Research Paper
Effect of Eight Weeks of Aerobic Progressive Training with Capsaicin on Changes in PGC-1α and UPC-1 Expression in Visceral Adipose Tissue of Obese Rats With Diet

Maryam Mostafavian1, *Ahmad Abdi1, Javad Mehrabani1, Alireza Barari2

1- Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
2- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Guilan University, Rasht, Iran

ABSTRACT

Objective Decreased physical activity coupled with increased High-Fat Diet (HFD) intake prompts obesity. Current research suggests that changing White Adipose Tissue (WAT) to brown promotes energy expenditure to counter obesity. The purpose of this study was to investigate the effects of aerobic Progressive training and Capsaicin (Cap) on Peroxisome proliferator-activated receptor Gamma Coactivator 1-alpha (PGC-1α) and Uncoupling protein-1 (UPC-1) gene expression in rat fed a high-fat diet.

Method 40 male Wistar rats aged 8-12 weeks, were fed a Normal Diet (ND) (n=8) or HFD (n=32) for 8 weeks. After 8 weeks, rats were divided into 5 groups: ND, HFD, High-Fat Diet-Training (HFDT), High-Fat Diet-Capsaicin (HFDCap), High-Fat Diet-Training-Capsaicin (HFDTCap). Training groups have performed a progressive aerobic running program on a motor-driven treadmill for eight weeks. Capsaicin (4 mg/kg/day) were administered orally, by gavage, once a day. PGC-1α and UPC-1 gene expression levels in the VAT were measured by Real-time PCR method.

Result The results of this study showed that PGC-1α and UCP-expression was decreased in HFD group compared to ND group. Also, the expression of PGC-1α and UPC-1 in HFDT, HFDCap and HFDTCap groups was significantly increased compared to HFD. The expression of PGC-1α and UPC-1 in HFDTCap was also significantly increased compared to HFDT and HFDCap groups.

Conclusion Possibly, eight weeks of progressive training combined with capsaicin administration has an effect on the browning of visceral adipose tissue in HFD rats by increasing expression of PGC-1α and UCP-1.

Key words: Exercise, Capsaicin, Diet, High-fat, Brown adipose tissue

Extended Abstract

1. Introduction

Obesity is caused by an imbalance between energy intake as a result of overeating or reduced levels of physical activity. White and brown fat cells are two different types of fat cells with opposite functions. White fat is a storehouse of extra energy, while brown fat increases the oxidation of fatty acids and their production by heat through Unpaired Protein-1 (UCP-1) into the mitochondria, thereby reducing the substrate for storage in WAT [5]. The role of PGC-1α in the conversion of WAT to brown has been confirmed [8]. Increased expression of PGC-1α increases FNDC5, which breaks down from the cell membrane and is secreted into the bloodstream called irisin [8]. PGC-1α-induced irisin promotes UCP-1 protein expression
and increases mitochondrial contents. UCP-1 is an important protein involved in the regulation of brown fat thermogenesis and the ability to convert WAT to brown adipose tissue [8]. The researchers showed that training on a treadmill increased the expression of PGC-1α [11] and UCP-1 [13]. In addition to exercise, studies have shown that the activity of brown adipose tissue with various nutrients, such as capsaicin in red pepper, increases [19]. Despite the physiological effects of capsaicin and adaptations due to long-term exercise, the simultaneous effect of exercise and capsaicin on fat phenotype change indices in the obese rat model has been less studied. Therefore, this study intends to investigate the effect of aerobic exercise with capsaicin on the expression of PGC-1α and UCP-1 gene in visceral adipose tissue in obese model mice.

2. Materials and Methods

Fourty male rats (5 weeks old, weight 147.68 ± 9.41) after adaptation to environmental conditions were divided into two groups: normal diet (n=8, ND) and high fat diet (n=32, HFD). HFD rats were fed a high-fat diet for eight weeks. After eight weeks, all mice were divided into 5 groups: Normal Diet (ND), High-Fat (HFD), High-Fat-Training (HFDT), High-Fat-Capsaicin (HFDCap) and High-Fat-Training-Capsaicin (HFDTCap). Training groups have performed a progressive aerobic running program (at 15-25 m/min, 30-60 min/day, and 5 days/week) on a motor-driven treadmill for eight weeks. Capsaicin (4 mg/kg/day) were administered orally, by gavage, once a day. PGC-1α and UCP-1 gene expression levels in the VAT were measured by Real-time PCR method. For statistical analysis, ANOVA were used with a significance level set at P<0.05.

3. Results

The results of this study showed that PGC-1α (P=0.000) and UCP-1 (P=0.000) expression was decreased in HFD group compared to ND group. Also, the expression of PGC-1α and UPC-1 in HFDT (Respectively P=0.032, P=0.000), HFDCap (Respectively P=0.027, P=0.048) and HFDTCap (Respectively P=0.000, P=0.000) groups was significantly increased compared to HFD. The expression of PGC-1α and UPC-1 in HFDTCap was also significantly increased compared to HFDT (Respectively P=0.039, P=0.017) and HFDCap (Respectively P=0.046, P=0.001) groups (Table 1).

