Detection of a single enzyme molecule based on a solid-state nanopore sensor

ShengWei Tan, DeJian Gu, Hang Liu and QuanJun Liu

State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, People’s Republic of China

E-mail: lqj@seu.edu.cn

Received 12 June 2015, revised 24 January 2016
Accepted for publication 10 February 2016
Published 2 March 2016

Abstract
The nanopore sensor as a high-throughput and low-cost technology can detect a single molecule in a solution. In the present study, relatively large silicon nitride (Si$_3$N$_4$) nanopores with diameters of \sim28 and \sim88 nm were fabricated successfully using a focused Ga ion beam. We have used solid-state nanopores with various sizes to detect the single horseradish peroxidase (HRP) molecule and for the first time analyzed single HRP molecular translocation events. In addition, a real-time monitored single enzyme molecular biochemical reaction and a translocation of the product of enzyme catalysis substrates were investigated by using a Si$_3$N$_4$ nanopore. Our nanopore system showed a high sensitivity in detecting single enzyme molecules and a real-time monitored single enzyme molecular biochemical reaction. This method could also be significant for studying gene expression or enzyme dynamics at the single-molecule level.

Keywords: nanopores, sensor, single enzyme molecule, horseradish peroxidase

Online supplementary data available from stacks.iop.org/NANO/27/155502/mmedia

1. Introduction
Nanopores are considered to be the most promising technology for single-molecule detection in a solution with a high throughput, low cost, and free label, which can open novel paths to scientific discovery [1]. Nanopores have been used to detect nanometer scale objects, such as nanoparticles [2–4], viruses [5–7], DNA sequence [8–19], and protein molecules [20–24]. The principle is that a biased voltage is applied across a thin membrane containing a nanometer-sized pore. Charged molecules in the solution are driven into the pore. The appearance of the molecule in the pore apparently changes the pore’s resistance, thus, resulting in a sharp change in the current signal. The pulse frequency is related to the quantity of molecules. The change in the current signal not only provides the sizes and concentrations of the molecules, but also reveals the dynamics process of the molecule translocation behavior.

The nanopore mainly includes biological nanopores and solid-state nanopores. Single protein molecules have also been detected, and their properties have been investigated using biological nanopores, such as small and unfolded proteins [25–30], a study of the structure of peptides [31], peptide antibody interactions [32, 33], measured self-peptide aggregation [34], and enzymatic kinetic reactions [35–38], which have been shown to be very sensitive tools for protein molecule detection due to their small fixed pore diameters of \sim1.5 nm. Biological nanopores have the advantage of a well-defined geometry, but their real-time applications are limited by the fragility of the lipid membrane into which the protein pores are embedded. Besides, only polypeptides or denatured proteins are able to pass through, which limits protein pores being used in measuring the process of protein unfolding [39].

Solid-state nanopores with the development of micro–nanoprocessing technology present obvious advantages over...
their biological counterparts, such as very high stability, controllability of diameter and channel length, adjustable surface properties, and the potential for integration into devices and arrays [40]. Solid-state nanopores have been demonstrated to be capable of detecting and analyzing protein molecules including discriminating protein translocations [21, 41–44], protein complexes and protein kinetics [45], protein unfolding and folding [39, 42], and protein–protein interactions [24, 39, 46–49]. Currently, silicon nitride (Si₃N₄) nanopores have been proven to be a novel protein sensing platform with excellent physical and chemical stabilities. Many protein molecules have been studied by using solid-state nanopores including lysozyme [44], avidin [44], immunoglobulin G [44], β-lactoglobulin [44], ovalbumin [50], bovine serum albumin [24, 39, 44, 51], β-galactosidase [50], his-tagged proteins [52], mammalian prion protein [44], phi29 connector protein [53], and histidine-containing phosphocarrier protein [50]. Besides, the Meller group has demonstrated that ubiquitin and ubiquitin chains can be efficiently discriminated using Si₃N₄ nanopores [23]. Radenovic et al have used Si₃N₄ nanopore sensing to detect a single Escherichia coli (E. coli) RNA polymerase (RNAP)-DNA transcription complex and a single E. coli RNAP enzyme, which can discriminate and can identify between those two types of molecular translocations [54].

Horseradish peroxidase (HRP) is the most widely studied member of this peroxidase family. HRP is a monomeric heme-containing plant enzyme that has found enormous diagnostic, biosensing, and biotechnological applications [55]. So far, single enzyme molecule detection has been implemented successfully by using fluorescence detection and electrochemical cycling in rare cases [56–66]. The product of certain enzyme reactions is light, which can be detected by using a range of sensitive optical devices. Until now, individual enzyme molecules could not be monitored by chemiluminescence because they were able to diffuse freely in solution [56].

Herein, we fabricated a Si₃N₄ nanopore chip by means of focused ion beam (FIB) lithography and show, for the first time, solid-state nanopores to detect a single HRP molecule. After the successful detection of the single HRP, we further investigated the sensitivity of our nanopore system to real-time monitor a single enzyme molecular biochemical reaction and an enzyme catalytic substrate translocation in 0.1 M KCl and 10 mM phosphate-buffered saline (PBS) pH 7.0. Our approach could be significant for studying gene expression or enzyme dynamics at the single-molecule level, which provides the basis for the development of this technology as a novel method for single enzyme molecule detection.

