Predicting missing links in
global host-parasite networks

Maxwell J. Farrell1,2,3*, Mohamad Elmasri4,
David Stephens4 & T. Jonathan Davies5,6

1Department of Biology, McGill University
2Ecology & Evolutionary Biology Department, University of Toronto
3Center for the Ecology of Infectious Diseases, University of Georgia
4Department of Mathematics & Statistics, McGill University
5Botany, Forest & Conservation Sciences, University of British Columbia
6African Centre for DNA Barcoding, University of Johannesburg

*To whom correspondence should be addressed: e-mail: maxwell.farrell@utoronto.ca
Abstract

1. Parasites that infect multiple species cause major health burdens globally, but for many, the full suite of susceptible hosts is unknown. Predicting undocumented host-parasite associations will help expand knowledge of parasite host specificities, promote the development of theory in disease ecology and evolution, and support surveillance of multi-host infectious diseases. Analysis of global species interaction networks allows for leveraging of information across taxa, but link prediction at this scale is often limited by extreme network sparsity, and lack of comparable trait data across species.

2. Here we use recently developed methods to predict missing links in global mammal-parasite networks using readily available data: network properties and evolutionary relationships among hosts. We demonstrate how these link predictions can efficiently guide the collection of species interaction data and increase the completeness of global species interaction networks.

3. We amalgamate a global mammal host-parasite interaction network (>29,000 interactions) and apply a hierarchical Bayesian approach for link prediction that leverages information on network structure and scaled phylogenetic distances among hosts. We use these predictions to guide targeted literature searches of the most likely yet undocumented interactions, and identify empirical evidence supporting many of the top “missing” links.

4. We find that link prediction in global host-parasite networks can accurately predict parasites of humans, domesticated animals, and endangered wildlife, representing a combination of published interactions missing from existing global databases, and potential but currently undocumented associations.

5. Our study provides further insight into the use of phylogenies for predicting host-parasite interactions, and highlights the utility of iterated prediction and targeted search to efficiently guide the collection of host-parasite interaction. These data are critical for understanding the evolution of host specificity, and may be used to support disease surveillance through a process of predicting missing links, and targeting research towards the most likely undocumented interactions.
Introduction

Most disease-causing organisms of humans and domesticated animals can infect multiple host species (Cleaveland et al., 2001; Taylor et al., 2001). This has ramifications for biodiversity conservation (Smith et al., 2009) and human health via direct infection, food insecurity, and diminished livelihoods (Grace et al., 2012). Despite the severe burdens multi-host parasites can impose, we do not know the full range of host species for the majority of infectious organisms (Dallas et al., 2017). Currently, parasite host ranges are best described by host-parasite interaction databases that are largely compiled from primary academic literature. These databases gain strength by collating data across a large diversity of hosts and parasites, and have been used to identify macroecological patterns of infectious diseases (Stephens et al., 2016, 2017), define life histories influencing host specificity (Park et al., 2018; Park, 2019) and predict the potential for zoonotic spillover (Olival et al., 2017). However, global databases are known to be incomplete, with some estimated to be missing up to ∼40% of host-parasite interactions among the species sampled (Dallas et al., 2017). While even incomplete data can offer important insights into the structure of host-parasite interaction networks, our ability to make accurate predictions decreases when data are missing.

Filling in knowledge gaps, and building more comprehensive global databases of host-parasite interactions enhances our insights into the ecological and evolutionary forces shaping parasite biodiversity. These includes the role of network structure for transmission (Gomez et al., 2013; Pilosof et al., 2015), the nature of highly implausible host-parasite interactions (Morales-Castilla et al., 2015), the drivers of parasite richness (Nunn et al., 2003; Huang et al., 2015; Ezenwa et al., 2006; Kamiya et al., 2014) and parasite sharing across hosts (Davies & Pedersen, 2008; Huang et al., 2014; Braga et al., 2015; Luis et al., 2015; Albery et al., 2020), the association between host specificity and virulence (Shwab et al., 2018; Farrell & Davies,
2019), and global estimates of parasite diversity (Carlson et al., 2019). While determining the outcome of a given interaction ultimately requires moving beyond the binary associations provided by current databases, identifying documented and likely host-parasite associations is a critical first step.

Recent efforts have used species traits to predict reservoirs of zoonotic diseases (Han et al., 2015) and identify wildlife hosts of globally important viruses (Han et al., 2016; Pandit et al., 2018). Studies of global host-virus interactions have also been used to predict the structure of viral sharing networks (Albery et al., 2020; Wardeh et al., 2020). These approaches can identify host profiles for particular parasite groups, or host species that promote parasite sharing across hosts, but they do not predict interactions between individual host and parasite species. An alternative framework is to treat hosts and parasites as two separate interacting classes that can be represented in a bipartite network. Bipartite network models can predict new links based solely on the structure of the observed network, or incorporate node-level covariates, such as species traits (Dallas et al., 2017).

Algorithms such as recommender systems can identify probable links in a variety of large networks (Ricci et al., 2011). These models attempt to capture two key properties of real-world networks: the scale-free behaviour of interactions (shown by the degree distributions in Fig. SM 1) and local clustering of interactions (Watts & Strogatz, 1998). However, they also tend to predict that nodes with many documented interactions are more likely to associate with other highly connected nodes in the network (a behaviour described as “the rich get richer”). In the context of host-parasite interactions, the number of interactions per species will vary due to ecological or evolutionary processes, but may also be influenced by research effort. This is commonly seen in studies of parasite species richness in which sampling effort explains a large portion of the variation across hosts (Nunn et al., 2003; Ezenwa et al., 2006; Lindenfors et al., 2007; Kamiya et al., 2014; Olival et al., 2017). Models that directly or indirectly use
the number of documented interactions per species to make predictions cannot easily adjust for these sampling biases. Thus, while these affinity based models may be highly tractable for large networks, they are also sensitive to uneven sampling across nodes, and may re-enforce observation biases.

Predictions from trait-informed network models are less sensitive to missingness, but require data on ecological and functional traits of interacting species (Dallas et al., 2017; Gravel et al., 2013; Bartomeus et al., 2016). Thus, while these approaches work well for smaller networks (Dallas et al., 2017), they can scale poorly to global-scale ecological datasets in which comparable traits are unavailable for all species (Morales-Castilla et al., 2015). In the absence of comprehensive trait data, we can incorporate evolutionary relationships among hosts to add biological realism to network-based predictions. Phylogenetic trees represent species’ evolutionary histories, and branch lengths of these trees provide a measure of expected similarities among species (Wiens et al., 2010). Hosts may be associated with a parasite through inheritance from a common ancestor, or as a result of host shifts (Page, 1993). In both processes we expect closely related species will host similar parasite assemblages (Davies & Pedersen, 2008).

Here we apply a link prediction model for bipartite ecological networks that combines properties of affinity based models with information on host phylogeny (Elmasri et al., 2020), to a massive global-scale host-parasite network for mammals. Incorporating host phylogeny into “rich-get-richer” (i.e. scale-free) interaction models adds biological structure, allowing for more realistic predictions with otherwise limited covariate data. This approach is particularly well-suited to link prediction in large global host-parasite networks as it does not require trait data, and allows accurate predictions of missing links in extremely sparse networks using only the structure of the observed host-parasite associations, and scaled evolutionary relationships among hosts. We demonstrate how model predictions can efficiently guide efforts to fill-in missing links, show their geographical distributions, and update existing global networks using
historical and recently published interactions.

Materials and Methods

Data

To generate a network of documented host-parasite interactions for mammals, we amalgamated four major global host-parasite databases (Gibson et al., 2005; Wardeh et al., 2015; Stephens et al., 2017; Olival et al., 2017). These are derived from primary literature, genetic sequence databases, and natural history collections, and report host and parasite names as Latin binomials. The Global Mammal Parasite Database 2.0 (GMPD) (Stephens et al., 2016) contains records of disease causing organisms (viruses, bacteria, protozoa, helminths, arthropods, and fungi) in wild ungulates (artiodactyls and perissodactyls), carnivores, and primates drawn from over 2700 literature sources published through 2010 for ungulates and carnivores, and 2015 for primates. The static version of the Enhanced Infectious Disease Database (EID2) (Wardeh et al., 2015) contains 22,515 host-pathogen interactions from multiple kingdoms based on evidence published between 1950 - 2012 extracted from the NCBI Taxonomy database, NCBI Nucleotide database, and PubMed citation and index. The Host-Parasite Database of the Natural History Museum, London (Gibson et al., 2005) contains over a quarter of a million host-parasite records for helminth parasites extracted from 28,000 references published after 1922, and is digitally accessible via the R package helminthR (Dallas, 2016). Finally, Olival et al. (2017) compiled a database of 2,805 mammal-virus associations for every recognized virus found in mammals, representing 586 unique viral species and hosts from 15 mammalian orders. These source databases were then combined into a single database, harmonising taxonomy of hosts and parasites (full details in SM 1.1). We treat interactions as binary (0/1) for a given host-parasite pair as the sources do not explicitly indicate the role a host species plays in parasite transmission, but instead approximate host exposure and susceptibility to infection.
Figure 1: Phylogeny of host species (pruned from the Fritz et al. (Fritz et al., 2009) dated supertree for mammals), and host-parasite association matrix showing hosts ordered according to the phylogeny. Axes represent hosts (rows) and parasites (columns). The orange rectangles display an expanded subset of the matrix.

The resulting network includes 29,112 documented associations among 1835 host and 9149 parasite species (Fig. 1). To our knowledge this constitutes the largest mammal host-parasite interaction network currently available, and includes parasites from diverse groups including viruses, bacteria, protozoa, helminths, arthropods, and fungi, in wild, domestic, and human hosts. The resulting matrix is quite sparse, with $\sim 0.17\%$ of the ~ 16.8 million possible links having documented interactions. Humans are documented to associate with 2,064 parasites (47% of which associate with another mammal in the database), and comprise 7% of all interactions. Parasite species are largely represented by helminths (63.9%), followed by bacteria (13.1%) and viruses (7.89%). The degree distribution (number of documented interactions per
species) varies considerably and is shown to be linear on the log scale for both hosts and parasites (Fig. SM 1).

Statistical analyses

We apply the bipartite link prediction model of Elmasri *et al.* (2020) to the amalgamated dataset. The model has three variants: the “affinity” model which generates predictions based only on the number of observed interactions for each host and parasite, the “phylogeny” model which is informed only by host evolutionary relationships (here taken from (Fritz *et al.*, 2009)), and the “combined” model which layers both components (termed “full” model in Elmasri *et al.* (Elmasri *et al.*, 2020)). The affinity model is fit by preferential attachment whereby hosts and parasites that have many interacting species in the network are assigned higher probabilities of forming novel interactions. The phylogeny model uses the similarity of host species based on evolutionary distances to assign higher probability to parasites interacting with hosts closely related to their documented host species, and lower probability of interacting with hosts that are distantly related. To account for uncertainty in the phylogeny, and allow the model to place more or less emphasis on recent versus deeper evolutionary relationships, we fit a tree scaling parameter \((\eta)\) based on an accelerating-decelerating model of evolution (Harmon *et al.*, 2010). This transformation allows for changes in the relative evolutionary distances among hosts and was shown to have good statistical properties for link prediction in a subset of the GMPD (Elmasri *et al.*, 2020). We apply these three models to the full dataset. The tree scaling parameter is applied across the whole phylogeny, but since the importance of recent versus deep evolutionary relationships among hosts is likely to vary across parasite types (Park *et al.*, 2018), we additionally run the models on the dataset subset by parasite taxonomy (arthropods, bacteria, fungi, helminths, protozoa, and viruses). For all models we used 10-fold cross-validation to prevent over-fitting during parameter estimation, and to assess model performance when predicting
Targeted literature searches

We identified the top 10 most likely links in each model-data subset combination which were not documented in the original data. These were used to guide searches of primary and grey literature for evidence of associations. Searches were conducted in Google Scholar by using both the host and parasite Latin binomials in quotes and separated by the AND boolean operator (e.g. “Gazella leptoceros” AND “Nematodirus spathiger”). If this returned no hits, the same search was conducted using the standard Google search engine in order to identify grey literature sources. For models run on the full dataset, we also investigate the top ten links for domesticated mammals (*Bison bison*, *Bos* sp., *Bubalus bubalis*, *Camelus* sp., *Capra hircus*, *Canis lupus*, *Cavia porcellus*, *Equus asinus*, *Equus caballus*, *Felis catus*, *Felis silvestris*, *Lama glama*, *Mus musculus*, *Oryctolagus cuniculus*, *Ovis aries*, *Rangifer tarandus*, *Rattus norvegicus*, *Rattus rattus*, *Sus scrofa*, *Vicugna vicugna*), and wild host species separately. For domesticated animals and humans, if the Latin binomials returned no hits, the search strategy was repeated using host common names (e.g. “human”, “pig”, “horse”).

We considered any physical, genetic, or serological identification of a parasite infecting a given host species as evidence of an association. Exceptions included 1) situations where parasite identification was stated as uncertain due to known serological cross-reactivity, 2) absence of clear genetic similarity to known reference sequences, or 3) unconfirmed visual diagnosis made from afar.

Missing links were classified as unlikely when involving ecological mismatch between host and parasite, such as trophically transmitted parasites infecting the wrong trophic level or unlikely ingestion pathway, and parasites typically classified as non-pathogenic or commensal. As our goal is to predict potential susceptibility, lack of known current geographic overlap among
wide ranging hosts and parasites was not considered sufficient to classify a link as unlikely. In total, we generated 27 sets of “top ten” highly likely undocumented links to target, because of overlap in the top links among models run across data subsets, this reduced to 177 unique links investigated for published evidence of infection.

To contrast spatial predictions on the geographic distribution of missing links between the affinity and phylogeny models, we generated hotspot maps of undocumented host-parasite interactions. Maps were generated by summing the probabilities of undocumented host-parasite interactions per host species, summing across host species per cell (0.5 degree resolution) using IUCN distributions terrestrial mammals (IUCN, 2019). To adjust for the uneven species richness of hosts, predictions per cell were standardized to a scale of 0 - 1.

Results

When assessing models using 10-fold cross-validation, all models performed well predicting links internal to the data. Area under the receiver operating characteristic curve (AUC) values ranged from 0.84 - 0.98 (maximum AUC of 1 signifies perfect predictive accuracy), and between 72.54% and 98.00% of the held-out documented interactions were successfully recovered (Fig. 2, Table SM 1; see Fig. SM 2 for posterior interaction matrices for the full dataset). Model performance tended to decrease with the size of the interaction matrix (Fig. 2A&C).

As would be expected, the affinity only model tended to predict links between species with many previously documented associations, but this behaviour was decreased in the combined model, and largely absent in the phylogeny only model (Fig. 3, SM 2.2). To further explore how each of the link prediction models propagated potential research biases, we compared the predicted probabilities per interaction to the degree product (calculated per host-parasite interaction by multiplying the observed host degree by the observed parasite degree). The degree product represents the basic expectation of a given interaction based on host and parasite affini-
Figure 2: Model diagnostic plots, including internal predictive performance after 10-fold cross-validation (A,C) (see SM 1.2 for details), and the results of targeted literature searches for the top 10 undocumented links per model (B,D). Panel A shows area under the receiver operating characteristic curve (AUC) in relation to the size of interaction matrix (total number of potential host-parasite links). Panel C shows the percent documented interactions (1s) correctly recovered from the held-out portion in relation to the size of interaction matrix. Panels B and D show boxplots of the number of links with published evidence external to the original dataset (B), and the number of unlikely links based on ecological mismatch (D) out of the top ten most probable yet undocumented interactions for each of the three model types (affinity, combined, and phylogeny) run across the full dataset and each of the models subset by parasite type (Arthropods, Bacteria, Fungi, Helminths, Protozoa, Viruses).
model are highly corellated with the observed host and parasite degrees ($r=0.95$; Fig. SM 3a), but again the correlation is reduced with the combined model ($r=0.82$; Fig. SM 3b), and further reduced with the phylogeny only model ($r=0.49$; Fig. SM 3c). This implies that predictions from the affinity model (and, to a lesser extent, the combined model) may be more likely to capture the signature of study effort when compared to the phylogeny model.

Hotspot maps of undocumented host-parasite interactions (Fig. 4) illustrate large differ-
ences in the spatial distribution of missing links. Predictions from the affinity model (Fig. 4A) highlight Europe as a hotspot, while those from the phylogeny model reveal highest density of missing links predicted in tropical and central America, followed by tropical Africa and Asia (Fig. 4B). The hotspot map generated by the combined model was closer to that produced by the affinity only model, but with higher relative risk in sub-Saharan Africa, south America, and parts of southeast Asia (Fig. 4C).

The top ranked links from the affinity and combined models were largely dominated by humans and domesticated animal hosts, while the phylogeny models more often predicted links among wildlife (Fig. 3) including endangered and relatively poorly studied species, some of which are critically endangered (IUCN, 2019). Parasites infecting large numbers and phylogenetic ranges of hosts were most often included in the top undocumented links in all models (ex. Rabies lyssavirus, Sarcoptes scabiei, Toxoplasma gondii, Trypanosoma cruzi). These parasites are commonly cited as capable of causing disease in a large number of (and sometimes all) mammals, though the majority of which have not been directly investigated. The combined model included a larger diversity of parasite species among the top predicted links (Table SM 2).

By conducting targeted literature searches of the top predicted missing links for each model by data subset, we found multiple links had published support, but were not included in the original source databases (See SM for lists of top links and detailed results of literature searches). The combined model identified a greater number of links with literature support but which were not in the original database (46/90) compared to the phylogeny (39/90) and affinity (29/90) models (Table SM 2).
Figure 4: Global hotspot maps showing the relative density of predicted but undocumented host-parasite interactions. Maps were generated by summing the probabilities of undocumented host-parasite interactions per host species, summing across host species per cell (0.5 degree resolution) with range maps for terrestrial mammals from the IUCN, then standardizing to a scale of 0 - 1. A) represents the relative undocumented link density based on predictions from the affinity model, while B) represents the phylogeny model, and C) the combined model.

