B Physics at CDF

Jonas Rademacker
on behalf of the CDF Collaboration

Department of Physics, 1 Keble Road,
Oxford OX1 3RH, UK

Due to the large $b\bar{b}$ cross section at 1.96 TeV $p - \bar{p}$ collisions, the Tevatron is currently the most copious source of B hadrons. Recent detector upgrades for Run II have made these more accessible, allowing for a wide range of B and $Q\bar{Q}$ physics with B hadrons of all flavours. In this paper we present B-physics results, and, using the versatile hadronic Two Track Trigger, a search for $\Xi(1860)$, from up to 240 pb$^{-1}$ of data.

1 Introduction

CDF has been taking data at Tevatron Run IIa for about two years. For $p\bar{p}$ collisions at 1.96 TeV, the $b\bar{b}$ production cross section is $\sigma_{b\bar{b}} \sim 0.1$ mb. CDF has undergone major upgrades for Run II, optimising its B physics potential. The upgrades most relevant for CDF’s B physics program include a new tracking system with a new, faster drift chamber, and new Silicon vertex trackers providing excellent proper time resolution, sufficient to resolve the expected fast oscillations in the B_0 system. The excellent impact parameter resolution is used for triggering on B-events. The muon coverage has been increased. A di-muon trigger efficiently finds $B \to J/\psi X$ decays.

Here we present some of the wide range of analyses of the current CDF B physics program, which includes a wide range of studies, involving all types of B-hadrons, including leptonic as well as fully hadronic decays of $B_d, B^+, B_s, B_c, \Lambda_b$. The impact-parameter based trigger also provides a very large sample of long-lived Ξ^-. This has been used for a sensitive search for $\Xi^0(1860) \to \Xi^- \pi^+$ and $\Xi^{--} \to \Xi^- \pi^-$, which have been observed at NA491 and are often interpreted as pentaquark states.
Table 1: Lifetimes and lifetime ratios in Run II from $B^+_s \rightarrow J/\psi(\mu^+\mu^-)K^+$ (240 pb$^{-1}$), $B^0_d \rightarrow J/\psi(\mu^+\mu^-)K^{(*)0}$ (240 pb$^{-1}$), $B^0_s \rightarrow J/\psi(\mu^+\mu^-)\phi$ (240 pb$^{-1}$), $\Lambda_b \rightarrow J/\psi(\mu^+\mu^-)\Lambda$ (65 pb$^{-1}$) compared with world average (HFAG results for PDG 04, and, for Λ_b, results for PDG 02), Run I results and HQE predictions. Run I results are from all channels combined, Run II results from fully reconstructed $J/\psi(\mu\mu)X$ only.

Channel	Result (ps)
$B^+_s \rightarrow J/\psi(\mu^+\mu^-)K^+$	$1.662 \pm 0.022 \pm 0.008$
$B^0_d \rightarrow J/\psi(\mu^+\mu^-)K^{(*)0}$	$1.539 \pm 0.051 \pm 0.008$
$B^0_s \rightarrow J/\psi(\mu^+\mu^-)\phi$	$1.369 \pm 0.100^{+0.008}_{-0.010}$
$\Lambda_b \rightarrow J/\psi(\mu^+\mu^-)\Lambda$	$1.25 \pm 0.25 \pm 0.10$

Note that the Run II result for $B_s \rightarrow J/\psi\phi$ is dominated by the (shorter) lifetime of the CP-even component.

2 Results from the Di-Muon Trigger

2.1 b Production Cross Section

The inclusive b-hadron production cross-section is measured from the b-fraction in the reconstructed J/ψ sample up to February 2002 (37 pb$^{-1}$). Combining this number with the inclusive $J/\psi X$ cross section, and the appropriate branching fractions, allows to calculate the absolute b production cross section. The long lifetime of B-hadrons is used to discriminate between prompt J/ψ and J/ψ from B-hadron decays. The total single b-quark cross section integrated over one unit of rapidity is

$$\sigma(p\bar{p} \rightarrow \bar{b}X : |y| < 1.0) = 29.4 \pm 0.6 \text{(stat)} \pm 6.2 \text{(sys)} \mu\text{b}$$

where the largest contributions to the systematic error come from uncertainties in the acceptance and the inclusive B-hadron to J/ψ branching ratio.

