Variants of theorems of Baer and Hall on finite-by-hypercentral groups

Carlo Casolo - Ulderico Dardano - Silvana Rinauro

dedicated to the memory of Guido Zappa

Abstract We show that if a group G has a finite normal subgroup L such that G/L is hypercentral, then the index of the hypercenter of G is bounded by a function of the order of L. This completes recent results generalizing classical theorems by R. Baer and P. Hall. Then we apply our results to groups of automorphisms of a group G acting in a restricted way on an ascending normal series of G.

1 Introduction

A classical theorem by R. Baer states that, if the m-th term $Z_m(G)$ of the upper central series a group G has finite index t in G for some positive integer m, then there is a finite normal subgroup L of G such that G/L is nilpotent of class at most m, that is $G/L = Z_m(G/L)$ (see 14.5.1 in [7], which shall be the reference for undefined notation). Recently, in [6] it has been shown that there is such an L with finite order d bounded by a function of t and m.

In the opposite direction, P. Hall showed that, if there is a normal subgroup L with finite order d such that G/L is nilpotent of class at most m, then $G/Z_{2m}(G)$ has finite order bounded by a function of d and m (see [7], page 118).

Recently, in [2] it has been shown that the hypercenter of G has finite index t if and only if there is a finite normal subgroup L with order d such that G/L is hypercentral, that is coincides with its hypercenter. Recall that the hypercenter of a group G is the last term of the upper central series of G (see details below). Then in [5] it has been shown that d may be bounded by a function of t, namely $t^{(1+\log_2 t)/2}$. Here we complete the picture by showing that t in turn may be bounded by a function of d.

1Key words and phrases: hypercenter, central series, automorphism.
2010 Mathematics Subject Classification: Primary 20F14, Secondary 20E15, 20F28
Theorem 1 If a group G has a finite normal subgroup L such that G/L is hypercentral, then the hypercenter of G has index bounded by $|\text{Aut}(L)| \cdot |Z(L)|$.

Corollary 1 If a group G has a finite normal subgroup L such that G/L is nilpotent of class m, then $|G/Z_{zm}(G)|$ is bounded by a function of $d := |L|$.

There are many generalizations and variants of Baer and Hall theorems. By applying Theorem 1 above, we improve the results in [3] which are concerned with possibly non-inner automorphisms.

Before stating our Theorem 2 we recall some definitions. As usual, we say that the group A acts on a group G if and only if there is a homomorphism $\tilde{\cdot} : A \to \text{Aut}(G)$ (called action). We will regard both G and \tilde{A} as subgroups of the holomorph group $G \rtimes \text{Aut}(G)$ of G. In particular, we will denote by a bar $\overline{\cdot}$ the action of a group G on itself by conjugation, that is the natural $\text{Aut}(G)$-homomorphism $G \to \overline{G} \leq \text{Aut}(G)$. If an action is such that its image \tilde{A} is normalized by $\overline{G} = \text{Inn}(G)$, we define by recursion an ascending G-series $Z_\alpha(G, A)$ (with α ordinal number) by $Z_0(G, A) := 1$, $Z_{\alpha+1}(G, A)/Z_\alpha(G, A) := C_{G/Z_\alpha(G, A)}(A)$ and $Z_{\lambda}(G, A) := \cup_{\alpha<\lambda} Z_\alpha(G, A)$ when λ is a limit ordinal. We call $Z_\alpha(G, A)$ the αth A-center of G. Recall that an ascending G-series is a well ordered (by inclusion) set of normal subgroups of G. Clearly the series $Z_\alpha(G, A)$ is stabilized by A, in the sense that A acts trivially on the factors between consecutive terms. The last term $Z_\infty(G, A)$ of this series is called A-hypercenter of G.

We say that G is A-hypercentral with (ordinal) type at most α if and only if $G = Z_\alpha(G, A)$. Clearly $Z_\alpha(G) := Z_\alpha(G, \overline{G})$ is the usual αth center of G and if $G = Z_\alpha(G)$, then G is hypercentral of type at most α.

