Buckling *versus* crystal expulsion controlled by deformation rate of particle-coated air bubbles in oil

Saikat Saha,†‡ Francis Pagaud,†§ Bernard P. Binks,¶ and Valeria Garbin*,†‡

†Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands.
‡Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
¶Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom.
§Current address: Department of Physics, Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France.

E-mail: v.garbin@tudelft.nl

Abstract

Oil foams stabilised by crystallising agents exhibit outstanding stability and show promise for applications in consumer products. The stability and mechanics imparted by the interfacial layer of crystals underpin product shelf-life, as well as optimal processing conditions and performance in applications. Shelf-life is affected by the stability against bubble dissolution over a long time scale, which leads to slow compression of the interfacial layer. In processing flow conditions, the imposed deformation is characterised by much shorter time scales. In practical situations, the crystal layer is therefore subjected to deformation on extremely different time scales. Despite its importance, our understanding of the behaviour of such interfacial layers at different time scales remains
limited. To address this gap, here we investigate the dynamics of single, crystal-coated bubbles isolated from an oleofoam, at two extreme timescales: the diffusion-limited timescale characteristic of bubble dissolution $\sim 10^4$ s, and a fast time scale characteristic of processing flow conditions, $\sim 10^{-3}$ s. In our experiments, slow deformation is obtained by bubble dissolution, and fast deformation in controlled conditions with real-time imaging is obtained using ultrasound-induced bubble oscillations. The experiments reveal that the fate of the interfacial layer is dramatically affected by the dynamics of deformation: after complete bubble dissolution, a continuous solid layer remains; while after fast, oscillatory deformation of the layer, small crystals are expelled from the layer. This observation shows promise towards developing stimuli-responsive systems, with sensitivity to deformation rate, in addition to the already known thermo- and photo-responsiveness of oleofoams.

Introduction

Oil foams have diverse utility in pharmaceutical, food and cosmetic applications. While air-oil interfaces are difficult to stabilise with molecular surfactants, various crystallising agents have been found to confer long-term stability to oil foams and novel air-in-oil-in-water systems. Crystals can nucleate and grow both in the bulk oil phase, and directly on the oil-air interface, upon decreasing the temperature of a pre-heated solution. Crystals formed in the bulk can then adsorb to the air-oil interfaces during mixing, while excess crystals can form a network in the oil phase (i.e. an oleogel). In this case, foam stability is due to both the bulk and interfacial networks of crystals. Much progress has been made in understanding the formation and stability of oil foams stabilised by crystallising agents, yet our knowledge of the mechanical properties and dynamic behaviour of such systems remains limited, despite its importance for product shelf-life, as well as optimal processing conditions and performance in applications. In particular, while there is significant literature available on the rheology of oleogels formed by the crystal network in the bulk oil phase,
and on the link between crystal formation and network properties,\(^{13,14}\) less is understood about the microstructure and properties of the crystal-stabilized interfaces.\(^{15}\)

The stability, dynamics and mechanics of particle-stabilized (or “armoured”) bubbles\(^{16}\) have been studied extensively for model systems stabilized by micron-scale colloids; these studies provided important fundamental insights thanks to the ability to directly visualise the interface microstructure and its evolution. At high surface coverage, particle jamming at the interface supports anisotropic stresses, which oppose the shape-minimising effects of surface tension, and lead to stable, non-spherical bubbles.\(^{16}\) If the particles have attractive interactions, the sufficient condition to arrest bubble dissolution depends on the surface viscoelasticity\(^{17}\) rather than surface coverage. Such attractive interactions can be tuned by modifying the particle shape, size, roughness, or surface chemistry.\(^{17}\) In addition to surface coverage and interparticle interactions, the morphology and deformation of the interfacial monolayer can also depend on the particle-to-bubble size ratio.\(^{18–21}\) Upon forced dissolution of particle-stabilised bubbles, both in aqueous\(^{22}\) and non-aqueous\(^{23}\) media, either expulsion of particles, or detachment of a continuous layer from the interface were observed, while for ultrafast deformation of colloid-coated bubbles in water forced by ultrasound, buckling of the monolayer and particle expulsion were observed.\(^{24}\)

