A GENERIC MULTIPLICATION IN QUANTISED SCHUR ALGEBRAS

XIUPING SU

ABSTRACT. We define a generic multiplication in quantised Schur algebras and thus obtain a new algebra structure in the Schur algebras. We prove that via a modified version of the map from quantum groups to quantised Schur algebras, defined in [1], a subalgebra of this new algebra is a quotient of the monoid algebra in Hall algebras studied in [10]. We also prove that the subalgebra of the new algebra gives a geometric realisation of a positive part of 0-Schur algebras, defined in [4]. Consequently, we obtain a multiplicative basis for the positive part of 0-Schur algebras.

INTRODUCTION

Schur algebras $S(n,r)$ were invented by I. Schur to classify the polynomial representations of the complex general linear group $Gl_n(\mathbb{C})$. Quantised Schur algebras $S_q(n,r)$ are quantum analogues of Schur algebras. Both quantised Schur algebras $S_q(n,r)$ and classical Schur algebras $S(n,r)$ have applications to the representation theory of Gl_n over fields of undescribing characteristics.

In [1] A. A. Beilinson, G. Lusztig and R. MacPherson gave a geometric construction of quantised enveloping algebras of type A. Among other important results they defined surjective algebra homomorphisms θ, from the integral form of the quantised enveloping algebras to certain finite dimensional associative algebras. They first defined a multiplication of pairs of n-step partial flags in a vector space k^r over a finite field k and thus obtained a finite dimensional associative algebra. They also studied how the structure constants behave when r increases by a multiple of n. Then, by taking a certain limit they obtained the quantised enveloping algebras of type A. J. Du remarked in [5] that the finite dimensional associative algebras studied in [1] are canonically isomorphic to the quantised Schur algebras studied by R. Dipper and G. James in [2].

The aim of this paper is to study a generic version of the multiplication of pairs of partial flags defined in [1]. By this generic multiplication we get an algebra structure in the quantised Schur algebras. We prove that a certain subalgebra of this new algebra is a quotient of the monoid algebra in Hall algebras studied by M. Reineke in [10]. Via a modified version of the surjective algebra homomorphism θ, defined in [1], we prove that the subalgebra is isomorphic to a positive part of 0-Schur algebras, studied by S. Donkin in [4]. Thus we achieve a geometric construction of the positive parts of the 0-Schur algebras.

This paper is organized as follows. In Section 1 we recall definitions and results in [1] on the multiplication of pairs of partial flags defined in [1]. In this generic multiplication we get an algebra structure in the quantised Schur algebras. We prove that a certain subalgebra of this new algebra is a quotient of the monoid algebra in Hall algebras studied by M. Reineke in [10]. Via a modified version of the surjective algebra homomorphism θ, defined in [1], we prove that the subalgebra is isomorphic to a positive part of 0-Schur algebras, studied by S. Donkin in [4]. Thus we achieve a geometric construction of the positive parts of the 0-Schur algebras.

This paper is organized as follows. In Section 1 we recall definitions and results in [1] on the multiplication of pairs of partial flags (see also [5, 6]). In Section 2 we recall definitions and results on the monoid given by generic extensions studied in [10]. In Section 3 we study a generic version of the multiplication of pairs of partial flags in [1], and prove that this generic multiplication gives us a new algebra structure in quantised Schur algebras. In Section 4 we prove results on connection between our new algebras and the monoid algebras given by generic extensions in [10] and to 0-Schur algebras. We also provide a multiplicative basis for a positive part of 0-Schur algebras. As a remark, we would like to mention that this multiplicative basis is related to Lusztig’s canonical basis.

1. q-SCHUR ALGEBRAS AS QUOTIENTS OF QUANTISED ENVELOPING ALGEBRAS

In this section we recall some definitions and results from [1] on q-Schur algebras as quotients of quantised enveloping algebras (see also [5, 6]).
1.1. **q-Schur algebras.** Denote by Θ_r the set of $n \times n$ matrices whose entries are non-negative integers and sum to r. Let V be an r-dimensional vector space over a field k. Let \mathcal{F} be the set of all n-steps flags in V:

$$V_1 \subseteq V_2 \subseteq \cdots \subseteq V_n = V.$$

The group $\text{GL}(V)$ acts naturally by change of basis on \mathcal{F}. We let $\text{GL}(V)$ act diagonally on $\mathcal{F} \times \mathcal{F}$. Let $(f, f') \in \mathcal{F} \times \mathcal{F}$, we write

$$f = V_1 \subseteq V_2 \subseteq \cdots \subseteq V_n = V$$

and

$$f' = V'_1 \subseteq V'_2 \subseteq \cdots \subseteq V'_n = V.$$

Let $V_0 = V'_0 = 0$ and define

$$a_{ij} = \dim (V_{i-1} + V_i \cap V'_j) - \dim (V_{i-1} + V_i \cap V'_{j-1}).$$

Then the map $(f, f') \mapsto (a_{ij})_{ij}$ induces a bijection between the set of $\text{GL}(V)$-orbits in $\mathcal{F} \times \mathcal{F}$ and the set Θ_r. We denote by \mathcal{O}_A the $\text{GL}(V)$-orbit in $\mathcal{F} \times \mathcal{F}$ corresponding to the matrix $A \in \Theta_r$.