2.2 Lifetimes

Life time measurements in the heavy quark sector gain specific significance due to the precise predictions of Heavy Quark Expansion thus providing a testing ground for this theoretical tool that is frequently used, for example to relate experimental measurements to CKM parameters like Γ_d to $|V_{tb}|$ or $\Delta m_s/\Delta m_d$ to $|V_{ts}/V_{td}|$.

Fully reconstructed hadronic $B \rightarrow J/\psi X$ decays, found with CDF’s di-muon trigger, provide a clean method for measuring B lifetimes, free from the systematic uncertainties associated with semileptonic decays due to the missing momentum of the ν, and free from the lifetime bias in impact parameter-based trigger samples. Of specific interest at CDF are the lifetimes of the B_s and Λ_b, which are currently produced in large quantities only at the Tevatron. Lifetime results, and lifetime ratios, compared to theory predictions, Run I results, and world averages, are summarised in Table 1.

2.3 CP content of $B_s \rightarrow J/\psi\phi$

The measurement of the average lifetime in $B_s \rightarrow J/\psi\phi$ constitutes a first step towards a measurement of ΔT_{av}, the width difference between the long and short lived CP eigenstates, which has some sensitivity to new physics, especially when compared to the mass difference, Δm_s, which is also going to be measured at the Tevatron. The CP-even and odd contribution in $B_s \rightarrow J/\psi\phi$ can be disentangled by analysing the decay in terms of transversity angles, leading
Table 2: Transversity-angle analysis in \(B_s \to J/\psi \phi \) and \(B_d \to J/\psi K^{*0} \). \(A_0 \) and \(A_\parallel \) are CP even decay amplitudes, \(A_\perp \) is CP-odd, normalised such that \(|A_0|^2 + |A_\parallel|^2 + |A_\perp|^2 \approx 1 \).

\(B_s \to J/\psi \phi \)	\(B_d \to J/\psi K^{*0} \)				
\(A_0 = 0.762 \pm 0.044 \pm 0.07 \)	\(A_0 = 0.796 \pm 0.022 \pm 0.012 \)				
\(A_\parallel = (0.433 \pm 0.199 \pm 0.011) e^{i(2.08 \pm 0.51 \pm 0.06)} \)	\(A_\parallel = (0.433 \pm 0.037 \pm 0.014) e^{i(3.10 \pm 0.50 \pm 0.06)} \)				
\(A_\perp	= 0.481 \pm 0.104 \pm 0.025 \)	\(A_\perp	= 0.422 \pm 0.050 \pm 0.027 \)

(a) Discriminating Variables: Mass, lifetime, \(\Delta \phi \) and isolation \((p_t(\mu) \text{ divided by all } p_t \text{ in a cone around the } \mu)\). (b) 1 event found in overlap of search windows - consistent with bkg estimate of \(1.05 \pm 0.30 \) (\(B_d \)), \(1.07 \pm 0.31 \) (\(B_s \)), \(1.75 \pm 0.34 \) (combined). (c) Projected and current sensitivity to \(B_s \to \mu \mu \) at CDF, not including expected improvements due to increased \(\mu \) coverage.

Figure 1: Search for \(B_{d,s} \to \mu^+ \mu^- \)

The CDF Run II results for \(192 \text{ pb}^{-1} \) are shown in Table 2 for both \(B_s \to J/\psi \phi \) and, as a cross check, \(B_d \to J/\psi K^{*0} \). The \(B_d \) results are consistent with those from BaBar \(^8\) and CLEO \(^9\). The phases of the amplitudes provide an interesting test of factorisation, which predicts the relative phases to be either 0 or \(\pi \). The amplitude measurements imply a CP-even content in \(B_s \to J/\psi \phi \) of \(77\% \pm 10\% \). Work is in progress to combine this technique with the lifetime analysis for a \(\Delta \Gamma_s \) measurement.

