A Four Dimensional Generalization of the Quantum Hall Effect

Shou-Cheng Zhang, Jiangping Hu

Department of Physics, Stanford University, Stanford, CA 94305
Center for Advanced Study, Tsinghua University, Beijing, China

Abstract

We construct a generalization of the quantum Hall effect, where particles move in four dimensional space under a $SU(2)$ gauge field. This system has a macroscopic number of degenerate single particle states. At appropriate integer or fractional filling fractions the system forms an incompressible quantum liquid. Gapped elementary excitations in the bulk interior and gapless elementary excitations at the boundary are investigated.
Most strongly correlated systems develop long range order in the ground state. Familiar ordered states include superfluidity, superconductivity, antiferromagnetism and charge density wave \[^1\]. However, there are special quantum disordered ground states with fractionalized elementary excitations. In one dimensional systems, Bethe’s Ansatz \[^2\] gives exact ground state wave functions of a class of Hamiltonians, and the elementary excitations are fractionalized objects called spinons and holons. In two dimensional quantum Hall effect (QHE) \[^3,4\], Laughlin’s wave function \[^3\] describes an incompressible quantum fluid with fractionally charged elementary excitations. This incompressible liquid can also be described by a Chern-Simons-Landau-Ginzburg field theory \[^5\], whose long distance limit depends only on the topology, but not on the metric of the underlying space \[^6\]. These two special quantum disordered ground states are the focus of much theoretical and experimental studies, since they give deep insights on the interplay between quantum correlations and dimensionality, and on how this interplay can give rise to fractionalized elementary excitations.

In view of their importance, it is certainly desirable to generalize these quantum wave functions to higher dimensions. However, despite repeated efforts, the Bethe’s Ansatz solutions have not yet been generalized to dimensions higher than one. Laughlin’s wave function uses properties which seem to be special to the two dimensional space. In this work we shall report the generalization of the quantum Hall system to four space dimensions, and this system shares many compelling similarities to the two dimensional counterpart. In the two dimensional (2D) QHE, the charge current is carried in a direction perpendicular to the applied electric field (and also perpendicular to the magnetic field, which is applied normal to the 2D electron gas). In four space dimensions (4D), there are three independent directions normal to the electric field, and there appears to be no unique direction for the current. A crucial ingredient of our generalization is that the particles also carry an internal \(SU(2)\) spin degree of freedom. Since there are exactly three independent directions for the spin, the particle current can be uniquely carried in the direction where the spins point. At special filling factors, the quantum disordered ground state of our 4D QHE is separated from
all excited states by a finite energy gap, and the lowest energy excitations are fractionally charged quasi-particles.

While all excitations have finite energy gaps in the bulk interior, elementary excitations at the three dimensional boundary of this quantum fluid are gapless, in analogy with the edge states of the quantum Hall effect \cite{4,5}. These boundary excitations could be used to model the relativistic elementary particles, such as photons and gravitons. In contrast to conventional quantum field theory approach, this model has the advantage that the short distance physics is finite and self-consistent. In fact, the magnetic length in this model provides a fundamental lower limit on all length scales. This feature shares similarity to non-commutative quantum field theory and string theory of elementary particles.

A four dimensional generalization of the quantum Hall problem In the QHE problem, it is advantageous to consider compact spherical spaces which can be mapped to the flat Euclidean spaces by the standard stereographical mapping \cite{10}. Eigenstates in the QHE problem are called Landau levels, and we first review the lowest Landau level (lll) defined on the 2D sphere, denoted by S^2. A point X_i on S^2 with radius R can be described by dimensionless vector coordinates $x_i = X_i/R$, with $i = 1, 2, 3$, which satisfy $x_i^2 = 1$. However, S^2 has a special property that one can also take the “square root” of the vector coordinate x_i through the introduction of the complex spinor coordinates ϕ_σ, with $\sigma = 1, 2$. These spinor coordinates are defined by

$$
 x_i = \bar{\phi}_\sigma (\sigma_i)_{\sigma\sigma'} \phi_{\sigma'} \quad \bar{\phi}_\sigma \phi_\sigma = 1
$$

where σ_i are the three Pauli spin matrices. If there is a magnetic monopole of strength g at the center of S^2, satisfying the Dirac quantization condition $eg = I =$ half integer, then the normalized eigenfunctions in the lll are just the algebraic products of the spinor coordinates

$$
 \langle x | I, m \rangle = \sqrt{\frac{(2I)!}{(I+m)!(I-m)!}} \phi_1^{I+m} \phi_2^{I-m} \tag{2}
$$

Here $m = -I, -I + 1, ... I - 1, I$, therefore the ground state is $2I + 1$ fold degenerate. Any states in the lll can be expanded in terms of a homogeneous polynomial of ϕ_1 and ϕ_2 with
degree 2I. Notice that the conjugate coordinate $\tilde{\phi}_\sigma$ does not enter the wave function in the III.