Discussion

Using a phylogeny-informed bipartite network model we were able to accurately predict missing links in a very large global mammal-parasite network. That we are able to make robust
predictions even with extremely sparse input data, indicates that this modelling approach may be useful in other large, data-poor ecological networks. We compared the performance of our joint model with an affinity only ("rich-get-richer") model, and a phylogeny only model. While predictive performance in cross-validation was regularly higher for the affinity model, our literature searches showed the phylogeny model to be less prone to predicting ecologically unlikely links, indicating that it may better capture the underlying ecological and evolutionary processes structuring host-parasite interactions. The layering of the affinity and phylogeny models allows the combined model to exploit the scale-free nature of many real-world networks while further correcting for ecologically unlikely links. The influence of this correction factor is best shown by contrasting the posterior interaction matrices (Fig. SM 2).

Predictions from the affinity model tended reflect existing degree distributions (SM 2.2), indicated by the dominance of humans and domesticated animals among the top predictions (Fig. 3, and highlighting Europe as a hotspot of undocumented links (Fig. 4), likely representing the volume of research on well-studied taxa in this region. We might expect that predicted links among well studied taxa would already be well-documented if common. However, affinity-based predictions may be critical for large-scale public health initiatives if they implicate widespread or abundant species as reservoirs of emerging infections. The affinity model is also more likely to identify parasite sharing among distantly related hosts, which has the potential to result in high mortality following host shifts (Farrell & Davies, 2019). While the affinity model did predict links supported by our literature search, the top predictions included multiple links that are unlikely due to a mismatch in host ecology. For example, domestic cattle (Bos taurus) are predicted to be susceptible to infection by Anisakis simplex. A. simplex is a trophically transmitted nematode that uses aquatic mammals as final hosts, with marine invertebrates and fish as intermediate hosts (Buchmann & Mehdana, 2016), implying that cattle may only be exposed to the parasite if fed a marine-based diet.
The phylogeny model uses only the evolutionary relationships among hosts to predict missing links, and was found to strongly mitigate the propagation of potential research biases compared to the affinity model (SM 2.2). Hotspots of predicted links from the phylogeny model show a spatial distribution in stark contrast to the affinity model, with highest density in tropical and central America, followed by tropical Africa and Asia (Fig. 4). It is unsurprising that these under-studied regions, with high host and parasite diversity, are identified as centres of undocumented host-parasite associations. The top undocumented links predicted by the phylogeny model also included fewer ecologically unlikely interactions, with only one unlikely interaction among those we investigated via literature review. *Echinococcus granulosus* is typically maintained by a domestic cycle of dogs eating raw livestock offal (Otero-Abad & Torgerson, 2013), and while wild canids such as *Lycalopex gymnocercus* are known hosts (Lucherini & Luengos Vidal, 2008), the phylogeny model predicts *Lycalopex vetulus* as a potential host. However, this interaction is unlikely as *L. vetulus* has a largely insectivorous diet (Dalponte, 2009), unlike the other members of its genus.

Missing links

We identified a number of parasites which may impact the health of humans and domesticated animals. These include parasites currently considered a risk for zoonotic transmission such as *Alaria alata*, an intestinal parasite of wild canids – a concern as other *Alaria* species have been reported to cause fatal illness in humans (Murphy *et al.*, 2012), and *Bovine viral diarrhea virus I*, which is not currently considered to be a human pathogen, but is highly mutable, has the ability to replicate in human cell lines, and has been isolated from humans on rare occasions (Walz *et al.*, 2010). However, there is a large amount of effort that goes into studying infectious diseases of humans and domestic species, and it is likely that most contemporary associations among humans and described parasites have been recorded, even if not included in the aggre-
gated databases because they occur rarely or are difficult to detect. For example, we predicted
that humans could be infected by *Bartonella grahamii*, and found that the first recorded case
was in an immunocompromised patient in 2013 (Oksi *et al.*, 2013). Similarly, humans are pre-
dicted to be susceptible to *Mycoplasma haemofelis*, which was again reported in someone who
was immunocompromised (dos Santos *et al.*, 2008), indicating that while these infections may
pose little risk for a large portion of the human population, they are a serious concern for the
health of immunocompromised individuals. These examples demonstrate our framework has
the capacity to predict known human diseases, highlight parasites that are recognized zoonotic
risks, and identify a number of parasites that are currently unrecognized as zoonotic risks.

Applying link prediction methods to wildlife global host-parasite networks can highlight
both historical and contemporary disease threats to biodiversity, and identify parasites with the
potential to drive endangered species towards extinction. For example, the phylogeny mod-
els identified links reported only in literature from over 30 years ago, such as *T. cruzi* in the
critically endangered cotton-top tamarin (*Saguinus oedipus*) (Marinkelle, 1982) and the vulner-
able black-crowned Central American squirrel monkey (*Saimiri oerstedii*) (Sousa, 1972). Our
guided literature search also found evidence of severe infections in several endangered species
such as rabies and sarcoptic mange (*Sarcoptes scabiei*) in Dhole (*Cuon alpinus*) (Durbin *et al.*, 2005) and *Toxoplasma gondii* in critically endangered African wild dogs (*Lycaon pictus*) which
caused a fatal infection in a pup (Van Heerden *et al.*, 1995). Our model also predicts that rabies
and sarcoptic mange are likely to infect the endangered Darwin’s fox (*Lycalopex fulvipes*). Dis-
ease spread via contact with domestic dogs (notably *Canine distemper virus*) is currently one of
the main threats to this species (Silva-Rodríguez *et al.*, 2016). Considering that both rabies and
sarcoptic mange from domestic dogs are implicated in the declines of other wild canids, they
may pose a serious risk for the conservation of Darwin’s foxes.

Because we did not include geographic constraints in our model, we may predict interactions
among potentially compatible hosts and parasites that may be unrealized in nature due to lack of geographic overlap. These included *T. cruzi*, which is currently restricted to the Americas (Browne *et al.*, 2017), infecting endangered African species such as black rhinoceros (*Diceros bicornis*), lowland gorilla (*Gorilla gorilla*), and chimpanzee (*Pan troglodytes*). Although contemporary natural infections of chimpanzees by this parasite are unlikely due to geography, we found a report of a fatal infection of a captive individual in Texas (Bommineni *et al.*, 2009).

In addition to this example, our models identified multiple infections documented only in captive animals. While we found no published cases of natural infections, these demonstrate that the model is able to identify biologically plausible infection risks that are relevant for captive populations, and may present future risks in the face of host or parasite translocation.

Iterative link prediction and parasite surveillance

Link prediction in host-parasite networks is a critical step in an iterative process of prediction and verification, whereby likely links are identified, queried, and new links are added, allowing predictions to be updated. For example, we identified a number of interactions that were first documented in the literature only after the source databases were assembled (e.g. *Nematodirus spathiger* in *Gazella leptoceros* (Said *et al.*, 2018), *Toxoplasma gondii* in *Papio anubis* (Kamau *et al.*, 2016), *Trypanosoma cruzi* in horses (Bryan *et al.*, 2016)), suggesting that prediction-guided literature searches offer a cost-effective solution to addressing knowledge gaps, maximizing the value of published literature, and identifying targets for future field-based sampling. We view our effort as working towards the larger goal of expanding and filling out the global mammal-parasite network, which also includes programs for pathogen discovery, and field and collections based parasite sampling.

We demonstrate that missing links in global databases of host-parasite interactions can be accurately identified using information on known associations and the evolutionary relation-
ships among host species. Link prediction represents a cost-effective approach for augmenting
global databases used in the study of disease ecology and evolution. As we move down the
list of most probable links, we will uncover links with infectious organisms that are less well
studied, but which may emerge as public or wildlife health burdens in the future. Through tar-
geting research and surveillance efforts towards likely undocumented interactions, we can more
efficiently gather baseline knowledge of the diversity of host-parasite interactions, ultimately
supporting the development of fundamental theory in disease ecology and evolution (Stephens
et al., 2016) and strengthening our understanding of disease spread and persistence in multi-
host systems (Viana et al., 2014). In addition, prediction of host species that are susceptibile
or exposed to known infectious diseases, we can guide the proactive surveillance of multi-host
parasites underlying contemporary disease burdens, and those which may emerge in the future.

Conclusion & Future Directions

In our study, all three models predicted links that were supported through targeted literature
searches, though the host and parasite taxa differed. We therefore suggest that information on
affinities and phylogeny are complementary, and while we place greater emphasis on the com-
bined model here, choice of one model over another should depend on the goals of subsequent
analyses, and whether it is important to minimize false positives or false negatives among pre-
dicted links. The phylogeny model leverages evolutionary relationships among taxa to generate
predictions, however, the flexibility of the method allows for any information to be included,
provided it can be represented as a distance matrix (Elmasri et al., 2020). Future models may
be expanded to use trait or geographic distances among hosts to exclude ecological mismatches
not currently captured by host phylogeny. Similarly, the model may be extended to incorporate
weighted rather than binary associations, allowing for modelling links as a function of prev-
ance, intensity of infection, or to explicitly incorporate the amount of evidence supporting each
link. In this way sampling intensity may be directly incorporated into link predictions, and help identify weakly supported interactions or sampling artefacts that may benefit from additional investigation.

We present our amalgamated interaction matrix and predictions of top missing links here as a resource for future work on the macroecology of multi host-multi parasite dynamics. However, important next step is to move beyond binary associations, and quantify the nature of the association between host and parasite (Becker et al., 2020). In this way we may be able to predict not only the presence or absence of a particular host-parasite interaction, but the epidemiological role each host plays in parasite transmission, the impact of infection on host fitness (Farrell & Davies, 2019), and better understand the ecologies of reservoir versus spillover hosts.

Data & code

The amalgamated host-parasite matrix, results of all models, top predictions from each model, and R scripts to format predictions and reproduce the figures can be found at doi: 10.6084/m9.figshare.8969882. Code used to run the model is available at github.com/melmasri/HP-prediction.

Acknowledgements

This work would not exist without the McGill Statistics-Biology Exchange (S-BEX) organized by Zofia Taranu, Amanda Winegardner, and Russel Steele. Additional thanks are due to Will Pearse, Ignacio Morales-Castilla, and Klaus Schliep for support and advice, and to Colin Carlson and Greg Albery for friendly review of the manuscript. MJF was supported by a Vanier NSERC CGS, the CIHR Systems Biology Training Program, the Quebec Centre for Biodiversity Science, and the McGill Biology Department. ME was supported by the McGill Department of Mathematics and Statistics, FRQNT, and an NSERC PDF.
Author Contributions

MF and JD designed the study, ME, MF, JD, and DS designed the methods, MF compiled the data, MF and ME conducted the analyses, MF wrote the manuscript with input from JD. The authors declare no conflicts of interest.
References

Albery, G.F., Eskew, E.A., Ross, N. & Olival, K.J. (2020) Predicting the global mammalian viral sharing network using phylogeography. *Nature Communications* **11**, 2260, number: 1 Publisher: Nature Publishing Group.

Bartomeus, I., Gravel, D., Tylianakis, J.M., Aizen, M.A., Dickie, I.A. & Bernard-Verdier, M. (2016) A common framework for identifying linkage rules across different types of interactions. *Functional Ecology* **30**, 1894–1903.

Becker, D.J., Seifert, S.N. & Carlson, C.J. (2020) Beyond Infection: Integrating Competence into Reservoir Host Prediction. *Trends in Ecology & Evolution* **35**, 1062–1065.

Bommineni, Y.R., Dick, E.J., Estep, J.S., Van de Berg, J.L. & Hubbard, G.B. (2009) Fatal acute Chagas disease in a chimpanzee. *Journal of Medical Primatology* **38**, 247–251.

Braga, M.P., Razzolini, E. & Boeger, W.A. (2015) Drivers of parasite sharing among Neotropical freshwater fishes. *Journal of Animal Ecology* **84**, 487–497.

Browne, A.J., Guerra, C.A., Alves, R.V., Da Costa, V.M., Wilson, A.L., Pigott, D.M., Hay, S.I., Lindsay, S.W., Golding, N. & Moyes, C.L. (2017) The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. *Scientific Data* **4**, 1–10.

Bryan, L.K., Hamer, S.A., Shaw, S., Curtis-Robles, R., Auckland, L.D., Hodo, C.L., Chaffin, K. & Rech, R.R. (2016) Chagas disease in a Texan horse with neurologic deficits. *Veterinary Parasitology* **216**, 13–17.

Buchmann, K. & Mehrdana, F. (2016) Effects of anisakid nematodes Anisakis simplex (s.l.),
Pseudoterranova decipiens (s.l.) and Contracaecum osculatum (s.l.) on fish and consumer health. *Food and Waterborne Parasitology* **4**, 13–22.

Carlson, C.J., Zipfel, C.M., Garnier, R. & Bansal, S. (2019) Global estimates of mammalian viral diversity accounting for host sharing. *Nature Ecology & Evolution* **3**, 1070–1075, number: 7 Publisher: Nature Publishing Group.

Cleaveland, S., Laurenson, M.K. & Taylor, L.H. (2001) Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence. *Philosophical Transactions of the Royal Society B: Biological Sciences* **356**, 991–999.

Dallas, T. (2016) HelminthR: An R interface to the London Natural History Museum’s Host-Parasite Database. *Ecography* **39**, 391–393.

Dallas, T., Huang, S., Nunn, C., Park, A.W. & Drake, J.M. (2017) Estimating parasite host range. *Proceedings of the Royal Society B: Biological Sciences* **284**.

Dalponte, J.C. (2009) Lycalopex vetulus (Carnivora: Canidae). *Mammalian Species* **847**, 1–7.

Davies, T.J. & Pedersen, A.B. (2008) Phylogeny and geography predict pathogen community similarity in wild primates and humans. *Proceedings of the Royal Society B: Biological Sciences* **275**, 1695–1701.

dos Santos, A.P., dos Santos, R.P., Biondo, A.W., Dora, J.M., Goldani, L.Z., de Oliveira, S.T., de Sá Guimarães, A.M., Timenetsky, J., de Morais, H.A., González, F.H. & Messick, J.B. (2008) Hemoplasma infection in HIV-positive patient, Brazil. *Emerging Infectious Diseases* **14**, 1922–1924.

Durbin, L., Venkataraman, A., Hedges, S. & Duckworth, W. (2005) South Asia – South of
the Himalaya (Oriental). *Canids: Foxes, Wolves, Jackals and Dogs* (eds. C. Sillero-Zubiri, M. Hoffmann & D. Macdonald), chap. 8, pp. 210–219, Island Press.

Elmasri, M., Farrell, M.J., Davies, T.J. & Stephens, D.A. (2020) A Hierarchical Bayesian Model for Predicting Ecological Interactions Using Scaled Evolutionary Relationships. *Annals of Applied Statistics* in press.

Ezenwa, V.O., Price, S.A., Altizer, S., Vitone, N.D. & Cook, K.C. (2006) Host traits and parasite species richness in even and odd-toed hoofed mammals, Artiodactyla and Perissodactyla. *Oikos* **115**, 526–536.

Farrell, M.J. & Davies, T.J. (2019) Disease mortality in domesticated animals is predicted by host evolutionary relationships. *Proceedings of the National Academy of Sciences* **116**, 7911–7915.

Fritz, S.A., Bininda-Emonds, O.R.P. & Purvis, A. (2009) Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. *Ecology letters* **12**, 538–549.

Gibson, D.I., Bray, R.A. & Harris, E.A.C. (2005) Host-Parasite Database of the Natural History Museum, London.

Gomez, J.M., Nunn, C.L. & Verdu, M. (2013) Centrality in primate-parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. *Proceedings of the National Academy of Sciences* **110**, 7738–7741.

Grace, D., Gilbert, J., Randolph, T. & Kang’ethe, E. (2012) The multiple burdens of zoonotic disease and an ecohealth approach to their assessment. *Tropical Animal Health and Production* **44**, 67–73.
Gravel, D., Poisot, T., Alouby, C., Velez, L. & Mouillot, D. (2013) Inferring food web structure from predator-prey body size relationships. *Methods in Ecology and Evolution* **4**, 1083–1090.

Han, B.A., Schmidt, J.P., Alexander, L.W., Bowden, S.E., Hayman, D.T.S. & Drake, J.M. (2016) Undiscovered Bat Hosts of Filoviruses. *PLOS Neglected Tropical Diseases* **10**, 1–10, publisher: Public Library of Science.

Han, B.A., Schmidt, J.P., Bowden, S.E. & Drake, J.M. (2015) Rodent reservoirs of future zoonotic diseases. *Proceedings of the National Academy of Sciences* **112**, 7039–7044.

Harmon, L.J., Losos, J.B., Jonathan Davies, T., Gillespie, R.G., Gittleman, J.L., Bryan Jennings, W., Kozak, K.H., McPeek, M.A., Moreno-Roark, F., Near, T.J., Purvis, A., Ricklefs, R.E., Schluter, D., Schulte, J.A., Seehausen, O., Sidlauskas, B.L., Torres-Carvajal, O., Weir, J.T. & Mooers, A.T. (2010) Early bursts of body size and shape evolution are rare in comparative data. *Evolution* **64**, 2385–2396.

Huang, S., Bininda-Emonds, O.R.P., Stephens, P.R., Gittleman, J.L. & Altizer, S. (2014) Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. *Journal of Animal Ecology* **83**, 671–680.

Huang, S., Drake, J.M., Gittleman, J.L. & Altizer, S. (2015) Parasite diversity declines with host evolutionary distinctiveness: A global analysis of carnivores. *Evolution* **69**, 621–630.

IUCN (2019) The IUCN Red List of Threatened Species.

