HEXAGONAL GEOMETRIC TRIANGULATIONS

XIAOPING ZHU

Abstract. It is well-known that the Euclidean plane has a standard 6-regular geodesic triangulation, and the unit sphere has a 5-regular geodesic triangulation, which is induced from the regular Dodecahedron, and the hyperbolic plane has an n-regular geodesic triangulation for any $n > 6$. Here we constructed a 6-regular geodesic triangulation of the hyperbolic plane.

CONTENTS

1. Introduction
2. Preliminary case: closed surfaces
3. General facts about regular geometric triangulations
4. k-Regular geometric triangulations on The Euclidean plane
5. 6-regular geometric triangulations on the Hyperbolic Plane
6. Related work
References

1. INTRODUCTION

Here we consider the problem on the existence of special classes of geometric triangulations on the Euclidean plane and the hyperbolic plane.

A triangulation T on a surface S is k-regular for some integer $k > 0$ if the degrees of all its vertices are k, and it is geometric if all the edges are embedded as geodesic arcs with respect to the metric. The most familiar geometric 6-regular triangulation is the standard hexagonal triangulation on the plane, and the 7-regular equilateral triangulation of the hyperbolic plane. The triangular groups \[\Delta(3,k) = \{a,b,c | a^3 = b^k = c^2 = 1\} \]
produce k-regular equilateral triangulations for any $k > 6$.

We ask whether we can construct 6-regular geometric triangulations on the hyperbolic plane. Moreover, we can consider the general question as follows.

Question: Does there exist k-regular geometric triangulations on the Euclidean plane \mathbb{E}^2, the round 2-sphere \mathbb{S}^2 and the hyperbolic plane \mathbb{H}^2 for any $k \geq 3$? Furthermore, can we construct such a geometric triangulation T with a uniform bound on the edge lengths of T?

If $k = 6$, the number of vertices grows linearly with respect to the combinatorial distance from one point. If $k > 6$, the number of vertices grows exponentially. Intuitively, they correspond to the Euclidean and hyperbolic geometry. We show that we can construct 6-regular geometric triangulation on \mathbb{H}^2.
Figure 1. Degree-regular geometric triangulations.

The semi-regular tiling of the Euclidean and hyperbolic plane by polygons has been studied by Datta and Gupta [2].

2. PRELIMINARY CASE: CLOSED SURFACES

The basic combinatorial formulas below of Euler characteristics of closed surfaces show that there is no k-regular triangulation on \mathbb{E}^2 and \mathbb{H}^2 if $k = 3, 4, 5$, and there is no k-regular triangulation on \mathbb{S}^2 if $k \geq 6$.

From the combinatorial formula
\[12(1 - g) = 6\chi(S) = \sum_{i \in V} (6 - d_i) = |V|(6 - k), \]
we have a necessary condition for a closed orientable surface S to admit a k-regular triangulation T, namely
\[(k - 6)|12(g - 1). \]
It implies immediately that there is no k-regular triangulation on \mathbb{S}^2 if $k \geq 6$, and the only k-regular triangulation on tori is when $k = 6$. This condition turns out to be also sufficient for the existence of k-regular triangulation on S with genus g.

Lemma 2.0.1. Let S be a surface with genus g. Then there exists a k-regular triangulation on S if and only if
\[(k - 6)|12(g - 1). \]

Proof. The necessity is proved above. The sufficiency follows from the result by Jucovic and Trenkler [9]. First notice that if a k-regular triangulation T exists on S, then set V_0, E_0, and F_0 be the number of vertices, edges, and faces of T. Then $V_0 = 6\chi(S)/(6 - k)$, $E_0 = 3k\chi(S)/(6 - k)$, and $F_0 = 2k\chi(S)/(6 - k)$.

By the Main Theorem in [9], if three positive numbers V, E, and F on S satisfies two conditions
1. $F - (4 - k)V = 8(1 - g)$;
2. $kV = 3F = 2E$,
then a k-regular triangulation with V vertices, E edges and F faces exists on S. It is straightforward to check that V_0, E_0, and F_0 satisfies the two conditions. \qed

Lemma 2.0.2. There is no k-regular triangulation on \mathbb{E}^2 and \mathbb{H}^2 if $k = 3, 4, 5$.

Proof. If such a triangulation T exists, take an arbitrary subcomplex T' which is homeomorphic disk. A combinatorial formula for a triangulated disk is given by

$$\sum_{i \in V_I} (6 - d_i) = 6 + \sum_{i \in V_B} (d_i - 4)$$

where V_I and V_B are the index sets for interior vertices and boundary vertices. Since T is k-regular for $k < 6$, if v_i is a boundary vertex of T', then $d_i < 5$ since T' is part of T. Then the left side is no larger than 6. Hence the disk T' can only contains at most 6 vertices. This leads to a contradiction because we can take T' as large as we want. \qed

For $k = 3, 4, 5$, we have k-regular geometric triangulations on \mathbb{S}^2, given by projecting regular tetrahedron, octahedron, and icosahedron to the unit sphere from the center. It is straightforward to construct a 6-regular triangulation on a torus using the standard hexagonal triangulation on \mathbb{E}^2.