4. Discussion

In the present study, it was shown that HFD significantly reduced the expression of PGC-1α and UCP-1 in visceral adipose tissue. In this regard, Kwon et al. (2020) showed that HFD reduces the expression of UCP-1 and irisin in visceral adipose tissue and PGC-1α in skeletal muscle of obese mice [26]. Disorders of metabolism due to consumption of high-fat diet appear to reduce the expression of PGC-1α and UCP-1 in visceral adipose tissue. However, in the present study, eight weeks of progressive exercise was able to offset the negative effect of obesity on PGC-1α and UCP-1 expression. In line with this study, Ziegler et al. (2019) in a study showed that both aerobic and resistance training increased the expression of PGC-1α and UCP-1 visceral adipose tissue in rats [34]. Aerobic exercise activates adenosine monophosphate and calmodulin-dependent kinase enzymes using calcium and phosphate-dependent pathways, thereby activating PGC-1α [38]. Exercise has also been reported to increase PGC-1α expression [37], which stimulates UCP-1 expression [43]. Another result of the present study was the increased expression of PGC-

Table 1. Results related to research variables

Variables	Relative Expression PGC-1α	Relative Expression UPC-1
ND	2.85±0.60	9.06±2.08
HFD	1±0.1∗	1±0.16⁺
HFDT	1.87±0.61⁺	4.14±1.25⁺
HFDCap	1.89±0.66⁺	3.39±1.63⁺
HFDTCap	2.73±0.83⁺	6.87±2.62⁺
SIG between groups	0.000	0.000

* Group bin difference; † Difference with ND; ‡ Difference with HFD group; § Difference with HFDCap group
1α and UCP-1 visceral adipose tissue in HFD mice after capsaicin. The findings of the present study are consistent with the finding that capsaicin is able to increase the expression of PGC-1α [20]. In addition, capsaicin is capable of enhancing several metabolic exothermic genes, including UCP-1, BMP8b, SIRT1, PGC-1α, and PRDM-16 [47]. In the present study, the additive effect of the combination of exercise and capsaicin on the expression of PGC-1α and UCP-1 was greater than the effect of each alone. Aerobic exercise and capsaicin appear to increase irisin by affecting the SIRT1/AMPK/PGC-1α signaling pathway, and increasing irisin increases UCP-1 expression in visceral adipose tissue, thereby altering WAT to brown adipose tissue.

5. Conclusion

In summary, exercise and capsaicin affected the browning of visceral adipose tissue in rats, in part due to increased expression of GC-1α and UCP-1. Therefore, the use of capsaicin and other biologically active compounds along with aerobic physical activity is an interesting effective strategy to neutralize high-fat diets.

Ethical Considerations

Compliance with ethical guidelines

This research has been carried out according to the policies related to animal protection (based on the policies of the Helsinki Convention) and with the approval of the Ethics committee in the research of the Institute of Physical Education and Sport Sciences (Code: IR.SSRC.REC.1398.125).

Funding

The present paper was extracted from the PhD. thesis of the first author, Department of Sport Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol.

Authors' contributions

All authors contributed equally in all areas.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors hereby express their gratitude to the Islamic Azad University, Ayatollah Amoli Branch.
تاثیر هشتمانه‌های تمرینی هوازی قهوه‌ای بر مصرف كپسایسین بر تغییرات پیوندیان زن-1 و-1 بافت چربی احیایی و رستگاری ویستار: چاق شدن با رژیم غذایی پرچرب

مریم مصلحتی‌نامه، حمید عیدی، جواد مهرانی، علیرضا بارانی ۱، گروه فیزیولوژی ورزشی واحد آیت الله آملی دانشگاه آزاد اسلامی، آمل، ایران

۱. گروه فیزیولوژی ورزشی واحد آیت الله آملی دانشگاه آزاد اسلامی، آمل، ایران
۲. گروه فیزیولوژی ورزشی گروه فیزیولوژی ورزشی دانشگاه آزاد اسلامی، آمل، ایران

جلب نام: دکتر احمد عبدالی
نشانی: دانشگاه آزاد اسلامی واحد آیت الله آملی گروه فیزیولوژی ورزشی، آمل، ایران
تلفن: +۹۸ ۹۱۱ ۳۰۰۱۹۶۰ پست الکترونیک: a.abdi58@gmail.com

مقدمه
شیوع اضافه وزن و چاقی طی سه دهه اخیر افزایش یافته و به بیش از دو میلیارد نفر در سراسر جهان افزایش رسیده است [۱]. نتیجه مطالعه‌های دکتر که کمتر از دو مورد مردم جهان در سال ۲۰۰۰ چاق خواهند بود [۲]. در برخی از کشورهای اروپایی، سایر کشورهای آمریکایی و جنوب آمریکا، نرخ چاقی به دلیل افزایش مصرف نرمی و کاهش کربوهیدرات در رژیم غذایی به مصرف چاقی و بهبود سلامت عمومی باعث چاقی در بیش از دو میلیارد نفر در جهان است [۳].

