Multiple Crossing Sequential Fixed-Size Confidence Regions for Regression Parameters Under Normality

Sankha Muthu Poruthotage1,2 and Nitis Mukhopadhyay 2*

1Plymouth Rock Assurance Company, Boston, USA
1,2Department of Statistics, University of Connecticut, Storrs, USA
*Corresponding Author: nitis.mukhopadhyay@uconn.edu

Received: 8, September 2013 / Revised: 25, January 2014 / Accepted: 10, March 2014

ABSTRACT

The purely sequential sampling procedure proposed by Mukhopadhyay and Abid (1986) is customarily used to construct a fixed-size confidence region for regression parameters. This methodology has asymptotic efficiency and asymptotic consistency properties, but it does not have the exact consistency property. We propose that sequential sampling be continued allowing the sample size to cross a corresponding boundary multiple times. The asymptotic efficiency and asymptotic consistency properties are ascertained for multiple crossing stopping rules (Theorem 2.1). A truncation technique as well as a fine-tuning adjustment are developed. The simulated data are generated by realistic models arising from a study that investigates the association between prostate-specific antigen (PSA) and a number of appropriate prognostic clinical covariates. We highlight via large-scale simulations the remarkable gain in nearly achieving the target coverage without significant over-sampling.

Keywords: Boundary crossing, Consistency, Efficiency, Fine-tuning, Prostate-specific antigen, Second-order efficiency, Simulations, Truncation.

1. Introduction

Multi-stage sampling designs date back to Mahalanobis (1940). The primary motivation was to gauge and control the sampling error in large scale surveys spearheaded by him. Stein’s (1945) and Wald’s (1947) methodological breakthroughs highlighted the importance of multi-stage and sequential sampling designs. Subsequently, multi-stage and sequential sampling methodologies were developed for point estimation, interval estimation, hypothesis testing, selection and ranking, and other problems in inference.
We implement a new sequential sampling methodology to construct fixed-size confidence regions for regression parameters with a prespecified confidence coefficient. The sequential methodology is governed by multiple crossing stopping rules, originally developed by Mukhopadhyay and Muthu Poruthotage (2013,2014) and Muthu Poruthotage (2013) in the context of fixed-size confidence regions for a normal mean. We broaden the notion of multiple crossing by addressing fixed-size regression parameter estimation problems.

1.1. Fixed-Accuracy Estimation of Regression Parameters: Preliminaries

Chatterjee (1962) developed a two-stage procedure to estimate the regression coefficients of a general linear model with a fixed-size confidence region under normal errors. Gleser (1965,1966), Srivastava (1967, 1971) and others developed purely sequential procedures for fixed-size confidence region estimation of regression coefficients under non-normal errors. These methodologies were primarily inspired by Stein (1945) and Chow and Robbins (1965).

Mukhopadhyay (1974) first introduced minimum risk point estimation of regression parameters and Finster (1983) gave associated second-order properties. Limited shrinkage versions in two-stage and sequential regression parameter estimation are available in the literature (Ghosh et al. 1997; Mukhopadhyay and de Silva 2009).

We begin with the general linear model:

\[Y_n = X_n \beta + \varepsilon_n, \]

(1.1)

where \(Y_n \) is a \(n \times 1 \) observation vector, \(X_n \) is a known \(n \times p \) matrix with \(r(X_n) = p(< n) \), \(\beta \) is a \(p \times 1 \) unknown regression parameter vector, \(\varepsilon_n \sim N_n(0, \sigma^2 I_n) \) is the \(n \times 1 \) error vector, and \(0 < \sigma^2 < \infty \) is unknown. The least square estimator of \(\beta \), namely \(\hat{\beta}_n = (X_n'X_n)^{-1}X_n'Y_n \), is also the best linear unbiased estimator of \(\beta \). Also, \(\hat{\beta}_n \) is distributed as:

\[\hat{\beta}_n \sim N_p(\beta, \sigma^2(X_n'X_n)^{-1}). \]

(1.2)

Thus, we define a fixed-size confidence region for \(\beta \) as:

\[R_n = \left\{ \beta \in \mathbb{R}^p : n^{-1}(\hat{\beta}_n - \beta)'(X_n'X_n)(\hat{\beta}_n - \beta) \leq d^2 \right\}, \]

(1.3)
where \(d > 0 \) and the associated confidence coefficient \(1 - \alpha \) are preassigned, \(0 < \alpha < 1 \). We treat (1.3) as a fixed-size ellipsoidal confidence region since its maximum diameter is determined by \(d \) which is fixed in advance. The confidence coefficient associated with \(R_n \) is:

\[
P_{\beta, \sigma}(\beta \in R_n)
= P_{\beta, \sigma} \left\{ (\hat{\beta}_n - \beta)' (X_n' X_n) (\hat{\beta}_n - \beta) \leq nd^2 \right\}
= P_{\beta, \sigma} \left\{ \sigma^{-2}(\hat{\beta}_n - \beta)' (X_n' X_n) (\hat{\beta}_n - \beta) \leq nd^2 \sigma^{-2} \right\}
= F \left(nd^2 \sigma^{-2} \right),
\]

where \(F(u) = P\{U \leq u\} \) with \(U \sim \chi^2_p, u \geq 0 \).

Had \(\sigma^2 \) been known, by ensuring that \(n \) is the smallest integer satisfying

\[
n \geq a \sigma^2 d^{-2} = C, \text{ say, with } a \equiv a_{p, \alpha} \text{ such that } F(a) = 1 - \alpha,
\]

so that the confidence coefficient \(P_{\beta, \sigma}(\beta \in R_n) \) associated with \(R_n \) will be \(\geq 1 - \alpha \). We refer to \(C \) in (1.5) as the optimal fixed sample size, had \(\sigma^2 \) been known. But, \(C \) remains unknown.

Mukhopadhyay and Abid (1986) developed the following purely sequential procedure:

Having initially observed \((Y_i, X_{i,1}, ..., X_{i,p}), i = 1, ..., n_0, n_0 > p\), let \(Q_1 \equiv Q_1(d) = \inf \{ q_1(\geq n_0) : q_1 \geq aS_{q_1}^2 / d^2 \} \),

with \(S_{q_1}^2 = (q_1 - p)^{-1} (Y_{q_1} - X_{q_1} \hat{\beta}_{q_1})' (Y_{q_1} - X_{q_1} \hat{\beta}_{q_1}) \), the customary mean square error. At termination based on (1.6), the corresponding fixed-size confidence region, \(R_{Q_1} \), is:

\[
R_{Q_1} = \left\{ \beta \in \mathbb{R}^p : Q_1^{-1}(\hat{\beta}_{Q_1} - \beta)' (X_{Q_1}' X_{Q_1}) (\hat{\beta}_{Q_1} - \beta) \leq d^2 \right\}.
\]

In order to address some of the properties of the purely sequential procedure (1.6)-(1.7), let us formally define the notions of consistency, asymptotic consistency and asymptotic efficiency. Let \(Q \) be a generic stopping rule with an associated fixed-size confidence region \(R_Q \).
Then, we define:

(i) **Consistency or Exact consistency**: \(P_{\beta,\sigma} \{ \beta \in R_Q \} \geq 1 - \alpha \);
(ii) **Asymptotic consistency**: \(\lim_{d \to 0} P_{\beta,\sigma} \{ \beta \in R_Q \} = 1 - \alpha \);
(iii) **Asymptotic (first-order) efficiency**: \(\lim_{d \to 0} E_{\beta,\sigma} (Q/C) = 1 \).

(1.8)

The purely sequential procedure (1.6)-(1.7) has the asymptotic consistency and asymptotic efficiency properties, but it does not have the consistency property. Mukhopadhyay and Abid (1986) proposed two-stage and modified two-stage procedures in the spirit of Chatterjee (1962) and Mukhopadhyay (1980) respectively. Both procedures had consistency property, but only the modified two-stage procedure was first-order efficient. However, neither two-stage procedures were *asymptotically second-order efficient*, a notion formulated by Ghosh and Mukhopadhyay (1981), but the purely sequential procedure was (Mukhopadhyay and Solanky 1994, chapter 3). In order to establish a property such as second-order efficiency, one relies upon nonlinear renewal theory. Refer to Siegmund (1985), Mukhopadhyay (1988), Mukhopadhyay and Solanky (1994, chapter 2), and Ghosh et al. (1997) for details.

