Preliminary evaluation of intra-crosses MPOB-Cameroon and their inter-crosses with MPOB-Zaire breeding population
(*Elaeis guineensis* Jacq.)

N A Abu-Bakar1*, M D Amiruddin1 and R Nookiah1

1Malaysian Palm Oil Board (MPOB), P.O. Box 10620, 50720 Kuala Lumpur, Malaysia

*Corresponding author: nor.azwani@mpob.gov.my

Abstract. Broadening the genetic base of oil palm was as a key action for the improvement of the crop. In this study, fourteen *tenera* progenies from MPOB-CMR x MPOB-CMR and MPOB-CMR x MPOB-ZRE (T x T), crossed according to bi-parental mating design (BIP) were assessed in their fresh fruit bunch (FFB), bunch number (BNO) and average bunch weight (ABWT). The progenies were planted following a randomized complete block design (RCBD) in two replicates. Analysis of variance (ANOVA) revealed that the variability among progenies, for FFB, BNO and ABWT, were highly significant. The contribution of the environmental effects is relatively high for BNO, and this is shown by the low heritability estimated on this character. On the other hand, ABW character showed a high heritability ($h^2_B > 50\%$) at 67.31\%. Progenies deriving from MPOB-CMR x MPOB-ZRE crosses have shown a significantly higher performance compared to those from MPOB-CMR x MPOB-CMR x MPOB-CMR for FFB. Progeny PK1943 (MPOB-CMR x MPOB-ZRE) is the best performer with an average bunch yield of 175.29 kg palm$^{-1}$ yr$^{-1}$.

1. Introduction
Palm oil is the largest produced and traded vegetable oil in the global oils and fats market. The palm oil production contributed about 32% out of 230.08 million tonnes of oils and fats produced globally in 2018. Malaysia as the second largest producer and exporter of palm oil has a huge role to play in fulfilling the increasing global need for vegetable oils and fats. Oil palm (*Elaeis guineensis*), by far is most crucial commodity crop to Malaysia with export revenue from the crop reaching more than RM 67.12 billion in 2018 [1]. In 2019, the Malaysian oil palm industry experienced an enhanced performance as compared to that of in 2018 where significant achievements have been attained in exports, palm oil stocks and prices [2].

The history of the Malaysian oil palm industry can be traced back to the four oil palm seedlings brought from West Africa and planted at the Bogor Botanical Gardens [3]. The *dura* fruit form was planted until a major breakthrough in oil palm breeding, a monogenic inheritance of shell thickness was discovered by Beirnaert and Vanderweylen [4], which had led to further growth of the oil palm industry worldwide. The hybrid between *dura* and *pisifera* palms are known as *tenera*, which have a thinner shell. The switch-over from the thick shell and low oil dura to the thin shell and high oil tenera are more productive as they increase at least 30% of yield [5, 6].

Even though the success in producing improved planting materials was achieved, the genetic base was still considered narrow at that time as the mother palms in seed production was the Deli dura descending from four palms and a limited number of pisifera origins as the pollen source [7]. Noticing
the fact that the genetic base of the current source of mother palms was very narrow, efforts undertaken by the Malaysian Palm Oil Board (MPOB) to broaden the gene pool by collecting *E. guineensis* germplasm materials from its natural habitat in Africa in 1973 and 2010 [8,9]. MPOB-Cameroon (MPOB-CMR) and MPOB-Zaire (MPOB-ZRE) oil palm germplasm had been collected jointly with Unilever in 1984 after the first prospection in Nigeria in 1973 [10]. From evaluation, population from MPOB-CMR showed a high genetic diversity as did those of Nigeria and Sierra Leone [11]. Both MPOB-CMR and MPOB-ZRE were also produced oils with high vitamin E (PS8) [12]. Selected palms from both germplasm populations marked a partial resistance to *Ganoderma* in nursery screening, a serious threat to oil palm industry in Malaysia [13]. While Noh et al. [14] named MPOB-CMR and MPOB-ZRE germplasm collections as possessing more than 20% crude protein in the kernel (PS14). According to Maizura et al. [15], the MPOB-CMR genetic material was listed as MPOB’s oil palm germplasm materials with low lipase traits (PS13).

