Extensive evidence for a last interglacial Laurentide outburst (LILO) event

Yuxin Zhou and Jerry McManus
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA

ABSTRACT

A catastrophic last interglacial Laurentide outburst (LILO) event approximately 125,000 years ago (125 ka) may have contributed to abrupt climate change during the last interglacial. It has been proposed that this event was an analog of the Holocene 8.2 ka event. We characterize in detail the (1) provenance, (2) timing, and (3) delivery mechanism of a layer of red sediments deposited across much of the northwestern Atlantic Ocean at 125 ka. Our observations provide strong support for the occurrence of a LILO event that was analogous to the 8.2 ka event in all three aspects, and likely surpassed it in magnitude. The freshwater discharge associated with the 125 ka LILO event may explain a series of abrupt global changes, including a reduction of the North Atlantic Deep Water and reinvigoration of the Antarctic Bottom Water. Our findings suggest that the mechanism that triggered the LILO event may be an integral part of the deglacial sequence of events, during which the final collapse of the contiguous Laurentide Ice Sheet took place 3.5–4 k.y. after full interglacial temperature was reached in the middle and high northern latitudes.

INTRODUCTION

Approximately 8200 years ago, large proglacial Lakes Agassiz and Ojibway (central North America) burst through the ice dam formed by the Laurentide Ice Sheet remnant and discharged via the Hudson Strait into the North Atlantic Ocean (Barber et al., 1999). The ice dam collapsed because of the marine-terminating outlet and the presence of subglacial till in the Hudson Bay region (Licciardi et al., 1998; Stokes and Tarasov, 2010; Tarasov et al., 2012). The so-called “8.2 ka event” has subsequently been speculated to have been caused by the accelerated melting of the ice dam due to the positive feedback between mass balance and elevation (Carlson et al., 2008; Gregoire et al., 2012). The 8.2 ka event, the largest abrupt climate change during the Holocene, had global climate impacts (Alley and Ágústsdóttir, 2005).

Nicholl et al. (2012) suggested that a red layer of sediments with a sharp basal contact in the Labrador Sea might be evidence of an analogous catastrophic event during the last interglacial. Their seminal finding was important and intriguing, given that a long-noted feature of the 8.2 ka event is the deposition of a red layer around the Hudson Strait (Table S2 in the Supplemental Material). Nicholl et al. (2012) also speculated that the red layer’s distribution might be more widespread than documented in their study, inspiring a more extensive survey of the red layer’s distribution and its geographical distribution. We employed physical, chemical, and chronological analyses on deep-sea sediment cores to document evidence for the counterpart of the 8.2 ka event during the last interglacial.

METHODS

The identification of the red layer relies on archive core photos and color reflectance data archived in the International Ocean Discovery Program (IODP) Janus database (see the Supplemental Material). We examined all existing drill cores from the western and central North Atlantic Ocean, with the exceptions of those from tropical regions and those without age models, in order to locate the last interglacial layer.

Core EW9303-37JPC (43.68°N, 46.28°W, 3981 m water depth, International Geo Sample Number [IGSN]: DSR000507; hereafter core EW37JPC) is a jumbo piston core retrieved off the coast of Newfoundland, Canada, by Lamont-Doherty Earth Observatory in 1993. A chronology indicates that the sedimentation rate at this site is 10 cm/k.y. on average. We identified a red layer in this core at 1220 cm core depth, roughly the interval of the last interglacial. To further constrain the red layer’s age, we added new δ18O measurements from the epifaunal benthic foraminifera species Cibicidoides wuellerstorfi to an existing record (McManus et al., 2002) (see the Supplemental Material). Our new data cover the entire Marine Isotope Stage (MIS) 5, and triple the resolution of the previous benthic δ18O record of McManus et al. (2002). The new age model also increases the number of age-control points during MIS 5 to 140 from the previous 7 of Zhou et al. (2021).

We used flux fusion measurements of elemental concentrations to calibrate the scanning X-ray fluorescence (XRF) Fe count data from core EW37JPC. The method is described in detail elsewhere (Zhou et al., 2021). We calculated Fe flux by multiplying the bulk sediment mass flux record by the calibrated Fe concentration data.