2. Experiment

2.1. Chemicals and apparatuses

The HRP molecule (1 mg ml⁻¹, Enzyme Commission No. 1.11.1.7, 44 kDa) was obtained from Sigma-Aldrich (St. Louis, MO, USA), which was shown in scheme 1(a). The sample (HRP) was dissolved in 0.02 μM filtered 10 mM PBS, stored at 4°C, and used within two days of preparation. Potassium chloride (KCl) and 2,2’-Azino-bis(3-ethylbenzothiazolone-6-sulfonic acid) ((ABTS), 98%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Hydrogen peroxide ((H₂O₂), 30%) was bought from Sinopharm Chemical Reagent Co., Ltd. All solutions were prepared with ultrapure water from a Milli-Q water purification system (resistivity of 18.2 MΩ cm, 25°C, Millipore Corporation, Billerica, MA, USA) and were filtered through 0.02 μM in a FEI Strata 201 FIB system (FEI Co., Hillsboro, OR, USA), a Zetasizer (Malvern Zetasizer Nano ZS), and an Axopatch 700B (Molecular Devices, Inc., Sunnyvale, CA, USA).

2.2. Nanopore sensor fabrication

Scheme 1(c) shows the structure of a nanopore chip. A free-standing membrane was obtained by depositing a thin
(100 nm nominal thickness) Si$_3$N$_4$ film on a 300 μm thick Si substrate. Fabrication of this membrane consisted of first depositing a layer of low-stress Si$_3$N$_4$ on a Si wafer using low pressure chemical vapor deposition (the deposition rate was 5 nm min$^{-1}$, the chamber pressure was about 4 mbar, and the substrate temperature was 810 °C) followed by photolithography (the opening window size for photolithography is 500 × 500 μm2), deep reactive ion etching (DRIE), and tetramethylammonium hydroxide (TMAH) etching (the TMAH was used for Si etching, and the Si$_3$N$_4$ was used as an etch mask against the TMAH etching). The etch rate was about 40 μm h$^{-1}$, and the Si/Si$_3$N$_4$ etch selectivity was greater than 1000. DRIE was used to etch Si$_3$N$_4$ (500 × 500 μm2), then, the 5% TMAH etching was used for the Si etching at 80 °C. The Si wafer was (100) type to form a 50 × 50 μm2 membrane. A nanopore was drilled in the surface of the membrane by bombarding the surface with Ga$^+$ ions using a FEI Strata 201 FIB system (FEI Co., Hillsboro, OR, USA) at an acceleration potential of 30 kV, while the current was measured as 1 pA. The milling time was 1.5 s under a spot mode.

2.3. Electrical measurements

The chips were held in place using a custom built poly(carbonate) flow cell with polydimethylsiloxane gaskets to ensure that the only path of the ionic current was through the nanopore. Figure 1(a) displays Si$_3$N$_4$ chips. The cell was made of two facing Plexiglas chambers filled with filtered 0.1 M KCl and 10 mM PBS. Figures 1(b)–(d) show the fluid device used in the experiment. Electrodes (Ag/AgCl) were placed in both chambers and were connected to the headstage of a patch clamp amplifier (Axopatch 700B, Molecular Devices, Inc., Sunnyvale, CA, USA) which allowed the ionic current to be measured under constant voltage in scheme 1(b).

Figure 1. (a) Si$_3$N$_4$ chips, (b)–(d) detection of single molecules was carried out in the nanofluid developed in our laboratory to investigate their electrical properties.

The HRP (10 ng ml$^{-1}$) was added to the cis side. Signals were acquired at a 100 kHz sampling rate. The amplifier internal low-pass eight-pole Bessel filter was set at 10 kHz. The entire apparatus was placed in a double Faraday cage enclosure on an antivibration table.

3. Results and discussion

3.1. Characterization of the pore

We fabricated single cylinder Si$_3$N$_4$ nanopores by FIB. The Si$_3$N$_4$ nanopores were produced with small diameters of about 28 nm and membranes of thicknesses of ~100 nm. Figure 2(a) shows a FESEM image of a typical Si$_3$N$_4$ nanopore used in the experiments reported here. Figures 2(b), (c) show the FESEM of nanopore trans and an enlarged view FESEM of nanopore trans. Figure 2(d) shows a typical current–voltage (I–V) curve of a nanopore in 0.1 M KCl, buffered at pH 7 with 10 mM PBS. Two electrolyte reservoirs are separated by a Si-supported free-standing insulating 100 nm thick Si$_3$N$_4$ membrane, which contains a ~28 nm single cylinder nanopore. The samples were always added to this cis reservoir. In the absence of an analyte, a voltage was applied through the two electrodes, and the ionic current flowed through the nanopore and was recorded with a current amplifier. No ionic current change events were evident in the current trace. Upon addition of the analyte to the cis reservoir, spikes became apparent in the current trace, which reflected the passage of the analyte through the nanopore. Current blockage signals from individual molecular translocations can be characterized by the time duration (t_b) and the magnitude of the blockage current (ΔI_b).
3.2. HRP ζ-potential and hydrodynamic diameter

