Alcohol consumption and risk of renal cell cancer: The NIH-AARP diet and health study

Jasmine Q. Lew
Washington University Medical Center
Wongho Chow
National Cancer Institute
Albert R. Hollenbeck
AARP
Arthur S. Schatzkin
National Cancer Institute
Yikyung Park
National Cancer Institute

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation

Lew, Jasmine Q.; Chow, Wongho; Hollenbeck, Albert R.; Schatzkin, Arthur S.; and Park, Yikyung, "Alcohol consumption and risk of renal cell cancer: The NIH-AARP diet and health study." *British Journal of Cancer*. 104, 5. 537-541. (2011).
https://digitalcommons.wustl.edu/open_access_pubs/4048

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Short Communication
Alcohol consumption and risk of renal cell cancer: the NIH-AARP diet and health study

JQ Lew1,2, W-H Chow1, AR Hollenbeck3, A Schatzkin1 and Y Park*,1
1Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd., Bethesda, MD, USA; 2St. Louis Children's Hospital, Washington University Medical Center, St. Louis, MO, USA; 3AARP, Washington, DC, USA

BACKGROUND: The effect of moderate to heavy drinking (≥15 g per day) on renal cell cancer (RCC) risk is unclear.

METHOD: The relationship between alcohol consumption and RCC was examined in the NIH-AARP Diet and Health Study (n = 49,2187, 1814 cases).

RESULTS: Compared with >0 to <5 g per day of alcohol consumption, the multivariate relative risk (95% confidence intervals) for 15 to <30 g per day was 0.75 (0.63–0.90) and 0.71 (0.59–0.85), respectively, in men and 0.67 (0.42–1.07) and 0.43 (0.22–0.84), respectively, in women.

CONCLUSION: Alcohol consumption was inversely associated with RCC in a dose–response manner. The inverse association may be extended to ≥30 g per day of alcohol intake.

British Journal of Cancer (2011) 104, 537–541. doi:10.1038/sj.bjc.6606089 www.bjcancer.com
Published online 18 January 2011
© 2011 Cancer Research UK

Keywords: alcohol; renal cell cancer; cohort

As only a small proportion of renal cell cancer (RCC) arose from the milieu of familial cancer syndromes with culpable genetic mutations, environmental exposures and their interaction with genetic susceptibility are believed to have an important role in the development of sporadic RCC. However, except for cigarette smoking, hypertension, and obesity, few modifiable risk factors of RCC have been established (Chow et al., 2010).

Although alcohol has been positively associated with a variety of cancers, notably female breast cancer, cancers of the oral cavity, pharynx, oesophagus and larynx, colon, and liver (World Cancer Research Fund, 2007), a lower risk with alcohol consumption has also suggested inverse associations between alcohol consumption and RCC risk (Parker et al., 2002; Nicodemus et al., 2004; Rashidkhani et al., 2005; Setiawan et al., 2007; Hu et al., 2008; Pelucchi et al., 2008). However, due to limited ranges of alcohol consumption in most studies, including those in the pooled analysis, the effect of heavy drinking on RCC has not been examined fully.

To further clarify the association between alcohol drinking and risk of RCC, we examined data from a large prospective cohort that has 1814 RCC cases and a wide range of alcohol intake.

MATERIALS AND METHODS

Study population
Details of the NIH-AARP Diet and Health study design have been described elsewhere (Schatzkin et al., 2001). Briefly, the study was started in 1995–1996 when a food frequency questionnaire (FFQ) was mailed to members of AARP, aged 50–71 years and residing in one of six states (California, Florida, Pennsylvania, New Jersey, North Carolina or Louisiana) or two metropolitan areas (Atlanta (Georgia) or Detroit (Michigan)). Information regarding demographic and anthropometric characteristics and health-related behaviours were also solicited in the same mailing. The study was approved by the Special Studies Institutional Review Board of the US National Cancer Institute.

