Thermodynamics analysis of oxidation-reduction reactions between metal melt and slag (1) provides answers to certain practical issues such as the path of specific chemical reactions, final (equilibrium) phase composition, and the elements that are reduced and oxidized at given physical parameters. Although considerable, this is obviously not enough to analyze real technological systems, because the required equilibrium cannot be normally achieved despite high temperatures of welding and metallurgical processes. Hence, a dynamic problem has to be resolved here, which is calculating phase composition as a function of time. This cannot be achieved without knowing the rates of element concentration changes in each and every phase, and also technological parameters of the process. Relevant studies are detailed in (2-19).

This paper analyzes special kinetic features of physical and chemical processes in the metal and oxide melt interphase.

We will start with a relatively simple case, which is deriving a kinetic equation for a monomolecular reaction. Let us assume that the following hypothetical process proceeds in the interphase boundary:

$$B^{(1)} \rightarrow F^{(2)},$$

where B and F are the 1st and 2nd phase components, respectively.

This reaction can be described as follows (see Fig. 1). Rates of all subsequent stages in the steady mode are equal:

$$V = V_d^B = V_r = V_d^F,$$

where V is heterogeneous reaction rate (1);

V_r, V_d^B и V_d^F are the rates of chemical reaction at the phase boundary, diffusion rates of reagent B in solution 1 and reagent F in solution 2, respectively.
As known from formal kinetics, the heterogeneous reaction rate in the activation mode is described by the following kinetic formula:

\[V = K_r C_B^A, \]

(3)

where \(K_r \) is the constant of chemical reaction rate.

At the same time, as follows from the 1st Fick's law, rate equation for the diffusion mode can be as follows:

\[V = \frac{D_B}{\delta_B}. \]

(4)

In general, the kinetic equation for heterogeneous monomolecular reaction will be as follows:

\[V = \frac{K_r \cdot D_B}{\delta_B} \cdot C_B, \]

(5)

where \(D_B \) is diffusion coefficient.
Such an approach is obviously limited as it can not be applied to assess the rate of multimolecular reactions. Transition to multimolecular processes certainly makes this problem more complicated.

Kinetics of multimolecular reaction

Now let us consider a heterogeneous reaction in the metal-oxide melt interface:

\[
[Mn] + (FeO) \rightarrow (MnO) + [Fe].
\]

(6)

\[
K_{Mn} = \frac{(MnO)^{eq} \cdot [Fe]^{eq}}{[Mn]^{eq} \cdot (FeO)^{eq}},
\]

(7)

where parentheses–is mass % of components in the oxide phase; square brackets – is mass % of components in the metal phase.

Scheme of the process on can see in Fig. 2.

![Scheme of the heterogeneous process.](image)

Fig. 2. Scheme of the heterogeneous process.

At constant temperatures, reaction rate depends on reagent concentrations:

\[
V = f([Mn], (MnO), [Fe], (FeO)).
\]

Concentration change rates of all reagents in the steady mode are equal:

\[
V = V_{Mn} = V_{FeO} = V_{Fe} = V_{MnO}.
\]

(8)
Assuming that iron activity in the metal melt as a basic element (a_{Fe}) equals 1, we obtain a simplified formula for constant equilibrium:

$$K_{Mn} = \frac{(MnO)^{eq}}{[Mn]^{eq} \cdot (FeO)^{eq}}. \tag{9}$$

Further, we assume that the process runs in the diffusion mode. In such a case, interface concentrations are close to equilibrium with the diffusion rate of each component depending on diffusion parameters and the difference between bulk and interface concentrations (i.e., in the state of equilibrium):

$$V_i = \frac{D_i}{\delta_i} (C_i - C_i^A). \tag{10}$$

More specifically, we have the following rate equations for various reagents for the process selected (6), with $\frac{D_i}{\delta_i}$ designated as K_i^d (diffusion rate constant) in the case of diffusion control:

