Tamquam alter idem: formal similarities in a subset of reports on anti-inflammatory compounds in the years 2008–2019

Carlo Galli1 · Roberto Sala1 · Maria Teresa Colangelo2 · Stefano Guizzardi2

Received: 6 July 2021 / Accepted: 31 May 2022 / Published online: 18 June 2022
© The Author(s) 2022

Abstract
A literature search on the in vitro testing of anti-inflammatory compounds of natural origin revealed a considerable number of studies adopting a similar template for data reporting in the years up to 2019. Sixty-five such reports appear to have been published between the years 2008 and 2019. Interestingly, this format template was clearly recognizable by a few hallmarks, such as a precise way of plotting cell viability data, extremely consistent endpoints, and the way these were graphically represented. In some instances the similarities extended to some textual features, such as in the case of figure legends. The similarity was so high that chance can be excluded and these studies can be safely assumed to have intentionally followed a template. By 2020, however, no new reports following this format have been published. Although a consistent and reproducible formatting for data reporting may improve report readability, this phenomenon should also be closely scrutinized to assess the rationale why it occurred, the validity of the endpoints that were chosen and why it was then abandoned. The present report reviewed the mean features of this format, traced its origin and its evolution over time, while discussing the limitations of this model.

Keywords Science communication · Medical rhetoric · Empirical quantitative research · Inflammation

Carlo Galli
carlo.galli@unipr.it

Roberto Sala
roberto.sala@unipr.it

Maria Teresa Colangelo
mariateresa.colangelo@studenti.unipr.it

Stefano Guizzardi
stefano.guizzardi@unipr.it

1 Department of Medicine and Surgery, University of Parma, Parma, Italy
2 Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
Introduction

The scientific method dictates that new hypotheses must be formed on the basis of acquired results and that these new hypotheses must be then experimentally tested (Woodcock, 2014). As such, there is a delicate balance between innovation and continuity with previous research, which is well exemplified by common expressions such as ‘line of research’ (Foster et al., 2015).

It does not come as a surprise, therefore, that each scientific manuscript includes a long list of references, i.e. previous publications that served as sources, as the evidence that corroborates the foundations that sustain the whole theoretical edifice built by the authors. Yet, previous literature can have a broader, and even more important role. Investigators often rely on previously published papers as compasses to guide their choices and are well aware of the strident dichotomy between the need for innovative results, to position themselves within the scientific community, and the necessity to remain within the boundaries of established research directions (Merton, 1957; J. Wang et al., 2017) to get their research published, funded or even considered by the broader community. Given the high pressure on scholars to get their results published and to accrue a vast number of publication to support their career ambitions (van Dalen, 2021), it is reasonable to wonder whether the driving forces behind their research choices—when it comes to topics, methods, assays, endpoints and even reporting—are imputable only to their scientific appropriateness, or other, more mundane factors may compound, e.g. prestige (Foster et al., 2015), or the desire to streamline the publication process by adopting successful models. This, however, may be a source of bias in a publication, and in some extreme cases the existence of ‘paper mills’, where scientific articles are mass produced for personal or political reasons, has been denounced (Christopher, 2021).

We have previously published a brief report on a group of scientific publications in the dental field that shared some uncanny formal resemblance in the way data were presented (Galli et al., 2019). The purpose of the present commentary is to highlight the existence of a niche of in vitro studies that went well beyond the dental field and seemed to closely adopt an exceedingly consistent format for data reporting, in order to bring it to the attention of the scientific community.

While we were unable to identify new papers following this format after 2019, the rise and fall of such a peculiarly identifiable reporting format must be scrutinized. We contend that scientific soundness was not likely to be the driving force in the establishment of such particular praxis—it could be called a trend—, a phenomenon that, as it will be shown later on, is far from unique. We also believe that it is important to assess the limits and potential of such trends, to exploit them, where possible, to optimize future research and correct their course, where deemed necessary.

Materials and methods

Online search

We searched the MEDLINE public database of biomedical literature through the PubMed portal, from its earliest available dates to May 2021, without applying date or language filters. We searched terms (see Supplementary information), including MESH subheadings and keywords, which could match the papers we had initially come across (Galli et al., 2019).
The retrieved studies were screened by 2 investigators (CG and MTC), to identify relevant studies that presented similarities to the previously published template with gingival fibroblasts (Galli et al., 2019), e.g. a grouped bar chart for cell viability as Figure I. Reference lists of included studies and relevant reviews were also searched. The *Inflammation* and *International Immunopharmacology* journals, which published several of the articles we reported in our previous study, were furthermore hand-searched to improve the detection of relevant studies. The included studies are listed in Table 1.

Document similarity

To investigate the format similarity across different studies, we created a $d \times F$ feature matrix, where d represents the individual studies, in chronological order, starting from the oldest one, and F was a list of common figures that could be encountered in the studies (Table 2).

Common elements that followed the template were identified: a Diagram of the molecule structure (Diagram), a histogram for cell viability (Viability), Viability, a quantification of relevant inflammatory cytokines by ELISA (ELISA), quantification of Prostaglandins and nitrites (PGE2), Cox-2 assay (Cox), p65 and IkB quantification by Western blot analysis (p65), TLR4 quantification by Western blot (TLR4), ICAM expression (ICAM), cell adherence assay (Adherence), metalloproteinase assay (MMP), Nrf2 quantitation (Nrf2), pJNK quantitation (pJNK), PPAR-γ (PPARG). For each study we recorded the figure representing that given endpoint. We then calculated the Levenshtein (Levenshtein, 1966) and Jaccard distance (Halkidi et al., 2002) to estimate the dissimilarity between them using the Textdistance 4.1.5 (Orsinium, 2019) library for Python 3.7 thus obtaining a $d \times d$ distance matrix, which we then plotted as a heat map, with lighter colors indicating increasing dissimilarity. Black therefore indicates a distance value of 0, meaning identity, and lighter colors indicate increasing dissimilarity.

Results

The findings

We have already reported that the unexpected discovery of a limited but clearly identifiable tradition of studies in the periodontal field (Hao et al., 2017; Jian et al., 2015; F. Liu et al., 2019; Qi et al., 2018; Q. Wang et al., 2016; Q.-B. Wang et al., 2016; Yimin Wang et al., 2015; C. Wei et al., 2015; N. Zhang et al., 2017) sharing a high degree of formal similarity in their reporting prompted us to broaden our search (Galli et al., 2019). A survey of the literature has retrieved a considerable number of studies, published between 2008 and 2019, that appear to follow closely related reporting templates, in several biomedical fields besides periodontal inflammation, including microglia inflammation (Han et al., 2017; Li-hua et al., 2017; N. Liu et al., 2017; H. Wang et al., 2015; Min Wang et al., 2018; Xiaokun Wang et al., 2017; Yanan Wang et al., 2015; Wang-sheng et al., 2017; L. Zhang et al., 2018), umbilical endothelial cells (Yong Li et al., 2016; Lin et al., 2017; Song et al., 2016; Xiaodong et al., 2015; Zheng et al., 2018), macrophages (Bi et al., 2012; Ci et al., 2008, 2010; Fu et al., 2014; Fu, Liu, Liu, et al., 2012; Fu, Liu, Zhang, et al., 2012; Hu et al., 2013; Huo, Cui, et al., 2013; Huo, Gao, et al., 2013; Huo et al., 2012; Soromou et al., 2012; X. Zhang et al., 2009).
#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
1	RAW264.7 murine	Ceftiofur	LPS from *E. coli* (1 μg/ml)	Biochemical and Biophysical	No	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary	Ci et al. (2008)
	macrophages			Research Communications		Medicine, Jilin University, China	
2	RAW264.7 murine	Ivermectin	LPS from *E. coli* (1 μg/ml)	International Immunopharmacology	No	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary	X. Zhang et al. (2009)
	macrophages					Medicine, Jilin University, China	
3	RAW264.7 murine	Schisantherin A	LPS from *E. coli* (1 μg/ml)	Inflammation	No	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary	Ci et al. (2010)
	macrophages					Medicine, Jilin University, China	
4	RAW264.7 murine	Methyl-1-hydroxy-2-	LPS from *E. coli* (0.1 μg/ml)	Inflammation research	No	School of Pharmaceutical Sciences, Southern Medical University, Guangzhou,	J.-Y. Zhang et al. (2011)
	macrophages	2-naphtoate				China	
5	RAW264.7 murine	Alpinetin	LPS from *E. coli* (1 μg/ml)	International Immunopharmacology	Yes	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary	Huo et al. (2012)
	macrophages					Medicine, Jilin University, China	
#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
----	-----------------------------	--	---------------------------	----------------------------------	----------------	---	---------------------
6	RAW264.7 murine macrophages	7-O-merthyl-narigenin	LPS from *E. coli* (1 μg/ml)	Molecules	Yes	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, China	Soromou et al. (2012)
7	RAW264.7 murine macrophages	Sulfated Derivative of 20(S)-Ginsenoside Rh2	LPS from *E. coli* (1 μg/ml)	Inflammation	Yes	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, China	Bi et al. (2012)
8	Primary mouse macrophages	Geniposide	LPS from *E. coli* (1 μg/ml)	International Immunopharmacology	No	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, China	Fu et al. (2012a, 2012b)
9	RAW264.7 murine macrophages	Magnolol1	LPS from *E. coli* (1 μg/ml)	Journal of Ethnopharmacology	No	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, China	Fu et al. (2012a, 2012b)
10	RAW264.7 murine macrophages	Stevioside	LPS from *E. coli* (1 μg/ml)	Inflammation	No	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, China	Fengyang et al. (2012)
Table 1 (continued)

