Mirtazapine Inhibits Tumor Growth via Immune Response and Serotonergic System

Chun-Kai Fang1,2, Hong-Wen Chen3, I-Tsang Chiang1, Chia-Chieh Chen4, Jyh-Fei Liao5, Ton-Ping Su6, Chieh-Yin Tung1, Yosuke Uchitomi7, Jeng-Jong Hwang1*

1Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, 2Department of Psychiatry and Suicide Prevention Center, Mackay Memorial Hospital, Taipei, Taiwan, 3Department of Radiation Oncology and Hospice Palliative Care Center, Mackay Memorial Hospital, Taipei, Taiwan, 4Institute of Nuclear Energy Research, Taoyuan, Taiwan, 5Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, 6Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, 7Department of Neuropsychiatry, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama-shi, Japan

Abstract

To study the tumor inhibition effect of mirtazapine, a drug for patients with depression, CT26/ luc colon carcinoma-bearing animal model was used. BALB/c mice were randomly divided into six groups: two groups without tumors, i.e. wild-type (no drug) and drug (mirtazapine), and four groups with tumors, i.e. never (no drug), always (pre-drug, i.e. drug treatment before tumor inoculation and throughout the experiment), concurrent (simultaneously tumor inoculation and drug treatment throughout the experiment), and after (post-drug, i.e. drug treatment after tumor inoculation and throughout the experiment). The “psychiatric” conditions of mice were observed from the immobility time with tail suspension and spontaneous motor activity post tumor inoculation. Significant increase of serum interleukin-12 (sIL-12) and the inhibition of tumor growth were found in mirtazapine-treated mice (always, concurrent, and after) as compared with that of never. In addition, interferon-γ level and immunocompetent infiltrating CD4+/CD8+ T cells in the tumors of mirtazapine-treated, tumor-bearing mice were significantly higher as compared with that of never. Tumor necrosis factor-α (TNF-α) expressions, on the contrary, are decreased in the mirtazapine-treated, tumor-bearing mice as compared with that of never. Ex vivo autoradiography with [123I]ADAM, a radiopharmaceutical for serotonin transporter, also confirms the similar results. Notably, better survival rates and intervals were also found in mirtazapine-treated mice. These findings, however, were not observed in the immunodeficient mice. Our results suggest that tumor growth inhibition by mirtazapine in CT26/ luc colon carcinoma-bearing mice may be due to the alteration of the tumor microenvironment, which involves the activation of the immune response and the recovery of serotonin level.

Introduction

Antidepressant is prescribed for the treatment of patients with depression, and often for patients with advanced cancers as well [1]. A population-based nested case-control study reported that high dose of the selective serotonin reuptake inhibitor (SSRI), but not tricyclic antidepressant, before diagnosis decreased the risk of colorectal cancer by 30%, and suggested that anti-promoter effect or direct cytotoxic effect is possible [2]. Mirtazapine, a noradrenergic and specific serotonergic antidepressant (NaSSA), and certain SSRI antidepressants, such as fluoxetine, zimelidine, paroxetine, and sertraline, have been shown with antitumor effects in several human cancer cell lines [3–6]. However, a study with sertraline in patients with advanced cancers without major depression failed to show a beneficial effect on the survival [7]. Preclinical and clinical studies show that stress-related processes may impact pathways involved in cancer progression, invasion and immune-regulation [8]. Depletion in neurotransmitters, such as dopamine, under chronic stress may promote tumor growth by stimulating tumor microenvironment [9]. Furthermore, cytokine levels, especially interleukin-12 (IL-12), are reported to be affected by the depression [10,11]. IL-12 stimulates T lymphocytes and natural killer cells to release interferon gamma (IFN-γ), which has been shown with the capability to inhibit tumor growth, angiogenesis, and metastasis both in rodents and human [12,13].

Mirtazapine has been shown to be effective for mood disorder, insomnia, chemotherapy- and cancer-related nausea, poor appetite, and other distress symptoms in patients with cancers [14–18]. Mirtazapine is also an antagonist for the adrenergic alpha2-autoreceptors and alpha2-heteroreceptors with its high affinity for both 5-HT3 and 5-HT2A receptors [19,20]. Clinical trial suggests that mirtazapine may be effective for improving multiple symptoms, including cachexia, anorexia, and quality of life in patients with advanced cancer [21,22]. Whether mirtazapine is beneficial for the reduced risk of cancer incidence is worth to be investigated [23].

