Adaptive Rule Discovery for Labeling Text Data

Sainyam Galhotra
UMass Amherst
sainyam@cs.umass.edu

Behzad Golshan
Megagon Labs
behzad@megagon.ai

Wang-Chiew Tan
Megagon Labs
wangchiew@megagon.ai

ABSTRACT

Creating and collecting labeled data is one of the major bottlenecks in machine learning pipelines and the emergence of automated feature generation techniques such as deep learning, which typically requires a lot of training data, has further exacerbated the problem. While weak-supervision techniques have circumvented this bottleneck, existing frameworks either require users to write a set of diverse, high-quality rules to label data (e.g., Snorkel), or require a labeled subset of the data to automatically mine rules (e.g., Snuba). The process of manually writing rules can be tedious and time consuming. At the same time, creating a labeled subset of the data can be costly and even infeasible in imbalanced settings. This is due to the fact that a random sample in imbalanced settings often contains only a few positive instances.

To address these shortcomings, we present DARWIN, an interactive system designed to alleviate the task of writing rules for labeling text data in weakly-supervised settings. Given an initial labeling rule, DARWIN automatically generates a set of candidate rules for the labeling task at hand, and utilizes the annotator’s feedback to adapt the candidate rules. We describe how DARWIN is scalable and versatile. It can operate over large text corpora (i.e., more than 1 million sentences) and supports a wide range of labeling functions (i.e., any function that can be specified using a context free grammar). Finally, we demonstrate with a suite of experiments over five real-world datasets that DARWIN enables annotators to generate weakly-supervised labels efficiently and with a small cost. In fact, our experiments show that rules discovered by DARWIN on average identify 40% more positive instances compared to Snuba even when it is provided with 1000 labeled instances.

1. INTRODUCTION

Today, many applications are powered by machine learning techniques. The success of deep learning methods in domains such as natural language processing and computer vision is further fuelling this trend. While deep learning (and machine learning in general) can offer superior performance, training such systems typically requires a large set of labeled examples, which is expensive and time-consuming to obtain.

Weak supervision techniques circumvent the above problem to some extent, by leveraging heuristic rules that can generate (noisy) labels for a subset of data. A large volume of labels can be obtained at a low cost this way, and to compensate for the noise, noise-aware techniques can be used for further improving the performance of machine learning models. However, obtaining high-quality labeling heuristics remains a challenging problem. A subset of existing frameworks, with Snorkel being the most notable example, rely on domain experts to provide a set of labeling heuristics which can be a tedious and time-consuming task. In contrast, other frameworks aim to automatically mine useful heuristics using further provided supervision. For instance, Snuba circumvents dependence on domain experts by requiring a labeled subset of the data, and then utilizing it to automatically derive labeling heuristics. Bubble labble is another example which asks expert to label a few examples and explain their choice (in natural language). This explanation is used to derive labeling heuristics. While these approaches have been quite effective in certain settings, we elicit their limitations with the following real-world example on text-data.

Example 1. Consider a corpus that are questions submitted by a hotel’s guests to the concierge. Our goal is to build an intent classifier to find (and label) the set of questions asking for directions or means of transportation from one location to another. Below is a sample of messages from the corpus with positive instances marked as green.

S1	What is the best way to get to SFO airport? +
S2	Is there a bart from SFO to the hotel? +
S3	What is the best way to check in there? -
S4	Is Uber the fastest way to get to the airport? +
S5	Would Uber Eats be the fastest way to order? -
S6	What is the best way to order food from you? -

1To be more concise, we refer to heuristic rules simply as heuristics or rules as well throughout the paper.
Relying on domain experts to provide labeling heuristics for tasks such as the one presented in Example 1 is a common approach but it has a number of shortcomings:

- It is time consuming. Annotators must be familiar with the rule language (e.g., Stanford’s Tregex or AL2’s IKE language). Moreover, they need to be acquainted with the dataset to specify useful rules, i.e., rules that label a reasonable number of instances with a small amount of noise. This is normally done with trial-and-error and fine-tuning of the rules on a sample of the corpus, which can be quite tedious.

- Oftentimes, some useful rules remain undiscovered. This is because annotators may miss important keywords or possess limited domain knowledge. For example, the word ‘bart’ (which refers to a transportation system in California) is clearly useful for the task in Example 1. However, annotators may miss the important keyword ‘bart’ or they may not even know what ‘bart’ is (especially those who are not from the area).

- It yields rules with overlapping results. If multiple annotators work on writing rules independently, they are likely to end up with identical or similar rules. Hence, the number of distinct labels obtained does not always grow linearly with the number of annotators, which is rather inefficient.

The alternative approach would be to automatically mine useful heuristics with systems such as Snuba or Babble labble. Both systems require a set of labeled instances (accompanied by natural language explanations in case of Babble labble) which can be costly and oftentimes infeasible to collect in imbalanced settings. For instance, while Example 1 shows a balanced number of positive and negative instances, in practice, the positive instances often make up only a tiny fraction of the entire corpus. Hence, labeling a random sample would not be sufficient to obtain enough positive instances. Consequently, automatically inferring heuristic rules is not feasible using the few discovered positive instances.

To mitigate the above issues, we present Darwin, an adaptive rule discovery system for text data. Figure 1 highlights how Darwin compares with other state-of-the-art weak-supervision frameworks. Compared to Snuba, Darwin requires far less labeled instances. In fact as we show in our experiments, a single labeling rule (or a couple of labeled instances) would be sufficient for Darwin. Compared to Snorkel and Babble labble, Darwin requires a lower degree of supervision by domain experts. More explicitly, Darwin requires experts to simply verify the suggested heuristics while Snorkel requires them to manually write such rules and Babble labble requires them to provide explanations for why a particular label is assigned to a given data point.

Given a corpus and a seed labeling rule, Darwin identifies a set of promising candidate rules. The best candidate rule (along with a few example instances matching the rule) is then presented to the annotator to confirm whether it is useful for capturing the positive instances or not. Figure 2 presents an example of this step for the intent described in Example 1. The annotator is presented with examples that satisfy the rule and asked to answer whether the rule is useful for the intent (a YES/NO question). Based on the response, Darwin adaptively identifies the next set of promising candidate rules. This interactive process, where rules are illustrated with examples, facilitates annotators to identify the most effective set of rules without the need to fully understand the corpus or the rule language. Our contributions are as follows:

- Darwin supports any rule language that can be specified using a context-free grammar. Therefore, it can generate a wide range of rules, from simple phrase matching to complex conditions over the dependency parse trees of the sentences.

- Darwin can effectively identify rules over a large text corpus, even when the number of candidate rules is exponentially large. In fact, we show that verifying 50 heuristics suggested by Darwin is enough to achieve a F1-score of 0.80. Furthermore, we present theoretical results on approximation guarantees of Darwin.

- Darwin does not require annotators to be familiar with the rule language. By analyzing the similarity and the overlap between the set of sentences matching different rules, Darwin automatically surface patterns in data and also supports parallel discovery of rules by asking different annotators to evaluate different rules.

- We demonstrate how Darwin can be used for a variety of labeling tasks: classify intents, find sentences that mention particular entity types, and identify sentences that describe certain relationships between entities (i.e., relation extraction).
In the following sections, we define our problem, describe \textsc{Darwin}, and demonstrate its effectiveness and efficiency through a suite of experiments. Specifically, we show that \textsc{Darwin} outperforms other baseline approaches in its ability to generate a larger set of labeled examples by asking a limited number of questions.

2. PRELIMINARIES & PROBLEM DEFINITION

In a nutshell, \textsc{Darwin} takes as input an unlabeled corpus of sentences along with an initial seed labeling heuristic (which is assumed to generate at least two positive instances). \textsc{Darwin} then identifies promising candidate labeling heuristics. \textsc{Darwin} leverages an oracle to verify whether a particular candidate heuristic is effective at capturing positive instances or not. Finally, the set of discovered heuristics are forwarded to \textsc{Snorkel} \cite{snorkel} to train a high precision classifier. Before describing \textsc{Darwin}'s rule discovery pipeline in detail, we provide a formal definition of labeling heuristics along with a description of an oracle.

