Application of the proximal isovelocity surface area method for estimation of the effective orifice area in aortic stenosis

Masahiro Nakabachi1 · Hiroyuki Iwano2 · Michito Murayama3 · Hisao Nishino4 · Shinobu Yokoyama1 · Shingo Tsujinaga5 · Yasuyuki Chiba2 · Suguru Ishizaka2 · Ko Motoi2 · Kazunori Okada4 · Sanae Kaga4 · Mutsumi Nishida1 · Takanori Teshima1 · Toshihisa Anzai2

Received: 3 April 2021 / Accepted: 17 September 2021 / Published online: 25 September 2021
© Springer Japan KK, part of Springer Nature 2021

Abstract
Although the echocardiographic effective orifice area (EOA) calculated using the continuity equation is widely used for the assessment of severity in aortic stenosis (AS), the existence of high flow velocity at the left ventricular outflow tract (LVOT) potentially causes its overestimation. The proximal isovelocity surface area (PISA) method could be an alternative tool for the estimation of EOA that limits the influence of upstream flow velocity. EOA was calculated using the continuity equation (EOACont) and PISA method (EOAPISA), respectively, in 114 patients with at least moderate AS. The geometric orifice area (GOA) was also measured using the planimetry method in 51 patients who also underwent three-dimensional transesophageal echocardiography. Patients were divided into two groups according to the median LVOT flow velocity. EOAPISA could be obtained in 108 of the 114 patients (95%). Although there was a strong correlation between EOACont and EOAPISA (r = 0.78, P < 0.001), EOACont was statistically significantly larger than EOAPISA (0.86 ± 0.33 vs 0.75 ± 0.29 cm², P < 0.001). Both EOACont and EOAPISA similarly correlated with GOA (r = 0.70, P < 0.001 and r = 0.77, P < 0.001, respectively). However, a fixed bias, which is hydrodynamically supposed to exist between EOA and GOA, was not observed between EOACont and GOA. In contrast, there was a negative fixed bias between EOAPISA and GOA with smaller EOAPISA than GOA. The difference between EOACont and GOA was significantly greater with a larger EOACont relative to GOA in patients with high LVOT flow velocity than in those without (0.16 ± 0.25 vs −0.07 ± 0.10 cm², P < 0.001). In contrast, the difference between EOAPISA and GOA was consistent regardless of the LVOT flow velocity (−0.07 ± 0.12 vs −0.07 ± 0.15 cm², P = 0.936). The PISA method was applied to estimate EOA in patients with AS. EOAPISA could be an alternative parameter for AS severity grading in patients with high LVOT flow velocity in whom EOACont would potentially overestimate the orifice area.

Keywords Doppler echocardiography · Aortic stenosis · Proximal isovelocity surface area method · Valve orifice area

Introduction
Aortic stenosis (AS) is the most common valvular heart disease in developed countries and its prevalence is growing with the aging population [1, 2]. In clinical practice, accurate assessment of AS severity is essential for appropriate management and therapeutic decision making. Echocardiography is a key tool in determining AS severity, and the effective orifice area (EOA) assessed by the continuity equation is one of the main variables that is recommended for assessment in the guidelines [3]. Owing to its feasibility and reproducibility, the continuity equation is widely used in the assessment of AS severity; however, some potential sources of error have been identified. Among them, increased flow velocity at the left ventricular outflow tract (LVOT) due to
upper septal hypertrophy (USH) was reported to cause overestimation of the stroke volume (SV) and subsequent EOA \([4, 5]\). Because USH is common in elderly AS patients \([6]\), an alternative method to quantify the EOA is expected to improve the diagnostic accuracy in these patients.

The proximal isovelocity surface area (PISA) method is widely used to quantify the effective regurgitant orifice area in valve regurgitation \([7]\). By applying the PISA method to AS, the EOA could be estimated in patients who are potentially unsuitable for applying continuity equation. In terms of the application of the PISA method for the stenotic valve, it has been used for mitral stenosis \([8]\); however, the feasibility and diagnostic accuracy of the PISA method for AS severity has not been reported. Accordingly, the present study aimed to validate the PISA method for the estimation of EOA in AS and to test whether the PISA method could overcome the overestimation of the continuity equation caused by high flow velocity at the LVOT in patients with AS.

