Hepatitis A in the Eastern Mediterranean Region: a comprehensive review

Selim Badur a, Serdar Öztürk a, Mohammad AbdelGhani y b, Mansour Khalaf c, Youness Lagoubit d, Onur Ozudogru c, Debasish Saha e

aGSK, Istanbul, Turkey; bGSK, Cairo, Egypt; cGSK, Jeddah, Saudi Arabia; dGSK, Casablanca, Morocco; eGSK, Dubai, United Arab Emirates; fGSK, Karachi, Pakistan; gGSK, Wavre, Belgium

ABSTRACT

Introduction: With 583 million inhabitants, the Eastern Mediterranean Region (EMR) is a worldwide hub for travel, migration, and food trade. However, there is a scarcity of data on the epidemiology of the hepatitis A virus (HAV).

Methods: The MEDLINE and grey literature were systematically searched for HAV epidemiological data relevant to the EMR region published between 1980 and 2020 in English, French, or Arabic.

Results: Overall, 123 publications were extracted. The proportion of HAV cases among acute viral hepatitis cases was high. HAV seroprevalence rate ranged from 5.7% to 100.0% and it was decreasing over time while the average age at infection increased.

Conclusion: In the EMR, HAV remains a significant cause of acute viral hepatitis. The observed endemicity shift will likely increase disease burden as the population ages. Vaccinating children and adopting sanitary measures are still essential to disease prevention; vaccinating at-risk groups might reduce disease burden even further.

PLAIN LANGUAGE SUMMARY

What is the context?

- Hepatitis A is a viral liver disease caused by the hepatitis A virus.
- It is generally transmitted by ingestion of contaminated food or water or through contact with an infected person.
- Disease severity increases with age. Children under 6 years of age are usually asymptomatic, while adults are the most affected.
- Limited information exists on the number of cases and transmission of hepatitis A in the Eastern Mediterranean region, which includes 21 countries and Palestine, as defined by the World Health Organization.

What is new?

- We performed a literature review to summarize data on hepatitis A disease in the Eastern Mediterranean region over the last 40 years (1980-2020). As information for many countries is scarce or outdated, most of the data is from Egypt, Iran and Saudi Arabia.
- We found that:
 - Hepatitis A virus is the most common cause of acute viral hepatitis.
 - Hepatitis A exposure varied according to the country’s income level.
 - Low- and middle-income countries showed a universal immunity to hepatitis A virus, although this is not the case anymore.

What is the impact?

- Hepatitis A infections have decreased worldwide. Lower exposure to the virus has led to an increase in the susceptible population (including adolescent and adults).
- Hepatitis A vaccination for children and high-risk groups such travelers should be considered in the Eastern Mediterranean region.

Introduction

Exposure to the hepatitis A virus (HAV) causes viral hepatitis which is characterized by inflammation of the liver. Globally, more than 100 million HAV infections and 30,000–35,000 deaths are reported annually. HAV is transmitted through the fecal-oral route, entering via the mouth and replicating in the liver. The ingestion of contaminated food or water, poor sanitation, and contact with an infected individual are the primary sources of infection. Clinically, HAV infection is similar to other types of acute hepatitis, with elevated levels of liver enzymes, dark-colored urine, and the onset of jaundice. It is accompanied by broad symptoms like fatigue, malaise, and abdominal pain. The severity and outcome of the disease is negatively correlated with the age at infection. Infected children under six years of age are usually asymptomatic (~70% cases), while older children and adults show symptoms of jaundice (~70% cases). The fatality rate increases with...
Hepatitis A is a viral liver disease caused by the hepatitis A virus. It is generally transmitted by ingestion of contaminated food or water or through contact with an infected person. Disease severity increases with age. Children under 6 years of age are usually asymptomatic, while adults are the most affected. Limited information exists on the number of cases and transmission of hepatitis A in the Eastern Mediterranean region, which includes 21 countries and Palestine, as defined by the World Health Organization.

We performed a literature review to summarize data on hepatitis A disease in the Eastern Mediterranean region over the last 40 years (1980-2020). An information for many countries is scarce or outdated, most of the data is from Egypt, Iran and Saudi Arabia.

- Hepatitis A virus is the most common cause of acute viral hepatitis.
- Hepatitis A exposure varied according to the country’s income level.
- In high-income countries, the age at first infection has increased.
- Low- and middle-income countries showed a universal immunity to hepatitis A virus, although this is not the case anymore.

Hepatitis A infections have decreased worldwide. Lower exposure to the virus has led to an increase in the susceptible population (including adolescents and adults).

Hepatitis A vaccination for children and high-risk groups such travelers should be considered in the Eastern Mediterranean region.

Increasing age, from 0.1% (<15 years of age), to 0.3% (15–39 years of age) and 2.1% (≥40 years of age). Infection due to HAV can be diagnosed by serological testing in the presence of anti-HAV immunoglobulin M (IgM) and immunoglobulin G (IgG). The presence of IgM antibodies is indicative of a recent HAV infection, while the detection of IgG antibodies suggests previous exposure to HAV or vaccination, as IgG antibodies persist over time and confer lifelong immunity. The measurement of IgG antibodies is an indirect method of measuring seroprevalence, overall and by age, and can be used to assess the endemicity level (i.e., the circulation of the HAV) in a given population.

Inactivated and live attenuated hepatitis A vaccines have proven to be immunogenic, well tolerated and safe in the target-vaccine population. The World Health Organization (WHO) recommends the inclusion of hepatitis A immunization into the national immunization schedule for children ≥1 year of age, taking into consideration the incidence of acute HAV cases, the endemicity level (high to moderate), and cost-effectiveness data. Notwithstanding this recommendation, the WHO states that vaccination should be part of a comprehensive plan for the prevention and control of viral hepatitis, including measures to improve hygiene, sanitation and outbreak control.

Broader access to clean water and sanitation, and improved socio-economic conditions are changing the epidemiology of HAV infection. Due to globalization, rising income, and better infrastructure, low- to middle-income countries are undergoing a shift from high/intermediate to low HAV incidence rates, and high-income countries are now non-endemic to HAV infection. Importantly, countries reporting low or intermediate HAV endemicity, including those countries in transition from high to low HAV endemicity, are particularly susceptible to recurrent outbreaks of symptomatic disease.

Given this context of evolving HAV epidemiology, the WHO Eastern Mediterranean Region (EMR) deserves attention. The EMR includes 21 member states and Palestine comprising nearly 600 million people. This region is comprised of middle-income (11) as well as high-income (6) and low-income (5) countries as classified by the World Bank (2017). In the last decade, EMR countries have documented a significant improvement in their socio-economic conditions. Advances in modern transportation and global accessibility, in particular, have boosted the travel and food industries. However, the EMR has also seen a rise in armed conflict, which has increased the rate of human migration and disease mobility. As a result, the EMR reports the highest global number of people displaced from their home countries. Refugees displaced from high endemicity countries represent a source of contagion for their new country, especially if their housing is crowded and with poor sanitation and hygiene conditions.

There is limited information on the epidemiology of HAV disease in EMR countries, specifically in relation to shifts of HAV endemicity. This review aims to explore HAV epidemiology by collecting and summarizing the serological data from the EMR region. The review highlights the importance of the EMR as a globalized hub for travel, migration, and food trade to bring awareness toward the probability of future global outbreaks of HAV disease (Figure 1).
Table 1. Inclusion and exclusion criteria.

