TKIs combined with chemotherapy followed by allo-HSCT in Philadelphia chromosome-positive myelodysplastic syndrome
A case report and literature review

Shasha Qi, MMa, Feiqing Wang, MDb, Yang Liu, MDc, Jiangyuan Zhao, MDc, Yan Wang, MDc, Songsong Huang, MMC, Wenxiu Yang, MMC, Yanling Li, MMC, Yong Shen, MMC, Chike Zhang, MMC, Jianing Zhao, MMC, Xu Yang, MMC, Rui Gao, MMC, Ying Chen, MDC, Peng Zhao, MMC, Fengqi Zhang, MMC, Yi Huang, MMC, Mei Zhao, MMC, Ping Wang, MMC, Yan Zhang, MMC, Hanbo Dou, MMC, Jishi Wang, MDa,c, Yanju Li, MDa,c,*

Abstract
Introduction: Philadelphia chromosome (Ph) positive myelodysplastic syndrome (MDS) is a very rare disease. At present, the specific role of Ph in MDS is not clear, but such patients seem to have a poor prognosis, so the disease deserves attention. Here, we describe the history of a woman with Ph-positive MDS and perform a systematic review of related literature.

Patient concerns and diagnosis: We report a 38-year-old woman with Ph-positive MDS.

Interventions and outcomes: She received chemotherapy with decitabine, cytarabine, aclarubicin, and granulocyte colony-stimulating factor (DCAG) combined with imatinib mesylate and achieved a bone marrow remission. She then underwent an allogeneic hematopoietic stem cell transplant. The condition is good and no recurrence of the disease has been observed.

Conclusion: Ph-positive MDS is a very rare disease. Ph may aid in the malignant progression of MDS leaving such patients with a very poor prognosis. Tyrosine kinase inhibitors (TKIs) plus chemotherapy followed by allogeneic hematopoietic stem cell transplantation has provided these patients with satisfactory outcomes.

Abbreviations: AML = acute myeloid leukemia, CML = chronic myelogenous leukemia, DCAG = decitabine, cytarabine, aclarubicin, and granulocyte colony-stimulating factor, MDS = myelodysplastic syndrome, Ph = Philadelphia chromosome, RAEB = refractory anemia with excess blasts, TKIs = tyrosine kinase inhibitors.

Keywords: allogeneic hematopoietic stem cell transplantation, myelodysplastic syndrome, Philadelphia chromosome, tyrosine kinase inhibitors

1. Introduction
Myelodysplastic syndrome (MDS) is an acquired clonal stem cell disorder that can easily develop into acute myeloid leukemia (AML). It is often associated with various chromosomal abnormalities.[1] In statistical models of individual prognoses, such as the International Prognostic Scoring System, chromosomal karyotype has been demonstrated to be one of the most significant prognostic parameters of MDS.[2] Philadelphia chromosome (Ph) is produced by a reciprocal translocation between the long arms of chromosome 9 and chromosome 22, that is, t(9; 22)(q34; q11).[3] This chromosome is mostly found in chronic myelogenous leukemia (CML), but it also appears in acute lymphoblastic leukemia. On the contrary, the Ph is rare in AML and MDS, with only a few cases reported in the latter. Because this is such a rare disease, it is unclear whether the Ph has any clinical value in MDS or what specific role it plays in the pathogenesis, prognosis, and progression. We report here one primary Ph-positive case of MDS, along with a brief literature review in order to raise awareness of Ph-positive MDS.
2. Case report

