Recent Advances in Pharmacological Intervention of Osteoarthritis: A Biological Aspect

Jinxia Deng¹, Zhixian Zong¹, Zhanpeng Su¹, Haicong Chen¹, Jianping Huang²,³, Yanru Niu¹, Huan Zhong¹* and Bo Wei¹*

¹Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China, ²College of Dentistry, Yonsei University, Seoul, South Korea, ³Department of Stomatology, Guangdong Medical University, Zhanjiang, China

Osteoarthritis (OA) is a degenerative joint disease in the musculoskeletal system with a relatively high incidence and disability rate in the elderly. It is characterized by the degradation of articular cartilage, inflammation of the synovial membrane, and abnormal structure in the periarticular and subchondral bones. Although progress has been made in uncovering the molecular mechanism, the etiology of OA is still complicated and unclear. Nevertheless, there is no treatment method that can effectively prevent or reverse the deterioration of cartilage and bone structure. In recent years, in the field of pharmacology, research focus has shifted to disease prevention and early treatment rather than disease modification in OA. Biologic agents become more and more attractive as their direct or indirect intervention effects on the initiation or development of OA. In this review, we will discuss a wide spectrum of biologic agents ranging from DNA, noncoding RNA, exosome, platelet-rich plasma (PRP), to protein. We searched for key words such as OA, DNA, gene, RNA, exosome, PRP, protein, and so on. From the pharmacological aspect, stem cell therapy is a very special technique, which is not included in this review. The literatures ranging from January 2016 to August 2021 were included and summarized. In this review, we aim to help readers have a complete and precise understanding of the current pharmacological research progress in the intervention of OA from the biological aspect and provide an indication for the future translational studies.

Keywords: osteoarthritis, DNA, RNA, exosomes, platelet-rich plasma, protein, gene

INTRODUCTION

Osteoarthritis (OA) is a degenerative chronic joint disease mainly affects the elderly, causing pain and loss of movement function. The trends of an aging population worldwide and increasing obesity are likely to make OA a leading cause of disability in the elderly (Hunter et al., 2020). Although many risk factors such as abnormal joint biomechanics, bone-mass index, joint injury, and genetic variations have been identified in the causation of OA, the etiology of OA is still poorly understood. In a traditional point of view, cartilage degradation was purely caused by...
mechanical imbalance (Francisco et al., 2018). Currently, increasing evidence shows that OA is a complex condition, in which the whole joints, including cartilage, subchondral bone, and synovium probably, are all involved in the pathogenesis (Goldring and Goldring, 2016), among which degradation of cartilage caused by matrix proteases plays a pivotal role (Pérez-García et al., 2019). In general, OA is a disease resulting from an imbalance between catabolic and anabolic events. In recent years, biologic agents become more and more attractive as they either target specific catabolic events, such as inflammation or matrix degradation, or promote anabolic events, such as anti-inflammation or chondrogenesis. In this review, we provide an update of the current treatment strategies and recent research progress in the pharmacological intervention of OA from the biology aspect (Figure 1).

METHODS

We searched PubMed for combination of the following indexed subject headings [MeSH]: osteoarthritis, DNA, noncoding RNAs, exosomes, platelet-rich plasma, and proteins.

Current Treatment Strategies

Clinical management for OA patients depends on their development stages of the disease. As the pathogenesis of OA is complicated, there is still no specific intervention for the treatment of OA. The primary goal for OA management is to alleviate pain and stiffness and maintain the joint function (Hermann et al., 2018). The treatment strategies for OA can be divided into three categories: nonpharmacological interventions, pharmacological interventions, and surgical interventions. Current consensus guidelines recommend the use of combination of nonpharmacological interventions, pharmacological interventions, and surgical interventions where necessary. The majority of individuals with OA can be managed successfully with a combination of nonpharmacological interventions and pharmacological interventions. However, surgical approaches should be considered at the late stages to repair the cartilage lesions or even replace the joint to regain the function.

Lifestyle modification and physical therapy are the two main nonpharmacological interventions. Body weight control in obese patients improves the symptoms and reduces the risk of symptomatic OA will develop. Exercise strengthens the muscle...
around the joints and maintain the stability. Physical therapy, such as pulsed electromagnetic fields (Yang et al., 2018a), extracorporeal shock wave therapy (ESWT) (Yu et al., 2017), acupuncture (Tu et al., 2021), and so on, improves the mobility and relieves the symptoms. Chondroitin sulfate and glucosamine have been used as dietary supplements.

Nonpharmacological interventions could be insufficient for many patients who develop symptomatic OA. Pharmaceutical agents, especially acetaminophen and nonsteroidal anti-inflammatory drugs, play a key role in symptom control. Other agents such as duloxetine (Weng et al., 2020), opioids, intra-articular steroid (Wijn et al., 2020), and viscosupplementation injections are also approved for OA management. These drugs may effectively relieve the pain. However, many safety concerns have been raised regarding their side effects.

Surgical interventions are inevitable for many patients. Joint reservation surgeries, such as high tibial osteotomy and joint distraction, have shown symptomatic improvement (van der Woude et al., 2017). However, evidence for the long-term effectiveness is still to be confirmed. Unicompartmental knee arthroplasty (Murray and Parkinson, 2018), total knee arthroplasty (TKA) (Gademan et al., 2016), and total hip arthroplasty are widely accepted by the patients with end-stage OA.

