Research Article

Structurally Diverse Metal Coordination Compounds, Bearing Imidodiphosphinate and Diphosphinoamine Ligands, as Potential Inhibitors of the Platelet Activating Factor

Alexandros B. Tsoupras, 1 Maria Roulia, 2 Eleftherios Ferentinos, 2 Ioannis Stamatopoulos, 2 Constantinos A. Demopoulos, 1 and Panayotis Kyritsis 2

1 Biochemistry Laboratory, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
2 Inorganic Chemistry Laboratory, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece

Correspondence should be addressed to Panayotis Kyritsis, kyritsis@chem.uoa.gr

Received 15 March 2010; Accepted 3 May 2010

Academic Editor: Spyros Perlepes

Copyright © 2010 Alexandros B. Tsoupras et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Metal complexes bearing dichalcogenated imidodiphosphinate \([R_2P(E)NP(E)R']_2^-\) ligands (E = O, S, Se, Te), which act as (E,E) chelates, exhibit a remarkable variety of three-dimensional structures. A series of such complexes, namely, square-planar \([Cu\{(OPPh_2)(OPPh_2)N-O,O\}_2]\), tetrahedral \([Zn\{(EPPPh_2)(EPPPh_2)N-E,E\}_2]\), E = O, S, and octahedral \([Ga\{(OPPh_2)(OPPh_2)N-O,O\}_3]\), were tested as potential inhibitors of either the platelet activating factor (PAF)- or thrombin-induced aggregation in both washed rabbit platelets and rabbit platelet rich plasma. For comparison, square-planar \([Ni\{(Ph_2P)_2N-S-CHMePh-S,Ph\}_2\}]_2X_2\), X = Cl, Br, the corresponding metal salts of all complexes and the \((OPPh_2)(OPPh_2)NH\) ligand were also investigated. Ga(O,O) 3 showed the highest anti-PAF activity but did not inhibit the thrombin-related pathway, whereas Zn(S,S) 2, with also a significant PAF inhibitory effect, exhibited the highest thrombin-related inhibition. Zn(O,O) 2 and Cu(O,O) 2 inhibited moderately both PAF and thrombin, being more effective towards PAF. This work shows that the PAF-inhibitory action depends on the structure of the complexes studied, with the bulkier Ga(O,O) 3 being the most efficient and selective inhibitor.

1. Introduction

Extensive research work over the last few years has revealed a remarkable structural variability of transition metal compounds bearing dichalcogenated imidodiphosphinate type of ligands, that is, \([R_2P(E)NP(E)R']_2^-\)], E = O, S, Se, Te; R, R’ = various aryl or alkyl groups. These ligands have been shown to display great coordinating versatility, producing both single and multinuclear metal complexes, with a variety of bonding modes [1–3]. The coordinating flexibility of these (E,E) chelating ligands is attributed, mainly, to their large (ca. 4 Å) E⋯E bite, which would accommodate a range of coordination sphere geometries. For instance, it was recently shown that the \([^3P_2P(Se)NP(Se)^3P_2]^-\) ligand affords both tetrahedral and square-planar complexes of Ni(II) [4], in agreement with an earlier observation on the analogous \([Ph_2P(S)NP(S)Ph_2]^-\) ligand [5]. Moreover, the nature of the R and R’ peripheral groups of the \([R_2P(S)NP(S)]^-\) ligand has been shown to affect the geometry of the complexes formed upon its coordination to Ni(II) [6, 7]. In a more general sense, depending on the nature of the metal ion, the chalcogen E atom and the R peripheral group, complexes bearing the above type of ligands were shown to contain rather diverse coordination spheres [8]. Such structural differences are of significant importance, as they are expected to lead not only to different stereochromatic characteristics, but also to varied electronic properties of the metal site, which, in turn, could potentially result in significant biological reactivity [9].
The aim of this work was to investigate a series of structurally diverse metal coordination compounds bearing dithiocarbamato-, imidodiphosphinate and amidinate ligands, as potential inhibitors of PAF (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). PAF is a phospholipid signalling molecule of the immune system and a significant mediator of inflammation. PAF transmits outside-in signals to intracellular transduction systems in a variety of cell types, including key cells of the innate immune and haemostatic systems, such as neutrophiles, monocytes, and platelets [10, 11]. In addition, it exhibits biological activity through specific membrane PAF-receptors, coupled with G-proteins. The binding of PAF on its receptor induces intracellular signaling pathways that will lead to several cellular activation mechanisms, depending on the cell or tissue type [12]. It is well established that increased PAF-levels in blood or tissues lead to various pathological events [13–16], allergy [17], diabetes [18], cancer [19] and AIDS [20].

