Electronic Structure of Prototype AFe$_2$As$_2$ and ReFeAs: a Comparison

I. A. Nekrasov$^+$, Z. V. Pchelkina*, M. V. Sadovskii$^+$

$^+$Institute for Electrophysics, Russian Academy of Sciences, Ural Division, 620016 Ekaterinburg, Russia
*Institute for Metal Physics, Russian Academy of Sciences, Ural Division, 620041 Ekaterinburg GSP-170, Russia

Submitted Today

We have performed *ab initio* LDA calculations of electronic structure of newly discovered prototype high-temperature superconductors AFe$_2$As$_2$ (A=Ba,Sr) and compared it with previously calculated electronic spectra of ReFeAs (R=La,Ce,Pr,Nd,Sm). In all cases we obtain almost identical densities of states in rather wide energy interval (up to 1 eV) around the Fermi level. Energy dispersions are also very similar and almost two-dimensional in this energy interval, leading to the same basic (minimal) model of electronic spectra, determined mainly by Fe d-orbitals of FeAs layers. The other constituents, such as A ions or rare earths Re (or oxygen states) are more or less irrelevant for superconductivity. LDA Fermi surfaces for AFe$_2$As$_2$ are also very similar to that of ReFeAs. This makes the more simple AFe$_2$As$_2$ a generic system to study high-temperature superconductivity in FeAs - layered compounds.

PACS: 74.25.Jb, 74.70.Dd, 71.20.-b, 74.70.-b

The recent discovery of the new superconductor LaO$_{1-x}$F$_x$FeAs with the transition temperature T_c up to 26K [1, 2, 3, 4] and even more values of T_c = 41-55K in CeO$_{1-x}$F$_x$FeAs [5], SmO$_{1-x}$F$_x$FeAs [6], NdO$_{1-x}$F$_x$FeAs and PrO$_{1-x}$F$_x$FeAs [7, 8] was recently followed by the discovery of high-temperature superconductivity with T_c up to 38K in K doped ternary iron arsenides BaFe$_2$As$_2$ [9] and SrFe$_2$As$_2$ [10], with further synthesis of superconducting AFe$_2$As$_2$ (A=K, Cs, K/Sr, Cs/Sr) [11]. Relatively large single crystals of superconducting Ba$_{1-x}$K$_x$Fe$_2$As$_2$ were also grown [12], providing a major breakthrough in the studies of anisotropic electronic properties of FeAs - layered superconductors.

The LDA electronic structure of LaFeO$_x$As were calculated in a number of papers (see e.g. [13], [14], [15]) producing results qualitatively similar to that first obtained for LaOFeP [16]. We have performed LDA calculations for the whole series of ReFeAs (R=La,Ce,Pr,Nd,Sm) [17], demonstrating a very weak (or absent) dependence of electronic spectrum on the type of the rare-earth ion Re in rather wide energy interval (~ 2eV) around the Fermi level.

First LDA results for the density of states (DOS) of BaFe$_2$As$_2$ were recently presented in Refs. [18] [19]. Here we present the results of our *ab initio* calculations of electronic structure of the newly discovered prototype high-temperature superconductors AFe$_2$As$_2$ (A=Ba, Sr) with the aim to compare it with the previously discussed ReFeAs series. We present LDA DOS, energy dispersions and Fermi surfaces of these compounds and briefly discuss possible conclusions with respect to the minimal model of electronic spectrum and superconductivity. As all results are quite similar for both A=Ba and A=Sr, as well as for the whole Re series, below we present data mainly for A=Ba and Re=La.

