Complete chloroplast genome of a rare and endangered plant species

Phalaenopsis zhejiangensis: genomic features and phylogenetic relationship within Orchidaceae

Ming Jiang, Yan Zhu, Qian Wu and Huijuan Zhang
College of Life Sciences, Taizhou University, Taizhou, PR China

ABSTRACT

Phalaenopsis zhejiangensis is a rare and endangered plant species with extremely small populations. The complete chloroplast (cp) genome of *P. zhejiangensis* was assembled, its structural organization was described and comparative genomic analyses was carried out. The cp genome of *P. zhejiangensis* is 143,547 bp in length, with a GC content of 37.2%, which includes a pair of inverted repeats (IRs) of 24,464 bp separated by a small single-copy region of 10,764 bp and a large single-copy region of 83,856 bp. The cp genome contains 126 genes, consisting of 80 protein-coding genes, 38 transfer RNAs, and eight ribosomal RNAs. Six protein-coding genes, including \(\psi_{ndhB}\) (two copies), \(\psi_{ndhD}\), \(\psi_{ndhG}\), \(\psi_{ndhK}\), and \(\psi_{ndhJ}\), are identified as pseudogenes. Another six \(ndh\) genes, \(ndhA\), \(ndhC\), \(ndhE\), \(ndhF\), \(ndhH\), and \(ndhJ\), are missing from the plastid genome. A total of 41 cp simple sequence repeats (SSRs) were identified, including 40 mono-nucleotides and one di-nucleotides. Phylogenetic analysis revealed *P. zhejiangensis* was nested inside the *Phalaenopsis* species and sister to *P. wilsonii*. The assembly and analysis of *P. zhejiangensis* cp genome will provide essential data for further study of taxonomy and systematics of Orchidaceae.

Introduction

Orchidaceae, a family of monocotyledonous plants, is one of the most successful and highly evolved monocots, comprising 763 genera with approximately 28,000 species (Hadi et al. 2015; Christenhusz and Byng 2016). The genus *Phalaenopsis* belongs to tribe Vandeae, which is commonly known as moth orchids, including more than 70 species widely distributed across Southeast Asia to northern Australia, with the majority in Indonesia and the Philippines (Ko et al. 2017; Gogoi and Rinya 2020; Lee et al. 2020). There are 12 *Phalaenopsis* species distributed in China, among which four species are endemics (Wu et al. 2009). *Phalaenopsis zhejiangensis* is a small epiphytic plant with slightly flattened roots, very short stems, basal leaves, and thinly textured flowers (Wu et al. 2009). *P. zhejiangensis* was transferred from *Doritis zhejiangensis*, while the latter was renamed from *Nothodoritis zhejiangensis* (Yukawa and Kita 2005), which was first found on a trunk of *Podocarpus macrophyllus* in 1970 at Xitianmu Mountain in Linan County, Zhejiang Province (Tsi 1989; Schuiteman 2012). *P. zhejiangensis* is a rare and endangered plant species in China, which is narrowly distributed in provinces of Zhejiang Province, Gansu, Anhui, and Shanxi, growing on the bark of trees or rock surfaces, with extremely small populations. As a result of habitat loss, *P. zhejiangensis* is listed as threatened with extinction. Fortunately, Zeng et al. (2011) have established an effective propagation protocol for large-scale propagation of this endangered orchid species. In recent years, several chloroplast (cp) genomes of *Phalaenopsis* plants, including *P. aphrodite*, *Phalaenopsis ‘Tiny Star’, P. lowii*, *P. lobbia*, and *P. mannii*, were sequenced and assembled (Chang et al. 2006; Kim et al. 2016; Wang et al. 2019; Chen et al. 2020; Zhang et al. 2020). However, the cp genome of *P. zhejiangensis* has not yet been assembled. In our study, the complete cp genome sequence of *P. zhejiangensis* was assembled to provide new insights into taxonomy and systematics of Orchidaceae.

