Semantic Matching from Different Perspectives

Weijie Liu, Tao Zhu, Weiquan Mao, Zhe Zhao, Weigang Guo, Xuefeng Yang and Qi Ju*
Tencent Research, Beijing, China
dataliu@pku.edu.cn, {mardozhu, weiquanmao, nlpzhezhao, jimwgguo, ryanxfyang, damonju}@tencent.com

Abstract
In this paper, we pay attention to the issue which is usually overlooked, i.e., similarity should be determined from different perspectives. To explore this issue, we release a Multi-Perspective Text Similarity (MPTS) dataset, in which sentence similarities are labeled from twelve perspectives. Furthermore, we conduct a series of experimental analysis on this task by retrofitting some famous text matching models. Finally, we obtain several conclusions and baseline models, laying the foundation for the following investigation of this issue. The dataset and code are publicly available at Github.

1 Introduction
Text similarity matching is a crucial technology in search engines and recommendation systems, which is leveraged to calculate the similarity score between two texts and recall the most similar query from a large number of candidate texts (Li and Lu, 2016). In the earlier system, the similarity is measured based on the overlap of terms, e.g., TF-IDF (Ramos et al., 2003), BM25 (Robertson and Zaragoza, 2009), etc. In recent years, the community has focused more on the semantic similarity calculated by neural network models.

The semantic retrieval system usually consists of two modules, namely recall and rerank. In the recall module, the most commonly used mode is called bi-encoder, which embeds texts as vectors through an encoder model (e.g., SBERT (Reimers and Gurevych, 2019), BERT-flow (Li et al., 2020) and SimCSE (Gao et al., 2021)), and uses a vector search engine (e.g., FAISS (Johnson et al., 2019)) to recall the nearest neighbor vector for the query text. For rerank module, the candidate text and query text are fed into a cross-encoder classifier to determine whether they are similar (RE2 (Yang et al., 2019), HCAN (Rao et al., 2019)).

Field	Content / Perspectives
Sentence A	Star Wars is very exciting, I want to watch it again.
Sentence B	I fell asleep when watching Avatar, a bit boring.

Table 1: An Example of sentences that draw conflicting conclusions from different perspectives.

In order to provide a standard benchmark to compare among various similar matching models, there are many public tasks/datasets available. SemEval STS Task (Cer et al., 2017) released 8628 sentence pairs, and their similarity is represented by scores between 0.0 and 5.0. Quora Question Pairs (QQP) (Iyer et al., 2017) is a dataset containing 400k question-question pairs, labeled with 0/1 tag to indicate whether these pairs are similar. Natural Language Inference (NLI) (Bowman et al., 2015; Williams et al., 2018; Conneau et al., 2018) is a task of determining the inference relation (entailment, contradiction or neutral) between two texts.

Although many similarity matching models or datasets have been released, the definition of similarity is still unclear, leading to conflicting conclusions. For example, some people think that Sentence A and B in Table 1 are similar because their themes are both about Sci-fi movies. However, some people hold the opposite view because of their different emotions and literals. There are many perspectives and dimensions to determine similarity and none of them are necessarily right or wrong, thus causing trouble in defining similarity.

Therefore, in this paper, we would like to pay attention to the issue that are usually ignored, i.e., similarity should be determined from different perspectives. Based on this, we first release a MPTS dataset in Section 2. Next, we retrofit some baseline models to adapt to the MPTS in Section 3, and conduct experimental analysis in Section 4. Finally, valuable conclusions are drawn in Section 5.
The main contributions of this paper can be summarized as follows:

- We propose a new point that similarity should be determined from different perspectives.
- We build and release the first Multi-Perspective Text Similarity (MPTS) dataset.
- A series of baseline models are proposed and analyzed in this paper.

2 Dataset

2.1 Source

The text samples of MPTS come from the plot summaries in the Internet Movie Database (IMDB), labeled with one or more genres (Read, 2010). We take genres as different perspectives, and then pair the summaries in pairs. If two summaries in a pair have the same genre label, they are considered similar from this particular perspective, otherwise, they are not similar. Table 2 gives a pair example, where the samples are similar in some perspectives, but not similar in other perspectives.

Field	Content / Perspectives
Sentence A	A magician from a faraway land reveals to Iznogoud a new magic trick: a hopscotch that has the power to turn anyone who jumps on the last square back into a kid.
Sentence B	As the dragon slayers are drained of their power in the dungeons, the king activates Code ETD and starts an unexpected rebellion.
Similar in	Adventure, Animation, Comedy, Fantasy
Not Similar in	Action, Crime, Drama, Family, Mystery, Romance, Sci-Fi, Thriller

Table 2: An example of pairs in MPTS.

