Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors

Leiqiang Chu1,2*, Henrik Schmidt1,2*, Jiang Pu4, Shunfeng Wang1,2, Barbaros Özylmaz1,2, Taishi Takenobu4,5,6 & Goki Eda1,2,3

1Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, 2Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, 3Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, 4Department of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan, 5Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan, 6Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Tokyo 169-0051, Japan.

Received 16 July 2014 | Accepted 14 November 2014 | Published 3 December 2014

Correspondence and requests for materials should be addressed to G.E. (g.eda@nus.edu.sg)

*These authors contributed equally to this work.

Two-dimensional (2D) crystals of layered transition metal dichalcogenides (TMD) have gained significant interest due to their unique physical properties. Molybdenum disulfide (MoS2), a semiconducting compound traditionally known for its lubricating properties, has been intensively investigated in its 2D crystalline form in the past few years. Field effect transistors of monolayer MoS2 have shown remarkable characteristics with low off-current due to excellent gate electrostatics. Recent studies on the implementation of MoS2 and other semiconducting TMDs into integrated circuits and optoelectronic devices highlight their potential in future applications.

Electrostatically controlled switching and charge transport in mono- and few-layer MoS2 devices are strongly influenced by various effects such as metal contacts, interface traps, charged impurities, dielectric environment, and structural defects in the material. The contribution of these effects varies with the gate bias in a complex manner. At low gate biases near the sub-threshold region, the device resistance is strongly dominated by Schottky barriers at the metal contacts, band edge disorder and mid-gap states, which originate from structural defects, charge traps at the MoS2/SiO2 interface, and surface adsorbates. At higher charge densities where the channel conductivity exceeds \(\epsilon'\hbar \), conduction occurs via band-like carrier transport. In this regime, charged impurities, defects, and surface-optical phonons limit charge carrier mobility in 2D MoS2. All recent studies show that low temperature mobility of mono- and bilayer MoS2 falls substantially below theoretically predicted values, suggesting that there is significant room for improvement in the device performance.

The use of high-\(\kappa \) dielectrics, such as HfO2 and Al2O3, as an encapsulating layer and gate barrier has been reported to be effective in enhancing carrier mobility, potentially due to dielectric screening of charged impurities and suppression of homopolar optical phonon modes. Previous studies using polymer electrolyte, ionic liquid, and ion gels have demonstrated effective switching and high doping levels of up to \(\sim 10^{14} \text{ cm}^{-2} \) in few-layer MoS2 devices to realize flexible transistors, stable p-n junctions, light emitting devices, and superconductivity.

In this article, we report on the low temperature transport characteristics of mono-, bi-, and trilayer MoS2 devices in the high doping regime using ion gel gating. We show that large capacitive coupling of the ion gel in
conjunction with additional electrostatic control by the back gate allows systematic investigation of charge transport over a wide range of carrier densities. Resistivities as low as 1 kΩ and 420 Ω are realized in highly doped mono- and bilayer MoS$_2$ at low temperature, respectively. From the capacitive coupling of the two gates, we estimate the quantum capacitance, which is a measure of the density of states in these materials. Further analysis of the temperature- and density-dependent field effect mobility reveals that short-range scatterers severely limit carrier mobility at low temperatures in all these devices.

Results

The thickness of the exfoliated flakes is estimated by optical contrast and then further confirmed by the peak separation between the A$_{1g}$ and E$_{2g}^1$ peaks in the Raman spectrum45. In agreement with previous studies13, the peak separation was found to be 18.3 cm$^{-1}$, 21.2 cm$^{-1}$, and 23.1 cm$^{-1}$ for monolayer (1 L), bilayer (2 L), and trilayer (3 L) samples, respectively. The optical images of the samples covered with a thin layer of ion gel are shown in figure 1a (see methods section for details). Figure 1b shows the transfer curves of mono-, bi-, and trilayer devices as a function of the top gate voltage (V_{tg}) applied to the ionic gate at room temperature. For bilayer and trilayer devices, both electron and hole branches are observed at positive and negative gate voltages, respectively, demonstrating the wide tunability of the chemical potential achieved by ion gel. The monolayer device only shows the electron branch in the top gate bias window studied due to its large band gap.

Assuming that the variation of the electrostatic potential is negligible, the bandgap of bilayer and trilayer samples can be roughly estimated to be 1.63 eV and 1.32 eV from the threshold voltage difference for the electron and hole branches of the transfer curve (Supplementary Information, Figure S3)35,39,41. These values are consistent with the optical gap previously measured by photoluminescence spectroscopy46. Figure 1d displays the temperature dependent transconductance of a bilayer device, obtained by sweeping the top gate voltage (4.5 mV/s) at a fixed temperature. Below $T \sim 210$ K, the top gate modulation becomes negligible, suggesting the freezing of the ions in the gel matrix. This immobilization of ions allows us to achieve stable high doping in the channel and fine control of the carrier density by the back gate below this temperature.