We see that the crucial algebraic structure of the QHE problem is the fractionalization of a vector coordinate into two spinor coordinates. Therefore, in seeking a higher dimensional generalization of the QHE problem we need to find a proper generalization of Eq. 1. As the generalization of the three Pauli matrices are the five 4×4 Dirac matrices Γ_a, satisfying the Clifford algebra $\{\Gamma_a, \Gamma_b\} = 2\delta_{ab}$, we generalize Eq. 1 to

$$x_a = \bar{\Psi}_\alpha (\Gamma_a)_{\alpha\alpha'} \Psi_{\alpha'} \quad \bar{\Psi}_\alpha \Psi_\alpha = 1$$

Here, Ψ_α is a four component complex spinor with $\alpha = 1, 2, 3, 4$, and x_a is a five component real vector. From the normalization condition of the Ψ spinor it may be seen that $x_a^2 = 1$, therefore, $X_a = Rx_a$ describes a point of the 4D sphere S^4 with radius R. From this heuristic reasoning one may hope to find a four dimensional generalization of the QHE problem, where the wave functions in the ground states are described by the products of Ψ_α spinors, in a natural generalization of Eq. 2. Eq. 1 and Eq. 3 are known in the mathematical literature as the first and the second Hopf maps [11]. The problem now is to find a Hamiltonian for which these are the exact ground state wave functions.

An explicit solution to the Eq. 3 can be expressed as

$$\Gamma^{(1,2,3)} = \begin{pmatrix} 0 & i\sigma_i \\ -i\sigma_i & 0 \end{pmatrix}, \quad \Gamma^4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \Gamma^5 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \sqrt{\frac{1+x_5}{2}} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \quad \begin{pmatrix} \Psi_3 \\ \Psi_4 \end{pmatrix} = \sqrt{\frac{1}{2(1+x_5)}} (x_4 - ix_5 \sigma_i) \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

where (u_1, u_2) is an arbitrary two component complex spinor satisfying $\bar{u}_\sigma u_\sigma = 1$. Any $SU(2)$ rotation on u_σ preserves the normalization condition, and maps to the same point x_a on S^4. From the explicit form of Ψ_α, one can compute the geometric connection (Berry’s phase) $\bar{\Psi}_\alpha d\Psi_\alpha$ [11], where the differentiation operator d acts on the vector coordinates x_a, subject to the condition $x_a dx_a = 0$. One finds $\bar{\Psi}_\alpha d\Psi_\alpha = \bar{u}_\alpha (a_\alpha dx_\alpha)_{\sigma\sigma'} u_{\sigma'}$, $a_5 = 0$, and
\[
a_\mu = \frac{-i}{1 + x^5} \eta^i_{\mu \nu} x^\nu I^i, \quad \eta^i_{\mu \nu} = \epsilon_{i\mu\nu4} + \delta_{i\mu}\delta_{4\nu} - \delta_{i\nu}\delta_{4\mu}
\]

where \(I^i = \sigma^i/2 \) and \(\eta^i_{\mu \nu} \) is also known as the t’Hooft symbol. \(a_\mu \) is the \(SU(2) \) gauge potential of a Yang monopole defined on \(S^4 \). Upon a conformal transformation from \(S^4 \) to the 4D Euclidean space \(R^4 \), this gauge potential is transformed to the instanton solution of the \(SU(2) \) Yang-Mills theory. We shall call \(I^i \) an \(SU(2) \) isospin matrix, and the gauge potential defined in Eq. 6 can be generalized to an arbitrary representation \(I \) of the \(SU(2) \) Lie algebra \([I_i, I_j] = i\epsilon_{ijk}I_k\). The gauge field strength can be calculated from the form of the gauge potential. From the covariant derivative \(D_a = \partial_a + a_a \), we define the field strength as \(f_{ab} = [D_a, D_b] \). Both \(a_a \) and \(f_{ab} \) are matrix valued, and can be generally expressed in terms of the isospin components \(a_a = -ia^i_a I^i \) and \(f_{ab} = -if^i_{ab} I^i \). In terms of these components, we find \(f^i_{5\mu} = -(1 + x^5)a^i_\mu \) and \(f^i_{\mu \nu} = x^\nu a^i_\mu - x^\mu a^i_\nu - \eta^i_{\mu \nu} \). In addition to the dimensionless quantities \(a_a \) and \(f_{ab} \), we shall sometimes also use dimensionful quantities defined by \(A_\mu = R^{-1}a_\mu(X/R) \), and \(F_{ab} = R^{-2}f_{ab}(X/R) \).