Now we are in a position to state our second result, which consists in two parts that refer to theorems of Baer and Hall, respectively. In fact, if $A = \text{Inn}(G)$, then part (B) reduces to Theorem B in [5] and part (H) to Theorem 1 above.

Theorem 2 Let G be a group and A be a subgroup of $\text{Aut}(G)$ such that $A^{\text{Inn}(G)} = A$ and the hypercenter of $A/(A \cap \text{Inn}(G))$ has finite index k.

(B) If the A-hypercenter of G has finite index t, then there is a finite normal A-subgroup L with order bounded by a function of (t, k) such that G/L is A-hypercentral.

(H) If there is a finite normal A-subgroup L with order d such that G/L is A-hypercentral, then the A-hypercenter of G has finite index bounded by a function of (d, k).
Remark that this theorem generalizes Theorems 4 and 3 of [3] where the same picture is considered, but with more restrictive conditions, that is A contains $\text{Inn}(G)$, the factor $A/\text{Inn}(G)$ is finite and the involved series which are stabilized by A are finite. Clearly, our bounding functions do not depend on the length of the considered series.

Finally note that the hypothesis that A is normalized by $\text{Inn}(G)$ is necessary, as shown by Example in Sect. 2 below.

2 Proof of Theorem 1

To prove Theorem 1 we use a key lemma. Recall that we denote the hypercenter of a group G by $Z_\infty(G)$.

Lemma 1 Let $A \leq H$ be normal subgroups of a group G with A finite and $A \leq Z(H)$. If $G/C_G(H)$ is locally nilpotent and $H/A \leq Z_\infty(G/A)$, then $H \leq Z_\infty(G)A$.

Proof. Arguing by induction on the order of A, we may assume that A is minimal normal in G. Then A is an elementary abelian p-group for some prime p. If $A \cap Z(G) \neq 1$, then $A \leq Z(G)$ by minimality of A and so we have $H \leq Z_\infty(G)A$.

Suppose then $A \cap Z(G) = 1$ (and so $A \cap Z_\infty(G) = 1$) and let $N := Z_\infty(G) \cap H$. Note that the hypotheses hold for the subgroups $\bar{A} := AN/N$, $\bar{H} := H/N$ of the group $\bar{G} := G/N$. Since from $\bar{H} \leq Z_\infty(\bar{G})\bar{A}$ it follows $H \leq Z_\infty(G)A$, we may assume $Z_\infty(G) \cap H = 1$.

We claim that $H = A$ (note that $H \leq Z_\infty(G)A$ if and only if $H = H \cap Z_\infty(G)A = (H \cap Z_\infty(G))A = A$). Suppose, by contradiction, $H > A$ and let $X/A \neq 1$ be either infinite cyclic or of prime order r and contained in $(H/A) \cap Z(G/A)$. Since by hypotheses $A \leq Z(H)$, then X is abelian and $X < G$, clearly.

Let us show now that X is a p-group. If, by contradiction, X/A is infinite or $r \neq p$, then $X^p \neq 1$ and $X^p \cap A = 1$. Thus X^p is G-isomorphic to $X^pA/A \leq Z_\infty(G/A)$. Hence $X^p \leq H \cap Z_\infty(G) = 1$, a contradiction. So X/A has order p.

Assume, again by contradiction, $X^p \neq 1$. By minimality of A, we have $X^p = A = [G, X]$ and so $[G, A] = [G, X^p] = [G, X]^p = A^p = 1$, a contradiction.

Then X is a finite elementary abelian p-group. Since $[G, A] = A \leq X$, the subgroup $X \rtimes (G/C_G(X))$ of the holomorph of X is not nilpotent, and so
\(G/C_G(X)\) is not a \(p\)-group. Hence there are a prime \(q \neq p\) and a normal non-trivial \(q\)-subgroup \(Q/C_G(X)\) of \(G/C_G(X)\). Since \(Q \not\leq C_G(X)\), then \([X, Q] \neq 1\). Thus \([X, Q] = A\), as \([X, Q] \leq A\) and by minimality of \(A\).

