REGIONS OF THE TYPE C CATALAN ARRANGEMENT

Anne Micheli and Vu Nguyen Dinh

Abstract. In this paper, we determine the number of regions of the type C Catalan arrangement which is $2^n n! \sum_{s=1}^{n-1} s^2 \frac{2^{n-s}}{n-s} + 4^n n!$. Moreover, we exhibit a bijection between rooted labeled ordered forests with a subset of their leaves and the regions of the type C Catalan arrangement.

The type C Catalan arrangement $C_{(-1,0,1)}(n)$ in \mathbb{R}^n is the set of the hyperplanes $\{x_i - x_j = s, x_i + x_j = s, 2x_i = s, \forall s \in \{-1, 0, 1\}, \forall 1 \leq i < j \leq n\}$. The regions of $C_{(-1,0,1)}(n)$ are the connected components of $\mathbb{R}^n \setminus \bigcup_{H \in C_{(-1,0,1)}(n)} H$. In this paper, we determine that the number of regions of $C_{(-1,0,1)}(n)$ is $2^n n! \sum_{s=1}^{n-1} s^2 \frac{2^{n-s}}{n-s} + 4^n n!$. Moreover, we exhibit a bijection between rooted labeled ordered forests with a subset of their leaves and the regions of $C_{(-1,0,1)}(n)$.

Type A arrangements have been and are still vastly studied in combinatorics, in particular the problem of bijectively enumerating the regions of type A arrangements. The reader can find an introduction to hyperplane arrangement and its connexions to combinatorics by R.P. Stanley [9]. The equation of an hyperplane of a type A arrangement is of the form $x_i - x_j = s$ with s in \mathbb{Z} and i, j in $\{1, n\} = \{1, 2, \ldots, n\}$. The case of the braid $(s = 0)$ arrangement is easy to understand, the Shi $(s = 0, 1)$ and Catalan $(s = -1, 0, 1)$ cases have nice and simple formulas which have been bijectively interpreted [3, 5, 6, 8, 9].

The number of regions of the Linial $(s = 1)$ arrangement was known but it is only recently that O. Bernardi gave a bijective interpretation [4]. His bijection extends to the regions of many type A arrangements [4], including Catalan, Shi and semi-order type A arrangements. Our bijections between orders, families of forests and regions of the type C Catalan arrangement were inspired by the Bernardi bijection.

The results on type C arrangement are less extensive. In 1996, C.A. Athanasiadis computed the number of regions of the type C Shi arrangement [1]. The formula obtained is very simple $(2n+1)^n$ and a bijective proof was given by K. Mészáros [7] in 2013, which was a generalization of the bijection exhibited by C.A. Athanasiadis and S. Linusson in the type A case [3]. C.A. Athanasiadis also computed among others the number of regions of the Linial arrangement of type C [2]. No bijective proof of this enumeration has yet emerged.

The paper is divided in three sections. In section 1, we explain how to go bijectively from regions of the type C Catalan arrangement to some orders. Then in section 2, we exhibit a bijection between these orders and rooted labeled ordered forests. Finally, we compute in section 3 the number of regions of the type C Catalan arrangement.

1. From regions to orders

In this section we show that each region R of the type C Catalan arrangement corresponds bijectively to a specific order between the variables x_i and $1 + x_i$ for any i in $[-n, n] \setminus \{0\}$ where (x_1, \ldots, x_n) denotes the coordinates of any point of R and $x_{-i} = -x_i$ for all i in $[1, n]$.

In the sequel, for any i in $[-n, n] \setminus \{0\}$, we denote by:

- $\alpha_i(0)$ the variable x_i,
- $\alpha_i(1)$ the variable $1 + x_i$.

These notations are derived from the paper of O. Bernardi [4]. We also denote by \mathcal{A}_{2n} the alphabet $\{\alpha_i^{(0)}, \alpha_i^{(1)}, \forall i \in [-n, n] \setminus \{0\}\}$.

We first define a symmetric annotated 1-sketch and explain its symmetries. Then, in a second time, we will show that the regions of the type C Catalan arrangement are in one-to-one correspondance with symmetric annotated 1-sketches.

1.1. Symmetric annotated 1-sketch.

Definition 1.1. A symmetric annotated 1-sketch of size $2n$ is a word $\omega = w_1 \ldots w_{4n}$ that satisfies for all $i, j \in [-n, n] \setminus \{0\}$:

\((i) \) \(\{w_1, ..., w_{2n}, ..., w_{4n}\} = \mathcal{A}_{2n} \),

\((ii) \alpha_i^{(0)} \) appears before \(\alpha_j^{(1)} \);

\((iii) \) If \(\alpha_i^{(0)} \) appears before \(\alpha_j^{(0)} \) then \(\alpha_i^{(1)} \) appears before \(\alpha_j^{(1)} \);

\((iv) \) If \(\alpha_i^{(0)} \) appears before \(\alpha_j^{(0)} \) then \(\alpha_i^{-j} \) appears before \(\alpha_j^{-j} \), \(\forall s \in \{0, 1\} \).

Let \(D^{(1)}(2n) \) be the set of symmetric annotated 1-sketches of size 2n.

