DNA methylation silencing of microRNA gene methylator in the precancerous background mucosa with and without gastric cancer: Analysis of the effects of *H. pylori* eradication and long-term aspirin use

Jiro Watari, Chiyomi Ito, Tadakazu Shimoda, Toshihiko Tomita, Tadayuki Oshima, Hirokazu Fukui, Kiron M. Das & Hiroto Miwa

The risk of gastric cancer (GC) declines after *Helicobacter pylori* (*H. pylori*) eradication and long-term aspirin use. We evaluated the effects of *H. pylori* eradication (Cohort 1) and aspirin use (Cohort 2) on the methylation of microRNAs (miRNAs), such as *miR*-34c, *miR*-124a-3, *miR*-129-2, and *miR*-137, in the gastric mucosa with and without GC, i.e., in atrophic mucosal glands without intestinal metaplasia (non-IM) and intestinal metaplastic glands (IM). DNA was isolated from non-IM and IM separately using laser caption microdissection. In Cohort 1, *H. pylori* eradication was associated with a significant reduction of *miR*-124a-3 methylation only in non-IM, but not in IM. *miR*-129-2 methylation in non-IM may be a surrogate marker of GC in *H. pylori*-infected patients. In Cohort 2, aspirin did not reverse miRNA methylation in either non-IM or IM, irrespective of *H. pylori* infection. *miR*-129-2 methylation in non-IM was an independent predictive marker of GC in *H. pylori*-infected but not eradicated patients. These results indicate that *H. pylori* eradication and aspirin use were less effective for improving methylation in IM than in non-IM; thus, these interventions are recommended at an early stage prior to the development of IM to prevent GC development. In addition, the effects of the interventions were not uniform for each miRNA gene.

Gastric cancer (GC) is a leading cause of cancer death worldwide, with *Helicobacter pylori* (*H. pylori*) considered to be a main risk factor. In Correa's hypothesis, chronic infection with *H. pylori* has been postulated to develop over decades into chronic gastritis, gastric atrophy, usually intestinal metaplasia (IM), dysplasia, and GC. To date, some meta-analyses have shown that *H. pylori* eradication reduced the risk of GC not only in patients with chronic gastritis but also in patients who underwent endoscopic resection for early GC. On the other hand, although several studies have been done regarding the effect of *H. pylori* eradication in preventing metachronous GC, the results remain controversial: some studies have shown that *H. pylori* treatment led to a lower incidence of metachronous GC and others have not. Long-term studies from Japan showed that even after *H. pylori* eradication, the risk of developing GC remains, and the risk increases under the preneoplastic conditions of the
background mucosa, i.e., gastric atrophic mucosa and IM\(^{35,36}\). These results indicate that \textit{H. pylori} eradication treatment may reduce the risk of GC, though it may not abolish the risk.

Aspirin also has protective effects against certain cancers. Recent reports including meta-analyses have shown that long-term aspirin use (for at least more than 3 years) was associated with a reduced GC risk\(^{17-20}\). However, the majority of these studies included both \textit{H. pylori}-infected and \textit{H. pylori}-negative subjects. Cheung \textit{et al.} showed that the risk significantly decreased with increasing frequency, duration, and dose of aspirin after \textit{H. pylori} eradication\(^{21}\).

GC develops through the accumulation of genetic and epigenetic alterations. Many studies have reported that several epigenetic alterations, including promoter hypermethylation of multiple tumor-related genes, are associated with GC and precancerous conditions of the stomach that occur in the context of \textit{H. pylori} infection\(^{22-24}\). These reports demonstrated that \textit{H. pylori} eradication led to a decrease in methylation levels in some genes\(^{25-27}\), suggesting that the reduction of gene methylation reversed \textit{H. pylori}-induced gastric carcinogenesis. However, there are no studies except ours\(^{33,34}\) and a study by Huang \textit{et al.}\(^{32}\) in which molecular events were analyzed in atrophic mucosal glands without IM (non-IM) and with IM separately using laser capture microdissection (LCM); thus, the actual effects of eradication therapy on molecular alteration in patients with the precancerous conditions are not well known.

Currently, microRNAs (miRNAs) are considered to be actively involved in the development, differentiation, and pathogenesis of various malignancies. By comparing the miRNA expression profiles in tumor tissues versus adjacent non-tumor tissues, distinct patterns of up- or down-regulation of miRNAs were found in different types of cancers\(^{35}\). Therefore, these cancer-specific miRNA expressions could be used as molecular markers for GC. Indeed, several studies showed that the dysregulation of some miRNAs by methylation highlights the useful biomarkers of GC development\(^{36,37}\). Japanese biologists have recently reported that \textit{miR-124a-3} and \textit{miR-34b/c} methylation are informative markers for predicting the risk of metachronous GC in patients after the endoscopic resection of early GC\(^{29,36,37}\). However, we reported that the incidences of the methylation of \textit{miR-124a-3} and \textit{miR-34c} were mostly observed in IM, with very few in non-IM\(^{33,34}\). Thus, our previous results indicate that the methylation of these miRNA genes might be a specific marker expressed in IM and might not necessarily be a risk marker for GC.