By a standard argument on coprime actions (see for example Exercise 4.1 in [1]), we have

\[X = [X, Q] \times C_X(Q) = A \times C_X(Q), \]

therefore \(C_X(Q) \neq 1\). On the other hand, \(C_X(Q)\) is a normal subgroup of \(G\) and so \(C_X(Q) \leq Z_\infty(G) \cap H = 1\), a contradiction which gives the claim \(H = A\).

\(\square\)

Proof of Theorem 1. Let us apply Lemma 1 with \(A := Z(L)\) and \(H := C_G(L)\). In fact on one hand \(H/A = H/(H \cap L) \simeq_G LH/L\), then \(H/A \leq Z_\infty(G/A)\). On the other hand \(L \leq C_G(H)\) and so \(G/C_G(H)\) is hypercentral, since it is an image of \(G/L\). Therefore \(H \leq Z_\infty(G)A\). Hence

\[|H/(H \cap Z_\infty(G))| = |A(Z_\infty(G) \cap H)/(Z_\infty(G) \cap H)| \leq |A| = |Z(L)|. \]

Since \(H = C_G(L)\), then \(|G/H| \leq |\text{Aut}(L)|\). Thus

\[|G/Z_\infty(G)| \leq |G/H| \cdot |H/(H \cap Z_\infty(G))| \leq |\text{Aut}(L)| \cdot |Z(L)|. \]

\(\square\)

Proof of Corollary 1. Note that \(Z_{d+m}(G) = Z_\infty(G)\) has finite index. Thus if \(d \leq m\), the statement follows directly from Theorem 1. Otherwise, \(|G/Z_{2m}(G)|\) is bounded by the maximum of the \(h(d, i)\) with \(i = 1, \ldots, d\), where \(h(d, m)\) is the bounding function in Hall Theorem.

\(\square\)

From Theorem 1 and the above quoted result from [3] we deduce a corollary which gives a rather complete picture of finite-by-hypercentral groups.

Corollary 2 If \(G\) is a group with a (finite) normal series

\[G = G_0 \geq F_1 \geq G_1 \geq \ldots \geq F_n \geq G_n = 1 \]

where
- each factor \(F_i/G_i\) is finite with order \(t_i > 1\),
- each factor \(G_{i-1}/F_i\) is contained in the hypercenter of \(G/F_i\),
then there is a normal subgroup \(L\) with finite order bounded by a function of \(t = t_1 \cdot \ldots \cdot t_n\) such that \(G/L\) is hypercentral.

Moreover the hypercenter of \(G\) has finite index bounded by a function of \(t\).
Proof. Define recursively a function \(f : \mathbb{N} \to \mathbb{N} \) by means of \(f(1) = 1 \) and \(f(t + 1) = (t + 1)g(g(f(t))) \) for each \(t \in \mathbb{N} \), where \(g(t) := t^{1 + \log_2 t} \).

We show that there is \(L \triangleleft G \) such that \(|L| \leq f(t) \) and \(G/L = Z_\alpha(G/L) \) for \(\alpha := \alpha_n + \ldots + \alpha_1 + m' \), where the \(\alpha_i \)'s are ordinal numbers such that \(G_{i-1}/F_i \leq Z_{\alpha_i}(G/F_i) \) for each \(i \) and \(m' \in \mathbb{N} \) may be bounded by a function of \(t \) and of the \(\alpha_i \)'s which are finite. Since \(f(t) \geq t \) for each \(t \), the statement is trivial if \(n = 1 \).

Assume then by induction on \(n \) that there is a normal series
\[
G \geq F_{n-1} \geq G_{n-1} \geq F_n \geq G_n = 1
\]
such that \(G/F_{n-1} \) is hypercentral of type \(\alpha' = \alpha_{n-1} + \ldots + \alpha_1 + m'' \), with \(m'' \in \mathbb{N} \) and \(|F_{n-1}/G_{n-1}| \leq f(t_*) \) with \(t_* = t_1 \cdot \ldots \cdot t_{n-1} \). Applying Theorem B in \([4]\) to \(G/G_{n-1} \), if \(Z/G_{n-1} := Z_{\lceil \log_2 f(t_*) \rceil + \alpha'}(G/G_{n-1}) \), then \(|G/Z| \leq g(f(t_*)) \).

Thus, applying Theorem B of \([KOS]\) to \(G/F_n \), we have that there is a normal subgroup \(L \) such that \(G/L \) is hypercentral with ordinal type at most \(\alpha_1 + \lceil \log_2 f(t_*) \rceil + \alpha' + \lceil \log_2 g(f(t_*)) \rceil \) and \(|L/F_n| \leq g(g(f(t_*))) \). We have: \(|L| \leq t_1 g(g(f(t_*))) \leq tg(g(f(t - 1))) = f(t)\), as wished. \(\square \)

Remark: In the above proof, if \(\alpha \) is infinite, then clearly \(G/Z_\alpha(G) \) is finite. Otherwise, if \(G_{i-1}/F_i \leq Z_{m_i}(G/F_i) \) for each \(i \) with \(m_i \in \mathbb{N} \), then there is a finite normal subgroup \(L \) such that \(G/L = Z_m(G/L) \) with \(m := m_1 + m_2 + \ldots + m_n \), by Theorem B in \([4]\). Hence, in this case, \(G/Z_2m(G) \) is finite.

3 Proof of Theorem 2

Proof of Theorem 2. Let \(\alpha' \) such that \(B/(A \cap \text{Inn}(G)) := Z_{\alpha'}(A/(A \cap \text{Inn}(G)) \) has finite index in \(A/(A \cap \text{Inn}(G)) \). Consider the subgroup \(S := G \times A \) of the holomorph group of \(G \).

Assume first \(A \geq \text{Inn}(G) \). Let \(G_\delta := Z_\delta(G, A) \) for any ordinal \(\delta \). We claim:

\[(*) \quad \forall \delta \quad S_\delta := G_\delta G_{\delta} \leq Z_\delta(S).\]

By induction, suppose true for \(\delta \). Note that \(G \leq A \) acts by conjugation on \(G \) the same way as \(G \). We have \([S_{\delta+1}, S] = [G_{\delta+1} \bar{G}_{\delta+1}, GA] \cdot [G_{\delta+1}, G]^A \leq G_\delta \). On the other hand, \([G_{\delta+1}, GA] \leq [\bar{G}_{\delta+1}, A] \cdot [G_{\delta+1}, G]^A \leq G_\delta = S_\delta \). It follows \(S_{\delta+1} \leq Z_{\delta+1}(S) \) and the claim is proved since the limit ordinal step is trivial.
To prove (B) in the case \(A \geq \text{Inn}(G) \), let \(\alpha \) be such that \(Z_\alpha(G, A) \) has finite index in \(G \) and note that in the normal series

\[
S = GA \geq GB \geq G\bar{G} \geq G_{\alpha}\bar{G}_{\alpha} \geq 1
\]

the factors \(GA/GB \) and \(G\bar{G}/G_{\alpha}\bar{G}_{\alpha} \) are finite with order \(k \) and \(t^2 \), respectively. Moreover, by \((*)\), factors \(GB/G\bar{G} \) and \(G_{\alpha}\bar{G}_{\alpha} \) are contained in the \(\alpha' \)th and \(\alpha \)th center of \(S/G\bar{G} \) and \(S \), respectively. Thus we apply Corollary 2 to the group \(S = GA \). Then the statement (for the group \(G \)) follows easily.

Concerning part (H) in the case \(A \geq \text{Inn}(G) \), consider the normal series

\[
S = GA \geq GB \geq G\bar{G} \geq L\bar{L} \geq 1.
\]

Note that \(GA/GB \) and \(L\bar{L} \) are finite with order \(k \) and \(d^2 \), respectively. Moreover, if \(\alpha_1 \) is such that \(Z_{\alpha_1}(G/L, A) \) has finite index in \(G/L \), then by \((*)\) we have that \(GB/L\bar{L} \) is contained in the \((\alpha_1 + \alpha') \)th \(A \)-center of \(S/L\bar{L} \). We may apply Corollary 2 and get the statement.

To deal with the more general case, let \(\bar{N} := A \cap \text{Inn}(G) \) such that \(Z(G) \leq N \leq G \). Note that \([G,A] \leq N \), as \([g,\gamma] = [\bar{g},\gamma] \in A \cap \text{Inn}(G) \) \(\forall \gamma \in A \) since \(A^{\text{Inn}(G)} = A \). Thus \(A \) acts trivially on \(G/N \). Moreover the group \(\bar{A} := A/C_A(N) \) may be considered as a group of automorphisms on \(N \) containing \(\text{Inn}(N) \). Thus, to prove (H), one may apply the above case to \(N \) and \(\bar{A} := A/C_A(N) \).

To prove (B) in the general case note that, by the above, the subgroup \(Z := Z_\infty(N, A) \) has finite index in \(N \), bounded by a function of \(|L \cap N| \leq |L| \). Let \(K/Z \) be the \(A \)-hypercenter of \(G/Z \). Clearly, \(K \cap N = Z \). Moreover \(K/Z = Z(G/Z, A) \). Consider then \(C/Z := C_{G/Z}([G,A]Z/Z) \) and note that \(C \) has finite index in \(G \), since \([G,A] \leq N \). By applying the Three Subgroup Lemma to \(A, C/Z, C/Z \), we have that \(A \) acts trivially on the derived subgroup \(C/Z \). Thus \(C'/Z \leq C_{G/Z}(A) \leq K/Z \). Therefore \(CK/K \) is abelian. We consider the series

\[
G \geq CK \geq K \geq Z \geq 1.
\]

The index of \(CK \) in \(G \) is finite and bounded by a function of \(d = |L| \), as \(|N/Z| \) is. Then consider the action of \(A \) on the abelian group \(\hat{G} := CK/K \). Since \(K \cap N = Z \), we have that \(|NK/K| \) is bounded by a function of \(d \). Thus the image of \(A \cap \text{Inn}(G) \) in \(\hat{A} := A/C_A(\hat{G}) \) is finite with order bounded by a function of \(d \). By Corollary 2, \(Z_{\alpha'}(\hat{A}) \) has finite index \(q \) in \(\hat{A} \), bounded by a function of \(d \) and \(k \). Recall that \(\hat{G} \) is abelian and \([\hat{G}, \hat{A}] \) is finite, as \([G,A] \) is finite modulo \(K \). Let \(\hat{S} := \hat{G} \rtimes \hat{A} \). Then \(Z_{1+\alpha'}(\hat{S}/[\hat{G}, \hat{A}]) \) has finite index at
most q. By Theorem 1, the index of $Z_{1+\alpha'}(\hat{S})$ in \hat{S} is finite and bounded by a function of d and q. Thus the A-hypercenter of $\hat{G} := CK/K$ has finite index and bounded by a function of d and k, as wished. \hfill \Box

Remark: in the case $A \geq \text{Inn}(G)$ of the above proof, if α, α_1 and α' are finite, we have that:
- in case (B), the $2(\alpha + \alpha')$th A-center has finite index in G, by the above quoted result in \cite{4}. In particular, for $\alpha' = 0$ we have Theorem 3 of \cite{3}.
- in case (H), there is a boundedly finite normal A-subgroup L such that G/L coincides with its $(\alpha_1 + \alpha')$th A-center. This follows by applying the remarks after Corollary 2 to the group S. In particular, for $\alpha' = 0$ we have Theorem 2 and 4 of \cite{3}.

Let us see that the condition that A is normalized by $\text{Inn}(G)$ is necessary.

Example There is an elementary abelian group G and a bounded abelian group $A \leq \text{Aut}(G)$ such that $G/Z_{\omega}(G, A)$ is finite (of prime order), while G/L is not A-hypercentral, for any finite A-subgroup $L \leq G$.

Proof. Let $G := Dr_{i<\omega}\langle a_i \rangle$ be an elementary abelian p-group, where p is an odd prime and let $Z := Dr_{0<i<\omega}\langle a_i \rangle$. For any $i > 0$, consider $\gamma_i \in \text{Aut}(G)$ centralizing Z, and such that $a_0^{\gamma_i} := a_0 a_i$. Let $\tau \in \text{Aut}(G)$ centralizing Z and such that $a_0^{\tau} := a_0^2$. Let A be the subgroup of $\text{Aut}(G)$ generated by τ and all the γ_i's. Then $Z = Z_1(G, A)$ has index p in G, while if K is a proper A-subgroup of G, then $a_0 \notin K$, as $a_0^A = G$. Clearly τ does not centralizes a_0 mod K. Thus G/K is not A-hypercentral, for any proper A-subgroup K of G and in particular for any finite A-subgroup $L \leq G$. \hfill \Box

We finish by noticing that Theorem 2 may be formulated in a different way. Recall that the factor of two consecutive terms of a series is called just factor.

Corollary 3 Let A be a finite-by-hypercentral group of automorphisms of a group G such that $A^{\text{Inn}(G)} = A$. If there is an ascending normal series in G with a finite number of finite factors and such that A acts trivially on all other factors, then:

$i)$ there is a finite index normal A-subgroup G_0 of G such that A stabilizes an ascending G-series of G_0;

$ii)$ there is a finite normal A-subgroup L such that A stabilizes an ascending G-series of G/L.

7
References

[1] M. Aschbacher, *Finite group Theory*, Cambridge University Press, 2nd ed., 2000.

[2] M. De Falco, F. de Giovanni, C. Musella, Ya. P. Sysak, *On the upper central series of infinite groups*, Proc. Amer. Math. Soc. **139** (2011), 385-389.

[3] M.R. Dixon, L. A. Kurdachenko, A. A. Pypka, *On Some Variants of Theorems of Schur and Baer*, Milan J. Math. **77** (2010) 127-150.

[4] G.A. Fernandez-Alcober, M. Morigi, *Generalizing a theorem of P. Hall on finite-by-nilpotent groups* Proc. Amer. Math. Soc. **137** (2009), no. 2, 425-429.

[5] L.A. Kurdachenko, J. Otal, I. Ya. Subbotin, *On a generalization of Baer theorem*, Proc. Amer. Math. Soc. **141** (2013), no. 8, 2597-2602.

[6] L.A. Kurdachenko, I. Ya Subbotin, *On Some Properties of the Upper and Lower Central Series*, Southeast Asian Bulletin of Mathematics 37 (2013), 547-554.

[7] D.J.S. Robinson, *A course in the theory of groups*, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996.

[8] D.J.S. Robinson, *Finiteness conditions and generalized soluble groups*, Part 1, Springer-Verlag, New York-Berlin, 1972.

Carlo Casolo, Dipartimento di Matematica U. Dini, Università di Firenze, Viale Morgagni 67A, I-50134 Firenze, Italy.
email: casolo@math.unifi.it

Ulderico Dardano, Dipartimento di Matematica e Applicazioni “R.Caccioppoli”, Università di Napoli “Federico II”, Via Cintia - Monte S. Angelo, I-80126 Napoli, Italy.
email: dardano@unina.it

Silvana Rinauro, Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Via dell’Ateneo Lucano 10 - Contrada Macchia Romana, I-85100 Potenza, Italy.
email: silvana.rinauro@unibas.it