Interleukin 18 as an early marker or prognostic factor in acute pancreatitis

Adam Janiak1, Bartosz Leśniowski2, Anna Jasińska1, Miroslawa Pietruczuk3, Ewa Małecka-Panas2

1Department of General and Transplantological Surgery, Medical University of Lodz, Lodz, Poland
2Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
3Department of Laboratory Diagnostics, Medical University of Lodz, Lodz, Poland

Prz Gastroenterol 2015; 10 (4): 203–207
DOI: 10.5114/pg.2015.50993

Key words: acute pancreatitis, interleukin 18, C-reactive protein.

Address for correspondence: Adam Janiak MD, PhD, Department of General and Transplantological Surgery, Medical University of Lodz, 25 Kopcińskiego St, 90-153 Lodz, Poland, phone: +48 609 202 977, e-mail: janiak@me.com

Abstract

Introduction: Acute pancreatitis (AP) still requires better diagnostic and therapeutic options to be introduced in order to decrease its morbidity and mortality. It appears that the assessment of serum levels of interleukin 18 (IL-18) and its correlation with C-reactive protein (CRP) may provide adequate prognostic value.

Aim: To measure serum concentrations of IL-18 and inflammation markers such as CRP in patients with AP during subsequent hospital stay days and to assess the role of IL-18 as an early AP marker and prognostic factor.

Material and methods: Thirty-two patients aged 47 ±16.7 years were included into the study (17 males and 15 females), in whom AP was diagnosed based on ultrasound and computer aided tomography imaging and amylase. Serum amylase, CRP, and IL-18 levels were measured on the 1st, 2nd, 3rd, and 5th days of hospital stay. All patients were scored “B” according to Balthazar and mild AP based on Ranson criteria. The control group consisted of 30 healthy volunteers aged 50.7 ±12.4 years (15 males and 15 females).

Results: The average IL-18 serum level in the control group was 86.91 ±4.94 pg/ml. Mean IL-18 study group levels were 128.4 ±7.6 pg/ml on the 1st, 112.0 ±4.4 pg/ml on the 3rd, and 122.8 ±6.8 pg/ml on the 5th day of AP, and were significantly higher than those in the control group, accordingly: \(p < 0.001 \), \(p < 0.005 \), \(p < 0.001 \). A positive correlation between IL-18 and CRP serum concentrations was observed. A slight increase in correlation was observed as the days went by.

Conclusions: We concluded that the serum IL-18 level increases in the initial phase of AP, and it may be used as an inflammatory reaction marker in patients with AP, and it is correlated with CRP, which may indicate its prognostic role in AP.

Introduction

Acute pancreatitis (AP) is an inflammatory reaction either confined to the pancreatic gland itself, or sometimes encompassing distant tissue and glands. The annual incidence of AP ranges from 5 to 80 cases per 100,000 population [1]. In about 75% of patients AP appears as a benign, self-limiting inflammatory reaction accompanied by pancreatic oedema. The remaining 25% suffer from severe necrosis, which is sometimes caused by infection [2]. It may consequently result in sepsis, as well as systemic inflammatory reaction syndrome (SIRS), disseminated intravascular coagulation (DIC), and multorgan failure (MOFS) and, less often, in an adjacent intestinal loop lesion in the aftermath [3]. These complications render mortality, which, according to the literature, amounts to 19% for infected necrosis, 67.5% for sepsis, 62.5% for DIC, and 50–91% for MOFS, respectively [1, 4, 5]. Total mortality, regardless of AP form, according to various sources, ranges from 2.1% to 7.8% [6–8].

The most frequent aetiopathological factors are alcohol abuse and biliary tract diseases, which constitute over 80% of causes of AP regardless of the geographical distribution of the study population [9]. The remaining causes are iatrogenic measures, usually retrograde cholangiopancreatography (ERCP) in 1.6–6.7% [10, 11] and applied medications in about 1.5% [8, 12, 13].

Acute pancreatitis may develop as a benign inflammatory reaction with predominance of oedema and other typical symptoms of inflammation as well as a severe form of AP with predominance of necrotic process in the gland itself and its surroundings. In both forms of AP: benign and severe, trypsin activation not only evokes pancreatic pro-
Interleukin 18 has pleiotropic activity. Its activity as an anti-inflammatory cytokine consists of the stimulation of non-CD14+ mononuclear cells, mostly monocytes, macrophages, and peripheral blood basophils. It has been proven that IL-18 activates the production of other interleukins, such as IL-2, IL-8, IL-12, IL-15, IL-23, and LPS-induced IFN-γ production in vivo [20, 23, 24].

