Title: Genome-wide analysis of diet and gene interactions in Drosophila uncovers the glucose transporter, CG4607, as a diet-responsive gene.

Author list: Deanne Francis¹,², Shila Ghazanfar ¹,⁴,⁶, Essi Havula ¹,², James R. Krycer¹,², Alistair Senior¹,², Annabel Y. Minard¹,²,⁵, Thomas Geddes¹,², Fiona Weiss¹,², Jean Y.H. Yang ¹,⁴ and David E. James¹,²,³*

¹ Charles Perkins Centre, The University of Sydney, Camperdown, 2006, Australia
² School of Life and Environmental Sciences, The University of Sydney, Camperdown, 2006, Australia
³ Sydney Medical School, The University of Sydney, Camperdown, 2006, Australia
⁴ School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.
⁵ Current Address: Department of Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242
⁶ Current Address: Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom

* Corresponding author: David E. James, The University of Sydney, Camperdown, 2006, New South Wales, Australia. Email: david.james@sydney.edu.au

Author contributions: D.F., and D.E.J. conceived the study. D.F., J.R.K and D.E.J participated in experimental design. D.F. performed the experiments and D.F., A.S., E.H. and S.G. analysed data for the experiments. D.F. and D.E.J. wrote the manuscript, and all authors edited the manuscript. D.E.J. supervised the study.

Acknowledgements
The authors would like to thank Jacqueline Stoeckli and Elise Needham for critical feedback, Roel Bevers and Bart Deplancke for useful suggestions and members of the James Lab for helpful discussions. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Charles Perkins Centre, The University of Sydney.

Financial disclosure
The work is supported by National Health and Medical Research (NHMRC) project grants (APP1086851 for D.E.J.) and Diabetes Australia Research Program grants (J.R.K.). J.R.K. is recipient of the Australian Diabetes Society Skip Martin Fellowship. D.E.J. is an NHMRC Senior Career Fellow (APP1117078). The contents of the published material are solely the responsibility of the authors and do not reflect the views of the NHMRC.

The authors have no financial conflicts of interest to declare.

Writing assistance
No funded writing assistance was used in the creation of this manuscript.

Ethical disclosure
The authors have nothing to disclose.

Data sharing statement
This manuscript does not report the original results or secondary analysis of a clinical trial.

Abstract: It is clear that both genetic and environmental factors contribute to metabolic health. However, they do not act in isolation. Here, we sought to understand how the interaction between genes and diet influence the ability to store and utilise nutrients, a major determinant of metabolic disease. We achieved this by subjecting the *Drosophila* Genetic Reference Panel (DGRP), comprising 200 genetically divergent inbred fly strains, to diets varying in sugar, fat and protein content, and assessing starvation resistance, a proxy for an obesogenic phenotype. We discovered heterogeneity in the response to diet, as strains that were starvation resistant on one diet, were starvation sensitive on another. This indicates that genetics plays a major role in governing the diet-health axis. Furthermore, we discovered a diet-dependent heritability in starvation resistance, where high sugar and high protein diets had a greater genetic contribution to the variation in starvation resistance than those that contained fat. To uncover the genetic underpinnings of this variation in starvation response, we mapped 1,350 diet-responsive SNPs in 585 genes, 356 of which have human orthologues. We validated 39 candidate genes using whole-body knockdown and identified a number of novel genes regulating diet-dependent starvation resistance. One such gene was CG4607, a GLUT6/GLUT8 homolog, which was required for glucose tolerance, storage and utilization. A whole-body knock down of CG4607 led to a severe carbohydrate intolerance with the animals dying within 3 days from the start of the feeding. On the other hand, the CG4607 knockdown animals showed starvation sensitivity on a high protein diet. Overall, this study provides definitive evidence that individuals possess optimal dietary environments based on genetic heterogeneity thus offering strong support for nutrigenomic strategies to map such interactions in humans.

Introduction:

Personalised medicine represents a shift away from the one-size-fits-all approach that has dominated medical practice for the past century. The tailored therapeutic approach is founded on the observation that one treatment does not work for all individuals in a heterogenous population, with differences in disease progression, aetiology, and drug efficacy being apparent among individuals (Ginsburg & Phillips, 2018). The
sequencing of the human genome has allowed the emergence of personalised therapies based on genetic differences between individuals, with considerable success in treating some cancers (Topol, 2014).

Given that overweight and obese individuals currently make up ~13% of the world population (Obesity and overweight), there has been much interest in mapping the heritability of these conditions using genomic approaches. Studies in mono- and di-zygotic twins revealed that a combination of genetic and environmental factors contributed to variance in body weight (Stunkard et al; Dubois et al, 2012). Despite this evidence, genome-wide association studies (GWAS) of body mass index, insulin resistance and other metabolic traits have identified several causative loci, yet these loci account for only a minority of phenotypic variation [5,8,9].

Studies in mice or humans have demonstrated that individuals display heterogeneous metabolic responses to the same diets (Zeevi et al, 2015; Parks et al, 2015). Thus, gene-environment interactions likely account for at least part of the missing heritability associated with metabolic diseases (Heianza et al, 2017). This emphasises the need to look beyond genetic predisposition alone and encompass the contribution of environmental factors, particularly diet, in assessing individual risk of developing metabolic disease.

A significant impediment to the full potential of personalised medicine is that, although we appreciate that genes and diet contribute to metabolic diseases, we do not yet understand how they interact (Heianza et al, 2017). We hypothesise that within a population, individuals respond differently to the same diet as a result of variants in diet-responsive genes. Thus, we are interested in discovering the identity of such ‘diet-responsive’ genes. This has also been the goal of nutrigenomics, a burgeoning area of nutritional research that investigates how bio-active compounds in food interact with specific genes and pathways (Sales et al, 2014; Mead, 2007). While a number of fat-responsive genes were identified in a human study (Maes et al), only a small number of genes were identified and other macro-nutrients like sugar and protein were not included. For instance, a high prevalence of obesity and type 2 diabetes in the Greenland Inuit population is linked to mutations in TBC1D4, a protein involved in glucose uptake into muscle and fat. Consequently, the switch from a traditional diet rich in fat and protein to a modern high-carbohydrate diet has drastically affected the metabolic health in Greenland Inuits (Andersen & Hansen, 2018; Manousaki et al, 2016).

Studies to identify gene-diet interactions in humans remain a challenge because the environmental variables are difficult to control at a sufficient scale to facilitate genetic mapping. In contrast, the Drosophila
fruit fly model system overcomes many of these logistical issues. Importantly, >70% of known human disease genes have fly orthologs (Reiter et al, 2001), and genetic tools such as the Drosophila genetics reference panel (DGRP) with 200 inbred and fully sequenced lines are available, thereby allowing identification of causal genetic variants (Mackay et al, 2012). Here, we combine the high-throughput nature of the Drosophila model with the genetic diversity of the DGRP to dissect diet-gene interactions on a population level. In this study, we aimed to identify “diet-responsive” genes and determine the mechanism by which genes in combination with diet control metabolic phenotypes. To do this, we used the DGRP to perform a GWAS to identify SNPs that contribute to variation in response to diets that differ in fat, sugar and protein contents.

Ultimately, knowledge of one’s genetic predisposition to particular diets will allow for better control of personal metabolic health. Our study provides strong evidence for diet by gene interactions and uncovers a previously under-appreciated influence of diet on the heritability of starvation resistance. Finally, we provide a rich resource of diet specific genes for further study.

