Quasi-permutable normal operators in octonion Hilbert spaces and spectra

Ludkovsky S.V.

15 March 2012

Abstract

Families of quasi-permutable normal operators in octonion Hilbert spaces are investigated. Their spectra are studied. Multiparameter semigroups of such operators are considered. A non-associative analog of Stone’s theorem is proved.

1 Introduction

The theory of bounded and unbounded normal operators over the complex field is classical and have found many-sided applications in functional analysis, differential and partial differential equations and their applications in the sciences [4, 11, 12, 14, 32]. Nevertheless, hypercomplex analysis is fast developing, because it is closely related with problems of theoretical and mathematical physics and of partial differential equations [2, 7, 9]. On the other hand, the octonion algebra is the largest division real algebra in which the complex field has non-central embeddings [3, 11, 13]. The octonion algebra also is intensively used in mathematics and various applications [5, 10, 8, 15, 16].

key words and phrases: non-commutative functional analysis, hypercomplex numbers, quaternion skew field, octonion algebra, quasi-permutable operators, spectra, spectral measure, non-commutative integration

Mathematics Subject Classification 2010: 30G35, 17A05, 17A70, 47A10, 47L30, 47L60
Previously analysis over quaternion and octonions was developed and spectral theory of bounded normal operators and unbounded self-adjoint operators was described \[18, 19, 20, 21, 22\]. Their applications in partial differential equations were outlined \[23, 24, 25, 26, 27\]. This paper is devoted to families of quasi-permutable normal operators in octonion Hilbert spaces. Their spectra are studied. Multiparameter semigroups of such operators are considered. A non-associative analog of Stone’s theorem is proved.

Notations and definitions of papers \[18, 19, 20, 21, 22\] are used below. The main results of this article are obtained for the first time.

2 Quasi-permutability of normal operators

1. Definitions. If \(jA\) is a set of \(R\) homogeneous \(\mathcal{A}_v\) additive operators with \(\mathcal{A}_v\) vector domains \(D(\mathcal{A})\) dense in a Hilbert space \(X\) over the Cayley-Dickson algebra \(\mathcal{A}_v\), \(2 \leq v, \quad j \in \Lambda, \quad \Lambda\) is a set, then we denote by \(al_{\mathcal{A}_v}(jA : \ j \in \Lambda)\) a family of all operators \(B\) with \(\mathcal{A}_v\) vector domains in \(X\) obtained from \((jA : \ j \in \Lambda)\) by a finite number of operator addition, operator multiplication and left and right multiplication of operators on Cayley-Dickson numbers \(b \in \mathcal{A}_v\) or on \(bI\), where \(I\) denotes the unit operator on \(X\).

Let \(\mathcal{A}_v\) be two normal operators in a Hilbert space \(X\) over the Cayley-Dickson algebra \(\mathcal{A}_v\), \(2 \leq v\). Suppose that \(\mathcal{A}_v\) and \(\mathcal{A}_v\) are affiliated with a quasi-commutative von Neumann algebra \(\mathcal{A}\) over \(\mathcal{A}_v\) with \(2 \leq v \leq 3\). Let \(\mathcal{E}_v\) and \(\mathcal{E}_v\) be their \(\mathcal{A}_v\) graded projection valued measures defined on the Borel \(\sigma\)-algebra of subsets in \(\mathcal{A}_v\) (see also \(\S\)2 and \(\S\)I.2.58 and I.2.73 in \[28\]).

In this section the simplified notation \(E\) instead of \(\hat{E}\) will be used.

We shall say that two normal operators \(\mathcal{A}_v\) and \(\mathcal{A}_v\) quasi-permute if

\[
1E(\delta_1) 2E(\delta_2) = 2E(\delta_2)1E(\delta_1)
\]

for each Borel subsets \(\delta_1\) and \(\delta_2\) in \(\mathcal{A}_v\).

Operators \(\mathcal{A}_v\), \(\mathcal{A}_v\) and \(\mathcal{A}_v\) are said to have property \(P\) if they satisfy the following four conditions \((P1 - P4)\):

\((P1)\) they are normal,
(P2) they are affiliated with a von Neumann algebra \mathcal{A} over either the quaternion skew field or the octonion algebra \mathcal{A}_v with $2 \leq v \leq 3$ and

\[(P3) \quad A = 1 A 2 A \]

(P4) the family $\text{alg}_{\mathcal{A}_v}(I, A, A^*, 1 A, 1 A^*, 2 A, 2 A^*) =: Q(A, 1 A, 2 A) =: Q$ over \mathcal{A}_v generated by these three operators is quasi-commutative, that is a von Neumann algebra $\text{cl}_{\text{alg}}\mathcal{A}_v(I, A, A^*, 1 A, 1 A^*, 2 A, 2 A^*) \subset L_q(X)$ contained in $L_q(X)$ is quasi-commutative for each bounded Borel subsets $\delta, \delta_1, \delta_2 \in \mathcal{B}(\mathcal{A}_v)$, where $2 \leq v \leq 3$.

It is possible to consider a common domain $\mathcal{D}^\infty(Q) := \cap_{T \in Q} \mathcal{D}^\infty(T)$ for a family of operators Q, where $\mathcal{D}^\infty(T) := \cap_{n=1}^\infty \mathcal{D}(T^n)$. Then the family Q on $\mathcal{D}^\infty(Q)$ can be considered as an \mathcal{A}_v vector space. Take the decomposition $Q = Q_0 i_0 \oplus Q_1 i_1 \oplus \ldots \oplus Q_{2^v-1} i_{2^v-1}$ of this \mathcal{A}_v vector space with pairwise isomorphic real vector spaces $Q_0, Q_1, ..., Q_{2^v-1}$. Then as in §2.5 [29] for each operator $B \in Q$ we put

\[(2) \quad B = \sum_j j B \text{ with } j B = \hat{\pi}^j(B) \in Q_j i_j \]

for each j, where $\hat{\pi}^j : Q \rightarrow Q_j i_j$ is the natural \mathbb{R} linear projection, real linear spaces $Q_j i_j$ and $i_j Q_j$ are considered as isomorphic, so that

\[(3) \quad \sum_{k=0}^{2^v-1} k \hat{T} = T. \]

If E is an \mathcal{A}_v graded projection valued measure on the Borel σ-algebra $\mathcal{B}(\mathcal{A}_v)$ for a normal operator $T \in Q$, for uniformity of this notation we put also

\[(4) \quad k \hat{E}(dz).ty = \hat{\pi}^k E(dz).ty \]

for every vector $y \in X$ and $t = t_0 i_0 + \ldots + t_{2^v-1} i_{2^v-1} \in \mathcal{A}_v$, where $z \in \mathcal{A}_v$, $t_0, ..., t_{2^v-1} \in \mathbb{R}$, $E(dz).ty = E(dz).(ty)$.

2. **Lemma.** Let operators A, B and D have property P and let F be an \mathcal{A}_v graded projection operator which quasi-permutes with A so that $\mathcal{R}(F) \subset \mathcal{D}(A)$, where $\mathcal{D}(A) = \text{Domain}(A), \mathcal{R}(A) = \text{Range}(A)$. Suppose that G, H and J are the restrictions of A, FB and FD to $\mathcal{R}(F)$ respectively.
Then \(G, \ H \) and \(J \) are bounded operators so that \(H \) and \(J \) quasi-permute with \(G \). Moreover, \(H^* \) and \(J^* \) are the restrictions to \(\mathcal{R}(F) \) of \(B^*F^* \) and \(C^*F^* \) respectively, where

\[
(1) \ j^k(\hat{B}^*) = (-1)^{\kappa(j,k)+\eta(k)} k \hat{F}^j(\hat{B}^*) \quad \text{and} \\
(2) \ j^k(\hat{D}^*) = (-1)^{\kappa(j,k)+\eta(k)} k \hat{F}^j(\hat{D}^*)
\]

for each \(j, k \), with \(\kappa(j, k) = 0 \) for \(j = k \) or \(j = 0 \) or \(k = 0 \), \(\kappa(j, k) = 1 \) for \(j \neq k \geq 1 \), \(\eta(0) = 0 \), \(\eta(k) = 1 \) for each \(k \geq 1 \).

