Z_{2k}-CODE VERTEX OPERATOR ALGEBRAS

HIROMICHI YAMADA AND HIROSHI YAMAUCHI

ABSTRACT. We study a simple, self-dual, rational, and C_2-cofinite vertex operator algebra of CFT-type whose simple current modules are graded by Z_{2k}. Based on those simple current modules, a vertex operator algebra associated with a Z_{2k}-code is constructed. The classification of irreducible modules for such a vertex operator algebra is established. Furthermore, all the irreducible modules are realized in a module for a certain lattice vertex operator algebra.

1. INTRODUCTION

Let V be a simple, self-dual, rational, and C_2-cofinite vertex operator algebra of CFT-type. Then the set $\text{Irr}(V)_{sc}$ of equivalence classes of simple current V-modules is closed under the fusion product \boxtimes_V, and it is graded by a finite abelian group, say C. That is, $\text{Irr}(V)_{sc} = \{A^\alpha \mid \alpha \in C\}$ with A^α, $\alpha \in C$, being inequivalent to each other, $A^0 = V$, and $A^\alpha \boxtimes_V A^\beta = A^{\alpha+\beta}$ for $\alpha, \beta \in C$. If D is a subgroup of C such that the conformal weight $h(A^\alpha)$ of A^α is an integer for $\alpha \in D$, then the direct sum $\bigoplus_{\alpha \in D} A^\alpha$ has either a simple vertex operator algebra structure or a simple vertex operator superalgebra structure, which extends the V-module structure [13, Theorem 3.12]. In such a case $\bigoplus_{\alpha \in D} A^\alpha$ is called a simple current extension of V.

The theory of simple current extensions of vertex operator algebras has been developed extensively, see for example [2, 4, 6, 12, 15, 17, 18, 20]. Nowadays it is not hard to construct new vertex operator (super)algebras as simple current extensions of known ones. One of the examples is the Z_k-code vertex operator algebra [3], which is a D-graded simple current extension of the tensor product $K(\mathfrak{sl}_2, k)^{\otimes \ell}$ of ℓ copies of the parafermion vertex operator algebra $K(\mathfrak{sl}_2, k)$ associated with \mathfrak{sl}_2 and an integer $k \geq 2$, and D is an additive subgroup of $(Z_k)^{\ell}$ satisfying a certain condition.

In this paper, we study a D-graded simple current extension U_D of the tensor product $(U^0)^{\otimes \ell}$ of ℓ copies of a vertex operator algebra U^0 such that $\text{Irr}(U^0)_{sc}$ is graded by Z_{2k} for an integer $k \geq 2$. Here D is an additive subgroup of $(Z_{2k})^{\ell}$.

Let $N = \sqrt{2}A_{k-1}$ be $\sqrt{2}$ times an A_{k-1} root lattice. Then a vertex operator algebra V_N associated with the lattice N contains a subalgebra isomorphic to

$$L(c_1, 0) \otimes \cdots \otimes L(c_{k-1}, 0) \otimes K(\mathfrak{sl}_2, k),$$

where $L(c_m, 0)$, $1 \leq m \leq k-1$, are the Virasoro vertex operator algebras of discrete series. The vertex operator algebra U^0 is defined to be the commutant of $S = L(c_1, 0) \otimes \cdots \otimes L(c_{k-2}, 0)$ in V_N. The vertex operator algebra U^0 was previously known [2, 5]. There are two descriptions of U^0, one is a Z_{k-1}-graded simple current extension of $K(\mathfrak{sl}_2, k-1)^{\otimes \ell}V_{Z_{2d}}$ with $\langle d, d \rangle = 2(k-1)k$, and the other is a non-simple current extension of $L(c_{k-1}, 0) \otimes$
K(\mathfrak{s}l_2, k) (Theorem 3.2). We review the irreducible U^0-modules (Theorem 3.6) and fusion rules (Theorem 4.1) in our notation. Moreover, we show how the irreducible U^0-modules appear in V_N (Lemma 5.1).

The \mathbb{Z}_{2k}-grading of the set Irr(U^0)$_{sc} = \{U^l \mid 0 \leq l < 2k\}$ of equivalence classes of simple current U^0-modules corresponds to the \mathbb{Z}_{2k}-part of the discriminant group $N^\circ/N \cong (\mathbb{Z}_2)^{k-2} \times \mathbb{Z}_{2k}$ of the lattice N (Eq. (5.2)). We also recall that the \mathbb{Z}_k-grading of Irr($K(\mathfrak{s}l_2, k)$)$_{sc}$ used in [4] for \mathbb{Z}_k-code vertex operator algebras corresponds to the \mathbb{Z}_k-part of $(\mathbb{Z}_2)^{k-2} \times \mathbb{Z}_{2k}$.

Once the necessary properties of the vertex operator algebra U^0 are obtained, the construction of the vertex operator algebra U_D is straightforward. In fact, U_D is defined to be the commutant of $S^\otimes \ell$ in a vertex operator algebra V_{Γ_D} associated with a certain positive definite integral lattice Γ_D (Theorem 5.7). It turns out that U_D is a direct sum of a D-graded set of simple current $(U^0)^{\otimes \ell}$-modules $U_{\xi} = U^{\xi_1} \otimes \cdots \otimes U^{\xi_\ell}$, $\xi = (\xi_1, \ldots, \xi_\ell) \in D$. We construct all the irreducible χ-twisted U_D-modules for $\chi \in \text{Hom}(D, \mathbb{C}^\times)$ in $V_{(N^\circ)^{\ell}}$, and classify them (Theorems 7.4 and 7.6). The arguments concerning U_D and its irreducible χ-twisted modules are similar to those in Sections 8 and 9 of [4].

If $k = 2$, then U^0 is isomorphic to a rank one lattice vertex operator algebra $V_{\mathbb{Z}_2}$. In the case $k = 4$, the \mathbb{Z}_8-code vertex operator algebra U_D was studied in [21]. Our result is a generalization of [21] to an arbitrary $k \geq 2$.

This paper is organized as follows. In Section 2, we recall basic properties of the Virasoro vertex operator algebra of discrete series and the parafermion vertex operator algebra associated with $\mathfrak{s}l_2$ and a positive integer k. In Section 3 we define the vertex operator algebra U^0 and describe it in two ways. We classify irreducible U^0-modules as well. Fusion rules for irreducible U^0-modules are discussed in Section 4. In Section 4 we introduce the positive definite integral lattice Γ_D and the vertex operator algebra or a vertex operator superalgebra U_D for a \mathbb{Z}_{2k}-code D. Finally, in Section 5, we classify the irreducible U_D-modules. The weight and the dimension of the top level of the simple current U^0-module U^l, $0 \leq l < 2k$, are calculated in Appendix A.

We use the symbol $\boxtimes_{V'}$ to denote the fusion product over a vertex operator algebra V. We also use the symbol \otimes to denote the tensor product of vertex operator algebras and their modules as in [10].

Acknowledgments. We would like to thank Ching Hung Lam for valuable discussions. Part of this work was done while the first author was staying at Institute of Mathematics, Academia Sinica, Taiwan as a visiting scholar from May 1, 2017 through April 30, 2018. The second author was partially supported by JSPS KAKENHI grant No.19K03409.

2. Preliminaries

In this section, we recall the vertex operator algebra associated with the discrete series of Virasoro algebra and the parafermion vertex operator algebra associated with $\mathfrak{s}l_2$ and a positive integer k.

2.1. Virasoro vertex operator algebra $L(c_m, 0)$

Let $L(c, 0)$ be the simple Virasoro vertex operator algebra of central charge c, and let $L(c, h)$ be its irreducible highest weight module with highest weight h. Let

$$c_m = 1 - \frac{6}{(m + 2)(m + 3)}$$
for $m = 1, 2, \ldots$, and
\[
h_{r,s}^{(m)} = \frac{(r(m + 3) - s(m + 2))^2 - 1}{4(m + 2)(m + 3)}
\]
for $1 \leq r \leq m + 1$, $1 \leq s \leq m + 2$. The vertex operator algebra $L(c_m, 0)$ is self-dual, rational, C_2-cofinite, and of CFT-type with $L(c_m, h_{r,s}^{(m)})$, $1 \leq s \leq r \leq m + 1$, a complete set of representatives of equivalence classes of irreducible $L(c_m, 0)$-modules [23, Theorem 4.2]. The fusion product of irreducible $L(c_m, 0)$-modules is as follows [23, Theorem 4.3].

\[
L(c_m, h_{r_1,s_1}^{(m)}) \boxtimes L(c_m, h_{r_2,s_2}^{(m)}) = \sum_{i,j} L(c_m, h_{|r_1-r_2|+2i-1,s_1-s_2|+2j-1}^{(m)}),
\]
where the summation is taken over the integers i and j satisfying
\[
1 \leq i \leq \min\{r_1, r_2, m + 2 - r_1, m + 2 - r_2\}, \quad 1 \leq j \leq \min\{s_1, s_2, m + 3 - s_1, m + 3 - s_2\}.
\]

2.2. Parafermion vertex operator algebra $K(sl_2, k)$. We fix the notation for the parafermion vertex operator algebra $K(sl_2, k)$ associated with sl_2 and a positive integer k. Details about $K(sl_2, k)$ can be found in [3, 4, 10, 14]. If $k = 1$, then $K(sl_2, k)$ reduces to the trivial vertex operator algebra $\mathbb{C}1$. So we assume that $k \geq 2$. Let
\[
L^{(k)} = \mathbb{Z}\alpha_1 + \cdots + \mathbb{Z}\alpha_k
\]
with $\langle \alpha_i, \alpha_j \rangle = 2\delta_{i,j}$, and set $\gamma_k = \alpha_1 + \cdots + \alpha_k$.

The vertex operator algebra $V^{(k)}_L$ contains a subalgebra isomorphic to the simple affine vertex operator algebra $L\tilde{sl}_2(k, 0)$ associated with the affine Kac-Moody algebra \tilde{sl}_2 at level k, and $K(sl_2, k)$ is realized as the commutant of the vertex operator algebra $V_{\mathbb{Z}\gamma_k}$ in $L\tilde{sl}_2(k, 0)$. Let
\[
M^j_{(k)} = \{v \in L\tilde{sl}_2(k, 0) \mid \gamma_k(n)v = -2j\delta_{n,0}v \text{ for } n \geq 0\}
\]
for $0 \leq j < k$. Then $M^0_{(k)} = K(sl_2, k)$, and
\[
L\tilde{sl}_2(k, 0) = \bigoplus_{j=0}^{k-1} M^j_{(k)} \otimes V_{\mathbb{Z}\gamma_k-j\gamma_k/k}.
\]

An irreducible $L\tilde{sl}_2(k, 0)$-module $L\tilde{sl}_2(k, i)$ with $i + 1$ dimensional top level can be constructed in the $V_{L^{(k)}}$-module $V_{(L^{(k)})^0}$ for $0 \leq i \leq k$, where $(L^{(k)})^0 = \frac{1}{2}L^{(k)}$ is the dual lattice of $L^{(k)}$. Let
\[
M^{ij}_{(k)} = \{v \in L\tilde{sl}_2(k, i) \mid \gamma_k(n)v = (i - 2j)\delta_{n,0}v \text{ for } n \geq 0\}
\]
for $0 \leq j < k$. Then $M^0_{(k)} = M^j_{(k)}$, and
\[
L\tilde{sl}_2(k, i) = \bigoplus_{j=0}^{k-1} M^{ij}_{(k)} \otimes V_{\mathbb{Z}\gamma_k+(i-2j)\gamma_k/2k}.
\]

The index j of $M^j_{(k)}$ and $M^{ij}_{(k)}$ can be considered to be modulo k. We will use the following properties of $M^0_{(k)}$ and $M^{ij}_{(k)}$.

