Communication Bounds for Convolutional Neural Networks

Anthony Chen∗
University of Michigan, Ann Arbor
Ann Arbor, USA

James Demmel
University of California, Berkeley
Berkeley, USA

Grace Dinh
University of California, Berkeley
Berkeley, USA

Mason Haberle
New York University
New York, USA

Olga Holtz
University of California, Berkeley
Berkeley, USA

ABSTRACT
Convolutional neural networks (CNNs) are important in a wide variety of machine learning tasks and applications, so optimizing their performance is crucial. Moving words of data between levels of a memory hierarchy or between processors on a network is much more expensive than the cost of arithmetic, so minimizing communication is critical to optimizing performance. In this paper, we present new lower bounds on data movement for mixed precision convolutions in both single-processor and parallel distributed memory models, as well as algorithms that outperform current implementations such as Im2Col. We obtain performance figures using GEMMINI, a machine learning accelerator, where our tiling provides improvements between 13% and 150% over a vendor supplied algorithm.

CCS CONCEPTS
- Computing methodologies → Machine learning algorithms;
 Parallel algorithms;
- Mathematics of computing → Mathematical analysis.

KEYWORDS
Convolutional neural networks, communication avoiding algorithms

ACM Reference Format:
Anthony Chen, James Demmel, Grace Dinh, Mason Haberle, and Olga Holtz. 2022. Communication Bounds for Convolutional Neural Networks. In Platform for Advanced Scientific Computing Conference (PASC ‘22), June 27–29, 2022, Basel, Switzerland. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3539781.3539784

1 INTRODUCTION
Convolutional neural networks (CNNs) are important in many machine learning applications and their computational intensity makes their computation a major bottleneck, requiring efficient implementations on modern architectures. To do so, it is important to recognize that most of the time and energy spent during the execution of a CNN often goes towards communication, the movement of data between different levels of the memory hierarchy (RAM to L3 cache) or between processors operating in parallel. The cost of moving one word of data is frequently orders of magnitude larger than the cost of performing one arithmetic operation both in terms of time and power consumption. This disparity is only increasing as time passes [4]. Minimizing communication has driven optimization efforts in numerical linear algebra, giving rise to the highly tuned implementations seen in BLAS and LAPACK which attain a high fraction of a machine’s maximum possible performance.

In this paper, we consider the problem of computing a single convolution layer of a CNN, which can be written as seven nested loops. Our model is described in Section 2.1. In our theoretical work, we consider various ways of organizing this computation, and we ask which order minimizes the amount of communication between main memory and cache in the single processor case, or between the network of processors in the parallel case. We describe our CNN and memory model in detail in 2.1.

Our first contribution is to provide new communication lower bounds in both single processor and parallel architectures including precise constants and allowing for mixed precision data. These bounds are presented in Section 2.2 with proofs in Sections 3.1 and 4.1. Our second contribution is to provide algorithms which meet these bounds in the parallel case for large parameters, and which approach them more closely than previously attainable in the single processor case. These results are described in Sections 3.2 and 4.2.

The rest of the paper is organized as follows. Section 2 describes our CNN model before we briefly discuss our results, and introduces the main theoretical tool for computing lower bounds, the Hölder-Brascamp-Lieb inequalities. Sections 3 and 4 present lower bounds for the single processor and parallel cases respectively with discussions of attainability. In Section 5, we discuss performance results obtained using GEMMINI, a machine learning accelerator.

2 PRELIMINARIES

2.1 CNN and Memory Model
We consider the following loop nest for directly computing a convolution layer of a CNN. Since it has 7 nested loops surrounding a simple update instruction, we call it 7NL CNN:

\[
\text{for} \{i_1, i_2, i_3, i_4, i_5, i_6, i_7\} = 0 : \{N, c_1, c_2, w_1, h_1, w_F, h_F\} - 1
\]

\[
\text{Output}(i_1, i_3, i_4, i_5) = \text{Input}(i_1, i_2, \sigma_w i_4 + i_5, \sigma_h i_5 + i_7) \times \\
\text{Filter}(i_2, i_3, i_6, i_7)
\]

(1)
where the Input has dimensions $N \times c_I \times (w_F + \sigma w_O) \times (h_F + \sigma h_O)$, the Output has dimensions $N \times c_O \times w_O \times h_O$, and the Filter has dimensions $c_I \times c_O \times w_F \times h_F$. N is the number of images, c_I is the number of channels of the input image, c_O is the number of channels of the output image, w_O and h_O are the width and height of the output image, w_F and h_F are the width and height of one convolution filter, and σw and σh are the stride sizes in the horizontal and vertical dimensions respectively. We assume that the filter sizes are smaller than the input image sizes, and in practice, they are usually much smaller. This gives us the assumptions $w_F \leq \sigma w_O$ and $h_F \leq \sigma h_F$. We also assume that $\sigma w \leq w_F$ and $\sigma h \leq h_F$ so that all elements of the image are used. Then, the input has size $|I| = Nc_I(\sigma w_O + w_F)(\sigma h_O + h_F)$, the output has size $|O| = Nc_Ow_Oh_O$, and the filter has size $|F| = c_Ic_Ow_Fh_F$. The precisions of the input, output, and filter are p_I, p_O, and p_F respectively. These are in units of words (32 bits). We define the sum of the precisions as $p_T = p_I + p_O + p_F$.

Note that each iteration of the loop nest requires access to a single element of both the Input and Filter arrays, and must make a single update to the Output array. The order in which these updates are made does not impact the result, so they may be reorganized as desired to optimize for data movement. We consider a computation of the 7NL CNN algorithm to be an execution of all $G := Nc_Ic_Ow_Oh_Ow_Fh_F$ updates, performed in any order.

We consider computations of 7NL CNN within two different architectures. The first is a single processor architecture with a 2-layer memory model: a cache which may hold M words of data and may be accessed instantaneously by the processor, and a main memory of arbitrary size. The movement of one word of data from the main memory to the cache, or back, is counted as a single unit of communication. Data begins in the main memory, and the output of the computation must reside in the main memory before the computation is complete.

The second architecture is a parallel processor architecture with a distributed memory model. There are P processors, each with their own local instantaneously accessible memory of size M words. Any processor may communicate with any other processor, and each word sent is counted as a single unit of communication. Data may begin in any processor, and may end in any processor by the completion of the computation.

2.2 Our Results

Before we discuss the mathematical tools involved in our analysis, we first briefly summarize our results. We find results corresponding both to the single and parallel architectures with mixed precision data. Proofs are found in Sections 3.1 and 4.1.

We find the following lower bound for the number of words communicated in a single-processor memory model with fast memory (cache) and slow memory, where the Input array takes entries which are p_I words in length, and similarly p_F for the Filter and p_O for the Output.

