Impacto da Ablação da Fibrilação Atrial na Pressão de Enchimento Ventricular Esquerdo e Remodelamento Atrial Esquerdo

Simone Nascimento dos Santos1,2, Benhur Davi Henz1, André Rodrigues Zanatta1, José Roberto Barreto1, Kelly Bianca Loureiro1, Clarissa Novakoski1, Marcus Vinicius Nascimento dos Santos1, Fabio F. Giuseppin1, Edna Maria Oliveira1, Luiz Roberto Leite1

Instituto Brasilia de Arritmia - Universidade de Brasília; Faculdade de Medicina (UnB)2, Brasília, DF - Brasil

Resumo

Fundamento: A disfunção diastólica do ventrículo esquerdo (VE) está associada a novos episódios de fibrilação atrial (FA), e a estimativa das pressões de enchimento do VE através da razão E/e' está relacionada a um pior prognóstico em pacientes com FA. Entretanto, não se sabe se a restauração do ritmo sinusal pode reverter este processo.

Objetivo: Avaliar o impacto da ablação da FA na estimativa da pressão de enchimento do VE.

Métodos: Um total de 141 pacientes foi submetido à ablação por radiofrequência (RF) para o tratamento da FA refratária a drogas. Foi realizado ecocardiograma transitorácico 30 dias antes e 12 meses após a ablação. Foram avaliados os parâmetros funcionais do VE, volume do átrio esquerdo indexado (VAEI) e Doppler transmural pulsado e Doppler tecidual do anel mitral (e' e E/e'). Dezoito pacientes apresentavam FA paroxística, 102 persistente e 21 pacientes FA persistente de longa duração. O acompanhamento incluiu ECG e monitoramento pelo sistema Holter 24h, 3, 6 e 12 meses após a ablação.

Resultados: Centro e dezesseis pacientes (82,9%) não apresentaram FA durante o acompanhamento (média de 18 meses ± 5 meses). O VAEI apresentou redução significativa no grupo com sucesso (30,2 mL/m² ± 10,6 mL/m² para 22,6 mL/m² ± 1,1 mL/m², p < 0,001) em comparação ao grupo sem sucesso (37,7 mL/m² ± 14,3 mL/m² para 37,5 mL/m² ± 14,5 mL/m², p = ns). A melhora da estimativa da pressão de enchimento do VE, avaliada através da redução na razão E/e', foi observada apenas após ablação com sucesso (11,5 ± 4,5 vs. 7,1 ± 3,7, p < 0,001), não sendo observada em pacientes com FA recorrente (12,7 ± 4,4 vs. 12 ± 3,3, p = ns). A taxa de sucesso foi menor no grupo com FA persistente de longa duração (57% vs. 87%, p = 0,001).

Conclusão: A ablação da FA com sucesso está associada ao remodelamento reverso do átrio esquerdo (AE) e a uma melhora da estimativa na pressão de enchimento do VE. (Arq Bras Cardiol. 2014; 103(6):485-492)

Palavras-chave: Fibrilação Atrial; Remodelamento Atrial; Ablação por Cateter; Ecodiagrafia; Débito Cardíaco; Função Ventricular.

Abstract

Background: Left ventricular (LV) diastolic dysfunction is associated with new-onset atrial fibrillation (AF), and the estimation of elevated LV filling pressures by E/e' ratio is related to worse outcomes in patients with AF. However, it is unknown if restoring sinus rhythm reverses this process.

Objective: To evaluate the impact of AF ablation on estimated LV filling pressure.

Methods: A total of 141 patients underwent radiofrequency (RF) ablation to treat drug-refractory AF. Transthoracic echocardiography was performed 30 days before and 12 months after ablation. LV functional parameters, left atrial volume index (LAVI), and transmitral pulsed and mitral annulus tissue Doppler (e' and E/e') were assessed. Paroxysmal AF was present in 18 patients, persistent AF was present in 102 patients, and long-standing persistent AF in 21 patients. Follow-up included electrocardiographic examination and 24-h Holter monitoring at 3, 6, and 12 months after ablation.

Results: One hundred seventeen patients (82.9%) were free of AF during the follow-up (average, 18 ± 5 months). LAVI reduced in the successful group (30.2 mL/m² ± 10.6 mL/m² to 22.6 mL/m² ± 1.1 mL/m², p < 0.001) compared to the non-successful group (37.7 mL/m² ± 14.3 mL/m²) to 37.5 mL/m² ± 14.5 mL/m², p = ns). Improvement of LV filling pressure assessed by a reduction in the E/e' ratio was observed only after successful ablation (11.5 ± 4.5 vs. 7.1 ± 3.7, p < 0.001) but not in patients with recurrent AF (12.7 ± 4.4 vs. 12 ± 3.3, p = ns). The success rate was lower in the long-standing persistent AF patient group (57% vs. 87%, p = 0.001).

Conclusion: Successful AF ablation is associated with LA reverse remodeling and an improvement in LV filling pressure. (Arq Bras Cardiol. 2014; 103(6):485-492)

Keywords: Atrial Fibrillation; Atrial Remodeling; Catheter Ablation; Echocardiography; Stroke Volume; Ventricular Function.

