SEXTIC VARIETY AS GALOIS CLOSURE VARIETY OF SMOOTH CUBIC

HISAO YOSHIHARA

Department of Mathematics, Faculty of Science, Niigata University,
Niigata 950-2181, Japan
E-mail:yosihara@math.sc.niigata-u.ac.jp

Abstract. Let V be a nonsingular projective algebraic variety of dimension n. Suppose there exists a very ample divisor D such that $D^n = 6$ and $\dim H^0(V, \mathcal{O}(D)) = n + 3$. Then, (V, D) defines a D_6-Galois embedding if and only if it is a Galois closure variety of a smooth cubic in \mathbb{P}^{n+1} with respect to a suitable projection center such that the pull back of hyperplane of \mathbb{P}^n is linearly equivalent to D.

1. Introduction

The purpose of this article is to generalize the following assertion (cf. [13, Theorem 4.5]) to n-dimensional varieties.

Proposition 1.1. Let C be a smooth sextic curve in \mathbb{P}^3 and assume the genus is four. If C has a Galois line, then the group G is isomorphic to the cyclic or dihedral group of order six. Moreover, G is isomorphic to the latter one if and only if C is obtained as the Galois closure curve of a smooth plane cubic E with respect to a point $P \in \mathbb{P}^2 \setminus E$, where P does not lie on the tangent line to E at any flex.

Before going into the details, we recall the definition of Galois embeddings of algebraic varieties and the relevant results. In this article a variety, a surface and a curve will mean a nonsingular projective algebraic variety, surface and curve, respectively.

Let k be the ground field of our discussion, we assume it to be an algebraically closed field of characteristic zero. Let V be a variety of dimension n with a very ample divisor D; we denote this by a pair (V, D). Let $f = f_D : V \hookrightarrow \mathbb{P}^N$ be the embedding of V associated with the complete linear system $|D|$, where $N + 1 = \dim H^0(V, \mathcal{O}(D))$. Suppose W is a linear subvariety of \mathbb{P}^N satisfying $\dim W = N - n - 1$ and $W \cap f(V) = \emptyset$. Consider the projection π_W from W to \mathbb{P}^n, i. e., $\pi_W : \mathbb{P}^N \twoheadrightarrow \mathbb{P}^n$. Restricting π_W onto $f(V)$, we get a surjective morphism $\pi = \pi_W : f : V \twoheadrightarrow \mathbb{P}^n$.

Let $K = k(V)$ and $K_0 = k(\mathbb{P}^n)$ be the function fields of V and \mathbb{P}^n respectively. The covering map π induces a finite extension of fields $\pi^* : K_0 \hookrightarrow K$ of degree $\deg f(V) = D^n$, which is the self-intersection number of D. We denote by K_W the Galois closure of this extension and by $G_W = Gal(K_W/K_0)$ the Galois group of K_W/K_0. By [1] G_W is isomorphic to the monodromy group of the covering $\pi : V \twoheadrightarrow \mathbb{P}^n$. Let V_W be the K_W-normalization of V (cf. [3, Ch.2]). Note that V_W is determined uniquely by V and W.
Definition 1.2. In the above situation we call G_W and V_W the Galois group and the Galois closure variety at W respectively (cf. [14]). If the extension K/K_0 is Galois, then we call f and W a Galois embedding and a Galois subspace for the embedding respectively.

Definition 1.3. A variety V is said to have a Galois embedding if there exist a very ample divisor D satisfying that the embedding associated with $|D|$ has a Galois subspace. In this case the pair (V, D) is said to define a Galois embedding.

If W is a Galois subspace and T is a projective transformation of \mathbb{P}^N, then $T(W)$ is a Galois subspace of the embedding $T \cdot f$. Therefore the existence of Galois subspace does not depend on the choice of the basis giving the embedding.

Remark 1.4. If a variety V exists in a projective space, then by taking a linear subvariety, we can define a Galois subspace and Galois group similarly as above. Suppose V is not normally embedded and there exists a linear subvariety W such that the projection π_W induces a Galois extension of fields. Then, taking D as a hyperplane section of V in the embedding, we infer readily that (V, D) defines a Galois embedding with the same Galois group in the above sense.

By this remark, for the study of Galois subspaces, it is sufficient to consider the case where V is normally embedded.

We have studied Galois subspaces and Galois groups for hypersurfaces in [9], [10] and [11] and space curves in [13] and [15]. The method introduced in [14] is a generalization of the ones used in these studies.

