Effects of Bacteriophage Supplementation on Egg Performance, Egg Quality, Excreta Microflora, and Moisture Content in Laying Hens

P. Y. Zhao, H. Y. Baek and I. H. Kim*
Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, 330-714, Korea

ABSTRACT: An experiment was conducted to evaluate the effects of bacteriophage supplementation on egg performance, egg quality, excreta microflora, and moisture content in laying hens. A total of 288 Hy-line brown commercial laying hens (36-wk-old) were randomly allotted to 4 treatments in this 6-wk trial and dietary treatments included: i) CON, basal diet; ii) T1, CON+0.020% bacteriophage; iii) T2, CON+0.035% bacteriophage; iv) T3, CON+0.050% bacteriophage. There were 6 replicates for each treatment with 6 adjacent cages (2 hens/cage). Laying hens in T2 and T3 treatments had higher (p<0.05) egg production than those in CON and T1 treatments during wk 0 to 3. In addition, egg production in T1, T2, and T3 treatments was increased (p<0.05) compared with that in CON treatment during wk 4 to 6. At wk 4 and 5, birds in T2 group had higher (p<0.05) HU than those in CON. In addition, at wk 5 and 6, HU in birds fed T1 and T3 diets was greater (p<0.05) than those fed CON diet. E. coli and Salmonella spp. concentrations in excreta were decreased (p<0.05) by T1, T2, and T3 treatments. However, egg weight, egg shell color, yolk height, yolk color unit, egg shell strength, egg shell thickness, egg gravity, and excreta moisture content were not influenced by dietary treatments during the entire experimental period. In conclusion, bacteriophage supplementation has beneficial effects on egg production, egg albumen, and excreta microflora concentration in laying hens. (Key Words: Bacteriophage, Egg Production, Egg Albumen, Excreta Microflora, Laying Hens)

INTRODUCTION

In the 1950s and 1960s, the major concern in food production was food security, which means quantitative food supply. In food safety, 3 areas of risk are microbiological, chemical, and physical contaminations (Codex Alimentarius Commission, 2001; Swabe et al., 2001). In many countries, outbreaks of human salmonellosis have been occurring since the 1980s. These events have been strongly associated with eggs and egg products contaminated with Salmonella Enteritidis (S. Enteritidis) (Rodrique et al., 1990; Araujo et al., 1995; Kaku, 1995; Vege et al., 2005; Humphrey, 2006), although many efforts have been made to control of S. Enteritidis in laying hens to prevent egg contamination. Some studies have been done on S. Enteritidis in laying hens, for example, Barrow and Lovell (1991) reported that when fifty 40-wk-old laying hens were inoculated with 10^5 cfu S. Enteritidis phage type 4 egg productivity fell from 80% to 69.5% within two weeks following infection. Consequently, there is a need to combat this deadly bacterium and as bacteriophages are not antibiotics and do not stay in the food chain, they are considered as potentially one of the best methods for control.

Bacteriophages are viruses that infect bacteria and were known as eaters of bacteria in 1915 (McGrath et al., 2004). Bacteriophages, like bacteria, are very common in all natural environments and are directly related to the numbers of bacteria present. They are thus very common in soil and have shaped the evolution of bacteria. Bacteriophages are extremely specialized and each strain attacks a different kind of bacteria. They are obligate intracellular parasites that multiply inside bacteria by making use of some or all of the host biosynthetic machinery. Once a phage enters into a bacterial cell, it starts replicating to 30 to 50 copies, causing the bacterium to disintegrate.

Some authors had successfully reported reductions in Salmonella counts using bacteriophages in chicken internal organs and feces (Toro et al., 2005), skin (Goode et al., 2003) or poultry products (Whichard et al., 2003). Fiorentin et al. (2005) also reported that the use of lytic bacteriophages might reduce S. Enteritidis in chicken skin. So, we became interested to know if Salmonella reduction by bacteriophages would have beneficial effect in laying hens.

