Generalized Modified Ratio Type Estimator for Estimation of Population Variance

J. Subramani*
Department of Statistics, Pondicherry University, Puducherry, India

*Corresponding Author: Email id: drjsubramani@yahoo.co.in

Received: 09, May 2014/ Revised: 06, March 2015/ Accepted: 22, March 2015
©IAppStat-SL2015

ABSTRACT

In this paper a generalized modified ratio type estimator for estimation of population variance of the study variable using the known parameters of the auxiliary variable has been proposed. The bias and mean squared error of the proposed estimators are derived. It has been shown that the ratio type variance estimator and existing modified ratio type variance estimators are the particular cases of the proposed estimators. Further the proposed estimators have been compared with that of the existing (competing) estimators for simulated data and two natural populations

Keywords: Auxiliary variable, Bias, Coefficient of Variation, Kurtosis, Mean squared error, Median, Simple random sampling, Skewness

1. Introduction

1.1 Introduction to the Research Problem

When there is no auxiliary information available, the simplest estimator of population variance is the sample variance obtained by using simple random sampling without replacement (SRSWOR). Sometimes in sample surveys, along with the study variable Y, information on auxiliary variable X, which is positively correlated with Y, is also available. This information on auxiliary variable X, may be utilized to obtain a more efficient estimator of the population variance. Ratio method of estimation is an attempt in this direction. This method of estimation may be used when (i) X represents the same character as Y, but measured at some previous date when a complete count of the population was made and (ii) Any
other character \(X \) which is closely related to the study variable \(Y \) and it is cheaply, quickly and easily available (see page 77 in Gupta and Kabe (2011)).

1.2 Statement of Problem

Consider a finite population \(U = \{U_1, U_2, ..., U_N\} \) of \(N \) distinct and identifiable units. Let \(Y \) be a study variable with value \(Y_i \) measured on \(U_i, i = 1, 2, 3, ..., N \) giving a vector of values \(Y = \{Y_1, Y_2, ..., Y_N\} \).

The problem is to estimate the population variance \(S^2_Y = \frac{1}{(N-1)} \sum_{i=1}^{N} (Y_i - \bar{Y})^2 \) on the basis of a random sample of size \(n \), selected from the population \(U \) with some desirable properties like:

- Unbiasedness / Minimum Bias
- Minimum Variance / Mean squared error

1.3 Notations

The notations to be used in this article are described below:

- \(N \) – Population size
- \(n \) – Sample size
- \(Y = \frac{1-f}{n} \)
- \(Y \) – Study variable
- \(X \) – Auxiliary variable
- \(S^2_Y, S^2_X \) – Population variances
- \(s^2_Y, s^2_X \) – Sample variances
- \(C_X, C_Y \) – Coefficient of variations
- \(\lambda_{rs} = \frac{\mu_{rs}}{\mu_{x}^{2}, \mu_{s}^{2}} \)
- \(\mu_{rs} = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \bar{Y}) (X_i - \bar{X}) \)
- \(\beta_{1(x)} = \frac{\mu_{3}^x}{\mu_{2}^x} \), Skewness of the auxiliary variable
- \(\beta_{2(x)} = \frac{\mu_{4}^x}{\mu_{2}^x} \), Kurtosis of the Auxiliary Variable
- \(\beta_{2(y)} = \frac{\mu_{4}^{y}}{\mu_{2}^{y}} \), Kurtosis of the Study Variable where
- \(M_d \) – Median of the Auxiliary Variable
- \(Q_1 \) – First (lower) Quartile of the Auxiliary Variable
- \(Q_3 \) – Third (upper) Quartile of the Auxiliary Variable
- \(Q_r = Q_3 - Q_1 \), Inter-Quartile Range of the Auxiliary Variable
- \(Q_d = \frac{Q_3 - Q_1}{2} \), Semi-Quartile Range of the Auxiliary Variable
- \(Q_a = \frac{Q_3 + Q_1}{2} \), Semi-Quartile Average of the Auxiliary Variable
- \(D_i = i^{th} \) Decile of the Auxiliary variable
- \(B(.) \) – Bias of the estimator
- \(\text{MSE}(.) \) – Mean squared error of the estimator
- \(\hat{S}_R^2 \) – Ratio type variance estimator of \(S_y^2 \)
- \(\hat{S}_i^2 \) – Existing modified ratio type variance estimator of \(S_y^2 \)
- \(\hat{S}_{p1}^2 \) – Proposed modified ratio type variance estimator of \(S_y^2 \)

1.4 Simple random sampling without replacement sample variance

In the case of simple random sampling without replacement (SRSWOR), the sample variance \(S_y^2 \) is used to estimate the population variance \(S_y^2 \) which is an unbiased estimator and its variance is given below:

\[
V(S_y^2) = \delta S_y^2 (\beta_{2(y)} - 1) \tag{1}
\]

1.5 Ratio type estimator for estimation of population variance

Isaki (1983) suggested a ratio type variance estimator for the population variance \(S_y^2 \) when the population variance \(S_x^2 \) of the auxiliary variable \(X \) is known. The estimator together with its bias and mean squared error are given below:

\[
\hat{S}_R^2 = S_y^2 \frac{S_x^2}{S_x^2} \tag{2}
\]

\[
B(\hat{S}_R^2) = \gamma S_y^2 \left[(\beta_{2(x)} - 1) - (\lambda_{22} - 1) \right] \tag{3}
\]

\[
\text{MSE}(\hat{S}_R^2) = \gamma S_y^2 \left[(\beta_{2(y)} - 1) + (\beta_{2(x)} - 1) - 2(\lambda_{22} - 1) \right] \tag{4}
\]

where \(\beta_{2(y)} = \frac{\mu_{y0}}{\mu_{x0}}, \beta_{2(x)} = \frac{\mu_{y2}}{\mu_{x2}}, \lambda_{22} = \frac{\mu_{x2}}{\mu_{x0}\mu_{y0}} \)

1.6 Existing modified ratio type estimators for estimation of population variance

The ratio type variance estimator given in (2) is used to improve the precision of the estimate of the population variance compared to SRSWOR sample variance. Further improvements are also achieved on the ratio estimator by introducing a number of modified ratio estimators with the use of known parameters like Coefficient of Variation, Kurtosis, Median, Quartiles and Deciles. The problem of constructing efficient estimators for the population variance has been widely discussed by various authors such as Isaki (1983), Kadilar and Cingi (2006),
1.7 Motivations and Investigations

Moving along this direction we intend in this paper to show the problem of estimating the population variance of a study variable can be treated in a cohesive framework by defining a class of estimators which may or may not be biased and covers many that are present in the literature. The bias and mean squared error of the class are obtained. The aim is to avoid the large number of estimators that appear different from each other but, as a matter of fact, can be included in the class and therefore, their efficiency is known in advance. In this paper an attempt has been made to suggest a generalized modified ratio type estimator for estimating population variance using known parameters of the auxiliary variable and its linear combination. The materials of the present work are arranged as given below. The proposed estimators using known parameters of the auxiliary variable are presented in section 2 whereas the proposed estimators are compared theoretically with that of the SRSWOR sample variance, ratio estimator and existing modified estimators in section 3. The performance of the proposed estimators with that of the ratio and existing modified ratio estimators are assessed for certain natural populations in section 4 and the conclusion is presented in section 5.

2. Generalized Modified Ratio Type Estimator

In this section, a generalized modified ratio type estimator using the known parameters of the auxiliary variable for estimating the population variance of the study variable Y has been suggested. The proposed modified ratio type estimator $\hat{S}_{p_i}^2$, $i = 1, 2, ..., 51$ for estimating the population variance S_Y^2 is given below:

$$\hat{S}_{p_i}^2 = S_Y^2 \left[\frac{S_Y^2 + \alpha_0}{S_Y^2 + \alpha_0} \right]; i = 1, 2, 3, ..., 51$$ \hspace{1cm} (5)

The bias and mean squared error of the proposed estimators $\hat{S}_{p_i}^2$, $i = 1, 2, ..., 51$ have been derived (see Appendix B) and are given below:
Bias(\(\hat{S}_{p1}^2\)) = \(\gamma S_y^2 \delta_{p1}[\delta_{p1}(\beta_{2(x)} - 1) - (\lambda_{22} - 1)]\) \hspace{1cm} (6)

MSE(\(\hat{S}_{p1}^2\)) = \(\gamma S_y^4 [(\beta_{2(y)} - 1) + \delta_{p1}^2(\beta_{2(x)} - 1) - 2\delta_{p1}(\lambda_{22} - 1)]\) \hspace{1cm} (7)

where \(\delta_{p1} = \frac{s^2_x}{s^2_y + \alpha_\omega}\)

Remark 2.1: When the study variable \(Y\) and auxiliary variable \(X\) are negatively correlated and the population parameters of the auxiliary variable are known, the following generalized modified product type variance estimator can be proposed:

\(\hat{S}_{p1}^2 = \frac{s^2_y \left[\frac{s^2_x + \alpha_\omega}{s^2_x + \alpha_{\omega_i}}\right]}{i = 1,2,3,...,51}\) \hspace{1cm} (8)

Remark 2.2: When \(\alpha = 0\) in (5), the proposed estimator \(\hat{S}_{p1}^2\) reduces to ratio type estimator \(\hat{S}_R^2\) suggested by Isaki (1983).