Hereafter we use the following notation and convention:

- $\text{Aut}(V)$: the automorphism group of a variety V
- $\langle a_1, \cdots, a_m \rangle$: the subgroup generated by a_1, \cdots, a_m
- D_{2m}: the dihedral group of order $2m$
- $|G|$: the order of a group G
- \sim: the linear equivalence of divisors
- I_m: the unit matrix of size m
- $X \ast Y$: the intersection cycle of cycles X and Y in a variety.
- $(X_0: \cdots : X_m)$: a set of homogeneous coordinates on \mathbb{P}^m
- $g(C)$: the genus of a smooth curve C
- For a mapping $\varphi: X \longrightarrow Y$ and a subset $X' \subset X$, we often use the same φ to denote the restriction $\varphi|_{X'}$.

2. Results on Galois embeddings

We state several properties concerning Galois embedding without the proofs, for the details, see [14]. By definition, if W is a Galois subspace, then each element σ of G_W is an automorphism of $K = K_W$ over K_0. Therefore it induces a birational transformation of V over \mathbb{P}^n. This implies that G_W can be viewed as a subgroup of $\text{Bir}(V/\mathbb{P}^n)$, the group of birational transformations of V over \mathbb{P}^n. Further we can say the following:
Representation 1. Each birational transformation belonging to G_W turns out to be regular on V, hence we have a faithful representation

$$\alpha : G_W \hookrightarrow \text{Aut}(V). \quad (1)$$

Remark 2.1. Representation 1 is proved by using transcendental method in [14], however we can prove it algebraically by making use of the results [7, Ch. I, 5.3, Theorem 7] and [2, Ch. V, Theorem 5.2].

Therefore, if the order of $\text{Aut}(V)$ is smaller than the degree d, then (V, D) cannot define a Galois embedding. In particular, if $\text{Aut}(V)$ is trivial, then V has no Galois embedding. On the other hand, in case V has an infinitely many automorphisms, we have examples such that there exist infinitely many distinct Galois embeddings, see Example 4.1 in [14].

When (V, D) defines a Galois embedding, we identify $f(V)$ with V. Let H be a hyperplane of \mathbb{P}^N containing W and put $D' = V \cdot H$. Since $D' \sim D$ and $\sigma^*(D') = D'$, for any $\sigma \in G_W$, we see σ induces an automorphism of $H^0(V, \mathcal{O}(D))$. This implies the following.

Representation 2. We have a second faithful representation

$$\beta : G_W \hookrightarrow \text{PGL}(N+1, k). \quad (2)$$

In the case where W is a Galois subspace we identify $\sigma \in G_W$ with $\beta(\sigma) \in \text{PGL}(N+1, k)$ hereafter. Since G_W is a finite subgroup of $\text{Aut}(V)$, we can consider the quotient V/G_W and let π_G be the quotient morphism, $\pi_G : V \longrightarrow V/G_W$.

Proposition 2.2. If (V, D) defines a Galois embedding with the Galois subspace W such that the projection is $\pi_W : \mathbb{P}^N \longrightarrow \mathbb{P}^n$, then there exists an isomorphism $g : V/G_W \longrightarrow \mathbb{P}^n$ satisfying $g \cdot \pi_G = \pi$. Hence the projection π is a finite morphism and the fixed loci of G_W consist of only divisors.

Therefore, π turns out to be a Galois covering in the sense of Namba [6].

Lemma 2.3. Let (V, D) be the pair in Proposition 2.2. Suppose $\tau \in G$ has the representation

$$\beta(\tau) = [1, \ldots, 1, e_m], \quad (m \geq 2)$$

where e_m is an m-th root of unity. Let p be the projection from $(0 : \cdots : 0 : 1) \in W$ to \mathbb{P}^{N-1}. Then, $V/(\tau)$ is isomorphic to $p(V)$ if $p(V)$ is a normal variety.

We have a criterion that (V, D) defines a Galois embedding.

