Fix a finite dimensional semisimple Lie algebra over \mathbb{C}, and a Borel subalgebra. It is a long standing problem to determine the extension groups between Verma modules in the category \mathcal{O} of [BGG]. No general formula, even conjectural, is known.

Let W be the Weyl group and $w_0 \in W$ the longest element. For $w \in W$ write Δ_w for the Verma module of highest weight $w^{-1}w_0 \cdot 0$ (dot action). The purpose of this note is to give a recursive formula (Corollary 5) for $\dim \text{Ext}^1(\Delta_v, \Delta_w)$ (throughout $'\text{Ext}^\bullet = '\text{Ext}^\bullet_{\mathcal{O}}$).

Write X for the flag variety associated to our Lie algebra. For each $w \in W$, we have a Schubert cell $C_w \subseteq X$ and an opposite Schubert cell $C_w^\circ \subseteq X$. Let $\ell: W \to \mathbb{Z}_{\geq 0}$ denote the length function and \preceq the Bruhat order. If $v \leq w$, then $C_v \cap C_w$ is affine and smooth of dimension $\ell(w) - \ell(v)$ (see [R]). Further, $C_v \cap C_v^\circ = \text{pt}$; and if $v \not\leq w$, then $C_v \cap C_w = \emptyset$.

By [RSW, Proposition 4.2.1] and [BGS, Proposition 3.5.1]):

$$\text{Ext}^\bullet(\Delta_v, \Delta_w) = H^\bullet_{C_w}(C_v \cap C_w),$$

for all $v, w \in W$,

where $H^\bullet_{C_w}$ denotes compactly supported cohomology (with \mathbb{C}-coefficients). The cohomology $H^\bullet_{C_w}(C_v \cap C_w)$ comes equipped with a canonical (rational) Hodge structure which is respected by the usual long exact sequences. Consequently, we can and will view the extensions $\text{Ext}^\bullet(\Delta_v, \Delta_w)$ as Hodge structures. Denote the trivial 1-dimensional Hodge structure by \mathbb{Q}^H, and write (n) for the n-th Tate twist.

The following Proposition is attributed to V. Deodhar in [RSW] (see [RSW, Lemma 4.3.1] for a proof).

Proposition 1. Let $v, w \in W$ with $v \leq w$. Let $s \in W$ be a simple reflection such that $ws < w$.

(i) If $vs < v$, then $C^v \cap C_w \simeq C^{vs} \cap C_{ws}$.

(ii) If $vs > v$ and $vs \not\leq ws$, then $C^v \cap C_w \simeq C^v \cap C_{ws} \times \mathbb{C}^*$.

(iii) If $vs > v$ and $vs \leq ws$, then there exists a closed immersion

$$(C^{ws} \cap C_{ws}) \times \mathbb{C} \hookrightarrow C^v \cap C_w$$

with open complement isomorphic to $(C^v \cap C_{ws}) \times \mathbb{C}^*$.

Corollary 2. $\text{Hom}(\Delta_v, \Delta_w)$ is pure of weight 0.

Theorem 4. We may assume

Proof. So the cohomology long exact sequence and Künneth formula yield (iii).

Corollary 3. Let \(v, w \in W \) with \(v \leq w \). Let \(s \in W \) be a simple reflection such that \(ws > w \).

(i) If \(vs < v \), then \(\text{Ext}^1(\Delta_v, \Delta_{ws}) \simeq \text{Ext}^1(\Delta_v, \Delta_w) \).

(ii) If \(vs > v \) and \(vs \leq w \), then \(\text{Ext}^1(\Delta_v, \Delta_w) \oplus Q^H(-1) \simeq \text{Ext}^1(\Delta_v, \Delta_{ws}) \).

(iii) If \(vs > v \) and \(vs \leq w \), then there is an exact sequence

\[
0 \to Q^H(-1) \to \text{Ext}^1(\Delta_v, \Delta_w) \oplus Q^H(-1) \to \text{Ext}^1(\Delta_v, \Delta_{ws}) \to \text{Ext}^1(\Delta_v, \Delta_w)(-1).
\]

Proof. (i) is clear. Further, \(\dim \text{Hom}(\Delta_x, \Delta_y) = 1 \) if and only if \(x \leq y \). Thus, the Künneth formula yields (ii). In the situation of (iii):

\[
\text{Hom}(\Delta_v, \Delta_w) = \text{Hom}(\Delta_v, \Delta_{ws}) = \text{Hom}(\Delta_{vs}, \Delta_w) = Q^H.
\]

So the cohomology long exact sequence and Künneth formula yield (iii). \(\square \)

Theorem 4. \(\text{Ext}^1(\Delta_v, \Delta_w) \) is pure of weight 2.

Proof. We may assume \(v \leq w \). Proceed by downwards induction on \(w \). If \(w \) is the longest element, this is [M Theorem 32]. If \(w \) is not the longest element, pick a simple reflection \(s \) such that \(ws > w \) and apply Corollary 3. \(\square \)

Corollary 5. Let \(v, w \in W \) with \(v \leq w \). Let \(s \in W \) be a simple reflection such that \(ws < w \). Then

\[
\dim \text{Ext}^1(\Delta_v, \Delta_w) = \begin{cases}
\dim \text{Ext}^1(\Delta_v, \Delta_{ws}) & \text{if } vs < v; \\
1 + \dim \text{Ext}^1(\Delta_v, \Delta_{ws}) & \text{if } vs > v \text{ and } vs \leq ws; \\
\dim \text{Ext}^1(\Delta_v, \Delta_{ws}) & \text{if } vs > w \text{ and } vs \leq ws.
\end{cases}
\]

Some concluding observations:

(i) \(\dim \text{Ext}^1(\Delta_v, \Delta_w) \) coincides with \((-1)^{\ell(w) - \ell(v)} \) times the coefficient of \(q \) in the corresponding Kazhdan-Lusztig \(R \)-polynomial.

(ii) Theorem 4 implies that the graded algebra \(\bigoplus_{v,w \in W} \text{Ext}^*(\Delta_v, \Delta_w) \) cannot, in general, be generated in degree 0 and 1. As otherwise \(\text{Ext}^1(\Delta_v, \Delta_w) \) would be pure of weight 2i. This would contradict [Boc], since the Kazhdan-Lusztig \(R \)-polynomials are the Hodge-Euler polynomials of the \(C_v \cap C_w \).
(iii) Using Corollary 5 one can check
\[\dim \text{Ext}^1(\Delta_v, \Delta_w) = \dim \text{Ext}^{\ell(w) - \ell(v) - 1}(\Delta_v, \Delta_w). \]

This upgrades to a canonical isomorphism by combining Theorem 4 with the main result of [BGS].

References

[BCS] A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in Representation Theory, Journal of A. M. S. 9 (1996), 473-527.

[BGG] J. Bernstein, I. M. Gelfand, S. I. Gelfand, A certain category of g-modules, Functional Analysis and its Applications 10, no. 2 (1976), 1-8.

[Boe] B. D. Boe, A counterexample to the Gabber-Joseph conjecture, Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989), 1-3, Contemp. Math. 139, Amer. Math. Soc., Providence, RI (1992).

[M] V. Mazorchuk, Some homological properties of the category O, Pacific J. Math. 232 (2007), no.2, 313-341.

[R] R. W. Richardson, Intersections of double cosets in algebraic groups, Indag. Math. 3 (1992), 69-77.

[RSW] S. Riche, W. Soergel, G. Williamson, Modular Koszul duality, arXiv:1209.3760v1.

E-mail address: rsvirk@gmail.com