In this work, we explore the dynamic response to deformation of wax-crystal stabilized bubbles isolated from the bulk crystal network of an oleofoam. We exploit bubble dissolution to apply slow interfacial compression on a diffusion-limited timescale, \(10^3 - 10^4\) s, important for product stability and shelf-life.\(^{25}\) Using ultrasound-driven bubble oscillations, we apply compression/expansion on very a fast timescale, \(10^{-4}\) s, relevant in production processes\(^{26}\) and performance in applications. The experiments reveal a striking difference in the fate of the interfacial wax-crystal layer at these two extreme deformation timescales. These insights are also important for optimising strategies for the design, synthesis and application of stimuli-responsive systems stabilized by phase-changing materials.\(^{2,27}\)
Materials and Methods

Preparation of wax-crystal coated bubbles

The wax used (Hydropel QB, Shamrock Technologies) is a blend of paraffin and synthetic waxes with melting temperature range $T_m = 50 - 105 \, ^\circ C$, according to the manufacturer’s specifications. The wax particles were used as received. Consumer-grade sunflower oil (Tesco) was used as received. The density was measured to be $\rho_{oil} = 0.8879 \, g \, cm^{-3}$ and the viscosity $\eta_{oil} = 50 \, mPa \, s$ at $T = 25 \, ^\circ C$. The protocol for oleofoam preparation was provided previously. Briefly, a vial containing 2.5 w/v % wax particles in sunflower oil was agitated at 3000 rpm for 2 minutes to form a well-mixed suspension. The suspension was then heated to $T = 90^\circ C$ to melt the wax and immediately agitated for 2 minutes to incorporate air to form the oleofoam. During turbulent mixing, the sample cooled down to $T \approx 45^\circ C$. The vial was then left undisturbed to cool to room temperature. In this process, the excess wax crystals that are not incorporated on the interfaces of bubbles form a gel network in the oil phase (oleogel) which contributes to the stability of such systems.

To prepare samples with wax-coated bubbles without the bulk gel network, the prepared oleofoam was diluted by placing a small sample ($\approx 20 \, \mu L$) on a microscope glass slide with a spacer of thickness 1.5 mm and adding sunflower oil to obtain isolated bubbles as schematically shown in Figure 1(a). High-magnification optical micrographs suggests that the primary crystal size at the oil/air interface is in the range $1 - 10 \, \mu m$ (see Supporting Information).

The wax-coated bubbles, when extracted from the oleofoam and re-suspended in sunflower oil, still have their interfacial layers present, as confirmed by their textured interfaces and buckled shapes, visible in Figure 1(b), recorded in bright field with an inverted microscope (IX71, Olympus) and digital camera (DCC1645C, Thorlabs). Using crossed polarizers, the layer of crystals is more clearly visible, as shown in Figure 1(c). Wherever these crystals can be seen, the interface exhibits non-uniform curvature. Conversely, in regions devoid of
crystals, the curvature is uniform. This is characteristic of a cohesive interfacial layer, which does not expand to fill up the entire available area.

Bubble dissolution experiments

We exploit the phenomenon of bubble dissolution to access long time scales of interface deformation. The characteristic timescale for bubble dissolution, in the absence of an interfacial layer, can be estimated using the theory of Epstein and Plesset:\(^{28,29}\)

\[
t_d = \frac{R_0^2}{3Dk_H} \left(\frac{R_0 \rho_g}{2M_w \sigma} + \frac{1}{R_g T} \right) \sim 10^3 - 10^4 \text{ s.} \tag{1}
\]

This long time scale is achieved by selecting bubbles with an initial radius \(R_0 \approx 100 \mu m\). The physico-chemical properties affecting \(t_d\) are the gas diffusivity in the oil, \(D \sim 10^{-10} \text{ m}^2/\text{s}\) for vegetable oils,\(^ {25}\) the surface tension of the air-oil interface, typically \(\sigma \approx 30 \text{ mN/m}\),\(^ {25}\) and the solubility of the gas in the oil, measured by Henry’s constant \(k_H\), which for \(\text{N}_2\) in...
non-polar solvents23 is on the order of $k_H \sim 10^{-5}$ mol Pa$^{-1}$ m$^{-3}$. The other parameters are the gas density and molar mass, which for nitrogen are $\rho_g = 1.2$ kg/m3 and $M_w = 28 \times 10^{-3}$ kg/mol, respectively, the temperature $T = 298$ K, and the universal gas constant $R_g = 8.31$ J mol$^{-1}$ K$^{-1}$.

