Measurement of the B_c meson mass in the exclusive decay $B_c \to J/\psi \pi$
Y. Peters26, M. Pétroff16, M. Petteni43, R. Piegaia1, J. Piper65, M.-A. Pleier22, P.L.M. Podest\~{a}-Lerma33,c, V.M. Podstavkov50, Y. Pogorelov55, M.-E. Pol2, P. Polozov37, B.G. Pope65, A.V. Popov39, C. Potter6, W.L. Prado da Silva3, H.B. Prosper49, S. Protopenescu73, J. Qian64, A. Quad22,d, B. Quinn66, A. Rakitine42, M.S. Rangel2, K. Ranjan28, P.N. Ratoff12, P. Renkel79, S. Reucroft63, P. Rich44, J. Rieger54, M. Rijssenbeek72, I. Ripp-Baudot19, F. Rizatdinova76, S. Robinson43, R.F. Rodrigues3, M. Rominsky75, C. Royon18, P. Rubinov50, R. Ruchti55, G. Safarov37, G. Sajot14, A. Sánchez-Hernández23, M.P. Sanders17, A. Santoro3, G. Savage50, L. Sawyer60, T. Scanlon43, D. Schaile72, Y. Scheeglov40, H. Schellman53, T. Schliephake26, C. Schwanenberger44, A. Schwartzman68, R. Schwienhorst65, J. Sekaric49, H. Severini75, E. Shabalina51, M. Shamim59, V. Shary18, A.A. Shchukin39, R.K. Shvippuri28, V. Siccardi19, V. Simak10, V. Sirotenko54, P. Skubic78, P. Slattery71, D. Smirnov55, G.R. Snow67, J. Snow74, S. Snyder73, S. Söldner-Rembold44, L. Sonnenchein17, A. Sopczak42, M. Sosebee78, K. Soustruznik9, B. Spurlock78, J. Stark14, J. Steele60, V. Stolin37, D.A. Stoyanova39, J. Strandberg64, S. Strandberg41, M.A. Strang69, E. Strauss72, M. Strauss75, R. Ströhmer25, D. Strom53, L. Stutt50, S. Sumowidagdo49, P. Svoisky55, A. Szajfer3, P. Tamburello45, A. Tanasijczuk1, W. Taylor6, J. Temple45, B. Tiller25, F. Tissandier13, M. Titov18, V.V. Tokmenin36, T. Toole61, I. Torchiani23, T. Trefzger24, D. Tsybichev72, B. Tuchming18, C. Tully68, P.M. Tuts50, R. Uhalan65, L. Uvarov40, S. Uvarov40, S. Uzunyan52, B. Vachon6, P.J. van den Berg14, R. Van Kooten54, W.M. van Leeuwen34, N. Varelasi51, E.W. Varnes45, I.A. Vasilyev59, M. Vaupel26, P. Verdier20, L.S. Vertogradov36, M. Verzocchi50, F. Villeneuve-Seguier43, P. Vint43, P. Vokac10, E. Von Toerne59, M. Voutilainen68,c, R. Wagner68, H.D. Wahl49, L. Wang61, M.H.S. Wang50, J. Warcho15, G. Watts82, M. Wayne55, G. Weber24, M. Weber50, L. Welty-Rieger54, A. Wenger23,f, N. Wermes22, M. Wetstein61, A. White78, D. Wicke26, G.W. Wilson68, S.J. Wimpenny48, M. Wobisch60, D.R. Wood63, T.R. Wyatt44, Y. Xie77, S. Yacoob33, R. Yamada76, M. Yau61, T. Yasuda50, Y.A. Yatsunenko36, K. Yip74, H.D. Yoo77, S.W. Youn53, J. Yu78, A. Zatseklkaniy52, C. Zeitnitz26, T. Zhao82, B. Zhou64, J. Zhu72, M. Zielinski71, D. Ziemińska54, A. Ziemiński54,i, L. Zivkovic70, V. Zutshi52, and E.G. Zverev98 (The DØ Collaboration)

1 University of Buenos Aires, Buenos Aires, Argentina
2 IAPFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3 Universidad del Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Universidade Federal do ABC, Santo André, Brazil
5 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6 Universidade de Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada
7 University of Science and Technology of China, Hefei, People’s Republic of China
8 Universidad de los Andes, Bogotá, Colombia
9 Center for Particle Physics, Charles University, Prague, Czech Republic
10 Czech Technical University, Prague, Czech Republic
11 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
12 Universidad San Francisco de Quito, Quito, Ecuador
13 LPC, Univ Blaise Pascal, CNRS/IN2P3, Clermont, France
14 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, France
15 CPPM, IN2P3/CNRS, Université de la Méditerranée, Marseille, France
16 LAL, Univ Paris-Sud, IN2P3/CNRS, Orsay, France
17 LPNHE, IN2P3/CNRS, Universités Paris VI and VII, Paris, France
18 DAPNIA/Service de Physique des Particules, CEA, Saclay, France
19 IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS/IN2P3, Strasbourg, France
20 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
21 II Physikalisches Institut A, RWTH Aachen, Aachen, Germany
22 Physikalisches Institut, Universität Bonn, Bonn, Germany
23 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
24 Institut für Physik, Universität Mainz, Mainz, Germany
25 Ludwig-Maximilians-Universität München, München, Germany
26 Fachbereich Physik, University of Wuppertal, Wuppertal, Germany
27 Panjab University, Chandigarh, India
28 Delhi University, Delhi, India
A fully reconstructed $B_c \rightarrow J/\psi + \pi$ signal is observed with the D0 detector at the Fermilab Tevatron $p\bar{p}$ collider. Using 1.3 fb$^{-1}$ of integrated luminosity, the signal is extracted with a significance more than five standard deviations above background. The measured B_c meson mass is 6300 ± 14 (stat) ± 5 (sys) MeV/c^2.

PACS numbers: 13.25.Hw, 13.20.He, 14.40.Nd, 14.40.Lb
B_c mesons are predicted by the quark model to be members of the $J^P = 0^-$ pseudo-scalar ground-state multiplet and to have zero isospin as the lowest-lying bound state of a bottom anti-quark and a charm quark [1]. B_c properties are of special interest because of this meson’s unique status as a short-lifetime bound state of heavy but (unlike quarkonia) different flavor quarks. Measurements of its mass, production, and decay therefore allow for tests of theories under new approximation regimes or extended validity ranges beyond quarkonia.

This analysis uses data collected by the D0 detector between April 2002 and March 2006 at the Fermilab Tevatron $p\overline{p}$ collider operating at $\sqrt{s} = 1.96$ TeV. The data sample corresponds to approximately 1.3 fb$^{-1}$ of integrated luminosity. At the Tevatron the most easily identified decay modes of the B_c have a J/ψ meson in the final state and are either the semileptonic mode $B_c \rightarrow J/\psi \ell \nu$ ($\ell = e, \mu$), a signal with much higher statistics and thus more suitable for lifetime measurements, or the hadronic mode $B_c \rightarrow J/\psi \pi$, more suitable for mass measurements given its fully exclusive reconstruction without the loss of an escaping neutrino.

The CDF collaboration has published results on both decay modes [2,3], and has recently updated the B_c mass measurement to $M(B_c) = 6275.6 \pm 2.9$ (stat) ± 2.5 (sys) MeV/c^2 [4]. The present Letter is the first report by the D0 collaboration of a fully reconstructed hadronic decay mode of this state. The measured lifetime [5] is consistent with the expectation of a shorter B_c lifetime than for other B mesons due to the presence of a charm quark. The B_c mass has been predicted by various theoretical models [5] and most recently [6] with a three-flavor (unquenched) lattice QCD numerical algorithm that yielded the smallest theoretical uncertainty, with the result $M(B_c) = 6304 \pm 12^{+18}_{-10}$ MeV/c^2, where the first error is the sum in quadrature of statistical and systematic uncertainties, and the second is due to heavy quark discretization effects.

The D0 detector is described elsewhere [7], and the elements most relevant to this analysis are the tracking detectors inside a 2 T superconducting solenoidal magnet and the muon detection chambers. For enhanced pre-selection efficiency, no specific trigger requirements are applied, but all events satisfy one of a suite of muon triggers, typically requiring at least one muon with transverse momentum (p_T) above 3 GeV/c. The decay under study consists of a single detached secondary three-track vertex: $B_c \rightarrow J/\psi \pi \rightarrow \mu^+ \mu^- \pi$ (charge conjugate modes, π^\pm, are always implied). Initial track selection extends to a pseudorapidity of $|\eta| < 2.0$ (where $\eta = -\ln(\tan(\theta/2))$, and θ is the polar angle with respect to the beam line), and rejects tracks with $p_T < 1.5$ GeV/c. Selected final state tracks must satisfy quality requirements based on established minimal hit patterns and a goodness of track fit. Tracks identified as muons must have matching hits in all three layers of the muon detector.

Event selection starts with the requirement of an opposite-charge muon pair that forms a common vertex and whose mass is consistent with that of the J/ψ meson (between 2.85 and 3.35 GeV/c^2). There follows a search for a third track that, together with the muons, must form a common vertex with $\chi^2 < 16.0$ for the three degrees of freedom. The J/ψ candidate must have $p_T > 4$ GeV/c, and the third particle is assigned the pion mass. Thus formed, the B_c meson candidate is required to have $p_T > 5$ GeV/c.

Further B_c candidate selection places constraints on quantities that proved to be strong discriminators against combinatoric backgrounds. The impact parameter (IP) significance of any particle, reconstructed either from a single track or a combination of tracks, is $I_{\text{sig}} = \sqrt{\sigma_T^2 / \sigma_{\text{sys}}^2 + \sigma_L^2 / \sigma_{\text{sys}}^2}$, where σ_T (σ_L) is the transverse (longitudinal) projection (with respect to the beam direction) of the track IP relative to the $p\overline{p}$ interaction vertex, or primary vertex, and σ is the associated uncertainty. The primary vertex is determined by event using a method described in Ref. [8]. The transverse decay length significance of a decay (or secondary) vertex is $S_{\text{xy}} = \sigma_{\text{xy}} / \sigma_{\text{sys}}$ where σ_{xy} is the distance separating that vertex from the beam line. The pointing cosine, C_{xy}, measures the alignment between L_{xy} and the transverse momentum direction of the decaying candidate particle. The isolation I of a B_c candidate is defined as the ratio of two p_T sums: that from the three candidate tracks, divided by that from all tracks with p_T above 0.3 GeV/c whose momenta are lying within a cone of radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.5$, where $\Delta \eta$ and $\Delta \phi$ are distances in pseudorapidity and azimuthal angle from the B_c momentum axis, respectively.

Throughout the background reduction process, a control procedure is used that tests the effect of each discriminator against a well-understood signal sample, either reconstructed $B^\pm \rightarrow J/\psi K^\pm$ candidates in data or candidates in a $B^{\pm}_s \rightarrow J/\psi \pi^\pm$ simulated Monte Carlo sample. The latter is generated using EVTGEN [9], interfaced with PYTHIA [10], followed by full modeling of the detector response with GEANT [11] and event reconstruction exactly as in data.

J/ψ candidates are mass constrained, i.e., their daughter muon momenta are corrected to yield the PDG mass value. When the third track is assumed to be a kaon, a clean, high-statistics B^\pm signal in invariant mass is observed in the data. This decay has a topology similar to the B_c signal and is used as a reference in an initial round of selection cuts shown in Table 1 as Stage 1. Here the B^\pm signal and sideband regions are used as efficiency and rejection indicators of where to set selection thresholds. The B^\pm study region extends from 4.98 to 5.58 GeV/c^2 in invariant mass, and the signal region is approximately $\pm 2\sigma$ wide from 5.20 to 5.36 GeV/c^2. Individual cuts are required to be about 95% efficient,
with typical background rejection of approximately 20%. The resulting thresholds are listed in Table I.

However, there are differences between the B^\pm and B_c. Due to the lower (by about 1 GeV/c^2) invariant mass and the longer (b-like versus c-like) lifetime of the B^\pm, background reduction undergoes a second stage, in which the B_c Monte Carlo is used to model the signal. This second selection stage (Stage 2 in Table I) aims at re-optimizing, if needed, those cuts associated with B_c specific decay properties. With the third track now assumed to be a pion, the range in invariant mass from 5.6 to 7.2 GeV/c^2 is studied. A sub-range between 6.1 and 6.5 GeV/c^2 is treated as the B_c signal search window, and its invariant mass distribution in data is kept blinded throughout the analysis. This sub-range is approximately $\pm 3\sigma$ (mass resolution as determined from simulation) wide, and covers both the theory expectations for the B_c mass [3] as well as the observed values quoted in [2, 4]. Data in mass sidebands outside this sub-range are used as a model for backgrounds and to quantify background rejection. Table I lists those selections that were re-optimized (or introduced, in the case of $p_T^{\pi}(\pi)$) in Stage 2, and summarizes their evolution between the two selection stages. At this stage there remain no dimuon vertices with more than one candidate for the third track, and no events with more than one B_c candidate.

From B_c simulated events, the B_c mass signal is found to be well-modeled by a Gaussian function with a width of 55 MeV/c^2. The mass resolution of the $B^\pm \rightarrow J/\psi K^\pm$ signal observed in the data under similar conditions, after all selections have been applied, reproduces the same width when scaled by the ratio of the B^\pm and B_c masses.

The resulting $J/\psi \pi$ invariant mass is shown in Fig. 1 where a clear excess is seen near 6.3 GeV/c^2. An unbinned maximum log-likelihood (UML) fit of the $J/\psi \pi$ invariant mass distribution is performed, where the signal is modeled by a Gaussian function with width fixed to a value of 55 MeV/c^2, and combinatoric backgrounds are modeled by a first-degree polynomial. The result of the UML fit is overlaid in Fig. 1 and yields a signal of 54 ± 12 events and a B_c mass value of 6300.7 ± 13.6 MeV/c^2. To estimate the signal significance, the same fit is repeated under the assumption that no signal is present. From the negative log-likelihoods of the signal plus background and background-only hypotheses, the signal significance is extracted [12] as $N_s = \{2 \ln [\mathcal{L}(s + b)/\mathcal{L}(b)]\}^{1/2} = 5.2$ standard deviations above background. For another estimate of signal significance, χ^2 fits to data (in the 40 MeV/c^2 bins of Fig. 1) under both hypotheses produce an increase in fit χ^2 of 27 units, again indicating $N_s = 5.2$ standard deviations above background.

Possible biases and systematic uncertainties affecting the B_c mass determination are estimated using both the B^\pm signal in the data and the B_c signal in either the data or the simulation. Uncertainty assessments are made as these samples are re-fitted under various test hypotheses. Sources of systematic uncertainties are the event selection, the fitting procedure (input mass resolution and data modeling), and the reconstructed mass scale.

The fitted mass values are examined in the simulated signal sample as the value of the $p_T^{\pi}(\pi)$ threshold is varied from 1.9 to 2.5 GeV/c. No systematic mass bias is observed, but statistical fluctuations of ± 4.0 MeV/c^2 are observed and assigned as a systematic uncertainty. Similarly, the $p_T^{\pi}(\pi)$ lower threshold is varied between no cut and 2.0 GeV/c, and the resultant mass variation indicates a small upward mass bias of 0.5 MeV/c^2 for the cut value adopted with respect to the no cut case. The observed B_c mass is corrected accordingly, and a 100% uncertainty is assigned to this correction. There is no indication of a bias in mass due to the upper $p_T^{\pi}(\pi)$ limit.

The values of the selection cuts that are not directly related to the kinematics of the third particle (the pion or kaon candidates in the B_c or B^\pm cases, respectively) are varied within reasonable values. No mass biases are observed, and from the range of mass values obtained, a systematic uncertainty of ± 2.5 MeV/c^2 is assigned due to the choice of these selection cuts.
To assess the systematic uncertainty due to the uncertainty of the mass resolution, the width of the Gaussian is allowed to float in the fit. The width input is also assigned as a systematic uncertainty of the mass resolution, the width of the Gaussian input is also assigned as a systematic uncertainty of the mass resolution. By varying the fit results, the resulting shift of 0.5 MeV/c^2 for the B_c mass measurement is shown in Table II. The overall systematic uncertainty is ±6300.7 MeV/c^2. For the B_c mass results, a value of ±0.6 MeV/c^2 is assigned to this uncertainty.

The background model is changed from a first-degree polynomial to a second-degree and third-degree polynomial, and to an exponential function. From the resulting change in mass observed, a systematic uncertainty of ±0.5 MeV/c^2 is assigned due to uncertainty in the background model. The signal model is changed from a single Gaussian to a double Gaussian function, and the resulting shift of 0.5 MeV/c^2 is assigned as a systematic uncertainty.

Lastly, for an estimate of the mass scale uncertainty, a direct comparison is carried out between generated and reconstructed Monte Carlo masses, as well as between recent D0 mass measurements of well-known B states and the world averages of their measurements [12]. From the observed range of mass differences, a systematic uncertainty of ±1.0 MeV/c^2 is assigned due to uncertainty in the D0 mass scale for the B_c decay.

A summary of all systematic uncertainties in the B_c mass measurement is shown in Table II. The overall systematic uncertainty is ±4.9 MeV/c^2. The mass fit result of $6300.7 ± 13.6$ MeV/c^2 is corrected by −0.5 MeV/c^2 for the $p^{	ext{rel}}_{T}$ bias. The final result for the B_c mass is $6300 ± 14$(stat) ± 5 (sys) MeV/c^2.

In summary, using a dataset corresponding to 1.3 fb$^{-1}$, a signal for $B_c \rightarrow J/\psi \pi$ has been observed with a significance higher than five standard deviations above background. The mass of the B_c meson has been measured and found to be consistent with the latest and most precise lattice QCD prediction [5]. Besides its relevance in the development and tuning of heavy-quark bound-state models, the B_c sample described here, with added integrated luminosity, is expected to be used in the extraction of lifetime, relative branching ratio, and production rate.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation.

Table II: Summary of systematic uncertainties in the B_c mass measurement.

Source	Component	Value (MeV/c^2)
Selection	π kinematics	4.0
	other	2.5
Data modeling	mass resolution	0.6
	background model	0.5
	signal shape	0.5
Mass scale		1.0
Total		4.9