Materials and methods

Study population

We prospectively enrolled 160 consecutive patients who had been diagnosed with at least moderate AS (peak velocity across the aortic valve > 3.0 m/s or EOA < 1.5 cm\(^2\)) referred for transthoracic echocardiography from May 2018 to March 2019 at Hokkaido University Hospital. After the exclusion of patients with irregular heart rhythm due to arrhythmias \((N = 38)\) and those with poor echocardiographic images \((N = 8)\) in whom EOA by continuous equation could not be obtained, 114 patients were included in the final analysis. In 51 of the 114 patients who also underwent transesophageal echocardiography (TEE) after transthoracic echocardiographic examination (median distance: 27 days: TEE cohort), the geometric orifice area (GOA) of the aortic valve was used as the reference for the valve area. Study approval was obtained from the institutional review board of Hokkaido University Hospital (No. 018-0179) and an opportunity to opt out was given to each participant through a published disclosure document on the web site of the institute.

Two-dimensional and Doppler echocardiography

Comprehensive transthoracic echocardiography was performed in the left decubitus position using a commercially available ultrasound equipment system (Vivid E9, GE Healthcare, Horton, Norway; iE33, Philips Medical Systems, Andover, Massachusetts; Acuson SC2000 prime, Siemens Healthineers, Erlagen, Germany; Aplio Artida, Canon Medical Systems, Otawara, Japan) according to the guidelines \([9]\). Left ventricular (LV) mass was determined using the Devereux formula. LV ejection fraction (EF) was calculated using the biplane method of disks. USH was defined as a ratio of upper septal wall thickness to mid-septal wall thickness ≥ 1.3. The maximal aortic valve velocity (Vmax) was measured using continuous-wave Doppler imaging in the view that showed the highest flow velocity, and the mean transvalvar gradient was estimated based on the simplified Bernoulli equation. The LVOT diameter was measured in the parasternal long-axis view approximately 3–10 mm from the aortic annulus at mid-systolic phase. Flow velocity at the LVOT was measured using pulsed-wave Doppler imaging in the apical long-axis view, in which the sample volume was placed at the level where the LVOT diameter was measured and proximal to the region of flow acceleration, and the time velocity integral \((TVILVOT)\) was measured. SV was then calculated as \(SV_{Cont} = (LVOT \, diameter/2)^2 \times \pi \times TVILVOT\). EOA of the aortic valve was calculated using the continuity equation: \(EOA_{Cont} = SV/TVI_{AV}\), where \(TVI_{AV}\) was the time velocity integral of the maximal aortic valve flow \([3]\). Measurements of \(EOA_{Cont}\) were performed by blinded certified sonographers (M.M., S.Y., H.N., M.N., and S.K.) and verified by a board certified reader (I.H.).

PISA method for estimation of EOA

Measurements of EOA by PISA methods were performed by the sonographers (M.M. or M.N) who were blinded to the clinical parameters before the calculation of \(EOA_{Cont}\). To obtain a clear visualization of the proximal convergence of the aortic stenotic jet, a cut plane was selected in each patient from the apical long-axis, apical four-chamber, right parasternal long-axis, and suprasternal long-axis views (Fig. 1A). Care was taken to minimize the angle between the centerline of the flow convergence and ultrasound beam. Because the radius of the PISA was better recognized in cine loops, the radius was carefully measured using a magnified image by selecting an optimal time phase from the series of the images. The appearance of PISA was then optimized by shifting the baseline of the color Doppler scale to forward direction to adjust for aliasing velocity around 50–70 cm/s as appropriate. The radius of PISA \((r)\) was then measured, and the instantaneous flow rate was calculated as \(2\pi r^2 \times \text{aliasing velocity} \text{ (mL/s)}\). EOA was then calculated using the PISA method: \(EOA_{PISA} = \text{flow rate}/\text{Vmax} \text{ (cm}^2\) based on the principle of conservation of mass (Fig. 1A). The SV was also calculated by \(EOA_{PISA} \times TVI_{AV} \text{ (SV}_{PISA}\).

