Inter-band magnetoplasmons in mono- and bilayer graphene

M Tahir1,3 and K Sabeeh2

1 Department of Physics, University of Sargodha, Sargodha, Pakistan
2 Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan

E-mail: mtahir06\texttt{@imperial.ac.uk}, ksabeeh\texttt{@qau.edu.pk} and kashifsabeeh\texttt{@hotmail.com}

Received 5 May 2008, in final form 23 July 2008
Published 9 September 2008
Online at stacks.iop.org/JPhysCM/20/425202

Abstract

Collective excitation spectra of Dirac electrons in mono- and bilayer graphene in the presence of a uniform magnetic field are investigated. Analytical results for inter-Landau-band plasmon spectra within the self-consistent-field approach are obtained. Shubnikov–de Haas (SdH) type oscillations that are a monotonic function of the magnetic field are observed in the plasmon spectrum of both mono- and bilayer graphene systems. The results presented are also compared with those obtained in a conventional two-dimensional electron gas (2DEG). The chiral nature of the quasiparticles in mono- and bilayer graphene systems results in the observation of π and 2π Berry’s phase in the SdH-type oscillations in the plasmon spectrum.

1. Introduction

Recent progress in the experimental realization of both monolayer and bilayer graphene has led to extensive exploration of the electronic properties in these systems [1, 2]. Experimental and theoretical studies have shown that the nature of quasiparticles in these two-dimensional systems is very different from those of the conventional two-dimensional electron gas (2DEG) systems realized in semiconductor heterostructures. Graphene has a honeycomb lattice of carbon atoms. The quasiparticles in monolayer graphene have a band structure in which electron and hole bands touch at two points in the Brillouin zone. At these Dirac points the quasiparticles obey the massless Dirac equation, leading to a linear dispersion relation $\epsilon_k = v_F k$ (with the Fermi speed $v_F = 10^6 \text{ m s}^{-1}$). This difference in the nature of the quasiparticles in monolayer graphene from conventional 2DEG has given rise to a host of new and unusual phenomena such as the anomalous quantum Hall effects and a π Berry phase [1, 2]. These transport experiments have shown results in agreement with the presence of Dirac fermions. The 2D Dirac-like spectrum was confirmed recently by cyclotron resonance measurements and also by angle resolved photoelectron spectroscopy (ARPES) measurements in monolayer graphene [3]. Recent theoretical work on graphene multilayers has also shown the existence of Dirac electrons with a linear energy spectrum in monolayer graphene [4]. On the other hand, experimental and theoretical results have shown that quasiparticles in bilayer graphene exhibit a parabolic dispersion relation and they can not be treated as massless but have a finite mass. In addition, the quasiparticles in both the graphene systems are chiral [2, 4–7].

Plasmons are a very general phenomena and have been studied extensively in a wide variety of systems including ionized gases, simple metals and semiconductor 2DEG systems. In a 2DEG, these collective excitations are induced by the electron–electron interactions. Collective excitations (plasmons) are among the most important electronic properties of a system. In the presence of an external magnetic field, these collective excitations are known as magnetoplasmons. Magnetic oscillations of the plasmon frequency occur in a magnetic field. Single particle magneto-oscillatory phenomena such as the Shubnikov–de Haas (SdH) and de Haas–van Alphen effects have provided very important probes of the electronic structure of solids. Their collective analogue yields important insight into collective phenomena [8–15]. Collective excitations of Dirac electrons in monolayer and bilayer graphene in the absence of a magnetic field have been investigated [16–20]. Magnetic field effects on the plasmon spectrum have not been studied so far. In addition, since the quasiparticles in graphene are chiral, the particles will acquire Berry’s phase as they move in the magnetic field leading to observable effects on the plasmon spectrum. To this end, in the present work, we study the magnetoplasmon spectrum within the self-consistent-field approach for both the monolayer and
bilateral graphene systems. Magnetoplasmons can be observed by inelastic light scattering experiments as revealed in studies carried out on 2DEG systems [11–15]. Similarly, inelastic light scattering experiments are expected to yield information about the magnetoplasmons in graphene. Furthermore, the results presented here can also be experimentally observed by electron energy loss spectroscopy (EELS) on graphene [21].

