The extended thermodynamic phase structure of Taub–NUT and Taub–Bolt

Clifford V Johnson

Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA

E-mail: johnson1@usc.edu

Received 14 August 2014, revised 24 September 2014
Accepted for publication 3 October 2014
Published 28 October 2014

Abstract

We study aspects of the extended gravitational thermodynamics for the Taub–NUT and Taub–Bolt geometries in four dimensional locally anti-de Sitter spacetime, where the cosmological constant is treated as a dynamical pressure. Attention is paid to the phase structure in the \((p, T)\) plane, which has a line of first order phase transitions extending from the origin. We argue for a dynamical interpretation of the unstable physics in the negative specific heat region. A deformation corresponding to a dyonic Taub–NUT/Bolt system is also explored, and the effect of the deformation on the phase diagram is characterized.

Keywords: black holes, thermodynamics, quantum gravity

PACS numbers: 04.70.Dy, 04.60.-m, 98.80.Es

(Some figures may appear in colour only in the online journal)

1. Motivation

Semi-classical quantum gravity has its most beautiful realization in the context of black hole physics, where it breathes life into the equations describing their thermodynamics \([1–4]\). The standard central quantities are the black hole’s mass \(M\), surface gravity \(\kappa\), and area \(A\), which are related to the thermodynamic energy \(U\), temperature \(T\), and entropy \(S\), respectively. An odd (but perfectly consistent) feature of this framework is the absence of a variable representing pressure and its conjugate, volume, two central players in traditional discussions of thermodynamics when applied to everyday substances. Recent work\(^1\) has shown that the effective cosmological constant, \(\Lambda\), of the spacetime in question can be treated as a pressure via \(p = -\Lambda/8\pi G\) \((G\) is Newton’s constant, and we will choose units such that \(c = 1, \hbar = 1\)

\(^1\) For a selection of references, see \([5–13]\), including the reviews in \([14, 15]\). See also the early work in \([16–18]\).
and $k_B = 1$), and study of the resulting ‘extended thermodynamics’ results in the natural
suggestion [9] that black hole mass M determines not the internal energy U but the enthalpy:
$$M/G = H \equiv U + pV,$$
which includes a contribution from the energy of formation of the system. The thermodynamic volume V can then be deduced in terms of the variables of the
black hole spacetime in question.

One interesting consequence of this is the observation that V is not necessarily a geometrical
volume defined in the spacetime at all, a fact revealed by e.g., studying rotating black
holes [11]. Motivated by the AdS/CFT correspondence [19–22], and by the fact that consistent
traditional thermodynamics can be defined for non-black hole spacetimes (see e.g. [23, 24]), the
suggestion was made in [25] to enlarge the framework of extended thermodynamics to include
any spacetime, again equating the mass to the enthalpy. The result was a larger class of
examples of thermodynamic volumes which are non-geometrical (in the above sense), now
associated to the Taub–NUT and Taub–Bolt spacetimes\(^2\). The extreme example of Taub–NUT
is especially notable for having a thermodynamic volume while there is no geometrical
candidate at all. We summarize some of the results we will need in sections 2 and 3.

In a sense, the extended thermodynamics brings the physics of black holes closer to the
physics of everyday (non-gravitational) substances in a manner complementary to way the
AdS/CFT correspondence does [21, 22]. For example, using the standard treatment of the
thermodynamics, it was discovered [27, 28] that the fixed charge ensemble of Reissner–
Nordstrom black holes in AdS has a rich thermodynamic phase structure reminiscent of the
van der Waals description of a liquid/gas system, including a line of first order phase transitions ending in a second order critical point. Through AdS/CFT this maps holographically to
a strongly coupled fluid in an unusual universality class. This is of course an exciting and
important way of defining non-traditional universality classes of fluids and other substances,
given its potential use for interpreting and modeling new experimental discoveries. This is an
idea that is well over a decade old [29, 30]. On the other hand it is intriguing to learn that
black hole physics can be mapped (at least in part) to more traditional classes of substance,
which is precisely what the extended thermodynamics has made possible. For example, that
same charged black hole system, once pressure and volume are allowed to be dynamical,
turns out to have the same critical properties as the van der Waals system\(^3\) including the
standard mean field exponents. Several other familiar thermodynamic phase diagram phe-
omena (many in traditional universality classes) have now been mapped to black hole
physics in the extended thermodynamics. Work on this continues by several groups\(^4\).

The meaning of the extended thermodynamics and what it implies for systems described
holographically by AdS/CFT remains to be spelled out. It is likely that the two areas can
enrich each other once the right interpretation is found. As suggested in [33], it seems clear
that the natural AdS/CFT context where the extended thermodynamics might play a role
would concern situations where there is flow between field theories, perhaps involving
operators that can dynamically change the effective degrees of freedom. Perhaps the extended
thermodynamics is a good language for discussing dynamics on the space of field theories
itself, and in the AdS/CFT language this boils down to dynamics on the space of holographic
RG flows, a quite natural object in gauged supergravity, and perhaps string theory.

\(^2\) See also [26] for an example mixing the features of [11, 25] by combining nut charge and rotation.

\(^3\) See [31] and also [5, 13].

\(^4\) For recent reviews, see [15, 32].
Intriguingly, natural thermodynamic principles, such as the Second Law of thermodynamics (realized in terms of thermodynamic cycles representing heat engines and refrigerators) would translate into statements about the kinds of processes one could do in the space of field theories.5

One of the other points made in [33] is that the enlarged dynamical setting of the extended thermodynamics helps place sometimes puzzling thermodynamic properties of spacetimes into a light where they can be seen to make physical sense. For example, AdS4 with an S3 slicing (where Euclidean time is an S1 fibred over an S2) has negative entropy. For fixed cosmological constant this is simply strange. On the other hand, AdS4 is a perfectly good spacetime that has just been sliced unusually. Rather than discard it, it would seem prudent to simply find a context in which this slicing makes sense. Putting it into the extended thermodynamics context and using the enthalpy prescription reveals that it has a negative thermodynamic volume [33], which might also seem odd. However, in a context where there are dynamically changing pressures and volumes, and accompanying heat flow, both work done and heat flow into the volume naturally come with both signs, and so for positive T and p can result in negative S and V, with the correct interpretation.

