HOMOGENEOUS SOLUTIONS TO FULLY NONLINEAR ELLIPTIC EQUATIONS

NIKOLAI NADIRASHVILI AND YU YUAN

Abstract. We classify homogeneous degree $d \neq 2$ solutions to fully nonlinear elliptic equations.

In this note, we show that any homogeneous degree other than 2 solution to fully nonlinear elliptic equations must be “harmonic”. Consider the fully nonlinear elliptic equation $F(D^2 u) = 0$ with $\mu I \leq (F_{ij}) = (F_{M_{ij}}(M)) \leq \mu^{-1}I$. Nirenberg [N] derived the a priori $C^{2,\alpha}$ estimates for the above equation in dimension 2 in 1950s. Krylov [K] and Evans [E] showed the same a priori estimates for the above equations in general dimensions under the assumption that F is convex. As a modest investigation of a priori estimates for general fully nonlinear elliptic equations without convexity condition, we study the homogeneous solutions.

Theorem 0.1. Let u be a continuous in $\mathbb{R}^n \setminus \{0\}$ homogeneous degree $d \neq 2$ solution to the elliptic equation $F(D^2 u) = 0$ in \mathbb{R}^n with $F \in C^1$. Then u is harmonic in a possible new coordinate system in \mathbb{R}^n, namely

$$\sum_{i,j=1}^n F_{ij}(0) D_{ij} u(x) = 0.$$

Consequently, $u \equiv 0$ if $-(n-2) < d < 0$ or d is not an integer; otherwise u is a homogeneous harmonic polynomial with integer degree d.

In contrast to the variational problem, Sverak and Yan [SY] constructed homogeneous degree less than 1 minimizers to some strongly convex functional. Also Safonov [S] constructed homogeneous order $\alpha \in (0,1)$ solutions to linear non-divergence elliptic equations with variable coefficients earlier on.

As one simple application to special Lagrangian equations [HL] $F(D^2 u) = \sum_{i=1}^n \arctan \lambda_i - c = 0$, where λ_is are the eigenvalues of the Hessian $D^2 u$. It follows from our theorem that any homogeneous degree other than 2 solutions must be a harmonic polynomial (and it also forces $c = 0$).

When $d \in [0, 1 + \alpha(n, \mu))$, our theorem follows from Krylov-Safonov C^{α} estimates (cf. [CC, corollary 5.7]). The missing case $d = 2$ is delicate. One only knows that any homogeneous degree 2 solution to the above fully nonlinear elliptic equation in dimension 3 is quadratic [HNY, p. 426].

Both authors are partially supported by NSF grants, and the second author also by a Sloan Research Fellowship.
Now we show our theorem.

Proof. We first consider the case that \(u \) is smooth in \(\mathbb{R}^n \setminus \{0\} \). Set \(\sum = \left\{ |x|^{d-2} D^2 u \left(\frac{x}{|x|} \right) | x \in \mathbb{R}^n \setminus \{0\} \right\} \) and \(\Gamma = \{ M | F(M) = 0 \} \). For the homogeneous order \(d \) function \(u(x) \), \(D^2 u(x) = |x|^{d-2} D^2 u \left(\frac{x}{|x|} \right) \). Let \(|x| \to 0 \) for \(d > 2 \) or \(|x| \to \infty \) for \(d < 2 \), we see that \(0 \in \sum \). Also \(u \) is a solution to \(F(D^2 u) = 0 \), then the cone \(\sum \subseteq \Gamma \).

Now \(F \in C^1 \) and \((F_{ij}(0)) > 0 \), we know that the unique tangent plane of \(\Gamma \) at 0 includes \(\sum \). It follows that \(\sum \perp (F_{ij}(0)) \), or

\[
\sum_{i,j=1}^n F_{ij}(0) D_{ij} u(x) = 0.
\]

Without loss of generality, we assume \((F_{ij}(0)) = I \) throughout the proof, then

\[
0 = \Delta u(x) = |x|^{d-2} \left[d(d+n-2) u \left(\frac{x}{|x|} \right) + \Delta_{S^{n-1}} u \left(\frac{x}{|x|} \right) \right].
\]

The remaining conclusion of the theorem follows.