#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
11	THP-1 macrophages	Alpinetin	LPS from *E. coli* (0.1 μg/ml)	European Journal of Pharmacology	Yes	Department of Senile Disease, the Second Xiang Ya Hospital, Central South University, Hunan China	Hu et al. (2013)
12	Uterine Epithelial Cells	Magnolol	LPS from *E. coli* (1 μg/ml)	Inflammation	Yes	Dep Reproductive Medical Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China	Luo et al. (2013)
13	RAW264.7 murine macrophages	Linalool	LPS from *E. coli* (1 μg/ml)	J Surgical Research	Yes	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, China	Huo, Cui, et al. (2013)
14	RAW264.7 murine macrophages	Gossypol	LPS from *E. coli* (1 μg/ml)	International Immunopharmacology	Yes	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, China	Huo, Gao, et al. (2013)
#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
----	----------------------------------	------------	---------------------------------	------------------------------	----------------	--	------------------
15	RAW264.7 murine macrophages	7b	LPS from *E. coli* (1 μg/ml)	International Immunopharmacology	No	State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, China	Shao et al. (2013)
16	RAW264.7 murine macrophages	Punicalagin	LPS from *E. coli* (1 μg/ml)	Inflammation	Yes	College of Veterinary Medicine, China Agricultural University (CAU), China	Xu et al. (2014)
17	RAW264.7 murine macrophages	Cepharanthine	LPS from *E. coli* (concentration not reported)	Inflammation	Yes	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, China	Huang et al. (2014)
18	Mammary Epithelial cells	Emodin	LPS from *E. coli* (1 μg/ml)	International Immunopharmacology	No	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, China	Yang et al. (2014)
19	Mammary Epithelial cells (mouse)	Thymol	LPS from *E. coli* (1 μg/ml)	Inflammation	No	Dep. Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, China	Liang et al. (2014)
#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
----	--------------------------------	--------------	---	--	----------------	--	----------------------------------
20	RAW264.7 murine macrophages	Glycyrrhizin	LPS from *E. coli* (1 μg/ml)	Biochimica et Biophysica Acta	No	Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, China	Fu et al. (2014)
21	Chondrocytes	Farerol	IL-1β (10 ng/ml)	European Journal of Pharmacology	Yes	Department of Orthopedics, Affiliated Hospital of Weifang Medical University, China	H. Zhang et al. (2015)
22	Chondrocytes	Astragalin	IL-1β (concentration not reported)	International Immunopharmacology	Yes	Department of Orthopedic Surgery, the Second Hospital of Harbin Medical University, China	Ma et al. (2015)
23	Chondrocytes	Taraxasterol	IL-1β (10 ng/ml)	European Journal of Pharmacology	Yes	Dep Orthopedic Surgery, the Second Hospital of Harbin Medical University, China	Piao et al. (2015)
24	Chondrocytes	Thymoquinone	IL-1β (10 ng/ml)	Inflammation	Yes	Department of Orthopedic Surgery, the Second Hospital of Harbin Medical University, China	D. Wang et al. (2015)
25	BV-2 microglia	Protocatechuic Acid	LPS from *E. coli* (0.5 μg/ml)	Neurochem Res	Yes	Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, China	H. Wang et al. (2015)
#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
----	---------------------	--------------------	---------------------------	-----------------------------------	----------------	---	------------------------------
26	3T3-L1 adipocytes	Sparstolonin B	LPS from *E. coli* (1 μg/ml)	European Journal of Pharmacology	Yes	Department of Endocrinology, ZhuJiang Hospital, Southern Medical University, China	Ming Wang et al. (2015)
27	BV-2 microglia cells	Thymoquinone	LPS from *E. coli* (0.5 μg/ml)	International Immunopharmacology	Yes	Department of Neurology, Fourth Affiliated Hospital, Harbin Medical University, China	Yanan Wang et al. (2015)
28	Gingival fibroblasts	Protocatechuic acid	LPS from *P. gingivalis* (1 μg/ml)	Inflammation	Yes	Medical Department, Fuzhou General Hospital of Nanjing Military Command, China	Yimin Wang et al. (2015)
29	Gingival fibroblasts	Acanthoic acid	LPS from *P. gingivalis* (1 μg/ml)	Inflammation	Yes	Dep Oral Medicine, Stomatology Hospital of Luzhou Medical College, China	C. Wei et al. (2015)
30	Chondrocytes	Betulinic acid	IL-1β (10 ng/ml)	International Immunopharmacology	Yes	Dep Orthopedic Surgery, the Second Hospital of Harbin Medical University, China	Jingbo et al. (2015)
31	Umbilical endothelial cells	Biochanin A	LPS from *E. coli* (1 μg/ml)	Life Sciences	Yes	The Fourth Hospital of Harbin Medical University, China	Xiaodong et al. (2015)
Table 1 (continued)

#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
32	Gingival fibroblasts	Tormentic acid	LPS from *P. gingivalis*	Archives Oral Biology	Yes	Dep Stomatolog, General Hospital of Chengdu Military Region, China	Jian et al. (2015)
			(1 μg/ml)				
33	Chondrocytes	Tenuigenin	IL-1β (10 ng/ml)	Inflammation	Yes	Dep Ortho-pedics, the First Affiliated Hospital of Harbin Medical University, China	C. Wang et al. (2016)
34	Bovine primary epithelial cells	Morin	LPS (1 μg/ml)	J Dairy Science	Yes	College of Veterinary Medicine, Jilin University, China	Jingjing Wang, et al. (2016)
35	RAW264.7 murine macrophages	Geraniin	LPS from *E. coli* (1 μg/ml)	Chemico-Biological Interactions	Yes	Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China	P. Wang et al. (2016)
36	Gingival fibroblasts	Veratric acid	LPS from *P. gingivalis*	Inflammation	Yes	Dep End-odontics, Jinan Stomatological Hospital, China	Q.-B. Wang et al. (2016)
37	Gingival fibroblasts	Farrerol	LPS from *P. gingivalis*	Archives Oral Biology	Yes	Department of Pharmacy, Shandong Provincial Hospital, Shandong University, China	Q. Wang et al. (2016)
#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
----	-----------------------	------------	-------------------	--------------------------------------	----------------	---	---------------------
38	Chondrocytes	Platycodin D	IL-1β concentration not reported	International Immunopharmacology	Yes	Dep Orthopedics, the First Affiliated Hospital of Harbin Medical University, China	Y. Qu et al. (2016)
39	Chondrocytes	Schisantherin A	IL-1β (10 ng/ml)	European Journal of Pharmacology	Yes	Dep Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, China	Liao et al. (2016)
40	Umbilical endothelial cells	Acanthoic acid	LPS from E. coli (1 μg/ml)	International Immunopharmacology	Yes	Dep Pharmacy, The Second Hospital of Shandong University, China	Yong Li et al. (2016)
41	Umbilical endothelial cells	Citral	LPS from E. coli (1 μg/ml)	Inflammation	Yes	Dep Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, China	Song et al. (2016)
42	Chondrocytes	Paeonol	IL-1β (10 ng/ml)	Inflammation	Yes	Dep Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China	Lou et al. (2017)
#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
----	------------	-----------------	-------------------	----------------------------------	----------------	--	-------------------------
43	Chondrocytes	Cryptotanshinone	IL-1β (10 ng/ml)	International Immunopharmacology	Yes	Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China	Feng et al. (2017)
44	Chondrocytes	Alpha-Mangostin	IL-1β (10 ng/ml)	International Immunopharmacology	No	Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China	Pan et al. (2017)
45	Chondrocytes	Mangiferin	IL-1β (10 ng/ml)	Inflammation	Yes	Dep Orthopaedics, The First Affiliated Hospital of Harbin Medical University, China	Y. Qu et al. (2017)
46	BV-2 microglia	6-Shogaol	LPS from *E. coli* (0.5 μg/ml)	Oncotarget	No	The Second Hospital of Jilin University, China	Han et al. (2017)
47	BV-2 microglia	Esculentoside A	LPS from *E. coli* (0.5 μg/ml)	European Journal of Pharmacology	Yes	Dep Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, China	Li-hua et al. (2017)
48	BV-2 microglia	Schisandrin B	LPS from *E. coli* (0.5 μg/ml)	Inflammation	Yes	Dep Respiratory, Affiliated Hospital of Jiangsu University, China	N. Liu et al. (2017)
#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
----	---	---------------	---	------------------------------	----------------	--	---------------------------
49	BV-2 microglia	Piperine	LPS from *E. coli* (0.5 μg/ml)	International Immunopharmacology	Yes	Department of Radiology, Hainan General Hospital, China	Wang-sheng et al. (2017)***
50	Bovine mammary epithelial cells	Sodium houttuynonate	LPS from *E. coli* (concentration not reported)	Microbial Pathogenesis	Yes	Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, China	W. Wang et al. (2017)***
51	Endometrial epithelial cells	Glycyrrhizin	LPS from *E. coli* (concentration not reported)	Microbial Pathogenesis	Yes	Department of Gynaecology and Obstetrics, Daqing City People’s Hospital, China	Xue-rong Wang et al. (2017)***
52	BV-2 microglia	Tenuigenin	LPS from *E. coli* (0.5 μg/ml)	European Journal of Pharmacology	Yes	Dep neurology, The Second Affiliated Hospital, Harbin Medical University, China	Xiaokun Wang et al. (2017)***
53	Primary bovine mammary cells	Platycodin D	LPS from *E. coli* (concentration not reported)	European Journal of Pharmacology	Yes	College of Veterinary Medicine, Jilin University, China	Yanan Wang et al. (2017)***
54	Umbilical endothelial cells	Schisandrin B	LPS from *E. coli* (1 μg/ml)	International Immunopharmacology	Yes	Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, China	Lin et al. (2017)
#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
----	----------------------------	------------	---	----------------------------------	----------------	--	---------------------
55	Gingival fibroblasts	Asiatic acid	LPS from *P. gingivalis* (1 μg/ml)	International Immunopharmacology	No	Dep Stomatology, Nanshan Hospital and College of Stomatology, Southern Medical University, China	Hao et al. (2017)
56	Gingival fibroblasts	Glycyrrhizin	LPS from *P. gingivalis* (1 μg/ml)	Microbial Pathogenesis	Yes	Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, China	N. Zhang et al. (2017)
57	Caco-2 cells	Cryptotanshinone	LPS (1 μg/ml)	Microbial Pathogenesis	Yes	Dep Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, China	Shu-guang Cao et al. (2018)
58	Endometrial epithelial cells	Asiatic acid	LPS (concentration not reported)	Microbial Pathogenesis	Yes	Department of Gynecology and Obstetrics, Binzhou Medical University Hospital, China	Shou-yan Cao et al. (2018)
59	Umbilical endothelial cells	Taraxasterol	LPS from *E. coli* (concentration not reported)	Inflammation	Yes	Department of Infectious Disease, Qilu Hospital of Shandong University, China	Zheng et al. (2018)
#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References
----	---------------------	------------------	---	-------------------------------	----------------	---	-----------------------
60	BV-2 microglia	Nuciferine	LPS from *E. coli* (0.5 μg/ml)	International Immunopharmacology	Yes	Department of Neurology, Shaanxi Provincial People’s Hospital, and the Third Affiliated Hospital, Xi’an Jiaotong University School of Medicine, China	L. Zhang et al. (2018)
61	BV-2 microglia	Isoalantolactone	LPS from *E. coli* (concentration not reported)	International Immunopharmacology	Yes	Department of Neurology, The First Affiliated Hospital of Anhui Medical University, China	Min Wang et al. (2018)
62	Gingival fibroblasts	Isorhamnetin	LPS from *P. gingivalis* (1 μg/ml)	Microbial Pathogenesis	Yes	Department of Child Dental, The First Affiliated Hospital of Harbin Medical University, China	Qi et al. (2018)
63	Gingival fibroblasts	Plantamajoside	LPS from *P. gingivalis* (concentration not reported)	Microbial Pathogenesis	Yes	Department of Stomatology, Nanfang Hospital, China	F. Liu et al. (2019)
64	Chondrocytes	Casticin	IL-1β (10 ng/ml)	European Journal of Pharmacology	Yes	Department of Radiology, The First Hospital of China Medical University, China	Mu et al. (2019)
65	Human gingival fibroblasts	Oridonin	LPS from *P. gingivalis* (concentration not reported)	International Immunopharmacology	Yes	First Clinical Hospital of Harbin Medical University, China	Yu et al. (2019)
Table 1 (continued)

