Rainbow Connection of Random Regular Graphs

Andrzej Dudek * Alan Frieze† Charalampos E. Tsourakakis ‡

November 11, 2013

Abstract

An edge colored graph G is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted by $rc(G)$, is the smallest number of colors that are needed in order to make G rainbow connected.

In this work we study the rainbow connection of the random r-regular graph $G = G(n, r)$ of order n, where $r \geq 4$ is a constant. We prove that with probability tending to one as n goes to infinity the rainbow connection of G satisfies $rc(G) = O(\log n)$, which is best possible up to a hidden constant.

1 Introduction

Connectivity is a fundamental graph theoretic property. Recently, the concept of rainbow connection was introduced by Chartrand, Johns, McKeon and Zhang in [7]. We say that a set of edges is rainbow colored if its every member has a distinct color. An edge colored graph G is rainbow edge connected if any two vertices are connected by a rainbow colored path. Furthermore, the rainbow connection $rc(G)$ of a connected graph G is the smallest number of colors that are needed in order to make G rainbow edge connected.

Notice, that by definition a rainbow edge connected graph is also connected. Moreover, any connected graph has a trivial edge coloring that makes it rainbow edge connected, since one may color the edges of a given spanning tree with distinct colors.

*Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008. E-mail: andrzej.dudek@wmich.edu. Research supported in part by Simons Foundation Grant #244712.
†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213. E-mail: alan@random.math.cmu.edu. Research supported in part by CCF1013110.
‡Aalto University, Aalto Science Institute, Espoo, Finland. E-mail: tsourolampis@gmail.com.
Other basic facts established in [7] are that \(rc(G) = 1 \) if and only if \(G \) is a clique and \(rc(G) = |V(G)| - 1 \) if and only if \(G \) is a tree. Besides its theoretical interest, rainbow connection is also of interest in applied settings, such as securing sensitive information transfer and networking (see, e.g., [5, 14]). For instance, consider the following setting in networking [5]: we want to route messages in a cellular network such that each link on the route between two vertices is assigned with a distinct channel. Then, the minimum number of channels to use is equal to the rainbow connection of the underlying network.

Caro, Lev, Roditty, Tuza and Yuster [4] prove that for a connected graph \(G \) with \(n \) vertices and minimum degree \(\delta \), the rainbow connection satisfies \(rc(G) \leq \frac{\log \delta}{\delta} n(1 + f(\delta)) \), where \(f(\delta) \) tends to zero as \(\delta \) increases. The following simpler bound was also proved in [4], \(rc(G) \leq n^{\frac{1}{2} \log n + \frac{3}{4}} \). Krivelevich and Yuster [13] removed the logarithmic factor from the upper bound in [4]. Specifically they proved that \(rc(G) \leq \frac{2n}{\delta + 1} \). Chandran, Das, Rajendraprasad and Varma [6] improved this upper bound to \(3n \delta + 1 + 3 \), which is close to best possible.

As pointed out in [4] the random graph setting poses several intriguing questions. Specifically, let \(G = G(n, p) \) denote the binomial random graph on \(n \) vertices with edge probability \(p \). Caro, Lev, Roditty, Tuza and Yuster [4] proved that \(p = \sqrt{\log n / n} \) is the sharp threshold for the property \(rc(G) \leq 2 \). This was sharpened to a hitting time result by Heckel and Riordan [10]. He and Liang [9] studied further the rainbow connection of random graphs. Specifically, they obtain a threshold for the property \(rc(G) \leq d \) where \(d \) is constant. Frieze and Tsourakakis [8] studied the rainbow connection of \(G = G(n, p) \) at the connectivity threshold \(p = \frac{\log n + \omega}{n} \) where \(\omega \to \infty \) and \(\omega = o(\log n) \). They showed that w.h.p.\(^1\) \(rc(G) \) is asymptotically equal to \(\max \{ \text{diam}(G), Z_1(G) \} \), where \(Z_1 \) is the number of vertices of degree one.

For further results and references we refer the interested reader to the recent survey of Li, She and Sun [14].

In this paper we study the rainbow connection of the random \(r \)-regular graph \(G(n, r) \) of order \(n \), where \(r \geq 4 \) is a constant and \(n \to \infty \). It was shown in Basavaraju, Chandran, Rajendraprasad, and Ramaswamy [1] that for any bridgeless graph \(G \), \(rc(G) \leq \rho(\rho + 2) \), where \(\rho \) is the radius of \(G = (V, E) \), i.e., \(\min_{x \in V} \max_{y \in V} \text{dist}(x, y) \). Since the radius of \(G(n, r) \) is \(O(\log n) \) w.h.p., we see that [1] implies that \(rc(G(n, r)) = O(\log^2 n) \) w.h.p. The following theorem gives an improvement on this for \(r \geq 4 \).

Theorem 1 Let \(r \geq 4 \) be a constant. Then, w.h.p. \(rc(G(n, r)) = O(\log n) \).

The rainbow connection of any graph \(G \) is at least as large as its diameter. The diameter of \(G(n, r) \) is w.h.p. asymptotically \(\log_{r-1} n \) and so the above theorem is best for large enough \(n \).

\(^1\)An event \(E_n \) occurs with high probability, or w.h.p. for brevity, if \(\lim_{n \to \infty} \Pr(E_n) = 1 \).
possible, up to a (hidden) constant factor.