Here we established a CT26/ luc colorectal carcinoma-bearing animal model combined with molecular imaging to investigate the effect of mirtazapine on tumor growth inhibition and its correlation with tumor microenvironment, such as immune-regulated factors and serotonin level, after the treatment with mirtazapine.
Experimental design-1

Wild-type
Drug
Never
Always
Concurrent

2 weeks 2 weeks 4 weeks

Mirtazapine treatment (10 mg/kg/d)
No drug

↓: Tumor inoculation  ↑: Mice were sacrificed for assays of IFN-γ, TNF-α, CD4, CD8 in tumors

Once a week: bioluminescence imaging, assays of sIL-12 and serum TNF-α
Twice a week: tumor volume and body-weight tracing
Everyday: survival tracing till expired or when tumor volume reached to 2500 mm³
IFN-γ, TNF-α, CD4, CD8 in tumors was assayed at 6 wks post tumor inoculation

Experimental design-2

Wild-type
Drug
Never
Always
Concurrent

2 weeks 2 weeks 1 week

Mirtazapine treatment (10 mg/kg/d)
No drug

↓: Tumor inoculation  ↑: Sacrifice

Mice were sacrificed on day 22 after tumor inoculation, and assayed for spontaneous motor activity & immobility, lymphocyte subsets, and serotonin transporter.

Figure 1. Experimental designs. (A) Tumor inoculation, mirtazapine treatment, and monitoring of tumor growth and survival. (B) On day 22, mice were assayed for behaviors, then sacrificed for the measurement of lymphocyte subsets and performed with ex vivo autoradiography.
doi:10.1371/journal.pone.0038886.g001
Materials and Methods

Tumor Cell Preparation

To evaluate the effect of mirtazapine on tumor growth inhibition, the CT-26 murine colon carcinoma cells (obtained from Taiwan Liposome Company, Taipei, Taiwan) were transfected with the luciferase gene (luc). The stable clone was maintained with 120 μg/ml G418 (Merck) as previously described in our study [45]. The CT26/luc tumor cells were cultured in RPMI 1640 medium (Invitrogen) supplemented with 10% fetal bovine serum (HyClone), 100 units/ml of penicillin, and 100 μg/ml streptomycin (Gibco-BRL) at 37°C in a 5% CO2 atmosphere.

Cell Viability and Cell Cycle Analysis

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma, USA) was dissolved in phosphate-buffered saline (145 mM NaCl, 1.4 mM KH2PO4, 4.3 mM Na2HPO4, and 2.7 mM KCl, pH 7.2). CT26/luc cells were seeded in 96-well plates overnight, then treated with various concentrations (0, 5, 10, 20, 40, and 80 μM) of mirtazapine for 24, 48, and 72 h. Cell viability was determined with MTT assay. After washing with fresh medium, 100 μl of 1 mg/ml MTT solution was added to each well. After 4 hours incubation at 37°C, 100 μl DMSO was added to dissolve the MTT formazan, and the absorbance was determined with an ELISA reader (Power Wave X340, Bio-Tek Instrument Inc., USA) using a wavelength of 570 nm for the excitation.

CT26/luc cells were cultured in 10 cm-diameter dish (1×106/dish) for 24 h, followed by the treatments with 0, 5, 10, 20, 40, and 80 μM mirtazapine (Megafine Pharma (P) Ltd., India). The cells were harvested in 15 ml centrifuge tubes 24 h later, fixed with cold 75% alcohol overnight. Cells were then centrifuged at 5000 rpm for 15 min at 4°C. After removal of the supernatant, cells were re-suspended in 0.8 ml cold phosphate-buffered saline (PBS), 0.1 ml RNase A (1 mg/ml; QIAGEN), and 0.1 ml propidium iodide (400 μg/ml) for 30 min at 37°C and kept in the dark to avoid quenching. The cell cycle analysis was assayed using a FACScan (BD Sciences) and analyzed by CellQuest software (BD Sciences).

Tumor-bearing Animal Model

All animal study protocols were approved by the Institutional Animal Care and Use Committee (IACAU) of National Yang Ming University. Mirtazapine (0.25 mg) was dissolved in 0.05 ml of 0.9% NaCl plus 0.5% absolute ethanol for each mouse i.e. 10 mg/kg. Male BALB/c mice (initial weights 25±2 g) were housed in the cages, five mice per cage, under a 12:12 h reverse light/dark cycle with lights off at 6 pm. Animals were handled and weighed daily for a week to reduce any non-specific stress responses. To study the effect of mirtazapine on the tumor growth inhibition, 6-weeks-old male BALB/c mice (25±2 gm, purchased from the National Laboratory Animal Center, Taipei, Taiwan) were randomly divided into 6 groups as shown in Figure 1A. (1) wild-type, no tumor inoculation and no mirtazapine treatment; (2) drug, continuous mirtazapine treatment without tumor inoculation; (3) never, tumor inoculation, no mirtazapine but daily 0.05 ml of 0.9% NaCl plus 0.5% absolute ethanol; (4) always, mirtazapine treatment initiated 2 weeks before tumor inoculation; (5) concurrent, tumor inoculation and mirtazapine treatment on the same day; and (6) after, mirtazapine treatment initiated 2 weeks post tumor inoculation. The experimental design and the time for the biological end points were shown in Figure 1B.