Even though the purely sequential procedure (1.6)-(1.7) does not have consistency property, we state the following extraordinary result in the spirit of Simons (1968), Srivastava and Bhargava (1979), Mukhopadhyay and Muthu Poruthotage (2013, 2014), and Muthu Poruthotage (2013) without sketching a detailed proof: Let the stopping rule and the fixed-size confidence region be defined by (1.6) and (1.7) respectively. Then, there exists an integer \(r (\geq 0) \), independent of \(\beta, \sigma, \alpha, d \) such that

\[
P_{\beta,\sigma} \{ \beta \in R_{Q_{1+r}} \} \geq 1 - \alpha.
\]

(1.9)

However, such universal \(r \), the required additional data of fixed size \(r \) upon termination, remains unknown. The multiple crossing stopping rules aim at estimating \(r \) adaptively and delivering an achieved coverage probability not exceeding the target coverage probability by a large margin.
1.2. Layout of the Paper
In Section 2, we formally define the multiple crossing stopping rules and
discuss some of its properties. A truncation technique on the multiple
crossing stopping rule is then proposed. Then, a fine-tuned adjustment
to the stopping rule (1.6) is proposed in Section 3. These methodologies
nearly provide consistency and alleviate some logistical concerns that
may arise in field-experimentations.
The methodologies are supplemented by extensive data analyses and im-
plemented via simulations. Section 4 contains concluding thoughts. For
ease of locating our tables and figures, they are all laid out after Section
4 but before the list of references begins.

2. Multiple Crossing Methodology
The general idea of multiple crossing goes like this: The stopping rule
(1.6) dictates that sampling must be terminated once the sample size
$q_1 \geq aS^2_{q_1}/d^2$, a random quantity, for the 1st time. Under a multiple
crossing stopping rule, sampling continues even after the 1st crossing of
the boundary. In fact, the sample size is allowed to cross the correspond-
ing boundary multiple times.

2.1. Multiple Crossing Stopping Rules
In order to define multiple crossing stopping rules, we mildly modify the
notation from Section 1. Observations are generated by the following
general linear model:

$$Y_{i,q_i} = X_{i,q_i}\beta + \varepsilon_n,$$

(2.1)

where Y_{i,q_i} is a $q_i \times 1$ observation vector, X_{i,q_i} is a known $q_i \times p$ matrix
with $r(X_{i,q_i}) = p$, β is an unknown $p \times 1$ regression parameter vec-
tor, $\varepsilon_n \sim N_n(0, \sigma^2 I_n)$ is the $n \times 1$ error vector, and $0 < \sigma^2 < \infty$ is
unknown.
Let \(i = 1, \ldots, k \). We denote:

Full observations vector:
\[Y'_{q,k} = (Y'_{1,q_1}, Y'_{2,q_2}, \ldots, Y'_{k,q_k}) \quad q = (q_1, \ldots, q_k); \]

Full design matrix:
\[X'_{q,k} = (X'_{1,q_1}, X'_{2,q_2}, \ldots, X'_{k,q_k}) \quad (2.2a) \]

Total sample size:
\[q(k) = \sum_{i=1}^{k} q_i, q = (q_1, \ldots, q_k); \]

Least square Estimator of \(\beta \):
\[\hat{\beta}_{q,k} = (X'_{q,k}X_{q,k})^{-1} X'_{q,k}Y_{q,k}; \]

Mean square error:
\[S_{q,k}^2 = (q(k) - p)^{-1}(Y_{q,k} - X_{q,k}\hat{\beta}_{q,k})' (Y_{q,k} - X_{q,k}\hat{\beta}_{q,k}); \]

Confidence region: Let \(\xi \equiv \hat{\beta}_{q,k} - \omega \) with \(\omega \in \mathbb{R}^p \)
\[\text{and } R_{q,k} = \left\{ \omega \in \mathbb{R}^p : q_{(k)}^{-1} \xi' (X'_{q,k}X_{q,k}) \xi \leq d^2 \right\}. \quad (2.2b) \]

Now, we assume that sampling is first carried out according to (1.6) and we have observed \(Q_1 = q_1, Y_{1,q_1}, X_{1,q_1} \) with the design matrix \(X_{1,q_1} \). However, instead of terminating the sampling process at this point, we take one additional observation and follow through with observations one at-a-time until it crosses the corresponding boundary 2nd time. The number of additional observations needed beyond \(Q_1 \) up until the 2nd crossing is denoted by \(Q_2 \) defined as:
\[Q_2 \equiv Q_2(d) = \inf \left\{ q_2(\geq 1) : q_{(2)}(= \sum_{i=1}^{2} q_i) \geq aS_{q,2}^2/d^2 \right\}. \quad (2.3) \]

At this juncture, we have recorded \(Y'_{Q_2}, X'_{Q_2}, \) and \(Q_{(2)} = \sum_{i=1}^{2} Q_i \). The corresponding fixed-size confidence region for \(\beta \) is:
\[R_{Q_2} = \left\{ \omega \in \mathbb{R}^p : Q_{(2)}^{-1}(\hat{\beta}_{Q_2} - \omega)' (X'_{Q_2}X_{Q_2}) (\hat{\beta}_{Q_2} - \omega) \leq d^2 \right\}. \quad (2.4) \]
In general, the number of crossings is denoted by k. If we decide to terminate sampling according to (2.4), then our results would correspond to $k = 2$ with $Q = (Q_1, Q_2)$.

2.2. Beyond Second Crossing

It is possible to continue sampling, one observation at-a-time beyond second crossing. Suppose that we have crossed the intended boundary $k - 1$ times. That is, by this time, we have already gathered data $Y'_{Q,k-1}, X'_{Q,k-1}$, and $Q_{(k-1)} = \sum_{i=1}^{k-1} Q_i$ with $Q_i = q_i$ for $i = 1, \ldots, k - 1$. We define a stopping variable associated with crossing the boundary for the kth time as follows:

$$Q_k \equiv Q_k(d) = \inf \{ q_k(\geq 1) : \sum_{i=1}^{k} q_i \geq aS_{Q,k}^2/d^2 \}. \quad (2.5)$$

Finally, based on the combined set of gathered data $Y'_{Q,k}, X'_{Q,k}$, and $Q_{(k)} = \sum_{i=1}^{k} Q_i$, the corresponding fixed-size confidence region for β is constructed as:

$$R_{Q,k} = \left\{ \omega \in \mathbb{R}^p : Q_{(k)}^{-1}(\hat{\beta}_{Q,k} - \omega) \left(X'_{Q,k} X_{Q,k} \right) (\hat{\beta}_{Q,k} - \omega) \leq d^2 \right\}. \quad (2.6)$$

with $Q = (Q_1, \ldots, Q_k), k \geq 2$.

Now, Theorem 2.1 states some of the key properties of the multiple crossing stopping rule (2.5) with the associated confidence region (2.6).

Theorem 2.1. Let $Q = (Q_1, \ldots, Q_k)$, $Q_{(k)} \equiv Q_{(k)}(d)$, and $R_{Q,k}$ be defined as in (2.5) and (2.6). Then, we have:

(i) $\lim_{d \to 0} Q_{(k)}/C = 1$ a.s.;

(ii) $\lim_{d \to 0} E_{\beta,\sigma} \left[Q_{(k)}/C \right] = 1$;

(iii) $\lim_{d \to 0} P_{\beta,\sigma} \left\{ \beta \in R_{Q,k} \right\} = 1 - \alpha$.

Hence, the multiple crossing stopping procedure (2.5)-(2.6) is asymptotically first-order efficient as well as asymptotically consistent.

In order to prove Theorem 2.1, we begin with two lemmas. Lemma 2.1 is needed in the proof of Lemma 2.2. For convenience, we temporarily revert back to the notation used in Section 1.
Lemma 2.1. Let $Q_{(k)} \equiv Q_{(k)}(d)$ stand for the total sample size associated with a stopping variable (2.5). Then, $\lim Q_{(k)}(d) = \infty$ a.s. as $d \to 0$.

Lemma 2.2. Let $Q_{(k)} \equiv Q_{(k)}(d)$ be the same as in Lemma 2.1. Then, $S_{Q_{(k)}}^2/\sigma^2 \to 1$ a.s. as $d \to 0$.

Proofs of these two Lemmas are omitted. Details are similar to those in Mukhopadhyay and Muthu Poruthotage (2013,2014) and Muthu Poruthotage (2013).