DISCUSSION

Five cores in the northwestern Atlantic, and possibly a sixth, contain red layers in the last interglacial sediment (Figs. 1A and 2). Even excluding the sixth, the cores span an astounding linear distance of >3000 km from the Labrador Sea to the subtropical Atlantic. In the sixth core, from Ocean Drilling Program (ODP) Site 1061, we found a red layer, but its ambiguous bottom contact and nominally younger age lowered...
our confidence in the identification. The presence of the red layer was previously reported in two IODP cores, from Sites U1302 and U1305 (Nicholl et al., 2012).

PROVENANCE

The sediment layer’s red color likely comes from the oxidation of iron-rich minerals, likely hematite (Giosan et al., 2002). Red, hematite-rich sediments can be found in the Dubawnt Supergroup in the northern Hudson Bay (Sanford et al., 1979; Shilts, 1980). The Dubawnt Supergroup red sediments likely spread to Mansel and Coats Islands in the Hudson Bay (Aylsworth and Shilts, 1991) (Fig. 1). In core EW37JPC, the iron-rich composition of the red layer is corroborated by the associated increase in Fe flux data (Fig. 3I).

The provenance of the 125 ka red layer in core EW37JPC may be further narrowed down by Ca/Sr ratios (Nicholl et al., 2012). High Ca/Sr in the North Atlantic has been used as an indicator of detrital carbonates originating through the Hudson Strait (Hodell et al., 2008; Channell et al., 2012b). In core EW37JPC, the iron-rich composition of the red layer is corroborated by the associated increase in Fe flux data (Fig. 3I).

The provenance of the 125 ka red layer in core EW37JPC may be further narrowed down by Ca/Sr ratios (Nicholl et al., 2012). High Ca/Sr in the North Atlantic has been used as an indicator of detrital carbonates originating through the Hudson Strait (Hodell et al., 2008; Channell et al., 2012b). In core EW37JPC, the iron-rich composition of the red layer is corroborated by the associated increase in Fe flux data (Fig. 3I).

The spatial distribution of the 125 ka red layer might provide yet another clue to the layer’s origin. Four of the six cores where we
The duration of time represented by the deposition of the red layer in core EW37JPC can be estimated by excess 230Th (230Th$_{ex}$), a technique previously employed to estimate the durations of Heinrich events (Francois and Bacon, 1994), or by our age model (see the Supplemental Material). Using these approaches, we estimate the event that deposited the red layer to be briefer than 126 yr (Fig. S2). This is in line with estimate of 160.5 yr for the duration of the 8.2 ka event based on ice-core data (Thomas et al., 2007).

DELIVERY

The 125 ka red layer in core EW37JPC is characterized by high mass flux and low coarse fraction (Figs. 3A and 3K). Previously, it was suggested that either iceberg calving events or meltwater-induced submarine density flows caused the high mass-flux peaks in EW37JPC (Zhou et al., 2021). The fraction of coarse sediment, defined as the mass >63 μm relative to the whole, can be a differentiating factor between the two potential mechanisms. In this core, each Heinrich event during the last glacial cycle was characterized by increases in both the coarse fraction and mass flux, most likely related to the rapid deposition of ice-rafted debris across the entire grain-size spectrum. On the other hand, a mass-flux increase with a contemporaneous decrease in the relative proportion of coarse sediment implies the rapid deposition of silt and clay alone.

The sediment-transport category of density flow includes turbidity currents that deposit graded sediments and debris flows that deposit poorly sorted fine sediments (Mulder and Alexander, 2001). The essential absence of coarse grains in the core EW37JPC red layer may be identified the red layer are adjacent to the meandering Northwest Atlantic Mid-Ocean Channel (NAMOC; see the Supplemental Material). The other two cores, from ODP Sites 1063 and 1061, are in the general downstream direction from where mapping of the NAMOC ends. It may be that the unmapped portion of the NAMOC extends further toward the two cores. Submarine density flows have previously been shown to transport sediments hundreds to thousands of kilometers away from their source (Talling et al., 2007). A submarine density flow originating from the Hudson Strait would thus have been capable of spreading the red layer along the NAMOC to ~3000 km away. One core we examined near the eastern edge of the NAMOC, from ODP Site 647, does not appear to contain the red layer. The absence of the red layer at this location may be due to Coriolis deflection of the sediments westward (Chough and Hesse, 1976).

