Computing directed path-width and directed tree-width of recursively defined digraphs

Frank Gurski1 and Carolin Rehs1

1University of Düsseldorf, Institute of Computer Science, Algorithmics for Hard Problems Group, 40225 Düsseldorf, Germany

June 13, 2018

Abstract

In this paper we consider the directed path-width and directed tree-width of recursively defined digraphs. As an important combinatorial tool, we show how the directed path-width and the directed tree-width can be computed for the disjoint union, order composition, directed union, and series composition of two directed graphs. These results imply the equality of directed path-width and directed tree-width for all digraphs which can be defined by these four operations. This allows us to show a linear-time solution for computing the directed path-width and directed tree-width of all these digraphs. Since directed co-graphs are precisely those digraphs which can be defined by the disjoint union, order composition, and series composition our results imply the equality of directed path-width and directed tree-width for directed co-graphs and also a linear-time solution for computing the directed path-width and directed tree-width of directed co-graphs, which generalizes the known results for undirected co-graphs of Bodlaender and Möhring.

Keywords: directed path-width; directed tree-width; directed co-graphs

1 Introduction

Tree-width is a well-known graph parameter \cite{9}. Many NP-hard graph problems admit polynomial-time solutions when restricted to graphs of bounded tree-width using the tree-decomposition \cite{1, 3, 22, 27}. The same holds for path-width \cite{35} since a path-decomposition can be regarded as a special case of a tree-decomposition. Computing both parameters is hard even for bipartite graphs and complements of bipartite graphs \cite{2}, while for co-graphs it has been shown \cite{9, 10} that the path-width equals the tree-width and how to compute this value in linear time.

During the last years, width parameters for directed graphs have received a lot of attention \cite{10}. Among these are directed path-width and directed tree-width \cite{25}. Since for complete bi-oriented digraphs the directed path-width equals the (undirected) path-width of the corresponding underlying undirected graph it follows that determining whether the directed path-width of some given digraph is at most some given value \(w\) is NP-complete. The same holds for directed tree-width. There is an XP-algorithm for directed path-width w.r.t. the standard parameter by \cite{29}, which and implies that for each constant \(w\), it is decidable in polynomial time whether a given digraph has directed path-width at most \(w\). The same holds for directed tree-width by \cite{25}. This motivates to consider the recognition problem restricted to special digraph classes.

We show useful properties of directed path-decompositions and directed tree-decompositions, such as bidirectional complete subdigraph and bidirectional complete bipartite subdigraph lemmas. These results allow us to show how the directed path-width and directed tree-width can be computed for the disjoint union, order composition, directed union, and series composition of two directed graphs. Our proofs are constructive, i.e. a directed path-decomposition and a
directed tree-decomposition can be computed from a given expression. These results imply the equality of directed path-width and directed tree-width for all digraphs which can be defined by the disjoint union, order composition, directed union, and series composition. This allows us to show a linear-time solution for computing the directed path-width and directed tree-width of all these digraphs. Among these are directed co-graphs, which can be defined by disjoint union, order composition, and series composition. Directed co-graphs are useful to characterize digraphs of directed NLC-width 1 and digraphs of directed clique-width 2 and are useful for the reconstruction of the evolutionary history of genes or species using genomic sequence data. Our results imply the equality of directed path-width and directed tree-width for directed co-graphs and a linear-time solution for computing the directed path-width and directed tree-width of directed co-graphs. Since for complete bioriented digraphs the directed path-width equals the (undirected) path-width of the corresponding underlying undirected graph and the directed tree-width equals the (undirected) tree-width of the corresponding underlying undirected graph our results generalize the known results from [9] [10].
2.3 Digraphs

A directed graph or digraph is a pair \(G = (V,E) \), where \(V \) is a finite set of vertices and \(E \subseteq \{(u,v) \mid u,v \in V, u \neq v \} \) is a finite set of ordered pairs of distinct vertices called arcs. A digraph \(G' = (V',E') \) is a subdigraph of digraph \(G = (V,E) \) if \(V' \subseteq V \) and \(E' \subseteq E \). If every arc of \(E \) with both end vertices in \(V' \) is in \(E' \), we say that \(G' \) is an induced subdigraph of digraph \(G \) and we write \(G' = G[V'] \). For some digraph \(G = (V,E) \) its complement digraph is defined by

\[
\overline{G} = (V, \{(u,v) \mid (u,v) \notin E, u,v \in V, u \neq v \})
\]

and its converse digraph is defined by

\[
G^c = (V, \{(u,v) \mid (v,u) \in E, u,v \in V, u \neq v \})
\]

Let \(G = (V,E) \) be a digraph.

- \(G \) is edgeless if for all \(u,v \in V, u \neq v \), none of the two pairs \((u,v)\) and \((v,u)\) belongs to \(E \).
- \(G \) is a tournament if for all \(u,v \in V, u \neq v \), exactly one of the two pairs \((u,v)\) and \((v,u)\) belongs to \(E \).
- \(G \) is semicomplete if for all \(u,v \in V, u \neq v \), at least one of the two pairs \((u,v)\) and \((v,u)\) belongs to \(E \).
- \(G \) is (bidirectional) complete if for all \(u,v \in V, u \neq v \), both of the two pairs \((u,v)\) and \((v,u)\) belong to \(E \).

Omitting the directions For some given digraph \(G = (V,E) \), we define its underlying undirected graph by ignoring the directions of the edges, i.e. \(\text{und}(G) = (V, \{(u,v) \mid (u,v) \in E \text{ or } (v,u) \in E \}) \).

Orientations There are several ways to define a digraph \(G = (V,E) \) from an undirected graph \(G_u = (V,E_u) \). If we replace every edge \((u,v) \in E_u \) by

- one of the arcs \((u,v)\) and \((v,u)\), we denote \(G \) as an orientation of \(G_u \). Every digraph \(G \) which can be obtained by an orientation of some undirected graph \(G_u \) is called an oriented graph.
- one or both of the arcs \((u,v)\) and \((v,u)\), we denote \(G \) as a biorientation of \(G_u \). Every digraph \(G \) which can be obtained by a biorientation of some undirected graph \(G_u \) is called a bioriented graph.
- both arcs \((u,v)\) and \((v,u)\), we denote \(G \) as a complete biorientation of \(G_u \). Since in this case \(G \) is well defined by \(G_u \) we also denote it by \(\overline{G_u} \). Every digraph \(G \) which can be obtained by a complete biorientation of some undirected graph \(G_u \) is called a complete bioriented graph.

2.4 Recursively defined Digraphs

2.4.1 Operations

The following operations have already been considered by Bechet et al. in [6, 25]. Let \(G_1 = (V_1,E_1), \ldots, G_k = (V_k,E_k) \) be \(k \) vertex-disjoint digraphs.
The disjoint union of \(G_1, \ldots, G_k \), denoted by \(G_1 \odot \ldots \odot G_k \), is the digraph with vertex set \(V_1 \cup \ldots \cup V_k \) and arc set \(E_1 \cup \ldots \cup E_k \).

The series composition of \(G_1, \ldots, G_k \), denoted by \(G_1 \odot \ldots \odot G_k \), is defined by their disjoint union plus all possible arcs between vertices of \(G_i \) and \(G_j \) for all \(1 \leq i, j \leq k \), \(i \neq j \).

The order composition of \(G_1, \ldots, G_k \), denoted by \(G_1 \odot \ldots \odot G_k \), is defined by their disjoint union plus all possible arcs from vertices of \(G_i \) to vertices of \(G_j \) for all \(1 \leq i < j \leq k \).

The directed union of \(G_1, \ldots, G_k \), denoted by \(G_1 \oplus \ldots \oplus G_k \), is defined by their disjoint union plus possible arcs from vertices of \(G_i \) to vertices of \(G_j \) for all \(1 \leq i < j \leq k \).

2.4.2 Directed co-graphs

We recall the definition of directed co-graphs from [13].

Definition 2.2 (Directed co-graphs, [13]) The class of directed co-graphs is recursively defined as follows.

