CK2-mediated phosphorylation of Hsp90β as a novel mechanism of rifampin-induced $MDRI$ expression

So Won Kim1,2,3,4,*, Md.Hasanuzzaman3, Munju Cho3, Ye Rang Heo3, Min-Jung Ryu3, Na-Young Ha3, Hyun June Park5, Hyung-Yeon Park6, and Jae-Gook Shin3,4

1Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 210-701, Korea
2Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 210-701, Korea
3Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Korea
4Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735, Korea
5Bio-MAX Institute, Seoul National University, Seoul 151-742, Korea
6Agriculture & Biotechnology Department, Noroo Holdings Co. Ltd, Seoul 135-983, Korea

*These authors contributed equally to this work.

Running title: Rifampin-CK2-Hsp90β pathway for inducing P-gp expression

To whom correspondence should be addressed: Jae-Gook Shin, Pharmacogenomics Research Center, Inje University College of Medicine, Clinical Trial Center, Inje University Busan Paik Hospital, #633-165, Gaegum-Dong, Jin-Gu, Busan, South Korea, Tel.: (+82) 51-890-6709; Fax: (+82) 51-893-1232; E-mail: phshinjg@gmail.com

Keywords: Rifampin; casein kinase 2 (CK2); heat shock protein 90 β (Hsp90β); pregnane X receptor (PXR); permeability glycoprotein (P-gp)

Background: Rifampin is a representative inducer of P-gp, and the only known mechanism is binding between rifampin and PXR.

Results: Rifampin directly activates CK2, which phosphorylates Hsp90β. Consequently, PXR increases and P-gp expression is induced.

Conclusion: A mechanism for inducing P-gp expression by rifampin exposure is newly identified.

Significance: A strategy for overcoming P-gp-derived drug resistance is suggested.

ABSTRACT

The P-glycoprotein (P-gp) encoded by the $MDRI$ gene is a drug-exporting transporter located in the cellular membrane. P-gp induction is regarded as

Copyright 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
one of the main mechanisms underlying drug-induced resistance. Although there is great interest in the regulation of P-gp expression, little is known about its underlying regulatory mechanisms. In this study, we demonstrate that casein kinase 2 (CK2)-mediated phosphorylation of heat shock protein (Hsp) 90β, and subsequent stabilization of PXR, is a key mechanism in the regulation of \textit{MDRI} expression. Furthermore, we show that CK2 is directly activated by rifampin. Upon exposure to rifampin, CK2 catalyzes the phosphorylation of Hsp90β at the Ser225/254 residues. Phosphorylated Hsp90β then interacts with PXR, causing a subsequent increase in its stability, leading to the induction of P-gp expression. In addition, inhibition of CK2 and Hsp90β enhances the downregulation of PXR and P-gp expression. The results of this study may facilitate the development of new strategies to prevent multidrug resistance, and provide a plausible mechanism for acquired drug resistance by CK2-mediated regulation of P-gp expression.

Primary and/or acquired drug resistance remains one of the major limitations of the clinical efficacy of cancer treatment. Cancer cells can become resistant to chemotherapy in many ways. One such type of resistance, ATP-binding cassette (ABC) transporter superfamily-derived resistance, is becoming an increasingly important field of research because ABC transporters comprise 46 members, each of which has multiple substrates (1). Effective solutions against ABC transporter-driven drug resistance have yet to be developed, although efforts to overcome this phenomenon have persisted and are important issues in cancer prevention and/or treatment (2).

P-glycoprotein (P-gp) is a member of the ABC transporter family (3) that is expressed in tumor cells as well as various organs, including the liver, kidney, intestine, brain, etc. P-gp facilitates the export of potentially toxic substances or metabolites from the body (4, 5). Thus, P-gps are believed to be involved in the defense against various types of xenobiotic stresses. One major transcription factor that regulates P-gp expression in the intestine is PXR (6).

PXR-regulating drugs have been identified as a (poorly understood) P-gp-inducing mechanism. Rifampin, an anti-tuberculosis agent, is a representative PXR inducer (7) that affects the bioavailability of several drugs that are substrates of CYP3A4 and/or P-gp (8). The drugs that interact with rifampin include not only anticancer drugs but also calcium-channel blockers, antiepileptic drugs, and antiretroviral agents, among others. The list is continuously updated because this phenomenon is inhibiting treatment progress (9).

The interaction between rifampin and PXR was already discovered using structural determinants (10). However, because PXR regulates molecules such as heat shock protein (Hsp) 90β and cytoplasmic constitutive active/androstane receptor
retention protein (CCRP), additional P-gp inducing pathways are gradually being discovered (11-13). Using a phosphoproteomic approach, we focused on Hsp90β, a highly conserved 90-kDa molecular chaperone/heat shock protein, as a key regulator of P-gp expression. Hsp90β is phosphorylated by casein kinase 2 (CK2) and forms a complex with PXR in the cytoplasm (14, 15). In the study described herein, we reveal that this pathway can be induced by rifampin.

CK2 is a nuclear matrix-associated, ubiquitously expressed, and evolutionally conserved serine/threonine protein kinase consisting of two α or α’ catalytic and two β regulatory subunits (16). CK2 phosphorylates a wide range of cellular proteins and is involved in a variety of biological functions, such as cell cycle progression (17), signal transduction (18), circadian rhythms (19), and gene expression (20). Importantly, CK2 levels are elevated in tumors compared to normal tissue, where overexpression of its catalytic subunit leads to the development of T-cell lymphoma and mammary tumorigenesis (21, 22), indicating the significance of CK2 in proliferation, as well as in the formation of neoplasias (23). Similar to Hsp90β, CK2 is also related to drug resistance. CK2 regulates MRP1 function via putative phosphorylation, and is believed to function in MRP1-dependent drug resistance (24). Herein, we show that CK2 plays an important role at the beginning of the rifampin-mediated P-gp induction pathway and is the driving force behind its direct interaction with rifampin.

This study aimed to address the mechanism of drug-induced P-gp expression as a part of multidrug resistance. Our results suggest that CK2-mediated Hsp90β phosphorylation is essential for PXR accumulation and subsequent regulation of P-gp expression in response to rifampin, based on the direct interaction between rifampin and CK2 at initial onset.

EXPERIMENTAL PROCEDURES

Chemicals, cell culture and transfection – LS174T and HEK293 cell lines were obtained from the American Type Culture Collection (ATCC) and maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 120 µg/mL penicillin, and 200 µg/mL streptomycin. Transfection was performed using Lipofectamine® 2000 according to the manufacturer’s instructions (11668-019, Invitrogen). 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and 4,5,6,7-tetrabromotriazole (TBB) were purchased from Sigma-Aldrich. CK2α siRNA was designed as described previously (25) and synthesized by Invitrogen. Negative control siRNA (Silencer™) was purchased from Ambion. Luciferase assays were performed using a dual luciferase assay kit (Promega). BEP-800 (S14198) was purchased from Selleckchem.

cDNA and mutagenesis preparation – Vector of CSNK2A1 human cDNA clone (SC107027, OriGene) was changed to pcDNA3.1+ using BamHI enzyme.
H160/D175 was changed to A160/A175 in one clone using site-directed mutagenesis. Insertion of HSP90AB1 human cDNA clone (SC108085, OriGene), was moved into pcDNA3.1+ using HindIII and ExoRI enzymes. Then, S225/S254 was changed to D225/D254 and A225/A254 using site-directed mutagenesis. Cloning and mutagenesis quality was checked at the end of each processes using direct sequencing. All processes were performed by the cloning team of CosmoGenetech (http://www.cosmogenetech.com/). PXR siRNA was custom-built as sense; cguuugucgcuuccugagtt, and antisense; cucaggaegaacaagctg by Genolution (http://www.genolution1.com/).