Correspondência: Simone Nascimento dos Santos • SMDB conjunto 16 lote 5 casa A, Lago Sul, CEP 71680-160. Brasília, DF – Brasil
Email: simonens@cardiol.br; sns2003@uol.com.br
Artigo recebido em 02/02/14; revisado em 19/06/14; aceito em 31/07/14

DOI: 10.5935/abc.20140152
Introdução

A disfunção diastólica de grau 1 é frequentemente considerada normal na população idosa, mas descobriu-se que ela é um fator preditivo independente para fibrilação atrial (FA)¹. A disfunção diastólica aumenta a probabilidade de FA porque anormalidades no relaxamento do ventrículo esquerdo (VE) levam à redução do esvaziamento passivo do átrio esquerdo (AE), aumento do volume e pressão do AE e distensão das veias pulmonares (VPs), ocasionando remodelamento elétrico²⁻⁴. Não se sabe se a ocorrência de FA pioraria ou ainda levaria ao aumento da pressão de enchimento do VE. Há evidências de que a razão da velocidade do fluxo diastólico mitral inicial (E) e velocidade diastólica inicial no anel mitral (e') (E/e') pode ser útil para estimar a pressão de enchimento do ventrículo esquerdo⁵⁻⁹.

A ablação por cateter surgiu como a estratégia mais promissora para o tratamento da FA¹⁰⁻¹³. Uma vez que a restauração do ritmo sinusal está associada com a remodelamento reverso e melhora da função do AE e distensão das veias pulmonares (VPs), ocasionando remodelamento elétrico, a ablação em todos os pacientes, incluindo aqueles com FA menos um mês antes da ablação e ao menos 4 meses após a sua ocorrência, é considerada normal na população idosa, mas descobriu-se que ela é um fator preditivo independente para fibrilação atrial (FA)¹. A disfunção diastólica aumenta a probabilidade de FA porque anormalidades no relaxamento do ventrículo esquerdo (VE) levam à redução do esvaziamento passivo do átrio esquerdo (AE), aumento do volume e pressão do AE e distensão das veias pulmonares (VPs), ocasionando remodelamento elétrico²⁻⁴. Não se sabe se a ocorrência de FA pioraria ou ainda levaria ao aumento da pressão de enchimento do VE. Há evidências de que a razão da velocidade do fluxo diastólico mitral inicial (E) e velocidade diastólica inicial no anel mitral (e') (E/e') pode ser útil para estimar a pressão de enchimento do ventrículo esquerdo⁵⁻⁹.

A ablação por cateter surgiu como a estratégia mais promissora para o tratamento da FA¹⁰⁻¹³. Uma vez que a restauração do ritmo sinusal está associada com a remodelamento reverso e melhora da função do AE e distensão das veias pulmonares (VPs), ocasionando remodelamento elétrico, a ablação em todos os pacientes, incluindo aqueles com FA menos um mês antes da ablação e ao menos 4 meses após a sua ocorrência, é considerada normal na população idosa, mas descobriu-se que ela é um fator preditivo independente para fibrilação atrial (FA)¹. A disfunção diastólica aumenta a probabilidade de FA porque anormalidades no relaxamento do ventrículo esquerdo (VE) levam à redução do esvaziamento passivo do átrio esquerdo (AE), aumento do volume e pressão do AE e distensão das veias pulmonares (VPs), ocasionando remodelamento elétrico²⁻⁴. Não se sabe se a ocorrência de FA pioraria ou ainda levaria ao aumento da pressão de enchimento do VE. Há evidências de que a razão da velocidade do fluxo diastólico mitral inicial (E) e velocidade diastólica inicial no anel mitral (e') (E/e') pode ser útil para estimar a pressão de enchimento do ventrículo esquerdo⁵⁻⁹.

A ablação por cateter surgiu como a estratégia mais promissora para o tratamento da FA¹⁰⁻¹³. Uma vez que a restauração do ritmo sinusal está associada com a remodelamento reverso e melhora da função do AE e distensão das veias pulmonares (VPs), ocasionando remodelamento elétrico, a ablação em todos os pacientes, incluindo aqueles com FA menos um mês antes da ablação e ao menos 4 meses após a sua ocorrência, é considerada normal na população idosa, mas descobriu-se que ela é um fator preditivo independente para fibrilação atrial (FA)¹. A disfunção diastólica aumenta a probabilidade de FA porque anormalidades no relaxamento do ventrículo esquerdo (VE) levam à redução do esvaziamento passivo do átrio esquerdo (AE), aumento do volume e pressão do AE e distensão das veias pulmonares (VPs), ocasionando remodelamento elétrico²⁻⁴. Não se sabe se a ocorrência de FA pioraria ou ainda levaria ao aumento da pressão de enchimento do VE. Há evidências de que a razão da velocidade do fluxo diastólico mitral inicial (E) e velocidade diastólica inicial no anel mitral (e') (E/e') pode ser útil para estimar a pressão de enchimento do ventrículo esquerdo⁵⁻⁹.

