Complex anti-self-dual instantons and Cayley submanifolds

Simon Brendle
August 13, 2003

1 Introduction

Let M be a manifold of dimension 8, and let Ω be a 4-form which defines an almost $\text{Spin}(7)$-structure on M. An Ω-anti-self-dual instanton is a connection A on a vector bundle over M such that the curvature F_A satisfies

$$F_A + *(\Omega \wedge F_A) = 0. \quad (1)$$

If M is an almost Calabi-Yau manifold, then the 4-form Ω can be written as

$$\Omega = 4 \text{Re}(\theta) + \frac{1}{2} \omega^2,$$

where $\omega \in \Omega^{1,1}(M)$ denotes the symplectic form and $\theta \in \Omega^{0,4}(M)$ is the complex volume form. The complex volume form induces an anti-linear involution $*_{\theta} : \Omega^{0,2}(M) \to \Omega^{0,2}(M)$. Then the anti-self-duality equation (1) is equivalent to

$$F_A^{1,1} \cdot \omega = 0 \quad (2)$$

and

$$(1 + *_{\theta}) F_A^{0,2} = 0. \quad (3)$$

The space of 2-forms splits as a direct sum

$$\Lambda^2 TM = \Lambda^2_+ TM \oplus \Lambda^2_- TM, \quad (4)$$

where

$$\Lambda^2_+ TM = \{ \varphi \in \Lambda^2 M : 3\varphi - *(\Omega \wedge \varphi) = 0 \} \quad (5)$$

and

$$\Lambda^2_- TM = \{ \varphi \in \Lambda^2 M : \varphi + *(\Omega \wedge \varphi) = 0 \}. \quad (6)$$
Note that $\Lambda^2_+ M$ is a vector space of dimension 7 and $\Lambda^2_-(M)$ is a vector space of dimension 21. Let P_+ and P_- be the projections associated to the splitting (4). This implies

$$P_+ \varphi = \frac{1}{4} (\varphi + *(\Omega \wedge \varphi))$$

and

$$P_- \varphi = \frac{1}{4} (3 \varphi - *(\Omega \wedge \varphi)).$$

We denote by $\Omega^2_+ (M)$ the space of sections of the vector bundle $\Lambda^2_+ TM$. Similarly, $\Omega^2_- (M)$ is the space of sections of the vector bundle $\Lambda^2_- TM$.

If Ω is closed, then the anti-self-duality equation (1) implies the Yang-Mills equation $D^* A F_A = 0$.

The equations (1),(2) generalize the anti-self-dual equations in dimension 4 (see e.g. [7, 23]), and have been studied by various authors, including S. K. Donaldson and R. P. Thomas [8, 26], L. Baulieu, H. Kanno, and I. M. Singer [3], J. Chen [6], and G. Tian [27]. These submanifolds are also of considerable interest in mathematical physics.

G. Tian constructed a compactification of the moduli space of Ω-anti-self-dual instantons over M. He proved that every sequence A_k of Ω-anti-self-dual instantons over M has a subsequence, still denoted by A_k, such that

$$\lim_{k \to \infty} \int_M c_2(A_k) \wedge \psi = \int_M c_2(A_{\infty}) \wedge \psi + \int_S \Theta \psi,$$

where c_2 denotes the 4-form representing the second Chern class of the bundle, and ψ is a smooth 4-form on M. Furthermore, A_{∞} is a Ω-anti-self-dual instanton which is smooth outside a set of vanishing H^4-measure. Furthermore, S is a Cayley submanifold, i.e. a submanifold calibrated by the 4-form Ω. Cayley submanifolds were studied by R. Harvey and H. B. Lawson [9]. There is a rich class of examples. For instance, this class contains as limiting cases the holomorphic subvarieties and the special Lagrangian submanifolds of M. Special Lagrangian submanifolds have been studied extensively, see e.g. [10]. Cayley submanifolds play a role in high-energy physics, see for example [4].

Our aim in this paper is to construct smooth complex anti-self-dual instantons such that the energy density $|F_A|^2$ is concentrated near a given Cayley submanifold S.
In the first step, we construct a suitable family of approximate solutions. To this end, we assume that the normal bundle NS can be endowed with a complex structure J and a complex volume form ω. Each approximate solution is described by a set (v, λ, J, ω), where v is a section of the normal bundle of S, λ is a positive function on S, and (J, ω) is a $SU(2)$-structure on NS. The covariant derivative of the pair (J, ω) can be described by a 1-form θ with values in the Lie algebra $\Lambda^2 NS$.

The covariant derivative of the 4-form Ω can be written in the form

$$\nabla_X \Omega = \sum_{k=1}^{8} i_{e_k} \alpha(X) \wedge i_{e_k} \Omega,$$

where α is a 1-form with values in $\Lambda^2 TM$.

We consider the elliptic complex

$$0 \rightarrow \Omega^0(M) \rightarrow \Omega^1(M) \rightarrow \Omega^2_+(M) \rightarrow 0.$$

The first and the second cohomology groups associated to this elliptic complex are $H^0(M)$ and $H^1(M)$. The third cohomology group is denoted by $H^2_+(M)$.

Theorem 1.1. Suppose that $H^2_+(M) = 0$. Then, for each $\varepsilon > 0$, there exists a mapping Ξ_ε which assigns to each set of glueing data $(v, \lambda, J, \omega) \in C^{2,\gamma}(S)$ a section of the vector bundle $V \oplus W$ of class $C^{\gamma}(S)$ such that the following holds.

(i) If (v, λ, J, ω) is a set of glueing data such that

$$\|v\|_{C^{1,\gamma}(S)} \leq K,$$
$$\|\lambda\|_{C^{1,\gamma}(S)} \leq K, \quad \inf \lambda \geq 1,$$
$$\|(J, \omega)\|_{C^{1,\gamma}(S)} \leq K,$$

then we have the estimate

$$\left\| \Xi_\varepsilon(v, \lambda, J, \omega) \right\|_{C^{1,\gamma}(S)} \leq C \varepsilon^{\frac{1}{32}}.$$
(ii) If $\Xi_\varepsilon(v, \lambda, J, \omega) = 0$, then the approximate solution A corresponding to (v, λ, J, ω) can be deformed to a nearby connection \tilde{A} satisfying $F_{\tilde{A}} + *(\Omega \wedge F_{\tilde{A}}) = 0$.

In Section 2, we study the mapping properties of a model operator on \mathbb{R}^8.

In Section 3, we construct a family of approximate solutions of the Yang-Mills equations. More precisely, given any set of gluing data (v, λ, J, ω) satisfying
\[
\|v\|_{C^{1,\gamma}(S)} \leq K, \\
\|\lambda\|_{C^{1,\gamma}(S)} \leq K, \quad \inf \lambda \geq 1, \\
\|(J, \omega)\|_{C^{1,\gamma}(S)} \leq K,
\]
we construct a connection A such that
\[
\|F_A + *(\Omega \wedge F_A)\|_{C^{\gamma}_3(M)} \leq C \varepsilon^2.
\]
Here, the weighted Hölder space $C^{\gamma}_\nu(M)$ is defined as
\[
\|u\|_{C^{\gamma}_\nu(M)} = \sup (\varepsilon + \text{dist}(p, S))^{\nu} |u(p)| \\
\quad + \sup_{4\text{dist}(p_1, p_2) \leq \varepsilon + \text{dist}(p_1, S) + \text{dist}(p_2, S)} (\varepsilon + \text{dist}(p_1, S) + \text{dist}(p_2, S))^{\nu + \gamma} \frac{|u(p_1) - u(p_2)|}{\text{dist}(p_1, p_2)^\gamma}.
\]

In Section 4, we derive estimates for the linearized operator which are independent of ε.

In Section 5, we apply the contraction mapping principle to deform the approximate solution A to a nearby connection $\tilde{A} = A + a$ such that
\[
(I - P)(F_{\tilde{A}} + *(\Omega \wedge F_{\tilde{A}})) = 0,
\]
where $(I - P)$ is the fibrewise projection from $C^{\gamma}_\nu(M)$ to the subspace $G^{\gamma}_\nu(M)$.

In particular, if the balancing condition
\[
P(F_{\tilde{A}} + *(\Omega \wedge F_{\tilde{A}})) = 0
\]
is satisfied, then \tilde{A} is an Ω-anti-self-dual instanton.

In Section 6, we calculate the leading term in the asymptotic expansion of
\[
P(F_{\tilde{A}} + *(\Omega \wedge F_{\tilde{A}})) = 0.
\]
This concludes the proof of Theorem 1.1.

The author is grateful to Professor Gerhard Huisken and Professor Gang Tian for discussions.
2 The model problem on \mathbb{R}^8

The $\text{Spin}(7)$-structure on \mathbb{R}^8 is given by

$$\Omega = -e_1 \wedge e_2 \wedge e_1^+ \wedge e_2^+ - e_1 \wedge e_2 \wedge e_3^+ \wedge e_4^+ - e_3 \wedge e_4 \wedge e_1^+ \wedge e_2^+
- e_3 \wedge e_4 \wedge e_3^+ \wedge e_4^+ + e_1 \wedge e_3 \wedge e_2^+ \wedge e_4^+ - e_1 \wedge e_3 \wedge e_1^+ \wedge e_3^+
- e_2 \wedge e_4 \wedge e_2^+ \wedge e_3^+ + e_2 \wedge e_4 \wedge e_1^+ \wedge e_3^+ - e_1 \wedge e_4 \wedge e_2^+ \wedge e_3^+
- e_1 \wedge e_4 \wedge e_1^+ \wedge e_4^+ - e_2 \wedge e_3 \wedge e_2^+ \wedge e_3^+ - e_2 \wedge e_3 \wedge e_1^+ \wedge e_4^+
+ e_1 \wedge e_2 \wedge e_3 \wedge e_4 + e_1^+ \wedge e_2^+ \wedge e_3^+ \wedge e_4^+.$$

Hence, the 2-forms

$$e_1 \wedge e_2 + e_3 \wedge e_4 - e_1^+ \wedge e_2^+ - e_3^+ \wedge e_4^+,\,$$
$$e_1 \wedge e_3 - e_2 \wedge e_4 - e_1^+ \wedge e_3^+ + e_2^+ \wedge e_4^+,
$$
$$e_1 \wedge e_4 + e_2 \wedge e_3 - e_1^+ \wedge e_4^+ - e_2^+ \wedge e_3^,+\,$$
$$e_1 \wedge e_1^+ + e_2 \wedge e_2^+ + e_3 \wedge e_3^+ + e_4 \wedge e_4^+,$$
$$e_1 \wedge e_2^+ - e_2 \wedge e_1^+ - e_3 \wedge e_4^+ + e_4 \wedge e_3^+,$$
$$e_1 \wedge e_3^+ + e_2 \wedge e_4^+ - e_3 \wedge e_1^+ - e_4 \wedge e_2^+,\,$$
$$e_1 \wedge e_4^+ - e_2 \wedge e_3^+ + e_3 \wedge e_2^+ - e_4 \wedge e_1^+$$

form a basis for $\Lambda^2_+ \mathbb{R}^8$.

Let now E be a Cayley subspace of \mathbb{R}^8, i.e. a subspace calibrated by Ω. The group $\text{Spin}(7)$ acts transitively on the set of Cayley subspaces and leaves the 4-form Ω invariant (cf. [7]). Hence, we may assume without loss of generality that E is spanned by $\{e_i^+ : 1 \leq i \leq 4\}$ and E^\perp is spanned by $\{e_i^: : 1 \leq i \leq 4\}$.