Immobilized metal ion-affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry – Immobilized metal ion affinity chromatography (IMAC) was performed using a phosphoprotein enrichment kit according to the manufacturer’s instructions (BD Bioscience). IMAC-isolated phosphoproteins were then precipitated with 10% trichloroacetic acid (TCA) and resuspended in rehydration buffer consisting of 8 M urea, 2% CHAPS and 2% immobilized pH gradient (IPG) buffer (pH 3–10). Samples were soaked in an IPG strip (pH 3–10) and isoelectrofocused using an IPGphor isoelectric focusing system (Amersham Pharmacia Biotech). Proteins were further resolved by 4-12% gradient sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and visualized by silver staining. Pro-QD staining (Molecular Probe) was used to specifically detect phosphoproteins. Gels were scanned using a Typhoon 8600 laser imager (Amersham Biosciences). Spot detection and determination of densitometric intensity were performed using the Image Master 2D Elite software.

Gel pieces containing proteins of interest were excised, destained, and washed prior to in-gel digestion with trypsin. Briefly, gel pieces were incubated with 10 ng/µL sequencing-grade modified trypsin (Promega) in 50 mM NH₄HCO₃ buffer, pH 8.0, at 37°C for 15 h, as described previously (26). Digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (LC-MS/MS) on a fused silica microcapillary C₁₈ column (particle size, 5 µm; inner diameter, 75 µm; length, 100 mm). LC separation was conducted using a linear gradient of buffer B (0.1% formic acid in acetonitrile) in buffer A (0.1% formic acid in H₂O). The percentages of buffer B at specific time points were as follows: 0 min, 0%; 5 min, 0%; 23 min, 8%; 40 min, 16%; 76 min, 48%; 80 min, 80%. After each column run, the column was washed with 80% buffer B for 20 min and then re-equilibrated with the initial solvent (0% buffer B). The flow rate was set to 250 mL/min.

Separated peptides were subsequently analyzed on an LTQ linear ion-trap mass spectrometer (ThermoFinnigan, San Jose, CA), with the electrospray voltage set to 2.0 kV and the threshold for switching from MS to MS/MS set to 1,000. The normalized collision energy for MS/MS was 35% of the main RF amplitude, and the duration of activation was 30 ms. All spectra were acquired in the data-dependent mode. Each
complete MS scan was followed by MS/MS scans of the nine most intense peaks from the initial scan. The MS/MS parameters used were as follows: microscan number, 1; maximum injection time, 100 ms; peak repeat count for dynamic exclusion, 1; repeat duration, 30 s; dynamic exclusion duration, 180 s; exclusion mass width, ± 1.5 Da; dynamic exclusion list size, 50.

Identification of the Hsp90β phosphorylation site – To identify the phosphorylation site on Hsp90, LS174T colon cancer cells were treated with rifampin for 24 h, and Hsp90 was purified from protein extracts by immunoprecipitation. Immunoprecipitated Hsp90 was subjected to 4–12%-gradient SDS-PAGE, silver stained, and Hsp90 bands were subsequently isolated and digested into peptides as described above. Identification of the exact phosphorylation site was achieved by MS/MS spectroscopy of the phosphopeptides using an LTQ linear ion-trap mass spectrometer (ThermoFinnigan). SEQUEST (ThermoFinnigan) was used to analyze the MS data, and results were validated manually.

Western blot analysis – Proteins were separated using 4-12% SDS-PAGE and transferred to nitrocellulose membranes. Membranes were blocked with 5% non-fat milk and probed with an Omni-Phos phosphorylation assay kit (Chemicon) or with antibodies specific for P-gp, CK2, Hsp90 (all from Santa Cruz Biotechnology), or actin (control) (Cell Signaling). Anti-phospho-Hsp90β antibodies were generated using synthetic phosphopeptides as immunogens (Pepton) and validated using an enzyme-linked immunosorbent assay (ELISA). Membranes were then incubated with horseradish peroxidase-conjugated anti-mouse IgG or anti-rabbit IgG (Santa Cruz Biotechnology) and visualized using an enhanced chemiluminescent (ECL) system (Santa Cruz Biotechnology).

In vitro kinase assay – Recombinant Hsp90β was incubated with bacterially expressed CK2α at 30°C for 30 min in kinase assay buffer (25 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1 mM MgCl₂, 1 mM dithiothreitol [DTT]) with 40 mM (10 μCi) [γ-32P] adenosine triphosphate (ATP). Proteins were subjected to SDS-PAGE, autoradiographed, and transferred onto nitrocellulose membranes. Transferred proteins were analyzed by Western blotting with an anti-phospho-Hsp90β antibody.

Immunofluorescence analysis – HEK293 cells were cultured on glass chamber slides and treated with rifampin and DRB, a specific inhibitor of CK2, for 24 h. After treatment, cells were washed with phosphate-buffered saline (PBS), fixed with 4% formaldehyde, permeabilized in 0.3% Triton X-100, and blocked in 4% bovine serum albumin (BSA) for 1 h. Cells were then stained with an anti-P-gp antibody and analyzed by confocal microscopy using a Zeiss LSM510 Meta microscope.

Intracellular calcein accumulation assay – The intracellular accumulation of calcein was measured using the cell marker reagent calcein acetoxyethyl ester (calcein-AM). Cells were incubated with calcein-AM (0.5 μM) at 37°C
for 10 min, and accumulation was halted after 10 min by rapidly washing the cells three times with ice-cold PBS. Cells were then lysed by incubation with 250 µL of 1% Triton X-100 in PBS for 1 h. Cell lysates (200 µL) were transferred into a 96-well plate, and fluorescence, which represents intracellular calcein, was measured using a Victor3 plate reader (Perkin-Elmer LAS, Waltham, MA) with excitation and emission wavelengths of 485 and 535 nm, respectively. A Bradford protein assay kit was used to determine the amount of cellular protein in each lysate (Bio-Rad).

GST pull-down assay – Purified Hsp90β-glutathione S-transferase (GST) was mixed with PXR in 500 µL of ADB II (20 mM MOPS, pH 7.2, 2.5 mM β-glycerol phosphate, 1 mM Na3VO4, 1 mM DTT and 1 mM CaCl2) containing pre-equilibrated glutathione-sepharose 4B beads, followed by incubation at 4°C with gentle rotation. After 1 h, CK2α was added to the mixture and incubated for an additional 2 h at 4°C. Beads were then centrifuged at 600 × g for 1 min and washed five times with 1-mL PBS. Bound proteins were resuspended in 50-µL 2x lithium dodecyl sulfate (LDS) loading buffer and analyzed by Western blotting for PXR, GST and Hsp90β.