A ablação por cateter surgiu como a estratégia mais promissora para o tratamento da FA¹⁰⁻¹³. Uma vez que a restauração do ritmo sinusal está associada com a remodelamento reverso e melhora da função do AE e distensão das veias pulmonares (VPs), ocasionando remodelamento elétrico, a ablação em todos os pacientes, incluindo aqueles com FA menos um mês antes da ablação e ao menos 4 meses após a sua ocorrência, é considerada normal na população idosa, mas descobriu-se que ela é um fator preditivo independente para fibrilação atrial (FA)¹. A disfunção diastólica aumenta a probabilidade de FA porque anormalidades no relaxamento do ventrículo esquerdo (VE) levam à redução do esvaziamento passivo do átrio esquerdo (AE), aumento do volume e pressão do AE e distensão das veias pulmonares (VPs), ocasionando remodelamento elétrico²⁻⁴. Não se sabe se a ocorrência de FA pioraria ou ainda levaria ao aumento da pressão de enchimento do VE. Há evidências de que a razão da velocidade do fluxo diastólico mitral inicial (E) e velocidade diastólica inicial no anel mitral (e') (E/e') pode ser útil para estimar a pressão de enchimento do ventrículo esquerdo⁵⁻⁹.

A ablação por cateter surgiu como a estratégia mais promissora para o tratamento da FA¹⁰⁻¹³. Uma vez que a restauração do ritmo sinusal está associada com a remodelamento reverso e melhora da função do AE e distensão das veias pulmonares (VPs), ocasionando remodelamento elétrico, a ablação em todos os pacientes, incluindo aqueles com FA menos um mês antes da ablação e ao menos 4 meses após a sua ocorrência, é considerada normal na população idosa, mas descobriu-se que ela é um fator preditivo independente para fibrilação atrial (FA)¹. A disfunção diastólica aumenta a probabilidade de FA porque anormalidades no relaxamento do ventrículo esquerdo (VE) levam à redução do esvaziamento passivo do átrio esquerdo (AE), aumento do volume e pressão do AE e distensão das veias pulmonares (VPs), ocasionando remodelamento elétrico²⁻⁴. Não se sabe se a ocorrência de FA pioraria ou ainda levaria ao aumento da pressão de enchimento do VE. Há evidências de que a razão da velocidade do fluxo diastólico mitral inicial (E) e velocidade diastólica inicial no anel mitral (e') (E/e') pode ser útil para estimar a pressão de enchimento do ventrículo esquerdo⁵⁻⁹.

Métodos

População de Pacientes

Neste estudo, incluímos prospectivamente pacientes consecutivos que apresentavam FA sintomática e refratária a drogas, que haviam sido encaminhados ao Instituto de Brasília de Arritmia para ablação entre Janeiro de 2007 e Julho de 2010. Pacientes com FA paroxística, persistente ou persistente de longa duração foram classificados de acordo com as diretrizes AHA/ACC/ESC/HRS¹⁷. Os seguintes critérios de exclusão foram utilizados: doença cardíaca valvular significante, primeiro episódio de FA, trombos ou tumores no AE, hipertireoidismo, angina ou infarto do miocárdio que tivessem ocorrido há menos de 6 meses da ablação, ou contraindicação relacionadas ao uso de varfarina. Pacientes submetidos a procedimentos prévios de ablação percutânea ou cirúrgica para FA também foram excluídos. Terapia anticoagulante com varfarina foi administrada por ao menos um mês antes da ablação e ao menos 4 meses após a ablação em todos os pacientes, incluindo aqueles com FA paroxística. Setenta e três por cento dos pacientes estavam tomando inibidor da enzima conversora de angiotensina-I (IECA) ou bloqueador do receptor de angiotensina (BRA), durante o ecocardiograma basal e de acompanhamento. Não houve alteração significativa da medicação administrada durante o estudo, com exceção da interrupção da terapia anticoagulante nos casos de ablação bem sucedida em pacientes com baixo risco (CHADS 2 ≤ 1) para ocorrência de embolia.

O ecocardiograma transtorácico (ETT) foi realizado de 24 horas antes a ablação para eliminar suspeita de trombos em AE. A aprovação para este estudo foi obtida junto ao comitê de ética local, e o termo de consentimento foi obtido junto a todos os pacientes.
do VE por ser menos carga-dependente e sua execução ser mais viável em pacientes com FA. O VAEl e razão E/e’ puderam ser consistentemente registrados durante o ritmo sinusal ou FA. Noventa e três pacientes (66%) apresentavam FA durante as medidas do ecocardiograma basal. Nestes pacientes, foi feita a média de cinco medidas para o cálculo de todos os dados.

Acompanhamento

Após a realização da ablação, a terapia anticoagulante foi mantida por ao menos 4 meses, e drogas antiarrítmicas foram usadas por 3 meses em todos os pacientes. Durante o primeiro ano de acompanhamento, ECG foi realizado mensalmente, teste ergométrico realizado no sexto mês, ETT realizado no décimo-segundo mês, e o monitoramento por Holter foi realizado no terceiro, sexto, e décimo segundo mês após a ablação. A recorrência foi definida como FA sintomática ou assintomática através dos registros do ECG, teste ergométrico ou monitoramento por Holter, após um período cegO de 3 meses. Todos os pacientes foram seguidos por pelo menos um ano.