Materials and methods

Plant material and DNA extraction

Fresh leaves were collected from a plant nursery (28°65.762’N, 121°46.976’E) in Jiaojiang, Zhejiang Province, China. A voucher specimen was deposited at the Molecular Biology Laboratory in Taizhou University (http://www.tzc.edu.cn, Dr. Huijuan Zhang, zhanghj82@126.com) under a collection number of CHS2020029. Fresh leaves were ground into a fine powder in liquid nitrogen with a mortar and pestle, and genomic DNA was extracted following the CTAB-based protocol as described by Doyle and Doyle (1987).
DNA sequencing and sequence assembly

Construction of a genomic DNA library was carried out according to the manufacturer’s instructions, and high-throughput sequencing was then performed using the Illumina HiSeq X Ten system (Illumina, San Diego, CA). Approximately, 3.64 Gb raw data of 150bp paired-end Illumina reads were generated, and 3.63 Gb high-quality clean reads were harvested by using the NGS QC Toolkit v2.3.3 (Patel and Jain 2012). Geneious Prime 2019 (Biomatters, Auckland, New Zealand) was employed to assemble the complete cp genome.

Chloroplast genome annotation

Annotation of the complete cp genome was performed with Geneious Prime 2019 by using *P. lobbii* as a reference genome (NCBI accession number: MT830847) (Wang et al. 2019), and the borders of each gene were manually inspected and corrected where necessary. The circular cp genome map of *P. zhejiangensis* was drawn using the online program OrganellarGenomeDRAW (OGDRAW, http://ogdraw.mpimp-golm.mpg.de) with default settings (Lohse et al. 2013).

Simple sequence repeat analysis

Perl scripts of MicroSAtellite Identification Tool (MISA) were used to identify and locate the potential simple sequence repeats (SSRs) loci in complete cp genome sequence of *P. zhejiangensis* (Thiel et al. 2003). To determine the presence of SSRs, 1–6bp nucleotide motifs were considered, and the minimum repeat numbers were set as 10 repeat units for...
mono-nucleotides, six for di-nucleotides, and five for tri-, tetra-, penta-, and hexa-nucleotides.

Phylogenetic analysis

The complete cp genome sequences of 39 Orchidaceae species downloaded from NCBI were used for phylogenetic analysis, which included eight *Phalaenopsis* plants, six *Holcoglossum* species, and five *Cleisomeria* plants. The complete cp genome of *Coix lacryma-jobi* (FJ261955) was applied as an outgroup. A total of 41 genome sequences were aligned with a multiple sequence alignment program MAFFT v7.388 plugin in Geneious Prime 2019 under default settings (Katoh and Standley 2013). The best-fit evolutionary model of DNA substitution for maximum-likelihood (ML) analysis was determined by using jModelTest 2.1.9 under the Akaike information criterion (AIC) (Darriba et al. 2012). A phylogenetic tree was generated by PhyML 3.1, with 1000 bootstrap replicates (Guindon et al. 2010).

Table 1. List of genes in the chloroplast genome of *Phalaenopsis zhejiangensis*.

Group of genes	Name of genes	Total number
Large subunit of ribosomal proteins	rpl2 (2×)*, rpl14, rpl16*, rpl20, rpl22, rpl23 (2×), rpl32, rpl33, rpl36	11
Small subunit of ribosomal proteins	rps2, rps3, rps4, rps7 (2×), rps8, rps11, rps12 (2×)*, rps14, rps15, rps16*, rps18, rps19(2×)	15
DNA-dependent RNA polymerase	rpoA, rpoB, rpoC*, rpoC2	4
Ribosomal RNA genes	rnr4.5 (2×), rnr5 (2×), rnr6 (2×), rnr9 (2×), rnr10 (2×)	8
Transfer RNA genes	trnA-UGC (2×)*, trnC-GCA, trnD-GUC, trnE-UUC, trnF-G4A, trnM-CAU, trnG-GCC*, trnG-GCC, trnH-GUG (2×), trnI-CAU (2×), trnL-CAU (2×)*, trnL-CAA (2×), trnL-UAA*, trnL-UAG, trnM-CAU, trnN-GUU (2×), trnP-UGG, trnQ-UGU, trnR-ACG (2×), trnR-UCU, trnS-GCU, trnS-UCU, trnS-UGC, trnT-CCA, trnS-GCA, trnUAA, trnUAC, trnV-ACG (2×), trnW-CCA, trnY-GUA	38
Photosystem I	psaA, psaB, psaC, psaL, psaF, ycf3**	6
Photosystem II	psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ	15
Cytochrome b6/f complex	petA, petB*, petD, petG, petG, petH, petH	6
NADH dehydrogenase	ψndhB (2×), ψndhD, ψndhG, ψndhH, ψndhK	6
ATP synthase	atpA, atpB, atpE, atpF*, atpH, atpl	6
Rubisco	rbcL	1
Translational initiation factor	infA	1
Maturase	matK	1
Protease subunit P	clpP**	1
Envelop membrane protein	cemA	1
Subunit acetyl-CoA carboxylate	accD	1
c-type cytochrome synthesis gene	ccS	1
Conserved open reading frames	ycf1, ycf2 (2×), ycf4	4
Total	126	