CT26/luc cells (2×106 cells/200 μL) suspended in the serum-free RPMI medium were transplanted subcutaneously into the dorsal region of the right thighs of the BALB/c mice (purchased from the National Laboratory Animal Center, Taiwan). 10 mg/kg/d mirtazapine [46,47] dissolved in 0.9% sodium chloride and 0.5% ethanol was administered to mice by gavage daily till mice expired or terminated on day 67 post tumor inoculation. Survival rate and interval were assayed for never, always, concurrent, and after (n=10 per group).

Six-weeks-old immunodeficient male SCID mice (purchased from the National Laboratory Animal Center, Taiwan) were also used to verify the involvement of the immune system in the inhibition of the tumor growth by mirtazapine. The SCID mice were divided into 2 groups: (1) never-SCID, tumor inoculation but no mirtazapine treatment, and (2) always-SCID, mirtazapine treatment initiated 2 weeks before tumor inoculation.

Figure 2. Effects of mirtazapine (10 mg/kg/d) on behavior changes of normal and CT26/luc tumor-bearing mice. (A) Immobility time in the tail-suspension test. (B) Spontaneous motor activity. (n=4, *p<0.05, **p<0.01 vs. wild-type; ***p<0.05, ****p<0.01 between two groups).
doi:10.1371/journal.pone.0038886.g002
Figure 3. Mirtazapine inhibits tumor growth and prolongs the survival rate and interval in CT-26/luc tumor-bearing model. On day 14, only “Always” mice were inoculated with tumor cells and treated with mirtazapine throughout the experiment, the other three groups were treated with 0.05 ml of 0.9% NaCl plus 0.5% absolute ethanol up to day 0. On day 0, only “concurrent” mice were inoculated with tumor cells and treated with mirtazapine throughout the rest of the experiment. “After” mice were treated with 0.05 ml of 0.9% NaCl plus 0.5% absolute ethanol but without mirtazapine up to day 14, while “never” mice were treated with 0.05 ml of 0.9% NaCl plus 0.5% absolute ethanol and throughout the experiment. On day 14, “after” mice were inoculated with tumor cells and treated with mirtazapine throughout the rest of the experiment. (A) Tumor growth curves are monitored with digital caliper. (B) Left panel: tumor growth curves are monitored with noninvasive bioluminescence imaging (BLI). The value under each mouse is the tumor volume determined with a caliper. Right panel: quantification of the photon counts in ROIs from the left panel. (C) No antitumor effect of mirtazapine was found on immunodeficient SCID mice with CT26/luc tumors. Left panel: tumor growth curves for always and never. Right panel: quantification of the photon counts in ROIs from the left panel. (D) No significant body-weight change (within 20%) through the whole experiment was found among wild-type, drug, never, always, concurrent, and after. (E) Effects of mirtazapine on the survival rate and interval of CT26/luc-bearing mice. The mean survival times are 67, 64, 57, 43 days for always, concurrent, after, and never, respectively. (n = 10 per group, *p < 0.05, **p < 0.01, ***p < 0.001). doi:10.1371/journal.pone.0038886.g003

Tumor Volume and Mouse Activity Assays

Tumor growth was monitored using a digital caliper twice a week. The tumor volume was calculated according the formula: 0.523 × length × width × thickness. Bioluminescence imaging (BLI) used for tumor size tracking was performed with an IVIS50 animal imaging system (Xenogen Corp., USA) as previously described [40].

The behavioral change in the animal depression model was evaluated as previously described [49]. For the spontaneous motor activity assay, the mouse was placed in a separate chamber and allowed to rest for 3 min. The number of movements was automatically counted during a 5-min period (Process Control, ActiMot 302020, TSE Systems). On the other hand, the duration of immobility was assayed with the tail suspension test [50]. Acoustically and visually isolated mouse was suspended at the tip of the tail with 50 cm high above the floor. Immobility time was recorded for 6 min.

Immunocompetence Evaluation and Immunohistochemistry of Serum Interleukin-12, CD4+ and CD8+ in the Blood, Lymph Nodes and Tumors

For quantification of IL-12, the whole blood withdrawn from the pouch of each mouse was centrifuged at 600 × g for 20 min, and serum was collected. The serum IL-12p70 (sIL-12) level was determined using an ELISA kit (R&D Systems, Taiwan). Identification for the lymph node cluster of differentiated CD4+ T helper and CD8+ T-cytotoxic lymphocyte subsets was assayed [27]. Briefly, the lymphocytes isolated from the lymph nodes of granios of mice were stained with phycoerythrin-conjugated anti-CD4 (CD4-PE) monoclonal antibody and peridinin-chlorophyll-protein-complex-conjugated anti-mouse CD8 (CD8-PerCP) monoclonal antibody (BioLegend, USA). Lymphocyte subsets were identified by FACS analysis using a FACS Calibur flow cytometer (BD Sciences, USA). Immunohistochemistry (IHC) of CD4 and CD8 was also performed on day 42 post tumor inoculation. Tumors were removed, paraffin embedded, and 5-μm sectioning was performed. The sections were immunohisto-stained with antibodies against CD4 (BioLegend, USA) and CD8 (BioLegend, USA), respectively. The procedures of immunohisto-staining were followed the protocols provided with the IHC kit (Millipore, USA). All images were digitally captured on a Scanscope CS system (Aperio, USA).