2.2 Statistics

To avoid duplication, each sample could be paired only once. Finally, we got a total of 12,734 pairs with 12 perspectives. All pairs are split into train, dev and test set, which contain 10k, 734, and 2k pairs, respectively. Refer to Table 3 for details.

Perspective	# Pairs train/dev/test	Perspective	# Pairs train/dev/test
Action	3183/206/614	Family	2308/167/462
Adventure	2472/179/461	Mystery	1832/122/360
Animation	2066/164/393	Science	1505/129/314
Comedy	3050/251/579	Romance	2381/169/459
Crime	3398/244/708	Sci-Fi	2281/147/437
Drama	6169/449/7251	Thriller	1988/147/437

Table 3: The number of pairs in different perspectives.

In the industry scenario, there are two modes to match text pair similarity, i.e., bi-encoder mode for recall scene and cross-encoder mode for rerank scene (Reimers and Gurevych, 2019).

3.1 Bi-encoder

The mode of the bi-encoder is shown in Figure 1, where Sentence A and Sentence B are respectively encoded with two parameter-sharing encoders. The encoder can be BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), etc. The pooling type could be selected from CLS, Last-Avg, First-Last-Avg, Last2-Avg (Su et al., 2021). The multi-persp linears consists of N dense linear layers, which convert the single sentence embedding into N normalized embeddings corresponding to the N perspectives. For the ith perspective, the similarity score $s_i \in [-1, 1]$ is the Cosine value calculated from the embeddings of sentence A and sentence B in the corresponding perspective. When $s_i \geq 0$, it is regarded as similar, otherwise, it is not. When training, the bi-encoder...
mode adopts the loss function in (1),

\[
 \text{loss} = \sum_{i=1}^{N} y_i \log \frac{e^{s_i/\tau}}{e^{s_i/\tau} + e^{-s_i/\tau}} + \sum_{i=1}^{N} (1 - y_i) \log \frac{e^{-s_i/\tau}}{e^{s_i/\tau} + e^{-s_i/\tau}},
\]

(1)

where \(y_i = 1 \) when the pair is similar from the \(i \)-th perspective, otherwise \(y_i = 0 \). \(\tau \) is a hyperparameter called temperature.

3.2 Cross-encoder

The mode of the cross-encoder is shown in Figure 2. Sentence A and Sentence B are sent to the same encoder and pooling layer, and are represented as a \(H \)-dimensional embedding vector. In this mode, multi-persp linear is a dense linear layer of \(H \times N \), which converts the \(H \)-dimensional embedding vector into a \(N \)-dimensional score vector corresponding to the \(N \) perspectives. The similarity score \(s_i \) is restricted between 0 and 1 with a Sigmoid function. When \(s_i \geq 0.5 \), it is regarded as similar, otherwise, it is not. For training, the cross-encoder mode uses the loss function in (2),

\[
 \text{loss} = \sum_{i=1}^{N} y_i \log(s_i) + \sum_{i=1}^{N} (1 - y_i) \log(1 - s_i),
\]

(2)

4 Experimental results

In this section, we equip the bi-encoder and cross-encoder modes with different sentence representation encoders, and show and analyze some experimental results on MPTS. SimCSE encoders are unsupervised versions (Gao et al., 2021), and SBERT encoders are NLI versions (Reimers and Gurevych, 2019). All models are trained on the train set for 10 epochs, and then the model with the best performance in the dev set is selected for evaluation using the test set. More training details can be found in Appendix B.

4.1 Impact of pooling type

For both bi-encoder and cross-encoder modes, the pooling type is a hyper-parameter that needs to be

![Figure 3: MPTS performance of the BERT-base model with different pooling types.](image-url)
determined. In Figure 3, we show the weighted F1-score on the MPTS of these two modes using a BERT-base (Devlin et al., 2019) encoder with different pooling types.

It can be observed that for the bi-encoder mode, the performance of CLS pooling type is worse than the other three, and these four pooling types have little effect on the cross-encoder. Based on this observation, in this paper, all bi-encoder models use Last2-Avg, and cross-encoder models use CLS.

4.2 Impact of temperature

The temperature τ in (1) is a key hyper-parameter for bi-encoder models. Appropriate τ will bring high performance, while bad τ may even make the model not converge. In this experiment, we take BERT-base/large (Devlin et al., 2019) and RoBERT-base/large (Liu et al., 2019; Zhao et al., 2019) as examples to explore the impact of temperature τ, and the results are shown in Figure 4.

It can be found that τ has a great influence on these models, and $\tau = 0.5$ is their common peak point. In addition, we found that if $\tau < 0.1$ may cause model overflow during the training process, and if $\tau > 10$ will make the model not converge. Therefore, $\tau = 0.5$ is the default setting for all the bi-encoder models in this paper.

4.3 Results of bi-encoder

In Table 4, we show the bi-encoder models’ evaluation metrics of six representative perspectives selected from the 12 MPTS perspectives, and the W. Avg. is the weighted average score of all 12 perspectives. The metrics of the other six perspectives can be found in Appendix A. It can be seen that SimCSE-Bert-base (Gao et al., 2021) has the best performance among all base-size encoders, followed by BERT-base(Devlin et al., 2019). For large-size encoders, SimCSE-Bert-large (Gao et al., 2021) vastly superior with 65.2% F1-score. However, compared with the cross-encoder models in Table 5, its performance still has plenty of room for improvement.

4.4 Results of cross-encoder

Table 5 shows the evaluation metrics of the cross-encoder models for six representative perspectives, and that of the remaining six perspectives can be found in the Appendix A. Benefited from the deep interaction between sentences in cross-encoder mode, its performance is significantly better than bi-encoder mode, and the performance divergence among different encoders is relatively small. Specifically, the F1-score range of the base-size models is 88% to 90%, and that of the large-size model is 90% to 92%.

4.5 Impact of model size

Table 6 compares the performance of different model sizes, where BERT-tiny/mini/small/medium come from Turc et al. (2019) and BERT-base/large come from Devlin et al. (2019). It can be seen that no matter which mode it is, the performance is positively correlated with the model size.

5 Conclusion

In this work, we first propose the point that similarity should be judged from different perspectives. In order to explore the feasibility of judging similarity from different perspectives, we constructed and released a multi-perspective text similarity dataset (MPTS). After that, a series of experiments were carried out on this dataset with the commonly used modes in industrial scenes, i.e., bi-encoder and cross-encoder. Finally, we draw the following conclusions: 1. By adding a multi-persp linear layer, both bi-encoder and cross-encoder modes can be applied to the multi-perspective similarity matching task. 2. The bi-encoder, as an essential mode in retrieval systems, still has plenty of room for improvement in this task. 3. The performance is
positively associated with the model size, no matter which mode it is.

References

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. 2015. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 632–642.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. 2017. SemEval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 1–14.

Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. XLNet: Evaluating cross-lingual sentence representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 2475–2485.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), pages 4171–4186.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple contrastive learning of sentence embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6894–6910.

Shankar Iyer, Nikhil Dandekar, Komél Csernai, et al. 2017. First Quora dataset release: Question pairs. Quora and Data.

Jeff Johnson, Matthijs Douze, and Hervé Jéjou. 2019. Billion-scale similarity search with gpus. IEEE Transactions on Big Data, 7(3):535 – 547.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. 2020. On the sentence embeddings from pre-trained language models. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9119–9130.

Hang Li and Zhengdong Lu. 2016. Deep learning for information retrieval. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 1203–1206.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In Proceedings of the 2019 International Conference on Learning Representations (ICLR).

Juan Ramos et al. 2003. Using TF-IDF to determine word relevance in document queries. In Proceedings of the First Instructional Conference on Machine Learning, pages 29–48.

Jinfeng Rao, Linqing Liu, Yi Tay, Wei Yang, Peng Shi, and Jimmy Lin. 2019. Bridging the gap between relevance matching and semantic matching for short text similarity modeling. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5373–5384.

Jesse Read. 2010. Scalable multi-label classification. Ph.D. thesis, University of Waikato.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), page 3982–3992.

Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance framework: BM25 and beyond. Now Publishers Inc.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. 2021. Whitening sentence representations for better semantics and faster retrieval. arXiv preprint arXiv:2103.15316.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1810.04805.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), pages 1112–1122.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue, Anthony Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al. 2020. Transformers: State-of-the-Art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 38–45.

Runqi Yang, Jianhai Zhang, Xing Gao, Feng Ji, and Haiqing Chen. 2019. Simple and effective text matching with richer alignment features. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL), pages 4699–4709.
A Supplementary results

Table A.1 and Table A.2 respectively give the evaluation results of the bi-encoder and cross-encoder models in the other six MPTS perspectives.