Now suppose that k is a finite field with q elements. Let $A, A', A'' \in \Theta_r$ and let $(f_1, f_2) \in \mathcal{O}_{A''}$. Following Proposition 1.1 in [1], there exists a polynomial $g_{A, A', A''} = c_0 + c_1 q + \cdots + c_m q^m$, given by

$$g_{A, A', A''} = |\{(f, f) \in \mathcal{F} | (f_1, f) \in \mathcal{O}_A, (f, f_2) \in \mathcal{O}_{A'}\}|,$$

where c_i are integers that do not depend on q, the cardinality of the field k, and $(f_1, f_2) \in \mathcal{O}_{A''}$.

Now recall that the q-Schur algebra $S_q(n, r)$ is the free $\mathbb{Z}[q, q^{-1}]$-module with basis $\{e_A | A \in \Theta_r\}$, and with an associative multiplication given by

$$e_A e_{A'} = \sum_{A'' \in \Theta_r} g_{A, A', A''} e_{A''}.$$

For a matrix $A \in \Theta_r$, denote by $\text{ro}(A)$ the vector $(\sum_j a_{1j}; \sum_j a_{2j}; \cdots; \sum_j a_{nj})$ and by $\text{co}(A)$ the vector $(\sum_j a_{j1}; \sum_j a_{j2}; \cdots; \sum_j a_{jn})$. By the definition of the multiplication it is easy to see that

$$e_A e_{A'} = 0 \text{ if } \text{co}(A) \neq \text{ro}(A').$$

Denote by E_{ij} the elementary $n \times n$ matrix with 1 at the entry (i, j) and 0 elsewhere. We recall a lemma, which we will use later, on the multiplication defined above.

Lemma 1.1 ([1]). Assume that $1 \leq h < n$. Let $A = (a_{ij}) \in \Theta_r$. Assume that $B = (b_{ij}) \in \Theta_r$ such that $B - E_{h, h+1}$ is a diagonal matrix and $\text{co}(B) = \text{ro}(A)$. Then

$$e_A e_B = \sum_{p \geq h+1, p > 0} v^{2\sum_j a_{pj}} v^{2(a_{pj}+1)} \frac{v^{2(a_{hb}+1)}}{v^{2-1}} e_A + E_{h, p} - E_{h+1, p}.$$

1.2. **The map $\theta : U_A(\text{gl}_n) \to S_v(n, r)$.** Let $A = \mathbb{Z}[v, v^{-1}]$ and $v^2 = q$. Let $U_A(\text{gl}_n)$ be the integral form of the quantised enveloping algebra of the Lie algebra gl_n. Denote by $S_v(n, r)$ the algebra $A \otimes S_v(n, r)$. Let

$$\theta : U_A(\text{gl}_n) \to S_v(n, r)$$

be the surjective algebra homomorphism defined by A. A. Beilinson, G. Lusztig and R. MacPherson in [1]. Through the map θ we can view the Schur algebra $S_v(n, r)$ as a quotient of the quantised enveloping algebra $U_A(\text{gl}_n)$. We are interested in the restriction of θ to the positive part U^+ of $U_A(\text{gl}_n)$.

Unless stated otherwise, we let Q be the linearly oriented quiver of type A_{n-1}:

$$1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n - 1.$$

By a well-known result of C. M. Ringel (see [1] [2]), the algebra U^+ is isomorphic to the twisted Ringel-Hall algebra $H_q(Q)$, which is generated by isomorphism classes of simple kQ-modules via Hall multiplication.
Denote by S_i the simple module of the path algebra kQ associated to vertex i of Q. By abuse of notation we also denote by M the isomorphism class of a kQ-module M. For any $s \in \mathbb{N}$, denote by D_s the set of diagonal matrices satisfying that the entries are non-negative integers and that the sum of the entries is s. For a matrix $A \in \Theta_r$, denote by $[A] = v^{-\dim O_A + \dim pr_1(O_A)} e_A$, where pr_1 is the natural projection to the first component of $\mathcal{F} \times \mathcal{F}$. Now the map θ can be defined on the twisted Ringel-Hall algebra as follows:

$$\theta : H_q(Q) \to S_u(n, r), \ S_i \mapsto \sum_{D \in D_{r-1}} [E_{i,i+1} + D].$$

2. A monoid given by generic extensions

In this section we briefly recall definitions and results on the monoid of generic extensions in $[10]$, and we let k be an algebraically closed field. Results in this section work for any Dynkin quiver $Q = (Q_0, Q_1)$, where $Q_0 = \{1, \cdots, n\}$ is the set of vertices of Q and Q_1 is the set of arrows of Q. We denote by $\text{mod} kQ$ and $\text{Rep}(Q)$, respectively, the category of finitely generated left kQ-modules and the category of finite dimensional representations of Q. We don’t distinguish a representation of Q from the corresponding kQ-module.

Let $b \in \mathbb{N}^{n-1}$. Denote by

$$\text{Rep}(b) = \Pi_{i \in Q_1} \text{Hom}_k(k^{b_i}, k^{b_j})$$

the representation variety of Q, which is an affine space consisting of representations with dimension vector b. The group $\text{GL}(b) = \Pi_{i} \text{GL}(b_i)$ acts on $\text{Rep}(b)$ by conjugation and there is a one-to-one correspondence between $\text{GL}(b)$-orbits in $\text{Rep}(b)$ and isomorphism classes of representations in $\text{Rep}(b)$. Denote by $E(M, N)$ the subset of $\text{Rep}(b)$, containing points which are extensions of M by N.

Lemma 2.1 ([10]). The set $E(M, N)$ is an irreducible subset of $\text{Rep}(b)$.

