Evolution and Diversity of the TopoVI and TopoVI-like Subunits With Extensive Divergence of the TOPOVIBL subunit

Julia Brinkmeier,1 Susana Coelho,2 Bernard de Massy,*,1 and Henri-Marc Bourbon3

1Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier 34396, France
2Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
3Centre de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse 31400, France

*Corresponding author: E-mail: bernard.de-massy@igh.cnrs.fr.

Abstract

Type II DNA topoisomerases regulate topology by double-stranded DNA cleavage and ligation. The TopoVI family of DNA topoisomerase, first identified and biochemically characterized in Archaea, represents, with TopoVIII and mini-A, the type IIB family. TopoVI has several intriguing features in terms of function and evolution. TopoVI has been identified in some eukaryotes, and a global view is lacking to understand its evolutionary pattern. In addition, in eukaryotes, the two TopoVI subunits (TopoVIA and TopoVIB) have been duplicated and have evolved to give rise to Spo11 and TopoVIBL, forming TopoVI-like (TopoVIL), a complex essential for generating DNA breaks that initiate homologous recombination during meiosis. TopoVIL is essential for sexual reproduction. How the TopoVI subunits have evolved to ensure this meiotic function is unclear. Here, we investigated the phylogenetic conservation of TopoVI and TopoVIL. We demonstrate that BIN4 and RHL1, potentially interacting with TopoVIB, have co-evolved with TopoVI. Based on model structures, this observation supports the hypothesis for a role of TopoVI in decatenation of replicated chromatids and predicts that in eukaryotes the TopoVI catalytic complex includes BIN4 and RHL1. For TopoVIL, the phylogenetic analysis of Spo11, which is highly conserved among Eukarya, highlighted a eukaryal-specific N-terminal domain that may be important for its regulation. Conversely, TopoVIBL was poorly conserved, giving rise to ATP hydrolysis-mutated or -truncated protein variants, or was undetected in some species. This remarkable plasticity of TopoVIBL provides important information for the activity and function of TopoVIL during meiosis.

Key words: sexual reproduction, meiosis, recombination, topoisomerase, SPO11, TOPOVIBL, TopoVI, BIN4, RHL1, MEI4, REC114.

Introduction

DNA topoisomerases play an important role in resolving topological constraints and were first discovered in bacteria almost 50 years ago (Wang 1971; Gellert et al. 1976). Ever since, DNA topoisomerases have been identified in many other organisms, such as archaea, eukaryotes, and viruses (Forterre and Gadelle 2009; Chen et al. 2013; Gadelle et al. 2014). They are ubiquitously expressed and play an essential role in various processes, such as replication, transcription, recombination, repair, and chromatin remodeling (Wang 2002; Vos et al. 2011; Chen et al. 2013). DNA topoisomerases have been extensively studied, and new family members have been progressively identified, adding insights into their structures and catalytic mechanisms.

Based on these features, DNA topoisomerases have been classified into two major types: type I and type II. Type I topoisomerases can transiently induce a break in one DNA strand, followed by passage of a single strand and religation. Type II topoisomerases transiently break both DNA strands in a DNA double helix, followed by double-strand passage and break religation (Champoux 2001; Wang 2002; Chen et al. 2013). Type II topoisomerases can relax negatively and positively supercoiled DNA, and have decatenation activity. Type II topoisomerases are further divided into type IIA and type IIB topoisomerases, and they both work in an ATP- and magnesium-dependent manner to resolve topological constraints during transcription, replication, and recombination (Chen et al. 2013).

Topoisomerase VI (TopoVI) is a type IIB topoisomerase that was first identified in archaea (Bergerat et al. 1997) and forms a heterotetramer composed of two A and B subunits (A2B2) (Corbett et al. 2007; Graille et al. 2008). The A subunit (TopoVIA) carries the DNA cleavage activity and has two main domains: the SY-CAP (catabolite activator protein) DNA binding domain (also known as WHD, for winged-
helix domain), and the Toprim (Topoisomerase-primase) domain (fig. 1A). The B subunit (TopoVIB) contains the GHKL domain with the ATP binding/hydrolysis site, the helix-two-turn-helix (H2TH) domain, and the transducer domain that includes a long helical domain interacting with the N-terminal region of TopoVIA. The GHKL domain (ATPase) also known as the Bergerat fold (BF) contains three conserved motifs important for ATP binding that have been identified also in other proteins (i.e., DNA gyrase, heat-shock 90 family members, bacterial CheA histidine kinases, and MutL DNA mismatch protein family members) (Dutta and Inouye 2000). Biochemical analyses of archaeal TopoVI showed that ATP binding is involved in TopoVIB homodimerization and plays an important role in activating the DNA cleavage complex. Three conserved basic residues within the so-called KGRR loop and the C-ter Stalk/WKxY motif region of TopoVIB interact with DNA, with a preference for negative supercoiled DNA (Corbett et al. 2007; Wendorff and Berger 2018). The KGRR loop is part of the GHKL domain, whereas the C-ter Stalk/WKxY motif connects the transducer domain with TopoVIA and plays a role in DNA binding (Wendorff and Berger 2018). Studies on the H2TH domain of TopoVIB showed that it plays a role in facilitating DNA strand passage (Wendorff and Berger 2018). The H2TH domain is followed by the transducer domain that contains a “switch lysine” required for ATP hydrolysis (Corbett et al. 2005).

In eukaryotes, TopoVI has been identified in vascular plants, green and red algae, and some protists (Hartung and Puchta 2001; Sugimoto-Shirasu et al. 2002; Yin et al. 2002; Malik, Ramesh et al. 2007). Differently from archaea, where TopoVI is the only Top II activity (Forterre and Gadelle 2009), eukaryotes also have Type IIA topoisomerase, raising the question of the functional specificity of TopoVI relative to TopoIIA. In plants, TopoVI is needed for DNA endoreduplication, potentially requiring a decatenation activity (Hartung et al. 2002; Sugimoto-Shirasu et al. 2002; Yin et al. 2002; Kirik et al. 2007). Arabidopsis thaliana TopoVI has been proposed to play a role in the plant stress response by regulating gene expression (Simkova et al. 2012) and a recent study showed a role for A. thaliana TopoVI in heterochromatin organization (Meteignier et al. 2022). Potential TopoVI accessory factors (BIN4 and RHL1) have been identified in A. thaliana mutants that have similar dwarf phenotypes (Sugimoto-Shirasu et al. 2005; Breuer et al. 2007; Kirik et al. 2007). Furthermore, various independent Yeast-two-Hybrid (Y2H) experiments indicate that BIN4 and RHL1 may be part of the TopoVI complex in A. thaliana (Sugimoto-Shirasu et al. 2005; Breuer et al. 2007; Kirik et al. 2007).

