The Clinical Efficacy, Safety and Functionality of Anion Textile in the Treatment of Atopic Dermatitis

Sang Hyun Kim, M.D., Sung Hwan Hwang, M.D., Soon Kwon Hong, M.D., Jong Keun Seo, M.D., Ho Suk Sung, M.D., Sung Wook Park, M.D.¹, Jeong Hwan Shin, M.D.²

Departments of Dermatology, Laboratory Medicine, Busan Paik Hospital, College of Medicine, Inje University, ¹Dr Park’s Dermatologic Clinic, Busan, Korea

Background: Several previous studies have suggested the improvement of atopic dermatitis (AD) in response to special fabrics. In particular, beneficial effects have been reported, following the use of anion textiles. Objective: The purpose of this study is to evaluate the effectiveness and safety of an anion textile in patients suffering from AD. Methods: We compared an anion textile with a pure cotton textile. Fifty-two atopic patients (n=52) were enrolled and divided into two groups. The patients in the test (n=25) and control (n=19) groups wore undergarments made of an anion textile or pure cotton over a period of 4 weeks. The overall severity of disease was evaluated using the SCORing atopic dermatitis (SCORAD) index, whereas, the treatment efficacy was measured using a Tewameter® (Courage & Khazaka, Cologne, Germany), Mexameter® (Courage & Khazaka) and Corneo meter® (Courage & Khazaka). Results: At the end of the study, a significant decrease in the SCORAD index was observed among the patients with AD in the test group (mean SCORAD decreased from 47.2 to 36.1). Similarly, improvements in the mean transepidermal water loss, skin erythema and stratum corneum hydration were significantly greater among the patients with AD in the test group than in the control group. Conclusion: Anion textiles may be used to significantly improve the objective and subjective symptoms of AD, and are similar in terms of comfort to cotton textiles. The use of anion textiles may be beneficial in the management of patients with AD. (Ann Dermatol 24(4) 438∼443, 2012)

Keywords: Anion textile, Atopic dermatitis

INTRODUCTION

Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease, which easily exacerbated by many irritants, including fabrics¹ and bacterial colonization²,³. Hermanns et al.⁴ suggested that softened fabrics are less destructive and promote accelerated healing of the skin in patients with AD.

Several previous studies have suggested the clinical improvement of patients with AD in response to special fabrics in the area covered by the textile⁵-¹². Anion textiles are composed of polyester fibers containing fine-crusted tourmaline that emits electromagnetic radiation in the far-infrared region and negative ions¹³-¹⁵. Far-infrared rays have been shown to positively affect several dermatologic diseases, including psoriasis¹⁶ and AD¹⁷-²². The objective of this study is to evaluate the clinical efficacy, safety, and functionality of anion textiles in patients with AD.

MATERIALS AND METHODS

Patients and the study plan

This study was performed as a prospective, randomized, and placebo-controlled. Fifty-two patients, between 2 and 30 years of age with mild to severe AD who visited our dermatologic clinic between February and March 2007, were included in the study. Almost all of the included
Anion Textile in the Treatment of Atopic Dermatitis

Fig. 1. Optical and electron microscopic structures of the anion textile. (A) ×100, ×300, (B) ×2,000. The anion textile fibers are regular and rounded without stubby ends, resulting in a smooth feeling overall. The polyester filaments (orange circle) contain nano-sized fine-crusted tourmaline powder (green circle).
RESULTS

A total of eight patients (five patients from the anion group and three patients from the cotton group) were dropped from the study due to noncompliance. Five patients (three patients from the anion group and two patients from the cotton group) were dropped because they complained about the wearing the undergarments at all times (from one week to three weeks). In these patients group, the mean SCORAD index changes were similar with the score of patients who completed the study protocol. Three patients (two patients from the anion group and one patient from the cotton group) dropped out because of severe, refractory pruritus (from one week to four weeks). All of these patients were initially included with high SCORAD index (the SCORAD index of these dropped patients were higher than 60). The remaining 44 patients (23 males and 21 females) completed the entire study protocol. The mean age of all the patients was 10.1 years (2 to 22 years). The mean initial SCORAD scores in groups A and B were 47.2 (range 25.7–81.7) and 41.8 (range 26.8–81.7), respectively. The mean SCORAD score in group A at the baseline was slightly higher than that in group B, but the distribution between the two groups was similar.

