Pontiac fever: an operational definition for epidemiological studies.
Paul Tossa, Magali Deloge-Abarkan, Denis Zmirou-Navier, Philippe Hartemann, Laurence Mathieu

To cite this version:
Paul Tossa, Magali Deloge-Abarkan, Denis Zmirou-Navier, Philippe Hartemann, Laurence Mathieu. Pontiac fever: an operational definition for epidemiological studies.. BMC Public Health, 2006, 6, pp.112. 10.1186/1471-2458-6-112. inserm-00080388

HAL Id: inserm-00080388
https://inserm.hal.science/inserm-00080388
Submitted on 16 Jun 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pontiac fever: an operational definition for epidemiological studies
Paul Tossa¹, Magali Deloge-Abarkan¹, Denis Zmirou-Navier¹, Philippe Hartemann¹ and Laurence Mathieu*²

Address: ¹Département Environnement et Santé Publique and INSERM ERI 11, Henri Poincaré University; Nancy, School of Medicine – 9 avenue de la Forêt de Haye, BP 184 – 54 505 Vandoeuvre-lès-Nancy, France and ²Laboratoire d’Hydroclimatologie Médicale Santé Environnement, Ecole Pratique des Hautes Etudes (EPHE) and INSERM ERI 11; Nancy, School of Medicine – 9 avenue de la Forêt de Haye, BP 184 – 54 505 Vandoeuvre-lès-Nancy, France

Email: Paul Tossa - Paul.Tossa@nancy.inserm.fr; Magali Deloge-Abarkan - Magali.deloge@medecine.uhp-nancy.fr; Denis Zmirou-Navier - Denis.Zmirou@nancy.inserm.fr; Philippe Hartemann - philippe.hartemann@medecine.uhp-nancy.fr; Laurence Mathieu* - laurence.mathieu@medecine.uhp-nancy.fr
* Corresponding author

Abstract

Background: Pontiac fever is usually described in epidemic settings. Detection of Pontiac fever is a marker of an environmental contamination by Legionella and should thereby call for prevention measures in order to prevent outbreak of Legionnaire’s disease. The objective of this study is to propose an operational definition of Pontiac fever that is amenable to epidemiological surveillance and investigation in a non epidemic setting.

Methods: A population of 560 elderly subjects residing in 25 nursing homes was followed during 4 months in order to assess the daily incidence of symptoms associated, in the literature, with Pontiac fever. The water and aerosol of one to 8 showers by nursing home were characterized combining conventional bacterial culture of Legionella and the Fluorescence In Situ Hybridization (FISH) technique that used oligonucleotides probes specific for Legionellaceae. A definition of Pontiac fever was devised based on clinical symptoms described in epidemic investigations and on their timing after the exposure event. The association between incidence of Pontiac fever and shower contamination levels was evaluated to test the relevance of this definition.

Results: The proposed definition of Pontiac fever associated the following criteria: occurrence of at least one symptom among headache, myalgia, fever and shivers, possibly associated with other ‘minor’ symptoms, within three days after a shower contaminated by Legionella, during a maximum of 8 days (minimum 2 days). 23 such cases occurred during the study (incidence rate: 0.125 cases per person-year [95% CI: 0.122–0.127]). A concentration of Legionella in water equal to or greater than 10⁴ L⁻¹ (FISH method) was associated with a significant increase of incidence of Pontiac fever (p = 0.04).

Conclusion: Once validated in other settings, the proposed definition of Pontiac fever might be used to develop epidemiological surveillance and help draw attention on sources of Legionella.
Background
Pontiac fever (PF) is the mild form that takes infection by Legionella. It usually appears on an epidemic mode and is not associated with pneumonia [1]. Like for Legionnaires’ disease, infection stems from inhalation of an aerosol contaminated by Legionella [2]. Clinically, Pontiac fever’s symptoms mimic influenza, with fever, asthenia, myalgia, arthralgia, headache, cough, nausea and sore throat [1,3]; other symptoms such as dyspnea, thoracic pains [2-4] vomiting and diarrhoea [3,5,6] have also been described. Patients recover in two to five days, without treatment [7-9].

Because of its benignity and lack of specificity, the occurrence of PF is often undiagnosed and is therefore less reported than Legionnaires’ disease. Epidemiologically, PF is characterized by a short incubation period (typically 30 to 90 hours, with an average of 36 h), a high attack rate (70 to 90%) [1], and absence of fatalities or long term complications [2]. Age, gender and smoking do not seem to be risk factors [10,11]. Rather, PF seems to affect preferentially young subjects: the age of cases was 36 to 39 years in the original Pontiac episode [12,13], and age medians during different documented epidemics were 29 [4,10], 30 [3] and 32 years [11]. Pathogenesis of the PF is poorly known. To date, there is no consensus on the duration of the incubation period, on its clinical symptoms, nor on the causal species of Legionella.

