Eigenvalues of a H-generalized join graph operation constrained by vertex subsets

Domingos M. Cardoso and Enide A. Martins*
Departamento de Matemática
Universidade de Aveiro
Aveiro, Portugal

Maria Robbiano§1 and Oscar Rojo§‡
Departamento de Matemáticas
Universidad Católica del Norte
Antofagasta, Chile

Abstract

Considering a graph H of order p, a generalized H-join operation of a family of graphs G_1, \ldots, G_p, constrained by a family of vertex subsets $S_i \subseteq V(G_i)$, $i = 1, \ldots, p$, is introduced. When each vertex subset S_i is (k_i, τ_i)-regular, it is deduced that all non-main adjacency eigenvalues of G_i, different from $k_i - \tau_i$, for $i = 1, \ldots, p$, remain as eigenvalues of the graph G obtained by the above mentioned operation. Furthermore, if each graph G_i of the family is k_i-regular, for $i = 1, \ldots, p$, and all the vertex subsets are such that $S_i = V(G_i)$, the H-generalized join operation constrained by these vertex subsets coincides with the H-generalized join operation. Some applications on the spread of graphs are presented. Namely, new lower and upper bounds are deduced and an infinity family of non regular graphs of order n with spread equals n is introduced.

AMS classification: 05C50, 15A18

Keywords: Graph eigenvalues, spread of a graph; adjacency matrix;

*Work supported by FEDER founds through COMPETE-Operational Programme Factors of Competitiveness and by Portuguese founds through the Center for Research and Development in Mathematics and Applications (University of Aveiro) and the Portuguese Foundation for Science and Technology ("FCT-Fundaçao para a Ciência e a Tecnologia"), within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690 and also to the project PTDC/MAT/112276/2009. These authors also thanks the hospitality of Departamento de Matemáticas, Universidad Católica del Norte, Chile, during the visit of which this research was finalized.

§†Research partially supported by Fondecyt - IC Project 11090211, Chile.

§‡Research supported by Project Fondecyt 1100072, Chile. §§These authors thanks the hospitality of Departamento de Matemática, Universidade de Aveiro, Aveiro, Portugal, in which this research was started.
1 Notation and main concepts

We deal with undirected simple graphs herein simply called graphs. For each graph G, the vertex set is denoted by $V(G)$ and its edge set by $E(G)$. Usually, we consider that the graph G has order n, that is $V(G) = \{1, \ldots, n\}$. An edge with end vertices i and j is denoted by ij and then we say that the vertices i and j are adjacent or neighbors. The number of neighbors of a vertex i is the degree of i and the neighborhood of i is the set of its neighbors, $N_G(i) = \{j \in V(G) : ij \in E(G)\}$. The maximum and minimum degree of the vertices of G is denoted by $\Delta(G)$ and $\delta(G)$, respectively. The complement of G, denoted by \overline{G} is such that $V(\overline{G}) = V(G)$ and $E(\overline{G}) = \{ij : ij \notin E(G)\}$. A path of length $p-1$, P_p, in G is a sequence of vertices i_1, \ldots, i_p all distinct except, eventually the first and the last) and such that $i_ji_{j+1} \in E(G)$, for $j = 1, \ldots, p-1$. If $i_1 = i_p$, then it is a closed path usually called cycle of length p and denoted C_p.

A graph G is connected if there is a path between each pair of distinct vertices. A complete graph of order n, where each pair of distinct vertices is connected by an edge, is denoted by K_n. The complement of K_n, $\overline{K_n}$, is called the null graph. A graph G is bipartite if $V(G)$ can be partitioned into two subsets V_1 and V_2 such that every edge of G has one end vertex in V_1 and the other one in V_2. This graph G is called complete bipartite and it is denoted $K_{p,q}$, if $|V_1| = p$, $|V_2| = q$ and each vertex of V_1 is connected with every vertex of V_2.

The adjacency matrix of a graph G, $A(G) = (a_{i,j})$, is the $n \times n$ matrix

$$a_{i,j} = \begin{cases} 1 & \text{if } ij \in E(G) \\ 0 & \text{otherwise.} \end{cases}$$

Then the matrix $A(G)$ is a nonnegative symmetric with entries which are 0 and 1 and then all of its eigenvalues are real. Furthermore, since all its diagonal entries are equal to 0, the trace of $A(G)$ is zero. If G has at least one edge, then $A(G)$ has a negative eigenvalue not greater than -1 and a positive eigenvalue not less than the average degree of the vertices of G.

Considering any matrix M we denote its spectrum (the multiset of the eigenvalues of M) by $\sigma(M)$. The spectrum of the adjacency matrix of a graph G, $\sigma(A(G))$, is simply denoted by $\sigma(G)$ and the eigenvalues of $A(G)$ are also called the eigenvalues of G. An eigenvalue λ of a graph G is called non-main if its associated eigenspace, denoted $\varepsilon_G(\lambda)$, is orthogonal to the all one vector, otherwise is called main.

Usually, the multiplicities of the eigenvalues are represented in the multiset $\sigma(G)$ as powers in square brackets. For instance, $\sigma(G) = \{\lambda_1^{[m_1]}, \ldots, \lambda_q^{[m_q]}\}$ denotes that λ_1 has multiplicity m_1, λ_2 has multiplicity m_2, and so on. Throughout the paper, the eigenvalues of a graph G with n vertices, $\lambda_1(G), \ldots, \lambda_n(G)$, are ordered as follows: $\lambda_1(G) \geq \cdots \geq \lambda_n(G)$. If λ is an eigenvalue of the graph G and u is an associated eigenvector, the pair (λ, u) is called an eigenpair of G.

Considering a graph G of order n and a vertex subset $S \subseteq V(G)$, the characteristic vector of S is the vector $x_S \in \{0, 1\}^n$ such that $(x_S)_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{otherwise.} \end{cases}$

A vertex subset S is (k, τ)-regular if S induces a k-regular graph in G and every
vertex out of \(S \) has \(\tau \) neighbors in \(S \), that is,
\[
|N_G(i) \cap S| = \begin{cases}
 k & \text{if } i \in S \\
 \tau & \text{otherwise.}
\end{cases}
\]

When the graph \(G \) is \(k \)-regular, for convenience, \(S = V(G) \) is considered \((k, 0) \)-regular. There are several properties of graphs related with \((k, \tau) \)-regular sets (see [2, 3]). For instance, we may refer the following properties:

- A graph \(G \) has a perfect matching if and only if its line graph has a \((0, 2)\)-regular set.
- A graph \(G \) is Hamiltonian if and only if its line graph has a \((2, 4)\)-regular set inducing a connected graph.
- A graph \(G \) of order \(n \) is strongly regular with parameters \((n, p, a, b)\) if and only if \(\forall v \in V(G) \) the vertex subset \(S = N_G(v) \) is \((a, b)\)-regular in \(G - v \) (where \(G - v \) is the graph obtained from \(G \) deleting the vertex \(v \)).

