Two Theorems on Convergence of Schrödinger Means

Per Sjölin

Received: 4 March 2018 / Published online: 4 October 2018
© The Author(s) 2018

Abstract
Localization and convergence almost everywhere of Schrödinger means are studied.

Keywords Schrödinger equation · Convergence · Localization · Sobolev spaces

Mathematics Subject Classification 42B99

1 Introduction

For $f \in L^2(\mathbb{R}^n)$, $n \geq 1$ and $a > 1$ we set

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi \cdot x} f(x) dx, \quad \xi \in \mathbb{R}^n,$$

and

$$S_t f(x) = \int_{\mathbb{R}^n} e^{i\xi \cdot x} e^{it|\xi|^a} \hat{f}(\xi) d\xi, \quad x \in \mathbb{R}^n, \quad t \geq 0.$$

For $a = 2$ and f belonging to the Schwartz class $\mathcal{S}(\mathbb{R}^n)$ we set $u(x, t) = S_t f(x)/(2\pi)^n$. It then follows that $u(x, 0) = f(x)$ and u satisfies the Schrödinger equation $i\partial u/\partial t = \Delta u$.

We introduce Sobolev spaces $H_s = H_s(\mathbb{R}^n)$ by setting

$$H_s = \{f \in \mathcal{S}'; \|f\|_{H_s} < \infty\}, \quad s \in \mathbb{R},$$

Communicated by Mieczysław Mastyło.
where
\[\| f \|_{H_s} = \left(\int_{\mathbb{R}^n} (1 + |\xi|^2)^s |\hat{f}(\xi)|^2 d\xi \right)^{1/2}. \]

In the case \(n = 1 \) it is well-known (see Sjölin [7] and Vega [9] and in the case \(a = 2 \) Carleson [3] and Dahlberg and Kenig [4]) that
\[\lim_{t \to 0} (2\pi)^{-n} S_t f(x) = f(x) \quad (1) \]
after almost everywhere if \(f \in H_{1/4} \). Also it is known that \(H_{1/4} \) cannot be replaced by \(H_s \) if \(s < 1/4 \).

Assuming \(n \geq 2 \) and \(a = 2 \) Bourgain [1] has proved that (1) holds almost everywhere if \(f \in H_s \) and \(s > 1/2 - 1/4n \). On the other hand Bourgain [2] has proved that \(s \geq n/2(n + 1) \) is necessary for convergence for \(a = 2 \) and all \(n \geq 2 \). In the case \(n = 2 \) and \(a = 2 \), Du, Guth, and Li [5] proved that the condition \(s > 1/3 \) is sufficient. Recently Du and Zhang [6] proved that the condition \(s > n/2(n + 1) \) is sufficient for \(a = 2 \) and all \(n \geq 3 \).

In the case \(a > 1, n = 2 \), it is known that (1) holds almost everywhere if \(f \in H_{1/2} \) and in the case \(a > 1, n \geq 3 \), convergence has been proved for \(f \in H_s \) with \(s > 1/2 \) (see [7] and [9]).

If \(f \in L^2(\mathbb{R}^n) \) then \((2\pi)^{-n} S_t f \to f \) in \(L^2 \) as \(t \to 0 \). It follows that there exists a sequence \((t_k)_{k=1}^{\infty}\) satisfying
\[1 > t_1 > t_2 > t_3 > \cdots > 0 \quad \text{and} \quad \lim_{k \to \infty} t_k = 0 \quad (2) \]
such that
\[\lim_{k \to \infty} (2\pi)^{-n} S_{t_k} f(x) = f(x) \]
after almost everywhere.

We shall here study the problem of deciding for which sequences \((t_k)_{k=1}^{\infty}\) one has
\[\lim_{k \to \infty} (2\pi)^{-n} S_{t_k} f(x) = f(x) \]
almost everywhere if \(f \in H_s \). We have the following result.

