New efficient algorithms for computing Gröbner bases of saturation ideals ($F_4\text{SAT}$) and colon ideals (SPARSE-FGLM-COLON)

Jérémy Berthomieu1, Christian Eder2, and Mohab Safey El Din1

1Sorbonne Université, CNRS, LIP6, F-75005, Paris, France
2Rheinland-Pfälzische Technische Universität Kaiserslautern Landau, Kaiserslautern, Germany

July 28, 2023

Abstract

This paper is concerned with linear algebra based methods for solving exactly polynomial systems through so-called Gröbner bases, which allow one to compute modulo the polynomial ideal generated by the input equations. This is a topical issue in nonlinear algebra and more broadly in computational mathematics because of its numerous applications in engineering and computing sciences. Such applications often require geometric computing features such as representing the closure of the set difference of two solution sets to given polynomial systems. Algebraically, this boils down to computing Gröbner bases of colon and/or saturation polynomial ideals. In this paper, we describe and analyze new Gröbner bases algorithms for this task and present implementations which are more efficient by several orders of magnitude than the state-of-the-art software.

1 Introduction

Let $\mathbf{f} = (f_1, \ldots, f_s)$ and φ be polynomials in the polynomial ring $\mathbb{K}[x_1, \ldots, x_n]$ where \mathbb{K} is a field. Further, we denote by $I = \langle \mathbf{f} \rangle = \langle f_1, \ldots, f_s \rangle$ the polynomial ideal generated by f_1, \ldots, f_s and by $V(I) \subset \mathbb{K}^n$ the algebraic set associated to I (where \mathbb{K} is an algebraic closure of \mathbb{K}).

We consider the following computational problem: compute a Gröbner basis associated to the colon (resp. saturated) ideal of I by φ, i.e.

\[
I : \langle \varphi \rangle = \{ h \mid h\varphi \in I \} \quad \text{(resp. } I : \langle \varphi \rangle^\infty = \{ h \mid \exists k \in \mathbb{N} \ h\varphi^k \in I \}).
\]
By e.g. [11, Chap. 4], the algebraic set $V(I : \langle \varphi \rangle^\infty) \subset \mathbb{K}^n$ is the Zariski closure of the set difference $V(I) \setminus V(\varphi)$ and there exists $N \in \mathbb{N}$ such that $I : \langle \varphi^N \rangle = I : \langle \varphi^{N+1} \rangle = \cdots = I : \langle \varphi \rangle^\infty$.

Computing algebraic representations of saturated ideals arises in many applications ranging from experimental mathematics to engineering sciences (see e.g. [7, 22, 33]) since some natural algebraic modelings come with parasitic solutions which one excludes through some saturation process. For instance, modeling that some $p \times q$ matrix with polynomial entries has rank r through the simultaneous vanishing of its $(r+1)$-minors will include those points at which the matrix has rank less than r.

In the paper, we design new efficient algorithms for computing Gröbner bases of such ideals, given as input $f = (f_1, \ldots, f_s)$, φ and some admissible monomial order \prec over the monomials in $\mathbb{K}[x_1, \ldots, x_n]$.

Recall that Gröbner bases are finite generating sets of polynomial ideals capturing their combinatorial and algebraic properties. They allow to compute modulo the ideal they generate, hence to decide the membership of a polynomial to the ideal under consideration. Gröbner bases algorithms are a classical and versatile tool for polynomial system solving, non-linear algebra and geometry, implemented in most of computer algebra systems.

Prior results. The first algorithm for computing Gröbner bases is introduced by Buchberger in [9]. It is based on the so-called Buchberger’s criterion which provides an effective way to decide whether a given polynomial sequence is already a Gröbner basis of the ideal it generates. Modern algorithms such as Faugère’s F_4 [15] and F_5 [16] (see also [13]) algorithms actually use the connection of Gröbner basis theories with Macaulay’s constructions for the multivariate resultant (see e.g. [28]) by considering the finite-dimensional vector spaces

$$E_d(f) = \{h_1f_1 + \cdots + h_sf_s \mid \deg(h_if_i) \leq d \text{ for all } 1 \leq i \leq s\}$$

for which a basis with appropriate properties w.r.t. the given monomial order is computed through the row echelonization of some Macaulay-like matrix. The way these linear algebra constructions are generated at each degree $d, d+1, \ldots$ (and so on) plus a termination criterion is done via a connection to the Gröbner basis theory and Buchberger’s criterion in F_4. The F_5 algorithm poses a module theoretic view of Gröbner basis calculations which allows one to generate Macaulay-like matrices of maximal rank under some genericity assumptions as well as a module theoretic transposition of the notion of critical pairs through the notion of signature to handle termination issues in this context. These two algorithms have been used to solve many difficult applications and challenges of polynomial system solving (see e.g. [18, 19, 36]). Such algorithms are usually run with so-called total degree monomial orders, i.e. those orders which filter monomials first w.r.t. their total degrees.

When I has dimension zero (i.e. $V(I)$ is a non-empty finite set) this linear algebra view of Gröbner basis computations is often used in change of order algorithms since the quotient ring $\mathbb{K}[x_1, \ldots, x_n]/I$ is a finite-dimensional vector space. Based on this, the so-called FGLM algorithm [17] reduces change of order algorithms to kernel computations.
Under some extra assumptions, the so-called SPARSE-FGLM algorithm [20, 21] makes
the connection with relation reconstructions.

Despite these developments, computing saturations of polynomial ideals is currently
done using the above Gröbner basis algorithms as a black box.

Using Rabinowitsch trick [34] and [11, Chap. 4, Sec. 4, Th. 14, (ii)], the saturated
ideal \(I : \langle \varphi \rangle \) equals \((I + \langle 1 - t \varphi \rangle) \cap K[x_1, \ldots, x_n] \). Thus, computing a Gröbner basis
of \(I + \langle 1 - t \varphi \rangle \) for a monomial order eliminating \(t \) and keeping all polynomials not
involving \(t \) yields a Gröbner basis of \(I : \langle \varphi \rangle \), see also [11, Chap. 3, Sec. 1, Th. 2 and
Ex. 6].

Moreover, if \(I \) is homogeneous, i.e. it is spanned by a set of homogeneous polynomials, Bayer’s algorithm [1] allows us to compute
\(I : \langle x_n \rangle \). If it is not, then one can still recover a Gröbner basis of \(I : \langle x_n \rangle \) using the algorithm below, still called Bayer’s
algorithm:

1. Homogenize the input polynomials \(f_1, \ldots, f_s \) with a new variable \(x_0 \) yielding
 homogeneous polynomials \(f^h = (f^h_1, \ldots, f^h_s) \);
2. compute a Gröbner basis \(G^h \) for \(f^h \) and a total degree monomial order (called
 graded reverse lexicographical order) where \(x_n \) is smaller than the other variables
 \(x_0, x_1, \ldots, x_{n-1} \);
3. factor out from all polynomials in \(G^h \) the highest possible power of \(x_n \);
4. set \(x_0 \) to 1 in these obtained polynomials and return the result.

When \(\varphi \neq x_n \), one just introduces a slack variable \(x_{n+1} \) and computes the saturation
of \(I + \langle x_{n+1} - \varphi \rangle \) w.r.t. \(x_{n+1} \).

The above two approaches constitute the state-of-the-art algorithms for computing
saturations of ideals. Note that they do not take advantage of intermediate data
obtained during the Gröbner basis computations since these are used as black boxes.

Main results. In this paper, we propose new algorithms which actually compute
“on the fly” Gröbner bases of saturated ideals through the linear algebra approaches
we sketched above. We design two families of efficient algorithms which are the coun-
terparts of the F_4 and the FGLM algorithms. We also present (publicly available)
implementations of these algorithms which are more efficient than the state-of-the-art
software in computer algebra systems by several orders of magnitude.

The first algorithm, named F_4SAT, is a modification of the F_4 algorithm to discover
on the fly polynomials in \(I : \langle \varphi \rangle \). The core idea is as follows. Recall that, on input
\(f = (f_1, \ldots, f_s) \) and \(\varphi \) in \(K[x_1, \ldots, x_n] \) and a given total degree monomial order \(\prec \),
the F_4 algorithm roughly computes bases \(G_d \) of the finite-dimensional vector spaces
\(E_d \), we introduced above, using \(G_d \) to generate a generating family for \(E_{d+1} \) (using the
notion of critical pairs, see [15]) and so on. Termination is ensured using Buchberger’s
criterion.

We show that, during this process, one can search for polynomials \(h \) of maximum
prescribed degree \(\delta \) in the colon ideal \(I : \langle \varphi \rangle \) such that \(h\varphi \in E_d \) using (i) the computa-
tion of normal forms of \(m, \varphi \) where \(m \) lies in a set of well-chosen monomials; and (ii)
the computation of the kernel of some matrix which is built from the above normal forms.
This algorithmic strategy allows us to discover on the fly new polynomials in the colon ideal $I : \langle \varphi \rangle$ which are then taken into account early in the whole computation. Repeating this, with (maybe incomplete) generating sets of $I : \langle \varphi \rangle$ allows us to discover polynomials in $(I : \langle \varphi \rangle) : \langle \varphi \rangle = I : \langle \varphi^2 \rangle$ and so on.

We prove how to complete such a computation and how the above prescribed degree δ can be chosen to ensure correctness of the algorithm.

When the ideal $I : \langle \varphi \rangle^\infty$ is known to be zero-dimensional in advance, one can adapt FGLM-like algorithms, assuming we have precomputed a Gröbner basis for I w.r.t. some monomial order, to compute a Gröbner basis for $I : \langle \varphi \rangle^\infty$ w.r.t. a so-called lexicographical order (yielding a triangular basis). Here the main difficulty to overcome is that since we do not assume that I is zero-dimensional, the vector space $\mathbb{K}[x_1, \ldots, x_n]/I$ is of infinite dimension. We demonstrate how the change of order can still be realized through linear algebra techniques which borrow from FGLM the construction of matrices representing multiplication operators in the quotient ring from which one can extract the lexicographical Gröbner basis. We show how to use algebraic properties to reduce the size of such matrices and state the complexity of our approach when only the matrix representing the multiplication by the last variable is needed. All in all, this new algorithm reduces the change of order in this context to the computation of minimal relations satisfied by sequences of scalars computed from the aforementioned matrices as well as Hankel linear system solving.

Next, we present our implementation, which we wrote using the C programming language and which is available in the msolve library \cite{3, 4}. We compare it against implementations based on the Rabinowitsch trick using Gröbner basis engine in msolve (which is one of the fastest open source implementations), the one in MAPLE (which is one of the fastest in commercial computer algebra systems), and the leading software for algebra and geometry SINGULAR. We carefully analyze the practical behaviors of the new algorithms in this paper. Our experiments show that on many examples the new algorithms are faster, often by several orders of magnitude, than the state-of-the-art software alternatives.

Structure of the paper. Section 2 is devoted to fix some notation we use about Gröbner bases and recall the basics of F4 and FGLM algorithms needed to describe our new algorithms. Section 3 describes the F4SAT algorithm, and its correctness and termination proofs. Section 4 focuses on the FGLM variant for saturation. Finally, Section 5 presents our implementations and compares it with the state-of-the-art software alternatives.

2 Preliminaries

2.1 Gröbner bases

We recall some basic definitions and properties of Gröbner bases. We refer to \cite{11, Chap. 2, 3 and 5} for more details.

Throughout this paper, let \mathbb{K} be a field and $0 \in \mathbb{N}$. We denote by $\mathbb{K}[x] := \mathbb{K}[x_1, \ldots, x_n]$ the polynomial ring in n variables x_1, \ldots, x_n with coefficients in \mathbb{K}. A
polynomial \(f \in \mathbb{K}[x] \) is defined as \(f = \sum_{s \in \mathbb{N}^n} f_s x^s \) such that \(f_s = 0 \) for all but finitely many \(s \in \mathbb{N}^n \). For \(f \neq 0 \) we define its support \(\text{supp} f = \{ s \in \mathbb{N}^n \mid f_s \neq 0 \} \). Otherwise, by convention, \(\text{supp} 0 = \{0\} \).

A monomial order \(\prec \) on \(\mathbb{K}[x] \) is a total order on the set of monomials such that for all monomials \(m, m' \) and \(s \), if \(m \preceq m' \), then \(ms \preceq m's \). Furthermore, the monomial orders in this paper are assumed to be well-orders, i.e. for all monomials \(m \) we have that \(1 \preceq m \).

Fix a monomial order \(\prec \). Given a polynomial \(f \in \mathbb{K}[x] \), we define its leading monomial, denoted by \(\text{LM}_\prec(f) \), the largest monomial in \(f \) for \(\prec \). The leading coefficient of \(f \), \(\text{LC}_\prec(f) \), is the coefficient of \(\text{LM}_\prec(f) \) and the leading term of \(f \), \(\text{LT}_\prec(f) \) is \(\text{LC}_\prec(f) \text{LM}_\prec(f) \).

For a set \(G \subseteq \mathbb{K}[x] \), we let \(\text{LM}_\prec(G) = \{ \text{LM}_\prec(f) \mid f \in G \} \). For an ideal \(I \subseteq \mathbb{K}[x] \) we define \(\text{LM}_\prec(I) \) as the ideal generated by leading monomials of all elements of \(I \). We recall briefly the definition of a Gröbner basis and of its associated staircase.

Definition 2.1. A set of monomials \(S \) is a staircase if for two monomials \(\mu_1 \) and \(\mu_2 \) such that \(\mu_1 \mu_2 \in S \), we have \(\mu_1 \in S \) and \(\mu_2 \in S \).

Definition 2.2 ([11] Chap. 2, Sec. 5, Def. 5 and Sec. 7, Def. 4). Let \(I \) be a nonzero ideal of \(\mathbb{K}[x] \) and let \(\prec \) be a monomial order. A set \(G \subseteq I \) is a Gröbner basis of \(I \) for \(\prec \) if for all \(f \in I \), there exists \(g \in G \) such that \(\text{LM}_\prec(g) \mid \text{LM}_\prec(f) \) or, equivalently, if \(\langle \text{LM}_\prec(G) \rangle = \text{LM}_\prec(I) \). It is reduced if for any \(g \in G \), \(g \) is monic, i.e. \(\text{LC}_\prec(g) = 1 \), and for any \(g' \in G \setminus \{g\} \) and any monomial \(m \in \text{supp} g' \), \(\text{LM}_\prec(g) \notdivides m \).

The staircase associated to \(G \) is the set of monomials \(\text{Staircase}(G) \) which are not divisible by any \(\text{LM}_\prec(g) \) for \(g \in G \), i.e. the complement of \(\text{LM}_\prec(I) \) in the set of monomials.

Once a monomial order \(\prec \) is chosen, a monomial basis of the quotient algebra \(\mathbb{K}[x]/I \) can be canonically set: it is the set of monomials that are not leading monomials of polynomials in \(I \) w.r.t. \(\prec \). In other words, this is \(\text{Staircase}(G) \), where \(G \) is a Gröbner basis of \(I \) for \(\prec \), see [11] Chap. 5, Sec. 3, Prop. 1]. Furthermore, if \(\mathbb{K}[x]/I \) is a finite-dimensional \(\mathbb{K} \)-vector space, then \(I \) is said to be zero-dimensional of degree \(\dim_{\mathbb{K}} \mathbb{K}[x]/I \), otherwise it is positive-dimensional.

In this paper, we mainly deal with the lexicographic (LEX, \(\prec_{\text{LEX}} \)) and degree reverse lexicographic (DRL, \(\prec_{\text{DRL}} \)) orders with the convention that \(x_n < \cdots < x_2 < x_1 \). They are defined as below:

LEX: \(x^i \prec_{\text{LEX}} x^j \) if, and only if, there exists \(1 \leq p \leq n \) such that for all \(q < p \), \(i_q = j_q \) and \(i_p < j_p \), see [11] Chap. 2, Sec. 2, Def. 3];

DRL: \(x^i \prec_{\text{DRL}} x^j \) if, and only if, \(i_1 + \cdots + i_n < j_1 + \cdots + j_n \) or both \(i_1 + \cdots + i_n = j_1 + \cdots + j_n \) and there exists \(2 \leq p \leq n \) such that for all \(q > p \), \(i_q = j_q \) and \(i_p > j_p \), see [11] Chap. 2, Sec. 2, Def. 6]. Observe that it is a total degree monomial order.

An important property of Gröbner bases is that given a polynomial \(f \in \mathbb{K}[x] \) and \(G = \{g_1, \ldots, g_t\} \) a Gröbner basis of an ideal of \(\mathbb{K}[x] \) for \(\prec \), there exist polynomials \(h_0, h_1, \ldots, h_r \), with \(h_0 \) unique, such that \(f = g_1 h_1 + \cdots + g_t h_r + h_0 \) and \(\text{LM}_\prec(h_0) \) is not divisible by \(\text{LM}_\prec(g_1), \ldots, \text{LM}_\prec(g_t) \). This polynomial \(h_0 \) is called the normal form of \(f \) with respect to \(G \) for \(\prec \) and will be denoted by \(\text{NF}(f, G, \prec) \).
Corollary 2.5. Let \prec be the total degree monomial order. Let $\dim \prec$ denote the dimension of \dim. For any $\delta \geq 0$, let N be a polynomial such that $\dim \prec \delta$. Furthermore, there exist integers $\delta = \dim \prec \delta$, where the empty sum for \dim is coprime with $1 - t$. The integer $\delta \geq 0$ is called the dimension of I.

Lemma 2.4 (see also [11], Th. 15.26). Let \prec be the total degree monomial order. Let $\dim \prec$ be any total degree monomial order. Then, for any $\delta \in \mathbb{N}$, $\dim \prec \delta$ is coprime with $1 - t$. The Hilbert series $\dim \prec \delta$ are the same.

Proposition 2.6. Then, for all $\delta \geq 0$, $\dim \prec \delta$ is coprime with $1 - t$. The Hilbert series $\dim \prec \delta$ are the same.

Definition 2.3 ([11], Chap. 10, Sec. 2]). Let \prec be an ideal of $\mathbb{K}[\mathbf{x}]$ spanned by homogeneous polynomials. Let $\dim \prec$ denote the dimension of \dim. The Hilbert series $\dim \prec \delta$ is the generating series in t of the sequence $(\dim \prec \delta)_{\delta \in \mathbb{N}}$, i.e.

$$\dim \prec \delta = \sum_{d \geq 0} \dim \mathbb{K}[\mathbf{x}]_{d} / \mathbb{K}[\mathbf{x}]_{d} t^{d} = \frac{N(t)}{(1 - t)^{\delta}},$$

where $N(t)$ is coprime with $1 - t$. The integer $\delta \geq 0$ is called the dimension of I.

Proposition 2.6 ([11], Chap. 9, Sec. 3, Prop. 3] and [23], Cor. 3.3]. Let \prec be an ideal of $\mathbb{K}[\mathbf{x}]$ spanned by homogeneous polynomials of dimension δ. Then, there exists a unique polynomial $\dim \prec \delta \in \mathbb{Z}[s]$, called the Hilbert polynomial of \dim, and an integer $r \geq 0$, called the regularity index of \dim, such that for all $\delta \geq r$, $\dim \prec \delta = \dim \prec \delta r$. Furthermore, there exist integers $m_{0} \geq \cdots \geq m_{\delta - 1} > 0$ such that

$$\dim \prec \delta = \sum_{i=0}^{\delta - 1} \left(\binom{s+i}{i+1} - \binom{s+i-m_{i}}{i+1} \right),$$

where the empty sum for $\delta = 0$ is by convention 0.

Theorem 2.7 ([21], Sec. 4.5, Cor.). Let \prec be an ideal of $\mathbb{K}[\mathbf{x}]$ spanned by homogeneous polynomials. Let \prec be a total degree monomial order and $\mathcal{G} = \{g_{1}, \ldots, g_{t}\}$ be the reduced Gröbner basis of \dim w.r.t. \prec. Let r be the regularity index of \dim and m_{0} be defined as in Proposition 2.6. Then, for all $1 \leq i \leq t$, $\deg g_{i} \leq \max(r, m_{0})$.

Proposition 2.8. Let \prec be an ideal of $\mathbb{K}[\mathbf{x}]$ of dimension $\delta \leq 1$ spanned by homogeneous polynomials. Let \prec be a total degree monomial order and $\mathcal{G} = \{g_{1}, \ldots, g_{t}\}$ be the reduced Gröbner basis of \dim w.r.t. \prec. Let r be the regularity index of \dim. Then, for all $1 \leq i \leq t$, $\deg g_{i} \leq r + \delta$.

Proof. Let us first consider the case $\delta = 0$. By definition of r, all monomials of degree r are leading monomials of \dim. Since a reduced Gröbner basis is minimal, its leading monomials cannot have degree greater than r.

