The CB$_2$ receptor and its role as a regulator of inflammation

Caroline Turcotte1 · Marie-Renée Blanchet1 · Michel Laviolette1 · Nicolas Flamand1,†

Received: 30 March 2016 / Revised: 20 June 2016 / Accepted: 27 June 2016 / Published online: 11 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The CB$_2$ receptor is the peripheral receptor for cannabinoids. It is mainly expressed in immune tissues, highlighting the possibility that the endocannabinoid system has an immunomodulatory role. In this respect, the CB$_2$ receptor was shown to modulate immune cell functions, both in cellulo and in animal models of inflammatory diseases. In this regard, numerous studies have reported that mice lacking the CB$_2$ receptor have an exacerbated inflammatory phenotype. This suggests that therapeutic strategies aiming at modulating CB$_2$ signaling could be promising for the treatment of various inflammatory conditions. Herein, we review the pharmacology of the CB$_2$ receptor, its expression pattern, and the signaling pathways induced by its activation. We next examine the regulation of immune cell functions by the CB$_2$ receptor and the evidence obtained from primary human cells, immortalized cell lines, and animal models of inflammation. Finally, we discuss the possible therapies targeting the CB$_2$ receptor and the questions that remain to be addressed to determine whether this receptor could be a potential target to treat inflammatory disease.

Keywords CB$_2$ receptor · Cannabinoid · Endocannabinoid · Inflammation · Leukocytes

Abbreviations

2-AG 2-Arachidonoyl-glycerol
AA Arachidonic acid
AEA N-Arachidonoyl-ethanolamide
AM1241 (2-Iodo-5-nitrophenyl)-(1-(1-methylpiperidin-2-ylmethyl)-1H-indol-3-yl)methanone
AM630 6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone
CB65 N-Cyclohexyl-7-chloro-1-[2-(4-morpholinyl)ethyl]quinolin-4(1H)-one-3-carboxamide
cAMP Cyclic adenosine monophosphate
CBD Cannabidiol
CBG Cannabigerol
CBN Cannabinol
COX Cyclooxygenase
CP 55,940 (−)-Cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol
Δ9-THC (−)-Δ9-Tetrahydrocannabinol
ERK-1/2 Extracellular signal-regulated kinases-1/2
FAAH Fatty acid amide hydrolase
GFP Green fluorescent protein
GIRK G-protein-coupled inwardly rectifying potassium (channel)
GP 1a N-(Piperidin-1-yl)-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide
GP 2a N-Cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide
GPCR G-protein-coupled-receptor

† Nicolas Flamand
nicolas.flamand@criucpq.ulaval.ca

1 Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC G1V 4G5, Canada
Introduction

The psychotropic effects induced by cannabis promoted its widespread use among the population. These effects are mediated by a cannabinoid receptor that is mainly expressed in the central nervous system, namely CB1. The identification of a receptor that is selectively activated by cannabinoids suggested that the human body synthesizes at least one natural ligand for this receptor. This hypothesis was confirmed by the discovery of two high-affinity ligands for the CB1 receptor: arachidonoyl-ethanolamide (AEA) [1] and 2-arachidonoyl-glycerol (2-AG) [2]. As these novel lipid mediators were uncovered, a second cannabinoid receptor (CB2) was being cloned and characterized. Its expression profile among tissues was found to be distinct from that of CB1. It was primarily found in immune cells and was initially not detected in the brain, although this was later proven incorrect by several studies. In light of these findings, the CB2 receptor was postulated to be responsible for the immunomodulatory effects of cannabinoids and endocannabinoids. In the past two decades, this hypothesis was tested in a wide array of cellular and animal models. This article offers a comprehensive review of the evidence that was gathered in these studies, with a focus on peripheral inflammation. The CB2 receptor’s potential as a therapeutic target in inflammatory disease is also discussed.

Cloning of the CB2 receptor

The non-psychoactive effects of cannabinoids were initially believed to be mediated either centrally or through their interaction with non-receptor proteins. Although there are phytocannabinoids that exert non-psychoactive effects without binding to CB2 receptor [e.g., cannabidiol (CBD), cannabigerol (CBG)], discovering the latter explained many of the peripheral effects of cannabinoids. Munro et al. cloned the human CB2 receptor in 1993 from the promyelocytic leukaemic cell line HL-60 [3]. To achieve this, cells were treated with dimethylformamide to induce granulocyte differentiation, a cDNA library was prepared, polymerase chain reaction (PCR) was performed using degenerated primers, and the amplification products were cloned and sequenced. One of the clones showed homology to the G-protein-coupled-receptor (GPCR) family and was related to the CB1 receptor. Munro et al. cloned the human CB2 receptor in 1993 from the promyelocytic leukaemic cell line HL-60 [3]. To achieve this, cells were treated with dimethylformamide to induce granulocyte differentiation, a cDNA library was prepared, polymerase chain reaction (PCR) was performed using degenerated primers, and the amplification products were cloned and sequenced. One of the clones showed homology to the G-protein-coupled-receptor (GPCR) family and was related to the CB1 receptor. The protein encoded by this sequence was found to have 44 % homology with the CB1 receptor. This homology increased to 68 % when only the transmembrane portion was considered. Binding assays showed that this receptor had high affinity for the cannabinoid receptor ligands WIN 55,212-2 and CP 55,940, as well as the endocannabinoid AEA and the phytocannabinoid Δ^9-THC. The authors suggested that the previously described central receptor be named CB1 and that this novel, peripheral receptor be named CB2.
A few years later, Shire et al. [4] cloned the murine CB2 receptor from a mouse splenocyte cDNA library. They found it to be 82% homologous to the human CB2 receptor and to have similar affinity for the ligands AEA, CP 55,940, and Δ⁹-THC. WIN 55,212-2, however, bound the mouse CB2 receptor with an affinity six-fold lower than that documented for human CB2. This was followed by the cloning of the rat CB2 receptor by Brown et al. [5]. The authors also compared the sequence of their clone with those of the mouse and human CB2 receptor and found significant differences in protein length, although these were mainly the consequence of disparities in carboxyl termini. Amino acid conservation was highest in the transmembrane regions of the three receptors.

In addition to binding the endocannabinoids AEA and 2-AG, the CB2 receptor binds many phytocannabinoids. The pharmacology of endocannabinoids and that of the CB2 receptor were rigorously reviewed in the past [6, 7]. Table 1 provides a summary of the various endocannabinoids and phytocannabinoids and their affinity for the human CB2 receptor.

Available tools to study CB2 receptor functions

Pharmacological compounds

Synthetic cannabinoids, such as CP 55,940 and WIN 55,212-2, were already available when the CB2 receptor was cloned. They were subsequently shown to be potent CB2 ligands, but also to lack selectivity, as they activate CB1 with comparable efficiency. In this respect, several agonists and antagonists were rapidly developed and made available to the scientific community. The most widely used compounds are the agonist JWH 133, and the antagonists SR144528 and AM630. Still, many compounds display good potency and selectivity towards CB2. Table 2 contains a comprehensive list of those compounds, as well as their binding potency towards human CB2, and in some cases, the other receptors they target.

Knockout mice

The first CB2 receptor-deficient mouse was generated by Buckley et al. in 2000 [32]. The CNR2 gene was

Table 1 Binding of endocannabinoids and phytocannabinoids to the human CB2 receptor

Endocannabinoid	Kᵢ (nM)	Model	References
AEA	371	CHO cells	[8]
1940		AtT-20 cells	[9]
795		Sf9 cells	[10]
3500		CHO cells	[10]
2-AG	949	Sf9 cells	[10]
650		CHO cells	[10]
Dihomo-γ-LEA	857	AtT-20 cells	[9]
Oleamide	>100,000	HEK-293 cells	[11]
NADA	12,000ᵇ	Rat spleen	[12]
2-AG-ether	>3000ᵃ	COS-7 cells	[13]
Phytocannabinoid			
Δ⁹-THC	34.6	CHO cells	[8]
Δ⁸-THC	39.3	Mouse spleen	[14]
CBN	96.3	CHO cells	[8]
301		AtT-20 cells	[9]
CBD	2680	CHO cells	[8]
β-Caryophyllene	155	HEK293 cells	[15]

Kᵢ values were obtained in function of [³H]CP 55,940 displacement unless indicated otherwise.

NADA N-arachidonoyl-dopamine, CBN cannabinoil

ᵃ [³H]HU-243
ᵇ [³H]WIN55212-2
inactivated by homologous recombination, by replacing a 341 bp fragment of its coding sequence with the neomycin gene. This mutation eliminated part of intracellular loop 3, transmembrane domains 6 and 7, and the carboxyl extremity of the receptor. Autoradiography experiments confirmed the absence of specific binding of \([3H]CP 55,940\) in the spleen of \(CB_2^{-/-}\) mice. No significant difference in the binding of \([3H]CP 55,940\) between wild-type and knockout animals was found in the brain, supporting that CB1-receptor expression was not altered in \(CB_2^{-/-}\) animals. The authors confirmed this by demonstrating that knockout mice were as responsive to the psychotropic effects of \(\Delta^9\)-THC as wild-type animals.

\(CB_2^{-/-}\) mice display no morphological differences when compared to their wild-type counterparts. They are normal size and weight, are fertile, have normal litter sizes and care for their young. However, subsequent studies by other groups show that \(CB_2^{-/-}\) mice develop differences at the cellular level. In this regard, Ofek et al. have demonstrated that \(CB_2^{-/-}\) mice have lower counts of osteoblast precursors and increased numbers and activity of osteoclasts [33]. In consequence, these mice have a low bone mass phenotype that worsens with age. They also present abnormalities in the development of several T and B cell subsets [34]. While this might impair immune homeostasis, \(CB_2^{-/-}\) mice fail to spontaneously develop any observable immune disease. Therefore, they are suitable to study CB2 function and have, since, become invaluable tools in cannabinoid research. In this respect, they have been used to define the impact of CB2 deficiency in a variety of inflammatory disease models, and the results of these studies will be discussed in the section entitled CB2 activation by endocannabinoids in vivo.

Antibodies

As it is the case with numerous GPCRs, CB2 protein detection is difficult due to the lack of specificity of primary antibodies. This concept was underscored in a recent study by Marchalant et al. [35], who showed that a commercially available and widely used CB2 polyclonal antibody is heavily cross-reactive towards other proteins. Noteworthy, they demonstrated that some of the proteins detected by the antibody were not membrane-bound, ruling out the previously suggested hypothesis that the additional bands represent glycosylation variants of the CB2 receptor. Moreover, Graham et al. [36] compared several CB2 primary antibodies in flow cytometry experiments on human primary leukocytes. The antibodies which they compared generated different expression patterns between cell types. Therefore, data regarding CB2 protein detection must be interpreted with caution.

Table 2 CB2 agonists and antagonists

	\(K_i\) (nM)	Other targets	References
Agonist			
AM 1241	3.4	TRPA1	[16, 17]
JWH 133	3.4	TRPV1	[18, 19]
GW 405833	3.6–3.92	–	[20]
JWH 015	13.8	–	[8]
HU 308	22.7	–	[21]
L-759,633	6.4	–	[22]
L-759,656	11.8	–	[22]
SER 601	6.3	–	[23]
GP 1a	0.037	–	[24]
GP 2a	7.6	–	[24]
CB 65	3.3	–	[25]
HU 210	0.061–0.52	CB1, GPR55, 5-HT2	[9, 26, 27]
CP 55,940	0.6–5.0	CB1, GPR55	[26, 28]
WIN 55, 212-2	62.3	CB1, TRPA1	[9, 17, 28]
Antagonist			
SR144528	0.6–4.1	–	[22, 29]
AM 630	5.6–31.2	TRPA1	[22, 30]
JTE907	35.9	–	[31]

This compound is not known to activate other receptors besides CB2

TRP transient receptor potential ion channel
The detection of the CB2 receptor using antibodies can be substituted, to some extent, by the alternate methods. For example, Schmöle et al. [37], recently, generated a bacterial artificial chromosome (BAC) transgenic mouse model that expresses a green fluorescent protein (GFP) under the CB2 promoter. This mouse can be used to determine CB2 expression in mouse tissues in vitro and in situ, by several techniques, including RT-PCR, qPCR, immunoblot, flow cytometry, and immunofluorescence. This system, based on GFP detection, is an alternative to the use of CB2 antibodies on mouse tissues. It is more reliable in the sense that most antibodies directed against GFP are specific and yield reproducible data. However, this kind of approach cannot be used for CB2 detection in human primary cells and tissues, which remain problematic. A different strategy that was evaluated by Petrov et al. involves the synthesis of fluorescent CB2 agonists [38]. The synthesized compound showed marked selectivity for CB2 over the CB1, 5-HT2A, and 5-HT2C receptors. This agonist was validated as a flow cytometry probe to detect the CB2 receptor in cells, and also to evaluate CB2-receptor binding using fluorescence microscopy. Other methods of detection could also be added to CB2 ligands to use them as probes, such as biotinylation [39].