Thus there exists a unique open $\text{GL}(b)$-orbit in $E(M, N)$. We say a point in $E(M, N)$ is generic if it is contained in the open orbit. Generic points in $E(M, N)$ are also called generic extensions of M by N.

Definition 2.2 ([10]). Let M and N be two isomorphism classes in $\text{mod} kQ$. Define a multiplication

$$M \ast N = G,$$

where G is the isomorphism class of the generic points in $E(M, N)$.

Denote by $H_q(Q)$ the Ringel-Hall algebra over $\mathbb{Q}[q]$ and by $H_0(Q)$ the specialisation of $H_q(Q)$ at $q = 0$.

Theorem 2.3 ([10]). (1) $\mathcal{M} = \{\{M \mid M \text{ is an isomorphism class in } \text{mod } kQ\}, \ast\}$ is a monoid.

(2) $\mathbb{Q}\mathcal{M} \cong H_0(Q)$ as algebras.

3. A monoid given by a generic multiplication in q-Schur algebras

In this section we define a generic multiplication in the q-Schur algebra $S_q(n, r)$. Via this multiplication we obtain a new algebra in $S_q(n, r)$. We let k be an algebraically closed field in this section.

Denote by

$$\Theta^u_r = \{A \in \Theta_r \mid A \text{ is an upper triangular matrix}\}.$$

Let $A, A' \in \Theta^u_r$, define

$$\mathcal{E}(A, A') = \{(f_1, f_2) \in \mathcal{F} \times \mathcal{F} \mid \exists f \text{ such that } (f_1, f) \in O_A \text{ and } (f, f_2) \in O_{A'}\}.$$

We denote by M_{ij} the indecomposable representation of Q with dimension vector $\sum_{l=i}^{j-1} e_l$, where e_l is the simple root of Q associated to vertex i, that is, e_i is the dimension vector of the simple module S_i. By the module determined by a matrix $A \in \Theta^u_r$ we mean the module
$\bigoplus_{i<j} M(ij)^{a_{ij}}$. Note that for any $(f_1, f_2) \in \mathcal{E}(A, A')$, we have f_2 is a subflag of f_1. Note also that by omitting the last step of a partial flag f in \mathcal{F}, we can view f as a projective kQ-module and by abuse of notation we still denote the projective module by f. Now for $A \in \Theta^u_r$, suppose that $(f, h) \in \mathcal{O}_A$ and that M is the module determined by A. We have a short exact sequence

$$0 \rightarrow h \rightarrow f \rightarrow M \rightarrow 0,$$

that is, $h \subseteq f$ is a projective resolution of M.

Let $b \in \mathbb{N}^{n-1}$ and denote by k^b the Q_0-graded vector space with k^b as its i-th homogeneous component, where i is a vertex of Q. Denote by $\text{Hom}_{gr}(f, k^b)$ the set of graded linear maps between f and k^b, where f is a partial flag in \mathcal{F} viewed as a Q_0-graded vector space by omitting its last step.

3.1. Relation between generic points in $\mathcal{E}(A, A')$ and in $\mathcal{E}(M, N)$

For $A, A' \in \Theta_r$, we write $A \preceq A'$ if $\mathcal{O}_{A'}$ is contained in the Zariski closure of \mathcal{O}_A. In this case we say that $(f_1, f_2) \in \mathcal{O}_A$ degenerates to $(f'_1, f'_2) \in \mathcal{O}_{A'}$. Lemma 3.7 in [1] implies the existence of generic points in $\mathcal{E}(A, A')$, in the sense that the closure of their orbit contains orbits of all the other points in $\mathcal{E}(A, A')$. That is, there is a unique open orbit in $\mathcal{E}(A, A')$. In this subsection we will show that there is a nice correspondence between generic points $\mathcal{E}(A, A')$ and generic points in subset $\mathcal{E}(M, N)$, where M and N are the modules determined by A and A', respectively.

Let $(f_1, f_2) \in \mathcal{F} \times \mathcal{F}$ with f_2 a subflag of f_1. Denote by a_1 and a_2, respectively, the dimension vectors of the projective modules f_1 and f_2. Let $b = a_1 - a_2$. We define some sets as follows.

$$\text{Inj}(f_2, f_1) = \{ \sigma \in \text{Hom}_{kQ}(f_2, f_1) | \sigma \text{ is injective} \};$$

$$S_1 = \{ (\sigma, \eta) \in \text{Inj}(f_2, f_1) \times \text{Hom}_{gr}(f_1, k^b) | \eta \text{ is surjective and } \eta \sigma = 0 \};$$

$$S'_1 = \{ (\sigma, \eta) \in \text{Inj}(f_2, f_1) \times \text{Hom}_{gr}(f_1, k^b) | \eta \text{ is surjective, }\cr \text{ker} \eta \text{ is a } kQ\text{-module and } \eta \sigma = 0 \};$$

$$S_2 = \{ \eta \in \text{Hom}_{gr}(f_1, k^b) | \eta \text{ is surjective and } \text{ker} \eta \text{ is a } kQ\text{-module} \};$$

$$S'_2 = \{ (M, \eta) \in \text{Rep}(b) \times \text{Hom}_{gr}(f_1, k^b) | \eta : f_1 \rightarrow M \text{ is a } kQ\text{-homomorphism} \};$$

$$\text{Inj}_{A, A'}(f_2, f_1) = \{ \sigma \in \text{Inj}(f_2, f_1) | \text{cok}(\sigma) \in \mathcal{E}(M, N) \},$$

where M and N are the modules determined by A and A', respectively.