The on-going breeding programmes, both by MPOB and the industry led to further selection of newer elite *durus* and *pisifera* derived from selected germplasm materials [16]. Therefore, a crossing programme was initiated to assess the potential of *tenera* from *tenera x tenera* crosses, deriving from MPOB-CMR x MPOB-CMR and MPOB-CMR x MPOB-ZRE in term of fresh fruit bunch (FFB), bunch number (BNO) and average bunch weight (ABWT).

2. Materials and methods

A total of 14 progenies derived from MPOB-CMR x MPOB-CMR and MPOB-CMR x MPOB-ZRE (T x T) crosses were laid down in a triangular planting system at 9 m apart in Randomized Completely Block Design (RCBD) with 16 palms per plot (progeny) in four replications as presented in Table 1. The fresh fruit bunch (FFB) yield data collection was performed for each individual palm in both replications at interval of three rounds per month. FFB yield would be the sum of bunch weight (BWT) while average bunch weight (ABWT) is the quotient between FFB and bunch number (BNO). BWT and BNO are recorded on individual palm basis at each harvesting round from 36 months after field planting for 4 consecutive years (2003-2009).

Table 1. List of progenies and their pedigree

No.	Progeny	Material	Pedigree
1	PK 1672		0.218/2108 x 0.219/299
2	PK 1677		0.218/1006 x 0.218/1006
3	PK 1683		0.218/1336 x 0.219/299
4	PK 1696		0.218/2108 x 0.218/1006
5	PK 1708	MPOB-CMR x MPOB-CMR	0.218/1006 x 0.219/299
6	PK 1736		0.218/1336 x 0.218/1336
7	PK 1806		0.218/135 x 0.219/299
8	PK 1894		0.219/299 x 0.219/299
9	PK 1962		0.218/135 x 0.218/1336
10	PK 1918		0.219/844 x 0.221/739
11	PK 1929		0.218/1006 x 0.221/739
12	PK 1932	MPOB-CMR x MPOB-ZRE	0.219/271 x 0.221/739
13	PK 1943		0.218/1216 x 0.221/739
14	PK 1961		0.218/1336 x 0.221/739
15	PK 2114	STANDARD CROSS	0.175/964 x 0.151/2626
3. Result and discussion

Analysis of variance (ANOVA) for yield and its components is presented in Table 2. As shown in the table, the replicates (R) item and the interaction between replicate and progeny revealed non-significant difference for FFB, BNO and ABW. The result indicated the consistencies in performance of all the traits studied across the replicates. A highly significant difference (p< 0.01) was observed in progeny for all traits in bunch yield and its components, denoting wide variability observed in the traits studied. In oil palm breeding, having a wide range in yield and its components among the progenies play an important role in selection. The presence of genetic variability will increase the breeding efficiency and lead to better selection gain [17]. This observation follows similar patterns as what has been conducted by Okwuagwu et al. [18] in their bunch yield and its components of dura x tenera oil palm planting materials. Furthermore, a wide variability also has been reported by Marhalil et al. [19] on MPOB-Nigeria dura x AVROS pisifera cross.

The grand mean of fresh fruit bunch (FFB), bunch number (BNO) and average bunch weight (ABWT) were 147.70 kg palm⁻¹ yr⁻¹, 12.71 bunches palm⁻¹ yr⁻¹ and 11.91 kg bunch⁻¹, respectively (Table 3). Further analysis showed that MPOB-CMR x MPOB-ZRE crosses exhibited significantly higher than MPOB-CMR x MPOB-CMR in their FFB and ABWT with 157.24 kg palm⁻¹ yr⁻¹ and 13.35 kg bunch⁻¹, respectively. Among the crosses, PK1943 from MPOB-CMR x MPOB-ZRE scored the highest FFB yield with 175.29 kg palm⁻¹ yr⁻¹, 18% higher than the DxP control. The high FFB yield was supported by a high BNO (14.13 bunches palm⁻¹ yr⁻¹) and moderate ABWT (12.56 kg bunch⁻¹) of the progeny. High FFB yields were also observed in PK1708 (170.40 kg palm⁻¹ yr⁻¹), PK1932 (167.75 kg palm⁻¹ yr⁻¹) and PK1929 (167.05 kg palm⁻¹ yr⁻¹). PK1736 (MPOB-CMR x MPOB-CMR) on the other hand, was found to be the least FFB yield with 90.85 kg palm⁻¹ yr⁻¹, due to its low BNO of 10.47 bunches palm⁻¹ yr⁻¹ and lowest ABWT of only 8.41 kg bunch⁻¹. Duncan New Multiple Range Test (DNMRT) also indicated significant differences between PK1736 and PK1708, PK1929, PK1932, PK1708 and PK1943 for FFB, BNO, and ABW. The result indicated that PK1696 even though with the highest BNO (15.66 bunches palm⁻¹ yr⁻¹), unable to be among the top FFB yielder due to its low ABW (10.36 kg bunch⁻¹). Similarly, PK1961 with a high ABW of 13.69 kg bunch⁻¹, showed below average FFB yield (142.79 kg palm⁻¹ yr⁻¹) due to its low BNO (10.38 bunches palm⁻¹ yr⁻¹). Therefore, it is important to select palms with high BNO and moderate ABW for high FFB yield in selection as suggested by Noh et al. [20].