Prior to translocation experiments, we analyzed the ζ-potential (ζ_{HRP}) and measured the hydrodynamic diameter (D_h) of the HRPs in different pH values and salt concentrations via dynamic light scattering (DLS) (Malvern Zetasizer Nano ZS), which was used to evaluate the surface charge and to demonstrate that these conditions did not promote HRP aggregation. ζ_{HRP} was determined in low ionic strength solutions (0.1 M KCl, adjusted with HCl or NaOH to the desired pH). Figures 3(a), (b) show ζ_{HRP} and D_h versus different pH values. ζ_{HRP} is positive for pH \(\leq 4 \), then, drops rapidly, crosses 0 mV between pH 4.2 and 4.5, and becomes negative for pH \(\geq 5 \). Hence, the pI value is 4.3 ± 0.2. The D_h (∼8 nm) of HRPs was found in 0.1 M KCl pH 6 to 7, which indicated they did not aggregate in that solution. However, the D_h of HRPs (∼100 nm) was observed in 0.1 M KCl, pH 2.4, 5, 8, 10, and 12, which indicated they did aggregate in that solution. The D_h of HRPs in different pHs with 0.1 M KCl solutions was added to the supplementary material (see S1 figure S1 in the supplementary material). Besides, because electrical experiments with nanoparticles are usually performed with solutions of high conductance (high salinity), we studied the salt concentration dependence of ζ_{HRP} and the D_h of HRPs from 0.1 to 2 M KCl, pH 7. Figure 3(d) shows that ζ_{HRP} quickly decreases with the increasing in KCl concentration. A determination of the electrophoretic mobility at higher salt concentrations was impeded by experimental limitations (high voltages and high currents), but the absence of HRP aggregation as evidenced by DLS (see S2 figure S2 in the supplementary material), even at KCl concentrations up to 1 M, showed that these salt conditions do not promote HRP aggregation. However, we further investigated its D_h in 1.5–2 M KCl, pH 7 (repeated three experiments) and found that they aggregated in 1.5–2 M KCl, pH 7 solution. The results were added to the supplementary material (see S2 figure S2 in the supplementary material).

3.3. Detection of single enzyme molecules

Solid-state nanopores can serve as sensors to detect single molecules by their translocation characteristics. To demonstrate this option, we added HRP to the cis compartment of the nanopore. The size of the solid-state nanopore is controllable and is easy to process. We performed translocation experiments using ~28 nm nanopores. After addition of HRP to the nanopore reservoir, we performed translocation experiments using voltages from 500 to 1000 mV, and they were sampled at 100 kHz (figures 4(a)–(e)). We observed sparse submillisecond current blockades caused by HRP molecule translocation through the nanopore, which was conducted in 0.1 M KCl, 10 mM PBS (pH 7). HRP molecules translocating through nanopores are governed by the competing effects of electrophoresis and electro-osmosis [44, 47]. At pH 7, the Si_3N_4 nanopore is negatively charged. Therefore, there will be an electro-osmotic flow from the electrically grounded reservoir into the Si_3N_4 nanopore when a negative voltage is applied, and there will be an oppositely directed flow when a positive potential is applied. HRPs were negatively charged in 0.1 M KCl, 10 mM PBS, pH 7, and we observed translocations through the Si_3N_4 nanopore when a positive potential was applied. At the same time, we also found spikelike current increases. Subsequently, we measured translocation events at 1 M KCl 10 mM PBS, pH 7 (figures 4(g), (f)). We observed a spikelike current decrease. It has been reported that DNA translocation is shown to result in either a decrease (\((KCl) > 0.4 \text{ M} \)) or an increase in the ionic current (\((KCl) < 0.4 \text{ M} \)) [9]. Therefore, we deem that this phenomenon mainly depends on the salinity of the solution. At a lower 0.1 M KCl concentration, the spikelike current increases, and at a 1 M KCl concentration, the spikelike current decreases.

Besides, nanopores (diameters of ~28 nm) were used to further detect the translocation of HRPs in 1.5 M KCl, 10 mM PBS pH 7. \(\sigma (15.4 \text{ S m}^{-1}) \) is the conductivity of the 1.5 M KCl solution at 24 °C, and the conductance of the pore...
\(G = 90.6324 \text{ nS}, 100 \text{ mV} \) can be introduced in figure 5(a).

We observed many translocation events that showed large blockage current (figure 5(b)), and the enzyme molecules were stuck in the nanopore from time to time (figure 5(c)). Nanopores cannot work normally, and they often need to apply a reverse voltage or relatively large voltage to rescue the enzyme molecules that were stuck in the nanopore as shown in figure 5(d). Two dimensional scatter plots were fitted about the mean amplitude versus the event duration for each translocation of HRP in 1.5 M KCl, 10 mM PBS pH 7.

The scope of the blockage current from 0.5 to 3 nA applied voltage 200 mV and 0.5 to 6 nA applied voltage 300 mV (figure 5(e)). This phenomenon can be attributed to agglomeration of the enzyme molecule under high salt concentration, resulting in size inhomogeneity, which is consistent with test results of the hydraulic radius. In this case, the nanopores can be used to detect or to assess the distribution of particle uniformity. There is no statistical significance of enzyme molecule detection due to enzyme molecule agglomeration in high salt concentrations.