* Corresponding Author: I. H. Kim. Tel: +82-41-550-3652, Fax: +82-41-565-2949, E-mail: inhokim@dankook.ac.kr
Submitted Jan. 11, 2012; Accepted Mar. 19, 2012; Revised Apr. 4, 2012
In the present study, the principal objective was to evaluate effects of bacteriophage supplementation on egg performance, egg quality, excreta microflora, and moisture content in laying hens.

MATERIALS AND METHODS

Experimental birds and design

The experimental protocol used in the study was approved by the Animal Care and Use Committee of Dankook University.

Bacteriophages used in our study contained *Salmonella gallinarum* bacteriophage, *Salmonella typhimurium* bacteriophage, and *S. Enteritidis* bacteriophage. The concentration of bacteriophages was 10^8 plaque forming unit per gram. A total of 288 Hy-line brown commercial laying hens (36-wk-old) were randomly allotted to 4 treatments during a 6 wk feeding trial. There were 6 replicates for each treatment with 6 adjacent cages (2 hens/cage, 38.1 cm-width×50 length×40 height) representing a replicate. Dietary treatments were as follows: i) CON, basal diet; ii) T1, CON+0.020% bacteriophage; iii) T2, CON+0.035% bacteriophage; iv) T3, CON+0.050% bacteriophage. All diets were formulated to meet or exceed the NRC (1994) requirements for laying hens and provided a basal diet for a 7 d adjustment period.

Sampling and measurements

Daily records of egg production and weekly records of feed consumption were maintained. The egg production was expressed as an average hen-day production. In addition, egg quality was checked weekly from 1 to 6 wk. A total of 30 eggs (5 eggs per replicate) from each treatment were randomly selected at 17:00 h and used for quality analysis at 20:00 h the same day. Soft and broken eggs were not included in the analysis. An egg shell color fan was used to visually determine the egg shell color (DSM, Switzerland).

The specific gravity of eggs was determined by using the saline flotation method of Hempe et al. (1998). Salt solutions were made in incremental concentrations of 0.005 in the range from 1.065 to 1.120. Egg shell breaking strength was evaluated using an Egg shell force gauge model II (Robotmation Co., Ltd., Tokyo, Japan). In addition, the egg weight, egg yolk color, and Haugh unit (HU) were evaluated using an egg multi tester (Touhoku Rhythm Co. Ltd., Tokyo, Japan). Finally, egg shell thickness was measured on the large end, equatorial region and small end respectively using a dial pipe gauge (Ozaki MFG Co., Ltd., Japan).

Excreta samples were collected directly from each cage and then pooled and placed on ice for transportation to the lab, where analysis was immediately carried out. The identification of excreta microflora was carried out at the end of wk 6. One gram of the composite excreta sample from each cage was diluted with 9 ml of 1% peptone broth (Becton, Dickinson and Co., Franklin Lakes, NJ, USA) and then homogenized. Viable counts of bacteria in the excreta samples were then conducted by plating serial 10-fold dilutions (in 1% peptone solution) onto MacConkey agar plates (Difco Laboratories, Detroit, MI, USA) and lactobacilli medium III agar plates (Medium 638, DSMZ, Braunschweig, Germany) to isolate the *E. coli* and *Lactobacillus*, respectively. The lactobacilli medium III agar plates were then incubated for 48 h at 39°C under anaerobic conditions. The MacConkey agar plates were

Table 1. Basal diet composition (as-fed basis)

Ingredients	%
Corn	50.4
Soybean meal (CP 46%)	18.7
Wheat grain	10.0
Corn gluten meal	2.00
Wheat bran	5.00
Animal fat	4.40
Limestone	7.50
Tricalcium phosphate (P 18%)	1.40
Sodium chloride	0.30
DL-metat (50%)	0.10
Vitamin premix¹	0.10
Mineral premix²	0.10
Total	100

¹ Provided per kg of diet: vitamin A, 125,000 IU; vitamin D₃, 2,500 IU; vitamin E, 10 mg; vitamin K₃, 2 mg; vitamin B₁, 1 mg; vitamin B₂, 5 mg; vitamin B₆, 1 mg; vitamin B₁₂, 15 µg; folic acid, 500 mg; niacin, 35,000 mg; Ca-pantothenate acid, 10,000 mg and biotin, 50 µg.

