Mycotoxicological monitoring. Part 3. Feedstuffs from raw grain processing

G. P. Kononenko1, A. A. Burkin2, Ye. V. Zotova3

All-Russia Research Institute of Veterinary Sanitation, Hygiene and Ecology – Branch of the Federal State-Financed Scientific Institution “Federal Scientific Centre – All-Russian Research Institute of Experimental Veterinary Medicine named after K. I. Scryabin and Ya. R. Kovalenko of the Russian Academy of Sciences (ARRIVSHE – Branch of the FSFSI FSC ARRIEVM RAS), Moscow, Russia

1 ORCID 0000-0002-9144-615X, e-mail: kononenkogp@mail.ru
2 ORCID 0000-0002-5674-2818, e-mail: aaburkin@mail.ru
3 ORCID 0000-0002-1479-8602, e-mail: ezotova63@gmail.com

REZЮМЕ
Представлены результаты микотоксикологического обследования производственных партий подсолнечного жмыха и шрота, кормовой продукции от переработки сои и пшеничных отрубей, полученных из перерабатывающих предприятий и животноводческих хозяйств страны за период с 2009 по 2019 г. Детектирование и измерение содержаний фузариотоксинов, включающих Т-2 токсин, диацетоксисцирпенол, дезоксинваленол, зеараленон и фумонизины группы В, а также альтернариола, охратоксина А, цитрина, афлатоксина В1, стеригматоцистина, циклопиазоновой кислоты, микофеноловой кислоты, эргоалкалоидов и эмодина проведено по аттестованной процедуре с использованием конкурентного иммуноферментного анализа. В ходе обобщения результатов установлена доминирующая роль альтернариола в контаминации подсолнечного жмыха и шрота, а также частая встречаемость Т-2 токсина, охратоксина А, цитрина, стеригматоцистина, микофеноловой кислоты и эмодина. Для основных контаминантов отмечено смещение медиан и 90%-го процентиля в сторону меньших значений по отношению к средним и максимальным содержаниям, что указывало на возможность случаев их накопления за пределами типичного диапазона. Обобщение и результаты микотоксикологического исследования пшеничных отрубей и кормовой продукции от переработки семян других масличных культур, а также зерна пшеницы и кукурузы.

Ключевые слова: подсолнечный шрот/жмых, соевый шрот/жмых, соя полножирная, пшеничные отруби, микотоксины, мониторинг, иммуноферментный анализ.

Для цитирования: Конonenko G. P., Burkin A. A., Zotova E. V. Mycotoxicological monitoring. Part 3. Feedstuffs from raw grain processing. Veterinary Science Today, 2020; 3 (34): 213–219. DOI: 10.29326/2304-196X-2020-3-34-213-219.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Для корреспонденции: Kononenko Galina Panteleevna, doctor biological sciences, professor, head laboratory of mycotoxicology and sanitary studies VNIIVGZ – filial FGBN FNS VIZV RAN, 123022, Moscow, Moscow region, Zvenigorodskoye shosse, d. 5, e-mail: kononenkogp@mail.ru.

UDC 619.615.9:636.085.19:543.9

Myctoxicological monitoring. Part 3. Feedstuffs from raw grain processing

G. P. Kononenko1, A. A. Burkin2, Ye. V. Zotova3

All-Russia Research Institute of Veterinary Sanitation, Hygiene and Ecology – Branch of the Federal State-Financed Scientific Institution “Federal Scientific Centre – All-Russian Research Institute of Experimental Veterinary Medicine named after K. I. Scryabin and Ya. R. Kovalenko of the Russian Academy of Sciences (ARRIVSHE – Branch of the FSFSI FSC ARRIEVM RAS), Moscow, Russia

1 ORCID 0000-0002-9144-615X, e-mail: kononenkogp@mail.ru
2 ORCID 0000-0002-5674-2818, e-mail: aaburkin@mail.ru
3 ORCID 0000-0002-1479-8602, e-mail: ezotova63@gmail.com

* Сообщение 1 см. Ветеринария сегодня. 2020; 1 (32): 60–65. DOI: 1029326/2304-196X-2020-1-32-60-65. Сообщение 2 см. Ветеринария сегодня. 2020; 2 (33): 139–145. DOI: 1029326/2304-196X-2020-2-33-139-145.

