This is a repository copy of *SPH modelling of depth-limited turbulent open channel flows over rough boundaries*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98993/

Article:
Kazemi, E., Nichols, A., Tait, S. et al. (1 more author) (2017) SPH modelling of depth-limited turbulent open channel flows over rough boundaries. International Journal for Numerical Methods in Fluids, 83 (1). pp. 3-27. ISSN 1097-0363

https://doi.org/10.1002/fld.4248

© 2016 The Authors This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
SPH modelling of depth-limited turbulent open channel flows over rough boundaries

E. Kazemi, A. Nichols, S. Tait, S. Shao*

Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK

* Author of correspondence, Department of Civil & Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK. Tel: +44 (0) 114 222 5783; Fax: +44 (0) 114 222 5700; Email: s.shao@sheffield.ac.uk

ABSTRACT

A numerical model based on the Smoothed Particle Hydrodynamics (SPH) method is developed to simulate depth-limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier-Stokes (N-S) equations are solved, in which a drag-based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved Sub-Particle-Scale (SPS) model is applied to account for the effects of turbulence. The SPS model is constructed based on the mixing-length assumption rather than the standard Smagorinsky approach to compute the eddy-viscosity. A more robust in/out-flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flow over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented SPH model accomplishes this successfully.

Keywords: SPH, turbulence, open channel flow, rough bed, mixing-length, drag force, inflow/outflow boundaries.
1 Introduction

Since all natural river flows around the world are turbulent and the channel beds are often composed of large-scale, potentially mobile, rough elements such as sand and gravel particles, the study of turbulent open channel flows over rough beds is of significant engineering interest. This interest has motivated researchers to carry out various studies to explore the flow behaviour near the solid-fluid interface in laboratory experiments or to simulate the effect of bed roughness on the flow by numerical methods. The solution of fundamental hydrodynamic equations has become a popular numerical technique in modelling turbulent flows since it can provide time-dependent details of the flow characteristics such as velocities, pressures and transport properties. In turbulence modelling of open channel flows, the Reynolds-averaged N-S equations (RANS) or space-filtered Large Eddy Simulation (LES) equations have been widely used, where the large eddies are resolved and the small ones are modelled by an appropriate model, usually the eddy-viscosity model. The eddy-viscosity model relates the turbulent shear stress to the local strain rate through an eddy-viscosity ν_t based on the Boussinesq approximation. A simple, economical and practical approach to evaluate ν_t is using a mixing-length model which is known as the zero-equation model. In this approach, the eddy-viscosity is related to the mean strain rate from Prandtl’s theory by using a turbulence characteristic length l_m as follows:

$$\nu_t = l_m^2 \left(\frac{dU}{dz} \right)$$

(1)

where U is the mean streamwise velocity and l_m is the mixing-length. Although the mixing-length model is easy to use, it lacks the universality and is not applicable to complicated flows (e.g. 3D non-uniform flows with disturbed free surface) where the distribution of turbulence length scale l_m is not known. A well-known turbulence model which is commonly used for such complicated flows is the two-equation $k-\varepsilon$ model where a wall function technique is usually used to estimate the flow in the shear boundary layer. Although this model has the advantage of including the effect of flow history and transport on the turbulence, it meets difficulties in treating rough wall boundaries since the near-bed logarithmic law does not hold anymore when large roughness elements exist. This has also been investigated by Nikora et al. (2004), who showed that in the interfacial sub-layer, which is the flow region between the roughness crest and trough that the velocity profile can be either constant, exponential or linear based on the flow conditions, relative submergence and roughness geometry. Another deficiency of the wall function approach has been addressed by Nicholas (2001), in that the shear stress could not be accurately reproduced by a wall function approach due to the mesh resolution problems in the region near the rough bed. On the other hand, the LES modelling approach is based on the spatially-averaged
equations where usually a Sub-Grid-Scale (SGS) model is used to relate the turbulent eddy-viscosity with the local flow strain rate by using the Smagorinsky model (1963).

Different approaches have been adopted to account for the roughness effect in numerical modelling of turbulent flow over rough walls. Some have been developed based on modifying the turbulence model near the rough boundary; while in some others separate models have been used, for example, the roughness effect being formulated on the basis of a drag force equation. Van Driest (1956) proposed a modification to his mixing-length formula originally derived for hydraulically smooth walls. Based on this modification, the shear stress was increased near the wall due to the existence of the roughness elements. Rotta (1962) proposed a different modification to the van Driest formula by introducing a shift in the wall coordinate in order to increase the shear stress near the wall to take the roughness effect into account. Despite their simplicity, these models have provided a physical description of flow pattern near the wall and have been applied in several studies for calculation of boundary layers on rough walls, e.g. in Cebeci and Chang (1978). However, their modified model is not suitable in cases where the wall is composed of large-scale discrete rough elements such as in gravel bed rivers. Hence other researchers have explicitly modelled the roughness effect by using a drag-based model in which a sink term of the form drag is added to the momentum equations to address the form drag effect on the near-wall flow. Christoph and Pletcher (1983) and Taylor et al. (1985) used such models to simulate the roughness effect together with a mixing-length model to account for the turbulence. Wiberg and Smith (1991) divided the total shear stress into a fluid shear component and a form-induced component and used a mixing-length model for the former and a drag force equation for the latter to calculate the velocity distributions in a steep stream over coarse gravel beds. Besides these, Cui et al. (2003), Carney et al. (2006) and Zeng and Li (2012) are some other examples of studies in which the drag concept has been applied to model the effect of wall roughness on the flow. Among them, Zeng and Li (2012) used a wall function approach to treat the shear boundary for small-scale rough bed elements and a drag force model for large-scale rough beds when the wall function approach was unable to reproduce the correct velocity distributions.

Recently mesh-free particle methods, e.g. SPH, have been used in fluid flows due to their advantages in dealing with the large deformation of free surfaces and solid-fluid interfaces. SPH can model flows by tracking each individual particle without numerical diffusion and has been used in various applications such as wave breaking, fluid impact and flow-structure interactions. As examples of hydraulic engineering related SPH studies, Gotoh et al. (2004), Shao and Gotoh (2004), and Shao and Gotoh (2005) should be mentioned. Recently, several other studies have been carried out focussing on the enhancement of the accuracy of particle methods in fluid flows, e.g.
Khayyer and Gotoh (2011), Lind et al. (2012), and Gotoh et al. (2014). Besides, further studies have also been done to improve the modelling of the effect of wall and free surface boundary conditions, for example, Ferrand et al. (2013), Leroy et al. (2014), and Tsuruta et al. (2015).

However, very few cases have involved open channel flows, although some pioneering works in this field have been reported such as by Federico et al. (2012) and Fu and Jin (2013). Because of this, turbulence and rough bed issues have not been effectively solved for the type of flows found in shallow rivers with a rough boundary. For turbulence models in SPH, the earliest and most comprehensive work could be attributed to Gotoh et al. (2001) and Violeau and Issa (2007). The former proposed a novel eddy-viscosity based SPS turbulence model for a turbulent jet based on the Moving Particle Semi-implicit (MPS) method, in which the turbulent quantities were validated but the model applications were mainly based on the smooth wall, while the latter developed two RANS turbulence models and also applied a LES approach to simulate more complex turbulent free-surface flows.