2.4 Search for New Physics with \(B_{d,s} \to \mu^+ \mu^- \)

While in the Standard Model, the branching ratio of \(B_{d,s} \to \mu^+ \mu^- \) is \(\mathcal{O}(10^{-9}) \), which is below the sensitivity of the Tevatron, many New Physics models predict enhancements of this mode by several orders of magnitude, for example mSUGRA \(^1\) and SO(10) Symmetry breaking models \(^2\). In mSUGRA, the \(B_{d,s} \to \mu^+ \mu^- \) branching ratio is approximately \(10^{-6} \cdot \tan^6 \beta \frac{M_1^2 \text{ GeV}^4}{(M_1^2 + M_0^2)^3} \), which increases rapidly with large \(\tan \beta \).

The search for \(B_{d,s} \to \mu^+ \mu^- \) was performed as a blind analysis. The cuts were optimised using Monte-Carlo generated signal events and background events from real data. Signal and background distributions for the most important cuts are shown in Figure 1 (a). After all cuts are applied, \(1.05 \pm 0.30 \) background events are expected in the \(B_d \) mass window and \(1.07 \pm 0.31 \)
Figure 2: The CDF hadronic 2-Track-Trigger. $\Delta \phi$ is the angle between the tracks in the transverse plane. IP is the 2-D impact parameter of each of the two tracks. L_{xy} is the decay length in the transverse plane. The table on the left lists the trigger requirements. The figure on the right shows the IP resolution at trigger level.

| L1: 2 XFT tracks, $p_t > 2$ GeV, $\Delta \phi < 135^\circ$, $p_{t1} + p_{t2} > 5.5$ GeV. |
| L2: |
2-body:	Multi-body:
e.g. $B^0 \rightarrow \pi\pi$	e.g. $B^0_s \rightarrow D_s\pi$
$100 \mu m < IP < 1$ mm	$120 \mu m < IP < 1$ mm
$20^\circ < \Delta \phi < 135^\circ$	$2^\circ < \Delta \phi < 90^\circ$
$L_{xy} > 200 \mu m$	$L_{xy} > 200 \mu m$
IP of $B < 140 \mu m$	-
L3: Same with refined tracks & mass cuts.	

B_s mass window, both are 200 MeV wide, and overlap. The number of background events predicted for the combined mass window is 1.75 ± 0.34. Several cross checks in real data have been performed before unblinding, for example using wrong-sign di-muon events ($\mu^+\mu^+$ and $\mu^-\mu^-$), which yielded consistent results. The total number of events found after unblinding is 1 event in the overlap region of the two mass windows, as shown in Figure I (b), resulting in the following 90% confidence limits:

$$\text{BR}(B_d \rightarrow \mu^+\mu^-) < 1.5 \cdot 10^{-7} \ (90\%\text{CL})$$

$$\text{BR}(B_s \rightarrow \mu^+\mu^-) < 5.8 \cdot 10^{-7} \ (90\%\text{CL})$$

which is, for the B_d, similar to the results from BaBar and BELLE, and more than a factor of 3 better than the previous best limit for $B_s \rightarrow \mu\mu$, which was provided by CDF Run I. The projected performance as a function of integrated luminosity, ignoring future improvements due to the expected increase in muon coverage, is shown in Figure I (c).

3 Results from the Impact Parameter-Based Hadronic B Trigger

3.1 CDF’s Two Track Trigger

One of the most innovative improvements for B physics at CDF is the large-bandwidth hadron trigger, which triggers on the impact parameters of tracks at Level 2. The trigger requirements for the two scenarios, 2-body and multi-body B decays, are given in Figure 2. CDF’s Two Track Trigger provides a unique sample of hadronic bottom and charm decays, that would otherwise be inaccessible, for example $B^0 \rightarrow \pi\pi$ and $B_s \rightarrow D_s\pi$.