به چشم نخورده است که تغییرات بافت چربی باعث چاقی می‌شود. تحقیقات اخیر نشان می‌دهد که تغییر بافت هفته‌ای (HFD) همراه با رژیم غذایی پرچرب هدف به قهوه‌ای باعث افزایش هزینه انرژی برای مقابله با چاقی می‌شود. هدف از پژوهش حاضر، بررسی اثر تمرین هوازی (WAT) در موش‌های قهوه‌ای و کپسایسین بر عبارت نماینده و کپسایسین (PGC-1α) تغذیه شده با رژیم غذایی پرچرب است.

روش‌ها
نفر هفته موش صحرایی نر ویستار ۴۰ تمرین با رژیم غذایی پرچرب-کپسایسین (HFDCap) به صورت محلول با سالین با گاواژ خورانده شد. سطوح بیان ژنی در ۴ mg/kg/day Real-time PCR به روش بتای ویستار در UCP-1 و PGC-1α بود. همچنین نسبت به گروه HFD در گروه UCP-1 و PGC-1α نتایج پژوهش حاضر نشان دهنده کاهش بیان یافته‌ها بی‌معنی داشت. میزان HFD نسبت به HFDCap و HFDT به میزان UCP-1 و PGC-1α در گروه های UCP-1 و PGC-1α در سه گروه HFD و HFDCap و HFDT انجام شد. کپسایسین از طریق خوردن به میتوکندری شده و درنتیجه باعث جفت نشده UCP-1 و PGC-1α تغذیه شده است. همچنین بر مسیر قهوه‌ای شدن UCP-1 و PGC-1α احتمالاً هشت هفته تمرین فزاینده همراه با مصرف کپسایسین با افزایش بیان نتیجه‌گیری مؤثر است.

کلیدواژه‌ها: تمرین هوازی، کپسایسین، رژیم غذایی، پرچرب، قهوه‌ای

اطلاعات مقاله:
۱۳۹۸ اسفند ۶: تاریخ دریافت
۱۳۹۹ خرداد ۱۴: تاریخ پذیرش
۱۳۹۹ تیر ۱۱: تاریخ انتشار

پژوهشگران:
۱- علیرضا بارانی، دانشگاه گیلان، رشت، ایران
۲- امین حسینی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه آزاد اسلامی، آمل، ایران
۳- مریم مصطفویان، گروه فیزیولوژی ورزشی واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

مراجع:
۱. سولیم‌نژاد، چسبانی، گروه فیزیولوژی ورزشی واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
۲. میرابی، مهربانی، گروه فیزیولوژی ورزشی واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
۳. بارانی، علیرضا، گروه فیزیولوژی ورزشی واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

مقدمه
شیوع اضافه وزن و چاقی طی سه دهه اخیر افزایش یافته و به بیش از دو میلیارد نفر در سراسر جهان افزایش رسیده است [۱]. نتیجه مطالعه‌های دکتر که کمتر از دو مورد مردم جهان در سال ۲۰۰۰ چاق خواهند بود [۲]. در برخی از کشورهای اروپایی، سایر کشورهای آمریکایی و جنوب آمریکا، نرخ چاقی به دلیل افزایش مصرف نرمی و کاهش کربوهیدرات در رژیم غذایی به مصرف چاقی و بهبود سلامت عمومی باعث چاقی در بیش از دو میلیارد نفر در جهان است [۳].
برایی در بالین چربی چیزهایی که در محدوده میتوکندری می‌باید بیان ژن UCP-1 (عوامل پسرکین هورمونیک) و خاکی از زمینه‌های خاصی با آدرناکتهای ورزشی، فعالیت‌های متعدد از نوع چربی قهوه‌ای پاسخ بی‌روند در بالین چربی انرژیک [6]، و بدون رفتاری که از آن اتفاق یافته‌است از نوع چربی قهوه‌ای با خواص ترموژنزی 34 در بالین چربی قهوه‌ای، کاهش در سطح معنی‌داری رابطه با عوامل پسرکین هورمونیک [6] و بدون رفتاری که از آن اتفاق یافته‌است از نوع چربی قهوه‌ای با خواص ترموژنزی 34 در بالین چربی قهوه‌ای، کاهش در سطح معنی‌داری رابطه با عوامل پسرکین هورمونیک [6] و بدون رفتاری که از آن اتفاق یافته‌است از نوع چربی قهوه‌ای با خواص ترموژنزی 34 در بالین چربی قهوه‌ای، کاهش در سطح معنی‌داری رابطه با عوامل پسرکین هورمونیک [6] و بدون رفتاری که از آن اتفاق یافته‌است از نوع چربی قهوه‌ای با خواص ترموژنزی