With this introduction and motivation, we are now in a position to introduce the Hamiltonian of our quantum mechanics problem. The symmetry group of \(S^4 \) is \(SO(5) \), generated by the angular momentum operator \(L_{ab}^{(0)} = -i(x_a \partial_b - x_b \partial_a) \). The Hamiltonian of a single particle moving on \(S^4 \) can be expressed as \(H = \frac{\hbar^2}{2MR^2} \sum_{a<b} (L_{ab}^{(0)})^2 \), where \(M \) is the inertia mass, and \(R \) is the radius of \(S^4 \). Coupling to a gauge field \(a_a \) may be introduced by replacing \(\partial_a \) with the covariant derivative \(D_a \). Under this replacement, \(L_{ab}^{(0)} \) becomes \(\Lambda_{ab} = -i(x_a D_b - x_b D_a) \). The Hamiltonian of our generalized QHE problem is therefore given by

\[
H = \frac{\hbar^2}{2MR^2} \sum_{a<b} \Lambda_{ab}^2 \tag{7}
\]

This Hamiltonian has an important parameter \(I \), defined by \(I_i^2 = I(I + 1) \), which specifies the dimension of the \(SU(2) \) representation in the potential (Eq. 6).

Unlike \(L_{ab}^{(0)} \), \(\Lambda_{ab} \) does not satisfy the \(SO(5) \) commutation relation. However, one can define \(L_{ab} = \Lambda_{ab} - if_{ab} \), which does satisfy the \(SO(5) \) commutation relation. While only
a subset of $SO(5)$ irreducible representations can be generated from the $L^{(0)}_{ab}$ operators, Yang \cite{15} showed that L_{ab} generates all $SO(5)$ irreducible representations. In general, a $SO(5)$ irreducible representation is labeled by two integers (p,q), with $p \ge q \ge 0$. For such a representation, the Casimir operator and the dimensionality are given by $C(p,q) = \sum_{a<b} L^2_{ab} = \frac{p^2}{2} + \frac{q^2}{2} + 2p + q$ and $d(p,q) = (1 + q)(1 + p - q)(1 + \frac{p+q}{2})(1 + \frac{p+q}{2})$ respectively. However, for a given I, these two integers are related by $p = 2I + q$. One can show that $\sum_{a<b} \Lambda^2_{ab} = \sum_{a<b} L^2_{ab} - 2I_i^2$. Therefore, for a given I, the energy eigenvalues of the Hamiltonian (Eq. 7) is given by

$$E(p = 2I + q, q) = \frac{\hbar^2}{2MR^2}(C(p = 2I + q, q) - 2I(I + 1))$$

with degeneracy $d(p = 2I + q, q)$. The ground state, which is the lowest $SO(5)$ level for a given I, is obtained by setting $q = 0$, and we see that it is $\frac{1}{6}(p+1)(p+2)(p+3)$ fold degenerate. Therefore, the dimension of the $SU(2)$ representation plays the role of the magnetic flux, while q plays the role of the Landau level index. States with $q > 0$ are separated from the ground state by a finite energy gap.

Besides the energy eigenvalues and the degeneracy, we need to know the explicit form of the ground state wave function. Yang \cite{15} did find the wave function for all the (p,q) states, however, his solution is expressed in a basis that is hard to work with for our purpose. Realizing the spinor structure we outlined above, we can express the wave functions of the lowest $SO(5)$ levels $(p,0)$ in a very simple form. First, one can check explicitly that Ψ_α given in Eq. 6 is indeed an eigenfunction of the Hamiltonian (Eq. 4) with $I = 1/2$. This follows from the fact that it is a $SO(5)$ spinor under the generators L_{ab}: $L_{ab} \Psi_\alpha = -\frac{1}{2}(\Gamma_{ab})_{\alpha\beta} \Psi_\beta$. From this one can see that $\Psi_{a_1\ldots a_p}(x) = \Psi_{a_1} \cdots \Psi_{a_p}$ transforms as an irreducible spinor under the $SO(5)$ group. Therefore, the complete set of normalized basis functions in the lowest $SO(5)$ level $(p,0)$ with orbital coordinate $x_a = \bar{\Psi} \Gamma_a \Psi$ and isospin coordinate $n_i = \bar{u} \sigma_i u$ is given by

$$\langle x_a, n_i | m_1, m_2, m_3, m_4 \rangle = \sqrt{\frac{p!}{m_1!m_2!m_3!m_4!}} \Psi_{m_1}^{m_1} \Psi_{m_2}^{m_2} \Psi_{m_3}^{m_3} \Psi_{m_4}^{m_4}$$

(9)
with integers \(m_1 + m_2 + m_3 + m_4 = p \). This set of basis functions in the lowest \(SO(5) \) level are the exact eigenstates of the Hamiltonian (Eq. 7) with \(\frac{1}{6}(p+1)(p+2)(p+3) \) fold degenerate eigenvalue of \(\frac{\hbar^2}{2MR^2}p \). They are the natural generalizations of the wave functions in the \(lll \) (Eq. 4) of the QHE problem. The very simple form of the single particle wave function (Eq. 3) introduced here greatly helps calculations of the many-body wave function.

An incompressible quantum spin liquid We are now in the position to consider the quantum many body problem involving \(N \) fermions. The simplest case to consider is \(N = d(p, 0) \), when the lowest \(SO(5) \) level is completely filled. In this case, the filling factor \(\nu \equiv N/d(p, 0) = 1 \), and the many-body ground state wave function is unique.

