Upgrade of IAEA recommended data of selected nuclear reactions for production of PET and SPECT isotopes

A. Hermanne, F. T. Tárkányi, A. V. Ignatyuk, S. Takács, and R. Capote

1 Cyclotron Department - TONA, Vrije Universiteit Brussel, Brussels, Belgium
2 Institute for Nuclear Research, Debrecen, Hungary
3 Institute of Physics and Power Engineering (IPPE), Obninsk, Russia
4 NAPC–Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria

(Dated: June 8, 2020; Received XXX 2017; revised received XXX 2017; accepted XX 2017)

An IAEA research project was dedicated to the compilation, evaluation and recommendation of cross-section data for the accelerator production of 11C, 13N, 15O, 18F, 64Cu, and 124I positron-emitting radionuclides clinically used for PET imaging, and for the accelerator production of two gamma emitters, 81Rb and 123I, used in SPECT imaging. Cross sections for 19 charged-particle induced reactions that can be employed for radionuclide accelerator production were evaluated including uncertainties. The resulting reference cross-section data were obtained from Padé fits to selected and corrected experimental data, and integral thick target yields were subsequently deduced. Uncertainties in the fitted results were estimated via a Padé least-squares method with the addition of a 4% assessed systematic uncertainty to the estimated experimental uncertainty. Experimental data were also compared with theoretical predictions available from the TENDL library. All of the numerical reference cross-section data with their corresponding uncertainties and deduced integral thick target yields are available on-line at the IAEA-NDS medical portal www-nds.iaea.org/medportal/ and also at the IAEA-NDS web page www-nds.iaea.org/medical/.

CONTENTS

I. INTRODUCTION 2

II. RADIONUCLIDES USED IN POSITRON EMISSION TOMOGRAPHY (PET) 4

A. Production of 11C via 14N(p,α)11C reaction 5
B. Production of 13N via 16O(p,α)13N reaction 6
C. Production of 15O
1. 15N(p, n)15O reaction 6
2. 14N(d, n)15O reaction 7
D. Production of 18F
1. 18O(p, n)18F reaction 8
2. natNe(d, x)18F reaction 9
E. Production of 64Cu
1. 64Ni(p, n)64Cu reaction 9
2. 64Ni(d, 2n)64Cu reaction 10
3. 68Zn(p, x)64Cu reaction 11
4. natZn(d, x)64Cu reaction 11
F. Production of 124I
1. 124Te(p, n)124I reaction 12
2. 124Te(d, 2n)124I reaction 13
3. 125Te(p, 2n)124I reaction 13

III. RADIONUCLIDES USED IN SINGLE PHOTON EMISSION COMPUTER TOMOGRAPHY (SPECT) 13

A. Production of 81Rb
1. 82Kr(p, 2n)81Rb reaction 13
2. natKr(p, xn)81Rb reaction 14
B. Production of 123I
1. 123Te(p, n)123I reaction 15
2. 124Te(p, 2n)123I reaction 15
3. 127I(p, 5n)123Xe → 123I reaction 17
4. 127I(p, 3n)125Xe → 125I reaction, an impurity for 123I production 17

IV. SUMMARY AND CONCLUSIONS 17

Acknowledgments 18
References 18
I. INTRODUCTION

The IAEA document on “Medium Term Strategy 2012–2017” clearly stated: The Agency will seek to support the safe and effective use of radiation medicine for the diagnosis and treatment of patients. In the area of utilization of research reactors and accelerators for radioisotope production and radiation technology, the Agency will support Member States in building capacity for sustainable production and related quality assurance systems, and ensure accessibility to products and techniques that have a unique added value...

Hence, development and optimization of radionuclide production both for industrial and medical applications are of considerable interest to the IAEA. Particle accelerators are broadly being used for the production of radioisotopes for both diagnostic and therapeutic purposes often with the IAEA support.

The IAEA Nuclear Data Section has sponsored over the last 25 years several actions to set up a database for recommended cross sections and nuclear data for various charged-particle reactions used for medical radionuclides production. In 1995 a first Coordinated Research Project (CRP) entitled “Development of Reference Charged Particle Cross-section Database for Medical Radioisotope Production” was initiated in order to meet data needs at that time and focused on the radionuclides most commonly used for diagnostic purposes (PET and SPECT imaging) and on the related beam monitor reactions.

That project represented the first major international effort dedicated to the standardisation of cross-section data for radionuclide production through light charged-particle nuclear reactions and for monitoring the characteristics of the particle beams used in these productions (protons, deuterons, 3He and α-particles). That CRP produced the much needed IAEA TECDOC-1211 Handbook that was published in 2001 [1]. The on-line version of the database, containing tables of recommended cross sections and yields as well as all references, was made available at the IAEA webpage www-nds.iaea.org/medportal/ [2]. This database was partly updated by inclusion of new experimental data, corrections of factual errors and spline fits of cross sections used for production of positron and gamma emitters in 2003–2005 [3, 4] and for monitors in 2007 [5].

The growing number of emerging radionuclides for therapeutic applications, asked for a new CRP of which the results were published in 2011 as IAEA Technical Report 473 entitled “Nuclear Data for Production of Therapeutic Radionuclides” [6]. Although the recommended cross sections were believed to be accurate enough to meet the demands of all current applications, further development of procedures and research in nuclear medicine, of the evaluation methodology, and publications of more experimental results necessitated a widening of the existing database while it also became clear that determination of the uncertainties and their correlations was needed.

In June 2011 recommendations from four IAEA consultants’ meetings [7–10] were brought together to formulate the scope, work programme and deliverables of a new CRP designed to improve, update and especially broaden the cross-section database given in IAEA-TECDOC-1211 [1]. The most important novelty in this CRP is that after compilation and selection of the experimental datasets (corrected for outdated nuclear decay data, see Table 1 and 2) recurrent Padé fitting was performed at IPPE Obninsk and uncertainties on the evaluated cross sections were derived. The result of this new large international joint effort was recently published in four peer reviewed articles, authored by all CRP participants, that respectively contained recommended cross-section values for 34 monitor reactions [11] (lead author A. Hermanne), for 25 reactions for production of diagnostic SPECT radionuclides [12] (lead author F. T. Tárkányi), for 70 reactions for production of diagnostic PET radionuclides [13], (lead author F. T. Tárkányi), and for 15 reactions for production of therapeutic radionuclides [14] (lead author J.W. Engle). All numerical recommended values with uncertainties and yields for these 144 reactions were added in 2018–2019 to the on-line medical database of the IAEA (prepared by S. Takács) and are available at the IAEA-NDS medical portal at www-nds.iaea.org/medportal/ and at the IAEA webpage www-nds.iaea.org/medical/.

An additional publication dealing with an update of evaluated nuclear decay data for selected medical radionuclides is in preparation [15].

During the preparation of the final reports it appeared that although the database was now more complete, an important number of reactions that had been previously evaluated in IAEA TECDOC-1211 [1] and its subsequent updates and in the IAEA Technical Report Series 473 (from now on IAEA TRS-473) [6] had not been updated and hence information on uncertainties were still missing. To remediate this deficiency a limited working party was given the assignment to update the existing data using the same methodology as for the 2012–2017 CRP. This means:

- Select production routes for re-evaluation for PET and SPECT radionuclides from IAEA-TECDOC-1211 [1] (including the updates) and IAEA TRS-473 [6].
- Undertake a full survey of new or missing literature for experimental data of selected production routes.
- Correct (if needed) published datasets for up to date monitor cross sections [11] or nuclear decay characteristics (see Table 2 for recommended decay data).
- Select datasets for fitting from all available corrected datasets.
- Fit with Padé statistical approach and derive new recommended data with uncertainties..

More detailed information on the motivation, possible problems or limitations of the chosen approach for selection of experimental data and full discussion of the Padé
TABLE 1. Decay data of studied radionuclides as present in IAEA-TECDOC-1211 [1], the updates undertaken in 2003–2004 [2–4] and in IAEA TRS 473 [6], ENSDF [16] and the DDEP [17] evaluationsa.

Radionuclide	IAEA TECDOC-1211 updates 2003–2004	IAEA TRS 473	ENSDFb	DDEP
T1/2 of radionuclide				
11C	20.39 min	20.36 min	–	20.364(14) min
				20.361(23) min
13N	9.96 min	9.965 min	–	9.965(4) min
				9.967(37) min
15O	122.4 s	122.22 s	–	122.24(16) s
				122.46(36) s
18F	109.8 min	109.77 min	–	109.77(5) min
				1.82890(23) h
64Cu	–	12.701 h	12.701 h	12.701(2) h
				12.7004(20) h
124I	–	4.18 d	4.1760 d	4.1760(3) d
				–
81Rb	4.58 h	4.572 h	–	4.572(4) h
				–
123I	13.2 h	13.2235 h	–	13.2235(19) h
				13.2234(37) h

Radionuclide	E_{γ} (keV)
11C	511
13N	511
15O	511
18F	511
64Cu	–
	1345.77
124I	–
	602.7
	722.78
	1690.98
	–
81Rb	190.4
	446.15
	–
123I	159.
	158.97

Radionuclide	I_γ (%)c
11C	199.6
13N	199.6
15O	199.8
18F	197.
64Cu	–
	35.2
124I	–
	61.
	10.36
	10.41
81Rb	64.3
	23.5
	54.4
123I	83.3
	83.3

a Table 2 exactly provides the recommended decay data.
b ENSDF nuclear structure and decay data can be easily extracted, understood and studied in an attractive user-friendly manner by means of LiveChart of Nuclides [18] and NuDat [19].
c γ-ray intensities I_γ defined in energy order per each product radionuclide as presented in the listing of the E_{γ} data above.

fitting, including obtaining uncertainties, can be found in the introductory chapters of IAEA TECDOC-1211 [1] and of the different publications containing the results of the last CRP [11–14].

The present publication presents the results for reactions, often multiple, leading to formation of six positron-emitting radionuclides clinically used for PET imaging and for two gamma emitters used in SPECT imaging. A separate section is devoted to each imaging radionuclide containing first a short reminder of the decay data useful for its identification and quantification (taken from Table 2) and also indications on the clinical use and principal molecules labelled. For each reaction all bibliographic references of the studies containing experimental cross sections in the relevant energy domain are then listed, indicating which sets were not included in the updates of the IAEA charged particle database [2] (recent or previously missed publications). An overview of the deselected datasets with reason for rejection, possibly different and more detailed than in the publications by Takács et al. of 2003 and 2005 [3, 4] is given. The parameters (order L of the Padé function, number of included experimental

\[\text{Upgrade of IAEA recommended data} \quad \text{NUCLEAR DATA SHEETS} \quad \text{A. Hermanne et al.} \]
data points N, and χ^2) of the Padé fit on the selected datasets are given together with the energy behaviour of the uncertainties (including a correction for estimated unrecognized systematic uncertainty [20]). For each reaction, two figures are shown, the first (a) includes all the data points of identified literature datasets with uncertainty bars as defined by the compilers and a comparison of decay data of the radionuclides studied to the labelling of the reactions mentioned in the original publications and were digitized by the compilers for the IAEA TECDOC-1211, were re-digitized and are now included in the EXFOR database. The EXFOR datasets that were not available in tabulated forms in the databases in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of low Z, short-lived isotopes, is that since the last update of the database in 2003

II. RADIONUCLIDES USED IN POSITRON EMISSION TOMOGRAPHY (PET)

Apart from the four short-lived, low-Z, “pure” β^+-emitters with widespread use in clinical PET-imaging (11C, 13N, 15O and 18F) we included here two longer-lived emerging radionuclides that have complex decay schemes: 64Cu and 124I. These two isotopes were categorized as therapeutic in the TRS-473 [6], but because of their referenced clinical use and their theranostic capabilities (pairs 64Cu-67Cu, 124I-125I) we preferred to consider them together with the β^+-emitters. A particularity for the four low Z, short-lived isotopes, is that since the last update of the database in 2003 (see also Ref. [3]) a majority of the datasets that were not available in tabulated forms in the original publications and were digitized by the compilers for the IAEA TECDOC-1211, were re-digitized and are now included in the EXFOR database. The EXFOR data, often only marginally different from those used in the earlier compilations, are used in this study. It appears however that not always sufficient attention has been paid to the labelling of the reactions mentioned in the original publications: most of the experimental studies have been done on targets with natural composition from which re-

Table 2. Production reactions for studied radionuclides and recommended decay data of the activation products ($T_{1/2}$ is the product half-life, and E_γ is the γ-ray energy in keV of the transition with intensity I_γ in %). Reaction threshold or the Q value if positive is given in the one to last column, the IAEA document with last update is shown in the last column.

Radionuclide	Decay path (%)	$T_{1/2}$	E_γ(keV)	I_γ(%)	Production Reaction	Threshold/ Q-value [MeV]	Latest update
14C	β^+: 2.331	20.364(14) min	511	199.534(5)	14N(p,α)11C	3.132	DB-2003
13N	β^+: 0.2	9.965(4) min	511	199.607(4)	16O(p,α)13N	5.547	DB-2003
19O	β^+: 99.903	122.24(16) s	511	199.8006(20)	15N(d,n)15O	5.072	DB-2003
18F	β^+: 3.27	109.77(5) min	511	193.46(8)	18O(p,n)18F	2.574	DB-2003
64Cu	β^+: 46.9	12.701(2) h	511	35.2(4)	64Ni(p,n)64Cu	2.495	TRS 473
124I	β^+: 6.9	4.1760(3) d	602.73(8)	62.9(7)	124Te(p,n)124I	3.973	TRS 473
81Rb	β^+: 72.8	4.572(4) h	190.46(16)	64.9(22)	82Kr(p,n)81Rb	14.16	DB-2004
123I	β^+: 100	13.2235(19) h	158.97(5)	83.3(4)	123I(p,α)123I	2.027	DB-2004
Applications: PET imaging. $^{[11]}$C-methionine for oncology in central nervous system, many other molecules labeled. Addition to the nitrogen gas of up to 2% of 15O results in 11C\to^{11}O; 5-10% of H$_2$ results in $^{[11]}$C\toH$_4$.

