Catalytic Hydrogenation of Sorbic Acid using Pyrazolyl Palladium(II) and Nickel(II) Complexes as Precatalysts

Oluwasegun E. Olaoye*, Olayinka Oyetunji, Banothile C.E. Makhubela, Apollinaire Muyaneza, Gopendra Kumar and James Darkwa

1. Introduction
Hydrogenation of αβ-unsaturated compounds has been widely employed in the vitamins, fragrances, pharmaceuticals, petrochemicals, agrochemicals, and cosmetics industries. One of the extensively used transition metal catalysts in these hydrogenation reactions is chlorotris(triphenylphosphine)rhodium(I), [RhCl(PPh3)3]. The catalyst, RhCl(PPh3)3, catalyzes the chemo-specific hydrogenation of C=C bonds in the presence of other easily reduced groups, like nitro (NO2) or carbonyl (CHO), as well as terminal alkenes even when the substrate has internal alkenes. Other transition metals complexes have been extensively studied as heterogeneous and homogeneous catalysts in the catalytic hydrogenation of olefins and αβ-unsaturated compounds. Among these metal complexes are ruthenium, iridium, and platinum. However, nickel and palladium complexes with nitrogen-donor ligands are known to be efficient and highly chemo-selective in the hydrogenation of C=C bonds of αβ-unsaturated aldehydes. But despite numerous nitrogen-donor nickel(II) and palladium(II) applications in catalysis, little work has been reported on their catalytic properties in the hydrogenation of αβ-unsaturated compounds. In this study, we report on pyrazolyl nickel(II) and palladium(II) complexes as catalysts for the hydrogenation of 2,4-hexaenoic acid (sorbic acid), which is an αβ-unsaturated acid. This study forms part of a bigger project on partial hydrogenation of biofuels from triglycerides.

2. Experimental
2.1. General Information
Standard Schlenk and vacuum line techniques were used to handle all air and moisture sensitive compounds. All chemicals and gases were procured from the sources indicated for each one of them and include their purity: Gases – argon and hydrogen (>99% purity) from Afrox (South Africa); solvents and reagents from Sigma Aldrich – Ethylformate (97%), acetic anhydride (99%), ferrocene (98% hydrazine monohydrate (98%), hydrazine dihydrochloride (98%), ethyleneglycoldimethylether nickel(II) bromide (98%), formic acid (95%) and 2,4-di-tert-butyl-1H-pyrazole (L1) (99%).

Literature procedures were used to prepare the following starting materials: 3,5-di-tert-butyl-1H-pyrazole (L2), 3-ferrocenyl-1H-pyrazole (L3) and [PdCl2(NCMe)2] as well as palladium(II) complexes as efficient catalysts for C=C bonds hydrogenation under mild experimental condition. However, because phosphines are sensitive to air and moisture, palladium complexes with nitrogen-donor ligands are emerging as an alternative to phosphorus-donor palladium complexes as hydrogenation catalysts. For example, (bis(aryl-imino)acenaphthene–palladium(II) complexes are known to be efficient and highly chemo-selective in the hydrogenation of C=C bonds of αβ-unsaturated aldehydes. But despite numerous nitrogen-donor nickel(II) and palladium(II) applications in catalysis, little work has been reported on their catalytic properties in the hydrogenation of αβ-unsaturated compounds.

ABSTRACT
We have prepared several pyrazolyl palladium and nickel complexes ([L1]PdCl2 (1), [L2] PdCl2 (2), [L3] PdCl2 (3), [L1] NiBr2 (4), [L2] NiBr2 (5) and [L3] NiBr2 (6)) by reacting 3,5-di-ethyl-1H-pyrazole (L1), 3,5-di-tert-butyl-1H-pyrazole (L2) and 5-ferrocenyl-1H-pyrazole (L3) with [PdCl2(NCMe)2] or [NiBr2(DME)] to afford mononuclear palladium and nickel complexes, respectively. These complexes were then investigated as pre-catalysts in the hydrogenation of 2,4-hexadienoic acid (sorbic acid). The active catalysts from these complexes demonstrate significant activities under mild experimental conditions. Additionally, the active catalysts show that the hydrogenation of sorbic acid proceeds in a sequential manner, where the less hindered C=C bond (4-hexenoic acid) is preferentially reduced over the more hindered C=C bond (2-hexenoic acid).

KEYWORDS
Pyrazolyl catalysts, sorbic acid, hydrogenation, selectivity.
2.2.3. Synthesis of Dichloro{bis-5-ferrocenyl-1H-pyrazole} nickel(II) (5)\(^{20}\) with \textbf{L1} and \textbf{L2}, respectively.

NMR spectra were recorded in CDCl\(_3\) as solvent using Bruker 400 Ultra-shield MHz NMR spectrometer at 400 MHz for the \(^1\)H spectra and 100 MHz for the \(^{13}\)C\{\(^1\)H\} spectra. Infrared spectra were recorded on a Perkin Elmer FT-IR Spectrum BX II fitted with an ATR probe. Melting points were determined using Gallenkamp Digital Melting-point Apparatus 5A 6797, while elemental analysis data were collected on a Thermos Scientific Flash 2000 CHNS-O Analyser. Mass spectra were similarly collected on a Waters API Quattro Micro Triple Quadrupole electrospray ionization mass spectrometer.

