ON A CLASS OF C*-PREDUALS OF \(l_1 \)

By STEFANO ROSSI

Abstract. As it is well known, the Banach space \(l_1 \) of absolutely summable (complex) sequences endowed with the \(\| \cdot \|_1 \) norm is not unique predual. This means that there are many different (i.e. non isometrically isomorphic) Banach spaces \(X \) such that \(X^* \cong l_1 \).

The present note is aimed to point out a simple class of C*-preduals of \(l_1 \): namely the spaces \(C_\tau(\mathbb{N}) \) of continuous functions \(f : \mathbb{N} \to \mathbb{C} \), where the set of natural numbers \(\mathbb{N} \) is equipped with a compact Hausdorff topology \(\tau \).

To be more concrete, we shall explicitly describe a countable collection \(\{ T_n \} \) of such topologies.

Finally, we also provide an abstract characterization of the previous preduals as closed subspaces \(M \subset l_\infty \) rich of positive elements.

As commonly used in the literature, we shall denote by \(l_1 \) the (complex) Banach space of absolutely summable sequences, given of the norm \(\| \cdot \|_1 \) defined by \(\|a\|_1 = \sum_{i=1}^{\infty} |a_i| \) for each \(a \in l_1 \).

It is a very well known fact that \(l_1 \) is a conjugate Banach space, that is there exists at least a Banach space \(X \), such that \(X^* \cong l_1 \) (isometric isomorphism).

Such a space is usually named a predual. The most famous predual of \(l_1 \) is probably represented by the space \(c_0 \) of those (complex) sequences converging to 0, endowed of the \(\sup \)-norm. In this case, the isometric isomorphism \(c_0^* \cong l_1 \) is the map \(\Psi : l_1 \to c_0^* \) given by \(\langle \Psi(y), x \rangle = \sum_{i=1}^{\infty} y_i x_i \) for every \(x \in c_0 \) and \(y \in l_1 \).

In spite of its simple definition, \(l_1 \) is a rather pathological Banach space: for instance the predual is not unique; there is in fact a plenty of (non isomorphic) preduals of \(l_1 \). Some of these are quite "irregular": Y. Benyamini and J. Lindenstrauss \cite{4} proved in 1972 that there is a predual of \(l_1 \) that is not (topologically) complemented in any \(C(K) \)-space, \(K \) being any compact Hausdorff topological space.

On the other hand, the present paper is aimed to discuss a very nice class of C*-preduals of \(l_1 \). In this spirit, the first thing that should be noticed is the following:

Proposition 1. If \(\tau \) is a compact Hausdorff topology on the set of natural numbers \(\mathbb{N} \), one has \(C_\tau(\mathbb{N})^* \cong l_1 \).

Proof. It is possible to prove the statement by using the Riesz-Markov theorem. Here we perform a proof based on the characterization of separable conjugate

1 The weak topology of \(l_1 \) is not well behaved: every weakly convergent sequence is indeed norm-convergent, although the weak topology is strictly weaker than the norm topology.
spaces given in [5]. To this aim, we only have to check that \(C_\tau(\mathbb{N}) \subset l^\infty \) is a closed, norm-attaining and 1-norming subspace.

\(C_\tau(\mathbb{N}) \) is closed in \(l^\infty \) as a complete subspace. It is norm-attaining (when it is thought as subspace of bounded linear functionals on \(l_1 \)) thanks to Weierstrass’ theorem, since \((\mathbb{N}, \tau)\) is a compact space by assumption.

If \(y \in l_1 \) and \(\varepsilon > 0 \), there is \(n \in \mathbb{N} \) such that \(\|y\|_1 \leq \sum_{i=1}^{n} |y_i| + \varepsilon \). Let \(\theta_i \in \mathbb{R} \) such that \(y_i = |y_i| e^{i\theta_i} \) for each \(i = 1, 2, \ldots, n \). The subset \(C_n = \{1, 2, \ldots, n\} \subset \mathbb{N} \) is closed (and discrete), hence the function \(f: C_n \to \mathbb{C} \) given by \(f(i) = e^{-i\theta_i} \) for each \(i \in C_n \) is continuous and \(\|f\|_\infty = 1 \). Since \((\mathbb{N}, \tau)\) is a compact Hausdorff space, it is a normal topological space, so Tietze extension theorem applies to get a function \(g \in C_\tau(\mathbb{N}) \) such that \(\|g\|_\infty = 1 \) and \(g(i) = e^{-i\theta_i} \) for each \(i \in 1, 2, \ldots, n \).