Measurement of the fold change in rifampin-induced PXR mRNA expression by real-time PCR – Total RNA was extracted from rifampin-treated and -untreated cells using TRIzol® reagent (15596-018; Invitrogen Corp., Carlsbad, CA). The RNA was quantified by NanoDrop technology (Thermo Scientific NanoDrop 2000 spectrophotometer; Thermofisher Scientific, Inc., Waltham, MA) and the purity was checked by measuring the optical density (OD) 260/280 nm ratio. First strand cDNA was synthesized using 1 µg of RNA in a 50-µl reaction. The reaction mix was composed of 10X TaqMan RT buffer (5 µl), 25 mM MgCl2 (11 µl), dNTPs (10 µl), random hexamers (2.5 µl), RNase inhibitor (1 µl), reverse transcriptase (1.25 µl), RNA (1 µg), and nuclease-free water (up to 50 µl). Real-time PCR was carried out using TaqMan® Universal PCR Master Mix (4304437; Applied Biosystems, Foster City, CA). PXR mRNA was quantified by real-time PCR using a 7900HT Fast Real-Time PCR System (Applied Biosystems) using hPXR as a probe (4331182; Applied Biosystems). The relative mRNA expression level of PXR was calculated by the ΔΔCt method. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (4331182; Applied Biosystems) was used as an internal control for normalization.

Proteasome inhibition assay – LS174T cells were incubated in 60-mm plates and treated with 0–2.5 µM MG132 (474790; Calbiochem, Billerica, MA) for 8 h, or with 2.5 µM MG132 for 0–8 h. The cells were lysed with RIPA buffer after two washes with PBS and centrifuged at 13,000 rpm for 10 min. The supernatants were subjected to Western blotting with anti-PXR antibodies (sc-48403; Santa Cruz Biotechnology, Santa Cruz, CA).

Cell fractionation assay – The nuclear localization of several proteins was evaluated by a cell fractionation assay using a Qproteome
Cell Compartment Kit (37502; Qiagen GmbH, Hilden, Germany). Briefly, LS174T cells were sub-cultured in six-well plates to 50% confluence. After 24 h, the cells were treated with rifampin (80 µM) or DMSO as a negative control. After 24 h of treatment, the cells were collected, a lysate was prepared, and cytosolic and nuclear fractions were prepared according to the manufacturer’s protocol. Protein quantification was done by the Bradford assay using Bio-Rad Protein Assay Dye Reagent (500-0006; Hercules, CA). In total, 25 µg of protein was used for Western blotting with protein separation performed on a precast 4–12% polyacrylamide gel (Invitrogen Corp.). The separated proteins were transferred to an Amersham PVDF membrane (GE Healthcare, Little Chalfont, Buckinghamshire, UK), and nonspecific proteins were blocked using 5% skim milk in Tris-buffered saline containing 0.1% Tween 20 (TBST). The membrane was then incubated with specific primary antibodies overnight at 4°C. After a single wash with TBST, the membrane was incubated with horseradish peroxidase-conjugated secondary antibodies for 1 h at room temperature. The proteins were detected with Western Blotting Luminol Reagent (sc-2048; Santa Cruz Biotechnology) and enhanced chemiluminescence reagent (RPN-2235; GE Healthcare). The detected proteins were exposed to Kodak medical X-ray film (Rochester, NY).

Analysis of the molecular docking of CK2 and rifampin – A molecular docking simulation was performed using SYBYL-X ver. 2.1 (Tripos International, St. Louis, MO). The crystal structure of CK2 (protein database [PDB] code: 4FBX) was used to determine the best docking position for rifampin at the binding site (27). The structure of rifampin was obtained from another PDB structure (2HW2) (28). Docking site residues were selected as range around 10Å of TBB. The considered residue numbers are 44–55, 65–73, 94–98, 110–124, 161–165, and 171–178. The protein and ligand were minimized using the Tripos force field with Gasteiger-Hückel charges until the root mean square gradient was < 0.05. Surflex docking was performed using the following settings: hydrogen and heavy atoms were incorporated to allow protein movement, the covalent force field weighting was set at full for the “Ligand” option and 0.3 for the “Protein” value, the maximum number of poses per ligand was set to 30, and the minimum root mean square deviation between final poses was set to 0.05. The Surflex-Dock scoring function was applied to generate docking results and complex structures that matched as closely as possible to the productive bound form of the ligand were selected (i.e., complexes with the highest matching score).

In vitro kinase assay for CK2 and rifampin – CK2 kinase activity was measured using a casein kinase 2 assay kit (17-132, Millipore). Briefly, TBB, a specific inhibitor of CK2 (T0826, Sigma), and rifampin (R3501, Sigma), were tested in a phosphorylation reaction mixture with [γ-32P]-ATP (3000 Ci/mmol, NEG002A, Perkin-Elmer), CK2 (14-197, Millipore) or CK2α (14-445, Millipore).
Reaction mixtures were incubated for 15 min at 30°C according to the manufacturer's instructions. Reactions were stopped by the addition of 40% TCA (T6399, Sigma), and ³²P-labeled substrates were detected by scintillation counting.

Direct binding assay – A direct binding assay was performed according to the manufacturer’s instructions using a MultiScreen HTS 96-well filtration plate and Vacuum Manifold (MSHV4B10 and MSVMHTS00, respectively, Millipore). [³H]-emodin (2.0 Ci/mmol) and [³H]-rifampin (7.3 Ci/mmol) were purchased from Moravek Biochemicals (MT-1759 and MT-1626, respectively). TBB (T0826), rifampin (R3501), and emodin (E7881) were purchased from Sigma Aldrich. [³H]-emodin or [³H]-rifampin was mixed with purified CK2α protein, which was bound to beads in ADB 1 buffer (20 mM MOPS, pH 7.2, 25 mM β-glycerol phosphate, 5 mM EGTA, 1 mM sodium orthovanadate, and 1 mM dithiothreitol). TBB, emodin, or rifampin was for inhibition assay. The plates were incubated at room temperature for 40 min. The assay reactions from the plates were filtered and washed twice with 200 μl ice-cold 50 mM Tris-HCl (pH 7.8). Finally, the remaining [³H]-rifampin or [³H]-emodin was quantified after adding 20 μL scintillation cocktail to each well.

RESULTS

Identification of phosphoproteins during P-gp induction by rifampin – Since phosphorylation can functionally activate many proteins in cellular processes, proteins whose phosphorylation status is modulated during the induction of MDRI gene expression were firstly identified. The phosphoproteomic-based approach was utilized in the study. We found that P-gp and MDRI expression levels increased following rifampin treatment in LS174T colon cancer cells in a dose- and time-dependent manner (data not shown), which is consistent with a previous report (6). To isolate phosphoproteins, protein extracts from LS174T cells treated with 40 μM rifampin or dimethyl sulfoxide (DMSO; vehicle) for 24 h were loaded onto a Fe³⁺-IMAC column and separated by two-dimensional (2D) gel electrophoresis. After visualization of the separated proteins using the phosphoprotein-specific Pro-QD stain, 2D profiles of phosphoproteins were compared between those exposed to DMSO and rifampin (Fig. 1A). Eight phosphoproteins whose intensities were significantly different between the two treatments were identified using trypsin digest and nano-LC/MS/MS of spots (data not shown). Of these eight proteins, Hsp90β showed the highest differential staining intensity between treatment groups (Fig. 1A and 1B). Hsp90β protein levels were also confirmed using Western blot analysis by comparing Hsp90β expression before and after IMAC elution. Hsp90β expression did not differ among the basal extracts of LS174T cells treated with rifampin or DMSO. However, the level of Hsp90β in the IMAC elute was much higher in rifampin-treated cells than in control (Fig. 1C). This result suggests that rifampin treatment
increases the phosphorylation of Hsp90β, rather than its protein level per se.

