An in-situ conductometric apparatus for physicochemical characterization of solutions and in-line monitoring of separation processes at elevated temperatures and pressures

Tae Jun Yoon*, Jacob D Riglin, Prashant Sharan, Robert P Currier, Katie A Maerzke and Alp T Findikoglu

Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America

E-mail: tyoon@lanl.gov

Received 2 October 2021, revised 6 January 2022
Accepted for publication 14 January 2022
Published 1 February 2022

Abstract
Specific conductance and frequency-dependent resistance (impedance) data are widely utilized for understanding the physicochemical characteristics of aqueous and non-aqueous fluids and for evaluating the performance of chemical processes. However, the implementation of such an in-situ probe in high-temperature and high-pressure environments is not trivial. This work provides a description of both the hardware and software associated with implementing a parallel-type in-situ electrochemical sensor. The sensor can be used for in-line monitoring of thermal desalination processes and for impedance measurements in fluids at high temperature and pressure. A comparison between the experimental measurements on the specific conductance in aqueous sodium chloride solutions and the conductance model demonstrate that the methodology yields reasonable agreement with both the model and literature data. A combination of hardware components, a software-based correction for experimental artifacts, and computational fluid dynamics (CFD) calculations used in this work provide a sound basis for implementing such in-situ electrochemical sensors to measure frequency-dependent resistance spectra.

Supplementary material for this article is available online

Keywords: specific conductance, artifact correction, electrochemical impedance spectroscopy, Markov chain Monte Carlo, high-temperature brine

(Some figures may appear in colour only in the online journal)

1. Introduction

The response of a material to an external electromagnetic field is widely utilized for both scientific and industrial purposes.

* Author to whom any correspondence should be addressed.
including the dielectric constant and equivalent conductance, are utilized to understand dissolution and/or association behavior of solutes, solution heterogeneities, and kinetic properties in solution (e.g., mutual diffusion).

Both in-situ and ex-situ conductometric techniques can be utilized to evaluate process performance or monitor the phenomenon of interest within a chemical system. Compared to in-situ spectroscopic techniques, ex-situ conductometry can be implemented easily. Numerous commercial conductometers are available for measuring the specific conductance at a specific frequency (typically $O(10^3)$ Hz) [5]. Since the physicochemical characteristics of many aqueous systems are known under ambient conditions, data interpretation is straightforward in such cases. For more complex systems consisting of an unknown chemical species, selective electrodes are often required.

Compared to ex-situ analyses, an in-situ electrochemical impedance spectroscopy (in-situ EIS) offers distinct advantages. Above all, complex resistance (impedance) spectra provide a wealth of information/insight. The low-frequency response can be utilized for rapid evaluation of material corrosion [6, 7], diffusion characteristics of solutes [8], and structural characteristics of the double layer [9]. As the excitation frequency increases, the real part of the impedance decreases, whereas its imaginary part increases. This change can be used to estimate electrical properties of the bulk phase, including the resistance-to-capacitance (RC) characteristic time τ_{RC}, dielectric constant ϵ_r, and specific conductance κ. Based on the theoretical or semi-empirical models for electrolyte solutions, these physical properties can then be used to estimate thermodynamic and kinetic properties (e.g., hydration number, diffusivity, and association constant) at process operating conditions. In addition to these properties, another noteworthy advantage of in-situ EIS is its ability for in-line monitoring of reaction and/or separation. In separation processes such as the desalination processes and liquid-liquid extraction processes, it is often desirable to achieve a selective precipitation to recover valuable or harmful materials. Differences in physicochemical properties between electrolytes and their complexation behaviors in solution are important to understand for designing such a separation process. An in-situ electrochemical sensor can provide such information in a variety of chemical or biochemical processes [10–13].

Notwithstanding these advantages, it is technically challenging to implement an in-situ electrochemical sensor in high temperature and pressure environments. Since the sensor must typically be positioned in a high-temperature and high-pressure vessel, the data can be easily corrupted by a variety of measurement-related artifacts such as low-quality signal due to the electrical leakage (or short resistance) and electrode contamination and/or degradation. Considering these challenges, this work reports on the implementation of an in-situ conductometric technique for use in a continuous high-temperature and high-pressure thermal desalination unit. The goal is reliable measurement of impedance spectra in aqueous brines at high temperature and pressure.

2. Methods

2.1. Materials

Distilled water (Kroger®) was purchased locally. The specific conductance of the distilled water at ambient conditions was always measured as $< 1 \mu S cm^{-1}$ by a commercial electrode at 293 K (EW-19601-03, Traceable®). Sodium chloride (NaCl, Sigma Aldrich, $\geq 99.9\%$) was purchased from Sigma Aldrich. In preparing solutions, sodium chloride and water were weighed by an electronic balance (MS204S/03, Mettler Toledo) prior to mixing. After mixing, a calibrated sodium selective electrode (LAQUAtwin Na-11 ion meter, Horiba®) was used to determine the NaCl concentration in a solution. Citric acid ($\geq 99.5\%$, anhydrous, free-flowing, Redi-Dri™, ACS reagent) used for surface passivation was supplied from Sigma Aldrich. Platinitizing solution (YSI 3140 Platinitizing Solution, YSI) was obtained from Yellow Spring Instruments. All substances were used as received without additional purification.

2.2. Continuous flow apparatus

Figure 1 shows a schematic diagram of the continuous thermal desalination unit designed and built for this work. This unit is similar to the continuous reactor system offered by Parr (Model 5400, Parr Instrument Company®). Two high-pressure pumps (LS-Class Pump 903034 REV L, Teledyne SSI) were installed to supply the feed(s) into a vertical cell of length 0.822 m. The entire volume of the flow unit was approximately 450 mL. The cell temperature was controlled by a split-tube type electrical heater (Model A3653HC20EE, ThernCraft®) in conjunction with a temperature controller (4848 Reactor Controller, Parr Instrument Company®). Two thermocouples were installed to measure and control the operating temperature. One thermocouple of length 0.406 m was inserted into the system directly contacting the working fluid. The other measured the surface temperature of the cell. The outputs from these thermocouples were delivered to the temperature controller so that the heating power could be automatically adjusted to force the inner thermocouple temperature to the specified set point. After passing through the cell, the process fluid was cooled by a single-pass heat exchanger. The temperature of the single-pass heat exchanger was maintained at 283 K by connecting it to a commercial chiller (RTE-111, Neslab®). Water was used as a coolant. The system pressure was maintained by a Teflon® diaphragm-type pressure regulator (A93VB, Parr Instrument Company®). The regulator system was controlled by supplying argon via a forward pressure regulator (Model 44-1166-24, Tescom®) connected to a 413 bar (6000 psi) argon cylinder ($\geq 99.999\%$, Matheson Tri-Gas®). The system pressure was monitored at two points, at the top of the cell and the dome of the back pressure regulator. The operating temperature and pressure limits of the system were 773 K and 345 bar (5000 psi), respectively.
Figure 1. Schematics of (a) the continuous supercritical water desalination unit and (b) the continuous flow cell equipped with electrodes for the measurement of the specific conductance: 1, electrical feedthrough; 2 and 3, LS-class HPLC pumps; 4, purge line; 5, cooler; 6, split-tube type heater; 7, outside thermocouple; 8, inside thermocouple; 9, single-pass heat exchanger; 10, back pressure regulator; 11, forward pressure regulator (dome); 12, vessel pressure indicator; 13, dome pressure indicator; 14, pressure relief device.