Kamau, D., Kagira, J., Maina, N., Mutura, S., Mokua, J. & Karanja, S. (2016) Detection of natural Toxoplasma gondii infection in olive baboons (Papio anubis) in Kenya using nested PCR. *The 11th Ikuat Scientific, Technological and Industrialization Conference and Exhibitions Conference Proceedings.*
Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. (2014) What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biological Reviews of the Cambridge Philosophical Society 89, 123–134.

Lindenfors, P., Nunn, C.L., Jones, K.E., Cunningham, A.A., Sechrest, W. & Gittleman, J.L. (2007) Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Global Ecology and Biogeography 16, 496–509.

Lucherini, M. & Luengos Vidal, E.M. (2008) Lycalopex gymnocercus (Carnivora: Canidae). Mammalian Species 820, 1–9.

Luis, A.D., O’Shea, T.J., Hayman, D.T., Wood, J.L., Cunningham, A.A., Gilbert, A.T., Mills, J.N. & Webb, C.T. (2015) Network analysis of host-virus communities in bats and rodents reveals determinants of cross-species transmission. Ecology Letters 18, 1153–1162.

Marinkelle, C.J. (1982) The prevalence of Trypanosoma (Schizotrypanum) cruzi cruzi infection in Colombian monkeys and marmosets. Annals of Tropical Medicine & Parasitology 76, 121–124, pMID: 6807227.

Morales-Castilla, I., Matias, M.G., Gravel, D. & Araújo, M.B. (2015) Inferring biotic interactions from proxies. Trends in Ecology & Evolution 30, 347–356.

Murphy, T.M., O’Connell, J., Berzano, M., Dold, C., Keegan, J.D., McCann, A., Murphy, D. & Holden, N.M. (2012) The prevalence and distribution of Alaria alata, a potential zoonotic parasite, in foxes in Ireland. Parasitology Research 111, 283–290.

Nunn, C.L., Altizer, S., Jones, K.E. & Sechrest, W. (2003) Comparative tests of parasite species richness in primates. The American Naturalist 162, 597–614.
Oksi, J., Rantala, S., Kilpinen, S., Silvennoinen, R., Vornanen, M., Veikkolainen, V., Eerola, E.
& Pulliainen, A.T. (2013) Cat scratch disease caused by Bartonella grahamii in an immuno-
compromised patient. *Journal of Clinical Microbiology* **51**, 2781–2784.

Olival, K.J., Hosseini, P.R., Zambrana-Torrelio, C., Ross, N., Bogich, T.L. & Daszak, P. (2017)
Host and viral traits predict zoonotic spillover from mammals. *Nature* **546**, 646–650.

Otero-Abad, B. & Torgerson, P.R. (2013) A systematic review of the epidemiology of
echinococcosis in domestic and wild animals. *PLoS Neglected Tropical Diseases* **7**.

Page, R.D. (1993) Parasites, phylogeny and cospeciation. *International Journal for Parasitology* **23**, 499–506.

Pandit, P.S., Doyle, M.M., Smart, K.M., Young, C.C.W., Drape, G.W. & Johnson, C.K. (2018)
Predicting wildlife reservoirs and global vulnerability to zoonotic flaviviruses. *Nature com-
munications* **9**, 5425.

Park, A.W. (2019) Food web structure selects for parasite host range. *Proceedings of the Royal
Society B: Biological Sciences* **286**, 20191277, publisher: Royal Society.

Park, A.W., Farrell, M.J., Schmidt, J.P., Huang, S., Dallas, T.A., Pappalardo, P., Drake, J.M.,
Stephens, P.R., Poulin, R., Nunn, C.L. & Davies, T.J. (2018) Characterizing the phylogenetic
specialism-generalism spectrum of mammal parasites. *Proceedings of the Royal Society B:
Biological Sciences* **285**.

Pilosof, S., Morand, S., Krasnov, B.R. & Nunn, C.L. (2015) Potential parasite transmission in
multi-host networks based on parasite sharing. *PLoS ONE* **10**.

Ricci, F., Rokach, L. & Shapira, B. (2011) *Introduction to Recommender Systems Handbook*.
Springer.
Said, Y., Gharbi, M., Mhadhbi, M., Dhibi, M. & Lahmar, S. (2018) Molecular identification of parasitic nematodes (Nematoda: Strongylida) in feces of wild ruminants from Tunisia. Parasitology 145, 901–911.

Shwab, E.K., Saraf, P., Zhu, X.Q., Zhou, D.H., McFerrin, B.M., Ajzenberg, D., Schares, G., Hammond-Aryee, K., van Helden, P., Higgins, S.A., Gerhold, R.W., Rosenthal, B.M., Zhao, X., Dubey, J.P. & Su, C. (2018) Human impact on the diversity and virulence of the ubiquitous zoonotic parasite Toxoplasma gondii. Proceedings of the National Academy of Sciences 115, 201722202.

Silva-Rodríguez, E., Farias, A., Moreira-Arce, D., Cabello, J., Hidalgo-Hermoso, E. Lucherini, M. & Jiménez, J. (2016) Lycalopex fulvipes. The IUCN Red List of Threatened Species 2016.

Smith, K.F., Acevedo-Whitehouse, K. & Pedersen, A.B. (2009) The role of infectious diseases in biological conservation. Animal Conservation 12, 1–12.

Sousa, O.E. (1972) Anotaciones sobre la enfermedad de Chagas en Panamá. Frecuencia y distribución de Trypanosoma cruzi y Trypanosoma rangeli. Revista de biología tropical 20, 167–179.

Stephens, P.R., Altizer, S., Smith, K.F., Alonso Aguirre, A., Brown, J.H., Budischak, S.A., Byers, J.E., Dallas, T.A., Jonathan Davies, T., Drake, J.M., Ezenwa, V.O., Farrell, M.J., Gittleman, J.L., Han, B.A., Huang, S., Hutchinson, R.A., Johnson, P., Nunn, C.L., Onstad, D., Park, A., Vazquez-Prokopec, G.M., Schmidt, J.P. & Poulin, R. (2016) The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts. Ecology letters 19, 1159–1171.

Stephens, P.R., Pappalardo, P., Huang, S., Byers, J.E., Critchlow, R., Farrell, M.J., Gehman,
A., Ghai, R.R., Haas, S., Han, B.A., Park, A.W., Schmidt, J.P., Altizer, S., Ezenwa, V.O. & Nunn, C.L. (2017) Global Mammal Parasite Database version 2.0. *Ecology* pp. 42–49.

Taylor, L.H., Latham, S.M. & Woolhouse, M.E. (2001) Risk factors for human disease emergence. *Philosophical Transactions of the Royal Society B: Biological Sciences* **356**, 983–989.

Van Heerden, J., Mills, M.G., Van Vuuren, M.J., Kelly, P.J. & Dreyer, M.J. (1995) An investigation into the health status and diseases of wild dogs (Lycaon pictus) in the Kruger National Park. *Journal of the South African Veterinary Association* **66**, 18–27.

Viana, M., Mancy, R., Biek, R., Cleaveland, S., Cross, P.C., Lloyd-Smith, J.O. & Haydon, D.T. (2014) Assembling evidence for identifying reservoirs of infection. *Trends in Ecology & Evolution* **29**, 270–279.

Walz, P.H., Grooms, D.L., Passler, T., Ridpath, J.F., Tremblay, R., Step, D.L., Callan, R.J. & Givens, M.D. (2010) Control of bovine viral diarrhea virus in ruminants. *Journal of Veterinary Internal Medicine* **24**, 476–486.

Wardeh, M., Risley, C., Mcintyre, M.K., Setzkorn, C. & Baylis, M. (2015) Database of host-pathogen and related species interactions, and their global distribution. *Scientific Data* **2**, 150049.

Wardeh, M., Sharkey, K.J. & Baylis, M. (2020) Integration of shared-pathogen networks and machine learning reveals the key aspects of zoonoses and predicts mammalian reservoirs. *Proceedings of the Royal Society B: Biological Sciences* **287**, 20192882, publisher: Royal Society.

Watts, D.J. & Strogatz, S.H. (1998) Collective dynamics of ’small world’ networks. *Nature* **393**, 440–442.
Wiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B., Cornell, H.V., Damschen, E.I., Jonathan Davies, T., Grytnes, J.A., Harrison, S.P., Hawkins, B.A., Holt, R.D., McCain, C.M. & Stephens, P.R. (2010) Niche conservatism as an emerging principle in ecology and conservation biology. *Ecology Letters* **13**, 1310–1324.
Predicting missing links in global host-parasite networks

Supplementary Materials

Maxwell J. Farrell1,2,3*, Mohamad Elmasri4
David Stephens4 & T. Jonathan Davies5,6

1Department of Biology, McGill University
2Ecology & Evolutionary Biology Department, University of Toronto
3Center for the Ecology of Infectious Diseases, University of Georgia
4Department of Mathematics & Statistics, McGill University
5Botany, Forest & Conservation Sciences, University of British Columbia
6African Centre for DNA Barcoding, University of Johannesburg

*To whom correspondence should be addressed: e-mail: maxwell.farrell@utoronto.ca
1 Supplementary Methods

1.1 Database amalgamation

To amalgamate the source databases, host names were standardized to those in Wilson & Reeder (1) and used in the Fritz et al. (2) mammal phylogeny. Virus names were standardized to the 2015 version of the International Convention on Viral Taxonomy (3). For non-viral parasites there exists no single accepted authority for nomenclature or species concepts, however all parasite names were thoroughly checked for typographical and formatting errors. When potentially synonymous names were identified (e.g. *Clycocyclus insigne* and *Clycocyclus insignis*), online searches of primary literature and taxonomic databases including the Integrated Taxonomic Information System (www.itis.gov), Catalogue of Life (www.catalogueoflife.org), World Register of Marine Species (www.marinespecies.org), Encyclopedia of Life (www.eol.org), NCBI Taxonomy Database (www.ncbi.nlm.nih.gov/taxonomy), UniProt (www.uniprot.org), and the Global Names Resolver (resolver.globalnames.org) were conducted to resolve taxonomic conflicts. Synonymous names were corrected to the name with the majority of references, or to the preferred name in recently published literature or taxonomic revision when this information was available. Host associations for parasite names that were later split into multiple species were removed from the dataset (e.g. *Bovine papillomavirus*). All hosts and parasites reported below the species level were assigned to their respective species (e.g. *Alcelaphus buselaphus jacksoni* was truncated to *Alcelaphus buselaphus*), and any species reported only to genus level or higher (e.g. *Trichostrongylus sp.*.) was removed. Our requirement for source databases to report Latin binomials facilitated taxonomy harmonization, but resulted in the exclusion of databases such as the GIDEON, which is a useful resource for modelling outbreaks of human infections based on disease common names, but does not provide unambiguous parasite scientific names (4). Of the 215 human diseases reported in Smith et al. (2014), we identified 197 that could be attributed to a predominant causal agent or group of organisms, all of which were already represented in our more comprehensive dataset. The remaining 18 human diseases represented those with no known causes (e.g. Brainerd diarrhea, Kawasaki disease), and those regularly caused by a diverse range of pathogens (e.g. viral conjunctivitis, invasive fungal infection, tropical phagedenic ulcer).

1.2 Parameter estimation and predictive performance

For parameter estimation we split a dataset into ten folds, and used the MCMC algorithm described in Elmasri et al. (5) to estimate model parameters across each of the ten folds. For each model we determined the number of iterations required for parameter convergence by visual inspection of parameter traceplots, auto-correlation plots, and effective sample size (see Elmasri et al. (5) for detailed discussion of convergence diagnostics). For each fold we generated a posterior interaction matrix by averaging 1000 sample posterior matrices, where each sample matrix is constructed by drawing parameters at random from the last 10000 MCMC samples.
To assess predictive performance, we employed cross-validation across each of the ten folds used for parameter estimation. For each new fold, we set a fraction of the observed interactions (1s) to unknowns (0s), and attempted to predict them using a model fit to the remaining interactions. Here we only held out links for which there was a minimum of two observed interactions as the model would not be able to recover interactions for parasites that infect a single host species. Predictive performance was quantified using the area under the receiver operating characteristic (ROC) curve, which is a popular measure of potential predictive ability for binary outcomes. For each fold, an ROC curve is obtained by thresholding the predictive probabilities of the posterior interaction matrix, then calculating the true positive and false positive rates compared to the hold out set. In this way the posterior interaction matrix is converted to a set of binary interactions at the threshold value that maximizes the area under the ROC curve (AUC). To calculate ROC curves for each model-dataset combination, we took the average ROC values across the 10 folds. However, because our study is motivated by the belief that some 0s in our data are actually unobserved 1s, AUC may not be the best metric for comparing model performance as it increases when models correctly recover observed 0s. Therefore, in addition to AUC, we also assess predictive performance based on the percent of 1s accurately recovered, following a similar procedure. For prediction and guiding of the targeted literature searches, we generate a single posterior predictive interaction matrix for each model-dataset combination, by averaging these ten posterior interaction matrices.
2 Supplementary Results

Figure SM 1: Degree distributions of the number of associations (degree) for hosts and parasites (nodes). The distributions are linear on the log scale, indicating a power-law in the number of observed associations per species across the network.
Figure SM 2: Posterior interaction matrices for the affinity, phylogeny, and combined models run on the full dataset. Axis labels represent indexes for hosts (rows) and parasites, with hosts ordered to match Figure 1.
2.1 Model diagnostics

All models showed high predictive accuracy in cross-fold validation: area under the receiver operating characteristic curve (AUC) values ranging from 0.842 - 0.978, where a maximum AUC of 1 signifies perfect predictive accuracy, and with between 72.54% and 98.00% of the held-out documented interactions successfully recovered (Fig. 2A, Table SM 1; see Fig. SM 2 for posterior interaction matrices for the full dataset). While remaining high overall, AUC tended to decrease with the total size of the interaction matrix, with the phylogeny only model demonstrating the lowest AUC when applied to the largest interaction matrices – the full matrix, and the helminth subset (Fig. 2A). The percent documented interactions (1s) correctly recovered from the held-out portion also decreased the total size of the interaction matrix (Fig. 2C), with the combined model outperforming the other models in all subsets except for the full dataset and the virus subset (Table SM 1).

This may reflect that successfully predicting held-out links becomes more difficult in more sparse matrices, which happens here as the size of the matrix increases. Further, for the phylogeny-only model, the larger drop in performance relative to other models may reflect variation in the optimal tree scaling parameter across different parasite subsets (see Figs. SM 9 & SM 9 for examples across parasite types). In the larger interaction matrices, additional parasite diversity is represented, implying that fitting a single tree transformation may result in sub-optimal prediction as the relative importance of shallow versus deep phylogenetic distances is likely to vary across parasite subgroups within these matrices. Future research may benefit from being able to fit multiple different scaling parameters per parasite group.

For each model, we conducted literature searches for the top ten most likely links without documentation in the current database. This resulted in 177 unique host-parasite links after removing duplicate predictions across models and subsets (see Materials & Methods). Of the undocumented links for which literature searches were conducted, we identified 72 links with evidence of infection (direct observation, genetic sequencing, or positive serology), and an additional 14 links with some evidence, but for which additional confirmatory data are required (e.g. antibodies but no confirmed cases for human infections, known cross-reactivity of the serological test used, an unconfirmed visual diagnosis, or the identification of a genetically similar but previously unknown parasite). Of the remaining links for which we could not find conclusive evidence, we highlight 39 that should be targeted for surveillance. These include links where there is known geographic overlap in the ranges of the host and parasite and host ecologies likely facilitate exposure. We also identify a number of links that are highly likely in the model, but are unlikely due to the mode of disease transmission, non-overlapping host and parasite geographies, or potential competitive interactions with closely related parasites. Overall the full and phylogeny only models tended to identify a greater number of links with published evidence, and fewer ecologically unlikely links (Fig. 2D).
Data subset	Model	AUC	% 1s recovered
Full dataset	Affinity only	0.938	92.60
	Phylogeny only	0.842	72.54
	Combined model	0.908	83.66
Arthropods	Affinity only	0.939	87.89
	Phylogeny only	0.946	92.81
	Combined model	0.952	93.76
Bacteria	Affinity only	0.974	94.09
	Phylogeny only	0.944	91.89
	Combined model	0.963	95.44
Fungi	Affinity only	0.970	95.59
	Phylogeny only	0.963	93.09
	Combined model	0.978	98.00
Helminths	Affinity only	0.937	85.00
	Phylogeny only	0.879	81.45
	Combined model	0.919	86.70
Protozoa	Affinity only	0.963	93.90
	Phylogeny only	0.966	93.66
	Combined model	0.956	94.33
Viruses	Affinity only	0.935	89.81
	Phylogeny only	0.920	89.16
	Combined model	0.911	89.20

Table SM 1: Average model performances diagnostics after 10-fold cross validation: area under the receiver operating characteristic curve (AUC), and percent documented interactions (1s) correctly recovered from the held-out portion.
2.2 Investigation of bias propagation

![Hexbin plots](image)

(a) Affinity only
(b) Combined model
(c) Phylogeny only

Figure SM 3: Hexbin plots of the relationship between the degree product per interaction (calculated as host degree multiplied by parasite degree) on the x axis (log+1 transformed), and the predicted probability based on a given model on the y axis (log transformed). Plots A-C represent the affinity, combined, and phylogeny models run on the full dataset. Single host parasites are removed prior to plotting.
Figure SM 4: For each model-dataset combination, a linear regression relating degree product to predicted probability of each interaction was fit. The figure indicates the estimated slope and explained variance per linear regression.

Figure SM 5: For each model-dataset combination, a linear regression relating degree product to predicted probability of each interaction was fit. The figure indicates the estimated slope between degree product and predicted probability. Note that 95% confidence intervals are plotted but too small to be seen.
Figure SM 6: For each model-dataset combination, a linear regression relating degree product to predicted probability of each interaction was fit. The figure indicates the variance explained by degree product.