Example 1.1. \(\omega = \alpha_2^{(0)} \alpha_0^{(0)} \alpha_3^{(1)} \alpha_0^{(0)} \alpha_1^{(0)} \alpha_0^{(0)} \alpha_1^{(0)} \alpha_1^{(0)} \in D^{(1)}(6) \).

Remark 1.1.

1. Condition (ii) of Definition 1.1 implies that a symmetric annotated 1-sketch starts with a sequence of \(\alpha_i^{(0)} \) letters and ends with a sequence of \(\alpha_i^{(1)} \) letters.

2. Condition (iv) of Definition 1.1 implies that the subword of \(\omega \) composed of the \(\alpha^{(0)} \) letters has the form \(\alpha_i^{(0)} \alpha_i^{(0)} \alpha_{i+n}^{(0)} \alpha_{2i}^{(0)} \alpha_{2i}^{(0)} \alpha_{2i}^{(0)} \) with \(\{i_1, ..., i_n\} = [1, n] \). Moreover, the subword of \(\omega \) composed of the \(\alpha^{(1)} \) letters is exactly \(\alpha_{1+1}^{(1)} \alpha_{1-n}^{(1)} \alpha_{-i+1}^{(1)} \alpha_{-i}^{(1)} \).

Furthermore, a symmetric annotated 1-sketch is the result of a specific shuffle between two words on the alphabet \(\mathcal{A}_{2n} \) where one is the symmetric of the other in the following sense:

Definition 1.2. Let \(\omega_1 \) be a word on \(\mathcal{A}_{2n} \) that ends with letter \(u \), i.e. \(\omega_1 = \omega_0 u \). We define the symmetric of \(\omega_1 \) as a word \(\mathcal{P} \mathcal{P}_1 = \mathcal{P}_1 \mathcal{P}_0 \) where \(\mathcal{P}_1 = \alpha_1^{(1-s)} \) if \(u = \alpha_k^{(s)} \), \(s \in \{0, 1\} \) and \(\mathcal{P}_0 \) is recursively defined in the same way.

Example 1.2. The symmetric of \(\omega_1 = \alpha_3^{(0)} \alpha_0^{(0)} \alpha_3^{(1)} \alpha_0^{(0)} \alpha_1^{(0)} \alpha_0^{(0)} \alpha_1^{(0)} \alpha_1^{(0)} \) is \(\mathcal{P}_1 = \alpha_3^{(0)} \alpha_0^{(0)} \alpha_3^{(1)} \alpha_0^{(0)} \alpha_1^{(0)} \alpha_0^{(0)} \alpha_1^{(0)} \).

Now, a symmetric annotated 1-sketch is the combination of two symmetric words \(\omega_1 \) and \(\omega_2 = \mathcal{P}_1 \). As a matter of fact, we will now explain how we obtain \(\omega_1 \) and \(\omega_2 \) from \(\omega \). We call words of the form \(\omega_1 \), annotated 1-sketches which formal definition is:

Definition 1.3. An annotated 1-sketch of size \(n \) is defined by \(2n \) letters \(\alpha_i^{(0)} \) and \(\alpha_i^{(1)} \), \(k \) in \([1, n]\) such that \(\{j_1, ..., j_n\} = [1, n] \) and which satisfies conditions (ii) and (iii) of Definition 1.1.

We denote by \(A_{n,s} \), \(n \leq s \leq 2n - 1 \), the set of annotated 1-sketches where the rightmost letter \(\alpha_i^{(0)} \) is at position \(s \).

Thus we get that:

Proposition 1.1. Any symmetric annotated 1-sketch \(\omega \) is the composition of an annotated 1-sketch \(\omega_1 \) and its symmetric \(\mathcal{P}_1 \).

Proof. We define \(\omega_1 \) as the subword of \(\omega \) composed of the \(n \) leftmost \(\alpha_i^{(0)} \) letters and the corresponding \(\alpha_i^{(1)} \) letters (if \(\alpha_i^{(0)} \) appears in \(\omega \) then \(\alpha_i^{(1)} \) appears in \(\omega_1 \)). Remark 1.2 implies that \(\alpha_i^{(0)} \) and \(\alpha_i^{(1)} \) cannot both belong to the set of the \(n \) leftmost \(\alpha_i^{(0)} \) letters of \(\omega \). Thus, it is easy to see that \(\omega_1 \) is an annotated 1-sketch.

This remark and condition (iv) of Definition 1.1 also imply that \(\omega_2 \) the subword of \(\omega \) composed of the letters not in \(\omega_1 \) is the symmetric of \(\omega_1 \).

Example 1.3. \(\omega \) of Example 1.1 is composed of \(\omega_1 = \alpha_3^{(0)} \alpha_0^{(0)} \alpha_3^{(1)} \alpha_0^{(0)} \alpha_1^{(0)} \alpha_0^{(0)} \alpha_1^{(0)} \alpha_1^{(0)} \in A_{3,4} \) and \(\mathcal{P}_1 \).

Conversely, for any annotated 1-sketch \(\omega_1 \), we can construct a symmetric annotated 1-sketch, the result of shuffles between \(\omega_1 \) and \(\mathcal{P}_1 \). We first give the definition of these shuffles and then prove the assertion.