Variance components and heritability value for the yield and its components were shown at Table 4. The genetic variations (GVC) were 40.08 % (FFB), 19.81% (BNO) and 58.02% (ABWT) to the phenotypic variations (PVC). The high value of GVC to the PVC (> 40%) for both BNO and ABWT obtained, implying high genetic control of these characters. The result was further supported by high heritability value (h²B > 50%) of ABWT (67.31%) and moderate (h²B >30%) for FFB of 33.35%. Meanwhile, broad-sense heritability estimates for BNO was considered as low (h²B <20%) with only 7.85%. The results indicated that ABWT and FFB were more heritable than BNO character. The low heritability value for FFB character was certainly due to the high influence of the environment on that polygenic character. Djonko et al. [21] also observed similar results for having a low heritability for FFB yield in their study of Cameroon-based dura x pisifera oil palm. The low genetic variation and heritability of BNO would limit further breeding and selection for this trait. However, improvement still can be achieved for ABW and FFB since there were sufficient genetic variations.

Table 2. Means squares, variance components and heritability estimates of progenies yield and its component

Source	df	FFB	BNO	ABWT		
Replication (R)	1	5319.42	0.03	51.32		
Progeny (P)	13	8936.91**	42.88**	42.81**		
No	Progeny	Pedigree	Material	FFB (kg palm\(^{-1}\) yr\(^{-1}\))	BNO (bunches palm\(^{-1}\) yr\(^{-1}\))	ABWT (kg bunches\(^{-1}\))
----	---------	----------	----------	----------------------------------	---------------------------------	-----------------
1	PK1672	0.218/2108 x 0.219/299		158.97\(^{ba}\)	14.96\(^{ba}\)	10.96\(^{bc}\)
2	PK1677	0.218/1006 x 0.218/1006		122.96\(^{bc}\)	12.39\(^{bc}\)	10.29\(^{bc}\)
3	PK1683	0.218/1336 x 0.219/299		158.76\(^{ba}\)	12.53\(^{bac}\)	13.02\(^{ab}\)
4	PK1696	0.218/2108 x 0.218/1006		158.58\(^{ba}\)	15.66\(^{a}\)	10.36\(^{bc}\)
5	PK1708	0.218/1006 x 0.219/299	MPOB-CMR x MPOB-CMR	170.40\(^{a}\)	13.69\(^{ab}\)	12.85\(^{ab}\)
6	PK1736	0.218/1336 x 0.218/1336		90.85\(^{d}\)	10.47\(^{c}\)	8.41\(^{d}\)
7	PK1806	0.218/135 x 0.219/299		129.76\(^{bc}\)	12.09\(^{bc}\)	11.18\(^{bc}\)
8	PK1894	0.218/299 x 0.219/299		119.45\(^{bc}\)	12.47\(^{bc}\)	9.56\(^{bc}\)
9	PK1902	0.218/135 x 0.218/1336		115.27\(^{bc}\)	12.26\(^{bc}\)	9.66\(^{bc}\)
10	PK1918	0.219/844 x 0.221/739		148.50\(^{c}\)	9.75\(^{bc}\)	15.23\(^{b}\)
11	PK1929	0.218/1006 x 0.221/739		125.17\(^{c}\)	10.37\(^{c}\)	12.69\(^{ab}\)
12	PK1932	0.219/271 x 0.221/739	MPOB-CMR x MPOB-ZRE	167.05\(^{a}\)	11.91\(^{bc}\)	14.32\(^{a}\)
13	PK1943	0.218/1216 x 0.221/739		167.75\(^{a}\)	12.38\(^{bc}\)	13.84\(^{a}\)
14	PK1961	0.218/1336 x 0.221/739		175.29\(^{a}\)	14.13\(^{ab}\)	12.56\(^{ab}\)
15	PK2114	0.175/964 x 0.151/2626	SC	148.50\(^{c}\)	9.75\(^{bc}\)	15.23\(^{b}\)
	Mean			147.70\(^{ab}\)	12.71\(^{ab}\)	11.91\(^{ab}\)

