms, submitted applications for injunction issuance, that is, took action to enforce repayment of overdue trade credit.

For the full sample period 2007–2013, the EA data are somewhat restricted in that we observe only applications faced by treated and control firms, not those issued by them. That is, we observe the customers but not the suppliers involved. We denote all claims that have been registered at EA Late Payments. For the full sample period we can further disaggregate Late Payments into two dimensions. First, we observe applications for which the customers did not settle the debt after the notification and denote these outcomes Defaults. Second, we also observe applications that led to settlement immediately after the firms received notification from the EA and denote these outcomes Settlements. However, for the shorter sample period 2010Q1–2013Q1, the data set is more detailed. First, we observe the identity of both counterparties involved in an application, that is, both the supplier and the customer, which means that we can use these data to explore differences in the extent to which treated and control firms attempted to enforce payments from downstream customers. Second, we also observe the various outcomes underlying Settlements. That is, Settlements is associated with the following three outcomes: the supplier and customer can bilaterally reach an agreement, which usually results in a withdrawal of the application from the EA, denoted Withdrawals; the customer can also settle the claim by way of paying directly to the EA, denoted Payments to EA; and the customer can contest the claim, which happens if there is a disagreement between the two parties, denoted Contested Claims.

We structure the outcome variables—Late Payments, Defaults, Settlements, Withdrawals, Payments to EA, and Contested Claims—obtained from the EA data at a quarterly level. For all outcome variables, we measure their extensive margins by use of dummy variables capturing whether the specific event occurred or not and their intensive margins by measuring the number of specific events that occurred.

To assess whether the sequence of Panaxia events affected the treated firms’ propensity to postpone payments to suppliers and enforce late
payments from customers, we apply the following difference-in-differences specification for the sample of treated and matched control firms:

\[y_{i,t} = \gamma_0 + \gamma_1 \times \text{Event}_t + \gamma_2 \times \text{Treated}_i + \gamma_3 \times \text{Event}_t \times \text{Treated}_i + \epsilon_{i,t}, \]

(4)

where \(y_{i,t} \) denotes one of the six EA-dependent variables described above; Event\(_t\) is a dummy variable that takes the value one in the 2010–2012 period and zero otherwise, when the model is estimated on the full sample, and takes the value one in the 2010Q2–2012Q4 period and zero otherwise, when the model is estimated on the shorter sample; and Treated\(_i\) is a variable that takes the value one in the case of a treated firm and zero for a matched control firm. Thus, the coefficient \(\gamma_3 \) provides an estimate of the average shift in an EA outcome variable for treated firms in relation to control firms, throughout the entire treatment period. Two-way cluster-adjusted standard errors are calculated according to our baseline specification.

Figure 3 offers a graphical illustration of how the average incidence of Late Payment developed over time for treated and control firms, measured as the natural logarithm of one plus the number of late payments. Figure 3A shows postponed payments to suppliers—the upstream perspective. Outcomes in Late Payments across treated firms (solid line) and control firms (dashed line) are very similar in the pretreatment period, but after the onset of treatment in 2010, a pronounced divergence between the groups is evident. The steeper rise in Late Payments for treated firms is consistent with our baseline result showing upward adjustments in their accounts payable; see table 3. Furthermore, figure 3B illustrates supplier attempts toward enforcement of late payments from customers—the downstream perspective. The figure shows that treated firms increase the number of attempts to enforce late payments more than the control firms do during the event period, which is consistent with the baseline result showing a downward shift in accounts receivable; see table 3. In light of this baseline result, an increase in the enforcement of late payments can be due either to a reduction in contracted trade credit maturities triggering customers to default more on due debt, to treated firms seeking to reduce actual payment periods by more actively managing late payments, or to a combination of the two.

B. Mechanism Results

Table 7 reports results for equation (4), where estimates from a linear probability model are provided in columns 1 and 6 and estimates from a model
Fig. 3.—Late payments and enforcement of late payments: natural logarithm of one plus the number of late payments. A, Late payments by treated firms (solid line) and matched control firms (dashed line) for the period 2007–2013. B, Enforcement of late payments by treated firms (solid line) and matched control firms (dashed line) for the period 2010Q1–2013Q4.
Late Payments—Upstream and Downstream

VARIABLE	Specification	A. Upstream	B. Downstream	Specification	A. Upstream	B. Downstream						
		OLS (1)	OLS (2)	OLS (3)	No/Yes (0/1)	OLS (4)	OLS (5)	OLS (6)	OLS (7)	OLS (8)	Tobit (9)	Tobit (10)
		In (1 + \(N\))			Estimation Period	Pretreatment Period	No/Yes (0/1)	OLS (6)	OLS (7)	OLS (8)	Tobit (9)	Tobit (10)
		Pretreatment			(4)	(5)		(6)	(7)	(8)	(9)	(10)
1. Late Payments	No/Yes (0/1)	.017**	.013	.188	2007–12	2007–9	.013	.011	.382	2010–12	2010Q1	
	OLS (1)	(2.3)	(1.5)	(1.5)			(1.4)	(1.2)	(1.5)			
	In (1 + \(N\))	[.642]	[.874]	[.719]			[.642]	[.874]	[.719]			
	OLS (2)	(−.9)	(−1.0)	(−.8)			(−.2)	(−.3)	(−.1)			
	In (1 + \(N\))	[.274]	[.192]	[.000]			[.274]	[.192]	[.000]			
2. Defaults	No/Yes (0/1)	−.003	−.003	−.296	2007–12	2007–9	.002	−.002	.031	2010–12	2010Q1	
	OLS (1)	(−9)	(−1.0)	(−.8)			(−2)	(−.3)	(−1)			
	In (1 + \(N\))	[.274]	[.192]	[.000]			[.274]	[.192]	[.000]			
3. Settlements	No/Yes (0/1)	.018**	.015*	.227*	2007–12	2007–9	.012	.012	.449	2010–12	2010Q1	
	OLS (1)	(2.6)	(1.9)	(1.9)			(1.4)	(1.3)	(1.5)			
	In (1 + \(N\))	[.502]	[.832]	[.576]			[.502]	[.832]	[.576]			
4. Withdrawals	No/Yes (0/1)	.022*	.021**	.393*	2010–12	2010Q1	.021**	.021**	.891***	2010–12	2010Q1	
	OLS (1)	(1.8)	(2.0)	(1.7)			(2.5)	(2.3)	(2.9)			
	In (1 + \(N\))	(2.6)	(1.9)	(1.9)			(2.6)	(1.9)	(1.9)			
5. Payments to EA	No/Yes (0/1)	.001	.003	.126	2010–12	2010Q1	−.007	−.005	−.726	2010–12	2010Q1	
	OLS (1)	(2)	(1.6)	(1.3)			(−1.5)	(−.7)	(−1.6)			
	In (1 + \(N\))	(.2)	(−.4)				(.2)	(−.4)				
6. Contested Claims	No/Yes (0/1)	−.001	.001	−.177	2010–12	2010Q1	−.005	−.005	−.513	2010–12	2010Q1	
	OLS (1)	(−1)	(−.4)				(−.9)	(−.8)	(−.8)			