Z_{2k}-CODE VOAS

3
(1) $M_{(k)}^0 = K(\mathfrak{sl}_2, k)$ is a simple, self-dual, rational, and C_2-cofinite vertex operator algebra of CFT-type with central charge $2(k - 1)/(k + 2)$.

(2) $M_{(k)}^{i,j}$, $0 \leq i \leq k$, $0 \leq j < k$, are irreducible $M_{(k)}^0$-modules with
\[M_{(k)}^{i,j} \cong M_{(k)}^{k-i,j-i}, \quad (2.5) \]

and $M_{(k)}^{i,j}$, $0 \leq j < i \leq k$, form a complete set of representatives of equivalence classes of irreducible $M_{(k)}^0$-modules.

(3) The top level of $M_{(k)}^{i,j}$ is one dimensional and its conformal weight is
\[h(M_{(k)}^{i,j}) = \frac{1}{2k(k + 2)}(k(i - 2j) - (i - 2j)^2 + 2k(i - j + 1)j), \quad (2.6) \]

for $0 \leq j \leq i \leq k$. Eq. (2.6) is valid even in the case $j = i$.

(4) The fusion product of irreducible $M_{(k)}^0$-modules is
\[M_{(k)}^{i_1,j_1} \boxtimes M_{(k)}^{i_2,j_2} = \sum_{r \in R(i_1,i_2)} M_{(k)}^{(2j_1-i_1+2j_2-i_2+r)/2}, \quad (2.7) \]

where $R(i_1, i_2)$ is the set of integers r satisfying
\[|i_1 - i_2| \leq r \leq \min\{i_1 + i_2, 2k - i_1 - i_2\}, \quad i_1 + i_2 + r \in 2\mathbb{Z}. \]

In particular, $M_{(k)}^j$, $0 \leq j < k$, are the simple currents, and
\[M_{(k)}^p \boxtimes M_{(k)}^{i,j} = M_{(k)}^{i,j+p}. \]

(5) If $k \geq 3$, then the automorphism group $\text{Aut} M_{(k)}^0$ of $M_{(k)}^0$ is generated by an involution θ, and $M_{(k)}^{i,j} \circ \theta \cong M_{(k)}^{i,j}$. The automorphism θ is induced from the -1-isometry $\alpha \mapsto -\alpha$ of the lattice $L^{(k)}$.

3. Vertex operator algebra U^0

In this section, we discuss a vertex operator algebra U^0. The vertex operator algebra U^0 and its irreducible modules have already been studied [2], [3], Section 4.4.2, see also [20, Section 3.1]. We describe U^0 and all the irreducible U^0-modules in a lattice vertex operator algebra and in its module for later use.

We fix an integer $k \geq 2$. Let α_i, $1 \leq i \leq k$, and $L^{(k)}$ be as in Section 2.2. Thus $\langle \alpha_i, \alpha_j \rangle = 2\delta_{i,j}$ and $L^{(k)} = \mathbb{Z}\alpha_1 + \cdots + \mathbb{Z}\alpha_k$. Let
\[\gamma_{k-1} = \alpha_1 + \cdots + \alpha_{k-1}, \quad \gamma_k = \alpha_1 + \cdots + \alpha_k, \quad d = \gamma_{k-1} - (k - 1)\alpha_k. \quad (3.1) \]

Then $d = \gamma_k - k\alpha_k$, $\langle \gamma_k, \gamma_k \rangle = 2k$, $\langle d, d \rangle = 2(k - 1)k$, and $\langle \gamma_k, d \rangle = 0$.

For $a = a(k) = (a_1, \ldots, a_k) \in \{0, 1\}^k$, let $\delta_{a(k)} = \frac{1}{2} \sum_{p=1}^{k} a_p \alpha_p$. The vertex operator algebra $V_{L^{(k)}}$ associated with the lattice $L^{(k)}$ contains a subalgebra isomorphic to
\[L(c_1, 0) \otimes \cdots \otimes L(c_k-1, 0) \otimes \hat{\mathfrak{sl}_2}(k, 0), \]

and
\[V_{L^{(k)}}, \delta_{a(k)} = \bigoplus_{0 \leq i_s \leq s} L(c_1, h_{i_1+1,i_2+1}) \otimes \cdots \otimes L(c_k-1, h_{i_{k-1}+1,i_k+1}) \otimes \hat{\mathfrak{sl}_2}(k, i_k) \quad (3.2) \]
as an $L(c_{1},0) \otimes \cdots \otimes L(c_{k-1},0) \otimes L\hat{\gamma}_{k}(k,0)$-module, where $b_{s} = \sum_{p=1}^{s} a_{p}$ [19, 22, 24], see also [3, Section 5]. Since $L^{(k-1)} \oplus \mathbb{Z}\alpha_{k} = L^{(k)}$, it follows that

$$V_{L^{(k-1)}+\delta_{\alpha_{(k-1)}}} \otimes V_{\mathbb{Z}\alpha_{k}+\alpha_{k}/2} = V_{L^{(k)}+\delta_{\alpha_{k}}}.$$ \hspace{1cm} (3.3)

Let ω^{s} be the conformal vector of the Virasoro vertex operator algebra $L(c_{s},0), 1 \leq s \leq k-1$. We apply (3.2) to $V_{L^{(k-1)}+\delta_{\alpha_{(k-1)}}}$ for $k-1$ in place of k. Then

$$\{v \in V_{L^{(k-1)}+\delta_{\alpha_{(k-1)}}} \otimes V_{\mathbb{Z}\alpha_{k}+\alpha_{k}/2} | \omega^{s}_{(1)}v = h_{i_{s+1},i_{s+1}+1}^{(s)}v, 1 \leq s \leq k-2\}$$

$$= L\hat{\gamma}_{k}(k-1,i_{k-1}) \otimes V_{\mathbb{Z}\alpha_{k}+\alpha_{k}/2}.$$ \hspace{1cm} (3.4)

We also have

$$\{v \in V_{L^{(k)}+\delta_{\alpha_{(k)}}} | \omega^{s}_{(1)}v = h_{i_{1},i_{1}+1}^{(1)}v, 1 \leq s \leq k-2\}$$

$$= \bigoplus_{0 \leq i_{k} \leq k} L(c_{k-1},h_{i_{k-1}+1,i_{k}+1}) \otimes L\hat{\gamma}_{k}(k,i_{k})$$ \hspace{1cm} (3.5)

and

$$L\hat{\gamma}_{k}(k-1,i_{k-1}) \otimes V_{\mathbb{Z}\alpha_{k}+\alpha_{k}/2} = \bigoplus_{0 \leq i_{k} \leq k} L(c_{k-1},h_{i_{k-1}+1,i_{k}+1}) \otimes L\hat{\gamma}_{k}(k,i_{k})$$ \hspace{1cm} (3.6)

for $0 \leq i_{k-1} \leq k-1$ with $i_{k-1} \equiv b_{k-1} \pmod{2}$.

We set $i = i_{k-1}$ for simplicity of notation. Since $\langle \gamma_{k-1}, \alpha_{k} \rangle = 0$, the left hand side of (3.3) is

$$\bigoplus_{j=0}^{k-2} M_{k-1}^{i_{2},j} \otimes V_{\mathbb{Z}\gamma_{k-1}+(i-2j)\gamma_{k-1}/2(k-1)+\mathbb{Z}\alpha_{k}+\alpha_{k}/2}$$ \hspace{1cm} (3.7)

by (2.4) for $k-1$ in place of k. Since $\gamma_{k-1} = \gamma_{k} - \alpha_{k}$, and since $\alpha_{k} = (\gamma_{k} - d)/k$, we have a coset decomposition

$$\mathbb{Z}\gamma_{k-1} + \mathbb{Z}\alpha_{k} = \bigcup_{p=0}^{k-1} \left(\mathbb{Z}d + \mathbb{Z}\gamma_{k} + \frac{p}{k}(\gamma_{k} - d) \right)$$ \hspace{1cm} (3.8)

with $[\mathbb{Z}\gamma_{k-1} + \mathbb{Z}\alpha_{k} : \mathbb{Z}d + \mathbb{Z}\gamma_{k}] = k$, and

$$\mathbb{Z}\gamma_{k-1} + \frac{i - 2j}{2(k-1)}\gamma_{k-1} + \mathbb{Z}\alpha_{k} + \frac{1}{2}\alpha_{k} \alpha_{k}$$

$$= \bigcup_{p=0}^{k-1} \left(\mathbb{Z}d + \frac{1}{2(k-1)}((-k-1)(a_{k} + 2p) + i - 2j)d \right)$$ \hspace{1cm} (3.9)

for $0 \leq j < k-1$. The left hand side of (3.9) is a coset of $\mathbb{Z}\gamma_{k-1} + \mathbb{Z}\alpha_{k}$, and it is determined by j modulo $k-1$, whereas the right hand side is a union of cosets of $\mathbb{Z}d + \mathbb{Z}\gamma_{k}$, and j can not be considered to be modulo $k-1$ for these cosets.

For $0 \leq p < k$, define $0 \leq l < 2k$ by

$$l \equiv i + a_{k} + 2(p-j) \pmod{2k},$$ \hspace{1cm} (3.9)
Then (3.8) can be written as

\[Z\gamma_{k-1} + \frac{i - 2j}{2(k-1)} \gamma_k + Z d + \frac{i - 2j}{2(k-1)} d + (Z \gamma_k + \frac{l}{2} \gamma_k). \]

(3.10)

Since \(\langle b \rangle \equiv 0 \pmod{2} \), it follows from (3.6) and (3.10) that

\[L_{\tilde{\alpha}}(k-1, i) \otimes V_{Z \alpha_k + a_k \alpha_k/2} \]

\[= \bigoplus_{j=0}^{k-2} \bigoplus_{0 \leq l < 2k \atop l \equiv i + a_k \pmod{2}} M_{(k-1)}^{i,j} \otimes V_{Zd - l-2k + (i-2j)d/2(k-1)} \otimes V_{Z \gamma_k + t \gamma_k/2k}. \]

(3.11)

Let

\[U^{i,l} = \{ v \in L_{\tilde{\alpha}}(k-1, i) \otimes V_{Z \alpha_k + a_k \alpha_k/2} \mid \gamma_k(n)v = l \delta_{n,0}v \text{ for } n \geq 0 \} \]

for \(0 \leq i \leq k-1, 0 \leq l < 2k \), which is the multiplicity of \(V_{Z \gamma_k + t \gamma_k/2k} \) in (3.11). Then

\[U^{i,l} = \bigoplus_{j=0}^{k-2} M_{(k-1)}^{i,j} \otimes V_{Zd - l-2k + (i-2j)d/2(k-1)}. \]

The index \(l \) of \(U^{i,l} \) can be considered to be modulo \(2k \).

