Exosomes derived from mesenchymal stem cells improved core symptoms of genetically modified mice model of autism Shank3B

CURRENT STATUS: UNDER REVIEW

Nisim Perets
Tel Aviv University

nisimperets@gmail.comCorresponding Author
ORCiD: https://orcid.org/0000-0001-5150-4565

Oded Oron
Bar-Ilan University

Shay Herman
Tel Aviv University School of Medicine

Evan Elliott
Bar-Ilan University

Daniel Offen
Tel Aviv University

DOI: 10.21203/rs.3.rs-17171/v1

SUBJECT AREAS
Cellular & Molecular Neuroscience

KEYWORDS
Autism Spectrum Disorder (ASD), Mesenchymal Stem Cells (MSC)
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with main core symptoms including deficits in social-communication abilities and repetitive behaviors/restricted interests. ASD affects 1 of 88 children worldwide and currently there is no sufficiently effective treatment that alleviates its core deficits. In our previous studies, we have shown that both MSC and MSC-exo can ameliorate core ASD-like symptoms of the BTBR multifactorial mouse model of autism. Furthermore, we have demonstrated that the MSC-exo migrate to distinct neuropathological areas in several mouse models, including the frontal cortex and cerebellum in BTBR mice. In contrast to BTBR mice, which is a multifactorial model of autism, the Shank3B KO mouse is used to study ASD which develops due to a specific genetic mutation. Here we demonstrate that intranasal treatment with MSC-exo improves the social behavior deficit in multiple paradigms, increases vocalization and reduces repetitive behaviors. We also observed an increase of GABRB1 in the prefrontal cortex. Taken together, our data indicate that intranasal treatment with MSC-exo improves the core ASD-like deficits of in this mouse model autism and therefore has the potential to treat ASD patients carrying the Shank3 mutation.

Background
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder defined by social-communicational deficits, repetitive behaviors and restricted interests. In the last two decades ASD's etiology has been shown to be extremely complexed, composed of both genetic and epigenetic variation\(^1,2,3\) and further studies have shown that this complexity translates to multiple perturbed molecular pathways\(^4,5,6\). This complexity may explain the great difficulty in finding pharmacological therapies that can reverse or ameliorate the core symptoms of ASD efficiently and across the spectrum\(^7\). The current approved treatments target the comorbid behaviors frequently observed in ASD such as anxiety, hyperactivity and impulsive-related behaviors\(^7,8\). However, it seems that the greater challenge is finding a treatment that will address a combination of the core autistic behaviors, including social-communicational and repetitive/restricted interests.

In our previous study we have shown that intraventricular administration of Mesenchymal Stem Cells (MSC) resulted in amelioration of the core ASD-like symptoms in the BTBR autism mouse model,
including significant improvement in social interactions, maternal behavior, reduction in repetitive behaviors, and reduction in cognitive rigidity\(^9\). Surprisingly, the ameliorating effect of transplantation of MSC in BTBR mice lasted for at least six months after the treatment\(^11\). Since it is likely that the MSCs did not survive in the transplanted tissue longer than a few weeks, we assumed that the MSCs left a long lasting "fingerprint" via their paracrine secretion. This hypothesis was supported by several studies demonstrating that MSCs can leave long lasting effects after transplantation by secretion of exosomes\(^10\). Exosomes, which are lipid nano-vesicles, carry proteins, RNA and miRNA, are found to be responsible for some of the intercellular communication\(^11,12\).

Indeed, using the same BTBR model, we were able to show that intranasal administration of human MSCs derived exosomes (MSC-exo) resulted in significant improvement in the core symptoms including social interaction, ultrasonic communication, and repetitive behaviors\(^13\). Furthermore, we have demonstrated that MSC-derived exosomes migrate to specific neuropathological locations in rodent models for stroke, Parkinson's Disease Alzheimer's Disease, spinal cord injury and ASD.

Interestingly, in the BTBR ASD model, the MSC-exo migrated to the frontal cortex and cerebellum, and were taken up by neurons\(^14-17\).

The BTBR model is an idiopathic model of ASD without a known genetic mutation that might lead to the ASD-like symptoms it expresses\(^18-22\). To investigate whether exosome administration will be effective also in a transgenic ASD model with a specific mutation associated with the disorder, we chose the study the Shank3\(^{-}B\) KO model\(^23,24\). Shank3 is an essential scaffolding protein found specifically in the post synaptic density (PSD) of excitatory neurons. Variations in Shank3 have been shown to affect dendritic spine development\(^25\) and reduce ionotropic and metabotropic receptor signaling\(^26,27\). In addition, numerous studies have demonstrated that transgenic mice harboring mutations in Shank3 exhibit robust ASD-like behavioral phenotypes\(^28,29\).

Here, we examine the effect of intranasal MSC-exo treatment on the core ASD-like behaviors in
Shank3B homozygous knockout mice (Shank3B−/−, or Shank3B KO)30,31,29. We observed that Shank3B KO mice that were treated with a single intranasal administration, presented significant improvement in social interaction and ultrasonic communication as well as presented reduced repetitive behaviors. Moreover, MSC-exo migrate specifically to the frontal cortex and posterior areas. Finally, by immuno histology study we found that Shank3B KO mice treated with exosomes show a significant increase in GABRA1 expression in the PFC, suggesting a potential role for GABRA1 in the ASD-like behavior mediated by Shank3B mutation.

Methods
Animal care
Mice were housed according to Federation of Laboratory Animal Science Associations (FELASA) guidelines. All mice were bred and maintained in a vivarium at 22 C in a 12-hr light/dark cycle, with food and water available ad libitum. The Shank3B KO line was purchased from Jackson Laboratories. SHANK3b KO and wild type littermate mice were produced through crosses of heterozygote males and females. The genetic background for the SHANK3b mouse lines are C57BL/6J. Experiments were performed with 8- to 10-week-old male mice. All experimental protocols were approved by the Animal Care and Use Committee of Bar Ilan University.

