Evolutionary and demographic consequences of phenological mismatches

Marcel E. Visser* and Phillip Gienapp*

Climate change has often led to unequal shifts in the seasonal timing (phenology) of interacting species, such as consumers and their resource, leading to phenological ‘mismatches’. Mismatches occur when the time at which a consumer species’s demands for a resource are high does not match with the period when this resource is abundant. Here, we review the evolutionary and population-level consequences of such mismatches and how these depend on other ecological factors, such as additional drivers of selection and density-dependent recruitment. This review puts the research on phenological mismatches into a conceptual framework, applies this framework beyond consumer–resource interactions and illustrates this framework using examples drawn from the vast body of literature on mismatches. Finally, we point out priority questions for research on this key impact of climate change.

Phenology, the seasonal timing of life-cycle events, is generally important for individual fitness because, for each of these events, a period exists during which environmental conditions are most advantageous — an ‘optimal time window’. For many species and phenological events, this optimal time window is set by the phenology of other species. The phenologies of many species have shifted in response to global climate change, but often the shift is not at the same rate among species1–4. For example, terrestrial invertebrates shifted their phenology faster (4.1 days per decade) than terrestrial vertebrates (2.6 days per decade)5. When the phenologies of interacting species, such as a consumer and its resource, shift at different rates5, this may lead to a mismatch in phenology6.

Mismatched phenology between the phenology of resource and consumer should affect demographic rates of the consumer because of reduced reproductive success or survival. They can also lead to selection on seasonal timing of the consumer because individuals that are better matched to the phenology of the resource will have a higher fitness than individuals that are less well matched. To address the consequences of mismatches from both a population-level and evolutionary perspective, we will discuss a conceptual framework of mismatch that goes beyond the often-studied consumer–resource interactions, and that clearly outlines evolutionary and population-level consequences of mismatches. We will illustrate this framework with examples from the vast literature on consumer–resource mismatches and end by presenting priority questions for further research.

Conceptual framework

Mismatched phenology. The mismatch concept was introduced as a ‘critical period’ by Hjort6 and extended by Cushing7, who termed it the ‘match–mismatch hypothesis’ in his study on annual variation of recruitment in fish populations in marine ecosystems. In this usage of the term, mismatches are said to occur when the time in the annual cycle when resource demands of the consumer species (predators, herbivores) are highest does not match with the time when its resource (prey, plants) is most abundant8–12 (Fig. 1a). Instead of using mismatch as a descriptor, other authors have used the terms ‘synchrony’ and ‘asynchrony’13–16.

Much of the research on the match–mismatch hypothesis has focused on the timing of peak resource demands of consumers, which has to match the timing of the peak resource availability. A more precise measurement of mismatches than this difference in peak phenology is temporal overlap between the distributions of demands and availability13,14 (but unpublished data from J. J. C Ramakers, P.G. and M.E.V. points out methodological problems with calculating this overlap). The height of the resource peak is also of relevance: in years or areas where resources are plentiful, it is likely that a (mild) mismatch will not have any negative effects on the consumer.

More recently, the match–mismatch framework has also been applied to species interactions other than consumer and resource, such as pollinator and plant17, host and parasite18, and species competing for a resource19. In the following, we will, however, focus on mismatches between consumers and their resources because this kind of mismatch has been the most frequently studied. We will discuss other kinds of mismatches in ‘Priority questions for the field’.

Why mismatches occur. A key issue of seasonal timing is that, in many biological systems, the optimal time for phenological events varies from year to year depending on environmental conditions. To track this interannual variation, seasonal timing is often phenotypically plastic20,21. Individuals are either directly constrained by environmental variables because of, for example, their ectothermic physiology, or they use environmental variables (termed ‘cues’) that are predictive of the optimal time window to adjust their phenology22. The two cues most relevant for phenology are photoperiod and temperature23, but also rainfall24 and development of vegetation25 have been shown to play a role.