All parts of the system exposed to high-temperature brines were made of Hastelloy® C276, which has superior corrosion resistance at elevated temperatures and pressures, compared to stainless steel and Inconel alloys [14]. Nevertheless, this alloy did show some evidence of corrosion when exposed to highly concentrated brines at elevated temperatures. To enhance corrosion resistance, chemical passivation of all parts exposed to the brine were performed to form protective oxide layers. Following Yasensky et al [15], citric acid solution (4 wt%) was continuously flowed into the reactor at ambient pressure for two hours while maintaining the cell temperature at 353 K.

2.3. Preparation and installation of the in-situ probe

Since the in-situ measurement electrodes had to be directly inserted into a high-temperature and high-pressure environment, we prepared and implemented the probe with the following considerations. First, the electrode material had to be robust in the corrosive environment. The formation of an oxide scale on the electrode surface can introduce an unwanted artifact to the measurements. Thus, we prepared parallel plate platinized platinum electrodes (figure 2). The physical dimension of an electrode plate was 1.5 cm by width and height. Platinization was performed by first cleaning the electrode surface with diluted *aqua regia* (50% by volume). The cleaned electrodes were then dipped into a platinizing solution, and coated with platinum black by applying a current density of 30 mA cm$^{-2}$ for ten minutes [16]. The deposition current was controlled by connecting the electrodes to a commercial power supplier (Power station 1010, Plating Electronic).

The platinized electrodes were then welded (Model 1-163-01-03, Unitek®) to a pair of titanium alloy wires (14 AWG Ti-6Al-4V, Nexmetal Corporation). Ti$_6$Al$_4$V alloy was selected since it usually demonstrates good corrosion resistance in high-temperature aqueous environments [14]. The wires were oxidized for eight hours at 600 °C in air in order to reduce their corrosion rate in a wet environment [17]. After the oxidation passivation step, the wire surface was covered with an apparently uniform oxide layer. The wires were then inserted into the cell via an electrical feedthrough (PL-14-A-2, Conax Technologies). The electrical feedthrough consisted of a cap, gland body, Teflon® sealant, and ceramic insulators for the insulation of the wires from the cell surface. Since the Teflon® sealant (6554-130, Conax Technologies) can be vulnerable to a high-temperature environment, the gland was cooled by installing a cooling section between the electrical feedthrough and the cell and flowing coolant at 283 K (figure 1(b)). To immobilize the location of the electrode and to protect the wire surface, the wires were covered with a two-bore alumina rod (AL-T2-N156-N04-30, Advalue Technology), and the electrodes were inserted into slits made in a hollow-aluminum oxide rod so that the distance between the electrodes was kept fixed (figure 2). Since electrodes prepared in the manner described above could still degrade when exposed to a high-temperature environment [18], they were exposed to several temperature cycles with pure water before being used to measure conductance. The cell
constant \((l/A \equiv \kappa R)\) where \(l/A\) is the distance to surface area ratio, \(R\) is the resistance, and \(\kappa\) is the specific conductance) was calculated as \(2.959 \pm 0.050 \text{ m}^{-1}\) by measuring the resistance of different \(\text{NaCl} (aq)\) solutions at \(20 \degree\text{C}\). The specific conductance data of these \(\text{NaCl} (aq)\) solutions were calculated from the correlation proposed by Peyman et al [19]. The cell constant was re-measured after many temperature cycles and did not show a significant change.

2.4. Measurement procedure

Before performing a measurement, distilled water was used to clean the continuous flow unit for three hours at \(523 \degree\text{K}\) and \(100\) bar. After the reactor was cooled, distilled water was flowed for additional three hours to remove residual salts or oxidation residues. The desalination unit was then dried at \(398 \degree\text{K}\) overnight to remove any remaining water. After the system was cooled to \(293 \degree\text{K}\), the installed electrode and titanium wires were connected to a frequency response analyzer (Solartron 1260A, Ametek, Inc.). Before supplying the salt solutions, the feeding system was cooled to \(293 \degree\text{K}\) to remove any remaining water. After the system was cooled, distilled water was flowed over night to remove any remaining water. After the reactor was cooled, distilled water was flowed over night to remove any remaining water.

First, the impedances of the effluent from the flow unit was measured \textit{ex-situ} by the handheld conductometer and the sodium selective electrode at \(293 \degree\text{K}\). Up to the highest measurement temperature explored in this work (\(623 \degree\text{K}\), no considerable change (<2%) was observed when compared to the feed. See table S1 (available online at stacks.iop.org/MST/33/055502/mmedia) in the supplementary material for the measurement conditions and results.

2.5. Bulk resistance estimation

The impedance spectra obtained from a frequency response analyzer are frequently affected by a myriad of measurement artifacts. These mainly arise from electrical leakage at the electrical feedthrough, inductance between long wires connected to electrodes, parasitic capacitance, and the internal circuit impedance of the electronic instruments [20, 21]. Although ceramic insulators and sealants were installed in the system, the artifacts could not be removed completely. Among them, the wire series impedance (\textit{Short}) and the \textit{Open} circuit shunt impedance contribution from the apparatus were significant.