3.4. Statistical analysis of HRP translocation

Figure 6(a) shows histograms of the mean current amplitude of translocation events measured for HRP at various voltages. Based on the fitting curves, the peak values of the current blockage are 29.25 \pm 1.256, 52.33 \pm 2.552, 87.48 \pm 2.335, 110.9 \pm 1.424, 141.4, 181.4 \pm 2.887, 222.6 \pm 6.113, 258.8 \pm 4.118, and 298.7 \pm 4.472 pA at 200, 300, 400, 500, 600, 700, 800, 900, and 1000 mV, respectively, which correspond to the most probable current drops induced by a single HRP through the nanopore at varied voltages. We analyzed the distribution of the current blockade and dwell times. We found that the current amplitude linearly increases with the voltages, which yields a slope of 0.313 and an intercept of \(-40\) in figure 6(b). An exponentially decaying function \(t_d \sim e^{-v/v_0} \) was employed to fit the dwell time dependent on the voltage (figure 6(c)). The current blockade values were fitted with a first-order polynomial function, indicating that conductance blockades increase at higher applied voltages. The transport duration values were fitted with an exponential decay function, indicating that the transport velocity is voltage dependent. In addition, we analyzed the transition time of HRP in our experiments. The current blockage duration \(t_d \) is regarded as the dwell time of a HRP from the entrance to the exit of the nanopore. We observed the majority of HRP quickly passes through the pore with less than 50 \pm 3 ms, typed as short-lived events at high voltage (figure 6(d)), at the medium-voltage region event durations of less than 100 \pm 5 ms (figure 6(e)). However, at low voltages, we observed long event durations (figure 6(f)). We think this may be caused by HRP adhering to the sides of the walls. We fitted two dimensional scatter plots of mean amplitude versus event duration for each HRP (see S3 in the supplementary material).
Figure 5. (a) A typical current–voltage (I–V) curve of a nanopore in 1.5 M KCl, buffered at pH 7 with 10 mM PBS. (b) Representative single-molecule transport events in 1.5 M KCl, buffered at pH 7 with 10 mM PBS. (c) The enzyme molecules were stuck in the nanopore at 300 mV. (d) Nanopores can work normally with relatively large voltages applied at 400 mV. (e), (f) Two dimensional scatter plots of mean amplitude versus event duration for HRP in 1.5 M KCl buffered at pH 7 with 10 mM PBS at 200, 300 mV.

Figure 6. (a) Histograms of the mean current amplitude at various voltages, (b) an increase in current blocking at higher bias voltages, (c) voltage dependency of transport duration, (d) HRP translocation events at 1000 mV, (e) HRP translocation events at 600 mV, (f) HRP translocation events at 300 mV.
3.5. Detection of HRP with pores of different diameters

We repeated the experiments using nanopores with pore sizes (~88 nm) in 0.1 M KCl and 10 mM PBS. The I–V curve and the SEM of the nanopores were put in the supplementary material (see figures S5-1 and S5-2 in the supplementary material). Representative translocation events are presented in figure 7(a). Compared to the nanopores with pore sizes of ~28 nm as shown in figure 7(b), we found that higher bias voltages were required to get clear signals for ~88 nm pores. Bias voltage is also a significant factor to control better results. We analyzed the translocation events at 500, 700, and 900 mV. The three voltages were chosen mainly because translocation events were not observed at low voltages in the current in the signal-to-noise ratio. Figure 7(c) expresses histograms of count versus translocation time. As for event duration, the peaks were obtained Gaussian fittings, which were 0.176 ± 0.009 s at 900 mV, 0.210 ± 0.009 s at 700 mV, and 0.291 ± 0.006 s at 500 mV. We found that the translocation time decreased with the increase in voltage. Figures 7(d, e) present histograms of count versus the conductive amplitude (ΔG) together with event scatter plots of translocation time versus ΔG. The peaks were obtained by Gaussian fitting. We observed ΔG values that were almost the same at three biased voltages (ΔG value 0.063 ± 0.0009 at 900 mV, 0.064 ± 0.0008 at 700 mV, and 0.068 ± 0.0004 at 500 mV). ΔG is foreign to the biased voltage in theory. This similar ΔG value proved the dependability of the results. Besides, we made a comparison of the translocation events for nanopores with ~28 and ~88 nm at 1000 mV. Figure 7(f) indicates histograms of count versus translocation time at bias voltages of 500 mV (diameters of ~28 nm) and 1000 mV (diameters of ~88 nm). As for event duration, the peaks were obtained by Gaussian fitting to the histograms. The translocation time (Δt) values are 0.0988 ± 0.0048 s (1000 mV, 88 nm) and 0.0758 ± 0.0006 s (500 mV, ~28 nm). It was believed that higher bias voltage would generate faster translocation events due to greater electrical forces. However, in our results, the translocation time was even longer through the nanopores (diameters of ~88 nm) at bias voltages of 500 mV. That value is 0.291 ± 0.006 s. We suppose this retardant was caused by the pore dimension and shape. As described before, the electric field density variation caused by pore shapes and dimensions could be part of the reason for longer translocation times with higher voltages [4]. Figures 7(g, h) indicate histograms of count versus ΔG at biased voltages of 500 mV (diameters of ~28 nm) and 1000 mV (diameters of ~88 nm) together with event scatter plots of the translocation time versus ΔG value. The peaks were obtained by Gaussian fitting to the histograms. The ΔG values are 0.0889 ± 0.000615 nS with nanopores (diameters of ~28 nm) and 0.1140 ± 0.00269 nS with nanopores (diameter of ~88 nm), which could easily be understood since the same particle would have a bigger influence in a more confined room.