The right hand side of (3.3) is

\[\bigoplus_{0 \leq i_k \leq k \atop i_k \equiv b_k \pmod{2}} L(c_{k-1}, h_{i_k+1, i_k+1}^{(k-1)}) \otimes M_{(k)}^{i_k,p} \otimes V_{Z \gamma_k + (i_k-2p) \gamma_k/2k} \]

(3.12)

by (2.4). Recall that \(l \) is defined in (3.9) and that \(i = i_{k-1} \) satisfies the condition \(i \equiv b_{k-1} \pmod{2} \). Since \(b_k = b_{k-1} + a_k \), we have \(i_k - l \in 2\mathbb{Z} \) for \(i_k \) such that \(i_k \equiv b_k \pmod{2} \). Then \(V_{Z \gamma_k + (i_k - 2p) \gamma_k/2k} \) agrees with \(V_{Z \gamma_k + t \gamma_k/2k} \) if and only if \(p \equiv (i_k - l)/2 \pmod{k} \). Hence the multiplicity of \(V_{Z \gamma_k + t \gamma_k/2k} \) in (3.12) is

\[\{ v \in \bigoplus_{0 \leq i_k \leq k \atop i_k \equiv b_k \pmod{2}} L(c_{k-1}, h_{i_k+1, i_k+1}^{(k-1)}) \otimes L_{\tilde{\alpha}}(k, i_k) \mid \gamma_k(n)v = l \delta_{n,0}v \text{ for } n \geq 0 \} \]

\[= \bigoplus_{0 \leq i_k \leq k \atop i_k \equiv b_k \pmod{2}} L(c_{k-1}, h_{i_k+1, i_k+1}^{(k-1)}) \otimes M_{(k)}^{i_k, (i_k-l)/2}. \]

(3.13)

Therefore, the following theorem is proved.
Theorem 3.1. The multiplicity $U^{i,l}$ of $V_{Z\gamma_k+t\gamma_k/2k}$ on both sides of (3.3) is described in two ways, namely,

$$U^{i,l} = \bigoplus_{j=0}^{k-2} M^{i,j}_{(k-1)} \otimes V_{Zd-jd/2k + (i-2)j/d/(k-1)}$$

$$= \bigoplus_{0 \leq i_k \leq k, i_k \equiv b_k \pmod{2}} L(c_{k-1}, h_{i+1,i_k+1}^{(k-1)}) \otimes M^{i,0}_{(k)}$$

for $0 \leq i \leq k - 1$ with $i \equiv b_k - 1 \pmod{2}$, and $0 \leq l < 2k$ with $l \equiv b_k \pmod{2}$. The first one is a direct sum of irreducible $M^{0}_{(k-1)} \otimes V_{Zd}$-modules, and the second one is a direct sum of irreducible $L(c_{k-1}, 0) \otimes M^{0}_{(k)}$-modules.

In the case $a(k) = (0, \ldots, 0)$, take the commutant of $S = L(c_1, 0) \otimes \cdots \otimes L(c_{k-2}, 0)$ in $V_{L(k-1)} \otimes V_{Z\alpha_k} = V_{L(k)}$. Then we have

$$L_{\hat{sl}_2}(k-1, 0) \otimes V_{Z\alpha_k} = \bigoplus_{j=0}^{\lfloor k/2 \rfloor} L(c_{k-1}, h_{1,2j+1}^{(k-1)}) \otimes L_{\hat{sl}_2}(k, 2j), \quad (3.14)$$

where $\lfloor k/2 \rfloor$ is the largest integer which does not exceed $k/2$.

Let U^0 be the commutant of $V_{Z\gamma_k}$ in (3.14). Then $U^0 = U^{0,0}$ in the notation of Theorem 3.1. In particular,

$$U^0 = \bigoplus_{j=0}^{k-2} M^{j}_{(k-1)} \otimes V_{Zd-jd/(k-1)} \quad (3.15)$$

which is a Z_{k-1}-graded simple current extension of $M^{0}_{(k-1)} \otimes V_{Zd}$. Hence the following theorem holds by [27, Theorem 2.14], see also [3, 5, Section 4.4.2].

Theorem 3.2. (1) U^0 is a simple, self-dual, rational, and C_2-cofinite vertex operator algebra of CFT-type with central charge $3(k-1)/(k+1)$.

(2) U^0 is described in two ways, namely,

$$U^0 = \bigoplus_{j=0}^{k-2} M^{j}_{(k-1)} \otimes V_{Zd-jd/(k-1)}$$

$$= \bigoplus_{j=0}^{\lfloor k/2 \rfloor} L(c_{k-1}, h_{1,2j+1}^{(k-1)}) \otimes M^{2j,j}_{(k)}.$$

The first one is a Z_{k-1}-graded simple current extension of $M^{0}_{(k-1)} \otimes V_{Zd}$, and the second one is a non-simple current extension of $L(c_{k-1}, 0) \otimes M^{0}_{(k)}$.

The fusion product of irreducible $M^{0}_{(k-1)}$-modules $M^{j}_{(k-1)}$ agrees with the fusion product of irreducible V_{Zd}-modules $V_{Zd-jd/(k-1)}$ under the correspondence

$$M^{j}_{(k-1)} \leftrightarrow V_{Zd-jd/(k-1)}, \quad 0 \leq j < k - 1.$$
Similarly, the fusion product of irreducible $L(c_{k-1}, 0)$-modules $L(c_{k-1}, h^{(k-1)}_{1,2j+1})$ agrees with the fusion product of irreducible $M^0_{(k)}$-modules $M^{2j, j}_{(k)}$ under the correspondence

$$L(c_{k-1}, h^{(k-1)}_{1,2j+1}) \leftrightarrow M^{2j, j}_{(k)}, \quad 0 \leq j \leq \lfloor k/2 \rfloor.$$

In fact, for $0 \leq p \leq q \leq \lfloor k/2 \rfloor$, we have

$$L(c_{k-1}, h^{(k-1)}_{1,2p+1}) \boxtimes L(c_{k-1}, h^{(k-1)}_{1,2q+1}) = \sum_{j=0}^{\min\{2p, k-2q\}} L(c_{k-1}, h^{(k-1)}_{1,2(q-j)+1})$$

by (2.1), and

$$M^{2p, p}_{(k)} \boxtimes M^0_{(k)} \boxtimes M^{2q, q}_{(k)} = \sum_{j=0}^{\min\{2p, k-2q\}} M^{2(p-j), q-p-j}_{(k)}$$

by (2.7).

Since the left hand side of (1.11) is an $L_{\mathfrak{sl}_2} (k-1, 0) \otimes V_{\mathfrak{sl}_2}$-module, and since U^0 is the commutant of $V_{\mathfrak{sl}_2}$ in $L_{\mathfrak{sl}_2} (k-1, 0) \otimes V_{\mathfrak{sl}_2}$, it follows that $U^{i,l}$ is a U^0-module.

For simplicity of notation, set

$$A^i = M^0_{(k-1)} \otimes V_{\mathfrak{sl}_2} \otimes \mathbb{C}$$

$$X(i, j, l) = M^{i,j}_{(k-1)} \otimes V_{\mathfrak{sl}_2} \otimes \mathbb{C}$$

for $0 \leq i \leq k-1$, $0 \leq j < k-1$, and $0 \leq l \leq 2k$. Then $U^0 = \bigoplus_{k-1}^{k} A^i$ and $U^{i,l} = \bigoplus_{j=0}^{k-1} X(i, j, l)$ as A^0-modules. For fixed i and l, $X(i, j, l)$, $0 \leq j < k-1$, are inequivalent irreducible A^0-modules. Thus the U^0-module $U^{i,l}$ is irreducible. In fact, the U^0-module structure on the direct sum $\bigoplus_{j=0}^{k-1} X(i, j, l)$ which extends the A^0-module structure is unique [23, Proposition 3.8]. Since

$$A^i \boxtimes A^0 X(i, 0, l) = X(i, j, l), \quad (3.16)$$

we have

$$U^{i,l} = U^0 \boxtimes A^0 X(i, 0, l). \quad (3.17)$$

The following lemma is a consequence of the isomorphism $M^{i,j}_{(k-1)} \cong M^{k-1-i,j-i}_{(k-1)}$ of $M^0_{(k-1)}$-modules in (2.5) for $k-1$ in place of k.

Lemma 3.3. (1) Let $0 \leq i, i' \leq k-1$, $0 \leq j, j' < k-1$, and $0 \leq l, l' < 2k$. Then $X(i, j, l) \cong X(i', j', l')$ as A^0-modules if and only if one of the following conditions holds.

(i) $i = i'$, $j = j'$, and $l = l'$.

(ii) $i' = k-1-i$, $j' \equiv j - i \pmod{k-1}$, and $l' \equiv k+l \pmod{2k}$.

(2) $X(i, j, l)$, $0 \leq j < i < k-1$, $0 \leq l < 2k$, are inequivalent to each other.

The above lemma implies the next lemma. **Lemma 3.4.** Let $0 \leq i, i' \leq k-1$ and $0 \leq l, l' < 2k$. Then $U^{i,l} \cong U^{i',l'}$ as U^0-modules if and only if one of the following conditions holds.

(i) $i = i'$ and $l = l'$.

(ii) $i' = k-1-i$ and $l' \equiv k + l \pmod{2k}$.

Next, we calculate the difference of the conformal weight of two irreducible A^0-modules.
Theorem 3.6. Eq. (3.18) holds.

\[0 \leq \frac{j(i-s)}{k-1} \pmod{\mathbb{Z}}. \]

Indeed, we have \(h(M^{i,j}_{(k-1)}) \) for \(0 \leq j < i \leq k-1 \) by (2.4) for \(k-1 \) in place of \(k \), and \(h(M^{i,j}_{(k-1)}) \) for \(0 \leq i \leq j \leq k-1 \) is obtained by using (2.5) for \(k-1 \) in place of \(k \). In fact,

\[h(M^{i,j}_{(k-1)}) - h(M^{i,0}_{(k-1)}) \equiv \frac{j(i-j)}{k-1} \pmod{\mathbb{Z}}. \]

Since

\[h(V_{Zd+sd/2(k-1)k-jd/(k-1)}) - h(V_{Zd+sd/2(k-1)k}) \equiv \frac{j(i-s)}{k-1} \pmod{\mathbb{Z}}, \]

Eq. (3.18) holds.

The following theorem holds, see [2, 8, Section 4.4.2], [26, Section 3.1].