For convenience we denote by $\text{Inj}(f_2, f_1)$ by S_3. We obtain some fibre bundles as follows.

Lemma 3.1 ([S]). The natural projection $\pi_1 : S'_1 \rightarrow S_2$ is a vector bundle.

Lemma 3.2 ([S]). The natural projection $\pi_2 : S_1 \rightarrow S_3$ is a principal $\text{GL}(b)$-bundle.

Lemma 3.3 ([S]). The natural projection $\pi_3 : S'_2 \rightarrow \text{Rep}(b)$ is a vector bundle.

Note that any $\eta \in S_2$ determines a unique module $M \in \text{Rep}(b)$ and this defines an open embedding of S_2 into S'_2. So we can view S_2 as an open subset of S'_2.

Lemma 3.4. (1) $\text{Inj}_{A, A'}(f_2, f_1) = \pi_2(S_1 \cap \pi_1^{-1}(S_2 \cap \pi_3^{-1}(\mathcal{E}(M, N))))$.

(2) $\text{Inj}_{A, A'}(f_2, f_1)$ is irreducible.

Proof. Following the definitions of π_1 and π_3, $\text{cok}\sigma \in \mathcal{E}(M, N)$ for any $(\sigma, \eta) \in S_1 \cap \pi_1^{-1}(S_2 \cap \pi_3^{-1}(\mathcal{E}(M, N)))$. Therefore $\sigma = \pi_2((\sigma, \eta)) \in \text{Inj}_{A, A'}(f_2, f_1)$. On the other hand, suppose that $\sigma \in \text{Inj}_{A, A'}(f_2, f_1)$. Then $\sigma \in \pi_2(S_1 \cap \pi_1^{-1}(S_2 \cap \pi_3^{-1}(X)))$, where X is the module determined by η for a preimage $(\sigma, \eta) \in \pi_2^{-1}(\sigma)$. This proves (1). Now (2) follows from (1) and Lemmas 3.1-3.3. \(\square\)
Let
\[\mathcal{E}'(A, A') = \{(f_1, f) \in \mathcal{E}(A, A')| f \in \mathcal{F}\}. \]
Define
\[\pi : \text{Inj}_{A,A'}(f_2, f_1) \rightarrow \mathcal{F} \times \mathcal{F}, \quad \sigma \mapsto (f_1, \text{Im} \sigma), \]
where \(\text{Im} \sigma \) can be viewed as a flag in \(\mathcal{F} \) with the last step the natural embedding of \(\text{Im} \sigma(f_1)n-1 \) into \(V \).

Lemma 3.5. (1) \(\text{Im} \pi = \mathcal{E}'(A, A') \).

(2) \(\mathcal{E}'(A, A') \) is irreducible.

Proof. Let \(\sigma \in \text{Inj}_{A,A'}(f_2, f_1) \). Then by the following diagram,

\[
\begin{array}{ccc}
I & \xrightarrow{f_2} & I \\
\downarrow & \sigma & \downarrow \\
\text{ker} \eta & \xrightarrow{f_1} & M, \\
\downarrow & & \downarrow \\
N & \xrightarrow{cok \sigma} & M
\end{array}
\]

where each square commutes and all rows and columns are short exact sequences, we know that \((f_1, \text{Im} \sigma) \in \mathcal{E}'(A, A') \). On the other hand by the definition of \(\mathcal{E}'(A, A') \), for any \((f_1, f) \in \mathcal{E}'(A, A') \), the natural embedding \(f_2 \cong f \subseteq f_1 \) is in \(\text{Inj}_{A,A'}(f_2, f_1) \). Now the irreducibility of \(\mathcal{E}'(A, A') \) follows from that of \(\text{Inj}_{A,A'}(f_2, f_1) \). \(\square \)

As a consequence of Lemma 3.5 we can see the existence of a unique dense open orbits in \(\mathcal{E}(A, A') \). Indeed, by Lemma 3.5 and the surjective map \(\mathcal{E}'(A, A') \times \text{GL}(r) \rightarrow \mathcal{E}(A, A') \), the set \(\mathcal{E}(A, A') \) is irreducible. Since there are only finitely many \(\text{GL}(r) \)-orbits in \(\mathcal{E}(A, A') \), there exists a unique dense open orbits in \(\mathcal{E}(A, A') \).

Definition 3.6. Let \(\mathcal{O}_{A''} \) be the dense open orbit in \(\mathcal{E}(A, A') \). We say that an injection \(\sigma : f' \rightarrow f \) is generic in \(\text{Inj}_{A,A'}(f', f) \) if the pair of flags \((f, \text{Im} \sigma) \) is contained in \(\mathcal{O}_{A''} \).

Proposition 3.7. Let \((\sigma, \eta) \in S_1, (f_1, f) \in \mathcal{O}_{A'} \) and \((f, f_2) \in \mathcal{O}_{A''} \). Then \(\sigma \) is generic in \(\text{Inj}_{A,A'}(f_2, f_1) \) if and only if the module determined by \(\eta \) is generic in \(\mathcal{E}(M, N) \), where \(M \) and \(N \) are the modules determined by \(A \) and \(A' \), respectively.