To subtract the contribution from these artifacts, an \textit{Open/Short} correction algorithm was used based on an equivalent circuit model proposed by Edwards et al [20] suggested that the \textit{Open} contribution could be approximated as an \(p(R, C)\) (parallel) circuit, whereas the \textit{Short} could be modeled as a \(s(R, L)\) (series) circuit. When the resistance of the working fluid is quite low (close to \textit{Short} conditions), the electrical leakage is insignificant and could be ignored. On the contrary, when the resistance of the working fluid is high enough to be comparable to the parasitic effect (e.g. pure water), the electrical leakage can have a significant effect on the measured spectra. According to the hypothesized equivalent circuit (figure 3), the impedance spectra of the material under test (MUT) \(Z_{\text{MUT}}\) is formulated as:

\[
Z_{\text{meas}}(f) = Z_s(f) + \left[Z_o^{-1}(f) + Z_{\text{MUT}}^{-1}(f)\right]^{-1}
\]

where \(Z_{\text{meas}}\) is the measured impedance, and \(Z_s\) and \(Z_o\) are measured impedances of the \textit{Open} and \textit{Short} circuits. To measure \textit{Open} and \textit{Short}, the following protocol was followed. First, the \textit{Short} impedance data were measured by inserting a copper wire between the electrodes at different temperatures from \(293\) to \(723 \degree\text{K}\). The resultant spectra were well-fit by the following short circuit model \((s(R_s, L_s))\)

\[
Z_{s}(f) = R_s + (2\pi if)^\alpha L_s
\]

where \(i\) is the imaginary unit number \((i^2 = -1)\), \(f\) is the frequency, \(R_s\) is the resistance in \(\Omega\), \(L_s\) is the inductance in \(\text{H}\), and \(\alpha\) is an exponent to account for non-ideality.

Note that instead of the normal inductor used by Edwards [20], a modified inductor model \(L_a = L_s(2\pi if)^\alpha\) \((L_a > 0; 0 \leq \alpha \leq 1)\).
\[Z_{\text{MUT}} = \frac{1}{R_b^\tau + C_b^\pi} + \frac{1}{R_G^\tau + Q_G^\tau} + Q_{\text{EDL}}. \] (4)

In this model, \(R_b \) and \(C_b \) are the bulk resistance and capacitance, \(Q_G \) and \(R_G \) are the components for representing the grain boundary contribution, and \(Q_{\text{EDL}} \) is the electrical double layer contribution modeled as the constant phase element \(Q \). The measured \(\text{Open} \) was inserted to equation (1) when the equivalent circuit-based regression analysis was performed.

The MCMC algorithm was employed to fit the equivalent circuit models [26]. The MCMC method based on the Metropolis-Hastings algorithm is simple, free from parameter initialization in principle, and accurate [27]. In this algorithm, the model parameters (\(R, C, L, \ldots \)) are first initialized by examining the arc shape and the low-frequency part of the impedance spectra [28]. These initial parameters are used to calculate the first model spectrum. Then, one of the model parameters is randomly chosen and changed from \(p \) to \(p(1 + \Delta) \) where \(\Delta \) is an arbitrary number between zero and a rate constraint. A global rate constraint or individual rate constraints can be determined by evaluating the convergence behavior of the Markov chain. A new model spectrum is constructed for each new model parameter set and is compared with the experimental data.

After obtaining the impedance spectra of the MUT, three methods to estimate the specific conductance were evaluated. The first method was the Zimmerman technique, which basically exploits the power-law dependence of the real part of the impedance at low frequency. It is given as:

\[Z(\omega) = R_{\text{MUT}} + b(2\pi f)^\gamma; \quad R_{\text{MUT}} = \frac{1}{c}, \] (3)

where \(Z \) is the real part of the complex spectra, and \(R_{\text{MUT}}, b \) and \(c \) are adjustable parameters [23]. The obtained \(R_{\text{MUT}} \) can be further used to estimate the specific conductance \(\kappa \) by using the cell constant \(l/\AA \).

Another analysis technique is to use the phase angle. Typically, an aqueous electrolyte system changes from capacitive (\(\theta \equiv \arctan(Z_r/Z_i) < 0 \)) to resistive (\(\theta = 0 \)) as the measurement frequency decreases beyond a certain value. As the frequency decreases further, the contribution of the electrical double layer becomes dominant and the system again shows a capacitive behavior (\(\theta > 0 \)). The phase angle \(\theta \) has its maximum (or close to zero) at the frequency where the system becomes resistive. To find the phase angle minimum, a spline function was constructed for \(|Z| = \sqrt{Z_r^2 + Z_i^2} \) and \(\theta \) as a function of the frequency, respectively. The resistance \(R_{\text{MUT}} \) was set to be \(|Z(f)| \) whose frequency matches with the condition that the phase angle is equal to its maximum.

The other method examined involves establishing and fitting an equivalent circuit model to the entire spectrum [24]. Several different models of this class have been suggested for electrolyte solutions [25]. We used an equivalent circuit model \(s(p(R_b, C_b), p(R_G, Q_G, Q_{\text{EDL}})) \), which gives:

\[Z_{\text{MUT}} = \frac{1}{R_b^\tau + C_b^\pi} + \frac{1}{R_G^\tau + Q_G^\tau} + Q_{\text{EDL}}. \] (4)
parameter is accepted. Otherwise, a random number between zero and unity is generated. If the random number is lower than \(f \), the new parameter set is accepted although it increases the discrepancy between the model and the experimental result. This procedure makes it possible to escape from the local minima in parameter space. If the random number is higher than \(f \), the change is rejected, and the original parameter set is used in the next calculation step. This MCMC procedure is repeated until no significant change is observed in the parameter set.

When the initial parameters were properly chosen by examining the impedance spectra [28], the Markov chain typically showed convergence within the burn-in run consisting of 5000 steps. Hence, we use the burn-in run of 5000 steps and explored the parameter space during a production run of 10 000 steps. After the MCMC run, the parameter set which showed the minimum \(\chi^2 \) was chosen as an optimal parameter set.