Results

Starvation Resistance of DGRP across 4 different diets

We first sought to identify novel diet-responsive genes in Drosophila. We used survival during starvation as a surrogate for an obesogenic phenotype to screen for dietary effects. This is a powerful and sensitive assay as starvation resistant flies are often replete with fat stores immediately prior to starvation and feeding flies a high sugar diet increases fat stores and prolongs starvation resistance (Bjedov et al, 2010; Hoffmann & Harshman, 1999; awdan et al, 1998). The diets we selected, (normal food (NF), high carbohydrate diet (HCD), high fat diet (HFD) and high protein diet (HPD) Supplementary table S1), were based on previous studies that explored the effect of different sugar and protein concentrations on starvation resistance in a single strain (Lee & Jang, 2014; Chandegra et al, 2017; Skorupa et al, 2008). The dietary composition is indicated in table S1: the carbohydrate is sugar, the protein is yeast and the fat was coconut oil. We exposed 3 to 5-day old adult males from 178 DGRP strains to the 4 diets for 10 days and then measured starvation resistance by removing food and assessing survival (Figure 1A). The DGRP has previously been used to examine starvation resistance in flies fed NF (Mackay et al, 2012) and there was a strong correlation in starvation resistance across the 178 strains between the two studies (males, NF, Pearson’s R= 0.58, Figure 1B), demonstrating the robustness of
the starvation phenotype and the DGRP resource. Interestingly, we found that previously published food intake data [30] was negatively correlated with starvation resistance across genotypes (males, NF, Pearson’s R= -0.32, Figure 1B) in both our study and previously published starvation data (Garlapow et al, 2015). This is intriguing as it suggests that strains that ate the most were the least resistant to starvation. This could be due to differences in metabolic rate, an increase in hunger cues, nutrient storage capacity or differences in hormonal responses.

Irrespective of strain, flies fed NF, HFD and HCD displayed the greatest variance in starvation resistance, while HPD flies had the least amount of variation across the strains (Figure 1C). We normalised the starvation resistance to NF for each strain and performed hierarchical clustering, indicating clusters of strains that were starvation sensitive to either HCD, HPD or HFD (Figure 1D). Surprisingly these data showed disparity between the responses to different diets, likely driven by genetic background, indicating that there is no single optimal diet where all strains display similar starvation resistance responses (Figure 1D).

We quantified the differential contributions of diet and gene by diet interactions to the variation in starvation resistance among DGRP strains. We determined the broad sense heritability (H^2) of the starvation response using linear-mixed models (LMMs). We found that across the whole data set, after accounting for differences among diets, the H^2 of starvation resistance was 20%. Dietary effects accounted for around 10% of the variance in starvation-resistance, leaving 72% residual (unexplained) variance. A model including a term to estimate genetic variance in dietary effects (random-slopes LMM) had significantly better fit than a model without (likelihood ratio test, $L = 11611$, d.f. = 14, p<0.001) indicating the presence of gene by environment interactions. Within-diet, the H^2 of starvation resistance on NF, HCD, HFD and HPD was 19%, 50%, 20% and 65% respectively (Tables 1 and Supplementary table S2). Thus, across populations certain diets expose genetic diversity more strongly than others and we estimate that genetics plays a particularly strong role in determining starvation resistance in flies fed either HPD or HCD.

Mapping ‘diet-responsive genes’

We aimed to identify gene-diet interactions by uncovering SNPs that were associated with diet-responsive starvation resistance, in order to inform follow-up functional analyses of candidate genes. Starvation survival on different diets was normalised to starvation resistance on NF by taking the log2 of the
ratio of mean survival for the diet and the mean survival for NF for each strain of the 178 strains, and these
normalised log fold change survival data were used to map diet-responsive SNPs. We first selected SNPs as
significantly associated with diet in a multivariate manner by performing multivariate ANOVA testing and
selecting SNPs with an associated unadjusted P-value below 1×10^{-4}. We selected this threshold as a means of
increasing the number of true positive SNPs, however at the expense of increasing the rate of false positive
SNPs. To enrich the list of candidate SNPs, we selected SNPs for further consideration if they also exhibited
a significant and large difference in survival compared to NF in at least one diet, by performing a univariate
rank-based Wilcoxon Rank Sum Test, and selecting SNPs with an unadjusted p-value <0.01 as well as an
absolute log fold change of at least 0.3 in response to diet (corresponding to a multiplicative factor of survival
of at least $2^{0.3} = 1.23$ of that of NF for increased survival and of at most $2^{-0.3} = 0.81$ of NF for decreased
survival). Using these stringent filters, we identified 1,350 SNPs that were associated with diet-responsive
starvation resistance. These SNPs were located within 585 genes (Table S3), 356 of which had human
orthologs (Table S3) with a high proportion of the SNPs (>80%) found in non-coding regions (Table S3 and
S4). Manhattan plots for each diet revealed the chromosomal distribution of significant diet-responsive SNPs
(Fig.2, A-D black dots). Additionally, we performed gene ontology (GO) analysis on the human orthologs of
the ‘diet-responsive genes’ (Table 2) revealing stark differences in enriched biochemical processes between
the different diets. For instance, genes associated with enhanced starvation resistance on HFD (UP) were
enriched for peptidases that involve proteolytic pathways. In contrast, genes associated with reduced
starvation resistance after HFD (down) and HPD were enriched for signal transduction and for HFD, ERK
pathway in particular (Table2). Meanwhile, extracellular matrix pathways and pathways linked to
sulfotransferases were respectively linked to enhanced and reduced starvation resistance after HCD feeding
(Table 2). This suggests that individual diet responsiveness is controlled at the pathway level rather than at
the level of individual genes per se. These data provide an abundant resource of diet-responsive genes and
pathways.

Candidate gene validation

Candidate gene validation
The following criteria were used to select genes for further validation: a more stringent fold change cut-off with respect to diet response (>0.3 fold change); the presence of a human ortholog and an annotated gene function; and some functional link to metabolic homeostasis, as we reasoned that gene-diet interactions in the context of starvation resistance would likely be dominated by genes and/or pathways that control metabolism (Table 3). Using these criteria, we selected 38 genes for further validation using the GAL4-UAS system [23]. We generated whole-body knockdown flies for each gene in the W118 background strain, pre-fed them four diets and monitored starvation with the Drosophila activity monitoring system (DAMs).

Candidate genes were considered validated when the fold change in survival on each diet (relative to NF) corroborated with the SNP analysis (Table 3, Table S5). Strikingly, of the 38 genes tested, whole body depletion of 9 candidate genes led to lethality, while 21 of the remaining 29 candidates displayed the predicted diet interactions - 58% of these were significant according to a cox hazard multivariate analysis (p<0.05, Table 3).

