RESEARCH ARTICLE

Plant evolution in alkaline magnesium-rich soils: A phylogenetic study of the Mediterranean genus *Hormathophylla* (Cruciferae: Alysseae) based on nuclear and plastid sequences

Esteban Salmerón-Sánchez1,2,*, Javier Fuertes-Aguilar3, Stanislav Španiel4,5, Francisco Javier Pérez-García1, Encarna Merlo1, Juan Antonio Garrido-Becerra1, Juan Mota1

1 Departamento de Biología y Geología, CEIMAR and CECOUAL, Universidad de Almería, Almería, Spain, 2 Departamento de Botánica, Unidad de Conservación Vegetal, Universidad de Granada, Granada, Spain, 3 Real Jardín Botánico, CSIC, Madrid, Spain, 4 Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic, 5 Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic

* esanchez@ual.es

Abstract

Habitats with alkaline edaphic substrates are often associated with plant speciation and diversification. The tribe Alysseae, in the family Brassicaceae, epitomizes this evolutionary trend. In this lineage, some genera, like *Hormathophylla*, can serve as a good case for testing the evolutionary framework. This genus is centered in the western Mediterranean. It grows on different substrates, but mostly on alkaline soils. It has been suggested that diversification in many lineages of the tribe Alysseae and in the genus *Hormathophylla* is linked to a tolerance for high levels of Mg$^{2+}$ in xeric environments. In this study, we investigated the controversial phylogenetic placement of *Hormathophylla* in the tribe, the generic limits and the evolutionary relationships between the species using ribosomal and plastid DNA sequences. We also examined the putative association between the evolution of different ploidy levels, trichome morphology and the type of substrates. Our analyses demonstrated the monophyly of the genus *Hormathophylla* including all previously described species. Nuclear sequences revealed two lineages that differ in basic chromosome numbers (x = 7 and x = 8 or derived 11, 15) and in their trichome morphology. Contrasting results with plastid genes indicates more complex relationships between these two lineages involving recent hybridization processes. We also found an association between chloroplast haplotypes and substrate, especially in populations growing on dolomites. Finally, our dated phylogeny demonstrates that the origin of the genus took place in the mid-Miocene, during the establishment of temporal land bridges between the Tethys and Paratethys seas, with a later diversification during the upper Pliocene.
Introduction

The family Brassicaceae Burnett is composed of about 49 tribes, 321 genera and 3,600 species with a worldwide distribution [1], mainly in regions with temperate climates [2–3]. The tribal classification [4–7] based mainly on morphological characters (orientation of the radicle in the embryo, relative size and degree of compression of the fruit, dehiscence, number of seed rows per loculus, trichomes and nectaries types), have revealed a high level of homoplasy thanks to contributions from molecular phylogenetics. Therefore, the family has undergone major reorganization including the infrafamilial categories [3,8–15].

The recently revised tribe Alyssaeae DC. [16–17], although reasonably well delimited, still presents some conflicting evidence from a phylogenetic perspective [1–3,16], that only recently has been partially solved [17]. According to Špániel et al. [17], the tribe currently includes 24 genera, with a distribution mainly centered in Eurasia and North Africa, encompassing 277 species of which more than a half belong to the genus Alyssum L. (114 spp.). The following genera by number of species are Odontarrhena C.A.Mey. ex Ledeb. (87 spp.) and Hormathophylla Cullen & T.R.Dudley (10 spp.) [18]. All members of Alyssaeae are characterized by stelate trichomes, latiseptate or cylindrical (rarely angustiseptate) fruits, with few seeds, winged seeds and a basic chromosome number of x = 8, although smaller or larger derived numbers have also been observed [17] (Alyssum, Odontarrhena, Clypeola, Hormathophylla). Hormathophylla has been the subject of several taxonomic treatments since its original description [19–23] and, although current evidence suggests that Hormathophylla is a monophyletic genus [3,16], these studies are based on a limited sampling of species omitting several taxa of controversial identity.

The genus Hormathophylla contains about 10 species distributed in the western Mediterranean (from northern Algeria to southern France), many of which are narrow endemics from the Baetic ranges in SW Spain (Fig 1). These species can be distinguished morphologically from Alyssum by their white or pink flowers, lateral sepals which are small or not gibbous at all, non-appendiculate filaments and larger fruits between 5–10 mm [3]. Regarding fruit morphology, the genus includes a group of species, such as H. spinosa (L.) P.Küpf., H. cochleata (Coss. & Durieu) P.Küpf and H. lapeyrouseana (Jord.) P.Küpf, which show cochleariform (spoon-shaped) fruits.

From a cytogenetic perspective, the great variability found in chromosome number (x = 7, 8, 11, 15[21,24]) in comparison to most of the related genera, which regularly bear a basic chromosome number x = 8, suggests that speciation processes have been accompanied by alterations in chromosome number through polyploidy and dysploidy mechanisms [21]. Küpf [21], in his thorough study, offered a detailed analysis of possible scenarios of chromosome number evolution in Hormathophylla. He also pointed out the existence of four morphologically different groups in the genus that are in accordance with his hypotheses about the origin of different chromosome numbers: (1) a group encompassing species with the basic chromosome number of x = 7 including H. reverchonii, H. cadevalliana, and H. longicaulis, (2) a group with x = 8 including H. ligustica (as H. halimifolia), H. saxigena (as H. macrocarpa), and H. spinosa, (3) H. pyrenaica with x = 8 and (4) the group with x = 11 and 15 corresponding to H. cochleata and H. lapeyrouseana, respectively.

Apart from the morphological and chromosome variability, a unique trait observed in this genus is the ability to thrive on a wide range of substrates. Rešetnik et al. [16] underscored the importance of the soil in the diversification process of the tribe, supporting the monophyly and sister relationship between the two clades containing most of the Alyssaeae serpentinophytes: the so-called Bornmuellera and Clypeola clades. Species of Hormathophylla that are part of the Bornmuellera clade can be found growing on a wide range of soil types. They are
Evolution on alkaline magnesium-rich soils of the Mediterranean genus *Hormathophylla*

Evolution on alkaline magnesium-rich soils of the Mediterranean genus *Hormathophylla*. First, considering that several groups in the tribe Alysseae were previously revealed to be poly- or paraphyletic, it was compelling to establish whether a comprehensive sampling supports *Hormathophylla* as a monophyletic genus. Secondly, given the previous uncertainty about the generic assignment of *H. purpurea* (considered by some authors as a separate monotypic genus, *Nevadensia* Rivas Mart.), it was necessary to elucidate its phylogenetic relationship to other *Hormathophylla* species. Thirdly, the degree of distinctiveness between pairs of species (e.g. *H. cadevelliana/H. longicaulis*, *H. ligustica/H. sax igena*), or on a series of substrates rich in magnesium, such as gypsum (*H. lapeyrouseana*), dolomite (*H. reverchonii* (Degen & Havriva)) Cullen & T.R. Dudley, *H. saxigena* (Jord. & Fourn.) D.A. Germa n & Govaerts) or on a series of substrates rich in magnesium, such as gypsum (*H. lapeyrouseana*), dolomite (*H. reverchonii* (Degen & Havriva)) Cullen & T.R. Dudley, *H. cadevelliana* (Pau) T.R. Dudley, *H. longicaulis* (Boiss.) Cullen & T.R. Dudley, and *H. lapeyrouseana* or serpentine (*H. longicaulis*). The number of species in the genus that thrive on dolomites is remarkable, as this is a demanding substrate that shares common features with serpentines [25–26]. Whereas serpentinephytes have been thoroughly studied in Alysseae, in which some of the species have evolved to become heavy-metal hyperaccumulators [11,28–29], little is known about the evolution of species on alkaline soils. The combined presence of high levels of Mg [30–31] and a low proportion of Ca/Mg are the common conditions defining these alkaline habitats, a feature also present in serpentines [25–26]. In addition to soil chemical composition, another factor influencing plant adaptation to this potentially toxic substrate is their parallel occurrence in highly xeric environments, like steppes or rocky habitats [32].

Once the phylogenetic framework was established, a complementary approach was carried out to determine the putative association between substrate and lineages, including the study of species growing on more than one type of soil, the evolution of morphological traits, such as fruit or trichome morphology, and the chromosome evolution. Finally, we used the phylogeny to perform an analysis of biogeographic patterns presenting a spatial-temporal framework by molecular dating to identify patterns compatible with the different paleoclimatic Mediterranean events that could have been involved in diversification episodes over time. To carry out these objectives, we explored a set of regions in two cell genomic compartments. In the chloroplast DNA sequences, we used regions *trnL-F* and *ndhF* [16,33,36] and for nuclear we used the ITS region from ribosomal nuclear DNA, previously used in studies of genera related to *Hormathophylla* [11,16,37] to explore both the phylogenetic relationships among species as well as among different edaphic races or ecotypes [29,38].

Materials and methods

2.1 Taxon sampling

We sampled all the species that were previously assigned to *Hormathophylla* with an emphasis on the most taxonomically controversial taxa from the Baetic ranges (Table 1). Each population sample consisted of ten individuals that were collected at a distance of at least ten meters apart from each other. Plant material was dried in silica gel and stored at room temperature.
In the case of *H. cochleata*, *H. ligustica* (Breistr.) Španiel, Al-Shehbaz, D.A.German & Marhold and *H. pyrenaica*, and of those species that were used as outgroups in plastid sequence analysis (*Fibigia clypeata* (L.) Medik., *Brachypus sufruticosus* (Vent.) V.I.Dorof., and *Alyssoides utriculata* (L.) Medik.), plants from preserved herbarium specimens were used. Geographic locations for sampled populations are shown in Fig 1.

We also included *Cuprella homalocarpa* (Emb. & Maire) Salmerón-Sánchez, Mota & Fuerstes and *Cuprella antiantlantica* (Fisch. & C.A.Mey) Salmerón-Sánchez, Mota & Fuerstes (previously known as *Alyssum antiantlanticum* Emb. & Maire and *A. homalocarpum* (Fisch. & C.A. Mey.) Boiss., respectively) because of their uncertain generic affinities and their possible relationship to *Hormathophylla*. In this sense, the putative ascription of *C. antiantlantica* to *Hormathophylla* was informally suggested by Küpper (in some annotated herbarium specimens, e.g. MA 121991) as well as by Maire, who highlighted its morphological similarity to *H. cochleata* and *Alyssum sect. Pilitromichum* (C.A.Mey.) Hook.f. [21,39].

To assess monophyly of *Hormathophylla* and its position in the Alyssaeae tribe, we used data sets that contained up to 94 accessions belonging to the genus *Hormathophylla* and 120 more from other species of the Brassicaceae family, the first composed of ribosomal sequences (DS1) and others composed of plastid sequences (DS2) (in those cases where sequences corresponding respectively to ndhF and ITS sequences were available in GenBank). All datasets used are detailed in S1 Table. Analyzed outgroups were chosen according to previous phylogenetic studies [3,10,16,40]. Name, voucher information with herbarium abbreviations according to Thiers [41] and GenBank numbers for all the accessions used are shown in Table 2 (from *Hormathophylla* genus) and Table 3 (rest of taxa used in the studies). One more data set (DS3) was used that was composed of plastid sequences (*trnL-F*, *trnT-trnL* and *rpl32-trnL*) sequenced in the case of the genus *Hormathophylla* and species from related genera *Fibigia*, *Brachypus* and *Alyssoides*.

2.2 DNA isolation, PCR amplification and sequencing

Plant material was desiccated (0.10–0.05 g) and ground to a fine powder with a mixer mill MM400 (Resch, Haan, Germany). Total DNA was extracted using a DNAeasy Plant Mini Kit (from Qiagen), and average concentration was estimated with the aid of a spectrophotometer (Syntaxy Mx Microplate Reader, Biotek).

The ribosomal region (*ITS1-5.8S-ITS2*) was amplified in a reaction volume of 20 μL, which contained 10 ng of genomic DNA, 1 μM each primer (C26A and N-NC18510 [42]), 0.25 μL of Gotaq polymerase (5uds/μl) (Promega, Madison, Wisconsin, USA), 1.5 μL MgCl₂ (25 mM), and 1.6 μL dNTPs (2.5mM). PCR conditions were: 5 min at 95 °C, followed by 35 cycles of 1 min at 95 °C, 1 min at 50 °C and 1 min at 72 °C each, followed by an incubation at 72 °C for 10 min. PCR amplification products were purified using a Genelute PCR cleanup Kit (Sigma-Aldrich, St Louis, MO, USA). Sequencing reactions were performed by means of the BigDye Terminator V3.1 (Applied Biosystems, Foster City, CA, USA) sequencing kit. Sequences were purified following manufacturer recommendations, and using the same primers as in the PCR. Reaction products were run on an ABI 3100 Avant (Applied Biosystems) automatic sequencer.

For cpDNA sequences, three regions were selected, according to the degree of polymorphism shown. These sequences were: *trnL-trnF*, *trnT-trnL* and *rpl32-trnL*. In the phylogenetic analysis of Alyssaeae, a fragment of the *ndf* region was also included [16]. Primers used in the amplification reaction were those proposed by Shaw et al. [43] (in *rpl32-trnL* fragment), Taberlet et al. [44] (in the case of *trnL-trnF* and *trnT-trnL*) and Beilstein et al. [33] (in *ndhF* fragment). PCR settings were those suggested by Shaw et al. [43,45] with minor modifications.
Purification of amplification products and sequencing reactions were performed as in the ITS region. All sequences were uploaded to Genbank and accession numbers are shown in Table 2.

2.3 Sequence analysis and haplotype identification

Forward and reverse sequences were compared, assembled and corrected where necessary using ClustalW [46] and BioEdit V 7.0.5.3 [47], to establish a consensus sequence in each sample. In the case of ribosomal sequence alignment, the use of Muscle [48] was necessary. Following the recommendations of Fuertes-Aguilar et al. [49–50], sites were considered as polymorphic (additive polymorphic sites or APS) when they exhibited more than one nucleotide in the chromatogram, and when the weakest signal was at least 25% of the strongest one. All of the obtained sequences were submitted to NCBI GenBank.

The evolution model represented by a phylogenetic tree, does not always adequately describe evolutionary scenarios like hybrid speciation, recombination or chloroplast capture via introgression [51]. Hence, reconstruction of phylogenetic networks may help in the interpretation of relationships [51–52]. For this particular purpose, one analysis was performed with data set DS3, which contained concatenated sequences from the amplified plastid regions (trnL-trnF, trnT-trnL and rpl32-trnL), obtained from the samples of the genus Hormathylla, and the outgroup from the genera Fibigia and Alyssoides Mill. (in total 96 sequences). Statistical parsimony networks (statistical parsimony algorithm [52]) were constructed using the program TCS V. 1.21 [53]. In this analysis, gaps were treated as missing data.

2.4 Phylogenetic analysis

Phylogenetic analyses were achieved by using Bayesian Inference (BI) and Maximum Likelihood (ML) inference. A group of data sets were created for different analyses (S1 Table). In the case of ribosomal sequences, we used data sets DS1 and DS4, the first with an extended sampling to cover the whole tribe Alyssaeae, and the second with the sampling focused on Hormathylla. In the case of chloroplast sequences, we used two data sets: DS2 for the analysis of the whole tribe and DS3 for the analysis centered on the genus. We also assembled a concatenated matrix with sequences belonging to ribosomal and cpDNA sequences, creating a new data set called DS5.