Definition 1.4. Let \(\psi = \alpha_1^{(1)} ... \alpha_k^{(1)} \). We define the set of shuffles \(\psi \bowtie \bar{\psi} \) recursively with \(\psi \bowtie \bar{\psi} = \{\epsilon\} \) if \(\psi \) is the empty word \(\epsilon \), as the set of following words:

- \(\alpha_i^{(0)} \psi \bowtie \bar{\psi} \alpha_j^{(1)} \) with \(\psi' = \alpha_{j_1}^{(1)} ... \alpha_{j_{k-1}}^{(1)} \psi' = \epsilon \) if \(k = 1 \),

- \(\alpha_{j_1}^{(1)} ... \alpha_{j_k}^{(1)} \psi \bowtie \bar{\psi} \alpha_{k_1}^{(1)} ... \alpha_{k_{l-1}}^{(1)} \) with \(\psi' = \alpha_{j_{k+1}}^{(1)} ... \alpha_{j_{l-1}}^{(1)} \psi' = \epsilon \) if \(i = k+1, ... \leq l \leq k - 1, \alpha_{j_{k+1}}^{(1)} ... \alpha_{j_{l-1}}^{(1)} \) \(\epsilon \).

Example 1.4. The set of shuffles \(\psi \bowtie \bar{\psi} \) with \(\psi = \alpha_{j_1}^{(1)} \alpha_{j_2}^{(1)} \) is composed of the four words \(\alpha_{-j_1}^{(0)} \alpha_{-j_2}^{(0)} \alpha_{-j_1}^{(1)} \alpha_{-j_2}^{(1)} \), \(\alpha_{-j_1}^{(1)} \alpha_{-j_2}^{(1)} \alpha_{-j_1}^{(0)} \alpha_{-j_2}^{(0)} \), \(\alpha_{j_1}^{(1)} \alpha_{j_2}^{(1)} \alpha_{j_1}^{(0)} \alpha_{j_2}^{(0)} \) and \(\alpha_{j_1}^{(1)} \alpha_{j_2}^{(1)} \alpha_{j_1}^{(0)} \alpha_{j_2}^{(0)} \).
Definition 1.5. Let \(\omega_1 = \omega_0 \alpha^{(0)}_j \psi \) with \(\psi = \alpha^{(1)}_{j-n+1} \cdots \alpha^{(1)}_{j-2} \alpha^{(1)}_{jn} \), be an annotated 1-sketch. Then \(\omega_1 \bowtie \varpi_1 = \omega_0 \alpha^{(0)}_j \psi \bowtie \varpi \alpha^{(1)}_{jn} \omega_0 = \{ \omega_0 \alpha^{(0)}_j \varpi \omega_0 \alpha^{(1)}_{jn}, \varpi \in \psi \bowtie \varpi \} \).

Proposition 1.2. For any annotated 1-sketch \(\omega_1 \) of size \(n \), \(\omega_1 \bowtie \varpi_1 \subset D^{(1)}(2n) \).

Example 1.5. \(\omega_1 = \alpha^{(0)}_2 \alpha^{(0)}_2 \alpha^{(1)}_3 \alpha^{(1)}_3 \alpha^{(1)}_3 \in A_{3,4} \). Then \(\omega_1 \bowtie \varpi_1 \) is the set of 4 elements:

\[
\alpha^{(0)}_1 \alpha^{(0)}_2 \alpha^{(0)}_3 \alpha^{(0)}_1 \alpha^{(1)}_2 \alpha^{(1)}_2 \alpha^{(1)}_2 \alpha^{(1)}_3, \alpha^{(0)}_2 \alpha^{(0)}_2 \alpha^{(0)}_3 \alpha^{(0)}_1 \alpha^{(1)}_3 \alpha^{(1)}_3 \alpha^{(1)}_2 \alpha^{(1)}_2, \alpha^{(0)}_2 \alpha^{(0)}_2 \alpha^{(0)}_3 \alpha^{(0)}_1 \alpha^{(1)}_3 \alpha^{(1)}_3 \alpha^{(1)}_2 \alpha^{(1)}_2, \alpha^{(0)}_2 \alpha^{(0)}_2 \alpha^{(0)}_3 \alpha^{(0)}_1 \alpha^{(1)}_3 \alpha^{(1)}_3 \alpha^{(1)}_2 \alpha^{(1)}_2.
\]

Proof. We must prove that any word of \(\omega_1 \bowtie \varpi_1 \) is a symmetric annotated 1-sketch, meaning that it verifies conditions (i) to (iv) of Definition 1.1.

Conditions (i), (ii) and (iii) are straightforward, since \(\omega_1 \) and \(\varpi_1 \) are annotated 1-sketches, each one the symmetric of the other, and their letters are not permuted.