We have \(|\langle g, y \rangle| = |\sum_{i=1}^{\infty} g(i)y_i| \geq |\sum_{i=1}^{n} |y_i| - \varepsilon| \geq \|y\|_1 - 2\varepsilon \). The last inequality easily implies that

\[
\sup_{g \in C_\tau(\mathbb{N})} |\langle g, y \rangle| = \|y\|_1
\]

that is \(C_\tau(\mathbb{N}) \subset l^\infty \) is a 1-norming subspace. This ends the proof.

The previous proposition immediately leads to the following corollary in point-set topology:

Corollary 2. Every compact Hausdorff topology on the set of natural numbers \(\mathbb{N} \) is metrizable.

Proof. Let \(\mathcal{T} \) be such a topology. We have \(C_\tau(\mathbb{N})^* \cong l_1 \), hence \(C_\tau(\mathbb{N}) \) is a separable Banach space, as a predual of the separable Banach space \(l_1 \), so that \((\mathbb{N}, \mathcal{T})\) is metrizable.

Note 3. As far as I know, a simple proof of the corollary quoted above does not seem available in the general setting of point-set topology, since it is not apparent that a compact Hausdorff topology on \(\mathbb{N} \) is automatically second countable.

On the other hand, non first countable topologies on \(\mathbb{N} \) are known: Appert topology, for instance, provides an elegant example of such a space. For the reader’s convenience, we recall here that Appert’s topology on \(\mathbb{N} \) is defined as follows: a subset \(A \subset \mathbb{N} \) is open if \(1 \notin A \) or (when \(1 \in A \)) if \(\lim_{n \to \infty} N(n, A) \) exists, where \(N(n, A) = |\{k \in A : k \leq n\}| \). Appert space is Lindelöf, separable but it is not first countable, since 1 does not have a countable basis of neighborhoods. For more details, we refer the interested reader to [6] or directly to the original paper by Appert [1].

Here below we shall describe explicitly a countable collection of compact Hausdorff topologies on \(\mathbb{N} \). Before introducing the announced topologies, one should mention that every set \(X \) can be endowed with a compact Hausdorff
topology, by virtue of a straightforward application of the Axiom of Choice\(^4\). Now let \(n \in \mathbb{N}\) be a fixed natural number. Given any \(k \in \{1, 2, \ldots, n\}\), we define the sets \(A_{k,l} = \{k, mn + k : m \geq l\}\). The sets \(A_{k,l}\) allow us to define a topology \(\mathcal{T}_n\), whose basis \(\mathcal{B}_n\) is given by the subset \(B \subset \mathbb{N}\) of the form \(A_{k,l}\) if \(k \in B\) for some \(k \in \{1, 2, \ldots, n\}\), otherwise we do not put any restriction, namely if \(\{1, 2, \ldots, n\} \cap B = \emptyset\) then \(B\) is allowed to be any subset of the natural numbers. Since \(A_{k,l} \cap A_{k',l}' = A_{k,l'}\) and \(A_{k,l} \cap A_{k',l'} = \emptyset\) when \(k, k' \in \{1, 2, \ldots, n\}\) are different, \(\mathcal{B}_n\) is really a basis. It is a straightforward verification to check that \(\mathcal{T}_n\) is a compact Hausdorff topology; the notion of convergence inherited by this topology is clearly the following:

A sequence \(\{n_m : m \in \mathbb{N}\}\) of integers converges to \(k \in \{1, 2, \ldots, n\}\) iff \(n_m\) is eventually in a set \(A_{k,l}\), while converges to \(k > n\) iff it is eventually equal to \(k\).