Note: This table reports difference-in-differences estimates from eq. (4). Panel A reports results for applications faced by firms (upstream perspective) and panel B those for applications issued by firms (downstream perspective). The tests of parallel pretrends are conducted using the 2007–2009 period and follow the approach proposed by Mora and Reggio (2015); results are reported as \(p\)-values in square brackets. Variable definitions are provided in table B2. The \(t\)-values, reported in parentheses, are calculated using robust standard errors adjusted for clusters in two dimensions: first, at the firm level for nonfranchisees and the franchisor level for franchisees and, second, at the level of matched pairs.

* Statistically distinct from 0 at the 10% level.
** Statistically distinct from 0 at the 5% level.
*** Statistically distinct from 0 at the 1% level.
that measures the number of outcomes are presented in columns 2 and 7. To further account for the zero lower bound in the number of outcomes, Tobit model estimates are reported in columns 3 and 8. Panels A and B report results for the postponement of payments to suppliers and the enforcement of late payments from customers, respectively.

Starting with the upstream perspective, row 1 in column 1 shows that treated firms’ propensity to postpone payments increased by 1.7 percentage points relative to that of control firms, during the treatment period. To provide an idea of the economic significance of this estimated effect, we can relate it to the pretreatment period frequency in Late Payments of 4.7%, which indicates a considerable increase for treated firms amounting to 35.9% (1.7/4.7).

Rows 2 and 3 in column 1 show estimates for the two subcomponents of Late Payments: Defaults and Settlements. The estimated effects show that the increase in Late Payments for treated firms in the treatment period can be primarily attributed to an upward shift in Settlements, whereas the effect for Defaults is very small and statistically insignificant. These results indicate that the treated firms, on average, engaged in liquidity extraction from their suppliers through maturity extensions on their trade credit debt by means of withholding payments past their due dates but that the overdue claims did not result in outright defaults.35

Rows 1–3 in columns 2 and 3 concern results related to the intensive margin of the outcome variables. The estimated effects are largely consistent with the extensive-margin results reported in column 1, showing that the number of settlements increased significantly more for treated firms, relative to control firms, in the treatment period.36

Next, rows 4–6 in columns 1–3 report results for the three subcomponents of Settlements: Withdrawals, Payments to EA, and Contested Claims. It is important to note that these estimates are obtained for the shorter sample period, implying that strong interpretations are unwarranted, since we lack data for the pretreatment period and cannot

35 For the group of treated and control firms in our sample, default is a fairly infrequent outcome; the average quarterly default rate in the pretreatment period is 0.5%, as compared with 4.6% for settlements. This may raise concerns about the power of our tests involving Defaults as the outcome variable. Therefore, our empirical assessment does not rule out a statistically significant effect for defaults if a larger sample were at hand. Nevertheless, abstracting from statistical significance, the magnitude of the coefficient does not point in the direction of a sharp rise in the frequency of defaults.

36 The test for parallel trends in the pretreatment period demonstrates a significant difference in growth rate between treated and control firms for Defaults; see row 2 in col. 3, which prevents a strong interpretation of the estimated treatment effect. The erratic behavior displayed by Defaults could be a source of distortion that also affects the intensive-margin estimate for Late Payments, which in turn may explain why the intensive-margin estimate is statistically insignificant (see row 1 in col. 2), as opposed to a statistically significant estimate of the extensive margin (see row 1 in col. 1).
undertake tests for parallel pretrends. Nevertheless, the coefficients reported in rows 4–6 serve a purpose in shedding additional light on the underlying drivers of the effects documented in rows 1–3. The main picture emerging is that increases in Settlements primarily appear to be associated with increases in Withdrawals, whereas no significant effects are obtained for Payments to EA or for Contested Claims. The background for a withdrawal of an injunction is either that the customer makes a direct payment for the overdue debt to the supplier or that the two parties agree on an extension of maturity. In either case, the supplier will consequentially cancel the formal enforcement process. Both cases can be interpreted as reflecting firms trying to preserve and maintain an ongoing relationship, albeit in the instance of an overdue claim. Hence, despite the initial involvement of the enforcement agency, cooperative outcomes appear to prevail.

We now turn to panel B and the evaluation of mechanisms underlying downstream adjustments by considering injunctions for overdue claims submitted by treated and control firms in the capacity of suppliers. Again, for this analysis we rely on the shorter sample period, and strong interpretations are thus unwarranted. Rows 1–3 show that the estimated effects for Late Payments and its two subcomponents, Defaults and Settlements, are statistically insignificant. Moreover, for the three subcomponents of Settlements we find—consistent with upstream mechanisms—positive and statistically significant estimates for Withdrawals at both the extensive and intensive margins but statistically insignificant estimates for Payments to EA and Contested Claims. However, the significant increase in Withdrawals does not feed into a significant effect for Settlements or, in turn, for Late Payments. Thus, these results do not lend support to the presumption that treated firms, relative to control firms, attempt to enforce more late payments in the treatment period.

A summary of the insights gained from the analyses of the EA data set suggests the following. The upstream analysis of the mechanisms underlying the previously documented adjustments in accounts payable indicates that these are associated with shifts in overdue payments. That is, treated firms extract liquidity from their suppliers by postponing payments on trade credit debt. In coherence with a risk-sharing perspective, the dominance of withdrawals as final outcomes of applications to the enforcement

37 If we consider the shorter 2010–2012 period, with 2010Q1 as the pretreatment period for Settlements, we obtain estimates (t-values) of 0.018 (1.4) and 0.285 (1.2) for the models in cols. 1 and 2, respectively. Hence, the point estimates are fairly close to the ones obtained when using the full period, 0.018 (2.6) and 0.227 (1.9), but t-values drop substantially in magnitude.