Our SNP analysis combined diet and gene interactions to reveal interesting potential candidates for further study. Among the validated candidate genes, three out of the 22 were previously associated with starvation resistance. Adenyly cyclase at 76E (Ac76E) which is required for starvation stress resistance in multiple organs (Mattila et al, 2009), spaghetti-squash activator (sqa) a myosin light chain kinase activated by ATG1 to form autophagosome during starvation (Tang et al, 2011), and methuselah-like 3 (mthl3) known to enhance starvation resistance in the red flour beetle, T. castaneum. Lipophorin receptor 2 (LpR2), required for the transport and binding of lipid molecules from the plasma membrane (Rodríguez-Vázquez et al, 2015; Parra-Peralbo & Culi, 2011) and CG1494, a predicted ABC transporter are both lipid transport proteins (Consortium, 1999). In addition, Cdc42-interacting protein 4 (Cip4) is implicated in phospholipid binding in Drosophila and GLUT4 trafficking in mice (Feng et al, 2010; Zobel et al, 2015). CCHamide-2 receptor (CCha-2R) a G-protein coupled receptor and Drosophila ortholog of the bombesin receptor 3 (BRS3) regulates secretion of Drosophila insulin-like peptides in response to nutrient availability (Sano et al, 2015). Knockdown of all four genes were associated with reductions in starvation after HFD feeding. Another interesting candidate was happyhour (hppy) which is the Drosophila ortholog of MAP4K3, a serine/threonine kinase that regulates triglyceride homoeostasis and mTOR signalling (Bryk et al, 2010). Furthermore, loss of
CG3339 enhanced starvation resistance on HCD, CG3339 is the *Drosophila* ortholog of dynein heavy chain (DNAH9) a protein that regulates minus end directed microtubule trafficking (Consortium, 1999). However, the most striking starvation sensitivity in response to diet was observed for *CG9674* (glutamate synthase) and *CG4607* (GLUT6/GLUT8 orthologue) knockdown flies fed HCD and HPD, respectively.

Analysis of CG4607, a diet responsive gene

We focused on *CG4607* because depleting this gene led to starvation sensitivity on HPD, it’s annotated function as a glucose transporter and its homology to human GLUT6 and GLUT8 [24]. GLUT6 is over expressed in endometrial cancer and is highly expressed in brain, spleen and leukocytes[25]. GLUT8 is highly expressed in the testis, heart, brain, liver, fat, and kidneys and has been shown to respond to insulin[26–28]. Remarkably, flies expressing UAS-\textit{CG4607}^\textit{KK104152} RNAi in the whole body (*CG4607\textsubscript{KD}) died after only three days of eating HCD (Fig. 3A), while surviving on other diets. DGRP strain 45, which contained the CG4607 SNP, was lethal on HCD (Table S8). To further assess this phenotype, we sought to monitor the behaviour of control and *CG4607\textsubscript{KD} flies while they were eating NF or HCD. We found a striking hyperactivity on HCD that abruptly stopped after 12 h of transitioning to HCD when the flies died (Fig. 3B, C). The hyperactivity was reminiscent of flies during starvation (Markow, 2015) and we speculated that the lethality was due to an inability of the flies to consume HCD, thereby experiencing starvation. However, upon measuring caloric intake in control and *CG4607\textsubscript{KD} flies we observed that knockdown flies consumed 38% more calories of HCD than controls (Fig. 3D). Thus, the observed hyperactivity of *CG4607\textsubscript{KD} flies on HCD may be due to a perception of hunger brought about by the loss of glucose sensing, which may increase energy expenditure ultimately leading to lethality due to exhaustion of energy stores.

We investigated the mechanism by which *CG4607* controlled nutrient storage or utilisation in response to HPD. NF pre-fed *CG4607\textsubscript{KD} flies were starvation resistant but became starvation sensitive after becoming low carbohydrate stressed on HPD (Fig. 4A). We posited that the starvation phenotype reflected the levels of energy stores. Fed nutrient levels were similar between *CG4607\textsubscript{KD} and control flies on both NF and HPD with the exception of TAGs on NF and glycogen on HPD where the *CG4607\textsubscript{KD} showed significantly higher levels (Fig. 4B-H). However major differences in nutrient storage levels were observed upon starvation on
both diets. Fasted levels of nutrient storage were higher in CG4607 \(^{\text{KD}}\) flies than in control flies (Fig. 4C, E, H). Fasting of HPD-fed flies resulted in a marked depletion of nutrients in both genotypes with undetectable fasted nutrient levels in control flies. Overall, our data shows that relative to control flies, CG4607 \(^{\text{KD}}\) flies have increased caloric intake and excessive energy stores on NF, which are reduced upon HPD feeding. Mammalian GLUT6 and GLUT8 both localise to lysosomes in HeLa cells, testis or fibroblasts (Maedera et al, 2019; Diril et al, 2009). To determine if the localisation of CG4607 was conserved, we expressed CG4607-mRUBY3 in HeLa cells and using immunofluorescence microscopy we observed that, like GLUT6 and GLUT8, CG4607 partially co-localised with lysosomal markers but was absent from the cell surface (Fig.5A, B). Next, we wanted to explore if CG4607 functions like a glucose transporter. To address this, we measured glucose utilisation on a NF diet using a gas trap assay (Francis et al, 2019) where we fed flies \(^{14}\text{C}\)-glucose and monitored glucose incorporation into CO\(_2\) and lipids. We observed that CG4607 \(^{\text{KD}}\) flies exhibited lower levels of \(^{14}\text{C}\)O\(_2\) emission and \(^{14}\text{C}\) incorporation into lipids compared to controls (Fig.5C,D), indicating reduced glucose oxidation and utilisation. This was independent of food intake that contains \(^{14}\text{C}\)-glucose intake (Fig.5E). Taken together, our data shows that CG4607, a GLUT6/8 orthologue, is a diet-responsive gene that regulates glucose metabolism.

Discussion

The DGRP is a powerful tool for understanding the genetics driving variation of metabolic phenotypes, including starvation resistance (Nelson et al, 2016; Unckless et al, 2015; Garlapow et al, 2015; Mackay et al, 2012). Our approach measured starvation resistance in the adult male population after acute exposure to diets that vary in sugar, protein and fat content. Using this method, we screened the DGRP, and our results support the notion that specific individuals possess individual dietary health optima. Additionally, our study revealed that exposure to HCD and HPD elicited a greater genetic contribution to phenotypic variation compared to NF in Drosophila. These data highlight a conserved heterogeneity in the response to diet that underlies the fundamental principles of personalised nutrition. The SNPs we identified provide a resource dataset for further study. Out of 39 candidate diet responsive genes that were selected for more detailed analysis, we validated 2 genes as bona fide diet responsive genes. Knock down of one such gene, CG4607 a GLUT6/8 homolog, led
to starvation resistance on NF, but this resistance was lost upon HPD feeding. Remarkably, \textit{CG4607} \textit{KD} flies died within three days of continuous HCD exposure indicating that this is a potent sugar sensitive gene. Finally, we show that starvation resistance in \textit{CG4607} \textit{KD} flies was linked to increased caloric intake and nutrient storage combined with reduced glucose utilisation.

A major finding of this study was the observation that strains fed one diet differed in their starvation response when fed a different diet and to our knowledge this is one of the most definitive studies to show that individuals have optimal diets (Zeevi \textit{et al}, 2015). Genetically isolated populations such as the Greenland Inuits and the Pima Indians provide dramatic examples of the effect of gene-environment interactions on metabolic health. The Greenland Inuits lived relatively healthy on a high fat, low carbohydrate diet, however many developed type 2 diabetes when exposed to high amounts of carbohydrates. Of interest, this population was found to have a higher penetrance of a loss of function mutation in one of the major genes controlling meal induced sugar utilisation, TBC1D4, that is not found in other populations (Manousaki \textit{et al}, 2016; Andersen & Hansen, 2018). In contrast, the Pima Indians of the South Western United States and Mexico subsisted on a high carbohydrate diet, yet with an increased fat intake they rapidly developed the highest incidence of type 2 diabetes of any reported population (Schulz & Chaudhari, 2015). GWAS identified SNPs in Acyl-coenzyme A dehydrogenase 10 (ACAD10) an enzyme required for fatty acid oxidation (Bloom \textit{et al}, 2018) which suggests that defective lipid handling may account for the high incidence of type 2 diabetes in the Pima Indian population. These studies reveal that the mechanisms that underpin diet sensitivity are complex and involve differences in food preference and thus food intake as well as differences in nutrient metabolism (energy storage and utilisation). Another major finding of this study was that gene-diet interactions vary with respect to diet. Since the natural food sources of \textit{Drosophila} are rotting fruits that contain sugar and yeast (Markow, 2015), we postulate that genetic variants involved in the processing, storage and utilization of sugar or protein (from yeast) contribute to differences in starvation resistance. Indeed, changes in sugar and lipid handling enzymes have previously been linked to starvation resistance (Harshman \textit{et al}, 1999). Alternatively, sugar and protein (from yeast) are dominant drivers of food intake with major sensory systems to control intake of these macronutrients and hence these are more likely to be under genetic control (May \textit{et al}, 2019; Chng \textit{et al}, 2017).
This study provides a rich resource of diet responsive genes and pathways. The majority (>80%) of the SNPs in candidate genes were non-coding, a finding that is consistent with previous DGRP (Mackay et al, 2012) and human GWAS (Gallagher & Chen-Plotkin, 2018) and the functional consequences of such SNPs remain to be identified. As a proof of principle, we were able to validate candidate genes with intronic SNPs using RNAi knockdown indicating that these types of mutations may control expression of these genes. However, further studies examining transcriptional control are required to validate this conclusion.

