Social support correlates with glucocorticoid concentrations in wild African elephant orphans

J. M. Parker 1,2,3✉, J. L. Brown 4, N. T. Hobbs 1,5, N. P. Boisseau 4, D. Letitiya 3, I. Douglas-Hamilton 3,6 & G. Wittemyer 1,2,3

Social relationships have physiological impacts. Here, we investigate whether loss of the mother/offspring relationship has lasting effects on fecal glucocorticoid metabolite (fGCM) concentrations in wild African elephant orphans several years following their mothers’ deaths. We find no difference in fGCM concentrations between orphans and nonorphans, but find lower fGCM concentrations in elephants with more age mates in their family. We also unexpectedly identify lower concentrations in orphans without their natal family versus nonorphans and natal orphans, which we speculate may be due to the development of hypocortisolism following a prolonged period without familial support. An index of plant productivity (i.e. food) shows the largest correlation with fGCM concentrations. Our findings indicate no lasting differences in glucocorticoid concentrations of surviving orphan elephants who are with their family, suggest the presence of age mates may reduce glucocorticoid concentrations in elephants, and emphasize that basic survival needs are the primary regulators of the stress response.
Studies have shown that supportive relationships with other members of the same species diminish an individual’s stress response. This phenomenon is referred to as “social buffering”1,2. When a vertebrate is confronted with a stressor, the adrenal glands release more glucocorticoid (GC) hormones into the bloodstream. Social buffering is demonstrated when the presence of one or more companions reduces such GC release. For instance, strong bonds with other males lessened GC release in wild male macaques (\textit{Macaca sylvanus})3 and the presence of a familiar companion lessened GC release following exposure to a stressor in captive male squirrel monkeys (\textit{Saimiri sciureus})4. While most studies of social buffering have concerned primates and laboratory rodents, it has been observed in additional taxa including fish and birds5.

There is evidence that the mother-offspring bond plays a particularly important role in buffering the stress response. Moreover, maternal care early in life seems to program lifelong responses to stress6–7. Laboratory Norway rats (\textit{Rattus norvegicus}) who received more licking and grooming from their mother in the first ten days of life released lower amounts of GCs when confronted with acute stressors later in life8. They also developed more GC receptors in the brain, enhancing the body’s ability to stop secreting GCs after sufficient amounts have been released and thus reducing the chance of prolonged exposure to GCs that can cause health problems7–12. Additionally, zebra finch (\textit{Taeniopygia guttata}) adults who were deprived of maternal care as chicks secreted more GCs when faced with social isolation than adults raised by both parents13, and the GC concentrations of weaned guinea pigs (\textit{Cavia porcella}) placed in a novel environment increased less if their mother was present than if a sibling or other conspecific was present14,15. If maternal care is lost, non-parental familial relationships can mitigate the stress response associated with that loss. For instance, an aunt or other alloparental figure lessened GC increases in infant squirrel monkeys temporarily separated from their mother16.

Our current understanding of maternal effects on adrenal activity and the potential for other relationships to offset stress responses associated with maternal loss is derived mostly from captive studies, but there have been two recent studies on this topic in wild primates. Wild chimpanzee (\textit{Pan troglodytes}) orphans showed short- but not long-term increases in glucocorticoid concentrations following their mother’s death. Adoption occurs in chimpanzees and may ameliorate initial increases in GC concentrations following maternal loss17. Baboon (\textit{Papio cynocephalus} and \textit{Papio Anubis}) orphans had weaker social ties with other females following the loss of their mother but did not show definite differences in GC concentrations from nonorphans unless they had also faced other early-life adversity in addition to maternal loss18. These two studies provide evidence of a limited and context-dependent effect of maternal loss on GC levels in wild primate individuals.

Like chimpanzees and baboons, African elephants (\textit{Loxodonta africana}) are a long-lived, highly social species with a high encephalization quotient that indicates advanced cognitive abilities19–21. They offer an additional opportunity to measure how GC concentrations relate to maternal care and social ties in a wild setting and to expand such studies to a non-primate taxon. The mother–calf bond is fundamental to the well-being of elephant calves, even postweaning and into young adulthood22–25. Bonds among individuals are strong; females usually remain with their family throughout life in matriarchal core groups, and close familial bonds have been associated with lower GC concentrations26–28. Further, African elephants are endangered due to habitat loss and poaching29–31. The latter removes maternal and other adult caregivers from families, therefore understanding elephants’ stress response to the loss of fundamental bonds can inform conservation31,32.