Remark 2.3: When \(\alpha = 1\), the proposed estimator \(\hat{S}_{p1}^2\) reduces respectively to the existing estimators \(\hat{S}_i^2\) listed in Table 1.

3. Efficiency of the Proposed Estimators

The mean squared error of the modified ratio type estimators \(\hat{S}_i^2; i = 1,2,3,...,51\) given in Table 1 (Appendix A) are represented in single class as given below:

MSE(\(\hat{S}_i^2\)) = \(\gamma S_i^4 \left[(\beta_{2(y)} - 1) + \delta_{i}^2(\beta_{2(x)} - 1) - 2\delta_{i}(\lambda_{22} - 1)\right]\) \hspace{1cm} (9)

Comparing (1) and (7) we have derived (see Appendix C) the condition for which the proposed estimator \(\hat{S}_{p1}^2, i = 1,2,3,...,51\) is more efficient than the SRSWOR sample variance \(S_Y^2\) and it is given below:

MSE(\(\hat{S}_{p1}^2\)) < MSE(\(S_Y^2\)) if \(\alpha > \omega_i^{-1}S_x^2\left[\frac{(\beta_{2(x)} - 1)}{2(\lambda_{22} - 1)} - 1\right]\) \hspace{1cm} (10)

Comparing (4) and (7) we have derived (see Appendix D) the conditions for which the proposed estimator \(\hat{S}_{p1}^2; i = 1,2,3,...,51\) is more efficient than the ratio type estimator \(S_R^2\) and it is given below:

MSE(\(\hat{S}_{p1}^2\)) < MSE(\(\hat{S}_R^2\)) if \(0 < \alpha < \omega_i^{-1}S_x^2\left[\frac{2(\beta_{2(x)} - 1) - 2(\lambda_{22} - 1)}{2(\lambda_{22} - 1) - (\beta_{2(x)} - 1)}\right]\) \hspace{1cm} (or)

\(\omega_i^{-1}S_x^2\left[\frac{2(\beta_{2(x)} - 1) - 2(\lambda_{22} - 1)}{2(\lambda_{22} - 1) - (\beta_{2(x)} - 1)}\right] < \alpha < 0\) \hspace{1cm} (11)

Comparing (7) and (9) we have derived (see Appendix E) the conditions for which the proposed estimator \(\hat{S}_{p1}^2; i = 1,2,3,...,51\) is more efficient than the modified ratio type variance estimator \(\hat{S}_i^2; i = 1,2,3,...,51\) respectively and it is given below:
Let us consider the lower limit point as \(\alpha_L \) and upper limit point as \(\alpha_U \) in (12). At the average of limit points, \(\alpha_A = \frac{\alpha_L + \alpha_U}{2} \), the proposed estimator always performs better than the existing estimators. That is,

\[
\text{MSE}(\tilde{S}_i^2) < \text{MSE}(\tilde{S}_i^2) \quad \text{if} \ 1 < \alpha < \omega^{-1}s_x^2 \left[\frac{(1+\delta_i)(\beta_2(x^{-1})-2(\lambda_{22}-1))}{2(\lambda_{22}-1)-\delta_i(\beta_2(x^{-1})-1)} \right] \quad \text{(or)}
\]

\[
\omega^{-1}s_x^2 \left[\frac{(1+\delta_i)(\beta_2(x^{-1})-2(\lambda_{22}-1))}{2(\lambda_{22}-1)-\delta_i(\beta_2(x^{-1})-1)} \right] < \alpha < 1
\]

Let us consider the lower limit point as \(\alpha_L \) and upper limit point as \(\alpha_U \) in (12). At the average of limit points, \(\alpha_A = \frac{\alpha_L + \alpha_U}{2} \), the proposed estimator always performs better than the existing estimators. That is,

\[
\text{MSE}(\tilde{S}_i^2) < \text{MSE}(\tilde{S}_i^2) \quad \text{at} \ \alpha_A
\]

4. Numerical Study

The performance of the proposed modified ratio type estimators for variance are assessed with that of SRSWOR sample variance, ratio type estimator and existing modified ratio type variance estimators for two natural populations. The population 1 is taken from Singh and Chaudhary (1986, page 141) and the population 2 is taken from Murthy (1967, page 228). The population parameters of the above populations are given below:

Population 1: Singh and Chaudhary (1986, page 141)

- \(Y \) - Area under Lime; \(X \) - Number of bearing Lime trees
- \(N = 22 \), \(n = 5 \)
- \(\bar{Y} = 22.6 \), \(\bar{X} = 1467.5 \), \(S_y = 32.8 \)
- \(s_x = 2503.2 \), \(\beta_{2(x)} = 13.2 \), \(\beta_{1(x)} = 9.9 \), \(\beta_{2(y)} = 5.57 \), \(\lambda_{22} = 7.71 \)
- \(M_d = 534.5 \), \(Q_1 = 110.7 \), \(Q_3 = 2180.00 \), \(D_1 = 29.40 \), \(D_2 = 102.6 \)
- \(D_3 = 143.6 \), \(D_4 = 238.4 \), \(D_5 = 534.5 \), \(D_6 = 805.6 \), \(D_7 = 1499.9 \)
- \(D_8 = 2452.0 \), \(D_9 = 3086.3 \), \(D_{10} = 11799.0 \)

Population 2: Murthy (1967, page 228)

- \(Y \) – Output for 80 factories; \(X \) – Fixed capital for 80 factories
- \(N = 80 \), \(n = 20 \)
- \(\bar{Y} = 51.8 \), \(\bar{X} = 11.3 \), \(S_y = 18.3 \)
- \(s_x = 8.4 \), \(\beta_{2(x)} = 2.8 \), \(\beta_{1(x)} = 1.1 \), \(\beta_{2(y)} = 2.3 \), \(\lambda_{22} = 2.2 \)
- \(M_d = 7.5 \), \(Q_1 = 5.1 \), \(Q_3 = 16.9 \), \(D_1 = 3.6 \), \(D_2 = 4.6 \)
- \(D_3 = 5.9 \), \(D_4 = 6.7 \), \(D_5 = 7.5 \), \(D_6 = 8.5 \), \(D_7 = 14.8 \)
- \(D_8 = 18.1 \), \(D_9 = 25 \), \(D_{10} = 34.8 \)

Variance of SRSWOR sample variance and Mean Squared Error of the ratio type estimator for the two populations are given below:

Table 2: Variance of SRSWOR Sample Variance and MSE of the Ratio Type Estimator

Estimators	Population 1	Population 2
MSE or Variance		
Further to show the efficiency of the proposed estimators (p), the Percent Relative Efficiencies (PREs) of the proposed estimators with respect to the existing estimators (e) given in Table 3 are computed by using the formula given below:

\[
\text{PRE (p)} = \frac{\text{MSE(e)}}{\text{MSE(p)}} \times 100
\]