38 Figure B2 provides further support for this conclusion. The increase in Settlements for treated firms, relative to control firms, appears primarily to be due to shifts in Withdrawals.
agency points toward an inherently cooperative nature of this maturity-shifting process.39 Turning to the downstream analysis of mechanisms, our results do not provide conclusive evidence for treated firms increasing enforcement of late payments from customers. This may be due to the treated firms’ reduction of accounts receivable—documented in the previous section—being primarily achieved through a shortening of contracted net days on issued trade credit, rather than an increased enforcement of overdue payments. Moreover, in this context it is worth noting that our measure of overdue credit—derived from the EA data—presumably tends to capture rather long payment delays, and accordingly it is likely that many overdue claims on slow-paying customers do not result in formal applications to the EA, which suggests that we do not fully capture the treated firms’ propensity to postpone payments to suppliers or their attempts to foster or enforce prompt repayments from customers.

V. Conclusions

Recent research has shown that the buffer motive plays a prominent role in firms’ choices of cash holdings. Another conceivably important source of reserve liquidity is adjustment capacity at the trade credit margins—accounts payable and receivable—on firms’ balance sheets. In this paper, we empirically gauge how trade credit positions, next to cash holdings, are used by firms to curb the impacts of shortfalls in liquidity. To this end, we evaluate the effects of liquidity shortfalls generated in the fraud and failure of a large Swedish CIT firm and imposed on its clients. These unique events provide an opportunity to derive inference on the roles played by cash holdings and trade credit margins in handling liquidity shortfalls.

Our contribution can be summarized by the following main findings. First, firms handle adverse liquidity shortfalls by drawing down on their cash holdings, by increasing the amount of credit drawn from suppliers (accounts payable), and by decreasing the amount of credit issued to suppliers (accounts receivable). Second, in terms of average magnitudes,
upstream adjustments dominate downstream adjustments, and the com-
pounded adjustment at the two trade credit margins is found to be of an
order similar to adjustments in cash holdings, suggesting that trade credit
positions indeed constitute important sources of reserve liquidity. Third,
adjustment capacity in cash holdings and that at the trade credit margins
appear to be complements, and, in particular, credit-constrained firms
rely on combinations of these sources to handle liquidity shocks. Finally,
by exploring the underlying mechanism of the trade credit adjustments,
we find evidence that the observed changes are due to shifts in overdue
payments—firms in need of liquidity increase duration on their trade
credit upstream by postponing payments beyond the due date.

As Cuñat (2007) points out, establishing the role of trade credit in firms’
liquidity management may provide important insights into the widespread
use of trade credit. More specifically, recent research has asked the ques-
tion why trade credit is so widely used despite appearing very costly in some
cases. The findings in this paper corroborate the view that such implicit
costs in the underlying trade credit contracts could well be motivated by
the insurance properties embedded in the risk-sharing arrangements in
trade credit networks.

Appendix A

Accounting Practices, Measurement of Cash Adjustments,
and Implications for ATT on Cash Holdings

The accounting rules in Sweden—which adhere to the International Financial
Reporting Standards—do not indicate a single appropriate measure for a firm
to correctly book cash that is in transit. There are, in principle, three possibilities
open to firms for accounting for CIT; two of these are very close, but for clarity
and completeness we distinguish between them in what follows.

First, the least cumbersome way for the firm is to not rebook but simply let
the CIT remain a part of the bills-and-coins account on the books, until notice
is received about the transfer to the bank account having been completed (prac-
tice 1A), where both the bills-and-coins account and the bank account are subac-
counts of the cash account. Second, the firm can book the money picked up by the
CIT firm on a CIT account, that is, another subaccount under the cash account,
while the money is on its way to the bank account (practice 1B). That is, the firm
makes a distinction between CIT and other components under the cash account
during the transfer period. Once the funds reach the bank account, they are
rebooked as bank holdings and cease to be CIT holdings. Finally, the third possi-
bile accounting measure is for the firm to book the CIT as a short-term claim on the
CIT firm and then rebook it as bank holdings under the cash account once the
money is obtained from Panaxia (practice 2). By and large, practices 1 and 2 differ
in that under practice 1 CIT remains booked under the cash account throughout,
whereas under practice 2 the funds are temporarily booked as short-term claims
when in Panaxia’s hands. Practices 1A and 1B differ in that under 1A funds are not
rebooked while in transit, whereas for 1B CIT is temporarily rebooked to a subaccount under the cash account while in transit.40

To illustrate how practices 1 and 2 differently affect the measurement of cash holdings on firms’ accounting statements, we now present a simplified example. Consider a firm’s cash flow, CF_t, that is, the difference between its inflows of funds, Inflow_t, and its outflows of funds, Outflow_t. Initially, we assume that the firm balances all fluctuations in cash flow using its cash holdings, CH_t, only. This implies that $\Delta \text{CH}_t = \text{CH}_t - \text{CH}_{t-1} = \text{CF}_t$. In other words, we initially abstract from the presence of other potential liquidity sources—such as trade credit or bank financing—available to the firm. Column 1 in table A1 shows how cash holdings evolve over the period 2009–12 for a firm that is not subject to a CIT firm fraud.

Shifting focus to the case of the Panaxia fraud, a fraction α_t of Inflow_t is unduly withheld in contract violation in each year of the treatment period. Columns 2 and 3 in panel A show how the cash holdings and short-term claims accounts on the accounting statement evolved under practices 1A and 1B, and the same columns in panel B show the cash and short-term claims accounts under practice 2. Column 4 shows the differences in cash holdings outcomes between the case of fraud (col. 2) and the counterfactual of no fraud (col. 1). Column 4 in panel A shows that under practices 1A and 1B, there are no differences in the accounting measure of cash holdings between the fraud and no-fraud cases in 2010 and 2011, since the firms subject to fraud book CIT under cash holdings. In 2012, however, there is a relative decline in cash holdings for fraud-exposed firms incurring losses when Panaxia enters bankruptcy. That is, the realized bankruptcy losses in 2012 induce firms to write off the withheld amounts from their cash accounts.