We conjecture that Theorem 1 can be extended to include $r = 3$. Unfortunately, the approach taken in this paper does not seem to work in this case.

2 Proof of Theorem 1

2.1 Outline of strategy

Let $G = G(n, r)$, $r \geq 4$. Define

$$k_r = \log_{r-1} (K_1 \log n),$$

where K_1 will be a sufficiently large absolute constant. Recall that the *distance between two vertices* in G is the number of edges in a shortest path connecting them and the *distance between two edges* in G is the number of vertices in a shortest path between them. (Hence, both adjacent vertices and incident edges have distance 1.)

For each vertex x let T_x be the subgraph of G induced by the vertices within distance k_r of x. We will see (due to Lemma 5) that w.h.p., T_x is a tree for most x and that for all x, T_x contains at most one cycle. We say that x is tree-like if T_x is a tree. In which case we denote by L_x the leaves of T_x. Moreover, if $u \in L_x$, then we denote the path from u to x by $P(u, x)$.

We will randomly color G in such a way that the edges of every path $P(u, x)$ is rainbow colored for all x. This is how we do it. We order the edges of G in some arbitrary manner as e_1, e_2, \ldots, e_m, where $m = rn/2$. There will be a set of $q = \lceil K_2^2 r \log n \rceil$ colors available. Then, in the order $i = 1, 2, \ldots, m$ we randomly color e_i. We choose this color uniformly from the set of colors not used by those $e_j, j < i$ which are within distance k_r of e_i. Note that the number of edges within distance k_r of e_i is at most

$$2 \left((r - 1) + (r - 1)^2 + \cdots + (r - 1)^{\lfloor k_r \rfloor - 1} \right) \leq (r - 1)^{k_r} = K_1 \log n.$$

So for K_1 sufficiently large we always have many colors that can be used for e_i. Clearly, in such a coloring, the edges of a path $P(u, x)$ are rainbow colored.

Now consider a fixed pair of tree-like vertices x, y. We will show (using Corollary 4) that one can find a partial 1-1 mapping $f = f_{x,y}$ between L_x and L_y such that if $u \in L_x$ is in the domain $D_{x,y}$ of f then $P(u, x)$ and $P(f(u), y)$ do not share any colors. The domain $D_{x,y}$ of f is guaranteed to be of size at least $K_2 \log n$, where $K_2 = K_1/10$.

3
Having identified $f_{x,y}, D_{x,y}$ we then search for a rainbow path joining $u \in D_{x,y}$ to $f(u)$. To join u to $f(u)$ we continue to grow the trees T_x, T_y until there are $n^{1/20}$ leaves. Let the new larger trees be denoted by \hat{T}_x, \hat{T}_y, respectively. As we grow them, we are careful to prune away edges where the edge to root path is not rainbow. We do the same with T_y and here make sure that edge to root paths are rainbow with respect to corresponding T_x paths. We then construct at least $n^{1/21}$ vertex disjoint paths Q_1, Q_2, \ldots, from the leaves of \hat{T}_x to the leaves of \hat{T}_y. We then argue that w.h.p. one of these paths is rainbow colored and that the colors used are disjoint from the colors used on $P(u, x)$ and $P(f(u), y)$.

We then finish the proof by dealing with non tree-like vertices in Section 2.6.3.

2.2 Coloring lemmata

In this section we prove some auxiliary results about rainbow colorings of d-ary trees.

Recall that a *complete d-ary tree* T is a rooted tree in which each non-leaf vertex has exactly d children. The *depth* of an edge is the number of vertices in the path connecting the root to the edge. The set of all edges at a given depth is called a *level* of the tree. The *height* of a tree is the distance from the root to the deepest vertices in the tree (i.e. the leaves). Denote by $L(T)$ the set of leaves and for $v \in L(T)$ let $P(v, T)$ be the path from the root of T to v in T.

Lemma 2 Let T_1, T_2 be two vertex disjoint rainbow copies of the complete d-ary tree with ℓ levels, where $d \geq 2$. Let T_i be rooted at x_i, $L_i = L(T_i)$ for $i = 1, 2$, and

$$m(T_1, T_2) = |\{(v, w) \in L_1 \times L_2 : P(v, T_1) \cup P(w, T_2) \text{ is rainbow}\}|.$$

Then,

$$\kappa_\ell = \min_{T_1, T_2} \{m(T_1, T_2)\} \geq \left(1 - \sum_{i=1}^{\ell} \frac{i}{d^i}\right) d^{2\ell}. \quad (3)$$

Proof. We prove this by induction on ℓ. If $\ell = 1$, then clearly

$$\kappa_1 = d(d - 1).$$

Suppose that (3) holds for an $\ell \geq 2$.