(ψ) pseudogene; *one intron; **two introns.

Table 2. Details of nine *Phalaenopsis* chloroplast genomes.

Plant species	Accession number in NCBI	Genome length (bp)	GC contents (%)	LSC (bp)	SSC (bp)	IR (bp)
Phalaenopsis aphrodite subsp. formosana	AY916449	148,964	36.7	85,957	11,543	25,732
Phalaenopsis equestris	JF719062	148,895	36.7	85,967	11,300	25,846
Phalaenopsis hybrid ‘Tiny Star’	NC_025593	148,918	36.7	85,885	11,523	25,755
Phalaenopsis japonica	NC_046808	146,942	36.8	84,882	10,568	25,746
Phalaenopsis lobbii	MT830847	144,607	36.6	83,482	11,687	24,719
Phalaenopsis lowii	NC_050652	146,834	36.9	84,616	10,473	25,633
Phalaenopsis mannii	NC_050940	146,596	36.7	85,300	11,640	25,828
Phalaenopsis wilsonii	MW218959	145,373	36.9	84,995	10,668	24,855
Phalaenopsis zhejiangensis	MZ336749	143,574	38.7	83,854	10,764	24,464

Results

Genome sequencing and assembly

More than 12 million paired-end clean reads were obtained, and a circular cp genome was assembled with Geneious Prime. The complete cp plastome of *P. zhejiangensis* is 143,547 bp in length which includes a pair of inverted repeats (IRs) of 24,464 bp separated by a large single-copy (LSC) region of 83,855 bp and a small single-copy (SSC) region of 10,764 bp (Figure 1). The overall guanine–cytosine (GC) content of *P. zhejiangensis* cp genome is 36.8%, while the corresponding values of LSC, SSC, and IR sequences are 34.0%, 28%, and 43.5%, respectively.

Genome features of Phalaenopsis zhejiangensis

The complete cp plastome of *P. zhejiangensis* is comprised of 126 genes, including 74 protein-coding genes, 38 tRNA genes, eight rRNA genes, and six pseudogenes. All the six
pseudogenes are ndhs, including ψndhD, ψndhG, ψndhI, ψndhK, and two copies of ψndhB. Additionally, other six ndh genes have been lost in the plastome, these are ndhA, ndhC, ndhE, ndhF, ndhH, and ndhJ. Six tRNA genes (trnA-UGC, trnH-GUG, trnL-CAU, trnL-GAU, trnM-GUU, trnR-ACG, and trnV-GAC) and four rRNA genes (rrn4.5, rrn5, rrn16, and rrn23) are present in two copies. Among the protein-coding genes, eight genes including rpl16, rps16, petB, petD, atpF, and two copies of rpl2 contain a single intron, while three genes, rps12, ycf3, and cipP, contain two introns. Moreover, six tRNA genes, trnA-UGC, trnG-GCC, trnL-CAU, trnK-UUU, trnL- UAA, and trnV-UAC, harbored a single intron have been identified (Table 1).