Before presenting the explicit form of the wave function, we first need to discuss the thermodynamic limit in this problem, as it is rather non-trivial. We shall consider the limit \(p = 2I \to \infty \) and \(R \to \infty \) while keeping \(q \) constant. For energy eigenvalues in Eq. 8 to be finite, we need \(l_0 = \lim_{R \to \infty} \frac{R}{\sqrt{p}} \) to approach a finite constant, which can be defined as the “magnetic length” in this problem. In this limit, \(E(q) = \frac{\hbar^2}{2MR^2}(1 + q) \) and the single particle energy spacing is finite. At \(\nu = 1 \), \(N \sim p^3 \sim R^6 \), the naively defined particle density \(N/R^4 \) would be infinite. However, we need to keep in mind that each particle also have an infinite number of isospin degrees since \(I \to \infty \). Taking this fact into account, we see that the volume of the configuration space, defined to be the product of the volume in orbital and isospin space is \(R^4 \times R^2 \). Therefore, the density \(n = N/R^6 \) is actually finite in this limit.

Using \(A = \{m_1, m_2, m_3, m_4\} = 1, \ldots, d(p, 0) \) to label the single particle states, the many particle wave function is given by a Slater determinant.

\[
\Phi(x_1, \ldots, x_N) = \Psi_{A_1}(x_1) \cdots \Psi_{A_N}(x_N) \epsilon_{A_1 \ldots A_N} \tag{10}
\]

The density correlation function \(\rho(x, x') = \frac{1}{(N-2)!} \int dx_3 \cdots dx_N |\Phi(x, x', x_3, \ldots, x_N)|^2 \) can be computed exactly and is given by

\[
\rho(x, x') = 1 - |\bar{\Psi}_A(x)\Psi_A(x')|^2 = 1 - |\bar{\Psi}_\alpha(x)\Psi_\alpha(x')|^{2p} \approx 1 - e^{-\frac{1}{l_0^2}(x_1^2 + N_\alpha^2)} \tag{11}
\]

where the explicit form of the single particle wave function (Eq. 3) was used. In the approximation, we placed particle \(x' \) on the north poles of both the orbital and the isospin.
space, i.e. \(x'_a = \delta_{5a} \) and \(n'_i = \delta_{3i} \), and expanded in terms of \(X^2 = R^2(x_1^2 + x_2^2 + x_3^2 + x_4^2) \) and \(N^2 = R^2(n_1^2 + n_2^2) \) in the limit \(l_0^2 = \lim_{R \to \infty} \frac{R^2}{p} \). We see that just like in the QHE liquid, a particle is accompanied by a perfect correlation hole, gaussianly localized in its vicinity. The new feature in our case is that the incompressibility applies to both the charge and isospin channel.

Having discussed the generalization to the integer QHE, let us now turn to the fractional QHE. One can see that the many body wave function \(\Phi_m = \Phi^m(x_1, ..., x_N) \) with odd integer \(m \) is also a legitimate fermionic wave function in the lowest \(SO(5) \) level. This is so because the product of the basic spinors \(\Psi_\alpha \) is always a legitimate state in the lowest \(SO(5) \) level. \(\Phi_m \) is a homogeneous polynomial of \(\Psi_\alpha(x_i) \) with degree \(p' = mp \). Therefore, the degeneracy of the lowest \(SO(5) \) level in this case is \(d(mp, 0) = \frac{1}{6}(mp+1)(mp+2)(mp+3) \to \frac{1}{6}m^3p^3 \), while the particle number is still \(N = d(p, 0) \). The filling factor in this case is \(\nu = N/d(mp, 0) = m^{-3} \). While \(\Phi_m \) can not be expressed in the Laughlin form of a single product, we can still use plasma analogy to understand its basic physics. \(|\Phi_m|^2 \) can also be interpreted as the Boltzmann weight for a classical fluid, whose effective inverse temperature is \(\beta_m = m\beta_{m=1} \).

As the correlation functions for \(m = 1 \) case can be computed exactly, it is plausible that the \(m > 1 \) case has similar correlations, in particular, it is also an incompressible liquid. However, the effective parameters need to be rescaled properly in the fractional case. The effective magnetic length is given by \(l'_0 = \frac{R}{\sqrt{p'}} = \frac{R}{\sqrt{mp}} \). This incompressible liquid supports fractionalized charge excitation with charge \(m^{-3} \). Such a state may be described by a wave function of the form \(\Phi^{m-1}\Phi_h \), where \(\Phi_h \) is the wave function of the integer case, where one hole is removed from a given location in the bulk interior to the edge of the fluid. To our knowledge, this is the first time where a quantum liquid with fractional charge excitation has been identified in higher dimension \(d > 2 \).