Population	Inclusion criteria	Exclusion criteria
Intervention	Not restricted by intervention	Populations with chronic diseases or underlying comorbidities that are not representative of the general population
Comparator	Not restricted by comparator	N.A.
Outcome	Proportion of HAV among all acute viral hepatitis (HAV IgM) and HAV seroprevalence (HAV IgG)	N.A.
Study design	Primary peer-reviewed research observational studies	Non-primary research
	Cohort studies	Systematic reviews
	Case-control studies	Meta-analyses
	Cross-sectional studies	Narrative reviews (without methods)
	Ecological studies	Predictions via modeling methods
	Outbreak investigations	Case reports
	Periodic surveys	Letter to editor
	Non-peer-reviewed research	Newspaper
	Reports from national and regional databases or websites	Editorial
Limits		Comment
Publication date	All publications before 1980	Opinions
Geographic scope		
Afghanistan, Bahrain, Djibouti, Egypt, Islamic Republic of Iran, Republic of Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syrian Arab Republic, Tunisia, United Arab Emirates, Yemen	All countries apart from those considered eligible	
Language	English, French, Arabic	-

Note: HAV, hepatitis A virus; IgG, immunoglobulin G; IgM, immunoglobulin M; N.A., not applicable.

Methods

A comprehensive review utilizing a systematic approach was performed to identify published literature on HAV incidence and seroprevalence in the WHO-EMR covering 22 countries according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. According to these guidelines, we defined search sources, search strategy, the inclusion, and exclusion criteria to identify and select relevant publications, and the scope of data extraction prior to the conduct of the review.

Search sources and strategy

The search was conducted in MEDLINE (via PubMed) and complemented with a search of gray literature sources such as Ministry of Health (MoH) websites and reports from universities. We developed a broad search strategy using free-text terms ("HAV"; “COUNTRY NAME”) and medical subject heading (MeSH) terms linked by Boolean operators.

Searches were limited to a period of 40 years, i.e., from 1980 to July 2020. The lower limit of the period was considered appropriate by the authors as it allows to observe shifts in the burden of disease, if any. The countries of interest, based on the geographic scope of this review, were limited to the WHO-EMR covering 22 countries. Searches were conducted in both English and the local language of each included country (Table 1).

Screening and selection

The identified publications were screened in two phases by two reviewers in an independent process using the inclusion and exclusion criteria listed in Table 1. The retrieved articles were initially screened by title and abstract for eligibility by one reviewer (AO, MK, YL, or OO) followed by a second step which included screening of the full text of articles using the eligibility criteria specified in Table 1. All discrepancies were discussed with an additional reviewer (SB).

Original research from non-interventional studies or from gray literature sources was included if it reported data on the occurrence of hepatitis A (defined as previous exposure to HAV confirmed by laboratory detection of HAV IgM) and seroprevalence of HAV (defined as previous exposure to HAV confirmed by laboratory detection of HAV IgG or total HAV immunoglobulin (Ig) in blood samples). Case reports and other publication formats such as commentaries, editorials, and letters were excluded from this review. Reviews and meta-analyses were consulted with the intention to screen their reference lists for eligible articles.

Data extraction and reporting

The information extracted from selected studies included study characteristics (year of publication, study design, main objective of the study and sample size), age group of the study population and case definition (e.g., laboratory confirmation methods). The occurrence of HAV (HAV cases expressed as a proportion of all acute viral hepatitis cases) and HAV seroprevalence (expressed as a percentage of patients with previous exposure to HAV measured according to the test kit specifications) were extracted and reported. When available, the same outcomes were reported and compared by age group, socioeconomic status, year, type of setting (rural versus urban), and acute viral hepatitis caused by other types (hepatitis B virus, hepatitis E virus, etc.).
Results

Included studies and their characteristics

Overall, the search yielded 315 publications (MEDLINE: \(n = 296 \); gray literature: \(n = 19 \)). Of these, 157 were excluded at the title or abstract screening phase and 35 were further excluded after full-text review. Finally, a total of 123 publications for 22 countries in the EMR were included in the final review (Figure 2).

Among the 123 publications which provided data on hepatitis A disease for the 21 countries in the EMR and Palestine (Table 2), the distribution of publications by country was: Saudi Arabia \((n = 30) \),\(^{19–46} \) followed by Iran \((n = 28) \),\(^{47–74} \) Egypt \((n = 19) \),\(^{75–93} \) Pakistan \((n = 8) \),\(^{94–101} \) Lebanon \((n = 6) \),\(^{102–107} \) Tunisia \((n = 6) \),\(^{108–113} \) Iraq \((n = 4) \),\(^{114–117} \) Kuwait \((n = 3) \),\(^{118–120} \) Somalia \((n = 3) \),\(^{121–123} \) Djibouti \((n = 2) \),\(^{124,125} \) Jordan \((n = 2) \),\(^{126,127} \) Syria \((n = 2) \),\(^{128,129} \) UAE \((n = 2) \),\(^{130,131} \) Yemen \((n = 2) \),\(^{132,133} \) Afghanistan \((n = 1) \),\(^{134} \) Libya \((n = 1) \),\(^{135} \) Morocco \((n = 1) \),\(^{136} \) Palestine \((n = 1) \),\(^{137} \) Qatar \((n = 1) \),\(^{138} \) and Sudan \((n = 1) \) (Figure 3).\(^{139} \)

No study dealing with HAV could be identified for Bahrain and Oman. Among the countries included in this review, childhood hepatitis A vaccination has been implemented in the national immunization programs (NIP) of Bahrain, Oman, Qatar, Saudi Arabia, and Tunisia and only for high-risk groups in Iraq (Table 2). In most countries, however, hepatitis A vaccination is available in the private market (Table 2 and Figure 3).

Main findings from the review

Occurrence of HAV among acute viral hepatitis cases

A total of 41 studies provided data on HAV occurrence among all acute viral hepatitis cases. Overall, the proportion of HAV cases among acute viral hepatitis cases was large and ranged from 1.5% to 97.0% (Table 3). One study reported an increase in the proportion of HAV from 2001–2004 (40.2%) to 2014–2017 (89.7%); and reported a reduction in the proportion of patients infected with HAV before five years of age and an increase in the proportion of patients infected in an older age
group. In patients with acute viral hepatitis, coinfection with hepatitis B, C, and E was documented in nine studies (Table 3).

HAV seroprevalence

A total of 77 studies provided data on HAV seroprevalence. HAV seroprevalence ranged from 3% to 100%, depending on the age of the study population (Table 4). Overall, the EMR region has an intermediate level of HAV seroprevalence, and the data show a remarkable consistency. While seroprevalence studies from before the year 2000 showed nearly universal immunity among the general population in many countries of the EMR, after the year 2000, seroprevalence rates reveal that more adolescents and adults remain susceptible to HAV, although with significant variation within the region.

Main observations from the different countries are summarized in Table 4. In Afghanistan, a high seroprevalence (99%) was documented; HAV seroprevalence was higher among individuals >15 years of age compared to those <15 years of age (100% versus 91.7%). A study from 1987, in Djibouti, reported a prevalence of 98.5%. Seroprevalence surveys conducted in Egypt in the 1990s generally depicted a high immunity rate among children ≤5 years of age with 97.2–100% anti-HAV antibody prevalence. Studies from Egypt in the 2000s showed that 61.4% to 86.2% of children ≤6 years of age had immunity, and that 85.1% of patients with chronic liver disease had immunity. Studies from Iran indicate that most children and teenagers are susceptible to hepatitis A infection. A study conducted in Lebanon in the early 1980s highlighted that 79.5% of children had anti-HAV antibodies. Studies conducted in Pakistan in the 1980s, 1990s, and 2000s indicate that...
Figure 3. Classification of included countries by income level and hepatitis a vaccination status. Notes: NIP, national immunization program; UAE: United Arab Emirates.