Among men and women who returned the questionnaires with satisfactory dietary data (n = 566,402), we excluded individuals who were not the intended respondent, those who had any prevalent cancer other than non-melanoma skin cancer or had self-reported end-stage renal disease at baseline, participants who had cancer as a cause of death but no incidence report from cancer registries, participants who had died or moved out of the study area before their questionnaires were received, and participants who reported extreme energy intake. The analytic cohort consisted of 293,466 men and 198,721 women.

Assessment of alcohol intake and other risk factors
We assessed diet including alcohol consumption using the FFQ, an earlier version of the National Cancer Institute’s Diet History Questionnaire. To assess alcohol intake during the past year, the FFQ queried consumption of beer during the summer, beer during the rest of the year, liquor or mixed drinks, or wine or wine coolers...
Alcohol and risk of renal cell cancer

JQ Lev et al

Epidemiology

during the entire year with 10 categories of frequency, ranging from ‘never’ to ‘≥6 times per day’, and three portion sizes (<1, 1–2, >2 drinks). One drink of alcoholic beverage was defined as one 12-fluid-ounce beer, one 5-fluid-ounce glass of wine, or one 1.5-ounce shot of liquor equalling ~13 g of alcohol. A study conducted in population similar to our study showed that alcohol intake assessed by a FFQ was highly correlated with intake measured by multiple week diet record (0.92 for men and 0.90 for women) (Giovannucci et al., 1991). We also collected demographic, anthropometric, and other cancer risk factors such as smoking, physical activity, and medical history at baseline.

Identification of RCC cases

We identified RCC cases through linkage to the eight original state registries and two additional states subsequently added to capture participants who moved to those states (Arizona and Texas). We defined RCC as a first primary malignancy with the International Classification of Diseases for Oncology, 3rd edition, topography codes C649 and histology code 8140-8575.

Statistical analysis

RCC risk in relation to alcohol drinking was assessed by estimating the relative risk (RR) and 95% confidence intervals (CIs) using the Cox proportional hazards regression model. Person-years of follow-up were calculated from the return date of the baseline questionnaire to the date of cancer diagnosis, death, emigration out of the study area, or end of follow-up (31 December 2006) whichever occurred first. We estimated RRs according to categories of alcohol consumption 0, >0 to <5 (reference), 5 to <15, 15 to <30, and ≥30 g per day. The cut-points were decided based on a priori cut-points used in other studies. To test for linear trend across those categories, we assigned ordinal values for the categories and entered them as a continuous variable in the regression model. In the analysis of beer, wine, and liquor consumption, we mutually adjusted for the other types of alcoholic beverages in the model.

In multivariate models, we adjusted for age, race/ethnicity, education, marital status, body mass index (BMI), smoking history, vigorous physical activity, history of physician-diagnosed hypertension, and intakes of protein and total energy excluding calories from alcohol. We further adjusted for a history of diabetes, and hormone replacement therapy and oral contraceptive use in women and found that the results did not change materially. We created missing indicator category for missing values in each variable. The proportion of missing for each variable was generally <4%.

To identify potential effect modifiers, we tested alcohol-covariate interaction terms in relation to RCC using the likelihood ratio test with alcohol intake considered as a continuous variable. The covariates examined were sex, smoking status, history of physician-diagnosed hypertension, and BMI. We found a statistically significant interaction with sex (P = 0.002), and therefore reported sex-specific results. SAS statistical software (version 9.1; SAS Institute, Inc., Cary, NC, USA) was used for all analyses. All statistical tests were two-sided, P values < 0.05 were considered statistically significant.