Proof of Theorem 2.1. Along the lines of Simons (1968), Mukhopadhyay and Muthu Poruthotage (2013,2014), and Muthu Poruthotage (2013) we may define a reverse stopping variable M corresponding to (1.6):

$$M \equiv M(d) = \begin{cases}
\text{last index } m \text{ for which } m < aS_m^2/d^2 & \text{if such } m \text{ exists} \\
n_0 - 1 & \text{if } n \geq aS_n^2/d^2 \text{ for all } n \geq n_0 \\
\infty & \text{if } n < aS_n^2/d^2 \text{ infinitely often.}
\end{cases}$$

Now, $M + 1 \geq Q_1$ a.s. and in view of Lemma 2.1, we claim:

$$\lim M = \infty \text{ a.s. as } d \to 0. \tag{2.8}$$

From Lemma 2.2, we have:

$$S_M^2/\sigma^2 \to 1 \text{ a.s. as } d \to 0. \tag{2.9}$$

Next, we may utilize the following basic inequality relevant for $Q_{(k)}$, the total sample size associated with (2.5):

$$S_{Q_{(k)}}^2/\sigma^2 \leq Q_{(k)}/C \leq S_M^2\sigma^{-2} + kC^{-1} \text{ a.s.} \tag{2.10}$$

Then, Lemma 2.2 and (2.10) imply:

$$\lim Q_{(k)}/C = 1 \text{ a.s as } d \to 0, \tag{2.11}$$

which is part (i).
Now, we turn to part (ii). Combining Fatou’s lemma and (2.11), we claim:

$$\liminf_{d \to 0} E_{\beta, \sigma} \left[\frac{Q(k)}{C} \right] \geq E_{\beta, \sigma} \left[\liminf_{d \to 0} Q(k) / C \right] = 1.$$ \hspace{1cm} (2.12)

Next, let $W = \sup_{n \geq 2} n^{-1} \mathbf{Y}_n'(I_n - P_n) \mathbf{Y}_n'$ where $P_n = \mathbf{X}_n(\mathbf{X}_n' \mathbf{X}_n)^{-1} \mathbf{X}_n'$, the projection matrix, $n > p$. We may appeal to Wiener’s (1939) dominated ergodic theorem to conclude that $E_{\beta, \sigma} [W^t] < \infty$ for all fixed $t \geq 2$. Hence, for sufficiently small $d > 0$, the right-hand side of (2.10) may be rewritten as:

$$Q(k)/C \leq S_M^2 \sigma^{-2} + k \leq pW \sigma^{-2} + k, \text{ a.s.},$$ \hspace{1cm} (2.13)

which shows that $Q(k)/C$ is uniformly integrable.

Combining (2.13) with (2.11), we immediately obtain the following result:

$$\limsup_{d \to 0} E_{\beta, \sigma} \left[Q(k)/C \right] \leq 1.$$ \hspace{1cm} (2.14)

Combining (2.12) and (2.14), we have part (ii).

Next, we turn to part (iii). We observe:

$$P_{\beta, \sigma} \{ \beta \in \mathcal{R}_{Q,k} \} = E_{\beta, \sigma} \left[F \left(Q(k) d^2 \sigma^{-2} \right) \right]$$
$$= E_{\beta, \sigma} \left[F \left(Q(k) C^{-1} \alpha \right) \right].$$ \hspace{1cm} (2.15)

Hence, a simple application of Lebesgue dominated convergence theorem combined with part (i) leads to part (iii).

\section*{2.3. Assessments of Coverage Probabilities}

Now that we have established the asymptotic first-order efficiency and asymptotic consistency properties of the multiple crossing stopping rule (2.5), we move to address the coverage probabilities associated with it in more detail. We do so with the help of a large simulation exercise.

The premise of the multiple crossing stopping rule is its ability to nearly achieve the target coverage probability $1 - \alpha$ with an optimal number of additional observations beyond 1st crossing. We try to strike a balance between oversampling and overshooting the target coverage probability. An appropriate choice of k is critical in order to achieve this balance.
Through simulations we investigate properties of the multiple crossing stopping rule (2.5) with different choices of k.

We generate observations for the simulation exercises by mimicking a real data example from Kutner et al. (2005, pp. 1351-1352) which investigated association between prostate-specific antigen (PSA) and a number of prognostic clinical measurements in men with advanced prostate cancer. That data consisted of 97 records where PSA level was the response variable along with eight predictor variables.

2.3.1. Illustration with $p = 2$

We first considered the predictor variable, Cancer volume, alone. This gave us a dataset with $p = 2$. Then, four more predictor variables, namely Weight, Age, Benign prostatic hyperplasia, and Capsular penetration, were introduced, to illustrate a case with $p = 6$.

In Kutner et al.’s (2005) data with $p = 2$, a simple linear regression having an intercept, the parameter estimates were 1.125 for the intercept and 3.230 for Cancer volume. The mean square error (MSE) was 1026.

Hence, in order to illustrate a case with $p = 2$, we generated observations using the following regression model:

$$\text{Observation} = 1.125 + 3.230 \times \text{Cancer volume} + \varepsilon,$$

with $\varepsilon \sim N(0, 1026)$. Thus, we fixed our true parameter vector $\beta' = (1.125, 3.230)$. The values for Cancer_volume obviously comes from the design matrix. Since we might require more than 97 observations for our simulation exercises, the original design matrix of Kutner et al. (2005) was randomized and enlarged to store 4000 rows. This enabled us to generate up to 4000 observations, if needed.

We fixed $n_0 = 10, 15$, but focused on the results when $n_0 = 10$. The target confidence coefficient ($= 1 - \alpha$) was set at 0.99, 0.95, 0.90 and fixed d so that $C(= a\sigma^2/d^2 \text{ with } \sigma^2 = 1026)$ varied through $25(25)100(50)200(100)1000$. We began by simulating the stopping rules (1.6) and (2.5) when $p = 2$ by letting $k = 1, \ldots, 5$, that is we investigated performances of the proposed methodology (2.5) up to 5^{th} crossing. The basic steps in the simulations are laid out as follows:

1. First, 10 pilot observations were generated from (2.16).
2. With each additional observation generated one by one, as needed, we sequentially checked against the stopping rule (1.6). This data generating process terminated at the point where the sample satisfied (1.6), that is, when \(k = 1 \). At this instance, we recorded the observed sample size \(Q_1 = q_{11} \) and calculated the least square estimate \(\hat{\beta}_{q,1}^{(1)} \).

3. After 1st crossing, we generated one new observation and checked against the stopping rule (2.5). This was supplemented by generating new observations, recorded one at-a-time as needed according to the termination rule (2.5). At each subsequent crossing, namely \(k = 2, 3, 4 \) and 5, we recorded the observed sample size \(Q_k = q_{k1} \) as well as the least square estimate \(\hat{\beta}_{q,k}^{(1)} \). Let \(q_{(k1)} = \sum_{j=1}^{k} q_{(j1)} \), the total observed sample size, and the corresponding design matrix \(X_{q,k}^{(1)} \).

4. Then, we constructed the fixed-size confidence region for parameter vector \(\beta \), namely,

\[
\mathcal{R}_{q,k}^{(1)} = \left\{ \omega \in \mathbb{R}^p : q_{(k1)}^{-1} (\hat{\beta}_{q,k}^{(1)} - \omega)' \left(X_{q,k}^{(1)'} X_{q,k}^{(1)} \right) (\hat{\beta}_{q,k}^{(1)} - \omega) \leq d^2 \right\}
\]

successively with \(k = 1, \ldots, 5 \). Finally, we recorded the observed value \(p_{k1} = 1(0) \) if \(\beta \in (\omega) \) to the region \(\mathcal{R}_{q,k}^{(1)} \), where \(\beta' = (1.125, 3.230) \).

5. Steps 1-4 were repeated \(R(=10000) \) times in succession giving rise to the observed entities \(q_{ki}, \hat{\beta}_{q,k}^{(i)}, \mathcal{R}_{q,k}^{(i)} \) and \(p_{ki} \) with \(i = 1, \ldots, R, k = 1, \ldots, 5 \).