Proof. Suppose that \(\mathcal{O}_{A''} \) is the dense open orbit in \(\mathcal{E}(A, A') \) and that \(\mathcal{O}_X \) is the dense open orbit in \(\mathcal{E}(M, N) \). By Lemmas 3.1-3.3, \(\pi_2(S \cap \pi_1^{-1}(S_2 \cap \pi_3^{-1}(\mathcal{O}_X))) \) is open in \(\text{Inj}_{A,A'}(f_2, f_1) \). By Lemma 3.5, \(\pi^{-1}(\mathcal{O}_{A''} \cap \mathcal{E}'(A, A')) \) is open in \(\text{Inj}_{A,A'}(f_2, f_1) \). Since \(\text{Inj}_{A,A'}(f_2, f_1) \) is irreducible, the intersection \(\pi_2(S \cap \pi_1^{-1}(S_2 \cap \pi_3^{-1}(\mathcal{O}_X))) \cap \pi^{-1}(\mathcal{O}_{A''} \cap \mathcal{E}'(A, A')) \) is non-empty. Therefore, \(X \) is the module determined by \(A'' \). This finishes the proof. \(\square \)

3.2. A generic multiplication in \(S_q(n, r) \)

We now define a multiplication, called a generic multiplication, by

\[e_A \circ e_{A'} = \begin{cases}
 e_{A''} & \text{if } \mathcal{E}(A, A') \neq \emptyset, \\
 0 & \text{otherwise},
\end{cases} \]

where \(\mathcal{O}_{A''} \) is the dense open orbit in \(\mathcal{E}(A, A') \).

Proposition 3.8. Let \(A, A', A'' \in \Theta_n^q \). Then \((e_A \circ e_{A'}) \circ e_{A''} = e_A \circ (e_{A'} \circ e_{A''}) \)

Proof. By the definition of the multiplication \(\circ \), we see that \((e_A \circ e_{A'}) \circ e_{A''} = 0 \) implies that \(e_A \circ (e_{A'} \circ e_{A''}) = 0 \) and vice versa. So we may assume that neither of them is zero. Let \(M, N, L \) be the module determined by \(A, A', A'' \), respectively. By Lemma 3.1 in [10], we know that \((M * N) * L = M * (N * L) \). Now the proof follows from Proposition 3.7. \(\square \)

We can now state the main result of this section.
Theorem 3.9. $\mathbb{Q}(\{e_A | A \in \Theta^u_r \}, +, 0)$ is an algebra with unit $\sum_{D \in D_r} e_D$.

Proof. We need only to show that $\sum_{D \in D_r} e_D$ is the unit. Let D be a diagonal matrix and let $(f_1, f_2) \in \mathcal{O}_D$. Then $f_1 = f_2$. For any $A \in \Theta^u_r$, by the definition of the generic multipilcation,

$$e_A \circ \sum_{D \in D_r} e_D = e_A \circ e_C,$$

where C is the diagonal matrix $\text{diag}(\sum_j a_{1j}, \ldots, \sum_j a_{nj})$. Since $e_A e_C = \sum_B g_{A,C,B} e_B$, where $(f_1, f) \in \mathcal{O}_B$ and $g_{A,C,B} = |\{f | (f_1, f) \in \mathcal{O}_A, (f, f) \in \mathcal{O}_C\}|$, we see that $e_A e_C = e_A$. Therefore $e_A \circ e_C = e_A$. Similarly, $(\sum_{D \in D_r} e_D) \circ e_A = e_A$. Therefore $\sum_{D \in D_r} e_D$ is the unit. \hfill \Box

We denote the algebra $\mathbb{Q}(\{e_A | A \in \Theta^u_r \}, +, 0)$ in Theorem 3.9 by S^+_0.

4. The algebra S^+_0 as a quotient and 0-Schur algebras

We have two tasks in this section. We will first prove that a certain subalgebra of S^+_0 is a quotient of the monoid algebra defined in Section 2. We will then prove that this subalgebra gives a geometric realisation of a positive part of 0-Schur algebras.

It is well-known that the specialisation of $S_0(n, r)$ at $q = 1$ gives us the classical Schur algebra $S(n, r)$ of type A. Much about the structure and representation theory of $S(n, r)$ is known, see for example \cite{7}. A natural question is to consider the specialisation of $S_q(n, r)$ at $q = 0$, which is called 0-Schur algebra and denoted by $S_0(n, r)$. 0-Schur algebras have been studied in \cite{4, 9, 13}. In this section the 0-Schur algebras will be studied from a different point of view, that is, via a modified version of 0-Schur algebra.

We call $\theta (\mathbb{H}_q(Q))$ the positive part of the q-Schur algebra, and denote it by $S^+_q(n, r)$. Denote the specialisation of $S^+_q(n, r)$ at $q = 0$ by $S^+_0(n, r)$. Denote by S^+_0 the subalgebra of S^+_0, generated by $l_A r = \sum_D e_{A+D}$, where A is a strict upper triangle matrix with its entries non-negative integers and the sum is taken over all diagonal matrices in $D_r - \sum_i a_{ij}$.

4.1. A modified version of θ. For convenience we denote by E_i the element $l_{E_{i,i+1}, r}$ in $S_0(n, r)$. We have the following result.