Theorem 2.4. The pair (V, D) defines a Galois embedding if and only if the following conditions hold:

1. There exists a subgroup G of $\text{Aut}(V)$ satisfying that $|G| = D^n$.
2. There exists a G-invariant linear subspace \mathcal{L} of $H^0(V, \mathcal{O}(D))$ of dimension $n+1$ such that, for any $\sigma \in G$, the restriction $\sigma^*|_{\mathcal{L}}$ is a multiple of the identity.
3. The linear system \mathcal{L} has no base points.
It is easy to see that $\sigma \in G_W$ induces an automorphism of W, hence we obtain another representation of G_W as follows. Take a basis $\{f_0, f_1, \ldots, f_n\}$ of $H^0(V, \mathcal{O}(D))$ satisfying that $\{f_0, f_1, \ldots, f_n\}$ is a basis of \mathcal{L} in Theorem 2.4. Then we have the representation

$$\beta_1(\sigma) = \begin{pmatrix} \lambda_\sigma & \cdots & \cdots & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ \cdots & \cdots & \lambda_\sigma & \cdots \\ 0 & \cdots & \cdots & M_\sigma \end{pmatrix}.$$

(3)

Since the projective representation is completely reducible, we get another representation using a direct sum decomposition:

$$\beta_2(\sigma) = \lambda_\sigma \cdot 1_{n+1} \oplus M'_\sigma.$$

Thus we can define

$$\gamma(\sigma) = M'_\sigma \in PGL(N-n, k).$$

Therefore σ induces an automorphism on W given by M'_σ.

Representation 3. We get a third representation

$$\gamma : G_W \rightarrow PGL(N-n, k).$$

(4)

Let G_1 and G_2 be the kernel and image of γ respectively.

Theorem 2.5. We have an exact sequence of groups

$$1 \rightarrow G_1 \rightarrow G \xrightarrow{\gamma} G_2 \rightarrow 1,$$

where G_1 is a cyclic group.

Corollary 2.6. If $N = n+1$, i.e., $f(V)$ is a hypersurface, then G is a cyclic group.

This assertion has been obtained in [11]. Moreover we have another representation.

Suppose that (V, D) defines a Galois embedding and let G be a Galois group at some Galois subspace W. Then, take a general hyperplane W_1 of \mathbb{P}^n and put $V_1 = \pi^*(W_1)$. The divisor V_1 has the following properties:

(i) If $n \geq 2$, then V_1 is a smooth irreducible variety.

(ii) $V_1 \sim D$.

(iii) $\sigma^*(V_1) = V_1$ for any $\sigma \in G$.

(iv) V_1/G is isomorphic to W_1.

Put $D_1 = V_1 \cap H_1$, where H_1 is a general hyperplane of \mathbb{P}^N. Then (V_1, D_1) defines a Galois embedding with the Galois group G (cf. Remark [14]). Iterating the above procedures, we get a sequence of pairs (V_i, D_i) such that

$$(V, D) \supset (V_1, D_1) \supset \cdots \supset (V_{n-1}, D_{n-1}).$$

(5)

These pairs satisfy the following properties:
(a) V_i is a smooth subvariety of V_{i-1}, which is a hyperplane section of V_{i-1}, where $D_i = V_{i+1}$, $V = V_0$ and $D = V_1$ ($1 \leq i \leq n - 1$).

(b) (V_i, D_i) defines a Galois embedding with the same Galois group G.

Definition 2.7. The above procedure to get the sequence (5) is called the Descending Procedure.

Letting C be the curve V_{n-1}, we get the next fourth representation.

Representation 4. We have a fourth faithful representation

$$\delta : G_W \hookrightarrow \text{Aut}(C),$$

where C is a curve in V given by $V \cap L$ such that L is a general linear subvariety of \mathbb{P}^N with dimension $N - n + 1$ containing W.

Since the Inverse Problem of Galois Theory over $k(x)$ is affirmative ([4]), we can prove the following.

Remark 2.8. Giving any finite group G, there exists a smooth curve and very ample divisor D such that (C, D) defines a Galois embedding with the Galois group G.

3. Statement of results

Let V be a variety of dimension n. We say that V has the property (\mathfrak{p}_n) if

1. there exists a very ample divisor D with $D^n = 6$, and
2. $\dim H^0(V, O(D)) = n + 3$.

An example of such a variety is a smooth $(2, 3)$-complete intersection, where D is a hyperplane section. In particular, in case $n = 1$, V is a non-hyperelliptic curve of genus four and D is a canonical divisor. In case $n = 2$, V is a $K3$ surface such that there exists a very ample divisor D with $D^2 = 6$. However, the variety with the property (\mathfrak{p}_n) is not necessarily the complete intersection, see Remark 3.10 below.

We will study the Galois embedding of V for the variety with the property (\mathfrak{p}_n). Clearly the Galois group is isomorphic to the cyclic group of order six or D_6. In the latter case we say that (V, D) defines a D_6-embedding or, more simply V has a D_6-embedding.