In the topology \(\mathcal{T}_n\) the set \(\{k : k \leq n\}\) is composed by non isolated points, while all the integers \(k > n\) are isolated. In some sense, topologies \(\mathcal{T}_n\) are as best as possible among compact Hausdorff ones, since it is a straightforward application of Baire category theorem that a compact Hausdorff topology on \(\mathbb{N}\) cannot have an infinite set of accumulation points\(^5\). However, what is more important here is that a simple argument can be performed to prove that the topologies \(\mathcal{T}_n\) are not homeomorphic:

Proposition 4. With the notations above, if \(n \neq m\) the topological spaces \((\mathbb{N}, \mathcal{T}_n)\) and \((\mathbb{N}, \mathcal{T}_m)\) are not homeomorphic.

Proof. Let us suppose that \(m > n\) and let \(\Phi : (\mathbb{N}, \mathcal{T}_m) \to (\mathbb{N}, \mathcal{T}_n)\) be a continuous injective map. If \(k \in \{1, 2, \ldots, m\}\), we can consider a sequence \(\{n_l\}\) converging to \(k\). The sequence \(\{\Phi(n_l)\}\) converges to \(\Phi(k)\) thanks to the continuity of \(\Phi\). Since \(\{n_l\}\) is not constant and \(\Phi\) is an injection, \(\Phi(k)\) is forced to be a natural number belonging to the subset \(\{1, 2, \ldots, n\}\), against the injectivity of \(\Phi\).

Let us denote by \(X_n\) the Banach space \(C_{\mathcal{T}_n}(\mathbb{N})\). Clearly we have \(X_n^* \cong l_1\) and

Proposition 5. If \(n \neq m\) the Banach space \(X_n\) and \(X_m\) are \(l_1\)-preduals, which are not isometrically isomorphic.

Proof. If they were isometrically isomorphic, the topological space \((\mathbb{N}, \mathcal{T}_n)\) and \((\mathbb{N}, \mathcal{T}_m)\) should be homeomorphic according to the classical Banach-Stein theorem.

The remaining part of the present paper is devoted to provide an intrinsic characterization of the spaces \(C_p(\mathbb{N})\) as suitable subspaces of \(l^\infty\). To this aim, one probably has to remind that any predual \(M\) of a conjugate spaces \(X\) should

\(^4\)The discrete topology \(\mathcal{P}(X)\) on \(X\) is locally compact and Hausdorff. The Alexandroff compactification \(\hat{X}\) of \(X\) is compact and Hausdorff; moreover, if \(X\) is an infinite set, there is a bijection \(\Phi : X \to \hat{X}\). We can use \(\Phi\) to define a compact Hausdorff topology \(\mathcal{T}\) on \(X\), by requiring a set \(U \subset X\) to be open if \(\Phi(U)\) is an open subset of \(X\).

\(^5\)Here \(l^1\) stands for \(\max\{l, h\}\).

\(^6\)Whenever \(\mathcal{T}\) is a compact Hausdorff topology on \(\mathbb{N}\), \((\mathbb{N}, \mathcal{T})\) is a Baire space as a complete metric space, hence it cannot be written as a countable union of rare sets, but every non isolated point \(n \in \mathbb{N}\) gives a rare singleton \(\{n\}\). In particular, the set of natural numbers \(\mathbb{N}\) cannot be given of a connected compact Hausdorff topology, anyway a connected Hausdorff topology on \(\mathbb{N}\) is available: for instance Golomb topology, see \([3]\).
be sought as a closed subspace of the dual space X^*, which is 1-norming and norm-attaining, namely each linear functionals belonging to the subspace is required to attain its norm on the unit ball of X.

When X is a separable conjugate space, the conditions above are also sufficient for a closed subspace $M \subset X^*$ to be canonically a predual of X as it is shown in [3].

Here canonically means that the isometric isomorphism $X \cong M^*$ is nothing but the restriction of the canonical injection $j : X \to X^{**}$ to M.

Before stating the result announced, let us fix some notations: $e \in l^\infty$ is the sequence constantly equal to 1, M_+ stands for the positive cone of a subspace $M \subset l^\infty$, while α^+ is the square root of a positive element $\alpha \in l^\infty$.

