A linear voltage controlled quadrature oscillator implementation using VCII

Koushick Mathur¹, Palaniandavar Venkateswaran² and Rabindranath Nandi³

Abstract Realisation scheme of a linear voltage controlled quadrature oscillator (LVCQO) using the new second generation voltage conveyor (VCII) is proposed. The topology utilizes a pair of matched analog multiplier devices coupled appropriately with the VCII, as the active building block (ABB). The oscillation frequency \(f_o \) is linearly tunable by the multiplier control voltage \(V \); experimental verification exhibits a linear tuning-range up to \(f_o \approx 10 \text{ MHz} \) with measured THD~2% with satisfactory phase-noise figure.

Key words: VCII, SCNF, variable-Q filter, Linear quadrature VCO, phase-noise.

Classification: Integrated Circuits

1. Introduction

An implementation of linear voltage control quadrature oscillator (LVCQO) is based on the new VCII active element [1, 2], that is coupled appropriately with the readily available analog multiplier devices [3] is proposed. Here the design-topology utilizes the analog multiplier devices for conveniently tuning the circuit pole-frequency by its d.c. control voltage \(k \) (\(k \approx \text{Multiplication constant}= 1/\text{d.c. volt} \) [3]. Literature indicates that previous such oscillator designs with electronically tunable feature had been proposed in the recent literature [4-19], as depicted in Table I; wherein only a few exhibit linear tunability feature. The design in the previous such topologies use either some device bias-current \(I_b \) or device transconductance-parameter \(g_{m} \) or passive tune [20]; therefore the designs need additional current processing circuitry that attracts issues of thermal characteristic equation (CE) leading to the implementation of a linear sinusoid oscillator has been presented.

2. Proposed design

An impedance simulator \((Z_i) \) based on the VCII(−) is shown in Fig. 1 which is next coupled with a few passive components for the implementation of LVCQO and BP-filter.

![Fig.1](image-url)

The VCII port relations, as shown in Fig. 1(a) are

\[
\begin{bmatrix}
V_x \\
I_x \\
V_y
\end{bmatrix} = \begin{bmatrix}
0 & \pm \beta & 0 \\
\pm \alpha & 0 & I_y \\
0 & 0 & V_z
\end{bmatrix} \begin{bmatrix}
V_x \\
I_x \\
V_y
\end{bmatrix}
\]

(1)

where \(\alpha \approx \alpha_o/(s\tau_1+1) \) and \(\beta \approx \beta_o/(s\tau_r+1) \); ideally \(\alpha_o, \beta_o \approx 1 \) and their pole frequencies are located at few hundreds of MHz[2]. The voltage produced at the X terminal is transferred to the low-impedance voltage output Z terminal, (ideally zero) by a voltage gain \(\alpha \) close to unity (ideally \(\alpha = 1 \)). The input current at the high-impedance Y terminal is transferred to the low-impedance X terminal by a current gain of \(\beta \) which is very close to unity in magnitude correspondingly denoted as VCII(+) and VCII(−).

Analysis of the input impedance \((Z_i) \) from the voltage...
node-Vi in the proposed configuration in Fig.1(b) is
\[Z_i = \frac{Z_i}{\alpha_1\alpha_2\beta_1\beta_2} = \frac{Z_i}{\delta} \]
(2)

Where assuming ideal devices (δ ≈ 1), eq. (2) reduces to
\[Z_i = \frac{Z_i}{Z_3(k\Omega)} \]
(3)

A parasitic admittance (YX = gX + jCY) consisting of shunt-RXCX combination, (where RX ≈ 1/gX) appears at the input X-node as shown in Fig. 1. Albeit this YX appears at the Zi simulating x-node, it shares quite a negligible part of the input current to Zi, since as per literature RX~1.5MΩ and CX~3.6fF; its rolloff pole appears at few hundreds of MHz implying a practically high input impedance X-node [2], practically which has zero value. Hence the Zi simulation design remains unaffected at relatively lower frequency (MHz)-ranges wherein nominal values of Z1,2,3 in eq. (2) may be selected in the usual KΩ-pF range. A pair of the AD835/734 type voltage multiplier device [3] may also be conveniently utilized for the desired electronic tunability feature. The proposed circuit in Fig.1(b) has been realized [21, 22] using commercially available CFA (AD844) and analog multiplier (AD 835) as shown in Fig. 2, where a positive and a negative polarity analog multiplier have been utilized. The positive/negative multiplier can be realized using the basic terminal relation of analog multiplier AD 835 [3], where the transfer relation of the multiplier can be represented as
\[V_o = \pm kVV_i \]
(4)

where, Vi is the input a.c. voltage and V is the d.c. control voltage.