#	Cell model	X compound	Stimulus	Journal	Personal email	Institution	References	
66	Chondrocytes	Oridonin	IL-1β (10 ng/ml)	International Immunopharmacology	Yes	Dep Orthopaedic Surgery, the Second Affiliated Hospital of Harbin Medical University, China	Jia et al. (2019)	
	Figure 1	Figure 2	Figure 3	Figure 4	Figure 5	Figure 6	Figure 7	Figure 8
---	----------	----------	----------	----------	----------	----------	----------	----------
1	Viability	ELISA	pJNK					
2	PGE2	Cox	pJNK					
3	Diagram	ELISA	Viability	PGE2	Cox	pJNK	p65	
4	Diagram	PGE2	Cox	ELISA	p65	pJNK	Viability	
5	Diagram	Viability	ELISA	p65	pJNK			
6	Diagram	Viability	ELISA	pJNK	p65			
7	Diagram	Viability	ELISA	pJNK	p65			
8	Diagram	Viability	ELISA	p65	pJNK	TLR4		
9	Diagram	Viability	ELISA	p65	pJNK	TLR4		
10	Diagram	Viability	ELISA	p65	pJNK			
11	Diagram	Viability	ELISA	p65	pJNK	TLR4	PPARG	
12	Diagram	Viability	ELISA	p65	pJNK	TLR4		
13	Diagram	Viability	ELISA	p65	pJNK			
14	Viability	ELISA	p65	pJNK				
15	Diagram	Viability	ELISA	PGE2	Cox	p65	pJNK	
16	Diagram	Viability	ELISA	Cox	p65	pJNK	PPARG	
17	Diagram	Viability	ELISA	Cox	p65	pJNK		
18	Diagram	Viability	ELISA	p65	TLR4			
19	Viability	PGE2	ELISA	pJNK	p65			
20	Diagram	Viability	ELISA	p65	pJNK			
21	Viability	PGE2	Cox	p65	pPI3K			
22	Viability	PGE2	Cox	p65	Nrf2	pJNK	PPARG	
23	PGE2	Cox	MMP	p65	Nrf2			
24	Viability	PGE2	ELISA	p65	pPI3K			
25	Viability	ELISA	PGE2	p65	TLR4	pJNK		
26	Viability	ELISA	p65	Nrf2	TLR4	PPARG		
27	Viability	ELISA	Cox	p65	pPI3K			
28	Viability	ELISA	p65	PPARG				
29	Viability	ELISA	p65	TLR4				
30	Viability	PGE2	MMP	p65	PPARG			
31	Viability	PGE2	Cox	MMP	p65	Nrf2	PPARG	
32	ELISA	ICAM	Adherence	p65	Viability	PPARG		
33	Viability	ELISA	p65	TLR4	pJNK			
34	Viability	ELISA	PGE2	Nrf2				
35	Viability	ELISA	p65	pPI3K				
36	Viability	MMP	PGE2	Cox	ELISA	p65		
37	Viability	ELISA	PGE2	Cox	MMP	p65	Nrf2	pJNK
38	Viability	ELISA	ICAM	Adherence	p65	Viability	PPARG	
39	Viability	ELISA	ICAM	Adherence	p65	PPARG		
40	Viability	ELISA	PGE2	Cox	p65	pPI3K	Nrf2	
41	Viability	ELISA	p65	pJNK				
42	Viability	PGE2	Cox	MMP	p65	pPI3K		
43	Viability	ELISA	PGE2	Cox	MMP	p65	pJNK	
44	Viability	PGE2	Cox	MMP	p65			
epithelial cells (Liang et al., 2014; Luo et al., 2013; Yanan Wang et al., 2017; Yang et al., 2014), adipocytes (Ming Wang et al., 2015) and chondrocytes (Feng et al., 2017; Jingbo et al., 2015; Liao et al., 2016; Lou et al., 2017; Ma et al., 2015; Pan et al., 2017; Piao et al., 2015; Y. Qu et al., 2016, Qu, Zhou, et al., 2017; C. Wang et al., 2016; D. Wang et al., 2015; H. Zhang et al., 2015) (Table 1).

Fig. 1 The diagram represents the main cell models used in the studies that appeared to closely follow the template. The oldest model was human and, mostly, murine macrophages, while later works also focused on different cell models.

See “Materials and methods” section for the details.

Table 2 (continued)

Figure 1	Figure 2	Figure 3	Figure 4	Figure 5	Figure 6	Figure 7	Figure 8
45	Viability	PGE2	MMP	p65	PPARG		
46	Viability	ELISA	PGE2	p65	PPARG		
47	Viability	ELISA	PGE2	p65	PPARG		
48	Viability	ELISA	PGE2	p65	PPARG		
49	Viability	ELISA	PGE2	p65	Nrf2		
50	Viability	PGE2	MMP	p65	pPI3K		
51	Viability	ELISA	Adherence	ICAM	p65	Nrf2	
52	Diagram	Viability	ELISA	p65			
53	Viability	PGE2	ELISA	p65	PPARG		
54	Viability	ELISA	Cox	p65			
55	Viability	ELISA	p65	TLR4			
56	Viability	ELISA	PGE2	Cox	p65	TLR4	
57	Viability	ELISA	PGE2	Cox	ICAM	p65	
58	Viability	ELISA	PGE2	p65	PPARG		
59	Viability	ELISA	PGE2	p65	Nrf2		
60	Viability	ELISA	PGE2	p65	Nrf2		
61	Viability	ELISA	PGE2	p65	TLR4	PPARG	
62	Diagram	Viability	Cox	PGE2	p65	TLR4	
63	Viability	pPI3K	p65	ELISA	PGE2		
64	Viability	PGE2	ELISA	Cox	MMP	p65	
65	Viability	ELISA	PGE2	p65	PPARG		
66	Viability	PGE2	MMP	p65	PPARG		

See “Materials and methods” section for the details.
Most of the earlier works are focused on macrophages, while different cell models were introduced in later manuscripts (Fig. 1).