The second specific feature of eukaryotes, compared with archaea, is the TopoVII-like (TopoVIL) complex that is composed of two proteins, SPO11 and TOPOVIBL, homologs to the TopoVIA and TopoVIB subunits (Bergerat et al. 1997; Keeney et al. 1997; Robert, Nore et al. 2016; Robert, Vrielynck et al. 2016; Vrielynck et al. 2016). The TopoVIL complex induces DSBs at meiosis onset, an essential step to initiate homologous recombination and to create connections between homologous chromosomes for their proper segregation at meiosis I (Hunter 2015). Although no biochemical information about TopoVIL activity is currently available, in vivo data indicate that the TopoVIL complex can introduce DSBs, form a protein-DNA cleavage complex (like TopoVI), but differently from TopoVI, broken DNA ends are not predicted to be re-ligated (Bergerat et al. 1997; Keeney et al. 1997). Indeed, the phospho-tyrosine linkage of the cleavage complex is not reversed, and SPO11 is released from substrate as a SPO11-oligo intermediate by endonucleolytic cleavage (Neale et al. 2005; Lange et al. 2011). The broken ends are repaired by homologous recombination (Baudat et al. 2013). It results that SPO11 is not recycled and undergoes only one catalytic reaction. SPO11 is present in most eukaryotes examined and its phylogeny has been described (Ramesh et al. 2005; Malik, Pighthling et al. 2007; Bloomfield 2016), consistent with the meiotic pathway conservation for sexual reproduction. Conversely, TOPOVIBL conservation and phylogeny remain to be determined because so far, TOPOVIBL has been identified only in few species, partly due to the high degree of divergence observed among orthologs (Robert, Nore et al. 2016).

Here, we extended the identification of TopoVI and TopoVIL families. For TopoVI, our analysis revealed new structural properties of TopoVIA and TopoVIB, and insights into the structural properties of BIN4 and RHL1 in eukaryotes. For TopoVIL, we revealed the widespread conservation of TOPOVIBL, with astonishing divergence, but a structurally conserved transducer subdomain that interacts with SPO11, particularly in metazoans. Lastly, we showed that REC114, a direct partner of TOPOVIBL, is broadly conserved in metazoans together with ME4, a REC114 interacting protein.

Results and Discussion

Phylum- and Species-specific Conservation of TopoVIA, TopoVIB, BIN4, and RHL1 in Eukaryotes

The phylogeny of TopoVI, the first identified family of type IIB topoisomerases, was first limited to Archaea and Viridiplantae (Forterre and Gadelle 2009) and was then extended after the identification of other type IIB family members: TopoVIII, present in archaea, and conjugative plasmids of bacteria (Gadelle et al. 2014), and mini-A proteins often encoded by viruses (Takahashi et al. 2020). The identified orthologs revealed the high conservation of both TopoVIA and TopoVIB subunits (Forterre et al. 2007). Within the DNA binding domain (SY-CAP or WHD) of the TopoVIA subunit, specific residues are conserved, particularly the catalytic tyrosine residue (Y) (Bergerat et al. 1997). Within the Toprim domain, residues involved in Mg\(^{2+}\) binding are conserved (DXDxxG) (Nichols et al. 1999). TopoVIA also includes a conserved helix at its N terminus involved in the interaction with TopoVIB (Corbett et al. 2007; Graille et al. 2008).
FIG. 1. Archaeal and A. thaliana TOPOVIB interact differently with TOPOVIA. (A) N- and C-terminal extensions in the eukaryotic TOPOVIA and TOPOVIB subunits. The domain organization of the *Saccharolobus shibatae* (Sshi), *Methanosarcina mazei* (Mmaz), and *Arabidopsis thaliana* (Ath) TopoVI subunits is shown. SY-CAP: Catabolite Activator Protein, Toprim: Topoisomerase-primase, S: N-terminal strap, GHKL: Gyrase B, Hsp90, Histidine Kinase, MutL, H2TH: Helix-2-Turn-Helix domain, CTD: C-Terminal Domain. The CTD is present in TOPOVIB of some archaea (M. mazei) but not in others (S. shibatae). The additional α helices in A. thaliana TOPOVIA and TOPOVIB are highlighted in purple. (B) Alignment of archaea and plantae TOPOVIB transducer C-terminal subdomain showing the predicted additional helix α15. Residues interacting with TOPOVIA are highlighted with spheres. Predicted A. thaliana TOPOVIB structural elements are extracted from the AlphaFold database.
Moreover, it was proposed that a short conserved motif in the C-terminal Toprim subdomain, called T2BI-box (for Type II B topoisomerases Interaction), is involved in its activity based on phylogenic studies of TopoVIA and miniTopoVIA variants (Takahashi et al. 2020). In TopoVIB, the conserved motifs include those in the GHKL domain for ATP binding and hydrolysis (BF motifs) (Bergerat et al. 1997), and residues in the transducer domain that includes the interaction interface with TopoVIA (Corbett et al. 2007; Grassie et al. 2008). Several conserved motifs contribute to DNA binding, dimerization and ATP hydrolysis: the H2TH, the N-strap, a basic loop in the GHKL domain, the anchoring asparagine, the switch lysine, and the WKxY motif (Corbett and Berger 2003; Wendorff and Berger 2018).