2. Electron energy spectrum in monolayer graphene

We consider Dirac electrons in graphene moving in the x–y-plane. The magnetic field (B) is applied along the z-direction perpendicular to the graphene plane. We employ the Landau gauge and write the vector potential as \(A = (0, Bx, 0) \). The two-dimensional Dirac-like Hamiltonian for a single electron in the Landau gauge is \(\hbar = c = 1 \) here [1, 2]

\[
H_0 = v_F \sigma \cdot (-i\nabla + eA).
\]

Here \(\sigma = [\sigma_x, \sigma_y] \) are the Pauli matrices and \(v_F \) characterizes the electron Fermi velocity. The energy eigenfunctions are given by

\[
\Psi_{n,k}(r) = \frac{e^{ik \cdot r}}{\sqrt{2L_y}} \left(-i\Phi_{n-1}(x + x_0)/l \right) \Phi_n[(x + x_0)/l]
\]

where

\[
\Phi_n(x) = \frac{e^{-x^2/2}}{\sqrt{2^n n! \sqrt{\pi}}} H_n(x),
\]

\(l = \sqrt{1/eB} \) is the magnetic length, \(x_0 = l^2 k_y \), \(L_y \) is the y-dimension of the graphene layer and \(H_n(x) \) are the Hermite polynomials. The energy eigenvalues are

\[
\epsilon(n) = \omega_K \sqrt{n}
\]

where \(\omega_K = v_F \sqrt{2eB} \) is the cyclotron frequency of the monolayer graphene and \(n \) is an integer. Note that the Landau level spectrum for Dirac electrons is significantly different from that of a spectrum for electrons in a conventional 2DEG which is given as \(\epsilon(n) = \hbar \omega_c (n + 1/2) \). The Landau level spectrum in graphene has a \(\sqrt{n} \) dependence on the Landau level index as against the linear dependence in a 2DEG. The monolayer graphene has four-fold degenerate (spin and valley) states with the \(n = 0 \) level having energy \(\epsilon(n = 0) = 0 \). The quasiparticles in this system are chiral, exhibiting \(\pi \) Berry’s phase.

3. Electron energy spectrum for bilayer graphene

The Landau level energy eigenvalues and eigenfunctions are given by [5]

\[
\epsilon(n) = \omega_0 \sqrt{n(n - 1)},
\]

\[
\Psi_{n,k}^\pm = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_n \\ \pm \Phi_{n-2} \\ 0 \\ 0 \end{pmatrix},
\]

where \(\pm \) are assigned to electron and hole states, \(\omega_0 = \frac{eB}{2m^*} \)

is the cyclotron frequency of electrons in bilayer graphene and \(m^* \) is the effective mass given as \(0.044m_e \) with \(m_e \) being the bare electron mass. The Landau level spectrum of electrons given by equation (4) is distinctly different from that of monolayer graphene and a conventional 2DEG system. The electrons in the bilayer are quasiparticles that exhibit parabolic dispersion with a smaller effective mass than the standard electrons. Bilayer graphene has four-fold degenerate (spin and valley) states other than the \(n = 0 \) level with energy \(\epsilon(n = 0) = 0 \) which is eight-fold degenerate. These quasiparticles are chiral, exhibiting \(2\pi \) Berry’s phase.

3.1. Inter-Landau-band plasmon spectrum of monolayer and bilayer graphene in a magnetic field

The dynamic and static response properties of an electron system are all embodied in the structure of the density–density correlation function. We employ the Ehrenreich–Cohen self-consistent-field (SCF) approach [22] to calculate the density–density correlation function. The SCF treatment presented here is by its nature a high density approximation which has been successfully employed in the study of collective excitations in low-dimensional systems both with and without an applied magnetic field. It has been found that SCF predictions of plasmon spectra are in excellent agreement with experimental results. Following the SCF approach, one can express the dielectric function as

\[
\epsilon(\vec{q}, \omega) = 1 - v_c(\vec{q}) \Pi(\vec{q}, \omega),
\]

where the two-dimensional Fourier transform of the Coulomb potential \(v_c(\vec{q}) = \frac{2\pi e^2}{\kappa^2} \), \(\kappa = (q_x^2 + q_y^2)^{1/2} \), \(\kappa \) is the background dielectric constant and \(\Pi(\vec{q}, \omega) \) is the non-interacting density–density correlation function