Let \(\omega_1 = \omega_0 \alpha^{(0)}_j \psi \) with \(\psi = \alpha^{(1)}_{j-n+1} \cdots \alpha^{(1)}_{j-2} \alpha^{(1)}_{jn} \). A word of \(\omega_1 \bowtie \varpi_1 \) which obviously verifies condition (iv), or has one of the following form and we can thus check recursively that it verifies condition (iv):

\[
\begin{align*}
\omega_0 \alpha^{(0)}_j \alpha^{(0)}_j \alpha^{(0)}_j \alpha^{(0)}_j \varpi \alpha^{(1)}_{jn} \varpi, \varpi' &= \alpha^{(1)}_{j-n+1} \cdots \alpha^{(1)}_{j-2} \alpha^{(1)}_{jn}, \\
\omega_0 \alpha^{(0)}_j \alpha^{(0)}_j \cdots \alpha^{(0)}_j \alpha^{(0)}_j \varpi \varpi_0, \varpi' &= \alpha^{(1)}_{j-n+1} \cdots \alpha^{(1)}_{j-2} \alpha^{(1)}_{jn}, \varpi &= \alpha^{(1)}_{j-n+1} \cdots \alpha^{(1)}_{j-2} \alpha^{(1)}_{jn}, \varpi' &= \alpha^{(1)}_{j-n+1} \cdots \alpha^{(1)}_{j-2} \alpha^{(1)}_{jn}.
\end{align*}
\]

\[\square\]

1.2. Bijection between regions and symmetric annotated 1-sketches.

A symmetric annotated 1-sketch corresponds to a specific order between the variables \(x_1 \) and \(x_j \) for any \(j \) in \([-n,n]\). We show here that these orders are bijectively related to the coordinates of the points of the regions of the type C Catalan arrangement.

Proposition 1.3. There is a one to one correspondence between regions of the type C Catalan arrangement in \(R^n \) and the symmetric annotated 1-sketches of size \(2n \).

Proof. Let \(x \in R^n \) be a point such that \(x_i + s = x_j + t \) then \(x \in \bigcup_{H \in \mathcal{C}(1,0,1)} H \). Therefore, for any \(x = \{x_1, \ldots, x_n\} \) that belongs to \(R^n \setminus \bigcup_{H \in \mathcal{C}(1,0,1)} H \), the elements of \(\{x_i + s : i \in [-n,n] \setminus \{0\}, s \in \{0,1\}\} \) are all distinct, with \(x_i = x_{i+1} = x_{i+2} = \cdots = x_{i+s} \) for all \(i \). We define \(\sigma(x) = w_1 w_2 \cdots w_{4n} \), where \(w_p = \alpha_1^{(s)} \) if \(z_p = x_i + s \) with \(z_1 < z_2 < \cdots < z_{4n} \).

\(\sigma(x) \) satisfies conditions (i) - (iii) of Definition 1.1. We now prove that \(\sigma(x) \) satisfies condition (iv) of Definition 1.1. Indeed, if \(\alpha_1^{(s)} \) appears before \(\alpha_2^{(s)} \) with \(s \in \{0,1\} \) then \(x_i < x_{i+s} \), hence \(x_{i+s} < x_i \). It induces that \(\alpha_1^{(s)} \) appears before \(\alpha_2^{(s)} \). Therefore \(\sigma(x) \) is a symmetric annotated 1-sketch of size \(2n \).

The mapping \(\sigma \) is constant over each region of \(\mathcal{C}(1,0,1) \). Thus, \(\sigma \) is a mapping from the regions of \(\mathcal{C}(1,0,1) \) to \(D^{(1)}(2n) \).

2. From orders to forests.

In this section, we present a bijection between the symmetric annotated 1-sketches and some rooted labeled ordered forests that we call symmetric forests. We will first define these forests and then expose the bijection.

2.1. Symmetric forests.

In order to define a symmetric forest, we need to introduce the notion of sub-descendant in a forest.

For any rooted labeled ordered forest \(F \), we say that we read the nodes of \(F \) in BFS order if we list the labels of the nodes of \(F \) in a breadth-first search starting from the root.
Definition 2.1. Let i and j be two nodes in a rooted ordered forest. We say that i is a sub-descendant of j if i appears after j and strictly before any child of j in the BFS order. We also say that i and j satisfy the sub-descendant property (SDP) if i is a sub-descendant of j implies that $-j$ is a sub-descendant of $-i$.

Definition 2.2. A symmetric forest with $2n$ nodes is a rooted labeled ordered forest that satisfies:

(i) the first n nodes read in BFS order are labeled e_1, \ldots, e_n such that $\{|e_1|, \ldots, |e_n|\} = [1, n]$,

(ii) $e_{n+j} = -e_{n-j+1}$ with $j \in [1, n]$,

(iii) for every two nodes i, j, i and j satisfy the sub-descendant property.

We denote by $F_{S}(2n)$ the symmetric forests with $2n$ nodes.

Example 2.1. For the symmetric forest G in Figure 1, 1 is a sub-descendant of -2 and 2 is a sub-descendant of -1, hence $\{1, -2\}$ satisfy the sub-descendant property. Moreover, $G \in F_{S}(6)$.

As a matter of fact, a symmetric forest is composed of two sub-forests where one is the symmetric of the other in the following sense:

Definition 2.3. Let F be a rooted ordered forest defined on n labeled nodes e_1, \ldots, e_n. We define the symmetric of F as a rooted ordered forest \overline{F} with n labeled nodes $-e_1, \ldots, -e_n$ such that for all $i \neq j \in [1, n]$, $-e_i$ is a sub-descendant of $-e_j$ in \overline{F} if and only if e_j is a sub-descendant of e_i in F.

We now explain how to decompose a symmetric forest G into a forest F and its symmetric. F is the sub-forest of G defined on the first n nodes read in BFS order.

![Figure 1](image)

Thus we have that:

Proposition 2.1. A symmetric forest with $2n$ nodes is the composition of a rooted labeled ordered forest with n nodes and its symmetric.

Proof. F is the sub-forest of G defined by the first n nodes read in BFS order. Then the sub-forest of G corresponding to the n last nodes read in BFS order is the forest, symmetric of F, by Definition 2.2 and Definition 2.3.

Conversely, any shuffle between any rooted labeled ordered forest F and its symmetric, is in bijection with a symmetric forest. We first give the definition of a special leaf, then the definition of the shuffles between a forest and its symmetric (see Figure 2) and finally we prove the assertion.

Definition 2.4. In a rooted ordered forest with n labeled nodes e_1, \ldots, e_n such that $\{|e_1|, \ldots, |e_n|\} = [1, n]$, the special leaves are the leaves which are after the last internal node in the BFS order. If a forest F has only leaves, we consider that its last internal node is a fictif node, parent of the leaves of F. Let us call $F_{n,s}, 1 \leq s \leq n$, the set of rooted labeled ordered forests of size n with s special leaves.

Example 2.2. The rooted labeled ordered forest F of Figure 2 has two special leaves, 1 and 3.
Definition 2.5. Let F be a rooted ordered forest defined on n labeled nodes e_1, \ldots, e_n, ordered in BFS order and such that $\{[e_1], \ldots, [e_n]\} = [1, n]$. with s special leaves. The set of shuffles between F and its symmetric \overline{F}, $F \bowtie \overline{F}$, is the set of forests obtained when we connect s edges from $\{-e_n, -e_{n-1}, \ldots, -e_{n+s+1}\}$ to $\{e_{n-s}, e_{n-s+1}, \ldots, e_{n-1}, e_n\}$ such that any pair (u, v), u in $\{-e_n, -e_{n-1}, \ldots, -e_{n+s+1}\}$ and v in $\{e_{n-s}, \ldots, e_{n-1}, e_n\}$, satisfies the sub-descendant property and the sequence of the nodes read in BFS order is $e_1, \ldots, e_n, -e_n, -e_{n-1}, \ldots, -e_1$. We say that $\{-e_n, -e_{n-1}, \ldots, -e_{n-s+1}\}$ and $\{e_{n-s}, \ldots, e_{n-1}, e_n\}$ satisfy the sub-descendant property.

Proposition 2.2. For any rooted ordered forest F with n nodes labeled with e_1, \ldots, e_n such that $\{[e_1], \ldots, [e_n]\} = [1, n]$, the set $F \bowtie \overline{F}$ is a set of symmetric forests with $2n$ nodes.

Proof. Conditions (i) and (ii) of Definition 2.2 are verified by definition of the shuffle. Notice that for any connection of s edges from $\{-e_n, -e_{n-1}, \ldots, -e_{n+s+1}\}$ to $\{e_{n-s}, e_{n-s+1}, \ldots, e_{n-1}, e_n\}$, $\{-e_n, -e_{n-s-1}, \ldots, -e_1\}$ always satisfies the sub-descendant property with $\{e_1, e_2, \ldots, e_n\}$, and $\{-e_n, -e_{n-1}, \ldots, -e_{n-s+1}\}$ always satisfies the sub-descendant property with $\{e_1, e_2, \ldots, e_{n-s-1}\}$. By Definition 2.5, $\{-e_n, -e_{n-1}, \ldots, -e_{n-s+1}\}$ and $\{e_{n-s}, \ldots, e_{n-1}, e_n\}$ satisfy the sub-descendant property. Therefore, for any forest G in $F \bowtie \overline{F}$, for every two nodes e_i, e_j, e_i and e_j satisfy the sub-descendant property. Thus, G is a symmetric forest. □

![Figure 2. the set of shuffles between the forests F and \overline{F} of Figure 1.](image)

2.2. Bijection between symmetric annotated 1-sketches and symmetric forests. We will show here that a symmetric annotated 1-sketch corresponds bijectively to a symmetric forest. Moreover, the decomposition of a symmetric annotated 1-sketch (see Proposition 2.1) corresponds to the decomposition of a symmetric forest (see Proposition 2.3).

Proposition 2.3. There is a one to one correspondence between symmetric annotated 1-sketches of size $2n$ and symmetric forests of size $2n$.

Proof. We now prove the proposition in 3 steps:
Step 1: we first present an algorithm to get the symmetric forest from a symmetric annotated 1-sketch ω of $D^1(2n)$. We define the map ϕ of $D^1(2n)$ and $F_S(2n)$ by the following algorithm (see Figure 3):
(i) Read ω from left to right.
(ii) When $\alpha_i^{(0)}$ is read, create a node i such that, if $\alpha_i^{(0)}$ is not the first letter, if the preceding letter is $\alpha_j^{(0)}$ then i becomes the next right sibling of j, and if the preceding letter is $\alpha_j^{(1)}$, then i becomes the leftmost child of j.

First note that $\alpha_i^{(0)}$ and $\alpha_i^{(0)}$ cannot both be in the first n $\alpha^{(0)}$ letters. By definition, the forest $\phi(\omega)$ has n first nodes labeled by the first n $\alpha^{(0)}$-letters. And the last n nodes are defined symmetrically as in the symmetric annotated 1-sketches $D^1(2n)$.

Second, remark that:

Remark 2.1. (1) If $\alpha_i^{(1)}$ is not followed by an $\alpha^{(0)}$-letter then node i is a leaf.
(2) If $\alpha_i^{(0)}$ appears before $\alpha_j^{(0)}$ in ω then node i appears before node j in the BFS order of the nodes of the obtained forest.
(3) The property “$\alpha_i^{(0)}$ appears before $\alpha_j^{(0)}$ then $\alpha_i^{(0)}$ appears before $\alpha_j^{(0)}$, implies that “i appears before j then $-j$ appears before $-i$ in the BFS order of the nodes of the obtained forest”.

From Propositions 1.3 and 2.3, we get that:

(4) The property \(\alpha_i^{(0)}\) appears before \(\alpha_j^{(1)}\) then \(\alpha_{-j}^{(0)}\) appears before \(\alpha_{-i}^{(1)}\) is equivalent to \(\alpha_i^{(0)}\) \(\alpha_j^{(0)}\) \(\alpha_j^{(1)}\) then \(\alpha_{-i}^{(0)}\) \(\alpha_{-j}^{(0)}\) \(\alpha_{-j}^{(1)}\). So, if \(i\) is a sub-descendant of \(j\) then \(-j\) is a sub-descendant of \(-i\).

From these last two remarks, it is clear that \(\phi\) is a symmetric forest.

Step 2: before showing that \(\phi\) is a bijection, we describe the inverse mapping \(\psi\). Let \(G \in F_S(2n)\) and \(e_1,e_2,...,e_{2n}\) be the \(2n\) nodes in \(G\) read in BFS order. Let \(\psi(G)\) be the word \(\omega\) defined inductively as follow:

- Read the vertices in BFS order. \(\omega_1 = \alpha_{e_1}\).
- For any \(2 \leq j \leq 2n\), if \(e_j\) is the next right sibling of \(e_{j-1}\) then \(\omega_j = \omega_{j-1}\alpha_{e_j}^{(0)}\), if \(e_j\) is the leftmost child of \(e_i\) then \(\omega_j = \omega_{j-1}\alpha_{e_i}^{(1)}\alpha_{e_j}\).
- \(\omega = \omega_{2n}\alpha_{e_{2n-1}}\alpha_{e_{2n-2}}...\alpha_{e_2}\alpha_{e_1}\) if \(G\) has \(s\) special leaves.

Note that for all \(G \in F_S(2n)\), the word \(\psi(G)\) satisfies the properties (i)-(iv) of symmetric annotated 1-sketches. Hence \(\psi\) is a mapping from \(F_S(2n)\) to \(D^1(2n)\).

Step 3: it is easy to prove that \(\psi(\phi(D^1(2n))) = D^1(2n)\) and \(\phi(\psi(F_S(2n))) = F_S(2n)\).

\[\square\]

From Propositions 1.3 and 2.3 we get that:

Corollary 2.1. \(\Phi = \phi \circ \sigma\) is a bijection from the regions of the Catalan arrangement \(C_{\{1,0,1\}}(n)\) to the symmetric forests \(F_S(n)\).

The bijection \(\phi\) induces a bijection between the annotated 1-sketches of size \(n\) with rightest \(\alpha^{(0)}\)-letter at position \(s\) and the rooted labeled ordered forests with \(2n - s\) special leaves.

Proposition 2.4. The mapping \(\phi\) induces a bijection between \(A_{n,s}\) and \(F_{n,2n-s}, n \leq s \leq 2n - 1\).

Proof. Let \(\omega_1 \in A_{n,s}\). It means that \(\omega_1 = \omega_0\alpha_{j_0}^{(0)}\alpha_{j_1}^{(1)}\alpha_{j_2}^{(0)}...\alpha_{j_{s-1}}^{(1)}\alpha_{j_s}^{(0)}\alpha_{j_{s+1}}^{(1)}...\alpha_{j_{2n-s}}^{(0)}\alpha_{j_{2n-s+1}}^{(1)}...\alpha_{j_{2n-1}}^{(0)}\alpha_{j_{2n}}^{(1)}\).

From the first step of the proof of Proposition 2.3 we have that:

- \(\alpha_{j_1}^{(0)}...\alpha_{j_n}^{(0)}\) represent the nodes \(j_1,...,j_n\) read in BFS order in \(\phi(\omega_1)\),
- If \(\alpha_{i}^{(1)}\) is not followed by an \(\alpha^{(0)}\)-letter then node \(i\) is a leaf,
- The last \(\alpha^{(1)}\)-letter followed by an \(\alpha^{(0)}\)-letter is \(\alpha_{j_{2n-s}}^{(1)}\). This implies that the last internal node in the BFS order of the nodes of \(\phi(\omega_1)\) is \(j_{2n-s}\).

Thus, \(\phi(\omega_1)\) is a rooted ordered forest with \(n\) labeled nodes \(j_1,...,j_n\) where the nodes \(j_{s-n+1},j_{s-n+2},...,j_n\) are \(2n-s\) special leaves and \(\phi(\omega_1) \in F_{n,2n-s}\). Conversely, let \(F \in F_{n,2n-s}\) with \(2n-s\) special leaves \(j_{s-n+1},j_{s-n+2},...,j_n\). Then \(\alpha_{j_n}^{(0)}\) is at the \(s^{th}\) position in \(\psi(F)\), hence it belongs to \(A_{n,s}\).

