3 Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada, 4 Department of Comutational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA, 5 Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA, 6 Departments of Cell and Developmental Biology and Neurosurgery, Ann Arbor, MI, USA, 7 Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada.

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are lethal paediatric brain tumors with no curative therapies. Inhibitor of DNA binding (ID) proteins are key regulators of gene differentiation during embryogenesis. Previous work has shown that H3F3A and ACVR1 mutations increase ID1 expression in cultured astrocytes, but this has not been validated in human DIPG, nor has the regulation and targetability of ID1 been explored in DIPG. RESULTS: Analysis of post-mortem tissue and multiple human datasets showed ID1 to be elevated in DIPG, and to correlate with reduced survival. In a multi-tumour assay of a DIPG case, we also found ID1 expression to be heterogeneous and to correlate with tumour invasion. Chromatin immunoprecipitation qPCR (ChIP-qPCR) revealed elevated H3K27ac and low H3K27me3 at ID1 regulatory regions (enhancers/promoters) in DIPG tissue compared to normal brain, regardless of H3 or ACVR1 mutation status. Analysis of publicly-available iSH and ChIP-seq/data of developing mouse brains revealed H3K27ac at ID1 enhancers to be elevated in the prenatal hindbrain compared to prenatal forebrain and midbrain, and all postnatal brain regions. ID1 shRNA-mediated knockdown of primary human H3K27M DIPG cells (DIPG007) significantly reduced invasion in the transwell migration assay. We also treated DIPG007 cells with camptothecin (CPT) and found reduced viability at clinically relevant dosing (IC50 = 2.4 μM) with dose-dependent reduction in ID1 protein. CONCLUSIONS: These findings indicate that a multifactorial (genetic and regionally-based) epigenetic upregulation of ID1 drives DIPG invasiveness and is targetable with ID1 knockdown and CBD treatment experiments in mouse models of DIPG are ongoing.

DIPG-60. PILOT STUDY OF CIRCULATING TUMOR CELLS IN PEDIATRIC HIGH GRADE BRAIN TUMORS
Waltik Zaky, Long Dao, Drushti Ragoonaan, Ihsar Bath, Sohy Yi, Jordan Aboul-Kassem, Kharaa, and Shulin Li; The University of Texas, MD Anderson Cancer Center, Houston, TX, USA

BACKGROUND: Despite its increasing use, circulating tumor cells (CTCs) have not been studied in pediatric brain tumors. METHODS: Cell surface vimentin (CSV) is a marker for CTC detection. We developed an automated CSV-based CTC capture method for pediatric brain tumor using the Abnova Cytopotato platform. PBMCs isolated from blood samples from 52 brain tumor patients were processed to isolate CSV+ CTCs. Captured cells were also positive for H3K27M mutations by immunohistochemistry to scan the number of CTCs. DIPG samples were additionally examined for H3K27M expression on CSV+ cells. Long term cancer survivors were used as a control cohort. RESULTS: 86.4% of all the samples exhibited between 1–3 CSV+ CTCs. Five of 2 CSV+ CTCs DIPG samples were positive for H3K27M mutations by immunohistochemistry (71%). Mean survival in days for the CTC positive and negative DIPG samples were 114 and 211 days, respectively (p = 0.13). CONCLUSION: This is the first study of CTCs in pediatric CNS tumors using an automated approach. Patients with brain tumors can exhibit CSV+ CTCs within peripheral blood. The use of specific molecular markers such as H3K27M can improve the diagnostic capability of liquid biopsies and may enable future disease assessment for personalized therapy.

DIPG-61. RESCUE REGIMENS AFTER BIOMEDE: POSSIBLE COMBINATION THERAPIES IN PEDIATRIC H3K27M MUTANT DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG)
Devashish Kharia and Shulin Li; The University of Texas, MD Anderson Cancer Center, Houston, TX, USA

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are lethal paediatric brain tumors with no curative therapies. Inhibitor of DNA binding (ID) proteins are key regulators of gene differentiation during embryogenesis. Previous work has shown that H3F3A and ACVR1 mutations increase ID1 expression in cultured astrocytes, but this has not been validated in human DIPG, nor has the regulation and targetability of ID1 been explored in DIPG. RESULTS: Analysis of post-mortem tissue and multiple human datasets showed ID1 to be elevated in DIPG, and to correlate with reduced survival. In a multi-tumour assay of a DIPG case, we also found ID1 expression to be heterogeneous and to correlate with tumour invasion. Chromatin immunoprecipitation qPCR (ChIP-qPCR) revealed elevated H3K27ac and low H3K27me3 at ID1 regulatory regions (enhancers/promoters) in DIPG tissue compared to normal brain, regardless of H3 or ACVR1 mutation status. Analysis of publicly-available iSH and ChIP-seq/data of developing mouse brains revealed H3K27ac at ID1 enhancers to be elevated in the prenatal hindbrain compared to prenatal forebrain and midbrain, and all postnatal brain regions. ID1 shRNA-mediated knockdown of primary human H3K27M DIPG cells (DIPG007) significantly reduced invasion in the transwell migration assay. We also treated DIPG007 cells with camptothecin (CPT) and found reduced viability at clinically relevant dosing (IC50 = 2.4 μM) with dose-dependent reduction in ID1 protein. CONCLUSIONS: These findings indicate that a multifactorial (genetic and regionally-based) epigenetic upregulation of ID1 drives DIPG invasiveness and is targetable with ID1 knockdown and CBD treatment experiments in mouse models of DIPG are ongoing.