Measurement of GOA

Transesophageal echocardiographic images were obtained using an iE33 (Philips Medical Systems, Andover, Massachusetts) with X7-2t probe or an Acuson SC2000 prime (Siemens Healthineers, Erlagen, Germany) with Z6Ms
At first, the two-dimensional images were clearly obtained in the midesophageal long-axis and short-axis views. Then volume data sets were obtained using four-beat full-volume mode \((N = 38, \text{median volume rate: } 27 \text{ Hz})\) or the live three-dimensional zoom mode \((N = 13, \text{median volume rate: } 21 \text{ Hz})\) focused on the aortic valve complex.
During acquisition of full-volume images, gain and compression settings were optimized to display a magnified image of the aortic valve. After choosing the mid-systolic frame, in which maximal aortic valve excursion was observed, fine adjustments of the short-axis plane were performed to obtain the smallest aortic valve orifice and the GOA was measured (Fig. 1B). All the measurements of GOA were performed by trained cardiovascular physicians (S.I, Y.C., and S.T.) and designated by a certified reader (H.I).

Classifications of the patients

To test the influence of LVOT flow velocity and LV morphology on the accuracy of measuring the EOA, we divided the patients by the median value of LVOT flow velocity and the presence or absence of USH and compared the differences in EOA_{Cont} to aortic valve area-related variables between the groups.

Statistical analysis

Continuous variables are expressed as mean ± standard deviation and compared by paired or unpaired <i>t</i> test. Categorical data are presented as number (percentage). Agreements between aortic valve areas assessed using different methods were evaluated using Pearson’s correlation coefficient and Bland–Altman plot analysis. The Bland–Altman procedure for comparing two methods was also used to determine the bias (95% confidential interval: CI). A two-sided <i>P</i> value < 0.05 was considered statistically significant. All statistical analyses were performed using JMP version 14.0 (SAS Institute Inc., Cary, North Carolina).

Results

Patient characteristics

The clinical and echocardiographic characteristics of the studied patients are summarized in Tables 1. In the overall cohort, relatively young patients with AS who were predominantly female were enrolled. More than half of the patients had experienced some symptoms of heart failure. While 69% of the patients were diagnosed as hypertension, the blood pressure was well controlled at < 140 mmHg during the echocardiographic examination [10] in the majority of these patients. LV hypertrophy defined as an increased LV mass index was observed in 57% and USH was found in 46% of patients. Since the most common reason for TEE was to decide on surgical or transcatheter aortic valve replacement, the 51 patients in the TEE cohort consisted of elderly patients with a high frequency of heart failure symptoms and more advanced AS severity (Table 2), whereas the LV geometry was similar to that in the overall cohort.

Comparisons of EOA_{Cont} and EOA_{PISA}

According to EOA_{Cont}, 79 patients were classified as severe AS and remaining 35 patients as moderate AS. In the 114 patients in whom the severity of AS was assessed based on EOA_{Cont}, estimation of EOA_{PISA} was possible in 108 patients (95%) and impossible due to inadequate image quality of PISA radius in 6 patients (5%). Optimal approaches to measure PISA radius were apical long-axis view in 62 (57%) patients, apical five-chamber view in 18 (17%) patients, right parasternal long-axis view in 18 (17%), and suprasternal

Table 1	Clinical and echocardiographic characteristics	
	All (N= 114)	TEE cohort (N= 51)
Age, years	79 ± 12	84 ± 7
Male, N (%)	43 (38%)	20 (39%)
Systolic blood pressure, mmHg	131 ± 19	130 ± 16
Diastolic blood pressure, mmHg	67 ± 11	66 ± 10
Body surface area, m²	1.51 ± 0.15	1.50 ± 0.16
NYHA, N (%)		
I	51 (45%)	7 (14%)
II	58 (51%)	38 (75%)
III	5 (4%)	5 (10%)
Comorbidity, N (%)		
Hypertension	77 (68%)	41 (80%)
Diabetes mellitus	30 (26%)	16 (31%)
Dyslipidemia	55 (48%)	25 (49%)
Etiology, N (%)		
Tricuspid valve	99 (87%)	50 (98%)
Bicuspid or unicuspid valve	12 (11%)	1 (2%)
Rheumatic	3 (3%)	0 (0%)
LV end-diastolic volume, mL	79 ± 35	79 ± 34
LV end-systolic volume, mL	32 ± 29	34 ± 28
LVEF, %	63 ± 12	61 ± 12
LV mass index, g/m²	113 ± 38	124 ± 36
Relative wall thickness	0.42 ± 0.08	0.43 ± 0.07
USH, N (%)	53 (46%)	24 (22%)
Left atrial volume index, mL/m²	47 ± 16	47 ± 12
E, cm/s	75.6 ± 25.6	71.5 ± 24.2
E/A	0.79 ± 0.32	0.76 ± 0.32
e’, cm/s	5.3 ± 2.2	4.7 ± 1.5
E/e’	15.0 ± 7.3	16.4 ± 6.9
Tricuspid regurgitation pressure gradient, mmHg	28 ± 9	27 ± 8

