The effect of spirulina meals on Oithona sp. (Claus, 1866) production through growth analysis

S H Samara¹, M B Santanumurti², A G Widyangtoro³, B Putri³, S Hudaidah²³
¹Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115 Indonesia
²Department of Fisheries and Marine Science, Faculty of Agriculture, University of Lampung, Jl. Prof. Sumantri Brojonegoro, Bandar Lampung, Lampung 35141, Indonesia
³Corresponding author: idahasan64@gmail.com

Abstract. Oithona sp. is widely used for natural feed of larval stage. Therefore it is necessary to develop its culture method. The appropriate nutrient will affect the development of Oithona sp production. One of the highly nutritious ingredients is Spirulina meals. This study was conducted to determine the effect of Spirulina meals application on the population density of Oithona sp. The treatments in this study were A (Oithona sp. fed with Chaetoceros sp. of 2x10⁶ cell/ml), B (Oithona sp. fed with 83 mg/L of Spirulina meals), C (Oithona sp. fed with 167 mg/L of Spirulina meals), D (Oithona sp. fed with 249 mg/L of Spirulina meals). The results showed that Spirulina meals had an effect on the population density of Oithona spp. This study also showed that the use of 83 mg/L of Spirulina meals could produce the best results with the amount up to 1067 ind/ml and grow speed of 0.78 ± 0.08 ind/day

1. Introduction
The rearing of fish larvae requires a sufficient amount of natural food, according to the size of the fish larva's mouth opening and the nutrient content according to the larva's needs. Natural feeds that are commonly used as feed for fish larvae are Artemia and Rotifer [1], [2]. Artemia is the main choice because it has a high nutrient content and size according to the needs of fish larvae. Protein content reaches 60%, 20% carbohydrates, 20% fat, 4% ash and 10% moisture content [3]. The high price of Artemia and still dependent on imports has become an obstacle to this day. Rotifers can be mass cultured, culture time is relatively short and has a high reproductive rate although the nutritional content is not equivalent to Artemia [4]. Another alternative as a substitute for Artemia which has equal nutrition is the copepod type Oithona spp.

Copepod Oithona spp. has varying sizes, 60-220 µm [5]. Copepods are rich in protein, fat, essential amino acids that can accelerate growth, increase endurance, and brighten the colour of shrimp and fish [6]. Oithona spp. contains protein 59.53-69.61%, carbohydrates 3.43-6.59%, fat 10.76-17.68%, ash content 3.26-4.46% [7]. The nutritional content of copepods Oithona sp. which can be used as an alternative natural food for fish larvae. Copepod production is highly dependent on the feed given. In this study, we culture Oithona spp. In laboratory scale by using Spirulina sp. flour as a source of nutrition to get maximum production results. Spirulina sp. flour has a carotenoid content that reaches 17% [8]. The content of these carotenoids can be utilized by copepods as compounds that are able to prevent photooxidation, besides that carotenoids are precursors of vitamin A [9]. Provision of Spirulina sp. flour expected to improve the quality of Oithona sp. This study was conducted to determine the effect of Spirulina meals application on the population density of Oithona sp.
2. Material and methods

2.1. Sample preparation

Oithona sp. used in this study was from the Lampung Marine Aquaculture Development Center. Broodstock of Oithona sp. was obtained by filtering using plankton net of 300 μm, then put into each container as much as 100 ind/l according to previous studies [10]. Maintenance was carried out for 14 days with 3 times daily feeding according to treatment, and carry out regular water quality control. Chaetoceros sp. seeds used were from the Lampung Marine Aquaculture Development Center while the Spirulina sp. was from the University of Lampung. The treatments in this study were A (Oithona sp. fed with Chaetoceros sp. of 2x10^6 cell/ml), B (Oithona sp. fed with 83 mg/L of Spirulina meals), C (Oithona sp. fed with 167 mg/L of Spirulina meals), D (Oithona sp. fed with 249 mg/L of Spirulina meals) and 3 replication each.

2.2 Research parameter calculation

The parameters measured were population density, growth and water quality parameter (pH, temperature, salinity, and light intensity). The calculation formula for population density was adapted from the following method [11]:

\[r = \frac{\ln N_t - \ln N_0}{t} \]

Description:
- \(t \): Length of culture time (days)
- \(N_0 \): Initial density (ind/ml)
- \(N_t \): Final total density (ind/ml)

Water quality parameters measured were temperature, pH, DO, and ammonia. Temperature measurement was done using a thermometer, pH measurement using a pH meter, dissolved oxygen measurement using a DO meter, ammonia measurement using a spectrophotometer as described in the previous study [12]. Water quality measurements were conducted 3 times a day.

3. Result and discussion

3.1. Density of Oithona sp.

The population density increased until the 8th day of maintenance for each treatment (Figure 1.). This was because Spirulina sp. was rich in protein, fat, carbohydrates and other important elements [13]. The population density in treatment A and B continued to increase until the end of maintenance, while treatment C occurred until day 9 and treatment D until day 8 after that decreased until the end of maintenance. The decline in population in treatment C and D was thought to be due to a decrease in the quality of the maintenance media due to the large amount of Spirulina sp. that had settled so that it interfered with the feeding activity and movement of Oithona spp. Precipitation occurred due to the high dose of feed given to Oithona spp which caused turbidity. Turbidity in the media would affect oxygen availability because it disturbed the photosynthesis process. Previous studies had suggested that too much feeding could cause turbidity in water [14]. Previous studies had also stated that high turbidity causes disruption of water transparency and affected photosynthesis intensity [15], and suboptimal photosynthesis would cause death in plankton [16]. The average growth rate of Oithona sp showed in Table 1.

The data showed that the population growth rate of Oithona sp fed with Spirulina sp. 83 mg showed the highest average growth rate of 0.78 ind/day. This was because the treatment did not affect turbidity and provided proper nutrition for the growth of Oithona sp. Providing proper nutrition and environment would make Oithona sp. grow and develop well [17].
The 3rd International Conference on Fisheries and Marine Sciences
IOP Conf. Series: Earth and Environmental Science 718 (2021) 012045
doi:10.1088/1755-1315/718/1/012045

Figure 1. Population density of *Oithona* sp
Note: density of A, *Chaetoceros* sp 2 x10^5 sel/ml, B = *Spirulina* sp. flour 83 mg/L, C = *Spirulina* sp. flour 167 mg/L, D = *Spirulina* sp. flour 249 mg/L

Table 1. The average growth rate of *Oithona* sp.

Treatment	Growth rate (ind/day)
A	0.55 ± 0.09^a
B	0.78 ± 0.08^ab
C	0.23 ± 0.05^ac
D	0.30 ± 0.07^ad

3.2. Water Parameter Measurement

The results of measuring the water parameter showed in Table 2. Comparison with literature shows that temperature, pH, DO and salinity are still under the environment of *Oithona* sp.

Table 2. Water quality parameters measurement.

Treatment	Parameter	Treatment (°C)	pH	DO (mg/L)	Salinity (ppt)
A		23-25	7.6-7.8	3.5-4.6	30-35
B		23-25	7.2-7.7	3.6-5	30-34
C		23-25	7.3-7.8	2.5-3.1	30-35
D		23-25	7.3-7.8	1.7-2.2	30-35
Standard		25-29.5^18	6.6-7.8^19	4.6^19	20-35^20

4. Conclusion

This study also showed that the use of 83 mg/L of *Spirulina* meals could produce the best results with the amount up to 1067 ind/mL and grow speed of 0.78 ± 0.08 ind/day.
5. References

[1] Le T H, Hoa N V, Sorgeloos P, and Van Stappen G 2019 Rev Aquacult. 11 1169-1175.
[2] Hamre K 2016 Aquaculture. 450 136-142.
[3] Wibowo S, Utomo B S B, Suryaningrum D, and Syamdidi 2013 Artemia for Fish and Shrimp Feed (Jakarta: Self-Help Spreader) p 98.
[4] Giliberto S, and Mazzola 1981 J Word Maricul Soc. 12 61-62.
[5] Lavens P, and Sorgeloos P 1996 Manual on the production and use of live food for aquaculture, fisheries technical paper, food and agriculture (Rome: Organization of The United Nation) p 361.
[6] Syahidah D 2012 Life cycle of marine copepods from Gondol-Bulelen waters (Bali: Proceedings of the Inodaqua-Aquaculture Technology Innovation Forum) p 112.
[7] Perumal P, Rajkumar M, and Santhanam P 2009 J Environ Biol. 30 1001-1003.
[8] Sari L A, Masithah E D, and Alamsjah M A 2018 JFMR 9 14.
[9] Linan-Cabello M A, Paniagua-Michel J, and Hopkins P M 2002 Aquacult Nutr. 8 299-309.
[10] Eldy W F, Murwani S, and Rusyani E 2014 Pros. Sem. Nas. 1 107-114.
[11] Cheng S H, Ka S, Kumar R, Kuo C S, and Hwang J S 2011 Hydrobiologia 669 289-299.
[12] Taragusti A S, Santanumurti M B, and Rahardja B S 2019 IOP Conf Ser Mater Sci Eng. 236 012088.
[13] Gumbo J R, and Nesamvuni C N 2017 J Chem Pharma Sci. 10 1317-1325.
[14] Santoso B, and Arfianto A D 2014 JITIKA. 8 33-48.
[15] Rikardo I, Melani W R, and Apriadi T 2016 J Mahasiswa Umrah 2 1-12.
[16] Gallo C, d’Ippolito G, Nuzzo G, Sardo A, and Fontana A 2017 Nat. Commun. 8 1-11.
[17] Broach J S, Cassiano E J, Watson C A 2017 Aquacul Res. 48 4461-4469.
[18] Rusyani E, Erawati L, and Hermawan A 2005 Budidaya Zooplankton dalam Pembenihan Kuda Laut (Lampung: Balai Budidaya Laut Lampung DKP Lampung) p 56.
[19] O’ Bryen P J, and Lee C S 2005 Copepods Aquact. 18 245-253.
[20] Thariq M, Mustamin, and Putro D W 2002 Biologi Zooplankton dalam Budidaya Fitoplankton dan Zooplankton (Lampung: Balai Besar Pengembangan Budidaya Laut Lampung DKP Lampung) p 88.

6. Acknowledgement

The authors gratefully acknowledge the collaboration from the Universitas Airlangga and the University of Lampung. We are also grateful from Aji Ganang Widyanotoro for his effort to finish this study.