TorchDrug: A Powerful and Flexible Machine Learning Platform for Drug Discovery

Zhaocheng Zhu1,2
Chence Shi1,2
Zuobai Zhang1,2
Shengchao Liu1,2
Minghao Xu1,2
Xinyu Yuan3
Yangtian Zhang4
Junkun Chen5
Huiyu Cai1,2
Jiarui Lu1,2
Chang Ma3
Runcheng Liu5
Louis-Pascal Xhonneux1,2
Meng Qu1,2
Jian Tang1,6,7
1Mila - Quebec AI Institute
2University of Montreal
3Peking University
4Shanghai Jiao Tong University
5Tsinghua University
6HEC Montreal
7CIFAR AI Research Chair

Abstract

Machine learning has huge potential to revolutionize the field of drug discovery and is attracting increasing attention in recent years. However, lacking domain knowledge (e.g., which tasks to work on), standard benchmarks and data preprocessing pipelines are the main obstacles for machine learning researchers to work in this domain. To facilitate the progress of machine learning for drug discovery, we develop TorchDrug, a powerful and flexible machine learning platform for drug discovery built on top of PyTorch. TorchDrug benchmarks a variety of important tasks in drug discovery, including molecular property prediction, pretrained molecular representations, de novo molecular design and optimization, retrosynthesis prediction, and biomedical knowledge graph reasoning. State-of-the-art techniques based on geometric deep learning (or graph machine learning), deep generative models, reinforcement learning and knowledge graph reasoning are implemented for these tasks. TorchDrug features a hierarchical interface that facilitates customization from both novices and experts in this domain. Tutorials, benchmark results and documentation are available at https://torchdrug.ai Code is released under Apache License 2.0.

Keywords: AI for drug discovery, geometric deep learning, graph machine learning, deep generative models, knowledge graphs

©2022 Zhaocheng Zhu, Chence Shi, Zuobai Zhang, Shengchao Liu, Minghao Xu, Xinyu Yuan, Yangtian Zhang, Junkun Chen, Huiyu Cai, Jiarui Lu, Chang Ma, Runcheng Liu, Louis-Pascal Xhonneux, Meng Qu and Jian Tang.
License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/
1. Introduction

Drug discovery is a long and costly process, taking on average 10 years and costing 2.5 billion US dollars to develop a new drug (DiMasi et al., 2016). Machine learning has huge potential to accelerate the process of drug discovery by extracting evidence through mining and analyzing data in the biomedical domain (e.g., scientific literature, bioassays, and clinical trials). Recently, machine learning methods have made significant progress in many drug discovery tasks, such as protein structure prediction (Baek et al., 2021; Jumper et al., 2021), molecular property prediction (Duvenaud et al., 2015; Hu et al., 2019), de novo molecular design and optimization (You et al., 2018; Shi et al., 2020b), reaction prediction (Jin et al., 2017; Bradshaw et al., 2018), retrosynthesis prediction (Dai et al., 2019; Shi et al., 2020a), and drug repurposing (Wang et al., 2020; Zhao et al., 2020). However, it remains a challenge for machine learning researchers to work in this domain for a few reasons: (1) lacking domain knowledge of what are important tasks in the domain; (2) no standard benchmarks of different methods due to their completely different implementations; (3) the large cost of implementing complicated data preprocessing pipelines for each task.

To accelerate the process of drug discovery through machine learning, we see a critical need to develop an open-source machine learning platform for drug discovery. Here we present such a platform, called TORCHDRUG. TORCHDRUG provides a hierarchical interface to accommodate different demands in the development of drug discovery. At the low level, TORCHDRUG encapsulates graphs and molecules as basic data structures, and provides GPU-accelerated graph operations, along with standard datasets in a PyTorch-style interface. At the mid-level, TORCHDRUG supplies popular building blocks of graph representation learning models (e.g., MPNN (Gilmer et al., 2017)), which can be used to quickly construct models for drug discovery. The high level contains reusable routines for a variety of important tasks in drug discovery, ranging from molecular property prediction, pretrained molecular representations, de novo molecule design and optimization, retrosynthesis prediction to biomedical knowledge graph reasoning (e.g., for drug repurposing). Figure 1 presents an overview of the TORCHDRUG library. TORCHDRUG has received more than 5,000 downloads on PyPI and Anaconda since its first release in August 2021.
2. Existing Systems and Implementations