1. Every digraph on a single vertex (\(\{v\}, \emptyset \)), denoted by \(\bullet \), is a directed co-graph.
2. If \(G_1, \ldots, G_k \) are vertex-disjoint directed co-graphs, then
 a. the disjoint union \(G_1 \oplus \ldots \oplus G_k \),
 b. the series composition \(G_1 \odot \ldots \odot G_k \), and
 c. the order composition \(G_1 \odot \ldots \odot G_k \) are directed co-graphs.

By the definition we conclude that for every directed co-graph \(G = (V, E) \) the underlying undirected graph \(\text{und}(G) \) is a co-graph, but not vice versa.

Similar as undirected co-graphs by the \(P_1 \), also directed co-graphs can be characterized by excluding eight forbidden induced subgraphs [13].

Obviously for every directed co-graph we can define a tree structure, denoted as di-co-tree. The leaves of the di-co-tree represent the vertices of the graph and the inner nodes of the di-co-tree correspond to the operations applied on the subexpressions defined by the subtrees. For every directed co-graph one can construct a di-co-tree in linear time, see [13]. The following lemma shows that it suffices to consider binary di-co-trees.

Lemma 2.3 Every di-co-tree \(T \) can be transformed into an equivalent binary di-co-tree \(T' \), such that every inner vertex in \(T' \) has exactly two sons.

Proof Let \(G \) be a directed co-graph and \(T \) be a di-co-tree for \(G \). Since the disjoint union \(\odot \), the series composition \(\odot \), and the order composition \(\odot \) is associative, i.e. \(G_1 \odot \ldots \odot G_k = (G_1 \odot \ldots \odot G_{k-1}) \odot G_k \), we can transform \(T \) recursively into a binary di-co-tree \(T' \) for \(G \). \(\square \)

Using the di-co-tree a lot of hard problems have been shown to be solvable in polynomial time when restricted to directed co-graphs [17]. In [19] the relation of directed co-graphs to the set of graphs of directed NLC-width 1 and to the set of graphs of directed clique-width 2 is analyzed.

By [23, 33] directed co-graphs are very useful for the reconstruction of the evolutionary history of genes or species using genomic sequence data.

Lemma 2.4 Let \(G \) be some digraph, then the following properties hold.

1. Digraph \(G \) is a directed co-graph if and only if digraph \(\overline{G} \) is a directed co-graph.
2. Digraph \(G \) is a directed co-graph if and only if digraph \(G^c \) is a directed co-graph.

1That is, \(G_1, \ldots, G_k \) are induced subdigraphs of \(G_1 \odot \ldots \odot G_k \) and there is no edge \((u, v) \) in \(G_1 \odot \ldots \odot G_k \) such that \(v \in V_i \) and \(u \in V_j \) for \(j > i \). The directed union generalizes the disjoint union and the order composition.
2.4.3 Extended directed co-graphs

Since the directed union generalizes the disjoint union and also the order composition we can generalize the class of directed co-graphs as follows.

Definition 2.5 (Extended directed co-graphs) The class of extended directed co-graphs is recursively defined as follows.

(i) Every digraph on a single vertex \((\{v\}, \emptyset)\), denoted by •, is an extended directed co-graph.

(ii) If \(G_1, \ldots, G_k\) are vertex-disjoint extended directed co-graphs, then

(a) the directed union \(G_1 \ominus \ldots \ominus G_k\) and

(b) the series composition \(G_1 \otimes \ldots \otimes G_k\) are extended directed co-graphs.

Also for every extended directed co-graph we can define a tree structure, denoted as \(\text{ex-di-co-tree}\). The leaves of the ex-di-co-tree represent the vertices of the graph and the inner nodes of the ex-di-co-tree correspond to the operations applied on the subexpressions defined by the subtrees. Following Lemma 2.3 it suffices to consider binary ex-di-co-trees.

By applying the directed union which is not a disjoint union and an order composition we can obtain digraphs whose complement digraph is not an extended directed co-graph. An example for this leads the directed path on 3 vertices \(\rightarrow P_3 = (\{v_1, v_2, v_3\}, \{(v_1, v_2), (v_2, v_3)\})\). Thus we only can carry over one of the two results shown in Lemma 2.4 to the class of extended directed co-graphs.

Lemma 2.6 Let \(G\) be some digraph. Digraph \(G\) is an extended directed co-graph if and only if digraph \(G^c\) is an extended directed co-graph.

3 Directed path-width

According to Barát [5], the notation of directed path-width was introduced by Reed, Seymour, and Thomas around 1995 and relates to directed tree-width introduced by Johnson, Robertson, Seymour, and Thomas in [25].

Definition 3.1 (directed path-width) A directed path-decomposition of a digraph \(G = (V, E)\) is a sequence \((X_1, \ldots, X_r)\) of subsets of \(V\), called bags, such that the following three conditions hold true.

\[(dpw-1) \ \ X_1 \cup \ldots \cup X_r = V.\]

\[(dpw-2) \ \ For \ each \ (u, v) \in E \ there \ is \ a \ pair \ i \leq j \ such \ that \ u \in X_i \ and \ v \in X_j.\]

\[(dpw-3) \ \ If \ u \in X_i \ and \ u \in X_j \ for \ some \ u \in V \ and \ two \ indices \ i, j \ with \ i \leq j, \ then \ u \in X_\ell \ for \ all \ indices \ \ell \ with \ i \leq \ell \leq j.\]

The width of a directed path-decomposition \(X = (X_1, \ldots, X_r)\) is

\[\max_{1 \leq i \leq r} |X_i| - 1.\]

The directed path-width of \(G\), \(d-pw(G)\) for short, is the smallest integer \(w\) such that there is a directed path-decomposition of \(G\) of width \(w\).

Lemma 3.2 ([40]) Let \(G\) be some digraph, then \(d-pw(G) \leq pw(u(G))\).

Lemma 3.3 ([5]) Let \(G\) be some complete bioriented digraph, then \(d-pw(G) = pw(u(G))\).

2The proofs shown in [40] use the notation of directed vertex separation number, which is known to be equal to directed path-width.
The proof can be done straightforward since a for G of width k leads to a layout for \overrightarrow{G} of width at most k and vice versa.

Determining whether the (undirected) path-width of some given (undirected) graph is at most some given value w is NP-complete \cite{28} even for bipartite graphs, complements of bipartite graphs \cite{2}, chordal graphs \cite{20}, bipartite distance hereditary graphs \cite{30}, and planar graphs with maximum vertex degree 3 \cite{32}. Lemma 3.3 implies that determining whether the directed path-width of some given digraph is at most some given value w is NP-complete even for digraphs whose underlying graphs lie in the mentioned classes. On the other hand, determining whether the (undirected) path-width of some given (undirected) graph is at most some given value w is polynomial for permutation graphs \cite{3}, circular arc graphs \cite{35}, and co-graphs \cite{10}.

While undirected path-width can be solved by an FPT-algorithm \cite{7}, the existence of such an algorithm for directed path-width is still open. The directed path-width of a digraph $G = (V, E)$ can be computed in time $O(|E| |V|^2 \cdot \text{pw}(G))$ by \cite{29} which leads to an XP-algorithm for directed path-width w.r.t. the standard parameter and implies that for each constant w, it is decidable in polynomial time whether a given digraph has directed path-width at most w.

In order to prove our main results we show some properties of directed path-decompositions. Similar results are known for undirected path-decompositions and are useful within several places.

Lemma 3.4 (\cite{40}) Let G be some digraph and H be an induced subdigraph of G, then d-pw$(H) \leq d$-pw(G).

Lemma 3.5 (Bidirectional complete subdigraph) Let $G = (V, E)$ be some digraph, $G' = (V', E')$ with $V' \subseteq V$ be a bidirectional complete subdigraph, and (X_1, \ldots, X_r) a directed path-decomposition of G. Then there is some i, $1 \leq i \leq r$, such that $V' \subseteq X_i$.