Theorem 3.6. (1) Any irreducible \(U^0 \)-module is isomorphic to \(U^{i,l} \) for some \(0 \leq i \leq k-1 \), \(0 \leq l < 2k \).

(2) The irreducible \(U^0 \)-modules \(U^{i,l} \), \(0 \leq i \leq k-1 \), \(0 \leq l < 2k \), are inequivalent to each other except for the isomorphism

\[U^{i,l} \cong U^{k-1-i,k+l}. \]

(3) There are exactly \(k^2 \) inequivalent irreducible \(U^0 \)-modules.

(4) The conformal weight of any irreducible \(U^0 \)-module except for \(U^0 \) is positive.

Proof. Let \(W \) be an irreducible \(U^0 \)-module. Then \(W \) is a direct sum of irreducible \(A^0 \)-modules. Let \(X \) be an irreducible \(A^0 \)-submodule of \(W \). We may assume that \(X = M^{i,0}_{(k-1)} \otimes V_{Zd+sd/2(k-1)k} \) for some \(0 \leq i \leq k-1 \) and \(0 \leq s < 2(k-1)k \) by (3.10). Then

\[A^1 \otimes A^0 X = M^{i,1}_{(k-1)} \otimes V_{Zd+sd/2(k-1)k-jd/(k-1)} \]

is contained in \(W \), so \(h(A^1 \otimes A^0 X) - h(X) \) is an integer. Thus \(s \equiv i \pmod{k-1} \) by Lemma 3.3. Then \(s \equiv i - m(k-1) \pmod{2(k-1)k} \) for some \(0 \leq m < 2k \). Take \(0 \leq l < 2k \) such that \(l \equiv i + m \pmod{2k} \). Then \(s \equiv ik - l(k-1) \pmod{2(k-1)k} \), and \(W = U^{i,l} \) by (3.17). Thus the assertion (1) holds.

Lemma 3.4 implies the assertion (2). The assertion (3) is clear from (1) and (2). The conformal weight of any irreducible \(M^0_{(k-1)} \)-module except for \(M^0_{(k-1)} \) is positive. Thus the assertion (4) holds. \(\square \)

There are \((k-1)^2k^2 \) inequivalent irreducible \(A^0 \)-modules, namely,

\[\text{Irr}(A^0) = \{ M^{i,j}_{(k-1)} \otimes V_{Zd+sd/2(k-1)k} \mid 0 \leq j < i \leq k-1, 0 \leq s < 2(k-1)k \}. \]

Only \((k-1)k^2 \) of them can be direct summands of an irreducible \(U^0 \)-module. In fact, let

\[\text{Irr}^0(A^0) = \{ X(i,j,l) \mid 0 \leq j < i \leq k-1, 0 \leq l < 2k \}. \]

Then each irreducible \(U^0 \)-module is a direct sum of \(k-1 \) inequivalent irreducible \(A^0 \)-modules in \(\text{Irr}^0(A^0) \).
Recall the automorphism θ of $M_{(k)}^{0}$, which is induced from the -1-isometry $\alpha \mapsto -\alpha$ of the lattice $L^{(k)}$. The isometry induces an automorphism of U^{0} of order two as well. We denote the automorphism by the same symbol θ. Then
\[U^{i, l} \circ \theta \cong U^{i, -l}. \] (3.20)

4. Fusion rule of irreducible U^{0}-modules

The fusion rule of the irreducible U^{0}-modules was previously known [3, Section 4.4.2], see also [26, Section 3.2]. The fusion rule in our notation for the irreducible U^{0}-modules is as follows.

Theorem 4.1. Let $0 \leq i_{1}, i_{2} \leq k - 1$ and $0 \leq l_{1}, l_{2} < 2k$. Then
\[U^{i_{1}, l_{1}} \boxtimes_{U^{0}} U^{i_{2}, l_{2}} = \sum_{r \in R(i_{1}, i_{2})} U^{r, l_{1} + l_{2}}, \] (4.1)
where $R(i_{1}, i_{2})$ is the set of integers r satisfying
\[|i_{1} - i_{2}| \leq r \leq \min\{i_{1} + i_{2}, 2(k - 1) - i_{1} - i_{2}\}, \quad i_{1} + i_{2} + r \in 2\mathbb{Z}, \]
and $l_{1} + l_{2}$ is considered to be modulo $2k$. The irreducible U^{0}-modules $U^{r, l_{1} + l_{2}}$, $r \in R(i_{1}, i_{2})$, on the right hand side of (4.1) are inequivalent to each other.

Proof. Let $C_{A^{0}}$ be the category of A^{0}-modules, and let $C_{A^{0}}^{0}$ be the full subcategory of $C_{A^{0}}$ consisting of the objects X of $C_{A^{0}}$ such that $U^{0} \boxtimes_{A^{0}} X$ is a U^{0}-module [3, Definition 2.66]. Then $\text{Irr}^{0}(A^{0})$ constitutes the simple objects of $C_{A^{0}}^{0}$ [3, Proposition 2.65]. The category $C_{A^{0}}^{0}$ is a \mathbb{C}-linear additive braided monoidal category with structures induced from $C_{A^{0}}$, and the functor $F : C_{A^{0}}^{0} \rightarrow C_{U^{0}}$; $X \mapsto U^{0} \boxtimes_{A^{0}} X$ is a braided tensor functor [3, Theorem 2.67], where $C_{U^{0}}$ is the category of U^{0}-modules.

We fix $0 \leq i_{1}, i_{2} \leq k - 1$ and $0 \leq l_{1}, l_{2} < 2k$. Since the category $C_{A^{0}}^{0}$ is closed under the fusion product, we have
\[X(i_{1}, 0, l_{1}) \boxtimes_{A^{0}} X(i_{2}, 0, l_{2}) = \sum_{X(i_{3}, j_{3}, l_{3}) \in \text{Irr}^{0}(A^{0})} n(i_{3}, j_{3}, l_{3}) X(i_{3}, j_{3}, l_{3}), \] (4.2)
where
\[n(i_{3}, j_{3}, l_{3}) = \dim I^{0}_{A^{0}} \left(X(i_{3}, j_{3}, l_{3}) \right) \]
is the fusion rule, that is, the dimension of the space of intertwining operators of type \(X(i_{1}, 0, l_{1}) \leftarrow X(i_{2}, 0, l_{2})\). Let
\[n(i_{3}, l_{3}) = \dim I^{0}_{U^{0}} \left(\begin{array}{c} U^{i_{3}, l_{3}} \\ U^{i_{1}, l_{1}} \\ U^{i_{2}, l_{2}} \end{array} \right) \]
be the fusion rule of the irreducible U^{0}-modules $U^{i_{p}, l_{p}}$, $p = 1, 2, 3$. Then
\[U^{i_{1}, l_{1}} \boxtimes_{U^{0}} U^{i_{2}, l_{2}} = \sum_{U^{i_{3}, l_{3}} \in \text{Irr}(U^{0})} n(i_{3}, l_{3}) U^{i_{3}, l_{3}}. \] (4.3)
Since $U^{i,l} = U^0 \boxtimes_{A^0} X(i, j, l)$ for any $0 \leq j < k - 1$, and since the functor $F : \mathcal{C}_{A^0}^0 \to \mathcal{C}_{U^0}$; $X \mapsto U^0 \boxtimes_{A^0} X$ is a braided tensor functor, it follows from (1.2) that
\[
U^{i_1,l_1} \boxtimes_{U^0} U^{i_2,l_2} = \sum_{X(i_3,j_3,l_3) \in \text{Irr}^0(A^0)} n(i_3,j_3,l_3)U^{i_3,l_3}.
\]
Thus $n(i_3,l_3) = \sum_{j_3=0}^{k-2} n(i_3,j_3,l_3)$ by (4.3).

Now,
\[
n(i_3,j_3,l_3) = \dim I_{M^0_{(k-1)}} \left(\begin{array}{cc} M^i_{j_1,l_1}^{j_3,j_3} \\ M^i_{j_1,l_1}^{i_3,j_3} \\ M^i_{j_1,l_1}^{j_1,j_1} \end{array} \right) \cdot \dim I_{V_{Zd}^{k}} \left(\begin{array}{cc} V_{Zd-l_3d/2k+j_1d/2(k-1)} \\ V_{Zd-l_3d/2k+j_2d/2(k-1)} \end{array} \right)
\]
by [4, Theorem 2.10]. The first term of the right hand side of the above equation is 0 or 1, and it is 1 if and only if $i_3 \in R(i_1, i_2)$ and $i_3 - 2j_3 \equiv i_1 + i_2 \pmod{2(k-1)}$ by (2.7) for $k-1$ in place of k. The second term of the right hand side is 0 or 1, and it is 1 if and only if
\[
(l_1 + l_2)(k-1) + (i_1 + i_2) \equiv -l_3(k-1) + (i_3 - 2j_3)k \pmod{2(k-1)}k
\]
by the fusion rule for V_{Zd}^k [11, Chapter 12]. Hence $n(i_3,j_3,l_3)$ is 0 or 1, and it is 1 if and only if $i_3 \in R(i_1, i_2)$, $i_3 - 2j_3 \equiv i_1 + i_2 \pmod{2(k-1)}$, and the condition (4.4) is satisfied.

If $i_3 \in R(i_1, i_2)$, then there is a unique $0 \leq j_3 < k - 1$ such that $i_3 - 2j_3 \equiv i_1 + i_2 \pmod{2(k-1)}$. Moreover, if $i_3 - 2j_3 \equiv i_1 + i_2 \pmod{2(k-1)}$, then the condition (4.4) is equivalent to the condition that $l_1 + l_2 \equiv l_3 \pmod{2k}$. Therefore, (4.4) holds.

We have the following two corollaries.

Corollary 4.2. Let $\zeta = \exp(2\pi \sqrt{-1}/k)$. Then the map $\varphi : U^{i,l} \mapsto \zeta^i U^{i,l}$ for $0 \leq i \leq k - 1$ and $0 \leq l < 2k$ defines an automorphism of the fusion algebra of U^0 of order k which is compatible with the isomorphism (3.13).

Corollary 4.3. There are exactly $2k$ inequivalent simple current U^0-modules, which are represented by $U^{0,l}$, $0 \leq l < 2k$.

Let $U^l = U^{0,l}$. Then
\[
U^l = \bigoplus_{j=0}^{k-2} M^j_{(k-1)} \otimes V_{Zd-l_3d/2k+j_1j/2(k-1)}
\]
\[
= U^0 \boxtimes_{A^0} X(0,0,l)
\]
(4.5)
and the set of equivalence classes of simple current U^0-modules is
\[
\text{Irr}(U^0)_{sc} = \{U^l \mid 0 \leq l < 2k\} \quad \text{with} \quad U^l \boxtimes_{U^0} U^{l'} = U^{l+l'}.
\]
(4.6)

The conformal weight of U^l satisfies $h(U^l) \equiv h(X(0,0,l)) \pmod{Z}$ by (4.5). Hence we have
\[
h(U^l) \equiv \frac{(k-1)^2}{4k} \pmod{Z}.
\]
(4.7)
Since
\[
U^p \boxtimes_{U^0} U^{i,l} = U^{i,l+p}
\]
(4.8)
by (4.1), the isomorphism (3.19) implies the next lemma.

