Zeolite as a natural adsorbent for nitrosonous compounds being removed from water

M Abdulredha 1, N R Kadhim2, A H Hussein3, M Almutairi4, R Alkhaddar5, D Yeboah5, K Hashim5,6
1 Department of Civil Engineering, College of Engineering, University of Kerbala, Kerbala, Iraq.
2 Department of Civil Engineering, College of Engineering, University of Warith AL-Anbiya’a, Kerbala, Iraq.
3 Al-Furat Al-Awsat Technical University, Technical Institute of Al-Mussaib, Iraq.
4 B.Sc. Student, Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK.
5 Department of Civil Engineering, Liverpool John Moores University, Liverpool L3 3AF, UK.
6 Department of Civil Engineering, College of Engineering, University of Babylon, Babylon, Iraq.

Abstract. Water is vital to the survival of humans and all other life forms, yet many sources of freshwater are being contaminated due to pollution, significantly limiting freshwater availability, and threatening human existence. Nitrates and ammonium are common water contaminants whose concentrations in water have increased significantly due to the excessive use of fertilisers. High concentrations of such contaminants in water can lead to multiple health issues, and thus controlling the concentration levels of these pollutants in water grows into the main task for environmental scientists. A natural zeolite filter was employed in this study to minimise traces of contaminants in water. Samples of synthetic polluted water were prepared that contained 50 mg/L of each contaminant for the laboratory tests. Testing natural zeolite doses ranging from 1 to 5 g/L at various pH levels (between 3 and 10) showed that a zeolite filter significantly improved the water quality from the initial concentrations of each pollutant by between 10 and 50 mg/l. In particular, more than 93% of both contaminants (nitrate and ammonium) were removed by using a 5 g/L dose of zeolite in a neutral pH level range for 120 minutes.

Keywords: nitrate, ammonium, water, zeolite filter.

1. Introduction
Massive amounts of water are available on earth, covering about 70% of its surface. However, freshwater represents only about 2.5% of this; all of the remaining water is salty [1, 2]. Further, less than 1% of the total quantity of fresh water theoretically available can be used for human consumption, as the majority of freshwater is captured in ice cover or groundwater [3-5]. Industrial sector expansion has also led to a significant increase in global pollution, creating huge quantities of polluted wastewater and significantly minimising the fresh water available for human use [6-8]. Recent studies have highlighted that fresh water is being polluted in an increasing rate with a range of pollutants, including biological pollutants [9, 10], heavy metals [11, 12], phosphates [13], nitrates [14, 15], fluoride [16, 17], turbidity [18, 19], phenols [20], and dyes [6, 21]. Nitrogenous ion pollutants such as nitrates and ammonium are among the main water pollutants creating serious health and environmental issues [22-24], and researchers are thus currently examining several different treatment
techniques, including biological [25, 26], chemical [27, 28], physical [29, 30], and combined techniques [14], to remove these contaminants from water or wastewater. Biologically, contaminants are converted into gaseous form using microorganisms, which removes them from water, and such biological approaches have been used by several researchers for water and wastewater treatment. For instance, Bidhendi, Nasrabadi, Vaghefi and Hoveidi [31] utilised anaerobic microorganisms to remove nitrates from water; they found that 120 minutes of treatment of the polluted water eliminated more than 75% of nitrates and about 80% of chemical oxygen demand (COD). He, Ye, Sun, Cai, Ni, Li, and Xie [32] employed anaerobic microorganisms to reduce nitrogenous contamination in water, with the result that more than 93% of nitrogenous contamination was removed. However, these biological methods have several drawbacks, such as required treatment duration, the required area for construction, sensitivity to ambient temperature, and the pH of water, which significantly limit their application [33, 34].

Chemical and physical de-nitrification processes are commonly used for nitrates removal from water. In these processes, chemicals such as iron or aluminium salts are used to convert nitrogenous ions into gases [29]. Although the chemical methods remove large quantities of nitrates, experiments have shown that these methods consume large amounts of metallic salts and produce large volumes of sludge [15], which in turn requires complex solid waste management plans [35-37]. Contaminants are removed in physical methods through trapping with filter media [1, 38]. The relevant literature has pointed out that many industrial constituents can be used to remove nitrogenous contamination from water, including clay adsorbents and activated carbon [39, 40].