RESULTS

During an average of 9 years and 4 476 544 person-years of follow-up, we identified 1814 RCC cases (1348 in men and 466 in women). During the year before the baseline questionnaire, 21% of men and 30% of women did not consume alcohol. The proportion of participants who consumed beer, wine, and liquor was 67, 61, and 57%, respectively, in men and 35, 60, and 47%, respectively, in women. Among those in the highest category of alcohol consumption (≥30 g per day), men on average consumed 2.7 drinks per day of beer, 0.7 drink per day of wine, and 2.7 drinks per day of liquor; and women consumed 0.9 drink per day of beer, 1.2 drinks per day of wine and 2.3 drinks per day of liquor. Compared with drinkers of >0 to <5 g per day of alcohol, heavier drinkers tended to be white, non-Hispanic, current smokers, and had a higher education level (Table 1).

Alcohol intake was inversely associated with the risk of RCC in men (Table 2). Compared with men who drank >0 to <5 g per day, risk decreased from 0.82 for drinkers of 5 to <15 g per day to 0.75 and 0.71 for drinkers of 15 to <30 and ≥30 g per day, respectively (P for trend 0.004). We further examined the association in the group with the highest intake of alcohol. Comparing 30 to <50 and ≥50 g per day of alcohol consumption with >0 to <5 g per day, the multivariate RR was 0.83 (95% CI: 0.65–1.06, 71 cases) and 0.63 (95% CI: 0.50–0.79, 88 cases), respectively. Among alcoholic beverages examined, consumption of beer, but not wine or liquor, showed an inverse association with risk of RCC. When the associations were examined after excluding RCC cases diagnosed within the first 2 years of follow-up, the results did not change appreciably. Among women, alcohol intake was also associated with significantly lowered risk of RCC (Table 3). Compared with >0 to <5 g per day drinkers, risk decreased from 0.73 (95% CI: 0.52–1.03) for drinkers of 5 to <15 g per day to 0.43 (95% CI: 0.22–0.84) for drinkers of ≥30 g per day. Wine and liquor consumption, but not beer, suggested an inverse association with RCC risk. The multivariate RR for an increment of 1 drink per day of alcohol drinks among drinkers was 0.96 (95% CI: 0.94–0.99) in men and 0.73 (95% CI: 0.60–0.88) in women.

When we examined the association in men and women combined, the multivariate RRs (95% CI) for non-drinkers, 5 to <15, 15 to <30, and ≥30 g per day of alcohol vs >0 to <5 g per day of alcohol were 0.91 (0.81–1.02), 0.80 (0.69–0.92), 0.74 (0.62–0.87), and 0.69 (0.58–0.82), respectively. The association between alcohol consumption and RCC did not differ by follow-up periods. In restricting analysis to cases identified during the first 2 years of follow-up (288 cases), the multivariate RRs (95% CI) for 15 to <30 and ≥30 g per day of alcohol vs >0 to <5 g per day were 0.74 (0.49–1.12) and 0.58 (0.37–0.90), respectively. The corresponding RRs (95% CI) in analysis excluding cases occurred the first 2 years of follow-up (1526 cases) were 0.74 (0.62–0.89) and 0.71 (0.59–0.86), respectively.

We also examined whether the association between alcohol consumption and risk of RCC was modified by BMI, smoking status, and history of hypertension and found that the associations were not significantly modified by these risk factors (data not shown).

DISCUSSION

In this large prospective cohort study of adults aged 50 years and over, we found that the alcohol consumption was inversely associated with the risk of RCC in men. The finding is consistent with previous studies that mostly examined the effect of light to moderate alcohol consumption. Investigations published after a pooled analysis of 12 prospective studies (Lee et al., 2007) also observed an inverse association between alcohol consumption and RCC risk. The Multiethnic Cohort Study (Setiawan et al., 2007) reported more apparent inverse association in men than women. Compared with non-drinkers, consumption of >1 drink per day was associated with a significant 31% risk reduction in men and a non-significant 20% risk reduction in women. Recently, the Million Women Study from the UK (Allen et al., 2009) also found a 34% lowered risk of RCC among women who drank ≥15 drinks per week compared with women drinking ≤2 drinks per week. Our study was able to examine the
association with moderate to heavy alcohol consumption (≥30 g per day) and found that RCC risk decreased linearly as alcohol consumption increased. Our study observed more apparent association of alcohol with RCC in women than in men. This may be partially due to differences in alcohol metabolism between men and women; studies suggested that women reach higher blood