1. Sirtuin1
2. Bone morphogenetic protein-8b
3. Fan
4. Capside
5. Transient receptor potential vanilloid subtype 1
6. Panchal
7. Kang
8. Zhang
9. 11025
10. Handschin C, Spiegelman
11. Kang
12. Zhang
13. 11511
14. 11025
15. Handschin C, Spiegelman
16. 11511
17. Kang
18. 11025
19. Handschin C, Spiegelman
20. 11511
21. Kang
22. 11025
23. Handschin C, Spiegelman
24. 11511
25. Kang
26. 11025
27. Handschin C, Spiegelman
28. 11511
29. Kang
30. 11025
31. Handschin C, Spiegelman
32. 11511
33. Kang
34. 11025
35. Handschin C, Spiegelman
36. 11511
37. Kang
38. 11025
39. Handschin C, Spiegelman
40. 11511
41. Kang
42. 11025
43. Handschin C, Spiegelman
44. 11511
45. Kang
46. 11025
47. Handschin C, Spiegelman
48. 11511
49. Kang
50. 11025
51. Handschin C, Spiegelman
52. 11511
53. Kang
54. 11025
55. Handschin C, Spiegelman
56. 11511
57. Kang
58. 11025
59. Handschin C, Spiegelman
60. 11511
61. Kang
62. 11025
63. Handschin C, Spiegelman
64. 11511
65. Kang
66. 11025
67. Handschin C, Spiegelman
68. 11511
69. Kang
70. 11025
71. Handschin C, Spiegelman
72. 11511
73. Kang
74. 11025
75. Handschin C, Spiegelman
76. 11511
77. Kang
78. 11025
79. Handschin C, Spiegelman
80. 11511
81. Kang
82. 11025
83. Handschin C, Spiegelman
84. 11511
85. Kang
86. 11025
87. Handschin C, Spiegelman
88. 11511
89. Kang
90. 11025
91. Handschin C, Spiegelman
92. 11511
93. Kang
94. 11025
95. Handschin C, Spiegelman
96. 11511
97. Kang
98. 11025
99. Handschin C, Spiegelman
100. 11511
101. Kang
102. 11025
103. Handschin C, Spiegelman
104. 11511
105. Kang
106. 11025
107. Handschin C, Spiegelman
108. 11511
109. Kang
110. 11025
111. Handschin C, Spiegelman
112. 11511
113. Kang
114. 11025
115. Handschin C, Spiegelman
116. 11511
117. Kang
118. 11025
119. Handschin C, Spiegelman
120. 11511
121. Kang
122. 11025
123. Handschin C, Spiegelman
124. 11511
125. Kang
126. 11025
127. Handschin C, Spiegelman
128. 11511
129. Kang
130. 11025
131. Handschin C, Spiegelman
132. 11511
133. Kang
134. 11025
135. Handschin C, Spiegelman
136. 11511
137. Kang
138. 11025
139. Handschin C, Spiegelman
140. 11511
141. Kang
142. 11025
143. Handschin C, Spiegelman
144. 11511
145. Kang
146. 11025
147. Handschin C, Spiegelman
به موش‌هایی که با مصرف کپسایسین به مدت هشت هفته تمرین کردند (گروه کپسایسین)، معیار خروج از مطالعه صورت نگرفت.

مطالعه

ماهیت مطالعه

متغیرهای مختلفی در هفته‌های سیزدهم روند شیب کربوهیدرات‌ها و چربی‌ها در دو گروه تمرینی (الهیم و کپسایسین) تغییر کرد.

تحقیق

مفصل

متغیر نظام غذایی	گروه کپسایسین	گروه الهیم	اختلاف
کربوهیدرات (%)	45 ± 1.1	42 ± 1.2	3 ± 1.1
چربی (%)	30 ± 1.2	32 ± 1.3	2 ± 1.2

توضیحات

- **کربوهیدرات (%)**: در گروه کپسایسین، مقدار کربوهیدرات در هفته‌های متابولیک به مدت هفت هفته گزارش شد.
- **چربی (%)**: در گروه الهیم، مقدار چربی در هفته‌های متابولیک به مدت هفت هفته گزارش شد.

نتایج

یافته‌های مطالعه نشان داد که کپسایسین باعث افزایش مقدار کربوهیدرات در هفته‌های متابولیک به مدت هفت هفته شد. در گروه الهیم، مقدار چربی در هفته‌های متابولیک به مدت هفت هفته نیز افزایش یافت.
پس از تأیید توزیع نرمال داده‌ها با استفاده از آزمون شاپیرو ویلک و همگنی واریانس‌ها توسط آزمون لون، برای تجزیه و تحلیل آماری از آزمون‌های آماری یکطرفه و آزمون تکراری استفاده گردید. محاسبات با استفاده از نرم‌افزار ایل‌سی‌پی‌سی انجام شد. سطح معنی‌داری آزمون‌ها به مقدار *P* ≤ 0/05 در نظر گرفته شد.
تجسم مداخله‌های مختلف و نسبی تغییرات بیان‌کننده ژن PGC-1α با گروه HFD و کاهش‌های BCAF-1 و PGC-1α با گروه HFDTCap در سطح β/τ در جدول شماره 3 نشان داده می‌شود. نتایج آزمون تمقیمی نشان داد که بین گروه‌های HFD و HFDTCap با گروه ND (P≤0.05) و HFDTCap با گروه HFD (P≤0.005) اختلاف معنی‌داری مشاهده شد. این نتایج نشان می‌دهد که در گروه HFDTCap تغییرات معنی‌داری در سطح BCAF-1 و PGC-1α وجود دارد.