Proof We show the claim by an induction on $|V'|$. If $|V'| = 1$ then by (dpw-1) there is some i, $1 \leq i \leq r$, such that $V' \subseteq X_i$. Next let $|V'| > 1$ and $v \in V'$. By our induction hypothesis there is some i, $1 \leq i \leq r$, such that $V' - \{v\} \subseteq X_i$. By (dpw-3) there are two integers r_1 and r_2, $1 \leq r_1 \leq r_2 \leq r$, such that $v \in X_j$ for all $r_1 \leq j \leq r_2$. If $r_1 \leq i \leq r_2$ then $V' \subseteq X_i$. Next suppose that $i < r_1$ or $r_2 < i$. If $i < r_1$ we define $j = r_1$ and if $i > r_2$ we define $j = r_2$. We will show that $V' \subseteq X_j$. Let $w \in V' - \{v\}$. Since there are two arcs (v, w) and (w, v) in E by (dpw-2) there is some $r_1 \leq j'' \leq r_2$ such that $v, w \in X_{j''}$. By (dpw-3) we conclude $w \in X_j$. Thus $V' - \{v\} \subseteq X_j$.

Lemma 3.6 Let $G = (V, E)$ be a digraph and (X_1, \ldots, X_r) a directed path-decomposition of G. Further let $A, B \subseteq V$, $A \cap B = \emptyset$, and $\{(u, v), (v, u) \mid u \in A, v \in B\} \subseteq E$. Then there is some i, $1 \leq i \leq r$, such that $A \subseteq X_i$ or $B \subseteq X_i$.

Proof Suppose that $B \not\subseteq X_i$ for all $1 \leq i \leq r$. Then there are $b_1, b_2 \in B$ and $i_{1,1}, i_{1,2}, i_{2,1}, i_{2,2}$, $1 \leq i_{1,1} < i_{1,2} < i_{2,1} < i_{2,2} < r$, such that $\{i \mid b_1 \in X_i\} = \{i_{1,1}, \ldots, i_{1,2}\}$ and $\{i \mid b_2 \in X_i\} = \{i_{2,1}, \ldots, i_{2,2}\}$ (and both sets are disjoint). Let $a \in A$. Since $(b_2, a) \in E$ there is some $i_{2,1} \leq i \leq r$ such that $a \in X_i$, and since $(a, b_1) \in E$ there is some $1 \leq j \leq i_{1,2}$ such that $a \in X_j$. By (dpw-3) it is true that $a \in X_k$ for every $1 \leq i \leq k \leq i_{2,2}$.

If we suppose $A \not\subseteq X_i$ for all $1 \leq i \leq r$ it follows that $B \subseteq X_k$ for every $1 \leq k \leq i_{2,2}$. \hfill \Box

Lemma 3.7 Let $\mathcal{X} = (X_1, \ldots, X_r)$ be a directed path-decomposition of some digraph $G = (V, E)$. Further let $A, B \subseteq V$, $A \cap B = \emptyset$, and $\{(u, v), (v, u) \mid u \in A, v \in B\} \subseteq E$. If there is some i, $1 \leq i \leq r$, such that $A \subseteq X_i$, then there are $1 \leq i_1 \leq i_2 \leq r$ such that

1. for all i, $i_1 \leq i \leq i_2$ is $A \subseteq X_i$,

2. $B \subseteq \bigcup_{i=i_1}^{i_2} X_i$, and

3. $\mathcal{X}' = (X_1', \ldots, X_r')$ where $X_i' = X_i \cap (A \cup B)$ is a directed path-decomposition of the digraph induced by $A \cup B$.

Proof Let $i_1 = \min\{i \mid A \subseteq X_i\}$ and $i_2 = \max\{i \mid A \subseteq X_i\}$. Since \mathcal{X} satisfies (dpw-3), it holds (1).
Since there is some i, $1 \leq i \leq r$, such that $A \subseteq X_i$ we know that $X = (X_1, \ldots, X_r)$ is also a directed path-decomposition of $G = (V, E')$, where $E' = E \cup \{(u, v) \mid u, v \in A, u \neq v\}$. For every $b \in B$ the graph with vertex set $\{b\} \cup A$ is bidirectional complete subdigraph of G which implies by Lemma 3.8 that there is some i, $i_1 \leq i \leq i_2$ such that $A \cup \{b\} \subseteq X_i$. Thus there is some i, $i_1 \leq i \leq i_2$ such that $b \in X_i$ which leads to (2.).

In order to show (3.) we observe that for the sequence $X' = (X'_1, \ldots, X'_{i_2})$ condition (dpw-1) holds by (1.) and (2.).

By (1.) and (2.) the arcs between two vertices from A and the arcs between a vertex from A and a vertex from B satisfy (dpw-2). So let $(b', b'') \in E$ such that $b', b'' \in B$. By (2.) we know that $b' \in X_i$ and $b'' \in X_j$ for $i_1 \leq i, j \leq i_2$. If $j < i$ then by (dpw-3) for X there is some $X'_{j'}$, $j' > i_2$ such that $b'' \in X'_{j'}$ but by (dpw-3) for X is $b' \in X_i$.

Further X' satisfies (dpw-3) since X satisfies (dpw-3).

\end{proof}

\section*{Theorem 3.8}
Let $G = (V_G, E_G)$ and $H = (V_H, E_H)$ be two vertex-disjoint digraphs, then the following properties hold.

\begin{enumerate}
\item $d\text{-\textit{pw}}(G \oplus H) = \max\{d\text{-\textit{pw}}(G), d\text{-\textit{pw}}(H)\}$
\item $d\text{-\textit{pw}}(G \ominus H) = \max\{d\text{-\textit{pw}}(G), d\text{-\textit{pw}}(H)\}$
\item $d\text{-\textit{pw}}(G \otimes H) = \max\{d\text{-\textit{pw}}(G), d\text{-\textit{pw}}(H)\}$
\item $d\text{-\textit{pw}}(G \oslash H) = \min\{d\text{-\textit{pw}}(G) + |V_H|, d\text{-\textit{pw}}(H) + |V_G|\}$
\end{enumerate}

\section*{Proof}

1. In order to show $d\text{-\textit{pw}}(G \oplus H) \leq \max\{d\text{-\textit{pw}}(G), d\text{-\textit{pw}}(H)\}$ we consider a directed path-decomposition (X_1, \ldots, X_r) for G and a directed path-decomposition (Y_1, \ldots, Y_s) for H. Then $(X_1, \ldots, X_r, Y_1, \ldots, Y_s)$ leads to a directed path-decomposition of $G \oplus H$.

Since G and H are induced subdigraphs of $G \oplus H$, by Lemma 3.4 the directed path-width of both digraphs leads to a lower bound on the directed path-width for the combined graph. Thus $d\text{-\textit{pw}}(G \oplus H) \leq \min\{d\text{-\textit{pw}}(G) + |V_H|, d\text{-\textit{pw}}(H) + |V_G|\}$.

2. By the same arguments as used for (1.).

3. By the same arguments as used for (1.).

4. In order to show $d\text{-\textit{pw}}(G \ominus H) \leq d\text{-\textit{pw}}(G) + |V_H|$ let (X_1, \ldots, X_r) be a directed path-decomposition of G. Then we obtain by $(X_1 \cup V_H, \ldots, X_r \cup V_H)$ a directed path-decomposition of $G \ominus H$. In the same way a directed path-decomposition of H leads to a directed path-decomposition of $G \ominus H$ which implies that $d\text{-\textit{pw}}(G \ominus H) \leq d\text{-\textit{pw}}(H) + |V_G|$. Thus $d\text{-\textit{pw}}(G \ominus H) \leq \min\{d\text{-\textit{pw}}(G) + |V_H|, d\text{-\textit{pw}}(H) + |V_G|\}$.