\section{Generalized join graph operation with vertex subset constraints}

Considering two vertex disjoint graphs \(G_1 \) and \(G_2 \), the join of \(G_1 \) and \(G_2 \) is the graph \(G_1 \lor G_2 \) such that \(V(G_1 \lor G_2) = V(G_1) \cup V(G_2) \) and \(E(G_1 \lor G_2) = E(G_1) \cup E(G_2) \cup \{xy : x \in V(G_1) \land y \in V(G_2)\} \). A generalization of the join operation was first introduced in [10] under the designation of generalized composition and more recently in [1] with the designation of \(H \)-join, defined as follows:

Consider a family of \(p \) graphs, \(\mathcal{F} = \{G_1, \ldots, G_p\} \), where each graph \(G_j \) has order \(n_j \), for \(j = 1, \ldots, p \), and a graph \(H \) such that \(V(H) = \{1, \ldots, p\} \). Each vertex \(j \in V(H) \) is assigned to the graph \(G_j \in \mathcal{F} \). The \(H \)-join (generalized composition) of \(G_1, \ldots, G_p \) is the graph \(G = \bigvee_{H} \{G_j : j \in V(H)\} \) \((H[G_1, \ldots, G_p]) \) such that \(V(G) = \bigcup_{j=1}^{p} V(G_j) \) and

\[
E(G) = \left(\bigcup_{j=1}^{p} E(G_j) \right) \cup \left(\bigcup_{rs \in E(H)} \{uv : u \in V(G_r), v \in V(G_s)\} \right).
\]

Now, we generalize the above \(H \)-join operation according to the next definition.

\textbf{Definition 1} Consider a graph \(H \) of order \(p \) and a family of \(p \) graphs \(\mathcal{F} = \{G_1, \ldots, G_p\} \). Consider also a family of vertex subsets \(S = \{S_1, \ldots, S_p\} \), such that \(S_i \subseteq V(G_i) \) for \(i = 1, \ldots, p \). The \(H \)-generalized join operation of the family of graphs \(\mathcal{F} \) constrained by the family of vertex subsets \(S \), denoted by \(\bigvee_{(H,S)} \mathcal{F} \),
produces a graph such that

$$V\left(\bigvee_{(H,S)}\mathcal{F}\right) = \bigcup_{i=1}^{p} V(G_i),$$

$$E\left(\bigvee_{(H,S)}\mathcal{F}\right) = \left(\bigcup_{i=1}^{p} E(G_i)\right) \cup \{xy : x \in S_i, y \in S_j, ij \in E(H)\}.$$

Notice that the particular case of the H-generalized join operation of the family of graphs $\mathcal{F} = \{G_1, \ldots, G_p\}$ constrained by the family of vertex subsets $S = \{V(G_1), \ldots, V(G_p)\}$, coincides with the above described H-generalized join operation.

Example 1 The Figure 1 depicts an example of a H-generalized join operation, with $H = P_3$, of a family of graphs $\mathcal{F} = \{G_1, G_2, G_3\}$ constrained by the family of vertex subsets $S = \{S_1, S_2, S_3\}$, where $S_1 = \{a, b\}$, $S_2 = \{d, f\}$, and $S_3 = \{g, i, j\}$.

![Figure 1: The H-generalized join operation of the family of graphs $\mathcal{F} = \{G_1, G_2, G_3\}$, constrained by the family of vertex subsets $S = \{S_1, S_2, S_3\}$, where $S_1 = \{a, b\} \subset V(G_1), S_2 = \{d, f\} \subset V(G_2)$ and $S_3 = \{g, i, j\} \subset V(G_3)$.](image)

Now it is worth to recall the following result.

Lemma 1 [2] Let G be a graph with a (κ, τ)-regular set S, where $\tau > 0$, and $\lambda \in \sigma(A(G))$. Then, denoting the characteristic vector of S by x_S, λ is non-main if and only if

$$\lambda = \kappa - \tau \quad \text{or} \quad x_S \in (\mathcal{E}_G(\lambda))^\perp,$$
where \((E_G(\lambda))^{-1}\) denotes the vector space orthogonal to the eigenspace associated to the eigenvalue \(\lambda\).

From now on, given a graph \(H\), we denote
\[
\delta_{i,j}(H) = \begin{cases}
1 & \text{if } ij \in E(H) \\
0 & \text{otherwise.}
\end{cases}
\]

Theorem 1 Consider a graph \(H\) of order \(p\) and a family of \(p\) graphs \(\mathcal{F} = \{G_1, \ldots, G_p\}\) such that \(|V(G_i)| = n_i, i = 1, \ldots, p\). Consider also the family of vertex subsets \(S = \{S_1, \ldots, S_p\}\), where \(S_i \in \{S_i^\prime \subseteq V(G_i) : \text{either } S_i^\prime \text{ or } V(G_i) \setminus S_i^\prime \text{ is } (k_i, \tau_i)-\text{regular for some integers } k_i, \tau_i\}\), for \(i = 1, \ldots, p\). Let \(G = \bigvee_{(H,S)} \mathcal{F}\). If \(\lambda \in \sigma(G_i) \setminus \{k_i - \tau_i\} \text{ for some } i \in \{1, \ldots, p\}\) is non-main, then \(\lambda \in \sigma(G)\).

