Pseudorapidity distributions of charged particles as a function of mid- and forward rapidity multiplicities in pp collisions at $\sqrt{s} = 5.02, 7$ and 13 TeV

ALICE Collaboration

Abstract

The multiplicity dependence of the pseudorapidity density of charged particles in proton–proton (pp) collisions at centre-of-mass energies $\sqrt{s} = 5.02, 7$ and 13 TeV measured by ALICE is reported. The analysis relies on track segments measured in the midrapidity range ($|\eta| < 1.5$). Results are presented for inelastic events having at least one charged particle produced in the pseudorapidity interval $|\eta| < 1$. The multiplicity dependence of the pseudorapidity density of charged particles is measured with mid- and forward rapidity multiplicity estimators, the latter being less affected by autocorrelations. A detailed comparison with predictions from the PYTHIA 8 and EPOS LHC event generators is also presented. The results can be used to constrain models for particle production as a function of multiplicity in pp collisions.

© 2020 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

*See Appendix A for the list of collaboration members
1 Introduction

The study of high-multiplicity events in proton–proton (pp) and proton–nucleus high-energy collisions reveals striking similarities with respect to the observations made for larger systems like a nucleus–nucleus collision, which are interpreted in terms of the creation of a strongly-interacting, fluid-like QCD medium: the quark–gluon plasma (QGP). The ridge structure arising from long-range azimuthal correlations observed in pp data [1–3] is also found in p–Pb collisions [4–7], where the presence of double-ridge structures is reported [4]. More recently, an ALICE measurement reported an enhancement in the relative production of (multi-) strange particles with respect to primary charged particles as a function of multiplicity in pp collisions [8]. This suggests that some observables related to the QGP formation might be driven just by the multiplicity regardless of collision systems at LHC energies.

In pp and p–Pb collisions, the selection of events with large hadronic final-state multiplicities biases the sample towards a large average number of Multiple Parton Interactions (MPIs) at the LHC [9, 10]. In the description provided by the colour reconnection (CR) mechanism [11, 12], CR in MPIs is expected to be particularly pronounced at high multiplicity. The effects of prominent CR at high multiplicity are supposed to account for basic observables like the correlations between the average momentum and the multiplicity of charged particles [13] as well as for the shape of their pseudorapidity distribution [14]. Indeed, the transverse momentum (p_T) spectra of charged particles at high multiplicity [15, 16] can be attributed, in pp collisions, to a CR mechanism, while until now no multiplicity dependence study of charged particle pseudorapidity density has been published.

This document provides a large set of charged-particle multiplicity density measurements as a function of event multiplicity in pp collisions at different centre-of-mass energies. This work could shed light on the phenomenon of MPIs that is a key ingredient of models attempting to describe large-multiplicity events. In any collision system, the event-averaged pseudorapidity density of primary charged particles $dN_{ch}/d\eta$, is a key observable characterising the global properties of the collision. Especially in pp interactions, the $dN_{ch}/d\eta$ is described by the combination of the perturbative hard partonic processes and the underlying event [18, 19]. The underlying event includes various phenomena like initial- and final-state radiation, colour-connected beam remnants, and infrared MPIs. In particular, its normalisation is directly connected to the MPI cross section determined by the low-x behaviour of the gluon parton-distribution function and by the consequent colour screening effects at the p_T cut-off, while its multiplicity distribution is more influenced by correlations within MPI in the fragmentation stage.

The methods adopted in this analysis are based on those used in the inclusive $dN_{ch}/d\eta$ ($dN^{incl.}_{ch}/d\eta$) measurements of ALICE [20–24]. This study introduces exclusive event classes for two complementary multiplicity estimators defined in the midrapidity and in the forward regions and exploiting high-multiplicity triggers to record a large sample of events for the highest multiplicity classes. The results are provided for an event selection defined in a fully experimental way. Measurements are performed for inelastic collisions with at least one charged particle produced in $|\eta| < 1$ (INEL$_{>0}$), corresponding to about 75% of the total inelastic cross section [13, 23, 25, 26].

2 Experimental setup

The full description and performance of the ALICE detectors can be found elsewhere [27, 28]. The detectors used in this analysis are briefly presented below.

The V0 detector [29] is made of two arrays (V0A and V0C) of 32 scintillating counters each. The V0A is located at a distance of 329 cm away from the interaction point (IP) along the beam direction (z) and it covers the pseudorapidity range $2.8 < \eta < 5.1$. The V0C is installed at $z = -88$ cm, covering the pseudorapidity range $-3.7 < \eta < -1.7$. Both counters cover the full azimuth. The V0 detector provides the minimum-bias and beam-gas removal trigger to ALICE. It measures the signal amplitude created by
charged particles and their arrival times with a time resolution better than 1 ns.

The Silicon Pixel Detector (SPD) \cite{30,31} is the innermost detector of ALICE. It is located inside a large solenoid that produces a homogeneous magnetic field of 0.5 T. The SPD consists of two cylindrical layers coaxial to the beam line at radii 3.9 and 7.6 cm. It is made of 10 million pixels distributed on 240 sensors that cover the pseudorapidity range \(|\eta| < 2 \) for the first layer and \(|\eta| < 1.4 \) for the second layer for particles that originate from collisions at the nominal interaction point. An enlarged pseudorapidity coverage of \(|\eta| < 2 \) is reached using events whose primary vertex is not at zero, but within \(\pm 10 \) cm from the nominal interaction point. The SPD provides a precise measurement of the position of the primary interaction vertex with a spatial resolution of on average 30 \(\mu \)m in the beam direction \cite{23,31}. The multiplicity measurement of this analysis relies on the reconstruction of tracklets, which are track segments connecting hits on the two SPD layers and pointing to the primary vertex. Due to the bending in the magnetic field and multiple scattering, the reconstruction efficiency of tracklets is limited to \(p_T > 50 \) Mev/c.

3 Data sample and analysis

![Figure 1: The distribution of the V0M amplitude (total energy deposition in the region \(-3.7 < \eta < -1.7\) and \(2.8 < \eta < 5.1\)) scaled by its average value \(\langle V0M \rangle\) that is used to determine the forward multiplicity classes (a) and the distribution of the total number of SPD tracklets in an event \(\langle N_{SPD \ Tracklet} \rangle\) that is used to determine the midrapidity multiplicity classes (b) in pp collisions at \(\sqrt{s} = 13\) TeV. Note that the percentile values of the multiplicity classes are fractions of the visible cross section \(\Delta \sigma / \sigma_{MBAND=0}\) (see text for details).](image)

The minimum-bias pp data samples at \(\sqrt{s} = 5.02, 7\) and 13 TeV used in this analysis correspond to the integrated luminosities \(\mathcal{L}_{int} = 12.4 \pm 0.3, 3.78 \pm 0.13\) and \(0.946 \pm 0.020\) nb\(^{-1}\), respectively \cite{28,32,33}. The data sample at \(\sqrt{s} = 13\) TeV benefits from a high-multiplicity trigger that was implemented in ALICE at the beginning of the LHC Run 2.

