Co-outbreak of multidrug resistance and a novel ST3006 Klebsiella pneumoniae in a neonatal intensive care unit

A retrospective study

Dongjie Chen, MD, Xirin Hu, MD, Fanlin Chen, MD, Hongru Li, PhD, Daxuan Wang, PhD, Xiaolin Li, MD, Changsheng Wu, MD, Ning Li, MD, Shaolian Wu, MD, Zhen Li, MD, Lijing Chen, MD, Yusheng Chen, MD, *

Abstract

The outbreak of carbapenem-resistant Klebsiella pneumoniae is a serious public health problem, especially in the neonatal intensive care unit (NICU).

Fifteen K. pneumoniae strains were isolated from 7 neonates during June 3 to 28, 2017 in an NICU. Antimicrobial susceptibility was determined by the Vitek 2 system and microbroth dilution method. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were used to analyze the genetic relatedness of the isolates. Whole-genome sequencing and gene function analysis were performed to investigate pathogenicity and drug resistance and screen genomic islands.

Three clones of K. pneumoniae were identified from 7 neonates: 7 strains of ST37, 7 novel ST3006, and 1 of ST1224. Gene sequencing showed that the kpn1343 (ST37) strain harbored 12 resistance genes (OXA-33, TEM-1, SHV-11, AAC(6′)-Iida, AAC(3)-I, AAC(6′)-Ib-cr, catB3, arr-3, sulf1, oqxB, oqxA, CRP, and catB3) and included 15 genomic islands and 205 reduced virulence genes. The kpn1344 (ST3006) strain harbored 4 antibiotic-resistant genes (TEM-1, CTX-M-3, vgaC, and CRP) and included 19 genomic islands and 209 reduced virulence genes. MLST and PFGE showed that 15 strains of K. pneumoniae were divided into 3 groups with a high level of homology. ST1224 (kpn1362) was isolated on June 28, 2017, which was 10 days after the last isolate (kpn1359, June 18, 2017); thus, we speculated that ST1224 was not the clone that caused the outbreak.

This co-outbreak of K. pneumoniae involved 2 clones: ST37 and ST3006. ST37 carried the multidrug-resistant genes, such as OXA-33, TEM-1, and SHV-11, and ST3006 was a novel K. pneumoniae ST typing. Whole-genome sequencing may be an effective method for screening bacterial-resistant genes and their functions.

Abbreviations: CARD = Comprehensive Antibiotic Resistance Database, MLST = multilocus sequence typing, NICU = neonatal intensive care unit, PCR = polymerase chain reaction, PFGE = pulsed-field gel electrophoresis, PHI = pathogen-host interaction.

Keywords: co-outbreak, Klebsiella pneumoniae, multidrug resistance, neonatal intensive care unit, whole-genome sequencing

1. Introduction

Klebsiella pneumoniae is a common and important pathogen in hospitals, and multidrug-resistant K. pneumoniae in particular poses a serious and urgent threat to public health.1,2 Neonates in neonatal intensive care units (NICUs) often have underlying conditions, such as prematurity, the presence of indwelling catheters, or history of antibiotic treatment and parenteral nutrition, which are known risk factors for infection.3 In addition, relaxed vigilance by doctors and nurses toward nosocomial infection can lead to nosocomial infection outbreaks, with considerable impact on neonatal treatment and prognosis, prolonged hospital stays, increased hospital costs, and increased mortality rates.

Nosocomial outbreaks in the NICU are frequently reported. Neonatal outbreaks have been reported from Africa (January 1, 1996 to January 1, 2016) with pathogens such as rotavirus, influenza virus, measles virus, and multidrug-resistant bacteria (Serratia marcescens, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant enterococci).4 Johnson et al.5 reviewed the English, French, and German language literature published between 2015 and 2017, and a total of 39 outbreaks in NICUs were reported with
Gram-negative bacteria (n=21, 54%), with 5 viral outbreaks (respiratory syncytial virus = 3). Outbreaks caused by Burkholderia cepacia, Escherichia coli, and Pseudomonas aeruginosa have also been reported. However, the reports on the outbreak of K. pneumoniae are rare, and it was rarer to isolate the same clonal pathogen from different sites in the same neonates.