\[
\Pi(\vec{q}, \omega) = \frac{2}{\pi l^2} \sum_n C_{nn'} \left(\frac{\vec{q}^2}{2\kappa B} \right) [\epsilon(\epsilon(n)) - \epsilon(\epsilon(n'))]
\]

\[
\times [\epsilon(n) - \epsilon(n') + \omega + i\eta]^{-1},
\]

where \(C_{nn'}(x) = (n_1/n_1!)(x)^{n_1-n_2} e^{-x[L_n^{(1)}(x)]^2} \) with \(n_1 = \max(n, n') \), \(n_2 = \min(n, n') \), \(L_n(x) \) an associated Laguerre polynomial with \(x = \frac{\vec{q}^2}{2\kappa B} \) here. This is a convenient form of \(\Pi(\vec{q}, \omega) \) that facilitates writing of the real and imaginary parts of the correlation function. The plasmon modes are determined from the roots of the longitudinal dispersion relation

\[
1 - v_c(\vec{q}) \text{Re} \Pi(\vec{q}, \omega) = 0
\]

along with the condition \(\text{Im} \Pi(\vec{q}, \omega) = 0 \) to ensure long-lived excitations. Employing equations (8) and (9) gives

\[
1 = \frac{2\pi e^2}{\kappa q} \frac{2}{\pi l^2} \sum_{n,n'} C_{nn'}(x) (I_1(\omega) + I_1(-\omega)),
\]

\[
\Psi_{n,k}^\pm = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ \pm \Phi_{n-2} \\ \Phi_n \end{pmatrix},
\]

where \(\pm \) are assigned to electron and hole states, \(\omega_0 = \frac{eB}{2m^*} \)

is the cyclotron frequency of electrons in bilayer graphene and \(m^* \) is the effective mass given as \(0.044m_e \) with \(m_e \) being the bare electron mass. The Landau level spectrum of electrons given by equation (4) is distinctly different from that of monolayer graphene and a conventional 2DEG system. The electrons in the bilayer are quasiparticles that exhibit parabolic dispersion with a smaller effective mass than the standard electrons. Bilayer graphene has four-fold degenerate (spin and valley) states other than the \(n = 0 \) level with energy \(\epsilon(n = 0) = 0 \) which is eight-fold degenerate. These quasiparticles are chiral, exhibiting \(2\pi \) Berry’s phase.

3.1. Inter-Landau-band plasmon spectrum of monolayer and bilayer graphene in a magnetic field

The dynamic and static response properties of an electron system are all embodied in the structure of the density–density correlation function. We employ the Ehrenreich–Cohen self-consistent-field (SCF) approach [22] to calculate the density–density correlation function. The SCF treatment presented here is by its nature a high density approximation which has been successfully employed in the study of collective excitations in low-dimensional systems both with and without an applied magnetic field. It has been found that SCF predictions of plasmon spectra are in excellent agreement with experimental results. Following the SCF approach, one can express the dielectric function as

\[
\epsilon(\vec{q}, \omega) = 1 - v_c(\vec{q}) \Pi(\vec{q}, \omega),
\]

where the two-dimensional Fourier transform of the Coulomb potential \(v_c(\vec{q}) = \frac{2\pi e^2}{\kappa^2} \), \(\kappa = (q_x^2 + q_y^2)^{1/2} \), \(\kappa \) is the background dielectric constant and \(\Pi(\vec{q}, \omega) \) is the non-interacting density–density correlation function

\[
\Pi(\vec{q}, \omega) = \frac{2}{\pi l^2} \sum_n C_{nn'} \left(\frac{\vec{q}^2}{2\kappa B} \right) [\epsilon(\epsilon(n)) - \epsilon(\epsilon(n'))]
\]

\[
\times [\epsilon(n) - \epsilon(n') + \omega + i\eta]^{-1},
\]

where \(C_{nn'}(x) = (n_1/n_1!)(x)^{n_1-n_2} e^{-x[L_n^{(1)}(x)]^2} \) with \(n_1 = \max(n, n') \), \(n_2 = \min(n, n') \), \(L_n(x) \) an associated Laguerre polynomial with \(x = \frac{\vec{q}^2}{2\kappa B} \) here. This is a convenient form of \(\Pi(\vec{q}, \omega) \) that facilitates writing of the real and imaginary parts of the correlation function. The plasmon modes are determined from the roots of the longitudinal dispersion relation