Genotyping
To determine the genotypes of the Shank3b, DNA was extracted from ear samples notched at the time of weaning using the Kapa mouse genotyping kit. The following primers were used to determine Shank3b mice genotype: common Fw 5'-GAGCTCTACTCCCTTAGGACTT-3'; Rv mutant 5'-TCAGGGTTATTGTCTCATGAGC-3' (~330bp) and for wild type: Rv 5'-TCCCCCTTTCACTGGACACCC-3' (~250bp).

Behavioral tests
Reciprocal dyadic social interaction test. The reciprocal dyadic social interaction test was done as previously described32-34. Prior to the test, each mouse was separated for social isolation of 1-2 hours. 5-week-old male RCF white stranger mouse was used as the social stimulus. Both the stranger and the tested mouse were placed in a 40 × 40 × 20 cm cage. During the interaction, the mice were
recorded for 20 min, with the last 10 min quantified by an observer blind to treatment. Cowlog V3 software was used to score the social contact initiated by the test mouse (Helsinki University, Helsinki, Finland).

3-chambered social interaction test. The test took place in a Non-Glare Perspex box (60X40cm) with two partitions that divide the box to three chambers, left, center and right (20X40cm). The mouse is placed in the middle chamber for habituation (5 min) when the entry for both side chambers is barred. Test mouse was then allowed to explore the whole arena (10 min), where they freely choose between interacting with a novel mouse in one chamber, or stay in an empty chamber (social test). After 10 min ended, a second stranger mouse is introduced to the empty chamber, and the test mouse is allowed ten minutes to freely choose between interacting with the novel or familiar mouse.

Ultrasonic vocalizations. The ultrasonic vocalization test was done as previously described32,34. Both Shank3B KO and WT males met WT females, all sexually naive. Prior to the test, each mouse was placed in separate cages for social isolation for 1-2 hours, the female was placed in the cage of the male. Ultrasonic Vocalizations (UVs) were recorded for the first five minutes of encounter to prevent extremely high sexual arousal and mating behaviors. The females were in the same cage in order to synchronize their estrus cycle and had met the males on the same day. UVs were recorded with Avisoft-RECORDER v. 4.2.21 recording program. The settings included a sampling rate of 250 kHz and a format of 16 bit. For spectrogram generation, recordings were transferred to Avisoft-SASLab Pro Version 5.2.07 and a fast Fourier transformation (FFT) was conducted. Spectrograms were generated with an FFT length of 256 points and a time window overlap of 50% (100% Frame, FlatTop window).

Mesenchymal stem cells preparation
Human MSC were purchased from Lonza (cat:PT-2501, Basel, Switzerland) and were cultured as previously described35. Before the exosome collection, the cells were cultured in exosome-free platelets medium for 3 days and this medium was then collected.

Exosomes Purification protocol.
Exosomes were isolated and characterized as previously described14,34,36. Purification of exosomes
was done using differential centrifugation protocol. First, the conditioned medium was centrifuge for 10 minutes at 300g. The supernatant was recovered and centrifuged for 10 minutes at 2,000g. Once again, the supernatant was centrifuged for 30 minutes at 10,000g. The supernatant was filtrated through a 0.22 µm filter and centrifuged for 70 minutes at 100,000g. The pellet containing the exosomes and proteins was washed in PBS and then centrifuged for 70 minutes at 100,000g. The pellet containing the purified exosomes was re-suspended in 200 µm of sterilized PBS. MSC-exo were characterized using Nanosight technology, TEM, western blotting as previously described14,15,34.

FACS analysis of exosomes

For FACS analysis, exosomes were coated onto 4-µm-diameter aldehyde/sulfate latex beads. 50µl exosomes were incubated with 12.5µl 4-µm-diameter aldehyde/sulfate latex beads (cat# A37304, Invitrogen) for 15 min at room temperature. 700µl sterile PBS was added, and the mixture was then transferred to 4°C and gentle shaking over-night. After centrifugation, the pellet was blocked by incubation with 200µl 100 mM glycine for 30 min at room temperature. Exosome-coated beads were washed in PBS and resuspended in 100µl sterile PBS. Afterwards, beads were incubated with CD63-APC (cat#130-118-078, Miltenyi biotec), CD81-APC (cat# 130-119-787 Miltenyi biotec) or IgG1 Isotype control (cat#130-113-434, Miltenyi biotec) fluorescent Abs for 15 min on ice in the dark. Beads were analyzed by flow cytometry using Gallios flow analyzer FACS (Beckman Coulter). Data was analyzed using the Kaluza Analysis Software (Beckman Coulter).

Exosomes labeling

Exosomes were labeled with PKH26 (Sigma-Aldrich). PKH26 (2µL) in 500 µL diluent was then added to 50 µL exosomes in PBS for 5 minutes of incubation. Exosomes were suspended in 70ml PBS and were centrifuged for 90 minutes at 100,000g at 4°C. The pellet was suspended in 200 µL of PBS14–16.

Ex vivo imaging

For immunostaining Shank3b KO male mice (n=2) received intranasal treatment of 5ul of PKH26-labeled MSC-exo and were sacrificed 24 hours post administration. Mice were perfused and fixated with PBS and 4% paraformaldehyde (PFA). The brains were incubated in PFA for 24 h followed by 30%
sucrose for 48 h and stored at 4 °C. The brains were frozen in chilled 2-methylbutane (Sigma-Aldrich), stored at 4 °C, and subsequently sectioned into slices measuring 10 lm. Slides were incubated with blocking solution (5% goat/donkey serum, 1% BSA, 0.5% Triton X-100 in PBS) for 1 h. Thereafter, slides were incubated overnight at 4 °C with primary antibody in blocking solution (mouse anti-CD11b, 1:500, Abcam) and secondary antibody in blocking solution (goat anti-mouse Alexa 488, 1:500, Molecular Probes, Invitrogen) for 1-2 h at room temperature. Next, nuclei were counterstained with DAPI (1:500; Sigma-Aldrich). Sections were ultimately mounted with fluorescent mounting solution (Fluoro-mount-G, Southern Biotech), covered with a cover slide, and sealed with nail polish.