Table 3: PRE(.) of the proposed modified ratio type estimators

Proposed Estimators	Popln 1	Popln 2	Proposed Estimators	Popln 1	Popln 2
\(\hat{S}^2_{p_1} \)	130.4823	129.5818	\(\hat{S}^2_{p_2} \)	130.4828	130.2050
\(\hat{S}^2_{p_2} \)	130.4829	127.0925	\(\hat{S}^2_{p_28} \)	130.4955	119.9825
\(\hat{S}^2_{p_3} \)	130.4827	129.2494	\(\hat{S}^2_{p_29} \)	130.4822	130.1909
\(\hat{S}^2_{p_4} \)	130.4822	129.3805	\(\hat{S}^2_{p_30} \)	130.4850	121.1700
\(\hat{S}^2_{p_5} \)	130.6144	119.2953	\(\hat{S}^2_{p_31} \)	130.4822	130.2147
\(\hat{S}^2_{p_6} \)	130.5104	120.5441	\(\hat{S}^2_{p_32} \)	130.6287	118.5545
\(\hat{S}^2_{p_7} \)	130.4822	130.0725	\(\hat{S}^2_{p_33} \)	130.4822	130.2037
\(\hat{S}^2_{p_8} \)	130.4826	125.8364	\(\hat{S}^2_{p_34} \)	130.5135	119.8709
\(\hat{S}^2_{p_9} \)	130.4822	129.6265	\(\hat{S}^2_{p_35} \)	130.4824	129.1855
\(\hat{S}^2_{p_{10}} \)	130.4825	128.8585	\(\hat{S}^2_{p_36} \)	130.4822	129.4300
\(\hat{S}^2_{p_{11}} \)	130.4823	129.5338	\(\hat{S}^2_{p_37} \)	130.4880	123.9977
\(\hat{S}^2_{p_{12}} \)	130.4822	129.0388	\(\hat{S}^2_{p_38} \)	130.5973	108.8890
\(\hat{S}^2_{p_{13}} \)	130.4822	130.2368	\(\hat{S}^2_{p_39} \)	130.5915	114.7386
\(\hat{S}^2_{p_{14}} \)	130.5597	115.4650	\(\hat{S}^2_{p_40} \)	130.5368	122.9210
\(\hat{S}^2_{p_{15}} \)	130.4822	130.2302	\(\hat{S}^2_{p_41} \)	130.5427	115.7293
\(\hat{S}^2_{p_{16}} \)	130.4987	117.0272	\(\hat{S}^2_{p_42} \)	130.4837	126.0025
\(\hat{S}^2_{p_{17}} \)	130.4823	127.3076	\(\hat{S}^2_{p_43} \)	130.4876	124.7590
\(\hat{S}^2_{p_{18}} \)	130.4822	129.9666	\(\hat{S}^2_{p_44} \)	130.4898	122.8351
\(\hat{S}^2_{p_{19}} \)	130.4830	126.8675	\(\hat{S}^2_{p_45} \)	130.4948	121.6964
\(\hat{S}^2_{p_{20}} \)	130.4822	130.0062	\(\hat{S}^2_{p_46} \)	130.5104	120.5441
\(\hat{S}^2_{p_{21}} \)	130.4822	129.9996	\(\hat{S}^2_{p_47} \)	130.5248	119.2270
\(\hat{S}^2_{p_{22}} \)	130.4921	126.9882	\(\hat{S}^2_{p_48} \)	130.5614	111.1183
\(\hat{S}^2_{p_{23}} \)	130.4822	129.9630	\(\hat{S}^2_{p_49} \)	130.6117	107.8257
If PRE \((p) > 100\) implies that the proposed estimators are performing better than the existing estimators. It is to be noted that the PRE values are independent of the sample size. From the PRE values given in Table 3, it is observed that the proposed estimators are performed better than the existing estimators. In fact PRE of the proposed estimators varies from 130.48 to 131.10 for population 1 and from 100.13 to 130.24 for population 2. Hence one may conclude from the numerical comparison that the proposed estimators are more efficient than the existing estimators.

5. Simulation study

However to assess more about the efficiency of the proposed estimators, we have undertaken a simulation study as given below: We generate \(N = 200\) values \((x_i, y_i)\) from a Bi-variate normal distribution with means \((50, 50)\) and standard deviation \((10, 10)\). The correlation coefficient is fixed at values 0.90 and 0.95. Simple random sampling without replacement has been considered for sample size \(n = 20\). Since the PREs are independent to the sample size we have restricted the simulation study for sample size 20 only. Further we have generated 1000 times a finite population of size 200 and compute various parameters and present the average values both in tabular and graphical form. For different values of correlation coefficient, the corresponding simulated population means and standard deviations are given in the following table:

\(\rho\)	\(\bar{X}\)	\(\bar{Y}\)	\(S_x\)	\(S_y\)
0.95	50.0365	49.9737	10.4820	10.4615
0.90	51.2780	51.2052	10.5836	10.6743

Variance of SRSWOR sample variance and Mean Squared Error of the ratio type estimator for simulated data are given below:

Table 4: Variance of SRSWOR sample variance and MSE of the ratio type estimator

Estimator	MSE or Variance \(\rho = 0.95\)	MSE or Variance \(\rho = 0.90\)
SRSWOR sample variance \(S_{p24}^2\)	1378.5990	864.8083
Ratio type estimator \(\hat{S}_{p26}^2\)	755.1780	303.7316
The performance of the existing and proposed modified ratio type variance estimators for different values of \(n = 20 \) for \(\rho = 0.90 \) and \(\rho = 0.95 \) are given in the following table:

Table 5: PRE(,) of the proposed modified ratio type estimators for the values of \(n = 20, \rho = 0.90 \) and \(\rho = 0.95 \)

Proposed Estimators	\(\rho = 0.90 \)	\(\rho = 0.95 \)	Proposed Estimators	\(\rho = 0.90 \)	\(\rho = 0.95 \)
\(\hat{S}_{p_1}^2 \)	119.73	100.12	\(\hat{S}_{p_27}^2 \)	119.98	100.09
\(\hat{S}_{p_2}^2 \)	116.45	101.19	\(\hat{S}_{p_28}^2 \)	110.22	198.33
\(\hat{S}_{p_3}^2 \)	119.81	100.10	\(\hat{S}_{p_29}^2 \)	120.00	100.09
\(\hat{S}_{p_4}^2 \)	118.81	100.29	\(\hat{S}_{p_30}^2 \)	139.73	140.47
\(\hat{S}_{p_5}^2 \)	108.46	107.34	\(\hat{S}_{p_31}^2 \)	119.89	100.10
\(\hat{S}_{p_6}^2 \)	103.22	167.10	\(\hat{S}_{p_32}^2 \)	107.60	107.84
\(\hat{S}_{p_7}^2 \)	119.91	100.10	\(\hat{S}_{p_33}^2 \)	119.99	100.09
\(\hat{S}_{p_8}^2 \)	106.24	113.52	\(\hat{S}_{p_34}^2 \)	104.92	169.78
\(\hat{S}_{p_9}^2 \)	118.18	100.61	\(\hat{S}_{p_35}^2 \)	119.74	100.12
\(\hat{S}_{p_{10}}^2 \)	119.06	100.19	\(\hat{S}_{p_{36}}^2 \)	113.93	102.12
\(\hat{S}_{p_{11}}^2 \)	119.71	100.12	\(\hat{S}_{p_{37}}^2 \)	101.07	158.15
\(\hat{S}_{p_{12}}^2 \)	114.56	102.00	\(\hat{S}_{p_{38}}^2 \)	105.28	175.56
\(\hat{S}_{p_{13}}^2 \)	119.98	100.09	\(\hat{S}_{p_{39}}^2 \)	105.29	110.98
\(\hat{S}_{p_{14}}^2 \)	102.86	167.08	\(\hat{S}_{p_{40}}^2 \)	111.31	103.62
\(\hat{S}_{p_{15}}^2 \)	120.00	100.09	\(\hat{S}_{p_{41}}^2 \)	102.61	167.48
\(\hat{S}_{p_{16}}^2 \)	143.30	170.98	\(\hat{S}_{p_{42}}^2 \)	100.12	145.75
\(\hat{S}_{p_{17}}^2 \)	103.11	136.18	\(\hat{S}_{p_{43}}^2 \)	100.77	156.10
\(\hat{S}_{p_{18}}^2 \)	119.93	100.10	\(\hat{S}_{p_{44}}^2 \)	101.57	159.73
\(\hat{S}_{p_{19}}^2 \)	116.12	101.26	\(\hat{S}_{p_{45}}^2 \)	102.36	164.13
\(\hat{S}_{p_{20}}^2 \)	119.57	100.14	\(\hat{S}_{p_{46}}^2 \)	103.22	167.10
\(\hat{S}_{p_{21}}^2 \)	119.66	100.14	\(\hat{S}_{p_{47}}^2 \)	104.06	170.46
\(\hat{S}_{p_{22}}^2 \)	115.25	101.21	\(\hat{S}_{p_{48}}^2 \)	104.89	174.35
\(\hat{S}_{p_{23}}^2 \)	119.93	100.10	\(\hat{S}_{p_{49}}^2 \)	105.81	177.81
\(\hat{S}_{p_{24}}^2 \)	103.13	113.74	\(\hat{S}_{p_{50}}^2 \)	106.95	181.50
\(\hat{S}_{p_{25}}^2 \)	119.79	100.11	\(\hat{S}_{p_{51}}^2 \)	110.77	189.60
\(\hat{S}_{p_{26}}^2 \)	112.63	105.61			

From the PRE values it is observed that the proposed estimators are performed better than the existing estimators. In fact PRE of the proposed estimators varies from 100.12 to 143.30 for \(\rho = 0.90 \) and from 100.09 to 198.33 for \(\rho = 0.95 \).
shows that the proposed estimators are more efficient than the existing estimators.