IR expansion and contraction

The IR region of *P. zhejiangensis* is 24,464 bp in length, while the other eight *Phalaenopsis* IRs included in our study are longer than *P. zhejiangensis*, they range from 24,719 bp to 25,846 bp (Table 2). Comparisons of LSC, IRB, SSC, and IRA junction boundaries among nine *Phalaenopsis* cp genomes were performed and presented in Figure 2. In *Phalaenopsis* plastome, LSC/IRB boundary junctions lie within rpl22 gene except *P. mannii*, which locates in the intergenic region between rpl22 and rps19. Eight rpl12 genes extend 31 bp into IRB regions, while the rpl12 in *P. wilsonii* extends only one base pair into its IRB region (Figure 2). The IRB/SSC junctions of *P. mannii*, *P. equestris*, and *P. lobbii* locate within the ycf1 pseudogenes; however, no ycf1 is identified in other six *Phalaenopsis* cp genomes including *P. zhejiangensis*. The SSC/IRA junctions of *P. wilsonii*, *P. mannii*, *P. equestris*, and *P. lobbii* lie within ycf1 genes, which extend 0 bp, 132 bp, 9 bp, and 108 bp into IRA regions, respectively while the SSC/IRA junctions of *P. zhejiangensis*, *P. lowii*, *P. japonica*, *P. aphrodite* subsp. *formosana*, and the hybrid ‘Tiny Star’ locate between ycf1 and trnN-GUU.

SSR analysis

Totally, *P. zhejiangensis* cp genome contains 41 SSRs (Table 3). Among the SSRs identified herein, A/T mononucleotide repeats account for the largest proportion of 97.56%. Only one di-nucleotide repeat was observed, and no tri-, tetra-, penta-, or hexa-nucleotides presented in the plastome. Most SSRs are distributed in LSC (70.73%), followed by SSC (24.39%), and the proportion in IRs is less than 5%. Among 41 SSRs, 25 loci lie in intergenic regions, four in introns, and 12 in coding regions or pseudogenes.
Phylogenetic analysis

Statistical selection of the best-fit model of nucleotide substitution was carried out by the jModelTest program, and GTR + G + I was turned out to be the best-fitted. To evaluate the phylogenetic relationship of \textit{P. zhejiangensis} within Orchidaceae, a phylogenetic tree using the complete plastome sequences of 41 plant species were generated (Figure 3). The resulting ML tree had very high bootstrap support for the majority of clades, and the phylogenetic tree was shown to be consistent with the traditional morphology-based taxonomy of Orchidaceae. Nine plants from the genus \textit{Phalaenopsis} formed a well-supported monophyletic clade with 100% bootstrap value, and \textit{P. zhejiangensis} was sister to \textit{P. wilsonii}, with a support value of 97%.

Discussion

The classification of Orchidaceae is a very complex problem for its bewildering diversity and morphological parallelism, and also for botanical neglect (Dressler 1993). Orchidaceae were divided into five subfamilies, including Apostasioideae, Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae, and Apostasioideae are monophyletic and sister to other subfamilies (Dixon et al. 2003; Tsai et al. 2013). The subfamily Orchidoideae is comprised of a large group of orchids, including four tribes (Diurideae, Cranichideae, Codonorchideae, and Orchideae) with around 3600 plant species that largely share terrestrial habits (Bateman et al. 2003; Serna-Sánchez et al. 2021). The genus \textit{Phalaenopsis} belongs to tribe Orchideae, which consists of about 62 genera (Inda et al. 2012). The morphology of \textit{P. zhejiangensis} is similar to both \textit{Doritis} and \textit{P. lowii}, with the characteristic feature of pollinia similar to that of \textit{Doritis}, and its shapes of petals and columns similar to \textit{P. lowii} (Tsi 1999; Christenson 2001). \textit{P. zhejiangensis} was initially named \textit{N. zhejiangensis} based on morphology, and then renamed as \textit{D. zhejiangensis} (Yukawa and Kita 2005; Schuiteman 2012). Molecular analyses using ITS, \textit{trnL-F} spacer prove that \textit{N. zhejiangensis} is species nested in genus \textit{Phalaenopsis} (Deng et al. 2015). Our molecular phylogenetic analyses confirm its systematic position, which indicates that \textit{P. zhejiangensis} is sister to \textit{P. wilsonii}, with a high support value.