We present the case of a 38-year-old female patient who was in her usual state of health until February 3, 2021, when she developed a fever of no known cause. She reported to the Affiliated Hospital of Guizhou Medical University and was admitted. Related auxiliary examination after hospitalization: white blood cell counts $12.6 \times 10^9/L$, neutrophil absolute value $9.79 \times 10^9/L$, red blood cell (RBC) counts $2.2 \times 10^{12}/L$, hemoglobin 66.00g/L, mean RBC volume 95.00 fL, platelet count $57.00 \times 10^9/L$. A bone marrow examination showed hyperactive myelodysplasia with 17% primary cells. Granulocytes were hyperactive with toxic changes, and a few granulocytes reduced cell particles. Large rod-shaped nuclear and dinuclear granulocytes were occasionally seen. Erythroid hyperplasia was present, and the cytoplasmic and nuclear development of some young erythrocytes was slightly unbalanced. The mature erythrocytes were uneven in size and polychromatic erythrocytes were seen. Lymphocytes accounted for 10%. There were 107 megakaryocytes, including primitive megakaryocytes (1%), young megakaryocytes (1%), granulated megakaryocytes (89%), and platelet-producing megakaryocytes (9%). Some megakaryocyte nuclei had an excess of lobules, round megakaryocytes were occasionally seen. Platelets were observed scattered in clusters (Fig. 1). Peripheral blood examination showed that the distribution of white blood cells was generally normal, with protocells (6%), young red blood cells, and granulocyte. Dinuclear granulocytes and granulocyte nucleus lobulation failure were observed on rare occasions. The karyotype was determined to be 46, XX, t(9;22) (q34;q11) [1]/46, XX [19] (Fig. 2). She was definitively diagnosed with Ph chromosome-positive refractory anemia with excess blasts (RAEB)-2. Decitabine, cytarabine, aclarubicin, and granulocyte colony-stimulating (DCAG) (decitabine 21 mg/d was given intravenously from day 1 to day 5, cytarabine 0.014 g/12 h was given subcutaneously from day 3 to day 9, aclarubicin 10 mg/d was given intravenously from day 3 to day 9, and human granulocyte colony-stimulating factor 300 µg/d was given subcutaneously from day 3 to day 9) chemotherapy combined with oral imatinib mesylate 400 mg/d targeted therapy was administered. She achieved morphological remission of her bone marrow following a course of chemotherapy. The BCR/ABL gene copy number was zero on April 30, 2021. After 4 courses of DCAG combined with imatinib mesylate, the copy number of the BCR/ABL gene was zero in multiple subsequent examinations. The patient was then discharged after hematopoietic reconstruction in August 2021 after receiving

![Figure 1](image-url)
full identical allogeneic hematopoietic stem cell transplantation. She returned for reevaluation on November 3, 2021, and we found that her BCR/ABL copy numbers were zero. Currently, the patient has no signs of disease recurrence and is still being followed up.

3. Discussion

MDS refers to a group of bone marrow diseases characterized by high heterogeneity in morphological manifestations, clinical processes, and cytogenetic characteristics, with cytogenetic heterogeneity being the abnormal karyotype in approximately 50% of patients with primary MDS and 80% in patients with secondary MDS.\(^{11}\) Meanwhile, the common chromosome karyotype abnormality is one of the most important prognostic parameters of MDS according to the International Prognostic Scoring System score (e.g., -5/del (5q), -7/del (7q), +8, del (20q), i(17q)/t(17p), and -y,) \(^{1}\). Despite all these, about 14% of cytogenetic abnormalities in MDS are of unknown significance.\(^{11}\)

Ph is a marker of CML, which is very rare in patients with MDS.\(^{11}\) Only a handful of cases have been reported, hence, information on Ph-positive MDS is scarce. What role does the Ph play in MDS? By what mechanism does it work? How should it be treated? No literature provides convincing results. Here, we review and summarize previous case reports and make a preliminary discussion in addition to the case reported in this paper.

To understand the specific role of the Ph in MDS, we searched major medical databases for all case reports of newly diagnosed Ph-positive MDS and found 13 patients\(^{4-13}\) (Table 1). We analyzed the clinical data of these 13 patients and found that 12 patients died or progressed to leukemia within a year, and 1 patient experienced a 15% increase in bone marrow blasts from 2% within 8 months. As a result, we suspect that the Ph accelerates the malignant progression of MDS.