Phosphorylation of Hsp90β at Ser225/Ser254 correlates with rifampin-induced P-gp expression – We next identified the specific amino acid residues of Hsp90β that are phosphorylated during rifampin-mediated P-gp induction. Hsp90β protein was purified from DMSO- or rifampin-treated LS174T cells by immunoaffinity chromatography. Purified proteins were subjected to SDS-PAGE, and bands corresponding to Hsp90β were excised, digested with trypsin (Fig. 2A), and analyzed by MS/MS. The MS/MS peaks, corresponding to phospho-Ser, -Thr, or -Tyr, exhibited a 79.97-Da mass shift compared to the corresponding unmodified residues. Induction of neutral loss of phosphoric acid (97.98 Da) on phospho-Ser/Thr-containing peptides has been reported to occur upon low-energy collisional activation in positive ion mode. As shown in Figure 2B, phosphopeptides were detected specifically in the Hsp90β from rifampin-treated LS174T cells. From the MS/MS sequence analysis of these phosphopeptides, both Ser225 and Ser254 were identified as phosphorylated residues (Fig. 2B). In contrast to rifampin-treated cells, neither Ser225- nor Ser254-containing phosphopeptides were detected in the Hsp90β band from DMSO-treated LS174T cells by MS/MS sequence analysis (data not shown). In addition, Hsp90β protein expression was unchanged in rifampin-treated LS174T cells; however, the expression of phosphorylated Ser225 or S254 of Hsp90β increased upon treatment with rifampin (Fig. 2C). In addition, a 2-aminothieno[2,3-d] pyrimidine ATP competitive Hsp90 inhibitor, BEP-800, was applied to confirm the possibility of P-gp regulation by Hsp90β phosphorylation. Upon rifampin treatment, the expression of P-gp, PXR, and phosphorylated Ser225 or Ser254 of Hsp90β increased. However, the rifampin effect was canceled out when BEP-800 was added in combination with rifampin. Hsp90β expression was unaffected by BEP-800 and/or rifampin treatment (Fig. 2D). These findings indicate that phosphorylation of Hsp90β at Ser225/Ser254 is required for the rifampin-mediated induction of P-gp expression.

CK2 is the kinase responsible for Ser225/254 phosphorylation of Hsp90β – To develop several possible strategies for preventing multidrug resistance, it is necessary to determine the kinase upstream of Hsp90β responsible for rifampin-induced P-gp expression. Amino acid sequences flanking Ser225 and Ser254 in Hsp90β contain a consensus phosphorylation site for the Ser/Thr protein kinase CK2, which has acidic residues at position n+3 (16). As shown in Figure 3A, CK2 readily phosphorylated recombinant Hsp90β, which was markedly suppressed by the presence of DRB, a specific pharmacological inhibitor of CK2. To further determine whether CK2 activity is responsible for the observed phosphorylation of Ser225 and Ser254, phosphorylated Hsp90β was analyzed by Western blot using an anti-Hsp90β-phospho (Ser225/254) antibody. CK2 consistently catalyzed the phosphorylation of
Hsp90β at Ser225 and Ser254. Furthermore, this effect was suppressed by the presence of DRB in vitro (Fig. 3B). Moreover, peptides containing Ser225 or Ser254 of Hsp90β were phosphorylated by CK2, and DRB abolished CK2-mediated peptide phosphorylation, as monitored by the consumption of ATP using the Kinase-Glo™ Luminescent Assay (Fig. 3C). To confirm the effect of rifampin on CK2, CK2α protein expression was measured by Western blot analysis in rifampin-treated LS174T cells. As shown in Figure 3D, incubation with rifampin increased the expression of CK2α. Moreover, rifampin treatment consistently and significantly stimulated the kinase activity of CK2 on Hsp90β Ser225/254 residues according to the Kinase-Glo™ Luminescent Assay; this effect was sensitive to treatment with DRB (Fig. 3E). In addition, rifampin treatment increased the phosphorylation of Hsp90β Ser225/Ser254 in LS174T cells, which was abrogated by incubation with CK2 inhibitors DRB and TBB (Fig. 3F). Finally, an siRNA specific to CK2α was applied to HEK293 cells. Treatment of rifampin also increased Ser225/Ser254 phosphorylation of Hsp90β, and knockdown of CK2α by the siRNA markedly suppressed the induction of rifampin-induced Ser225/Ser254 phosphorylation (Fig. 3G). Taken together, these results indicate that Hsp90β is efficiently phosphorylated by CK2, and Ser225/254 residues are the major CK2 acceptor sites; this relationship between CK2 and Hsp90β constitutes a part of rifampin-induced P-gp induction. Additionally, the phosphorylation effect was confirmed using the phosphomimetic mutant and control mutant (S225/S254 to D225/D254 and A225/A254, respectively) of Hsp90β cDNA. Expression of P-gp was higher at D225/D254 than that of A225/A254. Hsp90β protein levels were equal among transfections of WT, A225/A254, and D225/D254 (Fig. 3H).

Effects of CK2 inhibition on MDR1 transcript level, P-gp expression and cellular localization – The effect of CK2 inhibition on MDR1 transcript and P-gp protein levels was evaluated using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. Rifampin treatment consistently led to the accumulation of MDR1 mRNA and P-gp protein, while DRB abrogated rifampin-induced P-gp expression (Fig. 4A). The expression of P-gp induced by rifampin was identical to that of β-catenin, which binds to the cytoplasmic domain of the plasma membrane protein cadherin. In addition, P-gp expression was diminished in the presence of DRB (Fig. 4B). Furthermore, the function of P-gp expression in rifampin-treated HEK293 cells was assessed by examining the intracellular accumulation of calcein, a substrate probe of P-gp, in the presence and absence of DRB. As shown in Figure 4C, treatment with rifampin significantly decreased intracellular calcein accumulation, which was completely restored by DRB. In addition, siRNA-mediated knockdown of CK2α clearly nullified the rifampin-induced upregulation of
P-gp expression (Fig. 4D). These results suggest that CK2 activity, which leads to the phosphorylation of Hsp90\(\beta\) at Ser225/254, is closely associated with the drug-induced upregulation of P-gp expression.

