Assessment of Water Quality for Tigris and Euphrates Water within Iraqi Borders

Muhammad Kh. Mohammed*1, Mohammed Sh. Najj1, Nabeel H. Ameen2, Huda N. Karkosh3
1Department of Science, College of Basic Education, Mustansiriyah University, Iraq
2Ministry of Science and Technology, Radiation and Nuclear Safety Directorate, Iraq
3Iraqi Radioactive Sources Regulatory Authority, Iraq
ms.bio2012@yahoo.com

Abstract: The Tigris and Euphrates Rivers represent the main sources of water in Iraq. The recent water crisis in the region has prompted the necessity of assessing the quality of the rivers water. Water quality from 33 locations along the Tigris and Euphrates Rivers were investigated in November 2020, December 2020, January 2021, and February 2021 to test 3 water quality chemical parameters in the selected stations along the Tigris and Euphrates Rivers. These parameters are pH, TDS and EC. The variations of total dissolved solids (TDS) along the Tigris and Euphrates Rivers in the survey period ranged from 100 to 5057 ppm, and the average value of TDS concentration was 862.3 ppm. For pH, the values measured during the survey period ranged from 6.4 to 7.6, with an average value of 7.2. The average electrical conductivity measured in Tigris and Euphrates Rivers during the survey period was 1717.6 µS, ranged from 230 to 9870 µS. The weighted arithmetic method was applied to compute the water quality index (WQI) for the overall sampling locations along the whole length of the Tigris and Euphrates Rivers within the Iraqi borders. The results showed that the estimated water quality index (17.28) was within the "Excellent" range (< 50).

Keywords: Water Quality, Tigris river, Euphrates river, pH, EC, TDS

1. Introduction

Extraction of water for domestic and agricultural use, mining, industrial production and power generation could lead to a deterioration in water quality that not only affect the aquatic ecosystem, but also the availability of drinking water [1]. More recently, the monitoring of water quality is becoming an important issue in watercourses and rivers affected by pollutant disposal. The discharge of domestic and industrial effluents are the main sources of water pollution. Physical and chemical properties for example pH and DO (dissolved oxygen) may determine the safety of water ecosystem [2]. Water quality is influenced by the quality and quantity of supplies that coming from various sources. Thus, comprehensive planning and management of water resources are essential for different uses [3]. For the purpose of communicating information on water quality, the water quality index is usually used [4]. Water quality is identified by comparing physio-chemical properties of the water sample with guidelines for water quality or standards.
The guidelines and standards for the quality of drinking water aim to provide clean and harmless water for human consumption and thus to protect human health. These are generally based on scientifically acceptable levels of toxicity to both humans and aquatic organisms [1].

Iraq relies heavily on surface waters that cross its borders from neighboring countries [5, 6]. The aim of this study is to assess the water quality of Tigris and Euphrates Rivers in Iraq by computing the water quality index for three parameters selected based on their importance and data availability in thirty-three areas.

2. Data Collection

Along the Tigris and Euphrates Rivers, 33 locations were selected to directly measure 3 water quality parameters (pH, total dissolved solids (TDS) and electrical conductivity (EC)) in November 2020, December 2020, January 2021, and February 2021, using pH/EC/TDS/temperature combined meter (MARTINI, Romania) (Fig. 1). Field measurements were taken from the areas shown in Fig.2, from middle of the rivers.

![Fig. 1. pH/EC/TDS/temperature combined meter (MARTINI, Romania)](image-url)
3. Water Quality Assessment

In this paper, the water quality index (WQI) was calculated for three parameters (TDS, pH and EC) for the selected thirty-three stations along the Tigris and Euphrates Rivers to classify the quality of water [7]:

$$WQI = \frac{\sum Q_i \times W_i}{\sum W_i}$$ \hspace{1cm} (1)

$$Q_i = \frac{N_i - N_o}{ST_i - N_o} \times 100$$ \hspace{1cm} (2)

$$W_i = \frac{1}{ST_i}$$ \hspace{1cm} (3)

where Q_i is the sub-index of the i^{th} parameter, W_i is the inverse weight of the standard value (ST_i) of the i^{th} parameter, ST_i is the standard value of the i^{th} parameter, N_i is the measured concentration value for the i^{th} parameter, and N_o is the ideal value for each parameter in water that has zero value, excluding the pH value which is equal to 8.5. For each survey location along the Tigris and Euphrates Rivers, the water quality rating (QWR) was given the deserve classification based on the category of the WQI (table 1).

Table 1. Water quality rating classification based on WQI value [7].

Value of WQI	Water quality rating (QWR)
< 50	Excellent
50–100	Good
4. Results and Discussion

The results of the field measurements for the water quality parameters analyzed in all the sampling locations during the survey period are shown in Table 1. The variations of total dissolved solids (TDS) along the Tigris and Euphrates Rivers in the survey period ranged from 100 to 5057 ppm, and the average value of TDS concentration was 862.3 ppm. For pH, the values measured during the survey period ranged from 6.4 to 7.6, with an average value of 7.2.