Recent Progress in Biological Interventions
DNAs or Gene-Based Therapy
DNA (Minchin and Lodge, 2019) is a double-stranded and long-chain polymer composed of four deoxyribonucleotides. DNA fragments with genetic information are called genes. At present, many genes are reported to be related to the occurrence and development of OA by increasing susceptibility, enhancing cartilaginous matrix degradation, preventing cartilage from repair, increasing the expression of inflammatory factors, or promoting fibroblast transformation. First, the susceptibility genes of OA mainly include ASPN (Wang et al., 2018), ADIPOQ (Shang et al., 2019), AKNA (Zhao et al., 2020a), DPEP1 (Zhang et al., 2021a), rs1065080 (Lu et al., 2019a), TLR7 (Wang et al., 2020a), RPT4 (Wang et al., 2020a), CRIP1 (Wang et al., 2020a), ZNF688 (Wang et al., 2020a), TOP1 (Wang et al., 2020a), EIF1AY (Wang et al., 2020a), RAB2A (Wang et al., 2020a), ZNF281 (Wang et al., 2020a), UIMCG1 (Wang et al., 2020a), and PRKACB (Zhao, 2021). Second, the genes that promote the degradation of cartilage mainly include ADAMTS5 (Jiang et al., 2021), ADAM12 (Lv et al., 2017), JUN (Rhee et al., 2017), PTGS2 (Zhou et al., 2019a), MMP1 (Zhou et al., 2019a), MMP3 (Zhou et al., 2019a), MMP13 (Zhou et al., 2019a), AGT (Wang et al., 2020b), and rs2830585 (Zhou et al., 2019b). Third, several genes such as BMP3 (He et al., 2018), rs1799750 (Geng et al., 2018), and CHI3L1 (Song et al., 2021) show an inhibitory effect on cartilage repair. Fourth, the genes that regulate the expression of inflammatory cytokines in chondrocytes mainly include renin (Wu et al., 2019a), ACE (Wu et al., 2019a), Ang II (Wu et al., 2019a), AT1R (Wu et al., 2019a), AT2R (Wu et al., 2019a), ATF3 (Iezaki et al., 2016), PTGS2 (Lin et al., 2018; Wang et al., 2020a), CCL20 (Lin et al., 2018), CHI3L1 (Lin et al., 2018), LIF (Lin et al., 2018), CXCL8 (Lin et al., 2018), and CXCL12 (Lin et al., 2018). Last but not least, COL6A3/ACTG1 (Li et al., 2020a) and fibronec1 (FN1) (Wu et al., 2020a) were found involved in fibroblast transformation. Although many catalytic genes have been found, there are very limited key anabolic genes that can promote the proliferation or differentiation of chondrocytes or encode key anchoring collagen molecules and the corresponding genes including GDF5 (Sun et al., 2021), Gas7 (Zhong et al., 2020), PRELP (Li et al., 2019a), TGF-B- (Tao et al., 2016), SOX9 (Tao et al., 2016), and COL9A1 (Durand et al., 2020).

Genetic modification of joints has been achieved in preclinical models by ex vivo and in vivo strategies using a variety of vectors (Evans et al., 2018). Delivering genes from the body to the joints through direct intra-articular injection is a feasible way to speed up treatment. However, many vectors are inflammatory, immunogenic, or unsafe or provide only short-term transgene expression after successfully transferring cells into joint tissues. In order to solve this problem, an ideal delivery vector in vivo has been discovered; it is the adeno-associated virus (AAV), which is safer, more effective, and less immunogenic than other vectors (Evans et al., 2018). In addition, AAV also prolongs the expression time of transgenes in joints. When injected into the joint, the recombinant AAV will transduce synovial lining cells and chondrocytes at the thickness of the articular cartilage (Watson Levings et al., 2018). Besides the genetic regulation, epigenetic regulations, such as DNA methylation, may be also involved in OA pathology. Hypermethylation leads to a decrease in the expression of COL9A1, destroys the integrity of cartilage, and promotes the development of OA (Miranda-Duarte, 2018). SOX9 is a key transcription factor for cartilage formation in chondrocytes. The DNA methylation of SOX9 gene promoter in chondrocytes of patients with OA increases. This increase in methylation reduces the binding affinity of transcription factors, thereby reducing the expression of SOX9 in OA chondrocytes (He et al., 2020a). The DNA methyltransferases could be the potential targets to the treatment of OA in the future.

Noncoding RNA-Based Therapy
As mentioned, many studies in OA have focused on the epigenetic regulation of its pathogenesis and potential targets for therapy, specifically noncoding RNA (ncRNA). Human genome is estimated to contain ~2% protein-coding RNA, whereas a vast majority of the genome comprises ncRNA. These ncRNAs, such as microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), are involved in the pathological development of OA, which can be used as diagnostic and therapeutic markers for OA progression and prognosis. Recent preclinical evidence shows that many ncRNAs can directly affect the expression of key genes involved in OA, which have great translational potential in OA treatment (Duan et al., 2020). Future research on elucidating the role of ncRNAs will also help in better understanding the etiology of OA. In particular, research and development of therapeutic targets for OA provide important clues (Cong et al., 2017). However, studies also report that many ncRNAs are considered the critical
elements in cancer development (He et al., 2021a). Sufficient preclinical safety inspections should be performed before clinical use (Xie et al., 2020a).

miRNA

Among those ncRNAs, miRNAs are most popular in recent years, with approximately 22 nucleotides, functioning in RNA silencing and posttranscriptional regulation of gene expression. Many studies have reported that several miRNAs could play an important role in regulating bone and cartilage homeostasis (Shen et al., 2019) (Table 1), through regulating the signaling pathways involved in extracellular matrix (ECM) degradation, apoptosis or hypotrophy of chondrocytes, or synovial inflammation.