Let T_1, T_2 be rainbow trees of height $\ell + 1$. Moreover, let $T'_1 = T_1 \setminus L(T_1)$ and $T'_2 = T_2 \setminus L(T_2)$. We show that

$$m(T_1, T_2) \geq d^2 \cdot m(T'_1, T'_2) - (\ell + 1)d^{\ell+1}. \quad (4)$$
Each \((v', w') \in L'_1 \times L'_2\) gives rise to \(d^2\) pairs of leaves \((v, w) \in L_1 \times L_2\), where \(v'\) is the parent of \(v\) and \(w'\) is the parent of \(w\). Hence, the term \(d^2 \cdot m(T'_1, T'_2)\) accounts for the pairs \((v, w)\), where \(P_{v,T_1} \cup P_{w,T_2}\) is rainbow. We need to subtract off those pairs for which \(P_{v,T_1} \cup P_{w,T_2}\) is not rainbow. Suppose that this number is \(\nu\). Let \(v \in L(T_1)\) and let \(v'\) be its parent, and let \(c\) be the color of the edge \((v, v')\). Then \(P_{v,T_1} \cup P_{w,T_2}\) is rainbow unless \(c\) is the color of some edge of \(P_{w,T_2}\). Now let \(\nu(c)\) denote the number of root to leaf paths in \(T_2\) that contain an edge color \(c\). Thus,

\[
\nu \leq \sum_c \nu(c),
\]

where the summation is taken over all colors \(c\) that appear in edges of \(T_1\) adjacent to leaves. We bound this sum trivially, by summing over all colors in \(T_2\) (i.e., over all edges in \(T_2\), since \(T_2\) is rainbow). Note that if the depth of the edge colored \(c\) in \(T_2\) is \(i\), then \(\nu(c) \leq d^{\ell+1-i}\). Thus, summing over edges of \(T_2\) gives us

\[
\sum_c \nu(c) \leq \sum_{i=1}^{\ell+1} d^{\ell+1-i} \cdot d^i = (\ell + 1)d^{\ell+1},
\]

and consequently (4) holds. Thus, by induction (applied to \(T'_1\) and \(T'_2\))

\[
m(T_1, T_2) \geq d^2 \cdot m(T'_1, T'_2) - (\ell + 1)d^{\ell+1} \geq d^2 \left(1 - \sum_{i=1}^{\ell} \frac{i}{d^i}\right) d^2 - (\ell + 1)d^{\ell+1} \geq \left(1 - \sum_{i=1}^{\ell+1} \frac{i}{d^i}\right) d^{2(\ell+1)},
\]

as required. \(\square\)

In the proof of Theorem 1 we will need a stronger version of the above lemma.

Lemma 3 Let \(T_1, T_2\) be two vertex disjoint edge colored copies of the complete \(d\)-ary tree with \(L\) levels, where \(d \geq 2\). For \(i = 1, 2\), let \(T_i\) be rooted at \(x_i\) and suppose that edges \(e, f\) of \(T_i\) have a different color whenever the distance between \(e\) and \(f\) in \(T_i\) is at most \(L\). Let \(\kappa_{\ell}\) be as defined in Lemma 2. Then

\[
\kappa_{L} \geq \left(1 - \frac{L^2}{d^{L/2}} - \sum_{i=1}^{[L/2]} \frac{i}{d^i}\right) d^{2L}.
\]
Proof. Let \(T_i^\ell \) be the subtree of \(T_i \) spanned by the first \(\ell \) levels, where \(1 \leq \ell \leq L \) and \(i = 1, 2 \). We show by induction on \(\ell \) that

\[
m(T_1^\ell, T_2^\ell) \geq \left(1 - \frac{\ell^2}{d_{[L/2]}^2} - \sum_{i=1}^{[L/2]} \frac{i}{d_i} \right) d^{2\ell}. \tag{5}
\]

Observe first that Lemma 2 implies (5) for \(1 \leq \ell \leq \lfloor L/2 \rfloor - 1 \), since in this case \(T_1^\ell \) and \(T_2^\ell \) must be rainbow.

Suppose that \(\lfloor L/2 \rfloor \leq \ell < L \) and consider the case where \(T_1^\ell, T_2^\ell \) have height \(\ell + 1 \). Following the argument of Lemma 2 we observe that color \(c \) can be the color of at most \(d_\ell + 1 - \lfloor L/2 \rfloor \) leaf edges of \(T_1 \). This is because for two leaf edges to have the same color, their common ancestor must be at distance (from the root) at most \(\ell - \lfloor L/2 \rfloor \).

Therefore,

\[
m(T_1^{\ell+1}, T_2^{\ell+1}) \geq d^2 \cdot m(T_1^\ell, T_2^\ell) - d^{\ell+1-\lfloor L/2 \rfloor} \sum_c \nu(c) \\
\geq d^2 \cdot m(T_1^\ell, T_2^\ell) - d^{\ell+1-\lfloor L/2 \rfloor} (\ell + 1) d^{\ell+1} \\
= d^2 \cdot m(T_1^\ell, T_2^\ell) - (\ell + 1) d^{2(\ell+1)-\lfloor L/2 \rfloor}.
\]

Thus, by induction

\[
m(T_1^{\ell+1}, T_2^{\ell+1}) \geq d^2 \left(1 - \frac{\ell^2}{d_{[L/2]}^2} - \sum_{i=1}^{[L/2]} \frac{i}{d_i} \right) d^{2\ell} - (\ell + 1) d^{2(\ell+1)-\lfloor L/2 \rfloor} \\
= \left(1 - \frac{\ell^2 + \ell + 1}{d_{[L/2]}^2} - \sum_{i=1}^{[L/2]} \frac{i}{d_i} \right) d^{2(\ell+1)} \\
\geq \left(1 - \frac{(\ell + 1)^2}{d_{[L/2]}^2} - \sum_{i=1}^{[L/2]} \frac{i}{d_i} \right) d^{2(\ell+1)}
\]

yielding (5) and consequently the statement of the lemma. \(\square \)