For the reverse direction let $X = (X_1, \ldots, X_r)$ be a directed path-decomposition of $G \ominus H$. By Lemma 3.3 we know that there is some i, $1 \leq i \leq r$, such that $V_G \subseteq X_i$ or $V_H \subseteq X_i$. We assume that $V_G \subseteq X_i$. We apply Lemma 3.7 using $G \ominus H$ as digraph, $A = V_G$ and $B = V_H$ in order to obtain a directed path-decomposition $X' = (X'_1, \ldots, X'_t)$ for $G \ominus H$ where for all i, $i_1 \leq i \leq i_2$, it holds $V_G \subseteq X_i$ and $V_H \subseteq \cup_{i=i_1}^{i_2} X_i$. Further $X'' = (X''_1, \ldots, X''_{i_2})$, where $X''_i = X'_i \cap V_H$ leads to a directed path-decomposition of H. Thus there is some i, $i_1 \leq i \leq i_2$, such that $|X_i \cap V_H| \geq d\text{-\textit{pw}}(H) + 1$. Since $V_G \subseteq X_i$, we know that $|X_i \cap V_H| = |X_i| - |V_G|$ and thus $|X_i| \geq |V_G| + d\text{-\textit{pw}}(H) + 1$. Thus the width of directed path-decomposition (X_1, \ldots, X_r) is at least $d\text{-\textit{pw}}(H) + |V_G|$. If we assume that $V_H \subseteq X_i$ it follows that the width of directed path-decomposition (X_1, \ldots, X_r) is at least $d\text{-\textit{pw}}(G) + |V_H|$.

\end{proof}

\section*{Lemma 3.9}
Let G and H be two directed co-graphs, then $\text{pw}(\text{und}(G \ominus H)) > d\text{-\textit{pw}}(G \ominus H)$.
Proof Let G and H be two directed co-graphs.

\[
\text{pw}(\text{und}(G \circledcirc H)) = \text{pw}(\text{und}(G) \times \text{und}(H)) \\
= \min\{\text{pw}(\text{und}(G)) + |V_H|, \text{pw}(\text{und}(H)) + |V_G|\} \quad \text{(by [10])} \\
> \min\{\text{pw}(\text{und}(G)) + \text{d-pw}(H), \text{pw}(\text{und}(H)) + \text{d-pw}(G)\} \\
\geq \min\{\text{d-pw}(G) + \text{d-pw}(H), \text{d-pw}(H) + \text{d-pw}(G)\} \\
= \text{d-pw}(G) + \text{d-pw}(H) \\
= \max\{\text{d-pw}(G), \text{d-pw}(H)\} \\
= \text{d-pw}(G \circledcirc H)
\]

\[\square\]

Corollary 3.10 Let G be some directed co-graph, then $\text{d-pw}(G) = \text{pw}(u(G))$ if and only if there is an expression for G without any order operation. Further $\text{d-pw}(G) = 0$ if and only if there is an expression for G without any series operation.

Proof If there is a construction without order operation, then Theorem 3.8 and the results of [10] imply $\text{d-pw}(G) = \text{pw}(u(G))$. If there is a construction using an order operation, Lemma 3.10 implies that $\text{d-pw}(G) \neq \text{pw}(u(G))$.

\[\square\]

4 Directed tree-width

An acyclic digraph (\textit{DAG} for short) is a digraph without any cycles as subdigraph. An out-tree is a digraph with a distinguished root such that all arcs are directed away from the root. For two vertices u, v of an out-tree T the notation $u \leq v$ means that there is a directed path on ≥ 0 arcs from u to v and $u < v$ means that there is a directed path on ≥ 1 arcs from u to v.

Let $G = (V, E)$ be some digraph and $Z \subseteq V$. A vertex set $S \subseteq V$ is Z-\textit{normal}, if there is no directed walk in $G - Z$ with first and last vertices in S that uses a vertex of $G - (Z \cup S)$. That is, a set $S \subseteq V$ is Z-normal, if every directed walk which leaves and again enters S must contain only vertices from $Z \cup S$. Or, a set $S \subseteq V$ is Z-normal, if every directed walk which leaves and again enters S must contain a vertex from Z.

Definition 4.1 (directed tree-width, [25]) A (arboreal) tree-decomposition of a digraph $G = (V_G, E_G)$ is a triple (T, X, W). Here $T = (V_T, E_T)$ is an out-tree, $X = \{X_e \mid e \in E_T\}$ and $W = \{W_r \mid r \in V_T\}$ are sets of subsets of V_G, such that the following two conditions hold true.

\begin{enumerate}[\textit{(dtw-1)}]
\item $W = \{W_r \mid r \in V_T\}$ is a partition of V_G into nonempty subsets.
\item For every $(u, v) \in E_T$ the set $\bigcup \{W_r \mid r \in V_T, v \leq r\}$ is $X(u, v)$-normal.
\end{enumerate}

The width of a (arboreal) tree-decomposition (T, X, W) is

$\max_{r \in V_T} |W_r \cup \bigcup_{e \sim r} X_e| - 1$.

Here $e \sim r$ means that r is one of the two vertices of arc e. The directed tree-width of G, $\text{d-tw}(G)$ for short, is the smallest integer k such that there is a (arboreal) tree-decomposition (T, X, W) of G of width k.

Remark 4.2 (Z-normality) Please note that our definition of Z-normality slightly differs from the following definition in [25] where S and Z are disjoint. A vertex set $S \subseteq V - Z$ is Z-normal, if there is no directed walk in $G - Z$ with first and last vertices in S that uses a vertex of $G - (Z \cup S)$. That is, a set $S \subseteq V - Z$ is Z-normal, if every directed walk in $G - Z$ which leaves and again enters S must contain only vertices from $Z \cup S$. Or, a set $S \subseteq V - Z$ is Z-normal, if every directed walk which leaves and again enters S must contain a vertex from Z, set [7].

Every set $S \subseteq V - Z$ which is is Z-normal w.r.t. the definition in [25] is also Z-normal w.r.t. our definition. Further a set $S \subseteq V$ which is Z-normal w.r.t. our definition, is also $Z - S$-normal w.r.t. the definition in [25]. Thus the directed tree-width of a digraph is equal for both definitions of Z-normality.

\[3\]A remarkable difference to the undirected tree-width [36] is that the sets W_r have to be disjoint and non-empty.
Lemma 4.3 ([25]) Let \(G \) be some digraph, then \(d-tw(G) \leq tw(und(G)) \).

Lemma 4.4 ([25]) Let \(G \) be some complete bioriented digraph, then \(d-tw(G) = tw(und(G)) \).

Determining whether the (undirected) tree-width of some given (undirected) graph is at most some given value \(w \) is NP-complete even for bipartite graphs and complements of bipartite graphs [2]. Lemma 4.3 implies that determining whether the directed tree-width of some given digraph is at most some given value \(w \) is NP-complete even for digraphs whose underlying graphs lie in the mentioned classes.

The results of [25] lead to an XP-algorithm for directed tree-width w.r.t. the standard parameter which implies that for each constant \(w \), it is decidable in polynomial time whether a given digraph has directed tree-width at most \(w \).

In order to show our main results we show some properties of directed tree-decompositions.

Lemma 4.5 ([25]) Let \(G \) be some digraph and \(H \) be an induced subdigraph of \(G \), then \(d-tw(H) \leq d-tw(G) \).

Lemma 4.6 (Bidirectional complete subdigraph) Let \((T, X, W), T = (V_T, E_T)\), where \(r_T \) is the root of \(T \), be a directed tree-decomposition of some digraph \(G = (V, E) \) and \(G' = (V', E') \) with \(V' \subseteq V \) be a bidirectional complete subdigraph. Then \(V' \subseteq W_{r_T} \) or there is some \((r, s) \in E_T\), such that \(V' \subseteq W_s \cup X_{(r, s)} \).

Proof First we show the existence of a vertex \(s \) in \(V_T \), such that \(W_s \cap V' \neq \emptyset \) but for every vertex \(s' \) such that \(s < s' \) holds \(W_s \cap V' = \emptyset \). If there is a leaf \(\ell \) in \(T \), such that \(W_\ell \cap V' = \emptyset \), we can choose \(s = \ell \). Otherwise we look for vertex \(s \) among the predecessors of the leaves in \(T \), and so on.