A negative specific heat should have a natural dynamical narrative as well. It is familiar, for example in the case of Schwarzschild black holes in flat space. In extended thermodynamics it becomes the specific heat at constant pressure6, Cp. Negative specific heat suggests a thermal instability, and so we are strictly outside equilibrium thermodynamics now, but can at least start to follow the physics. The system runs to higher temperature (like a flat space black hole radiating away its energy), lowering its entropy. This is a rather runaway process for a black hole in flat space, and so a discussion of it is somewhat incomplete since it runs off to regimes that lie well outside the semi-classical context in which we began. Adding a cosmological constant avoids the problem altogether, rather than solving it: analogues of the Schwarzschild black holes exist in AdS as the solutions representing the ‘small’ branch of black holes, but they never appear in the phase diagram, (either in the standard or extend thermodynamics). At any pressure (and hence Λ) the low temperature phase is AdS (with the traditional S1 × S2 slicing), and then there is the Hawking–Page transition [35] temperature above which the ‘large’ branch black holes are thermodynamically favoured. So the negative Cp of the black holes never needs to be interpreted.

Nevertheless, it seems natural to try to give negative Cp an interpretation in other systems where it might not be avoided, with the help of the extended thermodynamics. We have a context in which to do so: start again with AdS4 with the S3 slicing. It lies on an extended phase diagram that we will explore more in this paper. We are free to adjust the temperature of this slicing by viewing AdS4 as part of the Taub–NUT–AdS class of spacetimes [36], characterized by nut charge n, with temperature $T = \frac{1}{8\pi n}$. The case $n = \ell/2$ (where ℓ is the length scale set by the cosmological constant $\Lambda = -\ell^3/2$) is AdS4. The Taub–NUT–AdS spaces have [37, 38] a characteristic temperature, T^*, above which $C_p < 0$.7 At another temperature T^* above T^*, there is a transition to the (‘large’ branch) Taub–Bolt spacetime, which is stable [36]. Notice that this leaves a window $T^* < T < T^*$ where the geometry with

5 This suggestion of [33] was based on the observation that the cosmological constant (and hence p) is connected to the number of degrees of freedom in the dual field theory by virtue of being related to the rank, N, of the dual gauge theory. Note that although they did not pursue the connection, [9, 34] also mention the link between p and N, and wondered as to its significance. We thank Dolan and Kastor for pointing this out.

6 The counterpart specific heat, CV, vanishes for static black holes [10].

7 They also have lower temperature below which $S < 0$, but we will not concern ourselves much with this region of parameter space.
lower action has $C_p < 0$. This demands to be treated as interpretable sensible physics, and we do so. It is in a sense a ‘safer’ system than the flat space Schwarzschild black hole case since the physics does not run away to regimes outside the semi-classical domain; the Taub–Bolt spacetime takes over, restoring the equilibrium thermodynamics.

It is in this spirit we present and discuss the (p, T) phase diagram of the Taub–NUT/ Taub–Bolt system, in section 4. It is also natural to consider a deformation of our system by electric and magnetic fields that make the NUT/Bolt solutions into dyons. The electric and magnetic charges of the solutions (discussed in section 5) will depend upon one parameter, v, and it will be natural to study both real and imaginary values of this parameter, unpacking the thermodynamic phase structure. We discuss the resulting phase diagrams in section 6.

2. Taub–NUT–AdS and Taub–Bolt–AdS

We work with Einstein–Hilbert action:

$$I = -\frac{1}{16\pi G} \int d^4x \sqrt{-g} (R - 2\Lambda),$$

with negative cosmological constant Λ which sets a length scale ℓ: $\Lambda = -3/\ell^2$. The Taub–NUT [39, 40] and Taub–Bolt [41] spacetimes, have a metric of the following form for negative cosmological constant [42, 43]:

$$ds^2 = F(r)(d\tau + 2n \cos \theta d\phi)^2 + \frac{dr^2}{F(r)} + \left(r^2 - n^2\right)(d\theta^2 + \sin^2 \theta d\phi^2),$$

where

$$F(r) \equiv \frac{\left(r^2 + n^2\right) - 2mr + \ell^2\left(r^4 - 6n^2r^2 - 3n^4\right)}{r^2 - n^2}. $$

Time τ here is Euclidean with period $\beta = 8\pi n$ (in order to ensure the physical absence of Misner strings [44]). The spaces are locally asymptotically AdS_4, generically; the topological S^3 formed by the τ circle fibred over the S^2 of θ and ϕ is squashed for general n. The case $n = \ell/2$ in fact yields AdS_4, with radial slices that are round S^3s [36], as discussed in the previous section.

The circle parameterized by τ is Hopf fibred over the S^2. It degenerates at some radius r_τ when F vanishes, in which case:

$$m = \frac{r_\tau^2 + n^2}{2r_\tau} + \frac{1}{2\ell^2}\left(r_\tau^4 - 6n^2r_\tau - 3n^4\right). $$

To ensure that there is no conical singularity, we have $F'(r = r_\tau) = 1/2n$. The parameters m and n, and the range of r have certain allowed ranges that depend upon whether we are Taub–NUT or Taub–Bolt, and the conditions have been worked out in the literature [36]:

- For the Taub–NUT case $r_\tau = r_n = n$. The spacetime there is locally \mathbb{R}^4, a ‘nut’ [45]. The mass parameter $m = m_n$, and the equation (4) simplifies to:

$$m_n = n - \frac{4n^3}{\ell^2},$$

and we have that $n \lessgtr r \lessgtr + \infty$.

For the Taub–Bolt case $r_s = r_b > n$, and it satisfies a quadratic equation:

$$6n r_b^2 - \ell^2 r_b - 6n^3 + 2n\ell^2 = 0,$$

with an upper (r_{b+}) and lower (r_{b-}) branch solution:

$$r_{b\pm} = \frac{\ell^2}{12n} \left(1 \pm \sqrt{1 - 48 \frac{n^2}{\ell^2} + 144 \frac{n^4}{\ell^4}} \right).$$

with n restricted to be no greater than n_{max} (where the branches join) in order to have real r_b greater than n:

$$n_{\text{max}} = \left(\frac{1}{6} - \frac{\sqrt{3}}{12} \right)^2 \ell.$$

The form of the function $r_b(n)$ is plotted in figure 1.

Figure 1. The available bolt radii, the union of an upper and a lower branch that connect at $n_{\text{max}} \approx 0.149\ell$. Here we chose $\ell = 1$.

- For the Taub–Bolt case $r_s = r_b > n$, and it satisfies a quadratic equation:

$$6n r_b^2 - \ell^2 r_b - 6n^3 + 2n\ell^2 = 0,$$

with an upper (r_{b+}) and lower (r_{b-}) branch solution:

$$r_{b\pm} = \frac{\ell^2}{12n} \left(1 \pm \sqrt{1 - 48 \frac{n^2}{\ell^2} + 144 \frac{n^4}{\ell^4}} \right).$$

with n restricted to be no greater than n_{max} (where the branches join) in order to have real r_b greater than n:

$$n_{\text{max}} = \left(\frac{1}{6} - \frac{\sqrt{3}}{12} \right)^2 \ell.$$

The form of the function $r_b(n)$ is plotted in figure 1.