The level of IFN-γ in the tumor was determined using an ELISA kit (R&D Systems, Taiwan). Briefly, 6 weeks after tumor inoculation, the mice were sacrificed and the tumors were quickly removed and minced, then added with lysis buffer containing 1% protease inhibitor cocktail (T-PER tissue protein extraction reagent, Thermo Scientific, USA). After sonication, the cell mixture was centrifuged with 15000 rpm (Kubota centrifuge 1700, Japan) at 4°C for 10 min. The supernatant was collected for the protein quantification using bovine serum albumin as the standard. Two mg of the tumor proteins was used for the quantification of IFN-γ.

Effects of Mirtazapine on TNF-α expressions in the Blood Circulation and Tumor Tissues

For quantification of TNF-α, the whole blood withdrawn from the pouch of each mouse once a week for up to 6 weeks was centrifuged at 600 × g for 20 min, and serum was collected. The serum TNF-α level was evaluated with an ELISA kit (eBioscience, USA). The level of TNF-α in the tumor of mice on day 42 post tumor inoculation was determined using ex vivo Western Blotting assay. Briefly, 6 weeks after tumor inoculation, the mice were sacrificed and the tumors were quickly removed and minced, then added with lysis buffer containing 1% protease inhibitor cocktail (T-PER tissue protein extraction reagent, Thermo Scientific, USA). Equal amounts of proteins (40 μg) were subjected to SDS-PAGE and transferred to PVDF membranes (Millipore, Bedford, MA). Non-specific binding was blocked by incubation with 5% non-fat milk. Membrane was incubated with antibodies against TNF-α (Abbiotec, USA) and β-actin (Millipore, USA) overnight at 4°C. The goat-anti rabbit IgG (Millipore) and goat-anti mouse IgG conjugated with horseradish peroxidase (Millipore) were used as the secondary antibodies. The band signal from the antigen-antibody binding was illustrated with enhanced chemoluminescence system (ECL, Millipore). ImageJ software (National Institutes of Health, USA) was used for the quantitative analysis.

Table 1. Tumor growth inhibition among never, after, concurrent, and always of mice.

| Group   | n  | Mean tumor growth time† (day) | Mean tumor growth delay time† (day) | Mean growth inhibition rate* |
|---------|----|------------------------------|-----------------------------------|-----------------------------|
| never   | 12 | 22.5                         | NA†                               | NA                          |
| always  | 12 | 41.3                         | 18.8                              | 1.8                         |
| concurrent | 12 | 30.9                         | 8.3                               | 1.4                         |
| after   | 12 | 25.4                         | 2.8                               | 1.1                         |

*Mean tumor growth time: the time at which the tumor volume reaches to 400 mm³.
† Mean tumor growth delay time: the tumor growth time of the treated group minus that of the Never.

doi:10.1371/journal.pone.0038886.t001
Uptake of $^{[123]I}$ADAM in the Brain with Quantitative Autoradiography

The uptake of 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine ($^{[123]I}$ADAM) in the mouse brain was assayed as previously described [42]. CT26/luc tumor-bearing mice were injected with 1 mCi/0.1 ml of $^{[123]I}$ADAM (purchased from the Institute of Nuclear Energy Research, Taiwan) via the caudal vein, and sacrificed at 90 min post injection, and assayed with ex vivo autoradiography. Briefly, the brain slices (5 μm thickness) were put onto an imaging plate (BAS cassette 2340, FujiFilm, Japan), and exposed for 24 hours. The imaging plates were then scanned with a high-resolution imaging plate reader (FLA5000, FujiFilm, Japan) at the following settings: resolution 25, gradation 16 bits, and dynamic range L5. The specific binding ratio (SBR) was calculated as the following: SBR = (target – cortex)/cortex.

Statistical Analysis

All data were shown as the mean ± standard error. Student's t test was used for the comparison between two groups. Kaplan-Meier plotting was used for the survival analysis, and was compared using the log-rank test. Differences between the means were considered significant if $p < 0.05$ or less.

Results

Luciferase Gene Expression and Cytotoxicity of Mirtazapine on CT26/luc Cells

Both CT-26 and CT-26/luc cells show the similar growth curves with doubling time of 14 hrs. Three photons/cell/sec of CT-26/luc cell line were found with luciferase gene expression assay. No cytotoxicity was found in the CT26/luc cells treated with 5–80 μM
Survival of Tumor-bearing Mice

Mirtazapine Suppresses Tumor Growth and Improves Animal Behavior

The spontaneous motor activity and immobility time of mice were evaluated on day 22 after tumor inoculation and with or without mirtazapine intervention. The increase in the immobility time and the decrease in the number of spontaneous motor activity were observed after the implantation of CT26/luc tumors as shown with never. Continuous administration of mirtazapine significantly decreased the immobility time, but had no effect on the spontaneous motor activity as shown with drug and always (Figures 2A and 2B).