As for the shear boundary treatment, Violeau and Issa (2007) used a wall function approach to impose the logarithmic velocity distributions near the wall. Besides, Lopez et al. (2010) developed an SPH model with variable artificial viscosity to simulate hydraulic jumps and they applied a Lennard-Jones repulsive force on the bed particles to produce a “numerical” resistance on the near-wall flow. Sahebari et al. (2011) and Fu and Jin (2013) used the SPS model with Smagorinsky constant $C_s = 0.15$ in their MPS simulations of open channel flows, where Sahebari et al. (2011) did not treat the bed roughness effect. Fu and Jin (2013) adjusted the velocity of dummy particles near the bed boundary to take the roughness effect into account. In this way, different types of bed conditions, including smooth, intermediately-rough and fully-rough beds have been studied. Chern and Syamsuri (2013) also used the SPS turbulence modelling approach but with $C_s = 0.12$ and simulated hydraulic jumps over corrugated beds by using SPH. They treated the wall boundaries of smooth, triangular, trapezoidal and sinusoidal shapes by using lines of the particles, and applied a repulsive force similar to that of Lopez et al. (2010). De Padova et al. (2013) employed an eddy-viscosity model based on the mixing-length concept for flow turbulence to simulate hydraulic jumps in a large channel by SPH. Nevertheless, no bed boundary treatment was included in their model. Arai et al. (2013) applied a wall function to estimate the near-wall velocity in their MPS model with a Smagorinsky-based eddy-viscosity model for turbulence in a LES of turbulent channel flows. A more physically sound rough bed modelling approach was initiated by Gotoh and Sakai (1999) for a breaking wave inside a porous medium. They pointed out that a drag force equation could be the most appropriate way to address the bed roughness. Khayyer and Gotoh (2009; 2010) developed a more mature drag force model to
address the wall friction effect for a dam break flow over a wet bed. Besides, it is also worth mentioning that recently quite a few influential works have been carried out in open channel flows by using the concept of shallow water SPH (Chang et al., 2011; Chang and Chang, 2013; Chang et al., 2014).

In two recent studies, Mayrhofer et al. (2013, 2015) effectively investigated the turbulence modelling of wall-bounded flows using SPH. Mayrhofer et al. (2013) introduced an additional volume diffusion term into the continuity equation in order to treat the noises which arise as a result of the SPH discretisation. They used an eddy-viscosity model with a mixing-length approach to estimate the additional diffusion term. More recently, Mayrhofer et al. (2015) applied the SPH method in a Direct Numerical Simulation (DNS) as well as LES of 3D wall-bounded turbulent channel flows, and revealed interesting findings. They firstly performed a quasi-DNS of a 3D channel flow based on SPH and achieved good agreement with the reference data except for some near-wall oscillations. Then they carried out a LES of a channel flow with friction Re number (Re_f) of 1000 using SPH with the unified semi-analytical wall boundary condition and an eddy-viscosity model with the Smagorinsky constant $C_s = 0.065$ for the unresolved part of the turbulence. In contrast to the DNS, the result of the LES was very poor. In order to investigate the insufficiency of their LES, they considered a Taylor-Green vortex case and stated that the failure was traced back to the SPH collocated discretisation effect on the pressure-velocity interactions. Finally they concluded the LES of a channel flow is still not possible with the present SPH formulation because of the problems inherent in the standard SPH discretisations.

In grid-based LES, a variable resolution is usually adopted so as to use a much finer mesh near the wall boundary in order to resolve the near-wall flow scales, while in SPH, a non-variable homogenous discretisation has to be used. Hence a wall function is usually applied, such as in the studies of Violeau and Issa (2007), Arai et al. (2013), and Mayrhofer et al. (2015), to account for the wall effect.

In a most recent study in this area, Kazemi et al. (2016) completed a comprehensive review on the numerical modelling of turbulent open channel flows over rough bed boundaries. They focused on the procedures of turbulence modelling and rough bed boundary treatments and reviewed mesh-free particle models which have been developed for these purposes. They remarked the deficiency of the eddy-viscosity models with the Smagorinsky constant in treating the turbulence effect in SPH simulation of highly turbulent channel flows over rough boundaries; and also the insufficiency of the wall functions in treating the rough wall boundaries, which occurs because the near-wall velocity profile is not always logarithmic when the boundary consists of large roughness elements. Accordingly, the SPH method was recommended to be coupled with a mixing-length model for turbulence and a drag force equation model to treat the shear boundary near beds with large-scale
roughness. In the present study, the proposed model is further developed and used to investigate the effects of bed roughness in different regimes of turbulent flow over rough bed boundaries. In summary, we will use the fundamental eddy-viscosity based SPS model proposed by Gotoh et al. (2001) but adopt a mixing-length approach to realistically calculate the eddy-viscosity to improve the turbulence model performance in open channel flows. As for the drag force model, we will improve it by including a shape function in the drag force equation to account for the shape of bed roughness elements so as to more realistically evaluate the bed surface geometrical conditions. Also, an efficient inflow/outflow boundary treatment is used to generate an accurate and stable uniform flow along the channel. In model applications, the depth-limited flows with different regimes but with the same bed roughness are simulated and the velocity and shear stress profiles are validated by experimental data for 2D rough bed turbulent flow. Following Cheng et al. (2012), we consider the depth-limited condition as when the ratio of the bed roughness size to the water depth is significant. As far as we know, no documented SPH works have reported the quantification of such flow information for turbulent open channel flows over rough beds for conditions similar to those found in gravel bed rivers.

2 Numerical Modelling Scheme of SPH

2.1 Governing equations

The governing equations are the two-dimensional continuity and momentum equations in the Lagrangian framework. An additional term to represent the form drag of the bed particles is included. This term as well as the turbulent shear term is not needed in a DNS. The final equation reads

\[
\frac{D\rho}{Dt} = - \rho \nabla \cdot \mathbf{u}
\]

(2)

\[
\frac{D\mathbf{u}}{Dt} = - \frac{1}{\rho} \nabla P + \mathbf{g} + \nu_0 \nabla^2 \mathbf{u} + \frac{1}{\rho} \nabla \cdot \mathbf{\tau}_t + \frac{1}{\rho} \mathbf{\tau}_d
\]

(3)

where \(t \) is the time, \(\rho \) is the fluid density, \(\mathbf{u} \) is the velocity, \(P \) is the pressure, \(\mathbf{g} \) is the gravitational acceleration, \(\nu_0 \) is the kinematic viscosity coefficient, \(\mathbf{\tau}_t \) is the turbulence stress tensor and \(\mathbf{\tau}_d \) is the form drag-induced shear stress from the rough bed.

To model the turbulence stress, a SPS model based on the eddy-viscosity assumption (Gotoh et al., 2001) is used as

\[
\frac{\tau_{ij}}{\rho} = 2\nu_t \mathbf{S}_{ij} - \frac{2}{3} \rho \delta_{ij}
\]

(4)

where \(i \) and \(j \) denote the 2D coordinate components, \(\tau_{ij} \) is the component of shear
stress tensor $\mathbf{\tau}$, S_{ij} is the component of strain tensor \mathbf{S} calculated by Eq. (5), v_i is the turbulence eddy-viscosity, k is the turbulence kinetic energy calculated by Eq. (6) and δ_{ij} is the Kronecker delta function.

\[
S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
\]

\[
k = v_i \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
\]

where x and u are the position and velocity components, respectively. In SPH, the turbulence eddy-viscosity v_i is usually estimated by the Smagorinsky model (1963), following the initiatives of Gotoh et al. (2001), as follows:

\[
v_i = (C_s \Delta)^2 \|\mathbf{S}\|
\]

where C_s is the Smagorinsky constant, usually taken to be between 0.1 and 0.15, Δ is the characteristic length scale of eddies (filter width), which is taken as the particle spacing, and $\|\mathbf{S}\| = \sqrt{\mathbf{S} : \mathbf{S}^T}$ is the local strain rate. It should be noted that the turbulence has a three-dimensional nature, and in particular for the spatially-averaged LES-based modelling and consideration of SPS turbulence closure, the three-dimensional characteristics of turbulence should play an important role. However, in the present simulations of open channel uniform flow, the flow is dominated by the streamwise shear stress and vertical 2D momentum exchange, while the lateral influence is quite small so as to be reasonably neglected in this study.

Equation (7) has been used with SPH in several coastal hydrodynamic applications and the accuracy has proved to be satisfactory. However, its applicability in open channel flows with SPH has been under-reported. In our previous computational experience (Kazemi et al., 2016), the Smagorinsky-based SPS model with $C_s = 0.15$ was not able to reproduce the correct shear mechanism in a uniform open channel flow over a rough wall. Also, in the study of Mayrhofer et al. (2015), using an eddy-viscosity model with a Smagorinsky constant $C_s = 0.065$ in the SPH-LES showed very poor results with an overestimation in the streamwise velocity. They pointed out that the failure was related to the pressure-velocity interactions of vortices and concluded that this problem is inherent in the standard SPH discretization.