$$V_{Mn} = k_{Mn} \frac{D}{[Mn] - [Mn]^{eq}} = k_{Mn} \frac{D}{[Mn]} \left(1 - \frac{[Mn]^{eq}}{[Mn]} \right), \tag{11}$$

$$V_{FeO} = k_{FeO} \frac{D}{(FeO) - (FeO)^{eq}} = k_{FeO} \frac{D}{(FeO)} \left(1 - \frac{(FeO)^{eq}}{(FeO)} \right), \tag{12}$$

$$V_{MnO} = k_{MnO} \frac{D}{(MnO)^{eq} - (MnO)} = k_{MnO} \frac{D}{(MnO)} \left(\frac{(MnO)^{eq}}{(MnO)} - 1 \right), \tag{13}$$

$$V_{j}^{lim} = k_{j}^{a} c_{j}. \tag{14}$$

Allowing for (14), the equation for reagent equilibrium concentrations will be as follows:

$$[Mn]^{eq} = [Mn] \left(1 - \frac{V_{Mn}}{V_{Mn}^{lim}} \right), \tag{15}$$
\[[FeO]^{eq} = [FeO] \left(1 - \frac{V_{FeO}}{V_{FeO}^{\lim}}\right), \quad (16) \]
\[[MnO]^{eq} = [MnO] \left(1 - \frac{V_{MnO}}{V_{MnO}^{\lim}}\right). \quad (17) \]

Now, we insert (15), (16) and (17) into the equilibrium constant formula (9):
\[K_{Mn} = \frac{(MnO) \left(1 + \frac{V_{MnO}}{V_{MnO}^{\lim}}\right)}{[Mn] \left(1 - \frac{V_{Mn}}{V_{Mn}^{\lim}}\right) \cdot (FeO) \left(1 - \frac{V_{FeO}}{V_{FeO}^{\lim}}\right)}. \quad (18) \]

Therefore, the kinetic equation of the multimolecular reaction is as follows:
\[K_{Mn} = \frac{(MnO) \left(1 + \frac{V_{MnO}}{V_{MnO}^{\lim}}\right)}{[Mn] \left(1 - \frac{V_{Mn}}{V_{Mn}^{\lim}}\right) \cdot (FeO) \left(1 - \frac{V_{FeO}}{V_{FeO}^{\lim}}\right)}. \quad (19) \]

Because the concentration change rates are the same for all reagents:
\[V = V_{MnO} = V_{Mn} = V_{Mn} = V_{FeO}. \]

For convenience, this example deals with equal stoichiometric factors for all reagents in the reaction. More particularly, for reaction:
\[4[Al] + 3(SiO_2) \rightarrow 3[Si] + 2(Al_2O_3). \quad (20) \]
Kinetic equation will be as follows:

$$K_{Al} \frac{[Al]^4 \cdot (SiO_2)^3}{[Si]^3 \cdot (Al_2O_3)^2} = \left(1 + \frac{3V}{V_{lim}}\right)^3 \left(1 + \frac{2V}{V_{Al_2O_3}}\right)^2 \left(1 - \frac{4V}{V_{lim}}\right)^4 \left(1 - \frac{3V}{V_{lim}}\right)^3.$$

(21)

Simulation of Phase Interaction Kinetics in a Multicomponent System

Let us consider a simple technological process (Fig. 3)

![Technological process chart](image)

Fig. 3. Technological process chart.

Metal melt in vessel 3 is formed by concentrations of components in vessels 1 and 2 as well as chemical reaction with the oxide. Metal mass in vessel 3 within (Δt) time period can be easily calculated as follows:

$$m_{Me} = v_1 \Delta t + v_2 \Delta t + m_3,$$

(22)
where m_{M3} is the initial mass, v_1 and v_2 are the rates of metal feed from vessels 1 and 2.