Proof. Note 2.5 and Theorems 2.29, 2.44 and Proposition 2.32 in [29] and Definitions 1 imply that in components the following formulas are satisfied:

\[
(3) \ \frac{j}{4} \hat{E}(\delta_1) = \frac{k}{4} \hat{E}(\delta_2) = (-1)^{\kappa(j,k)} k \hat{E}(\delta_1) = \frac{j}{4} \hat{E}(\delta_2) = \frac{k}{4} \hat{E}(\delta_1)
\]

for each \(j, k = 0, 1, 2, \ldots \), where \(\kappa(j, k) = 0 \) for \(j = k \) or \(j = 0 \) or \(k = 0 \), \(\kappa(j, k) = 1 \) for \(j \neq k \geq 1 \),

where \(\theta_\ell(x_j) \) is denoted by \(x_j \) for short, \(\theta_\ell^k : X_j \to X_k \) is an \(R \)-linear topological isomorphism of real normed spaces (see §§I.2.1 and I.2.73 in [28]). Suppose that \(x, y \in \mathcal{R}(F) \), hence \(x, y \in \mathcal{D}(B) \subset \mathcal{D}(B^*) \), since \(\mathcal{R}(F) \subset \mathcal{D}(A) \subset \mathcal{D}(B) \).

Therefore

\[
(4) \ < FBx; y > = < Bx; y > = < x; B^*y > = < x; F^*Bx > \quad \text{and} \\
(5) \ < j^k \hat{B}x_j; y_j > = < k \hat{B}x_j; y_j > = (-1)^{\kappa(j,k)+\eta(k)} < x_j; j^k \hat{F}^k(\hat{B}^*)y_j >
\]

If \(L = F^*B \big|_{\mathcal{R}(F)} \), then \(H^* = L \) and \(H = L^* \) by Formula (4). The operator \(L^* \) is closed, consequently, \(H \) is closed and \(\mathcal{D}(H) \subset \mathcal{R}(F) \). In view of the closed graph theorem for \(R \)-linear operators the operator \(H \) is bounded 1.8.6 [12]. This implies that the operator \(G \) is also bounded, since the operator \(A \) is normal and hence closed so that \(\mathcal{R}(F) \subset \mathcal{D}(A) \). In view of Theorems 2.27, 2.29 an 2.44 in [29] the operator \(A \) has an \(A_v \) graded projection valued measure. Take now \(x \in \mathcal{R}(F) \), hence \(Ax \in \mathcal{R}(F) \subset \mathcal{D}(A) \subset \mathcal{D}(B) \), since

\[
\hat{F}^k \hat{F}^j = (-1)^{\kappa(j,k)} k \hat{F}^j \hat{F}^k \quad \text{and} \quad \mathcal{D}(F) = \mathcal{D}(F)_0 \oplus \ldots \oplus \mathcal{D}(F)_{m_i} \oplus \ldots
\]

for each \(j, k \) and

\[
A = \int_{A_v} F(dt).t
\]

so that \(j^k \hat{A} \subset (-1)^{\kappa(j,k)} k \hat{A} j^k \hat{F} \) for each \(j, k \). Symmetric proof is for \(A \) and \(C \) instead of \(A \) and \(B \). The operators \(B^*B \) and \(C^*C \) belong to the family \(alg_{A_v}(J, A, A^*, B, B^*, C, C^*) \).
In view of Theorem I.3.23 [28] the spectra of \(B^*B = \int_{-\infty}^{\infty} B^*B F(dt).t^2 \) and \(D^*D = \int_{-\infty}^{\infty} D^*D F(dt).t^2 \) are real so that \(B^*B F \) and \(D^*D F \) are \(\mathcal{A}_v \) graded projection valued measures for \(B^*B \) and \(D^*D \) respectively on \(\mathcal{B}(\mathbb{R}) \subset \mathcal{B}(\mathcal{A}_v) \). Then from Formulas (2, 4) and 1(1, P1 – P4) we deduce that
\[
(7) \quad (j \hat{F}^j k \hat{B}) s A_{x_a} = (j \hat{F}^j k \hat{B}) \sum_{p,q} \{p \hat{D}^q \hat{A} + (-1)^{\kappa(p,q)} q \hat{D}^p \hat{B}] = \sum_{p,q} \sum_{i,j} \{j \hat{F}^j k \hat{B}^{p \hat{D}^q \hat{I}} + (-1)^{\kappa(p,q)}(j \hat{F}^j k \hat{B})\{q \hat{D}^p \hat{B]}} = (-1)^{\kappa(s,l)} s \hat{A}(j \hat{F}^j k \hat{B} x_n),
\]
since the set theoretic composition of operators is associative: \((FB)(DB) = F((BD)B), \) where \(l \) is such that \(i_j k \in \mathbb{R}_l \). Thus \(H \) and analogously \(J \) quasi-permute with \(G \), since the family \(\text{alg} \gamma. \text{alg}(I, A, A^*, 1A, 1A^*, 2A, 2A) \) is quasi-commutative. From Formulas (5, 6) we infer Equalities (1, 2).

3. Notation. Suppose that \(a, b \in \mathcal{A}_v \). If \(b_j \geq a_j \) for each \(j = 0, 1, 2, ..., 2^r - 1 \), this fact will be denoted by \(b \succeq a \). Then \(\mathcal{I}_{a,b} := \{ z \in \mathcal{A}_v : b \succeq z \succeq a \} \).

4.Lemma. Let operators \(A, B \) and \(D \) have property \(P \) and let \(F \) be an \(\mathcal{A}_v \) graded projection valued measure for \(A \), let also \(b \succeq a \in \mathcal{A}_v \). Then \(\mathcal{R}(F(\mathcal{I}_{a,b})) =: Y \) reduces both \(B \) and \(D \) and these operators restricted to \(Y \) are bounded and normal and they quasi-permute with the restriction \(|A|_Y \).

Proof. Consider the pair of operators \(A \) and \(B \). Put \(nF := F|_{\mathcal{I}_{b(n),b(n)}} \) and \(nV = \mathcal{R}(F(\mathcal{I}_{b(n),b(n)})) \) with \(b(n)_j = ni_j \) for every \(n \in \mathbb{N} \) and each \(j = 0, 1, 2, ..., 2^r - 1 \). Then \(nV \subset n_{+1}V \) for each \(n \). Therefore, an \(\mathcal{A}_v \) vector subspace \(\bigcup_{n} nV =: V \) is dense in the Hilbert space \(X \) over the Cayley-Dickson algebra \(\mathcal{A}_v \), consequently, \(\lim_{n} nF = I \) in the strong operator topology. Each operator \(nA := A|_{nV} \) is bounded and normal and has the \(\mathcal{A}_v \) graded projection valued measure on the Borel \(\sigma \)-algebra \(\mathcal{B}(\mathcal{A}_v) \) of all Borel subsets in \(\mathcal{A}_v \) so that \(nF = F|_{nV} \) for each natural number \(n \). We consider the restriction \(nG := nFB|_{nV} \). It is known from Lemma 2, that each operator \(nG \) is bounded and quasi-permutates with \(nB \) so that
\[
(1) \quad \quad c^n = \hat{F}^j_k \hat{B}^j_k \hat{F} = (-1)^{\kappa(j,k)} \hat{F}^j_k \hat{B}^j_k \hat{F}
\]
for each \(j, k \), consequently,
\[
(2) \quad \quad \hat{F}(\delta) \hat{F}(\delta_1) \hat{F}(\delta_2) = (-1)^{\kappa(j,k)} \hat{F}(\delta) \hat{F}(\delta_2) \hat{F}(\delta_1)
\]
for each \(j, k \).
for each \(x \in nV_0 \) and \(\delta, \delta_1, \delta_2 \in \mathcal{B}(\mathcal{A}_v) \), where \(_nG \) and \(_nB \) denote \(\mathcal{A}_v \) graded projection valued measures for the operators \(_nG \) and \(_nB \) correspondingly.

