Plasma Membrane Ca\(^{2+}\)-ATPase Isoforms Composition Regulates Cellular pH Homeostasis in Differentiating PC12 Cells in a Manner Dependent on Cytosolic Ca\(^{2+}\) Elevations

Tomasz Boczek\(^{1,9}\), Malwina Lisek\(^{1,9}\), Bozena Ferenc\(^1\), Antoni Kowalski\(^{1,2}\), Dariusz Stepinski\(^3\), Magdalena Wiktorska\(^4\), Ludmila Zylinska\(^1\)

1 Department of Molecular Neurochemistry, Medical University, Lodz, Poland, 2 Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark, 3 Department of Cytophysiology, University of Lodz, Lodz, Poland, 4 Department of Molecular Cell Mechanisms, Medical University, Lodz, Poland

Abstract

Plasma membrane Ca\(^{2+}\)-ATPase (PMCA) by extruding Ca\(^{2+}\) outside the cell, actively participates in the regulation of intracellular Ca\(^{2+}\) concentration. Acting as Ca\(^{2+}\)/H\(^{+}\) counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca\(^{2+}\) overload evoked by 59 mM KCl. We observed that manipulation in PMCA expression elevated pHi\(_\text{mito}\) and pHi\(_\text{lys}\) but only in PMCA2-downregulated cells higher mitochondrial pH gradient (ΔpH) was found in steady-state conditions. Our data also demonstrated that PMCA2 or PMCA3 knock-down delayed Ca\(^{2+}\) clearance and partially attenuated cellular acidification during KCl-stimulated Ca\(^{2+}\) influx. Because SERCA and NCX modulated cellular pH response in neglegtable manner, and all conditions used to inhibit PMCA prevented KCl-induced pH drop, we considered PMCA2 and PMCA3 as mainly responsible for transport of protons to intracellular milieu. In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca\(^{2+}\) overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca\(^{2+}\)-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient.

Introduction

Neuronal differentiation is associated with spatially and temporarily coordinated elevations in cytosolic Ca\(^{2+}\) concentration - (Ca\(^{2+}\))\(_c\) - propagated due to Ca\(^{2+}\) entry via plasma membrane and its release from internal stores [1,2]. These physiological and pathological Ca\(^{2+}\) signals are modulated by the activity of mitochondria, which buffer (Ca\(^{2+}\))\(_c\), and regulate Ca\(^{2+}\)-dependent activation or inhibition of several processes [3,4]. For example, mitochondrial control of Ca\(^{2+}\) signal is crucial for regulation of both the cell membrane’s voltage and, especially, for pH gradients driving ATP generation [5]. Mitochondria not only link Ca\(^{2+}\) homeostasis to cell metabolism, but may also drive cell fate by controlling ATP/ADP ratio.

Acting as the energetic centers, they shape signaling pathways, control propagation of Ca\(^{2+}\) waves and by providing ATP to calcium pumps boost calcium gradients [6]. Elevations of Ca\(^{2+}\) in the mitochondrial matrix regulate voltage (ΔΨ\(_m\), negative inside) and pH (ΔpH, alkaline inside) components of electrochemical gradient. According to the chemiosmotic model, ΔΨ\(_m\) and ΔpH are thermodynamically equivalent to power ATP synthesis [7]. Even though ΔpH constitutes only 20–30% of proton motive force, it is essential for electroneutral transport of ions and movement of metabolites into the matrix [8]. The electrical gradient establishes most of the potential difference. Together with ΔpH, it sets the driving force for ATP synthase, and for cytosolic Ca\(^{2+}\) to enter the matrix [9]. Moderate elevations of Ca\(^{2+}\) in the matrix activate dehydrogenases of Krebs cycle, modulate the activity of electron transport chain and stimulate the respiratory rate [6,10]. This may make mitochondrial membrane more negative. On the other hand, Ca\(^{2+}\) overload may activate permeability transition pore (mPTP) formation allowing ions to leave the mitochondrion, thereby triggering cell death [9].
Mitochondrial Ca\(^{2+}\) uptake in intact cells was observed at low cytosolic Ca\(^{2+}\) concentrations ranging from 150 to 300 nM \([11]\). However, elevations in Ca\(^{2+}\), stimulate matrix acidification and result in ApH drop what is suggested to decrease oxygen consumption \([12]\). The newest finding located plasma membrane calcium pump (PMCA) in the center for intracellular protons transport \([13]\). Because PMCA operates as Ca\(^{2+}\)/H\(^{+}\) counter-transport with a 1:1 stoichiometry, the extrusion of Ca\(^{2+}\) generates large quantities of protons that are transmitted to mitochondrial matrix leading to pH decrease \([13]\). Since Ca\(^{2+}\) and protons have opposite effects on many cellular processes, the role of PMCA in the regulation of calcium homeostasis may be of fundamental importance for preservation of cellular energy.

PMCA exists in four isoforms PMCA1-4. Pumps 1 and 4 are ubiquitously distributed and perform a “housekeeping” role whereas the location of 2 and 3 isoforms is restricted to only some tissues where they perform more specialized functions \([14–16]\). Due to the abundance of PMCA2 and PMCA3 in the nervous system they are termed neuron-specific. During development their expression undergoes considerable changes reflecting the importance of the spatial organization of Ca\(^{2+}\) extrusion systems for synaptic formation \([17–19]\). Moreover, the observation of mRNA distribution suggests that the expression of PMCA2 and PMCA3 is controlled by different mechanisms than the two other isoforms \([20]\). The studies on PMCA have made clear that unique PMCA2 properties distinguish it from other basic isoforms. It possesses the highest resting activity and calmodulin sensitivity, and represents more than 30–40% of the total pump protein in mature neurons \([21]\). Thus, PMCA2 is thought to be the principal ATPase that maintains Ca\(^{2+}\) homeostasis following neural excitation. The existence of PMCA2 is expected to provide neuronal cells with higher sensitivity to even subtle (Ca\(^{2+}\))c changes. This specificity of PMCA2, which is further highlighted by its interaction with specific partners \([22]\), could explain why this isoform plays a predominant role in neuronal cells that have special Ca\(^{2+}\) demands. The role of PMCA3 is much less understood. However, distribution, kinetic properties and scarce studies including our previous work on PC12 cells suggest that it should be also considered as an important Ca\(^{2+}\) player in differentiation process.

To study the potential role of neuro-specific PMCA isoforms in regulation of cellular pH, we used differentiated PC12 lines with experimentally downregulated PMCA2 or PMCA3. Due to possessing of several features characteristic for sympathetic-like neurons \([23]\), this cell line is an excellent model system to study neuronal processes. We found that PMCA2- or PMCA3-deficient cells maintained higher pH\(_{\text{mito}}\) and pH\(_{\text{cyto}}\) only but in PMCA2-downregulated line increased ApH was observed in steady-state conditions. Also, we demonstrated that PMCA2 and PMCA3 were primarily responsible for Ca\(^{2+}\)-dependent pH\(_{\text{mito}}\) and pH\(_{\text{cyto}}\) decrease and accompanying ApH drop during KC1 stimulations. In PMCA2-downregulated cells, Ca\(^{2+}\) overload led to dissipation of mitochondrial membrane potential, a phenomenon that was blocked by cyclosporin and bongkrekic acid suggesting the involvement of mitochondrial permeability transition pore. Our findings point out that neuro-specific PMCA isoforms are important regulators of cellular pH in steady-state conditions and may also shape Ca\(^{2+}\)-dependent pH changes during depolarization events.

Materials and Methods

Reagents

All reagents, if not separately mentioned, were purchased from Sigma-Aldrich (Germany). The PC12 rat pheochromocytoma cell line was obtained from ATCC (USA) and from Sigma-Aldrich (Germany). RPMI 1640 medium was from PAA (Austria). calf and horse sera were from Bio-Chrom (UK). Maxima SYBR Green Master Mix was from Fermentas (Canada). M-MuLV Reverse Transcriptase, Trizol, Alexa Fluor 488, MitoTracker Red 580, MitoTracker Green FM, Fura-2 AM and SNARF were from Life Technologies (USA). Total RNA isolation kit was from Epigence Biotech. (USA). Protein Assay Kit was from Bio-Rad (USA). Turbofect transfection reagent was from Thermo Scientific. Primary antibodies against GFP, GAPDH, PMCA2 and PMCA3 were from Santa Cruz Biotech. (USA). Paq5000 polymerase was from Stratagene (USA). Phosphothioate oligodeoxynucleotides were from IDT (USA). Primers were synthesized in Institute of Biochemistry and Biophysics (Poland). mitoSypHer construct was kindly donated by Dr. Nicolas Demaurex.