The dual gating behavior of the devices was studied by cooling them below the critical freezing point at a fixed top gate voltage and measuring the transfer characteristics by back gate sweeps at various temperatures. To study the device over a wide range of carrier densities, the sample was brought to room temperature and the top gate voltage was set to a desired value and held until the displacement current was negligible. The sample was then cooled below the freezing point of the ion gel for measurements. The above procedure was repeated with different top gate biases. Figures 2a–c show the back gate transfer characteristics of the devices at different top gate biases. At negative V_{tg}, transitions from the insulating to the conducting state can be observed with on-off ratios of $>10^5$ for all devices. The off-state current was limited by the gate leakage current, which was typically below 100 pA at temperatures below 200 K (See Supplementary Figure S7). It is worth noting that all samples exhibit...
low sheet resistivity (<1 kΩ) at large top gate bias and low temperature. These values are among the lowest reported for monolayer and bilayer MoS2 so far.

The threshold back gate voltage V_{bg}^{th}, which we defined here to be the bias voltage required to achieve a critical device current of 100 pA, shifts towards negative gate bias with increasing top gate voltage as shown in Figure 2d. Note that for positive top gate voltages the devices remain in the conducting state for all back gate biases. It can also be seen that the shift of V_{bg}^{th} is non-monotonous with an apparent change in the slope at around $V_{tg} = -0.6$ V. We attribute this behavior to different capacitive coupling of the top and back gate with shift in E_F and the corresponding changes in the quantum capacitance C_q of MoS2. The total top gate capacitance between ion gel and MoS2 channel C_{tot}^{top} can be described as a series connection of C_q, which is proportional to the density of states (DOS) of the material, and the geometric capacitance of the ion gel C_{ig}. Similarly, the back gate capacitance C_{tot}^{back} can be described as quantum capacitance and the oxide capacitance C_{ox} in series. Ignoring screening effects, the top and back gate capacitances are given by:

$$C_{tot}^{top} = \left(\frac{1}{C_q} + \frac{1}{C_{ig}} \right)^{-1}$$

$$C_{tot}^{back} = \left(\frac{1}{C_q} + \frac{1}{C_{ox}} \right)^{-1}$$

Here, we can consider two regimes depending on the relative magnitude of the capacitances. When the channel is depleted and E_F lies in the band gap, C_q is very small due to the low density of mid-gap states. This results in $C_q \ll C_{ig}$ and thus $C_{tot}^{back} \sim C_q$. Note that C_{tot}^{back} is affected by the same effect, but to a lesser extent because C_{ox} is intrinsically small. As a result, the ratio between C_{tot}^{top} and C_{tot}^{back} remains low. In the other limit, when the sample is strongly doped and E_F is in the conduction band, C_q significantly increases such that C_{tot}^{top} has contributions from both C_q and C_{ig} while $C_{tot}^{back} \sim C_{ox}$. In this regime, the channel conductivity is much more efficiently tuned by the top gate bias as expected from the large capacitance of the ion gel. Thus, the ratio between C_{tot}^{top} and C_{tot}^{back} increases with increasing top gate voltage due to increase in C_{tot}^{back}.

In the following, we analyse the results in the high doping regime. Figures 3a–c show the color-coded map of the channel conductivity as a function of top and back gate biases. As indicated by the black dashed lines along constant conductivity, the top gate is 50 to 100 times more efficient compared to the back gate. The ratios $\Delta V_{bg}/\Delta V_{tg}$, where ΔV_{bg} and ΔV_{tg} denote the corresponding gate voltage difference to achieve the same change in conductivity in the metallic regime, are obtained from the slopes of the dashed lines in Figure 3. This ratio is determined to be ~ 86 for monolayer, ~ 64 for bilayer and ~ 43 for trilayer device.

In order to show the full range of conductivity accessible by varying the two voltages, we offset the back gate transfer curves along the horizontal axis to highlight their linear (i.e. mobility saturation) behavior (Figure 4a and b). The insets show the transition from insulating to metallic conduction regimes where the temperature coefficient changes sign. The crossover occurs at $V_{bg} \sim 80$ V and $V_{tg} = 0$ V for monolayer and $V_{bg} \sim 25$ V and $V_{tg} = 0$ V for bilayer. In accordance with the previous results, the crossing points are at resistances on the order of ν/e^2. Above the crossover point, conductivity decreases with increasing temperature, indicating phonon limited, metal-like transport. At lower charge carrier densities, increasing conductivity with increasing temperature suggests thermally activated transport and conduction by variable range hopping. As can be seen from Figure 4b, ionic gating allows

Figure 2 | Shift of threshold voltages. (a–c) Channel conductivity as a function of V_{bg} at different V_{tg} (−1.2 V, −1.0 V, … 1.0 V, 1.2 V, 1.7 V) for 1–3 L MoS2 devices at 10 K. (d) The threshold voltage obtained from the cutoff in (a–c) as a function of V_{tg}. For positive V_{tg}, V_{bg}^{th} cannot be extracted since the sample is always in the on-state.
access to conduction regimes far beyond the crossover point where transport properties remain largely unexplored.

Field effect mobility and its dependence on carrier density and temperature offer insight into the fundamental transport properties of MoS₂. The gate bias and temperature dependence of the field effect mobility (\(\mu_{\text{FE}} \)) can be described by a power law dependence

\[\mu_{\text{FE}} \propto \frac{1}{C_{\text{ox}}} \sigma \frac{d\phi}{dV_{\text{bg}}} \]

where \(C_{\text{ox}} \) is the back gate capacitance and \(\sigma \) is the channel conductivity. The mobility initially increases, and eventually saturates to a constant value at with increasing voltages. The mobility saturation can be seen as a function of temperature below 30 K (Figure 4e). Note that the mobility becomes independent on both carrier density and temperature in this regime. The saturation values are about 230 cm²/Vs, 450 cm²/Vs, and 820 cm²/Vs for 1, 2, and 3 L devices, respectively (see Supplementary Information for 3 L device data).

Discussion

The field effect mobility (\(\mu_{\text{FE}} \)) and temperature dependence of the field effect mobility (\(\mu_{\text{FE}} \)) can be described by a power law dependence

\[\mu_{\text{FE}} \propto \frac{1}{C_{\text{ox}}} \sigma \frac{d\phi}{dV_{\text{bg}}} \]

where \(C_{\text{ox}} \) is the back gate capacitance and \(\sigma \) is the channel conductivity. The mobility initially increases, and eventually saturates to a constant value at with increasing voltages. The mobility saturation can be seen as a function of temperature below 30 K (Figure 4e and f). Note that the mobility becomes independent on both carrier density and temperature in this regime. The saturation values are about 230 cm²/Vs, 450 cm²/Vs, and 820 cm²/Vs for 1, 2, and 3 L devices, respectively (see Supplementary Information for 3 L device data).

Methods

Atomically thin flakes of MoS₂ sheets were mechanically exfoliated from bulk crystals (SPI supplies) and subsequently deposited onto silicon substrate with 300 nm thermal SiO₂. Pure gold contacts (50 nm) for source, drain, and side gate electrodes were fabricated using standard electron beam lithography and thermal evaporation. After lift-off, all devices were annealed in nitrogen atmosphere at 200°C for 2 hours. The ion gel solution was prepared by mixing the polymer PS-PMMA-PS and the ionic liquid EMIM-TFSI (Figure 1c) into an ethyl propionate solvent (weight ratio of 10:90). A film of this solution was spin-coated onto the devices and dehydrated in nitrogen gas for an hour to remove molecular moisture. Transport measurements were performed in vacuum inside a Helium 4 cryostat with variable temperature insert.
Figure 4 | Transport characteristics at high charge carrier densities. (a, b) Transfer curves of mono- and bilayer samples based on back gate sweeps at different top gate biases. The curves are displaced horizontally to highlight the linear regime where mobility saturates. The arrows in the insets of (a) and (b) indicate the metal-insulator transition point. (c, d) Differential conductivity in units of the oxide capacitance at low temperature as a function of back gate voltages at different top gate biases. Error bars are obtained from the variation of the mobility values as a function of the back gate voltages. (e, f) Temperature dependence of field effect mobility for mono- and bilayer devices. Power law fits are shown to highlight the changes in the phonon damping factors.
16. Li, S.-L. et al. Thickness-Dependent Interafolial Coulomb Scattering in Atomically Thin Field-Effect Transistors. Nano Lett. 13, 3546–3552 (2013).
17. Liu, H. & Ye, P. D. MoS2 Dual-Gate MOSFET with Atomic-Layer-Deposited Al2O3 as Top-Gate Dielectric. IEEE Elect. Dev. Lett. 33, 546–548 (2012).
18. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).
19. Zhou, W. et al. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Lett. 13, 2615–2622 (2013).
20. Gborhain-Ash, M., Enyashin, A. N., Kuc, A., Seifert, G. & Heine, T. Defect-induced conductivity anisotropy in MoS2 monolayers. Phys. Rev. B 88, 245440 (2013).
21. Schmidt, H. et al. Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition. Nano Lett. 14, 1909–1913 (2014).
22. McDonnell, S., Addou, R., Buie, C., Wallace, B. M. & Hinkle, C. L. Defect-Dominated Doping and Contact Resistance in MoS2. ACS Nano 8, 2880–2888 (2014).
23. Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).
24. Jariwala, D. et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 102, 173107 (2013).
25. Wu, J. et al. Large Thermoelectricity via Variable Range Hopping in Chemical Vapor Deposition Grown Single-Layer MoS2. Nano Lett. 14, 2730–2734 (2014).
26. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2. Nano Lett. 13, 4212–4216 (2013).
27. Ye, J. T. et al. Superconducting Dome in a Gate-Tuned Band Insulator. Science 338, 1193–1196 (2012).
28. Ma, N. & Jena, D. Charge Scattering and Mobility in Atomically Thin Semiconductors. Phys. Rev. X 4, 011043 (2014).
29. Kaasbjerg, K., Thygesen, K. S. & Jauho, A.-P. Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 87, 235312 (2013).
30. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).
31. Lembke, D. & Kis, A. Breakdown of High-Performance Monolayer MoS2 Transistors. ACS Nano 6, 10070–10075 (2012).
32. Sundaram, R. S. et al. Electrooluminescence in Single Layer MoS2. Nano Lett. 13, 1416–1421 (2013).
33. Jena, D. & Konar, A. Enhancement of Carrier Mobility in Semiconductor Nanostructures by Dielectric Engineering. Phys. Rev. Lett. 98, 136805 (2007).
34. Ye, J. et al. Accessing the transport properties of graphene and its multilayers at high carrier density. PNAS 108, 13002–13006 (2011).
35. Jo, S., Überg, N., Berger, H., Kuzmenko, A. B. & Morpurgo, A. F. Mono- and Bilayer WS2 Light-Emitting Transistors. Nano Lett. 14, 2019–2025 (2014).
36. Efetov, D. & Kim, P. Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities. Phys. Rev. Lett. 105, 256805 (2010).
37. Efetov, D. K., Maher, P., Glinskis, S. & Kim, P. Multiband transport in bilayer graphene at high carrier densities. Phys. Rev. B 84, 161412 (2011).
38. Perera, M. M. et al. Improved Carrier Mobility in Few-Layer MoS2 Field-Effect Transistors with Ionic-Liquid Gating. ACS Nano 7, 4449–4458 (2013).
39. Braga, D., Gutiérrez Lezama, I., Berger, H. & Morpurgo, A. F. Quantitative Determination of the Band Gap of WS2 with Ambipolar Ionic Liquid-Gated Transistors. Nano Lett. 12, 5218–5223 (2012).
40. Lin, M.-W. et al. Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J. of Phys. D 45, 345102 (2012).
41. Zhang, Y. J., Ye, J. T., Yomogida, Y., Takenobu, T. & Iwasa, Y. Formation of a Stable p–n Junction in a Liquid-Gated MoS2 Ambipolar Transistor. Nano Lett. 13, 3023–3028 (2013).
42. Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 Thin Flake Transistors. Nano Lett. 12, 1136–1140 (2012).
43. Pu, J. et al. Highly Flexible MoS2 Thin-Film Transistors with Ion Gel Dielectrics. Nano Lett. 12, 4013–4017 (2012).
44. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically Switchable Chiral Light-Emitting Transistor. Science 344, 725–728 (2014).
45. Lee, C. et al. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 4, 2695–2700 (2010).
46. Mak, K. F., Lee, C., Hong, J., Shan, J. & Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
47. Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).
48. Yoon, Y., Ganapathi, K. & Salahuddin, S. How Good Can Monolayer MoS2 Transistors Be? Nano Lett. 11, 3768–3773 (2011).
49. Uesugi, E., Goto, H., Eguchi, R., Fujiwara, A. & Kubo, Y. Electric double-layer capacitance between an ionic liquid and few-layer graphene. Sci. Rep. 3, 1593 (2013).

Acknowledgments
G.E. acknowledges Singapore National Research Foundation for funding the research under NRF Research Fellowship (NRF-NRFRF2011-02) and Graphene Research Centre. T.T. was partially supported by the Funding Program for the Next Generation of World-Leading Researchers and Grants-in-Aid from MEXT (26107533 “Science of Atomic Layers” and 25000003 “Specially Promoted Research”). B. O. acknowledges support by the Singapore Millennium Foundation-NUS Research Horizon award (R-144-001-271-592, R-144-001-271-646) and the NRF-CRP award (R-144-000-295-281).

Author contributions
G.E. supervised the project, G.E. and H.S. designed the experiment, L.C. and S.W. prepared the samples, J.P. and T.T. supplied the ion gel and advised on the usage, L.C. and H.S. performed the measurements, G.E., L.C. and H.S. analysed the data, L.C., H.S., J.P., S.W., B.O., T.T. and G.E. discussed the results and contributed in writing the manuscript. All authors have given approval to the final version of the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Chu, L. et al. Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors. Sci. Rep. 4, 7293; DOI:10.1038/srep07293 (2014).