Emergence of relativity at the edge Before we go to the discussion of our model, let us first review how \(1 + 1 \) dimensional relativity emerges at the edge of the 2D QHE problem. We shall restrict ourselves to the integer case only. In the III, there is no kinetic energy. The only energy is supplied by the confining potential \(V(r) \), which confines the particles in
a circular droplet of size R. Eigenfunctions in the lll takes the form $\phi_n(z) = z^n \exp(-|z|^2/4l_0^2)$. From this we see that a particle is localized in the radial direction at $r_n = nl_0$, and it carries angular momentum $L = n$. Edge excitations are particle hole excitations of the droplet. A particle hole pair with the lll label n and m near the edge has energy $E = V_n - V_m = (n - m)l_0V'(R)$, and angular momentum $L = n - m$. Therefore, a relativistic, linear relationship exists between the energy and the momentum of the edge excitation. Furthermore, since $n - m > 0$, the edge waves propagate only in one direction, i.e. they are chiral. Therefore, we see that relativity emerges at the edge because of a special relationship between the radial and the angular part of the wave function z^n. It turns out that such a relationship also exists in the present context.

In our spherical model, we can introduce a confining potential $V(X_a) = V(X_5)$, where $V(X_5)$ is a monotonic function with a minimum at the north pole $x_5 = 1$ and a maximum at $x_5 = -1$. For $N < d(p,0)$, the quantum fluid fills the configuration space around the north pole $x_5 = 1$, up to the “fermi latitude” at x^F_5. Within the lowest $SO(5)$ level, there is no kinetic energy, only the confining potential $V(x_5)$ determines the energy scale of the problem. While the $SO(5)$ symmetry of the S^4 sphere is broken explicitly by the confining potential, the $SO(4)$ symmetry is still valid. Without loss of generality, we can fill the orbital and isospin space so that the ground state is a $SO(4)$ singlet.

The orbital $SO(4)$ symmetry is defined to be the rotation in the (x_1, x_2, x_3, x_4) subspace, generated by the angular momentum operators $L_{\mu\nu}^{(0)} = -i(x_\mu \partial_\nu - x_\nu \partial_\mu)$ where $\mu, \nu = 1, 2, 3, 4$. These angular momentum operators satisfy $SO(4)$ commutation relations, which can be decomposed into the following two sets of $SU(2)$ angular momentum operators $K_{1i}^{(0)} = \frac{1}{2}(L_i + P_i)$ and $K_{2i}^{(0)} = \frac{1}{2}(L_i - P_i)$, where $L_i = \frac{1}{2} \epsilon_{ijk} L_{jk}^{(0)}$, $P_i = L_{4i}^{(0)}$. Because of the coupling to the Yang monopole gauge potential, these orbital $SO(4)$ generators are modified into $K_{1i} = K_{1i}^{(0)}$ and $K_{2i} = K_{2i}^{(0)} + I_i$. Therefore, all edge states can be classified by their $SO(4)$ quantum numbers (k_1, k_2), where $K_{1i}^2 = k_1(k_1 + 1)$ and $K_{2i}^2 = k_2(k_2 + 1)$ respectively. Applying these operators to the states in the lowest $SO(5)$ level (Eq. [9], we find that the
state $|m_1, m_2, m_3, m_4\rangle$ has quantum numbers $m_1 + m_2 = 2k_2$, $m_1 - m_2 = 2k_{2z}$, $m_3 + m_4 = 2k_1$ and $m_3 - m_4 = 2k_{1z}$. In particular, the elementary $SO(5)$ spinors defined in Eq. 4 transform according to the $(0, 1/2)$ and $(1/2, 0)$ representations of $SO(4)$.

In the subspace of lowest $SO(5)$ levels defined by Eq. 4, the orbital coordinate operators x_a can be represented by $x_a = \frac{i}{p} \Psi \partial_a \frac{\bar{\Psi}}{\partial p}$. From this we see that the $|m_1, m_2, m_3, m_4\rangle$ state is also an eigenstate of px_5, which takes quantized values $px_5 = m_1 + m_2 - m_3 - m_4$. Since $m_1 + m_2 + m_3 + m_4 = p$, $\frac{px_5}{2}$ can range over $p+1$ values: $-\frac{p}{2}, -\frac{p}{2} + 1, ..., \frac{p}{2}$. Therefore, for a given p, and at a fixed latitude on the orbital space x_5, the $SO(4)$ quantum numbers (k_1, k_2) are given by $2k_1 = \frac{p}{2}(1-x_5)$ and $2k_2 = \frac{p}{2}(1+x_5)$. The role of the radial coordinate in the 2D QHE problem is played by $1-x_5$, which measures the distance away from the origin of the droplet at $x_5 = 1$. In the 2D case, the orbital angular momentum is simply a $U(1)$ phase factor. In our case, the orbital angular momentum is a $SO(4)$ Casimir operator, whose eigenvalue is given $2k_1 = \frac{p}{2}(1-x_5)$. Therefore, just as in the 2D case, the distance away from the center of the droplet directly determines the magnitude of the orbital angular momentum. Because the confining potential can be linearized near the edge of the droplet $1-x_5^F$, this relationship translates into a massless relativistic dispersion relation. Furthermore, as we shall see, the coupling to the iso-spin degrees of freedom gives rise to particles with non-trivial helicity.