Wereczynska-Siemiatkowska et al. noticed a significant increase in IL-18 concentration in patients with AP. Moreover, they suggested using IL-18 as an early marker of AP severity. Ueda et al. [25] found a significantly increased IL-18 serum concentration level not only during the course of the disease, but also up to 4 weeks after the recovery.

Aim

The purpose of this study was to evaluate the possible diagnostic and prognostic role of IL-18 measured in early AP.

Material and methods

Thirty-two patients hospitalised at the Department of Digestive Tract Diseases of Lodz Medical University, aged 39–57 years (median age 47 ±16.7 years), 17 men and 15 women with alcoholic AP, were included in the study based on clinical symptoms and a serum amylase level increase to at least five times the upper limit. Patients with concurrent diseases such as diabetes, hypertension, cardiovascular diseases, kidney failure, inflammatory diseases, and autoagression were excluded. Moreover, all patients underwent ultrasound examination and contrast-enhanced abdominal computed tomography scanning and were scored ‘B’ according to Balthazar [26]. The control group consisted of 30 healthy volunteers aged 33–60 years (median age 50.7 ±12.4), 15 men and 15 women. The study and control groups did not differ in terms of demographic indicators. Fasting blood samples were taken in the morning on the first, third, and fifth day of hospital stay in order to measure IL-18 and CRP concentrations. Biochemical assays were prepared in the Laboratory Diagnostics Department of Lodz Medical University. The IL-18 concentration was determined using QUANTIKINE Human Interleukin 18 Immunoassay ELISA kit (R&D Systems). The study was conducted in accordance with Bioethical Committee of Lodz Medical University approval of protocol (RNN 72/07/KE). All patients were informed about the study and gave their consent.

Results

Interleukin 18 serum level

The average IL-18 serum level in the control group was 86.91 ±4.94 pg/ml. The IL-18 study-group levels were: 128.4 ±7.6 pg/ml on the first, 112.0 ±4.4 pg/ml on the third, and 122.8 ±6.8 pg/ml on the fifth day of AP, and they were significantly higher than in the control group, accordingly \(p < 0.001 \), \(p < 0.005 \), \(p < 0.001 \). The increase in IL-18 level amounted to 49% on the first, 30% on the third, and 42% on the fifth day, in comparison to the control group (Figure 1).

C-reactive protein serum levels

The average CRP serum level in the control group was 3.44 ±0.56 mg/l. Mean CRP study-group levels amounted...
Interleukin 18 as an early marker or prognostic factor in acute pancreatitis

Analysis of the correlation between C-reactive protein and interleukin 18 levels on subsequent days of acute pancreatitis

Correlation was found between IL-18 and CRP levels on subsequent days of AP. The correlation ratio in the study group amounted to \(r = 0.41339 \) on the first, \(r = 0.41893 \) on the third, and \(r = 0.42707 \) on the fifth day. A slight increase in correlation between IL-18 and CRP levels may be found in subsequent days of the disease (Figures 3–5).

Discussion

The role of IL-18 as a proinflammatory cytokine has not been fully explained – literature data are unclear.
Some of them, like IL-17, may be helpful in establishing the diagnosis of AP, but not in evaluating the severe form of the disease [27]. In this study we observed an increase in IL-18 and CRP levels on the first, third, and fifth day of hospital stay, which has been confirmed in the literature. Wereszczynska-Siemiatkowska et al. found a statistically significant increase in IL-18 level in 30 patients suffering from both benign and severe AP forms on the first 10 days of hospital stay. In severe AP (necrotic form), IL-18 level increased on the first, third, and fifth day of hospital stay, accordingly, by 81%, 84%, and 55%. In benign AP (oedema form) IL-18 levels were lower, similar to our results. The IL-18 levels increased on the first, third, and fifth day of hospital stay, accordingly, by 54%, 50%, and 64% in comparison to the control group, whereas in our study IL-18 levels increased by 49%, 30%, and 42% in comparison to the control group [28].