Thus, any element X concentration, as achieved due to a simple mixing, disregarding a chemical reaction, can be determined as follows:

$$[E_i]_{mix}^{\Delta t} = \frac{[E_i]_1 \cdot v_1 \cdot \Delta t + [E_i]_2 \cdot v_2 \cdot \Delta t + [E_i]_3 \cdot m_3}{m},$$ \hspace{1cm} (23)

where $[E_i]_1$, $[E_i]_2$ and $[E_i]_3$ are the i^{th} element concentrations in vessels 1, 2, and 3 at the start of the process.

Mass ($m_{E_i}^{\Delta t}$) and concentration ($[E_i]_{r}^{\Delta t}$) of the i^{th} element formed due to chemical reactions between metal and oxide phases are determined as follows:

$$m_{E_i}^{\Delta t} = V_{E_i} \cdot \Delta t \cdot A,$$ \hspace{1cm} (24)

$$[E_i]_{r}^{\Delta t} = \frac{100\% \cdot V_{E_i} \cdot \Delta t \cdot A}{m},$$ \hspace{1cm} (25)

where V_{E_i} - is the i^{th} element concentration change rate due to chemical reaction; A–is the interphase surface.

The total concentration change is determined as follows:

$$[E_i]^{\Delta t} = [E_i]_{mix}^{\Delta t} + [E_i]_{r}^{\Delta t}.$$ \hspace{1cm} (26)

The equations, which would describe component concentration changes in both phases, are as follows:

$$[E_i]^{\Delta t} = \frac{[E_i]_1 \cdot v_1 \cdot \Delta t + [E_i]_2 \cdot v_2 \cdot \Delta t + [E_i]_3 \cdot m_{Me_i} + 100 \cdot V_{E_i} \cdot A \cdot \Delta t}{v_1 \cdot \Delta t + v_2 \cdot \Delta t + m_{Me_i}},$$ \hspace{1cm} (27)

$$(E_{in} \cdot O_m)^{\Delta t} = (E_{in} \cdot O_m) + \frac{100\% \cdot V_{E_i} \cdot \Delta t \cdot A}{m_{ox}}.$$ \hspace{1cm} (28)
Equations (27) and (28) contain a most important parameter that has a significant effect on the phase formation. This is the rate of element transition through interphase boundary V_{E_i}.

The authors apply their own method for kinetic analysis of multimolecular and simultaneous reactions (19, 20, 8). The general equation to describe interaction of each of the metal melt components with the same reagent in the oxide melt will be as follows:

$$\frac{n}{m}[E_i] + (FeO) \rightarrow \frac{1}{m}(E_{in}O_m) + [Fe], \quad V_i \left[\frac{molFeO}{cm^2 \cdot S} \right]. \quad (29)$$

The common reagent in (29) is FeO.

Fig. 4. Metal component interaction with the common reagent FeO.

According to (20), the theoretical basis of the method consists of two assumptions:

1) In a diffusion-controlled mode, concentration ratio in the interface for each reaction is close to the equilibrium value.

2) The reagent transition rate to or from the interface is proportional to the difference between concentrations in the bulk and in the metal-oxide melt interface.

Use of the approach proposed in (20) enabled the authors to derive the equations for the rates of transition of any number of elements through the metal-oxide melt interface (V_{E_i}) with mutual influence of all relevant reactions taken into account.
As follows from the above chart (Fig. 4), iron oxide flow is distributed among all components in the metal melt:

\[V_{FeO} = V_1 + V_2 + \cdots + V_i = \sum V_i = \sum \frac{m}{n} V_{E_i}. \] (30)

Iron oxide \((V_{FeO})\) and metal melt component \((V_{E_i})\) flows are formulated as follows (20):

\[
V_{FeO} = \frac{(FeO)}{[Fe]} - x \]

\[
V_{Ei} = \frac{x}{V_{Ei}^{lim}} + \frac{(FeO)}{[Fe] \cdot V_{Ei}^{lim}} . \] (31)

If stoichiometric factor \(n = 1\):

\[
V_{Ei} = \frac{x^m - K_{Ei}^m (E_{in} O_m)}{[E_i]}. \] (32)