The model of stable transfection

pCDNA3.1(+) vectors carrying the antisense oligonucleotides directed to either PMCA2 or PMCA3 were used to establish a stably-transfected PC12 lines as described in \([24]\). Cells were cultured as described previously \([25]\) and differentiated with 1 mM dibutyryl-cAMP for 48 h. All the results presented here were obtained following 2-day differentiation process. For pH measurements, mitoSypHer probe was transduced to undifferentiated antisense-carrying PC12 lines with TurboFect Transfection reagent and 2 days later cells were differentiated as described above. Routinely, the expression of PMCA2, PMCA3 and mitoSypHer was controlled by real-time PCR every two passages and no more than 6 passages were used. To increase the accuracy and maintain the reproducibility of the data we separately transduced two PC12 lines of different sources. The description of the lines as _2 (PMCA2-deficient line), _3 (PMCA3-deficient line) and C (mock transfected line) was adapted.

Transient transfection

PC12 cells transient transfection with antisense probes described in \([26]\) and listed in Table 1 was conducted using TurboFect transfection reagent. In brief, three phosphothioate oligodeoxynucleotides antisense to translated regions of mRNA of either PMCA2 or PMCA3 were added in equimolar concentrations (4 \(\mu\)M) to a serum-free RPMI medium. Total concentration of oligodeoxynucleotides was kept at 12 \(\mu\)M during transfection. After 6 h, medium was replaced with complete RPMI medium and cells were allowed to recover for another 48 h. After recovery period transfection was repeated. Cells transduced with a mismatch oligonucleotide sequence (12 \(\mu\)M) was used as a control for antisense oligonucleotides transfection. Growth medium and reagents were changed in all culture flasks at the same time. Following second transfection, the efficiency of PMCA knockdown was assessed by Western blot determination of PMCA protein level. Cells were differentiated as described in The model of stable transfection section.

Viability assay

Cellular viability was assessed using WST-1 assay. 5\(\times\)10\(^3\) cells were seeded in a 96-well plate and incubated with WST-1 solution in a 1:10 ratio for 4°C at 37°C. The absorbance of samples was spectrophotometrically measured at 450 nm.

pH measurements

For mitoSypHer/SNARF dual imaging, cells expressing mitoSypHer were adhered to poly-L-lysine coated coverslips and differentiated for 2 days. Then, the culture medium was changed
into a buffer containing 20 mM HEPES, 131 mM NaCl, 5 mM KCl, 1 mM MgCl₂, 10 mM glucose, 2.2 mM CaCl₂, 10 mM NaHCO₃ and 1 mM KH₂PO₄ at pH 7.4 and cells were loaded with 10 μM SNARF (with 0.01% pluronic acid) for 40 min at 37°C. Simultaneous pHₘᵟᵣₑᵣ/pHₛᵣᵢᵤᵣ measurements were performed in a thermostatic chamber at 37°C on TCS SP5 laser scanning confocal microscope equipped with DM6000 CFS system, DFC 360FX camera, HCX PL APO 63× objective and LAS AF Lite software (Leica). Fluorescence imaging was done with the tandem resonant scanner (16 kHz bidirectional, ~25 frames/s). SNARF and mitoSypHer were excited using argon laser low-intensity light (488 nm). The fluorescence emitted in the range of 500–530 nm was collected for mitoSypHer whereas fluorescence in two separate channels (620–765 nm and 560–600 nm) was collected for SNARF. At the end of each experiment, fluorescence changes were calibrated to absolute mitochondrial and cytosolic pH using nigericin (5 μM) in pH 9.5–10.0 (20 mM N-methyl-D-glutamine), pH 8.0–9.0 (Tris), pH 7.0–7.5 (HEPES) or pH 5.5–6.5 (MES), as described in [13]. The calibration curve was fitted to sigmoidal equation using GraphPad Prism 5.01. The emission ratio (620 nm–765 nm)/(560 nm–600 nm) was fitted to sigmoidal equation using GraphPad Prism 5.01. The mitoSypHer fluorescence changes was assessed in a loading buffer with 0–5 mM Na⁺, Ca²⁺-free solution contained 1 mM EDTA instead of 2.2 mM CaCl₂.

Single-cell Ca²⁺ imaging

Cells expressing mitoSypHer were adhered to poly-L-lysine coated slides and loaded with 10 μM Fura-2 for 1 h at 37°C. After several washes, cells were placed in a buffer composed as described in pH measurements section. When recording simultaneously with mitoSypHer, Fura-2 was alternately excited at 340 and 380 nm for 0.3 s through a 505 nm bandpass emission filter. The mitoSypHer was alternately excited at 430 and 480 nm for 0.3 s through a 505 nm dichroic long pass filter and imaged with a 535 nm band pass emission filter. The contour of single cells was taken to define region of interest (ROI) from which the fluorescence was recorded. Background fluorescence was automatically subtracted from all measurements. Ratimetric images of pHₘᵋᵣₑᵣ and Ca²⁺ were acquired using fluorescent Axiovert S100 TV inverted microscope (Carl Zeiss) equipped with a 40× Plan Neofluar objective and attached to a cooled CCD camera (Spectral Instruments Inc.).

Immunocytochemistry

Confocal microscopy was used to analyze SypHer mitochondrial targeting and mitochondrial mass. ~10⁴ differentiated cells seeded on poly-L-lysine coated glass LabTek II chamber slides were fixed for 30 min with 3.8% paraformaldehyde and permeabilized with 0.1% Triton X-100 for 10 min at 4°C. Fixed cells were then blocked with 6% bovine serum albumin (BSA), overnight incubated with monoclonal anti-GFP antibody (1:100) at 4°C and probed with secondary antibodies conjugated to Alexa Fluor 488 (1:1000) for 2 h at room temperature. Next, mitochondria were stained for 15 min with MitoTracker Red 560 (40 nM). Images were taken on TCS S5 confocal laser scanning microscope with 63× objective (Leica). In a separate experiment, mitochondrial mass was determined with MitoTracker Green. In this method cells were first loaded with 150 nM MitoTracker Green FM for 30 min at 37°C and then fixed as described above. The average fluorescence intensity after background subtraction was measured with TCS S5 microscope accompanying software (Leica). Raw images were processed with CorelDraw Graphics Suite 11.

Total cell lysate preparation and Western blot analysis

Scraped cells were resuspended in RIPA buffer supplemented with 1 mM PMSF, 2 mM Na₃VO₄ and protease inhibitor cocktail and lysed for 30 min on ice. Then, lysates were centrifuged at 10 000× g for 5 min and supernatants were boiled for 5 min in Laemmlı buffer. Total protein content was quantified using Biorad Protein Assay.

20 μg of total cellular proteins were resolved on a 10% SDS-PAGE and transferred onto nitrocellulose membrane using semidry method. Membranes were first blocked with 6% BSA in TBS-T buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.05% Tween-20) for 1 h at room temperature and then probed overnight at 4°C with primary antibodies against GFP (1:1000), PMCA2 (1:750), PMCA3 (1:750) and GAPDH (1:1000). Following several washes with TBS-T, membranes were incubated with appropriate secondary antibodies (1:5000) coupled with alkaline phosphatase at room temperature for 4 h. Bands were visualized using Sigma Fast BCIP/NBT used according to the manufacturer’s instructions. Blots were scanned and the bands intensity was measured using GelDocEQ with Quantity One 1-D Analysis Software version 4.4.1 (Bio-Rad).

RNA isolation and PCR reactions

Total cellular RNA was extracted using Trizol reagent according to the procedure provided by the manufacturer. 1 μg of isolated RNA was subsequently used for cDNA synthesis with oligo(dT) primers in a 20 μl reaction mixture containing M-MLV reverse transcriptase. The cDNA templates were used to quantify gene expression level using Maxima SYBR Green Master Mix in the following conditions: 15 min at 95°C followed by 40 cycles at 95°C for 15 s, 60°C for 30 s and 72°C for 30 s. PCR reactions were performed in an AbiPrism 7000 sequence detection system (Applied Biosciences). For each PCR amplon, a melting curve was run. The relative fold change after normalization to Gapdh expression was calculated using a comparative 2⁻ΔΔC₅₀ method [27].

Conventional PCR used to estimate the efficiency of mitoSypHer transfection was carried out using Paq5000 polymerase in the following conditions: 5 min at 95°C followed by 30 cycles at
Ca2+-Dependent Regulation of Intracellular pH by PMCA2 and PMCA3

95°C for 1 min, 50°C for 1 min, 72°C for 2 min with a final extension at 72°C for 10 min in T300 thermocycler (Biometra) using cDNA obtained as described above. PCR products after staining with ethidium bromide were analyzed under UV light in GelDocEQ system (Bio-Rad). The primers used in PCR reactions are listed in Table 2.