Análise estatística

As variáveis contínuas foram relatafas como média ± DP e comparadas com o teste t-Student ou ANOVA. As variáveis categóricas foram relatadas por porcentagem e comparadas com o teste chi-quadrado ou teste exato de Fisher, conforme apropriado. O valor de probabilidade < 0,05 foi considerado significante. A variação interobservador e intraobservador foi calculada e expressa como percentual. Todas as análises estatísticas foram realizadas com o SPSS® 16 para Mac.

Resultados

Tres pacientes foram excluídos por apresentar regurgitação mitral moderada. A população do estudo compreendeu 141 pacientes [média de idade de 67 anos ± 11 anos, 71 (50,3%) do sexo masculino]. Dezesseis (12,8%) pacientes apresentavam FA paroxística, 102 (72,3%) pacientes apresentavam FA persistente e 21 (14,9%) pacientes apresentavam VAEl persistente de longa duração. O número médio de drogas antiarrítmicas que falharam foi de 2,1 ± 0,7 por paciente. Cento e vinte e seis pacientes (89,3%) foram submetidos a um procedimento, nove pacientes (6,4%) foram submetidos a dois procedimentos e seis pacientes (4,3%) foram submetidos a três procedimentos.

Todos os pacientes foram acompanhados por ao menos um ano. Após um período de acompanhamento médio de 18±5 meses, 117 (82,9%) pacientes estavam em ritmo sinusal, dos quais 70,1% não estavam em terapia com drogas antiarrítmicas e 12,8% em terapia com drogas antiarrítmicas que tinham falhado previamente a ablação. Vinte e quatro pacientes (17,1%) apresentaram ritmo de fibrilação atrial no seguimento, sendo definido como grupo de insucesso.

Características Basais

As características basais estão apresentadas na Tabela 1. No grupo de insucesso um número maior de pacientes encontrava-se em classe funcional NYHA II (56,4% vs. 75%, p < 0,0001) e em FA persistente de longa duração (10,2 % vs. 37,5%, p=0,0001) apresentaram, menores valores de VAEl (30,2 mL/m² ± 10,6 mL/m² vs. 37,7 mL/m² ± 14,3 mL/m², p = 0,023), razão E/e’ (11,5 ± 4,5 vs. 12,7 ± 4, p = 0,01) e razão E/A (0,9 ± 0,3 vs. 1,15 ± 0,5, p < 0,0001) e maior FEVE (68,6% ± 4,9% vs. 63,5% ± 8,6%, p = 0,01) e velocidade e’ (8,1 cm/s ± 4,3 cm/s vs. 6,4 cm/s ± 1,8 cm/s, p = 0,009) do que pacientes com insucesso. Não houve variação relevante na área da superfície corporal durante o período do estudo.

Desfecho

Durante o acompanhamento, a ablação foi bem sucedida em uma porcentagem maior de pacientes com FA paroxística e persistente do que em pacientes com FA persistente de longa duração (87% vs. 57%, respectivamente, p = 0,001). O isolamento das VPs foi alcançado em todos os pacientes desta coorte. Foram realizadas modificações adicionais do substrato do AE frequentemente em pacientes com FA não-paroxística (teto: paroxística = 3 pacientes vs. não-paroxística = 35 pacientes, p = 0,001; linha istmo mitral: paroxística=0 pacientes vs. não-paroxística = 54 pacientes, p < 0,001; CFAE: paroxística = 1 paciente, não-paroxística = 15 pacientes, p < 0,01). O tempo médio de execução do procedimento para toda a coorte foi de 265 ± 55 min (204 ± 51min para FA paroxística, 277 ± 79 min para FA não-paroxística, p = 0,009).

Entre os pacientes com ablação com sucesso, houve melhora significativa na classe funcional NYHA em comparação com pacientes com FA recorrente (p < 0,001) (Tabela 2). Além disso, houve uma redução significativa em FA não-paroxística (teto: paroxística = 3 pacientes vs. não-paroxística = 35 pacientes, p = 0,001; linha istmo mitral: paroxística=0 pacientes vs. não-paroxística = 54 pacientes, p < 0,001; CFAE: paroxística = 1 paciente, não-paroxística = 15 pacientes, p < 0,01). O tempo médio de execução do procedimento para toda a coorte foi de 265 ± 55 min (204 ± 51min para FA paroxística, 277 ± 79 min para FA não-paroxística, p = 0,009).

Entre os pacientes com ablação com sucesso, houve melhora significativa na classe funcional NYHA em comparação com pacientes com FA recorrente (p < 0,001) (Tabela 2). Além disso, houve uma redução significativa nos parâmetros de remodelamento reverso do AE em pacientes com sucesso (VAEl: 30,2 mL/m² ± 10,6 mL/m² e 22,6 mL/m² ± 1,1 mL/m², p < 0,001) (Figura 1). Além disso, no grupo de pacientes com sucesso houve melhora da estimativa da pressão de enchimento do VE, uma vez que a razão E/e’ foi significativamente menor após a ablação (11,5 ± 4,5 vs. 7,1 ± 3,7, p < 0,001, respectivamente). O mesmo não foi observado nos pacientes com FA recorrente. Da mesma forma, avaliando apenas o grupo de pacientes com FA paroxística, observamos redução no VAEl (21,8 mL/m² ± 11,9 mL/m² to 14,1 mL/m² ± 5,5 mL/m², p < 0,001) e na razão E/e’ (10,3 ± 3 vs. 5,0 ± 0,5, p < 0,001).