Heuristic search space. Naturally, labeling heuristics can be of different types with distinct semantics. For example, a heuristic may check for certain phrases in a sentence \cite{patwari2017snorkel} or it may enforce some conditions on the parse tree \cite{darwiche2009knowledge} and POS tags of a sentence. In \textsc{Darwin}, the space of possible heuristics are specified using a collection of **Heuristic Grammars**, where each grammar describes a particular type of labeling heuristics. These concepts are formally defined as follows.

Definition 1 (Heuristic Grammar). A Heuristic Grammar G is a Context-Free Grammar (CFG). Recall that a CFG consists of a collection of derivation rules.

For a given heuristic grammar G, we define labeling heuristics as follows.

Definition 2 (Labeling heuristic). A labeling heuristic r is a derivation of the grammar G. We use C_r to denote the set of sentences in the corpus that satisfy the heuristic r, and refer to $|C_r|$ as it’s coverage.

To further clarify the above definitions, let us consider a simplified regular expression grammar called TokensRegex. TokensRegex captures all regular expressions over tokens considering ‘+’ and ‘*’ operators. This grammar can be formally written using a CFG grammar as shown below.

Example 2 (TokensRegex Grammar). Let V denote the set of all possible words. The regular expression grammar on the tokens comprises of the following derivation rules.

$$
A \to \nu A \quad (\forall \nu \in V)
$$

$$
A \to A + A
$$

$$
A \to A * A
$$

$$
A \to \epsilon
$$

The above TokensRegex grammar allows for a regular expression of words as a candidate labeling heuristic. For example, this grammar generates heuristics such as ‘best way to’ or ‘shuttle’ as well as less meaningful heuristics such as ‘shuttle is airport’ as candidates for the task described in Example 2. A sentence satisfies the heuristic if it contains that phrase. The sentences s_1, s_3 and s_6 in Example 2 satisfy the heuristic r = ‘best way to’, hence $C_r = \{s_1, s_3, s_6\}$.

As a default setting, \textsc{Darwin} comprises of two different grammars (a) TokensRegex (b) TreeMatch, with the ability to plug in more heuristic grammars as long as they are context-free. While TokensRegex is capable of capturing lexical patterns and phrases, it fails to capture syntactic patterns and pattern over parse trees. TreeMatch grammar captures such patterns to identify more complex and generic heuristic functions.

Definition 3 (TreeMatch Grammar). Let V denote the set of terminals comprising of all the tokens and Part-of-Speech (POS) tags \cite{brown1992class} present in the corpus. E.g., NOUN, VERB, etc.

Derivation Rules: The grammar has three fundamental operations that make up a heuristic, namely And (\land), Child ($/$), and Descendant ($//$). The symbol ‘a/b’ implies that terminal ‘b’ should be a child of terminal ‘a’ in the dependency parse tree. The symbol ‘a//b’ implies that terminal ‘b’ should be a descendant of terminal ‘a’ in the parse tree. Given that, the derivation rules of the grammar are:

$$
A \to /A
$$

$$
A \to A \land A
$$

$$
A \to //A
$$

$$
A \to v \quad (\forall v \in V)
$$

It is important to mention that the complexity of heuristics that can be specified using the TreeMatch grammar exceeds what rule-mining frameworks such as Snuba or Babble labble can capture.

Oracle Abstraction. Finally, we formalize the feedback that we may either obtain from a single annotator, a group of annotators, or a crowd-sourcing platform using the notion of Oracles as follows.

Definition 4 (Oracle). An Oracle O is a function which given a heuristic r and a few samples from its coverage set C_h outputs a YES/NO answer indicating whether or not r is adequately precise.

An Oracle plays the role of a perfect annotator who always answers the questions correctly. In practice, annotators may provide incorrect answers (as we show in our experiments), but the notion of an oracle enables us to provide insights into the theoretical aspects of our problem.

Problem statement. We are now ready to formally define our problem. Given a labeling task, our goal is to find a set
of labeling heuristics such that the union of the coverage of the heuristics in R, denoted as $P = \bigcup_{r \in R} C_r$, would have a high recall (i.e., to contain a high ratio of the positive instances in the corpus). We would like to maximize the recall of set P without posing too many queries to the oracle. We empirically observed that users label a heuristic as precise only when the heuristic has precision at least 0.8. Hence, in this paper, we do not focus on optimizing the precision of heuristics, which we can also rely on various de-noising techniques from the weak supervision literature \[12\].

Problem 1 (Maximize Heuristics Coverage). Given a corpus S, a seed labeling function r_0, an oracle O, and a budget b, find a set R of labeling heuristics using at most b queries to the oracle, such that the recall of set P, i.e., the union of the coverage of heuristics in R, is maximized.

Lemma 1. The Maximize Heuristics Coverage problem is NP-hard.

Proof. We show the hardness of our problem by reducing the maximum-coverage problem to an instance of our problem. Given a collection of sets $A = \{A_1, A_2, \ldots, A_n\}$ and a budget b, the maximum-coverage problem aims to find b sets from A such that the size of their union is maximized. Given an instance of the maximum-coverage problem, we create an instance of our problem as follows. For each set A_i, we define a heuristic r_i with coverage set $C_{r_i} = A_i$ and mark all the instances as positives. Consequently, the oracle O would always respond with a Yes as all the heuristics are perfectly precise. Now, it is easy to see that the coverage of set P in our setting is equivalent to the coverage of selected sets in the maximum-coverage problem. As a result, if our heuristic discovery problem can be solved in polynomial time, then the corresponding sets would form the optimal maximum-coverage solution. Hence, our problem is also NP-hard. \square

Note that while we focus on maximizing the recall, it is also useful to report the performance of the classifier that is trained using our weakly-supervised labels. Therefore, in our experiments, we also record the F-score of our trained classifier to provide a better evaluation of Darwin.

3. THE DARWIN SYSTEM

In this section, we describe the architecture of Darwin which is illustrated in Figure 4. Darwin operates in multiple phases that aim to identify diverse set of heuristics used to identify positives. The pipeline is initialized with a seed labeling function or a couple of positive sentences. Darwin learns a rudimentary classifier using these positive sentences and the classifier is refined with evolving training data. In order to identify new heuristics Darwin leverages the following properties. (i) The generalizability of the trained classifier helps guide the search towards semantically similar heuristics. For example, on identifying the importance of ‘bus’ as a heuristic, Darwin identifies ‘public transport’ as another possibility due to their related semantics. (ii) Local structural changes to the already identified heuristics helps identify new heuristics eg. consider ‘What is the best way to the hotel?’ as input seed sentence, Darwin constructs local modifications by dropping and adding tokens (derivation rules in general) and identifying a new heuristic ‘shuttle to the hotel’. Darwin leverages these intuitions to adaptively refine the search space and simultaneously learn a precise classifier with high coverage over the positives.

Before describing the architecture, we define a data structure that is critical for efficient execution of Darwin. All candidate heuristics that are considered by Darwin are organized in the form of a hierarchy. This hierarchy captures subset/superset relationship among heuristics. Heuristics with higher coverage are placed closer to the root and the ones with lower coverage are closer to the leaves. For example, ‘best way to the hotel’ is a subset of ‘best way to’ and will be its descendant. One of the key properties of this hierarchical structure is that if a heuristic r is identified to capture positives, then any of its subset (descendant in the hierarchy) does not capture any new positive. This data structure has $O(1)$ update time to identify the subsets of a heuristic. Additionally, it is helpful for efficient execution of local structural changes to any heuristic. All these benefits will be discussed in detail in the later sections.

Algorithm 1 presents the pseudo code of the end-to-end Darwin architecture. Darwin’s input consists of the corpus to be labeled, a collection of heuristic grammar, and one (or more) seed labeling function(s). Alternatively, a set of positive instances can be provided instead of seed labeling heuristics. The output of Darwin is the set of generated heuristics, the positive instances that are discovered, and a classifier that is trained using the labeled data.

Before the heuristic-discovery phase begins, Darwin creates an index over the input corpus for fast access to the sentences that satisfy a given heuristic (more details in Section E.1). The heuristic-discovery phase is an iterative process where Darwin interacts with annotators and uses their feedback to identify new candidates and ask further queries. In a nutshell, each iteration consists of the following steps. First, the *Candidate Generation* component generates a small set of promising candidate heuristics (from the space of all possible heuristic functions), and organizes them in the form of a hierarchy \mathcal{H} (line 6) with the most generic functions at the top and the stricter ones at the bottom. We will describe shortly how \mathcal{H} is generated and used to prune less effective heuristics. Once the hierarchy is built, Darwin’s *Hierarchy Traversal* component carefully navigates and evaluates the heuristics in the hierarchy to find the best candidate (line 14) return R, P, C.

Algorithm 1 Darwin

Input: Input Corpus S, seed heuristic r_0, budget b

Output: Collection of heuristics R, Set of positive instances P, Classifier C

1: $I \leftarrow $ generate_index(S)
2: $Q \leftarrow \phi$
3: $P \leftarrow $ coverage(r_0)
4: $C, P' \leftarrow $ train_classifier($P, \{r_0\}, S$)
5: while $|Q| \leq b$ do
 6: $H \leftarrow $ generate_hierarchy(S, P', I)
 7: $q \leftarrow$ traversal(H, P, Q, C)
 8: if oracle_query(q) then
 9: $P \leftarrow P \cup$ coverage(q)
 10: $C, P'' \leftarrow $ train_classifier(R, P, S)
 11: $P' \leftarrow P'' \setminus P'$
 12: $H \leftarrow$ update_scores(H)
 13: $Q \leftarrow Q \cup \{q\}$
14: return R, P, C
Input Corpus
Seed Rule(s)
Collection of Heuristics
Labelled Set
Output

Figure 4: DARWIN’s architecture.

Index (s1, s4)
…
…
fastest way
Count = 1
{s4}
…
to get
Count = 2
{s1, s4}
way to
to get
Count = 2
{s1, s4}
way
Count = 2
{s1, s4}
…
Candidate Selection
Hierarchy Traversal
Score Update
Index Generation

Figure 6: An example of index creation process

3.1 Indexing the Input Corpus

DARWIN creates an index for the input corpus to provide fast access to sentences that satisfy certain heuristics. This index aims at constructing a space efficient representation of each sentence in the corpus for efficient execution of subsequent steps involving traversal through the various candidate heuristics. This hierarchical structure of this index is very similar to that of a trie.

Given a collection of heuristic grammar \{G_1, \ldots, G_l\} and a sentence \(s\), one can enumerate the set of all possible heuristics of \(G_i\), generated using a fixed number of derivation rules, that \(s\) satisfies. For example, using the TokensRegex grammar, the set of all heuristics that a sentence \(s\) satisfies is the set of all regular expressions that correspond to \(s\). We organize the set of heuristics matching a sentence \(s\) into a structure called the Derivation Sketch, which summarizes the derivations of all heuristics that match \(s\). Figure 5 shows (parts of) the derivation sketch for sentences \(s1\) and \(s4\) from Example 1 based on the TokensRegex grammar.

A derivation sketch is built for each sentence in the corpus. After this, we create an index \(I\) which is a compact representation of all heuristics that are satisfied by at least one sentence in the corpus. Each node in \(I\) represents a heuristic labeling function and stores the number of sentences that satisfy it, pointers to the children in the index, and an inverted list that points to sentences that satisfy the heuristic.

3.2 Heuristic-Hierarchy Generation

As mentioned earlier, the number of possible heuristics under a given grammar \(\mathcal{G}\) is often exponential in the size of dictionary. The task of the heuristics-hierarchy generation component is to generate a manageable set of promising candidate heuristics from the space of all possible heuristics and organize the generated candidate heuristics in a hierarchy that captures the subset/superset relationship between the heuristics. Specifically, the hierarchy generation process consists of the following steps. First, the Candidate Generation step generates a subset of possible heuristics that have high coverage over the set of positive instances discovered so far. This algorithm operates in a greedy best-first search mechanism to identify valuable candidates. These heuristics...
Algorithm 2 Candidate-heuristic Generation

Input: Index I, Set of positive instances P, Number of desired heuristics k
Output: Collection of heuristics R

1: $R \leftarrow \{\ast\}$, recentHeuristic $\leftarrow \ast$, candidates $\leftarrow \emptyset$
2: while $|R| \leq k$ do
3: candidates \leftarrow candidates \cup Children(recentHeuristic, I)
4: sortedCandidates \leftarrow CoverageSort(candidates, P)
5: recentHeuristic \leftarrow sortedCandidates[0]
6: candidates \leftarrow candidates.remove(recentHeuristic)
7: $R \leftarrow R \cup \{\text{recentHeuristic}\}$
8: return R

are promising as they already have some overlap with the existing positive instances. Next, these candidates are arranged in the form of a hierarchy along with subset-superset edges between them. We describe these steps in detail next.

3.2.1 Candidate Generation

The candidate generation step uses the index I to generate a set of heuristic labeling functions with high coverage over the set of positive instances P that are discovered so far by DARWIN. Note that heuristics that (at least partially) cover the set of discovered positive instances, are likely to be good heuristics and help detect more positive instances. To efficiently find such heuristics, we rely on one of the interesting properties of index I: Recall that the count of a node $u \in I$ refers to the total number of sentences that contain the tokens along the path from the root to u in their derivation sketches. As descendant nodes correspond to stricter heuristics, the coverage of a heuristic corresponding to a node is never less than the coverage of any of its descendants in the index. Thus we use a greedy algorithm to identify a collection of diverse heuristics that have high coverage over the set of positive instances P.

Algorithm 2 generates candidate heuristics by exploiting the property described above. The set of candidate heuristics is initialized with heuristic \ast which refers to the root of the index I. This heuristic matches all possible sentences in the corpus. In each iteration, the algorithm adds the children of the previous iteration’s best candidate heuristic to the candidate list (line 3). The candidates are then sorted in decreasing order of coverage over the set P (line 4). The candidate with the highest coverage is removed from the candidate list and appended to list of final results R (lines 6-7). This process is repeated until there are k heuristics in R. Note that the time complexity of this greedy algorithm is linear in the number of candidates generated.

Other constraints can also be added to the candidate-heuristic generation phase to ensure that the generated heuristics satisfy those criteria. For example, DARWIN can apply heuristics to ensure that the candidate heuristics are diverse in terms of the set of derivation rules used to derive the heuristic, their level in the index I, and the set of instances they cover. Some of these heuristics help DARWIN avoid having to evaluate many similar candidate heuristics.

Hierarchical Arrangement and edge discovery

This hierarchical arrangement of heuristics is followed by a cleanup to get rid of heuristics that do not add any new positive instances than the ones already identified. The goal of cleanup is to improve the efficiency and space complexity of DARWIN as the traversal component will never query a heuristic that does not add any new positives.

3.3 Hierarchy Traversal

The result of the heuristic-hierarchy generation is a hierarchy H of promising heuristics. The hierarchy traversal module determines which heuristic in the hierarchy is the best heuristic to be submitted to the oracle.

We present three hierarchy traversal techniques: LocalSearch, UniversalSearch, and HybridSearch. At a high level, LocalSearch relies on the hierarchy structure to select the next best candidate from the immediate neighborhood of heuristics verified by the oracle in the past. In contrast, UniversalSearch ignores locality constraints and selects the heuristic with maximum benefit globally.

Finally, the HybridSearch traversal combines the first two techniques to find the next best heuristic. The HybridSearch traversal is more robust than LocalSearch and UniversalSearch. All three techniques work in an iterative fashion, and in each iteration, the criteria for selecting a heuristic to be sent to the oracle is based on how beneficial the heuristic is, which we elaborate next.

Benefit of a heuristic (r): The benefit of a heuristic r is the expected gain in the positive set P upon choosing r. More formally, the benefit is quantified as $\sum_{s \in C_r \setminus P} p_s$, where p_s is the probability of sentence s being a positive instance. In DARWIN, these probability values are estimated by training a classifier using the set of positive instances discovered so far and sampling random instances from the corpus as negatives. The probability estimates improve as the system iteratively discovers more heuristics and the classifier is re-trained with more positive training examples.

We describe our three traversal techniques next.

3.4 LocalSearch

LocalSearch traversal algorithm (Algorithm 3) benefits from the local hierarchy structure around the heuristics already identified as useful by the oracle to identify the next best heuristic for querying. Specifically, LocalSearch maintains a set of candidate heuristics, and selects the most beneficial heuristic r from the candidates. If the oracle confirms that r is adequately precise, then it adds r’s parents into the candidate set as they are generalizations of r and might be helpful at capturing more positive instances. However, if the oracle labels r as a noisy heuristic, LocalSearch adds the children of r to the candidate set instead with the hope that a specialized version of heuristic r might be less noisy.