TEE transesophageal echocardiography, LV left ventricular, EF ejection fraction, USH upper septal hypertrophy, E LV early-diastolic inflow velocity, E/A ratio of E to LA systolic velocity, e’ early-diastolic mitral annular velocity, E/e’ the ratio of E to e’
view in 10 (9%) patients. Although there was a strong correlation between EOACont and EOAPISA (Fig. 2A), EOAPISA was statistically significantly smaller than EOACont (Fig. 2B). Accordingly, 14 of 33 patients (42%) who were diagnosed with moderate AS based on EOACont were classified with severe based on EOAPISA. When AS was classified according to mean transvalvular gradient, and LV ejection fraction, roughly half of the moderate AS patients classified by EOACont were reclassified to paradoxical low gradient severe AS by EOAPISA (Fig. 3). Interestingly, the difference between EOACont and EOAPISA was greater in patients with USH (Fig. 2C). Further, the difference was also greater in patients with high LVOT flow velocity than in those without (Fig. 2D).

TEE cohort

In the 51 patients who underwent TEE, both EOACont and EOAPISA similarly correlated with GOA (\(r = 0.70, P < 0.001\) and \(r = 0.77, P < 0.001\), respectively) (Fig. 4A, C). However, a negative fixed bias, which is hydrodynamically supposed to exist between effective and geometric orifice areas, was not observed between EOACont and GOA (95% CI −0.03 to 0.08; Fig. 4B). In contrast, there was a negative fixed bias between EOAPISA and GOA, with smaller EOAPISA than GOA (95% CI −0.11 to −0.03; Fig. 4D). Importantly, the difference between EOACont and GOA was significantly greater with a larger EOACont than GOA in patients with high LVOT flow velocity than in those without (Fig. 5A). In contrast, the difference between EOAPISA and GOA was consistent regardless of the LVOT flow velocity (Fig. 5B). Similar results were observed in the comparison between patients with and without USH (Fig. 5C, D). This overestimation was clarified by larger difference to GOA in EOACont than in EOAPISA in the population showing USH or that showing high LVOT velocity (Fig. 5E, F). In a typical case

Table 2 Echocardiographic findings
All (N=114)
LVOT TVI, mm
LVOT velocity, m/s
SVCont, mL
SV_PISA, mL
EOACont, cm²
EOAPISA, cm²
GOA, cm²
Peak aortic valve velocity, m/s
Mean aortic valve gradient, mmHg

LV left ventricular, *LVOT* LV outflow tract, *TVI* time velocity index, *SVCont* stroke volume measured using the Doppler method, *SV_PISA* stroke volume measured using the proximal isovelocity surface area method, *EOACont* effective orifice area calculated using the continuity equation, *EOAPISA* effective orifice area calculated using the PISA method, *GOA* geometric orifice area

![Fig. 2](image-url)
Fig. 2 Comparisons of EOACont and EOAPISA. **A** Correlation between EOACont and EOAPISA showing an acceptable agreement between the parameters. **B** Comparison of between EOACont and EOAPISA showing a slightly but significantly smaller EOAPISA than EOACont. **C** Comparison of difference between EOACont and EOAPISA between patients with and without USH (C) and those with and without high LVOT flow velocity (D). EOACont EOA calculated using continuous equation, USH upper septal hypertrophy, LVOT left ventricular outflow tract. Other abbreviations are the same as Fig. 1.

![Fig. 3](image-url)
Fig. 3 Classification of the aortic stenosis based on continuity equation and PISA method. AS aortic stenosis. Other abbreviation is the same as Fig. 1.
with severe AS (GOA: 0.70 cm²) complicated by mid-ventricular obstruction, a clear difference was observed between EOAC and EOPISA (1.46 cm² vs 0.55 cm²), suggesting an overestimation of EOAC caused by high flow velocity at the LVOT (Fig. 6).

Reproducibility analysis

The reproducibility for EOPISA was assessed in 30 randomly selected patients. Two independent observers (M.N. and M.M.) analyzed the same cine loops of zoomed color Doppler images and one blinded observer (M.N.) repeated the analysis on a separate day. The intra- and interobserver intraclass correlation coefficients of EOPISA were 0.98 and 0.95, respectively. Similarly, the reproducibility for GOA was assessed in 20 randomly selected patients using the stocked 3D volume datasets. The intra- and interobserver intraclass correlation coefficients of GOA were 0.91 and 0.83, respectively.