Reprodutibilidade

Avariabilidade intraobservador na velocidade da onda E, velocidade da onda e’ e volume do AE foi de, 2,0 %, 3,3% e 2,3%, respectivamente. A variabilidade interobservador na velocidade da onda E, velocidade da onda e’ e volume do AE foi de, 3,7%, 3,5% e 4,3%, respectivamente.

Discussão

Os principais achados deste estudo foram relacionados à estimativa da pressão de enchimento do VE e remodelamento reverso do AE. Com a utilização de Ecocardiograma Doppler, demonstramos que a ablação da FA com sucesso reduz o volume do AE e melhora a pressão de enchimento do VE estimada através da razão E/e’.
Tabela 1 – Características basais em pacientes com ablação da fibrilação atrial com sucesso e com insucesso

Variável	Grupo com sucesso (n = 117)	Grupo com insucesso (n = 24)	p
Gênero, masculino, n (%)	61 (52,1%)	10 (41,7%)	ns
Idade (anos)	68 ± 12	63 ± 9	ns
CF NYHA	I 51 (43,5%) II 66 (56,4 %)	I 3 (12,5%) II 18 (75%) III 3 (12,5%)	< 0,0001
Tipo de FA	paroxística 18 (15,4%) persistente 87 (74,4%) persistente de longa duração 12 (10,2%)	paroxística 0 persistente 15 (6,4%) persistente de longa duração 9 (37,5%)	0,001
DAC	0	3 (2,6%)	ns
Alcoolismo	18 (15,4%)	3 (12,5%)	ns
Doença de Chagas	9 (7,7%)	6 (25%)	ns
Tabagismo	3 (2,6%)	3 (12,5%)	ns
Hipertensão	69 (59%)	18 (75%)	ns
DM	6 (5,1%)	3 (12,5%)	ns
DPOC	3 (2,6%)	0	ns
DD	61 (52,1%)	17 (52%)	< 0,01
VAE indexado (ml/m²)	30,2 ± 10,6	37,7 ± 14,3	0,023
DDVE (mm)	48,7 ± 4,4	47,0 ± 1	ns
DSVE (mm)	29,8 ± 3,4	28,0 ± 2,5	ns
Massa do VE (g)	209,4 ± 49,8	186,2 ± 25,2	ns
FEVE (%)	68,6 ± 4,9	63,5 ± 8,6	0,01
Razão E/A	0,9 ± 0,3	1,15 ± 0,05	< 0,0001
e' (cm/s)	8,1 ± 4,3	6,4 ± 1,8	0,009
a’ (cm/s)	10,1 ± 0,4	9,0 ± 1,3	ns
Razão E/e’	11,5 ± 4,5	12,7 ± 4,4	0,01

CF: classe funcional; **NYHA:** New York Heart Association; **DAC:** doença arterial coronária; **DM:** diabetes mellitus; **DPOC:** doença pulmonar obstrutiva crônica; **DD:** disfunção diastólica; **VAE:** volume do átrio esquerdo; **DDVE:** diâmetro diastólico do ventrículo esquerdo; **DSVE:** diâmetro sistólico do ventrículo esquerdo; **VE:** ventrículo esquerdo; **FEVE:** fração de ejeção do ventrículo esquerdo; e’:** onda diastólica precoce ao Doppler tecidual do anel mitral; a’:** onda diastólica tardia ao Doppler tecidual do anel mitral.

Tabela 2 – Características de acompanhamento em pacientes com ablação da fibrilação atrial com sucesso e com insucesso

Variável	Pré-ablação	Pós-ablação	Pré-ablação	Pós-ablação	p	
CF NYHA	1,57 ± 0,5	1,1 ± 0,3	< 0,001	2,0 ± 0,5	2,0 ± 0,4	ns
VAE indexado (ml/m²)	30,2 ± 10,6	22,6 ± 1,1	< 0,001	37,7 ± 14,3	37,5 ± 14,5	ns
DDVE (mm)	49,0 ± 4,7	49,0 ± 5,1	ns	46,0 ± 0,1	49,0 ± 1,0	0,001
DSVE (mm)	29,9 ± 3,6	29,4 ± 3,4	ns	27,0 ± 3,2	27,0 ± 2,1	ns
Massa do VE (g)	195,3 ± 44,5	192,4 ± 51,8	ns	173,5 ± 27,9	178,5 ± 21,3	ns
FEVE (%)	68,6 ± 4,9	70,0 ± 4,7	ns	63,5 ± 8,6	66,0 ± 3,2	ns
Razão E/A	0,9 ± 0,3	1,0 ± 0,3	ns	1,1 ± 0,05	1,5 ± 0,02	ns
e’ (cm/s)	8,1 ± 4,3	9,5 ± 2,5	ns	6,4 ± 1,8	7,9 ± 0,5	ns
a’ (cm/s)	10,1 ± 0,4	10,0 ± 0,2	ns	9,0 ± 1,3	8,7 ± 0,9	ns
Razão E/e’	11,5 ± 4,5	7,1 ± 3,7	< 0,001	12,7 ± 4	12,0 ± 3,3	ns
∆ VAE indexado (ml/m²)	-7,9 ± 5,5	-1,0 ± 0,9	< 0,0001			
∆ Razão E/e’	-3,9 ± 3,4	-1,1 ± 0,9	< 0,0001			