3.6. Typical HRP events

The current blockage signals revealed the information of the size, conformation, and interactions of HRP passing
through the nanopore. We observed three typical current traces. For HRP event (I) is of short duration in figure 8(a), suggesting ballistic single enzyme molecule transport. Event (II) is several milliseconds in duration and has two levels in figure 8(b), suggesting transient adherence of two HRP molecules to the sides of the nanopore walls. Event (III) shows a longer duration sticking event in figure 8(c). Those typical current traces for the HRP events are similar to the previously measured mammalian prion protein [44].

3.7. Real-time detection of enzyme catalysis by the nanopore system

After the successful detection of a single HRP, we further investigated the sensitivity of our nanopore system (≈28 nm) to real-time monitoring of the single enzyme molecule biochemical reaction and enzyme catalytic substrate translocation in 0.1 M KCl, 10 mM PBS pH 7.0. Figure 9(a) shows a scheme of the catalyzed redox reaction of the HRP enzyme. In the presence of the HRP enzyme molecules, only a single
enzyme molecule translocation was observed in figure 9(a). However, after addition of the substrate (10 nM H2O2 and 1.5 mM ABTS) to the buffer solution with the HRP enzyme molecules, enzyme catalysis substrates produced new substances. Thus, new blockage events having residence times and amplitudes that differ from those of the enzyme molecules can be observed in figure 9(b). The response time of the enzyme catalysis substrates can achieve millisecond magnitude by the nanopores, which was put in the supplementary material (see figure S6-1 in the supplementary material). The representative translocation events of the single molecule were shown in figure 9(c) with blockage currents of 146 pA and duration times of 0.024 ms. We would like to mention the recent work by Ali and co-workers in which HRP-modified polymer single conical nanochannels were applied for detection of H2O2 [67]. These authors have demonstrated the function of the immobilized enzyme in a single nanochannel as a H2O2 sensor by studying products of the redox reactions occurring in the presence of the substrate ABTS.

However, in figure 9(d), we also noticed some translocation signals of an increase in the ionic current in the process of catalytic substrate translocation. The translocation signals were analyzed from 1 to 7 in figure 9(d). We believe that the translocation signals of the increase in the ionic current came from single enzyme molecule translocation. This phenomenon may be a translocation rate too fast to complete the catalytic reaction by applying a voltage driven enzyme molecule through the nanopore and some resting enzyme molecules by applying voltage driven resting enzyme molecules through the nanopore. For the translocation signals of the ionic current decrease, we attributed the current changes to the appearance of cationic products of the redox reaction that occurred in the presence of HRP, ABTS, and H2O2 [67].

It is also possible that electrostatic and steric effect of ABTS+ molecules can act in concert to produce the observed ion current changes. The scatter plot of current blockage versus translocation time was fitted for ABTS+ and HRP in figure 9(e). Outliers with long event durations are observable in most of the scatter plots. In addition, in figure 9(e), we observed ABTS+ and HRP can be discriminated with current blockage and translocation time. However, according to the theoretical calculation, a single ABTS+ cannot be detected. Therefore, we think that the decrease in the ionic current most probably constitutes a collective effect of many ABTS+ molecules being driven through the nanopore. We also expected that, for sufficiently small nanopores, one could potentially observe discrete current openings and closings due to the presence of a single ABTS+ blocking the nanopore. The product of enzyme catalysis substrates can be distinguished by the nanopore system.

The enzyme catalytic redox reaction is as follows: (1), (2), and (3). In the presence of H2O2, the HRP enzyme is rapidly converted into an oxidized peroxidase form known as compound I (reaction 1 below). Then, compound I accepts one electron from the reducing substrate molecule to generate compound II (reaction 2 below). Subsequently, compound II is reduced back to the resting enzyme via one electron transfer from another substrate molecule (reaction 3 below) [67],

\[
\text{HRP(Fe}^{3+})\text{Porp} + \text{H}_2\text{O}_2 \rightarrow \text{HRP(Fe}^{4+} = \text{O})\text{Porp}^{++} + \text{H}_2\text{O},
\]

(1)

\[
\text{Compound I}
\]

\[
\text{HRP(Fe}^{4+} = \text{O})\text{Porp}^{++} + \text{HA} \rightarrow \text{HRP(Fe}^{4+} = \text{O})\text{Porp} + \text{A'},
\]

(2)

\[
\text{Compound II}
\]

\[
\text{HRP(Fe}^{4+} = \text{O})\text{Porp} + \text{HA} \rightarrow \text{HRP(Fe}^{3+})\text{Porp} + \text{A'} + \text{H}_2\text{O}.
\]

(3)

Peroxidase catalytic cycle: HA is the substrate, and radical-cation A' is the product.

ABTS was used as a substrate, expecting the formation of the ABTS++ product.