Red-colored sediments deposited during the 8.2 ka event have been noted in 17 cores in and around the Hudson Strait (Fig. 1B). The 8.2 ka red layer is not as extensive as the 125 ka one, but both are likely derived from the Hudson Strait based on their spatial distribution. Peaks of Ca/Sr and Fe flux that fit the timing of the 8.2 ka event are also evident in core EW37JPC (Figs. 3H and 3J), consistent with a Hudson Strait origin.

TIMING

In five cores with the red layer, the respective chronologies place the age of the red layer at 125 ± 5 ka (see the Supplemental Material). In the core from ODP Site 1061, the red layer is dated to the early part of MIS 5 (Grützner et al., 2002), although the existing chronology precludes a more precise placement.

Our identification of the red layer’s occurrence relative to the core EW37JPC benthic δ18O record and the alignment of the EW37JPC record to a benthic δ18O stack offer the most confident stratigraphic and chronological placement of the red layer among the six cores (Fig. S1 in the Supplemental Material). The age model puts the red layer at 125.0 ka with a nominal 2σ uncertainty of 0.5 k.y. (see the Supplemental Material). However, a visual inspection of the δ18O alignment indicates that this assessment of the age uncertainty is overly optimistic, and we instead use the maximum age uncertainty of the entire record (3 k.y.) as a more robust estimate of the uncertainty associated with the age of the red layer. The 125.0 ka timing of the red layer is 4 k.y. after the onset of last interglacial warmth, absolutely dated to 129 ± 1 ka (Drysdale et al., 2005). This 4 k.y. interval is similar to the length of time between the 8.2 ka event and the Holocene onset at 11.7 ka (Walker et al., 2009). We suggest that this similarity in timing is not a coincidence. The delivery of the red sediments may result from a coherent deglacial sequence of events that took place near the beginning of both the current and the last interglacial. The implication is that 3.5–4 k.y. after full interglacial temperature is reached, the Laurentide Ice Sheet seems to repeatedly experience instabilities that originate from the Hudson Strait region.

Figure 3. Sedimentary proxy measurements from North Atlantic sediment core EW9303-37JPC. (A, B) Coarse fraction (>63 μm) (Zhou et al., 2021). (C, D) Benthic δ18O measurements on Cibicidoides wuellerstorff (this study; McManus et al., 2002). Black line in C is Prob-stack (Ahn et al., 2017; see the Supplemental Material [see footnote 1]). (E, F) Planktic δ18O measurements on Neogloboquadrina pachyderma (Zhou et al., 2021). (G, H) Ca/Sr (Zhou et al., 2021). (I, J) Fe flux (this study). (K, L) Mass flux based on excess 230Th (230Th$_{ex}$) (Zhou et al., 2021). Pink shadings are last interglacial Laurentide outburst (LILO) and 8.2 ka events; gray shadings mark warm Marine Isotope Stages (MISs) 5e, 5c, and 5a and the Holocene; blue shadings denote Heinrich even 11 (H11) and the Younger Dryas (YD).

Geological Society of America | GEOLOGY | Volume XX | Number XX | www.gsapubs.org

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/doi/10.1130/G49956.1/5600734/g49956.pdf by Columbia University user
the result of a debris flow with a high sediment concentration compared to a turbidity flow (Mulder and Alexander, 2001). Alternatively, the red layer could have been produced by a turbidity flow that deposited its coarse sediments upstream. Both debris flows and turbidity flows can travel as far as 1500 km, and a decelerating turbidity flow can evolve into a debris flow (Talling et al., 2007), although the inferred 3000 km transport of the 125 ka red layer appears unprecedented and deserves more attention.

The delivery of sediments by density flow has been suggested for the 8.2 ka event (St-Onge and Lajeunesse, 2007). In core EW37JPC, the 8.2 ka event, like the 125 ka red layer, is associated with high sedimentary mass flux and low coarse fraction. Density flows may thus have been responsible for both the 8.2 ka and the 125 ka red layers, indicating yet another important similarity between the two events.