The average electrical conductivity measured in Tigris and Euphrates Rivers during the survey period was 1717.6 µS, ranged from 230 to 9870 µS.

The increase in TDS was observed with the flow of the two rivers in Iraq due to the waste, sewage and pollutants discharged along the river and due to low water levels in these rivers. It was also observed that the water of the Tigris River, according to the acidity (pH) measurements, is more acidic than the measurements of the Euphrates, especially from Mosul to Baghdad. The reason is that the nature of those lands that the river passes through contains sulfur minerals that affect the nature of the river’s water. For the Euphrates, it is more alkaline because of the nature of its soil in Anbar province that contains gypsum rocks and others that affect the nature of the water and its transformation more alkaline.

The results of water quality index calculations, based on average values for all sampling locations are presented in Table 2. The values of the water quality rating in these stations were good (WQI = 17.28 < 50). So, the water quality was classified as "Excellent" rating based on the WQI values at these sampling locations.

Table 2. Results of the field measurements for the water quality parameters.

No.	City/area	TDS (ppm)	pH	Conductivity (µS)
1	Al-Musil	100	7.5	230
2	Al-Shorkat	180	6.7	392
3	Baiji	210	6.8	405
4	Tekrit	305	6.9	620
5	Balad	310	7	632
6	Baghdad	420	6.4	780
7	Al-Aziziya	540	6.9	1074
8	Al-Zubaidiya	560	7.3	1194
9	Wassit	610	7.2	1220
10	Ali Al-Gharbi	660	7.4	1308
11	Ali Al-Sharqi	710	7.5	1420
12	Missan	860	7.1	1670
Table 2. Water quality calculation for Tigris and Euphrates rivers using Water Quality Index method.

Parameter	Nᵢ	ST	Wᵢ	Nₒ	Qᵢ	WQI
TDS (ppm)	862.3	500	0.002	0	172.46	0.344
pH	7.2	8.5	0.117	7	13.33	1.568
Conductivity	1717.6	1000	0.001	0	171.76	0.171
Overall WQI	2.08/0.12=17.28					

5. Conclusions
The quality of the Tigris and Euphrates Water Rivers deteriorates over time when the flow of the river flows downward. The increase in pollution is due to the discharge of effluents from various sources such as domestic wastewater, factories and irrigation water. From Weighted Arithmetic Water Quality Index method, the water quality was evaluated to be good, based on results of field pH, EC and TDS measurements.

Acknowledgements

The authors would like to express thanks to the Mustansiriyah University (www.uomustansiriyah.edu.iq) Baghdad – Iraq for its support in the current study.

References

[1] Al-Janabi Z. Z., Al-Kubaisi A. and Al-Obaidy J. M. A., 2012, “Assessment of Water Quality of Tigris River by Using Water Quality Index (CCME WQI)”, Journal of Al-Nahrain University, Vol.15 (1), March 2012, pp.119-126.

[2] Al-Obaidy J. M. A., Al-Janabi Z. Z. and Shakir E., 2015, "Assessment of Water Quality of Tigris River Within Baghdad City", mental Journal Mesopotamia Environ, 98 - pp. 90:35, Vol.1, No.201.

[3] Alsaqqar S. A., Hashim A. and Ali M. A., 2015, "Water Quality Index Assessment using GIS Case study: Tigris River in Baghdad City". International Journal of Current Engineering and Technology, EISSN 2277 – 4106, P-ISSN 2347 – 5161.

[4] Bashar J. J, 2016, “Application of Water Quality Index to Assessment of Tigris River”, International Journal of Current Microbiology and Applied Sciences. 5(10): 397–407.

[5] Fawzi A. N. and Mahdi A. B., 2014, "Iraq’s Inland Water Quality and Their Impact on the North- Western Arabian Gulf”. Marsh Bulletin 9(1) (2014):1-22.

[6] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N.; Salih, R.M. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, 7, 67.

[7] Salam Hussein Ewaid et al 2020 J. Phys.: Conf. Ser. 1664 012143.

[8] Ewaid, S.H., Abed, S.A., 2017. Water quality index for Al-Gharraf river, southern Iraq. Egypt. J. Aquatic Res. 43 (2), 117–122. http://dx.doi.org/10.1016/j.ejar.201703001.

[9] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N.; Salih, R.M. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, 7, 67.

[10] Sura K. A., 2018, "Assessment of the Tigris River Water Quality in Selected Iraqi Governments” International Journal of Science and Research (IJSR), 7 (1):500-504.

[11] Ali Chabuk, Qais Al-Madhlom, Ali Al-Maliki, Nadhir Al-Ansari, Hussain Musa Hussain, and Jan Lane, 2020, "Water quality assessment along Tigris River (Iraq) using water quality index (WQI) and GIS software", Arabian Journal of Geosciences, 13:654.