The relative importance of the different variables that affect phenology varies among different species, as does the ways they respond to these variables. Mismatches between trophic levels can thus occur because the cue used by one trophic level has changed at a different rate than the cue used by the other trophic level26–28. Even if two species both rely on temperature, these cues are often temperatures during different periods in the year. Climate change has not led to

Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands. *e-mail: m.visser@nioo.knaw.nl; p.gienapp@nioo.knaw.nl

NATURE ECOLOGY & EVOLUTION | VOL 3 | JUNE 2019 | 879–885 | www.nature.com/natecolevol

879
Evolutionary consequences of mismatches at the individual level. Mismatches can lead to selection on phenology if better-matched individuals have a higher fitness than individuals who are not as well matched. If consumer phenology is heritable, this selection should lead to an evolutionary response. In this section, we will discuss the difference between mismatch and ‘mistiming’ and whether mismatch necessarily leads to mistiming.

For most traits, there is an optimal phenotype, and an individual’s fitness will decline the more their phenology deviates from the optimal phenotype. Mistiming (rather than mismatch) is then defined as the deviation between the actual (either of the individual or the population) and the optimal phenotype (Fig. 1b). Depending on the phenomenological event, different fitness components can be affected — for example, reproductive success in the case of breeding or survival in the case of migration phenology. When the fitness of a consumer depends solely or very strongly on mismatch with their resource’s phenology, as is the case in many bird species, reproductive success depends on food phenology29–31, mismatches lead to selection on phenology30 and thus mismatch equals mistiming.

However, if fitness depends (additionally) on other ecological variables, there may be no relationship between mismatches and mistiming. For example, prebreeding survival of long-distance migrants may be affected by temperatures upon arrival at their breeding grounds29, and this additional fitness component may shift the optimal breeding time to a later date compared to the date where there would be a match with the phenology of their resources. Since selection on a trait depends on whether total fitness, the net effect of all fitness components, co-varies with the trait, true mistiming may also depend on environmental variables other than only mismatch, such as the cost of egg production under conditions in early spring that are potentially still adverse38,40. In that case, animals may be optimally mismatched — the fitness of the consumer is maximized at some degree of mismatch with the peak in resource availability (Fig. 2a).

Optimal mismatches can also be caused by a non-symmetrical fitness curve for consumer phenology relative to the timing of peak abundance of its resource because consumer phenology will have evolved away from the ‘fitness cliff’, the range of phenologies where fitness strongly declines40–42. Such asymmetric ‘fitness landscapes’ can arise through the combination of different fitness components (Fig. 2b). In the Edith’s checkerspot butterfly (Euphydryas editha), there may be life-history trade-offs between fecundity and mortality that can lead to optimal mismatches41. In migratory birds, frequency-dependent competition for breeding territories can result in asymmetric relationships between reproductive success and date of arrival at breeding grounds, even though the fitness landscape determined by breeding resources might have a symmetrical distribution43,44. A similar argument can be made when the costs of egg production are dependent on timing45,46; thus, a better match between offspring needs and resource availability will reduce fitness because of the fitness costs of producing eggs early in the season when conditions are still harsh47 (see ref. 47 for an overview of such complex evolutionary consequences of mistiming).

While many studies have reported potential mismatches between trophic levels15, the number of studies showing that these mismatches led to selection, that is, that the phenologies of individuals were truly mismixed, is more limited33–37. These studies generally reported increasing selection with increasing mismatch, but some studies lack data on resource phenology and only used temperature as a proxy for mismatch33,34,37. This limited evidence for mismatch driving selection on phenology can be explained by the logistical challenges of obtaining individual-level data on mismatch and fitness in wild populations, which have also limited such studies to mainly birds and mammals.
a too-early hatch date relative to the timing of their food: the bud burst of the Oak (Quercus robur)\(^6\). Over a decade of selection has now led to genetic adaptation in the moths, and the egg hatching date has shifted to later dates\(^6\).

