On algebraically integrable outer billiards

Serge Tabachnikov
Department of Mathematics, Penn State University
University Park, PA 16802, USA
e-mail: tabachni@math.psu.edu

February 1, 2008

Abstract

We prove that if the outer billiard map around a plane oval is algebraically integrable in a certain non-degenerate sense then the oval is an ellipse.

In this note, an outer billiard table is a compact convex domain in the plane bounded by an oval (closed smooth strictly convex curve) C. Pick a point x outside of C. There are two tangent lines from x to C; choose one of them, say, the right one from the viewpoint of x, and reflect x in the tangency point. One obtains a new point, y, and the transformation $T : x \mapsto y$ is the outer (a.k.a. dual) billiard map. We refer to [3, 4, 5] for surveys of outer billiards.

If C is an ellipse then the map T possesses a 1-parameter family of invariant curves, the homothetic ellipses; these invariant curves foliate the exterior of C. Conjecturally, if an outer neighborhood of an oval C is foliated by the invariant curves of the outer billiard map then C is an ellipse – this is an outer version of the famous Birkhoff conjecture concerning the conventional, inner billiards.

In this note we show that ellipses are rigid in a much more restrictive sense of algebraically integrable outer billiards; see [2] for the case of inner billiards.

We make the following assumptions. Let $f(x, y)$ be a (non-homogeneous) real polynomial such that zero is its non-singular value and C is a component
of the zero level curve. Thus \(f \) is the defining polynomial of the curve \(C \), and if a polynomial vanishes on \(C \) then it is a multiple of \(f \). Assume that a neighborhood of \(C \) is foliated by invariant curves of the outer billiard map \(T \), and this foliation is algebraic in the sense that its leaves are components of the level curves of a real polynomial \(F(x, y) \). Since \(C \) itself is an invariant curve, we assume that \(F(x, y) = 0 \) on \(C \), and that \(dF \) is not identically zero on \(C \). Thus \(F(x, y) = g(x, y)f(x, y) \) where \(g(x, y) \) is a polynomial, not identically zero on \(C \). Under these assumptions, our result is as follows.

Theorem 1 \(C \) is an ellipse.

Proof. Consider the tangent vector field \(v = F_y \partial/\partial x - F_x \partial/\partial y \) (the symplectic gradient) along \(C \). This vector field is non-zero (except, possibly, a finite number of points) and tangent to \(C \). The tangent line to \(C \) at point \((x, y)\) is given by \((x + \varepsilon F_y, y - \varepsilon F_x)\), and the condition that \(F \) is \(T \)-invariant means that the function

\[
F(x + \varepsilon F_y, y - \varepsilon F_x)
\]

is even in \(\varepsilon \) for all \((x, y) \in C \). Expand in a series in \(\varepsilon \); the first non-trivial condition is cubic in \(\varepsilon \):

\[
W(F) := F_{xxx}F_y^3 - 3F_{xxy}F_y^2F_x + 3F_{xyy}F_yF_x^2 - F_{yyy}F_x^3 = 0
\]

on \(C \). We claim that this already implies that \(C \) is an ellipse. The idea is that otherwise the complex curve \(f = 0 \) would have an inflection point, in contradiction with identity \((2)\).

Consider the polynomial

\[
H(F) = \det \begin{pmatrix} F_y & -F_x \\ F_{yy}F_x - F_{xy}F_y & F_{xx}F_y - F_{xy}F_x \end{pmatrix}.
\]

Lemma 2 One has:

1). \(v(H(F)) = W(F) \);
2). \(H(F) = H(gf) = g^3H(f) \) on \(C \);
3). If \(C' \) is a non-singular algebraic curve with a defining polynomial \(f(x, y) \) and \((x, y)\) is an inflection point of \(C' \) then \(H(f)(x, y) = 0 \).
Proof of Lemma 2. The first two claims follow from straightforward computations. To prove the third, note that $H(f)$ is the second order term in ε of the Taylor expansion of the function $f(x + \varepsilon f_y, y - \varepsilon f_x)$ (cf. (1)), hence $H(f) = 0$ at an inflection point. □

It follows from Lemma 2 and (2) that $H(F) = \text{const}$ on C. Since C is convex, $H(F) \neq 0$, and we may assume that $H(F) = 1$ on C. It follows that $g^3H(f) - 1$ vanishes on C and hence

$$g^3H(f) - 1 = hf$$

where $h(x, y)$ is some polynomial.

Now consider the situation in \mathbb{CP}^2. We continue to use the notation C for the complex algebraic curve given by the homogenized polynomial $\bar{f}(x : y : z) = f(x/z, y/z)$. Unless C is a conic, this curve has inflection points (not necessarily real). Let d be the degree of C.

Lemma 3 Not all the inflections of C lie on the line at infinity

Proof of Lemma 3. Consider the Hessian curve given by

$$\det \begin{pmatrix} \bar{f}_{xx} & \bar{f}_{xy} & \bar{f}_{xz} \\ \bar{f}_{yx} & \bar{f}_{yy} & \bar{f}_{yz} \\ \bar{f}_{zx} & \bar{f}_{zy} & \bar{f}_{zz} \end{pmatrix} = 0.$$

The intersection points of the curve C with its Hessian curve are the inflection points of C (recall that C is non-singular). The degree of the Hessian curve is $3(d - 2)$, and by the Bezout theorem, the total number of inflections, counted with multiplicities, is $3d(d - 2)$. Furthermore, the order of intersection equals the order of the respective inflection and does not exceed $d - 2$, see, e.g., [6]. The number of intersection points of C with a line equals d, hence the inflection points of C that lie on a fixed line contribute, at most, $d(d - 2)$ to the total of $3d(d - 2)$. The remaining inflection points lie off this line. □

To conclude the proof of Theorem 1 consider a finite inflection point of C. According to Lemma 2 at such a point point, we have $f = H(f) = 0$ which contradicts (3). This is proves that C is a conic. □
Remarks. 1). It would be interesting to remove the non-degeneracy assumptions in Theorem 1.

2). A more general version of Birkhoff’s integrability conjecture is as follows. Let C be a plane oval whose outer neighborhood is foliated by closed curves. For a tangent line ℓ to C, the intersections with the leaves of the foliation define a local involution σ on ℓ. Assume that, for every tangent line, the involution σ is projective. Conjecturally, then C is an ellipse and the foliation consists of ellipses that form a pencil (that is, share four – real or complex – common points). For a pencil of conics, the respective involutions are projective: this is a Desargues theorem, see [1]. It would be interesting to establish an algebraic version of this conjecture.

Acknowledgments. Many thanks to Dan Genin for numerous stimulating conversations, to S. Bolotin for comments on his work [2], to V. Kharlamov for providing a proof of Lemma 3 and to Rich Schwartz for interest and criticism. The author was partially supported by an NSF grant DMS-0555803.

References

[1] M. Berger. Geometry. Springer-Verlag, 1987.

[2] S. Bolotin. Integrable Birkhoff billiards. Moscow Univ. Vestnik 2 (1990), 33–36.

[3] F. Dogru, S. Tabachnikov. Dual billiards. Math. Intelligencer 27 No 4 (2005), 18–25

[4] S. Tabachnikov. Billiards. SMF “Panoramas et Syntheses”, No 1, 1995.

[5] S. Tabachnikov. Geometry and billiards. Amer. Math. Soc., 2005.

[6] R. Walker. Algebraic curves. Springer-Verlag, 1978.