![Figure 2. Degree-regular geometric triangulations on the unit 2-sphere.](image)

3. General facts about regular geometric triangulations

The goal is to construct k-regular geometric triangulations on \mathbb{E}^2 with $k > 6$, and 6-regular geometric triangulations on \mathbb{H}^2. We first point out that such triangulations contain skinny triangles.

Lemma 3.0.1. Let T be a k-regular geometric triangulations on \mathbb{E}^2 with $k > 6$, or a 6-regular geometric triangulations on \mathbb{H}^2. Then the infimum of the angles in T is zero.

Proof. If not, in the first case for \mathbb{E}^2 we can construct a quasiconformal homeomorphism from \mathbb{E}^2 to \mathbb{H}^2 by sending a triangle in T to the corresponding triangle in the standard geometric triangulation of \mathbb{H}^2 generated by reflecting equilateral triangles with inner angle $2\pi/k$. Similarly, in the second case we can construct a quasiconformal homeomorphism from \mathbb{H}^2 to \mathbb{E}^2 sending T to the standard equilateral hexagonal triangulation. This contradicts to the fact that there is no quasiconformal map from \mathbb{E}^2 to \mathbb{H}^2. \qed

In this sense, the “best” k-regular geometric triangulation we can expect is a geometric triangulation with a uniform low bound $c > 0$ and a uniform upper C on the lengths of edges.

Conjecture 3.0.2. There is no k-regular geometric triangulation on \mathbb{E}^2 with a uniform low bound $c > 0$ and a uniform upper C on the lengths of edges for $k \geq 7$. Similarly, there is no 6-regular geometric triangulation on \mathbb{H}^2 with a uniform low bound $c > 0$ and a uniform upper C on the lengths of edges.
4. k-Regular geometric triangulations on the Euclidean plane

It is known that one can construct k-regular geometric triangulation on \mathbb{E}^2 for $k > 6$. The idea is to construct chains of circles with radius n and distribute the points on the circle evenly. The similar computation is given in [2]. We can show that these triangulations have the desired uniform bounds.

Lemma 4.0.1. For any $k \geq 6$, there exist k-regular geometric triangulations on \mathbb{E}^2 with uniform upper bounds on the lengths of edges.

Proof. The construction of a k-regular geometric triangulation is given above. Let C_n be circles with radius $r_n = n$ centered at the origin of \mathbb{E}^2. Let a_n be the number of vertices on C_n on this construction. These vertices have combinatorial distance n from the vertex at the origin.

We have the following recursive relation:

$$a_{n+1} = (k - 4)a_n - a_{n-1}$$

with $a_0 = 0$ and $a_1 = k$. Solve this series and we have the formula for a_n with $n \geq 1$:

$$a_n = k\frac{\alpha^n - \beta^n}{\alpha - \beta}$$

where $\alpha = \cosh^{-1}((k - 4)/2)$ and $\beta = 1/\alpha$. Thus, asymptotically a_n grows as α^{n-1} to infinity. But the length of C_n is given by $l_n = 2\pi n$. So the arclength of each small arc goes to zero as n goes to infinity, hence the length between two consecutive vertices on C_n goes to zero.

By the construction above, if v is a vertex in C_n, then the $k - 4$ or $k - 3$ vertices v_i in C_{n-1} connecting to v forms an arc γ in C_{n+1}, and the ray starting from the origin passing through v intersects with γ. As the length of γ goes to zero, all the lengths of the edges connecting v to v_i goes to $r_{n+1} - r_n = 1$.

So as $n \to \infty$, the lengths of edges approaches either 1 or 0. Hence we can take the maximal length of a compact part of T bounded by C_n with n large enough so that its complement contains edges no longer than 2. Then we can find a uniform bound.

□

Using the same idea, we can construct a k-regular geometric triangulation of \mathbb{E}^2 whose edges has a uniform lower bound. We can pick $r_n = 2^n$ and follow the construction above.
5. 6-regular geometric triangulations on the Hyperbolic Plane

We now give a construction of the desired 6-regular geometric triangulations with uniform bound in the hyperbolic plane using the Klein disk model.

(1) Put one vertex v_0 in the origin, and shoot out two rays R_1 and R_2 along the positive x-axis and along the direction $e^{i\pi/3}$.