Our aims in this study were: 1) to investigate the methylation changes of several miRNAs related to gastric carcinogenesis in patients before and after \textit{H. pylori} eradication in patients not taking low-dose aspirin (LDA) or nonsteroidal anti-inflammatory drugs (NSAIDs) (Cohort 1); and 2) to examine the effects of LDA/NSAIDs on the methylation status of those miRNAs before and after \textit{H. pylori} eradication in patients who had regularly taken LDA/NSAIDs on a long-term basis (≥3 yr) (Cohort 2) while exhibiting a precancerous condition, i.e., non-IM or IM.

Results

Patients’ characteristics. The characteristics of the patients are shown in Table 1. In both Cohorts 1 and 2, there were no significant differences in median age or sex between the atrophic gastritis (AG) and GC groups in \textit{H. pylori}-infected and -eradicated patients. However, the number of IM samples was significantly higher in the \textit{Hp}\(^{-}\)/GC and \textit{Hp}\(^{-}\)/LDA/GC groups than in the \textit{Hp}\(^{+}\)/AG and \textit{Hp}\(^{+}\)/LDA/AG groups (\(p = 0.01\) and \(p = 0.0004\), respectively).

Cohort 1. Molecular events in non-IM: The \textit{miR-124a-3} and \textit{miR-137} methylation rates were significantly lower in the \textit{Hp}\(^{-}\)/AG group than in the \textit{Hp}\(^{+}\)/AG group (\(p < 0.0001\) and \(p = 0.06\), respectively) (Table 2), thus indicating the effects of \textit{H. pylori} eradication. Multivariate analysis showed that \textit{H. pylori} eradication was associated with a significant reduction of \textit{miR-124a-3} methylation [odds ratio (OR): 0.03, 95% confidence interval (CI): 0.004–0.27, \(p = 0.002\)]. Similarly, the incidences of \textit{miR-34c}, \textit{miR-124a-3}, and \textit{miR-129-2} methylation were significantly lower in the \textit{Hp}\(^{-}\)/GC group than in the \textit{Hp}\(^{+}\)/GC group (\(p = 0.005\), \(p = 0.0005\), and \(p = 0.01\), respectively), and \textit{H. pylori} eradication was significantly associated with a reduction of only \textit{miR-124a-3} methylation (OR: 0.16, 95% CI: 0.04–0.65, \(p = 0.01\)) in a multivariate analysis.

In \textit{H. pylori}-infected AG patients, the incidence of \textit{miR-124a-3} methylation in the \textit{Hp}\(^{+}\)/AG group was 31.7% and that of the methylation of other miRNA genes was very low (Table 2). However, the \textit{miR-34c} and \textit{miR-129-2} methylation rates were significantly higher in the \textit{Hp}\(^{+}\)/GC group than in the \textit{Hp}\(^{+}\)/AG group (\(p = 0.0002\) and \(p = 0.004\), respectively). Multivariate analysis showed that \textit{miR-129-2} methylation in non-IM was significantly associated with GC (OR: 5.21, 95% CI: 1.46–18.60, \(p = 0.01\)). When comparing the methylation rates of these miRNAs in non-IM among the three different parts of the stomach, the \textit{miR-34c} methylation rate in the \textit{Hp}\(^{+}\)/GC group was significantly higher in the antrum (\(p = 0.03\)) and corpus (\(p = 0.01\)) than in the \textit{Hp}\(^{+}\)/AG group (Fig. 1A). Also, \textit{miR-129-2} methylation in non-IM in the corpus was more frequently identified in the \textit{Hp}\(^{+}\)/GC group than in the \textit{Hp}\(^{+}\)/AG group (\(p = 0.01\)) (Fig. 1A).

In \textit{H. pylori}-eradicated cases, there were few methylations in any of the miRNAs in either the \textit{Hp}\(^{-}\)/AG or the \textit{Hp}\(^{-}\)/GC group, and there was no significant difference in the incidence of miRNA methylation between the two groups. However, the \textit{miR-129-2} methylation rate in the antrum was significantly higher in the \textit{Hp}\(^{-}\)/GC group than in the \textit{Hp}\(^{-}\)/AG group (\(p = 0.01\)) (Fig. 1B).

Molecular events in IM: The incidence of all miRNA genes in IM was demonstrably higher than in non-IM regardless of the presence or absence of \textit{H. pylori} infection in both the AG and GC groups (Table 3), a finding that was consistent with our previous report\(^{33,34}\). Therefore, there were no significant differences in the methylation rates for each miRNA gene among the four groups, i.e., the \textit{Hp}\(^{+}\)/AG, \textit{Hp}\(^{-}\)/AG, \textit{Hp}\(^{+}\)/GC, and \textit{Hp}\(^{-}\)/GC groups. Furthermore, no significant differences in the incidence of miRNA gene methylation were seen between the AG and GC groups in each part of the stomach in both \textit{H. pylori}-infected and -eradicated patients, unlike in non-IM (Supplementary Table S1).
Table 1. Patients' characteristics. *One sample, †three samples, ‡one sample, and §one sample could not be analyzed because they were too small. H₃, H. pylori; AG, atrophic gastritis; GC, gastric cancer; IM, intestinal metaplasia; LDA, low-dose aspirin.

