Patient with a PRKAG2 mutation who developed Immunoglobulin A nephropathy: a case report

Michael C. Giudici1*, Ferhaan Ahmad1, and Daniele G. Holanda2

1Department of Medicine, University of Iowa Hospitals, 200 Hawkins Drive, 4426JCP, Iowa City, IA 52245, USA; and 2Department of Pathology, University of Iowa Hospitals, 200 Hawkins Drive, 4426JCP, Iowa City, IA 52245, USA

Received 3 March 2018; accepted 12 March 2019; online publish-ahead-of-print 16 April 2019

Background
PRKAG2 syndrome (PS) is a rare, early-onset autosomal dominant inherited disease caused by mutations in PRKAG2, the gene encoding the regulatory γ2 subunit of adenosine monophosphate-activated protein kinase. PRKAG2 syndrome is associated with many cardiac manifestations, including pre-excitation, arrhythmias, left ventricular hypertrophy, and chronotropic incompetence frequently leading to early pacemaker placement. A meta-analysis of genome-wide association data in subjects with chronic kidney disease (CKD) identified a susceptibility locus in an intron of PRKAG2, which has been replicated in other studies. However, CKD has not been reported in patients with PS or mutations in PRKAG2.

Case summary
We report a case of a woman diagnosed at age 27 with PS when she presented with atrial fibrillation and pre-excitation on electrocardiogram. By age 35, she had developed mild renal insufficiency and a biopsy demonstrated IgA nephropathy (IGAN).

Discussion
This is the first reported case of IGAN in a patient with PS. We discuss both PS and IGAN and the potential mechanisms by which they could be related.

Keywords
IgA nephropathy • PRKAG2 • Pre-excitation • Case report

Learning points
• PRKAG2 syndrome (PS) is a rare, early-onset autosomal dominant inherited disease caused by mutations in PRKAG2, the gene encoding the regulatory γ2 subunit of adenosine monophosphate-activated protein kinase (AMPK).
• PRKAG2 syndrome is associated with many cardiac manifestations, including pre-excitation, supraventricular and ventricular arrhythmias, left ventricular hypertrophy, and chronotropic incompetence frequently leading to early pacemaker placement.
• While chronic kidney disease has not been directly linked to PS, there are potential mechanisms by which AMPK activation could result in injury to B cells or glomerular cells. Our patient had PS and developed biopsy-proven immunoglobulin A nephropathy.

Background
PRKAG2 syndrome (PS) is a rare, early-onset autosomal dominant inherited disease caused by mutations in PRKAG2, the gene encoding the regulatory γ2 subunit of adenosine monophosphate-activated protein kinase (AMPK). PRKAG2 syndrome is associated with many cardiac manifestations, including pre-excitation, supraventricular and ventricular arrhythmias, left ventricular hypertrophy, and chronotropic incompetence frequently leading to early pacemaker placement.

Interestingly, a meta-analysis of genome-wide association data in subjects with chronic kidney disease (CKD) identified a susceptibility locus in an intron of PRKAG2, which has been replicated in other studies. However, CKD has not been reported in patients with PS.

* Corresponding author. Tel: 319-353-8153, Fax: 319-384-6247, Email: michael-c-giudici@uiowa.edu

Handling Editor: Tor Biering-Sorensen

Peer-reviewers: Rami Riziq Yousef Abumuaileq and Robert Schonbauer

Compliance Editor: Christian Fielder Camm

Supplementary Material Editor: Peregrine Green

© The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
or mutations in PRKAG2. We present a case of PS with immunoglobulin A (IgA) nephropathy (IGAN).