A great variety of chemical compounds, both natural and synthetic, have demonstrated an inhibitory effect towards the PAF-induced biological activities, acting either through direct antagonistic/competitive effects by binding to the PAF-receptor, or through indirect mechanisms. In the latter case, the bioactivity seems to correlate with changes in the microenvironment of the PAF-receptor. Natural and synthetic PAF antagonists exhibit variable chemical structures that might lead to different pharmacological profiles. Since PAF is assumed to play a central role in many diseases, the effects of its antagonists have been widely studied in experimentally induced pathologies and in clinical studies [21–24].

The use of metal complexes as potential pharmaceutics is increasingly gaining ground [25, 26]. Particularly, complexes of Ga(III) bearing (O,O) chelating ligands have been studied as promising nonplatinum compounds with superior anticancer activity and lower side effects [27, 28]. These complexes have also shown anti-inflammatory activity towards rheumatoid arthritis or Alzheimer’s disease [25]. Cu(II) complexes have been investigated as anticancer agents, based on the assumption that endogenous metals may be less toxic [29]. In addition, Ni(II) and Cu(II) complexes have been screened for their in vitro antibacterial and antifungal activity [30], whereas Zn(II) complexes have been investigated as agents against diabetes mellitus and ulcer [31]. A mechanistic understanding of how metal complexes exhibit their biological activity is crucial to their clinical success, as well as to the rational design of new compounds with improved pharmacological properties. In that respect, the in vitro investigation of novel metal complexes with targeted biomolecules may prove extremely valuable, before the in vivo tests in animal models.

In this study, we examined the in vitro effects of representative bis- or tris-chelated complexes of dithiocarbamato- imidodiphosphinate and amidinate ligands, involving Cu(II), Zn(II) and Ga(III) centers, against PAF-induced biological activities. This work, therefore, potentiates inhibition of these metal complexes was studied on PAF-induced platelet aggregation towards both washed rabbit platelets (WRPs) and rabbit platelet rich plasma (PRP). The complexes investigated contain diverse metal coordination spheres, exhibiting planar, tetrahedral and octahedral geometries. In addition, two square-planar complexes of Ni(II), bearing one bidentate diphosphinoamine ligand [32] and two halide ions were also investigated, with a view to revealing the necessary structural features, among this set of coordination compounds, that would ensure efficient and selective inhibition of PAF. Moreover, the inhibitory action of some of these complexes towards thrombin was also investigated, in order to probe their selectivity with respect to either the PAF- or the thrombin-dependent platelet aggregation.

2. Experimental Part

2.1. Materials and Methods. The following complexes were prepared according to published procedures: [Cu ((OPPh2)(OPPh2)N−O, O)2] [33], [Zn ((OPPh2)(OPPh2)N−O, O)2] [34], [Zn ((SPPPh2)(SPPPh2)N−S, S)2] [35], [Ga ((OPPh2)(OPPh2)N−O, O)3] [36], [Ni ((Ph2P)2N−S, S, S, S, S, S CHMeP−P, P)Cl2] [37]. These complexes are abbreviated as Cu(O2)2, Zn(O2)2, Zn(S2)2, Ga(O2)3 and Ni(PP)Cl2, respectively. The synthesis of the analogous to Ni(PP)Cl2, bromide-containing Ni(PP)Br2 complex, was carried out according to the published procedure [37], with the exception of using Ni(DME)Br2 (DME = 1,2-dimethoxyethane) as a starting material. The detailed synthesis and characterization of Ni(PP)Br2 will be described elsewhere. The (OPPh2)(OPPh2)NH ligand was prepared as described in the literature [38]. The following metal salts, CuCl2, ZnCl2, Ga(NO3)3, 9H2O and NiCl2·6H2O, were also tested for comparison purposes. All chemical reagents were purchased from Sigma-Aldrich (St. Louis, Mo, USA).

UV–vis spectra were recorded in a Varian Cary 3E spectrophotometer.

Bovine serum albumin (BSA), PAF (1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine), thrombin and analytical solvents for the biological assays were purchased from Sigma.

Centrifugations were performed in a Heraeus Labofug 400R and a Sorvall RC-5B refrigerated super-speed centrifuge (Sigma-Aldrich). Aggregation studies were performed in a Chrono-Log aggregometer (model 400, Haver town, Pa, USA) coupled to a Chrono-Log recorder (Haverton) at 37°C with constant stirring at 1200 rpm.

