COUNTING BUNDLES

Lin WENG

1 Zetas for \((G, P)/\mathbb{F}_q(X)\)

Let \(X\) be an irreducible reduced regular projective curve defined over \(\mathbb{F}_q\) with \(F\) the field of rational functions. Let \(G\) be a reductive group of rank \(r\) with \(B\) a fixed Borel subgroup, both defined over \(F\). As usual, \(\Delta\) stands for the corresponding collection of simple roots; \(W\) the associated Weyl group; for a root \(\alpha\), \(\alpha^\vee\) the corresponding coroot; and \(\rho := \frac{1}{2} \sum_{\alpha > 0} \alpha\), the Weyl vector . . .

Definition 1 The period for \(G\) over \(F\) is defined by, for \(\text{Re} \lambda \in \mathbb{C}^+\),

\[
\omega_F^G(\lambda) := \sum_{w \in W} \left(\prod_{\alpha \in \Delta} \frac{1}{1 - q^{-\langle w\lambda - \rho, \alpha^\vee \rangle}} \cdot \prod_{\alpha > 0, w \alpha < 0} \widehat{\zeta}_F(\langle \lambda, \alpha^\vee \rangle) \right) \prod_{\alpha > 0, w \alpha < 0} \left(\frac{\widehat{\zeta}_F(\langle \lambda, \alpha^\vee \rangle + 1)}{\widehat{\zeta}_F(\langle \lambda, \alpha^\vee \rangle)} \right)
\]

where \(\mathbb{C}^+\) denotes the so-called positive chamber of \(\mathfrak{a}_0\), the space of characters associated to \((G, B)\), and \(\widehat{\zeta}_F(s)\) the complete Artin zeta function of \(X/\mathbb{F}_q\).

Corresponding to a fixed maximal standard parabolic subgroup \(P\) is a simple root \(\alpha_P \in \Delta\). Write \(\Delta \setminus \{\alpha_P\} =: \{\beta_{1,P}, \beta_{2,P}, \ldots, \beta_{r-1,P}\}\).

Definition 2 The period for \((G, P)\) over \(F\) is defined by, for \(\text{Re} \lambda_p \gg 0\),

\[
\omega_F^{G/P}(\lambda_P) := \text{Res}_{\langle \lambda - \rho, \beta_{1(P)(G)-1,P}^\vee \rangle = 0} \cdots \text{Res}_{\langle \lambda - \rho, \beta_{2,P}^\vee \rangle = 0} \text{Res}_{\langle \lambda - \rho, \beta_{1,P}^\vee \rangle = 0} (\omega_F^G(\lambda))
\]

Here, starting from \(r\)-variable \(\lambda \in \mathfrak{a}_{0, \mathbb{C}}^*\), after taking residues along with \((r-1)\) (independent) singular hyperplanes

\[
\langle \lambda - \rho, \beta_{1,P}^\vee \rangle = 0, \langle \lambda - \rho, \beta_{2,P}^\vee \rangle = 0, \ldots, \langle \lambda - \rho, \beta_{r-1(P)(G)-1,P}^\vee \rangle = 0,
\]

we are left with only one variable, which we call \(\lambda_P\).

Clearly, there is a minimal integer \(I(G/P)\) and finitely many factors (depending on the choice of \(\lambda_P\)),

\[
\widehat{\zeta}_F\left(a_1^{G/P} \lambda_P + b_1^{G/P} \right), \widehat{\zeta}_F\left(a_2^{G/P} \lambda_P + b_2^{G/P} \right), \ldots, \widehat{\zeta}_F\left(a_{I(G/P)}^{G/P} \lambda_P + b_{I(G/P)}^{G/P} \right),
\]

such that no \(\widehat{\zeta}_F(a\lambda_P + b)\) factors appear in the denominators of (all terms of) the product \(\prod_{i=1}^{I(G/P)} \widehat{\zeta}_F\left(a_i^{G/P} \lambda_P + b_i^{G/P} \right) \cdot \omega_F^{G/P}(\lambda_P)\).
Definition 3 (i) The zeta function $\hat{\zeta}_{G/P}^F$ for (G, P) over F is defined by

$$\hat{\zeta}_{G/P}^F(s) := \prod_{i=1}^{I(G/P)} \zeta_F\left(a_i\frac{G/P}{s + b_i\frac{G/P}}\right) \cdot \omega_F^G \left(\frac{G/P}{s}\right), \quad \text{Re } s \gg 0$$

Functional Equation There exists a constant $c_{G/P} \in \mathbb{Q}$ such that

$$\hat{\zeta}_{G/P}^F\left(-s + c_{G/P}\right) = \hat{\zeta}_{G/P}^F\left(s\right).$$

Definition 3 (ii) The zeta function $\hat{\zeta}_{G/P}^F(s)$ for (G, P) over F is defined by

$$\hat{\zeta}_{G/P}^F(s) := \hat{\zeta}_{G/P}^F\left(s + \frac{c_{G/P} - 1}{2}\right)$$