Clinical efficacy using SCORAD index

In patients from group A who wore the anion textile garment, the mean SCORAD index decreased significantly from 47.2±14.0 to 36.1±16.5 (p<0.0001), compared to the baseline. In contrast, the mean SCORAD index of the subjects in group B, who wore the pure cotton textile garment, decreased only slightly from 41.8±16.3 to 37.7±17.2 (p=0.0839). Overall, the SCORAD index values between groups A and B were significantly different (p=0.0308) (Fig. 2). The mean objective SCORAD index, which accounts for the extent and intensity of disease, for group A decreased significantly from 36.0±12.2 to 28.6±14.1 (p=0.0005), compared to the baseline. In contrast, the mean index values for group B decreased only slightly from 31.9±14.1 to 29.0±14.2 (p=0.0769). Overall, no significant difference was observed between groups A and B (p=0.0993). The mean subjective index values (e.g., sleep loss and daytime pruritus) for group A decreased significantly from 11.6±3.7 to 7.4±4.4 (p<0.0001) compared to the baseline, whereas the value for group B decreased only slightly from 9.8±3.6 to 8.5±4.5 (p=0.1067). Overall, the difference between the values for groups A and B was statistically significant (p=0.0064).

Barrier functions of the skin

The mean TEWL from eczematous lesions on the flexor surface of the forearm for group A decreased significantly, compared to the baseline from 37.1±17.1 to 20.7±15.5 g/h/m² (p<0.0001). Although the value for group B also decreased from 30.4±19.8 to 23.5±15.2 g/h/m², the reduction was not significant (p=0.0607). A significant difference was detected in the mean TEWL from eczematous lesions between groups A and B (p=0.0359) (Fig. 3). And no significant difference was observed in the mean TEWL from perilesional normal skin between groups A and B (p=0.0822). In all patients from both
groups, the TEWL from eczematous lesions was consistently higher than that from the perilesional normal skin. The mean values for SCH in the eczematous lesions were 16.2 ± 10.1 and 13.9 ± 9.3 AUs, respectively, for groups A and B at the beginning of the study, and 26.1 ± 13.0 and 24.3 ± 11.2 AUs at the end of the study. The mean SCH value increased steadily in both groups; however, the improvement seen in group A was significant (p = 0.0004), whereas that in group B was not (p = 0.0510). In addition, no significant difference was seen in the mean SCH for eczematous lesions between groups A and B (p = 0.6788) (Fig. 4). In all patients from both groups, SCH in the eczematous lesions was consistently lower than that in the perilesional normal skin, and the improvement detected were paralleled by an increase in the mean SCH values for both groups.

The mean skin erythema in eczematous lesions on the flexor surface of the forearm in group A decreased significantly from 425.6 ± 75.8 to 379.6 ± 91.4 AUs, compared to the baseline (p = 0.0025). In contrast, the mean values for group B increased only slightly from 356.8 ± 51.3 to 362.7 ± 62.3 AUs (p = 0.0692); a statistically significant difference, however, was detected in the mean values between groups A and B (p = 0.0106) (Fig. 5). In all patients from both groups, the skin erythema values measured for the eczematous lesions were consistently higher than those measured for perilesional normal skin.

Wearing comfort of the textiles
No feelings of discomfort in the skin, such as tingling, a pricking sensation, or pain due to the wearing of the textiles used, were reported. Nineteen of the patients (76%) in group A and 14 of the patients (74%) in group B reported that they felt comfortable wearing the textiles (Fig. 6).

Adverse events
Side effects due to the wearing of the anion and cotton undergarments, such as contact dermatitis, contact urticaria, and irritability, were not observed during the study period.
DISCUSSION

The skin of patients with AD is quite sensitive and easily aggravated by factors, such as detergents, variations in temperature from cold to hot and vice versa, and fabrics. Textiles are used in the management of AD to provide a barrier against trauma and exogenous provocative factors. Generally, clothes made from cotton fibers are recommended for patients with AD because of their inherent properties, which include good folding endurance, heat conduction, and moisture absorption. Anion textiles, which consist of polyester fibers containing tourmaline powder, radiate far-infrared rays and have been found to emit negative ions using a Com-3010pro ion tester (Com System, Inc., Tokyo, Japan). Beneficial psychological and physiological effects from exposure to far-infrared rays and negative ions have been reported in humans, including sleep enhancement, increased growth, the potentiation of peripheral blood flow and body temperature, autonomic nervous system control, the inhibition of obesity, and bacteriolysis. Although the mechanisms underlying these effects are not fully understood, Yoo et al. demonstrated that tourmaline powders radiated far-infrared rays and that the radiation energy from the tourmaline powders elevated the human skin temperature. They thought that the measured skin temperature elevation might be the result of the acceleration of percutaneous blood circulation. Niwa et al. moreover, suggested that far-infrared radiation could induce cellular activation in a variety of tissues by increasing \(\text{Ca}^{2+} \) uptake by the cell membrane. Suzuki et al. suggested that negative ions contribute to the inhibition of stress responses via a neural mechanism, involving the modulation of autonomic regulation. Also there are reports that daily treatment with an infrared lamp raised skin temperature, induced improvement in all patients within 3 weeks.