Theorem 2.1. If X is the number of words communicated by 7NL CNN within a single-processor memory model with M words of fast memory, where Input, Filter, and Output are non-overlapping arrays and $G := Nc_Ic_Ow_Oh_Ow_Fh_F$ is the total number of updates performed during the computation, we have

$$X \geq \max \left\{ \frac{p_I|I|}{p_T} + p_F|F| + p_O|O|, C_PM^{-1} - M, 2(p_Ip_Fp_O)^{1/2}(\sigma w\sigma_h)^{1/2}G(w_Fh_FM)^{-1/2} - 2M \right\}$$

where the value of $C_P = C_P(p_I, p_F, p_O)$ depends on the precisions satisfying a triangle condition:

$$C_P = \frac{1}{4} P_{\ell}^2 \quad p_I \leq p_k + p_\ell \quad \text{for all distinct } j, k, \ell$$

$$p_I(p_k + p_\ell) \quad p_j > p_k + p_\ell \quad \text{for some distinct } j, k, \ell$$

In the standard case when each matrix has precision 1, $C_P = 9/4$.

The first bound corresponds to accessing each memory location at least once. The second bound dominates when individual $w_F \times h_F$ filters are large relative to the memory size M, and the third bound dominates when filters are small relative to M. In all practical cases, the precisions satisfy the triangle condition, so the first expression for C_P is more relevant.

We additionally discuss a blocking technique for evaluating 7NL CNN which comes close to meeting this bound. Plots depicting this attainability are found in Figure 2.

We also derive the following lower bounds for the number of words communicated by some processor in a parallel-processor distributed memory model. Again, these bounds accept mixed precision data. The first two bounds are similar to our bounds in Theorem 2.1, decaying with the memory size.

Theorem 2.2. If X is the number of words communicated by 7NL CNN within a parallel processor memory model with P processors each with M words of memory, where Input, Filter, and Output are nonoverlapping arrays with precisions p_I, p_F, p_O respectively and $G := Nc_Ic_Ow_Oh_Ow_Fh_F$ is the total number of updates performed during the computation, we have

$$X \geq \max \left\{ \frac{C_PG}{PM} - M, \frac{2(p_Ip_Fp_O)^{1/2}(\sigma w\sigma_h)^{1/2}G(w_Fh_FM)^{-1/2}}{P(w_Fh_FM)^{1/2}} - 2M \right\}$$

with C_P as in Theorem 2.1.

The above bounds are only nontrivial when M and P are small relative to G. If there are many processors, or each processor has access to more memory, then we require new lower bounds corresponding in spirit to the 2.5D matrix multiplication data replication algorithms presented in [5]. These two bounds are memory independent and require a load-balancing assumption.

Theorem 2.3. Consider an execution of 7NL CNN within a parallel processor memory model with the setup of Theorem 2.2. Suppose further that each array is initially load balanced and that and $A_p := \max\{|I|, |F|, |O|\}$ is the memory size of the largest array. Some processor must communicate X words, where

$$X \geq (p_Ip_Fp_O)^{1/3} \max \left\{ \frac{G^{1/3}}{p_I^{1/3}}, \frac{(\sigma w\sigma_h)^{2/3}}{(w_Fh_FM)^{1/3}} \right\} - A_p$$

We introduce the machinery used to obtain these lower bounds, and then present careful proofs.
2.3 The Hölder-Brascamp-Lieb Inequality

One of the key mathematical tools for proving theoretical lower bounds for the communication cost of nearly any numerical linear algebra computation is the collection of Hölder-Brascamp-Lieb inequalities. These inequalities bound the sizes of sets in terms of the sizes of their linear projections. Their simplest form, the Loomis-Whitney inequality, is already useful for bounding the communication cost of matrix multiplication [1]. When \(A \subseteq \mathbb{Z}^3 \) is a finite set of integer lattice points and \(A_x, A_y, \) and \(A_z \) its 2D projections along each axis, the Loomis-Whitney inequality states

\[
|A| \leq \sqrt{|A_x||A_y||A_z|}.
\]

In words, the size of \(A \) is bounded in terms of the sizes of its shadows.

Figure 1: Loomis-Whitney inequality \(|A| \leq \sqrt{|A_x||A_y||A_z|} \).

To perform 3-nested-loop matrix multiplication, the \((i,j,k)\)th operation in computing \(C = AB \) is setting \(C[i,k] = A[i,j]B[j,k] \). But these locations are the projections. So one must access \(|A_x| + |A_y| + |A_z| \) memory locations to perform all \(|A| \) operations. The Loomis-Whitney inequality tells us how many operations we can perform when accessing a limited number of memory locations.

This idea can be generalized to loop nests of arbitrary size whose array accesses are affine functions of the indices. The key tool is a generalization of the Loomis-Whitney inequalities, a discrete formulation of the Hölder-Brascamp-Lieb inequalities:

Theorem 2.4 (Discrete HBL [2]). Let \(d \) and \(d_j \) be nonnegative integers, and for \(j = 1, \ldots, m \) let \(\phi_j : \mathbb{Z}^d \rightarrow \mathbb{Z}^{d_j} \) be group homomorphisms. If \(s_j \in \{0,1\} \) for \(j = 1, \ldots, m \) satisfy the following collection of linear constraints:

\[
\begin{align*}
\text{rank}(H) &\leq \sum_{j=1}^m s_j \text{rank}(\phi_j(H)) \quad \text{for each subgroup } H \leq \mathbb{Z}^d \\
|V| &\leq \prod_{j=1}^m |\phi_j(V)|^{s_j} \quad \text{for each finite set } V \subseteq \mathbb{Z}^d.
\end{align*}
\]

then we find the bound

\[
|V| \leq \prod_{j=1}^m |\phi_j(V)|^{s_j} \quad \text{for each finite set } V \subseteq \mathbb{Z}^d.
\]

This result is stated and proved in detail in Section 3 of [2]. We call such a tuple \((s_1, \ldots, s_m)\) HBL exponents for the HBL datum \((\mathbb{Z}^d, (\mathbb{Z}^{d_j}), (\phi_j))\) and attempt to minimize the sum of the \(s_j \) subject to the linear constraints.

These inequalities provide a powerful tool for understanding data movement. For our purposes, they allow us to bound the number of updates that an execution of the 7NL CNN algorithm is able to complete if it is only allowed a certain number of accesses to each array. More specifically, suppose we run 7NL CNN within a single-processor one level memory model with cache size \(M \). We allow the updates to be executed in an arbitrary order. Consider a continuous segment of updates during the execution which makes exactly \(T \) communications with main memory, whether loads from Input or Filter, or stores to Output. At the start of the segment, we have access to no more than \(M \) elements from any of the three arrays, and we may load no more than \(T \) elements during the segment. So the number of elements accessible from each array is at most \(M + T \).