CF: classe funcional; **NYHA:** New York Heart Association; **VAE:** volume do átrio esquerdo; **DDVE:** diâmetro diastólico do ventrículo esquerdo; **DSVE:** diâmetro sistólico do ventrículo esquerdo; **VE:** ventrículo esquerdo; **FEVE:** fração de ejeção do ventrículo esquerdo; e’:** onda diastólica precoce ao Doppler tecidual do anel mitral; a’:** onda diastólica tardia ao Doppler tecidual do anel mitral.
As sobrecargas de volume e pressão são reconhecidas como os principais fatores que levam às respostas adaptativas que ocorrem no remodelamento do AE. Essas sobrecargas ocasionam distensão do AE e VPs, o que gera atividade elétrica rápida e desorganizada, favorecendo a ocorrência de FA. As respostas adaptativas que levam a este fenômeno são crescimento dos miócitos, hipertrofia, necrose, alterações do tecido conjuntivo fibrocolagenoso e mudanças na expressão de canais iônicos celulares e hormônios atriais, incluindo o peptídeo atrial natriurético. Além disso, na ocorrência de sobrecarga de volume do AE e/ou sobrecarga de pressão do AE, é provável que os miócitos do AE sofram despolarização, aumentando a vulnerabilidade à FA. Após a ocorrência de FA, a arritmia pode ser mantida por um substrato remodelado, mas a própria FA também promove remodelamento atrial (“FA gera FA”). Portanto, conforme sugerido anteriormente, a restauração do ritmo sinusal leva à remodelação reversa do AE após ablação bem sucedida, cardioversão elétrica ou cirurgia cardíaca. Bekeuma e cols. demonstraram que o diâmetro do AE reduziu significativamente em pacientes que mantiveram o ritmo sinusal após a ablação; e que a recorrência da FA estava associada com diámetros.

Figura 1 - Exemplo de remodelamento reverso do âtrio esquerdo após ablação com sucesso da fibrilação atrial. 1a) Volume indexado do AE antes da ablação; 1b) Volume indexado do AE 12 meses após a ablação.
A disfunção diastólica é uma causa comum de sobrecarga de volume e/ou pressão, o que leva ao remodelamento do AE, podendo ainda resultar em heterogeneidade estrutural e eletrofisiológica, gerando substrato para a ocorrência de FA. Portanto, não surpreende que a restauração do ritmo sinusal após a ablação resulta em remodelamento reverso do AE, mas estes estudos não observaram um benefício claro na função diastólica do VE. A ausência de um benefício claro pode ser explicada pelo fato de que embora o volume indexado do AE seja um método confiável para avaliar anormalidades no enchimento diastólico do VE, este índice é uma medida da função do AE. Entretanto, Hurrell e cols. mostraram que há uma correlação muito boa entre o volume indexado do AE e medida da pressão diastólica invasiva do VE. O volume indexado do AE tem sido utilizado em diferentes situações como uma medida da função diastólica. Através da incorporação de outros métodos para estimar a pressão de enchimento do VE, pudemos demonstrar sua melhora após a restauração e manutenção do ritmo sinusal após a realização da ablação da FA.

Embora a análise do Doppler de onda pulsada do fluxo da válvula mitral e fluxo do VP seja comumente utilizada, estas medições podem ser influenciadas pela pré-carga e pós-carga. Esta limitação é ainda mais pronunciada em pacientes com FA decorrentes de mudanças no enchimento do AE e perda da contração do AE. Nesta situação, o Doppler Tecidual é o método mais acurado para estimar a pressão de enchimento do VE. Em nossa população de estudo, pacientes com ablação da FA sem sucesso, apresentaram menores valores de e' e maior razão E/e' do que pacientes com sucesso, o que sugere uma relação entre pressão de enchimento do VE elevada e o insucesso da ablação. Adicionalmente, houve redução significativa na razão E/e' durante o acompanhamento de pacientes com sucesso, sugerindo que a restauração do ritmo sinusal tem impacto positivo na pressão de enchimento do VE. Os mesmos achados foram observados em pacientes com FA paroxística.

Poucos estudos tentaram avaliar a relação entre FA e padrões de enchimento diastólico ventricular. Melek e cols. Reportaram o efeito da cardioversão nos parâmetros de Doppler Tecidual em pacientes com FA persistente. Eles não encontraram nenhuma melhora significativa na função diastólica após a restauração do ritmo sinusal com exceção da função atrial, mas o período de acompanhamento foi muito curto. Por outro lado, alguns estudos demonstraram que o comprometimento do enchimento diastólico era um preditor independente de recorrência tardia após cardioversões e ablação.

Sabe-se que pacientes com pronunciado comprometimento do enchimento ventricular apresentam maior risco para FA. O que não está claro é se a FA pode piorar a função diastólica do VE. Durante FA aguda há alguns mecanismos que explicam a piora da função diastólica, por exemplo, perda de contração do AE, taxa e enchimento irregular do LV e pior sincronicidade AV. O insucesso da ablação do ritmo sinusal com exceção de função atrial, mas o período de acompanhamento foi muito curto. Poucos estudos demonstraram que o comprometimento do enchimento diastólico era um preditor independente de recorrência tardia após cardioversões e ablação.