Proof. Denoting \(\delta_{i,j} = \delta_{i,j}(H)\), then \(\delta_{i,j} x_{S_i} x_{S_j}^T\), where \(x_{S_i}\) and \(x_{S_j}\) are the characteristic vectors of \(S_i\) and \(S_j\), respectively, is an \(n_i \times n_j\) matrix whose entries are zero if \(ij \notin E(H)\), otherwise
\[
\left(\delta_{i,j} x_{S_i} x_{S_j}^T\right)_{q,r} = \begin{cases}
1 & \text{if } q \in S_i \land r \in S_j \\
0 & \text{otherwise.}
\end{cases}
\]

Then the adjacency matrix of \(G\) has the form
\[
A(G) = \begin{pmatrix}
A(G_1) & \delta_{1,2} x_{S_1} x_{S_2}^T & \cdots & \delta_{1,p-1} x_{S_1} x_{S_{p-1}}^T & \delta_{1,p} x_{S_1} x_{S_p}^T \\
\delta_{2,1} x_{S_2} x_{S_1}^T & A(G_2) & \cdots & \delta_{2,p-1} x_{S_2} x_{S_{p-1}}^T & \delta_{2,p} x_{S_2} x_{S_p}^T \\
\delta_{3,1} x_{S_3} x_{S_1}^T & \delta_{3,2} x_{S_3} x_{S_2}^T & \cdots & \delta_{3,p-1} x_{S_3} x_{S_{p-1}}^T & \delta_{3,p} x_{S_3} x_{S_p}^T \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\delta_{p-1,1} x_{S_{p-1}} x_{S_1}^T & \delta_{p-1,2} x_{S_{p-1}} x_{S_2}^T & \cdots & A(G_{p-1}) & \delta_{p-1,p} x_{S_{p-1}} x_{S_p}^T \\
\delta_{p,1} x_{S_p} x_{S_1}^T & \delta_{p,2} x_{S_p} x_{S_2}^T & \cdots & \delta_{p,p-1} x_{S_p} x_{S_{p-1}}^T & A(G_p)
\end{pmatrix}
\]

Let \(u_i\) be an eigenvector of \(A(G_i)\) associated to the non-main eigenvalue \(\lambda_i \neq k_i - \tau_i\), with \(1 \leq i \leq p\). Then,
\[
A(G) = \begin{pmatrix}
0 \\
\vdots \\
0 \\
u_i \\
\vdots \\
0
\end{pmatrix}
= \begin{pmatrix}
\delta_{i,1} \left(x_{S_1}^T u_i\right) x_{S_1} \\
\vdots \\
\delta_{i-1,1} \left(x_{S_{i-1}}^T u_i\right) x_{S_{i-1}} \\
\delta_{i,1} \left(x_{S_i}^T u_i\right) x_{S_i} \\
\vdots \\
\delta_{p,1} \left(x_{S_p}^T u_i\right) x_{S_p}
\end{pmatrix}
= \begin{pmatrix}
0 \\
\vdots \\
0 \\
\lambda_i u_i \\
\vdots \\
0
\end{pmatrix},
\]

since \(x_{S_i}\) is the characteristic vector of the vertex subset \(S_i\) and \(S_i \text{ or } V(G_i) \setminus S_i\) is \((k_i, \tau_i)-\text{regular} \) (take into account that \(\lambda_i\) is non-main and then we may apply Lemma \([1]\)).

From the proof of Theorem \([1]\) we may conclude the following corollary.
Corollary 1 Consider a graph H of order p and a family of p graphs $\mathcal{F} = \{G_1, \ldots, G_p\}$ such that $|V(G_i)| = n_i, i = 1, \ldots, p$. Consider also the family of vertex subsets $\mathcal{S} = \{V(G_1), \ldots, V(G_p)\}$. Let $G = \bigvee_{(H, \mathcal{S})} \mathcal{F}$. If $\lambda \in \sigma(G_i)$ for some $i \in \{1, \ldots, p\}$ is non-main, then $\lambda \in \sigma(G)$.

Proof. Consider an eigenpair (λ, u) of a graph G_i, for some $i \in \{1, \ldots, p\}$, where λ is non-main. Then, taking into account the equations (11) where, in this case, x_{S_i} is the all one vector, the result follows. \(\blacksquare\)

Notice that in the above corollary, $G = \bigvee_{(H, \mathcal{S})} \mathcal{F}$ coincides with the H-join operation of the family of graphs \mathcal{F} (generalized composition $H[G_1, \ldots, G_p]$ in the terminology of [10]).

Example 2 Consider the Example [4] where $V(G_1) = \{a, b, c\}$ and $S_1 = \{a, b\}$ is $(1, 1)$-regular, $V(G_2) = \{d, e, f\}$ and $S_2 = \{d, f\}$ is $(0, 2)$-regular, $V(G_3) = \{g, h, i, j\}$ and $S_3 = \{g, i\}$ is $(2, 2)$-regular:

- The eigenpairs of $A(G_1)$ are \(\left(\sqrt{2}, \begin{bmatrix} \sqrt{2} \\ 1 \\ 1 \end{bmatrix}\right), \left(0, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}\right)\) and \(\left(-\sqrt{2}, \begin{bmatrix} -\sqrt{2} \\ 1 \\ 1 \end{bmatrix}\right)\).

- The eigenpairs of $A(G_2)$ are \(\left(\sqrt{2}, \begin{bmatrix} \sqrt{2} \\ 2 \\ 2 \end{bmatrix}\right), \left(0, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}\right)\) and \(\left(-\sqrt{2}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}\right)\).

- The eigenpairs of $A(G_3)$ are \(\left(\frac{\sqrt{17}}{2}, \begin{bmatrix} \frac{\sqrt{17}}{2} \\ \frac{1 + \sqrt{17}}{2} \\ \frac{1 + \sqrt{17}}{2} \end{bmatrix}\right), \left(0, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}\right)\) and \(\left(\frac{\sqrt{17}}{2}, \begin{bmatrix} \frac{1 - \sqrt{17}}{2} \\ \frac{1 - \sqrt{17}}{2} \\ \frac{1 - \sqrt{17}}{2} \end{bmatrix}\right)\).