Corollary 4 Let \(T_1, T_2 \) be as in Lemma 3, except that the root degrees are \(d + 1 \) instead of \(d \). If \(d \geq 3 \) and \(L \) is sufficiently large, then there exist \(S_i \subseteq L_i, i = 1, 2 \) and \(f : S_1 \to S_2 \) such that

(a) \(|S_i| \geq d^L/10 \), and

(b) \(x \in S_1 \) implies that \(P_{x,T_1} \cup P_{f(x),T_2} \) is rainbow.
Proof. To deal with the root degrees being $d + 1$ we simply ignore one of the subtrees of each of the roots. Then note that if $d \geq 3$ then
\[
1 - \frac{L^2}{d[L/2]} - \sum_{i=1}^{\lfloor L/2 \rfloor} i \frac{d^i}{d^i} \geq 1 - \frac{L^2}{d[L/2]} - \sum_{i=1}^{\infty} i \frac{d^i}{d^i} = 1 - \frac{L^2}{d[L/2]} - \frac{d}{(d-1)^2} \geq \frac{1}{5}
\]
for L sufficiently large. Now we choose S_1, S_2 in a greedy manner. Having chosen a matching $(x_i, y_i = f(x_i)) \in L_1 \times L_2$, $i = 1, 2, \ldots, p$, and $p < dL/10$, there will still be at least $d^{2L/5} - 2pd^k > 0$ pairs in $m(T_1, T_2)$ that can be added to the matching. \(\square\)

2.3 Configuration model

We will use the configuration model of Bollobás [2] in our proofs (see, e.g., [3, 11, 15] for details). Let $W = [2m = rn]$ be our set of configuration points and let $W_i = [(i-1)r+1, ir]$, $i \in [n]$, partition W. The function $\phi : W \to [n]$ is defined by $w \in W_{\phi(w)}$. Given a pairing F (i.e. a partition of W into m pairs) we obtain a (multi-)graph G_F with vertex set $[n]$ and an edge $(\phi(u), \phi(v))$ for each $\{u, v\} \in F$. Choosing a pairing F uniformly at random from among all possible pairings Ω_W of the points of W produces a random (multi-)graph G_F. Each r-regular simple graph G on vertex set $[n]$ is equally likely to be generated as G_F. Here simple means without loops or multiple edges. Furthermore, if r is a constant, then G_F is simple with a probability bounded below by a positive value independent of n. Therefore, any event that occurs w.h.p. in G_F will also occur w.h.p. in $G(n, r)$.

2.4 Density of small sets

Here we show that w.h.p. almost every subgraph of a random regular graph induced by the vertices within a certain small distance is a tree. Let
\[
t_0 = \frac{1}{10} \log_{r-1} n. \tag{6}
\]

Lemma 5 Let k_r and t_0 be defined in (1) and (6). Then, w.h.p. in $G(n, r)$

(a) no set of $s \leq t_0$ vertices contains more than s edges, and

(b) there are at most $\log^{O(1)} n$ vertices that are within distance k_r of a cycle of length at most k_r.

7
Proof. We use the configuration model described in Section 2.3. It follows directly from the definition of this model that the probability that a given set of \(k \) disjoint pairs in \(W \) is contained in a random configuration is given by

\[
p_k = \frac{1}{(rn - 1)(rn - 3) \ldots (rn - 2k + 1)} \leq \frac{1}{(rn - 2k)^k} \leq \frac{1}{r^k(n - k)^k}.
\]

Thus, in order to prove (a) we bound:

\[
\Pr(\exists S \subseteq [n], |S| \leq t_0, e[S] \geq |S| + 1) \leq \sum_{s=3}^{[t_0]} \binom{n}{s} \left(\frac{s}{s+1} \right) r^{2(s+1)} p_{s+1}
\]

\[
\leq \sum_{s=3}^{[t_0]} \left(\frac{en}{s} \right)^s \left(\frac{es}{2} \right)^{s+1} \left(\frac{r}{n - (s + 1)} \right)^{s+1}
\]

\[
\leq \frac{et_0}{2} \cdot \frac{r}{n - (t_0 + 1)} \cdot \sum_{s=3}^{[t_0]} \left(\frac{en}{s} \cdot \frac{es}{2} \cdot \frac{r}{n - (s + 1)} \right)^s
\]

\[
\leq \frac{et_0}{2} \cdot \frac{r}{n - (t_0 + 1)} \cdot t_0 \cdot (e^2 r)^{t_0}
\]

\[
\leq \frac{e^2 r^2}{2(n - (t_0 + 1))} \cdot n \frac{\log_{r - 1}(e^2 r)}{10} = o(1),
\]

as required.