Besides Viridiplantae, TopoVI homologs have been identified in several taxa among Eukarya (Malik, Pfighting et al. 2007; Bloomfield 2016). We re-investigated their phylogeny and detected two novel structural hallmarks of eukaryal TopoVI (investigated genomes are provided as supplementary data, Supplementary Material online) (Table 1): 1) an additional C-terminal helix (A. thaliana predicted helix α15) in TopoVIB, located between the two helices of the transducer domain involved in the interaction with TopoVIA (AF2 model), and 2) a helix (helix α1) located N-terminally to the helix involved in the interaction with TopoVIB (AF1 and supplementary fig. S1A, Supplementary Material online). Based on an Alpha Fold (AF2) model structure of the A. thaliana TopoVIA·TopoVIB heterodimer, compared to Methanosarcina mazei, and in A. thaliana, TopoVIB predicted helix α15 leads to a partially overlapping but distinct interaction between the A and B subunits (Fig. 1C). The model gives confident or very high scores (PzLDT) excepted for residues located in loops or disordered regions such as the N- and C-terminal region of TopoVIB. The folding of the TopoVIB transducer domain and of TopoVIA N-terminal region of SY-CAP is validated by the low predicted alignment error (PAE) values (Fig. 1C). The function of the additional TopoVIA N-terminal helix (helix α1 in supplementary fig. S1A, Supplementary Material online) is unknown. Based on model structures, it interacts with the Toprim domain (supplementary fig. S1B, Supplementary Material online). This interaction is also observed in the homodimer model (supplementary fig. S1C, Supplementary Material online) where the TopoVIA subunits are in a head to tail configuration as in M. jannashii TopoVIA (Nichols et al. 1999). Interestingly, these two modeled helices (helix α1 in TopoVIB and helix α15 in TopoVIB) we identified in Eukarya are also predicted to be present in Asgard archaea, a sister group of eukaryotes (Spang et al. 2015; Seitz et al. 2016) (Zaremba-Niedzwiedzka et al. 2017) as shown by sequence alignments (supplementary figs. S2 and S4A, Supplementary Material online). Model structures highlighted the similarity between Asgard and A. thaliana for the folding of the predicted additional helical domain of TopoVIA (supplementary fig. S3A, Supplementary Material online), of the homotypic dimers (supplementary fig. S3B, Supplementary Material online) and of the predicted additional helix within the transducer of TopoVIB at the interface with TopoVIA (supplementary fig. S4B, Supplementary Material online). This illustrates the common ancestry between Asgard and Eukarya and establishes that these two helices are not eukaryal-specific. Analysis of eukaryotes in which TopoVI is present (Archaeplastida, some opisthokonts and stramenopiles, Alveolata and Rhizaria [SAR]) showed that TopoVIB contained the motifs required for dimerization and ATP binding/hydrolysis (N-strap; and N, G1, and G2 boxes within the GHKL domain) (supplementary figs. S5A, B, Supplementary Material online), the H2TH domain, and a conserved transducer domain, including the anchoring asparagine, the WKxY motif, and the switch lysine (supplementary fig. S6B, Supplementary Material online). Similarly, in TopoVIA, the residues important for the catalytic activity, DNA interaction (notably Mg²⁺ binding), and the T2BI box were well conserved from Archaeplastida to SAR (supplementary fig. S6A, Supplementary Material online).

The eukaryal/Asgard-specific helices may represent interfaces for interaction with partners, thus potentially contributing to additional regulation of eukaryal TopoVI compared with archaeal TopoVI. Two putative TopoVI partners have been identified in A. thaliana based on genetic screens: BIN4 (also called MIDGET) and RHL1 (also called HYP7). Plants carrying mutations in either of these genes have the same phenotype as TopoVIA (SPO11-3) and TopoVIB mutants (Sugimoto-Shirasu et al. 2005; Breuer et al. 2007; Kirik et al. 2007). Moreover, in yeast two-hybrid assays BIN4 interacts with itself, with RHL1 and with TopoVIA, while RHL1 also interacts with TopoVIA (Sugimoto-Shirasu et al. 2005; Breuer et al. 2007; Kirik et al. 2007). In bimolecular fluorescence complementation assays (BiFC), RHL1 was found to interact with BIN4 and TopoVIA (Kirik et al. 2007). In co-immunoprecipitation experiments (CoIP) BIN4 was found to interact with TopoVIB (Méteignier et al. 2022). These observations suggested that the activity of plant TopoVI may require RHL1 and BIN4 through interactions that remain to be determined. To gain insight into these observations, we analyzed RHL1 and BIN4 conservation in Eukarya and developed structural models.
This analysis led to three main conclusions: 1) BIN4 and RHL1 are evolutionarily conserved in plants and also in some opisthokonts (including choanoflagellates, a sister group of metazoans) and in SAR. We did not find any BIN4 or RHL1 homolog in metazoans, fungi, amoebozoans, foraminifers and excavates (fig. 2A); 2) their presence is strictly correlated with that of TopoVI (A and B) with striking concomitant losses in some alveolates and stramenopiles (fig. 2A); 3) analysis of BIN4 and RHL1 orthologs revealed for each protein a conserved central domain predicted to be mostly composed of β-strands (fig. 2B and supplementary fig. S7A, Supplementary Material online). BIN4 and RHL1 models showed a striking structural overlap when monomers were compared (supplementary fig. 7B, Supplementary Material online, right panel). In the model of the BIN4/RHL1 heterodimer, the interaction between monomers involves residues of each conserved core (fig. 2C and supplementary fig. S7A, Supplementary Material online). We tested the conservation of this interaction by assaying the properties of the BIN4 and RHL1 orthologs from the model brown alga Ectocarpus siliculosus (Coelho et al. 2020). We found that E. siliculosus BIN4 and RHL1 interacted and that the conserved domain of each protein was necessary and sufficient for the interaction (supplementary fig. S8A, B and C, Supplementary Material online): In BIN4, among the three domains tested, only the central domain (BIN4 trunc2) corresponding to the conserved core domain, showed interaction with the RHL1 conserved core domain. In RHL1, among the two domains tested, only the conserved core domain (RHL1 trunc1) showed interaction with BIN4 (supplementary fig. S8B and C, Supplementary Material online). We also uncovered a similarity between our BIN4/RHL1 model and the interacting β-barrel domains of the Ctf8/Dcc1 heterodimer (fig. 2C). This heterodimer binds to the C-terminal end of Ctf18, a subunit of the RFC-CTF18 complex (Wade et al. 2017). Dcc1 also possesses three winged-helix domains (WHD), one of which binds ssDNA and dsDNA. The Ctf8/Dcc1 complex thus creates a bridge between the DNA and RFC (Wade et al. 2017). The RFC-CTCF18 complex plays a role in loading PCNA at replication forks (Bermudez et al. 2003) and in sister chromatid cohesion (Mayer et al. 2001; Kawasumi et al. 2021). The similarity with BIN4 and RHL1 is thus particularly interesting since BIN4 and RHL1 also bind to DNA in vitro (Sugimoto-Shirasu et al. 2005; Breuer et al. 2007). Furthermore, we detected by modelling an interaction between the C-terminal domain of TopoVIB and the interface of β-strands from the BIN4/RHL1 heterodimer from A. thaliana (fig. 3A). In TopoVIB, this interaction involves residues in the transducer domain, and in the C-terminal domain for the interaction with RHL1 (zoom in fig. 3A and supplementary fig. S6B, Supplementary Material online) but neither the WxkY motif nor the H2TH domain. Similar model structures were obtained with E. siliculosus proteins (fig. 3B). However, Y2H assays reported interactions of A. thaliana BIN4 and RHL1 with TopoVIA, not TopoVIB (Sugimoto-Shirasu et al. 2005; Breuer et al. 2007), and a CoIP assay identified an interaction between BIN4 and TopoVIB (Metégnier et al. 2022). In our Y2H conditions, we could not detect any interaction between A. thaliana BIN4 or RHL1 and TopoVIB (supplementary
Fig. 2. TopoVI holoenzyme subunit conservation among eukaryotic taxa. (A) TOPOVIA, TOPOVIB, BIN4, and RHL1 conservation in Eukarya. The presence of TOPOVIA, TOPOVIB, BIN4, and RHL1 orthologs is shown by filled boxes. Partial occurrences in Alveolata (e.g., present in Dinophyta but absent in Perkinsoza and Apicomplexa) and in Oomycota (e.g., all four genes are present in *Aphanomyces astaci* while undergoing pseudogenization concomitantly in the closely related *A. invadens*) are indicated by dotted boxes. The presence of BIN4 and RHL1 duplicates in Chlorobionta (i.e., *Physcomitrium patens*) is also indicated. The tree on the left side does not represent the genetic distances, branch lengths being arbitrary and only used to illustrate the consensus view of the phylogenetic relationships among the major eukaryotic groups. Dashed lines indicate that Chromalveolata is currently not considered to be monophyletic. (B) Schematic representations of *A. thaliana* (Ath) BIN4 and RHL1. The position of the conserved cores are shown. (C) *Arabidopsis thaliana* BIN4 and RHL1 are predicted to interact through evolutionarily conserved β-barrel domains that have structural similarities with the RFC CTF8/DCC1 dimerization module. Upper panels: Heterodimeric
RHL1 and BIN4 are predicted to interact with the TOPOVIB CTD and GHKL domains through their respective evolutionarily conserved (CORE) regions. (A) Modeled interactions between Arabidopsis thaliana TopoVI holoenzyme subunits (as determined by AF2). The predicted interface between TOPOVIB (green), RHL1Core (blue), and BIN4Core (pink) is magnified in the lower left panel. SPO11-3/TOPOVIA (yellow) has been included to show distinct predicted interfaces (see Fig. 1). Interaction Z-scores between the TOPOVIB CTD/GHKL domains and RHL1Core or BIN4Core, respectively, are indicated. Model confidence (pLDDT) (upper left) is shown in the upper right panel with the corresponding PAE plot on beneath. (B) Conservation of the predicted interface between TopoVI holoenzyme subunits in E. siliculosus. A magnification of the evolutionarily conserved interacting domains is shown on the left panel, with chain coloring as in (A). Z-scores are indicated. The corresponding PAE plot is shown in the right panel.