These manuscripts are not the product of a single research group, as we first hypothesized, but also of un-related investigators (Table 1) from different institutions in China. In the great majority of the cases (52 articles out of 65) the corresponding author did not provide an institution email address, but rather a personal address. Due to specific a priori constraints of our literature search, all the works that were included in this report shared the common purpose of investigating whether a given compound with potential beneficial effects hampered the in vitro inflammatory response evoked in a target cell population by a pro-inflammatory cue. In the vast majority of the models, inflammation was induced by LPS, with the noticeable exception of osteoarthritis studies, where Interleukin-1β was typically used with chondrocytes. Studies focusing on gingival fibroblasts consistently used 1 μg/ml LPS from *Porphyromonas gingivalis*, but studies on BV-2 microglia cells resorted to 0.5 μg/ml LPS from *Escherichia coli*, similarly to reports with umbilical endothelial cells or macrophages, where, however, 1 μg/ml LPS was again preferred. As for the tested compound, henceforth simply referred to as X compound, its nature vastly varied across studies, although most manuscripts actually focused on herbal extracts or molecules of natural origin. This was the case for instance with Alpinetin, a natural flavonoid utilized in traditional eastern medicine of herbal origin (Huo et al., 2012), Magnolol, an extract of *Magnolia officinalis* (Chen et al., 2011) or Geniposide, which is obtained from Gardenia plants (Fu, Liu, Liu, et al., 2012). This may be explained both by the great relevance of natural products in far eastern traditional medicine, which may have sensitized researchers to more actively investigate the properties of herbal compounds, but it could also be possibly due to the greater accessibility of natural compounds for independent academical testing, e.g. when compared to novel synthetic molecules, which are presumably more often screened by private pharma companies prior to the clinical stages.

A comparative view

As we tried to assess the similarity across these studies, we observed that most of these studies used similar endpoints, which were then plotted using strikingly similar graphs (Fig. 2, Table 2).

We recorded the position of each figure in the manuscript and its content, and were thus able to compute scores for dissimilarity among studies, which we plotted as a matrix (Fig. 3).

This distance is mostly based on the presence of the same endpoints, as in the Jaccard distance, and also on the position of the figures in the text, as in the Levenshtein distance. We plotted the distance matrix of the studies as a heat map, where the numbers on the axis represent the index of a study as can be found in Table 2, and colors represent the degree of distance between studies as far as the order of the figures is concerned. When taken together, it appears that although early studies had a higher degree of similarity, as far as reported endpoints, represented as darker colors in the corresponding heat map (Fig. 3A, D), the degree of similarity was lower among later works. Since the studies on chondrocytes were conducted in a slightly different way from all the other studies, namely they did not use LPS but rather IL-1β to elicit the inflammatory response in cells, we believed that they could constitute an isolated sub-group.

When we examined the studies on chondrocytes alone (Fig. 3B, E), we observed that distance between studies progressively decreased, as the heat map comparing later studies
was darker than with early studies, as it is clearer to visualize looking at the Jaccard distance (Fig. 3E). This would suggest that authors publishing in this field and referring to the template progressively adhered to it more closely, or converged on a new standard of reporting.
When we then analyzed the remaining studies, their distance again appeared lower in the older studies, at least after an initial period, and then decrease. There could be a resurgence in similarity in the most recent studies (Fig. 3C, F).

It must be remembered, however, that although the sequence of figures in the manuscript may differ, individual figures across studies had often an uncanny esthetic resemblance, as explained in greater detail below. This aspect of similarity could be captured only through a qualitative evaluation of the manuscripts.

A jack of all trades

We identified 65 studies that closely followed this format template, so that it was possible to outline a prototypical structure. This prototype was then declined in different fashions, according to the specific needs of a given cell type and therefore the characteristics of a specific inflammatory microenvironment. Within a field of study, e.g. periodontal inflammation or microglia inflammation, however, the format was followed with great consistency, down to the very details, including the order of appearance of a certain chart, or how data were plotted, what color combinations were chosen, what measures of dispersion were used and sometimes even the wording of a figure legend. These reports typically presented a very standard core set of figures, usually Figures I through IV (henceforth indicated by roman numbers to distinguish them from the illustrations of the present study), where the highest degree of similarity was found and included additional figures that had a higher degree of originality. The most important characteristics of this template can be found in greater detail below.

Figure I—The most distinctive feature in the exceeding majority of studies that conformed to this format is represented by Figure I, which usually depicted cell viability after the addition of LPS and in the presence or in the absence of 3 increasing doses of the tested compound (Fig. 4A). The purpose of this figure was usually to demonstrate that the X compound did not exert toxic or undesired effects on cell viability, even under pro-inflammatory conditions, which is a sound pre-requisite for its potential use in a clinical setting. Very few papers avoided showing cell viability data as Figure I, and even in those cases, the authors stated that cell viability was measured but not shown (Lei Li et al., 2017; Piao et al., 2015). Some papers, however, preferred to represent the molecular structure of the tested compound as Figure I, and the remaining experimental results then followed the first diagram. Only Ming et al. showed cell viability data as Fig. 4 (Xiaodong et al., 2015) and only a very recent paper used a modified bar chart (Zheng et al., 2018), which could be a sign that this template eventually underwent some further adaptation or fine tuning.

Cell viability was quite consistently determined by MTT assay, although a smaller number of papers, interestingly prevalently in the periodontal field, used CCK-8 assay (Qi et al., 2018; Yimin Wang et al., 2015). This figure was consistently constituted by a bar chart that expressed cell viability as a percentage normalized by the cell viability levels of the control group, where no LPS or X compound was added. Interestingly, the Y axis of the graph invariably started at 50% viability in all the publications that followed the format. More importantly, this bar chart relied on a two-color scheme, which included a lighter color, usually white, which was commonly used for the Control group, LPS group and LPS + X compound, and a darker color, e.g. grey or black, which denoted the groups stimulated with only the X compound (the color scheme was reversed in some reports). However, according to the graph labels, the light color indicated “Drugs + LPS”, which was only partially correct. The same color was in fact used...
also for the Control and LPS only groups! Nevertheless, this labelling and data plotting had a tremendous success, as it was encountered in virtually all the manuscripts that adopted this format, and in only 1 instance, to the best of our knowledge, a third color was used in the graph to distinguish the control and LPS only groups (W. Wei et al., 2015). It should be noted that the vast majority of studies that followed this format used the wording “Drugs + LPS/Drugs only” for the graph labels (only occasionally was the actual name of the drug mentioned in the label (Q. Wang et al., 2016), and the figure legend was also extremely consistent in its choice of words. The most common formula was: “Effects of X compound on the cell viability of Y cells. Cells were cultured with different concentrations of X compound (Concentrations may be reported here) in the absence or in the presence of (LPS concentration) LPS for 24 h. The cell viability was determined by MTT assay. The values presented are the means ± SEM of three independent experiments.” The use of Standard Error as a measure of dispersion appeared as the norm in these studies, with Standard Deviation found only in a few cases (Q. Wang et al., 2016; N. Zhang et al., 2017).

A peculiar sub-set of studies, namely those that focused on osteoarthritis chondrocytes, while broadly following a similar plotting format, presented some significant differences. Two studies (Liao et al., 2016; H. Zhang et al., 2015) used the same graph format for cell viability as described above, i.e. a grouped bar chart, though noticeably with 4 increasing concentrations of X compound instead of the more common 3 concentrations used in the other studies. However, the most common format for Figure I in chondrocyte studies was a simple bar chart (Fig. 4B) reporting data for cell viability in the absence or in the presence of 3 increasing doses (Feng et al., 2017; Lou et al., 2017; Ma et al., 2015; Pan et al., 2017; Y. Qu et al., 2016; D. Wang et al., 2015) or, more rarely, 4 or more concentrations of X compound (Lee et al., 2018; C. Wang et al., 2016; Zhong et al., 2015).
Figure II—Figure II was mostly focused on investigating how the X compound affected the production of inflammation mediators by cells after inflammatory challenge. Though Figure II could significantly differ across studies, it was very consistent, when a given cell model is considered. As for BV-2 microglia cells, Figure II typically consisted of a multi-panel figure that comprised 4 bar charts depicting the levels of TNF-α, IL-1β, PGE2 and IL-6 in culture supernatants, measured by ELISA assay (Han et al., 2017; N. Liu et al., 2017; H. Wang et al., 2015) in the Control, LPS, and LPS + 3 increasing concentrations of the X compound groups. Other studies had subtle differences, as the publication by Li-Hua et al., which omitted IL-6 (Li-hua et al., 2017), or Zhang et al., which reported both the protein and the mRNA levels for TNF-α and IL-1β as Figure II, while deferring PGE2 to Figure III, together with Nitrites (L. Zhang et al., 2018). As explained elsewhere (Galli et al., 2019), studies on human gingival fibroblasts consistently reported protein levels for IL-8 and IL-6 as Figure II (Jian et al., 2015; Yimin Wang et al., 2015; C. Wei et al., 2015; N. Zhang et al., 2017), though PGE2 and Nitrite levels could be present (Hao et al., 2017; F. Liu et al., 2019).

The choice of mediators was understandably dependent on the cell model used, and when it came to umbilical vein endothelial cells Figure II often contained a multi-panel figure consisting of bar charts for TNF-α, IL-6 and IL-8 (Yong Li et al., 2016), or only TNF-α and IL-8, by ELISA (Song et al., 2016; Xiaodong et al., 2015). Studies on macrophages were less numerous and therefore it is difficult to outline a prototypical template, but they all had TNF-α and IL-6 amounts by ELISA as the second figure, in combination with cell viability (Fu, Liu, Zhang, et al., 2012) or in more complex multi-panel figures (Fu et al., 2014; W. Li et al., 2013).