Brain sample dissection

MSC-exo and saline treated Shank3B KO (n=5) and WT (n=5) Brain samples were removed from mice that had not been subjected to any behavioral testing and were kept at normal light cycle facilities (not reverse light cycle). The entire mouse brain was removed at approximately 12:00pm (light cycle is 7:00am to 7:00pm), and placed in an adult mouse brain matrix (Zivic Industries, Pittsburgh, USA). Brain slices (bregma -0.58 – 1.53) were removed and dorsal striatum was obtained by using a 13 gauge biopsy punch needle (VGC, New Delhi, India). Brain samples were frozen with dry ice and kept in -80° until mRNA extraction.

RNA analysis

Real-time PCR was performed on an ABI ViiA™ 7 RealTime PCR detection system in 10 μl volume containing FastStart Universal SYBR Green Master (Roche, Basel, Switzerland) and primers (Supplementary Table 6) at a concentration of 0.5 μM each. 10 ng of cDNA was dispersed in each well, and all samples were tested in triplicates. PCR program consists of 15 minute activation phase at 95 degree Celsius, followed by 40 cycles at the following temperatures: 10s of 94 degrees, 30s of 60 degrees. Real-Time PCR data were normalized to the housekeeping gene HPRT.

Proteomic analysis of MSC-exo

samples were subjected to lysis and in-solution tryptic digestion using the S-Trap method, the resulting peptides were analyzed using nanoflow liquid chromatography (nanoAcquity) coupled to high resolution, high mass accuracy mass spectrometry (Q Exactive HF). Each sample was analyzed in
the instrument separately in a random order in discovery mode and the DATA processing was done by MaxQuant v1.6.0.16. The data was searched with the Andromeda search engine against the human proteome database appended with common lab protein contaminants and the following modifications: Fixed modification-cysteine carbamidomethylation, variable modifications- methionine oxidation, asparagine and glutamine deamidation, protein N-terminal acetylation. The quantitative comparisons were calculated using Perseus v1.6.0.7. Decoy hits were filtered out.

Sample preparation.
The samples were subjected to lysis and in solution tryptic digestion using the S-Trap method (by Protifi).

Liquid chromatography mass spectrometry. The resulting peptides were analyzed using nanoflow liquid chromatography (nanoAcquity) coupled to high resolution, high mass accuracy mass spectrometry (Q Exactive HF). Each sample was analyzed on the instrument separately in a random order in discovery mode. Raw data was processed with MaxQuant v1.6.0.16. The data was searched with the Andromeda search engine against the human proteome database appended with common lab protein contaminants and the following modifications: Fixed modification- cysteine carbamidomethylation. Variable modifications- methionine oxidation, asparagine and glutamine deamidation, protein N-terminal acetylation. The quantitative comparisons were calculated using Perseus v1.6.0.7. Decoy hits were filtered out. Gene onthology was performed by using the ToppGene Suite37. Presented GO terms met a p-value of <0.05 at Benjamiini-Yekutieli False Detection Rate (FDR).

Results
Characterization of MSC-exo
The characterization of MSC-exo was done by nanopartical tracing analysis technology (NTA) using Nanosight. We found that the mean exosomes size is 140.5±2.5nm and the concentration is $4.05\times10^7\pm3.26\times10^6$ particles/µl (figure1 A-B). In addition, we observed positive expression of essential surface molecule markers of exosomes by flow cytometry analysis for CD81 and CD63 using aldehyde/sulfate latex beads (figure 1D). To further characterize the protein capacity of the MSC-exo,
we preformed proteomics analysis, Gene Ontology (GO) analysis was performed on the proteomic data, which enriched for the terms enzyme binding, extracellular matrix, organization, extracellular space and the cellular response to stress pathway (figure 1C).

MSC-exo treatment leads to significant behavioral improvement of Shank3B KO autistic-like phenotypes

Shank3B KO mice were tested for social interaction, vocal communication and repetitive behaviors. In the social interaction domain, we used two independent tests: the three chambers (figure 2) and the reciprocal dyadic social interaction test (figure 3A). In the three chambers test a stranger WT mouse was placed in one of the chambers and the tested mouse could freely move between middle and side empty chambers (phase 1). MSC-exo treated mice spent significantly more time in the chamber with the stranger mouse (251.1±50.3sec) compared to the both empty chamber (185±55.2sec) and the middle one (163.1±26.1sec) (ANOVA1, $F_{2,27}=7.17$, $p<0.01$, Bonfferoni). In the saline treated Shank3B KO mice, the time they spent with the stranger (192.2±52.7sec), empty (218.6±78.2sec) or in the middle (187.9±48.5) chamber was comparable without significant differences. In the WT littermates group, the time they spent with the stranger was significantly longer (243.5±35.7sec) than in the empty (177.4±26.3sec) or the middle (206.1±31.9sec) chambers (ANOVA1, $F_{2,21}=13.217$, $p<0.001$, Bonfferoni, figure 2A).

In the next social test, a novel stranger mouse was placed in the empty chamber and the familiar stranger mouse was left in the other chamber. The tested mouse could freely move between the chambers (phase 2). Here, MSC-exo treated Shank3B KO mice spent significantly more time with the new stimulation mouse (241.7±56.9sec) compared to the known mouse (200.4±61.6sec) or the empty chambers (157.4±55.2sec). The saline treated mice presented no preference in their time spent in each chamber (194±47.4sec with new stimulation 214.1±52.7sec in the empty chamber and 160.8±42.2 sec with old stimulation). WT littermates spent significantly more time in the chamber with the new stranger (243.6±39.3sec) compared to the familiar mouse (206.8±32.9sec) and the empty chamber (157.3±29.8sec). (ANOVA1, $F_{2,21}=23.9$, $p<0.001$, Bonfferoni, figure 10B).
Representative heat maps for each group in each phase are shown in figure 2C.