It is easy to prove that \(\psi(\phi(A_{n,s})) = A_{n,s}\). Similarly, \(\phi(\psi(F_{n,2n-s})) = F_{n,2n-s}\).

\[\square\]
We now show that the different possible shuffles between an annotated 1-sketch and its symmetric correspond by \(\phi \) to the different possible shuffles between a rooted labeled ordered forest and its symmetric.

Proposition 2.5. The bijections \(\phi \) and \(\psi \) are compatible with shuffles and symmetrics. Indeed, let \(\omega_1 \) be annotated 1-sketch, then \(\phi(\omega_1) = \phi(\omega_1) \) and \(\phi(\omega_1 \bowtie \omega_1) = \phi(\omega_1) \bowtie \phi(\omega_1) \).

Proof. Let \(\omega_1 = \omega_0 \phi(\omega_n) \alpha_{j-1}^{(1)} \ldots \alpha_{j-1}^{(0)} \ldots \alpha_{j-1}^{(0)} \ldots \alpha_{j-1}^{(0)} \in A_n \).

From Proposition 2.4 we get \(\phi(\omega_1) \in F_{n,2n-2} \) and \(\phi(\omega_1) \in F_{n,2n-2} \).

Remark that if \(\omega_1 \) is of the form \(\alpha_{i}^{(0)} \ldots \alpha_{i}^{(0)} \ldots \alpha_{i}^{(1)} \ldots \alpha_{i}^{(1)} \ldots \), then \(\omega_1 \) is of the form \(\alpha_{i}^{(0)} \ldots \alpha_{i}^{(0)} \ldots \alpha_{i}^{(1)} \ldots \alpha_{i}^{(1)} \ldots \)

It means that in \(\phi(\omega_1) \), \(j \) is a sub-descendant of \(i \) and in \(\phi(\omega_1) \), \(-i \) is a sub-descendant of \(-j \). Thus \(\phi(\omega_1) = \phi(\omega_1) \).

Moreover a shuffle between \(\alpha_{j-1}^{(1)} \ldots \alpha_{j-1}^{(1)} \ldots \alpha_{j-1}^{(0)} \ldots \alpha_{j-1}^{(0)} \ldots \alpha_{j-1}^{(0)} \) corresponds by \(\phi \) to a shuffle between the special leaves of \(\phi(\omega_1) \), \(j_{s-1} \ldots j_{s-2} \ldots j_{s-1} \), and the nodes of \(\phi(\omega_1) \), \(-j_{s-1} \ldots -j_{s-2} \ldots -j_{s-1} \).

Since \(\omega_1 \bowtie \omega_1 = \omega_0 \phi(\omega_n) \phi(\omega_n) \alpha_{j-1}^{(1)} \ldots \alpha_{j-1}^{(1)} \ldots \alpha_{j-1}^{(0)} \ldots \alpha_{j-1}^{(0)} \ldots \alpha_{j-1}^{(0)} \bowtie \alpha_{j-1}^{(0)} \ldots \alpha_{j-1}^{(0)} \ldots \alpha_{j-1}^{(1)} \ldots \alpha_{j-1}^{(1)} \ldots \), it is straigntforward to conclude that \(\phi(\omega_1 \bowtie \omega_1) = \phi(\omega_1) \bowtie \phi(\omega_1) \).

\(\square \)

3. The number of regions of the type C Catalan arrangement

We are now able to compute the number of regions of the type C Catalan arrangement. We first compute the number of rooted ordered forests of size \(n \) with \(s \) special leaves.

Proposition 3.1. The number of rooted ordered forests of size \(n \) with \(s \) special leaves, \(C_{n,s} \), verifies the following formula : \(C_{n,s} = \frac{s^{2n+1}}{n!} \) for \(1 \leq s \leq n-1 \) and \(C_{n,n} = 1 \).

Proof. Let \(F \) be a rooted ordered forest of size \(n \) with \(s \) special leaves \(e_{n-s+1}, \ldots, e_{n-1}, e_n \). If we cancel the last special leaf \(e_n \) then we get a rooted ordered forest of size \(n-1 \) with \(s \) special leaves, \(s+1 \leq s \leq n-1 \). Hence, \(C_{n,s} = C_{n-1,s-1} + C_{n-1,s} + \ldots + C_{n-1,n-1}, 1 \leq s \leq n-1 \). Moreover \(C_{n,n} = 1 \) since a rooted ordered forest of size \(n \) with no special leaves is the forest with only leaves.

Then \(C_{n,s} = C_{n-1,s-1} + C_{n-1,s-1}, 1 \leq s \leq n-1 \) and \(C_{n,n} = 1 \).

The number of rooted ordered forests with \(s \) special leaves in the case \(n = 2,3 \) are given by \(C_{2,1} = C_{2,2} = 1, C_{3,1} = C_{3,2} = 2 \).

Thus, by induction, we conclude.

\(\square \)

Now we are able to enumerate the regions of the type C Catalan arrangement.