Evaluation has been made of the 14N$(p,\alpha)^{11}$C reaction. For the formation of short-lived 11C, a grand total of thirteen publications [24–36] with experimental cross-section data were identified in the literature in the considered energy range and are represented with uncertainties in Fig. 1(a). An additional publication by Vdovin et al. (1979) [37] contains only a single data point at 50 MeV and is not represented in the figure. For the publication by Nozaki et al. (1966) [35] two datasets are identified in EXFOR and are indicated as (a) and (b) in the figure. No new references were added after the previous update of the IAEA on-line charged particle database [2] in 2003. For the publication by Laumer et al. [32] only 1 data point is mentioned in EXFOR but we conserved the 10 data points shown in TECDOC-1211 for this set obtained by its compiler. In order to have better agreement with the other datasets the values of Köhl et al. (1990) [30] were arbitrarily divided by a factor of 1.4 and the values of Blaser et al. (1952) [25] uniformly shifted by -0.7 MeV and multiplied by a factor of 1.3. The results of 5 studies were deselected for the further analysis; the reason for deselecting is indicated in parentheses: Epherre and Seide (1971) (thick targets, averaged cross sections) [27], MacLeod and Reid (1966) (1 data point, low, detection through cloud chamber) [33], Muminov et al. (1964) (values too low and deviant shape, old monitor values) [34], Nozaki et al. (1966) series (a) and (b) (values do not represent well the resonances) [35], Valentin et al. (1994) (discrepant values, only higher energy data) [36]. The datasets of the remaining 8 papers from Refs. [24–26, 28–32] were used as input for a least-squares Padé fit. To allow better fitting of the resonances at low energy several data points of Bida et al. (1980) [24] were removed (4 low energy points and a point at 12.2 MeV removed).

The Padé functions with 75 parameters were fitted to 306 selected data points with a $\chi^2 = 3.61$ and covering the energy range up to 35 MeV as shown in Fig. 1(b). The uncertainties (including 4% systematic uncertainty) range between 60% around 5 MeV, decrease to below 8% between 13 and 28 MeV and rise again to 10% at the highest energy.
B. Production of 13N via 16O(p,α)13N reaction

Decay data: $T_{1/2}=9.965(4)$ min;
decay branches: ϵ: 0.2%, β^+: 99.8036%.

Most abundant gammas:
$E_\gamma = 511$ keV, $I_\gamma = 199.607(4)$%.

Applications: 13N is used to tag ammonia molecules for PET imaging of the myocardium under stress or rest conditions to assess myocardial blood flow.

Evaluation has been made of the 16O(p,α)13N reaction. For formation of short-lived 13N, a grand total of fourteen publications [38–51] with experimental cross-section data were identified in the literature for incident particle energies up to 35 MeV and are represented with uncertainties in Fig. 2(a). Three additional datasets containing each only one data point at higher energy are not shown: Gambarini et al. (1969) [52], Valentin et al. (1963) [53], and Vdovin et al. (1979) [37] as in the TECDOC-1211 evaluation. Two new datasets were added after the previous update of the IAEA on-line charged particle database [2]: Akagi et al. (2013) [38] and Masuda et al. (2018) [46]. The data taken from the original publication of Whitehead and Foster (1958) [51] were shifted uniformly to lower energy by 0.3 MeV and the original data of Furukawa et al. (1960) [42] multiplied by a factor of 0.7 to have better agreement with other datasets. The EXFOR data are used for Refs. [38–40, 43–48, 50]. No EXFOR data exist for Dangle et al. (1964) [41] and Nero and Howard (1973) [49]. The results of 3 studies were rejected and not considered for further analysis, and the reasons for their removal are indicated: Albouy et al. (1962) (too low values in the 14–15 MeV region, other data points above 25 MeV) [39], Masuda et al. (2018) (no structure, too low values) [46], Chapman and MacLeod (1967) (single point, too high) [40]. The remaining eleven datasets from Refs. [38, 41–45, 47–51] were used as input for a least-squares Padé fit.

The Padé functions with 40 parameters were fitted to 607 selected data points with a $\chi^2=1.96$ and covering the energy range up to 20 MeV as shown in Fig. 2(b). The uncertainties (including 4% systematic uncertainty) range between 65% near the reaction threshold, decrease to below 7% between 11 and 18 MeV and then monotonically increase to reach 12% at the highest energy.

C. Production of 15O

Decay data: $T_{1/2}=122.24(16)$ s;
decay branches: ϵ: 0.1%, β^+: 99.9003%.

Most abundant gammas:
$E_\gamma = 511$ keV, $I_\gamma = 199.8006(20)$%.

Applications: 15O has been used for cerebral and myocardial blood flow studies (labelling of the oxygen in water: H_2^{15}O) or to study the oxygen metabolism (labelled 15O$_2$ or C(15O)).
The fit over all points (N=389) and the whole energy region with L=93, N=389, $\chi^2=2.4$, solid line) and estimated total uncertainty in percentage including a 4% systematic uncertainty (dashed line, right-hand scale). The uncertainties (including a 4% systematic uncertainty) are very high near the reaction threshold, reach 5.5% around 6 MeV and remain at that figure over the whole studied energy range.

2. 14N(d,n)15O reaction

For formation of short-lived 15O through the 14N(d,n)15O reaction a grand total of eight publications from Refs. [30, 62–68] with experimental cross-section data were identified in the literature for incident particle energies up to 15 MeV and are represented with uncertainties in Fig. 4(a).

Two additional references are not represented in the figure: Nonaka et al. (1957) [69] contains only one data point for a partial cross section at 1.92 MeV while in Marion et al. (1955) [70] only neutrons emitted in forward direction were measured and the derived cross sections (by normalization of lower energy values to Vera Ruiz et al. (1977) [67]) are extremely high. No new data were made available after the previous update of the IAEA on-line charged particle database [2] in 2003. The results of 4 studies were rejected and not considered for further analysis, and the reasons for their removal are indicated: Morita et al. (1960) (measurement of differential cross sections, discrepant integrated data, five times too low) [62], Newson (1937) (measurement of differential cross sections, discrepant data, orders of magnitude too low) [63], Retz-Schmidt and Weil (1960) (measurement of differential cross sections discrepant data, five times too low) [64], Wohlleben and Schuster (1969) (values near maximum are too high, uncertainties over 20%) [68].

The remaining six datasets of Refs. [54, 55, 57, 59, 60] were used as input for a least-squares Padé fit. The Padé functions with 93 parameters were fitted to 389 selected data points with a $\chi^2=2.40$ and covering the energy range up to 20 MeV as shown in Fig. 3(b)\(^1\). The uncertainties (including a 4% systematic uncertainty) are very high near the reaction threshold, reach 5.5% around 6 MeV and remain at that figure over the whole studied energy range.

\(^1\) The fit over all points (N=389) and the whole energy region with L=93 and $\chi^2=2.40$ is in fact an assembly of 3 fits over limited energy regions, made continuous at the respective end-points. The partial fits are: from 2.518 MeV to 3.563 MeV Padé functions with L=27, N=106, $\chi^2=1.25$; from 3.563 MeV to 5.836 MeV Padé functions with L=36, N=189, $\chi^2=0.56$; from 5.836 MeV up to 30 MeV Padé functions with L=30, N=189, $\chi^2=0.59$.

FIG. 3. (Color online) Evaluated Padé fit and experimental data from Refs. [54–61] for the 15N(p,n)15O reaction.

The uncertainties (including a 4% systematic uncertainty) are very high near the reaction threshold, reach 5.5% around 6 MeV and remain at that figure over the whole studied energy range.

2. 14N(d,n)15O reaction

For formation of short-lived 15O through the 14N(d,n)15O reaction a grand total of eight publications from Refs. [30, 62–68] with experimental cross-section data were identified in the literature for incident particle energies up to 15 MeV and are represented with uncertainties in Fig. 4(a).

Two additional references are not represented in the figure: Nonaka et al. (1957) [69] contains only one data point for a partial cross section at 1.92 MeV while in Marion et al. (1955) [70] only neutrons emitted in forward direction were measured and the derived cross sections (by normalization of lower energy values to Vera Ruiz et al. (1977) [67]) are extremely high. No new data were made available after the previous update of the IAEA on-line charged particle database [2] in 2003. The results of 4 studies were rejected and not considered for further analysis, and the reasons for their removal are indicated: Morita et al. (1960) (measurement of differential cross sections, discrepant integrated data, five times too low) [62], Newson (1937) (measurement of differential cross sections, discrepant data, orders of magnitude too low) [63], Retz-Schmidt and Weil (1960) (measurement of differential cross sections discrepant data, five times too low) [64], Wohlleben and Schuster (1969) (values near maximum are too high, uncertainties over 20%) [68].

The remaining six datasets of Refs. [54, 55, 57, 59, 60] were used as input for a least-squares Padé fit. The Padé functions with 93 parameters were fitted to 389 selected data points with a $\chi^2=2.40$ and covering the energy range up to 20 MeV as shown in Fig. 3(b)\(^1\). The uncertainties (including a 4% systematic uncertainty) are very high near the reaction threshold, reach 5.5% around 6 MeV and remain at that figure over the whole studied energy range.

\(^1\) The fit over all points (N=389) and the whole energy region with L=93 and $\chi^2=2.40$ is in fact an assembly of 3 fits over limited energy regions, made continuous at the respective end-points. The partial fits are: from 2.518 MeV to 3.563 MeV Padé functions with L=27, N=106, $\chi^2=1.25$; from 3.563 MeV to 5.836 MeV Padé functions with L=36, N=189, $\chi^2=0.56$; from 5.836 MeV up to 30 MeV Padé functions with L=30, N=189, $\chi^2=0.59$.

FIG. 4. (Color online) Evaluated Padé fit and experimental data from Refs. [30, 62–68] for the 14N(d,n)15O reaction.
The remaining four datasets from Refs. [30, 65–67] were used as input for a least-squares Padé fit. The Padé functions with 8 parameters were fitted to 93 selected data points with a \(\chi^2 = 1.22 \) and covering the energy range up to 15 MeV as shown in Fig. 4(b). The uncertainties (including 4% systematic uncertainty) vary between 6 and 8% over the whole energy region.

D. Production of \(^{18}\text{F}\)

Decay data: \(T_{1/2} = 109.77(5) \) min; decay branches: \(\epsilon: 3.27\% \), \(\beta^+: 96.73\% \).

Most abundant gammas: \(E_\gamma = 511 \text{ keV} \), \(I_\gamma = 193.46(8) \% \).

Applications: \(^{18}\text{F}\) labelled fluorodeoxyglucose (\(^{18}\text{F}\)-FDG) is the most commonly used PET imaging compound. Increased FDG uptake occurs in cancer cells, but also with infection and inflammation due to the activation of granulocytes and macrophages. Therefore, \(^{18}\text{F}\)-FDG is used most commonly for tumor, cardiac, and brain imaging, and is increasingly being used to detect infection.

Evaluation has been made of the \(^{18}\text{O}(p,n)^{18}\text{F}\) and \(\text{natNe}(d,x)^{18}\text{F}\) reactions. The reactions on liquid targets are used for nucleophilic labelling, on gas targets for electrophilic substitution.

1. \(^{18}\text{O}(p,n)^{18}\text{F}\) reaction

For formation of \(^{18}\text{F}\) through the commercially used \(^{18}\text{O}(p,n)^{18}\text{F}\) reaction, a grand total of eleven publications [57, 71–81] with experimental cross-section data were identified in the literature for incident particle energies up to 25 MeV and are represented with uncertainties in Fig. 5(a). No new datasets were added after the previous update of the IAEA on-line charged particle database [2] in 2003. The large number of data presented by Bair et al. (1964) are relative measurements [73] and were normalised to the absolute values published in Bair et al. (1973) [74] and corrected according to recommendations in another article of Bair et al. (1981) (multiplication by 1.35 and uncertainties of 7%) [75]. The values of Anderson et al. (1969) [72] are summed partial cross sections (from different levels) and are multiplied by 1.2 as proposed by Bair et al. (1981) [75].

The EXFOR data are used for Blaser et al. (1952), Hess et al. (2001), Kitwanga et al. (1990); Ruth and Wolf (1979) from Refs. [57, 77, 79, 81], respectively. No EXFOR entries exist for Mazitov et al. (1971) [80] and Fritsch et al. (1973) [78]. The results of 3 studies were rejected and not considered for further analysis, and the reasons for their removal are indicated: Blair and Leigh (1960) (only data points lower than 3 MeV, have resonance structure, are lower than Bair et al. 1973 [74], has energy gaps, seem energy shifted) [76], Fritsch et al. (1973) (energy shifted) [78], Mazitov et al. (1971) (all data points are too low) [80].