6
In the case $\delta = 1$, by Proposition 2.6

$$\text{HP}_I(s) = \binom{s}{1} - \binom{s - m_0}{1} = m_0.$$

That is, the number of monomials of degree s in the staircase is constant equal to m_0 for $s \geq r$. Now, let us consider the sets of monomials of degree respectively r and $r + 1$ in the staircase. Since both sets have size m_0, there exists a bijection between them. We can build such a bijection as follows: enumerate the monomials μ of degree $r + 1$ in increasing order for \preceq_{drl} and choose their image as follows: pick the largest index k such that $x_k | \mu$ and μ / x_k, of degree r, has not been already chosen, then send μ onto μ / x_k. We can build a similar bijection from the subset of monomials of degree $r + 2$ of the staircase to the one of monomials of degree $r + 1$. Now, by enumerating the possibilities, we see that if μ of degree $r + 2$ is sent onto μ / x_k, then μ / x_k is sent onto μ / x_k^2. Hence, the set of monomials of degree $r + 1$ outside the staircase, i.e. in $\langle \text{lm}_{\preceq}(I) \rangle$, completely spans the sets of all monomials of degree $d \geq r + 1$ in $\langle \text{lm}_{\preceq}(I) \rangle$, that is no polynomial of degree greater than $r + 1$ lies in the reduced Gröbner basis of I for a total degree ordering. \[\square \]

Theorem 2.9 (see [23, Sec. 3.9, Th.] and [28, Th. 2]). Let $I = \langle f_1, \ldots, f_s \rangle$ be an ideal of $\mathbb{K}[x]$ with $\deg f_i = d_i$ for all $1 \leq i \leq s$. Assume I is Cohen-Macaulay or has dimension at most 1.

Let M be a generic invertible matrix of size n and let $\tilde{f}_i = f_i(Mx)$ for all $1 \leq i \leq s$. Let \tilde{G} be the reduced Gröbner basis of $\tilde{I} = \langle \tilde{f}_1, \ldots, \tilde{f}_s \rangle$ for \preceq_{drl}.

Then, the index of regularity $r_\tilde{I}$ of \tilde{I} satisfies

$$r_\tilde{I} \leq \sum_{k=1}^{s} (d_i - 1) + 1.$$

Furthermore, for all $g \in \tilde{G}$,

$$\deg g \leq r_\tilde{I} \leq \sum_{k=1}^{s} (d_i - 1) + 1.$$

Example 2.10. As an illustration to Theorem 2.7 and Proposition 2.8 consider the one-dimensional homogeneous ideal $I \subset \mathbb{K}[x,y]$ whose Gröbner basis for \preceq_{drl} with $y \preceq_{\text{drl}} x$ is $\tilde{G} = \{ xy - y^2, y^3 \}$.

Notice that the associated staircase S is $\{ 1, y, x, y^2, x^2, x^3, x^4, \ldots \}$ so that $	ext{HS}_{\mathbb{K}[x,y]}/I(t) = 1 + 2t + 2t^2 + t^3 + t^4 + \cdots$. Hence $\text{HP}_I(s) = 1 = m_0$, $r = 3$ and their maximum bounds the degree of the polynomials in \tilde{G}.

Taking a generic matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ as in Theorem 2.8 yields the ideal \tilde{I} whose Gröbner basis for \preceq_{drl} is $\tilde{G} = \{ (ac - c^2)x^2 + (ad + bc - 2cd)xy + (bd - d^2)y^2, cx^2y + dy^3 \}$, under the generic assumption $(a - c)c \neq 0$. Thus, we have $\deg g \leq r = 3 \leq (2 - 1) + (3 - 1) + 1 = 4$, for all $g \in \tilde{G}$.

7
2.2 Gröbner basis algorithms

Buchberger developed the theory of Gröbner bases and designed a first algorithm to compute them in [9]. Since then, many efficient Gröbner basis algorithms were developed. Here, we focus on Faugère’s F_4 algorithm [15].

2.2.1 The F_4 algorithm

In [9], Buchberger’s algorithm introduced the concept of critical pairs for computing Gröbner bases. For two polynomials f_1 and f_2 in a set of generators of an ideal, the critical pair (f_1, f_2) leads to a normal form computation of the S-polynomial

$$\text{sp}_{\prec}(f_1, f_2) = \frac{\text{LCM}(\text{LM}_{\prec}(f_1), \text{LM}_{\prec}(f_2))}{\text{LT}_{\prec}(f_1)} f_1 - \frac{\text{LCM}(\text{LM}_{\prec}(f_1), \text{LM}_{\prec}(f_2))}{\text{LT}_{\prec}(f_2)} f_2$$

w.r.t. the current intermediate basis. The degree of such a critical pair is defined as $\deg \text{sp}_{\prec}(f_1, f_2)$. Notice that this bounds from above $\deg \text{sp}_{\prec}(f_1, f_2)$.

In Algorithm 2.1 we state the pseudocode of Faugère’s F_4 algorithm, highlighting (in red) the main differences to Buchberger’s algorithm.

```
Input: A list of polynomials $f_1, \ldots, f_s$ spanning an ideal $I \subseteq \mathbb{K}[x]$ and a total degree monomial order $\prec$.
Output: A Gröbner basis $G$ of $I$ for $\prec$.

1 $G := \{f_1, \ldots, f_s\}$.
2 $P := \{(f_i, f_j) \mid 1 \leq i < j \leq s\}$.
3 While $P \neq \emptyset$ do
   4 Choose a subset $L$ of $P$.
   5 $P := P \setminus L$.
   6 $L := \text{SymbolicPreprocessing}(L, G)$.
   7 $L := \text{LinearAlgebra}(L)$.
   8 For $h \in L$ with $\text{LM}_{\prec}(h) \notin \langle \text{LM}_{\prec}(G) \rangle$ do
      9 $P := P \cup \{(g, h) \mid g \in G\}$.
   10 $G := G \cup \{h\}$.
4 Return $G$.
```

Algorithm 2.1: Faugère’s F_4

Observe that the termination of the F_4 algorithm only relies on Buchberger’s first criterion: $G = \{g_1, \ldots, g_t\}$ is a Gröbner basis of an ideal I for \prec if for all $1 \leq i, j \leq t$, $\text{NF}(\text{sp}_{\prec}(g_i, g_j), G, \prec) = 0$, see [11, Chap. 2, Sec. 6, Th. 6].

We detail the differences to Buchberger’s algorithm.

1. One can choose several critical pairs at a time, stored in a subset $L \subseteq P$. The so-called degree strategy chooses L to be the set of all critical pairs of minimal degree for a total degree monomial order, typically \prec_{DRL}.

2. For all terms of all the generators of the S-polynomials, one searches in the current intermediate Gröbner basis G for possible reducers. One adds those to L and again
search for all of their terms for reducers in \(G \). This is the SymbolicPreprocessing function.

3. Once all reduction data is collected from the last step, one generates a Macaulay-like matrix with columns corresponding to the monomials appearing in \(L \) (sorted by \(\prec \)) and rows corresponding to the coefficients of each polynomial in \(L \). Gaussian Elimination is then applied to reduce now all chosen S-polynomials at once. This is the LinearAlgebra function.

4. Finally, one adds those polynomials associated to rows in the updated matrix to \(G \) whose leading monomials are not already in \(\text{LM}_\prec (G) \).

In order to optimize the algorithm one can now apply Buchberger’s product and chain criteria, see [10, 26]. Thus many useless critical pairs are removed before even being added to \(P \) and fewer zero rows are computed during the linear algebra part of \(F_4 \). Still, in general, there are many zero reductions left.

Different selection strategies yield different behavior of the algorithm. The degree strategy allows one to compute truncated Gröbner bases of ideals in case of early terminations.

Definition 2.11. Let \(f_1, \ldots, f_s \) be polynomials in \(\mathbb{K}[x] \) and \(\prec \) be a monomial order. Let \(\mu \) be a monomial and \(F_\mu \) be the \(\mathbb{K} \)-vector subspace of \(\langle f_1, \ldots, f_s \rangle \) defined as

\[
F_\mu = \left\{ \sum_{i=1}^{s} h_i f_i \mid \forall 1 \leq i \leq s, \text{LT}_\prec (h_i f_i) \preceq \mu \right\}.
\]

Then, \(G \subset F_\mu \) is a \(\mu \)-truncated Gröbner basis of \(\langle f_1, \ldots, f_s \rangle \) for \(\prec \) if for all \(p \in F_\mu \), there exists \(g \in G \) such that \(\text{LM}_\prec (g) \mid \text{LM}_\prec (p) \) and \(p - \frac{\text{LT}_\prec (p)}{\text{LT}_\prec (g)} g \) is in \(F_\mu \).

Observe that taking a triangular basis of \(F_\mu \) ordered increasingly w.r.t. \(\prec \) naturally yields a \(\mu \)-truncated Gröbner basis thereof.

Proposition 2.12. Let \(f_1, \ldots, f_s \) be polynomials in \(\mathbb{K}[x] \) and \(\prec \) be a monomial order. Let \(\mu \) be a monomial and \(F_\mu \) be the \(\mathbb{K} \)-vector subspace of \(\langle f_1, \ldots, f_s \rangle \)

\[
F_\mu = \left\{ \sum_{i=1}^{s} h_i f_i \mid \forall 1 \leq i \leq s, \text{LM}_\prec (h_i f_i) \preceq \mu \right\}.
\]

A subset \(G = \{ g_1, \ldots, g_t \} \subset F_\mu \) is a \(\mu \)-truncated Gröbner basis of \(\langle f_1, \ldots, f_s \rangle \) for \(\prec \) if, and only if,

\[
F_\mu \subseteq G_\mu = \left\{ \sum_{j=1}^{t} h_j g_j \mid \forall 1 \leq j \leq t, \text{LM}_\prec (h_j g_j) \preceq \mu \right\}.
\]

and for all \((g_i, g_j) \in G^2 \) with \(i \neq j \), if \(\text{LCM}(\text{LM}_\prec (g_i), \text{LM}_\prec (g_j)) \preceq \mu \), then

\[
\text{NF} (\text{sp}_\prec (g_i, g_j), G, \prec) = 0.
\]
Proof. This proof follows the proof of [11, Chap. 2, Sec. 6, Th. 6].

If G is a μ-truncated Gröbner basis of $\langle f_1, \ldots, f_t \rangle$ for \prec, then observe that both F_μ and G_μ only contain polynomials with leading monomial less or equal to μ for \prec. Let $p \in F_\mu$, then there exists $g \in G$ such that $\text{LM}_\prec(g) \mid \text{LM}_\prec(p)$, $\text{LM}_\prec(g)$ is maximal and $p - \frac{\text{LT}_\prec(p)}{\text{LT}_\prec(g)} g$ is in F_μ. Thus, $p = hg + q$ with $\text{LM}_\prec(q) \prec \text{LM}_\prec(p) \leq \mu$, $\text{LM}_\prec(hg) = \text{LM}_\prec(p) \leq \mu$ and $q \in F_\mu$. Repeating this division process on q shows that $p \in G_\mu$. As a consequence p reduces to 0 w.r.t. G and \prec.

Now, let g_i and g_j be in G and $i \neq j$. Let $m = \text{LCM}(\text{LM}_\prec(g_i), \text{LM}_\prec(g_j))$, then $\text{sp}_\prec(g_i, g_j) = \frac{m}{\text{LM}_\prec(g_i)} g_i - \frac{m}{\text{LM}_\prec(g_j)} g_j$. Furthermore, if $m \leq \mu$, then $\text{LM}_\prec(\frac{m}{\text{LM}_\prec(g_i)} g_i) = m \leq \mu$, and likewise for g_j. Hence, $\text{sp}_\prec(g_i, g_j) \in G_\mu$ and its normal form w.r.t. G and \prec is 0.

For the converse, assume that G_μ contains F_μ and that for all $(g_i, g_j) \in G^2$ with $i \neq j$, if $\text{LCM}(\text{LM}_\prec(g_i), \text{LM}_\prec(g_j)) \preceq \mu$, then $\text{NF}(\text{sp}_\prec(g_i, g_j), G, \prec) = 0$.

Let $p \in F_\mu$, since $F_\mu \subseteq G_\mu$, there exist h_1, \ldots, h_t such that $\text{LM}_\prec(h_i g_i) \preceq \mu$ for all $1 \leq i \leq t$ and $p = h_1 g_1 + \cdots + h_t g_t$. Let $m = \max_{1 \leq i \leq t} \text{LM}_\prec(h_i g_i) \preceq \mu$, then observe that $\text{LM}_\prec(p) \preceq m \leq \mu$. Assume that among all the possible such writings of p, the polynomials h_1, \ldots, h_t are chosen so that m is minimal for \prec. Such a minimal monomial exists by the well-order property of \prec.

Now, if $\text{LM}_\prec(p) = m = \text{LM}_\prec(h_i g_i) = \text{LM}_\prec(h_i) \text{LM}_\prec(g_i)$ for some $1 \leq i \leq t$, then $\text{LM}_\prec(g_i)$ divides $\text{LM}_\prec(f)$, hence $\text{LM}_\prec(p) \in \text{LM}_\prec(G)$.

Otherwise, $\text{LM}_\prec(p) \prec m$. We will use the fact that if the critical pair (g_i, g_j) satisfies $\text{LCM}(\text{LM}_\prec(g_i), \text{LM}_\prec(g_j)) \preceq \mu$ implies $\text{NF}(\text{sp}_\prec(g_i, g_j), G, \prec) = 0$ to build a new expression of p that decreases m.

Let us write

$$p = \sum_{1 \leq i \leq t} h_i g_i + \sum_{1 \leq i \leq t} h_i g_i,$$

Then,

$$p = \sum_{\text{LM}_\prec(h_i g_i) = m} \text{LM}_\prec(h_i) g_i + \sum_{1 \leq i \leq t} (h_i - \text{LM}_\prec(h_i)) g_i + \sum_{1 \leq i \leq t} h_i g_i,$$

Since the second and third sums only involve monomials smaller than m for \prec, then the leading monomial of the first one is also smaller than m for \prec. Observe, on the one hand, that

$$s_{i,j} = \text{sp}_\prec(g_i \text{LM}_\prec(h_i), g_j \text{LM}_\prec(h_j)) = \text{sp}_\prec(g_i, g_j) \frac{m}{\text{LM}_\prec(g_i) \text{LM}_\prec(g_j)}.$$

Now, on the other hand, $\text{LM}_\prec(g_i \text{LM}_\prec(h_i)) = \text{LM}_\prec(g_j \text{LM}_\prec(h_j)) = m$, hence their lcm is m. Therefore, $\text{LCM}(\text{LM}_\prec(g_i), \text{LM}_\prec(g_j)) \preceq m \leq \mu$. By [11, Chap. 2, Sec. 6, Lemma 5], the first sum in the latter expression of p is a linear combination of the $s_{i,j}$’s and $\text{LM}_\prec(s_{i,j}) \prec m$ for all $1 \leq i < j \leq t$.

Consider, one of these polynomials $s_{i,j}$. Since $\text{LCM}(\text{LM}_\prec(g_i), \text{LM}_\prec(g_j)) \preceq \mu$, then we know that the critical pair (g_i, g_j) is such that $\text{NF}(\text{sp}_\prec(g_i, g_j), G, \prec) = 0$, hence
NF (s_{i,j}, \mathcal{G}, \prec) = 0 and there exist A_1, \ldots, A_t \in \mathbb{K}[x] such that

s_{i,j} = A_1 g_1 + \cdots + A_t g_t,

and for all 1 \leq i \leq t, \text{LM}_{\prec}(A_i g_i) \leq \text{LM}_{\prec}(s_{i,j}) \prec m.

 Doing this for all the polynomials s_{i,j}, we show that the first sum of the latter expression of p can be replaced by B_1 g_1 + \cdots + B_t g_t, where for all 1 \leq i \leq t, \text{LM}_{\prec}(B_i g_i) \prec m. This contradicts the minimality of m for this property, hence \text{LM}_{\prec}(p) = m and \text{LM}_{\prec}(p) \in (\text{LM}_{\prec}(\mathcal{G})). By Definition 2.11 \mathcal{G} is a \mu-truncated Gröbner basis of \langle f_1, \ldots, f_s \rangle for \prec.

\[\square\]

Remark 2.13.
1. If \prec is a total degree monomial order, then for d \in \mathbb{N}, we can also define a d-truncated Gröbner basis as a \mu-truncated Gröbner basis for the largest monomial of degree d for \prec.
2. If \mathcal{G} = \{g_1, \ldots, g_t\} is a \mu-truncated Gröbner basis of \langle f_1, \ldots, f_s \rangle for \prec and

\[\mu \geq \max_{1 \leq i < j \leq t} \text{LCM}(\text{LM}_{\prec}(g_i), \text{LM}_{\prec}(g_j)),\]

then \mathcal{G} is a Gröbner basis of \langle f_1, \ldots, f_s \rangle for \prec. Indeed, it spans the ideal and by Proposition 2.12 all the S-polynomials reduce to 0 w.r.t. \mathcal{G} and \prec. Hence, by Buchberger’s first criterion [11, Chap. 2, Sec. 6, Th. 6], it is a Gröbner basis of \langle f_1, \ldots, f_s \rangle for \prec.
3. Definition 2.11 depends greatly on the set of generators of the ideal. Consider \[f_1 = x^n, f_2 = (y - 1)^n \quad \text{and} \quad f_3 = xy - y - 1\] for n \geq 2. By Proposition 2.12 \mathcal{G} = \{f_1, f_2, f_3\} is a n-truncated Gröbner basis of \langle f_1, f_2, f_3 \rangle for \prec_{\text{drl}}. Yet, this ideal is \langle 1 \rangle hence \{1\} is a n-truncated Gröbner basis of \langle 1 \rangle.

Lemma 2.14. Let \[f_1, \ldots, f_s \in \mathbb{K}[x]\] be the input polynomials of the F_4 algorithm. Let \[d \in \mathbb{N}.\] Assume that the F_4 algorithm uses the degree selection strategy and that, on line 4, L consists in all the critical pairs of degree d.

If no new polynomial is added to \mathcal{G} on line 10 then \mathcal{G} is a d-truncated Gröbner basis of \langle f_1, \ldots, f_s \rangle.

Proof. By the degree selection strategy, only critical pairs of degree at least d exist. Since no new polynomial is added at the end of the turn, this means that all S-polynomials coming from critical pairs of degree d reduce to 0 w.r.t. \mathcal{G} and \prec. Furthermore, \mathcal{G} contains \[f_1, \ldots, f_s, \] thus, by Proposition 2.12 \mathcal{G} is a d-truncated Gröbner basis of \langle f_1, \ldots, f_s \rangle for \prec. \[\square\]

2.2.2 The Sparse-FGLM algorithm

In this subsection, the input Gröbner basis, \mathcal{G}_{\text{drl}}, is the reduced Gröbner basis of a zero-dimensional ideal \[I\] of degree D for \prec_{\text{drl}}. The output is the reduced Gröbner basis, \mathcal{G}_{\text{lex}}, of \[I\] for \prec_{\text{lex}}. In [20] and [21 Algorithm 3], using [32], the authors observe that the map

\[\mathbb{K}[x]/I \rightarrow \mathbb{K}[x]/I\]

\[f \mapsto \text{NF}(x_n f, \mathcal{G}_{\text{drl}}, \prec_{\text{drl}})\]
given in the basis \(S_{drl} = \text{Staircase}(G_{drl})\) is represented by a matrix, \(M_{x_n}\), with a special structure given in the following two lemmas.

Lemma 2.15. Let \(I\) be a zero-dimensional ideal of \(K[x]\) of degree \(D\), \(G_{drl}\) be its reduced Gröbner basis for \(\prec_{drl}\) and \(S_{drl} = \{\sigma_0, \ldots, \sigma_{D-1}\}\) be its associated staircase. Let \(M_{x_n}\) be the matrix of the linear map \(f \in K[x]/I \mapsto \text{NF}(x_n f, G_{drl}, \prec_{drl}) \in K[x]/I\).

Then, one can build the matrix \(M_{x_n} = (m_{i,j})_{0 \leq i,j < D}\) with the following procedure:

- if \(x_n \sigma_j = \sigma_k\), then \(m_{k,j} = 1\) and for all \(0 \leq i < D, i \neq k, m_{i,j} = 0\);
- otherwise for all \(0 \leq i < D, m_{i,j}\) is the coefficient of \(\sigma_i\) in \(\text{NF}(x_n \sigma_j, G_{drl}, \prec_{drl})\).

Proof. By construction, the matrix \(M_{x_n}\) has its \(j\)th column which is the vector of coefficients of \(\text{NF}(x_n \sigma_j, G_{drl}, \prec_{drl})\) in the basis \(S_{drl}\).

The former case is immediate.

The latter case is obtained by linearity. \(\square\)

Lemma 2.16 (\[20\] \[21\] using \[32\]). Let \(f_1, \ldots, f_n\) be generic polynomials of \(K[x_1, \ldots, x_n]\) of degrees at most \(d\). Let \(G_{drl}\) be the reduced Gröbner basis of \(\langle f_1, \ldots, f_n \rangle\) for \(\prec_{drl}\). Then, the latter case of Lemma 2.15 only happens if there exists \(g \in G_{drl}\) such that \(\text{LM}_{\prec_{drl}}(g) = x_n \sigma_j\). As a consequence, one has \(\text{NF}(x_n \sigma_j, G_{drl}, \prec_{drl}) = x_n \sigma_j - g\).