3.2 $B \rightarrow hh$

Figure 3 (a) shows the invariant mass of reconstructed B to two-hadron events (assuming the hadrons are pions). About 900 events are found. In order to discriminate the different decay modes, pions and kaons are separated using their specific energy loss, dE/dx. The π/K discrimination using dE/dx has been measured using D^* decays and has been found to be 1.16σ, as shown in figure 3 (b). Further discrimination between the different $B \rightarrow hh$ decay modes is achieved using decay kinematics, as shown in 3 (c). The plot shows the reconstructed B mass in Monte Carlo simulated $B \rightarrow hh$ events vs $(1 - p_1/p_2) \cdot q_1$ for different decay modes. Here, p_1 is the smaller of the two momenta, q_1 is the charge of the particle with momentum p_1, and the mass is calculated assuming the decay products are pions. This led to the first observation of the decay
vanish in the Standard Model: This allows a precise measurement of time-integrated CP asymmetries, which are expected to be reconstructed D∗.

The Two Track Trigger also provides a huge charm signal, where the same methods can be applied. In the analysis presented here, only D∗ mesons from D∗ decays are used, which has two advantages: a very clean signal due to the highly effective cut on the difference between the reconstructed D∗ and D0 mass, and the flavour of the D0 is known from the charge of the D∗.

This allows a precise measurement of time-integrated CP asymmetries, which are expected to vanish in the Standard Model:

- \(A_{CP}^{KK} = \frac{\Gamma(B_s^0 \rightarrow K^+K^-) - \Gamma(B_s^0 \rightarrow K^0\pi^0)}{\Gamma(B_s^0 \rightarrow K^+K^-) + \Gamma(B_s^0 \rightarrow K^0\pi^0)} = 2.0% \pm 1.2% \pm 0.6% \)

- \(A_{CP}^{\pi\pi} = \frac{\Gamma(D^0 \rightarrow \pi^+\pi^-) - \Gamma(D^0 \rightarrow \pi^0\pi^0)}{\Gamma(D^0 \rightarrow \pi^+\pi^-) + \Gamma(D^0 \rightarrow \pi^0\pi^0)} = 1.0% \pm 1.2% \pm 0.6% \)

Branching ratios of D0 mesons are also of some interest, for example \(\frac{\Gamma(D^0 \rightarrow K^+K^-)}{\Gamma(D^0 \rightarrow \pi^+\pi^-)} \), which is consistently larger experimentally, than theoretically predicted. The following summarises the ratios of B.R. results:

- \(\frac{\Gamma(D^0 \rightarrow K^+K^-)}{\Gamma(D^0 \rightarrow \pi^+\pi^-)} = 9.96% \pm 0.11% \pm 0.12% \)

- \(\frac{\Gamma(D^0 \rightarrow \pi^+\pi^-)}{\Gamma(D^0 \rightarrow K^+K^-)} = 3.608% \pm 0.054% \pm 0.12% \)

- \(\frac{\Gamma(D^0 \rightarrow K^0\pi^0)}{\Gamma(D^0 \rightarrow \pi^+\pi^-)} = 2.762% \pm 0.040% \pm 0.034% \)

B\(_s^0 \rightarrow K^+K^-\). A summary of the results from analysing B → hh events in 65pb\(^{-1}\) of data are given below:

- First observation of B\(_s^0 \rightarrow KK\): 90 ± 24 out of 300 B → hh events.
- Search for \(\Omega_P \) in time-integrated rates
 \[A_{CP} = \frac{\Gamma(B_d^0 \rightarrow K^-\pi^+)}{\Gamma(B_d^0 \rightarrow K^-\pi^+)+\Gamma(B_d^0 \rightarrow K^+\pi^-)} = 0.02 \pm 0.15 \pm 0.017 \]
- Ratios of B.R.:
 \[\frac{\Gamma(B_s^0 \rightarrow \pi^+\pi^-)}{\Gamma(B_s^0 \rightarrow K^+K^-)} = 0.26 \pm 0.11 \pm 0.06 \]
 \[\frac{\Gamma(B_s^0 \rightarrow K^+K^-)}{\Gamma(B_s^0 \rightarrow K^0\pi^0)} = 2.71 \pm 0.73 \pm 0.35(f_s/f_d) \pm 0.81 \]

where \(f_s/f_d \) refers to the uncertainty due to the B\(_s^0\)/B\(_d\) production ratio.