The population of wild elephants that use the Samburu and Buffalo Springs National Reserves of Kenya (hereafter the “Samburu population”) has been studied for over 20 years31,33. Poaching and severe drought from the years 2009–2014 killed many adult females in the Samburu population, leaving behind fragmented families and known female orphan calves27,31. These orphans have been the focus of several studies, therefore we know they survive less than nonorphans even if they are weaned at the time of their mother’s death, and that orphans who leave their families to join other families or group together with other orphans suffer increased aggression and are isolated from adult females22,23,25. In this study, we investigated whether the loss of maternal care correlates with long-term increases in GC secretion in wild African elephant orphans and whether the presence of other family members may dampen changes in secretion. We defined “orphan” as a female whose mother died before that female reached maturity, with maturity marked by giving birth. We preferentially sampled from orphan subjects that had been part of earlier studies, resulting in a mean time since mother’s death among orphan study subjects of 5.54 years (± standard deviation of 2.67 years, Supplementary Fig. 1F). We hypothesized maternal presence attenuates adrenal activity in wild African elephants and given the strong lifelong mother/offspring bond and lack of adoption in elephant society, we predicted orphans would sustain higher fecal glucocorticoid metabolite (fGCM) concentrations than nonorphans even years after their mother’s death. We also hypothesized that the presence of social partners dampens GC secretion, predicting that orphans and nonorphans with more adult caregivers and age mates in their core group would have lower fGCM concentrations.

Results

Fecal glucocorticoid metabolite concentrations. The dry weight average fGCM concentration across \(n = 496\) dung samples from 37 elephants (\(n = 25\) orphans, \(n = 12\) nonorphans, Fig. 1) who ranged in age from 7–21 years (mean 13.36 ± 3.09 years) was 95.69 ± SD 30.21 ng/g, from minimum 14.19 ng/g to maximum 246.56 ng/g. We included time series graphs of individual study subjects’ concentrations in Supplementary Fig. 2, as there is a call for information on the repeatability of wild individuals’ GC concentrations in the literature4,35.

Individual-based variables. We structured our Bayesian hierarchical model of fGCM concentrations into two levels, the first to estimate the effects of individual-based variables on baseline GC secretion and the second to estimate the effects of variables that change with time on GC secretion at the time of sample collection. For the first level of the model, three of the five individual-based variables assessed had confidence intervals that did not overlap 0 (i.e., these three variables were statistically significant): if the individual remained with her natal family, the number of age mates in the core group, and the number of samples collected from an individual (Table 1 and Fig. 2). Orphan individuals who left their natal family to join another family or group together with other orphans showed lower average fGCM concentrations than orphans who remained with their natal family and nonorphans. Additionally, individuals with more age mates in their core group had lower average fGCM concentrations than individuals with fewer age mates, although the magnitude of this correlation was not as large as that of being with a non-natal family. Finally, more samples collected from an individual correlated with lower average fGCM concentrations. The model estimated that more adult females in a core group is associated with slightly lower...
fGCM concentrations, but the 95% confidence interval for this estimate overlapped zero. Orphan status showed no correlation with fGCM concentrations.

Time-variant variables. For the second level of our model, three of the eight time-varying variables assessed had confidence intervals that did not overlap 0: the mean normalized difference vegetation index (NDVI—a measure of primary productivity/greenness of vegetation across the landscape), a standard deviation of NDVI (a measure of how predictably distributed resources were across the landscape), and the amount of time a sample spent on the ground prior to collection (Table 1 and Fig. 2). Higher mean NDVI, signaling more available food resources, strongly correlated with lower fGCM concentrations. Higher NDVI standard deviation, signaling patchily distributed resources, strongly correlated with higher fGCM concentrations (Fig. 3). The amount of time a sample spent on the ground before being collected into a cool box correlated with slightly higher fGCM concentrations. The 95% confidence intervals for all other variables overlapped zero, but lactating and older age showed a weak negative correlation with fGCM concentrations while spending more years without a mother and pregnancy showed a weak positive correlation with fGCM concentrations. Time of day was not correlated with fGCM concentrations.

Strongylid fecal egg counts. We conducted a second analysis to assess the correlation between fGCM concentrations and strongylid (a type of gastrointestinal parasitic worm) fecal egg counts (FECs) using the same model structure, but with a smaller sample size ($n = 446$) due to fewer samples with matched FEC data. fGCM concentrations showed a weak positive correlation with FECs, but the 95% confidence interval overlapped zero (Supplementary Table 1 and Supplementary Fig. 3).