CB2 expression profiles in human and animal tissues

Expression profile of CB2 among tissues

Upon cloning the human CB2 receptor from HL-60 cells, Munro et al. isolated a portion of a rat homologue by PCR [3]. They used this homologue to probe various rat tissues and detected high CB2 receptor mRNA levels in the spleen, but not in the liver, nasal epithelium, thymus, brain, lung, or kidney. Cell sorting allowed the authors to associate CB2 receptor expression to the monocyte/macrophage population of the spleen rather than T cells. Two years later, Galiègue et al. published the first study describing CB2 receptor expression in various human tissues and isolated leukocyte populations [40]. The authors found high CB2 mRNA levels in tonsils, spleen, PBMC, and thymus, and were able to detect the CB2 protein in tonsils by immunohistochemistry using an anti-CB2 polyclonal antibody. They also evaluated CB2 receptor mRNA expression in numerous human organs and found it to be absent from most non-immune tissues, with the exception of pancreas, lung, and uterus, which had relatively low mRNA levels. Several reports have, since, shown that the CB2 receptor is expressed in both male [41] and female [42, 43] reproductive tissues. In this regard, the CB2 receptor exerts an important role in the fertility of both sexes, which has already been extensively reviewed [44–47].

The pattern of CB2 receptor expression among human tissues is consistent between studies. More groups have reported the presence of the CB2 receptor mRNA and protein in the human spleen [48] and tonsils [49]. Moreover, the high level of CB2 expression in human immune tissues was also reported in murine and rodent spleen [37, 50–56] and thymus [37, 54].

The presence and role of the CB2 receptor in the central nervous system have yet to be fully elucidated, and the issue was discussed in a review article recently published by Atwood and Mackie [57]. It was initially believed that it was not expressed in non-immune cells of the central nervous system, because Munro et al. did not detect CB2 receptor mRNA in any brain part when they cloned the receptor [3], which is supported by many studies [40, 54, 58, 59]. However, we now know that the CB2 receptor is not completely absent from the brain, since it is expressed in microglia [60]. Still, the concept of the CB2 receptor being a second central cannabinoid receptor is up to debate for three main reasons: (1) a study showed that the CB2 receptor agonists JWH-015 and JWH-133 modulate peripheral neuron functions [61] and (2) the CB2 receptor was detected in the uninjured brain by immunohistochemistry on numerous occasions [62–64], and (3) a recent study found that hippocampal principal neurons express CB2 mRNA, and that CB2-selective agonist HU-308 modulated the activity of these cells [65]. Conversely, a study that relied on GFP detection to determine the expression of the CB2 receptor in the murine brain showed that the signal is located in microglia [37]. Therefore, the lack of reliability of the antibodies that were used in immunohistochemistry experiments stresses the need for more research to expand our knowledge on the involvement of the CB2 receptor in the central nervous system and neuroinflammation.

In 2009, Liu et al. showed that two distinct isoforms of the CB2 receptor exist [66]. The novel CB2 isoform was a splicing variant of the earlier cloned receptor, and was identified from a human neuroblastoma cDNA library. Splicing variants were also discovered in mice and rats, although their genomic structures and transcripts were different from those found in humans. Furthermore, the two human variants were found to display tissue-specific expression patterns. While the classical CB2 isoform was predominantly found in spleen and other immune tissues, the novel isoform was detected in higher levels in testis and brain regions of the reward system. The identification of this new CB2 variant could shed some light on the confusing expression patterns that were previously reported. Finally, it underscores the possibility of a role for CB2 in reproductive and central nervous systems that are distinct from the immunomodulatory role of the classical CB2 isoform.
CB2 expression in immune cells

It is well known that the CB2 receptor is widespread among cells of the immune system. Table 3 provides the literature associated with the expression of the CB2 receptor in human leukocytes. Every cell type that has been investigated was found to express both mRNA and protein in at least one report. However, there is conflicting data associated with a few cell types. For example, there is no consensus in the literature regarding the presence of the CB2 receptor in human neutrophils. Of note, not every study was conducted on purified, eosinophil-depleted neutrophils. Given that eosinophils have very abundant amounts of CB2 receptor mRNA, a small number of eosinophils among the neutrophil sample could result in a false positive. This is consistent with the observation that CB2 levels are lower in neutrophils than in eosinophils.

As discussed in the previous section, the scientific community should always be critical when interpreting protein data, especially of GPCRs. A large number of researchers have now reported expression data obtained with commercially available antibodies, and most of them relied on a positive control to validate their results. It was later underscored that in the case of the CB2 receptor, a reliable negative control is absolutely necessary to confirm that the signal is not generated by non-specific binding of the antibody [35, 67].

CB2 receptor signaling

The CB2 receptor was associated to the GPCR family when it was cloned. However, the signal transduction pathways induced by CB2 receptor activation are far less characterized than those of CB1. CB1 is known to inhibit adenyl cyclase, to modulate ion channels, and to activate numerous downstream signaling events, including p38 and p42/44 MAPK (ERK-1/2), PI3K, calcium mobilization (phospholipase C/IP3), the arachidonic acid cascade, and nitric oxide production (reviewed in [83]). A few studies have aimed to compare the signaling events of CB1 and CB2 in a given cell system and found some divergences between the

| Table 3 CB2 receptor expression in human leukocytes |
|-----------------|--------|-----------------|---------------|---------|
| Cell types | mRNA | CB2 expression | References |
| B cells | mRNA | + | [36, 40, 68, 69] |
| | Protein| + | [49, 68, 70] |
| Basophils | mRNA | + | [71] |
| Dendritic cells | mRNA | + | [56] |
| | Protein| + | [56] |
| Eosinophils | mRNA | + | [71–74] |
| | Protein| + | [74] |
| Mast cells | mRNA | + | [71] |
| Macrophages | mRNA | + | [75] |
| | Protein| + | [48, 75, 76] |
| Microglia | mRNA | + | [60] |
| | Protein| + | [60] |
| Monocytes | mRNA | + | [36, 40, 68, 75, 77, 78] |
| | Protein| + | [68, 75, 78] |
| NK cells | mRNA | + | [36, 40, 69] |
| | Protein| + | [49] |
| Neutrophils | mRNA | + | [36, 40, 71] |
| | Protein| + | [72–74] |
| Platelets | mRNA | + | [79] |
| | Protein| + | [74] |
| T cells | mRNA | + | [36, 40, 68, 69] |
| | Protein| + | [49, 68, 82] |
two receptors. This section recapitulates the evidence regarding the signaling events downstream of the CB2 receptor.

G_{i/o} protein coupling and adenylyl cyclase inhibition

Like the CB1, the CB2 receptor couples with G_{i/o} proteins. This was established by Slipetz et al. who found that in CB2-transfected Chinese Hamster Ovary (CHO) cells, pretreatment with pertussis toxin (PTX) abolished the effect of cannabinoids on forskolin-induced cAMP production [84]. Other groups using CB2-transfected cell models found signaling events to be PTX-sensitive, supporting the involvement of G_{i/o} proteins [85, 86]. This interaction was later confirmed in murine microglial cells [87], the murine macrophage cell line J774-1 [88], the human promyelocytic cell line HL-60 [89–91], and human bronchial epithelial cells [92]. Since it has proven to couple to GIRK channels [95], the CB2 receptor was able to couple with GIRK channels and to modulate adenylyl cyclase inhibition upon treatment of cells with CB2 receptor agonists and/or synthetic cannabinoids, resulting in a decrease in intracellular cAMP levels [84, 85, 93, 94].

Potassium channels

As opposed to the CB1 receptor, the CB2 receptor does not appear to couple to potassium channels. A study by Felder et al. [9] investigated the possible modulation of inwardly rectifying potassium current (I_{Kir}) channels in CB2-transfected AtT-20 cells. In these cells, activation of the CB2 receptor with WIN 55,212-2 failed to have an impact on I_{Kir}. Another study showed that in Xenopus laevis oocytes co-expressing the CB2 receptor and G-protein-gated inwardly rectifying potassium (GIRK) channels, WIN 55,212-2 failed to induce consistent coupling of the CB2 receptor to GIRK channels [95]. Of note, the CB1 receptor was able to couple with GIRK channels and to modulate agonist-induced currents in the same cellular model. This important difference between CB1 and CB2 receptors established CB2 as a functionally distinct receptor.

Mitogen-activated protein kinases (MAPK)

Signal transduction pathways induced by CB2 receptor activation were first investigated in CB2-CHO cells by Bouaboula et al. [86]. They found that upon CP 55,940 addition, adenylyl cyclase inhibition was followed by ERK-1/2 phosphorylation. This effect was significantly diminished by the protein kinase C (PKC) inhibitor GF 109203X, suggesting that PKC was involved in MAPK activation. Moreover, they were able to confirm their findings in HL-60 cells, which express the CB2 receptor. Another group investigated MAPK activation by various CB2 ligands in HL-60 cells and found that CP 55,940, 2-AG, and AEA increased ERK-1/2 phosphorylation [89]. This effect was blocked by the CB2 receptor antagonist SR144528 and was stronger in cells stimulated by 2-AG and CP 55,940 than in those treated with AEA. MAPK activation downstream of CB2 activation was also demonstrated in vitro in murine osteoblasts [96], in DAUDI leukemia cells [94], murine microglia [97], and human primary monocytes [78]. Finally, this pathway was showed to be activated in vivo, in a mouse model of acute experimental pancreatitis. In this model, a CB2 receptor agonist reduced inflammation through the p38-MK2 pathway [98].

Intracellular calcium concentrations and phospholipase C activity

A study conducted in calf pulmonary endothelial cells showed that CB2 activation modulates intracellular calcium concentrations [99]. In this model, AEA initiated phospholipase C (PLC) activation and inositol 1,4,5-trisphosphate (IP₃) production, which led to intracellular Ca²⁺ release from the endoplasmic reticulum, as well as an increase in mitochondrial Ca²⁺. This effect of AEA was not mimicked by arachidonic acid (AA), was blocked by SR144528, and was unchanged by treatment with SR141716A, confirming the involvement of the CB2, but not the CB1 receptor. Another group later confirmed this in HEK-293 cells co-expressing the CB2 receptor with chimeric G_i and G_o proteins [100]. In this model, treatment with CP 55,940 or other CB receptor agonists was found to increase intracellular Ca²⁺ levels. The phospholipase C inhibitor U73122 abrogated the effect of CP 55,940 on calcium mobilization, as did thapsigargin. This evidence shows that in these cells, CB2 receptor activation induces calcium mobilization via the PLC-IP₃ signaling pathway.

In vitro studies of CB2 receptor functions

CB2 activation by endocannabinoids in vitro

The endocannabinoids 2-AG and AEA both act on various immune cell types through CB2 receptor activation (summarized in Table 4). Interestingly, there is a sharp contrast between the anti-inflammatory effects that are triggered by the two lipids. 2-AG was most often found to modulate functions related to leukocyte recruitment, such as chemokine release, adhesion to fibronectin, and migration. This positive regulation of immune cell recruitment by
2-AG is the main pro-inflammatory effect of endocannabinoids or cannabinoids in vitro that has been reported. AEA, on the other hand, was found to down-regulate leukocyte functions, such as pro-inflammatory cytokine release and nitric oxide production. A few reports also show increased production of the anti-inflammatory cytokine IL-10 by cells treated with AEA. In all cases, the involvement of the CB₂ receptor was confirmed by the use of a selective antagonist. However, it is still possible that endocannabinoid metabolites are involved in the reported effects. Noteworthy, this hypothesis was tested in human eosinophils which were shown to migrate in response to 2-AG [101]. In this model, the effect of 2-AG on eosinophil transmigration was blocked by the pre-incubation of cells with a CB₂ receptor antagonist. However, a CB₂-selective agonist failed to mimic the impact of 2-AG, and its 15-LO-derived metabolites were suggested to be necessary for eosinophils to migrate. Therefore, the successful blockade of endocannabinoid-induced effects with a CB₂ antagonist does not always rule out the possibility that other mediators, notably endocannabinoid metabolites, are involved as well [102]. This concept could explain why endocannabinoids can induce both pro- and anti-inflammatory effects.