![Impedance simulator realization using AD 835](image)

Fig. 2. (a) Impedance simulator realization using AD 835
(b) Hardware implementation of Impedance simulator

Table I. Summary of recent electronically tunable sinusoid oscillators

Ref.	ABB	f0 (MHz)	Tuning by	Linear	THD%
1	MOCII	3.24	V	Yes	2.1
2	MMCC	9.3	V	Yes	3.1
3	CDVA	2.75	V	Yes	0.26
4	ETDCTA	1.5	V	No	1.59
5	CTDA	1.87	V	No	3.0
6	DVCCTA	3.18	V	No	-
7	DVCCTA	1.6	V	Yes	1.4
8	ETDCCTA	8.7	V	Yes	3.5
9	VDBA	1.14	V	No	0.9
10	CCFTA	4.9	V	No	4.0
11	CDBA2	0.13	MOS-switch-RC	No	3.7
12	DCMOCII	5.6	MOS-Gate voltage	No	3.12
Proposed: VCC(+) and Analog Multiplier	9.9	V	Yes	2.2	

3. Effect of port rolloff

The errors due to the port roll-off errors (δ) in eq. 2 may be simplified with the following assumptions α1,2 ≈ (1 – εi1,2)/(sτo1,2 + 1) and β1,2 ≈ (1 – εo1,2)/(sτo1,2 + 1). The dc-gain errors are negligible (εi ≪1) [1] while the rolloff poles appear at relatively high frequency (>175 MHz) ranges; these may be assumed equal as they lie at close proximity. Hence writing τi = τo = 1/ω0, we may simplify with
\[\mu = sτ = j \omega_0 \mu_0; \quad |\mu| << 1 \]
\[\delta = \alpha_1\alpha_2\beta_1\beta_2 \approx (1 - 6\mu^2 + \mu^4) + 4j\mu(1 - \mu^2) \]
(5)

i.e., \(\delta \approx \sqrt{(1 + 16\mu^2)} \arctan(4\mu) \; \mu << 1 \)
(6)

which implies that the effects of device rolloff poles on the simulated impedance would be quite negligible.

4. Linear VCO Implementation

The proposed impedance simulator (Zi) is next being utilized for the linear VCO implementation, as shown in Fig. 3.
The principle of SCNF [24] is being applied to derive the appropriate derivation of the characteristic equation (CE) of the topology. The analysis indicates that the \(Z_i \) simulator may also be utilized for the design of a variable-Q second-order band-pass (BP)-selective filter \(H(s) \), as in Fig. 3(a) choosing \(Z_{i,2} \) as Resistance and \(Z_i \) as Capacitor, with a nominal input signal \((E_i) \), given by

\[
H(s) = \frac{E_o}{E_i} = \frac{s}{s^2 + 2\xi\omega_0 s + \omega_0^2} \tag{7}
\]

where \(\omega_0 = kV/\sqrt{(R_2R_1C_0)} \approx kV/RC \) \(\tag{8} \)

as \(C_0 = C >> C_x, R_1 = R_2 \approx R \ll R_x \),

and pole-Q: \(Q = \frac{kV}{\omega_0}, \quad b = \frac{R_x}{R} \) \(\tag{9} \)

The frequency-stability (\(S_f \)) of the designed BP-filter indicates high, as derived in Table II.

According to the SCNF [24] concept, if pole-Q in eq. (9) is made large (i.e. \(R_x \) – infinite), then the topology exhibits an imaginary-axis pole pair in the \(j\omega \)-domain. Subsequently, if nominal input is grounded \((E_i \rightarrow 0) \) then the topology would generate sustained V-tunable sinusoid quadrature oscillator at the natural frequency \(\omega_0 \) as shown in Fig. 3(b); therefore, may yield a dual feature viz. BP-filter and linear sinusoid-oscillator with appropriate design, wherein sustained electronically tunable linear quadrature oscillation is realizable with

\[
f_o = \frac{kV}{2\pi RC} \quad \tag{10}
\]

where \(k=1V/d.c. \) volt and the quadrature sinusoid signals had been obtained between \(V_o \) and \(V_{oq} \) nodes in Fig. 3(b).

Here the oscillator topology has both the capacitors grounded which may be selected equal-valued; hence suitable for IC-adaptation [27]. Effects of fractional change in \(\omega_0 \) due to temperature variation may be expressed [27] as \((\Delta \omega_0/\omega_0) \approx -1(\Delta R/R + (\Delta C/C)) \). Over a range of 0–100°C, component variations are \(\Delta C/C \sim 2\% \) and \(\Delta R/R \sim 2\% \) [28, 29] hence \((\Delta \omega_0/\omega_0) \sim 0 \).

