Longitudinal Analysis of T Cell Receptor (TCR) Gene Usage by Human Immunodeficiency Virus 1 Envelope-specific Cytotoxic T Lymphocyte Clones Reveals a Limited TCR Repertoire

By Spyros A. Kalams, R. Paul Johnson, Alicja K. Trocha, Mark J. Dynan, H. Steve Ngo, Richard T. D'Aquila, James T. Kurnick,* and Bruce D. Walker

From the Infectious Disease Unit and the *Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

Summary

Human immunodeficiency virus 1 (HIV-1) infection is associated with a vigorous cellular immune response that allows detection of cytotoxic T lymphocyte (CTL) activity using freshly isolated peripheral blood mononuclear cells (PBMC). Although restricting class I antigens and epitopes recognized by HIV-1-specific CTL have been defined, the effector cells mediating this vigorous response have been characterized less well. Specifically, no studies have addressed the breadth and duration of response to a defined epitope. In the present study, a longitudinal analysis of T cell receptor (TCR) gene usage by CTL clones was performed in a seropositive person using TCR gene sequences as a means of tracking responses to a well-defined epitope in the glycoprotein 41 transmembrane protein. 10 CTL clones specific for this human histocompatibility leukocyte antigen–B14–restricted epitope were isolated at multiple time points over a 31-mo period. All clones were derived from a single asymptomatic HIV-1-infected individual with a vigorous response to this epitope that was detectable using unstimulated PBMC. Polymerase chain reaction amplification using Vx and Vf family-specific primers was performed on each clone, followed by DNA sequencing of the V-D-J regions. All 10 clones utilized Vx14 and Vf4 genes. Sequence analysis of the TCR revealed the first nine clones isolated to also be identical at the nucleotide level. The TCR-α junctional region sequence of the tenth clone was identical to the junctional region sequences of the other nine, but this clone utilized distinct Dβ and Jβ gene segments. This study provides evidence that the observed high degree of HIV-1-specific CTL activity may be due to monoclonal or oligoclonal expansion of specific effector cells, and that progeny of a particular CTL clone may persist for prolonged periods in vivo in the presence of a chronic productive viral infection. The observed limited TCR diversity against an immunodominant epitope may limit recognition of virus variants with mutations in regions interacting with the TCR, thereby facilitating immune escape.

HIV-1 is a retrovirus that causes a persistent productive infection in humans (for a review see reference 1). Despite the progressive and ultimately profound immunosuppression characteristically induced by this virus, infection is initially associated with a cellular immune response of unprecedented magnitude. The extent of this immune response is such that HLA class 1–restricted, HIV-1–specific CTL activity can be detected in freshly isolated PBMC from infected persons without the need for in vitro stimulation and expansion that is required to isolate CTL in other viral infections (2–7). A potential functional role for these cells as a host defense is supported by the finding that CD8+ T lymphocytes from infected persons, with characteristics of HIV-1–specific CTL, can inhibit virus replication in vitro (8–10). These observations support the hypothesis that HIV-1–specific CTL play an important role in the course of HIV-1 infection and contribute to the prolonged asymptomatic phase typical of this disease.

CTL recognize infected cells through a specific interaction involving the TCR and MHC–antigen complex on the target cell surface. In general, CTL of the CD8 phenotype recognize viral peptides of 8–10 amino acids in length that are processed endogenously within infected cells and presented to the TCR as a trimolecular complex involving class I molecule and β2-microglobulin (11–13). CTL of the CD4 phenotype recognize longer peptides, often 13–17 amino acids.
in length, which are processed exogenously through phago-
lysosomes and presented to the CTL as a complex with a
class II molecule (14, 15). The specificity of CTL for this
antigen–HLA complex is imparted by the TCR, a hetero-
dimer consisting of variable α and β chains (16, 17) that
are noncovalently associated with five invariant molecules
comprising the CD3 complex. In a manner analogous to Ig gene
rearrangements, TCR diversity is generated by the somatic
rearrangement of noncontiguous V, D, and J regions. Diver-
sity is further increased by the addition of nongermline en-
coded nucleotides at junctions of these rearranged segments
(N region diversity). This allows for an enormous potential
repertoire of >10^15 distinct TCR (17). It is the highly vari-
able CDR3 region that is thought to interact with antigenic
peptides bound to the MHC cleft, whereas the constant prox-
imal domains function to secure the TCR complex in the
membrane (18–20).

Studies of a number of viral infections have attempted to
define the extent of TCR diversity among CTL clones specific
for a particular epitope, and thereby address the structure–func-
tion relationship of the TCR and provide insights into the
host effector response to infection. The majority of these
studies have been in inbred murine model systems and have
analyzed TCR usage by immune effector cells at a single point
in time. These murine studies have often shown limited het-
erogeneity in Vα and Vβ gene usage among CTL clones
specific for the same epitope, but V-D-J diversity has usually
been observed (21–23), and similar results were recently
reported in a rhesus monkey infected with simian immuno-
deficiency virus (SIV) (24). The study of TCR usage against
viral epitopes recognized by human CTL has been limited
and largely confined to acute viral infections in which the
immune response is able to effectively eradicate infection (25,
26). There have been no studies of TCR gene usage by virus-
specific, class I–restricted CTL responses in humans over the
course of a chronic viral infection.

The precise characterization of HIV-1–specific CTL re-
sponses in infected persons, including the definition of re-
stricting HLA antigens and optimal CTL epitopes, now offers
the unique opportunity to study TCR gene usage in a chronic
human viral infection, and to determine the duration of a
given effector response by using TCR sequence analysis as a
means of identifying specific clonal responses. In the present
study, we have examined the TCR usage by CTL clones
specific for a dominant nine amino acid epitope in the trans-
membrane glycoprotein (gp) of HIV-1 (gp41/584–592). Over
a 31-mo period, multiple CTL clones were derived from an
infected individual by limiting dilution directly from the
peripheral blood, using a CD3-specific mAb or PHA as a
stimulus for T cell proliferation. All of the HIV-1 enve-
lope–specific CTL clones were found to utilize genes from the
identical Vα and Vβ TCR gene families. The first nine
clones isolated over a 27-mo period had identical TCR
sequences, even at the nucleotide level, indicating an un-
precedented degree of TCR homology in the response to a
viral CTL epitope, and providing evidence for a sustained
clonal effector response to a CTL epitope in an ongoing chronic
viral infection.