We prove (b) in a similar manner. The expected number of vertices within \(k_r \) of a cycle of length at most \(k_r \) can be bounded from above by

\[
\sum_{\ell=0}^{[k_r]} \binom{n}{\ell} \sum_{k=3}^{[k_r]} \binom{n}{k} \frac{(k - 1)!}{2} r^{2(k+\ell)} p_{k+\ell} \leq \sum_{\ell=0}^{[k_r]} \sum_{k=3}^{[k_r]} n^{k+\ell} \left(\frac{r}{n - (k + \ell)} \right)^{k+\ell}
\]

\[
\leq \sum_{\ell=0}^{[k_r]} \sum_{k=3}^{[k_r]} (2r)^{k+\ell}
\]

\[
\leq k_r^2 (2r)^{2k_r} = \log^{O(1)} n.
\]

Now (b) follows from the Markov inequality. \(\square \)
2.5 Chernoff bounds

In the next section we will use the following bounds on the tails of the binomial distribution $\text{Bin}(n,p)$ (for details, see, e.g., [11]):

\[
\Pr(\text{Bin}(n,p) \leq \alpha np) \leq e^{-(1-\alpha)^2np/2}, \quad 0 \leq \varepsilon \leq 1,
\]

\[
\Pr(\text{Bin}(n,p) \geq \alpha np) \leq \left(\frac{\alpha}{e} \right)^{\alpha np}, \quad \alpha \geq 1.
\]

2.6 Coloring the edges

We now consider the problem of coloring the edges of $G = G(n,r)$. Let H denote the line graph of G and let $\Gamma = H^{kr}$ denote the graph with the same vertex set as H and an edge between vertices e, f of Γ if there is a path of length at most kr between e and f in H. Due to (2) the maximum degree $\Delta(\Gamma)$ satisfies

\[
\Delta(\Gamma) \leq K_1 \log n.
\]

We will construct a proper coloring of Γ using

\[
q = \lceil K_2^2 r \log n \rceil
\]

colors. Let e_1, e_2, \ldots, e_m with $m = rn/2$ be an arbitrary ordering of the vertices of Γ. For $i = 1, 2, \ldots, m$, color e_i with a random color, chosen uniformly from the set of colors not currently appearing on any neighbor in Γ. At this point only $e_1, e_2, \ldots, e_{i-1}$ will have been colored.

Suppose then that we color the edges of G using the above method. Fix a pair of vertices x, y of G.

2.6.1 Tree-like and disjoint

Assume first that T_x, T_y are vertex disjoint and that x, y are both tree-like. We see immediately, that T_x, T_y fit the conditions of Corollary 4 with $d = r - 1$ and $L = kr$. Let $S_x \subseteq L(T_x), S_y \subseteq L(T_y)$, $f : S_x \to S_y$ be the sets and function promised by Corollary 4. Note that $|S_x|, |S_y| \geq K_2 \log n$, where $K_2 = K_1/10$.

In the analysis below we will expose the pairings in the configuration as we need to. Thus an unpaired point of W will always be paired to a random unpaired point in W.

We now define a sequence $A_0 = S_x, A_1, \ldots, A_{t_0}$, where t_0 defined as in (6). They are defined so that $T_x \cup A_{\leq t}$ spans a tree $T_{x,t}$ where $A_{\leq t} = \bigcup_{j \leq t} A_j$. Given
\[A_1, A_2, \ldots, A_i = \{v_1, v_2, \ldots, v_p\} \] we go through \(A_i \) in the order \(v_1, v_2, \ldots, v_p \) and construct \(A_{i+1} \). Initially, \(A_{i+1} = \emptyset \). When dealing with \(v_j \) we add \(w \) to \(A_{i+1} \) if:

(a) \(w \) is a neighbor of \(v_j \);

(b) \(w \notin T_x \cup T_y \cup A_{\leq i+1} \) (we include \(A_{i+1} \) in the union because we do not want to add \(w \) to \(A_{i+1} \) twice);

(c) If the path \(P(v_j, x) \) from \(v_j \) to \(x \) in \(T_{x,i} \) goes through \(v \in S_x \) then the set of edges \(E(w) \) is rainbow colored, where \(E(w) \) comprises the edges in \(P(v_j, x) + (v_j, w) \) and the edges in the path \(P(f(v), y) \) in \(T_y \) from \(y \) to \(f(v) \).

We do not add neighbors of \(v_j \) to \(A_{i+1} \) if ever one of (b) or (c) fails. We prove next that

\[
\Pr \left(|A_{i+1}| \leq (r-1.1)|A_i| \bigg| K_2 \log n \leq |A_i| \leq n^{2/3} \right) = o(n^{-3}).
\]

Let \(X_b \) and \(X_c \) be the number of vertices lost because of case (b) and (c), respectively. Observe that

\[
(r-1)|A_i| - X_b - X_c \leq |A_{i+1}| \leq (r-1)|A_i|
\]

First we show that \(X_b \) is dominated by the binomial random variable

\[
Y_b \sim (r-1)\text{Bin} \left((r-1)|A_i|, \frac{r|A_i|}{rn/2 - rn^{2/3}} \right)
\]

conditioning on \(K_2 \log n \leq |A_i| \leq n^{2/3} \). This is because we have to pair up \((r-1)|A_i| \) points and each point has a probability less than \(\frac{r|A_i|}{rn/2 - rn^{2/3}} \) of being paired with a point in \(A_i \). (It cannot be paired with a point in \(A_{\leq i-1} \) because these points are already paired up at this time). We multiply by \((r-1) \) because one “bad” point “spoils” the vertex. Thus, (8) implies that

\[
\Pr(X_b \geq |A_i|/20) \leq \Pr(Y_b \geq |A_i|/20) \leq \left(\frac{40er(r-1)^2|A_i|}{n} \right)^{|A_i|/20} = o(n^{-3}).
\]