Theorem 3.1. Assume V has the property (\mathfrak{p}_n). If V has a D_6-embedding, then V is obtained as the Galois closure variety of a smooth cubic Δ in \mathbb{P}^{n+1} with respect to a suitable projection center.

Next we consider the converse assertion. Let Δ be a smooth cubic of dimension n in \mathbb{P}^{n+1}. Take a non-Galois point $P \in \mathbb{P}^{n+1} \setminus \Delta$. Note that, for a smooth hypersurface $X \subset \mathbb{P}^{n+1}$, the number of Galois points is at most $n + 2$. The maximal number is attained if and only if X is projectively equivalent to the Fermat variety (cf. [11]).

Define the set Σ_P of lines as

$$\Sigma_P = \{ \ell \mid \ell \text{ is a line passing through } P \text{ such that } \ell \ast \Delta \text{ can be expressed as } 2P_1 + P_2, \text{ where } P_i \in \Delta (i = 1, 2) \text{ and } P_1 \neq P_2 \}.$$

The closure of the set $\bigcup_{\ell \in \Sigma_P} \ell$ is a cone, we denote it by $C_P(\Delta)$. Then we have the following.

Lemma 3.2. The cone $C_P(\Delta)$ is a hypersurface of degree six.
We can express as $\Delta \ast C_P(\Delta) = 2R_1 + R_2$, where R_1 and R_2 are different divisors on Δ.

Definition 3.3. We call P a good point if

1. R_2 is smooth and irreducible in case $n \geq 2$, or
2. R_2 consists of six points in case $n = 1$.

Proposition 3.4. If P is a general point for Δ, then P is a good point.

To some extent the converse assertion of Theorem 3.1 holds as follows.

Theorem 3.5. If Δ_P is a Galois closure variety of a smooth cubic $\Delta \subset \mathbb{P}^{n+1}$, where the projection center P is a good point, then Δ_P is a smooth $(2,3)$-complete intersection in \mathbb{P}^{n+2} with D_6-embedding.

Remark 3.6. In the assertion of Theorem 3.5 the construction of the Galois closure is closely related to the one in [8, Tokunaga]. In case $n = 2$, the Galois closure surface is a $K3$ surface.

Applying the Descending Procedure to the variety of Theorem 3.5, we get the following.

Proposition 3.7. If a variety V is a smooth $(2,3)$-complete intersection and has a D_6-embedding, then there exists the following sequence of varieties V_i, where V_i has the same properties as V does, i.e.,

1. V_i is a subvariety of V_{i-1} ($i \geq 1$), where $V_0 = V$.
2. V_i is also a smooth $(2,3)$-complete intersection of hypersurfaces in \mathbb{P}^{n+2-i}, $0 \leq i \leq n - 1$.
3. V_i has the property $\left(\mathbb{P}_{n-i}\right)$,
4. V_i has a D_6-embedding.

The situation above is illustrated as follows:

\[
\begin{array}{cccccccc}
\mathbb{P}^{n+2} & \rightarrow & \mathbb{P}^{n+1} & \rightarrow & \mathbb{P}^4 & \rightarrow & \mathbb{P}^3 \\
\mathbb{P}^n & \rightarrow & \mathbb{P}^{n-1} & \rightarrow & \mathbb{P}^2 & \rightarrow & \mathbb{P}^1, \\
V & \supset & V_1 & \supset & \cdots & \supset & V_{n-2} & \supset & V_{n-1} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\end{array}
\]

where \rightarrow is a point projection, \downarrow is a triple covering, V_{n-2} and V_{n-1} are a $K3$ surface and a sextic curve, respectively.

Here we present examples.

Example 3.8. Let Δ be the smooth cubic in \mathbb{P}^3 defined by

\[F(X_0, X_1, X_2, X_3) = X_0^3 + X_1^3 + X_2^3 + X_0^2X_3 + X_1X_2^2 + X_3^3. \]