Lemma 4.4. Let \(0 \leq i \leq k - 1\) and \(0 \leq p, l < 2k\). Then \(U^p \boxtimes_{L^0} U^{i,l} = U^{i,l}\) if and only if one of the following conditions holds.

(i) \(p = 0\).

(ii) \(k\) is odd, \(i = (k - 1)/2\), and \(p = k\).

The fusion rules of \(M^0_{(k-1)}\)-modules are illustrated as follows. We set \(M^0 = M^0_{(k-1)}\) and \(M^{i,j} = M^{i,j}_{(k-1)}\) for simplicity of notation. The irreducible \(M^0\)-modules are denoted as \(M^{i,j}\) by using \(0 \leq i \leq k - 1\) and \(0 \leq j < k - 1\). There is another description of the irreducible \(M^0\)-modules. Take \(0 \leq q < 2(k - 1)\) such that \(q \equiv i - 2j \pmod{2(k - 1)}\). Let \(\tilde{M}^{i,q} = M^{i,j}\), which is the multiplicity of \(V_{Z_{\gamma(k-1)+q\gamma k-1/2(k-1)}}\) in the decomposition (2.4) of \(L_{\gamma}(k - 1, i)\). Then the fusion product (2.7) for \(k - 1\) in place of \(k\) can be written as

\[
\tilde{M}^{i_1,q_1} \boxtimes_{M^0} \tilde{M}^{i_2,q_2} = \sum_{r \in R(i_1,i_2)} \tilde{M}^{r,q_1+q_2}.
\]

(4.9)

The relationship between (1.1) and (4.9) is clear. Moreover, the isomorphisms \(M^{i,j} \cong M^{k-1-i,-j-i}\) and \(M^{i,j} \circ \theta \cong M^{i,j}\) can be written as

\[
\tilde{M}^{i,q} \cong \tilde{M}^{k-1-i,-j-i}, \quad \tilde{M}^{i,q} \circ \theta \cong \tilde{M}^{i,-q}.
\]

It is known that a map defined by \(\tilde{M}^{i,q} \mapsto \eta^q \tilde{M}^{i,q}\) with \(\eta = \exp(2\pi \sqrt{-1}/(k - 1))\) is compatible with the isomorphism \(\tilde{M}^{i,q} \cong \tilde{M}^{k-1-i,-j-i}\), and it induces an automorphism of the fusion algebra of \(M^0\) of order \(k - 1\).

5. **Vertex operator (super)algebra \(U^D\)**

In this section, we introduce a positive definite integral lattice \(\Gamma_D\) and a vertex operator algebra or a vertex operator superalgebra \(U^D\) for a \(\mathbb{Z}_{2k}\)-code \(D\).

5.1. **Irreducible \(U^0\)-modules in \(V_{N^0}\)**

Let \(L^{(k)}\) be the lattice as in (2.2). We set

\[N = \{\alpha \in L^{(k)} \mid \langle \alpha, \gamma_k \rangle = 0\},\]

where \(\gamma_k \in L^{(k)}\) is as in (3.4). We denote the dual lattice of \(N\) by \(N^0\). The lattice \(N\) is also considered in Section 4 of [3], where \(L^{(k)}\) and \(\gamma_k\) are denoted by \(L\) and \(\gamma\), respectively. We show how the irreducible \(U^0\)-modules \(U^{i,l}\) appear in the \(V_{N^0}\)-module \(V_{N^0}\).

For \(0 \leq j < k\) and \(a = a(k) = (a_1, \ldots, a_k) \in \{0, 1\}^k\), let

\[N(j, a(k)) = N + \delta a(k) - j \alpha_k + \frac{2j - b_k}{2k} \gamma_k\]

be a coset of \(N\) in \(N^0\), which is identical with \(N(j, a)\) of (4.4) in [3] as \(\delta a(k) = \frac{1}{2} \sum_{p=1}^k a_p \alpha_p\) and \(\text{wt}(a(k)) = b_k\). We have

\[V_{L^{(k)}+\delta a(k)} = \bigoplus_{j=0}^{k-1} V_{N(j,a(k))} \otimes V_{Z_{\gamma k}+(b_k-2j)\gamma_k/2k}\]

by (5.2) of [3]. Let \(0 \leq l < 2k\) be such that \(l \equiv b_k - 2j \pmod{2k}\). Then \(j \equiv (b_k - l)/2 \pmod{k}\), and the multiplicity of \(V_{Z_{\gamma k}+l\gamma_k/2k}\) in \(V_{L^{(k)}+\delta a(k)}\) is \(V_{N((b_k-l)/2,a(k))}\). Therefore,

\[U^{i,l} = \{v \in V_{N((b_k-l)/2,a(k))} \mid \omega^{(s)}(1)v = h^{(s)}_{i+1,i+s+1}v, 1 \leq s \leq k - 2\}\]
with \(i = i_{k-1} \) by (3.4) and (3.13). In the case where \(a_1 = \cdots = a_{k-2} = 0 \), we have \(b_{k-1} = a_{k-1} \) and \(b_k = a_{k-1} + a_k \). Thus the following lemma holds.

Lemma 5.1. Let \(0 \leq i \leq k - 1 \) and \(0 \leq l < 2k \).

1. Define \(a_{k-1}, a_k \in \{0, 1\} \), and \(0 \leq j < k \) by the conditions
 \[
 i \equiv a_{k-1}, \quad l \equiv a_{k-1} + a_k \pmod{2}, \quad j \equiv (a_{k-1} + a_k - l)/2 \pmod{k}.
 \]

Then
 \[
 U^{i,l} = \{ v \in V_{\langle d,j,(0,\ldots,0,a_k) \rangle} | \omega^s_{(1)}v = 0, 1 \leq s \leq k - 3, \omega^{k-2}_{(1)}v = h^{(k-2)}_{1, i+1}v \}. \]

2. In the case \(i = 0 \), we have \(a_{k-1} = 0, \ l \equiv a_k \pmod{2}, \) and \(j \equiv (a_k - l)/2 \pmod{k} \).

In particular,
 \[
 U^l = \{ v \in V_{\langle d,j,(0,\ldots,0,a_k) \rangle} | \omega^s_{(1)}v = 0, 1 \leq s \leq k - 2 \}. \]

In the assertion (2) of the above lemma, we have \(N(j, (0, \ldots, 0, a_k)) = N - ld/2k \), as \(d = \gamma_k - k\alpha_k \). Thus
 \[
 U^l = \{ v \in V_{\langle d,j,(0,\ldots,0,a_k) \rangle} | \omega^s_{(1)}v = 0, 1 \leq s \leq k - 2 \}. \]

5.2. \(\Gamma_D \) and \(U_D \). The arguments in this subsection are parallel to those in Section 7 of [3]. For simplicity of notation, set
 \[
 \tilde{N}^{(l)} = N - ld/2k, \quad 0 \leq l < 2k.
 \]

We can regard the index \(l \) of \(\tilde{N}^{(l)} \) as \(l \in \mathbb{Z}_{2k} \). Since \(\langle x, y \rangle \in 2\mathbb{Z} \) and \(\langle x, d/2k \rangle \in \mathbb{Z} \) for \(x, y \in N \), and since \(\langle d, d \rangle = 2(k - 1)k \), the following lemma holds.

Lemma 5.2. Let \(0 \leq p, q < 2k \).

1. \(\langle \alpha, \beta \rangle \in \frac{k-1}{2k}pq + \mathbb{Z} \) for \(\alpha \in \tilde{N}^{(p)} \) and \(\beta \in \tilde{N}^{(q)} \).

2. \(\langle \alpha, \alpha \rangle \in \frac{k-1}{2k}p^2 + 2\mathbb{Z} \) for \(\alpha \in \tilde{N}^{(p)} \).

We fix a positive integer \(\ell \). Define a coset \(\tilde{N}(\xi) \) of \(N^\ell \) in \((N^\circ)^\ell \) by
 \[
 \tilde{N}(\xi) = \{(x_1, \ldots, x_\ell) | x_r \in \tilde{N}(\xi_r), 1 \leq r \leq \ell \}
 \]

for \(\xi = (\xi_1, \ldots, \xi_\ell) \in (\mathbb{Z}_{2k})^\ell \). Then \(\tilde{N}(\xi) + \tilde{N}(\eta) = \tilde{N}(\xi + \eta) \) for \(\xi, \eta \in (\mathbb{Z}_{2k})^\ell \).

For \(\xi = (\xi_1, \ldots, \xi_\ell), \eta = (\eta_1, \ldots, \eta_\ell) \in \mathbb{Z}^\ell \), define an integer \(\xi \cdot \eta \) by
 \[
 \xi \cdot \eta = \xi_1\eta_1 + \cdots + \xi_\ell\eta_\ell,
 \]

and consider a \(\mathbb{Z} \)-bilinear map
 \[
 \mathbb{Z}^\ell \times \mathbb{Z}^\ell \to \mathbb{Q}/\mathbb{Z}; \quad (\xi, \eta) \mapsto \frac{k-1}{2k}\xi \cdot \eta + \mathbb{Z}.
 \]

Since \(\frac{k-1}{2k}\xi \cdot \eta + \mathbb{Z} \) depends only on \(\xi_r \) and \(\eta_r \) modulo 2k, the above \(\mathbb{Z} \)-bilinear map induces a \(\mathbb{Z} \)-bilinear map
 \[
 (\mathbb{Z}_{2k})^\ell \times (\mathbb{Z}_{2k})^\ell \to \mathbb{Q}/\mathbb{Z}; \quad (\xi, \eta) \mapsto \frac{k-1}{2k}\xi \cdot \eta + \mathbb{Z},
 \]

where \(\xi \cdot \eta = \xi_1\eta_1 + \cdots + \xi_\ell\eta_\ell \) is considered for integers \(\xi_r, \eta_r \) such that \(0 \leq \xi_r, \eta_r < 2k \); \(1 \leq r \leq \ell \). The \(\mathbb{Z} \)-bilinear map is non-degenerate if \(k \) is even, whereas it is degenerate with radical \(\{0, k\}^\ell \) if \(k \) is odd. The following lemma holds by Lemma 5.2.
Lemma 5.3. Let $\xi, \eta \in (\mathbb{Z}_{2k})^\ell$.

1. $\langle \alpha, \beta \rangle = \frac{k-1}{2k} \xi \cdot \eta + \mathbb{Z}$ for $\alpha \in \tilde{N}(\xi)$ and $\beta \in \tilde{N}(\eta)$.
2. $\langle \alpha, \alpha \rangle = \frac{k-1}{2k} \xi \cdot \xi + 2\mathbb{Z}$ for $\alpha \in \tilde{N}(\xi)$.

Remark 5.4. The Euclidean weight $\mathrm{wt}_E(\xi)$ of $\xi = (\xi_1, \ldots, \xi_\ell) \in (\mathbb{Z}_{2k})^\ell$ is defined as

$$\mathrm{wt}_E(\xi) = \sum_{r=1}^\ell \min\{\xi_r^2, (2k - \xi_r)^2\} \in \mathbb{Z},$$

where ξ_r are considered to be integers such that $0 \leq \xi_r < 2k$, $1 \leq r \leq \ell$. Note that $\frac{1}{2k} \mathrm{wt}_E(\xi) + 2\mathbb{Z} = \frac{1}{2k} \xi \cdot \xi + 2\mathbb{Z}$. The Euclidean weight was used in [21].

Let D be a \mathbb{Z}_{2k}-code of length ℓ, that is, D is an additive subgroup of $(\mathbb{Z}_{2k})^\ell$. Set

$$\Gamma_D = \bigcup_{\xi \in D} \tilde{N}(\xi),$$

which is a sublattice of $(\mathbb{N}^\ell)^\ell$. We consider two cases, namely,

Case A. $\frac{k-1}{2k} \xi \cdot \xi \in 2\mathbb{Z}$ for all $\xi \in D$.

Case B. $\frac{k-1}{2k} \xi \cdot \eta \in \mathbb{Z}$ for all $\xi, \eta \in D$, and $\frac{k-1}{2k} \xi \cdot \xi \in 2\mathbb{Z} + 1$ for some $\xi \in D$.

Lemma 5.3 implies the following lemma.

Lemma 5.5. (1) Γ_D is a positive definite even lattice if and only if D is in Case A.

(2) Γ_D is a positive definite odd lattice if and only if D is in Case B.

In Case A, V_{Γ_D} is a vertex operator algebra. In Case B, set

$$D^0 = \{\xi \in D \mid \frac{k-1}{2k} \xi \cdot \xi \in 2\mathbb{Z}\}, \quad D^1 = \{\xi \in D \mid \frac{k-1}{2k} \xi \cdot \xi \in 2\mathbb{Z} + 1\}.$$

Then D^0 is a subgroup of D, and $D = D^0 \cup D^1$ is the coset decomposition of D by D^0. Let $\Gamma_{D^0} = \bigcup_{\xi \in D^0} \tilde{N}(\xi)$, $p = 0, 1$. Then $V_{\Gamma_{D^0}} = V_{\Gamma_{D^0}^t} \oplus V_{\Gamma_{D^1}^t}$ is a vertex operator superalgebra.

We have $V_{\tilde{N}(\xi)} = V_{\tilde{N}(\xi_1)} \otimes \cdots \otimes V_{\tilde{N}(\xi_\ell)} \subset (V_{\mathbb{N}^\ell})^{\otimes \ell}$, and $V_{\Gamma_D} = \bigoplus_{\xi \in D} V_{\tilde{N}(\xi)}$. Let

$$U_\xi = \{v \in V_{\tilde{N}(\xi)} \mid (\omega_{S^{\otimes \ell}}(1))v = 0\},$$

where $\omega_{S^{\otimes \ell}}$ is the conformal vector of the vertex operator subalgebra $S^{\otimes \ell}$ of $(V_{\mathbb{N}^\ell})^{\otimes \ell}$ with $S = L(c_1, 0) \otimes \cdots \otimes L(c_{k-2}, 0)$. Then $U_\xi = U_{\xi_1} \otimes \cdots \otimes U_{\xi_\ell}$ by (5.2). In particular, $U_0 = (U_0^{\otimes \ell})^{\otimes \ell}$ for the zero codeword $0 = (0, \ldots, 0)$. We see from (1.6) that the set of equivalence classes of simple current U_0-modules is

$$\operatorname{Irr}(U_0)_{\text{sc}} = \{U_\xi \mid \xi \in (\mathbb{Z}_{2k})^\ell\} \quad \text{with} \quad U_\xi \boxtimes_{U_0} U_{\xi'} = U_{\xi + \xi'}. $$

The conformal weight $h(U_\xi)$ of U_ξ is

$$h(U_\xi) \equiv \frac{k-1}{4k} \xi \cdot \xi \quad (\text{mod } \mathbb{Z})$$
by \((\ref{eq:1})\). Hence \(h(U_0) \in \mathbb{Z}\) for \(\xi \in D\) if \(D\) is in Case A.

The next proposition follows from Theorems 3.2 and 3.6.

Proposition 5.6. \(U_0 = (U^0)^{\otimes \ell}\) is a simple, self-dual, rational, and \(C_2\)-cofinite vertex operator algebra of CFT-type with central charge \(3\ell(k-1)/(k+1)\). Any irreducible \(U_0\)-module except for \(U_0\) itself has positive conformal weight.

Let \(U_D\) be the commutant of \(S^\otimes \ell\) in \(V_{\Gamma_D}\). Then

\[
U_D = \{v \in V_{\Gamma_D} \mid (\omega S^\otimes \ell)(1)v = 0\} = \bigoplus_{\xi \in D} U_\xi,
\]

so \(U_D\) is a \(D\)-graded simple current extension of \(U_0\). We have the next theorem.

Theorem 5.7. (1) If \(D\) is in Case A, then \(U_D\) is a simple, self-dual, rational, and \(C_2\)-cofinite vertex operator algebra of CFT-type with central charge \(3\ell(k-1)/(k+1)\).

(2) If \(D\) is in Case B, then \(U_D = U_{D^0} \oplus U_{D^1}\) is a simple vertex operator superalgebra. The even part \(U_{D^0}\) and the odd part \(U_{D^1}\) are given by \(U_{D^p} = \bigoplus_{\xi \in D^p} U_\xi\), \(p = 0, 1\), and \(h(M_{D^1}) \in \mathbb{Z} + 1/2\).

6. Representations of \(U_D\)

In this section, we construct all the irreducible \(\chi\)-twisted \(U_D\)-modules for \(\chi \in D^*\) in \(V_{(N_{\chi})^\ell}\), and classify them, where \(D^* = \text{Hom}(D, \mathbb{C}^*)\). We argue as in Sections 8 and 9 of \cite{key-2}.

6.1. Irreducible \(U_D\)-modules: Case A

Let \(D\) be a \(\mathbb{Z}_{2k}\)-code of length \(\ell\) in Case A of Section 5.2. Let \(b_{U^0} : \text{Irr}(U^0)_{sc} \times \text{Irr}(U^0) \to \mathbb{Q}/\mathbb{Z}\) be a map defined by

\[
b_{U^0}(U^p, U^{i;l}) = h(U^p \boxtimes_{U^0} U^{i;l}) - h(U^p) - h(U^{i;l}) + \mathbb{Z}
\]

for \(0 \leq i \leq k-1\) and \(0 \leq p, l < 2k\). Since \(h(U^{i;l}) \equiv h(X(i, 0, l)) \pmod{\mathbb{Z}}\) by (3.17), we obtain by using (1.7) and (1.8) that

\[
b_{U^0}(U^p, U^{i;l}) = p((k-1)l - ki)/2k + \mathbb{Z}. \quad (6.1)
\]

Any irreducible \(U_0\) module is of the form

\[
U_{\mu,\nu} = U^{\mu_1,\nu_1} \otimes \cdots \otimes U^{\mu_\ell,\nu_\ell}
\]

for some \(\mu = (\mu_1, \ldots, \mu_\ell)\) with \(0 \leq \mu_r \leq k-1\), \(1 \leq r \leq \ell\), and \(\nu = (\nu_1, \ldots, \nu_\ell) \in (\mathbb{Z}_{2k})^\ell\). We have \(U_{0,\xi} = U_\xi\), and

\[
U_\xi \boxtimes_{U_0} U_{\mu,\nu} = U_{\mu,\nu + \xi}.
\]

Define a map \(b_{U_0} : \text{Irr}(U_0)_{sc} \times \text{Irr}(U_0) \to \mathbb{Q}/\mathbb{Z}\) by

\[
b_{U_0}(U_\xi, U_{\mu,\nu}) = h(U_\xi \boxtimes_{U_0} U_{\mu,\nu}) - h(U_\xi) - h(U_{\mu,\nu}) + \mathbb{Z}.
\]

Then it follows from (6.1) that

\[
b_{U_0}(U_\xi, U_{\mu,\nu}) = \frac{1}{2k}(\xi((k-1)\nu - k\mu) + \mathbb{Z}, \quad (6.2)
\]
where $(\cdot | \cdot)$ is the standard inner product on $(\mathbb{Z}_{2k})^\ell$. Although each entry μ_r of μ is an integer such that $0 \leq \mu_r \leq k - 1$, we can treat it as an element of \mathbb{Z}_{2k} on the right hand side of $(\mathbb{Z}_{2k})^\ell$. Since $U_\eta = U_{0, \eta}$ for $\eta \in (\mathbb{Z}_{2k})^\ell$, this in particular implies that

$$b_{U_0}(U_\xi, U_\eta) = \frac{k - 1}{2k}(\xi|\eta) + \mathbb{Z}.$$

Let $D^\perp = \{ \eta \in (\mathbb{Z}_{2k})^\ell \mid (D|\eta) = 0 \}$. Then $|D||D^\perp| = |(\mathbb{Z}_{2k})^\ell|$, as $(\cdot | \cdot)$ is a non-degenerate bilinear form on $(\mathbb{Z}_{2k})^\ell$. Consider a map

$$\chi_{U_{\mu, \nu}} : D \rightarrow \mathbb{C}^\times; \quad \xi \mapsto \exp(2\pi \sqrt{-1} b_{U_0}(U_\xi, U_{\mu, \nu})).$$

We have

$$\chi_{U_{\mu, \nu}}(\xi) = \exp(2\pi \sqrt{-1}(\xi|(-1)\nu - k\mu)/2k)$$

by $(\mathbb{Z}_{2k})^\ell$. Hence $\chi_{U_{\mu, \nu}} \in D^\ast$.

Lemma 6.1. (1) $\chi_{U_{\mu, \nu}} = 1$; the principal character of D if and only if $(k - 1)\nu - k\mu \in D^\perp$.

(2) For any $\chi \in D^\ast$, there exists $U_{\mu, \nu} \in \text{Irr}(U_0)$ such that $\chi = \chi_{U_{\mu, \nu}}$.

Proof. The assertion (1) is a consequence of $(\mathbb{Z}_{2k})^\ell$ and the definition of D^\perp. For any $0 \leq p < 2k$, we have $p \equiv (k - 1)l - k i \pmod{2k}$ for some $0 \leq i \leq k - 1$ and $0 \leq l < 2k$. Hence for any $\eta \in (\mathbb{Z}_{2k})^\ell$, there are $\mu = (\mu_1, \ldots, \mu_\ell)$ with $0 \leq \mu_r \leq k - 1$, $1 \leq r \leq \ell$, and $\nu \in (\mathbb{Z}_{2k})^\ell$ such that $\eta = (k - 1)\nu - k\mu$. Since $(\cdot | \cdot)$ is non-degenerate on $(\mathbb{Z}_{2k})^\ell$, the assertion (2) holds.