Now define three array access homomorphisms which map any tuple of loop indices \((i,j)\) to each of the tuples of indices accessed in each array. For example, \(\phi_O : \mathbb{Z}^2 \rightarrow \mathbb{Z}^4 \) defined by \(\phi_O(i_1, \ldots, i_7) = (i_1, i_3, i_4, i_5) \) is the array access homomorphism for the Output array as seen in the model presented in Section 2.1. Then any valid tuple of HBL exponents \((s_j) \) satisfying the constraints of Theorem 2.4 provides a bound on the size of \(V \); the set of updates the execution may compute during this segment, in terms of the sizes of the \(\phi_j(V) \)'s, the number of elements which need to be accessed from each array:

\[
|V| \leq \prod_{j=1}^m |\phi_j(V)|^{s_j} \leq \prod_{j=1}^m (M + T)^{s_j} = (M + T)^{\sum_j s_j}
\]

Let \(s = \sum_j s_j \). Now, if the entire execution must make \(G \) updates, then splitting the entire execution up into \(L \) segments each with about \(T \) communications, each segment may do no more than \((M + T)^s \) updates and so there must be at least \(G / (M + T)^s - 1 \) segments. Each has \(T \) communications, so the total number of communication must be at least \(GT / (M + T)^s - T \). Choosing \(T = M \) for now, we find the number of communications to be \(\Omega(G/M^{s-1}) \). If one takes the time to compute the optimal \((s_j) \) for various choices of array access homomorphisms, this exact same proof sketch results in the well-known asymptotic communication lower bounds one finds for many common linear algebra algorithms such as those tabulated in [1]. We now discuss how to make practical use of Theorem 2.4. Note that because each rank is an integer between 0 and \(d \), the number of constraints that we need to check for a given tuple \((s_1, \ldots, s_m)\) is finite. We can further reduce the workload by showing that the only subgroups which need to be checked are those in the subgroup lattice generated by the kernels of the \(\phi_j \). The lattice generated by a family of subgroups is the smallest collection of subgroups which contains this family and which is closed under intersection and sum of subgroups. We denote our lattice of interest by Lattice(\(\ker \phi_j \)). This is formalized in the following proposition:

Proposition 2.5. Let \(\phi_j \) be homomorphisms and \(s_j \) exponents as in Theorem 2.4, and consider Lattice(\(\ker \phi_j \)), the lattice generated by the subgroups \(\ker \phi_j \). If

\[
\begin{align*}
\text{rank}(H) &\leq \sum_{j=1}^m s_j \text{rank}(\phi_j(H)) \quad \text{for each } H \in \text{Lattice}(\ker \phi_j) \\
\text{rank}(H) &\leq \sum_{j=1}^m s_j \text{rank}(\phi_j(H)) \quad \text{for each subgroup } H \leq \mathbb{Z}^d
\end{align*}
\]

then

\[
\begin{align*}
\text{rank}(H) &\leq \sum_{j=1}^m s_j \text{rank}(\phi_j(H)) \quad \text{for each subgroup } H \leq \mathbb{Z}^d
\end{align*}
\]
and the conclusion of HBL follows.

Proof. Let \(\Phi_j : Q^d \rightarrow Q^{d_j} \) extend \(\phi_j \) to a \(Q \)-linear map. In Section 2.2 of [3], it is proved that the polytope of \((s_j) \) satisfying the linear constraints in Theorem 2.4 is exactly equal to the polytope of \((s_j) \) satisfying, for each subspace \(V \leq Q^d \),

\[
\dim V \leq \sum_{j=1}^m s_j \dim \Phi_j(V).
\]

In [15], Theorem 8 states that it suffices to check only these inequalities from subspaces in \(\text{Lattice}(\ker \Phi_j) \). To check these, it suffices to check the original inequalities from Theorem 2.4 on the subgroups in \(\text{Lattice}(\ker \phi_j) \) and then to take \(Q \)-linear spans of these subgroups. This completes the proof. \(\square \)

We can reduce the number of subgroups to check even further. We do this by splitting \(\text{Lattice}(\ker \phi_j) \) into several independent sublattices. We call two collections of subgroups \(\{A_i\} \) and \(\{B_k\} \) independent if \(\sum_i A_i + \sum_k B_k = \{0\} \). If \(A = \{A_i\} \) and \(B = \{B_k\} \) are independent collections, it quickly follows that

\[
\text{Lattice}(A \cup B) = \text{Lattice}(A) + \text{Lattice}(B)
\]

\[
\text{rank}(A_i + B_k) = \text{rank}(A_i) + \text{rank}(B_k)
\]

\[
\text{rank}(\phi_j(A_i + B_k)) = \text{rank}(\phi_j(A_i)) + \text{rank}(\phi_j(B_k)).
\]

Then if \(\text{Lattice}(\ker \phi_j) = \bigoplus_k \text{Lattice}(A_k^j) \) where the \(A_k^j \)’s are pairwise independent collections of subgroups, it suffices to check the constraints in Theorem 2.4 on the subgroups in each \(\text{Lattice}(A_k^j) \). As we will see, these reductions are capable of reducing the number of linear constraints we need to check from hundreds to only a few. We will leverage this to compute optimal exponent tuples \((s_j) \) for the array access homomorphisms in 7NL CNN.

3 SINGLE PROCESSOR COMMUNICATION BOUNDS

3.1 Derivation of New Bounds

In this section, we prove Theorem 2.1. Performing an analysis with the HBL inequalities, we derive precise lower bounds, taking care to optimize constants. For example, in the standard precision case \(p_I = p_F = p_O = 1 \), the bound becomes

\[
X \geq \max \left\{ |I| + |F| + |O|, \frac{9G}{4M} - \frac{2G(\sigma_0\sigma_h)^{1/2}}{(WFNF)^{1/2} - 2M} \right\}
\]

The first bound doesn’t depend on the memory size. The second bound exhibits \(\Omega(1/M) \) decay, while the third bound exhibits \(\Omega \left(1/M^{1/2} \right) \) decay. However, it is important to note that the third bound only eclipses the second bound when \(WFNF < \frac{64M\sigma_0\sigma_h}{G} \), i.e., when the filters are small relative to the memory size.