Other scholars have combined both chemical and physical methods to remove pollutants from water. Dosta, Rovira, Galf, Macé, and Mata-Alvarez [41] employed coagulation-flocculation to improve rates of ammonium and other pollutant removal from wastewater. Dosta, Rovira, Galf, Macé and Mata-Alvarez [41] further highlighted that the application of coagulation-flocculation removed 1.17 kg/m3.day of COD in their work. However, using this combination is expensive and requires appropriate controlled environments.

Researchers have noted that filtration techniques are an attractive option for removing nitrogenous ions due to cost-effectiveness and ease of operation [39, 42]. Rožič, Cerjan-Stefanović, Kurajica, Vančina, and Hodžić [43], for example, employed a mixture of zeolite and clay to remove ammonium from water, with 61.10 % of ammonium being removed after 120 minutes of filtration at a pH level of 5.5. Wang, Kmiya and Okuhara [44] also highlighted that ammonia could be efficiently removed from water using zeolite filters.

Filtration methods thus provide an attractive option for removing pollutants such as nitrogenous ions from water and wastewater. These methods can efficiently remove nitrogenous ions from water and wastewater in addition to offering other attractive advantages such as low cost, ease of operation, and eco-friendliness. The current research thus investigated the use of a natural zeolite filter (clinoptilolite) in the removal of nitrogenous ion pollutants from water. Clinoptilolite was used in this research as it is a readily available and inexpensive natural material [22, 23]; in addition, the isoelectric point for the natural zeolite filter is about 3 [45], maximising the adsorption capacity of the filter media at low pH levels (about 3).

2. Methodology

2.1. Materials

The chemicals and zeolite used in this study were provided by the Department of Civil Engineering, Liverpool John Moores University. All materials were implemented in the experiments without adjustment or decontamination. The filter used in this research was clinoptilolite, selected due to its wide application in water and wastewater treatment [13].
2.2. Solution
A polluted solution with 200 mg/L of nitrates and 50 mg/L ammonium was produced for the experiments. A suitable amount of KNO₃ was dissolved in four litres of deionised water to create a concentration of 200 mg/L of nitrates. The 50 mg/L concentration of ammonium in the solution was achieved by adding anhydrous ammonium-chloride salt, NH₄Cl. Subsequently, the prepared polluted water was cooled to produce the required samples with a range of pollution concentrations (10, 30, and 50 mg/L for both pollutants). HCl and NaOH were used to control the pH value of the solution.

2.3. Batch filtration process
Batch experiments were employed to examine the zeolite filter’s effects on the removal of both pollutants (nitrates and ammonium) from the polluted water. Initially, 500 ml of contaminated water was placed in a 1,000 ml plastic vessel with the filter media (zeolite) for one hour and 40 minutes. Samples of 10 ml were collected every 20 minutes to test the removal efficiency of the filter. The concentrations of both pollutants were measured using a Hach-Lange spectrophotometer (DR-2700), standard nitrate cuvettes (LCK 339 and LCK 340), and standard ammonium cuvettes (LCK 304 and LCK 303).

The impact of pH level on the removal efficacy of the filter media was studied by altering the pH level of the polluted water from acidic (3) to neutral (6.5), and then to basic (10). The impact of both pollutants’ initial concentrations on the elimination competence of the filter was also examined by changing the concentrations from 10 to 50 mg/L while the influence of filter dose was analysed by adding several doses of zeolite including 1, 3, and 5 g/l.

Finally, the removal efficiency of the zeolite filter for nitrogenous pollutants (nitrates and ammonium) was determined using the following equation [29]:

\[
\text{Filter efficiency} (\%) = \frac{A_1 - A_2}{A_1} \times 100
\]

where \(A_1\) and \(A_2\) are the primary and final contaminant concentrations, respectively.

3. Results and discussion

3.1. Influence of pH level
The influence of pH level on the removal efficiency of nitrogenous pollutants was investigated by treating 500 ml water with 3 g/l of zeolite filter for 30 minutes at a range of pH levels, with values from 3 to 10.