We next observe that \(X_c \) is dominated by

\[
Y_c \sim (r-1)\text{Bin} \left(r|A_i|, \frac{4\log r-1 n}{q} \right)
\]

To see this we first observe that \(|E(w)| \leq 2 \log_{r-1} n \), with room to spare. Consider an edge \(e = (v_j, w) \) and condition on the colors of every edge other than \(e \). We examine the effect of this conditioning, which we refer to as \(C \).
We let $c(e)$ denote the color of edge e in a given coloring. To prove our assertion about binomial domination, we prove that for any color x,

$$\Pr(c(e) = x \mid C) \leq \frac{2}{q}.$$ \hspace{1cm} (13)

We observe first that for a particular coloring c_1, c_2, \ldots, c_m of the edges e_1, e_2, \ldots, e_m we have

$$\Pr(c(e_i) = c_i, i = 1, 2, \ldots, m) = \prod_{i=1}^{m} \frac{1}{a_i}$$

where $q - \Delta \leq a_i \leq q$ is the number of colors available for the color of the edge e_i given the coloring so far i.e. the number of colors unused by the neighbors of e_i in Γ when it is about to be colored.

Now fix an edge $e = e_i$ and the colors $c_j, j \neq i$. Let C be the set of colors not used by the neighbors of e_i in Γ. The choice by e_i of its color under this conditioning is not quite random, but close. Indeed, we claim that for $c, c' \in C$

$$\frac{\Pr(c(e) = c \mid c(e_j) = c_j, j \neq i)}{\Pr(c(e) = c' \mid c(e_j) = c_j, j \neq i)} \leq \left(\frac{q - \Delta}{q - \Delta - 1} \right)^\Delta.$$

This is because, changing the color of e only affects the number of colors available to neighbors of e_i, and only by at most one. Thus, for $c \in C$, we have

$$\Pr(c(e) = c \mid c(e_j) = c_j, j \neq i) \leq \frac{1}{q - \Delta} \left(\frac{q - \Delta}{q - \Delta - 1} \right)^\Delta.$$

(14)

Now from (9) and (10) we see that $\Delta \leq \frac{q}{K_3 r}$ and so (14) implies (13).

Applying (8) we now see that

$$\Pr(X_c \geq |A_i|/20) \leq \Pr(Y_c \geq |A_i|/20) \leq \left(\frac{80c(r - 1)}{K_1^2} \right)^{|A_i|/20} = o(n^{-3}).$$

This completes the proof of (11). Thus, (11) and (12) implies that w.h.p.

$$|A_{t_0}| \geq (r - 1.1)^{t_0} \geq (r - 1)^{t_0} = n^{1/20}$$

and

$$|A_{t_0}| \leq (r - 1)^{t_0} |A_0| \leq K_1 n^{1/10} \log n,$$

since trivially $|A_0| \leq K_1 \log n$.

11
In a similar way, we define a sequence of sets $B_0 = S_y, B_1, \ldots, B_{t_0}$ disjoint from $A_{\leq t_0}$. Here $T_y \cup B_{\leq t_0}$ spans a tree T_{y,t_0}. As we go along we keep an injection $f_i : B_i \rightarrow A_i$ for $0 \leq i \leq t_0$. Suppose that $v \in B_i$. If $f_i(v)$ has no neighbors in A_{i+1} because (b) or (c) failed then we do not try to add its neighbors to B_{i+1}. Otherwise, we pair up its $(r-1)$ neighbors $b_1, b_2, \ldots, b_{r-1}$ outside $A_{\leq i}$ in an arbitrary manner with the $(r-1)$ neighbors $a_1, a_2, \ldots, a_{r-1}$. We add $b_1, b_2, \ldots, b_{r-1}$ to B_{i+1} and define $f_{i+1}(b_j) = a_j$, $j = 1, 2, \ldots, r-1$ if for each $1 \leq j \leq r-1$ we have $b_j \notin A_{\leq t_0} \cup T_x \cup T_y \cup B_{\leq i+1}$ and the unique path $P(b_j, y)$ of length $i + k_r$ from b_i to y in T_y,i is rainbow colored and furthermore, its colors are disjoint from the colors in the path $P(a_j, x)$ in T_x,i. Otherwise, we do not grow from v. The argument that we used for (11) will show that

$$\Pr \left(|B_{j+1}| \leq (r-1)|B_j| \left| K_2 \log n \leq |B_j| \leq n^{2/3} \right) = o(n^{-3}). \quad (15)$$

The upshot is that w.h.p. we have B_{t_0} and $A'_{t_0} = f_{t_0}(B_{t_0})$ of size at least $n^{1/20}$.

Our aim now is to show that w.h.p. one can find vertex disjoint paths of length $O(\log_{r-1} n)$ joining $u \in B_{t_0}$ to $f_{t_0}(u) \in A_{t_0}$ for at least half of the choices for u.

Suppose then that $B_{t_0} = \{u_1, u_2, \ldots, u_p\}$ and we have found vertex disjoint paths Q_j joining u_j and $v_j = f_{t_0}(j)$ for $1 \leq j < i$. Then we will try to grow breadth first trees T_{i}, T_{i}' from u_i and v_i until we can be almost sure of finding an edge joining their leaves. We will consider the colors of edges once we have found enough paths.