The translocation of the product of enzyme catalysis substrates reveals the biochemical reaction in situ, catalytic kinetic behavior, molecular size shape, and so forth. All typical events of the translocation of the product of enzyme catalysis substrates were analyzed. We observed six typical events for the translocation of the product of enzyme catalysis substrates in figure 9(f). For event type I, the current signal has a typical slope spike shape with a deep intensity and a short dwell time suggesting ballistic transport. We think that the typical slope spike shape may be related to the molecular shape. For event type II, the current signal has a typical spike shape with a deep intensity and a short dwell time. This signal can be attributed to the molecular translocation rapidly reaching the bottom of the hole and, then, producing vibration and friction along the hole wall until through the nanopore. For event type III, the current signal has a specific platform for a long time. The other shape is similar to event type I. The typical platform exists for a long time, and we deem that the product of the enzyme catalysis substrates (ABTS++) is adsorbed in the pore wall, the current signal is blocked persistently, and it recovers until the enzyme catalysis product is desorbed and is impelled out the nanopore, displaying the long life. For event type IV, the current signal first appears to have a typical platform and, then, produces vibration and friction along the hole wall until through the nanopore, which may mainly be attributed to the molecular electrostatic adsorption and vibration. For event type V, the current signal has a typical slope spike shape with a deep intensity and a short dwell time and, then, appears to have a typical platform for a long time. The typical platform is similar to event type I, which is mainly attributed to the electrostatic adsorption. For event type VI, two slope spike shapes with deep intensities and short dwell times were observed, which we supposed was caused by two translocation of product of enzyme catalysis substrates in succession. Identification of the typical translocation events of product of enzyme catalysis substrates were put in the supplementary material (see figures S6–2 in the supplementary material).
4. Conclusions

To summarize, we successfully fabricated a Si$_3$N$_4$ nanopore using a FIB and exhibited the first solid-state nanopore measurements of HRP that provide a basis to study single enzyme molecules in a solution on the nanoscale level. The ζ-potential (ζ_{HHRP}) and size measurement of the HRP were analyzed via DLS in different pHs and salt concentrations. We optimized the detection conditions of a single HRP molecule by a nanopore: pH 6 to 7, salt concentration range: 0.1–1 M KCl, the threshold voltage 200 mV in the current signal-to-noise ratio. We analyzed single HRP molecular translocation events through solid-state nanopores (~28 nm). A linear dependence has been found between current blockades versus biased voltage. An exponentially decaying function ($I(t) \sim e^{-t/\tau}$) has been found between the duration time versus the biased voltage. We repeated the experiments using nanopores with various pore sizes. A comparison of the translocation events with ~28 and ~88 nm pores were investigated by analyzing histograms of ΔG and Δt. The results proved that the same particle would have a bigger influence in a more confined room. In addition, real-time monitoring of a single enzyme molecule biochemical reaction and enzyme catalytic substrate translocation were explored. We observed new translocation events having residence times and amplitudes that differ from those of the enzyme molecule. The product of the enzyme catalysis substrates and the enzyme molecule can be effectively distinguished by the nanopore system. We believe this approach offers the potential for further development as studying gene expression or enzyme dynamics at the single-molecule level.

Acknowledgments

The authors gratefully acknowledge financial support from the National Basic Research Program of China (Grant No. 2011CB707600) and the National Natural Science Foundation of China (Grants No. 61077105 and No. 61372031).