Next we show that \(W_s \) leads to a set which shows the statement of the lemma. If \(s \) is the root of \(T \), then \(W_s \cap V' \neq \emptyset \) for none of its successors \(s' \) in \(T \) i.e. \(W_{s'} \cap V' = \emptyset \) for all of its successors \(s' \) in \(T \), which implies by (dtw-1) that \(V' \subseteq W_s \). Otherwise let \(r \) be the predecessor of \(s \) in \(T \). If \(V' \subseteq W_s \) the statement is true. Otherwise let \(e \in V' - W_s \) and \(c' \in V' \cap W_s \). Then \((e, c') \in E \) and \((c', c) \in E \) implies that \(c \in X_{(r, s)} \) by (dtw-2).

Lemma 4.7 Let \(G = (V, E) \) be some digraph, \((T, X, W), T = (V_T, E_T)\), where \(r_T \) is the root of \(T \), be a directed tree-decomposition of \(G \). Further let \(A, B \subseteq V \), \(A \cap B = \emptyset \), and \(\{(u, v), (v, u) \mid u \in A, v \in B\} \subseteq E \). Then \(A \cup B \subseteq W_{r_T} \) or there is some \((r, s) \in E_T\), such that \(A \subseteq W_s \cup X_{(r, s)} \) or \(B \subseteq W_s \cup X_{(r, s)} \).

Proof Similar as in the proof of Lemma 4.6 we can find a vertex \(s \) in \(V_T \), such that \(W_s \cap (A \cup B) \neq \emptyset \) but for every vertex \(s' \) such that \(s < s' \) holds \(W_s \cap (A \cup B) = \emptyset \).

If \(s \) is the root of \(T \), then \(W_s \cap (A \cup B) \neq \emptyset \) for none of its successors \(s' \) in \(T \), i.e. \(W_{s'} \cap (A \cup B) = \emptyset \) for all of its successors \(s' \) in \(T \), which implies by (dtw-1) that \(A \cup B \subseteq W_s \).

Otherwise let \(r \) be the predecessor of \(s \) in \(T \). If \(A \cup B \subseteq W_s \) the statement is true. Otherwise we know that there is some \(a \in A \) such that \(a \in W_s \) and \(B \nsubseteq W_s \) or some \(b \in B \) such that \(b \in W_s \) and \(A \nsubseteq W_s \). We assume that there is some \(a \in A \) such that \(a \in W_s \) and \(B \nsubseteq W_s \). Let \(b \in B - W_s \) and \(a \in A \cap W_s \). Then \((a, b) \in E \) and \((b, a) \in E \) implies that \(b \in X_{(r, s)} \) by (dtw-2). Thus we have shown \(B \subseteq W_s \cup X_{(r, s)} \).

If we assume that there some \(b \in B \) such that \(b \in W_s \), we conclude \(A \subseteq W_s \cup X_{(r, s)} \).

Lemma 4.8 Let \(G \) be a digraph of directed tree-width at most \(k \). Then there is a directed tree-decomposition \((T, X, W), T = (V_T, E_T)\), of width at most \(k \) for \(G \) such that \(|W_r| = 1 \) for every \(r \in V_T \).

Proof Let \(G = (V, E) \) be a digraph and \((T, X, W), T = (V_T, E_T)\), of directed tree-decomposition of \(G \). Let \(r \in V_T \) such that \(W_r = \{v_1, \ldots, v_k\} \) for some \(k > 1 \). Further let \(p \) be the predecessor of \(r \) in \(T \) and \(s_1, \ldots, s_k \) be the successors of \(r \) in \(T \). Let \((T', X', W')\) be defined by the following modifications of \((T, X, W): We replace vertex \(r \) in \(T \) by the directed path \(P(r) = \{(r_1, r_2), (r_2, r_3), \ldots, (r_{k-1}, r_k)\} \) and replace arc \((p, r) \) by \((p, r_1) \) and the \(\ell \) arcs \((r, s_j)\), \(1 \leq j \leq \ell \), by the \(\ell \) arcs \((r, s), 1 \leq j \leq \ell \) in \(T' \). We define the sets \(W'_{r_j} = \{v_j\} \)
Let new arc (r_{i-1}, r_i), $1 < i < k$, such that $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$, and $\{u, v, (v, u) | u \in V_1, v \in V_2\} \subseteq E$. Then there is a directed tree-decomposition (T, X, W), $T = (V_T, E_T)$, of width at most k for G such that for every $e \in E_T$ holds $V_1 \subseteq X_e$ or for every $e \in E_T$ holds $V_2 \subseteq X_e$.

Proof. Let $G = (V, E)$ be a digraph of directed tree-width at most k and (T, X, W), $T = (V_T, E_T)$, be a directed tree-decomposition of width at most k for G. By Lemma 4.8 we can assume that holds: $|W_{t, t'}| = 1$ for every $r \in V_T$.

We show the claim by traversing T in a bottom-up order. Let t' be a leaf of T, t be the predecessor of t' in T and $W_{t, t'} = \{v\}$ for some $v \in V_1$. Then the following holds: $V_2 \subseteq X_{(t, t')}$ since $(v, v') \in E$ and $(v', v) \in E$ for every $v' \in V_2$.

If t' is a non-leaf of T and there is a successor t'' of t' in T such that $V_1 \subseteq X_{(t', t'')}$ and there is a successor t''' of t'' in T such that $V_2 \subseteq X_{(t'', t''')}$. Then the width of (T, X, W) is $|V_1| + |V_2| - 1$ which allows us to insert V_1 into every set X_e as well as V_2 into every set X_e.

Otherwise let t' be a non-leaf of T and $V_2 \subseteq X_{(t', t'')}$ for every successor t'' of t'. Let t be the predecessor of t' and a non-successor of t in T. We distinguish the following two cases.

- Let $V_1 \subseteq \cup_{r < \tilde{t}} W_r$. We replace $X_{(t, t')}$ by $X_{(t, t')} \cup V_2$ in order to meet our claim for edge (t, t').

We have to show that this does not increase the width of the obtained directed tree-decomposition at vertex t' and at vertex t.

The value of $|W_{t', t''} \cup \bigcup_{v \neq t} X_v|$ does not change, since $V_2 \subseteq X_{(t', t'')}$ by induction hypothesis and $(t', t'') \sim t'$.

Since $V_1 \subseteq \cup_{r \leq \tilde{t}} W_r$ by (dtw-2) we can assume that $V_1 \cap X_{(s, t)} = \emptyset$. Since all $W_{t'}$ have size one we know that $|W_{t, t'} \cup \bigcup_{v \neq t} X_v| \leq |W_{t'} \cup \bigcup_{v \neq t} X_v|.

- Let $V_1 \subseteq \cup_{r \leq \tilde{t}} W_r$. We distinguish the following two cases.

 - Let $V_2 \cap \cup_{v \leq \tilde{t}} W_v = \emptyset$, then $W_{t, t'} = \{v\}$ for some $v \in V_1$ and thus $V_2 \subseteq X_{(t, t')}$ since $(v, v') \in E$ and $(v', v) \in E$ for every $v' \in V_2$.

 - Let $V_2 \cap \cup_{v \leq \tilde{t}} W_v \neq \emptyset$. Since $\{(u, v), (v, u)| u \in V_1, v \in V_2\} \subseteq E$ the following is true:

 \[V - \bigcup_{v \leq \tilde{t}} W_v \subseteq (V_1 \cup V_2) - \bigcup_{v \leq \tilde{t}} W_v \subseteq X_{(t, t')}. \] (1)

That is, all vertices of G which are not of one of the sets W_r for all successors \tilde{t} of t' are in set $X_{(t, t')}$. We define $X_{(t, t')} = (V - \cup_{v \leq \tilde{t}} W_v) \cup V_2$ in order to meet our claim for edge (t, t').

We have to show that this does not increase the width of the obtained directed tree-decomposition at vertex t' and at vertex t.

The value of $|W_{t'} \cup \bigcup_{v \neq t} X_v|$ does not change, since $V_2 \subseteq X_{(t', t'')}$. We further define the sets $X_{(t, t')} = (V - \cup_{v \leq \tilde{t}} W_v) \cup V_2$ in order to meet our claim for edge (t, t').

We have to show that this does not increase the width of the obtained directed tree-decomposition at vertex t' and at vertex t.