Timeline

Age	Event
27	Presented with atrial fibrillation with a rapid ventricular response. On conversion she was noted to have pre-excitation on electrocardiogram.
28	Discovered her mother had WPW and PRKAG2 mutation. Patient received genetic testing demonstrating PRKAG2.
28–35	Maintained on Bisoprolol 1.25 mg daily and prn Flecainide.
31	Routine laboratory work notable for mildly increased creatinine and borderline glomerular filtration rate (GFR).
35	Creatinine up to 151 μmol/L, and GFR 51 mL/min/1.73 m² and protein was noted in urine. Biopsy performed demonstrating immunoglobulin A nephropathy. Started on Ramipril 2.5 mg daily for hypertension and proteinuria.
38	She remains stable 10 years and 4 months since her initial diagnosis from both cardiac and renal perspectives.

Case presentation

A 36-year-old woman was noted in her 20s to have occasional episodes of palpitations and breathlessness. She presented at the age of 27 years in atrial fibrillation with a ventricular response of 204 b.p.m. She was given intravenous amiodarone and converted to sinus rhythm. A repeat electrocardiogram (ECG) showed a short PR interval with a delta wave consistent with Wolff-Parkinson-White syndrome (Figure 1). A transthoracic echocardiogram showed normal biventricular function and no significant valvular disease. She was prescribed flecainide 200 mg as needed.

At a follow-up evaluation by her cardiologist, she denied palpitations, syncope, or falls. Her pulse was 70 b.p.m., and her blood pressure was 115/84 mmHg. Her jugular venous pressure was normal, and her exam revealed normal heart sounds. Her ECG was consistent with a left anteroseptal accessory pathway.

The following year, it was discovered that the patient’s Mother also suffered from Wolff-Parkinson-White syndrome and had a PRKAG2 mutation. In addition, her maternal grandfather reportedly had a history of ‘hypertrophic cardiomyopathy’, atrial fibrillation, and complete heart block requiring permanent pacemaker implantation. Upon evaluation by a cardiac geneticist, the patient was confirmed to have inherited the PRKAG2 mutation. It was recommended that she continue to receive long-term cardiology surveillance with serial echocardiograms, treadmill exercise stress tests, and ECGs.

Over the next 8 years, the patient was maintained on daily bisoprolol 1.25 mg with flecainide 200 mg as needed. Periodic Holter monitors were performed demonstrating heart rates in the 40s at times without symptoms. Routine blood tests at the age of 31 years demonstrated borderline abnormal renal function with a serum creatinine of 92 μmol/L (normal range 44–80 μmol/L) and an estimated glomerular filtration rate (GFR) of 61 mL/min/1.73 m² (normal eGFR >60 mL/min/1.73 m²).

By the age of 35 years, her creatinine had risen to 107 μmol/L, her blood urea nitrogen (BUN) was 7.3 mmol/L (normal range 2.1–87.1 mmol/L), and her estimated GFR was 61 mL/min/1.73 m². A urinalysis showed 2+ proteins and 3+ glucose. On follow-up evaluation by a nephrologist a few months later, her laboratories were notable for a creatinine of 151 μmol/L, BUN 10.5 mmol/L, and GFR 51 mL/min/1.73 m². Her urine protein/creatinine ratio was 75. Her parathyroid hormone was reportedly 75 pg/mL (normal range 15–65 pg/mL). Her C3 and C4 levels were normal. An abdominal ultrasound showed normal kidneys bilaterally. A renal biopsy established a diagnosis of IGAN (Figures 2–5), with mild-to-moderate mesangio-proliferative activity and evidence of some chronicity. Focal, global, and segmental glomerulosclerosis, and focal interstitial fibrosis/tubular atrophy was present. Also noted in the renal parenchyma were vacuolated tubular cells and interstitial foam cells, which have been associated with subsets of genetic abnormalities including glycogen storage diseases, but are not usually found in IGAN. Additionally, her blood pressure was 143/83 mmHg. She was started on ramipril 2.5 mg daily for both her hypertension and proteinuria.

She remains stable 10 years and 4 months since her initial diagnosis from both cardiac and renal perspectives.