Table 3. Occurrence of HAV among acute viral hepatitis cases (41 studies).

Studies by country	Data period, year(s)	Study population (number, age restrictions)	HAV, % (n)	
Djibouti	Coursaget et al., 1998	1992–1993	111 pts, 2–65 y	33% (37)
Egypt	Foudad et al., 2018	2015–2017	268 pts, 1–18 y	97% (260)
	Talaat et al., 2019	2014–2017	9,321 pts, all ages	93.4% (7,806)
	Hasan et al., 2016	2007–2008	123 pts, 2–18 y	13.8% (17)
	Eldin et al., 2019	2007–2008	235 pts, 1–65 y	8.1% (19)
	Meky et al., 2006	2002–2005	47 community residents, 2–77 y	8.5% (4)
	Talaat et al., 2010	2001–2004	5,909 pts, all ages	28.5% (1,684)
	Zakaria et al., 2007	2001–2002	200 pts, all ages	34% (68)
		1983	235 pts, all ages	2.1% (5)
	Hyams et al., 1992	1987–1988	73 outpatients, ≤13 y	41% (30)
	Divizia et al., 1993	1993	202 hospitalized pts, 1–73 y	10.4% (21)
	Yousef et al., 2013	n.r.	33 hospitalized children	33% (11)
	Zaki Mi et al., 2008	n.r.	162 children	34.1% (n.r)
	Darwish et al., 1992	n.r.	200 adult pts, 20–40 y	4.5% (9)
Iran	Karimi et al., 2015	2010	70 pts	68.6% (48)
Iraq	Al-Naaimi et al., 2012	2010–2011	2,629 pts, all ages	44.8% (1,206)
	Turk et al., 2011	2005–2006	2,973 pts, all ages	41% (1,219)
	Marcus et al., 1993	n.r.	107 pts, 1.5–65 y	40.2% (43)
	Bassam et al., 1989	n.r.	253 hospitalized pts, 3–65 y	15% (39)
Kuwait	Al-Kandari et al., 1986	1983–1984	1,788 pts, all ages	1.5% (26)
	Al-Kandari et al., 1987	1980–1984	52 pregnant pts, 15–44 y	11.5% (6)
Lebanon	Shamama et al., 1984	1980–1981	93 pts, >12 y	35.5% (33)
Pakistan	Khan et al., 2011	2007–2008	89 pts, all ages	6.1% (4)
	Ahmed et al., 2010	1987–2007	346 outpatients, all ages	3.5% (12)
	Waheed-uz-Zaman et al., 2006	2003–2004	626 pts, all ages	40.6% (252)
	Syed et al., 2003	1994–1999	658 pts, 11 y and over	64.4% (424)
	Haider et al., 1994	1991	93 hospitalized pts, all ages	5.4% (5)
Qatar	Glynn et al., 1985	1981	126 hospitalized pts, 13–52 y	5.5% (7)
Saudi Arabia	Al-Tawfiq et al., 2008	2000–2005	1,214 pts, 1–94 y	10% (120)
	Memish et al., 2003	1999–2001	3,490 pts, all ages	8.2% (286)
		1999:	1,194 pts	6.7% (80)
		2000:	1,039 pts	6.9% (72)
		2001:	1,257 pts	10.7% (134)
	Fathalla et al., 2000	1987–1999	683 pediatric pts	65% (641)
	Ayoola et al., 2001	1997–1998	246 pts, all ages	37% (91)

(Continued)
Table 3. (Continued).

Studies by country	Data period, year(s)	Study population (number, age restrictions)	HAV, % (n)
Arif et al., 1995³⁴	1993–1994	133 pts, all ages	38.3% (51)
Yohannan et al., 1990⁹⁶	1987	47 pts, <12 y	72% (34)
Al-Majed et al., 1990⁹⁸	n.r.	23 pts, all ages	82.6% (19)
Al-Knawy et al., 1997⁷⁹	n.r.	132 hospitalized pts, >3 y	81.8% (108)
Sudan			
Hyams et al., 1991¹³⁹	1987–1988	80 outpatients, <14 y	33.8% (27)
Syria			
Al-Azmeh et al., 1999¹²⁹	1995–1998	193 pts, >12 y	53.9% (104)
Tunisia			
Neffatti et al., 2017¹¹⁰	2014–2015	92 pts, 1-62 y	21.7% (20)
Gharbi-Khelifi et al., 2012¹¹²	2006–2008	400 pts, 1-60 y	19.8% (79)
Hellera et al., 2014¹¹³	2004–2005	105 pts, 15–65 y	34.3% (36)
Yemen			
Gunaid et al., 1997¹³³	n.r.	78 pts, ≥13 y	5.1% (4)

HAV, hepatitis A virus; n, number of study participants who were anti-HAV positive; n.r., not reported; pts, patients; y, years.

Table 4. Seroprevalence of HAV (77 studies).

Studies by country	Data period, year(s)	Study population (number, age restrictions)	HAV seroprevalence (IgG), % (n*)
Afghanistan			
Carmoi et al., 2009¹³⁴	2008	102 anicteric pts, 5–65 y	99% (101)
 	 	 	9% (10)
Djibouti			
Fox et al., 1988¹²⁴	1987	400 healthy adults	98.5% (394)
Egypt			
El-Karaksy et al., 2008⁷⁷ and El-Karaksy et al., 2006⁷⁸	2004	101 children with chronic liver disease (CLD), <18 y	85.1% (86)
 	 	 	84.5% (86)
Al-Aziz et al., 2008⁷⁵	2002–2003	296 children with minor illnesses, 2.5–18 y	61.4% (181)
 	 	 	61% (181)
Salama et al., 2007⁸¹	2003–2004	426 children with minor medical problems, 3–18 y	86.2% (367)
 	 	 	86% (367)
Darwish et al., 1996⁷⁶	1994	155 healthy community residents, 1–67 y	100% (155)
 	 	 	100% (155)
Kamel et al., 1995⁷⁹	1992	1,259 healthy community residents, all ages	97.2% (1224)
 	 	 	97% (1224)
Omar et al., 2000⁶⁰	n.r.	228 community residents, preschool children	26.3% (60)
Iran			
Mirzaei et al., 2016⁶⁰	2014–2015	108 hemophilic pts, 4–85 y	77.8% (84)
 	 	 	77% (84)
Hesamizadeh et al., 2016⁵³	2014	559 volunteer blood donors, >18 y	70.7% (395)
 	 	 	70% (395)
Hosseini Shokouh et al., 2015⁷⁴	2012–2014	270, healthy medical students, 18–30 y	34.8% (94)

(Continued)
Table 4. (Continued).

