Supporting Information: Projection-based Density Matrix Renormalization Group in Density Functional Theory Embedding

Pavel Beran,†,‡ Katarzyna Pernal,¶ Fabijan Pavošević,*§ and Libor Veis*†

†J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
‡Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
¶Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
§Center for Computational Quantum Physics, Flatiron Institute, 162 5th Ave., New York, 10010 NY, USA

E-mail: fpavosevic@gmail.com; libor.veis@jh-inst.cas.cz
Propionitrile (CH₃CH₂CN) C-N bond stretching

Table S1: Equilibrium geometry of CH₃CH₂CN, XYZ in Å.

C	-2.38207	-0.46087	0.01893
N	-3.18147	-0.80786	0.76930
H	-0.03176	0.93909	0.54131
C	0.02231	0.17867	-0.25262
H	0.75941	0.50795	-1.00054
H	0.38038	-0.75999	0.19640
C	-1.34723	-0.01758	-0.92251
H	-1.69162	0.92161	-1.38724
H	-1.28110	-0.76419	-1.73200

Figure S1: Comparison of DMRG-in-DFT dissociation energy curves with different DFT functionals (B3LYP, PBE0, PBE) corresponding to the triple C-N bond stretching in CH₃CH₂CN. All calculations employ the cc-pVDZ basis set.
Table S2: Absolute energies of CH$_3$CH$_2$CN for a given C-N bond length (in Å). All calculations were performed in the cc-pVDZ basis, energies are listed in a.u., and FC denotes the frozen-core approximation. DMRG(FC) calculations were performed with the DBSS procedure and TRE=10^{-5}.

r_{C-N}	B3LYP	CCSD	CCSD-in-B3LYP	DMRG(FC)
0.85	-171.618382	-171.106586	-171.337520	-171.11161047
1.00	-171.891004	-171.492235	-171.723038	-171.50086928
1.15	-172.075359	-171.584162	-171.814725	-171.59716505
1.30	-172.043567	-171.556873	-171.786935	-171.57557639
1.45	-171.971320	-171.487757	-171.717006	-171.51378665
1.60	-171.891661	-171.411147	-171.639154	-171.44582726
1.75	-171.818215	-171.344743	-171.567481	-171.38558935
1.90	-171.755710	-171.288331	-171.506139	-171.33720854
2.05	-171.705096	-171.239879	-171.454591	-171.30076817
2.20	-171.665708	-171.199782	-171.411130	-171.27519061
2.35	-171.636018	-171.168898	-171.374676	-171.25875127
2.50	-171.614037	-171.148550	-171.344320	-171.24910098

r_{C-N}	DMRG-in-B3LYP	DMRG-in-PBE	DMRG-in-PBE0	DMRG(FC)
0.85	-171.341987	-171.21918	-171.24037	-171.11161047
1.00	-171.730008	-171.60788	-171.62800	-171.50086928
1.15	-171.825192	-171.70209	-171.72315	-171.59716505
1.30	-171.802364	-171.67906	-171.70089	-171.57557639
1.45	-171.738241	-171.61693	-171.63709	-171.51378665
1.60	-171.668690	-171.54621	-171.56718	-171.44582726
1.75	-171.605607	-171.48355	-171.50454	-171.38558935
1.90	-171.553929	-171.43037	-171.45251	-171.33720854
2.05	-171.513078	-171.39197	-171.41332	-171.30076817
2.20	-171.481714	-171.36223	-171.38363	-171.27519061
2.35	-171.458972	-171.34112	-171.36242	-171.25875127
2.50	-171.442953	-171.32648	-171.34336	-171.24910098

[Fe(CN)$_5$(NO)]$^{2-}$ complex conformational isomerization

Geometries

Source: SI of Daniel, C.; Gourlaouen, C. Structural and Optical Properties of Metal-Nitrosyl Complexes. Molecules 2019, 24, 3638.
Table S3: Geometry of the standard isomer of [Fe(CN)$_5$(NO)]$^{2-}$ complex, XYZ in Å.

	XYZ in Å
Fe	0.00149500 -0.00106700 -0.09336900
C	-0.03222200 0.02103400 1.86410100
C	-1.75416100 0.85771400 0.02002800
C	0.85659200 1.75411800 0.05268600
C	1.75258100 -0.85664900 0.09511900
C	-0.85785400 -1.75326800 0.06284700
N	-0.05222500 0.03386700 3.03384600
N	2.80100800 -1.36744800 0.19103400
N	-1.37158600 -2.80173800 0.14115000
N	1.36881800 2.80371400 0.12573200
N	-2.80414500 1.37165900 0.07265600
N	0.02861100 -0.01928200 -1.73124100
O	0.04726700 -0.03192100 -2.87166600

Table S4: Geometry of the flat isomer of [Fe(CN)$_5$(NO)]$^{2-}$ complex, XYZ in Å.