We consider a coset

$$N(\eta, \delta^{(1)}, \delta^{(2)}) = \{(x_1, \ldots, x_\ell) \mid x_r \in N(\eta_r, (0, \ldots, 0, d_r^{(1)}, d_r^{(2)})), 1 \leq r \leq \ell\}$$

of N^ℓ in $(N^\circ)^\ell$ for $\eta = (\eta_1, \ldots, \eta_\ell) \in (\mathbb{Z}_k)^\ell$ and $\delta^{(s)} = (d_r^{(s)}, \ldots, d_\ell^{(s)}) \in \{0, 1\}^\ell$, $s = 1, 2$. The next proposition holds by Lemma 6.1.

Proposition 6.2. Let $\mu = (\mu_1, \ldots, \mu_\ell)$ with $0 \leq \mu_r \leq k - 1$, $1 \leq r \leq \ell$, and let $\nu = (\nu_1, \ldots, \nu_\ell) \in (\mathbb{Z}_{2k})^\ell$. Define $d_r^{(1)}, d_r^{(2)} \in \{0, 1\}$, and $0 \leq \eta_r < k$ by the conditions

$$\mu_r \equiv d_r^{(1)} \pmod{2}, \quad \nu_r \equiv d_r^{(2)} \pmod{2}, \quad \eta_r \equiv (d_r^{(1)} + d_r^{(2)} - \nu_r)/2 \pmod{k}$$

for $1 \leq r \leq \ell$. Then $V_{N(\eta, \delta^{(1)}, \delta^{(2)})}$ contains the irreducible U_0-module $U_{\mu, \nu}$.

Let $0 \leq i \leq k - 1$ and $0 \leq p, l < 2k$. Define $a_{k-1}, a_k \in \{0, 1\}$, and $0 \leq j < k$ by the conditions $(\mathbb{Z}_{2k})^\ell$. Then

$$(\alpha, \beta) \in p((k - 1)l - ki)/2k + \mathbb{Z}$$

for $\alpha \in \tilde{N}(\nu)$ and $\beta \in N(j, (0, \ldots, 0, a_{k-1}, a_k))$. Thus the the following lemma holds by $(\mathbb{Z}_{2k})^\ell$.

Lemma 6.3. Let $\mu, \nu, \eta, \delta^{(1)}$, and $\delta^{(2)}$ be as in Proposition 6.2, and let $\xi \in (\mathbb{Z}_{2k})^\ell$. Then

$$(x, y) \in b_{U_0}(U_\xi, U_{\mu, \nu}) \text{ for } x \in \tilde{N}(\xi) \text{ and } y \in N(\eta, \delta^{(1)}, \delta^{(2)}).$$

Let $X \in \text{Irr}(U_0)$. Then $X = U_{\mu, \nu}$ for some μ and ν. Let $\eta, \delta^{(1)}$, and $\delta^{(2)}$ be as in Proposition 6.2. Then X is contained in $V_{N(\eta, \delta^{(1)}, \delta^{(2)})}$. Since U_ξ is contained in $V_{N(\xi)}$, and since the cosets $\tilde{N}(\xi) + N(\eta, \delta^{(1)}, \delta^{(2)})$ of N^ℓ in $(N^\circ)^\ell$ are distinct for all $\xi \in D$, the χ_X-twisted U_D-submodule $U_D \cdot X$ of $V_{N(\eta, \delta^{(1)}, \delta^{(2)})}$ generated by X is isomorphic to $U_D \otimes_{U_0} X = \bigoplus_{\xi \in D} U_\xi \otimes_{U_0} X$. If $\chi_X(\xi) = 1$ for all $\xi \in D$, then $N(\eta, \delta^{(1)}, \delta^{(2)}) \subset (\Gamma_D)^\circ$ by Lemma 6.3 and we have $U_D \cdot X \subset V(\Gamma_D)^\circ$. Thus the following theorem holds.
Theorem 6.4. (1) Any irreducible χ-twisted U_D-module, $\chi \in D^*$, is contained in $V_{(N^0)^{\chi}}$.
(2) Any irreducible untwisted U_D-module is contained in $V_{(I_D)^\psi}$.

Define an action of D on $\text{Irr}(U_0)$ by $X \mapsto U_\xi \boxtimes_{\mathcal{O}_0} X$ for $\xi \in D$ and $X \in \text{Irr}(U_0)$. Let $\text{Irr}(U_0) = \bigcup_{i \in I} \mathcal{O}_i$ be the D-orbit decomposition, and let $D_X = \{ \xi \in D \mid U_\xi \boxtimes_{\mathcal{O}_0} X = X \}$ be the stabilizer of X. The next lemma holds by Lemma 4.4.

Lemma 6.5. $U_\xi \boxtimes_{\mathcal{O}_0} U_{\mu,\nu} = U_{\mu,\nu}$ for some $\xi \neq 0$ if and only if k is odd, $\xi = (\xi_1, \ldots, \xi_\ell) \in \{0, k\}^\ell$, and $\mu_r = (k-1)/2$ for $1 \leq r \leq \ell$ such that $\xi_r = k$.

We study the structure of $U_D \boxtimes_{\mathcal{O}_0} X$ for $X \in \text{Irr}(U_0)$. If $D_X = 0$, then $U_D \boxtimes_{\mathcal{O}_0} X$ is an irreducible χ_X-twisted U_D-module.

Suppose $D_X \neq 0$. Then k is odd, and $D_X \subset \{0, k\}^\ell$ by Lemma 6.3. Let $C = \{(0), (k)\}$ be a \mathbb{Z}_{2k}-code of length one consisting of two codewords (0) and (k). The code C is in Case A or in Case B according as $k \equiv 1$ or $k \equiv 3 \pmod{4}$. Hence the \mathbb{Z}_2-graded simple current extension $U_C = U_0 \oplus U_k$ of U_0 is a simple vertex operator algebra with $h(U_k) \in \mathbb{Z}$ or a simple vertex operator superalgebra with $h(U_k) \in \mathbb{Z} + 1/2$ according as $k \equiv 1$ or $k \equiv 3 \pmod{4}$. We can regard any additive subgroup of $\{0, k\}^\ell \subset (\mathbb{Z}_{2k})^\ell$ as an additive subgroup of $(\mathbb{Z}_2)^\ell$ under the correspondence $0 \mapsto 0$ and $k \mapsto 1$. Since k is odd, the correspondence is the reduction modulo 2, and it gives an isometry from $\{0, k\}^\ell, (\cdot, \cdot)$ to $(\mathbb{Z}_2)^\ell, (\cdot, \cdot))$, where (\cdot, \cdot) is the standard inner product on either $(\mathbb{Z}_{2k})^\ell$ or $(\mathbb{Z}_2)^\ell$. In particular, $D_X \cap D_X^1 \subset (\mathbb{Z}_{2k})^\ell$ corresponds to $D_X \cap D_X^1$ in $(\mathbb{Z}_2)^\ell$. Thus the following theorem holds by Propositions 2.3, 2.5, and 2.6 of [4].

Theorem 6.6. Let $X \in \text{Irr}(U_0)$.
(1) If $D_X = 0$, then $U_D \boxtimes_{\mathcal{O}_0} X$ is an irreducible χ_X-twisted U_D-module.
(2) Suppose k is odd and $D_X \neq 0$.
 If $k \equiv 1 \pmod{4}$, then $U_D \boxtimes_{\mathcal{O}_0} X = \bigoplus_{j=1}^{\lfloor D_X \rfloor} V_j$, where V_j, $1 \leq j \leq |D_X|$, are inequivalent irreducible χ_X-twisted U_D-modules. Furthermore, $V_j \cong \bigoplus_{W \in \mathcal{O}_i} W$ as U_0-modules, where \mathcal{O}_i is the D-orbit in $\text{Irr}(U_0)$ containing X.
 If $k \equiv 3 \pmod{4}$, then $U_D \boxtimes_{\mathcal{O}_0} X = \bigoplus_{j=1}^{\lfloor D_X \cap D_X^1 \rfloor} (V_j)^\otimes m$, where $m = \lceil D_X : D_X \cap D_X^1 \rceil^{1/2}$, and V_j, $1 \leq j \leq |D_X \cap D_X^1|$, are inequivalent irreducible χ_X-twisted U_D-modules. Furthermore, $V_j \cong \bigoplus_{W \in \mathcal{O}_i} W^\otimes m$ as U_0-modules, where \mathcal{O}_i is the D-orbit in $\text{Irr}(U_0)$ containing X.

Any irreducible χ-twisted U_D-module, $\chi \in D^*$, is isomorphic to a direct summand of $U_D \boxtimes_{\mathcal{O}_0} X$ with $\chi = \chi_X$ for some $X \in \text{Irr}(U_0)$. Thus the classification of irreducible χ-twisted U_D-modules for any $\chi \in D^*$ is obtained by Theorem 6.6.

We can write χ_i for χ_X, and D_i for D_X if X belongs to a D-orbit \mathcal{O}_i in $\text{Irr}(U_0)$, as χ_X and D_X are independent of the choice of $X \in \mathcal{O}_i$. Let $I(\chi) = \{ i \in I \mid \chi_i = \chi \}$, which is non-empty by Lemma 5.1.

By the above arguments, we obtain the next theorem.
Theorem 6.7. The number of inequivalent irreducible \(\chi \)-twisted \(U_D \)-modules for \(\chi \in D^* \) is as follows.

\[
\begin{align*}
|I(\chi)| & \quad \text{if } k \text{ is even}, \\
|I(\chi)| & + \sum_{i \in I(\chi)_1} |D_i| \quad \text{if } k \equiv 1 \pmod{4}, \\
|I(\chi)| & + \sum_{i \in I(\chi)_1} |D_i \cap D_i| \quad \text{if } k \equiv 3 \pmod{4},
\end{align*}
\]

where \(I(\chi)_0 = \{ i \in I(\chi) \mid D_i = 0 \} \) and \(I(\chi)_1 = I(\chi) \setminus I(\chi)_0 \).

6.2. Irreducible \(U_D \)-modules: Case B. Let \(D \) be a \(\mathbb{Z}_2k \)-code of length \(\ell \) in Case B of Section 5.2, and let \(D^0 \) and \(D^1 \) be as in Section 5.2. Since \(D^0 \) is a \(\mathbb{Z}_2k \)-code of length \(\ell \) in Case A, we see from Section 6.1 that any irreducible \(U_{D^0} \)-module \(P \) is isomorphic to a direct summand of \(U_{D^0} \otimes_k X \) for some \(X \in \text{Irr}(U_0) \), and that \(X \) is contained in \(V_{N(\eta, \delta(1), \delta(2))} \) for some coset \(N(\eta, \delta(1), \delta(2)) \) of \(N^l \) in \((\Gamma_{D^0})^o \). Since \(U_D = U_{D^0} \oplus U_{D^1} \), the \(U_D \)-submodule \(U_D \cdot P \) of \(V_{(\Gamma_{D^0})^o} \) generated by \(P \) is isomorphic to \(U_D \otimes_{U_{D^0}} P \). Moreover, \(U_D \otimes_{U_{D^0}} P \) is either an irreducible \(U_D \)-module or a direct sum of two irreducible \(U_D \)-modules. Since any irreducible \(U_D \)-module is obtained in this way, the following theorem holds.