We focused on CG4607, a validated diet-responsive gene. SNPs in CG4607 were identified in a GWAS of sleep/activity (Harbison et al, 2013) and whose expression is increased in DGRP lines with differential responses to enteric bacterial exposure (Sleiman et al, 2015). Whole body depletion of CG4607 resulted in lethality after 3 days on HCD (Fig. 4A) and the lethality was accompanied by hyperactivity and an increase in caloric intake on HCD compared to control flies. Flies typically become hyperactive during starvation, as they tried to forage for food (Yu et al, 2016; Yang et al, 2015). Thus, our data suggest that death after HCD exposure in CG4607 KD flies results from a potential starvation-like phenotype. This is consistent with the role of CG4607 in glucose transport, as CG4607 would be required for maintaining glucose levels during high sugar diet feeding. Although we see that total sugar levels in whole fly preparations are unchanged between control and CG4607 KD flies, they may have higher circulating sugar levels. Furthermore, CG4607 KD animals have higher energy stores on NF compared to control flies, which could be due to increased gluconeogenesis, a reaction to a perceived lack of nutrients, thus, mimicking an insulin resistant state. Hence, the presence of excessive sugar due to HCD feeding exacerbates the energy imbalance observed on NF, resulting in rapid lethality.

CG4607 is the closest Drosophila orthologue of the human glucose transporters GLUT6 and GLUT8. These transporters are expressed in a range of mammalian tissues (Gorovits et al, 2003; Doege et al, 2000; Carayannopoulos et al, 2000; Lisinski et al, 2001; Diril et al, 2009). While their function in these tissues remains unclear it is intriguing, in light of our data (Fig 4), that deletion of GLUT8 in mice led to a hyperactivity phenotype (Schmidt et al, 2008). Moreover, similar to CG4607, GLUT6 and GLUT8 are targeted to lysosomes and there is no evidence that these transporters function at the plasma membrane, analogous to other facilitative sugar transporters, like GLUTs1-5 (Maedera et al, 2019; Lisinski et al). Hence,
one possibility is that these transporters subserve their major function on lysosomes. This is intriguing as this
is also where the major nutrient sensor mTORC1 is found and mTORC1 activity is regulated by a range of
nutrients including glucose (Lee et al, 2009; Efeyan & Sabatini, 2013). During nutrient deprivation, the mTOR
pathway regulates glycoptathy, or the breakdown of cellular glycogen to glucose in autophagic vesicles (Zhao
et al, 2018; Mony et al, 2016) and it is conceivable that CG4607 is required for this process. Our metabolic
characterization of CG4607 KD flies supports this possibility, as glycogen levels on NF in these flies were
higher than the controls after starvation. Similarly, TAG levels in CG4607 KD flies were higher after eating
NF but were substantially reduced after starvation suggesting that these flies break down more TAG during
starvation (Fig. 5 B-H). Thus, our data in CG4607 KD flies resembles a lysosomal glycogen storage disease,
where lysosomal glycogen cannot be accessed for energy utilisation in the cytosol.

Overall, the ramifications of our findings are substantial for humans because it means that the concept
of a ‘healthy’ diet varies between individuals, thus questioning population-wide nutritional recommendations.
While our study provides the basis for a nutrigenomics initiative such an endeavour is likely to require a
substantial future investment.

Materials and Methods

Drosophila Stocks and procedures

Stocks: DGRP (Bloomington Drosophila Stock Center, Indiana, USA), RNAi reagents (VDRC, Vienna,
Austria), tubulin-GAL4 and ubiquitous-GAL4 (Mattila et al, 2015), CG-Gal4 (Bloomington # 7011).

DGRP flies were maintained at standard temperature and 12h light/dark cycle. DGRP flies were expanded in
bottles before collecting adult males for experiments. 5 replicates of 10 3-5 day old adult males from each
strain were collected and passaged onto each diet. Food was changed every other day, and the mortality rate
was monitored for the ten days of diet treatment. The diets were well tolerated with a similar lethality on HFD
during pre-feeding compared to other diets and did not affect the starvation assay. Afterwards, males were
placed into starvation vials with kimwipes and 1 mL of water and monitored every 12 hours for death. The
median and mean starvation resistance was analysed using Prism and the R (CRAN, survival and survminer
packages).

Gas Trap Assay to measure CO2 and Triglycerides:
The gas trap protocol has been previously described (Markow, 2015). Briefly, 4 replicates of 10 male adult 3-5-day old flies were starved overnight with a Kim wipe and 1mL of water. Flies were placed into 12 well plates containing glucose radiolabelled food and blue dye. We measured glucose oxidation and processed the flies for TAGs and Blue dye content as described.

Blue Dye Extraction and measurements: 4 replicates of 10 flies were collected and homogenized (Reche MM400) in 100uL of water. Samples were briefly spun down and the supernatant was dried down in the Genevac personal evaporator. Dried samples were reconstituted in 50uL of water, vortexed and placed into a 96 well plate for measurement at 628nm in a spectrophotometer. Dilutions of blue dye (Queenie Brand, Coles Supermarket, Australia) were used as a reference. Data was analysed in Excel (Microsoft) and plotted in Prism (Graphpad). Statistical significance was calculated between genotypes using Student’s t-test.

Statistical SNP analysis

DGRP SNP genotypes were downloaded from the DGRP Freeze 2 online resource http://dgrp2.gnets.ncsu.edu/data.html for all lines considered in this manuscript. SNPs were filtered so at least five lines contained one of each of the reference and alternate alleles. Lines with missing allele information for a given variant were not considered, resulting in testing across 2,455,135 SNPs. Statistical testing included multivariate analysis of variance (MANOVA) testing, with Wolbachia status as a covariate per variant, with an unadjusted P-value < 1e-4 as significant, as well as Wilcoxon Rank Sum Tests per diet. To assess the effect size, we calculated the median difference in phenotype between ‘reference’ and ‘alternate’ allele groups per diet, phenotype being the log2 ratio of survival to NF per line. We selected diet-SNP pairs for further consideration if they were significant for both the MANOVA test and Wilcoxon Rank Sum Test, and had an absolute difference in median phenotypes of at least 0.3.

Gene ontology analysis: Gene ontology and pathway analyses were performed using Fisher’s Exact Test in the ‘goseq’ R package. A total of 6,056 pathways, based on human genes, with at least 10 and at most 500 genes were kept, with a ‘gene universe’ of 7,677 human genes that are homologues of the fly genes tested.
Pathways were considered significant if FDR-corrected values were below 0.05, per diet and direction of phenotype change.