If \(n = 2\):

\[
V_{Ei} = V_{Ei}^{lim} \left[1 + \phi \frac{V_{Ei}^{lim}}{4V_{Ei2O_m}^{lim}} - \sqrt{\left(1 + \phi \frac{V_{Ei}^{lim}}{4V_{Ei2O_m}^{lim}} \right)^2 - 1 + \phi} \right] \] (33)

Rates of all subsequent stages in the steady mode are equal:

\[
V = V_d^B = V_r = V_d^F , \] (2)

where \(V\)– is heterogeneous reaction rate (1);

\(V_r, \ V_d^B, \ V_d^F, \) – are the rates of chemical reaction at the phase boundary, diffusion rates of reagent \(B\) in solution 1 and reagent \(F\) in solution 2, respectively.

\[
\phi = \frac{K_{Ei}^m (E_{i2} O_m)}{x^m [E_i]^2} . \]
By solving the equations (27), (28), (30), (31), (32) and (33), we can determine phase composition at any time and for any number of components. In fact, this set of equations is a mathematical model of oxide-metal phase interaction for a selected technological process (Fig. 3).

Hence, phase composition equations are supposed to correlate with a specific technological process, since mass ratio and technological parameters have a significant effect on the nature of chemical reactions. This approach was applied, for example, to develop mathematical models for steel treatment with slag in a ladle (21), building up technology (22), submerged arc welding (23), tungsten-containing waste treatment technology (24), and other metallurgical technologies (25-41).

References
1. M. Zinigrad: ‘Calculation of the equilibrium composition of metallic and oxide melts during their interaction’. In the book ‘The optimization of composition, structure and properties of metals, oxides, composites, nano and amorphous materials’. Bi-National Israel-Russia Workshop, Moscow, Russia 2018.
2. W. Eagar Thomas: ‘The physics and chemistry of welding processes. Adv. Weld. Sci. Technol. 1986 281-288.
3. V. Selivorstov, Y. Dotsenko, K. Borodianskiy: ‘Gas-dynamic influence on the structure of cast of A356 alloy’. Herald of the Donbass State Engineering Academy. Collection of science papers, 20103 (20) 234-238.
4. M. Zinigrad, V. Mazurovsky, K. Borodianskiy: ‘Physico-Chemical and Mathematical Modeling of Phase Interaction taking place during Fusion Welding Processes’. Materialwissenschaft und Werkstofftechnik, 200536 (10) 489-496.
5. U. Mitra, T.W. Eagar: ‘Slag-metal reactions during welding: Part I. Evaluation and reassessment of existing theories’. Metall. Trans. (B) 22 (1) 1991 65-71.
6. U. Mitra, T.W. Eagar: ‘Slag-metal reactions during welding: Part II. Theory’. Metall. Trans. (B) 22 (1) 1991 73-81.
7. V. Mazurovsky, M. Zinigrad, A. Zinigrad, L. Leontiev, V. Lisin: ‘New approach to welding materials design’. In the book ‘The optimization of composition, structure and properties of metals, oxides,
composites, nano and amorphous materials’. Bi-National Israel-Russia Workshop, Jerusalem, Israel 2003 144-154.

8. V. Mazurovsky, M. Zinigrad, A. Zinigrad, L. Leontiev, V. Lisin: ‘The phenomenological model of non-equilibrium crystallization and strengthening-phase-formation processes in the weld’. In the book ‘The optimization of composition, structure and properties of metals, oxides, composites, nano and amorphous materials’. Bi-National Israel-Russia Workshop, Jerusalem, Israel 2003 155-167.

9. U. Mitra, T.W. Eagar: ‘Slag-metal reactions during welding: Part III. Verification of the theory’. Metall. Trans. (B) 22 (1) 1991 83-100.

10. V. Boronenkov, M. Zhadkevich, B. Statnikov, A. Salamatov, N. Zalomov: Mathematical modeling of the physical-chemical processes of the evaporation and degassing in electron-beam remelting of alloys’. Le Vide, les Couches Minces 261 (1992) 74-76.