For wax-coated bubbles, after they are extracted from the bulk oleogel, the interfacial layer alone is not able to arrest bubble dissolution.11 The stability imparted by the interfacial layer depends on the initial surface coverage and microstructure, and a large variability in dissolution time t_d of these crystal-coated bubbles is observed. Typically, dissolution occurs over a timescale in the same range as for uncoated bubbles, $t_d \sim 10^3 - 10^4$ s.

Oscillation of bubbles using ultrasound

To access short time scales of interface deformation, we exploit ultrasound-driven bubble oscillations. The periodic oscillations of the pressure around the ambient value, p_0, caused by an acoustic wave, force the gas core of a bubble to undergo periodic compression and expansion at the same frequency.30 The driving frequency f was selected close to the natural frequency f_0 of a bubble of radius R_0 in an unbounded liquid. The relation between these quantities is given by the Minnaert frequency,30 modified to include surface-tension effects:

$$ f_0 = \frac{1}{2\pi} \sqrt{\frac{3k p_0 + 2\sigma/R_0}{\rho_l R_0^2}}, \quad (2) $$

where κ is the polytropic exponent of the gas, taken to be 1.4 (assuming adiabatic behaviour), σ is the surface tension, and ρ_l is the liquid density. For bubbles of radii $R_0 \approx 100$ µm, the driving frequencies were selected in the range $f_0 \sim 10$ kHz, leading to oscillatory deformation with a period

$$ \tau_0 = \frac{1}{f_0} \approx 10^{-4} \text{ s}. \quad (3) $$

To transmit ultrasound waves into the sample and observe the dynamics of wax-coated bubbles, we used an ultrasound transducer (bolt-clamped Langevin transducer, Steminc;
resonance frequency 25 kHz) glued onto a glass plate and driven by an arbitrary waveform generator (Agilent 33220A, Agilent Technologies, Inc.) connected to a linear power amplifier (AG 1021, T&C Power Conversion, Rochester, USA), as shown in Figure 1(d). A sine wave of prescribed frequency \(f \), acoustic pressure amplitude \(\Delta p \), and number of cycles, \(N \), was sent to the transducer by the waveform generator and amplifier. The ultrasound-driven bubble dynamics are recorded with a high-speed camera (FASTCAM SA5, Photron) connected to the inverted microscope. The frame rate used for the high-speed camera was at least 10 times the driving frequency. The amplitude of bubble oscillations, which is controlled both by the forcing frequency \(f \) and by the acoustic pressure amplitude \(\Delta p \), is quantified from image analysis as \(x_0 = \Delta R/R_0 \), with \(\Delta R \) the maximum amplitude of bubble oscillations and \(R_0 \) the equilibrium bubble radius.

Results

Figure 2: Dissolution of wax-crystal coated bubble in oil (SI Video 1). Schematic of bubble dissolution, occurring over \(t \sim 10^3 - 10^4 \) s, with points qualitatively marking the dissolution steps observed in the following panels (i-vii). The image sequence is taken using cross-polarisers.

The dynamics of dissolution of a bubble in oil, stabilized by an interfacial layer of wax
crystals, is shown in Figure 2 (ESI† Video 1); the schematic shows qualitatively the time evolution of the radius \(R(t) \) and the different stages of the process when images (i-vii) were taken. Between \(t = 4430 - 5360 \) s [Figure 2(iii-iv)], a sharp deformation of the interface is observed on the right side of the bubble, from where a cohesive layer of crystals detaches as the bubble dissolves. Between \(t = 5960 - 6400 \) s [Figure 2(v-vi)], there is again a sharp distortion to the left side of the bubble, followed by detachment of the layer from that location. Thus, detachment appears to initiate from the points of maximum deformation. At \(t = 7090 \) s, after the bubble has completely dissolved [Figure 2(vii)], the layer of crystals was observed to remain intact over months. The layer appears to be composed of large crystal rafts with characteristic dimensions \(l \) comparable to the initial bubble radius \((R_0 \approx 100 \, \mu m) \).