\[
1 - v_c(\vec{q}) \text{Re} \Pi(\vec{q}, \omega) = 0
\]

along with the condition \(\text{Im} \Pi(\vec{q}, \omega) = 0 \) to ensure long-lived excitations. Employing equations (8) and (9) gives

\[
1 = \frac{2\pi e^2}{\kappa q} \frac{2}{\pi l^2} \sum_{n,n'} C_{nn'}(x) (I_1(\omega) + I_1(-\omega)),
\]
and the factor of 2 is due to valley degeneracy. The plasmon modes originate from two kinds of electronic transitions: those involving different Landau bands (inter-Landau-band plasmons) and those within a single Landau-band (intra-Landau-band plasmons). Inter-Landau-band plasmons involve the local 2D magnetoplasma mode and the Bernstein-like plasma resonances, all of which involve excitation frequencies greater than the Landau-band separation. Since, in this work, we are not considering Landau level broadening only the inter-Landau-band plasmons will be investigated.

We now examine the inter-Landau-band transitions. In this case \(n \neq n' \) and equation (11) yields

\[
I_1(\omega) = \frac{f(\varepsilon(n))}{(\omega - \Delta)},
\]

where \(\Delta = (\varepsilon(n) - \varepsilon(n')) \) which permits us to write the following term in equation (10) as

\[
(I_1(\omega) + I_1(-\omega)) = \frac{\Delta f(\varepsilon(n))}{(\omega - \Delta)^2}.
\]

Next, we consider the coefficient \(C_{n'n}(x) \) in equation (10) and expand it to lowest order in its argument (low wavenumber expansion). In this case, we are only considering the \(n' = n \pm 1 \) terms. The inter-Landau-band plasmon modes under consideration arise from neighbouring Landau bands. Hence for \(n' = n+1 \) and \(x \ll 1 \), using the following associated Laguerre polynomial expansion \(E_p(x) = \sum_{m=0}^{\infty} (-1)^m \frac{(n+x)!}{(m+x)!} \frac{x^m}{m!} \) for \(l > 0 \) [23] and retaining the first term in the expansion for \(x \ll 1 \), \(C_{n'n}(x) \) reduces to

\[
C_{n,n+1}(x) \rightarrow (n+1)x,
\]

and for \(n'-n-1 \) it reduces to

\[
C_{n,n-1}(x) \rightarrow nx.
\]

Substitution of equations (13)–(15) into (10) and replacing \(x = \frac{\tilde{q}^2}{2eB} \) yields

\[
1 = \frac{2\pi e^2}{\kappa \tilde{q}} \frac{2}{\pi l^2} \sum_n \left((n+1) \left(\frac{\tilde{q}^2}{2eB} \right) 2 \frac{\alpha_n}{\alpha_{n'}} \frac{f(\varepsilon(n))}{(\omega^2 - \frac{\alpha_n}{\alpha_{n'}})^2} \right) + n \left(\frac{\tilde{q}^2}{2eB} \right) \frac{f(\varepsilon(n))}{(\omega^2 - \frac{\alpha_n}{\alpha_{n'}})^2}.
\]

In obtaining the above result we note that \(\Delta = (\sqrt{n'} - \sqrt{n}) \omega_F \). Therefore, \(\Delta = \frac{\alpha_n}{\sqrt{2} \alpha_{n'}} \) for \(n' = n+1 \), and \(\Delta = -\frac{\alpha_n}{\sqrt{2} \alpha_{n'}} \) for \(n' = n-1 \). We are considering the weak magnetic field case where many Landau levels are filled. In that case, we may substitute \(\sqrt{n'} \omega_F \) for \(\sqrt{n} \) in equation (16). \(n_F = \frac{(2\pi e^2)^2}{\kappa m^*} \) is the Landau level index corresponding to the Fermi energy \(E_F \). Equation (16) can be expressed as