Results for 195pb\(^{-1}\) should follow, soon. In the long term, these methods can be used to extract the CP-violating phase \(\gamma \) from a combined analysis of time-dependent decay rate asymmetries in B\(_d\) → \(\pi\pi \) and B\(_s^0 \rightarrow KK\).[13]

3.3 D\(_0^0 \rightarrow hh\)

The Two Track Trigger also provides a huge charm signal, where the same methods can be applied. In the analysis presented here, only D\(_0^0\) mesons from D\(*\) decays are used, which has two advantages: a very clean signal due to the highly effective cut on the difference between the reconstructed D\(*\) and D\(_0^0\) mass, and the flavour of the D\(_0^0\) is known from the charge of the D\(*\). This allows a precise measurement of time-integrated CP asymmetries, which are expected to vanish in the Standard Model:

- \(A_{CP}^{KK} = \frac{\Gamma(D^0 \rightarrow K^-\pi^+)}{\Gamma(D^0 \rightarrow K^-\pi^+)+\Gamma(D^0 \rightarrow K^+\pi^-)} = 2.0% \pm 1.2% \pm 0.6% \)

- \(A_{CP}^{\pi\pi} = \frac{\Gamma(D^0 \rightarrow \pi^+\pi^-) - \Gamma(D^0 \rightarrow \pi^0\pi^0)}{\Gamma(D^0 \rightarrow \pi^+\pi^-) + \Gamma(D^0 \rightarrow \pi^0\pi^0)} = 1.0% \pm 1.2% \pm 0.6% \)

Branching ratios of D\(_0^0\) mesons are also of some interest, for example \(\frac{\Gamma(D^0 \rightarrow K^+K^-)}{\Gamma(D^0 \rightarrow \pi^+\pi^-)} \), which is consistently larger experimentally, than theoretically predicted. The following summarises the ratios of B.R. results:

- \(\frac{\Gamma(D^0 \rightarrow K^+K^-)}{\Gamma(D^0 \rightarrow \pi^+\pi^-)} = 9.96% \pm 0.11% \pm 0.12% \)

- \(\frac{\Gamma(D^0 \rightarrow \pi^+\pi^-)}{\Gamma(D^0 \rightarrow K^+K^-)} = 3.608% \pm 0.054% \pm 0.12% \)

- \(\frac{\Gamma(D^0 \rightarrow K^0\pi^0)}{\Gamma(D^0 \rightarrow \pi^+\pi^-)} = 2.762% \pm 0.040% \pm 0.034% \)
3.4 \(B_s \rightarrow D_s \pi \)

The decay of \(B_s \) to the flavour-eigenstate \(D_s \pi \) is the “flagship mode” for \(B_s \) mixing at CDF. Being fully reconstructible (no missing \(\nu \)), it provides for excellent time resolution - in topologically similar decays, CDF currently achieves \(\sim 67 \text{ fs} \), and hopes to improve once the innermost Si layer has been fully commissioned and aligned. In \(119 \text{ pb}^{-1} \), \(84 \pm 11 \) \(B_s \rightarrow D_s \pi \) have been reconstructed with a signal to background ratio of \(\sim 2 \). The reconstruction efficiency has been increased since data taking has started and is now at \(\sim 1.6 \) events per \text{ pb}^{-1}. These data can be used to calculate the relative production \(\times \text{B.R.} \) in \(B_s \rightarrow D_s \pi \) and \(B_d \rightarrow D \pi \):

\[
\frac{f_s \cdot BR(B^0_s \rightarrow D^-_s \pi^+)}{f_d \cdot BR(B^0_d \rightarrow D^- \pi^+)} = 0.35 \pm 0.05 \pm 0.04 \pm 0.09(BR)
\]

where the last error is due to the uncertainty in the B.R. of the charm mesons.