Determination of mitochondrial swelling
Mitochondria were isolated as described in [28]. The experiments were carried out at 30°C in a reaction medium containing 200 mM sucrose, 10 mM HEPES, pH 7.4, 10 μM EGTA, 5 mM KH\textsubscript{2}PO\textsubscript{4}, 2 μM rotenone (to inhibit electron backflow to complex I), 1 μg/ml oligomycin (to maintain constant ATP/ADP ratio) and mitochondria suspended at ~1 mg/ml. Before exposure to 10 μM CaCl\textsubscript{2}, mitochondria were energized with 5 mM succinate for 2 min. Cyclosporin (1 μM), bongkrekic acid (10 μM) or atraclylate (20 μM) was added just prior to succinate. Swelling was assessed by changes in light scattering monitored spectrophotometrically at 520 nm under a continuous stirring of mitochondrial suspension.

Monitoring of mitochondrial and plasma membrane potential (ΔΨ\textsubscript{m} and ΔΨ\textsubscript{p})
Mitochondrial membrane potential (ΔΨ\textsubscript{m}) was measured with TMRE (tetra-methyl-rhodamine-ethyl ester), which accumulates in mitochondrial matrix according to the Nernst equation [29], whereas plasma membrane potential (ΔΨ\textsubscript{p}) was measured with DiSBAC\textsubscript{2} (Bis-(1,3-diethylthiobarbituric acid)trimethine oxonol). For estimation, cells were loaded in a dark with 25 nM TMRE or 1 μM DiSBAC\textsubscript{2} for 30 min in 37°C in a buffer A containing 20 mM HEPES, pH 7.4, 2 mM CaCl\textsubscript{2}, 150 mM NaCl, 5 mM KCl, 1 mM MgCl\textsubscript{2}, 10 mM glucose and analyzed by FACScan Becton Dickinson flow cytometer using an accompanying software. Cells incubated with 0.1% DMSO, used as a solvent for TMRE, were monitored to record background fluorescence, which was later subtracted from the TMRE recordings. Changes in ΔΨ\textsubscript{m} were monitored in resting cells and at selected points following 59 mM KCl treatment (10 min after first KCl addition, recovery, 10 min after second KCl addition, recovery). The reliability of TMRE to be used for ΔΨ\textsubscript{m} measurement was confirmed by the pre-incubation with either 6 μM oligomycin or 1 μM FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) for 10 min. The influence of ΔΨ\textsubscript{p} on mitochondrial TMRE uptake was assessed by 5 min preincubation of the cells with Ca2+-free buffer A containing 59 mM KCl before loading with 25 nM TMRE. Cyclosporin A (1 μM), bongkrekic acid (10 μM) or FK-506 (10 μM) were added to the culture medium 1 h before 25 nM TMRE loading.

TMRE fluorescence decay in single cells was assessed using TILL Photonics dual wavelength imaging system equipped with Polychrome IV monochromator (TILL. Photonics GmbH). TMRE-loaded cells (25 nM) were illuminated at 535 nm through a 15 nm band-pass filter for 2 min and following 30 s depolarization with 1 μM FCCP. Fluorescence at 580 nm was recorded with equipped CCD camera (Spectral Instruments Inc.). Digital camera and monochromator were controlled by TILL Vision 4.0 imaging software, which was also used for data collection and processing. All procedures were performed at 37°C.

Statistical analysis
The data are shown as means ± SEM of n separate experiments (n≥3). Statistical analyses were done using STATISTICA 8.0 (StatSoft). Normally distributed data were analyzed with one-way ANOVA with Tukey’s post-hoc test. In other cases, Kruskal-Wallis non-parametric ANOVA with post-hoc Dunn’s test was applied. P-value <0.05 was considered as statistically significant.

Results
The knockdown of PMCA2 or PMCA3 in stably transfected differentiated PC12 cells
The expression of PMCA2 or PMCA3 mRNA was mostly abolished (~60% decrease) by an antisense mRNA targeted against it, but was not changed in mock-transfected cells (Fig. 1A). Similarly, PMCA2 or PMCA3 protein level was not affected by mock transfection but was decreased by ~50% following transfection with antisense-carrying vectors (Fig. 1B). Both PMCA2 or PMCA3 mRNA and proteins were normalized to endogenous GAPDH mRNA and protein levels, respectively. Unless otherwise stated, the experiments were performed using stably transfected lines.

PMCA2- and PMCA3-deficient cells maintain higher cytosolic and mitochondrial pH
First, we tested the properties of mitoSypHer in our modified differentiated PC12 cells; mock transfected control line (C), PMCA2-downregulated line (_2) or PMCA3-downregulated line (_3). When transfected, mitoSypHer was expressed at comparable level in all examined PC12 lines (Fig. S1A) and efficiently targeted

Table 2. Primers used in PCR reactions.

Gene	Primer sequences
PMCA2	F:5'-AGCGGTGTTGACAGGCTATGG-3', R:5'-GGCAATGGCCTGACGACA-3'
PMCA3	F:5'-AGCGCTGACGACACCAACA-3', R:5'-TCCCAACAGGACGCTGGAA-3'
Tfam	F:5'-GAAAGCACAATAAAGAGGAG-3', R:5'-CTGTCTTTTTCATCATGAGACA-3'
Nrfl	F:5'-TTACCTCGTCTGTTTGCTGG-3', R:5'-CTCTGTATCGCTGCTGCT-3'
Pgc1a	F:5'-GGTGGCAAGCAGCGGTTATGGG-3', R:5'-TTCCAGCTTATCCACAGGTC-3'
CcO-I	F:5'-GGGGATACCTCGTCGTT-3', R:5'-CCGGGATACCTCGTGT-3'
CcO-III	F:5'-ATGGTTGGTTCTCTCTTATT-3', R:5'-CAGGCTAGTCTCACCAGCAG-3'
Hyper	F:5'-ATGGCAAGACCAGCCCACAGA-3', R:5'-GGCGCTGCGAGAAAAAGATG-3'
Gapdh	F:5'-GGTTACCCAGGCGCTCTTCT-3', R:5'-CTCCACCCTCTAACCCGCT-3'

Tfam – mitochondrial transcription factor A; Nrfl – nuclear respiratory factor 1; Pgc-1α – peroxisome proliferator-activated receptor-gamma coactivator 1 alpha; CcO-I – cytochrome c oxidase subunit I; CcO-III – cytochrome c oxidase subunit III.
to mitochondrial matrix, as demonstrated by enriched reactivity for an anti-GFP antibody and its high colocalization with Mito Tracker Red (Fig. S1B, Pearson coefficients: 0.89±0.07 for C, n = 6; 0.91±0.05 for _2, n = 8; 0.86±0.04 for _3, n = 6). The transfection did not affect viability of the cells, which was in the range of 88–95% (data not shown). The mitoSypHer probe allows transfection did not affect viability of the cells, which was in the range of 88–95% (data not shown). The mitoSypHer probe allows transfection did not affect viability of the cells, which was in the range of 88–95% (data not shown). The mitoSypHer probe allows

Having validated the probe, we next performed simultaneous measurements of resting pH_{mito} and pH_{cyto} in single cells (Fig. 2A) using mitoSypHer and cytosolic red-shifted fluorescent dye SNARF (5-(and 6)-carboxy-SNARF-1). The spectral properties of these indicators do not overlap allowing for efficient discrimination between pH changes between mitochondria and cytosol. Resting mitochondrial pH in _2 (7.76±0.01) and _3 (7.62±0.01) lines was notably higher in comparison to C (7.53±0.02). Changes in pH_{cyto} were in parallel to pH_{mito} with the highest value noted in _2 (7.56±0.02), followed by _3 (7.49±0.02) and control cells (7.41±0.03). In overall, the cytosolic pH was lower than mitochondrial in each line measured, consistent with chemiosmotic coupling hypothesis and experimental data [13]. As a consequence, pH gradient across the inner mitochondrial membrane (ΔpH = p{\text{H}_{\text{mito}}}-p{\text{H}_{\text{cyto}}}) was higher in _2 line.

PMCA2 and PMCA3 modulate the amplitude of K⁺-evoked pH changes through regulation of intracellular Ca²⁺ load

To evaluate the effects of PMCA2 or PMCA3 reduction on pH changes during KCl-evoked Ca²⁺ loads, PC12 lines expressing mitoSypHer were loaded with Fura-2 for simultaneous recording of (Ca²⁺)_{c} and pH_{mito}. Depolarizing concentration of KCl was chosen because (i) it can mimic action potential-driven activation of voltage-dependent Ca²⁺ channels (VDCCs) and Ca²⁺ release from intracellular stores and (ii) PMCA is largely responsible for (Ca²⁺)_{c} restoration after such stimulation [30]. We observed, that cytosolic Ca²⁺ elevations evoked by repetitive treatment with 59 mM KCl were in parallel with mitochondrial acidification (Fig. 3), however the magnitude of pH_{mito} drop was PMCA-dependent. Interestingly, the degree of acidification in modified lines was inversely correlated with KClinduced Ca²⁺ load. While PMCA2- or PMCA3-reduction potentiated KCl-evoked (Ca²⁺)_{c} transients by 60±18% and by 32±13% in _2 and _3, respectively, during each stimulation the absolute pH_{mito} response, in relation to control, was reduced by 54±6% in _2 line and by 35±11% in _3 line.