According to the next theorem the spaces $C_\tau(N)$ are precisely those l_1-predual rich of positive elements:

Theorem 6. Let $M \subset l^\infty$ be a predual of l_1, such that:

(a) $e \in M$.

(b) M_+ is weakly*-dense in l^∞.

(c) If $x \in M_+$, then $x^\frac{1}{2} \in M_+$.

Then $M = C_\tau(N)$ for a suitable compact Hausdorff topology on the set of natural numbers N.

Proof. Let be $\mathfrak{A} \subset l^\infty$ be the unital C*-algebra generated by M. If ω is a pure (multiplicative) state on \mathfrak{A}, we can consider its restriction $\omega|_M$. Since $M^* = l_1$, we have $\omega(x) = \varphi_y(x) = \sum y_i x_i$ for each $x \in M$, where y is a suitable sequence in l_1. Now pick a positive element $\alpha \in l^\infty$. Thanks to (b), there is a sequence $\{x_n\}_{n \in N} \subset M_+$ such that $\lim x_n = \alpha^+$ (in the weak* topology of l^∞). Then we have

$$\varphi_y(\alpha) = \lim_n \varphi_y(x_n) = \lim_n \varphi\left(x_n^\frac{1}{2} x_n^\frac{1}{2}\right) =$$

$$\lim_n \omega\left(x_n^\frac{1}{2} x_n^\frac{1}{2}\right) = \lim_n \omega\left(x_n^\frac{1}{2}\right) = \omega(\frac{1}{2}) \alpha = \varphi_y(\alpha)^2$$

where the last equality holds since $x_n^\frac{1}{2} \to \alpha^+$ (the weak* convergence in l^∞ is nothing but the bounded pointwise convergence).

If $e_i \in l^\infty$ is the sequence given by $e_i(k) = \delta_{i,k}$, we get $\varphi_y(e_i) = \varphi_y(e_i)^2$, because $e_i^\frac{1}{2}$ is e_i itself. It follows that, for each $i \in N$, $\varphi_y(e_i)$ is 0 or 1. Since $\sum |y_i| = \|\varphi_y\| = 1$, one has $y = e_k$ for some k. It easily follows that ω is the evaluation map at k.

This means that $\sigma(\mathfrak{A}) \cong N$, hence $\mathfrak{A} = C_\tau(N)$, \mathcal{T} being the weak* topology on the spectrum of \mathfrak{A}.

6A subspace $M \subset X^*$ is said to be 1-norming if for each $x \in X$, one has $\|x\| = \sup\{\varphi(x) : \varphi \in M_1\}$

M_1 being the unit ball of M.

7An element $x \in l^\infty$ is said to be positive if $x_i \geq 0$ for each $i \in N$; in this case one writes $x \geq 0$.

8If $x \geq 0$, then $x^\frac{1}{2}$ is the positive sequence given by $x^\frac{1}{2}(i) = x_i^\frac{1}{2}$ for each $i \in N$.

9For a basic treatment of C*-algebras theory, we refer the reader to [4].
Thanks to proposition \(\text{Proposition}\) we have \(C_r(\mathbb{N}) \cong l_1 \); since no proper inclusion relationships are allowed between preduals, we finally get \(M = \mathfrak{A} \). This concludes the proof.

References

[1] A. Appert, *Proprietés des espaces abstraits le plus généraux*, Actualités Sci. Indust. No. 146, Hermann, Paris, 1934.

[2] K. R. Davidson, *C*-Algebras by Example*, Fields Institute Monographs, American Mathematical Society, 1996.

[3] S. W. Golomb, *A connected topology for the integers*, Amer. Math. Montly, 66, 663-665, 1959.

[4] Y. Benyami, J. Lindenstrauss, *A predual of \(l_1 \) which is not isomorphic to a \(C(K) \) space*, Israel Journal of Mathematics 13, 246-254, 1972.

[5] S. Rossi, *A characterization of separable conjugate spaces*, www.arxiv.org.

[6] L. A. Steen, J. A. Seebach, *Counterexamples in Topology*, Dover Pubblication, Inc. New York, 1995.

Dip. Mat. Castelnuovo, Univ. Di Roma La Sapienza, Rome, Italy

E-mail address: s-rossi@mat.uniroma1.it