Model checks. Posterior predictive checks showed no evidence of lack of fit. The Bayesian p value for the mean of the first level of the model (estimating individual baseline fGCM concentrations) was 0.51, and 0.28 for the standard deviation. The Bayesian p value for the mean of the second level (estimating the effect of time-variant covariates) was 0.50 and 0.74 for the standard deviation. Corresponding Bayesian p values for the model with fewer samples testing for a correlation with strongylid fecal egg counts were 0.36, 0.28, 0.54, and 0.76.

Discussion

Our study investigated how maternal loss affects adrenal activity in wild orphans of a long-lived, non-primate mammal species. Contrary to our expectation, we did not find evidence that surviving orphans sustained higher baseline fGCM concentrations several years following their mother’s death, even though...
elephant orphans suffer lower survival than nonorphans \cite{25}. However, our second prediction was partially upheld because fGCM concentrations were lower for individuals in core groups with more age mates. This supports our hypothesis that social buffering occurs in wild elephants. However, our study was cor-

relational, therefore we cannot assert with certainty that the presence of age mates attenuated the stress response and caused the observed lower fGCM concentrations. We did not observe a significant correlation with number of adult caregivers as predicted. Goldenberg and Wittmer (2017) found that orphan elephants interact more with age mates and bulls than do non-orphans, and one reason for strengthening such social bonds may be that they reduce GC concentrations \cite{22}. Conversely, orphan elephants interact less with adult females in their core group than do non-orphans \cite{22}. Therefore female presence might be less likely to lower GC concentrations for orphans, who made up the majority of our study subjects. Relatively young elephants like those included in this study may also be displaced by older adult females while feeding or resting, as age is strongly correlated with social rank in African elephants \cite{22,37,42}, and this could be a counterbalancing source of increased GC secretion from the company of adults. Overall, if the lower fGCM concentrations associated with age mates indicates that social buffering occurs in African elephants, that buffering seems to be dependent on the age and relatedness (see below) of available conspecifics.

Surprisingly, orphans who were no longer with their natal group, of which a majority came from families with no adults left due to poaching, demonstrated lower average fGCM concentrations than nonorphans and orphans who remained with their families. Given the challenges experienced by these orphans, including receiving more aggression from other individuals \cite{23}, we surmised they would show the greatest fGCM concentrations among the study subjects because increased secretion of GCs is traditionally equated with greater stress. We speculate our opposite results may be because the stress response is complicated and adrenal glands can exhibit either hyper- or hypo-secretion depending on the type and duration of a stressor \cite{7,38,40}. Long-term social stressors, especially those whose onset is during developmental stages, can cause prolonged hypersecretion of GCs that eventually down-regulate adrenal activity, which could be an adaptive response that prevents harmful effects of consistently elevated GC concentrations \cite{41,42}. This downregulation results in sustained lower baseline GC concentrations, a phenomenon

Table 1 Bayesian hierarchical regression model results, showing estimated coefficients relating variables to fecal glucocorticoid metabolite concentrations, from 37 sampled elephants (n = 496 dung samples).

Coefficient	Covariate	Estimate	95% CI lower	95% CI upper
β_5	*with non-natal group*	−0.41	−0.81	−0.01
β_2	*age mates*	−0.25	−0.37	−0.13
β_3	*number of samples*	−0.14	−0.24	−0.03
β_6	adult caregivers	−0.09	−0.20	0.01
β_4	orphan status	0.06	0.24	0.36
γ_5	*mean NDVI*	−0.69	−1.07	−0.31
γ_2	lactating	−0.10	0.25	0.15
γ_3	age	−0.06	−0.21	0.08
γ_4	time of day	0.02	−0.07	0.11
γ_6	years	0.07	−0.07	0.22
γ_7	pregnancy	0.08	−0.12	0.29
γ_8	*time sample sat on ground*	0.09	+0.00	0.18
γ_9	*NDVI standard deviation*	0.79	0.41	1.18

The extra line space separates the first (above line) and second (below line) levels of the model. The first level estimated individual-level intercepts, determining the correlation of unchanging variables with mean fecal glucocorticoid metabolite concentrations. The second level used the estimated intercepts of the first level to determine the correlation of variables that changed with time according to when a sample was collected. Coefficients and covariates are ordered according to the estimated effect size, from negative to positive. NDVI normalized difference vegetation index, a measure of primary productivity. * denote where the estimated 95% confidence interval did not overlap zero.