We also carried out some simulations with the Smagorinsky constant $C_s = 0.15$ to investigate this issue. The results are presented in Section 3.4, which shows the failure of the SPH using the standard Smagorinsky eddy-viscosity model for turbulence. The failure is attributed to the deficiency of the standard Smagorinsky model in dealing with the cases in which sharp changes take place in the flow velocity, like the one
studied in present work. Further discussions on this issue will be provided in Section 3.4. An alternative approach adopted here is then to explore the concept of a standard mixing-length model to estimate the turbulent eddy-viscosity in present SPH scheme in order to recover the part of the turbulence which cannot be captured by the standard Smagorinsky model with a C_s being around 0.15. Accordingly, the eddy-viscosity is formulated as follows

$$\nu_t = l_m^2 |\mathbf{S}|$$ \hspace{1cm} (8)

where the mixing-length l_m is calculated by the Nezu and Rodi (1986) empirical formula as follows, which has been derived on the basis of physical measurements.

$$\frac{l_m}{H} = \kappa \sqrt{1-\xi} \left[\frac{1}{\xi} + \pi \Pi \sin (\pi \xi) \right]$$ \hspace{1cm} (9)

where H is the water depth, κ is the von-Karman constant, and $\xi = z / H$ is defined in which z is the vertical coordinate, and Π is the Coles parameter. Π has been introduced to describe the deviation from the log law in the outer region. This parameter comes from an empirical wake function added to the velocity log law by Coles (1956). Coleman (1981) has also expressed that the deviation in the outer layer from the log law should not be accounted for by adjusting the von-Karman constant κ and/or the integration constant (B_i in Eq. 21) but rather by adding a wake function to the log law equation (Eq. 21). However, in the present study a value of 0.41 is adopted for κ and Π is assumed to be zero so that the following Eq. (10) is used to estimate the mixing-length which is a simplified form of Eq. (9). This formula has also been used in the studies of Violeau and Issa (2007) in modelling the turbulent open channel flows by the SPH method.

$$l_m = \kappa \sqrt{1-z/H}$$ \hspace{1cm} (10)

Considering x and z as the streamwise and vertical coordinates in a strongly 2D uniform open channel flow, and u and w as the streamwise and vertical velocity components, respectively, Eq. (8) would be equivalent to Prandtl’s theory (Eq. 1), as the local strain rate $|\mathbf{S}|$ is approximately equivalent to $\partial u/\partial z$ due to the other velocity gradients such as $\partial u/\partial x$, $\partial w/\partial x$, and $\partial w/\partial z$ being significantly smaller.

To account for the effect of bottom roughness, the form drag-induced shear stress term τ_d/ρ should be added to the momentum equation (3), since the macroscopic N-S equations are considered rather than a high spatial resolution (DNS) is solved for the refined flow details within the roughness region, which could use considerable CPU resources. τ_d will be calculated by following Eq. (11), where \mathbf{F}_d is the drag force exerted on the fluid particle from the rough bed, which is assumed to be equal to and in the opposite direction of the force from the fluid particle acting on the bed. A_r is the bed-parallel, planar area affected by the fluid particle. Furthermore, the drag force \mathbf{F}_d
will be calculated by Eq. (12), where \(C_d \) is the drag coefficient, \(A_d \) is the planar cross-sectional area and \(W_d \) is a non-dimensional shape function accounting for the geometry of the bed roughness. The quantifications of relevant drag parameters will be detailed in Section 2.3, Boundary Conditions.

\[
\tau_d = \frac{F_d}{A_d} \quad (11)
\]

\[
F_d = -\frac{1}{2} C_d W_d \rho A_d |u| \quad (12)
\]

2.2 Discretization of equations by SPH

The numerical scheme based on the Weakly Compressible SPH (WCSPH) method is used to discretize the governing equations. SPH is a Lagrangian particle method that was developed by Gingold and Monaghan (1977) initially for astrophysical problems. Since then it has been widely used for simulating fluid flows. In the SPH approximation, any variable, for example \(A(r) \), can be estimated by the following integral interpolant equation as

\[
A(r) = \int_{\Omega} A(r') W(r-r', h) dr' \quad (13)
\]

where \(\Omega \) is the volume of the integral, \(r \) is the particle position, \(r' \) denotes the particle coordinate, \(h \) is the smoothing length, and \(W(r-r', h) \) is the weighting or kernel function. The above equation can be expressed in the following discretized form to calculate \(A(r) \) at the position of particle \(a \)

\[
A(r_a) = \sum_b m_b \frac{A(r_b)}{\rho_b} W(r_a - r_b, h) \quad (14)
\]

where \(a \) and \(b \) are the reference particle and its neighbour, and \(m_b \) and \(\rho_b \) are the mass and density of neighbouring particle \(b \), respectively. The derivative of \(A(r) \) in the \(x_j \) direction can be approximated by

\[
\frac{\partial A(r_a)}{\partial x_j} = \sum_b m_b \frac{A(r_b)}{\rho_b} \frac{\partial W(r_a - r_b, h)}{\partial x_j} \quad (15)
\]

By using the above SPH formulations, the governing equations (Eqs. 2 and 3) are discretized as below for the computations of density and velocity of the particles as

\[
\frac{D \rho_a}{Dt} = \rho_a \sum_b m_b \rho_b u_{ab} \cdot \nabla_a W_{ab} \quad (16)
\]
\[
\frac{\text{Du}_a}{\text{Dt}} = -\sum_b m_b \left(\frac{p_a}{\rho_a^2} + \frac{p_b}{\rho_b^2} \right) \nabla_a W_{ab} + g + \sum_b m_b \left(\frac{4\nu_0}{(\rho_a + \rho_b)} \right) \nabla_a W_{ab} + \frac{4\nu_0}{(\rho_a + \rho_b)} \left(\frac{r_{ab}}{r_{ab}} \right)^2 \eta^2
\]

where \(u_{ab} = u_a - u_b \) and \(r_{ab} = r_a - r_b \) are defined, \(\nabla_a W_{ab} \) is the gradient of the kernel function between particles a and b with respect to the position of particle a, and \(\eta \) is a small number used to prevent singularity. In the present WCSPH model, the following Eq. (18) is used to link the continuity equation with the momentum equation to compute the fluid pressure from the change in particle density in an explicit way as

\[
P = \rho_0^2 \left(\rho - \rho_0 \right)
\]

where \(\rho_0 \) is the reference density and \(c_0 \) is the speed of sound. In a WCSPH numerical scheme it is assumed that the flow is slightly compressible so the speed of sound should be chosen to be around 10 times of the bulk flow velocity to ensure the fluid compressibility being less than 1%. Finally, \(\rho_0 \) and \(c_0 \) are respectively taken as 1000 kg/m\(^3\) (water density) and 16 m/s as a common practice in the computations. Although the weakly compressible SPH is known to result in considerable numerical noises in the pressure field, a special treatment (density filtering, delta-SPH terms, etc.) could be taken to improve the performance. Therefore, the present WCSPH simulations have been done using a Shepard density filter to minimize the pressure noises at every 30 computational time steps. The solution method using a predictor-corrector scheme (Monaghan, 1989) is implemented to solve the governing equations and update the density, velocity and position of the particles. The selection of the computational time step follows the Courant–Friedrichs–Lewy (CFL) condition.

2.3 Boundary conditions

The computational domain boundaries including the free surface, rough boundary and inflow/outflow boundaries are shown in Fig. 1. There is no special treatment for the free surface boundary in the SPH method because the particles are automatically tracked.