Fig. 3. RHL1 and BIN4 are predicted to interact with the TOPOVIB CTD and GHKL domains through their respective evolutionarily conserved (CORE) regions. (A) Modeled interactions between Arabidopsis thaliana TopoVI holoenzyme subunits (as determined by AF2). The predicted interface between TOPOVIB (green), RHL1Core (blue), and BIN4Core (pink) is magnified in the lower left panel. SPO11-3/TOPOVIA (yellow) has been included to show distinct predicted interfaces (see Fig. 1). Interaction Z-scores between the TOPOVIB CTD/GHKL domains and RHL1Core or BIN4Core, respectively, are indicated. Model confidence (pLDDT) (upper left) is shown in the upper right panel with the corresponding PAE plot on beneath. (B) Conservation of the predicted interface between TopoVI holoenzyme subunits in E. siliculosus. A magnification of the evolutionarily conserved interacting domains is shown on the left panel, with chain coloring as in (A). Z-scores are indicated. The corresponding PAE plot is shown in the right panel.

model of the BIN4/RHL1 dimerization module with the interaction Z-score (left). Atomic structure of the CTF8/DCC1 interface (PDB:652F) (middle). Merging of the CTF8/DCC1 and BIN4/RHL1 dimerization modules (right). The docking root-mean-square-deviation (RMSD) values are indicated. Lower panels: Model confidence as shown with predicted LDDT (left) and alignment error (right). Global pLDDT and pTM (predicted “Template Modeling”) scores are indicated.
However, we reasoned that since BIN4/RHL1 are predicted to form a complex, the expression of both BIN4 and RHL1 might be necessary for the interaction with TOPOVIB. Indeed, we could show by Y2H that an interaction was detected when all three proteins were co-expressed in yeast (supplementary fig. S8D and E, Supplementary Material online, diploids b and d), supporting the proposed model.

The implication of these two putative TopoVIB partners could be important for the eukaryal TopoVI activity. As A. thaliana TopoVIA/B mutants are defective in endoreduplication (Hartung et al. 2002; Sugimoto-Shirasu et al. 2002), it was proposed that the TopoVI decatenation activity is involved in resolving catenated chromatids generated by endoreduplication. In fact, although TopoVI possesses both relaxation and decatenation activities, it was shown that M. mazei TopoVI is preferentially a decatenase in vitro (McKie et al. 2022). Interestingly, the functional link with DNA replication is also supported by the interaction detected by immunoprecipitation between Pyrococcus abyssi TopoVI and the replication fork components PCNA, NusC...
and RFC (Ren et al. 2009). In Eukarya, some factors may also recruit TOPoVI to replication forks, and BIN4 and RHL1 may stabilize such interactions. BIN4 was also shown to interact with the methionine synthase MAT3 with a potential role on H3K9 methylation (Méteigner et al. 2022).

Early Origin of the TOPoVIIL complex and TOPoVIIBL divergence

High Conservation of SPO11 Orthologs

SPO11 is conserved in Eukarya, in agreement with the observation that most eukaryotes undergo sexual reproduction (Malik, Ramesh et al. 2007). Dictyostelids, which lack a Spo11 gene, are the only known exception. This observation raises a yet unsolved puzzle for meiotic recombination which is dependent on Spo11 in most species but not in dictyostelids (Goodenough and Heitman 2014; Bloomfield 2018). It is thought that early after the emergence of the last eukaryotic common ancestor (LECA), its descendants possessed two SPO11 copies (SPO11-1 and SPO11-2) that are detected based on the conservation of the two major domains (SY-CAP and Toprim) (Sprink and Hartung 2014). Loss of one copy occurred several times independently during evolution, and only some species have retained both paralogs (SPO11-1 and SPO11-2 in Plantae, and also in some amoebozoans, alveolates and excavates). Conversely, many eukaryotes have only one SPO11 (SPO11-1 in opisthokonts, some amoebozoans, rhizarians, haptophytes, cryptophytes, and excavates; and only SPO11-2 in stramenopiles, red and green algae) (Malik, Ramesh et al. 2007). SPO11 splice variants are conserved in plants (Sprink and Hartung 2014; Ku et al. 2020), and in mammals (Romanienko and Camerini-Otero 1999). Interestingly these conserved splice variants correspond to two isoforms, one with and one without the N-terminal helix required for SPO11 interaction with TOPoVIIBL. The variant without this helix should be catalytically inactive. In mice, expression kinetics data showed that the variant with the N-terminal helix (called SPO11β) is predominant at prophase onset, when meiotic DSBS form, and the variant without this helix (SPO11α) is predominant later in prophase (Bellani et al. 2010). Therefore, splicing regulation might contribute to modulate meiotic DSB activity.