Table 4 CB₂-mediated effects of endocannabinoids on immune cell functions

Cell type	Species	Endocannabinoid	Effects	References
Anti-inflammatory effects				
Astrocytes	Rat	AEA	↓ TNF-α	[103]
Dendritic cells	Human	AEA	↓ IL-6, IL-12 and IFN-α	[104]
Microglia (BV-2 cell line)	Mouse	AEA	↓ Nitric oxide	[105]
Microglia	Mouse	AEA	↑ IL-10	[106]
			↑ IL-10	[107]
			↓ IL-12p70 and IL-23	
Neutrophils	Human	2-AG	↓ fMLP-induced migration	[79]
Splenocytes	Human	AEA	↓ Primary and secondary antibody formation	[109]
T cells (not separated)	Human	AEA	↓ Cell proliferation	[110]
CD4+ T cells	Human	2-AG	↑ SDF-1-induced migration	[111]
CD8 + T cells	Human	AEA	↓ IL-17, IFN-γ and TNF-α	[110]
			↓ IFN-γ and TNF-α	[110]
			↓ SDF-1-induced migration	[112]
Pro-inflammatory effects				
B cells	Human	2-AG	↑ Migration	[113]
	Mouse	2-AG	↑ Migration	[114, 115]
Dendritic cells	Human	2-AG	↑ Migration	[116]
Eosinophils	Human	2-AG	↑ Migration	[74, 117]
Macrophages	Mouse (peritoneal)	2-AG	↑ Zymosan phagocytosis	[118]
	Human (HL-60)	2-AG	↑ Actin polymerization	[119]
			↑ Adhesion to fibronectin	
			↑ MCP-1 and IL-8	[120]
Microglia (BV-2 cell line)	Mouse	2-AG	↑ Migration	[121]
Monocytes	Human	2-AG	↑ Adhesion to fibronectin	[122]
NK cells	Human	2-AG	↑ Migration	[123]
T cells	Human (Jurkat)	2-AG	↑ L- and P-selectin	[124]

TNF tumor necrosis factor, IL interleukin, IFN interferon, LPS lipopolysaccharide, fMLP formyl-Met-Leu-Phe, SDF stromal cell-derived factor, LTC₄ leukotriene C₄, EXC₄ eoxin C₄, MCP monocyte chemoattractant protein
CB₂ activation by exogenous agonists in vitro

In contrast to endocannabinoids, CB₂ receptor agonists have only been shown to exert anti-inflammatory effects on leukocytes, which are detailed in Table 5. Some of the studies were performed using a non-selective cannabinoid, but the involvement of the CB₂ receptor was always confirmed with an antagonist. In addition to downregulating leukocyte functions, such as cytokine release, reactive oxygen species production and migration, CB₂ agonists limited HIV-1 expression, and replication in human macrophages and microglia [75, 125].

In vivo studies of CB₂ receptor functions

Impact of CB₂ knockout in inflammation models

Transgenic mice have greatly contributed to our understanding of this receptor’s role in human disease, including

Table 5 Effects of CB₂ agonists on immune cell functions

Cell type	Species	Agonist	Effects	References
Astrocytes	Human	WIN 55,212-2	↓ Nitric oxide	[126]
			↓ TNF-α, IL-10, MCP-1 and CCL5	
Dendritic cells	Mouse	Δ⁹-THC	↑ NF-κB-dependent apoptosis	[127]
		GP1a	↓ MMP-9	[128]
			↓ Migration	
Monocytes	Human	JWH-015	↓ CCL2 and CCL3-induced migration	[78]
		HU-308	↓ TNF-α-induced transendothelial migration	[129]
Macrophages (monocyte-derived)	Human	JWH-133	↓ Expression of 35 genes upregulated by LPS	[130]
		GP1a	↓ HIV-1 replication	[75]
		O-1966		
	Mouse (RAW264.7)	WIN 55,212-2	↓ Reactive oxygen species	[131]
			↓ Nitric oxide	[132]
	Mouse (peritoneal)	Δ⁹-THC	↓ RANTES-induced migration	[133]
		JWH-133	↑ IL-10	[134]
			↓ IL-12p40	
	Mouse (clone 63)	Δ⁹-THC	↓ Activation of CD4+ T cells	[59]
Mast cells	Rat (RBL-2H3)	WIN 55,212-2	↓ β-Hexosaminidase release	[135]
		CP 55,940		
Microglia	Human	WIN 55,212-2	↓ HIV-1 expression	[125]
		JWH-015	↓ LPS-induced TNF-α production	[136]
			↓ Migration	
Neutrophils	Mouse	JWH-133	↓ MIP-2α-induced migration	[137]
	Human	JWH-133	↓ TNF-α- and MIP-9 release	[138]
Splenocytes	Human	Δ⁹-THC	↓ Primary and secondary antibody formation	[109]
T cells	Human (Jurkat)	Δ⁹-THC	↓ Th2 cytokine production	[139]
		CP 55,940	↓ SDF-1-induced migration	[140]
		WIN 55,212-2		
		JWH-015		
	Mouse	O-1966	↓ NF-κB activation	[141]
			↑ SOCS5 expression	
			↑ IL-10	
CD8+ T cells	Human	JWH-015	↓ SDF-1-induced migration	[140]

CCL chemokine (C–C motif) ligand, *NF-κB* nuclear factor kappa-light-chain-enhancer of activated B cells, *MMP* matrix metalloproteinase, *MIP* macrophage inflammatory protein, *HIV* human immunodeficiency virus, *SOCS* suppressor of cytokine signaling
inflammatory conditions. In this regard, several models have shown that mice that are lacking the CB2 receptor have exacerbated inflammation (summarized in Table 6). The effects that were usually observed in \(\text{CB2}^{/-} \) animals included increased leukocyte recruitment (often neutrophils) and pro-inflammatory cytokine production, which often caused tissue damage. Conversely, one study found CB2-deficient mice to be in better condition than the wild-type group [142]. However, the model was cecal ligation-induced sepsis, a condition in which efficient bacterial clearance by the immune system is vital. The authors’ observations that the \(\text{CB2}^{/-} \) group had less mortality and less bacterial invasion was explained by the lower levels of IL-10 in these mice, which might have led to a better phagocytic response. Overall, these findings are consistent with the other reports of increased immune cell functions in the absence of the CB2 receptor.

CB2 activation by exogenous agonists in vivo

The potential of activating CB2 in vivo to treat inflammation has been investigated in numerous studies. Two main strategies are employed: (1) the administration of a CB2 receptor agonist; and (2) the administration of an endocannabinoid hydrolysis inhibitor to augment endocannabinoid signaling.

The administration of CB2 receptor agonists has been performed in several inflammation models. Table 7 summarizes the data that were generated with this approach. In many instances, the chosen agonist was not CB2-selective and targeted both cannabinoid receptors, in which case, the involvement of CB2 was confirmed by showing that the treatment of animals with a CB2 antagonist abrogated the effects of the cannabinoid receptor agonist. Altogether, the results of those studies point to the conclusion that CB2 activation improves inflammation in mice. The recruitment of leukocytes to tissues and the production of pro-inflammatory cytokines and reactive oxygen species were downregulated in various inflammation models. In the case of atherosclerosis, two studies showed not only a decrease in inflammatory cells and mediators upon cannabinoid treatment, but also a slower progression of the disease [148, 149]. Indeed, oral \(\Delta^9 \)-THC administration, at doses that are suboptimal for inducing psychotropic effects, resulted in reduced atherosclerotic lesion development. Since these effects of \(\Delta^9 \)-THC were shown to be mediated by the CB2 receptor, this supports that a selective CB2 receptor agonist might be a valuable tool for the treatment of atherosclerosis.

CB2 activation by endocannabinoids in vivo

The most widely used approach to investigate the impact of endocannabinoids in vivo is the blockade of their hydrolysis, as it is an efficient way to increase their levels in tissues. Despite the numerous studies that have used this method in animal models, it is still unclear whether the effects of endocannabinoids are pro- or anti-inflammatory. This is due, in part, to the presence of numerous enzymes that can metabolize them into other bioactive lipids. The main pathway is hydrolysis into AA by lipases, such as MAG lipase for 2-AG [164] and FAAH for AEA [165]. AA is a precursor for the biosynthesis of leukotrienes, prostaglandins, and other lipid mediators of inflammation. Alternatively, endocannabinoids can undergo oxidation

Table 6 Anti-inflammatory effects of CB2 receptor deletion in inflammation models

Model	Species	Genotype	Effects	References
DNFB-induced hypersensitivity	Mouse	\(\text{CB2}^{/-} \)	↑ Neutrophil recruitment	[143]
			↑ Ear swelling	
Hepatic ischemia–reperfusion injury	Mouse	\(\text{CB2}^{/-} \)	↑ Neutrophil recruitment	[144]
			↑ Inflammatory cytokines	
			↑ Liver damage	
TNBS-induced colitis	Mouse	\(\text{CB2}^{/-} \)	↑ Colitis	[145]
			↑ TNF-\(\alpha \) and IL-1\(\beta \)	
Myocardial ischemia–reperfusion injury	Mouse	\(\text{CB2}^{/-} \)	↑ Neutrophil and macrophage infiltration	[146]
			↓ IL-10	
Traumatic brain injury	Mouse	\(\text{CB2}^{/-} \)	↑ TNF-\(\alpha \), iNOS and ICAM mRNA	[147]
			↑ Blood–brain barrier ICAM mRNA	
Cecal ligation-induced sepsis	Mouse	\(\text{CB2}^{/-} \)	↓ IL-10	[142]
			↓ Bacterial invasion	
			↓ Mortality	

DNFB 2,4-dinitrofluorobenzene, TNBS trinitrobenzenesulfonic acid, iNOS inducible nitric oxide synthase, ICAM intercellular adhesion molecule.
and the biological effects of the metabolites that originate from these pathways are not very well characterized [166]. Therefore, it is not possible to conclude that endocannabinoids exert their effects through CB₂ in an inflammation model unless this is confirmed by the genetic or pharmacological blockade of the receptor. In this respect, Table 8 only presents studies that have thoroughly confirmed the involvement of the CB₂ receptor in the effects they observed. A limited number of studies reported pro-inflammatory effects of endocannabinoids in vivo, and only three of those (listed in Table 9) were confirmed to involve the

Model	Species	Treatment	Effects	References
Atherosclerosis	Mouse	∆⁹-THC	↓Atherosclerotic lesions	[149]
	Mouse	WIN 55,212-2	↓Macrophage infiltration, Leukocyte adhesion	
	Mouse	∆⁹-THC	↓Atherosclerotic lesions, Macrophage infiltration, MCP-1, IL-6 and TNF-α	
Breast cancer cell injection	Mouse	∆⁹-THC	↓Splenocyte proliferation	[150]
Brain ischemia	Mouse	JWH-133	↓Microglia and macrophage infiltration, IL-6, MCP-1, MIP-1α, CCL-5 and TNF-α	
	Mouse	JWH-133	↓IL-6, MCP-1, MIP-1α, CCL-5 and TNF-α, iNOS	[151]
Experimental autoimmune encephalomyelitis	Mouse	∆⁹-THC	↓Monocyte recruitment, IFN-γ and IL-2, T cell proliferation	[152]
Hepatic ischemia–reperfusion injury	Mouse	∆⁸-THCV	↓Hepatic injury, CCL3, CXCL2 and TNF-α, Neutrophil infiltration	[153]
Germinal matrix hemorrhage-induced neuroinflammation	Rat	JWH-133	↓TNF-α, Microglia accumulation	[154]
L. pneumophila infection	Mouse	∆⁹-THC	↓IFN-γ and IL-12	[155]
Influenza virus infection	Mouse	∆⁹-THC	↓Lymphocyte and monocyte recruitment, Viral hemagglutinin	[156]
Myocardial ischemia–reperfusion injury	Mouse	WIN 55,212-2	↓Myeloperoxidase, IL-1β and IL-8	[157]
Ovalbumin-induced asthma	Guinea pig	CP 55,940	↓Myeloperoxidase, Mast cell degranulation, TNF-α and PGD₂	[158]
LPS-induced interstitial cystitis	Mouse	JWH-015	↓Leukocyte infiltration, Myeloperoxidase, TNF-α, IL-1β and IL-1β	[159]
Sepsis	Mouse	HU308	↓Adherent leukocytes in submucosal venules	[160]
Spinal cord injury	Mouse	O-1966	↓Leukocyte infiltration, CXCL9 and CXCL11, IL-23p19 and IL-23R, TLR expression	[161]
Stress-induced neuroinflammation	Mouse	JWH-133	↓TNF-α and MCP-1, COX-2, iNOS and NF-κB	[162]
Traumatic brain injury	Mouse	O-1966	↓Microglia and macrophage infiltration, Blood–brain barrier disruption	[163]