All hydrogenation reactions were carried out in PPV-CTR01-CE (Eyela, Japan) high-pressure autoclave reactor with a stirring pac, heating and cooling systems\(^{20}\). The course of hydrogenation reactions involving palladium catalysts were followed by \(^1\)H NMR spectroscopy, using dioxane as an internal standard, which was used to determine percentage conversions. The conversions were determined using the diagnostic peaks, following the integrations of the products from the hydrogenation reaction compared to the integration of dioxane.

2.2. Syntheses of bis(Pyrrole)palladium(II) and Nickel(II) Complexes

2.2.1. Synthesis of Dichloro{bis-3,5-dimethyl-1H-pyrazole} palladium(II) (1)

\textbf{L1} (74 mg, 0.771 mmol) and [PdCl\(_2\)(NCMe)\(_2\)] (100 mg, 0.386 mmol) were dissolved in CH\(_2\)Cl\(_2\) (20 mL), and then stirred continuously at room temperature for 24 h to produce an orange solution. This was followed by in vacuo removal of the solvent to produce compound 1 as an orange solid. Yield: 150 mg (84 %); melting point: 250–252 °C (decomposes without melting). Infrared spectra were recorded on a Perkin Elmer FT-IR Spectrum BX II fitted with an ATR probe. Melting points were determined using Gallenkamp Digital Melting-point Apparatus 5A 6797, while elemental analysis data were collected on a Thermos Scientific Flash 2000 CHNS-O Analyser. Mass spectra were similarly collected on a Waters API Quattro Micro Triple Quadrupole electrospray ionization mass spectrometer.

2.2.2. Synthesis of Dichloro{bis-3,5-dimethyl-1H-pyrazole} nickel(II) (2)

\textbf{L2} (139 mg, 0.771 mmol) and [PdCl\(_2\)(NCMe)\(_2\)] (100 mg, 0.386 mmol) were dissolved in CH\(_2\)Cl\(_2\) (20 mL), and then stirred continuously at room temperature for 24 h, affording an orange solution. This was followed by in vacuo removal of the solvent to produce compound 2 as a yellowish-orange solid. Yield: 150 mg (72 %); melting point: 220–224 °C (decompose without melting). Infrared spectra were recorded on a Perkin Elmer FT-IR Spectrum BX II fitted with an ATR probe. Melting points were determined using Gallenkamp Digital Melting-point Apparatus 5A 6797, while elemental analysis data were collected on a Thermos Scientific Flash 2000 CHNS-O Analyser. Mass spectra were similarly collected on a Waters API Quattro Micro Triple Quadrupole electrospray ionization mass spectrometer.

2.2.3. Synthesis of Dichloro{bis-5-ferrocenyl-1H-pyrazole} nickel(II) (3)

\textbf{L3} (90 mg, 0.3571 mmol) and [PdCl\(_2\)(NCMe)\(_2\)] (46 mg, 0.1785 mmol) were dissolved in CH\(_2\)Cl\(_2\) (20 mL), followed by continuous stirring at room temperature for 24 h to produce an orange solution. Upon removal of the solvent in vacuo, compound 3 was obtained as a yellow-orange solid. Yield: 120 mg (49 %); melting point: 230–232 °C (decompose without melting). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) ppm: 7.89 (s, 1H, pr); 6.15 (s, 1H, pr); 4.57 (s, 2H, \(\eta^2\)-C\(_5\)H\(_5\)); 4.34 (s, 2H, \(\eta^2\)-C\(_5\)H\(_5\)); 4.14 (s, 5H, \(\eta^2\)-C\(_5\)H\(_5\)); 11.53 (s, 1H, N-H) \((\text{Fig. SI-12})\). \(^{13}\)C\{\(^1\)H\} NMR (100 MHz, CDCl\(_3\)) (ppm): 144.8 (C\(_e\)-CH); 142.7 (C\(_d\)-CH); 103.7 (C\(_b\)-CH); 71.6, 70.3, 67.0 (\(\eta^2\)-C\(_5\)H\(_5\)); (Fig. SI-13). Elemental analysis; Anal. calcd. for C\(_{26}\)H\(_{24}\)Br\(_2\)Fe\(_2\)N\(_4\)Ni: C, 43.21 %; H, 3.35 %; N, 7.75 %. Found: C, 42.95 %; H, 3.27 %; N, 7.63 %.