Discussion

In the present study, we tested the feasibility and reliability of EOPISA in AS patients and found that (1) estimation of EOA using the PISA method was possible in up to 95% of AS patients, in whom EOAC could be obtained, with acceptable consistency with EOAC, (2) EOPISA was as well correlated with GOA as EOAC was, and importantly, (3) the concordance between EOPISA and GOA was consistent in patients with high LVOT flow velocity and those with USH in whom EOAC potentially overestimated the valve orifice area. Although the PISA method has been applied for other valvular heart diseases [11–14], this is the first study to demonstrate the feasibility and reliability of this method in AS.

PISA method for assessment of AS severity

In the same manner as the continuity equation, the PISA method is based on the principle of conservation of mass, where flow rate during the ejection period through the proximal isovelocity surface is equal to that through effective orifice area of the narrowing orifice. The physical basis of this method is quite solid, and use of the PISA method to quantify the severity of mitral regurgitation, mitral stenosis, and aortic regurgitation is recommended by the guidelines [15,
However, the use of PISA method for AS has not been mentioned probably because of the spread and retention of EOACont. In the present study, we demonstrated an acceptable feasibility and reproducibility of EOA_PISA in clinical AS patients.

EOA_cont for assessment of AS severity

Transvalvular gradients and EOA_cont are the principal measures for the echocardiographic grading of severity in AS [3]. Among them, estimation of EOA is important because transvalvular gradients vary depending on the flow conditions [17]. An accurate estimation of EOA_cont is, thus, mandatory for managing patients with AS; however, sources of errors have been noted in the measurement of its components [18, 19]. As the LVOT cross-sectional area is calculated based on the anterior to posterior diameter assuming a circular shape, it can underestimate the area, which has an elliptical shape in most patients [20–24]. At the same time, a study showed that TVI_LVOT was overestimated using pulsed-wave Doppler, resulting in compensation for the underestimation of the LVOT area with subsequent good concordance between EOA_cont and cardiac magnetic resonance-derived EOA [5]. This overestimation of TVI_LVOT was thought to be due to the alteration of the flow velocity profile from flat to skewed in the presence of high flow velocity at the LVOT, as seen in USH [5, 25]. Koto et al. [4] demonstrated that AS patients with USH had greater SV and EOA calculated using the Doppler method than those without. Consistent with these previous findings, when SV was compared between patients with and without USH or those with and without high LVOT flow velocity, apparent differences were observed only in SV_cont but not in SV_PISA between groups (Supplemental Table). Therefore, the significant differences in EOA_cont and EOA_PISA (Fig. 2C, D) and those in EOA_cont and GOA (Fig. 5A, C) between patients with and without USH or those with and without high LVOT flow velocity, along with the absence of a negative fixed bias between EOA_cont and GOA, suggests overestimation of EOA_cont in patients with high LVOT flow velocity.

Clinical implication

Owing to the increasing elderly population with AS, a substantial population of the patients could show a narrowing LV cavity with USH, resulting in increased LVOT flow velocity [26, 27]. As observed in a previous study [4] and ours, the continuity equation would overestimate SV and subsequent EOA in these patients. In typical cases with USH or LVOT obstruction, it is generally impossible to avoid sampling high flow speed by placing the sample volume at anywhere of the proximal site of the aortic valve annulus due to the turbulent flow. In that case, EOA_PISA could be an alternative parameter to determine AS severity. EOA_PISA is expected to be particularly effective in patients showing EOA_cont that is larger than expected from the transvalvular flow velocity as shown in Fig. 6. As the diagnosis of severity is critical in AS [3], many reliable and feasible variables are needed for its assessment. Based on the additional time of approximately 50 s in other AS population for measurement of EOA_PISA (although we did not record the time in the present population), we believe that EOA_PISA is in line with other recently proposed markers of AS severity [4, 27, 28].