2 Non-Abelian Zeta Functions for $\mathbb{F}_q(X)$

Motivated by [W1], and for the RH, introduce a new genuine pure non-abelian zetas for X by

$$\zeta_{X,r}(t) := \sum_{m=0}^{\infty} \sum_{V \in [V] \in \mathcal{M}_{X,r}(d), d=rm} q^{h^0(X,V)} - 1 \cdot \left(q^{-s}\right)^{d(V)} \cdot \text{Re}(s) > 1$$

Here, as usual, $\mathcal{M}_{X,r}(d)$ denotes the moduli space of semi-stable \mathbb{F}_q-rational vector bundles of rank r, $[\]$ the Seshedri class defined using Jordan-Hölder graded bundles, and $\text{Aut}(V)$ denotes the automorphism group of V. Introduce also the complete zeta function for X by

$$\hat{Z}_{X,r}(t) := \sum_{m=0}^{\infty} \sum_{V \in [V] \in \mathcal{M}_{X,r}(d), d=rm} q^{h^0(X,V)} - 1 \cdot \left(t^s\right)^{\chi(X,V)}$$

Zeta Facts (i) (Rationality)

$$Z_{X,r}(t) = \sum_{m=0}^{(g-1)-1} \alpha_{X,r}(mr) \cdot \left(t^{rm} + q^{r[g-1]-m} \cdot t^{r[2(g-1)-m]}\right) + \alpha_{X,r}(r(g-1)) \cdot t^{r(g-1)} + \beta_{X,r}(0) \cdot \frac{(q^r - 1)t^{rg}}{(1 - q^t t^r)(1 - t^r)}$$

with

$$\beta_{X,r}(0) := \sum_{V \in [V] \in \mathcal{M}_{X,r}(0)} \frac{1}{\#\text{Aut}(V)} \cdot \alpha_{X,r}(d) := \sum_{V \in [V] \in \mathcal{M}_{X,r}(d)} q^{h^0(X,V)} - 1 \cdot \frac{1}{\#\text{Aut}(V)}$$
(ii) (Functional Equation)

\[
\tilde{Z}_{X, r}(1/qt) = \tilde{Z}_{X, r}(t)
\]

We expect to have the following

Riemann Hypothesis

All zeros of the zeta function \(\tilde{\zeta}_{X, r}(s) \) lie on the central line \(\text{Re} \ s = \frac{1}{2} \)

3 Counting Bundles

Semi-stable bundles are naturally counted within the stratifications of the refined Brill-Noether loci defined using \(h^0 \) and \(\text{Aut} \). So the Riemann Hypothesis offers us intrinsic quantitative controls uniformly through \(\alpha \)'s and \(\beta \). More generally, write \(ss \) for the part corresponding to semi-stable principal bundles.

Counting Conjectures (i) (Parabolic Reduction, Stability & the Mass)

\[
\text{Vol} \left(K_G Z_{G(h)} \backslash G^1(h)/G(F) \right) = \text{Res}_{\lambda = \rho \omega_F} \zeta_{G/P}(\lambda) = \text{Res}_{s=1} \hat{\zeta}_{S, G/P}(s)
\]

(ii) (Uniformity) *There exist rational functions \(R_{r, q}(t) \) depending on \(q \) and \(t \) and rational numbers \(a_r, b_r \) depending only on \(r \), but independent of the curve \(X \), such that*

\[
\hat{\zeta}_{F, r}(s) = R_{r, q}(q^{-a_r s - b_r}) \cdot \hat{\zeta}_{G/P, r}^{S, \text{sl}_2/P_{r-1, 1}}(a_r s + b_r)
\]

Parallel structures for number fields are exposed in [W2, 3], [Ko], [KKS], and [W5] which contains an adelic approach to Atiyah-Bott & Witten ([AB], [Wi]) and to Kontsevich ([K]). For function fields, (i) is related to Harder-Narasimhan ([HN], [Z], [LR]), uniformity holds for \(G = \text{SL}_2 \) ([W4]), for which, the RH is established in [Y], and a proof of [Ko] style for the FE of general \(\hat{\zeta}_{G/P}^{SL_2}(s) \) can be obtained.

REFERENCES

[A1,2] J. Arthur, A trace formula for reductive groups. I. Terms associated to classes in \(G(\mathbb{Q}) \). Duke Math. J. 45 (1978), no. 4, 911–952; II. Applications of a truncation operator. Compositio Math. 40 (1980), no. 1, 87–121.

[A3] J. Arthur, A measure on the unipotent variety, Canad. J. Math 37, (1985) pp. 1237–1274

[AB] M. Atiyah & R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London 308, 523-615 (1983)

[B] K. Behrend, The Lefschetz trace formula for the moduli stack of principal bundles. PhD thesis, UC Berkley, 1990
Acknowledgement. We would like to thank M. Kontsevich and H. Yoshida for sharing with us their works, and C. Deninger and H. Hida for their constant encouragements. This work is partially supported by JSPS.