LocalSearch is simple and efficient at utilizing the structure of the hierarchy to find promising heuristics to submit to the oracle. Since the algorithm only explores the local neighborhood of the queried candidates, it has a time complexity of $O(dt)$, where d is the maximum degree of an internal node and t is the number of iterations the algorithm is running for. However, a disadvantage of LocalSearch is that it may require many traversal steps in cases where the initial seed heuristic is quite different from other precise heuristics the system aims to discover. Also, it does not

5 A short text classifier would be ideal for this task.
Algorithm 3 LocalSearch Traversal

Input: heuristic hierarchy \(H \), Seed heuristic \(r_0 \)
Output: Collection of positive instances \(P \), Collection of heuristics \(R \)

1: \(\text{QueryCount} \leftarrow 0 \)
2: \(R \leftarrow \{r_0\}, P \leftarrow C_{r_0}, C \leftarrow \text{TrainClassifier}(P) \)
3: localCandidates \(\leftarrow \{r_0\} \)
4: while \(\text{QueryCount} < b \) do
5: \(r \leftarrow \text{GetMostBeneficialCandidate heuristic}(\text{localCandidates}, C) \)
6: \(\text{QueryCount} \leftarrow \text{QueryCount} + 1 \)
7: if OracleResponse(\(r \)) is YES then
8: \(R \leftarrow R \cup r, P \leftarrow P \cup C_r \)
9: localCandidates \(\leftarrow (\text{localCandidates} \setminus \{r\}) \cup \text{Parents}(r) \)
10: \(C \leftarrow \text{TrainClassifier}(P) \)
11: else
12: localCandidates \(\leftarrow (\text{localCandidates} \setminus \{r\}) \cup \text{Children}(r) \)
13: \(\text{return} \ P, R \)

Algorithm 4 UniversalSearch Traversal

Input: heuristic hierarchy \(H \), Seed heuristic \(r_0 \)
Output: Collection of positive instances \(P \), Collection of heuristics \(R \)

1: \(\text{QueryCount} \leftarrow 0 \)
2: \(R \leftarrow \{r_0\}, P \leftarrow C_{r_0}, C \leftarrow \text{TrainClassifier}(P) \)
3: universalCandidates \(\leftarrow \{r : r \in H\} \)
4: \(C \leftarrow \text{TrainClassifier}(P) \)
5: while \(\text{QueryCount} < b \) do
6: \(r \leftarrow \text{GetMostBeneficialCandidate}(\text{universalCandidates}, C) \)
7: \(\text{QueryCount} \leftarrow \text{QueryCount} + 1 \)
8: if \(\text{AvgBenefit}(r) \leq 0.5 \) then continue
9: if OracleResponse(\(r \)) is YES then
10: \(R \leftarrow \{r\}, P \leftarrow C_r \)
11: \(C \leftarrow \text{TrainClassifier}(P) \)
12: \(\text{universalCandidates} \leftarrow \text{universalCandidates} \setminus \{r\} \)
13: \(\text{return} \ P, R \)

Algorithm 5 HybridSearch Traversal

Input: heuristic hierarchy \(H \), Seed heuristic \(r_0 \)
Output: Collection of positive instances \(P \), Collection of heuristics \(R \)

1: \(\text{universalMode} \leftarrow \text{True}, \text{attempt} \leftarrow 0 \)
2: \(R \leftarrow \{r_0\}, P \leftarrow C_{r_0}, C \leftarrow \text{TrainClassifier}(P) \)
3: localCands \(\leftarrow \{r_0\} \), \(\text{universalCands} \leftarrow \{r : r \in H\} \)
4: \(\text{QueryCount} \leftarrow 0 \)
5: while \(\text{QueryCount} < k \) do
6: if \(\text{attempt} \geq \tau \) then
7: \(\text{universalMode} \leftarrow \text{not universalMode} \)
8: \(\text{attempt} \leftarrow 0 \)
9: \(\text{attempt} \leftarrow \text{attempt} + 1 \)
10: candidates \(\leftarrow \text{universalCands} \) if \(\text{universalMode} \) else \(\text{localCands} \)
11: \(\text{QueryCount} \leftarrow \text{QueryCount} + 1 \)
12: \(r \leftarrow \text{GetMostBeneficialCandidate heuristic}(\text{candidates}, C) \)
13: if \(\text{universalMode} \) and \(\text{AvgBenefit}(r) \leq 0.5 \) then continue
14: if OracleResponse(\(r \)) is YES then
15: \(R \leftarrow R \cup r, P \leftarrow P \cup C_r \)
16: \(C \leftarrow \text{TrainClassifier}(P) \)
17: \(\text{localCands} \leftarrow \text{localCands} \setminus \{r\} \cup \text{Parents}(r) \)
18: else
19: \(\text{localCands} \leftarrow \text{localCands} \setminus \{r\} \cup \text{Children}(r) \)
20: \(\text{universalCands} \leftarrow \text{universalCands} \setminus \{r\} \)
21: \(\text{return} \ P, R \)

3.5 UniversalSearch

The UniversalSearch algorithm (see Algorithm 4) evaluates all heuristics present in the hierarchy to identify the best heuristic. In each iteration, UniversalSearch omits any heuristic for which the benefit per instance is smaller than 0.5, i.e. majority of the instances in \(C_r \) are expected to be negatives. Among the remaining heuristics, it chooses the heuristic with maximum benefit to submit to the oracle. Based on oracle’s feedback, it re-trains the classifier if new positives were discovered or else it continues to query the next best heuristic to the oracle. Note that UniversalSearch captures the best candidates irrespective of the hierarchy structure.

The strength of UniversalSearch is in its capability to identify semantic similarity between heuristics and their matching instances even if they are far apart in the hierarchy. However, it has the following shortcomings: (1) compared to LocalSearch, it is inefficient as it iterates over all heuristics in the hierarchy to identify the best candidate, and (2) in absence of enough positive instances, the trained classifier is likely to overfit and not generalize well to other precise heuristics. In such cases, UniversalSearch fails to exploit the structure of the hierarchy to at least find heuristics that are structurally similar to the seed heuristics.

We describe the HybridSearch algorithm next, which combines the strengths of UniversalSearch and LocalSearch.

3.6 HybridSearch

HybridSearch (See Algorithm 5) combines the two previous traversal techniques by maintaining a list of local candidates and a list of universal candidates, and imitating the strategy of the both traversal algorithms. Starting from the UniversalSearch strategy, the HybridSearch algorithm queries candidate heuristics (with a benefit per instance above 0.5) to the oracle. If the algorithm fails to find a precise heuristic within a fixed number of attempts, then it switches to the LocalSearch strategy. Similarly, if the LocalSearch strategy has no success within a fixed number of attempts, the traversal toggles to the UniversalSearch strategy. The switch between the two strategies is decided based by a parameter \(\tau \) (by default 5) which denotes the number of unsuccessful attempt before the switch happens. Clearly, higher values of \(\tau \) discourage switching between the two strategies.

Our empirical evaluation shows that HybridSearch formed by combining UniversalSearch and LocalSearch strategies, runs well on all types of datasets even when the other two traversal algorithms struggle to discover high-quality heuristics. In short, if the trained classifier is noisy (due to lack of positive instances), HybridSearch exploits the structure of the hierarchy to search for precise heuristics. Similarly when no precise heuristics are found by LocalSearch, it uses UniversalSearch’s ability to generalize to other heuristics.

3.7 Score Update
After a query is submitted to the oracle, DARWIN passes the feedback to the score update component to (1) re-train the classifier, (2) re-evaluate the scores of all heuristics in the hierarchy, and (3) update the set of positive instances (if feedback is positive) and signal the hierarchy generation component to generate new candidate heuristics to be added to the hierarchy.

3.8 Theoretical Analysis

In this section we analyze the ability of UniversalSearch hierarchy traversal in identifying positive sentences within a query budget b. For this analysis, we consider a simple model capturing how positive and negative instances are scored by a classifier. An ideal classifier assigns a score of 1 to positives and 0 to negatives. However in practice, the scores follow a different distribution which we model as follows. Let P^* denote the collection of positive sentences in the corpus of sentences S. We assume that a reasonable classifier assigns to a positive sentence $s \in P^*$ a score larger than $\theta \geq 0.5$ with probability β, and less than $1 - \theta$ otherwise. Similarly, the score of a negative sentence $s \in S \setminus P^*$ is above θ with probability β'. Naturally, for a classifier is better than random β is larger then β'. Under this model, we can show that the set of heuristics R and the corresponding positive set P identified by UniversalSearch are constant approximation of the optimal solution.