We define two vector spaces $V \subset E \otimes E^\perp$ and $W \subset E \otimes E^\perp \otimes E^\perp$ over the submanifold S. The following elements form a basis for V:

$$e_1 \otimes e_1^+ + e_2 \otimes e_2^+ + e_3 \otimes e_3^+ + e_4 \otimes e_4^+,\,$$
$$e_1 \otimes e_2^+ - e_2 \otimes e_1^+ - e_3 \otimes e_4^+ + e_4 \otimes e_3^+,$$
$$e_1 \otimes e_3^+ + e_2 \otimes e_4^+ - e_3 \otimes e_1^+ - e_4 \otimes e_2^+,$$
$$e_1 \otimes e_4^+ - e_2 \otimes e_3^+ + e_3 \otimes e_2^+ - e_4 \otimes e_1^+.$$

The following elements form a basis for W:

$$e_1 \otimes (e_1^+ \otimes e_1^+ + e_2^+ \otimes e_2^+ + e_3^+ \otimes e_3^+ + e_4^+ \otimes e_4^+)
+ e_2 \otimes (e_2^+ \otimes e_1^+ - e_1^+ \otimes e_2^+ + e_4^+ \otimes e_3^+ - e_3^+ \otimes e_4^+),\,$$
$$e_3 \otimes (e_3^+ \otimes e_1^+ - e_4^+ \otimes e_2^+ - e_1^+ \otimes e_3^+ + e_2^+ \otimes e_4^+),\,$$
$$e_4 \otimes (e_4^+ \otimes e_1^+ + e_3^+ \otimes e_2^+ - e_2^+ \otimes e_3^+ - e_1^+ \otimes e_4^+).$$
agrees with the basic instanton along E

The adjoint operator L
The linearized operator B

$B e = L e - e e^\perp$

\begin{align*}
e_1 \otimes (e_1^+ + e_4^+ - e_1^+ e_1^+ - e_4^+ e_2^+ + e_4^+ e_3^+ - e_3^+ e_4^+) \\
- e_2 \otimes (e_4^+ + e_4^+ e_2^+ + e_3^+ e_3^+ e_4^+ e_4^+) \\
- e_3 \otimes (e_1^+ e_1^+ + e_3^+ e_2^+ - e_2^+ e_3^+ - e_1^+ e_4^+) \\
+ e_4 \otimes (e_3^+ e_1^+ - e_1^+ e_2^+ - e_1^+ e_3^+ + e_2^+ e_4^+) \\

&= e_1 \otimes (e_3^+ e_1^+ - e_4^+ e_2^+ - e_1^+ e_3^+ + e_2^+ e_4^+) \\
+ e_2 \otimes (e_4^+ e_1^+ + e_3^+ e_2^+ - e_2^+ e_3^+ - e_1^+ e_4^+) \\
- e_3 \otimes (e_1^+ e_1^+ + e_3^+ e_2^+ + e_3^+ e_3^+ + e_4^+ e_1^+) \\
- e_4 \otimes (e_2^+ e_1^+ - e_1^+ e_2^+ + e_4^+ e_3^+ - e_3^+ e_4^+),
\end{align*}

\begin{align*}
e_1 \otimes (e_4^+ e_1^+ + e_3^+ e_2^+ - e_1^+ e_3^+ + e_2^+ e_4^+) \\
- e_2 \otimes (e_4^+ e_1^+ - e_4^+ e_2^+ - e_1^+ e_3^+ + e_2^+ e_4^+) \\
+ e_3 \otimes (e_2^+ e_1^+ - e_1^+ e_2^+ + e_4^+ e_3^+ - e_3^+ e_4^+) \\
- e_4 \otimes (e_1^+ e_1^+ + e_2^+ e_2^+ + e_3^+ e_3^+ + e_4^+ e_4^+).
\end{align*}

Let B be a connection which is invariant under translations along E and agrees with the basic instanton along E^\perp. More precisely, we define

\begin{align*}
B(e_1^+) &= \frac{-y_2 i - y_3 j - y_4 \ell}{\varepsilon^2 + |y|^2} \\
B(e_2^+) &= \frac{y_1 i - y_4 j + y_3 \ell}{\varepsilon^2 + |y|^2} \\
B(e_3^+) &= \frac{y_1 i + y_4 j - y_2 \ell}{\varepsilon^2 + |y|^2} \\
B(e_4^+) &= \frac{-y_3 i + y_2 j + y_1 \ell}{\varepsilon^2 + |y|^2},
\end{align*}

where

\begin{align*}
i(e_1^+) &= -e_2^+, \quad i(e_2^+) = e_1^+, \quad i(e_3^+) = e_4^+, \quad i(e_4^+) = -e_3^+, \\
j(e_1^+) &= -e_3^+, \quad j(e_2^+) = -e_4^+, \quad j(e_3^+) = e_1^+, \quad j(e_4^+) = e_2^+, \\
\kappa(e_1^+) &= -e_1^+, \quad \kappa(e_2^+) = e_3^+, \quad \kappa(e_3^+) = -e_2^+, \quad \kappa(e_4^+) = e_1^+.
\end{align*}

Furthermore, $B(e_i) = 0$ for $1 \leq i \leq 4$.

The linearized operator $L_B : \Omega^1(\mathbb{R}^8) \rightarrow \Omega^2_+(\mathbb{R}^8)$ is given by

$L_B a = 2 P a D_B a.$

The adjoint operator $L_B^* : \Omega^2_+(\mathbb{R}^8) \rightarrow \Omega^1(\mathbb{R}^8)$ is given by

$L_B^* \varphi = 2 D_B^* \varphi.$
We define the weighted Hölder space $C^\gamma_\nu(R^8)$ by
\[
\|u\|_{C^\gamma_\nu(R^8)} = \sup (\varepsilon + |y|)^\nu |u(x,y)| + \sup_{4(|x_1-x_2|+|y_1-y_2|) \leq \varepsilon + |y_1|+|y_2|} (\varepsilon + |y_1| + |y_2|)^{\nu+\gamma} \frac{|u(x_1,y_1)-u(x_2,y_2)|}{(|x_1-x_2|+|y_1-y_2|)^\gamma}.
\]

More generally, we define
\[
\|u\|_{C^k,\gamma_\nu(R^8)} = \sum_{l=0}^k \|\nabla^l u\|_{C^\gamma_\nu(R^8)}.\]

Let $G^{\nu,\gamma}(R^8)$ be the set of all $\varphi \in \Omega^2_+(R^8)$ such that $\varphi \in C^{k,\gamma_\nu}(R^8)$, and
\[
\int_{x+E^\perp} \sum_{i,j=1}^4 (\varepsilon s_{ik} + t_{ikl} y_l) \langle \varphi(e_i, e_\perp^j), F_B(e^\perp_k, e^\perp_j) \rangle = 0
\]
for all $x \in E$, $s \in V$, and $t \in W$.

We first derive a Weitzenböck formula for the operator $L_B L^*_B : \Omega^2_+(R^8) \to \Omega^2_+(R^8)$. We shall need two algebraic facts which can be verified by direct calculation. For simplicity, let $e_5 = e^\perp_1$, $e_6 = e^\perp_2$, $e_7 = e^\perp_3$, $e_8 = e^\perp_4$.

Lemma 2.1. For every $\varphi \in \Lambda^2_+ \mathbb{R}^8$, we have
\[
2 P_+ (e_k \wedge (i_{e_1} \varphi) + e_l \wedge (i_{e_k} \varphi)) = \delta_{kl} \varphi.
\]

Lemma 2.2. For every $\varphi \in \Lambda^2_+ \mathbb{R}^8$, we have
\[
\sum_{k,l=1}^8 e_k \wedge [F_B(e_k, e_l), i_{e_l} \varphi] \in \Lambda^2_+ \mathbb{R}^8.
\]

Proposition 2.3. The operator $L_B L^*_B$ satisfies the Weitzenböck formula
\[
L_B L^*_B \varphi = \nabla_B^2 \varphi - 2 \sum_{k,l=1}^4 e^\perp_k \wedge [F_B(e^\perp_k, e^\perp_l), i_{e^\perp_l} \varphi]
\]
for every $\varphi \in \Omega^2_+(R^8)$.

7
Proof. For every \(\varphi \in \Omega^2_+ (\mathbb{R}^8) \), we obtain

\[
4 D_B D_B^* \varphi = -4 \sum_{k,l=1}^8 e_k \wedge (i_{e_l} D_B e_k D_B e_l \varphi)
\]

\[
= -2 \sum_{k,l=1}^8 (e_k \wedge (i_{e_l} D_B e_k D_B e_l \varphi) + e_l \wedge (i_{e_k} D_B e_k D_B e_l \varphi))
\]

\[
- 2 \sum_{k,l=1}^8 e_k \wedge (i_{e_l} (D_B e_k D_B e_l \varphi - D_B e_l D_B e_k \varphi))
\]

\[
= -2 \sum_{k,l=1}^8 (e_k \wedge (i_{e_l} D_B e_k D_B e_l \varphi) + e_l \wedge (i_{e_k} D_B e_k D_B e_l \varphi))
\]

\[
- 2 \sum_{k,l=1}^8 e_k \wedge [F_B(e_k, e_l), i_{e_l} \varphi].
\]

Since \(\varphi \in \Omega^2_+ (\mathbb{R}^8) \) and \(\Omega \) is parallel, it follows that \(D_B e_k D_B e_l \varphi \in \Omega^2_+ (\mathbb{R}^8) \). Using Lemma 2.1, we obtain

\[
2 P_+(e_k \wedge (i_{e_l} D_B e_k D_B e_l \varphi) + e_l \wedge (i_{e_k} D_B e_k D_B e_l \varphi)) = \delta_{kl} D_B e_k D_B e_l \varphi.
\]

From this it follows that

\[
4 P_+ D_B D_B^* \varphi = \nabla_B^* \nabla_B \varphi - 2 \sum_{k,l=1}^8 P_+(e_k \wedge [F_B(e_k, e_l), i_{e_l} \varphi]).
\]

Moreover, Lemma 2.2 implies that

\[
\sum_{k,l=1}^8 e_k \wedge [F_B(e_k, e_l), i_{e_l} \varphi] \in \Omega^2_+ (\mathbb{R}^8).
\]

Thus, we conclude that

\[
4 P_+ D_B D_B^* \varphi = \nabla_B^* \nabla_B \varphi - 2 \sum_{k,l=1}^8 e_k \wedge [F_B(e_k, e_l), i_{e_l} \varphi].
\]

This proves the assertion.