Proof. By the genericity assumption on \(f_1, \ldots, f_n\), the ideal \(\langle f_1, \ldots, f_n \rangle\) is complete intersection and zero-dimensional. Then, in \[32\], a description of \(S_{drl}\) is given in that case: if \(\sigma \in S_{drl}\), then either \(x_n \sigma \in S_{drl}\) or \(x_n \sigma \in \text{LM}_{\prec_{drl}}(G_{drl})\), i.e. there exists \(g \in G_{drl}\) such that \(\text{LM}_{\prec_{drl}}(g) = x_n \sigma\). \(\square\)

Following, we can use Wiedemann algorithm \[37\] on \(M_{x_n}\) to recover its minimal polynomial. Furthermore, whenever the reduced Gröbner basis \(G_{\text{lex}}\) for \(\prec_{\text{lex}}\) is in shape position, i.e. there exist \(g_n, g_{n-1}, \ldots, g_1 \in K[x_n]\) such that

\[G_{\text{lex}} = \{g_n(x_n), x_{n-1} - g_{n-1}(x_n), \ldots, x_1 - g_1(x_n)\},\]

and for all \(1 \leq k \leq n - 1\), \(\deg g_k < \deg g_n\), then \(g_1, \ldots, g_{n-1}\) can be computed by solving Hankel systems of size \(D\). This can be done using the following two algorithms, Algorithms \[2.2\] and \[2.3\].

Proposition 2.17. Let \(M \in K^{D \times D}\) be a matrix with \(s\) nonzero coefficients, \(r \in K^D\) be a row-vector and \(c_0, c_1, \ldots, c_{n-1} \in K^D\) be \(n\) column-vectors. Then, Algorithm \[2.2\] is correct and computes the sequences \((rM c_0)_{0 \leq i < 2D}\) and \((rM c_k)_{0 \leq i < D}\) for \(1 \leq k \leq n - 1\) in \(O(sD + nD^2)\) operations in \(K\).

Furthermore, if the vectors \(c_0, c_1, \ldots, c_{n-1}\) are vectors of the canonical basis, then this complexity drops to \(O((s + n)D)\).

Proof. The termination and the correctness of the algorithm are immediate. It remains to prove its complexity.

Each vector matrix product \(rM\) accounts for \(O(s)\) operations in \(K\), hence computing them all requires \(O(sD)\) operations.

Then, we need to perform the scalar products \(rc_k\) for \(0 \leq k \leq n - 1\) at each step. Each one needs \(O(D)\) operations. Hence a total of \(O(nD^2)\) operations.
Input: A matrix $M \in \mathbb{K}^{D \times D}$, a row-vector $r \in \mathbb{K}^D$ and n column-vectors $c_0, c_1, \ldots, c_{n-1} \in \mathbb{K}^D$.

Output: $(rM c_0)_{0 \leq i < 2D}, (rM c_1)_{0 \leq i < D}, \ldots, (rM c_{n-1})_{0 \leq i < D}$, with $1 = (1, 0, \ldots, 0)^T$.

1. $w_0^{(0)} := rc_0, w_0^{(1)} := rc_1, \ldots, w_0^{(n-1)} := rc_{n-1}$.
2. For i from 1 to $D - 1$ do
 3. $r := rM$.
 4. $w_i^{(0)} := rc_0, w_i^{(1)} := rc_1, \ldots, w_i^{(n-1)} := rc_{n-1}$.
3. For i from D to $2D - 1$ do
 4. $r := rM$.
 5. $w_i^{(0)} := rc_0$.
6. Return $(w_i^{(0)})_{0 \leq i < 2D}, (w_i^{(1)})_{0 \leq i < D}, \ldots, (w_i^{(n-1)})_{0 \leq i < D}$

Algorithm 2.2: Sequences for Sparse-FGLM

Observe that if $c_0, c_1, \ldots, c_{n-1}$ are vectors of the canonical basis, then these scalar products need, each, $O(1)$ operations, hence a total of $O(nD)$ operations. This concludes the proof. □

Input: Sequences $(w_i^{(0)})_{0 \leq i < 2D - 1}$ and $(w_i^{(k)})_{0 \leq i < D}$ for $1 \leq k \leq n - 1$ with coefficients in \mathbb{K}.

Output: $\gamma_0, k, \ldots, \gamma_{D-1}, k$ for $1 \leq k \leq n - 1$ such that for all $0 \leq i < D$, $w_i^{(k)} = \gamma_{D-1, k} w_{D-1+i}^{(0)} + \cdots + \gamma_0, k w_i^{(0)}$.

1. For k from 1 to $n - 1$ do
 2. Solve the Hankel linear system
 3. \[
 \begin{pmatrix}
 w_0^{(0)} & w_1^{(0)} & \cdots & w_{D-1}^{(0)} \\
 w_0^{(1)} & w_1^{(1)} & \cdots & w_{D-1}^{(1)} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{D-1}^{(0)} & w_D^{(1)} & \cdots & w_{2D-2}^{(0)}
 \end{pmatrix} \begin{pmatrix} \gamma_0, k \\ \gamma_1, k \\ \vdots \\ \gamma_{D-1, k} \end{pmatrix} = \begin{pmatrix} w_0^{(k)} \\ w_1^{(k)} \\ \vdots \\ w_{D-1}^{(k)} \end{pmatrix}.
 \]

3. Return γ_i, k for $0 \leq i < D$ and $1 \leq k \leq n - 1$.

Algorithm 2.3: Hankel system solving for Sparse-FGLM

Proposition 2.18. Let $(w_i^{(0)})_{0 \leq i < 2D - 1}, (w_i^{(1)})_{0 \leq i < D}, \ldots, (w_i^{(n-1)})_{0 \leq i < D}$ be sequences such that $(w_i^{(0)})_{0 \leq i < 2D - 1}$ is linear recurrent of order D, then Algorithm 2.3 is correct and computes, for all $1 \leq k \leq n - 1$, $\gamma_0, k, \ldots, \gamma_{D-1, k}$ such that

$$
\forall 0 \leq i < D, \quad w_i^{(k)} = \gamma_{D-1, k} w_{D-1+i}^{(0)} + \cdots + \gamma_0, k w_i^{(0)}
$$

in $O(M(D)(n + \log D))$ operations, where $M(D)$ denote a cost function for multiplying univariate polynomials of degree D with coefficients in \mathbb{K}.
Proof. The termination of the algorithm is immediate. Since \((w_i^{(0)})_{0 \leq i < 2D-1}\) is linear recurrent of order \(D\), then the Hankel matrix on line 2 is invertible, see [8] or for instance the proof of [5, Th. 3.2], thus the algorithm is correct.

Concerning the complexity, using [8], we can compute a representation of this inverse in \(O(M(D) \log D)\) operations in \(\mathbb{K}\). Then, multiplying this representation of this inverse with the right-hand side member of the equality requires \(O(M(D))\) operations in \(\mathbb{K}\). Hence a total of \(O(M(D)(n + \log D))\) operations in \(\mathbb{K}\).

We are now in a position to present the Sparse-FGLM algorithm in the shape position case.

Algorithm 2.4: Sparse-FGLM

- **Input:** The reduced Gröbner basis \(G_{\text{drl}}\) of a zero-dimensional ideal \(I\) for \(\prec_{\text{drl}}\) and its associated staircase \(S_{\text{drl}}\) of size \(D\).
- **Output:** The reduced Gröbner basis of \(I\) for \(\prec_{\text{lex}}\), if it is in shape position.

1. Build the matrix \(M\) as in Lemma 2.15.
2. Pick \(r \in \mathbb{K}^D\) a row-vector at random.
3. \(\mathbf{1} := (1, 0, \ldots, 0)^T\). // the column-vector of coefficients of NF \((1, G_{\text{drl}}, \prec_{\text{drl}})\)
4. For \(k\) from 1 to \(n - 1\) do
 5. Build \(c_k\) the column-vector of coefficients of NF \((x_k, G_{\text{drl}}, \prec_{\text{drl}})\).
 6. Compute \((w_i^{(0)})_{0 \leq i < 2D}, (w_i^{(1)})_{0 \leq i < D}, \ldots, (w_i^{(n-1)})_{0 \leq i < D}\) with Algorithm 2.2 called on \(M, r, 1, c_1, \ldots, c_{n-1}\).
6. \(g_n := \text{Berlekamp–Massey}(w_0^{(0)}, \ldots, w_{2D-1}^{(0)})\).
8. If \(\deg g_n < D\) then Return “Not in shape position or bad vector”.
9. Compute \(g_1 := \gamma_{D-1,1} x_{n-1}^{D-1} + \cdots + \gamma_{0,1} x_{n-1} + g_{n-1} := \gamma_{D-1,n-1} x_{D-1}^{n-1} + \cdots + \gamma_{0,n-1}\) with Algorithm 2.3 called on \((w_i^{(0)})_{0 \leq i < 2D-1}, (w_i^{(1)})_{0 \leq i < D}, \ldots, (w_i^{(n-1)})_{0 \leq i < D}\).
10. Return \(\{g_n(x_n), x_{n-1} - g_{n-1}(x_n), \ldots, x_1 - g_1(x_n)\}\).

Theorem 2.19. Let \(I\) be a zero-dimensional ideal of \(\mathbb{K}[x]\) of degree \(D\), \(G_{\text{drl}}\) be its reduced Gröbner basis for \(\prec_{\text{drl}}\) and \(S_{\text{drl}}\) be its associated staircase. Let \(M_{x_n}\) be the matrix of the map \(f \in \mathbb{K}[x]/I \mapsto \text{NF}(x_n f, G_{\text{drl}}, \prec_{\text{drl}}) \in \mathbb{K}[x]/I\) in the monomial basis \(S_{\text{drl}}\).

Let us assume that there are \(t\) monomials \(\sigma\) in \(S_{\text{drl}}\) such that \(x_n \sigma \in \text{LT}_{\leq \text{drl}}(I)\) and that \(x_1, \ldots, x_{n-1} \in S_{\text{drl}}\), that \(M_{x_n}\) is known and that the reduced Gröbner basis \(G_{\text{lex}}\) of \(I\) for \(\prec_{\text{lex}}\) is in shape position. Then, one can compute \(G_{\text{lex}}\) in \(O(tD^2 + nM(D))\) operations, where \(M(D)\) denote a cost function for multiplying univariate polynomials of degree \(D\) with coefficients in \(\mathbb{K}\).

Proof. Taking the column-vector \(\mathbf{1} = (1, 0, \ldots, 0)^T\) so that for all \(i \in \mathbb{N}\), \(M_{x_n}^i \mathbf{1}\) is the vector of coefficients in \(S_{\text{drl}}\) of \(\text{NF}(x_n^i G_{\text{drl}}, \prec_{\text{drl}})\), we can pick at random a row-vector \(r\) to compute the sequence \(\mathbf{u}^{(0)} = (w_i^{(0)})_{0 \leq i < 2D} = (r M_{x_n}^i \mathbf{1})_{0 \leq i < 2D}\). Generically, the linear recurrence relation of minimal order satisfied by this sequence

\[
\forall i \in \mathbb{N}, \quad u_{i+d} + c_d u_{i+d-1} + \cdots + c_0 u_i = 0,
\]
is such that $g_n = x_n^d + c_d-1 x_n^{d-1} + \cdots + x_0$ is the minimal polynomial of M_{x_n}.

Let us assume that \mathcal{G}_{LEX} is in shape position, then there exist $\gamma_{0,k}, \ldots, \gamma_{D-1,k}$ in \mathbb{K} such that $x^k - \gamma_{D-1,k} x^{D-1} - \cdots - \gamma_{0,k} x = 0$ in $\mathbb{K}[x]/I$. Since $M_{x_n}^d c_k$ is the vector of coefficients of $\text{NF}(x_n^d x_k, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}})$, by multiplying on the left $M_{x_n}^d c_k$ by $r M_{x_n}^i$ for all $0 \leq d \leq D - 1$, we obtain

$$\forall 0 \leq i < D, \quad w_i^{(k)} = \gamma_{D-1,k} w_{D-1+i}^{(0)} + \cdots + \gamma_{0,k} w_0^{(0)}.$$

Hence the algorithm is correct and terminates. Observe that if $\deg g_n < D$, then \mathcal{G}_{LEX} is not in shape position and the algorithm is still correct to return the error message.

It remains to prove the complexity statement. By assumption, $x_1, \ldots, x_{n-1} \in S_{\text{DRL}}$, hence $1 \in S_{\text{DRL}}$ and $c_0, c_1, \ldots, c_{n-1}$ are vectors of the canonical basis. Moreover, there are t monomials σ in S_{DRL} such that $x_1^t \sigma \in \text{LT}_{\text{DRL}}(I)$, hence M_{x_n} has at most $tD + (D - t) = O(tD)$ nonzero coefficients. Observe that among these t monomials, there must be a pure power of each x_k, for $1 \leq k \leq n - 1$, which is not 1, hence $t > n$. Therefore, by Proposition 2.17, the call to Algorithm 2.2 requires $O(tD^2 + nD) = O(tD^2)$ operations.

Now, using fast variants [8] of the Berlekamp–Massey algorithm [2, 30], one recovers the minimal linear recurrence relation in $O(M(D) \log D)$ operations. Finally, by Proposition 2.18, we can compute g_1, \ldots, g_n in $O(M(D)(n + \log D))$ operations.

All in all, we have a complexity in $O(tD^2 + nM(D))$ operations in \mathbb{K}. \hfill \(\square\)

Note that the Berlekamp–Massey algorithm and its faster variants return an ideal g_n, so if the computed polynomial has degree D, i.e. it is the characteristic polynomial of M_{x_n}, then it is also its minimal polynomial. Furthermore, based on a deterministic variant of Wiedemann's algorithm, one can also provide a deterministic variant of this algorithm to recover g_n [21, Algorithm 4].

Remark 2.20. In [6, 23], the authors consider the case where an ideal I is not in shape position but its radical \sqrt{I} is. Let us recall that $\sqrt{I} = \{ f \in \mathbb{K}[x] \mid \exists k \in \mathbb{N}, f^k \in I \}$, see [17, Chap. 4, Sec. 2, Def. 4]. In that case, the lexicographic Gröbner basis of \sqrt{I} can be computed in a similar fashion, it suffices to replace the call to Algorithm 2.3 on line 2 by a call to [25, Algorithm 2].

3 The F₄SAT algorithm for saturated ideals

This section is devoted to the design of an algorithm which on input f_1, \ldots, f_s and φ in $\mathbb{K}[x]$ computes a Gröbner basis of $I : \langle \varphi \rangle^\infty$ for a total degree monomial order \prec, typically \prec_{DRL}, where $I = \langle f_1, \ldots, f_s \rangle$. As explained earlier, this algorithm modifies the F_4 algorithm [15], with the degree selection strategy, to discover on the fly polynomials in $I : \langle \varphi \rangle^\infty$ as early as possible during the computation. The use of the \prec_{DRL} order allows us to obtain these polynomials of lowest possible degree early in the computation.

3.1 Description of the F₄SAT algorithm

From Lemma 2.14, after the first step of the F_4 algorithm in degree d, if no new polynomial of degree at most d is discovered, then the current Gröbner basis \mathcal{G} is a
d-truncated Gröbner basis of I for \prec. Therefore, we have a partial information on the staircase of I, and thus of $I : \langle \varphi \rangle^\infty$, for \prec since we know monomials that are outside of this staircase. The $F_4\text{SAT}$ algorithm searches for polynomials in $I : \langle \varphi \rangle^\infty$ whose supports are entirely included in the given staircase using the fact that $(I : \langle \varphi \rangle^\infty) : \langle \varphi \rangle = I : \langle \varphi \rangle^\infty$. If new polynomials are found, they are added to G and the necessary critical pairs are added to the set of pairs to handle. Then, we resume the F_4 algorithm.

The search of new polynomials is done through linear algebra computations and is sum up in Algorithm 3.2. From a Gröbner basis of an ideal J, $I \subseteq J \subseteq I : \langle \varphi \rangle^\infty$, we compute a bound B on the degree of the polynomials in the reduced Gröbner basis of $J : \langle \varphi \rangle^\infty = I : \langle \varphi \rangle^\infty$ using the ComputeMaxDegree routine based on Theorem 2.7. Then, we compute $NF(\sigma \varphi, G, \prec)$ for all monomials σ in the associated staircase S of degree at most B. Finally, we search for vanishing linear combinations thereof. Indeed, if

$$NF(s \varphi, G, \prec) - \sum_{\sigma \in S_d, \sigma \prec s} c_{\sigma} NF(\sigma \varphi, G, \prec) = 0,$$

then $(s - \sum_{\sigma \in S_d, \sigma \prec s} c_{\sigma}) \varphi \in J$. This yields Algorithm 3.1.

Theorem 3.1. Let f_1, \ldots, f_s be a generating family of an ideal $I \subseteq K[x]$, $\varphi \in K[x]$ be a polynomial and \prec be a total degree monomial order. Then, Algorithm 3.1 terminates and returns a Gröbner basis of $I : \langle \varphi \rangle^\infty$ for \prec.

3.2 Proof of termination and correctness

We start by proving that the algorithm returns a Gröbner basis.

Lemma 3.2. Let G be the set of polynomials in line 17 of Algorithm 3.1 called for \prec. Then, G is a Gröbner basis for \prec.

Proof. When reaching line 17, the set P of critical pairs of polynomials in G is empty. Thus, by Buchberger’s first criterion [11, Chap. 2, Sec. 6, Th. 6], G is a Gröbner basis.

Theorem 3.3. Let G be the output of Algorithm 3.1 called for \prec. Then, G is a Gröbner basis for \prec.

Proof. By Lemma 3.2 at line 17 G is a Gröbner basis for \prec. If, at the following line, H is empty, then G is not changed and the algorithm outputs G, which is a Gröbner basis for \prec.

Otherwise, G is augmented, P is augmented and thus not empty and the algorithm returns to line 4.

All in all, the algorithm can only reach the return instruction is P is empty, hence G is a Gröbner basis for \prec, and H is empty as well, hence G is not augmented. This concludes the proof that the returned G is a Gröbner basis for \prec.

16
Input: A list of polynomials f_1, \ldots, f_s spanning an ideal $I \subseteq K[x]$, a polynomial $\varphi \in K[x]$ and a total degree monomial order \prec.

Output: A Gröbner basis G of $I : \langle \varphi \rangle^\infty$ for \prec.

1. $G := \{f_1, \ldots, f_s\}$.
2. $b := \text{true}$ \hspace{1cm} // tracks if G has changed
3. $P := \{(f_i, f_j) | 1 \leq i < j \leq s\}$
4. **While** $P \neq \emptyset$ **do**
 5. Choose a subset L of P.
 6. $P := P \setminus L$.
 7. $L := \text{SymbolicPreprocessing}(L, G)$.
 8. $L := \text{LinearAlgebra}(L)$.
 9. **For** $h \in L$ with $\text{LM}_\prec(h) \notin \langle \text{LM}_\prec(G) \rangle$ **do**
 10. $P := P \cup \{(g, h) | g \in G\}$, $G := G \cup \{h\}$, $b := \text{true}$.
 11. **If** b **then**
 // new information on $\langle \text{LM}_\prec(I : \langle \varphi \rangle^\infty) \rangle$
 12. $b := \text{false}$.
 13. $B := \max_{\ell \in L} \deg \ell$ \hspace{1cm} // bounds the degrees of the new polynomials
 14. $H := \text{LinearizeColonIdeal}(G, B, \prec)$
 15. **For each** $h \in H$ **do**
 16. $P := P \cup \{(g, h) | g \in G\}$, $G := G \cup \{h\}$, $b := \text{true}$.
 17. $B := \text{ComputeMaxDegree}(G, \varphi, \prec)$ \hspace{1cm} // bounds the degrees in the sought Gröbner basis
 18. $H := \text{LinearizeColonIdeal}(G, B, \prec)$
 19. **If** $H \neq \emptyset$ **then**
 // The ideal $\langle G \rangle$ is not saturated
 20. **For each** $h \in H$ **do**
 21. $P := P \cup \{(g, h) | g \in G\}$, $G := G \cup \{h\}$, $b := \text{true}$.
 22. **Goto** line 4 \hspace{1cm} // resumes the whole Gröbner basis computation
23. Return G.

Algorithm 3.1: P_4 SAT
Input: A list \(\mathcal{G} \) of polynomials in \(\mathbb{K}[x] \), a polynomial \(\varphi \), a degree bound \(B \) and a total degree monomial order \(\prec \).

Output: An auto-reduced family of polynomials \(\mathcal{H} \) such that for all \(h \in \mathcal{H} \), \(\deg h < B \) and \(\text{NF}(h \varphi, \mathcal{G}, \prec) = 0 \).

1. For \(\sigma \notin \text{LM}_\prec(\mathcal{G}) \) and \(\deg \sigma \leq B \) do
2. \(q_\sigma := \text{NF}(\sigma \varphi, \mathcal{G}, \prec) \).
3. Build the matrix \(M \) whose rows are given by polynomials \(q_\sigma \) and columns by each monomials in their support in decreasing order.
4. Compute a lower triangular basis \(K \) of the left-kernel of \(M \).
5. \(\mathcal{H} := \emptyset \)
6. For each \(k \in K \) do
7. \(\mathcal{H} := \mathcal{H} \cup \left\{ \sum_{\sigma \notin \text{LM}_\prec(\mathcal{G})} k_\sigma \sigma \right\} \). // the polynomial whose vector of coefficients is \(k \)
8. Return \(\mathcal{H} \).