An edge excitation is created by removing a particle (leaving behind a hole) inside the fermi latitude x_5^F, with quantum numbers $(x_5^h; k_1^h = \frac{p}{4}(1-x_5^h), k_{1z}^h; \frac{p}{4}(1+x_5^h), k_{2z}^h)$, and creating a particle outside the fermi latitude, with quantum numbers $(x_5^p; k_1^p = \frac{p}{4}(1-x_5^p), k_{1z}^p; \frac{p}{4}(1+x_5^p), k_{2z}^p)$. This excitation can also be specified by the quantum numbers $(\Delta x_5 = x_5^h - x_5^p; T_1, T_{1z}; T_2, T_{2z})$, where the total angular momenta $T_i = K_i^h + K_i^p$, $T_{2i} = K_{2i}^h + K_{2i}^p$, $T_{1i} = T_1(T_1 + 1)$ and $T_{2i}^2 = T_2(T_2 + 1)$ are the sums of the $SU(2) \times SU(2)$ quantum numbers of the particle and the hole. From the usual rules of the $SU(2)$ angular momentum addition, we can determine the allowed values of the total angular momenta $T_1 = |k_1^p - k_1^h|$, ..., $k_1^p + k_1^h$, and $T_2 = |k_2^p - k_2^h|$, ..., $k_2^p + k_2^h$. Given x_5^h and x_5^p we obtain $\Delta x_5 = x_5^h - x_5^p = \frac{2}{p} n$, and the energy is given by
In the 2D QHE case, there is an unique way to combine the angular momenta of a particle and a hole, therefore, the dispersion relation has only one branch. In higher dimensions, a particle and a hole can be bound or independent, giving rise to collective and continuum branches of the spectrum. Mathematically, this effect manifests itself in terms of the different ways of combining the $SO(4)$ angular momenta of a particle and a hole. Let us investigate the possibility of collective excitations in the spectrum. In a non-interacting fermi system with the usual form of the kinetic energy, $E = p^2/2M$, a particle and a hole have a well defined relative momentum, but does not have a well defined relative position, except in one spatial dimension. Therefore, such a pair can only be “bound” through an attractive interaction. However, there are very special cases where the pair can be bound for kinematic reason, without any interactions. In one dimension, the kinetic energy is approximately independent of the relative momentum, therefore, one can superpose states with different relative momenta to obtain a state with well defined relative position. The resulting state is a bosonic collective mode. In our case, we find that the special nature of the wave function in the lowest $SO(5)$ level leads to a similar form of the kinematic binding. Basically, there is no kinetic energy in the lowest $SO(5)$ level, a particle and a hole can be locked into a well defined relative position without any cost of the kinetic energy. In our case, these collective excitations lie at the edge of the continuum states, and are characterized by the total $SO(4)$ quantum numbers $(T_1 = |k_{1p} - k_{1h}| = \frac{n}{2}, T_2 = T_1 + |\lambda|)$ and $(T_1 = T_2 + |\lambda|, T_2 = |k_{2p} - k_{2h}| = \frac{n}{2})$, where $|\lambda|$ is a positive integer and $\lambda = 0$ case is counted only once. These states are formed by a macroscopic number of contractions of the spinor wave functions (Eq. 9) of a particle and a hole, and it can be shown explicitly that the wave function in the relative orbital and iso-spin coordinates are gaussianly localized. In this sense, a particle and a hole form a bound state, and represent collective excitations of the system.

In the flat space limit, the $SO(4)$ symmetry group of S^3 reduces to the Euclidean group E_3 of the three dimensional flat space. The Euclidean group has two Casimir operators,
the magnitude of the momentum operator $|p|$ is determined by either T_1 or T_2, which in our case gives $|p| = n/R$. As the energy is given by Eq. (12), the collective excitations have a relativistic linear dispersion relation $E = c|p|$, with the speed of light given by $c = \frac{\partial V}{\partial X_5} = 2l_0^2 \frac{\partial V}{\partial X_5}$. If we take for l_0 the Planck length $l_P = 1.6 \times 10^{-35} m$, we can estimate the potential energy gradient to be $\frac{\partial V}{\partial X_5} \approx 7.7 \times 10^{62} eV m^{-1}$.

The second Casimir operator of the Euclidean group is the helicity, $\lambda = J \cdot p / |p|$, where J is the total angular momentum of a particle. This quantity can be obtained from the $SO(4)$ quantum numbers by $\lambda = T_1 - T_2 \text{ [13]}$. Therefore, the $(T_1 = \frac{n}{2}, T_2 = T_1)$ state describe a relativistic spinless particle obeying the massless Klein-Gordon equation. The $(T_1 = \frac{n}{2}, T_2 = T_1 + 1)$ and the $(T_1 = T_2 + 1, T_2 = \frac{n}{2})$ states describe massless photon states with left handed and right handed circular polarization. The associated fields satisfy the Maxwell’s equation. The $(T_1 = \frac{n}{2}, T_2 = T_1 + 2)$ and the $(T_1 = T_2 + 2, T_2 = \frac{n}{2})$ states describe massless graviton states with left handed and right handed circular polarization. The associated fields satisfy the linearized Einstein equation. In fact, we can proceed this way to find all massless relativistic particles with higher spins. Here the time dimension is introduced to the problem through the energy of the confining potential (Eq. (12)), while the space dimension is introduced through the Euclidean momentum. The relativistic dispersion together with the helicity quantum numbers show that the collective excitations form non-trivial representations of the Lorentz group. The spins of these massless particles are derived from the isospin degrees of freedom in the original Hamiltonian, and the relativistic field equations have their roots in the original isospin-orbital couplings.