For the BI phylogenetic analysis, we employed MrBayes 3.1.2 [54–55]. Selection of the best-fit model of nucleotide substitution was carried out according to Bayesian and Akaike Information Criteria (BIC and AIC), as implemented in jModelTest [56]. 5x10^9 generations were produced, with four Markov chains and sampling every 100th generation. The first 10% of the sampled trees was discarded as burn-in. With the remaining trees, a 50% majority rule consensus tree was generated and posterior probability used as an estimation of clade support.

ML analysis was performed using RaxML 7.0.4 software [57–58]. Phylogenetic analyses were carried out through 1000 fast bootstrap analyses followed by a search for the best resulting ML tree in a single run. Because of the demanding computational requirements, a version of the program located in the web CIPRES-gateway (http://8ball.sdsc.edu:8888/cipres-web/home) was used. Following recommendations of [59], the General Time Reversible model (GTR) was used with an alpha parameter for the shape of the gamma distribution to account for among-site rate heterogeneity for both datasets. Highly congruent topologies were obtained using the parsimony ratchet [60], following the same method as in [61].

2.5 Data analysis for the estimation of divergence times

Two data subsets, obtained from DS1 and DS2 respectively, called DS6 and DS7 were used for the estimation of divergence times. As in the phylogenetic analyses, AIC and BIC criteria were
considered to determine the substitution model that best fitted the data sequences. Three independent replicates of the BI analysis of the genus *Hormathophylla* phylogeny generated trees with similar topology. Only one run was used for the construction of the consensus tree, with 25% of sampled trees deleted as burn-in.

Molecular dating analyses were performed with BEAST v1.8 [62], a program designed to estimate divergence times by means of the Bayesian Markov chain Monte Carlo (MCMC) approach. The tool Beauti [63] was used to edit the input file for BEAST. Thereafter, a relaxed molecular clock model was implemented using the uncorrelated lognormal parametric algorithm [62]. All the analyses were carried out on the assumption of a birth-death speciation model as a tree prior [64], assuming constant rates of speciation-extinction per lineage. Four runs with two chain, were performed for the dating analysis, each with the MCMC chain length set to 75,000,000, so as to extract every 10,000th and sample every 10,000 trees. The results of the BEAST analyses were checked in Tracer 1.5 [65] for model of likelihood and parameters convergence between each run and that each run had reached a stationary state.

Both chains were combined using LogCombiner 1.8, after discarding the first 10% of the sampled trees. Results were considered reliable once effective sample size (ESS) values of all

Fig 1. Distribution area of 11 taxa in *Hormathophylla*. Sampled localities are represented by dots and numbers as detailed in Table 1. A) *Hormathophylla* species with a broad distribution in the Iberian Peninsula (*H. spinosa*, *H. cochleata* subsp. *cochleata*, *H. lapeyrouseana*, *H. saxigena*, *H. ligustica* and *H. pyrenaica*). B) Additional *Hormathophylla* species which are present exclusively in the southwestern Iberian Peninsula (*H. cochleata* subsp. *Baetica*, *H. reverchonii*, *H. cadevalliana*, *H. longicaulis*, and *H. purpurea*).

https://doi.org/10.1371/journal.pone.0208307.g001
Table 1. Sampled localities of the populations belonging to *Hormathophylla* species, used for molecular, chromosome and ploidy levels analyses. For each species population, information includes: locality name, locality code (COD), UTM coordinates (COOR), altitude, chromosome number and ploidy levels detected.

Species	Locality	COD	COOR X	Y	Altitude (m)	Published Chromosome number	Ploidy level
H. longicaulis	Boca de la Pesca	01	451464	4104054	1350	8x	
	Las Cabras	02	553800	4215102	1600	4x	
	Deifontes	03	453705	4131533	1300	8x (9) 4x (1)	
	Dornajo	04	461357	4108398	2010	56*	8x
	Bacares	05	542091	4125909	1770	4x	
	Freila	06	510744	4150776	1030	4x	
	Gor	07	505275	4131714	1501	4x	
	El Madroñal	08	315020	4052486	937	8x	
H. cadevalliana	Los Morrones	09	514989	4084267	2170	4x	
	Sierra de la Hinojora	10	541714	4153029	1640	8x	
	Mahimón	11	579861	4160364	2000	28*	4x
	María	12	568781	4169902	1200	4x	
	Tajos de la Parra	13	513112	4089371	1630	4x	
	Prados del Rey	14	513224	4137318	1150	28*	4x
H. reverchonii	Sierra de la Cabrilla	15	516325	4191878	1890	28*	4x
H. cochleata subsp. baetica	Sierra de la Cabrilla	16	514097	4198034	1497	22*	4x
	Puerto Llano	17	503918	4184884	1800		
H. cochleata subsp. cochleata	Agoudal	18	265298	3544201	2550	4x	
	Ameskar	19	786126	3484640	2200		
H. purpurea	Almiréz	20	507955.9	4105037	2420	4x	
	Los Cauchiles I	21	466692.2	4103851	2800	4x	
	Los Cauchiles II	22	466345.0	4103462	2810	4x	
	Loma de Dilar	23	464541.8	4102952	2710	4x	
H. spinosa	Tizi-n-Tichka	24	654020	3462562	2200	32*	4x
	Calar de la Puebla	25	546452	4200284	1800	4x	
	Deifontes	26	454427	4131870	1767	4x	
	Los Morrones	27	514935	4084216	2157	4x	
	Loja	28	395500	4197090	1284	4x	
	Piedra Lobera	29	547795	4145847	1620	4x	
	Pico Magina	30	457839	4177805	1871	4x	
	Mahimón	31	578885	4170385	1330	4x	
	Peña de los enamorados	32	320913	4064004	1718	4x	
	Almiréz	33	502913	4105781	2273	32*	4x
	Prados del Rey	34	513224	4137318	2084	4x	
	Veleta	35	466671	4102775	2965	4x	
H. saxigena	Quillan	36	434948	4742326	400	4x	
H. ligustica	Trinità di Entracque	37	372776	4895132	1480–1600	4x	
H. pyrenaica	Nobèdes	38	439085	4720179	1600–1800	32*	4x
H. lapeyrouseana	Galera	39	541827	4178976	900	30*	4x
	Calatayud	40	609993	4357282	650	4x	
	Huete	41	524723	4449334	785	4x	
	Pico Magina	42	459062	4172959	1592	4x	
	Medinaceli	43	505622	4534908	808	4x	
	Puerto de la Mora	44	462043	4124358	1430	4x	
	Tórtoles de Esgueva	45	414317	4628259	876	4x	
	Monteeagedo de las Vicarias	46	568273	4582217	846	4x	
	Villar Domingo García	47	559395	4450905	990	4x	

Chromosome numbers (when known for the locality) were taken from the previously published studies:

- a = Kupfer 1974,
- b = Cueto & Blanca, 1986,
- c = Galland, 1988
- d = Morales et al., 1986
- e = Kupfer, 1972.

https://doi.org/10.1371/journal.pone.0208307.t001
Table 2. Sampled material of the populations belonging to *Hormathophylla* species, used in molecular studies. For each sample, information includes: Species, voucher code, locality code (COD), Genbank accession number per region studied (NCBI codes), and plastid haplotype (TCS haplotype).

Species	Voucher code	COD	nrDNA	NCBI codes	TCS haplotype			
			trnL-F	*rpl32-trnL*	*trnT-trnL*	*ndhF*		
H. longicaulis	8249-HUAL	01	KM033795	KM033564	KM033660	KM033468	H1	
			KM033794	KM033565	KM033661	KM033469	H1	
H. longicaulis	104707-MUB	02	KM033819	KM033544	KM033640	KM033448	H2	
			KM033820	KM033545	KM033641	KM033449	H2	
H. longicaulis	17152-HUAL	03	KM033796	KM033566	KM033662	KM033470	H3	
			KM033797	KM033567	KM033663	KM033471	H3	
H. longicaulis	28457-1-GDA	04	KM033793	KM033568	KM033664	KM033472	KP276166	H3
			KM033798	KM033569	KM033665	KM033473	H4	
H. longicaulis	3426-HUAL	05	KM033805	KM033570	KM033666	KM033474	H5	
			KM033806	KM033571	KM033667	KM033475	H5	
H. longicaulis	8247-HUAL	06	KM033801	KM033572	KM033668	KM033476	H3	
			KM033802	KM033573	KM033669	KM033477	H3	
H. longicaulis	19762-HUAL	07	KM033799	KM033548	KM033644	KM033452	H6	
			KM033800	KM033549	KM033645	KM033453	H6	
H. longicaulis	52262-1-MGC	08	KM033803	KM033574	KM033670	KM033478	H7	
			KM033804	KM033575	KM033671	KM033479	H7	
H. cadevalliana	14587-HUAL	09	KM033809	KM033546	KM033642	KM033450	H8	
			KM033810	KM033547	KM033643	KM033451	H8	
H. cadevalliana	14596-HUAL	10	KM033816	KM033550	KM033646	KM033454	H9	
			KM033817	KM033551	KM033647	KM033455	H10	
H. cadevalliana	8248-HUAL	11	KM033813	KM033552	KM033648	KM033456	H11	
			KM033814	KM033553	KM033649	KM033457	H11	
H. cadevalliana	45168-1-GDA	12	KM033818	KM033554	KM033650	KM033458	KP276165	H12
			KM033815	KM033555	KM033651	KM033459	H12	
H. cadevalliana	3467-HUAL	13	KM033811	KM033556	KM033652	KM033460	H13	
			KM033812	KM033557	KM033653	KM033461	H14	
H. cadevalliana	8244-HUAL	14	KM033807	KM033576	KM033672	KM033480	H6	
			KM033808	KM033577	KM033673	KM033481	H15	
H. reverchonii	43898-GDA	15	KM033821	KM033608	KM033704	KM033512	KP276164	H16
			KM033822	KM033609	KM033705	KM033513	H16	
			KM033823					
H. baetica	45161-1-GDA	16	KM033788	KM033560	KM033656	KM033464	KP276162	H17
			KM033789	KM033561	KM033657	KM033465	H17	
H. baetica	457505-MA	17	KM033787					
H. cochleata	303409-MA	18	KM033790					
H. cochleata	22506-HBG	19	KM033791	KM033562	KM033658	KM033466	KP276163	H18
			KM033792	KM033563	KM033659	KM033467	H18	
H. purpurea	SN-HUAL	20	KM033730	KM033580	KM033676	KM033484	KP276171	H19
			KM033731	KM033581	KM033677	KM033485	H19	
H. purpurea	753120-1 MA	21	KM033732	KM033582	KM033678	KM033486	H20	
			KM033733	KM033583	KM033679	KM033487	H20	
H. purpurea	408494-1 MA	22	KM033734	KM033584	KM033680	KM033488	H20	
			KM033735	KM033585	KM033681	KM033489	H20	
H. purpurea	468681-1 MA	23	KM033736	KM033586	KM033682	KM033490	H20	
			KM033737	KM033587	KM033683	KM033491	H20	

(Continued)
Table 2. (Continued)

Species	Voucher code	COD	nrDNA	NCBI codes	TCS haplotype
H. spinosa	SN-HUAL	24	KM033784	KM033610 KM033706 KM033514	KP276173 H21
			KM033783	KM033611 KM033707 KM033515	H21
	SN-HUAL	25	KM033781	KM033628 KM033724 KM033532	H22
			KM033782	KM033629 KM033725 KM033533	H22
H. spinosa	SN-HUAL	26	KM033773	KM033614 KM033710 KM033518	H23
			KM033772	KM033615 KM033711 KM033519	H23
H. spinosa	119-1-COA	27	KM033785	KM033612 KM033708 KM033516	H24
			KM033786	KM033613 KM033709 KM033517	H25
H. spinosa	59531-1-MGC	28	KM033764	KM033616 KM033712 KM033520	H26
			KM033766	KM033617 KM033713 KM033521	H26
H. spinosa	20996-1-COA	29	KM033768	KM033618 KM033714 KM033522	H27
			KM033767	KM033619 KM033715 KM033523	H27
H. spinosa	498236-1-MA	30	KM033775	KM033620 KM033716 KM033524	H28
			KM033776	KM033621 KM033717 KM033525	H28
H. spinosa	20994-1-COA	31	KM033769	KM033622 KM033718 KM033526	H29
			KM033770	KM033623 KM033719 KM033527	H29
H. spinosa	5656-1-MGC	32	KM033765	KM033624 KM033720 KM033528	H30
			KM033763	KM033625 KM033721 KM033529	H30
H. spinosa	20543-1-COA	33	KM033779	KM033630 KM033726 KM033534	H31
			KM033771	KM033631 KM033727 KM033535	H31
H. spinosa	421884-1-MA	34	KM033780	KM033626 KM033722 KM033530	H32
			KM033777	KM033627 KM033723 KM033531	H32
H. spinosa	443505-1-MA	35	KM033778	KM033632 KM033728 KM033536	H33
			KM033774	KM033633 KM033729 KM033537	H33
H. saxigena	60603-ARAN	36	KM033759	KM033578 KM033674 KM033482	KP276170 H34
			KM033758	KM033579 KM033675 KM033483	H34
H. ligustica	WU-020641	37	KM033756	KM033558 KM033654 KM033462	KP276169 H35
			KM033757	KM033559 KM033655 KM033463	H35
H. pyrenaica	BOUCHARD- 198	38	KM033760	KM033606 KM033702 KM033510	KP276172 H36
			KM033761	KM033607 KM033703 KM033511	H36
			KM033762	KM033618 KM033704 KM033512	H36
H. lapeyrouseana	21612-HUAL	39	KM033747	KM033588 KM033684 KM033492	H37
			KM033742	KM033589 KM033685 KM033493	H37
H. lapeyrouseana	177547-MA	40	KM033748	KM033590 KM033686 KM033494	H38
			KM033749	KM033591 KM033687 KM033495	H39
H. lapeyrouseana	8246-HUAL	41	KM033739	KM033592 KM033688 KM033496	H40
			KM033738	KM033593 KM033689 KM033497	H40
H. lapeyrouseana	23943-GDA	42	KM033744	KM033594 KM033690 KM033498	H41
			KM033746	KM033595 KM033691 KM033499	H41
H. lapeyrouseana	SN-HUAL	43	KM033754	KM033596 KM033692 KM033500	KP276167 H42
			KM033755	KM033597 KM033693 KM033501	H43
H. lapeyrouseana	15813-HUAL	44	KM033745	KM033598 KM033694 KM033502	KP276168 H44
			KM033743	KM033599 KM033695 KM033503	H44
H. lapeyrouseana	37693-SALA	45	KM033752	KM033600 KM033696 KM033504	H45
			KM033753	KM033601 KM033697 KM033505	H45

(Continued)
parameters were above 200 [63]. A Maximum Clade Credibility (MCC) tree was generated using TreeAnnotator 1 [63]. FigTree 1.4.0 [66] was used to display the resulting tree, including confidence intervals. Phylogenies were calibrated using two calibration points, a fossil and a secondary one. A *Thlaspi primaevum* fossil [67], dated at 30.8–29.2 Ma [68], was used as a calibration point for the split between *Alliaria petiolata* (M. Bieb.) Cavara & Grande and *Thlaspi arvense* L (prior distribution lognormal, mean/SD = 0.5/1, offset = 28). A secondary calibration point of 20.12 Ma (95% HPD: 7.46–34.42) was used in the root of the tree with the oldest common ancestor of the tribe Alysseae [12] (prior distribution normal, mean/SD = 19.3/4.3).

2.6 Scanning electron microscopy study. Trichome morphology

Scanning Electron Microscopy (SEM) was used to examine trichome morphology of selected taxa from the tribe Alysseae. Taxa and voucher specimens are listed in S2 Table. These studies were carried out at the Real Jardín Botánico SEM facility. Small portions of leaves were taken and mounted on a stub using double adhesive tape, and sputter-coated with gold in a Sputter Coater Balzers model SCD 004 with a thickness of about 50–700 μm. The specimens were visualized with a Hitachi S3000N digital electron microscope, operated at 25 kv. Since stellate trichomes are usually dichotomously branched up to three orders and the branch number varied depending on their order, we restricted the term ray to the last order number of ramification. This number has to be counted on the upper side of the leaves, where its presence is usually higher. Indument density and number of indument layers, as well as presence of rugosity in the epidermis, were registered and trichomes classified based on type of branching number of first-order arms, number of successive divisions per main arm, and number of terminal rays. In *Hormathophylla* species, a series of measures were taken for the following parameters of stellate trichomes: longest and shortest ray length, and its ratio (roundness index), central disc diameter, trichome ray length between same order branching, branching angle and branch diameter.

2.6 Flow cytometry and estimation of DNA ploidy levels

Flow cytometry was used to measure relative nuclear DNA content and infer ploidy levels of the studied populations. Ploidy was first analyzed in plants of *Hormathophylla* from populations with known chromosome numbers [21,69–72] and then used to infer ploidy level in
Table 3. List of sequences used from the NCBI database.

Voucher information and NCBI codes for each species and studied sequence are detailed.

Species (synonym)	Voucher codes	NCBI CODE	
Taxon	**Voucher**	**nrADN**	**ndH**
Acuston lunarioides (Willd.) Raf.	Burri & Krendl, W-2000-11251	KF022652	KF022974
Aethionema grandiflorum Boiss. & Hohen.	DQ249867	NC_009266	
Aethionema saxatile (L.) R. Br.	GQ284853	DQ288726	
Alliaria petiolata (M.Bieb.) Cavara & Grande	AF283492-AF283493	DQ288727	
Alyssoides utriculata (L.) Medik.	Gutermann 35181, HAL	KF022514	KF022859
Alyssum alyssoides (L.) L.	Schönswetter & Tribsch 6631, WU	KF022516	KF022863
Alyssum aurantiacum Boiss.	Döring, Parolly & Tolimir 697b, B 100132695	KF022522	KF022866
Alyssum baumgartnerianum Bornm.	Nazeri, All	KF022524	KF022867
Alyssum canescens D.C.	Bartholomew et al. 8657	-	DQ288728
Alyssum corningii T.R.Dudley	Faghinia, Zangooei	KF022528	KF022871
Alyssum cuneifolium Ten.	Schönswetter & Tribsch 6467, WU	KF022530	-
Alyssum dasycarpum Stephan ex Willd.	-	KF022873	
Alyssum diffusum subsp. garganicum Španiel, Marhold, N.G.Passal. & Lihová	Schönswetter & Tribsch 7479, WU	KF022536	KF022877
Alyssum doerfleri Degen	Micevski, ZA	KF022537	KF022878
Alyssum fastigiatum Heywood	Harald Pauli (Vienna)	KF022573	KF022907
Alyssum granatense Boiss. & Reut.	Borsić, Galbany, Gutiérrez & Ortiz, ZA	KF022539	KF022880
Alyssum harputicum T.R.Dudley	Joharchi	KF022540	KF022881
Alyssum hirsutum M.Bieb.	Schönswetter & Tribsch 6978, WU	KF022541	KF022882
Alyssum lense Adams	-	ESI4610	
Alyssum lepidoto-stellatum (Hausskn. & Bornm.) T.R.Dudley	Nazari	KF022545	KF022886
Alyssum minutum Schidl. ex DC. (A. marginatum Steud. ex Boiss.)	Schönswetter & Tribsch 4375, WU	KF022549	KF022890
Alyssum misrdalianum Orcan & Binzet	Binzet, ANK	KF022552	KF022892
Alyssum montanum s.l.	Plazibat, ZA	KF022553	KF022893
Alyssum niveum T.R.Dudley	-	KF022908	
Alyssum orophilum Jord. & Fourn. (A. pedemontanum Rupr.)	Gutermann 32467, herb. Gutermann	KF022575	KF022910
Alyssum paphlagonicum (Hausskn.) T.R.Dudley	Joharchi	KF022577	KF022911
Alyssum persicum Boiss.	Schönswetter & Tribsch 6984, WU	KF022578	KF022912
Alyssum repens Baumg.	Plazibat, ZA	KF022580	KF022914
Alyssum repens Baumg.	Schönswetter & Tribsch 4402, WU, ZA	KF022581	-
Alyssum siculum Jord.	Gutermann 35274, WU	KF022585	KF022918
Alyssum simplex Rudolphi	Borsić, Galbany, Gutiérrez & Ortiz, ZA	KF022587	KF022920
Alyssum stribrnyi Velen.	Dudley 34558, B 10 0209495	KF022596	-
Alyssum strigosum Banks & Sol.	Schönswetter & Tribsch 6975, WU	KF022597	KF022924
Alyssum sulphureum T.R.Dudley & Hub.-Mor.	Nazari	KF022601	KF022927
Alyssum tetramemon Boiss.	Nazari	KF022602	KF022928
Alyssum thymops (Hub.-Mor. & Reese) T.R.Dudley	Nazari	KF022603	KF022929
Alyssum turkestanicum Regel & Schmalh.	Schönswetter & Tribsch 6608, WU	KF022533	KF022875
Alyssum turkestanicum Regel & Schmalh.	R. & E. Willing 172898, B 10 0323559	KF022606	KF022931
Anelsonia eurycarpa (A. Gray) J.F.Macbr. & Payson	-	DQ452059	DQ288729
Arabidopsis lyrata (L.) O’Kane & Al-Shehbaz	-	DQ288730	
Arabidopsis thaliana (L.) Heynh.	ATU43225	NC_000932.1	
Arabis alpina L.	KF022692	KF023012	
Asperuginoides axillaris (Boiss. & Hohen.) Rauschert	ESI4626	-	
Asta schaffneri (S. Watson) O.E.Schulz	GQ245262	DQ288733	
Athysanthes pusillus (Hook.) Greene	GU246183	-	

(Continued)
Species	Voucher codes	NCBI nrADN	CODE ndhF
Aubrieta deltoidea (L.) DC.		DQ249850	DQ288734
Aubrieta parviflora Boiss.		DQ357518	DQ288735
Aurinia corymbosa Griseb.			
	Niketić, Stevanović, Tomović, Vuković, BEO	KF022607	KF022932
Aurinia gionae (Quezel & Contandru.) Greuter & Burdet	Gutermann 35748, herb. Gutermann	KF022609	KF022935
Aurinia leucacea subsp. diomeles Brullo, De Marco & Giusso	Bogdanović, ZA	KF022610	KF022936
Aurinia moreana Tzanoud. & Iatroü	Horandl & Hadaček jun. & sen., W- 1998–04073	KF022616	KF022942
Evolution on alkaline magnesium-rich soils of the Mediterranean genus *Hormathophylla*			
Species (Taxon (synonym))	Voucher codes	NCBI nrADN	CODE ndhF
--------------------------	---------------	------------	----------
Chorispora sibirica (L.) DC.	KF022702	KF023020	
Chorispora tenella (Pall.) DC.	DQ357526	DQ288753	
Christolea crassifolia Cambess.	DQ53423	DQ288754	
Clastopus vestitus (Desv.) Boiss.	K. H. Rechinger & F. Rechinger 6461, B 100209496	KF022642/ GQ424608	KF022966
Cleome rutidosperma DC.	DQ55802	DQ288755	
Clypeola aspera (Grauer) Turrill	KF022643	KF022967	
Clypeola cyclodontea Delile	EF514643	-	
Clypeola dichotoma Boiss.	Strashafr & Reed, W- 21437	KF022644	KF022968
Clypeola jonthlaspi L.	Schönswetter & Tribsch 3860, WU	KF022645	KF022969
Clypeola lappacea Boiss.	EF514645	-	
Cochlearia danica L.	KF022703	KF023021	
Conringia persica Boiss.	-	-	DQ288756
Cremolobus subsandens Kuntze	EU620291	DQ288757	
Cuprella homalocarpa_1 (Fisch. & C.A.Mey.) Salmerón-Sánchez, Mota & Fuertes	Fayed et al. 1350, SHG	KF022542	KF022883
Cuprella homalocarpa_2 (Fisch. & C.A.Mey.) Salmerón-Sánchez, Mota & Fuertes	Abdel Khalik, SHG	KF022543	KF022884
Cusickiella quadriloculata (Rollins) Rollins	-	-	DQ288761
Degenia velebitica (Degen) Hayek	Liber, ZA	KF022646	KF022970
Descurainia sophia (L.) Webb ex Prantl	DQ41872	DQ288759	
Dilophia salsa Thomson	-	-	DQ288761
Dimorphocarpus wislizenii (Engelm.) Rollins	AF137593	DQ288763	
Diptychocarpus strictus (Fisch. ex M.Bieb.) Trautv.	DQ357535	DQ288762	
Dontostemon senilis Maxim.	-	-	DQ288764
Draba altaica (C.A.Mey.) Bunge	GU202509	DQ288756	
Draba nemorosa L.	-	-	DQ288756
Erysimum capitatum (Douglas ex Hook.) Greene	Rešetnik, ZA	KF022706	KF023024
Erysimum cuspidatum (M.Bieb.) DC.	-	-	DQ288766
Erysimum diffusum Ehrhr.	Bogdanović, ZA	KF022707	KF023025
Euclidium syriacum (L.) W.T.Aiton	DQ357542	DQ288767	
Eudema rubigena subsp. rubigena Humb. & Bonpl.	EU62097	EU718545	
Extrema alaitica (C.A. Mey.) Al-Shehbaz & S.I.Warwick	DQ165365	-	
Extrema heterophyllum (W.W.Sm.) H.Hara	DQ165352	DQ288768	
Farsetia aegyptia Turra	Schönswetter & Tribsch 4157, WU	KF022673	KF022995
Farsetia linearis Deene.	KF022674	KF022997	
Farsetia longisilqua Deene.	KF022675	KF022998	
Farsetia longistyla Baker f.	KF022676	KF022999	
Farsetia robecchiana Engl.	EF514651	-	
Farsetia stylosa R.Br.	KF022677	KF023000	
Farsetia undulicarpa Jonsell	EF514652	-	
Fibigia clypeata (L.) Medik.	Bogdanović, ZA	KF022650	KF022972
Fibigia clypeata subsp. eriocarpa (DC.) Greuter	Hein 45–5, B 10 0209827	KF022651	KF022973
Fibigia macrocarpa (Boiss.) Boiss.	Döring, Parolly & Tolimir 1315, B 100132627	KF022655	KF022976
Galitzkya macrocarpa (Ikonn.-Gal.) V.V. Botschantz.	Wesche, HAL	KF022657	KF022981
Galitzkya potaninii (Maxim.) V.V. Botschantz.	Wesche, HAL	KF022659	KF022983
Galitzkya spatulata (Stephan) V.V. Botschantz.	EF514657	-	

(Continued)
Species	NCBI CODE	CODE	Voucher codes
Goldbachia laevigata (M.Bieb.) DC.	DQ357546	DQ288771	
Glaucocarpum suffrutescens (Rollins) Rollins	-	DQ288770.1	-
Graellsia saxifragifolia (DC.) Boiss.	-	DQ288772	-
Halimolobos montanus (Griseb.) O.E.Schulz	AF307639	DQ288773	-
Heldreichia bupleurifolia Boiss.	FN397988	-	-
Heliophila sp.	-	DQ288775	-
Hesperidanthus jaegeri (Rollins) Al-Shehbaz	GQ424569	DQ288751	-
Hesperis dinarica Beck	KF022708	-	-
Hesperis laciniata All. (H. visianii E.Fourn.)	KF022709	KF023026	-
Hesperis matronalis L.	DQ357547	DQ288776	-
Hesperis rechingeri F.Dvořák	KF022710	KF023027	-
Hesperis sp. nov.	-	DQ288777	-
Hirschfeldia incana (L.) Lagr.-Foss.	AY722470	DQ288778	-
Hornungia petraea (L.) Rchb. Bogdanović & Rusčić, ZA	KF022705	KF023023	-
Hornungia procumbens (L.) Hayek	-	DQ288779	-
Ianhedgea minutiflora (Hook.f. & Thomson) Al-Shehbaz & O’Kane	AF137568	DQ288780	-
Iberis amara L.	AJ440311	-	-
Iberis sempervirens L.	-	DQ288781	-
Idahoacapitata (Hook.) A.Nelson & J.F.Macbr.	-	DQ288782	-
Iodanthus pinnatifidus (Michx.) Steud.	GQ424539	DQ288784	-
Ionopsidium acaule (Desf.) DC. ex Rchb.	-	DQ288785	-
Irania umbellata (Boiss.) Hadač & Chrtek	Khosravi, Biglari KF022656	KF022980	-
Isatis lusitanica L.	KF022711	KF023028	-
Isatis microcarpa J.Gay ex Boiss.	KF022712	KF023029	-
Isatis tinctoria L.	KF022713	KF023030	-
Ladakiella klimesii (Al-Shehbaz) D.A.German & Al-Shehbaz (Alyssum klimesii Al-Shehbaz)	EF514608	-	-
Leavenworthia crassa Rollins	GQ424541	DQ288787	-
Leiospora ericoflyx (Regel & Schmalh.) F.Dvořák	DQ357554	DQ288788	-
Lepidium alyssoides A.Gray	KF022714.1	DQ288789	-
Lepidium draba L. Bogdanović, ZA	KF022715	KF023031	-
Lepidotrichum uechtritzianum (Bornm.) Velen. & Bornm. Stohr s.n., B 10 0209493	KF022665	KF022988	-
Lobularia arabica (Boiss.) Muschl.	Abdel Khalik, SHG	KF022678	KF023001
Lobularia canariensis subsp. **marginata** (Webb ex Coss.) L.Borgen	EF514671	-	-
Lobularia libyca (Viv.) Meisn.	Abdel Khalik, SHG	KF022679	KF023002
Lobularia maritima (L.) Desv. Bogdanović, ZA	KF022681	KF023004	-
Lobularia maritima (L.) Desv. Schönswetter & Trisch 7493, WU	KF022682	-	-
Lunaria annua L. [ssp. pachyrhiza (Borbás) Hayek]	KF022719	KF023035	-
Lutzia cretica (L.) Greuter & Burdet	EF514592	-	-
Malcolmia africana (L.) R.Br	AY273707	DQ288793	-
Malcolmia orsiniana subsp. **angulifolia** (Boiss. & Orph.) Stork Rešetnik, ZA	KF022720	KF023036	-
Mancoa hispida Wedd.	-	DQ288794	-
Maresia nanu (DC.) Batt.	KF022686	KF023006	-
Mathewsia auriculata Phil.	EU260300	EU874868	-
Mathewsia foliosa Hook. & Arn.	DQ357563	EU718555	-
Matthiola farinosa Bunge	DQ357565	DQ288796	-

(Continued)
Species	Voucher codes	NCBI	CODE
Matthiola fruticulosa subsp. *fruticulosa* (L.) Maire	KF022688 KF023008	KF022688	KF023008
Matthiola incana (L.) W.T. Aiton	KF022689 KF023009	KF022689	KF023009
Matthiola integrifolia Kom.	DQ288795		
Matthiola pulchella Tineo ex Guss.	KF022690 KF023010	KF022690	KF023010
Matthiola rupestris (Raf.) DC.	KF022691 KF023011	KF022691	KF023011
Meniocus aureus Fenzl	Misirdali, Orcan		
Meniocus linifolius (Stephan ex Willd.) DC.	Schönswetter & Tribsch 6607, WU	KF022546	KF022887
Meniocus meniocoides (Boiss.) Hadač & Chrtek	EFS14612		
Menonvillea hookeri Rollins			
Moriera spinosa Boiss.	GQ424545 DQ288798	DQ288798	
Morettia philaeana (Delile) DC.	KF022687 KF023007	KF022687	KF023007
Mostacillastrum orbignyanum (E.Fourn.) Al-Shehbaz			
Myagrum perfoliatum L.	GQ424547 DQ288800	DQ288800	
Nasturtium officinale W.T.Aiton AY2545 31	DQ288801		
Neotorularia korolkowii (Regel & Schmalh.) Hedge & J.Léonard	AY353156 DQ288803	DQ288803	
Neuontobotrys elloanensis (Gillies ex Hook. & Arn.) Al-Shehbaz			
Neuontobotrys frutescens (Kuntze) Al-Shehbaz	DQ288827 AY958595	DQ288827	AY958595
Nevada holmgrenii (Rollins) N.H.Holmgren	DQ452061 DQ288829	DQ452061	DQ288829
Thlaspi cochleariforme DC.	DQ249838 DQ288804	DQ249838	DQ288804
Noccaea sp.			
Odontarrhena borzaeana (Nyár.) D.A.German	Rešetnik, ZA KF022525	KF022868	KF022868
Odontarrhena chalcidica (Janka) Španiel, Al-Shehbaz, D.A.German & Marhold,	Rešetnik, ZA KF022526	KF022896	KF022896
Odontarrhena condensata subsp. *flexibilis* (Nyár.) Španiel, Al-Shehbaz, D.A. German & Marhold	Eren & Parolly 7550, B 100208573 KF022527	KF022870	KF022870
Odontarrhena corymbosidea (Formánek) Španiel, Al-Shehbaz, D.A.German & Marhold	Micevski, ZA KF022529	KF022872	KF022872
Odontarrhena gevgelicensis (Micevski) Španiel, Al-Shehbaz, D.A.German & Marhold	Micevski, MKNH KF022538	KF022879	KF022879
Odontarrhena kavadaricensis (Micevski) Španiel, Al-Shehbaz, D.A.German & Marhold,	Micevski, MKNH KF022544	KF022885	KF022885
Odontarrhena markgrafii (O.E.Schulz) Španiel, Al-Shehbaz, D.A.German & Marhold	Rešetnik, ZA KF022548	KF022889	KF022889
Odontarrhena muralis (Waldst. & Kit.) Endl.	Micevski, ZA KF022530	KF022872	KF022872
Odontarrhena nebrodensis (Tineo) L.Cecchi & Selvi	Rešetnik, ZA KF022526	KF022896	KF022896
Odontarrhena nebrodensis (Tineo) L.Cecchi & Selvi	Rešetnik, ZA KF022526	KF022896	KF022896
Odontarrhena obtusifolia (Steven ex DC.) C.A.Mey.	Gutermann 33113, WU KF022515	KF022862	KF022862
Odontarrhena serpentina (Micevski) Španiel, Al-Shehbaz, D.A.German & Marhold	Micevski, MKNH KF022582	KF022915	KF022915
Odontarrhena serpyllifolia (Desf.) Jord. & Fourr.	Plazibat, ZA KF022583	KF022916	KF022916
Odontarrhena skopijensis (Micevski) Španiel, Al-Shehbaz, D.A.German & Marhold	Micevski, ZA KF022594	KF022923	KF022923
Odontarrhena tortuosa (Waldst. & Kit. ex Willd.) C.A.Mey.	Micevski, ZA KF022594	KF022923	KF022923
Olimarabidopsis pumila (Stephan) Al-Shehbaz, O’Kane & R.A. Price	Cigić & Boršić, ZA KF022604	KF022930	KF022930
Oreoloma violaceum Botsch.	DQ310528 DQ288807	DQ310528	DQ288807
Parlatoria rostrata Boiss. & Hohen.	DQ357576 DQ288808	DQ357576	DQ288808
Peltaria alliacea Jacq.	GQ424552 DQ288809	GQ424552	DQ288809
Pennella brachycarpa Beilstein & Al-Shehbaz	KF022717 KF023033	KF022717	KF023033

(Continued)
other populations. *Solanum lycopersicum* L. ‘Stupíček polní rané’ (2C = 1.96 pg [73]) or *Bellis perennis* L. [74] were used as internal standards. Up to 10 samples per locality were analyzed when possible (Table 1).

Fresh and young leaves were dried in silica gel immediately after field collection and were stored at 25°C [75]. For the isolation of nuclei, desiccated leaves (0.5 cm²) were co-chopped

Table 3. (Continued)

Species	Voucher codes	NCBI CODE nrADN	CODE ndhF
Solanum lycopersicum L. 'Stupicke polni raney' (2C = 1.96 pg [73]) or *Bellis perennis* L. [74]	Döring, Parolly & Tolimir 1110, B 100132672	KF022667	KF022990
Physaria floribunda Rydb.	-	DQ288813	
Physoptychis capricia (Hablitz) V.Y. Botschantz.	KF022671	KF022994	
Planodes virginicum (L.) Greene	GQ424554	DQ288814	
Polanisia dodecandra (L.) DC.	DQ455816	DQ288815	
Polycystis fremontii (S. Watson) Greene	EU275076	DQ288816	
Resvetrika triquetra (DC.) Spaniel, Al-Shehbaz, D.A.German & Marhold	Rešetnik, ZA	KF022655	KF022979
Rhamanthophyllum erysimoides (Kar. & Kir.) Al-Shehbaz & O.Appel	-	DQ288818	
Romanskeulzia sp.	-	DQ288819	
Savegnya parviflora (Delile) Webb	KF022698	KF023017	
Schizopetalon biseriatum Phil. ex Gilg & Musch.	EU620313	EU178565	
Schizopetalon rupestre (Barnéoud) Barnéoud ex Reiche	EU620314	EU874870	
Selenium dissecata Torr. & A.Gray	GQ424557	DQ288822	
Shangrilaia nana Al-Shehbaz, J.P.Yue & H.Sun	-	DQ288823	
Sisymbriopsis mollipila (Maxim.) Botsch.	AY353157	DQ288824	
Sisymbriopsis yechengaica (C.H.An) Al-Shehbaz, C.H.An & G.Yang	AY353161	DQ288825	
Sisymbrium altissimum L.	AF531572	DQ288826	
Smelowskia annua Rupr.	AY230610	DQ288831	
Smelowskia calycina (Stephan) C.A.Mey.	DQ249836	DQ288828	
Smelowskia tibetica (Thomson) Lipsky	DQ249858	DQ288774	
Sobolewskia caucasia N.Busch	KF022718	KF023034	
Solms-laubachia linearis (N.Busch) J.P.Yue, Al-Shehbaz & H.Sun	DQ523417	DQ288760	
Solms-laubachia zhongdianensis J.P. Yue, Al-Shehbaz & H.Sun	DQ523415	DQ288830	
Stanleya pinnata (Pursh) Britton	EU620319	DQ288832	
Sterigmostemum squamiformis Goodman	-	DQ288835	
Taphrospermum altaicum C.A. Mey.	Bartholomew et al.8485	-	DQ288836
Tetracme pamirica Vassilcz.	-	DQ288837	
Telypodium laciniatum (Hook.) Endl.	EU620328	DQ288838	
Thlaspi arvense L.	AF336152-AF336153	DQ288839	
Thlaspi perfoliatum L.	KF022704	KF023022	
Turritis glabra L.	DQ518389	DQ288840	

https://doi.org/10.1371/journal.pone.0208307.t003
with the fresh leaf tissues from a standard individual using a razor blade in a Petri dish with 1 mL of ice-cold Otto I buffer [76]. The resulting suspension was filtered through a 42 μm nylon mesh and incubated for at least 5 min at room temperature. One milliliter of a solution containing Otto II buffer [76] supplemented with 2-mercaptoethanol (2μL/mL) and DAPI (4μg/mL) was added to the flow-through fraction, and stained for 1–2 min. Intensity of fluorescence of 5000 particles (dyed nuclei) was measured using a Partec Cyflow ML instrument with an HBO-100 mercury arc lamp (Partec GmbH, Munster, Germany). The flow cytometry histograms were evaluated using Partec FLO MAX V. 2.4d (Partec GmbH) software. The reliability of the measurements was assessed by computing the coefficients of variation (CVs) from both the analyzed and the standard samples. All analyses above the CV threshold value of 5% were rejected.

Results

3.1 Phylogenetic analysis of the genus *Hormathophylla* using ribosomal sequences

According to the results of the expanded ITS data set (S1 Fig), which included a comprehensive sampling of DS1, the sister group of the genus *Hormathophylla* (0.91 PP; 61% BS) was composed of *Acuston Raf.*, *Alyssoides* Mill., *Brachypus Ledeb.*, *Clastopus Bunge ex Boiss.*, *Degenia Hayek*, *Fibigia Medik.*, *Irania Hadač & Chrtek*, *Lutzia Gand.*, *Physopytchis Boiss.*, *Pterygostemon V.V. Botschantz* and *Resetnikia* Sˇpaniel, Al-Shehbaz, D.A.German & Marhold, all of them grouped into a well-supported clade (0.99 PP; 79% BS). This group is related to that consisting of the *Bornmuellera* and *Phyllolepidum* genera (0.97 PP; 74% BS), also well supported, making up the Bormuellera clade (1.00 PP; 100% BS). All of these genera include species that mostly grow on alkaline substrates (both serpentine and dolomite). The Bornmuellera clade is a sister group of the Clypeola clade (1.00 PP; 97% BS), composed of the genera *Clypeola*, *Odontarrrhena* and *Meniocus* (represented by *A. linifolium* Stephan ex Willd). The rest of taxa described by Resˇetnik et al. [16] (belonging to *Aurinia* and *Alyssum*) were present and well differentiated.

The ITS data set (DS4) with an enhanced sampling of *Hormathophylla* contained 699 sites, of which 147 were variable and 68 considering only sequences from *Hormathophylla*. A total of 55 sites correspond to additive sites (S3 Table). In the jModeltest analysis, the evolutionary model was selected by both AIC and BIC (S1 Table). The tree topologies obtained in Bayesian inference and Maximum likelihood analyses were similar, although the branch support values and some connections varied slightly. The resulting trees are shown in Fig 2, centered in *Hormathophylla* species and in S1 Fig with an enlarged sampling of outrelated genera.

3.2 Species diversification in *Hormathophylla*

According to our ITS tree results (Fig 2), *Hormathophylla* can be considered a monophyletic genus (1.00 PP; 100% BS), which would include *H. cochleata* and *H. purpurea* as taxa belonging to this group. The split between two lineages, hereafter called A and B, is clear. Both lineages correspond to the two groups of species previously detected based on basic chromosome numbers and are well supported (lineage A was 0.75 PP; 77% BS and lineage B 0.81 PP; 60% BS).

Lineage A (Fig 2) is composed of *H. longicaulis*, *H. cadevalliana* and *H. reverchonii*. Within lineage A, no clear differentiation between species is observed, although it is supported for most of the populations from *H. longicaulis* (0.57 PP;—BS). Populations belonging to *H. cadevalliana* appear merged with the other two, sometimes grouped into a clade, as is the case of...
Fig 2. Phylogenetic relationships inferred by ML and BI analyses of the 114 samples belonging to Hormathophylla, based on the ribosomal sequence ITS1-5.8S-ITS2, shown as a majority rule consensus tree. Posterior probability and bootstrap support values are shown above and below the branches. Trichome types, as described in S5 Table, across different species are coded as T1, T2, T3, and T4. Basic chromosome number (x) is indicated by colored bars. Substrate type of the populations where sequences come from are coded as follows: D: dolomite; G: gypsum; L: limestone; S: serpentine; Si: siliceous.

https://doi.org/10.1371/journal.pone.0208307.g002
populations 12 and 10 (1.00 PP/ 58% BS). In lineage B (Fig 2), two subclades encompass all of the populations of *H. spinosa*, one containing populations 24 and 27 (0.73 PP; - % BS) and the rest in a second one (0.98 PP; 85% BS). The third clade in this trichotomy contains the rest of the species (0.96 PP; 53% BS). Among them, *H. purpurea* (1.00 PP; 100% BS) and *H. lapeyrouseana* (1.00 PP; 91% BS) remain well differentiated. *H. lignistica* and *H. saxigena* form a well-defined clade (1.00 PP; 84% BS). The two *H. cochleata* subspecies, *baetica* and *cochleata*, group into a well-supported clade with respect to the rest of the lineage B species (1.00 PP; 99% BS) grouped into a clade along with *H. pyrenaica* (0.98 PP; 74% BS). There is some within-species, and even intrapopulational, variation; for instance, in *H. lapeyrouseana*, populations 39, 41 and 46 are well separated from the rest (1.00 PP; 70% BS), whereas the other branch contains individuals from the southernmost populations 39, 42 and 44 (0.9 PP; 70% BS).

3.3. Haplotype diversity in *Hormathophylla*

The plastid DNA sequences obtained both in *Hormathophylla* and the outgroups ranged between 477–484, 829–850, 892–854 bp for *trnL-trnF, trnQ-rpl16* y *trnT-trnL*, respectively. The combined matrix of the three regions, DS3 (Table 2) (2.485 bp), showed 131 variable sites and 40 indels (S4 Table). The combined matrix generated 52 haplotypes (Table 2) distributed as follows. Whereas some species like *H. reverchonii* (H16), *H. cochleata* (H17, H18), *H. lignistica* (H35), *H. saxigena* (H34), *H. pyrenaica* (H36), and *H. purpurea* (H19, H20) displayed one or two haplotypes per species, other species exhibit a richer nucleotide variation in the chloroplast regions analyzed. For example, *H. lapeyrouseana* shows 11 haplotypes, one of them shared with *H. cochleata* (H18), plus ten more exclusive (H37-H46). In *H. spinosa*, were found 13 haplotypes (H21-H33), most of them restricted to one population. In the case of *H. cadevalliana*, which presents nine haplotypes (H6, H8-H15), one of them (H6) was shared by *H. longicaulis*, where six more haplotypes were found (H1-H7).

The internal relationships among the chloroplast haplotypes based on the same haplotype data set (DS3, Table 2) were resolved into one single TCS network (Fig 3). Among the 96 analyzed sequences, we found 50 haplotypes, including those in the outgroup (one for *Fibigia suffruticosa* and *Alyssoides utriculata* and two for *Fibigia clypeata*). We found *H. pyrenaica* to be the species with haplotypes closest to those present in outgroups, separated by 165 steps from the nearest outgroup. The rest of the species were split into three well-differentiated haplotype groups. The first one (haplogroup I) was composed of haplotypes belonging to the species *H. cochleata* and *H. lapeyrouseana*, which are placed in the ITS lineage B. This haplogroup was separated by seven steps to the nearest taxon (*H. pyrenaica*). *H. cochleata* and some populations of *H. lapeyrouseana* shared the same haplotype. The longest distance between haplotypes within this group was of five mutational steps. The most frequent haplotype was present in five sequences, three populations and two subspecies (*H. cochleata* subsp. *cochleata* and *H. cochleata* subsp. *baetica*). A second group (haplogroup II) was composed of haplotypes from species belonging to ITS lineage A, along with several individuals from the southernmost populations of *H. lapeyrouseana*. They were distanced three steps from the nearest species of the neighbor group, *H. pyrenaica*. In this group, most haplotypes correspond to *H. longicaulis*, which accumulates up to 7 haplotypes separated into two subgroups. Nine haplotypes are present in *H. cadevalliana*, one of which is also shared by *H. longicaulis*. They were separated by 19 steps. The most frequent haplotype (H5) in haplogroup II was present in four individuals, three populations and only one species. A third group (haplogroup III) consisted of haplotypes belonging exclusively to lineage B. The haplotypes belonging to *H. spinosa*, were tightly related to *H. lignistica*, *H. saxigena* and *H. purpurea*. The closest haplotype from another group was eight steps away (between *H. pyrenaica* and *H. spinosa*). Considering only haplotypes from *H.
spinosa, the longest distance between haplotypes was 26 steps (H27 and H30). In this haplogroup the most frequent haplotype was H20, which was present in three of the populations from H. purpurea, and separated by six steps from the nearest haplotype of H. spinosa. Regarding H. saxigena, its haplotype was separated four steps from the exclusive H. ligustica haplotype and 11 steps from nearest haplotype of H. spinosa.

There is an association between the haplotypes and the type of substrate in which the different populations grow. This association is, in some cases, independent of the taxonomic ascription. Within haplogroup I, we find H. lapeyrouseana, with most of the haplotypic lineages present on gypsum, and the two subspecies of H. cochleata, which are present on calcareous outcrops (limestone and dolomite). Within haplogroup II, we find species that were always present on alkaline soils, with a particular predominance of dolomitic or calcodolomitic substrates (H. reverchonii, H. longicaulis, H. cadevalliana and H. lapeyrouseana), but all the individuals analyzed from populations living on serpentines (H. longicaulis) are in this group. Finally, in haplogroup III, the most diverse, we find species on different substrate affinities, although most of them were predominantly on limestone (H. pyrenaica, H. ligustica, H. saxigena and H. spinosa). Moreover, H. spinosa and H. purpurea were found on siliceous substrates.

3.4 Within Hormathophylla plastid phylogenetic analysis

When the plastid data set (DS3) is used to infer the phylogenetic relationships within Hormathophylla, the resulting tree (Fig 4) exhibits a lower resolution than the topology obtained from ITS ribosomal sequences. However, the topology does not exactly match the two lineages A and B, as identified in the ITS phylogeny (Fig 2). The species included in ITS lineage A grouped into its own clade (0.7 PP; 76% BS) in the plastid phylogeny. The clade is completed with the sequences belonging to the southernmost populations of H. lapeyrouseana.
Fig 4. Phylogenetic relationships inferred through ML and BI analyses of the 96 samples belonging to the genus *Hormathophylla*, and the species *Fibigia clypeata*, *Brachypus suffruticosus*, and *Alyssoides utriculata*, of the chloroplast regions *trnL-trnF*, *trnT-trnL* and *rpl32-trnL*, shown as a majority rule consensus tree. Posterior probability and bootstrap support values are shown over and below the branches, respectively.

https://doi.org/10.1371/journal.pone.0208307.g004
this clade several sublineages are identified. The first corresponded to *H. reverchonii* individuals (1.00 PP; 97% BS), two more contained sequences from the southernmost populations of *H. lapeyrouseana* (for population 39, 1.00 PP; 97% BS, and for populations 42 and 44 1.00 PP; 92% BS), and two more (0.99 PP; 88% BS and 1.00 PP; 72% BS) contained samples belonging to *H. cadevalliana* and *H. longicaulis*, with many of their sequences grouped as mixtures from both species (0.97 PP; 60% BS).

The remaining species are grouped into three additional clades. A first clade comprises haplotypes from *H. spinosa*, *H. saxigena*, *H. ligustica* and *H. purpurea* (0.81 PP; — BS), and contained two subclades. The first (0.99 PP/81% BS) contained *H. saxigena*, *H. ligustica*, (1.00 PP/98% BS) and populations 30 and 32 of *H. spinosa* (1.00 PP/87% BS). The second contained the rest of the haplotypes from *H. spinosa* and *H. purpurea* (0.96 PP/88% BS). Nested within it, lineages from *H. purpurea* (0.99 PP/51 BS) make up a subclade with *H. spinosa* populations 27, 29, 31, 33, 34, and 35 (0.99 PP/68% BS). A third clade contained the rest of the sequences belonging to *H. lapeyrouseana*, *H. cochleata* subsp. *baetica* and *H. cochleata* subsp. *cochleata* (1.00 PP/100% BS). A fourth clade contained the samples belonging to *H. pyrenaica* (0.91 PP/83% BS).

3.5 Phylogenetic analysis of tribe Alysseae based on the plastid region

The analysis based on data set 3 (DS3, Table 2), which was composed of *ndhF* plastid sequences (S2 Fig), revealed similar relationships between the main lineages of *Hormathophylla* and those previously resulting from the more variable three chloroplast regions (*trnL-trnF*, *trnQ-rpl16*, *trnT-trnL*) of the *Hormathophylla* genus sampling. It was possible to detect certain differentiation of species belonging to lineage A with respect to the rest except in the case of *H. lapeyrouseana*. The southernmost localities of this species were tightly linked to those belonging to lineage A, making up a consistent phylogenetic group (1.00 PP; 100% BS). The relative position of *Hormathophylla* within the tribe appears to be clearly nested within a highly supported lineage (1.00 PP; 100% BS) in the clade composed of *Hormathophylla* (1.00 PP; 100% BS), *Fibigia*, *Irania*, *Clastopus* and *Degenia* among others. With a high support (1.00 PP; 83% BS), this group revealed a sister relationship with another group made up of the genus *Phyllolepidum*. The large clade also includes the genus *Bornmuellera* (1.00 PP; 100% BS).

3.6 Phylogenetic analysis of the combined matrix with nrDNA and cpDNA

The analysis of the concatenated sequences of ribosomal and plastid DNA considering the partitioned data (DS5) generated the consensus tree shown in S3 Fig. First, the monophyly of the *Hormathophylla* genus was conserved (1.00 PP), within the *Bornmuellera* clade (1.00 PP). As in the plastid analysis, it was not possible to differentiate species from each of the two ITS groups. Nonetheless, we found that species from lineage A came together in a well supported group. Concerning *Cuprella antiatlantica* and *C. homalocarpa*, these species grouped into a lineage nested within the *Bornmuellera* clade, as a sister group of the genus *Bornmuellera*. The phylogenetic tree was similar to that obtained from chloroplast sequences, except in the case of the relationships between the Alyssum, Clypeola and Aurinia clades.

3.7 Estimation of divergence times

The dated phylogeny, with the estimation of divergence times (Fig 5 and S4 Fig), depending on the genome compartment used in its inference, was based on ribosomal (DS6) or plastid sequences (DS7).

As a result of the parametric analysis of the ribosomal sequences, the split between *Hormathophylla* and its most related group composed of species from the *Fibigia* genus indicated
Fig 5. Tree generated in estimation of divergence times with BEAST using nuclear ribosomal ITS sequences. Time scale is shown in millions of years. Error bars show 95% HPD in each node. Values above each node show median with respect to probability in millions of years.

https://doi.org/10.1371/journal.pone.0208307.g005
a mean age of 10.55 Ma (5.11–15.86 Ma 95% HPD), falling within the Tortonian Age of the Late Miocene, whereas the MRCA of the genus *Hormathophylla* showed a mean age of 3.82 Ma (1.94–6.15 Ma 95% HPD), in the Zanclean Age of the Pliocene. On the other hand, the MRCA of the lineage A species was established with a mean age of 2.17 Ma (0.88–3.8 Ma 95% HPD), while for lineage B it was 2.9 Ma (1.47–4.61 Ma 95% HPD), during the Mediterranean Climate onset in the Pliocene.

The data phylogeny based on the use of plastid sequences varied widely with respect to those obtained with ribosomal sequences. Lineage A did not split well from lineage B, but if we consider the southernmost population of *H. lapeyrousiana*, this group split from the rest of the species 1.94 Ma (0.89–3.37 Ma 95% HPD) ago. The most recent common ancestor of the *Hormathophylla* genus was established with a mean age of 4.18 Ma (2.29–6.68 Ma 95% HPD). The split between *Hormathophylla* and the related group composed of species from the *Fibigia* genus showed a mean age of 16.14 Ma (9.70–22.88 95% HPD). The split of the Alysseae tribe with respect to the rest of the Brassicaceae was about 35.89 Ma (28.03–44.31 Ma 95% HPD).

3.8 Leaf trichome morphology

The extraordinary trichome complexity and variability of the leaf blade indumentum required an additional effort of classification. All species from *Hormathophylla* presented stellate trichomes, peltate (briefly stalked), appressed and with a circular to elliptic outline ranging from 0.3 to 0.5 mm in diameter. Trichomes usually show a more or less protuberant central disc, from which a number of primary and secondary dichotomous branches extend usually in the same plane. Primary rays (four to eight) diverge from a central disc that in most species are reduced to a small central area (e.g. *H. purpurea* and *H. cochleata*). The number of last-order branches varies between 13 and 36. The central disc can show tuberculate and irregularly bulged ornamentation, but can also be smooth. All trichomes showed rounded tubercles with a different degree of density and size, that become sparser or absent at the branch tips. We were able to distinguish four types of trichomes among all species, which are present in different species depending on their phylogenetic position (Fig 6, S5 Table).

When we mapped trichome types along the phylogenetic trees we found an association between lineages and the morphological types. In ITS lineage A (Fig 2), we detected a single type of trichome (type I). In this type, trichomes were stellate and broadly peltate, with an almost perfectly circular outline (diameter: 0.25–0.35 mm); they were largely overlapping and arranged in more than three layers, so dense that no leaf epidermis could be seen unless the hair cover was entirely removed. Primary rays (7–8) diverge from a rounded and undivided central disc (ca. 2/10 diameter) and are reduced to a brief, stout base bearing a total of 28–32 branch tips, almost regularly dichotomous. Rays were sparsely covered by tuberculate

Fig 6. SEM photographs illustrating variation of leaf trichome morphological types in *Hormathophylla*. A) Type I: *H. cadevalliana*. B) Type II: *H. lapeyrousiana*. C) Type III: *H. purpurea*. D) Type IV: *H. ligustica*. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0208307.g006
protrusions, that become sparser and disappear at the branch tips. These type I trichomes have not been observed in any other member of the Alysseae tribe.

With respect to ITS lineage B (Fig 2), on the contrary than in lineage A, we observed trichome differences between the species nested there. Trichomes were very dense, stellate and broadly peltated, usually with a rounded outline, and variable diameter from 0.3 to 0.4 mm. We found that primary branches were longer than those in lineage A, and tubercles were larger, more prominent and thicker, with secondary branching occurring farther from the center. Within this lineage, we could distinguish three trichome types classified depending on diameter, number of rays, presence of membranaceous structures among branches, and central disc diameter. Type II is present in *H. lapeyrouseana*, and the two subspecies of *H. cochleata*. The diameter and central disc were larger than the rest of the species (0.41 to 0.44 mm and 0.7 to 0.9 mm, respectively), with branches making up an almost circular outline, and the presence of membranaceous structures among them. Type III appears in *H. purpurea* and *H. pyrenaica*. This type of trichomes is similar to the types found in other Alysseae genera, such as *Alyssum* or *Clypeola*. Trichomes showed a low number of tubercles, lower number of branch tips (12 to 14), and an elongated central disc, with branches limited by an elliptic outline. Type IV is detected in *H. pyrenaica*, *H. spinosa*, *H. saxigena* and *H. ligustica*. In this type, trichomes showed an almost perfectly circular outline (diameter: 0.30–0.35 mm); they were largely overlapping and arranged in more than three layers, and so dense that no leaf epidermis could be seen unless the hair cover was entirely removed. Primary rays (4–7) diverge from a rounded and undivided central disc (ca. 1.5-2/10 diameter) and are reduced to a short, stout base bearing a total of 30–36 branch tips, almost regularly dichotomous. Rays were densely covered by rounded tubercles, even at the branch tips.

3.9 Chromosome variation and ploidy level in *Hormathophylla*

For most of the species we detected the same ploidy level (tetraploid) in most of the studied specimens (up to 10 individuals per population; Table 1). We found that all analyzed individuals from *H. purpurea*, *H. spinosa*, *H. cochleata*, *H. reverchonii* and *H. saxigena* exhibited a constant level of ploidy in all studied populations. We would like to note that in the particular case of samples belonging to the Morocco populations of the species *H. spinosa*, we did not find 2x individuals, even though they had been reported previously [77]. The occurrence of two different levels of ploidy in the same species has been recorded, in the cases of *H. cadevalliana* and *H. longicaulis*, not associated with any geographic pattern. Octoploid individuals (8x) were found in populations 1, 3 and 4 from *H. longicaulis* and 13 from *H. cadevalliana*. For these species, tetraploid individuals (4x) were found in populations 3, 5, 6, 7, and 8 in *H. longicaulis* and 9, 10, 11 and 12 in *H. cadevalliana*, which means that in some populations the two levels of ploidy co-occur. For example, in the *H. longicaulis* population 3, we found nine octoploid and one tetraploid individual. In both species, this is the first time that 8x level is reported for *H. cadevalliana*, and the first time 4x level is reported for *H. longicaulis*.

Discussion

4.1 Origin and biogeography of *Hormathophylla*

Our results indicate that the Hormathophylla clade split from its sister group, composed by species from the genus *Fibigia*, in the Late Miocene (10.5 Ma) (Fig 5). During this period, the existence of a northern Mediterranean land corridor connecting the seas of Tethys and Paratethys [77–80] favored dispersal of a number of lineages from east to west throughout the Mediterranean region. These lineages underwent progressive isolation developing east-west disjunctions, because of the interruption of the corridor by marine transgressions in
Late Miocene and the structuration of the Alps (10 Ma) [81]. Such an east-west disjunct distribution within the Bornmuellera clade is observed between lineages present in western-Mediterranean and eastern-Mediterranean, sometimes extended in central Asia (S5 Fig). This is a biogeographic pattern described in insects as the so called Kiermack disjunctions [82] but also in Mediterranean plants like in the tribe Anthemidae [83] and the genus Jasione L. [84].

Therefore, the Hormathophylla ancestor established in western Mediterranean diversified into two different lineages in the upper Pliocene (about 3.8–4.18 Ma ago depending on whether we consider ITS or plastid sequences). However, it is not until the transition between the Late Pliocene and Gelasian in the early Pleistocene (2.2 and 2.9 Ma for lineages A and B, respectively), during the onset of the Mediterranean climate (3.4–2.9 Ma), when the rapid diversification of Hormathophylla species took place, fundamentally in the Baetic ranges. This general pattern of rapid Baetic diversification in plant taxa is well documented by both paleobotanical [85–89] and molecular studies [90]. The onset of the Mediterranean climate was a significant environmental change caused by the establishment of rainy temperate seasons and drought in summer months. Based on dated phylogenies of several plant genera, e.g. Dianthus L. [91] or Cistus L. [92], there was an increase in rates of diversification with the establishment of the Mediterranean climate with dry summers.

The small area of distribution of most of the species from the genus, (H. reverchonii, H. cochleata subsp. baetica, H. purpurea or H. pyrenaica), all of them with a Pleistocene crown age, would additionally suggest that fragmenting patterns have played an important role in the biogeographical diversification of Hormathophylla. The influence of the Pleistocene stadial-interstadial dynamics in the southern Europe ranges has already been described in other genera like Armeria Willd. and Anthyllis L. [93–96].

The consequences of speciation by geographical isolation affected mostly in Baetic ranges (as well as in northern Morocco and southern France), followed by secondary contacts, with expansion and contraction of species distribution reflecting climatic fluctuations of the Quaternary period [97–98]. During the glacial period, broad areas at middle altitudes were covered by cold steppe and tundra biomes, providing suitable habitats for mountain plants [99]. It is possible that interglacial warming caused populations to retract to the top of the mountains [94,100]. The glacial/interglacial cycles in southern Iberian ranges helped to shape the present distribution of genetic lineages, which are geographically contiguous with each species adapting to a different substrate [101–103].

4.2 The genus Hormathophylla is monophyletic

Our analyses confirm the monophyly of Hormathophylla, resolving two conflicting questions regarding the limits of the genus: the separation of H. purpurea as a monotypic genus and the generic ascription of Alyssum antiatlanticum to Hormathophylla. H. purpurea had been proposed as a separate monotypic genus, Nevadensia (Nevadensia purpurea (Lag. and Rodr.) Rivas Mart.) [22] based on the morphological and ecological differences existing between H. purpurea and the remaining species of Hormathophylla. This view has been followed in some recent publications [104]. However, Küpfer [21] who initially considered that Ptilotrichum purpureum (Lag. & Rodr.) Boiss. should be treated as Alyssum purpureum Lag. & Rodr., later transferred this species to Hormathophylla due to the color of flowers (pink), unusual in Alyssum [18]. Our plastid phylogenetic analyses not only confirm Küpfer’s view, but also reveal a close relationship of this species with H. spinosa, the only other species with pink petals (Fig 4). The ITS phylogeny reveals the placement of this species in lineage B, and is totally congruent with its basic chromosome number x = 8 detected by Contandriopoulos [21].
The second potentially disruptive element in the monophyly of *Hormathophylla* was *Alysum antiatlanticum*. *A. antiatlanticum* is an isolated species in the genus that Maire [39] assigned to *Alysum* sect. *Psilonema* (C.A.Mey.) Hook. f. because of its elongated cylindrical nectaries. The putative assignment of *A. antiatlanticum* to *Hormathophylla* was informally proposed by Küpf er based on some annotated specimens (e.g., MA 121991), as well as by Maire who highlighted its morphological proximity to *H. cochleata* (Coss. & Durieu) Küpf er and *Alysum* sect. *Ptilotrichum* (C.A.Mey.) Hook.f. [21,39]. Our phylogenetic analyses constitute the genetic basis for the recently published genus *Cuprella*, which includes *C. antiatlantica* and *C. homalocarpa* and reject its phylogenetic placement within *Hormathophylla* [17].

The obtained phylogenies reveal the early split of the two lineages according to its basic chromosome number, distinguishing those belonging to lineage A, derived from $x = 7$, from those belonging to lineage B, probably derived from $x = 7$ and $x = 8$ via hybridization and aneuploidy [21]. This differentiation is also supported by a separation in trichome morphology. Whereas species belonging in lineage A (Type I) were very similar, species in lineage B encompass three types (II, III and IV) (S5 Table). Regarding the basic chromosome number $x = 8$, which is by far the most common in the tribe outside of *Hormathophylla* (171 vs 7 species), we postulate that species grouped in lineage A with 7 as a basic chromosome number are derived from a common ancestor with $x = 8$.

4.3 Relationships between *H. cadevalliana* and *H. longicaulis*

Lineage A was composed of *H. reverchonii*, *H. cadevalliana* and *H. longicaulis*. The low phylogenetic divergence, reflected in the low resolution between species belonging to lineage A, is supported by the almost uniform trichome type I (Fig 5) morphology observed, where no distinction in trichome types is found between *H. cadevalliana* and *H. longicaulis*, and the indumentum of both species is very similar to that of *H. reverchonii* (S5 Table).

An explanation for the lack of differentiation in ITS topology might suggest the occurrence of introgression among some of the taxa. In the case of *H. cadevalliana* and *H. longicaulis*, ITS sequences obtained appear intermixed in the tree (Figs 2 and 4) with the presence of additivity patterns (S3 Table). All the evidence seems to indicate that there is either a past or an ongoing hybridization process between the two species in part of their overlapping areas of distribution. Such an admixture pattern is more evident in some of the southern ranges (Baza and Filabres) where populations from both species are even sympatric. The diversity observed in ploidy level remarkably only appears in those localities where sympatric populations from two species occur, e.g. *H. longicaulis* population 3 groups individuals with 4x- and 8x- levels of ploidy. Likewise, other *H. cadevalliana* populations (14) exhibit a similar additive pattern with *H. reverchonii* (S3 Table). In addition, plastid haplotypes from all three species in this lineage are all clustered in the haplotype network (Fig 3). We could not find any correlation between morphological variation and level of ploidy within the same species, which would preclude the possible taxonomic recognition of infraspecific taxa based on that criterion.

If introgression between the two species is actually occurring, the lack of resolution observed in the ITS phylogenetic tree could be explained by the inclusion of sequences in a process of incomplete concerted evolution. The occurrence of individuals with ITS sequences rich in additive polymorphic sites [50] can also be favored by the presence of early generation hybrid individuals [49], in which concerted evolution of multi-copy genes is retarded by a lack of homologous loci recombination. Remarkably, in the genus *Hormathophylla*, only in *H. longicaulis* and *H. cadevalliana* has the presence of octoploid individuals been demonstrated by chromosome counts and ploidy estimations via genome size [21] (Table 1, this study).

A plausible scenario in which hybridization could arise was along the successive cycles of
expansion and contraction due to cycles of glaciation that could favor the hybridization processes as previously demonstrated for other plant groups in the same southwestern Iberian ranges [102–103].

4.4 Fruit morphology. Genetic differentiation between northern and southern populations in *H. lapeyrouseana* and in relation to adaptation to dolomitic substrates

Not many morphological traits support the species ITS lineages identified in *Hormathophylla*. All species with cochlear fruit were present within lineage B, although they could have originated separately twice: in *H. spinosa* and *H. cochleata* subsp. *cochleata*, *H. cochleata* subsp. *baetica* and *H. lapeyrouseana* clade, respectively (Fig 2). This result is in line with the considerations made by Al-Shehbaz et al. [2] in relation to the use of the fruit morphology as a taxonomical character in the family Brassicaceae. This author suggests that important changes in fruit morphology can occur faster and independently of other characters, subject to a considerable convergence and sometimes taxonomically irreproducible. There are many studies that suggest that differences of only a few genes can cause substantial variations in shape, size and dehiscence of the fruit in the family Brassicaceae, e.g. in *Arabidopsis*, genes involved in formation of fruit (FRUITFUL, MADS-box, SHATTERPROOF) can modify shape (e. g., ratio length/width) and dehiscence type [105–108].

H. cochleata subsp. *cochleata*, *H. cochleata* subsp. *baetica* and *H. lapeyrouseana* constitute a well supported group both with nuclear and plastid markers (with the exception of the southernmost localities of *H. lapeyrouseana*). Differentiation between *H. cochleata* subsp. *cochleata* and *H. cochleata* subsp. *baetica* has been subjected to taxonomic studies, being considered as the same [21] or vicariant species [109]. Our results support a synthetic vision, as we will consider later. Furthermore, molecular data establish a close relationship between these species and *H. lapeyrouseana*. This is based on the similarity of plastid haplotypes that could be caused by a process of recent hybridization, or to an incomplete lineage sorting, given the great differences that exist between their basic chromosome numbers.

On the other hand, the plastid lineage of the southernmost populations was more related to species belonging to lineage A than lineage B (within haplogroup II). This could be due to an incomplete lineage sorting in plastid sequences, as there is no clear evidence of ancestral hybridization (between species from lineages A and B, proposed by Küpper [21]), as there are no ribosomal additivities shared. Nonetheless, this should not be ruled out, nor should the existence of horizontal chloroplast transference (haplogroup II, with a high number of plants present on dolomite), which could be associated somewhat to adaptation to special substrates.

Other existing relationships, according to the phylogeny obtained through plastid DNA, are between *H. spinosa* and *H. purpurea*, *H. ligustica* and *H. saxigena*, all with the same chromosome number. This finding could indicate the existence of a common ancestor, or in the case of *H. spinosa*, incomplete lineage sorting due to the strong relationship among their haplotypes. *H. spinosa*, has a larger distribution area, where lineages could refuge and re-establish gene flow during unfavorable periods [110–111].

The lineage of *H. saxigena* and *H. ligustica* is consistently recovered both in plastid and ribosomal trees (Figs 2 and 4), which is interesting as they are species with a stenochoric and partially sympatric distribution. Furthermore, the presence of different common additivities and symplesiomorphies indicate that they could have been differentiated as species recently. Their plastid lineage is related to the *H. spinosa* group. We also find the case of *H. purpurea* included among haplotypic lineages of *H. spinosa*. It is not clear if its origin may be due to horizontal transfer (equal chromosome number) or an incomplete lineage sorting process. This
could be favored by the partially sympatric distribution of these species in Sierra Nevada, with *H. purpurea* remaining at the top of the mountains, surrounded by *H. spinosa*, allowing the existence of gene flow.

Finally, *H. pyrenaica*, a narrow endemic, with uncertain affinities seems to be related to *H. cochlleata* subsp. *cochlleata* and *H. cochlleata* subsp. *baetica* based on the ribosomal evidence, but not at the haplotypic level, where it seems to constitute a separate lineage, and is the nearest haplotype to the sequence of outgroups (Fig 3). This may indicate that it is a case of retention of ancestral haplotypes due to incomplete lineage sorting.

4.5 The relevance of alkaline substrates in the tribe Alysseae and *Hormathophylla*

The diversification in the process of speciation resulting from the establishment of the Mediterranean climate (Fig 5) is associated in time and space (in the Baetic ranges) with the colonization of different types of substrate and with the parallel geographical isolation [112–113]. This is clear in the case of species diversification in ITS lineage A (2.17 Ma), all of which are dolomiticolous and restricted to Baetic ranges [25]. Edaphic adaptation has been noted as an important factor in the speciation of different plant groups [95,114–117]. This has already been suggested in other genera belonging to the tribe Alysseae, e.g. *Phyllolepidum* or *Odontarrhena* [11,37]. Adaptation to different substrate types in *Hormathophylla* involved a strong selective pressure that could promote morphological differentiation and the development of reproductive barriers, preventing genetic flow between disjunct divergent populations [118–119]. One of the most remarkable ecological traits associated with the tribe Alysseae is its ability to grow on alkaline, serpentine, dolomite and limestone substrates (S6 Table). This adaptability is present in most of the recently studied lineages [16]. Particularly in the group of genera sister to *Hormathophylla* (1.00 PP; 100 BS) composed of *Lutzia*, *Irania*, *Clastopus*, *Physoptychis*, *Ptergyostemon*, *Degenia*, *Acuston*, *Alysoides*, *Resetnikia*, *Brachypus* and *Fibigia*, many are found on serpentine outcrops [120–121]. This group is sister to another one encompassing *Phyllolepidum* Trinajstic and *Bornmuellera*, which is also prevalent in alkaline substrate (S1 Fig). In total, if we register soil preferences, species growing on alkaline soils constitute a large majority in the tribe, with at least 63 growing on ultramafic, serpentine and volcanic soils and more than 70 on limestone, gypsum and dolomites. Moreover, among all, these genera have species that grow on alkaline substrates with high levels of Mg (both for serpentine and dolomite).

One of the most studied cases of adaptation to extreme edaphic conditions in the Alysseae are nickel hyperaccumulators [11,28–29], which concentrate in two genera (*Odontarrhena* and *Bornmuellera* [122]). Mapping this ecophysiological trait on the ribosomal phylogeny, these species are grouped into two clades along with a high number of taxa able to grow on ultramafic substrates and species tolerant to xeric substrates with high levels of Mg, belonging to 7 out of the 23 genera of Alysseae (i.e., *Bornmuellera*, *Clypeola*, *Fibigia*, *Hormathophylla* *Meniocus*, *Odontarrhena* and *Physoptychis*). On the other hand, the species exclusively present on dolomite belong to the genera *Hormathophylla*, and *Phyllolepidum*. This relationship between dolomites and serpentines has common factors. The ability to grow on serpentines reveals the adaptation to cope with relatively high concentrations of Ni and other heavy metals. However, in addition to this limiting condition in plant adaptation to ultramafic substrates, there are associated factors developed in the same ecophysiological mechanisms, such as the ability to grow in highly xeric environments [32] in the presence of high levels of Mg [30–31] and a low Ca/Mg ratio, which in many cases are more restrictive than Ni levels [123]. These two characteristics also define soils developed on dolomites [25,124]. The high number of species that
grow on particular substrates present in certain lineages seems to adjust to the hypothesis by which some taxa have the availability to thrive on Mg-rich substrates. This seems to be the key preadaptive character in serpentine specialization as demonstrated in other angiosperm families [25,125–126]. The evolutionary relevance between substrate properties and diversification processes have been demonstrated by large-scale studies in the Alps where substrate properties (siliceous or calcareous) are fundamental to explaining modeling of genetic patterns with a large number of species [115].

The adaptation of plant lineages to alkaline or ultramafic substrates has been observed in other Mediterranean regions of the world, in the case of the genera Lasthenia Cass. [127] or Ceanothus L. [128]. Likewise, this plasticity can be found in other families diversified in the Mediterranean Basin, such as Cistus L., Cistaceae [129], or Onosma L., Boraginaceae [11], where species associated with a wide range of alkaline substrates show that obligate serpentino-phytes share evolutionary ancestors with non-serpentinicolous taxa [11,125], as far as they grow on substrates with high levels of Mg.

There is a strong support in the plastid phylogeny for a derivation of serpentinicolous populations from dolomiticolous in H. longicaulis, in this case not associated with speciation. However, the transitions between gypsicolous and dolomiticolous habitat is associated with speciation, as in H. cochleata to H. lapeyrouseana (Fig 3). Therefore, it seems relevant that the comparative study of plastid genomes through phylogenetic methods could shed light on the evolution of edaphic adaptations. Two species in particular, H. longicaulis and H. lapeyrouseana, are especially relevant due to their biedaphic behavior. Such biedaphic behavior has been recorded in other dolomiticolous species such as Convolvulus compactus Boiss. or Jurinea pinnata DC., [124,130], which are present in serpentine and gypsum, respectively. It seems possible that parallel adaptive mechanisms (in addition to tolerance to environmental stress) work on these three types of substrate [26,131]. As in Cecchi et al. [37], we believe that the Bornmuellera clade, in particular the genus Hormathophylla, is an ideal system to perform experimental comparative research on their ability to thrive in metal accumulation conditions and the tolerance to magnesium in plants.

4.6 The evolution of trichome morphology in Hormathophylla: Taxonomy or ecology?

The observed differences detected among examined taxa, in terms of shape and density of trichomes, raise the question whether these micromorphological fruit and epidermal structures relate to species/lineages or are associated with the ecology and substrate on which the species grows, in all cases xeric habitats (dolomites, serpentines, gypsum, rocky places, etc.). The results of trichome morphological analysis in the Alysseae tribe by Beilstein et al. [10,33] including species of Hormathophylla revealed that, considering Brassicaceae, stellate dendritic trichomes exhibit a homoplastic behavior with multiple origins across different lineages in the family. Our results confirm the lack of exclusive trichome types in Hormathophylla, and lead to the general conclusion that only closely related species retain similar trichome types.

The presence of the lepidote, stellate and fasciculate trichomes have been linked to functions like atmospheric water absorption, protection from sunlight radiation, and cold insulation in high-mountain habitats [132–133]. In Hormathophylla, no strict association was found between the trichome type and substrate beyond the taxonomic boundaries. In contrast within Hormathophylla, some types are strongly associated with groups of species, for example, only type I trichomes from lineage A species (H. reverchonii, H. longicaulis and H. cadevalliana, with a basic chromosome number of 7), in which trichome morphology can even be used to distinguish them from the rest of the tribe. The morphological features (i.e., thickness terminal
branch, the ratio length/thickness, and the number of primary branching (seven or eight)) can be used as diagnostic characters for these species.

Among the other species belonging to the genus, an indication that trichome morphology agrees with species boundaries is that the type II trichome characterizes the two species *H. cochleata* and *H. lapeyrouseana*. Both species belong to an allopolyploid lineage derived from a cross of species with a basic chromosome number of \(x = 7 \) and \(x = 8 \). Interestingly, the trichome size parameters (diameter, thickness of primary rays) of this allopolyploid lineage revealed a significantly more robust structure not found in any other species in the genus, which suggests that this is the result of hybrid vigour traits (S5 Table).

Supporting information

S1 Table. Datasets used in this study with an indication of the content, type of analysis, figures with the resulting topology, and the models of evolution considering AIC and BIC criteria of selection.

(DOCX)

S2 Table. Voucher information for the 39 taxa belonging to the tribe Alsyseae, used for the study of trichomes, studied using scanning electron microscopy (SEM).

(DOCX)

S3 Table. Comparison of polymorphic sites of the ribosomal sequences obtained from samples of *Hormathophylla*.

(XLSX)

S4 Table. Comparison of polymorphic sites of the chloroplast regions of the chloroplast regions *trnL-trnF, trnT-trnL* and *rpl32-trnL* haplotypes obtained from samples of *Hormathophylla*.

(XLSX)

S5 Table. Morphological characterization of the different types of trichomes found in *Hormathophylla* genus is shown.

(XLSX)

S6 Table. List of taxa belonging to the tribe Alsyseae and their soil specificity.

(DOCX)

S1 Fig. Phylogenetic relationships inferred through ML and BI analyses of the 311 samples belonging to the tribe Alsyseae, of the ribosomal sequence ITS1-5.8S-ITS2, showed as a majority rule consensus tree. Posterior probability and bootstrap support values are shown beside branches.

(EPS)

S2 Fig. Phylogenetic relationships between 246 samples belonging to Alsyseae family inferred through ML and BI analyses of the plastid region *ndhF*. Posterior probability values and bootstrap support are shown beside branches.

(EPS)

S3 Fig. Phylogenetic relationships between 88 samples belonging to Alsyseae family inferred through ML and BI analyses of the concatenated sequence composed of plastid region *ndhF* and ribosomal nuclear ITS1-5.8-ITS2 region. Posterior probability values and bootstrap support are shown beside branches.

(EPS)
S4 Fig. Tree generated for estimation of divergence times using BEAST using chloroplastid ndhF region. Time scale is shown in millions of years. Error bars show 95% HPD in each node. Values on the right of each node show median in respect with probability in millions of years.

(SPS)

S5 Fig. Distribution range of the genera of Alysseae included in the sister group of the genus Hormathophylla (0.91 PP/ 61 BS), comprising genera Lutzia, Irania, Clastopus, Physoptychis, Pterygostemon, Degenia, Acuston, Alyssoides, Resetnikia, Brachypus and Fibgia. Data were obtained from AlyBase (http://www.alyssaeae.sav.sk/), and the GBIF data-set (data.gbif.org).

(ESP)

Acknowledgments

The authors are thankful for the work of Mario Ruiz Girola, Luis Posadas and Milagros Torres Chispa in the collection of plant material. We kindly thank Manuel Yuste Salguero and Teresa Garnatje for provided information on plant vouchers. Sarah Young revised and corrected the English version. This work was supported by the ECORESGYP project, funded by Explotaciones Rio de Aguas S.L.

Author Contributions

Conceptualization: Javier Fuertes-Aguilar, Stanislav Špániel, Encarna Merlo, Juan Mota.

Data curation: Francisco Javier Pérez-García, Juan Antonio Garrido-Becerra.

Formal analysis: Stanislav Špániel.

Investigation: Esteban Salmerón-Sánchez, Stanislav Špániel, Francisco Javier Pérez-García.

Methodology: Esteban Salmerón-Sánchez, Javier Fuertes-Aguilar.

Software: Javier Fuertes-Aguilar.

Writing – original draft: Esteban Salmerón-Sánchez, Javier Fuertes-Aguilar, Stanislav Špániel, Juan Mota.

Writing – review & editing: Esteban Salmerón-Sánchez.

References

1. Al-Shehbaz IA. A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon. 2012; 61:931–954.
2. Al-Shehbaz IA, Beilstein MA, Kellogg EA. Systematics and phylogeny of the Brassicaceae (Cruciferae): An overview. Plant Syst Evol. 2006; 259:89–120. https://doi.org/10.1007/s00606-006-0415-z
3. Warwick SI, Sauder CA, Al-Shehbaz IA. Phylogenetic relationships in the tribe Alysseae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Botany. 2008; 86:315–336. https://doi.org/10.1139/B08-013
4. Avetisian VE. The system of the family Brassicaceae (in Russia). Bot Zhurn. 1983; 68:1297–1305.
5. Hayek A. Entwurf eines Cruciferen-systems auf phylogenetischer Grundlage. Beih Bot Centralbl. 1911; 27:127–335.
6. Janchen E. Das System der Cruciferen. Osterr Bot Z. 1942; 91:1–28. https://doi.org/10.1007/BF01257342
7. Schulz OE. Cruciferae. Die Natürlichen Pflanzenfamilien 17. Leipzig: Verlag von Wilhelm Engelmann; 1936.
10. Al-Shehbaz IA, Sklenár P, Draba longiciliata sp. nov. (Brassicaceae) from Ecuador. Nord J Bot. 2010; 28:528−529. https://doi.org/10.1111/j.1756-1051.2010.00951.x

11. Al-Shehbaz IA, Mummenhoff K. Stubendorffia and Winklera belong to the expanded Lepidium (Brassicaceae). Edinburgh J Bot. 2011; 68:165−171. https://doi.org/10.1017/S0960428611000060

12. Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA. Brassicaceae phylogeny inferred from phytchrome A and ndhF sequence data: Tribes and trichomes revisited. Am J Bot. 2008; 95:1307−1327. https://doi.org/10.3732/ajb.0800065 PMID: 21632335

13. Cecchi L. A reappraisal of Phyllelopidium (Brassicaceae), a neglected genus of the European flora, and its relationships in tribe Alyssaeae. Plant Biosyst. 2011; 145(4):818−831. https://doi.org/10.1080/11263504.2012.758675

14. Couvreur TLP, Franzeke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummenhoff K. Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol. 2010; 27:55−71. https://doi.org/10.1093/molbev/msp020 PMID: 19744998

15. Mummenhoff K, Polster A, Mühlhausen A, Theissen G. Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. J Exp Bot. 2009; 60:1503−1513. https://doi.org/10.1093/jxb/erm304 PMID: 19052256

16. Cullen J. Studies in the Old World Alysseae Hayek. Feddes Repert. 1995; 71:218−228.

17. Dudley TR, Cullen J. Alyssum L. Flora Europaea. 1993; 1:359−369.

18. Kuiper PH. Recherches sur les liens de parenté entre la flore orophile des Alpes et celle des Pyrénées. Boissiera. 1974; 23:1−322.

19. Rivas-Martínez S, Díaz TE, Fernández-González F, Izco J, Loidi J, Louis M, Penas A. Vascular plant communities of Spain and Portugal. Addenda to the Taxonomical checklist of 2001. Itinerae Geobot. 2002; 15:5−922.

20. Rivas-Martínez S, Díaz TE, Fernández-González F, Izco J, Loidi J, Louis M, Penas A. Vascular plant communities of Spain and Portugal. Addenda to the Taxonomical checklist of 2001. Itinerae Geobot. 2002; 15:5−922.

21. Rešetnik I, Satovic Z, Schneeweiss GM, Libra Z. Phylogenetic relationships in Brassicaceae tribe Alyssaeae inferred from nuclear ribosomal ITS region and plastid ndhF DNA sequences. Botany. 2009; 87:961−985. https://doi.org/10.1139/B09-051

22. Španiel S, Kempa M, Salmerón-Sánchez E, Fuertes-Aguilar J, Mota JF, Al-Shehbaz IA, et al. Alyssaeae: database of names, chromosome numbers, and ploidy levels of Alyssaeae (Brassicaceae), with new generic concept of the tribe. Plant Syst Evol. 2015; 301:2463−2491. https://doi.org/10.1007/s00606-015-1257-3

23. Künper P. Hormathophylla Cullen & T.R. Dudley. In: Castroviejo S, Aedo C, Lainz M, Muñoz Garvendia F, Nieto Feliner G, Paiva J, Benedí C, editors. Flora iberica 4. Madrid: Real Jardín Botánico, CSIC; 1993. pp. 184−196.

24. Künper P. Recherches sur les liens de parenté entre la flore orophile des Alpes et celle des Pyrénées. Boissiera. 1974; 23:1−322.

25. Warlick SI, Sauder CA, Mayer MS, Al-Shehbaz IA. Phylogenetic relationships in the tribes Schizopetalaeae and Thelypodiaeae (Brassicaceae) based on nuclear ribosomal ITS region and plastid ndhF DNA sequence data. Mol Phylogenet Evol. 2013; 69:772−786. https://doi.org/10.1016/j.ympev.2013.06.026 PMID: 23850498

26. Warlick SI, Sauder CA, Mayer MS, Al-Shehbaz IA. Phylogenetic relationships in the tribes Schizopetalaeae and Thelypodiaeae (Brassicaceae) based on nuclear ribosomal ITS region and plastid ndhF DNA sequence data. Mol Phylogenet Evol. 2013; 69:772−786. https://doi.org/10.1016/j.ympev.2013.06.026 PMID: 23850498

27. Pérez-Latorre AV, Triana NH, Cabezudo B. Composition, ecology and conservation of the south-iberian serpentine flora in the context of the Mediterranean basin. An Jard Bot Madrid. 2013; 70:62−71. https://doi.org/10.3989/ajbm.2334

28. Menegon A, Baker AJM, Bazzicalupi M, Reeves RD, Adigüzêl N, Chianni E, Galardi F, Gabrielli R, Gonnelli C. Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by ITS nrDNA analysis. New Phytol. 2003; 159:691−699. https://doi.org/10.1046/j.1469-8137.2003.00837.x

29. Cecchi L, Gabrielli R, Ametoli M, Gonnelli C, Hasko A, Selvi F. Evolutionary lineages of nickel hyperaccumulation and systematics in European Alyssaeae (Brassicaceae): Evidence from nrDNA sequence data. Ann Bot-London. 2010; 106:751−767. https://doi.org/10.1093/ab/145(2)12
30. Brady KU, Kruckeberg AR, Bradshaw HD Jr. Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst. 2005; 36:243–266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730

31. Kazakou E, Dimitrakopoulos PG, Reeves RD, Baker AJM, Troumbis AY. Hypotheses, mechanisms, and trade-offs of tolerance and adaptation to serpentine soils: From species to ecosystem level. Biol Rev. 2008; 83: 495–508. https://doi.org/10.1111/j.1469-185x.2008.00051.x PMID: 18823392

32. Mota JF, Valle F, Cabello J. Dolomitic vegetation of South Spain. Vegetatio. 1993; 109: 29–45. https://doi.org/10.1007/BF00149543

33. Beilstein MA, Al-Shehbaz IA, Kellogg EA. Brassicaceae phylogeny and trichome evolution. Am J Bot. 2006; 93: 607–619. https://doi.org/10.3732/ajb.93.4.607 PMID: 21646222

34. Zozomová-Lihová J, Marhold K, Sánchez-Castelltort S, Zozomová J, Marhold K. Infraspecific classification of Alyssum diffusum (Brassicaceae) in Italy. Wildenowia. 2012; 42:37–56. https://doi.org/10.3372/wi.42.42104

35. Zozomová-Lihová J, Marhold K, Španiel J. Taxonomy and evolutionary history of Alyssum montanum (Brassicaceae) and related taxa in southwestern Europe and Morocco: diversification driven by polyploidy, geographic and ecological isolation. Taxon. 2014; 63:562–591. https://doi.org/10.12705/633.18

36. Koch MA. Mid-Miocene divergence of Ionopsis and Cochlearia and its impact on the systematics and biogeography of the tribe Cochlearieae (Brassicaceae). Taxon. 2012; 61:76–92.

37. Edwards BE, Schilling EE, Small RL. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot. 2005; 92:142–166. https://doi.org/10.3732/ajb.92.1.142 PMID: 21636401

38. Moore MJ, Jansen RK. Origins and biogeography of gypsophily in the Chihuahuan Desert plant group Tiquilia subg. Eddyia (Boraginaceae). Syst Bot. 2007; 32:392–414. https://doi.org/10.1600/036364407781179680

39. Maire R. Flore de l’Afrique du Nord 13. Paris: Éditions Lechevalier; 1967.

40. Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL Jr, Warwick SI, Windham MD, Al-Shehbaz IA. Toward a global phylogeny of the Brassicaceae. Mol Biol Evol. 2006; 23:2142–2160. https://doi.org/10.1093/molbev/msl087 PMID: 16916944

41. Thiers B. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. (continuously updated). http://sweetgum.nybg.org/science/ih/.