	XYZ in Å
Fe	-0.00016900 0.02806300 -0.12906000
C	0.00035300 -0.17615400 1.76755000
C	-1.38040600 1.40923600 0.04432800
C	1.37930400 1.41018200 0.04440300
C	1.48359600 -1.27200700 -0.02254300
C	-1.48287100 -1.27288100 -0.02213100
N	0.00074600 -0.27164900 2.93388700
N	2.36724000 -2.03798600 0.03986000
N	-2.36594400 -2.03946500 0.04094100
N	2.19600000 2.24404000 0.13982500
N	-2.19754400 2.24305200 0.13952600
N	0.00022500 -0.74637000 -1.85226200
O	-0.00006700 0.36702500 -2.20081400
Table S5: Geometry of the reverse isomer of $[\text{Fe(CN)}_5(\text{NO})]^2-$ complex, XYZ in Å.

	X	Y	Z
Fe	-0.00060500	0.00018400	-0.05436100
C	0.03567000	-0.02895700	1.86383700
C	-1.53095900	1.21983800	0.09791900
C	1.22394800	1.53034400	0.04912800
C	1.53359200	-1.22166100	0.00102400
C	-1.21846800	-1.53465800	0.04870100
N	0.05817700	-0.04746800	3.03450200
N	2.44981100	-1.95160100	0.02040000
N	-1.94702900	-2.45095200	0.09594500
N	1.95614400	2.44363500	0.09789000
N	-2.44506900	1.94860300	0.17478400
O	-0.03787600	0.03041200	-1.80130200
N	-0.06403000	0.05242500	-2.92921600
Energies

Table S6: Absolute energies (in a.u.) of standard, flat, and reverse isomers of [Fe(CN)\(_5\)(NO)]\(^{2-}\) complex in 6-31G basis.

	standard	flat	reverse
B3LYP	-1857.204433	-1857.139493	-1857.134402
CCSD\(^{a}\)	-1854.298712	-1854.235608	-1854.224112
CCSD\(^{b}\)	-1854.344365	-1854.275324	-1854.278839
CASSCF(14,15)	-1852.95065	-1852.890706	-1852.905416
NEVPT2(14,15)	-1854.268748	-1854.184329	-1854.219546
AC0(14,15)	-1854.294758	-1854.208607	-1854.251568
AC(14,15)	-1854.089513	-1854.008786	-1854.047418
DMRG-SCF(16,16)	-1852.997355	-1852.930239	-1852.953831
AC0(16,16)	-1854.304948	-1854.224917	-1854.251228
AC(16,16)	-1854.107123	-1854.028369	-1854.05652
icMRCISD(4,4)	-1853.756956	-1853.680976	-1853.703916
CCSD-in-B3LYP	-1856.113810	-1856.067165	-1856.045671
CCSD-in-HF	-1853.102533	-1853.052473	-1853.024501
DMRG-in-B3LYP	-1856.159181	-1856.088551	-1856.116160
DMRG-in-PBE0	-1855.606274	-1855.536965	-1855.559453
DMRG-in-HF	-1853.146749	-1853.072713	-1853.093745

\(^{a}\)CCSD performed in\(\text{Orca}\) preceeded by HF with DIIS convergence acceleration.

\(^{b}\)CCSD performed in\(\text{Q-Chem}\) preceeded by HF with GDM convergence acceleration.

Natural orbitals of [Fe(CN)\(_5\)(NO)]\(^{2-}\) complex

![Natural orbitals of Fe-NO complex](image)

(1) \(n_{\text{ occup }} = 1.8235\) (2) \(n_{\text{ occup }} = 1.8231\) (3) \(n_{\text{ occup }} = 0.1765\) (4) \(n_{\text{ occup }} = 0.1765\)

Figure S2: Fe-NO complex, standard, CASSCF(4,4)
Figure S3: Fe-NO complex, flat, CASSCF(4, 4)

(1) $n_{\text{occup}} = 1.9024$
(2) $n_{\text{occup}} = 1.6449$
(3) $n_{\text{occup}} = 0.3550$
(4) $n_{\text{occup}} = 0.0977$

Figure S4: Fe-NO complex, reverse, CASSCF(4, 4)

(1) $n_{\text{occup}} = 1.6793$
(2) $n_{\text{occup}} = 1.6679$
(3) $n_{\text{occup}} = 0.3321$
(4) $n_{\text{occup}} = 0.3207$
Figure S5: Fe-NO complex, standard, CASSCF(14, 15)
Figure S6: Fe-NO complex, flat, CASSCF(14, 15)
Figure S7: Fe-NO complex, reverse, CASSCF(14, 15)
Figure S8: Fe-NO complex, standard, DMRG-SCF(16, 16)
Figure S9: Fe-NO complex, flat, DMRG-SCF(16, 16)
Figure S10: Fe-NO complex, reverse, DMRG-SCF(16, 16)