LncRNA

LncRNAs are another type of ncRNAs that are longer than 200 nucleotides (Zhang et al., 2021b). LncRNA–RNA interaction controls mRNA translation and degradation, or as silent miRNA sponges. They are also regarded as important regulators of cartilage development (Table 2). The anti-OA mechanism of lncRNA may be achieved by competitively

TABLE 1 | miRNA and the targets in osteoarthritis.

Functions	Effects	miRNAs	Targets	References
Negative regulation	Inhibit chondrocyte proliferation	miR-21	GDF-5	Sekar (2021)
Promote osteoclast formation		miR-21	Unknown	Sekar (2021)
Promote chondrocyte apoptosis		miR-146a	SMAD4	Malermed (2018)
		miR-1236	PI3K/3B	Wang et al. (2020c)
		miR-34a	Vistatin (NF-κB)/ADAMTS-4	Chieschi et al. (2019)
		miR-181a	GPD1L	Zhai et al. (2017)
		miR-155	GPD1L	Zhai et al. (2017)
		miR-384-5p	SOX9	Zhang et al. (2018a)
		miR-9	Sirtuin-1	D’Adamo et al. (2017)
		miR-335-5p	HBK1	Lu et al. (2021)
		miR-107	Traf3	Zhao et al. (2019)
	Promote inflammation	miR-149-5p	AGT	Wang et al. (2020b)
	Increase matrix degradation	miR-33a	TGF-β1/Akt/SREBP-2	Ghaffouri-Fard et al. (2021)
		miR-483-5p	HDAC4, Matrin3/Timp2	Wang et al. (2019a)
		miR-101	SOX9	Chu et al. (2019)
	Promote cartilage degradation	miR-141/200c	SIRT1	Ji et al. (2020a)
		miRNA 218-5p	PIK3C2A	Lu et al. (2017)
		miR-146b	Alpha-2-macroglobulin (A2M)/SOX5	Li et al. (2019b)
		miR-21-5p	FGFl1	Wang et al. (2019b)
		miR-98	Bcl-2	Wang et al. (2017b)
		miR-582-5p	Runx2	Wang et al. (2019c)
		miR-324-5p	GLI1 and SMO	Woods et al. (2019)
Positive regulation	Promote chondrocyte proliferation	miR-132	PTEN/P3K/AKT	Zhang et al. (2021c)
		miR-29a	MMP-13/ADAMTS-5	Komori (2016)
		miR-138	NEK2	Xu et al. (2019)
		miR-4784	Col2a1/MMP-3	Liu et al. (2018)
		miR-210	HIF-3a	Zhao et al. (2020c)
		miR-101	Sox9/Runx2	Gao et al. (2019)
		miR-210-3p	SOX9/COLII	Yang et al. (2018b)
	Promote cartilage regeneration	miR-149-5p	FUT-1	Çelik et al. (2019)
	Inhibit chondrocyte apoptosis	miR-766-3p	AFM1	Li et al. (2020b)
		miR-132	PTEN/P3K/AKT	Zhang et al. (2021c)
		miR-582-3p	PI3K/AKT	He et al. (2020b)
		miR-456-3p	PI3K/AKT	Wen et al. (2020)
		miR-138	NEK2	Xu et al. (2019)
		miR-93-5p	TC4	Xue et al. (2019)
Repression of chondrocyte autophagy		miR-130a	HOTAIR IncRNA	Hu et al. (2019)
Inhibit osteoclast formation		miR-125b	Unknown	Yoshiko and Minamizaki (2020)
Inhibit the degradation of cartilage		miR-221	SDF1/CXCR4	Zheng et al. (2017)
Decrease metabolic enzyme activity		miR-1	FZD7	Xie et al. (2020a)
Suppress inflammation		miR-582-3p	YAP1	He et al. (2020b)
		miR-335-5p	3-MA	Zhong et al. (2019)
Inhibit ECM degradation		miR-106a5p	GLIS3	Ji et al. (2018)
		miR-582-3p	YAP1	He et al. (2020b)
Enhance cartilage repair		miRNA-140	MMP-13/ADAMTS-5	Si et al. (2017)
Inhibit the destruction of articular cartilage		miR-145	MKK4	Hu et al. (2017)
		miR-204	Runx2	Lin et al. (2019)

Deng et al. Pharmacological Treatment of Musculoskeletal Diseases
binding miRNA, reducing the binding of miRNA and downstream genes, and increasing the transcription and expression of downstream genes (Wu et al., 2019b).

CircRNA
CircRNA is a covalently closed circRNA molecule that contains exon sequences and is spliced at the canonical splicing site (Tam et al., 2019), functioning as miRNA sponges or competing endogenous RNAs that naturally sequester and competitively inhibit miRNA activity. CircRNAs also emerge as a new player in the development of OA through mechanisms such as interfering chondrocyte proliferation and apoptosis, regulating ECM degradation, and inflammation (Yang et al., 2020) (Table 3).

Table 2 IncRNAs and the targets in osteoarthritis.