Both BaFe$_2$As$_2$ and LaOFeAs crystallize in tetragonal structure with the space group $I4/mmm$ and $P4/nmm$, correspondingly. Both compounds are formed of (FeAs)$^-$ layers alternating with Ba$_2^{2+}$ or (LaO)$^+$. Fe$^{2+}$ ions are surrounded by four As ions forming a tetrahedron. The crystal structures of BaFe$_2$As$_2$ and LaOFeAs are shown in Fig. 1. The quasi two-dimensional character of both compounds makes them similar to the well studied class of superconducting copper oxides. At 140 K BaFe$_2$As$_2$ undergoes structural phase transition from tetragonal ($I4/mmm$) to orthorhombic ($Fmnm$) space group [20]. The same transition takes place for LaOFeAs system at 150 K: $P4/nmm$ (tetragonal) \rightarrow $Cmca$ (orthorhombic) [21]. The crystallographic data for tetragonal phase of two compounds is collected in Table 1. It can be seen that for BaFe$_2$As$_2$ compound the Fe-As distance is smaller than for LaOFeAs. So one would expect more considerable Fe-d-As-p hybridization for BaFe$_2$As$_2$ system in comparison with LaOFeAs and as a result wider Fe-d bandwidth. The distance between nearest Fe atoms within FeAs layers is also significantly smaller in BaFe$_2$As$_2$ as compared with LaOFeAs system. After the phase transition of BaFe$_2$As$_2$ system to the orthorhombic structure the four equal Fe-Fe distances break into two bond pairs of 2.808 Å and 2.877 Å length. Moreover the two As-Fe-As angles are quite different in the case
of LaOFeAs system (113.6° and 107.5°) and have very close values (≈ 109°) for BaFe2As2. Such differences in the nearest surrounding of Fe ions should evoke the distinctions in the electronic structure of these two compounds.

Fig. 1. Crystal structure of BaFe2As2 (left) and LaOFeAs (right). FeAs tetrahedra (violet) form two-dimensional layers sandwiched by Ba ion (cyan) or LaO layers (yellow and green).

Table 1. Crystal structure data for BaFe2As2 and LaOFeAs compounds. Atomic positions for BaFe2As2 are Ba (0, 0, 0), Fe (0.5, 0, 0.25), As (0, 0, z) and for LaOFeAs are La(0.25, 0.25, z), Fe (0.75, 0.25, 0.5), As (0.25, 0.25, z), O (0.75, 0.25, 0).

Parameter	BaFe2As2	LaOFeAs
group	I4/mmm	P4/nmm
a, Å	3.909(1)	4.0353(4)
c, Å	13.2122(4)	8.74090(9)
z_{La}	-	0.14154(5)
z_{As}	0.3538(1)	0.6512(2)
Source	Ref. [9]	Ref. [11]
Ba-As, Å	3.372(1)×8	-
La-As, Å	-	3.380×4
Fe-As, Å	2.388(1)×4	2.412×4
Fe-Fe, Å	2.764(1)×4	2.853×4
As-Fe-As	109.91(1)°	113.6°
	109.31(1)°	107.5°

The electronic structure of BaFe2As2 and LaOFeAs compounds was calculated within the local density approximation (LDA) by using linearized muffin-tin orbitals basis (LMTO) [22]. For BaFe2As2 we used the structure data for K-doped system and temperature T=20 K [11]. The LDA calculated total and partial densities of states for BaFe2As2 and LaOFeAs are shown in Fig. 2. In the lower panel of Fig. 2 we show magnified behavior of total DOS around the Fermi level for three different systems under discussion. In all cases DOS is almost flat. It is well known that DOS of two dimensional (nearly free) electrons is a constant defined just by the renormalized electron mass. Thus, our results support the two-dimensional nature of these compounds.

The values of density of states at Fermi level are very similar in both compounds. The 0.3 eV wider Fe-3d bandwidth in the case of BaFe2As2 in comparison with LaOFeAs arises from the shorter Fe-As bonds and hence stronger Fe-3d-As-p hybridization for this system. The partial As-p DOS is splitted into two parts in the case of Ba system. The orbital projected Fe-3d DOS for two compounds is shown in Fig. 3. One can see that for both systems three Fe-3d orbitals of t_{2g} symmetry – xz, yz, x^2 − y^2 mainly contribute to the bands crossing the Fermi level. We call here the x^2 − y^2 (basically rotated xy orbital) as one of t_{2g} orbitals following the established earlier terminology for ReOFeAs systems.

Energy bands along the high symmetry directions of the Brillouin zone are pictured in Fig. 4. The bands around the Fermi level for both compounds are primarily formed by Fe-3d states. In LaOFeAs system As-p states are also hybridized with O-p states and the corresponding bands are separated from the Fe-d ones. On the contrary in BaFe2As2 Fe-d and As-p bands are entangled. The lower two panels of Fig. 4 compare band dispersions for both system close to the Fermi level. Here only k_z, k_y dispersion is shown. Taking into account different notations of high-symmetry points for these two different crystal structures one can find these dispersions pretty similar to each other. There are three hole-like bands around Γ-point and two electron bands around X-point. Thus one can define a minimal model of “bare” electronic bands to treat e.g. superconductivity, similar to that discussed in Ref. [22]. Let us mention that along X − M direction in LaOFeAs there are two degenerate bands.