In our study, we identified 15 strains of K. pneumoniae isolated from sputum specimens, blood specimens, and umbilical vein catheter tips in 7 neonates; these isolates belonged to the 3 cloned strains ST37, ST3006, and ST1224. Our objective was to characterize the outbreak strains and further remind that NICUs must be vigilant in detecting outbreaks, conducting in-depth investigations and implementing targeted strategies to prevent and control infections.

2. Methods

2.1. Patients and bacterial strains

Patient characteristics were obtained from electronic medical records. Bacterial strains were isolated from 7 neonates and stored in a refrigerator (SANYO Electric Co., Osaka, Japan) at −70°C. Strains were identified using the Vitek 2 system (BioMérieux, Craponne, France). This study was approved by the ethics committee of the hospital in which the strains were isolated (approval number K2018-01-001).

2.2. Multilocus sequence typing

Bacterial DNA was extracted using the Bacteria Genomic DNA Kit (CWBio, Beijing, China). Multilocus sequence typing (MLST) for K. pneumoniae was performed according to previously described methods. The allelic profiles and sequence types were determined using online databases (https://pubmlst.org/bigsdb?db=pubmlst_mlst_seqdef). The novel allele profiles were sent to klebsiellaMLST@pasteur.fr for confirmation.

2.3. Pulsed-field gel electrophoresis

Pulsed-field gel electrophoresis (PFGE) of XbaI-digested genomic DNA samples of K. pneumoniae was performed using the CHEF Mapper XA apparatus (Bio-Rad Laboratories, Hercules, CA) as described previously. Electrophoresis was performed for 24 hours at 14°C with pulse time ranging from 5 to 35 s at 6 V/cm. PFGE profiles were analyzed and compared using the Gel Doc XR+ system, version 2.0 (Bio-Rad).

2.4. Antimicrobial susceptibility testing

Antibiotic susceptibility testing was performed using the Vitek 2 system (BioMérieux, France), including ampicillin-sulbactam, cefazolin, ceftiraxone, cefotetan, ceftazidime, cefepime, gentamicin, tobramycin, amikacin, levofloxacin, ciprofloxacin, aztreonam, imipenem, ertapenem, piperacillin-tazobactam, and trimethoprim-sulfamethoxazole. The MICs of tigecycline and polymyxin B were determined by the microbroth dilution method. The breakpoint of all antibiotics was interpreted according to the Clinical and Laboratory Standards Institute document M100-S26, with the exception of tigecycline and polymyxin B. For tigecycline and polymyxin B, the European Committee on Antimicrobial Susceptibility Testing breakpoint was used. E. coli ATCC 25922 and P. aeruginosa ATCC27853 were used for quality control.

2.5. Whole-genome sequencing and gene analysis

We chose KPN1343 and KPN1344 for whole-genome sequencing, which was performed using the Illumina HiSeq PE150 platform (Novogene Bioinformatics Technology Co., Ltd., Beijing, China). The Island Path-DIOMB program was used to predict the genomic islands. For these pathogenic bacteria, we used the pathogen-host interaction (PHI) database and the Comprehensive Antibiotic Resistance Database (CARD) to perform pathogenicity and drug resistance analyses.

3. Results

3.1. Clinical characteristics of patients

Patients’ clinical characteristics are presented in Table 1. Subjects included 5 premature infants and 2 infants with hyperbilirubinemia. All 5 premature infants were also diagnosed as having low birth weight (2 very low birth weight infants) and neonatal respiratory distress syndrome. Three infants were delivered by Caesarean delivery.

Table 1: Clinical characteristics of patients.

Patients	Clinical diagnosis	Mode of delivery	Age (wk)	Sex	Body weight (kg)	Antibiotics	Apgar score	Outcome
P1	Premature infant	Caesarean delivery	33	F	1.55	TZP, MEM	6-8-8	Treated
P2	Premature infant	Normal delivery	31	F	1.60	TZP	8-8-8	Treated
P3 (first of twins)	Premature infant Low birth weight infant	Normal delivery	29	F	1.45	TZP	8-9-9	Treated
P4 (second of twins)	Premature infant Very low birth weight infant	Normal delivery	29	F	1.26	TZP	8-9-9	Treated
P5	Neonatal hyperbilirubinemia	Forceps delivery	40	M	2.76	TZP	10-10-10	Treated
P6	Neonatal hyperbilirubinemia	Caesarean delivery	40	F	3.83	Caesarean delivery	10-10-10	Treated
P7	Premature infant	Caesarean delivery	30	M	1.00	TZP	6-8-8	Treated