Algorithm 3.2: LinearizeColonIdeal

Lemma 3.4. Let \(I \) and \(J \) be two ideals of \(\mathbb{K}[x] \) such that \(I \subseteq J \) and \(\mathcal{G} \) and \(\mathcal{H} \) be their respective reduced Gröbner bases for a common monomial order \(\prec \). Let \(S \) and \(T \) be the associated staircases to \(\mathcal{G} \) and \(\mathcal{H} \). Then, \(T \subseteq S \). Furthermore, there exist \(h_1, \ldots, h_r \), such that for all \(i \), \(\text{supp} h_i \subseteq S \) and \(J = I + \langle h_1, \ldots, h_r \rangle \).

Proof. Let \(\mathcal{G} = \{g_1, \ldots, g_t\} \). By definition of a Gröbner basis, for all \(f \in I \), there exists \(1 \leq i \leq r \) such that \(\text{LM}_\prec(g_i) | \text{LM}_\prec(f) \). Since \(I \subseteq J \), then \(f \in J \) and there also exists \(h \in \mathcal{H} \) such that \(\text{LM}_\prec(h) | \text{LM}_\prec(f) \), hence \(\text{LM}_\prec(I) \subseteq \text{LM}_\prec(J) \). By definition, \(S \) (resp. \(T \)) is the complement of \(\text{LM}_\prec(I) \) (resp. \(\text{LM}_\prec(J) \)) in the set of monomials, hence \(T \subseteq S \).

Since \(I \subseteq J \), there exist \(f_1, \ldots, f_r \) such that \(J = I + \langle f_1, \ldots, f_r \rangle \). By the definition of \(\mathcal{G} \) being a Gröbner basis of \(I \) for \(\prec \), for all \(1 \leq j \leq r \), we have \(f_j = q_{j,1}g_1 + \cdots + q_{j,t}g_t + \text{NF}(f_j, \mathcal{G}, \prec) \in J \). Since \(\text{NF}(f_j, \mathcal{G}, \prec) \) has no monomial divisible by \(\text{LM}_\prec(g_j) \), for \(g_j \in \mathcal{G} \), its support is a subset of \(S \). Thus, taking \(h_j = \text{NF}(f_j, \mathcal{G}, \prec) \), we have \(\text{supp} h_j \subseteq S \) and \(J = I + \langle h_1, \ldots, h_r \rangle \).

We will apply Lemma 3.3 with \(J = I : \langle \varphi \rangle \), thus, by definition of \(I : \langle \varphi \rangle \), we also know that for all \(1 \leq j \leq r \), \(h_j \varphi \) is in \(I \). Moreover, \(h_j \) is a polynomial whose support is in \(S \), thus it can be written as \(h_j = s - \sum_{\sigma \in S, \sigma \prec s} c_\sigma \sigma \), with \(s \in S \) and \(c_\sigma \)'s in \(\mathbb{K} \). Since \(h_j \varphi \in I \), we know that

\[
\text{NF}(h_j \varphi, \mathcal{G}, \prec) = 0 \quad \text{and} \quad \text{NF}(s \varphi, \mathcal{G}, \prec) = \sum_{\sigma \in S, \sigma \prec s} c_\sigma \text{NF}(\sigma \varphi, \mathcal{G}, \prec) .
\]

From Lemma 3.3, we deduce a superset of the support of the polynomials in the reduced Gröbner basis of \(I : \langle \varphi \rangle \) for \(\prec \) from the staircase \(S \) of \(I \) for \(\prec \). Yet, if \(S \) is not finite, it is not clear up to which degree we need to search for polynomials in \(I : \langle \varphi \rangle \), i.e. the bound \(B \) on line 17. This is given by the following routine: ComputeMaxDegree.

Remark 3.5. In generic situations, such as those encountered in Section 3, the required maximum degree is much smaller than the one returned by Algorithm 3.3. Fur-
Input: A Gröbner basis G of an ideal $I \subseteq \mathbb{K}[x]$, a polynomial $\varphi \in \mathbb{K}[x]$ and a total degree monomial order \prec.

Output: A bound on the degree of the polynomials in the reduced Gröbner basis of $I : \langle \varphi \rangle^\infty$ for \prec.

1. $\psi := \text{NF}(\langle \varphi, G \rangle, \prec)$.
2. $d := \text{deg } \psi$.
3. $I' := \langle \text{LM}(G) \rangle + \langle x_{n+1}^d \rangle \subseteq \mathbb{K}[x, x_{n+1}]$.
4. Compute S and P, the Hilbert series and polynomial of I'.
5. Compute r, the index of regularity, and m_0 for I' using S and P. // see Proposition 2.6
6. Return $\max(r, m_0)$.

Algorithm 3.3: ComputeMaxDegree

thermore, in Subsection 3.3 we provide variants thereof, which also return better degree bounds, under different assumptions on I or I'.

In order to prove the correctness of ComputeMaxDegree, or Algorithm 3.3 we start by proving the following lemma, corresponding to the special case $\varphi = x_n$.

Lemma 3.6. Let \prec be a total degree monomial order. Let $\{g_1, \ldots, g_r\}$ be a Gröbner basis of an ideal $I \subseteq \mathbb{K}[x]$, for \prec. Let B be the bound defined in Theorem 2.7 for $I^h = \langle f^h \ | \ f \in I \rangle$, the homogenization of I.

Then, any polynomial in the reduced Gröbner basis of $I : \langle x_n \rangle^\infty$ for \prec has a degree which is bounded from above by B.

Proof. By [11] Chap. 8, Sec. 4, Proof of Th. 4], homogenizing g_1, \ldots, g_r with variable x_0 yields a homogeneous Gröbner basis $G_1 = \{g_1^h, \ldots, g_r^h\}$ for \prec with $x_0 < x_n < \cdots < x_1$ of the homogeneous ideal I^h. From G_1, we compute the Hilbert series $\text{HS}_{\mathbb{K}[x_0, x]}(I^h)(t)$ of $\mathbb{K}[x_0, x]/I^h$, using [11] Chap. 10, Sec. 2, Th. 6] and thus the bound B.

Let \prec_2 be a total degree monomial order such that $x_n \prec_2 \cdots \prec_2 x_1 \prec_2 x_0$ and let $G_2 = \{\tilde{g}_1^h, \ldots, \tilde{g}_s^h\}$ be a Gröbner basis of I^h for \prec_2. By Corollary 2.7, the Hilbert series of the quotient ring $\mathbb{K}[x_0, x]/I^h$ only depends on I^h and not on the chosen total degree monomial order. Hence the bound B also applies to the degree of the polynomials in G_2:

$$\max_{1 \leq j \leq s} \deg \tilde{g}_j^h \leq B.$$

Finally, using Bayer’s algorithm [11] p. 120, we compute a Gröbner basis of $I^h : \langle x_n \rangle^\infty$ for \prec_2 from G_2 as follows: for each $g \in G_2$, find the largest integer k such that x_n^k divides g and take $\frac{g}{x_n^k}$. Then, we obtain a Gröbner basis of $I : \langle x_n \rangle^\infty$ for \prec by dehomogenizing the resulting polynomials, i.e. by setting x_0 to 1. Thus any polynomial in this Gröbner basis has degree at most $\max_{1 \leq j \leq s} \deg \tilde{g}_j^h \leq B$. \hfill \square

Theorem 3.7. Let \prec be a total degree monomial order. Let $G = \{g_1, \ldots, g_r\}$ be a Gröbner basis of an ideal $I \subseteq \mathbb{K}[x]$ for \prec. Let $\varphi \in \mathbb{K}[x]$.

Then, Algorithm 3.3 returns a bound on the degree of the polynomials in the reduced Gröbner basis of $I : \langle \varphi \rangle^\infty$ for \prec.

19
Proof. By the definition of a Gröbner basis, there exist polynomials \(q_1, \ldots, q_r \) such that \(\varphi = q_1 g_1 + \cdots + q_r g_r + \psi \) and \(\psi = NF(\varphi, G, \langle \rangle). \) Then, a polynomial \(h \) is in \(I : \langle \varphi \rangle \) if, and only if, \(h\varphi \) is in \(I. \) Thus, this is equivalent to requiring that \(h\varphi \) is in \(I. \) In other words, \(I : \langle \varphi \rangle = I : \langle \psi \rangle \) and \(I : \langle \varphi \rangle^\infty = I : \langle \psi \rangle^\infty. \)

Now, let us denote \(g_{r+1} = x_{n+1}^d - \psi, \) where \(x_{n+1} \) is a new indeterminate and \(d = \deg \psi. \) Then, its leading monomial for \(\langle \rangle \) with \(x_n < \cdots < x_1 < x_{n+1} \) is \(x_{n+1}^d. \) Since \(g_1, \ldots, g_r \) do not involve \(x_{n+1}, \) their leading monomials are exactly the same as those for \(\langle \rangle \) with \(x_n < \cdots < x_1. \) By Buchberger’s second criterion [11, Chap. 2, Sec. 9, Prop. 4], adding \(g_{r+1} \) to \(G \) does not create new critical pairs. Since \(G \) is already a Gröbner basis of \(I \) for \(\langle \rangle \) with \(x_n < \cdots < x_1, \) by Buchberger’s first criterion [11, Chap. 2, Sec. 6, Th. 6], \(\mathcal{H} = \{g_1, \ldots, g_r, g_{r+1}\} \) is also a Gröbner basis of \(I = I + \langle x_{n+1}^d - \psi \rangle \) for \(\langle \rangle \) with \(x_n < \cdots < x_1 < x_{n+1}. \)

Now, let \(I^h \) and \(\mathcal{I}^h \) be the respective homogenizations of \(I \) and \(\mathcal{I} \) with variable \(x_0. \) Since \(LM(\mathcal{I}^h) = \langle LM(I^h) \rangle + \langle LM(x_{n+1}^d - \psi) \rangle = \langle LM(G) \rangle + \langle x_{n+1}^d \rangle = \langle LM(G \cup \{x_{n+1}^d\}) \rangle, \) these polynomials allow us to compute the Hilbert series and polynomial of \(\mathcal{I}^h. \) By Proposition 2.6 from the Hilbert series and the Hilbert polynomial, we compute \(r, \) the index of regularity, and \(m_0 \) for \(\mathcal{I}^h. \)

Furthermore, saturating \(I \) by \(\psi \) is equivalent to saturating \(\mathcal{I} \) by \(\psi \) (resp. \(x_{n+1}^d, \) resp. \(x_{n+1} \)) and then eliminating \(x_{n+1}. \) Thus, using Lemma 3.6 on the ideal \(\mathcal{I}, \) the Gröbner basis \(\mathcal{H}, \) and the monomial order \(\langle \rangle \) with \(x_n < \cdots < x_1 < x_{n+1}, \) we deduce that any polynomial in the Gröbner basis \(\mathcal{H}' \) of \(\mathcal{I} : \langle \varphi \rangle^\infty = \mathcal{I} : \langle x_{n+1} \rangle^\infty \) has degree at most \(B. \) Now, the bound \(B \) also applies to the degree of the polynomials in \(\mathcal{H}' \) for a monomial order eliminating \(x_{n+1} \) on \(\mathcal{I} : \langle \varphi \rangle^\infty. \) Finally, setting \(x_0 \) to 1 also yields polynomials of degree at most \(B. \)

\[\square \]

Remark 3.8. Knowing the Hilbert series and polynomial of \(I^h \) allows us to directly compute those of \(\mathcal{I}^h. \) Indeed, by [11, Chap. 10, Sec. 2, Ex. 4.a], we have

\[
HS_{K[x_0, x_{n+1}]/I^h}(t) = HS_{K[x_0, x]}/I^h(t) HS_{K[x_{n+1}]/\langle x_{n+1}^d \rangle}(t)
\]

\[
= HS_{K[x_0, x]/I^h}(t) \frac{1 - t^d}{1 - t}
\]

\[
= HS_{K[x_0, x]/I^h}(t) \left(1 + t + \cdots + t^{d-1} \right).
\]

Hence, for all \(s \geq d - 1, \) \(HP_{I^h}(s) = HP_{I^h}(s) + \cdots + HP_{I^h}(s - d + 1). \) Let \(r_{I^h} \) (resp. \(r_{\mathcal{I}^h} \)) be the index of regularity of \(I^h \) (resp. \(\mathcal{I}^h). \) Since for all \(s \geq r_{I^h} \), \(HP_{I^h}(s) = \dim_{K[x_0, x]} K[x_0, x]_{s}/I^h_{s} \), we have for all \(s \geq r_{I^h} + d - 1, \) \(HP_{\mathcal{I}^h}(s) = \dim_{K[x_0, x]} K[x_0, x, x_{n+1}]_{s}/I^h_{s}. \)

In other words, \(r_{\mathcal{I}^h} \leq r_{I^h} + d - 1. \) Assuming \(I^h \) has dimension \(\delta, \) then so does \(\mathcal{I}^h \) and by Proposition 2.6 there exist integers \(m_0, m_1, \ldots, m_{\delta-1, I^h} \) such that

\[
HP_{I^h}(s) = \sum_{I=0}^{\delta-1} \left(\binom{s + i}{i + 1} - \binom{s + i - m_{i, I^h}}{i + 1} \right).
\]

Therefore,

\[
HP_{\mathcal{I}^h}(s) = \sum_{J=0}^{d-1} \sum_{I=0}^{\delta-1} \left(\binom{s - j + i}{i + 1} - \binom{s - j + i - m_{j, I^h}}{i + 1} \right).
\]

20
Now, it suffices to compute the decomposition, by algebraic manipulation,

\[HP_{\mathcal{T}^h}(s) = \sum_{i=0}^{\delta-1} \left(\frac{(s+i)}{i+1} - \frac{(s+i-m_i)_{\mathcal{T}^h}}{i+1} \right), \]

in order to ensure that any polynomial in a Gröbner basis of \(\mathcal{T}^h \) has degree at most \(B = \max(r_{\mathcal{T}^h}, m_{0,\mathcal{T}^h}) \).

Lemma 3.9. Let \(f_1, \ldots, f_s \in \mathbb{K}[x] \) be the input polynomials of the \(\text{F}_4\text{SAT} \) algorithm. Let \(d \in \mathbb{N} \). Assume that the \(\text{F}_4\text{SAT} \) algorithm uses the degree selection strategy and that, on line 7, \(L \) consists in all the critical pairs of degree \(d \).

If no new polynomial is added to \(\mathcal{G} \) on both lines 10 and 16, then \(\mathcal{G} \) is a \(d \)-truncated Gröbner basis of \((f_1, \ldots, f_s) : \langle \varphi \rangle \).

Proof. The first part of the proof follows the one of Lemma 2.14. By the degree selection strategy, only critical pairs of degree at least \(d \) exist. Since no new polynomial is added at the end of the first for loop, this means that all S-polynomials coming from critical pairs of degree \(d \) reduce to 0 w.r.t. \(\mathcal{G} \) and \(\prec \). Furthermore, \(\mathcal{G} \) contains \(f_1, \ldots, f_s \), thus, by Proposition 2.12 \(\mathcal{G} \) is a \(d \)-truncated Gröbner basis of \((f_1, \ldots, f_s) \) for \(\prec \).

Now, for \(\mu \) the largest monomial of degree \(d \), seeing \(F_{\mu} \) of Definition 2.11 as a vector subspace of \((f_1, \ldots, f_s) : \langle \varphi \rangle \) instead of \((f_1, \ldots, f_s) \), by Proposition 2.12 and the fact that no polynomial is added at the end of the second for loop, we have that \(\mathcal{G} \) is also a \(d \)-truncated Gröbner basis of \((f_1, \ldots, f_s) : \langle \varphi \rangle \).

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. At the first round of the while loop, \(\mathcal{G} \) contains a generating family of \(I \subseteq I : \langle \varphi \rangle^\infty \).

Let us assume that at each round of the while loop, \(\mathcal{G} \) starts by containing a generating family of an ideal \(J \subseteq I : \langle \varphi \rangle^\infty \). Then, at the end of the round, it contains a generating family of an ideal \(K \) with \(J \subseteq K \subseteq J : \langle \varphi \rangle \). Since \(J \subseteq I : \langle \varphi \rangle^\infty \), then \(K \subseteq J : \langle \varphi \rangle \subseteq (I : \langle \varphi \rangle^\infty) : \langle \varphi \rangle = I : \langle \varphi \rangle^\infty \).

Thus, by recurrence and the fact that \(\mathbb{K}[x] \) is Noetherian, this sequence of ideals must stabilize to an ideal that is included in \(I : \langle \varphi \rangle^\infty \) so that the loop terminates. Furthermore, by Theorem 3.3, the output family is a Gröbner basis for \(\prec \) of the ideal it spans.

By the correctness of the \(\text{F}_4 \) algorithm, the \(\text{F}_4\text{SAT} \) algorithm computes a Gröbner basis for \(\prec \) of an ideal \(J \) containing \(I \). Moreover, by Theorem 3.7 we know that if \(\mathcal{G} \) is a Gröbner basis, then the given bound is enough to retrieve a Gröbner basis of \(\langle \mathcal{G} \rangle : \langle \varphi \rangle^\infty \) and thus of \(\langle \mathcal{G} \rangle : \langle \varphi \rangle \). Furthermore, at each round of the loop, if \(\mathcal{G} \) has been enlarged, then the algorithm looks for new polynomials in the saturated ideal. Otherwise, by Lemma 3.9 \(\mathcal{G} \) is a \(d \)-truncated Gröbner basis of \(J = \langle \mathcal{G} \rangle : \langle \varphi \rangle \), which satisfies \(I \subseteq J \subseteq J : \langle \varphi \rangle \subseteq I : \langle \varphi \rangle^\infty \).

Therefore, the algorithm can only terminate if \(J \) is saturated by \(\varphi \), that is \(J : \langle \varphi \rangle = J \).

Since \(I : \langle \varphi \rangle^\infty \) is the smallest ideal containing \(I \) and saturated by \(\varphi \), we conclude that \(J = I : \langle \varphi \rangle^\infty \). \(\square \)
3.3 Better degree bounds

In this section, we provide variants of Algorithm 3.3 that return better degree bounds, assuming the ideals satisfy some properties. We start with the case when $I : \langle \varphi \rangle^\infty$ is 0-dimensional. Then, relying on Theorem 2.9, we provide better degree bounds for the polynomials that are computed by Algorithm 3.1 in some generic situations.

Theorem 3.10. Let \mathcal{G} be the Gröbner basis for \prec_{drl} in line 17 of Algorithm 3.1. Assume that the ideal $\langle \mathcal{G} \rangle$ has dimension 0. Then, on line 17 of Algorithm 3.1, one can call the variant Algorithm 3.4 of
ComputeMaxDegree.

Proof. By the proof of Theorem 3.1, the ideal $J = \langle \mathcal{G} \rangle$ satisfies $I \subseteq J \subseteq I : \langle \varphi \rangle^\infty$, so that $J : \langle \varphi \rangle^\infty = I : \langle \varphi \rangle^\infty$. Thus, applying Lemma 3.4 on J and $I : \langle \varphi \rangle^\infty$, we want to compute some polynomials h_1, \ldots, h_r whose supports are in the staircase associated to \mathcal{G} such that $I : \langle \varphi \rangle^\infty = \langle \mathcal{G} \rangle + \langle h_1, \ldots, h_r \rangle$. Since J is 0-dimensional, this staircase is finite and it suffices to consider all the monomials in this staircase. This can be done by taking as the degree bound, the maximum degree of the monomials in this staircase. \hfill \Box

Algorithm 3.4: ComputeMaxDegree in dimension 0

| Input: A Gröbner basis \mathcal{G} of a 0-dimensional ideal $I \subseteq K[x]$, a polynomial $\varphi \in K[x]$ and a total degree monomial order \prec. |
| Output: A bound on the degree of the polynomials in the reduced Gröbner basis of $I : \langle \varphi \rangle^\infty$ for \prec. |
| 1 Build the staircase S associated to \mathcal{G} for \prec. |
| 2 Return $\max_{\sigma \in S} \deg \sigma$. |

Recall that testing if \mathcal{G} spans a 0-dimensional ideal is easy, it suffices to check that for each variable there is a polynomial whose leading monomial is a pure power thereof.

Definition 3.11. Let I be an ideal of $K[x]$ of dimension δ. I is in Noether position if $x_n-\delta+1, \ldots, x_n$ are free in $K[x]/I$.

Observe that this property can be easily tested: it suffices to compute a Gröbner basis of I for a monomial order \prec such that $x_n \prec \cdots \prec x_1$ and to check that no leading monomial is purely in $x_n-\delta+1, \ldots, x_n$.

Lemma 3.12. Let $I \subseteq K[x]$ be an ideal and φ be a polynomial of degree d. Assume that $I = I + \langle x_{n+1}^d - \varphi \rangle$ is Cohen-Macaulay or has dimension at most 1 and that it is in Noether position. Let \mathcal{G} be the reduced Gröbner basis of this ideal for \prec_{drl} and r be its index of regularity. Then, any polynomial in the reduced Gröbner basis of $I : \langle x_{n+1} \rangle^\infty$ for \prec_{drl} has degree at most r.

22
Proof. By Theorem 2.9, the index of regularity r of $I = I + \langle x_{n+1}^d - \varphi \rangle$ bounds the degree of the polynomials in \mathcal{G} for \prec_{DRL} and thus of its homogenization for \prec_{DRL} with variable x_0 as the smallest. By the Noether position assumption, r also bounds the degree of the Gröbner basis of the homogenization for \prec_{DRL} where x_0 is now the largest variable and x_{n+1} the smallest. Recall that the saturation process consists now in dividing the polynomials of this Gröbner basis by x_{n+1}^d as much as possible and then in dehomogenizing them. Therefore, the degrees of the polynomials can only decrease and thus remain bounded from above by r. \hfill \box

We are now in a position to design another variant of Algorithm 3.3, namely Algorithm 3.5, when the input Gröbner basis spans a 1-dimensional ideal in Noether position. Recall that testing if \mathcal{G} spans such a 1-dimensional ideal in Noether position is easy. It suffices to check that no polynomial in \mathcal{G} has for leading monomial a pure power of x_n and that no pair of variables is free, i.e. for each $1 \leq i < j \leq n$, there exist k, ℓ such that $x_i^k x_j^\ell$ is divisible by a leading monomial of \mathcal{G}.

Algorithm 3.5: ComputeMaxDegree in dimension 1 in Noether position

Input: A Gröbner basis \mathcal{G} of a 1-dimensional ideal $I \subseteq \mathbb{K}[x]$ in Noether position, a polynomial $\varphi \in \mathbb{K}[x]$ and a total degree monomial order \prec.

Output: A bound on the degree of the polynomials in the reduced Gröbner basis of $I : \langle \varphi \rangle^\infty$ for \prec.

1. $\psi := \text{NF}(\varphi, \mathcal{G}, \prec)$.
2. $d := \deg \psi$.
3. $I' := \langle \text{LM}_{\prec}(\mathcal{G}) \rangle + \langle x_{n+1}^d \rangle \subseteq \mathbb{K}[x, x_{n+1}]$.
4. Compute S and P, the Hilbert series and polynomial of I'.
5. Compute r, the index of regularity using S and P. \hfill // see Proposition 2.6
6. Return r.

Theorem 3.13. Let \mathcal{G} be the Gröbner basis for \prec_{DRL} in line 17 of Algorithm 3.1 and let φ be a polynomial of degree d. Assume that the ideal $J = \langle \mathcal{G} \rangle + \langle x_{n+1}^d - \varphi \rangle$ is in Noether position and furthermore either that it is Cohen-Macaulay or that it has dimension 1. Then, on line 17 of Algorithm 3.1, one can call the variant Algorithm 3.5 of ComputeMaxDegree.

Proof. By Lemma 3.12, r bounds the degree of any polynomial in the reduced Gröbner basis of $J : \langle x_{n+1} \rangle^\infty$ for \prec_{DRL}. Now, mimicking the proof of Theorem 3.7 with $B = r$ as the degree bound on the polynomials in the reduced Gröbner basis of $J : \langle x_{n+1} \rangle^\infty = J : \langle \varphi \rangle^\infty$ for \prec_{DRL}, we have that any polynomial in the reduced Gröbner basis of $J : \langle \varphi \rangle^\infty = I : \langle \varphi \rangle^\infty$ for \prec_{DRL} has degree at most r. \hfill \box

Remark 3.14. Empirically, in the experiments of Section 5, the first time Algorithm 3.1 computes a Gröbner basis \mathcal{G} of an ideal J for \prec_{DRL}, with $I \subseteq J \subseteq I : \langle \varphi \rangle^\infty$, J is actually $I : \langle \varphi \rangle^\infty$. Therefore, the saturation step using LinearizeColonIdeal is useless.
3.4 Practical optimization

Early termination. As we shall see in Section 5, the most expensive step of F_4SAT is the last saturation step, that is checking on line 4 that no new polynomial in the saturated ideal can be formed thanks to the monomials in the discovered staircase of the computed Gröbner basis \mathcal{G}. To bypass this, whenever we detect that $I : \langle \varphi \rangle^\infty$ is zero-dimensional, we rely on the following trick to determine if we have computed a Gröbner basis of $I : \langle \varphi \rangle^\infty$: From the geometric point of view, the variety defined by $I : \langle \varphi \rangle^\infty$ is the Zariski closure of the variety defined by I to which the variety defined by φ is removed. If this resulting variety is a finite set of points, then none of them can lie on the hypersurface defined by φ. Thus the intersection of this set of points and this hypersurface is empty. Algebraically, this means that $(I : \langle \varphi \rangle^\infty) + \langle \varphi \rangle = (1)$. Hence, we add φ to \mathcal{G} and run the F_4 algorithm. If the output is indeed 1, then the saturation has already been computed.

However, if the current computed Gröbner basis spans a positive-dimensional ideal, this trick does not work. By Theorems 2.7 and 3.7 we may derive a bound on the degree of the sought polynomials in the reduced Gröbner basis of $I : \langle \varphi \rangle^\infty$ which ensures the termination of F_4SAT. Yet, as this bound might be highly pessimistic, for efficiency issues, it is crucial to provide an early termination criterion. To do so, we rely on Rabinowitsch trick [34] and [11, Chap. 4, Sec. 4, Th. 14, (ii)]. Whenever Buchberger’s criterion ensures us that \mathcal{G} is a Gröbner basis, we check that it spans $I : \langle \varphi \rangle^\infty$ by computing a Gröbner basis of $\langle \mathcal{G} \rangle + (1 - t\varphi)$ for a monomial order eliminating t.

Delayed kernel computation. Furthermore, the search of new polynomials in the saturated ideal need not be performed as soon as possible. As an optimization, we can decide to perform it after a given number of steps of the F_4 algorithm, so that the new information on the staircase increases the probability to find new polynomials in the saturated ideal. For instance, in Section 5 we search for new elements in the saturation only if F_4 has added new elements to the basis in three distinct linear algebra steps.

Furthermore, if we target specifically small degree polynomials, we can require to only compute the q_σ for small degree σ’s compared to the degrees of the polynomials in \mathcal{G} on line 2. Then, when no new polynomials are found and the set of critical pairs is empty, we can compute all the q_σ to ensure the correctness of the algorithm and the output. As such, in Section 5 q_σ is computed if $\deg \sigma$ is at most $2/3$ of the maximal degree in the current basis \mathcal{G}, in order to speed intermediate steps of the algorithm up. Moreover, when the set of critical pairs is empty, all q_σ up to the maximal degree of the basis are taken into account.

Tracer over \mathbb{Q}. When the base field is the field of rational numbers, a practical efficient implementation of the F_4SAT algorithm requires a multi-modular approach. Like for the F_4 algorithm, we can use a tracing algorithm [3] where we learn from the first modular steps and apply optimal computations in the following modular steps.

In contrast to F_4 we cannot learn all information needed for optimal runs of F_4SAT in the first modular run: Observe that on line 2 the normal form q_σ can be computed iteratively to increase the usage of already pre-reduced data from lower degrees: If q_σ
was computed in a previous turn, we reduce it w.r.t. to the new G and \prec. Though, modulo the first prime p_1, we cannot learn how these iterative reductions are performed, since there might be useless saturation steps. Since these are skipped in the following modular steps, we cannot predict, during the computation modulo p_1, the normal form computations modulo other primes. However, these reductions can be learned from the computations modulo p_2, the second modular step. Here we know exactly when we apply useful saturation steps, thus the normal form computations and its information stabilizes. This might also have an impact on the overall F_4 computation, thus we can only learn when to apply useful saturation steps modulo p_1. Only in the second modular step can we learn all the information for the complete computation.

The tracing of F_4SAT can now be described by three main steps:

1. In the first modular computation learn
 (a) when to apply a useful saturation step and
 (b) which F_4 matrices give new information for the basis.

Since we cannot learn anything further for the F_4 computation we can apply probabilistic linear algebra to accelerate this step.

2. In the second modular computation learn
 (a) all polynomial data that is needed in the F_4 matrices to generate the non-zero information w.r.t. each corresponding matrix and
 (b) all polynomial data needed to apply the normal form computations in the useful saturation steps.

In order to learn this data we have to apply exact linear algebra.

3. For all successive modular computations we can just apply the learned data, no need of handling critical pairs or symbolic preprocessing. There will be no reductions to zero, all computational steps will be useful from now on.

Note that the last saturation step, which just ensures us that the ideal is saturated and so does not provide any new polynomial, should only be run in the first modular computation.

In Section 5 the first learning phase, modulo p_1, is denoted by learn 1, the second one, modulo p_2, is denoted by learn 2. The apply phase, modulo p_3,\ldots, is denoted by apply.

4 Change of order algorithm for colon ideals

In this section, let I be an ideal of $\mathbb{K}[x]$, let G_{drl} be its reduced Gröbner basis for \prec_{drl} and S_{drl} be its associated staircase and let φ be a polynomial. We assume that the colon ideal $I : \langle \varphi \rangle$ is zero-dimensional, thus $\varphi \notin I$, and that its lexicographic reduced Gröbner basis H_{LEX} is in shape position: There exist $h_1,\ldots,h_n \in \mathbb{K}[x_n]$, with $\deg h_k < \deg h_n$ for $1 \leq k \leq n - 1$, such that

$$H_{\text{LEX}} = \{h_n(x_n), x_{n-1} - h_{n-1}(x_n),\ldots,x_1 - h_1(x_n)\}.$$
We design a new algorithm to compute \(\mathcal{H}_{\text{LEX}} \) from \(\mathcal{G}_{\text{DRL}} \), even when \(I \) is positive-dimensional. Our approach is to build a matrix \(M_{x_n} \) so that applying Wiedemann’s algorithm allows us to recover \(\mathcal{H}_{\text{LEX}} \), similarly to the Sparse-FGLM algorithm [20] [21].

Firstly, we discuss the situation if \(I \) is zero-dimensional (Subsection 4.1). Next, we handle the case when \(I \) is positive-dimensional (Subsection 4.2). Subsection 4.3 focuses on the construction of the matrix \(M_{x_n} \), followed by possible optimizations in Subsection 4.4. Finally, in Subsection 4.5 we discuss how to handle the situation if the assumption that \(\mathcal{H}_{\text{LEX}} \) is in shape position is dropped.

4.1 The case where \(I \) is zero-dimensional ideal

Let \(I \) be zero-dimensional of degree \(D \). Thus, \(I : \langle \varphi \rangle \) is also zero-dimensional, of degree \(D' \leq D \). Let \(S_{\text{DRL}} \) be the staircase of \(I \) associated to \(\mathcal{G}_{\text{DRL}} \) and let \(\varphi \) be the vector of coefficients of \(\text{NF}(\varphi, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) \) in the basis given by \(S_{\text{DRL}} \). Further, let \(M_{x_n} \) be the matrix of the map \(f \in \mathbb{K}[x]/I \to \text{NF}(x_nf, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) \in \mathbb{K}[x]/I \) in the basis \(S_{\text{DRL}} \).

Lemma 4.1. Let \(I \) be a zero-dimensional ideal of \(\mathbb{K}[x] \) of degree \(D \), \(\mathcal{G}_{\text{DRL}} \) be its reduced Gröbner basis for \(\prec_{\text{DRL}} \) and \(S_{\text{DRL}} \) be the associated staircase. Let \(\varphi \in \mathbb{K}[x] \setminus I \) be such that \(I : \langle \varphi \rangle \) is in shape position and let \(\mathcal{H}_{\text{LEX}} = \{ h_n(x_n), x_{n-1} - h_{n-1}(x_n), \ldots, x_1 - h_1(x_n) \} \) be the reduced Gröbner basis of \(I : \langle \varphi \rangle \), with \(\text{deg} h_n = D' \).

Let \(M_{x_n} \) be the matrix of the map \(f \in \mathbb{K}[x]/I \to \text{NF}(x_nf, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) \in \mathbb{K}[x]/I \) in the basis \(S_{\text{DRL}} \), and \(\varphi \) be the vector of coefficients of \(\varphi \) in the basis \(S_{\text{DRL}} \).

Then, for all \(i \in \mathbb{N} \), \(M_{x_n}^i \varphi \) is the vector of coefficients of \(\text{NF}(x_n^i \varphi, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) \).

Furthermore, let \(r \in \mathbb{K}^D \) be a row-vector and \(w = (w_i)_{i \in \mathbb{N}} = (rM_{x_n}^i \varphi)_{i \in \mathbb{N}} \). Let \(d \in \mathbb{N} \) be minimal such that there exist \(c_0, \ldots, c_{d-1} \in \mathbb{K} \) such that

\[
\forall i \in \mathbb{N}, \quad w_{i+d} + c_{d-1}w_{i+d-1} + \cdots + c_0w_i = 0.
\]

Then, the polynomial \(x_n^d + c_{d-1}x_n^{d-1} + \cdots + c_0 \) divides \(h_n \). Furthermore, if \(r \) is generic in \(\mathbb{K}^D \), then \(d = D' \) and \(h_n = x_n^d + c_{d-1}x_n^{d-1} + \cdots + c_0 \).

Proof. Since \(\varphi \) is the vector of coefficients of \(\varphi \) in \(\mathbb{K}[x_n]/I \), then by construction of \(M_{x_n} \), \(M_{x_n} \varphi \) is the vector of coefficients of \(\text{NF}(x_n \varphi, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) \) in \(\mathbb{K}[x_n]/I \). By recurrence, we obtain the first statement.

Now, since \(\mathbb{K}[x]/I \) is finite-dimensional, there exists a smallest integer \(b \) such that \(\varphi, M_{x_n} \varphi, \ldots, M_{x_n}^{b-1} \varphi \) are not linearly independent. We let \(a_0, \ldots, a_{b-1} \in \mathbb{K} \) such that

\[
M_{x_n}^b \varphi + a_{b-1}M_{x_n}^{b-1} \varphi + \cdots + a_0 \varphi = 0.
\]

Thus, \(\text{NF}(x_n^b + a_{b-1}x_n^{b-1} + \cdots + a_0) \varphi, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}} \) = 0 and the polynomial \(x_n^b + a_{b-1}x_n^{b-1} + \cdots + a_0 \varphi \) is in \(I \). Hence, \((x_n^b + a_{b-1}x_n^{b-1} + \cdots + a_0) \in I : \langle \varphi \rangle \).

By the minimality of \(b \), this ensures that \(h_n = x_n^b + a_{b-1}x_n^{b-1} + \cdots + a_0 \).

Now, multiplying the vector equality above by \(rM_{x_n}^i \) on the left yields

\[
\forall i \in \mathbb{N}, \quad w_{i+b} + a_{b-1}w_{i+b-1} + \cdots + a_0w_i = 0.
\]

Thus, \(w \) is linearly recurrent of order at most \(b \) and \(d \leq b \). Since linear recurrences are in one-to-one correspondence with polynomials, these polynomials define an ideal of
\(\mathbb{K}[x_n]\) spanned by \(x_n^d + c_{d-1}x_n^{d-1} + \cdots + c_0\) that contains \(h_n\). Hence the former divides the latter.

Following the proof of Wiedemann’s algorithm \[37\], it suffices to take \(r\) outside finitely many vector subspaces of \(\mathbb{K}^D\) to recover the minimal polynomial of \(M_{x_n}\) instead of a proper factor thereof. Thus, for \(r\) generic, we actually compute \(h_n\).

\[\Box\]

Lemma 4.2. Let \(I\) be a zero-dimensional ideal of \(\mathbb{K}[x]\) of degree \(D\), \(\mathcal{G}_{\text{drl}}\) its reduced Gröbner basis for \(\prec_{\text{drl}}\) and \(S_{\text{drl}}\) be the associated staircase. Let \(\varphi \in \mathbb{K}[x]/I\) be such that \(I : \langle \varphi \rangle\) is in shape position and let \(\mathcal{H}_{\text{lex}} = \{h_n(x_n), x_{n-1} - h_n(x_n), \ldots, x_1 - h_1(x_n)\}\) be the reduced Gröbner basis of \(I : \langle \varphi \rangle\) for \(\prec_{\text{lex}}\).

Let \(M_{x_n}\) be the matrix of the map \(f \in \mathbb{K}[x]/I \mapsto \text{NF} (x_nf, \mathcal{G}_{\text{drl}}, \prec_{\text{drl}}) \in \mathbb{K}[x]/I\) in the basis \(S_{\text{drl}}\) and \(\varphi\) be the vector of coefficients of \(\varphi\) in the basis \(S_{\text{drl}}\).

Let \(r \in \mathbb{K}^D\) be a generic row-vector and \(w = (w_i)_{i \in \mathbb{N}} = (rM_{x_n}^i \varphi)_{i \in \mathbb{N}}\). Let \(d \in \mathbb{N}\) be minimal such that there exist \(c_0, \ldots, c_{d-1} \in \mathbb{K}\) such that

\[
\forall i \in \mathbb{N}, \quad w_{i+d} = c_{d-1}w_{i+d-1} + \cdots + c_0w_i = 0,
\]

then \(d = D'\) and \(h_n = x_n^d + c_{d-1}x_n^{d-1} + \cdots + c_0\).

For all \(1 \leq k \leq n - 1\), let \(\psi_k\) be the vector of coefficients of \(\text{NF} (x_k\varphi, \mathcal{G}_{\text{drl}}, \prec_{\text{drl}})\), then \(M_{x_n}^k \psi_k\) is the vector of coefficients of \(\text{NF} (x_n^k x_k \varphi, \mathcal{G}_{\text{drl}}, \prec_{\text{drl}})\) and there exist unique \(\gamma_{0,k}, \ldots, \gamma_{D'-1,k} \in \mathbb{K}\) such that

\[
\begin{pmatrix}
 w_0 & w_1 & \cdots & w_{D'-1} \\
 w_1 & w_2 & \cdots & w_{D'} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{D'-1} & w_{D'} & \cdots & w_{2D'-2}
\end{pmatrix}
\begin{pmatrix}
 \gamma_{0,k} \\
 \gamma_{1,k} \\
 \vdots \\
 \gamma_{D'-1,k}
\end{pmatrix}
= \begin{pmatrix}
 rM_{x_n}^0 \psi_k \\
 rM_{x_n}^1 \psi_k \\
 \vdots \\
 rM_{x_n}^{D'-1} \psi_k
\end{pmatrix},
\]

and \(h_k = \gamma_{D'-1,k}x_n^{D'-1} + \cdots + \gamma_{0,k}\).

Proof. The proof of the first statement is a direct consequence of the definition of \(M_{x_n}\).

Now, since \(r\) is generic, then by Lemma 4.2 \(d = D'\) and \(w\) does not satisfy any linear recurrence relation of order less than \(D'\). Thus, there is no vector in the kernel of the above Hankel matrix, see \[8\].

Let \(1 \leq k \leq n - 1 \) and \(h_k(x_n) = \alpha_{D'-1,k}x_n^{D'-1} + \cdots + \alpha_{0,k}\), then \((x_k - h_k(x_n))\varphi\) is in \(I\) and \(\text{NF} ((x_k - h_k(x_n))\varphi, \mathcal{G}_{\text{drl}}, \prec_{\text{drl}}) = 0\), hence

\[
\psi_k = \alpha_{D'-1,k}M_{x_n}^{D'-1}\varphi + \cdots + \alpha_{0,k}\varphi.
\]

Now, multiplying this equality by \(rM_{x_n}^i\) for \(0 \leq i \leq D' - 1\) shows that \((\alpha_0, \ldots, \alpha_{D'-1})^T\) is a solution of the above linear system. Since the matrix has full rank, the solution is unique and this ends the proof.

\[\Box\]

From this, we deduce the following algorithm.

Remark 4.3. Observe that line \[6\] of Algorithm \[4.4\] can lead to a large computational overhead whenever \(D\) is much larger than \(D'\). This is the bottleneck of the algorithm.

Mixing lines \[5\] and \[7\] so that the minimal linear recurrence relation is computed online during the computation of the terms \(w_i^{(0)}\) ensures that only \(O(D')\) of them are computed. Then, we can also compute only \(O(D')\) terms \(w_i^{(k)}\) for each \(1 \leq k \leq n - 1\).
Input: The reduced Gröbner basis \(G_{\text{drl}} \) of a zero-dimensional ideal \(I \) for \(\prec_{\text{drl}} \), its associated staircase \(S_{\text{drl}} \) of size \(D \) and a polynomial \(\varphi \in \mathbb{K}[x] \).

Output: The reduced Gröbner basis of \(I : \langle \varphi \rangle \) for \(\prec_{\text{lex}} \), if it is in shape position.

1. Build the matrix \(M \) as in Lemma 2.15.
2. Pick \(r \in \mathbb{K}^D \) a row-vector at random.
3. Build \(\varphi \) the column-vector of coefficients of \(\text{NF}(\varphi, G_{\text{drl}}, \prec_{\text{drl}}) \).
4. For \(k \) from 1 to \(n-1 \) do
 5. Build \(\psi_k \) the column-vector of coefficients of \(\text{NF}(x_k \varphi, G_{\text{drl}}, \prec_{\text{drl}}) \).
 6. Compute \((w_i^{(0)})_{0 \leq i < 2D}, (w_i^{(1)})_{0 \leq i < D}, \ldots, (w_i^{(n-1)})_{0 \leq i < D} \) with Algorithm 2.2 called on \(M, r, \varphi, \psi_1, \ldots, \psi_{n-1} \).
 7. \(h_n \leftarrow \text{Berlekamp–Massey}(w_0^{(0)}, \ldots, w_{2D-1}^{(0)}), D' := \deg h_n \).
 8. If \(\text{NF}(h_n\varphi, G_{\text{drl}}, \prec_{\text{drl}}) \neq 0 \) then Return “Bad vector”.
 9. Compute \(h_1 := \gamma_{D' - 1, 1} x_n^{N-1} + \cdots + \gamma_{0, 1}, \ldots, h_{n-1} := \gamma_{D' - 1, n-1} x_n^{N-1} + \cdots + \gamma_{0, n-1} \) with Algorithm 2.3 called on \((w_i^{(0)})_{0 \leq i < 2D'}, (w_i^{(1)})_{0 \leq i < D'}, \ldots, (w_i^{(n-1)})_{0 \leq i < D'} \).
 10. For \(k \) from 1 to \(n-1 \) do
 11. If \(\text{NF}((x_k - h_k(x_n))\varphi, G_{\text{drl}}, \prec_{\text{drl}}) \neq 0 \) then Return “Not in shape position”.
12. Return \(\{h_n(x_n), x_n - h_{n-1}(x_n), \ldots, x_1 - h_1(x_n)\} \).

Algorithm 4.1: SPARSE-FGLM for colon ideals

Theorem 4.4. Let \(I \) be a zero-dimensional ideal of \(\mathbb{K}[x] \) of degree \(D \), \(G_{\text{drl}} \) be its reduced Gröbner basis for \(\prec_{\text{drl}} \) and \(S_{\text{drl}} \) be its associated staircase. Let \(M_{x_n} \) be the matrix of the map \(f \in \mathbb{K}[x] / I \mapsto \text{NF}(x_n f, G_{\text{drl}}, \prec_{\text{drl}}) \in \mathbb{K}[x] / I \) in the monomial basis \(S_{\text{drl}} \). Let \(\varphi \) be a polynomial not in \(I \), so that \(I : \langle \varphi \rangle \) is zero-dimensional of degree \(D' \).

Let us assume that there are \(t \) monomials \(\sigma \) in \(S_{\text{drl}} \) such that \(x_n \sigma \in \text{LT}_{\prec_{\text{drl}}}(I) \), that \(M_{x_n} \) is known and that the reduced Gröbner basis \(H_{\text{lex}} \) of \(I \) for \(\prec_{\text{lex}} \) is in shape position. Then, one can compute \(H_{\text{lex}} \) by computing \(n \) normal forms w.r.t. \(G_{\text{drl}} \) and \(\prec_{\text{drl}} \) and \(O((t + n)DD') \) operations in \(\mathbb{K} \).

Proof. The proof follows the proof of Theorem 2.19.

Taking the column-vector \(\varphi \) so that for all \(i \in \mathbb{N} \), \(M_{x_n}^i \varphi \) is the vector of coefficients in \(S_{\text{drl}} \) of \(\text{NF}(x_n^i \varphi, G_{\text{drl}}, \prec_{\text{drl}}) \), we can pick at random a row-vector \(r \) to compute the sequence \(w = (w_i^{(0)})_{0 \leq i < 2D} = (r M_{x_n}^i 1)_{0 \leq i < 2D} \). Generically, the linear recurrence relation of minimal order satisfied by this sequence

\[
\forall i \in \mathbb{N}, \ w_i^{(0)} + c_{d-1} w_{i+d-1}^{(0)} + \cdots + c_0 w_i^{(0)} = 0,
\]

is such that \(h_n = x_n^d + c_{d-1} x_n^{d-1} + \cdots + c_0 \) is the minimal polynomial of \(x_n \) in the quotient algebra \(\mathbb{K}[x] / (I : \langle \varphi \rangle) \), hence \(d = D' \).

Let us assume that \(H_{\text{lex}} \) is in shape position, then there exist \(\gamma_{0,k}, \ldots, \gamma_{D'-1,k} \) in \(\mathbb{K} \) such that \(x_k - \gamma_{D'-1,k} x_n^{D'-1} - \cdots - \gamma_{0,k} = 0 \) in \(\mathbb{K}[x] / (I : \langle \varphi \rangle) \). Since \(M_{x_n}^i c_k \) is the vector of coefficients of \(\text{NF}(x_n^i x_k, G_{\text{drl}}, \prec_{\text{drl}}) \), by multiplying on the left \(M_{x_n}^i c_k \) by \(r M_{x_n}^i \) for all \(0 \leq j \leq D' - 1 \), we obtain

\[
\forall 0 \leq i < D, \ w_i^{(k)} = \gamma_{D'-1,k} w_{i+D' - 1}^{(0)} + \cdots + \gamma_{0,k} w_i^{(0)}.
\]
Hence the algorithm is correct and terminates. Observe that if \(h_n \varphi \) is not in \(I \), then \(h_n \) is not correctly computed and the algorithm correctly returns an error message. Likewise, if \(H_{\mathrm{LEX}} \) is not in shape position, one of the computed polynomial \(x_k - h_k(x_n) \) is not in \(I : \langle \varphi \rangle \), hence multiplied by \(\varphi \), it is not in \(I \) and the algorithm correctly returns an error message.

By assumption, there are \(t \) monomials \(\sigma \) in \(S_{\mathrm{DRL}} \) such that \(x_n \sigma \in \lt_{\mathrm{DRL}}(I) \), hence \(M_{x_n} \) has at most \(tD + (D - t) = O(tD) \) nonzero coefficients. Therefore, by Proposition \ref{prop:polynomial-size} the call to Algorithm \ref{alg:polynomial-size} requires \(O((t + n)D^2) \) operations.

Now, using fast variants \cite{8} of the Berlekamp–Massey algorithm \cite{2, 30}, one recover the minimal linear recurrence relation in \(O(M(D) \log D) \) operations. Finally, by Proposition \ref{prop:linear-recurrence} we can compute \(h_1, \ldots, h_n \) in \(O(M(D)(n + \log D)) \) operations.

All in all, we have a complexity in \(O((t + n)D^2) \) operations in \(K \).

Using the modification of Remark \ref{rem:linear-recurrence} we can only compute \(O(D') \) sequence terms \(w_i^{(k)} \) for \(0 \leq k \leq n - 1 \) in \(O((t + n)D'D') \) operations. As a trade-off, the minimal recurrence relation is computed in \(O(D^2) \) operations but this is not the bottleneck. \(\square \)

4.2 The case where \(I \) is positive-dimensional ideal

Now, let \(I \) be positive-dimensional, i.e. \(\mathbb{K}[x]/I \) is an infinite-dimensional vector space. Still, we assume that \(I : \langle \varphi \rangle \) is zero-dimensional and in shape position with \(H_{\mathrm{LEX}} = \{ h_n(x_n), x_{n-1} - h_{n-1}(x_n), \ldots, x_1 - h_1(x_n) \} \) such that \(\deg h_n = D' \).

To compute the polynomials \(h_n, h_{n-1}, \ldots, h_1 \in \mathbb{K}[x_n] \), we shall show that we can rely on linear algebra routines in a finite-dimensional vector subspace of \(\mathbb{K}[x]/I \). We start by defining such a vector subspace by giving a monomial basis thereof.

Lemma 4.5. Let \(\prec \) be a monomial order and \(I \) be an ideal of \(\mathbb{K}[x] \). Let \(\mathcal{G} \) be the reduced Gröbner basis of \(I \) for \(\prec \) and \(S \) be its associated staircase. Let \(\varphi \in \mathbb{K}[x] \setminus I \) be a polynomial and \(1 \leq k \leq n \) such that \(J = (I : \langle \varphi \rangle) \cap [x_k] \) is zero-dimensional with staircase \(T \) for another monomial order \(\prec_2 \).

Then, the set

\[
\Sigma = \left\{ \sigma \in S \left| \exists s \in \bigcup_{\tau \in T} \text{supp} \text{NF} (\tau \varphi, \mathcal{G}, \prec), \sigma \mid s \right\} \right.,
\]

is a finite subset of \(S \), which is a staircase as well, and is such that for all \((i_k, \ldots, i_n) \in \mathbb{N}^{n-k+1} \), \(\text{supp} \text{NF} \left(x_k^{i_k} \cdots x_n^{i_n} \varphi, \mathcal{G}, \prec \right) \subseteq \Sigma \).

Proof. Since \(T \) is finite, then \(\bigcup_{\tau \in T} \text{supp} \text{NF} (\tau \varphi, \mathcal{G}, \prec) \) is a finite set of monomials. Since a monomial admits finitely many divisors, then \(\Sigma \) is finite.

Let \(t \) be a monomial not in \(T \), then for each \(\tau \in T \) such that \(\tau \prec_2 t \), there exists \(c_\tau \in \mathbb{K} \) such that \(h = t - \sum_{\tau \prec_2 t} c_\tau \tau \in J \), that is \(\text{NF} (h \varphi, \mathcal{G}, \prec) = 0 \). Then, by linearity

\[
\text{NF} (t \varphi, \mathcal{G}, \prec) = \sum_{\tau \in T} c_\tau \text{NF} (\tau \varphi, \mathcal{G}, \prec),
\]

and \(\text{supp} \text{NF} (t \varphi, \mathcal{G}, \prec) \subseteq \Sigma. \) \(\square \)
Remark 4.6. By our assumptions, we can take $T = \{1, x_n, \ldots, x_n^{D-1}\}$ for \prec_{LEX} so that
\[
\Sigma = \left\{ \sigma \in S \mid \exists s \in \bigcup_{i=0}^{D'-1} \supp \text{NF} \left(x_n^i \varphi, G_{\text{drl}}, \prec_{\text{drl}} \right), \sigma \mid s \right\}.
\]

Proposition 4.7. Let I be a positive-dimensional ideal of $\mathbb{K}[x]$, G_{drl} be its reduced Gröbner basis for \prec_{drl} and S_{drl} be its associated staircase. Let $\varphi \in \mathbb{K}[x] \setminus I$ such that $I : \langle \varphi \rangle$ is zero-dimensional and in shape position. Let $\mathcal{H}_{\text{LEX}} = \{h_n(x_n), x_n - h_n(x_n), \ldots, x_1 - h_1(x_n)\}$ be the reduced Gröbner basis of $I : \langle \varphi \rangle$ for \prec_{LEX}, with $\deg h_n = D'$.

Let $\Sigma = \{ \sigma \in S_{\text{drl}} | \exists s \in \bigcup_{i=0}^{D'-1} \supp \text{NF} \left(x_n^i \varphi, G_{\text{drl}}, \prec_{\text{drl}} \right), \sigma \mid s \}$.

Then, there exist unique $c_0, \ldots, c_{D'-1} \in \mathbb{K}$ and, for all $1 \leq k \leq n - 1$, unique $\gamma_{0,k}, \ldots, \gamma_{D'-1,k} \in \mathbb{K}$ such that
\[
\text{NF} \left(x_n^{D'} \varphi, G_{\text{drl}}, \prec_{\text{drl}} \right) = -c_{D'-1} \text{NF} \left(x_n^{D'-1} \varphi, G_{\text{drl}}, \prec_{\text{drl}} \right) - \cdots - c_0 \text{NF} \left(\varphi, G_{\text{drl}}, \prec_{\text{drl}} \right),
\]
\[
\text{NF} \left(x_k \varphi, G_{\text{drl}}, \prec_{\text{drl}} \right) = \gamma_{D'-1,k} \text{NF} \left(x_n^{D'-1} \varphi, G_{\text{drl}}, \prec_{\text{drl}} \right) + \cdots + \gamma_{0,k} \text{NF} \left(\varphi, G_{\text{drl}}, \prec_{\text{drl}} \right),
\]
and all these vectors lie in the vector space spanned by Σ.

Furthermore, $h_n = x_n^{D'} + c_{D'-1} x_n^{D'-1} + \cdots + c_0$ and for all $1 \leq k \leq n - 1$, we have $h_k = \gamma_{D'-1,k} x_n^{D'-1} + \cdots + \gamma_{0,k}$.

Proof. By assumption, \mathcal{H}_{LEX} is in shape position, hence $T_{\text{LEX}} = \{1, x_n, \ldots, x_n^{D'-1}\}$ is a monomial basis of $\mathbb{K}[x]/(I : \langle \varphi \rangle)$. Thus, there exist unique $c_0, \ldots, c_{D'-1} \in \mathbb{K}$ and for all $1 \leq k \leq D' - 1$, unique $\gamma_{0,k}, \ldots, \gamma_{D'-1,k}$ such that $h_n = x_n^{D'} + c_{D'-1} x_n^{D'-1} + \cdots + c_0$ and for all $1 \leq k \leq n - 1$, $h_k = \gamma_{D'-1,k} x_n^{D'-1} + \cdots + \gamma_{0,k}$.

Now, multiplying h_n and $x_k - h_k$ by φ makes these polynomials lie in I. Hence the equality on the normal forms. Now, they all have their support in Σ, hence they lie in the vector space spanned by Σ.

As a consequence, we can compute $h_n, h_{n-1}, \ldots, h_1$ by means of Gaussian elimination in the vector space spanned by Σ.

Remark 4.8. Observe that whenever $\supp \varphi$ is much larger than $\bigcup_{g \in G_{\text{drl}}} \supp g$, its support might already be large enough to define Σ, or a subset Σ' thereof, such that the vector space it spans allows us to recover $h_n, h_{n-1}, \ldots, h_1$ by Gaussian elimination. Furthermore, testing effectively the correctness of the computed polynomials can be done via multiplying $h_n(x_n)$ (resp. $x_k - h_k(x_n)$ for $1 \leq k \leq n - 1$) by φ and checking if its normal form w.r.t. G_{drl} and \prec_{drl} is 0.

Otherwise, Σ' was too small. We can enlarge it by adding the missing monomials of $\supp \text{NF} (x_n \varphi, G_{\text{drl}}, \prec_{\text{drl}})$ and their divisors, iterating this process further.
4.3 Building the multiplication matrix

Let \(W \) be the vector subspace of \(\mathbb{K}[x]/I \) whose monomial basis is \(\Sigma \). The goal is to build a matrix \(\tilde{M}_{x_n} \) of a linear map from \(W \) to itself allowing us to compute \(h_n, h_{n-1}, \ldots, h_1 \). The image of the map \(f \in W \mapsto \text{NF}(x_n f, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) \in \mathbb{K}[x]/I \) need not be in \(W \). Thus we compose it with the projection \(\pi_W \) onto \(W \), which discards any monomial of \(\text{supp} \, \text{NF}(x_n f, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) \subseteq S_{\text{DRL}} \) not in \(\Sigma \).

Lemma 4.9. Let \(I \) be a positive-dimensional ideal of \(\mathbb{K}[x], \mathcal{G}_{\text{DRL}} \) be its reduced Gröbner basis for \(\prec_{\text{DRL}} \) and \(S_{\text{DRL}} \) be its associated staircase. Let \(\varphi \in \mathbb{K}[x] \setminus I \) such that \(I : \langle \varphi \rangle \) is zero-dimensional and in shape position. Let \(\mathcal{H}_{\text{LEX}} = \{ h_n(x_n), x_{n-1} - h_{n-1}(x_n), \ldots, x_1 - h_1(x_n) \} \) be the reduced Gröbner basis of \(I : \langle \varphi \rangle \) for \(\prec_{\text{LEX}} \), with \(\deg h_n = D' \).

Let \(\Sigma = \{ \sigma \in S_{\text{DRL}} \mid \exists s \in \bigcup_{i=0}^{D'-1} \text{supp} \, \text{NF}(x_n \varphi, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}), \sigma \sigma s \} \subseteq S_{\text{DRL}} \) be a finite staircase and \(W \) be the vector subspace of \(\mathbb{K}[x]/I \) it spans.

Let \(M_{x_n} \) be the matrix of the linear map \(f \in W \mapsto \pi_W(\text{NF}(x_n f, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}})) \in W \).

Assuming \(\Sigma = \{ \sigma_0, \ldots, \sigma_{N-1} \} \) with for all \(0 \leq i < N-1, \sigma_i \prec_{\text{DRL}} \sigma_{i+1} \), one can build the matrix \(\tilde{M}_{x_n} = (\tilde{m}_{i,j})_{0 \leq i,j < N} \) with the following procedure:

- if \(x_n \sigma_j = \sigma_k \), then \(\tilde{m}_{k,j} = 1 \) and for all \(0 \leq i < N, i \neq k \), \(\tilde{m}_{i,j} = 0 \);
- if \(x_n \sigma_j \in S_{\text{DRL}} \setminus \Sigma \), then for all \(0 \leq i < N \), \(\tilde{m}_{i,j} = 0 \);
- otherwise for all \(0 \leq i < N \), \(\tilde{m}_{i,j} \) is the coefficient of \(\sigma_i \) in \(\text{NF}(x_n \sigma_j, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) \).

Proof. By construction, the matrix \(\tilde{M}_{x_n} \) has its \(j \)th column which is the vector of coefficients of the projection of \(\text{NF}(x_n \sigma_j, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) \) onto \(W \) in the basis \(\Sigma \).

The first case is immediate.

Observe that in the second case, \(x_n \sigma_j \in S_{\text{DRL}} \), hence it is its own normal form w.r.t. \(\mathcal{G}_{\text{DRL}} \) and \(\prec_{\text{DRL}} \). Yet, since it is not in \(\Sigma \), its projection is 0.

The last case is obtained by linear combination of the first two. \(\square \)

Remark 4.10. While the first two cases of Lemma 4.9 require no computation whatsoever, a priori, the last one needs a normal form computation.

Since \(\mathcal{G}_{\text{DRL}} \) is a reduced Gröbner basis, if \(x_n \sigma_j = \text{LT}_{\prec_{\text{DRL}}}(g) \) for some \(g \in \mathcal{G}_{\text{DRL}} \), then \(\text{NF}(x_n \sigma_j, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) = x_n \sigma_j - g \). Therefore, only the case \(x_n \sigma_j \in \text{LT}_{\prec_{\text{DRL}}}(I) \) \(\setminus \text{LT}_{\prec_{\text{DRL}}}(\mathcal{G}_{\text{DRL}}) \) requires a nontrivial normal form computation.

Proposition 4.11. Let \(I \) be a positive-dimensional ideal of \(\mathbb{K}[x], \mathcal{G}_{\text{DRL}} \) be its reduced Gröbner basis for \(\prec_{\text{DRL}} \) and \(S_{\text{DRL}} \) be the associated staircase. Let \(\varphi \in \mathbb{K}[x] \setminus I, \mathcal{H}_{\text{LEX}} = \{ h_n(x_n), x_{n-1} - h_{n-1}(x_n), \ldots, x_1 - h_1(x_n) \} \) be the reduced Gröbner basis of \(I : \langle \varphi \rangle \), with \(\deg h_n = D' \).

Let \(\Sigma = \{ \sigma \in S_{\text{DRL}} \mid \exists s \in \bigcup_{i=0}^{D'-1} \text{supp} \, \text{NF}(x_n \varphi, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}), \sigma \sigma s \} \) be of size \(D \) and \(W \) be the vector subspace of \(\mathbb{K}[x]/I \) spanned by \(\Sigma \).

Let \(M_{x_n} \) be the matrix of the map \(f \in W \mapsto \pi_W(\text{NF}(x_n f, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}})) \in W \) in the basis \(\Sigma \) and \(\varphi \) be the vector of coefficients of \(\varphi \) in the basis \(\Sigma \).

Let \(r \in \mathbb{K}^D \) be a row-vector and \(w = (w_i)_{i \in \mathbb{N}} = (r M_{x_n}^i \varphi)_{i \in \mathbb{N}} \). Let \(d \in \mathbb{N} \) be minimal such that there exist \(c_0, \ldots, c_{d-1} \in \mathbb{K} \) such that

\[
\forall i \in \mathbb{N}, \; w_{i+d} + c_{d-1} w_{i+d-1} + \cdots + c_0 w_i = 0.
\]
Then, the polynomial $x_n^d + c_{d-1}x_n^{d-1} + \cdots + c_0$ divides h_n. Furthermore, if r is generic in \mathbb{K}^D, then $d = D'$ and $h_n = x_n^d + c_{d-1}x_n^{d-1} + \cdots + c_0$.

In addition, for all $1 \leq k \leq n-1$, let ψ_k be the vector of coefficients of $\pi_{W}(\text{NF}(x_k\varphi, G_{\text{DRL}}, \prec_{\text{DRL}}))$. Then, for all $1 \leq k \leq n-1$, there exist unique $\gamma_{0,k}, \ldots, \gamma_{D'-1,k} \in \mathbb{K}$ such that

$$
\begin{pmatrix}
 w_0 & w_1 & \cdots & w_{D'-1} \\
 w_1 & w_2 & \cdots & w_{D'} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{D'-1} & w_{D'} & \cdots & w_{2D'-2}
\end{pmatrix}
\begin{pmatrix}
 \gamma_{0,k} \\
 \gamma_{1,k} \\
 \vdots \\
 \gamma_{D'-1,k}
\end{pmatrix}
=
\begin{pmatrix}
 r\tilde{M}_{x_n}^0 \psi_k \\
 r\tilde{M}_{x_n}^1 \psi_k \\
 \vdots \\
 r\tilde{M}_{x_n}^{D'-1} \psi_k
\end{pmatrix},
$$

and $h_k = \gamma_{D'-1,k}x_n^{D'-1} + \cdots + \gamma_{0,k}$.

Proof. The proof is similar to the proofs of Lemmas 4.1 and 4.2.

For the first statement, by Proposition 4.7 and the definition of \tilde{M}_{x_n}, there exists a smallest integer b such that $\varphi, \tilde{M}_{x_n}\varphi, \ldots, \tilde{M}_{x_n}^b\varphi$ are not linearly independent. We let $a_0, \ldots, a_{b-1} \in \mathbb{K}$ such that

$$
\tilde{M}_{x_n}^b\varphi + a_{b-1}\tilde{M}_{x_n}^{b-1} + \cdots + a_0\varphi = 0.
$$

Thus, $\pi_{W}(\text{NF}((x_n^b + a_{b-1}x_n^{b-1} + \cdots + a_0)\varphi, G_{\text{DRL}}, \prec_{\text{DRL}})) = 0$. Since the support of this normal form is included in Σ, the normal form actually lies in W. Hence, we conclude that the polynomial $(x_n^b + a_{b-1}x_n^{b-1} + \cdots + a_0)\varphi$ is in I and thus that $x_n^b + a_{b-1}x_n^{b-1} + \cdots + a_0$ is in $I : \langle \varphi \rangle$.

By minimality of b, this ensures that $h_n = x_n^b + a_{b-1}x_n^{b-1} + \cdots + a_0$.

Now, multiplying the vector equality above by $r\tilde{M}_{x_n}^i$ on the left yields

$$
\forall i \in \mathbb{N}, \ w_{i+b} + a_{b-1}w_{i+b-1} + \cdots + a_0w_i = 0.
$$

Thus, w is linearly recurrent of order at most b and $d \leq b$. Since linear recurrences are in one-to-one correspondence with polynomials, these polynomials define an ideal of $\mathbb{K}[x_n]$ spanned by $x_n^d + c_{d-1}x_n^{d-1} + \cdots + c_0$ that contains h_n. Hence the former divides the latter.

For the second statement, since $d = D'$, then w does not satisfy any linear recurrence relation of order less than D'. Thus, there is no vector in the kernel of the above Hankel matrix, see [8].

Let $1 \leq k \leq n-1$ and $h_k(x_n) = \alpha_{D'-1,k}x_n^{D'-1} + \cdots + \alpha_{0,k}$, then $(x_k - h_k(x_n))\varphi$ is in I and $\text{NF}((x_k - h_k(x_n))\varphi, G_{\text{DRL}}, \prec_{\text{DRL}})) = 0$. Projecting onto W, we have

$$
\psi_k = \alpha_{D'-1,k}\tilde{M}_{x_n}^{D'-1}\varphi + \cdots + \alpha_{0,k}\varphi.
$$

Now, multiplying this equality by $r\tilde{M}_{x_n}^i$ for $0 \leq i \leq D'-1$ shows that $(\alpha_0, \ldots, \alpha_{D'-1})^T$ is a solution of the above linear system. Since the matrix has full rank, the solution is unique and this ends the proof.

We obtain the following Algorithm 4.2, the so-called SPARSE-FGLM-COLON algorithm.

Observe that Remark 4.3 applies also to Algorithm 4.2.
For every k, build the matrix \overline{M} as in Lemma 4.19.

Output. The reduced Gröbner basis of $I : \langle \varphi \rangle$ for \prec_{LEX}, if it is in shape position.

1. Build the matrix \overline{M} as in Lemma 4.19.
2. Pick $\mathbf{r} \in \mathbb{K}^N$ a row-vector at random.
3. Build φ the column-vector of coefficients of φ restricted to Σ.

For k from 1 to $n - 1$ do

5. Build ψ_k the column-vector of coefficients of $\text{NF} (x^k \varphi, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}})$ restricted to Σ.
6. Compute $(w_i^{(0)})_{0 \leq i < 2N}, (w_i^{(1)})_{0 \leq i < N}, \ldots, (w_i^{(n-1)})_{0 \leq i < N}$ with Algorithm 2.2 called on $\overline{M}, \mathbf{r}, \varphi, \psi_1, \ldots, \psi_{n-1}$.
7. $h_n \leftarrow \text{Berlekamp–Massey}(w_0^{(0)}, \ldots, w_{2D-1}^{(0)}), D' := \deg h_n$.
8. If $\text{NF} (h_n \varphi, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) \neq 0$ then Return "Bad vector".
9. Compute $h_1 := \gamma_{D'-1,N-1} x_n^{N-1} + \cdots + \gamma_1, \ldots, h_{n-1} := \gamma_{D'-1,n-1} x_n^{n-1} + \cdots + \gamma_0$ with Algorithm 2.2 called on $(w_i^{(0)})_{0 \leq i < 2D-1}, (w_i^{(1)})_{0 \leq i < D'}, \ldots, (w_i^{(n-1)})_{0 \leq i < D'}$.
10. For k from 1 to $n - 1$ do
11. If $\text{NF} (x^k - h_k(x_n)) \varphi, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}}) \neq 0$ then Return "Not in shape position".
12. Return $\{h_n(x_n), x_{n-1} - h_{n-1}(x_n), \ldots, x_1 - h_1(x_n)\}$.

Algorithm 4.2: SPARSE-FGLM-COLON

Theorem 4.12. Let I be a positive-dimensional ideal of $\mathbb{K}[x]$, let \mathcal{G}_{DRL} be its reduced Gröbner basis for \prec_{DRL} and S_{DRL} be the associated staircase. Let $\varphi \in \mathbb{K}[x] \setminus I$ such that $I : \langle \varphi \rangle$ is zero-dimensional of degree D' and in shape position.

Let Σ be a finite staircase of size N containing $\text{supp} \text{NF} (x^i \varphi, \mathcal{G}_{\text{DRL}}, \prec_{\text{DRL}})$ for all $i \in \mathbb{N}$.

Let t be the number of monomials σ in Σ such that $x_n \sigma \in \text{LM}_{\prec_{\text{DRL}}} (\mathcal{G}_{\text{DRL}})$ and let u be the number of monomials σ in Σ such that $x_n \sigma \in \langle \text{LM}_{\prec_{\text{DRL}}} (I) \rangle \setminus \text{LM}_{\prec_{\text{DRL}}} (\mathcal{G}_{\text{DRL}})$.

Then, for a generic choice of vector $\mathbf{r} \in \mathbb{K}^N$, Algorithm 4.2 terminates and returns the reduced Gröbner basis of $I : \langle \varphi \rangle$ for \prec_{LEX}. To do so, it requires at most $u + n$ normal form computations w.r.t. \mathcal{G}_{DRL} and \prec_{DRL} plus $O((t + u + n)ND')$ operations in \mathbb{K}.

Proof. The proof follows the proofs of Theorems 2.19 and 4.13.

By the terminations of the normal form computations and the Berlekamp–Massey algorithm, Algorithm 4.2 terminates.

We now prove the correctness of the algorithm. By Proposition 4.11, we know that the polynomial returned by the Berlekamp–Massey algorithm, on line 7, is a divisor of the minimal univariate polynomial of the reduced Gröbner basis of $I : \langle \varphi \rangle$ for \prec_{LEX}. Thus, it suffices to check that, multiplied by φ, it lies in I to ensure that this is the correct polynomial.

By Proposition 4.11 also, we know that if a polynomial $x_k - h_k(x_n)$ is in $I : \langle \varphi \rangle$, then calling Algorithm 2.2 allows us to compute h_k. It suffices then to multiply $x_k - h_k(x_n)$ by φ and to check that it is in I to ensure that $x_k - h_k(x_n)$ is in $I : \langle \varphi \rangle$ and thus that
This can only happen in two cases. Either when \(\pi \) applies. Let \(W \) be its associated staircase. Let \(\sigma \) be a polynomial such that \(\{ \sigma \} \) is zero-dimensional with staircase \(T = \{ 1, x_n, \ldots, x_n^{D' - 1} \} \) for \(\prec_{\text{LEX}} \).

\[
\Sigma = \left\{ \sigma \in S_{\text{DRL}} \mid \exists s \in \bigcup_{\tau \in T} \text{supp} (\tau \varphi, G, \prec), \sigma \mid s \right\} \subset S_{\text{DRL}},
\]

and

\[
\Sigma' = \Sigma \setminus \{ \sigma \in \Sigma \mid \exists i \in \mathbb{N}, \ x_n^i \sigma \in S_{\text{DRL}} \setminus \Sigma \}.
\]

Let \(W' \) be the vector subspace of \(\mathbb{K}[x]/I \) spanned by \(\Sigma' \). Let \(\tilde{M}'_{x_n} \) be the matrix of the map \(f \in W' \mapsto \pi_{W'} (\text{NF} (x_n \sigma, G_{\text{DRL}}, \prec_{\text{DRL}})) \in W' \) in the basis \(\Sigma' = \{ \sigma_0, \ldots, \sigma_{N' - 1} \} \).

Then, \(\tilde{M}'_{x_n} \) can be built using the same procedure as in Lemma 4.9.

Furthermore, if its jth column is zero, then \(x_n \sigma_j \in \text{LT}_{\prec_{\text{DRL}}} (I) \).

Proof. As \(\tilde{M}'_{x_n} \) is defined in a similar fashion as \(\tilde{M}_{x_n} \), the procedure of Lemma 4.9 still applies.

By construction of \(\tilde{M}'_{x_n} \), the jth column is 0 if, and only if,

\[
\pi_{W'} (\text{NF} (x_n \sigma_j, G_{\text{DRL}}, \prec_{\text{DRL}})) = 0.
\]

This can only happen in two cases. Either when \(x_n \sigma_j \) is its own normal form and \(\pi_{W'} (x_n \sigma_j) = 0 \), that is \(x_n \sigma_j \in S_{\text{DRL}} \setminus \Sigma' \). Or when \(x_n \sigma_j \neq \text{NF} (x_n \sigma_j, G_{\text{DRL}}, \prec_{\text{DRL}}) \), that is \(x_n \sigma_j \in \text{LT}_{\prec_{\text{DRL}}} (I) \), and then the projection onto \(W' \) is 0.
By assumption on Σ', the multiplication of σ_j by x_n cannot reach a monomial in S_{drl}, not in Σ, hence if the projection of its normal form is 0, this means that $x_n \sigma_j$ is not its own normal form, i.e. $x_n \sigma_j \notin \text{LT}_{\text{drl}}(I)$.

Observe that Σ' need not be a staircase: indeed, 1 may have even been removed.

Proposition 4.14. Let I be a positive-dimensional ideal of $\mathbb{K}[x]$, let G_{drl} be its reduced Gröbner basis for \prec_{drl} and S_{drl} be the associated staircase. Let $\varphi \in \mathbb{K}[x] \setminus I$ such that $I : \langle \varphi \rangle$ is zero-dimensional and in shape position.

Let

$$\Sigma = \left\{ \sigma \in S_{\text{drl}} \mid \exists s \in \bigcup_{\tau \in T} \text{supp} \text{NF} (\tau \varphi, G, \prec), \sigma \mid s \right\} \subset S_{\text{drl}},$$

and

$$\Sigma' = \Sigma \setminus \left\{ \sigma \in \Sigma \mid \exists i \in \mathbb{N}, \ x_n^i \sigma \in S_{\text{drl}} \setminus \Sigma \right\}.$$

Let W (resp. W') be the vector subspace of $\mathbb{K}[x]/I$ spanned by Σ (resp. Σ'). Let φ (resp. φ') be the vector of coefficients of the projection of $\text{NF} (\varphi, G_{\text{drl}}, \prec_{\text{drl}})$ onto W (resp. W').

Let $d \in \mathbb{N}$ be minimal such that there exist $c_0, \ldots, c_{d-1} \in \mathbb{K}$ such that

$$\forall i \in \mathbb{N}, \quad \tilde{M}_{x_n}^{i+d} \varphi + c_{d-1} \tilde{M}_{x_n}^{i+d-1} \varphi + \cdots + c_0 \tilde{M}_{x_n}^i \varphi = 0.$$

Let $b \in \mathbb{N}$ be minimal such that there exist $a_0, \ldots, a_{b-1} \in \mathbb{K}$ such that

$$\forall i \in \mathbb{N}, \quad \tilde{M}_{x_n}^{i+b} \varphi' + a_{b-1} \tilde{M}_{x_n}^{i+b-1} \varphi + \cdots + a_0 \tilde{M}_{x_n}^i \varphi = 0.$$

Then, $b = d$ and $a_0 = c_0, \ldots, a_{b-1} = c_{d-1}$.

Proof. By assumption, the sequence $\left(\tilde{M}_{x_n}^n \varphi\right)_{i \in \mathbb{N}}$ is linear recurrent of order d. The linear recurrences it satisfies are then in one-to-one correspondence with the ideal $\langle h_n \rangle \in \mathbb{K}[x]$, where $h_n = x_n^d + c_{d-1} x_n^{d-1} + \cdots + c_0$.

Now, there exist a smallest integer β such that there exist unique $\alpha_0, \ldots, \alpha_{\beta-1}$ such that

$$\forall i \in \mathbb{N}, \quad \tilde{M}_{x_n}^{i+\beta+1} \varphi + \alpha_{\beta-1} \tilde{M}_{x_n}^{i+\beta-1} \varphi + \cdots + \alpha_0 \tilde{M}_{x_n}^{i+1} \varphi = 0.$$

Hence, the sequence $\left(\tilde{M}_{x_n}^{n+1} \varphi\right)_{i \in \mathbb{N}}$ is linear recurrent of order β. Therefore, $x_n^\beta + \alpha_{\beta-1} + \cdots + \alpha_0$ divides h_n. Furthermore, because of the extra multiplication by \tilde{M}_{x_n} in the definition of this sequence, we know that the ideal of $\mathbb{K}[x_n]$ in one-to-one correspondence with its sets of linear recurrence relation is actually $\langle h_n \rangle : \langle x_n \rangle$. Thus it is spanned by h_n if $x_n \not\mid h_n$ and by h_n/x_n otherwise.

Let us denote $\sigma_0 \prec_{\text{drl}} \cdots \prec_{\text{drl}} \sigma_{N-1}$ the monomials in Σ. If a monomial $\sigma_j \in \Sigma$ is such that $x_n \sigma_j \in S_{\text{drl}} \setminus \Sigma$, which implies that the jth column of \tilde{M}_{x_n} is 0, then the coefficients of $\tilde{M}_{x_n}^{n+1} \varphi, \ldots, \tilde{M}_{x_n}^{n+\beta} \varphi$ are all independent from the jth coefficient of φ. Thus, this coefficient does not appear in the second linear system and c_0, \ldots, c_{d-1} do not depend on it. Hence, we can reduce the linear system by removing σ_j from Σ without changing the linear recurrence relation of smallest order that is satisfied.
Now, if this monomial \(\sigma_j \) is divisible by \(x_n \), then there exists an index \(i < j \) such that \(\sigma_i = \sigma_j/x_n \). This implies that the \(i \)th column of the new matrix is zero. Thus, the previous argument can be repeated to remove \(\sigma_i \) from \(\Sigma \) as well.

By recurrence, at the end of this removal procedure, the set of monomials is \(\Sigma' \) and there was no change whatsoever in the linear recurrence relations satisfied by the modified sequence. Hence \(d \) is the smallest integer such that there exist unique \(c_0, \ldots, c_{d-1} \in \mathbb{K} \) such that

\[
\forall i \in \mathbb{N}, \quad \tilde{M}_{x_n}^{i+d} \varphi' + c_{d-1} \tilde{M}_{x_n}^{i+d-1} \varphi + \cdots + c_0 \tilde{M}_{x_n}^{i} \varphi = 0,
\]

in other words, \(b = d \) and \(a_0 = c_0, \ldots, a_{b-1} = c_{d-1} \).

4.5 Non shape position case

Next, we want to lift the assumption that \(I : \langle \varphi \rangle \) is in shape position. In the \textsc{Sparse-FGLM} algorithm, this is easy to test, see Subsection 2.2.2. The minimal univariate polynomial in \(x_n \) has the same degree as the ideal if, and only if, the ideal is in shape position. However, now, we do not know the degree of the polynomial \(h_n \) such that \((I : \langle \varphi \rangle) \cap \mathbb{K}[x_n] = \langle h_n \rangle \). Since for a generic choice of \(r \), we know that the \textsc{Sparse-FGLM-colon} algorithm computes correctly \(h_n \) on line 4, the computation of the normal form at the following line can be skipped. Now, the goal is to avoid computing the normal forms of \((x_k - h_k(x_n)) \varphi \) to ensure that \(I : \langle \varphi \rangle \) is in shape position using the following lemma.

Lemma 4.15. Let \(J \) be a zero-dimensional ideal of \(\mathbb{K}[x] \). Let \(\lambda \in \bar{\mathbb{K}} \) be generic. Then, for \(1 \leq k \leq n \), \(J = J : \langle x_k + \lambda \rangle \).

Proof. Clearly \(J \subseteq J : \langle x_k + \lambda \rangle \) so it remains to prove the converse inclusion for generic \(\lambda \). This is equivalent to proving that the converse inclusion does not hold for only finitely many possible values of \(\lambda \).

Let us assume that \(J : \langle x_k + \lambda \rangle \neq J \) and let \(f \in J : \langle x_k + \lambda \rangle \) not in \(J \). Then \(g = (x_k + \lambda)f \in J \). Thus, \(g \) vanishes on the finitely many points of the variety defined by \(J \). If we assume that \(J \) is radical, then \(f \) does not vanish on at least one of these points but \(g \) does. Since \(x_k + \lambda \) is prime in \(\mathbb{K}[x] \), this means that \(x_k + \lambda \) vanishes on this point. Therefore, one of the points of the variety defined by \(J \) has its \(k \)th coordinate which is \(-\lambda\). Thus, this situation can only occur for finitely many choices of \(\lambda \).

If now, \(J \) is not radical, then the same reasoning applies if one takes the multiplicities into account as well. Hence, only finitely many \(\lambda \in \bar{\mathbb{K}} \) are such that \(J : \langle x_k + \lambda \rangle \neq J \).

Remark 4.16. Thanks to Lemma 4.15 applied to \(J = I : \langle \varphi \rangle \), we can check if the polynomial \(x_k - h_k(x_n) \) computed by the \textsc{Sparse-FGLM-colon} algorithm is correct. We compute \(x_k - h'_k(x_n) \) for the ideal \(I : \langle x_k + \lambda \rangle \) by

1. Building \(\psi'_i \) the column-vector of \(\text{NF} \left(x_k^2 \varphi, G_{\text{drl}}, \prec_{\text{drl}} \right) \) restricted to \(\Sigma \).

2. Computing \((w_i^{(0)})_{0 \leq i < 2N} \) and \((w_i^{(k)})_{0 \leq i < N} \) with Algorithm 2.2 called on \(r, \varphi + \lambda \varphi \) and \(\psi_k + \lambda \psi_k \).
If \(h_k = h'_k \) for generic \(\lambda \), then \(x_k - h_k(x_n) \) is in \(I : \langle \varphi \rangle \).

Now let us assume that \(I : \langle \varphi \rangle \) is not in shape position but its radical \(\sqrt{I : \langle \varphi \rangle} \) is.

Proposition 4.17. Let \(I \) be a positive-dimensional ideal of \(K[x] \), let \(G_{\text{drl}} \) be its reduced Gröbner basis for \(\prec_{\text{drl}} \) and \(S_{\text{drl}} \) be the associated staircase. Let \(\varphi \in K[x] \setminus I \) such that \(I : \langle \varphi \rangle \) is zero-dimensional, let \(H_{\text{lex}} \) be its reduced Gröbner basis for \(\prec_{\text{lex}} \) and let \(h_n \in H_{\text{lex}} \cap K[x_n] \).

If \(\sqrt{I : \langle \varphi \rangle} \) is in shape position, then one can compute its reduced Gröbner basis for \(\prec_{\text{lex}} \) calling the Sparse-FGLM-colon algorithm with the following modifications:

1. On line 7, \(h_n \) is the squarefree part of the polynomial returned by the Berlekamp–Massey algorithm.
2. On line 9, \(h_k \) is obtained thanks to [25, Algo. 2], see also [6].

Proof. By Lemma 4.1, we already know that we can recover the minimal univariate polynomial in \(x_n \) of \(I : \langle \varphi \rangle \). Extracting its squarefree part yields the one of \(\sqrt{I : \langle \varphi \rangle} \).

Now, Algorithm 2 of [25] called on these sequences yields the polynomials with leading terms \(x_1, \ldots, x_{n-1} \) in \(\sqrt{J} \) for some ideal \(J \). By construction of these sequences, \(J = I : \langle \varphi \rangle \).

Remark 4.18. In practice, when an ideal \(J \) is not in shape position, it is not easy to check that \(\sqrt{J} \) is. Therefore, using Lemma 4.17 is the cornerstone of our probabilistic verification algorithm in MSOLVE [3, 4] when \(J \) is not in shape position but its radical might be, see [2, Sec. 4.4]. We proceed as in Remark 4.16:

1. Compute the polynomials \(x_k - g_k(x_n) \) in \(\sqrt{J} \) for \(1 \leq k \leq n - 1 \), with \(\deg g_k \) minimal.
2. Compute the polynomials \(x_k - g'_k(x_n) \) in \(\sqrt{J : \langle x_k + \lambda \rangle} \) for \(\lambda \) picked at random and \(1 \leq k \leq n - 1 \), with \(\deg g'_k \) minimal.
3. Check whether \(g_k = g'_k \) for \(1 \leq k \leq n - 1 \).

By Lemma 4.13, for a generic \(\lambda \), \(J = J : \langle x_k + \lambda \rangle \), hence both radical ideals are the same. Furthermore, if they are in shape position, then \(g_k = g'_k \) for \(1 \leq k \leq n - 1 \). Therefore, any discrepancy must come from the fact that \(\sqrt{J} \) is not in shape position and the polynomials \(x_k - g_k(x_n) \) and \(x_k - g'_k(x_n) \) are meaningless.

5 Implementation and practical experiments

We implemented Algorithms 3.1 and 4.2 in MSOLVE [3, 4], using the C programming language. The saturation examples we use come from classical benchmarks of real algebraic geometry when it comes to compute limits of critical points of the restriction of a polynomial map to some algebraic set depending on a parameter. This is used, for instance, for computing sample points in singular real algebraic sets [35] or computing their real dimension [27] and boils down to the computation of saturated ideals.

These computations were performed on a computing server with 1.48 TB of memory and an Intel Xeon Gold 6244 @ 3.60GHz processor. 37
In Tables 1 and 2, we report on timings for computing the Gröbner basis of the saturation $I : \langle \varphi \rangle^\infty$ of an ideal I w.r.t. φ for \prec_{drl}. In both tables, I is positive-dimensional. However, in Table 1 $I : \langle \varphi \rangle^\infty$ is also positive-dimensional, while in Table 2 it is zero-dimensional.

We optimized the F_4SAT algorithm (Algorithm 3.1), as discussed in Subsection 3.4. Columns learn 1 and learn 2 are for the two learning rounds of the tracer while column apply is for the apply phase.

The columns msolve correspond to our implementation of Rabinowitsch trick in msolve, with column prob. using the probabilistic linear algebra while the column learn is for the learning phase of the tracer and the column apply is for the apply phase (see [3]). These last two columns are to be compared with the learn 1 and 2, and the apply phases of F_4SAT. The one related to the probabilistic linear algebra is to be compared to the apply phase of F_4SAT.

We compare the maximum degree of the polynomials that are handled by the different algorithms. In column F_4, D_I is the maximum degree when calling F_4 on the generators of I. This is useful if one were to perform this computation first before using Lemma 3.4 and Algorithm 3.2 to determine the the polynomials in the Gröbner basis of $I : \langle \varphi \rangle$. For F_4SAT, the column D_{max} corresponds to the maximum degree during the first learning phase: i.e. either for reducing the S-polynomials or for searching new polynomials with support in the current staircase. Note that, for these examples, this maximum degree is actually always reached by the former computation and only sometimes for the latter as well. Finally, for msolve with Rabinowitsch trick, the column D_{max} gives also the highest degree of the polynomials in $n + 1$ variables.

We compare our implementations with Maple [29] using probabilistic linear algebra and SINGULAR [12].

In both tables, examples SOS mean that we consider a polynomial f which the sum of p squares of polynomials of degree d in n variables. In Table 1 $I = \langle \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_{n-1}} \rangle$ or $I = \langle f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_{p-1}} \rangle$, with $p \leq n - 2$, and $\varphi = \frac{\partial f}{\partial x_n}$. In the former case, the saturated ideal has dimension 1, while, in the latter case, it has dimension $n - p \geq 2$. The table is divided by increasing dimension. In Table 2 $I = \langle f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_{n-1}} \rangle$ and $\varphi = \frac{\partial f}{\partial x_n}$.

In general, F_4SAT is the most efficient attempt to compute the saturations (sometimes with a speed-up close to 10), MSOLVE’s F_4 with elimination order is in general a bit faster than Maple on the probabilistic linear algebra. When applying the tracing approach we can see that sometimes the search for the correct steps to search for new elements in the saturation in F_4SAT has a bigger impact (i.e. learn 1 is slower than learn 2). In other cases, the exact linear algebra applied in learn 2 to trace the full computation is the bottleneck (i.e. learn 2 is slower than learn 1). Nevertheless, the application phase of F_4SAT is in general the fastest implementation, often by an order of magnitude. This suggests that F_4SAT provides a very efficient method for computing saturations of ideals over \mathbb{Q} using the multi-modular tracer approach. The few examples where F_4SAT is slower than MSOLVE’s F_4 or Maple are identified by the fact that F_4SAT finds saturation elements a bit later than the Rabinowitsch trick-based implementations. Clearly, one could test for saturation elements more often in learn 1,
but this would have a bigger impact on the running time. A future plan is to apply a more dynamic and adaptable strategy of when to search for saturation elements.

Sys-SOS	P_1	D_1	P_{SAT}	D_{max}	P_{SAT}	D_{max}	Maple	Singular		
d3-n6-p2	13	10	1.31	0.43	0.31	15 0.77	2.40	0.40	1.12	52.2
d3-n6-p3	16	13	43.7	5.55	1.84	18 25.2	142 16.6	35.4	2,902	
d3-n6-p4	19	16	533	53.3	19.7	21 171	882 120	223	39,501	
d3-n6-p5	22	19	1,863	184	104	24 276	1,145 183	394	42,854	
d3-n6-p6	20	16	972	107	77	23 253	1,176 191	394	28,043	
d3-n6-p7	14	12	31,101	1,316	596	27 7,444	43,803 6,336	8,817		
d2-z7-p6	14	12	5.13	1.82	0.77	15 3.01	15.3 1.84	4.95	443	
d3-n7-p2	14	11	13.4	3.61	2.23	16 9.59	54.1 5.29	12.5	872	
d3-n7-p3	17	14	1.263	164	32.4	19 5.33	3.647 406	984		
d3-n7-p4	20	17	22,296	2,235	469	22 6,605	47,286 5,349	10,001		
d3-n7-p5	23	20	126,006	137,724	2,881	25 29,740	204,718 22,925	33,635		
d2-z8-p5	12	10	11.7	8.37	1.79	13 15.1	99.9 7.92	20.4	3,972	
d2-z8-p6	14	12	95.7	63.7	10.5	15 54.3	387 33.8	63.1	15,950	
d2-z8-p7	16	14	265	79.6	22.2	17 81.9	556 47.2	122	15,125	
d3-n8-p2	15	12	228	276	18.1	17 98.3	747 71.7	135	15,252	
d3-n8-p3	18	15	25,593	3,716	471	20 11,050	107,744 8,984	13,705		

Table 1: Timings in seconds, Gröbner basis for $\langle_{\text{drl}}, \text{positive-to-positive-dimensional case}\rangle$

Examples	P_1	D_1	P_{SAT}	D_{max}	P_{SAT}	D_{max}	Maple	Singular	
Steiner	19	19	115	134	67.2	24 294	614 153	239	3,642
d3-n6-p3	18	14	82.4	127	56.7	15 51.5	191 32.6	67.4	8,226
d3-n6-p4	21	18	1,592	1,776	810	29 2,123	5,284 1,720	3,585	
d3-n6-p5	24	21	9,646	7,032	3,321	32 7,485	16,711 6,466	7,226	
d4-n6-p2	23	15	720	1,581	536	52 1,200	520 60.6	135	24,532
d4-n6-p3	27	20	45,749	38,657	18,123	29 40,646	190,009 35,835	38,466	
d4-n7-p2	16	12	28.2	45.2	23.9	12 5,02	11.6 2.63	8.09	961
d4-n7-p3	19	14	1,462	2,688	937	17 953	5,851 875	1,108	
d4-n7-p4	22	18	48,907	65,035	22,444	22 40,386	248,899 34,670	39,729	
d2-z8-p4	11	9	2.68	5.04	1.80	10 3.55	10.1 2.02	4.12	500
d2-z8-p5	13	11	47.7	171.9	37.1	13 62.9	270 45.3	48.8	8,333
d2-z8-p6	15	13	287	820	160	17 420	1,599 301	350	54,567
d2-z8-p7	17	15	1,018	1,841	442	25 907	3,198 683	871	
d3-n8-p2	17	12	300	585	266	16 32.4	105 20.4	50.7	9,812
d3-n8-p3	20	14	18,152	42,436	11,285	28 15,502	71,595 8,475	15,182	

Table 2: Timings in seconds, Gröbner basis for $\langle_{\text{drl}}, \text{positive-to-zero-dimensional case}\rangle$

In Table 3 we compare Algorithm 4.2 for computing a Gröbner basis of the zero-dimensional colon ideal $I = \langle \varphi \rangle = I : \langle \varphi \rangle^\infty$ for $\langle_{\text{lex}} \rangle$ with MAPLE [29] using the Gröbner:-Basis command followed by the Gröbner:-FGLM command. As in Table 2, $I = \langle f, \partial f/\partial x_1, \ldots, \partial f/\partial x_n \rangle$ and $\varphi = \left(\partial f/\partial x_n\right)^M$ for M large enough, with f the sum of p squares of polynomials of degree d in n variables. The columns $\# \Sigma$ and $\# \Sigma'$ correspond to the size of the set Σ before and after reductions as defined in Lemma 1.3. Remark 1.8 and Proposition 1.11 while column D' gives the degree of the saturated ideal. Whether it is between $\# \Sigma$ and $\# \Sigma'$ or between $\# \Sigma'$ and D', we can observe ratios going up to 100.
around 5. Therefore, it is clear that the algorithm would not be as efficient if one were to work with Σ directly. Still, it would be even more beneficial to reduce further the size of Σ' to be as close as possible to D'.

The column F_4 gives the proportion of time to compute the Gröbner basis G_{drl} of I for \prec_{drl} using the F_4 algorithm in MSOLVE, the column Sat. order corresponds to the time for computing iteratively $\text{NF}\left((\frac{\partial f}{\partial x_n})_M, G_{\text{drl}}, \prec_{\text{drl}}\right)$ with M large enough.

The column Matrix corresponds to the proportion of time to compute all the normal forms $\text{NF}(x_n\sigma, G_{\text{drl}}, \prec_{\text{drl}})$ for σ in Σ' and $x_n\sigma \in (I_{\text{LM}}(G_{\text{drl}}))$ as in Lemma 4.9. The FGLM column gives the proportion of time to perform the Sparse-FGLM algorithm with this matrix. Finally, the total column gives the total time to perform all these computations in seconds, resulting in the computation of the saturation of I w.r.t. φ. Likewise the columns MAPLE give the time for Maple in seconds using Rabinowitz trick \[.\] The column Basis computes the Gröbner basis for \prec_{drl} of $I + \langle 1 - t \frac{\partial f}{\partial x_n} \rangle$ while the column FGLM computes the Gröbner basis of the same ideal for \prec_{lex} with $x_n \prec_{\text{lex}} \cdots \prec_{\text{lex}} x_1 \prec_{\text{lex}} t$.

We can notice that the Sparse-FGLM-Colon algorithm approach is most efficient when either the change of order step is the most time-consuming or when the ratios between $\# \Sigma$, $\# \Sigma'$ and D' are the smallest. In the former case, the algorithm benefits from the regularity of the computation of the reduced Gröbner basis of I for \prec_{drl} compared to the one of $I + \langle 1 - t\varphi \rangle$ in the Rabinowitz trick approach. In the latter case, when Σ or Σ' are large compared to D', the overhead in the linear algebra part becomes overwhelming. Clearly, in a multi-modular approach, one would want to consider an even smaller subset of Σ' to perform the computations, once D' is known. All in all, we can see speed-ups that are significant and sometimes higher than 10.

Sizes	$\# \Sigma$	$\# \Sigma'$	D'	F_4	Sat. order	Matrix	FGLM	Total	MAPLE	Basis	FGLM	Total
d2-n3-p5	5746	2536	1516	60%	20%	7%	13%	21	96%	4%	96	
d2-n5-p6	7983	5190	3756	35%	9%	6%	50%	140	88%	12%	350	
d2-n5-p7	8844	7340	6444	33%	9%	6%	52%	320	79%	21%	890	
d2-n7-p8	11748	4554	2308	56%	14%	8%	22%	150	64%	32%	410	
d2-n9-p9	18829	10372	6788	40%	7%	8%	45%	1200	91%	9%	3200	
d2-n11-p10	24332	17540	13956	33%	5%	7%	55%	4400	83%	17%	12000	
d2-n13-p11	9724	1996	652	67%	27%	5%	1%	42	99%	1%	68	
d2-n15-p12	22408	7372	3340	52%	11%	9%	28%	900	97%	3%	1200	
d2-n17-p13	40946	19468	11404	42%	7%	9%	42%	9900	92%	8%	17000	
d3-n5-p3	3034	1320	672	39%	33%	9%	19%	13	97%	3%	4	
d3-n5-p4	3750	2616	1968	27%	27%	11%	35%	43	95%	5%	43	
d3-n7-p5	10773	3792	1632	60%	11%	8%	21%	50	96%	4%	77	
d3-n7-p6	16271	9192	5952	37%	5%	6%	52%	500	89%	11%	1300	
d3-n9-p7	10997	1486	12442	12%	5%	6%	77%	1200	82%	18%	5600	
d3-n11-p8	35517	10320	3840	52%	9%	8%	31%	1300	95%	5%	11000	
d3-n13-p9	62104	29760	10800	19%	4%	11%	66%	1200	91%	9%	31000	
d4-n5-p3	15881	7560	4104	41%	6%	5%	46%	200	94%	6%	620	
d4-n5-p4	19274	14088	11016	32%	4%	4%	60%	1000	86%	14%	4700	
d4-n7-p5	41189	8424	1944	74%	5%	9%	12%	500	97%	3%	224	
d4-n9-p6	63068	32184	14904	16%	3%	12%	60%	1100	92%	8%	27000	
d5-n4-p3	7235	4540	3040	13%	24%	11%	52%	9	93%	7%	180	
d5-n5-p4	54767	27360	15360	8%	4%	7%	81%	5100	92%	8%	22000	

Table 3: Timings in seconds, Gröbner basis for \prec_{lex}, positive-to-zero-dimensional case.
References

[1] D. A. Bayer. *The Division Algorithm and the Hilbert Scheme*. PhD thesis, Harvard University, USA, 1982. AAI8222588.

[2] E. Berlekamp. Nonbinary BCH decoding. *IEEE Trans. Inform. Theory*, 14(2):242–242, 1968.

[3] J. Berthomieu, Ch. Eder, and M. Safey El Din. Msolve: A library for solving polynomial systems. In *Proceedings of the 46th International Symposium on Symbolic and Algebraic Computation*, ISSAC ’21, pages 51–58, New York, NY, USA, 2021. Association for Computing Machinery.

[4] J. Berthomieu, Ch. Eder, and M. Safey El Din. msolve: A library for solving polynomial systems, 2021. https://msolve.lip6.fr/.

[5] J. Berthomieu and M. Safey El Din. Guessing Gröbner bases of structured ideals of relations of sequences. *J. Symbolic Comput.*, 111:1–26, 2022.

[6] A. Bostan, B. Salvy, and É. Schost. Fast Algorithms for Zero-Dimensional Polynomial Systems Using Duality. *Appl. Algebra Eng. Commun. Comput.*, 14(4):239–272, 2003.

[7] P. Breiding, B. Sturmfels, and S. Timme. 3264 conics in a second. *Notices of the American Mathematical Society*, 67(1):30–37, 2020.

[8] R. P. Brent, F. G. Gustavson, and D. Y. Yun. Fast solution of Toeplitz systems of equations and computation of Padé approximants. *Journal of Algorithms*, 1(3):259–295, 1980.

[9] B. Buchberger. *Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal*. PhD thesis, University of Innsbruck, 1965.

[10] B. Buchberger. A Criterion for Detecting Unnecessary Reductions in the Construction of Gröbner Bases. In *EUROSAM ’79, An International Symposium on Symbolic and Algebraic Manipulation*, volume 72 of *Lecture Notes in Computer Science*, pages 3–21, Berlin, 1979. Springer.

[11] D. Cox, J. Little, and D. O’Shea. *Ideals, Varieties, and Algorithms*. Undergraduate Texts in Mathematics. Springer, New York, fourth edition, 2015. An introduction to computational algebraic geometry and commutative algebra.

[12] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. *Singular 4-1-2 — A computer algebra system for polynomial computations*. http://www.singular.uni-kl.de 2019.

[13] C. Eder and J.-C. Faugère. A survey on signature-based algorithms for computing Gröbner bases. *Journal of Symbolic Computation*, 80:719–784, 2017.

[14] D. Eisenbud. *Commutative Algebra: With a View Toward Algebraic Geometry*. Graduate Texts in Mathematics. Springer, 1995.

[15] J.-Ch. Faugère. A new efficient algorithm for computing Gröbner bases (F4). *Journal of Pure and Applied Algebra*, 139(1):61–88, 1999.
[16] J.-Ch. Faugère. A New Efficient Algorithm for Computing Gröbner Bases Without Reduction to Zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC '02, pages 75–83, New York, NY, USA, 2002. ACM.

[17] J.-Ch. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient Computation of Zero-dimensional Gröbner Bases by Change of Ordering. J. Symbolic Comput., 16(4):329–344, 1993.

[18] J.-Ch. Faugère and A. Joux. Algebraic cryptanalysis of hidden field equation (hfe) cryptosystems using gröbner bases. In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 44–60, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[19] J.-Ch. Faugère, A. Joux, L. Perret, and J. Treger. Cryptanalysis of the hidden matrix cryptosystem. In M. Abdalla and P. S. L. M. Barreto, editors, Progress in Cryptology – LATINCRYPT 2010, pages 241–254, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[20] J.-Ch. Faugère and C. Mou. Fast Algorithm for Change of Ordering of Zero-dimensional Gröbner Bases with Sparse Multiplication Matrices. In Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, ISSAC '11, pages 115–122, New York, NY, USA, 2011. ACM.

[21] J.-Ch. Faugère and C. Mou. Sparse FGLM algorithms. Journal of Symbolic Computation, 80(3):538–569, 2017.

[22] J. García Fontán, A. Nayak, S. Briot, and M. Safey El Din. Singularity Analysis for the Perspective-Four and Five-Line Problems. International Journal of Computer Vision, 2022.

[23] M. Giusti. Some effectivity problems in polynomial ideal theory. In J. Fitch, editor, EUROSAM 84, pages 159–171, Berlin, Heidelberg, 1984. Springer Berlin Heidelberg.

[24] R. Hartshorne. Connectedness of the Hilbert scheme. Publications Mathématiques de l'IHÉS, 29:5–48, 1966.

[25] S. G. Hyun, V. Neiger, H. Rahkooy, and É. Schost. Block-Krylov techniques in the context of sparse-FGLM algorithms. Journal of Symbolic Computation, 98:163–191, 2020. Special Issue on Symb. and Alg. Comp.: ISSAC 2017.

[26] C. Kollreider and B. Buchberger. An improved algorithmic construction of Gröbner-bases for polynomial ideals. SIGSAM Bull., 12:27–36, 1978.

[27] P. Lairez and M. Safey El Din. Computing the dimension of real algebraic sets. In Proceedings of the 46th International Symposium on Symbolic and Algebraic Computation, ISSAC ’21, pages 257–264, New York, NY, USA, 2021. Association for Computing Machinery.

[28] D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In Computer algebra (London, 1983), volume 162 of Lecture Notes in Comput. Sci., pages 146–156. Springer, Berlin, 1983.

[29] Maplesoft, a division of Waterloo Maple Inc. Maple.
[30] J. L. Massey. Shift-register synthesis and BCH decoding. *IEEE Trans. Inform. Theory*, 15:122–127, 1969.

[31] H. M. Möller and F. Mora. Upper and lower bounds for the degree of groebner bases. In J. Fitch, editor, *EUROSAM 84*, pages 172–183, Berlin, Heidelberg, 1984. Springer Berlin Heidelberg.

[32] G. Moreno-Socías. Degrevlex Gröbner bases of generic complete intersections. *Journal of Pure and Applied Algebra*, 180(3):263–283, 2003.

[33] B. Pascual-Escudero, A. Nayak, S. Briot, O. Kermorgant, P. Martinet, M. Safey El Din, and F. Chaumette. Complete Singularity Analysis for the Perspective-Four-Point Problem. *International Journal of Computer Vision*, 129(4):1217–1237, Apr. 2021.

[34] J. Rabinowitsch. Zum Hilbertschen Nullstellensatz. *Mathematische Annalen*, 102:520–520, 1930.

[35] M. Safey El Din. Computing Sampling Points on a Singular Real Hypersurface using Lagrange’s System. Research Report RR-5464, INRIA, 2005.

[36] A. K. Steel. Direct solution of the (11, 9, 8)-MinRank problem by the block Wiedemann algorithm in Magma with a Tesla GPU. In *Proceedings of the 2015 International Workshop on Parallel Symbolic Computation, PASCO 2015, July 10-12, 2015*, pages 2–6, Bath, United Kingdom, 2015. ACM.

[37] D. Wiedemann. Solving sparse linear equations over finite fields. *IEEE Trans. Inf. Theory*, 32(1):54–62, 1986.