In order to show the performances of the proposed estimators graphically, we have simulated 200 samples 1000 times and repeated the same procedures 10 times and shown the average MSE values of the estimators in the below tables and graphs. We have considered only three estimators namely \hat{S}_2^2, \hat{S}_3^2 and \hat{S}_5^2 for comparison with the proposed estimators.

Table 6: Mean squared error of the estimators for $n = 20$ and $\rho = 0.90$

Sample Number	Mean Squared Error	Existing estimators	Proposed estimators				
		\hat{S}_2^2	\hat{S}_3^2	\hat{S}_5^2	$\hat{S}_2^2_{P28}$	$\hat{S}_3^2_{P38}$	$\hat{S}_5^2_{P51}$
1		273.91	261.36	276.00	248.86	248.96	248.98
2		273.82	261.51	275.89	248.96	249.06	249.08
3		275.31	262.08	276.32	250.31	250.41	250.43
4		273.64	261.03	276.60	248.79	248.89	248.91
5		274.23	261.26	276.08	249.09	249.19	249.22
6		274.34	260.91	275.45	249.27	249.37	249.40
7		274.15	262.50	276.13	249.18	249.28	249.31
8		274.68	262.29	276.60	249.71	249.81	249.83
9		274.01	261.04	276.12	248.73	248.83	248.85
10		274.50	261.20	276.90	249.43	249.53	249.55

Figure 1: MSE of the estimators for $n = 20$ and $\rho = 0.90$
Table 7: Mean squared error of the estimators for $n = 20$ and $\rho = 0.95$

Sample Number	Mean Squared Error	Existing estimators	Proposed estimators			
	\hat{S}_2^2	\hat{S}_3^2	\hat{S}_5^2	\hat{S}_{28}^2	\hat{S}_{38}^2	\hat{S}_{51}^2
1	430.71	303.86	351.12	217.36	173.89	189.54
2	430.67	304.41	349.60	217.46	173.96	189.62
3	430.49	303.30	350.97	217.07	173.66	189.29
4	430.36	304.21	351.69	217.13	173.71	189.34
5	430.07	304.30	350.28	217.25	173.80	189.44
6	430.12	304.10	350.06	216.84	173.47	189.08
7	430.03	304.91	349.98	216.83	173.47	189.08
8	430.46	303.80	350.24	216.83	173.47	189.08
9	429.44	304.50	351.16	215.82	172.65	188.19
10	430.26	304.64	350.98	216.62	173.30	188.89

Figure 2: MSE of the estimators for $n = 20$ and $\rho = 0.95$

From the above figures 1 and 2; and tables 6 and 7, it is clear that the proposed estimators perform better than the existing estimators.
6. Conclusion

In this paper a generalized modified ratio type estimator for estimating population variance using the known parameters of the auxiliary variable has been proposed. The bias and mean squared error of the proposed modified ratio type estimators are derived. Further it has been shown that ratio and existing modified ratio type estimators are the particular cases of the proposed estimators. We have also assessed the performances of the proposed estimators with that of the existing estimators for simulated data and two natural populations. It is observed from the numerical comparison that the mean squared error of the proposed estimators is less than the mean squared error/variance of the existing (competing) estimators. Hence we strongly recommend that the proposed modified ratio type estimators for the use of practical applications for estimation of population variance.

Acknowledgements

The author is thankful to the editor and the reviewers for their constructive comments, which have improved the presentation of the paper. Further, the author wishes to record his gratitude and thanks to UGC-MRP, New Delhi, for the financial assistance.

References

1. Gupta, A. K. and Kabe, D. G. (2011). Theory of Sample Surveys. World Scientific Publishers.

2. Isaki, C.T. (1983). Variance estimation using auxiliary information. *Journal of the American Statistical Association*, 78: 117-123 http://dx.doi.org/10.1080/01621459.1983.10477939

3. Kadilar, C. and Cingi, H. (2006a). Improvement in variance estimation using auxiliary information. *Hacettepe Journal of Mathematics and Statistics*, 35 (1): 111-115

4. Murthy, M.N. (1967). Sampling theory and methods. Statistical Publishing Society, Calcutta, India

5. Singh, D. and Chaudhary, F.S. (1986). Theory and analysis of sample survey designs. New Age International Publishers, New Delhi, India
6. Subramani, J. and Kumarapandiyan, G. (2012a). Variance estimation using median of the auxiliary variable. *International Journal of Probability and Statistics*, Vol. 1(3), 36-40
http://dx.doi.org/10.5923/j.ijps.20120103.02

7. Subramani, J. and Kumarapandiyan, G. (2012b). Variance estimation using quartiles and their functions of an auxiliary variable, *International Journal of Statistics and Applications*, 2012, Vol. 2(5), 67-42
http://dx.doi.org/10.5923/j.statistics.20120205.04

8. Subramani, J. and Kumarapandiyan, G. (2012c). Estimation of variance using deciles of an auxiliary variable. *Proceedings of International Conference on Frontiers of Statistics and Its Applications*, Bonfring Publisher, 143-149
DOI: 10.13140/RG.2.1.1502.9280

9. Subramani, J. and Kumarapandiyan, G. (2013). Estimation of variance using known co-efficient of variation and median of an auxiliary variable. *Journal of Modern Applied Statistical Methods*, Vol. 12(1), 58-64

10. Upadhyaya, L.N. and Singh, H.P. (1999). An estimator for population variance that utilizes the kurtosis of an auxiliary variable in sample surveys. *Vikram Mathematical Journal*, 19, 14-17

Appendix A

Table 1: Modified ratio type estimators for estimating population variance with the bias and mean squared error