Part 1: Veterinary Science Today. 2020; 1 (32): 60–65. DOI: 10.29326/2304-196X-2020-1-32-60-65. Part 2: Veterinary Science Today. 2020; 2 (33): 139–145. DOI: 10.29326/2304-196X-2020-2-33-139-145.
ВВЕДЕНИЕ

Улучшение кормовой базы животноводства в России является важнейшей задачей сельскохозяйственной науки. Здоровье животных, их продуктивность, иммунобиологический статус, качество и безопасность продуктов животноводства во многом зависят от санитарного состояния кормов и их сбалансированности по питательным веществам. В комбинированных кормах отечественного производства микрокомпоненты, дополняющие зерновую часть, представлены главным образом жмыхом и шротом из семян подсолнечника и соевых бобов, в несколько меньшей степени – поочной продукцией мукумольно-крупяной и крахмалопаточной отрасли. Широкая сеть масложировых предприятий и развитые мукумольно-крупяная и крахмалопаточная отрасли полностью обеспечивают отечественное кормопроизводство подсолнечным жмыхом и шротом, зерновыми отрубами, а также всеми видами продукции от комплексной переработки зерна кукурузы. Поставки соевого шрота, жмыха и сои полноценной экструдированной традиционно происходят из основных регионов выращивания этой культуры в Южном и Дальневосточном федеральных округах и дополняются поступлением импортируемого сырья для удовлетворения текущих запросов рынка.

Первый этап оценки загрязненности микотоксинами в сельскохозяйственных комбикормах был выполнен в лаборатории микотоксикологии ГНУ ВНИИВСГЭ в 2002–2009 гг. [1, 2]. В этот период были установлены частная встречаемость охратоксина А и цитринина в подсолнечном жмыхе и шроте до уровней 190 и 1020 мкг/кг; меньшая – Т-2 токсина, дезоксицистинола, стеригматоцистин и циклопиазоновую кислоту; отсутствие зеараленона и диациетоксисцирпенола. Кроме того, была констатирована слабая контаминация соевого шрота Т-2 токсином. Дезоксикиниваленол и зеараленон обнаруживали редко и в малых количествах, охратоксин А и цитридин – в единичных пробах, а фумонизины группы В, афлатоксин В1, диациетоксицистергматоцистин и дезоксицистинол обнаруживали относительно часто. В целом, данные о загрязненности микотоксинами сельскохозяйственных компонентов подсолнечного жмыха и шрота подтверждают необходимость дальнейшего мониторинга в целях обеспечения безопасности корма животноводческим предприятиям.

ВЫБОРКА, ОБЪЕКТЫ И МЕТОДЫ

Объектами исследования были средние образцы подсолнечного жмыха и шрота, полученные от 90 предприятий – производителей подсолнечного жмыха и шрота и их коммерческих организаций и владельцам крестьянских фермерских хозяйств. Объем выборки составил 45 образцов, включая 121 образец, документальное или ответственное подтверждение мест расположения перерабатывающих предприятий и хозяйств (Белгородская, Воронежская, Липецкая, Ростовская, Тамбовская, Тверская, Тульская, Владимирская области, Краснодарский край, Республика Адыгея, Республика Северная Осетия–Алания, Республика Саха (Якутия), Республика Хакасия).
Волгоградская, Воронежская, Курская, Орловская, Ростовская, Саратовская, Тамбовская области, Краснодарский край, Приморский край, Республика Татарстан имели 107, получены с Украины – 2, а для 12 данные отсутствовали либо их достоверность вызывала сомнения. Из 80 образцов соевого шрота, жмыха и переработанной сои 8 были получены по импорту, 6 – из Дальневосточного федерального округа (Амурская область, Приморский край). Какими-либо сведениями о происхождении остальной части продукции от переработки сои, а также 20 образцов кормовых отрубей мы не располагали.