The value of $|W_{t'} \cup \bigcup_{v \neq t} X_v|$ does not change, since $V_2 \subseteq X_{(t', t'')}$. We further define the sets $X_{(t, t')} = (V - \cup_{v \leq \tilde{t}} W_v) \cup V_2$ in order to meet our claim for edge (t, t').

Further implies that $X_{(s, t)} \subseteq X_{(t, t')}$ and thus $|W_{t} \cup \bigcup_{v \neq t} X_v| \leq |W_{t'} \cup \bigcup_{v \neq t} X_v|$.

10
Thus if T has a leaf t' such that $W_r = \{v\}$ for some $v \in V_1$ we obtain a directed tree-decomposition (T, \mathcal{X}, W), $T = (V_T, E_T)$, such that $V_2 \subseteq X_e$ for every $e \in E_T$. And if T has a leaf t' such that $W_r = \{v\}$ for some $v \in V_2$ we obtain a directed tree-decomposition (T, \mathcal{X}, W), $T = (V_T, E_T)$, such that $V_1 \subseteq X_e$ for every $e \in E_T$. \hfill \square

Theorem 4.10 Let $G = (V_G, E_G)$ and $H = (V_H, E_H)$ be two vertex-disjoint digraphs, then the following properties hold.

1. $d-tw(G \circ H) = \max\{d-tw(G), d-tw(H)\}$
2. $d-tw(G \circ H) = \max\{d-tw(G), d-tw(H)\}$
3. $d-tw(G \circ H) = \max\{d-tw(G), d-tw(H)\}$
4. $d-tw(G \circ H) = \min\{d-tw(G) + |V_H|, d-tw(H) + |V_G|\}$

Proof Let $G = (V_G, E_G)$ and $H = (V_H, E_H)$ be two vertex-disjoint digraphs. Further let $(T_G, \mathcal{X}_G, W_G)$ be a directed tree-decomposition of G such that r_G is the root of $T_G = (V_{T_G}, E_{T_G})$ and $(T_H, \mathcal{X}_H, W_H)$ be a directed tree-decomposition of H such that r_H is the root of $T_H = (V_{T_H}, E_{T_H})$.

1. We define a directed tree-decomposition $(T_J, \mathcal{X}_J, W_J)$ for $J = G \circ H$. Let ℓ_G be a leaf of T_G. Let T_J be the disjoint union of T_G and T_H with an additional arc (ℓ_G, r_H). Further let $\mathcal{X}_J = \mathcal{X}_G \cup \mathcal{X}_H \cup \{X_{(t_G, r_H)}\}$, where $X_{(t_G, r_H)} = \emptyset$ and $W_J = W_G \cup W_H$. Triple $(T_J, \mathcal{X}_J, W_J)$ satisfies (dtw-1) since the combined decompositions satisfy (dtw-1). Further $(T_J, \mathcal{X}_J, W_J)$ satisfies (dtw-2) since additionally in J there is no arc from a vertex of H to a vertex of G. This shows that $d-tw(G \circ H) \leq \max\{d-tw(G), d-tw(H)\}$. Since G and H are induced subgraphs of $G \circ H$, by Lemma 4.5 the directed tree-width of both leads to a lower bound on the directed tree-width for the combined graph.

2. The same arguments lead to $d-tw(G \circ H) = \max\{d-tw(G), d-tw(H)\}$.

3. The same arguments lead to $d-tw(G \circ H) = \max\{d-tw(G), d-tw(H)\}$.

4. In order to show $d-tw(G \circ H) \leq d-tw(G) + |V_H|$ let T_J be the disjoint union of a new root r_J and T_G with an additional arc (r_J, r_G). Further let $\mathcal{X}_J = \mathcal{X}_G \cup \{X_{(r_J, r_G)}\}$, where $X_{(r_J, r_G)} = \emptyset$ and $W_J = W_G \cup W_H$. Then we obtain by $(T_J, \mathcal{X}_J, W_J)$ a directed tree-decomposition of width at most $d-tw(G) + |V_H|$ for $G \circ H$.

In the same way a new root r_J and T_H with an additional arc (r_J, r_H), $\mathcal{X}_J' = \{X_e \cup V_G \mid e \in E_{T_H}\}$, $X_{(r_J, r_H)} = V_G$, $W_{r_J} = V_G$ lead to a directed tree-decomposition of width at most $d-tw(H) + |V_G|$ for $G \circ H$. Thus $d-tw(G \circ H) \leq \min\{d-tw(G) + |V_H|, d-tw(H) + |V_G|\}$.

For the reverse direction let $(T_J, \mathcal{X}_J, W_J)$, $T_J = (V_T, E_T)$, be a directed tree-decomposition of minimal width for $G \circ H$. By Lemma 4.8 we can assume that $V_G \subseteq X_e$ for every $e \in E_T$ or $V_H \subseteq X_e$ for every $e \in E_T$. Further by Lemma 4.8 we can assume that $|W_t| = 1$ for every $t \in V_T$.

We assume that $V_G \subseteq X_e$ for every $e \in E_T$. We define $(T_J', \mathcal{X}_J', W_J')$, $T_J' = (V_T', E_T')$, by $X_{s'} = X_e \cap V_H$ and $W_{s'} = W_s \cap V_H$. Whenever this leads to an empty set $W_{s'}$ where t is the predecessor of s in T_J we remove vertex s from T_J' and replace every arc (s, t') by (t, t') with the corresponding set $X_{(t, t')} = X_{(s, t')} \cap V_H$.

Then $(T_J', \mathcal{X}_J', W_J')$ is a directed tree-decomposition of H as follows.

- W_J' is a partition of V_H into nonempty sets.
- Let e be an arc in T_J' which is also in T_J. Since $e \sim s$ implies $W_s = W'_s = \{v\}$ for some $v \in V_H$ normality condition remains true.

Ares (t, t') in T_J' which are not in T_J are obtained by two arcs (t, s) and (s, t') from T_J. If $\cup\{W_r \mid r \in V_T', t' \leq t\}$ is $X_{(s, t')}$-normal, then $\cup\{W_r \mid r \in V_T', t' \leq t\}$ is $X_{(s, t')}$-normal since $X_{(s, t')} = X_{(s, t')} \cap V_H$.

11
The width of \((T_j', X_j', W_j')\) is at most \(d\text{-tw}(G \odot H) - |V_G|\) as follows.

- Let \(s\) be a vertex in \(T_j'\) such that \(W_t \cap V_H \neq \emptyset\) for all \((s, t)\) in \(T_j\).

\[
|W_s' \cup \bigcup_{e \sim s} X_e'| = |(W_s \cap V_H) \cup \bigcup_{e \sim s} (X_e \cap V_H)| \quad \text{by definition} \\
= |(W_s \cup \bigcup_{e \sim s} X_e) \cap V_H| \quad \text{factor out } V_H \\
= |W_s \cup \bigcup_{e \sim s} X_e| - |V_G| \quad \text{since } V_G \subseteq X_e
\]

- Let \(s\) be a vertex in \(T_j'\) such that there is \((s, t)\) in \(T_j\) with \(W_t \cap V_H = \emptyset\).

\[
|W_s' \cup \bigcup_{e \sim s} X_e'| = |(W_s \cap V_H) \cup (X_{(t,u)} \cap V_H) \cup \bigcup_{(s,t) \in E_T \setminus W_t \cap V_H = \emptyset} (X_{(s,t)} \cap V_H)|
\]

\[\bigcup_{(s,t) \in E_T \setminus W_t \cap V_H = \emptyset} (X_{(s,t)} \cap V_H)\]

In order to bound this value we observe that for \(W_t \cap V_H = \emptyset\) the following is true: \(W_t = \{v\}\) for \(v \in V_G\). Then \(X_{(s,t)} = (V_G \cup V_H) - \bigcup_{i \in \pi(W_t)} \cup V_G\) by Lemma 4.9. That is, \(X_{(s,t)}\) consists of all vertices from \(V_G\) and all vertices which are not of one of the sets \(W_t\) for all successors \(t\) of \(t\). Applying this argument to \(X_{(t,u)}\) we only can have \(v\) as an additional vertex. But since \(v \in V_G\) we know that \(v \in X_{(s,t)}\) by our assumption. This implies

\[X_{(t,u)} \subseteq X_{(s,t)}\] for all arcs \((s, t)\) in \(T_j\) such that \(W_t \cap V_H = \emptyset\)

which allows the following estimations:

\[
|W_s' \cup \bigcup_{e \sim s} X_e'| = |(W_s \cap V_H) \cup \bigcup_{e \sim s} (X_e \cap V_H)| \quad \text{by (2) and (3)} \\
= |(W_s \cup \bigcup_{e \sim s} X_e) \cap V_H| \quad \text{factor out } V_H \\
= |W_s \cup \bigcup_{e \sim s} X_e| - |V_G| \quad \text{since } V_G \subseteq X_e
\]

Thus the width of \((T_j', X_j', W_j')\) is at most \(d\text{-tw}(G \odot H) - |V_G|\) and since \((T_j', X_j', W_j')\) is a directed tree-decomposition of \(H\) it follows \(d\text{-tw}(H) \leq d\text{-tw}(G \odot H) - |V_G|\).