Estimator	Bias - B(·)	Mean squared error MSE(·)								
S_1^2 = $s_2^2 + C_t$	$\gamma S_1^2 \delta_1 \left[\beta_2(\alpha) - 1 \right] - \lambda_{22} - 1$	$\gamma S_1^2 \delta_1 \left[\beta_2(\alpha) - 1 \right] + \delta_1 \left[\beta_2(\alpha) - 1 \right] - 2 \delta_1 \lambda_{22} - 1$								
Kadilar and Cingi (2006)										
S_2^2 = $s_2^2 + \beta_2(\alpha)$	$\gamma S_2^2 \delta_2 \left[\beta_2(\alpha) - 1 \right] - \lambda_{22} - 1$	$\gamma S_2^2 \delta_2 \left[\beta_2(\alpha) - 1 \right] + \delta_2 \left[\beta_2(\alpha) - 1 \right] - 2 \delta_2 \lambda_{22} - 1$								
Upadhyaya and Singh (1999)										
S_3^2 = $s_2^2 + \frac{\beta}{\beta_2(\alpha)}$	$\gamma S_3^2 \delta_3 \left[\beta(\alpha) - 1 \right] - \lambda_{22} - 1$	$\gamma S_3^2 \delta_3 \left[\beta(\alpha) - 1 \right] + \delta_3 \left[\beta(\alpha) - 1 \right] - 2 \delta_3 \lambda_{22} - 1$								
S_4^2 = $s_2^2 + \beta$	$\gamma S_4^2 \delta_4 \left[\beta(\alpha) - 1 \right] - \lambda_{22} - 1$	$\gamma S_4^2 \delta_4 \left[\beta(\alpha) - 1 \right] + \delta_4 \left[\beta(\alpha) - 1 \right] - 2 \delta_4 \lambda_{22} - 1$								
S_5^2 = $s_2^2 + s_1$	$\gamma S_5^2 \delta_5 \left[\beta(\alpha) - 1 \right] - \lambda_{22} - 1$	$\gamma S_5^2 \delta_5 \left[\beta(\alpha) - 1 \right] + \delta_5 \left[\beta(\alpha) - 1 \right] - 2 \delta_5 \lambda_{22} - 1$								
Subramani and Kumarapandiyan (2012a)										
$S_7^y = s_y^y \left[\frac{S_z^y + Q_1}{s_z^y + Q_1} \right]$	$\gamma S_7^z \delta_z \left[\beta_z(\lambda_1) - \beta_z(\lambda_2) - 1 \right]$	$\gamma S_7^y \left[(\beta_z(\lambda_1) + \delta_z(\beta_z(\lambda_1) - 2\delta_z(\lambda_2) - 1) \right]$								
-----------------------------------	-----------------------------------	-----------------------------------								
$S_8^y = s_y^y \left[\frac{S_z^y + Q_2}{s_z^y + Q_2} \right]$	$\gamma S_8^z \delta_z \left[\beta_z(\lambda_2) - \beta_z(\lambda_2) - 1 \right]$	$\gamma S_8^y \left[(\beta_z(\lambda_2) + \delta_z(\beta_z(\lambda_2) - 2\delta_z(\lambda_2) - 1) \right]$								
$S_9^y = s_y^y \left[\frac{S_z^y + Q_3}{s_z^y + Q_3} \right]$	$\gamma S_9^z \delta_z \left[\beta_z(\lambda_2) - \beta_z(\lambda_2) - 1 \right]$	$\gamma S_9^y \left[(\beta_z(\lambda_2) + \delta_z(\beta_z(\lambda_2) - 2\delta_z(\lambda_2) - 1) \right]$								
$S_{10}^y = s_y^y \left[\frac{S_z^y + Q_d}{s_z^y + Q_d} \right]$	$\gamma S_{10}^z \delta_z \left[\beta_z(\lambda_2) - \beta_z(\lambda_2) - 1 \right]$	$\gamma S_{10}^y \left[(\beta_z(\lambda_2) + \delta_z(\beta_z(\lambda_2) - 2\delta_z(\lambda_2) - 1) \right]$								
$S_{11}^y = s_y^y \left[\frac{S_z^y + Q_a}{s_z^y + Q_a} \right]$	$\gamma S_{11}^z \delta_z \left[\beta_z(\lambda_2) - \beta_z(\lambda_2) - 1 \right]$	$\gamma S_{11}^y \left[(\beta_z(\lambda_2) + \delta_z(\beta_z(\lambda_2) - 2\delta_z(\lambda_2) - 1) \right]$								
$S_{12}^y = s_y^y \left[\frac{S_z^y + D_1}{s_z^y + D_1} \right]$	$\gamma S_{12}^z \delta_z \left[\beta_z(\lambda_2) - \beta_z(\lambda_2) - 1 \right]$	$\gamma S_{12}^y \left[(\beta_z(\lambda_2) + \delta_z(\beta_z(\lambda_2) - 2\delta_z(\lambda_2) - 1) \right]$								
$S_{13}^y = s_y^y \left[\frac{S_z^y + D_2}{s_z^y + D_2} \right]$	$\gamma S_{13}^z \delta_z \left[\beta_z(\lambda_2) - \beta_z(\lambda_2) - 1 \right]$	$\gamma S_{13}^y \left[(\beta_z(\lambda_2) + \delta_z(\beta_z(\lambda_2) - 2\delta_z(\lambda_2) - 1) \right]$								
$S_{14}^y = s_y^y \left[\frac{S_z^y + D_3}{s_z^y + D_3} \right]$	$\gamma S_{14}^z \delta_z \left[\beta_z(\lambda_2) - \beta_z(\lambda_2) - 1 \right]$	$\gamma S_{14}^y \left[(\beta_z(\lambda_2) + \delta_z(\beta_z(\lambda_2) - 2\delta_z(\lambda_2) - 1) \right]$								
$S_{15}^y = s_y^y \left[\frac{S_z^y + D_4}{s_z^y + D_4} \right]$	$\gamma S_{15}^z \delta_z \left[\beta_z(\lambda_2) - \beta_z(\lambda_2) - 1 \right]$	$\gamma S_{15}^y \left[(\beta_z(\lambda_2) + \delta_z(\beta_z(\lambda_2) - 2\delta_z(\lambda_2) - 1) \right]$								
$S_{16}^y = s_y^y \left[\frac{S_z^y + D_5}{s_z^y + D_5} \right]$	$\gamma S_{16}^z \delta_z \left[\beta_z(\lambda_2) - \beta_z(\lambda_2) - 1 \right]$	$\gamma S_{16}^y \left[(\beta_z(\lambda_2) + \delta_z(\beta_z(\lambda_2) - 2\delta_z(\lambda_2) - 1) \right]$								
$S_{17}^y = s_y^y \left[\frac{S_z^y + D_6}{s_z^y + D_6} \right]$	$\gamma S_{17}^z \delta_z \left[\beta_z(\lambda_2) - \beta_z(\lambda_2) - 1 \right]$	$\gamma S_{17}^y \left[(\beta_z(\lambda_2) + \delta_z(\beta_z(\lambda_2) - 2\delta_z(\lambda_2) - 1) \right]$								
S_{10}	S_{11}	S_{12}	S_{13}	S_{14}	S_{15}	S_{16}	S_{17}	S_{18}	S_{19}	S_{20}
---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------
$s_j^2 + \frac{D_2}{s_j^2 + D_2}$	$s_j^2 + \frac{D_{10}}{s_j^2 + D_{10}}$	$s_j^2 + \frac{\beta_{21x}S_x^2 + C_x}{\beta_{21x}S_x^2 + C_x}$	$s_j^2 + \frac{\beta_{11}S_x^2 + C_x}{\beta_{11}S_x^2 + C_x}$	$s_j^2 + \frac{C_xS_x^2 + \beta_{1(x)}^2}{C_xS_x^2 + \beta_{1(x)}^2}$	$s_j^2 + \frac{C_xS_x^2 + \beta_{1(x)}^2}{C_xS_x^2 + \beta_{1(x)}^2}$	$s_j^2 + \frac{\beta_{1(x)}S_x^2 + C_x}{\beta_{1(x)}S_x^2 + C_x}$	$s_j^2 + \frac{\beta_{1(x)}S_x^2 + C_x}{\beta_{1(x)}S_x^2 + C_x}$	$s_j^2 + \frac{\beta_{2(x)}S_x^2 + C_x}{\beta_{2(x)}S_x^2 + C_x}$	$s_j^2 + \frac{M_xS_x^2 + C_x}{M_xS_x^2 + C_x}$	$s_j^2 + \frac{M_xS_x^2 + C_x}{M_xS_x^2 + C_x}$
Subramani and Kumarapandiyam (2012c)	Subramani and Kumarapandiyam (2012c)	Kadilar and Cingi (2006)	Subramani and Kumarapandiyam (2013)	Subramani and Kumarapandiyam (2013)						
$\gamma s_j^2 \delta_{20} \left(\beta_{2(x)} - 1 \right) - \left(\alpha_{22} - 1 \right)$	$\gamma s_j^2 \delta_{20} \left(\beta_{2(x)} - 1 \right) - \left(\alpha_{22} - 1 \right)$	$\gamma s_j^2 \delta_{21} \left(\beta_{2(x)} - 1 \right) - \left(\alpha_{22} - 1 \right)$	$\gamma s_j^2 \delta_{21} \left(\beta_{2(x)} - 1 \right) - \left(\alpha_{22} - 1 \right)$	$\gamma s_j^2 \delta_{22} \left(\beta_{2(x)} - 1 \right) - \left(\alpha_{22} - 1 \right)$	$\gamma s_j^2 \delta_{22} \left(\beta_{2(x)} - 1 \right) - \left(\alpha_{22} - 1 \right)$	$\gamma s_j^2 \delta_{22} \left(\beta_{2(x)} - 1 \right) - \left(\alpha_{22} - 1 \right)$	$\gamma s_j^2 \delta_{22} \left(\beta_{2(x)} - 1 \right) - \left(\alpha_{22} - 1 \right)$	$\gamma s_j^2 \delta_{22} \left(\beta_{2(x)} - 1 \right) - \left(\alpha_{22} - 1 \right)$	$\gamma s_j^2 \delta_{30} \left(\beta_{2(x)} - 1 \right) - \left(\alpha_{22} - 1 \right)$	$\gamma s_j^2 \delta_{30} \left(\beta_{2(x)} - 1 \right) - \left(\alpha_{22} - 1 \right)$
\[S_2 = s_2 \frac{\beta_{2(x)} S_x + M_d}{\beta_{2(x)} S_x + M_d} \]
\[S_4 = s_4 \frac{\beta_{2(x)} S_x + \rho}{\beta_{2(x)} S_x + \rho} \]
\[S_3 = s_3 \frac{\beta_{1(x)} S_x + S_x}{\beta_{1(x)} S_x + S_x} \]
\[S_5 = s_5 \frac{\beta_{1(x)} S_x + S_x}{\beta_{1(x)} S_x + S_x} \]
\[S_6 = s_6 \frac{M_d S_x + M_d}{M_d S_x + M_d} \]
\[S_7 = s_7 \frac{M_d S_x + M_d}{M_d S_x + M_d} \]
\[S_8 = s_8 \frac{M_d S_x + M_d}{M_d S_x + M_d} \]
\[S_9 = s_9 \frac{M_d S_x + M_d}{M_d S_x + M_d} \]
\[S_{51} = s_{51} \frac{M_d S_x + M_d}{M_d S_x + M_d} \]