So far we obtained only a non-interacting theory of relativistic particles, in particular, the equation for the graviton is only obtained to the linear order. Once we turn on interactions among the different modes, the graviton would naturally couple to the energy momentum tensor of other particles. It is known that consistency requires the graviton to couple itself exactly according to the full nonlinear Einstein equation [17,18]. Therefore, it is likely that the interaction among the edge modes in our model also contains the nonlinear effects of quantum gravity. On the other hand, the main problem with the current model seems to be
the “embarrassment of riches”. In order to define a problem with large degeneracy in the single particle spectrum, one needs to take the limit of high representation of the isospin. Therefore, each particle has a large number of internal degrees of freedom. As a result, there are not only photons and gravitons in the collective modes spectrum, there are also other massless relativistic particles with higher spins. However, the presence of massless higher spin states may not lead to phenomenological contradictions. It is known from the field theory that massless relativistic particles with spin $s > 2$ can not have covariant couplings to photons and gravitons [19]. Therefore, it is possible that they decouple in the long wave length limit.

Hall current and noncommutative geometry: So far, we have discussed only the quantum eigenvalue problem, it is also instructive to discuss the classical Newtonian equation of motion derived from the Hamiltonian $H + V(X_a)$, where H is given by Eq. [2]. The classical degrees of freedom are the isospin vector I_i, the position X_a and the angular momentum L_{ab}, and their equations of motion can be derived from their Poisson bracket with the Hamiltonian. As we are interested in the equations of motion in the lowest $SO(5)$ level, we can take the infinite mass limit $M \rightarrow \infty$. In this limit, we obtain the following equations of motion:

$$
\dot{X}_a = \frac{R^4}{I^2} \frac{\partial V}{\partial X_b} F_{ab}^i I_i, \quad \dot{I}_i = \epsilon_{ijk} A_{\mu}^j X_{\mu} I_k
$$

(13)

where the dot denotes the time derivative. Just as in the ill problem, the momentum variables can be fully eliminated. However, the price one needs to pay for this elimination is that coordinates $[X_a, X_b]$ becomes non-commuting. In fact, the projected Hamiltonian in the lowest $SO(5)$ level is simply $V(X_a)$. If we assume the commutation relation $[X_a, X_b] = \frac{R^4}{I^2} F_{ab}$, then the orbital part of Eq. (13) can be derived from the Poisson bracket of X_a with $V(X_a)$. If we expand around the north pole $X_5 = R$, we finally obtain the following commutation relation:

$$
[X_\mu, X_\nu] = 4i l_0^2 \eta_\mu^i \frac{I_i}{I}
$$

(14)
This is the central equation underlying the algebraic structure of this work. It shows that there is a fundamental limit, l_0, for the measurability of the position of a particle.

The first equation in Eq. (13) determines the Hall current for a given spin direction J_i^μ in terms of the gradient of the potential $\eta_{\mu\nu}^{i} \partial V / \partial X^\nu$, giving a direct generalization of the 2D Hall effect. From the second equation in Eq. (13), we see that the spin of a particle precesses around its orbital angular momentum (which becomes linear momentum in the flat space limit) with a definite sense.