Under practice 2, column 3 in panel B shows that fraud-exposed firms book CIT under a short-term claims account. This results in a relative decline in cash holdings from the point in time when Panaxia starts to delay transfers of CIT; see columns 2 and 4 in panel B. That is, the relative decline starts in 2010 and continues throughout 2012. The decline in each year is proportional to the increase in the fraction withheld, α_t.41 Thus, depending on choice of accounting practice,

40 Swedish firms anticipating a potential future write-off should rebook a claim with a low likelihood of repayment as a reservation. This accounting practice is common for doubtful accounts receivable: for claims on nonpaying customers that are 60 days, or more, past their due dates, reservations should be made. However, it is unlikely that Panaxia’s clients made reservations on their CIT claims during the fraud period before the bankruptcy, since the transfer periods in 2010 and 2011, although considerably prolonged, were around 5–6 days. The funds withheld by Panaxia were continuously and consistently transferred to the clients’ bank accounts, but with a time lag—long enough to matter for clients’ liquidity positions but not long enough to raise concerns for a looming failure and subsequent losses. Had clients begun to anticipate potential losses due to a forthcoming Panaxia failure, they would presumably have aborted purchases of Panaxia services immediately and not merely resorted to reservations. This issue is related to the setting of the fraud and the sustainability of the Ponzi-like scheme implemented by Panaxia’s management, which hinged on its ability to preserve the customer base over time; see the discussion in sec. II.A.

41 Note that when Panaxia finally transfers withheld CIT, the firm’s cash account is credited (by way of the subaccount bank holdings), and the short-term claims account is debited with the withheld amount. This explains why we can use the same notation for cash holdings, CH_t, in cols. 1 and 2. More specifically, for the determination of the values of CH_t for 2011 and 2012 in col. 2, withheld CIT in the previous year becomes liquid and part of cash holdings in the current year, such that $\text{CH}_{t-1} = \text{CH}_{t-1} + \alpha_{t-1} \text{Inflow}_{t-1}$.227
implications for relative cash holdings in 2010 and 2011 differ, but not so in 2012. In 2012, as a result of the Panaxia bankruptcy, withheld CIT results in a loss to be written off, irrespective of whether the funds were booked under cash holdings (practices 1A and 1B) or under short-term claims (practice 2), and thus induces a change in cash holdings either way. We now proceed to a discussion on how the accounting practices may influence the interpretation of our results.

In the simplified example outlined above, a one-to-one relationship between cash holdings and cash flow is assumed; in other words, firms rely completely on cash to manage variations in cash flow. However, this picture changes when we more realistically introduce other liquidity sources at firms’ disposal. For example, let us consider trade credit and bank financing. By postponing trade credit payments, accounts payable, a firm can balance parts of, or the full, Panaxia-withheld inflow of funds, α\text{Inflow}, by postponing parts of its outflows directed to suppliers. Similarly, by using a bank line of credit, the firm can balance parts of, or the full, withheld inflow of funds. Another potential measure available to the firm is to reduce maturities on extended trade credit, accounts receivable, which would then lead to an upward push for Inflow, in that year. Thus, in this multisource scenario, we can observe only a relative decline in cash holdings for firms that indeed rely on cash to balance withheld inflows, and we need not necessarily observe any decline in cash holdings for firms that rely on other financing sources. One caveat in our analysis is that for practices 1A and 1B, we will underestimate the reliance on cash holdings in 2010 and 2011; use of other financing sources could even lead to an upward push of cash holdings in 2010 and 2011. To see this, let us assume that the firm completely balances the amount withheld, α\text{Inflow}, by postponing payments to suppliers. This means that Outflow,—which affects cash holdings through ΔCH, = CF,—is reduced by α\text{Inflow}. In this example, the reduction in Outflow, amounting to α\text{Inflow}, leads to a corresponding relative increase in cash holdings of the same size. The important implication of this is that the fraud cannot give rise to a mechanical decline in cash holdings in the presence of alternative liquidity sources affecting CF, and therefore ΔCH. Hence, declines in accounted cash holdings reflect firms’ decisions to use their cash holdings to balance withheld funds due to Panaxia’s delayed transfers.

To conclude, the above suggests a caveat in our analysis, in that for firms applying practices 1A and 1B, we will underestimate their reliance on cash in 2010 and 2011 because their accounted cash holdings include withheld and therefore illiquid funds. Moreover, in the presence of multiple liquidity sources, there cannot be a mechanical fraud effect on firms’ cash holdings.

Which practice do Swedish firms use? The general view among professional and academic accountants is that under normal circumstances—when transfer times are well within the contracted 2 days—CIT most likely will remain booked under the cash account, that is, practice 1A or 1B. However, when transfer times increase in duration, it becomes conceptually less clear that CIT should continue to be booked under the cash account but should instead be booked as a

42 This reasoning aligns with Almeida, Campello, and Weisbach (2004), who examine the cash flow sensitivity of cash and propose that a positive relationship between cash flow and cash holdings should be observed only for financially constrained firms.
short-term claim, that is, practice 2, reflecting the increased illiquidity. The results in section III are consistent with the use of practice 2 during the treatment period. More specifically, the results in table 3 and in panel B of table B5 (firms that incurred a loss) show that the decline in cash is strongest in the beginning of the treatment period and show no effect in 2012. Furthermore, results in panel A of table B5 (firms that were compensated for their losses) show a statistically significant increase in cash holdings in 2012. This result suggests that firms, on average, booked the CIT under short-term claims and then filled up cash holdings again upon being compensated in 2012. In addition, a shift from practice 1A or 1B to practice 2 could potentially contribute to the pronounced effect for cash in 2011; see table 3. That is, the upward shift in delivery times at the end of 2010 affects booked cash holdings in the year after, because of a shift in accounting practice.

If practice 2 prevails, we should observe an upward shift in one of the short-term claims accounts on the balance sheet, where the CIT is booked. The short-term claims in the accounting statements in our data consist of three gross components: “accounts receivable,” “short-term claims on group firms,” and “other short-term claims.” Thus, intuitively, CIT should be booked under the account referred to as “other short-term claims.” This is, however, a residual account that contains other potentially large components, such as claims related to tax payments. This is illustrated by “other short-term claims” scaled by total assets on average amounting to 22% for treated and control firms in 2009. Nevertheless, when estimating cumulative treatment effects for the outcome variable Other Short-Term Claims/Assets, we obtain estimates (t-values) of 0.018 (2.4), 0.026 (3.1), 0.012 (0.8), and 0.040 (4.1) for the years 2010, 2011, 2012, and 2013, respectively. The upward shift in “other short-term claims” in 2010 and 2011 is consistent with CIT being booked under this account. The estimated effects are small in magnitude, however. If practice 2 indeed prevails, we would expect coefficients that exceed adjustments in cash holdings. Our results may reflect that the events also affected other components on the “other short-term claims” account. For instance, the cumulative effect in 2013 is large and significant, which is obviously unrelated to shifts in CIT.