Study limitations

This study had several limitations. First, because of the cross-sectional nature, this study could not show prognostic superiority of EOA_PISA and thus the present results need to be interpreted with a caution. Second the relatively small number of studied patients limits the strength of our findings; thus, the results of our study should be confirmed in a larger study. Third, test–retest reproducibility between the two examinations was not assessed, although the consistency of the EOA_PISA obtained from the same cine loops was acceptable. Finally, while the PISA method assumes the shape of the proximal isovelocity area to be hemispherical, we could not confirm its exact geometry in AS. As noted in a recent computational simulation [15], an ellipsoidal PISA geometry results in substantial underestimation. In addition, based on the funnel shape geometry of the stenotic orifice, PISA might require correction based on an angle such as the
PIASA method in mitral stenosis. However, shape of stenotic orifice in AS, especially in sclerotic degenerative valves, is symmetrical and far from funnel shape compared to that of mitral stenosis, which might have reduced the alteration of PISA geometry in AS. In fact, the EOA_{PISA} was 10–30% smaller than GOA in our study, which was within the previously reported difference ranges between EOA and GOA (10–30%) [29], and can justify the application of PISA method without angle correction for AS.

Conclusions

In conclusion, the PISA method was applied for the estimation of EOA in patients with AS. EOA_{PISA} can be used as an alternative variable when assessing the AS severity in patients with high LVOT flow velocity or USH in whom EOA_{Cont} would potentially overestimate the orifice area.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00380-021-01945-5.

Acknowledgements None.

Funding This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declarations

Conflict of interest None of the authors have any conflicts of interest associated with this study.