The sizes of previously published \textit{Phalaenopsis} cp genomes ranged from 144,607 bp (\textit{P. lobbia}) to 148,964 bp (\textit{P. phalaenopsis aphrodite subsp. formosana}) (Chang et al. 2006; Kim et al. 2016; Wang et al. 2019; Chen et al. 2020; Zhang et al. 2020). In our present study, the complete plastid genome of \textit{P. zhejiangensis} is only 143,574 bp in length, which turns out to be the smallest among all known cp genome sequences in genus \textit{Phalaenopsis}. The cp genomes of most flowering plants range from 120 kb to 160 kb, and the difference in genome size is mainly caused by contraction and expansion of the IR region (Goulding et al. 1996; Ingvarsson 2015; Lin et al. 2017). In this study, six \textit{ndh} genes were found to be lost in their plastids (Kim et al. 2016; Wang et al. 2019; Chen et al. 2020). In our present study, the complete plastid genome of \textit{P. zhejiangensis} is 143,574 bp, which is smaller than that of \textit{P. lobbia}.

Plastid gene loss and pseudogenization are common phenomena in parasitic, semi-parasitic, and saprophytic plants (Molina et al. 2014; Li and Zhong 2018; Nie et al. 2019). In semi-parasitic plants of \textit{Macrosolen cochinchinensis}, \textit{M. tricolor}, and \textit{M. bibacteolatus}, the \textit{infA} and all the \textit{ndh} genes were lost among the three species, and two genes, \textit{ycf1} and \textit{rpl2}, were found to be pseudogenes (Nie et al. 2019). \textit{Gastrodia elata} is a saprophytic plant with extremely small cp genome in which many genes related to photosynthesis are missing, and it contains only 28 genes, including 20 protein-coding genes, three rRNAs, and five tRNAs (Park et al. 2020). However, cp gene loss and pseudogenization are rarer in photosynthetic species, because the plastid gene cannot simply be discarded (Magee et al. 2010; Wicke et al. 2011; Daniell et al. 2016). Interestingly, pseudogenization, truncation, and deletion of \textit{ndh} genes in cp genomes are common in some cp genomes of photosynthetic orchid plants (Kim et al. 2015). Orchids like \textit{Apostasia odorata}, \textit{Sobralia callosa}, \textit{Paphiopedilum armeniacum}, and \textit{Phragmipedium longifolium} retain the complete set of \textit{ndh} genes, whereas most of the \textit{ndh} genes in \textit{P. equestris}, \textit{Dendrobium officinale}, and \textit{D. catenatum} were found to be lost in their plastids (Kim et al. 2015; Lin et al. 2017). In this study, six \textit{ndh} genes are
Figure 3. The maximum-likelihood tree inferred from 41 Orchidaceae complete chloroplast genomes under GTR + G+I model with maximum-likelihood value (Llk) = –604333.07383, Akaike information criterion (AIC) = 1208844.14766, and Bayesian information criterion (BIC) = 1209758.57750.
pseudogenized, and another six ndh genes are missing from the plastid genome of *Phalaenopsis zhejiangensis*.

Authors contributions

Conceived and designed the experiments: MJ and HJZ. Performed the experiments: MJ, WQ, and ZY. Analyzed the data: HZW and LQP. Contributed to reagents/materials/analysis tools: MJ and WQ. Wrote the paper: MJ and HJZ.

Disclosure statement

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This work was supported by 211 Talent Training Fund of Taizhou under Grant number [2012].

Data availability statement

The data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/nuccore/MZ326749. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA734444, SRR14710950, and SAMN19491762, respectively.

References

Bateman RM, Hollingsworth PM, Preston J, Yi-Bo LUO, Pridegon AM, Chase MW. 2003. Molecular phylogeny and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Bot J Linn Soc. 142(1–4).

Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, et al. 2006. The chloroplast genome of *Phalaenopsis aphrodite* (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol. 23(2):79–100.