We express the pertinent simulated estimates as follows:

\[
\begin{align*}
\bar{q}_{(k)} &= R^{-1} \sum_{i=1}^{R} \sum_{j=1}^{k} q_{ji}; \\
\bar{s}_{q,k}^2 &= (R^2 - R)^{-1} \sum_{i=1}^{R} (\sum_{j=1}^{k} q_{ji} - \bar{q}_{(k)})^2; \\
\bar{p}_k &= R^{-1} \sum_{i=1}^{R} p_{ki}; \\
\bar{s}_{p,k}^2 &= R^{-1} \tilde{p}_k (1 - \bar{p}_k), k = 1, \ldots, 5; \text{ and} \\
\text{95\% CL Cov:} \quad L(\text{or } U) &= \bar{p}_k - (\text{or } +) 1.96 \bar{s}_{p,k}.
\end{align*}
\]

Table 1 presents selected outcomes to compare and contrast performances of the multiple crossing stopping rule (2.5) to the original sequential stopping rule (1.6) when \(p = 2 \) and \(\alpha = 0.05 \). We note that \(\bar{p}_k \) is an
estimate of the coverage probability at the k^{th} crossing. When $k = 1$, that is when sampling is terminated according to the stopping rule (1.6), \bar{p}_1 fell under 0.95. This is clearly visible for smaller values of C such as 25, 50, 100. Recall that all tables and figures are laid out before the list of references.

However, this is expected since the stopping rule (1.6) does not provide exact consistency. When sampling is extended until 2nd crossing ($k = 2$) according to the stopping rule (2.5), we see an increment in the coverage probabilities which is estimated by \bar{p}_2. This increment, however, appears to be not large enough to nearly claim the coverage 0.95. Since the multiple crossing procedure (2.5) easily extends to subsequent crossings, we may compare \bar{p}_3, \bar{p}_4, and \bar{p}_5, the estimated coverages corresponding to 3rd, 4th, and 5th crossings, with the target coverage 0.95.

Columns 7 and 8 in Table 1 provides approximate 95% confidence interval for the coverage probability associated with (2.5)-(2.6). We observe that the target coverage 0.95 can be safely claimed by letting $k = 5$ in (2.5). But, it is also important to notice that none of the \bar{p}_k values exceed the target coverage probability of 0.95 by a large margin.

This is a much desired characteristic of multiple crossing procedures. After all, one does not want to over-achieve the coverage probability via oversampling. The efficiency at which the multiple crossing procedure (2.5)-(2.6) nearly achieves the target coverage is further illustrated by $\overline{q}_{(k)}$ in Table 1. Note that $\overline{q}_{(k)}$ is an estimate of $E_{\beta,\sigma}[Q_{(k)}]$. Even after five crossings $\overline{q}_{(5)}$ remains in the close proximity of C, the optimal fixed sample size.

Figure 1a illustrates the performances of the stopping rule (2.5)-(2.6) corresponding to C running through 25(25)100(50)200(100)1000. The vertical lines in Figure 1a correspond to 95% confidence intervals for the coverage probabilities associated with the stopping rule (2.5)-(2.6) when $k = 5$ and $p = 2$. The square markers represent the target coverage probability 0.99. Nearly all such confidence intervals contain 0.99. Figures 1b-1c correspond to $\alpha = 0.05$ and $\alpha = 0.10$ respectively. Again, recall that all tables and figures are laid out before the list of references.
2.3.2. Illustration with \(p = 6 \)

We add that when \(p = 6 \), a linear regression model with an intercept on the original data from Kutner et al. (2005) provided the following parameter estimates associated with each covariate: Intercept 17.6029, Cancer_volume 2.4611, Weight 0.0047, Age \(-0.3114\), Benign prostatic hyperplasia 1.1493, and Capsular penetration 2.5225 with a MSE 1012. Hence, in order to illustrate a case with \(p = 6 \), we generated observations using the following regression model:

\[
\text{Observation} = 17.6029 + 2.4611 \times \text{Cancer_volume} + 0.0047 \times \text{Weight} - 0.3114 \times \text{Age} + 1.1493 \times \text{BenignPH} + 2.5225 \times \text{Capsular_penetration} + \varepsilon,
\]

(2.18)

where our true parameter vector

\[
\beta' = (17.6029, 2.4611, 0.0047, -0.3114, 1.1493, 2.5225)
\]

and \(\varepsilon \sim N(0, 1012) \).

Table 2 is similar to Table 1 except that Table 2 corresponds to \(p = 6 \). We provide results up to 8th crossing (\(k = 8 \)). It is clearly seen how the estimated coverage probabilities \(\overline{p}_k \) move closer to 0.95 as \(k \) increases, however, in this case we need to go beyond 5th crossing to nearly claim the target coverage 0.95. This is evident especially in the case of smaller values of \(C \) such as 25, 50, 100. Results in Table 2 suggest that the choice \(k = 8 \) is appropriate when \(p = 6 \).

Figure 2 further illustrates the need to go up to 8th crossing when \(p = 6 \) by considering \(\alpha = 0.01, 0.05, 0.10 \) and letting \(C \) run through 25(25)100 (50)200(100)1000. The vertical lines in Figure 2a correspond to 95% confidence intervals for the coverage probabilities associated with the stopping rule (2.5)-(2.6) when \(k = 8, p = 6 \) and \(\alpha = 0.01 \). The square markers represent the target coverage 0.99. Nearly all confidence intervals contain the target coverage probability \(1 - \alpha \) in Figure 2a, when \(k = 8 \). Figures 2b and 2c provide the similar information as in Figure 2a when \(\alpha = 0.05, 0.10 \) respectively.

2.4. Additional Observations Beyond First Crossing

The gain in the achieved coverage probability noted in Section 2.3 was clearly due to the multiple crossing methodology determining adptively
the required additional observations beyond 1st crossing per (1.6). But, if the number of additional observations beyond 1st crossing is considerably high, the proposed stopping rule (2.5) may not be attractive. Thus, we investigate the empirical distribution of Q_k, the number of additional observations needed for the k^{th} crossing beyond the $(k-1)^{th}$ crossing.

The $\bar{q}(k)$ values in Tables 1 and 2 indicate that the average number of additional observations beyond 1st crossing is not excessive. Table 3 provides the empirical distribution of Q_k for $k = 2, 3, 4, 5$ when $p = 2$ and $\alpha = 0.05$. In Table 3, for instance, when $C = 25$, our Q_2 was 1 with frequency 8720 times out of 10000 simulations. That is, the 2nd crossing had occurred after recording merely 1 additional observation beyond 1st crossing 8720 times out of 10000 simulations. Also, Q_2 was 2 with frequency 505 times out of 10000 simulations. That is, the 2nd crossing occurred after recording merely 2 additional observations beyond 1st crossing 505 times out of 10000 simulations. The last column in Table 3, for example, when $C = 25$ and $k = 2$ shows the maximum number of additional observations needed beyond 1st crossing to 2nd crossing is 31, again out of 10000 simulations.

We note an interesting feature: When k is larger, the additional number of observations for subsequent crossing becomes successively smaller. For example, when $C = 25$, our Q_5 was 1 with frequency 9646 out of the 10000 simulations. An important implication is that when the sampling process moves ahead to higher crossings, the likelihood of faster termination increases drastically, which is a highly desirable feature because it contributes to lowering the right-skewness in the distribution of Q_5. Table 4 provides similar information when $p = 6$. Those characteristics that we highlighted in Table 3 clearly prevail in Table 4 for $p = 6$. Recall that all tables and figures are laid out before the list of references. From Tables 3-4 one may notice that even though the number of additional observations needed for higher levels of crossings stays fairly within reason, in very rare instances, it could be in the range of 100s. This phenomenon was discussed in Mukhopadhyay and Muthu Poruthotage (2013,2014) and Muthu Poruthotage (2013) too. In order to curb possible severe right-skewness of Q_5 when $p = 2$ and Q_8 when $p = 6$, we propose a truncation method.
2.5. Multiple Crossing with Truncation

The objective of truncation is simply to curb the right-hand tail of the distribution of Q_i ($i = 2,\ldots,k$) while preserving the gain in the increased coverage probability. The main characteristic of truncation rule is that we would not let $\sum_{i=2}^{k}Q_i$ go beyond Q_1^γ with Q_1 from (1.6) and $0 < \gamma < 1$, a predefined fixed constant. That is, we force $\sum_{i=2}^{k}Q_i$ to stay rather “small” compared with Q_1 which is already very close to C when $n_0 \geq p + 3$. See the first row within each block in Tables 1 and 2. Indeed Mukhopadhyay and Abid (1986) showed that Q_1 satisfied the second-order efficiency property in the sense of Ghosh and Mukhopadhyay (1981).