Functions	RNAs	Target	References
Negative regulation	MIAI	miR-132	Li et al. (2019b)
	DANCR	miR-216a-5p/JAK2	Zhang et al. (2018b)
	TM1P3	miR-22	Li et al. (2019c)
	CTD-2574D22.4	Unknown	Li et al. (2018a)
	CAIF	miR-1246	Qi et al. (2019)
	TNDSF10	miR-376-3p/FGFR1	Huang et al. (2019b)
	LOC101928134	IFNA1	Yang et al. (2019a)
	CASA2	Unknown	Huang et al. (2019c)
	CHRF	microRNA-146a	Yu et al. (2019)
	Nespas	miR-291a-3p	Park et al. (2019)
	H19	miR-130a	Hu et al. (2019)
	THRIK	miR-130b	Liu et al. (2019c)
	TUG	miR-27	Tang et al. (2018)
	P21	miR-488-3p	Han and Liu (2018)
	CIR	miR-374a	Li et al. (2017a)
	PVT1	miR-211	Li et al. (2017b)
	XIST	miR-211	Li et al. (2017b)
	MEHNL1-AS1	KCNMA1	Li et al. (2018b)
	HOTAIR	miR-17-5p	Hu et al. (2018)
	FAS-AS1	miR-130a-3p	He and Jiang (2020)
	TMSB4	miRNA-152	Zhu et al. (2018)
	HOTTIP	Unknown	Liu et al. (2016)
	LINC02288	miR-374a-3p	He et al. (2021b)
	LINC01534	miR140-5p	Fu et al. (2021)
	MSR	miR-152	Wei et al. (2019)
	PART1	miR-373-3p/sox4	Liu et al. (2016)
	GAS5	miR-34a/bcl-2	Zhu and Jiang (2019)
	NEAT1	miR-193a-3p/sox5	Ji et al. (2020b)
Positive regulation	FOXD2-AS1	miR-27a-3p	Wang et al. (2019d)
	ANCR	miR-206	Cao et al. (2018)
	ANRIL	TGF-β1	Li et al. (2019a)
	DILC	miR-122-5p/DUSP4	Li et al. (2019b)
	DNM3OS	IL-6	Huang et al. (2019d)
	MIR4435-2HG	miR-126/IF1	Ai and Yu (2019)
	SNHG1	Unknown	Xiao et al. (2019a)
	HULC	MAPK/KIF-xB	Lei et al. (2019)
	HOTAIRM1-1	miR-101	Chu et al. (2019)
	PACER	miR-125b/BMPR2	Xiao et al. (2019b)
	PART1	miR-590-3p/TGFB2/SMAD3	Jiang et al. (2019)
	MEG3	miR-93	Lu et al. (2019b)
	LINC00341	miR-16	Chen et al. (2019)
	ATB	miR-141	Xu and Xu (2017)
	ATB	miR-223	Yang et al. (2019b)
	ATB	miR-203	Li et al. (2019g)
	ATB	miR-150-5p	Zhang et al. (2019)
	ROR	HIF1α/p53	Yang et al. (2018b)
	ZFAS1	Wh13a	Ye et al. (2018)
	GACAT3	IL-6/STAT3	Li et al. (2018c)
	UFC1	miR-34a	Zhang et al. (2016)
	NKGILA	miR-145/SP1/NFαB	Xue et al. (2020)
Protein-Based Therapy

The protein currently used in clinical practice is mainly platelet-rich plasma (PRP) (Szwedowski et al., 2021). PRP is an autologous plasma preparation rich in platelets whose plasma concentration is higher than the normal concentration in whole blood. The basic principle of therapeutic potential of high-concentration platelets is based on their ability to provide superphysiological amounts of essential growth factors to provide regenerative stimulation that can promote tissue repair. PRP preparations need to be activated before use (Gentile et al., 2020). Intra-articular injections of PRP may be an effective alternative treatment to pain killers for knee OA (Rajan et al., 2020). It significantly promoted the proliferation of chondrocytes, decreased apoptosis, and increased autophagy by regulating the markers including FOXO1, FOXO3, and HIF-1 in osteoarthritic chondrocytes (Moussa et al., 2017). The concentration of white blood cells during the leukocyte-rich PRP (LR-PRP) preparation will affect its efficacy (Yaşar Şirin et al., 2017). It is reported that compared with the LR-PRP, the leukocyte-poor PRP (LP-PRP) has an effect on improving the proliferation of chondrocytes. The lubricating property of hyaluronic acid (HA) facilitates the movement of joints. And a combination of HA and PRP (HA–PRP) (Zhao et al., 2020b) could exert a beneficial synergistic effect for OA treatment. However, up until now, the preparation method and the components of PRP have still not been standardized, making the efficacy of PRP therapy to be inconclusive.

In addition to PRP, the proteins currently studied include nerve growth factor antibody (Grässel and Muschter, 2020) or its antagonists (Denk et al., 2017), fibroblast growth factor (FGF) (Xie et al., 2020b), insulin-like growth factor–binding proteins (IGFBP) (Tanaka et al., 2021), growth and differentiation factor 5 (Kania et al., 2020), Wnt16 (Tong et al., 2019), low-density lipoprotein receptor–related protein 5 (Wu et al., 2017a), neuropeptide Y (NPY) (Kang et al., 2020), and so on. Among the proteins, fasinumab (Dakin et al., 2020), tanezumab (Berenbaum et al., 2020), sprifermin (Eckstein et al., 2020), teriparatide (Apostu et al., 2019), and so on, have shown various effects on the management of OA in clinical trials. Nerve factor antibodies and their antagonists, fasinumab and tanezumab, can improve pain, and the antagonists have the most significant effect. Tanezumab can easily lead to rapidly progressive OA. FGF, GDF5, Wnt16, NPY, sprifermin, and teriparatide are related to cartilage repair. IGFBP is related to cartilage matrix synthesis. The binding of low-density lipoprotein receptor–related protein and sclerostin can inhibit the degradation of normal chondrocytes, but it does not seem to have such an effect in OA. The specific reason is not clear.

Recently, histone modifications have been recognized as another important epigenetic regulation in OA-related genes. LSD1 KDM4B, KDM6A, KDM6B, EZH2, and DOT1L were reported to be the major epigenetic regulators in OA onset and progression through their methyltransferases and demethylase activities by binding to the OA-related gene (e.g., Runx2, Nfat1, and Sox9) promoters or by interplaying with OA-associated signaling transduction pathways (Sacks et al., 2018). Modified histone domains have thus become epigenetic signatures, which will either mark for gene activation or gene repression. The role of methyltransferases and demethylase in epigenetic regulations also indicate they could be potential targets for the management of OA.