The remaining eight datasets [57, 71–75, 77, 79, 81] were considered as possible input for a least-squares Padé fit. In order to make a reasonable fit of the many pronounced resonances possible a further selection of datasets was made. For energy below 4 MeV only the data points of Bair (1973) [74] were retained. The single point of Amsel (1967) [71] cannot be checked and the data of Hess et al. (2001) [79], Bair et al. (1964) [73], Ruth and Wolf (1979) [81] have lower energy resolution in this domain and hinder a good fitting. On the other hand data from Bair (1973) [74] and of Blaser et al. (1952) [77] (problem with resonance around 6.6 MeV, data not selected in 2003) were not considered for fitting above 4 MeV.

(a) All experimental data are plotted with uncertainties and compared to TENDL-2017 evaluation [21].

(b) Selected data compared with evaluated Padé fit (L = 98, N = 534, \(\chi^2 = 4.6 \), solid line) and estimated total uncertainty in percentage including a 4% systematic uncertainty (dashed line, right-hand scale).

FIG. 5. (Color online) Evaluated Padé fit and experimental data from Refs. [57, 71–81] for the \(^{18}\text{O}(p,n)^{18}\text{F}\) reaction.

The Padé functions with 98 parameters were fitted to 534 selected data points with a \(\chi^2 = 4.6 \) and covering the energy range up to 30 MeV as shown in Fig. 5(b). The uncertainties (including a 4% systematic uncertainty) and averaged over the resonances, range between 25% near the reaction threshold, decrease to below 6% between 3.5 and 11 MeV and increase slowly to about 20% at the highest energy.
2. natNe(d,x)18F reaction

For production of 18F through the nowadays rarely used natNe(d,x)18F reaction, a grand total of six publications [82–87] with experimental cross-section data were identified in the literature for incident particle energies up to 80 MeV and are represented with uncertainties in Fig. 6(a). No new datasets were added after the previous update of the IAEA on-line charged particle database [2] in 2003. The studies by Morand et al. (1970) [86] and Takamatsu (1962) [87] give partial cross sections for different excited states that were summed in a resulting value at one energy point in the review work of de Lassus St-Genies and Tobailem (1972) [88].

After thorough critical study of the literature we conclude that the studies performed by Fenyesi et al. (1997) [83] and Nozaki et al. [85], on natNe targets reflect the cross sections for the natNe(d,x)18F reaction even if in the manuscripts or in EXFOR they are identified as 20Ne(d,α) 18F. The original data points of Guillaume (1976) [84] show an energy shift and were back shifted 1.1 MeV by the compiler in order to have correspondence with the maximum of Refs. [83, 85]. The results of 2 studies were rejected and not considered for further analysis, and the reasons for their removal are indicated: Morand et al. (1970) (only one data point from [88], summation of partial cross section and no control on energy or consistency is possible) [86], Takamatsu et al. (1962) (only one data point from Ref. [88], summation of partial cross section and no control on energy or consistency is possible) [87]. The remaining four datasets [82–85] were considered as input for a least-squares Padé fit. The two highest energy points of Guillaume (1976) [84] were not taken into account and the energy range was limited to 30 MeV.

The Padé functions with 15 parameters were fitted to 91 selected data points with a $\chi^2=0.75$ and covering the energy range up to 30 MeV as shown in Fig. 6(b). The uncertainties (including a 4% systematic uncertainty) range between 7% near the reaction threshold, decrease to below 6% between 5 and 25 MeV and reach 7.5% at the highest energy.

E. Production of 64Cu

Decay data: $T_{1/2}=12.701(2)$ h;
decay branches: ϵ: 46.9%, β^+: 17.6%, β^-: 35.5%.

Most abundant gammas:

$E_\gamma=511$ keV, $I_\gamma=35.2(4)$%; $E_\gamma=1345.77(6)$ keV, $I_\gamma=0.475(11)$%.

Applications: 64Cu is used for PET imaging through labeling of both smaller molecules and larger, slower clearing proteins and nanoparticles. The biological activity of the hypoxia imaging agent, 64Cu–ATSM, has been described in great detail in animal models and in clinical PET studies. Also an emerging therapeutic (labelled peptides for tumor-receptor targeting, 64Cu–labelled monoclonal antibodies for targeting tumor antigens, and 64Cu-labelled nanoparticles for cancer targeting) because of β^-- and ϵ-decay that produce low energy electrons.

Evaluation has been made of the 64Ni(p,n)64Cu; 64Ni(d,2n)64Cu, 68Zn(p,x)64Cu and natZn(d,x)64Cu charged-particle induced reactions previously evaluated in IAEA TRS-473 [6].

1. 64Ni(p,n)64Cu reaction

For formation of 64Cu through the commercially used 64Ni(p,n)64Cu reaction, a grand total of twelve publications [89–100] with experimental cross-section data were identified in the literature for incident particle energies up to 30 MeV and are represented with uncertainties in Fig. 7(a). Two additional sets by Nemashikalo et al. (1983) [101] (partial cross sections near the threshold), and by Treytl et al. (1966) [102], only including data points above 100 MeV, are not represented in the figure. Two datasets from Refs. [89, 100] were added after the discussion of this reaction in the IAEA-TRS 473 (2011) [6]. The EXFOR data are used but were corrected for abun-
dence of the total β emission where necessary. The original data of Levkovskij (1991) [95] were corrected by a factor 0.8 for the outdated value of the monitor reaction used as last discussed in section II.K of Ref. [11].

The results of four studies were rejected and not considered for further analysis, and the reasons for their removal are indicated: Antropov et al. (1992) (two data points, too high) [90], Blaser and Handley (1955) (single point, discrepant) [93], Levkovskij (1991) [95] (values to high over the whole energy region and shifted to higher energy), Tanaka et al. (1959) (strange shape and scatter below the maximum) [98]. The remaining eight datasets [89, 91, 92, 94, 96, 97, 99, 100] were considered as possible input for a least-squares Padé fit. The data by Guzhovskij et al. [94], obtained with high energy resolution, show several resonances between 2 and 6 MeV but are overall somewhat lower than the other selected datasets. An energy dependent correction factor, determined by comparing with a Padé fit to the other selected data sets (about 20%), was applied before fitting. The Padé functions with 44 parameters were fitted to 576 selected data points with a $\chi^2 = 2.24$ and covering the energy range up to 25 MeV as shown in Fig. 7(b). The uncertainties (including a 4% systematic uncertainty) range between 48% near the reaction threshold, decrease to below 10% at 5 MeV, remain around 8% between 6 and 16 MeV and reach 10% at the highest energy.

2. 64Ni(d, 2n)64Cu reaction

For formation of 64Cu through the 64Ni(d,2n)64Cu reaction, a grand total of five publications [103–107] with experimental cross-section data were identified in the literature for incident particle energies up to 25 MeV and are represented with uncertainties in Fig. 8(a). Only the data set by Avrigeanu et al. (2016) [103] was added to the discussion of this reaction in the IAEA TRS-473 (2011) [6]. All sets were considered as possible input for a least-squares Padé fit. In order to improve the statistical consistency of the sets the data points of Zweit et al. [107] at 9.2 and 11 MeV were deleted, while the remaining points were corrected for β^+ abundance. To allow fitting above 20 MeV and near the threshold additional points derived from the TENDL-2017 prediction were added, while 5 low values of Hermann et al. (2007) [105] and Takács et al. (2007) [106] were discarded. The Padé functions with 12 parameters were fitted to 77 selected data points.
with a \(\chi^2 = 1.11 \) and covering the energy range up to 21 MeV as shown in Fig. 8(b). The uncertainties (including a 4\% systematic uncertainty) range between 10\% near the reaction threshold, decrease to below 6\% between 6 and 23 MeV and rises slightly at higher energies.

3. \(^{68}\text{Zn}(p, x)^{64}\text{Cu} \) reaction

For formation of \(^{64}\text{Cu} \) through the \(^{68}\text{Zn}(p, x)^{64}\text{Cu} \) pathway (including \(^{68}\text{Zn}(p, 2p3n)^{64}\text{Cu} \) and different reactions with cluster emission) a grand total of three datasets [95, 108, 109] with experimental cross-section data were identified in the literature for incident particle energies up to 100 MeV and are represented with uncertainties in Fig. 9(a). The main contribution at energies below 30 MeV comes from the \(^{68}\text{Zn}(p,\alpha n)^{64}\text{Cu} \) reaction while at higher energies reactions with nucleon emission take over. The Levkovskij (1991) [95] data were corrected by a factor 0.8 for outdated monitor value. No new data were added to the discussion of this pathway in IAEA TRS-473 (2011) [6]. The results of Hilgers \textit{et al.} (2003) [108] were not considered for further analysis because the contribution of the \(^{68}\text{Zn}(p,\alpha n)^{64}\text{Cu} \) reaction is not well represented. The remaining two datasets [95, 109] were considered as possible input for a least-squares Padé fit.

The Padé functions with 8 parameters were fitted to 68 selected data points with a \(\chi^2 = 1.13 \) and cover the energy range up to 100 MeV as shown in Fig. 9(b). The uncertainties (including a 4\% systematic uncertainty) range between 20\% near the reaction threshold, decrease to below 7\% at higher energy, except in the range between 42 and 60 MeV (dip in cross sections) where a rise to 14\% is noted.

4. \(^{nat}\text{Zn}(d, x)^{64}\text{Cu} \) reaction

For formation of \(^{64}\text{Cu} \) through the \(^{nat}\text{Zn}(d, x)^{64}\text{Cu} \) pathway (including essentially \(^{64}\text{Zn}(d, 2p)^{64}\text{Cu} \), \(^{66}\text{Zn}(d, \alpha)^{64}\text{Cu} \), \(^{67}\text{Zn}(d,\alpha n)^{64}\text{Cu} \), and \(^{68}\text{Zn}(d,\alpha 2n)^{64}\text{Cu} \) at lower energies and different reactions with nucleon emission above 25 MeV) a grand total of seven datasets [108, 110–115] with experimental cross-section...
data were identified in the literature for incident particle energies up to 100 MeV and are represented with uncertainties in Fig. 10(a). Two new data sets were added to the discussion of this pathway in the IAEA TRS-473 (2011) [6]: Khandaker et al. (2015) [112] and Šimečková et al. (2017) [113]. The results of Hilgers et al. (2003) [108] were not considered for further analysis because the shape of the excitation function is not well represented.

The remaining six datasets [110–115] were considered as possible input for a least-squares Padé fit. The Padé functions with 19 parameters were fitted to 105 selected data points with a $\chi^2=0.66$ and covering the energy range up to 100 MeV as shown in Fig. 10(b). The uncertainties (including a 4% systematic uncertainty) are about 100% near the reaction threshold, but quickly decrease to below 6.5% and stay almost constant over the whole energy range.

F. Production of 124I

Decay data: $T_{1/2}=4.1760(3)$ d;
decay branches: ϵ: 6.9%, β^+: 22.7%, β^-: 93.1%.

Most abundant gammas:
$E_\gamma=602.73(8)$ keV, $I_1=62.9(7)$%;
$E_\gamma=722.78(8)$ keV, $I_1=10.36(12)$%;
$E_\gamma=1690.96(8)$ keV, $I_1=11.15(17)$%;
$E_\gamma=511$ keV, $I_1=45.3$%.

Applications: Diagnosis and treatment of differentiated thyroid carcinoma. Labelling of various antibodies for diagnosis of different cancers. Cardiovascular imaging through labelled MIBG.

Evaluation has been made of the cross sections of 124Te(p,n)124I, 124Te(d,2n)124I and 125Te(p,2n)124I production reactions.

I. 124Te(p,n)124I reaction

For formation of 124I through its only practical production pathway 124Te(p,n)124I (natural abundance of 124Te: 4.82%), only 5 datasets (in 4 publications) obtained on enriched or partially enriched 124Te targets [116–119] with experimental cross-section data were identified in the literature for incident particle energies up to 32 MeV and are represented with uncertainties in Fig. 11(a). The article by Kondo et al. (1977) [117] contains two series of data obtained on targets with different enrichment and are indicated as (a) and (b) in the figure. The represented data of Ref. [119] are yield values converted to cross sections.

Additional data obtained on natTe targets can also be considered for energy points below 10.6 MeV, the threshold of the 125Te(p,2n)124I reaction. In the present evaluation we included, apart from the data of Zweit et al. (1999) [120], already used in the IAEA TRS-473 (2011) [6], seven datasets obtained by normalisation of data in experiments with natTe [116, 121–126]. These datasets are identified by (nat) in the figure. The EXFOR data are used but were corrected for abundance of the total β-emission where necessary.

The data of 5 sets were rejected and not considered for further analysis, because the published values are too low or too high: Acerbi et al. (1975) (natural targets) [116], Kondo et al. (1977) (series a and b) [117], Scholten et al. (1989) (natTe) [125], Zarie et al. (2006) [126], and Zweit et al. (1991) [120]. The remaining seven datasets [116, 118, 119, 121–124] were considered as possible input for a least-squares Padé fit. In order to improve the agreement with the maximum of other sets the data of Van den Bosch et al. [119] were energy shifted (-1.4 MeV at the maximal cross section).