2.3.1 Treatment of inflow/outflow boundary

Recently some pioneering works have been done on the treatment of inflow/outflow boundary conditions in SPH, e.g. Federico et al. (2012), Aristodemo et al. (2015), and Tan et al. (2015). In present study, a similar technique has been adopted but with the difference in that the inflow particle velocities are linked with those of the inner fluid particles, so that the flows are evolved naturally without any prescriptions of the inflow velocity. For the inflow and outflow boundaries, several layers of particles are located beyond the boundary line but within the threshold line.
to cover the truncated kernel area of the inner-fluid particles near the boundary (Fig. 1). The governing equations are not solved for these particles but they move according to the flow conditions inside the inner-fluid domain. In this way, the velocity and pressure of inflow/outflow particles are evolved through calculations rather than being allocated the prescribed values. The proposed technique is suitable for cases where the inflow and/or outflow conditions are not known and need to be determined through the simulations. One example is the gravity driven flow over a sloping channel bed that is considered in the present study. To generate an open channel uniform flow, the appropriate flow conditions need to be achieved at the inflow boundary, i.e. the gradients of the velocity and pressure in the streamwise direction x should be zero at the boundary line, represented by

$$\frac{\partial u}{\partial x} = 0,$$

$$\frac{\partial p}{\partial x} = 0. \quad (19)$$

To satisfy these conditions in an SPH computation, the properties of the inflow particles (e.g. velocity and density) are set equal to those of the inner-fluid particles near the inflow boundary line. To do so, an averaging point is first defined for each inflow particle at the same elevation but inside the inner-fluid region, with a distance of $d_p/2$ from the boundary line as shown in Fig. 2(a), where d_p is the SPH particle size. Then the velocity and density of the inner-fluid particles are averaged over a kernel area onto these points and set as the velocity and density of the corresponding inflow particles (see Fig. 2(b)). Therefore, the gradient of velocity as well as the density is zero at the boundary. Since the pressure is calculated by using Eq. (18), the zero pressure gradient is also satisfied and thus the flow uniformity is achieved. When an inflow particle crosses the boundary line and enters the inner-fluid region, it becomes an inner-fluid particle and the governing equations are solved for it in the next time step. Meanwhile, an additional inflow particle is generated with the same properties at the inlet threshold line for the same elevation (Fig. 2(a)). In this way, the inflow region bounded by the inlet threshold line and the inner-fluid area acts like a particle generator to reach a uniform flow condition at the boundary. For consistency, the same kernel function and smoothing length of the inner-fluid SPH calculations are used for the averaging process in Fig. 2(b). The novelty of the proposed inflow boundary treatment over that of existing approaches is that the flow is naturally evolved through the numerical simulations without being given a prescribed inflow velocity, so the model can be applied to a much wider range of hydraulic applications in which the inflow information is unknown.

At the outflow boundary, the uniform flow condition should also be satisfied to keep the uniformity of the flow through the simulation domain. The same technique
used at the inflow boundary can be used for the outflow one. However, a slightly different treatment is adopted at the outlet to reduce the computational time. When an inner-fluid particle goes across the outflow boundary line it becomes an outflow particle and the governing equations are not solved on the particle anymore, but its properties are kept unchanged when it moves through the outflow region. This treatment is similar to that used by Federico et al. (2012), in which the properties of outflow particles are frozen. Finally the particles are removed from the computational domain when they pass through the outlet threshold line (See Fig. 1).

To check whether the inflow/outflow boundary condition satisfies the volume conservation or not, we simply calculated the volume flows inside the computational domain at the inlet as well as the outlet boundary at every second of the simulation for several test cases, and we found out the maximum difference between the inlet and outlet volumes is less than 0.5%. This shows the validity of volume conservation on the inflow/outflow boundary condition in the present simulations. However, for a detailed modelling of inflow/outflow boundary conditions, we need to refer to Hosseini and Feng (2011) where a rotational pressure-correction scheme with consistent pressure boundary condition is proposed to overcome the numerical difficulties and consistently implement the inflow/outflow boundary conditions.

2.3.2 Treatment of rough bed boundary

Since a rough bed with relatively large roughness elements is studied in the present work, an important question arises regarding where exactly the location of the zero-velocity plane (also called numerical bed level in Fig. 1) would be. In the present model, the vertical level of the zero-velocity plane is located at some distance below the roughness crest, and fluid particles are placed from this level to the water surface. The drag force model is introduced over the distance between the bed level and the roughness crest, i.e. the drag-induced stress term τ_{dl}/ρ is calculated only for the fluid particles which are located between the numerical bed level and the crest of roughness zone (see Fig. 1). This distance is named the effective roughness height or the thickness of the roughness zone (R_d) and is assumed to be variable for different flow conditions as according to experimental observations, the effect of bed roughness on the flow differs for different flow conditions. The numerical bed elevation that defines the base of the roughness zone can be considered as the zero-velocity plane on which the spatial and temporally averaged flow velocity drops to zero. For this bed boundary, several layers of dummy particles (red particles in Fig. 1) are placed below the boundary line to address the truncated kernel area in the vicinity of the boundary. The velocity of these dummy particles are not evolved in the calculations, i.e. they are fixed in space with zero velocity, but they have pressure to prevent the fluid particles from penetrating this boundary. In this sense, the zero-velocity bed level also corresponds to the location of the upper line of dummy particles. In the present
WCSPH simulations, the pressures of dummy particles are determined through the
equation of state (Eq. 18) after their density variations have been computed by using
the SPH continuity equation (16). This algorithm can ensure that adequate pressure is
obtained on the dummy particles to prevent the inner fluid particles penetrating the
wall boundary.

A schematic view of the bed drag force model including the roughness spheres is
shown in Fig. 3, in which the roughness zone is from the numerical bed level (zero-
velocity plane) to the crest of the sphere with a thickness of \(R_d \). Considering a section
normal to the flow direction as depicted in Fig. 3, it is assumed that when a fluid
particle a is located within the roughness zone, the roughness element (the sphere)
produces a drag-induced shear stress on this particle. This actually exerts a force on
the fluid fragment of width \(d_s \) and height \(d_p \) (ABCD in Fig. 3), where \(d_s \) is the diameter
of the roughness sphere and \(d_p \) is the computational particle size. Therefore, the cross-
sectional area \(A_d \) in Eq. (12) is assumed to be equal to the particle size \(d_p \) and the bed-
parallel planar area \(A_c \) in Eq. (11) is equal to \(d_s d_p \). Meanwhile, for each fluid particle
located in the roughness zone, as depicted in Fig. 3, a shape function \(W_d \) is defined as
the area of part of the water fragment located within the sphere (ABCD in Fig. 3)
over the total area of the fragment (ABCD = \(d_s d_p \)) by the following equation

\[
W_d = \frac{A_{ABCD'}}{A_{ABCD}} \quad (20)
\]

This function accounts for the shape of the roughness elements which are defined
as spheres in the present study to match the roughness elements used in the laboratory
study.

Another parameter of Eq. (12) which needs to be considered is the drag
coefficient \(C_d \). According to the original work on particle modelling of porous flows
using the MPS method by Gotoh and Sakai (1999), \(C_d \) usually lies between 1.0 and
1.5 and thus a value of 1.0 is simply adopted in the present study. Different values of
\(C_d \) have also been described in the literature for spherical particles. In the experiments
of Schmeeckle et al. (2007) on turbulent open channel flow over fixed spheres, the
drag coefficient was found to be 0.76. They also measured the drag force in turbulent
flows over cubes and natural particles and found that the drag coefficient was
significantly higher than that used to model the bed load motion. In the proposed drag
force model (Eq. 12), the product of \(C_d W_d \) acts as the total drag coefficient. By
assuming half of the bed grain to be the effective roughness height and \(C_d = 1.0 \), the
average value of \(C_d W_d \) for the particles inside the roughness zone would be equal to
0.785, which is close to the value found by Schmeeckle et al. (2007) for spherical
particles. Here it should be noted that the roughness spheres as shown in Fig. 3 do not
physically exist in the numerical model so particles can penetrate inside the roughness
zone but feel its influence.
3 Model Applications and Results Analysis

3.1 Model setup and computational parameters

In this section a SPH model is developed for uniform turbulent open channel flows over a sloping rough bed and validated by the depth and velocity data obtained from PIV measurement in a laboratory channel with uniform sized spheres packed in a hexagonal pattern on the bed (Nichols, 2013). In these tests, the bed sphere diameter d_s is 24 mm and the channel slope S_0 ranges from 0.002 to 0.004. For this application a rectangular computational domain is chosen with a length of $L = 4H$, where H is the water depth. Three layers of fixed dummy particles are used for the bottom wall and three layers of moving particles are used for the inflow as well as outflow regions to satisfy the complete kernel area of the inner-fluid particles near the boundary lines (Fig. 1). Since the effect of bottom roughness on the flow depends not only on the absolute roughness size but also on the flow conditions, 12 test cases with different bed slopes and water depths are simulated to assess the accuracy of the drag force model in addressing the roughness effect. Relevant parameters used in the test cases are summarised in Table 1. According to this table, the Fr number for all 12 cases is below one, which means all tests are in the sub-critical flow condition, while Chang and Chang (2013) and Chang et al. (2014) covered more flow regimes. Meanwhile, the domain is discretized by SPH particles with size $d_p = 2$ mm to have at least 20 particles over the depth for the shallowest case ($H = 40$ mm). The smoothing length is taken to be $1.2d_p$ in the present study. This value has been recommended as the most appropriate SPH smoothing length in many studies as common practice. Since the interfacial boundary layer in the physical model between the bed roughness and the free flow is expected to be quite thin, a kernel function with a narrower influence domain but steeper slope near the central point is expected to be more adequate. Therefore, the cubic spline function of Monaghan and Lattanzio (1985) is chosen for the present simulations. However, an in-depth investigation is required for the choice of spatial resolution, smoothing length, and kernel function in cases where the flow velocity changes sharply over an interfacial boundary layer as in the present study.

As illustrated in Table 1, the model has been applied to different flow conditions with bed slopes 0.002, 0.003 and 0.004; and water depths from 40 mm to 100 mm. As mentioned in the previous section, the thickness of the roughness zone (R_d) is assumed to vary depending on the flow conditions. Therefore, six of the test cases (Nos. 1, 5, 6, 8, 10 and 12) are used to calibrate the model in terms of R_d by numerical trials when the computed mean velocity profiles achieved the best fit with the experimental data and then a semi-empirical fitting function is obtained to establish the relationship between the flow depth and relative roughness height R_d/H. Based on this, the additional test cases (Nos. 2, 3, 4, 7, 9 and 11) are used to validate the model.
The calibration tests are selected to cover most of the depth range from 40 to 100 mm and at least 2 cases of each bed slope. Calibration and validation tests are indicated by letters (C) and (V) respectively, in Table 1.

The calibration process is as follows. Each test case is simulated by using several \(R_d \) values and the Mean Absolute Error (MAE) between the numerical and experimental velocity profiles are calculated for each one, then the \(R_d \) value corresponding to the minimum MAE is selected as the thickness of the roughness zone for that test case. After running the model for calibrating tests and finding the best \(R_d \) with the smallest MAE, the relative roughness height \(R_d/H \) is plotted against depth \(H \) (Fig. 4) and a curve is fitted to the points using a power function as shown in the figure. For each validating case, different values of \(R_d \) are examined in the simulations and the one with the minimum MAE is used for the test case and plotted on the same graph to see if it follows the fitted curve. As can be seen, the \(R_d/H \) values of the validation tests have nearly the same relation with the water depth. Further evidence of the model validations will be demonstrated by the good agreement between the numerical and experimental velocity and shear stress distributions along the flow depth, as detailed in the next section.

3.2 Analysis of velocity profiles

Figure 5(a) and (b) present the instantaneous streamwise velocity and pressure (t = 70 s); and Fig. 5(c) and (d) show their time-averaged contours respectively, for the case S004H50. The averaging has been done over 20 seconds from t = 70 s to 90 s. It shows that the uniform flow condition has been successfully imposed by the proposed inflow/outflow boundary technique. This is also shown in Fig. 6(a) where the time-averaged velocity of three different sections of the channel (x = 0.25L, 0.50L, and 0.75L) are plotted. It is found that the depth-averaged velocity at these three sections has a maximum difference of 0.5%. Figure 6(b) shows the space-averaged velocity at three different times (t = 35, 50 and 65 s). The maximum difference of the depth-averaged velocity between these times is 1.96%. This small change in the velocity profile over time also shows the steadiness of the flow. In the present computations, the time to reach the steady state is not exactly the same for all test cases. However, to determine a threshold, it is confirmed that it takes around 20-30 seconds to achieve the steady flow condition for all 12 cases. The criterion used to define if the flow reaches the steady state is that if the differences of the depth-averaged value of the space-averaged (but not instantaneous) velocities at the mid-section of the channel at different times become less than 2.0%, then the flow is regarded as being steady. The bed drag-induced shear stress term removes a part of the flow momentum and this effect is transferred to the upper layers of the flow by the turbulence model. As a result, the unbalanced momentum transfer occurs during the first 20-30 seconds and
then the flow gradually reaches the steady state and all time-averaged flow parameters e.g. velocity and shear stress remain unchanged. In the inflow and outflow boundaries, the flow characteristics are assumed to be unknown rather than being given prescribed values of the pressure and velocity. Therefore, the proposed SPH inflow boundary model is more general in that it does not need experimentally measured or analytically prescribed flow data at the inflow boundary and can thus be applied to more complex flow situations. In Federico et al. (2012), the model verification was based on the fact that the initial inner velocity field, which was initialized with the analytical solutions and updated by the upstream inflow boundary conditions (which were also initialized by the analytical solutions), could be stably maintained or not during the computations. In comparison, in the present SPH inflow model, the open channel flows are generated naturally by following the channel conditions.

The numerical results of time-averaged streamwise velocity profiles obtained by using the best-fit values of R_d are presented in Fig. 7, in comparison with the experimental data as well as the analytical profiles which are obtained from the log law. These include all the test cases as indicated in Table 1. The analytical velocity profile is presented in Eq. (21) where z is vertical coordinate, k_s is the Nikuradse roughness size and B_r is the logarithmic integration constant which is equal to 8.5 for rough bed uniform flow. We know that as the depth is very shallow and the bed is fully rough, the log law may not be valid. Here the analytical profiles are used to compare with the numerical results and investigate if the model is able to predict the logarithmic velocity distribution above the roughness zone. The values of R_d as well as MAE of velocity profiles of all test cases are presented in Table 2. Both Fig. 7 and Table 2 demonstrate the satisfactory performance of the SPH modelling technique in these proposed flow conditions.

\[
\frac{u}{u_*} = \frac{1}{\kappa} \ln \left(\frac{z}{k_s} \right) + B_r
\]

(21)

To determine the error distribution over depth, the MAE is calculated separately in three parts of the depth for each test case, i.e. lower 20 %, middle 60 % and upper 20 % of the depth. The purpose of this is to investigate the hypothesis (Nichols, 2013) that the bottom 20 % of the water depth would be the logarithmic layer and then the upper layers of the flow could be split up differently. This is shown in Fig. 8. As the slope of the velocity profile ($\partial u/\partial z$) is also of interest, its distribution is presented in Fig. 9 for all test cases and the values of MAE of these profiles are also calculated. The MAE values of $\partial u/\partial z$ are presented in Table 2 and their distributions in the lower 20 %, middle 60 % and upper 20 % of the depth for all cases are illustrated in Fig. 10.
According to Fig. 8, with increasing depth the velocity MAE of the upper 20% of the depth mostly increases, and as the slope decreases the MAE of the near-bed velocity generally increases. In most test cases, the lowest MAE of the velocity profiles takes place in the middle part of the depth. This is also valid for the MAE of the velocity gradient profiles as can be seen in Fig. 10. Compared with the velocity, the errors of the velocity gradient are usually larger in the lower 20% of the depth. However, in some cases (e.g. S004H70 and S003H60) there seems to be a large error in the upper part of the depth due to the fact that the predicted and measured gradients have different signs near the water surface. Just below the surface, the experimental velocity gradient declines sharply to zero or even to negative values in some cases, while a non-zero, but small positive velocity gradient is predicted by the numerical model (Fig. 9). The negative gradient in the top of the flow could be due to the fact that the data is derived from a 3D experimental model in which secondary flow circulations occur while such circulations are not accounted for in the present 2D numerical model. However, the log law (Eq. 21) presents a positive small, but non-zero velocity gradient at the top (Fig. 9), which is much more similar to the numerical profiles than the experimental ones. This is because the mixing-length model (Eq. 9) adopted by the SPH approach has been based on the log law theory. In the mixing-length formula of Nezu and Rodi (1986), it is assumed that above a certain elevation, the mixing-length decreases to zero at the water surface as the size of turbulent eddies are significantly restricted by the surface. Assuming such a decline in the mixing-length could lead to a non-zero velocity gradient near the water surface. On the other hand, the differences in the near-bed velocity gradient between the numerical and experimental profiles are much less than those between the analytical and experimental ones. This is attributed to the adoption of the robust drag force model by which the near-bed velocity is related to the shear from the roughness elements rather than assuming a logarithmic distribution in the shear boundary.