We prove each of the three bounds below. For the second and third bound, we will make use of the HBL theory discussed in Section 2.3. First, we have a trivial memory-independent bound:

Lemma 3.1. With the setup in Theorem 2.1, the number of words communicated \(X \) satisfies

\[
X \geq p_I|I| + p_F|F| + p_O|O|
\]

Proof. Every entry of Input and Filter must be accessed at least once, and every entry in Output must be filled by the computation. All three arrays reside in slow memory, so at minimum \(p_I \) words must be communicated for every entry in the \(j \)th array, for \(j \in \{I,F,O\} \). So the number of words communicated \(X \) satisfies

\[
X \geq p_I|I| + p_F|F| + p_O|O|
\]

Before proving the second bound, we perform an HBL analysis on the array-access homomorphisms corresponding to 7NL CNN. First, we define the homomorphisms \(\phi_I, \phi_F, \phi_O : \mathbb{Z}^7 \rightarrow \mathbb{Z}^4 \):

\[
\phi_I(i_1, i_2, i_3, i_4, i_5, i_6, i_7) = (i_1, i_2, i_5 + \sigma_0i_4, i_7 + \sigma_h i_3)
\]

\[
\phi_F(i_1, i_2, i_3, i_4, i_5, i_6, i_7) = (i_1, i_3, i_5, i_7)
\]

\[
\phi_O(i_1, i_2, i_3, i_4, i_5, i_6, i_7) = (i_1, i_3, i_4, i_5)
\]

Note that in Section 2.1 the iteration of 7NL CNN corresponding to the loop indices \(ij \) uses the data at Input(\(\phi_I(ij) \)) and Filter(\(\phi_F(ij) \)) to update the data at Output(\(\phi_O(ij) \)). The discussion in Section 2.3 suggests that we analyze the lattice generated by the kernels of these homomorphisms. Using the indices \(ij \) as free variables in \(\mathbb{Z} \), we can write the kernels as follows:

\[
\ker \phi_I = (0, 0, i_3, i_4, i_5, -\sigma_0i_4, -\sigma_h i_3)
\]

\[
\ker \phi_F = (i_1, 0, 0, i_4, i_5, 0, 0)
\]

\[
\ker \phi_O = (0, i_2, 0, 0, 0, i_7)
\]

We can identify the following independent families of indices: \(\{i_1\}, \{i_2\}, \{i_3\}, \{i_4, i_6\}, \) and \(\{i_5, i_7\} \). We call these independent because they give rise to the following pairwise independent collections of subgroups which generate the kernels we want, and hence the lattice we want:

\[
C_1 = \{(i_1, 0, 0, 0, 0, 0, 0)\} = \{C_{11}\}
\]

\[
C_2 = \{(0, i_2, 0, 0, 0, 0, 0)\} = \{C_{21}\}
\]

\[
C_3 = \{(0, 0, i_3, 0, 0, 0, 0)\} = \{C_{31}\}
\]

\[
C_4 = \{(0, 0, 0, i_4, 0, 0, 0), (0, 0, 0, 0, i_6, 0), (0, 0, 0, i_4, 0, -\sigma_0i_4, 0)\}
\]

\[
= \{C_{41}, C_{42}, C_{43}\}
\]

\[
C_5 = \{(0, 0, 0, i_5, 0, 0), (0, 0, 0, 0, 0, i_7), (0, 0, 0, i_5, 0, -\sigma_h i_3)\}
\]

\[
= \{C_{51}, C_{52}, C_{53}\}
\]

These subgroups give the following breakdown of the kernels:

\[
\ker \phi_I = C_{3,1} + C_{4,3} + C_{5,3}
\]

\[
\ker \phi_F = C_{1,1} + C_{4,1} + C_{5,1}
\]

\[
\ker \phi_O = C_{2,1} + C_{4,2} + C_{5,2}
\]

In order to apply Theorem 2.4, the discussion in Section 2.3 concludes that it suffices to check the constraints only on subgroups in the five lattices, \(\text{Lattice}(C_j) \). Fortunately, \(\text{Lattice}(C_j) = C_j \) for \(j = 1, 2, 3 \). For \(C_4 \) and \(C_5 \) we have:

\[
\text{Lattice}(C_4) = C_4 \cup \{(0, 0, 0, i_4, 0, i_6, 0)\} = C_4 \cup \{C_{4,4}\}
\]

\[
\text{Lattice}(C_5) = C_5 \cup \{(0, 0, 0, 0, i_5, 0, i_7)\} = C_5 \cup \{C_{5,4}\}
\]

Now suppose \(s_I, s_F, s_O \in [0, 1] \). Then to apply Theorem 2.4, we need to satisfy the following inequality for each \(H \) in some \(\text{Lattice}(C_j) \):

\[
\text{rank}(H) \leq s_I \text{rank}(\phi_I(H)) + s_F \text{rank}(\phi_F(H)) + s_O \text{rank}(\phi_O(H))
\]

We enumerate these inequalities in the table below:
Removing repeated inequalities, Theorem 2.4 states that as long as
\[1 \leq s_I + s_F, 1 \leq s_I + s_O, 1 \leq s_F + s_O, \text{ and } 2 \leq s_I + s_F + s_O, \]
then for any finite set \(V \subseteq \mathbb{Z}^2 \) we have:
\[
|V| \leq |\phi_I(V)|^{s_I} |\phi_F(V)|^{s_F} |\phi_O(V)|^{s_O}.
\]

We can now begin the proof of the second bound. First, we handle the case when the triangle condition is met.

Lemma 3.2. With the setup in Theorem 2.1, as long as \(p_I \leq p_F + p_O, p_F \leq p_I + p_O, \) and \(p_O \leq p_I + p_F, \) the number of words communicated \(X \) satisfies
\[
X \geq \frac{(p_I + p_F + p_O)^2 G}{4M} - M
\]

Proof. We split the execution of the 7NL CNN computation into \(L \) segments of contiguous updates. In each segment, we allow exactly \(T \) words to be loaded/stored, except for possibly the last segment which may have \(\leq T \) words.

We fix our attention to a single segment. Let \(V \) be the set of indices of updates computed during the current segment. V contains tuples (\(i_I, j_I \)) \(\in \mathbb{Z}^2 \). Then \(\phi_I(V) \) is the set of indices of Input whose data must be accessed during the segment, \(\phi_F(V) \) the set of indices of Filter, and \(\phi_O(V) \) the set of indices of Output. We have at most \(M \) words of data in fast memory before the segment begins, and may load at most \(T \) more during the segment. The number of words we access from the \(j_I \)th array during the segment is \(p_I |\phi_I(V)| \).

If the number of words we access during this segment is
\[
p_I |\phi_I(V)| + p_F |\phi_F(V)| + p_O |\phi_O(V)| \leq M + T.
\]

Let \(s_I, s_F, \) and \(s_O \) satisfy \(1 \leq s_I + s_F, 1 \leq s_I + s_O, 1 \leq s_F + s_O, \) and \(2 \leq s_I + s_F + s_O \). The discussion in Section 2.3 suggests that we require \(s_I + s_F + s_O = 2 \) in order to obtain the best asymptotic lower bound. Then by the HBL inequality proved above, we find
\[
|V| \leq |\phi_I(V)|^{s_I} |\phi_F(V)|^{s_F} |\phi_O(V)|^{s_O}.
\]

Let \(u_I := 2p_I |\phi_I(V)|/(M + T) \). The inequality becomes
\[
|V| \leq \frac{(M + T)^2}{4} (u_I/p_I)^{s_I} (u_F/p_F)^{s_F} (u_O/p_O)^{s_O}.
\]

The number of updates \(|V| \) possible during this segment is bounded by \(C \max u_I^{s_I} u_F^{s_F} u_O^{s_O} \) subject to the constraint \(u_I + u_F + u_O \leq 2 \).