Figure 3 shows the effects of ultrasound-driven bubble oscillations of small and large amplitude on the same wax-coated bubble. The frequency of oscillations is \(f = 25 \) kHz. At moderate acoustic pressure, the amplitude of bubble oscillations is limited to \(x_0 \approx 3\% \), too small to be clearly visible in Figure 3(a), and more clearly visible in the corresponding SI Video 2. The interface buckles during compression [Figure 3(iii)] and, over \(N \approx 200 \) cycles, undergoes a clear change from the initial non-spherical shape [Figure 3(i)] to almost spherical [Figure 3(iv)]. For the same bubble at higher acoustic pressures, the amplitude of oscillations becomes \(x_0 > 20\% \), which is clearly visible in the high-speed recording with cross-polarizers, SI Video 3, as well as in the corresponding image sequence in Figure 3(b).

The morphology of the crystal layer after large-amplitude oscillations at high frequency \((N = 100 \) cycles) is profoundly different from the case of slow compression during bubble dissolution: crystals are expelled from the layer, which are much smaller than the initial bubble radius, \(l \ll R_0 \), seen in Figure 3(viii). In contrast, the size of the segments forming the cohesive layer after bubble dissolution is \(l \approx R_0 \). Lastly, we examined the effect of ultrasound-driven oscillations on subsequent dissolution of wax-coated bubbles. Following a period of ultrasound-driven oscillations, the bubbles were left to dissolve completely, as shown in the schematic in Figure 4. Figure 4(i) shows a wax-coated bubble of initial radius \(R_0 \approx \)
Figure 3: Crystal expulsion after ultrasound-driven bubble oscillations. The schematic illustrates the protocol of oscillating a crystal-coated bubble with ultrasound pulses of different amplitudes. Images at selected times, labelled (i-viii), are shown below. (a) High-speed image sequence of a wax-coated bubble with initial radius $R_0 = 101 \mu m$ undergoing oscillations of moderate amplitude, with $x_0 = \Delta R/R_0 \approx 3 \%$ (SI Video 2). The frames show: (i) the initial non-spherical shape of the bubble before oscillations; the maximum (ii) and minimum (iii) during oscillations at $f = 25$ kHz and (iv) the final, almost spherical shape after $N \approx 200$ cycles of oscillations. (b) High-speed image sequence with cross-polarisers, for large-amplitude oscillations, with $x_0 \approx 20 \%$ (SI Video 3); (v) initial state before oscillations; (vi) maximum and (vii) minimum during oscillations at $f = 25$ kHz and (viii) final state after oscillations, showing expulsion of crystals around the bubble.
102 μm before any deformation is applied. The bubble was first driven into large-amplitude oscillations ($x_0 > 20\%$) with ultrasound frequency $f = 25$ kHz, and for $N = 480$ cycles. This results in the expulsion of a limited amount of crystals from the interface, without complete disruption of the interfacial layer, as seen in Figure 4(ii). The same bubble was then left to dissolve. An image sequence of the bubble dissolution steps is shown in Figure 4(ii-vii) (see also SI Video 3). The crystals and fragments of interfacial layer left behind after the bubble has completely dissolved ($t = 1680$ s), see Figure 4(vii), appear larger compared to those that are expelled by ultrasound-driven oscillations, see Figure 3(viii) for comparison.