Table 1 Selected characteristics of the study participants by alcohol consumption

Alcohol (g per day)	0	>0 to <5	5 to <15	15 to <30	30+	P trend
Men (n)	61 289	100 074	51 022	39 676	41 405	0.001
Beer consumption (drinks per day)	0.0	0.1	0.3	0.5	2.7	0.7
Wine consumption (drinks per day)	0.0	0.1	0.2	0.5	0.7	0.7
Liquor consumption (drinks per day)	0.0	0.03	0.2	0.6	0.7	0.7
Age (years)	62	62	62	63	62	0.001
White, non-Hispanic (%)	90.0	92.0	93.0	95.0	95.0	0.001
Body mass index (kg m⁻²)	27.5	27.6	27.0	26.7	27.0	0.001
Married (%)	84	86	86	85	82	0.001
College graduate (%)	35	43	50	53	47	0.001
Physical activity (5+ times per week, %)	22.0	20.0	21.0	24.0	22.0	0.001
Current smoker (%)	10	9	9	10	17	0.001
Hypertension (%)	42	39	37	39	46	0.001
Protein (% of energy intake)	16	16	16	17	17	0.001
Energy intake* (kcal per day)	1942	1864	1859	1866	1985	0.001

Women (n) | 58 874 | 93 089 | 24 889 | 12 787 | 9082 | 0.001 |
Beer consumption (drinks per day)	0.0	0.02	0.1	0.2	0.9	0.001
Wine consumption (drinks per day)	0.0	0.05	0.4	0.5	1.2	0.001
Liquor consumption (drinks per day)	0.0	0.03	0.2	0.6	2.3	0.001
Age (years)	62	62	62	62	62	0.001
White, non-Hispanic (%)	85	90	93	95	94	0.001
Body mass index (kg m⁻²)	27.9	27.0	25.2	25.0	25.2	0.001
Married (%)	43	44	47	47	45	0.001
College graduate (%)	23	30	38	37	35	0.001
Physical activity (5+ times per week, %)	16.0	15.0	19.0	19.0	17.0	0.001
Current smoker (%)	12	13	15	20	29	0.001
Hypertension (%)	43	35	31	33	39	0.001
Protein (% of energy intake)	16	16	16	17	17	0.001
Energy intake* (kcal per day)	1576	1521	1489	1484	1502	0.001

*Energy intake excluding calories from alcohol.

Table 2 Relative risks and 95% confidence intervals of renal cell cancer for alcohol and alcoholic beverage consumptions in men

Alcohol (g per day)	0	>0 to <5	5 to <15	15 to <30	30+	P trend
Total alcohol	275	543	216	155	159	0.001
Cases (n)	463	695	113	77	0.001	
Age adjusted	0.99 (0.88–1.12)	1.00	0.79 (0.65–0.96)	0.64 (0.51–0.81)	0.001	
Multivariate	0.97 (0.86–1.09)	1.00	0.81 (0.66–0.99)	0.63 (0.49–0.80)	0.001	
Beer	550	607	101	90	0.001	
Cases (n)	1.06 (0.95–1.19)	1.00	0.87 (0.70–1.07)	0.88 (0.70–1.10)	0.02	
Age adjusted	0.99 (0.88–1.11)	1.00	0.95 (0.77–1.17)	0.97 (0.77–1.21)	0.82	
Multivariate	0.99 (0.88–1.04)	1.00	0.84 (0.64–1.00)	0.87 (0.73–1.04)	0.59	
Wine	570	565	57	156	0.001	
Cases (n)	0.94 (0.84–1.06)	1.00	0.84 (0.64–1.00)	0.90 (0.75–1.08)	0.62	
Age adjusted	0.92 (0.82–1.04)	1.00	0.84 (0.64–1.00)	0.87 (0.73–1.04)	0.59	
Multivariate	0.92 (0.82–1.04)	1.00	0.84 (0.64–1.00)	0.87 (0.73–1.04)	0.59	