Let $R = A_{\leq t_0} \cup B_{\leq t_0} \cup T_x \cup T_y$. Then fix i and define a sequence of sets $S_0 = \{u_1\}, S_1, S_2, \ldots, S_i$ where we stop when either $S_i = \emptyset$ or $|S_i|$ first reaches size $n^{3/5}$. Here $S_{j+1} = N(S_j) \setminus (R \cup S_{\leq j})$. ($N(S)$ will be the set of neighbors of S that are not in S). The number of vertices excluded from S_{j+1} is less than $O(n^{1/10} \log n)$ (for R) plus $O(n^{1/10} \log n \cdot n^{3/5})$ for $S_{\leq j}$. Since

$$\frac{O(n^{1/10} \log n \cdot n^{3/5})}{n} = O(n^{-3/10} \log n) = O(n^{-3/11}),$$

$|S_{j+1}|$ dominates the binomial random variable

$$Z \sim \text{Bin} \left((r-1)|S_j|, 1 - O(n^{-3/11}) \right).$$

Thus, by (7)

$$\Pr \left(|S_{j+1}| \leq (r-1)|S_j| \left| 100 < |S_j| \leq n^{3/5} \right) \leq \Pr \left(Z \leq (r-1)|S_j| \left| 100 < |S_j| \leq n^{3/5} \right) = o(n^{-3}).$$

Therefore w.h.p., $|S_j|$ will grow at a rate $(r-1.1)$ once it reaches a size exceeding 100. We must therefore estimate the number of times that this size is not reached. We
can bound this as follows. If S_j never reaches 100 in size then some time in the construction of the first $\log_{r-1} 100$ S_j's there will be an edge discovered between an S_j and an excluded vertex. The probability of this can be bounded by $100 \cdot O(n^{-3/11}) = O(n^{-3/11})$. So, if β denotes the number of i that fail to produce S_t of size $n^{3/5}$ then

$$\Pr(\beta \geq 20) \leq o(n^{-3}) + \left(\frac{n^{1/10} \log n}{20}\right) \cdot O(n^{-3/11})^{20} = o(n^{-3}).$$

Thus w.h.p. there will be at least $n^{1/20} - 20 > n^{1/21}$ of the u_i from which we can grow a tree with $n^{3/5}$ leaves $L_{i,y}$ such that all these trees are vertex disjoint from each other and R.

By the same argument we can find at least $n^{1/21}$ of the v_i from which we can grow a tree $L_{i,x}$ with $n^{3/5}$ leaves such that all these trees are vertex disjoint from each other and R and the trees grown from the u_i. We then observe that if $e(L_{i,x}, L_{i,y})$ denotes the edges from $L_{i,x}$ to $L_{i,y}$ then

$$\Pr(\exists i : e(L_{i,x}, L_{i,y}) = \emptyset) \leq n^{1/20} \left(1 - \frac{(r-1)n^{3/5}}{rn/2}\right)^{(r-1)n^{3/5}} = o(n^{-3}).$$

We can therefore w.h.p. choose an edge $f_i \in e(L_{i,x}, L_{i,y})$ for $1 \leq i \leq n^{1/21}$. Each edge f_i defines a path Q_i from x to y of length at most $2 \log_{r-1} n$. Let Q'_i denote that part of Q_i that goes from $u_i \in A_{t_0}$ to $v_i \in B_{t_0}$. The path Q_i will be rainbow colored if the edges of Q'_i are rainbow colored and distinct from the colors in the path from x to u_i in T_{x,t_0} and the colors in the path from y to v_i in T_{y,t_0}. The probability that Q'_i satisfies this condition is at least $\left(1 - \frac{2 \log_{r-1} n}{q}\right)^{2 \log_{r-1} n}. Here we have used (13). In fact, using (13) we see that

$$\Pr(\neg i : Q_i \text{ is rainbow colored}) \leq \left(1 - \left(1 - \frac{2 \log_{r-1} n}{q}\right)^{2 \log_{r-1} n}\right)^{n^{1/21}} \leq \left(1 - \frac{1}{n^{4/(rK_1^2)}}\right)^{n^{1/21}} = o(n^{-3}).$$

This completes the case where x, y are both tree-like and $T_x \cap T_y = \emptyset$.

2.6.2 Tree-like but not disjoint

Suppose now that x, y are both tree-like and $T_x \cap T_y \neq \emptyset$. If $x \in T_y$ or $y \in T_x$ then there is nothing more to do as each root to leaf path of T_x or T_y is rainbow.
Let $a \in T_y \cap T_x$ be such that its parent in T_x is not in T_y. Then a must be a leaf of T_y. We now bound the number of leaves λ_a in T_y that are descendants of a in T_x. For this we need the distance of y from T_x. Suppose that this is h. Then

$$\lambda_a = 1 + (r-2) + (r-1)(r-2) + (r-1)^2(r-2) + \cdots + (r-1)^{k_r - h - 1}(r-2) = (r-1)^{k_r - h} + 1.$$

Now from Lemma 5 we see that there will be at most two choices for a. Otherwise, $T_x \cup T_y$ will contain at least two cycles of length less than $2k_r$. It follows that w.h.p. there at most $\lambda_0 = 2((r-1)^{k_r - h} + 1)$ leaves of T_y that are in T_x. If $(r-1)^h \geq 201$ then $\lambda_0 \leq |S_y|/10$. Similarly, if $(r-1)^h \geq 201$ then at most $|S_x|/10$ leaves of T_x will be in T_y. In which case we can use the proof for $T_x \cap T_y = \emptyset$ with S_x, S_y cut down by a factor of at most $4/5$.