If we assume that \(V_H \subseteq X_e\) for every \(e \in E_T\) it follows that \(d\text{-tw}(G) \leq d\text{-tw}(G \odot H) - |V_H|\).

\[\square\]

The proof of Theorem 4.10 even shows that for any directed co-graph there is a tree-decomposition \((T', X', W)\) of minimal width such that \(T\) is a path.

Similar to the path-width results, we conclude the following results.

Lemma 4.11 Let \(G\) and \(H\) be two directed co-graphs, then \(\text{tw}\left(\text{und}(G \odot H)\right) > d\text{-tw}(G \odot H)\).

Corollary 4.12 Let \(G\) be some directed co-graph, then \(d\text{-tw}(G) = \text{tw}(u(G))\) if and only if there is an expression for \(G\) without any order operation. Further \(d\text{-tw}(G) = 0\) if and only if there is an expression for \(G\) without any series operation.

5 Directed tree-width and directed path-width of special digraphs

For general digraphs the directed tree-width is at most the directed path-width are by the following Lemma.

Lemma 5.1 Let \(G\) be some digraph, then \(d\text{-tw}(G) \leq d\text{-pw}(G)\).
Directed path-width and directed tree-width can be computed in time $O(n)$.

Theorem 5.4

Let G be a directed graph and d a directed tree-width depending on its height. The path-width of perfect k-ary trees of height h is $O(h\log h)$ and for $k \geq 3$ the path-width of perfect k-ary trees of height h is exactly h by Corollary 3.1 of [17].

5.1 Directed Co-graphs

Theorem 5.3

For every directed co-graph G, it holds that d-pw$(G) = d$-tw(G).

Proof Let $G = (V, E)$ be some directed co-graph. We show the result by induction on the number of vertices $|V|$. If $|V| = 1$, then d-pw$(G) = d$-tw$(G) = 0$. If $G = G_1 \oplus G_2$, then by Theorem 5.3 and Theorem 4.10 follows:

$$d$-pw$(G) = \max\{d$-pw$(G_1), d$-pw$(G_2)\} = \max\{d$-tw$(G_1), d$-tw$(G_2)\} = d$-tw$(G).$$

For the other two operations a similar relation holds.

By Lemma 5.3 and Lemma 4.4 our results generalize the known results from [9, 10] but cannot be obtained by the known results.

Theorem 5.4

For every directed co-graph $G = (V, E)$ which is given by a binary di-co-tree the directed path-width and directed tree-width can be computed in time $O(|V|)$.

Proof The statement follows by the algorithm given in Fig. 1. Theorem 5.3 and Theorem 4.10. The necessary sizes of the subdigraphs defined by subtrees of di-co-tree T_G can be precomputed in time $O(|V|)$.

Algorithm Directed Path-width(v)

if v is a leaf of di-co-tree T_G

then d-pw$(G[T_v]) = 0$

else { Directed Path-width(v_ℓ) \hspace{1cm} $\triangleright v_\ell$ is the left successor of v

Directed Path-width(v_r) \hspace{1cm} $\triangleright v_r$ is the right successor of v

if v corresponds to a \oplus, or a \ominus operation

then d-pw$(G[T_v]) = \max\{d$-pw$(G[T_{v_\ell}]), d$-pw$(G[T_{v_r}]\} \}$

der d-pw$(G[T_v]) = \min\{d$-pw$(G[T_{v_\ell}]) + |V_{G[T_{v_\ell}]}|, d$-pw$(G[T_{v_r}]) + |V_{G[T_{v_r}]}|\}$

Figure 1: Computing the directed path-width of G for every vertex of a di-co-tree T_G.

For general digraphs d-pw(G) leads to a lower bound for $pw(und(G))$ and d-tw(G) leads to a lower bound for $tw(und(G))$, see [5, 25]. For directed co-graphs we obtain a closer relation as follows.

Corollary 5.5 Let G be a directed co-graph and $\omega(G)$ be the size of a largest bioriented clique of G. It then holds that

$$\omega(G) = d$-pw$(G) - 1 = d$-tw$(G) - 1 \leq pw(und(G)) - 1 = tw(und(G)) - 1 = \omega(und(G)).$$

All values are equal if and only if G is a complete bioriented digraph.

Proof The equality $pw(und(G)) - 1 = tw(und(G)) - 1 = \omega(und(G))$ has been shown in [9, 10]. The equality $\omega(G) = d$-pw$(G) - 1 = d$-tw$(G) - 1$ follows by Lemma 5.5 (or Lemma 4.4) and Theorem 5.3. The upper bound follows by Lemma 5.5 or Lemma 4.4.

13
5.2 Extended Directed Co-graphs

Theorem 5.6 For every extended directed co-graph G, it holds that $d-pw(G) = d-tw(G)$.

The algorithm shown in Fig. 4 can be adapted to show the following result.

Theorem 5.7 For every extended directed co-graph $G = (V,E)$ which is given by a binary ex-di-co-tree the directed path-width and directed tree-width can be computed in time $O(|V|)$.

In order to process the strong components of a digraph we recall the following definition. The acyclic condensation of a digraph G, $AC(G)$ for short, is the digraph whose vertices are the strongly connected components V_1, \ldots, V_c of G and there is an edge from V_i to V_j if there is an edge (v_i, v_j) in G such that $v_i \in V_i$ and $v_j \in V_j$. Obviously for every digraph G the digraph $AC(G)$ is always acyclic.

Lemma 5.8 Every digraph G can be represented by the directed union of its strong components.

Proof Let G be a digraph, $AC(G)$ be the acyclic condensation of G, and v_1, \ldots, v_c be a topological ordering of $AC(G)$, i.e. for every edge (v_i, v_j) in $AC(G)$ it holds $i < j$. Further let V_1, \ldots, V_c be the vertex sets of its strong components ordered by the topological ordering. Then G can be obtained by $G = G[V_1] \circ \ldots \circ G[V_c]$.

Theorem 5.9 Let G be a digraph, then it holds:

1. The directed tree-width of G is the maximum tree-width of its strong components.
2. The directed path-width of G is the maximum path-width of its strong components.

Proof Follows by Lemma 5.8 and Theorem 3.8 and Theorem 4.10.

The directed path-width result of Theorem 5.9 was also shown in [30] using the directed vertex separation number, which is equal to the directed path-width.

6 Conclusion and Outlook

In this paper we could generalize the equivalence of path-width and tree-width of co-graphs which is known from [9, 10] to directed graphs. The shown equality also holds for more general directed tree-width definitions such as allowing empty sets W_r in [24].