Population-level consequences of mismatches. To analyse the effects of mismatch on demography, the demographic rate of interest is often regressed against ‘population mismatch’: the difference between the mean population phenology and the resource phenology (the overall mean of individual mismatches)\(^6\) (Fig. 3a,b). When individual mismatch is an important driver of selection, that is, has a strong effect on fitness, population mismatch will affect demographic rates, such as population offspring production or mean adult survival. This link between population mismatch and demographic rates can, however, be complicated by the fact that the ‘height’ of fitness landscape may differ among years (Fig. 3b). Theoretically, variation in resource height could correlate with (population) mismatch, which would lead to complex relationships between mismatch and demographic rates.

Even when population mismatch affects demographic rates, there may not be a clear effect on population numbers. Density dependence can buffer these effects when, for instance, recruitment rates of offspring decrease with the number of offspring produced. This has been shown in great tits (Parus major), where population mismatch led to lower number of fledged offspring, but recruitment of these offspring was higher in years with low offspring production (because density-dependent winter survival increased juvenile recruitment); hence, there was no detectable effect of population mismatch on population growth rate\(^6\). This shows that inferring negative effects of mismatch on population dynamics without demonstrating this link in the data (for example, refs. \(^{49,52}\)) may be problematic.

A number of studies have found negative effects, mostly in reproductive success, of mismatched phenology that impact demographic rates in terrestrial\(^{25,30–32}\), freshwater\(^{27}\) and marine systems\(^{58,59}\). For example, among caribou (Rangifer tarandus), roe deer (Capreolus capreolus) and the arctic breeding Ross’s goose (Chen rossii) and lesser snow goose (Chen caerulescens caerulescens), increased temperatures have led to a phenological mismatch between timing of reproduction and plant growth phenology, which has reduced reproductive success\(^{55–57}\). Similarly, increasing mismatch between breeding time in common murre (Uria aalge) and the timing of inshore migration of their main prey, the capelin (Mallotus villosus), has reduced reproductive success despite increased adult foraging effort\(^6\).

Unfortunately, there is an even more limited number of studies that have analysed the effects of mismatch on both demographic rates and natural selection on a trait\(^{45,53,54}\), which limits our ability to reliably predict eco-evolutionary consequences of mismatch and hence the likelihood of successful adaptation to climate change. Interestingly, for various reasons, none of these studies found demographic consequences of selection. In one case, mismatch increased selection on breeding time in great tits and expectedly reduced reproductive success, but population growth was unaffected owing to density-dependent winter survival\(^6\). In another case, demographic rates of wheatears (Oenanthe oenanthe) markedly declined simultaneously with a reduction in ‘thermal matching’, which is a proxy for phenological match between the consumer and its resource\(^6\). Selection, however, did not increase and even changed from directional to more or less absent. This counterintuitive finding could be explained by relaxed selection on arrival time, mediated by reduced competition for high-quality territories due to small population sizes\(^6\).

Priority questions for the field

Below, we outline four priority research questions in the field of phenological mismatches.
1. Eco-evolutionary interactions of mismatches

As highlighted above, mismatches can have evolutionary (through selection) and ecological (through demography) effects. These effects can even interact, for example, reduced population density relaxes selection\(^1\), which would reduce the need for evolutionary responses. Such eco-evolutionary interactions may be more common than previously thought: it is now increasingly realized that evolutionary and ecological processes can happen at similar timescales\(^1\). The evidence for such eco-evolutionary interactions is, however, likely limited by the need for individual-level fitness data to quantify selection, which requires linking parent and offspring. Furthermore, it would also be desirable to explore the (quantitative) genetics of phenological traits to assess whether they could respond fast enough to selection. Studies quantifying selection and (quantitative) genetics have been mostly limited to mammal and bird species for logistical reasons, but the increasing availability of genomic tools for ‘non-model’ species could potentially overcome these hurdles\(^2\).