The Padé functions with 11 parameters were fitted to 60 selected data points with a $\chi^2=3.21$ and covering the energy range up to 32 MeV as shown in Fig. 11(b). Due to the large scatter of experimental results the uncertainties (including a 4% systematic uncertainty) are large and are below 45% only between 8 and 22 MeV.
2. $^{124}\text{Te(d, 2n)}^{124}\text{I}$ reaction

For formation of ^{124}I through the less used $^{124}\text{Te(d, 2n)}^{124}\text{I}$ reaction only 3 datasets [127–129] with experimental cross-section data were identified in the literature for incident particle energies up to 25 MeV and are represented with uncertainties in Fig. 12. The cross section values reported in Firouzbakht et al. (1993) [128] seem to be wrong and therefore new cross sections were deduced from the integral yield data, published in the same article, which are in reasonable agreement with Bastian et al. [127] data, as was already stated in the IAEA TRS-473 [6]. From the recent study by Hermann et al. [129] using nat Te targets, two data points data below 15 MeV (threshold for the $^{125}\text{Te(d, 3n)}^{124}\text{I}$ reaction) are used. The three datasets sets were considered as possible input for a least-squares Padé fit. In order to reduce the energy scatter below 13 MeV, the Firouzbakht et al. [128] data points were progressively shifted in energy as represented in Fig. 12. The Padé functions with 12 parameters were fitted to 37 selected data points with a $\chi^2=1.86$ covering the deuteron energy range up to 24 MeV as shown in Fig. 12. Due to the large energy scatter and reduced number of data points the uncertainties (including a 4% systematic uncertainty) are large at low energies and are below 10% only from 11 MeV on.

![Graph showing cross section vs. incident particle energy for $^{124}\text{Te(d, 2n)}^{124}\text{I}$ reaction](image)

FIG. 12. (Color online) All experimental (and selected) data from Refs. [127–129] are compared with TENDL-2017 and evaluated Padé fit (L = 12, N = 37, $\chi^2=1.86$, solid line) and estimated total uncertainties in percentages, including 4% systematic uncertainty (dashed line, right-hand scale) for the $^{124}\text{Te(d, 2n)}^{124}\text{I}$ reaction.

3. $^{125}\text{Te(p, 2n)}^{124}\text{I}$ reaction

For formation of ^{124}I through $^{125}\text{Te(p, 2n)}^{124}\text{I}$ reaction on somewhat more abundant ^{125}Te (7.14% abundance) only 1 dataset by Hohn et al. (2001) [130] with experimental cross-section data was identified in the literature for incident particle energies up to 110 MeV and is represented with uncertainties in Fig. 13. This dataset was, after correction for the abundance of the 602.73 keV γ-line, considered as input for a least-squares Padé fit. The Padé functions with 8 parameters were fitted to 28 selected data points with a $\chi^2=0.94$ and cover the energy range up to 110 MeV as shown in Fig. 13. The uncertainties (including a 4% systematic uncertainty) are below 8% over nearly the whole energy region.

![Graph showing cross section vs. incident particle energy for $^{125}\text{Te(p, 2n)}^{124}\text{I}$ reaction](image)

FIG. 13. (Color online) Single available dataset from Ref. [130] is compared with TENDL-2017 and evaluated Padé fit (L = 8, N = 28, $\chi^2=0.94$, solid line) and estimated total uncertainties in percentages, including 4% systematic uncertainty (dashed line, right-hand scale) for the $^{125}\text{Te(p, 2n)}^{124}\text{I}$ reaction.

III. RADIONUCLIDES USED IN SINGLE PHOTON EMISSION COMPUTER TOMOGRAPHY (SPECT)

A. Production of ^{81}Rb

Decay data: $T_{1/2}=4.572(4)$ h; decay branches: α: 72.8%, β^+: 27.2%.

Most abundant gammas:

- $E_\gamma = 190.46(16)$ keV, $I_\gamma = 64.9(22)\%$; $E_\gamma = 446.15(3)$ keV, $I_\gamma = 23.5(9)\%$; $E_\gamma = 511$ keV, $I_\gamma = 54.4(20)\%$.

Applications: ^{81}Rb is mainly used as mother in a generator of very short-lived ^{81m}Kr ($T_{1/2}=13.1$ s) (gas) for study of lung functions (ventilation and perfusion).

Evaluation has been made of the $^{82}\text{Kr(p, 2n)}^{81}\text{Rb}$ and nat $^{80}\text{Kr(p,x)}^{81}\text{Rb}$ reactions.

1. $^{82}\text{Kr(p, 2n)}^{81}\text{Rb}$ reaction

For formation of ^{81}Rb through the $^{82}\text{Kr(p, 2n)}^{81}\text{Rb}$ reaction, a total of four useful publications [131–134] with experimental cross-section data were identified in the literature for incident particle energies up to 30 MeV and are represented with uncertainties in Fig. 14(a). No new datasets were added after the update of the
The article by Kovács et al. (1991) [132] contained two data sets on natural and enriched targets, respectively, and are represented as (nat) and (enr) in the figure. The data of Lamb et al. (1978) were obtained on enriched 82Kr targets. The data originally published by Acerbi et al. (1981), Kovács et al. (1991)(nat) and Steyn et al. (1991) were obtained on natKr targets and were normalized to the abundance of 82Kr and are limited to an energy of 21.719 MeV, the threshold of the 82Kr(p,3n)81Rb reaction.

For formation of 81Rb through the natKr(p,xn)81Rb reaction, a total of five useful publications [131–135] with experimental cross-section data were identified in the literature for incident particle energies up to 120 MeV and are represented with uncertainties in Fig. 15(a). The article by Steyn et al. (1991) [134] contained two data sets represented as (a) and (b) in the figure. The article by Kovács et al. (1991) [132] contained two data sets, respectively measured on natural Kr targets and on enriched 82Kr targets represented as (nat) and (enr) in the figure. The data measured on enriched targets from Lamb et al. (1978) [133] and Kovács et al. (1991)(enr) [132] were normalised and included in the evaluation up to 20 MeV. No new datasets were added since the update of the gamma-emitter section of the IAEA on-line charged particle database [2] in 2004, also documented in Takács et al. (2005) [4]. The data of 3 sets were rejected and not considered for further analysis, and the reasons for their removal are indicated: Kovács et al. (1991)(nat) [132] (too low values), Lamb et al. (1978) [133] (too low values), Mulders (1984) [135] (too low values).

FIG. 14. (Color online) Evaluated Padé fit and experimental data from Refs. [131–134] for the 82Kr(p,2n)81Rb reaction.

The five sets obtained in that way from Refs. [131–134] were considered as possible input for a least-squares Padé fit. To improve the statistical coherence near the maximum of the excitation curve, the four highest energy points of Steyn et al. (1991) [134] were deselected and not used in the fitting procedure. The Padé functions with 17 parameters were fitted to 30 selected data points with a $\chi^2=1.37$ covering the energy range up to 30 MeV as shown in Fig. 14(b). The uncertainties (including a 4% systematic uncertainty) are 100% near the reaction threshold, drop to 20% at 16 MeV and decrease steadily to below 10% from 20 MeV on.

2. natKr(p,x)81Rb reaction

The five sets obtained in that way from Refs. [131–134] were considered as possible input for a least-squares Padé fit. To improve the statistical coherence near the maximum of the excitation curve, the four highest energy points of Steyn et al. (1991) [134] were deselected and not used in the fitting procedure. The Padé functions with 17 parameters were fitted to 30 selected data points with a $\chi^2=1.37$ covering the energy range up to 30 MeV as shown in Fig. 14(b). The uncertainties (including a 4% systematic uncertainty) are 100% near the reaction threshold, drop to 20% at 16 MeV and decrease steadily to below 10% from 20 MeV on.
The remaining four datasets of Refs. [131, 132, 134] were considered as possible input for a least-squares Padé fit. The Padé functions with 14 parameters were fitted to 78 selected data points with a $\chi^2=0.99$ covering the energy range up to 120 MeV as shown in Fig. 15(b). The uncertainties (including a 4% systematic uncertainty), are 100% near the reaction threshold, but decrease steadily to below 10% from 20 MeV on.

B. Production of 123I

Decay data: $T_{1/2}=13.2235(19)$ h; decay branch: e^-, 100%.

Most abundant gammas:

- $E_γ = 158.97(5)$ keV, $I_γ = 83.3(4)$%.

Applications: Most used halogen for wide variety of labelled products.

Evaluation has been made of the older production pathways: direct 123Te(p,n)123I, 124Te(p,2n)124I reactions and the indirect 127(p,3n)125Xe→125I (contaminant) and 127(p,5n)123Xe→123I reactions. Present commercial pathways through 124Xe(p,x)123Cs→123Xe→123I and 124Xe(p,x)123Xe→123I were already evaluated in the previous project and published by Tárkányi et al. (2019) [12].

1. 123Te(p,n)123I reaction

For formation of 123I through the 123Te(p,n)123I reaction on low abundance enriched 123Te targets (0.908% in natTe) a grand total of 13 works [116, 119–126, 136–139] with experimental cross-section data were identified in the literature for incident particle energies up to 25 MeV and are represented with uncertainties in Fig. 16(a). An extremely high cross section value (1700 mb at 11 MeV) of El-Azony et al. (2008) [122] is not represented in the figure. The cross sections were mostly obtained from experiments on natTe targets [116, 119–126, 137, 138] and the results of these studies up to 11.5 MeV, the threshold of the 124Te(p,2n)123I reaction, were normalized and added to the 3 datasets obtained on enriched 124Te targets [125, 136, 139]. The two sets of data in Scholten et al. (1989) [125] are indicated as (nat) and (enr). All datasets published after 1999 and Kormali et al. (1976) [138] have to be considered as new with respect to the 2004 update of the gamma-emitter section of the IAEA on-line charged particle database [2], also documented in Takács et al. (2005) [4]. The results of Refs. [116, 119, 120, 122–126, 136] were not considered for further analysis as the presented results are either too high or too low or show discrepant data points.

The remaining four datasets [121, 137–139] were considered as possible input for a least-squares Padé fit. The Padé functions with 10 parameters were fitted to 31 selected data points with a $\chi^2=1.63$ and covering the energy range up to 100 MeV as shown in Fig. 16(b). The uncertainties (including a 4% systematic uncertainty), are 100% near the reaction threshold, but decrease steadily to below 10% from 10 MeV to 14 MeV and increase again to 35% for higher energies.

2. 124Te(p,2n)123I reaction

For formation of 123I through the 124Te(p,2n)123I reaction on higher abundance enriched 124Te targets (4.816% in natTe) a grand total of 12 works [116–126, 138] with experimental cross-section data were identified in the literature for incident particle energies up to 25 MeV and are represented with uncertainties in Fig. 17(a). Only 5 datasets in 4 publications were obtained on enriched 124Te targets [116–119]. The publication by Kondo et al. (1977) [117], contained two sets (of different degree of enrichment), labelled (a) and (b) in the figure while two sets of data are available in Acerbi (1975) [116], obtained on enriched 124Te (labelled (enr)) and on natTe (labelled nat). The cross sections obtained from experiments on natTe targets in Refs. [116, 120–126, 138] up to 18.15 MeV,
the threshold of the 125Te(p,3n) reaction, were normalized and corrected for the contribution of the 123Te(p,n) reaction, relevant between 11 and 17 MeV (by using the recommended data of 2004 update of the gamma-emitter section of the IAEA on-line charged particle database [2]).

![Graph](image)

(a) All experimental data are plotted with uncertainties and compared to TENDL-2017 evaluation [21].

(b) Selected data compared with evaluated Padé fit ($L = 8, N = 87, \chi^2 = 1.29$, solid line) and estimated total uncertainty in percentage including a 4% systematic uncertainty (dashed line, right-hand scale).

FIG. 17. (Color online) Evaluated Padé fit and experimental data from Refs. [116–126, 138] for the 124Te(p,2n)123I reaction.

All datasets on natTe have to be considered as new with respect to the 2004 update of the gamma-emitter section of the IAEA on-line charged particle database [2], also documented in Takics et al. (2005) [4] as only the data on enriched 124Te were used at that time. A large scatter is observed between the 5 sets on enriched 124Te targets from the different authors while also the nine normalized datasets are dispersed and show a high and low group. This fact made a selection and fit similar to what was done in the IAEA database 2004 update [2] not relevant.

In order to obtain a more coherent set, it was decided to rely essentially on the values of cross sections measured on enriched targets of Acerbi et al. (1975) (enr) [119] and the studies on natural targets by Kandil et al. (2013) [123] and Király et al. (2006) [124] and to make corrections to other sets. For enriched targets the two sets of Kondo et al. (1977) [117] were energy shifted and multiplied by a factor of 1.4, while the very high values of Van den Bosch et al. (1977) [119] were multiplied by 0.7. For natural targets the values of El-Azony et al. (2008) [122], Scholten et al. (1989) [125] and Zweit et al. (1991) [120] (all low data group) were multiplied by 1.4. The results of Acerbi et al. (1975) (enr) [116], Kondo et al. (1977) (b)(enr) [117] and Scholten et al. (1995) (enr) [118] were not considered for further analysis as the presented results are either too high or too low or show discrepant data points. The remaining 11 datasets from Refs. [116, 117, 119–126, 138] were considered as possible input for a least-squares Padé fit.

The Padé functions with 8 parameters were fitted to 87 selected data points with a $\chi^2 = 1.29$ and covering the energy range up to 28 MeV as shown in Fig. 17(b). The uncertainties (including a 4% systematic uncertainty), are above 50% near the reaction threshold, decrease steadily to below 10% from 13 MeV to 25 MeV and increase again to 40% for higher energies. Although this reaction is in principle more efficient, because of the abundance of the target material, than the route 123Te(p,n)124I discussed before, practical use is limited because of the unavoidable formation of longer-lived contaminant 124I through the 123Te(p,n)124I reaction evaluated in Sect. II F 1.

