A REFERENCE FOR THE ALLOWABLE SOIL BEARING CAPACITIES IN QUEZON CITY, PHILIPPINES

*Jonathan R. Dungca¹

¹Faculty, De La Salle University, Philippines

*Corresponding Author, Received: 21 July 2019, Revised: 29 Nov. 2019, Accepted: 26 Feb. 2020

ABSTRACT: Quezon City is the largest city in the National Capital Region of the Philippines. This city has several other cities and provinces that bound it. North Caloocan and the province of Bulacan bound the northern portions of the city. The eastern side of the city is bounded by Marikina city, the city of Manila and the province of Rizal. Mandaluyong, Pasig and San Juan bound the southern portions of the city. And finally, the western portions of the city are bounded by the cities of Valenzuela and South Caloocan. This paper provides the estimated allowable soil bearing capacity at different locations within the city. The allowable soil bearing capacity is being used by structural engineers when determining the required sizes of the shallow foundation for the structures that they are going to build. Several borehole data were collected to estimate the geotechnical parameters. The geotechnical parameters such as the angle of internal friction, cohesion, and unit weight were estimated using the SPT values derived from the collected borehole data. These geotechnical parameters were then used to estimate the allowable soil bearing capacity using Terzaghi equation for bearing capacity. The final output is a map of the city showing the contours of different colors which correspond to the different values of the allowable soil bearing capacities. Due to the presence of Guadalupe tuff formation at shallow depths, the estimated allowable soil bearing capacity ranges from a low of 100 kPa near the ground surface to as high as 1000 kPa at a depth of five meters.

Keywords: Soil Bearing Capacity, Foundation Design, Standard Penetration Test, Geotechnical Properties

1. INTRODUCTION

Quezon City is located near the center of Metro Manila, towards the northeastern portion of the metropolis. It is bordered by Manila City in the southwest, Caloocan City and Valenzuela city in the west and northwest, San Juan City and Mandaluyong City in the south, while Pasig City and Marikina City in the southeast. It has a total land area of 161.126 km², which is one-fourth of the area of the National Capital Region of the Philippines.

Quezon city is underlain by a thick sequence of predominantly water laid tuff and tuffaceous clastics collectively known as the Guadalupe Tuff Formation. The formation consists of lithified volcanic ash, lapili and crystal sands. Beds rich in sand and not directly derived from volcanic activity are common, especially in the upper section. They are generally compacted and slightly lithified or cemented by precipitated silica and/or clay. The underlying Tuff bedrock is generally well consolidated and cemented, however, varying degrees of chemical decomposition and disintegration are indicated at different intervals in the section with beds alternating with hard and unaltered layers [1].

There are 130 borehole locations that were used in this study. Borehole data from standard penetration tests (SPT) were collected within the city. The distribution of these data points is shown in Fig. 1.

2. GEOTECHNICAL CHARACTERISTICS

The northern section of Quezon City is predominantly composed of silty sand, and high
plasticity silts and clay up to the second meter; well-graded sand, low plasticity silts, and high plasticity silts and clays are the dominant soil type in the succeeding depths. Minor presence of poorly-graded sand and clayey sand are also observed. The central section is predominantly underlain by well-graded sand, silty sand, and high plasticity silts and clay with minor presence of clayey sand and low plasticity silt. Traces of well-graded gravel and poorly-graded sand are also observed. The southwestern section is predominantly underlain by silty sand, high plasticity silts and clays for depths reaching two meters; well-graded sand, low plasticity silts and high plasticity clays dominate the succeeding depths. Minor presence of clayey sand is observed as well as traces of poorly-graded sand and organic materials. The southeastern section is predominantly underlain by silty sand, high plasticity silts and clays up to a depth of two meters; well-graded sand, low plasticity silts and high plasticity clays dominate the lower depths. Minor presence of clayey sand is observed as well as traces of poorly-graded sand [2]. Table 1 further shows the distribution of the different soil types of both sections in varying depths up to a depth of five (5) meters. Table 2 shows the relevant design parameters that can be used for the designs of foundation in this area.