DIPG-62. PRECLINICAL EVALUATION OF IMPRINDBONE-DERIVED COMBINATION THERAPIES IN PEDIATRIC H3K27M MUTANT DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG)
Robyn Borsuk1, Lanlan Lilla2, Ziqin Zhang2, Varun Prabhuta3, Joshua Allen4, Wolfgang Oster4, Nikos Tapinos4, Kushi K. Lulla4, and Walt E. De Gryter1; Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, USA, 1 Joint Program in Cancer Biology, The Warren Alpert Medical School of Brown University, Providence, RI, USA, 2 Oncogeneics, Inc., Philadelphia, PA, USA, 3 Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA

Imprinoids induce apoptosis in cancer via p53 independent upregulation of TGFβ related apoptosis inducing, ligand (TRAIL) pathway and its prosapotic receptor DR5. ONC201, a first-in-class imprinoid, is being evaluated alone and with radiotherapy for children with H3K27M mutant diffuse glioma. We sought to determine if ONC201 and its imprinone analogs (ONC206, ONC212) are synergistic with other chemotherapies. Seven patient-derived DIPG cell lines, six H3K27M mutant (SU-DIPG-IV, SU-DIPG-13, SU-DIPG-25, SU-DIPG-27, SU-DIPG-29, SF8628) and one H3.1K27M mutant (SU-DIPG-36) were grown in culture and exposed to ONC201, ONC206, and ONC212 alone and in combination with histone de-acetylase inhibitors (HDACi) or etoposide. A dose-dependent response to ONC201, ONC206, and ONC212 was demonstrated in all cell lines, with mean IC50 values of 1.46 μM, 0.11 μM, and 0.03 μM respectively. ONC206 and ONC212 induced apoptosis measured by increased expression of cleaved PARP and IRS by increased expression ATP4. In two cell lines, synergy studies revealed combination indices (CI) < 1 for ONC206 and etoposide, with a best CI of 0.62 in SU-DIPG-IV and 0.46 in SU-DIPG-25. Synergy was also observed between ONC201 and etoposide (CI 0.46 and 0.51) and paninostat (CI 0.01). Imprinoids and analogs were superior to paninostat and etoposide in triggering apoptosis as measured by sub-G1 phase content. Additional synergy and mechanistic analyses are ongoing and will be reported. Our results suggest that H3K27M mutant DIPG cells demonstrate increased sensitivity to imprinoids compared to HDACi and etoposide. Using a variable selection procedure, we now confirm that ONC201, ONC206, and ONC212 when compared to ONC201. Combinational strategies with etoposide or HDACi should be considered for clinical translation.

DIPG-63. LOSS OF THE H4 LYSINE METHYLTRANSFERASE KMT5B DRIVES INVASION / Migration by Deleting H3K27ME3 at LOCI OTHERWISE RETAINED IN H3K27M MUTANT DIPG CELLS
Kerst Kashefi1, Alan Mackay1, Valeria Molinari2, Haidar Tari2, Anna Burford3, Andrea Sottoriva3, Maria Vinci3, and Chris Jones1; 1 The Institute of Cancer Research, London, United Kingdom, 2 Ospedale Pediatrico Bambino Gesù, Rome, Italy

Diffuse intrinsic pontine glioma (DIPG) and other diffuse midline glioma (DMG) are characterised by K27M mutations in histone H3 variants. The major functional consequence is a global loss of the repressive mark H3K27me3, causing a raft of transcriptional changes promoting tumourigenesis, although certain key loci retain trimethylation, such as CDKN2A/B. We recently identified subclonal loss-of-function mutations in the H4 lysine methyltransferase KMT5B to be associated with an enhanced invasion/migration, but the mechanism by which this occurred was unclear. Here we show by ChIP-seq using patient-derived subclonal DIPG models and CRISPR-Cas9 depletion that loss of KMT5B (or KMT5C) causes a paradoxical increase in global levels of H4K20me3 in promoters and regulatory regions usually ablated by knocking out both enzymes. This further causes the loss of the majority of otherwise retained H3K27Me3 loci in DIPG cells, although CDKN2A/B itself was spared. De-repression occurred at bivalent loci marked by H3K4me3 and had elevated gene expression by RNAseq; these were significantly enriched for genes involved in chromatin remodelling and invasion/migration, the latter including MPP9/MMP24.