Taken together, because of a fraction of treated firms having potentially applied practices 1A and 1B, we caution the interpretation of estimated cash effects in 2010 and 2011; CIT may have been booked under the cash account, which would imply that our estimates understate the treatment effect on cash. In 2012, however, the choice of accounting practice does not matter for the cash estimates.
No fraud	Fraud	Short-Term Claims	CH₀ − CH₁			
			(1)	(2)	(3)	(4)
CH₂₀₀₈	CH₂₀₀₈	CH₂₀₀₈	0	0		
CH₂₀₀₉	CH₂₀₀₉	CH₂₀₀₉	0	0		
CH₂₀₁₀	CH₂₀₁₀	CH₂₀₁₀	0	0		
CH₂₀₁₁	CH₂₀₁₁	CH₂₀₁₁	0	0		
CH₂₀₁₂	CH₂₀₁₂	(1 − α₂₀₁₂) Inflow₂₀₁₂ − Outflow₂₀₁₂	0	−α₂₀₁₂ Inflow₂₀₁₂		

A. Accounting Practices 1A and 1B

B. Accounting Practice 2

Note.—This table shows how different accounting practices influence the measurement of relative adjustments in cash holdings (CH) in a comparison of a firm that experienced the Panaxia fraud with the counterfactual outcome of a firm that did not experience the fraud. The example abstracts from influences of trade credit and bank financing. CF = cash flow.
Appendix B

Supplementary Tables and Figures

TABLE B1	SAMPLE CHARACTERISTICS — NUMBER OF PANAXIA CLIENTS				
A. By Type and Data Source	**Uncompensated Firms**	**Franchisees**	**Compensated by Savings Bank**	**Pharmacies**	
Total	(Item 1)	(Item 2)	(Item 3)	(Items 1 and 2)	
1. Unidentified firms	38	18	20	0	0
2. Financial firms	13	13	0	0	0
3. Nonincorporated entities	173	45	0	130	0
4. Pharmacies	131	0	0	0	131
5. Nonfinancial corporations:					
Franchisor	1	1	0	0	0
With missing accounting data	289	74	175	40	0
With accounting data (final sample)	610	260	234	116	0
Total	1,255	409	429	286	131

B. Nonfinancial Firms
2007
6. Nonfinancial corporations:
Continuing firms
New firms
Failures
Firms in final sample
7. Pharmacies:
Continuing firms
New firms
Failures

Note. — This table reports the number of Panaxia clients identified in our records. Panel A reports the number of firms by type and data source, while Panel B reports the number of nonfinancial firms (excluding the franchisor) and pharmacies over the period 2007–13.
Variable Names	Definitions	Data Source
A. Event Variables		
Exposure	Claims held on Panaxia at the time of the bankruptcy in 2012	Bankruptcy trustee and savings banks
Loss	Uncovered claims in 2012	Bankruptcy trustee and savings banks
B. Outcome Variables		
Cash	Total amount of cash and liquid assets	Financial statements
Payables	Accounts payable	Financial statements
Receivables	Accounts receivable	Financial statements
Bank Debt	Total bank debt	Financial statements
Short-Term Bank Debt	Short-term bank debt	Financial statements
Long-Term Bank Debt	Long-term bank debt	Financial statements
Applications	Applications for the issuance of injunctions for settlement of outstanding claims	Enforcement agency (EA)
Withdrawals	Applications that were withdrawn by the supplier from the EA	EA
Payments to EA	Applications that resulted in a payment to EA	EA
Contested Claims	Applications that were contested by the customer	EA
Defaults	Applications that were unsettled within a fortnight from the time of notification	EA
C. Control Variables		
Cash Flow	Earnings after interest expenses and taxes, but before depreciation and amortization	Financial statements
Assets	Book value of total assets	Financial statements
Sales Growth	Log difference between sales in periods $t-1$ and t	Financial statements
Debt	Total liabilities excluding payables	Financial statements
Tangible Assets	Property, plant, and equipment	Financial statements
Inventories	Inventories	Financial statements
Age	Years since firm was registered as a corporation	Credit bureau
COGS	Cost of goods sold	Financial statements
Rating	Probability of default estimated by the Swedish credit bureau UC	Credit bureau

Note.—This table reports definitions of all variables used in the empirical analysis.
TABLE B3

Assessing Balance

	A. Nontreated (weighted)	B. Matched control firms				
	Coverage Frequency	Log of Ratio of SD (G_{0.05})	Coverage Frequency	Log of Ratio of SD (G_{0.05})		
	\(\pi_{i_{05}} ^{(1)} \)	\(\pi_{i_{05}} ^{(2)} \)	\(\pi_{i_{05}} ^{(3)} \)	\(\pi_{i_{05}} ^{(4)} \)	\(\pi_{i_{05}} ^{(5)} \)	\(\pi_{i_{05}} ^{(6)} \)
(Cash Flow/Assets)_{2009}	.975 .924	−2.09	.941 .957	.922		
Assets_{2006} (M SEK)	.918 .880	−1.79	.966 .979	.993		
Sales Growth_{2009}	.964 .932	−1.17	.951 .954	.100		
(Debt/Assets)_{2009}	.510 .629	−0.91	.489 .634	.048		
(Tangible Assets/Assets)_{2009}	.989 .796	−1.78	.967 .920	−.029		
(Inventories/Assets)_{2009}	.938 .577	−1.82	.931 .890	−.012		
Age_{2009}	.872 .965	.214	.882 .915	.114		
(Cash/Assets)_{2009}	.997 .816	−2.79	.962 .921	−.056		
(Payables/Assets)_{2009}	.920 .761	.051	.948 .941	.022		
(Receivables/Sales)_{2009}	.618 .659	−.572	.598 .757	−.016		
(Cash/Assets)_{2008}	.993 .834	−2.86	.964 .926	−.062		
(Payables/Assets)_{2008}	.856 .785	.198	.936 .957	.040		
(Receivables/Sales)_{2008}	.603 .685	−.414	.584 .734	.031		
No. of firms	610/49,633/49,633		610/610/482			

Note.—This table reports three measures of balance proposed by Imbens and Rubin (2015): two coverage frequencies and the logarithm of the ratio of standard deviations. Panels A and B compare outcomes for treated firms with those for nontreated firms and matched control firms, respectively. Means and standard deviations for nontreated firms are calculated using weights corresponding to the fraction of treated firms in each particular 5-digit industry. Variable definitions are provided in table B2. The bottom row reports the numbers of treated firms, matched control firms, and unique matched control firms, in that order.

TABLE B4

Bank Financing

	Treatment period	Posttreatment period	Test of parallel pretrends		
	2010 (1)	2011 (2)	2012 (3)	2013 (4)	p-Value (5)
A. \(\gamma = \) Total Bank Debt/Assets					
1. \(\tau_{t} \)	.000	−.007**	.007	−.012*	.410
	(.1)	(−1.8)	(1.5)	(−1.7)	
2. \(T_{t} \)	.000	−.007	.000	−.011	
	(.1)	(−1.1)	(.1)	(−1.2)	
B. \(\gamma = \) Short-Term Bank Debt/Assets					
3. \(\tau_{t} \)	.002	−.003**	.004**	−.001	.590
	(.9)	(−1.5)	(2.3)	(−.7)	
4. \(T_{t} \)	.002	−.002	.003	.001	
	(.9)	(−.5)	(.9)	(.5)	
C. \(\gamma = \) Long-Term Bank Debt/Assets					
5. \(\tau_{t} \)	−.001	−.003	.002	−.012	.215
	(−.2)	(−.8)	(.5)	(−1.6)	

233
TABLE B4 (Continued)

TREATMENT PERIOD	POSTTREATMENT PERIOD	TEST OF PARALLEL PRETRENDS		
2010 (1)	2011 (2)	2013 (4)	p-VALUE (5)	
6. T_t	-.001	-.004	-.002	-.013
(−.2)	(−.7)	(−.3)	(−1.4)	

No. of firms

610 treated, 610 matched control, 482 unique matched control

Note.—This table reports estimates of yearly adjustments, eq. (1), and cumulative adjustments, eq. (2), in total bank debt, short-term bank debt, and long-term bank debt, over the treatment and posttreatment periods. The tests for parallel pretrends are conducted on the 2007–9 period and follow the approach proposed by Mora and Reggio (2015). Variable definitions are provided in table B2. The t-values, reported in parentheses, are calculated using robust standard errors adjusted for clusters in two dimensions: first, at the firm level for nonfranchisees and the franchisor level for franchisees and, second, at the level of matched pairs.

* Statistically distinct from 0 at the 10% level.

** Statistically distinct from 0 at the 5% level.
TABLE B5

No Losses versus Incurred Losses

A. No losses in 2012

Treatment Period	Posttreatment Period	Test of Parallel Pretrends	p-Value	
2010 (1)	2011 (2)	2012 (3)	2013 (4)	p-Value (5)

B. Incurred bankruptcy losses in 2012

Treatment Period	Posttreatment Period	Test of Parallel Pretrends	p-Value	
2010 (6)	2011 (7)	2012 (8)	2013 (9)	p-Value (10)

y = Cash/Assets

1. τ, -0.009, -0.032^{**}, 0.025^{**}, -0.014, 0.630,
 -0.023^{**}, -0.006, 0.003, -0.008, 0.805

 $(-.7)$, (-2.6), $2.0)$, $(-.9)$, (-2.3), (-1.0), $0.5)$, $(-.5)$

2. T, -0.009, -0.040^{**}, -0.015, -0.029,
 -0.023^{**}, -0.029^{***}, -0.026^{***}, -0.033^{***}

 $(-.7)$, (-2.3), $(-.8)$, (-1.3), (-2.3), (-3.1), (-2.9), (-2.6)

y = Payables/Assets

3. τ, $.011$, $.010$, $.000$, $.002$, $.657$,
 $.004$, $.012^{**}$, $.022^{**}$, -0.001, 0.448

 (1.4), (1.2), (-0), $(.2)$, $(-.5)$, (2.2), (2.0), $(-.0)$

4. T, $.011$, $.021^{**}$, $.021$, $.023$,
 -0.004, 0.008, $.029^{***}$, $.029^{**}$

 (1.4), (2.1), (1.5), (1.4), $(-.5)$, $(.8)$, (2.9), (2.2)
TABLE B5 (Continued)

A. NO LOSSES IN 2012	B. INCURRED BANKRUPTCY LOSSES IN 2012										
	Treatment Period	Posttreatment Period	Test of Parallel Pretrends	p-Value	Treatment Period	Posttreatment Period	Test of Parallel Pretrends	p-Value			
	2010 (1)	2011 (2)	2012 (3)	2013 (4)	p-Value (5)	2010 (6)	2011 (7)	2012 (8)	2013 (9)	p-Value (10)	
Receivables/Sales											
y = Receivables/Sales											
5. \(\tau_i \)	-.001 (1.5)	.003 (1.5)	-.010** (1.5)	-.002 (1.5)	.503 (1.5)	-.003** (1.5)	-.003 (1.5)	-.005* (1.5)	.001 (1.5)	.328 (1.5)	
6. \(T_i \)	-.001 (1.6)	.002 (1.6)	-.008 (1.6)	-.01 (1.6)	(-2.1) (1.6)	(-2.1) (1.6)	(-2.1) (1.6)	(-1.8) (1.6)	(-2.3) (1.6)	(-2.9) (1.6)	
No. of firms	116/116/116	494/494/367									

NOTE.—This table reports estimates of yearly adjustments, eq. (1), and cumulative adjustments, eq. (2), in cash holdings, accounts payable, and accounts receivable, over the treatment and posttreatment periods. Columns 1–5 report results for the subsample of treated firms that were fully compensated for bankruptcy losses in 2012 and cols. 6–10 those for the subsample of treated firms that incurred losses in 2012. The tests for parallel pretrends are conducted on the 2007–9 period and follow the approach proposed by Mora and Reggio (2015). Variable definitions are provided in table B2. The bottom row reports the numbers of treated firms, matched control firms, and unique matched control firms, in that order. The \(t \)-values, reported in parentheses, are calculated using robust standard errors adjusted for clusters in two dimensions: first, at the firm level for nonfranchisees and the franchisor level for franchisees and, second, at the level of matched pairs.