LAST INTERGLACIAL LAURENTIDE OUTBURST (LILO) EVENT

We have offered three lines of evidence—provenance, timing, and delivery mechanism—that the 125 ka red layer was caused by a last interglacial event analogous to the 8.2 ka event. We suggest naming the last interglacial analog of the 8.2 ka event as the last interglacial Laurentide outburst (LILO) event.

The proposed LILO event coincides with a series of abrupt changes globally during the last interglacial (Fig. 4). The North Atlantic Deep Water (NADW) underwent rapid reductions (Galaasen et al., 2014) while the Antarctic Bottom Water (AABW) was reinvigorated after a stagnation (Hayes et al., 2014). The Antarctic temperature also experienced small but detectable rise (Jouzel et al., 2007). The North Atlantic’s freshening would have increased the buoyancy flux of the surface water and may have slowed down the NADW production (Galaasen et al., 2014) (Fig. 4C). We infer that the LILO event may have seen a higher peak discharge rate than the 8.2 ka event, judging from the far more widespread distribution of the LILO red layer. This difference could explain the more prominent NADW reduction during the LILO event than the 8.2 ka event (Kleiven et al., 2008; Galaasen et al., 2020). The freshening of the North Atlantic combined with the persistence of vertical mixing could have decreased the deep ocean density, presenting a deficit to be filled by the AABW (Broecker, 1998), thus leading to the AABW resumption (Hayes et al., 2014) (Fig. 4B). The NADW reduction may also have curbed the upper branch of the Atlantic Meridional Overturning Circulation. With the associated northward heat transport from the Southern Hemisphere to the Northern Hemisphere diminished, Antarctic temperature rose as a result (Fig. 4A), a process often referred to as the bipolar seesaw (Broecker, 1998).

Before the ice dam between the Keewatin and Labrador ice domes collapsed during the 8.2 ka event, the Laurentide Ice Sheet was about the same size as, or slightly larger than, the Greenland Ice Sheet (Dyke et al., 2003) (Fig. 1B). Likewise, before and after the LILO event took place, the Laurentide Ice Sheet may have been in a similar configuration as before and after the 8.2 ka event, and the existing sea-level data do not preclude that possibility (see the Supplemental Material). We suggest that the ice dam’s collapse that broke up the contiguous Laurentide Ice Sheet into smaller ice domes is an integral part of the deglacial sequence of events, taking place 3.5–4 k.y. after full interglacial temperature is achieved. In this framework, the 8.2 ka and LILO events each represents the “last gasp” of the Laurentide Ice Sheet before its summary demise.

CONCLUSIONS

Our study lays out three lines of evidence that a red layer of sediment was deposited at 125 ka throughout the northwest Atlantic Ocean by a last interglacial analog of the 8.2 ka event: (1) Similar to the 8.2 ka red layer, the 125 ka red layer likely originated from the Hudson Strait given its high Ca/Sr, red color, high Fe flux, and occurrence along the NAMOC. (2) The 8.2 ka and LILO events both occurred 3.5–4 k.y. after the onset of the full warming associated with their respective interglacial intervals. (3) In core EW37JPC, the 125 ka red layer was deposited rapidly and with mostly fine sediments. This, together with the red layer’s occurrence along the NAMOC, suggests that a density flow triggered by an 8.2 ka–style glacial outburst or accelerated melting likely delivered the red sediments.

The proposed LILO event can explain a series of abrupt global climate changes, including a reduction of the North Atlantic Deep Water and reinvigoration of the Antarctic Bottom Water. The existence of the LILO event suggests that the same mechanism that triggered the 8.2 ka event may be an integral part of the deglacial sequence of events, wherein the breakdown of the contiguous Laurentide Ice Sheet takes place 3.5–4 k.y. after full interglacial temperature is established.

ACKNOWLEDGMENTS

We thank Julia Gottschalk and Sid Hemming for discussions that led to this project. We thank Kassandra M. Costa for sharing the core EW37JPC XRF data, and James E.T. Channell for sharing data from Ocean Drilling Program Site 1094 (Hayes et al., 2014). (C) North Atlantic benthic δ18O from core MD03-2664 (IMAGES P.I.C.A.S.S.O cruise on the R/V Marion Dufresne; Galaasen et al., 2014). (D,E) Ca/Sr and mass flux from core EW9303-37JPC (same as Figs. 3G and 3K).