Validation/Automated starvation resistance (DAMS assay): RNAi knockdown fly lines (see table S5 for reagent ID) were mated to 20 ubi-Gal4 females. Sixteen 3-5 day old males were placed on five different diets for ten days. The food was changed every other day for ten days until males were placed into the DAMS apparatus (Trikinetics, inc., USA). The flies were loaded into DAMS tubes containing 2% agar and monitored every 5 minutes for starvation resistance. For activity analysis, 3-5 day old male flies were placed into DAMS tubes with either NF or HCD and monitored for activity for ten days. DAMS data were analysed using the R survminer and rethonics (Geissmann et al, 2019) package.

Capillary feeding assay: 10 replicates of 5 3-5 day old adult males were placed into vials with water soaked kimwipes and sealed with a rubber stopper with two holes. 5uL capillary tubes with food was placed through one hole and into the vials to allow flies to feed for 24 hours (Lee et al, 2008). The diets were composed of yeast (MP Biomedicals cat # 2232731), and sugar (Coles Supermarket, Australia).

Diets: Diets were made up of agar (Sigma) and torula yeast (H.J Langdon & Co, Victoria, Australia), sugar (Coles, Victoria, Australia) and extra virgin coconut oil (Absolute Organics, NSW, Australia).

Triglycerides Assay: 6 to 10 replicates of 6 3-5 day old flies were collected and washed in 4 dilutions of isopropanol to remove excess food. Triglyceride extraction was performed as previously described (FOLCH et al, 1957). The lipids were collected after extraction, evaporated under N2 gas and reconstituted with 95% ethanol. Scintillant was added to samples with radioactive tracer instead of ethanol and read on a beta counter (Beckman Coulter). Samples were spun and placed into 96 well plates (Sigma-Aldrich, # CLS9018BC) and incubated with triglyceride reagent (200uL; Thermo Fischer Cat #TR22421) for at 37C for 30min. 1mg/ml glucose was used as a reference. Total absorbance at 340nm was measured in a plate reader (Beckman) and subtracted from a blank before determining the amount of triglyceride using the reference standard curve. All calculations were performed in Excel (Microsoft) and graphed in Prism.
Glucose assay: Glucose was measured from the aqueous phase of the triglyceride extraction (see above) and the methanol: the aqueous mixture was evaporated in a Genevac E2-3 evaporator until a dried pellet was visible. The pellet was reconstituted with water and glucose was measured as described for glycogen.

Glycogen Assay: We collected six replicates of 6 male flies and washed them in several dilutions of isopropanol to remove food. Fasted flies were collected after 24 hours of starvation. Flies were homogenised in 1M Koh for 30 seconds using steel balls and a tissue lyser (Resche MM400). Samples were heated for 30 min at 70 degrees C. Saturated Na₂SO₄ was added following 95% Ethanol for precipitation. The pellet was spun down and then reconstituted in water, heated at 70 degrees and 95% Ethanol was added again. The pellet was spun down, and aminoglycosides were added overnight at 37 degrees. Samples were spun and placed into 96 well plates (Sigma-Aldrich, # CLS9018BC) and incubated with glucose oxidase reagent (200uL; Thermo Fischer, TR15221) for at 37C for 30min. 1mg/ml glucose was used as a reference. Total absorbance at 340nm was measured in a plate reader (Beckman) and subtracted from a blank before determining the amount of glucose using the reference standard curve. All calculations were performed in Excel (Microsoft) and graphed in Prism.

Cell Culture and Immunostaining: HeLa cells were kept in DMEM with 1% glutamax and 10% FCS at 37 degrees and 5% CO2. Cells were transfected with lipofectamine 2000 and split onto coverslips at two x10⁵ cells/mL. Coverslips were fixed in 4% paraformaldehyde, washed with PBS, and blocked for 30 minutes with 0.02% saponin (Sigma,) and 2% BSA in PBS. Primary antibodies: ms anti-LAMP1(1:100, Developmental Studies Hybridoma Bank 4C CR). Secondary antibodies: (Gt anti-mouse 488 (1:200, Invitrogen)). Coverslips were mounted in mowiol and imaged using a 60X water objective on the A1R confocal (Nikon). Images were processed using Fiji (ImageJ, NIH, Bethesda, MD).

qPCR of knockdown: Three replicates of 10 flies were homogenized in TRIzol™ Reagent (Invitrogen, 15596026) and RNA was precipitated out. cDNA was created (superscript II, Invitrogen 18064014). Tubulin was used as a housekeeping gene and the following primers were used to amplify CG4607:
The samples were run using the ROCHE Lightcycler 480 II (Roche). The knockdown efficiency was calculated using the delta-delta Ct method (Excel and Graphpad, Prism) and the Ct values were graphed. Significance was calculated using a student’s t-test (p<0.0001 ****).

Generation of CG4607-mRuby3: CG4607-mRuby3 construct was created through Gibson cloning. The CG4607 cDNA (#, Drosophila Genome Resource Center, Indiana, USA) was PCR amplified using the following primers:

dCG4607GibF1: GGACTCAGATCTCGAGACAAGATGAAGGGCCAGCCAGCAGGAG

dCG4607GibR1: CATGCTGCCttCAGCTGAGGACAAATTTCTTTAGGAACACTT

The backbone GLUT4-mRuby3 was PCR amplified to include overhangs using the following primers:

mRuby3_gib_F1: TCCTCAGCTGAAGGAGCATG

mRuby3_gib_R1: AGCTGAGGATCCCTTGTCTCGAGATCTGAGTCC

PCR products were placed together with Gibson master mix, and the resulting plasmid was sequenced before cell transfection.

Figure Legends:

Figure 1: Inter-strain variation in response to diet. (A) DGRP screen schematic outlines the work flow. Each individually coloured fly represents an individual DGRP line and survival curves represent the measured starvation resistance after exposure of flies to each diet. (B) Pairs plot showing a positive correlation with starvation resistance data from Mackay et al, 2012 and negative correlation with food intake to starvation resistance data on NF from this study. (C) Histograms showing the distribution of the mean starvation resistance of each fly independent of strain on each diet. (D) Heatmap of mean starvation resistance of each DGRP strain relative to its mean survival after NF exposure.

Figure 2: Mapping the SNPs in diet-responsive genes (A) Manhattan plot of selected SNPs based on a multivariate significance p-value of < 1x 10^-4, filtered by a univariate significance of p< 0.01 and a fold change of >0.3. Highly significant SNPs with a univariate p-value <0.01 and a fold change >0.3 are in black. The y-axis in the Manhattan plot is log (P-value) for the multivariate test. (B) An upset plot indicating the degree of overlap of the numbers of highly significant
SNPs between each diet and the number of SNPs per diet. (C-E) Manhattan plots of selected SNPs based on a multi-variate significance p-value of < 1x 10^-4, filtered by a univariate significance of p< 0.01 and a fold change of >0.3 for each diet. Highly significant SNPs with a univariate p-value <0.01 and a fold change >0.3 are in black.