where \(s_i = \frac{s_i}{S_x + \omega} \); \(i = 1,2,3, \ldots, 51 \); \(\omega_1 = C_x, \omega_2 = \beta_{2(x)} \), \(\omega_3 = \beta_{1(x)}, \omega_4 = \rho, \omega_6 = M_d, \)
\(\omega_7 = Q_1, \omega_8 = Q_1, \omega_9 = Q_1, \omega_{10} = Q_1, \omega_{11} = Q_1, \omega_{12} = D_1, \omega_{14} = D_3, \omega_{15} = D_4, \)
\(\omega_{16} = D_5/3, \omega_{17} = D_6, \omega_{18} = D_7, \omega_{19} = D_8, \omega_{20} = D_9, \omega_{21} = D_{10}, \omega_{22} = C_x / \beta_{2(x)}, \)
\(\omega_{23} = C_x / \beta_{2(x)}, \omega_{24} = C_x / \beta_{1(x)}, \omega_{25} = C_x / \beta_{1(x)}, \omega_{26} = C_x / \beta_{2(x)}, \omega_{27} = \rho / \beta_{2(x)}, \omega_{28} = S_x / \beta_{2(x)}, \omega_{29} = S_x / \beta_{2(x)}, \)
\(\omega_{30} = \frac{M_d}{C_x}, \omega_{31} = \frac{M_d}{C_x}, \omega_{32} = \frac{M_d}{C_x}, \omega_{33} = \frac{M_d}{C_x}, \omega_{34} = \frac{M_d}{C_x}, \omega_{35} = \frac{M_d}{C_x}, \omega_{36} = \frac{M_d}{C_x}, \)
\(\omega_{37} = \frac{M_d}{C_x}, \omega_{38} = \frac{M_d}{C_x}, \omega_{39} = \frac{M_d}{C_x}, \omega_{40} = \frac{M_d}{C_x}, \omega_{41} = \frac{M_d}{C_x}, \omega_{42} = \frac{M_d}{C_x}, \omega_{43} = \frac{M_d}{C_x}, \)
\(\omega_{44} = \frac{M_d}{C_x}, \omega_{45} = \frac{M_d}{C_x}, \omega_{46} = \frac{M_d}{C_x}, \omega_{47} = \frac{M_d}{C_x}, \omega_{48} = \frac{M_d}{C_x}, \omega_{49} = \frac{M_d}{C_x}, \omega_{50} = \frac{M_d}{C_x} \) and
\(\omega_{51} = \frac{M_d}{C_x} \)
Appendix B

We have derived here the bias and MSE of the proposed estimator \hat{s}_i^2; $i = 1, 2, 3, ..., 51$ to first order of approximation as given below:

Let $e_0 = \frac{s_x^2 - S_x^2}{S_y^2}$ and $e_1 = \frac{s_y^2 - S_x^2}{S_x^2}$. Further we can write $s_y^2 = S_y^2(1 + e_0)$ and $s_x^2 = S_x^2(1 + e_0)$ and from the definition of e_0 and e_1 we obtain:

$$E[e_0] = E[e_1] = 0$$

$$E[e_0^2] = \frac{n}{(n - 1)}\left(\beta_{2(y)} - 1\right)$$

$$E[e_1^2] = \frac{n}{(n - 1)}\left(\beta_{2(x)} - 1\right)$$

$$E[e_0 e_1] = \frac{n}{(n - 1)}(\lambda_{22} - 1)$$

The proposed estimator \hat{s}_i^2; $i = 1, 2, 3, ..., 51$ is given below:

$$\hat{s}_i^2 = S_y^2\left[\frac{S_x^2 + \alpha \omega_i}{S_x^2 + \alpha \omega_i}\right]$$

$$\Rightarrow \hat{s}_i^2 = S_y^2(1 + e_0)\left(\frac{S_x^2 + \alpha \omega_i}{(S_x^2 + e_1 S_x^2 + \alpha \omega_i)}\right)$$

$$\Rightarrow \hat{s}_i^2 = S_y^2(1 + e_0)\left(1 + \delta_{p1} e_1\right)$$

$$\Rightarrow \hat{s}_i^2 = S_y^2(1 + e_0)\left(1 - \delta_{p1} e_1 + \delta_{p1} e_1^2 - \delta_{p1} e_1^3 + \ldots\right)$$

Expanding and neglecting the terms more than 3rd order, we get

$$\hat{s}_i^2 = S_y^2 + S_y^2 e_0 - S_y^2 \delta_{p1} e_1 - S_y^2 \delta_{p1} e_0 e_1 + S_y^2 \delta_{p1} e_1^2$$

$$\Rightarrow \hat{s}_i^2 - S_y^2 = S_y^2 e_0 - S_y^2 \delta_{p1} e_1 - S_y^2 \delta_{p1} e_0 e_1 + S_y^2 \delta_{p1} e_1^2 \quad (A)$$

By taking expectation on both sides of (A), we get

$$E(\hat{s}_i^2 - S_y^2) = S_y^2 E(e_0) - S_y^2 \delta_{p1} E(e_1) - S_y^2 \delta_{p1} E(e_0 e_1) + S_y^2 \delta_{p1} E(e_1^2)$$

$$\text{Bias}(\hat{s}_i^2) = \gamma S_y^2 \delta_{p1} E(e_0) - \gamma S_y^2 \delta_{p1} E(e_1)$$

$$\text{Bias}(\hat{s}_i^2) = \gamma S_y^2 \delta_{p1} \left(\beta_{2(x)} - 1\right) - (\lambda_{22} - 1) \quad (B)$$

Squaring both sides of (A), neglecting the terms more than 2nd order and taking expectation, we get:

$$E(\hat{s}_i^2 - S_y^2)^2 = S_y^2 E(e_0^2) + S_y^2 \delta_{p1} E(e_1^2) - 2S_y^2 \delta_{p1} E(e_0 e_1)$$
\[\text{MSE} \left(\hat{S}_{p_i}^2 \right) = \gamma S_y^4 \left(\left(\beta_{2(y)} - 1 \right) + \delta_{p_i}^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_{p_i} (\lambda_{22} - 1) \right) \]

\[\text{(C)} \]