Different serogroups (SGs) of Legionella pneumophila (Lp) (1, 6 and 7) [14-16], as well as L. felistii [12,17], L. micdadei [2,11,12], L. anisa [13] can cause PF. In terms of diagnosis, according to some authors, PF develops the same serological characteristics as Legionnaires’ disease [10,18]. Others claim on the contrary that serology during of a PF is inconstantly positive [19]. Presence of urinary antigen is not systematic either, even for epidemics connected to Lp SG 1 [10,20].

Detection of PF is a marker of an environmental contamination by Legionella and should thereby call for prevention measures. Efforts to standardize the definition of PF may facilitate comparison of risk levels and help draw attention on sources of Legionella. In this article, based on data from the Legion’Air project, we propose an operational definition of PF for the purpose of surveillance and epidemiological studies.

Methods
The objectives of the Legion’Air project are: 1) to assess the exposure of elderly people residing in nursing homes to Legionella through aerosols generated by hot-water during showers, and 2) to evaluate the risk that is associated with this exposure.

Nursing homes solicited to participate in the Legion’Air project were located in the Lorraine region, north east of France. The selection process was based on the capacity of the nursing homes and on practical considerations (it should be located not too far from the study centre); no consideration was given to prior knowledge of contamination of the hot water system, in order to prevent selection bias.

This epidemiological study is a retrospective follow-up study. A population of 560 elderly volunteers (informed consent was obtained from patients or guardians) have been followed during 4 months. A set of predefined symptoms were registered daily by the auxiliary nursing staff, symptoms that had been previously reported in the literature in case of PF (table 1). Data were collected on demographic characteristics, current and/or past smoking habits, relevant medical history (respiratory and immunity-related conditions, such as diabetes and cancer) and current prescription of immunosuppressive therapy and of antibiotic medicines. A dedicated nurse insured the quality of recordings in the registers by alternating on site visits and telephone calls during the 4 months.

Volunteers included in the study were those who took at least one shower weekly. As shower practice represented the key exposure determinant (none of the participating nursing homes had air conditioning), data about shower habits were also recorded (the day and the room where the shower was taken).

At the end of the 4 months study, blood and urine samples were taken to assay anti Legionella antibodies and urine antigens of Lp SG 1. The antibodies of interest were anti-Lp (SG 1 to 10) and other Legionella species (anti-L. micdadei, anti-L. bozemanii, anti-L. dumoffii, anti-L. gormanii, anti-L. jordanis, anti-L. longbeachae SGs 1 and 2, anti-L. anisa). All biological analyses were undertaken by the National Reference Center for Legionella in Lyon, France. Biological samples were collected and transported to guarantee their stability. The Nancy University Hospital ethics committee approved the study design and the biological sampling procedures.

To characterize exposure, shower water and aerosol of shower have been sampled. Sampling points were chosen in order to be representative of the exposure of the elderly volunteers. All showers could not be sampled, for practical and financial reasons. Thus, a prior evaluation of the hot water system (design, mode of hot-water production, maintenance of point-of-use, water temperature and treatment) was undertaken in each nursing home in order to assess its criticality in terms of Legionella risk and to identify the sampling points (showers) that fitted the best with the volunteers’ exposure. Accordingly, each nursing home...
The bioaerosol sampling began only after the faucet of hot water was closed (i.e. after 7 minutes flushing). Two different biosamplers were used: a MAS-100® (impaction on culture medium: GVPC) and an SKC Impinger (impaction on liquid medium: distilled water). *Legionella* count was done by culture using the MAS-100® sampler (two air volumes were collected: 50 L and 500 L), and by culture and the FISH technique using the Impinger (air volume collected: 195 L).

Case definition

Table 1 summarizes descriptive data from the literature on PF. The symptoms are not specific; there is not to date an agreed clinical definition of PF. Symptoms that predominate in the PF studies are headache, myalgia and fever and, to a lesser extent, shivers, a consequence of infection. These 4 symptoms will be qualified as "major symptoms". Similarly, the other symptoms showed in table 1 will be considered as "minor symptoms".