We assume \(u_I + u_F + u_O = 2 \) and apply Lagrange multipliers:
\[
u_I + u_F + u_O = 2
\]
\[
\begin{align*}
s_I u_I^{s_I-1} u_F^{s_F} u_O^{s_O} &= s_F u_I^{s_I} u_F^{s_F-1} u_O^{s_O}, \\
v_I &= s_O u_I^{s_I} u_F^{s_F} u_O^{s_O}, \\
v_I u_F^{s_F} u_O^{s_O} &= \lambda.
\end{align*}
\]
Taking an inner product with \((u_I, u_F, u_O) \) we find:
\[
(s_I + s_F + s_O) u_I^{s_I} u_F^{s_F} u_O^{s_O} = \lambda(u_I + u_F + u_O) \quad \implies \quad u_I^{s_I} u_F^{s_F} u_O^{s_O} = \lambda
\]
since \(s_I + s_F + s_O = 2 = u_I + u_F + u_O \). Substituting into each equation and dividing, we find \(s_I = u_I, s_F = u_F, s_O = u_O \). Then we have shown that the maximum number of updates during the current segment is
\[
|V| \leq \frac{1}{4} (M + T)^2 (s_I + s_F)^{s_I} (s_F + s_O)^{s_F} (s_O + s_O)^{s_O}.
\]

This holds for all triples \((s_I, s_F, s_O) \) such that \(s_I + s_F + s_O = 2 \) and \(s_I, s_F, s_O \leq 1 \).

We apply Lagrange multipliers again ignoring the last three constraints on the \(s_I, s_F, s_O \). The number of words communicated during any segment is
\[
|V| \leq \frac{1}{4} (M + T)^2 (s_I + s_F + s_O)^{s_I} (s_F + s_O)^{s_F} (s_O + s_O)^{s_O}.
\]

Equating and dividing by \((s_I + s_F + s_O)^{s_I} (s_F + s_O)^{s_F} (s_O + s_O)^{s_O} \) we find
\[
s_I = s_F = s_O = 0.\]

This leads to \(s_I = 2p_I/p_I + p_F + p_O \). Note that these minimizers always satisfy \(s_I \leq 1 \) for all \(J \). Indeed, the triangle condition guarantees \(2p_I \leq p_I + p_F + p_O \) for all \(J \). Then we have shown that the maximum number of computations during any segment is
\[
|V| \leq \frac{1}{4} (M + T)^2 (s_I + s_F + s_O)^{s_I} (s_F + s_O)^{s_F} (s_O + s_O)^{s_O}.
\]

Since we must do \(G \) updates in total, the total number of segments is bounded below:
\[
L \geq \frac{G}{|V|} \geq \frac{(p_I + p_F + p_O)^2 G}{(M + T)^2} - 1
\]

Each segment besides the last has \(T \) loads/stores, so the total number of words moved is:
\[
X \geq T \left(\frac{(p_I + p_F + p_O)^2 G}{(M + T)^2} - 1 \right) = \frac{(p_I + p_F + p_O)^2 G}{(M + T)^2} - T
\]

To choose optimal segment length, we note that \(T/(M + T)^2 \) is maximized when \(T = M \) and we find the following lower bound on the communication cost:
\[
X \geq \frac{G}{4M} - M
\]

Should the triangle condition fail, we slightly modify the last proof by finding a valid set of minimizers. Note that only one of the three constraints may fail at once: if \(p_I > p_F + p_O \), then \(p_I + p_O > p_F \).

Lemma 3.3. With the setup in Theorem 2.1, if \(p_I > p_F + p_O \) for some distinct \(j, k, \ell \in \{I, F, O\} \), the number of words communicated \(X \) satisfies
\[
X \geq \frac{p_I(p_F + p_O)G}{M} - M
\]

Proof. The proof is the same as the proof of Lemma 3.2, except now we prescribe \(s_I = 1 \) and \(s_F + s_F = 1 \). This guarantees that all conditions for HBL are met. We maximize \(s_F(p_F) (s_F + s_F)/(M + T)^2 \) with respect to \(s_I, s_F, \) as before, and find \(s_I = p_I/p_F \) and \(s_F = p_F/(p_F + p_O) \). All constraints
are satisfied. Pick $T = M$. Then we have shown that the maximum number of computations during any segment is

$$|V| \leq \frac{1}{4} (2M)^2 \left(\frac{1}{p_1} \left(\frac{1}{p_k + p_T} \right)^{s_j + s_k} \right) = \frac{(M + T)^2}{4p_1(p_k + p_T)}$$

We convert this into a communication bound as in Lemma 3.2:

$$X \geq \frac{p_1(p_k + p_T)G}{M} - M$$

When $M > (C_pG)^{1/2}$, the previous bounds become trivial. When the filter size w_F is small relative to M, we are able to reduce the decay in our bounds from $1/M$ to $1/M^{1/2}$ and extend them to larger memory sizes. To show this third "small filter" bound, we rewrite the problem and exploit new array access homomorphisms. In particular, we rewrite the loops over t and i as loops over q_0, r_0, q_1, r_1. We have $\iota = \sigma q_0 + r_0$ for $r_0 \in [0, \sigma - 1]$ and $q_0 \in [0, \sigma w_1 - 1]$, and we similarly divide i by σ_q for q_1 and r_1. This has the effect of lifting Input and Filter to higher dimensional arrays, with 6 indices instead of 4. Under the lift, we make the following accesses to each array during an update:

- Input($i_1, i_2, i_3, q_0, r_0, i_5, i_7, r_7$)
- Filter($i_1, i_2, i_3, q_0, r_0, q_1, r_1$)
- Output(i_1, i_3, i_4, i_5)

In our proof, we will find it valuable to fix the indices q_0 and q_1. A new collection of array access homomorphisms ignores these. With an implicit translation by q, we have

$$A new collection of array access homomorphisms ignores these.