2.2.4. Synthesis of Dibromo{bis-5-ferrocenyl-1H-pyrazole} nickel(II) (6)

\textbf{L3} (70 mg, 0.2778 mmol) and [NiBr\(_2\)(DME)] (45 mg, 0.1388 mmol) were dissolved in 20 mL CH\(_2\)Cl\(_2\), and then stirred continuously at room temperature for 24 h producing an orange-brown solution. The solution was then concentrated and dried under vacuum for 6 h to yield compound 6. Yield: 70 mg (70 %); melting point: 210–212 °C; IR \(\nu_{\text{max}}\text{cm}^{-1}\): 3218 (N-H); 1623 (C=C); 1589 (C=N). Elemental analysis; Anal. calcd. for C\(_{26}\)H\(_{24}\)Br\(_2\)Fe\(_2\)N\(_2\)Ni: C, 43.21 %; H, 3.35 %; N, 7.75 %. Found: C, 42.95 %; H, 3.27 %; N, 7.63 %.

2.3. Molecular Structure Determination

A mixture of CH\(_2\)Cl\(_2\) (0.5 mL) and n-hexane (0.1 mL) for 2 or CH\(_3\)Cl (0.5 mL) and n-hexane (0.1 mL) for 3 was used to obtain single crystals that were subsequently used for X-ray diffraction data collection for molecular structure determination. Crystal data were collected using Bruker APEX-II CCD diffractometer with Mo K\(_{\alpha}\) (\(\lambda = 0.71073\) Å). The diffractometer to crystal distance was 4.00 cm, and all crystal data collected at 100 K. Data reduction measurement was performed using SADABS\(^{21}\) and the intensity correction for absorption using SADABS\(^{21}\). Refinement of structures, with least square minimization, was performed using the SHELEX\(^{22}\) and SHEXL\(^{23}\) software packages. All non-hydrogen atoms were refined with anisotropic displacement coefficients and placed in geometrically idealized positions, and constrained to ride on their parent atoms with relative isotropic coefficients\(^{22,23}\).

2.4. General Procedure for Hydrogenation Reactions

2.4.1. Hydrogenation with Molecular Hydrogen

Hydrogenation reactions using molecular hydrogen were studied in reactors with stainless steel vessels coupled with magnetic stirrers. In a typical experiment, the contents of the vessel consist of sorbic acid (0.5 mmol), catalyst (2.5 µmol, 0.5 mol%), hydrogen gas (5 bar) and methanol (5 mL). The solution mixture was purged twice with nitrogen gas, followed by the introduction of hydrogen gas (5 bar) and constant stirring of the mixture at 40 °C for 2 h. At the end of the reaction period, the reaction vessel was cooled, and the excess pressure generated was vented off slowly. The resulting hydrogenation products were withdrawn and filtered with MS nylon syringe filter (0.22 µm, 13 mm). Their \% conversions were then determined by \(^1\)H NMR spectroscopy, using dioxane as an internal standard.

2.4.2. Hydrogenation with Formic Acid

In a typical experiment, sorbic acid (0.5 mmol), catalyst (2.5 µmol, 0.5 mol%) formic acid (20 mmol), KOH (4 mmol) and methanol (5 mL) were introduced into the reactor vessel. The solution mixture was purged twice with nitrogen gas, followed by stirring at 90 °C for 12 h. At the end of the reaction period, the reaction vessel was cooled, and the excess pressure generated...
was vented off slowly. The hydrogenation products were drawn out of the reactor vessel, filtered using MS® nylon syringe filter (0.22 µm, 13 mm) and their % conversions determined by 1H NMR spectroscopy, using dioxane as an internal standard.

3. Result and Discussion

3.1. Synthesis of Palladium and Nickel Complexes.

The pre-catalysts 1–6 were synthesized with compounds L1–L3 and the corresponding metal precursors, as shown in Scheme 1. Characterization of the palladium complexes was achieved using a combination of 1H NMR, IR, mass spectrometry and elemental analysis. The structures of the two new complexes, 2 and 3, were confirmed by single-crystal X-ray crystallography. Characterization of the nickel complexes, on the other hand, was carried out using mainly IR spectroscopy and elemental analysis. The structure of one of them, 4, was confirmed by single-crystal X-ray crystallography showing a structure result similar to that reported earlier.20

Characteristic chemical shifts of the pyrazolyl nitrogen protons (N-H) confirmed the successful ligand complexations. For instance, there was a downfield shift in the position of N-H proton from 11.20 ppm to 11.82 ppm in 1; from 10.19 ppm to 11.65 in 2; and from 10.62 ppm to 11.53 in 3. All other spectroscopic data were as expected and similar to those previously reported for 124, 224, and 325.