Theorem 1 Assume \(n \geq 1 \) and \(a > 1 \) and \(s > 0 \). We assume that (2) holds and that
\[\sum_{k=1}^{\infty} t_k^{2s/a} < \infty \quad \text{and} \quad f \in H_s(\mathbb{R}^n) \]. Then
\[\lim_{k \to \infty} (2\pi)^{-n} S_{t_k} f(x) = f(x) \]
for almost every \(x \) in \(\mathbb{R}^n \).
Now assume $n = 1$, $a > 1$, and $0 \leq s < 1/4$. In Sjölin [8] we studied the problem if there is localization or localization almost everywhere for the above operators S_t and the functions $f \in H_s$ with compact support, that is, do we have

$$\lim_{t \to 0} S_t f(x) = 0$$

everywhere or almost everywhere in $\mathbb{R}^n \setminus \text{supp}(f)$?

It is proved in [8] that there is no localization or localization almost everywhere of this type for $0 \leq s < 1/4$. In fact the following theorem was proved in Sjölin [8].

Theorem A There exist two disjoint compact intervals I and J in \mathbb{R} and a function f which belongs to H_s for all $s < 1/4$, with the properties that $(\text{supp } f) \subset I$ and for every $x \in J$ one does not have

$$\lim_{t \to 0} S_t f(x) = 0.$$

Let ω be a continuous and decreasing function on $[0, \infty)$. Assume that $\omega(t) \to 0$ as $t \to \infty$. Set

$$H_\omega = \{ f \in \mathcal{S}'; \| f \|_{H_\omega} < \infty \}$$

where

$$\| f \|_{H_\omega} = \left(\int_{\mathbb{R}} |\hat{f}(\xi)|^2 (1 + |\xi|^2)^{s/2} \omega(|\xi|) d\xi \right)^{1/2}$$

We have the following result.

Theorem 2 The function f in theorem A can be chosen so that $f \in H_\omega$.

Theorem 2 shows that the sufficient condition $f \in H_{1/4}$ for convergence almost everywhere and localization almost everywhere of Schrödinger means is very sharp. In the case $a = 2$ Theorem 2 was obtained in 2009 (unpublished). After proving Theorem 2 we shall use Theorem 1 to make a remark on the Schrödinger means $S_t f(x)$ for the function f which was constructed in [8] to prove Theorem A.

2 Proofs

In the proof of Theorem 1 we shall need the following lemma.

Lemma 1 Assume $n \geq 1$, $a > 1$, $0 < s < 1$, and $0 < \delta < 1$. Set

$$m(\xi) = \frac{e^{i\delta|\xi|^a} - 1}{(1 + |\xi|^2)^{s/2}}, \quad \xi \in \mathbb{R}^n.$$
Then one has

\[\|m\|_\infty \leq C \delta^{s/a} \]

where the constant C does not depend on \(\delta \), and \(\|m\|_\infty \) denotes the norm of \(m \) in \(L^\infty(\mathbb{R}^n) \).

Proof of Lemma 1. We shall write \(A \lesssim B \) if there is a constant \(C \) such that \(A \leq CB \).

In the case \(|\xi| \geq \delta^{-1/a} \) one has

\[|\xi|^s \geq \delta^{-s/a} \quad \text{and} \quad |m(\xi)| \lesssim \frac{1}{|\xi|^s} \leq \delta^{s/a}. \]

Then assume \(0 \leq |\xi| \leq 1 \). We obtain

\[|m(\xi)| \lesssim \delta |\xi|^a \leq \delta \leq \delta^{s/a}. \]

In the remaining case \(1 < |\xi| < \delta^{-1/a} \) one obtains

\[|m(\xi)| \lesssim \delta |\xi|^a |\xi|-s/a = \delta \delta^{-s/a} = \delta^{-1+s/a} = \delta^{s/a} \]

and the proof of Lemma 1 is complete. \(\square \)

We shall then give the proof of Theorem 1.