	H₃+/AG (n = 21)	H₃-/AG (n = 26)	p-value	H₃+/GC (n = 30)	H₃-/GC (n = 27)	p-value	H₃+/AG vs H₃-/AG p-value	H₃+/GC vs H₃-/GC p-value
Past eradication (y) (1st–3rd quartile)	—	—	—	5 (3–7)	5 (4–9)	0.65	—	—
Median age (y) (1st–3rd quartile)	65.0 (59.5–73.0)	69.0 (65.0–72.3)	0.22	66.5 (54.5–75.3)	68.0 (64.0–73.0)	0.24	0.72	0.68
Male:Female	13:8	18:8	0.60	14:16	19:8	0.07	0.28	0.93
Male:Female	62*:	75*:	0.60	6:20	10:8:1	0.01	0.27	0.72
Non-IM samples (n = 21)	21	35	0.13	67	45	0.01	0.27	0.72
IM samples	41	6	0.13	67	45	0.01	0.27	0.72

Cohort 2

	H₃+/LDA/AG (n = 3)	H₃+/LDA/GC (n = 11)	p-value	H₃-/LDA/AG (n = 21)	H₃-/LDA/GC (n = 11)	p-value	H₃+/LDA/AG vs H₃-/LDA/AG p-value	H₃+/LDA/AG vs H₃-/LDA/GC p-value	H₃+/LDA/GC vs H₃-/LDA/AG p-value	H₃+/LDA/GC vs H₃-/LDA/GC p-value
Median age (y) (1st–3rd quartile)	10 (6–11)	6 (3–7)	0.19	6 (4–7)	6 (4–7)	0.54	0.07	0.90		
Male:Female	2:0	10:1	1	12:9	10:1	0.11	0.28	0.93		
Male:Female	9	33	1	53	16	0.0004	0.27	0.72		
IM samples	3	20	1	10	16	0.0004	0.27	0.72		

Table 2. Comparison of molecular alterations in non-IM between patients with and without GC in H. pylori-infected and -eradicated patients (Cohort 1). IM, intestinal metaplasia; H₃, H. pylori; AG, atrophic gastritis; GC, gastric cancer; OR, odds ratio; CI, confidence interval.

	H₃+/AG group (%)	H₃-/AG group (%)	p-value	Multivariate analysis	p-value
	(n)	(n)		OR	95% CI
miR-34c	0.00	0.00		0.20	0.04–1.07
	(0/41)	(0/67)			
miR-124a-3	31.7	1.5	<0.0001	0.03	0.04–0.27
	(13/41)	(1/67)			
miR-129-2	10.0	1.5	0.73	0.34	0.11–1.05
	(4/40)	(1/67)			
miR-137	10.0	1.5	0.06	0.17	0.016–2.03
	(4/40)	(1/67)			

Cohort 2

Molecular alterations in non-IM: The incidence of miRNA methylation was not significantly different between the H₃+/LDA/AG and H₃-/LDA/AG groups or between the H₃+/LDA/GC and H₃-/LDA/GC groups (Table 4), a result that was different from the findings in Cohort 1. However, only miR-129-2 methylation was more frequently observed in the H₃-/LDA/GC group than in the H₃+/LDA/AG group (p = 0.02) among the H. pylori-eradicated patients, although there were no significant differences in the incidences of the methylation of other miRNAs between the AG and GC groups regardless of the presence or absence of H. pylori infection. When looking at the methylation rate in each portion of the stomach, the miR-129-2 methylation rate was found to be significantly higher in the H₃+/LDA/GC group than in the H₃-/LDA/AG group (p = 0.04) only in the antrum (Fig. 2B).

Molecular alterations in IM: The incidences of methylation of all of the miRNA genes in IM were higher compared to those in non-IM, and they were not significantly different between the H₃+/LDA/AG and H₃-/LDA/AG groups or between the H₃+/LDA/GC and H₃-/LDA/GC groups, findings that were similar to the results in...
non-IM (Table 4). Similarly, there were no significant differences in the incidences of methylation of all miRNAs between the AG and GC groups regardless of the presence or absence of *H. pylori* infection. In addition, no positive associations in the incidence of miRNA gene methylation were seen between the AG and GC groups in each part of the stomach in either *H. pylori*-infected or -eradicated patients, as in IM in Cohort 1 (Supplementary Table S1).

Table 3. Changes of molecular alterations in IM by *H. pylori* eradication (Cohort 1). IM, intestinal metaplasia; *Hp*, *H. pylori*; AG, atrophic gastritis; GC, gastric cancer; OR, odds ratio; CI, confidence interval.

miR/Incidence of methylation (%)	Hp+/AG group (%) (n)	Hp−/AG group (%) (n)	p-value	Hp+/GC group (%) (n)	Hp−/GC group (%) (n)	p-value	Hp+/AG group vs Hp−/AG group (%)	Hp+/GC group vs Hp−/GC group (%)	p-value
miR-34c	61.9 (13/21)	54.5 (12/22)	0.63	56.0 (14/25)	58.8 (20/34)	0.83	0.77	0.79	p=0.03
miR-124a-3	100 (21/21)	86.4 (19/22)	0.23	83.3 (25/30)	88.6 (31/35)	0.72	0.07	1	p=0.01
miR-129-2	100 (18/18)	100 (22/22)	1.00	100 (33/33)	100 (32/32)	1.00	1.00	1	p=0.01
miR-137	95.0 (19/20)	100 (21/21)	0.49	100 (34/34)	100 (34/34)	1.00	0.37	1	p=0.047

Discussion

To the best of our knowledge, this is the first study to show the effects of *H. pylori* eradication and LDA/NSAIDs on the methylation of several miRNAs in patients with and without GC.
Cohort 1. In patients not taking LDA/NDAIDs, *H. pylori* eradication was able to reverse the methylation of most miRNA genes only in non-IM, but not in IM, both in patients with and in those without GC (i.e., the Hp+/AG and Hp+/GC groups). In multivariate analysis, *H. pylori* eradication was associated with a significant reduction of miR-124a-3 methylation in both groups, a finding that was consistent with our previous study. In addition, miR-34c and miR-129-2 methylation were associated with GC development in *H. pylori*-infected cases, and only miR-129-2 methylation in non-IM was an independent risk marker of significant GC.

When evaluating the differences in the methylation of miRNA genes in each of the three parts of the stomach, we found that miR-34c methylation in non-IM in the antrum and corpus portions and miR-129-2 methylation in non-IM in the corpus might be useful biomarkers of GC in *H. pylori*-infected patients. Meanwhile, miR-129-2 methylation in non-IM in the antrum was associated with GC development in *H. pylori*-eradicated patients, thus indicating that the biomarkers for GC differ for each part of the stomach according to *H. pylori* status. Suzuki et al. reported that miR-34b/c methylation in the corpus is an independent predictor of metachronous GC risk. However, they did not investigate the methylation of miRNA genes in non-IM and IM separately in *H. pylori*-infected and -eradicated patients.

Cohort 2. In patients taking LDA/NDAIDs, the incidence of miRNA gene methylation was not different between *H. pylori*-infected and -eradicated patients in either non-IM or IM. Meanwhile, miR-129-2 methylation in non-IM was significantly involved in GC development in *H. pylori*-eradicated patients. Therefore, this result indicates that patients with miR-129-2 methylation in non-IM, especially in the antrum, may be at risk of GC. In the present study, LDA/NDAIDs decreased miR-34c methylation in non-IM in *H. pylori*-infected patients with GC (Table 5). This result may suggest that the chemopreventive effect of aspirin is limited to non-IM, and does not occur in IM, in *H. pylori*-infected patients. Some studies showed in stratified analyses that the chemopreventive effect of aspirin was higher in *H. pylori*-infected subjects; however, no precise diagnosis of *H. pylori* infection was performed. In addition, it may be possible that the *H. pylori*-negative subjects in those studies included two subtypes that were completely different in terms of their GC risk: *H. pylori*-uninfected patients and patients who were suspected of naturally eradicated *H. pylori*. In our study, we showed that the long-term use of LDA/NDAIDs did not affect the changes in miRNA methylation in either *H. pylori*-infected or -eradicated patients, although the number of samples evaluated may have been small. Cheung et al. recently reported a clinical study in which the protective effect of aspirin appeared to be larger in *H. pylori*-eradicated subjects (hazard ratio = 0.30), a finding that was different from our results. Therefore, the mechanism of the chemopreventive effect of aspirin cannot be explained by miRNA methylation alone.

In the present study, the methylation of tumor-suppressor miRNAs was identified more frequently in IM and very infrequently in non-IM. It thus appears that the methylation of these genes is a molecular event that occurs specifically in IM, and also that IM might exhibit a more aggressive state than non-IM with regard to molecular alterations, as shown in our previous reports. Intriguingly, only in *H. pylori*-eradicated patients, the number of IM samples obtained from the three parts of the stomach was significantly higher in patients with GC (the Hp−/GC and Hp−/LDA/GC groups) than in those without GC (the Hp−/AG and Hp−/LDA/AG groups). This result may support the clinical fact that GC is related to the extent of IM throughout the stomach, especially after *H. pylori* treatment. Also, *H. pylori* eradication and the long-term use of LDA/NDAIDs reversed the methylation of miRNAs in non-IM, but not in IM. Taken together, these results are in agreement with the concept of a "point of no return," which holds that the benefits of *H. pylori* eradication and aspirin diminish after the IM stage is reached through the state in which molecular changes are irreversible. AG is caused by focal inflammation, resulting in a loss of glandular structures in the gastric mucosa, while IM involves the replacement of damaged gastric mucosa by intestinal epithelium, including goblet cells and absorptive cells. In the inflammatory state,
gastric tissue stem cells fail to differentiate normally\(^4\), resulting in their progression to IM\(^5\). In addition, the appearance of IM is considered to be associated with the aberrant expression of CDX1 and CDX2\(^5\). Based on previous reports\(^4\)–\(^5\) and the present study, the pathogenesis of non-IM and that of IM are likely to be different from the viewpoint not only of histology but also of the differentiation of gastric stem cells and the accumulation of molecular events. It has recently been reported that AG and IM were reversed by \(H. pylori \) treatment over the long term\(^4\), and the reversibility of IM was associated with a decrease in CDX2 mRNA expression\(^5\). Thus, a long-term follow-up study may be necessary to confirm the molecular changes resulting from such interventions in non-IM and IM cases.

The present study had a methodological advantage: as our data from LCM samples delineated many GC-related miRNA genes, this procedure might provide more information from non-IM and IM regarding

Figure 2. Incidences of miRNA methylation in non-IM in the three parts of the stomach in patients regularly taking LDA/NSAIDs. **(A)** In \(H. pylori\)-infected patients, there were no significant differences in the incidences of miRNA methylation in each portion of the stomach. **(B)** In \(H. pylori\)-eradicated patients, the miR-129-2 methylation rate in the antrum was significantly higher in the \(Hp^{-}/GC\) group than it was in the \(Hp^{-}/AG\) group \((p = 0.04)\). LDA, low-dose aspirin; NSAID, nonsteroidal anti-inflammatory drug.

Table 5. Statistical comparison of the incidence of molecular events between patients taking and not taking LDA/NSAIDs. Values indicate \(p\)-values. LDA, low-dose aspirin; NSAID, nonsteroidal anti-inflammatory drug; IM, intestinal metaplasia; \(Hp\), \(H. pylori\); AG, atrophic gastritis; GC, gastric cancer.
pathogenesis than would the use of whole-tissue material\cite{33}. Since whole-biopsy tissues were used for DNA methylation analysis in the previous studies\cite{28,33,34}, the differences in methylation between non-IM and IM were not evaluated. Therefore, those results may be affected by the total volume of IM glands contained in the biopsy samples\cite{34}.

Our investigation had some limitations. First, this was a study from a single institution with a small number of \textit{H. pylori}-infected patients who were taking LDA/NSAIDs; the number of patients was especially small considering that molecular alterations in three different parts of the stomach were compared. The second limitation is that this study may have been biased due to our use of the same samples collected in our previous two studies\cite{33,34}. Third, the methylation-sensitive high-resolution melting (MS-HRM) used in our study may be applicable for semiquantitative but not quantitative assessment of the methylation levels in an unmethylated background. However, we confirmed that the definition of methylation (>10%) by MS-HRM was reasonable on the basis of the correlation coefficient of the calibration curve derived from the fluorescence value of the melting curve using the methylation standard control DNA\cite{34}. Fourth, a relatively high number of samples could not be analyzed for molecular alterations due to the small amount of DNA that was extracted from the very small biopsy specimens. Therefore, further prospective studies with larger sample sizes are needed to clarify the association between miRNAs and gastric carcinogenesis in the background mucosa with and without GC.

In conclusion, in patients who were not taking LDA/NSAIDs (Cohort 1), (1) \textit{H. pylori} eradication was associated with a significant reduction of \textit{miR-124a-3} methylation only in non-IM in the background mucosa with and without GC, but not in IM, and (2) \textit{miR-129-2} methylation in non-IM, especially in the corpus, may be a surrogate marker of GC in \textit{H. pylori}-infected patients. On the other hand, in patients regularly taking LDA/NSAIDs (Cohort 2), LDA/NSAIDs did not affect the changes in miRNA methylation in either non-IM or IM, irrespective of \textit{H. pylori} infection. However, \textit{miR-129-2} methylation in non-IM, especially in the antrum, was an independent predictive marker of GC in \textit{H. pylori}-infected patients. These results indicate that \textit{H. pylori} eradication and LDA/NSAIDs use were less effective in improving the methylation in IM compared with non-IM; thus, these interventions are recommended to prevent GC development in individuals at an early stage prior to the development of IM.

Patients, Materials and Methods

Cohort 1. Patients. We previously conducted a cross-sectional study to define the differences in molecular alterations in non-IM and IM before and after \textit{H. pylori} eradication (>3 yr) in patients with and without GC\cite{28,33,34}. By using the same samples, we herein performed a case-control study on miRNAs in four groups of the same patients based on previous studies\cite{28,33,34}. Patients with histologically diagnosed AG (GC-free patients) who were positive for \textit{H. pylori} (\(\text{Hp}^+\)/AG group, \(n = 21\)); GC patients with \textit{H. pylori} infection (\(\text{Hp}^+\)/GC group, \(n = 26\)); patients with histologically diagnosed AG (i.e., GC-free patients) who had undergone \textit{H. pylori} eradication >3 years before and had AG in the background mucosa (\(\text{Hp}^-\)/AG group, \(n = 30\)); and patients who developed primary early GC despite the successful eradication of \textit{H. pylori} at >3 years before (\(\text{Hp}^-\)/GC group, \(n = 27\)). Histological diagnosis of GC was made in accordance with the GC criteria of the Japanese Gastric Cancer Association\cite{55}. Patients with a history of esophagectomy or gastrectomy and who were taking LDA or other NSAIDs were excluded.

\textit{H. pylori} status and DNA extraction.\textcolor{black}{ In our previous studies\cite{28,33,34}, three biopsy specimens were taken during an endoscopy from three parts of the stomach: the greater curvature at the antrum, the greater curvature at the corpus, and the lesser curvature at the angle (one from each site). Each biopsy specimen was cut into 4-µm-thick tissue sections and subjected to histological analysis using hematoxylin and eosin staining and Giemsa staining. \textit{H. pylori} status was analyzed as reported previously\cite{28,33,34}. A patient was regarded as \textit{H. pylori}-positive if the result of at least one of the three aforementioned methods, i.e., the urea breath test (UBT), Giemsa staining, and the E-plate anti-\textit{H pylori} IgG antibody test (Eiken Kagaku, Tokyo, Japan), was positive. \textit{H. pylori} status following the eradication was determined by the UBT at least 6 weeks or more after the end of the anti-\textit{H. pylori} treatment. From the paraffin-embedded biopsy specimens, two or three 7-µm-thick tissue sections were cut for DNA extraction. Goblet IM glands were isolated using the PALM MicroBeam LCM system (Microlaser Technologies, Munich, Germany), and DNA was extracted from goblet IM (incomplete type) and non-IM using the QIAamp DNA Micro Kit (Qiagen, Hilden, Germany) as previously reported\cite{28,33,34} (Supplementary Fig. S1). Finally, a total of 307 biopsy samples from 104 patients, including \(\text{Hp}^+\)/AG, \(\text{Hp}^+\)/GC, \(\text{Hp}^-\)/AG, and \(\text{Hp}^-\)/GC patients, were analyzed. However, five samples could not be analyzed for molecular alterations due to the small amount of DNA that was extracted from the very small biopsy specimens.}

Sodium bisulfite modification of DNA of miRNA genes. As in previous reports\cite{28,33,34}, purified DNA samples were chemically modified with sodium bisulfite using an EpiTect® Fast Bisulfite Kit (Qiagen). The bisulfite-modified DNA was amplified using primer pairs that specifically amplify the methylated or unmethylated sequences of several miRNAs related to carcinogenesis, including \textit{miR-34c}, \textit{miR-124a-3}, \textit{miR-129-2}, and \textit{miR-137}.

MS-HRM analyses. MS-HRM analysis was performed as previously described\cite{28,33,34}. Briefly, polymerase chain reaction (PCR) amplification and MS-HRM analysis were performed using a LightCycler® 480 System II (Roche, Mannheim, Germany). The primer sequences of all genes for the methylated and unmethylated forms and PCR and MS-HRM conditions are summarized in Supplementary Tables S2 and S3. Percentages of methylation (0%, 10%, 50%, and 100%) were used to draw the standard curve (Supplementary Fig. S2). In this study, only samples with >10% methylation were considered to be methylated, as reported previously\cite{33,34}.

Cohort 2. Patients and samples. In this study, which was based on our previous studies, we analyzed 22 patients who had developed primary GC despite taking LDA (100 mg/day) or NSAIDs for more than 3 years. These patients included 11 Hp pylori-infected patients (Hp+/LDA/GC group) and 11 Hp pylori-eradicated patients (Hp−/LDA/GC group). We also analyzed 24 patients with histologically diagnosed AG (GC-free patients) who regularly took LDA or NSAIDs for more than 3 years, who included Hp pylori-infected cases (n = 3, Hp+/LDA/AG group) and Hp pylori-eradicated cases (n = 21, Hp−/LDA/AG group). Biopsy specimens were taken from the same portions of the stomach in the same manner as described for Cohort 1. Patients with a history of esophagectomy or gastrectomy were excluded.

In Cohort 2, the methylation of miRNAs was analyzed. A total of 137 biopsy samples from the 46 patients making up the Hp+/LDA/AG, Hp+/LDA/GC, Hp−/LDA/AG, and Hp−/LDA/GC groups were analyzed. However, one sample could not be analyzed for molecular alterations due to the small amount of DNA that was extracted.

Consent and institutional review board approval. Written informed consent was obtained from all patients prior to these studies. The Ethics Committee of Hyogo College of Medicine approved these trials (Nos. Rin-Hi 136 and 300). These trials were registered with the UMIN Clinical Trials Registry (No. UMIN000021857). The study was performed in accordance with the Declaration of Helsinki.

Statistical analysis. Categorical variables were presented as numbers and percentages and compared between groups using the chi-square test or Fisher’s exact test when appropriate. Continuous variables were expressed by median and interquartile range and compared between groups using the Kruskal-Wallis test or Mann-Whitney U-test. Predictive factors for GC with a p-value of <0.05 in univariate analysis were included in the multiple logistic regression model and analyzed using the backward approach. ORs and 95% CIs were calculated for risk factors. Multivariate logistic regression analysis was performed to identify the molecular alterations associated with GC if a p-value of less than 0.1 in the univariate analysis was identified. A two-tailed p-value less than 0.05 was considered significant. Statistical analyses were performed with SPSS 22.0 (SPSS Inc., Chicago, IL) and StatView version 5.0 (SAS Institute Inc., Cary, NC).

References

1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 13, E339–E386 (2015).
2. Correa, P. Helicobacter pylori and gastric carcinogenesis. Am. J. Pathol. 19(Suppl 1), S37–S43 (1995).
3. Fuccio, L. et al. Meta-analysis: can Helicobacter pylori eradication treatment reduce the risk for gastric cancer? Ann. Intern. Med. 151, 121–128 (2009).
4. Yoon, S. B., Park, J. M., Lim, C. H., Cho, Y. K. & Choi, M. G. Effect of Helicobacter pylori eradication on metachronous gastric cancer after endoscopic resection of gastric tumors: a meta-analysis. Helicobacter 19, 243–248 (2014).
5. Ford, A. C., Forman, D., Hunt, R. H., Yuan, Y. & Moayyedi, P. Helicobacter pylori eradication therapy to prevent gastric cancer in healthy asymptomatic infected individuals: systematic review and meta-analysis of randomised controlled trials. BMJ 348, g3174 (2014).
6. Doorakers, E., Lagergren, J., Engstrand, L. & Brusselaers, N. Eradication of Helicobacter pylori and gastric cancer: a systematic review and meta-analysis of cohort studies. J. Natl. Cancer Inst. 108, jdw132 (2016).
7. Lee, Y. C. et al. Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology 150, 1113–1124 (2016).
8. Doorakers, E., Lagergren, J., Engstrand, L. & Brusselaers, N. Helicobacter pylori pylori eradication treatment and the risk of gastric adenocarcinoma in a Western population. Gut 67, 2092–2096 (2018).
9. Fukase, K. et al. Effect of eradication of Helicobacter pylori pylori on incidence of metachronous gastric carcinoma after endoscopic resection of early gastric cancer: an open-label, randomised controlled trial. Lancet 372, 392–397 (2008).
10. Bae, S. E. et al. Effect of Helicobacter pylori pylori eradication on metachronous recurrence after endoscopic resection of gastric neoplasm. Am. J. Gastroenterol. 109, 60–67 (2014).
11. Choi, I. J. et al. Helicobacter pylori pylori therapy for the prevention of metachronous gastric cancer. N. Engl. J. Med. 378, 1085–1095 (2018).
12. Maehata, Y. et al. Long-term effect of Helicobacter pylori pylori eradication on the development of metachronous gastric cancer after endoscopic resection of early gastric cancer. Gastrointest. Endosc. 75, 39–46 (2012).
13. Kato, M. et al. Scheduled endoscopic surveillance controls secondary cancer after curative endoscopic resection for early gastric cancer: a multicentre retrospective cohort study by Osaka University ESD study group. Gut 62, 1425–1432 (2013).
14. Choi, J. et al. Eradication of Helicobacter pylori pylori pylori on incidence of metachronous gastric tumors does not reduce incidence of metachronous gastric carcinoma. Clin. Gastroenterol. Hepatol. 12, 793–800 (2014).
15. Shichijo, S. et al. Histologic intestinal metaplasia and endoscopic atrophy are predictors of gastric cancer development after Helicobacter pylori pylori eradication. Gastrointest. Endosc. 84, 618–24 (2016).
16. Rugge, M. et al. Gastritis staging in the endoscopic follow-up for the secondary prevention of gastric cancer: a 5-year prospective study of 1755 patients. Gut 68, 11–17 (2019).
17. Kong, P. et al. The effects of anti-inflammatory drug treatment in gastric cancer prevention: an update of a meta-analysis. J. Cancer 7, 2247–2257 (2016).
18. Huang, X. Z. et al. Aspirin and non-steroidal anti-inflammatory drugs use reduce gastric cancer risk: A dose-response meta-analysis. Oncotarget 8, 4781–4795 (2017).
19. Qiao, Y. et al. Associations between aspirin use and the risk of cancers: a meta-analysis of observational studies. BMC Cancer 18, 288 (2018).
20. Kim, M. H., Chang, J., Kim, W. J., Banerjee, S. & Park, S. M. Cumulative dose threshold for the chemopreventive effect of aspirin against gastric cancer. Am. J. Gastroenterol. 113, 845–854 (2018).
21. Cheung, K. S. & Leung, W. K. Risk of gastric cancer development after eradication of Helicobacter pylori. World J. Gastrointest. Oncol. 10, 115–123 (2018).
22. Leung, W. K. et al. Effects of Helicobacter pylori pylori eradication on methylation status of E-cadherin gene in noncancerous stomach. Clin. Cancer Res. 12, 3216–3221 (2006).
23. Chan, A. O. et al. Eradication of Helicobacter pylori infection reverses E-cadherin promoter hypermethylation. Gut 55, 463–468 (2006).
24. Perri, F. et al. Aberrant DNA methylation in non-neoplastic gastric mucosa of H. Pylori infected patients and effect of eradication. *Am. J. Gastroenterol.* **102**, 1361–1371 (2007).
25. Sepulveda, A. R. et al. CpG methylation and reduced expression of O6-methylguanine DNA methyltransferase is associated with Helicobacter pylori infection. *Gastroenterology* **138**, 1836–1844 (2010).
26. Nakajima, T. et al. Persistence of a component of DNA methylation in gastric mucosa after Helicobacter pylori eradication. *J. Gastroenterol.* **45**, 37–44 (2010).
27. Shin, C. M. et al. Changes in aberrant DNA methylation after Helicobacter pylori eradication: a long-term follow-up study. *Int. J. Cancer* **133**, 2034–2042 (2013).
28. Kawanaka, M. et al. Effects of Helicobacter pylori eradication on the development of metachronous gastric cancer after endoscopic treatment: analysis of molecular alterations by a randomised controlled trial. *Br. J. Cancer* **114**, 21–29 (2016).