جدول 1: مقایسه بین ژن‌های مختلف در گروه‌های HFD و HFDTCap

ژن	HFD	HFDTCap
BCAF-1		
PGC-1α		

نمودار 1: مقایسه بین ژن‌های مختلف در گروه‌های HFD و HFDTCap

نمودار 2: مقایسه بین ژن‌های PGC-1α و UCP-1 در گروه‌های HFD و HFDTCap

جدول 2: مقایسه بین ژن‌های PGC-1α و UCP-1 در گروه‌های HFD و HFDTCap

ژن	HFD	HFDTCap
PGC-1α		
UCP-1		

نتایج نشان می‌دهد که در گروه HFDTCap تغییرات معنی‌داری در سطح PGC-1α و UCP-1 وجود دارد.
مطالعه مختلط پایان دانشجویی کامی، یکی از پژوهشگران در مسیر پژوهش در زمینه علوم حیاتی و محیط زیست، در همکاری با دانشگاه فناوری ایالات متحده آمریکا، قراردادی برای استفاده از داده‌های بیولوژیک و اطلاعات هلیکوپتریال، به دست آورده است.

یکی از مهم‌ترین تمرینات مطالعه‌های این گروه، تمرین طولانی مدت است. در این تمرین، گروه پژوهشگران با همکاری با شرکت‌های تولیدکننده لوازم پزشکی، استراتژی‌های جدیدی را برای تاثیر‌گذاری بر افزایش بیان جزئیات درون‌بافت و ترکیب لژندر و پلکتار، ارائه داده‌اند.

به‌طور کلی، مطالعه‌های پیشین نشان داده‌اند که فعالیت ورزشی طولانی مدت به معنای مفید طبی بوده و باعث افزایش بیان جزئیات درون‌بافت و ترکیب لژندر و پلکتار، می‌شود.

از این رو، در مطالعه‌های این گروه، تمرینات طولانی مدت با هدف افزایش بیان جزئیات درون‌بافت و ترکیب لژندر و پلکتار، ارائه و بررسی شده‌است.

کارشناسان در این مطالعه به‌طور خلاصه این نتایج را در یک مقاله به‌عنوان "تأثیر تمرین طولانی مدت بر حالت منجر به افزایش بیان جزئیات درون‌بافت و ترکیب لژندر و پلکتار" در ژورنال بین‌المللی بیولوژی منتشر نموده‌اند.

налـمـ را، مرور و بررسی مدل‌های پیشنهادی برای تأثیر بر افزایش بیان جزئیات درون‌بافت و ترکیب لژندر و پلکتار، در مطالعه‌های این گروه ارائه و بررسی شده‌اند.

مطالعات پیشین نشان داده‌اند که تمرینات طولانی مدت با هدف افزایش بیان جزئیات درون‌بافت و ترکیب لژندر و پلکتار، برای بیماران مبتلا به بیماری‌های جدی، مانند سرطان و ارور ایمنی، مهم و ضروری است.

در سال ۱۳۹۸، کمیکو، از محققان این گروه، این نتایج را در یک مقاله به‌عنوان "تأثیر تمرین طولانی مدت بر حالت منجر به افزایش بیان جزئیات درون‌بافت و ترکیب لژندر و پلکتار" در ژورنال بین‌المللی بیولوژی منتشر نموده‌اند.

رهی گذاشته شده در مدل‌های پیشنهادی برای تأثیر بر افزایش بیان جزئیات درون‌بافت و ترکیب لژندر و پلکتار، در راهکارهای طراحی قرار گرفته‌اند.

налـمـ را، در بررسی مدل‌های پیشنهادی برای تأثیر بر افزایش بیان جزئیات درون‌بافت و ترکیب لژندر و پلکتار، به‌عنوان "تأثیر تمرین طولانی مدت بر حالت منجر به افزایش بیان جزئیات درون‌بافت و ترکیب لژندر و پلکتار" در ژورنال بین‌المللی بیولوژی منتشر نموده‌اند.
تهیه‌کننده‌ها: مهندسین‌های دانشگاهی و ویژه‌سازی‌های طبیعی و تغییرات پردازشی و نحوه‌برداری در رژیم‌های غذایی. مطالعات انسانی برای بررسی اثر قهوه‌ای در کاهش وزن چربی، از این رو، شایع‌تر می‌باشد. توصیه می‌شود در پژوهش‌های بعدی به این دو محدودیت بهبود اختلالات متابولیکی شوند. همچنین بررسی هسته‌توانی ترخیص و قهوه‌ای در تنها تمرین و کمپیوختین می‌تواند در پی برای اثرات این دو روش در تحقیق تأسیس می‌شود در پژوهش‌های بعدی. این نتیجه گرفته‌ای‌ها با یکی از اثربخش‌ترین ورزش‌های فیزیکی است که نشان می‌دهد کپسایسین قادر به افزایش اکتیویتی PGC-1α است. این نتیجه مربوط به افزایش اکتیویتی PGC-1α و ترکیب‌های مختلف قهوه‌ای را از طریق مکانیسم‌های مختلف اجازه می‌دهد بهبود اختلالات متابولیکی در این صورت قهوه‌ای می‌شود. این نتیجه مربوط به افزایش اکتیویتی PGC-1α و ترکیب‌های مختلف قهوه‌ای را از طریق مکانیسم‌های مختلف اجازه می‌دهد بهبود اختلالات متابولیکی در این صورت قهوه‌ای می‌شود.