PGE2 and Nitrites levels in the supernatant were most commonly shown as Figure II in studies on chondrocytes. They could be either alone (Lou et al., 2017; Ma et al., 2015; Pan et al., 2017 C. Wang et al., 2016; D. Wang et al., 2015; H. Zhang et al., 2015) or within a multi-panel figure that contained also the photograph of a WB membrane with inducible Nitric Oxide Synthase (iNOS) and Cyclooxygenase-2 in the control, LPG group and in the groups stimulated with both LPS and 3 increasing concentrations of X compound, together with 2 bar chart showing the quantitation of the WB intensities (Piao et al., 2015; Y. Qu et al., 2016). Liao et al. further added a bar chart with TNF-α levels by ELISA to this already crowded figure (Liao et al., 2016). Feng et al. had a Figure II composed with PGE2, Nitrites, TNF-α and IL-6 in a study that followed the format template less closely also with respect to other figures (Feng et al., 2017). Less closely related studies could still report PGE2 and Nitrites levels in more complex pictures (Lee et al., 2018) or in later positions in the text (Zhong et al., 2015).

Figures III and IV—Figure III was mostly dedicated to investigating the activation of intracellular signals, both signaling pathways or cell markers, with the possible exception of the chondrocyte template. In the case of both the microglia (Han et al., 2017; Li-hua et al., 2017; N. Liu et al., 2017; H. Wang et al., 2015; Min Wang et al., 2018; Wang-sheng et al., 2017; L. Zhang et al., 2018) and gingival fibroblast studies (Jian et al., 2015; Qi et al., 2018; Q. Wang et al., 2016; Q.-B. Wang et al., 2016; Yimin Wang et al., 2015; C. Wei et al., 2015), Figure III was constituted by data from Western Blot analysis of the activation of the NF-kB signaling pathway. More specifically, Figure III was a multi-panel figure with the photograph of a WB membrane with lanes for the Control, LPS group and LPS + 3 increasing concentrations of the X compound. The samples were labeled for phospho-p65, phospho-IκB and β-Actin as reference. The WB membrane was accompanied by 2 bar charts on its side, representing the quantitation of its signal intensities. In one case with BV-2 microglia cells (H. Wang et al., 2015) and with gingival fibroblasts
TLR-4 receptors were also quantitated in Figure III. In one case this WB figure, though present, was moved down to Figure IV (L. Zhang et al., 2018). Studies with epithelial cells did not appear to differ significantly, as with (Luo et al., 2013), though in other studies the third figure is represented by a WB analysis with Cox-2 and iNOS levels (including their quantitation as a bar chart) and the WB for phospho-p65 and phospho-IkB was moved down to a later position (Liang et al., 2014; Yang et al., 2014). When the early studies on macrophages are considered, this same structure could already be seen in Huo et al. (2012) and Fu, Liu, Liu, et al. (2012), though the other studies preferred to show results for mRNA levels for cytokines, as a support for ELISA data, and only then move to Western Blots for phosphorylated proteins (Bi et al., 2012; Fu et al., 2014; Fu, Liu, Zhang, et al., 2012; Hu et al., 2013).

Studies with umbilical endothelial cells typically adopted a modified template. Figure III could still show a WB but with ICAM/VCAM adhesion proteins, together with their bar charts, followed by a bar chart representing the effects of the X compound on cell adhesion (Yong Li et al., 2016; Song et al., 2016), but these two figures could also appear in the inverted order (Lin et al., 2017; Xiaodong et al., 2015). WB for p-p65 and p-IkB followed these graphs in all these cases.

A modified template was also usually encountered with studies on chondrocytes. Figure III usually showed Cox-2 and iNOS levels by Western Blot, with addition of the quantitation of the band intensity expressed through a bar chart (Feng et al., 2017; Lou et al., 2017; Ma et al., 2015; Pan et al., 2017; D. Wang et al., 2015; H. Zhang et al., 2015), though this multi-panel figure could also be found in an upper position, as a part of Figure II (Liao et al., 2016) or Figure I (Piao et al., 2015), while this graph was only rarely absent (C. Wang et al., 2016) or modified (Y. Qu et al., 2016). This figure could be then directly followed by WB for phospho-p65 (Feng et al., 2017; Ma et al., 2015; H. Zhang et al., 2015) or by a multi-panel figure of 3 bar charts reporting levels of metalloproteinases (MMPs) MMP-1, MMP-3 and MMP-13 by ELISA in the control, LPS and LPS + X compound groups (Liao et al., 2016; Lou et al., 2017; Piao et al., 2015; C. Wang et al., 2016; D. Wang et al., 2015), which was in turn consistently followed by a separate figure with WB for phospho-p65 and p-IkB as described above. There was only one case where metalloproteinases were quantitated by Western Blot (Pan et al., 2017).

Discussion

We have previously reported that a conspicuous number of manuscripts appeared in the periodontal field adopting an exceedingly consistent format of reporting, to the point that it was possible to outline a detailed reporting template (Galli et al., 2019). A broader survey of the literature revealed that studies that appeared to follow the same or similar templates could be found in several other medical fields. The common element of all these studies, at least in part because of the way we conducted the literature search, was that they were all designed to answer a specific experimental question:

Does X inhibit the inflammatory response triggered by Y in Z cells?

where X represents the tested compound, Y is a pro-inflammatory stimulus, e.g. most commonly LPS, and Z is a cell phenotype. We were able to identify 65 studies (Table 1) that appeared to conform to very consistent templates, which shared such close similarities that they by far exceeded the normal degree of resemblance that can be found across
studies within the same field of investigation. We propose therefore that it is possible to postulate the philological dependence of their format. This means that the authors of these studies were most likely to have adopted the same template originally stemming from a previously published paper, an archetype, to use a term that is common in Lachmann’s methodology, which they considered to be commendable and worth reproducing for their own publications. Unfortunately, at the present stage of our research, we were not able to identify such an archetype with certainty. One of the main limits of our research is that the list of studies we included in this report is not necessarily exhaustive, because it is impossible to search a literature database like Medline on the basis of the methods used by the single studies and even less so on the basis of their iconographic similarity. The first paper that presented some of the characteristics that we have identified was published by Ci et al., (2008), and although its similarity to later papers is quite low, it is the oldest example of manuscript reporting a cell viability plot that followed the template described in the present study. Although all the studies that we were able to identify shared a common model, i.e. the testing of an anti-inflammatory compound in a cell model, after stimulation with a known inflammatory stimulus, it is possible that this same template or a similar version of it may be encountered in different experimental settings, that we therefore missed. We have actually just started to identify in vivo pre-clinical studies using rodent lung injury or mastitis models that appear to follow specific but extremely standardized reporting protocols (Huo, Cui, et al., 2013; Huo, Gao, et al., 2013; Yanwei Li et al., 2018; S. Qu et al., 2017; W. Wei et al., 2015). For this reason, the main purpose of the present study is to raise awareness in the readers of the palpable existence of this tradition or format of reporting, without any claim of completeness. Interestingly, all the early studies, up to 2013, were conducted in macrophages, using RAW264.7 cells or primary macrophages, and they appeared to share strong similarities (Fig. 2). More specifically, Fu, Liu, Liu, et al. (2012) and Fu, Liu, Zhang, et al. (2012) are the only instance where the prototypical bar charts of the viability assay that can usually be found as Figure I were included in a multi-panel figure together with ILs measurements by ELISA, which appeared as separate figures in all the later reports. Moreover, these early papers were also the only cases where this bar chart did not report data as “percentage of cell viability” or where LPS concentration was expressed as mg/L instead of the more familiar μg/ml. Although it is not possible to prove that one of these papers is indeed the archetype, their features would strongly indicate that they were composed at a stage when this template was still fluid. Later manuscripts, however, although incorporating several differences in the order of the figures, followed the formatting of the individual figures so closely that even questionable aspects could be traced in virtually all the manuscripts that we included in the present review. This is, for instance, the case with Figure I, which was arguably effective in graphically showing the absence of toxic effects of the X compound. However, it is generally accepted that Y axis should start at 0, especially so in bar charts, so having the Y axis starting at 50% viability may be questionable. The same applies to the curious choice of labelling the control and LPS bars with the same color used for LPS + X compound (see above), which may be puzzling to the reader. These questionable aspects, which were nevertheless closely reproduced in the later papers, can be actually treated similarly to what philologists consider “common errors”, i.e. a strong sign of textual dependency. We can hypothesize that this template influenced later researchers in different areas and was modified to better adjust to their needs in the specific experimental settings, e.g. osteoarthritis inflammation. It could even be theoretically possible then to reconstruct a phylogenetic tree of this template, branching off as new specialized templates are derived from the previous one.
There may be several explanations behind the choice to use the same data plotting and order, which go beyond the simple acknowledgement of the validity of a specific methodology for the testing of anti-inflammatory compounds. It cannot be ruled out that cultural factors may have had a role in it, as all the authors from this group of articles are from Chinese institutions and authors of neighboring countries have generally not adopted the template, although its echoes can be felt in some studies from other Asian countries (Aroonrerk et al., 2016; Lee et al., 2018; Liang Li et al., 2015; Shin et al., 2019). Cultural and scientific prestige of published papers may have compelled authors to adopt the same format, and maybe the status of published papers, i.e. ‘successful’ papers, officially accepted by peer-reviewers and, by extension, the scientific community, may have provided some safe ground to non-native English speakers.