2. Experimental approach to fitness consequences of mismatches

Key to the match–mismatch hypothesis is that there are negative fitness effects of being mismatched. To assess fitness consequences of mismatch, correlative data are most often used\(^3\). However, there is a large body of literature from life-history theory that shows that to establish the true, causal link between a trait, here phenology, and fitness, experimental work is needed in which the phenology of individuals are shifted and their fitness is measured (see ref. \(^1\) for a review). Such experimental work that has assessed whether mismatches are indeed mistiming is extremely rare. In one example, flowering time of plants was experimentally manipulated in the greenhouse, and then visitation rates by pollinators, as a proxy for pollination, were measured\(^4\). To determine how often mismatches indeed lead to selection as opposed to reflecting pre-existing adaptive mismatches, or adaptive responses to environmental change (when individuals maximize their fitness, even when they are mismatched, with the phenology of their resource), more experimental work is needed.

3. Mismatches in interactions other than consumer–resource

Most of the reported instances of mismatches concern mismatches between consumers and their resource, but obviously other types of species interactions, such as predation risk, competition and mutualism, can also become mismatched. Another potential area where mistiming can occur is between life-cycle stages ‘within’ a species (see Box 1).

Studies on mismatches between consumer and resource have typically studied demographic or evolutionary consequences for the consumer, but ignored consequences of altered phenological match for the resource\(^5\). For example, in the United Kingdom, newts (Triturus spp.) now enter ponds earlier in the year, whereas frogs (Rana temporaria) have not advanced their breeding phenology. As a consequence, the frog larvae are subjected to higher levels of newt predation\(^6\). Also, increasing temperatures have increased the overlap in autumn migration times of long-distance migratory birds and one of their avian predators, the sparrowhawk (Accipiter nisus), while they have decreased the overlap between short-distance migrants and sparrowhawks, but consequences on these populations remain unclear\(^7\). However, the consequences of mismatches do not need to be of similar importance for the different trophic levels\(^8\). For instance, it may be important for the predator to be matched with the phenology of its prey, predation may not be an important selection pressure on the phenology of the prey, as in the case of the great tit and their caterpillar prey. As these temporal distributions of predation risks are much harder to measure, more studies on predation risk phenology are needed.

Mismatches may also play a role in competition. For example, increasing temperatures have altered the competitive interactions between bird species and between plankton species and thereby equilibrium population densities and community structures\(^9\). In the case of mutualisms, for example, between plants and pollinators, species are also likely to become
Mismatched with each other since climate change affects different trophic levels at different rates. Some life-cycle events will be more sensitive to photoperiod (for example, moult in birds), while others are more sensitive to temperature (such as reproduction). Such differing sensitivities can lead to differential shifts in the phenology of these life-stages owing to climate change, provided that there are no strong effects of one life-cycle stage on the phenology of the next stage. Examples of differential shifts in the phenologies of coupled life-history traits are arrival date and breeding date in migratory birds, in which an arrival date that does not shift could potentially constrain shifts in breeding phenology. However, changes in temperature can also lead to differential shifts in reproduction and moult. For example, in pied flycatchers (Ficedula hypoleuca), moult is comparatively less sensitive than reproduction. In red deer (Cervus elaphus) the phenologies of 6 traits were measured over a 28-year period, and, in female deer, parturition dates advanced almost twice as fast as date of first oestrus. In males, antler casting and cleaning advanced at a similar rate, but the end of the rut shifted twice as fast as its start dates. Clearly, mistiming within the annual life-cycle could be very common.

Box 1 | Mistiming in annual life-cycles

Differential shifts in phenological events may happen not only between species, but also between different life-cycle stages within an individual, as these life-cycles stages may respond differently to a cue. Some life-cycle events will be more sensitive to photoperiod (for example, moult in birds), while others are more sensitive to temperature (such as reproduction). Such differing sensitivities can lead to differential shifts in the phenology of these life-stages owing to climate change, provided that there are no strong effects of one life-cycle stage on the phenology of the next stage. Examples of differential shifts in the phenologies of coupled life-history traits are arrival date and breeding date in migratory birds, in which an arrival date that does not shift could potentially constrain shifts in breeding phenology. However, changes in temperature can also lead to differential shifts in reproduction and moult. For example, in pied flycatchers (Ficedula hypoleuca), moult is comparatively less sensitive than reproduction. In red deer (Cervus elaphus) the phenologies of 6 traits were measured over a 28-year period, and, in female deer, parturition dates advanced almost twice as fast as date of first oestrus. In males, antler casting and cleaning advanced at a similar rate, but the end of the rut shifted twice as fast as its start dates. Clearly, mistiming within the annual life-cycle could be very common.