3.2. Molecular Structures of 2 and 3

Slow evaporation of solutions of 2 in CHCl3 and 3 in CH2Cl2 at room temperature produced orange crystals good enough for single-crystal X-ray crystallographic analysis. The crystals and structure refinement information are shown in Table 1, and the molecular structures in Figs. 1 and 2. Complexes 2 and 3 crystallized in C2/c and P-1 space groups, respectively. Figures 1 and 2 show that the pyrazole nitrogen atom is coordinated to the palladium in square planar geometries. However, the tert-butyl groups in 2 are disordered. This disorder was handled during the refinement process by rotating the H atoms around the tert-butyl axis to minimize the restraint caused by the tert-butyl groups. Selected bond distances and angles for the two palladium complexes are shown in the captions of Figs. 1 and 2. In 2.CHCl3 the square planar geometry is distorted from 90° to the following bond angles: N(1)–Pd(1)–Cl(1), 86.70(7); N(1)–Pd(1)–Cl(2), 92.14(7); α=90° 107.316(2); β=90° 106.859(4); γ=90° 90.970(3); ρ calc/g cm⁻³ 1.416 1.808; μ/mM⁻¹ 1.054 2.055; F(000) 2704.0 3654.0; R indexes R 1 = 0.0409, R 1 = 0.0574, [I ≥ 2σ(I)] wR 2 = 0.1011 wR 2 = 0.1477; [all data] R indexes R 1 = 0.0474, R 1 = 0.0713, wR 2 = 0.1053 wR 2 = 0.1601.

Table 1 Crystallographic data for complexes 2 and 3.

	2.CHCl3	3.CH2Cl2
Empirical formula	C18H36Cl5N4Pd	C23H33ClFe2N4Pd
Formula weight	657.25	766.16
Temperature/K	99.96	100.02
Crystal system	Monoclinic	Triclinic
Space group	C2/c	P-1
a/Å	25.066(3)	13.508(16)
b/Å	12.2089(11)	18.204(2)
c/Å	21.0499(16)	24.120(3)
α/°	90	107.316(2)
β/°	106.859(4)	90.970(3)
γ/°	90	95.614(3)
Volume/Å³	6164.9(10)	5628.5(11)
Z	8	8
ρ calc/g cm⁻³	1.416	1.808
μ/mm⁻¹	1.054	2.055
F(000)	2704.0	3654.0
Data/restraints/parameters	5407/0/318	20743/0/1369
Goodness-of-fit on F²	1.045	1.060
Final R indexes	R₁ = 0.0409, wR₁ = 0.1011	R₁ = 0.0574, wR₁ = 0.1477
Final R indexes	R₁ = 0.0474, wR₁ = 0.1053	R₁ = 0.0713, wR₁ = 0.1601

Schematic illustrations of monomeric pyrazolyl palladium(II) and nickel(II) complexes.
The pyrazolyl palladium and nickel complexes (1–6) were evaluated as catalysts for the transfer hydrogenation of sorbic acid, with formic acid as the source of hydrogen. Many phosphino nickel(II) and palladium(II) complexes are well-known catalysts for the hydrogenation of olefinic double bonds,26–29 some of them featuring PN donor ligands.29,30 These hydrogenation reactions were first carried out in the presence of a base, such as KOH, which facilitates the deprotonation of the formic acid to formate ion. The formate ion then coordinates to the metal centre leading to decomposition of the formic acid with the aid of the intermediate, [M]-OOC\textsubscript{H} as an active catalyst, to produce H\textsubscript{2} and CO\textsubscript{2}.25 This accelerates H\textsubscript{2} heterolysis and causes the catalytic process.20(b),30

A typical hydrogenation reaction was performed with sorbic acid and a complex present in a 200:1 mole ratio at 90 °C for 12 h (Fig. SI-3). It is worth noting that the hydrogenation process did not take place when the pre-catalyst was not added. Catalytic activities (in terms of conversions of sorbic acid) are very good with the palladium complexes and in the order 2 > 3 > 1; but poor for the nickel complexes, except for 4, which gave 62 % conversion (Table 2), having a turnover number (TON) of 124 and turnover frequency (TOF) of 10. However, the selectivity towards the distribution of the products is quite significant for all the complexes. Considering the effect of substituents (methyl, tertiary-butyl, and ferrocenyl) on complexes 1–3, the order of catalytic activity is 2 > 3 > 1 in terms of conversion of sorbic acids. Complex 2 gave 100 % conversion of sorbic acid in 12 h compared to 67 % and 74 % for complexes 1 and 3, respectively. A similar trend is observed in their TON and TOF values. However, there is not much difference in their selectivities towards 2-hexenoic and 4-hexenoic acids (Table 2, Fig. SI-4). The excellent activity of complex 2 might be due to the solubility of this compound provided by the tertiary-butyl substituent on the pyrazolyl ligand.

The pyrazolyl nickel and palladium catalyzed hydrogenation of sorbic acid, in this study, proceeds via a two-step (sequential) reaction. The first step involves the formation of the intermediates, 4-hexenoic and 2-hexenoic acids, and further hydrogenation of the hexenoic acid isomers in the second step produces hexanoic acid (Scheme 2).31

In an attempt to find out if the C=C bonds of the intermediates 4-hexenoic and 2-hexenoic acids would be fully saturated, the hydrogenation reaction was run for 24 h using complex 2. Interestingly, the product distribution after 24 h was only slightly different from when the reaction was run for 12 h, namely 82 % hexanoic acid, 13 % 2-hexenoic acid and 5 % 4-hexenoic acids for 24 h vs 79 % hexanoic acid, 14 % 2-hexenoic acid and 7 % 4-hexenoic acids for 12 h (Table 2, entries 2 and 3).