Let π_P be the projection from $P = (0 : 0 : 0 : 1)$ to the hyperplane \mathbb{P}^2. Taking the affine coordinates $x = X_0/X_3$, $y = X_1/X_3$ and $z = X_2/X_3$, we get the defining equation of the affine part

\[f(x, y, z) = x^3 + y^3 + z^3 + x^2 + y + 1. \]
Put $x = at, \ y = bt$ and $z = ct$. Computing the discriminant $D(f)$ of $f(at, bt, ct) = (a^3 + b^3 + c^3)t^3 + a^2t^2 + bt + 1$ with respect to t, we obtain

$$D(f) = -(31a^6 - 18a^5b - a^4b^2 + 58a^3b^3 - 18a^2b^4 + 31b^6 + 54ac^3 - 18a^2bc^3 + 58b^3c^3 + 27c^6).$$

(8)

This yields the branch divisor of $\pi_P : \Delta \rightarrow \mathbb{P}^2$. From (7) and (8) we infer that the defining equation of $2R_1$ is

$$F(X_0, X_1, X_2, X_3) = 0 \quad \text{and} \quad (X_0^3 + 2X_1X_3 + 3X_3^2)^2 = 0,$$

and that of R_2 is

$$F(X_0, X_1, X_2, X_3) = 0 \quad \text{and} \quad 4X_0^2 - X_1^2 + 2X_1X_3 + 3X_2^2 = 0.$$

It is not difficult to check that R_2 is smooth and irreducible, hence P is a good point for Δ. By taking a double covering along this curve $[S], we get the $K3$ surface Δ_P defined by $F = 0$ and $X_0^3 = 4X_0^3 - X_1^2 + 2X_1X_3 + 3X_2^2$, which is a $(2,3)$-complete intersection. The Galois line is given by $X_0 = X_1 = X_2 = 0$.

How is the Galois closure variety when the projection center is not a good point? Let us examine the following example.

Example 3.9. For a projection with some center $P \in \mathbb{P}^3 \setminus \Delta$, the Galois closure surface Δ_P is not necessarily a $K3$ surface. Indeed, let Δ be the smooth cubic defined by

$$F(X_0, X_1, X_2, X_3) = X_0^3 + X_1^3 + X_2^3 + X_0X_2^2 - X_3^2.$$

(9)

Clearly the point $P = (0 : 0 : 0 : 1)$ is not a Galois one. Taking the same affine coordinates as in Example 3.8, we get the defining equation of the affine part

$$f(x, y, z) = x^3 + y^3 + z^3 + x - 1.$$

Put $x = at, \ y = bt$ and $z = ct$. Computing the discriminant $D(f)$ of $f(at, bt, ct) = (a^3 + b^3 + c^3)t^3 + at - 1$ with respect to t, we obtain

$$D(f) = -(31a^3 + 27b^3 + 27c^3)(a^3 + b^3 + c^3).$$

(10)

This yields the branch divisor of $\pi_P : \Delta \rightarrow \mathbb{P}^2$. From (9) and (10) we infer that the defining equation of $2R_1$ is $C_1 + C_2$, where C_1 (resp. C_2) is given by $X_0^3 + X_2^3 + X_3^2 = 0$ (resp. $31X_0^3 + 27X_1^3 + 27X_2^3 = 0$). Hence the defining equation of the sextic $C_P(V)$ is

$$(X_0^3 + X_1^3 + X_2^3)(31X_0^3 + 27X_1^3 + 27X_2^3) = 0.$$

Let Δ_P be the double covering of Δ branched along the divisor R_2, where $R_2 = R_{21} + R_{22}$ such that R_{21} (resp. R_{22}) is given by the intersection of $F = 0$ and $X_0 - X_3 = 0$ (resp. $F = 0$ and $X_0 - 3X_3 = 0$). The R_{2i} ($i = 1, 2$) is a smooth curve on Δ satisfying that $R_{2i}^2 = 3$, $R_{2i} = 12$ and $R_{21}R_{22} = 3$. We infer that Δ_P is a normal surface, therefore it is a Galois closure surface at P (Definition 1.2). However, it has three singular points of type A_1, so that it is not a $K3$ surface. The minimal resolution of Δ_P turns out to be a $K3$ surface.