Let now \(y \in \mathcal{D}(A)_0 \) and \(\delta \in \mathcal{B}(\mathcal{A}_v) \) be fixed, hence

\[
\lim_n \quad \frac{1}{n} \tilde{F}(\delta)(\frac{1}{n} \tilde{F}(\delta_1)) = \lim_n \quad \frac{1}{n} \tilde{F}(\delta)(\frac{1}{n} \tilde{F}(\delta_2)) = \frac{1}{n} \tilde{F}(\delta) \quad \frac{1}{n} \tilde{F}(\delta_1) x
\]

where \(i_s = \pm i_t, \psi(s, j, k) \in \{0, 1\} \) is an integer so that \(i_s(i_j i_k) = (-1)^{\psi(s, j, k)}(i_s i_j)i_k \).

If a vector \(x \in \bigcup_n nV_0 \) is given, then there exists a natural number \(m \) such that

\[
\lim_n \quad \frac{1}{n} \tilde{F}(\delta)(\frac{1}{n} \tilde{F}(\delta_1)) = \lim_n \quad \frac{1}{n} \tilde{F}(\delta)(\frac{1}{n} \tilde{F}(\delta_2))\]

for each \(n > m \), consequently,

\[
\lim_n \quad \frac{1}{n} \tilde{F}(\delta)(\frac{1}{n} \tilde{F}(\delta_1)) = \frac{1}{n} \tilde{F}(\delta)(\frac{1}{n} \tilde{F}(\delta_2)),
\]

where \(F(\mathcal{A}_v) = I, I \) denotes the unit operator. From Formulas (2 \& 5) and the inclusions \(\bigcup_n nV =: V \subset \mathcal{D}(A) \subset \mathcal{D}(B) \) it follows, that

\[
\tilde{F}(\delta)^j x s i_s = (-1)^{\xi(j, k, s)} \frac{1}{n} \tilde{F}(\delta) \quad \frac{1}{n} \tilde{F}(\delta_1) x s i_s
\]

for each \(x s i_s \in V \) and \(j, k, s = 0, 1, 2, ..., \) where \(\xi(j, k, s) \in \{0, 1\} \) is such integer number that \(i_j(i_k i_s) = (-1)^{\xi(j, k, s)}i_k(i_j i_s) \). From the formula \(i_j(i_k i_s) + i_k(i_j i_s) = 2i_sRe(i_j i_k) \) we get \((-1)^{\xi(j, k, s)} = (-1)^{n(j, k)} \) for each \(j, k \) and \(s \), since an algebra \(\mathcal{A}_v \) over \(\mathbb{R} \) generated by \(i_j, i_k \) and \(i_s \) has an embedding into the octonion algebra which is alternative \(\mathfrak{I} \) (see also Formulas 4.24(7, 8) in [22]). Thus \(BV \subset V \) and \(_nB = BV \subset V \).

In view of Lemma 2 we have \(_nH^* = B^*|_{nV_nF(\mathcal{I} - b(n), b(n))} \) and from the proof above we get

\[
\tilde{F}(\delta)^j x s i_s = (-1)^{\xi(j, k, s)} \frac{1}{n} \tilde{F}(\delta) \quad \frac{1}{n} \tilde{F}(\delta_1),
\]

that is \(_nH^* \) quasi-permutates with \(_nF \).

In view of Lemma 2 we have \(_nH^* = B^*|_{nV_nF(\mathcal{I} - b(n), b(n))} \) and from the proof above we get

\[
\frac{1}{n} \tilde{F}(\delta)^j x s i_s = (-1)^{\xi(j, k, s)} \frac{1}{n} \tilde{F}(\delta) \quad \frac{1}{n} \tilde{F}(\delta_1),
\]

consequently, \(B(nV) \subset nV \) and \(B(nV) \subset nV \). Consider decomposition \(x = y + z \) with \(y \in nV \) and \(z \in nV^\perp \), then \(x \in \mathcal{D}(B) \) is equivalent to...
\(z \in \mathcal{D}(B) \). The latter inclusion implies \(z \in \mathcal{D}(B) \cap _n V \), if additionally \(x \in _n V \), then we get \(< B^* y; z \rangle = < y; Dz \rangle = 0 \), consequently, \(Bz \in _n V \) and this together with (7) leads to the inclusion \(_n FB \subset B _n F \), that is \(\hat{i} \hat{F}^k \hat{B} \subset (-1)^\kappa(j,k) k \hat{B} \hat{i} \hat{F} \). For any \(\mathbb{R} \)-linear spaces a sign in an inclusion does not play any role. Thus \(_n V \) reduces \(B \) and \(_n G \) into a normal operator \(_n Q = B|_{_n V} \).

Suppose that \(_n G \) is the canonical \(\mathcal{A}_v \) graded projection valued measure for \(_n G \) and \(B F \) is the canonical \(\mathcal{A}_v \) graded projection valued measure for \(B \), hence \(B F|_{_n V} = _n G F \) for each \(n \in \mathbb{N} \). If \(x \in \bigcup_n _n V \), there exists a natural number \(m \) so that

\[
(9) \quad j \hat{E}(\delta_1)(k \hat{F}(\delta_2)x_s i_s) = j \hat{E}_n \hat{F}(\delta_1)(k \hat{F}_{_n}(\delta_2)x_s i_s)
\]

\[
= (-1)^\xi(j,k,s) k \hat{F}(\delta_2)(j \hat{F}_{_n}(\delta_1)x_s i_s)
\]

for each Borel subsets \(\delta_1 \) and \(\delta_2 \) in \(\mathcal{A}_r \), since the restriction of \(A \) to \(_n V \) and \(_n G \) quasi-permute for all \(n \) in accordance with Lemma 2. On the other hand, the \(\mathcal{A}_v \) vector space \(V \) is dense in \(X \), consequently, \(B F \) and \(F \) quasi-permute:

\[
(10) \quad j B \hat{F}(\delta_1) k \hat{F}(\delta_2)x_0 = (-1)^\kappa(j,k) k \hat{F}(\delta_2) j B \hat{F}(\delta_1)x_0
\]

for each \(j, k = 0, 1, 2, \ldots \) and \(x_0 \in X_0 \).

If now \(F \) is an \(\mathcal{A}_v \) graded projection valued measure described in this lemma, then Formula (10) implies

\[
(11) \quad k \hat{F} j B \subseteq (-1)^\kappa(j,k) j B k \hat{F}
\]

for each \(j, k = 0, 1, 2, \ldots, 2^n - 1 \), consequently, \(\mathcal{R}(F) \) reduces \(B \) and \(B|_{\mathcal{R}(F)} \) is a normal operator with \(\mathcal{R}(F) \subset \mathcal{D}(B) \), since \(\mathcal{R}(F) \subset \mathcal{D}(A) \subset \mathcal{D}(B) \). This restriction \(B|_{\mathcal{R}(F)} \) is bounded by the closed graph theorem 1.8.6 \[12\]. Moreover, the restrictions of \(A \) and \(B \) to \(\mathcal{R}(F) \) quasi-permute. Analogous proof is valid for the pair \(A \) and \(C \) instead of \(A \) and \(B \).