2.6. Data analysis

Most previous studies [18, 23, 29–40] report the electrical properties not as specific conductance (\(\kappa \)) but as the equivalent conductance (\(\Lambda \)). The equivalent conductance is defined as \(\Lambda = \kappa / N \) where \(N \) is the normality in a NaCl (aq) solution. Since the cation charge is +1, the normality is same to the molarity in NaCl (aq) solutions. The molality (\(m \)) of a solution can be converted into molarity (\(c \)) by the following equation.

\[
c = \frac{m \rho_s}{mM + 1000}
\]

(6)

where \(m \) is the molarity, \(M \) is the molar mass, \(\rho_s \) is the solution density (kg m\(^{-3}\)). In earlier works, \(\rho_s \) could be approximated as the density of pure water at the same temperature and pressure, which works well in dilute solutions [34, 36] but fails when the solution concentration is high. This work used the Helgeson–Kirkham–Flowers (HKF) model [41–43] in conjunction with the IAPWS-95 equation of States (EoS) [44] following the procedure used by Zimmerman et al [23]. The HKF model estimates the solution volume (\(V_s, \text{cm}^{-3} \text{g}^{-1} \)) as

\[
V_s = \frac{1000}{\rho_w} + \frac{1}{\sum_i m_i V_i^0 + 1000a_i \frac{\ln(1 + b^{1/2})}{b}}
\]

(7)

where \(\rho_w \) is the density of water in kg m\(^{-3}\), \(V_i^0 \) is the standard partial molar volume of the species (\(i = \text{Na}^+, \text{Cl}^-, \text{and NaCl} \)), \(a_i \) is the Debye–Hückel limiting slope for the apparent molar volume [45], \(I \) is the ionic strength, and \(b \) is a constant (\(b = 1.2 \text{ (kg m} \cdot \text{mol}^{-1})/2 \)). The static dielectric constant required in the HKF model was estimated based on the Fernández model [45]. The ionic radii data were calculated based on the suggestion by Shock et al [43].

There is a certain degree of inconsistency among literature data, even when the temperature and pressure (or density) conditions were similar (or equal) to each other [23]. Instead of comparing the measurement results directly, we compared our data with those generated from a conductance model. Among several models, we used the Fuoss–Hsia–Fernández–Prini– (FHFP) equation [46] in conjunction with the correlations for the limiting equivalent conductance and the thermodynamic association constant recently proposed by Zimmerman et al [23] To calculate the thermodynamic association constant and the limiting equivalent conductance, Zimmerman proposed the following expressions based on a weighted regression analysis on the collected literature data.

\[
\log_{10} K_{a,m} = 21.09 + \frac{825.0}{T} - 7.52 \log_{10} \rho_w
\]

(8a)

\[
\log_{10} \Lambda^0 = 1.673 + \left(-0.939 + \frac{22.76}{\rho_w} \right) \log_{10} \eta
\]

(8b)

where \(K_{a,m} \) is the association constant in molality scale, \(\Lambda^0 \) is the limiting equivalent conductance (S cm\(^{-2}\) mol\(^{-1}\)), and \(\eta \) is the dynamic viscosity of pure water in Poise. The dynamic viscosity was estimated based on the IAPWS 2008 formulation [47].

The FHFP equation without ion association is expressed as:

\[
\Lambda = \Lambda_0 - S c^{1/2} + E c \ln c + J_1 c - J_2 c^{3/2}
\]

(9)

where \(\Lambda_0 \) is the limiting equivalent conductance, \(S \) is the Onsager limiting slope (a function of the limiting equivalent conductance, relaxation coefficient, and electrophoretic coefficient). \(E \), \(J_1 \), and \(J_2 \) are the functions of molarity, reciprocal radius of the ionic atmosphere, the distance of closest approach, and the limiting conductance. A discussion about the FHFP equation and the corresponding coefficients can be found in the work by Fernández-Prini and others [46, 48, 49]. When ion aggregation is considered, the FHFP equation becomes

\[
\Lambda = \alpha \left(\Lambda_0 - S(\alpha c)^{1/2} + E c \ln(\alpha c) + J_1 (\alpha c) - J_2 (\alpha c)^{3/2} \right).
\]

(10)

In equation (10), \(\alpha \) is the degree of dissociation. It is calculated from the thermodynamic association constant \(K_{a,c} \) in molarity scale, which is given as:

\[
K_{a,c} = \frac{1 - \alpha}{\alpha^2 (c/c^0)^{\gamma_{c,\pm}}}
\]

(11)

Here, \(c^0 \) is a hypothetical reference state (1 mol l\(^{-1}\)), and \(\gamma_{c,\pm} \) is the mean activity coefficient in molarity scale. It is calculated as:

\[
\ln \gamma_{c,\pm}^2 = -\frac{\kappa_{dH} q_{dH} \alpha^{1/2}}{1 + \kappa_{dH} q_{dH} \alpha^{1/2}}.
\]

(12)

We set the distance of the closest approach \(q_{dH} \) to be equal to the Bjerrum radius, following the suggestion by Justice [50]. The calculated \(\Lambda_{FHFP} \) data were compared to our experimental results as well as some selected previous works in section 3.
2.7. Computational fluid dynamics
Since the measurement is performed in a continuous flow unit, it is quite possible that there is a non-negligible contribution of the pressure fluctuation and flow pattern to the measurement results. To study how operating conditions can affect the results, we carried out a series of CFD simulations. The goal of the simulations was to establish the velocity profiles existing between the probes and to determine if those local flow velocities could hinder/alter the experimental results.

2.7.1. Physical properties. The physical properties of the sodium chloride solutions, including bulk density (ρ), enthalpy (H), dynamic viscosity (η), isobaric heat capacity (cp), and thermal conductivity (λ), were estimated based on the correlations proposed by earlier works. Specifically, density (ρ), enthalpy (H), and dynamic viscosity (η) were calculated based on the equivalent temperature method [51–53]. In this method, the physicochemical properties in NaCl (aq) solutions at the condition of temperature T, pressure p and the fraction x is estimated by defining an equivalent temperature \(T_{eq}(\rho, H, \eta) \) that satisfies the following equation.

\[
q_{w}(T_{eq}, p) = q_{b}(p, T, x)
\]

(13)

where \(q_{w} \) and \(q_{b} \) are the properties in pure water and that in the brine, respectively. The pure water properties were calculated from the Wagner–Prüß EoS [44] and the IAPWS 2008 formulation for the dynamic viscosity [47]. The equivalent temperature \(T_{eq} \) for each property was defined as \(T_{eq} = a + bT \) where the coefficients a and b were functions of T and x (see Driesner et al [52, 53] and Klyukin et al [54] for the numerical details). Then, the isothermal compressibility (\(\kappa_T \)) and heat capacity (\(c_p \)) were obtained from the density and enthalpy data by performing a numerical differentiation. The thermal conductivity (\(\lambda \)) was calculated based on the correlation proposed by Wang and Anderko [55].

2.7.2. CFD simulation details. A preliminary model of the electrode was constructed based on the experimental electrode geometry with slight modification. The two primary deviations between the simulation and experimental setup were (a) the titanium wires attached to the electrodes were simplified from cylindrical shapes to rectilinear shapes with the same hydraulic diameter and (b) the system outlet was defined to be 20 internal reactor diameters away from the probe locations. Due to the local geometric complexity of the reactor design, a hybrid meshing approach was applied with hexahedral cells used throughout the domain, but with a fluid region near the probe and wires. The fluid region near probes utilized four-sided tetrahedral cells (that were later converted to polyhedral elements for the internal volume) and five-sided wedge cells for each boundary region. A total of 3257462 cells were used in the initial CFD analyses with a minimum of 9 inflation layers surrounding each surface. The magnified mesh surrounding the probes highlights the emphasis on the inflation layers applied to resolve the local boundary layers. Aspect ratios were maintained below a value of 100 with the average cell aspect ratio being 7.61 with a standard deviation of 13.57.

Flow rates within the reactor were limited to the range of 2 ml min\(^{-1}\)–4 ml min\(^{-1}\) at the temperature range from 323 to 623 K. Taking into consideration the low flow rates, a laminar viscous model was applied. Fitted curves were applied for density, thermal conductivity, and specific heat to capture the nonlinearity of pure water material being investigated, which is in line with equation (13) and properties presented in table 1. All simulations were conducted at an operating pressure of 250 bar. A pseudo-transient, coupled solver was applied to predict pressure and velocity values within the flow field.

The inlet was treated as a mass flow inlet with a constant mass flow value based upon the 2–4 ml min\(^{-1}\) volumetric flow range and the density at the incoming 298 K inlet temperature. The outlet was placed approximately 20 D above the probes, ensuring that the exit boundary would not affect the local boundary layer present between and around the probes. The outer wall of the reactor was treated as a constant temperature boundary condition based on the prescribed 323 to 623 K operation temperature range. A total of 32 separate grid-to-grid (GGI) interfaces were applied between the interior solid elements (probes, separator, and wiring) and the fluid body. The interfaces were treated as coupled boundaries with heat transfer allowed through them. Solid elements have a minimum of four cells spanning the thickness in order to capture any conduction present through the solid. The solution was initialized at 298 K and the mean velocity in the vertical direction based upon the mass flow prescribed at the inlet. Relative residuals for momentum and continuity equations were solved to a value of 10\(^{-5}\). The second order discretization schemes were applied to each variable.

3. Results and discussion

3.1. Algorithm validation
We first examine the Open and Short measurement results and the impact of the algorithmic correction procedure.

Figure 4 shows Nyquist plots of the Open and Short. The equivalent circuit models could be well-fitted to the measured spectra. We also tested if a simpler Short model used by Edwards et al [20] that consists of only the resistor and the inductor can be applied. In this case, the high-frequency arc that corresponds to bulk response was slightly distorted. Figure 5 shows the influence of the Open/Short correction algorithm on the impedance spectra obtained at different conditions. In low concentration NaCl (aq) solutions (0.01 wt%), an elimination of the Open contribution results in the significant resistance increase. On the other hand, an accurate determination of the Short contribution becomes important when the specific conductance of the material under test becomes low (i.e. in high-temperature and high-concentration NaCl (aq) solutions).

In all solutions, the usual and expected behavior of aqueous electrolytes was restored when the Open/Short correction was performed. The complex resistance spectrum shows a high-frequency arc on the Nyquist plot (complex plane), which
Figure 4. Nyquist plots (left) and bode plots (right) of (a) Open and (b) Short. Measured spectra (black circles) could be well represented by the equivalent circuit model (red lines). Note that the high-frequency part of the Short has a positive phase angle, which suggests that the inductance plays an important role in determining the high-frequency behavior. Open shows a rather complex behavior compared to what Edwards et al reported whereas Short can be modeled successfully with a series connection of the resistance and the modified inductor. When an ordinary inductor was used, the high-frequency arc part in the Nyquist plot of samples was slightly distorted but did not have a significant effect on the estimation of the bulk resistance.

represents the bulk resistance and capacitance. In the low-frequency region, a positive slope is observed, which represents the contribution of the electrical double layer. In the mid-frequency domain, there is another element that should be considered in addition to the bulk behavior and the electrode double layer. This behavior is frequently observed when the grain boundaries within an electrode has a significant impact on the impedance spectra [56].

Although the equivalent circuit models could be fitted to the measured spectra after the Open/Short correction, it should be noted that some parameters, especially the bulk capacitance term, have a high uncertainty when the salt concentration is high. This mainly arises from the fact that the high-conductivity MUTs have a high RC characteristic frequency. The RC characteristic frequency f_{RC} is defined as the frequency where the absolute magnitude of the bulk resistance and the reactance become equal. It is given as:

$$f_{RC} = \frac{\kappa}{2\pi\varepsilon_\epsilon_0}.$$

When the characteristic frequency f_{RC} is much higher than the measurement frequency, there are few data points that can be utilized to estimate the material’s capacitance. In seawater at ambient conditions [NaCl (aq) 3.5 wt%] for instance, f_{RC} becomes \sim0.8 GHz, which is much higher than the typical frequency limit of most frequency response analyzers.

Next, we examined three methods to determine the bulk resistance of an MUT. Since the grain boundary contribution was not negligible in our experimental setup, it was necessary to control the fitting frequencies when utilizing the Zimmerman method. A blind use of the Zimmerman method typically yielded a higher resistance compared to the other two methods when the grain boundary contribution was significant (e.g. figure 5(a)). By adjusting the fitting frequency range, the average bulk resistance values obtained from the Zimmerman method agreed well with the others (typically within 3%). However, we also observed that the bulk resistance obtained from the Zimmerman method fluctuated up to 40%, depending on the fitting frequency range. The phase angle-based method worked well in the low concentration salt solutions.
Figure 5. Nyquist plots of the impedance spectra in NaCl (aq) solutions at different conditions. (a) \(m = 4.29 \) mmol kg\(^{-1}\) and \(T = 293 \) K, (b) \(m = 18.29 \) mmol kg\(^{-1}\) and \(T = 293 \) K, (c) \(m = 4.29 \) mmol kg\(^{-1}\) and \(T = 573 \) K, and (d) \(c = 18.29 \) mmol kg\(^{-1}\) and \(T = 423 \) K. Black pentagons indicate raw impedance spectra, and blue circles denote the corrected one. The impedance spectrum cannot be used to estimate the bulk resistance in a reliable manner when no correction was done. After the correction, the spectrum shows a typical behavior observed in aqueous electrolytes. It consists of (1) the bulk response, (2) grain boundary contribution, and (3) the electrical double layer contribution. The corresponding bode plots are shown in figure S1 in the supplementary material.