Materials and Methods

Subjects. Subject 010-115i has been previously shown to have
significant envelope-specific CTL activity (27, 28). During the
period of study from February 1990 to January 1993, this subject
was asymptomatic with a CD4+ lymphocyte count ranging from
600 to 800 cells/mm³. This subject gave written informed con-
sent and the study was approved by the Massachusetts General Hos-
ital Human Studies Committee.

Cell Lines. EBV-transformed B lymphoblastoid cell lines (B-
LCL) were established and maintained as described previously (2, 4)
in RPMI 1640 medium (Sigma Chemical Co., St. Louis, MO)
containing 20% (vol/vol) heat-inactivated FCS (Sigma Chemical
Co.). RPMI 1640, used for all cell lines, was supplemented with
L-glutamine (2 mM), penicillin (50 U/ml), streptomycin (50 μg/ml),
and Hepes (10 mM). All B-LCL were free of mycoplasma infection
by standard culture techniques.

HLA Typing. HLA typing was performed by the Massachusetts
General Hospital Tissue Typing Laboratory using standard sero-
logical techniques. The complete HLA type of subject 010-115i is
A2,28; B14,52; Cw8; DR1,2; DQ1.

Synthetic Peptides. Synthetic HIV-1 envelope peptides 25 amino
acids in length and adjacent peptides that overlapped by eight amino
acids were synthesized by Multiple Peptide Systems (San Diego,
CA) according to the PV22 sequence (29), as was peptide RTI/648-
672. Smaller peptides for fine mapping studies were synthesized
by Cambridge Research Biochemicals (Wilmington, DE). The nine
amino acid peptide gp41/584-592 was synthesized as a COOH-
terminal acid according to the HIV-1 HXB2 sequence. The se-
quences of peptides containing CTL epitopes in the single letter
amino acid code described in this study were as follows: gp41/584-
592: ERYLKDQQL; RTI/648-672: AYLAQLDGSLEVNTD-
SQYALGI.

Isolation of HIV-1 Envelope–specific CTL Clones. CTL clones were
isolated and maintained as described previously (27, 28, 30). Briefly,
PBMC obtained by separation on Ficoll-sodium diatrizoate (Histo-
paque 1077; Sigma Chemical Co.) were incubated at 50 or 25 cells
per well in 96-well plates with 200 μl of feeder cell solution con-
taining 10% irradiated allogeneic PBMC from HIV-1-seronega-
tive subjects in RPMI 1640 with 10% heat-inactivated FCS (R10)
supplemented with 100 U/ml of human rIL-2 (Hoffman-La Roche,
Nutley, NJ). After 2–3 wk, the percentage of wells exhibiting
growth typically was 40–60% of wells plated at 50 cells/well, and
15–35% at 25 cells/well (27, 30, 31). As a stimulus to T cell prolifer-
ation, either the CD3-specific mAb 12F6 (32) was added at 0.1
μg/ml or PHA was added at 0.25 μg/ml (Nurex Diagnostics Inc.,
Atlanta, GA). After 2–3 wk, cells from wells demonstrating growth
were then transferred to 24-well plates and restimulated by adding
1 ml of rIL-2-containing medium with irradiated allogeneic PBMC
(10^6/ml) and anti-CD3 (0.1 μg/ml) or PHA (0.25 μg/ml). Ap-
proximately 2 wk later, clones were screened for CTL activity against
autologous targets infected with recombinant vaccinia virus ex-
pressing the HIV-1 envelope glycoprotein of the BH8 isolate of
HIV-1 (33). Vaccinia virus expressing other HIV-1 gene products
(27) or the Escherichia coli β-galactosidase gene (VSC8) were used
as controls. Clones exhibiting envelope-specific CTL activity were

1 Abbreviations used in this paper: B-LCL, B lymphoblastoid cell line; gp,
glycoprotein; LCMV, lymphocytic choriomeningitis virus.

1262 Limited TCR Usage by HLA Class I-restricted HIV-1 Envelope-specific CTL
then restimulated every 10-14 d with anti-CD3 mAb or PHA and irradiated allogeneic PBMC. Selected CTL clones were subcloned by limiting dilution at 30, 10, 3, and 1 cell per well in the presence of irradiated feeder cells and PHA. Fine mapping of epitopes recognized by these CTL clones was performed using autologous B-LCL incubated with overlapping synthetic HIV-1 peptides as described (27, 28).

Cytotoxicity Assay. Target cells consisted of B-LCL infected with vaccinia-HIV-1 expression vectors, vaccinia control, or B-LCL incubated with overlapping synthetic HIV-1 peptides as described (27, 28).

Limiting Dilution Assays of Memory CTL. Precursor frequencies of HIV envelope-specific CTL were estimated by performing limiting dilutions on freshly isolated PBMC followed by in vitro stimulation with the CD3-specific mAb 12F6 (35). PBMC were cultured at 250-16,000 lymphocytes per well in 24 replicate wells of 96-well microtiter plates. To each well was added 2.5 x 10^4 /zg/ml of 12F6. Wells were then split and assayed for cytotoxicity on 1263 Kalams et al.

Results

Recognition of a gp41 Epitope by Unstimulated PBMC. Prior analysis of the HIV-1 envelope-specific CTL response in sub-
Table 1. TCR α Primers

Variable region primers*	
Vα1 TTGCCCCGTGAGAGATGCC	
Vα2 GTTGTTCAGAGGAGCCATTG	
Vα3 GGTGACACTCAAGGGAGGA	
Vα4 AAGACAGAAATTCAGAGTAC	
Vα5 GCCCTGAACATTCAGAGA	
Vα6 GTCACTTTTCTATGCTGTA	
Vα7 AGGAGCTTGGCAGATTAATA	
Vα8 GAGAAGATGAGGAGAACAT	
Vα9 ATCTCAGGCTTGGATATAA	
Vα10 AATCTCCTGTTGCTATTTGGA	
Vα11 AGAAAGCAGGACAATGTTT	
Vα12 CAGAAGGAATCTGAACGCAGACT	
Vα13 TGCTGTGAGAAAGGAAATCAGGT	
Vα14 GATCTCCACCTGTCTTTGATTA	
Vα15 CAGAGTCAGCTTCTTCTGAGTGTTCCAG	
Vα16 GAGTGGCTGAGCTGACTGAC	
Vα17 GCTTATGAGAAGTGGAGCAGCAT	
Vα18 GAGACGCGCCATCGGAGATTTTCA	
Vα19 AGAACGTAGCTGCCAGGAA	
Vα20 CATCTCCATGGAATCAGTGA	
Vα21 GACATTACTAAGCACTGT	
Vα22 ATGTCAGGCAATGAAGGAAAGGC	
Vα23 CAGAGCTGAGGACATTATC	
Vα24 GATCATCCTGGAGGGAAGTG	
Vα25 CCTGACCAGCCAAGTGAC	
Vα26 TCAGTCTCGTAGTCAGGA	
Vα27 TGTTGGTCCTGCAGCATG	
Vα28 TCTATCCTCGTGTTCAGG	
Vα29 TACAGGGCTGATCCTCGAG	