* Statistically distinct from 0 at the 10% level.
** Statistically distinct from 0 at the 5% level.
*** Statistically distinct from 0 at the 1% level.
| Outcome Variable | Cash/Assets (1) | Payables/Assets (2) | Receivables/Sales (3) | Cash/Assets (4) | Payables/Assets (5) | Receivables/Sales (6) |
|------------------|----------------|---------------------|----------------------|----------------|---------------------|----------------------|
| Event, × \(\text{Loss/Assets}_{2012}\) | \(-.150\) | .346** | \(-.132***\) | \(-.658**\) | 1.233*** | \(-.173**\) |
| \(t\)-values | \((-1.2)\) | (2.4) | \((-3.2)\) | \((-2.5)\) | (4.2) | \((-2.2)\) |
| Event, × \(\text{Loss/Assets}_{2012}^2\) | | | | 3.466** | \(-6.053***\) | .279 |
| \(t\)-values | | | | \((2.4)\) | \((-3.2)\) | (.6) |
| Marginal effect at the mean | ... | ... | ... | \(-.360**\) | .712*** | \(-1.50***\) |
| \(t\)-values | | | | \((-2.2)\) | (4.3) | \((-3.2)\) |

Note.—This table reports results from estimations of eq. (3) augmented with matched pair × time fixed effects. Variable definitions are provided in table B2. The \(t\)-values, reported in parentheses, are calculated using robust standard errors adjusted for clusters in two dimensions: first, at the firm level for nonfranchisees and the franchisor level for franchisees and, second, at the level of matched pairs.

** Statistically distinct from 0 at the 5% level.

*** Statistically distinct from 0 at the 1% level.
TABLE B7
TREATMENT EFFECTS CONDITIONAL ON CREDIT CONSTRAINTS—ALTERNATIVE SAMPLE SPLIT

A. Firm Size	B. Rating											
Constrained (C)	**Unconstrained (U)**	**t-Test**										
T_{2012}^C (1)	T_{2012}^U (2)	t Value (3)	T_{2012}^C (4)	t Value (5)	p-Value (6)	T_{2012}^C (7)	t Value (8)	p-Value (9)	T_{2012}^C (10)	t Value (11)	p-Value (12)	
1. \(y = \text{Cash/Assets} \)												
-0.052*** (-3.8)	-0.001 (-.0) \(U < C \)	0.002	-0.035*** (-2.2)	-0.017 (-.9) \(U < C \)	0.236							
2. \(y = \text{Payables/Assets} \)	0.038** (1.9)	0.016 (1.6) \(C < U \)	0.041* (1.7)	0.011 (9) \(C < U \)	0.152							
3. \(y = \text{Receivables/Sales} \)	-0.012* (-1.8)	-0.008** (-2.5) \(U < C \)	-0.022** (-2.1)	-0.003 (-1.4) \(U < C \)	0.036							
4. \(y = \text{Short-term bank debt/Assets} \)	-0.004 (-1.1)	0.007 (1.0) \(U < C \)	0.004 (-.6)	0.011** (2.3) \(U < C \)	0.045							
Constrained (C)	**Unconstrained (U)**	**t-Test**										
Baseline Specification	**Baseline Specification with Bias Adjustment**											
5. \(y = \text{Cash/Assets} \)												
-0.060*** (-4.4)	-0.011 (-.9) \(U < C \)	0.004	-0.047*** (-2.9)	-0.016 (-.9) \(U < C \)	0.115							
6. \(y = \text{Payables/Assets} \)	0.039** (2.1)	0.023** (2.3) \(C < U \)	0.059** (2.4)	0.012 (1.1) \(C < U \)	0.054							
7. \(y = \text{Receivables/Sales} \)	-0.018* (-2.7)	-0.008*** (-2.7) \(U < C \)	-0.024** (-2.4)	-0.003 (-1.3) \(U < C \)	0.018							
8. \(y = \text{Short-term bank debt/Assets} \)	0.001 (.4)	0.010 (1.5) \(U < C \)	0.000 (.1)	0.012** (2.4) \(U < C \)	0.107							
Number of Firms												
149/149/103	148/148/140											

Note.—This table reports estimates of cumulative adjustments, eq. (2), for cash holdings, accounts payable, accounts receivable, and short-term bank debt in 2012. Rows 1–4 report estimates for the baseline specification. Rows 5–8 report estimates for the baseline specification with bias adjustment. The models are estimated on subsamples classified with respect to treated firms’ total assets (panel A) or credit ratings of the treated firm in each matched pair (panel B). For each classification variable, firms in the bottom seven deciles are classified as constrained and firms in the top three as unconstrained. The \(p \)-values refer to one-sided tests for differences in coefficients between the subsamples. Variable definitions are provided in table B2. The \(t \)-values, reported in parentheses, are calculated using robust standard errors adjusted for clusters in two dimensions: first, at the firm level for nonfranchisees and the franchisor level for franchisees and, second, at the level of matched pairs.

* Statistically distinct from 0 at the 10% level.
** Statistically distinct from 0 at the 5% level.
*** Statistically distinct from 0 at the 1% level.
Fig. B1.—Panaxia: number of daily collections per month, 2006–11. This is a modified version of a figure appearing in the report covering Panaxia’s bankruptcy estate. It shows the number of daily collections in each month during the period 2006–11.
Fig. B2.—Settlements and its three components: Withdrawals, Payments to EA, and Contested Claims. A, Outcomes for settlements related to enforcements faced by the treated firms (solid line) and matched control firms (dashed line). B, Outcomes of settlements for enforcements imposed by the treated firms (solid line) and matched control firms (dashed line). Variable definitions are provided in table B2.
References