To further confirm this hypothesis, we searched all previous patients with MDS who initially lacked the Ph but later acquired it. Data on a total of 9 patients were retrieved\(^{4,7,14-20}\) (Table 2). We analyzed the clinical data of these patients and found that 5 patients did not have the Ph, but acquired it during the progression of MDS to leukemia, 2 patients were initially diagnosed with non-RAEB-t MDS without the Ph, but later developed RAEB-t with the acquisition of the Ph. The vast majority patients of these patients died within a year of disease progression. In the remaining 2 patients, one case in the stage of MDS and converted to leukemia in the early stages of the Ph was not found, then give the patient strong induction has failed to achieve complete remission but can maintain the stability of the disease. However, 1 year later, when the Ph was also discovered, the patient’s disease was progressing with significantly more peripheral blood primitive cells than before. The patient died within 3 months of disease progression even after repeated chemotherapy. Another patient diagnosed with MDS developed acute red leukemia 1 month later and achieved complete remission with CAG treatment, but his leukemia recurred 3 months later, and he went into a second remission with a second CAG treatment and did not relapse for a year. Until then, no Ph had been found. A year later, however, his leukemia returned with the appearance of the Ph. Even when CAG was given again, complete remission was not achieved again, and she died soon after. These results are consistent with our hypothesis that the Ph accelerates the malignant progression of MDS.

The case reported in this paper is a 38-year-old female patient. Bone marrow examination showed hyperactive myelodysplasia with 17% primary cells. The patient was initially healthy but developed MDS-RAEB-2 in just a few months with indicating that the patient’s condition may be progressing to leukemia or is at a high risk of progressing to leukemia in a short period.

With the in-depth study of the BCR-ABL fusion gene, targeted tyrosine kinase inhibitors (TKIs) were used in the treatment of CML and achieved remarkable efficacy. However, there is little research on Ph-positive MDS, and it is unclear whether TKIs can achieve similar results as in CML in Ph-positive MDS. It is well known that the morphological manifestations, clinical process, and cytogenetic characteristics of MDS are different from those of CML. If, as we suspect, Ph merely accelerate the malignant progression of MDS rather than being the cause of the disease, TKIs monotherapy may not be able to achieve similar efficacy as in CML. At the same time, because Ph accelerates the malignant progression of MDS, treating MDS without considering Ph may not achieve an optimum effect.

To test our hypothesis and preliminarily explore the standard treatment regimen for Ph-positive MDS, we analyzed Ph-positive MDS, Ph-positive leukemia from MDS progression reported in previous works of literature, and the patient reported in this article.

In 14 newly diagnosed Ph-positive MDS patients, Of the 6 patients who received supportive chemotherapy, 5 died within 1 year of diagnosis, 1 surviving patient had no follow-up data after 8 months. Of the two patients who received TKIs monotherapy, 1 died within 1 year of diagnosis, and the other patient’s Ph disappeared 4 months after treatment but died of severe pneumonia 7 months later. Of the 3 patients who received chemotherapy combined with TKIs, bone marrow morphological response was achieved in 1 case, complete response was achieved in 1 case, and the molecular response was achieved in 1 case. Two of the three patients underwent subsequent allogeneic hematopoietic stem cell transplantation. During follow-up, all 3 patients were in good condition. The remaining 2 patients with unclear treatment or no treatment died within a year.

Nine patients were initially diagnosed with MDS without Ph but later acquired it. Five patients of these patients who received chemotherapy died within a year after the Ph appeared. Two patients these patients who received TKIs monotherapy achieved a blood response and complete response, respectively, within a short period, but all experienced disease recurrence within 1 year. One patient who received a TKIs combined with chemotherapy failed to respond after treatment and gave up treatment. One patient whose treatment was unclear died one year after acquiring the Ph chromosome.

According to these results, the vast majority of patients treated with chemotherapy alone die within a year of diagnosis or acquisition of Ph. Although TKIs monotherapy can achieve some short-term efficacy, patients are prone to relapse. Of the 4 patients treated with TKIs in combination with chemotherapy, 3 achieved good results and 1 had no response. However, 2 of the 3 patients with good outcomes later underwent allogeneic

Figure 2. The patient t (9; 22) chromosome karyotype analysis result.