Constant region primers*1

5'Cα 9–31 GAACCTGACCGCTGGAAGCC	
5'Cα 26–49 GGTACCAGGATGAGAGCTC	
3'Cα 599–578 ATCATTCCTGACCTTCTCC	
3'Cα 470–447 GAGGAAGGAGCCAGGAGGCACAG	

Table 2. TCR β Primers

Variable region primers*	
Vβ1 AAGAGAGAGCAAAAGCAATGTT	
Vβ2 GCTCCAGGCGCACTACGGAAGCAGCAG	
Vβ3 AAATAAAGGAAAGAGATTTTCTTCA	
Vβ4 CTGGACGCCTATAGGAGTGTAGTTCTGCA	
Vβ5 CAGAAGAACAGGAAATCTCTCTCGTGTA	
Vβ6 GATCTCGAGGACGGTTCCCTTCCCTGAG	
Vβ7 ATAAATGAGGTTGCGAGAGTCTCAGGTT	
Vβ8 AACGTTCAGGATGATTCCAGGATGC	
Vβ9 CATTATAATGAAAGGAAATCTCAAATGAG	
Vβ10 TCACAGAGAACGAGATCTTCTCCCTGAG	
Vβ11 CTGAGATGTCACCAGACTGAAACCACGC	
Vβ12 CGTATAGGAGACCTGAGAAGTCCCCAAT	
Vβ13 GACAAAGGAAGCCTCAGTTC	
Vβ14 GTCAGTCTCATGAGATGTTCTCAGGAG	
Vβ15 CATGCATCAGAAGTGCAGC	
Vβ16 CATCTGTTCTTCTGGGGGCAGGTTCTC	
Vβ17 GCAACAAGAAGGTGAGAGTTGGATGCCC	
Vβ18 CATCTCGCTCTTGAGGAGTGTTCTC	
Vβ19 ATAGCTGCTAAGGGAGATTTTCTTTGAGG	
Vβ20 CTCAATTCTACTTAATGAAATGAG	
Vβ21 GCAGTAGAAGCTTCCACAT	
Vβ22 ATGCAGAGGATAAAAGGAAG	
Vβ23 ATCTCAGAGAAGTCTGAAAT	
Vβ24 GATTTTACAAATGAAGCAGA	

Constant region primers*1

5'Cβ 26–49 CCGAGGTCGCTGTGGGTGACCAT	
3'Cβ 529–510 AACTTCTTCTGTGAACATT	
3'Cβ 491–468 CTGACAGACACGACGACACAG	

* The oligonucleotides Vβ1-11, and Vβ13-17 have been described by Wucherpfennig et al. (65). The oligonucleotides Vβ21-24 were derived from published sequences (66, 67).

† The numbering for the C region primers correspond to the nucleotide position of the C region exon (68). Primer 3'Cβ 491-468 has inosine residues to allow amplification of Cβ1 and Cβ2 sequences.

A CD3-specific mAb indicated that a nine amino acid epitope in the transmembrane protein gp41 (gp41/584-592) was the target recognized by these CTL clones (28). Recognition of this nonamer occurs at concentrations as low as 1 ng/ml (data not shown). To determine the relative magnitude of the envelope-specific response directed at this gp41 epitope, unstimulated PBMC from subject 010-115i were tested directly for recognition of autologous target cells sensitized with this epitope. PBMC were isolated after Ficoll-sodium diatrizoate separation and incubated either with vaccinia-infected autologous B-LCL expressing gp160, or incubated with HIV-1

a CD3-specific mAb indicated that a nine amino acid epitope in the transmembrane protein gp41 (gp41/584-592) was the target recognized by these CTL clones (28). Recognition of this nonamer occurs at concentrations as low as 1 ng/ml (data not shown). To determine the relative magnitude of the envelope-specific response directed at this gp41 epitope, unstimulated PBMC from subject 010-115i were tested directly for recognition of autologous target cells sensitized with this epitope. PBMC were isolated after Ficoll-sodium diatrizoate separation and incubated either with vaccinia-infected autologous B-LCL expressing gp160, or incubated with HIV-1

ject 010-115i showed that fresh unstimulated PBMC were able to lyse autologous target cells expressing the HIV-1 envelope protein (27). In addition, characterization of CTL clones obtained by limiting dilution after in vitro stimulation with
Isolation of Envelope-specific CTL Clones. Having demonstrated a dominant CTL response to a single epitope in gp41, we wished to determine the TCR repertoire as well as the longevity of effector cells specific for this epitope. Limiting dilution cloning was performed at multiple time points over a 31-mo period using a CD3-specific mAb or PHA as a polyclonal stimulus to proliferation, and clones were screened for recognition of vaccinia-expressed envelope protein. During this period, 10

Peptides. Lysis of gp41/584-592-sensitized B-LCL using unstimulated PBMC was as high as 53% at an E/T ratio of 100:1 (Fig. 1). The magnitude of the response to the gp41 epitope was similar to that observed with the vaccinia-expressed gp160, suggesting that this epitope was the dominant target of the activated envelope-specific CTL response in this person.

Precursor Frequency Analysis of gp41/584-592-specific CTL. To further quantify the CTL response directed at the gp41 epitope, a formal precursor frequency analysis was performed as described (35). Varying concentrations of cells were stimulated in vitro with a CD3-specific mAb as a polyclonal stimulus for T cell proliferation, and tested for lysis of autologous B-LCL either infected with the recombinant vaccinia–HIV-1 envelope vector or sensitized with HIV-1 peptides. As shown in Fig. 2, both envelope-expressing B-LCL as well as B-LCL sensitized with peptide gp41/584-592 were recognized, whereas the control target cells were not. The single hit Poisson model was fulfilled for all assays as demonstrated by the χ² value for goodness of fit (45). The calculated precursor frequency of CTL directed at the gp41 peptide was 1/1016 (95% confidence interval 1/678-1/1,523). This value was consistent with the value of 1/2,041 (95% confidence interval 1/1,290-1/3,229) obtained using the vaccinia vector expressing the entire envelope protein, indicating that gp41/584-592 is the dominant if not the only detectable envelope CTL epitope recognized by this individual using target cells expressing the HIV-1 IIIB strain of HIV-1.