In the male to male reciprocal dyadic social interaction test, MSC-exo treated Shank3B KO mice spent significantly more time engaging in social interaction with a stranger male (293.2±26.2) compared to their saline littermates (96.9±10.1), their results were similar to their WT littermates (330.4±42.2 Figure 9A, Kruskal-Wallis test F(3,27)= 19.20, P<0.001, Figure 3A). Repetitive behaviors during social interaction was significantly rescued in MSC-exo treated Shank3b KO mice (112.4±19.9) as compared to their saline treated littermates (234.2±26.2) and was comparable to the WT littermates (54.9±11.5, Kruskal-Wallis test F(3,27)= 15.5, P<0.001, figure 3B).

In the behavioral male to female ultrasonic vocalizations test we found no significant differences between MSC-exo treated mice and saline treated Shank3b KO mice in the number of syllables. Yet, since most of the saline treated Shank3b KO mice did not produce any syllables and some of the MSC-exo mice did, we quantified the difference in percentages. Interestingly, while all WT mice were vocalizing, only 10% of the saline treated mice and 40% of the MSC-exo treated mice show vocalization (Figure 3C-D).

MSC-exo cross the blood brain barrier after intranasal administration and accumulate in the cortex and cerebellum

We have previously shown that MSC-exo migrate to damaged tissues in the brain after intranasal administration14–16. In the BTBR mice model of autism we saw MSC-exo accumulating in the areas of the frontal cortex and the cerebellum while in WT C57BL/6J mice we could not detect any accumulation and the MSC-exo evacuated out of the brain within 24h. Furthermore, our previous data suggest that this migration and accumulation pattern is associated with inflammation. MSC-exo accumulated in the cortex and cerebellum areas of Shank3B KO mice and a small accumulation in the hippocampus was also observed. In the brains of WT littermates MSC-exo were completely evacuated without any traces, as expected (figure 4).

Increased inhibitory GABA-RB1 receptors in the frontal cortex. Previous observations in patients diagnosed with autism, and studies in mouse models raised the theory that excitation/inhibition
imbalance take part in ASD’s neuropathology38. Other studies revealed that oxytocin signaling is disrupted in ASD, and oxytocin treatment in \textit{Shank3b} KO rats demonstrated improved behavioral and neurophysiological phenotypes39,40. Therefore, we looked for possible changes in gene expression in several key GABAergic receptors and Oxytocin.

Although no noteworthy difference was found in RNA levels of GABA-RA1, GABA-RA2 and Oxytocin in the frontal cortex and cerebellum, we observed a significant increase in GABA-RB1 RNA in the Prefrontal cortex (PFC) after MSC-exo treatment in \textit{Shank3b} KO mice (ANOVA1, $F(2,15)=6.5, p<0.05$). This result, though minor, may indicate inhibitory upregulation in the PFC after MSC-exo treatment. Importantly, RNA levels of inflammatory markers such as - TNFα, IBA1 and IL1 were also tested and were not found significantly altered between the groups (figure S1).

Discussion

We have previously found that the ASD-like behaviors observed in the BTBR mouse models can be ameliorated by either MSC intraventricular transplantation or MSC-derived exosomes intranasal administration9,34. Here we found that similar effects can be observed in a mouse model carrying an established and common mutation seen in ASD. In the current study, \textit{Shank3B} KO mice were intranasally administrated with MSC-exo followed by behavioral tests to evaluate changes in ASD-like behavior. Our results indicate that exosomes migrate to several areas of the mouse brain including the PFC and cerebellum. We also observed significant improvements in social behavior in multiple paradigms, as well as improvements in vocalization and repetitive behaviors. Finally, we observed an increase of \textit{GABRB1} in the PFC in Shank3B KO mice treated with MSC-exo.

The \textit{Shank3B} KO mice have previously shown multiple deficits in social interaction, UVs, and repetitive behaviors28,29. Furthermore, Mei \textit{et al.} (2016) have shown that replacing the \textit{Shank3b} variant with the intact gene, leads to recuse of the behavioral autistic-like deficits41. In this study, we attempted to reverse ASD-like behaviors in an approach we formerly demonstrated to be successful in the BTBR model, and has potential to be used therapeutically as it does not involve any invasive actions13.

11
Shank3B KO mice were treated with MSC-exo according to the administration protocol used in our previous BTBR study, and their behaviors were compared to their WT littermates and Shank3B KO littermates that were treated with saline. We found significant improvement in social interaction in Shank3B KO mice treated with MSC-exo in independent tests; the dyadic reciprocal social interaction and three chambers social test for social preference. In the dyadic reciprocal social interaction, the MSC-exo Shank3B KO treated group spent significantly more time engaging in social interaction with a stranger mouse, compared to their saline treated littermates. We previously observed a similar result in our BTBR studies, where BTBR mice treated with MSC-exo or cranially transplanted with MSCs spent more time in social interaction with the other male mouse present\cite{9,32,34}. In this study, we also confirmed this result using the three chambers test. Shank3B KO mice treated with MSC-exo presented a clear preference to the chamber with the stranger mouse and the novel mouse compared to the empty chamber and familiar mouse, respectively. Thus, our data indicate that MSC-exo treatment can benefit the social interaction domain of the ASD-like behaviors of Shank3B KO model.

In the UVs test, used to characterize the vocal communication domain, we found no significant improvement in the number of syllables made by the Shank3B KO mice treated with MSC-exo and saline groups. This result differs greatly from the outcome in the exosome-treated BTBR study as the BTBR mice treated with exosome showed significant increase in UVs which also allowed the performance of in-depth investigation of vocalization syllable complexity\cite{32,34}. However, in the current study we noticed that while all the WT mice performed UVs, only 10% of the saline treated Shank3B KO group performed UVs at all, which suggests that this genetic variation has a severe influence on UVs. To better understand if exosome treatment has any effect on UVs in this model we questioned if there was any UVs post MSC-exo treatment and found that 40% of the mice performed at least one UV. This result implies that exosome treatment may improve unique aspects of vocal communication in Shank3B KO mice, and should be further investigated.