Studies by country	Data period, year(s)	Study population (number, age restrictions)	HAV seroprevalence (IgG), % (n*)
Vasemehjani et al., 2015[53]	2012–2013	159, CLD pts, 21–68 y	79.2% (126)
Izadi et al., 2016[55]	2011–2013	1,554, healthy soldiers, 18–60 y	80.3% (1,248)
Farajzadegan et al., 2014[52]	2003–2013	11,857 cumulative population of 16 studies (systematic review), all ages	51%–66%
Jahanbakhsh et al., 2018[56]	2012	569 homeless adults, 18–60 y	94.3% (nr)
Asaei et al., 2015[58]	2011–2012	1,030, healthy individuals, 0.5–95 y	66.2% (682)
Bayani et al., 2013[50]	2011–2012	466 healthy healthcare workers	71% (330)
Rabiee et al., 2013[63]	2011	1,813, healthy university students	39.8% (722)
Shoaei et al., 2012[69]	2010–2011	117, chronic hepatitis C pts	94.9% (111)
Vakili et al., 2014[72]	2010	1,028, healthy 1st year medical students, 17–27 y	68.5% (704)
Saffar et al., 2012[67]	2010	984, community residents, 1–30 y	19.2% (189)
Mostafavi et al., 2016[63] and Hoseini et al., 2016[64]	2009–2010	2,494, national health survey participants, 10–18 y	40%–78.8% across provinces
Sofian et al., 2010[70]	2009	1,065, pediatric hospital pts, 0.5–20 y	64% (1,597)
Taghavi et al., 2011[71]	2008–2009	1,050, pre-marriage lab analysis, 15–63 y	88.2% (927)
Ramezani et al., 2011[64]	2008	351, blood donors, 17–60 y	94.9% (333)
Saneian et al., 2014[46]	2007	361, healthy medical students	75.3% (272)
Alian et al., 2011[59]	2007	1,034, community residents, 1–25 y	38.9% (402)
Mohebbi et al., 2012[61]	2006–2007	551, community residents, 1–83 y	90.0% (496)
Merat et al., 2010[59]	2006	1,869, community residents, 18–65 y	86%
Davoudi et al., 2010[61]	2005–2006	247 HIV+, 5–74 y	96.3% (238)
Ataei et al., 2008[49]	2006	816, community residents, >6 y	8.3%
Roushan et al., 2007[75]	2004–2005	392, HBsAg+ pts, 10–70 y	82.1% (332)
Mehr et al., 2004[48]	2002	1,018, children in pediatric hospital, 0.5–15 y	22.3% (227)
Saberifroozi et al., 2005[56]	n.r.	204, pts in liver clinic, adults	98% (200)

(Continued)
Table 4. (Continued).

Studies by country	Data period, year(s)	Study population (number, age restrictions)	HAV seroprevalence (IgG, % (n*))				
Jordan							
Hayajneh et al., 2015¹²⁷	2008	3,066, community residents, 0–85 y	51% ● 1 y: 24% ● 1–2 y: 26% ● 2–4 y: 32% ● 5–9 y: 44% ● 10–14 y: 63% ● 15–19 y: 78% ● >20 y: 94%				
Kuwait							
Alkhalidi et al., 2009¹¹⁸	2003–2004	2,851, healthy adults	28.6% (816) ● 18–27 y: 24.2% ● 28–40 y: 51% ● 41–60 y: 56.5%				
Lebanon							
Melhem et al., 2015¹⁰⁴	2012–2013	283, blood donors	72% ● 19–29 y: 60% ● 30–39 y: 77% ● 40–49 y: 94% ● 50–59 y: 91% ● 71.3% (643) ● 0.5–6 y: 14.7–21% ● 7–15 y: 37.6–40.1% ● 1979–2000	51% (400), 1999–2000	29.3% (217), 1996–1998	148% (262), 1999–2000	148% (262), 1999–2000
Bizi et al., 2006¹⁰²	1999–2000	902, school children, 14–18 y	43.2% (262) ● 1–5 y: 10.5% ● 6–10 y: 27.7% ● 11–15 y: 57.4% ● 16–20 y: 70.1% ● 21–30 y: 78.1% ● 127% (262), 2001–2005	60% (144), 1999–2000	45.2% (262), 1999–2000	70.1% (262), 1999–2000	70.1% (262), 1999–2000
Kalaajieh et al., 2000¹⁰³	1996–1998	740, pediatric clinic pts, 0.5–15 y	39% (217), 1996–1998	39% (217), 1996–1998			
Sacy et al., 2005¹⁰⁵	1999–2000	606, healthy volunteers visiting or working in four hospitals, 1–30 y	71% (400), 1999–2000	71% (400), 1999–2000			
Shamma'a et al., 1982¹⁰⁷	n.r.	772, mixed sample of pts	772, mixed sample of pts				
Libya							
Gebreel et al., 1983¹³⁵	1979–1981	400, school children, 3–18 y	60%–100% ● 1–5 y: 89% ● 6–10 y: 28% ● 11–15 y: 69% ● 16–20 y: 92% ● 21–30 y: 97% ● 30–39 y: 98% ● 40–50 y: 99%				
Morocco							
Bouskraoui et al., 2009¹³⁶	2005–2006	150, children, 0.5-14 y	51% ● 6 y: 45.2% ● 6–14 y: 70.3%				
Palestine							
Yassin et al., 2001¹¹⁷	n.r.	396, school children, 6–14 y	93.7%, 6 y: 87.8%, 14 y: 97.5%				
Pakistan							
Aziz et al., 2007⁹⁵	2002–2004	380, children from squatter settlements, <18 y	≥14 y: 100% ● <5 y: 41% (98/239) ● 5–9 y: 100% (19/19)				
Agboatwalla et al., 1994⁹⁴	1990–1991	258, healthy children (239) and adults (19)	55.8% (144), 1990–1991	55.8% (144), 1990–1991			
Hamid et al., 2002⁹⁶	n.r.	233, adult outpatients with CLD	97.8% (228), 2002	97.8% (228), 2002			
Saudi Arabia							
Alshabanat et al., 2013³¹	2006–2010	44,679, viral hepatitis pts, all ages	17% (7,566) ● 18–20 y: 17% (7,252) ● 21–25 y: 13% (7,030) ● 26–30 y: 10% (6,808) ● 31–35 y: 7% (4,586) ● 36–40 y: 5% (3,464) ● 41–45 y: 3% (2,342) ● 46–50 y: 2% (1,220) ● 51–55 y: 1% (700) ● 56–60 y: 1% (580) ● 61–65 y: 0.5% (340) ● 66–70 y: 0.5% (220) ● 71–75 y: 0.5% (110) ● 76–80 y: 0.5% (50) ● 81–85 y: 0.5% (20)				
Al-Faleh et al., 2008⁸³	2007–2008	1,357, school children, 16–18 y	18.6% (253), 2007	18.6% (253), 2007			
El-Gilany et al., 2010¹⁹	2006–2007	950, children attending regular vaccination schedule, 1–6 y	33.8% (321), 2007	33.8% (321), 2007			
Almuneef, et al., 2006²⁹	2001–2005	4,006, healthcare workers	67% (400), 2001–2005	67% (400), 2001–2005			
Almuneef et al., 2000³⁰	2005	2,399, all ages	28.9% (694), 2005	28.9% (694), 2005			
Jaber, 2006⁴¹	2004	527, aged 4–14 y	≥16 y: 52%, 2004	≥16 y: 52%, 2004			
Al-Ghamdi et al., 2004³⁶	2003	650, children – 1st year primary school	28.2% (53), 2003	28.2% (53), 2003			

(Continued)
Table 4. (Continued)

Studies by country	Data period, year(s)	Study population (number, age restrictions)	HAV seroprevalence (IgG), % (n*)
Fathalla et al., 2000⁴⁰	1987–1999	11,674, healthy children and adults (18–50 y)	86% (10,029)
			● children: 65%
			● adults: 78.8%
			Detailed in children:
			● <6 y: 3%
			● 6–<8 y: 62%
			● 8–<10 y: 71%
			● 10–<12 y: 83%
			● 12–<18 y: 93%
			25% (1,331)
			● 1–2 y: 16%
			● 3–4 y: 22%
			● 5–6 y: 25%
			● 7–8 y: 29%
			● 9–10 y: 34%
			● 11–12 y: 34%
Al-Faleh et al., 1999³⁴	1997	5,355, community residents, children 1–12 y	30.2% (179)
Khalil et al., 1998⁴²	1995–1996	592, children in regular appointments or inpatient care, <16 y	89% (353)
			● <0.5 y: 65.5%
			● 0.5–2 y: 60%
			● 3–5 y: 83.3%
			● 6–12 y: 97.8%
			● >13 y: 100%
			33.1% (348)
Al Rashed, 1997²³	1989	4,375, community residents, children, 1–10 y	52.4%
Ashraf et al., 1986³⁵	1985	55, hemodialysis pts, all ages	100%
Ashraf et al., 1986³⁶	1984–1985	395, healthy blood donors or minor illness pts, all ages	89% (353)
			● <0.5 y: 65.5%
			● 0.5–2 y: 60%
			● 3–5 y: 83.3%
			● 6–12 y: 97.8%
			● >13 y: 100%
Babaeer et al., 2011³⁸	n.r.	1,050, pts, >2 y	82.5% (837)
			● <1 y: 67.9%
			● 1–4 y: 38.6%
			● 5–9 y: 61.3%
			● 10–15 y: 81.5%
			● 16–19 y: 83.5%
			● 20–29 y: 91%
			● 30–39 y: 93.5%
			● ≥40 y: 95%
Ramia, 1986⁶²	n.r.	1,015, Riyadh residents, all ages	90.9%
			● <1 y: 67.9%
			● 1–4 y: 38.6%
			● 5–9 y: 61.3%
			● 10–15 y: 81.5%
			● 16–19 y: 83.5%
			● 20–29 y: 91%
			● 30–39 y: 93.5%
			● ≥40 y: 95%

Somalia

Hassan-Kadie et al., 2018¹²¹	[4 studies published from 1984 to 1994]	Participants in the 4 studies, all ages	90.2%
Bile et al., 1992¹²²	n.r.	672, children in 2 residential institutions, <18 y	96% (Shebel)
Mohamud et al., 1992¹²³	n.r.	593, 0–83 y	90%

(Continued)
more than half of children acquire immunity by their preschool years and nearly all adolescents and adults are immune.194–196 Earlier seroprevalence surveys conducted in Saudi Arabia generally reported high proportions of children and teenagers with acquired immunity,23,36,40,45 but noted lower seroprevalence in urban areas.33,42 In the same population, studies after the 2000s generally report lower immunity levels21,30,41 (Table 4). Studies from Kuwait,118 Tunisia,108 and the United Arab Emirates131 conducted in the 2000s show 10.2 to 31.5%131 HAV seroprevalence in children, and immunity in only 21% of young adults.130 In Morocco, the high overall HAV prevalence reported in 2005–2006 in children confirms that Morocco is an intermittently endemic area for HAV infection and is entering a transitional phase.136 Infection rates in children were high in other countries, such as in Libya,135 Yemen,132 Somalia,121,122 Syria,128 Tunisia111 and in some special populations, such as those living in Palestine.137

Temporal trends in HAV seroprevalence

Five studies reported HAV seroprevalence over time.21,24,42,92,109 These studies reveal that the HAV frequency rate is decreasing over time; this reduced force of infection has significantly increased the average age at infection. One study documented an increase in HAV occurrence in a large Egyptian hospital from 2.1% (1983) to 34% (2002); this is likely caused by delayed initial exposure to HAV resulting in symptomatic cases at older ages.92 Most of these cases occurred in older age groups, with only 20 (29%) of 68 infected patients being younger than five years, compared to 80% in 1983, and 22 (32%) of 68 patients above 9 years of age compared with 1 (20%) of 5 patients in 1983.92

Socioeconomic aspects of HAV seroprevalence

HAV seroprevalence data by area of residence was reported in 10 studies. Overall, a higher seroprevalence of HAV was generally reported among individuals residing in rural areas compared to urban areas, likely due to limited access to improved water sources and to sanitation facilities.23,26,47,52,55,59,60,62,89,90 Four studies reported data on HAV seroprevalence by socioeconomic status,21,23,75,81 collectively the data shows that individuals or families from low-income households (36.8 to 87.7%) had higher HAV seropositivity compared to individuals from middle- or high-income households (5.9 to 50.7%).

Table 4. (Continued).
Studies by country
Syria
Antaki et al., 2000128
Tunisia
Neffatti et al., 201710
Louati et al., 2009109
Rezig et al., 2008111
Letaeif et al., 2005108
United Arab Emirates
Sheek-Hussein et al., 2012130
Sharar et al., 2008131
Yemen
Bawazir et al., 2010132

CLD, chronic liver disease; HAV, hepatitis A virus; HBsAg, surface antigen of the hepatitis B virus; HIV, human immunodeficiency virus; IgG, immunoglobulin G; n, the number of study participants who were anti-HAV positive (if available); n.r. not reported; pts, patients; y, year(s).*
Discussion

To our knowledge, this is the first comprehensive review of hepatitis A epidemiology in the EMR. We expect the findings of this review to help raise awareness and inform the development of appropriate interventional strategies to manage the evolving epidemiological situation in the region as well as globally. In recent decades, HAV seroprevalence has been declining in most parts of the world, mainly due to improvement in socioeconomic status, better access to clean water, sanitation, and in some cases, to active immunization. In the EMR, HAV seroprevalence rates are generally high with recent evidence indicating a delay of viral exposure into adulthood in most countries of the region.\(^\text{140}\)

This change leaves older children, adolescents, and adults more likely to develop overt disease. Similar observations have been made in other developing countries in Asia (India, Thailand, and Taiwan),\(^\text{141}\) Latin America (Argentina, Brazil, Chile, Dominican Republic, Mexico, and Venezuela)\(^\text{142}\) including a recent comprehensive review on all Latin American countries,\(^\text{143}\) and Africa (South Africa).\(^\text{144}\) Given that the severity of HAV symptoms increases with age,\(^\text{3}\) it may be appropriate for the EMR countries with a high proportion of susceptible older children and adults to consider implementing HAV vaccination programs. These programs could target certain populations such as young children, and simultaneously could foster improvements in access to clean water, sanitation, and hygiene in the region.\(^\text{2}\)

Considering the evolving situation with regard to international trade (specifically food and travel) and rising conflict in the region, the epidemiological context in the EMR is expected to have consequences for global public health. Measures such as immunization of risk groups like travelers and food handlers, and the creation of a common standard for the health, reception, and reporting of asylum seekers and refugees from this region should be considered. Advances in modern transportation and global accessibility have boosted the travel industry in the region. In Europe, travel continues to cause both imported cases and secondary transmission.\(^\text{145}\) Travel to and from countries with high or intermediate HAV endemicity is a risk factor for infection in residents of countries with low HAV endemicity, such as countries in Europe and North America. Individuals may be exposed to HAV during their travels and thus may transmit the imported infection within their communities, leading to subsequent outbreaks.\(^\text{140}\)

GeoSentinel, the global surveillance network of the International Society of Travel Medicine reported 120 cases of hepatitis A among 737 international travelers to India, Egypt, Morocco and Mexico, between 2007 and 2011.\(^\text{146}\) Another study reported that 80 cases of HAV infection were diagnosed among European travelers returning from Egypt.\(^\text{147}\)

Two concurrent travel-related HAV clusters were detected in eight European countries after travel to Morocco.\(^\text{148}\)

EMR countries have undergone rapid urbanization and changes in lifestyle and consumer demands. These changes have had a profound effect on the production, supply, availability, and consumption of food.\(^\text{149}\) In the last few decades, international food trade from the EMR has accelerated but the recent coronavirus disease 2019 (COVID-19) pandemic has, at least temporarily, brought this to a standstill. Notwithstanding the effects of COVID-19 on global travel and trade, risks of HAV contaminated food remain high, with the WHO Foodborne Disease Burden Epidemiology Reference Group estimating that more than 90,000 deaths occurred worldwide due to acute viral hepatitis in 2010. Nearly 30,000 of those deaths could be due to foodborne transmission of HAV.\(^\text{150}\)

The risk is elevated when food products are imported from high and intermediate HAV endemic countries or from countries with poor food processing practices.\(^\text{149}\) Furthermore, the HAV capsid has a highly stable molecular structure which allows it to persist in certain types of foods for extended periods of time and withstand common food processing practices.\(^\text{151}\) The European Union has reported two HAV infection outbreaks in 2013 due to frozen strawberries imported from Egypt and Morocco,\(^\text{152}\) and imported pomegranate seeds from Egypt have been traced as the source of an HAV infection outbreak in British Columbia, Canada, in 2012.\(^\text{153}\)

Some areas in the EMR (i.e., Iraq, Iran, Syria, Palestine, and Yemen) are at the center of turmoil, with conflicts having a significant impact in these countries and beyond the region. The economic and health situation in these countries continues to worsen.\(^\text{154}\) Regional instability leads to difficulties in addressing public health issues while migratory movements are continuously being reported. One of the ramifications of migration from areas of conflict is the resurgence of infectious diseases such as hepatitis A, especially in low-endemic countries. This could possibly be driven by the influx of refugees and their settlement in underserved camps. Poor sanitation, hygiene, and inadequate supply of clean food and water in refugee camps are likely contributors to the rapid spread of HAV. A HAV outbreak was reported among Syrian refugees residing in hosting camps in Greece in 2016.\(^\text{155}\) A 45% increase in HAV cases among asylum seekers was reported in Germany in 2015–2016.\(^\text{156}\) In 2015, asylum applications in Europe amounted to approximately 1.35 million—a record since data collection began in 2008 and more than twice the number of applications than in 2014.\(^\text{157}\)

While the COVID-19 pandemic may have slowed this trend due to restrictions affecting global travel and trade,\(^\text{158}\) careful monitoring of the situation and timely action to mitigate the risks of hepatitis A outbreaks are warranted.

There are some limitations of this review which are worth noting in the interpretation of the overall findings. A time limit was applied to the searches to identify publications beginning from 1980 onwards. This was considered appropriate by the authors to notice any shift in the burden of disease. More than half of the eligible studies identified in this review are from three countries (Egypt, Iran, and Saudi Arabia). Therefore, generalizability is limited to the countries from which most studies were reported and should not be extended to countries with very poor data representation, i.e., those with a few relevant studies or none at all. There is also a lack of consistency in study designs and age groups reported across the studies which prevents direct comparisons. This is compounded by the fact that the region is diverse with different income levels and healthcare infrastructure. Another factor that limits comparison is the different time periods considered within the studies. Finally, the data reported in this review
was collected prior to COVID-19 and as such it does not reflect the travel and trade restrictions imposed on the countries in the EMR during the years 2020 and 2021. Due to these reasons, the overall findings should be interpreted with caution.

Conclusion

In the EMR, hepatitis A remains a significant cause of acute viral hepatitis. While the populations in low-income countries show universal immunity to HAV, the middle- and high-income countries report increasing numbers of susceptible older children, adolescents, and adults which co-exist in rapidly developing societies. Given this shift in endemicity, it is expected that most of the countries in this region would experience a transition in HAV endemicity in the next decades, the consequence of which will be a higher burden of disease as the population ages, and the occurrence of outbreaks. The public health value of childhood vaccination against hepatitis A and of vaccinating only high-risk groups such as those traveling from and to the region should be assessed within this changing epidemiological context in the EMR.

Acknowledgements

The authors thank Business & Decision Life Sciences platform for editorial assistance and manuscript coordination, on behalf of GSK. Amandine Radziewoski coordinated publication development and editorial support. Amrita Ostawal (Aretune Communication UG, on behalf of GSK) provided writing support.

Authors’ contributions

SB, MAG, MK, YL, OO, and KH performed the literature search. All authors participated in the design or implementation or analysis, and interpretation of the study, and the development of this manuscript. All authors had full access to the data and gave final approval before submission.

Disclosure statement

All authors are employed by the GSK group of companies. SB, SÖ, MAG, MK, YL, KH, and DS hold shares in the GSK group of companies. All authors declare no other financial and non-financial relationships and activities.

Funding

GlaxoSmithKline Biologicals S.A. funded this study and was involved in all stages of study conduct, including analysis of the data. GlaxoSmithKline Biologicals S.A. also took in charge and all costs associated with the development and the publishing of this manuscript.

ORCID

Selin Badur http://orcid.org/0000-0002-0490-7203
Serdar Öztürk http://orcid.org/0000-0002-5885-6173
Mohammad AbdelGhany http://orcid.org/0000-0002-3342-9730
Mansour Khalaf http://orcid.org/0000-0001-7899-5034
Youness Lagoubi http://orcid.org/0000-0002-4153-1647
Onur Ozudogru http://orcid.org/0000-0002-7668-466X
Kashif Hanif http://orcid.org/0000-0001-6088-6024
Debasish Saha http://orcid.org/0000-0001-7626-9653