Figure SM 7: Boxplots of the ranks of the top 10 predicted links with no documentation in the original dataset, for each of the three model variants applied to the full dataset.
2.3 Phylogeny scaling

To account for uncertainty in the phylogenetic distances among hosts and improve prediction, the model estimates a tree scaling parameter (η) based on an early-burst model of evolution (6). Across models, η was estimated to be positive, corresponding to a model of accelerating evolution, and suggesting less phylogenetic conservatism in host link associations among closely related taxa than predicted under a pure-Brownian motion model (6). Not surprisingly, η varied when the data was subset by parasite type (Figs. SM 9 & SM 10). Interestingly, arthropods and fungi were estimated to have the smallest η parameters (both ~ 8.15), perhaps reflecting the tendency for fungi to include opportunistic pathogens such as *Pneumocystis carinii* and *Chrysosporium parvum*. In contrast, larger η was estimated for helminths and viruses (10.28 and 9.54 respectively), consistent with the observation of Park et al. (7) that mean phylogenetic specificity is similar in these two groups, though viruses are more variable and contain more extreme specialist and generalist parasites. Overall the full dataset was estimated with an η parameter most similar to the helminth subset (10.76), reflecting the representation of helminths in the full dataset (roughly 64% of the observed host-parasite interactions). The discrepancy in phylogeny scaling across the Combined model and the subsets by parasite type likely contributes to explaining why the performance of the phylogeny only model is lower in the full dataset. Future extensions may benefit from developing a more flexible model to allow for an interaction between phylogenetic scaling and parasite taxonomy, rather than using a single scaling parameter.
Figure SM 9: The source phylogeny pruned to include only hosts in the amalgamated dataset, and the phylogenies scaled by mean estimated Eta for the phylogeny only models applied to the full dataset, and arthropod and bacteria subsets.
Figure SM 10: Phylogenies scaled by mean estimated Eta for the phylogeny only models applied to the fungi, helminth, protozoa, and virus subsets.
Top predicted links and literature search results

Dataset	Model	Unique Hosts	Unique Parasites	Links with evidence	Unlikely links
Full	Affinity only	1	10	1	1
Full-Domestics	Affinity only	3	9	3	2
Full-Wild	Affinity only	10	1	8	0
Full	Phylogeny only	10	2	4	0
Full-Domestics	Phylogeny only	9	2	7	0
Full-Wild	Phylogeny only	10	2	4	0
Full	Combined model	9	3	7	0
Full-Domestics	Combined model	5	6	5	2
Full-Wild	Combined model	10	1	8	0
Arthropod	Affinity only	6	5	2	0
Arthropod	Phylogeny only	10	3	4	0
Arthropod	Combined model	9	2	3	0
Bacteria	Affinity only	1	10	2	0
Bacteria	Phylogeny only	9	3	4	0
Bacteria	Combined model	6	7	3	1
Fungi	Affinity only	3	9	2	4
Fungi	Phylogeny only	10	1	1	0
Fungi	Combined model	9	3	5	1
Helminths	Affinity only	3	7	2	3
Helminths	Phylogeny only	8	8	2	1
Helminths	Combined model	5	6	0	5
Protozoa	Affinity only	7	4	5	0
Protozoa	Phylogeny only	10	2	7	0
Protozoa	Combined model	8	3	7	0
Viruses	Affinity only	4	8	4	0
Viruses	Phylogeny only	10	1	6	0
Viruses	Combined model	10	2	8	0

Table SM 2: Numbers of unique hosts, unique parasites, links for which evidence was identified in the literature, and unlikely links based ecological mismatch for each of the top 10 predicted links per model.
2.4 Affinity only – Full Dataset

Host	Parasite	Status
Homo sapiens	Taenia mustelae	
Homo sapiens	Bluetongue virus	
Homo sapiens	Bovine viral diarrhea virus 1	
Homo sapiens	Neospora caninum	
Homo sapiens	Mastophorus muris	
Homo sapiens	Plagiorchis vespertilionis	Confirmed
Homo sapiens	Carnivore protoparvovirus 1	
Homo sapiens	Alaria alata	
Homo sapiens	Taenia pisiformis	
Homo sapiens	Physoscephalus sexalatus	Unlikely

Table SM 3: Top 10 undocumented links with highest probability of interaction: Affinity only model - full data set.

- A recent molecular phylogeny of the *Taenia* genus supported the creation of a new genus and renaming of *Taenia mustelae* to *Versteria mustelae* (8). Since then there has been a report of fatal infection of a previously unknown *Versteria* species in a captive orangutan *Pongo pygmaeus* closely related to species found in wild mustelids, suggesting the need for increased vigilance of *Versteria* infections in humans (9).

- While bluetongue virus is known to infect a wide range of ruminants, it is not currently considered to infect humans (10).

- Bovine viral diarrhea viruses are not considered to be human pathogens, but there is some concern about zoonotic potential as they are highly mutable, have the ability to replicate in human cell lines, and have been isolated from humans on rare occasions (11).

- Although antibodies to *Neospora caninum* have been reported in humans, the parasite has not been identified in human tissues and the zoonotic potential is not known (12).

- *Mastophorus muris* is a rodent-specific nematode that requires arthropods as intermediate hosts and while this makes it unlikely to infect humans, it was recently documented in an urban population of rats in the UK (13), indicating the potential for human exposure.

- While natural infections of *Plagiorchis* species in humans are rare, the first case of human infection by the bat parasite *Plagiorchis vespertilionis* was reported in 2007 (14). The source of infection is uncertain, it has been suggested that freshwater fish and snails may be undocumented intermediate hosts and infection was due to ingestion of raw freshwater fish.

- Carnivore protoparvovirus can infect a number of hosts in the order Carnivora (15), though there seems to be no evidence of human infection.
• *Alaria alata*, an intestinal parasite of wild canids, has not been identified in humans, but is considered a potential zoonotic risk as other *Alaria* species have been reported to cause fatal illness in humans (16).

• Due to the characteristics of the biological cycle of *Tenia pisiformis* and the observation that it is innocuous in humans, this parasite has been used as a model for the study of other important zoonosis relevant to human health including *T. solium* (17).

• The definitive hosts of *Physcephalus sexalatus* are commonly wild and domestic pigs, but it is sometimes found in other mammals and some reptiles (18). However the parasite uses beetles as an intermediate host, which makes human infection unlikely.
2.5 Affinity only – Full Dataset – Domestic Hosts

Host	Parasite	Status
Bos taurus	Trypanosoma cruzi	
Rattus norvegicus	Rabies lyssavirus	Confirmed
Bos taurus	Hymenolepis diminuta	
Bos taurus	Mesocestoides lineatus	Unlikely
Bos taurus	Capillaria hepatica	Confirmed
Bos taurus	St. Louis encephalitis virus	
Bos taurus	Canine distemper virus	
Bos taurus	Anisakis simplex	Unlikely
Ovis aries	Trypanosoma cruzi	Confirmed
Bos taurus	Taenia mustelae	

Table SM 4: Top 10 undocumented links with highest probability of interaction for domesticated species: Affinity only model - full data set.

- Currently the role of cattle in the epidemiology of Chagas disease (caused by *Trypanosoma cruzi*) is unknown, though the majority of cattle in Latin America may be exposed (280 million heads; 1/4 of the world population) (19). (20) report that 177 species have been documented as susceptible to infection by *T. cruzi*, with domestic hosts in some cases being responsible for the maintenance of local parasite populations over long periods of time. While cattle have tested positive in serological studies, cows and other domestic species are also infected by *Trypanosoma* and *Phytomonas* species which can cause cross-reactions in diagnostic tests (21).

- Rabies has an extremely large host range and surprisingly rats are rarely reported as suffering from rabies, though there have been a few reported cases rabid *Rattus norvegicus* in the United States (22).

- The natural hosts of *Hymenolepis diminuta* are rats and cattle have not been found to be susceptible to infection, however *H. diminuta* eggs have been found in the feces of dairy cattle, likely the result of ingesting forage contaminated with rodent feces (23).

- *Mesocestoides lineatus* has a three-stage lifecycle with two intermediate hosts and a large range of carnivorous mammals as definitive hosts (24). Human infections of the tapeworm *Mesocestoides lineatus* are rare but can occur through the consumption of chickens, snails, snakes, or frogs (25) and therefore it is unlikely that cows will ingest the intermediate life stages of this parasite.

- *Capillaria hepatica* (syn. *Calodium hepaticum*), is a globally distributed zoonotic parasite which uses rodents as main hosts, but is known to cause infection in over 180 mammalian species, including cattle (26).

- Birds are the primary vertebrate hosts for St. Louis encephalitis virus, though amplification by certain mammals has been suggested (27). There is some serological evidence of infection in
domestic mammals, including cattle (28). The common vector Culex nigripalpus feeds primarily on birds, but shows a seasonal shift from avian hosts in the spring to mammalian hosts in the summer, indicating it may be able to act as a bridging vector among different host species (27).

- Canine distemper virus infects a wide range of hosts within the order Carnivora, but has also been found to cause fatal infection in some non-human primates and peccaries (29).

- *Anisakis simplex* uses cetaceans as final hosts, with marine invertebrates and fish as intermediate hosts (30). Whales are infected through ingestion, indicating that while cattle may be susceptible, though they would need sufficient exposure to marine based feed.

- *Ovis aries* is reported to be infected by *Trypanosoma cruzi* (20).

- We found no evidence of *Bos taurus* infection by *Taenia mustelae*.
2.6 Affinity only – Full Dataset – Wild Hosts

Host	Parasite	Status
Cervus elaphus	Rabies lyssavirus	Confirmed
Ondatra zibethicus	Rabies lyssavirus	Confirmed
Capreolus capreolus	Rabies lyssavirus	Confirmed
Sorex araneus	Rabies lyssavirus	
Apodemus sylvaticus	Rabies lyssavirus	Confirmed
Odocoileus virginianus	Rabies lyssavirus	Confirmed
Syncerus caffer	Rabies lyssavirus	
Dama dama	Rabies lyssavirus	Confirmed
Pan troglodytes	Rabies lyssavirus	Confirmed
Microtus arvalis	Rabies lyssavirus	Confirmed

Table SM 5: Top 10 undocumented links with highest probability of interaction for wild host species: Affinity only model - full data set.

• For the affinity only model run on the full dataset, all of the top ten interactions involve rabies, which is unsurprising as rabies is commonly said to be capable of infecting all mammal species (31) and is the parasite with the largest number of documented hosts in the database (176). Of these ten most likely hosts, we found evidence of rabies infection in eight (Cervus elaphus and Odocoileus virginianus (32), Ondatra zibethicus (33), Capreolus capreolus (34), Pan troglodytes (35), Apodemus sylvaticus (36), Dama dama (37), and successful experimental infection of Microtus arvalis (38)).
2.7 Phylogeny only – Full Dataset

Host	Parasite	Status
Vulpes rueppellii	Rabies lyssavirus	
Vulpes macrotis	Rabies lyssavirus	
Vulpes ferrilata	Rabies lyssavirus	
Lycalopex culpaeus	Rabies lyssavirus	
Lycalopex fulvipes	Rabies lyssavirus	
Lycalopex griseus	Rabies lyssavirus	
Lycalopex gymnocercus	Rabies lyssavirus	
Cuon alpinus	Rabies lyssavirus	
Speothos venaticus	Rabies lyssavirus	
Holochilus chacarius	Schistosoma mansoni	

Table SM 6: Top 10 undocumented links with highest probability of interaction (Phylogeny only model - full data set)

- We did not find any record of rabies infecting *Vulpes rueppellii*, but this should be investigated as this disease is known to cause severe declines in wild canids (39).

- Rabies has been documented to infect the endangered San Joaquin kit fox (*Vulpes macrotis mutica*) and is suggested to have caused a catastrophic decline of the species in the 1990s (40).

- Domestic dogs are considered a major predation threat to the Tibetan fox (*Vulpes ferrilata*) (41), and rabies is confirmed to circulate in wild and domestic animals in Tibet (42).

- Domestic dogs alter the ecology of Andean foxes (*Lycalopex culpaeus*), have been observed hunting them, and are a potential source of infection (43).

- Diseases from domestic dogs (largely canine distemper) is considered a major threat to the endangered *Lycalopex fulvipes* (44), indicating that rabies may also pose a risk.

- There is one report of serological evidence of rabies in *Lycalopex griseus* in Chile in 1989 (45) (reported as *Pseudalopex griseus*, a formerly accepted name (1)).

- We did not find evidence of rabies infection in *Lycalopex gymnocercus*, however its distribution overlaps with species known to be important in the transmission of rabies in Brazil (46).

- The endangered Dhole (*Cuon alpinus*) is known to suffer from rabies and was a source of fatal human infections during an outbreak in the 1940s (47).

- Rabies has been reported as potentially infecting *Speothos venaticus* (48) and there is a report of an individual with positive serology (49).

- We could not find evidence of *Schistosoma mansoni* infection in *Holochilus chacarius*. Congener *Holochilus braziliensis* was experimentally shown to be a viable host, although infection resulted in host death (50).
2.8 Phylogeny only – Full Dataset – Domestic Hosts

Host	Parasite	Status
Bison bison	Rabies lyssavirus	Confirmed
Bos grunniens	Rabies lyssavirus	Confirmed
Bos frontalis	Rabies lyssavirus	
Bos javanicus	Rabies lyssavirus	
Vicugna vicugna	Rabies lyssavirus	
Rattus rattus	Rabies lyssavirus	Confirmed
Rattus norvegicus	Rabies lyssavirus	Confirmed
Cavia porcellus	Rabies lyssavirus	Confirmed
Oryctolagus cuniculus	Rabies lyssavirus	Confirmed
Bos grunniens	Toxoplasma gondii	Confirmed

Table SM 7: Top 10 undocumented links with highest probability of interaction for domesticated species: Phylogeny only model - full data set.

- Rabies in *Bison bison* is considered rare, but there are multiple cases reported (51).
- Rabies has been reported to infect yak (*Bos grunniens*) in Nepal (52).
- We could not find evidence of rabies infection in *Bos frontalis*, but as this is a semi-wild and endangered species (53) and other *Bos* species are susceptible, the disease may pose a conservation risk. This may also be the case for the endangered *Bos javanicus*.
- We did not find a specific report of rabies infection in *Vicugna vicugna*, although all South American camelids are noted to be susceptible and display clinical signs of infection (54).
- There are documented cases of rabies infecting *Rattus rattus* (ex. (55)), though it appears to be rare.
- Rabies in *Rattus norvegicus* was predicted by the affinity only model with the full dataset for domestic hosts.
- Pet guinea pigs *Cavia porcellus* have been infected with rabies after being bitten by a raccoon (56).
- There are reported cases of rabid *Oryctolagus cuniculus* in the United States (22).
- *Toxoplasma gondii* is known to infect *Bos grunniens* and cause severe economic losses (57).
2.9 Phylogeny only – Full Dataset – Wild Hosts

Host	Parasite	Status
Vulpes rueppellii	Rabies lyssavirus	
Vulpes macrotis	Rabies lyssavirus	
Vulpes ferrilata	Rabies lyssavirus	
Lycalopex culpaeus	Rabies lyssavirus	
Lycalopex fulvipes	Rabies lyssavirus	
Lycalopex griseus	Rabies lyssavirus	
Lycalopex gymnocyclus	Rabies lyssavirus	
Cuon alpinus	Rabies lyssavirus	
Speothos venaticus	Rabies lyssavirus	
Holochilus chacarius	Schistosoma mansoni	

Table SM 8: Top 10 undocumented links with highest probability of interaction for wild host species: Phylogeny only model - full data set.

- These top predictions are the same as for the phylogeny only model on the full dataset (all wild host species in the top 10 links).
2.10 Combined model – Full Dataset

Host	Parasite	Status
Rattus norvegicus	Rabies lyssavirus	Confirmed
Cervus elaphus	Rabies lyssavirus	Confirmed
Homo sapiens	Taenia mustelae	
Homo sapiens	Bluetongue virus	
Ondatra zibethicus	Rabies lyssavirus	Confirmed
Capreolus capreolus	Rabies lyssavirus	Confirmed
Rattus rattus	Rabies lyssavirus	Confirmed
Sorex araneus	Rabies lyssavirus	
Oryctolagus cuniculus	Rabies lyssavirus	Confirmed
Apodemus sylvaticus	Rabies lyssavirus	Confirmed

Table SM 9: Top 10 undocumented links with highest probability of interaction (Combined model - full data set)

- All of the top links were previously discussed except for Rabies infection of *Sorex araneus*, for which we could not find any published evidence.
2.11 Combined model – Full Dataset – Domestic Hosts

Host	Parasite	Status
Rattus norvegicus	Rabies lyssavirus	Confirmed
Rattus rattus	Rabies lyssavirus	Confirmed
Oryctolagus cuniculus	Rabies lyssavirus	Confirmed
Bos taurus	Trypanosoma cruzi	
Bos taurus	Hymenolepis diminuta	
Ovis aries	Trypanosoma cruzi	Confirmed
Bos taurus	Mesocestoides lineatus	Unlikely
Bos taurus	Anisakis simplex	Unlikely
Bos taurus	Capillaria hepatica	Confirmed
Ovis aries	Hymenolepis diminuta	

Table SM 10: Top 10 undocumented links with highest probability of interaction for domesticated species: Combined model - full data set.

- All of the top links were previously discussed except for *Hymenolepis diminuta* infection of sheep, for which we could not find any published evidence.
2.12 Combined model – Full Dataset – Wild Hosts

Host	Parasite	Status
Cervus elaphus	Rabies lyssavirus	Confirmed
Ondatra zibethicus	Rabies lyssavirus	Confirmed
Capreolus capreolus	Rabies lyssavirus	Confirmed
Sorex araneus	Rabies lyssavirus	
Apodemus sylvaticus	Rabies lyssavirus	Confirmed
Odocoileus virginianus	Rabies lyssavirus	Confirmed
Syncerus caffer	Rabies lyssavirus	
Dama dama	Rabies lyssavirus	Confirmed
Aepyceros melampus	Rabies lyssavirus	Confirmed
Rupicapra rupicapra	Rabies lyssavirus	Confirmed

Table SM 11: Top 10 undocumented links with highest probability of interaction for wild host species: Combined model - full data set.