*Multivariate model adjusted for age, race (white, non-Hispanic, black, non-Hispanic, and others), body mass index (<25, 25–30, ≥30), marital status (married: yes and no), education (less than high school, high school graduate, some college, and college/post college), vigorous physical activity (never/rarely, 1–3 times per month, 1–2, 3–4, and ≥5 times per week), smoking (never, past ≤20 cigarettes per day, past >20 cigarettes per day, current ≤20 cigarettes per day, and current >20 cigarettes per day), history of hypertension (yes and no), and intakes of protein, and total energy excluding energy from alcohol (continuous).
Several mechanisms by which alcohol may reduce the risk of RCC have been proposed. It includes (a) improved insulin sensitivity (Facchinetti et al., 1994; Lazarus et al., 1997); (b) reduction in oxidative stress as alcoholic beverages contain anti-oxidant phenolic compounds and can remove oxidised carcinogenic agents, reduce lipid peroxidation and cell proliferation, and promote apoptosis (Gago-Dominguez et al., 2002; Lee et al., 2006; Lowrance et al., 2010); and (c) the diuretic effect of alcohol, which may help to control hypertension (Lee et al., 2006). However, increase in total fluid intake has not been established to influence RCC risk (Lee et al., 2006; Hu et al., 2009).

The strengths of our study include a prospective study design that minimises recall bias, a large number of RCC cases and a wide range of alcohol consumption, which allowed us to examine the effect of alcohol not only in moderate drinkers but also in heavy drinkers. Our study also has several limitations. Because alcohol consumption was assessed only at baseline in our study, we were not able to examine the effect of lifetime alcohol consumption or changes in drinking patterns on RCC risk. Also, because the never drinkers were defined as people who did not drink in the past year, it is possible that former heavy drinkers who might have stopped recently were classified as non-drinkers. To avoid this misclassification, we used >0 to ≤5 g per day of alcohol as a reference group.

In conclusion, we found a significant inverse association between alcohol consumption and risk of RCC in men and women. The association appears linear, with no threshold effect among heavy drinkers.

ACKNOWLEDGEMENTS

Cancer incidence data from the Atlanta metropolitan area were collected by the Georgia Center for Cancer Statistics, Department of Epidemiology, Rollins School of Public Health, Emory University. Cancer incidence data from California were collected by the California Department of Health Services, Cancer Surveillance Section. Cancer incidence data from the Detroit metropolitan area were collected by the Michigan Cancer Surveillance Program, Community Health Administration, State of Michigan. The Florida cancer incidence data used in this report were collected by the Florida Cancer Data System (FCDS) under contract with the Florida Department of Health (FDHO). The views expressed herein are solely those of the authors and do not necessarily reflect those of the FCDS or FDHO. Cancer incidence data from Louisiana were collected by the Louisiana Tumor Registry, Louisiana State University Medical Center in New Orleans. Cancer incidence data from New Jersey were collected by the New Jersey State Cancer Registry, Cancer Epidemiology Services, New Jersey State Department of Health and Senior Services. Cancer incidence data from North Carolina were collected by the North Carolina Central Cancer Registry. Cancer incidence data from Pennsylvania were supplied by the Division of Health Statistics and Research, Pennsylvania Department of Health, Harrisburg, Pennsylvania. The Pennsylvania Department of Health specifically disclaims

Table 3 Relative risks and 95% confidence intervals of renal cell cancer for alcohol and alcoholic beverage consumptions in women