3.3. Catalytic Studies

3.3.1. Transfer Hydrogenation of Sorbic Acid

The pyrazolyl palladium and nickel complexes (1–6) were evaluated as catalysts for the transfer hydrogenation of sorbic acid, with formic acid as the source of hydrogen. Many phosphino nickel(II) and palladium(II) complexes are well-known catalysts for the hydrogenation of olefinic double bonds,26–29 some of them featuring PN donor ligands.29,30 These hydrogenation reactions were first carried out in the presence of a base, such as KOH, which facilitates the deprotonation of the formic acid to formate ion. The formate ion then coordinates to the metal centre leading to decomposition of the formic acid with the aid of the intermediate, [M]-OOC\textsubscript{H} as an active catalyst, to produce H\textsubscript{2} and CO\textsubscript{2}.25 This accelerates H\textsubscript{2} heterolysis and causes the catalytic process.20(b),30

A typical hydrogenation reaction was performed with sorbic acid and a complex present in a 200:1 mole ratio at 90 °C for 12 h (Fig. SI-3). It is worth noting that the hydrogenation process did not take place when the pre-catalyst was not added. Catalytic activities (in terms of conversions of sorbic acid) are very good with the palladium complexes and in the order 2 > 3 > 1; but poor for the nickel complexes, except for 4, which gave 62 % conversion (Table 2), having a turnover number (TON) of 124 and turnover frequency (TOF) of 10. However, the selectivity towards the distribution of the products is quite significant for all the complexes. Considering the effect of substituents (methyl, tertiary-butyl, and ferrocenyl) on complexes 1–3, the order of catalytic activity is 2 > 3 > 1 in terms of conversion of sorbic acids. Complex 2 gave 100 % conversion of sorbic acid in 12 h compared to 67 % and 74 % for complexes 1 and 3, respectively. A similar trend is observed in their TON and TOF values. However, there is not much difference in their selectivities towards 2-hexenoic and 4-hexenoic acids (Table 2, Fig. SI-4). The excellent activity of complex 2 might be due to the solubility of this compound provided by the tertiary-butyl substituent on the pyrazolyl ligand.

The pyrazolyl nickel and palladium catalyzed hydrogenation of sorbic acid, in this study, proceeds via a two-step (sequential) reaction. The first step involves the formation of the intermediates, 4-hexenoic and 2-hexenoic acids, and further hydrogenation of the hexenoic acid isomers in the second step produces hexanoic acid (Scheme 2).31

In an attempt to find out if the C=C bonds of the intermediates 4-hexenoic and 2-hexenoic acids would be fully saturated, the hydrogenation reaction was run for 24 h using complex 2. Interestingly, the product distribution after 24 h was only slightly different from when the reaction was run for 12 h, namely 82 % hexanoic acid, 13 % 2-hexenoic acid and 5 % 4-hexenoic acids for 24 h vs 79 % hexanoic acid, 14 % 2-hexenoic acid and 7 % 4-hexenoic acids for 12 h (Table 2, entries 2 and 3).

3.3.2. Hydrogenation of Sorbic Acid with Molecular Hydrogen

We also carried out the hydrogenation of sorbic acid with molecular hydrogen and complexes 1–6. In a typical experiment, 5 mmol of sorbic acid and 2.5 µmol (0.05 mol%) of the pre-catalysts were added to a reactor and ran for periods ranging from 0.5 h to 2 h, at 5 bar and 40 °C. The complex to sorbic acid ratio was 1:200, and the reaction was with palladium catalysts monitored by 1H NMR spectroscopy. All six complexes produced active catalysts, leading to the same products observed with
formic acid (Scheme 2); the product distribution from the molecular hydrogenation reactions depicted in Table 3 is not so different from that of the formic acid reactions shown in Table 2 and Fig. 3.

As expected, the palladium complexes (1–3) are the most active, having the highest TOF of 400, all with complete conversion of sorbic acid within 0.5 h. Only two of the nickel complexes (4 and 5) had a complete conversion, and only after 2 h (Table 3, entries 7 and 11). Reactions, where the catalyst was a palladium complex, could be followed by 1H NMR spectroscopy (Fig. 4).

Furthermore, all the nickel and palladium catalysts did not completely hydrogenate the sorbic acid to hexanoic acid within 0.5 h, and selectivities for 2-hexenoic and 4-hexenoic acids were as high as 37 % and 30 %, respectively (Table 3). These results indicate the conditions under which any of these intermediate products can optimally be obtained if partial hydrogenation compounds are the targeted products. This product distribution is depicted in Table 3 and in Fig. 4, which shows the 1H NMR spectral time study with complex 2.