CK2-mediated Hsp90\(\beta\) phosphorylation increases PXR protein stability – PXR, a nuclear receptor protein that regulates \(MDR1\) gene expression, forms a heteromeric complex with Hsp90\(\beta\), and is related to the stability of its client protein (15, 29). Therefore, we next determined whether CK2-mediated Hsp90\(\beta\) phosphorylation influences the extent of the Hsp90\(\beta\)-PXR interaction by immunoprecipitation. Rifampin treatment increased the interaction between PXR and Hsp90\(\beta\) in LS174T cells. Moreover, this effect was suppressed by the presence of DRB (Fig. 5A). Further *in vitro* experiments showed that PXR precipitated with Hsp90\(\beta\) in the presence of CK2 and ATP, suggesting that the Hsp90\(\beta\)-PXR interaction is increased by CK2-mediated Hsp90\(\beta\) phosphorylation (Fig. 5B). The effect of rifampin treatment on PXR expression was also evaluated by Western blot and RT-PCR. Rifampin treatment resulted in the upregulation of PXR protein, but not mRNA (Fig. 5C). The PXR mRNA level was quantitatively confirmed using real-time PCR. The relative mRNA level did not change significantly according to rifampin treatment, consistent with RT-PCR results (Fig. 5D). To determine whether CK2 inhibition also affects PXR expression, LS174T cells were treated with rifampin in the presence or absence of DRB. In accordance with previous results, DRB treatment diminished the induction by rifampin of PXR protein expression (Fig. 5E). In an attempt to evaluate the influence of CK2 activity on PXR protein stability, the proteasome inhibitor, MG132, in combination with rifampin and/or DRB, was utilized after confirming the effect of MG132 on PXR protein expression. We found that PXR expression increased in a dose- and time-dependent manner (Fig. 5F). The inhibitory effect of DRB on PXR protein expression was also abrogated by the addition of MG132, showing that proper CK2 activity is necessary for PXR protein stability (Fig. 5G). When treating PXR siRNA, expression of PXR and P-gp was decreased. Even when PXR siRNA was treated with rifampin, expression of PXR and P-gp was decreased compared with only rifampin treated. However, expression levels of CK2\(\alpha\) and Hsp90\(\beta\) were not affected with or without PXR siRNA transfection (Fig. 5H). Together, these results indicate that Hsp90\(\beta\), which is phosphorylated by CK2, interacts with PXR, and leads to an increase in its stability via inhibition of proteasome-mediated degradation.

Rifampin directly activates CK2-mediated phosphorylation – The potential for rifampin to directly stimulate CK2 was verified. Following treatment with ADB I, CK2 or CK2\(\alpha\), the CK2 substrate peptide, and \([\gamma^32P]-\text{ATP}\), were incubated with TBB or rifampin. CK2 and CK2\(\alpha\) activities both decreased following TBB treatment. IC50 concentrations were 10\(^{-6}\) to 10\(^{-5}\) M (Fig. 6). In contrast, CK2 and CK2\(\alpha\) levels increased following rifampin treatment (Fig. 6).
CK2α and [3H]-rifampin binding was then confirmed in vitro. [3H]-Emodin, a known CK2 binding partner (30), served as a positive control (Fig. 7A, B). The amount of binding increased depending on the concentrations of both drugs, and was inhibited with the addition of non-tritium-labeled drugs and TBB. Inhibition concentrations of rifampin, emodin, and TBB were determined using a pre-binding assay (data not shown). Binding affinity of [3H]-rifampin to A160/A175 mutated CK2α compared with wild type CK2α. Affinity to mutated CK2α was lower than that of wild type CK2α (Fig. 7C). Figure 8 shows the result from the molecular docking prediction between CK2 and rifampin. Binding energies (ΔGb) from the docking simulation with CK2 were -1.97 Kcal/mol and -5.06 Kcal/mol for rifampin and TBB, respectively. Log P values, which indicate hydrophobicity, were -18.719 and 2.877 for the CK2 binding pocket and rifampin, respectively. The binding site volume was 584.47Å³. At first glance, it appeared that the ring structure of rifampin might bind inside the CK2-binding pocket, compared to TBB. However, due to the steric hinderance of piperazine (C₄H₁₀N₂), the carbon chain group bound inside of the binding pocket. This aspect of the binding complex is similar to that by which rifampin binds to Arr enzymes (28).

Rifampin showed interactions with 10 residues of CK2 including Arg47, Val53, Val66, Lys68, Phe113, Val116, Asn118, His160, Met163, and Asp175. Among them, His160 and Asp175 showed hydrogen bond with ligand (Fig. 8C). In silico mutation with Ala showed an increase of binding energy (His160Ala: 2.95 Kcal/mol, Asp175Ala: 2.80 Kcal/mol) indicating a decrease in binding affinity.

Hsp90β location confirming – PXR and Hsp90β quantities were compared at the cytoplasm and nucleus according to the rifampin treatment (Fig. 9). PXR was increased at both the cytoplasm and nucleus after rifampin treatment. However, the increase was much higher at the nucleus than at the cytoplasm. Hsp90β was same with or without rifampin treatment at cytoplasm. No signal of Hsp90β was found in nucleus.

Graphic presentation – The contents of this study is summarized in Fig. 10. As already reported in several papers, each step of Figures 10B, C, and D is again confirmed for solidifying our hypothesis of the rifampin-induced MDR1 overexpression mechanism. Rifampin activity of binding to CK2 and activating CK2 (Fig. 10A) has been added to this paper. To date, the mechanism of rifampin-induced MDR1 overexpression was only known for binding between rifampin and PXR. However, the mechanisms shown in Figs. 10B, C, and D is caused by Fig. 10A and all of these steps constitute a new mechanism (Fig. 10E) of rifampin induced MDR1 overexpression.

DISCUSSION

The induction of P-gp expression has long been acknowledged for decreasing the bioavailability of drugs co-administered with rifampin (31). Rifampin acts as a ligand and direct activator of nuclear receptor PXR, and its role in P-gp induction has been unknown
until now. PXR is believed to be retained in the cytoplasm by binding to Hsp90 and CCRP (15). Upon activation by xenobiotics, such as rifampin, PXR dissociates and translocates into the nucleus where it interacts with RXR to induce the transcriptional activation of several genes involved in drug metabolism (12, 32, 33). In addition to PXR, various transcription factors, including Sp1, YB-1, NF-Y, p53, NF-κB, HSF, β-catenin/TCF-4, have been shown to regulate P-gp expression in vitro, but their effects have yet to be verified in vivo (5). The present study aimed to determine the mechanism underlying PXR regulation of P-gp induction by rifampin stimulation.

Using a phosphoproteomic approach, eight phosphorylated proteins were identified in colorectal carcinoma LS174T cells after rifampin exposure (data not shown). Of the eight phosphorylated proteins, Hsp90β exhibited the highest signal (Hsp90α was also included). In concordance with previous reports, our results strongly suggest that Hsp90 forms a complex with PXR in the cytoplasm before its translocation into the nucleus (12). Dissociation of Hsp90β and PXR in the cytoplasm prior to PXR translocation was verified in this study. Following treatment with rifampin, cytoplasmic PXR increased and PXR in nucleus was much more increased than that in the cytoplasm. However, Hsp90β was localized only to the cytoplasm regardless of rifampin treatment (data not shown). However, the functions of the remaining six proteins related to PXR or P-gp have yet to be determined. Therefore, multiple as-yet-unknown mechanisms likely regulate rifampin-induced P-gp induction, although each may not contribute equally.

The present study confirmed the ability of CK2 to phosphorylate Hsp90β, which acts upstream of the PXR pathway, as well as P-gp stimulation by rifampin treatment. The Hsp90β phosphorylating function of CK2 per se was identified previously (14, 16, 34). Other possibilities for P-gp regulation were also confirmed. Under the same experimental conditions as Fig. 4A, treatment with inhibitors for kinases other than CK2, such as SB203580 (MAPK), PD98059 (MEK), and wortmannin (PI3K), showed no such suppression of P-gp expression (data not shown).