This is not possible for the directed tree-width approach suggested by Reed in [34], which uses sets W_r of size one only for the leaves of T of a directed tree-decomposition (T, X, W). To obtain a counter-example let $S_{1,n} = (V, E)$ be a star graph on $1 + n$ vertices, i.e. $V = \{v_0, v_1, \ldots, v_n\}$ and $E = \{\{v_0, v_i\} | 1 \leq i \leq n\}$. Further let G_n be the complete bi-orientation of $S_{1,n}$, which is a directed co-graph. Then $tw(S_{1,n}) = 1$ and by Theorem 5.3 and Theorem 1.6 we know $d-pw(G_n) = d-tw(G_n) \leq 1$. Using the approach of [34] in any possible tree-decomposition (T, X', W') for G_n there is a leaf u of T such that $W_u = \{v_0\}$. Further there is some $u' \in V_T$, such that $(u', u) \in E_T$. By normality for edge (u', u) it holds $X_{(u', u)} = \{v_1, \ldots, v_n\}$ which implies that using the approach of [34] the directed tree-width of G is at least n.

The approach given in [13, Chapter 6] using strong components within (dtw-2) should be considered in future work. Further research directions should extend the shown results to larger classes as well as consider related width parameters.

The class of directed co-graphs was studied very well in [33]. For the class of extended directed co-graphs it remains to show how to compute an ex-di-co-tree in order to apply Theorem 5.7.

Acknowledgements

The work of the second author was supported by the German Research Association (DFG) grant GU 970/7-1.
References

[1] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability – A survey. *BIT*, 25:2–23, 1985.

[2] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. *SIAM Journal of Algebraic and Discrete Methods*, 8(2):277–284, 1987.

[3] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees. *Discrete Applied Mathematics*, 23:11–24, 1989.

[4] J. Bang-Jensen and G. Gutin. *Digraphs. Theory, Algorithms and Applications*. Springer-Verlag, Berlin, 2009.

[5] J. Barát. Directed pathwidth and monotonicity in digraph searching. *Graphs and Combinatorics*, 22:161–172, 2006.

[6] D. Bechet, P. de Groote, and C. Retoré. A complete axiomatisation of the inclusion of series-parallel partial orders. In *Rewriting Techniques and Applications*, volume 1232 of *LNCS*, pages 230–240. Springer-Verlag, 1997.

[7] H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. *SIAM Journal on Computing*, 25(6):1305–1317, 1996.

[8] H.L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth of permutation graphs. In *Proceedings of International Colloquium on Automata, Languages and Programming*, volume 700 of *LNCS*, pages 114–125. Springer-Verlag, 1993.

[9] H.L. Bodlaender and R.H. Möhring. The pathwidth and treewidth of cographs. In *Proceedings of Scandinavian Workshop on Algorithm Theory*, volume 447 of *LNCS*, pages 301–309. Springer-Verlag, 1990.

[10] H.L. Bodlaender and R.H. Möhring. The pathwidth and treewidth of cographs. *SIAM J. Disc. Math.*, 6(2):181–188, 1993.

[11] M. Burlet and J.P. Uhry. Parity graphs. *Annals of Discrete Mathematics*, 21:253–277, 1984.

[12] D.G. Corneil, H. Lerchs, and L. Stewart-Burlingham. Complement reducible graphs. *Discrete Applied Mathematics*, 3:163–174, 1981.

[13] C. Crespelle and C. Paul. Fully dynamic recognition algorithm and certificate for directed cographs. *Discrete Applied Mathematics*, 154(12):1722–1741, 2006.

[14] M. Dehmer and F. Emmert-Streib, editors. *Quantitative Graph Theory: Mathematical Foundations and Applications*. Crc Pr Inc, New York, 2014.

[15] J.A. Ellis, I.H. Sudborough, and J.S. Turner. The vertex separation and search number of a graph. *Information and Computation*, 113(1):50–79, 1994.

[16] R. Ganian, P. Hlinený, J. Kneis, D. Meisters, J. Obdrzálek, P. Rossmanith, and S. Sikdar. Are there any good digraph width measures? *Journal of Combinatorial Theory, Series B*, 116:250–286, 2016.

[17] F. Gurski. Dynamic programming algorithms on directed cographs. *Statistics, Optimization and Information Computing*, 5:35–44, 2017.

[18] F. Gurski and C. Rehs. Directed path-width and directed tree-width of directed co-graphs. In *Proceedings of International Computing and Combinatorics Conference (COCOON)*, *LNCS*. Springer-Verlag, 2018. to appear.

[19] F. Gurski, E. Wanke, and E. Yilmaz. Directed NLC-width. *Theoretical Computer Science*, 616:1–17, 2016.
[20] J. Gusted. On the pathwidth of chordal graphs. *Discrete Applied Mathematics*, 45(3):233–248, 1993.

[21] M. Habib and C. Paul. A simple linear time algorithm for cograph recognition. *Discrete Applied Mathematics*, 145:183–197, 2005.

[22] T. Hagerup. Dynamic algorithms for graphs of bounded treewidth. *Algorithmica*, 27(3):292–315, 2000.

[23] M. Hellmuth, P.F. Stadler, and N. Wieseke. The mathematics of xenology: di-cographs, symbolic ultrametrics, 2-structures and tree-representable systems of binary relations. *Journal of Mathematical Biology*, 75(1):199–237, 2017.

[24] T. Johnson, N. Robertson, P.D. Seymour, and R. Thomas. Addendum to ”Directed tree-width”, 2001.

[25] T. Johnson, N. Robertson, P.D. Seymour, and R. Thomas. Directed tree-width. *Journal of Combinatorial Theory, Series B*, 82:138–155, 2001.

[26] H.A. Jung. On a class of posets and the corresponding comparability graphs. *Journal of Combinatorial Theory, Series B*, 24:125–133, 1978.

[27] M.A. Kashem, X. Zhou, and T. Nishizeki. Algorithms for generalized vertex-rankings of partial k-trees. *Theoretical Computer Science*, 240(2):407–427, 2000.

[28] T. Kashiwabara and T. Fujisawa. NP-completeness of the problem of finding a minimum-clique-number interval graph containing a given graph as a subgraph. In *Proceedings of the International Symposium on Circuits and Systems*, pages 657–660, 1979.

[29] K. Kitsunai, Y. Kobayashi, K. Komuro, H. Tamaki, and T. Tano. Computing directed pathwidth in $O(1.89^n)$ time. *Algorithmica*, 75:138–157, 2016.

[30] T. Kloks, H. Bodlaender, H. Müller, and D. Kratsch. Computing treewidth and minimum fill-in: All you need are the minimal separators. In *Proceedings of the Annual European Symposium on Algorithms*, volume 726 of *LNCS*, pages 260–271. Springer-Verlag, 1993.

[31] H. Lerchs. On cliques and kernels. Technical report, Dept. of Comput. Sci, Univ. of Toronto, 1971.

[32] B. Monien and I.H. Sudborahough. Min cut is NP-complete for edge weighted trees. *Theoretical Computer Science*, 58:209–229, 1988.

[33] N. Nojgaard, N. El-Mabrouk, D. Merkle, N. Wieseke, and M. Hellmuth. Partial homology relations - satisfiability in terms of di-cographs. In *Proceedings of International Computing and Combinatorics Conference (COCOON)*, LNCS. Springer-Verlag, 2018. to appear.

[34] B. Reed. Introducing directed tree width. *Electronic Notes in Discrete Mathematics*, 3:222–229, 1999.

[35] N. Robertson and P.D. Seymour. Graph minors I. Excluding a forest. *Journal of Combinatorial Theory, Series B*, 35:39–61, 1983.

[36] N. Robertson and P.D. Seymour. Graph minors II. Algorithmic aspects of tree width. *Journal of Algorithms*, 7:309–322, 1986.

[37] P. Scheffler. *Die Baumweite von Graphen als Mass für die Kompliziertheit algorithmischer Probleme*. Ph. D. thesis, Akademie der Wissenschaften in der DDR, Berlin, 1989.

[38] K. Suchan and I. Todinca. Pathwidth of circular-arc graphs. In *Proceedings of Graph-Theoretical Concepts in Computer Science*, volume 4769 of *LNCS*, pages 258–269. Springer-Verlag, 2007.

[39] P.D. Sumner. Dacey graphs. *Journal of Aust. Soc.*, 18:492–502, 1974.

[40] B. Yang and Y. Cao. Digraph searching, directed vertex separation and directed pathwidth. *Discrete Applied Mathematics*, 156(10):1822–1837, 2008.