It must be noted that uniformity is not a reproachable feature of scientific manuscripts per se. On the contrary, standardization can increase the efficiency of scientific communication, as it decreases the cognitive burden required to interpret scientific data. It is easier for readers to quickly go through and extract data and information from manuscripts that look familiar. This is the whole idea behind the standardization of scientific manuscript formats: as readers, we normally expect an article to comprise an abstract, an introduction, a materials and methods section, a result and discussion section. Much alert, however, has been raised about the existence of paper mills, i.e. entities mass producing scientific articles that display recurrent templates and systematically fabricated data, with the only purpose of increasing the number of publications for career or political reasons, regardless of the scientific value of the published articles (Christopher, 2021; Hackett & Kelly, 2020). In our case, a closer look at the results did not unequivocally confirm a systematic plagiarism of actual data. Although the bar charts often appeared very similar, we were unable to find an exact match in Western Blot figures. Textual similarities were often subtle, but present, though usually not in the actual use of the exact choice of words, but in the structure of the text. The viability assay legend was arguably the most similar piece of text in these articles and it generally started with a descriptive nominal sentence (‘Effects of X on the cell viability of Y’). A similar kind of legend was also usually found accompanying the Western Blot figure(s), while the bar charts reporting cytokine expression were consistently accompanied by a declarative legend (‘X inhibits…’). In the papers that most closely followed the template, the Introduction and the Discussion sections followed the same flow of arguments. The case with the articles using gingival fibroblast to investigate LPS effects is exemplary: the Introduction consistently contained 2 paragraphs; the former about periodontitis and the second introducing the tested compound. The Discussion section usually contained 3 paragraphs, with the second paragraph consistently introducing the role of Porphyromonas gingivalis in periodontitis. These data are probably not enough to define the present articles as the product of a paper mill, but clearly indicate the definite will to closely imitate a given template.

We believe that we here witnessed the codification of a specific testing protocol and reporting format, for reasons that elude its scientific soundness. We mentioned that the vast majority of articles of this cohort reports personal emails for their corresponding authors. The use of personal email in lieu of institutional ones is a debated issue in the literature (Kozak et al., 2015) and has been associated with increased retraction and lower citation counts (X. Liu & Chen, 2021; Shen et al., 2018). Although proponents of the use of personal emails argue that they are preferable to allow author identification even in case they change affiliation, the presence of private email addresses, often displaying initials, makes a univocal author identification more difficult.
We further witnessed the demise, or rather abandonment of this template, which is more puzzling. Echoes of the template can be found in some recent papers where modules of the format were re-elaborated but still preserved some scant resemblance with the model we described (Tao et al., 2020; Zhao et al., 2020), so that it is safe to assume the authors of these papers were aware of this previous literature, but no example of adoption of the template was found in late 2019 up to mid 2020 or later publications, to the best of our knowledge.

What happened can only be guessed. It is possible that research just moved on, and that research groups that adopted the format moved to further stages of investigation (e.g. in vivo), where the template was not applicable. Or it is possible that later researchers deemed it insufficient and pivoted to different models. It is even possible that the publication of our previous paper on the topic, which did occur in 2019, prompted the involved groups to abandon the template to avoid repercussions. The issue should be further investigated and it may just be beyond the aim of the present report.

The most important question that our findings raise is probably how widespread such phenomena are in science.

Conclusions

A conspicuous number of articles were published in recent years, up to 2019, according to a very consistent and strict format template that regulated the endpoints that were measured, the way and the order with which data were presented in the paper. These manuscripts, which focused on the anti-inflammatory properties of mostly natural compounds, were not the product of a single research group and followed a precise format of reporting. This format may have started in 2008, with reports in macrophage lines, and was later adopted with different cell models and adapted to the specific needs of a research field, differentiating into sub-sets, whose common origin is however still clearly recognizable. Acknowledging the existence of such traditions of reporting is necessary, to discuss them, accept them if deemed worthy, discard them when unnecessary.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11192-022-04434-2.

Author contributions Conceptualization, CG, RS and SG; formal analysis, CG and MTC; writing CG and RS; supervision, SG.

Funding Open access funding provided by Università degli Studi di Parma within the CRUI-CARE Agreement. This research received no external funding.

Declarations

Conflict of interest The authors declared that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Cao, S.-Y., Wang, W., Nan, F., Liu, Y., Wei, S., Li, F., & Chen, L. (2018). Asiatic acid inhibits LPS-induced inflammatory response in endometrial epithelial cells. *Microbial Pathogenesis, 116*(January), 195–199.

Cao, S.-G., Chen, R., Wang, H., Lin, L., & Xia, X. (2018). Cryptotanshinone inhibits prostaglandin E2 production and COX-2 expression via suppression of TLR4/NF-κB signaling pathway in LPS-stimulated Caco-2 cells. *Microbial Pathogenesis, 116*, 313–317.

Chen, C. R., Tan, R., Qu, W. M., Wu, Z., Wang, Y., Urade, Y., & Huang, Z. L. (2011). Magnolol, a major bioactive constituent of the bark of Magnolia officinalis, exerts antiepileptic effects via the GABA/benzodiazepine receptor complex in mice. *British Journal of Pharmacology, 164*(5), 1534–1546.

Christopher, J. (2021). The raw truth about paper mills. *FEBS Letters, 595*(13), 1751–1757.

Ci, X., Ren, R., Xu, K., Li, H., Yu, Q., Song, Y., Wang, D., Li, R., & Deng, X. (2010). Schisandrin A exhibits anti-inflammatory properties by Down-regulating NF-κB and MAPK signaling pathways in lipopolysaccharide-treated RAW 264.7 cells. *Inflammation, 33*(2), 126–136.

Ci, X., Song, Y., Zeng, F., Zhang, X., Li, H., Wang, X., Cui, J., & Deng, X. (2008). Cefotiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-κB and MAPK. *Biochemical and Biophysical Research Communications, 372*(1), 73–77.

Feng, Z., Zheng, W., Li, X., Lin, J., Xie, C., Li, H., Cheng, L., Wu, A., & Ni, W. (2017). Cryptotanshinone protects against IL-1β-induced inflammation in human osteoarthrisis chondrocytes and ameliorates the progression of osteoarthritis in mice. *International Immunopharmacology, 50*, 161–167.

Fengyang, L., Yunhe, F., Bo, L., Zhicheng, L., Depeng, L., Dejie, L., Wen, Z., Yongguo, C., Naisheng, Z., Xichen, Z., & Zhengtao, Y. (2012). Stevioside suppressed inflammatory cytokine secretion by down-regulation of NF-κB and MAPK signaling pathways in LPS-stimulated RAW264.7 cells. *Inflammation, 35*(5), 1669–1675.

Foster, J. G., Rzhetsky, A., & Evans, J. A. (2015). Tradition and innovation in scientists' research strategies. *American Sociological Review, 80*(5), 875–908.

Fu, Y., Liu, B., Liu, J., Liu, Z., Liang, D., Li, F., Li, D., Cao, Y., Zhang, X., Zhang, N., & Yang, Z. (2012a). Geniposide, from *Gardenia jasminoides* Ellis, inhibits the inflammatory response in the primary mouse macrophages and mouse models. *International Immunopharmacology, 14*(4), 792–798.

Fu, Y., Liu, B., Zhang, N., Liu, Z., Liang, D., Li, F., Cao, Y., Feng, X., Zhang, X., & Yang, Z. (2012b). Magnolol inhibits lipopolysaccharide-induced inflammatory response by interfering with TLR4 mediated NF-κB and MAPK signaling pathways. *Journal of Ethnopharmacology, 145*, 193–199.

Fu, Y., Zhou, E., Wei, Z., Song, X., Liu, Z., Wang, T., Wang, W., Zhang, N., Liu, G., & Yang, Z. (2014). Glycyrrhizin inhibits lipopolysaccharide-induced inflammatory response by reducing TLR4 recruitment into lipid rafts in RAW264.7 cells. *Biochimica Et Biophysica Acta (BBA)—General Subjects, 1840*(6), 1755–1764.

Galli, C., Sala, R., Colangelo, M. T., & Guizzardi, S. (2019). Between innovation and standardization, is there still a room for scientific reports? The rise of a formatting tradition in periodontal research. *PUBLICATIONS, 7*(4), 67.

Hackett, R., & Kelly, S. (2020). Publishing ethics in the era of paper mills. *Biology Open, 9*(10), bio05656.

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2002). Cluster validity methods. *ACM SIGMOD Record, 31*(2), 40–45.

Han, Q., Yuan, Q., Meng, X., Huo, J., Bao, Y., & Xie, G. (2017). 6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-γ. *Oncotarget, 8*(26), 42001–42006.

Hao, C., Wu, B., Hou, Z., Xie, Q., Liao, T., Wang, T., & Ma, D. (2017). Asiatic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts. *International Immunopharmacology, 50*, 313–318.

Hu, K., Yang, Y., Tu, Q., Luo, Y., & Ma, R. (2013). Alpinetin inhibits LPS-induced inflammatory mediator response by activating PPAR-γ in THP-1-derived macrophages. *European Journal of Pharmacology, 723*(1–3), 96–102.

Huang, H., Hu, G., Wang, C., Xu, H., Chen, X., & Qian, A. (2014). Cepharanthine, an alkaloid from *Stephania cepharantha* Hayata, inhibits the inflammatory response in the RAW264.7 cell and mouse models. *Inflammation, 37*(1), 235–246.
Huo, M., Chen, N., Chi, G., Yuan, X., Guan, S., Li, H., Zhong, W., Guo, W., Soromou, L. W., Gao, R., Ouyang, H., Deng, X., & Feng, H. (2012). Traditional medicine alpinetin inhibits the inflammatory response in Raw 264.7 cells and mouse models. *International Immunopharmacology, 12*(1), 241–248.