The ability of rifampin to independently activate CK2 has yet to be described. This pathway was evaluated in two experiments in this study. In a direct binding assay, the V_max and Km values could not be determined due to the experimental conditions. To reach saturation status, the drug dose would have to increase or the protein quantity decrease. When the protein concentration was lower than the minimum recommended by the manufacturer, the experiment failed. Therefore, the binding assay was performed in a non-saturated state.

Since CK2 shows activity against more than 300 substrates based on a 2003 report (35) and is associated with several pathways, CK2 inhibitors have been used to improve the efficacy of many drugs. To date, combination therapy of CK2 inhibitors with anticancer agents has been investigated based on the known roles of CK2, including in apoptosis,
the PI3K-Akt-mTOR pathway, angiogenesis, NF-κB, Wnt signaling, the epithelial-mesenchymal transition, DNA damage repair, and Hsp90 machinery (36). Hsp90 inhibitors are also being investigated as a combination partner with anticancer drugs. A recent report described that combination therapy with an Hsp90 inhibitor and paclitaxel increased the efficacy of paclitaxel in a non-small-cell lung cancer (NSCLC) system (37). The synergistic effect of the Hsp90 inhibitor was assumed to be due to the role of Hsp90 in cell survival, such as pro-survival signaling, and effects on the cell cycle (36). If the P-gp inducing pathway identified in this study was also active in a lung cancer environment, then inhibition of P-gp may also contribute to the increased efficacy of paclitaxel.

CK2 and Hsp90β have been developed as targets of combination cancer therapy based on enhancing mechanisms of cancer drugs. In this regard, this study provides a new understanding of combination therapy by suppressing additional P-gp expression. In summary, we propose a mechanism for rifampin-induced upregulation of P-gp. CK2-mediated phosphorylation of Hsp90β constitutes a crucial upstream molecular mechanism that regulates P-gp expression. Since increased P-gp expression is a major issue in rifampin-induced drug resistance, our findings may facilitate the development of new strategies to prevent P-gp-mediated multidrug resistance, and provide mechanistic insight into the regulation of this drug efflux transporter.
REFERENCES

1. Gottesman, M.M. (2002) Mechanisms of cancer drug resistance. *Annu.Rev.Med.* **53**, 615-627

2. Anonymous (2000) Cancer multidrug resistance. *Nat.Biotechnol.* **18 Suppl**, IT18-20

3. Gant, T.W., Silverman, J.A., and Thorgeirsson, S.S. (1992) Regulation of P-glycoprotein gene expression in hepatocyte cultures and liver cell lines by a trans-acting transcriptional repressor. *Nucleic Acids Res.* **20**, 2841-2846

4. Labialle, S., Gayet, L., Marthinet, E., Rigal, D., and Baggetto, L.G. (2002) Transcriptional regulators of the human multidrug resistance 1 gene: recent views. *Biochem.Pharmacol.* **64**, 943-948

5. Scotto, K.W. (2003) Transcriptional regulation of ABC drug transporters. *Oncogene.* **22**, 7496-7511

6. Geick, A., Eichelbaum, M., and Burk, O. (2001) Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. *J.Biol.Chem.* **276**, 14581-14587

7. Greiner, B., Eichelbaum, M., Fritz, P., Kreichgauer, H.P., von Richter, O., Zundler, J., and Kroemer, H.K. (1999) The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. *J.Clin.Invest.* **104**, 147-153

8. Niemi, M., Backman, J.T., Fromm, M.F., Neuvonen, P.J., and Kivisto, K.T. (2003) Pharmacokinetic interactions with rifampicin : clinical relevance. *Clin.Pharmacokinet.* **42**, 819-850

9. Baciewicz, A.M., Chrisman, C.R., Finch, C.K., and Self, T.H. (2013) Update on rifampin, rifabutin, and rifapentine drug interactions. *Curr.Med.Res.Opin.* **29**, 1-12

10. Watkins, R.E., Wisely, G.B., Moore, L.B., Collins, J.L., Lambert, M.H., Williams, S.P., Willson, T.M., Kliwer, S.A., and Redinbo, M.R. (2001) The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. *Science.* **292**, 2329-2333

11. Cowen, L.E., Carpenter, A.E., Matangkasombut, O., Fink, G.R., and Lindquist, S. (2006) Genetic architecture of Hsp90-dependent drug resistance. *Eukaryot.Cell.* **5**, 2184-2188
12. Kakizaki, S., Takizawa, D., Tojima, H., Horiguchi, N., Yamazaki, Y., and Mori, M. (2011) Nuclear receptors CAR and PXR; therapeutic targets for cholestatic liver disease. *Front.Biosci.(Landmark Ed).* 16, 2988-3005

13. Lu, X., Xiao, L., Wang, L., and Ruden, D.M. (2012) Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. *Biochem.Pharmacol.* 83, 995-1004

14. Miyata, Y., and Yahara, I. (1992) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. *J.Biol.Chem.* 267, 7042-7047

15. Squires, E.J., Suzeyoshi, T., and Negishi, M. (2004) Cytoplasmic localization of pregnane X receptor and ligand-dependent nuclear translocation in mouse liver. *J.Biol.Chem.* 279, 49307-49314

16. Pinna, L.A. (2002) Protein kinase CK2: a challenge to canons. *J.Cell.Sci.* 115, 3873-3878

17. Pinna, L.A., and Meggio, F. (1997) Protein kinase CK2 ("casein kinase-2") and its implication in cell division and proliferation. *Prog.Cell Cycle Res.* 3, 77-97

18. Heriche, J.K., and Chambaz, E.M. (1998) Protein kinase CK2alpha is a target for the Abl and Ber-Abl tyrosine kinases. *Oncogene.* 17, 13-18

19. Akten, B., Tangredi, M.M., Jauch, E., Roberts, M.A., Ng, F., Raabe, T., and Jackson, F.R. (2009) Ribosomal s6 kinase cooperates with casein kinase 2 to modulate the Drosophila circadian molecular oscillator. *J.Neurosci.* 29, 466-475

20. Ahmed, K., Gerber, D.A., and Cochet, C. (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. *Trends Cell Biol.* 12, 226-230

21. Seldin, D.C., and Leder, P. (1995) Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. *Science.* 267, 894-897

22. Landesman-Bollag, E., Romieu-Mourez, R., Song, D.H., Sonenshein, G.E., Cardiff, R.D., and Seldin, D.C. (2001) Protein kinase CK2 in mammary gland tumorigenesis. *Oncogene.* 20, 3247-3257

23. Guo, C., Yu, S., Davis, A.T., Wang, H., Green, J.E., and Ahmed, K. (2001) A potential role of nuclear matrix-associated protein kinase CK2 in protection against drug-induced apoptosis in cancer cells. *J.Biol.Chem.* 276, 5992-5999
24. Stolareczk, E.I., Reiling, C.J., Pickin, K.A., Coppage, R., Knecht, M.R., and Paumi, C.M. (2012) Casein kinase 2alpha regulates multidrug resistance-associated protein 1 function via phosphorylation of Thr249. *Mol.Pharmacol.* **82**, 488-499