![Graph](image)

(a) All experimental data are plotted with uncertainties and compared to TENDL-2017 evaluation [21].

(b) Selected data compared with evaluated Padé fit ($L = 15, N = 108, \chi^2 = 1.87$, solid line) and estimated total uncertainty in percentage including a 4% systematic uncertainty (dashed line, right-hand scale).

FIG. 18. (Color online) Evaluated Padé fit and experimental data from Refs. [140–148] for the 127I(p,5n)123Xe\rightarrow^{123}I reaction.
3. 127I(p, 5n)123Xe →123I reaction

The reference pathway formerly used in commercial production of 123I was a high energy proton bombardment (at least 37.06 MeV incident energy) of natural iodine (monoisotopic 127I) relying on the indirect route 127I(p,5n)123Xe→123I. For this reaction a grand total of 9 works [140–148] with experimental cross-section data were identified in the literature for incident particle energies up to 125 MeV and are represented with uncertainties in Fig. 18(a). Additionally two sets based on theoretical calculations published by Dovbenko et al. (1991) [149] and Gandarias-Cruz (1988) [150] are represented. The values of Ref. [140] were multiplied by 1.3 to correct for the very old γ-line abundance used. No new datasets are added with respect to the 2004 update of the gamma-emitter section of the database [2], also documented in Takács et al. (2005) [4]. The results of the two experimental sets by Lundqvist et al. (1979) (too low values) [142] and Wilkins et al. (1975) (very high near maximum) [147] were not considered for further analysis. Also the values of the two theoretical calculations published in Refs. [149, 150] were not selected.

The remaining seven datasets [140, 141, 143–146, 148] were considered as possible input for a least-squares Padé fit. The Padé functions with 15 parameters were fitted to 108 selected data points with a $\chi^2=1.87$ and covering the energy range up to 125 MeV as shown in Fig. 18(b). The uncertainties (including 4% systematic uncertainty), are 90% near the reaction threshold, decrease steadily to below 10% from 48 MeV to 80 MeV and increase again to 15% for higher energies.

4. 127I(p, 3n)125Xe →125I reaction, an impurity for 123I production

When using the route for production of 123I discussed above in Sect. III.B3 the contamination with long-lived 125I impurity (T$_{1/2}$=59.41 d), formed in the 127I(p,3n)125Xe→125I reaction with 18.864 MeV threshold, is almost unavoidable. Therefore, we have evaluated the production cross section of this impurity for a proper quantification. For this reaction a grand total of nine works [140–148] with experimental cross-section data were identified in the literature for incident particle energies up to 100 MeV and are represented with uncertainties in Fig. 19(a). No new datasets are added with respect to the 2004 update of the gamma-emitter section of the database [2], also documented in Takács et al. (2005) [4].

The results of two experimental sets – Syme et al. (1978) (too high values) [146] and Wilkins et al. (1975) (too high values) [147] – were not considered for further analysis. The remaining seven datasets from Refs. [140–145, 148] were considered as possible input for a least-squares Padé fit.

The Padé functions with 11 parameters were fitted to 125 selected data points with a $\chi^2=1.43$ and covering the energy range up to 100 MeV as shown in Fig. 19(b). The uncertainties (including a 4% systematic uncertainty), are 90% near the reaction threshold, decrease steadily to below 10% from 26 MeV to 80 MeV and increase slightly for higher energies. This reaction will also be included in the upcoming update for therapeutic isotopes.

IV. SUMMARY AND CONCLUSIONS

Although during the 2012–2017 IAEA Coordinated Research Project on Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production more than 100 reaction cross sections have been evaluated and added to the IAEA-NDS recommended cross-section database, it appeared during preparation of the publications [11–14] that about 20 reactions for SPECT and PET imaging and 20 reactions for therapeutic radionuclides, which were evaluated in the TECDOC-1211 [1] or in TRS-473 [6] were not included in this CRP. To remediate this deficiency an additional effort was set up and we report here on the newly evaluated cross sections with uncertainties for di-
agnostic (PET and SPECT) isotopes. A similar upgrade for therapeutic isotopes is in progress.

Evaluations, including data compilation and selection for Padé fitting resulting in recommended values with uncertainties, were performed for 19 reactions leading to direct, indirect or generator production of 11C, 13N, 15O, 18F, 64Cu, 124I, 81Kr, and 123I. Although for the short lived PET isotopes 11C, 13N, 15O, and 18F only a few new datasets became available since the 2003 update of the IAEA website [2], the quality of the database has been strengthened by the inclusion of many more accurately digitized cross section values from earlier experimental studies in EXFOR, making data retrieval easier. In most of the present evaluations these newer EXFOR values were used but no or only minor influence on the results of the fits was observed. On the other hand particular attention has been paid to selection of relevant experimental data (with sufficient energy resolution) in the resonance region for the proton induced reactions.

The positron emitters 64Cu and 124I (evaluated earlier as therapeutic isotopes in IAEA TRS 473 [6]) were included in this report because their clinical use nowadays is predominantly in imaging. For both isotopes all charged-particle induced reactions studied in IAEA TRS-473 have been re-evaluated, but not the neutron-induced ones. For reactions leading to 64Cu one or two new publications are available and were included in the selected sets. For the 64Ni(p,n)65Cu reaction the data with very high resolution of Guzholkij et al. (1969) [94] were fitted separately to show the resonances. Overall no important changes in the fits for the four evaluated production reactions are observed compared to previous work [6].

For formation of 124I by bombardment of enriched Te targets only for the 124Te(p,n)124I reaction important changes compared to the evaluation in Ref. [6] have been made. In addition to the experimental results obtained on 124Te targets also some cross sections measured on natTe (limited to the threshold of the 125Te(p,2n) reaction and normalized to the abundance of 124Te) were included in the compilation. This resulted in a quite different selection compared to previous work [6] and a drastic change in the fit and recommended values.

For the two reactions leading to formation of the SPECT mother isotope 81Rb (protons on natKr and 83Kr) no new datasets were found since the update of the database in 2001 [2] but a somewhat different selection results in modified fits and recommended values. For formation of 125I, two reactions on enriched Te and two reactions on 127I (including the formation of contaminant 125I) present in IAEA TECDOC-1211 [1] were evaluated. For the two direct reactions on 123,124Te isotopes results from experimental studies on natTe were included (in limited energy region and normalized). This completion and extension of the database at lower energies resulted in quite different selection and fits. Nearly no changes for the indirect reactions on 127I leading to Xe precursors of 123,125I occur.

Where possible the compiled experimental data were compared to the theoretical predictions by the TALYS 1.6 code as available in the on-line library TENDL-2017. Although the overall shape of the excitation functions is mostly well described, still sometimes significant disagreements in the magnitude and shifts of calculated excitation functions at higher energies are noted, reflecting the current status of reaction modelling and model parameters at those energies.

All recommended cross-section data with their corresponding uncertainties and deduced integral thick target yields are available on-line at the IAEA-NDS medical portal www-nds.iaea.org/medportal/ and also at the IAEA-NDS web page www-nds.iaea.org/medical/.

ACKNOWLEDGMENTS

The IAEA is grateful to all participant laboratories for their assistance in the work and for support of the activities. The work described in this paper would not have been possible without IAEA Member State contributions.

[1] K. Gul, A. Hermann, M. G. Mustafa, F. M. Nortier, P. Obloziński, S. M. Qaim, B. Scholten, Y. Shubin, S. Takács, F. T. Tárkányi, and Y. Zhuang, “charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions,” IAEA Technical Report IAEA-TECDOC-1211, May 2001, Vienna, Austria. Available online at www-nds.iaea.org/publications/tecdocs/iaea-tecdoc-1211.pdf.

[2] "IAEA reference data for charged-particle reactions." Updated 2003-2004-2007. Available online at the IAEA-NDS medical portal www-nds.iaea.org/medportal/.

[3] S. Takács, F. T. Tárkányi, A. Hermann and R. Paviotti de Corcuera; “Validation and upgrading of the recommended cross section data of charged particle reactions used for production of PET radioisotopes,” Nucl. Inst. Meth. Phys. Res. B188, 106–111 (2002); EXFOR D4106.

[4] S. Takács, F. T. Tárkányi, and A. Hermann, “Validation and upgrading of the recommended cross-section data of charged particle reactions: Gamma emitter radioisotopes,” Nucl. Inst. Meth. Phys. Res. B210, 790-802 (2005)

[5] S. Takács, F. T. Tárkányi, A. Hermann, “Validation and upgrading of the recommended cross section data of charged particle monitor reactions”, Proc. Int. Conf. Nuclear Data for Science and Technology, Nice, France, 22-27 April, 2007. Eds.: O. Bersillon, F. Gunsing, E. Bauge et al., EDP Sciences, 1255-1258 (2008). See also S. Takács, F. T. Tárkányi, M. Sonek, A. Hermann, “New cross sections and intercomparison of proton monitor reactions on Ti, Ni and Cu,” Nucl. Inst. Meth. Phys. Res. B188, 106–111 (2002); EXFOR D4106.
[6] E. Béták, A. D. Caldeira, R. Capote, B. V.Carlson, H. D. Choi, F. B. Guimarães, A. V. Ignatyuk, S. K. Kim, B. Király, S. F. Kovalev, E. Menapace, A. L. Nichols, M. Nortier, P. Pompeia, S. M. Qain, B. Scholten, Yu. N. Shubin, J.-Ch. Sublet and F. T. Tárkányi, “Nuclear Data for the Production of Therapeutic Radionuclides”, *IAEA Technical Report Series No. 473*, Eds: S. M. Qain, F. T. Tárkányi and R. Capote, International Atomic Energy Agency, Vienna, Austria, 2011, ISBN 978-92-0-115010-3. Available online at www-nds.iaea.org/publications/tecdocs/technical-reports-series-473.pdf.

[7] R. Capote and A. L. Nichols, Consultants’ Meeting on “High-precision beta-intensity measurements and evaluations for specific PET radioisotopes”, 3-5 Sept. 2008, IAEA report INDC(NDS)-0535, December 2008, IAEA, Vienna, Austria. Available online at www-nds.iaea.org/publications/indc/indc-nds-0535.pdf.

[8] R. Capote and F. M. Nortier, Consultants’ Meeting on “Improvements in charged-particle monitor reactions and nuclear data for medical isotope production”, 21-24 June 2011, IAEA report INDC(NDS)-0591, September 2011, IAEA, Vienna, Austria. Available online at www-nds.iaea.org/publications/indc/indc-nds-0591.pdf.

[9] A. L. Nichols, S. M. Qain and R. Capote, Technical Meeting on “Intermediate-term Nuclear Data Needs for Medical Applications: Cross Sections and Decay Data”, 22-26 August 2011, IAEA report INDC(NDS)-0596, September 2011, IAEA, Vienna, Austria. Available online at www-nds.iaea.org/publications/indc/indc-nds-0596.pdf.

[10] A. L. Nichols and R. Capote, Summary Report of First Research Coordination Meeting on Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production, 3-7 December 2012, IAEA report INDC(NDS)-0630, February 2013, IAEA, Vienna, Austria. Available online at www-nds.iaea.org/publications/indc/indc-nds-0630.pdf.

[11] A. Hermanne, A. V. Ignatyuk, R. Capote, B. V. Carlson, J. W. Engle, M. A. Kellett, T. Kibédi, G. Kim, F. G. Kondev, M. Hussain, O. Lebeda, A. Luca, Y. Nagai, H. Naik, A. L. Nichols, F. M. Nortier, S. V. Suryanarayana, S. Takács, F. T. Tárkányi, and M. Verpelli, “Reference Cross Sections for Charged-particle Monitor Reactions,” *Nucl. Data Sheets* **148**, 338-382 (2018). Numerical data available online at https://www-nds.iaea.org/medical/monitor_reactions.html.

[12] F. T. Tárkányi, A. V. Ignatyuk, A. Hermanne, R. Capote, B. V. Carlson, J. W. Engle, M. A. Kellett, T. Kibédi, G. N. Kim, F. G. Kondev, M. Hussain, O. Lebeda, A. Luca, Y. Nagai, H. Naik, A. L. Nichols, F. M. Nortier, S. V. Suryanarayana, S. Takács, F. T. Tárkányi, and M. Verpelli, “Recommended nuclear data for medical radioisotope production: diagnostic gamma emitters,” *J. Radioanal. Nucl. Chem.* **319**, 487531 (2019).

[13] F. T. Tárkányi, A. V. Ignatyuk, A. Hermanne, R. Capote, B. V. Carlson, J. W. Engle, M. A. Kellett, T. Kibédi, G. N. Kim, F. G. Kondev, M. Hussain, O. Lebeda, A. Luca, Y. Nagai, H. Naik, A. L. Nichols, F. M. Nortier, S. V. Suryanarayana, S. Takács, M. Verpelli, “Recommended nuclear data for medical radioisotope production: diagnostic positron emitters,” *J. Radioanal. Nucl. Chem.* **319**, 533-666 (2019).

[14] J. W. Engle, A. V. Ignatyuk, R. Capote, B. V. Carlson, A. Hermanne, M. A. Kellett, T. Kibédi, G. Kim, F. G. Kondev, M. Hussain, O. Lebeda, A. Luca, Y. Nagai, H. Naik, A. L. Nichols, F. M. Nortier, S. V. Suryanarayana, S. Takács, F. T. Tárkányi, and M. Verpelli, “Recommended Nuclear Data for the Production of Selected Therapeutic Radionuclides,” *Nucl. Data Sheets* **155**, 56-74 (2019).