In our investigation of SPO11 orthologs, we identified SPO11 in all eukaryal supergroups (fig. 4B), with the exception of dictyostelids and we identified another taxon where SPO11 is apparently absent: Tylencythomorpha (Nematoda, Clade IV) (fig. 4C). Syntenic analyses showed the specific loss of SPO11 in Strongyloides ratti and four related species or undergoing degeneration in Acrobeloides nanus as well as Ditylenchus dipsaci, but being apparently still functional in the related D. destructor (fig. 4C). We also observed some species with two SPO11 paralogs, and with a high degree of conservation including the catalytic site (catalytic tyrosine, Mg++ binding site, and T2BI box) (figs. 4A and 8, table 1 and supplementary fig. S9, Supplementary Material online). Moreover, we found that a conserved predicted additional N-terminal helix, absent in the characterized archaeal TOPoVIA, and adjacent to the helix interacting with TOPoVIIBL, was present in taxa-specific paralogs, reminiscent of the previously described predicted additional N-terminal helix in Asgard archaeal and eukaryal TopoVIA (supplementary fig. S10A, Supplementary Material online). Mus musculus SPO11 model shows the interaction of the predicted additional N-terminal helix with the Toprim domain (supplementary fig. S10B, Supplementary Material online), thus similar to A. thaliana and Asgard TopoVIA models (supplementary figs. S1B and S3A, Supplementary Material online). In S. cerevisiae, cross-linking and mass spectrometry on the SPO11 core complex (Spo11/Rec102/Rec104/Ski8) identified interactions between the N-terminal helix of Spo11 and both Rec102 and Rec104 (Claeys Bouuaert, Tischfield et al. 2021) but no or weak interactions between the N-terminal helix and the Toprim domain of Spo11. One potential interpretation for these differences is that the N-terminal helix of Spo11 could fold in distinct configurations, that is with the Toprim domain as suggested by models or with a partner as shown in S. cerevisiae. These alternative configurations may be involved in the regulation of Spo11 activity. The conserved T2BI motif is of unknown function. It has been proposed for Methanococcus jannaschii TOPoVI to regulate its activity (Takahashi et al. 2020), based on the proximity of some T2BI motif residues and the catalytic tyrosine of TOPoVIA (Nichols et al. 1999). It is intriguing to note that in S. cerevisiae, Ski8 interacts with Spo11 in a region overlapping with the T2BI motif (Arora et al. 2004; Claeyts Bouuaert, Tischfield et al. 2021). Based on analysis of the A. thaliana Ski8 ortholog, it was however concluded that the meiotic role of Ski8 observed in S. cerevisiae is not conserved (Jolivet et al. 2006). The putative role of the T2BI motif may thus be executed through molecular interactions that differ in distinct species.

We observed an exceptional feature of C. elegans SPO-11: a sub-genus specific predicted additional helix at the C-terminal end that might be implicated in partner interaction (supplementary fig. S10, Supplementary Material online). The presence of this extension in several Caenorhabditis species (clade V) as well as in some Clade IV nematodes (Tylencythomorpha) correlates with the apparent loss of TOPoVIIBL as determined by syntenic analyses (supplementary fig. S11B, Supplementary Material online).

Evolution and High Diversity of TOPoVIIBL homologs

TOPoVIIBL phylogeny is more complex due to its high level of divergence, as already observed in a preliminary phylogenetic analysis within plantae and metazoans (Robert, Nore et al. 2016). In fact, we observed a large heterogeneity between species, from the presence of a conserved to a highly divergent B subunit to species where TOPoVIIBL is undetectable. The divergence pattern suggests independent events, leading to the loss of similarity, and likely functional alterations relative to its TopoVIIBL ancestor subunit (figs. 4A and 8, and table 1). Importantly, it has been...
Fig. 5. Conservation of meiotic DSB proteins among metazoans: phyla-specific loss of the TOPOVIBL GHKL-like domain and drastic reduction of the SPO11-interacting transducer domain. (A) Schematic representation of metazoan TOPOVIBL proteins with a GHKL-like domain, a transducer including the predicted three α helices (3H) that interact with SPO11 and a C-terminal domain (CTD) (M. musculus), or with only 3H and CTD (P. pacificus), or with 3H and a minimal CTD including one α-helix that might interact with REC114 (S. mediterranea) (see alignments in supplementary figs. S17–S19, Supplementary Material online). (B) Schematic phylogenetic tree showing the presence (filled boxes) or not (empty boxes) of SPO11, TOPOVIBL, REC114 and MEI4 homologs in the indicated metazoan phyla. Dotted boxes indicate heterogeneity (in the same taxon, some species contain SPO11 and/or TOPOVIBL and others do not). Taxa in which TOPOVIBL comprises a GHKL-like domain are indicated in blue letters and with blue filled boxes. Note that in some species among Vertebrata, Polychaeta, Insecta, and Chelicerata, TOPOVIBL orthologs lack the GHKL-like domain and have a transducer limited to the 3H domain (see supplementary fig. S18, Supplementary Material online). The phylum (Nematoda) with species (e.g., C. elegans) having two REC114 paralogs is indicated. The tree on the left side does not represent the genetic distances, branch lengths being arbitrary and only used to illustrate the consensus view of the phylogenetic relationships among the major metazoan taxa. Dashed lines indicate taxa for which the relationships are still debated. (C) Modeled structures of TOPOVIBL–SPO11 interaction in P. pacificus (left panel) and M. musculus (middle panel). AF2 models only include TOPOVIBL 3H domains (in blue) and predict tight interaction with the modeled helices α2–3 of SPO11 (in brown). Overlay structures are shown in the right panel. The interaction Z-scores and RMSD values (for the merged heterotypic structures) are indicated. Model confidence (pLDDT) is shown on beneath of each predicted structure. The corresponding PAE plot for the modeled mouse heterodimer is shown in the lower right panel.
predicted that TopoVIL activity differs from that of TopoVI at least for the religation step, which is absent or repressed in the TopoVIL reaction (Robert, Vrielynck et al. 2016). Moreover, as some Type IIB topoisomerases can cleave DNA without ATP (Cadelle et al. 2014), the ATP binding and hydrolysis activity may not be an absolute prerequisite for TopoVIL function and/or this activity or may be substituted by alternative molecular interactions.