Qi et al. • Medicine (2022) 101:46 www.md-journal.com
hematopoietic stem cell transplantation, so we could not evaluate the long-term efficacy of TKIs in combination with chemotherapy. Although the long-term efficacy of TKIs combined with chemotherapy cannot be evaluated, allogeneic hematopoietic stem cell transplantation after TKIs combined with chemotherapy did achieve a satisfactory result in these patients, and perhaps this regimen can fundamentally treat such highly malignant or highly advanced Ph-positive patients with MDS.

4. Conclusion

Ph-positive MDS is a very rare disease. Ph may aid in the malignant progression of MDS leaving such patients with a very poor prognosis. TKIs plus chemotherapy followed by allogeneic hematopoietic stem cell transplantation has provided these patients with satisfactory outcome, which neither chemotherapy nor TKIs alone is able to do.
Table 2: Data on Ph-negative patients with MDS who later acquired the Ph Chromosome.

Author	Publication date	Age, years	Gender	Diagnosis	Chromosomal karyotype	Treatment options	Patient outcomes
Yi-Kong et al[1]	2003	71	Male	RAEB	normal→46, XY, t(9;22)(q34; q11)	Hydroxyurea	RAEB was transformed into RAEB-t after the appearance of Ph chromosomes and died 4 months later
Gregor et al[1]	1982	63	Male	MDS	normal→46, XY, t(9;22)(q34;q11)	Chemotherapy	He was diagnosed with MDS. After 18 months, the disease progressed from MDS to RAEB-t with the appearance of Ph chromosomes. He died after three months of progression.
Mori et al[4]	1993	78	Female	RAEB	Her chromosome karyotype was not reported at the time of initial diagnosis, but the Ph chromosome was detected three months after diagnosis.	Ubenimex and blood transfusion	The disease progressed to AML three months after the diagnosis of MDS, and death occurred two months after the progression.
Yajun et al[20]	2018	55	Female	RT	46, X, t(9;22)(q34;q11.2)/49, idem, +8, +19	He was treated with retinoic acid, prednisone, thalidomide in the MDS stage and imatinib mesylate plus HA in the AML stage.	He was diagnosed with MDS without Ph chromosomes. After 21 months, with the appearance of Ph chromosomes, he progressed to AML and died two months later.

MDS = myelodysplastic syndromes, RAEB = refractory anemia with excess blasts, RAEB-2 = refractory anemia with excess blasts-2, RT = myelodysplastic syndromes-refractory thrombocytopenia.

Author contributions

Conception and design: Shasha Qi, Feiqing Wang, Yang Liu, Yanju Li.
Acquisition of data: Shasha Qi, Jiangyuan Zhao, Yan Wang, Songsong Huang, Wenxiu Yang, Yanling Li, Yong Shen, Yi Huang, Mei Zhao.
Analysis and interpretation of data: Shasha Qi, Feiqing Wang, Chike Zhang, Jianing Zhao, Xu Yang, Rui Gao, Ying Chen, Peng Zhao, Fengqi Zhang, Ping Wang, Yan Zhang, Hanbo Dou.
Drafting manuscript and review it: Shasha Qi, Feiqing Wang, Yang Liu, Jishi Wang, Yanju Li.
Final approval of the version to be submitted: Yang Liu, Jishi Wang, Yanju Li. All authors approved the final manuscript.

Conceptualization: Feiqing Wang, Shasha Qi, Yang Liu, Yanju Li.

Data curation: Chike Zhang, Feiqing Wang, Fengqi Zhang, Hanbo Dou, Jiangyuan Zhao, Jianing Zhao, Mei Zhao, Peng Zhao, Ping Wang, Rui Gao, Shasha Qi, Songsong Huang, Wenxiu Yang, Xu Yang, Yan Wang, Yan Zhang, Yanju Li, Yanling Li, Yi Huang, Ying Chen, Yong Shen.

Formal analysis: Feiqing Wang, Shasha Qi, Yanju Li.

Funding acquisition: Yanju Li.

Investigation: Shasha Qi, Yanju Li.

Methodology: Shasha Qi, Yanju Li.

Resources: Shasha Qi, Yanju Li.

Writing – original draft: Feiqing Wang, Jishi Wang, Shasha Qi, Yang Liu, Yanju Li.

Writing – review & editing: Jishi Wang, Yang Liu, Yanju Li.