Discussion

Since its discovery and first report in 2001,8 most of the attention in patients with PS has focused on the cardiac manifestations described above. Genome-wide association studies have identified that the rs7805747 SNP in an intron of PRKAG2 is associated with CKD and decreased GFR. Furthermore, differential methylation of PRKAG2 in DNA from blood was noted in CKD subjects.9 Other hereditary glycogen storage diseases are associated with renal disease, such as renal tubular dysfunction.10 Gene-targeted knock-in mice with the Arg531Gly mutation in Prkag2 exposed to a high fat diet showed severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function.11

Immunoglobulin A nephropathy is characterized by deposits of IgA1 in the glomeruli. This process may be the consequence of decreased GFR. Furthermore, differential methylation of PRKAG2 in DNA from blood was noted in CKD subjects.9 Other hereditary glycogen storage diseases are associated with renal disease, such as renal tubular dysfunction.10 Gene-targeted knock-in mice with the Arg531Gly mutation in Prkag2 exposed to a high fat diet showed severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function.11

The mechanisms by which mutations in PRKAG2 may lead to IGAN or CKD are unclear. Mutations in PRKAG2 generally lead to inappropriate activation of AMPK. Recent studies suggest that AMPK may contribute to renal disease. AMPK appears to activate fibroblasts and could induce renal fibrosis in obstructive or ischaemia-reperfusion injury.13 AMPK inhibits Akt and activates the FOXO3a pathway.
transcription factor in cervical cancer cells, leading to oxidative stress, inflammation, and apoptosis. We have shown that the PRKAG2 Thr400Asn mutation leads to up-regulation of the sodium-dependent glucose transporter SGLT1 in cardiomyocytes, which is also known to be expressed in renal epithelial cells. Furthermore, our unpublished data suggest that SGLT1 mediates oxidative stress in cardiomyocytes. Inappropriate AMPK activation secondary to PRKAG2 mutations leads to inappropriate glucose uptake in cardiomyocytes, possibly mediated by SGLT1 and other glucose transporters. It is possible that this excess glucose in other cells, such as B cells or glomerular cells, leads to abnormalities in glycosylation of IgA1 that is critical to the pathogenesis of IGAN. It is important to note that physiological activation of AMPK may actually be salutary in kidney.

Figure 1 Electrocardiogram with short PR interval and delta wave.

Figure 2 PAS stain (Glomerulus): Mesangiproliferative glomerulonephritis with increased cellularity within the mesangial areas. PAS, Periodic acid-Schiff.

Figure 3 Immunoglobulin A immunohistochemical stain (Glomerulus): Positive (brown/tan) staining within mesangial and paramesangial capillary areas.
Although the mechanisms leading from PRKAG2 mutations to IGAN remain speculative, the presence of two fairly rare diseases in a young woman suggests a possible link that warrants further investigation.

Supplementary material

Supplementary material is available at European Heart Journal - Case Reports online.

Slide sets: A fully edited slide set detailing this case and suitable for local presentation is available online as Supplementary data.

Consent: The authors confirm that written consent for submission and publication of this case report including image(s) and associated text has been obtained from the patient in line with COPE guidance.

Conflict of interest: None declared.

References

1. Porto AG, Brun F, Severini GM, Losurdo P, Fabris E, Taylor MRG, Mestroni L, Sinagra G. Clinical spectrum of PRKAG2 syndrome. Circ Arrhythm Electrophysiol 2013; 6:1603–1612.
2. Arad M, Maron BJ, Gorham JM, Johnson WH, Saul JP, Perez-Atayde AR, Sprieto P, Wright GB, Kanter RJ, Sedman CE, Sedman JG. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 2005;352:362–372.
3. Kim M, Hunter RW, Garcia-Menendez L, Gong G, Yang Y-Y, Kolwicz SC, Xu J, Sakamoto K, Wang W, Tian R Jr. Mutation in the gamma2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res 2014;114:966–975.
4. Banerjee SK, McGaffin KR, Huang XN, Ahmad F. Activation of cardiac hypertrophic signaling pathways in a transgenic mouse with the human PRKAG2 Thr400Asn mutation. Biochem Biophys Acta 2010;1802:284–291.
5. Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV, O’Connell JR, Li M, Schmidt H, Tanaka T, Isaacs A, Ketkar S, Hwang S-J, Johnson AD, Dehghan A, Teumer A, Paré G, Akdis S, Zeller T, Lohman K, Cornelis MC, Probst-Hensch NM, Kronenberg F, Torjes A, Hayward C, Aspelund T, Eiriksdottir G, Launer LJ, Harris TB, Ramprasaus E, Mitchell BD, Arking DE, Boerwinkle E, Struchalin M, Cavaliere M, Singleton A, Gillaura F, Metter J, de Boer IH, Huantunias T, Lumley T, Siscovick D, Pauly BM, Zilliens MC, Ooster BA, Feitosa M, Province M, de Andrade M, Turner ST, Schillert A, Kovacs P, Boban M, Campbell S, Endlich K, Volzke H, König W, Zgaga L, Zaboli G, Ali Hassan AS, Ahmad F, Gyllensten U, Wilson JF, Witteman JC, Frayling TR, Duijn CM, Barecki I, Krammer BK, Rudan I, Gyllensten U, Wilson JF, Wittman JC, Pramstaller PP, Rettig R, Hastie N, Mang H, Kroemer HK, Nauck M, Bresciani P, Gao X, Yang Q, Smith AV, O’Connell JR, Li M, Schmidt H, Tanaka T, Isaacs A, Ketkar S, Hwang S-J, Johnson AD, Dehghan A, Teumer A, Paré G, Akdis S, Zeller T, Lohman K, Cornelis MC, Probst-Hensch NM, Kronenberg F, Torjes A, Hayward C, Aspelund T, Eiriksdottir G, Launer LJ, Harris TB, Ramprasaus E, Mitchell BD, Arking DE, Boerwinkle E, Struchalin M, Cavaliere M, Singleton A, Gillaura F, Metter J, de Boer IH, Huantunias T, Lumley T, Siscovick D, Pauly BM, Zilliens MC, Ooster BA, Feitosa M, Province M, de Andrade M, Turner ST, Schillert A, Kovacs P, Boban M, Campbell S, Endlich K, Volzke H, König W, Zgaga L, Zaboli G, Ali Hassan AS, Ahmad F, Gyllensten U, Wilson JF, Witteman JC, Frayling TR, Duijn CM, Barecki I, Krammer BK, Rudan I, Gyllensten U, Wilson JF, Wittman JC, Pramstaller PP, Rettig R, Hastie N, Hassair D, de Andrade M, Turner ST, Schillert A, Kovacs P, Boban M, Campbell S, Endlich K, Volzke H, Kroemer HK, Nauck M, Völker U, Polasek O, Vitart V, Badola S, Parker AN, Ridker PM, Kardia SLR, Blankenberg S, Liu Y, Curhan GC, Franke A, Rochat T, Paulweber B, Prokopenko I, Wang W, Gudnason V, Shuldiner AR, Corbess P, Schmidt R, Ferrucchi L, Shlipak MG, van Duijn CM, Borecki I, Kramer BK, Rudan I, Gyllensten U, Wilson JF, Wittman JC, Pramstaller PP, Rettig R, Hastie N, Chasman DI, Kao WH, Heid IM, Fox CS. New loci associated with kidney function and chronic kidney disease. Nat Genet 2010;42:376–384.
6. Böger CA, Gorski M, Li M, Hoffmann MM, Huang C, Yang Q, Teumer A, Krane V, ÖSeaghdha CM, Kutak Z, Wichmann H-E, Haak T, Boes E, Coassin S, Coresh J, Kollerits B, Haun M, Paulweber B, Köttgen A, Li G, Shlipak MG, Powe N, Hwang S-J, Dehghan A, Rivadeneira F, Utterlinden A, Hofmann A, Beckmann JS, Kramer BK, Wittman J, Bochud M, Siscovick D, Retig R, Kronenberg F, Wanner C, Thadhani R, Heid IM, Fox CS, Kao WH; CKDGen Consortium. Association of eGFR-related loci identified by GWAS with incident CKD and ESRD. PLoS Genet 2011;7:e1002292.
7. Franceschini N, Haack K, Almasy L, Laston S, Lee ET, Best LG, FabiS RR, MacCluer JW, Howard BV, Umanis JG, Cole SA. Generalization of associations of kidney-related genetic loci to American Indians. Clin J Am Soc Nephrol 2014;9:150–158.
8. Gollob MH, Green MS, Tang AS, Gollito T, Karibe A, Ali Hassan AS, Ahmad F, Lozado R, Shah G, Fananapazir L, Bachinski LL, Roberts R, Hassan AS. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 2001;344:1823–1831.

Figure 4 Masson trichrome stain (Glomerulus): segmental sclerosis. Compare the cellular portion on the left half of the glomerulus with the blue acellular portion on the right, with adhesions to the glomerular capsule causing obscuring of the urinary space.

Figure 5 Masson trichrome stain (Tubulointerstitium): vacuolated tubular epithelial cells and interstitial foam cells. These changes are not typically found with IGAN but have been described in of glycogen storage diseases.
9. Smyth LJ, McKay GJ, Maxwell AP, McKnight AJ. DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics 2014;9:366–376.

10. Ozen H. Glycogen storage diseases: new perspectives. World J Gastroenterol 2007;13:2541–2553.

11. Yang X, Mudgett J, Bou-About G, Champy M-F, Jacobs H, Monassier L, Pavlovic G, Sorg T, Herault Y, Petit-Demoulière B, Lu K, Feng W, Wang H, Ma L-J, Askew R, Erion MD, Kelley DE, Myers RW, Li C, Guan H-P. Physiological expression of AMPKgamma2RG mutation causes Wolff-Parkinson-White syndrome and induces kidney injury in mice. J Biol Chem 2016;291:23428–23439.

12. Glasscock RJ. The pathogenesis of IgA nephropathy. Curr Opin Nephrol Hypertens 2011;20:153–160.

13. Wang Y, Jia L, Hu Z, Entman ML, Mitch WE, Wang Y. AMP-activated protein kinase/myocardin-related transcription factor-A signaling regulates fibroblast activation and renal fibrosis. Kidney Int 2018;93:81–94.

14. Yung MM, Chan DW, Liu VW, Yao KM, Ngan HY. Activation of AMPK inhibits cervical cancer growth through AKT/FOXO3a/FOXO1 signaling cascade. BMC Cancer 2013;13:327.

15. Banerjee SK, Wang DW, Alzamora R, Huang XN, Pastor-Soler NM, Hallows KR, McGaffin KR, Ahmad F. SGLT1, a novel cardiac glucose transporter, mediates increased cardiac glucose uptake in PRKAG2 cardiomyopathy. J Mol Cell Cardiol 2010;49:683–692.

16. Ramrathnam M, Sharma RK, D’Auria S, Lee SJ, Wang D, Huang XY, Ahmad F. Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice. J Am Heart Assoc 2014;3:e000899.

17. Rajani R, Pastor-Soler NM, Hallows KR. Role of AMP-activated protein kinase in kidney tubular transport, metabolism, and disease. Curr Opin Nephrol Hypertens 2017;36:375–383.

18. Arad M, Moskowitz IP, Patel VV, Ahmad F, Perez-Atayde AR, Sawyer DB, Walter M, Li GH, Burgen PG, Magueire CT, Stapleton D, Schmitt JP, Guo XX, Pizard A, Kupershmidt S, Roden DM, Berul CI, Seidman CE, Seidman JG. Transgenic mice overexpressing PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 2003;107:2850–2856.