Proposition 4.1. The elements E_1, \ldots, E_{n-1} satisfy the following modified quantum Serre relations:

$$E_i^2 E_j - (q+1)E_i E_j E_i + qE_j E_i^2 = 0 \quad \text{for } |i-j| = 1$$

$$E_i E_j - E_j E_i = 0 \quad \text{for } |i-j| > 1.$$

Proof. We only prove the first equation for $j = i + 1$. The remaining part can be done in a similar way. By Lemma \[\Box\] we have the following.

\begin{align*}
E_i E_{i+1} &= l_{E_{i,i+2}, r} + l_{E_{i,i+1}+E_{i+1,i+2}, r}, \\
E_{i+1} E_i &= l_{E_{i,i+1}+E_{i+1,i+2}, r}, \\
E_i E_i &= (q+1) l_{2E_{i,i+1}, r}, \\
E_i l_{E_{i,i+2}, r} &= q l_{E_{i,i+1}+E_{i+1,i+2}, r}, \\
E_i l_{E_{i,i+1}+E_{i+1,i+2}, r} &= l_{E_{i,i+1}+E_{i+1,i+2}, r} + (q+1) l_{2E_{i,i+1}+E_{i+1,i+2}, r}, \\
E_{i+1} E_i E_i &= (q+1) l_{2E_{i,i+1}+E_{i+1,i+2}, r}.
\end{align*}

Therefore,

$$E_i^2 E_{i+1} - (q+1)E_i E_{i+1} E_i + qE_{i+1} E_i^2 = E_i (E_i E_{i+1} - (q+1)E_{i+1} E_i) + qE_{i+1} E_i^2 = 0.$$

}\hfill \Box
Following Proposition 4.1 and [12], we can now modify the restriction \(\theta|_{\mathcal{H}_q(Q)} \) as follows.

\[
\theta : \mathcal{H}_q(Q) \rightarrow S_q(n, r),
\]

\[
S_i \mapsto E_i
\]

From now on, unless stated otherwise, by \(\theta \) we mean the modified map \(\theta|_{\mathcal{H}_q(Q)} \). The following result is a modified version of Proposition 2.3 in [6] and we will give a direct proof. For any two modules \(M, N \), recall that Hall multiplication of \(M \) and \(N \) is given by

\[
MN = \sum_X F_{MN}^X X,
\]

where \(F_{MN}^X = |\{ U \subseteq X | U \cong N, X/U \cong N \}| \) and where the sum is taken over all the isomorphism classes of modules.

Proposition 4.2. Let \(A \) be a strict upper triangular matrix with entries non-negative integers and let \(M \) be the module determined by \(A \). Then

\[
\theta(M) = \begin{cases}
 l_{A,r} & \text{if } \sum_{i,j} a_{ij} \leq r, \\
 0 & \text{otherwise}.
\end{cases}
\]

Proof. Note that \(\mathcal{B} = \{ \Pi_{i,j} M(ij)^{x_{ij}} | x_{ij} \in \mathbb{Z}_{\geq 0} \} \) is a PBW-basis of \(\mathcal{H}_q(Q) \), where the product is ordered as follows: \(M(ij) \) is on the left hand side of \(M(st) \) if either \(i = s \) and \(j > t \), or \(i > s \). Let \(M \in \mathcal{B} \) be the module determined by \(A \). Suppose that \(M(st) \) is the left most term with \(x_{st} > 0 \). We can write \(M = M(st) \oplus M' \).

First consider the case \(M = M(st) \), that is, \(M \) is indecomposable. We may suppose that \(t - s > 1 \). Then \(M = M(s, t - 1)M(t - 1, t) - M(t - 1, t)M(s, t - 1) \). By induction on the length of \(M \), Lemma 4.1 and a dual version of it, we have

\[
\theta(M(s, t - 1)M(t - 1, t)) = l_{E_s,t,r} + l_{E_s,t-1+E_{t-1},t,r},
\]

\[
\theta(M(t - 1, t)M(s, t - 1)) = l_{E_s,t-1+E_{t-1},t,r}.
\]

Therefore \(\theta(M) = \theta(M(s, t - 1)M(t - 1, t)) - \theta(M(t - 1, t)M(s, t - 1)) = l_{E_s,t,r} \).

Now consider the case that \(M \) is decomposable. We use induction on the number of indecomposable direct summands of \(M \). By the assumption we have \(M = \frac{q^{-1}}{q^{st-1}} M(st) M' \).

Therefore

\[
\theta(M) = \frac{q^{-1}}{q^{st-1}} \theta(M(st)) \theta(M')
\]

\[
= \frac{q^{-1}}{q^{st-1}} \sum_{D \in D_{r-1}} e_{E_{st}+D} e_{A-E_{st}+D'},
\]

where \(D' \) is the diagonal matrix with non-negative integers as entries such that \(co(E_{st}+D) = ro(A - E_{st} + D') \). Suppose that \(e_B \) appears in the multiplication of \(e_{E_{st}+D} e_{A-E_{st}+D'} \) and \((f, h) \in O_B \). Note that in the minimal projective resolution \(Q \rightarrow P \) of \(M' \), the projective module \(P_t \) is not a direct summand of \(P \). Therefore by the definition of the multiplication \(e_{E_{st}+D} e_{A-E_{st}+D'} \), we have \(f/h \cong M \), that is \(B = A \), and the coefficient of \(e_B \) is about the possibilities of choosing a submodule, which is isomorphic to \(P_s \), of \(P_{st} \). Hence the coefficient is \(\frac{q^{st-1}}{q-1} \) and so \(\theta(M) = \sum_{D} e_{A+D} = l_{A,r} \). This finishes the proof. \(\square \)

