Conformational Changes of Anoplin, W-MreB1-9, and (KFF)3K Peptides near the Membranes

Monika Wojciechowska 1,*, Joanna Miszkiewicz 1,2 and Joanna Trylska 1,*

1 Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland;
2 College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
* Correspondence: m.wojciechowska@cent.uw.edu.pl (M.W.); joanna@cent.uw.edu.pl (J.T.)

Supplementary Materials

Figure S1. The model of anoplin bound to a DPC micelle visualized based on the solution NMR structure with PDB ID 2MJQ [26]. Anoplin forms a helix marked as pink ribbon, with the Lys side-chains shown in blue, Arg in orange, Thr in yellow, and Leu, Ile, and Gly in grey. The central Lys amine hydrogen bonds with the phosphate oxygen of the micelle. The figure was prepared with VMD (https://www.ks.uiuc.edu/Research/vmd/).
Figure S2. Mass spectrum and RP-HPLC chromatogram of anopiln after purification. For the HPLC method see section "Materials and Methods", subsection 4.1 in the main text "Peptide synthesis and purification".

Figure S3. Mass spectrum and RP-HPLC chromatogram of W-MreB 1-9 after purification. For the HPLC method see section "Materials and Methods", subsection 4.1 in the main text "Peptide synthesis and purification".
Figure S4. Mass spectrum and RP-HPLC chromatogram of (KFF)₃K after purification. For the HPLC method see section "Materials and Methods", subsection 4.1 in the main text "Peptide synthesis and purification".

Figure S5. CD spectra of anoplin in the presence of A) POPC:POPG (3:1) and B) POPC:POPE (3:1) SUVs with the legends showing the lipids concentrations in mM.
Figure S6. CD spectra of (KFF)₃K in the presence of A) DPC micelles, B) POPC:POPG (3:1) SUVs, C) POPC:POPE (3:1) SUVs, and D) E. coli BL21(DE3) cells. The legends show the membrane concentrations.
Anoplin | W-MreB_{Δ4} | (KFF_{ΔK})

Figure S7. Secondary structure contents (in percent) in the peptide structures determined from the DichroWeb server using the CDSSTR algorithm and reference data set 4 [47,48]. The percentages of helices and strands are the sum of the contributions of the regular and distorted α-helices or the regular and distorted β-sheets, respectively. The percentages of turns and unordered structures were taken directly from the output data.
Figure S8. Optical density (OD) as a measure of E. coli K12 and BL21(DE3) growth shown after 20 h incubation with various concentrations of (KFF)3K, anoplin, and W-MreB1-9 peptides. Error bars represent the standard error of the mean. G.C. stands for growth control. The **** mark the MIC.

A) For the K12 strain, the OD differences between the G.C. and samples treated with different (KFF)3K concentrations were statistically highly significant (P < 0.001 for 0.5 µM and P < 0.0001 for all other (KFF)3K concentrations). For the BL21 strain, the OD differences between the G.C. and 0.5 µM – 8 µM (KFF)3K were not significant (P > 0.05), between G.C. and 16 µM (KFF)3K were marginally significant (P < 0.05), and between G.C. and 32 – 256 µM were highly significant (P < 0.0001).

B) For K12, the OD differences between the G.C. and samples treated with anoplin were statistically highly significant (P < 0.0001) except for anoplin concentration of 2 µM (P < 0.05). For BL21, the OD differences between the G.C. and 0.5 µM – 8 µM anoplin samples were not significant, and between G.C. and anoplin concentrations ≥ 16 µM were highly significant (P < 0.0001).

C) For K12, the OD differences between the G.C. and samples treated with W-MreB1-9 were statistically highly significant (P < 0.001). For BL21, the OD differences between the G.C. and MreB1-9 concentrations up to 64 µM were insignificant (P > 0.05), and for higher MreB1-9 concentrations they were highly statistically significant (P < 0.0001).
Figure S9. Optical density (OD) as a measure of *E. coli* K12 and BL21(DE3) growth shown after 20 h incubation with various concentrations of ampicillin or tetracycline. Error bars represent the standard error of the mean. G.C. stands for growth control. The **** mark the MIC concentrations.