![Diagram](image)

5. Experimental Results

The measured responses of BP-filter and LQVCO with hardware design as shown in Fig. 3(b), keeping in view the temperature insensitivity effect on passive components using thin film technology based SMD components are shown in Fig.4.

![Graph](image)

Table II. Frequency-stability \(S_f \) of BP filter

Parasitic components	\(S_f \)
Capacitors \(C_x \)	\(\sigma = \omega_0/C_x \)
\(p = C/C_x \)	
Resistors \(R_x \)	\(\sigma = \omega_0/R_x \)
\(p = 1/R_x \)	\(\sigma = \omega_0/R_x \)
\(\sigma, p \ll 1 \)	\(\sigma = \omega_0/R_x \)

The BP filter has been designed as in Fig. 3(a) using \(Z_{1,2} = 8200\Omega \), \(Z_o = C = C_0 = 56pF \), \(R_o = 2.2K \) and \(V = 2.3 \) Volt, at center frequency \(f_c \sim 8M \) with \(Q \sim 6 \), shown in Fig. 4(a) with the measured THD of 1.12%. Using SCNF topology LVCO has been observed according to Fig. 3(b) using \(Z_0 = C = C_0 = 56pF \), \(Z_{1,2} = R = 1K \) for graph-A and
C=120pF, R=1.2K for graph-B, as shown in Fig. 4(b). The phase difference in quadrature waveform [between node-V_{n} and V_{o} of Fig. 3(b)] has been measured at $f_{0}=9.4$MHz as 89.3° and the spectrum at node-V_{o} is shown in Fig. 4(c) and (d) respectively, with measured phase noise of -106 dBc/Hz @ 64KHz offset. The linearity error (Δ) in oscillator response of Fig. 4(b) had been evaluated following the definition [30]. Measured slope of graph-A for the range 2.8MHz − 9.9MHz is: (9.9 -2.9)MHz/(3.5-1)V, Δ_{o} \approx 2.83MHz/V \approx C_{2}, Calculated slope C_{1} $= 2.86$MHz/V. Δ_{o} $=$ $(C_{1} - C_{2})/ C_{1} \approx 1.2\%$. Similar evaluation for graph-B indicates Δ_{o} \approx 0.2%. Hence low linearity error has been observed due to its negligible parasitic effects.

6. Conclusion

A new VCII-based linear electronically-tunable sinusoid oscillator circuit implementation scheme is presented that utilizes f_{o}-tunability feature by the d.c. control voltage of analog-multiplier devices. Appropriate choice of node selection also provides a selective high-Q band-pass filter design in the same topology which subsequently corroborates to linear sinusoid quadrature wave generation by the concept of the SCNF. Effects of the x-node VCII device parasitic are negligible. The design provides the features of improved frequency-stability and satisfactory phase-noise figure of -106 dBc/Hz offset frequency of 64KHz at $f_{o} \approx 9.5$MHz; wave harmonic distortion is quite low.