Based on these literature data, we chosen the interval of 24 to 72 hours after shower as the duration of the incubation period. Hereafter will be qualified as "evocative symptoms of a PF" these major symptoms, possibly associated to minor symptoms, insofar as they have occurred 24 to 72 hours subsequently to a shower. The duration of the PF episode reported in the literature varies from 1 to 5 days; we decided to spread this duration until a new exposure event (eg a new shower) without exceeding a maximal duration of 8 days. A case of PF will be then defined if all the following criteria are met: (i) it occurred within the three days after a shower and exhibited at least one of the major symptoms, associated or not with minor symptoms ; (ii) this episode lasted at least two days, not exceeding eight days ;(iii) since antibiotics treatment could mask some PF symptoms, we included in this definition all major symptoms, possibly associated to minor symptoms.

Table 1: Clinical data during Pontiac fever episodes described in the literature [references]

Reference	Source of exposure	Incubation period (hours)	Episode (duration)	Symptoms	Type and antibody titer	Legionella species
[2]	Spa with jacuzzi/pool	From 9 to 67 (mean = 38)	Myalgia, Headache, Asthenia, Shivers, Fever, Cough, Nausea, Sore throat, Dyspnea	1/128 and 1/256	L. micdadei	
[3]	Washing with high pressure water	71 hours	Fever, Shivers, Asthenia, Thoracic pain, Headache, Dyspnea, Asthenia, Sore throat	Anti-Anisa: 1/128 to 1/512	L. anisa	
[4]	Cooling towers	36 to 90	Fever, Lombago, Arthralgia, Headache, Dyspnea, Asthenia	Anti-Lg SG71/16 to 1/256	L. pneumophila SG7	
[5]	Decorative fountains	49	Myalgia, Headache, Shivers, Nausea, Cough, Vertigo Cramps	Anti-Lg SG Titer > 1/64	L. pneumophila SG6	
[6]	Spa with jacuzzi/pool	1 - 5 days	Diarrhoea, Vomiting, Headache, Nausea, Myalgia, Cough, Headache	Anti-Lg SG6	L. pneumophila SG6	
[10]	Cooling towers	1 - 5 days	Myalgia, Shivers, Asthenia, Fever, Headache			
[26]	Spa					

a: symptom met in all subjects; *b*: symptoms met the most; *c*: symptoms met the least;
symptoms or association of symptoms lasting at least one day among subjects who had taken antibiotics this very day if at least one of these symptoms was a "major" one; (iv) *Legionella* had to be detected in water and/or aerosol of the index shower that was selected as representing exposure of the case.

We explored two other definitions of a Pontiac episode, in a view to perform a sensitivity analysis. These alternative definitions focus on fever, viewed as the sole major symptom. In the first one, fever could be associated or not with another symptom (among those listed in table 1); in the second, fever was necessarily associated with at least one other symptom. All other criteria (lag after shower, duration of episode and contamination of water and/or of aerosol) were as described above.

Data analysis

Epi info version 3.3 and SAS were used for data management and analysis. All subjects were ascribed to a shower ward; those having used more than one shower in the course of the study were ascribed to the shower the most contaminated. The exposure value that was retained among the 6 samples available [4 water samples (two runs with two samples: first flow and after draining) and 2 aerosols samples (MAS-100 and SKC Impiger)] was the greatest *Legionella* count that was found, respectively by culture and by FISH.

For antibody titer, different "positivity" thresholds were tested. *Legionella* infection were considered as present beyond increasing sera titer, irrespective of the species or *Legionella* serogroups.

The association between the incidence of PF and contamination of showers were tested with chi squares on incidence rates, and the association with the prevalence of antibody titer by means of the regular chi square test. Tests are one sided, and p values are computed after the exact Fisher test.

Results

The study population consists in 560 elderly volunteers from 25 nursing homes of Lorraine. Their age and known risk factors are described in table 2. Women represent more than 2/3 of the study population and are, on average, older than male volunteers (p < 10^-4). Ages ranged from 46 to 102 years, the median value being 81 years. The population is constituted of 12.1% of ex-smokers and 7.5% of current smokers. Three quarters of subjects had a history of at least one previous medical condition (respiratory disorder, conditions impairing immunity or other), without gender difference.

Incidence of Pontiac fever

Among the 560 volunteers, 23 subjects had the clinical events corresponding to our definition of PF during the 4 months of follow-up; one subject had twice the clinical event, yielding 24 infectious episodes of PF. The global incidence rate was 0.125 cases per person-year [95% confidence interval: 0.122–0.127]. These cases reside in 13 of the 25 nursing homes. For 10 homes, only one case was reported; two cases occurred in the same nursing home, 4 and 7 cases respectively in two other institutions. In addition to this space clustering, these cases exhibited a time aggregation: less than 10 days separated, respectively, the 2 and the 4 cases that occurred in the same nursing homes. The same held true for 5 out of the 7 cases that occurred in the same nursing home. Figure 1 displays the epidemi curves for these three nursing homes.