3.5 \(B_d \) mixing

A further step towards measuring \(B_s \) mixing is to make the somewhat easier measurement in the \(B_d \) system and check for consistency with the well-established results from the B factories, and Run 1. About \(1k \) \(B_d \rightarrow J/\psi K^* \) and \(5k \) \(B_d \rightarrow D \pi \) events from \(270 \text{ pb}^{-1} \) were used for this measurement. The mass difference is extracted by measuring the oscillation frequency in time-dependent decay rate asymmetries. The asymmetries are between \(B \) decays that did not change flavour (e.g. \(B^0 \rightarrow \bar{D}^0 \pi^- \), neglecting Cabbibo suppressed decays), and those that did (e.g. \(B^0 \rightarrow D^0 \pi^+ \)). In the measurement presented here, the flavour of the \(B^0 \) at birth was determined using same-side tagging only, which is based on the correlation of the \(B^0 \) or \(\bar{B}^0 \) flavour at birth, and the charge of the pion produced alongside, picking up the “left over” \(d \) or \(\bar{d} \) quark. (The same principle can be applied to \(B_s \) mesons, using Kaon tags.) The tagging efficiency and dilution are measured using charged \(B \) decays. The tagging power for same-side pion tagging is

\[
\varepsilon D^2 = (1.0 \pm 0.5 \pm 0.1) \%
\]

where \(\varepsilon = (63 \pm 0.6)\% \) is the tagging efficiency (fraction of tagged events) and \(D = (12.4 \pm 3.3)\% \) the “dilution” defined as \(D \equiv (1 - 2\omega) \), where \(\omega \) is the mis-tag fraction. Note that a large “dilution”, according to this definition, is a good thing. The tagging power \(\varepsilon D^2 \) describes the statistical power of the tag: \(N \) events before tagging are statistically equivalent \(\varepsilon D^2 \times N \) perfectly tagged events. A simultaneous fit to the time-dependent decay rate asymmetries in \(B_d \rightarrow J/\psi K \) and \(B_d \rightarrow D \pi \), shown in Figure 4, yields for the mass difference in the \(B_d \) system:

\[
\Delta m_d = (0.55 \pm 0.10 \pm 0.01) \text{ ps}^{-1}
\]
Opposite side tagging In independent studies, other tagging methods have been investigated. Opposite side muon tagging yields a tagging power of $\varepsilon D^2 = (0.660 \pm 0.093)\%$, jet charge tagging $\varepsilon D^2 = (0.419 \pm 0.024(stat))\%$. Further taggers are under investigation.

3.6 Pentaquarks

The impact-parameter based trigger does not only provide large numbers of bottom and charm mesons, but of all long lived particles, including the Ξ^-. Combining this with a pion allows to search for the $\Xi^0(1860)$ and Ξ^{--} observed at NA49, which is often interpreted as a pentaquark.

CDF searches for the $\Xi^0(1860)$ and Ξ^{--} in the decay modes $\Xi^0(1860) \to \Xi^-\pi^+$ and $\Xi^{--} \to \Xi^-\pi^-$ with $\Xi^- \to \Lambda(p\pi)\pi^-$. The Ξ^- lives long enough to leave hits in the Si detector before decaying. Requiring hits from the Ξ^- in the Si provides a very efficient cut. Figure 5(a) shows the mass distribution a sample of 36,000 Ξ^-. The tiny background contribution, estimated from wrong-charge combinations, is superimposed as the shaded histogram.

In a second step, the Ξ^- is combined with a π^\pm. Figure 5(b) shows the invariant mass distribution for same charge (shaded histogram) and opposite charge (black crosses) combinations of Ξ^- and pions. The line represents a fit to the opposite charge mass distribution. There is a clear peak at the well-known $\Xi^0(1530)$ resonance, that is used as a reference in this analysis. However, neither the same sign nor the opposite sign combination show any evidence of a resonance at 1860 MeV. As a cross check, the analysis was repeated using the Jet20 trigger sample, that is not affected by an impact parameter cut. For 4k Ξ^- in the Jet20 sample, no evidence of a $\Xi(1860)$ was found. The 95% upper confidence limits for the ratio of $\Xi(1860)$ to the known $\Xi^0(1530)$ are:

$\Xi^-\pi^+(\text{search}) / \Xi(1530)(\text{control})$	0.07
$\Xi^-\pi^-(\text{search}) / \Xi(1530)(\text{control})$	0.04

4 Conclusion

Large numbers of B hadrons of all flavours are produced at the Tevatron. CDF has measured the b production cross section in $b \to J/\psi X$ events. Fully reconstructed $B \to J/\psi X$ events have been used for precise lifetime measurements of B_d, B_s and Λ_b hadrons, which will provide a test of Heavy Quark Expansion. The CP content of $B_s \to J/\psi\phi$ has been measured using a transversity angle analysis, which will be combined with the lifetime measurement to extract $\Delta \Gamma_s$. Data from
the leptonic B trigger were also used to obtain the best current limit on the B.R. of $B_s \to \mu\mu$, one of the most sensitive probes of new physics at the Tevatron.

CDF’s high bandwidth Two Track Trigger provides a unique sample of hadronic B and Charm decays, including $B \to hh$, which led to the first observation of $B_s \to KK$, and will be used for CP violation studies as more data become available. First steps towards a B_s mixing measurement have been taken with the reconstruction of $B_s \to D_s\pi$ events, and mixing measurements in the B_d system.

The huge sample of Ξ^- found in the Two Track Trigger has been used for a sensitive search for $\Xi(1860)$, which was not found. The B triggers will be used for many more pentaquark searches, especially those decaying to J/ψ or D and baryons.

References

1. C. Alt et al. [NA49 Collaboration], Phys. Rev. Lett. 92, 042003 (2004) [arXiv:hep-ex/0310014]
2. N. Uraltsev, [arXiv:hep-ph/9804275]
3. M. A. Shifman, [arXiv:hep-ph/0009131]
4. Heavy Flavour Averaging Group. Method:
 D. Abbaneo et al. [ALEPH, CDF, DELPHI, L3, OPAL, SLD], June 2001, CERN-EP/2001-050, [arXiv:hep-ex/0112028] Results for PDG-2004: http://www.slac.stanford.edu/xorg/hfag/osc/PDG2004/index.html Results for PDG-2002: http://lepbosec.web.cern.ch/LEPBOSC/combined_results/PDG2002/
5. F. Abe et al. [CDF] Phys. Rev. D 57 (1998) 5382 Phys. Rev. D57, 5382; Phys. Rev. Lett. 76, (1996) 4462; Phys. Rev. D 58 (1998) 092002; Phys. Rev. Lett. 77, (1996) 1945; Phys. Rev. D 57, (1998) 5382; Phys. Rev. Lett. 77 (1996) 1439; See also: http://www-cdf.fnal.gov/physics/new/bottom/blife_summary/blife_summary.html
6. M Battaglia, AJ Buras, P Gambino and A Stocchi, eds. Proceedings of the First Workshop on the CKM Unitarity Triangle, CERN, Feb 2002, [arXiv:hep-ph/0304132]
7. A. S. Dighe, I. Dunietz, H. J. Lipkin and J. L. Rosner, Phys. Lett. B 369, 144 (1996) [arXiv:hep-ph/9511363]
8. B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 87 (2001) 241801 [arXiv:hep-ex/0107049]
9. C. P. Jessop et al. [CLEO Collaboration], Phys. Rev. Lett. 79 (1997) 4533 [arXiv:hep-ex/9702013]
10. T. W. Yeh and H. n. Li, Phys. Rev. D 56 (1997) 1615 [arXiv:hep-ph/9701233]
11. A. Dedes, H. K. Dreiner and U. Nierste, Phys. Rev. Lett. 87 (2001) 251804 [arXiv:hep-ph/0108037]
12. R. Dermisek, S. Raby, L. Roszkowski and R. Ruiz De Austri, JHEP 0304 (2003) 037 [arXiv:hep-ph/0304101]
13. R. Fleischer, Phys. Lett. B 459 (1999) 306 [arXiv:hep-ph/9903456]