Figure 3: Whole body knockdown of CG4607 is lethal upon HCD feeding. Survival of ubi-GAL4>CG4607 KK104152 flies on NF and HCD. (A) Adult male control and ubi-GAL4>CG4607 KK104152 flies (n=60) were placed on either NF or HCD and manually monitored for lethality every 24 hours. We observed that all ubi-GAL4>CG4607 KK104152 flies were dead within 60 hours after HCD feeding. (B) Actogram of activity and sleep (n=16 flies) wrapped over 24 hours of single housed individual control and ubi-GAL4>CG4607 KK104152 flies in DAMS monitors and beam crosses were monitored every 5 minutes while they ate NF or HCD (C) An inset of B showing a closer view of activity over the first 9 hours. Activity data was analysed using the rethomics package in r (Lee et al, 2008). (D) Caloric intake of adult male flies (n=50/genotype) using the CAFE assay. ubi-GAL4>CG4607 KK104152 flies ingested significantly more calories from HCD (p<0.02) than control. Data is mean +/- SD and significance between genotypes was calculated using a t-test , ** p<0.01 (Prism).

Figure 4: CG4607 interacts with HPD to regulate starvation resistance. (A) A starvation survival plot of 32 individual control and ubi-GAL4>CG4607 KK104152 male flies pre-fed each diet. The survival curves show that ubi-GAL4>CG4607 KK104152 male typically live longer on NF but are starvation sensitive when fed HPD. Data is representative of three independent experiments. Significance is the log-rank test for trend between all genotypes (survminer package in R) (B) Glycogen content was significantly reduced between control flies fed NF and HPD. However, glycogen content was the same between NF and HPD fed ubi-GAL4>CG4607 KK104152 flies (C) Fasted glycogen was reduced in NF fed control flies compared to NF fed ubi-GAL4>CG4607 KK104152 flies, but pre-feeding with HPD reduced glycogen levels of ubi-GAL4>CG4607 KK104152 flies, while starvation after control flies ate HPD was lethal. (D) Glucose content was not significantly different across genotypes. (E) Fasted glucose levels of NF pre-fed flies had similar glucose levels, however, glucose levels were significantly reduced in HPD pre-fed ubi-GAL4>CG4607 KK104152. (F) Triglyceride levels of ubi-GAL4>CG4607 KK104152 animals were increased on NF feeding, but reduced upon eating HPD. (G) Fasted TAG stores were reduced in control flies pre-fed NF, while NF fed CG4607 KD flies maintained their TAG stores. (H) HPD pre-fed flies had reduced TAG stores. (all experiments n=36 flies/genotype and representative of two experiments) Significance between genotypes was calculated using a one-way ANOVA , ** p<0.01, *** p<0.001 (Prism).

Figure 5: CG4607 controls glucose utilisation and uptake. (A,B) Micrographs of fixed and immunostained HeLa cells were transfected with pCMV-CG4607-mRuby3 (red), immunostained with anti-LAMP1 antibody (green) and counterstained with Hoescht (blue). (A, inset (B)) CG4607-mRuby3 colocalises with Lamp1 expressing vesicles. (C) All the following
experiments were performed on n= 40 control and abi-GAL4>CG4607KK104152 males. Glucose oxidation is reduced after 4 hours of administering C14 labelled glucose. (D) C14 incorporation into TAGs is reduced in CG4607KD flies. (E) The accumulation of blue dye is not significantly different between control and CG4607KD flies during the assay. The data is from two independent experiments. Significance between genotypes was calculated using a student’s t-test, ** p<0.01, **** p<0.0001 (Prism).

Andersen M & Hansen T (2018) Genetics of metabolic traits in Greenlanders: lessons from an isolated population. J Intern Med 284: 464–477

awdan, Chippindale AK, Rose MR & Bradley T (1998) Metabolic reserves and evolved stress resistance in Drosophila melanogaster. Physiol Zool 71: 584–594

Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A & Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11: 35

Bloom K, Mohsen A, Karunanidhi A, Demellawy D, Reyes-Múgica M, Wang Y, Ghaloul-Gonzalez L, Otsubo C, Tobita K, Muzumdar R, Gong Z, Tas E, Basu S, Chen J, Bennett M, Hoppel C & Vockley J (2018) Investigating the link of ACAD10 deficiency to type 2 diabetes mellitus. J Inherit Metab Dis 41: 49–57

Bryk B, Hahn K, Cohen SM & Teleman AA (2010) MAP4K3 regulates body size and metabolism in Drosophila. Dev Biol 344: 150–157

Chandegra B, Tang J, Chi H & Alic N (2017) Sexually dimorphic effects of dietary sugar on lifespan, feeding and starvation resistance in Drosophila. Aging 9: 2521
Chng W, Hietakangas V & Lemaitre B (2017) Physiological Adaptations to Sugar Intake: New Paradigms from Drosophila melanogaster. *Trends Endocrinol Metabolism* **28**: 131–142

Consortium T (1999) The FlyBase Database of the Drosophila Genome Projects and community literature. *Nucleic Acids Res* **27**: 85–88

Diril M, Schmidt S, Krauß M, Gawlik V, Joost H, Schürmann A, Haucke V & Augustin R (2009) Lysosomal localization of GLUT8 in the testis – the EXXXLL motif of GLUT8 is sufficient for its intracellular sorting via AP1- and AP2-mediated interaction. *Febs J* **276**: 3729–3743

Dubois L, Kyvik K, Girard M, Tatone-Tokuda F, Perusse D, Hjelmborg J, Skytthe A, Rasmussen F, Wright MJ, Lichtenstein P & Martin NG (2012) Genetic and environmental contributions to weight, height, and BMI from birth to 19 years of age: an international study of over 12,000 twin pairs. *Plos One* **7**: e30153

Efeyan A & Sabatini DM (2013) Nutrients and growth factors in mTORC1 activation. *Biochem Soc T* **41**: 902–905

Feng Y, Hartig SM, Bechill JE, Blanchard EG, Caudell E & Corey SJ (2010) The Cdc42-interacting Protein-4 (CIP4) Gene Knock-out Mouse Reveals Delayed and Decreased Endocytosis. *J Biol Chem* **285**: 4348–4354

FOLCH J, LEES M & STANLEY SG (1957) A simple method for the isolation and purification of total lipides from animal tissues. *J Biological Chem* **226**: 497–509

Gallagher MD & Chen-Plotkin AS (2018) The Post-GWAS Era: From Association to Function. *Am J Hum Genetics* **102**: 717–730
Garlapow ME, Huang W, Yarboro MT, Peterson KR & Mackay TF (2015) Quantitative Genetics of Food Intake in Drosophila melanogaster. *Plos One* 10: e0138129

Geissmann Q, Rodriguez L, Beckwith EJ & Gilestro GF (2019) Rethomics: An R framework to analyse high-throughput behavioural data. *Plos One* 14: e0209331

Ginsburg GS & Phillips KA (2018) Precision Medicine: From Science To Value. *Health Affair* 37: 694–701

Heianza Y, Qi L, Heianza Y & Qi L (2017) Gene-Diet Interaction and Precision Nutrition in Obesity. *Int J Mol Sci* 18: 787

Hoffmann AA & Harshman LG (1999) Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. *Heredity* 83: 6886490

Lee K & Jang T (2014) Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. *Funct Ecol* 28: 1144

Lee K, Simpson SJ, Clissold FJ, Brooks R, Ballard WJ, Taylor PW, Soran N & Raubenheimer D (2008) Lifespan and reproduction in Drosophila: New insights from nutritional geometry. *Proc National Acad Sci* 105: 2498–2503

Lee M, Ha S, Kim J, Koh A, Lee C, Kim J, Jeon H, Kim D-H, Suh P-G & Ryu S (2009) Glycolytic Flux Signals to mTOR through Glyceraldehyde-3-Phosphate Dehydrogenase-Mediated Regulation of Rheb v. *Mol Cell Biol* 29: 3991–4001