The different symptoms presented by cases are displayed in table 3. The incubation period ranged from 24 to 72 hours, with an average and median of 48 hours. Average duration of a PF episode was 4 days. Sixteen subjects (respectively 14) met the two other definitions of a PF episode, yielding incidence rates of 0.08 (0.07) cases per person-year.

Biological results

Antigenuria was negative for all subjects. The distribution of antibody titer, all *Legionella* species and SGs combined, is given in table 4. Up to antibody titer of 1/128, the distribution of PF cases and of non cases were similar. But subjects with titer of 1/256 had a greater probability to be a case compared to weaker titers (RR = 3.45; p = 0.12); the corresponding antibodies were anti-*Lp* SG 6 and anti-*L. gormanii*. On the other hand, it is noteworthy that 6 subjects who did not meet the definition criteria of PF had titers greater than 1/512 for antibodies anti-*Lp* SG6, anti-*L. jordanis*, anti-*L. micdadei*, anti-*L. dumoffii* and anti-*L. bozemani*.

Table 2: Description of the population : age, gender, medical history and smoking status

Sample size	Mean age (standard-error)	Previous pathologies	Previous immunity conditions	Previous respiratory conditions	Current smokers	Past smokers
Male	158 (28.2%)	77 (± 9)	117 (74.0%)	37 (23.4%)	20 (12.6%)	20 (12.7%)
Female	402 (71.9%)	82 (± 9)	290 (72.1%)	94 (24.3%)	54 (13.4%)	22 (5.5%)
Total	560 (100%)	81 (± 9)	407 (72.7%)	131 (23.4%)	74 (13.2%)	42 (7.5%)

A D I S C L A S S I F Y

BMC Public Health 2006, 6:112
http://www.biomedcentral.com/1471-2458/6/112

Page 4 of 10 (page number not for citation purposes)
Figure 1
Time distribution of PF cases in the nursing homes were more than one case occurred. A, B and C represent the nursing homes were more than one case occurred. "days" represents the days (since the beginning of follow up) at which Pontiac fever symptoms occurred.
Table 3: Frequency of the different symptoms exhibited by the subjects who met Pontiac fever definition.

Symptoms (in bold « major » symptoms)	Proportion of subjects (% among 24 episodes)
Vertigo	100%
Fever	73%
Cough	54%
Diarrhoea	31%
Headache	19%
Asthenia	19%
Myalgia	15%
Vomiting	7%
Shivers	4%
Nausea	7%
Sore throat	7%
Rhinorrhea	4%
Abdominal pain	4%

Detection of Legionella in shower water

Among the 23 subjects who presented at least one event defined as PF, Legionella have been detected in hot water of all the corresponding showers; they have also been found in the aerosol of 7 showers. Aerosolised Legionella was always associated with presence of bacteria in the water. Hence, only water contamination will be considered hereafter.

Lp was more frequent (66% of positive samples), with mainly Lp SGs 2 to 14. According to time of sampling (first flow or after draining) and to the run (first or second run, two days after), Legionella counts range from 5×10^3 to 2.10^7 CFU.L$^{-1}$ of water (for culture) and from 9.10^3 to 15.10^7 cells.L$^{-1}$ of water (for the FISH method). For both detection methods, water Legionella concentrations are significantly greater in the first flow than after draining ($p = 0.001$, paired test).

The association between PF incidence and shower water quality has been studied for different concentration thresholds, according to the analytical techniques that were used (two thresholds for the culture, and three for the FISH technique). Results (table 5) suggest that a contamination level measured by the FISH technique exceeding 10^4 Legionella.L$^{-1}$ of water is associated with an increased risk of PF ($p = 0.04$). The rate of PF is also enhanced for greater contamination levels (RR = 1.83 [not significant] and 2.12 [$p = 0.05$], respectively for concentrations of 10^3 and 10^6 Legionella.L$^{-1}$ detected by FISH). On the contrary, no statistically relevant association was observed between the levels of culturable Legionella and the PF incidence. This finding suggests a better sensitivity of the FISH technique to characterize exposure to infectious Legionella. When the two other definitions of a PF episode are accommodated, levels of 10^4 Legionella.L$^{-1}$ of water assayed by the the FISH method are also associated with an increased incidence, although more weakly, with p values of 0.06 (fever associated or not with another symptom) and 0.08 (fever and another symptom) respectively.