Remark 4.3. Proposition 2.3 in [6] has a minor inaccuracy. Indeed, there is a coefficient missing in front of the image \(\theta(M) \). For example, let \(n = 3 \), \(r = 2 \) and let \(M \) be the module determined by the elementary matrix \(E_{13} \). Then \(\theta(M) = vy_{X,r} \), but not \(y_{X,r} \), as stated in Proposition 2.3 in [6], here \(\theta \) is the original map from the quantised enveloping algebra to the Schur algebra \(S_n(3, 2) \) and \(y_{X,r} = \sum_{D \in D_1}[X + D] \).
4.2. A homomorphism of algebras $\Gamma : \mathcal{QM} \to S_0^+$. For a given module M, denote by $|M|_{\text{dir}}$ the number of indecomposable direct summands of M. Let $\Gamma : \mathcal{QM} \to S_0^+$ be the map given by

$$\Gamma(M) = \begin{cases} \theta(M) & \text{if } |M|_{\text{dir}} \leq r, \\ 0 & \text{otherwise.} \end{cases}$$

Let X be a module and let $D = \text{diag}(d_1, \cdots, d_n)$ be a diagonal matrix. Write $X = \oplus_{i,j} M(i,j)^{x_{ij}}$. By e_{X+D} we mean the basis element in $S_q(n,r)$ corresponding to the matrix with its entry at (i,j) given by $x_{ij} + \delta_{ij}d_i$ for $i \leq j$ and 0 elsewhere, where δ_{ij} are the Kronecker data. Let $\sigma = (\sigma_i)_i : Q \to P$ be an injection of Q into P, where P and Q are projective modules. Then (P,Q) gives a pair of flags (f_1,f_2) with f_2 a subflag of f_1. More precisely, the i-th step of f_1 is given by $\text{Im}P_{\alpha_{n-2}} \cdots P_{\alpha_i}$ for $i \leq n-2$ and the $(n-1)$-th step is given by the vector space associated to vertex $n-1$ of P, where P_{α_j} is the linear map on the arrow α_j from j to $j+1$ for the module P. The i-th step of f_2 is given by $\text{Im}P_{\alpha_{n-2}} \cdots P_{\alpha_i}$. We have the following result.

Theorem 4.4. The map Γ is a morphism of algebras.

Proof. The unit in \mathcal{M} is the zero module. By the definition of Γ, it is clear that $\Gamma(0) = \sum_{D \in D_r} e_D$, the unit of Θ^n_σ. We now need only to show

$$\Gamma(M \ast N) = \Gamma(M) \circ \Gamma(N). \quad (1)$$

Let X be a generic point $\mathcal{E}(M,N)$. Denote the number of indecomposable direct summands of X, M, N by a, b, and c, respectively. By the definition of Γ, we can write

$$\Gamma(X) = \sum_{D \in D_{r-a}} e_{X+D},$$

$$\Gamma(M) = \sum_{D' \in D_{r-b}} e_{M+D'},$$

$$\Gamma(N) = \sum_{D'' \in D_{r-c}} e_{N+D''}.$$

We first consider the case where $a > r$. Clearly, in this case $\Gamma(M \ast N) = 0$ and we claim that $e_{M+D'}e_{N+D''} = 0$ for any $D' \in D_{r-b}$ and $D'' \in D_{r-c}$. In fact suppose that $e_{L+D''}$ appears in the multiplication, where L is a module and D'' is a diagonal matrix. Then $|L|_{\text{dir}} \leq r$, and L is a degeneration of X. Since Q is linearly oriented, $|L|_{\text{dir}} \geq a$. This is a contradiction. Therefore $e_{M+D'}e_{N+D''} = 0$, and so

$$(\sum_{D' \in D_{r-b}} e_{M+D'}) \circ (\sum_{D'' \in D_{r-c}} e_{N+D''}) = 0.$$

This proves the equation (1) for the case $a > r$.

Now suppose that $a \leq r$. Note that if $(D', D'') \neq (C', C'')$, where $D', C' \in D_{r-b}$ and $D'', C'' \in D_{r-c}$, then $e_{M+D'}e_{N+D''} \neq e_{M+C'}e_{N+C''}$. By Proposition 3.7 we know that if $e_{M+D'}e_{N+D''} \neq 0$, then $e_{M+D'}e_{N+D''} = e_{X+D}$ for some $D \in D_{r-a}$.

On the other hand, we can show that for any e_{X+D} appearing in the image of X under Γ, there exist $D' \in D_{r-b}$ and $D'' \in D_{r-c}$ such that $e_{M+D'}e_{N+D''} = e_{X+D}$. Suppose that

$$0 \xrightarrow{Q} P \xrightarrow{\sigma} X \xrightarrow{0}$$

is the minimal projective resolution of X. Write $D = \text{diag}(d_1, \cdots, d_n)$ and let Y be the projective module $\oplus_i P_i^{d_i}$. Then the pair of flags in $\mathcal{F} \times \mathcal{F}$, determined by $(P \oplus Y, Q \oplus Y)$, is in the orbit Q_{X+D}. We have the following diagram where each square commutes and all rows and columns are short exact sequences,
where I is the identity map on Y, $K = \text{Ker}(\rho r 0)$ and $\lambda = (\tau 0)|_K$. Let $Z' \xrightarrow{I} Z'$ be the maximal contractible piece of the projective resolution

$$0 \to K \to P \oplus Y (\rho r 0) \to M \to 0$$

of M, and let $Z'' \xrightarrow{I} Z''$ be the maximal contractible piece of the projective resolution

$$0 \to \text{Ker}\lambda \to K \to N \to 0$$

of N. Write

$$Z' = \oplus_i P_i^{d_i'}$$

and $Z'' = \oplus_i P_i^{d_i''}$,

and let $D' = \text{diag}(d_1', \ldots, d_n')$ and $D'' = \text{diag}(d_1'', \ldots, d_n'')$.