If $(r-1)^h \leq 200$, implying that $h \leq 5$ then we proceed as follows: We just replace k_r by $k_r + 5$ in our definition of T_x, T_y, for these pairs. Nothing much will change. We will need to make q bigger by a constant factor, but now we will have $y \in T_x$ and we are done.

2.6.3 Non tree-like

We can assume that if x is non tree-like then T_x contains exactly one cycle C. We first consider the case where C contains an edge e that is more than distance 5 away from x. Let $e = (u, v)$ where u is the parent of v and u is at distance 5 from x. Let \hat{T}_x be obtained from T_x by deleting the edge e and adding two trees H_u, H_v, one rooted at u and one rooted at v so that \hat{T}_x is a complete $(r-1)$-ary tree of height k_r. Now color H_u, H_v so that Lemma 3 can be applied. We create \hat{T}_y from T_y in the same way, if necessary. We obtain at least $(r-1)^{2k_r}/5$ pairs. But now we must subtract pairs that correspond to leaves of H_u, H_v. By construction there are at most $4(r-1)^{2k_r-5} \leq (r-1)^{2k_r}/10$. So, at least $(r-1)^{2k_r}/10$ pairs can be used to complete the rest of the proof as before.

We finally deal with those T_x containing a cycle of length 10 or less, no edge of which is further than distance 10 from x. Now the expected number of vertices on cycles of length $k \leq 10$ is given by

$$k \binom{n}{k} \frac{(k-1)!}{2} \left(\frac{r}{2} \right)^k \Psi(\frac{rn-2k}{2}) \Psi(\frac{rn}{2}) \sim \frac{(r-1)^k}{2k},$$

where $\Psi(m) = m!/(2^{m/2}(m/2)!)$.

It follows that the expected number of edges μ that are within 10 or less from a cycle of length 10 or less is bounded by a constant. Hence $\mu = o(\log n)$ w.h.p. and
we can give each of these edges a distinct new color after the first round of coloring. Any rainbow colored set of edges will remain rainbow colored after this change.

Then to find a rainbow path beginning at x we first take a rainbow path to some x' that is distance 10 from x and then seek a rainbow path from x'. The path from x to x' will not cause a problem as the edges on this path are unique to it.

3 Conclusion

We have shown that w.h.p. $r_c(G(n, r)) = O(\log n)$ for $r \geq 4$ and $r = O(1)$. We have conjectured that this remains true for the case $r = 3$. We know there are examples of coloring T_1, T_2 in Lemma 2 where $\kappa^\ell = 2^\ell$ when $d = 2$. So more has to be done on this part of the proof. At a more technical level, we should also consider the case where $r \to \infty$ with n. Part of this can be handled by the sandwiching results of Kim and Vu [12].

References

[1] M. Basavaraju, L. S. Chandran, D. Rajendraprasad, and A. Ramaswamy, Rainbow connection number and radius, Graphs Combin., DOI 10.1007/s00373-012-1267-7.

[2] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European J. Combin. 1 (1980), no. 4, 311–316.

[3] ______, Random graphs, second ed., Cambridge Studies in Advanced Mathematics, vol. 73, Cambridge University Press, Cambridge, 2001.

[4] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008), no. 1, Research paper 57, 13.

[5] S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, Hardness and algorithms for rainbow connection, J. Comb. Optim. 21 (2011), no. 3, 330–347.

[6] L. S. Chandran, A. Das, D. Rajendraprasad, and N.M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012), no. 2, 206–218.

[7] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008), no. 1, 85–98.
[8] A. Frieze and C. E. Tsourakakis, *Rainbow connectivity of sparse random graphs*, Approximation, randomization, and combinatorial optimization, Lecture Notes in Comput. Sci., vol. 7408, Springer, Heidelberg, 2012, pp. 541–552.

[9] J. He and H. Liang, *On rainbow-k-connectivity of random graphs*, Inform. Process. Lett. **112** (2012), no. 10, 406–410.

[10] A. Heckel and O. Riordan, *The hitting time of rainbow connection number two*, Electron. J. Combin. **19** (2012), no. 4, Paper 37, 14.

[11] S. Janson, T. Łuczak, and A. Ruciński, *Random graphs*, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.

[12] J. H. Kim and V. H. Vu, *Sandwiching random graphs: universality between random graph models*, Adv. Math. **188** (2004), no. 2, 444–469.

[13] M. Krivelevich and R. Yuster, *The rainbow connection of a graph is (at most) reciprocal to its minimum degree*, J. Graph Theory **63** (2010), no. 3, 185–191.

[14] X. Li, Y. Shi, and Y. Sun, *Rainbow connections of graphs: a survey*, Graphs Combin. **29** (2013), no. 1, 1–38.

[15] N. C. Wormald, *Models of random regular graphs*, Surveys in combinatorics, 1999 (Canterbury), London Math. Soc. Lecture Note Ser., vol. 267, Cambridge Univ. Press, Cambridge, 1999, pp. 239–298.