Risk factors

Age, gender or medical history were not associated with incidence of PF, as defined in our study. The only factor that showed a statistically significant association with the "case" condition was immunosuppressive therapy (RR = 4.7, $p = 0.02$).

Discussion

This work proposes an operational definition of PF for surveillance and epidemiological investigation. The originality of this study is to lean not on an epidemic situation but on follow-up, during 4 months, of an elderly population residing in nursing homes. Taking a shower was the exposing activity. Legionella concentrations were measured both in hot-water and aerosols of showers, using culture and fluorescent in situ hybridisation (FISH) methods. The proposed definition of PF corresponds to the occurrence of at least one of the following "major" symptoms: headache, myalgia, fever or shivers, associated or not with other symptoms labelled as "minor". Such occurrence had to occur 24 to 48 hours after taking a shower contaminated with Legionella. The PF incidence is statistically increased when Legionella concentrations reach at least 10^4 Legionella.L$^{-1}$ in the shower water, using the FISH method, a level that seems to represent a threshold of risk. We are aware of no published epidemiological study on Legionnaires’ disease that evaluated a minimal infective dose. However, a review of Legionnaire’s episodes showed that whenever the probable source of contamination was found, water contained more than 10^3 CFU.L$^{-1}$ [2]. Two other definitions of a Pontiac episode were explored that focussed on fever, associated or not with other symptoms; this sensitivity analysis did not alter the results.
cases. Like in our study, data collection might well miss some overlooked [5]; hence, in a population follow-up setting, the incidence rate calculated in this study expresses the true incidence, these banal symptoms being easily overlooked [5]. On the contrary, our study describes symptoms of PF among several individuals and a common source of exposure. Indeed, previous papers have described very high attack rates of PF, about 70 to 90% [1], in most studies, subjects (usually young and not living continuously in the setting where exposure took place) were exposed during a short period (generally not exceeding ten days) to a common source, a situation that facilitates linkage between a cluster of symptoms among several individuals and a common source of exposure. On the contrary, our study describes symptoms of PF among subjects who may be exposed iteratively and individually. In this "endemic" context, however, cases appeared on a grouped mode since, besides 10 sporadic cases, all others among 23 who met the case definition occurred on a short period among subjects belonging to three nursing homes. In reference to epidemiologic data available in the literature, the incidence rate calculated in this study expresses this particular context. Indeed, previous papers have described very high attack rates of PF, about 70 to 90% [1] in an epidemic setting. On the contrary, when PF episodes occur in the community in a non epidemic setting, the mild severity of the symptoms can lead to underestimation of true incidence, these banal symptoms being easily overlooked [5]; hence, in a population follow-up setting like in our study, data collection might well miss some cases.

The description of PF in our study is unusual in several aspects: the study population and location, the source of the exposure and how it was ascertained.

Study population and epidemiologic particularities of the results

Our study describes for the first time, to our knowledge, the incidence of PF in a population of elderly people in nursing homes. Previous studies have described epidemic Pontiac episodes with spa (with jacuzzi), decorative fountains [2,5,6,13,26-28], in relation with cooling towers [4], and also among workers involved in cleaning activities with high pressure water in confined spaces [3,17,20,29]. In most studies, subjects (usually young and not living continuously in the setting where exposure took place) were exposed during a short period (generally not exceeding ten days) to a common source, a situation that facilitates linkage between a cluster of symptoms among several individuals and a common source of exposure. On the contrary, our study describes symptoms of PF among subjects who may be exposed iteratively and individually. In this "endemic" context, however, cases appeared on a grouped mode since, besides 10 sporadic cases, all others among 23 who met the case definition occurred on a short period among subjects belonging to three nursing homes. In reference to epidemiologic data available in the literature, the incidence rate calculated in this study expresses this particular context. Indeed, previous papers have described very high attack rates of PF, about 70 to 90% [1] in an epidemic setting. On the contrary, when PF episodes occur in the community in a non epidemic setting, the mild severity of the symptoms can lead to underestimation of true incidence, these banal symptoms being easily overlooked [5]; hence, in a population follow-up setting like in our study, data collection might well miss some cases.
young subjects, with typical ages among cases in published epidemics ranging between 30 to 40 years [3,4,10-13]. These figures are not comparable to ours since the average age of our elderly population among cases of PF was 82 years, similar to subjects who did not exhibit PF symptoms.