To follow ΔpH changes during KCl treatment we switched back to the concurrent recordings of pH_{mito} and pH_{cyto} (Fig. 4A). In all lines measured, the monophasic decay in pH_{cyto} typically exceeded those in the cytosol. The drop in pH_{cyto} (Fig. 4B, i) and pH_{mito} again (Fig. 4B, ii) was of smaller magnitude in _2 and _3 cells, but during each KCl stimulation ΔpH was undergoing more pronounced reductions in these cells than in control (Fig. 4, iii). The larger decrease in ΔpH was also observed during second stimulation. Upon KCl withdrawal, pH_{cyto} returned to the resting state conditions.

Figure 1. The efficiency of PMCA knockdown in a model of stable transfection. (A) The expression of genes corresponding to PMCA2 or PMCA3 was assessed using real-time PCR. The results are presented as relative units obtained after normalization to Gapdh expression. The level of expression of each target gene in control line was taken as 1 (dotted line). * P<0.05, PMCA-deficient lines vs. control cells. (B) PMCA protein level assessed by densitometric analysis of immunoblots. The results are presented as arbitrary units (AU) obtained after normalization to endogenous GAPDH level. The dotted line presents the values for control line. * P<0.05, PMCA-deficient lines vs. control cells.

doi:10.1371/journal.pone.0102352.g001

Figure 2. Single cell characterization of cellular pH in steady-state conditions. Average resting pH_{mito} and pH_{cyto} measured by simultaneous imaging of mitoSypHer and SNARF fluorescence, respectively. * P<0.05, pH_{mito} vs. pH_{cyto} within each line; * P<0.05, PMCA-deficient lines vs. control cells.

doi:10.1371/journal.pone.0102352.g002
baseline, whereas pH_{mito} typically surpassed its pre-stimulatory level. As a result, ΔpH was 0.16±0.08, 0.22±0.01, 0.21±0.03 pH unit higher than in “quiescent” C, 2 and 3 cells, respectively, following recovery from the second stimulation (Fig. 4, iv).

PMCA2 and PMCA3 are the main sources of intracellular protons during (Ca^{2+})_c elevations generated by Ca^{2+} entry through VDCCs

To determine the contribution of particular Ca^{2+} handling systems to cellular acidification, we next treated cells with thapsigargin (Tg) to inhibit sarco(endo)plasmic reticulum Ca^{2+}-ATPase (SERCA) and with 2-APB (2-Aminoethoxydiphenyl borate), an inhibitor of store-operated calcium channels and IP3 receptor. Under low extracellular Ca^{2+}, Tg will deplete the ER and 2-APB will block its repletion through store-operated calcium entry (SOCE), when Ca^{2+} will be restituted. As shown, in Fig. 5A re-addition of external Ca^{2+} together with KCl showed a massive Ca^{2+} influx and concomitant decrease in pH_{mito} with the magnitude comparable to non-inhibitory conditions. Moreover, we observed that PMCA downregulation slowed down Ca^{2+} clearance following extracellular Ca^{2+} removal, and the pH recovery was delayed until (Ca^{2+})_i was nearly at the resting level (Fig. 5A, insets). Thus, SOCE is not required for Ca^{2+}-dependent mitochondrial acidification and SERCA is not a main producer of intracellular H^+ in our experimental model. Additional experiments with transiently transfected cells confirmed that PMCA2 or PMCA3 knockdown affected cellular pH response to KCl-induced (Ca^{2+})_c, influx and similar profiles of (Ca^{2+})_c and ΔpH changes were observed in conditions with or without Tg (Fig. 6). This strengthen our conclusion regarding predominant role of neuro-specific PMCA isoforms in the regulation of pH excursions in PC12 cells.

Because the stimulating effect of KCl results from membrane depolarization with subsequent opening of VDCCs [31], we next examined if the activation of these channels may represent a main source of Ca^{2+} influx. Indeed, blockage of voltage-dependent calcium current by cadmium markedly reduced the amplitude of Ca^{2+} transients and completely abolished subsequent intracellular pH changes (Fig. 5B).

Further, we attempted to verify NCX role by treating cells with Tg and replacing Na^+ with Li^+ in a buffer (Fig. 5C). The pH curves during first KCl stimulation matching those obtained under non-inhibitory conditions indicated neglectable NCX participation in observed pH changes. These conditions also allowed us to refine the activity of PMCA, which was directly proportional to the rate of (Ca^{2+})_c clearance upon the removal of extracellular Ca^{2+}. La^{3+} (5 mM), which is known to inhibit PMCA, added during second stimulation blocked Ca^{2+} clearance and resulted in mitochondrial alkalinization even under low extracellular K^+. We also inhibited PMCA by reducing the availability of H^+ to be exchanged with cytosolic Ca^{2+}, by increasing extracellular pH up to 9 (Fig. 5D). This markedly delayed Ca^{2+} recovery upon KCl removal, whereas pH restoration to 7.4 resulted in a rapid activation of (Ca^{2+})_c clearance, pointing out inhibition of PMCA under high extracellular pH. Also, alkaline pH completely attenuated KCl-induced pH_{mito} decrease in all lines. Because all the conditions that inhibited PMCA every time decreased cellular acidification, PMCA may be considered as a main source of intracellular H^+ during KCl-evoked Ca^{2+} loads. Thus, markedly decreased Ca^{2+}-induced pH response in 2 and 3 lines can be attributed to diminished level of PMCA2 and PMCA3 isoforms.

Electron transport chain contributes to PMCA-dependent mitochondrial H^+ fluxes

Because PMCA-dependent acidification of mitochondria during (Ca^{2+})_c transients was shown in this study to occur in parallel with cytosolic pH drop, we attempted to evaluate if the electron transport chain (ETC) may regulate cytosolic H^+ influx to the matrix. We first blocked ETC with rotenone (inhibitor of complex I) or KCN (inhibitor of complex IV). Application of inhibitors alone caused immediate decrease in pH_{mito}, in all lines, matching the pH_{mito} response during first KCl stimulation before the inhibitors were added (compare first and second KCl stimulation in Fig. 7 A and B). Additionally, each of the inhibitors reduced KCl-evoked pH_{mito} decrease to 40±9% in C, 74±5% in 2 and to 59±7% in 3 of the value noted in these lines when no inhibitors were present. We then blocked ATP synthase by oligomycin (Fig. 7C). However, we did not observe expected pH_{mito} increase over 5-min incubation period possibly due to maximal alkalization of mitochondria following first KCl stimulation. In each line, oligomycin exerted only moderate effect on the magnitude of Ca^{2+}-dependent pH_{mito} decrease.

Increased ΔpH coincided with elevated TMRE fluorescence in PMCA2 knock-down cells

Based on the results obtained from ΔpH imaging, we next measured mitochondrial membrane potential (ΔΨ_{mito}), which is thought to reflect mitochondrial energization state. By using nonquenching concentration of TMRE (25 nM) we also determined whether PMCA2- or PMCA3-reduction may trigger depolarization during (Ca^{2+})_c transients. First, we observed increased TMRE fluorescence intensity in 2 and 3 cells in steady-state conditions in relation to control (Fig. 8A). Because TMRE uptake is sensitive to changes in either ΔΨ_{mito} and plasma membrane potential (ΔΨ_{pl}), in parallel experiment we monitored
ΔΨᵢ using DiSBAC₂.

Elevated ΔΨᵢ-related fluorescence observed in _2 and _3 lines indicated altered plasma membrane potential (Fig. 8A). To distinguish the relative contribution of ΔΨᵢ and ΔΨₘ to observed TMRE fluorescence increase, we depolarized Ψᵢ with 59 mM KCl before loading with TMRE (Fig. 8B). Pretreatment with high K⁺ exerted, however, only a small effect on TMRE suggesting that differences in signal intensity between lines were due to ΔΨᵢ. Additionally, TMRE uptake was not affected by increased mitochondrial biogenesis, as neither changes in expression of Tfam, Nrf-1 and Pgc-1α considered as mitochondrial biogenesis markers nor mitochondrially-encoded subunits I and III of cytochrome c-oxidase reflecting the copy number of mitochondrial DNA were detected (Fig. 8C). In addition, mitochondrial mass was unchanged in PMCA-deficient lines, as evaluated using Mitotracker Green FM probe (Fig. 8D).

To ensure that higher TMRE signal was not a result of dye release during loading and consequent unquenching, TMRE-loaded cells were treated with protonophore FCCP (1 μM) or oligomycin (6 μM). FCCP-induced depolarization resulted in massive decrease in TMRE signal in all lines coinciding with a slight increase in ΔΨᵢ. Application of oligomycin used to block protons re-entry into the matrix caused a small but significant ΔΨᵢ hyperpolarization notably higher in _2 and _3 lines without affecting ΔΨᵢ. The loss of punctuate TMRE signal, as a result of TMRE release during depolarization by FCCP, was also observed in individual cells (Fig. 9A). Moreover, FCCP evoked a significantly higher rise in (Ca²⁺)ᵢ in _2 and _3 lines than in control (Fig. 9B), whereas the application of oligomycin did not change (Ca²⁺)ᵢ (Fig. 9C). This demonstrates that basal state of mitochondrial Ca²⁺ loading is increased in PMCA-deficient cells, particularly in _2 line.

KCl-evoked ΔΨᵢ depolarizations in PMCA2-deficient line are blocked by cyclosporin A or bongkrekic acid

To evaluate whether (Ca²⁺)ᵢ elevations can affect ΔΨᵢ, TMRE fluorescence was measured at selected time points of KCl stimulation or recovery, at which ΔpH alterations were the most pronounced: 10 min after 1st KCl stimulation, 10 min after KCl removal (1st recovery phase), 10 min after 2nd KCl stimulation and 10 min after 2nd KCl removal (2nd recovery phase). In control and _3 line, we observed only minor alterations in ΔΨᵢ during KCl treatment but these little depolarization events did not correlate with the amplitude of (Ca²⁺)ᵢ transients, and were considered as insignificant. In contrast, in _2 line each KCl stimulation evoked ΔΨᵢ depolarization with subsequent decrease in TMRE fluorescence by 51±18% in relation to resting level. (Fig. 10). We then treated cells with cyclosporin A (CsA), a potent inhibitor of mPTP, which fully rescued the reduced TMRE fluorescence. Because CsA is also a well-known inhibitor of calcineurin [32], we used bongkrekic acid (BA) which inhibits mitochondrial ATP/ADP translocase without affecting calcineurin activity. BA partially rescued the reduced TMRE fluorescence while an inhibitor of calcineurin (FK-506) was not able to preserve mitochondria from ΔΨᵢ loss during KCl-induced Ca²⁺ loads.

To validate the effects of CsA or BA we induced mitochondrial swelling which correlates with decrease in light scattering. We found that addition of 10 μM Ca²⁺ to the mitochondrial suspension induced a small but significant swelling in _2 line (Fig. S2) whereas atractylate added before Ca²⁺ exposure resulted

Figure 4. Changes in the mitochondrial pH gradient (ΔpH) during and after 59 mM KCl stimulation. (A) Simultaneous recordings of pHcyto and pHmito in cells expressing mitoSypHer loaded with 10 μM SNARF for 40 min. The cells were imaged in resting conditions (5 mM KCl) and following repetitive stimulation with KCl (59 mM). For each measurement, ΔpH was estimated as pHmito - pHcyto. (B) average changes in pHcyto (i), pHmito (ii), ΔpH (iii) during each KCl stimulation and in ΔpH after KCl removal (iv) from n = 24, n = 26, n = 23 cells for C, _2, _3 lines respectively. * P<0.05, PMCA-deficient lines vs. control cells.

doi:10.1371/journal.pone.0102352.g004
in extensive swelling in all lines. In both cases, swelling was fully prevented by 1 mM CsA or 10 μM BA, added before Ca\(^{2+}\). Therefore, our results indicate that Ca\(^{2+}\)-driven Dym collapse in PMCA2-deficient line is mediated through CsA-sensitive mechanism.

Discussion

Despite the proposed predominant role of PMCA in Ca\(^{2+}\)-dependent regulation of organellar pH, so far no reports have evaluated the contribution of particular PMCA isoforms to mitochondrial proton gradient. Moreover, no studies have attempted to answer whether altered PMCA expression and concomitant disturbances in Ca\(^{2+}\) signaling may affect intracellular pH. The study on deafwaddler mouse indicated that the reduction in PMCA2 expression by half may result in motor neuron dysfunctions and mediate neuronal death [33]. Therefore, to avoid dramatic compromise on cellular viability, we have obtained homogenous neuron-like PC12 stably transfected clones with nearly 50% decrease in PMCA2 or PMCA3 protein, with yet no visible symptoms of increased mortality. This allowed us to analyze if neuron-specific PMCA isoforms modulate Ca\(^{2+}\)-driven intracellular pH changes.

The resting mitochondrial pH in our PC12 lines was lower in comparison to certain cell lines [34–36] but similar to the values reported in other [37,38]. Therefore, it seems that particular cell types maintain different resting pH to fulfill their specific functional requirements. The additional differences in intracellular pH were seen between our PC12 lines: the highest pH \(pH_{\text{mito}}\) and pH\(_{\text{cyto}}\) values were noted in \(_2\) line, followed by \(_3\) and control. Heterogeneous increase in basal pH \(pH_{\text{mito}}\) was observed in HeLa cells and primary cultured neurons upon stimulation with Ca\(^{2+}\)-mobilizing agents [34]. Elevated pH\(_{\text{mito}}\) and pH\(_{\text{cyto}}\) demonstrated in our PMCA-downregulated cells in steady-state conditions also

Figure 5. The response of mitochondrial pH to the inhibition of an efflux and the release component of (Ca\(^{2+}\))\(_c\) elevations. (A) The average effect of extracellular Ca\(^{2+}\) removal and its subsequent restitution on (Ca\(^{2+}\))\(_c\) and pH\(_{\text{mito}}\) changes in \(n = 18\), \(n = 12\), \(n = 21\) cells for \(_2\), \(_3\) lines respectively, pretreated for 20 min with thapsigargin and 2-APB. The insets show SERCA-independent (Ca\(^{2+}\))\(_c\) clearance (upper) and pH\(_{\text{mito}}\) recovery (lower). (B) The average effect of cadmium (VDCCs inhibitor) in \(n = 29\), \(n = 19\), \(n = 22\) cells for \(_2\), \(_3\) lines respectively, on KCl-evoked (Ca\(^{2+}\))\(_c\) influx and concomittant pH\(_{\text{mito}}\) changes. (C) The average effect of 5 mM La\(^{3+}\) in \(n = 16\) cells for \(_2\), \(_3\) lines showing delay in (Ca\(^{2+}\))\(_c\) clearance and pH\(_{\text{mito}}\) alkalization under low extracellular Na\(^{+}\). (D) The average effect of extracellular alkaline pH (9.0) followed by pH return to 7.4 in \(n = 20\), \(n = 12\), \(n = 20\) cells for \(_2\), _3 lines respectively, on (Ca\(^{2+}\))\(_c\) elevations and pH\(_{\text{mito}}\) changes.

doi:10.1371/journal.pone.0102352.g005
Figure 6. Changes in [Ca\(^{2+}\)]_c and \(\Delta pH\) are reproduced in transiently transfected cells. (A) Immunodetection of PMCA2 or PMCA3 in PC12 cells transiently transfected with phosphothioate oligodeoxynucleotide probes. (B) Densitometric analysis of PMCAs showing ~75% knock-down of target genes. The results are presented as arbitrary units (AU) obtained after normalization to endogenous GAPDH level. The dotted line shows the value for untransfected cells (control cells). * P<0.05 PMCA-downregulated cells vs. control cells. (C) The effect of transient PMCAs silencing on [Ca\(^{2+}\)]_c in n = 17 cells for each line without or (D) with the presence of thapsigargin and 2-APB in n = 20 cells for each line. (E) corresponding changes in \(\Delta pH\) without or (F) with the presence of thapsigargin and 2-APB.

doi:10.1371/journal.pone.0102352.g006
suggested a dependence on calcium level. Indeed, our previous study has shown that PMCA2 or PMCA3 reduction caused an increase in resting \(\text{Ca}^{2+}\) [39]. Because PMCA transports large quantities of protons during \(\text{Ca}^{2+}\) extrusion, parallel acidification of cytosol and mitochondria is expected if the activity of PMCA remains unaffected. Such a phenomenon has been demonstrated in cortical neurons stimulated with glutamate [12]. Based on PMCA/pH relationship, the extent of matrix alkalization in \(_2\) and \(_3\) lines may reflect reduced level (and activity) of neuro-specific isoforms. We suppose that the knock-down of PMCA2 or PMCA3 which are counted as fast reacting, dramatically reduce the amount of \(\text{H}^+\) entering cytosol leading to \(\text{pH}_{\text{mito}}\) increase. The regulation of mitochondrial \(\text{pH}\) and function by cytosolic \(\text{Ca}^{2+}\) transients requires the uptake of \(\text{Ca}^{2+}\) to mitochondria and both \(\text{Ca}^{2+}\)-dependent alkalization or acidification of matrix have been demonstrated [38,40,41]. The accumulation of \(\text{Ca}^{2+}\) depends on \(\Delta\Psi_m\)-driven electrochemical \(\text{Ca}^{2+}\) gradient and the gradient of this ion between cytosol and mitochondria. Whether \(\text{Ca}^{2+}\) uptake into mitochondria is through mitochondrial uniporter or \(\text{Ca}^{2+}/\text{H}^+\) exchanger, it should depolarize energized mitochondria (reviewed in [6]).

Figure 7. Contribution of electron transport chain (ETC) to mitochondrial \(\text{H}^+\) fluxes. The traces showing the effect of rotenone (A), KCN (B) or oligomycin (C) on 59 mM KCl-evoked \(\text{pH}_{\text{mito}}\) responses in \(n = 10, n = 13, n = 15\) for \(_2, _3\) lines, respectively. The column graphs show the drug effects on \(\text{pH}_{\text{mito}}\) loss. * \(P < 0.05\) drug treated vs. untreated.

doI:10.1371/journal.pone.0102352.g007

Tetramethylrhodamine probes have been widely used to monitor \(\Delta\Psi_m\) [42,43]. However, TMRE uptake is also sensitive to \(\Delta\Psi_p\) which may impact the amount of TMRE entering the cytoplasmic space, thereby affecting how much dye is available for mitochondria. Therefore, to resolve the potential contribution of \(\Delta\Psi_p\) and \(\Delta\Psi_m\) to increased TMRE fluorescence in \(_2\) and \(_3\) lines we depolarized plasma membrane with 59 mM \(\text{K}^+\) before TMRE loading. This strategy was also used by Krohn et. al. [44] or by Perry et. al. [45]. Taking into account the Nernstian behavior of TMRE probe and the results presented in Fig. 8B, one may suggest that even in the presence of high \(\text{K}^+\), elevated TMRE fluorescence is almost entirely dependent on \(\Delta\Psi_p\). It is in agreement with \(\Delta\Psi_p\) and/or \(\Delta\Psi_m\) dependency of TMRE uptake. We confirmed the reliability of TMRE to measure membrane potential by using FCCP and oligomycin. It is known that lower FCCP concentrations will specifically collapse \(\Delta\Psi_m\), while high concentrations (>2.5 \(\mu\text{M}\)) will also significantly diminish \(\Delta\Psi_p\) [43]. However, this effect is likely to be variable with cell type. In our study we applied 1 \(\mu\text{M}\) FCCP and observed slight hyperpolarization of \(\Delta\Psi_m\) similarly to the effect reported in [46]. The paradoxical FCCP-induced increase in DiSBAC2 signal can also be due to the fact that plasma membrane potential is created not by proton pump so protonophore cannot short-circuit it. Instead, FCCP equilibrates pH across plasma membrane carrying positively charged protons from cytoplasm to outside medium thus generating higher membrane potential. Treatment with oligomycin caused a moderate increase in \(\text{pH}_{\text{mito}}\) what is consistent with slight hyperpolarization shown in Fig. 8A.
indicates low rate of ATP turnover and state of mitochondria close to state 4.

In agreement with the prediction that mitochondrial Ca\(^{2+}\) uptake may elevate \(\Delta pH\) if Ca\(^{2+}\) charge is compensated by protons moving through ETC, we found \(\Delta pH\) to be increased in \(_2\) line. The observed raise in matrix pH in steady-state conditions could then result from charge compensation by the respiratory chain. It is attractive to propose that mitochondrial Ca\(^{2+}\) accumulation in \(_2\) line will represent a major trigger coupling pH changes to the rate of ATP synthesis. Indeed, three matrix dehydrogenases activated by \(\text{(Ca}^{2+}\text{)}_m\) increases [47–49] provide reducing equivalents to ETC without affecting matrix acidification. This may reflect increase in PMF when \(\text{(Ca}^{2+}\text{)}_m\) responds to \(\text{(Ca}^{2+}\text{)}_c\) elevations. Alternatively, elevation in PMF could result from the inhibition of pathways that dissipate H\(^+\) gradient. It has been reported that mitochondrial Ca\(^{2+}\) uptake may inhibit ATP synthase [50] consequently increasing PMF and reducing ATP level. However, our observations with FCCP and oligomycin as well higher ATP content detected in \(_2\) line (yet unpublished) rather exclude ATP synthase inhibition as a mechanism of PMF increase. Therefore, the increases in pHmito may indicate higher capacity of mitochondria to produce ATP.

In our study we detected pronounced cellular acidification associated with \(\text{(Ca}^{2+}\text{)}_c\) elevations, however with a PMCAs-dependent magnitude. Bearing in mind that PMCA regulates the amount of protons entering cytosol, downregulation of fast responsive PMCA2 or PMCA3 isoforms may explain weaker pH response in \(_2\) and \(_3\) lines, even despite potentiation of Ca\(^{2+}\) influx in these lines during KCl stimulation. Different amplitudes of pHmito decreases between our lines could also reflect altered proton buffering capacity. Higher mitochondrial pH in \(_2\) and \(_3\) lines in steady-state conditions might affect \(\Delta p\)H drop during KCl stimulation, as reduced buffering pH capacity of mitochondria in the alkaline pH was shown to underlie the loss of \(\Delta p\)H upon treatment with Ca\(^{2+}\) mobilizing agents [reviewed in 6]. Following successive stimulations, we observed the overshoot of \(\Delta p\)H and a new resting \(\text{(Ca}^{2+}\text{)}_c\) particularly visible in \(_2\) line. This effect is most likely due to over-activation of mitochondrial matrix

![Figure 8. The relative contribution of \(\Delta \psi_m\) and \(\Delta \psi_p\) to TMRE fluorescence.](image)

(A) The effect of 10 min preincubation with FCCP (1 μM) or oligomycin (6 μM) on TMRE or DISBAC\(_2\) fluorescence assessed by flow cytometry in 10\(^4\) cells. The fluorescence level in non-treated cells was taken as 100%. * P<0.05, PMCA-deficient lines vs. control cells within inhibitor treated or non-treated groups; # P<0.05, inhibitor treated cells vs. non-treated. (B) The dependence of increased TMRE on \(\Delta \psi_p\). Before experiment, the medium was exchanged for Ca\(^{2+}\)-free buffer (20 mM HEPES, pH 7.4, 2 mM Ca\(_{\text{Cl}_2}\), 150 mM NaCl, 5 mM KCl, 1 mM Mg\(_{\text{Cl}_2}\), 10 mM glucose) containing either 5 mM (low K\(^+\)) or 59 mM (high K\(^+\)) KCl, in which cells were incubated for 5 min before the addition of TMRE. After 10 min loading period, cellular TMRE fluorescence was acquired. Data are presented in median/quantiles and represent average values from 10\(^5\) cells. *P<0.05, PMCA-deficient cells vs. control. (C) Real-time PCR analysis of mitochondrial biogenesis markers (Tfam, Nrf-1 and Pgc-1\(\alpha\)) and mitochondrially encoded subunits I and III of cytochrome c oxidase (CcO). The expression level of each gene in control line was taken as 1 (dotted line). The relative fold change after normalization to Gapdh expression is shown. * P<0.05, PMCA-deficient lines vs. control cells. (D) Evaluation of mitochondrial mass with MitoTracker Green TM in fixed cells using TCS S5 confocal microscope. The average fluorescence from \(n=9\), \(n=11\), \(n=14\) cells for \(_2\), \(_2\), \(_3\) lines, respectively, was measured with microscope accompanying software. Scale bar 10 μm. FIU – fluorescence intensity units.

doi:10.1371/journal.pone.0102352.g008

![Figure 8.](image)
dehydrogenases by Ca2+ transients but also indicate, that PMCA-downregulated cells irreversibly lose a substantial part of Ca2+ clearing potency. This is additionally supported by the observed KCl-evoked higher Ca2+ influx in _2 and _3 lines. Our previous study demonstrated increased expression and concomitantly greater contribution of certain VDCCs to Ca2+ influx in PMCA\texttextsuperscript{-}deficient lines [39]. Because colocalization of these channels and PMCA has been shown in specific types of neurons [51], we assume their functional relationship in the regulation of Ca2+ influx in _2 and _3 cells. It is now apparent that mitochondria of some cell types can accumulate large amounts of Ca2+ during membrane depolarization events [52,53]. Facing mitochondria to domains of high (Ca2+), allows direct mitochondrial Ca2+ uptake following VDCCs activation and rapid uptake mode of the mitochondrial uniporter in response to extramitochondrial Ca2+ bursts. Nonetheless, even under the disturbed Ca2+ homeostasis and despite variations in the absolute cellular pH, all cell lines retained the ability to maintain positive matrix vs. cytosol gradient.

Our data show that the main function of protons transport during Ca2+ load can be attributed to PMCA2, and to weaker extend also to PMCA3 because: (1) reduction of their level led to lower degree of mitochondrial acidification as less protons entered cytoplasm; (2) the acidification did not require Ca2+ release from internal stores but was related to plasma membrane Ca2+ influx through VDCCs; (3) all agents used to inhibit PMCA prevented KCl-induced pH drop and markedly delayed Ca2+ clearance.

(Ca2+)\textsubscript{e} elevations and subsequent uptake by mitochondria should result in △Ψm dissipation to restrict the availability of mitochondria to synthesize ATP. Decreases in △Ψm have been observed in isolated mitochondria exposed to Ca2+ overload [54]. In intact cells transient depolarizations have been reported only in some cell types [55–57], but not in other [58,59]. The present study also found no detectable alterations in △Ψm in control and _3 lines, despite large pH\textsubscript{mito} and pH\textsubscript{cyto} drop during KCl-evoked (Ca2+)\textsubscript{e} elevations. In agreement with the statement that mitochondrial Ca2+ uptake must affect △Ψm, the depolarization events could be too faint to be detected in control and _3 lines. In turn, △Ψm depolarizations did occur in _2 cells in response to (Ca2+)\textsubscript{e} elevations. We can assume it could be due to higher △Ψm – dependent mitochondrial Ca2+ uptake shown in this line, as △Ψm – driven elevation of mitochondrial Ca2+ may itself dissipate △Ψm [60,61]. Ca2+ influx through VDCCs resulting in △Ψm loss was shown in CA1 pyramidal cells in hippocampal slides [62]. It also seems possible that a rise in (Ca2+)\textsubscript{e} and then in (Ca2+)\textsubscript{m} may depolarize △Ψm through promotion of Ca2+ cycling or by decreasing the ATP/ADP-P\textsubscript{i} ratio due to higher ATP consumption by Ca2+ dependent ATPases. This would in turn increase proton backflow to the mitochondrial matrix, depolarizing △Ψm and stimulating respiration. The net Ca2+ accumulation may occur through the mitochondrial uniporter which activity in neural tissue is particularly high [63]. The entry of positively charged ions could then lower △Ψm allowing net H+ extrusion by the ETC with the consequent increase in ΔpH. Another possible mechanism may involve Ca2+ dependent inhibition of ETC, as was demonstrated in mitochondria exposed to increasing Ca2+ concentration [64–66]. However, at this stage we are unable to distinguish which portion of △Ψm changes during stimulation were due to collapsing of proton gradient or the exchange of charged molecules (e.g. Ca2+, P\textsubscript{i}, ADP).

Here, we report that △Ψm depolarization in PMCA2-deficient cells is mediated by the activation of CsA-sensitive mechanism. Studies from neuronal and non-neuronal cells suggest that during ion imbalance mitochondria depolarize, swell and release cytochrome c through CsA-sensitive Ca2+–activated mPTP opening [67–70]. In our model, mitochondrial Ca2+ overload may lead to transient mPTP opening resulting in △Ψm collapse, outward Ca2+ redistribution and matrix acidification. However, contrary to

Figure 9. TMRE fluorescence decay upon FCCP treatment and the effect on (Ca2+)\textsubscript{e}. (A) The representative micrographs showing a decay in TMRE fluorescence in a single cell after 30 s depolarization with 1 μM FCCP. Scale bar 10 μm. (B) Representative traces showing average FCCP-induced Fura-2 fluorescence increase due to release of mitochondrial Ca2+ in n = 15, n = 20, n = 19 cells for C, _2, _3 lines, respectively. (C) Representative traces of average Fura-2 fluorescence showing lack of 6 μM oligomycin effect on (Ca2+)\textsubscript{e} in 14 cells.
doi:10.1371/journal.pone.0102352.g009

PLOS ONE | www.plosone.org 12 July 2014 | Volume 9 | Issue 7 | e102352
catastrophic nature of mPTP opening, our data demonstrate that $\Delta \Psi_m$ recovered upon KCl removal. This suggests that respiratory chain rebuilt the proton gradient and restored $\Delta \Psi_m$, which may drive Ca$^{2+}$ re-uptake and its gradual accumulation in the matrix. Perhaps, only brief mPTP opening could be sufficient to trigger subsequent death in PMCA2-deficient cells. Because some studies have reported that neuronal mPTP is relatively CsA-insensitive [54,71], alternative mechanisms such as reactive oxygen species release or adenine nucleotide depletion should also be considered. Additionally, reduced mitochondrial H$^+$ concentration may by
itself trigger mPTP opening, as an acidic pH was reported to block the opening of mPTP [72,73]. In line with it, more pronounced acidification observed in control and _3_ cells may explain why ΔΨm is not dissipated in these lines during KC1 stimulation.

In summary, we showed that PMCA2 and PMCA3 are responsible for dynamic regulation of cellular pH. In steady-state conditions, concomitant elevation of (Ca^{2+})_c and higher Ψm-dependent accumulation of mitochondrial Ca^{2+}, and/or decreased influx of cytosolic H^+ due to PMCA knock-down, may lead to mitochondrial alkalization. It is believable as the amount of H^+ entering cytosol in exchange for Ca^{2+} seems to depend on the kinetic properties of PMCA isoforms. This could explain why pH response observed during (Ca^{2+})_c elevations was modulated in a manner dependent on isoform activity: the smallest response when PMCA2 was downregulated, which is regarded as the fastest reacting, followed by PMCA3 which is only slightly slower than PMCA2. However, during massive Ca^{2+} loads, the potentiation in Ca^{2+} influx observed in _2_ line and, as a consequence, mitochondrial Ca^{2+} overload may lead to ΔΨm depolarization. Our data indicate that ΔΨm collapse was triggered by CaS-sensitive mechanism suggesting the involvement of mPTP opening as a possible underlying mechanism. Lack of signs for mPTP formation in _3_ cells could indicate that the threshold Ca^{2+} concentration required for Ca^{2+}-dependent mPTP opening has not been achieved although an increased Ca^{2+} influx during membrane depolarization was also observed in these cells. The overall data indicate that the relationship between mitochondria and PMCA is much more complex and intimate and exceeds far beyond a simple energetic connection. Our findings provide the evidence, that PMCA membrane composition might be of great importance for preservation of bioenergetic function of mitochondria. Therefore, changes in PMCA expression occurring i.e. in ageing brain or spinal cord injury [74,75] may profoundly affect cellular metabolic network and disturb mitochondrial function. In view of this, pathological alterations in PMCA expression, in particular PMCA2, may contribute to neurotransmission dysfunctions via a mechanism of mitochondrial depolarization. Undoubtedly, elucidating of the functional interplay between mitochondrial metabolism and neuronal function is of paramount importance for understanding of pathophysiology in various neurological diseases.

Supporting Information

Figure S1 In vitro characterization of mitoSypHer probe in differentiating PC12 cells. (A) The expression of mitoSypHer vector (i, SypHer) and the corresponding protein content (ii, anti-GFP) assessed using PCR or monoclonal anti-GFP antibodies, respectively. GAPDH was used as an internal control. (B) Confocal images of mitoSypHer (green) in fixed cells labeled with MitoTracker Red (red) showing mitochondrial localization of mitoSypHer (merged). Insets show clear mitochondrial targeting of both probes. Scale bar 20 μm. (C) In situ calibration of mitoSypHer obtained by measuring changes in 485/430 ratio with increasing extracellular pH. (TIF)

Figure S2 The induction of mitochondrial swelling in the presence of Ca^{2+}. Mitochondrial swelling induced by the addition of 10 μM CaCl_2 was enhanced by atractylyte (20 μM) but inhibited by bongkrekic acid (10 μM) or cyclopisin (1 μM). Swelling was assessed by light absorbance at 520 nm in a suspension of mitochondria. The absorbance at time 0 (before Ca^{2+} exposure) was taken as 100%. (TIF)

Acknowledgments

The authors thank Dr. Nicolas Demaurex (University of Geneva, Switzerland) for providing the mitoSypHer construct and Laboratory of Confocal Microscopy (Nencki Institute of Experimental Biology, Warsaw, Poland) for the assistance in confocal imaging.

Author Contributions

Conceived and designed the experiments: TB ML. Performed the experiments: TB ML BF DS MW AK. Analyzed the data: TB ML AK MW LZ. Contributed reagents/materials/analysis tools: DS MW LZ AK. Wrote the paper: TB.

References

1. Augustinie GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40: 331–46.
2. Barro S, Cavazzini GM, Emptage N (2006) The role of the endoplasmic reticulum Ca2+ store in the plasticity of central neurons. Trends Pharmacol Sci 27: 78–84.
3. Chalmers S, McCarron JG (2008) The mitochondrial membrane potential and Ca2+ oscillations in smooth muscle. J Cell Sci 121: 75–85.
4. Mckenzie L, Roderick HL, Berridge MJ, Conway SJ, Bootman MD (2004) The spatial pattern of atrial cardiomyocyte calcium signaling modulates contraction. J Cell Sci 117: 6327–337.
5. Demaurex N, Poburko D, Frieden M (2009) Regulation of plasma membrane Ca2+ ATPase proteins as novel regulators of cellular pH. Biochim Biophys Acta 1787: 1383–94.
6. Poburko D, Demaurex N (2012) Regulation of the mitochondrial proton gradient by cytosolic Ca2+ signals. Phagmas Arch 464: 19–26.
7. Nichols DG (2008) Forty years of Mitchell's proton circuit: From little grey books to little grey cells. Biochimica Biophysica Acta 1777: 550–6.
8. Santo-Domingo J, Demaurex N (2011) Dynamic regulation of the mitochondrial mPTP -Dependent Regulation of Intracellular pH by PMCA2 and PMCA3
27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCT) Method. Methods 25: 402–8.

28. Pytlowany M, Strosznajder JB, Jesko H, Cakala M, Strosznajder RP (2008) Molecular mechanism of PC12 cell death evoked by sodium nitroprusside, a nitric oxide donor. Acta Biochim Pol 55: 339–47.

29. Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM (1988) Membrane potential can be determined in individual cells from the nematodan distribution of Raf1-ions. Biophys J 53: 785–94.

30. Benham CD, Evans ML, McBain CJ (1992) Ca(2 +) efflux mechanisms following depolarization evoked calcium transitions in cultured rat sensory neurons. J Physiol 455: 567–83.

31. Fluri J, Tser RW (1992) A caffeine- and ryanodine-sensitive Ca2 + store in bullfrog sympathetic neurones modulates effects of Ca2 + entry on [Ca2 +]. J Physiol 450: 217–46.

32. Liu J, Farmer JD, Lane SW, Friedman J, Weissman I, et al. (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP FK506 complexes. Cell 87: 615.

33. Souayah N, Sharovskaya E, Kurnellas MP, Myersom M, Deitch JB, et al. (2008) Reductions in motor unit number estimates (MUNE) precede motor neuron loss in the plasma membrane calcium ATPase 2 (PMCA2)/b-hydropoins. Exp Neurol 214: 341–46.

34. Abad MF, Di Benedetto G, Magalhaes PJ, Filippin L, Pozzan T (2004) Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J Biol Chem 279: 11521–9.

35. Matuszyna S, Liposs J, Deveaux QL, Tien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH correlate with early events that mediate caspase activation during apoptosis. Nat Cell Biol 2: 318–25.

36. Liposs J, McCaffery JM, Miyawaki A, Farquhar MG, Tien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 95: 6803–8.

37. Porcelli AM, Ghelli A, Zanna C, Pinton P, Rizzuto R, et al. (2005) pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun 326: 799–804.

38. Wiederkahr A, Park KS, Dupont O, Demaurex N, Pozzan T, et al. (2009) Matrix alkalization: a novel mitochondrial signal for sustained pancreatic beta-cell activation. EMBO J 20: 417–28.

39. Rocezk T, Lisek M, Kowalska A, Pikuła S, Niewiarowska J, et al. (2012) Downregulation of PMCA2 or PMCA3 reorganizes Ca(2+)/handling systems in differentiating PC12 cells. Cell Calcium 52: 483–44.

40. Bolshakov AP, Mikhailova MM, Szabadkai G, Pinelis VG, Brustovetsky N, et al. (2007) Calcium channel and mitochondrial ATPase isoforms: distribution of mRNAs in rat brain and ascites tumor mitochondria and cells by in situ hybridization. Mol Brain Res 16: 223–231.

41. Bolshakov AP, Mikhailova MM, Szabadkai G, Pinelis VG, Brustovetsky N, et al. (2007) Calcium channel and mitochondrial ATPase isoforms: distribution of mRNAs in rat brain and ascites tumor mitochondria and cells by in situ hybridization. Mol Brain Res 16: 223–231.

42. Ward MW, Huber HJ, Weissova P, Dussman H, Nicholls DG, et al. (2007) Intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2: 318–25.

43. Roman I, Clark A, Swanson PD (1981) The interaction of calcium transport and mitochrondria in synaptic membrane Ca2 + transport of mammalian mitochondria and its role in hormone action. Am J Physiol 249: E543–54.

44. Bogońka K, Teplowa AV, Wojtczak L, Evtodierko YV, Wojtczak L (1995) Inhibition by Ca2 + of the hydrolysis and the synthesis of ATP in Ehrlich ascites tumour mitochondria: relation to the Crabtree effect. Biochem Biophys Acta 1228: 261–6.

45. Hillman DE, Chen S, Bing R, Pennington JT, Llinas R (1996) Ultrastructural localization of the plasmaemal calcium pump in cerebellar neurons. Neuroscience 72: 315–24.

46. Lawrie AM, Rizzuto R, Pozzan T, Simpson AW (1996) A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J Biol Chem 271: 10753–9.

47. Marchler P, Kennedy ED, Pozzan T, Wollheim CB (1997) Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. EMBO J 16: 3833–41.

48. Brustovetsky N, Dubinsky JM (2000) Dual responses of CNS mitochondria to elevated calcium. J Neurosci 20: 103–13.

49. O’Reilly CM, Fogarty KE, Drummond RM, Tuft RA, Walsh JV (2004) Spontaneous mitochondrial depolarizations are independent of SR Ca2 + release. Am J Physiol Cell Physiol 286: C1139–51.

50. Jacobson J, Duchen MR (2002) Mitochondrial oxidative stress and cell death in neurocytotoxicity require a stored Ca2 + and sustained opening of the permeability transition pore. J Cell Sci 115: 1175–81.

51. Haak LL, Grunaldi M, Smalls SS, Russell JT (2002) Mitochondria regulate Ca2 + wave initiation and inositol trisphosphate signal transduction in oligodendrocyte progenitors. J Neurochem 80: 405–15.

52. Collins TJ, Lipp P, Berridge MJ, Bootman MD (2001) Mitochondrial Ca2 + uptake depends on the spatial and temporal profile of cytosolic Ca2 + signals. J Biol Chem 276: 26411–20.

53. Coers G, Hajnoczky G (2003) Plasticity of mitochondrial calcium signaling. J Biol Chem 278: 12473–82.

54. Kaúan EJ, Xu T, Abecrombie RF, Hille B (2000) Mitochondria shape hormonally induced cytoplasmic calcium oscillations and modulate exocytosis. J Biol Chem 275: 23465–70.

55. Duchen MR, Leysens A, Crompton M (1998) Transient mitochondrial depolarizations reflect focal sarcoplasmatic reticul calcium release in single rat cardiomyocytes. J Cell Biol 142: 975–88.

56. Schuchmann S, Luckermann M, Kok A, Heinemann U, Ballanyi K (2000) Ca(2 +) and metabolism-related changes of mitochondrial potential in voltage-clamped CAV1 pyramidal neurons in situ. J Neurophysiol 83: 1710–21.

57. Nicholls DG (1978) Calcium transport and porton electrochemical potential gradient in mitochondria from guinea-pig cerebral cortex and rat heart. Biochem J 170: 511–22.

58. Pandya JD, Nukala VN, Sullivan PG (2013) Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Front Neuroenergetics 5: 10.

59. Villalobos A, Lehninger AL (1988) Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondral Ca2 +. J Biol Chem 253: 2457–64.

60. Roman I, Clark A, Swanson PD (1981) The interaction of calcium transport and ADP phosphorylation in brain mitochondria. Membr Biochem 4: 1–9.

61. Malepas JR, Abecrombie RF (2006) Calcium, mitochondria and repercussion injury: a pore way to die. Biochimie Soc Trans 34: 232–7.

62. Abouzahar AY, Duchen MR (2000) Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim Biophys Acta 1775: 953–64.

63. Domanska-Jank K, Buzanska L, Dluzniewska J, Kozlowska H, Sarnowska A, et al. (2004) Neuroprotection by cyclosporin A following transient brain ischemia correlates with the inhibition of the early efflux of cytochrome C to cytoplasm. Brain Res Mol Brain Res 121: 50–9.

64. Vergun O, Reynolds JF (2005) Distinct characteristics of Ca2 +-induced depolarization of isolated brain and liver mitochondria. Biochem Biophys Acta 1709: 127–37.Nich.

65. Chiopoulos C, Starkov AA, Fiskum G (2003) Cyclosporin A-insensitive permeability transition in brain mitochondria: inhibition by 2-aminoethoxydihydroxyphenyl borate. J Biol Chem 278: 27822–9.

66. Petronilli V, Costa C, Bernardi P (1993) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. II. The minimal requirem ents for pore induction underscore a key role for transmembrane electrical potential, matrix pH and oxoglutarate/Ca2 + exchange. Biochim Biophys Acta 1797: 1627–37.

67. Domanska-Jank K, Buzanska L, Dluzniewska J, Kozlowska H, Sarnowska A, et al. (2004) Neuroprotection by cyclosporin A following transient brain ischemia correlates with the inhibition of the early efflux of cytochrome C to cytoplasm. Brain Res Mol Brain Res 121: 50–9.

68. Vergun O, Reynolds JF (2005) Distinct characteristics of Ca2 +-induced depolarization of isolated brain and liver mitochondria. Biochem Biophys Acta 1709: 127–37.Nich.