We may explain the role of $0 < \gamma < 1$ as follows: In the worst possible scenario, when Q_1^γ observations are sequentially added to previously recorded Q_1 observations, the total number of observations $Q_1 + Q_1^\gamma$ would obviously exceed Q_1. But, the maximum total number of observations $Q_1 + Q_1^\gamma$ would not exceed Q_1 substantially in the senses that $(Q_1 + Q_1^\gamma)/C \to 1$ a.s. and $E_{\beta,\sigma}[(Q_1 + Q_1^\gamma)/C] \to 1$ as $d \to 0$. That is, Q_1^γ stays “small” relative to C when $0 < \gamma < 1$.

Recall Q_1 defined by (1.6) and Q_i, $i = 2,\ldots,k$, defined by (2.5). Let $\lfloor u \rfloor$ denote the largest integer $< u$. Now, we formally define the truncated stopping rules:

$$Q_2^T = \min \{Q_2, \lfloor Q_1^\gamma \rfloor\}, \quad (2.19)$$

$$Q_i^T = \begin{cases}
0 & \text{if } \sum_{j=2}^{i-1}Q_j^T = \lfloor Q_1^\gamma \rfloor \\
\min \{Q_i, \lfloor Q_1^\gamma \rfloor - \sum_{j=2}^{i-1}Q_j^T\} & \text{if } \sum_{j=2}^{i-1}Q_j^T < \lfloor Q_1^\gamma \rfloor,
\end{cases} \quad (2.20)$$

with $i = 3,\ldots,k$ as needed.

It should be observed from (2.19)-(2.20) that there is no guarantee that the sampling process will reach a predefined k^{th}, $k \geq 2$, crossing as it did in (2.5). If sampling is carried out according to the truncated stopping rules with a predetermined k, the only guarantee is that the number of crossings before termination is at least 1 and at most k. This is due to the fact that termination of the stopping rule (2.19)-(2.20) would be
triggered by one of the following two events, whichever occurs first:

- attaining the pre-defined maximum number of boundary crossings (\(= k\));
- or attaining the maximum number of additional observations allowable beyond \(Q_1\) (namely, \([Q_1^\gamma]\)).

2.5.1. Simulations on Truncated Methodology

The results in this section pertain to simulations on the stopping rule (2.19)-(2.20) when \(p = 2\) and \(\alpha = 0.05\). We again fixed \(k = 5\) since the open-ended multiple crossing methodology (2.5) comfortably achieved the near target coverage 0.95 when \(p = 2\). The basic steps in these simulations (with 10000 replications) closely follow the steps laid out in Section 2.3 with appropriate and obvious modifications by using a superscript \(T\) throughout in order to remind ourselves that the truncation is now in place with fixed \(\gamma = 0.5, 0.8\) and \(n_0 = 10\). For brevity, we omit similar analysis when \(p = 6\).

We recall that \(\overline{T}_{(1)}\) and \(\overline{T}_{(5)}\) will estimate

\[
E_{\beta,\sigma} [Q_1] \text{ and } E_{\beta,\sigma} [Q_1 + Q_2^T + Q_3^T + Q_4^T + Q_5^T],
\]

respectively with estimated standard errors \(s_{\overline{T}_{(1)}}\) and \(s_{\overline{T}_{(5)}}\). Analogously, the coverage probability

\[
P_{\beta,\sigma} \{ \beta \in \mathcal{R}_{Q_1^T,5}^T \}
\]

will be estimated by \(\overline{p}_5^T\) with estimated standard error \(s_{\overline{p}_5}^T\). As before, \(L\) (or \(U\)) is the lower (or upper) approximate 95\% confidence limits for the target coverage probability.

Table 5 illustrates performances of the truncated stopping rule (2.19)-(2.20) when \(p = 2\), \(\alpha = 0.05\) with \(k = 5\) based on the model (2.16). It can be seen that when \(\gamma = 0.8\) our approximate 95\% confidence intervals for the coverage probability tend to cover the target 0.95. Hence, the main objective of the multiple crossing methodology is preserved despite truncation.

However, the prime motivation for truncation was to curb right-hand tail of \(Q_i\) \((i = 2, \ldots, k)\) distribution. The empirical frequency distribution of \(Q_{(5)}^T(= \sum_{i=2}^{5} Q_i^T)\), the total number of additional observations beyond
1st crossing but up to the termination, for either choice of γ are shown in Table 6. We note from Table 6 that the total number of additional observations beyond 1st crossing rarely exceeded 20. Hence, this modification provides some practical assurance against excessive oversampling beyond 1st crossing and yet nearly achieving consistency property.

3. Fine-Tuned Multiple Crossing Methodology
In this section, we pursue a modification to the multiple crossing stopping rule (2.5) which will further enhance its practical appeal by reducing the number of crossings required until termination. Our objective is to terminate the sampling process by curtailing additional crossings beyond the 1st one.

3.1. First Crossing
The motivation and the methodology for fine-tuning a purely sequential stopping rule were first introduced by Mukhopadhyay and Datta (1995). Instead of (1.6), they proposed the following fine-tuned version:

$$Q_{1,\xi} = \inf \left\{ q_1(\geq n_0) : q_1 + \xi \geq aS_{q_1}^2/d^2 \right\}, \quad (3.1)$$

where the fine-tuning factor $\xi (\in R)$ was explicitly provided with the associated fixed-size ellipsoidal confidence region, R_{Q_1}. This Q_1 corresponds to 1st crossing.

Mukhopadhyay and Datta (1995) showed:

$$P_{\beta,\sigma} \{ \beta \in R_{Q_1,\xi} \} = (1 - \alpha) + o(d^2) \text{ if (i) } n_0 \geq p + 3 $$

$$\text{ when } p = 2 \text{ or } p \geq 4, \text{ (ii) } n_0 \geq 7 \text{ when } p = 3,$$

where

$$\xi = \nu - 3 + \frac{1}{2}(p - a) \text{ with } \nu = \frac{3}{2} - \sum_{n=1}^{\infty} n^{-1} E \{ \max(\chi_n^2 - 2n, 0) \}. \quad (3.2)$$

3.2. Beyond First Crossing
Now, we incorporate the fine-tuning factor ξ from (3.2) within the multiple crossing methodology. The fine-tuned version of (1.6) is given by (3.1). After 1st crossing, the implementation of the multiple crossing
methodology described in Section 2 remains unchanged. However, for subsequent crossing after \(k - 1 \) crossings, with \(Q_{i,\xi} = q_i, i = 1, \ldots, k - 1 \) already observed, we define the fine-tuned stopping rule as follows:

\[
Q_{k,\xi} = \inf \{ q_k \geq 1 : q = (\sum_{i=1}^{k} q_i) + \xi \geq a^2 s^2_{q,k} / d^2 \}, \quad k \geq 2.
\]

(3.3)

Finally, based on combined set of gathered data \(Q_{i,\xi}, i = 1, \ldots, k \) will provide \(Q_{(k),\xi} = \sum_{i=1}^{k} Q_{i,\xi}, X_{Q_{\xi,k}} \) and \(\hat{\beta}_{Q_{\xi,k}} \) from all \(k \) crossings, our proposed fixed-size confidence region for \(\beta \) is constructed as:

\[
\mathcal{R}_{Q_{\xi,k}} = \left\{ \omega \in \mathbb{R}^p : Q_{(k),\xi}^{-1}(\hat{\beta}_{Q_{\xi,k}} - \omega)' \left(X_{Q_{\xi,k}}' X_{Q_{\xi,k}} \right) (\hat{\beta}_{Q_{\xi,k}} - \omega) \leq d^2 \right\}.
\]

(3.4)

In Section 3.3, we briefly summarize some findings from our simulation exercises carried out to evaluate performances of the fine-tuned methodology (3.3)-(3.4).

3.3. Coverage Probabilities and Suggestions for \(k \)

We fixed \(p = 2, 6, n_0 = 10 \) to run simulations under models (2.16) and (2.18) respectively. The confidence coefficient \(1 - \alpha \) was set at 0.90, 0.95, 0.99. The basic steps in these simulations are exactly the same as those explained in Section 2.3. We let \(k = 1, \ldots, 5 \), that is, we again check performances by including up to 5th crossing.

Table 7 summarizes results when \(p = 2 \) and \(\alpha = 0.05 \). Equation (3.2) gave \(\xi = -4.1785 \). The 95\% confidence interval for the coverage probability of the fine-tuned multiple crossing procedure is given in the last two columns. We can safely claim that \(k = 2 \) is enough since all such confidence intervals include 0.95 by 2nd crossing. From Section 2.3, we recall that we had to go up to 5th crossing without fine-tuning in place to make a similar claim. Again, recall that all tables and figures are laid out before the list of references.

Table 8 is similar to Table 7 except that it corresponds to \(p = 6 \). We have \(\xi = -5.4785 \) when \(\alpha = 0.05 \). From Section 2.3, we again recall that under non-fine-tuned multiple crossing stopping rule (2.5), we had to go up to 8 crossings to nearly claim the required coverage probability.
From Table 8, we see that under the fine-tuned modification, the required coverage probability can be nearly achieved with 3rd crossing. Hence, the fine-tuning is highly recommended. Finally, it should be noted that foregoing observations that we laid out in the context of fine-tuned multiple crossing methodologies remain valid for a range of values of α including 0.01, 0.05 and 0.10. We have summarized comparable sentiments in Figures 3 and 4.

Remark 3.1. We had carried out simulations across a much wider range of values of C, α, n_0 and p than those that are shown in Tables 1-8. We have kept much of that larger body of data analyses out for brevity. One may refer to Muthu Poruthotage (2013) for details.

4. Concluding Remarks

Multi-stage and sequential sampling methodologies are commonly used to construct confidence regions of fixed size. The purely sequential methodology of Mukhopadhyay and Abid (1986) is not consistent even though it is asymptotically efficient and asymptotically consistent. The lack of consistency was clearly demonstrated in the simulations where the achieved coverage probability frequently fell below the target, especially when C was small. The proposed methodology nearly achieves the target coverage probability with minimal oversampling when k, the number of crossings, is appropriately chosen.

Our proposed truncation eliminates the possibility of prolonged sampling beyond 1st crossing as explained in Section 2. The fine-tuned adjustment implemented in Section 3 makes an invaluable impact by reducing the number of crossings significantly. For example, it reduces k from 5 to 2 when $p = 2$ and reduces k from 8 to 3 when $p = 6$. Finally, it should be noted that the multiple crossing methodology is a general sampling strategy which can be utilized in other types of statistical problems including some arising from multiple comparisons and selection and ranking. We are in the process of exploring such avenues.
Table 1: Performances of methodology (1.6) under model (2.16) with $k = 1$ and multiple crossing methodology (2.5) with $k = 2, 3, 4, 5$: $n_0 = 10$, $\alpha = 0.05$, and $p = 2$

C	k	$\bar{q}_{(k)}$	$s_{\bar{q}_{(k)}}$	\bar{p}_k	$s_{\bar{p}_k}$	95% CI: Cov
25	1	23.0123	0.0780	0.9024	0.0030	0.8965 - 0.9083
25	2	24.5011	0.0762	0.9187	0.0027	0.9132 - 0.9242
25	3	25.7783	0.0749	0.9310	0.0025	0.9259 - 0.9361
25	4	26.9514	0.0739	0.9421	0.0023	0.9374 - 0.9468
25	5	28.0767	0.0730	0.9501	0.0022	0.9457 - 0.9545
50	1	47.6806	0.1198	0.9204	0.0027	0.9150 - 0.9258
50	2	49.2013	0.1159	0.9301	0.0025	0.9250 - 0.9352
50	3	50.5221	0.1128	0.9355	0.0025	0.9306 - 0.9404
50	4	51.7505	0.1102	0.9395	0.0024	0.9347 - 0.9443
50	5	52.8855	0.1088	0.9465	0.0023	0.9420 - 0.9510
100	1	98.4825	0.1558	0.9400	0.0024	0.9353 - 0.9447
100	2	99.9145	0.1514	0.9438	0.0023	0.9392 - 0.9484
100	3	101.1527	0.1482	0.9467	0.0022	0.9422 - 0.9512
100	4	102.2759	0.1473	0.9479	0.0022	0.9435 - 0.9523
100	5	103.3675	0.1463	0.9492	0.0022	0.9448 - 0.9536
Table 2: Performances of methodology (1.6) under model (2.18) with $k = 1$ and multiple crossing methodology (2.5) with $k = 2, 3, 4, 5, 6, 7, 8$: $n_0 = 10$, $\alpha = 0.05$, and $p = 6$

C	k	$\bar{q}_{(k)}$	$s_{\bar{q}_{(k)}}$	\bar{p}_k	$s_{\bar{p}_k}$	95% CI: Cov	
25	1	20.7982	0.0879	0.7858	0.0041	0.7776	0.7940
25	2	22.8422	0.0860	0.8419	0.0036	0.8346	0.8492
25	3	24.4961	0.0839	0.8784	0.0033	0.8719	0.8849
25	4	25.8759	0.0822	0.9027	0.0030	0.8968	0.9086
25	5	27.1421	0.0807	0.9244	0.0026	0.9191	0.9297
25	6	28.2839	0.0799	0.9382	0.0024	0.9334	0.9430
25	7	29.4015	0.0791	0.9495	0.0022	0.9451	0.9539
25	8	30.4830	0.0785	0.9594	0.0020	0.9555	0.9633
50	1	44.7439	0.1576	0.8328	0.0037	0.8253	0.8403
50	2	47.3662	0.1437	0.8719	0.0033	0.8652	0.8786
50	3	49.2430	0.1342	0.8982	0.0030	0.8922	0.9042
50	4	50.7469	0.1285	0.9148	0.0028	0.9092	0.9204
50	5	52.0863	0.1244	0.9259	0.0026	0.9207	0.9311
50	6	53.2842	0.1220	0.9345	0.0025	0.9296	0.9394
50	7	54.4521	0.1196	0.9432	0.0023	0.9386	0.9478
50	8	55.5828	0.1177	0.9485	0.0022	0.9441	0.9529
100	1	95.8995	0.2062	0.9093	0.0029	0.9036	0.9150
100	2	98.5014	0.1769	0.9260	0.0026	0.9208	0.9312
100	3	100.0731	0.1667	0.9339	0.0025	0.9289	0.9389
100	4	101.4819	0.1580	0.9383	0.0024	0.9335	0.9431
100	5	102.6533	0.1550	0.9432	0.0023	0.9386	0.9478
100	6	103.7791	0.1530	0.9468	0.0022	0.9423	0.9513
100	7	104.8535	0.1516	0.9493	0.0022	0.9449	0.9537
100	8	105.9018	0.1509	0.9514	0.0022	0.9471	0.9557
Table 2 Continued: Performances of methodology (1.6) under model (2.18) with \(k = 1 \) and multiple crossing methodology (2.5) with \(k = 2, 3, 4, 5, 6, 7, 8 \):
\(n_0 = 10, \alpha = 0.05, \) and \(p = 6 \)

\(C \)	\(k \)	\(\bar{q}_{(k)} \)	\(s_{\bar{q}_{(k)}} \)	\(\bar{p}_k \)	\(s_{\bar{p}_k} \)	95% CI: Cov	
500	1	498.5265	0.3547	0.9487	0.0022	0.9443	0.9531
500	2	500.1571	0.3267	0.9504	0.0022	0.9461	0.9547
500	3	501.3467	0.3228	0.9509	0.0022	0.9466	0.9552
500	4	502.4434	0.3226	0.9518	0.0021	0.9475	0.9561
500	5	503.4952	0.3226	0.9528	0.0021	0.9486	0.9570
500	6	504.5363	0.3225	0.9531	0.0021	0.9489	0.9573
500	7	505.5659	0.3224	0.9534	0.0021	0.9492	0.9576
500	8	506.5875	0.3223	0.9538	0.0021	0.9496	0.9580
1000	1	998.7080	0.4875	0.9458	0.0023	0.9413	0.9503
1000	2	1000.2753	0.4562	0.9463	0.0023	0.9418	0.9508
1000	3	1001.4293	0.4559	0.9463	0.0023	0.9418	0.9508
1000	4	1002.5147	0.4557	0.9465	0.0023	0.9420	0.9510
1000	5	1003.5650	0.4556	0.9464	0.0023	0.9419	0.9509
1000	6	1004.6023	0.4555	0.9476	0.0023	0.9431	0.9521
1000	7	1005.6303	0.4555	0.9478	0.0022	0.9434	0.9522
1000	8	1006.6529	0.4554	0.9472	0.0022	0.9427	0.9517
Table 3: Empirical frequency distributions of Q_2 through Q_5 from (2.5) under model (2.16):

$n_0 = 10$, $\alpha = 0.05$, and $p = 2$

C	k	1	2	3	4	5	6	7	10	15	20	>20	Max
25	2	8720	505	223	137	143	128	96	40	8	31		
	3	9274	282	129	76	87	77	49	17	9	24		
	4	9499	202	94	61	54	49	27	8	6	30		
	5	9646	129	62	40	55	42	18	8	0	20		
50	2	8757	516	222	142	137	99	55	24	48	54		
	3	9283	293	132	74	90	48	27	14	39	54		
	4	9548	191	67	49	41	43	21	11	29	51		
	5	9678	123	65	34	32	37	10	7	14	40		
100	2	8922	477	223	117	108	87	37	8	21	108		
	3	9433	244	114	53	69	44	21	6	16	104		
	4	9645	161	67	42	29	37	10	3	6	90		
	5	9747	112	56	18	29	22	12	2	2	94		
500	2	8969	516	209	104	86	84	20	8	4	37		
	3	9489	261	84	59	45	38	15	7	2	23		
	4	9701	139	65	36	26	22	7	3	1	29		
	5	9786	100	39	25	30	12	6	2	0	18		
1000	2	9005	490	185	101	115	71	21	6	6	28		
	3	9473	232	120	54	57	48	13	3	0	19		
	4	9665	159	61	32	44	25	7	4	3	24		
	5	9795	87	41	32	25	9	7	4	0	19		
Table 4: Empirical frequency distributions of Q_2 through Q_8 from (2.5) under model (2.18): $n_0 = 10$, $\alpha = 0.05$, and $p = 6$

Q_k	C	k	1	2	3	4	5	6	7	10	11	16	> 20	Max
	25	2	8202	537	265	179	207	210	190	122	39	88	39	39
		3	8808	339	188	115	132	180	127	72	39	32	82	82
		4	9203	257	123	84	107	109	67	30	20	30	96	92
		5	9378	225	105	64	69	82	42	27	8	8	26	26
		6	9618	141	70	46	46	43	25	8	3	28	53	53
		7	9701	113	41	34	41	37	24	8	1	21	68	68
		8	9765	100	38	23	32	25	11	4	2	28	65	65
	50	2	8428	503	208	125	149	118	80	62	327	75	62	62
		3	9048	309	130	72	104	74	50	34	179	58	74	74
		4	9352	212	111	49	71	54	39	24	88	58	48	48
		5	9549	144	61	44	60	43	23	18	58	61	33	33
		6	9689	106	46	38	37	29	19	7	29	61	24	24
		7	9742	80	44	28	22	36	10	15	23	44	18	18
		8	9815	56	33	12	25	21	11	6	21	55	15	15
	100	2	8778	488	202	123	105	94	25	14	171	124	80	80
		3	9320	274	113	67	79	54	30	12	51	128	79	79
		4	9537	192	71	43	51	39	22	6	39	105	45	45
		5	9719	112	60	20	39	23	8	3	16	116	44	44
		6	9788	74	45	27	20	23	7	3	13	103	22	22
		7	9869	62	20	15	11	13	3	2	5	104	9	9
		8	9881	49	29	10	17	7	5	0	2	93	12	12
Table 4 Continued: Empirical frequency distributions of Q_2 through Q_8 from (2.5) under model (2.18):

\[n_0 = 10, \alpha = 0.05, \text{ and } p = 6 \]

C	k	1	2	3	4	5	6	7	10	15	16	>10	Max
500	2	9017	479	192	111	92	69	21	8	11	539		
	3	9466	261	105	61	46	43	12	4	2	504		
	4	9658	164	59	31	41	35	9	1	2	25		
	5	9806	84	42	23	25	13	7	0	0	14		
	6	9846	70	33	18	15	13	4	1	0	19		
	7	9893	40	28	10	17	9	3	0	0	13		
	8	9899	54	15	14	13	4	1	0	0	11		
1000	2	8951	514	215	109	110	66	26	1	6	1024		
	3	9489	213	111	50	63	53	14	4	3	26		
	4	9702	142	48	32	37	26	10	3	0	20		
	5	9808	83	42	29	21	12	3	2	0	18		
	6	9851	73	35	11	20	5	4	0	1	26		
	7	9898	46	19	13	12	7	5	0	0	15		
	8	9918	43	6	13	11	6	2	1	0	20		
Table 5: Performances of truncated stopping rule (2.19)-(2.20) under model (2.16): $n_0 = 10, \alpha = 0.05, p = 2, \text{ and } k = 5$

C	$\tilde{q}_T^{(5)}$	$\tilde{p}_T^{(5)}$	L	U
25	26.7877	0.9404	0.9358	
	0.0811	0.0024	0.9450	
50	51.9815	0.9447	0.9402	
	0.1200	0.0023	0.9492	
100	102.7469	0.9461	0.9417	
	0.1546	0.0023	0.9505	
500	502.9415	0.9482	0.9439	
	0.3186	0.0022	0.9525	
1000	1003.6619	0.9494	0.9450	
	0.4511	0.0022	0.9538	
25	27.6871	0.9454	0.9409	
	0.0754	0.0023	0.9499	
50	52.4254	0.9418	0.9372	
	0.1162	0.0023	0.9464	
100	102.9199	0.9507	0.9465	
	0.1508	0.0022	0.9549	
500	503.2269	0.9490	0.9447	
	0.3181	0.0022	0.9533	
1000	1003.3147	0.9478	0.9433	
	0.4452	0.0022	0.9522	
Table 6: Empirical frequency distribution of $\sum_{i=2}^{5} Q_{i}^{T}$ from (2.19)-(2.20) under model (2.16):

$n_{0} = 10, \alpha = 0.05, p = 2, \text{ and } k = 5$

C	1	3	4	5	7	11	16	> 20	Max
2				6	10	15	20		
25	0	2021	7442	537	0	0	0	0	6
50	0	195	7848	1747	210	0	0	0	8
100	0	12	8081	1135	771	1	0	0	11
500	0	0	8137	1151	514	146	34	18	22
1000	0	0	8234	1092	493	128	36	17	39
25	0	7532	1599	823	46	0	0	0	14
50	0	0	7769	1219	680	278	51	3	21
100	0	0	8078	1118	521	177	63	43	30
500	0	0	8246	1058	501	142	32	21	40
1000	0	0	8234	1092	493	128	36	17	39
Table 7: Performances of fine-tuned rule (3.1) with $k = 1$ and multiple crossing rule (3.3) with $k = 2, 3, 4, 5$ under model (2.16): $n_0 = 10, \alpha = 0.05, p = 2$, and $\xi = -4.1785$

C	k	$\bar{q}_{(k)}$	$s_{q(k)}$	\bar{p}_k	s_{p_k}	95% CI: Cov	
25	1	27.8144	0.0746	0.9461	0.0023	0.9416	0.9506
25	2	29.2039	0.0723	0.9544	0.0021	0.9502	0.9586
25	3	30.3849	0.0712	0.9627	0.0019	0.9589	0.9665
25	4	31.5068	0.0702	0.9695	0.0017	0.9661	0.9729
25	5	32.5880	0.0695	0.9715	0.0017	0.9682	0.9748
50	1	52.5830	0.1057	0.9466	0.0022	0.9421	0.9511
50	2	53.9176	0.1037	0.9506	0.0022	0.9463	0.9549
50	3	55.0933	0.1025	0.9556	0.0021	0.9515	0.9597
50	4	56.2143	0.1016	0.9599	0.0020	0.9560	0.9638
50	5	57.2831	0.1011	0.9631	0.0019	0.9593	0.9669
100	1	102.9534	0.1438	0.9526	0.0021	0.9484	0.9568
100	2	104.2343	0.1432	0.9526	0.0021	0.9484	0.9568
100	3	105.3844	0.1423	0.9546	0.0021	0.9504	0.9588
100	4	106.4952	0.1419	0.9556	0.0021	0.9515	0.9597
100	5	107.5516	0.1416	0.9585	0.0020	0.9545	0.9625
500	1	502.4669	0.3190	0.9485	0.0022	0.9441	0.9529
500	2	503.7411	0.3189	0.9476	0.0022	0.9431	0.9521
500	3	504.8846	0.3187	0.9478	0.0022	0.9434	0.9522
500	4	505.9690	0.3186	0.9485	0.0022	0.9441	0.9529
500	5	507.0235	0.3186	0.9480	0.0022	0.9436	0.9524
1000	1	1002.5577	0.4495	0.9488	0.0022	0.9444	0.9532
1000	2	1003.8302	0.4493	0.9488	0.0022	0.9444	0.9532
1000	3	1004.9771	0.4489	0.9486	0.0022	0.9442	0.9530
1000	4	1006.0664	0.4488	0.9484	0.0022	0.9440	0.9528
1000	5	1007.1241	0.4485	0.9489	0.0022	0.9445	0.9533
Table 8: Performances of fine-tuned rule (3.1) with $k = 1$ and multiple crossing rule (3.3) with $k = 2, 3, 4, 5$ under model (2.18): $n_0 = 10, \alpha = 0.05, p = 6$, and $\xi = -5.4785$