В группу определяемых микотоксинов входили Т-2 токсин (Т-2), диацетоксисцирпенол (ДАС), дезоксиниваленол (ДОН), зеараленол (ЗЕН), фумонизины группы В (ФУМ), альтернариол (АОЛ), охратоксин А (ОА), цитрин (ЦИТ), афлатоксин В, (АВ), стеригматоцистин (СТЕ), цикlopenазовая кислота (ЦПК), микофеноловая кислота (МФК), эргоалкалоиды (ЭА) и эмодин (ЭМО). Пробоподготовку проводили в соответствии с основанным на жидкостной экстракции и не прямом конкурентном иммуноферментном анализе унифицированной методикой с официальным статусом [6]. Пределы измерений, определенные по 85%-му уровню связывания антител, составили 2 (АВ1), 3 (ЭА), 4 (Т-2, ОА, СТЕ), 20 (ЗЕН, АОЛ, ЦИТ, МФК, ЭМО) и 50 (ДАС, ДОН, ФУМ) мкг/кг. В учетной форме базы данных использовали кодирование по критериям: определяемые микотоксины, вид сырья, год обследования и место расположения предприятия или хозяйства.

Для статистической обработки применяли программы Microsoft Excel 2016 и Statistica (версия 6) с вычислением процента встречаемости по соотношению n+ n и трех показателей по положительным образцам – среднего арифметического, медианы и 90%-го процентиля.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В подсолнечном шроте и жмыхе в целом по встречаемости доминировал АОЛ, продуцируемый грибами рода Alternaria, со средними значениями по выборкам 306 и 193 мкг/кг и возможностью высоких уровней накопления – до 1990 и 953 мкг/кг. Из группы фузаритоксинов только для Т-2 частота обнаружения была значительной – 21,4 и 37,3% при низких содержаниях с диапазонами 4–16 и 5–25 мкг/кг, лишь в единичных случаях удалось определить ДОН и ЗЕН, а ДАС и ФУМ отсутствовали (табл. 1, 2).

Токсины, продуцируемые грибами других таксонов, главным образом родов Aspergillus и Penicillium, за исключением АВ1, были выявлены в обоих видах продукции. ЭА встречались одинаково редко в малых концентрациях, ОА, МФК и ЭМО – с примерно равной частотой, превышающей 50%, при этом частота контаминации ОА была выше, чем ЦИТ. По другим токсинам эти показатели варьировали в 1,5–2 раза в шроте и жмыхе. Ряды, выстроенные по средним значениям содержаний, совпадали и имели следующий вид: ЦИТ, ЦПК, МФК (75–97 мкг/кг) > ОА (14 и 16 мг/кг) > СТЕ (7 мкг/кг).

Медианы и пороговые концентрации для 90% значений (90%-й процентиль) по всем контаминантам были

Токсин	Встречаемость n+/n (%)	Содержание, мкг/кг	диапазон	среднее значение	медиана	90%-й процентиль
			мин.	макс.		
Т-2	15/70 (21,4)	4	16	9	9	13
ДОН	1/70 (1,4)	375	–	–	–	–
ДАС	0/34	–	–	–	–	–
ЗЕН	1/70 (1,4)	66	–	–	–	–
ФУМ	0/33	–	–	–	–	–
АОЛ	57/68 (83,8)	19	1900	306	104	839,2
ОА	48/70 (68,6)	4	93	14	10	25,6
ЦИТ	29/67 (43,3)	20	1020	87	44	106,2
АВ1	0/41	–	–	–	–	–
СТЕ	5/48 (10,4)	4	12	7	6	11,2
ЦПК	11/58 (19,0)	50	123	77	72	109
МФК	32/61 (52,5)	24	379	75	44	179,1
ЭА	1/43 (2,3)	11	–	–	–	–
ЭМО	29/54 (53,7)	15	278	72	52	159,2