\[
\omega^2 = \frac{2\pi e^2 \nu \tilde{q}}{k} \left(\sum_n \frac{2eB}{\pi k_F} f(\varepsilon(n)) \right).
\]
$v_F = 10^6 \text{ m s}^{-1}$. For the conventional 2DEG (a 2DEG at the GaAs–AlGaAs heterojunction) we use the following parameters: $m = 0.07 m_e$ (m_e is the electron mass), $\kappa = 12$ and $n_{2D} = 3 \times 10^{15} \text{ m}^{-2}$. For the electron density and magnetic field considered, electrons fill approximately 30 Landau levels, the upper limit in the summation for n_{2D} is taken to be $n = 30$ while the lower limit is $n = 0$. In figure 1 we have plotted the plasmon energy as a function of the inverse magnetic field for both monolayer graphene and a conventional 2DEG. The SdH-type oscillations, which are a result of emptying out of electrons from successive Landau levels when they pass through the Fermi level as the magnetic field is increased, are clearly visible. The amplitude of these oscillations is a monotonic function of the magnetic field. Due to the chiral nature of the quasiparticles in this system, the phase acquired as a function of the inverse magnetic field. The SdH-type oscillations in the plasmon spectrum.

Figure 2. Inter-Landau-band magnetoplasmon energy as a function of inverse magnetic field: graphene bilayer (solid curve), 2DEG (dashed curve). The dashed curve has been scaled by $2.6 \times$.

Acknowledgments

One of us (KS) would like to acknowledge the support of the Pakistan Science Foundation (PSF) through project No. C-QU/Phys (129). MT would like to acknowledge the support of the Pakistan Higher Education Commission (HEC).

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[3] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420
[4] Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
[5] Perez N M, Guillena F and Castro Neto A H 2006 Phys. Rev. B 73 125411
[6] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[7] Novoselov K S,McCann E, Morozov S V, Fal’ko V I, Katsnelson M I, Zeiler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
[8] Deacon R S, Chuang K-C, Nicholas R J, Novoselov K S and Geim A K 2007 arXiv:0704.0410v3
[9] Zhou S Y, Gweon G-H, Graf J, Fedorov A V, Spataru C D, Diehl R D, Kopelevitch Y, Lee D H, Louie S G and Lanzara A 2006 Nat. Phys. 2 595
[10] Partoens B and Peeters F M 2007 Phys. Rev. B 75 193402
[11] McCann E and Fal’ko V I 2006 Phys. Rev. Lett. 96 086805
[12] Abergel D S and Fal’ko V I 2007 Phys. Rev. B 75 155430
[13] Wang X-F and Chakraborty T 2007 Phys. Rev. B 75 041404
[14] Henriksen E A, Jiang Z, Tung L-C, Schwartz M E, Takita M, Wang Y-J, Kim P and Stormer H L 2008 Phys. Rev. Lett. 100 087403
[15] Kallin C and Halperin B I 1984 Phys. Rev. B 30 5655
[16] MacDonald A H 1985 J. Phys. C: Solid State Phys. 18 1003
[17] Oji H C A and MacDonald A H 1986 Phys. Rev. B 33 3810
[18] Que W-M and Kirczenow G 1989 Phys. Rev. Lett. 62 13687
[19] Butke E, Heitmann D and Tu C W 1986 Phys. Rev. B 34 6951
[20] Pinczuk A, Vallavras J P, Heimann D, Gossard A C, English J H, Tu C W, Pfeiffer L and West K 1988 Phys. Rev. Lett. 61 2701
[21] Pinczuk A, Schmitt-Rink S, Danan G, Vallavras J P, Pfeiffer L N and West K 1988 Phys. Rev. Lett. 61 2701
[22] Eriksson M A, Pinczuk A, Dennis B S, Simon S H, Pfeiffer L N and West K 1999 Phys. Rev. Lett. 82 2163
[23] Brozak G, Shanabrook B V, Gammon D and Katzer D S 1993 Phys. Rev. B 47 9981
[16] Apalkov V, Wang X-F and Chakraborty T 2007 Int. J. Mod. Phys. B 21 1167
[17] Hwang E H and Das Sarma S 2007 Phys. Rev. B 75 205418
[18] Wang X-F and Chakraborty T 2007 Phys. Rev. B 75 033408
[19] Shung Kenneth W-K 1986 Phys. Rev. B 34 979
[20] Lin M-F and Shyu F-L 2000 J. Phys. Soc. Japan 69 607
[21] Eberlein T, Bangert U, Nair R R, Jones R, Gass M, Bleloch A L, Novosalev K S, Geim A and Briddon P R 2008 Phys. Rev. B 77 233406
[22] Ehrenreich H and Cohen M H 1959 Phys. Rev. 115 786
[23] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products (New York: Academic)