3.2 Attainability

We now discuss practical algorithms for attaining the previously presented communication bounds. We will focus on four algorithms in particular: im2col, blocking, Winograd convolutions, and FFT convolutions. im2col [14], Winograd [13], and FFT techniques [17] for performing convolutions are all well documented in the literature. We will focus on designing improved blocking algorithms. For loop bounds \((N, c_l, c_O, w_O, h_O, w_F, h_F)\) we call

\[
B = (b_N, b_{c_l}, b_{c_O}, b_{w_O}, b_{h_O}, b_{w_F}, b_{h_F}, b_{w_F^p}, b_{h_F^p})
\]

a blocking. Note that we are using a small filter trick in the style of [6]. To obtain a communication-optimal blocking, we use a linear program. For each bound variable, we have a lower bound of 1 and an appropriate upper bound, being the corresponding array sizes for most indices, and an expression of the filter size and strides for the filter indices \(q_6, q_7, r_6, \) and \(r_7\). Additionally, we know that the three blocks of the output, image, and filter must all simultaneously fit in memory. We thus have that

\[
P_O b_N b_{c_O} b_{w_O} b_{h_O} \leq \frac{P_O M}{P_T}
\]

\[
P_F b_{c_l} b_{c_O} b_{w_F} b_{w_F^p} b_{h_F} b_{h_F^p} \leq \frac{P_F M}{P_T}
\]

\[
P_I b_N b_{c_l} (b_{w_O} + b_{w_F}) (b_{h_O} + b_{h_F}) b_{w_F^p} b_{h_F^p} \leq \frac{P_I M}{P_T}
\]

\[
(6)
\]

We expand the last term into four terms, each bounded by \(\frac{M}{P_T^4}\). Then, taking logarithms and setting up the linear program, we have for our vector \(x = \log B\) elementwise, the problem of maximizing \(c^T x\) where

\[
c^T = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]
\]

subject to the constraints \(Ax \leq b\) where

\[
A = \begin{bmatrix}
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

and \(b = \begin{bmatrix}
1 - \log_M P_T \\
1 - \log_M P_T \\
1 - \log_M 4P_T \\
1 - \log_M 4P_T \\
1 - \log_M 4P_T \\
1 - \log_M 4P_T
\end{bmatrix}\)

We solve this linear program and take exponentials to find our blocking. Using a linear program, we can asymptotically meet the lower bounds we have derived. To compare the various algorithms for performing the convolution, we symbolically calculate the amount of communication each one requires. We use the FFT communication bound provided in [7] and the matrix multiplication communication bound provided in [12] to compute the relevant communication volumes. We compute communication volumes using parameters taken from AlexNet. We compare these four with the bounds derived in 3.1 and the communication for a naive convolution. The parameters used are taken from [9]. The results are presented in Figure 1.

We observe several trends. Blocking and im2col scale better than FFT and Winograd in the memory size, and the relative performance of blocking and im2col is dependent on the ratio \(\frac{\sigma_F \sigma_O}{\sigma_W \sigma_H}\). This is expected because of how the small filter blocking is used. We note that in all cases, the communication bound is not attained precisely. Work remains to either strengthen the communication bound or devise better algorithms to meet the bound.

![Figure 2: Theoretically computed communication volumes for mixed precision ResNet50 layers 1 and 2, relative to the communication bound. We take \(\sigma_I = \sigma_F = 1\) and \(\sigma_O = 2\). Layer 1 refers to conv1 and layer 2 refers to conv2_x as specified in [9]. We use a batch size of 1000. We see that in general, communication volumes are a constant multiple of the communication bound. However, we do see scaling in blocking, and for conv2_x, the strides of 1 are more favorable to the blocking, and blocking beats im2col for sufficiently large memory sizes. Convolutional layers conv3_x, conv4_x, and conv5_x, which are not depicted, resemble conv2_x.](image-url)

4 PARALLEL COMMUNICATION BOUNDS

4.1 Derivation of New Bounds

In this section, we prove Theorems 2.2 and 2.3. These provide lower bounds for the number of words communicated in a distributed memory parallel processor memory model, with \(P\) processors each with local memory size \(M\). We assume that all the data is non-overlapping. A single word of communication corresponds to the transmission of one word of data from any one processor to any other. Each array has its own precision.

We now prove Theorem 2.2. For this result, the input data may begin distributed among the local memories in any configuration and the output data may reside anywhere in memory at the end of the execution. In the case \(p_I = p_F = p_O = 1\), Theorem 2.2 becomes

\[
X \geq \max \left\{ \frac{9G}{4PM} - M, \frac{2G(\sigma_W \sigma_F)\sqrt{V}}{P(W_H F_M)^{1/2}} - 2M \right\}.
\]

PROOF OF THEOREM 2.2. Some processor must perform at least \(G/P\) of the updates. Splitting the computations executed by this processor into segments, each having a total of \(M\) words communicated into and out of the processor, we need to bound the number of computations possible in a segment. By the same technique as in Lemmas 3.2 and 3.3, we find that the number of calculations \(|V|\)
possible in a segment is \(|V| \leq M^2/C_p\). Since we must do at least \(G/P\) updates, the total number of segments is bounded below:

$$L \geq \frac{G}{|V|} - 1 \geq \frac{C_p G}{PM^2} - 1$$

and the number of words communicated by this processor is

$$X \geq ML \geq \frac{C_p G}{PM} - M$$

This is the first term in the desired lower bound. Now, instead of splitting into segments with 2M communications and using the technique in Lemma 3.4, we find that the number of calculations \(|V|\) possible in a segment is

$$|V| \leq \frac{M^{3/2}}{(p_F p_P p_O)^{3/2}} \left(\frac{w_f}{\sigma_w} \right)^{1/2}$$

Since we must do at least \(G/P\) updates, and as before the number of words communicated by this processor is

$$X \geq 2M \left(\frac{G}{|V|} - 1 \right) \geq \frac{2(p_F p_P p_O)^{1/2} (\sigma_w \sigma_h)^{1/2} G}{(p_F^2 p_P^2 p_O)^{1/2}} - 2M$$

This is the second term in the desired lower bound.

When \(M > \frac{3G^{1/2}}{2P}\) and \(M > \frac{G^{2/3} (\sigma_w \sigma_h)^{1/3}}{p_F (w_f)^{1/3}}\), both of the above lower bounds are trivial. This becomes a concern if the memory size per processor or the number of processors is large relative to the size of the computation. Taking inspiration from the methods in [5] which introduce lower bounds for parallel matrix multiplication corresponding to 2.5D algorithms, we find memory independent lower bounds in Theorem 2.3. Now we make a load balancing assumption on each of the three arrays: image, filter, and output data are all evenly distributed across the processors. When \(P_1 = P_F = p_O = 1\), the bound is

$$X \geq \max \left\{ \frac{G^{1/2}}{p_1^{1/2}} - \frac{A_p}{P} \left(\frac{G \sigma_w \sigma_h^{2/3}}{(p_F^2 p_P^2 p_O)^{1/3}} + \frac{A_p}{P} \right) \right\}$$

Proof. Recall that in Lemma 3.2 we show that if \(V\) is any subset of indices of updates of 7NL CNN, then we can bound the size of \(V\):

$$|V| \leq \left| \phi_f(V) \right|^{2/3} \left| \phi_F(V) \right|^{2/3} \left| \phi_O(V) \right|^{2/3}$$

Because the total number of updates is \(G\), one processor must do at least \(G/P\) updates. Let \(V\) be the set of all iterations performed by this processor. Then for at least one \(j \in \{I, F, O\}\), we must have

$$\frac{G^{1/3}}{p_1^{1/2}} = |V|^{1/3} \leq \frac{1}{(p_F p_P p_O)^{2/3}} \left(p_j \left| \phi_j(V) \right| \right)^{2/3}$$