Graph Machine Learning Systems. The most prominent packages are PyTorch-Geometric (PyG) (Fey and Lenssen, 2019) and Deep Graph Library (DGL) (Wang et al., 2019), which are targeted at building graph neural networks (GNNs) in PyTorch (Paszke et al., 2019). DGL additionally supports MXNet (Chen et al., 2015) backend. Other similar packages include GraphNets (Battaglia et al., 2018), StellarGraph (Data61, 2018), Spektral (Grattarola and Alippi, 2020), tf_geometric (Hu et al., 2021) for Tensorflow (Abadi et al., 2016), CogDL (Cen et al., 2021) for PyTorch, and Jraph (Godwin* et al., 2020) for JAX (Bradbury et al., 2018). All these libraries cover the low-level graph operations (e.g., batch of graphs) and mid-level models (e.g., GIN (Xu et al., 2018)) for GNN architectures. By contrast, DIG (Liu et al., 2021) focuses on high-level tasks on graphs, such as graph generation and self-supervised learning. To our best knowledge, there is no general graph machine learning system targeting at the research and development need of drug discovery tasks.

Drug Discovery Implementations. Another stream of software is dedicated to the implementation of drug discovery tasks. For example, DeepChem (Ramsundar et al., 2019) provides standard datasets and models for molecule property prediction. You et al. (2018) implements a codebase for conducting research on de novo molecular design. Dai et al. (2019); Shi et al. (2021) develop two delicate packages for retrosynthesis prediction and 3D molecular conformation prediction, respectively. However, these efforts are mostly targeted on a specific task with a limited range of models, which restricts the development and benchmarking of new fundamental models. Other implementations like Therapeutics Data Commons (TDC) (Huang et al., 2021) and ATOM3D (Townshend et al., 2020) focus on datasets and evaluation toolkits for drug discovery tasks, but lack implementation of models.

By comparison, **TorchDrug** is a graph machine learning system for drug discovery, with flexible interface for low-level operations, mid-level models and high-level tasks.

3. Key Features

TorchDrug offers two key features: 1) low-level data structures and graph operations that can be manipulated with minimal domain knowledge and GPU acceleration. 2) mid-level datasets, layers, models and high-level tasks that support rapid prototyping of ideas.

3.1 Data Structures and Graph Operations

The core data structures of **TorchDrug** are homogeneous graphs, knowledge graphs (together in `data.Graph`), and molecules (`data.Molecule`). Like tensors in PyTorch, these data structures are designed to be the first-class citizen in **TorchDrug**, and serve as input and output of many functions. Our data structures support a lot of graph operations, such as node masking (`data.Graph.node_mask`), extracting connected components (`data.Graph.connected_components`) and converting ions to molecules (`data.Molecule.ion_to_molecule`), as well as their batched variants. All the graph operations are implemented based on standard PyTorch operations, which support auto differentiation and can be seamlessly switched between CPUs and GPUs. For example, the following code snippet creates a batch of 4 molecules, sends it to a GPU, repeats the batch and visualizes the results.
from torchdrug import data
smiles_list = ['CCSCCSP(=S)(OC)OC', 'CCOC(=O)N', 'N(Nc1ccccc1)c2ccccc2', 'NC(=O)c1cccnc1']
mols = data.PackedMolecule.from_smiles(smiles_list)
mols = mols.cuda()
mols = mols.repeat(2)
mols.visualize(num_row=1)

The data structures also contain several predefined node-level, edge-level and graph-level attributes that are useful for building machine learning models. For example, the type of atoms in a molecule may be used as an input feature to some property prediction model. Users may also register arbitrary attributes depending on their tasks. All the attributes are automatically maintained in all of our graph operations.

3.2 Datasets, Layers, Models and Tasks

Datasets. The datasets module provides 30 common datasets for 5 drug discovery tasks. These datasets inherit the Dataset class from PyTorch and further provide data loading and _getitem_ functions, which facilitates the interaction with dataloaders in PyTorch.