Let $G = \bigvee_{(H, \mathcal{S})} \mathcal{F}$, where $H = P_3$. Then, denoting $\delta_{i,j} = \delta_{i,j}(H)$ and defining the characteristic vectors of the vertex subsets S_1, S_2 and S_3 considering their elements by alphabetic order, we obtain:

\[
A(G) = \begin{pmatrix}
A(G_1) & \delta_{1,2}x_{S_1}x_{S_2}^T & \delta_{1,3}x_{S_1}x_{S_3}^T \\
\delta_{2,1}x_{S_2}x_{S_1}^T & A(G_2) & \delta_{2,3}x_{S_2}x_{S_3}^T \\
\delta_{3,1}x_{S_3}x_{S_1}^T & \delta_{3,2}x_{S_3}x_{S_2}^T & A(G_3)
\end{pmatrix}
\]

\[
= \begin{pmatrix}
A(G_1) & [1 \\ 1 \\ 1] & \text{0}_{3 \times 4} \\
[1 \\ 0 \\ 1] & A(G_2) & [1 \\ 1 \\ 1] \\
\text{0}_{4 \times 3} & [1 \\ 1 \\ 1] & A(G_3)
\end{pmatrix}
\]

6
According to Theorem 1, \(\{0, -1\} \subset \sigma(A(G)) \). Notice that \(S_1 \subseteq V(G_1) \) is \((1,1)\)-regular and thus we are not able to get a conclusion about if the eigenvalue 0 of \(A(G_1) \) is or not an eigenvalue of \(A(G) \). On the other hand \(S_2 \subseteq V(G_2) \) is \((0,2)\)-regular and \(S_3 \subseteq V(G_3) \) is \((2,2)\)-regular. In fact,

\[
\sigma(A(G)) = \{4.44999, 1.86239, 0, 0, -1, -1.3822, -1.51442, -3.02546\}.
\]

Consider a graph \(H \) of order \(p \), a family of graphs \(\mathcal{F} = \{G_1, \ldots, G_p\} \), where each graph \(G_i \) has order \(n_i \), and a family of vertex subsets \(\mathcal{S} = \{S_1, \ldots, S_p\} \), where for each \(i \in \{1, \ldots, p\} \), \(S_i \subseteq V(G_i) \). If \(G = \bigcup_{(H,S)} \mathcal{F} \) and \((\lambda, \hat{u})\) is an eigenpair of \(A(G) \), decomposing \(\hat{u} \) such that \(\hat{u} = \left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_p \end{array} \right) \), where each \(u_i \) is a subvector of \(\hat{u} \) with \(n_i \) components, then \(\lambda \hat{u} = A(G)\hat{u} \), that is,

\[
\lambda \left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_p \end{array} \right) = \left(\begin{array}{c} A(G_1)u_1 + \left(\sum_{j \neq 1} \delta_{1,j} x_{S_i}^T u_j \right) x_{S_1} \\ A(G_2)u_2 + \left(\sum_{j \neq 2} \delta_{2,j} x_{S_2}^T u_j \right) x_{S_2} \\ \vdots \\ A(G_p)u_p + \left(\sum_{j \neq p} \delta_{p,j} x_{S_p}^T u_j \right) x_{S_p} \end{array} \right),
\]

(2)

where \(\delta_{i,j} = \delta_{i,j}(H) \).

Furthermore, if we assume that \(G_i \) is \(d_i \)-regular and \(S_i \) or its complement is \((k_i, \tau_i)\)-regular, for \(i = 1, \ldots, p \), respectively, according to Theorem 1,

\[
\bigcup_{i=1}^{p} (\sigma(G_i) \setminus \{d_i, k_i - \tau_i\}) \subset \sigma(G),
\]

since by one hand, as it is well known, all the eigenvalues of each graph \(G_i \) are non-main but \(d_i \), on the other hand, if a regular graph has a \((k, \tau)\)-regular vertex subset, then \(k - \tau \) is a non-main eigenvalue 2.

Additionally, assuming that \(S_i = V(G_i) \), for \(i = 1, \ldots, p \), the remaining eigenvalues of \(G \) can be computed as follows: let us define \(\tilde{u} \), setting each of its subvectors \(u_i = \theta_i e_{n_i} \), for \(i = 1, \ldots, p \), where each \(e_{n_i} \) is an all one vector with \(n_i \) componentes and \(\theta_1, \ldots, \theta_p \) are scalars. Then the system (2) becomes

\[
\lambda \left(\begin{array}{c} \theta_1 e_{n_1} \\ \theta_2 e_{n_2} \\ \vdots \\ \theta_p e_{n_p} \end{array} \right) = \left(\begin{array}{c} \left(d_1 \theta_1 + \sum_{j \neq 1} \delta_{1,j} \theta_j n_j \right) e_{n_1} \\ \left(d_2 \theta_2 + \sum_{j \neq 2} \delta_{2,j} \theta_j n_j \right) e_{n_2} \\ \vdots \\ \left(d_p \theta_p + \sum_{j \neq p} \delta_{p,j} \theta_j n_j \right) e_{n_p} \end{array} \right).
\]
Therefore, \((\lambda, \hat{u})\) is an eigenpair for \(A(G)\) if and only if \((\lambda, \hat{\theta})\), where \(\hat{\theta} = (\theta_1, \theta_2, \ldots, \theta_p)^T\), is an eigenpair of the matrix

\[
M = \begin{pmatrix}
d_1 & \delta_{1,2}n_2 & \ldots & \delta_{1,p}n_p \\
\delta_{2,1}n_2 & d_2 & \ldots & \delta_{2,p}n_p \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{p,1}n_2 & \delta_{p,2}n_2 & \ldots & d_p
\end{pmatrix}, \tag{3}
\]

that is, \(M\hat{\theta} = \lambda\hat{\theta}\).

Setting \(D = \text{diag}(d_1, \ldots, d_p)\) and \(N = \text{diag}(n_1, \ldots, n_p)\), then \(M = A(H)N + D\) is similar to the symmetric matrix

\[
M' = \begin{pmatrix}
d_1 & \delta_{1,2}\sqrt{n_1n_2} & \ldots & \delta_{1,p}\sqrt{n_1n_p} \\
\delta_{2,1}\sqrt{n_1n_2} & d_2 & \ldots & \delta_{2,p}\sqrt{n_2n_p} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{p,1}\sqrt{n_1n_p} & \delta_{p,2}\sqrt{n_2n_p} & \ldots & d_p
\end{pmatrix}, \tag{4}
\]

since \(M' = KMK^{-1}\) with \(K = \text{diag}(\sqrt{n_1}, \ldots, \sqrt{n_p})\). Therefore, \(M' = D + KA(H)K\) and \(\sigma(M) = \sigma(M')\).

Based on the above analysis, we are able to deduce the following result.