*FFB = fresh fruit bunch; BNO = bunch number; ABWT = average bunch weight; Means with the same small letter(s) in the same column are not significantly different at P < 0.05 with Duncan New Multiple Range Test (DNMRT).

Table 4. Variance components and heritability of yield and its components

Genetic parameters	FFB	BNO	ABWT
Progeny variance (\(\sigma^2\))	355.33	0.60	2.79
R x P variance (\(\sigma^2_\text{pr}\))	365.32	2.01	0.06
Environmental variance (\(\sigma^2_\text{e}\))	1410.20	12.59	5.44
Phenotypic variance (\(\sigma^2_\text{p}\))	2130.85	15.19	8.29
Genotypic coefficent of variance (GCV %)	12.76	6.08	14.03
Phenotypic coefficient of variance (PCV %)	31.25	30.68	24.18
GVC/PVC (%)	40.08	19.81	58.02
Broad sense heritability (\(h^2_\text{BS}\) %)	33.35	7.85	67.35

*FFB = fresh fruit bunch; BNO = bunch number; ABWT = average bunch weight; Heritability values are calculated using the formula: Heritability = V\text{Gen}/V\text{P}.
FFB = fresh fruit bunch; BNO = bunch number; ABW = average bunch weight; \(\sigma^2_g \) = genotypic variance; \(\sigma^2_{gr} \) = variance due to genotypes \times replication; \(\sigma^2_p \) = phenotypic variance; \(\sigma^2_e \) = environmental variance; GCV = genotypic coefficient of variation; PCV = phenotypic coefficient of variation; \(h^2_B \) = heritability in broad sense.

4. Conclusion

The analysis of variance (ANOVA) for the bunch yield and its components has revealed that the progeny variability has a high significant effect on the phenotypic expression for fresh fruit bunch (FFB), bunch number (BNO) and average bunch weight (ABWT). Progenies deriving from MPOB-CMR \times MPOB-ZRE crosses have shown a relatively higher performance compared to those from MPOB-CMR \times MPOB-CMR for FFB and ABWT. PK 1943 from MPOB-CMR \times MPOB-ZRE emerged as the best performer in this study with the highest FFB yield of 175.29 kg palm\(^{-1}\) yr\(^{-1}\), supported by a high BNO (14.13 bunches palm\(^{-1}\) yr\(^{-1}\)) and moderate ABWT (12.56 kg bunch\(^{-1}\)). Even though genetic variation and heritability of BNO were low, further breeding and selection still can be achieved for ABW and FFB since there were sufficient genetic variations, contributing of more than 40% to the phenotypic variance and having heritability of more than 20%. Therefore, the male parent of this progeny can be considered for progeny testing with advance dura breeding materials to reduce the dependence of AVROS as the main pollen source in current commercial DxP seed production.