A) For the K12 strain, the OD differences between the G.C. and samples with ampicillin concentrations starting from 4 µM were highly statistically significant (P < 0.0001). For BL21, the differences between the G.C. and samples for ampicillin concentrations ≥ 2 µM were highly significant (P < 0.0001).

B) For K12, the differences between the G.C. and samples treated with tetracycline concentrations up to 2 µM were statistically insignificant (P > 0.05) and for ≥ 4 µM were highly significant (P < 0.0001). For BL21, the differences between the G.C. and tetracycline concentrations up to 1 µM were statistically insignificant (P > 0.05), and for higher tetracycline concentrations they were highly significant.

Table S1. Fractions of secondary structures in anoplin in different surroundings calculated from DichroWeb [47,48]. The experimental CD spectra are shown in Figure 2 in the main text.

Anoplin	Method / Reference set.	α-helix regular	α-helix distorted	β-sheet regular	β-sheet distorted	Turns	Unordered	NRMSD^1			
buffer	CONTINLL/4	0.000	0.360	0.000	0.077	0.303	0.260	0.176			
	CONTINLL/7	0.000	0.208	0.000	0.001	0.000	0.790	0.098			
	CONTINLL/SP180	0.000	0.162	0.000	0.107	0.197	0.535	0.206			
	CDSSTR/4	0.04	0.11	0.10	0.13	0.28	0.35	0.001			
	CDSSTR/7	0.35	0.10	0.14	0.10	0.10	0.22	0.001			
	CDSSTR/SP180	0.42	0.13	0.06	0.08	0.11	0.22	0.001			
1	CONTINLL/4	0.523	0.404	0.000	0.073	0.000	0.000	0.142			
	CONTINLL/7	0.596	0.404	0.000	0.000	0.000	0.000	0.142			
	CONTINLL/SP180	0.362	0.352	0.000	0.000	0.082	0.204	0.162			
	CDSSTR/4	0.48	0.13	0.07	0.07	0.05	0.20	0.001			
	CDSSTR/7	0.46	0.14	0.07	0.07	0.06	0.20	0.001			
	CDSSTR/SP180	0.43	0.11	0.12	0.09	0.08	0.18	0.001			
SDS [mM]	5	CONTINLL/4	0.490	0.510	0.000	0.000	0.000	0.107			
	CONTINLL/7	0.591	0.409	0.000	0.000	0.000	0.000	0.107			
	CONTINLL/SP180	0.473	0.527	0.000	0.000	0.000	0.000	0.114			
	CDSSTR/4	0.52	0.15	0.06	0.06	0.04	0.17	0.000			
	CDSSTR/7	0.50	0.16	0.06	0.06	0.05	0.18	0.000			
	CDSSTR/SP180	0.45	0.11	0.13	0.09	0.08	0.15	0.000			
	10	CONTINLL/4	0.412	0.588	0.000	0.000	0.000	0.136			
DPC [mM]	CONTINLL/7	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180	CONTINLL/4	CONTINLL/7	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180
-----------	------------	----------------	----------	----------	---------------	------------	------------	----------------	----------	----------	---------------
0.5	0.537	0.463	0.000	0.000	0.000	0.000	0.000	0.000	0.136		
	0.000	0.671	0.000	0.000	0.152	0.178	0.146				
	0.48	0.13	0.07	0.07	0.05	0.20	0.000				
	0.47	0.13	0.09	0.08	0.05	0.20	0.000				
	0.41	0.10	0.14	0.10	0.08	0.19	0.000				
30	0.509	0.491	0.000	0.000	0.000	0.000	0.103				
	0.604	0.396	0.000	0.000	0.000	0.000	0.103				
	-	-	-	-	-	-	-				
	0.54	0.16	0.04	0.07	0.04	0.15	0.000				
	0.52	0.17	0.03	0.06	0.04	0.17	0.000				
	0.47	0.13	0.13	0.08	0.08	0.12	0.000				
0.5	0.062	0.374	0.000	0.131	0.433	0.000	0.376				
	0.098	0.403	0.000	0.113	0.387	0.000	0.376				
	0.079	0.168	0.000	0.090	0.181	0.481	0.427				
	0.36	0.09	0.14	0.11	0.09	0.21	0.002				
	0.44	0.16	0.10	0.07	0.06	0.15	0.002				
	0.45	0.14	0.07	0.05	0.13	0.15	0.004				
2	0.628	0.372	0.000	0.000	0.000	0.000	0.099				
	0.694	0.306	0.000	0.000	0.000	0.000	0.099				
	0.583	0.417	0.000	0.000	0.000	0.000	0.112				
	0.55	0.16	0.05	0.06	0.04	0.13	0.001				
	0.51	0.17	0.05	0.07	0.06	0.15	0.000				
	0.54	0.12	0.08	0.06	0.05	0.14	0.000				
5	0.619	0.381	0.000	0.000	0.000	0.000	0.057				
	0.629	0.371	0.000	0.000	0.000	0.000	0.057				
	0.422	0.417	0.000	0.000	0.042	0.118	0.079				
	0.52	0.12	0.06	0.08	0.07	0.16	0.000				
	0.51	0.15	0.05	0.07	0.06	0.17	0.000				
	0.47	0.16	0.12	0.08	0.07	0.10	0.000				
10	0.557	0.443	0.000	0.000	0.000	0.000	0.073				
	0.615	0.385	0.000	0.000	0.000	0.000	0.073				
	0.401	0.438	0.000	0.000	0.041	0.119	0.091				
	0.51	0.13	0.05	0.08	0.05	0.18	0.000				
	0.50	0.16	0.04	0.06	0.05	0.19	0.000				
	0.45	0.12	0.13	0.08	0.08	0.14	0.000				
POPC:POPG (3:1) [mM]	CONTINLL/4	0.000	0.365	0.000	0.057	0.386	0.192				
	0.000	0.219	0.000	0.000	0.000	0.781	0.121				
	0.000	0.321	0.000	0.040	0.169	0.470	0.196				
	0.23	0.09	0.16	0.11	0.17	0.24	0.001				
	0.44	0.17	0.05	0.06	0.07	0.20	0.001				
	0.43	0.13	0.06	0.08	0.09	0.20	0.001				
0.5	0.339	0.324	0.000	0.037	0.190	0.111	0.097				
	0.348	0.331	0.000	0.079	0.242	0.000	0.097				
LPS [µM]	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180	CONTINLL/4	CDSSTR/4	CDSSTR/7	CDSSTR/SP180			
----------	----------------	-----------	-----------	---------------	-----------	-----------	-----------	---------------			
0.75	0.208	0.304	0.000	0.025	0.137	0.326	0.288				
	0.47	0.12	0.09	0.09	0.07	0.17	0.001				
	0.49	0.15	0.07	0.08	0.05	0.17	0.001				
	0.42	0.15	0.07	0.08	0.11	0.17	0.001				
0.1	0.000	1.000	0.000	0.000	0.000	0.000	0.205				
	0.000	0.272	0.000	0.000	0.000	0.000	0.106				
	0.000	0.000	0.000	0.000	1.000	0.000	0.792				
	0.15	0.01	0.03	0.09	0.33	0.34	0.001				
	0.40	0.15	0.07	0.07	0.06	0.25	0.000				
	0.41	0.11	0.10	0.08	0.08	0.23	0.000				
2	0.676	0.324	0.000	0.000	0.000	0.000	0.270				
	1.000	0.000	0.000	0.000	0.000	0.000	0.270				
	0.677	0.323	0.000	0.000	0.000	0.000	0.357				
	0.47	0.10	0.09	0.08	0.07	0.20	0.001				
	0.45	0.10	0.10	0.08	0.07	0.21	0.001				
	0.51	0.11	0.05	0.08	0.08	0.17	0.001				
5	0.314	0.497	0.000	0.055	0.134	0.000	0.424				
	0.242	0.525	0.000	0.117	0.116	0.000	0.199				
	0.000	0.381	0.000	0.000	0.269	0.349	0.434				
	0.43	0.09	0.10	0.10	0.07	0.21	0.000				
	0.42	0.09	0.10	0.10	0.07	0.22	0.000				
	0.37	0.08	0.17	0.12	0.07	0.22	0.000				
10	0.284	0.539	0.000	0.000	0.167	0.111	0.301				
	0.258	0.412	0.000	0.000	0.000	0.330	0.153				
	0.000	0.394	0.000	0.046	0.161	0.399	0.324				
	0.51	0.13	0.03	0.09	0.06	0.18	0.000				
	0.45	0.16	0.06	0.07	0.07	0.21	0.000				
	0.39	0.13	0.12	0.09	0.08	0.21	0.000				
20	0.535	0.465	0.000	0.000	0.000	0.000	0.116				
	0.601	0.399	0.000	0.000	0.000	0.000	0.116				
	0.349	0.651	0.000	0.000	0.000	0.000	0.147				
	0.45	0.11	0.09	0.09	0.06	0.21	0.000				
	0.43	0.10	0.10	0.09	0.06	0.22	0.000				
	0.40	0.08	0.16	0.11	0.07	0.19	0.000				
50	1.000	0.000	0.000	0.000	0.000	0.000	0.058				
	1.000	0.000	0.000	0.000	0.000	0.000	0.058				
POPC:POPE (3:1) [mM]	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180	CONTINLL/4	CDSSTR/4	CDSSTR/7	CDSSTR/SP180			
0.75	0.000	1.000	0.000	0.000	0.000	0.000	0.151				
	0.488	0.512	0.000	0.000	0.000	0.000	0.151				
	0.000	1.000	0.000	0.000	0.000	0.000	0.322				
	0.39	0.08	0.15	0.11	0.07	0.21	0.000				
	0.40	0.08	0.14	0.11	0.07	0.21	0.000				
	0.37	0.07	0.18	0.12	0.07	0.21	0.000				
1 normalized root mean square deviation. The NRMSD value less than 0.1 suggests a good fit of anoplin CD spectrum to the reference set, and NRMSD above 0.5 suggests that the peptide CD spectrum does not fit well to the CD spectra of the reference set. But low NRMSD do not ensure that the analysis is accurate [47].

Table S2. Fractions of secondary structures in W-MreB$_{1-9}$ in different surroundings calculated from DichroWeb [47,48]. The experimental CD spectra are shown in Figure 3 in the main text.
Buffer	CONTINLL/4	CONTINLL/7	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180
	0.178	0.425	0.000	0.000	0.220	0.177
	0.456	0.544	0.000	0.000	0.000	0.000
	-	-	-	-	-	-
1	-	-	-	-	-	-
	0.22	0.10	0.18	0.10	0.18	0.21
	0.41	0.17	0.08	0.07	0.05	0.20
	0.43	0.14	0.06	0.07	0.10	0.20
	0.00	0.620	0.000	0.084	0.296	0.000
	0.00	0.404	0.000	0.000	0.000	0.596
	0.00	0.326	0.000	0.000	0.330	0.344
	0.38	0.08	0.15	0.10	0.08	0.21
	0.39	0.13	0.09	0.08	0.08	0.23
	0.43	0.12	0.07	0.07	0.11	0.21
5	-	-	-	-	-	-
	0.00	1.000	0.000	0.000	0.000	0.000
	0.00	0.616	0.000	0.000	0.000	0.245
	0.00	0.489	0.000	0.029	0.085	0.396
	0.41	0.11	0.12	0.09	0.06	0.21
	0.39	0.13	0.11	0.09	0.06	0.21
	0.39	0.08	0.14	0.11	0.09	0.21
10	-	-	-	-	-	-
	0.00	0.000	0.000	0.000	1.000	0.000
	0.00	0.616	0.000	0.000	0.000	0.384
	0.00	0.489	0.000	0.029	0.085	0.396
	0.35	0.07	0.17	0.11	0.09	0.21
	0.38	0.14	0.12	0.09	0.07	0.20
	0.40	0.10	0.12	0.10	0.09	0.21
30	-	-	-	-	-	-
	0.017	0.499	0.000	0.000	0.277	0.207
	0.036	0.411	0.000	0.000	0.099	0.455
	0.000	0.316	0.000	0.098	0.143	0.443
	0.37	0.08	0.15	0.11	0.08	0.22
	0.40	0.16	0.05	0.05	0.07	0.27
	0.42	0.13	0.08	0.07	0.09	0.22
0.5	-	-	-	-	-	-
	0.00	0.271	0.000	0.084	0.191	0.454
	0.00	0.136	0.000	0.028	0.000	0.836
	0.00	0.105	0.000	0.098	0.118	0.679
	-	-	-	-	-	-
	-	-	-	-	-	-
	0.34	0.06	0.17	0.12	0.07	0.25
2	-	-	-	-	-	-
	0.229	0.536	0.000	0.005	0.230	0.000
	0.386	0.513	0.000	0.101	0.000	0.000
	0.00	0.001	0.733	0.266	0.000	0.000
	0.51	0.06	0.000	0.06	0.07	0.33
	0.39	0.09	0.14	0.10	0.07	0.20
	0.40	0.09	0.15	0.10	0.08	0.19
5	0.537	0.463	0.000	0.000	0.000	0.000