Theorem 6.8. Any irreducible \(U_D \)-module is contained in \(V_{(\Gamma_{D^0})^o} \).

Appendix A. Top level of \(U^l \), \(0 \leq l < 2k \)

In this appendix, we prove the following theorem on the top level of \(U^l \), \(0 \leq l < 2k \), defined in (4.3).

Theorem A.1. The weight and the dimension of the top level of the simple current \(U^0 \)-module \(U^l \), \(0 \leq l < 2k \), are as follows.

(1) If \(l = 0 \), then the weight is 0 and the dimension is 1.

(2) If \(l \) is odd, then the weight is \(l(2k - l)/4k - 1/4 \) and the dimension is 1.

(3) If \(l \neq 0 \) is even, then the weight is \(l(2k - l)/4k \) and the dimension is 2.

Proof. Since \(U^0 \otimes \theta \cong U^{-l} = U^{2k-l} \) by (3.20), it is enough to consider the case \(0 \leq l \leq k \). The top level of \(U^0 \) is \(\mathbb{C}1 \), and the assertion (1) holds. Thus we assume that \(1 \leq l \leq k \). If \(k = 2 \), then \(U^l = V_{2d-ld/4} \) with \(\langle d, d \rangle = 4 \), as \(M^0_{(1)} = \mathbb{C}1 \). Hence the theorem holds for \(k = 2 \). So we assume that \(k \geq 3 \).

Recall the notation \(X(i, j, l) \) in Section 3. For a fixed \(l \), let \(P(j) \) be the conformal weight of \(X(0, j, l) \). Since \(U^l = \bigoplus_{j=0}^{k-2} X(0, j, l) \), we need to calculate the minimum value of \(P(j) \) for integers \(j \) in the range \(0 \leq j < k - 1 \). We have

\[
P(j) = \frac{j(k-1-j)}{k-1} + \frac{(k-1+l+2kj)^2}{4(k-1)k} \]

\[
= \left(j + \frac{l+1}{2} \right)^2 - \frac{(l+1)^2}{4} + \frac{(k-1)^2}{4k} \tag{A.1}
\]

for \(j \) in the range

\[
0 \leq j \leq (k-1)(k-l)/2k, \tag{A.2}
\]
and
\[P(j) = \frac{j(k - 1 - j)}{k - 1} + \frac{(k - 1)l + 2kj - 2(k - 1)k^2}{4(k - 1)k} \]
\[= \left(j - \left(k - \frac{l + 1}{2} \right) \right)^2 + \frac{l(2k - l)}{4k} - \frac{1}{4} \] \hspace{1cm} (A.3)

for \(j \) in the range
\[(k - 1)(k - l)/2k \leq j < k - 1. \] \hspace{1cm} (A.4)

The dimension of the top level of \(V_{2d-ld/2k-jd/(k-1)} \) is 2 if \((k - 1)l + 2kj = (k - 1)k\), otherwise it is 1. Since the dimension of the top level of \(M_j^{(k-1)} \) is 1, the dimension of the top level of \(X(0, j, l) \) is 2 if \(l = k \) and \(j = 0 \), otherwise it is 1, as \(1 \leq l \leq k \).

The minimum value of the quadratic polynomial \(P(j) \) for integers \(j \) in the range \((A.2)\) is \((k - 1)l^2/4k\) at \(j = 0 \) by \((A.1)\). As for the minimum value of \(P(j) \) for integers \(j \) in the range \((A.4)\), note that
\[(k - 1)(k - l)/2k \leq k - 1 - (l + 1)/2 < k - 1, \]
as \(k \geq 3 \) and \(1 \leq l \leq k \). We argue the cases \(l = 1, 2, \) and \(l \geq 3 \) separately.

First, assume that \(l = 1 \). Then \(k - (l + 1)/2 = k - 1 \) is not in the range \((A.4)\). So the minimum value of \(P(j) \) for integers \(j \) in the range \((A.4)\) is \(5/4 - 1/4k \) at \(j = k - 2 \) by \((A.3)\). Since \(P(0) < P(k - 2) \), the assertion \((2)\) holds for \(l = 1 \).

Next, assume that \(l = 2 \). Then \(k - (l + 1)/2 = k - 3/2 \), so the minimum value of \(P(j) \) for integers \(j \) in the range \((A.4)\) is \((k - 1)/k \) at \(j = k - 2 \) by \((A.3)\). Since \(P(0) = P(k - 2) \), the assertion \((3)\) holds for \(l = 2 \).

Now, assume that \(3 \leq l \leq k \). Suppose \(l \) is odd. Then the minimum value of \(P(j) \) for integers \(j \) in the range \((A.4)\) is \(l(2k - l)/4k - 1/4 \) at \(j = k - (l + 1)/2 \) by \((A.3)\). The minimum value is smaller than \(P(0) \). Thus the assertion \((2)\) holds.

Finally, suppose \(4 \leq l \leq k \) and \(l \) is even. Then the minimum value of \(P(j) \) for integers \(j \) in the range \((A.4)\) is \(l(2k - l)/4k \) at \(j = k - 1 - l/2 \) and \(k - l/2 \) by \((A.3)\). The minimum value is smaller than \(P(0) \). Thus the assertion \((3)\) holds. The proof is complete. \(\square \)

References

[1] Toshiyuki Abe, Chongying Dong, and Haisheng Li, Fusion rules for the vertex operator algebra \(M(1) \) and \(V_L^+ \), Commun. Math. Phys. 253 (2005), 171–219.

[2] Dražen Adamović, A family of regular vertex operator algebras with two generators, Central European J. Math. 5 (2007), 1–18.

[3] Tomoyuki Arakawa, Ching Hung Lam, and Hiromichi Yamada, Zhu’s algebra, \(C_2 \)-algebra and \(C_2 \)-cofiniteness of parafermion vertex operator algebras, Advances Math. 264 (2014), 261–295.

[4] Tomoyuki Arakawa, Ching Hung Lam, and Hiromichi Yamada, Parafermion vertex operator algebras and \(W \)-algebras, Trans. Amer. Math. Soc. 371 (2019), 4277–4301.

[5] Tomoyuki Arakawa, Hiromichi Yamada, and Hiroshi Yamauchi, \(Z_k \)-code vertex operator algebras, arXiv:1907.10216.

[6] Scott Carnahan, Building vertex algebras from parts, arXiv:1408.5215v3.

[7] Thomas Creutzig, Shashank Kanade, and Andrew R. Linshaw, Simple current extensions beyond semi-simplicity, preprint, arXiv:1511.08754.

[8] Thomas Creutzig, Shashank Kanade, and Robert McRae, Tensor categories for vertex operator superalgebra extensions, preprint, arXiv:1705.05017v1.

[9] Chongying Dong, Ching Hung Lam, Qing Wang, and Hiromichi Yamada, The structure of parafermion vertex operator algebras, J. Algebra 323 (2010), 371–381.
[10] Chongying Dong, Ching Hung Lam, and Hiromichi Yamada, W-algebras related to parafermion algebras, *J. Algebra* **322** (2009), 2366–2403.

[11] Chongying Dong and James Lepowsky, *Generalized Vertex Algebras and Relative Vertex Operators*, Progress in Math., Vol. 112, Birkhäuser, Boston, 1993.

[12] Chongying Dong, Haisheng Li, and Geoffrey Mason, Simple currents and extensions of vertex operator algebras, *Commun. Math. Phys.* **180** (1996), 671–707.

[13] Chongying Dong and Qing Wang, The structure of parafermion vertex operator algebras: general case, *Commun. Math. Phys.* **299** (2010), 783–792.

[14] Chongying Dong and Qing Wang, Quantum dimensions and fusion rules for parafermion vertex operator algebras, *Proc. Amer. Math. Soc.* **144** (2016), 1483–1492.

[15] Jethro van Ekeren, Sven Möller, and Nils Scheithauer, Construction and classification of holomorphic vertex operator algebras, *J. Reine Angew. Math.* published online, DOI 10.1515/crelle-2017-0046, arXiv:1507.08142.

[16] Igor Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, *Memoirs Amer. Math. Soc.* **104**, no. 494, 1993.

[17] G. Höhn, Genera of vertex operator algebras and three dimensional topological quantum field theories, *Vertex operator algebras in mathematics and physics* (Toronto, ON 2000), 89–107, Fields Inst. Commun., **39** Amer. Math. Soc., Providence, RI, 2003.

[18] Yi-Zhi Huang, Alexander Kirillov, Jr., and James Lepowsky, Braided tensor categories and extensions of vertex operator algebras, *Comm. Math. Phys.* **337** (2015), 1143–1159.

[19] Igor Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, *Memoirs Amer. Math. Soc.* **104**, no. 494, 1993.

[20] Alexander Kirillov, Jr. and Viktor Ostrik, On a \(q \)-analogue of the McKay correspondence and the ADE classification of \(\hat{sl}_2 \) conformal field theories, *Adv. Math.* **171** (2002), 183–227.

[21] Masaaki Kitazume, Ching Hung Lam, and Hiromichi Yamada, A class of vertex operator algebras constructed from \(Z_8 \) codes, *J. Algebra* **242** (2001), 338–359.

[22] Ching Hung Lam, Ngau Lam, and Hiroshi Yamauchi, Extension of unitary Virasoro vertex operator algebra by a simple module, *Internat. Math. Res. Notices* **11** (2003), 577–611.

[23] Shinya Sakuma and Hiroshi Yamauchi, Vertex operator algebra with two Miyamoto involutions generating \(S_3 \), *J. Algebra* **267** (2003), 272–297.

[24] Minoru Wakimoto, *Infinite-Dimensional Lie Algebras*, Transl. Math. Monogr., Vol. 195, Amer. Math. Soc., Providence, RI, 2001.

[25] Weiqiang Wang, Rationality of Virasoro vertex operator algebras, *Duke Math. J.* **IMRN** **71** (1993), 197–211.

[26] Hiromichi Yamada and Hiroshi Yamauchi, Simple current extensions of tensor products of vertex operator algebras, arXiv:1804.08242.

[27] Hiroshi Yamauchi, Module categories of simple current extensions of vertex operator algebras, *J. Pure Appl. Algebra* **189** (2004), 315–328.

Department of Mathematics, Hitotsubashi University, Kunitachi, Tokyo 186-8601, Japan

E-mail address: yamada.h@r.hit-u.ac.jp

Department of Mathematics, Tokyo Woman’s Christian University, Suginami, Tokyo 167-8585, Japan

E-mail address: yamauchi@lab.twcu.ac.jp