Proposition 3.2. The number of regions of the type C Catalan arrangement is

\[
r(C_{-1,0,1}(n)) = 2^n n! \sum_{s=1}^{n-1} \frac{s^{2n}}{n!} + 4^n n!.
\]

Proof. The number of labeling of a rooted ordered forest of size \(n \) with labels \(e_1, \ldots, e_n \) such that \(\{|e_1|, \ldots, |e_n|\} = [1, n] \) is \(2^n n! \). Thus, from Corollary 2.1 we can compute the number of regions of the type C Catalan arrangement :

\[
r(C_{-1,0,1}(n)) = 2^n n! \sum_{s=1}^{n} C_{n,s} D_{n,s}
\]

where \(C_{n,s} \) is given by Proposition 3.1 and \(D_{n,s} \) is the number of shuffles between any rooted labeled ordered forest of size \(n \) with \(s \) special leaves and its symmetric.

Now we compute \(D_{n,s} \). By Proposition 2.5 and Proposition 2.4 this is equal to the number of shuffles between an annotated 1-sketch \(\omega_1 = \omega_0 \phi(\omega_n) \alpha_{e_{n-s+1}}^{(0)} \alpha_{e_{n-s+2}}^{(1)} \ldots \alpha_{e_{n-s+1}}^{(0)} \ldots \alpha_{e_{n-s+1}}^{(0)} \) and its symmetric \(\omega_1 = \alpha_{e_{n-s+1}}^{(0)} \alpha_{e_{n-s+2}}^{(0)} \alpha_{e_{n-s+1}}^{(0)} \ldots \alpha_{e_{n-s+1}}^{(0)} \).

Assume that \(\phi(\omega_1) \) is followed immediately by \(\alpha_{e_{n-s}}^{(0)} \), hence the set \(\omega_1 \bowtie \omega_1 \) is equal to the set \(\omega_0 \alpha_{e_{n-s}}^{(0)} \alpha_{e_{n-s}}^{(0)} \alpha_{e_{n-s}}^{(1)} \ldots \alpha_{e_{n-s}}^{(0)} \ldots \alpha_{e_{n-s}}^{(0)} \). Let \(a_k \) be the number of possible shuffles between \(\alpha_{e_{n-s}}^{(0)} \ldots \alpha_{e_{n-s}}^{(0)} \) and \(\alpha_{e_{n-s}}^{(0)} \ldots \alpha_{e_{n-s}}^{(0)} \). Thus, in this case we have \(a_{n-s-1} \) possible shuffles.

Now we assume that \(\alpha_{e_{n-s}}^{(0)} \) appears immediately after \(\alpha_{e_{k}}^{(1)} \), \(n-s+1 \leq k \leq n-1 \), then we have \(a_{n-k-1} \) possible shuffles. And if \(\alpha_{e_{n}}^{(0)} \) appears immediately after \(\alpha_{e_{n}}^{(1)} \), we get exactly one word.
Hence \(D_{n,s} = a_{s-1} + a_{s-2} + \ldots + a_1 + a_0 + 1, \ s \geq 1. \) Notice that in the case \(\alpha^{(0)}_{-e_n} \) appears immediately after \(\alpha^{(1)}_{e_{n-1}} \), \(a_0 = 1. \)

Moreover, in a shuffle between \(\alpha^{(1)}_{e_1} \ldots \alpha^{(1)}_{e_k} \) and \(\alpha^{(0)}_{-e_k} \ldots \alpha^{(0)}_{-e_1} \), if \(\alpha^{(1)}_{e_1} \) appears at position 1 then \(\alpha^{(0)}_{-e_1} \) appears at position \(2k \), and if \(\alpha^{(0)}_{-e_k} \) appears at position 1 then \(\alpha^{(1)}_{e_k} \) appears at position \(2k \). This implies that \(a_k = 2a_{k-1} \). Therefore, \(D_{n,s} = 2^s. \)

\[\square \]

References

[1] Christos A. Athanasiadis. Characteristic polynomials of subspace arrangements and finite fields. Advances in Mathematics, 122(2):193 – 233, 1996.
[2] Christos A. Athanasiadis. Extended linial hyperplane arrangements for root systems and a conjecture of postnikov and stanley. Algebraic Combin., 10:207–225, 1999.
[3] Christos A. Athanasiadis and Svante Linusson. A simple bijection for the regions of the shi arrangement of hyperplanes. Discrete Mathematics, 204(1):27 – 39, 1999. Selected papers in honor of Henry W. Gould.
[4] Olivier Bernardi. Deformations of the braid arrangement and trees. Advances in Mathematics, 335:466 – 518, 2018.
[5] Sylvie Corteel, David Forge, and Véronique Ventos. Bijections between affine hyperplane arrangements and valued graphs. European Journal of Combinatorics, 50:30 – 37, 2015. Combinatorial Geometries: Matroids, Oriented Matroids and Applications. Special Issue in Memory of Michel Las Vergnas.
[6] Rui Duarte and António Guedes de Oliveira. Between shi and ish. Discrete Mathematics, 341:388 – 399, 2018.
[7] Karola Mészáros. Labeling the regions of the type \(c_n \) shi arrangement. the Elec. J. of Combinatorics, 20(2), 2013.
[8] Alexander Postnikov and Richard P. Stanley. Deformations of coxeter hyperplane arrangements. Journal of Combinatorial Theory, Series A, 91(1):544 – 597, 2000.
[9] Richard P. Stanley. An introduction to hyperplane arrangements. 13:389–496, 2007.

IRIF, CNRS and University Paris Diderot, Case 7014, 75205 Paris Cedex 13 France
E-mail address: amicheli@irif.fr
ndvu@math.ac.vn, Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
E-mail address: ndvu@math.ac.vn