Among clinical risk factors that have been evaluated in the present study (a history of respiratory conditions, sickness impairing the immunity system such as diabetes, cancer, cardiovascular conditions and dementia such as Alzheimer's disease), only immunosuppressive therapy was associated with the incidence of PF (p = 0.02). This very risk factor had been also described in a study where prevalence of community respiratory conditions was compared between subjects residing in nursing homes and at home [33].

Source and measure of exposure
Aerosolised Legionella reached greater concentrations during the first minute, as previously described by several authors [34,35]. One limitation of this study resides in the semi-ecological character of exposure assessment. Indeed, exposure was not assessed at an individual level but by groups of subjects. All showers could not be systematically sampled and we assigned to a shower A (not sampled) the same quality as shower B (sampled) on criteria based on the existence of a common water column feeding the two showers. The resulting exposure misclassification is a Berkson type error [36,37]. It tends to lessen statistical power by increasing the variances estimates of the association; however it does not bias the point estimate, when the average group exposure is correctly represented by the measured concentrations.

Moreover, we have made the hypothesis that the hot-water Legionella contamination remained stable during the whole follow-up period. Now, only two measurements of water contamination were done at the end follow-up period in each nursing home to characterize exposure along the study. The validity of this assumption depends therefore on the time variability of the shower water contamination, whose evaluation is under way. It also depends upon other factors such that sensitivity and specificity of the sampling and analytical methods that were used [8,25]. Because the culture method has not the capacity to detect all viable bacteria that are sampled in the environment, due to their very diverse physiological states [38] and to environmental stress, conditions that led to the concept of "viable but not culturable bacteria" [39-41], there is some degree of underestimation of bacterial concentrations. Molecular approaches like the FISH technique might provide more representative concentration estimates, leading to improved exposure assessment to bacterial pathogens. Figures with the FISH method do not exist to date.

Conclusion
Our epidemiological findings back the operational definition of the PF that we propose. It needs to be confirmed by others studies. The investigation is still going on in order to include a thousand of volunteers, a number that should ensure a greater statistical power.

Abbreviations
PF : Pontiac fever
Lp: Legionella pneumophilia
L. feeleii: Legionella feeleii
L. micdadei : micdadei
L. anisa: Legionella anisa
SG (s): serogroup (s)
anti-Lp: anti Legionella pneumophilia
anti-L.: anti Legionella
AFNOR: Agence Française de Normalisation
FISH: Fluorescent In Situ Hybridisation
RR: Relative Risk
CDC: Center of Diseases Control
INVS: Institut National de Veille Sanitaire (National institute of Medical Surveillance)
MAS: Microbial Air Monitoring System
UFC: Colony-Forming Units
* Asterisked abbreviations are not defined in the body of the text

Financial and non-financial competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
TP was involved in the epidemiological survey. He performed data statistical analysis and wrote the manuscript.
MAD carried out the environmental analyses (aerosols and water); she participated in its design and coordination and helped to draft the manuscript.

DZN and HP designed and carried out the survey studies, participated in the data analysis and helped for drafting the manuscript.

LM conceived the study, and participated in its design and coordination and helped to draft the manuscript and revising it critically.

All authors read and approved the final manuscript.

Acknowledgements
This study was funded by AFSSE (French Agency for Environmental Sanitary Security), the French ministry of Health and Véolia. M. Deloge-Abarkan was recipient of a doctoral scholarship from ADEME and EDF. The design of the aerosol exposure assessment was extensively discussed with Enric Robine, from CSTB, the French Building Research Center. The water system critical point analysis procedure was elaborated by Veolia Environnement. Nathalie Diguio, a Master student at Inserm, contributed to the study follow-up.

Participation to Lory MOUCHOT and Lahoucine BENAMGHAR to the statistical analysis is also acknowledged.

The authors are indebted towards the local medical authorities and the elderly persons who volunteered to participate to the study.

The staff of the nursing homes is also thanked; they cannot all be cited.

Brigitte Risse and Maryse Fiorani, from the Clinical Investigations Center of the Nancy University Hospital (coordinator: Anca Radauceanu) were responsible of the follow-up; their role was pivotal.