11. S. Shanchurov, V. Boronenkov: ‘The determination of mass transfer parameters between the metal and slag by physical modeling methods and in the real process’. Le Vide, les Couches Minces 261 1992 77-79.

12. V. Mazurovsky, M. Zinigrad, A. Zinigrad: ‘Novel method of welding materials design’. Proceedings of the International Conference Mathematical Modeling and Simulation of Metal Technologies, Ariel, Israel, 2000 201-206.

13. V. Boronenkov, M. Zhadkevich, S. Shanchurov, A. Yanishevskaya: ‘Mathematical model of chemical processes at centrifugal electroslag casting’. Izvestia AN USSR, Metally 5 1993 35-42.

14. M. Zinigrad, V. Mazurovsky, V. Shumyakov, A. Zinigrad: ‘Computer Technology in Welding’. TWI 10, Denmark 2000 40-47.

15. V. Mazurovsky, M. Zinigrad, A. Zinigrad: ‘Development of a computer-aided method for designing welding materials’. Proceedings of the Second International Conference on Mathematical Modeling and Computer Simulation of Metal Technologies, Ariel, Israel, 2002 2/29-37.

16. Yu. Davydov, V. Boronenkov, A. Salamatov: ‘Forecast of the process of formation of a seam with a variable composition’. Avtomaticheskaya Svarka 7-8 (1992) 23-16.
17. V. Boronenkov, Shalimov, S. Shanchurov: ‘Method for analyzing the kinetics of simultaneously occurring electrode reactions under non-steady-state conditions’. Rasplavy 5 1994 12-17.

18. M. Zinigrad, V. Mazurovsky, A. Zinigrad: ‘The Development of Electrode Coating Compositions Basing on the Mathematical Modeling of Physicochemical Processes on Metal-Slag Boundary’. Proceedings of the Mills Symposium, London, UK 2002 545 – 553.

19. M. Zinigrad: ‘Computational method for development of new welding materials’. Computational Material Science, 2006 37 (4) 417.

20. V. Boronenkov, S. Shanchurov, M. Zinigrad: ‘Kinetic of the interaction of a multicomponent metal with a slag in a diffusion controlled regime’. Izvestia AN USSR. Metally 6 (1979) 21-27.

21. V. Boronenkov, M. Zinigrad, M. Shalimov: ‘Mathematical modeling of metal and slag processes interaction in a ladle’. Izvestiya vuzov. Tchernaya metallurgiya, 1983 1 36-41.

22. M. Zinigrad, A. Phephelov, M. Shalimov, A. Balin: ‘Modeling of building-up processes’. Theory and practices of welding 1987 5 20.

23. V. Mazurovsky, M. Zinigrad, L. Leontev, V. Lisin: ‘Mathematical representation of a modified constitution Schaeffler diagram’ Metals, Moscow, Russia, 2004 3 114-119.

24. M. Zinigrad, A. Phljagin, A. Okolzdajev, M. Shalimov: ‘Improvement of technology of remelting of waste involving tungsten by application of modeling’. Izvestiya vuzov. Chernaya metallurgiya, 1991 12 59.

25. M. Zinigrad, V. Mazurovsky, O. Aksyutin: ‘Creating new welding materials based on metallurgical processes modeling’. Computer Technology in Welding, AWS, USA 1997 7.

26. M. Zinigrad, N. Zalomov, V. Mazurovsky, O. Aksyutin: ‘Computer approach to the development of welding materials’. Computer Technology in Welding, TWI, UK 1998 8.

27. M. Zinigrad, A. Zinigrad: ‘The Mathematical model of welding process optimization. Chemistry’. Israel 1999 45 93-98.

28. M. Zinigrad, V. Mazurovsky: ‘Computer modeling of the metallurgical processes in welding technologies’. Computer Technology in Welding, AWS 1999 9 USA.
29. V. Mazurovsky, M. Zinigrad, A. Zinigrad: ‘Novel computer-aided method of welding materials design’. Computer Technology in Welding, AWS, USA 2001 11.