Utilize TCR Vα14 and Vβ4 Genes. Envelope-specific CTL clones recognizing gp41/584-592 were isolated from PBMC obtained in February of 1990, August and September of 1991, and April and September of 1992. To further ensure clonality, representative clones from different time points were subcloned at limiting dilution. RNA was extracted from active clones, and reverse transcription was performed using an oligo dT primer. TCR gene utilization was determined by PCR of cDNA using specific TCR gene V region primers followed by the method of maximum likelihood (37, 38). Data are shown for PBMC obtained in January 1993. A similar precursor frequency of CTL specific for gp41/584-592 was obtained using cryopreserved cells from September 1991 (data not shown).
Table 3. TCR \(V_\alpha\) and \(V_\beta\) Gene Usage of HLA-B14-restricted HIV-1-specific CTL Clones

Clone	Isolation date	HLA B14 match	HLA B14 mismatch	Epitope specificity	TCR \(V_\alpha\)	TCR \(V_\beta\)	
115 H10⁴	2/90	53	53	0	gp 41/584-592	\(V_\alpha\)14	\(V_\beta\)4
115 N10⁴	2/90	50	17	0	gp 41/584-592	\(V_\alpha\)14	\(V_\beta\)4
115 J7⁷	2/90	53	51	0	gp 41/584-592	\(V_\alpha\)14	\(V_\beta\)4
115 G1	8/91	88	85	1	gp 41/584-592	\(V_\alpha\)14	\(V_\beta\)4
115 I26	9/91	94	99	9	gp 41/584-592	\(V_\alpha\)14	\(V_\beta\)4
115 K4	9/91	99	99	12	gp 41/584-592	\(V_\alpha\)14	\(V_\beta\)4
115 M19	9/91	99	99	9	gp 41/584-592	\(V_\alpha\)14	\(V_\beta\)4
115 M21	9/91	99	99	9	gp 41/584-592	\(V_\alpha\)14	\(V_\beta\)4
115 A7	5/92	76	52	0	gp 41/584-592	\(V_\alpha\)14	\(V_\beta\)4
115 E15	9/92	64	64	2	gp 41/584-592	\(V_\alpha\)14	\(V_\beta\)4
115 D7	5/92	85	74	1	RT/648-672	\(V_\alpha\)21	\(V_\beta\)14

* Target cells consist of B-LCL incubated with synthetic peptide. E/T ratios are 10:1. Spontaneous lysis of target cells was always <30%.

⁴ The epitope specificity and HLA restriction of clones 115 H10, 115 N10, and 115 J7 have been previously reported (28).

by Southern blot and hybridization with radiolabeled probe. In all cases, a single dominant \(V_\alpha\) and \(V_\beta\) band was visualized by ethidium bromide–stained gels and Southern blot analysis. A representative Southern blot is shown in Fig. 3. All envelope-specific CTL analyzed from this patient utilize the \(V_\alpha\)14 and \(V_\beta\)4 TCR genes (Table 3).

To further assess the similarity among the envelope-specific clones, the \(\alpha\) and \(\beta\) TCR genes were sequenced. PCR amplified products were isolated and sequenced directly in order to minimize the effects of Taq-generated errors. The TCR \(V_\alpha\)-\(J_\alpha\) and \(V_\beta\)-\(D_\beta\)-\(J_\beta\) sequences of the first nine clones isolated were identical at the nucleotide level, suggesting that these clones, which were obtained over a 27-mo period, were all progeny of a single progenitor clone (Fig. 4). The TCR \(V_\alpha\)-\(J_\alpha\) region sequence of a clone isolated at the final time point, 115 E15, was also identical to the nine clones previously isolated. Although this clone shared \(V_\alpha\)14 and \(V_\beta\)4 gene usage with the other clones, sequencing of the \(\beta\) chain revealed distinct \(D_\beta\) and \(J_\beta\) gene segments. To confirm identical \(V_\alpha\)-\(J_\alpha\) usage and distinct \(D_\beta\)-\(J_\beta\) usage by clone 115 E15, additional studies were performed. cDNA from both the parent clone and a subclone was subjected to PCR amplification using the \(V_\alpha\)14 primer, followed by direct sequencing. RNA was extracted from the clone and subclone at separate times, and cDNA synthesis was performed separately as well. PCR amplifications of the different cDNA preparations were not performed concurrently with previously isolated envelope-specific CTL clones. Results were identical for both clones, confirming the presence of \(V_\alpha\)14-\(J_\alpha\) sequences identical to the nine clones previously isolated. As in all other experi-

* Target cells consist of B-LCL incubated with synthetic peptide. E/T ratios are 10:1. Spontaneous lysis of target cells was always <30%.

⁷ The epitope specificity and HLA restriction of clones 115 H10, 115 N10, and 115 J7 have been previously reported (28).

Figure 3. Representative Southern blot of a gp41/584-592-specific CTL clone using family-specific primers for the \(V_\alpha\) and \(V_\beta\) regions. The PCR products generated from clone 115M21 were separated on a 1% agarose gel and blotted onto nylon membranes. Southern blot analysis was performed with a random labeled C region fragment. (W) Reagent control, (R) RNA control. (A) \(V_\alpha\)29, probed with \(V_\alpha\) fragment generated from primers 5'Cr 9-31 and 3'Cr 599-578 primers. The faint lower molecular weight band seen in lane \(V_\alpha\)13 was sequenced and found to be a fragment of C region DNA without a \(V_\alpha\)13 sequence. (B) \(V_\beta\)1-24, probed with \(C_\beta\) fragment generated from primers 5'C3 26-49 and 3'C3 529-510 primers.
ments, reagent controls were negative, indicating that template contamination of the Vα14 primer had not occurred. In addition, attempts to amplify cDNA from clones isolated from other individuals with the Vα14 primer were unsuccessful, again ruling out contamination of reagents.

Further analysis of Vα and Vβ usage by clone 115 E15 was also undertaken. Anchored PCR and sequencing of a subclone of 115 E15, as well as a subclone of a representative clone from an earlier time point, 115 M21, was performed in order to determine whether Vα14 and Vβ4 usage by these clones might represent different subfamilies. Results revealed the use of identical Vβ4 genes. Each subclone had only one TCR β chain rearrangement and the sequences of the Dβ and JB regions were identical to those derived from direct sequencing using the family-specific Vα4 primer. Anchored PCR of the α sequences of these two clones confirmed the Vα-Jα sequences derived using the family-specific primers. However, different subfamilies of Vα14 were utilized by each clone, Vα14.2 in the case of CTL clone 115 M21 and Vα14.1 in the case of CTL clone 115 E15 (data not shown).