2.2. Biological Assay on WRPs and Rabbit PRP. The potential inhibitory effect of a range of metal complexes towards PAF-related biological activities was estimated by biological assays based on WRPs aggregation [10]. The examined metal complexes were first dissolved in dimethylsulfoxide (DMSO), at an initial concentration of (4–8) × 10−3 M. Subsequently, different aliquots of the complexes’ solutions were added in a BSA solution (2.5 mg BSA/mL of saline). PAF was also dissolved in the same BSA solution. The metal salts were dissolved in saline. The platelet aggregation induced by PAF (4.4 × 10−11 M final concentration in the
aggregometer cuvette) or by thrombin (0.1 IU) on WRPs, was measured before (considered as 0% inhibition) and after the addition of the sample examined. A linear plot of inhibition percentage (ranging from 20% to 80%) versus the concentration of the sample was established for each metal complex. From this curve, the concentration of the sample that inhibited 50% of the PAF-induced aggregation (IC$_{50}$) was calculated. Biological assays were performed several times ($n > 3$), according to methods of Demopoulos et al. [10] and Lazanas et al. [39], so as to ensure reproducibility. The same procedure was also followed in the case of rabbit PRP, as previously described [40].

2.3. Statistical Methods. All results were expressed as mean ± standard deviation (SD). The t-test was employed to assess differences among the IC$_{50}$ values of each metal complex against either the PAF- or thrombin-induced aggregation. Differences were considered to be statistically significant when the statistical p value was smaller than 0.05. Data were analyzed using a statistical software package (SPSS for Windows, 16.0, 2007, SPSS Inc. Chicago, IL) and Microsoft Excel 2007.

3. Results

3.1. Molecular Structures and Stability of the Complexes. The crystallographic structures of Cu(O,O)$_2$ [33], Zn(O,O)$_2$ [34], Ga(O,O)$_3$ [36] and Ni(P,P)Cl$_2$ [37], as well as the (OPPh$_2$)(OPPh$_2$)NH ligand [41] have been already described (Figures 1–5). A variety of metal core geometries is demonstrated: Cu(O,O)$_2$ and Ni(P,P)Cl$_2$ are square-planar, whereas Zn(O,O)$_2$ is tetrahedral and Ga(O,O)$_3$ is octahedral. The Zn(S,S)$_2$ and Ni(P,P)Br$_2$ complexes are expected to be structurally similar to Zn(O,O)$_2$ and Ni(P,P)Cl$_2$, respectively. UV-vis absorption spectra of the light blue DMSO solutions of Cu(O,O)$_2$ confirmed that the complex was stable for the time-span of the study. This is expected since Cu(O,O)$_2$ and the rest of the dichalcogenated imidodiphosphinate complexes, contain highly stable six-membered M-E-P-N-P-E chelating rings [1, 2]. On the other hand, for Ni(P,P)$_2$X$_2$, X = Cl, Br, the intensity of the absorption maximum was gradually decreasing. Therefore, degradation of the
complexes at some extent is likely, which is expected to affect their inhibitory action.

3.2. Inhibitory Effect of Metal Complexes and Metal Salts towards the PAF-Induced WRP’s Aggregation. All metal complexes under investigation inhibited the PAF-induced aggregation of WRPs. This inhibitory effect was expressed by their IC50 value (Figure 6). Among the metal complexes tested, Ga(O,O)3 exhibited the strongest inhibitory effect towards the PAF-induced WRP’s aggregation, with an IC50 value of 62.4 ± 45.0 nM, which is more than one order of magnitude lower compared to the IC50 value of the other complexes tested. The Cu(O,O)2, Zn(O,O)2 and Zn(S,S)2 complexes also exhibited a significant inhibitory effect, with IC50 values (300–600 µM) being more than one order of magnitude smaller compared to the value of the Ni(P,P)Cl2 and Ni(P,P)Br2 complexes.