Although long term safety of tourmaline powders is not investigated, in mural model, the tourmaline ionizer system decreased the elevated blood pressure, and controlled the sympathetic nervous activity and the parasympathetic nervous activity. In a human study using an infrared thermal analyzer, far-infrared rays of tourmaline powders showed therapeutic effects by changes of the skin temperature and no observable significant adverse effects.

In the present study, those patients that wore the anion textile (group A) showed an improvement in the SCORAD index, which considers both objective and subjective symptoms \((p < 0.0001) \), while those dressed in pure cotton (group B) showed mild improvements that were not statistically relevant. In addition, patients and parents of the patients in group A reported an improvement in their cutaneous lesions and subjective symptoms (e.g., interruption of the ‘itch-and-scratch cycle’). Furthermore, we saw an improvement in the skin barrier function in patients who wore the anion textile as indicated by TEWL, SCH, and skin erythema in eczematous lesions on the flexor surface of the forearm \((p < 0.0001, p = 0.0004, \text{and } p = 0.0025) \). Those patients who wore cotton also showed improvement, but none of the values were statistically significant \((p = 0.0607, p = 0.0510, \text{and } p = 0.0692) \).

The reported concentration of negative ions in various environments was 40~50 ions/ml in an urban area, 400~600 ions/ml in a park, 700~1000 ions/ml in a rural area, and >20,000 ions/ml at a waterfall or beach. The concentration of negative ions was found to be positively correlated with feelings of comfort, refreshment, or pleasure. Therefore, anion textiles may have beneficial effects on both the skin and emotions of patients with AD. In summary, the results of this study demonstrate the clinical efficacy and safety of anion textiles in the treatment of AD without adverse and/or allergic reactions. The anion textile, used in this study, reduced the clinical severity of AD and improved skin barrier function (e.g., TEWL, SCH, and skin erythema) within 4 weeks without adverse events. No feelings of skin discomfort due to the anion textile were reported; moreover, the wearing comfort and functionality of the anion and cotton textiles were found to be similar. Therefore, anion textiles may be helpful for the management of AD. To the best of our knowledge, this study is the first to consider the beneficial properties of this textile for the treatment of AD. In the future, the results of this study should be verified and additional research concerning the functions and effects of anion textiles should be conducted.

ACKNOWLEDGMENT

The research work reported in this paper was funded as a part of research grant from Inje University, Gimhae, Korea. The authors wish to thanks Inje University for their support.