So the processor must access at least \((p_F p_P p_O)^{1/3} G^{1/2}/p_1^{1/2}\) words from some array during the full computation. Recall that \(A_p := \max\{p_1[I], p_F[F], p_O[O]\}\). At most \(A_p/P\) words from this array are accessible to the processor at the beginning of the computation by the load balancing assumption, therefore this processor must receive at least \(X\) words of data from other processors, where

$$X \geq \frac{(p_F p_P p_O)^{1/3} G^{1/2}}{p_1^{1/2}} - \frac{A_p}{P}$$

Similarly, in Lemma 3.4 we show that \(V\) has size:

$$|V| \leq \sum_{j} \left| \phi_f(V) \right|^{1/2} \left| \phi_F(V) \right|^{1/2} \left| \phi_O(V) \right|^{1/2}$$

$$\leq \frac{w_f}{\sigma_w \sigma_h} \left| \phi_f(V) \right|^{1/2} \left| \phi_F(V) \right|^{1/2} \left| \phi_O(V) \right|^{1/2}$$

Then for at least one \(j \in \{I, F, O\}\), it must be true that

$$\frac{G^{1/3}}{p_1^{1/2}} = |V|^{1/3} \leq \frac{1}{(p_F p_P p_O)^{1/3}} \left(p_j \left| \phi_j(V) \right| \right)^{1/2}$$

So the processor accesses \((p_F p_P p_O)^{1/3} G (\sigma_w \sigma_h)^{2/3} / (p_f w_f)^{2/3}\) words from some array during the full computation. At most \(A_p/P\) words from this array are accessible to the processor at the beginning of the computation, so the processor must receive at least \(X\) words of data from other processors, where

$$X \geq \frac{(p_F p_P p_O)^{1/3} G (\sigma_w \sigma_h)^{2/3}}{(p_f w_f)^{2/3}} - \frac{A_p}{P}$$

Combining the two lower bounds proves the theorem.

Note that as in the single processor case, the lower bounds come in pairs, the second eclipsing the first when the filter is sufficiently small. We now discuss the attainability of these results.

4.2 Attainability

We now discuss algorithms for attaining the previously presented communication bounds, focusing once again on im2col, blocking, Winograd, and FFT. For blocking, instead of blocking in the memory size, we block in the number of processors. For each loop variable, we have a corresponding parallel blocking variable \(a_{\lambda\lambda}\) representing the segment of the loop variable being assigned to each processor. We then have the blocking

$$B = (a_N, a_{c_1}, a_{c_2}, a_{wo}, a_{ho}, a_{w_f}, a_{h_f})$$

and each processor then does \(a_N a_{c_1} a_{c_2} a_{wo} a_{ho} a_{w_f} a_{h_f}\) computations. We do not use an additional small filter blocking in this instance. To find the blocking, we once again take logarithms, giving us the following linear program: for a variable \(x = \log(B)\) we maximize \(c^T x\) for

$$c^T = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]$$

subject to \(Ax \leq b\) where

$$A = \begin{bmatrix}
-1 & 0 & -1 & -1 & 1 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & -1 & -1 \\
0 & 0 & -1 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & -1 \\
0 & -1 & 1 & -1 & 1 & -1 & 1 \\
-1 & 0 & -1 & -1 & 1 & 0 & -1 \\
-1 & -1 & 0 & 0 & 0 & -1 & 0
\end{bmatrix}$$

and

$$b = \begin{bmatrix}
1 - \log_p p_T - \log_p N_c o w_f h_f \ \\
1 - \log_p p_T - \log_p c_{c_1} o w_f h_o \ \\
1 - \log_p p_T - \log_p N_c w_f h_f \ \\
1 - \log_p p_T - \log_p N_c h_f w_f \ \\
1 - \log_p p_T - \log_p N_c h_f w_o h_f \ \\
1 - \log_p p_T - \log_p N_c w_f h_o h_f \ \\
1 - \log_p p_T - \log_p N_c h_f w_o h_f \ \\
1 - \log_p p_T - \log_p N_c w_f h_o h_f \end{bmatrix}$$
To compare the four algorithms, we once again symbolically compute the amount of communication each one requires, and we compare it with the bounds given in 4.1. One should note that the communication models used in the three different bounds for our work, [12] for matrix multiplication, and [7] for FFT are not quite the same. However, there is a straightforward conversion between them. The difference between the memory models is the assumption as to whether the data initially resides outside of the distributed network or inside of it. To convert between these, we simply add or subtract the total size of the problem |Image| + |Filter| + |Output|. The results are presented in Figure 2.

In both cases, we note that the communication bound goes to 0 very quickly as the number of processors increases. Additionally, we note that for blocking, we have the additional hypothesis that all of the inputs/filter/output elements can reside in the distributed memory, so this method of blocking is not immediately feasible for smaller numbers of processors. However, we see that when blocking is applicable, it rapidly reaches the communication bound as the number of processors increases. We note that Winograd and FFT remain quite far from the communication bound, and that FFT and Winograd have comparable performances, which is validated by the experimental results of [17], while im2col performs orders of magnitude better.

5 PERFORMANCE RESULTS

To show real-world applicability of this tiling, we benchmark our results on a GEMMINI [8] machine learning accelerator running on Firesim [11], a cycle-accurate hardware simulator.

GEMMINI’s memory architecture consists of two separate memory buffers: a scratchpad, which holds the input and the filter, and an accumulator buffer, which holds the output at a higher precision (to prevent floating-point rounding issues) and performs additions to it. At each tile, the input and the filter are reloaded from off-chip memory, but the partially summed output is held in the accumulator until it is fully summed (the loop ordering is fixed to ensure that the innermost loop axes in the outer loops correspond to reduction axes), at which point it is rounded and written off-chip in low precision.

We use the default GEMMINI chip configuration, in which, the scratchpad is 256Kb, holding 8-bit words, while the accumulator is 64Kb and holds 32-bit words. However, memory accesses are interleaved with computation using double-buffering, in which only half of the scratchpad and the accumulator are accessible to the processor at any one time (with the other half pulling in data from the main memory). As a result, for tiling calculations, our memory sizes are halved: the scratchpad can hold 128K words, while the accumulator can hold 8K words.

As a result, we modify the optimization problem (6) to account for buffer sharing between the input and the filter and to enforce integral tile sizes. Although this introduces nonlinearity (and an integrality constraint), the built-in numerical optimization routine NMaximize on Mathematica is still able to find a tile in around 400 iterations, or about five seconds on our test laptop.

We compare the performance of the five standard ResNet convolution sizes [9] evaluated on GEMMINI using both our tiling and the vendor-supplied tiling system included with GEMMINI. In the vendor implementation, each ResNet convolution size takes roughly the same number of cycles, roughly 500M for batch size 1000.