Table 3: CircRNAs and the targets in osteoarthritis.

Functions	RNAs	Target	References
Negative regulation	CircRNA-UBE2G1	miR-373/HIF-1a	Chen et al. (2020a)
	Circ_0136474	miR-127-5p/MMP-13	Li et al. (2019h)
	CircPSM3	miRNA-296-5p	Ni et al. (2020b)
	has_Circ_0005106	miR-28a/NAMPT	Wu et al. (2017b)
	has_Circ_0032131	Unknown	Wang et al. (2018e)
	has_Circ_0104873		Yu et al. (2018)
	has_Circ_0104595		
	has_Circ_0101251		
	CircRNA-CDR1as	miR-641/FGF-2	Zhang et al. (2020)
	CircRNA_Atp9b	miR-138-5p	Zhou et al. (2018)
	CircRNA-33186	miR-127-5p/MMP-13	Zhou et al. (2019c)
	CircGCN1L1	miR-330-3p/TFα-a	Zhu et al. (2020)
	Circ-SEMPN2e	miR-1271/ERG	Tam et al. (2019)
	NIRF-7	miR-7	Zhou et al. (2019d)
	Circ-HV1D	miR-29b-3p/TGFβ1	Liao et al. (2021)
	Circ-SPG11	miR-337-3p/ADAMTS5	Liu et al. (2021)
	Circ-CSNK1G1	miR-4428/FUT2	Xiao et al. (2021)
Positive regulation	CircVCAN	NF-κB	Ma et al. (2020)
	Circ9119	miR-28a/PTEN	Chen et al. (2020b)
	hasa_Circ_0045714	miR-193b/IGF-1R	Li et al. (2017c)
	hasa_Circ_0020014	Unknown	Wang et al. (2020d)
	CircPDE4D	miR-103a-3p/FGF18	Wu et al. (2021)
Exosomes

Exosomes are small, single-membrane, secreted organelles with a diameter of approximately 30–200 nm. They have the same topological structure as cells and are rich in selected proteins, lipids, nucleic acids, and glycoconjugates (Pegtel and Gould, 2019). Exosomes mainly mediate cell–cell communication through direct membrane fusion or protein–protein interaction (Wu et al., 2020b). The source of exosomes comes in many forms (Ni et al., 2020a), including peripheral blood (Chang et al., 2018), synovial fluid (Gao et al., 2020), mesenchymal stem cells (Tofiño-Vian et al., 2018), embryonic stem cells (Wang et al., 2017a), amniotic fluid stem cells (Beretti et al., 2018), chondrogenic progenitor cells (Toh et al., 2017), chondrocytes (Zheng et al., 2019), platelet-rich plasma (Liu et al., 2019a), osteocytes (Lyu et al., 2020).

Functions	Origins	Mechanisms
Catabolic effect	Synovial fluid (Gao et al., 2020), vascular endothelial cells (Yang et al., 2021a)	Recruit inflammatory cells (Gao et al., 2020), inhibit cartilage proliferation (Gao et al., 2020), promote joint degeneration (Gao et al., 2020), or induce chondrocyte apoptosis (Yang et al., 2021a)
Anabolic effect	Mesenchymal stem cells (Tofiño-Vian et al., 2018), embryonic stem cells (Wang et al., 2017a), dental pulp stem cells (Lin et al., 2021), monocyte (Bai et al., 2020), amniotic fluid stem cells (Beretti et al., 2018), chondrogenic progenitor cells (Toh et al., 2017), chondrocytes (Zheng et al., 2019), platelet-rich plasma (Liu et al., 2019a), osteocytes (Lyu et al., 2020)	Reduce production of catabolic enzymes (Tofiño-Vian et al., 2018), promote chondrocytes to express cartilage ECM (Wang et al., 2017a; Kim et al., 2020; Guillén et al., 2021), promote chondrocyte differentiation (Bai et al., 2020), promote proliferation of chondrocytes (Liu et al., 2019a; Lyu et al., 2020), inhibit chondrocyte apoptosis (Liu et al., 2019a; Lyu et al., 2020; Lin et al., 2021), regulate immune response (Zheng et al., 2019), or inhibit expression of inflammatory cytokines (Toh et al., 2017; Beretti et al., 2018; Tofiño-Vian et al., 2018; Kim et al., 2020; Qiu et al., 2021)

In order to analyze the research trends in the field of OA treatment using the biologic agent in recent years, we have reviewed relevant literature on DNA, RNA, protein, and exosome in the past 5 years on PubMed and also subdivided RNA into circRNA, lncRNA, and miRNA. We present a graphic (Figure 2) and the corresponding table (Supplementary Table S1) to show the literature trend in the development of OA.
past 5 years from January 2016 to August 2021. From the results, we can see that the number of articles of each type of biological agent has increased throughout the past 5 years. Among the four types of biologic agents, the most abundant research on proteins was found, followed by RNA, then DNA, and finally exosomes. Within RNA, miRNA has been studied most intensively, followed by lncRNA, and finally circRNA. This result shows that the research on proteins and RNA is relatively mature, but DNA and exosomes are new highlights in recent years. Within RNA, there are relatively many studies on miRNA and relatively fewer studies on lncRNA and circRNA. Therefore, DNA, exosomes, lncRNA, and circRNA may all become new research hotspots.

DISCUSSION

DNA, RNA, and protein described in this article have shown various regulatory effects on the pathological process of OA. Some of these are expected to become targets in terms of diagnosis and treatment of OA. In general, the effects of biologic agents are divided into two aspects: catabolic or anabolic effect by deteriorating or preventing OA occurrence or development. The catabolic effect is mainly to recruit inflammatory cells, inhibit chondrocyte proliferation, accelerate matrix degradation, or induce cell apoptosis. In opposite, the anabolic effect is mainly to reduce the production of catabolic enzymes, promote the proliferation of chondrocytes, inhibit chondrocyte apoptosis, promote the expression of ECM, or inhibit the expression of inflammatory factors. The main pathways involved in OA treatment are NF-κB, Notch, Wnt/β-catenin, TGF-β, Erk, p38 MAPK, JAK2/STAT3, and so on. At present, most researches on biologic agents are in vitro experiments or animal model experiments. There are still many obstacles to overcome for the biologics agents: (1) safety concern is the first to be considered when applying viral vectors to deliver plasmids, ncRNAs, which may bind to multiple targets; and exosomes and proteins, which may result in immunoresponse and disease transmission; (2) efficacy of most of the biologic agents in OA therapy is various and still yet to be verified; (3) heterogeneity of disease may also affect the therapeutic outcomes. With the advancement of molecular biotechnology in future research, translation research should be considered to address the limitations before clinical trials.

CONCLUSION

We have reviewed a wide spectrum of biologic agents in OA therapy, including DNA, RNA, protein, and exosomes, which provide an insight in finding potential therapeutic targets. Although significant progress has been made in this field, translational research is needed to further address the safety concerns, various efficacies, and heterogenetic of OA.

AUTHOR CONTRIBUTIONS

JD, ZZ, ZS, and HC did literature retrieval and prepared the draft, JD, JH, and YN made the first revision of the manuscript, HZ and BW finalized the manuscript.

FUNDING

This project was funded by Natural Science Foundation of Guangdong Province Science and Technology Department (2020A1515010003 and 2019A1515110724), Natural Science Foundation of China (NSFC, 81874000), Medical Research Fund of Guangdong Province (A2020151), “Peaking Plan” for the construction of high-level hospital at Affiliated Hospital of Guangdong Medical University (20501DFY20190168), Discipline construction project of Guangdong Medical University (4SG21002G), and also supported by the Science and Technology Project of Zhanjiang city (2020A01025 and 2019A01029).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2021.772678/full#supplementary-material

REFERENCES

Ai, D., and Yu, F. (2019). LncRNA DNM3OS Promotes Proliferation and Inhibits Apoptosis through Modulating IGF1 Expression by Sponging MiR-126 in CHON-001 Cells. Diag. Pathol. 14, 106. doi:10.1186/s13000-019-0877-2
Akbari, A., Jabbari, N., Sharifi, R., Ahmadi, M., Vahhabi, A., Seyedzadeh, S. J., et al. (2020). Free and Hydrogel Encapsulated Exosome-Based Therapies in Regenerative Medicine. Life Sci. 249, 117447. doi:10.1016/j.lfs.2020.117447
Apostu, D., Lucaciu, O., Mester, A., Oltean-Dan, D., Baciut, M., Baciut, G., et al. (2019). Systemic Drugs with Impact on Osteoarthritis. Drug Metab. Rev. 51, 498–523. doi:10.1080/03602532.2019.1687511
Bai, J., Zhang, Y., Zheng, X., Huang, M., Cheng, W., Shan, H., et al. (2020). LncRNA MM2P-Induced, Exosome-Mediated Transfer of Sox9 from Monocyte-Derived Cells Modulates Primary Chondrocytes. Cell Death Dis 11, 763. doi:10.1038/s41419-020-02945-5
Berenbaum, F., Blanco, F. J., Guermazi, A., Miki, K., Yamabe, T., Viktrup, L., et al. (2020). Subcutaneous Tanezumab for Osteoarthritis of the Hip or Knee: Efficacy and Safety Results from a 24-week Randomised Phase III Study with a 24-week Follow-Up Period. Ann. Rheum. Dis. 79, 800–810. doi:10.1136/annrheumdis-2019-216296
Beretti, F., Zavatti, M., Casciaro, F., Comitini, G., Franchi, F., Barbieri, V., et al. (2018). Amniotic Fluid Stem Cell Exosomes: Therapeutic Perspective. Biofactors 44, 158–167. doi:10.1002/biof.1407
Cao, L., Wang, Y., Wang, Q., and Huang, J. (2018). LncRNA FOXD2-AS1 Regulates Chondrocyte Proliferation in Osteoarthritis by Acting as a Sponge of miR-206 to Modulate CCND1 Expression. Biomed. Pharmacother. 106, 1220–1226. doi:10.1016/j.biopha.2018.07.048
Celik, E., Bayram, C., and Denkbay, E. B. (2019). Chondrogenesis of Human Mesenchymal Stem Cells by microRNA Loaded Triple Polysaccharide Nanoparticle System. Mater. Sci. Eng. C Mater. Biol. Appl. 102, 756–763. doi:10.1016/j.msec.2019.05.006