We also make a few assumptions about the hierarchy of heuristics. We assume that the number of heuristics in the hierarchy H is linear to the number of sentences (i.e., $O(n)$) and each heuristic has a minimum coverage of $\Omega(\log n)$. This is a realistic assumption as we focus on heuristics that can be derived from their context free grammar using a fixed number of steps, and our algorithm is aimed at identifying heuristics that cover a large fraction of positives. Under this assumption, we show that at any iteration, a heuristic r chosen by UniversalSearch has coverage $|C_r|$ larger than $\alpha \times \max_{r' \in R} |C_{r'}|$, where α is a constant. This guarantees that UniversalSearch identifies at least $\alpha nOPT$ positives within a query budget of b, where OPT is the total number of positives identified by an ideal algorithm. To bound the estimated coverage of a heuristic r, we use the Hoeffding’s inequality.

Notation. We define a random variable X_s which refers to the score assigned to a sentence s and let μ_s denote its expected value. The benefit score of a heuristic r is $\sum_{s \in C_r} X_s$ and its expected value is denoted by μ_r.

Lemma 2. Given a heuristic function r with coverage of C_r, and precision p, the expected score of the heuristic function is at least $\theta \beta'|C_r|$.

Proof. Expected score of the heuristic function is

$$E \left[\sum_{s \in C_r} X_s \right] = \sum_{s \in C_r} \mu_s = \sum_{s \in C_r \cap P^*} \mu_s \geq \sum_{s \in C_r \cap P^*} (\theta \beta) \geq \theta \beta|C_r|$$

using Lemma 2. We use this calculation to bound the score of a heuristic r that has more than $\log n$ sentences.

Lemma 3. Consider a heuristic function r with coverage C_r such that $|C_r| = c \log n$ sentences, where $c \geq \frac{2}{n^4}$ is a constant. The benefit score of the heuristic is at least $\left(1 - \epsilon\right)\theta \beta'|C_r|$ with a probability of $1 - 2/n^4$.

Proof. The score of heuristic function r is $\sum_{s \in C_r} X_s$. The expected value of the score (denoted by μ_r) is calculated in Lemma 2. Using Hoeffding’s inequality,

$$Pr \left[\frac{1}{|C_r|} \sum_{s \in C_r} X_s \leq \left(1 - \epsilon\right)\mu_r/|C_r| \right] \leq e^{-2\epsilon^2 \mu_r^2/|C_r|} \leq 2e^{-2\epsilon^2 \beta^2 |C_r|} \leq 2e^{-4 \log n} = \frac{2}{n^4}$$

This shows that $\frac{1}{|C_r|} \sum_{s \in C_r} X_s$ is greater than $(1 - \epsilon)\theta \beta'|C_r|$ with a probability more than $\frac{2}{n^4}$. \(\square\)

Using a similar analysis, we identify an upper bound of the heuristic score. Due to space constraint, we defer the proof to Appendix.

Lemma 4. Given a heuristic function r with a coverage of C_r and precision p, the expected score of the heuristic function is at least $\left(\beta + (1 - \beta) \right) \beta'|C_r|$.

Lemma 5. Consider a heuristic function r with coverage C_r, such that $|C_r| = c \log n$ sentences, where $c \geq \frac{2}{n^4}$. The score of the heuristic is at most $(1 + \epsilon) \beta(1 - \beta) |C_r|$ with a probability of $1 - 2/n^4$.

Using the calculated bounds on score of a heuristic, we evaluate the condition when a particular heuristic is preferred over the other.

Lemma 6. Given a pair of heuristic functions r_1 and r_2 with respective coverage C_{r_1} and C_{r_2}. If C_{r_1} has more positives than C_{r_2}, the UniversalSearch score of r_1 is higher than that of r_2 whenever $\frac{|C_{r_1}|}{|C_{r_2}|} \geq \alpha$ with a probability of $1 - \frac{4}{\alpha^2}$, where α is a constant.

Using a similar analysis, we can calculate the estimated average probability of a heuristic. For a heuristic r with precision p_r, we can show that it is considered for benefit calculation only when $p_r > \gamma$, where γ is a constant.

Theorem 1. In worst case, UniversalSearch provides a constant approximation of Problem 7 with a probability of $1 - o(1)$.

Proof. In each iteration, UniversalSearch algorithm sorts each of the candidate heuristic based on estimated average probability of a randomly chosen sentence from C_r to be positive. All these candidates have true precision $p_r > \gamma$. Given a pair of heuristics r_1 and r_2, using Lemma 6 the benefit score of a block r_2 is higher than that of r_1 whenever $\frac{|C_{r_1}|}{|C_{r_2}|} \geq \alpha$ with a probability of $1 - \frac{4}{\alpha^2}$. Let OPT_r be the heuristic chosen by optimal algorithm. Using union bound over $\binom{n}{2}$ pairs of heuristics, with a probability of at least $1 - \frac{4}{\alpha^2}$, the estimated benefit of OPT_r is higher than that of any r' whenever $|C_{r'}| \leq |C_{OPT_r}|/\alpha$. Therefore, UniversalSearch never chooses any block heuristic with coverage smaller than $|C_{OPT_r}|/\alpha$, which is a constant approximation of $|C_{OPT_r}|$ with a probability of $1 - o(1)$. \(\square\)
Table 1: Dataset statistics

dataset	# Sentences	% Positives	Labeling
cause-effect	10.7K	12.2	Relations
musicians	15.8K	10	Entities
directions	15.3K	3.8	Intents
profession	1M	1.1	Entities
tweets	2130	11.4 (Food)	Intents

Notice that analysis above makes certain assumptions about the quality of the classifier. In the initial iterations of Darwin, the classifier has a low recall and hence, the values of β and θ are lower. As Darwin identifies new heuristic functions, the increase in training data pushes these values higher, thereby improving the approximation factor of our algorithm. It is important to mention that even when the classifier is not ideal, our only key assumption is that the classifier would perform better than random.

Discussion. We proposed three techniques for hierarchy traversal. UniversalSearch approach is useful to capture holistic information about the different candidate labeling heuristics and is proven to achieve constant approximation of the optimal solution under reasonable assumptions of the trained classifier. However, due to lack of training data in initial iterations of the pipeline, this assumption may not hold and UniversalSearch does not perform optimally. However, LocalSearch performs local generalization of identified heuristics to quickly increase the number of identified positives. HybridSearch is a robust amalgamation of these two techniques and is recommendation. Since HybridSearch is a generalization of LocalSearch and UniversalSearch, it is slightly less efficient than either of these.

4. EXPERIMENTS

In this section, we perform empirical evaluation of Darwin along with other baselines to validate the following.

- The ability of Darwin to identify majority of the positives even when initialized with a small seed set.
- The positives identified by Darwin outperform other baseline techniques that use active learning, a human annotator or any other automated techniques. We show that Darwin can uncover most of positive instances (i.e., 80% or more) with roughly 100 queries.
- The heuristics identified by Darwin have high precision and help train a classifier with superior F-score (≥ 0.8).
- Darwin is highly efficient and can generate labels from a corpus of 1M sentences in less than 3 hrs. Darwin performance is resilient to variations in the seed set.

4.1 Experimental Setup

Here, we describe the datasets, the baselines, and our overall experimental setup.

Datasets. We experimented with five diverse real-world datasets each suitable for one of the following NLP tasks: entity extraction, relationship extraction, and intent classification. Table 1 summarizes the statistics of these datasets. All datasets, except for directions, come with ground-truth labels which we use for evaluation and to synthesize the responses from an oracle. For the directions datasets, we rely on human annotators to generate the gold standard and validate the heuristics. We describe each of these dataset below.

- cause-effect [15] is a dataset commonly used as a benchmark for relationship extraction between pairs of entities.

We focus on the task of finding sentences that describe a cause and effect relationship between two entities.