Melhora da função diastólica do ventrículo esquerdo

A disfunção diastólica é uma causa comum de sobrecarga de volume e/ou pressão, o que leva ao remodelamento do AE, podendo ainda resultar em heterogeneidade estrutural e eletrofisiológica, gerando substrato para a ocorrência de FA. Portanto, não surpreende que a restauração do ritmo sinusal também pudesse melhorar a função diastólica. A restauração do ritmo sinusal após a ablação resulta em remodelamento reverso do AE, mas estes estudos não observaram um benefício claro na função diastólica do VE. A ausência de um benefício claro pode ser explicada pelo fato de que embora o volume indexado do AE seja um método confiável para avaliar anormalidades no enchimento diastólico do VE, este índice é uma medida da função do AE. Entretanto, Hurrell e cols. mostraram que há uma correlação muito boa entre o volume indexado do AE e medida da pressão diastólica invasiva do VE. O volume indexado do AE tem sido utilizado em diferentes situações como uma medida da função diastólica. Através da incorporação de outros métodos para estimar a pressão de enchimento do VE, pudemos demonstrar sua melhora após a restauração e manutenção do ritmo sinusal após a realização da ablação da FA.
da FA bem sucedida. A função diastólica foi classificada de 1 a 4 de acordo com as diretrizes ASE
t, entretanto todos os pacientes incluídos estavam em ritmo sinusal no momento em que foram realizados seus ecocardiogramas transtorácicos. Nosso estudo incluiu um grande número de pacientes com FA persistente e persistente de longa duração, de forma que 66% deles não estavam em ritmo sinusal durante as medidas ecocardiográficas. Ainda assim, sugerimos uma associação entre a ablação da FA com sucesso e a melhora do enchimento do VE estimado.

Limitações do Estudo

Embora tenhamos demonstrado uma associação entre a redução do volume indexado do AE e melhora na pressão de enchimento do VE em pacientes com ablação da FA com sucesso, reconhecemos que essa associação pode não ser relacionada apenas à ablação. O remodelamento reverso do AE após ablação da FA com sucesso pode ser resultado não apenas da restauração do ritmo sinusal, como também pode ser consequência do melhor sincronismo atrioventricular. Estudos prospectivos adicionais são necessários para confirmar essa hipótese.

Não realizamos acompanhamento ambulatorial pelo período de sete dias, e recorrências assintomáticas da FA podem não ter sido identificadas. Entretanto, os pacientes foram investigados para recorrências assintomáticas da FA durante o primeiro ano de acompanhamento: ECG foi realizado mensalmente, e monitoramento através de Holter foi efetuado nos terceiro, sexto e décimo segundos meses após a ablação.

Por fim, este foi um estudo não randomizado de braço único, e algumas medidas ecocardiográficas que foram consideradas consequências da ablação podem ter sido influenciadas por outros fatores. Por exemplo, após procedimentos invasivos, alguns pacientes tornam-se mais adherentes ao tratamento farmacológico e exercícios, e isso pode ter levado a alterações nas medidas ecocardiográficas independentemente do procedimento de ablação.

Referências

1. Tsang TS, Gersh BJ, Appleton CP, Tajik AJ, Barnes ME, Bailey KR, et al. Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J Am Coll Cardiol. 2002;40(9):1636-44.

2. Abhayaratna WP, Seward JB, Appleton CP, Douglas PS, Oh JK, Tajik AJ, et al. Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol. 2006;47(12):2357-63.

3. Wyse DG, Gersh BJ. Atrial fibrillation: a perspective: thinking inside and outside the box. Circulation. 2004;109(25):3089-95.

4. Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol. 2002;90(12):1284-9.

5. Rivas-Gotz C, Mamoilos M, Thohan V, Nagueh SF. Impact of left ventricular ejection fraction on estimation of left ventricular filling pressures using tissue Doppler and flow propagation velocity. Am J Cardiol. 2003;91(6):780-4.

6. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30(6):1527-33.

7. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102(15):1788-94.

8. Nagueh SF, Mikati I, Kopelen HA, Middleton KJ, Quinones MA, Zoghbi WA. Doppler estimation of left ventricular filling pressure in sinus tachycardia. A new application of tissue Doppler imaging. Circulation. 1998;98(16):1644-50.

9. Sohn DW, Song JM, Zu JH, Chai IH, Kim HS, Chun HG, et al. Mital annulus velocity in the evaluation of left ventricular diastolic function in atrial fibrillation. J Am Soc Echocardiogr. 1999;12(11):927-31.

10. Marrouche NF, Dressing T, Cole C, Bash D, Saad E, Balaban K, et al. Circular mapping and ablation of the pulmonary vein for treatment of atrial fibrillation: impact of different catheter technologies. J Am Coll Cardiol. 2002;40(3):464-74.

11. Shah DC, Haisaguerre M, Jais P. Catheter ablation of pulmonary vein foci for atrial fibrillation: PV foci ablation for atrial fibrillation. Thorac Cardiovasc Surg. 1999;47(Suppl 3):352-6.