Proposition 2.4. Suppose that \(\psi \in G^{\gamma}_{3+\nu}(\mathbb{R}^8) \) has compact support. Then there exists some \(\varphi \in G^{2,\gamma}_{1+\nu}(\mathbb{R}^8) \) such that

\[
\| \varphi \|_{C^{2,\gamma}_{1+\nu}(\mathbb{R}^8)} \leq C \| \psi \|_{C^{\gamma}_{3+\nu}(\mathbb{R}^8)}
\]

and

\[
L_B L_B^* \varphi = \psi.
\]
Proof. Since $\psi \in \Omega^2_+(\mathbb{R}^8)$, we may write
\[
\psi = (e_1 \wedge e_2 + e_3 \wedge e_4 - e_1^+ \wedge e_2^+ - e_3^+ \wedge e_4^+) \otimes g_2 \\
+ (e_1 \wedge e_3 - e_2 \wedge e_4 - e_1^+ \wedge e_3^+ + e_2^+ \wedge e_4^+) \otimes g_3 \\
+ (e_1 \wedge e_4 + e_2 \wedge e_3 - e_1^+ \wedge e_4^+ - e_2^+ \wedge e_3^+) \otimes g_4 \\
+ (e_1 \wedge e_1^+ + e_2 \wedge e_2^+ + e_3 \wedge e_3^+ + e_4 \wedge e_4^+) \otimes g_5^+ \\
+ (e_1 \wedge e_2^+ - e_2 \wedge e_1^+ - e_3 \wedge e_4^+ + e_4 \wedge e_3^+) \otimes g_6^+ \\
+ (e_1 \wedge e_3^+ + e_2 \wedge e_4^+ - e_3 \wedge e_1^+ - e_4 \wedge e_2^+) \otimes g_7^+ \\
+ (e_1 \wedge e_4^+ - e_2 \wedge e_3^+ + e_3 \wedge e_2^+ - e_4 \wedge e_1^+) \otimes g_8^+,
\]
where $g_j, g_j^+ \in C^7_{3+\nu}(\mathbb{R}^8)$. Furthermore, since $\psi \in G^7_{3+\nu}(\mathbb{R}^8)$, we deduce that
\[
\int_{x+\mathbb{E}^+} \sum_{j=1}^4 \langle g_j^+, F_B(X, e_j^+) \rangle = 0
\]
for all $x \in \mathbb{E}$ and all vector fields of the form
\[
X = \varepsilon w_k e_k^+ + \mu y_k e_k^+ + r_{kl} y_l e_k^+.
\]
Using Corollary 3.6 in \[5\], we can find $f_j, f_j^+ \in C^2_{3+\nu}(\mathbb{R}^8)$ such that
\[
\nabla_B \nabla_B f_j = g_j
\]
and
\[
\nabla_B^* \nabla_B f_j^+ - 2 \sum_{k=1}^4 [F_B(e_k^+, e_k^+), f_k^+] = g_j^+
\]
and
\[
\int_{x+\mathbb{E}^+} \sum_{j=1}^4 \langle f_j^+, F_B(X, e_j^+) \rangle = 0
\]
for all $x \in \mathbb{E}$ and all vector fields of the form
\[
X = \varepsilon w_k e_k^+ + \mu y_k e_k^+ + r_{kl} y_l e_k^+.
\]
We now define
\[
\varphi = (e_1 \wedge e_2 + e_3 \wedge e_4 - e_1^+ \wedge e_2^+ - e_3^+ \wedge e_4^+) \otimes f_2 \\
+ (e_1 \wedge e_3 - e_2 \wedge e_4 - e_1^+ \wedge e_3^+ + e_2^+ \wedge e_4^+) \otimes f_3 \\
+ (e_1 \wedge e_4 + e_2 \wedge e_3 - e_1^+ \wedge e_4^+ - e_2^+ \wedge e_3^+) \otimes f_4 \\
+ (e_1 \wedge e_1^+ + e_2 \wedge e_2^+ + e_3 \wedge e_3^+ + e_4 \wedge e_4^+) \otimes f_5^+ \\
+ (e_1 \wedge e_2^+ - e_2 \wedge e_1^+ - e_3 \wedge e_4^+ + e_4 \wedge e_3^+) \otimes f_6^+ \\
+ (e_1 \wedge e_3^+ + e_2 \wedge e_4^+ - e_3 \wedge e_1^+ - e_4 \wedge e_2^+) \otimes f_7^+ \\
+ (e_1 \wedge e_4^+ - e_2 \wedge e_3^+ + e_3 \wedge e_2^+ - e_4 \wedge e_1^+) \otimes f_8^+.
\]
Then \(\varphi \in G^{2,\gamma}_{1+\nu}(\mathbb{R}^8) \), and

\[L_B L^*_B \varphi = \psi \]

by Proposition 2.3. This proves the assertion.

Corollary 2.5. Suppose that \(\psi \in G^{2,\gamma}_{3+\nu}(\mathbb{R}^8) \) has compact support. Then there exists a 1-form \(a \in C^{1,\gamma}_{2+\nu}(\mathbb{R}^8) \) such that

\[\| a \|_{C^{1,\gamma}_{2+\nu}(\mathbb{R}^8)} \leq C \| \psi \|_{C^{3,\gamma}_{3+\nu}(\mathbb{R}^8)} \]

and

\[L_B a = \psi. \]

Proof. By Proposition 2.4, there exists some \(\varphi \in G^{2,\gamma}_{1+\nu}(\mathbb{R}^8) \) such that

\[\| \varphi \|_{C^{2,\gamma}_{1+\nu}(\mathbb{R}^8)} \leq C \| \psi \|_{C^{3,\gamma}_{3+\nu}(\mathbb{R}^8)} \]

and

\[L_B L^*_B \varphi = \psi. \]

Let \(a = L^*_B \varphi \). Then \(a \in C^{1,\gamma}_{2+\nu}(\mathbb{R}^8) \) satisfies

\[\| a \|_{C^{1,\gamma}_{2+\nu}(\mathbb{R}^8)} \leq C \| \psi \|_{C^{3,\gamma}_{3+\nu}(\mathbb{R}^8)} \]

and

\[L_B a = \psi. \]

This proves the assertion.

Proposition 2.6. Let \(0 < \nu < 1 \). Suppose that \(\psi \in G^{3,\gamma}_{3+\nu}(\mathbb{R}^8) \) is supported in the set \(\{(x, y) \in \mathbb{R}^8 : |x| \leq \delta, |y| \leq 2\delta^4\} \). Then there exists a 1-form \(a \in C^{1,\gamma}_{2+\nu}(\mathbb{R}^8) \) such that \(a \) is supported in \(\{(x, y) \in \mathbb{R}^8 : |x| \leq 2\delta, |y| \leq 2\delta^2\} \),

\[\| a \|_{C^{1,\gamma}_{2+\nu}(\mathbb{R}^8)} \leq C \| \psi \|_{C^{3,\gamma}_{3+\nu}(\mathbb{R}^8)} \]

and

\[\| L_B a - \psi \|_{C^{3,\gamma}_{3+\nu}(\{(x, y) \in \mathbb{R}^8 : |y| \leq 2\delta^4\})} \leq C \delta \| \psi \|_{C^{3,\gamma}_{3+\nu}(\mathbb{R}^8)}, \]

and

\[\| L_B a - \psi \|_{C^{3,\gamma}_{3+\nu}(\mathbb{R}^8)} \leq C | \log \delta |^{-1} \| \psi \|_{C^{3,\gamma}_{3+\nu}(\mathbb{R}^8)}. \]
Proof. By Corollary 2.5, there exists a 1-form \(a \in C^{1,\gamma}_{2+\nu}(\mathbb{R}^8) \) such that
\[
\|a\|_{C^{1,\gamma}_{2+\nu}(\mathbb{R}^8)} \leq C \|\psi\|_{C^{\gamma,\nu}_{3+\nu}(\mathbb{R}^8)}
\]
and
\[
\mathbb{L}_B a = \psi.
\]
Let \(\zeta \) be a cut-off function on \(E \) such that \(\zeta(x) = 1 \) for \(|x| \leq \delta \), \(\zeta(x) = 0 \) for \(|x| \geq 2\delta \), and
\[
\sup \delta |\nabla \zeta| \leq C.
\]
Furthermore, let \(\eta \) be a cut-off function on \(E^\perp \) satisfying \(\eta(y) = 1 \) for \(|y| \leq 2\delta^4 \), \(\eta(y) = 0 \) for \(|y| \geq 2\delta^2 \), and
\[
\sup \frac{|y|}{|\nabla \eta|} \leq C |\log \delta|^{-1}.
\]
Then we have the estimates
\[
\|\eta \zeta a\|_{C^{1,\gamma}_{2+\nu}(\mathbb{R}^8)} \leq C \|\psi\|_{C^{\gamma,\nu}_{3+\nu}(\mathbb{R}^8)}
\]
and
\[
\|\mathbb{L}_B(\zeta a) - \psi\|_{C^{\gamma}_{3+\nu}(\{(x,y)\in\mathbb{R}^8:|y|\leq 2\delta^4\})}
\]
\[=
\|\mathbb{L}_B(\zeta a) - \zeta \mathbb{L}_B a\|_{C^{\gamma}_{3+\nu}(\{(x,y)\in\mathbb{R}^8:|y|\leq 2\delta^4\})}
\]
\[\leq C \delta \|a\|_{C^{\gamma}_{3+\nu}(\mathbb{R}^8)}
\]
\[\leq C \delta \|\psi\|_{C^{\gamma}_{3+\nu}(\mathbb{R}^8)}
\]
and
\[
\|\mathbb{L}_B(\eta \zeta a) - \psi\|_{C^{\gamma}_{3+\nu}(\mathbb{R}^8)}
\]
\[=
\|\mathbb{L}_B(\eta \zeta a) - \eta \zeta \mathbb{L}_B a\|_{C^{\gamma}_{3+\nu}(\mathbb{R}^8)}
\]
\[\leq C \|\log \delta|^{-1} \|a\|_{C^{\gamma}_{3+\nu}(\mathbb{R}^8)}
\]
\[\leq C \|\log \delta|^{-1} \|\psi\|_{C^{\gamma}_{3+\nu}(\mathbb{R}^8)}.
\]
From this the assertion follows.

3 Construction of the approximate solutions

In this section, we outline the construction of a certain class of approximate solutions. To this end, we assume that the normal bundle \(NS \) can be endowed with a \(SU(2) \)-structure \((J, \omega) \). Here, \(J \) is a complex structure and \(\omega \)
is a complex volume form on NS.

Let $\nabla' = \nabla + \theta$ be a connection on the normal bundle NS such that θ is a 1-form with values in the Lie algebra $\Lambda^2 NS$ and (J, ω) is parallel with respect to the connection ∇'. The 1-form θ is uniquely determined by the covariant derivative of the pair (J, ω) with respect to the Levi-Civita connection ∇. Since (J, ω) is parallel with respect to ∇', the connection induced by ∇' on the bundle $\Lambda^2 NS$ is flat.

The connection ∇' induces a splitting of the tangent space TNS into horizontal and vertical subspaces. Let $\{e'_i : 1 \leq i \leq 4\}$ be an orthonormal basis for the horizontal subspace with respect to ∇', and let $\{e^+_j : 1 \leq j \leq 4\}$ be a $SU(2)$ basis for the vertical subspace.

In the first step, we define a connection on the pull-back bundle $\pi^* NS$ of the normal bundle under the natural projection $\pi : NS \to S$. Since we may identify a neighborhood of S in M with a neighborhood of the zero section in NS, this gives a connection on a small neighborhood of S in M. In the second step, we show that this connection can be extended to the whole of M using suitable cut-off functions.

The glueing data consist of a set (v, λ, J, ω), where v is a section of the normal bundle NS, λ is a positive function on S, and (J, ω) is a $SU(2)$ structure on the normal bundle NS. Let $\{i, j, k\}$ be a basis for the Lie algebra $su(NS)$ such that

\[
\begin{align*}
 i(e^+_1) &= -e^+_2, & i(e^+_2) &= e^+_1, & i(e^+_3) &= e^+_4, & i(e^+_4) &= -e^+_3, \\
 j(e^+_1) &= -e^+_3, & j(e^+_2) &= -e^+_4, & j(e^+_3) &= e^+_1, & j(e^+_4) &= e^+_2, \\
 k(e^+_1) &= -e^+_4, & k(e^+_2) &= e^+_3, & k(e^+_3) &= -e^+_2, & k(e^+_4) &= e^+_1.
\end{align*}
\]

We consider a connection of the form $D_A = \nabla' + A$. The vertical components of A are defined by

\[
\begin{align*}
 A(e^+_1) &= \frac{-(y - ev)_2 i - (y - ev)_3 j - (y - ev)_4 k}{\varepsilon^2 \lambda^2 + |y - ev|^2}, \\
 A(e^+_2) &= \frac{(y - ev)_1 i - (y - ev)_4 j + (y - ev)_3 k}{\varepsilon^2 \lambda^2 + |y - ev|^2}, \\
 A(e^+_3) &= \frac{(y - ev)_4 i + (y - ev)_1 j - (y - ev)_2 k}{\varepsilon^2 \lambda^2 + |y - ev|^2}, \\
 A(e^+_4) &= \frac{-(y - ev)_3 i + (y - ev)_2 j + (y - ev)_1 k}{\varepsilon^2 \lambda^2 + |y - ev|^2}.
\end{align*}
\]

Since the basic instanton on \mathbb{R}^4 is $SU(2)$-equivariant, this definition is independent of the choice of $SU(2)$-frame $\{e^+_j : 1 \leq j \leq 4\}$. Furthermore, the
horizontal components of \(A \) are defined by
\[
A(e_i') = -\epsilon \nabla_i' v_k A(e_k^\perp) - \lambda^{-1} \nabla_i \lambda \left((y - \epsilon v)_k \right) A(e_k^\perp)
\]
for \(1 \leq i \leq 4 \).