- directions is an internal dataset described in Example [1]
- For this dataset, we leveraged Figure-eight\footnote{https://figure-eight.com} to verify the heuristics generated by Darwin.
- musicians dataset consists of sentences from Wikipedia articles. The task is entity extraction with the goal to extract the names of musicians. The ground-truth is obtained with the help of NELL’s knowledge-base\footnote{http://rtw.ml.cmu.edu/rtw/kbbrowser/}
- professions dataset is a collection of sentences from ClueWeb\footnote{https://lemurproject.org/clueweb09/}. The sentences that mention various professions (e.g., scientist, teacher, etc.) are positives. The ground truth is generated using NELL’s knowledge-base.
- tweets [18] data set is a benchmark for classifying the intent of tweets into predefined categories such as food, travel and career, etc.

Baselines. We evaluate our framework on two fronts: (1) the ratio of positive instances it discovers (i.e., coverage) and (2) the performance of the classifier trained using our weakly-supervised labels. Our baselines for these two evaluation criteria are listed below.

- Section 4.2 compares the fraction of positives identified with Snuba\footnote{https://figure-eight.com}. In this experiment, we consider a small sample of positives chosen randomly from the dataset.
- Section 4.3 compares the coverage obtained by Darwin against two baselines, namely HighP and HighC. HighP is a simpler version of Darwin which selects the rule which is expected to have a high precision (according to the classifier) and submits it to the oracle. On the other hand, HighC selects rules with the maximum coverage, irrespective of their expected precision\footnote{https://lemurproject.org/clueweb09/}.
- Section 4.4 compares the F-score of the classifier generated by Darwin with an Active Learning (AL)\footnote{https://lemurproject.org/clueweb09/} and a Keyword Sampling (KS) technique as well as the HighP baseline mentioned earlier. AL improves its performance by selecting the instance with the highest entropy and asking the oracle for its label. It then re-trains the classifier using the new label. The KS approach is designed to check if we can quickly obtain a small set of promising instances by filtering the corpus using a set of relevant keywords, and label the instances in the smaller set. To do so, we asked annotators to provide 10 distinct keywords as a heuristic to filter the dataset. The KS technique randomly samples instances from the filtered dataset and asks for its label. We employ the same deep learning based classifier for all the techniques.

Finally, note that Darwin can use different traversal algorithms: LocalSearch, UniversalSearch, and HybridSearch, which we refer to as Darwin(LS), Darwin(US), and Darwin(HS) respectively.

Settings. We implemented all proposed algorithms and baselines in Python and ran the experiments on a server with a 500GB RAM and 64 core 2.10GHz x 2 processors. The dependency parse trees and the POS tags are generated with SpaCy\footnote{https://spacy.io/}.

All text classifiers trained in our ex-
Figure 7: Effects of seed set size on performance.

Figure 8: Effects of biased seed set size on performance.

4.2 Comparison with Snuba

In this experiment, we initialize Snuba and DARWIN(HS) with the same set of randomly chosen labeled sentences and compare the total number of positives identified by each of the techniques. Note that Snuba does not query the oracle and infers heuristics based on the provided labeled instances may infer inaccurate heuristics. For a fair evaluation, we choose not compare the accuracy of identified heuristics. Figure 7 shows the change in fraction of identified positives by varying the size of the initial seed set. DARWIN(HS) is able to identify majority of positives even when the pipeline is initialized with less than 25 sentences. However, Snuba requires at least 200 randomly chosen sentences for directions and 1000 for musicians. If we employ expert to sample positives, Snuba requires at least 100 positive samples in musicians.

To further evaluate the generalizability of Snuba and DARWIN(HS) to identify heuristics that have limited or no evidence in the initial seed set, we construct a biased sample of seed positives. In this experiment, we choose sentences randomly from the corpus after ignoring the ones that contain the token ‘shuttle’ in directions and ‘composer’ in musicians. Figure 8 shows the fraction of positives identified with varying size of the seed set. Snuba is not able to identify the positives that contain the token ‘shuttle’ in directions and ‘composer’ in musicians. Henceforth, it achieves poor coverage over the positives in two datasets. DARWIN(HS) is able to identify majority of positives irrespective of the number of sentences used to initialize the pipeline. Snuba requires considerably more labelled sentences in musicians as compared to directions due to the presence of many diverse heuristics in the dataset, most of which have limited evidence in the seed subset. We observe similar performance gap between Snuba and DARWIN(HS) for other datasets.

This experiment validates that Snuba works well when the initial seed set has enough randomly chosen positives and lacks the ability to generalize to heuristics that have limited evidence. On the other hand, DARWIN(HS) is able to identify majority of the positives even when the pipeline is initialized with just 25 sentences and has good generalizability. To further evaluate DARWIN’s ability to identify positives, the following subsection considers a more challenging scenario where the pipeline is initialized with a single labeling heuristic or just two positive sentences.

4.3 Rule Coverage

Figures 6a-6d and 10a illustrate the fraction of positives identified by DARWIN and our baselines. We can observe that DARWIN(HS) has the most stable performance and outperforms other techniques. While DARWIN(U.S) occasionally outperforms DARWIN(HS), we observe that it fails to perform well on all datasets. In most cases (with an exception of cause-effect), the DARWIN(HS) achieves a coverage of 0.8 using less than 120 queries to the oracle. The cause-effect is known to be a tough benchmark in the NLP community as the best F-score reported by \cite{15} is 82% given complete access to the training set. Assuming that the oracle considers a majority vote by querying three crowd members and each query costs 2 cents \cite{20}, the DARWIN(HS) pipeline generates more than 80% of the positive labels with only $7.20. Figure 6d demonstrates the behavior for ‘Food’ intent in the tweets. We observed similar behavior for ‘Travel’ and ‘Career’ intents on this data set. We can observe that the other baselines do not perform well compared to DARWIN: The highP identifies heuristics with very small coverage as its candidates. Also note that the DARWIN(LS) algorithm shows a high progressive coverage initially but it converges to a very low coverage value because it is unable to identify rules that are semantically similar, but far away in the hierarchy. Overall, we recommend DARWIN(HS) for any practical application as it is more robust and works better than most of the techniques. On the other hand, DARWIN(LS) and DARWIN(U.S) variants work well in specific settings. DARWIN(LS) performs better than the other techniques when precise rules are present close to each other in the hierarchy and DARWIN(U.S) performs well in the presence of abundant labelled examples.

Figure 11 shows some the heuristics which are queried by the DARWIN(HS) algorithm. In the directions example, DARWIN(HS) started with ‘best way to get to’ and was able to traverse to ‘shuttle to’, which is quite distinct from the

\footnote{https://spacy.io/models/en#en_core_web_lg}

\footnote{In this experiment, we do not start with a single labeling heuristic as Snuba achieves a very small coverage as it fails to obtain enough positive instance due to the high degree of imbalance in these datasets.

\footnote{These are standard assumptions in crowdsourcing platforms eg. figure-eight. We used the same cost model to collect labels for directions.}
initial seed rule. The choice of 'to the hotel from' by the algorithm provides some evidence that 'shuttle to' is also a good rule since the phrases often co-occur together in positive instances. In the cause-effect example, the traversal is relatively simple as the algorithm generalizes the initial rule first and as soon as it reaches the noisy and unhelpful rule 'by', it again specializes to 'triggered by' which is again a precise rule. In addition to these simpler heuristics, DARWIN identified more complex heuristics for professions like '/is/NOUN ∧ job', among others.

4.4 Quality of the Classifier

This section compares the quality of the classifier generated using the labels identified by DARWIN. Figure 6e-6h and 10b show that DARWIN(HS) dominates other techniques over all the datasets. The active learning technique suffers from poor F-score initially and improves gradually. Since AL generates very few training examples, the trained classifier is highly unstable and shows jittery F-score. The KS approach shows similar performance and performs comparable to AL. On the other hand, DARWIN based pipelines are much more stable in terms of F-score. The classifier that was trained with the labeled data generated by DARWIN pipelines always maintains a high precision. It is interesting to note that reports the maximum F-score for food intent to be 0.54, as compared to 0.84 by DARWIN. The classifier generated by DARWIN achieved an F-score above 0.8 for other intents like 'Travel' and 'Career' too while reports a maximum F-score of 0.58 for these intents.

