Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Adverse effects of hydroxychloroquine and azithromycin on contractility and arrhythmogenicity revealed by human engineered cardiac tissues

Andy On-Tik Wong, Bimal Gurung, Wing Sum Wong, Suet Yee Mak, Wan Wai Tse, Chloe M. Li, Deborah K. Lieu, Kevin D. Costa, Ronald A. Li, Roger J. Hajjar

A B S T R A C T

The coronavirus disease 2019 (COVID-19) outbreak induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide. As of November 2020, COVID-19 has infected more than fifty million people around the world and claimed the lives of over a million patients. In the setting of this pandemic, unproven drugs have been publicized to be effective in the treatment or prevention of COVID-19. Hydroxychloroquine (HCQ) or chloroquine, a medication for treating malaria, has been used alone or in combination with the anti-biotic azithromycin (AZM) to treat COVID-19 patients who have developed pneumonia. In the setting of this pandemic, unproven drugs have been publicized to be effective in the treatment or prevention of COVID-19. Hydroxychloroquine (HCQ) or chloroquine, a medication for treating malaria, has been used alone or in combination with the anti-biotic azithromycin (AZM) to treat COVID-19 patients who have developed pneumonia [1,2]. It was reported that the prescription of HCQ or chloroquine in the United States has been increased by 80-fold from March 2019 to March 2020 [3]. However, recent reports have shown no clinical benefits to support the usage of HCQ with or without AZM in the setting of COVID-19 infection [4,5]. In addition, it was reported that high dose of chloroquine would give rise to potential toxicities as shown by a recent randomized trial with 81 hospitalized patients with severe COVID-19, especially when taken together with AZM or oseltamivir [6]. In another small cohort study, 90 patients with COVID-19 pneumonia who received HCQ for the treatment of pneumonia associated with COVID-19 were found to be at high risk of QTc prolongation, and concurrent treatment with AZM was associated with even greater changes in QTc [7]. Despite these clinical observations, the

1. Introduction

The coronavirus disease 2019 (COVID-19) outbreak induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide. As of November 2020, COVID-19 has infected more than fifty million people around the world and claimed the lives of over a million patients. In the setting of this pandemic, unproven drugs have been publicized to be effective in the treatment or prevention of COVID-19. Hydroxychloroquine (HCQ) or chloroquine, a medication for treating malaria, has been used alone or in combination with the anti-biotic azithromycin (AZM) to treat COVID-19 patients who have developed pneumonia [1,2]. It was reported that the prescription of HCQ or chloroquine in the United States has been increased by 80-fold from March 2019 to March 2020 [3]. However, recent reports have shown no clinical benefits to support the usage of HCQ with or without AZM in the setting of COVID-19 infection [4,5]. In addition, it was reported that high dose of chloroquine would give rise to potential toxicities as shown by a recent randomized trial with 81 hospitalized patients with severe COVID-19, especially when taken together with AZM or oseltamivir [6]. In another small cohort study, 90 patients with COVID-19 pneumonia who received HCQ for the treatment of pneumonia associated with COVID-19 were found to be at high risk of QTc prolongation, and concurrent treatment with AZM was associated with even greater changes in QTc [7]. Despite these clinical observations, the
cardiac effects in humans as well as the mechanistic basis for the reported arrhythmias remain very poorly defined.

Human cardiomyocytes (CMs) do not proliferate in culture and are difficult to obtain for practical reasons. With the advent of human pluripotent stem cells (hPSC), the derivation of CMs has been extensively used for insights into the development, physiology as well as pathophysiology of the human heart [8–13]. Since the heart is a complex 3D organ, single-cell experiments often do not fully recapitulate cardiac physiological properties such as contractile force and conduction which are inherently multi-cellular in nature. As such, various 3D bioengineered tissue constructs have been developed using hPSC-CMs for modeling human-specific diseases and cardiotoxicity screening. In this study, hPSCs (HES2: human embryonic stem cell; ESI, NIH code ES02. And L-EdV: human induced pluripotent stem cell; provided by the University of Hong Kong) -were specified into human ventricular cardiomyocytes (hvCMs) as we have previously reported [14], followed by assembly into engineered tissues: human ventricular cardiac tissue strips (hvCTS) and anisotropic sheet (hvCAS) [9,15,16], which have been specifically designed and engineered for measuring contractility and electrophysiology, respectively, and used to investigate the cardiac effects of HCQ and AZM individually and in combination.