Chen B, Zhang Y, Cao Y, Zheng Y, Wei Z, Zhao K, Peng D, Zhou Y. 2020. Chloroplast characterization of a *Phalaenopsis* native to China, *Phalaenopsis manii* (Orchidaceae). Mitochondrial DNA Part B. 5(3):3725–3726.

Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa. 261(3):201–217.

Christenson EA. 2001. Phalaenopsis—a monograph. Portland: Timber Press.

Dannell H, Lin CS, Yu M, Chang WJ. 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17(1):134.

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 9(8):772.

Deng H, Zhang G-Q, Liu Z-J, Wang Y. 2015. A new species and a new combination of *Phalaenopsis* (Orchidaceae: Epidendroideae: Aeridinae): evidence from morphological and DNA analysis. Phytotaxa. 238(3):243–254.

Dixon KW, Kell SP, Barrett RL, Cribb PJ. 2003. Orchid conservation. Kota Kinabalu: Sabah Natural History Publications.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19:11–15.

Dressler RL. 1993. Phylogeny and classification of the orchid family. Cambridge: Cambridge University Press.

Gogoi K, Rinya K. 2020. *Phalaenopsis arunachalensis* sp. nov. (Orchidaceae: Epidendroideae: Aeridinae) A new epiphytic orchid from Arunachal Pradesh, Northeast India. Lankesteriana. 20(3):275–280.

Goulding SE, Olmstead RG, Morden CW, Wolfe KH. 1996. Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet. 252(1–2):195–206.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307–321.

Hadi H, Razali SN, Awadh AL. 2015. A comprehensive review of the cosmeceutical benefits of *Vanda* species (Orchidaceae). Nat Prod Commun. 10(8):1483–1488.

Inda LA, Pimentel M, Chase MW. 2012. Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: inferences regarding timing of diversification and evolution of pollination syndromes. Ann Bot. 110(1):71–90.

Ingvarsson PK, Sarah R, Taylor DR. 2003. Molecular evolution of insertions and deletion in the chloroplast genome of silene. Mol Biol Evol. 20(11):1737–1740.

Jheng CF, Chen TC, Lin JY, Chen TC, Wu WL, Chang CC. 2012. The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish *Phalaenopsis* orchids. Plant Sci. 190:62–73.

Katoch K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Kim HT, Kim JS, Moore MJ, Neubig KM, Williams NH, Whitten WM, Kim JH. 2015. Seven new complete plastome sequences reveal rampant independent loss of the ndh gene family across orchids and associated instability of the inverted repeat/single-copy region boundaries. PLOS One. 10(11):e0142215.

Kim GB, Kwon Y, Ju HJ, Lim KB, Soo JH, Mun JH. 2016. The complete chloroplast genome of *Phalaenopsis* “Tiny Star”. Mitochondrial DNA Part A. 27(2):1300–1302.

Ko YZ, Shih HC, Tsai CC, Ho HH, Liao PC, Chiang YC. 2017. Screening transferable microsatellite markers across genus *Phalaenopsis* (Orchidaceae). Bot Stud. 58(1):48.

Lee YI, Tseng YF, Lee YC, Chung MC. 2020. Chromosome constitution and nuclear DNA content of *Phalaenopsis* hybrids. Sci Hortic. 262:109089.

Li B, Zheng Y. 2018. Dynamic evolution and phylogenetic analysis of the chloroplast genome in Schisandraceae. Sci Rep. 8(1):9285.

Lin CS, Chen JW, Chiu CC, Hsiao HCW, Yang CJ, Jin XH, Leebens-Mack J, de Pamphilis CW, Huang YT, Yang LH, et al. 2017. Concomitant loss of NDH complex-related genes within chloroplast and nuclear genomes in some orchids. Plant J. 90(5):994–1006.

Lohse M, Drechsel O, Kahlau S, Bock R. 2013. OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41(Web Server issue):W575–W581.

Magee AM, Aspinall S, Rice DW, Cusack BP, S, Milbourne D, Barth S, Palmer JD, et al. 2010. Localized hypermutation and associated gene losses in legume plastome genomes. Genome Res. 20(12):1700–1710.