5. Theorem. If operators \(A \), \(B \) and \(D \) satisfy property \(P \), then \(B \) and \(D \) quasi-permute so that

\[
(1) \quad j B k \hat{D} = (-1)^\kappa(j,k) k \hat{D} j B
\]
for each \(j, k\). Moreover,

\[
\hat{l} \hat{A} = \sum_{j, k, i: j \neq k} (i \hat{B}^k \hat{D} + (-1)^{\kappa(j, k)}k \hat{B}^j \hat{D})
\]

for each \(l\).

Proof. Consider the canonical \(A_v\) graded projection valued measure \(E\) for a normal operator \(A\) (see Definition 1). Then we put \(\nu^F := E(I_{a,b})\) with \(a_j = -ni_j\) and \(b_j = ni_j\) for each \(j\). From Theorems 2.27, 2.29 and 2.44 in [29] and §4 above we know that

\[
Ax = \int_{A_v} dA \chi(t) tx \quad \forall x \in \mathcal{D}(A) \quad \text{and}
\]

\[
Bx = \int_{A_v} dB \chi(t) tx \quad \forall x \in \mathcal{D}(B) \quad \text{and}
\]

\[
Dx = \int_{A_v} dD \chi(t) tx \quad \forall x \in \mathcal{D}(D),
\]

where \(A, B, D\) denote \(A_v\) graded projection valued measures for \(A\), \(B\) and \(D\) respectively. Then the condition \(A = BD\) gives

\[
A = \int_{A_v} dA \chi(t) t \int_{A_v} dD \chi(u) u x.
\]

To operators \(A\), \(B\) and \(D\) normal functions \(h_A\), \(h_B\) and \(h_D\) correspond so that \(h_A = h_B h_D\). On the other hand, to the operators \(A^* A\) and \(B^* B\) and \(D^* D\) non-negative self-adjoint functions \(|h_A|^2\), \(|h_B|^2\) and \(|h_D|^2\) correspond (see Proposition 2.32 in [29]). These operators \(A\) and \(B\) and \(D\) are normal so that they satisfy the identities \(A^* A = D^* B^* D = D^* B B^* D = A A^* = B D D^* B^* = B^* D B^*\) and \(B^* B = B^* B\) and \(D^* D = D D^*\).

In view of Theorems 2.29, 2.44 and Proposition 2.32 and Remark 2.43 in [29] to the \(A_v\) graded projection operator \(A \chi(\delta)\) a homomorphism \(\phi\) a (real) characteristic function \(\phi(A \chi(\delta)) = \chi_{\delta}\) of a subset \(\delta \subset \Lambda\) counterpose so that \(\chi_{\delta} = \omega(\chi_\delta)\). Therefore, Theorem 2.23 and Lemma 2.21 in [29], Formulas (3 - 6) and Conditions (P1 - P4) imply that their projection operators satisfy the equality

\[
B E(\delta_1) D E(\delta_2) = D E(\delta_2) B E(\delta_1)
\]

for each Borel subsets \(\delta_1\) and \(\delta_2\) in \(A_v\). In view of Lemma 4 \(R(\nu^F)\) reduces \(B\) and \(D\) and the restrictions of these operators to \(R(\nu^F)\) are bounded normal operators. On the other hand, \(\bigcup_{n=1}^\infty R(\nu^F)\) is dense in the Hilbert space
X over the Cayley-Dickson algebra \(\mathcal{A}_v \). Therefore, we infer from Formulas (3 - 7), that \(jB \) and \(kD \) satisfy Formulas (1, 2) for each \(j, k \), since

\[
j_B \hat{E}(\delta_1) k_D \hat{E}(\delta_2) = (-1)^{\kappa(j,k)} k_D \hat{E}(\delta_2) j_B \hat{E}(\delta_1)
\]

for every Borel subsets \(\delta_1 \) and \(\delta_2 \) in \(\mathcal{A}_v \) and for each \(j, k \).

6. Corollary. Suppose that operators \(A, B \) and \(D \) are self-adjoint and satisfy property \((P)\). Then \(BD = DB \).

Proof. This follows immediately from Theorems 2.27, 2.29 and 2.44 in [29] and Formulas 5(1 - 3), since spectra of self-adjoint operators are contained in the real field \(\mathbb{R} \) and the latter is the center of the Cayley-Dickson algebra \(\mathcal{A}_v \) so that \(t = t_0 \in \mathbb{R} \) in Formulas 5(1, 2), that is \(j = k = 0 \) only.

7. Lemma. Let operators \(B, D \) and \(A \) have property \(P \), let also \(B = T_B U_B, \ D = T_D U_D \) and \(A = T U \) be their canonical decompositions with positive self-adjoint operators \(T_B, T_D \) and \(T \) and unitary operators \(U_B, U_D \) and \(U \) respectively. Then \(T_B T_D = T_D T_B = T \) and \(U_B U_D = U \) and \(jU_B kU_D = (-1)^{\kappa(j,k)} jU_B kU_D \) for each \(j, k \), moreover, \(T_B U_D = U_D T_B \) and \(T_D U_B = U_B T_D \).

Proof. The decompositions in the conditions of this lemma are particular cases of that of Theorem I.3.37 [28]. Consider the canonical \(\mathcal{A}_v \) graded resolutions of the identity \(E^B \) and \(E^D \) of operators \(B \) and \(D \) respectively. In view of Theorem 5

\[
j E^B(\delta_1) k E^D(\delta_2) = (-1)^{\kappa(j,k)} k E^D(\delta_2) j E^B(\delta_1)
\]

for every Borel subsets \(\delta_1 \) and \(\delta_2 \) in \(\mathcal{A}_v \) and each \(j, k \). We put \(F(dw,dz) = E^B(dw) E^D(dz) \), hence \(F(dw,dz) \) is a \(2^{v+1} \) parameter \(\mathcal{A}_v \) graded resolution of the identity so that \(F_{ik}(\delta_1, \delta_2) x_k = E^B(\delta_1)(E^D)_{ik}(\delta_2) \) for each vector \(x_k \in X_k \) and every \(k \) and we put

\[
G := \int_{\mathcal{A}_v^2} dF(w,z) \cdot wz,
\]

where \(dF(w,z) \) is another notation of \(F(dw,dz) \), \(w, z \in \mathcal{A}_v \) (see also §I.2.58 [28]). This operator \(G \) is normal, since the quaternion skew field is associative.
and the octonion algebra is alternative and \((wz)(wz)^* = |wz|^2 = |w|^2|z|^2\) for each \(w, z \in A_v\) with \(2 \leq v \leq 3\). Then we get

\[
B = \int_{A_v^2} dF(w, z).w = \int_{A_v} dE^B(w).w
\]

and

\[
D = \int_{A_v^2} dF(w, z).z = \int_{A_v} dE^D(z).z,
\]

consequently,

\[
A = BD \quad \text{and} \quad j^kB^kD = (-1)^{\kappa(j,k)}k^jD^kB \quad \text{for each} \quad j, k,
\]

and hence

\[
\sum_{j,k: \; i_ji_k = i_l} [j^kB^kD + (-1)^{\kappa(j,k)}kB^jD] \subseteq i^lG
\]

for every \(l\). Therefore, \(A = G\), since a normal operator is maximal.

Then one can consider the function \(u(w, z) := \frac{wz}{|wz|}\) for \(wz \neq 0\), while \(u(w, z) = 1\) if \(wz = 0\), where \(w, z \in A_v\). The operator

\[
U := \int_{A_v^2} dF(w, z).u(w, z)
\]

is unitary, since \(|u(w, z)| = 1\) for each \(w\) and \(z\), the operator

\[
T := \int_{A_v^2} dF(w, z).|wz|
\]

is positive and self-adjoint, since

\[
< xT; x > := \int_{A_v^2} < x dF(w, z).|wz|; x > \geq 0
\]

for each \(x \in D(T)\) (see Proposition 2.35 [29]). On the other hand, \(u(w, z)|wz| = |wz|u(w, z) = wz\), since the algebra \(A_v\) is alternative for \(v \leq 3\), hence

\(TU = UT = G = A\) by Theorem 2.44 [29]. Moreover, we deduce from Theorem 2.44 [29] that the operators

\[
U_B := \int_{A_v^2} dF(w, z).u(w)
\]

and

\[
U_D := \int_{A_v^2} dF(w, z).u(z)
\]

are unitary and the the operators

\[
T_B := \int_{A_v^2} dF(w, z).|w|
\]

and

\[
T_D := \int_{A_v^2} dF(w, z).|z|
\]
are positive and self-adjoint, where \(u(w) := w/|w| \) if \(w \neq 0 \), also \(u(w) = 1 \) if \(w = 0 \). Since \(|w||z| = |wz| \) for each \(w \) and \(z \in A_v \) with \(v \leq 3 \), the inclusion follows

\[
T_B T_D \subseteq \int_{A_v^2} dF(w, z).|wz| = T.
\]

The functions \(u(w) \) and \(u(z) \) are bounded and \(u(w)u(z) = u(z)u(w) = u(w, z) \) on \(A_v^2 \), consequently,

\[
U_B U_D = \int_{A_v^2} dF(w, z).u(w, z) = U \text{ so that}
\]

\[
jU_B kU_D = (-1)^{\kappa(j,k)} kU_B jU_D \text{ for each } j, k. \text{ This implies that } A = UT = U_B U_D T = (U_B T_B)(U_D T_D) \text{, consequently, } U_D T U_B^* = T_B T_D.
\]

This means that the operators \(T \) and \(T_B T_D \) are unitarily equivalent, hence the operator product \(T_B T_D \) is self-adjoint. A self-adjoint operator is maximal, consequently, \(T = T_B T_D \) and similarly \(T = T_D T_B \). The real field \(\mathbb{R} \) is the center of the Cayley-Dickson algebra \(A_v \) for each \(v \geq 2 \), the real and complex fields are commutative, hence

\[
T_B U_D = \int_{A_v^2} dF(w, z).(|w|u(z)) = U_D T_B \text{ and}
\]

\[
T_D U_B = \int_{A_v^2} dF(w, z).(|z|u(w)) = U_B T_D.
\]

8. Notation. Let \(\Omega \) denote the set of all \(n \)-tuples \(x = (x_1, ..., x_m, x_{m+1}, ..., x_n) \) such that \(x_1, ..., x_m \) are non-negative integers, while \(x_{m+1}, ..., x_n \) are non-negative real numbers with \(\sum_{j=1}^n x_j > 0 \). Relative to the addition \(x + y = (x_1 + y_1, ..., x_n + y_n) \) this set \(\Omega \) forms a semi-group.

9. Theorem. Suppose that \(\{B^x : x \in \Omega\} \) is a weakly continuous semi-group of normal operators, that is satisfying the following conditions:

1) \(B^x \) is a normal operator acting on a Hilbert space \(X \) over the Cayley-Dickson algebra \(A_v \) for each element \(x \in \Omega \);

2) \(B^x B^y = B^{x+y} \) for each \(x, y \in \Omega \);

3) the \(A_v \) valued scalar product \(\langle B^x f; g \rangle \) is continuous in \(x \in \Omega \) for each marked \(f, g \in D := \bigcap_{x \in \Omega} D(B^x) \);

4) a family \(alg_{A_v} \{I, B^x, (B^x)^* : x \in \Omega\} \) is over the algebra \(A_v \) with \(2 \leq v \leq 3 \). Then a unique \(2n \)-parameter \(A_v \) graded resolution \(\{a_1, ..., a_n, b_1, ..., b_n\} \bar{F} : a, b \in \mathbb{R} \)
\(\Omega \) of the identity exists so that \((a,b) \hat{F} = 0\) if a negative coordinate \(a_k < 0\) exists for some \(k = 1, \ldots, n\), moreover,

\[
(5) \quad B^x = \int_{\mathbb{R}^n} d_{(a,b)} \hat{F}_x \{ a^x \exp[x_1 M_1(b_1)] \cdots \exp[x_n M_n(b_n)] \},
\]

where

\[
a^x = \prod_{k=1}^n a_k^{x_k},
\]

\(M_s : \mathbb{R}^n \rightarrow \mathcal{S}_v := \{ z \in \mathcal{A}_v : |z| = 1, Re(z) = 0 \} \) is a Borel function for each \(s \), \(a = (a_1, \ldots, a_n) \).

Proof. In view of Lemma 5 each operator \(B^x \) has the decomposition \(B^x = T^x U^x = U^x T^x \) with a positive self-adjoint operator \(T^x \) and a unitary operator \(U^x \). Since \(\{ B^x : x \in \Omega \} \) is a semi-group, the relations \(T^x T^y = T^{x+y} \) and \(U^x U^y = U^{x+y} \) are valid for each elements \(x, y \in \Omega \). That is, \(\{ T^x : x \in \Omega \} \) and \(\{ U^x : x \in \Omega \} \) are semi-groups of positive self-adjoint operators and unitary operators correspondingly.

If \(y^x = (0, \ldots, y^x_{m+1}, \ldots, y^x_n) \in \Omega \) are elements of the semi-group \(\Omega \) such that \(y^x = \frac{y^2 + y^3}{2} \), \(s = 1, 2, 3 \), \(f \) is a vector in a domain \(D \), then

\[
\| B^{y^1} f \|^2 = \langle B^{y^1} f, B^{y^1} f \rangle = \langle B^{y^2/2} B^{y^3/2} f, B^{y^2/2} B^{y^3/2} f \rangle \\
= \langle (B^{y^2/2})^* B^{y^2/2} f, (B^{y^2/2})^* B^{y^2/2} f \rangle \leq \| (B^{y^2/2})^* B^{y^2/2} f \| \| B^{y^2/2} \| B^{y^2/2} f \|
\]

by Cauchy-Schwartz’ inequality I.2.4(1) [28]. On the other hand,

\[
\| (B^{y^2/2})^* B^{y^2/2} f \|^2 = \langle (B^{y^2/2})^* B^{y^2/2} f, (B^{y^2/2})^* B^{y^2/2} f \rangle = \langle B^{y^2} f, B^{y^2} f \rangle = \| B^{y^2} f \|^2,
\]

since the semi-group \(\{ B^x : x \in \Omega \} \) is commutative and an operator \(B^x \) is normal for each \(x \in \Omega \). Thus the inequality

\[
\| B^{y^1} f \| \leq \| B^{y^2} f \| \| B^{y^3} f \|
\]

follows. This implies that the function \(q(y) := \| B^y f \| \) is convex and bounded in the variable \(y_p \) in any bounded segment \([\alpha, \beta] \subset (0, \infty)\), when other variables \(y_q \) with \(q \neq p \) are zero, \(p = m+1, \ldots, n \), since the exponential \(e^t \) and the natural logarithmic functions \(\ln(t) \) are convex and bounded on each segment \([\gamma, \delta] \subset (0, \infty)\) and \(\ln q(y^1) \leq \ln q(y^2) + \ln q(y^3) \).

Evidently, a commutative group \(\hat{\Omega} \) exists for the semi-group \(\Omega \) such that \(\Omega \subset \hat{\Omega} \subset \mathbb{R}^n \) and the function \(q(y) \) can be extended on \(\hat{\Omega} \) so that \(q(0) = \| f \| \).
and \(q(-y) = q(y) \) for \(y \in \Omega \). If \(q \) is continuous on \(\Omega \), its extension on \(\hat{\Omega} \) can be chosen continuous, since \(\hat{\Omega} \) is a completely regular topological space, i.e. \(T_1 \) and \(T_{3.5} \) (see [29]).

If \(\Omega \) is a group the function \(q(y) \) is positive definite, that is by the definition for each \(\lambda_1, ..., \lambda_k \in \mathbb{R} \oplus \mathbb{R}^i =: C_1 \) and \(y^1, ..., y^k \in \Omega \) the inequality

\[
\sum_{j,l} \lambda_j \bar{\lambda}_l q(y^j - y^l) \geq 0
\]

is valid, but this inequality follows from the formula

\[
\sum_{j,l} \lambda_j \bar{\lambda}_l q(y^j - y^l) = \| \sum_j \lambda_j B^{-j} f \| ^2
\]

and since \(\|x\| \geq 0 \) for each \(x \in X \).

Particularly, for elements \(x^k := (0, ..., x_k, 0, ..., 0) \) in the semi-group \(\Omega \) the mapping \(< T^{x^k} f; f > \) is continuous in \(x^k \) for each marked vector \(f \in D \). Indeed, for \(k = 1, ..., m \) this is evident, since \(x^k \in \mathbb{N} \) takes values in the discrete space in this case. If \(k = m + 1, ..., n \) one can use the formula \(< T^{x^k} f; f > = < B^{x^k/2} f, B^{x^k/2} f > = \| B^{x^k/2} f \| ^2 \) which implies that \(< T^{x^k} f; f > \) is a bounded convex function of \(x^k \) in every finite interval \([\alpha, \beta] \subset (0, \infty)\), when \(f \in D \) is a marked vector (see Theorem 2.29 and Formula 2.44(5) [29]).

Denote by \(s, t, E \) the canonical \(A_v \) graded resolution of the identity for \(T^{e_s} \), where \(e_s = (0, ..., 0, 1, 0, ...) \) denotes the basic vector with coordinate 1 at \(s \)-th place and zeros otherwise, \(t, s \in \mathbb{R} \). By the conditions of this theorem operators \(T^{e_s} \) and \(T^{e_p} \) commute for each \(s, p = 1, ..., n \), since

\[
(6) \ T^{e_s} T^{e_p} = T^{e_s+e_p} = T^{e_p} T^{e_s}.
\]

Due to Theorem 2.42 [29] the equality

\[
(7) \ j s, t, E k p, t, E = (-1)^{\nu(j, k)} k p, t, E j s, t, E
\]

is satisfied for each \(j, k \) and every \(s, p \), with \(t, s, t, p, p \in \mathbb{R} \). This implies that

\[
(8) \ (t_1, ..., t_n) E = 1, t, E ..., n, t, E
\]

is an \(n \)-parameter \(A_v \) graded resolution of the identity. Each operator \(T^{e_s} \) is positive, hence \(s, t, E = 0 \) for every \(t < 0 \), consequently, \((t_1, ..., t_n) E = 0 \) if \(t < 0 \) for some \(s = 1, ..., n \).

We now consider the operators

\[
(9) \ A^p x := \int_0^{\infty} ... \int_0^{\infty} d (t_1, ..., t_n) E . (t^{p_1}_1 ... t^{p_n}_n x),
\]

13
where \(p = (p_1, \ldots, p_n) \in \Omega \), \(x \in X \) for which the integral converges. We certainly have

\[
\int_0^\infty \cdots \int_0^\infty d(t_1, \ldots, t_n)E.(t_1^{p_1} \cdots t_n^{p_n}x) = \int_0^\infty \cdots \int_0^\infty (t_1^{p_1} \cdots t_n^{p_n})d(t_1, \ldots, t_n)E.x,
\]

since \(t_j^{p_j} \in \mathbb{R} \) for each \(j \) and \((t_1, \ldots, t_n)E\) is a real linear operator. If \(p_s \in \mathbb{Z}/2 \) for each \(s \), then \(T^p = T^{e_1p_1} \cdots T^{e_np_n} \subseteq A^p \), consequently, \(T^p = A^p \), since a self-adjoint operator is maximal.

Take a partition of the Euclidean space \(\mathbb{R}^n \) into a countable family of bounded parallelepipeds \(J_k = \prod_{j=1}^n [a_j, b_j] \) so that they may intersect only by their boundaries: \(J_k \cap J_l = \partial J_k \cap \partial J_l \) for each \(k \neq l \in \mathbb{N} \), \(\bigcup_{k=1}^\infty J_k = \mathbb{R}^n \).

We put \(Y^k := \mathcal{R} (\hat{E}(J_k)) \), where \(\hat{E}(\delta) \) is the \(\mathcal{A}_v \) graded spectral measure corresponding to \(\iota E, \ \delta \in \mathcal{B}(\mathbb{R}^n), \ t \in \mathbb{R}^n \). Then the restriction \(B^s|_{Y^k} \) of \(B^s \) to \(Y^k \) is a bounded self-adjoint operator. If \(x, y \in \Omega \) are elements of the semi-group so that \(y_s \geq x_s \) and \(y_s \in \mathbb{Z}/2 \) for each \(s = 1, \ldots, n \), then \(D(T^y) \subseteq D(T^x) \), since \(T^y = T^x T^{y-x} \). Therefore, \(f \in D(A^y) = D(T^y) \subseteq D(T^x) \) for each \(f \in Y^k \), consequently, \(Y^k \subseteq \mathcal{D} \) for each natural number \(k \in \mathbb{N} \).

If \(f \in Y^k \oplus Y^l \) and \(g \in Y^l \), then

\[
\lim_{y \to x} <(T^y - A^y)(f + g); (f + g)> = <(T^x - A^x)(f + g); (f + g)> = 0,
\]

since \(T^y = A^y \) for each \(y \in (\mathbb{Z}/2)^n \cap \Omega \) and the \(\mathcal{A}_v \) valued scalar products \(< T^x f; f > \) and \(< A^x f; f > \) are continuous in each component \(x_s \) of \(x \). In the same manner we get \(< (T^x - A^x)f; f > = 0 \) and \(< (T^x - A^x)g; g > = 0 \), consequently, \(< (T^x - A^x)f; g > = 0 \). The \(\mathcal{A}_v \) vector space \(\bigcup_{k=1}^\infty Y^k \) is dense in the Hilbert space \(X \) over the Cayley-Dickson algebra \(\mathcal{A}_v \), hence \(T^x f^k = (A^x|_{Y^k})f^k = A^x f^k \) for each vector \(f^k \in Y^k \). This means that each \(Y^k \) reduces the operator \(T^x \) to \((A^x|_{Y^k}) \), consequently, \(T^x = A^x \). From this it follows that the \(\mathcal{A}_v \) valued scalar product \(< T^x f; g > \) is continuous in \(x \in \Omega \) for each marked vectors \(f \in \mathcal{D} \) and \(g \in X \).