In several eukaryotic taxa, TOPOVIBL is readily identifiable due to its high conservation with TopoVIB, specifically in the GHKL ATP binding/hydrolysis domain. The comparison of archaean TopoVIB and TOPOVIBL from several chromalveolates highlighted the conservation of the N-strap required for dimerization, and of the N, G1, and G2 boxes required for ATP binding and hydrolysis (supplementary figs. S4 and S12, Supplementary Material online). In these species, the overall TOPOVIBL structure was highly similar to that of archaean TopoVIB, with the notable exception of the absence of the H2TH domain and the presence of a predicted additional helix in the C-terminal transducer subdomain (supplementary fig. S12, table 1, Supplementary Material online). However, this additional helix was present also in TopoVIB from Asgard archaea and eukaryotes (fig. 1B and supplementary fig. S4A, Supplementary Material online). These highly conserved TOPOVIBL proteins can be differentiated from TopoVIB by the absence of the H2TH domain, which in TopoVI has DNA binding activity and is important for strand passage (Wendorff and Berger 2018). Conversely, in other eukaryotic taxa, TOPOVIBL was highly divergent from TopoVIB. Specifically, they lost the N-strap, the three conserved boxes of the GHKL, the BF motifs (thus referred to as GHKL-like), and the H2TH domain. Therefore, the three predicted helices within the C-terminal transducer subdomain that interacts with SPO11 were the major remaining conserved feature between these TOPOVIBL and TopoVIB (supplementary fig. S13, Supplementary Material online). The WxKxY motif was only partially conserved, with mainly a remaining tryptophane residue (supplementary fig. S13, Supplementary Material online).

We observed the divergence of TOPOVIBL with the specific loss of the conserved BF motifs within some taxa, such as Oomycota (Stramenopila). Although some species, such as *Aphanomyces astaci* (Saprolegniales) had a highly conserved GHKL, in Albuginales (e.g., *Albugo candida* and *Albugo laibachii*), mutations disrupted both the N-strap and the conserved boxes (N, G1 and G2) required for ATP binding and hydrolysis (supplementary fig. S14A, Supplementary Material online). This indicates that TOPOVIBL function may have evolved by simultaneously losing a dimerization interface (the N-strap) and the ATPase activity (the BF motifs). However, the structural organization of the transducer region was conserved (supplementary fig. S14, Supplementary Material online). In *A. astaci*, in addition to the conservation of the GHKL BF motifs, models of the GHKL domain could be reconstituted with a high score when compared to *Saccharolobus shibatae* TopoVIB. This applied to both *A. astaci* TopoVIB and TOPOVIBL (supplementary fig. S15, Supplementary Material online). In *A. astaci* TopoVIB, a large insertion is mainly disordered and gives low pLDDT scores and high PAE values. The models also showed specifically the conservation of the N-strap helix (zoom in supplementary fig. S15, Supplementary Material online panel A). The ATP binding site also should be conserved because its structural models were highly similar between *A. astaci* TopoVIB and TOPOVIBL (supplementary fig. S16, Supplementary Material online).

The TOPOVIBL organization plasticity was further revealed by one additional evolutionary outcome: the separation of the GHKL-like domain and the transducer in some species, for instance in *S. cerevisiae*. In budding yeast, REC102 was identified as homologous to the TOPOVIBL transducer domain (Robert, Nore et al. 2016). It was then proposed that REC104, which does not contain any identifiable feature of a GHKL domain but which interacts with REC102, could substitute for the GHKL domain (Robert, Vrielynck et al. 2016). This was shown by the biochemical characterization of the REC102/REC104 complex (Claeys Bouuaert, Tischfield et al. 2021). Although we could detect proteins with homology to the transducer domain of TOPOVIBL, it is currently very challenging to determine in an unbiased manner a GHKL-like domain given the poor conservation observed when it is identified (see supplementary fig. S13, Supplementary Material online). REC104 could be identified as a partner, based on the genetic data that allowed showing its essential role for meiotic DSB formation in *S. cerevisiae* (Galbraith and Malone 1992).

The high TOPOVIBL diversity was recapitulated in metazoans: few phya have a TOPOVIBL with a GHKL domain lacking *bona fide* BF motifs, thus named GHKL-like (but with a conserved 3D fold, as determined by modeling) while others have only retained structural features in the transducer domain, specifically the three conserved helices (3H) predicted to be involved in the interaction with SPO11 (fig. 5 and supplementary fig. S17, Supplementary Material online). All metazoan TOPOVIBL proteins also contain a C-terminal domain (CTD) that includes an alpha helix interacting with REC114 in *M. musculus* TOPOVIBL (Nore et al. 2021) (supplementary fig. S17, Supplementary Material online). REC114 is an evolutionary conserved protein essential for meiotic DSB formation (Kumar et al. 2010). Its direct interaction with the TopoVIL complex in *S. cerevisiae* and *M. musculus* suggests that it plays a direct role in promoting DSB activity (Claeys Bouuaert, Pu et al. 2021; Nore et al. 2021). An even more drastic evolutionary step is the complete loss of the GHKL-like domain, previously observed in *S. cerevisiae*, *Schizosaccharomyces pombe* and *Drosophila melanogaster* (Robert, Nore et al. 2016). We detected TOPOVIBL lacking any GHKL-like domain in several distant clades, such as *Hemichordata*, *Platyhelminthia*, *Insecta*, and *Cnidaria* (fig. 5B), and also within groups, such as in *Amphibia* (Chordata), *Polychaeta* (Annelida) and *Chelicerata* (Arthropoda) (supplementary fig. S188, Supplementary Material online). This indicates repeated independent partial or complete losses of the GHKL-like domain. Therefore, in these species, TOPOVIBL is only
of interacting partners. The concerted evolution of TopoVIA/B with BIN4 and RHL1 suggests that these two proteins are part of a large holoenzyme complex and are directly involved in regulating TopoVI catalytic activity. This information may help to understand why and how TopoVIL has been retained in some eukaryotes. This could indicate a specific need linked to the resolution of catenated DNAs in DNA replication, in cells undergoing endoreduplication. One TopoVI-specific, but not exclusive feature is its decatenase activity. As suggested by recent biochemical studies, this may be linked to specific substrate recognition. The proposition of TopoVI binding to DNA cross-links (Wendorff and Berger 2018) is interesting with respect to the topological status of sister chromatids after DNA replication (McKie et al. 2022) and some factors may tether TopoVI to replication forks or intermediates. Our observation of a similarity between BIN4/RHL1 and the Ctf8/Dcc1 heterodimer which acts at replication forks motivates to explore this hypothesis.