Theorem 2 Consider a graph \(H\) of order \(p\) and a family of regular graphs \(F = \{G_1, \ldots, G_p\}\), where each regular graph \(G_i\) has degree \(d_i\) and order \(n_i\). Consider the family of vertex subsets \(S = \{S_1, \ldots, S_p\}\), where

\[
S_i \in \{S_i' \subseteq V(G_i) : S_i' \text{ or } V(G_i) \setminus S_i' \text{ is } (k_i, \tau_i) \text{- regular, for some } k_i, \tau_i\},
\]

for \(i = 1, \ldots, p\). Assume that \(G = \bigvee_{(H,S)} F\) and \(M'\) is the matrix defined in (3). If \(S_i = V(G_i)\), for \(i = 1, \ldots, p\), then

\[
\sigma(G) = \left(\bigcup_{i=1}^p \sigma(G_i) \setminus \{d_i\}\right) \cup \sigma(M'),
\]

otherwise \(\sigma(G) \supseteq \bigcup_{i=1}^p \sigma(G_i) \setminus \{d_i, k_i - \tau_i\}\).

Proof. The conclusions are direct consequence of the above analysis, taking into account that if \(S_i = V(G_i)\), for \(i = 1, \ldots, p\), then each \(S_i\) is \((k_i, \tau_i)\)-regular, with \(k_i = d_i\) and \(\tau_i = 0\).

3 Some applications on the spread of graphs

3.1 Definitions and basic results

Given a \(n \times n\) complex matrix \(M\), the spread of \(M\), \(s(M)\), is defined as \(\max_{i,j} |\lambda_i(M) - \lambda_j(M)|\), where the maximum is taken over all pairs of eigenvalues of \(M\). Then

\[
s(M) = \max_{x,y} (x^* M x - y^* M y) = \max_{i,j} \sum_{i,j} m_{i,j} (\bar{x}_i x_j - \bar{y}_i y_j),
\]

8
where z^* is the conjugate transpose of z and the maximum is taken over all pairs of unit vectors in \mathbb{C}^n.

Theorem 3 \[8\] \[s(M) \leq \left(2 \sum_{i,j} |m_{i,j}|^2 - \frac{2}{n} \sum_i |m_{i,i}|^2\right)^{1/2}, \text{ with equality if and only if } M \text{ is a normal matrix (that is, such that } M^*M = MM^*\text{), with } n-2 \text{ of its eigenvalues all equal to the average of the remaining two.} \]

Several results on the spread of normal and Hermitian matrices were presented in \[6, 9\].

In this paper, we consider only the spread of adjacency matrices of simple graphs and we define the spread of a graph G as the spread $s(A(G))$, which is simply denoted by $s(G)$. Therefore,

$$s(G) = \max_{i,j} \{|\lambda_i(G) - \lambda_j(G)|\},$$

where the maximum is taken over all pairs of eigenvalues of the adjacency matrix of G. If the graph G has order n, then $s(G) = \lambda_1(G) - \lambda_n(G)$ and replacing the matrix M of Theorem 3 by $A(G)$, it follows that

$$s(G) = \lambda_1(G) - \lambda_n(G) \leq \sqrt{4|E(G)|}, \quad (5)$$

Denoting the average degree of the vertices of G by $\overline{d}(G)$, from (5) it follows that

$$s(G) \leq \sqrt{2n\overline{d}(G)} < \sqrt{2n(n-1)} \quad (6)$$

if $n > 2$, since $\overline{d}(G) \leq n-1$ and $\overline{d}(G) = n-1$ if and only if $G = K_n$. Notice that $\sigma(K_n) = \{n-1, (-1)^{n-1}\}$ and then $s(K_n) = n$. Furthermore,

$$\overline{d}(G) \leq \frac{n}{2} \Rightarrow s(G) \leq n. \quad (7)$$

In \[4\] the following upper bounds on the spread of a graph were obtained.

Theorem 4 \[4\] If G is a graph of order n, then

$$s(G) \leq \lambda_1(G) + \sqrt{2|E(G)| - \lambda_2^2(G)} \leq 2\sqrt{|E(G)|}. \quad (8)$$

Equality holds throughout if and only if equality holds in the first inequality; equivalently, if and only if $|E(G)| = 0$ or $G = K_{p,q}$, for some p and q.

Theorem 5 \[4\] If G is a regular graph of order n, then $s(G) \leq n$. Equality holds if and only if the complement of G, \overline{G}, is disconnected.

Additional results on the spread of graphs can be found in \[4, 7\].
3.2 The spread of the join of two graphs

Now it is worth to recall the join of two vertex disjoint graphs G_1 and G_2 which is the graph $G_1 \lor G_2$ obtained from their union connecting each vertex of G_1 to each vertex of G_2. Considering this graph operation, as direct consequence of Theorem\[2\] we have the following corollaries. Notice that Corollary\[2\] is well known (see, for instance, [10]).

Corollary 2 If G_i is a d_i-regular graph of order n_i, for $i = 1, 2$, then

$$\sigma(G_1 \lor G_2) = \bigcup_{i=1}^{2} (\sigma(A(G_i)) \setminus \{d_i\}) \cup \{\beta_1, \beta_2\}.$$

where β_1 and β_2 are eigenvalues of the matrix $M' = \begin{pmatrix} \frac{d_1}{\sqrt{n_1 n_2}} & \sqrt{n_1 n_2} \\ \frac{d_2}{\sqrt{n_1 n_2}} & \frac{d_2}{\sqrt{n_1 n_2}} \end{pmatrix}$, that is,

$$\beta_1 = \frac{d_1 + d_2 + \sqrt{(d_1 - d_2)^2 + 4n_1 n_2}}{2}, \quad (9)$$

$$\beta_2 = \frac{d_1 + d_2 - \sqrt{(d_1 - d_2)^2 + 4n_1 n_2}}{2}. \quad (10)$$

Corollary 3 Consider a d_i-regular graph of order n_i, for $i = 1, 2$, and the graph $G = G_1 \lor G_2$ of order $n = n_1 + n_2$. Then

$$s(G) = \begin{cases} \sqrt{(d_1 - d_2)^2 + 4n_1 n_2}, & \text{if } \lambda_n(G) = \beta_2 \\ \frac{d_2 - d_1 + \sqrt{(d_1 - d_2)^2 + 4n_1 n_2}}{2} + s(G_1), & \text{if } \lambda_n(G) = \lambda_{n_1}(G_1) \\ \frac{d_1 - d_2 + \sqrt{(d_1 - d_2)^2 + 4n_1 n_2}}{2} + s(G_2), & \text{if } \lambda_n(G) = \lambda_{n_2}(G_2). \end{cases} \quad (11)$$

Furthermore, setting $R = \sqrt{(d_1 - d_2)^2 + 4n_1 n_2},$

$$s(G) = \max\{R, \frac{d_2 - d_1 + R}{2} + s(G_1), \frac{d_1 - d_2 + R}{2} + s(G_2)\}.$$

Proof. According to Corollary\[2\], $\sigma(A(G)) = \bigcup_{i=1}^{2} (\sigma(A(G_i)) \setminus \{d_i\}) \cup \{\beta_1, \beta_2\}$, where β_1 and β_2 have the values (9) and (10), respectively. On the other hand, $\lambda_{n_i}(G_i) = d_i - s(G_i)$, for $i = 1, 2$. Therefore, the equalities in (11) follows, as well as the second part. \qed

Corollary 4 Let G_i be a d_i-regular graph of order n_i, for $i = 1, 2$, and $G = G_1 \lor G_2$. If $|d_1 - d_2| > |n_1 - n_2|$, then $s(G) > n = n_1 + n_2$.

Proof. By construction, it is immediate that the order of G is $n = n_1 + n_2$. Taking into account that β_1 and β_2, in (9) and (10) of Corollary\[2\], respectively, are eigenvalues of the adjacency matrix of $G = G_1 \lor G_2$, then

$$s(G) \geq \beta_1 - \beta_2 = \sqrt{(d_1 - d_2)^2 + 4n_1 n_2} > n_1 + n_2 = n.$$
Notice that $\sqrt{(d_1 - d_2)^2 + 4n_1n_2} > n_1 + n_2 \iff (d_1 - d_2)^2 + 4n_1n_2 > n_1^2 + n_2^2 + 2n_1n_2 \iff (d_1 - d_2)^2 > (n_1 - n_2)^2$.

Considering the complete graph K_k, for which $\sigma(K_k) = \{-1\}^{k-1}, k-1\}$, and the null graph K_{n-k}, for which $\sigma(K_{n-k}) = \{0\}^{n-k}$, and denote the join of these graphs by $G(n,k)$ (that is $G(n,k) = K_k \vee K_{n-k}$), according to Corollary 2, $\sigma(G(n,k)) = \{-1\}^{k-1}, \{0\}^{n-k-1}, \beta_1, \beta_2\}$, with

$$\beta_1 = \frac{k - 1 + \sqrt{(k-1)^2 + 4k(n-k)}}{2}$$
$$\beta_2 = \frac{k - 1 - \sqrt{(k-1)^2 + 4k(n-k)}}{2}.$$

Therefore, $s(G(n,k)) = \beta_1 - \beta_2 = \sqrt{(k-1)^2 + 4k(n-k)}$. Furthermore, when $\frac{n+1}{2} < k < n-1$, the hypothesis of Corollary 3 hold for these graphs and then $s(G(n,k)) > n$.

Theorem 6 [4] Among the family of graphs $G(n,k) = K_k \vee K_{n-k}$, with $1 \leq k \leq n-1$, the maximum of $s(G(n,k))$ is attained when $k = \lfloor 2n/3 \rfloor$.

In [4] the following conjecture was checked by computer for graphs of order $n \leq 9$.

Conjecture 1 [4] The maximum spread $s(n)$ of the graphs of order n is attained only by $G(n, \lfloor 2n/3 \rfloor)$, that is, $s(n) = \lfloor (4/3)(n^2 - n + 1) \rfloor^{\frac{1}{2}}$ and so $\frac{1}{\sqrt{3}}(2n-1) < s(n) < \frac{1}{\sqrt{3}}(2n-1) + \frac{\sqrt{3}}{n-2}$.

3.3 The spread of the generalized join of graphs

Throughout this subsection we consider a graph H of order p and a family of regular graphs $\mathcal{F} = \{G_1, \ldots, G_p\}$, where each regular graph G_i has degree d_i and order n_i. We consider also $M = A(H)N + D$, where $N = \text{diag}(n_1, \ldots, n_p)$ and $D = \text{diag}(d_1, \ldots, d_p)$, and we define $d_i - s(G_i) = \min\{d_i - s(G_i) : i = 1, \ldots, p\}$ and the matrix

$$P = \begin{pmatrix}
0 & \sqrt{n_1n_2} & \cdots & \sqrt{n_1n_p} \\
\sqrt{n_2n_2} & 0 & \cdots & \sqrt{n_2n_p} \\
\vdots & \vdots & \ddots & \vdots \\
\sqrt{n_1n_p} & \sqrt{n_2n_p} & \cdots & 0
\end{pmatrix}.$$

Using the above notation, with the following theorems, we state upper and lower bounds on the spread of $G = \bigvee_H \mathcal{F}$.

Theorem 7 If $G = \bigvee_H \mathcal{F}$, then

$$s(G) = s(M) + \max_{1 \leq i \leq p} \{\lambda_p(M) + s(G_i) - d_i, 0\}. \quad (12)$$
Furthermore,

\[s(G) \geq n_\downarrow \left(s(H) - (\bar{d}_\uparrow - \bar{d}_\downarrow) \right) - (n_\uparrow - n_\downarrow) \left(\lambda_p(H) + \bar{d}_\uparrow \right) \quad (13) \]

where \(\bar{d}_\uparrow = \max_{1 \leq i \leq p} \frac{d_i}{n_i} \) (\(\bar{d}_\downarrow = \min_{1 \leq i \leq p} \frac{d_i}{n_i} \)) and \(n_\uparrow = \max_{1 \leq i \leq p} n_i \) (\(n_\downarrow = \min_{1 \leq i \leq p} n_i \)).

Proof. According to Theorem 2, \(\sigma(G) = (\bigcup_{i=1}^p \sigma(G_i) \setminus \{d_i\}) \cup \sigma(M) \). Then \(\forall i \in \{1, \ldots, p\} \lambda_{n_i}(G_i) = d_i - s(G_i) \in \sigma(G) \) and hence

\[\lambda_n(G) \in \{d_i - s(G_i), i = 1, \ldots, p\} \cup \{\lambda_n(M)\}. \]

Since \(\lambda_1(G) = \lambda_1(M) \) (notice that \(\lambda_1(G) \geq d_i \forall i \in \{1, \ldots, p\} \)), the equality \((12) \) holds.

Now, we prove the inequality \((13) \). Consider the symmetric matrix \(M' = KA(H)K + D \) in \((4) \), where \(K = \text{diag}(\sqrt{n_1}, \ldots, \sqrt{n_p}) \), which is similar to the matrix \(M \). Let \((\lambda, x) \) be an eigenpair of \(H \), where \(x \) is such that \(\sum_{i=1}^p x_i^2 = 1 \). Setting \(y = K^{-1}x \), then

\[
\begin{align*}
\lambda_n(G) &\leq \min \sigma(M) = \min \sigma(M') \\
&\leq \frac{y^T (KA(H)K + D) y}{y^T y} \\
&= \frac{x^T A(H)x + x^T K^{-1}DK^{-1}x}{x^T K^{-2}x} \\
&= \frac{\lambda x^T x + x^T D\sum_{i=1}^p \frac{d_i}{n_i}x_i^2}{x^T K^{-2}x} \\
&\leq \frac{\lambda + \sum_{i=1}^p \frac{d_i}{n_i}x_i^2}{\sum_{i=1}^p \frac{x_i^2}{n_i}} \leq \lambda_1(M') \leq \lambda_1(G).
\end{align*}
\]

Taking into account that \(\bar{d}_\uparrow = \max_{1 \leq i \leq p} \frac{d_i}{n_i} \) (\(\bar{d}_\downarrow = \min_{1 \leq i \leq p} \frac{d_i}{n_i} \)) and \(n_\uparrow = \max_{1 \leq i \leq p} n_i \) (\(n_\downarrow = \min_{1 \leq i \leq p} n_i \)), we may conclude the following.

- If \(\lambda = \lambda_p(H) \), then \(\lambda_n(G) \leq \frac{\lambda_p(H) + \bar{d}_\downarrow}{\frac{n_\downarrow}{n_\uparrow}} = n_\uparrow \left(\lambda_p(H) + \bar{d}_\downarrow \right) \).
- If \(\lambda = \lambda_1(H) \), then \(\lambda_1(G) \geq \frac{\lambda_1(H) + \bar{d}_\downarrow}{\frac{n_\downarrow}{n_\uparrow}} = n_\uparrow \left(\lambda_1(H) + \bar{d}_\downarrow \right) \).

Therefore, \(s(G) \geq n_\downarrow \left(\lambda_1(H) + \bar{d}_\downarrow \right) - n_\uparrow \left(\lambda_p(H) + \bar{d}_\uparrow \right) = n_\downarrow \left(\lambda_1(H) + \bar{d}_\downarrow \right) - n_\uparrow \left(\lambda_p(H) + \bar{d}_\uparrow \right) - (n_\uparrow - n_\downarrow) \left(\lambda_p(H) + \bar{d}_\uparrow \right) \). \[\Box \]

As an immediate consequence of Theorem 7, we have the following corollary.

Corollary 5 If the graph \(H \) has at least one edge and \(G = \bigvee_H \mathcal{F} \), then

\[s(G) \geq n_\downarrow \left(s(H) - (\bar{d}_\uparrow - \bar{d}_\downarrow) \right). \]

12
Proof. From \([\ref{13}]\), it follows
\[
\begin{align*}
s(G) & \geq n_{1} \left(s(H) - \langle d_{\dagger} - \tilde{d}_{\dagger} \rangle \right) - (n_{\dagger} - n_{1}) \left(\lambda_{p}(H) + \tilde{d}_{\dagger} \right) \\
& \geq n_{1} \left(s(H) - \langle d_{\dagger} - \tilde{d}_{\dagger} \rangle \right)
\end{align*}
\] (14)
The inequality (14) is obtained taking into account that \(\tilde{d}_{\dagger} \leq 1\) and, since \(H\) has at least one edge, \(\lambda_{p}(H) \leq -1\) and therefore, \((n_{\dagger} - n_{1}) \left(\lambda_{p}(H) + \tilde{d}_{\dagger} \right) \leq 0\).

Using this corollary, and taking into account that \(\tilde{d}_{\dagger} \) and \(\tilde{d}_{\dagger} \) are both in the interval \((0, 1)\), it follows that \(s(G) \geq n_{1}(s(H) - 1)\).

Theorem 8 If \(G = \bigvee_{H} F\), then
\[s(G) \leq \max_{1 \leq i \leq p} d_{i} + \lambda_{1}(H)\lambda_{1}(P) - \min\{d_{i}, -s(G_{i}), \lambda_{p}(M)\}.\]

Proof. By Theorem\([\ref{2}]\) \(\sigma(G) = (\bigcup_{i=1}^{p} \sigma(G_{i}) \setminus \{d_{i}\}) \cup \sigma(M)\), where \(M = D + A(H) \circ P\), with \(D = \text{diag}(d_{1}, \ldots, d_{p})\), and \(\circ\) denotes the Hadamard product (see, for instance, \([\ref{3}]\)). Since when we have two symmetric nonnegative matrices of order \(p\), \(A\) and \(B\), \(\lambda_{1}(A + B) \leq \lambda_{1}(A) + \lambda_{1}(B)\) and \(\lambda_{1}(A \circ B) \leq \lambda_{1}(A \otimes B) = \lambda_{1}(A)\lambda_{1}(B)\), where \(\otimes\) is the Kronecker product, we may conclude that \(\lambda_{1}(M) \leq \lambda_{1}(D) + \lambda_{1}(A)\lambda_{1}(P) \leq \lambda_{1}(D) + \lambda_{1}(H)\lambda_{1}(P) = \max_{1 \leq i \leq p} d_{i} + \lambda_{1}(H)\lambda_{1}(P)\).

Since \(\lambda_{n}(G) = \min\{d_{i}, -s(G_{i}), \lambda_{p}(M)\}\), it follows that,
\[s(G) \leq \max_{1 \leq i \leq p} d_{i} + \lambda_{1}(H)\lambda_{1}(P) - \min\{d_{i}, -s(G_{i}), \lambda_{p}(M)\}.
\]

Theorem 9 If the graph \(H\) has at least one edge and \(G = \bigvee_{H} F\), then
\[s(M) \leq s(G) < s(M) + \max_{1 \leq i \leq p} \{d_{i}\}.
\]

Proof. By Theorem\([\ref{2}]\) \(s(G) = s(M) + \max_{1 \leq i \leq p} \{\lambda_{p}(M) - \lambda_{n_{i}}(G_{i}), 0\}\).

1. If \(\max_{1 \leq i \leq p} \{\lambda_{p}(M) - \lambda_{n_{i}}(G_{i}), 0\} = 0\), then the left inequality holds as equality and the right inequality is strict.

2. Otherwise, assume that \(\exists i^{*} \in \{1, \ldots, p\}\) such that \(\max_{1 \leq i \leq p} \{\lambda_{p}(M) - \lambda_{n_{i}}(G_{i}), 0\} = \lambda_{p}(M) - \lambda_{n_{i^{*}}}(G_{i^{*}})\). Since,
\[\lambda_{p}(M) - \lambda_{n_{i^{*}}}(G_{i^{*}}) < -\lambda_{n_{i^{*}}}(G_{i^{*}}) \leq d_{i^{*}} \leq \max_{1 \leq i \leq p} \{d_{i}\},\]
then the right inequality holds. Notice that, when \(H\) has at least one edge, \(\lambda_{p}(M) < 0\). In fact, if \(ij \in E(H)\), the matrix \(B_{ij} = \begin{pmatrix} d_{i} & \sqrt{\lambda_{n_{i}}(M)} \sqrt{n_{i}n_{j}} \\ \sqrt{n_{i}n_{j}} & d_{j} \end{pmatrix}^{T}\)

is a principal submatrix of \(P_{ij}M^{T}_{ij}\), where \(P_{ij}\) is permutation matrix. Therefore, \(\lambda_{p}(M) = \lambda_{p}(P_{ij}M^{T}_{ij}) \leq \lambda_{2}(B_{ij}) < 0\). The left inequality follows from the fact that the eigenvalues of \(M\) are also eigenvalues of \(G\).
3.4 An infinite family of non regular graphs of order \(n \) with spread equal to \(n \).

Theorem 10 Consider the positive integers \(p, q \geq 3 \) and \(n \in \mathbb{N} \) such that \(n \geq p + q + 3 \). Let \(H = P_3 \) and let \(F = \{G_1, G_2, G_3\} \) be a family of graphs, where \(G_1 = C_p, \ G_2 = C_q \) and \(G_3 = C_{n-p-q} \). If \(S = \{S_1, S_2, S_3\} \) is such that \(S_i = V(G_i) \) for \(i = 1, 2, 3 \), then the graph

\[
G = \bigvee_{(H,S)} F.
\]

is non regular and is such that \(s(G) \leq n \). Furthermore, \(s(G) = n \) if and only if \(q = \frac{n}{2} \).

Proof. By definition of generalized join, it is immediate that \(G \) is non regular. By Theorem 2

\[
\sigma(G) = \bigcup_{i=1}^{3} (\sigma(G_i) \setminus \{2\}) \cup \{\beta_1, \beta_2, \beta_3\},
\]

where \(\beta_i, \) with \(i \in \{1, 2, 3\} \), are the roots of the characteristic polynomial of the matrix

\[
M = \begin{pmatrix}
2 & q & 0 \\
p & 2 & n-p-q \\
0 & q & 2
\end{pmatrix}.
\]

Then \(\beta_1 = 2, \beta_2 = 2 + \sqrt{q(n-q)} \), and \(\beta_3 = 2 - \sqrt{q(n-q)} \). Notice that the largest eigenvalue of \(M \) is \(\beta_2 \) and \(\lambda_{\min}(G) = \beta_3 = 2 - \sqrt{q(n-q)} < -2 \) (taking into account the values of \(p, q \) and \(n \) and since \(\lambda_{\min}(G_i) \geq -2 \), for \(i = 1, 2, 3 \)). Therefore,

\[
s(G) = 2\sqrt{q(n-q)}.
\]

Since \(q(n-q) \leq \frac{n^2}{4} \) and \(q(n-q) = \frac{n^2}{4} \) if and only if \(q = \frac{n}{2} \), the result follows.

As immediate consequence of Theorem 10 if \(n \) is an even positive number not less than 12, \(q = \frac{n}{2} \) and \(3 \leq p \leq \frac{n-p}{2} \) then the graph \(G \) defined in (15) is such that \(s(G) = n \).

References

[1] D. M. Cardoso, M. A. de Freitas, E. A. Martins, M. Robbiano, Spectra of graphs obtained by a generalization of the join graph operation, manuscript submitted for publication.

[2] D. M. Cardoso, I. Sciriha, C. Zerafa, Main eigenvalues and \((k, \tau)\)-regular sets. Linear Algebra Appl. 423 (2010): 2399-2408.

[3] D. M. Cardoso, P. Rama, Spectral results on regular graphs with \((k, \tau)\)-regular sets. Discrete Math. 307 (2007): 1306-1316.
[4] D. A. Gregory, D. Hershkowitz, S. J. Kirkland, The spread of the spectrum of a graph, Linear Algebra Appl. 332-334 (2001): 23-35.

[5] R. A. Horn, C.R. Johnson, Topics in matrix analysis, Cambridge University Press, New York, 1991.

[6] C.R. Johnson, R. Kumar, H. Wolkowicz, Lower bounds for the spread of a matrix, Linear Algebra Appl. 71 (1985): 161-173.

[7] B. Liu, Liu Mu-huo, On the spread of the spectrum of a graph, Linear Algebra Appl. 309 (2009): 2727-2732.

[8] L. Mirsky, The spread of a matrix, Mathematika 3 (1956): 127-130.

[9] P. Nylen, T.-Y. Tam, On the spread of a Hermitian matrix and a conjecture of Thompson, Linear and Multilinear Algebra 37 (1994) 311.

[10] A. J. Schwenk, Computing the characteristic polynomial of a graph, Graphs and Combinatorics (Lecture notes in Mathematics 406, eds. R. Bary and F. Harary), Springer-Verlag, Berlin-Heidelberg-New York, 1974, pp. 153-172.