Huo, M., Cui, X., Xue, J., Chi, G., Gao, R., Deng, X., Guan, S., Wei, J., Soromou, L. W., Feng, H., & Chi, G. (2013). Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. *Journal of Surgical Research, 180*(1), e47–e54.

Huo, M., Gao, R., Jiang, L., Cui, X., Duan, L., Deng, X., Guan, S., Wei, J., Soromou, L. W., Feng, H., & Chi, G. (2013). Suppression of LPS-induced inflammatory responses by gossypol in RAW 264.7 cells and mouse models. *International Immunopharmacology, 15*(2), 442–449.

Jia, T., Cai, M., Ma, X., Li, M., Qiao, J., & Chen, T. (2019). Oridonin inhibits IL-1β-induced inflammation in human osteoarthritis chondrocytes by activating PPAR-γ. *International Immunopharmacology, 69*, 382–388.

Jian, C.-X., Li, M.-Z., Zheng, W.-Y., He, Y., Ren, Y., Wu, Z.-M., Fan, Q.-S., Hu, Y.-H., & Li, C.-J. (2015). Tormentic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts via inhibition of TLR4-mediated NF-κB and MAPK signalling pathway. *Archives of Oral Biology, 60*(9), 1327–1332.

Jia, T., Li, M., Ren, Y., Yu, W., & Li, J. (2012). Suppression of LPS-induced inflammatory responses by gossypol in RAW 264.7 cells and mouse models. *International Immunopharmacology, 15*(1), 241–248.

Jia, T., Cai, M., Ma, X., Li, M., Qiao, J., & Chen, T. (2019). Oridonin inhibits IL-1β-induced inflammation in human osteoarthritis chondrocytes by activating PPAR-γ. *International Immunopharmacology, 69*, 382–388.

Jiangbo, W., Aimin, C., Qi, W., Xin, L., & Huaining, L. (2015). Betulinic acid inhibits IL-1β-induced inflammation by activating PPAR-γ in human osteoarthritis chondrocytes. *International Immunopharmacology, 29*(2), 687–692.

Kozak, M., Iefremova, O., Szkoła, J., & Sas, D. (2015). Do researchers provide public or institutional E-mail accounts as correspondence E-mails in scientific articles? *Journal of the Association for Information Science and Technology, 66*(10), 2149–2154.

Kuhn, T. S. (1977). *The essential tension: Selected studies in scientific tradition and change*. University of Chicago Press.

Kuhn, T. S. (1977). *The essential tension: Selected studies in scientific tradition and change*. University of Chicago Press.

Lee, S. A., Moon, S.-M., Han, S. H., Hwang, E. J., Park, B.-R., Kim, J.-S., Kim, D. K., & Kim, C. S. (2018). Chondroprotective effects of aqueous extract of *Anthriscus sylvestris* leaves on osteoarthritis in vitro and in vivo through MAPKs and NF-κB signaling inhibition. *Biomedicine & Pharmacotherapy, 103*, 1202–1211.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals. *Soviet Physics Doklady, 10*(8), 707–710.

Li, L., Sun, W., Wu, T., Lu, R., & Shi, B. (2017). Caffeic acid phenethyl ester attenuates lipopolysaccharide-stimulated proinflammatory responses in human gingival fibroblasts via NF-κB and P38 signaling pathway. *European Journal of Pharmacology, 794*, 61–68.

Li, L., Sapkota, M., Kim, S., & Soh, Y. (2015). Herbacetin inhibits inducible nitric oxide synthase via JNK and nuclear factor-kB in LPS-stimulated RAW264.7 cells. *European Journal of Pharmacology, 765*, 115–123.

Li, W., Huang, H., Zhang, Y., Fan, T., Liu, X., Xing, W., & Niu, X. (2013). Anti-inflammatory effect of tetrahydrocoptisine from *Corydalis impatiens* is a function of possible inhibition of TNF-α, IL-6 and NO production in lipopolysaccharide-stimulated peritoneal macrophages through inhibiting NF-κB activation and MAPK pathway. *European Journal of Pharmacology, 715*(1–3), 62–71.

Li, Y., Gong, Q., Guo, W., Kan, X., Xu, D., Ma, H., Fu, S., & Liu, J. (2018). Farrerol relieve lipopolysaccharide (LPS)-induced mastitis by inhibiting AKT/NF-κB p65, ERK1/2 and P38 signaling pathway. *International Journal of Molecular Sciences, 19*(6), 1770.

Li, Y., Zhang, X.-S., & Yu, J.-L. (2016). Acanthoic acid inhibits LPS-induced inflammatory response by activating LXRα in human umbilical vein endothelial cells. *International Immunopharmacology, 32*, 111–115.

Liang, D., Li, F., Fu, Y., Cao, Y., Song, X., Wang, T., Wang, W., Guo, M., Zhou, E., Li, D., Yang, Z., & Zhang, N. (2014). Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. *Inflammation, 37*(1), 214–222.

Liao, S., Zhou, K., Li, D., Xie, X., & Wang, J. (2016). Schisantherin A suppresses interleukin-1β-induced inflammation in human chondrocytes via inhibition of NF-κB and MAPKs activation. *European Journal of Pharmacology, 780*, 65–70.

Li-hua, D., Yan, L., Shi-ji, W., Guang, W., Lu-lu, S., Xue-feng, P., & Pengda, S. (2017). Esculentoside A inhibits LPS-induced BV2 microglia activation through activating PPAR-γ. *European Journal of Pharmacology, 813*, 61–65.

Lin, Q., Qin, X., Shi, M., Qin, Z., Meng, Y., Qin, Z., & Guo, S. (2017). Schisandrin B inhibits LPS-induced inflammatory response in human umbilical vein endothelial cells by activating Nrf2. *International Immunopharmacology, 49*, 142–147.
Liu, F., Huang, X., He, J.-I., Song, C., Peng, L., Chen, T., & Wu, B.-L. (2019). Plantamajoside attenuates inflammatory response in LPS-stimulated human gingival fibroblasts by inhibiting PI3K/AKT signaling pathway. *Microbial Pathogenesis*, 127, 208–211.

Liu, N., Zheng, J.-X., Zhuang, Y.-S., Zhou, Z.-K., Zhao, J.-H., & Yang, L. (2017). Anti-inflammatory effects of Schisandrin B on LPS-stimulated BV2 microglia via activating PPAR-γ. *Inflammation*, 40(5), 1698–1706.

Lou, Y., Xu, Y., Zhang, M., Gao, L., Fang, C., & Zhou, C. (2013). Magnolol inhibits IL-1β-induced inflammation via PI3K/Akt/NF-κB pathways: in vivo and vitro studies. *Inflammation*, 40(5), 208–211.

Luo, J., Xu, Y., Zhang, M., Gao, L., Fang, C., & Zhou, C. (2017). Magnolin suppresses inflammatory response in LPS-stimulated BV2 microglia via activating PPAR-γ. *Inflammation*, 40(3), 1006–1011.

Merton, R. K. (1957). Priorities in scientific discovery: a chapter in the sociology of science. *American Sociological Review*, 22(6), 635.

Mu, Y., Hao, W., & Li, S. (2019). Casticin protects against IL-1β-induced inflammation in human osteoarthritis chondrocytes. *European Journal of Pharmacology*, 842, 314–320.

Orsinium. (2019). Textdistance. https://github.com/life4/textdistance

Pan, T., Wu, D., Cai, N., Chen, R., Shi, X., Li, B., & Pan, J. (2017). Alpha-Mangostin protects rat articular chondrocytes against IL-1β-induced inflammation and slows the progression of osteoarthritis in a rat model. *International Immunopharmacology*, 52, 34–43.

Qu, S., Wang, W., Li, D., Li, S., Zhang, L., Fu, Y., & Zhang, N. (2017). Mangiferin inhibits mastitis induced by LPS via suppressing NF-κB and NLRP3 signaling pathways. *International Immunopharmacology*, 43, 85–90.

Qu, Y., Zhou, L., & Wang, C. (2016). Effects of platycodin D on IL-1β-induced inflammatory response in human osteoarthritis chondrocytes. *International Immunopharmacology*, 40, 474–479.

Qu, Y., Zhou, L., & Wang, C. (2017). Mangiferin inhibits IL-1β-induced inflammatory response by activating PPAR-γ in human osteoarthritis chondrocytes. *Inflammation*, 40(1), 52–57.

Shao, J., Li, Y., Wang, Z., Xiao, M., Yin, P., Lu, Y., Qian, X., Xu, Y., & Liu, J. (2013). 7b, a novel naphthalimide derivative, exhibited anti-inflammatory effects via targeted-inhibiting TAK1 following down-regulation of ERK1/2- and p38 MAPK-mediated activation of NF-κB in LPS-stimulated RAW264.7 macrophages. *International Immunopharmacology*, 17(2), 216–228.

Shen, S., Rousseau, R., & Wang, D. (2018). Do papers with an institutional e-mail address receive more citations than those with a non-institutional one? *Scientometrics*, 115(2), 1039–1050.

Shin, J.-S., Im, H.-T., & Lee, K.-T. (2019). Saikosaponin B2 suppresses inflammatory responses through IKK/IκBα/NF-κB signaling inactivation in LPS-induced RAW 264.7 macrophages. *Inflammation*, 42(1), 342–353.