Then $e_{M+D'} \circ e_{N+D''} = e_X + D$. Therefore,

$$\sum_{D' \in D_{r-b}} e_{M+D'} \circ \sum_{D'' \in D_{r-c}} e_{N+D''} = \sum_{D \in D_{r-a}} e_X + D.$$

This proves the equations (1), and so the proof is done. \square

The following result is a direct consequence of Theorem 4.4.

Corollary 4.5. $\text{Ker}\Gamma = \mathbb{Q}\text{-Span}\{M||M|_{\text{dir}} > r\}$.

4.3. A geometric realisation of 0-Schur algebras.

Theorem 4.6. $S_0^+(n, r) \cong \mathbb{Q} S_0^+$ as algebras.

Proof. Denote by θ_0 the specialisation of θ to 0, that is, $\theta_0 : H_0(Q) \to S_0(n, r)$. We have $\text{Ker}\theta_0 = \mathbb{Q}\text{-Span}\{M||M|_{\text{dir}} > r\} = \text{Ker}\Gamma$, where Γ is as in Theorem 4.4. Now the proof follows from the following commutative diagram.

$$\begin{array}{ccc}
\text{Ker}\theta_0 & \xrightarrow{\theta_0} & S_0^+(n, r) \\
\text{Ker}\Gamma & \xrightarrow{\Gamma} & S_0^+
\end{array}$$

\square

As a direct consequence of Theorem 4.6, we obtain a multiplicative basis of the positive part of 0-Schur algebras, in the sense that the multiplication of any two basis elements is either a basis element or zero.

Corollary 4.7. The elements in $\{l_{A, r} | A \text{ is an strictly upper triangular matrix in } \bigcup_{s \leq r} \Theta^s_n \}$ form a multiplicative basis of $S_0^+(n, r)$.
Under the map Γ, this multiplicative basis $\{l_{A,r} | \text{for any } A \in \bigcup_{s \leq r} \Theta_s^u\}$ is the image of the multiplicative basis for $H_0(Q)$ studied in [10]. By Theorem 7.2 in [10], the multiplicative basis for $H_0(Q)$ is the specialisation of Lusztig’s canonical basis for a two-parameter quantization of the universal enveloping algebra of \mathfrak{gl}_n given in [14]. Thus we can consider the basis $\{l_{A,r} | A \text{ is a strictly upper triangular matrix in } \bigcup_{s \leq r} \Theta_s^u\}$ as a subset of a specialization of the canonical basis.

Acknowledgement: The author would like to thank Steffen König for helpful discussions.

References

[1] Beilinson, A. A., Lusztig, G. and MacPherson, R., A geometric setting for the quantum deformation of GL_n, Duke Math. J. 61 (1990), no. 2, 655–677.
[2] Dipper, R., James, G., The q-Schur algebra, Proc. London Math. Soc. (3) 50 (1989), no. 1, 23–50.
[3] Dipper, R. and James, G., q-tensor space and q-Weyl modules, Trans. Amer. Math. Soc. 327 (1991), no. 1, 251–282.
[4] Donkin, S., The q-Schur algebra, London Mathematical Society Lecture Note Series, 253. Cambridge University Press, Cambridge, 1998. x+179 pp. ISBN: 0-521-64558-1.
[5] Du, J., A note on quantised Weyl reciprocity at roots of unity, Algebra Colloq. 2 (1995), no. 4, 363–372.
[6] Green, R. M., q-Schur algebras as quotients of quantised enveloping algebras, J. Algebra 185 (1996), no. 3, 660–687.
[7] Green, J. A., Polynomial representations of GL_n, Algebra, Carbondale 1980 (Proc. Conf., Southern Illinois Univ., Carbondale, Ill., 1980), pp. 124–140, Lecture Notes in Math., 848, Springer, Berlin, 1981.
[8] Jensen, B. T. and Su, X., Singularities in derived categories, Manuscripta math. 117, 475-490(2005).
[9] Krob, D. and Thibon, J. Y., Noncommutative symmetric functions IV, Quantum linear groups and Hecke algebras at $q = 0$, J. Algebraic Combin. 6 (1997), no. 4, 339–376.
[10] Reineke, M., Generic extensions and multiplicative bases of quantum groups at $q = 0$, Represent. Theory 5 (2001), 147–163.
[11] Ringel, C. M., Hall algebras, Topics in algebra, Part 1 (Warsaw, 1988), 433–447, Banach Center Publ., 26, Part 1, PWN, Warsaw, 1990.
[12] Ringel, C. M., Hall algebras and quantum groups, Invent. Math. 101 (1990), no. 3, 583–591.
[13] Solomon, L., A decomposition of the group algebra of a finite Coxeter group, J. Algebra 9 (1968), 220–239.
[14] Takeuchi, M., A two parameter quantization of GL_n, Proc. Japan, Acad. 66 (1990), 112-114.
[15] Zwara, G., Degenerations of finite-dimensional modules are given by extensions, Compositio Math. 121 (2000), no. 2, 205–218.

Mathematisches Insitut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany.
email:xsu@math.uni-koeln.de