3.3 Analysis of roughness height

During the calibration/validation process (Section 3.1), the R_d values corresponding to the minimum errors, if divided by the water depth, showed a relationship with the depth based on the power function as presented in Fig. 4. According to this figure, as the depth increases, the relative roughness height (R_d/H) decreases. It is notable that the bed roughness sphere size is fixed in the present study ($d_s = 24$ mm). Therefore, R_d/H decreases with a decrease in the ratio of roughness size to water depth (d_s/H) and vice versa. In this work, the bed roughness configuration is kept constant to study its effect under different flow conditions. As the depth is not the only parameter affecting the flow condition and the bed slope is also involved, we also explored the relationship between the relative roughness height (R_d/H) and the shear velocity u^*. The result is shown in Fig. 11(a) with different power fitting
functions for different bed slope values. It is shown that the fitting curves are nearly equally-spaced with a vertical shift upwards as the bed slope increases and the SPH computational points fall close to the appropriate curves.

It can also be seen that an increase in the shear velocity causes the numerical relative roughness height to become milder for all bed slopes. To provide a single relationship between the relative roughness height and the flow condition, R_d/S_0H of all cases are plotted against u^* in Fig. 11(b) with the same type of power fitting curve. This also shows that as the flow becomes more sheared (larger u^*), smaller relative roughness height is required to simulate the experimental condition. In other words, as the ratio of bed roughness to water depth (d_s/H) becomes smaller, i.e. when the flow depth becomes deeper, a weaker bed effect is generated by the proposed drag force model. However, the magnitude of the form-drag shear stress could be larger for the cases with higher u^* since the near-bed flow velocity is faster.

3.4 Analysis of form-drag and turbulent shear stress

The distribution of the streamwise form-drag shear term (τ_{d}/ρ) in the effective roughness zone is presented in Fig. 12 for all the tests. As expected, the average τ_{d}/ρ is larger for cases with higher u^* or Re number. In other words, where the flow depth is deeper and/or the bed slope is steeper, the form-drag shear term is larger due to the higher velocity. In most tests, the streamwise τ_{d}/ρ increases with depth to some distance above the wall (zero-velocity plane) and then decreases to the crest of the roughness zone although the velocity increases in this zone. This decrease can be the result of the shape function in Eq. (20) which declines sharply below the roughness crest. The shape function leads to a non-constant drag coefficient in the roughness zone that is related to the shape of the elements. In the present simulations, the dominant velocity is the streamwise one and the contribution of the vertical velocity to the form drag is very small so that it is reasonable to be neglected. It has been found that in the roughness zone the scale of the time-averaged vertical velocity is less than 0.5% of the time-averaged streamwise velocity in our test cases, while it is about 1.0% to 2.0% in the presented 3D experimental data. The underestimation of the vertical velocity in the roughness zone could be due to that the physical dispersion in the vertical direction which is from the obstruction of the flow by the bed elements has not been numerically defined, since the governing equations and the computational domain are discretised at a macroscopic scale. In Fig. 13, the numerical results of the streamwise velocity profiles of tests of bed slope 0.004, 0.003 and 0.002 are plotted in separate graphs in order to illustrate the effect of rough bed boundary on the streamwise flow velocity. As can be seen for each bed slope, the velocity is higher for larger depths and this effect is simulated by variable roughness height in the model.
Using a variable R_d in the model affects not only the drag shear stress, but also the turbulent shear stress near the bed. In the present model, the zero reference datum for the mixing-length is defined by the zero-velocity plane of the flow. This is illustrated in Fig. 14 where l_m is plotted for two cases with effective roughness heights of $R_{d,1}$ and $R_{d,2}$ ($R_{d,2} > R_{d,1}$). Here the eddy-viscosity is higher when the thickness of the roughness zone (R_d) is larger, thus the shear stress calculated by Eq. (4) is also larger. This leads to a higher impact of the bottom drag effect on the upper flow. In general, any changes of R_d could affect both the drag force and the turbulence models and thus the simulated flows will change. It is also notable that a small change in the mixing-length, on the crest of the roughness zone could have a considerable effect on the eddy-viscosity (Eq. 8) since the velocity gradient (or the local strain rate $|S|$) is at a maximum on this interface.

For six of the twelve test cases shown in Table 1, the profiles of the time-averaged shear stress estimated by the SPS with the mixing-length model are presented in Fig. 15 in comparison with the experimental data and with the analytical profile obtained from Eq. (22). In this equation τ_0 is the shear stress at the bed which is estimated by $\rho g H S_0$.

$$\tau = \tau_0 \left(1 - \frac{z}{H}\right)$$ \hspace{1cm} (22)

To better illustrate the data, the horizontal axis is normalized by τ_0 and the vertical one is normalized by the flow depth H. As can be seen, the numerical computations underestimate the experimental shear stresses, although they are in a fairly good agreement with the analytical solution. It is notable that the experimental data are taken from a 3D flow over a rough bed surface, which could lead to the fact that they exceed the analytical shear stresses by about 20-30%. Besides, the underestimation of the experimental shear stress by the numerical model is also related to the dimensional differences, as in the present 2D model the shear stress in the lateral direction is neglected. The width-wise shear stress is the result of steady streaming in the form of flow circulations in the lateral direction. In spite of this, the 2D SPS model is still able to give satisfactory results in the uniform flow since the effect of the lateral shear stress is very much smaller compared with the streamwise one. Moreover, the close collapses of six SPH data along almost a single line indicate the consistency and convergence of the numerical simulations.

As mentioned before, the eddy-viscosity model with a Smagorinsky constant in the range of 0.1-0.15 is not able to estimate the correct amount of turbulent shear stress in a uniform open channel flow over a rough bed boundary. To investigate this issue, here we repeat the simulations of three test cases S004H50, S003H70 and S002H60 by using the Smagorinsky model with $C_s = 0.15$. The result is presented in Figs. 16 and 17, where respectively the streamwise velocity and shear stress profiles
are compared with the ones obtained from the present mixing-length eddy-viscosity model. Meanwhile, the experimental velocity profiles and the analytical shear stress profiles are also presented for a comparison. As can be seen, the shear stress is consistently largely underestimated, leading to the overestimation of the velocity.

In contrast to their DNS results with good agreement with the reference data, Mayrhofer et al. (2015) also observed the overestimation of the velocity in their SPH-LES computations of a wall-bounded channel flow with friction Re of 1000, where an eddy-viscosity model was used with a Smagorinsky constant $C_s = 0.065$. They pointed out that the correct representation of energy redistribution between Reynolds stress components in a SPH-LES framework would require 16 times finer resolution than needed in a classic Eulerian LES one. They stated that the most obvious solution is an increase in the resolution, but it also highly increases the computational cost. Finally they concluded that the underperformance of their LES was due to the problems inherent in the standard SPH discretizations related to the pressure-velocity interactions.

In the present study, the friction Re is even higher than that in the study of Mayrhofer et al. (2015) and on the other hand, the resolution is also quite coarse. Therefore, the insufficiency of the LES with the standard Smagorinsky model becomes more obvious in the present simulations. In addition, the rough bed boundary is another important influence factor too. When filtering the discretised equations using a SPH kernel function to represent the turbulence effect, a part of the turbulent stress which is mainly due to the spatial filtering has been lost by the standard eddy-viscosity model (with Smagorinsky constant). This issue becomes even more important when the discretised flow velocity changes sharply over the filtering volume/area; e.g. at the interfacial boundary between the roughness zone and the free flow in the present study. Besides, the rough bed boundary has a dominant effect on the whole water depth, so non-accurate parameterisation of the turbulence effect at this boundary makes significant errors in the whole flow domain. However, if the eddy-viscosity model is adequately parameterized, reasonable results can still be obtained. As a result, we have applied the mixing-length model of Nezu and Rodi (1985), which is on the basis of physical measurements, in order to recover that part of the turbulent stress which cannot be captured by the standard Smagorinsky model with small C_s.

Nonetheless, one shortcoming of the proposed turbulence model is that the eddy-viscosity coefficient is physically defined, so it is not dependent on the computational resolutions. In other words, if one uses a smaller particle size (higher resolution), the resolved part of the turbulence stress would become higher, but the mixing-length product which is the representative of the unresolved part would not decrease with the discretisation and/or filtering size. Thus the total turbulent stresses could be
overestimated in the test cases with higher resolution. Accordingly the flow velocities would be expected to be underestimated in such a situation. It is promising to note that the present mixing-length approach works quite effectively with the SPH when a slightly coarser particle resolution is used, thus this makes the model more potential in practical engineering applications.