Lemma 3.1. The curvature of \(A \) is given by
\[
F_A(e_i', e_j^\perp) = -\left(\epsilon \nabla_i' v_k + \lambda^{-1} \nabla_i \lambda \left((y - \epsilon v)_k \right) \right) F_A(e_k^\perp, e_j^\perp)
\]
and
\[
F_A(e_i', e_j') = \left(\epsilon \nabla_i' v_k + \lambda^{-1} \nabla_i \lambda \left((y - \epsilon v)_k \right) \right)
\cdot \left(\epsilon \nabla_j' v_l + \lambda^{-1} \nabla_j \lambda \left((y - \epsilon v)_l \right) \right) F_A(e_k^\perp, e_l^\perp)
\]
\[
+ C_{ij} + A(C_{ij} (y - \epsilon v)),
\]
where \(C_{ij} \in \Lambda^2_{NS} \) is the curvature of the connection \(\nabla' \).

If \(\{e_i : 1 \leq i \leq 4 \} \) is an orthonormal basis for the horizontal subspace with respect to the Levi-Civita connection \(\nabla \), then we obtain the following result:

Lemma 3.2. The curvature of \(A \) satisfies
\[
F_A(e_i, e_j^\perp) = -\left(\epsilon \nabla_i v_k + \lambda^{-1} \nabla_i \lambda \left((y - \epsilon v)_k \right) + \theta_{i,kl} (y - \epsilon v)_l \right) F_A(e_k^\perp, e_j^\perp)
\]
and
\[
F_A(e_i, e_j') = \left(\epsilon \nabla_i v_k + \lambda^{-1} \nabla_i \lambda \left((y - \epsilon v)_k \right) + \theta_{i,km} (y - \epsilon v)_m \right)
\cdot \left(\epsilon \nabla_j v_l + \lambda^{-1} \nabla_j \lambda \left((y - \epsilon v)_l \right) + \theta_{j,ln} (y - \epsilon v)_n \right) F_A(e_k^\perp, e_l^\perp)
\]
\[
+ C_{ij} + A(C_{ij} (y - \epsilon v)),
\]
where \(C_{ij} \in \Lambda^2_{NS} \) is the curvature of \(\nabla' \).

Lemma 3.3. Suppose that \(\mu \) is constant and \(r \) is a section of the vector bundle \(\Lambda^2_{NS} \) such that \(\nabla' r = 0 \). Let
\[
u = (\epsilon^2 \lambda^2 + |y - \epsilon v|^2)^{-\frac{1}{2}} \left(\mu (y - \epsilon v)_k + r_{kl} (y - \epsilon v)_l \right) e_k^\perp.
\]
Then the covariant derivative of \(\nu \) satisfies the estimate
\[
\|D_A \nu\|_{C^2(\mathcal{M})} \leq C \epsilon^2.
\]
Hence, as we move away from the submanifold S, the connection A approaches a flat connection. Therefore, we can extend A trivially to M.

Our aim is to derive estimates for $F_A + *(\Omega \wedge F_A)$ in $C^*_3(M)$. To this end, we assume that the glueing data (v, λ, J, ω) satisfy the estimates

\[\|v\|_{C^{1,5}(M)(S)} \leq K, \]
\[\|\lambda\|_{C^{1,5}(M)(S)} \leq K, \quad \inf \lambda \geq 1, \]
\[\|(J, \omega)\|_{C^{1,5}(M)(S)} \leq K \]

for some $K > 0$. All implicit constants will depend on K.

Proposition 3.4. If the set (v, λ, J, ω) is admissible, then we have the estimate

\[\|F_A + *(\Omega \wedge F_A)\|_{C^*_3(M)} \leq C \varepsilon^2. \]

Proof. Let Ω_0 be a 4-form which defines an almost $Spin(7)$-structure on M such that $\Omega(x) = \Omega_0(x)$ for all $x \in S$ and $\nabla_X \Omega(x) = 0$ for all $x \in S$ and $X \in NS_x$. Then we have the estimate

\[
\begin{align*}
\|F_A + *(\Omega_0 \wedge F_A)\|_{C^*_3(M)} & \leq \|F_A(e_1, e_2) + F_A(e_3, e_4) - F_A(e_1^+, e_2^+) - F_A(e_3^+, e_4^+)\|_{C^*_3(M)} \\
& + \|F_A(e_1, e_3) - F_A(e_2, e_4) - F_A(e_1^+, e_3^+) + F_A(e_2^+, e_4^+)\|_{C^*_3(M)} \\
& + \|F_A(e_1, e_4) + F_A(e_2, e_3) - F_A(e_1^+, e_4^+) - F_A(e_2^+, e_3^+)\|_{C^*_3(M)} \\
& + \|F_A(e_1, e_1^+) + F_A(e_2, e_2^+) + F_A(e_3, e_3^+) + F_A(e_4, e_4^+)\|_{C^*_3(M)} \\
& + \|F_A(e_1, e_2^+ - F_A(e_2, e_1^+) - F_A(e_3, e_4^+ + F_A(e_4, e_3^+)\|_{C^*_3(M)} \\
& + \|F_A(e_1, e_3^+) + F_A(e_2, e_4^+) - F_A(e_3, e_1^+) - F_A(e_4, e_2^+)\|_{C^*_3(M)} \\
& + \|F_A(e_1, e_4^+) - F_A(e_2, e_3^+) + F_A(e_3, e_2^+) - F_A(e_4, e_1^+)\|_{C^*_3(M)} \\
& \leq C \varepsilon^2.
\end{align*}
\]

Using the identities

\[
\begin{align*}
F_A(e_1^+, e_2^+) + F_A(e_3^+, e_4^+) &= 0 \\
F_A(e_1^+, e_3^+) + F_A(e_4^+, e_2^+) &= 0 \\
F_A(e_1^+, e_4^+) + F_A(e_2^+, e_3^+) &= 0,
\end{align*}
\]

we obtain

\[\|F_A + *(\Omega_0 \wedge F_A)\|_{C^*_3(M)} \leq C \varepsilon^2. \]

Since $\Omega = \Omega_0 + O(|y|)$, we conclude that

\[\|F_A + *(\Omega \wedge F_A)\|_{C^*_3(M)} \leq \|F_A + *(\Omega_0 \wedge F_A)\|_{C^*_3(M)} + \|F_A\|_{C^*_3(M)} \leq C \varepsilon^2. \]
4 Estimates for the linearized operator in weighted H"{o}lder spaces

Our aim in this section is to analyze the mapping properties of the linearized operator \(L_A : \Omega^1(M) \to \Omega^2_+(M) \).

As in Section 2, we define two vector bundles \(V \subset TS \otimes NS \) and \(W \subset TS \otimes NS \otimes NS \) over the submanifold \(S \). Both vector bundles have rank 4. The following elements form a basis for \(V \):

\[
e_1 \otimes e_1^+ + e_2 \otimes e_2^+ + e_3 \otimes e_3^+ + e_4 \otimes e_4^+, \\
e_1 \otimes e_2^+ - e_2 \otimes e_1^+ - e_3 \otimes e_4^+ + e_4 \otimes e_3^+, \\
e_1 \otimes e_3^+ + e_2 \otimes e_4^+ - e_3 \otimes e_1^+ - e_4 \otimes e_2^+, \\
e_1 \otimes e_4^+ - e_2 \otimes e_3^+ + e_3 \otimes e_2^+ - e_4 \otimes e_1^+.
\]

Similarly, the following elements form a basis for \(W \):

\[
e_1 \otimes (e_1^+ \otimes e_1^+ + e_2^+ \otimes e_2^+ + e_3^+ \otimes e_3^+ + e_4^+ \otimes e_4^+) \\
+ e_2 \otimes (e_2^+ \otimes e_1^+ - e_1^+ \otimes e_2^+ + e_4^+ \otimes e_3^+ - e_3^+ \otimes e_4^+) \\
+ e_3 \otimes (e_3^+ \otimes e_1^+ - e_4^+ \otimes e_2^+ - e_2^+ \otimes e_3^+ + e_3^+ \otimes e_4^+) \\
+ e_4 \otimes (e_4^+ \otimes e_1^+ + e_3^+ \otimes e_2^+ - e_2^+ \otimes e_3^+ - e_1^+ \otimes e_4^+) ,
\]

\[
e_1 \otimes (e_2^+ \otimes e_1^+ - e_1^+ \otimes e_2^+ + e_4^+ \otimes e_3^+ - e_3^+ \otimes e_4^+) \\
- e_2 \otimes (e_1^+ \otimes e_1^+ + e_2^+ \otimes e_2^+ + e_3^+ \otimes e_3^+ + e_4^+ \otimes e_4^+) \\
- e_3 \otimes (e_1^+ \otimes e_1^+ + e_3^+ \otimes e_2^+ - e_2^+ \otimes e_3^+ - e_1^+ \otimes e_4^+) \\
+ e_4 \otimes (e_3^+ \otimes e_1^+ - e_4^+ \otimes e_2^+ - e_1^+ \otimes e_3^+ + e_2^+ \otimes e_4^+) ,
\]

\[
e_1 \otimes (e_3^+ \otimes e_1^+ - e_4^+ \otimes e_2^+ - e_1^+ \otimes e_3^+ + e_2^+ \otimes e_4^+) \\
+ e_2 \otimes (e_4^+ \otimes e_1^+ + e_3^+ \otimes e_2^+ - e_2^+ \otimes e_3^+ - e_1^+ \otimes e_4^+) \\
- e_3 \otimes (e_1^+ \otimes e_1^+ + e_2^+ \otimes e_2^+ + e_3^+ \otimes e_3^+ + e_4^+ \otimes e_4^+) \\
- e_4 \otimes (e_2^+ \otimes e_1^+ - e_1^+ \otimes e_2^+ + e_4^+ \otimes e_3^+ - e_3^+ \otimes e_4^+) ,
\]

\[
e_1 \otimes (e_4^+ \otimes e_1^+ + e_3^+ \otimes e_2^+ - e_2^+ \otimes e_3^+ - e_1^+ \otimes e_4^+) \\
- e_2 \otimes (e_3^+ \otimes e_1^+ - e_4^+ \otimes e_2^+ - e_1^+ \otimes e_3^+ + e_2^+ \otimes e_4^+) \\
+ e_3 \otimes (e_2^+ \otimes e_1^+ - e_1^+ \otimes e_2^+ + e_4^+ \otimes e_3^+ - e_3^+ \otimes e_4^+) \\
- e_4 \otimes (e_1^+ \otimes e_1^+ + e_2^+ \otimes e_2^+ + e_3^+ \otimes e_3^+ + e_4^+ \otimes e_4^+) .
\]
Proposition 4.1. Suppose that $\psi \in C^\gamma_{3+\nu}(M)$ is supported in the set $\{ p \in M : \text{dist}(p, S) \leq 2\delta^4 \}$ and satisfies

$$\int_{NS} \sum_{i,j=1}^{4} \left(\varepsilon s_{ik} + t_{ikl} (y - \varepsilon v) t \right) \langle \psi(e_i, e_j), F_A(e_k, e_l) \rangle = 0$$

for all $x \in S$, $s \in V_x$, and $t \in W_x$. Then there exists an 1-form $a \in C^1_{2+\nu}(M)$ which is supported in the region $\{ p \in M : \text{dist}(p, S) \leq 2\delta^2 \}$ such that

$$\| a \|_{C^1_{2+\nu}(M)} \leq C \| \psi \|_{C^\gamma_{3+\nu}(M)}$$

and

$$\| L_Aa - \psi \|_{C^\gamma_{3+\nu}(\{ p \in M : \text{dist}(p, S) \leq 2\delta^4 \})} \leq C \delta \| \psi \|_{C^\gamma_{3+\nu}(M)},$$

and

$$\| L_Aa - \psi \|_{C^\gamma_{3+\nu}(M)} \leq C | \log \delta |^{-1} \| \psi \|_{C^\gamma_{3+\nu}(M)}.$$