C	k	$\bar{q}_{(k)}$	$s_{\bar{q}(k)}$	\bar{p}_k	$s_{\bar{p}_k}$	95% CI: Cov	
25	1	27.8035	0.0877	0.9131	0.0028	0.9075	0.9187
25	2	29.5706	0.0826	0.9398	0.0024	0.9350	0.9446
25	3	30.9855	0.0796	0.9557	0.0021	0.9516	0.9598
25	4	32.2077	0.0777	0.9651	0.0018	0.9614	0.9688
25	5	33.3527	0.0764	0.9713	0.0017	0.9680	0.9746
50	1	52.6938	0.1287	0.9209	0.0027	0.9155	0.9263
50	2	54.6051	0.1177	0.9376	0.0024	0.9328	0.9424
50	3	56.0092	0.1129	0.9459	0.0023	0.9414	0.9504
50	4	57.2388	0.1096	0.9535	0.0021	0.9493	0.9577
50	5	58.3926	0.1077	0.9596	0.0020	0.9557	0.9635
100	1	103.4854	0.1631	0.9420	0.0023	0.9373	0.9467
100	2	105.0836	0.1532	0.9475	0.0022	0.9430	0.9520
100	3	106.3216	0.1499	0.9513	0.0022	0.9470	0.9556
100	4	107.4844	0.1476	0.9547	0.0021	0.9505	0.9589
100	5	108.5875	0.1464	0.9571	0.0020	0.9530	0.9612
500	1	503.6621	0.3263	0.9537	0.0021	0.9495	0.9579
500	2	505.0446	0.3184	0.9542	0.0021	0.9500	0.9584
500	3	506.1982	0.3183	0.9541	0.0021	0.9499	0.9583
500	4	507.2806	0.3182	0.9554	0.0021	0.9513	0.9595
500	5	508.3405	0.3181	0.9560	0.0021	0.9519	0.9601
1000	1	1004.8187	0.4480	0.9520	0.0021	0.9477	0.9563
1000	2	1006.0937	0.4478	0.9517	0.0021	0.9474	0.9560
1000	3	1007.2342	0.4477	0.9523	0.0021	0.9480	0.9566
1000	4	1008.3265	0.4475	0.9525	0.0021	0.9482	0.9568
1000	5	1009.3810	0.4474	0.9531	0.0021	0.9489	0.9573
Figure 1: Methodology (2.5)-(2.6) when $p = 2$ and $k = 5$.
Figure 2: Methodology (2.5)-(2.6) when $p = 6$ and $k = 8$.
Figure 3: Fine-tuned methodology (3.3) when $p = 2$ and $k = 2$.

(a) $\alpha = 0.01$: model (2.16)

(b) $\alpha = 0.05$: model (2.16)

(c) $\alpha = 0.10$: model (2.16)
Multiple Crossing Sequential Fixed-Size Confidence Regions

(a) $\alpha = 0.01$: model (2.18)

(b) $\alpha = 0.05$: model (2.18)

(c) $\alpha = 0.10$: model (2.18)

Figure 4: Fine-tuned methodology (3.3) when $p = 6$ and $k = 3$.

References

1. Chatterjee, S. K. (1962). Sequential Inference Procedures of Stein’s Type for a Class of Multivariate Regression Problems, *Annals of Mathematical Statistics* 33: 1039-1064.
2. Chow, Y. S. and Robbins, H. (1965). On the Asymptotic Theory of Fixed Width Sequential Confidence Intervals for the Mean, *Annals of Mathematical Statistics* 36: 457-462. DOI: 10.1214/aoms/1177700156.

3. Finster, M. (1983). A Frequentist Approach to Sequential Estimation in the General Linear Model, *Journal of American Statistical Association* 78: 403-407. DOI: 10.1080/01621459.1983.10477984.

4. Ghosh, M. and Mukhopadhyay, N. (1981). Consistency and Asymptotic Efficiency of Two-Stage and Sequential Procedures, *Sankhya, Series A* 43: 220-227. http://www.jstor.org/stable/25050271.

5. Ghosh, M., Mukhopadhyay, N., and Sen, P. K. (1997). *Sequential Estimation*, New York: Wiley.

6. Gleser, L. J. (1965). On the Asymptotic Theory of Fixed-Size Sequential Confidence Bounds for Linear Regression Parameters, *Annals of Mathematical Statistics* 36: 463-467. Corrections: (1966). *Annals of Mathematical Statistics* 37: 1053-1055.

7. Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005). *Applied Linear Statistical Models*, fifth edition, Irwin: McGraw-Hill.

8. Mahalanobis, P. C. (1940). A Sample Survey of Acreage Under Jute in Bengal, with Discussion on Planning of Experiments, in *Proceedings of Second Indian Statistics Conference*, Calcutta: Statistical Publishing Society.

9. Mukhopadhyay, N. (1974). Sequential Estimation of Regression Parameters in Gauss-Markoff setup, *Journal of Indian Statistical Association* 12: 39-43.

10. Mukhopadhyay, N. (1980). A Consistent and Asymptotically Efficient Two-Stage Procedure to Construct Fixed-Width Confidence Intervals for the Mean, *Metrika* 27: 281-284.

11. Mukhopadhyay, N. (1988). Sequential Estimation Problems for Negative Exponential Populations, *Communications in Statistics-Theory & Methods* 17: 2471-2506. DOI: 10.1080/03610928808829758.
12. Mukhopadhyay, N. and Abid, A. (1986). On Fixed-Size Confidence Regions for Regression Parameters, *Metron* 44: 297-306.

13. Mukhopadhyay, N. and Datta, S. (1995). On Fine-Tuning a Purely Sequential Procedure and Associated Second-Order Properties, *Sankhya, Series A* 57: 100-117. http://www.jstor.org/stable/25051034?origin=JSTOR-pdf.

14. Mukhopadhyay, N. and de Silva, B. M. (2009). *Sequential Methods and Their Applications*, Boca Raton: CRC.

15. Mukhopadhyay, N. and Muthu Poruthotage, S. (2013). Sequential Fixed-Width Confidence Interval Procedures for the Mean Under Multiple Boundary Crossings, *Sequential Analysis* 32: 83-109. DOI: 10.1080/07474946.2013.751851.

16. Mukhopadhyay, N. and Muthu Poruthotage, S. (2014). Multiple Crossing Sequential Fixed-Size Confidence Region Methodologies for a Multivariate Normal Mean Vector, *Statistical Methodology*, 21: 135-155. DOI: 10.1016/j.stamet.2014.03.003.

17. Mukhopadhyay, N. and Solanky, T. K. S. (1994). *Multistage Selection and Ranking Procedures: Second-Order Asymptotics*, New York: Dekker.

18. Muthu Poruthotage, S. (2013). Multiple Crossing Fixed-Size Sequential Confidence Regions for the Mean Vector and Regression Parameters Under Multivariate Normality, Ph.D. thesis, Department of Statistics, University of Connecticut-Storrs, Connecticut, USA. http://digitalcommons.uconn.edu/dissertations/index.2.html.

19. Siegmund, D. (1985). *Sequential Analysis: Tests and Confidence Intervals*, New York: Springer.

20. Simons, G. (1968). On the Cost of Not Knowing the Variance When Making a Fixed-Width Confidence Interval for the Mean, *Annals of Mathematical Statistics* 39: 1946-1952.
21. Srivastava, M. S. (1967). On Fixed-Width Confidence Bounds for Regression Parameters and Mean Vector, *Journal of Royal Statistical Society, Series B* 29: 132-140.

22. Srivastava, M. S. (1971). On Fixed-Width Confidence Bounds for Regression Parameters, *Annals of Mathematical Statistics* 42: 1403-1411.

23. Srivastava, M. S. and Bhargava, R. P. (1979). On Fixed-Width Confidence Region for the Mean, *Metron* 37: 163-174.

24. Stein, C. (1945). A Two Sample Test for a Linear Hypothesis Whose Power is Independent of the Variance, *Annals of Mathematical Statistics* 16: 243-258.

25. Wald, A. (1947). *Sequential Analysis*, New York: Wiley.

26. Wiener, N. (1939). The Ergodic Theorem, *Duke Mathematical Journal* 5: 1-18.