Song, Y., Zhao, H., Liu, J., Fang, C., & Miao, R. (2016). Effects of citral on lipopolysaccharide-induced inflammation in human umbilical vein endothelial Cells. *Inflammation*, 39(2), 663–671.

Soromou, L. W., Zhang, Z., Li, R., Chen, N., Guo, W., Huo, M., Guan, S., Lu, J., & Deng, X. (2012). Regulation of inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 murine macrophage by 7-O-methyl-naringenin. *Molecules*, 17(3), 3574–3585.

Tao, M., Ji, C., Wu, Y., Dong, J., Li, Y., Olatunji, O. J., & Zuo, J. (2020). 1,7-Dihydroxy-3,4-dimethoxyxanthone inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppressing TLR4/NF-κB signaling cascades. *Inflammation*, 43(5), 1821–1831.

van Dalen, H. P. (2021). How the publish-or-perish principle divides a science: the case of economists. *Scientometrics*, 126(2), 1675–1694.

Wang, C., Zeng, L., Zhang, T., Liu, J., & Wang, W. (2016). Tenuigenin prevents IL-1β-induced inflammation in human osteoarthritis chondrocytes by suppressing PI3K/AKT/NF-κB signaling pathway. *Inflammation*, 39(2), 807–812.
Wang, D., Qiao, J., Zhao, X., Chen, T., & Guan, D. (2015). Thymoquinone inhibits IL-1β-induced inflammation in human osteoarthritis chondrocytes by suppressing NF-κB and MAPKs signaling pathway. *Inflammation, 38*(6), 2235–2241.

Wang, H., Wang, H., Wang, J., Wang, Q., Ma, Q., & Chen, Y.-Y. (2015). Protocatechuic acid inhibits inflammatory responses in LPS-stimulated BV2 microglia via NF-κB and MAPKs signaling pathways. *Neurochemical Research, 40*(8), 1655–1660.

Wang, J., Veugelers, R., & Stephan, F. (2017). Bias against novelty in science: A cautionary tale for users of bibliometric indicators. *Research Policy, 46*(8), 1416–1436.

Wang, J., Guo, C., Wei, Z., He, X., Kou, J., Zhou, E., Yang, Z., & Fu, Y. (2016). Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-κB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells. *Journal of Dairy Science, 99*(4), 3016–3022.

Wang, M., Wang, K., Gao, X., Zhao, K., Chen, H., & Xu, M. (2018). Anti-inflammatory effects of isoalantolactone on LPS-stimulated BV2 microglia cells through activating GSK-3β-Nrf2 signaling pathway. *International Immunopharmacology, 65*, 323–327.

Wang, M., Xiu, L., Diao, J., Wei, L., & Sun, J. (2015). Sparstolonin B inhibits lipopolysaccharide-induced inflammation in 3T3-L1 adipocytes. *European Journal of Pharmacology, 769*, 79–85.

Wang, P., Qiao, Q., Li, J., Wang, Y., Yao, L.-P., & Fu, Y.-J. (2016). Inhibitory effects of geraniin on LPS-induced inflammation via regulating NF-κB and Nrf2 pathways in RAW 264.7 cells. *Chemico-Biological Interactions, 253*, 134–142.

Wang, Q., Zhang, B., & Yu, J.-L. (2016). Farrerol inhibits IL-6 and IL-8 production in LPS-stimulated human gingival fibroblasts by suppressing PI3K/AKT/NF-κB signaling pathway. *Archives of Oral Biology, 62*, 28–32.

Wang, Q.-B., Sun, L.-Y., Gong, Z.-D., & Du, Y. (2016). Veratic acid inhibits LPS-induced IL-6 and IL-8 production in human gingival fibroblasts. *Inflammation, 39*(1), 237–242.

Wang, W., Hu, X., Shen, P., Zhang, N., & Fu, Y. (2017). Sodium houttuynate inhibits LPS-induced inflammatory response via suppressing TLR4/NF-κB signaling pathway in bovine mammary epithelial cells. *Microbial Pathogenesis, 107*, 12–16.

Wang, X., Li, M., Cao, Y., Wang, J., Zhang, H., Zhou, X., Li, Q., & Wang, L. (2017). Tenuigenin inhibits LPS-induced inflammatory responses in microglia via activating the Nrf2-mediated HO-1 signaling pathway. *European Journal of Pharmacology, 809*, 196–202.

Wang, X.-R., Hao, H., & Chu, L. (2017). Glycyrrhizin inhibits LPS-induced inflammatory mediator production in endometrial epithelial cells. *Microbial Pathogenesis, 109*, 110–113.

Wang, Y., Gao, H., Zhang, W., Zhang, W., & Fang, L. (2015). Thymoquinone inhibits lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells. *International Immunopharmacology, 26*(1), 169–173.

Wang, Y., Zhang, X., Wei, Z., Wang, J., Zhang, Y., Shi, M., Yang, Z., & Fu, Y. (2017). Platycodin D suppressed LPS-induced inflammatory response by activating LXRα in LPS-stimulated primary bovine mammary epithelial cells. *European Journal of Pharmacology, 814*, 138–143.

Wang, Y., Zhou, J., Fu, S., Wang, C., & Zhou, B. (2015). Preventive effects of protocatechuic acid on LPS-induced inflammatory response in human gingival fibroblasts via activating PPAR-γ. *Inflammation, 38*(3), 1080–1084.

Wang-sheng, C., Jie, A., Jian-jun, L., Lan, H., Zeng-hao, X., & Chang-qing, L. (2017). Piperine attenuates lipopolysaccharide (LPS)-induced inflammatory responses in BV2 microglia. *International Immunopharmacology, 42*, 44–48.

Wei, C., Tan, C. K., Xiaoping, H., & Junqiang, J. (2015). Acanthoic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts. *Inflammation, 38*(2), 896–901.

Wei, W., Dejie, L., Xiaojing, S., Tiancheng, W., Yongguo, C., Zhengtao, Y., & Naisheng, Z. (2015). Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. *Inflammation, 38*(1), 16–26.

Woodcock, B. A. (2014). “The scientific method” as myth and ideal. *Science & Education, 23*(10), 2069–2093.

Xiaodong, M., Ding, M., Zhai, B., Xiao, L., Piao, T., & Liu, M. (2015). Biochanin A inhibits lipopolysaccharide-induced inflammation in human umbilical vein endothelial cells. *Life Sciences, 136*, 36–41.

Xu, X., Yin, P., Wan, C., Chong, X., Liu, M., Cheng, P., Chen, J., Liu, F., & Xu, J. (2014). Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation. *Inflammation, 37*(3), 956–965.

Yang, Z., Zhou, E., Wei, D., Li, D., Wei, Z., Zhang, W., & Zhang, X. (2014). Emodin inhibits LPS-induced inflammatory response by activating PPAR-γ in mouse mammary epithelial cells. *International Immunopharmacology, 21*(2), 354–360.
Yu, T., Xie, W., & Sun, Y. (2019). Oridonin inhibits LPS-induced inflammation in human gingival fibroblasts by activating PPARγ. *International Immunopharmacology, 72*, 301–307.

Zhang, H., Yan, J., Zhuang, Y., & Han, G. (2015). Anti-inflammatory effects of farrerol on IL-1β-stimulated human osteoarthritis chondrocytes. *European Journal of Pharmacology, 764*, 443–447.

Zhang, J.-Y., Jin, H., Wang, G.-F., Yu, P.-J., Wu, S.-Y., Zhu, Z.-G., Li, Z.-H., Tian, Y.-X., Xu, W., Zhang, J.-J., & Wu, S.-G. (2011). Methyl-1-hydroxy-2-naphthoate, a novel naphthol derivative, inhibits lipopolysaccharide-induced inflammatory response in macrophages via suppression of NF-κB, JNK and p38 MAPK pathways. *Inflammation Research, 60*(9), 851–859.

Zhang, L., Gao, J., Tang, P., Chong, L., Liu, Y., Liu, P., Zhang, X., Chen, L., & Hou, C. (2018). Nuciferine inhibits LPS-induced inflammatory response in BV2 cells by activating PPAR-γ. *International Immunopharmacology, 63*, 9–13.

Zhang, N., Lv, H., Shi, B.-H., Hou, X., & Xu, X. (2017). Inhibition of IL-6 and IL-8 production in LPS-stimulated human gingival fibroblasts by glycyrrhizin via activating LXRα. *Microbial Pathogenesis, 110*, 135–139.

Zhang, X., Song, Y., Xiong, H., Ci, X., Li, H., Yu, L., Zhang, L., & Deng, X. (2009). Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages. *International Immunopharmacology, 9*(3), 354–359.

Zhao, X. L., Yu, L., Zhang, S. D., Ping, K., Ni, H. Y., Qin, X. Y., Zhao, C. J., Wang, W., Efferth, T., & Fu, Y. J. (2020). Cryptochlorogenic acid attenuates LPS-induced inflammatory response and oxidative stress via upregulation of the Nrf2/HO-1 signaling pathway in RAW 264.7 macrophages. *International Immunopharmacology, 83*, 106436.

Zheng, F., Dong, X., & Meng, X. (2018). Anti-inflammatory effects of taraxasterol on LPS-stimulated human umbilical vein endothelial cells. *Inflammation, 41*(5), 1755–1761.

Zhong, Y., Huang, Y., Santos, M. B., & Wu, L.-D. (2015). Scclareol exerts anti-osteoarthritic activities in interleukin-1β-induced rabbit chondrocytes and a rabbit osteoarthritis model. *International Journal of Clinical and Experimental Pathology, 8*(3), 2365–2374.