In soil sampling procedure, all sections are generally done by SPT up to the 2nd meter with mixed preference of SPT and RQD in the 3rd meter, and then the use of RQD in the succeeding depths.

Table 1 Soil type distribution for the (a) northern, (b) central, (c) southwestern and (d) southeastern sections of Quezon City.

USCS Symbol	Depth 1m	Depth 2m	Depth 3m	Depth 4m	Depth 5m
SP	5.88	5.88	0.00	0.00	0.00
SW	0.00	5.88	17.65	23.53	17.65
SM	35.3	17.65	0.00	0.00	0.00
SC	5.88	11.76	0.00	0.00	0.00
ML	5.88	5.88	17.65	23.53	
MH	29.4	23.53	29.4	11.76	11.76
CL	0.00	0.00	0.00	0.00	0.00
CH	17.6	29.4	29.4	47.06	47.06

Table 2 Design parameters for foundation design.

USCS Symbol	Typical Unit Weight (kN/m²)	GWT Absolute	GWT Below	
Above	Below	εmax	εmin	
SP	15.0-19.5	19.0-21.0	0.60	0.34
SW	17.5-22.0	19.5-23.5	0.71	0.40
SM	12.5-21.0	17.5-22.0	0.75	0.40
SC	13.5-20.5	17.5-21.0	0.70	0.40
ML	11.5-17.5	12.5-20.5	0.98	0.58
MH	11.5-17.5	11.5-20.5	0.85	0.46
CL	12.5-17.5	11.5-20.5	0.90	0.46
CH	12.5-17.5	11.0-19.5	1.19	0.68
OR	11.5-12.5	11.5-16.5	0.76	0.44

3. METHODOLOGY

Quezon City has an approximate land surface...
area of 160 square kilometers. A density of 0.80 borehole locations per square kilometer was used to describe the geotechnical characteristics and possible foundation design parameters of the said area. Borehole logs were collected for a total of 130 locations all over Quezon City.

The amount of borehole logs alone is not the only criterion in gathering data for the study. It is just as important as, that the locations of the borehole logs be properly distributed. To check their distribution, each of the locations of the borehole logs was plotted in a map of Quezon City. After this, the distribution was visually inspected and the areas that needed more data were determined. Aside from these, borehole logs that seemed erroneous were removed and disregarded.

In properly designing shallow foundations, the geotechnical characteristics and allowable bearing capacity of the soil must be known. This is because the design would largely depend on the strength and the behavior of the soil. The bearing capacities are computed using the SPT-N values found in the borehole logs which were corrected using the procedures discussed in [1], [3]-[5], also shown in Eq. (1).

\[N_{60} = \frac{E_m C_B C_S C_R N}{0.6} \]

Where: \(N_{60} \) is the corrected SPT-N value (blows/ft), \(E_m \) is the hammer efficiency, \(C_B \) is the borehole diameter correction, \(C_S \) is the sampler correction, \(C_R \) is the rod length correction, \(C_N \) is the overburden pressure correction and \(N \) is the SPT-N recorded in the field.

The corrected SPT, \(N_{60} \), values were then used to compute for various geotechnical parameters such as relative density, undrained shear strength and angle of internal friction using different correlation factors [6]-[10]. As such, the group computed the ultimate bearing capacity. The Terzaghi’s and Vesic’s bearing capacity formulas, shown on Eq. (2) and (3) respectively, were used to achieve this [11]- [13].

\[q_{ult} = 1.2cN_c + \gamma D_f N_q + 0.4\gamma B N_y \]
\[q_{ult} = c'N_s s d_i d_q b_q g_q + \sigma' d_i d_q b_q g_q + 0.5\gamma N_s s d_i d_q b_q g_q \]

Where: \(s_c, s_q, s_y \), are shape factors; \(d_i, d_q, d_y \), are depth factors; \(i_c, i_q, i_y \), are load inclination factors; \(b_c, b_q, b_y \), are base inclination factors; and \(g_c, g_q, g_y \), are ground inclination factors.