References

[1] Haase D. Cytogenetic features in myelodysplastic syndromes. Ann Hematol. 2008;87:515–26.

[2] Garcia-Manero G, Chien KS, Montalban-Bravo G. Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. Am J Hematol. 2020;95:1399–420.

[3] Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.

[4] Rahman K, Singh MK, Gupta R, et al. De novo Philadelphia chromosome positive myelodysplastic syndrome: report of two cases with brief literature review. J Cancer Res Ther. 2020;16:173–6.

[5] Keung YK, Beatty M, Powell BL, et al. Philadelphia chromosome positive myelodysplastic syndrome and acute myeloid leukemia: retrospective study and review of literature. Leuk Res. 2004;28:579–86.

[6] Katalinic D. De Novo Philadelphia Chromosome (BCR/ABL1) positive myelodysplastic syndrome: is it a distinct molecular and clinical entity? Indian J Hematol Blood Transfus. 2018;34:365–7.

[7] Verhoef G, Meeas P, Stul M, et al. Cytogenetic and molecular studies of the Philadelphia translocation in myelodysplastic syndromes. Report of two cases and review of the literature. Cancer Genet Cytogenet. 1992;59:161–6.

[8] Drummond MW, Lush CJ, Vickers MA, et al. Imatinib mesylate-induced molecular remission of Philadelphia chromosome-positive myelodysplastic syndrome. Leukemia. 2003;17:463–5.

[9] Lesesve JF, Troussard X, Bastard C, et al. p190bcr/abl rearrangement in myelodysplastic syndromes: two reports and review of the literature. Br J Haematol. 1996;95:372–5.

[10] Armas A, Chen C, Mims M, et al. Uncovering clinical features of De Novo Philadelphia positive myelodysplasia. Case Rep Hematol. 2017;2017:5404131.

[11] Toyama K, Ohyashiki K, Ohyashiki JH. Molecular implications of Ph (+) myelodysplastic syndrome. Adv Exp Med Biol. 1988;241:67–71.

[12] Garay CA, Al-Saleem T, Testa JR, et al. Coexisting myelodysplasia and myeloproliferative features in a single clone containing 5q-, Ph and i(17q). Leuk Res. 1999;23:965–7.

[13] Kushwaha R, Verma SP, Yadav G. Philadelphia-positive de novo myelodysplastic syndrome: a new entity with review of literature. Indian J Cancer. 2021;58:463–8.

[14] Mori H, Takahashi N, Tada J, et al. RAEB transformed into AML (M0) showing Ph1 chromosome and rearrangement of major cluster region. Rinsho Ketsueki. 1993;34:1458–63.

[15] Oosawa M, Fukuhara T, Takahata M, et al. A case of myelodysplastic syndrome developed blastic crisis of chronic myelogenous leukemia with acquisition of major BCR/ABL. Ann Hematol. 2003;82:593–5.

[16] Katsuno M, Yamashita S, Sadamura S, et al. Late-appearing Philadelphia chromosome in a patient with acute nonlymphocytic leukemia derived from myelodysplastic syndrome: detection of P210- and P190-type bcr/abl fusion gene transcripts at the leukemic stage. Br J Haematol. 1994;87:51–6.

[17] Wu D, Wu Q, He G, et al. A case of acute erythroleukemia evolved from myelodysplastic syndrome with acquisition of Ph chromosome and review of the literature. Leuk Res. 2011;35:837–9.

[18] Fukunaga A, Sakoda H, Iwamoto Y, et al. Abrupt evolution of Philadelphia chromosome-positive acute myeloid leukemia in myelodysplastic syndrome. Eur J Haematol. 2013;90:245–9.

[19] Dastugue N, Demur C, Pris F, et al. Association of the Philadelphia chromosome and 5q- in secondary blood disorder. Cancer Genet Cytogenet. 1988;30:253–9.

[20] Jiang YJ, Li XM, Zhu GH, et al. A case of Philadelphia chromosome in acute myeloid leukemia transformed from myelodysplastic syndrome and literature review. Leukemia lymphoma. 2018;27:297–300.