Sequence comparison between the D region of 115 E15 and the previously isolated clones reveal four shared amino acid residues (Fig. 4). In addition, this clone from the September 1992 time point utilizes the JB 2.1 gene instead of the JB 1.2 gene common to the other nine clones. These data suggest that the earlier CTL response to the dominant gp41 epitope was mediated predominantly by clonal expansion of a single effector cell population that persisted over a prolonged period of time in the setting of a persistent infection. The finding of a distinct clone with identical epitope specificity at a later time point with an identical TCR Vα-Jα sequence and shared Vβ4 usage implies selection for certain TCR elements in the envelope-specific response of this patient.

Vα14 and Vβ4 Usage Is Not a Feature of all HLA-B14-restricted Clones. Although the use of Vα14 and Vβ4 was a common feature of all HLA-B14-restricted envelope-specific CTL clones from subject 010-115i, the use of these genes was not a feature of other HLA-B14-restricted clones. An HLA-B14-restricted CTL clone from this subject that was specific for a reverse transcriptase (RT) epitope utilized the Vα21 and Vβ4 genes (Table 3). In addition, preliminary data generated from a CTL clone from a second subject that is also

Figure 4. (A) TCR sequences of Vα-Jα region of CTL clones from subject 010-115i. The nomenclature of the Jα segment is according to Moss et al. (69). (B) TCR Vβ-Dβ-Jβ sequences of CTL clones from subject 010-115i. Non-germline insertions of α and β TCR sequences are underlined. These sequence data are available from EMBL/Genbank/DDBJ under accession numbers Z29579, Z29580, Z29581, Z29582, and Z29614.

1267 Kalams et al.
specific for the gp41/584-592 epitope and restricted by HLA-B14 indicates that the TCR utilizes the Vα22 and Vβ1 genes (data not shown). These data indicate that structural constraints imposed by the HLA-B14 molecule or the HLA-B14–peptide complex do not limit recognition to CTL expressing Vα14 and Vβ4 genes.

Discussion

In this study we have investigated the CTL response to a defined immunodominant HIV-1 epitope, using TCR analysis as a means of identifying and following clonal CTL responses. To characterize the breadth and duration of a response that was of sufficient magnitude to be detected using freshly isolated PBMC, this study was performed on an asymptomatic seropositive person with a vigorous CTL response to a nine amino acid epitope in the transmembrane protein gp41. This HIV-1 epitope is contained in a region that has been shown to be a target for both class I (28, 46)– and class II–restricted CTL (47), and also contains a major B cell epitope (48). Two different methods were used to obtain clones in order to protect against possible selection bias. Both anti-CD3 mAb and PHA as stimuli for T cell proliferation yielded clones directed against this epitope. The high frequency with which these clones were obtained by limiting dilution was similar to the calculated frequency of these cells in bulk PBMC, providing supportive evidence that these clones are reflective of the circulating CTL population. Our data indicate a striking homogeneity in this response in that all clones isolated over the first 27 mo of study utilized Vα14 and Vβ4 genes, and were sequence identical. This indicates that the detectable response during the initial period of study was mediated by a clonal expansion of a single progenitor cell. A single gp41-specific clone isolated at the 31-mo time point also utilized Vα14 and Vβ4, with an identical Vα-Jα sequence, but with sequence changes occurring in the D-J segments of the β chain, suggesting structural constraints on epitope recognition.

The analysis of CTL in animal models of viral infections has shown limited TCR heterogeneity among CTL specific for defined epitopes, but the degree of homogeneity observed in our study, as well as the durability of the response, has not been previously reported. Each of the previous studies has had important distinctions compared with our study. In the murine lymphocytic choriomeningitis virus (LCMV) model, recognition of a dominant H-2Dd-restricted epitope, GP-2, was shown to be mediated by CTL that utilized Vα4 and Vβ10 gene segments. Southern blot analysis indicated that each clone had a distinct TCR rearrangement. However, in that study, the DNA sequencing was performed on a single clone so the degree of similarity between the D and J regions of the α and β chains could not be determined (21). Another study analyzed CTL clones specific for this same epitope and although four of four clones utilized Vα4, three different Vβ genes were utilized. No patterns were evident in the Vα-Jα regions or the Vβ-Dβ-Jβ regions in these clones (22). The restricted V gene usage was not dependent on MHC restriction in this system as CTL clones specific for an H-2Dd-restricted GP-1 epitope did not share Vα4 gene segment usage (23). In a primate model of SIV infection, Chen et al. (24) have described limited TCR Vβ and Jβ gene usage by SIV gag-specific CTL. In that study, six CTL clones with identical epitope specificity and MHC class I restriction were isolated at a single time point from a single monkey. Five out of six of these clones utilized the Vβ3 gene segment and four out of six utilized the Jβ1.2 gene segment. Two pairs of clones differed in the Dβ region by only one amino acid but despite this similarity, all α and β chains were distinct, indicating a polyclonal response to this epitope. This response was analyzed at only a single point in time, therefore this study could not determine whether this pattern of TCR gene usage remained stable over the course of the disease.

The analysis of TCR gene usage by human virus–specific class I–restricted CTL to date has been limited to influenza virus infection. In a study of HLA-A2–restricted CTL specific for an influenza matrix epitope, PBMC were stimulated with influenza virus and antigenic peptide and subcloned on autologous B-LCL pulsed with antigenic peptide (25). This study demonstrated shared Vα10 and Vβ17 gene usage among three CTL lines from two subjects. Two of the influenza-specific CTL lines from one patient had identical TCR α chains at the nucleotide level and shared Vβ gene usage, yet had distinct Dβ and Jβ gene segments, similar to our finding of an invariant TCR Vα-Jα sequence among gp41/584-592–specific CTL clones from subject 010-115i. This phenomenon of invariant α or β TCR chain usage has also previously been described in murine T cell clones specific for 2,4,6-TNP (49), pigeon cytochrome c (50), Ig κ L chain (51), λ repressor (52), and myoglobin peptides (53). Conserved TCR gene usage among HLA-B27–restricted influenza A virus–specific CTL clones has recently been described as well (26). Whereas the findings of limited TCR usage by a CTL response in an individual were similar, the protocols for the generation of CTL were different. We cloned T cells directly from peripheral blood and did not rely on in vitro stimulation with viral antigen in hopes of obtaining a more representative sample of circulating CTL. We also avoided the potential problem of generating primary in vitro CTL responses (54). Because of the chronic nature of HIV-1 infection, we were able to follow this TCR usage over an extended period of time and we provide evidence that in certain instances the high level of CTL activity may be due to clonal expansions of specific CTL.