(2) Let $r_n = \alpha \log n$ with $0 < \alpha < 1/2$. Construct a sequence of points a_n and b_n on R_1 and R_2 with distance r_n from v_0 in hyperbolic metric. Connect a_n with a_{n+1} and b_n with b_{n+1} using geodesics. Call these edges of type 0.

(3) Connect a_n with b_n by circle arcs C_n, called the n-th layer in this construction. Equally distribute $n-1$ points on C_n. Then each C_n are divided to n arcs. Connect the consecutive vertices on C_n to generate n edges. Call these edges of type 1. By symmetry, these edge have the same length.
(4) Connect points on C_n and C_{n+1} based on the combinatorics of the hexagonal triangulation to generate $2(n+1)$ edges. Call these edges of type 2.

(5) Rotate the configuration by $\pi/3$ to generate the full hexagon geometric triangulation.

We can give explicit coordinates of the vertices on C_n in this triangulation in the plane

$$v_n^k = \tanh r_n e^{i(k \pi)/3n}, \quad k = 0, 1, \ldots, n.$$

And the vertex v_n^k is connected with vertices v_{n+1}^k and v_{n+1}^{k+1} in this triangulation.

Proposition 5.0.1. The construction above generates a hexagonal geometric triangulation of \mathbb{H}^2 with uniform bound $K > 0$ on the lengths of edges.

The proof of this proposition consists of two lemmas.

Lemma 5.0.2. The construction above generates a valid geometric triangulations with no intersection of edges and degenerate triangles.

Proof. The proof is based on induction on n. The base case $n = 1$ is trivial. Assume it is true for the triangulation generated up to the n-th layer. We will show that the triangles between C_n and C_{n+1} lie in the ring R_n bounded C_n and C_{n+1}. There are two types of triangles:

1. **Type 1:** two vertices on C_n and one vertex on C_{n+1}. The three vertices are

$$v_n^k = \tanh r_n e^{i(k \pi)/3n}, \quad v_{n+1}^k = \tanh r_{n+1} e^{i(k+1) \pi/3n}, \quad \text{and} \quad v_{n+1}^{k+1} = \tanh r_{n+1} e^{i(k+1) \pi/3(n+1)}.$$

Notice that

$$\frac{k}{n} < \frac{k+1}{n+1} < \frac{k+1}{n}, \quad \text{and} \quad r_n \leq r_{n+1},$$

2. **Type 2:** one vertex on C_n and two vertices on C_{n+1}. In this case, the three vertices are

$$v_n^k = \tanh r_n e^{i(k \pi)/3n}, \quad v_{n+1}^k = \tanh r_{n+1} e^{i(k+1) \pi/3n}, \quad \text{and} \quad v_{n+1}^{k+1} = \tanh r_{n+1} e^{i(k+1) \pi/3(n+1)}.$$

Notice that

$$\frac{k}{n+1} \leq \frac{k}{n} \leq \frac{k+1}{n+1}, \quad \text{and} \quad r_n \leq r_{n+1}.$$

We want to show that the edges of type 2 lie in the ring bounded by two consecutive C_n and C_{n+1}, so it does not intersect with previous layers. If r_n increase too slowly, then it is possible that the edge determined by v_n^k and v_{n+1}^{k+1} might intersect with v_n^k. We need to show that if $r_n = \alpha \log n$ with $0 < \alpha < 1/2$, this will not occur.

The critical figures for triangles of type 1 and type 2 are given below, where the angles at v_n^k or v_{n+1}^{k+1} are right angles.
In this case, we can show that for sufficiently large \(n > N \),
\[
\tanh r_n < \tanh r_{n+1} \cos \frac{\pi}{6(n + 1)},
\]
and
\[
\tanh r_n < \tanh r_{n+1} \cos \frac{\pi}{6n},
\]
which is equivalent to
\[
\sinh (r_{n+1} - r_n) > \cosh r_n \sinh r_{n+1} (1 - \cos \frac{\pi}{6n}).
\]
One can show that the left side has order $O(1/n)$ and right side has order $O(1/n^{2-2\alpha})$, so the inequality holds for large n if $0 < \alpha < 1/2$.

This means that for large $n > N$, the triangles of type 2 will not intersect with the previous layers. For $0 \leq n \leq N$, we can treat it as a polygon in the Euclidean plane, and adjust the radius to avoid the intersections. \hfill \Box

Lemma 5.0.3. The lengths of edges of the geometric triangulation above are uniformly bounded.