References

[1] I.M. Filanovsky and K.A. Stromsmoe: “Current-voltage conveyor,” Electronics Letters, 17 (1980) 129.
[2] L. Safari et al.: “An Overview on the Second Generation Voltage Conveyor: Features, Design and Applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (2019) 547 (DOI: 10.1109/TCSII.2018.2868744).
[3] Analog device Datasheet: AD835 & AD534: 250 MHz, 4-quadrant voltage multiplier, file##D00883-0-12/14(E), (2017).
[4] A. Jantakun: “A simple grounded FDNR and capacitance simulator based-on CCTA,” AEU - Int. Jl. Electron. Commun., 69 (2015) 950 (DOI: 10.1016/j.aeue.2015.03.002).
[5] H. Alpaslan: “A modified VDVTVA and its applications to floating simulators and a quadrature oscillator,” Microelectronics Jl., 51 (2016) 1 (DOI: 10.1016/j.mejo.2016.02.001).
[6] H.Cicekli and A.Gokcen: “MOS-C based electronically tunable current/voltage mode third order QO and biquadratic filter realization,” Elektronika Ir Elektrotechnika, 27 (2021) (DOI:10.5755/02.eie.23921).
[7] K. Mathur et al.: “Voltage-variable inductor based linear voltage controlled quadrature oscillator implementation,” IEICE Electron. Expr. 17(5) (2020) 1.
[8] D. Birolek et al.: “Realization of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA,” Microelectronics Jl., 42 (2011) 1116 (DOI: 10.1016/j.mejo.2011.07.004)
[9] C. Sakul et al.: “New Resistorless Current-Mode Quadrature Oscillators Using 2 CCCDTAs and Grounded Capacitors,” Radioengineering, 20 (2011) 890.
[10] J. Jin and C. Wang: “Single CDTA-based current-mode quadrature oscillator,” AEU - Int. Jl. Electron. Commun., 66 (2012) 933 (DOI: 10.1016/j.aeue.2012.03.018).
[11] N. Herencsar et al.: “New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDBA,” Analog. Integr. Circ. Sig. Proc., 74 (2013) 141 (DOI: 10.1007/s10470-012-9936-2).
[12] H.P. Chen and S.F. Wang: “Tunable current-mode and voltage-mode quadrature oscillator using a DVCCTA,” IEICE Electron. Expr., 11 (2014) 1 (DOI: 10.1587/elex.11.20140478).
[13] Y.A. Li: “Derivation for current mode Wien oscillators using CCCCTAs,” Analog. Integr. Circ. Sig. Proc., 84 (2015) 479 (DOI: 10.1007/s10470-015-0566-3).
[14] N. Pandey and R. Pandey: “Approach for third-order quadrature oscillator realization,” IET Circuits Dev. Syst., 9 (2015) 161 (DOI: 10.1049/iet-cds.2014.0170).
[15] R. Nandi et al.: “Electronically tunable immittances with applications to LP, BP, HP filter and VCO implementation,” Int. Jl. Electron. Lett., (2019) 11 (DOI:10.1080/21681724.2019.1672800).
[16] A. Yesil et al.: “Design and experimental evaluation of quadrature oscillator employing single FB−VDBA,” Jl. Electrical Engineering, vol. 67, no. 2, pp. 137-142, May 2016. (DOI: 10.1515/jece-2016-0019).
[17] M. Kumengen and F. Khateb: “Current mode universal filter and quadrature oscillator using current controlled follower transconductance amplifier,” Analog. Integr. Circ. Sig. Proc., 100 (2019) 235 (DOI.org/10.1007/s10470-018-1345-8)
[18] S. S. Borah, A. Singh, M. Ghosh and A. Ranjan, Electronically Tunable Higher Order Quadrature Oscillator Employing CDBA, Microelectronics Jl. (2020) (DOI:10.1006/mejo.2020.104985).
[19] A. Kumar et al.: “Electronically Tunable Mixed Mode Quadrature Oscillator Using DX-MOCCII,” Journal of Circuits, Systems and Computers, (2020) (DOI:10.1142/S0218126621500067).
[20] V. Stornelli et al.: “A New VCII Application: Sinusoidal Oscillators,” J. Low Power Electron. Appl. 11 (2021) 1 (DOI: 10.3390/jpea11030030).
[21] E. Yuce et al.: “A New Simulated Inductor with Reduced Series Resistor Using a Single VCII,” Electronics, 10 (2021) 1693. (DOI:10.3390/electronics10141693).
[22] L. Safari et al.: “A second-generation voltage conveyor (VCII)−based simulated grounded inductor,” Int J Circ Theor Appl. (2020) 1180. (DOI:10.1002/cta.2770).
[23] AD-734: 10MHz four-quadrant multiplier/divider, Analog Devices Datasheet: Rev.E,p-16, (2011).
[24] M. Bhusan and R.W. Newcomb: “Grounding of capacitors in integrated circuits,” Electronics Letters, 3 (1967) 148.
[25] J. Cajka and K. Vrba: “The voltage conveyor may have in fact found its way into circuit theory,” Int. Jl. Electron. Commun. (AEU), 58 (2004) 244.
[26] G.S. Moschytz: “Gain-sensitivity product: A figure of merit for hybrid integrated filters using single operational amplifiers,” IEEE Jl. Solid-state Circuits, 6(3) (1971) 103.
[27] M. Hribseck and R.W. Newcomb, “VCO controlled by one variable resistor,” IEEE TCAS, 23 (1976) 166.
[28] www.vishay.com/docs/26033/gentechinofilms.pdf, Accessed-2017.
[29] www.vishay.com/docs/20043/crcwhpe3.pdf, Accessed – 2016.
[30] A. Barbaia-Fishani and P. Rombouts: “Highly linear VCO for use in VCO-ADCs,” Electronics Lett., 52 (2016) 268 (DOI:10.1049/el.2015.3807) (DOI:10.1049/el.2015.3807).