n – число исследованных образцов (number of tested samples); n+ – число образцов, содержащих микотоксин (number of mycotoxin-containing samples).
казателей (рис. 1) приводятся в этой работе впервые. Для соевого шрота на выборке из 49 образцов полное подтверждение получил ранее установленный факт меньшей контаминации микотоксинами в сравнении с продукцией от переработки семян подсолнечника [1, 2]. Встречаемость, равную 10% и выше, имели только Т-2, ЭА и ЭМО, не были найдены ДАС, ОА и ЦИТ, остальные токсины хотя и детектировали, но реже и со средними содержаниями на уровне десятков мкг/кг. Только для МФК в отдельных образцах концентрации превышали этот порог и составляли 337 и 1255 мкг/кг (рис. 1А). Для соевого жмыха и сои полножирной по выборке, включающей 31 образец, наблюдались признаки сходства, такие как отсутствие ДАС, присутствие Т-2 и ЭМО с частотой более 10% и меньшая встречаемость ЗЕН и АОЛ, но при этом выявляли и отчетливые отличия (рис. 1Б). Среди них не только увеличенная частота контаминации Т-2, ДОН, ФУМ, ЭМО и интенсивности накопления ДОН, ФУМ, но также детектирование ОА и ЦИТ, хотя и в малых количествах, близких порогу обнаружения метода, и отсутствие ряда токсинов — АВ1, СТЕ, ЦПК, МФК и ЭА.

Можно допустить, что наблюдаемые смещения в характере контаминации жмыха и полножирной сои в сравнении со шротом связаны с разным происхождением сырья, а также вызваны влиянием условий транспортировки и хранения партий. Столь же заметные колебания результатов, по-видимому, возможны и для шрота, также поступающего с географически

Таблица 2
Микотоксины в подсолнечном жмыхе (обобщенные данные 2009–2019 гг.)

Токсин	Встречаемость n / n (%)	Содержание, мкг/кг				
	диапазон	мин.	макс.	среднее значение	медиана	90%-й процентиль
Т-2	19/51 (37,3)	5	25	12	10	18,4
ДОН	0/51	—	—	—	—	—
ДАС	0/23	—	—	—	—	—
ЗЕН	0/51	—	—	—	—	—
ФУМ	0/16	—	—	—	—	—
АОЛ	41/50 (82,0)	20	953	193	79	536
ОА	32/51 (62,7)	4	62	16	9,5	36,8
ЦИТ	11/51 (21,6)	20	126	80	79	126
АВ1	0/29	—	—	—	—	—
СТЕ	10/39 (25,6)	4	11	7	5,5	9,2
ЦПК	21/39	50	142	81	71	120
МФК	9/44 (53,8)	20	334	97	63	222,8
ЭА	3/33 (9,1)	5	40	19	—	—
ЭМО	17/30 (56,7)	10	5000	369,5	59	229,4

n — число исследованных образцов (number of tested samples);
n+ — число образцов, содержащих микотоксин (number of mycotoxin-containing samples).
Словацкого сельскохозяйственного университета в городе Нитра (Slovak University of Agriculture in Nitra), в микобиоте кормовой сои, отобранной для анализа в агрофирмах этой страны, были широко представлены грибы Aspergillus и Penicillium и им сопутствовали представители родов Cladosporium, Alternaria и Fusarium [8]. Возможность бессимптомного заселения сои грибом Fusarium verticillioides, способным к биосинтезу ФУМ, показана недавно американскими исследователями [9]. Преобладание вида Alternaria alternata, продуцирующего АОЛ, и присутствие этого токсина показано в соевых бобах удаленных территорий. Действительно, по данным работы Н. Страшилиной и соавт., для 166 образцов шрота, происхождение которых не уточнялось, загрязненность АВ составила 100%, все анализированные фузаритоксины (T-2, ЗЕН, ДОН и ФУМ) встречались с частотой от 20,9 до 28,6%, а ОА обнаружили в 2,2% случаев [7].

В целом спектр микотоксинов, способных участвовать в контаминации продуктов переработки сои, достаточно широк и вполне согласуется с результатами изучения микобиоты семян этой культуры. По данным работы Н. Страшилиной и соавт., для 166 образцов шрота, происхождение которых не уточнялось, загрязненность АВ составила 100%, все анализированные фузаритоксины (Т-2, ЗЕН, ДОН и ФУМ) встречались с частотой от 20,9 до 28,6%, а ОА обнаружили в 2,2% случаев [7].
В ходе обширного мониторинга, проведенного в режиме ежегодного сбора данных за период с 2009 по 2019 г., получено подтверждение множественной контаминации микотоксинами подсолнечного шрота и подсолнечного жмыха с участием альтернариола, Т-2 токсина, охратоксина А, цитринина, циклопиазоновой кислоты, стеригматоцистина, микофеноловой кислоты и эмодина при частоте встречаемости от 10,4 до 83,8%, что позволяет отнести их к группе повышенного риска. Для безопасного использования сырья на основе соевых бобов следует признать целесообразным внедрение региональных мониторинговых проектов на территориях интенсивного возделывания этой культуры и ее промышленной переработки, а также организацию регулярного обследования импортируемых партий жмыха и шрота в связи с возможностью обнаружения широкого спектра микотоксинов. Впервые описанные для пшеничных отрубей случаи выявления диациетоцисицирилена и частая встречаемость Т-2 токсина, эмодина и эргоалкалоидов указывают на необходимость введения обязательного ведомственного контроля этой продукции на комбикормовых предприятиях.

ЗАКЛЮЧЕНИЕ

Дополнительные материалы к этой статье (учетные формы с базой данных) можно найти по адресу http://doi.org/10.29326/2304-196X-2020-3-34-213-219.

Additional materials to the paper (records forms with database) can be found at http://doi.org/10.29326/2304-196X-2020-3-34-213-219.

СПИСОК ЛИТЕРАТУРЫ (н. п. 8–12, 16 см. REFERENCES)

1. Буркин А. А., Кононенко Г. П. Микотоксины в кормовом сырье // Современная микология в России: теория, практика и технологии. Рос. акад. наук, моск.; 2002; 265.
2. Конененко Г. П., Буркин А. А. Микотоксинологический контроль кормового сырья и комбикормов. Актуальные проблемы ветеринарной фармакологии, токсикологии и фармации: материалы съезда фармакологов и токсикологов России. СПб.; 2011; 224–244. eLIBRARY ID: 428888720.

3. Буркин А. А., Устюжанина М. И., Зотова Е. В., Конененко Г. П. Причины конъюнктуры производственных партий семян подсолнечника (Helianthus annuus L.) и мицелларное ДНК-следовательство. Сельскохозяйственная биология. 2018; 53 (5): 969–976. DOI: 10.15389/agrobiology.2018.5.969rus.

4. Зотова Е. В., Конененко Г. П., Буркин А. А. Микотоксины в под- солнечнике (Helianthus annuus L.): компонентный состав и распределение по растению. Современные медицина и фармация. 2017; 7: 202–204. DOI: 10.14427/cm.2017.vii.13.

5. Конененко Г. П., Устюжанина М. И., Буркин А. А. Проблема безопас- ного использования подсолнечника (Helianthus annuus L.) для пищев- ных и кормовых целей (обзор). Сельскохозяйственная биология. 2018; 53 (3): 485–498. DOI: 10.15389/agrobiology.2018.3.485rus.

6. ФЕТС 31653-2012 Корма. Метод иммуномикологоического опре- деления микотоксинов. М.: Стандартинформ; 2012. 11 с. Режим доступа: http://docs.cntd.ru/document/1200095352.

7. Страшилкина Н., Головня Е., Филиппов М. Мониторинг мик- токсинов в сырье и комбикорме. Комбикорм. 2010; 8: 63–66. eLIBRARY ID: 16544175.

8. Осипьян Л. Л., Григорян К. М., Юсеф О. А. Загрязненность семян сои и соевой муки микромицетами и микотоксинами. Микология и фи- топатология. 2003; 26 (1): 43–47. Режим доступа: https://www.binran.ru/files/journals/MiF/MiF_2002_36_1.pdf.

9. Сушкова И. М., Полисенова В. Д. Микробиология на культуре сои в Беларуси. Иммунология, аллергология, инфектология. 2009; 1: 109.

10. Конененко Г. П., Пермякова Е. А., Зотова Е. В., Рязанов Ш. И., Мир- ков Д. М. Микотоксинемия и токсинпродуцирующие микрохромические грибы в хлопковом жмыхе из Таджикистана. Россиийский журнал «Проб- лемы ветеринарной санитарии, экологии и зоотехнии» 2019; 1 (29): 31–38. DOI: 10.25725/vet.san.hyg.ecol.201901005.