² Provided per kg of diet: 8 mg Mn (as MnO₂); 60 mg Zn (as ZnSO₄); 5 mg Cu (as CuSO₄·5H₂O); 40 mg Fe (as FeSO₄·7H₂O); 0.3 mg Co (as CoSO₄·5H₂O); 1.5 mg I (as KI), and 0.15 mg Se (as Na₂SeO₃·5H₂O).

³ Provided per kg of diet: 960 µg Fe (as FeSO₄·7H₂O); 2,914 mg K (as K₂CO₃); 2 mg I (as KI), and 0.15 mg Se (as Na₂SeO₃·5H₂O).
incubated for 24 h at 37°C. The *E. coli* and *Lactobacillus* colonies were counted immediately after removal from the incubator.

Broiler excreta samples were collected and placed in aluminum foil cups. The aluminum foil cups were weighed and placed in a drying oven at 100°C for 24 h and then reweighed to calculate moisture loss.

Statistical analysis

All data were analyzed by using the GLM procedure in a completely randomized block design with the SAS software program (SAS Institute, 1996). Differences among all treatments were separated by Duncan’s multiple range test. Results were expressed as the least squares means and SEM, and p<0.05 was considered statistically significant.

RESULTS

Egg performance

The effects of bacteriophage supplementation on egg production and egg weight in laying hens are shown in Table 2. Laying hens in T2 and T3 treatments had higher (p<0.05) egg production than those in CON and T1 treatments during wk 0 to 3. In addition, egg production in T1, T2, and T3 treatments increased (p<0.05) compared with that in CON treatment. There was no difference in egg weight among dietary treatments.

Egg quality

The effects of bacteriophage supplementation on egg

Table 2. Effects of bacteriophage on egg production and egg weight in laying hens

Items	CON	T1	T2	T3	SE
Egg production (%)					
0 to 3 wk	90.8a	91.0b	92.0a	91.8a	0.22
4 to 6 wk	89.9b	91.5a	92.1a	91.6a	0.55
Egg weight (g)					
0 wk	58.7	58.7	58.7	59.0	0.35
3 wk	58.9	58.6	59.1	59.2	0.54
6 wk	58.9	58.8	59.5	59.7	0.62

CON = Basal diet; T1 = CON+0.020% bacteriophage; T2 = CON+0.035% bacteriophage; T3 = CON+0.050% bacteriophage.

1 Pooled standard error. 2 Means in the same row with different superscripts differ (p<0.05).
quality in laying hens are shown in Table 3. At wk 4 and 5, birds in T2 group had higher (p<0.05) HU than those in CON. In addition, at wk 5 and 6, HU in birds fed T1 and T3 diets was greater (p<0.05) than those fed the CON diet. However, egg shell color, yolk height, yolk color unit, egg shell strength, egg shell thickness, and egg gravity were unaffected by treatments through the experiment.

Excreta microflora and moisture

The effects of bacteriophage supplementation on excreta microflora and moisture in laying hens are shown in Table 4. *E. coli* and *Salmonella spp.* concentrations in the excreta were decreased (p<0.05) by T1, T2, and T3 treatments. *Lactobacillus* and excreta moisture were not affected by bacteriophage supplementation.

Table 4. Effects of bacteriophage on excreta microflora and moisture in laying hens

Items (log_{10} CFU/g)	CON	T1	T2	T3	SE
Lactobacillus	7.54	7.46	7.48	7.44	0.09
Escherichia coli	6.59	6.28	6.25	6.23	0.11
Salmonella spp.	3.47	2.14	2.09	2.11	0.05
Excreta moisture	68.7	68.5	68.3	68.5	0.3

1 CON = Basal diet; T1 = CON+0.020% bacteriophage; T2 = CON+0.035% bacteriophage; T3 = CON+0.050% bacteriophage.
2 Pooled standard error.

a,b Means in the same row with different superscripts differ (p<0.05).