Layers and Models. The layers and models modules implement layers and models for representation learning respectively. This lets users switch between standard models or custom models from standard layers. Our interface follows the convention in PyTorch, which minimizes the cognitive load of users. Classes in layers (e.g., GCNConv) are similar to the layers in torch.nn, while classes in models (e.g., GCN) are similar to torchvision.models.

Tasks. The tasks module contains high-level routines of machine learning tasks in drug discovery. Typically, these include dataset preprocessing, prediction, training and evaluation. Each task is abstracted as a model-agnostic class in tasks, which can be used with any basic representation learning models (e.g., GIN (Xu et al., 2018)). Currently, TorchDrug supports 5 tasks: property prediction, pretrained molecular representations, de novo molecule design, retrosynthesis and biomedical knowledge graph reasoning. A full list of tasks and models supported by TorchDrug are showed in Table 1.

Task	Model
Property Prediction	Neural Fingerprint [Duvenaud et al., 2015], ChebyNet [Defferrard et al., 2016], GCN [Kipf and Welling, 2016], GIN [Xu et al., 2018], GAT [Velić et al., 2018]
Pretrained Molecular Representation	InfoGraph [Sun et al., 2019a], Edge Prediction [Hamilton et al., 2017], Attribute Masking [Hu et al., 2019]
De Novo Molecule Design and Optimization	GCPN [You et al., 2018], GraphAF [Shi et al., 2020]
Retrosynthesis Prediction	G2Gs [Shi et al., 2020a], TransE [Bordes et al., 2013], DistMult [Yang et al., 2014], ComplEx [Trouillon et al., 2016], SimplE [Kazemi and Poole, 2018], RotatE [Sun et al., 2019b], KBGAT [Nathani et al., 2019]
Biomedical Knowledge Graph Reasoning	NeuralLP [Yang et al., 2017], KIBGAT [Xiaowei et al., 2019], TransE [Bordes et al., 2013], SimplE [Kazemi and Poole, 2018], RotatE [Sun et al., 2019b], KBGAT [Nathani et al., 2019]

4. Conclusion

We present TorchDrug, a powerful and flexible machine learning platform for drug discovery. It has the potential to accelerate the research and development of drug discovery. In the future, we plan to further add tasks and models for protein representation learning.
References

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16), pages 265–283, 2016.

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557):871–876, 2021.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. In Neural Information Processing Systems (NIPS), pages 1–9, 2013.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

John Bradshaw, Matt J Kusner, Brooks Paige, Marwin HS Segler, and José Miguel Hernández-Lobato. A generative model for electron paths. arXiv preprint arXiv:1805.10970, 2018.

Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Xingcheng Yao, Aohan Zeng, Shiguang Guo, Peng Zhang, Guohao Dai, et al. Cogdl: An extensive toolkit for deep learning on graphs. arXiv preprint arXiv:2103.00959, 2021.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

Hanjun Dai, Chengtao Li, Connor Coley, Bo Dai, and Le Song. Retrosynthesis prediction with conditional graph logic network. In Advances in Neural Information Processing Systems, pages 8870–8880, 2019.

CSIRO’s Data61. Stellargraph machine learning library. https://github.com/stellargraph/stellargraph, 2018.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, 29:3844–3852, 2016.
Joseph A DiMasi, Henry G Grabowski, and Ronald W Hansen. Innovation in the pharmaceutical industry: new estimates of r&d costs. *Journal of health economics*, 47:20–33, 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparaguirre, Rafael Bombarell, Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. *Advances in Neural Information Processing Systems*, 28:2224–2232, 2015.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. *arXiv preprint arXiv:1903.02428*, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In *International Conference on Machine Learning*, pages 1263–1272. PMLR, 2017.

Jonathan Godwin*, Thomas Keck*, Peter Battaglia, Victor Bapst, Thomas Kipf, Yujia Li, Kimberly Stachenfeld, Petar Veličković, and Alvaro Sanchez-Gonzalez. Jraph: A library for graph neural networks in jax., 2020. URL http://github.com/deepmind/jraph.