Figure 4: Bubble dissolution after ultrasound-driven bubble oscillations. The schematic shows the protocol including large amplitude radial oscillations, followed by unperturbed dissolution. The labels correspond to the image sequence shown in panels (i-vii). The initial radius of the bubble before oscillations (i) is $R_0 = 102$ μm. Oscillations are driven by ultrasound at $f = 25$ kHz for $N = 480$ cycles, with amplitude of oscillations $x_0 > 20\%$ (shown in SI Video 4). (ii) $t = 0$ s represents the start time of recording as the bubble dissolves (ii-vii).
Discussion

Mechanism of layer detachment for slow compression

Observations of the dissolution of wax-coated bubbles ($n \approx 10$) indicate that, as the bubble decreases in size, the interfacial layer gradually detaches from the air-oil interface without significant changes in its morphology. In some instances ($n = 3$), the bubble remains fully covered with an interfacial layer during the entire process, until its complete dissolution (see Figure 2). These observations suggest that the energy penalty of deformation of the interfacial layer, measured by the compression modulus, exceeds the adhesive interaction energy between the wax layer and the air-oil interface. The compression modulus of the wax crystal layer on an air/oil interface was previously estimated to be $K_d \approx 40 - 60 \text{ mJ/m}^2$.

As the interfacial layer detaches from the bubble interface, the inner surface of the (solid) wax crystal layer, initially in contact with air, becomes wetted by oil and a region of bare oil/air interface is formed. In this process, the change in interfacial energy per unit area can therefore be estimated to be in the range $\gamma_{os} + \gamma_{oa} - \gamma_{as} \approx 1 - 10 \text{ mJ/m}^2$, with $\gamma_{oa} \approx 30 \text{ mJ/m}^2$ the surface tension of the oil/air interface, $\gamma_{os} \approx 1 - 5 \text{ mJ/m}^2$ the interfacial energy of the solid/oil interface, and $\gamma_{as} \approx 20 - 35 \text{ mJ/m}^2$ the surface energy of the solid/air interface. It is therefore energetically favourable for the layer to detach from the gas interface during bubble dissolution, since the change in interfacial energy is small compared to the compression modulus. Comparing with the literature for clay-stabilized bubbles in alkanes23 and latex-stabilised bubbles in water,22 we identify two features common to all systems for when a continuous layer is left behind: the interface deformation is slow, occurring over a timescale $t_d \sim 10^3 - 10^4 \text{ s}$ and the size of the primary particles is much smaller than the bubble radius, leading to a two-dimensional, continuum behaviour.21
Mechanisms of crystal expulsion for fast deformation

During ultrasound-driven bubble oscillations, the wax-crystal layer undergoes rapid compression and expansion, as well as out-of-plane deformation due to buckling, shown in Figure 3(iii), which can break the initially cohesive layer. This hypothesis is supported by the observation in Figure 3(a) that, for small-amplitude oscillations, the shape of the bubble changes without expulsion of interfacial material. The bubble becomes less non-spherical, consistent with an interfacial microstructure that cannot support anisotropic stresses. Because compression occurs on a very short timescale, $\tau_0 \sim 10^{-4}$ s, compared to rearrangement timescales in densely packed colloid monolayers, there is not sufficient time for rearrangement of the crystals to form a cohesive network. When a bubble that has been pre-treated with ultrasound-driven oscillations is allowed to dissolve (Figure 4), the interface undergoes slow compression, allowing sufficient time for the crystal domains to re-arrange and form again a cohesive, solid-like network that can support anisotropic stresses as evidenced by the non-spherical shape of the bubble [Figure 4(iii-v)]. For bubble oscillations of large amplitude, several concurrent mechanisms can contribute to the expulsion of crystals, similar to observations for colloid-coated bubbles in water,24 including significant out-of-plane buckling of the layer (SI Video 5). In the case of large-amplitude oscillations, when the same bubble is allowed to dissolve, the fragments of interfacial layer left behind are larger than those produced by ultrasound oscillations alone. This suggests that the large-amplitude oscillations can break the original interfacial structure but, following this, as the interface is compressed slowly there is sufficient time for the remaining crystals to rearrange and form larger cohesive domains.