REFERENCES

1. Burkin A. A., Kononenko G. P. Mycotoxins in feed raw materials of plant origin [Mikotoksyny v kormovom surove razvedenii]. Current Mycology in Russia: 1st Congress of Russian Mycologists (abstracts). M.: National Academy of Mycology; 2002; 263. (in Russian)

2. Kononenko G. P., Burkin A. A. Mycotoxicological control of raw feed materials and mixed feed. Current aspects of veterinary pharmacology, toxicology, and pharmacy: Proceedings of the Congress of Russian Pharmacologists and Toxicologists. St-P.; 2011; 224–244. eLIBRARY ID: 428888720. (in Russian)

3. Burkin A. A., Ustyuzhanina M. I., Zотова E. V., Kononenko G. P. Reasons of contamination of production lots of sunflower (Helianthus annuus L.) seeds by mycotoxins. Agricultural Biology [Sel‰okhozjazistvennaya biologiya]. 2018; 53 (5): 969–976. DOI: 10.15389/agrobiology.2018.5.969rus. (in Russian)

4. Zотова E. V., Kononenko G. P., Burkin A. A. Mycotoxins in sunflower (Helianthus annuus L.): component composition and distribution in different parts of the plant [Mikotoksyny v podsolnezhenke (Helianthus annuus L.): komponentnyy sostav i raspredelenie po rasteniyu]. Current Mycology in Russia. 2017; 7: 202–204. DOI: 10.14427/cm.2017.vii.13. (in Russian)

5. Kononenko G. P., Ustyuzhanina M. I., Burkin A. A. The problem of safe sunflower (Helianthus annuus L.) use for food and fodder purposes. Agricultural Biology [Sel‰okhozjazistvennaya biologiya]. 2018; 53 (3): 485–498. DOI: 10.15389/agrobiology.2018.3.485rus. (in Russian)

6. GOST 31653-2012 Feed. Immunochemical method for mycotoxins in raw materials and compound feeds. [Monitorirovanie mikotoksynov v surove i kormikorme]. Compound Feeds. 2010; 6: 63–66. eLIBRARY ID: 16544175. (in Russian)

7. Kachanov A. M. Feeding soybean by microscopic fungi. Tyraly Univ. J. Sci. 2003; 4 (2): 165–168. DOI: 868MN12030104.

8. Kendra D. F. Asymptomatic colonization of soybean (Glycine max) by Fusarium verticillioides. The World Mycotoxin forum – the fifth conference. 17–18 November 2008. Netherlands; 119.

9. Oviedo M. S., Barros G. G., Chulze S. N., Ramirez M. L. Natural oc- currance of alternariol and alternariol monomethyl ether in soya beans. Mycotoxin Res. 2012; 28: 169–174. DOI: 10.1007/s15550-012-0312-0.

10. Verdi R. S., Barbosa M., Norres V. S. Microbiological quality of soybean crude oil used in animal nutrition. Higiene Alimentar, 2000; 14 (68/69): 101–106.

11. Osipyan L. L., Girgoryan K. M., Yusef O. A. Contamination of soybean seeds and soy flour by mycotoxigenic fungi in Tajikistan. Agricultural Biology [Mikobiota na kul'ture soi v Belarusi]. 2009; 1: 109.

12. Galina P. Kononenko. Doctor of Science (Biological), Professor, Head of Laboratory for Mycotoxicology and Feed Hygiene, ARRIVSHE – Branch of the FSFSi FSC ARRIEVM RAS, Moscow, Russia.

13. Alexey A. Burkin. Candidate of Science (Medicine), Leading Researcher, ARRIVSHE – Branch of the FSFSi FSC ARRIEVM RAS, Moscow, Russia.

14. Yelena V. Zotova. Candidate of Science (Veterinary Medicine), Senior Researcher, ARRIVSHE – Branch of the FSFSi FSC ARRIEVM RAS, Moscow, Russia.