At 0.5 h, 20 % conversion of sorbic acid was observed with complex 4 (Fig. 4). This conversion resulted in 37 % and 9 % selectivity towards 2-hexenoic acid and 4-hexenoic acid, respectively (Table 3, entry 4). After 1.5 h, the conversion was greatly increased to 99 % with 21 % selectivity towards 2-hexenoic acid, and 2 % of 4-hexenoic acid was detected (Table 3, entry 6). Further increment in the reaction time (after 2 h) only formed hexanoic acid with 100 % conversion of sorbic acid (Table 3, entry 7). Similar observations were also seen using complexes 5 and 6 with 22 % and 18 % conversions, respectively, at 0.5 h. Results for the catalytic tests are summarized in Table 3. Our results clearly

Table 2 Transfer hydrogenation of sorbic acid.

Entry	Complex	Conversion	TON	TOF	Amount of products detected/%		
					Hexanoic acid	2-Hexenoic acid	4-Hexenoic acid
1	1	67	134	11	76	15	9
2	2	100	200	17	79	14	7
3	2	100	200	8	82	13	5
4	3	74	148	12	78	13	9
5	4	62	124	10	72	20	8
6	5	22	44	4	70	23	7
7	6	10	20	2	61	30	9

*Reaction conditions: 2.5 µmol (0.5 mol%) of the complex; 0.5 mmol of sorbic acid; 5 mL of methanol; 20 mmol formic acid; 4 mmol KOH; 90 °C; 12 h. Conversions were estimated by 1H NMR spectroscopy using dioxane as an internal standard. Each run was performed in duplicate. TOF in mol mol h$^{-1}$.

Table 3 Molecular hydrogenation of sorbic acid.

Entry	Complex	t/h	Conversion/%	TON	TOF	Amount of products detected/%		
						Hexanoic acid	2-Hexenoic acid	4-Hexenoic acid
1	1	0.5	100	200	400	62	28	10
2	2	0.5	100	200	400	74	17	9
3	3	0.5	100	200	400	88	8	4
4	4	0.5	20	40	80	54	37	9
5	4	1	81	162	162	74	22	4
6	4	1.5	99	198	132	77	21	2
7	4	2	100	200	100	100	0	0
8	5	0.5	22	44	88	35	35	30
9	5	1	80	160	160	83	14	3
10	5	1.5	95	190	127	100	0	0
11	5	2	100	200	100	100	0	0
12	6	0.5	16	32	64	55	36	9
13	6	1	45	90	90	60	33	7
14	6	1.5	65	130	87	70	25	5
15	6	2	78	156	78	85	13	2

*Reaction conditions: 2.5 µmol (0.5 mol%) of the catalyst precursor; 0.5 mmol of sorbic acid; 5 mL of methanol; 40 °C; 5 bar. 10 µL dioxane. Conversions were estimated by 1H NMR spectroscopy using dioxane as an internal standard. Each run was performed in duplicate. TOF in mol mol h$^{-1}$.
The hydrogenation reaction’s progress, with complex 2, produced a better-resolved spectrum in the chemical shifts compared to its nickel analogue (complex 5), which produced a broad spectrum due to its paramagnetic property. The hydrogenation reaction proceeded with the formation of the intermediates (2-hexenoic and 4-hexenoic acid) (Fig. 5), and hexanoic acid after 0.5 h. It is demonstrated by the higher efficiency of (pyrazolyl)palladium(II) complexes as compared to their corresponding nickel(II) counterparts. The activities of the catalysts with the same ligand are: 1 > 4, 2 > 5 and 3 > 6. Furthermore, all the complexes investigated as sorbic acid hydrogenation catalysts, 1-6, gave appreciable conversions for catalytic hydrogenation of sorbic acid (i.e. greater than 52 %) compared with what was reported in the literature using ruthenium32,33 and rhodium.33 The product distributions for the hydrogenation of sorbic acid using pre-catalysts (1-4), with ones with significant conversions, is shown in Fig. 3.

Acknowledgements

The authors are grateful to the Royal Society-Department for International Development, United Kingdom (RS-DFID-UK) (Registered Charity Number 207043) for funding. We also thank Dr Banele Vatsha and Dr Gershon Amenuvor for assisting in solving the crystal structures, data collections and X-ray analysis.

Supplementary Material

Supplementary information is provided in the online supplement, and additional data can be obtained free of charge from The Cambridge Crystallographic Data Centre at the addresses below. CCDC numbers 1878431 and 1878429 contain the supplementary crystallographic data for complexes 2 and 3, respectively. Contact details are: Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (deposit@ccdc.cam.ac.uk or https://www.ccdc.cam.ac.uk/structures/)

ORCID iD

O.E. Olaoye: orcid.org/0000-0002-7236-2823

References

1. (a) G. Hoge, Synthesis of both enantiomers of a p-chirogenic 1,2-bisphosphonoethane ligand via convergent routes and applications to rhodium-catalysed asymmetric hydrogenation of CI-1008 (Pregabalin), *J. Am. Chem. Soc.*, 2003, 125, 10219–10227; (b) K.B. Hassen, Y. Hisaio, F. Xu, N. Ikemoto, Y. Sun, F. Spindler, C. Malan, E.J.J. Grabowski and J.D. Armstrong, Highly efficient asymmetric synthesis of sitagliptin, *J. Am. Chem. Soc.*, 2009, 131, 8796–8804; (c) H.U. Blaser, B. Pugin, F. Spindler and M. Thomen, From a chiral switch to a ligand portfolio for asymmetric catalysis, *Acc. Chem. Res.*, 2007, 40, 1240–1250; (d) L.A. Saudan, Hydrogenation processes in the synthesis of perfumery ingredients, *Acc. Chem. Res.*, 2007, 40, 1309–1319.