References

[1] Wei R S, Martin T G, Rant U and Dietz H 2012 DNA origami gatekeepers for solid-state nanopores Angew. Chem. Int. Ed. 51 4864–7
[2] Juber Y T, Prabhav A S, Kim M J and Dutta P 2012 Modeling and simulation of nanoparticle separation through a solid-state nanopore Electrophoresis 33 325–33
[3] Liu Q J, Yao H, Wang L, Hou C R and Zhao W Y 2014 Translocation of gold nanorod through a solid-state nanopore Sci. Adv. Mater. 6 2075–8
[4] Kong J L, Wu H W, Liu L P, Xie X, Wu L Z, Ye X F and Liu Q J 2013 Silicon nitride nanopores for nanoparticle sensing J. Nanosci. Nanotechnol. 13 4010–6
[5] Liu L P, Wu H W, Kong J L and Liu Q J 2013 Solid-state nanopore for rod-like virus detection Sci. Adv. Mater. 5 2039–47
[6] McMullen A, de Haan H W, Tang J X and Stein D 2014 Stiff filamentous virus translocations through solid-state nanopores Nat. Commun. 5 4171
[7] Miao W, Liu L P, Lu A, Wu H W, Sharma P, Dogic Z and Ling X S 2014 Effects of ion strength on nonlinear electrophoretic mobility of fd virus in solid-state nanopore Bull. Am. Phys. Soc. 59 1
[8] Tan S, Wang L, Yu J, Hou C, Jiang R, Li Y and Liu Q 2015 DNA-functionalized silicon nitride nanopores for sequence-specific recognition of DNA biosensor Nano Res. Lett. 10 1–10
[9] Smeets R M M, Keyser U F, Krapf D, Wu M Y, Dekker N H and Dekker C 2006 Salt dependence of ion transport and DNA translocation through solid-state nanopores Nano Lett. 6 89–95
[10] Marshall M M, Ruzicka J, Zahid O K, Taylor E W, Henrich V C and Hall A R 2015 Solid-state nanopore characterization of single-strand DNA-SSB interactions Biophys. J. 108 331
[11] Plesa C, van Loo N, Ketterer P, Dietz H and Dekker C 2015 Velocity of DNA during translocation through a solid state nanopore Nano Lett. 7 332–7
[12] Liu Q J, Wu H W, Lu L Z, Xie X, Kong J L, Ye X F and Liu L P 2012 Voltage-driven translocation of DNA through a high throughput conical solid-state nanopore PloS One 7 e46014
[13] Squires A H, Atas E and Meller A 2015 Genomic pathogen typing using solid-state nanopores PloS One 10 0142944
[14] Squires A, Atas E and Meller A 2015 Nanopore sensing of individual transcription factors bound to DNA Sci. Rep. 5 11643
[15] Assad O N, Di Fiori N, Squires A H and Meller A 2015 Two color DNA barcode detection in photoluminescence suppressed silicon nitride nanopores Nano Lett. 15 745–52
[16] Singer A, Kuhn H, Frank-Kamenetskii M and Meller A 2010 Detection of urea-induced internal denaturation of dsDNA using solid-state nanopores J. Phys.: Condens. Matter 22 454111
[17] McNally B, Singer A, Yu Z L, Sun Y J, Weng Z P and Meller A 2010 Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays Nano Lett. 10 2237–44
[18] Wanunu M, Sutin J and Meller A 2009 DNA profiling using solid-state nanopores: detection of DNA-binding molecules Nano Lett. 9 3490–502
[19] Wanunu M, Sutin J, McNally B, Chow A and Meller A 2008 DNA translocation governed by interactions with solid-state nanopores Biophys. J. 95 4716–25
[20] Li J, Fologea D, Rollings R and Ledden B 2014 Characterization of protein unfolding with solid-state nanopores Protein Peptide Lett. 21 256
[21] Plesa C, Kowalczyk S W, Zimsmeester R, Grosberg A Y, Rabin Y and Dekker C 2013 Fast translocation of proteins through solid-state nanopores Nano Lett. 13 658–63
[22] Larkin J, Henley R Y, Muthukumar M, Rosenberg J K and Wanunu M 2014 High-bandwidth protein analysis using solid-state nanopores Biophys. J. 106 696–704
[23] Nir I, Huttner D and Meller A 2015 Direct sensing and discrimination among ubiquitin and ubiquitin chains using solid-state nanopores Biophys. J. 108 2340–9
[24] Wu L Z, Hang L, Zhao W Y, Wang L, Hou C R, Liu Q J and Lu Z H 2014 Electrically facilitated translocation of protein through solid-state nanopore Nano Res. Lett. 9 1–10
[25] Di Marino D, Bonome E L, Tramontano A and Chinappi M 2015 All-atom molecular dynamics simulation of protein translocation through an alpha-hemolysin nanopore J. Phys. Chem. Lett. 6 2963–8
[26] Stefureac R, Waldner L, Howard P and Lee J S 2008 Nanopore analysis of a small 86-residue protein Small 4 59–63
[27] Oukhaled G, Mathe J, Biance A L, Bucri L, Betton J M, Laiere D, Pelta J and Auvaray L 2007 Unfolding of proteins and long transient conformations detected by single nanopore recording Phys. Rev. Lett. 98 158101
[28] Cressiot B, Braselmann E, Oukhaled A, Elcock A H, Pelta J and Clark P L 2015 Dynamics and energy contributions for transport of unfolded peractin through a protein nanopore ACS Nano 9 9050–61
[29] Pastoriza-Gallego M, Rabah L, Gibrat G, Thiebot B, Goot F G, Auvaray L, Betton J M and Pelta J 2011 Dynamics of unfolded protein transport through an aerolysin pore J. Am. Chem. Soc. 133 2923–31
[30] Stefureac R, Long Y T, Kraatz H B, Howard P and Lee J S 2006 Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores Biochem. 45 9172–9
[31] Sutherland T C, Long Y T, Stefureac R I, Bediako-Amoa I, Kraatz H B and Lee J S 2004 Structure of peptides investigated by nanopore analysis Nano Lett. 4 1273–7
[32] Asanedi A, Chinnapi M, Kang K H, Seo C H, Mereuta L, Park Y and Luchian T 2015 Acidity-mediated, electrostatic tuning of asymmetrically charged peptides interactions with protein nanopenes ACS Appl. Mater. Interfaces 7 16706–7
[33] Madampage C A, Andrievskaia O and Lee J S 2010 Nanopore detection of antibody priion interactions Nat. Biotechnol. 39 36–41