Appendix C

Comparison with that of SRSWOR sample variance

For \(\text{MSE} \left(\hat{S}_{p_i}^2 \right) \leq V \left(s_y^2 \right) \)

\[\gamma S_y^4 \left[\left(\beta_{2(y)} - 1 \right) + \delta_{p_i}^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_{p_i} (\lambda_{22} - 1) \right] \leq \gamma S_y^4 \left(\beta_{2(y)} - 1 \right) \]

\[\Rightarrow \left[\left(\beta_{2(y)} - 1 \right) + \delta_{p_i}^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_{p_i} (\lambda_{22} - 1) \right] \leq \left(\beta_{2(y)} - 1 \right) \]

\[\Rightarrow \delta_{p_i}^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_{p_i} (\lambda_{22} - 1) \leq 0 \]

\[\Rightarrow \delta_{p_i}^2 \left(\beta_{2(x)} - 1 \right) \leq 2\delta_{p_i} (\lambda_{22} - 1) \]

\[\Rightarrow \delta_{p_i} \left(\beta_{2(x)} - 1 \right) \leq 2 (\lambda_{22} - 1) \]

\[\Rightarrow\delta_{p_i} \leq 2 \frac{(\lambda_{22} - 1)}{(\beta_{2(x)} - 1)} \]

\[\Rightarrow \frac{S_x^2}{S_x^2 + \alpha \omega_i} \leq 2 \frac{(\lambda_{22} - 1)}{(\beta_{2(x)} - 1)} \]

\[\Rightarrow \frac{\left(\beta_{2(x)} - 1 \right)}{2(\lambda_{22} - 1)} \leq \frac{S_x^2 + \alpha \omega_i}{S_x^2} \]

\[\Rightarrow S_x^2 \left[\frac{\left(\beta_{2(x)} - 1 \right)}{2(\lambda_{22} - 1)} \right] \leq S_x^2 \leq \alpha \omega_i \]

\[\Rightarrow \omega_i^{-1} S_x^2 \left[\frac{\left(\beta_{2(x)} - 1 \right)}{2(\lambda_{22} - 1)} - 1 \right] \leq \alpha \]

\[\text{MSE} \left(\hat{S}_{p_i}^2 \right) \leq V \left(s_y^2 \right) \text{ if } \alpha \geq \omega_i^{-1} S_x^2 \left[\frac{\left(\beta_{2(x)} - 1 \right)}{2(\lambda_{22} - 1)} - 1 \right] \]

Appendix D

Comparison with that of the ratio type variance estimator

For \(\text{MSE} \left(\hat{S}_{p_i}^2 \right) \leq \text{MSE} \left(\hat{S}_R^2 \right) \)

\[\gamma S_y^4 \left[\left(\beta_{2(y)} - 1 \right) + \delta_{p_i}^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_{p_i} (\lambda_{22} - 1) \right] \leq \gamma S_y^4 \left[\left(\beta_{2(y)} - 1 \right) + \left(\beta_{2(x)} - 1 \right) - 2(\lambda_{22} - 1) \right] \]
Generalized Modified Ratio Type Estimator for Estimation of Population Variance

\[\Rightarrow (\beta_{2(y)} - 1) + \delta_{p_i}^2 (\beta_{2(x)} - 1) - 2\delta_{p_i}(\lambda_{22} - 1) \]
\[\leq (\beta_{2(y)} - 1) + (\beta_{2(x)} - 1) - 2(\lambda_{22} - 1) \]
\[\Rightarrow \delta_{p_i}^2 (\beta_{2(x)} - 1) - 2\delta_{p_i}(\lambda_{22} - 1) \leq (\beta_{2(x)} - 1) - 2(\lambda_{22} - 1) \]
\[\Rightarrow \delta_{p_i}^2 (\beta_{2(x)} - 1) - 2\delta_{p_i}(\lambda_{22} - 1) - (\beta_{2(x)} - 1) + 2(\lambda_{22} - 1) \leq 0 \]
\[\Rightarrow (\delta_{p_i} - 1) (\beta_{2(x)} - 1) - 2(\lambda_{22} - 1)(\delta_{p_i} - 1) \leq 0 \]
\[\Rightarrow (\delta_{p_i} + 1) (\delta_{p_i} - 1)(\beta_{2(x)} - 1) - 2(\lambda_{22} - 1)(\delta_{p_i} - 1) \leq 0 \]
\[\Rightarrow (\delta_{p_i} - 1) \left[(\delta_{p_i} + 1)(\beta_{2(x)} - 1) - 2(\lambda_{22} - 1) \right] \leq 0 \]

Condition 1: \((\delta_{p_i} - 1) \leq 0 \) and \((\delta_{p_i} + 1)(\beta_{2(x)} - 1) - 2(\lambda_{22} - 1) \geq 0 \)

\[\delta_{p_i} - 1 \leq 0 \text{ and } (\delta_{p_i} + 1)(\beta_{2(x)} - 1) \geq 2(\lambda_{22} - 1) \]
\[\Rightarrow \delta_{p_i} \leq 1 \text{ and } (\delta_{p_i} + 1) \geq \frac{2(\lambda_{22} - 1)}{(\beta_{2(x)} - 1)} \]
\[\Rightarrow \delta_{p_i} \leq 1 \text{ and } \delta_{p_i} \geq \frac{2(\lambda_{22} - 1)}{(\beta_{2(x)} - 1)} - 1 \]
\[\Rightarrow \frac{2(\lambda_{22} - 1)}{(\beta_{2(x)} - 1)} - 1 \leq \delta_{p_i} \leq 1 \]
\[\Rightarrow \frac{2(\lambda_{22} - 1)}{(\beta_{2(x)} - 1)} - 1 \leq \frac{S_x^2}{S_x^2 + \alpha \omega_i} \leq 1 \]
\[\Rightarrow \frac{2(\lambda_{22} - 1) - (\beta_{2(x)} - 1)}{(\beta_{2(x)} - 1)} \leq \frac{S_x^2}{S_x^2 + \alpha \omega_i} \leq 1 \]
\[\Rightarrow \frac{2(\lambda_{22} - 1)}{2(\lambda_{22} - 1) - (\beta_{2(x)} - 1)} \geq \frac{S_x^2 + \alpha \omega_i}{S_x^2} \geq 1 \]
\[\Rightarrow \frac{2(\lambda_{22} - 1) - (\beta_{2(x)} - 1)}{2(\lambda_{22} - 1) - (\beta_{2(x)} - 1)} \geq S_x^2 + \alpha \omega_i \geq S_x^2 \]
\[\Rightarrow \frac{2(\lambda_{22} - 1) - (\beta_{2(x)} - 1)}{2(\lambda_{22} - 1) - (\beta_{2(x)} - 1)} - S_x^2 \geq \alpha \omega_i \geq 0 \]
\[\Rightarrow \omega_i^{-1} S_x^2 \left[\frac{2(\beta_{2(x)} - 1)}{2(\lambda_{22} - 1) - (\beta_{2(x)} - 1)} - 1 \right] \geq \alpha \geq 0 \]
\[0 \leq \alpha \leq \omega^{-1}S_{x}^{2} \left[\frac{2 \left(\beta_{2(x)} - 1 \right)}{2(\lambda_{22} - 1) - \left(\beta_{2(x)} - 1 \right)} - 1 \right] \]

\[0 \leq \alpha \leq \omega^{-1}S_{x}^{2} \left[\frac{2 \left(\beta_{2(x)} - 1 \right) - 2(\lambda_{22} - 1)}{2(\lambda_{22} - 1) - \left(\beta_{2(x)} - 1 \right)} \right] \]

Condition 2:

\[(\delta_{p_i} - 1) \geq 0 \text{ and } (\delta_{p_i} + 1) \left(\beta_{2(x)} - 1 \right) - 2(\lambda_{22} - 1) \leq 0 \]

\[\delta_{p_i} - 1 \geq 0 \text{ and } (\delta_{p_i} + 1) \left(\beta_{2(x)} - 1 \right) \leq 2(\lambda_{22} - 1) \]

\[\Rightarrow \delta_{p_i} \geq 1 \text{ and } (\delta_{p_i} + 1) \leq \frac{2(\lambda_{22} - 1)}{\left(\beta_{2(x)} - 1 \right)} \]

\[\Rightarrow \delta_{p_i} \geq 1 \text{ and } \delta_{p_i} \leq \frac{2(\lambda_{22} - 1)}{\left(\beta_{2(x)} - 1 \right)} - 1 \]

\[\Rightarrow \frac{2(\lambda_{22} - 1)}{\left(\beta_{2(x)} - 1 \right)} - 1 \geq \delta_{p_i} \geq 1 \]

\[\Rightarrow \frac{2(\lambda_{22} - 1)}{\left(\beta_{2(x)} - 1 \right)} - 1 \geq S_{x}^{2} / S_{x}^{2} + \alpha \omega_{i} \geq 1 \]

\[\Rightarrow \frac{2(\lambda_{22} - 1) - \left(\beta_{2(x)} - 1 \right)}{\left(\beta_{2(x)} - 1 \right)} \geq \frac{S_{x}^{2}}{S_{x}^{2} + \alpha \omega_{i}} \geq 1 \]

\[\Rightarrow \frac{2(\lambda_{22} - 1) - \left(\beta_{2(x)} - 1 \right)}{2(\lambda_{22} - 1) - \left(\beta_{2(x)} - 1 \right)} \leq \frac{S_{x}^{2} + \alpha \omega_{i}}{S_{x}^{2}} \leq 1 \]

