Sanjid, A., Masjuki, H.H., Kalam, M.A., Rahman, S M Ashrafur, Abedin, M., Reza, M., & Sajjad, H. (2014)
Experimental investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine. *Procedia Engineering, 90*, pp. 397-402.

This file was downloaded from: https://eprints.qut.edu.au/112451/

© Copyright 2014 The Authors

Licensed under the Creative Commons Attribution; Non-Commercial; No-Derivatives 4.0 International. DOI:10.1016/j.proeng.2014.11.868

License: Creative Commons: Attribution-No Derivative Works 4.0

Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Submitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appearance. If there is any doubt, please refer to the published source.

https://doi.org/10.1016/j.proeng.2014.11.868
Experimental investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine

A. Sanjida,*, H.H. Masjukia, M.A. Kalama, S M Ashrafur Rahmana, M.J. Abedina, M.I. Rezab, H.Sajjada

aCentre for Energy Sciences, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
bZicom Equipment PVT. LTD., Uttara Model Town, Dhaka-1230, Bangladesh

Abstract

Ever increasing drift of energy consumption, unequal geographical distribution of natural wealth and the quest of low carbon fuel for cleaner environment are sparking off the production and use of biodiesels in many countries around the globe. In this work, different physicochemical property of palm and jatropha combined biodiesels have been presented which is acceptable according to ASTM standard of biodiesel specification. This paper presents experimental results of the research carried out to evaluate brake specific fuel consumption (BSFC), engine power, exhaust and noise emission characteristics of palm and jatropha combined blends in a single cylinder diesel engine at different engine speed ranged from 1400 to 2200 rpm. Though PBJB5 and PBJB10 biodiesels showed slightly higher BSFC compared to diesel fuel but all measured emission parameters and noise emission were significantly reduced, except for nitrogen oxides (NOx) emission. Carbon-monoxide (CO) emission for PBJB5 and PBJB10 were reduced 9.53% and 20.49% compared to diesel fuel. On the contrary, hydrocarbon (HC) emission for PBJB5 and PBJB10 were reduced 3.69% and 7.81% compared to diesel fuel. Produced sound levels of PBJB5 and PBJB10 were also reduced 2.5% and 5% compared to diesel fuel.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET)

Keywords: Biodiesel; Palm-jatropha combined blend; characterization; Engine performance; Emission analysis; Noise

* Corresponding author: Tel.: +60379674448; fax: +603 79675317.
E-mail: sanjidum@gmail.com
1. Introduction

Modern civilization and transport system are very much dependent on fossil fuels which are non-renewable in nature. Rapidly growing demand of transport fuel and industrialization has caused serious threat to the environment and energy security of the world [1]. Global fossil fuel consumption was increased around 40% in the year of 2011 than that of 2010 [2]. Moreover, only half of the usual energy demand can be supplied until 2023 with the current liquid fuel reserve [3]. This enormous drift of fossil fuel consumption is affecting our environment hazardously. These environmental degradation effects include global warming, air quality deterioration, ozone depletion, eutrophication, photochemical smog, oil spills, and acid rain [4]. Moreover, noise produced from road and rail traffic adversely affects human health. Lately, around 20% populations in the European Union suffer from unacceptable noise level [5].

Biofuel has so far been backed by the government policies of many countries due to greater energy security, reducing environment pollution, sustainability and other socio-economic issues [6]. The projection of Stuart Staniford back in 2008 on primary energy production from 1970 to 2050 strongly supports the increasing trend of renewable energy consumption profoundly [7]. The sustainability of biofuels progressively promoting its acceptance and market demand will rise in near future. Around 27% transport fuel will be completely replaced by biofuels within 2050 according to International Energy Agency [8]. Among all edible biodiesel feedstock, palm is one of the most productive and economically suitable as alternative biodiesel source. In recent years, researches have been carried out on performance and emission of palm biodiesel by several researchers. Investigations showed slightly higher BSFC but hydrocarbon (HC) and carbon monoxide (CO) emission were reduced significantly (30-65%) for palm biodiesel compared to diesel fuel though NOx emission increased [9]. On the contrary, jatropha is a potential non-edible feedstock and jatropha plant can be grown almost anywhere, even on gravely, sandy and saline soils. Recent experiments showed slight reduction in power and increase in BSFC for all tested jatropha biodiesels compared to diesel fuel. Significant reduction of HC, Smoke and particulate matter emission were observed for all tested biodiesels compared to diesel fuel. CO and NOx emission increased slightly. However, experimental investigation on palm and jatropha combined blends was not found [10].

This experimental endeavor deals with the possibility of using palm and jatropha combined biodiesel blends in energy generation in order to reduce air and noise pollution. Results of performance and emissions of palm and jatropha combined biodiesel blends in a single cylinder diesel engine are also represented graphically and compared with diesel fuel, palm biodiesel blends and jatropha biodiesel blends.

2. Property test

A total of seven test fuels were prepared for conducting research. The test fuels chosen were (a) 100% neat diesel fuel (D100), (b) 10% palm biodiesel with 90% diesel fuel (PB10), (c) 10% jatropha biodiesel with 90% diesel fuel (JB10), (d) 20% palm biodiesel with 80% diesel fuel (PB20), (e) 20% jatropha biodiesel with 80% diesel fuel (JB20), (f) 5% palm and 5% jatropha biodiesel with 90% diesel fuel (PBJB5), (g) 10% palm and 10% jatropha biodiesel with 80% diesel fuel (PBJB10). These blended percentages are volume based proportions. Blending was performed by a blending machine at 4000 rpm for 10-15 min.

Table 1 shows the summary of the equipment and methods used to determine fuel properties and Table 2 shows measured fuel properties of all tested fuels.
Table 1 List of equipment used for testing fuel properties

Property	Equipment	Model	Manufacturer	Standard method	Accuracy
Kinematic viscosity and density	Stabinger Viscometer SVM 3000	Anton Paar		ASTM D7042	± 0.1 mm²/s
Flash point	Pensky–martens flash point tester	NPM 440	Normalab, France	ASTM D93	± 0.1°C
Cloud and pour point	Cloud and pour point tester NTE 450	Normalab, France	ASTM D2500	± 0.1°C	
Calorific value	Semi auto bomb calorimeter 6100EF	Perr, USA	ASTM D240	± 0.001 MJ/kg	

Table 2 Measured fuel properties of all tested fuels

Properties	D100	PB100	JB100	PB20	JB20	PB10	JB10	PBJB5	PBJB10	ASTM D 6575-02
Density (kg/m³)	830.5	859.2	862.2	836.5	840.2	833.5	835.6	834.6	837.5	-
Viscosity at 40°C (mm²/s)	3.602	4.617	4.723	3.983	3.992	3.704	3.752	3.728	3.985	1.9-6.0
Flash point (°C)	71	172.5	182.5	90.5	93.5	82.5	73.5	90.5	>130	
Cloud point (°C)	4	16	3	7	4	5	3	6	5	-3~12
Pour point (°C)	-8	15	3	-1	-3	-3	-5	-3	-5	-15~10
Calorific value (MJ/kg)	46.40	39.907	39.794	44.1	43.3	45.5	44.7	45.8	45.1	

3. Experimental Set up

Fig. 1 shows the test rig set up for the experimental study. The major specifications of the engine are shown in Table 3. Schematic diagram of the engine test rig is shown in Fig. 1. Data were collected through DYNAMAX 2000 data control system. To determine the exhaust emission BOSCH exhaust gas analyser was used. NI sound level measurement system was adopted to measure the sound level. A series of PCB 130 array microphones (model 130D20) were used in this regard. Microphones were positioned 1m away from the engine faces according to SAE recommendations for microphone position. Similar experiments were also performed by Zhang and Bing [11] by following similar standard.

Fig.1. Schematic diagram of the engine test rig
Table 3 Test engine specification

Manufacturer	Yanmar Co. Ltd
Model No	YANMAR TF 120-M
Engine type	4 – stroke DI diesel engine
Number of cylinders	One
Aspiration	Natural aspiration
Cylinder bore	92 mm
Stroke	96 mm
Displacement	0.638 L
Continuous rated output	2400 rpm
Rated power	7.7 kW
Cooling system	Radiator cooling
Compression ratio	17.7
Injection pressure	200 kg/cm²

4. Results and Discussion

In Fig. 2 average BSFC for PBJB5 and PBJB10 were found 7.55% and 19.82% higher than diesel fuel respectively. As fuel is fed into the engine on a volumetric basis, to produce same amount of power, more biodiesel is needed than diesel fuel due to its higher density and lower calorific value. On average, the BSFC of PBJB5 and PBJB10 were found 2.44% and 6.54% higher than PB10 and PB20 respectively. On the contrary, average BSFC for PBJB5 and PBJB10 were found 4.29% and 4.24% lower than JB10 and JB20 respectively due to their lower density and viscosity than jatropha biodiesel blends.

![Fig.2. Variation of BSFC with engine speed](image1)

![Fig.3. Variation of engine power with engine speed](image2)

The variation of power output with engine speed for all tested biodiesels and diesel fuel is presented in Fig.3. Maximum power output of PBJB5 and PBJB10 were 5.1 kW and 4.9 kW at 2200 rpm engine speed, whereas maximum power output for D100 was 5.5 kW. Reduction of power for PBJB5 and PBJB10 may be explained due to higher density and viscosity value which resulted poor atomization and lower combustion efficiency [12]. However, maximum power output of PBJB5 was found slightly lower than PB10 and slightly higher than JB10. On the contrary, maximum power output of PBJB10 was found slightly lower than PB20 and slightly higher than JB20. This trend can also be described similarly by the viscosity and density variation among biodiesel blends.

Comparison of the CO emissions of PBJB5 and PBJB10 with other fuel samples at different engine speed is shown in Fig.4. Average CO emission of PBJB5 and PBJB10 were found 9.53% and 20.49% lower than D100. All tested biodiesels showed less CO emission than D100 due to the additional oxygen content of biodiesels than diesel
fuel which ensures complete combustion. On average, the CO emission of PBJB5 and PBJB10 were found 2.66% and 3.84% lower than JB10 and JB20 respectively. These lower CO values of PBJB5 and PBJB10 were due to their lower density and viscosity than JB10 and JB20. Higher density and viscosity result in poor fuel atomization and spray formation which leads to incomplete combustion, hence increases CO emission. On the contrary, average CO emissions for PBJB5 and PBJB10 were found 1.18% and 3.21% higher than PB10 and PB20 respectively.

Variation of HC emission in parts per million (ppm) for all tested fuels against load is presented in Fig.5. Average HC reduction amount for PBJB5 and PBJB10 were 3.69% and 7.81% lower than D100. High oxygen content of biodiesel also aids to complete combustion, hence reduce HC emission. Average HC emission of PBJB5 and PBJB10 were found 1.53% and 1.72% lower than JB10 and JB20 respectively. However, HC emission for PBJB5 and PBJB10 were found slightly higher than PB10 and PB20.

The NOx values in ppm for all tested fuels in the exhaust emissions are plotted as a function of engine speed in Fig.6. NOx emission of D100 was found 2.81% and 6.84% lower than PBJB5 and PBJB10 respectively. In addition to inducted air inside the engine cylinder, oxygenated biofuels add some more oxygen which influences the formation of NOx. However, NOx emission of PBJB5 and PBJB10 were slightly lower (1-1.8%) than PB10 and PB20. On the contrary, average NOx formation of PBJB5 and PBJB10 were found almost same as JB10 and JB20 respectively.

Though, sound level can be measured from all directions from the engine, highest level of sound were produced from the engine front side [11]. Therefore, only front side sound level was considered in Fig.7 and sound levels were increased with the speed for all tested fuels. Sound level of all biodiesels were found lower than that of diesel fuel. Higher viscosity of biodiesel provides lubricity and damping which result in the decrease of sound level. In percentage, average sound level of PBJB5 and PBJB10 were reduced by 2.5% and 5% compared to D100. However, average sound level of PBJB5 and PBJB10 were slightly varied with same percentage blends of palm and jatropha biodiesels.
3. Conclusion

Important findings of this experimental endeavour are summarised as follows:

- A considerable amount of CO reduction were found for PBJB5 (9.53%) and PBJB10 (20.49%) than that of D100.
- Average HC reduction amount for PBJB5 and PBJB10 were 3.69% and 7.81% lower than D100.
- NO\textsubscript{x} emission was increased in case of all tested biodiesels compared to D100. However, NO\textsubscript{x} emission of PBJB5 and PBJB10 were found slightly lower than PB10 and PB20 blends respectively and almost same for JB10 and JB20 blends.
- In percentage, average sound level of PBJB5 and PBJB10 were reduced by 2.5% and 5% compared to D100.

This experimental study supports the use of palm and jatropha combined biodiesel-diesel blends in diesel engine without any substantial engine modification.

Acknowledgement

The authors would like to acknowledge University of Malaya for financial support through High Impact Research Grant entitles: Clean Diesel Technology for Military and Civilian Transport Vehicles which Grant number is UM.C/HIR/MOHE/ENG/07.

References

[1] Sanjid A, Masjuki HH, Kalam MA, Rahman SMA, Abedin MJ, Palash SM. Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine. Renew Sust Energ Rev. 2013;27:664-82.
[2] British Petroleum. Statistical Review of World Energy 2011. 2011. http://www.bp.com/en/global/corporate/about-bp/statistical-review-of-world-energy-2013.html. Date accessed: August 15, 2013.
[3] Owen NA, Inderwildi OR, King DA. The status of conventional world oil reserves—Hype or cause for concern? Energy Policy. 2010;38:4743-9.
[4] Abedin MJ, Masjuki HH, Kalam MA, Sanjid A, Rahman SMA, Masum BM. Energy balance of internal combustion engines using alternative fuels. Renew Sust Energ Rev. 2013;26:20-33.
[5] Nijland H, van Wee B. Noise valuation in ex-ante evaluations of major road and railroad projects. European Journal of Transport and Infrastructure Research 2008;3:216-26.
[6] Sanjid A, Masjuki HH, Kalam MA, Rahman SMA, Abedin MJ, Palash SM. Production of palm and jatropha based biodiesel and investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine. J Clean Prod. 2014;65:295-303.
[7] Staniford S. Powering Civilization to 2050. http://www.theoildrum.com; 2008. Date accessed: August 13, 2013.
[8] International Energy Agency (IEA). Technology Roadmaps- Biofuels for Transport, 2011. Date accessed: August 13, 2013.
[9] Ndayishimiye P, Tazerout M. Use of palm oil-based biofuel in the internal combustion engines: Performance and emissions characteristics. Energy. 2011;36:1790-6.
[10] Chauhan, B.S., Kumar, N., Cho, H.M., 2012. A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy 37, 616-622.
[11] JunHong Z, Bing H. Analysis of engine front noise using sound intensity techniques. MSSP. 2005;19:213-21.
[12] Kalam MA, Masjuki HH, Jayed MH, Liaquat AM. Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil. Energy. 2011;36:397-402.