Alcohol (g per day)	0	>0 to <5	5 to <15	15 to <30	30+	P trend
Total alcohol						
Cases (n)	171	227	40	19	9	<0.001
Age adjusted	1.18 (0.97 – 1.44)	1.00	0.66 (0.47 – 0.92)	0.61 (0.38 – 0.97)	0.42 (0.22 – 0.82)	<0.001
Multivariate	1.07 (0.87 – 1.31)	1.00	0.73 (0.52 – 1.03)	0.67 (0.42 – 1.07)	0.43 (0.22 – 0.84)	<0.001
Beer						
Cases	333	123	10			
Age adjusted	1.33 (1.08 – 1.64)	1.00	0.95 (0.50 – 1.82)	0.95 (0.50 – 1.82)	0.95 (0.50 – 1.82)	0.006
Multivariate	1.14 (0.92 – 1.42)	1.00	0.95 (0.50 – 1.82)	0.95 (0.50 – 1.82)	0.95 (0.50 – 1.82)	0.21
Wine						
Cases	226	204	36			
Age adjusted	1.32 (1.09 – 1.59)	1.00	0.67 (0.47 – 0.95)	0.67 (0.47 – 0.95)	0.67 (0.47 – 0.95)	<0.001
Multivariate	1.12 (0.92 – 1.37)	1.00	0.78 (0.55 – 1.12)	0.78 (0.55 – 1.12)	0.78 (0.55 – 1.12)	0.05
Liquor						
Cases	283	156	27			
Age adjusted	1.34 (1.10 – 1.63)	1.00	0.83 (0.55 – 1.24)	0.83 (0.55 – 1.24)	0.83 (0.55 – 1.24)	<0.001
Multivariate	1.21 (0.99 – 1.48)	1.00	0.85 (0.56 – 1.29)	0.85 (0.56 – 1.29)	0.85 (0.56 – 1.29)	0.03

*Multivariate model adjusted for age, race (White, non-Hispanic; Black, non-Hispanic, and others), body mass index (<25, 25 to <30, and ≥30), marital status (married: yes and no), education (less than high school, high school graduate, some college, and college/post college), vigorous physical activity (never/rarely, 1–3 times per month, 1–2, 3–4, and ≥5 times per week), smoking (never, past, ≤20 cigarettes per day, past >20 cigarettes per day), current ≤20 cigarettes per day, and current >20 cigarettes per day), history of hypertension (yes and no), and intakes of protein (quintiles) and total energy excluding energy from alcohol (continuous).
responsibility for any analyses, interpretations, or conclusions. Cancer incidence data from Arizona were collected by the Arizona Cancer Registry, Division of Public Health Services, Arizona Department of Health Services. Cancer incidence data from Texas were collected by the Texas Cancer Registry, Cancer Epidemiology and Surveillance Branch, Texas Department of State Health Services. We are indebted to the participants in the NIH-AARP Diet and Health Study for their outstanding cooperation. We also thank Sigurd Hermansen and Kerry Grace Morrissey from Westat for study outcomes ascertainment and management and Leslie Carroll at Information Management Services for data support and analysis.