12. Pappone C, Ooreto G, Lamberti F, Vicedomini G, Lorichio ML, Shpun S, et al. Catheter ablation of paroxysmal atrial fibrillation using a 3D mapping system. Circulation. 1999;100(11):1203-8.

Conclusão

A ablação da FA apresentou resultados melhores em pacientes com FA paroxística e persistente do que naqueles com FA persistente de longa duração. Quando o ritmo sinusal foi mantido consistentemente, houve melhora da estimativa da pressão de enchimento ventricular esquerdo e remodelamento reverso do AE.

Contribuição dos autores

Concepção e desenho da pesquisa: Santos, SN; Henz, BD; Zanatta, AR; Barreto, JR; Leite, LR.

Obtenção de dados: Santos, SN;

Henz, BD; Zanatta, AR; Barreto, JR; Loureiro, KB; Noveloski, C; Santos, MVN; Giuseppin, FF; Oliveira, EM; Leite, LR.

Análise estatística: Santos, SN; Leite, LR.

Análise e interpretação dos dados: Santos, SN; Leite, LR.

Redação do manuscrito: Santos, SN; Leite, LR.

Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Santos, SN; Henz, BD; Leite, LR.

Potencial Conflito de Interesses

Declaro não haver conflito de interesses pertinentes.

Fontes de Financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação Acadêmica

Não há vinculação deste estudo com dissertações e teses de pós-graduação.
13. Packer DL, Asirvatham S, Munger TM. Progress in nonpharmacologic therapy of atrial fibrillation. J Cardiovasc Electrophysiol. 2003;14(12 Suppl):S296-309.

14. Hagens VE, Van Veldhuisen DJ, Kamp O, Rienstra M, Bosker HA, Veeger NJ, et al. Effect of rate and rhythm control on left ventricular function and cardiac dimensions in patients with persistent atrial fibrillation: results from the RATE Control versus Electrical Cardioversion for Persistent Atrial Fibrillation (RACE) study. Heart Rhythm. 2005;2(1):19-24.

15. Fleck T, Wolf F, Bader T, Lehner R, Aigner C, Stix G, et al. Atrial function after ablation procedure in patients with chronic atrial fibrillation using steady-state free precession magnetic resonance imaging. Ann Thorac Surg. 2007;84(5):1600-4.

16. Beukema WP, Elvan A, Sie HT, Misier AR, Wellens HJ. Successful radiofrequency ablation in patients with previous atrial fibrillation results in a significant decrease in left atrial size. Circulation. 2005;112(4):2089-95.

17. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation). J Am Coll Cardiol. 2006;48(4):854-906.

18. Leite LR, Santos SN, Maia H, Henz BD, Giuseppe F, Oliveira A, et al. Luminol Esophageal Temperature Monitoring with a Deflectable Esophageal Temperature Probe and Intracardiac Echocardiography May Reduce Esophageal Injury During Atrial Fibrillation Ablation Procedures-Results of a Pilot Study. Circ Arrhythm Electrophysiol. 2011;4(2):149-56.

19. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440-63.

20. Nattel S. Electrophysiologic remodeling: are ion channels static players or dynamic movers? J Cardiovasc Electrophysiol. 1999;10(11):1553-6.

21. Goette A, Honeycut C, Langberg J. Electrical remodeling in atrial fibrillation. Circulation. 1996;94(11):2968-74.

22. Mary-Rabine L, Albert A, Pham TD, Hordof A, Fenoglio JJ Jr, Malm JR, et al. The relationship of human atrial cellular electrophysiology to clinical function and ultrastructure. Circ Res. 1981;52(2):188-99.

23. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92(7):1954-68.

24. Perea RJ, Tamboere D, Mont L, De Carval TM, Ortiz JT, Benuzzo A, et al. Left atrial contractility is preserved after successful circumferential pulmonary vein ablation in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2008;19(4):374-9.

25. Oral H, Pappone C, Chugh A, Good E, Bogun F, Pelosi E, et al. Circumferential pulmonary-vein ablation for chronic atrial fibrillation. N Engl J Med. 2006;354(9):934-41.

26. Mattioli AV, Sansoni S, Lucchi GR, Mattioli G. Serial evaluation of left atrial diameter after cardioversion for atrial fibrillation and relation to atrial function. Am J Cardiol. 2000;85(7):832-6.

27. Verma A, Kilicaslan F, Adams JR, Hoss S, Beheiny S, Minor S, et al. Extensive ablation during pulmonary vein antrum isolation has no adverse impact on left atrial function: an echocardiography and cine computed tomography analysis. J Cardiovasc Electrophysiol. 2006;17(7):741-6.

28. Machino-Obuutsu T, Sato Y, Ishizu T, Yanaka S, Nakajima H, Asami A, et al. Significant improvement of left atrial and left atrial appendage function after catheter ablation for persistent atrial fibrillation. Circ J. 2013;77(7):1695-704.

29. Muellerleile K, Groth M, Steven D, Hoffmann BA, Saring D, Radunski UK, et al. Cardiovascular magnetic resonance demonstrates reversible atrial function after catheter ablation of persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2013;24(7):762-7.