2. Hydroxychloroquine with or without azithromycin reduced hvCTS contractility

By casting 100 µl collagen and a cell mixture of 1.3 million hPSC-hvCMs and 0.13 million human fibroblasts into a custom-made PDMS bioreactor, contracting engineered hvCTS could be formed between the two force-sensing cantilever posts in a rectangular well. After 7–8 days in culture, forces generated by the hvCTS were measured at 37 °C using the post-tracking force measurement system (CTScreen by Novoheart, Irvine, CA) to record the displacements of the cantilever posts. During experiments, hvCTS was field-stimulated at 1.5 Hz. As shown in Fig. 1A and C, increasing concentrations of HCQ did not have a significant effect on developed force in hvCTS. By contrast, AZM reduced developed force in a concentration-dependent fashion, with 100 μM leading to a significant impairment by 47.8 ± 7.5% from baseline. The negative inotropic effect of AZM (100 μM) was exacerbated in the presence of HCQ (10 μM), further reducing developed force by 65.2 ± 2.9% (Fig. 1C). Qualitatively similar results were obtained with hvCTS derived from another hPSC line (L-EdV; Fig. 1F-G).

Fig. 1. (A) Representative tracings of hvCTS of vehicle (Control), hydroxychloroquine (HCQ), azithromycin (AZM) and the combined (HCQ + AZM) groups at 1.5 Hz pacing, normalized to baseline. (B) Bar graph showing force reduction of hvCTS by 100 μM AZM without (n = 5) and with (n = 5) 10 μM of HCQ. Concentration-response plot of developed force, maximum +dF/dt and maximum -dF/dt of (C-E) HES2-hvCTS (F-H) L-EdV-hvCTS for 1–10 μM HCQ (n = 3–7), 1–100 μM AZM (n = 3–5) and 1–100 μM AZM with 10 μM HCQ (n = 3–5) at 1.5 Hz pacing. B: Paired t-test between treated group and baseline; unpaired t-test between treated groups. C-H:: Two-way ANOVA test, followed by Holm-Sidak’s multiple comparison to control group. All data are expressed as mean ± SEM. *p < 0.05, **p < 0.01 and ***p < 0.001.
3. Hydroxychloroquine with or without azithromycin increased QTc interval and pro-arrhythmogenicity in hvCAS

We next examined the consequences of separate and combined effects of 10 μM HCQ and 30–100 μM AZM, on cardiac electrophysiology using our hvCAS assay, previously shown to successfully reveal pro-arrhythmic effects of failed Cardiac Arrhythmia Suppression Trial (CAST) drugs [11]. To fabricate hvCAS for high-resolution optical mapping, 0.25 million hPSC-hvCM per cm² was seeded onto a Matrigel-coated, micro-grooved substrate fabricated from polystyrene shrink film, with a groove width of 15 μm, a groove depth of 5 μm, and an inter-groove distance of 5 μm. A high-resolution MiCAM03 optical mapping system (SciMedia) with a 1× lens setup was used to capture the action potential (AP) signal and conduction velocities of the test preparation in a 1 cm × 1 cm region of interest. hvCAS was paced by a unipolar point-stimulation electrode (Harvard Apparatus) and a programmable Master9 stimulator (AMPI). The temporal resolution was 5 ms. Data were analyzed with our in-house software. Upon the application of HCQ (10 μM), AZM (30 μM) or HCQ + AZM, prolongation in action potential duration of 90% repolarization (APD₉₀) was always observed. APD₉₀ of HCQ, AZM and HCQ+AZM increased by 37 ms, 39 ms and 17 ms, respectively (Fig. 2A, F, G). We also measured conduction velocities, in the longitudinal and the transverse axes relative to cell alignment, as the rate of action potential propagation between pairs of selected points on the hvCAS substrate. Analysis of isochronal maps showed that the conduction velocity (LCV) of HCQ group, and the transverse conduction velocity (TCV) of all treatment groups were significantly decreased (Fig. 2D, E) in comparison to vehicle control. Importantly, re-entry in the form of spiral wave formation was promoted in the presence of HCQ- or AZM-alone, or in combination (Fig. 2B, C). Collectively, these data were consistent with the findings that QTc interval and pro-arrhythmogenicity increases with HCQ +/− AZM.

4. Discussion

In this study, we report the reduction of contractile force in the presence of 10-100 μM AZM in a dose-dependent manner with or without 10 μM HCQ (Fig. 1C-D). Furthermore, the combined application of 30 μM AZM and 10 μM HCQ prolonged AP duration and slowed conduction, leading to the promotion of spiral wave formation (Fig. 2C-F). The concentrations of AZM and HCQ tested were based on published basic and clinical studies. In various clinical reports, the maximum dosages of HCQ and AZM for anti-SARS-CoV-2 range from 200 to 1200 mg per day and 500 mg per day, respectively [2,4,17–19]. It has been reported that healthy subjects who received 500 mg/day AZM for 3 days would have maximum blood and plasma concentrations of 49.7 nM and 56.6 nM, respectively. However, AZM is known to accumulate in leukocytes and pulmonary tissue, resulting in up 200-1000-fold increase in the effective concentration compared to the plasma [20]. Indeed, cellular accumulation of AZM has also been detected in the liver, spleen and heart [21]. For HCQ, the serum level in COVID-19 patients who receive 600 mg/day is 1.1–3.2 μM [2], but its blood concentration can
be 3.2–3.7-fold higher [22]. Therefore, we have made every effort to match the drug conditions tested in our in vitro engineered tissues to the clinical situation.

Overall, our observations of compromised contractility and increased arrhythmogenicity by HCQ and AZM in human engineered cardiac tissue models were consistent with clinical reports. The action potential duration was significantly prolonged in hvCAS treated with 30 μM of AZM with or without 10 μM of HCQ, which was physiologically relevant to our observation in increased arrhythmic risk in the treated group as the prolongation of the QT interval by as low as 20 ms is considered a high risk for Torsade de Pointes under the FDA guideline. Interestingly, the arrhythmogenic risk as shown by hvCAS treated with HCQ or AZM alone was similar to that of HCQ + AZM, although the combined treatment synergistically led to a stronger reduction of contractile force and HCQ alone did not show any significant changes (Figs. 1C and 2C). It is likely that HCQ and AZM act on multiple ion channels and pumps whose effects can counterbalance each other. For instance, HCQ has been reported to inhibit the hyperpolarization-activated c-AMP-modulated pacemaker current in an in vitro guinea pig cardiomyocyte model [23], but it is generally accepted that the inotropic action of HCQ/chloroquine is unspecified due to the mixed action of ion channels in cardiomyocytes and complicated by non-cardiac toxicity [24]. Further detailed patch-clamping studies for investigating the mechanistic and functional effects of HCQ and AZM on different ion channels, pumps and signaling transduction molecules in human cardiomyocytes are warranted. When studying the cardiac effects of HCQ and AZM as well as other therapeutic regimes for COVID-19, it will be imperative to consider both the contractile and electrophysiological properties.

5. Conclusion

In this study, we show that human engineered tissues, hvCTS and hvCAS, constructed from hvCMs predict the arrhythmogenic potential of administering HCQ alone or in combination with AZM. Re-entry is a substrate for ventricular arrhythmias and Torsades de Pointes which have been described in patients on HCQ [19]. Our data also showed that AZM can induce a dose-dependent negative inotropic effect which is synergistically led to a stronger reduction of contractile force and HCQ alone did not show any significant changes (Figs. 1C and 2C). It is likely that HCQ and AZM act on multiple ion channels and pumps whose effects can counterbalance each other. For instance, HCQ has been reported to inhibit the hyperpolarization-activated c-AMP-modulated pacemaker current in an in vitro guinea pig cardiomyocyte model [23], but it is generally accepted that the inotropic action of HCQ/chloroquine is unspecified due to the mixed action of ion channels in cardiomyocytes and complicated by non-cardiac toxicity [24]. Further detailed patch-clamping studies for investigating the mechanistic and functional effects of HCQ and AZM on different ion channels, pumps and signaling transduction molecules in human cardiomyocytes are warranted. When studying the cardiac effects of HCQ and AZM as well as other therapeutic regimes for COVID-19, it will be imperative to consider both the contractile and electrophysiological properties.

Disclosures

K.D. Costa and R.A. Li hold equities in Novoheart whose value may potentially be affected by the publication of this manuscript. A.O.T. Wong, B. Gurung, W.S. Wong, S.Y. Mak, and D.K. Lieu declared no competing interests for this work. R.A. Li, W. Keung, P.K.W. Chan, C.W.Y. Chan, K.D. Costa, Bioengineering an artiﬁcial heart using biocompatible functional miniature ventricular heart chamber from human pluripotent stem cells, Biomaterials 163 (2018) 116–127.

Acknowledgements

The authors thank Ms. Joey Chan, Ms. Yannes Leung, Mr. David Wong, Mr. Martin Chan and Dr. Virginia Kwan for their contributions to cell culture and cardiomyocyte differentiation. The authors also acknowledge Prof. Yiu-Fai Cheung and Dr. Wendy Keung for providing L-EdV-derived cardiomyocytes.

References

[1] M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, H. Wu, Zhong G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res. 30 (2020) 269–271.
[2] P. Gautret, J.C. Lagier, P. Parola, V.T. Hoang, L. Meddeb, M. Mailhe, B. Doudier, J. Courjon, V. Giordanengo, V.E. Vieira, H.T. Dupont, S. Honore, P. Colson, E. Chabriere, B. La Scola, V. Giordanengo, B. Carbonnelle, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label randomized clinical trial, Int. J. Antimicrob. Agents (2020) 105949.
[3] L. Bull-Ottersen, E.B. Gray, D.S. Budnitz, H.M. Stromsoeg, L. Schiefer, J. Courney, M.C. Garcia, J.T. Brooks, W.B. Mac Kenzie, A.V. Gundlapalli, Hydroxychloroquine and chloroquine prescribing patterns by provider specialty following initial reports of potential benefit for COVID-19 treatment - United States, January-June 2020, MMWR Morb. Mortal. Wkly Rep. 69 (2020) 120–1215.
[4] J.M. Molina, C. Delaguerre, L. Ke Goff, B. Mela-Lima, D. Ponscarese, L. Goldwirt, N. de Castro, No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection, Med. Mal. Infect. 50 (2020) 384–389.
[5] M.S. Khuroo, Chloroquine and hydroxychloroquine in coronavirus disease 2019 (COVID-19). Facts, fiction and the hype: a critical appraisal, Int. J. Antimicrob. Agents 56 (2020) 1061–1061.
M. Spinelli, D.S. Park, C. Stefano, L.A. Chinitz, L. Jankelson, QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin, Heart Rhythm. 17 (2020) 1425–1433.

[20] Z. Yang, J.K. Prinsen, K.R. Bersell, W. Shen, L. Yermalitskaya, T. Sidorova, P. B. Luis, L. Hall, W. Zhang, L. Du, G. Milne, P. Tucker, A.L. George Jr., C. M. Campbell, R.A. Pickett, C.M. Shaffer, N. Chopra, T. Yang, R.C. Knollmann, D. M. Roden, K.T. Murray, Azithromycin causes a novel proarrhythmic syndrome, Circ. Arhythm. Electrophysiol. 10 (2017).

[21] F.G. Araujo, R.M. Shepard, J.S. Remington, In vivo activity of the macrolide antibiotics azithromycin, roxithromycin and spiramycin against toxoplasma gondii, Eur. J. Clin. Microbiol. Infect. Dis. 10 (1991) 519–524.

[22] S. Morita, T. Takahashi, Y. Yoshida, N. Yokota, Population pharmacokinetics of hydroxychloroquine in Japanese patients with cutaneous or systemic lupus erythematosus, Ther. Drug Monit. 38 (2016) 259–267.

[23] R.A. Capel, N. Herring, M. Kalla, A. Yavari, G.R. Mirams, G. Douglas, G. Bub, K. Channon, D.J. Paterson, D.A. Terrar, R.A. Burton, Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current h: novel electrophysiological insights and therapeutic potential, Heart Rhythm. 12 (2015) 2186–2194.

[24] K. Mubagwa, Cardiac effects and toxicity of chloroquine: a short update, Int. J. Antimicrob. Agents 56 (2020) 106057.

[25] A. Sharma, G. Garcia, Y. Wang, J.T. Plummer, K. Morizono, V. Arumugaswami, C. N. Svendsen, Human iPSC-derived cardiomyocytes are susceptible to SARS-CoV-2 infection, bioRxiv 1 (2020) 100052.