In Fig. 5 relative on-site energies of hybridized Fe-3d and As-4p states are presented. A bird’s eye view tells us that this picture for both BaFe2As2 (left) and LaOFeAs (right) is rather similar. There are two groups of states – antibonding (mostly Fe-3d) and bonding (mostly As-4p) states. However, there are some fine differences. First of all for BaFe2As2 hybridization between Fe-3dz^2 and As-4pz orbitals is about 0.24 eV weaker. It leads to a swap of the energy positions of Fe-3dz^2 and x^2 orbitals and similarly for corresponding As-4p orbitals.
Secondly, Fe-\(d_{x^2-y^2}\) orbitals are degenerate for \(\text{BaFe}_2\text{As}_2\) in contrast to \(\text{LaOFeAs}\).

Neglecting small difference, the overall picture of the energy spectrum in the vicinity of the Fermi level is very similar for both compounds and is determined mainly by Fe-\(d\) states of FeAs layers, making the states of A-ions or rare-earths Re more or less irrelevant for superconductivity. Thus, superconductivity of FeAs layered compounds may be studied within the minimal model, taking into account only essential Fe-\(d\) bands close to the Fermi level. The variants of such model proposed e.g. in Refs. [23, 24] for \(\text{LaOFeAs}\) system may also be used for \(\text{FeAs}\) compounds with only slight modification of model parameters, such as transfer integrals.

The role of electronic correlations in \(\text{FeAs}\) and \(\text{ReOFeAs}\) compounds remains at the moment disputable. On general grounds it can be expected to be rather important due to large values of Hubbard and Hund interactions on Fe. However, LDA+DMFT calculations for \(\text{LaOFeAs}\) reported in Refs. [25, 26] have produced rather contradictory claims. Obviously, this problem requires further studies. Assuming that correlations in these compounds are most likely in the intermediate range, we may hope that standard LDA approach used here is reliable enough.

Fermi surfaces obtained from LDA calculations for \(\text{BaFe}_2\text{As}_2\) and \(\text{LaOFeAs}\) are shown in Figs. 6 and 7, correspondingly. There are five sheets of Fermi surface for both compounds. Qualitatively, Fermi surfaces are similar to that reported for \(\text{LaOFeAs}\) in Ref. [13] (see also [15]). There are three hole cylinders in the middle of the Brillouin zones and two electron sheets at the corners of Brillouin zone. Smallest of hole cylinders is usually neglected in the analysis of superconducting pairings [23, 27] and analysis is restricted to minimal two [27] or four bands [23] models, reproducing two hole and two electron cylinders.

\(P4/nmm\) (tetragonal)\(\rightarrow\) \(Cmma\) (orthorhombic) phase transition taking place in undoped compounds is usually attributed to SDW formation due to nesting properties of electron and hole Fermi surfaces [15, 24] or due to excitonic instability in triplet channel [23]. The difficulties of calculating magnetic state of \(\text{LaOFeAs}\) related with apparently itinerant nature of magnetism were recently discussed in Ref. [28].

In conclusion, we have presented the results of LDA calculations of new prototype high-temperature superconductor \(\text{FeAs}\) (A=Ba, Sr) and compared it with previously discussed \(\text{ReOFeAs}\) series, demonstrating essential similarity of electronic states close to the Fermi level and most important for superconductivity. These states are formed mainly by Fe orbitals...
in the two-dimensional FeAs layer, which is the basic structural motif where superconducting state is formed. Thus, rather simple AFe$_2$As$_2$ system may be considered generic for the studies of high-temperature superconductivity in whole class of FeAs-layered compounds.

This work is supported by RFBR grants 08-02-00021, 08-02-0712, RAS programs “Quantum macrophysics” and “Strongly correlated electrons in semiconductors, metals, superconductors and magnetic materials”, Grants of President of Russia MK-2242.2007.2(IN), MK-3227.2008.2(ZP) and scientific school grant SS-1929.2008.2, interdisciplinary UB-SB RAS project, Dynasty Foundation (ZP) and Russian Science Support Foundation(IN). The authors are grateful to L.P. Gorkov for useful discussions.

1. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296-3297 (2008).
2. G.F. Chen, Z. Li, G. Zhou, D. Wu, J. Dong, W.Z. Hu, P. Zheng, Z.J. Chen, J.L. Luo, N.L. Wang, arXiv: 0803.0128.
3. X. Zhu, H. Yang, L. Fang, G. Mu, H.-H. Wen, arXiv: 0803.1288v1.
4. A.S. Sefat, M.A. McGuire, B.C. Sales, R. Jin, J.Y. Hove, D. Mandrus, arXiv: 0803.2528.
5. G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, N. L. Wang, arXiv:0803.3790.
6. X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, D. F. Fang, arXiv:0803.3603.
Electronic Structure of AFe_2As_2 and $ReOFeAs$

7. Z.-A. Ren, J. Yang, W. Lu, W. Yi, X.-L Shen, G.-C. Che, L.-L. Sun, F. Zhou, Z.-X. Zhao, arXiv:0803.4234.
8. Z.-A. Ren, J. Yang, W. Lu, W. Yi, G.-C. Che, X.-Li. Dong, L.-L. Sun, Z.-X. Zhao, arXiv:0803.4283.
9. M. Rotter, M. Tegel, D. Johrendt, arXiv:0805.4630.
10. G.F. Chen, Z. Li, G. Li, W.Z. Hu, J. Dong, X.D. Zhang, N.L. Wang, J.L. Luo, arXiv:0806.1209.
11. K. Sasmal, B. Lv, B. Lorenz, A. Gulyov, F. Chen, Y. Xue, C.W. Chu, arXiv:0806.1301.
12. N. Ni, S.L. Bud’ko, A. Kreyssig, S. Nandi, G.E. Rustan, A.I. Goldman, S. Gupta, J.D. Corbett, A. Kracher, P.C. Canfield, arXiv:0806.1874.
13. D.J. Singh, M.H. Du. Phys. Rev. Lett. 100, 237003 (2008), arXiv:0803.0429.
14. L. Boeri, O.V. Dolgov, A.A. Golubov, arXiv:0803.2703v1.
15. I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, arXiv:0803.2703v1.
16. S. Lebègue, Phys. Rev. B 75, 035110 (2007).
17. I.A. Nekrasov, Z.V. Pchelkina, M.V. Sadovskii. Pis’ma Zh. Eksp. Teor. Fiz. 87, 647 (2008) [JETP Letters 87 (2008)], arXiv:0804.1239.
18. I.R. Shein, A.L. Ivanovskii, arXiv:0806.0750.
19. C. Krellner, N. Caroca-Canales, A. Jesche, H. Rosner, A. Ormeci, C. Geibel, arXiv:0806.1043.
20. M. Rotter, M. Tegel, D. Johrendt, arXiv:0805.4021.
21. T. Nomura, S. W. Kim, Y. Kamihara, M. Hirano, P. V. Sushko, K. Kato, M. Takata, A. L. Shluger, H. Hosono, arXiv:0804.3569.
22. O.K. Andersen. Phys. Rev. B 12 3060 (1975); O. Gunnarsson, O. Jepsen, O.K. Andersen. Phys. Rev. B 27 7144 (1983); O.K. Andersen, O. Jepsen. Phys. Rev. Lett. 53 2571 (1984).
23. V. Barzykin, L.P. Gorkov, arXiv:0806.1993, JETP Letters (to be published).
24. S. Raghu, Xiao-Liang Qi, Chao-Xing Liu, D.J. Scalapino, Shou-Cheng Zhang, arXiv:0804.1113.
25. K. Haule, J.H. Singh, G. Kotliar. Phys. Rev. Lett. 100, 226402 (2008), arXiv:0803.1279.
26. A.O. Shorikov, M.A. Korotin, S.V. Streltsov, D.M. Korotin, V.I. Anisimov, S.L. Skornyakov, arXiv:0804.3283.
27. Xiao-Liang Qi, S. Raghu, Chao-Xing Liu, D.J. Scalapino, Shou-Cheng Zhang, arXiv:0804.4332.
28. I.I. Mazin, M.D. Johannes, L. Boeri, K. Koepernik, D.J. Singh, arXiv:0806.1869.