In the repetitive behaviors domain, grooming and digging during social interaction were measured. A significant difference was found between saline and MSC-exo treated group. MSC-exo treated mice
spent significantly less time in self-grooming and digging and more in social interaction. Such improvements were also observed in the MSC-exo treated BTBR study13.

Altogether, herein we report MSC-exo intranasal treatment can lead to significant behavioral amelioration in the social interaction and vocal communication domains of Shank3B KO mice. In addition to our previous data describing the behavioral amelioration led by MSC-exo treatment in BTBR mice model of autism, we have also demonstrated that MSC-exo tend to migrate to the frontal cortex and cerebellum. This tendency was pathology-specific and was tested in other mice models. In a stroke model induced by injection of endothelin-1 the MSC-exo selectively home to the damaged area, while in other pathologies such as Alzheimer's model of transgenic mice (5xFAD) they were mainly found in the areas of the Hippocampus. Interestingly, in WT mice, the MSC-exo could not be detected in the brain 24 hours post the intranasal administration14,15,17. Using the same rational, we examine the migration and neuro-distribution pattern of the MSC-exo in the Shank3B KO mice in comparison to littermate WT. We found that by 96 hours post intranasal administration we observed complete evacuation of MSC-exo from WT brains as compare to significant accumulation in the frontal cortex and cerebellum in the Shank3B KO mice. It is of note that some accumulation was also found in the area of the hippocampus and medial entorhinal cortex. These findings comply with our previous results spotlighting the specificity of exosomes migration to neuropathological tissues in different pathologies. Importantly, developing new and effective treatments to psychiatric disorders is an extremely difficult mission due to the delivery issues and the special distribution of the psychiatric medications. The issue of non-specific neuro-distribution of the psychiatric treatments leads to various side effects. The intrinsic ability of MSC-exo to accumulate in the pathological areas and present different distribution in healthy vs autistic-like brain can lead to both better targeting of the pathological tissue and even a novel method for diagnostics.

In order to better understand the molecular influence of MSC-exo on Shank3B KO mice, we have tried to quantify gene expression of inflammatory markers including TNFα, IBA1 and IL1. This was under the assumption that MSC-exo may lead to reduction of inflammation in the damaged tissues, thus
contributing to behavioral amelioration42-44. Yet, we found no evidence of inflammatory suppression led by the MSC-exo. We also expected a reduction in oxytocin expression in accordance with the ASD hypothesis45-47. Nevertheless, we could not find supporting evidence that link MSC-exo treatment to alternations in the expression levels of oxytocin in both, the PFC and the Cerebellum.

Another approach regarding the neurological changes in autistic brains followed by genetic mutation refers to the excitation-inhibition imbalance found in post-mortem analysis of autistic brains and was supported by animal models48-50. To assert this hypothesis, we measured the expression of GABA subunits GABA Ra1, GABA Ra2, and GABA Rb1 in the prefrontal Cortex and Cerebellum. We found significant increase expression in GABA Ra1 in PFC of the treated mice compared to saline group. The levels of GABA Ra1 in the cerebellum as well as other GABA subunits remained intact.

In recent years, there has been a growing interest in research aiming to find common molecular and physiological deficits in multiple ASD mouse models, that could be targeted pharmaceutically51-53. We have demonstrated that MSC-exo treatment had significant effect on all the core ASD-like behaviors of the autistic-like behaviors of two different mice models.

Social interaction as well as maternal behaviors and ultrasonic communication requires high-level synchronization of sensory input and behavioral output. We suggest MSC-exo may play a role in the mechanisms of sensory integration, especially it is influential in the fields of the social domain symptoms. Sensory integration and coordination deficits have been suggested to be one of the underlying mechanism of the ASD patients54-56. Stem cell therapy has been previously used on ASD children with long-term beneficial effects57. Bone marrow MSC transplantation has been proven to be safe to use in several clinical trials58-60. Mechanistically, bone marrow MSC transplantation was found efficient in promoting tissue regeneration, immunomodulation, and inflammatory reduction61-63. We reported that the transplantation of MSC to the lateral ventricles of BTBR mice leads to increased neurogenesis and BDNF expression in the hippocampus9. Although it is clear that MSC have beneficial properties that can be used safely for clinical purposes, recent evidence shows that the therapeutic
effect of MSC is largely mediated via the secretion of exosomes that contain important molecular information64,65. Our findings support this concept, and our study demonstrates that a remarkable positive behavioral effect, on all ASD-like phenotypes seen in BTBR mice, can be achieved by simply treating with MSC-exo rather than MSC. Unfortunately, due to the complexity of MSC-exo vesicles which contain hundreds of proteins and RNA molecules, we cannot pin-point the specific factors that led to the behavioral difference.

Conclusion
Altogether, our data suggest that that MSC-exo may be efficient to treat ASD symptoms caused by a specific genetic mutation. This findings is extremely relevant for clinical indications since 1-2% of ASD patients carries specific mutation in shank3 gene.

Abbreviations
Autism spectrum disorders (ASD). Knock out of the B domain in the shank3 gene by deletion of the 22q13.3 location (Shank3B KO). BTBR T+tf/J (BTBR). Mesenchymal stem cells (MSC). Mesenchymal stem cells derived exosomes (MSC-exo). micro RNA (miRNA). Post synaptic density protein (PSD).
GABA receptor's subtypes a1, a2 and b1 (GABA Ra1/ GABA Ra2/ GABA Rb1).

Declarations

Ethics approval and consent to participate:
Mice were housed according to Federation of Laboratory Animal Science Associations (FELASA) guidelines.