Conclusions

We investigated the response to deformation of an interfacial layer formed by a crystallising agent on the surface of bubbles in an oil phase, at two extreme timescales that are, on one
hand, relevant to the shelf-life of such systems, and on the other in their processing and application. We found that the morphology of the interfacial layer is modified, depending on the interplay between the timescales of deformation and crystal rearrangement. For slow deformation, the crystals form a cohesive network, whereas for fast deformation the layer is fragmented. Conversely, the fate of the monolayer can be controlled by carefully combining these deformation protocols on the same layer. Also, depending on the requirement, the bubble shapes can be altered. These effects can find utility in modifying the morphology, rheology and texture of foams in cosmetic and food applications. Furthermore, by tuning the timing and duration of ultrasound-induced deformation, protocols can be devised for the use of crystal-coated microbubbles for controlled release, useful for delivery of active pharmaceutical ingredients. Our findings pave the way for the design of stimuli-responsive systems that can be triggered to behave uniquely depending on the timescale of deformation, in addition to the already-known temperature dependence of the phase-changing stabilising agent.

Acknowledgement

The authors thank P. Luckham, J. Seddon, B. Dollet and E. Wagner for helpful discussions. This work is supported by European Research Council Starting Grant No. 639221 (V. G.).

References

(1) Fameau, A.-L.; Saint-Jalmes, A. Non-aqueous foams: Current understanding on the formation and stability mechanisms. Adv. Colloid Interface Sci. 2017, 247, 454–464.

(2) Heymans, R.; Tavernier, I.; Dewettinck, K.; Van der Meeren, P. Crystal stabilization of edible oil foams. Trends Food Sci. Technol. 2017, 69, 13–24.
(3) Fameau, A.-L.; Binks, B. P. Aqueous and Oil Foams Stabilized by Surfactant Crystals: New Concepts and Perspectives. *Langmuir* 2021, **37**, 4411–4418.

(4) Mishima, S.; Suzuki, A.; Sato, K.; Ueno, S. Formation and Microstructures of Whipped Oils Composed of Vegetable Oils and High-Melting Fat Crystals. *J. Am. Oil Chem. Soc.* 2016, **93**, 1453–1466.

(5) Gunes, D. Z.; Murith, M.; Godefroid, J.; Pelloux, C.; Deyber, H.; Schafer, O.; Breton, O. Oleofoams: Properties of Crystal-Coated Bubbles from Whipped Oleogels—Evidence for Pickering Stabilization. *Langmuir* 2017, **33**, 1563–1575.

(6) Heymans, R.; Tavernier, I.; Danthine, S.; Rimaux, T.; Van der Meeren, P.; Dewettinck, K. Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties. *Food Funct.* 2018, **9**, 3143–3154.

(7) Liu, Y.; Binks, B. P. A novel strategy to fabricate stable oil foams with sucrose ester surfactant. *J. Colloid Interface Sci.* 2021, **594**, 204–216.

(8) Binks, B. P.; Vishal, B. Particle-stabilized oil foams. *Adv. Colloid Interface Sci.* 2021, **291**, 1–27.

(9) Goibier, L.; Pillement, C.; Monteil, J.; Faure, C.; Leal-Calderon, F. Emulsification of non-aqueous foams stabilized by fat crystals: Towards novel air-in-oil-in-water food colloids. *Food Chemistry* 2019, **293**, 49–56.

(10) Saha, S. Micromechanics of particle-coated bubbles: deformation from quasistatic to millisecond timescales. Ph.D. thesis, Imperial College London, 2020.

(11) Saha, S.; Saint-Michel, B.; Leynes, V.; Binks, B. P.; Garbin, V. Stability of bubbles in wax-based oleofoams: decoupling the effects of bulk oleogel rheology and interfacial rheology. *Rheol. Acta* 2020, **59**, 255–266.
(12) Liascukiene, I.; Amselem, G.; Landoulsi, J.; Gunes, D. Z.; Baroud, C. N. Intermittent dynamics of bubble dissolution due to interfacial growth of fat crystals. *Soft Matter* **2021**, *17*, 10042–10052.

(13) Tavernier, I.; Moens, K.; Heyman, B.; Danthine, S.; Dewettinck, K. Relating crystallization behavior of monoacylglycerols-diacylglycerol mixtures to the strength of their crystalline network in oil. *Food Research International* **2019**, *120*, 504–513.

(14) Metilli, L.; Lazidis, A.; Francis, M.; Marty-Terrade, S.; Ray, J.; Simone, E. The Effect of Crystallization Conditions on the Structural Properties of Oleofoams Made of Cocoa Butter Crystals and High Oleic Sunflower Oil. *Crystal Growth and Design* **2021**, *21*, 1562–1575.

(15) Fameau, A.-L.; Saint-Jalmes, A. Recent Advances in Understanding and Use of Oleofoams. *Frontiers Sust. Food Systems* **2020**, *4*, 110.

(16) Subramaniam, A. B.; Abkarian, M.; Mahadevan, L.; Stone, H. A. Non-spherical bubbles. *Nature* **2005**, *438*, 930.

(17) Beltramo, P. J.; Gupta, M.; Alicke, A.; Liascukiene, I.; Gunes, D. Z.; Baroud, C. N.; Vermant, J. Arresting dissolution by interfacial rheology design. *Proc. Nat. Acad. Sci.* **2017**, 201705181.

(18) Kam, S. I.; Rossen, W. R. Anomalous capillary pressure, stress, and stability of solids-coated bubbles. *J. Colloid Interface Sci.* **1999**, *213*, 329–339.

(19) Abkarian, M.; Subramaniam, A. B.; Kim, S.-H.; Larsen, R. J.; Yang, S.-M.; Stone, H. A. Dissolution Arrest and Stability of Particle-Covered Bubbles. *Phys. Rev. Lett.* **2007**, *99*, 188301.

(20) Pitois, O.; Buisson, M.; Chateau, X. On the collapse pressure of armored bubbles and drops. *Eur. Phys. J. E* **2015**, *38*, 1–7.
(21) Taccoen, N.; Lequeux, F.; Gunes, D. Z.; Baroud, C. N. Probing the mechanical strength of an armored bubble and its implication to particle-stabilized foams. *Phys. Rev. X* 2016, 6, 1–11.

(22) Poulichet, V.; Garbin, V. Cooling particle-coated bubbles: Destabilization beyond dissolution arrest. *Langmuir* 2015, 31, 12035–12042.

(23) Achakulwisut, K.; Tam, C.; Huerre, A.; Sammouti, R.; Binks, B. P.; Garbin, V. Stability of Clay Particle-Coated Microbubbles in Alkanes against Dissolution Induced by Heating. *Langmuir* 2017, 33, 3809–3817.

(24) Poulichet, V.; Garbin, V. Ultrafast desorption of colloidal particles from fluid interfaces. *Proc. Nat. Acad. Sci.* 2015, 112, 5932–5937.

(25) Kloek, W.; Van Vliet, T.; Meinders, M. Effect of bulk and interfacial rheological properties on bubble dissolution. *J. Colloid Interface Sci.* 2001, 237, 158–166.

(26) Mishra, K.; Grob, L.; Kohler, L.; Zimmermann, S.; Gstöhl, S.; Fischer, P.; Windhab, E. J. Entrance flow of unfoamed and foamed Herschel–Bulkley fluids. *Journal of Rheology* 2021, 65, 1155–1168.

(27) Fameau, A.-L.; Lam, S.; Arnould, A.; Gaillard, C.; Velev, O. D.; Saint-Jalmes, A. Smart Nonaqueous Foams from Lipid-Based Oleogel. *Langmuir* 2015, 31, 13501–13510.

(28) Epstein, P. S.; Plesset, M. S. On the Stability of Gas Bubbles in Liquid-Gas Solutions. *J. Chem. Phys.* 1950, 18, 1505–1509.

(29) Duncan, P. B.; Needham, D. Test of the Epstein-Plesset model for gas microparticle dissolution in aqueous media: Effect of surface tension and gas undersaturation in solution. *Langmuir* 2004, 20, 2567–2578.

(30) Plesset, M. S.; Prosperetti, A. Bubble dynamics and cavitation. *Ann. Rev. Fluid Mech.* 1977, 9, 145–185.