A factor of safety of 3.0 was divided to ultimate bearing capacity to determine the allowable soil bearing capacity of the soil. The allowable soil bearing capacities at different locations were then plotted on to the maps at 1-meter, 2-meter, 3-meter, 4-meter and 5-meter depths. Contour maps were created to visually classify and analyze the allowable bearing capacities at different locations in Metro Manila.

4. SOIL BEARING CAPACITY ESTIMATES

The allowable soil bearing capacity of Quezon City at one-meter depth from the ground surface is in the range of 200 to 300 kPa, as represented by the color red in Fig. 2. The north, southwest, and some scattered portion of the center part of the city has bearing capacity values of 100 to 200 kPa. Compared to other cities in Metro Manila, this is quite high for the first meter depth.

![Fig. 2 Soil bearing capacity at 1-meter depth](image)
more than 1000 kPa, specifically the south-western part of the city. Those with high bearing capacities are those in the higher elevation areas.

Fig. 3 Soil bearing capacity at 2-meter depth

At three-meter depth, there is a further increase in the allowable soil bearing capacity, as shown in Fig. 4. Majority of the bearing capacity that was computed is now split into three ranges: 700 to 800 kPa, 800 to 900 kPa, and more than 1000 kPa. The north and southeast part of the city has the least bearing capacity of around 600 kPa, while the central, southwest, and east part of the city now has the strongest, with more than 1000 kPa. One can observe that it still follows the trend that as the elevation increases, the bearing capacity also increases.

Fig. 4 Soil bearing capacity at 3-meter depth

An even larger increase in the allowable soil bearing capacity in the whole vicinity of Quezon City is seen at four-meter depth from the ground surface, as shown in Fig. 5. Take note of the south portion though, as the bearing capacity decreased from 1000 kPa to an average value of 500 to 600 kPa. Since the rock formation at this area has lower RQD index as seen from the borehole logs, the equivalent bearing capacity is much smaller compared to the layer above it.

Fig. 5 Soil bearing capacity at 4-meter depth

At 5 meters depth from the ground surface, as shown in Fig. 6, there is a further increase in the allowable soil bearing capacity, wherein the 800 kPa to over 1000 kPa range is the dominant allowable soil bearing capacity. The lowest capacity easily seen here is the 400 kPa (violet) in the southwest and south parts of the city, while the highest still remains at those positions that are high in elevation, which are in the central and western parts of the city.

Fig. 6 Soil bearing capacity at five-meter

Fig. 7 shows the geological map of Metro Manila [14]. Quezon City is in the central part of Metro Manila. Quezon City has a different surface geology compared to its neighboring cities. Tuff was primarily observed in this area, and rock formations are common below the surface. SPT
blows depend on the amount of deposits that are present and increase as the soil goes deeper. SPT refusal was achieved at shallow depths of 2 to 3 meters in the outer regions and as shallow as the ground surface in the inner regions.

Fig. 7 Geologic Map of Metro Manila [13]

Since the surface geology of this area is reported as tuff, it can be generalized that the city is mostly made up of rocks. In accordance to this, the allowable soil bearing capacities of the rocks should have high values compared to soils and it is in this premise that the estimated soil bearing capacities in the different areas in Quezon city are relatively high.

5. CONCLUSION

Borehole logs were collected for a total of 130 locations all over Quezon City, Philippines. Maps were also created in order to show the locations of the collected boreholes throughout the city.

Using a spreadsheets, different geotechnical properties of the collected boreholes were computed. Some examples of this are the unit weight and the angle of internal friction. Also using the same spreadsheet, the allowable soil bearing capacity of the entire Quezon City was estimated and evaluated per meter depth until a depth of 5 meters. Contour maps of the allowable bearing capacities at each of the depths were also made and analyzed.