4.5 Additional Experiments

To provide better insights into DARWIN’s performance, we have conducted a series of experiments to evaluate (1) how efficient the framework is in terms of the time required to obtain labels, (2) how much noise-aware models (trained by Snorkel) can improve the classification results, (3) how well human annotators approximate our notation oracles. Due to space limitations, we present the effect of varying seed rules and parameters in the Appendix.

Efficiency in Label Collection. As we demonstrated, DARWIN identifies majority of the positive instances in all the datasets using roughly 100 queries. The time taken to generate the index structure for all the datasets was less than 5 minutes. The hierarchy generation phase then iterates over the index to identify the candidate rules. This phase takes less 15 minutes for a corpus of 100K.

Since the LocalSearch algorithm does not require the index to be pre-computed and generates candidates on the fly, it runs in less than 45 minutes for all datasets. HybridSearch and UniversalSearch traversal algorithms require 60-90 minutes on smaller datasets (i.e., directions, musicians and cause-effect) and about 2 hour and 45 minutes on professions. The major bottleneck in this process is the time taken by the classifier to make a prediction for all instances in the corpus (It takes roughly 25 minutes for one round of training and testing on the professions dataset). We implemented a simple optimization where we evaluated a sentences only if it had a confidence score more than 0.3 in the previous iteration and only evaluated instances that didn’t satisfy this constraint once every three iterations. This heuristic helped us reduce the running time from 2 hours and 45 minutes to 65 minutes for the professions dataset. The total running time does not grow linearly with the size of dataset because most of the components use the classifier to identify the positives. These candidate positives are used for hierarchy generation and traversal. Hence, the running time grows
Table 2: Performance of DARWIN with Snorkel

	M	C	D	F
DARWIN	0.91	0.79	0.89	0.87
DARWIN+Snorkel	0.82	0.78	0.97	0.87

Table 2: Performance of DARWIN with Snorkel (M=musicians,C=cause-effect,D=directions,F=food-tweet)

early with positive set size but not with dataset size (after using the above mentioned optimization).

Training noise-aware classifiers. One of the recent developments in weak-supervision paradigms has been emergence of frameworks such as Snorkel [12] which are designed to de-noise the generated labels and train noise-aware classifiers. In this experiment, we direct the set of rules identified by DARWIN to Snorkel, and compare the quality of the noise-aware classifier against a classifier trained directly on the labels generated by DARWIN. Table 2 summarizes the F-score that two classifiers have obtained on our datasets. We can observe that in most cases, using Snorkel does not yield any improvements. This is mainly because in many of these datasets, the rules generated by DARWIN already exhibit a low degree of noise and a good coverage and thus there is almost no room for improvements. Nevertheless, we can see that on some datasets such as directions using Snorkel can be quite beneficial.

Performance of human annotators. Clearly, DARWIN’s performance heavily relies on the quality of responses it receives from the annotators. To study how well human annotators perform, we ran an experimental study on Figure-eight crowdsourcing platform for directions dataset. Labels were collected for 2600 heuristics. Each annotator was paid 2 cents per a single rule evaluation and three evaluations per rule were collected. A manual inspection of the results reveals that annotators were able to capture most of the precise heuristics such as ‘best way to get there’, ‘shuttle from’, ‘across the street from’, ‘airport to hotel’, and etc. Overall, we found less than 10 false positives in the 69 positive heuristics identified by the crowd labels. These erroneous responses were due to the fact that the 5 matching sentences presented to the annotator sometimes can have 3 or 4 positive instances by chance which confuses the annotators. Presenting more samples lowers the error rate. Interestingly, DARWIN often rates these heuristics lower in preference to query as it can analyze the complete coverage set, and mitigate such errors by considering the entire distribution of instances. The annotators took 23 sec on average to label a heuristic query. For 100 queries, DARWIN generates all the labels in less than 40 min of human effort. This time can further be reduced by asking various questions in parallel to different crowd members.

5. RELATED WORK

To the best of our knowledge, DARWIN is the first system that assists annotators to discover rules under any desired rule grammar for rapid labeling of text data. Our work is related to studies in areas of weak supervision, crowdsourcing, and the intersection of the two which we discuss next.

Weak Supervision. There are multiple existing approaches for generating labels in weakly supervised settings. Some techniques rely on the notion of distant supervision where the labels are inferred using an external knowledge base [10, 27]. One notable example is a system named Snuba [17] which generates labeling rules based on an existing labeled dataset. In contrast to these systems, DARWIN is designed for scenarios where no additional sources of information are available. In such cases, it is necessary to rely on annotators to write labeling rules. While using expert-written rules have proven to be highly effective in many settings [12], there is limited work on how to facilitate the process of writing or discovering high-quality rules. One interesting example is Babble Labble [6], a labeling tool that allows annotators to explain (in natural language form) why they have assigned a label to a given data point. These explanations are then transformed into labeling rules. While Babble Labble simplifies the rule writing process, it only handles a single internal rule language. On the other hand, DARWIN allows experts to pick their desired rule language depending on the complexity and the dynamics of the task at hand.

There have been several studies on utilizing the weakly-supervised labels in an optimal way. Snorkel [12] and Coral [16] are recent examples of systems (based on the data programming paradigm) that de-noise and utilize the labels collected via weak supervision. Similarly, there are numerous data management problems spanning data fusion [2, 13] and truth discovery [9], which focus on identifying reliable sources of data. Many recent studies in data integration have also explored techniques that handle error in crowd answers [3, 5]. Note that DARWIN is a framework for discovering labeling rules which goes hand-in-hand with the aforementioned systems since DARWIN’s generated rules can be further processed using these de-noising techniques to achieve better results.

Crowdsourcing Frameworks. There has been many studies on devising oracle based abstractions that handle annotations from a crowd and minimize the noise in answers [20, 21]. Perhaps, more relevant to our work, are existing studies on how labeling rules can be verified with the help of the crowd. One recent example is a system named CrowdGame [22] which validates a rule by showing either the rule or its matching instances to the annotators. The authors demonstrate that their proposed game-based techniques yields the best results for rule verification. Unlike DARWIN CrowdGame assumes a pre-existing (manageable) set of possible rules from which the best rule should be selected. DARWIN, on the other hand, has no such assumption and has to create a promising set of rules from the rule grammar. Additionally, the game-based approach to annotate a rule can be modeled as an Oracle in DARWIN.

6. CONCLUSION

We present DARWIN, an interactive end-to-end system that enables annotators to rapidly label text datasets by identifying precise labeling rules for the task at hand. DARWIN compiles the semantic and syntactic patterns in the corpus to generate a set of candidate heuristics that are highly likely to capture the positives instances in the corpus. The set of candidate heuristics are organized into a hierarchy which enables DARWIN to quickly determine which heuristic should be presented to the annotators for verification. Our experiments demonstrate the superior performance of DARWIN in wide range of labeling tasks spanning intent classification, entity extraction and relationship extraction.
7. REFERENCES

[1] E. Alfonseca, K. Filippova, J.-Y. Delort, and G. Garrido. Pattern learning for relation extraction with a hierarchical topic model. In ACL, 2012.

[2] X. L. Dong and D. Srivastava. Big data integration. Synthesis Lectures on Data Management, 7(1), 2015.

[3] S. Galhotra, D. Firmani, B. Saha, and D. Srivastava. Robust entity resolution using random graphs. In SIGMOD, 2018.

[4] A. Ghosh, S. Kale, and P. McAfee. Who moderates the moderators?: crowdsourcing abuse detection in user-generated content. In Proceedings of the 12th ACM conference on Electronic commerce, 2011.

[5] A. Gruenheid, B. Nushi, T. Kraska, W. Gatterbauer, and D. Kossmann. Fault-tolerant entity resolution with the crowd. arXiv preprint arXiv:1512.00537, 2015.

[6] B. Hancock, P. Varma, S. Wang, M. Bringmann, P. Liang, and C. Ré. Training classifiers with natural language explanations. arXiv preprint arXiv:1805.03818, 2018.

[7] W. Hoeffding. Probability inequalities for sums of bounded random variables. In The Collected Works of Wassily Hoeffding, pages 409–426. Springer, 1994.

[8] Y. Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.

[9] Y. Li, J. Gao, C. Meng, Q. Li, L. Su, B. Zhao, W. Fan, and J. Han. A survey on truth discovery. ACM SIGKDD Explorations Newsletter, 17(2), 2016.

[10] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation extraction without labeled data. In ACL/IJCNLP, 2009.