Consent for publication
Not applicable

Funding
N.P. received funding scholarship from Sagol School of Neuroscience, Tel Aviv University.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions
NP and OO equally contributed to this study, both took park in writing the manuscript and the
molecular analysis. The behavioral experiments were divided by NP (social interaction and analysis of ultrasonic vocalizations) and OO (3-chambers social interaction and ultrasonic vocalizations). SH contributed in the exosomes' characterization and writing the manuscript. DO is the PI of NP and SH. EE is the PI of OO.

Consent for publication

Not applicable.

Competing interests

DO and NP have submitted several patent applications related to exosomes. All were assigned to “Ramot at Tel Aviv University” and some were licensed by Stem Cell Therapy LTD. The other authors have nothing to disclose.

Acknowledgments

The authors would like to thank the following for their contributions in the research: Shai Israel for his kind help in the MATLAB code

References

1. Geschwind DH. Genetics of autism spectrum disorders. *Trends Cogn Sci.* 2011;15(9):409-416. doi:10.1016/j.tics.2011.07.003

2. Eshraghi AA, Liu G, Kay S-IS, et al. Epigenetics and Autism Spectrum Disorder: Is There a Correlation? *Front Cell Neurosci.* 2018;12(March):1-5. doi:10.3389/fncel.2018.00078

3. Muhle R, Trentacoste S V., Rapin I. The Genetics of Autism. *Pediatrics.* 2004;113(5):e472-e486. doi:10.1542/peds.113.5.e472

4. Voineagu I, Wang X, Johnston P, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. *Nature.* 2011;474(7351):380-384. doi:10.1038/nature10110

5. Nardone S, Sams DS, Reuveni E, et al. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. *Transl Psychiatry.* 2014;4:e433.
6. Oron O, Elliott E. Delineating the common biological pathways perturbed by ASD’s genetic etiology: Lessons from network-based studies. *Int J Mol Sci.* 2017;18(4). doi:10.3390/ijms18040828

7. Eissa N, Al-houqani M, Sadeq A, Ojha SK, Sasse A. Current Enlightenment About Etiology and Pharmacological Treatment of Autism Spectrum Disorder. 2018;12(May). doi:10.3389/fnins.2018.00304

8. Sharma SR, Gonda X, Tarazi FI. Autism Spectrum Disorder: Classification, diagnosis and therapy. *PharmacoI Ther.* 2018. doi:10.1016/j.pharmthera.2018.05.007

9. Segal-Gavish H, Karvat G, Barak N, et al. Mesenchymal Stem Cell Transplantation Promotes Neurogenesis and Ameliorates Autism Related Behaviors in BTBR Mice. *Autism Res.* 2016;9(1):17-32. doi:10.1002/aur.1530

10. Ng KS, Kunczewicz TM, Karp JM. Beyond hit-and-run: Stem cells leave a lasting memory. *Cell Metab.* 2015;22(4):541-543. doi:10.1016/j.cmet.2015.09.019

11. Livshts MA, Khomyakova E, Evtushenko EG, et al. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. *Sci Rep.* 2015;5(October):1-14. doi:10.1038/srep17319

12. Vader P, Mol EA, Pasterkamp G, Schifferlers RM. Extracellular vesicles for drug delivery. *Adv Drug Deliv Rev.* 2016;106:148-156. doi:10.1016/j.addr.2016.02.006

13. Perets AN, Hertz S, London M, Offen D. Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice. *Mol Autism.* 2018;9(59).

14. Perets N, Betzer O, Shapira R, et al. Golden Exosomes Selectively Target Brain Pathologies in Neurodegenerative and Neurodevelopmental Disorders. *Nano Lett.* 2019. doi:10.1021/acs.nanolett.8b04148
15. Betzer O, Perets N, Angel A, et al. In Vivo Neuroimaging of Exosomes Using Gold. 2017. doi:10.1021/acsnano.7b04495

16. Guo S, Perets N, Betzer O, et al. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury. ACS Nano. August 2019:acsnano.9b01892. doi:10.1021/acsnano.9b01892

17. Popovtzer R, Betzer O, Perets N, Barnoy E, Offen D. Labeling and tracking exosomes within the brain using gold nanoparticles. In: Cartwright AN, Nicolau D V., Fixler D, eds. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV. SPIE; 2018:44. doi:10.1117/12.2287351

18. Han S, Tai C, Jones CJ, Scheuer T, Catterall WA. Enhancement of inhibitory neurotransmission by GABAA receptors having ??2,3-subunits ameliorates behavioral deficits in a mouse model of autism. Neuron. 2014;81(6):1282-1289. doi:10.1016/j.neuron.2014.01.016

19. Wu J, de Theije CGM, da Silva SL, et al. Dietary interventions that reduce mTOR activity rescue autistic-like behavioral deficits in mice. Brain Behav Immun. 2017;59:273-287. doi:10.1016/j.bbi.2016.09.016

20. Ellegood J, Crawley JN. Behavioral and Neuroanatomical Phenotypes in Mouse Models of Autism. Neurotherapeutics. 2015;12(3):521-533. doi:10.1007/s13311-015-0360-z

21. Yang K, Cao F, Sheikh AM, et al. Up-regulation of Ras/Raf/ERK1/2 signaling impairs cultured neuronal cell migration, neurogenesis, synapse formation, and dendritic spine development. Brain Struct Funct. 2013;218(3):669-682. doi:10.1007/s00429-012-0420-7

22. Scattoni ML, Gandhy SU, Ricceri L, Crawley JN. Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. PLoS One. 2008;3(8):48-52.
23. Durand CM, Betancur C, Boeckers TM, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39(1):25-27. doi:10.1038/ng1933

24. Uchino S, Waga C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev. 2013;35(2):106-110. doi:10.1016/j.braindev.2012.05.013

25. Durand C, Perroy J, Loll F, et al. SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry. 2011;17:71-84. doi:10.1038/mp.2011.57

26. Duffney LJ, Wei J, Cheng J, et al. Shank3 Deficiency Induces NMDA Receptor Hypofunction via an Actin-Dependent Mechanism. J Neurosci. 2013;33(40):15767-15778. doi:10.1523/JNEUROSCI.1175-13.2013

27. Verpelli C, Dvoretskova E, Vicidomini C. Importance of Shank3 protein in regulating metabotropic glutamate receptor 5 (mGluR5) expression and signaling at synapses. J Biol ... 2011.

28. Dhamne SC, Silverman JL, Super CE, et al. Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism. Mol Autism. 2017;8(1):26. doi:10.1186/s13229-017-0142-z

29. Peça J, Feliciano C, Ting JT, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472(7344):437-442. doi:10.1038/nature09965.Shank3

30. Jaramillo TC, Speed HE, Xuan Z, Reimers JM, Liu S, Powell CM. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism HHS Public Access. Autism Res. 2016;9(3):350-375. doi:10.1002/aur.1529

31. Wang X, McCoy P a, Rodriguiz RM, et al. Synaptic dysfunction and abnormal
behaviors in mice lacking major isoforms of Shank3. *Hum Mol Genet.* 2011;20(15):3093-3108. doi:10.1093/hmg/ddr212

32. Nisim Perets, Hadar Segal-Gavish, Yael Gothelf, Ran Barzilay, Yael Barhum, Natalie Abramov SH, Darya Morozov, Michael London DO. Long Term Beneficial Effect of Neurotrophic FactorsSecreting Mesenchymal Stem Cells Transplantation in the BTBR Mouse Model of Autism. *Behav Brain Res.* 2017. doi:10.1016/j.bbr.2017.03.047

33. Segal-Gavish H, Karvat G, Barak N, et al. Mesenchymal Stem Cell Transplantation Promotes Neurogenesis and Ameliorates Autism Related Behaviors in BTBR Mice. *Autism Res.* 2016;9(1):17-32. doi:10.1002/aur.1530

34. Perets, N, Hertz S LM and OD. Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice. *Mol Autism.* 2018;9(57). https://doi.org/10.1186/s13229-018-0240-6.

35. Sadan O, Melamed E, Offen D. Intrastriatal transplantation of neurotrophic factor-secreting human mesenchymal stem cells improves motor function and extends survival in R6/2 transgenic mouse model for Huntington’s disease. *PLoS Curr.* 2012;4:e4f7f6dc013d4e. doi:10.1371/4f7f6dc013d4e

36. Théry C, Clayton A, Amigorena S, Raposo G. Isolation and characterization of exosomes from cell culture supernatants. *Curr Protoc Cell Biol.* 2006:3.22.1-3.22.29.

37. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. *Nucleic Acids Res.* 2009;37(SUPPL. 2):305-311. doi:10.1093/nar/gkp427

38. Nelson SB, Valakh V. Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. *Neuron.* 2015;87(4):684-698. doi:10.1016/j.neuron.2015.07.033

39. Guastella AJ, Hickie IB. Oxytocin Treatment, Circuitry, and Autism: A Critical Review of the Literature Placing Oxytocin into the Autism Context. *Biol Psychiatry.*
21

2016;79(3):234-242. doi:10.1016/j.biopsych.2015.06.028

40. Harony-Nicolas H, Kay M, du Hoffmann J, et al. Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat. Elife. 2017;6:1-2. doi:10.7554/eLife.18904

41. Mei Y, Monteiro P, Zhou Y, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530(7591):481-484. doi:10.1038/nature16971

42. Pivoraitė U, Jarmalavičiūtė A, Tunaitis V, et al. Exosomes from Human Dental Pulp Stem Cells Suppress Carrageenan-Induced Acute Inflammation in Mice. Inflammation. 2015;38(5):1933-1941. doi:10.1007/s10753-015-0173-6

43. Kim S-H, Lechman ER, Bianco N, et al. Exosomes Derived from IL-10-Treated Dendritic Cells Can Suppress Inflammation and Collagen-Induced Arthritis. J Immunol. 2005;174(10):6440-6448. doi:10.4049/jimmunol.174.10.6440

44. Song J, Huang J, Chen X, et al. Donor-derived exosomes induce specific regulatory T cells to suppress immune inflammation in the allograft heart. Sci Rep. 2016;6(1):20077. doi:10.1038/srep20077

45. Modahl C, Green LA, Fein D, et al. Plasma oxytocin levels in autistic children. Biol Psychiatry. 1998;43(4):270-277. doi:10.1016/S0006-3223(97)00439-3

46. Guastella AJ, Einfeld SL, Gray KM, et al. Intranasal Oxytocin Improves Emotion Recognition for Youth with Autism Spectrum Disorders. Biol Psychiatry. 2010;67(7):692-694. doi:10.1016/j.biopsych.2009.09.020

47. Green LA, Fein D, Modahl C, Feinstein C, Waterhouse L, Morris M. Oxytocin and autistic disorder: Alterations in peptide forms. Biol Psychiatry. 2001;50(8):609-613. doi:10.1016/S0006-3223(01)01139-8

48. Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation /
inhibition in key neural systems. 2003:255-267. doi:10.1046/j.1601-183X.2003.00037.x

49. Lee E, Lee J, Kim E. Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders. Biol Psychiatry. 2017;81(10):838-847. doi:10.1016/j.biopsych.2016.05.011

50. Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci. 2018;47(6):534-548. doi:10.1111/ejn.13595

51. Kloth AD, Badura A, Li A, et al. Cerebellar associative sensory learning defects in five mouse autism models. Elife. 2015;4(JULY 2015):1-26. doi:10.7554/eLife.06085

52. Ellegood J, Anagnostou E, Babineau BA, et al. Clustering autism: Using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol Psychiatry. 2015;20(1):118-125. doi:10.1038/mp.2014.98

53. G. di Pellegrino, L. Fadiga, L. Fogassi, V. Gallese and GRI. Understanding motor events: a neurophyiology study. Exp brain Res. 1992:176-180.