Egg production in T2 and T3 treatments was higher (p<0.05) than that in CON and T1 treatments during wk 0 to 3. In addition, egg production in T1, T2, and T3 treatments increased (p<0.05) compared with that in CON treatment. Egg weight was not affected by bacteriophage supplementation. To our knowledge, there has been no other study examining the effect of bacteriophage supplementation on egg production and weight. But, it has been reported that *S. Enteritidis* is highly invasive in laying hens, and a range of tissues such as blood, liver, spleen, kidney, ovaries/ovules, oviduct, and lung can be infected (Shivaprasad et al., 1990; Humphrey, 1993). Takata et al. (2003) reported that sperm inseminated in the uterus are transported to the infundibulum by actions of the oviduct. Thus, it would be possible that *Salmonella* that invaded the lower part of the oviduct could be transported to the infundibulum, followed by movement through the peritoneal cavity to the ovary and other organs. Thus, *S. Enteritidis* may cause some problems in egg production leading to lower egg production. Okamura et al. (2010) demonstrated that orally inoculated *Salmonella Typhimurium* (10^8 CFU/hen) slightly decreased egg production. When bacteriophages were used in the current study, they elicited a beneficial effect on egg production. This was probably due to a decrease in the number of *Salmonella spp.* It also agreed with the reports of Shivaprasad et al. (1999), Shivaprasad (2000), and Snoeyenbos (1991) that *Salmonella Pullorum* and *Salmonella Gallinarum* are associated with drastic weight loss, a sharp decrease in egg production, and increased mortality.

The HU, an expression relating egg weight and height of the thick albumen, is a measurement of the albumen quality and the freshness of an egg (Eisen et al., 1962). The higher the HU value, the better the albumen quality and freshness of the eggs. Van Immerseel et al. (2011) demonstrated that *Salmonella* bacteria infecting the oviduct could thus be incorporated in either the albumen or the eggshell membranes, and that *S. Enteritidis* could be found in both yolk and albumens of eggs laid by infected hens. Our results showed that HU was greater in the bacteriophage supplemented groups. This may indicate that bacteriophages contributed to egg albumen quality and freshness.

Huff et al. (2002) separated birds into three treatments. Birds in treatment 1 were infected by a culture containing only *E. coli*, no bacteriophage and birds in treatments 2 and 3 were infected respectively by 10^5 bacteriophage particles added to the *E. coli* and 10^6 bacteriophage particles added to the *E. coli* culture. As expected, most birds in treatment 1 died. However, birds in treatments 2 and 3 were partially or completely protected by the bacteriophage. Barrow et al. (1998) also demonstrated that bacteriophage could...
effectively prevent and treat *E. coli*-induced septicaemia and meningitis in chickens. In addition, Huff et al. (2003) reported that birds receiving an injection of bacteriophage after infection with *E. coli* had fewer deaths than birds just infected with *E. coli*. Fiorentin et al. (2005) reported that the use of lytic bacteriophages might reduce *S. Enteritidis* in chicken skin. Lee and Harris (2001) reported that *Salmonella*-specific lytic bacteriophage can be used as a potential method to reduce *Salmonella* in livestock. Those reports were consistent with our results that bacteriophage supplementation decreased *E. coli* and *Salmonella* spp. Concentrations. In conclusion, dietary bacteriophage supplementation exerted beneficial effects on egg production, egg albumen, and excreta microflora concentration in laying hens. However, more research is required to further elucidate the effect of bacteriophages on the health and performance of laying hens.

ACKNOWLEDGEMENTS

This work was supported by a grant from the Biogreen 21 program # PJ008121022012, Rural Development Administration, Republic of Korea and by grant No. 109155-03-3-HD120 of Agriculture and Forestry, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.

REFERENCES

Anonymous. 1988. *Salmonella Enteritidis* phage type 4: Chicken and egg. The Lancet 332:720-722.

Araujo, E., M. Pacheco, R. F. Boni, Y. S. K. Fonseca, D. S. Gelli, S. A. Fernandes and A. T. Tavechio. 1995. Surtos alimentares por *Salmonella enteritidis* asociados ao consumo de alimentos à base de ovos em Sorocaba, SP. Hig Aliment. 9:24-26.