PGD₂ prostaglandin D₂, COX-2 cyclooxygenase-2
CB₂ receptor. In two models of dermatitis in mice, treatment with the CB₂ antagonist SR144528 improved inflammation by inhibiting granulocyte recruitment and pro-inflammatory mediator production [174, 175]. In both cases, this translated in a measurable decrease in swelling. As presented above in Table 6, 2-AG has been implicated in the recruitment and migration of B and T cells, dendritic cells, eosinophils, monocytes, and natural killer cells in a CB₂-dependent manner, which could very well translate to in vivo studies. However, to this day, there is no published data demonstrating that exogenous cannabinoids and selective CB₂ receptor agonists have pro-inflammatory effects. Therefore, it is possible that the pro-inflammatory effects of endocannabinoids that are presented in Table 9 are a result of CB₂ activation and/or the action of one or more endocannabinoid metabolites [102].

Of note, many disorders cause a change in CB₂ receptor protein levels, due to pre-existing pro-inflammatory conditions. In multiple sclerosis and amyotrophic lateral sclerosis, for instance, the expression of CB₂ in microglia is increased, both in human tissues and mouse models [176, 177]. A similar effect was reported in a rodent model of neuropathic pain [178]. This certainly facilitates the impact of CB₂ receptor activation by exogenous agonists of endocannabinoids in these inflammation models.

Table 8 Anti-inflammatory effects of CB₂ activation by endocannabinoids in mouse models of inflammation

Model	Treatment	Effects	References
ConA-induced hepatitis	AEA	↓ Inflammatory cytokines	[144]
Carrageenan-induced acute inflammation	URB602	↓ Edema	[167]
Experimental autoimmune encephalomyelitis	WWL70	↓ Nociception	
		↓ iNOS, COX-2, TNF-α and IL-1β	[168]
		↓ T cell infiltration	
		↓ Microglial activation	
		↓ NF-κB activation	
		↓ Leukocyte infiltration	[169]
		↓ BALF cytokines and chemokines	[170]
		↓ Edema	[171]
		↓ TNF-α and IL-1β	
	FAAH KO	↓ Leukocyte infiltration	[172]
		↓ BALF cytokines and chemokines	[173]
	JZL184	↓ Leukocyte infiltration	[174]
		↓ Microvascular perfusion	
LPS-induced acute lung injury	JZL184	↓ Leukocyte infiltration	[175]
		↓ Submucosa edema	
		↓ Leukocyte infiltration	[176]
		↓ Circulating inflammatory markers	[177]
		↓ Allodynia	[178]
Kaolin and carrageenan-induced osteoarthritis	URB597	↓ Microvascular perfusion	[179]
TPBS-induced colitis	JZL184	↓ Microvascular perfusion	[180]
		↓ Submucosa edema	[181]
		↓ Circulating inflammatory markers	[182]

ConA concanavalin A, BALF bronchoalveolar lavage fluid

Table 9 Pro-inflammatory effects of CB₂ signaling in mouse models of inflammation

Model	Treatment	Effects	References
Primary immunization	2-AG	↑ Delayed-type hypersensitivity	[116]
TPA-induced ear inflammation	SR144528	↑ DC migration to draining lymph nodes	[179]
Oxazolone-induced dermatitis	SR144528	↑ Neutrophil recruitment	[175]
		↑ Swelling	
		↑ LTB₄ synthesis	
		↑ Eosinophil recruitment	[176]
		↑ Swelling	[177]
		↑ MCP-1, MIP-1 and TNF-α	[178]

TPA 12-O-tetradecanoylphorbol-13-acetate

CB₂ receptor. In two models of colitis in mice, treatment with the CB₂ antagonist SR144528 improved inflammation by inhibiting granulocyte recruitment and pro-inflammatory mediator production [174, 175]. In both cases, this translated in a measurable decrease in swelling. As presented above in Table 6, 2-AG has been implicated in the recruitment and migration of B and T cells, dendritic cells, eosinophils, monocytes, and natural killer cells in a CB₂-dependent manner, which could very well translate to in vivo studies. However, to this day, there is no published data demonstrating that exogenous cannabinoids and selective CB₂ receptor agonists have pro-inflammatory effects. Therefore, it is possible that the pro-inflammatory effects of endocannabinoids that are presented in Table 9 are a result of CB₂ activation and/or the action of one or more endocannabinoid metabolites [102].

Of note, many disorders cause a change in CB₂ receptor protein levels, due to pre-existing pro-inflammatory conditions. In multiple sclerosis and amyotrophic lateral sclerosis, for instance, the expression of CB₂ in microglia is increased, both in human tissues and mouse models [176, 177]. A similar effect was reported in a rodent model of neuropathic pain [178]. This certainly facilitates the impact of CB₂ receptor activation by exogenous agonists of endocannabinoids in these inflammation models.
The CB2 receptor as a potential therapeutic target

While there is a large body of evidence supporting that CB2 receptor activation has anti-inflammatory effects, it has yet to be targeted to treat human disease. In the two previous sections, we presented in vitro and in vivo studies that suggested a role for the CB2 receptor in numerous inflammatory conditions. In this section, we discuss the potential of the CB2 receptor as a target in the treatment of chronic inflammatory diseases, such as rheumatoid arthritis, atherosclerosis, and inflammatory bowel disease.

Potential in rheumatoid arthritis

Rheumatoid arthritis (RA) is an inflammatory disease that affects approximately 1% of the adult population worldwide. RA is characterized by chronic inflammation of the synovium, cartilage destruction, and bone loss. Patients with RA exhibit an influx of innate (neutrophils, macrophages) and adaptive (lymphocytes) immune cells in the synovial cavity. These cells promote inflammation and connective tissue damage by producing cytokines (TNF-α, IL-6, IL-1β), pro-inflammatory lipids, and metalloproteinases (MMPs). The synovial lining becomes hyperplastic and an invasive structure (the pannus) is formed. Osteoclasts become exaggeratedly activated and cause bone resorption [180].

2-AG and AEA are present in the synovial fluid of patients with RA, but not healthy volunteers, suggesting an involvement of the endocannabinoid system in the disease. CB1 and CB2 mRNA and proteins were also found in the synovial tissues of RA patients [181]. CB2 activation can inhibit the production of pro-inflammatory cytokines and MMP release from fibroblast-like synoviocytes (FLSs) [182, 183]. It can also promote osteoblast differentiation in vitro [33, 184] and inhibit FLS proliferation [182]. These observations indicate that CB2 receptor activation in RA joints could improve multiple aspects of the disease, including inflammation, FLS hyperplasia, and bone loss.

In vivo, CB2 agonists have proven to be beneficial in a murine model of rheumatoid arthritis, collagen-induced arthritis (CIA). One study showed treatment with the CB2 receptor agonist JWH 133 to improve arthritis severity and to reduce bone destruction and leukocyte infiltration in the joints [183]. Another group investigated the impact of a different CB2-selective agonist, HU-308. They found that the agonist decreased swelling, synovial inflammation, and joint destruction, in addition to lowering circulating antibodies against collagen II [185]. Finally, the agonist HU-320 ameliorated established CIA [186]. Of note, CB2 agonists did not prevent the onset of RA in any of those reported studies, as there were no differences in disease incidence between groups.

This growing body of evidence establishes the CB2 receptor as a promising target for the treatment of RA. In all three of the above-mentioned studies, the CIA model was used to test CB2 agonists. Given that there is no animal model of RA that perfectly duplicates all aspects of the human condition, these findings should be confirmed in different models.

Potential in atherosclerosis

Atherosclerosis is an inflammatory disease that is characterized by the presence of arterial plaques. These lesions contain immune cells, lipid-laden macrophages (foam cells), cholesterol, smooth muscle cells, and collagen fibres [187]. The physical rupture of the plaques causes the occlusion of arteries, which can lead to tissue infarction. Plaque development is influenced by inflammatory mediators, such as cytokines and chemokines, which are crucial to the recruitment of immune cells to the intima. In this respect, therapies that would downregulate the production of these mediators could reduce the progression of atherosclerotic lesion development. Since the CB2 receptor is known to decrease the production of numerous chemokines and to inhibit leukocyte migration in vitro and in vivo, it emerged as a potential target to treat atherosclerosis.

A recent study specifically aimed to characterize the endocannabinoid system in human foam cells [188]. The authors found that the CB2 agonist JHW-015 significantly decreased oxLDL accumulation in these macrophages. Moreover, it reduced the production of TNF-α, IL-6, and IL-10 and the expression of CD36, a scavenger receptor that is responsible for the uptake of modified lipoproteins by macrophages and the induction of foam cell formation. The endocannabinoids 2-AG and AEA mimicked these effects, which were block by the CB2 antagonist SR144528. These findings are in accordance with a previous study which showed that CB2 activation by WIN 55,212-2 reduces the oxLDL-induced inflammatory response in rat macrophages [131].

As briefly discussed in the section entitled In vivo studies of CB2 receptor functions, the role of the CB2 receptor was investigated in mouse models of atherosclerosis. The first study to demonstrate the benefits of CB2 activation in atherosclerosis was performed in ApoE−/− mice using low doses of the cannabinoid Δ9-THC, which diminished inflammation and blocked the progression of the disease [149]. These effects were prevented by SR144528, confirming the involvement of the CB2...
The anti-atherosclerotic effects of CB2 in the ApoE\(^{-/-}\) model were later confirmed with WIN 55,212-2 as an agonist, and the antagonist AM630 confirmed the mechanism to be CB2-dependent [148, 189]. In Ldlr\(^{-/-}\)-CB2\(^{+/-}\) double knockout mice, lesional macrophage and smooth muscle cell contents were higher than in Ldlr\(^{-/-}\)-CB2\(^{+/+}\) animals [190]. In Ldlr\(^{-/-}\) mice deficient for CB2 in hematopoietic cells only, plaque area after 12 weeks on an atherogenic diet was larger than in mice with no CB2 deficiency [191].

In summary, a large body of evidence strongly suggests that CB2 receptor activation is an appropriate target for atherosclerosis treatment. CB2 agonists have the potential to be beneficial on many levels, as they were shown to improve inflammatory cell recruitment and activation, lipid uptake by macrophages, and the size of atherosclerotic plaques. However, a few reports show conflicting data, especially in the Ldlr\(^{-/-}\) model. A report shows unaltered lesion size following WIN 55,212-2 treatment in this model, although CB2 receptor activation did decrease lesional macrophage accumulation [192]. Another group treated Ldlr\(^{-/-}\) mice with JWH-133 and found no significant effect on lesion size or on their content in macrophages, lipids, smooth muscle cells, collagen, and T cells [193]. More investigation is required to determine the causes of these discrepancies before moving forward in the development of therapies targeting CB2 for atherosclerosis.

Potential in inflammatory bowel disease

Inflammatory bowel disease (IBD) includes two main conditions: ulcerative colitis and Crohn’s disease. They are caused by an excessive immune response and can affect any part of the gastrointestinal tract [194]. The endocannabinoid system first gained interest in IBD pathophysiology in light of a study that described a protective effect of CB1 in DNBS-induced colitis [195]. Cannabinoids were then shown to enhance epithelial wound healing in a CB1-dependent fashion [76]. The authors of the latter study also evaluated the expression of cannabinoid receptors in human IBD tissue by immunohistochemistry. They found that the CB1 receptor was expressed in the normal human colon, but that CB2 expression was higher in IBD tissues and that its presence was concentrated in plasma cells and macrophages. These findings raised the hypothesis that the CB2 receptor was also involved in the inflammatory component of IBD.