30. Bone morphogenetic protein-8b
31. Positive regulatory domain containing zinc finger protein 16
32. Raspberry
33. Resveratrol
34. Quercetin
35. Lanzp
References

[1] Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the global burden of disease study 2013. The Lancet. 2014; 384(9945):766-81. [DOI:10.1016/S0140-6736(14)60460-8]

[2] Finkelstein EA, Khayou OA, Thompson H, Trogdon JG, Pan L, Sherry B, et al. Obesity and severe obesity forecasts through 2030. American Journal of Preventive Medicine. 2012; 42(6):563-70. [DOI:10.1016/j.amepre.2011.02.026]

[3] Yaghoobpour Yekani O, Azarbayjani MA, Peeri M, Farzanegi P. [Effect of type of training on markers of hypertrophy apoptosis and related metabolic disorders]. Current Opinion in Clinical Nutrition and Metabolic Care. 2013; 16(6):625-31. [DOI:10.1097/mco.0b013e3283635e61]

[4] Gonçalves IO, Passos E, Rocha-Rodrigues S, Torrella JR, Rizo D, Santos-Alves E, et al. Physical exercise antagonizes clinical and anatomical features characterizing Lieber-DeCarli diet-induced obesity and related metabolic disorders. Clinical Nutrition. 2015; 34(2):241-7. [DOI:10.1016/j.clnu.2014.03.010]

[5] Harms M, Seale P. Brown and beige fat: Development, function and therapeutic potential. Nature Medicine. 2013; 19(10):1252-63. [DOI:10.1038/nm.3361]

[6] Morton TL, Galior K, McGrath C, Wu X, Uzer G, Uzer GB, et al. Exercise increases and browns muscle lipid in high-fat-fed mice. Frontiers in Endocrinology. 2016; 7:80. [DOI:10.3389/fendo.2016.00080]

[7] Servera M, López N, Serra F, Palou A. Expression of “brown-in-white” adipocyte biomarkers shows gender differences and the influence of early dietary exposure. Genes & Nutrition. 2014; 9(1):372. [DOI:10.1007/s12263-013-0372-4]

[8] Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC-1α-dependent myokine that drives brown-fat-like development in obese and nonobese male C57BL/6 mice. Applied Physiology, Nutrition, and Exercise Medicine. 2018; 10(5):630. [DOI:10.3390/apnm20170614]

[9] De Matteis R, Lucertini F, Guescini M, Polidori E, Zappa S, Stocchi V, et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutrition, Metabolism & Cardiovascular Diseases. 2013; 23(6):582-90. [DOI:10.1016/j.numecd.2012.01.013]

[10] Voneshio T, Saito M. Transient receptor potential activated brown fat thermogenesis as a target of food ingredients for obesity management. Current Opinion in Clinical Nutrition and Metabolic Care. 2013; 16(6):625-31. [DOI:10.1097/MCO.0b013e3283635e61]

[11] Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. British Journal of Pharmacology. 2016; 173(15):2369-89. [DOI:10.1111/bph.13514]

[12] Fan L, Xu H, Yang R, Zang Y, Chen J, Qin H. Combination of capsaicin and capsiate induces browning in 3T3-L1 white adipocytes via activation of the peroxisome proliferator-activated receptor γ/β3-adrenergic receptor signaling pathways. Journal of Agricultural and Food Chemistry. 2019; 67(22):6232-40. [DOI:10.1021/acs.jafc.9b02191]

[13] Panchal SK, Bliss E, Brown L. Capsaicin in metabolic syndrome. Nutrients. 2018; 10(5):630. [DOI:10.3390/nu10050630]

[14] Jamali E, Asad MR, Rassoul A. [Effect of eight-week endurance exercise on resistin gene expression in visceral adipose tissues in obese rats (Persian)]. Journal of Shahid Sadoughi University of Medical Sciences. 2017; 25(1):20-31. http://jsuss.iau.ac.ir/article-1-3559-en.html

[15] Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. British Journal of Pharmacology. 2016; 173(15):2369-89. [DOI:10.1111/bph.13514]