Conclusion: At the conclusion of this work, we now know three different spatial dimensions where quantum disordered liquids exist: the one dimensional Luttinger liquid, the two dimensional quantum Hall liquid, and the four dimensional generalization found in this work. We can ask what makes these dimensions special. There is a special mathematical property which singles out these spatial dimensions. One, two and four dimensional spaces have the unique mathematical property that boundaries of these spaces are isomorphic to mathematical groups, namely the groups Z_2, $U(1)$ and $SU(2)$. No other spaces have this property. It is this deep connection between the algebra and the geometry which makes the construction of non-trivial quantum ground states possible. Other related mathematical connections are reviewed and summarized in ref. [11]. The 4D generalization of the QHE offers an ideal theoretical laboratory to study interplay between quantum correlations and dimensionality in strongly correlated systems. It would be interesting to study our quantum wave functions on four dimensional manifolds with non-trivial topology, and investigate if different topologies of four manifolds correspond to degeneracies of our many body ground states. The quantum plateau transition in the 2D QHE is still an unsolved problem, one could naturally ask if the plateau transition in four dimensions can be understood better because of the higher dimensionality. In 2D QHE, quasi-particles have both anyonic and exclusion statistics. The former can not exist in four dimensions, the question is whether quasi-particles in our theory would obey exclusion statistics in the sense of Haldane. To address these questions, it is important to construct a field theory description of the 4D quantum Hall liquid, in analogy with the Chern-Simons-Landau-Ginzburg theory of the
In this work we investigated the possibility of modeling relativistic elementary particles as collective boundary excitations of the 4D quantum Hall liquid. Similar connections between condensed matter and particle physics have been explored before [20–24]. There are important aspects unique to the current problem. The single particle states are hugely degenerate, which enables the limit of zero inertia mass $M \to 0$ and completely removes the non-relativistic dispersion effects. This limit is hard to take in usual condensed matter systems. The single particle states also have a strong gauge coupling between iso-spin and orbital degrees of freedom, which is ultimately responsible for the emergence of the relativistic helicity of the collective modes. This type of coupling is not present in usual condensed matter systems. The vanishing of the kinetic energy in the lowest $SO(5)$ levels enables binding of a particle and a hole into a point-like collective mode. The most remarkable mathematical structure is the non-commutative geometry (Eq. 14), which expresses a $SU(2)$ co-cycle structure of the magnetic translation. Although progress reported in this work is still very limited, we hope that this framework can stimulate investigations on the deep connection between condensed matter and elementary particle physics.
Note added

Since the submission of this paper, some questions have been raised. We would like to make the following qualifying statement to the paper, as to avoid misinterpretation of results:

In usual non-interacting fermion systems, for a given center of mass momentum, a particle hole excitation can either have a well defined energy but no well defined relative position, (in other words, they can not be created by local operators), or they can have a well defined relative position but no well defined energy.

Because of the non-commutative geometry given in equation (14), the collective modes, or better phrased as extremal dipole states, studied in this paper have both well defined energy and well defined relative position, for a fixed center of mass momentum, even though they are composed out of non-interacting fermions. They can be created by local bosonic operators and and these local bosonic operators obey relativistic equation of motion, with well defined dispersion relation.

These excitations can also be interpreted as hydrodynamical waves with different spins on the surface of the 4D QHE droplet. Since the fermionic particles carry a high spin I, there are many different branches of hydrodynamical modes, corresponding to bosonic excitations of different helicities.

Why do these hydrodynamical modes come with both helicities, and are not chiral, as in the 1D case? Consider our 4D droplet, the scalar density wave where fermions with all different iso-spin components are compressed in the same way. This mode has to trivially obey the Klein-Gordon equation. There is no concept of chiral bosons in 3+1 dimensions. Since the scalar mode is symmetric, it is plausible that all other modes come with both helicities.

Incoherent part of the fermionic spectrum are not relativistic. Currently we are investigating mechanisms by which the incoherent part of fermionic spectrum can be gapped due to interactions, leaving collective modes unaffected. One known example of such behavior is superconductivity. In this system, other mechanism may be possible as well. In this case,
the theory would be fully relativistic in the low energy sector.
REFERENCES

[1] P. W. Anderson, *Basic Notions of Condensed Matter Physics* (Addison Wesley, Boston, MA, 1997).

[2] H. Bethe, Zeitschrift fur Physik 71, 205 (1931).

[3] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

[4] R. Prange and S. M. Girvin, *The Quantum Hall Effect* (Springer Verlag, Berlin, Germany, 1990).

[5] S. C. Zhang, Int. J. Mod. Phys 25 (1992).

[6] E. Witten, Comm. Math. Phys 117, 353 (1988).

[7] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).

[8] X. G. Wen, Phys. Rev. Lett. 64, 2206 (1990).

[9] M. Stone, Phys. Rev. B 42, 8399 (1990).

[10] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).

[11] E. Demler and S. C. Zhang, Annals of Physics 271, 83 (1999).

[12] C. N. Yang, J. Math. Phys. 19, 320 (1978).

[13] R. Jackiw and C. Rebbi, Phys. Rev. D 14, 517 (1976).

[14] A. Belavin, A. Polyakov, A. Schwartz, and Y. Tyupkin, Phys. Lett. B 59, 85 (1975).

[15] C. N. Yang, J. Math. Phys. 19, 2622 (1978).

[16] J. Talman, *Special Functions, A Group Theoretic Approach* (Benjamin Inc, Boston, MA, 1968).

[17] R. Feynman, *Feynman Lectures on Gravitation* (Addison Wesley, Boston, MA, 1995).

[18] S. Weinberg, Phys. Rev. 138, 988 (1965).
[19] M. Fierz and W. Pauli, Proc. Roy. Soc. London 173, 211 (1939).

[20] J. Bjorken, Annals of Physics 24, 174 (1963).

[21] H. Nielsen and I. Picek, Nucl. Phys. B 242, 542 (1984).

[22] G. Volovik, gr-qc/0101111.

[23] G. Chapline, E. Hohlfeld, R. B. Laughlin, and D. I. Santiago, gr-qc/0012094.

[24] L. Susskind, hep-th/0101029.