[15] A. L. Nichols, R. Capote, M.-M. Bé, B. V. Carlson, J. W. Engle, A. Hermanne, A. V. Ignatyuk, M. A. Kellett, T. Kibédi, G. N. Kim, F. G. Kondev, M. Hussain, O. Lebeda, A. Luca, Y. Nagai, H. Naik, F. M. Nortier, S. V. Suryanarayana, S. Takács, F. T. Tárkányi and M. Verpelli, “Selected and Recommended Nuclear Decay Data for Medical Radioisotope Production as Applied to Specific and Potential Diagnostic β^+-Emitters, Diagnostic γ-Emitters, Therapeutic Radioisotopes and Beam Monitors for Charged-particle Reactions”, in preparation (2020).

[16] Evaluated Nuclear Structure Data File (ENSDF). Available online at www.nndc.bnl.gov/ensdf/. Developed and maintained by the International Network Of Nuclear Structure and Decay Data Evaluators (NSDD) (see www-nds.iaea.org/nsdd/).

[17] Decay Data Evaluation Project. Data available online at www.nucleids.org/DDEP.htm.

[18] *Livechart of Nuclides*, IAEA decay data retrieval code available online at www-nds.iaea.org/relnsd/vchart/html/VChartHTML.html.

[19] *Nudat*, Brookhaven National Laboratory, USA. Decay data retrieval code available online at www.nndc.bnl.gov/nudat2/.

[20] R. Capote, S. Badikov, A. D. Carlson, I. Duran, F. Günsing, D. Neudecker, V. G. Pronyaev, P. Schillebeeckx, G. Schnabel, D. L. Smith, and A. Wallner, “Unrecognized Sources of Uncertainties (USU) in Experimental Nuclear Data,” *Nucl. Data Sheets* **163**, 191–227 (2020).

[21] A. J. Koning, D. Rochman, J. Kopecký, J.-Ch. Sublet, E. Bauge, S. Hilaire, P. Romain, B. Morillon, H. Duarte, S. van der Marck, S. Pomp, H. Sjöstrand, R. A. Forrest, H. Henriksen, O. Cabellos, S. Goriely, J. Leppanen, H. Leeb, A. Plompen, R. W. Mills, “TENDL-2017: TALYS-based evaluated nuclear data library.” Data available online at tendl.web.psi.ch/tendl2017/tendl2017.html.

[22] A. J. Koning, D. Rochman, J.-Ch. Sublet, N. Dzysiuk, M. Fleming, S. van der Marck, “TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology,” *Nucl. Data Sheets* **155**, 1–55 (2019). “TENDL-2010: TALYS-based evaluated nuclear data library.” Data available online at tendl.web.psi.ch/tendl2010/tendl2010.html.

[23] A. J. Koning and D. Rochman, “Modern nuclear data evaluation with the TALYS code system,” *Nucl. Data Sheets* **113**, 2841-2934 (2012).

[24] G. T. Bida, T. J. Ruth, A. P. Wolf, “Experimentally Determined Thick Target Yields for the 14N(p,α)11C Reaction,” *Radioch. Acta* **27**, 181–185 (1980); EXFOR A0286.

[25] J.-P. Blaser, P. Marmier, M. Sempert, “Anregungsfunction der Kernreaktion 14N(p,α)11C,” *Helv. Phys. Acta* **25**, 442–447 (1952); EXFOR D0096.

[26] V. R. Casella, D. R. Christian, T. Ido, A. P. Wolf, “Excitation functions for the 14N(p,α)11C reaction up to 15 MeV,” *Radioch. Acta* **25**, 17–20 (1978); EXFOR
C0177.

[27] M. Epherre and C. Seide, “Excitation Functions of 7Be and 14C Produced in Nitrogen by Low-Energy Protons,” Phys. Rev. C3, 2167–2171 (1971); EXFOR R0018.

[28] P. D. Ingalls, J. S. Schweitzer and B. D. Anderson, ;14N(p,p)14C cross sections from 3.8 to 6.4 MeV,” Phys. Rev. C13, 524–527 (1976); EXFOR C0178.

[29] W. W. Jacobs, D. Bodansky, D. Chamberlin, D. L. Oberg, “Production of Li and B in proton and alpha-particle reactions on 14N at low energies,” Phys. Rev. C9, 2134–2143 (1974); EXFOR R0025.

[30] F. Köhl, T. Krauskopf, P. Misaëldies, R. Michelmann, G. Wolf, K. Béthe, “Determination of Nitrogen in Semiconductor Materials Using the 14N(p,p)14C and 14N(d,n)14O Nuclear Reactions,” Nucl. Inst. Meth. Phys. Res. B50, 19–22 (1990); EXFOR D0117.

[31] Z. Kovács, B. Scholten, F. T. Tárkányi, H. H. Coenen, S. Kawanishi, “Experimental study for the production cross sections of positron emitters induced from proton reactions on 13C and 14N targets relevant to the production of 14O radionuclides,” Radioch. Acta 19, 171–192 (1973); EXFOR D0111.

[32] H. Laumer, S. M. Austin, L. M. Pannagabean, C. N. Davis, “Production of Light Elements Lithium, Beryllium and Boron by Proton-Induced Spallation of 14N,” Phys. Rev. C8, 483–491 (1973); EXFOR C0985.

[33] A. M. MacLeod, I. M. Reid, “Proton Nuclear Reaction Cross Sections in Nitrogen at 13 MeV,” Proc. Phys. Soc. 87, 437–444 (1966); EXFOR: none.

[34] V. A. Muminov, S. Mukhamedov, B. Sultanov, T. Khamrakulov, “Excitation function of the 14N(p,p)14C and 14N(p,n)14N nuclear reactions,” Izv. Akad. Nauk UZBEK SSR, Ser. Phys.-Mat. 1, 56 (1974); EXFOR: not in EXFOR.

[35] T. Nozaki, T. Okuno, H. Akutson, M. Furukawa: “The Radioactivation Analysis of Semiconductor Graphite for Nitrogen by the 14N(p,p)14C Reaction,” Bull. Chem. Soc. JAPan 39, 2685–2690 (1966); EXFOR E1966, EXFOR R0026 (no data points).

[36] L. Valentijn, G. Albov, J. P. Cohen, M. Gusakov, “Functions of excitation of the reactions (p,pn) and (p,2pn) in the noxuay léhers us 15 and 15 MeV,” J. De Phys. (Paris) 25, 704–706 (1964); EXFOR: not in EXFOR.

[37] A. I. Vdovin, I. G. Golikov, M. N. Zhukov, I. I. Loshchakov, V. I. Ostromov, “Cross sections of reactions of 50 MeV protons with C-12, N-14, O-16 nuclei,” Izv. Ross. Akad. Nauk, Ser. Fiz. 43, 148 (1979); EXFOR A0050.

[38] T. Akagi, M. Yagi, T. Yamashita, M. Murakami, Y. Yamakawa, K. Kitamura, K. Ogura, K. Kondo, S. Kawamishi, “Experimental study for the production cross sections of positron emitters induced from 13C and 16O nuclei,” Radiat. Measur. 59, 262–269 (2013); EXFOR E2449.

[39] M. G. Albouy, J.-P. Cohen, M. Gusakov, N. Poffe, H. Sergolle, L. V. Valentijn, “Spallation de l’oxygéne par des protons de 20 à 150 MeV,” Phys. Lett. 2, 306–307 (1962); EXFOR C0245.

[40] R. Chapman and A.M. MacLeod, “Proton nuclear reaction cross sections in Oxygen and Neon at 13 MeV,” Nucl. Phys. A94, 313–323 (1967); EXFOR D0138.

[41] R. L. Dangle, Oppliger, G. Hardie, “16O(p,p)13N and 16O(p,p') 14O differential cross sections,” Rev. Mod. Phys. 36, 647 (1964). Numerical data from D.D. Clayton and E. Woosley, “Thermonuclear astrophysics,” Rev. Mod. Phys. 46, 755 (1974); EXFOR: none.

[42] M. Furukawa, Y. Ishizaki, Y. Nakano, T. Nozaki, Y. Saji, S. Tanaka, “Excitation function for the reaction 13B(p,n)11C up to Ep=15 MeV and energy levels of 12C,” J. Phys. Soc. Japan 15, 2167–2170 (1960); EXFOR P0045.

[43] W. Gruhle and B. Kober, “The reactions 16O(p,p), 20Ne(p,p) and 23Mg(p,p),” Nucl. Phys. A286, 523–530 (1977); EXFOR B0157.

[44] H. A. Hill, E. L. Haase, D. B. Kmondsen, “High-resolution measurements of the 16O(p,p)14N excitation function,” Phys. Rev. 123, 1301 (1961); EXFOR C0998.

[45] S.W. Kitwanga, P. Leleux, P. Pipnik, J. Vanhorenbeek, “Production of 13C(p,n) or 16O(p,n) reactions,” Phys. Rev. C40, 35 (1989); EXFOR O0065.

[46] T. Masuda, J. Kataoka, M. Arimoto, M. Takabe, T. Nishio, K. Matsushita, T. Miyake, S. Yamamoto, T. Inaniwa, T. Toshito, “Measurement of nuclear reaction cross sections by using Cherenkov radiation toward high-precision proton therapy,” Scient. Reports (UK) 8, 2570 (2018); EXFOR E2568.

[47] D. R. Maxson, “14O(p,p)16N angular distributions at 13.5–18.1 MeV,” Phys. Rev. 123, 1304 (1961); EXFOR C0246.

[48] R. H. McCamis, G. A. Moss, J. M. Casmeron, “Total cross section of 16O(p,n)13N from threshold to 7.7 MeV,” Can. J. Phys. 51, 1689–1692 (1973); EXFOR R0043.

[49] A. V. Nero and A. J. Howard, “18O(p,α)16N cross-section measurements,” Nucl. Phys. A219, 60 (1973); EXFOR: none.

[50] M. Sajjad, R. M. Lambrecht, A. P. Wolf, “Cyclotron isotopes and radiopharmaceuticals XXXVII. Excitation functions for the 16O(p,n)13N and 14N(p,nn)14N reactions,” Radioch. Acta 39, 165–168 (1986); EXFOR C0202.

[51] A. B. Whitehead and J. S. Foster, “Activation cross sections for 12C(p,pn)11C, 16O(p,n)13N and 19F(p,fn)18F,” Can. J. Phys. 36, 1276–1285 (1958); EXFOR P0051.

[52] G. Gambarini, I. Iori, S. Micheletti, N. Mollo, M. Pignanelli, G. Tagliaferri, “Study of (p,α) reactions in light nuclei at 38 MeV,” Nucl. Phys. A126, 562 (1969); EXFOR F0303.

[53] L. Valentijn, G. Albov, J. P. Cohen, M. Gusakov, “Reacctions Induites par des Protons de 155 MeV sur des Noyaux Légers,” Phys. Lett. 7, 163 (1963); EXFOR C0061.

[54] A. R. Barnett, “16 Analogue states in the 15N(p,n)15O reaction,” Nucl. Phys. A120, 342 (1968); EXFOR D0111.

[55] S. H. Chew, J. Lowe, J. M. Nelson, A. R. Barnett, “Resonance structure in 15N(p,n)15O in the region Ep=8.5–19.0 MeV,” Nucl. Phys. A298, 19 (1978); EXFOR none.

[56] L. F. Hansen and M. L. Steltz, “15N(p,n)15O ground state reactions and the quasielastic model of (p,n) reactions,” Phys. Rev. 132, 1123 (1963); EXFOR none.

[57] Sindano wa Kitwanga, P. Leleux and P. Lipnik, “Production of 14,15O, 18F and 19Ne radioactive nuclei from (p,n) reactions up to 30 MeV,” Phys. Rev. C42, 748 (1990); EXFOR O0916.

[58] K. Murphy, R. C. Byrd, P. P. Guss, C. E. Floyd, R. L. Walter, “The 15N(p,n)15O reaction below 9.3 MeV,” Nucl. Phys. A355, 1 (1981); EXFOR T0003.
[59] E. Pöntz, “Measurement of cross sections for the scattering of neutrons in the energy range of 2 MeV to 4 MeV with the N-15(p,n) reaction as a neutron source,” Ph. D. Thesis, Universitét Dresden (2010); EXFOR O2099.

[60] M. Sajjad, R. M. Lambrecht, A. P. Wolf, “Excitation function for the 14N(p,n)13O reaction,” Radioch. Acta 36, 159 (1984); EXFOR A0313.

[61] C. Wong, J. D. Anderson, S. D. Bloom, J. W. McClure and B. D. Walker, “Angular distribution of the ground-state neutrons from the C13(p,n)N13 and N15(p,n)O15 reactions,” Phys. Rev. 123, 598 (1961).

[62] S. Morita, N. Kawai, Y. Goto, T. Maki, M. Mukae, “The 14N(d,n)15O Reaction in the Energy Range from 1.5 to 2.9 MeV,” J. Phys. Soc. Japan 15, 2170 (1960), EXFOR E1869.

[63] H. Newson, “Transmutation Functions at High Bombarding Energies,” Phys. Rev. 51, 620 (1937); EXFOR C0099.

[64] T. Retz-Schmidt and J. L. Weil, “Excitation Curves and Angular Distributions for 14N(d,n)15O,” Phys. Rev. 119, 1079 (1960); EXFOR C1009.