Berenbaum, F., Blanco, F. J., Guermazi, A., Miki, K., Yamabe, T., Viktrup, L., et al. (2020). Subcutaneous Tanezumab for Osteoarthritis of the Hip or Knee: Efficacy and Safety Results from a 24-week Randomised Phase III Study with a 24-week Follow-Up Period. Ann. Rheum. Dis. 79, 800–810. doi:10.1136/annrheumdis-2019-216296
Beretti, F., Zavatti, M., Casciaro, F., Comitini, G., Franchi, F., Barbieri, V., et al. (2018). Amniotic Fluid Stem Cell Exosomes: Therapeutic Perspective. Biofactors 44, 158–167. doi:10.1002/biof.1407
Cao, L., Wang, Y., Wang, Q., and Huang, J. (2018). LncRNA FOXD2-AS1 Regulates Chondrocyte Proliferation in Osteoarthritis by Acting as a Sponge of miR-206 to Modulate CCND1 Expression. Biomed. Pharmacother. 106, 1220–1226. doi:10.1016/j.biopha.2018.07.048
Celik, E., Bayram, C., and Denkbay, E. B. (2019). Chondrogenesis of Human Mesenchymal Stem Cells by microRNA Loaded Triple Polysaccharide Nanoparticle System. Mater. Sci. Eng. C Mater. Biol. Appl. 102, 756–763. doi:10.1016/j.msec.2019.05.006
through the Activation of the Janus Kinase/signal Transducers and Activators of Transcription Signaling Pathway by Upreregulating IFNA1. J. Cell Physiol 234, 10523–10534. doi:10.1002/jcp.27730

Yang, M., Yan, X., Yuan, F. Z., Ye, J., Du, M. Z., Mao, Z. M., et al. (2021). MicroRNA-210-3p Promotes Chondrogenic Differentiation and Inhibits Adipogenic Differentiation Correlated with HIF-3a Signalling in Bone Marrow Mesenchymal Stem Cells. Biomed. Res. Int. 2021, 6699910. doi:10.1155/2021/6699910

Yang, Q., Li, X., Zhou, Y., Fu, W., Wang, J., and Wei, Q. (2019). A LINC00341- Y3H Interaction Promotes Osteoarthritis Pathogenesis by Promoting Chondrocyte Apoptosis. Aging (Albany NY) 13, 4647–4662. doi:10.18632/aging.202506

Yang, X., He, H., Gao, Q., and He, C. (2018). Pulsed Electromagnetic Field Improves Subchondral Bone Microstructure in Knee Osteoarthritis Rats through a Wnt/β-Catenin Signaling-Associated Mechanism. Bioelectromagnetics 39, 89–97. doi:10.1002/bem.22106

Yang, Y., Wang, Y., Jia, H., Li, B., Xing, D., and Li, J. (2020). MicroRNA-1 Modulates Chondrocyte Phenotype by Regulating YT67 of Wnt/β-Catenin Signaling Pathway. Cartilage. [Epub ahead of print]. doi:10.1177/1947603520973255

Yang, Z., Tang, Y., Lu, H., Shi, B., Ye, Y., Xu, G., et al. (2018). Long Non-coding RNA Reprogramming (IncRNA-ROR) Regulates Cell Apoptosis and Autophagy in Chondrocytes. J. Cell Biochem 119, 8342–8440. doi:10.1002/jcb.27057

Yaşar Şirin, D., Yilmaz, I., Isyar, M., Oznam, K., and Mahırogulları, M. (2017). Does Leukocyte-Poor or Leukocyte-Rich Platelet-Rich Plasma Applied with Biopolymers Have Superiority to Conventional Platelet-Rich Plasma Applications on Chondrocyte Proliferation? Eklem Hastalik Cerrahiisi 28, 142–151. doi:10.5600/ehc.2017.55186

Ye, D., Jian, W., Feng, J., and Liao, X. (2018). Role of Long Noncoding RNA ZFAS1 in Proliferation, Apoptosis and Migration of Chondrocytes in Osteoarthritis. Biomed. Pharmacother. 104, 825–831. doi:10.1016/j.biopha.2018.04.124

Ying, H., Wang, Y., Gao, Z., and Zhang, Q. (2019). Long Non-coding RNA Activated by Transforming Growth Factor Beta Alleviates Lipopolysaccharide-Induced Inflammatory Injury via Regulating microRNA-223 in ATDC5 Cells. Int. Immunopharmacol 69, 313–320. doi:10.1016/j.intimp.2019.01.056

Yoshiko, Y., and Minamizaki, T. (2020). Emerging Roles of microRNAs As Adipogenic Differentiation Correlated with HIF-3α Mediated Regulatory Pathway Supports Chondrocyte Survival and May Prevent Osteoarthritis Progression. J. Cell Biochem 120, 10812–10820. doi:10.1002/jcb.28372

Yang, R. Z., Zheng, H. L., Xu, W. N., Zheng, X. F., Li, B., Jiang, L. S., et al. (2021). Circular RNAs in Osteoarthritis: Indispensable Regulators and Novel Strategies in Clinical Implications. Arthritis Res. Ther. 23, 23. doi:10.1186/s13075-020-02420-2

Zhang, W., Yang, F., Chen, G., He, R., and Yang, L. (2019). LncRNA MALAT1 Promotes Osteoarthritis by Modulating miR-150-5p/AKT3 axis. Cell Biosci 9, 54. doi:10.1186/s13578-019-0302-2

Zhang, Z., Mei, Y., Feng, M., Wang, C., Yang, P., and Tian, R. (2021). The Relationship between Common Variants in the DPEPI Gene and the Susceptibility and Clinical Severity of Osteoarthritis. Int. J. Rheum. Dis. 24, 1192–1199. doi:10.1111/1756-185x.14182

Zhao, C. (2021). Identifying the Hub Gene and Immune Infiltration of Osteoarthritis by Bioinformatical Methods. Clin. Rheumatol. 40, 1027–1037. doi:10.1007/s10067-020-05311-0

Zhao, J., Huang, H., Liang, G., Zeng, L. F., Yang, W., and Liu, J. (2020). Effects and Safety of the Combination of Platelet-Rich Plasma (PRP) and Hyaluronic Acid (HA) in the Treatment of Knee Osteoarthritis: a Systematic Review and Meta-Analysis. BMC Musculoskelet. Disord. 21, 224. doi:10.1186/s12891-020-03262-w

Zhao, T., Ma, C., Xie, B., Zhao, B., Wang, W., and Liu, J. (2020). Evaluation of Common Variants in the AKNA Gene and Susceptibility to Knee Osteoarthritis Among the Han Chinese. Genet. Test. Mol. Biomarkers 24, 425–430. doi:10.1089/gtmb.2020.0014

Zhao, X., Rao, L., and Wang, L. (2019). MicroRNA-107 Regulates Autophagy and Apoptosis of Osteoarthritis Chondrocytes by Targeting TRAF3. Int. Immunopharmacol 71, 181–187. doi:10.1016/j.intimp.2019.03.005

Zhao, X., Meng, F., Hu, S., Yang, Z., Huang, H., Pang, R., et al. (2020). The Synovial Attenuates Cartilage Degeneration in KOA through Activation of the Smad2/3-Runx1 Cascade and Chondrogenesis-Related miRNAs. Mol. Ther. Nucleic Acids 22, 832–845. doi:10.1016/j.omtn.2020.10.004

Zheng, L., Wang, Y., Qiu, P., Xia, C., Fang, Y., Mei, S., et al. (2019). Primary Chondrocyte Exosomes Mediate Osteoarthritis Progression by Regulating Mitochondrion and Immune Reactivity. Nanomedicine (Lond) 14, 3193–3212. doi:10.2121/nmm.2018-0498

Zheng, X., Zhao, F., C., Pang, Y., Li, D. Y., Yao, S. C., Sun, S. S., et al. (2017). Downregulation of miR-221-3p Contributes to IL-1β-induced Cartilage Degradation by Directly Targeting the SDH1/CXCR4 Signaling Pathway. J. Mol. Med. (Berl) 95, 615–627. doi:10.1007/s00109-017-1516-6

Zhong, G., Long, H., Ma, S., Shunhan, Y., Li, J., and Yao, J. (2019). miRNA-335-5p Promotes Chondrocyte Inflammation by Activating Autophagy in Osteoarthritis. Life Sci. 226, 164–172. doi:10.1016/j.lfs.2019.03.071

Zhong, W., Li, X., Pathak, J. L., Chen, L., Cao, W., Zhu, M., et al. (2020). Dicalcium Silicate Microparticles Modulate the Differential Expression of circRNAs and miRNAs in BMSCs and Promote Osteogenesis via Circ_1983-mir-6931-Gas7 Interaction. Biomater. Sci. 8, 3664–3677. doi:10.1039/d0bm00459f

Zhou, J., Li, C., Yu, A., Jie, S., Du, X., Liu, T., et al. (2019). Bioinformatics Analysis of Differentially Expressed Genes Involved in Human Developmental Chondrogenesis. Medicine (Baltimore) 98, e16240. doi:10.1097/ MD.00000000000016240

Zhou, Q. F., Cai, Y. Z., and Lin, X. J. (2020). The Dual Character of Exosomes in Osteoarthritis: Antagonists and Therapeutic Agents. Acta Biomater. 105, 15–25. doi:10.1016/j.actbio.2020.01.040

Zhou, X., Jiang, L., Fan, G., Yang, H., Wu, L., Huang, Y., et al. (2019). Role of the cilRS-3/miR-7 axis in the Regulation of Proliferation, Apoptosis and Inflammation of Chondrocytes Induced by IL-1β. Int. Immunopharmacol 71, 233–240. doi:10.1016/j.intimp.2019.03.037

Zhou, X., Jiang, L., Zhang, Y., Zhang, J., Zhou, D., Wu, L., et al. (2019). Genetic Variation of Aggrecanase-2 (ADAMTS5) in Susceptibility to Osteoarthritis. Braz. J. Med. Biol. Res. 52, e18109. doi:10.1590/1413-4110BMBR18109

Zhou, Z. B., Du, D., Huang, G. X., Chen, A., and Zhu, L. (2018). Circular RNA At9p9, a Competing Endogenous RNA, Regulates the Progression of
Osteoarthritis by Targeting miR-138-5p. *Gene* 646, 203–209. doi:10.1016/j.gene.2017.12.064

Zhou, Z. B., Huang, G. X., Fu, Q., Han, B., Lu, J. J., Chen, A. M., et al. (2019). circRNA.33186 Contributes to the Pathogenesis of Osteoarthritis by Sponging miR-127-5p. *Mol. Ther.* 27, 531–541. doi:10.1016/j.ymtth.2019.01.006

Zhu, H., Hu, Y., Wang, C., Zhang, X., and He, D. (2020). CircGCN1L1 Promotes Synoviocyte Proliferation and Chondrocyte Apoptosis by Targeting miR-330-3p and TNF-α in TMJ Osteoarthritis. *Cell Death Dis* 11, 284. doi:10.1038/s41419-020-2447-7

Zhu, J. K., He, T. D., Wei, Z. X., and Wang, Y. M. (2018). LncRNA FAS-AS1 Promotes the Degradation of Extracellular Matrix of Cartilage in Osteoarthritis. *Eur. Rev. Med. Pharmacol. Sci.* 22, 2966–2972. doi:10.26355/eurrev_201805_15051

Zhu, Y. J., and Jiang, D. M. (2019). LncRNA PART1 Modulates Chondrocyte Proliferation, Apoptosis, and Extracellular Matrix Degradation in Osteoarthritis via Regulating miR-373-3p/SOX4 axis. *Eur. Rev. Med. Pharmacol. Sci.* 23, 8175–8185. doi:10.26355/eurrev_201910_19124

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Deng, Zong, Su, Chen, Huang, Niu, Zhong and Wei. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.