References

1. World Health Organization. The immunological basis for immunization series: module 18: hepatitis A; 2011 [accessed 2021 Feb 21]. https://apps.who.int/iris/handle/10665/44570
2. World Health Organization. WHO position paper on hepatitis A vaccines – June 2012. Wkly Epidemiol Rec. 2012;87(28-29):261–76.
3. Foster MA, Penina Haber P, Nelson NP, Hepatitis A. In: Hamborsky J, Kroger A, Wolfe Seditors, Epidemiology and prevention of vaccine-preventable diseases, 13. https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/hepa.pdf. Center for Disease Control and Prevention. Washington DC: Public Health Foundation;2015, pp. 125–42
4. Wolff MH, Schmidt A. Hepatitis A infection. In: Weber O, and Procter U, editors. Comparative hepatitis. Basel: Birkhäuser Basel; 2008. p. 121–34
5. Lemon SM, Ott JJ, Van Damme P, Shouval D. Type A viral hepatitis: a summary and update on the molecular virology, epidemiology, pathogenesis and prevention. J Hepatol. 2018;68(1):167–84. doi:10.1016/j.jhep.2017.08.034.
6. Lolekha S, Pratuangtham S, Pupanich W, Bowonkiritakiphorn C, Chimabutra K, Weber F. Immunogenicity and safety of two doses of a paediatric hepatitis A vaccine in Thai children: comparison of three vaccination schedules. J Trop Pediatr. 2003;49(6):333–39. doi:10.1093/txp/49.6.333.
7. Raczniai GA, Bulkow LR, Bruce MG, Zanis CL, Baum RL, Snowball MM, Byrd KK, Sharapov UM, Hennessy TW, McMahon BJ, et al. Long-term immunogenicity of hepatitis A virus vaccine in Alaska 17 years after initial childhood series. J Infect Dis. 2013;207(3):493–96. doi:10.1093/infdis/jjt510.
8. Sharapov UM, Bulkow LR, Negus SE, Spradling PR, Homan C, Drobeniuc J, Bruce M, Kamili S, Hu DJ, McMahon BJ, et al. Persistence of hepatitis A vaccine induced seropositivity in infants and young children by maternal antibody status: 10-year follow-up. Hepatology. 2012;56(2):516–22. doi:10.1002/hep.25687.
9. Itani T, Jacobsen KH, Nguyen T, Wiktor SZ. A new method for imputing country-level estimates of hepatitis A virus endemicity levels in the Eastern Mediterranean region. Vaccine. 2014;32 (46):6067–74. doi:10.1016/j.vaccine.2014.09.006.
10. Korouglu M, Jacobsen KH, Demiray A, Ozbek A, Erkorkuzm U, Altindis M. Socioeconomic indicators are strong predictors of hepatitis A seroprevalence rates in the Middle East and North Africa. J Infect Public Health. 2017;10(5):513–17. doi:10.1016/j.jiph.2016.09.020.
11. Möhd Hanafi K, Jacobsen KH, Wiersma ST. Challenges to mapping the health risk of hepatitis A virus infection. Int J Health Geogr. 2011;10(1):57. doi:10.1186/1476-072X-10-57.
12. World Health Organization. The global prevalence of hepatitis A virus infection and susceptibility: a systematic review. WHO/IVB/10.012.010; 2010 [accessed 2020 Nov 4]. https://apps.who.int/iris/handle/10665/70180
13. World Health Organization. Regional office for the Eastern Mediterranean. [accessed 2020 Nov 4]. http://www.emro.who.int/countries.html
14. The World Bank. World Bank country and lending groups. [accessed 2020 Nov 4]. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519
15. Aljouni K, Al-Mazzouq YY, Ammar WS, Daar AS, Daulaire N, Ezzati M, Fatihalla M, Housain DP, Kickbusch I, Mechbal A, et al. Refugees in the eastern Mediterranean region. Lancet. 2015;386 (10012):2476–77. doi:10.1016/S0140-6736(15)01242-8.
16. Safiabadi M, Rezaee-Zarevah S, Moayed Alavian S. Estimation of hepatitis A virus infection prevalence among Eastern Mediterranean and Middle Eastern countries: a systematic review and pooled analysis. Hepat Mon. 2017;17(2):e44695. doi:10.5812/hepatmon.44695.
56. Jahanbakhsh F, Bagheri Amirf F, Sedaghat A, Fahimifar N, Mostafavi E. Prevalence of HAV Ab, HEV (IgG), HSV2 IgG, and Syphilis among sheltered homeless adults in Tehran, 2012. Int J Health Policy Manag. 2018;7(3):225–30. doi:10.15171/ijhpm.2017.74.

57. Karimi A, Mortazaee S, Moradi MT. High prevalence of symptomatic Hepatitis A infection in rural area of Chaharmahal VA Bakhthiari Province, Iran. J Clin Diagn Res. 2015;9(2):Dc01–3. doi:10.1007/s11756-015-9985-5.

58. Mehr AJ, Ardakani MJ, Hedayati M, Shahraz S, Mehr EJ, Zali MR. Age-specific serorelevance of hepatitis A infection among children and adolescents in Kashmir, Iran. J Clin Microbiol Infect. 2015;143(3):534–39. doi:10.1097/01.TMI.0000480806.00806.00.

59. Hosseini Shokouh SJ, Dadashi A, Abiri M, Zohrevand I, Eshraghian A, Khoshdel A, Heidari B, Khoshkshi S. HAV immunity in Iranian Medical Students. Hepat Mon. 2015;15(3):e26219. doi:10.5812/hepatmon.26219.

60. Al-Aziz AM, Awad MA. Serorelevance of Hepatitis A virus antibodies among a sample of Egyptian children. East Mediterr Health J. 2008;14:1028–35.

61. Darwish MA, Faris R, Clemens JD, Rao MR, Edelman R. High serorelevance of hepatitis A, B, C, and E viruses in residents in an Egyptian village in the Nile Delta: a pilot study. Am J Trop Med Hyg. 1996;54(6):554–58. doi:10.4269/ajtmh.1996.54.554.

62. El-Karaksy H, El-Sayed R, El-Raziky M, El-Koofy N, Mansour S. Cost-Effectiveness of prescreening versus empirical vaccination for hepatitis A in Egyptian children with chronic liver disease. East Mediterr Health J. 2006;10(9):830–49.

63. El-Karaksy HM, El-Hawy MI, El-Koofy NM, El-Sayed R, El-Raziky MAS, Mansour SA, Taha GM, El-Mougy F. Safety and efficacy of hepatitis A vaccine in children with chronic liver disease. World J Gastroenterol. 2006;12(45):7337–40. doi:10.3786/wjg.v12.i45.7337.

64. Kamel MA, Troonen H, Kapprell HP, El-Ayady A, Miller FD. Seroepidemiology of hepatitis E virus in the Egyptian Nile Delta. J Med Virol. 1995;47(4):399–403. doi:10.1002/jmv.890470417.

65. Omar AA, Hashim MH. Screening for hepatitis A virus antibodies among a disadvantaged group of preschool children in Alexandria, Egypt. Public Health Assoc. 2000;75:529–39.

66. Salama H, Samy SM, Shaaban FA, Hassanin AI, Abou Ismail LA. Serorelevance of hepatitis A virus antibodies among children of different socioeconomic status in Cairo, East Mediterr Health J. 2007;13(6):1256–64. doi:10.26719/2007.13.6.1256.

67. Darwish MA, Shaker M, Al-Kady AM. Non-A, non-B viral hepatitis in Egypt. J Egypt Public Health Assoc. 1992;67:171–79.

68. Divizia M, Gabrieli R, Stefanoni ML, Ghazzawi EE, Kader OA, Gamil F, Sawaf GE, Sherbini EE, Saleh E, Degener AM, et al. HAV and HEV infection in hospitalised hepatitis patients in Alexandria, Egypt. J Epidemiol. 1999;15(7):603–09. doi:10.1034/j.1574-8745.1999.150706.x.

69. Eldin SS, Seddik I, Daef EA, Shata MT, Raaft M, Abdel Baky L, Nafeh MA. Risk factors and immune response to hepatitis E virus in Egyptian children with acute hepatitis E virus infection, Assuit, Egypt. Egypt J Immunol. 2010;17:73–86.

70. Fouad HM, Reyad EM, El-Din AG. Acute hepatitis A is the chief etiology of acute hepatitis in Egyptian children: a single-center study. Eur J Clin Microbiol Infect Dis. 2018;37(10):1941–47. doi:10.1007/s10026-018-3329-0.

71. Hasan G, Assiri A, Marzouk N, Daef E, Abdelwahab S, Ahmed M, Mohamad I, El-Eyadhy A, Alhaooboob A, Tenshah MH. Incidence and characteristics of hepatitis E virus infection in children in Assiut, Upper Egypt. Int J Med Res. 2016;44(5):1115–22. doi:10.14456/IJMR.2016.093.

72. Hyams KC, McCarthy MC, Kaur M, Purdy MA, Bradley DW, Mansour MM, Gray S, Watts DM, Carl M. Acute sporadic hepatitis E in children living in Cairo, Egypt. J Med Virol. 1992;37(4):274–77. doi:10.1002/jmv.890370407.

73. Melk FY, Stoszek SK, Abdel-Hamid M, Selim S, Wahab AA, Milkail N, El-Kafrawy S, El-Daly M, Abdel-Aziz F, Sharaf S, Mohamed MK. Active surveillance for acute viral hepatitis in rural villages in the Nile Delta. Clin Infect Dis. 2006;42(5):628–33. doi:10.1086/500133.
98. Al-Moslih M, Al-Tawil N, Karray-Hakim S, Miyake T, Tropydis S, Hashem F, Trop Infect Dis. 2007;21(12):1265–71. doi:10.1093/ije/dym183.

99. Chibana K, Ishii H, Morishita T, Aouni M, Séroprévalences de l’hépatite B en Tunisie et comparaison avec l’hépatite B sero-épidémiologie. J Trop Med Hyg. 2007;60(3):109–14. doi:10.1051/jmed:2007004.

100. Dada-Hassan E, Emira E, Al-Kandari ZA. Serodiagnosis of hepatitis B virus in Serum samples of Egyptian patients with clinical symptoms of viral hepatitis. J Trop Med Hyg. 2007;60(3):109–14. doi:10.1051/jmed:2007004.

101. El-Sayed A, Abdel-Zaher M, Trop Infect Dis. 2007;21(12):1265–71. doi:10.1093/ije/dym183.

102. El-Badawy MA, El-Naggar S, El-Shazly H, Al-Dakheel M, Serodiagnosis and molecular epidemiology of hepatitis B in Egypt. J Med Virol. 2008;80(2):165–70. doi:10.1002/jmv.21036.

103. El-Dakhakhneh S, Al-Qazzaz W, Al-Sas E, Serodiagnosis of viral hepatitis in patients with bacterial acute hepatitis. J Trop Med Hyg. 2007;60(3):109–14. doi:10.1051/jmed:2007004.

104. Fekri M, Al-Kandari S, Serodiagnosis of viral hepatitis in patients with acute and chronic liver disease. J Med Virol. 2011;83(4):622–29. doi:10.1002/jmv.22036.

105. Gharbi-Khelifi H, Abid NB, Beji A, Bhiri L, Harrath R, Siddi K, Baulaud S, Ferre V, Aouni M. Séroprévalence et molecular characterization of human hepatitis A virus in Serum samples of Tunisian patients with clinical symptoms of viral hepatitis. Indian J Virol. 2012;23(1):29–35. doi:10.5539/ijv.2012.23.1.0026.

106. Hassani-Kadle MA, Osman MS, Ogurtsov PP. Epidemiology of viral hepatitis in Somalia: Systematic review and meta-analysis study. World J Gastroenterol. 2018;24(34):3927–37. doi:10.3748/wjg.v24.i34.3927.

107. Bile K, Mohammad O, Aden C, Norder H, Mohammad O, Aden C, Nilsson L. The risk for hepatitis A, B, and C at two institutions for children in Somalia with different socioeconomic conditions. Am J Trop Med Hyg. 1992;47(3):357–64. doi:10.4269/ajtmh.1992.47.357.

108. Mohammad KB, Aceti A, Mohammad OM, Pennica A, Maalín KA, Bisonti A, Hagi J, Quaranta G, Panaro SR, Celestino D, et al. [The circulation of the hepatitis A and B viruses in the Somali population]. Ann Ital Med Int. 1992;7(2):78–83.
144. Patterson J, Abdullahi L, Hussey GD, Muloowa R, Kagina BM. A systematic review of the epidemiology of hepatitis A in Africa. BMC Infect Dis. 2019;19(1):651. doi:10.1186/s12879-019-4235-5

145. Gossner C, Severi E, Danielsson N, Huttin Y, Coulombier D. Changing hepatitis A epidemiology in the European Union: new challenges and opportunities. Euro Surveill. 2015;20(16):21101. doi:10.2807/1560-7917.ES2015.20.16.21101

146. Leder K, Terres J, Libman MD, Castelli F, Schlagenhau P, Wilder-Smith A, Wilson ME, Keystone JS, Schwartz E, et al. GeoSentinel surveillance of illness in returned travelers, 2007-2011. Ann Intern Med. 2013;158(6):456–68. doi:10.7326/0003-4819-158-6-201303190-00005

147. MacDonald E, Steens A, Stene-Johansen K, Gillesberg Lassen S, Midgley SE, Lawrence J, Crofts J, Ngui SL, Balogun K, Frank C, et al. Increase in hepatitis A in tourists from Denmark, England, Germany, the Netherlands, Norway and Sweden returning from Egypt, November 2012 to March 2013. Euro Surveill. 2013;18(17):pii=20468 doi:10.2807/ese.es.18.20468-en

148. Gassowski M, Michaels K, Wenzel JJ, Faber M, Figoni J, Mouna L, Friesema IH, Vennema H, Aveilon A, Varela C, et al. Two concurrent outbreaks of hepatitis A highlight the risk for infection for non-immune travelers to Morocco, January to June 2018. Euro Surveill. 2018;23(27) pii=1800329 doi:10.2807/1560-7917.ES.2018.23.27.1800329

149. Alwan A, Elmi M. Food safety in the Eastern Mediterranean Region: time to act. East Mediterr Health J. 2015;21(3):153–54. doi:10.26719/2015.21.3.153

150. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleeschauwer B, Döpfer D, Fazil A, Fischer-Walker CL, Hald T, et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med. 2012;9(12):e1001921. doi:10.1371/journal.pmed.1001921

151. Sánchez G. Processing strategies to inactivate hepatitis A virus in food products: a critical review. Compr Rev Food Sci Food Saf. 2015;14(6):771–84. doi:10.1111/1541-4337.12154

152. Gossner CM, Severi E. Three simultaneous, food-borne, multi-country outbreaks of hepatitis A virus infection reported in EPIS-FWD in 2013: what does it mean for the European Union? Euro Surveill. 2014;19(43):20941. doi:10.2807/1560-7917.ES2014.19.43.20941

153. Swinkels HM, Kuo M, Embree G, Fraser Health Environmental Health Investigation Team C, Andonov A, Henry B, Buxton JA. Hepatitis A outbreak in British Columbia, Canada: the roles of established surveillance, consumer loyalty cards and collaboration, February to May 2012. Euro Surveill. 2014;19(18):20792. doi:10.2807/1560-7917.ES2014.19.18.20792

154. World Health Organization (WHO) Health emergencies. Countries in crisis; 2016 [accessed 2021 Feb 5]. http://www.emro.who.int/eha/countries-in-crisis/index.html

155. Mellou K, Christosmontou A, Sideroglou T, Georgakopoulou T, Kyritsi M, Hadjichristodoulou C, Tsiodras S. Hepatitis A among refugees, asylum seekers and migrants living in hosting facilities, Greece, April to December 2016. Euro Surveill. 2017;22(4):30448. doi:10.2807/1560-7917.ES2017.22.4.30448

156. Michaelis K, Wenzel JJ, Stark K, Faber M. Hepatitis A virus infections and outbreaks in asylum seekers arriving to Germany, September 2015 to March 2016. Emerg Microbes Infect. 2017;6(4):e26. doi:10.1038/s41649-017.11

157. European Asylum Support Office. Latest asylum trends – 2015 overview; 2015 [accessed 2021 Feb 5]. https://www.easo.europa.eu/sites/default/files/public/LatestAsylumTrends20151.pdf

158. Lee K, Worsnop CZ, Grépin KA, Kamradt-Scott A. Global coordination on cross-border travel and trade measures crucial to COVID-19 response. Lancet. 2020;395(10237):1593–95. doi:10.1016/s0140-6736(20)31032-1.