The spacetime in the neighborhood of $r = r_b$ is locally $\mathbb{R}^2 \times S^2$, a ‘bolt’ [45]. In that case the mass parameter $m = m_b$, where we use the mass formula (4) with $r_s = r_b$, and we have that $n \leq r \leq + \infty$. The upper and lower branches are analogous to the large and small black hole branches possessed by AdS–Schwarzschild black holes [35]. (The computations are structurally different, but with similar results. For black holes the horizon radius r_h is given and then consistency yields a τ period $\beta(r_h)$. Here, the period $8\pi n$ is given, and then consistency produces a function $r_b(n)$.) The two branches’ characteristics become sharply distinct for small n (equivalently large ℓ), where

$$r_b(n)$$

8 With the temperature $T = 1/8\pi n$ for AdS–Taub–NUT/Bolt, one might wonder about the case $n = 0$ which reduces the metric (2) back to AdS–Schwarzschild. The latter has a temperature that depends explicitly on the mass. There is no problem with the $n \to 0$ limit, where for AdS–Taub–NUT/Bolt, $T \to \infty$. One should also follow the mass formulae (4) and (5), which show that m vanishes or (for the large r_b branches) diverges as $n \to 0$. This perfectly matches the $T \to \infty$ behavior of the small and large black hole AdS–Schwarzschild solutions that the $n = 0$ metric yields for those mass values.
showing that the lower branch, constituted of bolts whose radii are ‘small’ compared to the length scale ℓ set by the cosmological constant, connect smoothly to the asymptotically locally flat ($\Lambda = 0$) case.

3. Thermodynamic variables

The temperature of these spacetimes is set by the inverse of r’s period, $T = 1/8\pi m$. The action of each was computed in [37, 38] and may be written in the very simple form given in [38]:

$$I = \frac{4\pi m}{2G\ell^2} \left(\ell^2 m + 3n^2 r_n - r_s^2 \right).$$

(10)

For Taub–NUT we put $m = m_n$ and $r_s = n$ while for the Taub–Bolt we use $m = m_b$ and $r_s = n$. The difference between the actions of the two spacetimes (which was actually computed before the expression above was known, by using a subtraction method [36, 46]), can be written as:

$$I_b - I_n = -\frac{2m}{G\ell^2} \left(\frac{(n - n)^2 (n_s^2 - 6m_b n - n^2)}{n_b - 2n} \right).$$

(11)

The point here is that it is natural, at a given n, to compare the action of Taub–NUT to that of Taub–Bolt since they have the same asymptotics at large r. The previous work on the phase structure derived by examining this action difference was done at fixed cosmological constant. In the extended thermodynamics $\Lambda = -3/\ell^2$ defines a pressure $p = 3/(8\pi G\ell^2)$ and so we have instead a line of phase transition points. We will discuss this in a later section.

The entropy can be derived from the action using $S = (\beta \partial_{\beta} - 1) I$, and after substituting to make the pressure more explicit we have the form [25]:

$$S = \frac{4\pi m}{G} \left[\frac{r_s^2 + n^2}{2r_s} + \frac{4\pi Gp}{3} \left(\frac{r_s^3 - 6n^2 r_n - \frac{3n^4}{r_n}}{3} \right) \right].$$

Note that there is in principle ℓ dependence and hence pressure dependence in the r_s function as well. It is only in the case of Taub–NUT, where $r_s = r_n = n$, that things simplify to give a very simple p dependence, or in the case of small bolts, where $r_n \to 2n$ and we return in the limit to zero cosmological constant. We will discuss these cases below.

Finally, in the extended thermodynamics it was proposed in [25] that the mass for the Taub–NUT and Taub–Bolt spacetimes define the enthalpy of the system, and so we write: $H = m l/G$:

$$H (S, p) = \frac{1}{G} \left(\frac{r_s^2}{2r_s} + \frac{4\pi}{3} \left(\frac{r_s^3 - 6n^2 r_n - \frac{3n^4}{r_n}}{3} \right) \right).$$

(12)

and this results in an interesting expression for the conjugate to pressure, the thermodynamic volume [25]:

$$V = \frac{4\pi}{3} \left(\frac{r_s^3}{r_s^3 - 3n^2 r_n} \right).$$

(13)

Note that this thermodynamic volume is (in general) not to be associated directly with any geometric volume in the spacetime, as discussed in detail in [25]. It can also be negative,
which was also given an interpretation in [25]: the environment did positive work in forming the spacetime, as opposed to having work done on it, as is more familiar with an enthalpy.

The volume for Taub–NUT is ℓ-independent and so is also true in asymptotically locally flat space (the limit of $p = 0 = \Lambda$). Interestingly, the result for the Taub–Bolt spacetime in asymptotically flat space (using at large ℓ the small branch family: $n_\tau \to 2n$ in the limit) is equal in magnitude to that of Taub–NUT, with opposite sign:

$$V_0 |_{p=0} = \frac{8\pi n^3}{3} = -V_n.$$ \hspace{1cm} (14)

The NUT and Bolt spacetimes seem rather complementary in their roles. In this limit, it is worth noting the other (finite) quantities as well [47]:

$$H_0 \bigg|_{p=0} \equiv \frac{m_n}{G} \bigg|_{p=0} = \frac{n}{G} ; \quad I_n \bigg|_{p=0} = \frac{4\pi n^2}{G} ; \quad S_n \bigg|_{p=0} = \frac{4\pi n^2}{G} \quad \text{for NUT.}$$

$$H_0 \bigg|_{p=0} \equiv \frac{m_b}{G} \bigg|_{p=0} = \frac{5}{4} \frac{n}{G} ; \quad I_0 \bigg|_{p=0} = \frac{5\pi n^2}{G} ; \quad S_0 \bigg|_{p=0} = \frac{5\pi n^2}{G} \quad \text{for Bolt.}$$ \hspace{1cm} (15)

4. Phase structure

The phase structure of the Taub–NUT/Taub–Bolt system, as studied in [36, 46], was only the structure at a particular value of the cosmological constant, and hence at fixed pressure. The action difference between each spacetime was studied as a function of temperature. At a certain temperature, the Taub–Bolt spacetime had lower action, and so there was a first order transition where the difference $I_b - I_n$ in equation (11) becomes negative. Since there are two branches of bolts, the curve of $I_b - I_n$ as a function of n (which sets the inverse temperature) is made of two parts that meet (at n_{max}) to form a cusp shape. The transition is for the large bolts (the r_b branch).