Remark 3.10. The variety with the property (\mathfrak{C}_n) is not necessarily a $(2,3)$-complete intersection. For example, in case $n = 1$, Take $V = C$ as the Galois closure curve of a smooth cubic $\Delta \subset \mathbb{P}^2$ obtained as follows: let T be a tangent line to Δ at a flex. Choose a point $P \in \Delta$ satisfying the following condition: if ℓ_P is a line passing through P and $\ell_P \neq T$, then ℓ_P does not tangent to Δ at any flex. Let C be the
Galois closure curve for the point projection \(\pi_P : \Delta \to P^1 \), i.e., \(\tilde{\pi} : C \to \Delta \) is a double covering, which has four branch points (see, for example [5] pp. 287–288), hence \(g(C) = 3 \). Let \(D \) be the divisor \(\tilde{\pi}^*(\ell + \Delta) \), where \(\ell \) is a line passing through \(P \). Clearly we have \(\deg D = 6 \), the complete linear system \(|D| \) has no base point and \(\dim H^0(C, O(D)) = 4 \). Let \(f : C \to C' \) be the morphism associated with \(|D| \). The double covering \(\tilde{\pi} \) factors as \(\tilde{\pi} = \tilde{\pi}' \cdot f \), where \(\tilde{\pi}' : C' \to \Delta \) is a restriction of the projection \(\mathbb{P}^3 \to \mathbb{P}^2 \). Since \(g(C') \geq 1 \), we see \(\deg C' \neq 2 \) and 3. Hence \(\deg C' = 6 \) and \(f \) is a birational morphism. Further, we have the projection \(\tilde{\pi}' : C' \to \Delta \) and \(\Delta \) is nonsingular, hence \(C' \) is smooth. Therefore \(f \) is an isomorphism. Since \(g(C) = 3 \), \(C \) is not a \((2, 3)\)-complete intersection.

4. PROOF

First we prove Theorem 3.1. The case \(n = 1 \) have been proved ([13]). So that we will restrict ourselves to the case \(n \geq 2 \).

Since \(V \) is embedded into \(\mathbb{P}^{n+2} \) associated with \(|D| \), where \(D \) is a very ample divisor with \(D^n = 6 \), we can apply the results in Section 2. By assumption \(V \) has a Galois line \(\ell \) such that the Galois group \(G = G_\ell \) is isomorphic to \(D_6 \). We can assume \(G = \langle \sigma, \tau \rangle \) where \(\sigma^3 = \tau^2 = 1 \) and \(\tau \sigma \tau = \sigma^{-1} \). Let \(\rho_1 : V \to V^\tau = V/\langle \tau \rangle \). We see \(\rho_2 : V^\tau \to V^\tau/G \cong \mathbb{P}^n \) turns out a morphism. Then, we have \(\pi = \rho_2 \rho_1 : V \to V/G \cong \mathbb{P}^n \). Note that \(\rho_2 \) is a non-Galois triple covering. By taking suitable coordinates, we can assume \(\ell \) is given by \(X_0 = X_1 = \cdots = X_n = 0 \). As we see in Section 2, we have the representation \(\beta : G \to PGL(n + 3, k) \). Since the characteristic of \(k \) is zero, the projective representation is completely reducible, hence \(\beta(\sigma) \) and \(\beta(\tau) \) can be represented as

\[
\begin{pmatrix}
1 & & & 0 \\
& \ddots & & \\
& & 1 & 0 \\
0 & & -\frac{1}{2} & \omega + \frac{1}{2} \\
& & \omega + \frac{1}{2} & -\frac{1}{2}
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
1 & & & 0 \\
& \ddots & & \\
& & 1 & 0 \\
0 & & & -1
\end{pmatrix},
\]

where \(\omega \) is a primitive cubic root of 1. Therefore, the fixed locus of \(\tau \) is given by \(f(V) \cap H \), where \(H \) is the hyperplane defined by \(X_{n+2} = 0 \). Put \(Z = f(V) \cap H \), i.e., \(Z \sim D \). Since \(Z \) is ample, it is connected. Looking at the representation \(\beta(\tau) \), we see \(Z \) is smooth, hence it is a smooth irreducible variety. Take the point \(P = (0 : \cdots : 0 : 1) \in \ell \) and an arbitrary point \(Q \) in \(V \). Let \(\ell_{PQ} \) be the line passing through \(P \) and \(Q \). Then we have \(\tau(\ell_{PQ}) = \ell_{PQ} \) and \(\tau(V) = V \). Let \(\pi_P \) be the projection from the point \(P \) to the hyperplane \(H \). Since \(Z \) is smooth, \(\pi_P(V) \) is smooth. By Lemma 2.3 \(\pi_P(V) \) is isomorphic to \(V/\langle \tau \rangle \) and we may assume \(\pi_P = \rho_1 \). Therefore we see \(V \) is contained in the cone consisting of the lines passing through \(P \) and the points in \(V \). Since \(\deg V = 6 \) and \(\deg p = 2 \), we conclude the variety \(V^\tau \) is a smooth cubic in \(\mathbb{P}^{n+1} \). This proves Theorem 3.1.
Next we prove Lemma 3.2. Let \(H_2 \) be a linear variety of dimension two and passing through \(P \). If \(H_2 \) is general, then \(\Delta \cap H_2 \) is a smooth cubic in the plane \(H_2 \cong \mathbb{P}^2 \). Thus \(C_P(\Delta) \cap H_2 \) consists of six lines, hence we have \(\deg C_P(\Delta) = 6 \).