In addition to demonstrating a homogeneous response to a viral CTL epitope, our study also provides important information regarding the duration of a specific clonal CTL response. The persistence of activated HIV-1–specific human CTL has not previously been evaluated. A previous study assessing the longevity of virus-specific CTL has involved the adoptive transfer of LCMV-specific CTL in the murine model. In these studies it was shown that donor CD8+ CTL could be recovered up to 9 mo after transfer and still maintain their activity against LCMV in vitro and in vivo (55). These CTL persist despite the absence of antigen in the recipient mice. Our study has allowed us to evaluate the persistence of CTL in a chronic viral infection. The ability of bulk PBMC to
recognize target cells sensitized with gp41/584-592 indicates ongoing in vivo activation of these CTL.

The homogeneous TCR response to an immunodominant epitope may be significant for a number of reasons. It has been suggested that clonal expansion followed by clonal exhaustion due to the continuous stimulation of effector cells may be involved in the diminution of specific CTL responses, as recently demonstrated in a murine model of persistent viral infection (56). Our data provide support for the hypothesis that continuous in vivo stimulation by a chronic viral infection can result in clonal expansion of effector cells. Continued longitudinal study of the TCR repertoire of HIV-1-specific CTL will allow us to address the ultimate fate of these cells. Limited clonal responses to dominant epitopes may also facilitate immune escape, which has been postulated to play a role in disease pathogenesis (57). The homogeneous TCR response directed against this immunodominant epitope may imply that antigenic variation in this region of the virus can more readily lead to escape from immune recognition. Escape from a homogeneous CTL response has been described in LCMV-infected mice transgenic for a single TCR (58), and a later study showed that LCMV-specific CTL clones can select for escape mutants in vitro (59). Two of the envelope-specific CTL described in this report have been evaluated for their ability to recognize peptides with amino acid substitutions representing those found in naturally occurring HIV-1 isolates. Several of these substitutions resulted in complete loss of recognition of this epitope (27). It has also been shown that T cells with distinct TCR, all of which recognize the same epitope, can differ in their fine specificity toward amino acid substitutions (60). It is possible that a broader TCR repertoire for specific epitopes may allow for continued recognition of virus by a subpopulation of CTL despite mutations in CTL epitopes. Studies are in progress to analyze HIV-1 sequence variation in areas of CTL epitopes to address the issue of immune escape from CTL recognition.

In summary, this study provides evidence of a persistent clonal response to a CTL epitope in a chronic viral infection and indicates that the vigorous effector response is mediated by an extremely restricted TCR repertoire. Expanded studies should facilitate the analysis of structural constraints on epitope recognition and, by tracking TCR usage by HIV-1-specific CTL, help to determine whether clonal CTL deletion is a factor in disease pathogenesis.

We thank A. Caliendo and J. Kaplan for critical review of this manuscript, and M. Gately and Hoffmann-La Roche for the gift of rIL-2. Recombinant vaccinia viruses expressing the HIV-1 envelope proteins as well as vaccinia viruses expressing the E. coli β-galactosidase protein were generously provided by Dr. P. Earl, Dr. C. Flexner, Dr. S. Merli, and Dr. B. Moss, National Institutes of Health (NIH), Bethesda, MD.

This research was supported by NIH grants AI-28568, AI-30914, AI-33327, and a Burroughs Wellcome Foundation/Infectious Disease Society of America Young Investigator Award to R. P. Johnson. R. P. Johnson is a Scholar of the American Foundation for AIDS Research. S. Kalams is supported by a National Research Service Award AI-08542-03.

Address correspondence to Dr. Spyros A. Kalams, Gray 5, Infectious Disease Unit, Massachusetts General Hospital, Boston, MA 02114.

Received for publication 9 September 1993 and in revised form 13 December 1993.

References

1. Pantaleo, G., C. Graziosi, and A.S. Fauci. 1993. The immunopathogenesis of human immunodeficiency virus infection. N. Engl. J. Med. 328:327.

2. Walker, B.D., S. Chakrabarti, B. Moss, T.J. Paradis, T. Flynn, A.G. Durno, R.S. Blumberg, J.C. Kaplan, M.S. Hirsch, and R.T. Schooley. 1987. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature (Lond.). 328:345.

3. Plata, F., B. Autran, L.P. Martin, H.S. Wein, M. Raphael, C. Mayaud, M. Denis, J.M. Guilhon, and P. Debre. 1987. AIDS virus-specific cytotoxic T lymphocytes in lung disorders. Nature (Lond.). 328:348.

4. Walker, B.D., C. Flexner, T.J. Paradis, T.C. Fuller, M.S. Hirsch, R.T. Schooley, and B. Moss. 1988. HIV-1 reverse transcriptase is a target for cytotoxic T lymphocytes in infected individuals. Science (Wash. DC). 240:64.

5. Koenig, S., P. Earl, D. Powell, G. Pantaleo, S. Merli, B. Moss, and A.S. Fauci. 1988. Group-specific, major histocompatibility complex class I-restricted cytotoxic responses to human immunodeficiency virus 1 (HIV-1) envelope proteins by cloned peripheral blood T cells from an HIV-1-infected individual. Proc. Natl. Acad. Sci. USA. 85:8638.

6. Koup, R.A., J.L. Sullivan, P.H. Levine, D. Brottter, A. Mahr, G. Mazzara, S. McKenzie, and D. Panicali. 1989. Detection of major histocompatibility complex class I-restricted, HIV-specific cytotoxic T lymphocytes in the blood of infected hemophiliacs. Blood. 73:1909.

7. Riviere, Y., S.F. Banneau, A. Regnault, O. Lopez, P. Sansonetti, B. Guy, M.P. Kienny, J.J. Fournel, and L. Montagnier. 1989. Human immunodeficiency virus-specific cytotoxic responses of seropositive individuals: distinct types of effector cells mediate killing of targets expressing gag and env proteins. J. Virol. 63:2270.

8. Walker, C.M., D.J. Moody, D.P. Stites, and J.A. Levy. 1986. CD8+ lymphocytes can control HIV infection in vitro by
21. Aebischer, T., S. Oehen, and H. Hengartner. 1990. Preferen-

12. Falk, K., O. Kötzhke, K. Deres, J. Metzger, G. Jung, and H.G. Rammensee. 1990. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature (Lond.). 348:252.