4 Conclusion

In this study, a SPH model has been developed to simulate the turbulent open channel flows over rough bed boundaries based on the solution of 2D N-S equations including two additional stress terms to account for the flow turbulence and bed roughness effect. As shown, the standard Smagorinsky-based SPS model with a fixed $C_s = 0.15$ was unable to reproduce the correct shear mechanisms in uniform open channel flows. Therefore, a mixing-length model has been applied to calculate the turbulent eddy-viscosity. A drag force model has been developed to account for the bed roughness effect, in which a shape function is introduced to consider the geometry of the bed surface roughness elements. Meanwhile, an efficient inflow/outflow boundary treatment has been proposed and demonstrated to generate a stable flow simulation without the need to use prescribed velocities at the flow inlet, thus enabling the model to be used without having to prescribe input velocity profiles.

Twelve test cases of different bed slopes and water depths have been simulated to investigate the effect of bed roughness under various flow conditions. A roughness zone is defined near the rough bed boundary where a form-induced drag shear stress is applied on the SPH particles. The thickness of this zone (R_d) is assumed to be flow-dependent, such as being related to the flow depth H and the shear velocity on bed u_s. The model results showed good agreement with the experimental data as well as the analytical solutions in view of the velocity and shear stress profiles. This confirms that the bed roughness effect has been successfully addressed by the drag force model, and the transport of this effect to the upper layers of the flow has been correctly reproduced by the proposed turbulent mixing-length approach. Since the governing equations, as well as the computational domain, are discretised at a macroscopic scale in the roughness zone, the physical dispersion in the vertical direction is disregarded. Thus the flow shear is dominantly driven in the streamwise direction; but transported vertically by the turbulence closure. The computed streamwise velocity and shear stress profiles suggested that this assumption has not caused substantial errors for the 12 flow test cases and the macro flow behaviours have been well reproduced. This is due to the turbulence model correctly modelling the shear transfer from the roughness layer to the free flow.
Whether the non-accuracy of the SPH-LES approach in wall-bounded channel flows is related to the pressure-velocity interactions (as addressed by Mayrhofer et al., 2015) or to the deficiency of the standard Smagorinsky model, the proposed mixing-length approach is able to recover this difficulty as the eddy-viscosity being realistically parameterised. However, as the mixing-length is independent of the computational resolution, it may overestimate the shear stress in cases with higher particle resolution which may cause an underestimation of the flow velocity. Therefore, this model is proposed to be coupled with the SPH when coarse discretisation of the equations is considered, unless an effective method is found to link the mixing-length to the spatial discretisation so as to enhance the capacity of the model. In addition to this, the method of filtering the governing equations with different kernel functions needs to be investigated in more details due to the existence of the rough bed boundary over which the flow velocity has a sharp change. These issues along with the effect of various configurations of bed roughness on the flow resistance are considered as future studies.

Acknowledgements

This work was supported by the Research Executive Agency, through the 7th Framework Programme of the European Union, Support for Training and Career Development of Researchers (Marie Curie-FP7-PEOPLE-2012-ITN), which funded the Initial Training Network (ITN) HYTECH ‘Hydrodynamic Transport in Ecologically Critical Heterogeneous Interfaces’, N. 316546.

References

Arai, J., Koshizuka, S., Murozono, K. (2013). Large eddy simulation and a simple wall model for turbulent flow calculation by a particle method. Int. J. Numer. Meth. Fluids, 71, 772–787.
Aristodemo, F., Marrone, S., Federico, I. (2015). SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng., 105, 160–175.
Carney, S.K., Bledsoe, B.P., Gessler, D. (2006). Representing the bed roughness of coarse grained streams in computational fluid dynamics. Earth Surf. Process. Landf., 31, 736–49.
Cebeci, T., Chang, K.C. (1978). Calculation of incompressible rough-wall boundary-layer flows. AIAAJ., 16(7), 730–735.
Chang, T.J., Chang, K.H. (2013). SPH modeling of one-dimensional nonrectangular and nonprismatic channel flows with open boundaries. J. Hydraulic Eng. ASCE, 139(11), 1142–1149.

Chang, T.J., Chang, K.H., Kao, H.M. (2014). A new approach to model weakly nonhydrostatic shallow water flows in open channels with smoothed particle hydrodynamics. J. Hydrol., 519(A), 1010–1019.

Chang, T.J., Kao, H.M., Chang, K.H., Hsu, M.H. (2011). Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics. J. Hydrol., 408(1-2), 78-90.

Cheng, N.S., Nguyen, H.T., Tan, S.K., Shao, S. (2012). Scaling of velocity profiles for depth-limited open channel flows over submerged rigid vegetation. J. Hydraul. Eng., 138(8), 673–683.

Chern, M., Syamsuri, S. (2013). Effect of corrugated bed on hydraulic jump characteristic using SPH method. J. Hydraulic Eng. ASCE, 139(2), 221–232.

Christoph, G.H., Pletcher, R.H. (1983). Prediction of rough-wall skin friction and heat transfer. AIAA J., 21, 509–515.

Coleman, N.L. (1981). Velocity profiles with suspended sediment. J. Hydraulic Res., 19, 211–229.

Coles, D. (1956). The law of the wake in the turbulent boundary layer. J. Fluid Mech., 1, 191–226.

Cui, J., Patel, V.C., Lin, C.L. (2003). Prediction of turbulent flow over rough surfaces using a force field in large eddy simulation. J. Fluid Eng. ASME, 125, 2–9.

De Padova, D., Mossa, M., Sibilla, S., Torti, E. (2013). 3D SPH modelling of hydraulic jump in a very large channel. J. Hydraulic Res., 51(2), 158-173.

Federico, I., Marrone, S., Colagrossi, A., Aristodemo, F., Antuono, M. (2012). Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B-Fluid, 34, 35–46.

Ferrand, M., Laurence D.R., Rogers B.D., Violeau D., Kassiotis C. (2013). Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. Int. J. Numer. Meth. Fluids, 71, 446–472.

Fu, L., Jin, Y.C. (2013). A mesh-free method boundary condition technique in open channel flow simulation. J. Hydraulic Res., 51(2), 174-185.

Gingold, R.A., Monaghan, J.J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astr. Soc., 181(3), 375–389.

Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T., Shimosako, K. (2014). On enhancement of Incompressible SPH method for simulation of violent sloshing flows. Applied Ocean Res., 46, 104–115.

Gotoh, H., Sakai, T. (1999). Lagrangian simulation of breaking waves using particle methods. Coast. Eng. J., 41(3&4), 303–326.
Gotoh, H., Shao, S., Memita, T. (2004). SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater. Coastal Eng. Jour., 46(1), 39-63.

Gotoh, H., Shibahara, T., Sakai, T. (2001). Sub-particle-scale turbulence model for the MPS method – Lagrangian flow model for hydraulic engineering, Compu. Fluid Dyn. J., 9, 339–347.

Hosseini, S.M., Feng, J.J. (2011). Pressure boundary conditions for computing incompressible flows with SPH. J. Comput. Phys., 230, 7473–7487.

Kazemi, E., Tait, S., Shao, S., Nichols, A. (2016). Potential application of mesh-free SPH method in turbulent river flows. GeoPlanet: Earth Planetary Scien., Paweł Rowiński and Andrea Marion (Eds): Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces, 978-3-319-27749-3, 11–22.

Khayyer, A., Gotoh, H. (2009). Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure. Coast. Eng., 56(4), 419–440.

Khayyer, A., Gotoh, H. (2010). On particle-based simulation of a dam break over a wet bed. J. Hydraulic Res., 48(2), 238–249.

Khayyer, A., Gotoh, H. (2011). Enhancement of stability and accuracy of the moving particle semi-implicit method. J. Comput. Phys., 230(8), 3093-3118.

Leroy, A., Violeau, D., Ferrand, M., Kassiotis, C. (2014). Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH. J. Comput. Phys., 261, 106–129.