Proof. Let $\{ \zeta^{(j)} : 1 \leq j \leq j_0 \}$ be a partition of unity on S such that each function $\zeta^{(j)}$ is supported in a ball $B\delta(p_j)$, and

$$| \{ 1 \leq j \leq j_0 : x \in B_{4\delta}(p_j) \} | \leq C$$

for all $x \in S$ and some uniform constant C. For each $1 \leq j \leq j_0$, there exists a 1-form $a^{(j)} \in C^1_{2+\nu}(M)$ which is supported in the region $\{ (x, y) \in NS : x \in B_{2\delta}(p_j), |y| \leq 2\delta^2 \}$ such that

$$\| a^{(j)} \|_{C^1_{2+\nu}(M)} \leq C \| \zeta^{(j)} \psi \|_{C^\gamma_{3+\nu}(M)}$$

and

$$\| L_Aa^{(j)} - \zeta^{(j)} \psi \|_{C^\gamma_{3+\nu}(\{ p \in M : \text{dist}(p, S) \leq 2\delta^4 \})} \leq C \delta \| \zeta^{(j)} \psi \|_{C^\gamma_{3+\nu}(M)},$$

and

$$\| L_Aa^{(j)} - \zeta^{(j)} \psi \|_{C^\gamma_{3+\nu}(M)} \leq C | \log \delta |^{-1} \| \zeta^{(j)} \psi \|_{C^\gamma_{3+\nu}(M)}.$$

We now define

$$a = \sum_{j=1}^{j_0} a^{(j)}.$$

Then we have the estimates

$$\| a \|_{C^1_{2+\nu}(M)} \leq C \sup_{1 \leq j \leq j_0} \| a^{(j)} \|_{C^1_{2+\nu}(M)}$$

$$\leq C \sup_{1 \leq j \leq j_0} \| \zeta^{(j)} \psi \|_{C^\gamma_{3+\nu}(M)}$$

$$\leq C \| \psi \|_{C^\gamma_{3+\nu}(M)}.$$
\[
\|L\partial a - \psi\|_{C_{3+\nu}^\gamma(M)} \leq C \delta \sup_{1 \leq j \leq j_0} \|\zeta(j)\psi\|_{C_{3+\nu}^\gamma(M)} \\
\leq C \delta \|\psi\|_{C_{3+\nu}^\gamma(M)},
\]

This proves the assertion.

Proposition 4.2. For every \(\Omega\)-self-dual 2-form \(\psi \in C_{3+\nu}^\gamma(M)\), there exists a 1-form \(a \in C_{2+\nu}^1(M)\) such that

\[
\|a\|_{C_{2+\nu}^1(M)} \leq C \|\psi\|_{C_{3+\nu}^\gamma(M)}
\]

and

\[P_+ da = \psi.\]

Proof. We consider the elliptic operator \(P_+ dd^* : \Omega^2_+ (M) \to \Omega^2_+ (M)\). Its kernel is given by

\[
\ker(P_+ dd^* : \Omega^2_+ (M) \to \Omega^2_+ (M)) = H^2_+ (M).
\]

Since the cohomology group \(H^2_+ (M)\) vanishes, the operator \(P_+ dd^* : \Omega^2_+ (M) \to \Omega^2_+ (M)\) is invertible. Consequently, there exists a \(\Omega\)-self-dual 2-form \(\varphi\) such that

\[P_+ dd^* \varphi = \psi.\]

We claim that

\[
\|\varphi\|_{C_{3+\nu}^\gamma(M)} \leq C \|P_+ dd^* \varphi\|_{C_{3+\nu}^\gamma(M)}.
\]

By Schauder estimates, it suffices to show that

\[
\sup (\varepsilon + \operatorname{dist}(p, S))^{1+\nu} |\varphi| \leq C \sup (\varepsilon + \operatorname{dist}(p, S))^{3+\nu} |P_+ dd^* \varphi|.
\]

If this estimate fails, then there exists a sequence of positive real numbers \(\varepsilon_j\) and a sequence of \(\Omega\)-self-dual 2-forms \(\varphi^{(j)} \in C_{3+\nu}^\gamma(M)\) such that

\[
\sup (\varepsilon_j + \operatorname{dist}(p, S))^{1+\nu} |\varphi^{(j)}| = 1
\]
and
\[\sup (\varepsilon_j + \text{dist}(p, S))^{3+\nu} |P_+ dd^* \varphi^{(j)}| \to 0. \]

Then there exists a sequence of points \(p_j \in M \) such that
\[\sup (\varepsilon_j + \text{dist}(p_j, S))^{1+\nu} |\varphi^{(j)}(p_j)| \geq \frac{1}{2}. \]

There are two possibilities:

(i) Suppose that \(\text{dist}(p_j, S) \) is bounded from below. After passing to a subsequence, we may assume that the sequence \(\varphi^{(j)} \) converges to a \(\Omega \)-self-dual 2-form \(\varphi \in \Omega_+^2(M) \) such that
\[\sup \text{dist}(p, S)^{1+\nu} |\varphi| \geq 1 \]
and
\[P_+ dd^* \varphi = 0. \]

From this it follows that \(\varphi \) is smooth. Since the operator \(P_+ dd^* : \Omega_+^2(M) \to \Omega_+^2(M) \) has trivial kernel, it follows that \(\varphi = 0 \). This is a contradiction.

(ii) We now assume that \(\text{dist}(p_j, S) \to 0 \). After rescaling and taking the limit, we obtain a \(\Omega \)-self-dual 2-form \(\tilde{\varphi} \in \Omega_+^2(\mathbb{R}^8) \) such that
\[\sup |y|^{1+\nu} |\tilde{\varphi}| \leq 1 \]
and
\[P_+ dd^* \tilde{\varphi} = 0. \]

Thus, we conclude that \(\tilde{\varphi} = 0 \). This is a contradiction.

This implies
\[\|\varphi\|_{C^{2+\gamma}_{3+\nu}(M)} \leq C \|\psi\|_{C_{3+\nu}(M)}. \]

Letting \(a = d^* \varphi \), the assertion follows.

Proposition 4.3. Suppose that \(\psi \in C_{3+\nu}^1(M) \) is supported in the region \(\{p \in M : \text{dist}(p, S) \geq \delta^4 \} \). Then there exists a 1-form \(a \in C^{1+\gamma}_{2+\nu}(M) \) which is supported in the region \(\{p \in M : \text{dist}(p, S) \geq \delta^8 \} \) such that
\[\|a\|_{C^{1+\gamma}_{2+\nu}(M)} \leq C \|\psi\|_{C_{3+\nu}(M)} \]
and
\[\| LAa - \psi\|_{C_{3+\nu}^1(M)} \leq C \left(|\log \delta|^{-1} + \delta^{-16} \varepsilon^2 \right) \|\psi\|_{C_{3+\nu}^1(M)}. \]
Proof. By Proposition 4.2, exists a 1-form a such that
\[\|a\|_{C_{2+\nu}^1(M)} \leq C \|\psi\|_{C_{3+\nu}^\gamma(M)} \]
and
\[2P_+ da = \psi. \]
Let η be a cut-off function such that $\eta(p) = 0$ for $\text{dist}(p, S) \leq \delta^8$, $\eta(p) = 1$ for $\text{dist}(p, S) \geq \delta^4$ and
\[\sup \text{dist}(p, S) |\nabla \eta| \leq C |\log \delta|^{-1}. \]
Then the 1-form ηa is supported in the region \{ $p \in M : \text{dist}(p, S) \geq \delta^8$ \} and satisfies
\[\|L_A(\eta a) - \psi\|_{C_{3+\nu}^\gamma(M)} \leq 2 \|P_+ D_A(\eta a) - \eta P_+ da\|_{C_{3+\nu}^\gamma(M)} \]
\[\leq 2 \|P_+ D_A(\eta a) - P_+ d(\eta a)\|_{C_{3+\nu}^\gamma(M)} + 2 \|P_+ d(\eta a) - \eta P_+ da\|_{C_{3+\nu}^\gamma(M)} \]
\[\leq C \delta^{-16} \varepsilon^2 \|a\|_{C_{3+\nu}^\gamma(M)} + C |\log \delta|^{-1} \|a\|_{C_{2+\nu}^\gamma(M)} \]
\[\leq C \delta^{-16} \varepsilon^2 \|\psi\|_{C_{3+\nu}^\gamma(M)} + C |\log \delta|^{-1} \|\psi\|_{C_{3+\nu}^\gamma(M)}. \]
This proves the assertion.

In the following, we will choose $\delta = \varepsilon^{\frac{1}{16}}$. Let κ be a cut-off function such that $\kappa(p) = 1$ for $\text{dist}(p, S) \leq \varepsilon^{\frac{1}{4}}$ and $\kappa(p) = 0$ for $\text{dist}(p, S) \geq 2 \varepsilon^{\frac{1}{4}}$.

Let $\mathcal{G}_K^{k,\gamma}(M)$ be the set of all $\psi \in \Omega^2_+(M)$ such that $\psi \in \mathcal{C}_K^{k,\gamma}(M)$ and
\[\int_{NSx} \kappa \sum_{i,j=1}^4 (\varepsilon s_{ik} + t_{ikl} (y - \varepsilon v)_l) \langle \psi(e_i, e^+_j), F_A(e_k^+, e_j^+) \rangle = 0 \]
for all $x \in S$, $s \in V_x$, and $t \in W_x$.

We denote by $I - P$ the fibrewise projection from $\mathcal{C}_K^\gamma(M)$ to the subspace $\mathcal{G}_0^0(M)$. Hence, if ψ is an Ω-self-dual 2-form, then the projection $P\psi$ is of the form
\[P\psi(e_i, e^+_j) = \kappa (\varepsilon s_{ik} + t_{ikl} (y - \varepsilon v)_l) F_A(e_k^+, e_j^+) \]
for suitable $s \in V$ and $t \in W$. Let Π be the linear operator which assigns to every Ω-self-dual 2-form ψ the pair
\[\Pi \psi = (s, t) \in V \oplus W. \]
We shall need the following estimate for the operator norm of the projection operator P.

19
Proposition 4.4. For every Ω-self-dual 2-form $\psi \in C^\gamma_{3+\nu}(M)$, we have the estimates
\[
\|\Pi \psi\|_{C^\gamma(S)} \leq C \epsilon^{-2-\nu-\gamma} \|\psi\|_{C^\gamma_{3+\nu}(M)}
\]
and
\[
\|\mathcal{P} \psi\|_{C^\gamma_{3+\nu}(M)} \leq C \epsilon^{-\nu-\gamma} \|\psi\|_{C^\gamma_{3+\nu}(M)}.
\]

Proof. This follows from [5], Proposition 5.4.

Proposition 4.5. For every $\psi \in G^\gamma_{3+\nu}(M)$ there exists a 1-form $a \in C^{1,\gamma}_{2+\nu}(M)$ such that
\[
\|a\|_{C^{1,\gamma}_{2+\nu}(M)} \leq C \|\psi\|_{C^\gamma_{3+\nu}(M)}
\]
and
\[
\|\mathcal{L}_A a - \psi\|_{C^\gamma_{3+\nu}(\{p \in M : \text{dist}(p, S) \leq \epsilon^{\frac{1}{2}}\})} \leq C \epsilon^{\frac{1}{16}} \|\psi\|_{C^\gamma_{3+\nu}(M)},
\]
and
\[
\|\mathcal{L}_A a - \psi\|_{C^\gamma_{3+\nu}(M)} \leq C |\log \epsilon|^{-1} \|\psi\|_{C^\gamma_{3+\nu}(M)}.
\]

Proof. Apply Proposition 4.1 to $\kappa \psi$ and Proposition 4.3 to $(1-\kappa) \psi$.

Proposition 4.6. For every $\psi \in G^\gamma_{3+\nu}(M)$ there exists a 1-form $a \in C^{1,\gamma}_{2+\nu}(M)$ such that
\[
\|a\|_{C^{1,\gamma}_{2+\nu}(M)} \leq C \|\psi\|_{C^\gamma_{3+\nu}(M)}
\]
and
\[
(I - \mathcal{P}) \mathcal{L}_A a = \psi.
\]
Furthermore, a satisfies the estimate
\[
\|\Pi \mathcal{L}_A a\|_{C^\gamma(S)} \leq C \epsilon^{-2+\frac{\nu}{2}} \|\psi\|_{C^\gamma_{3+\nu}(M)}.
\]

Proof. By Proposition 4.5, there exists an operator $\mathcal{S} : G^\gamma_{3+\nu}(M) \to C^{1,\gamma}_{2+\nu}(M)$ such that
\[
\|\mathcal{S}\psi\|_{C^{1,\gamma}_{2+\nu}(M)} \leq C \|\psi\|_{C^\gamma_{3+\nu}(M)}
\]
and
\[
\|\mathcal{L}_A \mathcal{S}\psi - \psi\|_{C^\gamma_{3+\nu}(\{p \in M : \text{dist}(p, S) \leq \epsilon^{\frac{1}{2}}\})} \leq C \epsilon^{\frac{1}{16}} \|\psi\|_{C^\gamma_{3+\nu}(M)},
\]

20
and
\[\| L_A S \psi - \psi \|_{C_{3+\nu}^\gamma(M)} \leq C |\log \epsilon|^{-1} \| \psi \|_{C_{3+\nu}^\gamma(M)}. \]

This implies
\[\| \Pi L_A S \psi \|_{C^\gamma(S)} = \| \Pi (L_A S \psi - \psi) \|_{C^\gamma(S)} \leq C \epsilon^{-2+\frac{1}{16}-\nu-\gamma} \| \psi \|_{C_{3+\nu}^\gamma(M)}. \]

From this it follows that
\[\| (I - P) L_A S \psi - \psi \|_{C_{3+\nu}^\gamma(M)} \leq C |\log \epsilon|^{-1} \| \psi \|_{C_{3+\nu}^\gamma(M)}. \]

Therefore, the operator \((I - P) L_A S : \mathcal{G}_{3+\nu}^\gamma(M) \to \mathcal{G}_{3+\nu}^\gamma(M)\) is invertible.

Hence, if we define
\[a = S [(I - P) L_A S]^{-1} \psi, \]
then \(a\) satisfies\n\[\| a \|_{C_{2+\nu}^{1,\gamma}(M)} \leq C \| \psi \|_{C_{3+\nu}^\gamma(M)} \]

and
\[(I - P) L_A a = \psi. \]

This proves the assertion.

\section{The nonlinear problem}

\textbf{Proposition 5.1.} For every approximate solution \(A\), there exists a nearby connection \(\tilde{A} = A + a\) such that
\[\| a \|_{C_{3+\nu}^{1,\gamma}(M)} \leq C \epsilon^{2-\nu-\gamma} \]

and
\[(I - P) (F_{\tilde{A}} + *(\Omega \wedge F_{\tilde{A}})) = 0. \]

Furthermore, \(a\) satisfies the estimate
\[\| \Pi L_A a \|_{C^\gamma(S)} \leq C \epsilon^{\frac{1}{12}}. \]

\textbf{Proof.} The connection \(\tilde{A} = A + a\) satisfies
\[F_{\tilde{A}} + *(\Omega \wedge F_{\tilde{A}}) = F_A + *(\Omega \wedge F_A) + D_A a + *(\Omega \wedge D_A a) + [a, a] + *(\Omega \wedge [a, a]). \]
This implies
\[F_A + *(\Omega \wedge F_A) = F_A + *(\Omega \wedge F_A) + 2 \mathbb{L}_A a + [a, a] + *(\Omega \wedge [a, a]). \]

According to Proposition 4.6, there exists an operator \(G : \mathcal{G}_{3+\nu}(M) \to C_{2+\nu}(M) \) such that

\[
\|G\psi\|_{C_{2+\nu}^1(M)} \leq C \|\psi\|_{C_{3+\nu}^1(M)}
\]

and

\[
(I - \mathbb{P}) \mathbb{L}_A G = I.
\]

We now define a mapping \(\Phi : C_{2+\nu}^1(M) \to C_{2+\nu}^1(M) \) by

\[
\Phi(a) = -\frac{1}{2} G (I - \mathbb{P}) (F_A + *(\Omega \wedge F_A)) - \frac{1}{2} G (I - \mathbb{P}) ([a, a] + *(\Omega \wedge [a, a])).
\]

Then we have the estimate

\[
\|\Phi(a)\|_{C_{2+\nu}^1(M)} \leq C \|I - \mathbb{P}\| \|F_A + *(\Omega \wedge F_A)\|_{C_{3+\nu}^1(M)} + C \|I - \mathbb{P}\| \|[a, a] + *(\Omega \wedge [a, a])\|_{C_{3+\nu}^1(M)}
\]

\[
\leq C \varepsilon^{-\nu-\gamma} \|F_A + *(\Omega \wedge F_A)\|_{C_{3+\nu}^1(M)} + C \varepsilon^{-\nu-\gamma} \|[a, a]\|_{C_{3+\nu}^1(M)}
\]

\[
\leq C \varepsilon^{-\nu-\gamma} \|F_A + *(\Omega \wedge F_A)\|_{C_{3+\nu}^1(M)} + C \varepsilon^{-1-2\nu-\gamma} \|a\|^2_{C_{2+\nu}^1(M)}
\]

\[
\leq C \varepsilon^{2-\nu-\gamma}
\]

for all \(a \in C_{2+\nu}^1(M) \) satisfying

\[
\|a\|_{C_{2+\nu}^{1,\gamma}} \leq \varepsilon^{-\frac{\gamma}{4}}.
\]

Moreover, we have

\[
\|\Phi(a) - \Phi(a')\|_{C_{1+\nu}^2(M)} \leq C \varepsilon^{-\nu-\gamma} \|[a, a] - [a', a']\|_{C_{3+\nu}^1(M)}
\]

\[
\leq C \varepsilon^{\frac{3}{4}-2\nu-\gamma} \|a - a'\|_{C_{1+\nu}^2(M)}
\]

for all \(a, a' \in C_{2+\nu}^1(M) \) satisfying

\[
\|a\|_{C_{2+\nu}^{1,\gamma}} \leq \varepsilon^{-\frac{\gamma}{4}}, \quad \|a'\|_{C_{2+\nu}^{1,\gamma}} \leq \varepsilon^{-\frac{\gamma}{4}}.
\]

Hence, it follows from the contraction mapping principle that there exists a 1-form \(a \in C_{2+\nu}^{1,\gamma}(M) \) such that

\[
\|a\|_{C_{2+\nu}^{1,\gamma}(M)} \leq C \varepsilon^{2-\nu-\gamma}
\]
and
\[\Phi(a) = a. \]

From this it follows that
\[G(I - P)(F_A + *(\Omega \wedge F_A)) + 2a + G(I - P)([a, a] + *(\Omega \wedge [a, a])) = 0, \]
hence
\[(I - P)(F_A + *(\Omega \wedge F_A)) + 2(I - P)\bar{L}_Aa + (I - P)([a, a] + *(\Omega \wedge [a, a])) = 0. \]
Thus, we conclude that
\[(I - P)(F_{\tilde{A}} + *(\Omega \wedge F_{\tilde{A}})) = 0. \]

This proves the assertion.

Corollary 5.2. If \(\tilde{A} \) satisfies
\[\mathbb{P}(F_{\tilde{A}} + *(\Omega \wedge F_{\tilde{A}})) = 0, \]
then \(\tilde{A} \) is an \(\Omega \)-anti-self-dual instanton, i.e.
\[F_{\tilde{A}} + *(\Omega \wedge F_{\tilde{A}}) = 0. \]

6 The balancing condition

By Corollary 5.2, the problem is reduced to finding a set of glueing data \((v, \lambda, J, \omega)\) such that
\[\mathbb{P}(F_{\tilde{A}} + *(\Omega \wedge F_{\tilde{A}})) = 0. \]

Our aim in this section is to derive a formula for the error term
\[\mathbb{P}(F_{\tilde{A}} + *(\Omega \wedge F_{\tilde{A}})). \]

Proposition 6.1. The curvature of \(A \) satisfies
\[\Pi(F_A + *(\Omega_0 \wedge F_A)) = 4 \left(\text{proj}_V \left(\sum_{i,j=1}^{4} \nabla_i v_k e_i \otimes e_k^\perp \right) \right), \]
\[\text{proj}_W \left(\sum_{i,k,l=1}^{4} (\lambda^{-1} \nabla_i \lambda \delta_{kl} + \theta_{i,kl}) e_i \otimes e_k^\perp \otimes e_l^\perp \right). \]
Proof. This is a consequence of the identity
\[F_A(e_i, e_j^\perp) = - (\varepsilon \nabla_i v_k + \lambda^{-1} \nabla_i \lambda (y - \varepsilon v)_k + \theta_{i,kl} (y - \varepsilon v)_l) F_A(e_k^\perp, e_j^\perp). \]

The covariant derivative of \(\Omega \) can be described by a 1-form \(\alpha \) with values in \(\Lambda_2^+ TM \). For every vector field \(X \in TM \), we write
\[\nabla_X \Omega = \sum_{k=1}^{8} i_{e_k} \alpha(X) \land i_{e_k} \Omega, \]
where \(\alpha(X) \in \Lambda_2^+ TM \). From this it follows that
\[\Omega = \Omega_0 + \sum_{k=1}^{8} i_{e_k} \alpha(y) \land i_{e_k} \Omega_0 + O(|y|^2), \]
where \(\alpha(y) \in \Lambda_2^+ TM \).

Proposition 6.2. The curvature of \(A \) satisfies
\[\left\| \Pi(F_A + *(\Omega \land F_A)) \right\| \leq C \varepsilon. \]

Proof. Using the identity
\[\Omega - \Omega_0 - \sum_{k=1}^{8} i_{e_k} \alpha(y) \land i_{e_k} \Omega_0 = O(|y|^2), \]
we obtain
\[\left\| \Omega \land F_A - \Omega_0 \land F_A - \sum_{k=1}^{8} i_{e_k} \alpha(y) \land i_{e_k} \Omega_0 \land F_A \right\|_{C^2(S)} \leq C \varepsilon^2. \]

This implies
\[\left\| \Omega \land F_A - \Omega_0 \land F_A + \sum_{k=1}^{8} i_{e_k} \alpha(y) \land i_{e_k} (\Omega_0 \land F_A) \right. \]
\[- \left. \Omega_0 \land \sum_{k=1}^{8} i_{e_k} \alpha(y) \land i_{e_k} F_A \right\|_{C^2(M)} \leq C \varepsilon^2, \]

24
hence
\[\left\| - \left(\Omega \wedge \sum_{k=1}^{8} i_{e_k} \alpha(y) \wedge i_{e_k} F_A \right) \right\|_{C^2(M)} ^* \leq C \varepsilon^2. \]

Therefore, we obtain
\[\left\| (F_A + \ast(\Omega \wedge F_A)) - (F_A + \ast(\Omega_0 \wedge F_A)) + \sum_{k=1}^{8} i_{e_k} \alpha(y) \wedge i_{e_k} (F_A + \ast(\Omega_0 \wedge F_A)) \right\|_{C^2(M)} \leq C \varepsilon^2. \]

According to Proposition 3.4, we have
\[\| F_A + \ast(\Omega_0 \wedge F_A) \|_{C^2(M)} \leq C \varepsilon^2, \]

hence
\[\left\| \sum_{k=1}^{8} i_{e_k} \alpha(y) \wedge i_{e_k} (F_A + \ast(\Omega_0 \wedge F_A)) \right\|_{C^2(M)} \leq C \varepsilon^2. \]

Moreover, we have
\[3 \sum_{k=1}^{8} i_{e_k} \alpha(y) \wedge i_{e_k} F_A - \ast \left(\Omega_0 \wedge \sum_{k=1}^{8} i_{e_k} \alpha(y) \wedge i_{e_k} F_A \right) = 0. \]

Thus, we conclude that
\[\left\| (F_A + \ast(\Omega \wedge F_A)) - (F_A + \ast(\Omega_0 \wedge F_A)) - 4 \sum_{k=1}^{8} i_{e_k} \alpha(y) \wedge i_{e_k} F_A \right\|_{C^2(M)} \leq C \varepsilon^2. \]

The assertion follows now from Proposition 6.1.

Proposition 6.3. The curvature of \tilde{A} satisfies
\[\left\| \Pi(F_{\tilde{A}} + \ast(\Omega \wedge F_{\tilde{A}})) \right\|_{C^2(S)} \leq C \varepsilon. \]
Proof. Using the estimate
\[\|a\|_{C^1_{2\nu}(M)} \leq C \varepsilon^{2-\nu-\gamma}, \]
we obtain
\[\|\Pi([a,a] + *(\Omega \wedge [a,a]))\|_{C^\gamma(S)} \leq C \varepsilon^{-2-\nu-\gamma} \|a\|_{C^1_{2\nu}(M)} \]
\[\leq C \varepsilon^{-3-2\nu-\gamma} \|a\|_{C^1_{2\nu}(M)}^2 \]
\[\leq C \varepsilon^{1-4\nu-3\gamma}. \]
Moreover, we have
\[\|\Pi L_A a\|_{C^\gamma(S)} \leq C \varepsilon^{1-\frac{1}{2\nu}}. \]
Hence, the assertion follows from Proposition 6.2.

Proof of Theorem 1.1. Let
\[\Xi_\varepsilon(v,\lambda,J,\omega) = \Pi(F_\tilde{A} + *(\Omega \wedge F_\tilde{A})). \]
The first part of Theorem 1.1 follows from Proposition 5.2, the second part from Proposition 6.3.

7 Discussion

In this final section, we show how the first order balancing condition derived in this paper is related to the second order balancing condition in [6]. To this end, we assume that \(\Omega \) is parallel. Then the Riemann curvature tensor of \(M \) belongs to \(\Lambda^2 TM \otimes \Lambda^2 TM \). Since \(S \) is a Cayley submanifold, the second fundamental form of \(S \) satisfies
\[h(e_k,e_1,e_1^+) + h(e_k,e_2,e_2^+) + h(e_k,e_3,e_3^+) + h(e_k,e_4,e_4^+) = 0 \]
\[h(e_k,e_1,e_2^+) - h(e_k,e_2,e_1^+) - h(e_k,e_3,e_4^+) + h(e_k,e_4,e_3^+) = 0 \]
\[h(e_k,e_1,e_3^+) + h(e_k,e_2,e_4^+) - h(e_k,e_3,e_1^+) - h(e_k,e_4,e_2^+) = 0 \]
\[h(e_k,e_1,e_4^+) - h(e_k,e_2,e_3^+) - h(e_k,e_3,e_2^+) + h(e_k,e_4,e_1^+) = 0. \]
We denote the curvature of the normal bundle \(NS \) by \(E \). Using the Gauss equations, we obtain
\[E(e_i,e_j,e_k^+,e_l^+) = R(e_i,e_j,e_k^+,e_l^+) \]
\[- \sum_{m=1}^{4} h(e_m,e_i,e_k^+) h(e_m,e_j,e_l^+) + h(e_m,e_i,e_l^+) h(e_m,e_j,e_k^+). \]
Since $\nabla \Omega = 0$, the first part of the balancing condition becomes

$$\begin{align*}
\nabla v_1 + \nabla v_2 + \nabla v_3 + \nabla v_4 &= 0 \\
\nabla v_2 - \nabla v_1 - \nabla v_4 + \nabla v_3 &= 0 \\
\nabla v_3 + \nabla v_4 - \nabla v_1 - \nabla v_2 &= 0 \\
\nabla v_4 - \nabla v_3 + \nabla v_2 - \nabla v_1 &= 0.
\end{align*}$$

This implies

$$\begin{align*}
0 &= \Delta v_1 \\
&+ \nabla_1 \nabla_2 v_2 - \nabla_1 \nabla_3 v_3 + \nabla_2 \nabla_3 v_2 - \nabla_3 \nabla_2 v_3 \\
&+ \nabla_1 \nabla_3 v_4 - \nabla_2 \nabla_4 v_3 + \nabla_3 \nabla_4 v_2 - \nabla_4 \nabla_3 v_4 \\
&+ \nabla_2 \nabla_4 v_3 - \nabla_1 \nabla_3 v_4 + \nabla_4 \nabla_3 v_2 - \nabla_3 \nabla_2 v_4 \\
0 &= \Delta v_2 \\
&- \nabla_1 \nabla_2 v_1 + \nabla_1 \nabla_3 v_2 - \nabla_1 \nabla_4 v_3 + \nabla_2 \nabla_4 v_3 \\
&- \nabla_1 \nabla_3 v_4 + \nabla_2 \nabla_4 v_3 + \nabla_4 \nabla_3 v_2 \\
&+ \nabla_2 \nabla_4 v_3 - \nabla_1 \nabla_3 v_4 + \nabla_4 \nabla_3 v_2 \\
0 &= \Delta v_3 \\
&+ \nabla_1 \nabla_2 v_4 - \nabla_2 \nabla_3 v_1 + \nabla_3 \nabla_4 v_3 \\
&- \nabla_1 \nabla_3 v_4 + \nabla_4 \nabla_2 v_3 + \nabla_3 \nabla_2 v_1 \\
0 &= \Delta v_4 \\
&- \nabla_1 \nabla_2 v_3 + \nabla_2 \nabla_3 v_1 - \nabla_2 \nabla_4 v_3 + \nabla_3 \nabla_2 v_1.
\end{align*}$$

From this it follows that

$$\begin{align*}
0 &= \Delta v_1 \\
&+ \left(E(e_1, e_2, e_1^1, e_2^1) + E(e_3, e_4, e_1^1, e_2^1) + E(e_1, e_3, e_1^1, e_3^1) + E(e_4, e_2, e_1^1, e_3^1) \\
&+ E(e_1, e_4, e_1^1, e_1^1) + E(e_2, e_3, e_1^1, e_4^1) \right) v_1 \\
&+ \left(E(e_1, e_3, e_2^1, e_3^1) + E(e_4, e_2, e_2^1, e_3^1) + E(e_1, e_4, e_2^1, e_4^1) + E(e_2, e_3, e_2^1, e_4^1) \right) v_2 \\
&+ \left(E(e_1, e_2, e_3^1, e_2^1) + E(e_3, e_4, e_3^1, e_2^1) + E(e_1, e_4, e_3^1, e_4^1) + E(e_2, e_3, e_3^1, e_4^1) \right) v_3 \\
&+ \left(E(e_1, e_2, e_1^1, e_2^1) + E(e_3, e_4, e_1^1, e_2^1) + E(e_1, e_3, e_1^1, e_3^1) + E(e_4, e_2, e_1^1, e_3^1) \right) v_4
\end{align*}$$
$0 = \Delta v_2$
\begin{align*}
0 &= \Delta v_2 \\
&\quad + (E(e_3, e_1, e_1^+_{e_1}, e_1^+_{e_3}) + E(e_2, e_4, e_1^+_{e_1}, e_1^+_{e_2}) + E(e_1, e_4, e_1^+_{e_1}, e_3^+_{e_3}) + E(e_2, e_3, e_1^+_{e_1}, e_3^+_{e_3})) v_1 \\
&\quad + (E(e_2, e_1, e_1^+_{e_2}, e_3^+_{e_3}) + E(e_4, e_3, e_1^+_{e_2}, e_1^+_{e_4}) + E(e_3, e_1, e_2^+_{e_2}, e_1^+_{e_4}) + E(e_2, e_4, e_2^+_{e_2}, e_4^+_{e_4})) v_2 \\
&\quad + (E(e_2, e_1, e_1^+_{e_3}, e_1^+_{e_3}) + E(e_4, e_3, e_3^+_{e_3}, e_1^+_{e_4}) + E(e_3, e_1, e_3^+_{e_3}, e_1^+_{e_4}) + E(e_2, e_4, e_3^+_{e_3}, e_1^+_{e_4})) v_3 \\
&\quad + (E(e_2, e_1, e_1^+_{e_4}, e_1^+_{e_4}) + E(e_4, e_3, e_4^+_{e_4}, e_1^+_{e_4}) + E(e_1, e_4, e_1^+_{e_4}, e_3^+_{e_3}) + E(e_2, e_3, e_1^+_{e_4}, e_3^+_{e_3})) v_4
\end{align*}

$0 = \Delta v_3$
\begin{align*}
0 &= \Delta v_3 \\
&\quad + (E(e_1, e_2, e_1^+_{e_1}, e_4^+_{e_4}) + E(e_3, e_4, e_1^+_{e_1}, e_4^+_{e_4}) + E(e_4, e_1, e_1^+_{e_1}, e_2^+_{e_4}) + E(e_3, e_2, e_1^+_{e_1}, e_2^+_{e_4})) v_1 \\
&\quad + (E(e_1, e_2, e_2^+_{e_1}, e_4^+_{e_4}) + E(e_3, e_4, e_2^+_{e_1}, e_4^+_{e_4}) + E(e_3, e_1, e_2^+_{e_2}, e_4^+_{e_4}) + E(e_2, e_4, e_2^+_{e_2}, e_4^+_{e_4})) v_2 \\
&\quad + (E(e_1, e_2, e_3^+_{e_1}, e_4^+_{e_4}) + E(e_3, e_4, e_3^+_{e_1}, e_4^+_{e_4}) + E(e_3, e_1, e_3^+_{e_3}, e_4^+_{e_4}) + E(e_2, e_4, e_3^+_{e_3}, e_4^+_{e_4})) v_3 \\
&\quad + (E(e_1, e_2, e_4^+_{e_1}, e_4^+_{e_4}) + E(e_4, e_3, e_4^+_{e_1}, e_4^+_{e_4}) + E(e_1, e_3, e_4^+_{e_4}, e_2^+_{e_4}) + E(e_4, e_2, e_4^+_{e_4}, e_4^+_{e_4})) v_4
\end{align*}

$0 = \Delta v_4$
\begin{align*}
0 &= \Delta v_4 \\
&\quad + (E(e_2, e_1, e_1^+_{e_2}, e_3^+_{e_3}) + E(e_4, e_3, e_1^+_{e_2}, e_3^+_{e_3}) + E(e_1, e_3, e_1^+_{e_2}, e_3^+_{e_3}) + E(e_4, e_2, e_1^+_{e_2}, e_3^+_{e_3})) v_1 \\
&\quad + (E(e_2, e_1, e_2^+_{e_2}, e_3^+_{e_3}) + E(e_4, e_3, e_2^+_{e_2}, e_3^+_{e_3}) + E(e_4, e_1, e_2^+_{e_2}, e_3^+_{e_3}) + E(e_3, e_2, e_2^+_{e_2}, e_3^+_{e_3})) v_2 \\
&\quad + (E(e_2, e_1, e_3^+_{e_2}, e_3^+_{e_3}) + E(e_4, e_2, e_3^+_{e_2}, e_3^+_{e_3}) + E(e_4, e_1, e_3^+_{e_3}, e_3^+_{e_3}) + E(e_3, e_2, e_3^+_{e_3}, e_3^+_{e_3})) v_3 \\
&\quad + (E(e_2, e_1, e_4^+_{e_2}, e_3^+_{e_3}) + E(e_4, e_3, e_4^+_{e_2}, e_3^+_{e_3}) + E(e_1, e_3, e_4^+_{e_4}, e_3^+_{e_3}) + E(e_4, e_2, e_4^+_{e_4}, e_3^+_{e_3})) v_4
\end{align*}

Hence, we obtain
\begin{align*}
0 &= \Delta v_1 + \sum_{i,j,k=1}^{4} h(e_i, e_j, e_1^+_{e_1}) h(e_i, e_j, e_k^+_{e_k}) v_k + \sum_{i,k=1}^{4} R(e_i, e_1^+_{e_1}, e_k^+_{e_k}, e_i) v_k \\
0 &= \Delta v_2 + \sum_{i,j,k=1}^{4} h(e_i, e_1^+_{e_2}, e_1^+_{e_3}) h(e_i, e_j, e_1^+_{e_3}) v_k + \sum_{i,k=1}^{4} R(e_i, e_1^+_{e_2}, e_k^+_{e_k}, e_i) v_k \\
0 &= \Delta v_3 + \sum_{i,j,k=1}^{4} h(e_i, e_j, e_3^+_{e_3}) h(e_i, e_j, e_k^+_{e_k}) v_k + \sum_{i,k=1}^{4} R(e_i, e_3^+_{e_3}, e_k^+_{e_k}, e_i) v_k \\
0 &= \Delta v_4 + \sum_{i,j,k=1}^{4} h(e_i, e_1^+_{e_4}, e_1^+_{e_4}) h(e_i, e_j, e_1^+_{e_4}) v_k + \sum_{i,k=1}^{4} R(e_i, e_1^+_{e_4}, e_k^+_{e_k}, e_i) v_k.
\end{align*}
Furthermore, the second part of the balancing condition can be written in the form

\[2\lambda^{-1} \nabla_1 \lambda + (\theta_{2,21} + \theta_{2,43}) + (\theta_{3,31} + \theta_{3,24}) + (\theta_{4,41} + \theta_{4,32}) = 0 \]
\[(\theta_{1,21} + \theta_{1,43}) - 2\lambda^{-1} \nabla_2 \lambda - (\theta_{3,41} + \theta_{3,32}) + (\theta_{4,31} + \theta_{4,24}) = 0 \]
\[(\theta_{1,31} + \theta_{1,24}) + (\theta_{2,41} + \theta_{2,32}) - 2\lambda^{-1} \nabla_3 \lambda - (\theta_{4,21} + \theta_{4,43}) = 0 \]
\[(\theta_{4,41} + \theta_{4,32}) - (\theta_{2,31} + \theta_{2,24}) + (\theta_{3,21} + \theta_{3,43}) - 2\lambda^{-1} \nabla_4 \lambda = 0. \]

This implies

\[0 = 2\lambda^{-1} \Delta \lambda - 2\lambda^{-2} |\nabla \lambda|^2 \]
\[+ \nabla_1 \theta_{2,21} - \nabla_2 \theta_{1,21} + \nabla_1 \theta_{2,43} - \nabla_2 \theta_{1,43} \]
\[+ \nabla_3 \theta_{4,21} - \nabla_4 \theta_{3,21} + \nabla_3 \theta_{4,43} - \nabla_4 \theta_{3,43} \]
\[+ \nabla_1 \theta_{3,31} - \nabla_3 \theta_{1,31} + \nabla_1 \theta_{3,24} - \nabla_3 \theta_{1,24} \]
\[+ \nabla_4 \theta_{2,31} - \nabla_2 \theta_{4,31} + \nabla_4 \theta_{2,24} - \nabla_2 \theta_{4,24} \]
\[+ \nabla_1 \theta_{4,41} - \nabla_4 \theta_{1,41} + \nabla_1 \theta_{4,32} - \nabla_4 \theta_{1,32} \]
\[+ \nabla_2 \theta_{3,41} - \nabla_3 \theta_{2,41} + \nabla_2 \theta_{3,32} - \nabla_3 \theta_{2,32}, \]

hence

\[0 = 2\lambda^{-1} \Delta \lambda - \frac{1}{2} |\theta|^2 \]
\[+ \nabla_1 \theta_{2,21} - \nabla_2 \theta_{1,21} + [\theta_1, \theta_2]_{21} + \nabla_1 \theta_{2,43} - \nabla_2 \theta_{1,43} + [\theta_1, \theta_2]_{43} \]
\[+ \nabla_3 \theta_{4,21} - \nabla_4 \theta_{3,21} + [\theta_3, \theta_4]_{21} + \nabla_3 \theta_{4,43} - \nabla_4 \theta_{3,43} + [\theta_3, \theta_4]_{43} \]
\[+ \nabla_1 \theta_{3,31} - \nabla_3 \theta_{1,31} + [\theta_1, \theta_3]_{31} + \nabla_1 \theta_{3,24} - \nabla_3 \theta_{1,24} + [\theta_1, \theta_3]_{24} \]
\[+ \nabla_4 \theta_{2,31} - \nabla_2 \theta_{4,31} + [\theta_4, \theta_2]_{31} + \nabla_4 \theta_{2,24} - \nabla_2 \theta_{4,24} + [\theta_4, \theta_2]_{24} \]
\[+ \nabla_1 \theta_{4,41} - \nabla_4 \theta_{1,41} + [\theta_1, \theta_4]_{41} + \nabla_1 \theta_{4,32} - \nabla_4 \theta_{1,32} + [\theta_1, \theta_4]_{32} \]
\[+ \nabla_2 \theta_{3,41} - \nabla_3 \theta_{2,41} + [\theta_2, \theta_3]_{41} + \nabla_2 \theta_{3,32} - \nabla_3 \theta_{2,32} + [\theta_2, \theta_3]_{32}. \]

From this it follows that

\[0 = 2\lambda^{-1} \Delta \lambda - \frac{1}{2} |\theta|^2 \]
\[+ E(e_1, e_2, e_1^+, e_2^+) + E(e_1, e_2, e_3, e_3^+) + E(e_3, e_4, e_1^+, e_2^+) \]
\[+ E(e_1, e_3, e_1^+, e_3^+) + E(e_1, e_3, e_4, e_4^+) + E(e_4, e_2, e_1^+, e_3^+) \]
\[+ E(e_1, e_4, e_1^+, e_4^+) + E(e_1, e_4, e_2, e_3^+) + E(e_2, e_3, e_1^+, e_4^+) \]
\[+ E(e_2, e_3, e_2^+, e_3^+). \]

Using the identities

\[E(e_1, e_2, e_1^+, e_2^+) + E(e_3, e_4, e_1^+, e_2^+) + E(e_1, e_3, e_1^+, e_3^+) + E(e_4, e_2, e_1^+, e_3^+) \]
\[+ E(e_1, e_4, e_1^+, e_4^+) + E(e_2, e_3, e_1^+, e_4^+) \]
\[= \sum_{i,j=1}^{4} h(e_i, e_j, e_1^+) h(e_i, e_j, e_1^+) + \sum_{i=1}^{4} R(e_i, e_1^+, e_1^+, e_i). \]
A similar calculation gives

Thus, we conclude that

we obtain

Thus, the first order balancing condition implies the second order balancing condition derived in [5].
References

[1] A. Bahri, An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimension, Duke Math. J. 81, 323-466 (1996)

[2] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math. 41, 253-290 (1988)

[3] L. Baulieu, H. Kanno, and I. M. Singer, Special quantum field theories in eight and other dimensions, Comm. Math. Phys. 194, 149-175 (1998)

[4] K. Becker, M. Becker, D. Morrison, H. Ooguri, Y. Oz, and Z. Yin, Supersymmetric cycles in exceptional holonomy manifolds and Calabi-Yau 4-folds, Nucl. Phys. B 480, 225-238 (1996)

[5] S. Brendle, On the construction of solutions to the Yang-Mills equations in higher dimensions, preprint (2002)

[6] J. Chen, Complex anti-self-dual connections on a product of Calabi-Yau surfaces and triholomorphic curves, Comm. Math. Phys. 201, 217-247 (1999)

[7] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press (1990)

[8] S. K. Donaldson and R. P. Thomas, Gauge theory in higher dimensions, The geometric universe (Oxford 1996), 31-47, Oxford University Press (1998)

[9] R. Harvey and H. B. Lawson, Calibrated Geometries, Acta Math. 148, 47-157 (1982)

[10] N. Hitchin, Lectures on special Lagrangian submanifolds, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), 151-182, AMS/IP Stud. Adv. Math. 23, Amer. Math. Soc. Providence, RI, 2001

[11] D. Joyce, Compact 8-manifolds with holonomy Spin(7), Invent. Math. 123, 507-552 (1996)

[12] N. Kapouleas, Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. 131, 239-330 (1990)

[13] N. Kapouleas, Compact constant mean curvature surfaces in Euclidean three-space, J. Diff. Geom. 33, 683-715 (1991)
[14] R. Kusner, R. Mazzeo, and D. Pollack, *The moduli space of of complete embedded constant mean curvature surfaces*, Geom. Funct. Anal. 6, 120-137 (1996)

[15] F.-H. Lin, *Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds*, Comm. Pure Appl. Math. 51, 385-441 (1998)

[16] F.-H. Lin and T. Rivièrè, *Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents*, J. Eur. Math. Soc. 1, 237-311 (1999)

[17] R. Mazzeo and F. Pacard, *A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis*, J. Diff. Geom. 44, 331-370 (1996)

[18] R. Mazzeo and F. Pacard, *Constant mean curvature surfaces with Delaunay ends*, Comm. Anal. Geom. 9, 169-237 (2001)

[19] R. Mazzeo, F. Pacard and D. Pollack, *Connected sums of constant mean curvature surfaces in Euclidean 3-space*, J. Reine Angew. Math. 536, 115-165 (2001)

[20] R. Mazzeo and N. Smale, *Conformally flat metrics of constant positive scalar curvature on subdomains of the sphere*, J. Diff. Geom. 34, 581-621 (1991)

[21] F. Pacard and M. Ritoré, *From constant mean curvature hypersurfaces to the gradient theory of phase transitions*, preprint (2003)

[22] F. Pacard and T. Rivièrè, *Linear and Nonlinear Aspects of Vortices. The Ginzburg-Landau Model*, Progress in Nonlinear Differential Equations and their Applications, vol. 39, Birkhäuser, Boston (2000)

[23] C. H. Taubes, *Self-dual Yang-Mills connections on non-self-dual 4-manifolds*, J. Diff. Geom. 17, 139-170 (1982)

[24] C. H. Taubes, *SW ⇒ Gr: from the Seiberg-Witten equations to pseudo-holomorphic curves*, J. Amer. Math. Soc. 9, 845-918 (1996)

[25] C. H. Taubes, *Gr ⇒ SW: from pseudo-holomorphic curves to Seiberg-Witten solutions*, J. Diff. Geom. 51, 203-334 (1999)

[26] R. P. Thomas, *A holomorphic Casson invariant for Calabi-Yau 3-folds and bundles on K3 fibrations*, J. Diff. Geom. 54, 367-438 (2000)

[27] G. Tian, *Gauge theory and calibrated geometry*, Ann. of Math. 151, 193-268 (2000)