REFERENCES CITED

Ahn, S., Khider, D., Lisiecki, L.E., and Lawrence, C.E., 2017, A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model: Dynamics and Statistics of the

www.gsapubs.org | Volume XX | Number XX | GEOLOGY | Geological Society of America

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/doi/10.1130/G49956.1/5600734/g49956.pdf by Columbia University user
Climate System, v. 2, https://doi.org/10.1093/climsys/dxz002.

Aksu, A.E., and Hillaire-Marcel, C., 1989, Upper Miocene to Holocene oxygen and carbon isotopic stratigraphy of Sites 646 and 647, Labrador Sea, in Srivastava, S.P., et al., Proceedings of Integrated Ocean Drilling Program, Scientific Results, Volume 105: College Station, Texas, Ocean Drilling Program, p. 689–704, https://doi.org/10.2973/odp.proc.sr.105.139.1989.

Alley, R.B., and Agüestdöttir, A.M., 2005, The 8k event: Cause and consequences of a major Holocene abrupt climate change: Quaternary Science Reviews, v. 24, p. 1123–1149, https://doi.org/10.1016/j.quascirev.2004.12.004.

Aylsworth, J.M., and Shilts, W.W., 1991, Surficial geology of Coats and Mansel islands, Northwest Territories: Geological Survey of Canada Paper 89-23, 26 p., https://doi.org/10.4095/131927.

Barber, D.C., et al., 1999, Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes: Nature, v. 400, p. 344–348, https://doi.org/10.1038/22504.

Brodie, W.S., 1979, Geology, eastern Canada and adjacent areas: Geological Survey of Canada Open File 1574, 2 sheets, 1 CD-ROM, https://doi.org/10.4095/214399.

Francois, R., and Bacon, M.P., 1994, Heinrich events in the North Atlantic: Radiochemical evidence: Deep-Sea Research Part I: Oceanographic Research Papers, v. 41, p. 315–334, https://doi.org/10.1016/0967-0637(94)90006-X.

Galaesen, E.V., Ninnenmann, U.S., Irval, N., Kleiven, H.F., Rosenthal, Y., Kissel, C., and Hodell, D.A., 2014, Rapid reductions in North Atlantic Deep Water during the peak of the last interglacial period: Science, v. 343, p. 1129–1132, https://doi.org/10.1126/science.1248667.

Galaesen, E.V., Ninnenmann, U.S., Kessler, A., Irval, N., Rosenthal, Y., Tipjut, J., Bontues, N., Roche, D.M., Kleiven, H.F., and Hodell, D.A., 2020, Interglacial instability of North Atlantic Deep Water: ventilation: Science, v. 367, p. 1485–1489, https://doi.org/10.1126/science.aaay6381.

Giosan, L., Flood, R.D., and Aller, R.C., 2002, Paleoceanographic significance of sediment color on western North Atlantic drifts: I. Origin of color: Marine Geology, v. 189, p. 25–41, https://doi.org/10.1016/S0025-3227(02)00321-3.

Gregoire, L.J., Payne, A.J., and Valdes, P.J., 2012, De-glacial rapid sea level rises caused by ice-sheet saddle collapses: Nature, v. 487, p. 219–222, https://doi.org/10.1038/nature11257.

Grützner, J., et al., 2002, Astronomical age models for Pleistocene drift sediments from the western North Atlantic (ODP Sites 1055–1063): Marine Geology, v. 189, p. 5–23, https://doi.org/10.1016/S0025-3227(02)00320-1.

Hayes, C.T., Martinez-Garcia, A., Hasenfratz, A.P., Jaccard, S.L., Hodell, D.A., Sigfusson, D.M., Haug, G.H., and Anderson, R.F., 2014, A stagnation event in the deep South Atlantic during the last interglacial period: Science, v. 346, p. 1514–1517, https://doi.org/10.1126/science.1256620.

Hodell, D.A., Channell, J.E.T., Curtis, J.H., Rome- ro, O.E., and Röhl, U., 2008, Onset of "Hudson Strait" Heinrich events in the eastern North Atlantic at the end of the Middle Pleistocene transition (~640 ka?): Paleoceanography, v. 23, PA4218, https://doi.org/10.1029/2008PA001591.