References
1. Pancer K, Stypulkowska-Misiurewicz H. Pontiac fever – non-pneumonic legionellosis. Przegl Epidemiol 2003, 57:607-12.
2. Fields BS, Haapu T, Davis JP, Arduino MJ, Miller HP, Butler JC. Pontiac fever due to Legionella micdadei from whirlpool spa: possible role of bacterial endotoxin. J Infect Dis 2001, 184:1289-92.
3. Castor ML, Wagstrom EA, Danila RN, Smith KE, Naimi TS, Besser JM, Peacock KA, Juni BA; Hunt JM, Bartkus JM, Kirkhorn SR, Lynfield R. An outbreak of Pontiac fever with respiratory distress among workers performing high-pressure cleaning at a sugar-beet processing plant. J Infect Dis 2005, 191:1530-37.
4. Mori M, Hoshino K, Sonoda H, Yoshida H, Yabuchi E, Yamashiro Y, Koide M, Saijo A, Kishimoto T, Furuhata K. An outbreak of Pontiac fever due to Legionella pneumophila serogroup 7. I. clinical aspects. Kansenshogaku Zasshi 1995, 69:646-53.
5. Jones TF, Benson RF, Brown EW, Rowland JR, Crosier SC, Schaffner W. Epidemiologic investigation of a restaurant-associated outbreak of Pontiac fever. Clinical Infectious Diseases 2003, 37:129-7.
6. Benin AL, Benson RF, Arnold KE, Fiore AE, Cook PG, WilliamsLK, Fields B, Besser RE. An outbreak of travel-associated Legionnaires disease and Pontiac fever: the need for enhanced surveillance of travel-associated legionellosis in the United States. J Infect Dis 2002, 185:237-43.
7. Avril JL, Dabernat H, Denis F, Motellier H. Epidémiologie et pouvoir pathogène de Legionella. In Bactériologie Clinique Edited by: Ellipses. Paris; 1992:309-18.
8. Bornstein N, Fleurette J. Legionella. In Manuel de bactériologie clinique Edited by: Elsevier. Paris; 1994:1061-87.
9. Fraser DW, Deubner DC, Hill DL, Gilliam DK. Nonpneumonic, short-incubation-period Legionellosis (Pontiac fever) in men who cleaned a steam turbine condenser. Science 1979, 205:690-1.
10. Friedman S, Spitalny K, Barbaree J, Faur Y, Mckinney R. Pontiac fever outbreak associated with a cooling tower. Am J Public Health 1987, 77:568-72.
11. Goldberg DJ, Wrench JG, Collier PW, Emslie JA, Fallon RJ, Forbes GI, McKay TM, Macpherson AC, Markwick TA, Reid D. Lochgoilhead fever: outbreak of non-pneumonic legionellosis due to Legionella micdadei. Lancet 1989, 1:316-8.
12. Cordes LG, Fraser DW. Legionellosis: Legionnaires’ disease; Pontiac fever. Med Clin North Am 1980, 64:395-416.
13. Fenstersheib MD, Miller M, Diggins C, Liska S, Detwiler L, Werner SB, Lindquist D, Thacker WL, Benson RF. Outbreak of Pontiac fever due to Legionella anisa. Lancet 1990, 336:357-9.
14. Kaufmann AF, Mcclade JE, Patton CM, Bennett JV, Skally P, Feeley JC, Scand J Work Environ Health 1999, 25:291-5.
15. Pancer K. An outbreak of Legionnaires’ disease bacterium. J Infect Dis 1993, 168:769-72.
16. Miller LA, Beebe JL, Butler JC, Martin W, Benson R, Hoffman RE, Fields BS. Use of polymerase chain reaction in an epidemiologic investigation of Pontiac fever. J Infect Dis 1993, 168:769-72.
17. Herwaldt LA, Gorman GW, McGrath T, Toma S, Brake B, Hightower AW, Jones J, Reingold AL, Boxer PA, Tang PW: A new Legionella species, Legionella feelei species nova, causes Pontiac fever in an automobile plant. Ann Intern Med 1984, 100:333-8
18. Hunt DA, Cartwright KA, Smith MC, Middleton J, Bartlett CL, Lee JV, Dennis P, Harper D. An outbreak of Legionnaires’ disease in Gloucester. Epidemiol Infect 1991, 107:133-41.
19. Thacker SB, Bennett JV, Tsai TF, Fraser DW, Mcclade JE, Shepard CC, William KH Jr, Stuart WH, Dull HB, Eickhoff TC. An outbreak in 1965 of severe respiratory illness caused by the Legionnaires’ disease bacterium. J Infect Dis 1978, 138:512-9.
20. Gregersen P, Grunnet K, Uldum SA, Andersen BH, Madsen H. Pontiac fever at a sewage treatment plant in the food industry. J Infect Dis 1999, 179:431-5.
21. U.S. EPA (United States Environmental Protection Agency): Exposure Factors Handbook. [http://www.epa.gov/NCCE/pdfs/efh/ sect15a.pdf]
22. Amann K, Ludwig W, Schleifer K-H: Phylogenetic Identification and in situ detection of individual microbial cells without cultivation. Microbiological. Reviews 1995, 59:143-169.
23. Grimm D, Merkert H, Ludwig W, Schleifer K-H, Hacker J, Brand BC: Specific detection of Legionella pneumophila : construction of a new 16 S rRNA-Targeted oligonucleotide probe. Applied and Environmental Microbiology 1998, 64:2686-90.
24. AFNOR (Association Française de Normalisation): Qualité des eaux. Recherche et dénombrement des Legionella spp et de Legionella pneumophila, méthode générale par ensemencement direct et après concentration par filtration sur membrane ou centrifugation. AFNOR Report no J90-431. Brachman PS: Pontiac fever: isolation of the etiologic agent (Legionella pneumophila) and demonstration of its mode of transmission. Am J Epidemiol 1981, 114:337-47.
25. Buchbinder S, Trebesius K, Heesemann J: Evaluation of detection of Legionella spp in water samples by fluorescence in situ hybridization, PCR amplification and bacterial culture. International Journal of Medical Microbiology 2002, 292:241-5.
26. Mangione EJ, Remis RS, Tait KA, McGee HB, Gorman GW, Wentworth BB, Baron PA, Hightower AW, Barbaree JM, Broome CV: An outbreak of Pontiac fever related to whirlpool use, Michigan 1982. JAMA 1985, 253:335-9.
27. Spitalny KC, Vogt RL, Orieri LA, Witheller LE, Etkind P, Novick LF: Pontiac fever associated with a whirlpool spa. Am J Epidemiol 1984, 120:809-17.
28. Armstrong CW, Miller GB Jr: A 1949 outbreak of Pontiac fever-like illness in steam condenser cleaners. Arch Environ Health 1985, 40:26-9.
30. Campese C, Che D, Maine C, Jarraud S, Bitard D: Les légionelles déclarées en France en 2004. Bulletin Épidémiologique Hebdomadaire (Beh) no.26/2005.