A subsequent study reported that a FAAH inhibitor decreased inflammation in the TNBS-induced colitis model, and that the deletion of either CB1 or CB2 abrogated this effect [196]. In the same colitis model, the use of the MAG lipase inhibitor JZL184 to increase 2-AG levels also inhibited the development of colitis [173]. Mice treated with JZL184 had less colon alteration and lower expression of pro-inflammatory cytokines, and these effects were abolished by the antagonists AM251 (CB1) and AM630 (CB2).

Several groups tested the impact of a CB2 receptor agonist in the IBD models. The CB2-selective agonists JWH-133 and AM1241 both protected against TNBS-induced colitis, whereas AM630 worsened it [197]. The non-psychotropic cannabinoid cannabigerol (CBG) was tested in DNBS-induced colitis and was found to reduce the colon weight/colon length ratio (an indirect marker of inflammation), MPO activity, and iNOS expression by a CB2-dependent mechanism [198]. Finally, the plant metabolite and unconventional CB2 agonist (E)-\(\beta\)-caryophyllene (BCP) was also evaluated in a model of DSS-induced colitis. Oral administration of BCP decreased micro- and macro-scopic colon damage, MPO activity, NF-kB activation, and pro-inflammatory cytokine production [199].

This wide array of CB2 receptor agonists being able to improve IBD in animal models prompted the development of highly selective compounds that could be used to treat the disease in humans. In this regard, a research group synthesized a series of CB2-selective agonists and tested the resulting lead compounds in models of experimental colitis [200, 201]. Intra-peritoneal injection of the agonists was effective at protecting mice against colitis. Of note, a selective compound that is orally effective in experimental colitis was later synthesized [202].

Conclusion

In light of the evidence that was generated over the past two decades by the scientific community, we can draw a few general conclusions regarding the role of the CB2 receptor. First, it is mainly found in immune tissues and is expressed in most immune cell types. Second, its deletion in animals usually causes an exacerbated inflammatory phenotype in several models, due to an upregulation of immune cell functions. Third, CB2 activation by cannabinoids, either in vitro or in vivo, usually decreases inflammatory cell activation. Finally, the administration of CB2 agonists in animal models of inflammatory disease can slow the progression of some diseases, in addition to reducing inflammation.

Several questions still need to be investigated. For example, there is no consensus regarding the expression of the CB2 receptor in non-immune brain cells, and the role that CB2 might play in brain functions is unknown. Moreover, the impact of endocannabinoids on immune cells is still unclear. While most animal studies show that the blockade of endocannabinoid hydrolysis results in less inflammation, it is not possible to tell whether these effects
are caused only by CB$_2$ activation and whether the opposite would occur in humans. In this respect, endocannabinoids can induce human leukocyte migration (Table 4). However, the impact of endocannabinoid metabolites on leukocyte functions is not well defined, and this should be addressed before endocannabinoid hydrolysis inhibitors that can be considered as a valid strategy to enhance CB$_2$ receptor signaling [102]. Finally, the few CB$_2$ agonists that are currently being developed aim at treating inflammatory pain [203–205]. Perhaps, these novel compounds are worthy of sparking new studies to define their putative beneficial role in inflammatory diseases.

Acknowledgments This work is/was supported by Grants to NF from the Canadian Institutes of Health Research (MOP-97930) and The Natural Sciences and Engineering Research Council of Canada. NF also received operating grants from le Fonds sur les maladies respiratoires J.-D. Bégain—P.-H. Lavoie. CT was the recipient of a doctoral award from the Canadian Institutes of Health Research. MRB, ML, and NF are members of the inflammation group of the Respiratory Health Network of the Fonds de recherche en Santé–Québec.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger EM, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1946–1949
2. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochim Pharmacol 50(1):83–90
3. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65. doi:10.1038/365061a0
4. Shire D, Calandra B, Rinaldi-Carmona M, Oustric D, Pessegue B, Bonnin-Cabanne O, Le Fur G, Caput D, Ferrara P (1996) Molecular cloning, expression and function of the murine CB$_2$ peripheral cannabinoid receptor. Biochim Biophys Acta 1307(2):132–136
5. Brown SM, Wager-Miller J, Mackie K (2002) Cloning and molecular characterization of the rat CB$_2$ cannabinoid receptor. Biochim Biophys Acta 1576(3):255–264
6. Pertwee RG (1997) Pharmacology of cannabinoid CB$_1$ and CB$_2$ receptors. Pharmacol Ther 74(2):129–180
7. Pertwee RG (2015) Endocannabinoids and their pharmacological actions. Handb Exp Pharmacol 231:1–37. doi:10.1007/978-3-319-20825-1_1
8. Showalter VM, Compton DR, Martin BR, Abdo ME (1996) Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB$_2$): identification of cannabinoid receptor subtype selective ligands. J Pharmacol Exp Ther 278(3):989–999
9. Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, Lai Y, Ma AL, Mitchell RL (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB$_1$ and CB$_2$ receptors. Mol Pharmacol 48(3):443–450
10. Gonsiorek W, Lunn C, Fan X, Narula S, Lundell D, Hipkin RW (2000) The Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol Pharmacol 57(5):1045–1050
11. Leggett JD, Aspley S, Beckett SR, D’Antona AM, Kendall DA, Kendall DA (2004) Oleamide is a selective endogenous agonist of rat and human CB$_2$ cannabinoid receptors. Br J Pharmacol 141(2):253–262. doi:10.1038/sj.bjp.0705607
12. Bisogno T, Melck D, Bobrov M, Gretenkay MA, Bezuglov VV, Dev Petrosselis L, Di Marzo V (2000) N-Acyl-dopamines: novel synthetic CB$_2$ cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabinimetic activity in vitro and in vivo. Biochem J 351(Pt 3):817–824
13. Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z, Shalev DE, Kustanovich I, Mechoulam R (2001) 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB$_2$ receptor. Proc Natl Acad Sci USA 98(7):3662–3665. doi:10.1073/pnas.061029898
14. Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6(8):635–664
15. Gertsch J, Leoniti M, Raduner S, Razc I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA 105(26):10909–10914. doi:10.1073/pnas.0803601105
16. Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP, Vanderah TW, Lai J, Porreca F, Makiyannis A, Malan TP Jr (2003) Activation of CB$_2$ cannabinoid receptors by AM1214 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci USA 100(18):10529–10533. doi:10.1073/pnas.061029898
17. Akopian AN, Ruparel NB, Patwardhan A, Hargreaves KM (2008) Cannabinoids desensitize capsaicin and mustard oil responses in sensory neurons via TRPA1 activation. J Neurosci 28(5):1064–1075. doi:10.1523/JNEUROSCI.0561-06.2008
18. Huffman JW, Liddle J, Yu S, Aung MM, Abdo ME, Wiley JL, Martin BR (1999) 3-(1,1-Dimethylbutyl)-1-deoxy-delta6-THC and related compounds: synthesis of selective ligands for the CB$_2$ receptor. Bioorg Med Chem 7(12):2905–2914
19. McDougall JJ, Yu V, Thomson J (2008) In vivo effects of CB$_2$ receptor-selective cannabinoids on the vasculature of normal and arthritic rat knee joints. Br J Pharmacol 153(2):358–366. doi:10.1038/sj.bjp.0707565
20. Valenzano KJ, Tafesse L, Lee G, Harrison JE, Boulet JM, Gottshall SL, Mark L, Pearson MS, Miller W, Shan S, Rabadi L, Rotshenyn Y, Chaffer SM, Turchin PL, Elsemore DA, Toth M, Koetzner L, Whiteside GT (2005) Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology 48(5):658–672. doi:10.1016/j.neuropharm.2004.12.008
21. Hanus L, Breuer A, Tchilibon S, Shiloah S, Goldenberg D, Horowitz M, Pertwee RG, Ross RA, Mechoulam R, Fride E (1999) HU-308: a specific agonist for CB$_2$, a peripheral cannabinoid receptor. Proc Natl Acad Sci USA 96(25):14228–14233
22. Ross RA, Brockie HC, Stevenson LA, Murphy VL, Templeton F, Makiyannis A, Pertwee RG (1999) Agonist-inverse agonist characterization at CB$_1$ and CB$_2$ cannabinoid receptors of...
23. Pasquinii S, Botti L, Semeraro T, Mugnaini C, Ligresti A, Palazzo E, Maione S, Di Marzo V, Corelli F (2008) Investigations on the 4-quinolone-3-carboxylic acid motif. 2. Synthesis and structure-activity relationship of potent and selective cannabinoid-2 receptor agonists endowed with anagelse activity in vivo. J Med Chem 51(16):5075–5084. doi: 10.1021/jm080052f

24. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Defrance T, Casellas P (1998) Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther 285(1):285–292

25. Manera C, Benetti V, Castelli MP, Cavallini T, Lazzarotti S, Pibiri F, Saccomanni G, Tuccinardi T, Vannacci A, Martinelli A, Ferrarini PL (2006) Design, synthesis, and biological evaluation of analogues of the robust and selective CB2 cannabinoid ligand 1-(2′,4′-dichlorophenyl)-6-methyl-N-piperidin-1-yl-1,4-dihydropyrazolo[1,2-c]pyrazole-3-carboxamide derivatives as CB2 selective agonists. J Med Chem 49(25):7502–7512. doi: 10.1021/jm060929d

26. Thomas BF, Gilliam AF, Burch DF, Roche MJ, Seltzman HH (1998) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 125(2):1092–1101. doi: 10.1038/sj.bjp.0707446

27. Cheer JF, Cadogan AK, Marsden CA, Fone KC, Kendall DA (1999) Modification of 5-HT2 receptor mediated behaviour in the rat by oleamide and the role of cannabinoid receptors. Neuropharmacology 38(4):533–541

28. Patil M, Patwardhan A, Salas MM, Hargreaves KM, Akopian AN (2011) Cannabinoid receptor antagonists AM251 and AM630 activate TRPA1 in sensory neurons. Neuropharmacology 61(4):778–788. doi: 10.1016/j.neuropharm.2011.05.024

29. Iwamura H, Suzuki H, Ueda Y, Kaya T, Inaba T (2001) In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor. J Pharmacol Exp Ther 296(2):420–425

30. Buckley NE, McCoy KL, Mezey E, Bonner T, Zimmer A, Felder CC, Glass M, Zimmer A (2000) Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB2 receptor. Eur J Pharmacol 396(2–3):141–149

31. Ziring D, Wei B, Velazquez P, Schrage M, Buckley NE, Braun J (2006) Formation of B and T cell subsets require the cannabinoid receptor CB2. Immunogenetics 58(9):714–725. doi: 10.1007/s00221-006-0138-x

32. Marchalant Y, Brownjohn PW, Bonnet A, Kleffmann T, Ashton JC (2014) Validating antibodies to the cannabinoid CB2 receptor: antibody sensitivity is not evidence of antibody specificity. J Histochem Cytochem 62(6):395–404. doi: 10.1369/0022155414530995

33. Graham ES, Angel CE, Schwarcz LE, Dunbar PR, Glass M (2010) Detailed characterisation of CB2 receptor protein expression in peripheral blood immune cells from healthy human volunteers using flow cytometry. Int J Immunopathol Pharmacol 23(1):25–34
The CB2 receptor and its role as a regulator of inflammation

50. Carlisle SJ, Marciano-Cabral F, Staab A, Ludwick C, Cabral GA (2002) Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation. Int Immunopharmacol 2(1):69–82

51. Sherwood TA, Nong L, Agudelo M, Newton C, Widen R, Klein TW (2009) Identification of transcription start sites and preferential expression of select CB2 transcripts in mouse and human B lymphocytes. J Neuroimmune Pharmacol 4(4):476–488. doi:10.1007/s11481-009-9169-z

52. Lu Q, Straiker A, Lu Q, Maguire G (2000) Expression of CB2 cannabinoid receptor mRNA in adult rat retina. Vis Neurosci 17(1):91–95