10. Kannagi, M., L. Chalifoux, C.I. Lord, and N.L. Letvin. 1988. Suppression of simian immunodeficiency virus replication in vitro by CD8+ lymphocytes. J. Immunol. 140:2237.

14. Chicz, I.M., R.G. Urban, W.S. Lane, J.C. Gorga, L.J. Stern, P. Bjorkman. 1988. T-cell antigen receptor genes restricted by a single major histocompatibility complex molecule. Nature (Lond.). 334:395.

16. Marrack, P., and J. Kappler. 1987. The T cell receptor. Science (Wash. DC). 238:1073.

17. Davis, M., and P. Bjorkman. 1988. T-cell antigen receptor genes restricted by a single major histocompatibility complex molecule. Nature (Lond.). 334:395.

18. Marls, L.A. 1990. The molecular basis of T-cell specificity. Annu. Rev. Immunol. 8:65.

19. Jorgensen, J., P. Reay, E.W. Ehrich, and M.M. Davis. 1992. Molecular components of T cell recognition. Annu. Rev. Immunol. 10:835.

22. Yanagi, Y., R. Maekawa, T. Cook, and M.B. Oldstone. 1990. Restricted V-segment usage in T-cell receptors from cytotoxic T lymphocytes specific for a major epitope of lymphocytic choriomeningitis virus. J. Virol. 64:5919.

23. Yanagi, Y., A. Tishon, H. Lewicki, B. Cubitt, and M. Oldstone. 1992. Diversity of T-cell receptors in virus-specific cytotoxic T lymphocytes recognizing three distinct viral epitopes restricted by a single major histocompatibility complex molecule. J. Virol. 66:2527.

24. Chen, Z.W., H. Yamamoto, D.I. Watkins, G. Levinson, and N.L. Letvin. 1992. Predominant usage of V beta 5.2 and V beta 7.2 in human T-cell receptors specific for a cytoplasmic epitope of lymphocytic choriomeningitis virus. J. Virol. 66:3913.

25. Moss, P.A.H., W.M.C. Rosenberg, S.J. Rowland-Jones, H.C. Bodmer, A.J. McMichael, and J.L. Bell. 1991. Extensive conservation of C beta and C epsilon chains of the human T-cell antigen receptor recognizing epitopes from influenza A matrix peptide. Proc. Natl. Acad. Sci. USA. 88:8987.

26. Bowness, P., P.A.H. Moss, S. Rowland-Jones, J.L. Bell, and A.J. McMichael. 1993. Conservation of T cell receptor usage by HLA B27-restricted influenza-specific cytotoxic T lymphocytes suggests a general pattern for antigen-specific major histocompatibility complex class I-restricted responses. Eur. J. Immunol. 23:1417.

27. Johnson, R.P., A. Trocha, L. Yang, G.P. Mazzara, D.I. Panicali, T.M. Buchanan, and B.D. Walker. 1991. HIV-1 gag-specific cytotoxic T lymphocytes recognize multiple highly conserved epitopes. Fine specificity of the gag-specific response defined by using unstimulated peripheral blood mononuclear cells and cloned effector cells. J. Immunol. 147:1512.

28. Johnson, R.P., A. Trocha, T. Buchanan, and B.D. Walker. 1992. Identification of overlapping HLA class I-restricted cytotoxic T cell epitopes in a conserved region of the human immunodeficiency virus type 1 envelope glycoprotein: definition of minimum epitopes and analysis of the effects of sequence variation. J. Exp. Med. 175:961.

29. Muesing, M., D. Smith, C. Cabradilla, C. Benton, L. Lasley, and D. Capon. 1985. Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature (Lond.). 313:450.

30. Walker, B.D., C. Flexner, L.K. Birch, L. Fisher, T.J. Paradis, A. Aldovini, R. Young, B. Moss, and R.T. Schooley. 1989. Long-term culture and fine specificity of human cytotoxic T lymphocyte clones reactive with human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA. 86:9514.

31. Johnson, R.P., A. Trocha, T. Buchanan, and B.D. Walker. 1993. Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by a HLA-Cw4-restricted cytotoxic T lymphocyte clone. J. Virol. 67:438.

32. Wong, J., and R. Colvin. 1987. Bi-specific monoclonal antibodies: selective binding and complement fixation to cells that express two different surface antigens. J. Immunol. 139:1369.

33. Earl, P.L., S. Koenig, and B. Moss. 1991. Biological and immunological properties of human immunodeficiency virus type 1 envelope glycoprotein: analysis of proteins with truncations and deletions expressed by recombinant vaccinia viruses. J. Virol. 65:31.

34. Walker, B.D. 1990. HIV-1-specific Cytotoxic T Lymphocytes. Techniques in HIV Research. A. Aldovini and B. Walker, editors. Stockton Press, New York. 201.

35. Koup, R.A., C.A. Pikora, K. Luzuriaga, D.B. Brettler, E.S. Day, G.P. Mazzara, and J.L. Sullivan. 1991. Limiting dilution analysis of cytotoxic T lymphocytes to human immunodeficiency virus gag antigens in infected persons; in vitro quantitation of effector cell populations with p17 and p24 specificities. J. Exp. Med. 174:1593.

36. Lefkowitz, I., and H. Waldmann. 1979. Limiting dilution analysis of cells of the immune system. Cambridge University Press, Cambridge, UK. 38.

37. Carmichael, A., X. Jin, P. Sissons, and L. Bo~siewicz. 1993. Quantitative analysis of cells of the immune system. Cambridge University Press, Cambridge, UK. 38.

38. Chomczynski, P., and N. Sacchi. 1987. Single-step RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156.

39. Loh, E.Y., J.F. Elliott, S. Cwirla, L.L. Lanier, and M.M. Davis. 1989. Polymerase chain reaction with single-sided specificity:
41. Kriangkum, J., I. Vainshtein, and J. Elliot. 1992. A reliable method for amplifying cDNA using the anchored-polymerase chain reaction (A-PCR). *Nucleic Acids Res.* 20:3793.

42. Rashitchian, A., G.W. Buchman, D.M. Schuster, and M.S. Beringer. 1992. Uracil DNA glycosylase-mediated cloning of polymerase chain reaction–amplified DNA: application to genomic and cDNA cloning. *Anal. Biochem.* 206:91.

43. Casanova, J.L., C. Pannetier, C. Jaulin, and P. Kourilsky. 1990. Optimal conditions for directly sequencing double-stranded PCR products with sequenase. *Nucleic Acids Res.* 18:4028.