Lisinski I, Schurmann A, Joost H, Cushman S & Al-Hasani H Targeting of GLUT6 (formerly GLUT9) and GLUT8 in rat adipose cells. *The Biochemical journal* 358: 517
Mackay TF, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, Casillas S, Han Y, Magwire MM, Cridland JM, Richardson MF, Anholt RR, Barron M, Bess C, Blankenburg K, Carbone M, Castellano D, Chaboub L, Duncan L, Harris Z, et al (2012) The Drosophila melanogaster Genetic Reference Panel. Nature 482: 173

Maedera S, Mizuno T, Ishiguro H, Ito T, Soga T & Kusuhara H (2019) GLUT6 is a lysosomal transporter that is regulated by inflammatory stimuli and modulates glycolysis in macrophages. Febs Lett 0: 195–208

Manousaki D, Kent JW, Haack K, Zhou S, Xie P, Greenwood CM, Brassard P, Newman DE, Cole S, Umans JG, Rouleau G, Comuzzie AG & Richards BJ (2016) Toward Precision Medicine: TBC1D4 Disruption Is Common Among the Inuit and Leads to Underdiagnosis of Type 2 Diabetes. Diabetes Care 39: 1889–1895

Markow T (2015) The secret lives of Drosophila flies. Elife 4: e06793

Mattila J, Bremer A, Ahonen L, Kostiainen R & Puig O (2009) Drosophila FoxO Regulates Organism Size and Stress Resistance through an Adenylate Cyclase. Mol Cell Biol 29: 5357–5365

Mattila J, Havula E, Suominen E, Teesalu M, Surakka I, Hynynen R, Kilpinnen H, Väänänen J, Hovatta I, Käkelä R, Ripatti S, Sandmann T & Hietakangas V (2015) Mondo-Mlx Mediates Organismal Sugar Sensing through the Gli-Similar Transcription Factor Sugarbabe. Cell Reports 13: 350–364

May CE, Vaziri A, Lin Y, Grushko O, Khabiri M, Wang Q-P, Holme KJ, Pletcher SD, Freddolino PL, Neely GG & Dus M (2019) High Dietary Sugar Reshapes Sweet Taste to Promote Feeding Behavior in Drosophila melanogaster. Cell Reports 27: 1675-1685.e7
Mead NM (2007) Nutrigenomics: The Genome–Food Interface. *Environ Health Persp* **115**: A582–A589

Mony VK, Benjamin S & O’Rourke EJ (2016) A lysosome-centered view of nutrient homeostasis. *Autophagy* **12**: 619–631

Obesity and overweight

Parks BW, Sallam T, Mehrabian M, Psychogios N, Hui ST, Norheim F, Castellani LW, Rau CD, Pan C, Phun J, Zhou Z, Yang W-P, Neuhaus I, Gargalovic PS, Kirchgessner TG, Graham M, Lee R, Tontonoz P, Gerszten RE, Hevener AL, et al (2015) Genetic Architecture of Insulin Resistance in the Mouse. *Cell Metab* **21**: 334–347

Parra-Peralbo E & Culi J (2011) Drosophila Lipophorin Receptors Mediate the Uptake of Neutral Lipids in Oocytes and Imaginal Disc Cells by an Endocytosis-Independent Mechanism. *Plos Genet* **7**: e1001297

Reiter L, Potocki L, Chien S, Gribskov M & Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. *Genome Res* **11**: 1114

Rodríguez-Vázquez M, Vaquero D, Parra-Peralbo E, Mejía-Morales JE & Culi J (2015) Drosophila Lipophorin Receptors Recruit the Lipoprotein LTP to the Plasma Membrane to Mediate Lipid Uptake. *Plos Genet* **11**: e1005356

Sales N, Pelegrini P & Goersch M (2014) Nutrigenomics: Definitions and Advances of This New Science. *J Nutrition Metabolism* **2014**: 202759

Sano H, Nakamura A, Texada MJ, Truman JW, Ishimoto H, Kamikouchi A, Nibu Y, Kume K, Ida T & Kojima M (2015) The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-
like Peptides in the Brain of Drosophila melanogaster. *Plos Genet* **11**: e1005209

Schulz LO & Chaudhari LS (2015) High-Risk Populations: The Pimas of Arizona and Mexico. *Curr Obes Reports* **4**: 92–98

Skorupa DA, Dervisefendic A, Zwiener J & Pletcher SD (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. *Aging Cell* **7**: 478–490

Stunkard A, Foch T & Hrubec Z A twin study of human obesity. *JAMA* **256**: 51

Tang H, Wang Y, Wang S, Wu M, Lin S & Chen G (2011) Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. *Embo J* **30**: 636–651

Topol EJ (2014) Individualized Medicine from Prewomb to Tomb. *Cell* **157**: 241–253

Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi J, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalova L, Pevsner-Fischer M, Bikovsky R, et al (2015) Personalized Nutrition by Prediction of Glycemic Responses. *Cell* **163**: 1079

Zhao H, Tang M, Liu M & Chen L (2018) Glycophagy: An emerging target in pathology. *Clin Chim Acta* **484**: 298–303

Zobel T, Brinkmann K, Koch N, Schneider K, Seemann E, Fleige A, Qualmann B, Kessels MM & Bogdan S (2015) Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in the regulation of E-cadherin in epithelial morphogenesis. *J Cell Sci* **128**: 499–515
A. 4 Diets for 10 days

B. Food Intake

C. Number of Flies

D. Normalised Mean Starvation Resistance

Mean Starvation Resistance (Hours)
A. Survival probability over time (hours) for different conditions:

- Blue line: $ubi> CG4607^{KD}$ NF
- Yellow line: $ubi> Control$ NF
- Blue line: $ubi> CG4607^{KD}$ HPD
- Orange line: $ubi> Control$ HPD

$p < 0.0001$

B. Fed Glycogen (ug/mg fly)

C. Fasted Glycogen (ug/mg fly)

D. Fed Glucose (ug/fly)

E. Fasted Glucose (ug/fly)

F. NF TAG (ug/fly)

G. HPD TAG (ug/fly)

H. Fasted TAG (ug/fly)

- Asterisks indicate statistical significance:
 - *** for $p < 0.001$
 - ** for $0.001 < p < 0.01$
 - N.S. for non-significant

- N.B.: Fasted TAG (ug/fly) H is marked with ****, suggesting a significant difference.
Table 1: Analysis of the mean starvation resistance data on all diets.

Diet	Mean	SEM	Variance	Broad Sense (Genetic)	Heritability
NF	51.46	1.15	0.086	19%	
HCD	68.88	1.64	0.364	50%	
HFD	55.10	1.09	0.089	20%	
HPD	36.77	0.97	0.671	65%	

A summary table of the mean starvation data, SEM, genetic and environmental variance from the log transformed starvation data across all the DGRP lines on each diet.