25. Yamane, K., and Kinsella, T.J. (2005) CK2 inhibits apoptosis and changes its cellular localization following ionizing radiation. *Cancer Res.* **65**, 4362-4367

26. Feng, S., Pan, C., Jiang, X., Xu, S., Zhou, H., Ye, M., and Zou, H. (2007) Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis. *Proteomics.* **7**, 351-360

27. Enkvist, E., Viht, K., Bischoff, N., Vahter, J., Saaver, S., Raidaru, G., Issinger, O.G., Niefind, K., and Uri, A. (2012) A subnanomol fluorescent probe for protein kinase CK2 interaction studies. *Org.Biomol.Chem.* **10**, 8645-8653

28. Baysarowich, J., Koteva, K., Hughes, D.W., Ejim, L., Griffiths, E., Zhang, K., Junop, M., and Wright, G.D. (2008) Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr. *Proc.Natl.Acad.Sci.U.S.A.* **105**, 4886-4891

29. Huang, H., Wang, H., Sinz, M., Zoeckler, M., Staudinger, J., Redinbo, M.R., Teotico, D.G., Locker, J., Kalpana, G.V., and Mani, S. (2007) Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. *Oncogene.* **26**, 258-268

30. Battistutta, R., Sarno, S., De Moliner, E., Papinutto, E., Zanotti, G., and Pinna, L.A. (2000) The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. *J.Biol.Chem.* **275**, 29618-29622

31. Schuetz, E.G., Beck, W.T., and Schuetz, J.D. (1996) Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. *Mol.Pharmacol.* **49**, 311-318

32. Lehmann, J.M., McKee, D.D., Watson, M.A., Willson, T.M., Moore, J.T., and Kliewer, S.A. (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. *J.Clin.Invest.* **102**, 1016-1023

33. Blumberg, B., Sabbageh, W., Jr, Juguilon, H., Bolado, J., Jr, van Meter, C.M., Ong, E.S., and Evans, R.M. (1998) SXR, a novel steroid and xenobiotic-sensing nuclear receptor. *Genes Dev.* **12**, 3195-3205
34. Miyata, Y. (2009) Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. *Cell Mol. Life Sci.* **66**, 1840-1849

35. Meggio, F., and Pinna, L.A. (2003) One-thousand-and-one substrates of protein kinase CK2?. *FASEB J.* **17**, 349-368

36. Pinna, L.A. (2012) *Protein kinase CK2*, , John Wiley & Sons

37. Proia, D.A., Sang, J., He, S., Smith, D.L., Sequeira, M., Zhang, C., Liu, Y., Ye, S., Zhou, D., Blackman, R.K., Foley, K.P., Koya, K., and Wada, Y. (2012) Synergistic activity of the Hsp90 inhibitor ganetespib with taxanes in non-small cell lung cancer models. *Invest. New Drugs.* **30**, 2201-2209
FOOTNOTES

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. R13-2007-023-00000-0), and a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI14C0067).

1To whom correspondence should be addressed: Pharmacogenomics Research Center, Inje University College of Medicine, Clinical Trial Center, Inje University Busan Paik Hospital, # 633-165, Gaegum-Dong, Jin-Gu, Busan, South Korea, Tel.: (+82) 51-890-6709; Fax: (+82) 51-893-1232; E-mail: phshinjg@gmail.com

2The abbreviations used are: P-gp, permeability glycoprotein; MDR1, multidrug resistance protein 1; CK, casein kinase; Hsp, heat shock protein; PXR, pregnane X receptor; ABC, ATP-binding cassette; CCRP, cytoplasmic constitutive active/androstane receptor retention protein; MRP, multidrug resistance related protein; DRB, 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole; TBB, 4,5,6,7-tetrabromotriazole; IMAC, Immobilized metal ion affinity chromatography;

FIGURE LEGENDS

FIGURE 1. Phosphorylation of Hsp90β is induced by rifampin. A. Two-dimensional PAGE of purified phosphorylated proteins from control and rifampin-treated LS174T cells. Phosphorylated Hsp90β is indicated by a red circle. pI: isoelectric point. B. Representative mass spectra of Hsp90β. m/z; mass to charge ratio. C. IMAC eluates were subjected to Western blotting with an anti-Hsp90 antibody.

FIGURE 2. Identification of Hsp90β phosphorylation sites. A. Protein extracts were prepared from LS174T cells treated with either vehicle (DMSO) or rifampin (40 µM), and immunoprecipitated with an anti-Hsp90β antibody. Recovered proteins were separated by SDS-PAGE and visualized by silver staining. B. MS/MS spectra of Hsp90β phosphopeptides in which the phosphorylation sites were localized to Ser225 (upper panel) and Ser254 (lower panel). Bands containing Hsp90β were excised from the gel, digested with trypsin, and analyzed by LC-MS/MS, as described in ‘Materials and Methods.’ C. LS174T cells were incubated with vehicle (DMSO) or rifampin (40 µM) for 24 h. Cell lysates were subjected to Western blot analysis with antisera raised against phosphorylated Hsp90β Ser225 and Ser254. Blots were reprobed an anti-Hsp90β antibody. D. P-gp, PXR, Hsp90β, and phosphorylated Hsp90β expression was determined by Western blotting with or without BEP-800 and rifampin.
FIGURE 3. CK2 phosphorylates Ser225 and Ser254 of Hsp90β for P-gp induction. A, B. Recombinant Hsp90β was incubated with purified CK2α (8 ng), and/or DRB (40 µM). Samples were analyzed by autoradiography (A) or Western blotting with anti-phospho-p225-Hsp90β and anti-phospho-p254-Hsp90β antibodies (B). C. Peptides containing Ser225 or Ser254 of Hsp90β were incubated with purified CK2α and/or DRB (40 µM). The amount of ATP in the reaction was determined using a Kinase-Glo™ Luminescent assay kit (Promega). D. Protein extracts from LS174T cells treated with or without rifampin (40 µM) were subjected to Western blotting with anti-P-gp and anti-CK2α antibodies. E. Peptides containing Ser225 or Ser254a of Hsp90β were incubated with protein extracts from LS174T cells treated with rifampin (40 µM) and/or DRB (40 µM). Kinase activity was determined using a Kinase-Glo™ Luminescent assay kit. F. Protein extracts from LS174T cells treated with 40 µM rifampin and DRB (40 µM) or TBB (80 µM) were subjected to Western blotting with anti-phospho-p225-Hsp90β, anti-phospho-p254-Hsp90β and Hsp90β antibodies. G. HEK293 cells were transfected with a control siRNA (40 nM) or CK2α siRNA (40 nM) for 48 h in the presence of rifampin (40 µM). Cell lysates were analyzed by Western blotting with antibodies specific for CK2α, phospho-p225-Hsp90β, and phospho-p254-Hsp90β. H. LS174 cells were transfected with a wild type (S225/S254), control mutated (A225/A254), or phosphomimetically mutated (D225/D254) Hsp90β cDNA. Protein levels of P-gp were compared by Western blotting.