Examples of mismatch affecting reproductive success. In common murres (U. aalge, top left), great tits (P. major, top right), caribou (R. tarandus, bottom left) and roe deer (C. capreolus, bottom right), mean breeding success is reduced in years with an increased population-level mismatch between breeding phenology and the phenology of the main food resource. Credit: Simon Litten/Alamy Stock Photo (top left); imageBROKER/Alamy Stock Photo (top right); Ron Niebrugge/Alamy Stock Photo (bottom left); Pim Leijen/Alamy Stock Photo (bottom right)
dates have shifted in Finland, which can lead to mismatches between these practices and breeding time of farmland or meadow birds, possibly negatively affecting their reproductive success and population numbers\(^3\). Mismatches may also have consequences for biochemical processes, but these are hardly explored. For instance, a mismatch between the geese grazing and plant growing season in arctic coastal wetlands affected the greenhouse gas fluxes\(^6\).

4. Community ecological effects and ecosystem consequences
Most research on the match–mismatch hypothesis focuses on pairwise predator–prey, plant–herbivore or plant–pollinator interactions. However, the selection on phenology of a focal species depends on the (mis)matched phenology with the many species it interacts with. For example, a plant that is pollinated by many different insect species will not suffer from mismatch with a single species\(^7\). The challenge is scaling up from pairwise interactions to more complex food webs. Only via a better understanding of entire food web phenology can we understand community\(^8\) and possibly ecosystem-level consequences of climate change-induced shifts in phenology\(^9\). Some pioneering work has been done in this area using food web models that involve phenological shifts\(^10,11\) and in plant–pollinator communities\(^12\). The way forward is to assess the strength of the connections between different species in a food web and then to determine how these change because of the differential shifts in phenology of the different species. Following that, the properties of the networks before the shifts in phenology and after the shifts in phenology can be assessed using network theory to evaluate, for instance, whether the network has become less stable. For this, detailed experimental work is needed, for instance in simplified food webs where the phenology of the species can be manipulated. This is, however, not a trivial challenge.

Concluding remarks
Phenological mismatches are one of the clearest consequences of climate change, and, over the past two decades, an impressive body of literature in this area has been built up. We have outlined a conceptual framework and illustrated it with key examples from the body of literature. Challenges for the next decade are further study of the population-level and evolutionary consequences of mismatches, for which long-term studies are essential, and, from there, examination of ecological effects on communities and ecosystem consequences. Ultimately, what is needed is a link between climate change predictions and the predicted degree of mismatch in species interactions and networks, taking evolutionary changes into account. From there, the consequences for biodiversity and ecosystem functioning may be assessed. Such information is essential to link climate predictions to consequences for nature, which is needed for such consequences to be considered in the debate on the acceptable rate of global climate change\(^13\).

