Electrophysiological and pharmacological evaluation of the nicotinic cholinergic system in chagasic rats

Rafael Bonfante-Cabarcas¹,³*, Erlymar López Hincapié¹,³, Eliezer Jiménez Hernández¹,³, Ruth Fonseca Zambrano¹,³, Lady Ferrer Mancini¹,³, Marcos Durand Mena¹,³ and Claudina Rodríguez-Bonfante²,³

Abstract

Background: Two theories attempt to explain the changes observed in the nicotinic acetylcholine receptors (nAChRs) in chagasic cardiomyopathy. The neurogenic theory proposes that receptor changes are due to loss of intracardiac ganglia parasympathetic neurons. The immunogenic theory proposes that the nAChRs changes are the result of autoantibodies against these receptors. Both theories agreed that nAChRs functional expression could be impaired in Chagas disease.

Methods: We evaluated nAChRs functional integrity in 54 Sprague Dawley rats, divided in two groups: healthy and chronic chagasic rats. Rats were subjected to electrocardiographic studies in the whole animal under pentobarbital anesthesia, by isolation and stimulation of vagus nerves and in isolated beating hearts (Langendorff’s preparation).

Results: Nicotine, 10 μM, induced a significant bradycardia in both groups. However, rats that had previously received reserpine did not respond to nicotine stimulation. β-adrenergic stimulation, followed by nicotine treatment, induced tachycardia in chagasic rats; while inducing bradycardia in healthy rats. Bilateral vagus nerve stimulation induced a significantly higher level of bradycardia in healthy rats, compared to chagasic rats; physostigmine potentiated the bradycardic response to vagal stimulation in both experimental groups. Electric stimulation (e.g., ≥ 2 Hz), in the presence of physostigmine, produced a comparable vagal response in both groups. In isolated beating-heart preparations 1 μM nicotine induced sustained bradycardia in healthy hearts while inducing tachycardia in chagasic hearts. Higher nicotine doses (e.g., 10 – 100 μM) promoted the characteristic biphasic response (i.e., bradycardia followed by tachycardia) in both groups. 10 nM DHβE antagonized the effect of 10 μM nicotine, unmasking the cholinergic bradycardic effect in healthy rats only. 1 nM α-BGT alone induced bradycardia in healthy hearts but antagonized the 10 μM nicotine-induced tachycardia in chagasic rats. In healthy but not in chagasic hearts, 10 μM nicotine shortened PQ and PR interval, an effect counteracted by MA, DHβE and α-BGT.

Conclusion: Our results suggest that cholinergic function is impaired in chronic Chagas disease in rats, a phenomena that could be related to alteration on the nAChR expression.

Keywords: Vagal stimulation, Isolated beating hearts, Nicotine, Chagas disease, Mecamylamine, DHβE, α-BGT

* Correspondence: rcabarca@ucla.edu.ve
1Biochemistry Research Units, Health Sciences School, Universidad Centro Occidental Lisandro Alvarado, Barquisimeto, Lara, Venezuela
2Líbterador Av. con Andrés Bello, Unidad de Bioquímica, Decanato de Ciencias de la Salud, Universidad Centro-Occidental “Lisandro Alvarado”, Barquisimeto, Estado Lara Código Postal: 3001, Venezuela

Full list of author information is available at the end of the article

© 2013 Bonfante-Cabarcas et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background
Chagas disease, caused by Trypanosoma cruzi (T cruzi), is considered a serious public health problem in Central and South America countries [1]. In Venezuela, approximately 4 million people are at risk to develop Chagas disease [2]. The chagasic chronic cardiomyopathy (CCC) is the most common complication of this disease; approximately 25-30% of infected patients developed CCC [1].

Although the CCC pathogenesis is not completely understood, two theories attempt to explain it: the neurogenic theory postulates that CCC is the result of myocardial denervation. During the acute phase of the disease, T cruzi's invasion of the myocardium results in a selective, mechanical destruction of the intracardiac post-ganglionic parasympathetic neurons. The destruction of the parasympathetic neurons allows for a sustained non-counteracted sympathetic tone; this unbalanced sympathetic stimulation initiates trophic changes that result in the myocardial remodeling that culminates in arrhythmias and heart failure [3].

The immunogenic theory explains the CCC pathogenesis as the result of an aberrant immune response that includes loss of self-tolerance and the development of cross-reacting antibodies. Due to molecular mimicry, cross-reacting antibodies bind and neutralize surface receptors such as nAChRs. Due to molecular mimicry, cross-reacting antibodies (i.e., autoantibodies) affect the activity and number of those receptors population [4-7].