29. Asada, K. et al. Demonstration of the usefulness of epigenetic cancer risk prediction by a multicentre prospective cohort study. *Gut* **64**, 388–396 (2015).
30. Maeda, M. et al. High impact of methylation accumulation on metachronous gastric cancer: 5-year follow-up of a multicentre prospective cohort study. *Gut* **66**, 1721–1723 (2017).
31. Liu, X. & Meltzer, S. J. Gastric cancer in the era of precision medicine. *Cell. Mol. Gastroenterol. Hepatol.* **3**, 348–358 (2017).
32. Huang, K. K. et al. Genomic and epigenomic profiling of high-risk intestinal metaplasia reveals molecular determinants of progression to gastric cancer. *Cancer Cell* **33**, 137–150 (2018).
33. Michigami, Y. et al. Effects of long-term aspirin use on molecular alterations in precancerous gastric mucosa in patients with and without gastric cancer. *Sci. Rep.* **7**, 13384 (2017).
34. Michigami, Y. et al. Long-term effects of H. pylori eradication on epigenetic alterations related to gastric carcinogenesis. *Sci. Rep.* **8**, 14369 (2018).
35. Shin, V. Y., Ng, E. K., Chan, V. W., Kwong, A. & Chu, K. M. A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer. *Mol. Cancer* **14**, 202 (2015).
36. Suzuki, H. et al. Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. *Carcinogenesis* **31**, 2066–2073 (2010).
37. Suzuki, H. et al. Aberrant methylation of microRNA-34b/c is a predictive marker of metachronous gastric cancer risk. *J. Gastroenterol.* **49**, 1135–1144 (2014).
38. Chen, Q. et al. miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. *Dig. Dis. Sci.* **56**, 2009–2016 (2011).
39. Steponaitiene, R. et al. Epigenetic silencing of miR-137 is a frequent event in gastric carcinogenesis. *Mol. Carcinog.* **55**, 376–386 (2016).
40. Zhang, Z. et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. *Lab. Invest.* **88**, 1358–1366 (2008).
41. Tsai, K. W. et al. Epigenetic modification of miR-34b and miR-129 expression in gastric cancer. *Int. J. Cancer* **129**, 2600–2610 (2011).
42. Zaridze, D., Borisova, E., Maximovitch, D. & Chkhikvadze, V. Aspirin protects against gastric cancer: results of a case-control study from Moscow, Russia. *Int. J. Cancer* **82**, 473–476 (1999).
43. Akre, K., Ekström, A. M., Signorell, L. B., Hansson, L. E. & Nyрен, O. Aspirin and risk for gastric cancer: a population-based case-control study in Sweden. *Br. J. Cancer* **84**, 965–968 (2001).
44. Wu, C. Y. et al. Effective reduction of gastric cancer risk with regular use of nonsteroidal anti-inflammatory drugs in Helicobacter pylori-infected patients. *J. Clin. Oncol.* **28**, 2952–2957 (2010).
45. Cheung, K. S. et al. Aspirin and risk of gastric cancer after Helicobacter pylori eradication: a territory-wide study. *J. Natl. Cancer Inst.* **110**, 743–749 (2018).
46. Capelle, L. G. et al. The staging of gastritis with the OLGA system by using intestinal metaplasia as an accurate alternative for atrophic gastritis. *Gastrointest. Endosc.* **71**, 1150–1158 (2010).
47. Wong, B. C. et al. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. *JAMA* **291**, 187–194 (2004).
48. Hwang, Y. J. et al. Reversibility of atrophic gastritis and intestinal metaplasia after Helicobacter pylori eradication – a prospective study for up to 10 years. *Aliment. Pharmacol. Ther.* **47**, 380–390 (2018).
49. Houghton, J. et al. Gastric cancer originating from bone marrow-derived cells. *Science* **306**, 1568–1571 (2004).
50. Houghton, J. & Wang, T. C. Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers. *Gastroenterology* **128**, 1567–1578 (2005).
51. Mutoh, H. et al. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. *Gut* **53**, 1416–1423 (2004).
52. Shin, C. M. et al. Follow-up study on Cdx1 and Cdx2 mRNA expression in noncancerous gastric mucosae after helicobacter pylori eradication. *Dig. Dis. Sci.* **61**, 1051–1059 (2016).
53. El-Serag, H. B. et al. Gene expression in Barrett’s esophagus: laser capture versus whole tissue. *Scand. J. Gastroenterol.* **44**, 787–795 (2009).
54. Japanese Gastric Cancer Association. Japanese Classification of Gastric Carcinoma - 3rd English edition. *Gastric Cancer* **14**, 101–112 (2011).

Acknowledgements

The authors would like to thank Ms. Mayumi Yamada for her excellent technical assistance. This research was supported by funds from Astellas Academic Support (Astellas Pharm. Inc.) and EA Pharma Research Support (EA Pharma Co., Ltd.).

Author Contributions

J.W., T.S., K.M.D. and H.M. designed the study and analyzed the data; J.W. and C.I. recruited the patients, performed the DNA extraction and molecular analysis, and analyzed the data; Y.M., J.W., T.T., T.O. and H.F. performed the endoscopies; J.W. and C.I. performed the statistical analysis; J.W. wrote the manuscript; T.S., K.M.D. and H.M. revised the manuscript. All authors read and approved the final version of the paper.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-49069-1.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