Barrow, P. A., J. F. Tucker and J. M. Simpson. 1987. Inhibition of colonization of the chicken alimentary tract by *Salmonella typhimurium* gram-negative facultatively anaerobic bacteria. Epidemiol. Infect. 98:311-322.

Barrow, P. A. and Margaret A. Lovell. 1991. Experimental infection of egg-laying hens with *Salmonella enteritidis* phage type 4. Avian Pathol. 20:335-348.

Barrow, P. M. A. Lovell and A. Berchieri Jr. 1998. Use of lytic bacteriophage for control of experimental *Escherichia coli* septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol. 5:294-298.

Berchieri, Jr., A., M. A. Lovell and P. A. Barrow. 1991. The activity in the chicken alimentary tract of bacteriophages lytic for *Salmonella typhimurium*. Res. Microbiol. 142:541-549.

Codex Alimentarius Commission. 2001. Codex Alimentarius: Food Hygiene-Basic Texts. 2nd ed. Joint FAO/WHO Food Standards Programme, Rome, Italy.

De Reu, K., K. Grijpsveerd, W. Messens, M. Heyndrickx, M. Uyttendaele, J. Debevere and L. Herman. 2006. Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including *Salmonella Enteritidis*. Int. J. Food Microbiol. 112:253-260.

Eisen, E. J., B. B. Bohren and H. E. McKean. 1962. The Haugh Unit as a measure of egg albumen quality. Poult. Sci. 41:1461-1468.

Fiorentin, L., N. D. Vieira and W. Barioni Júnior. 2005. Use of lytic bacteriophages to reduce *Salmonella Enteritidis* in experimentally contaminated chicken cuts. Braz. J. Poult. Sci. 7:255-260.

Gantois, I., R. Ducatelle, F. Pasmans, F. Haesebrouck, R. Gast, T. J. Humphrey and F. Van Immerseel. 2009. Mechanisms of egg contamination by *Salmonella Enteritidis*. FEBS Microbiol. Rev. 33:718-738.

Gast, R. K. 1994. Understanding *Salmonella Enteritidis* in laying chickens: The contributions of experimental infections. Int. J. Food Microbiol. 21:107-116.

Goode, D., V. M. Allen and P. A. Barrow. 2003. Reduction of experimental *Salmonella* and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol. 69:5032-5036.

Hempe, J. M., R. C. Lauzen and J. E. Savage. 1998. Rapid determination of egg weight and specific gravity using a computerized data collection system. Poult. Sci. 67:902-907.

Hogue, A., P. White, J. Guard-Petter, W. Schlosser, R. Gast, E. Ebel, J. Farrar, T. Gomez, J. Madden, M. Madison, A. M. McNamara, R. Morales, D. Parham, P. Sparling, W. Sutherlin and D. Swerdlow. 1997. Epidemiology and control of egg-associated *Salmonella Enteritidis* in the United States of America. Rev. Sci. Tech. 16:542-553.

Huff, W. E., G. R. Huff, N. C. Rath, J. M. Balog, H. Xie, Jr. P. A. Moore and A. M. Donoghue. 2002. Prevention of *Escherichia coli* respiratory infection in broiler chickens with bacteriophage (SPR02). Poult. Sci. 81:437-441.

Huff, W. E., G. R. Huff, N. C. Rath, J. M. Balog and A. M. Donoghue. 2003. Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an *Escherichia coli* respiratory infection. Poult. Sci. 82:1108-1112.

Humphrey, T. J. 1993. *Salmonella enteritidis* P.T.4 infections in chickens. In WHO Consultation on control of *Salmonella* infections in animals: Prevention of food-borne *Salmonella* infections in man. Jena, Germany, 21-26, December.

Humphrey, T. J. 2006. Are happy chickens safer chickens? Poultry welfare and disease susceptibility. Br. Poult. Sci. 47:379-390.

Kaku, M., J. Peresi, A. T. Tavechio, A. S. Fernandes, A. B. Batista, I. Castanheira, G. Garcia, K. Irino and D. Gelli. 1995. Surto alimentar por *Salmonella enteritidis* no Noroeste do Estado de São Paulo, Brasil. Rev. Saude Publica. 29:127-131.