SDS [mM]	CONTINLL/4	CONTINLL/7	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180
0.5	0.229	0.536	0.000	0.005	0.230	0.000
2	0.386	0.513	0.000	0.101	0.000	0.000
5	0.537	0.463	0.000	0.000	0.000	0.000

DPC [mM]	CONTINLL/4	CONTINLL/7	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180	
0.5	0.229	0.536	0.000	0.005	0.230	0.000	
2	0.386	0.513	0.000	0.101	0.000	0.000	
5	0.537	0.463	0.000	0.000	0.000	0.000	
	CONTINLL/4	CONTINLL/7	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180	
----------	------------	------------	----------------	----------	----------	--------------	
POPC:POPG (3:1) [mM] 1	0.579	0.421	0.000	0.000	0.000	0.000	0.158
CONTINLL/4	0.44	0.10	0.12	0.09	0.06	0.19	0.000
CONTINLL/7	0.44	0.12	0.10	0.08	0.07	0.19	0.000
CONTINLL/SP180	0.46	0.09	0.12	0.09	0.07	0.18	0.000
POPC:POPG (3:1) [mM] 2	0.408	0.592	0.000	0.000	0.000	0.000	0.121
CONTINLL/4	1.000	0.000	0.000	0.000	0.000	0.000	0.121
CONTINLL/7	0.000	1.000	0.000	0.000	0.000	0.000	0.170
CONTINLL/SP180	0.39	0.07	0.16	0.11	0.07	0.21	0.000
CDSSTR/4	0.39	0.09	0.15	0.11	0.07	0.20	0.000
CDSSTR/7	0.39	0.08	0.17	0.11	0.07	0.19	0.000
CDSSTR/SP180	0.579	0.246	0.19	0.000	0.000	0.000	0.269
POPC:POPG (3:1) [mM] 3	0.093	0.246	0.19	0.000	0.000	0.211	0.432
CONTINLL/4	0.000	0.378	0.622	0.000	0.000	0.000	0.136
CONTINLL/7	0.000	0.324	0.000	0.107	0.069	0.501	0.374
CONTINLL/SP180	0.26	0.09	0.16	0.09	0.15	0.24	0.001
CDSSTR/4	0.40	0.15	0.10	0.08	0.08	0.19	0.001
CDSSTR/7	0.41	0.13	0.08	0.07	0.09	0.22	0.001
CDSSTR/SP180	0.47	0.08	0.10	0.08	0.17	0.11	0.000
POPC:POPE (3:1) [mM] 4	0.000	0.000	0.000	0.000	0.000	1.000	0.208
CONTINLL/4	0.000	0.000	0.000	0.000	0.000	1.000	0.208
CONTINLL/7	0.000	0.000	0.000	0.000	0.000	0.000	0.000
CONTINLL/SP180	0.342	0.507	0.000	0.151	0.000	0.000	0.000
CDSSTR/4	0.47	0.12	0.11	0.08	0.04	0.19	0.001
CDSSTR/7	0.45	0.13	0.10	0.08	0.05	0.17	0.001
CDSSTR/SP180	0.47	0.11	0.10	0.07	0.11	0.15	0.000
POPC:POPE (3:1) [mM] 5	0.000	0.000	0.000	0.000	0.000	1.000	0.205
CONTINLL/4	0.000	0.000	0.000	0.000	0.000	1.000	0.205
CONTINLL/7	0.000	0.000	1.000	0.000	0.000	0.000	0.205
LPS [µM]	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180			
----------	----------------	----------	----------	---------------			
10	0.000	0.779	0.000	0.000			
	0.000	0.000	0.360	0.640			
	0.000	0.000	0.119	0.21			
20	0.000	0.629	0.000	0.000			
	0.000	0.000	0.119	0.326			
	0.000	0.000	0.119	0.23			
50	0.000	0.629	0.000	0.000			
	0.000	0.000	0.119	0.362			
	0.000	0.000	0.119	0.20			
100	0.000	0.155	0.000	0.154			
	0.000	0.194	0.000	0.477			
	0.000	0.154	0.000	0.271			

E. coli	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180
OD=1 [µl]	0.000	0.425	0.000	0.185
	0.000	0.185	0.000	0.390
	0.000	0.185	0.000	0.237
	0.000	0.185	0.000	0.237
The NRMSD value less than 0.1 suggests a good fit of anoplin CD spectrum to the reference set, and NRSMD above 0.5 suggests that the peptide CD spectrum does not fit well to the CD spectra of the reference set. But low NRMSD do not ensure that the analysis is accurate [47].

Table S3. Fractions of secondary structures in (KFF)₃K in different surroundings calculated from DichroWeb [47, 48]. The experimental CD spectra are shown in Figure 4 in the main text and Figure S6.

(KFF)₃K	Calculated secondary structure fractions	NRMSD¹						
	Method / Reference set.	α-helix regular	α-helix distorted	β-sheet regular	β-sheet distorted	Turns	Unordered	
buffer	CONTINLL/4	0.000	0.421	0.000	0.044	0.349	0.187	0.209
	CONTINLL/7	0.000	0.364	0.000	0.009	0.000	0.627	0.105
	CONTINLL/SP180	0.000	0.221	0.000	0.051	0.140	0.589	0.496
	CDSSTR/4	-	-	-	-	-	-	-
	CDSSTR/7	0.14	-0.0	0.28	0.13	0.20	0.23	0.001
	CDSSTR/SP180	0.41	0.14	0.06	0.08	0.10	0.21	0.001

1	CONTINLL/4	0.000	0.508	0.000	0.029	0.000	0.463	0.497
	CONTINLL/7	0.000	0.343	0.000	0.000	0.000	0.657	0.317
	CONTINLL/SP180	0.000	0.222	0.000	0.129	0.254	0.396	0.459
	CDSSTR/4	0.23	0.07	0.19	0.12	0.11	0.25	0.000
	CDSSTR/7	0.41	0.12	0.11	0.09	0.04	0.24	0.000
	CDSSTR/SP180	0.36	0.06	0.16	0.12	0.07	0.22	0.000