The molecular evolution of TopoVI in a DNA cleavage-activity to initiate recombination during meiosis remains an enigma: why other type II topoisomerases have not evolved to achieve this function? Is there a specific property of TopoVI that could account for this observation? In meiosis, TopoVIL activity takes place at meiotic prophase I onset, when the DNA has been replicated. A temporal link with DNA replication has been shown in S. cerevisiae (Borde et al. 2000) opening the possibility that the TopoVIL substrate could be catenated sister chromatids. However, a requirement for the presence of sister chromatids is not supported by the observation that in S. cerevisiae and S. pombe, DNA replication is dispensable for meiotic DSB formation (Murakami and Nurse 2001; Blitzblau et al. 2012). TopoVIL activity and therefore the TopoVIL substrate remain to be characterized at the biochemical level. Given the extreme diversity of TopoVIL in Eukarya (table 1), one can anticipate a range of biochemical activities for TopoVIL, from enzymes with the ability to religate the broken ends in species with a highly conserved GHKL to a DNA cleavage-only activity for others. For those species where TopoVIL may have maintained a DNA cleavage-ligation activity, some additional meiotic factors should be involved to prevent the relocation of broken ends and thus to allow the DSB ends to engage into homologous recombination during meiosis. For those species with TopoVIL containing a poorly conserved GHKL domain (i.e., GHKL-like), the question as to how the SPO11/TOPOVIL complex dimerizes would be important to answer. Indeed, the common expected features for all TopoVIL are to act as a dimer to introduce two concerted nicks and to form a protein-DNA covalent complex, as observed for TopoVI (Corbett and Berger 2005; Graille et al. 2008). The stability of the dimer, via Spo11 and/or TopoVIL, is expected to be important and could be a regulatory step for the activity: dissociation of the dimer interface(s) may compromise religation. Minimal versions of TopoVIL seem to include a three-helical (H3) domain for interaction with Spo11, and a
putative domain of interaction with Rec114 in Metazoa. Partners such as Rec114 and Mei4, may regulate TopoVI activity by inducing changes in conformation and/or stability of the complex. It has been proposed that a REC114/MEI4 complex with a 2/1 stoichiometry could stabilize the whole holoenzyme complex as a dimer (Nore et al. 2021). Because, Spo11 forms a covalent complex with the DNA (Keeney et al. 1997), in the absence of religation, this complex is a priori a dead-end product and the enzyme is not recycled. On the other end, the absence of religation means a high risk for genome instability since the broken ends should be repaired by homologous recombination. These questions also apply to non-meiotic cells, since the expression of some meiotic genes such as Spo11 has been detected in cancer cells and proposed to participate to tumorigenesis (Jay et al. 2021).

Materials and Methods

Homolog Identification, Alignments, Models, and Synthony

Most TopoVIα, TopoVIB, BIN4, RHL1, SPO11, TOPOVIβ, REC114, and MEI4 homologs were identified from series of PSI-BLAST and HHMER analyses at the Max Planck Institute (MPI) using the MPI Toolkit (https://toolkit.tuebingen.mpg.de). Primary sequences were corrected through genomic translation and alternative exon prediction (https://web.expasy.org/translate/). Multiple sequence alignments (MSAs) generated by MAFFT 7.0 (http://mafft.cbrc.jp/alignment/server) with the auto mode and default parameters were used as inputs. MSA inputs included only previously validated homologs (as described hereafter), and alternative query sequences were systematically used as the MSA header sequence to improve detection of remote homologs. To discriminate among GHKL-containing homologs, MSA inputs included either full-length proteins or only their transducer domain, particularly the three-helical (H3) SPO11-interacting subdomain. Candidate proteins were validated or not by secondary structure prediction with PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred). Several D5B proteins were identified using PSI-BLAST or tblastn at NCBI (https://blast.ncbi.nlm.nih.gov/blast.cgi), notably using transcriptome shotgun assembly (TSA) sequence databases, and dedicated BLAST servers, particularly from the Caenorhabditis Genome Project (CGP) (http://blast.caenorhabditis.org/). Remote homologs were validated by AlphaFold2 (AF2) modeling (see below), particularly on the basis of their capacity to stably interact with the SPO11 SY-CAP domain through their H3 domain (Z-score > 1.5). Protein–protein interaction Z-scores were calculated with PiZSA (http://cosp1.iser.pune.ac.in/pizsa/) with a distance threshold of 4.0 Ångstroms.

MSAs were colored with JALVIEW 2.11.1.7 (https://www.jalview.org/) using the ClustalX similarity scheme, or with ESPript 3.0 (http://espript.ibcp.fr) using the % equivalent similarity score scheme, with the header sequence predicted secondary structure and the Black&White coloring scheme. Structural elements in figure 1B, supplementary figs. S1A, S2, S4–6, S7A, S9–10, S11A, S12–14 and S17, S18A, S19A, and S20–21, Supplementary Material online were extracted from the AlphaFold database (https://alphafold. ebi.ac.uk/) or from AF2 modeling. Protein modeling was done with an advanced version of AF2 from ColabFold (https://github.com/sokrypton/ColabFold). The per-residue confidence score (pLDDT; values greater than 90 indicating high confidence) and distance error for every pair of residues (PAE) were provided by the ColabFold website. The relative position of two domains is confidently predicted then the PAE values are less than 5 Ångstroms. Models are available upon request to HMB (via e-mailing to B.d.M.). Models were superimposed with MatchMaker from CHIMERA 1.15 (https://www.cgl.ucsf.edu/chimera/). ATP binding predictions were done with I-TASSER (https://zhanggroup.org/I-TASSER/). Protein structures were compared with DALI (http://ekhidna2.biocenter.helsinki.fi/dali/) and PDBFold (https://www.ebi.ac.uk/msd-srv/ssm/).

Synthony among nematodes was determined through series of BLASTp analyses using SPO11 or TOPOVIβ homologs as query sequences, then by inspection of the flanking loci using the corresponding Genome browsers, as provided by the WormBase Parasite website (https://parasite.wormbase.org/index.html). Homologies among recovered loci were identified through comparison to the C. elegans genome (https://wormbase.org/tools/blat_blast).

cDNA Cloning

The potential E. siliculosus TOPOVI, BIN4 and RHL1 (protein and gene) sequences were identified based on a combination of sequence alignments (H.-M.B., unpublished) and the RNA sequencing data available in the Genome viewer of OrcaE (E. siliculosus V2 data, https://bioinformatics.psb.ugent.be/orcae/). For the validation of the potential coding sequences of E. siliculosus genes, the cDNAs were synthesized by reverse transcription, as previously described in Grey et al. (2016), using RNA samples from a diploid sporophyte (Ec702) and a haploid sporophyte (Ec32, male) undergoing apoameiosis. This was followed by PCR amplification of the cDNA samples using gene-specific primers (supplementary table S1, Supplementary Material online), as previously described in Grey et al. (2016). The Gateway Gene Cloning system (Invitrogen) and synthesized cDNA (by GeneArt) optimized for expression in E. coli (compatible with codon usage of S. cerevisiae) were used for the cloning of full-length and truncated versions of E. siliculosus TOPOVI, BIN4, and RHL1 genes into pGADH-GW or pAS2dd.

Yeast two Hybrid Assays

Yeast two hybrid assays were performed as previously described in Imai et al. (2017). A diploid clone that expresses M. musculus Gal-4 AD-TOPOVIβ and Gal4 BD-SPO11β was used as a control for positive interactions (positive control) (Robert, Nore et al. 2016). For testing interactions upon expression of three proteins, the third partner (RHL1
or BIN4) was expressed without fusion to Gal4 from the pAG422 vector carrying the ADE2 gene (gift from E. Bertrand). Interactions were assayed based on the expression of the HIS3 gene.