Fig. 2 Coefficient values and 95% confidence intervals from Bayesian hierarchical regression model (n = 496 dung samples from 37 elephants). Black denotes estimates whose 95% confidence interval did not overlap zero, gray denotes estimates whose 50% confidence interval did not overlap zero, and open circles denote variables for which both confidence intervals overlap zero. The dotted line separates the first (above line) and second (below line) level of the model. The first level estimated individual-level intercepts, determining the correlation of unchanging variables with mean fecal glucocorticoid metabolite concentrations. The second level used the estimated individual intercepts of the first level to determine the correlation of variables that changed with time according to when a sample was collected. Covariates are ordered according to estimated correlation size, from negative to positive, within each level. NDVI stands for “normalized difference vegetation index,” a measure of primary productivity.
termed hypocortisolism that has been associated with physiological problems such as autoimmunity, depression, and excessive fatigue in humans (Homo sapiens); skin and oral lesions in black rhinos (Diceros bicornis); and depressive behavior, vertebral problems and hematological anomalies like anemia in horses (Equus caballus). Supposing the absence of family initially causes a prolonged rise in GC secretion for non-natal orphans, we are potentially observing the results of an eventual downregulation of the adrenals over time given we sampled several years after the death of orphans’ mothers. Hypocortisolism in non-natal orphan elephants would be in line with some other studies of cognitively advanced mammals. For example, a study in captive rhesus monkeys (Macaca mulatta) found that maternal loss was associated with hypocortisolism; monkeys separated from their mothers at birth had significantly lower basal cortisol concentrations compared to controls even three years following separation. Perhaps more relevant given a lack of social support for non-natal orphans, a study in humans found that AIDS-orphaned children in South Africa who perceived a high degree of social support from siblings, caretakers, friends, and others were less likely than their peers to develop post-traumatic stress disorder, a common symptom of which is hypocortisolism.

We designed this study to assess the effect of social context on glucocorticoid secretion, but it is clear that ecological factors related to resource availability are the primary driver of glucocorticoid secretion in wild African elephants. fGCM concentrations within a single individual were highly variable, oscillating according to season. Concentrations were lower when mean NDVI was higher and vice versa, indicating that when food was readily available the study subjects’ GC secretion was lower and when food was of lower quality their GC secretion was higher. Conversely, fGCM concentrations were higher when NDVI standard deviation was high, which rises during seasonal transitions when rainfall is spatially and temporally stochastic, and presumably signals greater unpredictability in the distribution of prime food resources across the landscape. Thus, we suspect higher fGCM concentrations were related to food searching.

Fig. 3 Depiction of the strong correlation between fecal glucocorticoid metabolite concentrations and seasonality. NDVI (normalized difference vegetation index—a measure of primary productivity) mean (solid line) and standard deviation (dotted line) over the course of the study above the glucocorticoid metabolite concentrations in ng/g (nanograms of metabolites per gram of fecal matter) of three study elephants from the same family. Circles depict sample fecal glucocorticoid metabolite concentrations, with samples from each elephant distinguished according to fill color (white, black, or gray). Long-dashed lines emphasize oscillations in a single elephant’s concentrations over time. Glucocorticoids fluctuated most in relation to changes in primary productivity.
behavior. Basic survival needs are recognized as the primary regulators of the stress response, therefore the substantial correlation of fGCM concentrations with NDVI measures was expected. The slight but significant correlation between the more time a sample spent on the ground and higher fGCM concentrations was potentially related to NDVI as well. During dry seasons elephants spend more time near the riverbeds in treed areas that made it difficult to drive up to samples, and we had to wait longer for them to move a sufficient distance away than when in open areas.

Although our study was robust in the use of longitudinal sampling from well-known subjects of a long-term monitoring project, we could not sample evenly from all subjects. This may have affected results, particularly given that more samples were collected from an individual slightly but significantly correlated with lower average fGCM concentrations. We do not know the reason for this correlation, but we collected fewer samples from non-natal orphans and still found they had lower concentrations than when in open areas.

We chose age-matched (i.e., within 4 years of age, see below) orphan/nonorphan subjects based on how often they were in the reserves for ease of sample collection. We preferentially chose individuals who were part of earlier orphan/stressor studies to advance our understanding of the consequences of being orphaned. The subjects ranged in age from 7–21 (mean 13.36 ± 3.09) years at the start of collection (see Supplementary Fig. 1B). Subjects were categorized as an orphan (n = 25) or nonorphan (n = 12), where an orphan was defined as a female whose mother died before that female reached maturity, with maturity marked by giving birth (Fig. 1a). The orphan subjects had lost their mothers from 1.76–19.04 (mean 5.54 ± standard deviation 2.67) years prior to the start of our study, therefore we were testing for long-term GC alterations. Of the 25 orphans, five had left their natal family to join an unrelated core group or form a group with other orphans after their mother’s death (Fig. 1a).

Methods

Study system and subjects

The Samburu and Buffalo Springs National Reserves are unfenced reserves in Kenya, located at 0.3–0.8°N, 37–38°E and divided by a semi-permanent river called the Ewaso Ngiro. They encompass 220 km² of semi-arid terrain, with an annual average rainfall of 350 mm during two wet seasons (from mid-May and November to December, and December to March). The two reserves are surrounded by a dense forest from 800–1200 m, where African elephants who use the reserves are part of a long-term monitoring study that began in 1998, and to date over 1000 elephants have been identified and are followed daily, such that detailed demographic history is available for each individual.

For this study, we selected 37 female elephant subjects for longitudinal sampling. We chose age-matched (i.e., within 4 years of age, see below) orphan/nonorphan subjects based on how often they were in the reserves for ease of sample collection. We preferentially chose individuals who were part of earlier orphan/stressor studies to advance our understanding of the consequences of being orphaned. The subjects ranged in age from 7–21 (mean 13.36 ± 3.09) years at the start of collection (see Supplementary Fig. 1B). Subjects were categorized as an orphan (n = 25) or nonorphan (n = 12), where an orphan was defined as a female whose mother died before that female reached maturity, with maturity marked by giving birth (Fig. 1a). The orphan subjects had lost their mothers from 1.76–19.04 (mean 5.54 ± standard deviation 2.67) years prior to the start of our study, therefore we were testing for long-term GC alterations. Of the 25 orphans, five had left their natal family to join an unrelated core group or form a group with other orphans after their mother’s death (Fig. 1a).

Fecal sample collection

We longitudinally sampled dung over a period of 13 months from June 2015 to July 2016, with a minimum of two weeks between collecting samples from the same individual. Upon finding a study subject in the field, we approached them until they produced a sample in a context with fewer adults and age mates. We could not remedy this because few orphans in the study system left their natal groups (see supplementary discussion).

Regarding conservation, our results are hopeful for elephant populations that still contain functional family units. They suggest orphaning does not have lasting effects on the adrenal activity of surviving African elephant orphans provided they remain with their natal group. The level of poaching in the Samburu population was not high enough to fragment the majority of core groups and most orphans stayed with their families. Where heavier poaching has fragmented a greater number of family units, non-natal orphans would be more common, and additional study to investigate whether lower fGCM concentrations develop over time in those populations would be elucidating.

Concerning management, evidence that social support can compensate for maternal loss is useful for caring for orphan elephants brought into captivity. Providing age mates and maintaining core groups of bonded orphans may reduce the stress associated with captivity, and releasing bonded groups together could ease their transition back into the wild.

While not possible in our study, it would be valuable to sample wild elephant orphans immediately following their mother’s death to assess if there is an initial increase in GC secretion. Subsequent longitudinal sampling would then show if adrenal steroidogenic activity changes over time and if negative feedback may truly be the cause of the lower concentrations observed in non-natal orphans. Extended research is also needed to investigate whether there are long-term fitness effects associated with our findings in non-natal orphans. Importantly, we cannot equate altered GC concentrations with reduced fitness, as non-natal orphans in this study survived the duration of sampling, despite orphans having a lower survival probability in general.

Measuring the physiological responses of individuals to changes in their social environment helps us to understand the benefits of sociality. Through measuring fGCM concentrations of wild African elephant orphans, we observed correlations that point to the importance of age mates and familial relationships in buffering maternal loss for surviving orphans. Preserving social bonds within wildlife populations may make individuals within those populations more resilient to disturbance and optimize their physiological condition.
core group ranged from 0 to 8 (Fig. 1c). Orphan status, \(\omega \), was represented as a 0/1 binary variable with 0 = non-orphan and 1 = orphan. Another binary variable, \(a_i \), represented whether an individual was with a related core group, with 0 = with a natal family and 1 = with an unrelated core group.

Additionally, we included several covariates that were factors associated with GC production in previous elephant studies, namely reproductive condition (e.g., ref. 52), age, \(a_i \), time of day, and seasonality. The long-term demographic monitoring data provided precise information on reproductive condition and age. Binary 0/1 variables represented if a subject was pregnant, \(p_i \), and/or lactating, \(l_i \), versus not at each sampling event (Supplementary Fig. 1A). A subject’s precise age at each sampling event, \(a_i \), was represented as a continuous variable (Supplementary Fig. 1B). We recorded the time of day a sample was produced as described above (Supplementary Fig. 1C), and represented it as a continuous variable, \(t_i \), from 0 to 1, with 0 = midnight and 1 = 23:59:59. For seasonality, we used the normalized difference vegetation index (NDVI) 16-day composite images from the moderate resolution imaging spectroradiometer (MODIS) to estimate primary productivity during the collection period. Rasters were clipped to a core from the moderate resolution imaging spectroradiometer (MODIS) to estimate the effects of previously described above (Supplementary Fig. 1C), and represented it as a continuous variable (Supplementary Fig. 1F).

Finally, as some studies have shown the effects of parasites on GC secretion in vertebrates, and because many of our samples were paired with fecal egg counts (FECs) to estimate strongylid infection for another study, we ran an analysis of the data using a hierarchical Bayesian model with uninformative priors (see Code Availability statement). One level of the model used time-invariant, individual-based covariates (defined above), to estimate the mean baseline GC concentration for each individual:

\[
 y_i \sim \text{Normal}(\mu_i, \gamma_i)
\]

\[
 \mu_i = \alpha + \beta_1 t_i + \beta_2 a_i + \beta_3 p_i + \beta_4 l_i + \beta_5 c_i + \beta_6 a_i
\]

where \(y_i \) = mean GC concentration of individual \(i \)’s samples, distributed normally with parameters \(\mu_i \) = the true unknown mean baseline GC concentration of individual \(i \) and \(\gamma_i \) = a precision parameter associated with measurement uncertainty and uncertainty surrounding the process by which an individual’s baseline GC values are determined.

The estimated mean baseline from the first level model (Eq. 2) was the intercept within the linear deterministic process model of the second level (Eq. 4), which estimated the effects of previously defined covariates that change with time (Supplementary Fig. 1f):

\[
 y_{ij} \sim \text{Normal}(\mu_{ij}, \tau)
\]

\[
 \mu_{ij} = \mu_i + \gamma_i b_{ij} + \gamma_2 t_{ij} + \gamma_3 a_{ij} + \gamma_4 r_{ij} + \gamma_5 p_{ij} + \gamma_6 d_{ij} + \gamma_7 b_{ij}
\]

where data \(y_{ij} \) are distributed normally with parameters \(\mu_{ij} \) = the true unknown GC concentration of the sample from individual \(i \) at sampling event \(j \) and \(\tau \) = a precision parameter again associated with uncertainty. The structure of the model was such that the two levels informed one another and samples from a single individual were grouped together with an individual-level intercept.

We ran our analysis in RStudio version 1.1.463 using the package `rjags` version 4-10-37 with Markov-Chain Monte Carlo, running three parallel chains of 100,000 iterations, using 1000 for adaptation and discarding 10,000 as burn-in. We checked convergence with Gelman–Rubin diagnostic R values, which were all <1.1. All covariates and GC concentration data were standardized by subtracting the mean and dividing by the standard deviation (\(\pm 2 \)) prior to analysis. We assessed model fit by calculating Bayesian \(R \) values for the mean and standard deviation of each model level.

FEC counts were available for only 446 of the 496 samples, therefore we ran a separate analysis with the subset of 446 samples to test for a correlation with strongylid infection. This analysis had the same format but with the addition of the term \(-1 + y_{ij} w_{ij} \) (\(w_i \), described above).

Figures. We made Figs. 1, 3, and Supplementary Figs. 1, 2, in RStudio version 1.1.463 using `ggplot2`. We made Fig. 2 and Supplementary Fig. 3, using the `MCMCvis` package.

Reporting summary. Further information on experimental design is available in the Nature Research Reporting Summary linked to this paper.

Data availability

The fGCM concentration data are available at https://doi.org/10.7910/DVN/WMT4G3. Due to the endangered conservation status of the African elephant, other data used in the manuscript are sensitive but may be viewable upon request. Some of the content in this publication was originally published in the first author’s Ph.D. dissertation.

Code availability

Our Rjags model specification code is available at https://doi.org/10.7910/DVN/NS0MJT. All other computer code used in analyses will be made available upon request.

Received: 18 October 2021; Accepted: 10 June 2022; Published online: 14 July 2022

References

1. Wu, A. Social buffering of stress – Physiological and ethological perspectives. *Appl. Anim. Behav. Sci.* 239, 105325 (2021).
2. Hennessy, M. B., Kaiser, S. & Sachser, N. Social buffering of the stress response: diversity, mechanisms, and functions. *Front. Neuroendocrinol.* 30, 470–482 (2009).
3. Young, C., Majolo, B., Heisterman, M., Schulke, O. & Oster, J. Responses to social and environmental stress are attenuated by strong male bonds in wild macaques. *Proc. Natl Acad. Sci. USA* 111, 18195–18200 (2014).
4. Stanton, M. E., Patterson, J. M. & Levine, S. Social influences on conditioned cortisol secretion in the squirrel monkey. *Psychoneuroendocrinology* 10, 125–134 (1985).
5. Calderí, C., Diorio, J. & Meaney, M. J. Variations in maternal care in infancy regulate the development of stress reactivity. *Biol. Psychiatry* 48, 1164–1174 (2000).
6. Novak, M. A., Hamel, A. F., Kelly, B. J., Dettmer, A. M. & Meyer, J. S. Stress, the HPA axis, and nonhuman primate well-being: a review. *Appl. Anim. Behav. Sci.* 143, 135–149 (2013).
7. Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. *Endocr. Rev.* 21, 55–89 (2000).
8. Liu, D. et al. Maternal Care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. *Sci. Ment. Heal. Stress Brain* 9, 75–78 (1997).
9. Gjerstad, J. K., Lightman, S. L. & Spiga, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. *Stress* 21, 403–416 (2018).
10. Spiga, F., Walker, J. I.,erry, J. R. & Lightman, S. L. HPA axis-rhythms. *Compr. Physiol.* 4, 1273–1298 (2014).
11. Sapolsky, R. M. Why Zebras Don’t Get Ulcers (Henry Holt and Company, LLC, 2004).
12. Campos, F. A. et al. Glucocorticoid exposure predicts survival in female baboons. *Sci. Adv.* 7, 1–10 (2021).
13. Banerjee, S. B., Arterbery, A. S., Fergus, D. J. & Adkins-Regan, E. Deprivation influences on conditioned and unconditioned responses in the pituitary-adrenal axis of zebra finches. *Proc. R. Soc. B Biol. Sci.* 279, 759–766 (2012).
14. Hennessy, M. B., Nigh, C. K., Sims, M. L. & Long, S. J. Plasma cortisol and vocalization responses of postweaning age guinea pigs to maternal and sibling separation: evidence for familial attachment after weaning. *Dev. Psychobiol.* 28, 103–115 (1995).
15. Hennessy, M. B., O’Leary, S. K., Hawke, J. L. & Wilson, S. E. Social influences on cortisol and behavioral responses of preweaning, perinatal, and adult guinea pigs. *Physiol. Behav.* 76, 305–314 (2002).
16. Wiener, S. G., Johnson, D. F. & Levine, S. Influence of postnatal rearing conditions on the response of squirrel monkey infants to brief perturbations in mother-infant relationships. *Physiol. Behav.* 39, 21–26 (1987).
17. Girard-Buttoz, C. et al. Early maternal loss leads to short-but not long-term effects on diurnal cortisol slopes in wild chimpanzees. *Elife* 10, e46134 (2021).

18. Rosenbaum, S. et al. Social bonds do not mediate the relationship between early adversity and adult glucocorticoids in wild baboons. *Proc. Natl Acad. Sci. USA* 117, 20052–20062 (2020).

19. Moss, C. Elephant Memories: Thirteen Years in the Life of an Elephant Family (Univ. Chicago Press, 1988).

20. Douglas-Hamilton, I., Bhalla, S., Wittmer, G. & Vollrath, F. Behavioural reactions of elephants towards a dying and deceased matriarch. *Appl. Anim. Behav. Sci.* 100, 87–102 (2006).

21. Shoshani, J., Kupsky, W. J. & Marchant, G. H. Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution. *Brain Res. Bull.* 79, 124–157 (2006).

22. Goldenberg, S. Z. & Wittmer, G. Orphaned female elephant social bonds reflect lack of access to mature adults. *Sci. Rep.* 7, 14408 (2017).

23. Goldenberg, S. Z. & Wittmer, G. Orphaning and natal group dispersal are associated with social costs in female elephants. *Anim. Behav.* 143, 1–8 (2018).

24. Lee, P. C. Allomothering among African elephants. *Anim. Behav.* 35, 278–291 (1986).

25. Parker, J. M. et al. Poaching of African elephants indirectly decreases population growth through lowered orphan survival. *Curr. Biol.* 31, 4156–4162.e5 (2021).

26. Wittmer, G. et al. Where sociality and relatedness diverge: the genetic basis for hierarchical social organization in African elephants. *Proc. R. Soc. B Biol. Sci.* 276, 3513–3522 (2009).

27. Goldenberg, S. Z., Douglas-Hamilton, I. & Wittmer, G. Vertical transmission of social roles drives resilience to poaching in elephant networks. *Curr. Biol.* 26, 75–79 (2016).

28. Gobush, K. S., Mutayoba, B. M. & Wasser, S. K. Long-term impacts of female African elephants. *Conserv. Biol.* 22, 1590–1599 (2008).

29. Gobush, K. S. et al. Loxodonta africana: the IUCN red list of threatened species 2021 eT181008073A181022663.en (2021).

30. Wittemyer, G. et al. Increasing conservation translocation success by building social functionality in released populations. *Elife* 18, e03720 (2021).

31. Santymire, R. M. et al. Using ACTH challenges to validate techniques for invasive assessment of glucocorticoid metabolites in a diversity of taxonomic groups. *Front. Vet. Sci.* 8, 625 (2021).

32. McCormick, S. D. & Romero, L. M. Conservation endocrinology. *Elephant Memories: Thirteen Years in the Life of an Elephant Family* (Univ. Chicago Press, 1988).

33. Wittemyer, G. et al. Hierarchical dominance structure and social networks. *Ecosphere* 12, e00604 (2021).

34. Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. *Front. Vet. Sci.* 8, 625 (2021).

35. Kurtz, P. et al. Increasing conservation translocation success by building social functionality in released populations. *Front. Vet. Sci.* 8, 625 (2021).

36. Hooten, M. B. & Hobbs, N. T. A guide to Bayesian model selection for hierarchical social organization in African elephants. *Behav. Ecol. Sociobiol.* 61, 1919–1931 (2007).

37. Wittemyer, G. & Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: a contribution to conservation behavior. *Behav. Ecol. Sociobiol.* 61, 1919–1931 (2007).

38. Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: a contribution to conservation behavior. *Behav. Ecol. Sociobiol.* 61, 1919–1931 (2007).

39. Taff, C. C., Schoenle, L. A. & Vitousek, M. N. The repeatability of signals, and behavior. *Horm. Behav.* 79 (2016).

40. Dantzer, B., Fletcher, Q. E., Boonstra, R. & Sheriff, M. J. Measures of chronic stress in nature. *Psychoneuroendocrinology* 42 (2017).

41. Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. *Front. Vet. Sci.* 8, 625 (2021).

42. Dantzer, B., Fletcher, Q. E., Boonstra, R. & Sheriff, M. J. Measures of chronic stress in nature. *Psychoneuroendocrinology* 42 (2017).

43. Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. *Front. Vet. Sci.* 8, 625 (2021).

44. Taff, C. C., Schoenle, L. A. & Vitousek, M. N. The repeatability of signals, and behavior. *Horm. Behav.* 79 (2016).

45. Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. *Front. Vet. Sci.* 8, 625 (2021).

46. Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. *Front. Vet. Sci.* 8, 625 (2021).

47. Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. *Front. Vet. Sci.* 8, 625 (2021).

48. Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. *Front. Vet. Sci.* 8, 625 (2021).

49. Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. *Front. Vet. Sci.* 8, 625 (2021).

50. Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. *Front. Vet. Sci.* 8, 625 (2021).

51. Bastille-Rousseau, G. et al. Landscape-scale habitat response of African elephants. *PLoS ONE* 15 (2021).
Acknowledgements

We thank the National Commission of Science and Technology (NACOSTI) of Kenya, the National Environment Management Authority (NEMA) of Kenya, the Kenya Wildlife Service (KWS), the county governments of Samburu and Isiolo, and the Convention on International Trade in Endangered Species (CITES) for allowing us to conduct this research in the Samburu and Buffalo Springs National Reserves and export fecal samples to the United States. Thank you to Save the Elephants for providing a research base, and further to D. Daballen, W. Kimani, F. Pope, T. Obari, F. Omengo, M. Mosse, L.W. Muita, and G.S. Sabinga for logistical support. S.Z. Goldenberg helped to initiate sample collection, and R. Kurian Wittemyer, N. Wittemyer, and K. Wittemyer assisted with sample collection. K. Crooks and L. Pejchar provided helpful comments on the manuscript, and the comments of three anonymous reviewers greatly improved its quality. This work was funded by the National Science Foundation Graduate Research Fellowship Program, grant number 006784, the Smithsonian Conservation Biology Institute, and S. Rankin of WorldWomenWork.

Author contributions

J.M.P. formulated the research questions, conducted the literature review, designed the study, collected dung samples, performed the Bayesian analysis, and wrote the early draft and final version of the manuscript. J.L.B. led the laboratory analysis and contributed to writing the manuscript. N.T.H. reviewed the Bayesian analysis and contributed to writing the manuscript. N.P.B. coordinated the laboratory analysis and contributed to writing the manuscript. D.L. collected dung samples. I.D.-H. contributed to writing the manuscript. G.W. conceived the study, guided the formulation of the research questions, guided the design of the study, collected dung samples, and contributed to writing the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-022-03574-8.

Correspondence and requests for materials should be addressed to J. M. Parker.

Peer review information Communications Biology thanks Govindhaswamy Umapathy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Caitlin Karniski and Luke R. Grinham. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022.