Influence of geological conditions of rock mass ahead of tunnel face on the prediction performance of uniaxial compressive strength prediction model

Jiankang LIU1,2, Yujing JIANG3* and Osamu SAKAGUCHI3,4
1 Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao 266590, China
2 College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3 Graduate School of Engineering, Nagasaki University, Nagasaki, Japan
4 Department of Civil Engineering, Konoike Construction Co., Ltd., Osaka, Japan
* Corresponding author: Yujing JIANG, email: jiang@nagasaki-u.ac.jp

Abstract. Accurate and quick prediction of UCS values of rocks ahead of one tunnel provides a reliable guarantee for the safety and economy of tunnel construction. The objective of this paper is to investigate the effect of different rock geological conditions on the prediction performance of the developed genetic algorithm optimization of artificial neural network model when predicting uniaxial compressive strength using measurement-while-drilling data. Firstly, the objective tunnel is divided into four sections based on the geological conditions of the rock mass. Secondly, prediction model for each section is developed. Finally, the prediction accuracy of each section is compared and analysed. The results show that the sections with better geological conditions obtain superior prediction performance. In addition, a larger sample dataset has a positive effect on the prediction performance.

1. Introduction
The measurement of uniaxial compressive strength (UCS) of rocks is one of the key factors affecting the evaluation of geological conditions ahead of a tunnel [1-3]. Accurate and rapid prediction of UCS values of the rocks ahead of the tunnel face can ensure the safety and economy of tunnel construction [1, 2].

The UCS standard test of the rock is directly determined in the laboratory by the measurement of compression characteristics of rock specimen under the axial load. However, this direct laboratory test method is not easy to obtain perfect core samples and is time-consuming and expensive [4, 5]. Some researchers report that due to standard UCS test methods require costly equipment, it is economical and convenient to use the indirect test methods to measure UCS [6-8].

Recently, with the rapid development of measurement-while-drilling (MWD) technology, the evaluation technology of rock mass quality ahead of a tunnel face has been improved [9-12]; Therefore, as long as the original data is properly processed and effectively analyzed, the MWD technology can be regarded as a robust method for detailed characterization of large rock mass. Many scholars have done a lot of research in this field. The original MWD system was developed by Aoki, Shirasagi, Yamamoto, Inou and Nishioka [13]; The geological conditions of different ground depths were evaluated by analyzing the data obtained by drilling in rock with a hydraulic drill. Schunnesson, Pouloupolos, Bastis, Pettersen and Shetty [14] proposed a method to estimate the range of rock strength values based on the MWD hardness parameter index recorded by Atlas Copco software.
Kahraman, Rostami and Naeimipour [15] evaluated the feasibility of estimating UCS, Brazilian tensile strength, point load strength and Schmidt hammer test value by penetration rate parameter. However, limited by the difficulty of efficient analysis and processing of the MWD data, the technology of predicting UCS ahead of a tunnel face using the MWD data has not been effectively applied in the field.

In recent decades, artificial intelligence technologies have been applied to solve geotechnical engineering problems as a powerful tool [16-20]. However, the disadvantages of slow learning speed and easy to fall into local minima exist in the realization of ANN [21, 22]. To solve these problems, optimization algorithms such as genetic algorithm (GA) can be used to enhance the performance of ANN [23-25]. Based on MWD data, Liu, Luan, Zhang, Sakaguchi and Jiang [26] compared and analyzed the performance of regression model, ANN model and hybrid GA-ANN model in predicting UCS. The results show that GA-ANN has better prediction performance, and it validate that MWD data can be used to predict the UCS of the rock ahead of the tunnel. However, the analysis of the influencing factors on the prediction performance still needs further study.

The objective of this paper is to investigate the effect of different rock geological conditions on the prediction performance of the developed hybrid GA-ANN prediction model when predicting UCS using MWD data. Firstly, the objective tunnel is divided into four sections based on the geological conditions of the rock mass. Secondly, GA-ANN prediction model for each section is developed. Finally, the prediction accuracy of each section is compared and analyzed. This study has practical guidance to improve the prediction performance of UCS with MWD data.