Nicotinic acetylcholine receptors (nAChRs) are pentameric, ligand-gated ion channels, formed by α and β subunits. Eight α subunits (α2, α3, α5, α9, α10) and three β subunits (β2, β3, β4) have been described; the combination of these subunits produces a wide variety of functional receptors [8]. Intracardiac ganglion neurons can express α2 to α9 and β2 to β3 subunits, assembled predominantly as α3/α2, α2/β4, α3/β2/α5, α3/β4/α5, and monomeric α5. For example, the canine intracardiac ganglion expresses predominantly α3/β2 nAChRs, with a smaller levels of α7 nAChRs [9-12].

Both neurogenic and immunogenic theories propose alterations in the function of the cholinergic system. Recently, our group demonstrated the existence of trophic and functional disturbances of the muscarinic cholinergic receptor system on in vivo and in vitro rats' models of Chagas disease [13,14]. In the present study, we analyzed the functionality of the nAChRs in the whole animal and in isolated beating-heart preparations, of healthy and chagasic Sprague Dawley rats.

Methods
All drugs and chemicals were purchased from Sigma-Aldrich Co (St. Louis, MO, USA) and prepared as mg/ml or M stocks solution by dissolving the drugs in purified deionized water. Stocks solutions were alliquoted and stored at 5°C until use.

Animal model
All experiments were carried out on 54 Sprague Dawley rats, randomly distributed according to the experiment: 16 (8 healthy and 8 chagasic rats) for the whole animal experiments, 15 (8 healthy and 7 chagasic) were treated with reserpine, and 23 (11 healthy and 12 chagasic) were used in vagal stimulation and isolated beating heart experiments. The MHOM/VE/92/2-92-YBM trypomastigotes strain was used to induce infection. Experimental animal (i.e., rats) were inoculated with 1.000 trypomastigotes per gram of body weight (chagasic group). Chagasic animals develop an acute disease with a parasitemia peak of 67.27 ± 25.05 × 10⁶ parasites/ml at the third week of infection. At the time of performing the experiments, the animals had 7.84 ± 0.45 months-old, weighted 504.9 ± 10.74 and 418.5 ± 15.10 grs for healthy and chagasic rats, respectively; and only two chagasic animals displayed parasites in a blood sample, giving a parasitemia of 114.9 ± 84.43 parasites/ml. Animals were individually housed in a temperature-controlled environment with a 12:12 light/dark cycle and free access to food and water. Experimental protocols were approved by the ethical committee of the School of Health Sciences following the American Physiological Society guidelines.

Vagus nerve stimulation (VNS)
The animals were anesthetized using a pentobarbital (20-40 mg/Kg) and ketamine (50 mg/Kg) cocktail administered intraperitoneally. The animals’ respiration was mechanically aided through a tracheal cannula connected to a volume-controlled rodent respirator at a frequency of 70 strokes/min to facilitate ventilation in spontaneously breathing rat. The cervical vagus nerve was exposed bilaterally and severed at the caudal terminus. Platinum bipolar electrodes were attached to the nerves ending leading toward the heart. The electrodes were connected to a PowerLab/8sp system to generate frequency of heart pacing. During the experiments performance, the electric pulses were modified according to the protocol. Impulses were delivered either at a fixed frequency (1.5 Hz) but different potency ranges (0.25 to 3 V) or in a range of frequencies (1-4 Hz) but fixed potency (2 V). All experiments were performed in the absence and presence of 0.3 mg/Kg physostigmine.

Isolated beating-heart system
The animals were anesthetized as described above and the hearts removed under aseptic conditions. The isolated
hearts were connected to a Langendorff’s perfusion system by cannulation of the aorta. The hearts were perfused with a tepid (37°C) modified physiological solution (pH 7.40 ± 0.05), aerated with a 95% O2 and 5% CO2 mixture. Perfusion was conducted at a rate of 7-10 mL/min maintaining a pressure range of 50 to 100 mmHg. The perfusion solution composition included 10 mM glucose, 1 mM MgSO4, 116 mM NaCl, 18 mM NaHCO3, 2.5 mM CaCl2, 5 mM KCl, and 1 mM malate.

To evaluate the effect of nicotine stimulation on the chagasic and control hearts’ rate, the isolated hearts were perfused, for 5 minutes, with 1, 10 or 100 μM of nicotine. The heart preparations were allowed a 10 min rest period between doses – maintaining perfusion with modified physiological solution. The effect of the following nAChRs’ antagonists, on the isolated hearts’ rate, was evaluated: 1 μM mecamylamine (MA, α1/β4 nAChR antagonist), 10 nM dihydro-β-erythroidine (DHβE; α2/β2 nAChR antagonist), and 1 nM α-bungarotoxin (α-BGT; α1 nAChR antagonist) [15]. The antagonists were administered in the perfusion solution for 10 minutes, in the absence of nicotine, and for additionally 5 minutes in the presence of 10 μM nicotine. The preparations were allowed a 10 minutes resting period – perfusion with modified physiological solution – between antagonists administration.

EKG recording

In the VNS experiments, the hearts’ electric activity was monitored using needle electrodes placed subcutaneously on the sternum xiphoid process and on both shoulders – the left shoulder electrode served as reference electrode. In the isolated heart preparations, the positive electrode was inserted into the heart’s apex and the negative electrode into the right atrium. Analogical EKG signals were amplified using BioAmp, transformed in digital signals by Power Lab 8 data acquisition unit, recorded and analyzed using Lab Chart software (ADInstruments).

Data analysis

Data are expressed either as mean of absolute values ± SEM or normalized to be expressed as percentages ± SEM. Paired and non-paired Student’s t-test were used to analyze the effect of a drug on a particular group in matched observations or when a variable for the control group was compared with the same variable of the T. cruzi infected group, respectively. Repeated measure analysis of variance (rANOVA) followed by a Dunnet’s post-test were performed to determine the statistical significance of drug concentration and time effect per group. In all analyses, a p value < 0.05 was considered statistically significant. Statistical analysis were performed using the GraphPad Prism 4 for Windows software (GraphPad Software Inc, La Jolla, CA).

Results

EKG study in intact animals

The significant bradycardia induced by 10 μM nicotine, in healthy and chagasic rats, was reverted by 0.1 μM d-tubocurarine (Figures 1A and 1C). Lower concentrations of nicotine appear to have no effect on the heart rate of the animals.

In order to determine whether the catecholaminergic neurons were involved in the bradycardic response, the synaptic amine content was depleted with reserpine (1 mg/Kg/day for three days) in both control and chagasic animals. It was observed that reserpine-treated animals (both groups) had a lower basal heart rate and nicotine was unable to induce bradycardia (Figure 1B and 1D).

When adrenergic tone was enhanced (0.01 mg/Kg of isoproterenol), a similar tachycardic response (p = 0.14) was induced in both animals groups (i.e., 117.2% ± 1.54 in the healthy group and 120.6% ± 1.68 in the chagasic rats). After administration of 10 μM of nicotine, we observed that nicotine induced bradycardia in the healthy group while, surprisingly, inducing a significant tachycardia in the chagasic animals (Figure 2).

NVS study in intact animals

Stimulation of both vagus nerves induced a proportional bradycardia to the frequency of the stimulus. However, the bradycardic response was significantly higher in healthy rats, compared with chagasic rats (Figure 3A). Physostigmine potentiated the bradycardic response, in both experimental groups; at low frequencies (1 and 1.5 Hz) the bradycardic response was significantly higher in healthy rats but, a higher frequencies (2 to 4 Hz) bradycardia was similar in both groups (Figure 3B).

Likewise, at low frequency stimulation (1.5 Hz), a significant bradycardic response was elicited as the voltage intensity increased above 0.5 V. A significant difference between the groups was observed at 3 V when the vagus nerves’ data were analyzed together (Figure 3C). Physostigmine potentiated the bradycardic response, with the resulting response significantly higher, at 2 and 2.5 V, for healthy rats compared with chagasic rats (Figure 3D).

Isolated beating-hearts study

Heart rate

Figure 4 illustrates the effect of nicotine on the heart rate of healthy and chagasic hearts. Nicotine (1 μM) slow-down the heart rate for 150 sec in healthy hearts (-4.9 ± 2.1%; p < 0.05), while in the chagasic hearts induced a transient but non-significant, decrease on the hearts rate (20 s), followed by a significant tachycardia (+2.6 ± 1%, p <0.05) (see Figure 4A). The response of healthy and chagasic hearts to 10 μM nicotine stimulation (Figure 4B) was comparable to that induced by 1 μM nicotine in the chagasic hearts. Initially, 10 μM nicotine induced a non-significant bradycardia
Nicotine affects the heart rate of anesthetized whole-animals. 10 μM Nicotine (Nic) induced a significant bradycardic response, while 1 μM D-tubocurarine reversed it, in both healthy (A) and chagasic (C) rats. Lower doses of Nic (i.e., 1 μM) have no effect on the heart rate of these animals. EKG results from healthy (B) and chagasic (D) rats, treated daily with 1 mg/Kg of reserpine for 3 days, showed a significant decrease of heart rate compared to untreated animals; however, 10 μM of nicotine has no bradycardic effect on reserpine-treated healthy (B) or chagasic (C) animals.

In the absence of nicotine stimulation, healthy hearts response to MA was a slight but significant (p< 0.05) bradycardia (2.24 to 2.92%). Chagasic hearts response to MA was non-significant. However, 1 μM MA abrogated the tachycardia elicited by 10 μM nicotine, in both, healthy and chagasic hearts.

Figure 5A shows that on healthy hearts α-BGT (full circles) induced a significant bradycardia (-6.8 ± 3.1%; p <0.05); however, in the presence of nicotine (open squares) α-BGT blocked the nicotine-induced tachycardia. Figure 5B shows that the α-BGT, by itself, had no effect on chagasic hearts’ heart rate (full circles), but effectively blocked the nicotine-induced tachycardia (open squares).

In healthy hearts 10 nM DHβE, by itself, failed to induce a significant tachycardia (p > 0.05); however, in the presence of nicotine (10 μM), DHβE induced a significant (p < 0.05) bradycardia (Figure 5C). The chagasic hearts (-2 ± 1.5%, p> 0.05) that was followed by a significant tachycardia (+5.8 ± 3.5% in healthy group; +4 ± 1.9% in chagasic group. p <0.05). The effect of 100 μM nicotine was similar to that induced by 10 μM nicotine in both groups.

In the absence of nicotine stimulation, healthy hearts response to MA was a slight but significant (p< 0.05) bradycardia (2.24 to 2.92%). Chagasic hearts response to MA was non-significant. However, 1 μM MA abrogated the tachycardia elicited by 10 μM nicotine, in both, healthy and chagasic hearts.

Figure 5A shows that on healthy hearts α-BGT (full circles) induced a significant bradycardia (-6.8 ± 3.1%; p <0.05); however, in the presence of nicotine (open squares) α-BGT blocked the nicotine-induced tachycardia. Figure 5B shows that the α-BGT, by itself, had no effect on chagasic hearts’ heart rate (full circles), but effectively blocked the nicotine-induced tachycardia (open squares).

In healthy hearts 10 nM DHβE, by itself, failed to induce a significant tachycardia (p > 0.05); however, in the presence of nicotine (10 μM), DHβE induced a significant (p < 0.05) bradycardia (Figure 5C). The chagasic hearts
response to DHβE stimulation alone was a delayed bradycardia (i.e., 10 min after stimulation). In the presence of nicotine, the delayed was abrogated (Figure 5D) and the response was comparable to that observed in the healthy hearts group.

PQ and PR intervals
Chagasic hearts had significantly prolonged PQ and PR intervals when compared to healthy hearts (healthy Rats: PQ = 46.82 ± 2.49 and PR: 53.70 ± 2.37 ms; chagasic rats: PQ = 54.17 ± 2.55 and PR = 61.92 ± 2.48 ms; p = 0.049 and 0.041, respectively). The PQ interval in healthy hearts was significantly decreased by nicotine 10 μM, during the desensitized period (5 min), an effect that was antagonized by MA, DHβE and α-BGT. No significant effect in chagasic hearts in the PQ interval was observed. Similar effects were observed for the PR intervals. When healthy and chagasic hearts were compared in a particular protocol.
variable, we observed significant differences with 10 μM nicotine during the desensitizing period, 100 μM nicotine during the activation period, DHβE and αBGT (Table 1).

QT and QTc intervals
No significant effects on either of the intervals were observed when healthy and chagasic hearts were compared. Furthermore, we did not observe any significant effect of nicotine on both intervals; however, in chagasic hearts with the addition of 10 μM nicotine (activation period), DHβE and α-BGT significantly increased the QTc interval when compared to nicotine only. When healthy and chagasic hearts were compared in a particular protocol variable we observed significant differences with 100 μM nicotine during the desensitizing period and DHβE.

T and QRS amplitude
QRS amplitude was higher in healthy hearts when compared with chagasic hearts (HR: 709 ± 103.8 μV; CH: 462.1 ± 62.3 μV; p = 0.05). In healthy hearts, 10 μM nicotine in the presence of MA and DHβE only, induced a significantly decrease of the QRS amplitude; while in chagasic hearts 1 μM nicotine and 10 μM nicotine in the presence of DHβE induced a significant decrease of QRS amplitude. When healthy and chagasic hearts were compared in a particular protocol variable we observed significant differences with 100 μM nicotine during the desensitizing period and DHβE.

No differences for the T wave amplitude were observed between healthy and chagasic hearts. In healthy and chagasic hearts nicotine 10 μM in addition to DHβE induced a significant decrease of the T amplitude during the desensitizing period. When healthy and chagasic hearts were compared in a particular protocol variable we observed significant differences with 10 μM nicotine in addition to MA during the desensitizing period.

Perfusion pressure
In healthy and chagasic hearts 10 μM nicotine induced a significant increases of the pressure wave amplitude during the activation period, an effect that was blocked by MA and DHβE in healthy hearts and by MA, DHβE and αBGT in chagasic hearts. The use of 100 μM nicotine also induced an increase of the pressure wave amplitude during the activation period in healthy hearts but not in chagasic ones. When healthy and chagasic hearts were compared in a particular protocol variable we observed significant differences with 10 μM nicotine in addition to αBGT during activation and desensitizing periods (Table 1).

Discussion
This work represents the first study that evaluates the functional integrity of the nicotinic cholinergic system in
rats with chronic chagasic disease, using electrophysiological tools. We were able to determine that rats with Chagas disease have a dysfunction of nicotinic cholinergenic system when compared with healthy rats.

In our whole-animal model, nicotine induced bradycardia, an effect that could be mediated by the simultaneous activation of the post-synaptic autonomic neurons and inhibition of adrenergic pre-synaptic terminals innervating the heart. The inhibition of the adrenergic response most likely is mediated by M2 muscarinic AChRs. M2-mediated inhibitory effect has been demonstrated in guinea pig, where muscarinic agonists reduced norepinephrine overflow, in a concentration-dependent manner, and such effect was selectively antagonized by the M2-specific antagonist AF-DX-116 [16].

The tachycardia induced by nicotine, in the presence of isoproterenol, indicates an impairment in the vasovagal reflex in chagasic rats. Isoproterenol increases the systolic pressure, due to the increment on heart rate and ejection fraction. The damaged cholinergic parasympathetic efferents favored a post-synaptic β-adrenergic dominance over the heart rate. This observation was consistent with reports that, in rats, phenylephrine-induced bradycardia was diminished in the indeterminate phase of Chagas disease as well as in chronic chagasic cardiomyopathy [14].

Direct stimulation of the vagus nerve, in rats with chronic Chagas disease, decreased the bradycardic response as a function of stimuli frequency and intensity, indicating a reduced vagal function in chagasic rats. The importance of the vagus nerve’s functional integrity has been documented in rats with acute chagasic myocarditis using direct vagal stimulation [17]. In these studies, the chronotropic response to stimulation, with low frequencies pulses, was significantly different between chagasic rats and healthy rats. These groups have comparable chronotropic response to higher frequency stimuli suggesting decrease in the fibers’ excitability and change in their response threshold in chagasic rats, due to acute nerve inflammation.

In Chagas disease, the diminished cholinergic function has been explained as a direct consequence of the presence of autoantibodies against both types of AChRs (i.e., nicotinic and muscarinic receptors). The chronic

Table 1 Effect of nicotine and a selective nicotinic antagonist on electrocardiographic parameters in isolated beating heart

Protocol Sequence	Healthy Hearts	Chagasic Hearts	Aorta Pressure Wave	
	AV (msec)	AV (msec)	AV (mmHg)	AV (mmHg)
	%	%	%	%
Basal	46.2±2.5	100	54.2±2.6	100
Nic 1 μM A	44.9±1.7	97.2±3.0	53.0±2.5	96.2±0.3
Nic 1 μM D	47.1±2.4	101.7±4.3	53.3±3.0	95.7±1.3
Wash 1	49.9±1.9	100	53.7±2.2	100
Nic 10 μM A	48.9±2.0	98.1±2.2	53.8±2.3	100
Nic 10 μM D	45.4±2.2	90.7±2.2	54.2±2.5	104.6±2.0
Wash 2	47.9±1.9	100	55.8±2.6	100
Nic 100 μM A	48.3±2.0	101.0±2.4	57.1±2.5	109.0±1.5
Nic 100 μM D	48.7±2.0	101.4±2.9	54.5±2.6	100.5±1.2
Wash 3	48.1±2.1	100	51.2±2.6	100
MA	47.4±2.0	99.6±3.8	53.0±2.4	103.4±1.7
MA+Nic 10 μM A	48.2±2.3	100.3±2.1	52.7±2.05	104.3±1.1
MA+Nic 10 μM D	48.6±2.9	101.2±2.8	53.6±2.4	102.8±0.4
Wash 4	46.6±2.4	100	53.9±2.1	100
DHβE	47.4±2.4	101.7±1.7	55.4±2.5	107.8±0.5
DHβE+Nic 10 μM A	49.0±2.6	105.5±1.8	55.8±2.5	107.4±0.6
DHβE+Nic 10 μM D	48.8±1.9	105.6±2.2	55.6±2.3	106.8±0.7
Wash 5	48.8±2.1	100	55.8±2.6	100
αBGT	50.6±2.1	104.9±2.9	53.5±2.5	97.2±0.9
αBGT+Nic 10 μM A	50.3±1.9	104.4±1.9	56.0±2.9	81.3±3.6
αBGT+Nic 10 μM D	49.1±1.8	102.6±2.4	57.4±2.6	106.6±1.7
Wash 6	50.3±2.1	-	57.8±2.7	-

A: agonist activation period at 30 sec of perfusion; D: agonist desensitization period at 5 min of perfusion; AV: absolute values; Nic: nicotine; MA: mecamylamine; DHβE: dihydro-beta-erythroidine; αBGT: alfa-bungarotoxin; ° means p < 0.05 when absolute values are compared against basal or wash periods by repeated measure ANOVA followed by Dunnet post-test; * means p < 0.05 when % values are compared in the presence and absence of the antagonist by Wilconxon matched pairs test; † means p < 0.05 when % values are compared between healthy and chagasic groups by Mann-Whitney test.
binding of these autoantibodies to the nAChR could induce a decrease in the population of functional nAChRs and consequently contribute to the alterations described in the course of chronic Chagas' disease [6,7]. In our experiments, we observed that when phystostigmine, a well known acetyl cholinesterase inhibitor, was administered at the same time of high frequencies stimuli, the vagal response was restored. By mass-action law, a high level of synaptic acetylcholine would competitively displace the autoantibodies from the receptor sites.

In our isolated beating-heart model, nicotine stimulation induced the classic biphasic heart rate, which has been described for both nicotine and other non-selective AChR agonists [18-21]. However, our study demonstrated the nicotine-induced effect was dose-dependent. While 1 μM nicotine induced a bradycardia only, 100 μM of nicotine induced a biphasic effect in control rats. These differential responses were blocked by 1 μM mecamylamine, indicating that the action of nicotine used the ganglionic α3β4 nicotine acetylcholine receptor (nAChR) signaling.

The need of an intact ganglionic transmission has been demonstrated on elegant studies using hexamethonium. This ganglionic nAChR antagonist blocked the nicotine-induced biphasic heart rate [10,19-21]. However, the exact nAChR population involved in the nicotine-induced bradycardia has not been identified. Successful blockade of nicotine-induced bradycardia by α-BGT suggest that α7 nAChR subtype could be involved in the biphasic heart-rate response to nicotine stimulation [19]. Involvement of other nAChR subtypes or even the contribution of specific subunits cannot be ignored. nAChR with high affinity for nicotine are preferentially formed by α2, α4 and β2 subunits [22-24]. α2β2 and α4β2 receptors have been described to be expressed on intracardiac neurons [9]. DHBE, an α4β2 nAChR selective antagonist, prevented nicotine-induced bradycardia, while a selective agonist (RJR2403) reproduced the nicotine effect [20,21]. Cytisine, a selective β4 subunit agonist, and metillycainotine (selective α7 antagonist) have opposite effects on the heart rate [19-21].

Our results indicated that pre-synaptic α7 nAChRs are involved in the nicotine-induced tachycardic phase as it was blocked by α-BGT. The bradycardic response to α-BGT perfused alone suggested that α7 subunit is also present in nAChR intrinsic adrenergic neurons. Recent studies have found that autonomic dysfunction; especially a decrease of vagal activity, is related to worsening of cardiovascular diseases. Autonomic imbalance with increased adrenergic and reduced parasympathetic activity is involved in the development and progress of heart failure (HF) [25]. M2-AChR knockout mice exhibit impaired ventricular function and increased susceptibility to cardiac stress, suggesting a protective role of the parasympathetic nervous system in the heart [26]. Furthermore, vagal stimulation has been shown to be beneficial in cases of heart failure, because it inhibited cardiac remodeling associated with heart dysfunction [27,28].

Our results suggest that nicotinic receptors are involved in the regulation of electrical transmission between sinusal and AV nodes, however chagasic hearts have lost this capability because nicotine was unable to shorten PQ and PR intervals in them, indicating a disregulation of nicotinic receptors in these structures. Indeed a lost of nicotinic receptors could explain a prolonged PQ and PR intervals observed in chagasic hearts in basal conditions.

The increase of perfusion pressure wave induced by nicotine in both groups reflects a positive inotropic effect of the agonist acting on nicotinic receptors. It has been already reported that nicotine produced a concentration-dependent positive inotropic effect on electrical evoked contraction of isolated toad ventricle [29].

Conclusions
Our results support the hypothesis that cholinergic dysfunction in Chagas disease is the result of a combined disruption of the vagal transmission and trophic remodeling of intracardiac neurons and receptors. The importance of our findings is to demonstrated that alterations in cardiac nicotinic cholinergic transmission is present in Chagas disease in an early phase of cardiomyopathy evolution, before a dilated cardiomyopathy with congestive heart failure will be installed. Therefore cardiac nicotinic cholinergic functionality could be useful as prognostic marker of the disease.

Competing interest
The authors declare that they have not competing interests.

Authors’ contribution
RBC and CRB made substantial contributions to conception and design, carried out whole-animal studies including data acquisition, analysis and interpretation, and wrote the draft and final version of the manuscript. ELH, RFZ and LFM contributed to conception, design and performance of isolated beating-heart studies including data acquisition and analysis, involved in drafting the manuscript. MDM and EJM contributed to conception, design and performance of vagal nerve stimulation studies, including data acquisition and analysis and were involved in drafting the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements
This study was funded by the "Consejo de Desarrollo Científico, Humanístico y Tecnológico" (CDCHT) grants N° 002-ME-2004 and 006-ME-2008, Universidad Centro Occidental "Lisandro Alvarado", Barquisimeto, Venezuela. The authors would like to thank Dr. Carla R. Lankford (US FDA, Silver Spring, Maryland, USA) for proof-reading this manuscript.

Author details
1Biochemistry Research Units, Health Sciences School, Universidad Centro Occidental Lisandro Alvarado, Barquisimeto, Lara, Venezuela. 2Medical Parasitology Research Units, Health Sciences School, Universidad Centro Occidental Lisandro Alvarado, Barquisimeto, Lara, Venezuela. 3Libertador Av. con Andrés Bello, Unidad de Bioquímica, Decanato de Ciencias de la Salud, Universidad Centro-Occidental "Lisandro Alvarado", Barquisimeto, Estado Lara Código Postal: 3001, Venezuela.
Received: 11 April 2012 Accepted: 21 December 2012
Published: 7 January 2013

References

1. Rassi A Jr, Rassi A, Marin-Neto JA: Chagas disease. Lancet 2010, 375(9723):1388–1402.

2. Aché A, Matos AJ: Interrupting Chagas disease transmission in Venezuela. Rev Inst Med Trop Sao Paulo 2001, 43:37–43.

3. Dávila DF, Santiago JJ, Odremar WA: Vagal dysfunction and the pathogenesis of chronic Chagas disease. J Clin Exp Ther 2005, 10:337–339.

4. Kerszenbaum F: Where do we stand on the autoimmunity hypothesis of Chagas disease? Trends Parasitol 2005, 21:513–516.

5. Sterin-Borda L, Borda E: Role of neurotransmitter autoantibodies in the pathogenesis of chagasic peripheral dysautonomia. Ann N Y Acad Sci 2000, 917:273–280.

6. Goin JC, Venera G, Biscoglio de Jimenez Bonino M, Sterin-Borda L: Circulating antibodies against nicotinic acetylcholine receptors in chagasic patients. Clin Exp Immunol 1997, 110:219–225.

7. Hernández CC, Barcellos LC, Gilmez LE, Cabarcas RA, García S, Pedroza RC, Nascimento JH, Kurtenbach E, Masuda MO, Campos de Carvalho AC: Human chagasic IgG bind to cardiac muscular receptors and impair L-type Ca2+ currents. Cardiovasc Res 2003, 58:65–66.

8. Fischer H, Liu DM, Lee A, Harries JC, Li YF: Selective modulation of neuronal nicotinic acetylcholine receptor channel subunits by Go-protein subunits. J Neurosci 2005, 25:3571–3577.

9. Poth K, Nutter T, Cuevas J, Parker M, Adams D, y Luetje C: Heterogeneity of nicotinic receptor class and subunit mRNA expression among individual parasympathetic neurons from rat intracardiac ganglia. J Neurosci 1997, 17:280–296.

10. Bibecki S, Zhou Y, Mctosh M, Zigmund R, y Dunlap M: Functional nicotinic acetylcholine receptors that mediate ganglionic transmission in cardiac parasympathetic neurons. J Neurosci 2000, 13:5076–5082.

11. Cuevas J, Berg D: Mammalian nicotinic receptor with alpha 7 subunits that slowly desensitize and rapidly recover from alpha-bungarotoxin blockade. J Neurosci 1998, 18:10335–10344.

12. Purryn HE, Rihalsky OV, Skov MV, Skov V: Functional nicotinic acetylcholine receptors in the neurons of rat intracardiac ganglia. Fiziol Zh 2004, 50:79–84.

13. Penaza-Cruces K, Gutiérrez-Guárdel L, Castañeda Perozo D, Lanford CR, Rodríguez-Bonfante C, Bonfante-Cabarcas R: Trypanosoma cruzi infection induces up-regulation of cardiac muscarinic acetylcholine receptors in vivo and in vitro. Braz J Med Biol Res 2008, 41:796–803.

14. Labrador-Hernández M, Suárez-Gatoral O, Romero-Contreras U, Rumennoff L, Rodríguez-Bonfante C, Bonfante-Cabarcas R: The cholinergic system in cyclophosphamide-induced Chagas dilated cardiomyopathy in Trypanosoma cruzi-infected rats: an electrocardiographic study. Invest Clin 2008, 49:207–224.

15. Alkondon M, Albuquerque DK: Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 1993, 265:1455–1473.

16. Hausstetter A, Haass M, Yi XL, Krüger C, Köbler W: Muscarinic inhibition of cardiac norepinephrine and neuropeptide Y release during ischemia and reperfusion. Am J Physiol 1994, 267:H1552–H1558.

17. Dávila DF, Gottberg CF, Donis JH, Torres A, Fuenmayor AJ, Rossell O: Vagus nerve stimulation: A new approach to reduce heart failure. Cardiol J 2010, 17:636–644.

18. Labrador-Hernández M, Suárez-Graterol O, Romero-Contreras U, Rumenoff L, Rodriguez-Bonfante C, Bonfante-Cabarcas R: Deficiency of M2 muscarinic acetylcholine receptors increases susceptibility of ventricular function to chronic adrenergic stress. Am J Physiol Heart Circ Physiol 2008, 294:H1651–H1660.

19. Castro RR, Porphirio G, Serra SM, Nobrega AC: Cholinergic stimulation with pyridostigmine protects against exercise induced myocardial ischaemia. Heart 2004, 90:1119–1123.

20. Ara L, Damasceno DD, Pires R, Gros R, Gomes ER, Gavioli M, Lima RF, Guimarães D, Lima P, Bueno CR Jr, Vasconcelos A, Roman-Campos D, Menezes CA, Siventa RA, Salem VA, Mady C, Caron MG, Ferreira AJ, Brum PC, Resende RR, Cruz Z, Gomez MV, Prado VF, de Almeida AP, Prado MA, Guatimosim S: Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure. Mol Cell Biol 2010, 30:1746–1756.

21. Koley J, Saha JK, Koley BN: Positive inotropic effect of nicotine on electrically evoked contraction of isolated toad ventricle. Arch Int Pharmacodyn Thér 1984, 267:269–278.

doi:10.1186/2050-6511-14-2
Cite this article as: Bonfante-Cabarcas et al.: Electrophysiological and pharmacological evaluation of the nicotinic cholinergic system in chagasic rats. BMC Pharmacology and Toxicology 2013 14:2.