We measure both the estimated communication complexity (the number of scratchpad and accumulator rows allocated by chip’s memory controller per tile, multiplied by the total number of operations divided by the size of a tile) and the counted number of clock cycles taken by each computation. As shown in Figure 4, our system consistently uses between 45% and 85% as much estimated communication compared to the vendor tiling on all ResNet layers; this can be used as a proxy for energy consumption, which is dominated by communication costs ([16] attributes over 80% of energy costs to communication). Furthermore, for conv1, 2, and 3 (together comprising roughly half of the workload of a standard ResNet50 instance) where the vendor tiling was unable to take full advantage of the buffer (indicated by low scratchpad utilization per-tile), our tiling reduces clock cycle count (i.e. runtime) by 2.5× for conv1 and 13% for conv2 and conv3. However, for layers 4 and 5, where the vendor tiling already achieves scratchpad utilization of 99% and 93% respectively, there is little room for improvement; in these cases, our tiling, which does not take into account non-memory
related, hardware-specific factors such as optimal microkernel size and memory coalescing, performs worse with respect to clock cycles. In such cases, additional constraints may be added to encode these factors, as in [10]. For instance, for conv5, simply adding a single constraint forbidding the 7×7 image from being tiled (as an entire row will fit in a line of scratchpad) reduces cycles count from 124% to 104% of the vendor figure.

6 CONCLUSION

In this work, we have reduced the gap between theoretical communication lower bounds and practical implementations for convolution layers of CNNs. We addressed both a single processor memory model with one cache layer, and a parallel processor distributed memory model. The lower bounds presented in Theorems 2.1, 2.2, and 2.3 contain constants and allow for the relative precisions of the data to vary. The single processor lower bound is asymptotically optimal. In Sections 3.2 and 4.2 we analyzed the attainability of these lower bounds across popular convolution algorithms such as Im2Col, and found in some cases that a blocking strategy inspired by [2] communicates less. We included results comparing the performance of our blocking strategy with Im2Col, FFT, and Winograd in Section 5.

While our lower bounds are nearly attained, there is more work to be done to close the gap. Future directions of work include determining whether further optimization techniques can tighten the constants in the bounds, and investigating other algorithms to attempt to meet the existing lower bounds. It is also possible that pebbling methods could be used to remove lower order terms from our lower bounds. Finally, it is of interest to extend our results to other memory models, such as single processors with more levels of cache or parallel processors with shared memory.

ACKNOWLEDGMENTS

This research was supported by the University of California, Berkeley College of Letters and Sciences Summer Undergraduate Research Fellowship Math Team Grant. We would like to thank Victoria Cheng and the rest of the SURF staff for their valuable support and the donors who made this grant possible. We also thank Hogli Zhao, Jon Hillery, Rahul Jain, and Evangelos Georganas for their insight. Hasan Genc was invaluable for support regarding GEMMINI.

REFERENCES

[1] Gray Ballard, Erin Carson, James Demmel, Mark Hoemmen, Nicholas Knight, and Oded Schwartz. 2014. Communication lower bounds and optimal algorithms for numerical linear algebra. Acta Numerica 23 (2014), 1–155.
[2] Michael Christ, James Demmel, Nicholas Knight, Thomas Scanlon, and Katherine Yelick. 2013. Communication lower bounds and optimal algorithms for programs that reference arrays – Part 1. arXiv:1308.0068 [math.CA]
[3] Michael Christ, James Demmel, Nicholas Knight, Thomas Scanlon, and Katherine Yelick. 2015. On Holder-Brascamp-Lieb inequalities for torsion-free discrete Abelian groups. arXiv:1510.04190 [math.CA]
[4] National Research Council. 2011. The Future of Computing Performance: Game Over or Next Level? The National Academies Press, Washington, DC.
[5] James Demmel, David Elalouf, Armando Fox, Shoaib Kamal, Benjamin Lipschütz, Oded Schwartz, and Omer Spillinger. 2013. Communication-Optimal Parallel Recursive Rectangular Matrix Multiplication. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, 261–272.
[6] James Demmel and Alex Rusciano. 2016. Parallelpeebops obtaining HBL lower bounds. arXiv:1611.05944 [cs.DS]
[7] Venmugil Elango. 2016. Techniques for Characterizing the Data Movement Complexity of Computations.
[8] Hasan Genc, Seak Him, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Law, Howard Mao, Albert Ou, Colin Schmidt, Samuel Steffl, John Wright, Ion Stoica, Jonathan Ragan-Kelley, Krste Asanovic, Borivoje Nikolic, and Yukun Sophia Shao. 2021. Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration. In Proceedings of the 55th Annual Design Automation Conference (DAC).
[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.
[10] Qijing Huang, Arvind Kalaiah, Mirowoo Kang, James Demmel, Grace Dinh, John Wawrzynek, Thomas Norell, and Yukun Sophia Shao. 2021. CoSA: Scheduling by Constrained Optimization for Spatial Accelerators. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE, 554–566.
[11] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovalc, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste Asanovic. 2018. FireSim: FPGA-accelerated Cycle-exact Scale-out System Simulation in the Public Cloud. In Proceedings of the 45th Annual International Symposium on Computer Architecture (Los Angeles, California) (ISCA ’18). IEEE Press, Piscataway, NJ, USA, 29–42.
[12] Grzegorz Kwasniewski, Marko Kabir, Maciej Beata, Joost VandeVondele, Rafaele Solca, and Torsten Hoefler. 2019. Red-Blue Pebbling Revisited: Near Optimal Parallel Matrix-Matrix Multiplication. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (Denver, Colorado) (SC ’19). Association for Computing Machinery, New York, NY, USA, Article 24, 22 pages.
[13] Linglehuan Meng and John Brothers. 2019. Efficient Winograd Convolution via Integer Arithmetic. arXiv:1901.01965 [cs.NE]
[14] Pablo San Juan, Adrián Castellí, Manuel F. Dolz, Pedro Alonso-Jordá, and Enric Wawrzynek, Thomas Norell, and Yakun Sophia Shao. 2021. CoSA: Scheduling by Constrained Optimization for Spatial Accelerators. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE, 554–566.
[15] Stefán Ingi Valdimarsson. 2020. High Performance and Portable Convolution Operators for Multicore Processors. In 2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). 91–98.
[16] Xuan Yang, Mingyu Gao, Qiaooy Liu, Jeff Setter, Jing Pu, Anika Nayak, Steven Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, Christos Kozyrakis, and Mark Herowitz. 2020. Interstellar: Using Halide’s Scheduling Language to Analyze DNN Accelerators. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 369–383.
[17] Aleksandar Zlateski, Zhen Jia, Kai Li, and Fredo Durand. 2019. The Anatomy of Efficient FFT and Winograd Convolutions on Modern CPUs (ICS ’19). Association for Computing Machinery, New York, NY, USA, 414–424.