REFERENCES

1. Williams JR, Burr ML, Williams HC. Factors influencing atopic dermatitis—a questionnaire survey of schoolchildren’s perceptions. Br J Dermatol 2004;150:1154-1161.
2. Roll A, Cozzio A, Fischer B, Schmid-Grendelmeier P. Microbial colonization and atopic dermatitis. Curr Opin Allergy Clin Immunol 2004;4:373-378.
3. Baker BS. The role of microorganisms in atopic dermatitis. Clin Exp Immunol 2006;144:1-9.
4. Hermanns JF, Goffin V, Arrese JE, Rodriguez C, Piérard GE. Beneficial effects of softened fabrics on atopic skin. Dermatology 2001;202:167-170.
5. Ricci G, Patrizi A, Mandrioli P, Specchia F, Medri M, Menna G, et al. Evaluation of the antibacterial activity of a special silk textile in the treatment of atopic dermatitis. Dermatology 2006;213:224-227.
6. Gauger A. Silver-coated textiles in the therapy of atopic eczema. Curr Probl Dermatol 2006;33:152-164.
7. Ricci G, Patrizi A, Bellini F, Medri M. Use of textiles in atopic dermatitis: care of atopic dermatitis. Curr Probl Dermatol 2006;33:127-143.
8. Juenger M, Ladwig A, Staecker S, Arnold A, Kramer A, Daeschlein G, et al. Efficacy and safety of silver textile in the treatment of atopic dermatitis (AD). Curr Med Res Opin 2006;22:739-750.
9. Gauger A, Fischer S, Mempel M, Schaeter T, Foelster-Holst R, Abeck D, et al. Efficacy and functionality of silver-coated textiles in patients with atopic eczema. J Eur Acad Dermatol Venereol 2006;20:534-541.
10. Hipler UC, Elsner P, Fluhr JW. Antifungal and antibacterial properties of a silver-loaded cellulosic fiber. J Biomed Mater Res B Appl Biomater 2006;77:156-163.
11. Ricci G, Patrizi A, Bendandi B, Menna G, Varotti E, Masi M. Clinical effectiveness of a silk fabric in the treatment of atopic dermatitis. Br J Dermatol 2004;150:127-131.
12. Gauger A, Mempel M, Schekatz A, Schaefer T, Foelster-Holst R, Abeck D. Silver-coated textiles reduce Staphylococcus aureus colonization in patients with atopic eczema. J Eur Acad Dermatol Venereol 2003;20:15-21.
13. Hanifin JM, Rajka G. Diagnostic features of atopic dermatitis. Acta Derm Venereol Suppl (Stockh) 1980;92:44-47.
14. Severity scoring of atopic dermatitis: the SCORAD index. Consensus Report of the European Task Force on Atopic Dermatitis. Dermatology 1993;186:23-31.
15. Rogiers V; EEMCO Group. EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol 2001;14:117-128.
16. Berardesca E; European Group for Efficacy Measurements on Cosmetics and Other Topical Products (EEMCO). EEMCO guidance for the assessment of stratum corneum hydration: electrical methods. Skin Res Technol 1997;3:126-132.
17. Fluhr JW, Kuss O, Diepgen T, Lazzarini S, Pelosi A, Gloor M, et al. Testing for irritation with a multifactorial approach: comparison of eight non-invasive measuring techniques on five different irritation types. Br J Dermatol 2001;145:696-703.
18. Clarys P, Alewaetser K, Lambrecht R, Barel AO. Skin color measurements: comparison between three instruments: the Chromometer(R), the DermaSpectrometer(R) and the Mexapen(R). Skin Res Technol 2000;6:230-238.
19. Hatch KL, Maibach Hl. Textile fiber dermatitis. Contact Dermatitis 1985;12:1-11.
20. Senti G, Steinmann LS, Fischer B, Kurmann R, Storni T, Johansen P, et al. Antimicrobial silk clothing in the treatment of atopic dermatitis proves comparable to topical corticosteroid treatment. Dermatology 2006;213:228-233.
21. Ring J, Brockow K, Abeck D. The therapeutic concept of "patient management" in atopic eczema. Allergy 1996;51:206-215.
22. Niwa Y, lizawa O, Ishimoto K, Jiang X, Kanoh T. Electromagnetic wave emitting products and "Kikoh" potentiate human leukocyte functions. Int J Biometeorol 1993;37:133-138.
23. Dover JS, Phillips TJ, Arndt KA. Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation. J Am Acad Dermatol 1989;20:278-286.
24. Meng J, Jin W, Liang J, Ding Y, Gan K, Yuan Y. Effects of particle size on far infrared emission properties of tourmaline superfine powders. J Nanosci Nanotechnol 2010;10:2083-2087.
25. Ju K, Kubo T. Power spectral analysis of autonomic nervous activity in spontaneously hypertensive rats. Biomed Sci Instrum 1997;33:338-343.
26. Yoo BH, Park CM, Oh TJ, Han SH, Kang HH, Chang IS. Investigation of jewelry powders radiating far-infrared rays and the biological effects on human skin. J Cosmet Sci 2002;53:175-184.
27. Suzuki S, Yanagita S, Amemiyu S, Kato Y, Kubota N, Ryushi T, et al. Effects of negative air ions on activity of neural substrates involved in autonomic regulation in rats. Int J Biometeorol 2008;52:481-489.
28. Watanabe I, Noro H, Ohtsuka Y, Mano Y, Agishi Y. Physical effects of negative air ions in a wet sauna. Int J Biometeorol 1997;40:107-112.
29. Abeck D, Strom K. Optimal management of atopic dermatitis. Am J Clin Dermatol 2000;1:41-46.
30. Borelli S, Stem A, Wüthrich B, A silk cardigan inducing asthma. Allergy 1999;54:900-901.