2. Data collation and analysis

2.1. Data collation

The Nagasaki Tunnel (east) of the Shinkansen high-speed railroad in Japan, the study subject of this paper, was constructed in 2013 and completed in 2017. The total length of the tunnel is 3.855 km, as shown in Figure 1. During the tunnel excavation, the evaluation of the exposed tunnel face and the construction of the advance tunnel face were carried out. Uniaxial compressive strength (UCS) values and rock quality score (RQS) values for the exposed tunnel face were recorded in the evaluation report. During the drilling construction, the measurement–while–drilling (MWD) data was collected. It should be noted that the UCS values recorded in the evaluation report were obtained by converting the Schmidt hammer rebound values.

![Figure 1. Diagram of the four sections of the new Nagasaki tunnel (east).](image)

2.1.1. RQS. Based on the JH method proposed by Akagi, Sano, Shinji, Nishi and Nakagawa [27], the RQS value is calculated by the summation of 10 individual items including overall state, self-stability, intact rock strength, weathering, joints proportion, spacing of joints, joint aperture, morphology of joints, ground water inflow, and ground water corrosion to assess rock mass quality. Each individual item was assigned a score of 1 to 4 by the field engineer and recorded in the assessment report, depending on the condition of the tunnel faces revealed. A larger value for each item indicates a lower quality item, and vice versa. Therefore, the assessment of the ground water inflow and geological conditions of the tunnel face can be evaluated quantitatively based on the recorded assessment reports. To study the influence of the geological conditions of the rock mass on the predicted performance, the
tunnel was divided into four sections based on the RQS values obtained from the exposed tunnel faces, as shown in Figure 1. The corresponding water inflow, RQS values, and the excellent geological conditions of the four sections are recorded in Table 1. The mileage of sections 1 and 3 are 58K424.4–58K724.3 m and 59K847.3–60K652.1 m, respectively, and the geological conditions are both good and the water inflow are both small, with average RQS values of 23.54 and 21.13, respectively. The mileage of sections 2 and 4 are 59K178.4–59K611.0 m and 61K192.3–61K714.1 m, respectively, and the geological conditions are poor and general, with large water inflow and average RQS values of 25.71 and 24.75, respectively.

Table 1. Comparison of geological conditions for four sections.

Section	Mileage	Water inflow	RQS (Avg.)	Geological Conditions
Section 1	58K424.4–58K724.3 m	Small	23.54	Good
Section 2	59K178.4–59K611.0 m	Large	25.71	Poor
Section 3	59K847.3–60K652.1 m	Small	21.13	Good
Section 4	61K192.3–61K714.1 m	Large	24.75	General

2.1.2. MWD. The collected MWD data include six parameters of the penetration rate (PR), hammer pressure (HP), rotation pressure (RP), feed pressure (FP), hammer frequency (HF) and specific energy (SE). Six MWD parameters and one corresponding UCS parameter are used as input and output of the prediction model respectively, which together form a dataset.

2.2. Statistical analysis

A total of 813 datasets were collected in this study. The number of datasets corresponding to sections 1 to 4 are 302, 60, 273, and 178, respectively. Descriptive statistical was performed on the datasets of each of the four sections, as shown in Table 2. The statistical results show that the distribution of the values of the input and output variables in each zone is wide and variable.

Table 2. Descriptive statistics of datasets for each section.

Section	Item	Parameter	Amount	Avg.	Min.	Max.
Section 1	Input	PR	302	1.24	0.15	13.30
		HP		14.78	9.40	15.73
		RP		3.80	2.10	7.70
		FP		3.58	1.59	6.30
		HF		42.07	9.00	56.00
		SE		326.98	15.10	1390.40
	Output	UCS		25.83	8.00	59.00
Section 2	Input	PR	60	1.05	0.34	2.40
		HP		13.96	12.80	15.10
		RP		3.69	2.19	5.70
		FP		3.61	2.20	7.00
		HF		36.33	0.00	53.00
		SE		235.54	105.81	639.62
	Output	UCS		25.23	19.00	28.00
Section 3	Input	PR	273	0.61	0.21	4.44
		HP		14.91	13.50	15.70
		RP		5.29	2.50	8.70
		FP		4.99	2.40	8.70
		HF		21.92	0.00	55.00
		SE		317.38	56.20	696.20
	Output	UCS		26.56	16.00	36.00
Section 4	Input	PR	178	0.65	0.23	2.31
		HP		14.55	13.84	15.50
		RP		6.63	3.66	12.50
		FP		3.67	1.72	6.49
		HF		26.23	0.00	54.96
		SE		205.93	68.69	478.40
In addition, the correlation between input variables was investigated to avoid redundancy of input variable parameters, and the results are shown in Figure 2. If the correlation between two variables is large, then one of the variables needs to be removed. The coefficient of determination \(R^2 \) was used as an index to evaluate the correlation.