Acknowledgement

B.d.M. was funded by Agence Nationale de la Recherche (ANR-18-CE11-0024-01), Prize Coups d’Élan for French Research from the Fondation Bettencourt-Schueller, European Research Council (ERC) Executive Agency under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. [322788]), and CNRS. H.M.B. is currently retired and was granted as a CNRS researcher. We thank Thomas Robert for discussions and critical reading of the manuscript.

Data Availability

All data are incorporated into the article and its online Supplementary Material.

Supplementary Material

Supplementary data are available at Molecular Biology and Evolution online.

References

Arora C, Kee K, Maleki S, Keeny S. 2004. Antiviral protein sk8 is a direct partner of spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol Cell. 13:549–559.

Baudat F, Imai Y, de Massy B. 2013. Meiotic recombination in mammals: localization and regulation. Nat Rev Genet. 14:794–806.

Bellani MA, Boateng KA, McLeod D, Camerini-Otero RD. 2010. The expression profile of the major mouse SPO11 isoforms indicates that SPO11beta introduces double strand breaks and suggests that SPO11alpha has an additional role in prophase in both spermatocytes and oocytes. Mol Cell Biol. 30:4391–4403.

Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forrerpe P. 1997. An atypical topoisomerase II from Archaea with implications for meiotic recombination [see comments]. Nature. 386:414–417.

Bermudez VP, Mamiya Y, Tappin I, Ozato K, Yokomori K, Hurwitz J. 2003. The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA. Proc Natl Acad Sci U S A. 100:10237–10242.

Blitzblau HG, Chan CS, Hochwagen A, Bell SP. 2012. Separation of DNA replication from the assembly of break-competent meiotic chromosomes. PLoS Genet. 8:e1002643.

Bloomfield G. 2016. Atypical ploidy cycles, Spo11, and the evolution of meiosis. Semin Cell Dev Biol. 54:158–164.

Bloomfield G. 2018. Spo11-independent meiosis in social amoebae. Annu Rev Microbiol. 72:293–307.

Borde V, Goldman AS, Lichtten M. 2000. Direct coupling between meiotic DNA replication and recombination initiation. Science. 290:806–809.

Breuer C, Stacey NJ, West CE, Zhao Y, Chory J, Tsukaya H, Azumi Y, Maxwell A, Roberts K, Sugimoto-Shirasu K. 2007. BIN4, A novel component of the plant DNA topoisomerase VI complex, is required for endoreduplication in Arabidopsis. Plant Cell. 19:3655–3668.

Champoux JJ. 2001. DNA Topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 70:369–413.

Chen SH, Chan NL, Hsieh TS. 2013. New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem. 82:139–170.

Claes Bouwaert C, Pu S, Wang J, Oger C, Daccache D, Xie W, Patel DJ, Keeney S. 2021. DNA-driven condensation assembles the meiotic DNA break machinery. Nature. 592:144–149.

Claes Bouwaert C, Tischfeld SE, Pu S, Mimitou EP, Arias-Palomos E, Berger JM, Keeney S. 2021. Structural and functional characterization of the Spo11 core complex. Nat Struct Mol Biol. 28:92–102.

Coelho SM, Peters AF, Muller D, Cock JM. 2020. Ectocarpus: an evo-devo model for the brown algae. Evodevo. 11:19.

Corbett KD, Benedetti P, Berger JM. 2007. Holloenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI. Nat Struct Mol Biol. 14:611–619.

Corbett KD, Berger JM. 2003. Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J. 22:151–163.

Corbett KD, Berger JM. 2005. Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI. Structure. 13:873–882.

Corbett KD, Schoeﬄer AJ, Thomsen ND, Berger JM. 2005. The structural basis for substrate specificity in DNA topoisomerase IV. J Mol Biol. 351:545–561.

Dutta R, Inouye M. 2000. GHKL, an emergent ATPase/kinase super-family. Trends Biochem Sci. 25:24–28.

Forrester P, Gadelle D. 2009. Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res. 37:679–692.

Forrester P, Gribaldo S, Gadelle D, Serre MC. 2007. Origin and evolution of DNA topoisomerases. Biochimie. 89:427–446.

Gadelle D, Kruvicov M, Raymann K, Mayer C, Forrester P. 2014. DNA Topoisomerase VIII: a novel subfamily of type IIIB topoisomerases encoded by free or integrated plasmids in Archaea and Bacteria. Nucleic Acids Res. 42:8578–8591.

Galbraith AM, Malone RE. 1992. Characterization of REC104, a gene required for early meiotic recombination in the yeast Saccharomyces cerevisiae. Dev Genet. 13:392–402.

Gellert M, Mizuuchi K, O’Dea MH, Nash HA. 1976. DNA Gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A. 73:3872–3876.

Goodenough U, Heitman J. 2014. Origins of eukaryotic sexual reproduction. Cold Spring Harb Perspect Biol. 6a016154.

Graille M, Cadiere L, Durand D, Lecointe F, Gadelle D, Quevillon-Cheruel S, Vachette P, Forrester P, van Tilburg H. 2008. Crystal structure of an intact type II DNA topoisomerase: insights into DNA transfer mechanisms. Structure. 16:360–370.

Grey C, Espeut J, Ametsitsi R, Kumar R, Luksza M, Brun C, Verlhac MH, Suja JA, de Massy B. 2016. SKAP, an outer kinetochore protein, is required for mouse germ cell development. Reproduction. 151:239–251.

Hartung F, Angelis KJ, Meister A, Schubert I, Melzer M, Puchta H. 2002. An archaeabacterial topoisomerase homolog not present in other eukaryotes is indispensable for cell proliferation of plants. Curr Biol. 12:1787–1791.

Hartung F, Puchta H. (0 co-authors) 2001. Molecular characterization of homologues of both subunits A (SPO11) and B of the archaeabacterial topoisomerase 6 in plants. Gene. 271:81–86.

Himnan AW, Ye H, Roelens B, Yamaya K, Woglar A, Bourbon HG, Chi P, Villeneuve AM. 2021. Caenorhabditis elegans DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proc Natl Acad Sci U S A. 118(33):e2109306118.

Hunter N. 2015. Meiotic recombination: the essence of heredity. Cold Spring Harb Perspect Biol. 7(12):a016618.

Imai Y, Baudat F, Taillepierre M, Stanzione M, Toth A, de Massy B. 2017. The PRDM9 KRAB domain is required for meiosis and involved in protein interactions. Chromosoma. 126:681–695.

Jay A, Reitz D, Namekawa SH, Heyer WD. 2021. Cancer testis antigens and genomic instability: more than immunology. DNA Repair (Amst). 108:103214.