5	CONTINLL/4	0.000	0.000	0.000	1.000	0.000	0.000	0.000
	CONTINLL/7	0.000	0.589	0.000	0.317	0.000	0.000	0.094
	CONTINLL/SP180	0.000	0.000	0.000	0.000	0.623	0.377	0.588
	CDSSTR/4	0.36	0.07	0.16	0.12	0.08	0.21	0.000
	CDSSTR/7	0.38	0.09	0.13	0.10	0.06	0.24	0.000
	CDSSTR/SP180	0.43	0.10	0.07	0.08	0.10	0.21	0.000

10	CONTINLL/4	0.000	0.591	0.000	0.409	0.000	0.000	0.493
	CONTINLL/7	0.000	0.624	0.000	0.376	0.000	0.000	0.421
	CONTINLL/SP180	0.000	0.000	0.000	0.000	1.000	0.000	0.000
	CDSSTR/4	0.38	0.07	0.15	0.11	0.08	0.21	0.000
	CDSSTR/7	0.38	0.08	0.13	0.10	0.06	0.24	0.000
	CDSSTR/SP180	0.38	0.08	0.13	0.11	0.08	0.22	0.000

| 30 | CONTINLL/4 | 0.000 | 0.613 | 0.000 | 0.387 | 0.000 | 0.000 | 0.627 |
| | CONTINLL/7 | 0.000 | 0.617 | 0.000 | 0.383 | 0.000 | 0.000 | 0.467 |

¹ normalized root mean square deviation. The NRMSD value less than 0.1 suggests a good fit of anoplin CD spectrum to the reference set, and NRSMD above 0.5 suggests that the peptide CD spectrum does not fit well to the CD spectra of the reference set. But low NRMSD do not ensure that the analysis is accurate [47].
DPC [mM]	CONTINLL/4	CONTINLL/7	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180
0.5	CONTINLL/4 0.050 0.697 0.000 0.253 0.000 0.000	CONTINLL/7 0.162 0.619 0.000 0.219 0.000 0.000	CONTINLL/SP180 0.000 0.349 0.000 0.000 0.214 0.437	CDSSTR/4 0.39 0.08 0.14 0.10 0.07 0.21	CDSSTR/7 0.40 0.10 0.10 0.08 0.07 0.24	CDSSTR/SP180 0.41 0.10 0.10 0.09 0.10 0.22
2	CONTINLL/4 0.000 0.078 0.922 0.000 0.000 0.000	CONTINLL/7 0.000 0.000 1.000 0.000 0.000 0.000	CONTINLL/SP180 0.000 0.323 0.000 0.050 0.131 0.497	CDSSTR/4 0.37 0.07 0.17 0.11 0.07 0.21	CDSSTR/7 0.40 0.10 0.12 0.09 0.06 0.23	CDSSTR/SP180 0.41 0.13 0.07 0.08 0.10 0.21
5	CONTINLL/4 0.000 0.000 1.000 0.000 0.000 0.000	CONTINLL/7 0.000 0.000 0.000 0.000 0.000 0.000	CONTINLL/SP180 0.000 0.508 0.000 0.306 0.186 0.342	CDSSTR/4 0.22 0.11 0.11 0.11 0.16 0.29	CDSSTR/7 0.38 0.17 0.11 0.09 0.06 0.16	CDSSTR/SP180 0.43 0.11 0.08 0.08 0.10 0.21
10	CONTINLL/4 0.000 0.000 0.000 0.000 1.000 0.000	CONTINLL/7 0.000 0.000 1.000 0.000 0.000 0.000	CONTINLL/SP180 0.000 0.000 0.000 0.069 0.931 0.000	CDSSTR/4 0.25 0.02 0.28 0.14 0.12 0.20	CDSSTR/7 0.40 0.14 0.10 0.07 0.10 0.19	CDSSTR/SP180 0.39 0.10 0.16 0.11 0.07 0.17
0.1	POPC:POPG (3:1) [mM]					
0.5	POPC:POPG (3:1) [mM]					
0.1	POPC:POPE (3:1) [mM]					