For the four sections the \(R^2 \) values between the input variables were less than 0.3 except between PR and SE. Although the \(R^2 \) values between PR and SE corresponding to sections 1 to 4 were 0.33, 0.60, 0.36, and 0.60, respectively, the \(R^2 \) values were still not large. The results indicate that the correlations between the input variables of each section are small and can be used as inputs to the model in their entirety.

![Figure 2](image_url)

Figure 2. Correlation statistics among input variables for the four sections. (a) Section 1; (b) Section 2; (c) Section 3; (d) Section 4.

3. Prediction methods and results

3.1. Hybrid genetic algorithm and artificial neural network (GA–ANN)

Genetic algorithms (GA) is a parallel stochastic search optimization method proposed by Professor Holland [28] in 1962, which simulates the theory of genetic and biological evolution in nature. Similar to the biological evolutionary principle of "survival of the fittest" in nature, GA is applied to select individuals in a coded tandem population formed by introducing optimization parameters according to the selected fitness function and through selection, crossover and mutation in genetics. Individuals with good fitness values are retained, and those with poor fitness are eliminated. The new population...
inherits the information from the previous generation and is superior to the previous generation. This cycle is repeated until the conditions are met. The basic operations of the GA are divided into three steps: selection, crossover, and mutation operations. The selection operation is to select individuals from the old population to the new population with a certain probability, and the probability of an individual being selected is related to the fitness value. The better the fitness value of an individual, the higher the probability of being selected. Crossover is the process of selecting two individuals from a population to produce a new superior individual by exchanging and combining two chromosomes. The crossover process is to select any two chromosomes from the population and randomly choose one or more chromosome positions for exchange.

The algorithmic process of genetic algorithm optimization of artificial neural network (GA-ANN) is divided into three main parts: network structure determination, genetic algorithm optimization and neural network prediction. After the structure of the neural network is determined, the length of the individuals of the genetic algorithm is then determined. GA optimizes the weights and thresholds of the ANN. Everyone in the population contains a network ownership value and a threshold value. Individuals calculate individual fitness values by fitness functions, and GA finds the individual corresponding to the optimal fitness value by selection, crossover, and variation operations. In GA-ANN prediction, the optimal individuals obtained by GA are assigned to the initial trial weights and thresholds of ANN, and the regular training and prediction processes are then executed.

3.2. Modeling

In this paper, the datasets of each section were divided into training and test datasets in a ratio of 8 to 2. The main parameters of the GA–ANN were determined by the trial-and-error method, as shown in Table 3. Population size, selection method, number of generations, mutation probability, and crossover probability are the main parameters of the GA, which were determined as 500, roulette method, 700, 0.25, and 0.7, respectively. Network structure, activation function, training function, learning rate, and momentum term are the main parameters of the ANN, which were determined as 6–12–1, sigmoid, Levenberg-Marquardt, 0.01, and 0.8, respectively.

Table 3. The main parameters of the GA–ANN.

Algorithm	Parameter	Value	Algorithm	Parameter	Value
GA	Population size	500	ANN	Network structure	6–12–1
	Selection method	Roulette	Activation function	Sigmoid	
	Number of generations	700	ANN	Training function	Levenberg-Marquardt
	Mutation probability	0.25	ANN	Learning rate	0.01
	Crossover probability	0.7	ANN	Momentum term	0.8

3.3. Prediction results and discussion

Based on the model developed above, predictions were carried out for each section and the total section with the test datasets, and the final prediction results are recorded to Table 4.

Table 4. Comparison of final prediction results.