2. F.H. Jardin, (S.J. Lippard ed.), Chlorotris(triphenylphosphine)rhopodium(I): its chemical and catalytic reaction, *Prog. Inorg. Chem.*, 1981, 26, 63–202.
3 J.A. Osborn, F.H. Jardine, J.F. Young and G. Wilkinson, The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives, J. Chem. Soc., 1966 (A), 1711–1721.

4 R.A. Farra-tobaz, Z. Wei, H. Jiao, S. Hinze and J.G. De Vries, Selective base-free transfer hydrogenation of αβ-unsaturated carbonyl compounds using PVP or EtOH as hydrogen source, Chem. Eur. J., 2018, 24, 2725–2734.

5 (a) S. Bauri, S.N.R. Donthireddy, P.M. Illam and A. Ritt, Effect of ancillary ligand in cyclocatametalated Ru(II)-NHC-catalyzed transfer hydrogenation of unsaturated ketones, New J. Chem., 2014, 38, 1138–1143; (b) G. Shang, W. Li and Z. Zhang, in Catalytic Asymmetric Synthesis, (I. Ojima ed.), vol. 1, 3rd edn., John Wiley and Sons, New York, USA, 2010, pp. 343–436.

6 Y. Liu, I.D. Gridnev and W. Zhang, Mechanism of the asymmetric hydrogenation of enoic αβ-unsaturated carbonyl compounds catalysed by a cationic ruthenium(II) compound, Tetrahedron Lett., 2007, 48, 465–467.

7 (a) E. Wang, H. Liu, M. Liu, R. Li and J. Ma, Immobilized Pd complexes as catalysts for Heck coupling and selective hydrogenation reactions, New J. Chem., 2014, 38, 1138–1143; (b) G. Shang, W. Li and Z. Zhang, in Catalytic Asymmetric Synthesis, (I. Ojima ed.), vol. 1, 3rd edn., John Wiley and Sons, New York, USA, 2010, pp. 343–436.

8 F. Nereozi, Heterocatalytic catalytic hydrogenation, Plat. Met. Rev., 2012, 56, 236–261.

9 (a) E. Bouwman, Handbook of Homogeneous Hydrogenation, (J.G. De Vries and C.J. Elsevier eds.), Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2007, p. 93; (b) Z.R. Dong, Y.Y. Li, S.L. Yu, G.S. Sun, B.C.E. Makhubela, A. Muyaneza, G. Kumar and J. Darkwa, Selective homogeneous palladium(II) complexes as catalysts for Mizoroki-Heck cross-coupling reactions, ACS Sustainable Chem. Eng., 2016, 4, 592–601.

10 APEX2, (including SAINT SADABS), Bruker AXS Inc., Madison, WI, 2012.

11 G.M. Sheldrick, SHELXT—Integrated space-group and crystal structure determination, Acta Crystallogr. Sect. Foud. Adv., 2015, A71, 3–8.

12 G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst., 2015, C71, 3–8.

13 K. Li, J. Darkwa, L.A. Guzei and S.F. Mapolie, Ethylene polymerisation catalysed by substituted pyrazole nickel complexes, J. Organomet. Chem., 2004, 689, 1835–1842; (b) G. Amenuvor, B.C.E. Makhubela and J. Darkwa, Efficient solvent-free hydrogenation of levulinic acid to γ-valerolacetae by pyrazolylphosphite and pyrazolylphosphinite ruthenium(II) complexes, ACS Sustainable Chem. Eng., 2016, 4, 6010–6018.

14 A. Togni, C. Breutel, A. Schnyder, F. Spindler, H. Landert and A. Tijani, A novel easily accessible chiral ferrocenylphosphine for highly enantioselective hydrogenation, allicy alkylation, and hydrogenation reactions, J. Am. Chem. Soc., 1994, 116, 4062–4066.

15 Y. Hamada, Y. Koseki, T. Fujii, T. Maeda, T. Hibino and K. Makino, Catalytic asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides using homogeneous chiral nickel bispophosphite complexes through DKR, Chem. Comm., 2008, 46, 6206–6208.

16 C. Pérez-Zúñiga, C. Negrete-Vergarac, V. Guerchaib, H. Le Bozec, S.A. Moyea and P. Aguirre, Hydrogenation of N-benzylideneamine by palladium(II) catalysts with phosphorus-nitrogen ligands using formic acid as a renewable hydrogen source, Mol. Catal., 2019, 462, 126–131.

17 S.M. Lu, Z. Wang, J. Li, J. Xiao and C. Li, Base-free hydrogenation of CO2 to formic acid in water with an iridium complex bearing a N,N-dimine ligand, Green Chem., 2016, 18, 4533–4538.

18 A. Driesch, B. Driesch-Hölscher, B. Driesch-Hölscher, Bischophane homogen hydrogenation of sorbic acid with water-soluble ruthenium catalysts: aspects of mass transfer, Catalysis Today, 1999, 48, 273–278.

19 A. Driesch-Hölscher and J. Heinen, Selective two-phase hydrogenation of sorbic acid with novel water-soluble ruthenium complexes, J. Organomet. Chem., 1998, 570, 141–146.

20 A. Udvardy and A. Kotha, Hydrogenation of sorbic acid in mono and biphase systems catalysed by Rh(I)-phosphine complexes, React. Kinet. Catal. Lett., 2008, 95, 81–87.
Supplementary material to:
O.E. Olaoye, O. Oyetunji, B.C.E. Makhubela, A. Muyaneza, G. Kumar and J. Darkwa,
Catalytic Hydrogenation of Sorbic Acid using Pyrazolyl Palladium(II) and Nickel(II) Complexes as Precatalysts,
S. Afr. J. Chem., 2021, **74** (Special Edition), 50–56.
Catalytic Hydrogenation of Sorbic Acid using Pyrazolyl Palladium(II) and Nickel(II) Complexes as Precatalysts

Oluwasegun E. Olaoye¹, Olayinka Oyetunji¹*, Banothile C. E. Makhubela², Apollinaire Muyaneza¹,4, Gopendra Kumar¹ and James Darkwa²,3*.

¹Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone, Botswana.

²Department of Chemical Sciences, University of Johannesburg, Kingsway Campus, Auckland Park, 2006, South Africa.

³Botswana Institute for Technology Research and Innovation, Machel Drive, Gaborone, Botswana.

⁴CREDERE Associates, LLC, 776 Main Street, Westbrook, ME 04092, USA.

*Corresponding Authors: oyetunji@ub.ac.bw; jdarkwa@bitri.co.bw

Supplementary Information

Figure SI-1. ¹H NMR spectrum of the substrate (sorbic acid) recorded in CDCl₃.
Figure SI-2. Representative 1H NMR spectrum for the hydrogenation of sorbic acid involving the intermediate, using molecular hydrogen. 2.5 μmol (0.5 mol%) of catalysts; 0.5 mmol of sorbic acid; 5 mL of methanol; 40 °C; 5 bar. Using dioxane as an internal standard.

Figure SI-3. Representative 1H NMR spectrum for the hydrogenation of sorbic acid involving the intermediate, using formic acid as the hydrogen source. 2.5 μmol (0.5 mol%) of catalysts; 0.5 mmol of sorbic acid; 5 mL of methanol; 90 °C; 20 mmol formic acid; 4 mmol KOH. Using dioxane as an internal standard.
Figure SI-4. 1H NMR spectrum for the hydrogenation of sorbic acid with catalyst 2 (at 100% conversion) using formic acid as the hydrogen source. 2.5 μmol (0.5 mol%) of precatalyst; 0.5 mmol of sorbic acid; 5 mL of methanol; 90 °C; 20 mmol formic acid; 4 mmol KOH. Using dioxane as an internal standard.

Figure SI-5. 1H NMR spectrum for the hydrogenation of sorbic acid using complex 2 with 100% selectivity towards hexanoic acid. 2.5 μmol (0.5 mol%) of catalyst; 0.5 mmol of sorbic acid; 5 mL of methanol; 40 °C; 5 bar; 2h. Using dioxane as an internal standard.
Figure SI-6. 2D NMR spectrum showing the production distributions of the intermediates for the hydrogenation of sorbic acid. 2.5 μmol (0.5 mol%) of catalyst; 0.5 mmol of sorbic acid; 5 mL of methanol; 40 °C; 5 bar.

Figure SI-7a. Time-dependent studies on the hydrogenation of sorbic acid using catalysts. 2.5 μmol (0.5 mol%) of pre-catalyst; 0.5 mmol of sorbic acid; 5 mL of methanol; 40 °C; 5 bar.
Figure SI-7b. Time-dependent studies on the hydrogenation of sorbic acid using catalysts (expanded region showing the full spectra).

Figure SI-8. 1H NMR spectrum of 1 recorded in CDCl$_3$.
Figure SI-9. 13C{1H} NMR spectrum of 1 recorded in CDCl$_3$.

Figure SI-10. 1H NMR spectrum of 2 recorded in CDCl$_3$.
Figure S1-11. 13C\textsubscript{1H} NMR spectrum of 2 recorded in CDCl\textsubscript{3}

Figure S1-12. 1H NMR spectrum of 3 recorded in CDCl\textsubscript{3}
Figure S1-13. $^{13}\text{C}^{1\text{H}}$ NMR spectrum of 3 recorded in CDCl$_3$