Daniele Grattarola and Cesare Alippi. Graph neural networks in tensorflow and keras with spektral. *arXiv preprint arXiv:2006.12138*, 2020.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. *arXiv preprint arXiv:1706.02216*, 2017.

Jun Hu, Shengsheng Qian, Quan Fang, Youze Wang, Quan Zhao, Huaiwen Zhang, and Changsheng Xu. Efficient graph deep learning in tensorflow with tf_geometric. *arXiv preprint arXiv:2101.11552*, 2021.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. Strategies for pre-training graph neural networks. In *International Conference on Learning Representations*, 2019.

Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: machine learning datasets and tasks for therapeutics. *arXiv preprint arXiv:2102.09548*, 2021.

Wengong Jin, Connor W Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic reaction outcomes with weisfeiler-lehman network. *arXiv preprint arXiv:1709.04555*, 2017.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvumakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. *Nature*, 596(7873):583–589, 2021.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge graphs. *arXiv preprint arXiv:1802.04868*, 2018.
Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. *arXiv preprint arXiv:1609.02907*, 2016.

Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao Xu, Jingtun Zhang, Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora M Oztekin, Xuan Zhang, and Shuiwang Ji. Dig: A turnkey library for diving into graph deep learning research. *Journal of Machine Learning Research*, 22(240):1–9, 2021. URL http://jmlr.org/papers/v22/21-0343.html.

Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. Learning attention-based embeddings for relation prediction in knowledge graphs. *arXiv preprint arXiv:1906.01195*, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32:8026–8037, 2019.

Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, Karl Leswing, and Zhenqin Wu. *Deep Learning for the Life Sciences*. O’Reilly Media, 2019. https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. Modeling relational data with graph convolutional networks. In *European semantic web conference*, pages 593–607. Springer, 2018.

Kristof T Schütt, Pieter-Jan Kindermans, Huziel E Sauceda, Stefan Chmiela, Alexandre Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. *arXiv preprint arXiv:1706.08566*, 2017.

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. A graph to graphs framework for retrosynthesis prediction. In *International Conference on Machine Learning*, pages 8818–8827. PMLR, 2020a.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a flow-based autoregressive model for molecular graph generation. *International Conference on Learning Representations*, 2020b.

Chence Shi, Shitong Luo, Minkai Xu, and Jian Tang. Learning gradient fields for molecular conformation generation. In *International Conference on Machine Learning*, 2021.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization. *arXiv preprint arXiv:1908.01000*, 2019a.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by relational rotation in complex space. *arXiv preprint arXiv:1902.10197*, 2019b.
Raphael JL Townshend, Martin Vögele, Patricia Suriana, Alexander Derry, Alexander Powers, Yianni Laloudakis, Sidhika Balachandar, Bowen Jing, Brandon Anderson, Stephan Eismann, et al. Atom3d: Tasks on molecules in three dimensions. *arXiv preprint arXiv:2012.04035*, 2020.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex embeddings for simple link prediction. In *International Conference on Machine Learning*, pages 2071–2080. PMLR, 2016.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, et al. Deep graph library: Towards efficient and scalable deep learning on graphs. 2019.

Qingyun Wang, Manling Li, Xuan Wang, Nikolaus Parulian, Guangxing Han, Jiawei Ma, Jingxuan Tu, Ying Liu, Haoran Zhang, Weili Liu, et al. Covid-19 literature knowledge graph construction and drug repurposing report generation. *arXiv preprint arXiv:2007.00576*, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? *arXiv preprint arXiv:1810.00826*, 2018.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for learning and inference in knowledge bases. *arXiv preprint arXiv:1412.6575*, 2014.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge base reasoning. *arXiv preprint arXiv:1702.08367*, 2017.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy network for goal-directed molecular graph generation. *Advances in Neural Information Processing Systems*, 31, 2018.

Sendong Zhao, Bing Qin, Ting Liu, and Fei Wang. Biomedical knowledge graph refinement with embedding and logic rules. *arXiv preprint arXiv:2012.01031*, 2020.