Lind, S.J., Xu, R., Stansby, P.K., Rogers, B.D. (2012). Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J. Comput. Phys., 231, 1499–1523.

Lopez, D., Marivela, R., Garrote, L. (2010). Smoothed particle hydrodynamics model applied to hydraulic structures: a hydraulic jump test case. J. Hydraulic Res., 48, 142-158.

Mayrhofer, A., Laurence, D., Rogers, B.D., Violeau, D. (2015). DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics. Comput. Fluids, 115, 86–97.

Mayrhofer, A., Rogers, B.D., Violeau, D., Ferrand, M. (2013). Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions. Comput. Phys. Commun., 184(11), 2515–27.

Monaghan, J.J. (1989). On the problem of penetration in particle methods. J. Comput. Phys., 82(1), 1–15.

Monaghan, J.J., Lattanzio, J.C. (1985). A refined method for astrophysical problems. Astron. Astrophys., 149, 135–143.

Nezu, I., Rodi, W. (1986). Open-channel flow measurements with a Laser Doppler anemometer. J. Hydraulic Eng. ASCE, 112(5), 335–355.
Nicholas, A.P. (2001). Computational fluid dynamics modelling of boundary roughness in gravel-bed rivers: an investigation of the effects of random variability in bed elevation. Earth Surf. Process. Landf., 26, 345–62.

Nichols, A. (2013). Free Surface Dynamics in Shallow Turbulent Flows. PhD thesis, School of Engineering, University of Bradford, UK.

Nikora, V., Koll, K., McEwan, I., McLean, S., Dittrich, A. (2004). Velocity distribution in the roughness layer of rough-bed flows. J. Hydraulic Eng. ASCE, 130, 1036–42.

Rotta, J. (1962). Turbulent boundary layers in incompressible flow. Prog. Aerosp. Sci., Oxford, UK, 2, 73–82.

Sahebari, A.J., Jin, Y.C., Shakibaeinia, A. (2011). Flow over sills by the MPS mesh-free particle method. J. Hydraulic Res., 49(5), 649–656.

Schmeeckle, M.W., Nelson, J.M., Shreve, R.L. (2007). Forces on stationary particles in near-bed turbulent flows. J. Geophys. Res., 112, F02003.

Shao, S., Gotoh, H. (2004). Simulating coupled motion of progressive wave and floating curtain wall by SPH-LES model. Coastal Eng. Jour., 46(2), 171-202.

Shao, S., Gotoh, H. (2005). Turbulence particle models for tracking free surfaces. Jour. Hydraulic Res., 43(3), 276-289.

Smagorinsky, J. (1963). General circulation experiments with the primitive equations, I. The basic experiment. Mon. Weather Rev., 91, 99–164

Tan, S.K., Cheng, N.S., Xie, Y., Shao, S. (2015). Incompressible SPH simulation of open channel flow over smooth bed. J. Hydro. Environ. Res., 9(3), 340-353.

Taylor, R.P., Colemau, H.W., Hodge, B.K. (1985). Prediction of turbulent rough-wall skin friction using a discrete element approach. J. Fluid Eng. ASME, 107, 251–257.

Tsuruta, N., Khayyer, A., Gotoh, H. (2015). Space potential particles to enhance the stability of projection-based particle methods. Int. J. Comput. Fluid D., 29(1), 100-119.

Van Driest, E.R. (1956). On turbulent flow near a wall. J. Aeronaut. Sci., 23, 1007–1011.

Violeau, D., Issa, R. (2007). Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. Int. J. Numer. Meth. Fl., 53(2), 277–304.

Wiberg, P.L., Smith, J.D. (1991). Velocity distribution and bed roughness in high-gradient streams. Water Resour. Res., 27, 825–38.

Zeng, C., Li, C.W. (2012). Modeling flows over gravel beds by a drag force method and a modified S–A turbulence closure. Adv. Water Resour., 46, 84–95.
Test No.	Test ID	S₀	H (mm)	u* (m/s)	Re	Fr	Calibration / Validation
1	S004H40	0.004	40	0.0396	10843	0.433	(C)
2	S004H50	0.004	50	0.0443	15067	0.430	(V)
3	S004H70	0.004	70	0.0524	32703	0.564	(V)
4	S004H90	0.004	90	0.0594	47301	0.559	(V)
5	S004H100	0.004	100	0.0626	59698	0.603	(C)
6	S003H50	0.003	50	0.0384	11615	0.332	(C)
7	S003H60	0.003	60	0.0420	19516	0.424	(V)
8	S003H70	0.003	70	0.0454	27926	0.481	(C)
9	S003H80	0.003	80	0.0485	32089	0.453	(V)
10	S002H60	0.002	60	0.0343	12022	0.261	(C)
11	S002H70	0.002	70	0.0371	19671	0.339	(V)
12	S002H80	0.002	80	0.0396	30794	0.435	(C)
Table 2 Relative roughness heights and numerical errors of all tests

Test No.	Test ID	Rd / H	MAE of u (m/s)	MAE of $\partial u/\partial z$ (1/s)
1	S004H40	0.285	0.0052	0.77
2	S004H50	0.206	0.0060	1.17
3	S004H70	0.144	0.0100	1.27
4	S004H90	0.104	0.0100	0.77
5	S004H100	0.094	0.0179	1.25
6	S003H50	0.202	0.0047	1.40
7	S003H60	0.156	0.0063	1.39
8	S003H70	0.135	0.0078	0.67
9	S003H80	0.116	0.0080	1.11
10	S002H60	0.172	0.0052	1.05
11	S002H70	0.137	0.0061	0.81
12	S002H80	0.113	0.0061	0.82
Figure 1 A schematic view of the computational domain and boundary conditions
Figure 2 Inflow boundary treatment
Figure 3 A schematic view of the bed drag force model
Figure 4 Calibration and validation of the model in terms of the effective roughness height vs. the water depth

\[\frac{R_d}{H} = 0.0046 H^{-1.26} \]
Figure 5 Uniform flow condition (test case S004H50): (a) instantaneous streamwise velocity; (b) instantaneous pressure; (c) time-averaged streamwise velocity; and (d) time-averaged pressure
Figure 6 Uniformity and steadiness of the flow (test case S004H150): (a) time-averaged velocity in three sections through the channel; (b) space-averaged velocity in three times with 15 s intervals
Figure 7 Distribution of the time-averaged streamwise velocity over depth. Dash-dotted and dashed lines show the level of the numerical bed (zero-velocity plane) and the crest of the roughness zone respectively.
Figure 8 MAE of the streamwise velocity in the lower 20%, middle 60% and upper 20% of the depth
Figure 9 Distribution of the gradient of the time-averaged streamwise velocity over depth. Dash-dotted and dashed lines show the level of the numerical bed (zero-velocity plane) and the crest of the roughness zone respectively.
Figure 10 MAE of the streamwise velocity gradient in the lower 20%, middle 60% and upper 20% of the depth
Figure 11 Relative roughness height against shear velocity: (a) relationship between R_d/H and u_* for different bed slopes, (b) relationship between R_d/S_0H and u_* for all tests
Figure 12 Distribution of the drag-induced shear term in the effective roughness zone (solid line). Dash-dotted and dotted lines show the level of the numerical bed (zero-velocity plane) and the crest of the roughness zone respectively.
Figure 13 Velocity profiles of tests with bed slopes (a) 0.004, (b) 0.003, and (c) 0.002. The dashed lines show the level of the roughness crest and the solid half-circles schematically depict the roughness element.
Figure 14 Distribution of the mixing-length in 2 cases with the same depth (H = 50 mm) and different effective roughness heights ($R_{d,2} > R_{d,1}$). The zero reference of the mixing-length is on the numerical bed level (zero-velocity plane) and the dotted line shows the crest of the roughness zone.
Figure 15 Distributions of the normalized turbulent shear stress with depth
Figure 16 Time-averaged streamwise velocity obtained from the present mixing-length model compared with the one obtained from the Smagorinsky model with $C_s = 0.15$ and the experimental data for test cases S004H50, S003H70 and S002H60 (vertical axis z is in logarithmic scale)
Figure 17 The x-z component of the turbulent shear stress obtained from the present mixing-length model compared with the one obtained from the Smagorinsky model with $C_s = 0.15$ and the analytical profiles for test cases S004H50, S003H70 and S002H60