B Training details

We implement all models based on Huggingface’s transformers package (Wolf et al., 2020). The maximum sequence length of the bi-encoder and cross-encoder models is set to 128 and 256, respectively. We use the AdamW optimizer (Loshchilov and Hutter, 2019) to train these models for 10 epochs with a batch size of 32, and use the model with the best performance on the dev set for finally evaluation. The learning rate is set as 5e-5 and weight decay is 0.01. For bi-encoder models, the temperature is set as 0.5.
Table A.1: The evaluation results (precision/recall/F1-score) of the bi-encoder models on the remaining six MPTS perspectives.

Encoder \ Perspective	Adventure	Animation	Crime	Family	Fantasy	Romance
BERT-base	35.3/89.1/50.6	33.7/94.1/49.7	53.1/195.3/68.2	36.4/93.2/253.5	27.3/84.7/741.3	24.2/82.4/437.4
RoBERTa-base	31.4/87.8/54.4	30.9/90.8/56.2	50.7/93.9/60.9	34.7/78.6/64.9	23.7/86.8/634.9	19.5/93.0/629.8
SBERT-base	35.7/93.9/51.8	33.8/96.1/50.0	53.6/98.0/69.3	37.5/93.2/253.5	27.0/87.2/241.2	25.1/92.5/391.1
SimCSE-Bert-base	34.9/85.4/48.6	32.9/92.8/46.6	51.4/94.9/66.7	35.1/87.8/90.2	35.1/87.8/90.2	23.7/80.5/36.6
BERT-large	33.4/83.5/47.7	32.4/93.1/48.1	50.0/92.6/64.6	33.0/86.1/47.7	26.8/80.5/40.2	23.1/82.2/36.1
RoBERTa-large	31.5/81.7/45.5	30.1/92.3/44.5	50.0/92.6/64.9	33.0/86.1/47.7	23.7/82.2/35.2	18.8/86.0/28.9
SBERT-large	32.7/88.0/47.7	32.9/94.1/45.4	50.3/95.0/65.9	34.8/91.1/50.4	25.8/81.3/38.8	21.3/77.3/33.5
SimCSE-Bert-large	41.8/92.6/57.6	39.1/93.8/55.2	59.2/95.7/63.1	42.8/94.1/58.8	33.1/85.8/57.7	29.0/86.3/34.5
SimCSE-roberta-base	33.9/92.8/46.6	30.2/93.2/45.6	51.4/94.9/66.5	39.0/89.4/59.5	24.8/91.1/37.7	22.1/83.9/34.7

Table A.2: The evaluation results (precision/recall/F1-score) of the cross-encoder models on the remaining six MPTS perspectives.

Encoder \ Perspective	Adventure	Animation	Crime	Family	Fantasy	Romance
BERT-base	85.6/88.2/88.9	92.5/88.8/90.6	95.7/90.5/95.4	91.2/91.9/91.5	85.8/82.2/83.8	91.7/85.3/88.4
RoBERTa-base	81.6/87.6/84.5	90.1/88.9/89.4	93.5/93.9/94.1	89.8/90.2/90.0	79.0/80.8/80.3	90.3/80.2/88.9
SBERT-base	85.3/88.5/86.9	91.9/90.6/91.2	95.4/95.6/95.5	89.9/91.9/90.0	84.2/81.0/83.6	90.9/83.1/86.8
SimCSE-Bert-base	86.0/84.1/85.0	89.8/89.5/89.6	95.2/95.2/95.2	91.1/91.3/91.2	89.2/87.6/83.6	92.8/83.1/87.7
SimCSE-roberta-base	81.3/87.2/84.1	90.4/88.8/89.6	93.1/95.6/94.3	90.3/90.9/90.6	82.3/80.5/81.4	90.3/80.2/84.9
BERT-large	85.4/89.0/87.8	91.2/91.9/92.2	96.5/92.9/96.0	94.2/92.8/93.5	86.7/84.2/86.9	92.1/85.3/88.6
RoBERTa-large	83.6/87.4/85.5	90.0/92.1/91.0	95.1/95.9/95.5	88.7/93.9/91.2	84.0/89.5/84.5	90.4/87.2/88.8
SBERT-large	86.1/90.2/88.1	91.3/91.6/91.4	94.5/96.2/95.4	93.9/94.8/94.9	87.0/87.5/87.2	93.1/86.8/94.7
SimCSE-Bert-large	86.5/90.8/88.4	90.8/93.6/92.2	95.8/95.9/95.6	94.1/94.1/94.1	88.1/84.4/86.2	92.5/86.9/86.6
SimCSE-roberta-large	87.7/88.2/88.0	90.1/93.1/91.6	95.8/97.3/96.3	90.3/94.9/92.5	90.6/80.5/85.2	90.5/85.0/87.6