In the extended thermodynamics where pressure is a variable, we can explore the phase transitions found in the earlier work further, seeing that they form a line of points in the (p, T) plane. Each value of the pressure $p = 3/(8\pi\ell^2G)$ gives a cusp curve where the cusp starts at n_{max} and proceeds on two branches to lower n. In the limit of infinite ℓ (zero pressure), it is only the part of the cusp that corresponds to the small bolts (the r_n branch) that has finite action, and for them $I_b - I_n = \pi n^2/G$. See figure 2 and equation (15). (Parenthetically, notice that the curves can all be superimposed by a scaling. This actually follows from equation (11) for the action difference. If $n \to an$ and $\ell \to a\ell$, then $(I_b - I_n) \to \alpha^2(I_b - I_n)$. This all results from the fact that an accompanying scaling of the coordinates ($\tau \to a\tau$ and $r \to a\tau$) rescales the overall metric of equation (2): $ds^2 \to \alpha^2 ds^2$.)

The action difference (11) changes sign at the positive zero of the quadratic in the numerator, which is at $n^* = (3 + \sqrt{10}) n$. Putting this into the quadratic equation (6) satisfied by r_b gives an equation for the value of n at which the transition happens, which we denote as n^*. After some algebra,

$$n^* = \frac{1}{6} \left(\sqrt{5} - \sqrt{2} \right) \ell ,$$ \hspace{1cm} (16)

9 We thank an anonymous referee for highlighting this scaling.
and further algebra can be used to turn this into an expression for the transition temperature T^*, as a function of pressure:

$$T^* = \frac{\sqrt{3G}}{\sqrt{2\pi} \left(\frac{3}{5} - \frac{1}{\sqrt{2}} \right) \sqrt{2}}.$$

(17)

So far this is an analogue of a solid–liquid coexistence curve\(^{10}\) in the phase diagram, although further study in this section will show that only one phase can exist near the line, due to a thermal instability. Then section 6 will study a deformation that will allow for regimes where it is genuinely a coexistence line.

The $p = 0$ point on the curve is deceptive. In fact, strictly at zero pressure, there is no bolt phase at all, as the large bolts have gone to infinite size, and their action is infinite. But we see now in this larger context that this is a very special point that neighbors on a richer story. The transition temperature is lower for lower pressure, and so as soon as there is some non-zero cosmological constant (pressure) there will be a nearby transition to a bolt solution.

This is analogous to the Hawking–Page black hole transition, where at finite cosmological constant there is a transition from pure AdS to an AdS–Schwarzschild black hole, but that transition disappears at zero cosmological constant: flat space Schwarzschild black holes (the small branch survivors of the two branches available at finite Λ) have higher action than flat space at any temperature. In fact, the varying pressure coexistence curve can be computed in that case too (see [15] for a recent review), with the same functional dependence, but with coefficient $\sqrt{8/3\pi}$ instead of the one displayed in equation (17) for our case.

The diagram has two additional curves plotted on it as well. The shaded region between them has positive values for both the entropy and the specific heat at constant pressure, $C_p = T \partial S/\partial T |_p$. We'll call this the ‘positive wedge’ in the (p, T) phase diagram, for the

\(^{10}\) This $T \sim p^{1/3}$ form of the curve, and other phase boundaries in the (p, T) plane that we will uncover, follows from the scaling properties discussed at the end of the previous paragraph, since $T \to T/\alpha$ and $p \to p/\alpha^3$.

Figure 2. The action (or Gibbs free energy) difference for pressures $p = 3/(8\pi^2 G)$, for $\ell = 1, 2, 3, 4, 5$, with $G = 1$. The curves move more to the right as the pressure decreases. The blue dotted line is the case of zero pressure, which the solid curves approach in the limit.
purposes of discussion. Along a fixed pressure slice, for low enough temperatures, the entropy is negative, while at high enough temperatures \(C_p < 0 \). Between these two temperatures, both are positive. The temperatures can be read off from equation (12) specialized to the Taub–NUT entropy (by putting \(r_n = n \)) to give:

\[
S_n = \frac{4\pi n^2}{G} \left(1 - 16\pi G n^2 \right),
\]

from which the specific heat can be computed as\(^{11}\)

\[
C_p = \frac{8\pi n^2}{G} \left(32\pi G n^2 - 1 \right), \quad C_V = 0.
\]

From the above expressions we can compute the profile of the curves that border the positive wedge. At a given value of the pressure \(p \), we have for the lower temperature:

\[
T^# = \frac{1}{8\pi n^#} = \left(\frac{G}{4\pi} \right)^{\frac{1}{2}} p_{n^#}^{-\frac{1}{2}},
\]

and for the upper temperature:

\[
T^{o} = \frac{1}{8\pi n^{o}} = \left(\frac{G}{2\pi} \right)^{\frac{1}{2}} p_{n^{o}}^{-\frac{1}{2}},
\]

and so we have \(T^# \leq T \leq T^{o} \) for the slice of the positive wedge located at pressure \(p \). After the transition temperature \(T^* \), the entropy of the favoured bolt solutions is both positive and has \(C_p > 0 \). Figure 4 shows the entropy as a function of \(T \) for a fixed pressure slice, and the three temperatures \(T^*, T^{o}, T^# \).

The negative entropy of Taub–NUT for the region \(T < T^# \) and the negative specific heat for \(T \) in the region between \(T^# \) and the transition at \(T^* \) are identified as puzzles in [37, 38]. There is a very natural narrative in the context here, i.e., extended thermodynamics. For a start, having a negative entropy for the spacetime can quite naturally arise as a result of some net heat outflow during the same formation process that accompanies the interpretation of the mass as enthalpy of formation, as discussed in [25]. We won’t have any more to say about that here, except to note that we can, if we choose to, avoid the negative entropy region altogether by appropriate paths in the \((p, T)\) plane. For example, one can start at \(p = 0 \) and turn on finite temperature. The entropy is positive and given in equation (15). The same set of equations shows that the action of Taub–NUT is lower than Taub–Bolt and so is thermodynamically favoured. Then one can directly enter the positive wedge by turning on small enough pressure \(p \). We can move around inside the positive wedge and do standard equilibrium thermodynamics. Notice that the special case when Taub–NUT is actually pure AdS\(_4\) with an \(S^3 \) slicing, \(n = l/2 \), i.e. \(T = \sqrt{(G/8\pi)} p^{1/2} \), lies outside this wedge.

Now we wish to consider how to traverse the region in figure 3 between the positive wedge in the Taub–NUT region and the transition at \(T^* \) to Taub–Bolt. Are there any obstructions to doing so? The fact that \(C_p \) goes negative at the edge of the wedge signals what presumably happens. The system develops an instability to fluctuations above the edge temperature \(T^o = \sqrt{(G/2\pi)} p^{1/2} \), and it is dynamically predisposed to drive itself to higher temperature, where the specific heat becomes even more negative, improving the

\(^{11}\) The latter result follows since the Taub–NUT thermodynamic volume \(|V_n| = 8\pi n^3/3 \) depends strictly on the temperature only through \(T = 1/8\pi n \) and hence fixing the volume fixes \(S \). This is analogous to the vanishing of \(C_V \) for static black holes, although their origins are quite different. There, the entropy and volume are not independent quantities, both depending upon a single parameter, the radius \(r_h \) of the black hole.
susceptibility to instability. This happens until the system arrives at T^* and transitions to Taub–Bolt, where it is again stable.

We can go further and track the changes in the system through this process in the extended thermodynamics. It is easy to do at fixed pressure, i.e., moving along a state curve of the form given in figure 4. This isobaric process has a volume change, and so (in the spirit of [33]) we should take this seriously as a physical process during which work is done either on or by the system, with an accompanying heat flow. This changes the internal energy of the system, which was computed in [25] to be:

$$U_n = \frac{n}{G} \left(1 - 8\pi G p n^2 \right). \tag{22}$$

All of this is of course accounted for using the first law of thermodynamics, naturally written in terms of the enthalpy $H_n = U_n + p V_n$ as $\Delta H_n = T \Delta S_n + V_n \Delta p$. Our isobar gives us:

$$\Delta H_n = \int_{n^*}^{n^*+} \frac{1}{8\pi n^3} \frac{dS_n}{dn} = \frac{1}{G} \left(n^* - n^* \right) - \frac{32\pi p}{3} \left[(n^*)^3 - (n^*)^3 \right]$$

$$= \frac{1}{G} \left[(n^*)^3 - (n^*)^3 \right] - \frac{8\pi}{3} \left[(n^*)^3 - (n^*)^3 \right]$$

$$= \Delta U_n + p \Delta V_n. \tag{23}$$

In summary then, it is natural to think of the pressure as a parameter that allows us to explore a larger phase space of parameters that deform the Taub–NUT/Bolt system away from flat space (the origin). A critical line develops separating Taub–NUT and Taub–Bolt phases, and two regions develop in the Taub–NUT area, one has $S < 0$ and the other has $C_p < 0$, separated by the ‘positive wedge’. We can avoid the $S < 0$ region by appropriate choice of

![Figure 3](image-url). The rightmost solid curve represents the line of transition between the Taub–NUT and Taub–Bolt phases. The shaded region between the two curves on the left, referred to as the ‘positive wedge’ in the text, is where entropy $S > 0$ and specific heat $C_p > 0$. For points in the region between the positive wedge and the transition, the system is dynamically driven by fluctuations toward the transition line.
path in the \((p, T)\) plane. Fluctuations dynamically drive points in the \(C_p < 0\) region toward the transition line to become Taub–Bolt solutions. Presumably this means that one cannot quasi-statically follow a path from the Taub–Bolt region back toward Taub–NUT solutions\(^{12}\).

Furthermore this means that the transition line is strictly not a phase coexistence line like those familiar in solid/liquid transitions. The \(C_p < 0\) region means that the nuts and bolts, despite having equal action (Gibbs free energy) there, do not coexist indefinitely. Taub–Bolt dominates after a long enough time.

However, the relative locations of the positive wedge region and the transition line are adjustable using a natural deformation parameter. We explore that in the next two sections, finding that there are some values of the parameter where the transition line is more like a standard coexistence line.

5. Dyonic Taub–NUT–AdS and Taub–Bolt–AdS

The Taub–NUT/Bolt spacetime has many interesting properties. One of them is that while it possesses ordinary mass, it also has nut charge, which can in fact be interpreted as a magnetic counterpart to the ordinary ‘electric’ mass. In this sense it is a dyon, for the mass sector, and this helps contribute to Taub–NUT’s role as a self–dual gravitational instanton\(^{24}\), where the Euclidean section sets the mass \(m\) equal to the nut charge \(n\).

One might wonder about the fate of Taub–NUT if one embeds it non-trivially into electromagnetism, extending the Einstein–Hilbert action to incorporate Maxwell:

\[
I = -\frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(R - 2\Lambda - F^2 \right),
\]

Figure 4. The entropy curves as a function of temperature, at fixed pressure. Here \(p = 3\). As \(T\) increases, there is a transition from Taub–NUT to Taub–Bolt at \(T^*\). Dotted lines show solutions with higher action. \(T^\#\) and \(T^\ast\) are discussed in the text.

\(^{12}\) So if constructing holographic heat engines using these spacetimes as a ‘working substance’, as done for black holes in [33], the cycles cannot include paths that traverse the \(C_p < 0\) region.
with F (not to be confused with the metric function in equation (2)) the standard gauge field two-form with components $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$. It was shown in [48] that there is a charged geometry, and in fact both an electric and magnetic field are turned on. We have a dyon in the electromagnetic sense as well13. A more general solution can be written down that has non-zero cosmological constant, and it has the same form for the metric given in equation (2), but with a more general form for the metric function $F(r)$ given by [51–53]:

$$F(r) \equiv \frac{\left(r^2 + n^2 + 4n^2 v^2 - q^2\right) - 2mr + \ell^2\left(r^4 - 6n^2r^2 - 3n^4\right)}{r^2 - n^2}, \quad (25)$$

and the gauge sector is:

$$A \equiv A_\mu dx^\mu = h(r)\left(d\tau - 2n \cos \theta d\phi\right), \quad (26)$$

where:

$$h(r) = \frac{qr}{r^2 - n^2} + \frac{r^2 + n^2}{r^2 - n^2} = \left(\frac{q}{r^2 - n^2}\right). \quad (27)$$

Conditions of smoothness of the Euclidean section will result in the parameter q being related to the parameter v (analogous to m being related to n in the familiar neutral case), giving us a deformation from the uncharged system. Setting them to zero recovers the solutions we discussed above.

The analogous conditions for the smoothness of the Euclidean section were discussed in [54, 55], and some thermodynamic quantities discussed there and in [56], including (for the latter case) a computation of the action for the charged Taub–NUT and Bolt cases. We will not review all this here, since the ideas are very similar to those we presented in an earlier section, with the addition of the condition that the gauge potential A must be regular at the position of the nut or bolt at $r = r_0$ where $F(r_0) = 0$. We simply list below some of the results that we need, in order to discuss the phase structure (which has not been explored in the literature). The mass can be written as:

$$m = \frac{r_0^2 + n^2 + 4n^2 v^2 - q^2}{2r_0} + \frac{1}{2\ell^2}\left(\frac{r_0^2}{r_0^2 - 6n^2r_0 + 3n^4}\right) \frac{r_0}{r_0^2 - n^2}, \quad (28)$$

with

$$q = -\frac{vr_0^2 + n^2}{r_0}. \quad (29)$$

The electric charge and potential at infinity given by

$$Q = q, \quad \Phi = -\frac{q\ell}{r_0^2 + n^2} = v. \quad (30)$$

The solution is a dyonic nut if $r_0 = r_n = n$, and a dyonic bolt if $r_0 = n_0$ satisfies the fourth order equation:

13 In fact, it is natural to study dilatonic versions as well, for example for non-trivial embedding into string theory, as first done using exact heterotic string conformal field theory techniques in [49], and using T- and S-duality transformations in [50]. The result is that there an axion charge turns on as well, and so the system becomes triply dyonic, with the dilaton and axion being the electric/magnetic pairs. We will not study the addition of such fields in this paper.
This is a more complicated condition than our quadratic in equation (6). One might wonder if there is potential for certain kinds of new structure here, in analogy with what happens for charged black holes. In that case, the more complicated equation for the horizon radius in the presence of charge produced a new physical branch of solutions at small horizon radius and high temperature that gave a new phase structure in the fixed charge ensemble [27, 28]. The line of critical points in the phase diagram ended in a new second order critical point. One might wonder if that can happen here. Indeed, there are two branches of new solutions that appear, but they do not add (in the Euclidean section) any new physical structures: taking the small $r_b \ell$ limit of equation (31) gives the cubic $6r_b^3 - \ell^2 r_b^3 + 2n \left(\ell^2 - 3n^2 + \ell^2 v^2 \right) r_b^2 - 2\ell^2 v^3 n^3 = 0$.

Figure 5. The available dyonic bolt radii, the union of an upper and a lower branch that connect at $n^{(0)}_{\text{max}} \approx 0.103\ell$. Here we chose $\ell = 1$ and $v = 1$. The dotted line is the neutral case for comparison. See text for discussion.

$$6n r_b^3 - \ell^2 r_b^3 + 2n \left(\ell^2 - 3n^2 + \ell^2 v^2 \right) r_b^2 - 2\ell^2 v^3 n^3 = 0.$$

This is a more complicated condition than our quadratic in equation (6). One might wonder if there is potential for certain kinds of new structure here, in analogy with what happens for charged black holes. In that case, the more complicated equation for the horizon radius in the presence of charge produced a new physical branch of solutions at small horizon radius and high temperature that gave a new phase structure in the fixed charge ensemble [27, 28]. The line of critical points in the phase diagram ended in a new second order critical point. One might wonder if that can happen here. Indeed, there are two branches of new solutions that appear, but they do not add (in the Euclidean section) any new physical structures: taking the small $r_b \ell$ limit of equation (31) gives the cubic $6r_b^3 - \ell^2 r_b^3 + 2n \left(\ell^2 - 3n^2 + \ell^2 v^2 \right) r_b^2 - 2\ell^2 v^3 n^3 = 0$. At $v = 0$ the two new branches are the repeated (unphysical) root $r_b = 0$, joining our familiar large ℓ solution $r_b = 2n$. Turning on v then shows that the two branches grow out as a pair of roots from the origin of the (r_b, n) plane, one positive, the other negative. It can be seen that both have $r_b < n$, and so are not physical.

Instead we have a system of physical solutions that is similar in structure to what we saw before (see figure 5 for an example; see figure 1). There are two branches of bolts, a ‘small’ and a ‘large’, and they join at a deformed value of a maximum n we can call $n^{(0)}_{\text{max}}$, which is less than n_{max}. Correspondingly, we might expect that the transition from the dyonic Taub–NUT to the dyonic Taub–Bolt is at lower n, or higher temperature, and we will confirm this below.

Since there are no new branches of solution for r_b in the presence of charge, it seems that it qualitatively does not matter too much whether we use the fixed charge or fixed potential ensemble to study the phase structure although of course there are differences in the precise
values of the parameters at transition. We can sketch out what happens, picking the fixed potential ensemble14.

The action of the system was computed in \cite{56} using an extension of the techniques outlined in \cite{38, 57}, with the result (in the fixed potential ensemble):

\begin{equation}
I = -\frac{2\pi}{G} \left[\frac{r_+^4 - \ell^2 r_+^2 + n^2 \left(3n^2 - \ell^2 \right) r_+^2 - \left(r_+^4 + 4n^2 r_+^2 - n^4 \right) \ell^2 v^2}{\left(3r_+^2 - 3n^2 + \ell^2 \right) r_+^2 + \left(r_+^4 - n^2 \right) \ell^2 v^2} \right].
\end{equation}

The entropy was computed as:

\begin{align*}
S &= 2\pi \left[\frac{3r_+^4 + \left(\ell^2 - 12n^2 \right) r_+^2 + n^2 \left(\ell^2 - 3n^2 \right) r_+^2}{\left(3r_+^2 - 3n^2 + \ell^2 \right) r_+^2 + \left(r_+^4 - n^2 \right) \ell^2 v^2} \right] \\
&\quad + \frac{2\pi}{G} \left[\frac{r_+^4 + 4n^2 r_+^2 - n^4 \ell^2 v^2}{\left(3r_+^2 - 3n^2 + \ell^2 \right) r_+^2 + \left(r_+^4 - n^2 \right) \ell^2 v^2} \right].
\end{align*}

Let us pause to see how this all looks in the case of the dyonic nut, where the expressions are much simpler. We can put \(r_+ = n \) to get:

\begin{align*}
m_n &= n - \frac{4n^3}{\ell^2}, \quad Q = -\frac{2nv}{G}, \quad \Phi = \nu, \\
\end{align*}

and

\begin{align*}
I_n &= \frac{4\pi n^2}{G} \left(1 - \frac{2n^2}{\ell^2} + 2\nu^2 \right), \quad S_n = \frac{4\pi n^2}{G} \left(1 - \frac{6n^2}{\ell^2} + 2\nu^2 \right).
\end{align*}

Interestingly, the mass is the same as in the neutral case. This means that the enthalpy is unchanged in the extended thermodynamics, which leads to another new result: a quick computation shows that the thermodynamic volume \(V_n \) for the dyonic Taub–NUT stays the same as it was for the neutral case. Put differently, the shift in the entropy is entirely accounted for by the new \(-Q\Phi/2\) term in the Smarr \cite{58} relation:

\begin{equation}
\frac{H}{2} = TS + pV - \frac{Q\Phi}{2} = 0.
\end{equation}

Just as in \cite{25} for the neutral case, we can use the same Smarr relation to deduce the thermodynamic volume for the dyonic bolt case. The resulting expression does depend (explicitly and implicitly through \(r_+ \)’s dependence on \(\nu \)) on the deformation parameter \(\nu \) and it is long and not useful for us here, so we will not write it.

6. Deformed phase structure

From our Taub–NUT–dyon’s entropy, we see that the specific heat at constant pressure is now:

14 This is the easier ensemble to study in comparing the NUT and Bolt cases since fixing \(\nu \) is easier than fixing \(q \) when comparing the two solutions, because (looking at equation (29)) \(q \) depends upon \(r_0 \), which is a complicated function of \(\nu \).
\[C_p^{(v)} = -\frac{8\pi n^2}{G} \left(1 - \frac{12n^2}{\ell^2} + 2v^2 \right). \]

(37)

So the deformation parameter \(v \) has shifted the location of the place in the \((p, T)\) plane where the entropy is negative, and where the specific heat goes negative. Our previously obtained temperatures for the borders of the positive wedge get rescaled by a factor \((1 + 2v^2)^{-1/2}\). The temperature where the entropy starts going positive is lower, as well the temperature where the specific heat \(C_p\) becomes negative. The dyonic charge evidently hastens the destabilization of Taub–NUT. In the limit of infinite \(v \), entropy becomes positive for all temperatures, but then \(C_p < 0 \) everywhere.

The phase structure for the dyonic system can now be explored, although analytic expressions do not seem to be possible for all regions. A numerical exploration reveals some pleasant results, however. For example, figure 6 shows a plot of the action difference between dyonic Taub–Bolt and dyonic Taub–NUT as a solid curve, against the neutral case for comparison (a dashed curve). They have the same value of the pressure \((\ell = 1\) and we’ve chosen units such that \(G = 1\)) and \(v = 1 \) for the dyon. As anticipated, the transition temperature has been raised.

A series of such examples can be generated numerically for varying pressure, extracting the transition temperature for each case. This allows for the generation of a new phase diagram for the dyonic deformation as a companion to the neutral one we generated in figure 3. The result is shown in figure 7(a). There seems to be no simple analytic expression for the shape of the first order transition line for non-zero \(v \), although it fits the \(T^3 \) dependence rather well.

The deformation widens the size of the unstable \(C_p < 0 \) region. The fate of the phase diagram in the large \(v \) limit is therefore interesting, since in that case the \(C_p < 0 \) region
increasingly envelops the phase diagram, at the expense of the negative entropy region, which
shrinks away, along with the positive wedge, against the p-axis.

Although its full meaning is unclear, it is worth noting that the case where we continue ν
to being purely imaginary is also interesting15. From equations (35) and (37), we see that
the positive wedge is now pushed more toward the right, toward the transition line. A numerical
exploration shows that the temperature at which there are available bolt solutions is decreased
(i.e. $n_{\text{max}}^{(\nu)}$ is now greater than n_{max}). Correspondingly, the first order phase transition line tilts
more toward the left, and so approaches the positive wedge for increasing imaginary ν. The $C_p < 0$ region for Taub–NUT gets squeezed. See figure 7(b).

Ultimately there are yet new regimes that appear (for increasingly large imaginary ν). One occurs
when the $C_p < 0$ region no longer has lowest action. In other words, the transition
line to Taub–Bolt is inside the positive wedge: $T^* < T^\nu$. In this case the transition line is
genuinely a coexistence line analogous to that found in solid/liquid systems. Another regime
is when (at $\nu^2 = -9/32$) the $C_p < 0$ Taub–NUT region vanishes entirely. The whole positive
 wedge disappears, leaving a phase diagram where there is only Taub–NUT with negative entropy
before the transition line to Taub–Bolt. Interestingly, yet another new phase can
appear at even higher imaginary ν, as illustrated by the samples in figures 8(a) and (b).

The large Taub–Bolt solutions themselves begin to develop regions of negative entropy
(as is evident from the form of equation (33)). The sample plots of the action difference show
that for large enough $|\nu|$ the large Taub–Bolt solutions become thermodynamically favoured
as soon as they become available, as their action relative to the Taub–NUT solutions are
negative for all $n < n_{\text{max}}^{(\nu)}$. So these negative entropy Taub–Bolts appear on the phase diagram

15 Here, we are perhaps in good company: the Lee–Yang edge singularity, an important model in the study of phase
transitions, arises from continuing the Ising model in an external magnetic field to regimes where the magnetic field is
imaginary [59, 60]. Imaginary ν here corresponds to imaginary magnetic and electric fields for our dyons.
for a window of temperatures, until at higher temperatures the positive entropy Taub–Bolt
solutions take over again. Perhaps there is even more interesting and instructive physics to
explore further in this regime.

Acknowledgements

CVJ would like to thank the US Department of Energy for support under grant DE-
SC0011687, and Amelia for her support and patience.

References

[1] Bekenstein J D 1973 Black holes and entropy Phys. Rev. D 7 2333–46
[2] Bekenstein J D 1974 Generalized second law of thermodynamics in black hole physics Phys. Rev.
 D 9 3292–300
[3] Hawking S 1975 Particle creation by black holes Commun. Math. Phys. 43 199–220
[4] Hawking S 1976 Black holes and thermodynamics Phys. Rev. D 13 191–7
[5] Caldarelli M M, Cognola G and Klemm D 2000 Thermodynamics of Kerr–Newman–AdS black
 holes and conformal field theories Class. Quantum Grav. 17 399–420
[6] Wang S, Wu S-Q, Xie F and Dan L 2006 The First laws of thermodynamics of the (2,+1)–
 dimensional BTZ black holes and Kerr-de Sitter spacetimes Chin. Phys. Lett. 23 1096–8
[7] Sekiwa Y 2006 Thermodynamics of de Sitter black holes: thermal cosmological constant Phys.
 Rev. D 73 084009
[8] Larranaga Rubio E A Stringy generalization of the First Law of thermodynamics for rotating BTZ
 black hole with a cosmological constant as state parameter arXiv:0711.0012 [gr-qc]
[9] Kastor D, Ray S and Traschen J 2009 Enthalpy and the mechanics of AdS black holes Class.
 Quantum Grav. 26 195011
Dolan B P 2011 The cosmological constant and the black hole equation of state Class. Quantum Grav. 28 125020

Cvetic M, Gibbons G, Kubiznak D and Pope C 2011 Black hole enthalpy and an entropy inequality for the thermodynamic volume Phys. Rev. D 84 024037

Dolan B P 2011 Compressibility of rotating black holes Phys. Rev. D 84 127503

Dolan B P 2011 Pressure and volume in the first law of black hole thermodynamics Class. Quantum Grav. 28 235017

Dolan B P Where is the PdV term in the first law of black hole thermodynamics? arXiv:1209.1272 [gr-qc]

Altamirano N, Kubiznak D, Mann R B and Sherkatghanad Z 2014 Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume Galaxies 2 89–159

Henneaux M and Teitelboim C 1984 The cosmological constant as a canonical variable Phys. Lett. B 143 415–20

Teitelboim C 1985 The cosmological constant as a thermodynamic black hole parameter Phys. Lett. B 158 293–7

Henneaux M and Teitelboim C 1989 The cosmological constant and general covariance Phys. Lett. B 222 195–9

Maldacena J M 1998 The large n limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231–52

Gubser S S, Klebanov I R and Polyakov A M 1998 Gauge theory correlators from non-critical string theory Phys. Lett. B 428 105–14

Witten E 1998 Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253–91

Witten E 1998 Anti-de Sitter space, thermal phase transition, and confinement in gauge theories Adv. Theor. Math. Phys. 2 505–32

Hawking S and Hunter C 1999 Gravitational entropy and global structure Phys. Rev. D 59 044025

Hawking S 1977 Gravitational instantons Phys. Lett. A 60 81

Johnson C V Quantum gravity and the nuts and bolts of thermodynamic volumes arXiv:1405.5941 [hep-th]

MacDonald S Thermodynamic volume of Kerr-bolt-AdS spacetime arXiv:1406.1257 [hep-th]

Chamblin A, Emparan R, Johnson C V and Myers R C 1999 Charged AdS black holes and catastrophic holography Phys. Rev. D 60 064018

Chamblin A, Emparan R, Johnson C V and Myers R C 1999 Holography, thermodynamics and fluctuations of charged ads black holes Phys. Rev. D 60 104026

Johnson C V 2003 D-Branes (Cambridge: Cambridge University Press)

Johnson C V and Steinberg P 2010 What black holes teach about strongly coupled particles Phys. Today 63N5 29–35

Kubiznak D and Mann R B 2012 P-V criticality of charged AdS black holes J. High Energy Phys. HEP07(2012)033

Kubiznak D and Mann R B Black hole chemistry arXiv:1404.2126 [gr-qc]

Johnson C V 2014 Holographic heat engines Class. Quantum Grav. 31 205002

Dolan B P 2014 The compressibility of rotating black holes in D-dimensions Class. Quantum Grav. 31 035022

Hawking S W and Page D N 1983 Thermodynamics of black holes in anti-de Sitter space Commun. Math. Phys. 87 577

Chamblin A, Emparan R, Johnson C V and Myers R C 1999 Large N phases, gravitational instantons and the nuts and bolts of AdS holography Phys. Rev. D 59 064010

Mann R B 1999 Misner string entropy Phys. Rev. D 60 104047

Emparan R, Johnson C V and Myers R C 1999 Surface terms as counterterms in the AdS/CFT correspondence Phys. Rev. D 60 104001

Taub A 1951 Empty space-times admitting a three parameter group of motions Ann. Math. 53 472–90

Newman E, Tamubrino L and Unti T 1963 Empty space generalization of the Schwarzschild metric J. Math. Phys. 4 915

Page D N 1978 Taub-NUT instanton with an horizon Phys. Lett. B 78 249

Page D N and Pope C 1987 Inhomogeneous Einstein metrics on complex line bundles Class. Quantum Grav. 4 213–25

Page D N and Pope C 1986 Einstein metrics on quaternionic line bundles Class. Quantum Grav. 3 249–59
[44] Misner C W 1963 The flatter regions of Newman, Unti and Tamburino’s generalized Schwarzschild space J. Math. Phys. 4 924–38
[45] Gibbons G W and Hawking S W 1979 Classification of gravitational instanton symmetries Commun. Math. Phys. 66 291–310
[46] Hawking S, Hunter C and Page D N 1999 Nut charge, anti-de Sitter space and entropy Phys. Rev. D 59 044033
[47] Hunter C J 1999 The action of instantons with nut charge Phys. Rev. D 59 024009
[48] Brill D R 1964 Electromagnetic fields in a homogeneous, nonisotropic universe Phys. Rev. 133 845–8
[49] Johnson C V 1994 Exact models of extremal dyonic 4D black hole solutions of heterotic string theory Phys. Rev. D 50 4032–50
[50] Johnson C V and Myers R C 1994 Taub–NUT dyons in heterotic string theory Phys. Rev. D 50 6512–8
[51] Plebanski J F 1975 A class of solutions of Einstein–Maxwell equations Ann. Phys., NY 90 196–255
[52] Plebanski J and Demianski M 1976 Rotating, charged, and uniformly accelerating mass in general relativity Ann. Phys., NY 98 98–127
[53] Alonso-Alberca N, Meessen P and Ortín T 2000 Supersymmetry of topological Kerr–Newman–Taub–NUT–AdS space-times Class. Quantum Grav. 17 2783–98
[54] Mann R B and Stelea C 2006 New Taub–NUT–Reissner–Nordstrom spaces in higher dimensions Phys. Lett. B 632 537–42
[55] Awad A M 2006 Higher dimensional Taub–NUTS and Taub–Bolts in Einstein–Maxwell gravity Class. Quantum Grav. 23 2849–60
[56] Dehghani M and Khodam-Mohammadi A 2006 Thermodynamics of Taub–NUT black holes in Einstein–Maxwell gravity Phys. Rev. D 73 124039
[57] Balasubramanian V and Kraus P 1999 A stress tensor for anti-de Sitter gravity Commun. Math. Phys. 208 413–28
[58] Smarr L 1973 Mass formula for Kerr black holes Phys. Rev. Lett. 30 71–73
[59] Yang C-N and Lee T 1952 Statistical theory of equations of state and phase transitions: 1. Theory of condensation Phys. Rev. 87 404–9
[60] Lee T and Yang C-N 1952 Statistical theory of equations of state and phase transitions: 2. Lattice gas and Ising model Phys. Rev. 87 410–9