References

1. Carabello BA, Paulus WJ (2009) Aortic stenosis. The Lancet 373:956–964
2. Carabello BA (2002) Clinical practice. Aortic stenosis. N Engl J Med 346:677–682
3. Baumgartner H, Hung J, Bermejo J, Chambers JB, Edvardsen T, Goldstein S, Lancellotti P, LeFevre M, Miller F Jr, Otto CM (2017) Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 30:372–392
4. Koto D, Izumo M, Machida T, Suzuki K, Yoneyama K, Suzuki T, Kamijima R, Kobayashi Y, Harada T, Akashi YJ (2018) Geometry of the left ventricular outflow tract assessed by 3D TEE in patients with aortic stenosis: impact of upper septal hypertrophy on measurements of Doppler-derived left ventricular stroke volume. J Echocardiogr 16:162–172
5. Garcia J, Kadem L, Larose E, Clavel MA, Pibarat P (2011) Comparison between cardiovascular magnetic resonance and transthoracic Doppler echocardiography for the estimation of effective orifice area in aortic stenosis. J Cardiovasc Magn Reson 13:25
6. Diaz T, Pencina MJ, Benjamin EJ, Aragam J, Fuller DL, Pencina KM, Levy D, Vasan RS (2009) Prevalence, clinical correlates, and prognosis of discrete upper septal thickening on echocardiography: the Framingham Heart Study. Echocardiography 26:247–253
7. Xie GY, Berk MR, Hixson CS, Smith AC, DeMaria AN, Smith MD (1995) Quantification of mitral regurgitant volume by the color Doppler proximal isovelocity surface area method: a clinical study. J Am Soc Echocardiogr 8:48–54
8. Rifkin RD, Harper K, Tighe D (1995) Comparison of proximal isovelocity surface area method with pressure half-time and planimetry in evaluation of mitral stenosis. J Am Coll Cardiol 26:458–465
9. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39 e14
10. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM 3rd, Thomas JD (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:eS7–185
11. Bargiggia GS, Tronconi L, Sahn DJ, Recusani F, Raisaro A, De Servi S, Valdes-Cruz LM, Montmartini C (1991) A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 84:1481–1489
12. Shiota T, Jones M, Agler DA, McDonald BW, Marcella CP, Qin JX, Zetts AD, Greenberg NL, Cardon LA, Sun JP, Sahn DJ, Thomas JD (1999) New echocardiographic windows for quantitative determination of aortic regurgitation volume using color Doppler flow convergence and vena contracta. Am J Cardiol 83:1064–1068
13. Rivera JM, Vandervoot PM, Mele D, Siu S, Morris E, Weyman AE, Thomas JD (1994) Quantitation of tricuspid regurgitation by means of the proximal flow convergence method: a clinical study. Am Heart J 127:1354–1362
14. Messika-Zeitoun D (2003) Sequential assessment of mitral valve area during diastole using colour M-mode flow convergence analysis: new insights into mitral stenosis physiology. Eur Heart J 24:1244–1253
15. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM, Little SH, Shah DJ, Shernan S, Thavendiranathan P, Thomas JD, Weissman NJ (2017) Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American society of echocardiography developed in collaboration with the society for cardiovascular magnetic resonance. J Am Soc Echocardiogr 30:303–371
16. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Jang B, Otto CM, Pellikka PA, Quinones M, American Society of E, European Association of E (2009) Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr 22:1–23
17. deFilippi CR, Willett DL, Brickner ME, Appleton CP, Yancy CW, Eichhorn EJ, Grayburn PA (1995) Usefulness of dobutamine echocardiography in distinguishing severe from nonservice valvular aortic stenosis in patients with depressed left ventricular function and low transvalvular gradients. Am J Cardiol 75:191–194
18. Haugen BO, Berg S, Brecke KM, Torp H, Slordahl SA, Skaerpe T, Samstad SO (2002) Blood flow velocity profiles in the aortic valve annulus: a 3-dimensional freehand color flow Doppler imaging study. J Am Soc Echocardiogr 15:328–333
19. Jainandunsing JS, Mahmood F, Matyal R, Shakil O, Hess PE, Lee J, Panzica PJ, Khambaz KR (2013) Impact of three-dimensional...
echocardiography on classification of the severity of aortic stenosis. Ann Thorac Surg 96:1343–1348
20. Caballero L, Saura D, Oliva-Sandoval MJ, Gonzalez-Carrillo J, Espinosa MD, Garcia-Navarro M, Valdes M, Lancellotti P, de la Morena G (2017) Three-dimensional morphology of the left ventricular outflow tract: impact on grading aortic stenosis severity. J Am Soc Echocardiogr 30:28–35
21. Gaspar T, Adawi S, Sachner R, Asmer I, Ganaeem M, Rubinshtein R, Shiran A (2012) Three-dimensional imaging of the left ventricular outflow tract: impact on aortic valve area estimation by the continuity equation. J Am Soc Echocardiogr 25:749–757
22. Saitoh T, Shiota M, Izumo M, Gurudevan SV, Tolstrup K, Siegel RJ, Shiota T (2012) Comparison of left ventricular outflow geometry and aortic valve area in patients with aortic stenosis by 2-dimensional versus 3-dimensional echocardiography. Am J Cardiol 109:1626–1631
23. Kamperidis V, van Rosendael PJ, Katsanos S, van der Kley F, Regeer M, Al Amri I, Sianos G, Marsan NA, Delgado V, Bax JJ (2015) Low gradient severe aortic stenosis with preserved ejection fraction: reclassification of severity by fusion of Doppler and computed tomographic data. Eur Heart J 36:2087–2096
24. Clavel MA, Malouf J, Messika-Zeitoun D, Araoz PA, Michelen HL, Enriquez-Sarano M (2015) Aortic valve area calculation in aortic stenosis by CT and Doppler echocardiography. JACC Cardiovasc Imaging 8:248–257
25. Zhou YQ, Abassi I, Faerestrand S (1996) Flow velocity distributions in the left ventricular outflow tract and in the aortic annulus in patients with localized basal septal hypertrophy. Eur Heart J 17:1404–1412
26. Pibarot P, Clavel MA (2015) Left ventricular outflow tract geometry and dynamics in aortic stenosis: implications for the echocardiographic assessment of aortic valve area. J Am Soc Echocardiogr 28:1267–1269
27. Nabeshima Y, Nagata Y, Negishi K, Seo Y, Ishizu T, Sato K, Aonuma K, Koto D, Izumo M, Akashi YJ, Yamashita E, Oshima S, Otsuji Y, Takeuchi M (2018) Direct comparison of severity grading assessed by two-dimensional, three-dimensional, and Doppler echocardiography for predicting prognosis in asymptomatic aortic stenosis. J Am Soc Echocardiogr 31:1080–1090 e1083
28. Sato K, Seo Y, Ishizu T, Nakajima H, Takeuchi M, Izumo M, Suzuki K, Akashi YJ, Otsuji Y, Aonuma K (2016) Reliability of aortic stenosis severity classified by 3-dimensional echocardiography in the prediction of cardiovascular events. Am J Cardiol 118:410–417
29. Gilon D, Cape EG, Handschumacher MD, Song J-K, Solheim J, VanAuker M, King MEE, Levine RA (2002) Effect of three-dimensional valve shape on the hemodynamics of aortic stenosis. Am J Cardiol 40:1479–1486

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.