The proof of Proposition 3.3 is as follows. Suppose \(P \) is a general point for \(\Delta \) and let \(\pi_P \) be the projection from \(P \) to the hyperplane \(\mathbb{P}^n \). Put \(B = \pi_P(R_2) \).

Claim 4.1. The divisor \(B \) is irreducible.

Proof. It is sufficient to check in a general affine part. Put \(x_i = X_i/X_0 \) (\(i = 1, \ldots, n+1 \)) and let \(f(x_1, \ldots, x_{n+1}) \) be the defining equation of an affine part \(X_0 \neq 0 \) of \(\Delta \) and \(P = (u_1, \ldots, u_{n+1}) \in A^{n+1} \). Put
\[
g(u_1, \ldots, u_{n+1}, t_0, \ldots, t_n, x) = f(u_1 + xt_0, \ldots, u_{n+1} + xt_n),
\]
where \((t_0, \ldots, t_n) \in \mathbb{P}^n\). Let \(D(g) = D(u_1, \ldots, u_{n+1}, t_0, \ldots, t_n) \) be the discriminant of \(g \) with respect to \(x \). Owing to [3] Lemma 3 and [11] Claim 1, we see \(D(g) \) is reduced and irreducible. Therefore for a general value \(u_1 = a_1, \ldots, u_{n+1} = a_{n+1}, D(a_1, \ldots, a_{n+1}, t_0, \ldots, t_n) \) is irreducible. This implies \(B \) is irreducible.

Claim 4.2. The divisor \(R_2 \) is irreducible and smooth.

Proof. Suppose \(R_2 \) is decomposed into irreducible components \(R_{21} + \cdots + R_{2r} \). Since \(B \) is irreducible, we have \(\pi_P(R_{2i}) = B \) for each \(1 \leq i \leq r \). However, since \(\Delta \ast \ell \) has an expression \(2P_1 + P_2 \), the \(r \) must be 1. Thus \(R_2 \) is irreducible. Since \(\Delta \ast \ell \) has an expression \(2P_1 + P_2 \), where \(P_i \in \Delta \) (\(i = 1, 2 \)), \(\Delta \) and \(\ell \) has a normal crossing at \(P_2 \) if \(P_1 \neq P_2 \). In case \(P_1 = P_2 \), the intersection number of \(\Delta \) and \(\ell \) at \(P_1 \) is three. Since \(R_1 \supseteq P_1 \) and \(\Delta \ast C_P(\Delta) = 2R_1 + R_2 \), we see that \(R_2 \) is smooth at \(P_1 \).

This completes the proof of Proposition 3.4. The proof of Theorem 3.5 is as follows.

First note that \(P \) is not a Galois point. So we consider the Galois closure variety. The ramification divisor of \(\pi_P : \Delta \rightarrow \mathbb{P}^n \) is \(2R_1 + R_2 \). The divisor \(R_2 \) is smooth and irreducible by assumption. Let \(\Phi \) be the equation of the branch divisor of \(\pi_P \).

As we see in Example 3.3 \((a = X_0/tX_3, b = X_1/tX_3, c = X_2/tX_3) \) the discriminant is given by the homogeneous equation of \(X_0, \ldots, X_n \), hence we infer that \(\pi_P^*(\Phi) \) has the expression as \(\Phi_2^2 \cdot \Phi_2 \), where \(\Phi_2 = 0 \) defines \(R_2 \). Since \(\deg \Phi_2 = 2 \), we can define the variety in \(\mathbb{P}^{n+2} \) by \(F = 0 \) and \(X_{n+2} = \Phi_2 \), which is smooth and turns out to be the Galois closure variety. This proves Theorem 3.5.