[11] S. Petrov, D. Das, and R. McDonald. A universal part-of-speech tagset. arXiv preprint arXiv:1104.2086, 2011.

[12] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré. Snorkel: Rapid training data creation with weak supervision. PVLDB, 11(3), 2017.

[13] T. Rekatsinas, M. Joglekar, H. Garcia-Molina, A. Parameswaran, and C. Ré. Slimfast: Guaranteed results for data fusion and source reliability. In SIGMOD, 2017.

[14] B. Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2012.

[15] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. Semantic compositionality through recursive matrix-vector spaces. In EMNLP-CoNLL, 2012.

[16] P. Varma, B. D. He, P. Bajaj, N. Khandwala, I. Banerjee, D. L. Rubin, and C. Ré. Inferring generative model structure with static analysis. In NIPS, 2017.

[17] P. Varma and C. Ré. Snuba: Automating weak supervision to label training data. PVLDB, 2019.

[18] J. Wang, G. Cong, W. X. Zhao, and X. Li. Mining user intents in twitter: A semi-supervised approach to inferring intent categories for tweets, 2015.

[19] X. Wang, A. Feng, B. Golshan, A. Halevy, G. Mihaila, H. Oiwa, and W.-C. Tan. Scalable semantic querying of text. PVLDB, 11(9), 2018.

[20] P. Welinder, S. Branson, S. J. Belongie, and P. Perona. The multidimensional wisdom of crowds. In NIPS, 2010.

[21] F. Yang, Z. Yang, and W. W. Cohen. Differentiable learning of logical rules for knowledge base reasoning. In NIPS, 2017.

[22] J. Yang, J. Fan, Z. Wei, G. Li, T. Liu, and X. Du. Cost-effective data annotation using game-based crowdsourcing, 2018.
APPENDIX

A. PROOF OF LEMMA 4

Proof. Expected score of the heuristic function is

\[E[\sum_{s \in \mathcal{C}_r} X_s] = \sum_{s \in \mathcal{C}_r} \mu_s \]

\[= \sum_{s \in \mathcal{C}_r \cap P} \mu_s + \sum_{s \in \mathcal{C}_r \setminus P} \mu_s \]

\[\leq \sum_{s \in \mathcal{C}_r \cap P} (\beta + (1 - \theta)(1 - \beta)) \]

\[+ \sum_{s \in \mathcal{C}_r \setminus P} (\beta' + (1 - \theta)(1 - \beta')) \]

\[= (\beta + (1 - \theta)(1 - \beta))m_{\mathcal{C}_r} \]

\[+ (1 - p)m_{\mathcal{C}_r} (\beta' + (1 - \theta)(1 - \beta')) \]

\[\leq (\beta + (1 - \theta)(1 - \beta))m_{\mathcal{C}_r} \]

\[\leq 2e^{-2\kappa^2n^2/|\mathcal{C}_r|} \]

\[= 2e^{-2\kappa^2(\beta + (1 - \theta)(1 - \beta))^2/|\mathcal{C}_r|} \]

\[= 2e^{-4\log n} = \frac{2}{n^2} \]

This shows that \(\frac{1}{|\mathcal{C}_r|} \sum_{s \in \mathcal{C}_r} X_s \) is smaller than \((1 + \epsilon)(\beta + (1 - \theta)(1 - \beta))|\mathcal{C}_r| \) with a probability more than \(1 - \frac{2}{n^2} \).

B. PROOF OF LEMMA 5

Proof. The score of heuristic function \(\tau \) is \(\sum_{s \in \mathcal{C}_r} X_s \). The expected value of the score is calculated in lemma 4. Using Hoeffding’s inequality,

\[P_r \left[\frac{1}{|\mathcal{C}_r|} \sum_{s \in \mathcal{C}_r} X_s \leq (1 + \epsilon)\mu_r/|\mathcal{C}_r| \right] \leq 2e^{-2\kappa^2n^2/|\mathcal{C}_r|} \]

\[= 2e^{-2\kappa^2(\beta + (1 - \theta)(1 - \beta))^2/|\mathcal{C}_r|} \]

\[= 2e^{-4\log n} = \frac{2}{n^2} \]

This shows that \(\frac{1}{|\mathcal{C}_r|} \sum_{s \in \mathcal{C}_r} X_s \) is smaller than \((1 + \epsilon)(\beta + (1 - \theta)(1 - \beta))|\mathcal{C}_r| \) with a probability more than \(1 - \frac{2}{n^2} \).

C. PROOF OF LEMMA 6

Proof. Using Lemma 3 and 5, we can observe that the calculated benefit of heuristic \(h_1 \) is at least \((1 - \epsilon)\theta\beta|\mathcal{C}_{r_1}| \) with a probability of \(1 - \frac{2}{n^2} \). Similarly, the score of \(r_2 \) is almost \((1 - \epsilon)(\beta + (1 - \theta)(1 - \beta))|\mathcal{C}_{r_2}| \) with a probability of \(1 - \frac{2}{n^2} \). This shows that

\[\text{score}(r_1) > \text{score}(r_2) \quad (1) \]

\[(1 - \epsilon)\theta\beta|\mathcal{C}_{r_1}| > (1 + \epsilon)(\beta + (1 - \theta)(1 - \beta))|\mathcal{C}_{r_2}| \quad (2) \]

\[|\mathcal{C}_{r_1}|/|\mathcal{C}_{r_2}| > \frac{1 + \epsilon}{(1 - \epsilon)\theta\beta} \quad (3) \]

\[|\mathcal{C}_{r_1}|/|\mathcal{C}_{r_2}| > \alpha \quad (4) \]

where \(\alpha \) is a constant.

D. ADDITIONAL EXPERIMENTS

Sensitivity to HybridSearch’s traversal parameters. Here, we study to what extent Darwin's performance is sensitive to parameter \(\tau \) in the HybridSearch traversal algorithm. Recall that parameter \(\tau \) determines how often the HybridSearch algorithm switches between exploiting the local structure of the hierarchy as opposed to evaluating all possible candidates using the classifier. Figure 12 shows that Darwin(HS) performs very similar on varying \(\tau \). The solution quality tends to improve slightly on increasing \(\tau \) because the effective rules for the musicians dataset are not close to each other in the hierarchy. However, note that choosing large values of \(\tau \) can affect the efficiency of the pipeline. More precisely, large values of \(\tau \) force the HybridSearch system to rely on its internal classifier to evaluate all rule candidates for too many steps which can be quite time consuming.

Sensitivity to seed rule. This experiment establishes that Darwin has a robust performance given different types of input seed rule. Focusing on the musicians dataset, we initialize Darwin with the following seed rules. Rule 1 is the keyword ‘composer’ stating that any sentence containing this word mentions a musician. Rule 2 is the keyword ‘piano’ and finally Rule 3 is the sentence ‘Beethoven taught piano to the daughters of Hungarian Countess Anna Brunsvik.’. Note that Rule 2 is an extremely generalized version of Rule 3. Figure 13 compares the performance of Darwin(HS) for all three seed rules. Darwin performs equally well on three different types of input seed rules. We can observe that for Rule 3, Darwin requires the initial 8 queries to generalize the seed rule, and as soon as it identifies a rule with high coverage, it performs very similar to the other seed rules.

Sensitivity to number of generated candidates. One of the parameters of the Darwin framework is the number of candidates that gets generated by the candidate-rule generation component. In our experiments, Darwin generates 10K candidates rules with high coverage and organizes them into an index. The goal is to make sure the set of generated candidates contain some (if not all) of the precise rules. Choosing a large value for the index size would satisfy this objective but affects the efficiency and increases the number of candidates that UniversalSearch and HybridSearch algorithms need to consider. We observed that generating 10K candidates per iteration helped Darwin identify precise candidate rules. Figure 13 shows that the performance of Darwin(HS) algorithm is consistently similar for different number of candidate rules generated.

Sensitivity to classifier quality. Figure 14 compares...
Figure 14: Effect of classifier quality on DARWIN(HS) (on musicians dataset)

The performance of HybridSearch strategy on musicians dataset by varying the number of epochs for which the neural network classifier is trained. With more epochs, the classifier tends to overfit more to the training data. We measure the number of questions from DARWIN(HS) to the oracle in order to label at least 75% of the positive sentences. It is evident that the DARWIN performance is robust to change in behavior of the classifier.