Likewise, Rau et al. [29] and Ueda et al. [25] observed increased IL-18 level in patients suffering from AP in comparison to the control group. Rau described 68 patients suffering from AP, among whom 37 were diagnosed with locoregional complications, such as pancreatic necrosis, and others with systemic complications such as renal and cardiovascular or multiorgan failure. They claimed that the increase in IL-18 level only referred to the latter, which may be related to the decrease in IL-18 secretion due to kidney insufficiency. On the other hand, Martin et al. compared IL-18 levels in patients suffering from AP with those in patients with cholangitis, by influencing immune cells via IL-1, TNF-α, and other chemokine secretion, and for neutrophils via an increased expression of adhesion molecules. Due to the fact that the above-named cytokines, being the earliest mediators of great significance in AP, are largely responsible for development of the disease, their regulatory mechanisms may depend on the IL-18 activity [34]. The IL-18-induced neutrophil activation may result in a persistent inflammatory reaction leading to multiorgan failure and ARDS [35].

On the basis of the gathered data, further investigation into the relationship between the proinflammatory action of IL-18 and AP seems advisable. Explanation of the proper and exact role of IL-18 in the prediction of the severity and course of AP requires further analysis.

Conclusions

Mean concentrations of IL-18 increases in AP and their levels are highly correlated with CRP value. These data suggest that IL-18 may be potentially useful as an AP diagnostic and prognostic marker.
Interleukin 18 as an early marker or prognostic factor in acute pancreatitis

19. Vitone LJ, Greenhalf W, Howes NR, et al. Trypsinogen mutations

17. Ceranowicz P, Dembiński M, Warzecha Z, et al. Healing effect of heparin in the course of acute cerulein-induced pancreatitis [Polish]. Prz Gastroenterol 2007; 13: 425-34.

16. Leśniowski B, Kumor A, Daniel P, et al. Evaluation of serum concentration of selected adipocytokines in acute pancreatitis. Gastroenterol Pol 2007; 14: 415-7.

15. Leśniowski B, Kumor A, Jasińska A, et al. Is resistin may be a new laboratory marker in diagnosis acute pancreatitis? Pol Merk Lek 2007; 2009: 4: 131-32.

14. Saluja AK, Bhagat I, Lee HS, et al. Low mortality and high morbidity in severe acute pancreatitis without organ failure: a case for revising the Atlanta classification to include “moderately severe acute pancreatitis”. Am J Gastroenterol 2009; 104: 710-5.

13. Matykiewicz J, Głuszek S, Kozieł D. Acute pancreatitis - an endoscopic retrograde cholangiopancreatography complication. Prz Gastroenterol 2012; 7: 103-7.

12. Balthazar EJ, Ranson JH, Naidich DP, et al. Acute pancreatitis: is it an early or a late event? JOP 2005; 6: 438-44.

11. Lee JH, Ort T, Ma K, et al. Resistin is elevated following traumatic injury and causes matrix degradation and release of inflammatory cytokines from articular cartilage in vitro osteoarthritis cartilage. Circulation 2003; 107: 671-4.

10. Konturek PC, Brzozowski T, Pajdo R, et al. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes 2002; 51: 124-9.

9. Freeman ML, DiSario JA, Nelson DB, et al. Risk factors for post-ERCP pancreatitis: a prospective, multicenter study. Gastrointest Endosc 2001; 54: 425-34.

8. Carnovale A, Rabitti PG, Manes G, et al. Mortality in acute pancreatitis. World J Gastroenterol 2007; 13: 5043-51.

7. Gullo L, Migliori M, Oláh A, et al. Acute pancreatitis in five European countries: etiology and mortality. Pancreas 2002; 24: 223-7.

6. Kaurich T. Drug-induced acute pancreatitis. Prog (Bayl Univ Med Cent) 2008; 21: 77-81.

5. Kędra B, Myśliwiec P, Romatowski W. Descending colon stenosis as a complication of acute pancreatitis. JOP 2005; 6: 255-60.

4. Beger HG, Rau BM. Severe acute pancreatitis: clinical course and mortality in acute pancreateatitis: is it an early or a late event? JOP 2005; 6: 438-44.

3. Kędra B, Myśliwiec P, Deneka J, et al. Retrospective analysis of acute pancreatitis cartilage. Osteoarthritis Cartilage 2009; 17: 613-20.

2. Kozieł D, Kozłowska M, Deneka J, et al. Induction of interleukin 18 (IL-18) and intercellular adhesion molecule (ICAM)-1 in acute pancreatitis. J Gastroenterol 2006; 41: 158-62.

1. De Campos T, Cerqueira C, Kuryura L, et al. Mortality in acute pancreateatitis: is it an early or a late event? JOP 2005; 6: 438-44.