[34] Wang Y Y, Ying Y L, Li Y, Kraatz H B and Long Y T 2011 Nanopore analysis of beta-amyloid peptide aggregation transition induced by small molecules Anal. Chem. 83 1746–52
[35] Chu J, Gonzalez-Lopez M, Cockroft S L, Amorin M and Ghadiri M R 2010 Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore Angew. Chem. Int. Ed. 49 10106–9
[36] Nivala J, Marks D B and Akeson M 2013 Unfoldase-mediated protein translocation through an alpha-hemolysin nanopore Nat. Biotechnol. 31 247–50
[37] Soskine M, Biessmans A, Moeyaert B, Cheley S, Bayley H and Maglia G 2012 An engineered ClyA nanopore detects folded target proteins by selective external association and Pore entry Nano Lett. 12 4895–900
[38] Zhao Q T, de Zoysa R S S, Wang D Q, Jayawardhana D A and Guan X Y 2009 Real-time monitoring of peptide cleavage using a nanopore probe J. Am. Chem. Soc. 131 6324–5
[39] Li J L, Fologea D, Rollings R and Ludden B 2014 Characterization of protein unfolding with solid-state nanopenes Protein Peptide Lett. 21 256–65
[40] Dekker C 2007 Solid-state nanopenes Nat. Nanotechnol. 2 209–15
[41] Kowalczyw S W, Hall A R and Dekker C 2010 Detection of local protein structures along DNA using solid-state nanopenes Nano Lett. 10 324–8
[42] Freedman K J, Haq S R, Edel J B, Jentph P and Kim M J 2013 Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field Sci. Rep. 3 1638
[43] Ding S, Gao C L and Gu L Q 2009 Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore Anal. Chem. 81 6649–55
[44] Li W, Bell N A W, Hernandez-Ainsa S, Thacker V V, Thackray A M, Bujdoso D and Keyser U F 2013 Single protein molecule detection by glass nanopenes ACS Nano 7 4129–34
[45] Freedman K J, Bastian A R, Chaiken I and Kim M J 2013 Solid-state nanopore detection of protein complexes: applications in healthcare and protein kinetics Small 9 750–9
[46] Han A, Creus M, Schurrmann G, Linder V, Ward T R, de Rooij N F and Stauffer U 2008 Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopenes Anal. Chem. 80 4651–8
[47] Firnkes M, Pedone D, Knezevic J, Doblinger M and Rant U 2010 Electrically facilitated translocations of proteins through silicon nitride nanopenes: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis Nano Lett. 10 2162–7
[48] Fologea D, Ledden B, McNabb D S and Li J L 2007 Electrical characterization of protein molecules by a solid-state nanopore Appl. Phys. Lett. 91 053901
[49] Han A P, Schurrmann G, Mondin G, Bitterli R A, Hegelbach N G, de Rooyi N F and Stauffer U 2006 Sensing protein molecules using nanofabricated pores Appl. Phys. Lett. 88 093901
[50] Talaga D S and Li J L 2009 Single-molecule protein unfolding in solid state nanopenes J. Am. Chem. Soc. 131 9287–97
[51] Oukhaled A, Cressiot B, Baci L, Pastoriza-Gallego M, Betton J M, Bourhis E, Jede R, Gierak J, Auvaray L and Pelta J 2011 Dynamics of completely unfolded and native proteins through solid-state nanopenes as a function of electric driving force ACS Nano 5 3628–38
[52] Wei R S, Gatterdam V, Wieneke R, Tampe R and Rant U 2012 Stochastic sensing of proteins with receptor-modified solid-state nanopenes Nat. Nanotechnol. 7 257–63
[53] Li J, Tang Z P, Hu R, Fu Q, Yan E F, Wang S Y, Guo P X, Zhao Q and Yu D P 2015 Probing surface hydrophobicity of individual protein at single-molecule resolution using solid-state nanopenes Sci. China-Mater. 58 455–66
[54] Rallion C, Cousin P, Traversi F, Garcia-Cordero E, Hernandez N and Radenovic A 2012 Nanopore detection of single molecule RNA-DNA transcription complex Nano Lett. 12 1157–64
[55] Chattopadhyay K and Mazumdar S 2000 Structural and conformational stability of horseradish peroxidase: effect of temperature and pH Biochem. 39 263–70
[56] Betzig E and Chichester R J 1993 Single molecules observed by near-field scanning optical microscopy Science 262 1422–5
[57] Collinson M M and Wightman R M 1995 Observation of individual chemical reactions in solution Science 268 1883–5
[58] Dickson R M, Norris D J, Tzeng Y L and Moerner W E 1996 Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels Science 274 966–9
[59] Fan F R F and Bard A J 1995 Electrochemical detection of single molecules Science 267 871–4
[60] Fan F R F, Kwak J and Bard A J 1996 Single molecule electrochemistry J. Am. Chem. Soc. 118 9669–75
[61] Funatsu T, Harada Y, Tokunaga M, Saito K and Yanagida T 1995 Imaging of single fluorescent molecules and individual apt turnovers by single myosin molecules in aqueous-solution Nature 374 555–9
[62] Kang S H, Lee S and Yeung E S 2010 Detection of single enzyme molecules inside nanopenes on the basis of chemiluminescence Angew. Chem. Int. Ed. 49 2603–6
[63] Nie S M, Chiu D T and Zare R N 1994 Probing individual molecules with confocal fluorescence microscopy Science 266 1018–21
[64] Nie S M and Emery S R 1997 Probing single molecules and single nanoparticles by surface-enhanced Raman scattering Science 275 1102–6
[65] Xu X H N and Yeung E S 1998 Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface Science 281 1650–3
[66] Xue Q F and Yeung E S 1995 Differences in the chemical-reactivity of individual molecules of an enzyme Nature 373 681–3
[67] Ali M, Tahir M N, Siwy Z, Neumann R, Tremel W and Ensinger W 2011 Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels Anal. Chem. 83 1673–80