We go to the proof of Proposition 3.7. Let \(H \) be a general hyperplane containing the Galois line \(\ell \) for \(V \) in Theorem 3.1. Put \(V_1 = V \cap H \) and \(D_1 = D \cap H \). Since we are assuming \(n \geq 2 \), the \(V_1 \) is irreducible and nonsingular by Bertini’s theorem. Thus, we have \(\dim V_1 = n - 1 \), \(D_1^{n-1} = 6 \) and \(V_1 \) is also a smooth \((2,3)\)-complete intersection. Note that \(V_1 \sim D \) on \(V \). Thus we have the exact sequence of sheaves
\[
0 \rightarrow \mathcal{O}_V \rightarrow \mathcal{O}_V(V_1) \rightarrow \mathcal{O}_V(D_1) \rightarrow 0.
\]

Taking cohomology, we get a long exact sequence
\[
0 \rightarrow \mathcal{H}^0(V, \mathcal{O}_V) \rightarrow \mathcal{H}^0(V, \mathcal{O}_V(V_1)) \rightarrow \mathcal{H}^0(V_1, \mathcal{O}_V(D_1)) \rightarrow \mathcal{H}^1(V, \mathcal{O}_V) \rightarrow \ldots.
\]
Since \(V \) is the complete intersection, we have \(\mathcal{H}^1(V, \mathcal{O}_V) = 0 \) (cf. [2] III, Ex. 5.5). Then \(V_1 \) has the same properties as \(V \) does, i.e., \(\dim V_1 = n - 1 \), \(D_1^{n-1} = 6 \),
dim $H^0(V_1, \mathcal{O}(D_1)) = n + 2$ and ℓ is a Galois line for V_1 and the Galois group is isomorphic to D_6. Continuing the Descending Procedure, we get the sequence of Proposition 5.7.5.

There are a lot of problems concerning our theme, we pick up some of them.

Problems.

1. For each finite subgroup G of $GL(2, k)$, does there exist a pair (V, D) which defines the Galois embedding with the Galois group G such that $D^n = |G|$, $\dim V = n$ and $\dim H^0(V, \mathcal{O}(D)) = n + 3$?

2. How many Galois subspaces do there exist for one Galois embedding? In case a smooth hypersurface V in \mathbb{P}^{n+1}, there exist at most $n + 2$. Further, it is $n + 2$ if and only if V is Fermat variety [11].

3. Does there exist a variety V on which there exist two divisors D_i ($i = 1, 2$) such that they give Galois embeddings and $D_1^n \neq D_2^n$?

For the detail, please visit our website
http://mathweb.sc.niigata-u.ac.jp/~yosihara/openquestion.html

References

1. J. Harris, Galois groups of enumerative problems, *Duke Math. J.*, 46 (1979), 685–724.
2. R. Hartshorne, Algebraic Geometry, *Graduate Texts in Mathematics*, 52 Springer-Verlag.
3. S. Iitaka, Algebraic Geometry, An introduction to birational geometry of algebraic varieties, *Graduate Texts in Mathematics*, 76 Springer-Verlag.
4. G. Malle and B. H. Matzat, Inverse Galois Theory, *Springer Monogr., Math.*, Springer-Verlag, New York, Heidelberg, Berlin, 1999.
5. K. Miura and H. Yoshihara, Field theory for function fields of plane quartic curves, *J. Algebra*, 226 (2000), 283–294.
6. M. Namba, Branched coverings and algebraic functions, *Pitman Research Notes in Mathematics*, Series 161.
7. R. Shafarevich, Basic Algebraic Geometry I, Second, Revised and Expanded Edition, Springer-Verlag.
8. H. Tokunaga, Triple coverings of algebraic surfaces according to the Cardano formula, *J. Math. Kyoto University*, 31 (1991), 359–375.
9. H. Yoshihara, Function field theory of plane curves by dual curves, *J. Algebra*, 239 (2001), 340–355.
10. ______, Galois points on quartic surfaces, *J. Math. Soc. Japan*, 53 (2001), 731–743.
11. ______, Galois points for smooth hypersurfaces, *J. Algebra*, 264 (2003), 520–534.
12. ______, Families of Galois closure curves for plane quartic curves, *J. Math. Kyoto Univ.*, 43 (2003), 651–659.
13. ______, Galois lines for space curves, *Algebra Colloquium*, 13 (2006), 455–469.
14. ______, Galois embedding of algebraic variety and its application to abelian surface, *Rend. Sem. Mat. Univ. Padova*, 117 (2007), 69–86.
15. ______, Galois lines for normal elliptic space curves, II, *Algebra Colloquium* 19, 867–876 (2012).