53. Lee SF, Newton C, Widen R, Friedman H, Klein TW (2001) Downregulation of cannabinoid receptor 2 (CB2) messenger RNA expression during in vitro stimulation of murine splenocytes with lipopolysaccharide. Adv Exp Med Biol 493:223–228. doi:10.1007/3-06-47611-8_26

54. Schatz AR, Lee M, Condie RB, Pulaski JT, Klegeris A, Bissonnette CJ, McGeer PL (2003) Reduction of CB2 cannabinoid receptor protein by human peripheral blood leukocytes. J Neuroimmune Pharmacol 8(1):323–332. doi:10.1007/s11481-002-9430-8

55. Ashton JC, Friberg D, Darlington CL, Smith PF (2006) Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci Lett 396(2):113–116. doi:10.1016/j.neulet.2005.11.038

56. Matias I, Pochard P, Orlando P, Salzet M, Pestel J, Di Marzo V (2002) Presence and regulation of the endocannabinoid system in human dendritic cells. Eur J Biochem 269(15):3771–3778

57. Atwood BK, Mackie K (2010) Cannabinoid receptor mRNA expression during in vitro stimulation of murine splenocytes with lipopolysaccharide. Adv Exp Med Biol 493:223–228. doi:10.1007/3-06-47611-8_26

58. Derbenev AV, Stuart TC, Smith BN (2004) Cannabinoids suppress synaptic input to neurones of the rat dorsal motor nucleus of the vagus nerve. J Physiol 559(Pt 3):923–938. doi:10.1113/jphysiol.2004.067470

59. McCoy KL, Matveyeva M, Carlisle SJ, Cabral GA (1999) Cannabinoid inhibition of the processing of intact lysosome by macrophages: evidence for CB2 receptor participation. J Pharmacol Exp Ther 293(3):1620–1625

60. Klegersis A, Bissonnette CJ, McGear PL (2003) Reduction of human monocyte cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br J Pharmacol 139(4):775–786. doi:10.1038/sj.bjp.0705304

61. Griffin G, Fernando SR, Ross RA, McKay NG, Ashford ML, Shire D, Huffman JW, Yu S, Lainton JA, Pertwee RG (1997) The endocannabinoid 2-arachidonoylglycerol activates neutrophils release antimicrobial effectors against E. coli, S. aureus, HSV-1, and RSV. J Leukoc Biol 93(2):267–276. doi:10.1189/jlb.0412200

62. Chouinard F, Turcotte C, Guan X, Larose MC, Poirier S, Bouchar L, Provost V, Flamand L, Grandvaux S, Flamand N (2013) 2-Arachidonoylglycerol- and arachidonic acid-stimulated neutrophils release antimicrobial effectors against E. coli, S. aureus, HSV-1, and RSV. J Leukoc Biol 93(2):267–276. doi:10.1189/jlb.0412200

63. Oka S, Ikeda S, Kishimoto S, Gokoh M, Yanagimoto S, Waku K, Sugiuira T (2004) 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces the migration of EoL-1 human eosinophilic leukemia cells and human peripheral blood eosinophils. J Leukoc Biol 76(5):1002–1009. doi:10.1189/jlb.0412200

64. Ramírez SH, Reichenbach NL, Pan S, Rom S, Merkel SF, Wang X, Ho WZ, Persidsky Y (2013) Attenuation of HIV-1 replication in macrophages by cannabinoid receptor 2 agonists. J Leukoc Biol 93(5):801–810. doi:10.1189/jlb.1012523

65. Wright K, Rooney N, Feeney M, Tate J, Robertson D, Welham M, Ward S (2005) Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing. Gastroenterology 129(2):437–453. doi:10.1016/j.gastro.2005.05.026

66. Reichenbach V, Munoz-Luque J, Ros J, Casals G, Navasa M, Fernandez-Varo G, Morales-Ruiz M, Jimenez W (2013) Bacterial lipopolysaccharide inhibits CB2 receptor expression in human monocytes cells. Gut 62(7):1089–1091. doi:10.1136/gutjnl-2012-303662
87. Montecucco F, Burger F, Mach F, Steffens S (2008) CB2 cannabinoid receptor agonist JWH-015 modulates human monocyte migration through defined intracellular signaling pathways. Am J Physiol Heart Circ Physiol 294(3):H1145–H1155. doi: 10.1152/ajpheart.01328.2007

88. Kurihara R, Tohyama Y, Matsusaka S, Naruse H, Kinoshita E, Tsujioka T, Katsumata Y, Yamamura H (2006) Effects of peripheral cannabinoid receptor ligands on motility and polarization in neutrophil-like HL60 cells and human neutrophils. J Biol Chem 281(18):12908–12918. doi: 10.1074/jbc.M510871200

89. Catani MV, Gasperi V, Catanzaro G, Baldassarri S, Bertoni A, Sinigaglia F, Avigliono L, Maccarrone M (2010) Human platelets express authentic CB(1) and CB(2) receptors. Curr Neurovasc Res 7(4):311–318

90. Signorello MG, Giacobbe E, Passalacqua M, Leoncini G (2013) The 2-arachidonoylglycerol effect on myosin light chain phosphorylation in human platelets. Biochimie 95(8):1620–1628. doi: 10.1016/j.biochi.2013.05.003

91. Gardner B, Zu LX, Sharma S, Liu Q, Makriyannis A, Tashkin DP, Ruberti AA (2006) Cannabinoid signalling. Life Sci 78(6):549–563. doi: 10.1016/j.lfs.2005.05.055

92. Michler T, Storr M, Kramer J, Ochs S, Malo A, Reu S, Goke B, Scherf C (2013) Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms. Am J Physiol Gastrointest Liver Physiol 304(2):G181–G192. doi: 10.1152/ajpgi.00133.2012

93. Ortega-Gutierrez S, Molina-Holgado E, Guaza C (2005) Effect of lipid rafts on the cannabinoid receptor CB2 cannabinoid receptor agonist JWH-015 modulates human monocyte migration through defined intracellular signaling pathways. Cell Calcium 37(1–2):143–147

94. Provost V, Laviolette M, Flamand N (2014) Mechanisms of cannabinoid receptor-mediated cell migration and in the release of cytokines in astrocyte cultures. Glia 56(5–6):984–994. doi: 10.1002/glia.22910

95. Kobayashi Y, Arai S, Waku K, Sugiuira T (2001) Activation by of p42/44 mitogen-activated protein kinase in HL-60 cells. J Biochem 129(5):665–669

96. He F, Qiao ZH, Cai J, Pierce W, Song ZH (2007) Involvement of the 90-kDa heat shock protein (Hsp-90) in CB2 cannabinoid receptor-mediated cell migration: a new role of Hsp-90 in migration signaling of a G protein-coupled receptor. Mol Pharmacol 72(5):1289–1300. doi: 10.1124/mol.107.036566

97. Gokoh M, Kishimoto S, Oka S, Metani Y, Sugiuira T (2005) 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, enhances the adhesion of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes. FEBS Lett 579(28):6473–6478. doi: 10.1016/j.febslet.2005.10.030
The CB2 receptor and its role as a regulator of inflammation

106. Correa F, Hernangomez M, Mestre L, Loria F, Spagnolo A, Docagne F, Di Marzo V, Guaza C (2010) Anandamide enhances IL-10 production in activated microglia by targeting CB2 receptors: roles of ERK1/2, JNK, and NF-kappaB. Glia 58(2):135–147. doi: 10.1002/glia.20097

107. Correa F, Hernangomez-Herrero M, Mestre L, Loria F, Spagnolo A, Docagne F, Guaza C (2011) The endocannabinoid anandamide down-regulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: evidence for a cross-talk between IL-12p70/IL-23 axis and IL-10 in microglial cells. Brain Behav Immun 25(4):736–749. doi: 10.1016/j.bbi.2011.01.020

108. Malek N, Popiolek-Barczyk K, Mika J, Przewlocka B, Starowicz K (2015) Anandamide, acting via CB2 Receptors, alleviates LPS-induced neuroinflammation in rat primary microglial cultures. Neural Plast 2015:130639. doi: 10.1155/2015/130639

109. Eisenstein TK, Meissler JJ, Wilson Q, Gaughan JP, Adler MW (2007) Anandamide and Δ9-tetrahydrocannabinol directly inhibit cells of the immune system via CB2 receptors. J Neuroimmunol 189(1–2):17–22. doi: 10.1016/j.jneuroim.2007.06.001

110. Cenciotti MT, Chiurchiu V, Catanzaro G, Borsellino G, Bernardi G, Battistini L, Maccarrone M (2010) Anandamide suppresses proliferation and cytokine release from primary human T-lymphotyes mainly via CB2 receptors. PLoS One 5(1):e8688. doi: 10.1371/journal.pone.0008688

111. Coopman K, Smith LD, Wright KL, Ward SG (2007) Temporal variation in CB2R levels following T lymphocyte activation: evidence that cannabinoids modulate CXCL12-induced chemotaxis. Int Immunopharmacol 7(3):360–371. doi: 10.1016/j.intimp.2006.11.008

112. Joseph J, Niggemann B, Zaenker KS, Ensslenrad F (2004) Anandamide is an endogenous inhibitor of tumour cells and T lymphocytes. Cancer Immunol Immunother 53(8):723–728. doi: 10.1007/s00262-004-0509-9

113. Rayman N, Lam KH, Laman JD, Simons PJ, Lowenberg B, Delwel R (2004) Distinct expression profiles of the peripheral cannabinoid receptor in lymphoid tissues depending on receptor activation status. J Immunol 172(4):2111–2117

114. Jorda MA, Verbakel SE, Vank J, Vankan-Berkhoudt YV, Maccarrone M, Finazzi-Agro A, Lowenberg B, Delwel R (2002) Hematopoietic cells expressing the peripheral cannabinoid receptor migrate in response to the endocannabinoid 2-arachidonoylglycerol. Blood 99(8):2786–2793

115. Tanikawa T, Kurohane K, Imai Y (2007) Induction of preferential chemotaxis of unstimulated B-lymphocytes by 2-arachidonoylglycerol in immunized mice. Microbiol Immunol 51(10):1013–1019

116. Maestroni GJ (2004) The endogenous cannabinoid 2-arachidonoylglycerol as in vivo chemotactant for dendritic cells and adjuvant for Th1 response to a soluble protein. FASEB J 18(15):1914–1916. doi: 10.1096/fj.04-2190fje

117. Kishimoto S, Oka S, Gokoh M, Sugiuira T (2006) Chemotaxis of human peripheral blood eosinophils to 2-arachidonoylglycerol: comparison with other eosinophil chemotactants. Int Arch Allergy Immunol 140(Suppl 1):3–7. doi: 10.1159/000092704

118. Shiratsuchi A, Watanabe I, Yoshida H, Nakanishi Y (2008) Involvement of cannabinoid receptor CB2 in dectin-1-mediated macrophage phagocytosis. Immunol Cell Biol 86(2):179–184. doi: 10.1038/sj.icb.7100012

119. Kishimoto S, Gokoh M, Oka S, Maramatsu M, Kajiwara T, Waku K, Sugita T (2003) 2-arachidonoylglycerol induces the migration of HL-60 cells differentiated into macrophage-like cells and human cell monocytes through the cannabinoid CB2 receptor-dependent mechanism. J Biol Chem 278(27):24469–24475. doi: 10.1074/jbc.M301359200

120. Kishimoto S, Kobayashi Y, Oka S, Gokoh M, Waku K, Sugiuira T (2004) 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces accelerated production of chemokines in HL-60 cells. J Biochem 135(4):517–524

121. Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23(4):1398–1405

122. Gokoh M, Kishimoto S, Oka S, Mori M, Waku K, Ishima Y, Sugiuira T (2005) 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces rapid actin polymerization in HL-60 cells differentiated into macrophage-like cells. Biochem J 386(Pt 3):583–589. doi: 10.1042/BJ20041163

123. Kishimoto S, Muramatsu M, Gokoh M, Oka S, Waku K, Sugiuira T (2005) Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells. J Biochem 137(2):217–223. doi: 10.1093/jbmvli021

124. Gasperi V, Evangelista D, Chiurchiu V, Florenzano F, Savini I, Oddi S, Avigiliano L, Catani MV, Maccarrone M (2014) 2-Arachidonoylglycerol modulates human endothelial cell/leukocyte interactions by controlling selectin expression through CB1 and CB2 receptors. Int J Biochem Cell Biol 51:79–88. doi: 10.1016/j.biocel.2014.03.028

125. Rock RB, Gekker G, Hu S, Sheng WS, Cabral GA, Martin BR, Peterson PK (2007) WIN55,212-2-mediated inhibition of HIV-1 expression in microglial cells: involvement of cannabinoid receptors. J Neuroimmun Pharmacol 2(2):178–183. doi: 10.1007/s11481-006-9040-4

126. Sheng WS, Hu S, Min X, Cabral GA, Lokensgard JR, Peterson PK (2005) Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1β-stimulated human astrocytes, Glia 49(2):211–219. doi: 10.1002/glia.20108

127. Do Y, McKallip RJ, Nagarkatti M, Nagarkatti PS (2004) Activation through cannabinoid receptors 1 and 2 on dendritic cells triggers NF-κB-dependent apoptosis: novel role for endogenous and exogenous cannabinoids in immunoregulation. J Immunol 173(4):2373–2382

128. Adhikary S, Kocieda VP, Yen JH, Tuma RF, Ganea D (2012) Signaling through cannabinoid receptor 2 suppresses murine dendritic cell migration by inhibiting matrix metalloproteinase 9 expression. Blood 120(18):3741–3749. doi: 10.1182/blood-2012-06-353562

129. Roy S, Mukhopadhyay P, Batkai S, Hasko G, Liandet L, Huffman JW, Csizsar A, Ungvari Z, Mackie K, Chatterjee S, Pacher P (2007) CB2-receptor stimulation attenuates TNF-α-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiol Heart Circ Physiol 293(4):H2210–H2218. doi: 10.1152/ajpheart.00688.2007

130. Persidsky Y, Fan S, Dykstra H, Reichenbach NL, Rom S, Ramirez SH (2015) Activation of cannabinoid type two receptors (CB2) diminish inflammatory responses in macrophages and brain endothelium. J Neuroimmune Pharmacol 10(2):302–308. doi: 10.1007/s11481-015-9591-3

131. Hao MX, Jiang LS, Fang NY, Pu J, Hu LH, Shen LH, Song W, He B (2010) The cannabinoid WIN55,212-2 protects against oxidized LDL-induced inflammatory response in murine macrophages. J Lipid Res 51(s):2181–2190. doi: 10.1194/jlr.M001511

132. Ross RA, Brockie HC, Pertwee RG (2000) Inhibition of nitric oxide production in RAW264.7 macrophages by cannabinoids and palmitoylolethanolamide. Eur J Pharmacol 401(2):121–130

133. Raborn ES, Marciano-Cabral F, Buckley NE, Martin BR, Cabral GA (2008) The cannabinoid Δ9-tetrahydrocannabinol mediates inhibition of macrophage chemotaxis to RANTES/CCCL5: link- age to the CB2 receptor. J Neuroimmune Pharmacol 3(2):117–129. doi: 10.1007/s11481-007-9077-z
134. Correa F, Mestre L, Docagne F, Guaza C (2005) Activation of cannabinoid CB$_2$ receptor negatively regulates IL-12p40 production in murine macrophages: role of IL-10 and ERK1/2 kinase signaling. Br J Pharmacol 145(4):441–448. doi:10.1038/sj.bp.0706215

135. Giudice ED, Rinaldi L, Passaro R, Facchinetti F, D’Arrigo A, Giudice ED, Rinaldi L, Passaro M, Facchinetti F, D’Arrigo A, Romero-Sandoval EA, Horvath R, Landry RP, DeLeo JA (2009) cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation. Mol Pain 5:25. doi: 10.1186/1744-8069-25-25

136. Ben-Ari Y, Binah U, Bourgeois J, Ungerer M, Fischer G, Binah U, Bourgeois J, Ungerer M, Fischer G, 2015) Cannabinoid receptor type-2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. Facseb J 29(3):788–798. doi: 10.9900/fajb.070125

137. Montecucco F, Di Marzo V, da Silva RF, Vuilleumier N, Capettini L, Lenglet S, Pagano S, Piscitelli F, Quintao S, Bertolotto M, Pelli G, Galan K, Liet, Kuzmanovic K, Maccarrone M, Pertwee RG, Pacher P, Buettner R, Werner S, Di Marzo V, da Silva RF, Vuilleumier N, Capettini L, Lenglet S, Pagano S, Piscitelli F, Quintao S, Bertolotto M, Pelli G, Galan K, Liet, Kuzmanovic K, Maccarrone M, Pertwee RG, Pacher P, Buettner R, Werner S, 2007) Cannabinoid CB$_2$ receptor negatively regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol 133(1–2):124–131

138. Ghosh S, Preet A, Groopman JE, Ganju RK (2006) Cannabinoid receptor CB$_2$ modulates the CXCL12/CXCR4-mediated chemotaxis of T lymphocytes. Mol Immunol 43(14):2169–2179. doi:10.1016/j.molimm.2006.01.005

139. Robinson RH, Meissler JJ, Fan X, Yu D, Adler MW, Eisenstein TK (2015) A CB$_2$-selective cannabinoid suppresses T-cell activities and increases tregs and IL-10. J Neuroimmune Pharmacol 10(2):318–322. doi:10.1007/s11481-015-9611-3

140. Csoka B, Nemeth ZH, Muhkopadhyay P, Spolarics Z, Rajesh M, Federici S, Deitch EA, Bakai S, Pachter P, Hasko G (2009) CB$_2$ cannabinoid receptors contribute to bacterial invasion and mortality in polymicrobial sepsis. PLoS One 4(7):e6409. doi:10.1371/journal.pone.0006409

141. Karsak M, Gaffal E, Date R, Wang-Eckhardt L, Rehnelt J, Robinson RH, Meissler JJ, Fan X, Yu D, Adler MW, Eisenstein TK (2015) A CB$_2$-selective cannabinoid suppresses T-cell activities and increases tregs and IL-10. J Neuroimmune Pharmacol 10(2):318–322. doi:10.1007/s11481-015-9611-3

142. Csoka B, Nemeth ZH, Muhkopadhyay P, Spolarics Z, Rajesh M, Federici S, Deitch EA, Bakai S, Pachter P, Hasko G (2009) CB$_2$ cannabinoid receptors contribute to bacterial invasion and mortality in polymicrobial sepsis. PLoS One 4(7):e6409. doi:10.1371/journal.pone.0006409

143. Karsak M, Gaffal E, Date R, Wang-Eckhardt L, Rehnelt J, Robinson RH, Meissler JJ, Fan X, Yu D, Adler MW, Eisenstein TK (2015) A CB$_2$-selective cannabinoid suppresses T-cell activities and increases tregs and IL-10. J Neuroimmune Pharmacol 10(2):318–322. doi:10.1007/s11481-015-9611-3

144. Engel MA, Kellermann CA, Burnat G, Hahn EG, Rau T, Con- turek PC (2010) Mice lacking cannabinoid CB$_2$-α-CB$_2$-receptors or both receptors show increased susceptibility to trinitrobenzene sulfonylic acid (TNBS)-induced colitis. J Physiol Pharmacol 61(1):89–97

145. Duerr GD, Heinemann JC, Gestrich C, Heuft T, Klaas T, Keppel K, Roell W, Klein A, Zimmer A, Velten M, Kilic A, Bindila L, Lutz B, Dewald O (2015) Impaired border zone formation and adverse remodeling after reperfused myocardial infarction in cannabinoid CB$_2$ receptor deficient mice. Life Sci 138:8–17. doi:10.1016/j.lfs.2014.11.005

146. Amenta PS, Jallo JI, Tuma RF, Hooper DC, Elliott MB (2014) Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J Neuroinflammation 11:191. doi:10.1186/s12974-014-0191-6

147. Zhao Y, Liu Y, Zhang W, Xue J, Wu YZ, Xu W, Liang X, Chen T, Kishimoto C, Yuan Z (2010) WIN55212-2 ameliorates atherosclerosis associated with suppression of pro-inflammatory responses in Apo-E knockout mice. Eur J Pharmacol 649(1–3):285–292. doi:10.1016/j.ejphar.2010.09.027

148. Steffens S, Veillard NR, Arnaud C, Peli G, Burger F, Staub C, Karsak M, Zimmer A, Frossard JL, Mach F (2005) Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 434(7034):782–786. doi:10.1038/nature03389

149. McKallip RJ, Nagarkatti M, Nagarkatti PS (2005) Δ9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J Immunol 174(6):3281–3289

150. Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I, Garcia-Gutierrez MS, Vivancos J, Nombela F, Torres M, Burguete MC, Manzanoa J, Lizasoain I, Moro MA (2012) Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke 43(1):211–219. doi:10.1161/STROKEAHA.111.631044

151. Amenta PS, Jallo JI, Tuma RF, Hooper DC, Elliott MB (2014) Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J Neuroinflammation 11:191. doi:10.1186/s12974-014-0191-6

152. Maresz K, Przyg D, Ponomarev ED, Marsicano G, Croxford JL, Shriver LP, Ledent C, Cheng X, Carrier DJ, Mann MK, Giovannoni G, Pertwee RG, Yamamura T, Buckley NE, Hillard CJ, Lutz B, Baker D, Dittel BN (2007) Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB$_2$ on neurons and CB$_2$ on autoreactive T cells. Nat Med 13(4):492–497. doi:10.1038/nm1561

153. Batkai S, Muhkopadhyay P, Horvath B, Rajesh M, Gao RY, Mahadevan A, Amere M, Battista N, Lichtman AH, Gauson LA, Maccarrone M, Pertwee RG, Pacher P (2012) Δ8-Tetrahydrocannabivarin prevents hepatic ischaemia/reperfusion injury by decreasing oxidative stress and inflammatory responses through cannabinoid CB$_2$ receptors. Br J Pharmacol 165(8):2450–2461. doi:10.1111/j.1476-5381.2011.01410.x

154. Amenta PS, Jallo JI, Tuma RF, Hooper DC, Elliott MB (2014) Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J Neuroinflammation 11:191. doi:10.1186/s12974-014-0191-6

155. Newton CA, Chou PJ, Perkins I, Klein TW (2009) CB$_1$ and CB$_2$ cannabinoid receptors mediate different aspects of Δ9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection. J Neuroimmunol Pharmacol 4(1):92–102. doi:10.1007/s12035-015-9154-x

156. Buchweitz JP, Karmas PW, Williams KJ, Harkema JR, Kaminski NE (2008) Targeted deletion of cannabinoid receptors CB$_1$ and CB$_2$ produced enhanced inflammatory responses to influenza A/PR/8/34 in the absence and presence of Δ9-tetrahydrocannabinol. J Leukoc Biol 83(3):785–796. doi:10.1189/jlb.0907618

157. Di Filippo C, Rossi F, Rossi S, D’Amico M (2004) Cannabinoid CB$_2$ receptor activation reduces mouse myocardial ischemia-reperfusion injury: involvement of cytokine/chemokines and PMN. J Leukoc Biol 75(3):453–459. doi:10.1189/jl.00703303

158. Giannini L, Mariottini C, Passani MB, Mannioni PF, Banti D, Masini E (2008) Activation of cannabinoid receptors prevents antigen-
The CB2 receptor and its role as a regulator of inflammation

159. Tambaro S, Casu MA, Mastini A, Lazzari P (2014) Evaluation of selective cannabinoid CB1 and CB2 receptor agonists in a mouse model of lipopolysaccharide-induced interstitial cystitis. Eur J Pharmacol 729:67–74. doi:10.1016/j.ejphar.2014.02.013

160. Sardinha J, Kelly ME, Zhou J, Lehmann C (2014) Experimental cannabinoid 2 receptor-mediated immune modulation in sepsis. Mediators Inflamm 2014:978678. doi:10.1155/2014/978678

161. Adhikary S, Li H, Heller J, Skarica M, Zhang M, Ganea D, Tuma RF (2011) Modulation of inflammatory responses by a cannabinoid-2-selective agonist after spinal cord injury. J Neurotrauma 28(12):2417–2427. doi:10.1089/neu.2011.1853