Section	Geological conditions	\(R^2 \)	Training	Test
Section 1	Good	0.927	0.762	
Section 2	Poor	0.617	0.548	
Section 3	Good	0.798	0.732	
Section 4	Fair	0.710	0.273	
Total section	-	0.840	0.844	
As described in Section 3.2, the dataset of each section is divided into a training dataset and a test dataset according to a ratio of 8 to 2. For modelling and prediction, the training and test datasets correspond to the training and test stages, respectively, and both stages obtain a set of measured and predicted values. The training value R^2 and the test value R^2 are calculated from these two sets of measured and predicted values obtained. The final prediction results for each section and all sections are shown in Table 4. It should be noted that the R^2 values recorded in Table 4 are the average of 10 prediction results.

The correlation index values of R^2 between the measured values of UCS and the average values predicted by the developed GA-ANN model are graphically shown in Figure 3. The comparison between measured UCS and the average values of the predicted UCS with all datasets are shown in Figure 4. The line consisting of the pink dashed line and the solid dots in Figure 4 represents the measured values, and the closer the points of the predicted values of each section are to the measured values indicate the higher prediction accuracy. The results of the comparative analysis showed that the prediction performance of sections 1 and 3 with good geological conditions is better than that of sections 2 and 4 with poor geological conditions for both training and test datasets. The reason for this result is that the better the geological conditions of tunnel face, the more complete the rock mass is, and the MWD data of a single borehole can better reflect the geological conditions of the whole tunnel face. Therefore, it can be concluded that when using hybrid ANN model to predict UCS, its prediction performance is affected by geological conditions of the tunnel face. In addition, the results also showed that the prediction performance of all sections is better than the prediction performance of each single section. This indicates that the number of sample datasets also has an impact on the prediction performance of the prediction model. It can be concluded that higher prediction performance can be obtained with more sample datasets.

![Figure 3](image)

Figure 3. Results of the prediction corresponding to the four sections. (a) Training; (b) Test.
4. Conclusion
The measurement of uniaxial compressive strength (UCS) of rocks is one of the key factors affecting the evaluation of geological conditions ahead of a tunnel. Accurate and rapid prediction of UCS values of the rocks ahead of the tunnel face can ensure the safety and economy of tunnel construction. This paper investigated the effect of different rock geological conditions on the prediction performance of the developed genetic algorithm optimization of artificial neural network (GA–ANN) model when predicting uniaxial compressive strength using measurement-while-drilling (MWD) data. The main conclusions obtained are as follows.

1) The comparative results showed that the prediction performance of sections 1 and 3 with good geological conditions is better than that of sections 2 and 4 with poor geological conditions for both training and test datasets. The reason for this result is that the better the geological conditions of tunnel face, the more complete the rock mass is, and the MWD data of a single borehole can better reflect the geological conditions of the whole tunnel face. It can be concluded that when using GA–ANN model to predict UCS, its prediction performance is affected by geological conditions of the tunnel face.

2) The prediction performance of all sections is better than the prediction performance of each single section. This indicates that the number of sample datasets also has an impact on the prediction performance of the prediction model. It can be concluded that a larger sample dataset has a positive effect on the prediction performance.

Acknowledgments
Thank the Konoike Construction for providing on-site investigation guidance and data analysis support. In addition, this work was supported by the China Scholarship Council (No. 201708370104).

References
[1] Bieniawski Z T 1974 Estimating the strength of rock materials J. S. Afr. Inst. Min. Metall. 74 312-20
[2] Nazir R, Momeni E, Armaghani D J and Amin M M 2013 Prediction of unconfined compressive strength of limestone rock samples using L-type Schmidt hammer Electron. J. Geotech. Eng. 18 1767-75
[3] Yilmaz I 2009 A new testing method for indirect determination of the unconfined compressive strength of rocks Int. J. Rock Mech. Min. Sci. 46 1349-57
[4] Mohamad E T, Jahed Armaghani D, Momeni E and Alavi Nezhad Khalil Abad S V 2015 Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach Bulletin of Engineering Geology the Environment 74 745-57
[5] Dehghan S, Sattari G, Chehreh Chelgani S and Aliabadi M A 2010 Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks Mining Science and Technology 20 41-6
[6] Yagiz S, Sezer E A and Gokceoglu C 2012 Artificial neural networks and nonlinear regression techniques to assess the influence of slate durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks 36 1636-50