Proof of Theorem 1. We may assume \(0 < s < 1 \). We set

\[h_k(x) = (2\pi)^{-n} S_k f(x) - f(x), \quad x \in \mathbb{R}^n, \text{ for } k = 1, 2, 3, \ldots \]

We have \(f \in H_s \) and we define \(g \) by taking

\[\widehat{g}(\xi) = \widehat{f}(\xi)(1 + |\xi|^2)^{s/2}. \]

It then follows that \(g \in L^2(\mathbb{R}^n) \).

We have

\[S_k f(x) = \int e^{ix \cdot \xi} e^{it_k |\xi|^a} (1 + |\xi|^2)^{-s/2} \widehat{g}(\xi) d\xi \]

and

\[f(x) = (2\pi)^{-n} \int e^{ix \cdot \xi} (1 + |\xi|^2)^{-s/2} \widehat{g}(\xi) d\xi. \]
Hence
\[
h_k(x) = (2\pi)^{-n} \int e^{ix \cdot \xi} (e^{it_k|\xi|^a} - 1)(1 + |\xi|^2)^{-s/2} \hat{g}(\xi) d\xi
\]
\[
= (2\pi)^{-n} \int e^{ix \cdot \xi} m(\xi) \hat{g}(\xi) d\xi,
\]
where
\[
m(\xi) = (e^{it_k|\xi|^a} - 1)(1 + |\xi|^2)^{-s/2}.
\]
According to Lemma 1 we have \(\|m\|_\infty \lesssim t_k^{s/a}\) and applying the Plancherel theorem we obtain
\[
\|h_k\|_2^2 = c \int |m(\xi) \hat{g}(\xi)|^2 d\xi \lesssim \|m\|_\infty^2 \int |\hat{g}(\xi)|^2 d\xi \lesssim t_k^{2s/a} \|f\|_{H_s}^2.
\]
It follows that
\[
\sum_1^\infty \int |h_k|^2 dx \lesssim \left(\sum_1^\infty t_k^{2s/a} \right) \|f\|_{H_s}^2 < \infty
\]
and applying the theorem on monotone convergence one also obtains
\[
\int \left(\sum_1^\infty |h_k|^2 \right) dx < \infty.
\]
We conclude that \(\sum_1^\infty |h_k|^2\) is convergent almost everywhere and hence \(\lim_{k \to \infty} h_k(x) = 0\) and
\[
\lim_{k \to \infty} (2\pi)^{-n} S_{tk} f(x) = f(x)
\]
almost everywhere. \(\square\)

Now assume \(n = 1\) and \(a > 1\). We set
\[
m(\xi) = e^{i|\xi|^a}, \quad \xi \in \mathbb{R},
\]
and let \(K\) denote the Fourier transform of \(m\) so that \(K \in \mathcal{S}'(\mathbb{R})\). According to Sjölin [8] p.142, \(K \in C^\infty(\mathbb{R})\) and there exists a number \(\alpha > 0\) such that
\[
|K(x)| \lesssim 1 + |x|^\alpha \text{ for } x \in \mathbb{R}
\]
For \(t > 0\) it is then clear that
\[
e^{it|\xi|^a} = m(t^{1/a} \xi)
\]
has the Fourier transform
\[K_t(y) = t^{-1/a} K(t^{-1/a} y). \]

It follows that \(S_t f(x) = K_t \ast f(x) \) for \(f \in L^2(\mathbb{R}^m) \) with compact support. We let \(\tilde{g} \) denote the inverse Fourier transform of \(g \) and choose \(g \in \mathcal{S}(\mathbb{R}) \) such that \(\text{supp} \tilde{g} \subset (-1, 1) \) and \(\tilde{g}(0) \neq 0 \). We set
\[f_v(x) = e^{-ix/v^2} \tilde{g}(x/v), \quad 0 < v < 1, \quad x \in \mathbb{R}. \]

According to [7], p.143, one has \(\hat{f}_v(\xi) = v g(v \xi + 1/v) \) and
\[\| f_v \|_{H^s} \lesssim v^{1/2 - 2s} \text{ for } 0 < s < 1/4. \]

We shall state three lemmas from [8].

Lemma 2 There exist positive numbers \(c_0, \delta \) and \(v_0 \) such that
\[|S_{xv^{2\alpha - 2}/a} f_v(x)| \geq c_0 \]
for \(0 < v < v_0 \) and \(0 < x < \delta \).

In the remaining part of this paper \(\delta \) and \(v_0 \) are given by Lemma 2. We may also assume that \(\delta < 1 \).

Lemma 3 For \(0 < v < \min(v_0, \delta/4) \), \(0 < t < 1 \), and \(\delta/2 < x < \delta \) one has
\[|S_t f_v(x)| \lesssim \frac{v}{t^\gamma} \]
where \(\gamma = (1 + \alpha)/a > 0 \).

Lemma 4 For \(0 < v < \min(v_0, \delta/4) \), \(0 < t < 1 \), and \(\delta/2 < x < \delta \) one has
\[|S_t f_v(x)| \lesssim \frac{t}{v^\beta} \]
where \(\beta = 2a \).

We shall use these lemmas to prove Theorem 2.

Proof of Theorem 2. Now let \(v_1 \) satisfy \(0 < v_1 < \min(v_0, \delta/4) \) and set \(\epsilon_k = 2^{-k}, \) \(k = 1, 2, 3, \ldots \)

We also set \(\mu = \max((2a - 2)\gamma, \beta/(2a - 2)) \) and choose \(v_k, k = 2, 3, 4, \ldots \), such that \(0 < v_k \leq \epsilon_k v_{k-1}^\mu \) and
\[\sum_{k=1}^{\infty} \sqrt{\omega(1/v_k^{1/2})} < \infty. \]
We then set $f = \sum_{k=1}^{\infty} f_{v_k}$ and shall prove that $f \in H_{\omega_0}$.

Arguing as in [8, pp. 145–147], it follows from Lemmas 2, 3, and 4 that with $t_k(x) = x v_k^{2a-2}/a$ one has

$$|S_{t_k}(x) f(x)| \geq c_0 > 0$$

for $\delta/2 < x < \delta$ and $k \geq k_0$. Hence we do not have $\lim_{t \to 0} S_t f(x) = 0$ in the interval $(\delta/2, \delta)$. Taking $I = [-v_1, v_1]$ and $J \subset (\delta/2, \delta)$ we have $\text{supp } f \subset I$ and for every $x \in J$ one does not have $\lim_{t \to 0} S_t f(x) = 0$. Thus Theorem 2 follows. It remains to prove that $f \in H_{\omega_0}$.

We have

$$\|f_v\|_{H_\omega}^2 = \int |\hat{f}_v(\xi)|^2 (1 + \xi^2)^{1/4} \omega(|\xi|) d\xi \lesssim I_1 + I_2,$$

where

$$I_1 = \int_{-1}^{1} |\hat{f}_v(\xi)|^2 d\xi \leq C v^2$$

and

$$I_2 = \int |\hat{f}_v(\xi)|^2 |\xi|^{1/2} \omega(|\xi|) d\xi.$$

It follows that

$$I_2 = \int v^2 |g(\xi + 1/v)|^2 |\xi|^{1/2} \omega(|\xi|) d\xi$$

$$= \int v^{1/2} |g(\eta + 1/v)|^2 |\eta|^{1/2} \omega(v^{-1/2} \eta) \eta =$$

$$= v^{1/2} \int |g(\xi)|^2 |\xi - 1/v|^{1/2} \omega(v^{-1/2} \xi) \leq C v^{1/2}$$

$$\times \int |\xi - 1/v| \leq v^{1/2}$$

$$+ C v^{1/2} \int |g(\xi)|^2 (|\xi|^{1/2} + v^{-1/2}) \omega(v^{-1/2}) d\xi$$

$$\leq C v^{3/4} + C \omega(v^{-1/2}).$$

Hence

$$\|f_v\|_{H_\omega}^2 \lesssim v^{3/4} + \omega(v^{-1/2}), \quad 0 < v < 1,$$

\(\copyright\) Birkhäuser
and
\[\|f_v\|_{H_\omega} \lesssim v^{3/8} + \sqrt{\omega(v^{-1/2})}. \]

We have \(f = \sum_1^\infty f_{v_k} \) and it follows that
\[\|f\|_{H_\omega} \leq \sum_1^\infty \|f_{v_k}\|_{H_\omega} \lesssim \sum_1^\infty v_k^{3/8} + \sum_1^\infty \omega(v_k^{-1/2}) < \infty \]

since \(v_k \leq \epsilon_k \).

We conclude that \(f \in H_\omega \) and the proof of Theorem 2 is complete. \(\square \)

Remark 1 In Sjölin [8] the function \(f \) in Theorem A is given by the formula
\[f = \sum_1^\infty f_{v_k}, \]

where \(v_k \) is defined by taking \(0 < v_1 < \min(v_0, \delta/4) \) and \(v_k = \epsilon_k v_k^{\mu} \) for \(k = 2, 3, 4, \ldots \). Here \(\epsilon_k = 2^{-k} \) and \(\mu > 0 \) is given in the proof of Theorem 2. Also let the intervals \(I \) and \(J \) be defined as in the proof of Theorem 2. We then set \(t_k(x) = x v_k^{2a-2}/a \) for \(x \in J \) and \(k = 1, 2, 3, \ldots \)

It is proved in [8] that for every \(x_0 \in J \)
\[\lim_{k \to \infty} S_{t_k(x_0)} f(x_0) = 0. \] (3)

We now fix \(x_0 \in J \) and shall use Theorem 1 to prove that although (3) holds one also has
\[\lim_{k \to \infty} S_{t_k(x_0)} f(x) = 0 \text{ for almost every } x \in J. \] (4)

We have \(v_k < \epsilon_k \) and it follows that
\[0 < t_k(x_0) \leq \epsilon_k^{2a-2} \]

and
\[\sum_1^\infty (t_k(x_0))^{2s/a} \leq \sum_1^\infty 2^{-k(2a-2)2s/a} < \infty \]

for \(0 < s < 1/4 \). Also \(f \in H_s \) for \(0 < s < 1/4 \) and (4) follows from an application of Theorem 1.
Remark 2 In the case $a = 2$ one has $\mu = 2$ and $v_k = \epsilon_k v_{k-1}^2$, and we also have $0 < v_1 < 1/4$. It can be proved that it follows that

$$v_k = 4 \cdot 2^{k-d}$$

where d is a constant and $d > 2$.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bourgain, J.: On the Schrödinger maximal function in higher dimensions. Proc. Steklov Inst. Math. 280, 46–60 (2013)
2. Bourgain, J.: A note on the Schrödinger maximal function. J. Anal. Math. 130, 393–396 (2016)
3. Carleson, L.: Some analytical problems related to statistical mechanics. In: Euclidean Harmonic Analysis. Lecture Notes in Mathematics, vol. 779, pp. 5–45. Springer, Berlin (1979)
4. Dahlberg, B.E.J., Kenig, C.E.: A note on the almost everywhere behaviour of solutions to the Schrödinger equation. Harmonic analysis. Lecture Notes in Mathematics, vol. 908, pp. 205–209. Springer, Berlin (1981)
5. Du, X., Guth, L., Li, X.: A sharp Schrödinger maximal estimate in \mathbb{R}^2. Ann. Math. 186, 607–640 (2017)
6. Du, X., Zhang, R.: Sharp L^2 estimate of Schrödinger maximal function in higher dimensions, arXiv:1805.02775v2
7. Sjölin, P.: Regularity of solutions in the Schrödinger equation. Duke Math. J. 55, 699–715 (1987)
8. Sjölin, P.: Nonlocalization of operators of Schrödinger type. Ann. Acad. Sci. Fenn. Math. 38, 141–147 (2013)
9. Vega, L.: El Multiplicador de Schrödinger, la Funcion Maximal y los Operadores de Restriccion. Departamento de Matematicas. Univ. Autónoma de Madrid, Madrid (1988)