- Most of these links were predicted by models discussed above except for rabies infection in *Aepyceros melampus*, which has been identified as suffering from spillover infections (58), and *Rupicapra rupicapra*, which has been documented in Europe (36).
2.13 Arthropods – Affinity only

Host	Parasite	Status
Vulpes vulpes	Rhipicephalus evertsi	
Vulpes vulpes	Rhipicephalus appendiculatus	
Vulpes vulpes	Amblyomma hebraeum	
Cervus elaphus	Rhipicephalus evertsi	
Aepyceros melampus	Sarcoptes scabiei	Confirmed
Vulpes vulpes	Hyalomma truncatum	
Cervus elaphus	Rhipicephalus appendiculatus	
Sus scrofa	Rhipicephalus evertsi	
Bos taurus	Sarcoptes scabiei	Confirmed
Odocoileus virginianus	Sarcoptes scabiei	

Table SM 12: Top 10 undocumented links with highest probability of interaction: Affinity only - arthropod subset.

- *Rhipicephalus evertsi* and *R. appendiculatus* are common ticks in East and Southern Africa (59) and are unlikely to interact with non-African hosts such as *Cervus elaphus* and *Vulpes vulpes* (though there are some populations of *Vulpes vulpes* in North Africa). Future iterations of our implemented link prediction framework may benefit from the inclusion of information on geographic range overlap among host species, however this may reduce the ability to identify future host-parasite associations that may occur given range expansions or species translocations.

- *Amblyomma hebraeum*, the main vector of *Ehrlichia ruminantium* in southern Africa, prefer large hosts such as cattle and wild ruminants, although immature stages are found to feed on a wide range of hosts including scrub hares, guineafowl, and tortoises (60). Considering the species is restricted to southern Africa, it is unlikely to interact with *Vulpes vulpes*, although it’s wide host range during immaturity indicates that it may be susceptible given the opportunity.

- (61) compiled a list of documented host species of sarcoptic mange (caused by *Sarcoptes scabiei*) which includes *Aepyceros melampus* and cattle (*Bos taurus*).

- *Hyalomma truncatum* is found across sub-Saharan Africa, where it commonly infests domestic and wild herbivores, and domestic dogs (60). Considering the species is restricted to Africa, it is unlikely to interact with *Vulpes vulpes*, although it’s tendency to infest domestic dogs indicates that it may be susceptible given the opportunity.

- *Rhipicephalus appendiculatus* was found to be the most prevalent tick species on domestic pigs in the Busia District of Kenya (62), indicating that increased monitoring may also identify *R. evertsi* on domestic pigs.

- While multiple cervids have been reported with sarcoptic mange (61), we cannot find any report of infection in white-tailed deer *Odocoileus virginianus*, although there are numerous reports of
infection with mange caused by *Demodex sp.*, including the host specific *Demodex odocoilei* (63), potentially indicating competition among *Sarcoptes* and *Demodex* species.
2.14 Arthropods – Phylogeny only

Host	Parasite
Canis adustus	Sarcoptes scabiei
Lycalopex fulvipes	Sarcoptes scabiei
Lycalopex vetulus	Sarcoptes scabiei
Vulpes lagopus	Pulex irritans
Cerdocyon thous	Sarcoptes scabiei
Chrysocyon brachyurus	Sarcoptes scabiei
Cuon alpinus	Sarcoptes scabiei
Speothos venaticus	Sarcoptes scabiei
Vulpes macrotis	Dermacentor variabilis
Ovis ammon	Sarcoptes scabiei

Table SM 13: Top 10 undocumented links with highest probability of interaction: Phylogeny only model - Arthropod subset.

- There does not appear to be a published record of sarcoptic mange in *Canis adustus*, however in areas with sympatric jackal species *C. adustus* usually display ecological segregation through preferring denser vegetation (64). This may indicate that while *C. adustus* may be susceptible to sarcoptic mange, differences in the ecologies of this species relative to other canids may limit transmission making overt infections difficult to document.

- *Lycalopex fulvipes* is endangered (44), meaning that its small population sizes and restricted geographic range may reduce exposure to *S. scabiei*, however as sarcoptic mange is implicated in the declines of other wild canids, it should be targeted in disease monitoring programs for this species.

- While *Lycalopex vetulus* is not endangered, it displays some adaptability to anthropogenic disturbance (65), which may expose it to sarcoptic mange through contact with domestic dogs. In addition, *Lycalopex vetulus* is sympatric with the crab eating fox (*Cerdocyon thous*) – a documented host of *S. scabiei* (61). The IUCN reports a gap in conservation actions for *L. vetulus* regarding the role of disease in population regulation, and their status as reservoirs of scabies, canine distemper, leishmaniasis, and rabies (65).

- While the Arctic fox (*Vulpes lagopus*) is considered the most important terrestrial game species in the Arctic (66), we were unable to find documented infection by the “human flea” (*Pulex irritans*). *P. irritans* is thought to be unable to persist in Arctic environments due to the temperature thresholds necessary for breeding (67), though this may change in the future with continued Arctic warming.

- (61) compiled a list of documented host species of sarcoptic mange (caused by *Sarcoptes scabiei*) which includes *Cerdocyon thous*.
• *Chrysocyon branchyurus* has one report of clinical signs suggestive of sarcoptic mange-like infestation (68).

• The endangered Dhole (*Cuon alpinus*) has been documented as suffering from mange as early as 1937 (47) and appear to be especially susceptible to disease outbreaks due to their large group sizes and amicable behaviour within packs.

• *S. scabei* was identified in *Speothos venaticus* (69), and identified as potentially contributing to the loss of individuals from a group in Mato Grosso, Brazil (70).

• *Vulpes macrotis* was documented as infested with *Dermacentor variabilis* in Southwest Texas in 1950 (71).

• We cannot find a record of mange in *Ovis ammon*, though outbreaks of sarcoptic mange have been documented in ibex and blue sheep in the Taxkorgan Reserve, China, in which *O. ammon* are also present, although this population has received little study (72).
2.15 Arthropods – Combined model

Host	Parasite	Status
Cerdocyon thous	Sarcoptes scabiei	Confirmed
Cervus elaphus	Rhipicephalus evertsi	
Vulpes velox	Sarcoptes scabiei	
Aepyceros melampus	Sarcoptes scabiei	Confirmed
Vulpes macrotis	Sarcoptes scabiei	Confirmed
Chrysocyon brachyurus	Sarcoptes scabiei	
Odocoileus virginianus	Rhipicephalus evertsi	
Odocoileus virginianus	Sarcoptes scabiei	
Lycalopex vetulus	Sarcoptes scabiei	
Bos taurus	Sarcoptes scabiei	Confirmed

Table SM 14: Top 10 undocumented links with highest probability of interaction: Combined model - arthropod subset.

- We were unable to find any published evidence of Sarcoptes scabiei infesting Vulpes velox. However, sarcoptic mange is known to infest several species of canids, is prevalent in coyotes (Canis latrans) within the range of Vulpes velox (73). Criffield2009 surveyed for S. scabiei on V. velox, but no clinical signs were observed, and suggest that as the grey fox (Urocyon cineroargenteus) is somewhat resistant to mange in laboratory tests, V. velox may be similarly resistant, though there have been no experimental infestations. Finally, V. velox is debated to be conspecific with Vulpes macrotis (74), which has been documented with sarcoptic mange (75).

- Sarcoptes scabiei has been documented in the endangered San Jaoaquin kit fox Vulpes macrotis mutica, and is considered a significant threat to it’s conservation (75).

- Rhipicephalus evertsi is a common tick in East and Southern Africa (59) and is unlikely to interact with non-African hosts such as Odocoileus virginianus. Future iterations of our link prediction method may benefit from the inclusion of information on geographic range overlap among host species, however this may reduce the ability to identify future host-parasite associations that may occur given range expansions or species translocations.

- The remaining links are discussed above.
2.16 Bacteria – Affinity only

Host	Parasite	Status
Homo sapiens	Bartonella grahamii	Confirmed
Homo sapiens	Anaplasma marginale	
Homo sapiens	Anaplasma bovis	
Homo sapiens	Mycoplasma mycoides	
Homo sapiens	Mycoplasma haemofelis	
Homo sapiens	Chlamydomphila pecorum	
Homo sapiens	Lawsonia intracellularis	
Homo sapiens	Mycoplasma conjunctivae	
Homo sapiens	Chlamydia psittaci	Confirmed
Homo sapiens	Histophilus somni	

Table SM 15: Top 10 undocumented links with highest probability of interaction: Affinity only model - bacteria subset.

- **Bartonella grahamii** is a pathogen of rodents worldwide, but was first identified as causing an infection in an immunocompromised human in 2013 (76).

- **Anaplasma bovis**, causal agent of bovine anaplasmosis, is not currently considered zoonotic (77), but *Anaplasma phagocytophilum* the causative agent of human anaplasmosis is placed as sister taxa to *A. bovis* in a recent phylogeny (78). Similarly, *A. marginale*, the causative agent of anaplasmosis in cattle, is also not considered zoonotic, but it reaches high prevalence in cattle and humans are likely exposed to the tick vector (77).

- **Mycoplasma mycoides** is not typically thought to infect humans, but there is one report of disease and positive serology in a farm worker exposed to multiple calves infected with *M. mycoides subsp. mycoides LC* (79).

- There has been one documented case of infection in an immunocompromised human with a *Mycoplasma haemofelis*-like bacteria (80) and the authors note that disease-causing latent mycoplasma infections in immunocompromised and non-immunocompromised patients are an emerging issue.

- The zoonotic potential of *Chlamydomphila pecorum* is not known, although it is associated with abortions in small ruminants (81).

- **Lawsonia intracellularis** was recently recognised as the cause of an emerging intestinal disease in horses (Equine proliferative enteropathy), but is currently not considered to be zoonotic (82).

- **Mycoplasma conjunctivae** causes a highly contagious ocular infection of sheep, goats, and wild Caprinae, and is possibly zoonotic as it has been associated with eye inflammation in young children (83).
• *Chlamydophila psittaci* (formerly known as *Chlamydia psittaci*) is a known zoonotic disease from birds (81).

• *Histophilus somni* is a pathogen of bovine and ovine hosts, but has not been documented to infect humans (84).
2.17 Bacteria – Phylogeny only model

Host	Parasite	
Canis aureus	Leptospira interrogans	
Canis mesomelas	Leptospira interrogans	
Canis mesomelas	Anaplasma phagocytophilum	
Saguinus geoffroyi	Escherichia coli	Confirmed
Equus burchelli	Escherichia coli	Confirmed
Equus zebra	Escherichia coli	Confirmed
Lycaon pictus	Leptospira interrogans	
Vulpes lagopus	Leptospira interrogans	
Vulpes velox	Leptospira interrogans	
Canis latrans	Escherichia coli	Confirmed

Table SM 16: Top 10 undocumented links with highest probability of interaction: Phylogeny only - bacteria subset.

- *Leptospira sp.* are commonly regarded as infecting a wide range of mammals (85). (86) identified *Leptospira interrogans* serovar *canicola* in the urine of jackals in Israel though did not identify the particular species. However, *Canis aureus* is the only jackal species present in the country (87) providing some support for this host-parasite association, though the findings of (86) should be verified.

- We did not find any documentation of leptospirosis in *Canis mesomelas* or *Lycaon pictus* but considering it is found in multiple species in Africa including domestic dogs (88), wild canids are likely to be exposed.

- (89) sequenced DNA from blood samples of *Canis mesomelas* in South Africa and identified 16S rDNA sequences very similar to *Anaplasma phagocytophilum*. This study also identified other *Anaplasma* species indicating the potential for 16S rDNA sequencing to gather evidence of predicted host-parasite and discover previously unknown pathogens.

- *E. coli* is a ubiquitous commensal microbe of vertebrates (90) and pathogenicity is linked to particular strains, indicating that our approach may be expanded by identifying the host ranges of particular subspecies or virulent strains of common commensal bacteria. *Canis latrans* has been identified as harbouring atypical enteropathogenic *E. coli* and may serve as a reservoir in agricultural areas near the United States-Mexico border (91). Wild *Equus burchelli* have been found to harbour antibiotic resistant *E. coli* in South Africa (92) and Tanzania (93), and captive *Equus zebra hartmannae* have been found with antibiotic resistant *E. coli* (94). Similarly, antibiotic resistant *E. coli* have been found in captive *Saguinus geoffroyi* (95).

- We did not find any evidence of *Leptospira* infections in *Vulpes lagopus*. We did find one report of positive serology for *Leptospira interrogans* in *Vulpes velox macrotis* (96), though there is debate as to whether this subspecies is actually its own species *Vulpes macrotis* (1).
2.18 **Bacteria – Combined model**

Host	Parasite	Status
Ovis canadensis	Escherichia coli	
Bison bison	Escherichia coli	Confirmed
Ovis aries	Mycobacterium bovis	Confirmed
Homo sapiens	Bartonella grahamii	Confirmed
Ovis canadensis	Leptospira interrogans	
Zalophus californianus	Anaplasma phagocytophilum	Unlikely
Ovis canadensis	Anaplasma phagocytophilum	
Phoca vitulina	Leptospira interrogans	
Homo sapiens	Anaplasma marginale	
Bison bison	Anaplasma phagocytophilum	

Table SM 17: Top 10 undocumented links with highest probability of interaction: Combined model - bacteria subset.

- *E. coli* is ubiquitous commensal microbe of vertebrates (90) and *Ovis canadensis* has been surveyed for pathogenic *E. coli* in Washington, USA, though no individuals tested positive (97). *Bison bison* have been highlighted as a potentially important reservoir of pathogenic *E. coli O157:H7* for human infection (98).

- While there is some debate whether sheep are relatively immune or highly susceptible to infection by *Mycobacterium bovis*, spillover infections have been documented to occur when animals are exposed to contaminated pasture (99).

- *Ovis canadensis* has been identified as exposed to *Leptospira interrogans* through serological surveys (100).

- While tick-borne *Anaplasma phagocytophilum* is found to persist in a large range of terrestrial mammalian hosts (101), we find no evidence of infection in *Zalophus californianus* or any other marine mammals.

- We identified one survey of *Anaplasma sp.* in Ovis canadensis in Montana which conducted testing for *Anaplasma phagocytophilum*, though no individuals were positive (102). (102) speculate that this lack of infection despite the potential for exposure may be due to the exclusion of Anaplasma genotypes such as A. ovis, which is found to infect *Ovis canadensis*.

- Regular exposure of *Phoca vitulina* to *Leptospira interrogans* has been reported (103), though low antibody titers were interpreted as exposure rather than infection.

- We did not find evidence of *Anaplasma phagocytophilum* infection in American bison (*Bison bison*), though *A. phagocytophilum* is known to infect European bison (*Bison bonasus*) in Poland (101).

- The remaining links are discussed above.
2.19 Fungi – Affinity only model

Host	Parasite	Status
Homo sapiens	Geomyces destructans	
Homo sapiens	Chrysosporium parvum	Confirmed
Homo sapiens	Neocallimastix frontalis	Unlikely
Homo sapiens	Pilobolus kleinii	Unlikely
Bos taurus	Pneumocystis carinii	
Homo sapiens	Trichophyton terrestrre	
Phascolarctos cinereus	Pneumocystis carinii	
Homo sapiens	Pilobolus crystallinus	Unlikely
Homo sapiens	Pilobolus heterosporus	Unlikely
Homo sapiens	Chaetomidium arxii	

Table SM 18: Top 10 undocumented links with highest probablity of interaction: Affinity only - fungi subset.

- *Geomyces destructans* is the cause of white nose syndrome in multiple bat species (104), but is not considered to be zoonotic.

- *Chrysosporium parvum* and related species are soil fungi that cause pulmonary infections in rodents, fossorial mammals, their predators, and occasionally humans, though the taxonomy of these pathogens is muddied in the literature (105).

- *Neocallimastix frontalis* appears to be a commensal fungi of bovid rumens (106) and we cannot find documentation of zoonotic infection.

- *Pilobolus sp.* play a role in the decomposition of herbivore dung and although they are non-pathogenic to herbivores, they can facilitate the spread of attached parasitic lungworms because of their projectile dispersal system (107). We could find no evidence of human infections.

- *Pneumocystis carinii* belongs to a genus that normally reside in the pulmonary parenchyma of a wide range of mammals (108). It is capable of causing life threatening pneumonia in immunocompromised hosts and is documented as causing infections in cattle (109), though we found no evidence of infection in *Phascolarctos cinereus*.

- *Trichophyton terrestrre* is part of a large species complex with some variants documented to cause human infection (110).

- We cannot find any documentation of *Chaetomidium arxii* infection in humans, although this genus is well known for its opportunistic animal and human pathogens (111).
2.20 Fungi – Phylogeny only

Host	Parasite	Status
Macaca sylvanus	Pneumocystis carinii	
Felis silvestris	Pneumocystis carinii	
Mustela lutreola	Pneumocystis carinii	
Ateles paniscus	Pneumocystis carinii	
Pan troglodytes	Pneumocystis carinii	
Gorilla beringei	Pneumocystis carinii	
Mustela erminea	Pneumocystis carinii	
Ovis canadensis	Pneumocystis carinii	
Nyctereutes procyonoides	Pneumocystis carinii	
Vulpes vulpes	Pneumocystis carinii	Confirmed

Table SM 19: Top 10 undocumented links with highest probability of interaction: Phylogeny only - fungi subset.

- *Pneumocystis carinii* belongs to a genus that normally reside in the pulmonary parenchyma of a wide range of mammals (108). It is capable of causing life-threatening pneumonia in immunocompromised hosts is documented as causing infections cattle and pigs (112), *Vulpes vulpes* (113), and species in the genera *Macaca* and *Mustela* (113).
2.21 Fungi – Combined model

Host	Parasite	Subset
Bos taurus	Pneumocystis carinii	Confirmed
Phascolarctos cinereus	Pneumocystis carinii	
Sus scrofa	Pneumocystis carinii	Confirmed
Homo sapiens	Geomyces destructans	
Capra hircus	Pneumocystis carinii	Confirmed
Oryctolagus cuniculus	Pneumocystis carinii	
Lagenorhynchus obliquidens	Pneumocystis carinii	
Homo sapiens	Chrysosporium parvum	Confirmed
Macaca sylvanus	Pneumocystis carinii	
Cervus elaphus	Pneumocystis carinii	

Table SM 20: Top 10 undocumented links with highest probability of interaction: Combined model - fungi subset.

- *Pneumocystis carinii* has been documented to infect pigs (112, 108), goats (108), and *Oryctolagus cuniculus* (113). While it has been documented in other cervids (113), we find no evidence of infection in *Cervus elaphus*.

- The remaining top links are discussed above.
2.22 Helminths – Affinity only model

Host	Parasite	Status
Homo sapiens	Taenia mustelae	
Bos taurus	Hymenolepis diminuta	
Ovis aries	Hymenolepis diminuta	
Homo sapiens	Mastophorus muris	
Ovis aries	Echinococcus multilocularis	Unlikely
Bos taurus	Mesocestoides lineatus	Unlikely
Ovis aries	Mesocestoides lineatus	Unlikely
Homo sapiens	Plagiorchis vespertilionis	Confirmed
Bos taurus	Capillaria hepatica	Confirmed
Ovis aries	Capillaria hepatica	

Table SM 21: Top 10 undocumented links with highest probability of interaction: Affinity only - helminth subset.

- Although the distribution, ecology, and epidemiology of *Echinococcus multilocularis* in North America is still largely unknown, it does not appear to infect sheep or any other ungulates as it is maintained in a carnivore-rodent prey cycle ([114]).

- *Mesocestoides lineatus* has a three-stage lifecycle with two intermediate hosts and a large range of carnivorous mammals as definitive hosts ([24]). Human infections of the tapeworm *Mesocestoides lineatus* are rare but can occur through the consumption of chickens, snails, snakes, or frogs ([25]) and therefore it is unlikely that sheep will consume the intermediate life stages of this parasite.

- *Capillaria hepatica* (syn. *Calodium hepaticum*), is a globally distributed zoonotic parasite which uses rodents as main hosts, and while it is known to cause infection in over 180 mammalian species, a recent review of hosts did not include domesticated sheep ([26]). However, a recent study of *Capillaria* in Brazil identified two cases which were possibly caused by *C. hepatica* ([115]).

- The remaining links are discussed above.
2.23 Helminths – Phylogeny only

Host	Parasite	Status
Holochilus chacarius	Schistosoma mansoni	
Onychogalea unguifera	Echinococcus granulosus	
Canis adustus	Echinococcus granulosus	
Gazella leptoceros	Nematodirus spathiger	Confirmed
Kobus vardonii	Cotylophoron cotylophorum	
Onychogalea unguifera	Rugopharynx australis	
Lycalopex vetulus	Echinococcus granulosus	Unlikely
Canis mesomelas	Trichinella spiralis	Confirmed
Gazella leptoceros	Trichostrongylus vitrinus	
Onychogalea fraenata	Progamotaenia festiva	

Table SM 22: Top 10 undocumented links with highest probability of interaction: Phylogeny only - helminth subset.

- *Schistosoma mansoni* infection in *Holochilus chacarius* was predicted by the phylogeny only model in the full dataset (discussed above).

- *Echinococcus granulosus* has not been reported to infect northern nail-tail wallabies (*Onychogalea unguifera*), other wallaby species including endangered bridled nail-tailed wallaby (*Onychogalea fraenata*) are involved in the transmission the parasite in Australia (116). *Onychogalea unguifera* may also be involved in *Echinococcosus* transmission, but its parasites may not be as well studied compared to the bridled nail-tail wallaby due to its stable conservation status.

- Similarly, *Rugopharynx australis* is known to infect multiple wallaby species, however the diversity of *Rugopharynx* and their susceptible hosts is still being discovered (117), suggesting that *Onychogalea unguifera* may be a promising target for future study.

- While there does not appear to be evidence of *Echinococcosus granulosus* infection in *Canis adustus*, other *Canis* species in Africa are known hosts (118), indicating that this should be a target for future surveillance.

- A recent molecular survey of gastrointestinal parasites of wild ruminants in Tunisia identified *Nematodirus spathiger* in engandered *Gazella leptoceros* that were genetically identical to those found in other domestic and wild ruminants (119). This is an example of a successful exploratory study aimed at describing the diversity of parasites in threatened species.

- We did not find much information on the parasites of the near threatened *Kobus vardonii*, however it is known to inhabit floodplains and grasslands near permanent water in south-central Africa (120) where is likely to be exposed to *Cotylophoron cotylophoron*, a “rumen fluke” which emerge from snail intermediate hosts and encyst on vegetation, later being ingested by ruminant definitive hosts in East Africa (121).
• *Echinococcus granulosus* is usually maintained by a domestic cycle of dogs eating raw livestock offal (118), and while its vertebrate-eating congener *Lycalopex gymnocercus* has been documented to host the parasite (122), *Lycalopex vetulus* is unlikely to become infected with *E. granulosus* as it has a largely insectivorous diet (123).

• *Canis mesomelas* has been reported with infection of *Trichinella spiralis* in the Kruger National Park, South Africa (124).

• *Gazella leptoceros* is also predicted to be susceptible to *Trichostrongylus vitrinus*. Although (119) did not identify this parasite in their study, *T. vitrinus* has been documented in lambs in Tunisia (125), indicating potential range overlap with *G. leptoceros*.

• *Progamotaenia festiva* is known to infect multiple *Onychogalea* species (126), but we could not find evidence of infection in the endangered *Onychogalea fraenata*.

• The remaining links are discussed above.
2.24 Helminths – Combined model

Host	Parasite	Subset
Homo sapiens	Taenia mustelae	
Bos taurus	Hymenolepis diminuta	
Ovis aries	Hymenolepis diminuta	
Ovis aries	Echinococcus multilocularis	Unlikely
Capra hircus	Hymenolepis diminuta	
Bos taurus	Mesocestoides lineatus	Unlikely
Ovis aries	Mesocestoides lineatus	Unlikely
Bos taurus	Anisakis simplex	Unlikely
Ovis aries	Anisakis simplex	Unlikely
Sorex araneus	Echinococcus granulosus	

Table SM 23: Top 10 undocumented links with highest probability of interaction: Combined model - helminth subset.

- The natural hosts of *Hymenolepis diminuta* are rats (23) and we find no evidence of infection in goats.

- *Anisakis simplex* uses cetaceans as final hosts, with marine invertebrates and fish as intermediate hosts (30). Whales are infected through ingestion, indicating that while sheep may be susceptible, though they would need sufficient exposure to marine based feed.

- We could not find evidence of *Echinococcus granulosus* infection in Sorex araneus, however this species and other *Sorex sp.* are known hosts of *Echinococcus multilocularis* (127).

- The other top links are discussed above.
2.25 Protozoa – Affinity only model

Host	Parasite	Status
Bos taurus	Trypanosoma cruzi	
Ovis aries	Trypanosoma cruzi	Confirmed
Homo sapiens	Neospora caninum	
Diceros bicornis	Trypanosoma cruzi	
Diceros bicornis	Giardia intestinalis	
Pan troglodytes	Toxoplasma gondii	Confirmed
Gorilla gorilla	Toxoplasma gondii	Confirmed
Equus caballus	Trypanosoma cruzi	Confirmed
Pan troglodytes	Trypanosoma cruzi	Confirmed
Gorilla gorilla	Trypanosoma cruzi	

Table SM 24: Top 10 undocumented links with highest probability of interaction: Affinity only - protozoa subset.

- As *T. cruzi* is currently restricted to the Americas (20), it is unlikely to infect black rhinos (*Diceros bicornis*) or gorillas (*Gorilla gorilla*) in natural conditions, unless facilitated by human activities.

- *Giardia* has been identified in a captive bred *Diceros bicornis* calf (128) in San Diego, indicating the potential for grey literature from zoo and captive breeding facilities to inform potential host-parasite interactions.

- *Toxoplasma gondii* has been documented to infect chimpanzees (*Pan troglodytes*), and interestingly appears to mirror the infection-induced behaviour in rodents and humans, with infected chimpanzees attracted to the urine of leopards, their only natural predator (129).

- Recent finding of a *Gorilla gorilla* individual seropositive for *T. gondii* at a primate center in Gabon (130).

- *T. cruzi* was recently identified in *Equus caballus*, marking the first evidence of infection in equids (131).

- Although *T. cruzi* naturally occurs in the Americas, and thus natural infection of chimpanzees (*Pan troglodytes*) is unlikely, a fatal infection was documented in a captive individual in Texas (132).
2.26 Protozoa – Phylogeny only

Host	Parasite	Subset
Canis aureus	Toxoplasma gondii	
Saguinus oedipus	Trypanosoma cruzi	Confirmed
Cuon alpinus	Toxoplasma gondii	
Lycaon pictus	Toxoplasma gondii	Confirmed
Saimiri oerstedii	Trypanosoma cruzi	Confirmed
Mazama gouazoubira	Toxoplasma gondii	Confirmed
Nyctereutes procyonoides	Toxoplasma gondii	Confirmed
Saimiri oerstedii	Trypanosoma cruzi	Confirmed
Capricornis swinhoei	Toxoplasma gondii	Confirmed
Panthera tigris	Toxoplasma gondii	Confirmed

Table SM 25: Top 10 undocumented links with highest probability of interaction: Phylogeny only - protozoa subset.

- *Canis aureus* with antibodies against *T. gondii* have been identified in captive animals in the United Arab Emirates (133).

- Two recent reviews of parasites in non-human primates find no documented infection of the critically endangered Cotton-top tamarin (*Saguinus oedipus*) by *Trypanosoma cruzi*, although multiple *Saguinus sp.* have been documented with infections (134, 135). However, a 1982 study of Colombian monkeys and marmosets identified *S. oedipus* as a host for *T. cruzi* for the first time (136). This highlights the potential conservation importance of this parasite for *S. oedipus* and the need for periodic disease surveys of critically endangered species.

- Similarly, *Saimiri oerstedii* is not listed by these reviews as a host of *T. cruzi*, although a 1972 study identifies *S. oerstedii* as a reservoir for the parasite in Panama (137). While this report should be followed up with contemporary diagnostic methods, this reiterates the difficulty of exhaustively searching the literature for interaction data and the utility of link prediction methods to for directing these efforts.

- *Toxoplasma gondii* infection in *Cuon alpinus* has rarely been investigated, except for one captive individual which tested negative in serological testing (138).

- High prevalence of antibodies against *Toxoplasma gondii* was found in wild dogs (*Lycaon pictus*) in the Kruger National Park, South Africa, and was documented as causing a fatal infection in one pup (139), indicating that this parasite has the potential to influence the population dynamics of this endangered canid.

- *T. gondii* has been identified in *Mazama gouanzoubira* from French Guiana (140) and *Nyctereutes procyonoides* (141) in China via genetic sequencing.

- *Trypanosoma cruzi* is documented to infect *Saguinus niger* (135).
• We did not find any reports of *T. gondii* infection in Taiwan serow *Capricornis swinhoei*, although direct evidence of infection has been found in Japanese serow (142) and *T. gondii* has been found to infect multiple animals in Taiwan (143).

• The Siberian tiger *Panthera tigris altaica* acts as a definitive host for *T. gondii* and is observed to naturally shed oocysts (144).
2.27 Protozoa – Combined model

Host	Parasite	Status
Bos taurus	Trypanosoma cruzi	
Ovis aries	Trypanosoma cruzi	
Pan troglodytes	Toxoplasma gondii	Confirmed
Gorilla gorilla	Toxoplasma gondii	Confirmed
Diceros bicornis	Trypanosoma cruzi	
Diceros bicornis	Giardia intestinalis	
Equus caballus	Trypanosoma cruzi	Confirmed
Pan troglodytes	Trypanosoma cruzi	Confirmed
Bubalus bubalis	Toxoplasma gondii	Confirmed
Papio anubis	Toxoplasma gondii	Confirmed

Table SM 26: Top 10 undocumented links with highest probability of interaction: Combined model - protozoa subset.

- The first eight links were predicted by models discussed above.
- *Bubalus bubalis* is a well established host of *Toxoplasma gondii*, though they are considered resistant to clinical toxoplasmosis (145).
- Natural infections of *Toxoplasma gondii* in *Papio anubis* were recently documented via genetic sequencing (146).
2.28 Viruses – Affinity only

Host	Parasite	Subset
Homo sapiens	Bluetongue virus	
Homo sapiens	Bovine viral diarrhea virus 1	
Homo sapiens	Carnivore protoparvovirus 1	
Homo sapiens	Simian immunodeficiency virus	Confirmed
Pan troglodytes	Rabies lyssavirus	Confirmed
Macaca mulatta	Rabies lyssavirus	Confirmed
Homo sapiens	Bovine alphaherpesvirus 1	
Homo sapiens	Canine mastadenovirus a	
Cervus elaphus	Rabies lyssavirus	Confirmed
Homo sapiens	Ovine herpesvirus 2	

Table SM 27: Top 10 undocumented links with highest probability of interaction: Affinity only - virus subset.

- Simian immunodeficiency virus strains from wild primates have previously shifted to infect humans and are responsible for the AIDS pandemic (from HIV-1) \(^{147}\).

- Rabies positive *Macaca mulatta* have recently been reported in India \(^{148}\).

- Bovine alphaherpesvirus 1, the main casual agent of infectious bovine rhinotracheitis, is largely restricted to cattle and not currently considered to infect humans \(^{149}\).

- *Canine mastadenovirus a*, formerly *Canine adenovirus 1* is known to infect dogs and circulate in wild carnivores \(^{15}\), though we could not find evidence of human infection.

- *Ovine herpesvirus* 2, the casual agent of sheep associated malignant catarrhal fever, is asymptomatic in its natural hosts and cause severe disease in susceptible animals that are dead end hosts, however to date there is no evidence of infection in humans \(^{150}\).

- The remaining links are discussed above.
2.29 Viruses – Phylogeny only

Host	Parasite	Status
Vulpes macrotis	Rabies lyssavirus	Confirmed
Lycalopex culpaeus	Rabies lyssavirus	
Lycalopex griseus	Rabies lyssavirus	Confirmed
Lycalopex gymnocercus	Rabies lyssavirus	
Myotis nattereri	Rabies lyssavirus	Confirmed
Myotis blythii	Rabies lyssavirus	Confirmed
Myotis myotis	Rabies lyssavirus	Confirmed
Myotis macrodactylus	Rabies lyssavirus	
Myotis mystacinus	Rabies lyssavirus	
Myotis dasycneme	Rabies lyssavirus	Confirmed

Table SM 28: Top 10 undocumented links with highest probability of interaction: Phylogeny only - virus subset.

- The first four links were predicted by previous models and discussed above.
- Rabies has been isolated from a single *Myotis nattereri* individual in France (151).
- In 2017, an individual *Myotis blythii* from Croatia tested positive for antibodies against rabies (152).
- Rabies has been detected in *Myotis myotis* in a few European countries (153).
- We did not find evidence of rabies infection in *Myotis macrodactylus* or *Myotis mystacinus.*
- Identification of rabies positive *Myotis dasycneme* in the Netherlands (154).
2.30 Viruses – Combined model

Host	Parasite	Subset
Pan troglodytes	Rabies lyssavirus	Confirmed
Macaca mulatta	Rabies lyssavirus	Confirmed
Cervus elaphus	Rabies lyssavirus	Confirmed
Homo sapiens	Bluetongue virus	
Macaca fascicularis	Rabies lyssavirus	Confirmed
Capreolus capreolus	Rabies lyssavirus	Confirmed
Rattus norvegicus	Rabies lyssavirus	Confirmed
Rattus rattus	Rabies lyssavirus	Confirmed
Chlorocebus aethiops	Rabies lyssavirus	
Sigmodon hispidus	Rabies lyssavirus	Confirmed

Table SM 29: Top 10 undocumented links with highest probability of interaction: Combined model - virus subset

- *Macaca fascicularis* is known to be susceptible to infection by *Rabies lyssavirus* and regularly used for development of rabies vaccines (155).

- We did not find evidence of rabies infection in *Chlorocebus aethiops*, however several cercopithecine monkeys are known to be susceptible to infection (35).

- *Sigmodon hispidus* has successfully been experimentally infected with rabies (156).

- The remaining links are discussed above.
References

1. Wilson DE, Reeder DM. 2005 Mammal Species of the World: A Taxonomic and Geographic Reference. Baltimore, Maryland: Johns Hopkins University Press 3 edition.

2. Fritz SA, Bininda-Emonds ORP, Purvis A. 2009 Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecology letters 12, 538–549.

3. Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. 2018 Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Research 46, D708–D717.

4. Smith KF, Goldberg M, Rosenthal S, Carlson L, Chen J, Chen C, Ramachandran S. 2014 Global rise in human infectious disease outbreaks. Journal of the Royal Society Interface 11, 1–6.

5. Elmasri M, Farrell MJ, Davies TJ, Stephens DA. 2020 A Hierarchical Bayesian Model for Predicting Ecological Interactions Using Scaled Evolutionary Relationships. Annals of Applied Statistics in press.

6. Harmon LJ, Losos JB, Jonathan Davies T, Gillespie RG, Gittleman JL, Bryan Jennings W, Kozak KH, McPeak MA, Moreno-Roark F, Near TJ, Purvis A, Ricklefs RE, Schluter D, Schulte JA, Seehausen O, Sidlauskas BL, Torres-Carvajal O, Weir JT, Mooers AT. 2010 Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385–2396.

7. Park AW, Farrell MJ, Schmidt JP, Huang S, Dallas TA, Pappalardo P, Drake JM, Stephens PR, Poulin R, Nunn CL, Davies TJ. 2018 Characterizing the phylogenetic specialism-generalism spectrum of mammal parasites. Proceedings of the Royal Society B: Biological Sciences 285.

8. Nakao M, Lavikainen A, Iwaki T, Haukisalmi V, Konyaev S, Oku Y, Okamoto M, Ito A. 2013 Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): Proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria. International Journal for Parasitology 43, 427–437.

9. Lee LM, Wallace RS, Clyde VL, Gendron-fitzpatrick A, Sibley SD, Stuchin M, Lauck M, Connor DHO, Nakao M, Lavikainen A, Hoberg EP, Goldberg TL. 2016 Definitive hosts of Versteria Tapeworms (Cestoda: Taeniidae) causing fatal infection in North America. Emerging Infectious Diseases 22, 707–710.

10. Spickler A. 2015 Bluetongue. Technical report Institute for International Cooperation in Animal Biologies.
11. Walz PH, Grooms DL, Passler T, Ridpath JF, Tremblay R, Step DL, Callan RJ, Givens MD. 2010 Control of bovine viral diarrhea virus in ruminants. *Journal of Veterinary Internal Medicine* **24**, 476–486.

12. Dubey JP, Scharfs G, Ortega-Mora LM. 2007 Epidemiology and control of neosporosis and Neospora caninum. *Clinical Microbiology Reviews* **20**, 323–367.

13. Mcgarvey JW, Higgins A, White NG, Pounder KC, Hetzel U. 2015 Zoonotic helminths of urban brown rats (Rattus norvegicus) in the UK: Neglected public health considerations?. *Zoonoses and Public Health* **62**, 44–52.

14. Guk SM, Kim JL, Park JH, Chai JY. 2007 A Human Case of Plagiorchis vespertilionis (Digenea: Plagiorchiidae) Infection in the Republic of Korea. *Journal of Parasitology* **93**, 1225–1227.

15. Balboni A, Bassi F, De Arcangeli S, Zobba R, Dedola C, Alberti A, Battilani M. 2018 Molecular analysis of carnivore Protoparvovirus detected in white blood cells of naturally infected cats. *BMC Veterinary Research* **14**, 1–10.

16. Murphy TM, O’Connell J, Berzano M, Dold C, Keegan JD, McCann A, Murphy D, Holden NM. 2012 The prevalence and distribution of Alaria alata, a potential zoonotic parasite, in foxes in Ireland. *Parasitology Research* **111**, 283–290.

17. Betancourt-Alonso MA, Orihuela A, Aguirre V, Vázquez R, Flores-Pérez I. 2011 Changes in behavioural and physiological parameters associated with Taenia pisiformis infection in rabbits (Oryctolagus cuniculus) that may improve early detection of sick rabbits. *World Rabbit Science* **19**, 21–30.

18. McAllister CT, Bursey CR, Roberts JF. 2004 Physococephalus sexalatus (Nematoda: Spirurida: Spiroceridae) in three species of rattlesnakes, Crotalus atrox, Crotalus lepidus, and Crotalus scutulatus, from southwestern Texas. *Journal of Herpetological Medicine and Surgery* **14**, 10–12.

19. Giangaspero M. 2017 Trypanosoma cruzi and domestic animals. *Clinical Microbiology: Open Access* **06**, 20–22.

20. Browne AJ, Guerra CA, Alves RV, Da Costa VM, Wilson AL, Pigott DM, Hay SI, Lindsay SW, Golding N, Moyes CL. 2017 The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. *Scientific Data* **4**, 1–10.

21. Gürtler RE, Cardinal MV. 2015 Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. *Acta Tropica* **151**, 32–50.
22. Fitzpatrick JL, Dyer JL, Blanton JD, Kuzmin IV, Rupprecht CE. 2014 Rabies in rodents and lagomorphs in the United States, 1995-2010. *Journal of the American Veterinary Medical Association* **245**, 333–337.

23. Huang S, Bininda-Emonds ORP, Stephens PR, Gittleman JL, Altizer S. 2014 Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. *Journal of Animal Ecology* **83**, 671–680.

24. Cho SH, Kim TS, Kong Y, Na BK, Sohn WM. 2013 Tetrathyridia of Mesocestoides lineatus in Chinese snakes and their adults recovered from experimental animals. *Korean Journal of Parasitology* **51**, 531–536.

25. Ito A, Budke CM. 2014 Culinary delights and travel? A review of zoonotic cestodiases and metacestodiases. *Travel Medicine and Infectious Disease* **12**, 582–591.

26. Fuehrer HP. 2014 An overview of the host spectrum and distribution of Calodium hepaticum (syn. Capillaria hepatica): Part 2 - Mammalia (excluding Muroidea). *Parasitology Research* **113**, 641–651.

27. Kopp A, Gillespie TR, Hobelsberger D, Estrada A, Harper JM, Miller RA, Eckerle I, Müller MA, Podsiadlowski L, Leendertz FH, Drosten C, Junglen S. 2013 Provenance and geographic spread of St. Louis encephalitis virus. *mBio* **4**, 1–11.

28. Diaz LA, Ré V, Almirón WR, Farías A, Vázquez A, Sanchez-Seco MP, Aguilar J, Spin-santi L, Konigheim B, Visintin A, García J, Morales MA, Tenorio A, Contigiani M. 2006 Genotype III Saint Louis encephalitis virus outbreak, Argentina, 2005. *Emerging Infectious Diseases* **12**, 1752–1754.

29. Beineke A, Baumgärtner W, Wohlsin P. 2015 Cross-species transmission of canine distemper virus—an update. *One Health* **1**, 49–59.

30. Buchmann K, Mehrdana F. 2016 Effects of anisakid nematodes Anisakis simplex (s.l.), Pseudoterranova decipiens (s.l.) and Contracaecum osculatum (s.l.) on fish and consumer health. *Food and Waterborne Parasitology* **4**, 13–22.

31. Mollentze N, Biek R, Streicker DG. 2014 The role of viral evolution in rabies host shifts and emergence. *Current Opinion in Virology* **8**, 68–72.

32. Birhane MG, Cleaton JM, Monroe BP, Wadhwa A, Orciari LA, Yager P, Blanton J, Velasco-Villa A, Petersen BW, Wallace RM. 2017 Rabies surveillance in the United States during 2015. *Journal of the American Veterinary Medical Association* **250**, 1117–1130.

33. World Health Organization. 1983 Rabies bulletin europe. *Rabies Bulletin Europe* **7**, 1–34.
34. Sempere J, Sokolov VE, Danilkin AA. 1996 Capreolus capreolus. *Mammalian Species* pp. 1–9.

35. Gautret P, Blanton J, Dacheux L, Ribadeau-Dumas F, Brouqui P, Parola P, Esposito DH, Bourhy H. 2014 Rabies in Nonhuman Primates and Potential for Transmission to Humans: A Literature Review and Examination of Selected French National Data. *PLoS Neglected Tropical Diseases* 8, 1–7.

36. Steck F, Wandeler A. 1980 The epidemiology of fox rabies in Europe. *Epidemiologic reviews* 2, 71–96.

37. Zhu H, Chen X, Shao X, Ba H, Wang F, Wang H, Yang Y, Sun N, Ren J, Cheng S, Wen Y. 2015 Characterization of a virulent dog-originated rabies virus affecting more than twenty fallow deer (Dama dama) in Inner Mongolia, China. *Infection, Genetics and Evolution* 31, 127–134.

38. Schindler E. 1957 Comparative investigations on the behaviour of mice and continental field voles (Microtus arvalis) after infection with rabies virus. *Zeitschrift fur Tropenmedizin und Parasitologie* 8, 233–241.

39. Fleming PJ, Nolan H, Jackson SM, Ballard GA, Bengsen A, Brown WY, Meek PD, Mifsud G, Pal SK, Sparkes J. 2017 Roles for the Canidae in food webs reviewed: Where do they fit?. *Food Webs* 12, 14–34.

40. White PJ, Hanson MT, Berry WH, Eliason JJ. 2000 Catastrophic decrease in an isolated population of kit foxes. *Southwestern Naturalist* 45, 204–211.

41. Wang Z, Wang X, Lu Q. 2007 Selection of land cover by the Tibetan fox Vulpes ferrilata on the eastern Tibetan Plateau, western Sichuan Province, China. *Acta Theriologica* 52, 215–223.

42. Tao XY, Guo ZY, Li H, Jiao WT, Shen XX, Zhu WY, Rayner S, Tang Q. 2015 Rabies Cases in the West of China Have Two Distinct Origins. *PLoS Neglected Tropical Diseases* 9, 1–8.

43. Zapata-Ríos G, Branch LC. 2016 Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. *Biological Conservation* 193, 9–16.

44. Silva-Rodríguez E, Farias A, Moreira-Arce D, Cabello J, Hidalgo-Hermoso, E. Lucherini M, Jiménez J. 2016 Lycalopex fulvipes. The IUCN Red List of Threatened Species 2016.

45. Juan, C. Durán. R. MFC. 1989 Rabia en zorro gris (Pseudalopex griseus) patagónico, Magallanes, Chile. *Avances en Ciencias Veterinarias* 4.
46. Carnieli P, Fahl WdO, Castilho JG, Oliveira RdN, Macedo CI, Durymanova E, Jorge RS, Morato RG, Spindola RO, Machado LM, de Sá JE, Carrieri ML, Kotait I. 2008 Characterization of Rabies virus isolated from canids and identification of the main wild canid host in Northeastern Brazil. *Virus Research* **131**, 33–46.

47. Durbin L, Venkataraman A, Hedges S, Duckworth W. 2005 South Asia – South of the Himalaya (Oriental). In Sillero-Zubiri C, Hoffmann M, Macdonald D, editors, *Canids: Foxes, Wolves, Jackals and Dogs*, pp. 210–219. Island Press.

48. DeMatteo KE. 2008 Using a survey of carnivore conservationists to gain new insight into the ecology and conservation status of the bush dog. *Canid News* **11**, 1–8.

49. Jorge RSP, Pereira MS, Morato RG, Scheffer KC, Carnieli P, Ferreira F, Furtado MM, Kashivakura CK, Silveira L, Jacomo ATA, Lima ES, de Paula RC, May-Junior JA. 2010 Detection of rabies virus antibodies in Brazilian free-ranging wild carnivores. *Journal of Wildlife Diseases* **46**, 1310–1315.

50. Borda CE, Rea MJ. 2006 Intermediate and definitive hosts of Schistosoma mansoni in Corrientes province, Argentina. *Memorias do Instituto Oswaldo Cruz* **101**, 233–234.

51. Stoltenow CL, Solemsass K, Niezgoda M, Yager P, Rupprecht CE. 2000 Rabies in an American Bison from North Dakota. *Journal of Wildlife Diseases* **36**, 169–171.

52. Joshi D. 1982 Yak and Chauri Husbandry in Nepal. *H.M. Government Press, XVII*, 145.

53. Mei C, Wang H, Zhu W, Wang H, Cheng G, Qu K, Guang X, Li A, Zhao C, Yang W, Wang C, Xin Y, Zan L. 2016 Whole-genome sequencing of the endangered bovine species Gayal (Bos frontalis) provides new insights into its genetic features. *Scientific Reports* **6**, 1–8.

54. Fowler M. 1996 Husbandry and diseases of camelids. *Revue scientifique et technique (OIE)* **15**, 155–169.

55. Carey AB, Mclean RG. 1983 The Ecology of Rabies: Evidence of Co-Adaptation. *Journal of Applied Ecology* **20**, 777–800.

56. Eidson M, Matthews SD, Willsey AL, Cherry B, Rudd RJ, Trimarchi CV. 2005 Rabies virus infection in a pet guinea pig and seven pet rabbits. *Journal of the American Veterinary Medical Association* **227**, 932–935.

57. Li K, Gao J, Shahzad M, Han Z, Nabi F, Liu M, Zhang D, Li J. 2014 Seroprevalence of Toxoplasma gondii infection in yaks (Bos grunniens) on the Qinghai-Tibetan Plateau of China. *Veterinary Parasitology* **205**, 354–356.

58. Grover M. 2016 *Spatio-temporal analysis of dog ecology and rabies epidemiology at a wildlife interface in the Lowveld Region of South Africa* (Dissertation (MSc)–University of Pretoria, 2016). PhD thesis.
59. Jongejan F, Uilenberg G. 1994 Ticks and control methods. *Revue scientifique et technique (OIE)* 13, 1201–1226.

60. Walker A, Bouattour A, Camicas JL, Estrada-Peña A, Horak I, Latif A, Pegram R, Preston P. 2003 *Ticks of Domestic Animals in Africa: a Guide to Identification of Species*. Edinburgh: Bioscience Reports.

61. Bornstein S, Mörner T, Samuel WM. 2002 Sarcoptes Scabiei and Sarcoptic Mange. In Samuel WM, Margo J, Pybus, Kocan AA, editors, *Parasitic Diseases of Wild Mammals*, pp. 107–119. Ames, Iowa: Iowa State University Press 2nd edition.

62. Kagira JM, Kanyari PN, Maingi N, Githigia SM, Ng’ang’a C, Gachohi J. 2013 Relationship between the prevalence of ectoparasites and associated risk factors in free-range pigs in Kenya. *ISRN Veterinary Science* p. 650890.

63. Nemeth NM, Ruder MG, Gerhold RW, Brown JD, Munk BA, Oesterle PT, Kubiski SV, Keel MK. 2014 Demodectic mange, dermatophilosis, and other parasitic and bacterial dermatologic diseases in free-ranging white-tailed deer (Odocoileus virginianus) in the United States from 1975 to 2012. *Veterinary Pathology* 51, 633–640.

64. Loveridge AJ, Macdonald DW. 2003 Niche separation in sympatric jackals (Canis mesomelas and Canis adustus). *Journal of Zoology* 259, 143–153.

65. Dalponte J, Courtenay O. 2008 Lycalopex vetulus. The IUCN Red List of Threatened Species 2008. .

66. Angerbjörn A, Tannerfeldt M. 2014 Vulpes lagopus. The IUCN Red List of Threatened Species 2014 .. .

67. Buckland PC, Sadler JP. 1989 A Biogeography of the Human Flea, Pulex irritans L. (Siphonaptera: Pulicidae). *Journal of Biogeography* 16, 115.

68. Luque JaD, Müller H, González L, Berkunsky I. 2014 Clinical signs suggestive of mange infestation in a free-ranging maned wolf (Chrysocyon brachyurus) in the Moxos Savannhs of Beni, Bolivia. *Mastozoologia Neotropical* 21, 135–138.

69. Jorge R, Lima E, Lucarts L. 2008 Sarna sarcóptica ameaçando cachorros-vinagres (Speothos venaticus) de vida livre em Nova Xavantina–MT. In *XXXIII Congresso Anual da Sociedade de Zoológicos do Brasil, At Sorocaba, SP, Brasil*.

70. de Souza Lima E, Dematteo KE, Jorge RSP, Jorge MLSP, Dalponte JC, Lima HS, Klorfine SA. 2012 First telemetry study of bush dogs: Home range, activity and habitat selection. *Wildlife Research* 39, 512–519.
71. Irons JV, Eads RB, Johnson CW, Walker OL, Norris MA. 1952 Southwest Texas Q Fever Studies. *The Journal of Parasitology* **38**, 1–5.

72. Schaller GB, Kang A. 2008 Status of Marco Polo sheep Ovis ammon polii in China and adjacent countries: Conservation of a vulnerable subspecies. *Oryx* **42**, 100–106.

73. Criffield MA, Reichard MV, Hellgren EC, Leslie DM, Freel K. 2009 Parasites of swift foxes (Vulpes velox) in the Oklahoma Panhandle. *The Southwestern Naturalist* **54**, 492–498.

74. Dragoo JW, Choate JR, Yates TL, Farrell TPO, Dragoo JW, Choate JR, Yates TL, Thomas P. 1990 Evolutionary and Taxonomic Relationships among North American Arid-Land Foxes. *American Society of Mammalogists* **71**, 318–332.

75. Cypher BL, Rudd JL, Westall TL, Woods LW, Stephenson N, Foley JE, Richardson D, Clifford DL. 2017 Sarcoptic Mange in Endangered Kit Foxes (Vulpes Macrotis Mutica): Case Histories, Diagnoses, and Implications for Conservation. *Journal of Wildlife Diseases* **53**, 46–53.

76. Oksi J, Rantala S, Kilpinen S, Silvennoinen R, Vornanen M, Veikkolainen V, Eerola E, Pulliainen AT. 2013 Cat scratch disease caused by Bartonella grahamii in an immunocompromised patient. *Journal of Clinical Microbiology* **51**, 2781–2784.

77. Rar V, Golovljova I. 2011 Anaplasma, Ehrlichia, and Candidatus Neoehrlichia bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. *Infection, Genetics and Evolution* **11**, 1842–1861.

78. Yang J, Liu Z, Niu Q, Liu J, Han R, Guan G, Hassan MA, Liu G, Luo J, Yin H. 2017 A novel zoonotic Anaplasma species is prevalent in small ruminants: potential public health implications. *Parasites and Vectors* **10**.

79. Gonçalves R. 2007 Does Mycoplasma mycoides subsp. mycoides LC cause human infection?. Technical report Instituto Nacional de Investigação Agrária e Veterinária (INIAV).

80. dos Santos AP, dos Santos RP, Biondo AW, Dora JM, Goldani LZ, de Oliveira ST, de Sá Guimarães AM, Timenetsky J, de Morais HA, González FH, Messick JB. 2008 Hemoplasma infection in HIV-positive patient, Brazil. *Emerging Infectious Diseases* **14**, 1922–1924.

81. Barati S, Moori-Bakhtiari N, Najafabadi MG, Momtaz H, Shokuhizadeh L. 2017 The role of zoonotic chlamydial agents in ruminants abortion. *Iranian Journal of Microbiology* **9**, 288–294.

82. Pusterla N, Gebhart C. 2009 Equine proliferative enteropathy caused by Lawsonia intracellularis. *Equine Veterinary Education* **21**, 415–419.
83. Lysnyansky I, Levisohn S, Bernstein M, Kenigswald G, Blum S, Gerchman I, Elad D, Brenner J. 2007 Diagnosis of Mycoplasma conjunctivae and Chlamydophila spp in an episode of conjunctivitis/keratoconjunctivitis in lambs. *Israel Journal of Veterinary Medicine* 62, 79–82.

84. Sandal I, Inzana TJ. 2010 A genomic window into the virulence of Histophilus somni. *Trends in Microbiology* 18, 90–99.

85. Siembieda JL, Kock RA, McCracken TA, Newman SH. 2011 The role of wildlife in trans-boundary animal diseases. *Animal health research reviews / Conference of Research Workers in Animal Diseases* 12, 95–111.

86. van der Hoeden J. 1955 Leptospira Canicola in Cattle. *Journal of Comparative Pathology and Therapeutics* 65, 278–283.

87. Dayan T, Simberloff D, Tchernov E, Yom-Tov Y. 1992 Canine carnassials: character displacement in the wolves, jackals and foxes of Israel. *Biological Journal of the Linnean Society* 45, 315–331.

88. Allan KJ, Biggs HM, Halliday JE, Kazwala RR, Maro VP, Cleaveland S, Crump JA. 2015 Epidemiology of leptospirosis in Africa: a systematic review of a neglected zoonosis and a paradigm for ‘One Health’ in Africa. *PLoS Neglected Tropical Diseases* 9, 1–25.

89. Penzhorn BL, Netherlands EC, Cook CA, Smit NJ, Vorster I, Harrison-White RF, Oosthuizen MC. 2018 Occurrence of Hepatozoon canis (Adeleorina: Hepatozoidae) and Anaplasma spp. (Rickettsiales: Anaplasmataceae) in black-backed jackals (Canis mesomelas) in South Africa. *Parasites and Vectors* 11, 1–7.

90. Tenaillon O, Skurnik D, Picard B, Denamur E. 2010 The population genetics of commensal *Escherichia coli*. *Nature Reviews Microbiology* 8, 207–217.

91. Jay-Russell MT, Hake AF, Bengson Y, Thiptara A, Nguyen T. 2014 Prevalence and characterization of *Escherichia coli* and *Salmonella* strains isolated from stray dog and coyote feces in a major leafy greens production region at the United States-Mexico border. *PLoS ONE* 9.

92. King T. 2017 *Wild and domestic animals as reservoirs of antibiotic resistant Escherichia coli in South Africa*. PhD thesis.

93. Katakweba AA, Møller KS, Muumba J, Muhairwa AP, Damborg P, Rosenkrantz JT, Minga UM, Mtambo MM, Olsen JE. 2015 Antimicrobial resistance in faecal samples from buffalo, wildebeest and zebra grazing together with and without cattle in Tanzania. *Journal of Applied Microbiology* 118, 966–975.
94. Frank MA. 2016 Antibiotic resistance in enteric Escherichia coli and Enterococcus spp. isolated from ungulates at Marwell Zoo England. PhD thesis University of Pretoria.

95. Clayton JB, Danzeisen JL, Trent AM, Murphy T, Johnson TJ. 2014 Longitudinal Characterization of Escherichia coli in Healthy Captive Non-Human Primates. *Frontiers in Veterinary Science* 1, 1–11.

96. Standley W, McCue P Blood characteristics of San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training Site, California. *Department of Defense Technical Report*.

97. Langholz JA, Michele TJR. 2013 Potential role of wildlife in pathogenic contamination of fresh produce. *Human-Wildlife Interactions* 7, 140–157.

98. Reinstein S, Fox JT, Shi X, Alam MJ, Nagaraja TG. 2016 Prevalence of Escherichia coli O157:H7 in the American Bison (Bison bison). *Journal of Food Protection* 70, 2555–2560.

99. Cousins DV. 2001 Mycobacterium bovis infection and control in domestic livestock. *Revue scientifique et technique (OIE)* 20, 71–85.

100. Clark RK, Boyce WM, Jessup DA, Elliott LF. 1993 Survey of pathogen exposure among population clusters of bighorn sheep (Ovis canadensis) in California. *Journal of Zoo and Wildlife Medicine* 24, 48–53; 19 ref.

101. Stuen S, Granquist EG, Silaghi C. 2013 Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. *Frontiers in Cellular and Infection Microbiology* 3, 1–33.

102. de la Fuente J, Atkinson MW, Hogg JT, Miller DS, Naranjo V, Almazán C, Anderson N, Kocan KM. 2006 Genetic Characterization of Anaplasma ovis Strains from Bighorn Sheep in Montana. *Journal of Wildlife Diseases* 42, 381–385.

103. Greig DJ, Gulland FM, Smith WA, Conrad PA, Field CL, Fleetwood M, Harvey JT, Ip HS, Jang S, Packham A, Wheeler E, Hall AJ. 2014 Surveillance for zoonotic and selected pathogens in harbor seals phoca vitulina from central California. *Diseases of Aquatic Organisms* 111, 93–106.

104. Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V, Cryan PM, Wibbelt G, Blehert DS, Willis CKR. 2012 Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. *Proceedings of the National Academy of Sciences* 109, 6999–7003.

105. Anstead GM, Sutton DA, Graybill JR. 2012 Adiaspiromycosis causing respiratory failure and a review of human infections due to Emmonsia and Chrysosporium spp.. *Journal of Clinical Microbiology* 50, 1346–1354.
106. Gleason FH, Marano AV. 2011 The effects of antifungal substances on some zoosporic fungi (Kingdom Fungi). *Hydrobiologia* **659**, 81–92.

107. Aluoch AM, Otiende MY, Obonyo MA, Mungai PG, Okun DO, Angelone-Alasaad S, Jowers MJ. 2017 First genetic identification of Pilobolus (Mucoromycotina, Mucorales) from Africa (Nairobi National Park, Kenya). *South African Journal of Botany* **111**, 182–188.

108. Danesi P, da Rold G, Rizzoli A, Hauffe HC, Marangon S, Samerpitak K, Demanche C, Guillot J, Capelli G, de Hoog SG. 2016 Barcoding markers for Pneumocystis species in wildlife. *Fungal Biology* **120**, 191–206.

109. Palmer RJ, Settnes OP, Lodal J, Wakefield AE. 2000 Population structure of rat-derived Pneumocystis carinii in Danish wild rats. *Applied and Environmental Microbiology* **66**, 4954–4961.

110. Campbell C, Borman A, Linton C, Bridge P, Johnson E. 2006 Arthroderma olidum, sp. nov. A new addition to the Trichophyton terrestre complex. *Medical Mycology* **44**, 451–459.

111. Ma M, Jiang X, Wang Q, Ongena M, Wei D, Ding J, Guan D, Cao F, Zhao B, Li J. 2018 Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols. *MicrobiologyOpen* **e597**, 1–12.

112. Settnes O, Henriksen SA. 1989 Pneumocystis carinii in large domestic animals in Denmark. A preliminary report. *Acta veterinaria Scandinavica* **30**, 437–440.

113. Laakkonen J. 1998 Pneumocystis carinii in wildlife. *International Journal for Parasitology* **28**, 241–252.

114. Massolo A, Liccioli S, Budke C, Klein C. 2014 Echinococcus multilocularis in North America: the great unknown. *Parasite* **21**, 73.

115. Teixeira PEF, Corrêa CL, de Oliveira FB, Alencar ACMdB, Das Neves LB, Garcia DD, De almeida FB, Pereira LCM, Machado-Silva JR, Rodrigues-Silva R. 2018 Occurrence of Capillaria sp. in the liver of sheep (Ovis aries) in a slaughterhouse in the state of Acre, Brazil. *Revista Brasileira de Parasitologia Veterinaria* **27**, 226–231.

116. Jenkins DJ, Macpherson CN. 2003 Transmission ecology of Echinococcus in wild-life in Australia and Africa. *Parasitology* **127**, S63–S72.

117. Chilton NB, Huby-Chilton F, Koehler AV, Gasser RB, Beveridge I. 2016 Detection of cryptic species of Rugopharynx (Nematoda: Strongylida) from the stomachs of Australian macropodid marsupials. *International Journal for Parasitology: Parasites and Wildlife* **5**, 124–133.
118. Otero-Abad B, Torgerson PR. 2013 A systematic review of the epidemiology of echinococcosis in domestic and wild animals. *PLoS Neglected Tropical Diseases* 7.

119. Said Y, Gharbi M, Mhadhbi M, Dhibi M, Lahmar S. 2018 Molecular identification of parasitic nematodes (Nematoda: Strongylida) in feces of wild ruminants from Tunisia. *Parasitology* 145, 901–911.

120. IUCN SSC Antelope Specialist Group. 2016 Kobus vardonii, The IUCN Red List of Threatened Species 2016.

121. Laidemitt MR, Zawadzki ET, Brant SV, Mutuku MW, Mkoji GM, Loker ES. 2017 Loads of trematodes: Discovering hidden diversity of paramphistomoids in Kenyan ruminants. *Parasitology* 144, 131–147.

122. Lucherini M, Luengos Vidal EM. 2008 Lycalopex gymnocercus (Carnivora: Canidae). *Mammalian Species* 820, 1–9.

123. Dalponte JC. 2009 Lycalopex vetulus (Carnivora: Canidae). *Mammalian Species* 847, 1–7.

124. Young E, Kruger SP. 1967 *Trichinella spiralis* (Owen, 1835) Railliet, 1895 infestation of wild carnivores and rodents in South Africa. *Journal of the South African Veterinary Association* 38, 441–443.

125. Akkari H, Gharbi M, Darghouth Ma. 2012 Dynamics of infestation of tracers lambs by gastrointestinal helminths under a traditional management system in the North of Tunisia. *Parasite* 19, 407–15.

126. Beveridge I, Shamsi S. 2009 Revision of the *Progamotaenia festiva* species complex (Cestoda: Anoplocephalidae) from Australasian marsupials, with the resurrection of *P. fellicola* (Nybelin, 1917) comb. nov. I. *Zootaxa* 1990, 1–29.

127. Šarkūnas M, Sokolovas V, Strupas K, Saarma U, Bagrade G, Laivacuma S, Jokelainen P, Moks E, Marcinkutė A, Deplazes P. 2015 Echinococcus infections in the Baltic region. *Veterinary Parasitology* 213, 121–131.

128. Wagner DC, Edwards MS. 1984 Hand-rearing Black and White Rhinoceroses: A Comparison. *San Diego Animal Park* pp. 1–10.

129. Poirotte C, Kappeler PM, Ngoubangoye B, Bourgeois S, Moussodji M, Charpentier MJ. 2016 Morbid attraction to leopard urine in toxoplasma-infected chimpanzees. *Current Biology* 26, R98–R99.
130. Akue JP, Tomo NE, Badiambile J, Moukana H, Mbou-Mountsimbi RA, Ngoubangoye B. 2018 Seroprevalence of Toxoplasma gondii and Neospora caninum in non-human primates at a primate center at Franceville, Gabon. *Journal of Parasitology and Vector Biology* 10, 1–7.

131. Bryan LK, Hamer SA, Shaw S, Curtis-Robles R, Auckland LD, Hodo CL, Chaffin K, Rech RR. 2016 Chagas disease in a Texan horse with neurologic deficits. *Veterinary Parasitology* 216, 13–17.

132. Bommineni YR, Dick EJ, Estep JS, Van de Berg JL, Hubbard GB. 2009 Fatal acute Chagas disease in a chimpanzee. *Journal of Medical Primatology* 38, 247–251.

133. Dubey JP, Pas A, Rajendran C, Kwok OC, Ferreira LR, Martins J, Hebel C, Hammer S, Su C. 2010 Toxoplasmosis in Sand cats (Felis margarita) and other animals in the Breeding Centre for Endangered Arabian Wildlife in the United Arab Emirates and Al Wabra Wildlife Preservation, the State of Qatar. *Veterinary Parasitology* 172, 195–203.

134. Strait K, Else JG, Eberhard ML. 2012 *Parasitic Diseases of Nonhuman Primates*. Elsevier 2nd edition.

135. Solórzano-García B, Pérez-Ponce de León G. 2018 Parasites of Neotropical Primates: A Review. *International Journal of Primatology* 39, 155–182.

136. Marinkelle CJ. 1982 The prevalence of Trypanosoma (Schizotrypanum) cruzi cruzi infection in Colombian monkeys and marmosets. *Annals of Tropical Medicine & Parasitology* 76, 121–124. PMID: 6807227.

137. Sousa OE. 1972 Anotaciones sobre la enfermedad de Chagas en Panamá. Frecuencia y distribución de Trypanosoma cruzi y Trypanosoma rangeli. *Revista de biología tropical* 20, 167–179.

138. Zhang SY, Wei MX, Zhou ZY, Yu JY, Shi XQ. 2000 Prevalence of antibodies to Toxoplasma gondii in the sera of rare wildlife in the Shanghai Zoological Garden, People’s Republic of China. *Parasitology International* 49, 171–174.

139. Van Heerden J, Mills MG, Van Vuuren MJ, Kelly PJ, Dreyer MJ. 1995 An investigation into the health status and diseases of wild dogs (Lycaon pictus) in the Kruger National Park.. *Journal of the South African Veterinary Association* 66, 18–27.

140. Mercier A, Ajzenberg D, Devillard S, Demar MP, de Thoisy B, Bonnabau H, Collinet F, Boukhari R, Blanchet D, Simon S, Carme B, Dardé ML. 2011 Human impact on genetic diversity of Toxoplasma gondii: Example of the anthropized environment from French Guiana. *Infection, Genetics and Evolution* 11, 1378–1387.
141. Zhou DH, Zheng WB, Hou JL, Ma JG, Zhang XX, Zhu XQ, Cong W. 2017 Molecular
detection and genetic characterization of Toxoplasma gondii in farmed raccoon dogs (Nyc-
tereutes procyonoides) in Shandong province, eastern China. Acta Tropica 172, 143–146.

142. Sakae C, Ishida T. 2012 Direct evidence for Toxoplasma gondii infection in a wild serow
(Capricornis crispus) from mainland Japan. Journal of Parasitology 98, 224–225.

143. Chen JC, Tsai YJ, Wu YL. 2015 Seroprevalence of Toxoplasma gondii antibodies in wild
birds in Taiwan. Research in Veterinary Science 102, 184–188.

144. Elmore SA, Jones JL, Conrad PA, Patton S, Lindsay DS, Dubey JP. 2010 Toxoplasma
gondii: epidemiology, feline clinical aspects, and prevention. Trends in Parasitology 26,
190–196.

145. Alvarado-Esquivel C, Romero-Salas D, García-Vázquez Z, Cruz-Romero A, Peniche-
Cardeña Á, Ibarra-Priego N, Aguilar-Domínguez M, Pérez-de León AA, Dubey JP. 2014
Seroprevalence of Toxoplasma gondii infection in water buffaloes (Bubalus bubalis) in Ve-
racruz State, Mexico and its association with climatic factors. BMC Veterinary Research
10, 1–5.

146. Kamau D, Kagira J, Maina N, Mutura S, Mokuja J, Karanja S. 2016 Detection of natural
Toxoplasma gondii infection in olive baboons (Papio anubis) in Kenya using nested PCR. In
The 11th Jkuat Scientific, Technological and Industrialization Conference and Exhibitions
Conference Proceedings.

147. Van Heuverswyn F, Li Y, Neel C, Bailes E, Keele BF, Liu W, Loul S, Butel C, Liegeois F,
Bienvenue Y, Ngolle EM, Sharp PM, Shaw GM, Delaporte E, Hahn BH, Peeters M. 2006
Human immunodeficiency viruses: SIV infection in wild gorillas. Nature 444, 164.

148. Bharti OK. 2016 Human rabies in monkey (Macaca mulatta) bite patients a reality in India
now!. Journal of Travel Medicine 23, 1–2.

149. More S, Bøtner A, Butterworth A, Calisti P, Depner K, Edwards S, Garin-Bastuji B,
Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L,
Spoolder H, Stegeman JA, Thulke H, Velarde A, Willeberg P, Winckler C, Baldinelli F,
Broglia A, Candiani D, Beltrán-Beck B, Kohlne L, Bicout D. 2017 Assessment of listing
and categorisation of animal diseases within the framework of the Animal Health Law
(Regulation (EU) No 2016/429): ovine epididymitis (Brucella ovis). EFSA Journal 15,
1–25.

150. Sharma B, Parul S, Basak G, Mishra R. 2019 Malignant catarrhal fever (MCF): An
emerging threat. Journal of Entomology and Zoology Studies 7, 26–32.

151. Picard-Meyer E, Robardet E, Arthur L, Larcher G, Harbusch C, Servat A, Cliquet F. 2014
Bat rabies in France: A 24-year retrospective epidemiological study. PLoS ONE 9.
152. Šimić I, Krešić N, Lojkić I, Bedeković T. 2017 The first serological confirmation of bats rabies in Croatia. In Rabies Serology Meeting.

153. Schatz J, Fooks AR, Mcelhinney L, Horton D, Echevarria J, Vázquez-Moron S, Kooi EA, Rasmussen TB, Müller T, Freuling CM. 2013 Bat rabies surveillance in Europe. Zoonoses and Public Health 60, 22–34.

154. Nieuwenhuijs J, Haagsma J, Lina P. 1992 Epidemiology and control of rabies in bats in The Netherlands.. Revue scientifique et technique (OIE) 11, 1155–1161.

155. Ullas PT, Desai A, Madhusudana SN. 2012 Rabies DNA Vaccines: Current Status and Future. World Journal of Vaccines 02, 36–45.

156. Winkler WG, Schneider NJ, Jennings WL. 1972 Experimental Rabies Infection in Wild Rodents. Journal of Wildlife Diseases 8, 99–103.