\[\Rightarrow S_{x}^{2} \left[\frac{2 \left(\beta_{2(x)} - 1 \right)}{2(\lambda_{22} - 1) - \left(\beta_{2(x)} - 1 \right)} \right] \leq S_{x}^{2} + \alpha \omega_{i} \leq S_{x}^{2} \]

\[\Rightarrow S_{x}^{2} \left[\frac{2 \left(\beta_{2(x)} - 1 \right)}{2(\lambda_{22} - 1) - \left(\beta_{2(x)} - 1 \right)} \right] - S_{x}^{2} \leq \alpha \omega_{i} \leq 0 \]

\[\Rightarrow \omega^{-1}S_{x}^{2} \left[\frac{2 \left(\beta_{2(x)} - 1 \right)}{2(\lambda_{22} - 1) - \left(\beta_{2(x)} - 1 \right)} - 1 \right] \leq \alpha \leq 0 \]

\[\Rightarrow 0 \leq \alpha \leq \omega^{-1}S_{x}^{2} \left[\frac{2 \left(\beta_{2(x)} - 1 \right)}{2(\lambda_{22} - 1) - \left(\beta_{2(x)} - 1 \right)} - 1 \right] \]

\[\Rightarrow \omega^{-1}S_{x}^{2} \left[\frac{2 \left(\beta_{2(x)} - 1 \right) - 2(\lambda_{22} - 1)}{2(\lambda_{22} - 1) - \left(\beta_{2(x)} - 1 \right)} \right] \leq \alpha \leq 0 \]
Generalized Modified Ratio Type Estimator for Estimation of Population Variance

\[
\text{MSE}(\hat{S}_p^2) < \text{MSE}(\hat{S}_h^2) \text{ if } 0 < \alpha < \omega_i^{-1}S_h^2 \left[\frac{2(\beta_{2(x)}-1)^2 - 2(\alpha_{22}-1)}{2(\lambda_{22}-1)^2 - (\beta_{2(x)}-1)^2} \right]
\]

(or) \[
\omega_i^{-1}S_h^2 \left[\frac{2(\beta_{2(x)}-1)^2 - 2(\alpha_{22}-1)}{2(\lambda_{22}-1)^2 - (\beta_{2(x)}-1)^2} \right] < \alpha < 0
\]

Appendix E

Comparison with that of Existing modified ratio type variance Estimators

For \(\text{MSE}(\hat{S}_p^2) \leq \text{MSE}(\hat{S}_h^2) \)

\[
\gamma S_y^4 \left[(\beta_{2(y)} - 1) + \delta_p^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_p \left(\alpha_{22} - 1 \right) \right]
\]
\[
\leq \gamma S_y^4 \left[(\beta_{2(y)} - 1) + \delta_i^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_i \left(\alpha_{22} - 1 \right) \right]
\]
\[\Rightarrow (\beta_{2(y)} - 1) + \delta_p^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_p \left(\alpha_{22} - 1 \right) \leq (\beta_{2(y)} - 1) + \delta_i^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_i \left(\alpha_{22} - 1 \right)
\]
\[\Rightarrow \delta_p^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_p \left(\alpha_{22} - 1 \right) \leq \delta_i^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_i \left(\alpha_{22} - 1 \right)
\]
\[\Rightarrow \delta_p^2 \left(\beta_{2(x)} - 1 \right) - 2\delta_p \left(\alpha_{22} - 1 \right) - \delta_i^2 \left(\beta_{2(x)} - 1 \right) + 2\delta_i \left(\alpha_{22} - 1 \right) \leq 0
\]
\[\Rightarrow (\delta_p^2 - \delta_i^2) \left(\beta_{2(x)} - 1 \right) - 2(\alpha_{22} - 1)(\delta_p - \delta_i) \leq 0
\]
\[\Rightarrow (\delta_p + \delta_i)(\delta_p - \delta_i) \left(\beta_{2(x)} - 1 \right) - 2(\alpha_{22} - 1)(\delta_p - \delta_i) \leq 0
\]
\[\Rightarrow (\delta_p - \delta_i) \left[(\delta_p + \delta_i) \left(\beta_{2(x)} - 1 \right) - 2(\alpha_{22} - 1) \right] \leq 0
\]

Condition 1: \((\delta_p - \delta_i) \leq 0 \) and \((\delta_p + \delta_i) \left(\beta_{2(x)} - 1 \right) - 2(\alpha_{22} - 1) \geq 0 \)

\[\delta_p - \delta_i \leq 0 \text{ and } \delta_p + \delta_i \geq \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \]
\[\Rightarrow \delta_p \leq \delta_i \text{ and } \delta_p + \delta_i \geq \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} - \delta_i \]
\[\Rightarrow 2(\alpha_{22} - 1) \leq \delta_p \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_p \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} - \delta_i \leq \delta_p \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[\Rightarrow \frac{2(\alpha_{22} - 1)}{(\beta_{2(x)} - 1)} \leq \delta_i \leq \delta_i \]
\[
\Rightarrow \frac{(\beta_{2(x)} - 1)}{2(\lambda_{22} - 1) - \delta_i (\beta_{2(x)} - 1)} \geq \frac{S_x^2 + a\omega_i}{S_x^2} \geq \delta_i^{-1}
\]

\[
\Rightarrow \omega_i^{-1}S_x^2 \left[\frac{(1 + \delta_i) (\beta_{2(x)} - 1) - 2(\lambda_{22} - 1)}{2(\lambda_{22} - 1) - \delta_i (\beta_{2(x)} - 1)} \right] \geq \alpha \geq 1
\]

Condition 2: \((\delta_{p_i} - \delta_i) \geq 0\) and \((\delta_{p_i} + \delta_i) (\beta_{2(x)} - 1) - 2(\lambda_{22} - 1) \leq 0\)

\[
\delta_{p_i} - \delta_i \geq 0 \quad \text{and} \quad (\delta_{p_i} + \delta_i) (\beta_{2(x)} - 1) \leq 2(\lambda_{22} - 1)
\]

\[
\Rightarrow \delta_{p_i} \geq \delta_i \quad \text{and} \quad (\delta_{p_i} + \delta_i) \leq \frac{2(\lambda_{22} - 1)}{(\beta_{2(x)} - 1)}
\]

\[
\Rightarrow \delta_{p_i} \geq \delta_i \quad \text{and} \quad \delta_{p_i} \leq \frac{2(\lambda_{22} - 1)}{(\beta_{2(x)} - 1)} - \delta_i
\]

\[
\Rightarrow \delta_i \leq \delta_{p_i} \leq \frac{2(\lambda_{22} - 1)}{(\beta_{2(x)} - 1)} - \delta_i
\]

\[
\Rightarrow \frac{(\beta_{2(x)} - 1)}{2(\lambda_{22} - 1) - \delta_i (\beta_{2(x)} - 1)} \leq \frac{S_x^2 + a\omega_i}{S_x^2} \leq \delta_i^{-1}
\]

\[
\Rightarrow \frac{(\beta_{2(x)} - 1)}{2(\lambda_{22} - 1) - \delta_i (\beta_{2(x)} - 1)} \leq \frac{S_x^2 + a\omega_i}{S_x^2} \leq \delta_i^{-1}
\]

\[
\Rightarrow \omega_i^{-1}S_x^2 \left[\frac{(1 + \delta_i) (\beta_{2(x)} - 1) - 2(\lambda_{22} - 1)}{2(\lambda_{22} - 1) - \delta_i (\beta_{2(x)} - 1)} \right] \leq \alpha \leq 1
\]

\[
\text{MSE}(\hat{S}_p^2) < \text{MSE}(\hat{S}_i^2) \quad \text{if} \quad 1 < \alpha < \omega_i^{-1}S_x^2 \left[\frac{(1 + \delta_i) (\beta_{2(x)} - 1) - 2(\lambda_{22} - 1)}{2(\lambda_{22} - 1) - \delta_i (\beta_{2(x)} - 1)} \right]
\]

\[
(\text{or}) \quad \omega_i^{-1}S_x^2 \left[\frac{(1 + \delta_i) (\beta_{2(x)} - 1) - 2(\lambda_{22} - 1)}{2(\lambda_{22} - 1) - \delta_i (\beta_{2(x)} - 1)} \right] < \alpha < 1
\]