Consider the sub-semi-group \(\Omega_s := \{ x : x = x^s := (0, \ldots, 0, x_s, 0, \ldots) \in \Omega \} \), where \(s = 1, \ldots, n \), also we suppose that \(\hat{\mathcal{E}}(\{0\}) = 0 \), where \(\hat{\mathcal{E}}(\delta) \) is the \(\mathcal{A}_v \) graded projection valued measure corresponding to \(s, \delta \in \mathcal{B}(\mathbb{R}) \). This implies that the operator \(T^{x^s} \) has not the zero eigenvalue. Take arbitrary marked vectors \(f \in \mathcal{D} \) and \(g \in D(T^{y^s}) \). Then using the triangle inequality
we deduce that

\[|< (U^{x'}) -U^{y'} > f; T^{y'} g > | = |< (U^{x'} -U^{y'}) T^{y'} f; g > | = |< (U^{x'} T^{y'} -U^{y'} T^{y'}) f; g > +< U^{x'} (T^{y'} - T^{x'}) f; g > | \leq |< (B^{x'} - B^{y'}) f; g > | + \| (T^{y'} - T^{x'}) f \| \| g \| . \]

But the limits are zero \(\lim_{x' \to y'} < (B^{x'} - B^{y'}) f; g > = 0 \) due to suppositions of this theorem and \(\lim_{x' \to y'} \| (T^{y'} - T^{x'}) f \| = 0 \), since \(T^{x} = A^{x} \) and \(A^{x} \) has the integral representation given by Formula (9). Thus the limit

\[\lim_{x' \to y'} < (U^{x'} - U^{y'}) f; h > = 0 \]

is zero for each \(f \in \mathcal{D} \) and \(h \in \mathcal{R}(T^{y'}) \). On the other hand, \(\mathcal{D} \) is dense in \(X \), since \(\bigoplus_{k=1}^{\infty} Y^{s} \) is dense in \(X \). The family \(U^{x} \) of unitary operators is norm bounded by the unit 1, consequently, \(\lim_{x' \to y'} < (U^{x'} - U^{y'}) f; h > = 0 \) for each \(f, h \in X \) and hence the semi-group \(\{ U^{x'} : x' \in \Omega \} \) is weakly continuous. The semi-group \(\{ U^{x'} : x' \in \Omega \} \) of unitary operators can be extended to a weakly continuous group of unitary operators putting \(U^{-x'} = (U^{x})^{\ast} \) and \(U^{0} = I \). This one-parameter commutative group of unitary operators is also strongly continuous, since

\[\| (U^{x'} - U^{y'}) f \|^{2} = < (U^{x'} - U^{y'}) f; (U^{x'} - U^{y'}) f > = < (U^{x'} - U^{y'})^{\ast} (U^{x'} - U^{y'}) f; f > = < 2I - U^{x'-y'} - U^{y'-x'} f; f > = < (U^{0} - U^{x'-y'}) f; f > + < (U^{0} - U^{y'-x'}) f; f > . \]

In view of Theorem I.3.28 \[28\] there exists a unique \(\tilde{A}_{s} \) graded projection valued measure \(\tilde{F} \) so that

\[(10) \quad < U(x') f; h > = \int_{-\infty}^{\infty} < \tilde{F}(db_{s}) \exp(x_{s} M_{s}(b_{s}) b_{s}) f; h > \]

for each \(f, h \in \mathcal{D}(Q^{s}) \), where

\[(11) \quad < Q^{s} f, h > = \int_{-\infty}^{\infty} b_{s} < \tilde{F}(db_{s}) f; h > \]

for each \(f, h \in \mathcal{D}(Q^{s}) \),

\[(12) \quad \mathcal{D}(Q^{s}) = \{ f : f \in X; \| Q^{s} f \|^{2} = \int_{-\infty}^{\infty} < \tilde{F}(db_{s}), b_{s}^{2} f; f > < \infty \} , \]

15
$M_s(b_s)$ is a Borel function from \mathbb{R} into the purely imaginary unit sphere $S_v := \{ z \in A_v : |z| = 1, \Re(z) = 0 \}$. Then we put $\hat{s}E(da_s, db_s) = \hat{s}E(da_s) \hat{s}F(db_s)$, where

$$\int \hat{s}E(\delta_1) \hat{s}F(\delta_2) = (-1)^{\alpha(j,k)} \int \hat{s}E(\delta_1) \hat{s}F(\delta_2)$$

for each j, k and Borel subsets $\delta_1, \delta_2 \in \mathcal{B}(\mathbb{R})$. Then an operator P^{x^s} exists prescribed by the formula:

$$P^{x^s} = \int_{-\infty}^{\infty} \int_{0}^{\infty} \hat{s}E(da_s, db_s) \cdot [a_s^{x^s} \exp(x_s M_s(b_s) b_s)].$$

This implies the inclusion $B^{x^s} \subseteq P^{x^s}$, but a normal operator is maximal, consequently, $B^{x^s} = P^{x^s}$ for each s and $x^s \in \Omega$.

Suppose now that $\hat{s}E(\{0\}) \neq 0$, consider the null space $N^s := \ker(B^{x^s})$ of B^{x^s}. To each A_v graded projection valued measure $\hat{s}E(\delta)$ associated with the family $alg_{A_v}(I, B^x, (B^x)^*)$ a real valued characteristic function in $\mathcal{N}(\Lambda, \mathbb{R})$ corresponds, where $\delta \in \mathcal{B}(\mathbb{R}^2)$, consequently, N^s is an A_v vector subspace in X. Let $X = N^s \oplus K^s$, hence K^s is an A_v vector space, since N^s is the A_v vector subspace of the A_v Hilbert space X. Take the restrictions $B^{x^s}|_{N^s} =: B^{x^s,N}$ and $B^{x^s}|_{K^s} =: B^{x^s,K}$ of B^{x^s} to N^s and K^s correspondingly.

This implies that the semi-group of normal operators $\{B^{x^s,K} : x^s \in \Omega\}$ possesses the property that none of the operators $B^{x^s,K}$ has zero eigenvalue. From Formula (13) it follows, that there exists a two-parameter resolution $s,K \hat{s}E$ of the identity so that

$$B^{x^s,K} = \int_{-\infty}^{\infty} \int_{0}^{\infty} \hat{s}E(da_s, db_s) \cdot [a_s^{x^s} \exp(x_s M_s(b_s) b_s)].$$

Define an A_v graded projection value measure $s,N \hat{s}E$ so that

$$\mathcal{F}\mathcal{E}(dt_s, dq_s) = s,N;a_s,b_s \hat{s}E$$

so that $s,N;a_s,b_s \hat{s}E = 0$ for $a_s < 0$ and $s,N;a_s,b_s \hat{s}E = I$ when $a_s \geq 0$. Since $B^{x^s,N}(N^s) = \{0\}$, the integral representation follows:

$$B^{x^s,K} = \int_{-\infty}^{\infty} \int_{0}^{\infty} \hat{s}E(da_s, db_s) \cdot [a_s^{x^s} \exp(x_s M_s(b_s) b_s)].$$

Now it is natural to put $\hat{s}E(da_s, db_s) = s,N \hat{s}E(da_s, db_s) \oplus s,K \hat{s}E(da_s, db_s)$ for an A_v graded projection valued measure on X, that induces the formula:

$$B^{x^s} = \int_{-\infty}^{\infty} \int_{0}^{\infty} \hat{s}E(da_s, db_s) \cdot [a_s^{x^s} \exp(x_s M_s(b_s) b_s)].$$
In accordance with Theorem 5

\[q \hat{E}(\delta_1) k \hat{E}(\delta_2) = (-1)^{\kappa(j,k)} q \hat{E}(\delta_2) k \hat{E}(\delta_1) \]

for each \(s, q = 1, \ldots, n \) and \(j, k = 0, 1, \ldots, 2^v - 1 \) and every \(\delta_1, \delta_2 \in \mathcal{B}(\mathbb{R}^2) \), particularly, for \(j = k = 0 \) i.e. \(s \hat{E}(\delta_1) \) and \(q \hat{E}(\delta_2) \) commute. Then we put

\[(a,b) \hat{F} = \int_{-\infty}^{a_1} \int_{-\infty}^{b_1} \cdots \int_{-\infty}^{a_n} \int_{-\infty}^{b_n} 1 \hat{E}(dt_1, dq_1) \cdots \hat{E}(dt_n, dq_n), \]

hence \((a,b) \hat{F} \) is an \(\mathcal{A}_v \) graded resolution of the identity, for which

\[d(a,b) \hat{F} \{ a^x \exp[x_1 M_1(b_1)b_1] \cdots \exp[x_n M_n(b_n)b_n] \} = \]

\[1 \hat{E}(da_1, db_1) \exp(x_1 M_1(b_1)b_1) \cdots \hat{E}(da_n, db_n) \exp(x_n M_n(b_n)b_n) a^x, \]

since the semi-groups \(\{ B^x : x \in \Omega \} \) and \(\{ T^x : x \in \Omega \} \) and \(\{ U^x : x \in \Omega \} \) are commutative, the real field \(\mathbb{R} \) is the center of the Cayley-Dickson algebra \(\mathcal{A}_v \), for each \(v \geq 2 \), the fields \(\mathcal{A}_0 = \mathbb{R} \) and \(\mathcal{A}_1 = \mathbb{C} \) are commutative, \(a_s \in \mathbb{R} \) and \(x_s \in \mathbb{R} \) for each \(s = 1, \ldots, n \). For the operators

\[(17) \quad P^x = \int_{\mathbb{R}^n} d(a,b) \hat{F} \{ a^x \exp[x_1 M_1(b_1)b_1] \cdots \exp[x_n M_n(b_n)b_n] \}, \]

where

\[a^x = \prod_{k=1}^{n} a_k^{x_k}, \]

\(M_s : \mathbb{R}^n \to \mathcal{S}_v := \{ z \in \mathcal{A}_v : |z| = 1, \text{Re}(z) = 0 \} \) is a Borel function for each \(s \), the inclusion follows \(B^x \subseteq P^x \) for each \(x \in \Omega \), since \(B^x = B^{x_1} \cdots B^{x_n} \), where the operators \(B^{x_1}, \ldots, B^{x_n} \) pairwise commute. But a normal operator is maximal, consequently, \(B^x = P^x \) for each \(x \in \Omega \). A uniqueness of the resolution \((a,b) \hat{F} \) of the identity follows from uniqueness of \(s \hat{F} \) and \(q \hat{E} \) for each \(s \).

References

[1] J.C. Baez. "The octonions". Bull. Amer. Mathem. Soc. 39: 2 (2002), 145-205.

[2] F. Brackx, R. Delanghe, F. Sommen. "Clifford analysis" (London: Pitman, 1982).
[3] L.E. Dickson. "The collected mathematical papers". Volumes 1-5 (Chelsea Publishing Co.: New York, 1975).

[4] N. Dunford, J.C. Schwartz. "Linear operators" (J. Wiley and Sons, Inc.: New York, 1966).

[5] G. Emch. "Mécanique quantique quaternionienne et Relativité restreinte". Helv. Phys. Acta 36 (1963), 739-788.

[6] R. Engelking. "General topology" (Heldermann: Berlin, 1989).

[7] J.E. Gilbert, M.A.M. Murray. "Clifford algebras and Dirac operators in harmonic analysis". Cambry. studies in advanced Mathem. 26 (Cambr. Univ. Press: Cambridge, 1991).

[8] P.R. Girard. "Quaternions, Clifford algebras and relativistic Physics" (Birkhäuser: Basel, 2007).

[9] K. Gürlebeck, W. Sprössig. "Quaternionic analysis and elliptic boundary value problem" (Birkhäuser: Basel, 1990).

[10] F. Gürsey, C.-H. Tze. "On the role of division, Jordan and related algebras in particle physics" (World Scientific Publ. Co.: Singapore, 1996).

[11] M. Junge, Q. Xu. "Representation of certain homogeneous Hilbertian operator spaces and applications". Invent. Mathematicae 179: 1 (2010), 75-118.

[12] R.V. Kadison, J.R. Ringrose. "Fundamentals of the theory of operator algebras" (Acad. Press: New York, 1983).

[13] I.L. Kantor, A.S. Solodovnikov. "Hypercomplex numbers" (Springer-Verlag: Berlin, 1989).

[14] R. Killip, B. Simon. "Sum rules and spectral measures of Schrödinger operators with L^2 potentials". Annals of Mathematics 170: 2 (2009), 739-782.
[15] R.S. Krausshar, J. Ryan. ”Some conformally flat spin manifolds, Dirac operators and automorphic forms”. J. Math. Anal. Appl. 325 (2007), 359-376.

[16] V.V. Kravchenko. ”On a new approach for solving Dirac equations with some potentials and Maxwell’s sytem in inhomogeneous media”. Operator Theory 121 (2001), 278-306.

[17] K. Kuratowski. ”Topology” (Mir: Moscow, 1966).

[18] S.V. Ludkovsky, F. van Oystaeyen. ”Differentiable functions of quaternion variables”. Bull. Sci. Math. (Paris). Ser. 2. 127 (2003), 755-796.

[19] S.V. Ludkovsky. ”Differentiable functions of Cayley-Dickson numbers and line integration”. J. of Mathem. Sciences 141: 3 (2007), 1231-1298.

[20] S.V. Ludkovsky. ”Algebras of operators in Banach spaces over the quaternion skew field and the octonion algebra”. J. Mathem. Sciences 144: 4 (2008), 4301-4366.

[21] S.V. Ludkovsky. ”Residues of functions of octonion variables”. Far East Journal of Mathematical Sciences (FJMS), 39: 1 (2010), 65-104.

[22] S.V. Ludkovsky. ”Analysis over Cayley-Dickson numbers and its applications” (LAP Lambert Academic Publishing: Saarbrücken, 2010).

[23] S.V. Ludkovsky, W. Sproessig. ”Ordered representations of normal and super-differential operators in quaternion and octonion Hilbert spaces”. Adv. Appl. Clifford Alg. 20: 2 (2010), 321-342.

[24] S.V. Ludkovsky, W. Sprössig. ”Spectral theory of super-differential operators of quaternion and octonion variables”, Adv. Appl. Clifford Alg. 21: 1 (2011), 165-191.

[25] S.V. Ludkovsky, W. Sprössig. ”Spectral representations of operators in Hilbert spaces over quaternions and octonions”, Complex Variables and Elliptic Equations, online, DOI:10.1080/17476933.2010.538845, 24 pages (2011).
[26] S.V. Ludkovsky. "Integration of vector hydrodynamical partial differential equations over octonions”. Complex Variables and Elliptic Equations, online, DOI:10.1080/17476933.2011.598930, 31 pages (2011).

[27] S.V. Ludkovsky. ”Line integration of Dirac operators over octonions and Cayley-Dickson algebras”. Computational Methods and Function Theory, 12: 1 (2012), 279-306.

[28] S.V. Ludkovsky. ”Operator algebras over Cayley-Dickson numbers” (LAP LAMBERT Academic Publishing AG & Co. KG: Saarbrücken, 2011).

[29] S.V. Ludkovsky. ”Unbounded normal operators in octonion Hilbert spaces and their spectra”, Los Alamos Nat. Lab., math.FA/1204.1554 (2012), 49 pages.

[30] F. van Oystaeyen. ”Algebraic geometry for associative algebras”. Series ”Lect. Notes in Pure and Appl. Mathem.” 232 (Marcel Dekker: New York, 2000).

[31] R.D. Schafer. ”An introduction to non-associative algebras” (Academic Press: New York, 1966).

[32] S. Zelditch. ”Inverse spectral problem for analytic domains, II: Z2-symmetric domains”. Advances in Mathematics 170: 1 (2009), 205-269.