162. Zoppi S, Madrigal JL, Caso JR, Garcia-Gutierrez MS, Manzanares J, Leza JC, Garcia-Bueno B (2014) Regulatory role of the cannabinoid CB2 receptor in stress-induced neuroinflammation mice. Br J Pharmacol 171(11):2814–2826. doi:10.1111/bph.12607

163. Amenta PS, Jallo JI, Tuma RF, Elliott MB (2012) A cannabinoid type 2 receptor agonist attenuates blood-brain barrier damage and neurodegeneration in a murine model of traumatic brain injury. J Neurosci Res 90(12):2293–2305. doi:10.1002/jnr.23114

164. Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 99(16):10819–10824. doi:10.1073/pnas.152334899

165. Goparaju SK, Ueda N, Yamaguchi H, Yamamoto S (1998) Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Lett 422(1):69–73

166. Rouzer CA, Marnett LJ (2011) Endocannabinoid oxygenation by cyclooxygenases, lipooxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Chem Rev 111(10):5899–5921. doi:10.1021/cr2002799

167. Comelli F, Giagoni G, Bettoni I, Colleoni M, Costa B (2007) The inhibition of monoacylglycerol lipase by URB602 showed an anti-inflammatory and anti-nociceptive effect in a murine model of acute inflammation. Br J Pharmacol 152(5):787–794. doi:10.1038/bjp.0707425

168. Wen J, Ribeiro R, Tanaka M, Zhang Y (2015) Activation of CB2 receptor is required for the therapeutic effect of A66H6 inhibition in experimental autoimmune encephalomyelitis. Neuropharmacology 99:196–209. doi:10.1016/j.neuropharm.2015.07.010

169. Costola-de-Souza C, Ribeiro A, Falzarano ED, Hillard CJ, Dittel BN (2005) Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem 95(2):437–445. doi:10.1111/j.1471-4159.2005.03380.x

170. Yangou Y, Facet P, Durrenberger P, Chessel IP, Naylor A, Bountra C, Banati RR, Anand P (2006) Regulation of inflammatory pain by inhibition of fatty acid amide hydrolase. J Pharmacol Exp Ther 334(1):182–190.

171. Oka S, Yanagimoto S, Ikeda S, Gokoh M, Naki S, Sugiura T (2005) Evidence for the involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation in mouse ear. J Biol Chem 280(18):18488–18497. doi:10.1074/jbc.M413262020

172. Alhouayek M, Lambert DM, Delzenne NM, Cani PD, Muccioli GG (2011) Increasing endogenous 2-arachidonoylglycerol levels counteracts colitis and related systemic inflammation. FASEB J 25(8):2711–2721. doi:10.1096/fj.10-176602

173. Galanakis DK (1992) Anticoagulant albumin fragments that bind to fibrinogen/fibrin: possible implications. Semin Thromb Hemost 18(1):44–52. doi:10.1055/s-2007-1002409

174. Walczak JS, Pichette V, Desbiens K, Beaulieu P (2005) Behavioral, pharmacological and molecular characterization of the saphenous nerve partial ligation: a new model of neuropathic pain. Neuroscience 132(4):1093–1102. doi:10.1016/j.neuroscience.2005.02.010

175. Oka S, Yanagimoto S, Ikeda S, Gokoh M, Kishimoto S, Waku K, Ishima Y, Sugiura T (2005) Effect of the involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in mouse knee joints. Arthritis Res Ther 5(3):2377-6-12

176. Richardson D, Pearson RG, Kuriyan N, Latif ML, Garle MJ, Barrett DA, Kendall DA, Scammell BE, Reeves AJ, Chapman V (2008) Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 10(2):R43. doi:10.1186/ar2401

177. Fukuda S, Kohsaka H, Takayasu A, Yokoyama W, Miyabe C, Miyabe Y, Harigai M, Miyasaka N, Nanki T (2014) Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis. BMC Musculoskelet Disord 15:275. doi:10.1186/1471-2474-15-275

178. Sophocleous A, Landao-Bassonga E, Van’t Hof RJ, Idris AI, Ralston SH (2011) The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation. Endocrinology 152(6):2141–2149. doi:10.1210/en.2010-0930

179. Gui H, Liu X, Liu LR, Su DF, Dai SM (2014) Expression of cannabinoid receptor 2 and its inhibitory effects on synovial fibroblasts in rheumatoid arthritis. Rheumatology (Oxford) 53(5):802–809. doi:10.1093/rheumatology/ket447

180. Goparaju SK, Ueda N, Yamaguchi H, Yamamoto S (1998) Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Lett 422(1):69–73

181. Naidu PS, Kinsey SG, Guo TL, Cravatt BF, Lichtman AH (2010) Regulation of inflammatory pain by inhibition of fatty acid amid hydrolase. J Pharmacol Exp Ther 334(1):182–190. doi:10.1124/jpet.109.164806

182. Booker L, Kinsey SG, Abdullah RA, Blankman JL, Long JZ, Ezell C, Boger DL, Cravatt BF, Lichtman AH (2012) The fatty acid amid hydrolase (FAAH) inhibitor PF-3645 acts in the nervous system to reverse LPS-induced tactile allodynia in mice. Br J Pharmacol 165(8):2485–2496. doi:10.1111/j.1476-5381.2011.01445.x

183. Krustev E, Reid A, McDougall JJ (2014) Tapping into the endocannabinoid system to ameliorate acute inflammatory flares and associated pain in mouse knee joints. Arthritis Res Ther 16(5):437. doi:10.1186/s13075-014-0437-9
187. Insull W Jr (2009) The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am J Med 122(1 Suppl):S3–S14. doi: 10.1016/j.amjmed.2008.10.013

188. Chiurchiu V, Lanuti M, Catanzano G, Fezza F, Rapino C, Maccarrone M (2014) Detailed characterization of the endocannabinoid system in human macrophages and foam cells, and anti-inflammatory role of type-2 cannabinoid receptor. Atherosclerosis 233(1):55–63. doi:10.1016/j.atherosclerosis.2013.12.042

189. Zhao Y, Yuan Z, Liu Y, Xue J, Tian Y, Liu W, Zhang W, Shen Y, Xu W, Liang X, Chen T (2010) Activation of cannabinoid CB 2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules. J Cardiovasc Pharmacol 55(3):292–298. doi:10.1097/FJC.0b013e3181d2664d

190. Netherland CD, Pickle TG, Bales A, Thewke DP (2010) Cannabinoid receptor type 2 (CB2) deficiency alters atherosclerotic lesion formation in hyperlipidemic Ldlr-null mice. Atherosclerosis 213(1):102–108. doi:10.1016/j.atherosclerosis.2010.07.060

191. Delsing DJ, Leijten FP, Arts K, van Eenennaam H, Garrissen A, Gijbels MJ, de Winther MP, van Elsas A (2011) Cannabinoid receptor 2 deficiency in haematopoietic cells aggravates early atherosclerosis in LDL receptor deficient mice. Open Cardiovasc Med J 5:15–21. doi:10.2174/1874192401105010015

192. Netherland-Van Dyke C, Rodgers W, Fulmer M, Lahr Z, Thewke D (2015) Cannabinoid receptor type 2 (CB2) dependent and independent effects of WIN55,212-2 on atherosclerosis in Ldlr-null mice. J Cardiol Ther 3(2):53–63. doi:10.12970/2311-052X.2015.03.02.2

193. Willecke F, Zschky K, Ortiz Rodriguez A, Colberg C, Auwerter V, Kniesel S, Hutter M, Lozhkin A, Hoppe N, Wolf D, von zur Muhlen C, Moser M, Hilgendorf I, Bode C, Zirlik A (2011) Cannabinoid receptor 2 signaling does not modulate atherogenesis in mice. PLoS One 6(4):e19405. doi:10.1371/journal.pone.0019405

194. Hanauer SB (2006) Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 12(Suppl 1):S3–S9

195. Massa F, Marsicano G, Hermann H, Cannich A, Monory K, Cravatt BF, Ferri GL, Sibaev A, Storr M, Lutz B (2004) The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest 113(8):1202–1209. doi:10.1172/JCI19465

196. Storr MA, Keenan CM, Emmerdinger D, Zhang H, Yuce B, Sibaev A, Massa F, Buckley NE, Lutz B, Goke B, Brand S, Patel KD, Sharkey KA (2008) Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J Mol Med (Berl) 86(8):925–936. doi:10.1007/s00109-008-0359-6

197. Storr MA, Keenan CM, Zhang H, Patel KD, Makriyannis A, Sharkey KA (2009) Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis. Inflamm Bowel Dis 15(11):1678–1685. doi:10.1002/ibd.20960

198. Borrelli F, Fasolino I, Romano B, Capasso R, Maiello F, Coppola D, Orlando P, Battista G, Pagano E, Di Marzo V, Izzo AA (2013) Beneficial effect of the non-psychoactive plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochem Pharmacol 85(9):1306–1316. doi:10.1016/j.bcp.2013.01.017

199. Bento AF, Marcon R, Dutra RC, Claudino RF, Cola M, Leite DF, Calixto JB (2011) β-caryophyllene inhibits dextran sulfate-induced colitis in mice through CB 2 receptor activation and PPARγ pathway. Am J Pathol 178(3):1153–1166. doi:10.1016/j.ajpath.2010.11.052

200. El Bakali J, Gilleron P, Body-Malapel M, Mansouri R, Muccioli GG, Djouina M, Barczyk A, Klupsch F, Andrzejak V, Lipka E, Furman C, Lambert DM, Chavatte P, Desreumaux P, Millet R (2012) 4-Oxo-1,4-Dihydropyridines as selective CB2 cannabinoid receptor ligands. Part 2: discovery of new agonists endowed with protective effect against experimental colitis. J Med Chem 55(20):8948–8952. doi:10.1021/jm3008568

201. Tourteau A, Andrzejak V, Body-Malapel M, Lemaire L, Lemoine A, Mansouri R, Djouina M, Renault N, El Bakali J, Desreumaux P, Muccioli GG, Lambert DM, Chavatte P, Rigo B, Leelu-Chavain M, Millet R (2013) 3-Carboxamido-5-aryl-isoxazoles as new CB2 agonists for the treatment of colitis. Bioorg Med Chem 21(17):5383–5394. doi:10.1016/j.bmc.2013.06.010

202. El Bakali J, Muccioli GG, Body-Malapel M, Djouina M, Klupsch F, Ghinet A, Barczyk A, Renault N, Chavatte P, Desreumaux P, Lambrequin M, Millet R (2015) Conformational restriction leading to a selective CB2 cannabinoid receptor agonist orally active against colitis. ACS Med Chem Lett 6(2):198–203. doi:10.1021/ml500439x

203. Giblin GM, O’Shaughnessy CT, Naylor A, Mitchell WL, Eatherton AJ, Slingsby BP, Rawlings DA, Goldsmith P, Brown AJ, Haslam CP, Clayton NM, Wilson AW, Chessel IP, Wittington AR, Green R (2007) Discovery of 2-[(2-dichlorophenyl)amino]-N-(tetrahydro-2H-pyran-4-yl)methyl]-4-(trifluoromethyl)-5-pyrimidinecarboxamide, a selective CB2 receptor agonist for the treatment of inflammatory pain. J Med Chem 50(11):2597–2600. doi:10.1021/jm061195b

204. Mitchell WL, Giblin GM, Naylor A, Eatherton AJ, Slingsby BP, Rawlings AD, Jandu KS, Haslam CP, Brown AJ, Goldsmith P, Clayton NM, Wilson AW, Chessel IP, Green RH, Wittington AR, Wall ID (2009) Pyridine-3-carboxamides as novel CB2 agonists for analgesia. Bioorg Med Chem Lett 19(1):259–263. doi:10.1016/j.bmcl.2008.10.118

205. Giblin GM, Billington A, Briggs M, Brown AJ, Chessel IP, Clayton NM, Eatherton AJ, Goldsmith P, Haslam C, Johnson MR, Mitchell WL, Naylor A, Perboni A, Slingsby BP, Wilson AW (2009) Discovery of 1-[(4-(3-chlorophenylamino)-1-methyl-1H-pyrrolo[3,2-c]pyridin-7-yl]-1-morpholin-4-ylmethanone (GSK554418A), a brain penetrant 5-azaindole CB 2 agonist for the treatment of chronic pain. J Med Chem 52(19):5785–5788. doi:10.1021/jm9009857