31. Bornstein N, Fleurette J, Bosshard S, Bouvet C, Thouvenot D, Aymard M: Evaluation of the incidence of serological cross reactions between Legionella and Mycoplasma or Chlamydia. Pathol Biol 1984, 32:165-8.

32. Lo Pressi F, Riffard S, Meugnier H, Reyrolle M, Lasne Y, Grimont PA, Grimont F, Vandenesch F, Etienne J, Fleurette J, Freney J: Legionella taurinensis sp. nov., a new species antigenically similar to Legionella spiritensis. Int J Syst Bacteriol 1999, 49:397-403.

33. Martinez-Moragón E, García Ferrer L, Serra Sanchís B, Fernandez Fabrellas E, Gomez Belda A, Julve Pardo R: Community-acquired pneumonia among the elderly: differences between patients living at home and in nursing homes. Arch Bronconeumol 2004, 40:547-52.

34. Dennis PJ, Wright AE, Rutter DA, Death JE, Jones BP: Legionella pneumophila in aerosol from shower baths. J Hyg (Lond) 1984, 93:349-53.

35. Breiman RF, Fields BS, Sanden GN, Volmer L, Meier A, Spika JS: Association of shower use with Legionnaires’ disease. Possible role of amoebae. JAMA 1990, 263:2924-26.

36. Steeeland K, Deddens JA: Design and analysis of studies in environmental epidemiology. In Topics in environmental epidemiology New York, Oxford: Oxford University Press; 1997:9-27.

37. Künzli N, Tager IB: The semi-individual study in air pollution epidemiology: a valid design as compared to ecologic studies. Envi Health Perspect 1997, 105:1078-83.

38. Maul A, Vagost D, Block JC: Microbiologie des réseaux de distribution. In Stratégie d’échantillonnage pour analyse microbiologique sur réseaux de distribution Edited by: Lavoisier. Paris; 1998:1-21.

39. Federighi M: Les formes viables non cultivables des bactéries: point de vue et retour d’expérience d’un hygiéniste. Bulletin de la Société Française de Microbiologie 2004, 19:237-44.

40. Colwell RR, Grimes DJ: Nonculturable microorganisms in the environment Washington, DC: American Society for Microbiology; 2000.

41. Kell DB, Kaprelyants AS, Weichert DH, Harwood CR, Barer MR: Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek 1998, 73:169-87.

42. Bonnard R: Le risque biologique et la méthode d’évaluation du risque – Rapport final. Unité d’Evaluation des Risques Chroniques 2001 [http://www.sante.gouv.fr/htm/dossiers/etud_impact/risqbio_ei72.pdf].

Pre-publication history
The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2458/6/112/prepub