Lee, N. and D. L. Harris. 2001. The effect of bacteriophage treatment as preharvest intervention strategy to reduce the rapid dissemination of *Salmonella typhimurium* in pigs. Proc. Am. Assoc. Swine Vet. pp. 555-557.

Messens, W., K. Grijpsveerd and L. Herman. 2005. Eggshell penetration by *Salmonella*: A review. Worlds Poult. Sci. J. 61:71-85.

McGrath, S., G. F. Fitzgerald and D. van Sinderen. 2004. Starter cultures: Bacteriophage. Cheese Chemistry, Physics and Microbiology 1:163-189.

NRC. 1994. Nutrient requirements of poultry. 9th Revised Edition. National Academy Press. Washington, DC, USA.

Okamura, M., M. Sonobe, S. Obara, T. Kubo, T. Nagai, M.
Noguchi, K. Takehara, and M. Nakamura. 2010. Potential egg contamination by *Salmonella enterica* serovar *Typhimurium* definitive type 104 following experimental infection of pullets at the onset of lay. Poult. Sci. 89:1629-1634.

Rodrigue, D. C., R. V. Tauxe and B. Rowe. 1990. International increase in *Salmonella Enteritidis*: A new pandemic? Epidemiol. Infect. 105:21-27.

SAS. 1996. SAS user’s guide. Release 6.12 edition. SAS Institute, Inc. Cary NC, USA.

Shivaprasad, H. L., J. F. Timoney and S. Morales. 1990. Pathogenesis of *Salmonella enteritidis* infection in laying chickens. I. Studies on egg transmission, clinical signs, fecal shedding, and serologic responses. Avian Dis. 34:548-557.

Shivaprasad, H. L. 2000. Fowl typhoid and pullorum disease. Rev. Sci. Tech. 19:405-424.

Sklar, I. B. and R. D. Joerger. 2001. Attempts to utilize bacteriophages to Attempts to utilize bacteriophages to combat *Salmonella enterica* serovar Enteritidis in chickens *Salmonella enterica* serovar Enteritidis in chickens. J. Food Saf. 21:15-29.

Snoeyenbos, G. H. 1991. Pullorium disease. In Disease of poultry, ed. Calnek, B. W., Iowa State University Press, Ames, 73-86.

St Louis, M. E., D. L. Morse, M. E. Potter, T. M. DeMelfi, J. J. Guzewich, R. V. Tauxe and P. A. Blake. 1988. The emergence of grade A eggs as a major source of *Salmonella enteritidis* infections. New implications for the control of salmonellosis. J. Am. Med. Assoc. 259:2103-2107.

Swabe, J. M., L. Sterrenberg and N. E. van de Poll. 2001. Van zaadje tot karbonaadje: Betrokkenen over de volksgezondheidsrisico’s van de veehouderij. Rathenau Instituut, The Hague, The Netherlands.

Takata, T., J. Liang, H. Nakano and Y. Yoshimura. 2003. Invasion of *Salmonella Enteritidis* in the tissues of reproductive organs in laying Japanese quail: An immunocytochemical study. Poult. Sci. 82:1170-1173.

Toro, H., S. B. Price, A. S. McKee, F. J. Hoerr, J. Kreiling, M. Perdue and L. Bauermeister. 2005. Use of bacteriophages in combination with competitive exclusion to reduce *Salmonella* from infected chickens. Avian Dis. 49:118-124.

Van Immerseel, F., F. Haesebrouck and R. Ducatelle. 2011. The importance of digestive health and nutritional strategies to control *Salmonella*. Proceedings of the International Symposium on Avian Salmonellosis, 28-30, June.

Vege, P., A. Cloeckaert and P. Barrow. 2005. Emergence of *Salmonella* epidemics: The problems related to *Salmonella enterica* serotype Enteritidis and multiple antibiotic resistance in other major serotypes. Vet. Res. 36:267-288.

Whichard, J. M., N. Sriranganathan and F. W. Pierson. 2003. Suppression of *Salmonella* growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J. Food Prot. 66:220-225.