Figure 1 provides a graphic representation on the impact of pH on the removal efficacy of nitrogenous pollutants. The removal efficiency for both pollutants increased with the decrease in wastewater acidity. The best removal efficiency was reached at a neutral pH level (from 5 to 7), as when the wastewater became alkaline (pH higher than 7), the removal efficiency decreased with the increase in pH level. This variation in elimination efficiency occurs due to the impact of pH on the charge of the filter. Researchers have highlighted that the surface of zeolite became negative at high pH values, which in turn prevents the adsorption of the negatively charged nitrates and ammonium [13]. However, as the isoelectric point for the natural zeolite filter is about 3 [45], the surface of the filter media (zeolite) encompasses more protons at very low pH levels, which in turn minimizes the removal efficiency of the filter media [46]. At moderate pH levels (between 5 and 7), the filter media is positively charged, however, which attracts the negatively charged nitrogenous pollutants [46]. Accordingly, a pH level of 6.5 was selected for experiments to identify the impact of initial pollutant concentration, zeolite dose, and contact time.
Figure 1. Impact of pH on the removal of nitrogenous pollutants (nitrates and ammonium).

3.2. The impact of initial pollutant concentrations
The influence of initial pollutant concentrations for nitrates and ammonium on the removal performance of the zeolite was analysed by treating 500 ml water at a pH level of 6.5 with 3 g/L of zeolite for 30 minutes with pollutant concentrations of 10, 30, and 50 mg/l. As illustrated in figure 2, the removal of both pollutants declined with the increase in their initial concentrations, most likely due to the ions of the pollutants contesting with each other for available adsorption sites [46]. With higher initial concentration and a constant zeolite dose, the availability of sites on the filter media is significantly lower than the negative ions available to be absorbed, leading to untreated pollutants remaining.

Figure 2. The impact of initial concentration on the removal of pollutants.

3.3. The influence of the zeolite dose
The dosage of media adsorbent strongly influences the removal of both nitrates and ammonium, as this is the main factor affecting the superficial area available for adsorption. Accordingly, the impacts of zeolite filter on the removal of both pollutants from the water were considered by treating the same sample size (500 ml) of water for the same duration (30 minutes) at the optimum pH level of 6.5. The pollutants’ initial concentration was 50 mg/L, while the doses of zeolite were 1, 3 and 5 g/L, allowing examination of the impact of the zeolite quantity on pollutant treatment. Figure 3 highlights that the increase in the zeolite dose significantly increased the removal of both nitrogenous pollutants. This confirms that the higher the zeolite dose, the more space is available to adsorb pollutants which significantly enhances the removal of both nitrates and ammonium.
3.4. The influence of contact time

Time plays a vital role in any water treatment activity, particularly filtration. Extended time in treatment allows longer contact between the nitrates and the ammonium ions and the adsorbent. Thus, the influence of treatment duration on the removal of both pollutants was analysed by treating samples of size of 500 ml with initial pollutant concentrations of 50 mg/l and a pH level of 6.5 for 120 minutes with a zeolite dose of 5 g/l. The outcomes, shown in Figure 4, highlight that the removal efficiency of the nitrogenous contamination improved to reach over 93% for both contaminants (nitrates and ammonium) by the end of 120 minutes.

4. Conclusions

This study investigated the use of a natural zeolite, clinoptilolite, for the treatment of nitrogenous pollutants (the nitrates and the ammonium) in water and wastewater. Based on the experimental study, the natural zeolite is a suitable option for the removal of both nitrates and the ammonium ions from water or wastewater. Higher zeolite doses and longer contact times provide better removal of nitrogenous contaminants from water and wastewater, although the removal effectiveness of the zeolite filter is affected by the pH value of the treated wastewater. A neutral pH is the most favourable for using clinoptilolite for the treatment of nitrogenous pollutants.

Acknowledgement: The authors from LJMU are very grateful to their colleagues from Iraq for carrying out the required laboratory tests.
5. References

[1] Hashim K S, AlKhaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljefery M H 2020 Advances in Water Resources Engineering and Management: Springer) pp 219-35

[2] Abdulla G, Kareem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020 Removal of iron from wastewater using a hybrid filter. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012035

[3] Hashim K S, Idowu I A, Jasim N, Al Khaddar R, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W and Abdulredha M 2018 Removal of phosphate from River water using a new baffle plates electrochemical reactor MethodsX 5 1413-8

[4] Zanki A K, Mohammad F H, Hashim K S, Muradov M, Kot P, Kareem M M and Abdulhadi B 2020 Removal of organic matter from water using ultrasonic-assisted electrocoagulation method. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012033

[5] Abdulredha M, Kot P, Al Khaddar R, Jordan D, Abdulridha A J E, Development and Sustainability 2020 Investigating municipal solid waste management system performance during the Arba’een event in the city of Kerbala, Iraq 22 1431-54

[6] Hashim K S, Al-Saati N H, Alqzweeni S S, Zubaidi S L, Kot P, Kraidy L, Hussein A H, Alkhaddar R, Shaw A and Alwash R 2019 Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters. In: First International Conference on Civil and Environmental Engineering Technologies (ICCEET), (University of Kufa, Iraq pp 25-32

[7] Hashim K S, Hussein A H, Zubaidi S L, Kot P, Kraidy L, Alkhaddar R, Shaw A and Alwash R 2019 Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. In: 2nd International Scientific Conference, (Al-Qadisiyah University, Iraq pp 12-22

[8] Hashim K S, Khaddar R A, Jasim N, Shaw A, Phipps D, Kota P, Pedrola M O, Alattabi A W, Abdulredha M and Alawsh R 2019 Electrocoagulation as a green technology for phosphate removal from River water Separation and Purification Technology 210 135-44

[9] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljefery M 2020 Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater Journal of Water Process Engineering 33 101079-86

[10] Hashim K S, Ali S S M, AlRifaie J K, Kot P, Shaw A, Al Khaddar R, Idowu I and Gkantou M 2020 Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor Chemosphere 247 125868-75

[11] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017 Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor Journal of Environmental Management 189 98-108

[12] Hashim K S, Al-Saati N H, Hussein A H and Al-Saati Z N 2018 An investigation into the level of heavy metals leaching from canal-dreged sediment: a case study metals leaching from dreged sediment. In: First International Conference on Materials Engineering & Science, (Istanbul Aydin University (IAU), Turkey pp 12-22

[13] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020 Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012031

[14] Al-Marri S, Alqzweeni S S, Hashim K S, AlKhaddar R, Kot P, AlKiizwini R S, Zubaidi S L and Al-Khafaji Z S 2020 Ultrasonic-Electrocoagulation method for nitrate removal from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012073

[15] Mohammed A-H, Hussein A H, Yeboah D, Al Khaddar R, Abdulhadi B, Shubbar A A and Hashim K S 2020 Electrochemical removal of nitrate from wastewater. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012037
[16] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Falju D, Muradov M, Kot P and Abdulhadi B 2020 Cost-effective hybrid filter for remediation of water from fluoride. In: *IOP Conference Series: Materials Science and Engineering* (IOP Publishing) p 012038

[17] Hashim K S, Shaw A, Al Khaddar R, Ortoneda Pedrola M and Phipps D 2017 Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach *Journal of Environmental Management* 197 80-8

[18] Alenazi M, Hashim K S, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020 Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. In: *IOP Conference Series: Materials Science and Engineering* (IOP Publishing) p 012064

[19] Alyafei A, AlKizwini R S, Hashim K S, Yeboah D, Gkantou M, Al Khaddar R, Al-Faluji D and Zubaidi S L 2020 Treatment of effluents of construction industry using a combined filtration-electrocoagulation method. In: *IOP Conference Series: Materials Science and Engineering* (IOP Publishing) p 012032

[20] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makkiabadi M, Naghdali Z, Hashim K S and Ghanbari R 2019 Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes *Separation Science and Technology* 1-11

[21] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020 Electrochemical removal of brilliant green dye from wastewater. In: *IOP Conference Series: Materials Science and Engineering* (IOP Publishing) p 012036

[22] Mažeikiene A, Valentukevičiene M, Rimeika M, Matuzevičius A B and Dauknys R 2008 Removal of nitrates and ammonium ions from water using natural sorbent zeolite (clinoptilolite) *Journal of Environmental Engineering and Landscape Management* 16 38-44

[23] Onyango M S, Masukume M, Ochieng A and Otieno F 2010 Functionalised natural zeolite and its potential for treating drinking water containing excess amount of nitrate *Water SA* 36

[24] Abdulredha M, Abdulridha A, Shubbar A, Alkhaddar R, Kot P and Jordan D 2020 Estimating municipal solid waste generation from service processions during the Ashura religious event. In: *IOP Conference Series: Materials Science and Engineering* (IOP Publishing) p 012075