Because of the shallow rock formations beneath the surface of the city, high allowable soil bearing capacities were observed at shallow depths. It is recommended to place the foundations on these refusal levels since it is more than capable of carrying loads that are suited for shallow foundations. Nevertheless, caution must be taken when placing structures in these areas, as the Valley Fault System is nearby, making the area prone to earthquakes.

The soil in the Quezon City area shows an increasing trend in the bearing capacity at every meter deeper. High-rise buildings can be easily built in the area without many struggles in the foundation design. Because of this, settlement in the said area can be considered minimal, thus, structures can be built confidently to resist such phenomena. This reference can be used by structural engineers and city engineers in properly designing the foundation of structures and can also be used for disaster mitigating activities of the city.

6. ACKNOWLEDGMENTS

The author would like to express his gratitude to his former students, Engrs. Ismael Concepcion, Moises Christian Limyuen, Terrence See and Marion Ryan Vicencio for helping him gather and analyze the data. The author also wishes to thank all the companies, offices and individuals who lent their borehole data of Quezon City to him.

7. REFERENCES

[1] Dungca J. R., Concepcion I., Limyuen M. C. M., See T. O. and Vicencio M. R., Soil Bearing Capacity Reference for Metro Manila Reference. International Journal of GEOMATE, Vol. 12, Issue 32, 2017, pp.5-11.
[2] Dungca J. R. and Galupino J. G., Quezon City Soil Profile Reference. International Journal of GEOMATE, Vol. 16, Issue 58, 2019, pp.48-54.
[3] Clayton C.R.I. “SPT Energy Transmission: Theory, Measurement, and Significance”, Ground Engineering, Vol. 23, No. 10, 1990, pp 35-43.
[4] Skempton A.W. “Standard penetration Test Procedures and the Effects in Sands of Overburden Pressure, Relative Density, Particile Size, Aging and Over Consolidation” Geotechnique, Vol36, No. 3 1986, pp. 425-447.
[5] Tokimatsu K. and Seed H.B. “Simplified Procedures for the Evaluation of the Settlements in Clean Sand. Report No. UCB/EERC-84/16. University of California, Berkely, CA, 1984.
[6] Das B. “Fundamentals of Geotechnical Engineering, 3rd Ed., Toronto, Canada, Thomson Learning, 2008.
[7] Coduto D.P. “Foundation Design Principles and Practices, 2nd Ed., New Jersey, USA, Rentice Hall, 2001.
[8] Sowers G. and Sowers G. “Introductory soil Mechanics and Foundation, New York, USA Macmillan, 1961.
[9] Gibbs H.J. and Holtz W.G. “Research on Determining the Density of Sands by Spoon Penetration Testing,” In the Proceedings of the 4th International Conference on Soil Mechanics, Vol. 1, London, 1957, pp. 35-39.

[10] Kulhawy F.H. and Mayne P.W. “Manual on Estimating Soil Parameters for Foundation Design. Report No. EL-6800, Electric Power Research Institute, Palo, Alto, CA, 1990.

[11] Terzaghi K., “Theoretical Soil Mechanics”, John Wiley, 1943. Terzaghi K., “Theoretical Soil Mechanics”, John Wiley, 1943.

[12] Vesic A.S. “Analysis of Ultimate Loads of Shallow Foundations,” ASCE Journal of the Soil Mechanics and Foundation Division, 1973, Vol. 99, No. SM1, pp. 45-73.

[13] Vesic A.S. “Bearing Capacity of Shallow Foundations,” Foundation Engineering Handbook. 1st ed., p 121-147, Winterkorn, Hans F. and Fang, Hsai-Yang, eds., Van Nostrand Reinhold, New York., 1975.

[14] Oca G. “The Geology of Greater Manila and Its Bearing to the Catastrophic Earthquake of August 2, 1968” the Philippine Geologist, Vol 22 No. 4, pp. 171-192.

Copyright © Int. J. of GEOMATE. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietors.