INTRODUCTION

A substantial decline in biomass of the Atlantic cod, *Gadus morhua* L., 1758, populations has been observed in recent decades. It might be related to overfishing and climate changes, as there has been an increase of average surface water temperature in some areas (e.g., North Sea) (Hutchinson et al. 2003). Since 1999, a plan for a long-term management of the cod stocks in the North Atlantic has been implemented by the EU and other countries. The plan was intended to reduce the fishing activity to sustain biological limits and to ensure spawning biomass for each stock. Twenty-seven main stocks of cod were recognized in the North Atlantic (Marteinsdóttir et al. 2005). Evolutionary effects of cod fisheries were documented using eco-genetic models (Eikeset et al. 2005). These effects are yet to be studied and understood in wild populations with the application of a variety of genetic and molecular markers. Comprehensive understanding of population structure contributes to proper conservation of genetic resources. The extremely high fecundity of cod may cause non-equilibrium behaviour in genetic structure at certain levels (Árnason et al. 2004).

Large scale geographic differentiation of the north eastern and north western Atlantic Ocean cod populations were ascertained by allozyme analysis and nuclear restriction fragment length polymorphism (RFLP) of anonymous cDNA loci (Mork et al. 1985, Pogson et al. 1995) and by studies of allele frequencies at pantophysin I locus (Case et al. 2005). Geographic differentiation on smaller scale, i.e., within eastern or western Atlantic populations were found most successfully at the blood protein loci (Dahle and Jørstad 1993), pantophysin I alleles (Case et al. 2005),

ANALYSIS OF POPULATION AND TAXONOMICAL STRUCTURE OF ATLANTIC COD, *GADUS MORHUA* (ACTINOPTERYGII: GADIFORMES: GADIDAE) FROM THE BALTIC SEA WITH USE OF MICROSATELLITE DNA

Agnieszka KIJEWSKA 1*, Beata WIĘCASZEK 2, and Tomasz KIJEWSKI 1

1 Department of Genetics and Marine Biotechnology, Institute of Oceanology PAS, Sopot, Poland

2 Division of Hydrobiology, Ichthyology and Biotechnology of Breeding, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Kazimierza Królewicza 4, 71-550 Szczecin, Poland

Kijewska A., Więcaszek B., Kijewski T. 2011. Analysis of population and taxonomical structure of Atlantic cod, *Gadus morhua* (Actinopterygii: Gadiformes: Gadidae) from the Baltic Sea with use of microsatellite DNA. Acta Ichthyol. Piscat. 41 (4): 307–314.

Background. Substantial declines in biomass of Atlantic cod, *Gadus morhua* L., one of the most valuable commercial fish species in the north Atlantic (including the Baltic Sea), has been observed in recent decades. A comprehensive understanding of the population structure contributes to proper management and conservation of genetic resources. We attempted to answer the question whether there exists differentiation among localized samples, and if so, whether this separation is large enough to warrant the recognition of distinct clades in cod as well as whether these distinct clades correspond to traditionally described regions of spawning and nursery areas or even stocks.

Materials and methods. Six microsatellites were used for finding differentiation between four sampling areas of *G. morhua* from the Baltic Sea (Puck Bay, Bay of Gdańsk, Pomeranian Bay, and Øresund) and two from the north-eastern Atlantic (North Sea and Barents Sea). Genetic differences among localities were estimated with *F*ST using Weir and Cockerham’s estimator 0. Genetic distances among samples were calculated and visualized by multidimensional scaling using XLStat (Addinsoft).

Results. There is a statistically supported structure pattern among sampling localities from the Baltic Sea. One of them is related to the population from the Barents Sea, second is mixing with cod migrating from the North Sea.

Conclusion. The level of heterozygosity and slight heterozygote deficiency suggest that, in case of all samples, we observed an isolation processes that could be an effect of withering or weakening the migrations between separate breeding stocks. This effect is most apparent for the most eastern populations from the Puck Bay and the Gulf of Gdańsk.

Keywords: Atlantic cod, *Gadus morhua*, microsatellites, Baltic Sea, north-eastern Atlantic
nuclear RFLP (Pogson et al. 2001), and microsatellites (Beacham et al. 2002, Nielsen et al. 2003). Microgeographic differentiation can be best identified by microsatellites (Knutsen et al. 2003, Nielsen et al. 2003), but also at other loci as pantophysin I and hemoglobin (Jónsdóttir et al. 1999, Karlsson and Mork 2005). Consequently, more stocks of cod can be defined as separate management units (Hutchinson et al. 2003).

The objective of this study was to test the hypothesis that differentiation among closely localized samples is strong enough to educate subunits of cod populations according to traditionally described regions of spawning and nursery areas or even stocks.

MATERIAL AND METHODS

Research area and samples. A total of 230 of cod specimens sampled from the Pomeranian Bay, Puck Bay, Bay of Gdańsk, Øresund, North Sea (Flamborough Head), and Barents Sea (Bear Isle) were examined. The relevant details are shown in Table 1 and Fig. 1. Samples were collected by scientific or commercial trawlers within 2002 and 2006.

Sample preparation. Fragments of fins and muscles with skin of adult fish were collected from all fish sampled. Genomic DNA from ca. 0.05 g of somatic tissue was isolated by a SDS/proteinase K and phenol/chloroform procedure (Sambrook et al. 1989).

Six polymorphic microsatellite loci were amplified using appropriate primers (Table 2). Each PCR reaction was performed in a total volume of 20 µL containing 2 ng of isolated DNA. Thirty cycles were performed for each pair of primers, with 1 min denaturation at 94°C (5 min in the first cycle), 30 s annealing at 57.3°C and 30 s extension at 72°C (5 min in the last cycle). The amplified DNA fragments were checked on 3.5% high-resolution agarose (MetaPhor, Lonza) gel for mtDNA length variants. DNA bands were UV-visualized by ethidium bromide staining (Sambrook et al. 1989). Gel images were captured using video camera and an appropriate frame grabber (Scion Image for Windows beta 4.0.2, Scion Corporation, MA, USA).

All computations concerning Hardy–Weinberg equilibrium were performed using the software GENEPOP (Raymond and Rousset 1995). Amounts of genetic variation within sampling localities were characterized by the observed (H0) and expected (H1) heterozygosities and by allele richness at each locus separately; significance was calculated with Chi-square test. Null allele estimation was provided with estimator of Brookfield (1996). Genetic differences among localities were estimated with FST using Weir and Cockermah’s (1984) estimator θ, both over all samples and between pairs of samples. Slatkin’s RST was not used because the number of analysed loci was smaller than 20, FST is considered more reliable under such circumstances (Gaggiotti et al. 1999). The FST was calculated as implemented in ARLEQUIN ver. 3.5 (Excoffier et al. 2005). Genetic distances (D; Nei 1983) among samples were estimated and visualized by multidimensional scaling using XLStat (Addinsoft). To obtain bootstrap support for observed structure the following procedure was applied. A matrix of Reynolds’ distances (Reynolds et al. 1983) was multiplied using the SEQBOOT procedure and obtained matrix was computed using the GENEDIST procedure of the PHYLIP software (Felsenstein 2004). The output matrices were used in the NEIGHBOR procedure to infer a neighbour joining (NJ) tree (Saitou and Nei 1987).

RESULTS

Genetic variation was moderate and in case of Baltic samples, similar to those presented by Nielsen et al. (2003). The FST was at level of 0.044 with P < 10−5 for total dataset. Similar value of FSC 0.040, P < 10−5 was computed as a measure of variation among populations and the level of inter group variation was very low (FCT = 0.004) and not significant. All pairwise FST differences were significant with P-values < 0.0001 (Table 3). A little bit surprising was the FST difference between the Puck Bay vs. the Gulf of Gdańsk and the Pomeranian Bay, which are much higher than the differences between all other samples. Generally one locus displayed lower level of polymorphism as compared to Nielsen et al. (2003) results—Gmo8 while Gmo19 had slightly more alleles than it was noted in previous analyses. We have identified 37 private alleles at global mean frequency of 0.019. The Pomeranian Bay has 10 of them, Øresund 8, Puck Bay 2, and Gulf of Gdańsk only one. While Tch12 appears to show the largest FST (0.100) with P-value < 0.001, Gmo35 appears to be the last discriminatory locus (FST = 0.021) and largest P-value (0.04) (Table 4).

Table 1

Fishing area (code)	Baltic Sea III d ICES	Øresund III b ICES	North Sea IV b ICES	Barents Seall b ICES
Puck Bay SD 26 (PUC)	Dec. 2005	54°02′N, 18°40′E	55°06′N, 00°03′E	73°30′N, 19°00′E
Gulf of Gdańsk SD 26 (GDA)	Dec. 2005	54°28′N, 18°42′E	54°02′N, 14°20′E	54°06′N, 00°03′E
Pomeranian Bay SD 24 (POM)	20 Oct. 2004	54°49′N, 12°42′E	—	—
Øresund SD 23 (ORE)	Oct. 2005	55°06′N, 00°03′E	—	—
Flamborough Head (NOR)	April 2002	54°02′N, 14°20′E	73°30′N, 19°00′E	73°30′N, 19°00′E

SD = ICES subdivision.

Characteristics of the samples of cod, Gadus morhua, collected by bottom-trawling.
The unrooted neighbour-joining tree inferred from Reynolds genetic distances shows Baltic populations more differentiated than between population from Øresund and the North Sea or the Barents Sea (Fig. 2). Nonetheless, the biggest significant difference is observed between sampling localities from the Baltic Sea and samples from Danish Straits, the North Sea and the Barents Sea.

Genetic differentiation between samples from the Baltic Sea and from Øresund, the North Sea and the Barents Sea is well visible on MDA plot, which displays that genetic distances between samples correlate with geographic distances. The first dimension may represent similarities between Barents and sampling localities from the eastern Baltic Sea, while second axis represents split between Baltic sampling localities and outer samples (Fig. 3) according to the geographical distances. Comparing it to the unrooted tree and other data including \(F_{ST} \), more probable is that 1st dimension represents reliable geographical and genetic arrangement.

The genetic diversity level was high, the total number of alleles varied between 13 for Gmo35 and 31 for Gmo8. All samples revealed heterozygote deficiency, for most of them the Hardy–Weinberg equilibrium was statistically significant (Table 5). The level of heterozygosity for Tch12 was generally lower than for other loci but in the Gulf of Gdańsk only four alleles were found and it appeared to be exclusively homozygotic for this locus. Thus, the Gulf of Gdańsk and Puck Bay appears to be more homozygotic than any other Baltic population (mean 0.49). We have observed a number of null alleles

Fig. 1. Sampling localities of cod, *Gadus morhua*: GDA = Gdańsk Bay, PUC = Puck Bay, POM = Pomeranian Bay, ØRE = Øresund, NOR = the North Sea, Flamborough Head, BAR = the Barents Sea
in all loci, most for Tch12 locus. To estimate if the null allele problem affects results of Hardy–Weinberg disequilibrium we used the method of Brookfield (1996) to calculate the expected frequency r of null alleles per locus from our total sample of 245 individuals. Obtained results showed that presence of null alleles did not affect parameters in consideration. These results suggest that null alleles are unlikely to be cause of the observed heterozygote deficiency in our data.