F = female, M = male, MEM = meropenem, NRDS = neonatal respiratory distress syndrome, P = patient, TZP = piperacillin-tazobactam.
The characteristics of 21 isolates were analyzed in our study. Strains were isolated from sputum, blood, and umbilical vein catheter tips. We simultaneously isolated 2 K. pneumoniae strains from blood and/or umbilical vein catheter tips in patients 2, 3, 4, and 6. MLST showed that there were 3 types: ST37, ST1224, and a novel ST3006 (gapA 69, infB 19, mdb 90, pgi 20, phoE 125, rpoB 18, and novel allele tonB 406) (Table 2). Results of the antibiotic susceptibility testing showed that the ST37 strain was resistant to ampicillin-sulbactam, cefazolin, cephraxone, cefotetan, ceftazidime, cefepine, gentamicin, aztreonam, imipenem, ertapenem, and piperacillin-tazobactam. The ST3006 strain was only resistant to ampicillin-sulbactam, cefazolin, and ceftriaxone (Table 3).

3.2. Characteristics and antibiotic susceptibility of isolates

Twenty-one K. pneumoniae strains were identified by the VIETK2 system in the early stage, but only 15 strains were collected and analyzed in our study. Strains were isolated from sputum, blood, and umbilical vein catheter tips. We simultaneously isolated 2 K. pneumoniae strains from blood and/or umbilical vein catheter tips in patients 2, 3, 4, and 6. MLST showed that there were 3 types: ST37, ST1224, and a novel ST3006 (gapA 69, infB 19, mdb 90, pgi 20, phoE 125, rpoB 18, and novel allele tonB 406) (Table 2).

Table 2

Patient	Date of detection	Isolate no.	Isolate site	Isolates	STs	Resistance phenotype
P1	2017/6/3 AM 10:03	knp1340	Blood	knp	ND	ND
		knp1341	UVCP	knp	ND	ND
		knp1342	Sputum	knp	37	Carbapenemase
P2	2017/6/13 AM 07:20	knp1343	Blood	knp	3006	ESBLs
		knp1344	Blood	knp	37	Carbapenemase
		Negative	UVCP	Negative		—
P3	2017/6/14 AM 09:00	knp1345	Blood	knp	3006	ESBLs
		knp1346	Blood	knp	37	Carbapenemase
		knp1347	UVCP	knp	37	Carbapenemase
		knp1357	Sputum	knp	ND	ND
P4	2017/6/28	knp1362	Sputum	knp	1224	Carbapenemase
		knp1348	Blood	knp	3006	ESBLs
		knp1349	Blood	knp	37	Carbapenemases
		knp1350	UVCP	knp	37	Carbapenemases
		knp1351	UVCP	knp	3006	ESBLs
		knp1352	Blood	knp	3006	ESBLs
P5	2017/6/15 AM 10:56	knp1352	Blood	knp	3006	ESBLs
		Negative	Sputum	Negative		—
P6	2017/6/15 PM14:46	knp1353	Blood	knp	37	Carbapenemases
		knp1354	Blood	knp	3006	ESBLs
		Negative	Sputum	Negative		—
P7	2017/6/15 AM 10:30	knp1355	UVCP	knp	3006	ESBLs
	2017/6/18 AM 11:08	knp1359	Sputum	knp	ND	ND

AM=ante meridiem, knp=Klebsiella pneumonia, ND=not done, P=patient, PM=post meridiem, UVCP=umbilical vein catheter tip.

3.3. Antibiotic-resistant genes

The CARD was used to search for the names of resistance-related genes. KPN1343 (accession numbers CP033900) was found to have 12 antibiotic resistant genes: beta-lactam resistance (catB3), rifampicin resistance (arr-3), sulfonamide resistance (sulI), efflux pump complex or subunit confering antibiotic resistance (oqxA, oqxA, CRP), and streptogramin resistance (catB3). KPN1344 (accession numbers CP033901) was found to have 4 antibiotic resistant genes: beta-lactam resistance (TEM-1, CTX-M-3), and efflux pump complex or subunit confering antibiotic resistance (vgaC, CRP). We chose the resistance gene with a best identities rate ≥0.99 (Table 4).

Table 3

Antibiotics	K. pneumoniae ST37 (n = 7)	K. pneumoniae ST3006 (n = 7)
Ampicillin-sulbactam	≥32 R	≥32 R
Cefazolin	≥64 R	≥64 R
Ceftriaxone	≥64 R	≥64 R
Cefotetan	≥64 R	≤4 S
Ceftazidime	≥64 R	≤1 S
Cefepine	≥64 R	≤1 S
Gentamicin	≥16 R	≤1 S
Tobramycin	8 S	≤1 S
Amikacin	<2 S	≤2 S
Levofloxacin	≤0.25 S	≤0.25 S
Ciprofloxacin	≤0.25 S	≤0.25 S
Aztreonam	≥64 R	64 R
Imipenem	4 R	≤1 S
Ertapenem	≥8 R	<0.5 S
Tigecycline	≤0.25 S	≤0.25 S
Polymyxin B*	≤0.25 S	≤0.25 S
Piperacillin-Tazobactam	64 R	≤4 S
Trimethoprim-Sulfamethoxazole	≤0.20 S	<20 S

1=intermediary, MIC = minimal inhibitory concentration, R = resistant, S = sensitive. Tigecycline and polymyxin B antibiotic susceptibility were determined by microbroth dilution method.
3.4. PFGE

PFGE homology analysis showed that 15 *K. pneumoniae* strains were divided into 3 clusters: cluster A: 1344, 1346, 1348, 1351, 1352, 1354, 1355; cluster B: 1362; and cluster C: 1342, 1343, 1345, 1347, 1349, 1350, and 1353. MLST also divided 15 *K. pneumoniae* strains into 3 groups (Fig. 1).

3.5. PHIs and genomic islands

Using the BLAST software, the amino acid sequences of KPN1343 and KPN1344 were compared using the PHI database. PHI phenotype classification showed that the number of reduced virulence genes mostly matched the database mostly, that is, 205 and 209, respectively (Fig. 2). Using Island Path-DIOMB to predict genomic islands, KPN1343 had 15 genomic islands and KPN1344 had 19 genomic islands. The length and direction of the genes are shown in Figure 3 (length of only <15 kb is shown).

4. Discussion

K. pneumoniae is an important nosocomial pathogen that can cause pneumonia, urinary tract infection, digestive tract

Table 4

ORF_ID	Best Hit ARO	Best identities	ARO	ARO_category
KPN1341_GM005273	OXA-33	1	ARO:3001781	Antibiotic inactivation enzyme, determinant of beta-lactam resistance
KPN1341_GM005232	AAC (6')-Ibd	1	ARO:3002548	Antibiotic inactivation enzyme, determinant of aminoglycoside resistance
KPN1343_GM006284	AAC (3')-Ia	1	ARO:3002533	Antibiotic inactivation enzyme, determinant of aminoglycoside resistance
KPN1341_GM005274	AAC (6')-Ib-cr	1	ARO:3002547	Antibiotic inactivation enzyme, determinant of aminoglycoside resistance
KPN1341_GM005278	TEM-1	1	ARO:3000873	Antibiotic inactivation enzyme, determinant of beta-lactam resistance
KPN1341_GM003269	SHV-11	1	ARO:3001170	Antibiotic inactivation enzyme, determinant of beta-lactam resistance
KPN1341_GM002727	catB3	1	ARO:3002676	Antibiotic inactivation enzyme, determinant of aminoglycoside resistance
KPN1341_GM005271	apr-3	1	ARO:3002848	Antibiotic inactivation enzyme, determinant of rifampin resistance
KPN1341_GM005269	sulI	1	ARO:3000410	Antibiotic target replacement protein, determinant of sulfonamide resistance
KPN1341_GM004245	oprB	1	ARO:3003923	Efflux pump complex or subunit conferring antibiotic resistance
KPN1341_GM004254	oprA	1	ARO:3000876	Efflux pump complex or subunit conferring antibiotic resistance
KPN1341_GM005232	catB3	0.99	ARO:3002676	Efflux pump complex or subunit conferring antibiotic resistance
KPN1341_GM005191	TEM-1	1	ARO:3000873	Antibiotic inactivation enzyme, determinant of beta-lactam resistance
KPN1341_GM005193	CTX-M-3	1	ARO:3001866	Antibiotic inactivation enzyme, determinant of streptomycin resistance
KPN1341_GM005190	CTX-M-3	1	ARO:3001866	Antibiotic inactivation enzyme, determinant of beta-lactam resistance
KPN1341_GM005289	TEM-1	1	ARO:3000873	Antibiotic inactivation enzyme, determinant of beta-lactam resistance
KPN1341_GM005283	TEM-1	1	ARO:3000873	Antibiotic inactivation enzyme, determinant of beta-lactam resistance
KPN1341_GM000019	CRP	0.99	ARO:3000518	Efflux pump complex or subunit conferring antibiotic resistance
KPN1341_GM000069	CRP	0.99	ARO:3000518	Efflux pump complex or subunit conferring antibiotic resistance

ARO = antibiotic resistance ontology; ID = identity; ORF = open reading frame.
Figure 2. KPN1343 and KPN1344 PHI phenotype classification. PHI phenotype classification showed that the number of reduced virulence genes most matched the database, that is, 205 and 209, respectively. PHI = pathogen-host interaction.

Figure 3. KPN1343 and KPN1344 genomic islands. KPN1343 has 15 genomic islands and KPN1344 has 19 genomic islands, and the length and direction of the genes are shown in Figure 3 (length of only <15 kb is shown).
infection, bloodstream infection, liver abscess, and meningitis.\(^{[17–20]}\) Infection outbreaks have been frequently reported in NICUs. Extended spectrum beta-lactamase-producing and carbapenemase-producing \textit{K. pneumoniae} can cause large outbreaks with significant morbidity and mortality effects.\(^{[21]}\) Underlying conditions, including premature delivery, low birth weight, and neonatal respiratory distress syndrome, are risk factors for neonatal infection. Inadequate medical equipment, environmental disinfection, hand hygiene, and staffing are important factors influencing infection outbreak.\(^{[22,23]}\) In our study, infection control practitioners took samples from incubators, air, hands of doctors and nurses, objects, and patient skin for bacterial culture. Only one \textit{K. pneumoniae} strain was isolated from the inner surface of an incubator. However, this strain was not stored for further research.

Screening and monitoring of extended spectrum beta-lactamase-producing and carbapenemase-producing \textit{K. pneumoniae} in hospitals are crucial.\(^{[24]}\) However, current molecular biological techniques, such as polymerase chain reaction (PCR) and fluorescence quantitative PCR, have their limitations and cannot extensively screen drug-resistant genes. Although whole-genome sequencing may be an effective method for screening resistant genes, it is costly and time-consuming, and these factors limit its application. Homology analysis methods, such as ERIC-PCR, PFGE, and MLST, are complex and are also time consuming.\(^{[25–29]}\) Thus, newer technologies need to be developed to effectively monitor the rapid outbreak of nosocomial infections.

Most previous reports on \textit{K. pneumoniae} outbreaks were from single-site infections, such as respiratory specimens,\(^{[30–31]}\) blood specimens,\(^{[31–33]}\) or urine specimens.\(^{[34–36]}\) However, our findings showed that pathogens were simultaneously isolated from respiratory specimens, blood specimens, and umbilical vein catheter tips of the same patient, which is relatively rare. Fortunately, after the investigation described in this study, subsequent nosocomial infection control was performed by the infection department, and no other bacteria were isolated, except \textit{kpn1362 (ST1224)} from patient 3 on June 28, 2017.

Our study had some limitations. First, we did not freeze isolates (\textit{kpn1340, kpn1341, kpn1356, kpn1357, kpn1358, kpn1359}) due to the weak awareness of hospital infection outbreak and insufficient scientific research consciousness at that time. Second, the third clone \textit{ST1224} has not worked more in our research because it was isolated on June 28, 2017, which was 10 days after the last isolate (\textit{kpn1359}, June 18, 2017). We could saw that the similarity between \textit{ST1224} and \textit{ST3006} was 76.8%, and 64.2% between \textit{ST1224} and \textit{ST37} (Fig. 3). Thus, we speculated that \textit{ST1224} was not the clone that caused the outbreak. So, it is important for us to enhance awareness of infection outbreak and strengthen bacterial preservation. Furthermore, communication and cooperation with infection control practitioners should be strengthened to screen and prevent nosocomial transmission at an earlier stage. Hospitals should implement different strategies, such as hand-washing policies strictly enforced among staff, frequent equipment changes, and extensive cleaning of pediatric wards, to combat outbreaks.

5. Conclusions

In summary, we reported an outbreak of 2 clones of \textit{K. pneumoniae}, \textit{ST37} and \textit{ST3006}, in an NICU. The clones were isolated from multiple sites in the same patients, including sputum, blood, and umbilical vein catheter tips. Whole-genome sequencing showed that \textit{ST37 K. pneumoniae} harbored multidrug-resistant genes such as \textit{OXA-33, TEM-1, and SHV-11}; thus, this method appears to be useful for detecting drug-resistant genes and analyzing gene function. Active and effective infection control measures are indispensable for preventing and controlling nosocomial infection outbreaks.

Acknowledgment

We thank all of the funders, and also thank the team of curators of the Institut Pasteur MLST and whole-genome MLST databases for curating the data and making them publicly available at http://bigdb.pasteur.fr.

Author contributions

Conceptualization: Yusheng Chen.
Data curation: Dongjie Chen.
Formal analysis: Falin Chen, Yusheng Chen.
Investigation: Xinlan Hu, Xiaqin Li, Changsheng Wu, Ning Li.
Methodology: Hongru Li, Daxuan Wang, Shaolian Wu, Zhen Li, Lijing Chen.
Project administration: Yusheng Chen.
Writing – original draft: Dongjie Chen, Yusheng Chen.
Writing – review and editing: Yusheng Chen.

References

[1] Huang W, Wang G, Sebra R, et al. Emergence and evolution of multidrug-resistant Klebsiella pneumoniae with both \textit{blaKPC} and \textit{blaCTX-M} integrated in the chromosome. Antimicrob Agents Chemother 2017;61: pii: e00076-17.
[2] Njouonou-Venezia S, Kondratyeva K, Caratzoulas A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017;41:252–75.
[3] Nour I, Eldeghie HE, Nasel N, et al. Risk factors and clinical outcomes for carbapenem-resistant Gram-negative late-onset sepsis in a neonatal intensive care unit. J Hosp Infect 2017;97:52–8.
[4] Dramowski A, Aucamp M, Bekker A, et al. Infectious disease exposures and outbreaks at a South African neonatal unit with review of neonatal outbreak epidemiology in Africa. Int J Infect Dis 2017;57:79–85.
[5] Johnson J, Quach C. Outbreaks in the neonatal ICU: a review of the literature. Curr Opin Infect Dis 2017;30:395–403.
[6] Song JE, Kwak YG, Um TH, et al. Outbreak of Burkholderia cepacia pseudobacteraemia caused by intrinsically contaminated commercial 0.5% chlorhexidine solution in neonatal intensive care units. J Hosp Infect 2018;98:295–9.
[7] Sáez-López E, Bosch J, Salvia MD, et al. Outbreak caused by Escherichia coli O118: K1: H7 sequence type 95 in a neonatal intensive care unit in Barcelona. Spain Pediatr Infect Dis J 2017;36:1079–86.
[8] Bicking KC, Koirala S, Solomon B, et al. Pseudomonas aeruginosa outbreak in a neonatal intensive care unit attributed to hospital tap water. Infect Control Hosp Epidemiol 2017;38:801–8.
[9] Dancourt L, Passet V, Verhoef J, et al. Multlocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 2005;43:4178–82.
[10] Zhan L, Wang S, Guo Y, et al. Outbreak by hypermucoviscous Klebsiella pneumoniae \textit{ST11} isolates with carbapenem resistance in a tertiary hospital in China. Front Cell Infect Microbiol 2017;7:182.
[11] Rossi GI, Ferreira ML, Araujo BF, et al. Outbreaks of colistin-resistant \textit{Klebsiella pneumoniae} in Brazil. J Hosp Infect 2016;94:322.
[12] Bobenchik AM, Deak E, Handler JA, et al. Performance of Vitek 2 for antimicrobial susceptibility testing of Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia with Vitek 2 (2009 FDA) and CLSI M100S 26th edition breakpoints. J Clin Microbiol 2017;55:450–6.
[13] Neuret S, Nair S, Day MR, et al. Prediction of phenotypic antimicrobial resistance profiles from whole genome sequences of non-typhoidal Salmonella enterica. Front Microbiol 2018;9:192.
[14] Bertelli C, Laird MR, Williams KF, et al. IslandViewer 4. expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017;45:W30–5.