REFERENCES

Allen NE, Beral V, Casabonne D, Kan SW, Reeves GK, Brown A, Green J (2009) Moderate alcohol intake, cancer incidence in women. J Natl Cancer Inst 101: 296 – 305
Chow WH, Dong LM, Devesa SS (2010) Epidemiology, risk factors for kidney cancer. Nat Rev Urol 7: 245 – 257
Facchini F, Chen YD, Reaven GM (1994) Light-to-moderate alcohol intake is associated with enhanced insulin sensitivity. Diabetes Care 17: 115 – 119
Gago-Dominguez M, Castelan JE, Yuan JM, Ross RK, Yu MC (2002) Lipid peroxidation: a novel, unifying concept of the etiology of renal cell carcinoma (United States). Cancer Causes Control 13: 287 – 293
Giovannucci E, Colditz G, Stampfer MJ, Rimm EB, Litin L, Sampson L, Willett WC (1991) The assessment of alcohol consumption by a simple self-administered questionnaire. Am J Epidemiol 133: 810 – 817
Greving JP, Lee JE, Wolk A, Lukanova A, Lindblad P, Bergstrom A (2007) Alcoholic beverages, risk of renal cell cancer. Br J Cancer 97: 429 – 433
Hu J, Chen Y, Desmeules M, Mery L (2008) Alcohol drinking, renal cell carcinoma in Canadian men, women. Cancer Detect Prev 32: 7 – 14
Hu J, Mao Y, Desmeules M, Caizmadi I, Friedenreich C, Mery L (2009) Total fluid, specific beverage intake, risk of renal cell carcinoma in Canada. Cancer Epidemiol 33: 353 – 362
Lazarus R, Sparrow D, Weiss ST (1997) Alcohol intake, insulin levels. The Normative Aging Study. Am J Epidemiol 145: 909 – 916
Lee JE, Giovannucci E, Smith-Warner SA, Spiegelman D, Willett WC, Curhan GC (2006) Total fluid intake, use of individual beverages, risk of renal cell cancer in two large cohorts. Cancer Epidemiol Biomarkers Prev 15: 1204 – 1211
Lee JE, Hunter DJ, Spiegelman D, Adami HO, Albanes D, Bernstein L, van den Brandt PA, Buring JE, Cho E, Folsom AR, Freudenheim JL, Giovannucci E, Graham S, Horn-Ross PL, Leitzmann MF, McCullough ML, Miller AB, Parker AS, Rodriguez C, Rohan TE, Schatzkin A, Schouten LJ, Virtanen M, Willett WC, Wolk A, Zhang SM, Smith-Warner SA (2007) Alcohol intake, renal cell cancer in a pooled analysis of 12 prospective studies. J Natl Cancer Inst 99: 801 – 810
Lowrance WT, Thompson RH, Yee DS, Kaag M, Donat SM, Russo P (2010) Obesity is associated with a higher risk of clear-cell renal cell carcinoma than with other histologies. BJU Int 105: 16 – 20
Mahabir S, Leitzmann MF, Virtanen MJ, Virtamo J, Pietinen P, Albanes D, Taylor PR (2005) Prospective study of alcohol drinking, renal cell cancer risk in a cohort of Finnish male smokers. Cancer Epidemiol Biomarkers Prev 14: 170 – 175
Mumenthaler MS, Taylor JL, O’Hara R, Yesavage JA (1999) Gender differences in moderate drinking effects. Alcohol Res Health 23: 55 – 64
Nicodemus KK, Sweeney C, Folsom AR (2004) Evaluation of dietary, medical, lifestyle risk factors for incident kidney cancer in postmenopausal women. Int J Cancer 108: 115 – 121
Parker AS, Cerhan JR, Lynch CF, Ershow AG, Cantor KP (2002) Gender, alcohol consumption, renal cell carcinoma. Am J Epidemiol 155: 455 – 462
Pelucchi C, Galeone C, Montella M, Polese J, Crispo A, Talamin R, Negri E, Ramazzotti V, Grimaldi M, Franceschi S, La Vecchia C (2008) Alcohol consumption, renal cell cancer risk in two Italian case-control studies. Ann Oncol 19: 1003 – 1008
Rashidkhani B, Akesson A, Lindblad P, Wolk A (2005) Alcohol consumption, risk of renal cell carcinoma: a prospective study of Swedish women. Int J Cancer 117: 848 – 853
Schatzkin A, Subar AF, Thompson FE, Harlan LC, Tangrea J, Hollenbeck AR, Hurwitz PE, Coyle L, Schussler N, Michaud DS, Freedman LS, Brown CG, Midthune D, Kipnis V (2001) Design, serendipity in establishing a large cohort with wide dietary intake distributions: the National Institutes of Health-American Association of Retired Persons Diet, Health Study. Am J Epidemiol 154: 1119 – 1125
Setiawan VW, Stram DO, Nomura AM, Kolonel LN, Henderson BE (2007) Risk factors for renal cell cancer: the multiethnic cohort. Am J Epidemiol 166: 932 – 940
World Cancer Research Fund, American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. AICR: Washington, DC