The minimum-bias trigger (MB\(_{AND}\)) requires hits in both the V0A and V0C detectors in coincidence of a beam crossing. The contribution from diffractive interactions is minimised by requiring at least one SPD tracklet in \(|\eta| < 1 \); the resulting data sample is called MB\(_{AND=0}\). The contamination from beam-induced background is removed by using the timing information of the V0 detectors and taking into account the correlation between tracklets and clusters in the SPD detector \cite{28}. The events used for the analysis are required to have a primary vertex in the fiducial region \(|z| < 10\) cm. The primary vertex is reconstructed by correlating hits in the two SPD layers. The contamination from in-bunch pile-up events is removed offline excluding events with multiple vertices reconstructed in the SPD \cite{23}. The pile-up probability estimated considering the beam conditions ranges from \(10^{-3}\) to \(10^{-2}\). After the
offline rejection, the remaining pile-up has a negligible impact on the final results. This was verified by analysing data samples separately with high and low initial pile-up contamination.

Multiplicity classes are defined by a probability (percentile) range that is interpreted as a fractional cross section $\Delta \sigma / \sigma_{\text{MB}^0 > 0}$ with the visible cross section in pp collisions, $\sigma_{\text{MB}^0 > 0}$, constituting 100%. Percentile values for higher multiplicity collisions are close to 0% and for lower ones close to 100%. Forward multiplicity classes are estimated by V0M, which is the sum of the energy deposition measured by the V0A and V0C scintillators. The distribution of the V0M amplitude scaled by its average value $\langle V0M \rangle$ (self-normalised V0M) is shown in Fig. 1a for $\text{MB}^0 > 0$ pp collisions at $\sqrt{s} = 13 \text{ TeV}$. A dedicated high-multiplicity trigger is defined by the threshold $V0M / (\langle V0M \rangle) > 4.9$, corresponding to $\sigma / \sigma_{\text{MB}^0 > 0} = 0.1\%$. The SPD tracklets are used to define multiplicity classes in the midrapidity region $|\eta| < 2$. The distribution of the self-normalised number of SPD tracklets for $\text{MB}^0 > 0$ pp collisions in $|\eta| < 2$ is shown in Fig. 1b. For all the midrapidity multiplicity classes, only the minimum-bias trigger is used because the high-multiplicity trigger relying on V0M amplitudes would give an additional bias. The data analysis is performed by classifying $\text{MB}^0 > 0$ data samples using the mid and forward multiplicity estimators.

Forward Multiplicity Estimator	Midrapidity Multiplicity Estimator
$P_{\text{MB}^0 > 0}$ (%)	$P_{\text{INEL} > 0}$ (%)
$\sqrt{s} (\text{TeV})$	$\sqrt{s} (\text{TeV})$
5.02	5.02
7	7
13	13

Table 1: Correspondence of the multiplicity classes between $P_{\text{MB}^0 > 0}$ and $P_{\text{INEL} > 0}$. The trigger efficiency is estimated using PYTHIA 8 Monash 2013 [34, 35] and GEANT 3 [37].

The multiplicity percentile intervals of the visible cross section $P_{\text{MB}^0 > 0} = \Delta \sigma / \sigma_{\text{MB}^0 > 0}$ can be converted to fractional intervals with respect to the INEL > 0 cross section $P_{\text{INEL} > 0} = \Delta \sigma / \sigma_{\text{INEL} > 0}$ in pp collisions by following the conversion rule

$$P_i(\text{INEL} > 0) = \frac{P_i(\text{MB}^0 > 0) / \epsilon_i}{\sum_j (P_j(\text{MB}^0 > 0) / \epsilon_j)},$$

where i indicates a specific multiplicity class, j runs over all multiplicity classes for a given collision energy and multiplicity estimator, and ϵ_i (ϵ_j) is the MB$^0 > 0$ trigger efficiency for the INEL > 0 event sample $N_{\text{MB}^0 > 0} / N_{\text{INEL} > 0}$ for the i^{th} (j^{th}) multiplicity class. The correspondence between $P_{\text{INEL} > 0}$ and $P_{\text{MB}^0 > 0}$ is reported in Table 1. In this document, multiplicity classes for the results of ALICE are represented with $P_{\text{MB}^0 > 0}$, which is a quantity defined using detector-level variables. In order to perform precise comparisons of particle-level simulations with the ALICE data, the $P_{\text{INEL} > 0}$ intervals corresponding to a given $P_{\text{MB}^0 > 0}$ interval for each centre-of-mass energy and multiplicity class reported in Table 1 need to be used in the particle-level simulations.
P(INEL>0)(%)	Forward Multiplicity Estimator	Mid-rapidity Multiplicity Estimator				
	√s (TeV)	√s (TeV)				
	5.02	7	13	5.02	7	13
Correction factor	Correction factor					
0–0.01	0.9995	0.9959	0.9842	0.9995	0.9959	0.9842
0.01–0.1	0.9938	0.9921	0.9939	0.9938	0.9921	0.9939
0.1–0.5	0.9934	0.9907	0.9933	0.9934	0.9907	0.9933
0.5–1	0.9916	0.9901	0.9915	0.9916	0.9901	0.9915
1–5	0.9927	0.9906	0.9924	0.9927	0.9906	0.9924
5–10	0.9864	0.9827	0.9855	0.9809	0.9768	0.9842
10–15	0.9768	0.9722	0.9763	0.9709	0.9634	0.9778
15–20	0.9694	0.9588	0.9667	0.9607	0.9522	0.9684
20–30	0.9565	0.9473	0.9545	0.9516	0.9392	0.9580
30–40	0.9455	0.9289	0.9382	0.9369	0.9210	0.9472
40–50	0.9249	0.9072	0.9187	0.9205	0.8968	0.9290
50–70	0.9052	0.8752	0.9003	0.9010	0.8730	0.9147
70–100	0.9242	0.8867	0.8998	0.8962	0.8534	0.9003
	0.9716	0.9573	0.9662	0.9215	0.8897	0.9284

Table 2: The correction factors of dN_{ch}/d\eta from the multiplicity classes P(INEL>0) in Table 1 to those of P(INEL>0) in the leftmost column of this table. The correction factors are estimated for the generated values of dN_{ch}/d\eta using PYTHIA 8 Monash 2013.[34,36]

Alternatively, the values of dN_{ch}/d\eta with ALICE data for the multiplicity classes of P(MB_{AND>0}) in Table 1 can be corrected such that they correspond to the multiplicity classes of P(INEL>0) given in the leftmost column of Table 2. For example, the correction factor of 0.9995 for the P(INEL>0) = 0–0.01% interval of the forward multiplicity estimator at \sqrt{s} = 5.02 TeV is the ratio of the generated values of dN_{ch}/d\eta between P(INEL>0) = 0–0.01% and 0–0.0091% with PYTHIA 8 Monash 2013.[34,36]. The data measurement of dN_{ch}/d\eta for P(MB_{AND>0}) = 0–0.01% would therefore need to be multiplied by this factor in order to compare directly with a generated interval of P(INEL>0) = 0–0.01%.