30. M. Zinigrad, V. Mazurovsky: ‘Development of new welding materials on the base of mathematical modeling of metallurgical processes Part 1. Phase interaction analysis and development of the basic model’. In the book ‘The optimization of composition, structure and properties of metals, oxides, composites, nano and amorphous materials’. Bi-National Russia-Israel Workshop, Ekaterinburg, Russia 2002 277-291.

31. M. Zinigrad, V. Mazurovsky: ‘Development of new welding materials on the base of mathematical modeling of metallurgical processes. Part 2. Development of solution algorithm and software’. In the book ‘The optimization of composition, structure and properties of metals, oxides, composites, nano and amorphous materials’. Bi-National Russia-Israel Workshop, Ekaterinburg, Russia 2002 292-303.

32. V. Mazurovsky, M. Zinigrad, A. Zinigrad: ‘Mathematical Model of Weld Microstructure Formation’. Proceedings of the 12th International Conference ‘Computer Technology in Welding and Manufacturing, TWI, Sydney, Australia 2002 12 79/1-79/9.

33. M. Zinigrad, V. Mazurovsky, A. Zinigrad: ‘Mathematical modeling of phase interaction taking place during fusion welding processes’. Yazawa International Symposium, San Diego, USA 2003 667-680.

34. V. Mazurovsky, M. Zinigrad, A. Zinigrad, L. Leontiev and V. Lisin: New approach to welding materials design’. In the book ‘The optimization of composition, structure and properties of metals, oxides, composites, nano and amorphous materials’. Bi-National Israel-Russia Workshop, Jerusalem, Israel, 2003 144-154.

35. V. Mazurovsky, M. Zinigrad, A. Zinigrad, L. Leontiev, V. Lisin: ‘The phenomenological model of non-equilibrium crystallization and strengthening-phase-formation processes in the weld’. In the book ‘The optimization of composition, structure and properties of metals, oxides, composites, nano and amorphous materials’. Bi-National Israel-Russia Workshop, Jerusalem, Israel 2003 155-167.

36. V. Mazurovsky, M. Zinigrad, L. Leontev, V. Lisin: ‘Physicochemical analysis and modeling of the primary crystallization processes of a metal during welding’. In the book ‘The optimization of composition,
structure and properties of metals, oxides, composites, nano and amorphous materials’. Bi-National Russia-Israel Workshop, St.Petersburg, Russia 2004 68-83.

37. V. Mazurovsky, M. Zinigrad, L. Leontev, V. Lisin: ‘Physicochemical analysis and phenomenological model of the secondary crystallization processes of a metal during welding’. In the book ‘The optimization of composition, structure and properties of metals, oxides, composites, nano and amorphous materials’. Bi-National Russia-Israel Workshop, St. Petersburg, Russia 2004 84-96.

38. V. Mazurovsky, M. Zinigrad, L. Leontiev. ‘Principles of modeling for computer-aided design of welding materials’. In the book ‘The optimization of composition, structure and properties of metals, oxides, composites, nano and amorphous materials’. Bi-National Israel-Russia Workshop, Jerusalem, Israel 2005 192-206.

39. K. Borodianskiy, M. Zinigrad, A. Gedanken. ‘Aluminum A356 Reinforcement by Carbide Nanoparticles’. J Nano Research 2011 13 41-46.

40. K. Borodianskiy, V. Selivorstov, Y. Dotsenko, M. Zinigrad. ‘Effect of Additions of Ceramic Nanoparticles and Gas-Dynamic Treatment on Al Casting Alloys’. Metals 2015 5 2277-2288.

41. A. Sobolev, A. Kossenko, M. Zinigrad, K. Borodianskiy. ‘An Investigation of Oxide Coating Synthesized on an Aluminum Alloy by Plasma Electrolytic Oxidation in Molten Salt’ Applied Sciences 2017 7 (9) 889-898.