Molina J, Hazzouri KM, Nickrent D, Geisler M, Meyer RS, Pentony MM, Flowers JM, Pelsor P, Barcelona J, Inovejas SA, et al. 2014. Possible hybridization between *Rafflesia lagascae* (Rafflesiaceae). Mol Biol Evol. 31(4):793–803.

Molina J, Hazzouri KM, Nickrent D, Geisler M, Meyer RS, Pentony MM, Flowers JM, Pelsor P, Barcelona J, Inovejas SA, et al. 2014. Possible loss of the chloroplast genome in the parasitic flowering plant *Rafflesia lagascae* (Rafflesiaceae). Mol Biol Evol. 31(4):793–803.

Nie L, Cui Y, Wu L, Zhou J, Xu Z, Li Y, Li X, Wang Y, Yao H. 2019. Gene losses and variations in chloroplast genome of parasitic plant *Macrosolen* and phylogenetic relationships within Santalales. Int J Mol Sci. 20(22):5812.

Park J, Suh Y, Kim S. 2020. A complete chloroplast genome sequence of *Gastrodia elata* (Orchidaceae) represents high sequence variation in the species. Mitochondrial DNA Part B. 5(1):S17–S19.

Patel RK, Jain M. 2012. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLOS One. 7(2):e30619.

Schuiteman A. 2012. *Nothodoritis zhejiangensis* transferred to *Phalaenopsis*. Renziana. 248–50.
Serna-Sánchez MA, Pérez-Escobar OA, Bogarín D, Torres-Jimenez MF, Alvarez-Yela AC, Arcila-Galvis JE, Hall CF, de Barros F, Pinheiro F, Dodsworth S, et al. 2021. Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution. Sci Rep. 11(1):6858.

Thiel T, Michalek W, Varshney RK, Graner A. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare* L.). Theor Appl Genet. 106(3):411–422.

Tsai WC, Fu CH, Hsiao YY, Huang YM, Chen LJ, Wang M, Liu ZJ, Chen HH. 2013. OrchidBase 2.0: comprehensive collection of Orchidaceae floral transcriptomes. Plant Cell Physiol. 54(2):e7.

Tsi ZH. 1989. New taxa of Orchidaceae from China. Bull Bot Res. 9(2):21–32.

Tsi ZH, Chen SC, Luo YB, Zhu GH. 1999. Flora Reipublicae Popularis Sinicae. Vol. 19. Beijing: Science Press.

Wang JY, Liu ZJ, Zhang GQ, Peng CC. 2019. The complete chloroplast genome sequence of *Phalaenopsis lowii* (Orchidaceae). Mitochondrial DNA Part B. 4(2):3569–3570.

Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 76(3–5):273–297.

Wu ZY, Raven PH, Hong DY. 2009. Flora of China. Vol. 25. Beijing and St. Louis: Science Press and Missouri Botanical Garden Press.

Yao J, Zhao F, Xu Y, Zhao K, Quan H, Su Y, Hao P, Liu J, Yu B, Yao M, et al. 2020. Complete chloroplast genome sequencing and phylogenetic analysis of two *Dracocephalum* plants. Biomed Res Int. 2020:4374801.

Yukawa T, Kita K. 2005. *Doritis zhejiangensis* (Z.H.Tsi). Acta Phytotax Geobot. 56(2):157.

Zeng S, Chen Z, Wu K, Zhang J, Bai C, Teixeira da Silva JA, Duan J. 2011. Asymbiotic seed germination, induction of calli and protocorm-like bodies, and in vitro seedling development of the rare and endangered *Nothodoritis zhejiangensis* Chinese orchid. HortScience. 46(3):460–465.

Zhang Y, Chen B, Zheng Y, Cao Y, Wei Z, Zhao K, Zhou Y. 2020. Characterization of the complete chloroplast genome of *Phalaenopsis lobbii* (Orchidaceae), an important horticultural plant in China. Mitochondrial DNA Part B. 5:3450–3451.