[7] Mokhtari M and Behnia M 2019 Comparison of LLNF, ANN, and COA-ANN Techniques in Modeling the Uniaxial Compressive Strength and Static Young’s Modulus of Limestone of the Dalan Formation Nat. Resour. Res. 28 223-39

[8] Othman B S, Özcan N T, Kalender A and Sönmez H 2018 Multivariate Artificial Neural Network (ANN) models for predicting uniaxial compressive strength from index tests. In: Geomechanics and Geodynamics of Rock Masses, Volume 1: Proceedings of the 2018 European Rock Mechanics Symposium: CRC Press) p 345

[9] Schunnesson H 1996 RQD predictions based on drill performance parameters Tunn. Undergr. Space Technol. 11 345-51

[10] Sugawara J, Yue Z, Tham L, Law K and Lee C 2003 Weathered rock characterization using drilling parameters Canadian geotechnical journal 40 661-8

[11] Høsten A H and Nilsen B 2014 Rock mass grouting in the Loren Tunnel: case study with the main focus on the groutability and feasibility of drill parameter interpretation Rock Mech. Rock Eng. 47 967-83

[12] Galende-Hernández M, Menéndez M, Fuente M J and Sainz-Palmero G I 2018 Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: The case of tunnel excavation front Auton. Constr. 93 325-38

[13] Aoki K, Shirasaki S, Yamamoto T, Inou M and Nishioka K 1999 Examination of the application of drill Logging to predict ahead of the tunnel face. In: Proceedings of the 54th Annual Conference of the Japan Society of Civil Engineers, (Tokyo, Japan pp 412-3

[14] Schunnesson H, Poulopoulos V, Bastis K, Pettersen N and Shetty A 2012 Application of computerized drill jumbos at the Chenani-Nashri tunnelling site in Jammu-Kashmir, India. In: Proceedings of 21st International Symposium on Mine Planning and Equipment Selection. New Delhi, India, pp 729-51

[15] Kahraman S, Rostami J and Naemipour A 2016 Review of Ground Characterization by Using Instrumented Drills for Underground Mining and Construction Rock Mechanics Rock Engineering 49 585-602

[16] Alimoradi A, Moradzadeh A, Naderi R, Salehi M Z and Etemadi A 2008 Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks Tunn. Undergr. Space Technol. 23 711-7

[17] Yilmaz I 2009 A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks Bull. Eng. Geol. Environ. 68 297-306

[18] Ocak I and Seker S E 2012 Estimation of elastic modulus of intact rocks by artificial neural network Rock Mech. Rock Eng. 45 1047-54

[19] Kwon S and Lee C 2018 THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network Geotech. Eng. 16 363-73

[20] Xue X 2019 Application of a support vector machine for prediction of piping and internal stability of soils Geotech. Eng. 18 493-502

[21] Jadav K and Panchal M 2012 Optimizing weights of artificial neural networks using genetic algorithms Int J Adv Res Comput Sci Electr Engrg 1 47-51

[22] Momeni E, Nazir R, Jahed Armaghani D and Maizir H 2014 Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN Measurement 57 122-31

[23] Karimi H and Yousefi F 2012 Application of artificial neural network–genetic algorithm (ANN–GA) to correlation of density in nanofluids Fluid Phase Equilib. 336 79-83

[24] Bhatti M S, Kapoor D, Kalia R K, Reddy A S and Thukral A K 2011 RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach Desalination 274 74-80

[25] Khandelwal M, Marto A, Fatemi S A, Ghorqi M, Armaghani D J, Singh T N and Tabrizi O 2018 Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples Eng. Comput. 34 307-17
[26] Liu J, Luan H, Zhang Y, Sakaguchi O and Jiang Y 2020 Prediction of unconfined compressive strength ahead of tunnel face using Measurement-While-Drilling data based on hybrid genetic algorithm Geotech. Eng. 22

[27] Akagi W, Sano A, Shinji M, Nishi T and Nakagawa K 2001 A new rock mass classification method at tunnel face for tunnel support system Doboku Gakkai Ronbunshu 2001 121-34

[28] Holland J H 1992 Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: MIT press)