In order to assess whether the observed inhibitory effect of the metal complexes was due to their properties—mainly their three-dimensional structure—we also tested the corresponding metal salts. All metal salts examined exhibited a weak inhibitory effect, with their IC50 values ranging between 0.1 and 1 mM (Figure 7), significantly lower than those of the corresponding metal complexes (p < 0.001) (Figure 6). Moreover, since Ga(O,O)3 showed
3.3. Inhibitory Effect of Metal Complexes and Metal Ions against the Thrombin-Induced WRP’s Aggregation. The metal complexes exhibiting the stronger inhibitory effect against the PAF-induced WRP’s aggregation were further tested for their potential inhibitory effect towards the thrombin-induced WRP’s aggregation [10]. The data of Table 1 show that, among all complexes tested, Ga(O,O)₃ did not inhibit thrombin, even at concentrations up to 10⁻⁴ M, while Zn(S,S)₂ showed the strongest inhibitory effect, displaying an IC₅₀ value at least one order of magnitude smaller than that of Cu(O,O)₂ and Zn(O,O)₂ complexes (p < 0.05).

3.4. Inhibitory Effect of Metal Complexes and Metal Ions against the PAF-Induced Rabbit PRP Aggregation. The metal complexes that inhibited the PAF-induced WRP’s aggregation were further tested for their potential inhibitory effect against the PAF-induced rabbit PRP aggregation. All metal complexes indeed showed such inhibitory behavior, with IC₅₀ values presented in Figure 8. The Ga(O,O)₃, Zn(S,S)₂ and Ni(P,P)Br₂ complexes exhibited the highest inhibitory effect, since their IC₅₀ values were significantly lower than that of all the other complexes tested (p < 0.05).

Moreover, we also tested the potential inhibitory effect of the corresponding metal salts. From all metal salts tested, only CuCl₂ exhibited a weak inhibitory effect (IC₅₀ = 12.3 ± 1.13 mM), three orders of magnitude larger than that of its corresponding Cu(O,O)₂ complex (p < 0.001). On the contrary, the Ga(III), Ni(II) and Zn(II) salts did not inhibit the PAF-induced aggregation of rabbit PRP. Similarly, the (OPPh₂)(OPPh₂)NH ligand did not show such an inhibitory action.

4. Discussion

The successful application of several anti-PAF agents [11–24], and metal complexes [25–31] towards various inflammatory pathological situations, led us to study the effect of the metal complexes described above towards PAF-related biological activities. In that respect, we have primarily studied the in vitro effects of these compounds on the PAF-induced platelet aggregation. We have previously showed that cis-[Rh₂Cl₂]Cl, L = 2-(2’-pyridyl)quinoxaline, is a potent inhibitor of this type, having an IC₅₀ value of 210 nM (at 0.02 nM PAF), with the inhibitory effect taking place, partly, through the PAF-receptor dependent way [42].

In this study, the biological assays were focused on the PAF-induced WRPs and rabbit PRP aggregation. In particular, our study on WRPs probes the anti-PAF activity of metal complexes under the experimental conditions applied, while, in the case of rabbit PRP, the conclusions drawn pinpoint the effect of these compounds towards the PAF activation at more similar to the in vivo conditions. Our work leads to the unprecedented conclusion that several metal complexes inhibited the PAF-induced aggregation towards both WRPs and rabbit PRP, in a dose-dependent manner. Significantly higher concentrations (at least one order of magnitude) of each compound were needed in order to inhibit the PAF-induced aggregation of rabbit PRP, compared to those needed in order to inhibit the corresponding aggregation of WRPs. The metal complexes with the most prominent anti-PAF activity were additionally tested towards the thrombin-induced aggregation of WRPs.

The IC₅₀ values reflect the inhibition strength of each metal complex, since a low IC₅₀ value reveals stronger inhibition of the PAF-induced aggregation for a given metal complex concentration. It is of significant importance that the IC₅₀ values of these compounds (expressed as µM) against the PAF-induced aggregation are comparable with the IC₅₀ values of some of the most potent PAF receptor antagonists, namely WEB2170, BN52021, and Rupatadine (0.02, 0.03 and 0.26 µM, resp.) [43–45]. This observation demonstrates that the metal complexes in question exhibit a strong inhibitory effect against the PAF activity. The octahedral Ga(O,O)₃ complex, which contains the larger number (12) of phenyl rings in the second coordination

Table 1: The inhibitory effect of metal complexes towards the thrombin-induced WRP’s aggregation.

Metal complex	IC₅₀ value (µM)
Ga(O,O)₃	—
Cu(O,O)₂	7.86 ± 4.77
Zn(O,O)₂	12.80 ± 5.62
Zn(S,S)₂	0.394 ± 0.41
A series of metal complexes, bearing dichalcogenated imidodiphosphinate ligands, inhibited the PAF-induced aggregation of both WRPs and rabbit PRP, at concentrations comparable with those of classical PAF-inhibitors. The compounds with the stronger anti-PAF activities exhibited different specificity against the thrombin-induced platelet aggregation: Ga(O,O)3, with the highest anti-PAF activity, did not inhibit the thrombin-related pathway, whereas Zn(S,S)2, with also a strong inhibitory effect against PAF, exhibited the highest inhibition against thrombin. On the other hand, Zn(O,O)2 and Cu(O,O)2 inhibited moderately both PAF and thrombin, being more effective towards PAF. The metal salts and the (OPPh2)(OPPh2)NH ligand showed no appreciable anti-PAF or antithrombin activity. By comparing the relative inhibitory activities of all compounds studied, it is concluded that the biological activities of the metal complexes depend, at least in part, on their stereochemical properties. In this respect, the more spherical and bulky structure of Ga(O,O)3 seems to be the most suitable for a PAF-related inhibitory action. On the contrary, this complex is totally inactive towards the thrombin-related pathway. Whether this remarkable selectivity is indeed due to a more efficient interaction of Ga(O,O)3 with the PAF-receptor, remains to be investigated in future studies. It is of interest that similar tris-chelated Ga(III) complexes have shown significant pharmaceutical action towards various pathological cases [27, 28].

5. Conclusions

A series of metal complexes, bearing dichalcogenated imidodiphosphinate ligands, inhibited the PAF-induced aggregation of both WRPs and rabbit PRP, at concentrations comparable with those of classical PAF-inhibitors. The compounds with the stronger anti-PAF activities exhibited different specificity against the thrombin-induced platelet aggregation: Ga(O,O)3, with the highest anti-PAF activity, did not inhibit the thrombin-related pathway, whereas Zn(S,S)2, with also a strong inhibitory effect against PAF, exhibited the highest inhibition against thrombin. On the other hand, Zn(O,O)2 and Cu(O,O)2 inhibited moderately both PAF and thrombin, being more effective towards PAF. The metal salts and the (OPPh2)(OPPh2)NH ligand showed no appreciable anti-PAF or antithrombin activity. By comparing the relative inhibitory activities of all compounds studied, it is concluded that the biological activities of the metal complexes depend, at least in part, on their stereochemical properties. In this respect, the more spherical and bulky structure of Ga(O,O)3 seems to be the most suitable for a PAF-related inhibitory action. On the contrary, this complex is totally inactive towards the thrombin-related pathway. Whether this remarkable selectivity is indeed due to a more efficient interaction of Ga(O,O)3 with the PAF-receptor, remains to be investigated in future studies. It is of interest that similar tris-chelated Ga(III) complexes have shown significant pharmaceutical action towards various pathological cases [27, 28].

The exploration of additional complexes of variable metal ions and three-dimensional structures is clearly needed, in an effort to further elucidate the necessary electronic or structural features for a significant and selective PAF- or thrombin-related inhibitory function.
Acknowledgments

P. Kyritsis thanks the Special Account of the University of Athens (Grant 7575) and the Empirikon Foundation for funding, as well as Dr G. S. Papaefstathiou for a gift of Ga(NO₃)₃·9H₂O. The referees of the manuscript are thanked for their constructive comments. This article is dedicated to Professor Nick Hadjiliadis, on the occasion of his retirement.

References

[1] C. Silvestru and J. E. Drake, “Tetraorganodichalcogenidophosphorus acids and their main group metal derivatives,” Coordination Chemistry Reviews, vol. 223, no. 1, pp. 117–216, 2001.

[2] I. Haiduc, “Dichalcogenidodiphosphinato ligands,” in Comprehensive Coordination Chemistry II: From Biology to Nanotechnology, vol. 1, pp. 323–347, Elsevier, Amsterdam, The Netherlands, 2003.

[3] T. Chivers, J. Konu, J. S. Ritch, M. J. Cossey, and H. M. Tuononen, “New tellurium-containing ring systems,” Journal of Organometallic Chemistry, vol. 692, no. 13, pp. 2658–2668, 2007.

[4] N. Levenasos, S. D. Robertson, D. Maganas et al., “Ni[(EPR₂)₂N]₂ complexes: stereoisomers (E = Se) and square-planar coordination (E = Te),” Inorganic Chemistry, vol. 47, no. 8, pp. 2949–2951, 2008.

[5] E. Simón-Manso, M. Valderrama, and D. Boys, “Synthesis and single-crystal characterization of the square planar complex [Ni((SPPh₂)₂N,S)₂]·2THF,” Inorganic Chemistry, vol. 40, no. 14, pp. 3647–3649, 2001.

[6] R. Röder, C. Silvestru, G. Espinosa-Pérez, I. Haiduc, and R. Cea-Olivares, “Tetrahedral versus square-planar Ni₅S₄ core in solid-state bis(dithioimidodiphosphonato)nickel(II) chelates. Crystal and molecular structures of Ni[(SPR₂)(SPR₂)₂N,S]S, S·9H₂O,” Inorganic Chemistry Acta, vol. 241, no. 2, pp. 47–54, 1996.

[7] D. Maganas, A. Grigoropoulos, and S. S. Staniland, “Tetrahedral and square-planar Ni[(SPR₂)₂N]₂ complexes, R = Ph&Pr revisited: experimental and theoretical analysis of interconversion pathways, structural preferences and spin delocalization,” Inorganic Chemistry, vol. 49, no. 11, pp. 5079–5093, 2010.

[8] T. Q. Ly and J. D. Woollins, “Bidentate organophosphorus ligands formed via P-N bond formation: synthesis and coordination chemistry,” Coordination Chemistry Reviews, vol. 176, no. 1, pp. 451–481, 1998.

[9] E. I. Solomon, R. K. Szilagyi, S. DeBeer George, and L. Basumallick, “Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins,” Chemical Reviews, vol. 104, no. 2, pp. 419–458, 2004.

[10] C. A. Demopoulos, R. N. Pinckard, and D. J. Hanahan, “Platelet-activating factor. Evidence for 1-O-alkyl-2-acetylsn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators),” Journal of Biological Chemistry, vol. 254, no. 19, pp. 9355–9358, 1979.

[11] G. A. Zimmerman, T. M. McIntyre, S. M. Prescott, and D. M. Stafforini, “The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis,” Critical Care Medicine, vol. 30, no. 5, pp. S294–S301, 2002.

[12] D. M. Stafforini, T. M. McIntyre, G. A. Zimmerman, and S. M. Prescott, “Platelet-activating factor, a pleiotropic mediator of physiological and pathological processes,” Critical Reviews in Clinical Laboratory Sciences, vol. 40, no. 6, pp. 643–672, 2003.

[13] G. Montrucchio, G. Alloati, and G. Camussi, “Role of platelet-activating factor in cardiovascular pathophysiology,” Physiological Reviews, vol. 80, no. 4, pp. 1669–1699, 2000.

[14] C. A. Demopoulos, H. C. Karantonis, and S. Antonopoulou, “Platelet activating factor—a molecular link between atherosclerosis theories,” European Journal of Lipid Science and Technology, vol. 105, no. 11, pp. 705–716, 2003.

[15] J. M. López-Novoa, “Potential role of platelet activating factor in acute renal failure,” Kidney International, vol. 55, no. 5, pp. 1672–1682, 1999.

[16] L. M. McManus and R. N. Pinckard, “PAF, a putative mediator of oral inflammation,” Critical Reviews in Oral Biology and Medicine, vol. 11, no. 2, pp. 240–258, 2000.

[17] A. Kasperska-Zajac, Z. Brzoza, and B. Rogala, “Platelet-activating factor (PAF): a review of its role in asthma and clinical efficacy of PAF antagonists in the disease therapy,” Recent Patents on Inflammation and Allergy Drug Discovery, vol. 2, no. 1, pp. 72–76, 2008.

[18] A. B. Tsoupras, C. Iatrou, C. Frangia, and C. A. Demopoulos, “The implication of platelet activating factor in cancer growth and metastasis: potent beneficial role of PAF-inhibitors and antioxidants,” Infectious Disorders—Drug Targets, vol. 9, no. 4, pp. 390–399, 2009.

[19] A. B. Tsoupras, M. Chini, N. Tsogas et al., “Anti-platelet-activating factor effects of highly active antiretroviral therapy (HAART): a new insight in the drug therapy of HIV infection?” AIDS Research and Human Retroviruses, vol. 24, no. 8, pp. 1079–1086, 2008.

[20] J. M. Negro Álvarez, J. C. Míralles López, J. L. Ortiz Martínez, A. Abellán Alemán A, and R. Rubio Del Barrio, “Platelet-activating factor antagonists, ” Allergologia et Immunopathologia, vol. 25, no. 5, pp. 249–258, 1997.

[21] S. Desquand, “Effects of PAF antagonists in experimental models—possible therapeutic implications,” Therapie, vol. 48, no. 6, pp. 585–597, 1993.

[22] M. Koltai, D. Hosford, P. Guinot, A. Esanu, and P. Braquet, “Platelet activating factor (PAF). A review of its effects, antagonists and possible future clinical implications. I.,” Drugs, vol. 42, no. 1, pp. 9–29, 1991.

[23] M. Koltai, D. Hosford, P. Guinot, A. Esanu, and P. Braquet, “PAF: a review of its effects, antagonists and possible future clinical implications. II.,” Drugs, vol. 42, no. 2, pp. 174–204, 1991.

[24] C. X. Zhang and S. J. Lippard, “New metal complexes as antioxidants, ” Journal of Inorganic Chemistry, vol. 49, no. 6, pp. 1575–1583, 2004.
[29] C. Marzano, M. Pellei, F. Tisato, and C. Santini, “Copper complexes as anticancer agents,” Anti-Cancer Agents in Medicinal Chemistry, vol. 9, no. 2, pp. 185–211, 2009.

[30] Z. H. Chohan, “Metal-based antibacterial and antifungal sulfonamides: synthesis, characterization, and biological properties,” Transition Metal Chemistry, vol. 34, no. 2, pp. 153–161, 2009.

[31] H. Sakurai, A. Katoh, and Y. Yoshikawa, “Chemistry and biochemistry of insulin-mimetic vanadium and zinc complexes. Trial for treatment of diabetes mellitus,” Bulletin of the Chemical Society of Japan, vol. 79, no. 11, pp. 1645–1664, 2006.

[32] R. P. Kamalesh Babu, S. S. Krishnamurthy, and M. Nethaji, “Short-bite chiral diphosphazanes derived from (S)-α-methyl benzyl amine and their Pd, Pt and Rh metal complexes,” Tetrahedron Asymmetry, vol. 6, no. 2, pp. 427–438, 1995.

[33] A. Silvestru, A. Rotar, J. E. Drake, et al., “Synthesis, spectroscopic characterization, and structural studies of new Cu(I) and Cu(II) complexes containing organophosphorus ligands, and crystal structures of (Ph3P)2Cu(S2PMe2), (Ph3P)2Cu(O2PPh2)2N], Cu[(OPPh2)2]2N]2, and Cu[(OPPh2)](SPPPh2)N]2,” Canadian Journal of Chemistry, vol. 79, pp. 983–991, 2001.

[34] A. Silvestru, D. Ban, and J. E. Drake, “Zinc(II) tetraorganodichalcogenoimidodiphosphinates. Crystal and molecular structure of Zn[(OPPh2)2N]3],” Revue Roumaine de Chimie, vol. 47, no. 10-11, pp. 1077–1084, 2002.

[35] A. Davison and E. S. Switkes, “The stereochemistry of four-coordinate bis(imidodiphosphino)metal(II) chelate complexes,” Inorganic Chemistry, vol. 10, no. 4, pp. 837–842, 1971.

[36] V. García-Montalvo, R. Cea-Olivares, D. J. Williams, and G. Espinosa-Pérez, “Stereoechemical consequences of the bismuth atom electron lone pair, a comparison between MX5E and MX5 systems. Crystal and molecular structures of tris[N-(P,P-diphenylphosphinyl)-P-P-diphenylphosphinimidato]bismuth(III),[[Bi(OPPh2)2]3], -indium(III),[In(OPPh2)2]2N] · C6H5, and -gallium(III), [Ga(OPPh2)2]2N] · CH2Cl2,” Inorganic Chemistry, vol. 35, no. 13, pp. 3948–3953, 1996.

[37] G. C. Vougioukalakis, I. Stamatooulos, N. Petzetakis et al., “Controlled vinyl-type polymerization of norbornene with a nickel(II) diphosphonoamine/methylaluminoxane catalytic system,” Journal of Polymer Science Part A, vol. 47, no. 20, pp. 5241–5250, 2009.

[38] F. T. Wang, J. Najdzionek, K. L. Leneker, H. Wasserman, and D. M. Braitsch, “Facile synthesis of imidotetraphenylphosphinic acids,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 8, pp. 119–125, 1978.

[39] M. Lazanas, C. A. Demopoulos, S. Tounis, S. Kouississ, K. Labarakis-Lazanas, and X. Tsarouhas, “PAF of biological fluids in disease: I.V. Levels in blood in allergic reactions induced by drugs,” Archives of Dermatological Research, vol. 280, no. 2, pp. 124–126, 1988.

[40] D. Tsoukatos, C. A. Demopoulos, A. D. Tselepis et al., “Inhibition of cardiolipins of platelet-activating factor-induced rabbit platelet activation,” Lipois, vol. 28, no. 12, pp. 1119–1124, 1993.

[41] H. Noth, “Crystal and molecular-structure of imidotetraphenyl-dithio-phosphinic acid and imido-tetraphenyl-diphosphinic acid,” Zeitschrift für Naturforschung B, vol. 37, pp. 1491–1498, 1982.

[42] A. I. Philippopoulos, N. Tsiantila, C. A. Demopoulos, C. P. Rapiopoulou, V. Likodimos, and P. Falaras, “Synthesis, characterization and crystal structure of the cis-[RhL2Cl2]Cl complex with the bifunctional ligand (L) 2-(2′-pyridyl)quinoline.

Biological activity towards PAF (Platelet Activating Factor) induced platelet aggregation,” Polyhedron, vol. 28, no. 15, pp. 3310–3316, 2009.

[43] H. O. Heuer, “Involvement of platelet-activating factor (PAF) in septic shock and priming as indicated by the effect of hetaenzepin PAF antagonists,” Lipids, vol. 26, no. 12, pp. 1369–1373, 1991.

[44] J. R. Fletcher, A. G. DiSimone, and M. A. Earnest, “Platelet activating factor receptor antagonist improves survival and attenuates eicosanoid release in severe endotoxemia,” Annals of Surgery, vol. 211, no. 3, pp. 312–316, 1990.

[45] I. Izquierdo, M. Merlos, and J. Garcia-Rafanell, “Rupatapide: a new selective histamine H1 receptor and platelet-activating factor (PAF) antagonist. A review of pharmacological profile and clinical management of allergic rhinitis,” Drugs of Today, vol. 39, no. 6, pp. 451–468, 2003.

[46] Y. Huo, J. Ekholm, and D. J. Hanahan, “A preferential inhibition by Zn2+ on platelet activating factor- and thrombin-induced serotonin secretion from washed rabbit platelets,” Archives of Biochemistry and Biophysics, vol. 260, no. 2, pp. 841–846, 1988.

[47] I. B. Afanas’ev, E. A. Ostrakhovich, E. V. Mikhail’chik, G. A. Ibragimova, and L. G. Korkina, “Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals,” Biochemical Pharmacology, vol. 61, no. 6, pp. 677–684, 2001.

[48] C. T. Dillon, T. W. Hambley, B. J. Kennedy et al., “Gastrointestinal toxicity, anti-inflammatory activity, and superoxide dismutase activity of copper and zinc complexes of the antiinflammatory drug indomethacin,” Chemical Research in Toxicology, vol. 16, no. 1, pp. 28–37, 2003.

[49] D. Kovala-Demertzi, D. Hadjipavlou-Litina, M. Staninska, A. Primikiri, C. Kotoglou, and M. A. Demertzis, “Anti-oxidant, in vitro, in vivo anti-inflammatory activity and anti proliferative activity of mefenamic acid and its metal complexes with manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II),” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 24, no. 3, pp. 742–752, 2009.

[50] G. Mohan, R. Nagar, S. C. Agarwal, K.M. A. Mehta, and C. S. Rao, “Syntheses and anti-inflammatory activity of diphenylamine-2,2′-dicarboxylic acid and its metal complexes,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 20, no. 1, pp. 55–60, 2005.

[51] R. M. S. Pereira, N. E. D. Andrades, N. Paulino et al., “Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity,” Molecules, vol. 12, no. 7, pp. 1352–1366, 2007.

[52] E. Pontiki, D. Hadjipavlou-Litina, and A. T. Chaviara, “Evaluation of anti-inflammatory and antioxidant activities of copper (II) Schiff mono-base and copper(II) Schiff base coordination compounds of dien with heterocyclic aldehydes and 2-amino-5-methyl-thiazole,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 23, no. 6, pp. 1011–1017, 2008.

[53] V. O. Melnikova, K. Balasubramanian, G. J. Villares et al., “Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis,” Journal of Biological Chemistry, vol. 284, no. 42, pp. 28845–28855, 2009.

[54] V. O. Melnikova and M. Bar-Eli, “Inflammation and melanoma metastasis,” Pigment Cell and Melanoma Research, vol. 22, no. 3, pp. 257–267, 2009.