42. Soltis DE, Johnson LA, Looney C. Discordance between ITS and chloroplast topologies in the Saxifragaceae. Syst Bot. 1996; 21:169–176. https://doi.org/10.2307/2419746

43. Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol. 1991; 17:1105–1109. https://doi.org/10.1007/BF00037152

44. Shaw J, Lickey EB, Schilling EE, Small RL. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am J Bot. 2007; 94:278–288. https://doi.org/10.3732/ajb.94.3.275 PMID: 21636401

45. Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol. 1991; 17:1105–1109. https://doi.org/10.1007/BF00037152

46. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. CLUSTALX V2. Bioinformatics. 2007; 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404 PMID: 17846036

47. Hall TA. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999; 41:95–98.

48. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004; 5:113. https://doi.org/10.1186/1471-2105-5-113 PMID: 15318951

49. Fuentes-Aguilar J, Rosselló JA, Nieto Feliner G. Nuclear ribosomal DNA (nDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Mol Ecol. 1999; 8:1341–1346. https://doi.org/10.1046/j.1365-294x.1999.00690.x PMID: 10447874

50. Fuentes-Aguilar J, Nieto Feliner G. Additive polymorphisms and reticulation in an ITS phylogeny of thrients (Armeria, Plumbaginaceae). Mol Phylogenet Evol. 2003; 28:430–447. https://doi.org/10.1016/S1055-7903(02)00301-9 PMID: 12927129

51. Huson DH, Bryant D. Application of Phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006; 23:254–267. https://doi.org/10.1093/molbev/msj090 PMID: 16221896
52. Templeton AR. Nested clade analyses of phylogeographic data: Testing hypotheses about gene flow and population history. Mol Ecol. 1998; 7:381–397. https://doi.org/10.1046/j.1365-294x.1998.00308.x PMID: 9627999

53. Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000; 9:1657–1660. https://doi.org/10.1046/j.1365-294x.2000.01020.x PMID: 11050560

54. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001; 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754 PMID: 11524383

55. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003; 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180 PMID: 12912839

56. Posada D. JMODELTEST: Phylogenetic Model Averaging. Mol Biol Evol. 2008; 25:1253–1256. https://doi.org/10.1093/molbev/msn083 PMID: 18397919

57. Stamatakis A. Phylogenetic models of rate heterogeneity: a high performance computing perspective. In: 20th IEEE International Parallel & Distributed Processing Symposium. Rhodes Island: IEE; 2006a. https://doi.org/10.1109/ipdps.2006.1639535

58. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006b; 22:2688–2690. https://doi.org/10.1093/bioinformatics/btl446 PMID: 16928733

59. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2006; 55:798–811. https://doi.org/10.1080/1063515060098249642 PMID: 18553362

60. Nixon KC. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 1999; 15:407–414. https://doi.org/10.1111/j.1096-0031.1999.tb00277.x

61. Buergi S, Forest F, Acevedo-Rodríguez P, Callmander MW, Nylander JAA, Harrington M, et al. Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). Mol Phylogenet Evol. 2009; 51:238–258. https://doi.org/10.1016/j.ympev.2009.01.012 PMID: 19405193

62. Drummond AJ, Ho SYQ, Phillips MJ, Rambaut A. Relaxed phylogenetic sampling with confidence. Mol Biol Evol. 2018; 35:1253–1256. https://doi.org/10.1093/molbev/msy128

63. Drummond AJ, Rambaut A. TRACER V1.4; 2007. http://beast.bio.ed.ac.uk/Tracer.

64. Templeton AR. Nested clade analyses of phylogeographic data: Testing hypotheses about gene flow and population history. Mol Ecol. 1998; 7:381–397. https://doi.org/10.1046/j.1365-294x.1998.00308.x PMID: 9627999

65. Suda J, Travníček P, Lachmayr M, Lettner C, Prehsler D, Rechnitzer S, Reich DS, Sonnleitner M, Wag-...
77. Quézel P. Definition of the Mediterranean region and the origin of its flora. In: Gómez-Campo C, editor. Plant conservation in the Mediterranean area. Dordrecht: Dr. W. Junk Publishers; 1985.
78. Oosterbroek P, Arntzen JW. Area-cladograms of circum Mediterranean taxa in relation to Mediterranean paleogeography. J Biogeogr. 1992; 19:3–20. https://doi.org/10.2307/2845616
79. Sanmartín I. Dispersal vs. vicariance in the Mediterranean: Historical biogeography of the Paleartic Pachydemine (Coleoptera, Scarabaeoidea). J Biogeogr. 2003; 30:1883–1897. https://doi.org/10.1046/j.0305-0270.2003.00982.x
80. Thompson JD. Plant evolution in the Mediterranean. Oxford: Oxford University Press; 2005. https://doi.org/10.1093/acprof:oso/9780198515340.001.0001
81. Rosenbaum G, Lister GS, Duboz C. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. J Virt Explor. 2002; 8:107–130.
82. Ribera I, Blasco-Zumeta J. Biogeographical links between steppe insects in the Monegros region (Aragón, NE Spain), the eastern Mediterranean, and central Asia. J Biogeogr. 1998; 25:969–986. https://doi.org/10.1046/j.1095-8649.1998.90226.x
83. Oberprieler C. Temporal and spatial diversification of circum-Mediterranean Compositae-Ambrosideae. Taxon. 2005; 54:951–966. https://doi.org/10.2307/25065480
84. Nieto Feliner G. Patterns and processes in plant phylogeography in the Mediterranean Basin. A review, Perspect. Plant Ecol Evol Syst. 2014; 16:265–278. https://doi.org/10.1016/j.ppees.2014.07.002
85. Bocquet GW, Kiefer H. The Messinian Model. A new outlook for the floristics and systematics of the Mediterranean area. Candollea 1978; 33:269–287.
86. Jiménez-Moreno G, Fauquette S, Suc JP. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Rev Palaeobot Palynol. 2010; 162:410–415. https://doi.org/10.1016/j.revpalbo.2009.08.001
87. Palmarèv E. Paleontological evidences of the tertiary history and the origin of the Mediterranean sclerophyll dendroflora. Plant Syst Evol. 1989; 162:93–107. https://doi.org/10.1007/BF00936912
88. Postigo Mijarra JM, Barrón E, Gómez Manzaneque F, Morla C. Floristic changes in the Iberian Peninsula and Balearic Islands (south-west Europe) during the Cenozoic. J Biogeogr. 2009; 36:2025–2043. https://doi.org/10.1111/j.1365-2699.2009.02142.x
89. Tzedakis PC. Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quaternary Sci Rev. 2010; 29:2042–2066. https://doi.org/10.1016/j.quascirev.2007.03.014
90. Fiz-Palacios O, Valcárcel V. From Messinian crisis to Mediterranean climate: a temporal gap of diversification recovered from multiple plant phylogenies. Perspect Plant Ecol Evol Syst. 2015; 15:130–137.
91. Valente LM, Savolainen V, Vargas P. Unparalleled rates of species diversification in Europe. Proc Biol Sci. 2010; 277:1489–1496. https://doi.org/10.1098/rspb.2009.2163 PMID: 20106850
92. Guzmán B, Vargas P. Historical biogeography and character evolution of Cistaceae (Malvales) based on analysis of plastid rbcL and trnL-trnF sequences. Org Divers Evol. 2009; 9:83–99. https://doi.org/10.1016/j.ode.2009.01.001
93. Kropf M, Comes HP, Kaderer JW. Causes of the genetic architecture of southwest European high-mountain disjuncts. Plant Ecol Divers. 2008; 1:217–228. https://doi.org/10.1080/17550870802331938
94. Zhang LB, Comes HP, Kadereit JW. Long-distance dispersal vs vicariance: the origin and genetic diversity of alpine plants in the Spanish Sierra Nevada. New Phytol. 2006; 172:169–184. https://doi.org/10.1111/j.1469-8137.2006.01795.x PMID: 16945099
95. Zhang LB, Comes HP, Kadereit JW. The temporal course of Quaternary diversification in the European high mountain endemic Primula sect. Auricula (Primulaceae). Int J Plant Sci. 2004; 165:191–207. https://doi.org/10.1086/380747
96. Fauquette S, Suc JP, Guiot J, Diniz F, Feddi N, Zheng Z, et al. Climate and biomes in the West Mediterranean area during the Pliocene. Palaeogeogr Palaeoclimatol Palaeoecol. 1999; 152:15–36. https://doi.org/10.1016/S0031-0182(99)00031-0
97. Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000; 405:907–913. https://doi.org/10.1038/35016000 PMID: 10879524
98. Ray N, Adams JM. A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP). Internet Archaeol 11; 2001. http://archive-ouverte.unige.ch/unige:17817
100. Vargas P, Carrió E, Guzmán B, Amat E, Güemes J. A geographical pattern of Antirrhinum (Scrophulariaceae) speciation since the Pliocene based on plastid and nuclear DNA polymorphisms. J Biogeogr. 2009; 36:1297–1312. https://doi.org/10.1111/j.1365-2699.2008.02059.x

101. Gutiérrez Larena B, Fuertes Aguilar J, Nieto Feliner G. Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Mol Ecol. 2002; 11:1965–1974. https://doi.org/10.1046/j.1365-2942.2002.01594.x PMID: 12296941

102. Nieto Feliner G, Gutiérrez Larena B, Fuertes Aguilar J. Fine scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). Ann Bot. 2004; 93:189–200. https://doi.org/10.1093/aob/mch027 PMID: 14707002

103. Fuertes-Aguilar J, Gutiérrez Larena B, Nieto Feliner G. Genetic and morphological diversity in Armeria (Plumbaginaceae) is shaped by glacial cycles in Mediterranean refugia. Ana Jard Bot Madrid. 2011; 68:175–197. https://doi.org/10.3896/aajbm.2260

104. Morales Torres C. Nevadensis Rivas Mart. In: Blanca G, Cabezudo B, Cueto M, Fernández López C, Morales Torres C, editors. Flora Vascular de Andalucía Oriental 3: 108. Sevilla: Consejería de Medio Ambiente, Junta de Andalucía; 2009.

105. Dinneny JR, Yanofsky MF. Drawing line and borders: how the dehiscent fruit of Arabidopsis is patterned. BioEssays. 2004; 27:42–49. https://doi.org/10.1002/bies.20165

106. Ferrandiz C, Pelaz S, Yanofsky MF. Control of carpel and fruit development in Arabidopsis. Ann Rev Biochem. 1999; 68:321–354. https://doi.org/10.1146/annurev.biochem.68.1.321 PMID: 10872453

107. Ferrandiz C, Liljegren SJ, Yanofsky MF. Negative regulations of SHATTERPROOF genes by FRUIT-FUL during Arabidopsis fruit development. Science. 2000; 289:436–438. https://doi.org/10.1126/science.289.5478.436 PMID: 10903201

108. Ferrandiz C. Regulation of fruit dehiscence in Arabidopsis. J Exp Bot. 2002; 53:2031–2038. https://doi.org/10.1093/jxb/erf082 PMID: 12324527

109. Küpfer PH. Sur une Alysseae ineédite de la flore espagnole. An Inst Bot Cavanilles. 1978; 35:119–127.

110. Gutierrez-Larena B, Aguilar JF, Feliner GN. Dispersal across southern Iberian refugia? integrating RAPDs, sequence data and morphometrics in Armeria (plumbaginaceae). Folia Geobot. 2006; 41:305–322. https://doi.org/10.1007/BF02904944

111. Nieto Feliner G. Southern European glacial refugia: A tale of tales. Taxon. 2011; 60:365–372.

112. Dixon CJ, Schönswetter P, Schneeweiss GM. Traces of ancient range shifts in a mountain plant group (Androsace halleri complex, Primulaceae). Mol Ecol. 2007; 16:3890–3901. https://doi.org/10.1111/j.1365-294X.2007.03342.x PMID: 17850552

113. Nieto G, Fuertes-Aguilar J, Rosselló JA. Reticulation or divergence: the origin of a rare serpentine endemic assessed with chloroplast, nuclear and RAPD markers. Plant Syst Evol 2002; 231:19–38.

114. Verboom GA, Linder HP, Stock WD. Testing the adaptive nature of radiation: Growth form and life history divergence in the African grass genus Ehrhartzia (Poaceae: Ehrhartioideae). Am J Bot 2004; 91:1364–1370. https://doi.org/10.3732/ajb.91.9.1364 PMID: 21662369

115. Alvarez N, Thiel-Egenter C, Tribsch A, Holderegger R, Manel S, Schönswetter P, et al. History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol Lett. 2009; 12:632–640. https://doi.org/10.1111/j.1461-0248.2009.01312.x PMID: 19392716

116. Dillenberger MS, Kadereit JW. The phylogeny of the European high mountain genus Adenostyles (Asteraceae-Senecionaceae) reveals that edaphic shifts coincide with dispersal events. Am J Bot 2013; 100:1171–1183. https://doi.org/10.3732/ajb.1300060 PMID: 23709635

117. Moore AJ, Merges D, Kadereit JW. The origin of the serpentine endemic Minuartia laricifolia subsp. ophiolitica by vicariance and competitive exclusion. Mol Ecol. 2013; 22:2218–2231. https://doi.org/10.1111/mec.12266 PMID: 23498625

118. Hendry AP, Nosil P, Rieseberg LH. The speed of ecological speciation. Proc Natl Acad Sci U S A 2007; 104:20382–20387. https://doi.org/10.1073/pnas.0610775104

119. Schluter D. Adaptive radiation along genetic lines of least resistance. Evolution. 1996; 50:1766–1774. https://doi.org/10.2307/2486589

120. Celik N, Akpulat HA, Doñmez E. A new species of Physopsis (Brassicaceae) from central Anatolia, Turkey. Bot J Linn Soc. 2007; 154:393–396. https://doi.org/10.1111/j.1095-8339.2007.00662.x

121. Çetin O, Duran A, Martin E, Tustas S. A taxonomic study of the genus Fibigia Medik. (Brassicaceae). Afr J Biotechnol. 2012; 11:109–119.

122. Krämer U. Metal hyperaccumulation in plants. Ann Rev Plant Biol. 2010; 61:517–534. https://doi.org/10.1146/annurev-arplant-042809-112156
123. Brooks RR. Serpentine and its vegetation. A multidisciplinary approach. Portland: Dioscorides Press; 1987.

124. Salmerón-Sánchez E, Martínez-Nieto MI, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, Gil de Carrasco C, et al. Ecology, genetic diversity and phylogeography of the Iberian endemic plant Jurinea pinnata (Lag.) DC. (Compositae) on two special edaphic substrates. Plant Soil. 2014a; 374:233–250. https://doi.org/10.1007/s11104-013-1857-z

125. Cecchi L, Selvi F. Phylogenetic relationships of the monotypic genera Halasycya and Paramoltikia and the origins of serpentine adaptation in circummediterranean Lithospermeae (Boraginaceae): insights from ITS and matK DNA sequences. Taxon. 2009; 58:700–714.

126. Taylor SI, Levy F. Responses to soils and a test for preadaptation to serpentine in Phacelia dubia (Hydrophyllaceae). New Phytol. 2002; 155:437–447. https://doi.org/10.1046/j.1469-8137.2002.00478.x

127. Chan R, Baldwin BG, Ornduff R. Goldfields Revisited: A Molecular Phylogenetic Perspective on the Evolution of Lasthenia (Compositae: Heliantheae sensu lato). Int J Plant Sci. 2001; 162:1347–1360. https://doi.org/10.1086/323277

128. Burge DO, Erwin DM, Islam MB, Kellermann J, Kembel SW, Wilken DH, Manos PS. Diversification of Ceanothus (Rhamnaceae) in the California Floristic Province. Int J Plant Sci. 2011; 172:1137–1164. https://doi.org/10.1086/662028

129. Guzmán B, Lledó MD, Vargas P. Adaptive radiation in mediterranean Cistus (Cistaceae). PLoS ONE. 2009; 4, e6362. https://doi.org/10.1371/journal.pone.0006362 PMID: 19668338

130. Salmerón-Sánchez E, Merlo ME, Medina-Cazorla JM, Pérez-García FJ, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, Valle F, Mota JF. Variability, genetic structure and phylogeography of the dolomophilous species Convolvulus boissieri (Convolvulaceae) in the Baetic ranges, inferred from AFLPs, plastid DNA and ITS sequences. Bot J Linn Soc. 2014b; 176:506–523. https://doi.org/10.1111/boj.12220

131. Mota JF, Garrido-Becerra JA, Pérez-Garcia FJ, Salmerón-Sánchez E, Sánchez-Gómez P, Merlo-Calvente ME. Conceptual baseline for a global checklist of gypso phytes. Lazaroa. 2016; 37:7–30.

132. Rundel PW. Successional dynamics of chamise chaparral: the interface of basic research and management. In: Conrad CE, Oechel WC, coordinators. Dynamics and management of Mediterranean-type ecosystems. Berkeley: U.S. Dep. Agric., For. Serv. Gen. Tech. Rep. PSW-58; 1982. pp. 86–90

133. Vitarelli NC, Riina R, Cassino MF, Meira RMSA. Trichome-like emergences in Croton of Brazilian highland rock outcrops: Evidences for atmospheric water uptake. Perspec Plant Ecol Evol Syst. 2016; 22:23–35. https://doi.org/10.1016/j.ppees.2016.07.002