Estimates of genetic variance and heritability are derived from linear mixed models of log survival (see supplementary table S2).
Table 2: GO term analysis of human orthologs of diet-responsive genes

	HPD Up			HPD Down		
GO ID	Term	p.Value	GO ID	Term	p.Value	
	integral component of plasma membrane	5.68E-08				
GO:0004888	transmembrane signaling receptor activity	2.88E-07				
GO:0005887	signaling receptor activity	2.33E-06				
GO:0004714	transmembrane receptor protein tyrosine kinase activity	9.22E-09				
GO:0038023	molecular transducer activity	3.19E-06				
GO:0008235	metalloexopeptidase activity	2.35E-08				
GO:0008238	exopeptidase activity	3.50E-07				
GO:0008237	metallopeptidase activity	3.44E-06				

	HFD Up			HFD Down		
GO ID	Term	p.Value	GO ID	Term	p.Value	
GO:0004181	metallocarboxypeptidase activity	4.93E-09				
GO:0004180	carboxypeptidase activity	3.28E-08				
GO:0008235	metalloexopeptidase activity	2.35E-08				
GO:0008238	exopeptidase activity	3.50E-07				
GO:0008237	metallopeptidase activity	3.44E-06				
GO:0004888	transmembrane signaling receptor activity	1.01E-07				
-------------	--	----------				
GO:0006812	cation transport	5.92E-07				
GO:0070374	positive regulation of ERK1 and ERK2 cascade	1.11E-06				
GO:0022890	inorganic cation transmembrane transporter activity	1.38E-06				
GO:0015370	solute:sodium symporter activity	2.46E-06				
GO:0008146	sulfotransferase activity	3.23E-06				
GO:0046873	metal ion transmembrane transporter activity	4.06E-06				
GO:0070372	regulation of ERK1 and ERK2 cascade	4.17E-06				
GO:2001257	regulation of cation channel activity	4.13E-06				
GO:0015077	monovalent inorganic cation transmembrane transporter activity	5.19E-06				
GO:0008324	cation transmembrane transporter activity	7.58E-06				
GO:0010715	regulation of extracellular matrix disassembly	6.61E-06				
GO ID	Term	p.Value				
-------------	---	-------------				
GO:0010975	regulation of neuron projection development	6.99E-06				
GO:0015278	calcium-release channel activity	6.61E-06				
GO:0015294	solute:cation symporter activity	8.00E-06				
GO:0032412	regulation of ion transmembrane transporter activity	6.06E-06				
GO:0034220	ion transmembrane transport	8.52E-06				
GO:0034308	primary alcohol metabolic process	7.75E-06				
GO:0045664	regulation of neuron differentiation	8.52E-06				
GO:0070371	ERK1 and ERK2 cascade	8.66E-06				
GO:0022898	regulation of transmembrane transporter activity	9.72E-06				

GO ID	Term	p.Value			
GO:0005581	collagen trimer	3.30E-08			
GO:0034035	purine ribonucleoside bisphosphate metabolic process	5.59E-07			
GO:0005201	extracellular matrix structural constituent	7.45E-07	GO:0050427	3'-phosphoadenosine 5'-phosphosulfate metabolic process	5.59E-07
----------------	---	----------	----------------	---	----------
GO:0030198	extracellular matrix organization	3.29E-06	GO:0008146	sulfotransferase activity	6.78E-06
GO:0044420	extracellular matrix component	3.88E-06			
GO:0043062	extracellular structure organization	7.39E-06			

Tables show the human orthologs of Drosophila genes associated with a predicted decrease (down) or increase (up) in starvation resistance upon HFD, HPD, or HCD exposure.
Table 3: Validated candidate genes.

Gene/Ortholog	SNP Class	Manova p-value	Diet	vHCD	vHPD	vHFD	G X D pValue	Function
CG8311/DOLK	NON_SYNONYMOUS_CODING	3.70E-10	HCD	0.17	-0.67	-0.47	7.70E-01	protein glycosylation
otp/OTP	NON_SYNONYMOUS_CODING	2.40E-07	HFD	0.8	0.1	-0.07	6.60E-01	DNA binding
LpR2/VLDLR	INTRON	4.20E-06	HFD	0.13	0.31	-0.12	6.00E-01	lipid transport
CG15523/VPS13B	NON_SYNONYMOUS_CODING	9.00E-05	HFD	0.1	0.42	-0.39	5.30E-01	protein targeting to vacuole
Ac76E/ADCY2	INTRON	3.20E-06	HPD	-0.19	-0.27	-0.17	4.90E-01	response to starvation
sqa/MYLK3	INTRON	8.20E-09	HFD	0.48	0.22	0.15	1.80E-01	starvation-induced autophagy
mthl3/ADGRG7	DOWNSTREAM	6.90E-07	HFD	-0.06	N/A	-0.29	1.20E-01	response to starvation, determination of adult lifespan
kug/FAT3	NON_SYNONYMOUS_CODING	2.70E-05	HFD	-0.28	0.07	0.42	8.60E-02	member of the cadherin superfamily of transmembrane proteins, which mediate cell-cell adhesion and/or cell-cell communication
Gene Name	Gene Description	FPKM	Treatment	Log2 Fold Change	p-Value	Description		
-----------	------------------	------	-----------	------------------	---------	-------------		
CG7289/ KIAA2013	NON_SYNONYMOUS_CODING	9.40E-05	HFD	0.16	-0.27	-0.27	8.40E-02	Protein of unknown function DUF2152
hh/Shh	INTRON	1.80E-05	HFD	-0.04	N/A	-0.43	7.10E-02	segment polarity determination, stem cells maintenance and cell migration
sev/ROS1	NON_SYNONYMOUS_CODING	7.90E-05	HFD	-0.2	-0.09	-0.22	2.40E-02	protein tyrosine kinase activity
hppy/MAP4K3	INTRON	4.20E-06	HCD	-0.55	N/A	-0.3	2.30E-02	triglyceride homeostasis, regulation of TOR signaling, behavioral response to ethanol
CG1494/ABCA2-3	NON_SYNONYMOUS_CODING	4.00E-05	HFD	0.41	0.17	-0.04	1.30E-02	lipid transport
Cip4/TRIP10	INTRON	1.60E-06	HFD	-0.31	0.34	-0.94	1.30E-02	lipid binding
Gyc88E/GUCY1B1	NON_SYNONYMOUS_CODING	1.10E-06	HPD	0.68	0.02	0.19	1.10E-02	neuronal oxygen detector, activated at reduced oxygen levels
CG3339/DNAH9	NON_SYNONYMOUS_CODING	3.70E-07	HFD	-0.11	-0.07	0.44	4.10E-03	dynein light chain binding
CG43345/PLD3-4	NON_SYNONYMOUS_CODING	6.70E-08	HFD	0.42	-0.51	-0.67	1.10E-03	Phospholipase D/Transphosphatidylase;
Gene Symbol/Human Ortholog	Gene Function	Gene Symbol/Human Ortholog	Gene Function	Gene Symbol/Human Ortholog	Gene Function			
---------------------------	---------------	---------------------------	---------------	---------------------------	---------------			
CCHa2-R/BRS3	INTRON	1.10E-05	HFD	-0.01	0.15	-0.77	2.80E-04	neuropeptide signaling pathway
CG9674/DPYD	UTR_5_PRI	5.40E-07	HCD	-1.16	0.19	-0.23	1.50E-04	glutamate synthase (NADH) activity
T3dh/ADHFE1	NON_SYNONYMOUS_CODING	2.60E-06	HCD	0.1	-0.24	-0.33	1.10E-05	alcohol dehydrogenase (NAD) activity
fd96Ca/FOXB1	NON_SYNONYMOUS_CODING	9.20E-07	HFD	-0.4	-0.45	-0.99	1.00E-10	regulation of transcription
CG4607/SLC2A6	UPSTREAM	2.20E-05	HPD	-1.29	-0.11	0.00E+00	glucose transmembrane transporter activity	

a. Gene symbol/human ortholog
b. the significance from the multivariate anova of the diet responsive SNP
c. the diet upon which the gene is predicted to affect starvation resistance
d-f. the fold change in starvation resistance (SRcontrol Diet/NF / SRKD Diet/NF)
g. The significance of the gene by diet interaction for each gene and it’s fold change on the predicted diet (from d).
h. The functional annotation of the gene from www.flybase.org