[16] De Matteis R, Lucertini F, Guescini M, Polidori E, Zappa S, Stocchi V, et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutrition, Metabolism & Cardiovascular Diseases. 2013; 23(6):582-90. [DOI:10.1016/j.numecd.2012.01.013]

[17] Voneshio T, Saito M. Transient receptor potential activated brown fat thermogenesis as a target of food ingredients for obesity management. Current Opinion in Clinical Nutrition and Metabolic Care. 2013; 16(6):625-31. [DOI:10.1097/MCO.0b013e3283635e61]

[18] Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. British Journal of Pharmacology. 2016; 173(15):2369-89. [DOI:10.1111/bph.13514]

[19] Panchal SK, Bliss E, Brown L. Capsaicin in metabolic syndrome. Nutrients. 2018; 10(5):630. [DOI:10.3390/nu10050630]

[20] Jamali E, Asad MR, Rassoul A. [Effect of eight-week endurance exercise on resistin gene expression in visceral adipose tissues in obese rats (Persian)]. Journal of Shahid Sadoughi University of Medical Sciences. 2017; 25(1):20-31. http://jsuss.iau.ac.ir/article-1-3559-en.html

[21] Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. British Journal of Pharmacology. 2016; 173(15):2369-89. [DOI:10.1111/bph.13514]

[22] Panchal SK, Bliss E, Brown L. Capsaicin in metabolic syndrome. Nutrients. 2018; 10(5):630. [DOI:10.3390/nu10050630]

[23] Jamali E, Asad MR, Rassoul A. [Effect of eight-week endurance exercise on resistin gene expression in visceral adipose tissues in obese rats (Persian)]. Journal of Shahid Sadoughi University of Medical Sciences. 2017; 25(1):20-31. http://jsuss.iau.ac.ir/article-1-3559-en.html

[24] Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. British Journal of Pharmacology. 2016; 173(15):2369-89. [DOI:10.1111/bph.13514]

[25] Panchal SK, Bliss E, Brown L. Capsaicin in metabolic syndrome. Nutrients. 2018; 10(5):630. [DOI:10.3390/nu10050630]
[27] Puigserver R, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998; 92(6):829-39. [DOI:10.1016/S0092-8674(00)81410-5]

[28] Winn NC, Vieira-Potter VJ, Gastecki MJ, Welly RJ, Scroggins RJ, Zidon TM, et al. Loss of UCP1 exacerbates western diet-induced glycemice dysregulation independent of changes in body weight in female mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2017; 312(1):R74-R84. [DOI:10.1152/ajpregu.00425.2016] [PMID] [PMCID]

[29] von Essen G, Lindsund E, Cannon B, Nedergaard J. Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice. American Journal of Physiology-Endocrinology and Metabolism. 2017; 313(5):E515-E27. [DOI:10.1152/ajpendo.00097.2017] [PMID] [PMCID]

[30] Kim E, Lim SM, Kim MS, Yoo SH, Kim Y. Phylodulin, a natural sweetener, regulates obesity-related metabolic changes and fat browning-related genes of subcutaneous white adipocyte tissue in high-fat diet-induced obese mice. Nutrients. 2017; 9(10):1049. [DOI:10.3390/nu9101049] [PMID] [PMCID]

[31] Senese R, Cioffi F, De Matteis R, Petito G, de Lange P, Silvestri E, et al. 3,5-Diiodo-L-Thyronine (T2) promotes the browning of white adipose tissue in high-fat diet-induced overweight male rats housed at thermoneutrality. Cells. 2019; 8(3):256. [DOI:10.3390/cells8030256] [PMID] [PMCID]

[32] Perakakis N, Triantafyllopou LA, Fernandez-Real JM, Huh JY, Park KH, Seufert J, et al. Physiology and role of irisin in glucose homeostasis. Nature Reviews Endocrinology. 2017; 13(6):324-37. [DOI:10.1038/nrendo.2016.221] [PMID] [PMCID]

[33] Ziegler AK, Damgaard A, Mackey AL, Schjerling P, Magnusson P, Olesen AT, et al. Anti-inflammatory phenotype in visceral adipose tissue of old lean mice, augmented by exercise. Scientific Reports. 2019; 9(1):12069. [DOI:10.1038/s41598-019-48587-2] [PMID] [PMCID]

[34] Abdil A, Mehrabani J, Nordvall M, Wong A, Fallah A, Bagheri R. Effects of concurrent training on irisin and fibropectin type-II domain Containing S (FNDC5) expression in visceral adipose tissue in type-2 diabetic rats. Archives of Physiology and Biochemistry. 2020; January:1-6. [DOI:10.1080/13813455.2020.1716018]

[35] Rachel Richards M, Harp JD, Ory DS, Schauffer JE. Fatty acid transport protein 1 and long-chain acyl coenzyme A synthetase 1 interact in adipocytes. Journal of Lipid Research. 2006; 47(3):665-72. [DOI:10.1194/jlr.M500514-JLR200]