DISCUSSION

In many of the studies which have been conducted on invertebrates and fish, microsatellites revealed heterozygote deficiency (Knutsen et al. 2003, Nielsen et al. 2003). The deficiency can be, in this case, an artefact resulting from frequent null alleles or the result of inbreeding or reduction of mating populations. The latter factor is less probable in case of species that are widely distributed and consisting of many subpopulations (Hoarau et al. 2002). What also is important, the heterozygotes deficiency can reveal the fact that at the time of sampling, one could collect individuals from one shoal of fish belonging to same spawn. So in case of heterozygote deficiency, we assume that each sample was taken from one population characterized by the overdominance of specific alleles. Moreover, some loci are limited to few alleles and their F_{ST} estimates depend on sample and their geographical origin (Karlsson and Mork 2005). In the analyzed Baltic populations, microsatellite Tch12 is almost non-differentiating. Similar situation was described by Knutsen et al. (2003) for Atlantic cod from Skagerrak. Microsatellite Gmo19 described by O’Leary et al. (2007) as was also locus characterized with slight deficit of heterozygotes for the Barents Sea sample. We found deficit of heterozygotes for the Barents Sea, Pomeranian Bay and for the Gulf of Gdańsk. Nonetheless, all loci have significant F_{ST} values.

We have observed non-random distribution of genotypes for all loci, supporting the interpretation of heterozygotes deficiency. O’Leary et al. (2007) found that Atlantic cod population is structured across the species range; the Baltic Sea population was recognized as the most differentiated from the Atlantic populations. These

Locus	Primer sequences and polymorphism characteristics of microsatellite loci of cod, *Gadus morhua*
	Table 2
	Table 3
	Table 4

Locus	Sequence	Primers (5′–3′)	Size [bp]	GenBank Accession number
Gmo81	GACA	R: TGGGGGAGGCATCTGTCATTCA F: GCAAAACGAGATGCAGACACCC	110–205	AF159238
Gmo191	GACA	R: GTCTTGGCTGTAAGTCACTGTTG F: CACAGTGAGAATGCAACCCTG	120–220	AF159232
Gmo351	ACC	R: CCTACATCTAGCCCTGTTAAC F: GAGGTGCTTTTGAAGATG	110–145	AF159235
Gmo371	GACA	R: CGTGGGATACATGGGTACCT F: GAGCTACCTTGTTGTAAATC	220–290	AF159237
Tch11	GATA	R: TCG AGT TCA GGT GGA CAA F: ATC CAT TGG TGT TTC AAC	121–193	AF178501
Tch122	GGTT	R: AGTACAGCTTGTTAGTCTCGG F: CAAAATTCGTCACCTGTTACC	122–146	AF178502

1 primers designed by Miller et al. (2000); 2 primers designed by O’Reilly et al. (2000); R = reverse primer; F = forward primer.

Sampling locality	PUC	GDA	POM	ØRE	NOR	BAR
Puck Bay (PUC)	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Gulf of Gdańsk (GDA)	0.07072	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Pomeranian Bay (POM)	0.06338	0.04135	<0.00001	<0.00001	<0.00001	<0.00001
Øresund (ØRE)	0.05186	0.03587	0.04723	<0.00001	<0.00001	<0.00001
North Sea (NOR)	0.05544	0.02467	0.04700	0.02523	<0.00001	<0.00001
Barents Sea (BAR)	0.04982	0.04210	0.04135	0.04441	0.02623	0.02623

Locus	F_{ST}	P-value
Gmo8	0.046	<0.001
Gmo19	0.027	0.001
Gmo35	0.021	0.040
Gmo37	0.044	<0.001
Tch11	0.078	0.100
Tch12	0.100	0.052
Overall	0.052	<0.001
findings were confirmed using wide range of genetic markers (Pogson et al. 1995, O’Leary et al. 2006). Here we show that population structure was also identified within the Baltic Sea itself, with the Puck Bay population appearing to be the most differentiated from others analyzed in this study. The differentiation between the Puck Bay and the other samples is an effect of higher homogeneity of this sample. Other reason, postulated by some authors, could be the difference between Atlantic cod from the central- and the eastern Baltic Sea including ICES subdivision 26. The eastern cod characteristics are closely related to those of the Barents Sea population (Sick 1965, Sobiecka 2007). In contrast, Nielsen et al. (2003) presented data supporting hypothesis that the Baltic cod is the most related to the North Sea population. The differentiation between the Baltic Sea populations may solve these inconsistencies. The western Baltic populations are strongly influenced by the North Sea cod whilst the eastern population is “older” and still shares some features with the population from the Barents Sea. This hypothesis is supported by our own results, where the lowest genetic differentiation was observed between the Puck Bay and the sample from the Barents Sea (0.0498). Additionally, the Øresund sample is more closely related to the sample from the Puck Bay than the Gulf of Gdańsk. Nielsen et al. (2003), using 9 microsatellite loci found that in the Danish Strait cod is the hybrid swarm as an effect of mixing of western and eastern Atlantic cod. The same author suggested that the level of mixing of these subpopulations and the outreach of the hybrid zone depends on the level the North Sea water inflows towards the eastern Baltic. Also Bleil and Oeberst (2002) suggested that in the Arkona basin (Baltic; lat 54°41′N, long 13°26′E) two cod subspecies: Gadus morhua morhua L., 1758 and G. morhua callarias L., 1758 mix during the spring and summer spawn. Consequently those authors proposed the theory that western stock is represented mainly by the Belt Sea cod subspecies (G. morhua morhua), while the eastern stock is represents mainly by the Baltic cod (G. morhua callarias). These could clarify the status of Øresund sample if we accept that it represents separate stock of well mixed

![Fig. 2. Samples of cod, Gadus morhua, based on unrooted neighbour-joining tree inferred from Reynolds genetic distances; Only Baltic populations are differentiated with significant statistical support; GDA = Gdańsk Bay, PUC = Puck Bay, POM = Pomeranian Bay, ØRE = Øresund, NOR = the North Sea, Flamborough Head, BAR = the Barents Sea](image)

![Fig. 3. Patterns of geographic structure in Atlantic cod, Gadus morhua, revealing multidimensional scaling (MDS) of matrix of genetic distances (D; Kruskal’s stress = 0.104); GDA = Gdańsk Bay, PUC = Puck Bay, POM = Pomeranian Bay, ØRE = Øresund, NOR = the North Sea, Flamborough Head, BAR = the Barents Sea](image)
two subspecies differing more from the Baltic samples than from the North samples (the North Sea and the
Barents Sea pooled together). Pairwise F_{ST} for the
Øresund sample and the North Sea sample is low
(0.0253). Comparison of groups of populations revealed
also that when the Baltic group is divided in two sub-
groups (Pomeranian Bay + Øresund and Puck Bay + The
Gulf of Gdańsk) the pairwise F_{ST} (0.029) is higher than in
case of any other grouping (F_{ST} of all comparisons in
range of 0.014–0.016). Contrary to this results the neigh-
bour-joining (NJ) tree based on Reynolds genetic dis-
tances is less clear suggesting that sample from the
Pomeranian Bay is closer related to two other Baltic samples
than to Øresund sample. Nonetheless, statistical sup-
port for this topology is not conclusive and finally it is
most probable that both samples, from the Pomeranian
Bay and Øresund are exceptional due to localization
inside the admixture zone.

The F_{ST} was highest for the Puck Bay vs. the Gulf of
Gdańsk, and the Pomeranian Bay comparisons (0.071 and
0.063, respectively). This could be an effect of small num-
bers of fish sampled and possible sampling bias (time of
sampling, range of age, and depth of hauling) or the result
of special status of the Puck Bay sample—its isolation
makes it a potential nursery area. As it is shown in Table 3,
the characteristic of the Puck Bay fish, in relation to six
microsatellite loci, suggests strong differentiation
between the Puck Bay- and neighbouring population. The
main reason seems to be the fact that the Gulf of Gdańsk
sample was collected during pre-spawning concentration
(Aro 2000) of cod from the eastern Baltic, which were
usually older (as confirmed by observed age classes),
while the group of cod collected from the Puck Bay, were
most probably feeding juveniles. Only two individuals
reached the highest noted age in this group (IV) while
standard range of age classes in other groups was mostly
IV–VI (Table 3).

A separate problem in case of the Baltic group is situa-
tion of cod in relation to overfishing and progressing
limitation of accessible spawning areas as an effect of

Locus	PUC	POM	GDA	ORE	BAR	NOR	Mean $N_A/locus$
Gmo8							15.83
N_A	8	12	12	19	22	22	
H_{exp}	0.801	0.878	0.889	0.896	0.935	0.939	
H_{obs}	0.179	0.560	0.593	0.760	0.679	0.905	
F	0.777	0.362	0.334	0.151	0.274	0.036	
Gmo19							16.67
N_A	13	18	15	16	19	19	
H_{exp}	0.926	0.926	0.923	0.883	0.925	0.937	
H_{obs}	0.786	0.600	0.667	0.880	0.600	0.829	
F	0.152	0.352	0.277	0.003	0.352	0.116	
Gmo35							9.33
N_A	9	7	10	12	9	9	
H_{exp}	0.856	0.795	0.842	0.871	0.872	0.873	
H_{obs}	0.393	0.440	0.515	0.510	0.347	0.615	
F	0.541	0.447	0.388	0.414	0.602	0.295	
Gmo37							16.33
N_A	17	16	14	18	16	17	
H_{exp}	0.914	0.913	0.910	0.890	0.918	0.933	
H_{obs}	0.714	0.680	0.568	0.700	0.600	0.884	
F	0.219	0.255	0.376	0.213	0.346	0.053	
Tch11							16.83
N_A	14	14	14	18	18	18	
H_{exp}	0.869	0.917	0.926	0.933	0.907	0.933	
H_{obs}	0.714	0.680	0.609	0.660	0.625	0.756	
F	0.178	0.258	0.342	0.293	0.311	0.189	
Tch12							6.50
N_A	5	8	4	6	8	8	
H_{exp}	0.600	0.810	0.675	0.727	0.745	0.409	
H_{obs}	0.148	0.375	0.000	0.171	0.136	0.306	
F	0.753	0.537	1.000	0.764	0.817	0.252	

Mean N_A	11.00	12.50	11.50	15.67	15.33	15.50
Mean H_{exp}	0.83	0.87	0.86	0.87	0.88	0.84
Mean H_{obs}	0.49	0.56	0.49	0.61	0.50	0.72

ML F_{IS} 0.414* 0.368* 0.413* 0.294* 0.439* 0.147* 0.01

PUC = Puck Bay, POM = Pomeranian Bay, GDA = Gdańsk Bay, ORE = Øresund, BAR = the Barents Sea, NOR = the North Sea, Flamborough Head, ML = multilocus, $N_A =$ number of alleles, H_{exp} = unbiased expected heterozygosity (Nei 1978), H_{obs} = observed heterozygosity, and F = inbreeding coefficient; Chi-square significant values (bold) for $P < 0.05$. Multilocus F_{IS}, * $P < 0.01$.
poor water inflows from the North Sea. In the Baltic Sea, the salinity of surface waters decreases eastwards. It also increases with depth. Only the deepest areas of the southern Baltic Sea can serve as permanent breeding grounds for marine species. There are few such areas in the southern Baltic Sea namely the Bornholm and Gdansk basins (Nissling et al. 2002). The above-mentioned limitations undoubtedly affect the population structure of cod, especially of eastern populations as those with decreased access to “permanent” spawning areas, through enforcement of spawning on one permanent spawning area which is the Bornholm zone. The Baltic cod homing behaviour has not been well studied but it is possible that cod may use different spawning grounds in successive years (Otterlind 1985). Published evidence indicates that cod spawning migration in the Baltic Sea is much more affected by prevailing hydrographical situation than by its homing instinct (Aro 2000).

Overfishing of Atlantic cod stocks in the Baltic Sea has been a permanent problem within the last two decades (Döring and Eggelkraut 2008) and it can also influence the genetic structure of cod in the Baltic Sea by lowering the its recruitment. The genetic structure of cod can also be influenced by environmental variability when the spawning stock is low (Brander 2005). The poor condition of the eastern stock could be a result of higher homogeneity of eastern populations.

Generally, characterization of Baltic samples of cod reveals strong difference between eastern- and western samples. Undoubtedly the level of homogenization of eastern samples increases differentiation estimates to some degree as do the geographic isolation and accessibility of spawning areas of appropriate salinity and temperature. Also migration of the Atlantic cod from the North Sea has impact on the status of western Baltic cod population by mixing with “native” fish (Nielsen et al. 2003). On the other side, overfishing has an effect on isolation of individual stocks and consequently increases their differentiation. Nonetheless, there is a clear difference between eastern and western stock of Gadus morhua in Baltic suggesting the existence of separate stocks or even subspecies as it was postulated by Sick (1965) and Bleil and Oeberst (2002). In the future, genetic structure of Baltic cod should be carefully observed by all available procedures because of possible changes in the relation between G. morhua morhua and G. morhua callarias. In turn, this may affect significantly the level of cod biodiversity, and in effect, its sensitivity to the progressing changes of the environment.

ACKNOWLEDGMENTS

Authors thank Dr. Artur Burzyński from the Institute of Oceanology PAS for discussing key issues of this work.

REFERENCES

Árnason E. 2004. Mitochondrial cytochrome b DNA variation in the high-fecundity Atlantic cod: Trans-Atlantic clines and shallow genealogy. Genetics 166 (4): 1871–1885. DOI: 10.1534/genetics.166.4.1871

Aro E. 2000. The spatial and temporal distribution patterns of cod (Gadus morhua callarias L.) in the Baltic Sea and their dependence on environmental variability—implications for fishery management. Academic dissertation. University of Helsinki, Finland.

Beacham T.D., Brattey J., Miller K.M., Le K.D., Withler R.E. 2002. Multiple stock structure of Atlantic cod (Gadus morhua) off Newfoundland and Labrador determined from genetic variation. ICES Journal of Marine Science 59 (4): 650–665. DOI: 10.1006/jmsc.2002.1253

Bleil M., Oeberst R. 2002. Spawning areas of the cod stock in the western Baltic Sea and minimum length at maturity. Archive of Fishery and Marine Research 49 (3): 243–258.

Brander K.M. 2005. Cod recruitment is strongly affected by climate when stock biomass is low. ICES Journal of Marine Science 62 (3): 339–343. DOI: 10.1016/j.ijicsms.2004.07.029

Brookfield J.F.Y. 1996. A simple method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology 5 (3): 453–455. DOI: 10.1046/j.1365-294X.1996.00098.x

Case R.A.J., Hutchinson W.F., Hauser L., Van Oosterhout C., Carvalho G.R. 2005. Macro- and micro-geographic variation in pantophysin (Pau1) allele frequencies in NE Atlantic cod Gadus morhua. Marine Ecology Progress Series 301: 267–278. DOI: 10.3354/meps301267

Dahle G., Jorstad K.E. 1993. Haemoglobin variation in cod—a reliable marker for Arctic cod (Gadus morhua L.). Fisheries Research 16 (4): 301–311. DOI: 10.1016/0165-7836(93)90143-U

Döring R., Eggelkraut T.M. 2008. Investing in natural capital as management strategy in fisheries: The case of the Baltic Sea cod fishery. Ecological Economics 64 (3): 634–642. DOI: 10.1016/j.ecolecon.2007.04.008

Excoffier L., Laval G., Schneider S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.

Eikset A.M., Hjermann D.O., Dunlop E., Stenseth N.Chr., Ottersen G., Olsen E.M., Dieckmann U. 2005. Fisheries-induced evolution in Northeast Arctic cod. Pp. 284–285. In: 2005 ICES Annual Science Conference: Cod in a Changing Climate. Session AA 16. www.ices.dk/iceswork/asc/2005/Abstracts/AA/AA-list.pdf.

Felsenstein J. 2004. Phylop (Phylogeny Inference Package v 3.6). University of Washington, Seattle WA, USA. http://evolution.genetics.washington.edu/phylop.html.

Gaggiotti O.E., Lange O., Rassmann K., Giddon C. 1999. A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Molecular Ecology 8 (9): 1513–1520. DOI: 10.1046/j.1365-294X.1999.00730.x

Hoarau G., Rijnsdorp A.D., Van Der Veer H.W., Stam W.T., Olsen J.L. 2002. Population structure of plaice (Pleuronectes platessa L.) in northern Europe: microsatellites revealed large-scale spatial and temporal homogeneity. Molecular Ecology 11 (7): 1165–1176. DOI: 10.1046/j.1365-294X.2002.01515.x

ACKNOWLEDGMENTS

Authors thank Dr. Artur Burzyński from the Institute of Oceanology PAS for discussing key issues of this work.
Hutchinson W.F., van Oosterhout C., Rogers S.I., Carvalho G.R. 2003. Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proceedings of the Royal Society of London, Series B 270 (1529): 2125–2132.

DOI: 10.1098/rspb.2003.2493

Jónsdóttir Ó.D.B., Imsland A.K., Danielsdóttir A.K., Thorsteinsson V., Naevdal G. 1999. Genetic differentiation among Atlantic cod in south and south-east Icelandic waters: synaptophylin (Syn 1) and haemoglobin (HbI) variation. Journal of Fish Biology 54 (6): 1259–1274.

DOI: 10.1111/j.1095-8649.1999.tb02053.x

Karlsson S., Mork J. 2005. Deviation from Hardy–Weinberg equilibrium, and temporal instability in allele frequencies at microsatellite loci in a local population of Atlantic cod. ICES Journal of Marine Science 62 (8): 1588–1596.

DOI: 10.1016/j.icesjms.2005.05.009

Knutsen H., Jorde P.E., André C., Stenseth N.C. 2005. Evolution of genes and proteins. Sinauer Associates, Sunderland, MA, USA.

DOI: 10.1139/f85-198

L. and G. Gadus morhua callarias. 2003. Isolation of twenty low stutter di- and tetranucleotide microsatellites for population analyses of walleye pollock and other gadoids. Journal of Fish Biology 56 (5): 1074–1086.

DOI: 10.1111/j.1095-8649.2000.tb02124.x

Otterlind G. 1985. Cod migration and transplantation experiments in the Baltic. Zeitschrift für Angewandte Ichthyologie 1 (1): 3–16.

Pogson G.H., Mesa K.A., Boutiller R.G. 1995. Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics 139 (1): 375–385.

Pogson G.H., Taggart C.T., Mesa K.A., Boutiller R.G. 2001. Isolation by distance in the Atlantic cod, Gadus morhua, at large and small geographic scales. Evolution 55 (1): 131–146.

Raymond M., Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86 (3): 248–249. http://kimura.univ-mlp.fr/~rousset/Genepop.htm.

Reynolds J.B., Weir B.S., Cockerham C.C. 1983. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105 (3): 767–779.

Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4 (4): 406–425.

Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, NY, USA.

Sick K. 1965. Haemoglobin polymorphism of the cod in the Baltic Sea and in the Danish Belt Sea. Hereditas 54 (1): 19–48.

DOI: 10.1111/j.1601-5223.1965.tb02004.x

Sobecza K. 2007. Parasites of Atlantic cod (Gadus morhua morhua L. and Gadus morhua callarias L.) from the chosen regions of the Atlantic and the Baltic Sea. Academic dissertation No. 245, Agricultural University of Szczecin, Poland. [In Polish, with English summary.]

Weir B.S., Cockerham C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38 (6): 1358–1370.

DOI: 10.2307/2408641

Received: 30 April 2011
Accepted: 5 December 2011
Published electronically: 31 December 2011