Next we show the regularity of the viscosity solution \(u \) away from 0. Set \(\lambda = d(d+n-2) \) and \(\theta = x/|x| \). To start, we prove that \(u(\theta) \) is a viscosity solution to

\[
(0.1) \quad \Delta_{S^{n-1}} u + \lambda u = 0.
\]

Let any smooth \(\varphi(\theta) \) touch \(u \) from the above at \(\theta_0 \),

\[
\varphi \geq u \quad \text{in a neighborhood of } \theta_0
\]

\[
\varphi(\theta_0) = u(\theta_0).
\]

then

\[
|x|^d \varphi \left(\frac{x}{|x|} \right) \geq |x|^d u \left(\frac{x}{|x|} \right) \quad \text{in a neighborhood of } \theta_0
\]

\[
|x|^d \varphi(\theta_0) = |x|^d u(\theta_0).
\]

From our assumption that \(u \) is a viscosity (sub) solution, it follows that

\[
F \left(D^2 \left(|x|^d \varphi \left(\frac{x}{|x|} \right) \right) \right) \geq 0
\]

or

\[
F \left(|x|^{d-2} D^2 x \varphi(\theta) \right) \geq 0.
\]

Let \(|x| \to 0 \) for \(d > 2 \) or \(|x| \to \infty \) for \(d < 2 \), we see that \(F(0) \geq 0 \). If we use the fact \(u \) is also a viscosity (super) solution, we can derive that \(F(0) \leq 0 \). So \(F(0) = 0 \), and

\[
\frac{F(t D^2 \varphi(\theta)) - F(0)}{t} \geq 0.
\]
Let \(t \to 0 \), we see that
\[
\sum_{i,j=1}^{n} F_{ij}(0) D_{ij} \varphi \left(\frac{x}{|x|} \right) \geq 0
\]
or
\[
\Delta_{S^{n-1}} \varphi + \lambda \varphi \geq 0.
\]
Thus \(u \) is a viscosity sub solution to (0.1). Similarly, \(u \) is a viscosity super solution to the same equation.

Let \(N_\varepsilon \) be an \(\varepsilon \) neighborhood of any \(\theta_0 \) on \(S^{n-1} \), with \(\varepsilon \) small enough so that \(N_\varepsilon \) is in a narrow strip, then there exists positive smooth function \(h \) on \(N_\varepsilon \) such that
\[
\Delta_{S^{n-1}} h + \lambda h \leq 0.
\]
Let \(\psi \) be the smooth solution to (0.1) in \(N_\varepsilon \) with the boundary value \(u \) on \(\partial N_\varepsilon \), then \(q \equiv \psi - u \) is a viscosity solution to
\[
\Delta_{S^{n-1}} q + 2 \frac{\nabla h}{h} \cdot \nabla q + \frac{\Delta_{S^{n-1}} h + \lambda h}{h} q = 0,
\]
where \(\nabla h \cdot \nabla q \) simply denotes some linear combinations of first order derivatives of \(q \) in some local coordinates for \(N_\varepsilon \), which we avoid for the sake of simple notation. Now that the coefficient \(\frac{\Delta_{S^{n-1}} h + \lambda h}{h} \leq 0 \), it follows from [W,Corollary 3.20] that \(q = 0 \) in \(N_\varepsilon \). Therefore, \(u \) is smooth in \(N_\varepsilon \) and then on the whole \(S^{n-1} \).

References

[CC] Caffarelli, L. A. and Cabré, X., *Fully nonlinear elliptic equations*. American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, RI, 1995.

[E] Evans, L. C., *Classical solutions of fully nonlinear, convex, second-order elliptic equations*, Comm. Pure Appl. Math. 35 (1982), 333–363.

[HNY] Han, Q., Nadirashvili, N., and Yuan, Yu, *Linearity of homogeneous order-one solutions to elliptic equations in dimension three*, Comm. Pure Appl. Math. 56 (2003), 425–432.

[HL] Harvey, R. and H. B. Jr., *Calibrated geometry*, Acta Math. 148 (1982), 47–157.

[K] Krylov, N. V., *Boundedly nonhomogeneous elliptic and parabolic equations*, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 487–523 in Russian; English translation in Math. USSR Izv. 20 (1983), 459–492.

[N] Nirenberg, L., *On nonlinear elliptic partial differential equations and Hölder continuity*, Comm. Pure Appl. Math. 6 (1953), 103–156.

[S] Safonov, M. V., *Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients*, (Russian) Mat. Sb. (N.S.) 132(174) (1987), no. 2, 275–288; translation in Math. USSR-Sb. 60 (1988), no. 1, 269–281.

[SY] Sverák, V. and Yan, X., *Non-Lipschitz minimizers of smooth uniformly convex functionals*, Proc. Natl. Acad. Sci. USA 99 (2002), 15269–15276.

[W] Wang, L., *On the regularity theory of fully nonlinear parabolic equations I*, Comm. Pure Appl. Math. 45 (1992), 27–76.
Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637

Current address: LATP, Centre de Mathématiques et Informatique, 39, rue F. Joliot-Curie, 13453 Marseille Cedex, France

E-mail address: nicholas@math.uchicago.edu

Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195

E-mail address: yuan@math.washington.edu