The value of dN_{ch}/d\eta is obtained by correcting the number of SPD tracklets for detector acceptance as well as reconstruction and selection efficiency following the procedure developed earlier.[23,24,38,40]. The corrections are estimated with Monte Carlo simulations based on PYTHIA 8 Monash 2013.[34,36] for particle generation and GEANT 3.[37] for the transport of particles through the geometry of ALICE. PYTHIA 8 has a strangeness content that underestimates the data by a p_T-dependent factor, which approaches 2 around $p_T = 10$ GeV/c.[41]. The discrepancy is resolved by normalising the strangeness content in PYTHIA 8 to match the one in the data. This corrects dN_{ch}/d\eta downward by about 1%.

4 Systematic uncertainties

source	Uncertainty (%) at $\sqrt{s} = 13$ TeV						
	Forward $\Delta \sigma/\sigma_{MB_{AND>0}}$	Midrapidity $\Delta \sigma/\sigma_{MB_{AND>0}}$	$\Delta \sigma/\sigma_{INEL>0}$				
	0–0.01%	40–50%	70–100%	0–1%	40–50%	70–100%	0–1%
	Uncorrelated						
Trigger efficiency	neg.	0.2	0.2	neg.	0.2	0.2	0.2
Strangeness correction	0.7	0.6	0.5	0.7	0.6	0.5	0.5
Zero-p_T extrapolation	0.7	0.8	1.0	0.7	0.9	1.0	1.0
Correlated							
Model dependence	neg.	0.1	0.1	0.1	0.1	0.1	0.1
Detector acceptance and efficiency	0.8	0.7	0.6	1.8	2.0	2.8	0.7
Particle composition	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Material budget	0.2	0.2	0.2	0.2	0.2	0.2	0.2

Table 3: Systematic uncertainties from the highest to the lowest multiplicity class for both the mid- and forward rapidity multiplicity estimators in pp collisions at $\sqrt{s} = 13$ TeV. The last column reports the effects on the inclusive $\langle dN_{ch}/d\eta \rangle$.

Several sources of systematic uncertainties are investigated for this study and the estimated uncertain-
ties are listed in Table 3. For each multiplicity class, the systematic uncertainties related to the model used in the correction procedure (“Model dependence”) are quoted as the difference of the results using corrections obtained with two different generators before the trigger efficiency correction: PYTHIA 8 Monash 2013 [34–36] and EPOS LHC [42, 43]. The uncertainties attributed to the description of the trigger (“Trigger efficiency”) are also quoted as the difference of the simulated trigger efficiency \(N_{MBAND-0}/N_{INEL-0}\) between the two event generators.

The effects of the difference in particle composition between data and Monte Carlo mostly originate from the underestimated yield related to the weak decays of light-flavour hadrons in the simulation and are obtained with reweighting techniques (“Strangeness correction”): strangeness yields in the simulation are reweighted during the correction step by a factor of 2 to be compatible with the data; the factor is varied by ±30% based on data [41] that covers the whole \(p_T\) region, resulting in variations of the obtained \(dN_{ch}/d\eta\) ranging from ±0.5% at low multiplicities to ±0.7% at the highest multiplicities. Additionally, the effect of particle-species composition (“Particle composition”) is estimated by varying, in the simulation, the relative fraction of charged kaons, protons and other particles with respect to the fixed number of charged pions by ±30%, which covers the uncertainties in the measured particle-species composition at the LHC [44]. Relative variations of the final result are below ±0.5% in all multiplicity classes. Below 50 MeV/c, the tracklet reconstruction efficiency sharply drops because of the bending in the magnetic field and to less extent due to the scattering and absorption in the detector material. To estimate the uncertainty due to the extrapolation to zero \(p_T\) (“Zero-\(p_T\) extrapolation”), the number of particles below 50 MeV/c is varied sufficiently in the event generator by +100% and −50%, adopted from the previous study [23]. The corresponding uncertainty is around ±1% and slightly dependent on the multiplicity class.

The effect of the limited tracking acceptance and efficiency (“Detector acceptance and efficiency”) is estimated by varying the range of primary vertex selection along the beam direction (\(z_{vtx}\)) from \(|z_{vtx}| < 10\) cm to the narrower \(|z_{vtx}| < 7\) cm and broader \(|z_{vtx}| < 15\) cm; the effect on \(dN_{ch}/d\eta\) is below ±2% in all the multiplicity classes. The uncertainty due to the non-uniformity in azimuthal acceptance is studied by measuring \(dN_{ch}/d\eta\) independently in three different azimuthal regions of the SPD, which are then compared with the corresponding full azimuth measurement: it varies from ±0.8% to ±2% with respect to the SPD configuration. The corresponding uncertainty is summed in quadrature for that in “Detector acceptance and efficiency”. The material budget in the ALICE central barrel is known to a precision of about 5% [28]. The corresponding systematic uncertainty on \(dN_{ch}/d\eta\) (“Material budget”), obtained by varying the material budget in the simulation, is estimated to be about ±0.2%.

Variations for the particle-species composition, material budget, tracking acceptance, and efficiency correction produce a change in the measurement that behaves the same across energies and multiplicity classes. The corresponding systematic uncertainties are considered then as correlated. Conversely, variations on the correction for the contribution of strangeness particles, the trigger efficiency, and the extrapolation to zero-\(p_T\) affect each energy and multiplicity class differently, so these contributions are considered as uncorrelated.

5 Results

The \(dN_{ch}/d\eta\) measurements at \(\sqrt{s} = 5.02, 7\) and 13 TeV for different classes of the forward multiplicity estimators are reported in Fig. 2 in the upper panels in absolute scale and in the lower panels, normalised to the inclusive \(dN_{ch}/d\eta\) (\(dN_{ch}^{\text{incl.}}/d\eta\), \(dN_{ch}/d\eta\) for 0–100%). As shown in the lower panels of Fig. 2 the pseudorapidity densities for the highest multiplicity classes (0–0.01%) are around 5 times larger than those of the inclusive ones for the three different collision energies. The asymmetry of the \(dN_{ch}/d\eta\) distributions for the forward multiplicity classes is due to the asymmetric pseudorapidity acceptance of the V0 detector. This effect is more pronounced for the highest multiplicity classes.
The upper panels in Fig. 3 show the $dN_{ch}/d\eta$ measurements at $\sqrt{s} = 5.02, 7$ and 13 TeV for different multiplicity classes defined by the midrapidity multiplicity estimator. The shapes of the pseudorapidity distributions of primary charged particles are different when compared with those obtained with the forward multiplicity estimator. The midrapidity multiplicity estimator is defined in a symmetric pseudorapidity region ($-2 < \eta < 2$) and clearly gives rise to autocorrelations as it includes the region where the pseudorapidity distributions are measured ($-1.5 < \eta < 1.5$). As shown in the lower panels of Fig. 3 for the three different collision energies, the pseudorapidity densities for the highest multiplicity classes (0–1%) are around 4–5 times larger than those of the inclusive ones, with the highest enhancement observed at midrapidity ($\eta = 0$).
Figure 4: The panels in the first and third row show the normalised pseudorapidity density distributions of charged particles in pp collisions at $\sqrt{s} = 5.02$, 7 and 13 TeV compared with different models for the 0–1% and 70–100% multiplicity classes by the forward rapidity multiplicity estimator, respectively. The panels in the second and fourth row report the corresponding model/data ratio. Note that the multiplicity classes of the models correspond to $\Delta\sigma/\sigma_{\text{INEL},0}$, which is slightly different from the $\Delta\sigma/\sigma_{\text{MBAND},0}$ of the ALICE data.

The measurements are compared with the predictions from PYTHIA 8 Monash 2013 \cite{34,36} with and without CR and the ones from EPOS LHC \cite{42,43}. The effect of CR can be explored with PYTHIA 8 Monash 2013 by switching the effect on and off. EPOS LHC describes the collectivity effect in high multiplicity pp collisions differently with a hydrodynamic evolution of the core with a high-energy density that is formed by many colour string fields. The multiplicity classes of the models are estimated for generated charged particles in the same geometrical acceptances of the forward rapidity ($-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$) and midrapidity ($|\eta| < 2$) multiplicity estimators and the percentile value of the multiplicity class is calibrated for generated INEL$_{>0}$ events. Figure4 reports the comparison of the data with these models for the 0–1% and 70–100% classes by the forward multiplicity estimator. PYTHIA 8 Monash 2013, implementing CR in the string fragmentation process, describes the data within 5% for all the centre-of-mass energies for the 0–1% multiplicity class. For the 70–100% class, PYTHIA 8 underestimates the data by up to 10%. When switching off CR, while keeping all the other model parameters stable, PYTHIA 8 overestimates (underestimates) the data by about 30% for the 0–1% (70–100%) multiplicity class. EPOS LHC, which incorporates a collective flow-like description of the core, describes the data within 20% for both forward multiplicity classes. EPOS LHC also overestimates (underestimates) the data for the 0–1% (70–100%) multiplicity class like PYTHIA 8 Monash 2013. For the two classes, PYTHIA 8 describes the data better than EPOS LHC.

Figure5 shows the comparison according to the data with these models for the 0–1% and 70–100% classes by the midrapidity multiplicity estimator. EPOS LHC describes the data within 5% for all the centre-of-mass energies for the 0–1% multiplicity class. For the 70–100% class, EPOS LHC underestimates the data by up to 20%. PYTHIA 8 reproduces the data within 5% for all centre-of-mass energies for the 0–1% multiplicity class, but it is not as good as EPOS LHC in the 0–1% multiplicity class. For the 70–100% class, PYTHIA 8 describes the data within 10% and it is better than those of EPOS LHC.
Figure 5: The panels in the first and third row show the normalised pseudorapidity density distributions of charged particles in pp collisions at $\sqrt{s} = 5.02$, 7 and 13 TeV compared with different models for the 0–1% and 70–100% multiplicity classes by the midrapidity multiplicity estimator, respectively. The panels in the second and fourth row report the corresponding model/data ratio. The multiplicity classes of the models correspond to $\Delta \sigma / \sigma_{\text{MB AND>0}}$, which is slightly different from the $\Delta \sigma / \sigma_{\text{MB AND>0}}$ of the ALICE data.

When switching off CR, PYTHIA 8 overestimates (underestimates) the data by about 15% (30%) for the 0–1% (70–100%) multiplicity class.

The value of $\langle dN_{ch} / d\eta \rangle$ is determined by integrating $dN_{ch} / d\eta$ in $|\eta| < 0.5$. Table 4 shows the values of $\langle dN_{ch} / d\eta \rangle$ for different mid- and forward rapidity multiplicity classes in pp collisions at $\sqrt{s} = 5.02$, 7 and 13 TeV. The autocorrelation effect for the midrapidity estimator results in larger values of $\langle dN_{ch} / d\eta \rangle$ in the highest multiplicity classes and in smaller ones for the lowest multiplicity classes compared with those with the forward multiplicity estimator.

The energy dependence of $\langle dN_{ch} / d\eta \rangle$ for the multiplicity classes defined by the forward multiplicity estimator is shown in the upper panel of Fig. 6. The LHC measurements for the $\langle dN_{ch} / d\eta \rangle$ can be directly compared with the ones from the NAL Bubble Chamber (pp) [45], ISR (pp) [46], UA1 (pp) [47], UA5 (pp) [48], CDF (pp) [49], STAR (pp) [50] and PHOBOS (pp) [51]. A phenomenological power-law fit s^{α} describes the centre-of-mass energy (\sqrt{s}) evolution of these measurements for Non-Single Diffractive (NSD), INEL and INEL_{>0} events up to LHC energies [23].

Such a fit is performed practically for the values of Table 4 in different multiplicity classes to describe the dependence of $\langle dN_{ch} / d\eta \rangle$ on the centre-of-mass energy. Corresponding exponents are shown in the legend of Fig. 6. The average pseudorapidity density at midrapidity as a function of centre-of-mass energy increases rapidly for higher multiplicity classes. The lower panel of Fig. 6 shows $\langle dN_{ch} / d\eta \rangle$ normalised to its inclusive value denoted as $\langle dN_{ch} / d\eta \rangle / \langle dN_{ch} / d\eta \rangle_{\text{incl}}$ for the forward multiplicity classes. The steeper increasing trend of $\langle dN_{ch} / d\eta \rangle / \langle dN_{ch} / d\eta \rangle_{\text{incl}}$ observed for higher multiplicity classes may arise from the increase of the MPI cross sections with the centre-of-mass energy [23].

The exponent values α of the power-law fit (s^{α}) of ALICE data in Fig. 6 are compared with those of
Table 4: Values of $⟨dN_{ch}/dη⟩$ for different multiplicity classes defined by the mid and forward multiplicity estimators in pp collisions at $\sqrt{s} = 5.02$ to 13 TeV. Statistical uncertainties are negligible.

$\Delta\eta$/mbAND 0	Forward Multiplicity Estimator	Midrapidity Multiplicity Estimator	
	($dN_{ch}/d\eta)$	uncorrelated systematic uncertainty	correlated systematic uncertainty
0–0.02	$24.53\pm0.23\pm0.31$	$29.1\pm0.44\pm0.33$	
0.02–0.05	$22.42\pm0.21\pm0.23$	$26.27\pm0.30\pm0.29$	
0.05–0.1	$21.14\pm0.20\pm0.22$	$24.70\pm0.25\pm0.27$	
0.1–0.11	$21.71\pm0.20\pm0.21$	$25.40\pm0.26\pm0.28$	
0.1–0.5	$19.08\pm0.18\pm0.19$	$22.24\pm0.20\pm0.22$	
0.5–1%	$17.34\pm0.16\pm0.15$	$20.11\pm0.18\pm0.18$	
0–1%	$18.50\pm0.17\pm0.16$	$21.55\pm0.19\pm0.19$	
1–5%	$14.51\pm0.14\pm0.12$	$16.85\pm0.15\pm0.11$	
5–10%	$11.93\pm0.11\pm0.10$	$13.82\pm0.12\pm0.09$	
10–15%	$10.30\pm0.10\pm0.09$	$11.89\pm0.11\pm0.07$	
15–20%	$9.12\pm0.09\pm0.08$	$10.49\pm0.10\pm0.06$	
20–30%	$7.76\pm0.08\pm0.07$	$8.90\pm0.08\pm0.05$	
30–40%	$6.34\pm0.06\pm0.06$	$7.24\pm0.07\pm0.04$	
40–50%	$5.22\pm0.05\pm0.05$	$5.92\pm0.06\pm0.03$	
50–70%	$3.94\pm0.04\pm0.04$	$4.39\pm0.04\pm0.02$	
70–100%	$2.42\pm0.02\pm0.03$	$2.40\pm0.02\pm0.01$	
0–100%	$5.48\pm0.05\pm0.05$	$5.94\pm0.06\pm0.03$	

Figure 6: Energy dependence of $⟨dN_{ch}/d\eta⟩$ (upper) and $⟨dN_{ch}/d\eta⟩$ (lower) for the multiplicity classes by the forward multiplicity estimator in pp collisions. Lines show fits with a power-law function s^n. Corresponding bands indicate one standard deviation of the fit. Exponents and corresponding uncertainties of the fit are listed in the legend.

PYTHIA 8 and EPOS LHC in Table 5 for the forward multiplicity classes. The multiplicity classes represent P(MBAND,0) for ALICE data, while P(INEL>0) for the models. Overall, the energy dependence of $⟨dN_{ch}/d\eta⟩$ of the data for different multiplicity classes is not described well by the models. Also, the exponent values of the fit for the models fail to describe the steeper behaviour of the energy dependence of $⟨dN_{ch}/d\eta⟩$ that is measured in data with increasing multiplicities for the highest multiplicity classes. This suggests more tuning is needed to constrain models for the energy dependence of charged particle production with respect to different multiplicity classes.
6 Conclusions

The energy and multiplicity dependence of the charged-particle pseudorapidity density $dN_{ch}/d\eta$ and the average charged-particle pseudorapidity density $\langle dN_{ch}/d\eta \rangle$ in proton–proton (pp) collisions at $\sqrt{s} = 5.02, 7$ and 13 TeV are measured. The yields of charged particles in the 0–1% and 0–0.01% multiplicity classes for the mid- and forward rapidity multiplicity estimators, respectively, are up to about a factor of 5 higher with respect to the inclusive measurements for all investigated centre-of-mass energies. The results from the multiplicity-dependent analysis presented for both the mid- and forward rapidity multiplicity estimators in ALICE can be used as an input for improving our understanding of Multiple Parton Interactions (MPIs) implemented in Monte Carlo models. Most of the results are described well by PYTHIA 8 with the Monash tune and by EPOS LHC. The effects of the colour reconnection (CR) is found to be important to constrain MPIs and describe the scale of the pseudorapidity density as a function of multiplicity for both the mid and forward multiplicity estimators as seen by the expected values for PYTHIA 8 with and without CR. The results can be used for further studies as a function of multiplicity estimated at mid- or forward rapidity in pp collisions.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland;
References

[1] CMS Collaboration, V. Khachatryan et al., “Observation of Long-Range Near-Side Angular Correlations in Proton–Proton Collisions at the LHC”, *JHEP* **09** (2010) 091, arXiv:1009.4122 [hep-ex].

[2] CMS Collaboration, V. Khachatryan et al., “Measurement of long-range near-side two-particle angular correlations in pp collisions at $\sqrt{s} = 13$ TeV”, *Phys. Rev. Lett.* **116** no. 17, (2016) 172302, arXiv:1510.03068 [nucl-ex].

[3] ATLAS Collaboration, G. Aad et al., “Observation of Long-Range Elliptic Azimuthal Anisotropies in $\sqrt{s} = 13$ and 2.76 TeV pp Collisions with the ATLAS Detector”, *Phys. Rev. Lett.* **116** no. 17, (2016) 172301 arXiv:1509.04776 [hep-ex].

[4] ALICE Collaboration, B. Abelev et al., “Long-range angular correlations on the near and away side in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, *Phys. Lett.* **B719** (2013) 29–41 arXiv:1212.2001 [nucl-ex].
[5] ATLAS Collaboration, G. Aad et al., “Observation of Associated Near-Side and Away-Side Long-Range Correlations in $\sqrt{s_{NN}} = 5.02$ TeV Proton-Lead Collisions with the ATLAS Detector”, Phys. Rev. Lett. 110 no. 18, (2013) 182302 arXiv:1212.5198 [hep-ex].

[6] CMS Collaboration, S. Chatrchyan et al., “Observation of long-range near-side angular correlations in proton-lead collisions at the LHC”, Phys. Lett. B718 (2013) 795–814 arXiv:1210.5482 [nucl-ex].

[7] ATLAS Collaboration, G. Aad et al., “Measurement of long-range pseudorapidity correlations and azimuthal harmonics in $\sqrt{s_{NN}} = 5.02$ TeV proton-lead collisions with the ATLAS detector”, Phys. Rev. C90 no. 4, (2014) 044906 arXiv:1409.1792 [hep-ex].

[8] ALICE Collaboration, J. Adam et al., “Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions”, Nature Phys. 13 (2017) 535–539 arXiv:1606.07424 [nucl-ex].

[9] ALICE Collaboration, B. Abelev et al., “Multiplicity dependence of two-particle azimuthal correlations in pp collisions at the LHC”, JHEP 09 (2013) 049 arXiv:1307.1249 [nucl-ex].

[10] ALICE Collaboration, B. Abelev et al., “Multiplicity dependence of jet-like two-particle correlation structures in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, Phys. Lett. B741 (2015) 38–50 arXiv:1406.5463 [nucl-ex].

[11] J. R. Christiansen and P. Z. Skands, “String Formation Beyond Leading Colour”, JHEP 08 (2015) 003 arXiv:1505.01681 [hep-ph].

[12] A. Ortiz Velasquez, P. Christiansen, E. Cuautle Flores, I. Maldonado Cervantes, and G. Paić, “Color reconnection and flow-like Patterns in pp Collisions”, Phys. Rev. Lett. 111 no. 4, (2013) 042001 arXiv:1303.6326 [hep-ph].

[13] ATLAS Collaboration, G. Aad et al., “Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC”, New J. Phys. 13 (2011) 053033 arXiv:1012.5104 [hep-ex].

[14] S. Gieseke, C. Rohr, and A. Siodmok, “Colour reconnections in Herwig++”, Eur. Phys. J. C72 (2012) 2225 arXiv:1206.0041 [hep-ph].

[15] ALICE Collaboration, B. Abelev et al., “Multiplicity dependence of the average transverse momentum in pp, p–Pb, and Pb–Pb collisions at the LHC”, Phys. Lett. B727 (2013) 371–380 arXiv:1307.1094 [nucl-ex].

[16] ATLAS Collaboration, M. Aaboud et al., “Charged-particle distributions at low transverse momentum in $\sqrt{s} = 13$ TeV pp interactions measured with the ATLAS detector at the LHC”, Eur. Phys. J. C76 no. 9, (2016) 502 arXiv:1606.01133 [hep-ex].

[17] ALICE Collaboration, “The ALICE definition of primary particles”. https://cds.cern.ch/record/2270008

[18] ALICE Collaboration, B. Abelev et al., “Underlying Event measurements in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV with the ALICE experiment at the LHC”, JHEP 07 (2012) 116 arXiv:1112.2082 [hep-ex].

[19] ALICE Collaboration, S. Acharya et al., “Underlying Event properties in pp collisions at $\sqrt{s} = 13$ TeV”. arXiv:1910.14400 [nucl-ex].
[20] **ALICE** Collaboration, K. Aamodt et al., “First proton-proton collisions at the LHC as observed with the ALICE detector: Measurement of the charged particle pseudorapidity density at $\sqrt{s} = 900$ GeV”, **Eur. Phys. J.** **C65** (2010) 111–125, arXiv:0911.5430 [hep-ex].

[21] **ALICE** Collaboration, K. Aamodt et al., “Charged-particle multiplicity measurement in proton-proton collisions at $\sqrt{s} = 0.9$ and 2.36 TeV with ALICE at LHC”, **Eur. Phys. J.** **C68** (2010) 89–108, arXiv:1004.3034 [hep-ex].

[22] **ALICE** Collaboration, K. Aamodt et al., “Charged-particle multiplicity measurement in proton-proton collisions at $\sqrt{s} = 7$ TeV with ALICE at LHC”, **Eur. Phys. J.** **C68** (2010) 345–354, arXiv:1004.3514 [nucl-ex].

[23] **ALICE** Collaboration, J. Adam et al., “Charged-particle multiplicities in proton–proton collisions at $\sqrt{s} = 0.9$ to 8 TeV”, **Eur. Phys. J. C** **77** no. 1, (2017) 33, arXiv:1509.07541 [nucl-ex].

[24] **ALICE** Collaboration, J. Adam et al., “Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at $\sqrt{s} = 13$ TeV”, **Phys. Lett. B** **753** (2016) 319–329, arXiv:1509.08734 [nucl-ex].

[25] **ALICE** Collaboration, B. Abelev et al., “Measurement of inelastic, single- and double-diffraction cross sections in proton–proton collisions at the LHC with ALICE”, **Eur. Phys. J. C** **73** no. 6, (2013) 2456, arXiv:1208.4968 [hep-ex].

[26] **ATLAS** Collaboration, G. Aad et al., “Charged-particle multiplicities in pp interactions at $\sqrt{s} = 900$ GeV measured with the ATLAS detector at the LHC”, **Phys. Lett. B** **688** (2010) 21–42, arXiv:arXiv:1003.3124 [hep-ex].

[27] **ALICE** Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, **JINST** **3** (2008) S08002.

[28] **ALICE** Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, **Int. J. Mod. Phys. A** **29** (2014) 1430044, arXiv:1402.4476 [nucl-ex].

[29] **ALICE** Collaboration, E. Abbas et al., “Performance of the ALICE VZERO system”, **JINST** **8** (2013) P10016, arXiv:1306.3130 [nucl-ex].

[30] **ALICE** Collaboration, **ALICE Inner Tracking System (ITS): Technical Design Report**. Technical Design Report ALICE. CERN, Geneva, 1999. http://cds.cern.ch/record/391175.

[31] R. Santoro et al., “The ALICE Silicon Pixel Detector: Readiness for the first proton beam”, **JINST** **4** (2009) P03023.

[32] **ALICE** Collaboration, “ALICE 2017 luminosity determination for pp collisions at $\sqrt{s} = 5$ TeV”. http://cds.cern.ch/record/2648933.

[33] **ALICE** Collaboration, “ALICE luminosity determination for pp collisions at $\sqrt{s} = 13$ TeV”. http://cds.cern.ch/record/2160174.

[34] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual”, **JHEP** **05** (2006) 026, arXiv:hep-ph/0603175 [hep-ph].

[35] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “A Brief Introduction to PYTHIA 8.1”, **Comput. Phys. Commun.** **178** (2008) 852–867, arXiv:0710.3820 [hep-ph].

[36] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, **Eur. Phys. J. C** **74** no. 8, (2014) 3024, arXiv:1404.5630 [hep-ph].
[37] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini, *GEANT 3: user’s guide Geant 3.10, Geant 3.11: rev. version*. CERN, Geneva, 1987. https://cds.cern.ch/record/1119728

[38] **ALICE** Collaboration, K. Aamodt et al., “Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Rev. Lett.* 106 (2011) 032301 [arXiv:1012.1657 [nucl-ex]]

[39] **ALICE** Collaboration, J. Adam et al., “Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, *Phys. Rev. Lett.* 116 no. 22, (2016) 222302, arXiv:1512.06104 [nucl-ex]

[40] **ALICE** Collaboration, S. Acharya et al., “Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at $\sqrt{s_{NN}} = 5.44$TeV”, *Phys. Lett.* B790 (2019) 35–48, arXiv:1805.04432 [nucl-ex]

[41] **ALICE** Collaboration, S. Acharya et al., “Production of light-flavor hadrons in pp collisions at $\sqrt{s} = 7$ and $\sqrt{s} = 13$ TeV”, [arXiv:2005.11120 [nucl-ex]]

[42] T. Pierog, I. Karpenko, J. Katzy, E. Yatsenko, and K. Werner, “EPOS LHC : test of collective hadronization with LHC data”, arXiv:1306.0121 [hep-ph]

[43] H. J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, and K. Werner, “Parton based Gribov-Regge theory”, *Phys. Rept.* 350 (2001) 93–289, arXiv:hep-ph/0007198 [hep-ph]

[44] **ALICE** Collaboration, B. B. Abelev et al., “Production of charged pions, kaons and protons at large transverse momenta in pp and Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Lett.* B 736 (2014) 196–207, arXiv:1401.1250 [nucl-ex]

[45] J. Whitmore, “Experimental Results on Strong Interactions in the NAL Hydrogen Bubble Chamber”, *Phys. Rept.* 10 (1974) 273–373

[46] **Aachen-CERN-Heidelberg-Munich** Collaboration, W. Thome et al., “Charged Particle Multiplicity Distributions in pp Collisions at ISR Energies”, *Nucl.Phys.* B129 (1977) 365

[47] **UA1** Collaboration, C. Albajar et al., “A Study of the General Characteristics of $\bar{p}p$ Collisions at $\sqrt{s} = 0.2$ TeV to 0.9 TeV”, *Nucl. Phys.* B335 (1990) 261.

[48] **UA5** Collaboration, G. Alner et al., “Scaling of Pseudorapidity Distributions at c.m. Energies Up to 0.9 TeV”, *Z.Phys.* C33 (1986) 1–6

[49] **CDF** Collaboration, F. Abe et al., “Pseudorapidity distributions of charged particles produced in $\bar{p}p$ interactions at $\sqrt{s} = 630$ GeV and 1800 GeV”, *Phys. Rev.* D41 (1990) 2330

[50] **STAR** Collaboration, B. Abelev et al., “Systematic Measurements of Identified Particle Spectra in pp, d–Au and Au–Au Collisions from STAR”, *Phys. Rev.* C79 (2009) 034909, arXiv:arXiv:0808.2041 [nucl-ex]

[51] **PHOBOS** Collaboration, R. Nouicer et al., “Pseudorapidity distributions of charged particles in d–Au and pp collisions at $\sqrt{s} = 200$ GeV”, *J. Phys.* G30 (2004) S1133–S1138, arXiv:nucl-ex/0403033 [nucl-ex]
A The ALICE Collaboration

S. Acharya, C. Adeline, A. Adle, J. Adolfo, M.M. Aggarwal, S. Aghor, G. Aglieri Rinella, M. Agha, Z. Ahammed, S. Ahn, S.U. Ahsan, Z. Akbas, A. Akindinov, M. Al-Turany, S.N. Alan, D.S. Albuquerque, D. Aleksandrov, B. Alessandro, H.M. Alfandari, R. Alfaro Molin, B. Al-Jarad, Y. Ali, A. Alić, A. Alici, A. Alice, T. Aksu, A. Alkhanshali, A. Alkire, J. Almeida, T. Alipour, L. Altenkamp, E. Altschue, M.N. Anaan, C. Andreis, D. Andreo, A. Andronic, M. Angeletti, Y. Anguelov, T. Antićci, F. Antinori, P. Antonini, N. Apaduli, L. Aphelchández, H. Appelhans, S. Arcelli, R. Arnaldi, M. Arratia, I.C. Arsenio, M. Arslan, A. Augustino, A. Averbeck, S. Azizi, M.D. Azmeh, A. Badal, Y.W. Baek, X. Bai, R. Bahlouch, R. Balu, A. Balland, A. Baldisserra, M. Baldi, A. Banerjee, D. Barriere, R. Barberi, G. Baroglio, M. Barlow, G.G. Barnafoldi, L.S. Barnby, V. Barret, P. Bartalini, C. Bartels, K. Barth, E. Bartoš, F. Baruffaldi, N. Bastide, S. Bas, L. Baty, G. Batigne, B. Baur, J.L. Bazzal, I.G. Bearder, C. Beattie, I. Belikov, A.D.C. Bell Hechavarria, F. Bellini, R. Bellwied, S. Belokurova, V. Belyaev, G. Bencedi, S. Beoh, A. Bercuci, Y. Berdnikov, A. Berdnikov, D. Berenyi, S. Berzu, M.G. Besoi, L. Betta, A. Bhisai, I.R. Bath, M.A. Bhat, B. Bhattacharjee, A. Bianchi, L. Bianchi, N. Bianchi, I. Bielčič, J. Bielčič, F. Bilic, A. Bilkanz, G. Biro, I.D. Biswas, J.T. Blair, D. Blaž, M.B. Blidari, G. Blumenthal, G. Boc, F. Boccia, A. Bogdanov, S. Bo, J. Bolt, L. Boldizsár, A. Bolozdynja, M. Bombard, G. Bonomi, H. Bore, A. Borissov, K. Boss, E. Botta, L. Bratu, P. Braun-Munzinger, A. Broggi, M. Brogi, G.E. Brun, A. Buckl, D. Budnik, J. Buesching, S. Bufalini, O. Bugorn, G. Bukh, P. Buncic, Z. Buthelezi, D. Buzdugan, B. But, S.A. Bysiaś, D. Caffarr, M. Cag, A. Calinescu, E. Calvo Villa, J.M.M. Camacho, R.S. Camacho, P. Camerin, A.A. Capo, F. Caneschi, R. Caro, J. Castillo Castellanos, A.J. Castro, E.R. Casula, F. Catalano, C. Ceballos Sanchez, P. Chakraborty, S. Chandral, W. Chan, S. Chandel, S. Chatterji, S. Chattopadhyay, S. Chattopadhyay, A. Chauvi, C. Cheshkov, B. Cheynis, V. Chibante Barros, D.D. Chinellato, S. Cho, P. Chouchi, P. Christakoglou, C.H. Christina, P. Christiansen, T. Chuy, C. Ciacca, A. Cifarelli, T. Cindolino, M.R. Ciupik, G. Cizmar, J. Clevely, F. Colamaria, J.S. Colldi, D. Collet, A. Collu, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J.G. Contreras, T.M. Cormie, J.G. Correa, A. Cosentino, L. Cortese, M.R. Costanzo, D. Costanzo, P. Crochet, P. Cudi, L. Cunquero, T. Dahm, H. Dainese, J.P.A. Damas, M.C. Danisch, A. Dan, D. Das, I. Das, D. Das, P. Das, S. Das, A. Das, S. Das, D. De, A. De, G. De, L. De Cilia, J. De Cuvelo, A. De Falcò, A. De Grottoli, P. De Giglio, N. De Marco, C. De Martini, S. De Pasquale, S. Deb, H.F. Dehghan, K.R. Dej, A. Deloff, S. Deslants, F. Denga, P. Dhanke, S. Di Biase, N. Di Maur, A.A. Díaz, T. Dietel, P. Dillenseger, Y. Dine, R. Diviá, D.U. Dixit, O. Djouf, U. Dmitrieva, A. Dobrin, B. Dönigus, O. Dorčic, A.K. Dubel, A. Dubik, D. Dudi, M. Dukhishyan, P. Dupieux, T.M. Eder, R.J. Ehlers, V.N. Eikelhoff, D. Elia, B. Erazmus, A. Erhard, E. Erokhin, M.R. Erdös, E. Espagnon, G. Euliss, E. Evdokimov, L. Fabbietti, M. Faggi, G. Fai, F. Farin, A. Faton, M. Fase, P. Fedecchi, A. Felicetti, G. Feofilov, A. Fernández Téllez, A. Fernandez Téllez, A. Ferretti, A. Festanti, G.V.J. Feuillard, D. Figiel, S. Filchagin, D. Finogeev, F.M. Fion, G. Fiorentini, F. Flo, A.N. Flore, S. Foersch, P. Plok, B. Fokin, E. Fragiacomo, U. Frankenberg, U. Fuchs, C. Függet, A. Fur, M. Fusco Girard, J.J. Gaardhøje, M. Gagliardi, A.M. Gagliardi, A. Ga, C.D. Galvà, P. Gaspar, A. Garabatos, J.R.A. Garcia, E. Garcia-Solis, K. Gargiulo, A. Garičević, K. Garner, G. Gasi, E. Gau, M. Gay Ducat, M. Germani, J. Ghosli, D. Ghosh, S. Ghotra, S.K. Ghosh, M. Giacalone, L.M. Ghosh, P. Gianottì, P. Giubellino, P. Giubilato, A.M.C. Glaenzer, P. Glisenti, V. Gonzalez, L.H. Gonzalez-Trueba, S. Gorbunov, L. Görlich, L.M. Goswami, S. Gotovac, V. Grabocka, L.K. Graczykowski, K.L. Grahan, L. Greiner, A. Grelle, C. Grigora, V. Grigoriev, A. Grigoriadis, S. Grigoryan, O.S. Grootveld, F. Grosset, J.F. Grosse-Oetinghaus, R. Gross, R. Guermand, M. Guittiere, G. Kulbrandset, T. Gunji, A. Guzel, R. Gupta, I.B. Guzmán, R. Haake, M.K. Habib, C. Hadijkadi, H. Hamagaki, G. Hamal, M. Hamid, R. Hannig, M.R. Haque, A. Harlenderova, J.W. Harris, A. Harton, J.A. Hasenbichler, H. Hassani, Q.U. Hassan, T. Hatzifotiadou, N. Hatou, P. Hauser, L.B. Havener, S. Hayash, S.T. Heckel, E. Helbig, H. Helstrup, A. Hergetheblig, H. Hermann, E.G. Hernandez, G. Herrera Corra, F. Herrmann, K.F. Hetland, H. Hildebrand, C. Hillaert, B. Hippolyt, B. Hohlwege, H. Honeraman, G.H. Hong, D. Horak, A. Hornum, K.
Multiplicity dependence study of the pseudorapidity density

ALICE Collaboration
Multiplicity dependence study of the pseudorapidity density

ALICE Collaboration

57 INFN, Sezione di Padova, Padova, Italy
58 INFN, Sezione di Roma, Rome, Italy
59 INFN, Sezione di Torino, Turin, Italy
60 INFN, Sezione di Trieste, Trieste, Italy
61 Inha University, Incheon, Republic of Korea
62 Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
63 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
64 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
65 Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
66 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
67 Institute of Space Science (ISS), Bucharest, Romania
68 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
69 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
70 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
71 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
72 iThemba LABS, National Research Foundation, Somerset West, South Africa
73 Jeonbuk National University, Jeonju, Republic of Korea
74 Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
75 Joint Institute for Nuclear Research (JINR), Dubna, Russia
76 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
77 KTO Karatay University, Konya, Turkey
78 Laboratoire de Physique des 2 Infinis, Irène Joliot-Curie, Orsay, France
79 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
80 Lawrence Berkeley National Laboratory, Berkeley, California, United States
81 Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
82 Moscow Institute for Physics and Technology, Moscow, Russia
83 Nagasaki Institute of Applied Science, Nagasaki, Japan
84 Nara Women’s University (NWU), Nara, Japan
85 National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
86 National Centre for Nuclear Research, Warsaw, Poland
87 National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
88 National Nuclear Research Center, Baku, Azerbaijan
89 National Research Centre Kurchatov Institute, Moscow, Russia
90 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
91 Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
92 NRC Kurchatov Institute IHEP, Protvino, Russia
93 NRC «Kurchatov» Institute - ITEP, Moscow, Russia
94 NRNU Moscow Engineering Physics Institute, Moscow, Russia
95 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
96 Nuclear Physics Institute of the Czech Academy of Sciences, Řež u Prahy, Czech Republic
97 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
98 Ohio State University, Columbus, Ohio, United States
99 Petersburg Nuclear Physics Institute, Gatchina, Russia
100 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
101 Physics Department, Panjab University, Chandigarh, India
102 Physics Department, University of Jammu, Jammu, India
103 Physics Department, University of Rajasthan, Jaipur, India
104 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
105 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
106 Physik Department, Technische Universität München, Munich, Germany
107 Politecnico di Bari and Sezione INFN, Bari, Italy
108 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für