References

[1] MPOB 2020 Malaysian Oil Palm Statistics 2019. 39\(^{th}\) Edition. MPOB, Bangi. pp 289
[2] Ghulam K A P, Elina H, Soh K L, Meilina O, Kamalrudin M S, Mohd Noor I Z B, Shamala S, Zafarizal Aldrin, A H and Zainab I 2020 Oil Palm Economic Performance In Malaysia and R&D Progress In 2019 J Oil Palm Res. 32 (2),159-190
[3] Kushairi A, Singh R and Ong-Abdullah M 2017 The oil palm industry in Malaysia: thriving with transformative technologies. J Oil Palm Res. 29(4), 431-439
[4] Beirnaert A and vanderweyen R 1941 Contribution a l’étude genetique et biometrique des varieties d’Elaeis guineensis, Jacq. Publication INEAC, Serie Scientifique 27
[5] Corley R H V and Lee C H 1992 the physiological bases for genetic improvement of oil palm in Malaysia. Euphytica, 60: 179-184
[6] Kushairi A 2009 Role of oil palm breeding in wealth creation and quality of life. Proceedings of the 8\(^{th}\) Malaysia Congress on Genetics, Genting Highlands, Malaysia, 4-6 August 2009.
[7] Kushairi A and Rajanaidu N 2000 Breeding populations, seed production and nursery management. pp. 39–96.In: Advances in Oil Palm Research, Volume 1, (Basiron Y, Jalani B S and Chan K W Eds.), Malaysian Palm Oil Board.
[8] Rajanaidu N 1994 PORIM Oil Palm Genebank. PORIM, Bangi. pp 19
[9] Rajanaidu N and Jalani B S 1994 Oil palm genetic resources – collection, evaluation, utilisation and conservation. Paper presented at the PORIM Colloquium on Oil Palm Genetic Resources. PORIM, Bangi
[10] Rajanaidu N, Kushairi A, Mohd Din A and Maizura I. 2008 A review on utilization and performance of MPOB PS series genetic materials. Proc. of the 3rd Seminar on Performance of PS1 and PS2 Materials and Elite Germplasm. MPOB, Bangi, p. 3-25
[11] Hayiti A, Wickneswari R, Maizura I and Rajanaidu, N 2004 Genetic Diversity of Oil Palm (Elaeis guineensis Jacq.) Germplam Collections from Africa: Implications for Improvement and Conservation of Genetic Resource. Theoretical and Applied Genetics, 108: 1274-1284.
[12] Kushairi A, Rajanaidu N, Sundram K and Maizura I 2004 PS8: Vitamin E breeding population. MPOB Information Series No. 222
[13] Idris A, Kushairi A, Ismail S and Ariffin, D 2005 Selection for partial resistance in oil palm to ganoderma basal stem rot. J. Oil Palm Res. 16:12-18
[14] Noh A, Rafii M Y, Mohd Din A, Kushairi A, Norziha A, Rajanaidu N, Latif M A and Malek M A 2014 Variability and performance evaluation of introgressed Nigerian dura x Deli dura oil palm progenies. *Genet Mol Res.* 13(2) p. 2426–2437

[15] Maizura I, Kushairi A, Mohd Din A, Noh A, Marhalil M, Wong Y T and Sambanthamurthi R 008. PS13: Breeding populations selected for low lipase. MPOB Information Series No.400

[16] Jalani B S (1999). Research and development of oil palm towards the next millennium. Proc. of the 1998 International Oil Palm Conference Commodity of the Past, Today and the Future (Jatmika, A et al. eds.). IOPRI and GAPKI, Indonesia. p. 93-109

[17] Abdullah N, Rafii M Y, Ithnin M, Saleh G and Latif M A 2011. Genetic variability of oil palm parental genotypes and performance of its’ progenies as revealed by molecular markers and quantitative traits. *C. R. Biol.* 334(4):290-29

[18] Okwuagwu C O, Okoye M N, Okolo E C, Ataga C D and Uguru, M I 2008 Genetic variability of fresh fruit bunch yield in Deli/dura x tenera breeding populations of oil palm (*Elaeis guineensis* Jacq.) in Nigeria. *Journal of Tropical Agriculture*, 46, 52-57

[19] Marhalil M, Rafi M Y, Arolu, I W, Noh A, Mohd Din A, Kushairi A, Norziha A, Rajanaidu N, Latif M A and Malek M A 2013 Genetic variability in yield and vegetative traits in elite germplasm of MPOB-Nigerian dura × AVROS pisifera progenies. *J Food Agric Environ.* 11(2): 515-519

[20] Noh A, Rafii M Y, Saleh G, Kushairi, A and Latif, M A (2012). Genetic performance and general combining ability of oil palm deli dura x AVROS pisifera tested on inland soils. *The Scientific World Journal* 2012: 792601

[21] Djonko H B, Kushairi A, Rajanaidu N and Jalani B S 2011 Assessment of bunch yield and its components for cameroon-based dura x pisifera oil palm (*Elaeis guineensis* Jacq.) populations. Paper presented at the International *Seminar on Breeding for Sustainability in Oil Palm, held on* 18 November 2011 in Kuala Lumpur, Malaysia. International Society for Oil Palm Breeders (ISOPB). Kuala Lumpur, Malaysia p. 167 – 177