Notes:
- The table compares the effects of different DPC concentrations (0.5, 2, 5, 10 mM) on various lipid composition variables.
- The numbers represent statistical significance levels (p-values) for the differences observed.
- The table includes lipid composition ratios such as CONTINLL/SP180 and CDSSTR/SP180.
- The significance levels range from 0.000 to 1.000, indicating the level of significance for the observed differences.
| LPS [µM] | CONTINLL/4 | CONTINLL/7 | CONTINLL/SP180 | CDSSTR/4 | CDSSTR/7 | CDSSTR/SP180 |
|-----------|------------|------------|----------------|----------|----------|--------------|
| 0.5 | 0.000 | 0.366 | 0.000 | 0.000 | 0.124 | 0.000 |
| 10 | 0.000 | 0.366 | 0.000 | 0.000 | 0.124 | 0.000 |
| 20 | 0.000 | 0.366 | 0.000 | 0.573 | 0.371 | 0.000 |
| 50 | 0.000 | 0.366 | 0.000 | 0.147 | 0.000 | 0.000 |
| 100 | 0.000 | 0.366 | 0.000 | 0.147 | 0.000 | 0.000 |

E. coli OD=1 [µl]

E. coli OD=1 [µl]	CONTINLL/4	CONTINLL/7	CONTINLL/SP180	CDSSTR/4	CDSSTR/7	CDSSTR/SP180		
2	0.000	0.366	0.000	0.000	0.124	0.000		
4	0.000	0.366	0.000	0.000	0.124	0.000		
	CDSSTR/7	0.40	0.10	0.13	0.10	0.08	0.18	0.001
------------------	----------	------	------	------	------	------	------	-------
	CDSSTR/SP180	0.43	0.13	0.04	0.08	0.12	0.19	0.001
	CONTINLL/4	0.179	0.545	0.000	0.005	0.271	0.000	0.380
	CONTINLL/7	0.184	0.459	0.000	0.000	0.000	0.358	0.343
	CONTINLL/SP180	0.000	0.234	0.000	0.000	0.197	0.569	0.578
	CDSSTR/4	0.41	0.08	0.14	0.10	0.07	0.19	0.001
	CDSSTR/7	0.42	0.11	0.11	0.09	0.08	0.20	0.000
	CDSSTR/SP180	0.43	0.12	0.06	0.07	0.12	0.20	0.001

| | CDSSTR/7 | 0.33 | 0.05 | 0.18 | 0.11 | 0.09 | 0.24 | 0.000 |
| | CDSSTR/SP180 | 0.39 | 0.10 | 0.10 | 0.09 | 0.10 | 0.22 | 0.000 |

	CONTINLL/4	0.000	0.503	0.497	0.000	0.000	0.000	0.285
	CONTINLL/7	0.000	0.439	0.561	0.000	0.000	0.000	0.200
	CONTINLL/SP180	0.000	0.276	0.000	0.054	0.133	0.537	0.361
	CDSSTR/4	-	-	-	-	-	-	-
	CDSSTR/7	0.33	0.05	0.18	0.11	0.09	0.24	0.000
	CDSSTR/SP180	0.39	0.10	0.10	0.09	0.10	0.22	0.000

1 normalized root mean square deviation. The NRMSD value less than 0.1 suggests a good fit of anoplin CD spectrum to the reference set, and NRMSD above 0.5 suggests that the peptide CD spectrum does not fit well to the CD spectra of the reference set. But low NRMSD do not ensure that the analysis is accurate [47].