Jouzel, J., et al., 2007, Orbital and millennial Antarctic climate variability over the past 800,000 years: Science, v. 315, p. 793–796, https://doi.org/10.1126/science.1141038.

Kleiven, H.F., Kissel, C., Lai, C., Ninnenmann, U.S., Richter, T.O., and Cortijo, E., 2008, Reduced North Atlantic Deep Water coeval with the Glacial Lake Agassiz freshwater outburst: Science, v. 319, p. 60–64, https://doi.org/10.1126/science.1149824.

Licciardi, J.M., Clark, P.U., Jenson, J.W., and MacAyeal, D.R., 1998, Deglacial of a soft-bedded Laurentide ice sheet: Quaternary Science Reviews, v. 17, p. 427–448, https://doi.org/10.1016/S0277-3791(97)00044-9.

McManus, J.F., Oppo, D.W., Keigwin, L.D., Cullen, J.L., and Bond, G.C., 2002, Thermohaline circulation and prolonged interglacial warmth in the North Atlantic: Quaternary Research, v. 58, p. 17–21, https://doi.org/10.1016/j.qures.2002.2367.

Mulder, T., and Alexander, J., 2001, The physical character of subaqueous sedimentary density flows and their deposits: Sedimentology, v. 48, p. 269–299, https://doi.org/10.1046/j.1365-3091.2001.00360.x.

Nicholl, J.A.L., Hodell, D.A., Naafs, B.D.A., Hillaire-Marcel, C., Channell, J.E.T., and Romero, O.E., 2012, A Laurentide outburst flooding event during the last interglacial period: Nature Geoscience, v. 5, p. 901–904, https://doi.org/10.1038/angeles2s.

Sanford, B.V., Grant, A.C., Wade, J.A., and Barss, M.S., 1979, Geology, eastern Canada and adjacent areas: Geological Survey of Canada Map 1401A, 4 sheets, scale 1:2,000,000, https://doi.org/10.4095/133910.

Shilts, W.W., 1980, Flow patterns in the central North American ice sheet: Nature, v. 286, p. 213–218, https://doi.org/10.1038/286213a0.

Stokes, C.R., and Tarasov, L., 2010, Ice streaming in the Laurentide Ice Sheet: A first comparison between data-calibrated numerical model output and geological evidence: Geophysical Research Letters, v. 37, L01501, https://doi.org/10.1029/2009GL040990.

St-Onge, G., and Lajeunesse, P., 2007, Flood-induced turbidites from northern Hudson Bay and western Hudson Strait: A two-pulse record of Lake Agassiz final outburst flood?, in Lykosuis, V., et al., eds., Submarine Mass Movements and Their Consequences: Dordrecht, Netherlands, Springer, p. 129–137, https://doi.org/10.1007/978-1-4020-6512-5_14.

Talling, P.J., et al., 2007, Onset of submarine debris flow deposition far from original giant landslides: Nature, v. 450, p. 541–544, https://doi.org/10.1038/nature06313.

Tarasov, L., Dyke, A.S., Neal, R.M., and Pecler, W.R., 2012, A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling: Earth and Planetary Science Letters, v. 315–316, p. 30–40, https://doi.org/10.1016/j.epsl.2011.09.010.

Thomas, E.R., Wolff, E.W., Mulvaney, R., Steffensen, J.P., Johnsen, S.J., Arrowsmith, C., White, J.W.C., Vaughn, B., and Popp, T., 2007, The 8.2 ka event from Greenland ice cores: Quaternary Science Reviews, v. 26, p. 70–81, https://doi.org/10.1016/j.quascirev.2006.07.017.

Walker, M., et al., 2009, Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records: Journal of Quaternary Science, v. 24, p. 3–17, https://doi.org/10.1002/jqs.1227.

Zhou, Y., McManus, J.F., Jacobel, A.W., Costa, K.M., Wang, S., and Alvarez Caraveo, B., 2021, Enhanced iceberg discharge in the western North Atlantic during all Heinrich events of the last glaciation: Earth and Planetary Science Letters, v. 564, 116910, https://doi.org/10.1016/j.epsl.2021.116910.

Printed in USA