Proof. The length of the edge of type 1 is bounded by the length of the arc of the circle connecting v_n^k and v_n^{k+1} given by

$$\sinh |v_n^k v_n^{k+1}| < \frac{\pi}{3n} \sinh r_n \sim O\left(\frac{1}{n^{1-\alpha}}\right) \to 0.$$

From the previous lemma, all the edges of type 0 and type 2 in the n-th layer lie in the ring R_n. The length of the edges in R_n with vertices on C_n is bounded by the following situation

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure6}
\caption{Estimate for Edges of Type 2.}
\end{figure}

The half length L of this edge is given by hyperbolic Pythagorean theorem

$$L = 2 \cosh^{-1} \left(\frac{\cosh r_{n+1}}{\cosh r_n} \right) \leq 2 \cosh^{-1} (2(1 + \frac{1}{n})^\alpha) < \infty.$$

Hence we can bound the edges of all the three types for large $n > 0$. The remaining part is naturally bounded by compactness. \hfill \Box

6. **Related work**

The existence of certain types of geodesic triangulations is a fundamental question. Recently various theory upon geodesic triangle meshes were developed, where people discuss problems about rigidity, convergence, variational principles, discrete maps and discrete geometric structures. See [3] [4] [14] [15] [16] [10] [1] [7] [6] [18] [5] [11] [20] [19] [21] [12] [13]. for example.
References

[1] Alexander I Bobenko, Ulrich Pinkall, and Boris A Springborn, Discrete conformal maps and ideal hyperbolic polyhedra, Geometry & Topology 19 (2015), no. 4, 2155–2215.

[2] Basudeb Datta and Subhojoy Gupta, Semi-regular tilings of the hyperbolic plane, Discrete & Computational Geometry 65 (2021), no. 2, 531–553.

[3] Jonah Gaster, Brice Loustau, and Léonard Monsaingeon, Computing discrete equivariant harmonic maps, arXiv preprint arXiv:1810.11932 (2018).

[4] _______, Computing harmonic maps between riemannian manifolds, arXiv preprint arXiv:1910.08176 (2019).

[5] David Gu, Feng Luo, and Tianqi Wu, Convergence of discrete conformal geometry and computation of uniformization maps, Asian Journal of Mathematics 23 (2019), no. 1, 21–34.

[6] Xianfeng Gu, Ren Guo, Feng Luo, Jian Sun, and Tianqi Wu, A discrete uniformization theorem for polyhedral surfaces ii, Journal of differential geometry 109 (2018), no. 3, 431–466.

[7] Xianfeng David Gu, Feng Luo, Jian Sun, and Tianqi Wu, A discrete uniformization theorem for polyhedral surfaces, Journal of Differential Geometry 109 (2018), no. 2, 223–256.

[8] Joel Hass and Peter Scott, Simplicial energy and simplicial harmonic maps, arXiv preprint arXiv:1206.2574 (2012).

[9] Ernest Jucovič and Marián Trenkler, A theorem on the structure of cell–decompositions of orientable 2–manifolds, Mathematika 20 (1973), no. 1, 63–82.

[10] Feng Luo, Combinatorial yamabe flow on surfaces, Communications in Contemporary Mathematics 6 (2004), no. 05, 765–780.

[11] Feng Luo, Jian Sun, and Tianqi Wu, Discrete conformal geometry of polyhedral surfaces and its convergence, arXiv preprint arXiv:2009.12706 (2020).

[12] Feng Luo and Tianqi Wu, Koebe conjecture and the weyl problem for convex surfaces in hyperbolic 3-space, arXiv preprint arXiv:1910.08001 (2019).

[13] Yanwen Luo, Tianqi Wu, and Xiaoping Zhu, The convergence of discrete uniformizations for genus zero surfaces, arXiv preprint arXiv:2108.02808 (2021).

[14] _______, The deformation space of geodesic triangulations and generalized tutte’s embedding theorem, arXiv preprint arXiv:2105.00612 (2021).

[15] _______, The deformation spaces of geodesic triangulations of flat tori, arXiv preprint arXiv:2107.05150 (2021).

[16] _______, The deformation space of delaunay triangulations of the sphere, arXiv preprint arXiv:2202.06402 (2022).

[17] Bruno Martelli, An introduction to geometric topology, arXiv preprint arXiv:1610.02592 (2016).

[18] Jian Sun, Tianqi Wu, Xianfeng Gu, and Feng Luo, Discrete conformal deformation: algorithm and experiments, SIAM Journal on Imaging Sciences 8 (2015), no. 3, 1421–1456.

[19] Tianqi Wu, Finiteness of switches in discrete yamabe flow, Ph.D. thesis, Master Thesis, Tsinghua University, Beijing, 2014.

[20] Tianqi Wu, Xianfeng Gu, and Jian Sun, Rigidity of infinite hexagonal triangulation of the plane, Transactions of the American Mathematical Society 367 (2015), no. 9, 6539–6555.

[21] Tianqi Wu and Xiaoping Zhu, The convergence of discrete uniformizations for closed surfaces, arXiv preprint arXiv:2008.06744 (2020).

Department of Mathematics, Rutgers University, Piscataway, NJ, 08854
Email address: xz349@rutgers.edu