44. Rashtchian, A., G.W. Buchman, D.M. Schuster, and M.S. Ber.

45. Finney, D. 1978. Statistical Method in Biological Assay. Charles Griffin & Co. LTD, London. 371.

46. Dai, L.C., K. West, R. Littaua, K. Takahashi, and E.A. Ennis. 1992. Uracil DNA glycosylase-mediated cloning of double-stranded plasmid DNA. *Biotechniques.* 14:726.

47. Hammond, S.A., E. Obah, P. Stanhope, C.R. Monell, M. Strand, F.M. Robbins, W.B. Bias, R.W. Karr, S. Koenig, and R.F. Siliciano. 1991. Characterization of a conserved T cell epitope in HIV-1 gp41 recognized by vaccine-induced human cytolytic T cells. *J. Immunol.* 146:1470.

48. Gnann, J.W.J., J.A. Nelson, and M.B. Oldstone. 1987. Fine mapping of an immunodominant domain in the transmembrane glycoprotein of human immunodeficiency virus. *J. Virol.* 61:2639.

49. Hochgeschwender, U., H.G. Simon, H.U. Wetzstein, F. Bartels, A. Becker, and J.T. Epplen. 1987. Dominance of one T-cell receptor in the H-2Kb/TNP response. *Nature (Lond.)* 326:307.

50. Hedrick, S.M., I. Engel, D.L. McElligott, P.J. Fink, M.L. Hsu, D. Hansburg, and L.A. Matis. 1988. Selection of amino acid sequences in the beta chain of the T cell antigen receptor. *Science (Wash. DC).* 239:1541.

51. Snodgrass, H.R., A.M. Fisher, E. Bruyns, and B. Bogen. 1992. Restricted alpha/beta receptor gene usage of idotype-specific major histocompatibility complex–restricted T cells: selection for CDR3-related sequences. *Eur. J. Immunol.* 22:2169.

52. Lai, M.Z., Y.J. Jang, L.K. Chen, and M.L. Geffer. 1990. Restricted V(D)-J junctional regions in the T cell response to lambda-repressor. Identification of residues critical for antigen recognition. *J. Immunol.* 144:4851.

53. Danksa, J.S., A.M. Livingstone, V. Paragas, T. Ishihara, and C.G. Fathman. 1990. The presumptive CDR3 regions of both T cell receptor alpha and beta chains determine T cell specificity for myoglobin peptides. *J. Exp. Med.* 172:27.

54. Carbone, F.R., M.W. Moore, J.M. Shell, and M.J. Bevan. 1988. Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. *J. Exp. Med.* 167:1767.

55. Jamieson, B.D., and R. Ahmed. 1989. T cell memory. Long-term persistence of virus-specific cytotoxic T cells. *J. Exp. Med.* 169:1993.

56. Moskophidis, D., F. Lechner, H. Pircher, and R.M. Zinkernagel. 1993. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. *Nature (Lond.)* 362:758.

57. Phillips, R.E., S. Rowland-Jones, D.P. Nixon, F.M. Gotch, J.P. Edwards, A.O. Ogunlesi, J.G. Elvin, J.A. Rothbard, C.R.M. Bangham, C.R. Rizza, and A.J. McMichael. 1991. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. *Nature (Lond.)* 354:453.

58. Pircher, H., D. Moskophidis, U. Rohrer, K. Burki, H. Hengartner, and R.M. Zinkernagel. 1990. Viral escape by selection of cytotoxic T cell–resistant virus variants in vivo. *Nature (Lond.)* 346:629.

59. Aebischer, T., D. Moskophidis, U. Rohrer, R. Zinkernagel, and H. Hengartner. 1991. In vitro selection of lymphocytic choriomeningitis virus escape mutants by cytotoxic T lymphocytes. *Proc. Natl. Acad. Sci. USA.* 88:11047.

60. Martin, R., U. Utz, J.E. Coligan, J.R. Richert, M. Flerlage, E. Robinson, R. Stone, W.E. Biddison, D.E. McFarlin, and H.F. McFarland. 1992. Diversity in fine specificity and T cell receptor usage of the human CD4+ cytotoxic T cell response specific for the immunodominant myelin basic protein peptide 87-106. *J. Immunol.* 148:1359.

61. Panzara, M.A., E. Gussoni, L. Steinman, and J.R. Oksenberg. 1992. Analysis of the T cell repertoire using the PCR and specific oligonucleotide primers. *Biotechniques.* 12:728.

62. Roman-Roman, S., L. Ferradini, J. Azocar, C. Genevee, T. Hercend, and F. Triebel. 1991. Studies on the human T cell receptor alpha/beta variable region genes. I. Identification of 7 additional Valpha subfamilies and 14 Jalpha gene segments. *Eur. J. Immunol.* 21:927.

63. Choi, Y., B. Kotzin, L. Herron, J. Callahan, P. Marrack, and J. Kappler. 1989. Interaction of *Staphylococcus aureus* toxin "superantigens" with human T cells. *Proc. Natl. Acad. Sci. USA.* 86:8941.

64. Yoshikai, Y., S. Clark, S. Taylor, U. Sohn, B. Wilson, M. Minden, and T. Mak. 1985. Organization and sequences of the variable, joining, and constant region genes of the human T-cell receptor alpha chain. *J. Immunol.* 134:106.

65. Wucherpfennig, K.W., K. Ota, H.L. Weiner, and D.A. Hafler. 1990. Shared human T cell receptor Vbeta usage to immunodominant regions of myelin basic protein. *Science (Wash. DC).* 246:1016.

66. Ferradini, L., S. Roman-Roman, J. Azocar, H. Michalaki, F. Triebel, and T. Hercend. 1991. Studies on the human T cell receptor alpha/beta variable region genes. II. Identification of four additional Vbeta subfamilies. *Eur. J. Immunol.* 21:935.

67. Robinson, M. 1991. The human T cell receptor beta-chain gene complex contains at least 57 variable gene segments. Identification of six Vbeta gene families. *J. Immunol.* 146:4392.

68. Toyonaga, B., Y. Hoshikai, Y. Vadasz, B. Chin, and T. Mak. 1985. Organization and sequences of the diversity, joining, and constant region genes of the human T-cell receptor beta chain. *Proc. Natl. Acad. Sci. USA.* 82:8624.

69. Moss, P.A.H., W.M. Rosenberg, J.E. Zintzaras, and J.I. Bell. 1993. Characterization of the human T cell receptor alpha-chain repertoire and demonstration of a genetic influence on Valpha usage. *Eur. J. Immunol.* 23:1153.