FIGURE 4. CK2 activity is required for P-gp expression. A. Protein (upper panel) and mRNA (lower panel) were prepared from HEK293 cells treated with vehicle (DMSO) or DRB (40 µM) in the presence of rifampin (40 µM), and analyzed by Western blotting with an anti-P-gp antibody and semi-quantitative RT-PCR for MDR1 mRNA. B. Immunofluorescence analysis of P-gp expression in HEK293 cells. After fixation, cells were stained with anti-P-gp or β-catenin antibodies and observed at 400× magnification. C. HEK293 cells treated with vehicle (DMSO) or DRB (40 µM) in the presence or absence of rifampin (40 µM) were incubated with calcein-AM (0.5 µM) for 10 min. Intracellular calcein fluorescence was measured and normalized to the protein concentration. D. HEK293 cells were transfected with control siRNA (40 nM) and CK2α siRNA (40 nM) for 48 h in the presence or absence of rifampin (40 µM). Cell lysates were analyzed by Western blotting with anti-CK2α and anti-P-gp antibodies.

FIGURE 5. Phosphorylation of Hsp90β is required for its interaction with PXR. A. Hsp90β was immunoprecipitated from LS174T cells treated with rifampin (40 µM) or DRB (40 µM). Precipitated proteins were subjected to Western blotting with an anti-PXR antibody. B. Recombinant GST or GST-Hsp90β was incubated with purified CK2 (8 ng) for 30 min and then incubated with in vitro-translated PXR for GST pull-down assays. Precipitated proteins were then subjected to Western
blotting with antibodies specific for Hsp90β, PXR and GST. C. Proteins (upper panel) or mRNA (lower panel) were prepared from LS174T cells treated with either DMSO or rifampin (40 μM), and analyzed by Western blotting with an anti-PXR antibody or semi-quantitative RT-PCR for PXR mRNA. D. LS174T cells were treated with DMSO or rifampin for 24 h, after which mRNA was isolated and converted to cDNA. A quantitative analysis was performed using real-time PCR with normalization against GAPDH. The results were obtained in three independent experiments. E, G Protein extracts were prepared from HEK293 cells treated with vehicle (DMSO) or DRB (40 μM) in the presence of rifampin (40 μM), exposed to MG-132 (20 μM) for 8 h, and subjected to Western blotting with an anti-PXR antibody. F. PXR protein quantities were compared according to different concentrations of MG132 in LS174T cells treated for 8 h (Upper). The amounts of PXR in LS174T cells treated with 2.5 μM MG132 for different time periods were compared (Lower). H. Using PXR siRNA and rifampin, the protein levels of CK2α, Hsp90β, P-gp, and PXR were confirmed by Western blotting. (C), (E), (F), (G), and (H), blots were reprobed with an anti-β-actin antibody, which served as a loading control.

FIGURE 6. *In vitro* kinase assay. CK2 (A) or CK2α (B), a CK2 substrate peptide, [γ-32P]ATP, and various concentrations of TBB or rifampin were incubated for 10 min.

FIGURE 7. Direct binding assay. The binding of CK2α to [3H]-emodin (A) or [3H]-rifampin (B) was quantified. The respective non-tritium-labeled drug and TBB were used for competition. C. The binding of [3H]-rifampin to wild type CK2α or A160/A175 mutated CK2α was quantified.

FIGURE 8. Molecular docking analysis of CK2 and rifampin. A. Overview of CK2 and rifampin binding. B. Close-up view of the binding site in CK2. C. Hydrogen bonds between CK2 and rifampin. Green, CK2; cyan, binding site pocket; yellow, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB); magenta, rifampin.

FIGURE 9. *Hsp90β* location confirming. Fractions of cytosol and nucleus were divided after 24 hour rifampin or DMSO treatment at LS174 cell line. Fifth and sixth lines were sum of 50 % cytosolic and 50 % nuclear fraction. Lamin-B and α-tubulin served as nuclear and cytosolic marker respectively.

FIGURE 10. Graphic presentation. The hypothesis of this study is summarized as a simple illustration. A. Rifampin binds directly to and activates CK2. B. CK2 phosphorylates Hsp90β at Ser225 and Ser254. C. Hsp90β binds to and stabilizes PXR in the cytoplasm. D. PXR is translocated into the nucleus in the absence of Hsp90β. E. The proposed pathway of MDR1 overexpression with rifampin treatment comprising steps (A) through (D).
Figure 2

A

IP: Hsp90β	IgG	
DMSO	Rifampin	DMSO

Hsp90β

B

Neutral Loss

C

Rifampin - +

Hsp90β

p-Hsp90β (S225)

p-Hsp90β (S254)

β-actin

D

BEP-800 - + +

Rifampin - - +

P-gp

Hsp90β

p-Hsp90β (S225)

p-Hsp90β (S254)

PXR

β-actin
Figure 3

F

	DRB	-	-	+	+
Rifampin	-	-	+	+	+

- p-S225
- p-S254
- Hsp90

G

Rifampin	Control siRNA	-	+

- CK2α
- p-S225
- p-S254
- Hsp90

H

Hsp90β	-	WT	A	D

- P-gp
- β-actin
Figure 4

A

Rifampin	DRB	P-gp	β-actin
-	-		
+	-		
+	+		

Rifampin	DRB	MDR1	GAPDH
-	-		
+	-		
+	+		

B

DMSO | Rifampin | Rifampin/DRB

P-gp | β-catenin | Merge

C

Fluorescence (X10^3 cpm)

Rifampin | DRB

D

Control siRNA | CK2α siRNA

Rifampin | - | + | +

CK2α | P-gp | β-actin
Figure 5

A

Rifampin	DRB	IP: Hsp90β	IgG
	-	-	+
	+	-	-
	-	-	+

PXR

Hsp90β

B

IP: GST
CK2
ATP

PXR

GST-Hsp90β

GST

PXR: Input

C

Rifampin	-	+

PXR

β-actin

PXR

GAPDH

D

Rifampin

PXR mRNA fold change

0.0

0.5

1.0

1.5

- +
Figure 7

A

Bound Emodin-3H (M)

Inserted Emodin-3H (M)

- Emodin3H
- Emodin3H + Emodin (0.5 mM)
- Emodin3H + TBB (0.5 mM)

B

Bound Rifampin-3H (M)

Inserted Rifampin-3H (M)

- Rifampin3H
- Rifampin3H + Rifampin (60 mM)
- Rifampin3H + TBB (13.7 mM)

C

Bound Rifampin-3H (M)

Inserted Rifampin-3H (M)

- CK2a
- CK2a mutant
Figure 8
Figure 9

Rifampin	Cytoplasm	Nucleus	Cytoplasm + Nucleus
	-	-	-
	+	+	+

- PXR
- Hsp90β
- Lamin B
- α-tubulin
Figure 10

- **Rifampin**
 - **CK2** (Phosphorylation)
 - **HSP90β**
 - **PXR** (Interaction/Stabilization)
 - **MDR1**

Cytoplasm

Nucleus

A-B-C-D-E
CK2-mediated phosphorylation of Hsp90β as a novel mechanism of rifampin-induced MDR1 expression
So Won Kim, Md. Hasanuzzaman, Munju Cho, Ye Rang Heo, Min-Jung Ryu, Na-Young Ha, Hyun June Park, Hyung-Yeon Park and Jae-Gook Shin

J. Biol. Chem. published online May 20, 2015

Access the most updated version of this article at doi: 10.1074/jbc.M114.624106

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts