Constraint on the gas-to-dust ratio in massive star-forming galaxies at $z \sim 1.4$

Akifumi Seko,1* Kouji Ohta,1 Bunyo Hatsukade,2 Kiyoto Yabe,2
Tomoe Takeuchi,1 and Daisuke Iono2,3

1Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-ku, Kyoto 606-8502
2National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588
3The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-0015

*E-mail: seko@kusastro.kyoto-u.ac.jp

Received 2014 April 4; Accepted 2014 May 25

Abstract

We carried out 12CO ($J = 2–1$) observations toward three star-forming galaxies on the main sequence at $z \sim 1.4$ with the Nobeyama 45 m radio telescope. These galaxies have been detected with Spitzer/MIPS in 24 μm, Herschel/SPIRE in 250 μm and 350 μm; their gas metallicity, derived from optical emission line ratios based on near-infrared spectroscopic observations, is close to the solar metallicity. Although weak signal-like features of CO were seen, we could not detect significant CO emission. The dust mass and the upper limits on the molecular gas mass are $(3.4–6.7) \times 10^8 M_\odot$ and $(9.7–14) \times 10^{10} (\alpha_{CO}/4.36) M_\odot$, respectively. The upper limits on the gas-to-dust ratios at $z \sim 1.4$ are 150–410, which are comparable to the gas-to-dust ratios in local galaxies with similar gas metallicity. A line stacking analysis enables us to detect significant CO emission and to derive an average molecular gas mass of $1.3 \times 10^{11} M_\odot$ and gas-to-dust ratio of 250. This gas-to-dust ratio is also near to that in local galaxies with solar metallicity. These results suggest that the gas-to-dust ratio in star-forming galaxies with solar metallicity does not evolve significantly up to $z \sim 1.4$. By comparing to a theoretical calculation, a rapid increase of the dust mass in an earlier epoch of galaxy evolution is suggested.

Key words: galaxies: evolution — galaxies: high-redshift — galaxies: ISM

1 Introduction

Revealing the properties of interstellar matter in high redshift galaxies is crucial for the understanding of galaxy formation and evolution. Since stars form from gas, the gas mass and its mass fraction in high-redshift galaxies are key parameters to trace galaxy evolution. Dust plays an important role in the formation of hydrogen molecules and in the cooling of the interstellar medium; its mass also reflects the star-formation history in a galaxy (e.g., Draine 2003). It is particularly important to unveil the nature of the interstellar medium in galaxies at $z = 1–2$, because this coincides with the peak of the cosmological evolution of the star-formation rate density in the universe (e.g., Hopkins & Beacom 2006). Since a few years ago, high-sensitivity radio telescopes have enabled us to detect the CO emission from the so-called main sequence of star-forming galaxies at $z = 1–2.5$ (e.g., Daddi et al. 2008, 2010; Tacconi et al. 2010, 2013; Genzel et al. 2012, 2013). The molecular gas...
mass fractions \([f_{\text{mol}} = M_{\text{mol}}/(M_{\text{mol}} + M_{\text{s}})]\) in star-forming galaxies at \(z = 1-2.5\) turn out to be \(\sim 30\% - 50\%\), and are significantly higher than those in the present-day massive spiral galaxies. Furthermore, new data from Herschel allow us to investigate the dust emission from main-sequence galaxies up to \(z \sim 2\) (e.g., Elbaz et al. 2011; Magdis et al. 2012).

Magdis et al. (2011, 2012) estimate the gas masses in star-forming galaxies at \(z \sim 2\) from the dust mass based on the assumption that the galaxies at this redshift follow the same relation between the gas-to-dust ratio and the metallicity as local galaxies; the gas-to-dust ratios are larger in galaxies with a lower gas metallicity (e.g., Leroy et al. 2011; Sandstrom et al. 2013; Rémy-Ruyer et al. 2014). Magdis et al. (2012) found that star-forming galaxies at \(z \sim 2\) show a higher molecular gas mass fraction than nearby galaxies, and that these fractions are comparable to those derived from CO observations by Daddi et al. (2010). Moreover, Magdis et al. (2012) found a dependence of the molecular gas mass fraction on the stellar mass of a galaxy; the molecular gas mass fraction decreases with increasing stellar mass, which also agrees with the result from CO observations at \(z \sim 1-1.5\) (Tacconi et al. 2013).

Theoretical calculations, however, predict a redshift evolution of the gas-to-dust ratio (e.g., Inoue 2003; Calura et al. 2008). Inoue (2003) calculated the evolution of the masses of gas, metal, and dust in a galaxy by considering the star formation, dust core growth, metal accretion to dust, dust destruction by supernovae, and gas inflow. Inoue (2003) successfully reproduced the relation between the gas-to-dust ratio and the gas metallicity at \(z \sim 0\). Their model predicts a clear evolution of gas-to-dust ratios; at \(z \sim 1.4\) the gas-to-dust ratio in a galaxy with solar metallicity is expected to be about ten-times larger than that at \(z \sim 0\).

In this study, we aim to derive the gas and dust masses independently in order to constrain the gas-to-dust ratio in massive star-forming galaxies in the main sequence at \(z \sim 1.4\). The molecular gas mass is derived from the CO \((J = 1-0)\) luminosity and the CO-to-H\(_2\) conversion factor (\(\alpha_{\text{CO}}\)). The CO \((J = 1-0)\) luminosity is derived from CO \((J = 2-1)\) by applying an excitation correction. We use the CO \((J = 2-1)\) emission line to reduce the uncertainty in converting to CO \((J = 1-0)\) luminosity, as compared with using higher CO transition lines. Furthermore, we select galaxies with solar metallicity derived from the optical emission line ratio so as to avoid uncertainty of \(\alpha_{\text{CO}}\) (see section 2). To derive the dust mass, we select galaxies that are detected with Spitzer/MIPS in 24 \(\mu\)m and Herschel/SPIRE in 250 \(\mu\)m and 350 \(\mu\)m. This allows us to derive the FIR luminosity and the dust mass. For galaxies in the SXDS field, MIPS data are taken from the DR2 version of Spitzer Public Legacy Survey of the UKIDSS Ultra Deep Survey (SpUDS: J. Dunlop et al. in preparation). SPIRE images are taken from the DR1 version of the Herschel Multi-tired Extragalactic Survey (HerMES: Oliver et al. 2012). Object detection and photometry are carried out with SExtractor (Bertin & Arnouts 1996). For galaxies in the COSMOS field, the photometric data of MIPS and SPIRE were taken from Roseboom et al. (2012). We made SED from MIR to FIR, and derived \(L_{\text{FIR}}(8-1000\mu\text{m})\) by fitting model SEDs of star-forming galaxies (Chary & Elbaz 2001).

After these selections, we chose galaxies that are around the main-sequence of star-forming galaxies (Daddi et al. 2010). For the galaxies in the SXDS field, the stellar masses and SFRs were taken from Yabe et al. (2012, 2014); the stellar masses were derived by fitting the spectral energy

2 Sample

To reduce the uncertainty of \(\alpha_{\text{CO}}\), we select galaxies with solar metallicity derived based on an optical emission line ratio method (e.g., N2 method; Pettini & Pagel 2004). The value of \(\alpha_{\text{CO}}\) is known to correlate with the gas metallicity in local galaxies; the value of \(\alpha_{\text{CO}}\) is larger in galaxies with lower metallicity (e.g., Arimoto et al. 1996; Leroy et al. 2011). A similar relation is found in galaxies at \(z = 1-2\) (Genzel et al. 2012). Although the uncertainty of \(\alpha_{\text{CO}}\) is large in low-metallicity galaxies, the value of \(\alpha_{\text{CO}}\) for the solar metallicity is rather solid. According to Daddi et al. (2010) and Genzel et al. (2012), even at \(z = 1-2\), \(\alpha_{\text{CO}}\) is close to the Galactic value \([\alpha_{\text{CO}} = 4.36\, M_\odot/(K\,\text{km}\,\text{s}^{-1}\,\text{pc}^2)^{-1}]\), including helium, around solar metallicity. We selected star-forming galaxies with near solar metallicity from samples of Yabe et al. (2012, 2014) and Roseboom et al. (2012). Yabe et al. (2012, 2014) and Roseboom et al. (2012) made near-infrared spectroscopic observations of star-forming galaxies at \(z \sim 1.5\) in the Subaru XMM/Newton Deep Survey (SXDS) field and in the Cosmological Evolution Survey (COSMOS) field, respectively, with Fiber Multi Object Spectrograph (FMOS) on the Subaru telescope. The gas metallicity was derived from N2 method by using H\(_\alpha\) and [N \(\text{II}\)] 6584 emission lines.

We further require that galaxies are detected with Spitzer/MIPS in 24 \(\mu\)m and Herschel/SPIRE in 250 \(\mu\)m and 350 \(\mu\)m. This allows us to derive the FIR luminosity and the dust mass. For galaxies in the SXDS field, MIPS data are taken from the DR2 version of Spitzer Public Legacy Survey of the UKIDSS Ultra Deep Survey (SpUDS: J. Dunlop et al. in preparation). SPIRE images are taken from the DR1 version of the Herschel Multi-tired Extragalactic Survey (HerMES: Oliver et al. 2012). Object detection and photometry are carried out with SExtractor (Bertin & Arnouts 1996). For galaxies in the COSMOS field, the photometric data of MIPS and SPIRE were taken from Roseboom et al. (2012). We made SED from MIR to FIR, and derived \(L_{\text{FIR}}(8-1000\mu\text{m})\) by fitting model SEDs of star-forming galaxies (Chary & Elbaz 2001).
Although the metallicity is expected to be near solar according to the mass-metallicity relation.

3 Observations and data reduction

We carried out 12CO ($J = 2–1$) line observations of the three star-forming galaxies at $z \sim 1.4$. The observed line frequencies shifted from the rest-frame frequency of 230.538 GHz are 93.677 GHz to 96.218 GHz based on the spectroscopic redshifts obtained from Hα observations. The CO observations were made on 2013 March 23–26 and May 16–18 with the Nobeyama Radio Observatory 45 m telescope. We used the two-beam dual-polarization sideband-separating SIS receiver (TZ receiver; Nakajima et al. 2013). The beam size (FWHM) was $\sim 17''$ in the frequency range. The backend system was the flexible FX-type spectrometer (e.g., Iono et al. 2012). It had 16 arrays, which allowed us to select a bandwidth from several modes between 16 MHz and 2 GHz per array. We adopted the 2 GHz mode for our observations in order to cover a wide velocity range of ~ 6300 km s$^{-1}$. We checked the pointing accuracy every 50 min by observing SiO maser sources with a 43 GHz HEMT receiver. The pointing accuracy was within 4'' during the observations. The system noise temperature (T_{sys}) was typically 160–240 K.

Data reduction was carried out with the NEWSTAR software package. We used only data that were taken under a wind speed of less than 5 m s$^{-1}$. In addition, we flagged scans with poor baselines by inspecting each spectrum by eye. We used three flagging criteria in order to check the robustness of our result. The image rejection ratios in the adopted frequency range were mostly more than 10 dB, and hence no correction was made. The effective integration time for each galaxy was 2.2–4.5 hr after flagging. The observed antenna temperature (T_A) was converted into the main beam brightness temperature (T_{mb}) using a main beam efficiency of 0.36. The typical rms noise temperature in T_{mb} scale was 1.6–2.2 mK after binning to 50 km s$^{-1}$ resolution.

4 Results

4.1 CO (2–1) spectra

The obtained spectra are shown in figure 1. The arrow in each panel shows a velocity zero point obtained from the spectroscopic redshift of the Hα observations. The horizontal bar shows the uncertainty of the velocity zero point due to the uncertainty of the redshift. In the spectra of SXDS3_80799 and COSMOS_9, a weak signal-like feature is seen close to the expected zero point with a velocity width...
of ~ 200–250 km s$^{-1}$. The spectrum of SXDS1_12778 also shows a weak signal-like feature with a ~ 200 km s$^{-1}$ offset from the arrow. The noise level at 250 km s$^{-1}$ resolution on T_{mb} scale, σ_{250}, is 1.0 mK, 0.7 mK, and 1.0 mK for SXDS1_12778, SXDS3_80799, and COSMOS_9, respectively. The signal-to-noise ratio (SN) for SXDS1_12778, SXDS3_80799, and COSMOS_9 with ~ 250 km s$^{-1}$ resolution is 1.8, 2.4, and 2.6, respectively. The signal-like features may be real, but the SN is not good enough to be significant. Hence, we don’t regard these features as being a significant signal, and we put upper limits on the CO (2–1) fluxes of the targets.

4.2 Upper limit on the molecular gas mass

The CO line luminosity ($L'_{\text{CO}(1-0)}$) is given as follows (Solomon & Vanden Bout 2005):

$$L'_{\text{CO}(1-0)} = 3.25 \times 10^7 S_{\text{CO}(2-1)} \times \Delta v R_{21}^{-1} v_{\text{rest}(1-0)}^2 D_L^2 (1+z)^{-1},$$

where $L'_{\text{CO}(1-0)}$ is measured in K km s$^{-1}$ pc2, $S_{\text{CO}(2-1)}$ is the observed CO (2–1) flux density in Jy, Δv is the velocity width in km s$^{-1}$, R_{21} is the CO (2–1)/CO (1–0) flux ratio, and D_L is the luminosity distance in Mpc. We assumed a velocity width of 250 km s$^{-1}$, which is hinted from the signal-like features and stacking analysis as describe below (subsection 4.5). We smoothed the spectrum with a 250 km s$^{-1}$ resolution and took a 2σ_{250} upper limit. The value of R_{21} is assumed to be 3, which is a typical value for color-selected star-forming galaxies at $z = 1$–3 (e.g., Carilli & Walter 2013). The $L'_{\text{CO}(1-0)}$ values in the sample galaxies are given in table 3. Since CO (2–1) signal-like features are seen, the values of $L'_{\text{CO}(1-0)}$ would not change if the CO lines are really detected. In the diagram of $L'_{\text{CO}(1-0)} - L_{\text{FIR}}$ (Daddi et al. 2010; Genzel et al. 2010), the observed galaxies lie halfway between main-sequence galaxies and submillimeter galaxies (SMGs), or rather close to the SMGs sequence. Molecular gas mass is derived by

$$M_{\text{mol}} = \alpha_{\text{CO}} L_{\text{CO}(1-0)}.$$ \hspace{1cm} (2)

Since the gas metallicities of our targets are close to the solar metallicity, we adopted the Galactic α_{CO} [4.36 M$_{\odot}$ (K km s$^{-1}$ pc2)$^{-1}$]. The derived upper limits on the molecular gas mass are (9.7–14) $\times 10^9$ M$_{\odot}$, and the mass fractions of these are 19%–47% (table 3). These values are in a similar range as other main-sequence galaxies with similar stellar masses at $z = 1$–2 (Daddi et al. 2010; Tacconi et al. 2013).

4.3 Dust mass

The dust mass is derived as

$$M_d = \frac{S_{\text{obs}} D_L^2}{(1+z)\kappa_d(v_{\text{rest}}) B(v_{\text{rest}}, T_d)},$$

where S_{obs} is the observed flux density, $\kappa_d(v_{\text{rest}})$ is the dust mass absorption coefficient in the rest-frame frequency, T_d is the dust temperature, and $B(v_{\text{rest}}, T_d)$ is the Planck function; κ_d varies with frequency as $\kappa_d \propto v^\beta$, where β is the emissivity. Since the SN is much better in the 250 μm data than in 350 μm, we adopted a 250 μm flux density for S_{obs} which corresponds to ~ 105 μm in the rest-frame wavelength. We adopted $\kappa_d(125 \mu m) = 1.875$ m2 kg$^{-1}$ (Hildebrand 1983), and $\beta = 1.5$. Magnelli et al. (2014) derived the mean dust temperature of star-forming galaxies at $z \sim 1.5$ in the SFR–M_* parameter space. According to their results in the SFR–M_* diagram, our targets are expected to have dust temperatures of 25–40 K. We adopted $T_d = 35$ K. The derived dust masses are (3.4–6.7) $\times 10^8$ M$_{\odot}$, which are given in table 3.
Table 3. Molecular gas and dust properties of sample galaxies.

Source	\(L_{\text{CO}}^{1-0}\) \((\text{K km s}^{-1} \text{ pc}^2)\)	\(M_{\text{mol}}^*\) \((\text{M}_\odot)\)	\(f_{\text{mol}}\)	\(M_d\) \((\text{M}_\odot)\)	Gas-to-dust ratio
SXDS1_12778	\(<2.9 \times 10^{10}\)	\(<1.3 \times 10^{11}\)	\(<0.19\)	\(<5.4 \times 10^{8}\)	\(<240\)
SXDS3_80799	\(<2.2 \times 10^{10}\)	\(<9.7 \times 10^{10}\)	\(<0.47\)	\(<6.7 \times 10^{8}\)	\(<130\)
COSMOS_9	\(<3.1 \times 10^{10}\)	\(<1.4 \times 10^{11}\)	\(<0.36\)	\(<3.4 \times 10^{8}\)	\(<410\)
Stacking analysis	\((3.0 \pm 0.8) \times 10^{10}\)	\((1.3 \pm 0.3) \times 10^{11}\)	\(0.30^{+0.23}_{-0.19}\)	\((5.2 \pm 0.4) \times 10^{8}\)	\(250 \pm 60\)

* We adopted \(\alpha_{\text{CO}} = 4.36 \text{ M}_\odot (\text{K km s}^{-1} \text{ pc}^2)^{-1}\).

4.4 Constraints on the gas-to-dust ratio

We derived the upper limits on the gas-to-dust ratio (150–410; table 3), and plot them against the gas metallicity in figure 2. The gas-to-dust ratio and metallicity were normalized with the values in the Galaxy, \(167 \pm (6 \times 10^{-3})^{-1}\) and 8.67, respectively. Since we see the signal-like feature in the obtained spectra, the actual gas-to-dust ratio values may be quite close to the limits that we can provide based on the upper limits on the CO flux of our galaxies. The blue double-headed arrow in figure 2 shows the variation of the limit of COSMOS_9 for the dust temperatures from 25 K to 40 K.

Our limits on the gas-to-dust ratio do not include the contribution from the atomic hydrogen gas. The atomic hydrogen mass is comparable to the molecular gas mass in local massive star-forming galaxies (Young & Scoville 1991). The observations of nearby spiral and dwarf galaxies show that most of the hydrogen is found as molecular hydrogen above an \(\text{H I}\) critical surface density of \(\sim 10 \text{ M}_\odot \text{ pc}^{-2}\) (Bigiel et al. 2008). According to the model of Obreschkow and Rawlings (2009), the atomic hydrogen density is comparable to the molecular-hydrogen density in galaxies at \(z \sim 1.4\). Therefore, our limits of the gas-to-dust ratio may be larger by a factor of \(\sim 2\), but this does not change the conclusion in this study.

4.5 Stacking analysis

Although the central velocities of the signal-like features show offsets from the velocity zero points, the differences are within, or comparable to, the errors on the velocity. Thus, we regard the velocities from the CO observations as being most reliable, and we stacked the three CO spectra by shifting the velocity zero points to the central positions of the signal-like features. The resulting spectrum is shown in figure 3. The CO emission is detected significantly; the
noise level at 250 km s\(^{-1}\) resolution is 0.55 mK and the SN is 3.9. We integrated this CO emission and derived the CO line luminosity of \(3.0 \times 10^{10} \text{K km s}^{-1} \text{pc}^2\) and the molecular gas mass of \(1.3 \times 10^{11} \text{M}_\odot\) with the same values of \(R_{21}\) and \(\alpha_{\text{CO}}\) as described above. The average dust mass and \(L_{\text{FIR}}\) of the sample galaxies are \(5.2 \times 10^8 \text{M}_\odot\) and \(4.6 \times 10^{12} \text{L}_\odot\), respectively. The data point derived from the stacking analysis in the diagram of \(L'_{\text{CO}(1-0)} - L_{\text{FIR}}\) lies halfway between main-sequence galaxies and SMGs. The gas-to-dust ratio is 250. We also plot this result in figure 2. If we stacked the CO spectra at the velocity zero points, the molecular gas mass is \(9.9 \times 10^{10} \text{M}_\odot\) and the gas-to-dust ratio is 190.

5 Discussion and summary

We also plot the expected redshift evolution of the gas-to-dust ratio based on theoretical considerations (Inoue 2003) in figure 2. Comparing our results with the theoretical expectation, both our upper limits and the value derived from the stacking analysis lie near to the gas-to-dust ratio in galaxies at \(z \sim 0-0.5\). The range of the limit of COSMOS_9 caused by the variation of dust temperature shown with the blue double-headed arrow is also higher than the expected gas-to-dust ratio at \(z \sim 1.4\). Therefore, no significant redshift evolution of the gas-to-dust ratio for massive star-forming galaxies is seen up to \(z \sim 1.4\), at least for galaxies with solar metallicity.

One possible cause for the non-evolving gas-to-dust ratio is that star-forming galaxies acquired the large dust mass more rapidly. In the model by Inoue (2003), one process to increase the dust mass is metal accretion to dust. The time scale of this accretion controls the growth rate of dust mass. Figure 2 shows results for a timescale of \(10^8\) yr, but with a shorter time scale the dust mass becomes larger rapidly, and the gas-to-dust ratio at higher redshift is close to the local value. In fact, Inoue (2003) calculated the evolution of dust-to-gas ratio with a shorter time scale of \(10^7\) yr; the result seems to be consistent with our results (dashed lines in figure 2). The shattering of dust grains accelerates the growth of the dust mass, and a rapid increase of the dust mass can be realized in an earlier epoch of galaxy evolution (Asano et al. 2013).

Another possible cause is the presence of the gas outflow from a galaxy during the process of galaxy evolution, which is not included in the model by Inoue (2003). Gas outflows are observed in many galaxies (e.g., Fischer et al. 2010; Sturm et al. 2011; Cicone et al. 2014). However, dust is also expelled from galaxies by supernovae or radiation pressure, which is suggested from the distribution of dust emissions in the local universe (e.g., Kaneda et al. 2009; Roussel et al. 2010). The outflow presumably does not drive gas outside a galaxy selectively; therefore, it may be difficult to reduce the gas-to-dust ratio effectively.

Since we selected galaxies that are clearly detected with SPIRE, we should be careful that our sample galaxies may be biased toward sources with large dust mass; the small gas-to-dust ratio may be due to our target selection. Observations of molecular gas and dust emission for the star-forming galaxies with lower flux densities in far-infrared are desirable to examine the evolution of the gas-to-dust ratio more robustly.

We carried out \(^{12}\)CO \((J = 2-1)\) observations toward three massive star-forming galaxies at \(z \sim 1.4\) with the solar metallicity derived from optical emission lines (N2 method). Our sample galaxies were also detected with Spitzer/MIPS and Herschel/SPIRE and are located in the main sequence at \(z \sim 1.4\). We constrained the gas-to-dust ratios, and found that the upper limits at \(z \sim 1.4\) are near to the values for local galaxies with similar gas metallicity. By stacking the individual CO spectra, we obtain a molecular gas mass, and thus a gas-to-dust ratio that is comparable to gas-to-dust ratios in local galaxies. Therefore, the results suggest that the gas-to-dust ratio in star-forming galaxies with solar metallicity does not evolve significantly up to \(z \sim 1.4\). By comparing to a theoretical calculation, this result suggests a rapid increase of the dust mass in an earlier epoch of galaxy evolution.

Acknowledgement

We would like to thank the referee for useful comments and suggestions. We acknowledge the members of Nobeyama Radio Observatory for their help during the observations. We are grateful to Akio Inoue and Hiroyuki Hirashita for useful discussions. We thank Isaac G. Roseboom for providing precise redshift information. KO is supported by Grant-in-Aid for Scientific Research (C) (24540230) from Japan Society for the Promotion of Science (JSPS).

References

Arimoto, N., Sofue, Y., & Tsujimoto, T. 1996, PASJ, 48, 275
Asano, R. S., Takeuchi, T. T., Hirashita, H., & Nozawa, T. 2013, MNRAS, 432, 637
Bertin, E., &Arnouts, S. 1996, A&AS, 117, 393
Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, ApJ, 136, 2846
Calura, F., Pipino, A., & Matteucci, F. 2008, A&A, 479, 669
Carilli, C. L., & Walter, F. 2013, ARA&A, 51, 105
Chary, R., & Elbaz, D. 2001, ApJ, 556, 562
Cicone, C., et al. 2014, A&A, 562, A21
Daddi, E., et al. 2010, ApJ, 713, 686
Daddi, E., Dannerbauer, H., Elbaz, D., Dickinson, M., Morrison, G., Stern, D., & Ravindranath, S. 2008, ApJ, 673, L21
Draine, B. T. 2003, ARA&A, 41, 241
Elbaz, D., et al. 2011, A&A, 533, A119
Erb, D. K., Steidel, C. C., Shapley, A. E., Pettini, M., Reddy, N. A., & Adelberger, K. L. 2006, ApJ, 647, 128
Fischer, J., et al. 2010, A&A, 518, L41
Franx, M., van Dokkum, P. G., Förster Schreiber, N. M., Wuyts, S., Labbé, I., & Toft, S. 2008, ApJ, 688, 770
Genzel, R., et al. 2010, MNRAS, 407, 2091
Genzel, R., et al. 2012, ApJ, 746, 69
Genzel, R., et al. 2013, ApJ, 773, 68
Hildebrand, R. H. 1983, QJRAS, 24, 267
Hopkins, A. M., & Beacom, J. F. 2006, ApJ, 651, 142
Inoue, A. K. 2003, PASJ, 55, 901
Iono, D., et al. 2012, PASJ, 64, L2
Kaneda, H., Yamagishi, M., Suzuki, T., & Onaka, T. 2009, ApJ, 698, L125
Leroy, A. K., et al. 2011, ApJ, 737, 12
Magdis, G. E., et al. 2011, ApJ, 740, L15
Magdis, G. E., et al. 2012, ApJ, 760, 6
Magnelli, B., et al. 2014, A&A, 561, A86
Nakajima, T., et al. 2013, PASP, 125, 252
Obreschkow, D., & Rawlings, S. 2009, ApJ, 696, L129
Oliver, S. J., et al. 2012, MNRAS, 424, 1614
Pettini, M., & Pagel, B. E. J. 2004, MNRAS, 348, L59
Remy-Ruyer, A., et al. 2014, A&A, 563, A31
Roseboom, I. G., et al. 2012, MNRAS, 426, 1782
Roussel, H., et al. 2010, A&A, 518, L66
Salpeter, E. E. 1955, ApJ, 121, 161
Sandstrom, K. M., et al. 2013, ApJ, 777, 5
Solomon, P. M., & Vanden Bout, P. A. 2005, ARA&A, 43, 677
Sturm, E., et al. 2011, ApJ, 733, L16
Tacconi, L. J., et al. 2010, Nature, 463, 781
Tacconi, L. J., et al. 2013, ApJ, 768, 74
Whitaker, K. E., et al. 2011, ApJ, 735, 86
Yabe, K., et al. 2012, PASJ, 64, 60
Yabe, K., et al. 2014, MNRAS, 437, 3647
Young, J. S., & Scoville, N. Z. 1991, ARA&A, 29, 581