[25] Alattabi A W, Harris C, Alkhaddar R, Alzyayadi A and Hashim K 2017 Treatment of Residential Complexes’ Wastewater using Environmentally Friendly Technology *Procedia Engineering* 196 792-9

[26] Alattabi A W, Harris C B, Alkhaddar R M, Hashim K S, Ortoneda-Pedrola M and Phipps D 2017 Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor *Journal of Water Process Engineering* 20 207-16

[27] Al-Saati N H, Hussein T K, Abbas M H, Hashim K, Al-Saati Z N, Kot P, Sadique M, Aljefery M H and Carnacina I 2019 Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study *Desalination and Water Treatment* 150 406-12

[28] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Al-Jumeily D, Shaw A, Ruddock F and Aljefery M 2019 Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel *Desalination and Water Treatment* 168 165-74

[29] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017 Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach *Journal of Environmental Management* 196 224-33

[30] Abdulhadi B A, Kot P, Hashim K S, Shaw A and Khaddar R A 2019 Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. In: *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)*, (University of Kufa, Iraq pp 12-22

[31] Bidhendi G N, Nasrabad T, Vaghefi H S and Hoveidi H 2006 Biological nitrate removal from water resources *International Journal of Environmental Science & Technology* 3 281-7
[32] He T, Ye Q, Sun Q, Cai X, Ni J, Li Z and Xie D 2018 Removal of nitrate in simulated water at low temperature by a novel psychrotrophic and aerobic bacterium, Pseudomonas taiwanensis Strain J BioMed research international 2018

[33] Mukherjee S, Mukhopadhyay S, Hashim M A and Sen Gupta B 2015 Contemporary environmental issues of landfill leachate: assessment and remedies Critical reviews in environmental science and technology 45 472-590

[34] Abdulredha M, al-Khaddar R, Kot P, Jordan D and Abdulridha A 2018 Benchmarking of the Current Solid Waste Management System in Karbala, Iraq. Using Wasteaware Benchmark Indicators. In: World Environmental and Water Resources Congress 2018: Groundwater, Sustainability, and Hydro-Climate/Climate Change: American Society of Civil Engineers Reston, VA) pp 40-8

[35] Abdulredha M, Rafid A, Jordan D and Hashim K 2017 The development of a waste management system in Kerbala during major pilgrimage events: determination of solid waste composition Procedia Engineering 196 779-84

[36] Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A and Hashim K 2018 Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression Waste Management 77 388-400

[37] Idowu I A, Atherton W, Hashim K, Kot P, Alkhaddar R, Alo B I and Shaw A 2019 An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences Waste Management 87 761-71

[38] Abdulraheem F S, Al-Khafaji Z S, Hashim K S, Muradov M, Kot P and Shubbar A A 2020 Natural filtration unit for removal of heavy metals from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012034

[39] Bhattacharyya K G and Gupta S S 2008 Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review Advances in colloid and interface science 140 114-31

[40] Islam M and Patel R 2010 Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency Desalination 256 120-8

[41] Dosta J, Rovira J, Galí A, Macé S and Mata-Alvarez J 2008 Integration of a Coagulation/Flocculation step in a biological sequencing batch reactor for COD and nitrogen removal of supernatant of anaerobically digested piggery wastewater Bioresource technology 99 5722-30

[42] Abdulrehaem M, Rafid A, Jordan D and Alattabi A J P e 2017 Facing up to waste: how can hotel managers in Kerbala, Iraq, help the city deal with its waste problem? 196 771-8

[43] Rožić M, Cerjan-Stefanović Š, Kurajica S, Vančina V and Hodžić E 2000 Ammoniacal nitrogen removal from water by treatment with clays and zeolites Water Research 34 3675-81

[44] Wang Y, Kmiya Y and Okuhara T 2007 Removal of low-concentration ammonia in water by ion-exchange using Na-mordenite Water research 41 269-76

[45] Liu S, Ding Y, Li P, Diao K, Tan X, Lei F, Zhan Y, Li Q, Huang B and Huang Z 2014 Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide Chemical Engineering Journal 248 135-44

[46] Mohsenibandpei A, Alinejad A, Bahrami H and Ghaderpoori M 2016 Water solution polishing of nitrate using potassium permanganate modified zeolite: parametric experiments, kinetics and equilibrium analysis Global Nest Journal 18 546-58