Abadie, Alberto, and Guido W. Imbens. 2006. “Large Sample Properties of Matching Estimators for Average Treatment Effects.” *Econometrica* 74 (1): 235–67.
———. 2011. “Bias-Corrected Matching Estimators for Average Treatment Effects.” *J. Bus. and Econ. Statis.* 29 (1): 1–11.
Abadie, Alberto, and Jann Spiess. 2020. “Robust Post-Matching Inference.” *J. American Statis. Assoc.*, forthcoming. https://doi.org/10.1080/01621459.2020.1840383.
Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. 2015. “Systemic Risk and Stability in Financial Networks.” *A.E.R.* 105 (2): 564–608.
Acharya, Viral, Sergei A. Davydenko, and Ilya A. Strebulaev. 2012. “Cash Holdings and Credit Risk.” *Rev. Financial Studies* 25 (12): 3572–609.
Allen, Franklin, and Douglas Gale. 2000. “Financial Contagion.” *J.P.E.* 108 (1): 1–33.
Almeida, Heitor, Murillo Campello, and Michael Weisbach. 2004. “The Cash Flow Sensitivity of Cash.” *J. Finance* 59 (4): 1777–804.
Almeida, Heitor, Chang-Soo Kim, and Hwanki Brian Kim. 2015. “Internal Capital Markets in Business Groups: Evidence from the Asian Financial Crisis.” *J. Finance* 70 (6): 2539–86.
Bakke, Tor-Erik, and Toni M. Whited. 2012. “Threshold Events and Identification: A Study of Cash Shortfalls.” *J. Finance* 67 (3): 1083–111.
Bates, Thomas W., Kathleen M. Kahle, and René Stulz. 2009. “Why Do U.S. Firms Hold So Much More Cash Than They Used To?” *J. Finance* 64 (5): 1985–2021.
Boissay, Frédéric, and Reint Gropp. 2013. “Payment Defaults and Interfirm Liquidity Provision.” *Rev. Finance* 17 (6): 1853–94.
Cameron, A. Colin, and Douglas L. Miller. 2015. “A Practitioner’s Guide to Cluster-Robust Inference.” *J. Human Resources* 50 (2): 317–72.
Crump, Richard K., V. Joseph Hotz, Guido W. Imbens, and Oscar A. Mitnik. 2009. “Dealing with Limited Overlap in Estimation of Average Treatment Effects.” *Biometrika* 96 (1): 187–99.
Cuñat, Vicente. 2007. “Trade Credit: Suppliers as Debt Collectors and Insurance Providers.” *Rev. Financial Studies* 20 (2): 491–527.
de Chaisemartin, Clément, and Jaime Ramírez-Cuellar. 2020. “At What Level Should One Cluster Standard Errors in Paired Experiments, and in Stratified Experiments with Small Strata?” Working Paper no. 27609 (July), NBER, Cambridge, MA.
Farre-Mensa, Joan, and Alexander Ljungqvist. 2016. “Do Measures of Financial Constraints Measure Financial Constraints?” *Rev. Financial Studies* 29 (2): 271–308.
García-Appendini, Emilia, and Judit Montoriol-Garriga. 2013. “Firms as Liquidity Providers: Evidence from the 2007–2008 Financial Crisis.” *J. Financial Econ.* 109 (1): 272–91.
Giannetti, Mariassunta, Mike Burkart, and Tore Ellingsen. 2011. “What You Sell Is What You Lend? Explaining Trade Credit Contracts.” *Rev. Financial Studies* 24 (4): 1261–98.
Giordani, Paolo, Tor Jacobson, Erik von Schedvin, and Mattias Villani. 2014. “Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios.” *J. Financial and Quantitative Analysis* 49 (4): 1071–99.
Gopalan, Radhakrishnan, Vikram Nanda, and Amit Seru. 2007. “Affiliated Firms and Financial Support: Evidence from Indian Business Groups.” *J. Financial Econ.* 86 (3): 759–95.
Ho, Daniel E., Kosuke Imai, Gary King, and Elizabeth A. Stuart. 2007. “Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference.” *Polit. Analysis* 15 (3): 199–236.

Imbens, Guido W., and Donald B. Rubin. 2015. *Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction*. New York: Cambridge Univ. Press.

Imbens, Guido W., and Jeffrey M. Wooldridge. 2009. “Recent Developments in the Econometrics of Program Evaluation.” *J. Econ. Literature* 47 (1): 5–86.

Jacobson, Tor, Jesper Lindé, and Kasper Roszbach. 2013. “Firm Default and Aggregate Fluctuations.” *J. European Econ. Assoc.* 11 (4): 945–72.

Jacobson, Tor, and Erik von Schedvin. 2015. “Trade Credit and the Propagation of Corporate Failure: An Empirical Analysis.” *Econometrica* 83 (4): 1315–71.

Karavánov, Alexander, Sonia Ruano, Jesús Saurina, and Robert Townsend. 2012. “No Bank, One Bank: Does It Matter for Investment?” Working Paper no. 1003, Banco de España.

Kimman, Cynthia, and Robert Townsend. 2012. “Kinship and Financial Networks, Formal Financial Access, and Risk Reduction.” *A.E.R.* 102 (3): 289–93.

Kocherlakota, Narayana. 1996. “Implications of Efficient Risk Sharing without Commitment.” *Rev. Econ. Studies* 63 (4): 595–609.

LaLonde, Robert. 1986. “Evaluating the Econometric Evaluations of Training Programs with Experimental Data.” *A.E.R.* 76 (4): 604–20.

Ligon, Ethan, Jonathan P. Thomas, and Tim Worrall. 2002. “Informal Insurance Arrangements with Limited Commitment: Theory and Evidence from Village Economies.” *Rev. Econ. Studies* 69 (1): 209–44.

Lins, Karl V., Henri Servaes, and Peter Tufano. 2010. “What Drives Corporate Liquidity? An International Survey of Cash Holdings and Lines of Credit.” *J. Financial Econ.* 98 (1): 160–76.

Long, Michael S., Ileen B. Malitz, and S. Abraham Ravid. 1993. “Trade Credit, Quality Guarantees, and Product Marketability.” *Financial Management* 22 (4): 117–27.

Love, Inessa, Lorenzo A. Preve, and Virginia Sarria-Allende. 2007. “Trade Credit and Bank Credit: Evidence from Recent Financial Crises.” *J. Financial Econ.* 83 (2): 453–69.

Mora, Ricardo, and Iliana Reggio. 2015. “didq: A Command for Treatment-Effect Estimation under Alternative Assumptions.” *Stata J.* 15 (3): 796–808.

Opler, Tim, Lee Pinkowitz, René Stulz, and Rohan Williamson. 1999. “The Determinants and Implications of Corporate Cash Holdings.” *J. Financial Econ.* 52 (1): 3–46.

Petersen, Mitchell A., and Raghuram G. Rajan. 1997. “Trade Credit: Theories and Evidence.” *Rev. Financial Studies* 10 (3): 661–91.

Rajan, Raghuram, and Luigi Zingales. 1995. “What Do We Know about Capital Structure? Some Evidence from International Data.” *J. Finance* 50 (5): 1421–60.

Samphantharak, Krislert. 2009. “Internal Capital Markets and Allocation of Resources in Business Groups.” Manuscript.

Smith, Janet Kiholm. 1987. “Trade Credit and Informational Asymmetry.” *J. Finance* 42 (4): 863–72.

Sufi, Amir. 2009. “Bank Lines of Credit in Corporate Finance: An Empirical Analysis.” *Rev. Financial Studies* 22 (3): 1057–88.

Wilner, Benjamin S. 2000. “The Exploitation of Relationships in Financial Distress: The Case of Trade Credit.” *J. Finance* 55 (1): 153–78.