Animal Behavior

The increase of sIL-12 level after mirtazapine treatment, however, was not found in the SCID mice as shown in Figure 4B. In addition, both CD4+ and CD8+ T cell counts were lower in CT26/luc tumor-bearing mice (never), but not in the mirtazapine-treated, tumor-bearing mice (always, concurrent, and after) as compared with those of wild type and drug (Table 2). Both CD4+ and CD8+ T cell counts of always were the highest among the three mirtazapine-treated, tumor-bearing animal groups (Figures 4C and 4D). The expression of IFN-γ in tumors was significantly higher in always, concurrent, and after as compared with that of never, with the highest expression in always (Table 3). In addition, earlier mirtazapine intervention, such as always and concurrent, resulted in significantly higher IFN-γ expression as compared with that of after. Notably, Figures 5A and 5B show that significantly increased numbers of infiltrating CD4+ and CD8+ cells/0.1 mm² tumor tissues of “concurrent” and “always” as compared with those of “never”, and were quantified in Figure 5C, p<0.01 and p<0.001, respectively.

Mirtazapine Alters Cytokine Production and Increases CD4+/CD8+ T Cell Counts

Mirtazapine Enhances Serotonin Levels in the Brains of Tumor-bearing Mice

The higher uptake of [125I]ADAM by serotonin transporter (SERT)-rich areas, such as olfactory tubercle, lateral septal nucleus, thalamic nuclei, substantia nigra, and hypothalamic nuclei, in the brain is shown in Figure 7 as determined with ex vivo
autoradiography. The specific binding ratios (SBRs) of [123I]AD-AM in SERT-rich areas of mice are listed in Table 4, in which specific binding ratio = (target – cortex)/cortex. SBRs were significantly higher in drug as compared with those of wild type (p<0.05). SBRs in always, concurrent, and after were also significantly higher than those of never (p<0.05). The results are in accordance with that SERT-rich areas are more susceptible to mirtazapine treatment. In addition, earlier mirtazapine intervention, as always and concurrent, contributes to a more significant increase of SBRs as compared with that of after (p<0.01).

Discussion

The tail suspension test has been reported as a well established method for the activity of antidepressants, and the spontaneous motility is a useful measure of overall behavior of the mice [24]. In this study, mice treated with and without mirtazapine, respectively, showed that “Drug” (no tumor), and “Always” (with tumor), were shortest in the immobility time among all groups at 3 weeks post tumor inoculation. The result suggests that mirtazapine may
resolve the anxiety and depression in tumor-bearing mice as those found in cancer patients [15,17].

Some SSRIs and tricyclic antidepressants contribute to the successful antidepressant therapy mainly through decreasing the production of pro-inflammatory cytokines, such as IFN-γ, and increasing the anti-inflammatory cytokines [25-27]. Nevertheless, it remains unclear whether immune response plays a causative role in the pathophysiology of depressive disorders. The increased sIL-12 levels in patients with major depressive disorders have been reported to be decreased after the treatment with antidepressants, including nefazodone, paroxetine, fluoxetine, sertraline, and venlafaxine [10,26]. sIL-12, a multifunctional cytokine, is recognized as a key regulator for the cell-mediated immune responses [12,13,28,29]. Preclinical trials show that the immunomodulatory and anti-angiogenic functions of sIL-12 are through the activation of innate cells (NK and NK-T cells) and adaptive immune response (CD4+ and CD8+ T cells), priming the secretion of IFN-γ [28]. The antitumor effect of sIL-12 in patients treated with continuous administration of antidepressants, however, is gradually reduced and limits its clinical application [28,30,31]. On the other hand, the IFN-γ levels in the whole bloods obtained from healthy volunteers were inhibited when treated with antidepressants [20,32,33].

Here we found that in vivo chronic mirtazapine treatment could inhibit the tumor growth and prolong the survival of tumor-bearing mice, which showed increased serum IL-12 level, CD4+, CD8+ in the lymph nodes, as well as serotonin transporters in the brain, and decreased TNF-α and IFN-γ in the tumors. The increased sIL-12 levels in mirtazapine-treated mice are maintained above the pre-therapy levels for more than four weeks, especially those with early mirtazapine intervention, such as always which show the highest survival rate and time with the highest increase of sIL-12 levels and the uptake of [123I]ADAM, a radiopharmaceutical for serotonin transporter. Immunodeficient mice, on the other hand, do not show the similar effects when treated with mirtazapine. Both CD4+ and CD8+ T cells, may also contribute to the anticancer effect since their counts are recovered in those tumor-bearing mice treated with mirtazapine (Table 2).

The IFN-γ levels in tumors of mice treated with mirtazapine are significantly higher than those untreated, suggest that the immune response may be also involved in the antitumor effect of mirtazapine similar as the finding reported by Frick et al. [34]. Although certain antidepressants show pro-apoptotic effect on human colon carcinoma cell lines [4,6,35], mirtazapine is non-toxic to CT26 colon carcinoma as shown in this study. The plasma levels of TNF-α and soluble TNF receptors are increased in patients with major depressive disorders treated with mirtazapine [36]. With norepinephrine transporter knockout mice, Kubera et al. found that the decrease of IL-6 and IFN-γ, and the increase of IL-4 production may be due to the increase of norepinephrine level in the spleen after mirtazapine treatment [37]. On the other hand, IFN-γ-indoleamine 2,3-dioxgenase (IDO) axis also has been reported to regulate the sIL-12-mediated antitumor immunity [29], in which IFN-γ is the main cytokine induced by sIL-12 and plays a critical role to its antitumor effects [30]. IDO is highly inducible by pro-inflammatory cytokines, including IFN-γ and tumor necrosis factor-α (TNF-α). IDO is the first and rate-limiting enzyme involved in the tryptophan-kyurenine pathway. Degradation of tryptophan through the kynurenine pathway shows important neuropsychiatric implications. In addition, IDO is expressed in the brain so that fluctuations in its enzymatic activity can affect serotonin biosynthesis [39]. Decreased tryptophan concentration affects the serotonergic neurotransmission in the brain. Therefore, adequate physiological serotonin levels are indispensable for cytokine production. Mirtazapine may have a role in restoration of the equilibrium between physiological and pathological levels of cytokines in the brain [26,40]. Whether IDO is involved in the immune response and serotonin recovery in cancer patients treated with mirtazapine is worth to be further studied.

In our previous study, we have reported that [123I]ADAM is an useful radiopharmaceutical for diagnosing serotonin transporter (SERT) location sites in central nervous system (CNS), peripheral nervous system (PNS), and neuroendocrine tissues/ organs, such as mucosa of the stomach and medulla of the adrenal glands [41]. The SERT-rich regions in the mouse brain can also be determined with ex vivo autoradiography using [123I]ADAM [42]. Although only the higher specific SERT binding sites in the midbrain for [123I]ADAM with ex vivo autoradiography were shown in this study (Figure 7), the PNS and neuroendocrine tissues/organs should have the higher uptake of [123I]ADAM as well. SERT availability in the midbrain of healthy subjects imaged with [123I]ADAM/SPECT has been shown to correlate with the overall rating scores and the life quality [43]. Here, we found that the lower uptake of [123I]ADAM in the midbrain of tumor-bearing mice could be recovered when treated with mirtazapine. Since the quality of life can be used as a prognostic factor in cancer patients [44], its improvement by mirtazapine may also contribute to the
overall survival via normal serotonergic activity in the brain of subject. A study performed by Xu et al. shows that selective serotonin reuptake inhibitors (SSRI) may reduce the risk of human colorectal cancer [2]. Our result shows that the most therapeutic efficacy for cancer treatment is “Always”, where the mice are pretreated with mirtazapine, a tetracyclic antidepressant, for two weeks before tumor cell injection. This finding implies that mirtazapine may also exert the similar therapeutic effect on tumor prevention as do those selective serotonin reuptake inhibitors.

Table 4. Specific binding ratios of [123I]ADAM in brains of BALB/c mice with or without CT26/luc tumors determined with ex vivo autoradiography.

| Group   | Specific binding ratio |
|---------|------------------------|
|         | LS | OT | ThN | SN | HN |
| Wild-type | 1.45±0.05 | 1.36±0.10 | 1.23±0.14 | 2.58±0.10 | 1.55±0.12 |
| Drug    | 1.77±0.10** | 1.95±0.16*** | 1.72±0.09** | 2.81±0.08*** | 2.14±0.12*** |
| Never   | 1.13±0.07 | 1.12±0.06 | 0.93±0.15 | 1.47±0.07 | 1.28±0.12 |
| Always  | 2.00±0.04*** | 2.01±0.08** | 1.99±0.07*** | 2.46±0.07*** | 2.29±0.10*** |
| Concurrent | 1.78±0.05*** | 1.91±0.09*** | 1.76±0.07*** | 2.44±0.06*** | 2.22±0.13*** |
| After   | 1.36±0.03* | 1.63±0.12** | 1.47±0.06** | 2.17±0.16** | 2.11±0.12** |

Ex vivo autoradiography was performed at 90 min post i.v. injection of 1 mCi [123I]ADAM/0.1 ml. Specific binding ratio = (target – cortex)/cortex. (OT = olfactory tubercle; LS = lateral septal nucleus; ThN = thalamic nucleus; SN = substantia nigra; HN = hypothalamic nucleus).

*p<0.05, **p<0.01 vs. wild-type; *#p<0.05, **#p<0.01, ***#p<0.001 vs. never, *p<0.05, **p<0.01, ***p<0.001 vs. after. Data are means±S.E. n=3/group. Experiments were repeated twice.

doi:10.1371/journal.pone.0038886.g007

Figure 7. Serotonin transporter determined with [123I]ADAM/ex vivo autoradiography in the brain of CT26/luc tumor-bearing mice. The mouse brain obtained at 90 min post caudal vein injection of 1 mCi/ml [123I]ADAM was performed with ex vivo autoradiography. The top and bottom rows in each subfigure are the anatomy and ex vivo autoradiography, respectively. The blue circle is the target, and the red square is the cortex. (OT = olfactory tubercle; LS = lateral septal nucleus; ThN = thalamic nucleus; SN = substantia nigra; HN = hypothalamic nucleus).

doi:10.1371/journal.pone.0038886.g007
doubling times are 14.2 h and 14.4 h for parental CT-26 and CT-26/luc colon carcinoma-bearing mice is via the activation of the immune response and the recovery of serotonin level in serotonergic system.

## Supporting Information

### Figure S1

(A) The growth curves of parental CT-26 and CT-26/luc tumor cells. Td = (t₀-t)/lnN₂ - lnN₀. The cell doubling times are 14.2 h and 14.4 h for parental CT-26 and CT-26/luc cells, respectively. (B) Left: the luciferase expression in CT-26/luc cells imaged with Xenogen IVIS 50 imaging system. Right: the photon counts emitted from CT-26/luc cells is the function of the cell number with R² = 0.993. (C) Cell viability analysis of CT26/luc cells treated with various concentrations (0, 5, 10, 20, 40, and 80 µM) of mirtazapine for 24, 48, and 72 h, and measured with MTT assay as described in the “Materials and Methods”. (D) Effect of mirtazapine on the cell cycle of CT-26/luc cells after treatment with various concentrations of mirtazapine for 24 h, and analyzed by flow cytometry. No cytotoxic effect was found.

## Acknowledgments

We thank Molecular and Genetic Imaging Core (MAGGIC)/NRPGM, Taiwan for the support of imaging facilities.

## Author Contributions

Conceived and designed the experiments: CKF HWC JJH. Performed the experiments: CKF ITC CYT. Analyzed the data: YU TPS JJH. Contributed reagents/materials/analysis tools: CCC JFL JJH. Wrote the paper: CKF HWC JJH.

## References

1. Movie M, Block S (2007) Psychiatric disorders in advanced cancer. Cancer 110: 1665–1676.
2. Xu W, Tamin H, Shapiro S, Stang MR, Collet JP (2006) Use of antidepressants and risk of new-onset diabetes: A nested case-control study. Lancet Oncol 7: 301–308.
3. Abdul M, Logothetis CJ, Hoosein NM (1995) Growth-inhibitory effects of serotonin uptake inhibitors on human prostate carcinoma cell lines. J Urol 154: 247–250.
4. Rossetti M, Frasnelli M, Tesci A, Zoli W, Conti M (2006) Cytotoxicity of different selective serotonin reuptake inhibitors (SSRIs) against cancer cells. J Exp Ther Oncol 6: 23–29.
5. Pan CC, Cheng HH, Huang CJ, Lu YC, Chen IS, et al. (2006) The antitumor effect of mirtazapine in CT26/luc colon carcinoma-bearing mice is via the activation of the immune response and the recovery of serotonin level in serotonergic system.
6. Moreno-Smith M, Lu C, Shahzad MM, Pena GN, Allen JK, et al. (2011) Use of antidepressants in healthy volunteers. Pol J Pharmacol 55: 353–362.
7. Mortarini R, Borri A, Meroni L, Nocentini M, Molinari L, et al. (2000) Peripheral burst of tumor-specific cytotoxic T lymphocytes and infiltration of metastatic lesions by memory CD8+ T cells in melanoma patients receiving interleukin-12. Cancer Res 60: 3559–3568.
8. De Berardis D, Conti CM, Serossi N, Moschetta FS, Olivier I, et al. (2010) The effect of newer serotonin-noradrenaline antidepressants on cytokine production: a review of the current literature. Int J Immunopathol Pharmacol 23: 417–422.
9. Lopez MC, Stanley MA (2000) Cytokine profile of draining lymph node lymphocytes in mice grafted with syngeneic keratinocytes expressing human papillomavirus type 16 E7 protein. J Gen Virol 81: 3649–3659.
10. Kim YK, Suh IB, Kim H, Han CS, Lin CS, et al. (2002) The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: Effects of psychotropic drugs. Mol Psychiatry 7: 1107–1114.
11. Lee KM, Kim YK (2006) The role of IL-12 and TGF-beta in the pathophysiology of major depressive disorder. Int Immunopharmacol 6: 1290–1304.
12. Brunda MJ, Linstro M, Warrier RR, Wright RB, Hubbard RB, et al. (1993) Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 178: 1239–1249.
13. Voest EE, Kenyon BM, O'Reilly MS, Triutt G, D'Amato RJ, et al. (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Biol Chem 270: 581–586.
14. Kast RE (2001) Mirtazapine may be useful in treating nausea and insomnia of cancer chemotherapy. Support Care Cancer 9: 469–470.
15. Theobald DE, Kirsh KL, Holtsclaw E, Donaghy K, Passik SD (2002) An open-label, crossover trial of mirtazapine (15 and 30 mg) in cancer patients with pain and other distressing symptoms. J Pain Symptom Manage 23: 442–447.
16. Reich M (2000) Depression and cancer: Recent data on clinical issues, research challenges and treatment approaches. Curr Opin Oncol 20: 355–359.
17. Sera L, Chermat R, Thierry B, Simon P (1985) A new method for screening antidepressants in mice. Psychopharmacology 85, 367–370.
18. Kraus T, Haack M, Schuld A, Hinze-Selch D, Koethe D, et al. (2002) Body weight, the tumor necrosis factor system, and leptin production during treatment with mirtazapine or venlafaxine. Pharmacopsychiatry 35: 206–210.
19. Antila SA, Leinonen EV (2001) A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev 7: 249–264.
20. Marek GJ, Carpenter LL, McDougle CJ, Price LH (2003) Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders. Neuropsychopharmacology 28: 402–412.
21. Riechelmann RP, Burman D, Tannock IF, Rodin G, Zimmermann C (2010) Phase II trial of mirtazapine for cancer-related cachexia and anorexia. Ann J Hospice Palliat Med 27: 106–110.
22. Theobald DE, Kirsh KL, Holtsclaw E, Donaghy K, Passik SD (2002) An open-label, crossover trial of mirtazapine (15 and 30 mg) in cancer patients with pain and other distressing symptoms. J Pain Symptom Manage 23: 442–447.
23. Reich M (2000) Depression and cancer: Recent data on clinical issues, research challenges and treatment approaches. Curr Opin Oncol 20: 355–359.
24. Kraus T, Haack M, Schuld A, Hinze-Selch D, Koethe D, et al. (2002) Body weight, the tumor necrosis factor system, and leptin production during treatment with mirtazapine or venlafaxine. Pharmacopsychiatry 35: 206–210.
37. Kubera M, Roman A, Basta-Kaim A, Budziszewska B, Zajicova A, et al. (2006) Effect of acute and repeated treatment with mirtazapine on the immunity of noradrenaline transporter knockout C57BL/6J mice. Pharmacol Biochem Behav 85: 813–819.
38. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3: 133–146.
39. Heyes MP, Chen CY, Major EO, Saito K (1997) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 326: 351–356.
40. Müller N, Schwarz MJ (2007) Immunological aspects of depressive disorders. Nervenarzt 78: 1261–1273. (in German).
41. Lin KJ, Ye XX, Yen TC, Wey SP, Tzen KY, et al. (2002) Biodistribution study of $^{[123]I}$ADAM in mice: correlation with whole body autoradiography. Nucl Med Biol 29: 635–650.
42. Lin KJ, Yen TC, Wey SP, Hwang JJ, Ye XX, et al. (2004) Characterization of the binding sites for $^{[123]I}$-labeled PEGylated liposomal vinorelbine in murine colon carcinoma with multivalency molecular imaging. J Nucl Med 50: 2073–2081.
43. Tsai HC, Yeh TL, Huich MH, Lee IH, Chen KC, et al. (2009) Association between serotonin transporter availability and overall rating scores of quality of life in healthy volunteers. Prog Neuropsychopharmacol Biol Psychiatry 33: 711–714.
44. Quinten C, Coens C, Mauer M, Comte S, Sprangers MA, et al. (2009) Baseline quality of life as a prognostic indicator of survival: a meta-analysis of individual patient data from EORTC clinical trials. Lancet Oncol 10: 865–871.
45. Chow TH, Lin YY, Hwang JJ, Wang HE, Tseng YL, et al. (2009) Therapeutic efficacy evaluation of $^{[111]}$In-labeled PEGylated liposomal vinorelbine in murine colon carcinoma with multimodalities of molecular imaging. J Nucl Med 50: 2073–2081.
46. Dazzi L, Ladu S, Spiga F, Vacca G, Rivano A, et al. (2002) Chronic treatment with imipramine or mirtazapine antagonizes stress- and FG7142-induced increase in cortical norepinephrine output in freely moving rats. Synapse 43: 70–77.
47. Rogo´z Z, Skaza G, Legunko B (2005) Repeated treatment with mirtazepine induces brain-derived neurotrophic factor gene expression in rats. J Physiol Pharmacol 56: 661–671.
48. Chow TH, Lin YY, Hwang JJ, Wang HE, Tseng YL, et al. (2008) Diagnostic and therapeutic evaluation of $^{[111]}$In-vinorelbine-liposomes in a human colorectal carcinoma HT-29/huc-bearing animal model. Nucl Med Biol 35: 623–634.
49. Qi H, Ma J, Liu YM, Yang L, Peng L, et al. (2009) Allostatic tumor-burden induces depression-associated changes in hepatoma-bearing mice. J Neurooncol 94: 367–372.
50. Cryan JF, Monbereau C, Vaessut A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 29: 571–625.