[65] M. Sajjad, R. M. Lambrecht, A. P. Wolf, “Cyclotron Isotopes and Radiopharmaceuticals. XXXVI. Investigation of Some Excitation Functions for the Preparation of 14N, 15N and 12C,” Radioch. Acta 38, 57 (1985); EXFOR A0316.

[66] Z. Szücs, W. Hamkens, S. Takács, F. T. Tarkányi, H. H. Coenen, S. M. Qaim, “Excitation functions of 14N(d,t)13C and 15N(d,dn)14C reactions from thresholds to 12.3 MeV: Radiocurlicid purity of 15O produced via 14N(d,n)13O reaction,” Radioch. Acta 80, 59–63 (1998); EXFOR D4090. Also some unpublished data points, private communication.

[67] H. Vera Ruiz and A. P. Wolf, “Excitation Function for 15O Production via the 14N(d,n)15O Reaction,” Radioch. Acta 24, 65 (1977); EXFOR D0025, B0125, T0133.

[68] K. Wohlenbe and E. Schuster, “Aktivierungsanalyse mit Deuteronen. Der totale Wirkungsquerschnitt der Reaktionen 10B(d,n)11C, 14N(d,n)15O und 16O(d,n)17F bis 3.2 MeV,” Radioch. Acta 12, 75 (1969); EXFOR D0026.

[69] I. Nonaka, S. Morita, N. Kawai, T. Ishimatsu, K. Takeshiya, Y. Nakajima, N. Takano, “On the Neutrons from the 14N(n,n)15O Reaction-II,” J. Phys. Soc. Japan 12, 841 (1957); EXFOR E1870.

[70] J. B. Marion, R. M. Brugger, T. W. Bonner, “(d,n) Reactions in O-16 and N-14,” Phys. Rev. 100, 46 (1955); EXFOR none.

[71] G. Amsel and D. Samuel, “Microanalysis of the stable isotopes of oxygen by means of nuclear reactions,” J. Anal. Chem. 39, 1689–1698 (1967); EXFOR D0104.

[72] J. D. Anderson, S. D. Bloom, C. Wong, W. F. Hornyk, V. A. Madsen, “Effective two-body force inferred from the (p,n) reaction on 16O, 18O, 27Al and other light nuclei,” Phys. Rev. 177, 1416 (1969); EXFOR C1016.

[73] J. K. Bair, C. M. Jones, H. B. Willard, “Neutrons from the Proton Bombardment of 6Li, 7Li, 9Be, 11B and 15O,” Nucl. Phys. 53, 209 (1964); EXFOR A1366.

[74] J. K. Bair, “Total neutron yields from the proton bombardment of 17O, 18O,” Phys. Rev. C8, 120 (1973); EXFOR C1010.

[75] J. K. Bair, P. D. Miller, B. W. Wieland, “Neutron yields from the 4-12 MeV proton bombardment of 11B, 13C and 18O as related to the production of 12C, 13N and 18F,” Int. J. Appl. Radiat. Isot. 32, 389 (1981); EXFOR none.

[76] J. M. Blair and J. J. Leigh, “Total Cross Sections of the 18O(p,n)17N and 18O(p,n)18F Reactions,” Phys. Rev. 118, 495 (1960); EXFOR 00454.

[77] J.-P. Blaser, F. M. Boehm, P. Marmier, P. Scherrer, “Fonction d’excitation de la reaction (p,n) (III) elements legers,” Helv. Phys. Acta 24, 465 (1952); EXFOR D0095.

[78] W. Fritsch, K. D. Buchs, E. Finck, P. Pietrzyk, B. Scheiber, “Investigation of two resonances in the 18O(p,n)18F reaction,” Z. Phys. 262, 65 (1973); EXFOR none.

[79] E. Hess, S. Takács, B. Scholten, F. Tárkányi, H. H. Coenen, S. M. Qaim, “Excitation function of the 18O(p,n)17F nuclear reaction from threshold up to 30 MeV,” Radioch. Acta 89, 357–362 (2001), Germany; EXFOR D4095.

[80] B. S. Mazitov, V. A. Muminov, S. Mukhamedov, “Activation cross sections for the reactions 15O(p,n)14F and 47,48Ti(p,n)46,47V from threshold to 18 MeV,” Dokl. Akad. Nauk. Uzbek. SSR 5, 21 (1971); EXFOR C0999.

[81] T. J. Ruth and A. P. Wolf, “Absolute cross sections for the production of 18F via 18O(p,n)17F reaction,” Radioch. Acta 26, 21 (1979); EXFOR A0235.

[82] H. Backhausen, G. Stöcklin, R. Weinreich, “Formation of 18F via its 18Ne precursor: excitation functions of reactions 20Ne(d,x)19F and 20Ne(3He,α)17F,” Radioch. Acta 29, 1–4 (1981); EXFOR A0175.

[83] A. Fenyvesi, S. Takács, S. Merchel, G. Pető, F. Szlecscényi, T. Molnár, F. T. Tárkányi, S. M. Qaim, “Excitation functions of charged particle induced reactions on neon: relevance to the production of 22,24Na and 18F,” Proc. Int. Conf. on Nuclear Data for Science and Technology Trieste, May 1977, Trieste, Italy, Eds. G. Reffo, A. Ventura, C. Grandi, Soc. Ital. Fys. (Bologna) 59, 1707–1709 (1997); EXFOR D3134.

[84] M. Guillame, “Production en routine par cyclotron de fluor-18 et potassium-43 à usage médical au moyen d’une cible gazeuse télécommandée,” Nucl. Inst. Meth. Phys. Res. 136, 185–195 (1976); EXFOR D0112.

[85] T. Nozaki, M. Iwamoto, T. Ido, “Yield of 18F for various reactions from oxygen and neon,” Int. J. Appl. Radiat. Isot. 25, 393–399 (1974); EXFOR E1871.

[86] C. Morand, H. Beaumville, A. Dauchy, G. Dumazet, M. Lambert, C. Meynadier, “Statistical characteristics of the 22Ne(d,α)18F and 22Ne(d,20F)20Ne reactions at Ed ≤ 3.2 MeV,” J. Phys. Coll. C31, C2–205 (1970); EXFOR D0091 (partial differential cross sections). Single integrated cross section value taken from Ref. [88].

[87] K. Takamatsu, “(d,α) reactions on 19F, 20Ne, 31P and 30Si at 14.7 MeV,” J. Phys. Soc. Japan 17, 896 (1962); EXFOR E1872 (partial differential cross sections). Single integrated cross section value taken from Ref. [88].

[88] C.-H. de Lassus St-Genies and J. Tobailem, “Sections efficaces des reactions nucleaires induites par protons, deuterons, particules alpha. II. Fluor, Neon, Sodium, Magnesium,” Rapport CEA-N-1466(2), CEA, France, 1972.
Upgrade of IAEA recommended data ... NUCLEAR DATA SHEETS A. Hermann et al.

[89] R. Adam Rebeles, P. Van den Winkel, A. Hermann, F. T. Tárkányi, “New measurement and evaluation of the excitation function of \(^{64}\text{Ni}(p,n)\) reaction for the production of \(^{64}\text{Cu}\),” Nucl. Inst. Meth. Phys. Res. B267, 457–461 (2009); EXFOR D4207.

[90] A. E. Antropov, V. P. Gusev, Yu. Yu. Zhuravlev, P. P. Zarubin, A. A. Kolozhvarii, A. V. Smirnov, “Total cross sections of \((p,n)\) reaction on the nuclei of isotopes nickel and zinc at e/p=5–6 MeV,” Izv. Ross. Akad. Nauk, Ser. Fiz. 56, 198 (1992); EXFOR A0543.

[91] M. A. Avila-Rodriguez, J. A. Nye, R. J. Nickles, “Simultaneous production of high specific activity \(^{64}\text{Cu}\) and \(^{63}\text{Cu}\) with 11.4MeV protons on enriched \(^{64}\text{Ni}\) nuclei,” Appl. Radiat. Isot. 65, 1115–1120 (2007); EXFOR C1600.

[92] J. P. Blaser, F. Böhm, P. Marmier, P. Scherrer, “Anregungsfunktionen und Wirkungskernschichten der \((p,n)\)-Reaktion (II),” Helv. Phys. Acta 24, 441 (1951); EXFOR P0033.

[93] H. G. Blosser and T. H. Handley, “Survey of \((p,n)\) reactions at 12 MeV,” Phys. Rev. 100, 1340 (1955); EXFOR B0052.

[94] B. Ja. Guzhovskij, I. M. Borkin, A. G. Zvenigorodskij, V. S. Rudnev, A. P. Solodovnikov, S. V. Trusillo, “Isospin mixing of isobar analog resonances observed for the \(^{59,61}\text{Ni}\) nuclei,” Izv. Ross. Akad. Nauk, Ser. Fiz. 33, 129 (1969); EXFOR F0704.

[95] V. N. Levkovskij, “Activation cross sections of the \(^{64}\text{Ni}\) nuclei,” Nucl. Inst. Meth. Phys. Res. 64, 139–143 (1968); EXFOR A0112, not in figure.

[96] M. E. Sevior, L. W. Mitchell, M. R. Anderson, C. W. Tingwell, D. G. Sargood, “Absolute cross sections of proton induced nuclear reactions on \(^{65}\text{Cu}\), \(^{63}\text{Ni}\), \(^{63}\text{Cu}\),” Appl. Radiat. Isot. 36, 463 (1983); EXFOR A0198.

[97] F. Szelescényi, G. Blessing, S. M. Qaim, “Excitation functions of proton induced nuclear reactions on enriched \(^{61}\text{Ni}\) and \(^{64}\text{Ni}\): Possibility of production of no-carrier-added \(^{64}\text{Cu}\) and \(^{63}\text{Cu}\) at a small cyclotron,” Appl. Radiat. Isot. 44, 575–580 (1993); EXFOR D4020.

[98] S. Tanaka, M. Furukawa, “Excitation functions for \((p,n)\) reactions with titanium, vanadium, chromium, iron and nickel up to 14 MeV,” J. Phys. Soc. Japan 14, 1269 (1959); EXFOR B0043.

[99] S. Tanaka, M. Furukawa, M. Chiba, “Nuclear reactions of nickel with protons up to 56 MeV,” J. Inorg. Nucl. Chem. 34, 2419 (1972); EXFOR B0020.

[100] Md. S. Uddin, A. K. Chakraborty, S. Spellerberg, Md. A. Shariff, S. Das, Md. A. Rashid, I. Spahn, S. M. Qaim, “Experimental determination of proton induced reaction cross sections on \(^{63}\text{Ni}\) near threshold,” Radioch. Acta 104, 305–314 (2016); EXFOR D8082.

[101] B. A. Nemashkalo, Yu. P. Melnik, V. E. Storizhko, K. V. Sheboko, “Radiative capture of protons by nuclei \(^{54}\text{Cr}\) and \(^{46}\text{Ni}\) near the threshold of the \((p,n)\) reaction,” Yad. Fiz. 37, 3 (1983); EXFOR A0112, not in figure.

[102] W. J. Tretyl and A. A. Caretto Jr., “Study of \((p,n)\) reactions between 100 and 400 MeV,” Phys. Rev. 146, 836 (1966); EXFOR C0089, Not on figure.

[103] M. Avridgeau, E. Šimečková, U. Fischer, J. Mrazek, J. Novak, M. Štefánik, C. Costache, V. Avridgeau, “Deuteron-induced reactions on Ni isotopes up to 60 MeV,” Phys. Rev. C94, 014606 (2016); EXFOR D0818.

[104] L. Daraban, R. Adam Rebeles, A. Hermann, “Study of the excitation function for the deuteron induced reaction on \(^{64}\text{Ni}(d,2n)\) for the production of the medical radioisotope \(^{64}\text{Cu}\),” Appl. Radiat. Isot. 67, 506–510 (2009); EXFOR D0547.

[105] A. Hermann, F. T. Tárkányi, S. Takács, S. F. Kovalev, A. V. Ignatyuk, “Activation cross sections of the \(^{64}\text{Ni}(d,2n)\) reaction for the production of the medical radionuclide \(^{64}\text{Cu}\),” Nucl. Inst. Meth. Phys. Res. B258, 308–312 (2007); EXFOR D4182.

[106] S. Takács, F. T. Tárkányi, B. Király, A. Hermann, M. Sonck, “Evaluated activation cross sections of longer-lived radionuclides produced by deuteron induced reactions on natural nickel,” Nucl. Inst. Meth. Phys. Res. B260, 495–507 (2007); EXFOR D4178.

[107] J. Zweit, A. M. Smith, S. Downey, H. L. Sharma, “Excitation functions for deuteron induced reactions in natural nickel: Production of no-carrier-added \(^{64}\text{Cu}\) from enriched \(^{64}\text{Ni}\) targets for positron emission tomography,” Int. J. Radiat. Appl. Instrum. Part A, Appl. Radiat. Isotop. 42, 193–197 (1991); EXFOR D4056.

[108] K. Hilgers, T. Stoll, Y. Slakun, H. H. Coenen, S. M. Qaim, “Cross-section measurements of the nuclear reactions \(^{64}\text{Zn}(d,x)\)\(^{65}\text{Cu}\), \(^{66}\text{Zn}(d,\alpha)\)\(^{64}\text{Cu}\) and \(^{68}\text{Zn}(p,n)\)\(^{64}\text{Cu}\) for production of \(^{64}\text{Cu}\) and technical developments for small-scale production of \(^{65}\text{Cu}\) via the \(^{70}\text{Zn}(p,\alpha)\)\(^{67}\text{Cu}\) process,” Appl. Radiat. Isot. 59, 343–351 (2003); EXFOR D0069.

[109] F. Szelescényi, G. F. Steyn, Z. Kovács, C. Vermeulen, N. P. van der Meulen, S. G. Dolley, T. N. van der Walt, K. Suzuki and K. Mukai, “Investigation of the \(^{66}\text{Zn}(p,2pn)\)\(^{64}\text{Cu}\) and \(^{68}\text{Zn}(p,x)\)\(^{64}\text{Cu}\) nuclear processes up to 100 MeV: Production of \(^{64}\text{Cu}\),” Nucl. Inst. Meth. Phys. Res. B240, 625–637 (2005); EXFOR O1351.

[110] M. L. Bonardi, F. Groppi, C. Birattari, L. Gini, C. Mainardi, A. Ghioni, E. Menapace, K. Abbas, U. Holzwarth, M. F. Stroosnijder, “Thin-target excitation functions and optimization of simultaneous production of NCA copper-64 and gallium-66.67 by deuteron induced nuclear reactions on a natural zinc target,” J. Radioanal. Nucl. Chem. 257, 229 (2003); EXFOR none.

[111] F. Groppi, M. L. Bonardi, C. Birattari, L. Gini, C. Mainardi, E. Menapace, K. Abbas, U. Holzwarth, M. F. Stroosnijder, “Thin-target excitation functions and optimisation of simultaneous production of NCA copper-64 and gallium-66.67 by deuteron induced nuclear reactions on a natural zinc target,” J. Radioanal. Nucl. Chem. 257, 229 (2003); EXFOR none.

[112] M. U. Khandaker, H. Haba, M. Murakami, N. Otuka, “Production cross-sections of long-lived radionuclides in deuteron-induced reactions on natural zinc up to 23 MeV,” Nucl. Inst. Meth. Phys. Res. B346, 8–16 (2015); EXFOR E2473.

[113] E. Šimečková, P. Bem, J. Mrazek, M. Štefánik, R. Behal, V. Gladolev “Proton and deuteron activation measurements at the NPI and future plans in SPIRAL2/NFS,” EPJ Web of Conf. 146, 11034 (2017); EXFOR D0900.
[114] F. T. Tárkányi, S. Takács, F. Dittrói, A. Hermannae, M. Soncck, Yu. Shubin, “Excitation functions of deuteron induced nuclear reactions on natural zin up to 50 MeV,” Nucl. Inst. Meth. Phys. Res. B217, 531-550 (2004); EXFOR D4144.

[115] D. C. Williams and J. W. Irvine Jr., “Nuclear excitation functions and thick-target yields: Zn+d and 40Ar(d,α),” Phys. Rev. 130, 265 (1963); EXFOR R0038.

[116] E. Acerbi, C. Birattari, M. Castiglioni, F. Resmini, M. Villa, “Production of 121I for medical purposes at the Milan AVF cyclotron,” Int. J. Appl. Radiat. Isot. 26, 741–747 (1975); EXFOR A0266.

[117] K. Kondo, R. M. Lambrecht, A. P. Wolf, “121I production for radiotherapeutics—XXI: Excitation functions of the 124Te(p,2n)123I and 124Te(p,n)125I reactions and the effect of target enrichment on radio nuclidic purity,” Int. J. Appl. Radiat. Isot. 28, 395–401 (1977); EXFOR B0090.

[118] B. Scholten, Z. Kovács, F. T. Tárkányi, S. M. Qaim, “Excitation functions of 124Te(p,xn)123,124I reactions from 6 to 31 MeV with special reference to the production of 124I at a small cyclotron,” Appl. Radiat. Isot. 46, 255–259 (1995); EXFOR D4019.

[119] R. Van Den Bosch, J. J. M. De Goeij, H. M. J. Theelen, C. Zegers, “A new approach to target chemistry for the iodine-123 production via the Te(p,2n) reaction,” Int. J. Appl. Radiat. Isot. 28, 255–261 (1977); EXFOR B0167.

[120] J. Zweit, M. A. Bakir, R. J. Ott, H. L. Sharma, M. Cox, R. Goodall, “Excitation functions of proton induced reactions in natural tellurium-production of no-carrier added iodine-124 for PET-applications,” 4th Int. Workshop on Targetry, Villigen, Switzerland, 76 (1991); EXFOR O1260.

[121] A. M. Ahmed, H. E. Hassan, K. F. Hassan, A. M. Khalaif, Z. A. Saleh, “Cross sections for the formation of radioiodines in proton bombardment of natural tellurium with particular reference to the validation of data for the production of 121I,” Radioc. Acta 99, 317–323 (2011); EXFOR D0647.

[122] K. M. El-Azony, K. Suzuki, T. Fukumura, F. Szelecsényi, Z. Kovács, “Proton induced reactions on natural tellurium up to 63 MeV: Data validation and investigation of possibility of 124I production,” Radioc. Acta 96, 763–769 (2008); EXFOR D0502.

[123] S. A. Kandil and M. Al-Abyad, “Cross section measurements and theoretical calculations of proton induced nuclear reactions on natural tellurium,” Radioc. Acta 101, 67–72 (2013); EXFOR D0707.

[124] B. Király, F. T. Tárkányi, S. Takács, Z. Kovács, “Excitation functions of proton induced nuclear reactions on natural tellurium up to 18 MeV for validation of isotopic routes,” J. Radioanal. Nucl. Chem. 270, 369–378 (2006); EXFOR D4177.

[125] B. Scholten, S. M. Qaim, G. Stöcklin, “Excitation functions of proton induced nuclear reactions on natural tellurium and enriched 125Te: Production of 125I via the 125Te(p,2n)124I-process at a low-energy cyclotron,” Int. J. Radiat. Appl. Instrum., Part A, Appl. Radiat. Isotop. 40, 127–132 (1989); EXFOR A0473.

[126] K. Zaric, N. A. Hammad, A. Azzam, “Excitation functions of (p,xn) reactions on natural tellurium at low energy cyclotron: relevance to the production of medical radioisotope I-123,” J. Nucl. Radiat. Phys. 1, 93 (2006); EXFOR O1736.

[127] Th. Bastian, H. H. Coenen, S. M. Qaim, “Excitation functions of 124Te(d,xn)124,125I reactions from threshold up to 14 MeV: comparative evaluation of nuclear routes for the production of 124I,” Appl. Radiat. Isot. 55, 303-308 (2001); EXFOR A0248.

[128] M. L. Firouzbakht, D. J. Schlyer, R. D. Finn, G. Laguzzi, A. P. Wolf, “122I production: excitation function for the 122Te(d,2n)121I and 122Te(d,3n)123I reactions from 7 to 24 MeV,” Nucl. Inst. Meth. Phys. Res. B79, 909–910 (1993); EXFOR D0497.

[129] A. Hermannae, F. T. Tárkányi, S. Takács, F. Dittrói, A. Ignatvuk, “Deuteron induced reactions on Tellurium: an alternative for production of 125I,” Nucl. Inst. Meth. Phys. Res. B466, 20–30 (2020).

[130] A. Hohn, F. M. Nortier, B. Scholten, T. N. Van Der Walt, H. H. Coenen, S. M. Qaim, “Excitation Functions of 125Te(p,xn)-Reactions from their Respective Thresholds up to 100 MeV with Special Reference to the Production of 124I,” Appl. Radiat. Isot. 55, 149–156 (2001); EXFOR A0215.

[131] E. Acerbi, C. Birattari, M. Bonardi, C. De Martinis, A. Salomone, “Kr(p,xn) excitation functions and 81mKr generator studies,” Int. J. Appl. Radiat. Isot. 32, 465–475 (1981); EXFOR O0847.

[132] F. Kovács, F. T. Tárkányi, S. M. Qaim, G. Stöcklin, “Excitation functions for the formation of some radioisotopes of rubidium in proton induced nuclear reactions on natKr, 81Kr and 81mKr with special reference to the production of 81Rb(81mKr) generator radionuclide,” Appl. Radiat. Isot. 42, 329–335 (1991); EXFOR A0489.

[133] J. F. Lamb, G. A. Baker, M. L. Goris, A. Khetigan, H. A. Moore, W. C. Neesan, H. S. Winchell, “Production and clinical evaluation of a commercial Krypton-81m gas generator and its delivery system,” Brit. J. Radiol., Special Report 15: Clinical and Experimental Applications of Krypton-81m. (Ed. Lavender J.P.) British Institute of Radiology, London, p. 23 (1978); EXFOR: none.

[134] G. F. Steyn, S. J. Mills, F. M. Nortier, J. H. Haasbroek, “Integral excitation functions for natKr+p up to 116 MeV and optimization of the production of 81Rb for 81mKr generators,” Appl. Radiat. Isot. 42, 361–370 (1991); EXFOR A0499.

[135] J. J. L. Mulders, “Yield curves and beam current dependent production rates of Rb radioisotopes produced by protons on a krypton gas target,” Int. J. Appl. Radiat. Isot. 35, 475–480 (1984); EXFOR D0115.

[136] R. C. Barrall, J. E. Beaver, H. B. Hupf, F. F. Rubio, “Production of Curie quantities of high purity I-123 with 15 MeV protons,” Eur. J. Nucl. Med. 6, 411 (1981); EXFOR D0093.

[137] H. B. Hupf, J. S. Eldridge, J. S. Beaver, “Production of iodine-123 for medical applications,” Int. J. Appl. Radiat. Isot. 19, 345 (1968); EXFOR none.

[138] S. M. Kormali, D. L. Swindle, E. A. Schweikert, “Charged particle activation of medium Z elements. II. Proton excitation functions,” J. Radioanal. Chem. 31, 437–450 (1976); EXFOR D4073.

[139] I. Mahunka, L. Andó, P. Mikecz, A. N. Tcheltsov, I. A. Suvorov, “Iodine-123 production at a small cyclotron and clinical evaluation of a commercial Krypton-81m gas generator,” J. Radioanal. Nucl. Chem. Lett. 213, 135–142 (1996); EXFOR D4142.

[140] M. Diksic and L. Yaffe, “A study of I-127(p,xn) and I-127(p,pm) reactions with special emphasis on produc-
tion of Xe-123,” J. Inorg. Nucl. Chem. 39, 1299-1302 (1977); EXFOR B0081.

[141] M. C. Lagunas-Solar, O. F. Carvacho, B. Liu, Y. Jin, Z. X. Sun, “Cyclotron production of high-purity I-123. A Revision of excitation functions, thin target and cumulative yields for I-127(p,xn) reactions,” App. Radiat. Isot. 37, 823-833 (1986); EXFOR A0363.

[142] H. Lundqvist, P. Mahlborg, B. Langstrom, S. N. Chienmgai, “Simple production of 77Br- and 123I- and their use in the labelling of [77Br]BrUdR and [123I]IUdR,” App. Radiat. Isot. 30, 39-43 (1979), EXFOR D0116.

[143] A. M. J. Paans, W. Vaalburg, G. van Herk and M. G. Woldring, “Excitation function for the production of I-123 via the I-127(p,5n)Xe-123 reaction,” App. Radiat. Isot. 27, 465–467 (1976); EXFOR A0116.

[144] K. Sakamoto, M. Doihina, K. Okada, “Excitation functions for (p,xn) and (p,pxn) reactions on natural, 79+81Br, 85+87Rb, 127I and 133Cs up to E_p = 52 MeV,” App. Radiat. Isot. 36, 481–488 (1985); EXFOR E1867.

[145] K. Suzuki, “Production of pure 123I by the 127I(p,5n)123Xe→123I-reaction,” Radioisot. 35, 235–241 (1986); EXFOR E1868.

[146] D. B. Syme, E. Wood, I. M. Blair, I. Kew, M. Perry, P. Cooper, “Yield curves for cyclotron production of I-123 and I-125 and I-121 by I-127(p,xn)-reactions,” Int. J. App. Radiat. Isot. 29, 29-38 (1978); EXFOR R0007.

[147] S. R. Wilkins, S. T. Shimose, H. H. Hines, J. A. Jungerman, F. Hedges, G. L. DeNardo, “Excitation functions and yields for I-123 production using the I-123(p,5n)Xe-123 reaction,” App. Radiat. Isot. 26, 279–283 (1975); EXFOR A0265.

[148] N. G. Zaitseva, C. Deptula, O. Knouk, S. K. Kim, S. Nikolaevsky, P. Mikecz, E. Rurarz, V. A. Khalkin, V. A. Konov, L. M. Popinenkova, “Cross Sections for the 100 MeV Proton-Induced Nuclear Reactions and Yields of Some Radionuclides Used in Nuclear Medicine,” Radioch. Acta 54, 57–72 (1991); EXFOR A0918.

[149] A. G. Dovbenko, N. V. Kurenkov, V. P. Lunev, A. B. Malinin, V. S. Masterov, Yu. N. Shubin, “Excitation functions of reactions for the formation of 121I, 123Xe and 125Cs,” Preprint FEI-2182 (1991) (in Russian); EXFOR none.

[150] D. Gandarias-Cruz and K. Okamoto, “Status on the compilation of nuclear data for medical radioisotopes produced by accelerators,” IAEA Nuclear Data Section Report INDC(NDS)-209/GZ, Vienna, Austria, (1988).