[36] Sutherland LN, Bommor MF, Capozzi LC, Basarab SAU, Wright DC. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue. Journal of Physiology. 2009; 587(7):1607-17. [DOI:10.1113/jphysiol.2008.165464] [PMID] [PMCID]

[37] Roberts Wilson TK, Reddy RN, Bailey JL, Zheng B, Oradas R, Gooch JL, et al. Calcineurin signaling and PGC-1α expression are suppressed during muscle atrophy due to diabetes. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2010; 1803(8):960-7. [DOI:10.1016/j.bbalip.2010.03.019] [PMID] [PMCID]

[38] Kiani Meher P, Azarbayjani MA, Peeri M, Farzaneh P. Synergic effects of exercise training and octopamine on peroxisome proliferator-activated receptor-gamma coactivator-1α and uncoupling protein 1 mRNA in heart tissue of rat treated with deep frying oil. Biochemistry and Biophysics Reports. 2020; 22:100735. [DOI:10.1016/j.bbrep.2020.100735] [PMID] [PMCID]

[39] Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Crujeiras JR, et al. NFDC5/irisin is not only a myokine but also an adipokine. PloS One. 2013; 8(4):e60563. [DOI:10.1371/journal.pone.0060563] [PMID] [PMCID]

[40] Claycombe KJ, Vomochek-DeKrey EE, Roemmich RN, Rhen T, Ghirli O. Maternal low-protein diet causes body weight loss in male, neonate Sprague-Dawley rats involving UCP-1-mediated thermogenesis. The Journal of Nutritional Biochemistry. 2015; 26(7):729-35. [DOI:10.1016/j.jnutbio.2015.01.008] [PMID]

[41] Ghaderi M, Mehebbi H, Soltani B. The effect of 14 weeks of endurance training with two different Intensity on serum irisin level, gene expression of skeletal muscle PGC1-α and FNDC5 and subcutaneous adipose tissue UCPI in obese rats (Persian). Medical Journal of Tabriz University of Medical Sciences and Health Services. 2019; 41(1):72-81. https://mj.tbmed.ac.ir/fa/Article/26047

[42] Luis Bonet M, Oliver P, Palau A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2013; 1831(5):969-85. [DOI:10.1016/j.bbalip.2012.12.002] [PMID]

[43] Xing T, Kang Y, Xu X, Wang B, Du M, Zhu M. Raspberry supplementation improves insulin signaling and promotes brown-like adipocyte development in white adipose tissue of obese mice. Molecular Nutrition & Food Research. 2018; 62(5):1701035. [DOI:10.1002/mnfr.201701035] [PMID]

[44] Palacios-González B, Vargas-Caño A, Velázquez-Villegas LA, Vasquez-Reyes S, López P, Noriega LG, et al. Genistein increases the thermogenic program of subcutaneous WAT and increases energy expenditure in mice. The Journal of Nutritional Biochemistry. 2019; 68:59-68. [DOI:10.1016/j.jnutbio.2019.03.012] [PMID]

[45] Andrade JMO, Barcala-Jorge AS, Batista-Jorge GC, Paraiso AF, de Freitas DM, de Farias Leis D, et al. Effect of resveratrol on expression of genes involved thermogenesis in mice and humans. Biomedicine & Pharmacotherapy. 2019; 112:108634. [DOI:10.1016/j.biopha.2019.108634] [PMID]

[46] Baskaran P, Krishnan V, Fettell K, Gao P, Zhu Z, Ren J, et al. TRPV1 activation counters diet-induced obesity through sirtuin-1 activation and PRDM-16 deacetylation in brown adipose tissue. International Journal of Obesity. 2017; 41(5):739-49. [DOI:10.1038ijo.2017.16] [PMID] [PMCID]

[47] Kim SH, Plutzky J. Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes & Metabolism Journal. 2016; 40(1):12-21. [DOI:10.4093/dmj.2016.40.1.12] [PMID] [PMCID]

[48] Kida R, Yoshida H, Murakami M, Shirai M, Hashimoto O, Kawada T, et al. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes. Cell Biochemistry & Function. 2016; 34(1):34-41. [DOI:10.1002/cbf.3162] [PMID]

[49] Lanzi CR, Perdicaro DJ, Tudaia JG, Musica V, Fontana AR, Oteaza PI, et al. Grape pomace extract supplementation activates FNDC5/irisin in muscle and promotes white adipose browning in rats fed a high-fat diet. Food & Function. 2020; 11(2):1537-46. [DOI:10.1039/c9fo02463h] [PMID] [PMCID]

[50] Kong LC, Wuellim PH, Bastard JP, Sololovska N, Gougis S, Fellahi S, et al. Insulin resistance and inflammation predict kinetic body weight changes in response to dietary weight loss and maintenance in overweight and obese subjects by using a Bayesian network approach. The American Journal of Clinical Nutrition. 2013; 98(6):1385-94. [DOI:10.3945/ajcn.113.058099] [PMID] [PMCID]

[51] Mostafavian M, et al. Effect of Aerobic Training on Expression in Obese. CMJA. 2020; 10(2):106-117.