54. Ayres a J, Tickle LS. Hyper-responsivity to touch and vestibular stimuli as a predictor of positive response to sensory integration procedures by autistic children. Am J Occup Ther Off Publ Am Occup Ther Assoc. 1980;34(6):375-381. doi:10.5014/ajot.34.6.375

55. Iarocci G, McDonald J. Sensory integration and the perceptual experience of persons with autism. J Autism Dev Disord. 2006;36(1):77-90. doi:10.1007/s10803-005-0044-3

56. Tomchek SD, Dunn W. Sensory Processing in Children With and Without Autism: A Comparative Study Using the Short Sensory Profile. 2007;61(2).

57. Dawson G, Sun JM, Davlantis KS, et al. Autologous Cord Blood Infusions Are Safe and Feasible in Young Children with Autism Spectrum Disorder: Results of a Single-Center
Phase I Open-Label Trial. *Stem Cells Transl Med.* 2017;1332-1339.
doi:10.1002/sctm.16-0474

58. Petrou P, Gothelf Y, Argov Z, et al. Safety and Clinical Effects of Mesenchymal Stem Cells Secreting Neurotrophic Factor Transplantation in Patients With Amyotrophic Lateral Sclerosis. *JAMA Neurol.* 2016;73(3):1. doi:10.1001/jamaneurol.2015.4321

59. Duijvestein M, Vos ACW, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. *Gut.* 2010;59:1662-1669. doi:10.1136/gut.2010.215152

60. Gothelf Y, Abramov N, Harel A, Offen D. Safety of repeated transplantations of neurotrophic factors-secreting human mesenchymal stromal stem cells. *Clin Transl Med.* 2014;3:21. doi:10.1186/2001-1326-3-21

61. Shimizu S, Kitada M, Ishikawa H, Itokazu Y, Wakao S, Dezawa M. Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. *Biochem Biophys Res Commun.* 2007;359(4):915-920. doi:10.1016/j.bbrc.2007.05.212

62. Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N. Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. *Stem Cell Res.* 2009;3(1):63-70. doi:10.1016/j.scr.2009.02.006

63. Sotiropoulou P a, Papamichail M. Immune properties of mesenchimal stem cells. *Methods Mol Biol.* 2007;407(2):225-243. doi:10.1007/978-1-59745-536-7_16

64. Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. *Front Physiol.* 2012;3 SEP(September):1-11. doi:10.3389/fphys.2012.00359

65. Lener T, Gioma M, Aigner L, et al. Applying extracellular vesicles based therapeutics
in clinical trials - an ISEV position paper. *J Extracellular Vesicles*. 2015;4:1-31.
doi:10.3402/jev.v4.30087

Figures

![Characterization of MSC-exo by nanosight and bead-coated flow cytometry.](image)

Figure 1

Characterization of MSC-exo by nanosight and bead-coated flow cytometry. A. concentration and size distribution of MSC-exo B. visualization of MSC-exo by nanosight. C. Gene ontology of the exosomal proteomics content D. FACS analysis of exosomes expression of surface molecules, 50 µl of exosomes were incubated with 12.5µl of 4-µm-diameter aldehyde/sulfate latex beads and stained with CD63-APC or CD81-APC Abs (red lines) or negative control IgG1 Isotype Ab (blue line).
Intranasal treatment of MSC-derived exosomes rescue social behavior in Shank3B KO mice in the three-chamber test. A. In social interaction test, MSC-exo treated Shank3B KO mice spent more time in the chamber containing the stranger compared to the chamber
containing the empty one when treated with exosomes, while Shank3B KO mice treated with PBS showed no preference. WT mice spent more time in the chamber containing the mouse compared to the empty one. B. In social novelty test, MSC-exo treated Shank3B KO mice spent more time in the chamber containing the novel mouse, while Shank3B KO mice treated with PBS showed no preference. WT mice spent more time in the chamber containing to novel mouse. *p<0.05, **p<0.01, ***p<0.0001; two-tailed t-test; all data presented as means ±SEM. C. Representative heat map for each group (top panel – phase 1, bottom panel – phase 2)
MSC-exo ameliorates the social interaction and communication autistic domains of Shank3B KO mice. A. male to male social interaction was significantly improved in the MSC-exo treated Shank3B KO mice, compared to their saline treated littermates. B. Repetitive behaviors of grooming and digging were significantly reduced in the MSC-exo treated Shank3B KO mice compared to their saline treated littermates. C. Though not statistically significant, MSC-exo treated Shank3B KO mice presented more UVs compared to their saline treated littermates. Interestingly, while all WT mice were vocalizing, only 10% of the saline treated mice and 40% of the MSC-exo treated mice were vocalizing. Data is presented as mean+SEM and scatterplot. Green dots are mice that vocalizing mice behaviors and blue dots are non-vocalizing mice. Pie charts represent the presentegas of vocalizing vs non-vocalizing mice in each group. D. Representation of the spectrogram of the vocalizations of each group (ANOVA1, Bonferroni). The data is presented as mean + SEM. ***p < 0.001.
MSC-exo can cross the BBB and integrate into the cells in the tissue. A. Complete sagittal section of Shank3B KO shows MSC-exo are found in the parenchyma and accumulate mainly in the area of the cortex, cerebellum, and some accumulation in the hippocampus (96 hours post intranasal administration). B. Complete sagittal section of WT shows complete evacuation of MSC-exo from the brain (96 hours post intranasal administration). C-D. Magnification of the Cerebellum and hippocampus tissues of Shank3B KO shows MSC-exo are found in the tissue. E. Magnification of the CA1 area with DAPI (blue), PKH26 exosomes (red) and astrocytes (GFAP green).
Higher expression of GABA Ra1 were observed in the PFC of MSC-exo treated mice, yet GABA Ra2, GABA Rb1 and Oxytocin remained unchanged in the PFC and the Cerebellum. A-D. GABA Rb1 expression was significantly increased in the PFC but not in the cerebellum (A). There was no significant difference in GABA-Ra2 (B) and GABA-Rb1 (C). Also, there was no difference in oxytocin receptors (D). *p<0.05

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
Figure S1.jpg