The bulk resistance difference between the phase angle-based method and the equivalent circuit model was less than 1%. They started to deviate as the concentration increased, since the grain boundary contribution becomes comparable to that of the bulk resistance. In lossy materials, the impedance spectra became almost resistive (\(Z_r \sim 0 \)) in the transition frequency range between the bulk contribution and the grain boundary contribution. In these samples, the resistance data obtained from the phase-angle based method was generally higher than that from the equivalent circuit method. Considering all these factors, we used the equivalent circuit method to determine the bulk resistance.

3.2. Measurement validation

Figure 6(a) show the specific conductance (\(\kappa \)) in NaCl (aq). Over the concentration and temperature ranges considered, the specific conductance data shows a monotonic increase below the temperature where \(\kappa \) has its maximum. As the feed concentration increased, the conductance maximum temperature (\(T_{\text{max}} \)) was shifted from 598 to 548 K, which agrees well with previous works [23, 29, 36]. A series of recent MD simulation results demonstrated that the occurrence of the conductance maximum indicates the formation of neutral ion pairs [57, 58]. This result suggests that the in-situ implementation
Figure 6. (a) Specific conductance data in NaCl (aq) solutions from 298 to 623 K at 250 bar. The temperature where κ shows its maximum decreased as the salt concentration increased. This result suggests that the ion pair formation in NaCl (aq) solutions occurs at lower temperature when the concentration increases. (b) Parity plot between the experimental measurements from this work and literature and the FHFP model. Our experimental data (colored points) are consistent with the FHFP model proposed by Zimmerman et al. with an absolute average relative deviation (AARD) of 2.5%. The dashed lines denote 10% deviation. For numerical details, see table S1 in the supplementary material.

The first main contributor of the data uncertainty was likely due to the the grain boundary effects. As the concentration increased, the grain boundary impedance Z_G became comparable to that of the bulk impedance (Z_b). A careful choice of initial parameters was required to discern the grain boundary contribution and the bulk contribution. The relative magnitude of the fluctuation (uncertainty) obtained by iterating MCMC procedures with different initial parameters was up to 5% in the highest concentration solution. In the lowest concentrations, it was always below 0.5%. However, it should also be noted that the measurement uncertainty will not diminish monotonically when the initial concentration of NaCl decreases since the Open measurement uncertainty has a significant impact on the measurement results.
The second largest uncertainty contribution was likely from the Z_ν (Short impedance). The Short impedance estimated from the MCMC procedure could fluctuate up to 5%. When the Short resistance R_ν was restricted to be below the values obtained in the copper wire measurement, the fluctuation level diminished below 1%.

Figure 6(b) compares the measurement results obtained in this work, the literature data, and the FHFP model calculation. The equivalent conductance data obtained from the model shows a reasonable agreement with the literature data. The parity line $\Lambda_{FHFP} = \Lambda_{exp}$ lies between the literature data by Quist and Marshall (denoted as Quist 1975 in figure 6(b)) [36] and Ho et al (Ho 1994 in figure 6(b)) [34]. The experimental results by Zimmerman et al [23] are closer to Quist and Marshall. Although the experimental results by Ho, Palmer and Mesmer are more scattered than Quist and Marshall, it should be noted that most data points agree with the FHFP model within 15%. The saturation data by Pearson et al [35] are scattered around the parity line. The equivalent conductance data measured in this work also agrees well with the FHFP model calculation results. The absolute average relative deviation (AARD) from the FHFP model is approximately 2.5%.

Based on these observations, the applicable range of the designed apparatus has been approximately determined. The applicable range cannot be established based on temperature, pressure, or initial concentration. Instead, it should be specified based on the specific conductance, which can be then utilized to specify the applicable range.

The Open contribution increases the uncertainty level in highly resistant solutions. For instance, when pure water ($<1 \mu S\ cm^{-1}$) is used, most of the signal exerted to the system passes through the Open component in figure 3. Considering this fact, the absolute magnitude of the impedance should be roughly the same order of magnitude as the Open impedance in the frequency range where the bulk resistance-capacitance arc is observed. The low limit of this frequency range is of $\Omega(10^3)$ Hz, and the impedance magnitude of Open at this low frequency limit is approximately 600 Ω at 50 Hz. By converting it to the specific conductance, we obtain $\kappa = 50 \mu S\ cm^{-1}$ as the low-κ limit. However, it should also be noted that this low limit of this device can be lowered further by decreasing the cell constant (l/A).

The upper applicable limit (or measurement window) of the device is determined by the uncertainty that arises from the Short. When the impedance magnitude of the MUT is comparable to the Short impedance, the uncertainty increases. In addition, due to the formation of the electrical double layer, the high-frequency arc is not observable at high concentration. Bearing these points in mind, the low-resistance limit (upper-κ limit) is estimated as approximately 1 Ω (30 000 $\mu S\ cm^{-1}$).

By utilizing the FHFP model, this specific conductance limit (50 $\leq \kappa \leq 30 000$ $\mu S\ cm^{-1}$) can be expressed in terms of the pressure, temperature and NaCl concentration. For instance, the specific conductance limit corresponds to 0.39 $\leq c \leq 1241$ mmol kg$^{-1}$ at ambient condition (298.15 K and 1 bar). At 473 K and 25 MPa, the concentration range is obtained as 0.085 $\leq c \leq 67$ mmol kg$^{-1}$. Note that both the lower and upper concentration bounds decrease with an increase in temperature. This is to be expected since a temperature increment increases the specific conductance, unless a significant number of ion pairs form.

3.3. CFD predictions

The probes were relatively invariant to temperature within the simulation volume due to both the proximity of the constant temperature boundary condition and the distance from the inlet to the probes. Six paths were selected between the probes (figure 7). Since the distance between the inner thermocouple tip and the electrode is close, solutions could serve as iso-thermal predictions of the flow, dependent upon fluid properties resulting from the temperature applied to the reactor wall. Three paths were placed at the top of the probe furthest away from the separator and three were positioned in the vertical center of the probes. The interior of the cylindrical separator served as the stagnation point for the fluid.

Figure 8 shows the velocity profiles for the bounding test cases based on incoming flow and the applied wall temperature. The flow profiles between Paths 4 and 6 and between Paths 1 and 3 were symmetrical in behavior. Path 5 had the lowest flow peak flow, at less than 0.1 mm s$^{-1}$, due to its proximity to the separator. Paths 4 and 6 both had peak flows of 0.536 mm s$^{-1}$ for inlet volumetric flow of 4 ml min$^{-1}$ and 623 K. Due to the orientation of the separator, the velocity at Paths 4 and 6 show a slightly asymmetric profile; the flow is accelerated to either side of the geometry due to the slotted aluminum oxide support. However, the influence of the aluminum oxide support was negligible. Near the top of the probes, at Paths 1 through 3, the flow has dispersed into a more uniform distribution and the effects of the aluminum oxide holder (support) are less pronounced despite boundary layers still existing around the probes themselves. Overall, the results suggest that the velocity distribution should not have a significant effect on the measurement results.

The local pressure drop distribution around the electrode was also examined (figure 9). At the highest velo-
Figure 8. Velocity profiles between the two-parallel electrodes. The maximum velocity at the center between the parallel plates varies from 0.0703 mm s$^{-1}$ to 0.536 mm s$^{-1}$, depending on the position. In (c), the velocity profiles are slightly asymmetric due to the presence of the aluminum oxide support.

Figure 9. Pressure drop around the in-situ probe at 623 K and 250 bar. The volumetric flowrate of the feed solution was set to be 4 ml min$^{-1}$. The pressure drop across the electrode was only 1.9 Pa, which is negligible compared to the operating pressure.
city condition examined in this work (4 ml min\(^{-1}\)), the pressure drop over the probe, including the electrodes and the aluminum oxide support, was only approximately 1.9 Pa. Thus, the pressure drop between the electrode was not significant.

4. Conclusions

This work documents the installation and experimental validation of a continuous high-temperature and high-pressure flow cell equipped with an in-situ conductometer. A platinized platinum electrode inserted through electrical feedthrough was found to be stable and did not show any noticeable degradation. The algorithmic correction protocol effectively removes the measurement artifacts from the raw impedance spectra. Computational fluid dynamics simulations confirmed that the fluid velocity profile and the local pressure variation do not affect the measurement accuracy significantly. The measured conductivity data showed good agreement with theoretical/experimental data. Considering that the electrical conductivity measurement is widely applicable to monitoring thermal desalination processes or high-pressure extraction processes, we expect that the methodologies proposed in this work will be beneficial for both academic and industrial purposes.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Supplementary material contains experimental conditions, specific conductance and equivalent conductance data obtained in NaCl (aq) solutions along an isobar (250 bar) and bode plots that can help readers understand the algorithmic correction effect.

Acknowledgments

This work was supported by the Director’s Postdoctoral Fellow Program (20190653PRD4) and the Laboratory Directed Research and Development Program (20190057DR) at Los Alamos National Laboratory.

Conflict of interest

The authors declare no known competing financial interests or personal relationships that could influence the work reported in this paper.

ORCID iD

Tae Jun Yoon https://orcid.org/0000-0003-4529-3903

References

[1] Halvorsen I J, Pivac I, Bezmalinović D, Barbir F and Zenith F 2020 Electrochemical low-frequency impedance spectroscopy algorithm for diagnostics of PEM fuel cell degradation Int. J. Hydrog. Energy 45 1325–34
[2] Li C, Wang Y, Sha S, Yin H, Zhang H, Wang Y, Zhao B and Song F 2019 Analysis of the tendency for the electronic conductivity to change during alcoholic fermentation Sci. Rep. 9 5512
[3] Oberländer J, Mayer M, Greefl A, Keusgen M and Schöning M J 2018 Spore-based biosensor to monitor the microbial efficiency of gaseous hydrogen peroxide sterilization processes Biosens. Bioelectr. 104 87–94
[4] Dorai M, Papadopoulos A and Gosselin A 2001 Influence of electric conductivity management on greenhouse tomato yield and fruit quality Agronomie 21 367–83
[5] Bešter-Rogač M and Habe D 2006 Modern advances in electrical conductivity measurements of solutions Acta Chim. Slov. 53 391–5
[6] Ningshen S, Kamachi Mudali U and Raj B 2009 Electrochemical impedance spectroscopy and its applications in corrosion research Corros. Rev. 27 493–531
[7] Rodríguez D and Chidambaram D 2017 Accelerated estimation of corrosion rate in supercritical and ultra-supercritical water npj Mater. Degrad. 1 1–6
[8] Nguyen T Q and Breitkopf C 2018 Determination of diffusion coefficients using impedance spectroscopy data J. Electrochem. Soc. 165 E826
[9] Ishai P B, Talary M S, Caduff A, Levy E and Feldman Y 2013 Electrode polarization in dielectric measurements: a review Meas. Sci. Technol. 24 102001
[10] Guth U, Vonau W and Zosel J 2009 Recent developments in electrochemical sensor application and technology—a review Meas. Sci. Technol. 20 042002
[11] O’Toole M D, Marsh L A, Davidson J L, Tan Y M, Armitage D W and Peyton A J 2015 Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement Meas. Sci. Technol. 26 035102
[12] Marguerêts P, Camps T, Viargues M and Olivier P 2013 Preliminary experimental study on the electrical impedance analysis for in-situ monitoring of the curing of carbon/epoxy composite material for aeronautical and aerospace structures Meas. Sci. Technol. 24 095005
[13] Alig I, Steinhoff B and Lellinger D 2010 Monitoring of polymer melt processing Meas. Sci. Technol. 21 062001
[14] Fang X et al 2015 Corrosion behavior of nickel base alloys, stainless steel and titanium alloy in supercritical water containing chloride, phosphate and oxygen Chem. Eng. Res. Des. 100 530–41
[15] Yasensky D, Reali J, Larson C and Carl C 2009 Citric acid passivation of stainless steel 2011 Aircraft Airworthiness and Sustainment Conf.
[16] Feltham A M and Spiro M 1971 Platinized platinum electrodes Chem. Rev. 71 177–93
[17] Velten D, Biehl V, Aubertin F, Valeske B, Possart W and Breme J 2002 Preparation of TiO\(_2\) layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization J. Biomed. Mater. Res. 59 18–28
[18] Zimmerman G H, Gruszkiewicz M S and Wood R H 1995 New apparatus for conductance measurements at high temperatures: conductance of aqueous solutions of LiCl, NaCl, NaBr and CaBr at 28 MPa and water densities from 700 to 260 kg m\(^{-3}\) J. Phys. Chem. 99 11612–25
[19] Peyman A, Gabriel C and Grant E H 2007 Complex permittivity of sodium chloride solutions at microwave frequencies Bioelectromagnetics 28 264–74
[20] Edwards D D, Hwang J-H, Ford S J and Mason T O 1997 Experimental limitations in impedance spectroscopy: part V. Apparatus contributions and corrections Solid State Ion. 99 85–93

[21] Veal B W, Baldo P M, Paulikas A P and Eastman J A 2014 Understanding artifacts in impedance spectroscopy J. Electrochem. Soc. 162 H47

[22] Diard J P, Le Gorrec B and Montella C 2012 Handbook of Electrochemical Impedance Spectroscopy (Grenoble: Laboratory of Electrochemistry and Physical-Chemistry of Materials and Interfaces)

[23] Zimmerman G H, Arcis H and Tremaine P R 2012 Limiting conductivities and ion association constants of aqueous NaCl under hydrothermal conditions: experimental data and correlations J. Chem. Eng. Data 57 2415–29

[24] Balashov V N, Fedkin M V and Lyov S N 2009 Experimental system for electrochemical studies of aqueous corrosion at temperatures above 300 °C J. Electrochem. Soc. 156 C209

[25] Lima L F, Vieira A L, Mukai H, Andrade C M G and Michaelides E E 1986 NBS/NRC steam tables: Thermodynamics and transport properties and computer programmable calculator Comput. Chem. 6 101–9

[26] Sharygin A V, Mokbel I, Xiao C and Wood R H 2001 Tests of equations for the electrical conductance of electrolyte mixtures: measurements of association of NaCl (aq) and Na2SO4 (aq) at high temperatures J. Phys. Chem. B 105 16229–37

[27] Sharygin A V, Wood R H, Zimmerman G H and Balashov V N 2002 Multiple ion association versus dissociation in aqueous NaCl and KCl at high temperatures J. Phys. Chem. B 106 7121–34

[28] Corti H R 2008 Electrical conductivity in hydrothermal binary and ternary systems Hydrothermal Properties of Materials ed V M Vallyasiko (Chichester: Wiley) pp 207–26

[29] Ho P C, Palmer D A and Mesmer R E 1994 Electrical conductivity measurements of aqueous sodium chloride solutions to 600 °C and 300 MPa J. Solut. Chem. 23 997–1018

[30] Pearson D, Copeland C S and Benson S W 1963 The electrical conductance of aqueous hydrochloric acid in the range 300 to 383 J. Am. Chem. Soc. 85 1047–9

[31] Quist A S and Marshall W L 1968 Electrical conductances of aqueous sodium chloride solutions from 0 to 800 degree. and at pressures to 4000 bars J. Phys. Chem. 72 684–703

[32] Zimmerman G H, Scott P W and Greynewd W 2007 A new flow instrument for conductance measurements at elevated temperatures and pressures: measurements on NaCl (aq) to 458 K and 1.4 MPa J. Solut. Chem. 36 767–86

[33] Noyes A A and Coolidge D W 1904 The electrical conductivity of aqueous solutions at high temperatures. I. Description of the apparatus. results with sodium and potassium chloride up to 306°C J. Am. Chem. Soc. 26 134–70

[34] Fogo J K, Benson S W and Copeland C S 1954 The electrical conductivity of supercritical solutions of sodium chloride and water J. Chem. Phys. 22 212–6

[35] Corwin J F, Bayless R G and Owen G E 1960 The conductivity of dilute sodium chloride solutions under supercritical conditions J. Phys. Chem. 64 641–6

[36] Tanger J C and Helgeson H C 1988 Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard partial molal properties of ions and electrolytes Am. J. Sci. 288 19–98

[37] Shock E L and Helgeson H C 1988 Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C Geochim. Cosmochim. Acta 52 2009–36

[38] Shock E L, Oelkers E H, Johnson J W, Sverjensky D A and Shen Y D 2002 The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use J. Phys. Chem. Ref. Data 31 387–535

[39] Hernandez-Diaz A R, De Sousa M C W, Levent Sengers J M H and Williams R C 1997 A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye–Hückel coefficients J. Phys. Chem. Ref. Data 26 1125–66

[40] Fernandez-Prini R 1969 Conductance of electrolyte solutions. A modified expression for its concentration dependence Trans. Faraday Soc. 65 5311–3

[41] Huber M L et al 2009 New international formulation for the viscosity of H2O J. Phys. Chem. Ref. Data 38 101–25

[42] Linert W and Prechberger P 1982 Analyzing electrolytic conductivity data by the Fuoss-justice equation with a programmable calculator Comput. Chem. 6 101–9

[43] Miyoshi K 1973 Comparison of the conductance equations of Fuoss–Onsager, Fuoss–Hsia and Pitts with the data of bis(2,9-dimethyl-1, 10-phenanthrolin) Cu(I) perchlorate Bull. Chem. Soc. Japan 46 426–30

[44] Justice J C 1971 An interpretation for the distance parameter J. Phys. Chem. 71 1488–901

[45] Michaelides E E 1986 NBS/NRC steam tables: thermodynamic and transport properties and computer program for vapor and liquid states of water in SI units Nucl. Technol. 75 232

[46] Driessner T and Heinrich C A 2007 The system H2O–NaCl. Part I: correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar and 0 to 1 XNaCl Geochim. Cosmochim. Acta 71 4880–901

[47] Driessner T 2007 The system H2O–NaCl. Part II: correlations for molar volume, enthalpy and isobaric heat capacity from 0 to 1000 °C, 0 to 5000 bar and 0 to 1 XNaCl Geochim. Cosmochim. Acta 71 4902–19

[48] Klyuykin Y I, Gowen R G and Bodnar R J 2017 A revised empirical model to calculate the dynamic viscosity of H2O–NaCl fluids at elevated temperatures and pressures (≤1000 °C, ≤500 MPa, 0–100 wt% NaCl) Fluid Phase Equilib. 433 193–205
[55] Wang P and Anderko A 2012 Modeling thermal conductivity of electrolyte mixtures in wide temperature and pressure ranges: seawater and its main components Int. J. Thermophys. 33 235–58

[56] Gerstl M, Navickas E, Friedbacher G, Kubel F, Ahrens M and Fleig J 2011 The separation of grain and grain boundary impedance in thin yttria stabilized zirconia (YSZ) layers Solid State Ion. 185 32–41

[57] Yoon T J, Patel L A, Vigil M J, Maerzke K A, Findikoglu A T and Currier R P 2019 Electrical conductivity, ion pairing and ion self-diffusion in aqueous NaCl solutions at elevated temperatures and pressures J. Chem. Phys. 151 224504

[58] Patel L A, Yoon T J, Currier R P and Maerzke K A 2021 NaCl aggregation in water at elevated temperatures and pressures: comparison of classical force fields J. Chem. Phys. 154 064503