Received: 27 June 2018; Accepted: 20 March 2019; Published online: 22 April 2019

References
1. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. *Nature* **421**, 37–42 (2003).
2. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. *Nature* **421**, 57–60 (2003).
3. Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. *Proc. Natl Acad. Sci. USA* **115**, 5211–5216 (2018).
4. Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. *Proc. R. Soc. Lond. B Biol. Sci.** **272**, 2561–2569 (2005).
5. Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. *Nature* **355**, 241–245 (2016).
6. Hjort, J. *Fluctuations in the Great Fisheries of Northern Europe Viewed in the Light of Biological Research* (ICES, 1914).
7. Cushing, D. H. Regularity of spawning season of some fishes. *ICES J. Mar. Sci.* **33**, 81–92 (1966).
8. Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (*Parus major*). *Proc. Biol. Sci.** **265**, 1867–1870 (1998).
9. Stenseth, N. C. & Mysterud, A. Climate, changing phenology, and other life history traits: nonlinearity and match–mismatch to the environment. *Proc. Natl Acad. Sci. USA* **99**, 13379–13381 (2002).
10. Harrington, R., Wooldridge, I. & Sparks, T. Climate change and trophic interactions. *Trends Ecol. Evol.* **14**, 146–150 (1999).
11. Durant, J. M., Hjermans, D. O., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. *Clim. Res.* **33**, 271–283 (2007).
12. Miller-Rushing, A. J., Høye, T. T., Inouye, D. W. & Post, E. The effects of phenological mismatches on demography. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **365**, 3177–3186 (2010).
13. Lindén, A. Adaptive and nonadaptive changes in phenological synchrony. *Proc. Natl Acad. Sci. USA* **115**, 5057–5059 (2016).
14. Singer, M. C. & Parmesan, C. Phenological asymmetry between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **365**, 3161–3176 (2010).
15. Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. *Glob. Change Biol.* **16**, 3304–3313 (2010).
16. Visser, M. E. & Holleman, L. J. M. Warmer springs disrupt the synchrony of oak and winter moth phenology. *Proc. Biol. Sci.* **268**, 289–294 (2001).
17. Hegland, S. J., Nielsen, A., Lázaro, A., Björknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? *Ecol. Lett.* **12**, 184–195 (2009).
18. Poull, S. H. & Johnson, P. T. J. Experimental warming drives a seasonal shift in the timing of host–parasite dynamics with consequences for disease risk. *Ecol. Lett.* **17**, 445–453 (2014).
19. Stenseth, N. C. et al. Testing for effects of climate change on competitive relationships and coexistence between two bird species. *Proc. Biol. Sci.* **282**, 20141958 (2015).
20. Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. *Adv. Genet.* **13**, 115–155 (1965).
21. Pigliucci, M. Evolution of phenotypic plasticity: where are we going now? *Trends Ecol. Evol.* **20**, 481–486 (2005).
22. McNamara, J. M., Barta, Z., klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental changes. *Ecol. Lett.* **14**, 1183–1190 (2011).
23. Gwinner, E. *Circannual Rhythms* (Springer-Verlag, 1986).
24. Zann, R. A., Morton, S. R., Jones, K. R. & Burley, N. T. The timing of breeding by Zebra finches in relation to rainfall in Central Australia. *Emu* **95**, 219–222 (1995).
25. Korn, H. & Taitt, M. J. Initiation of early breeding in a population of *Microtus townsendii* (Rodentia) with the secondary plant compound 6-MBOA. *Oecologia* **71**, 593–596 (1987).
26. Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. *Nature* **430**, 881–884 (2004).
27. Jonsson, T. & Setzer, M. A freshwater predator hit twice by the effects of warming across trophic levels. *Nat. Commun.* **6**, 5992 (2015).
28. Ovaskainen, O. et al. Community-level phenological response to climate change. *Proc. Natl Acad. Sci. USA* **110**, 13434–13439 (2013).
29. Vose, R. S., Easterling, D. R. & Gleason, B. Maximum and minimum temperature trends for the globe: an update through 2004. *Geophys. Res. Lett.* **32**, L23822 (2005).
30. Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. *Proc. Biol. Sci.* **281**, 20141611 (2014).
31. Visser, M. E., Both, C. & Lambeck, M. M. Global climate change leads to mismotted avian reproduction. *Adv. Ecol. Res.* **35**, 89–110 (2004).
32. Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. *Annu. Rev. Ecol. Evol. Syst.* **49**, 165–182 (2018).
33. Arlt, D. & Pärt, T. MARKED REDUCTION IN DEMOGRAPHIC RATES AND REDUCED FITNESS ADVANTAGE FOR EARLY BREEDING IS NOT LINKED TO REDUCED THERMAL MATCHING OF BREEDING TIME. *Ecol. Evol.* **7**, 10782–10796 (2017).
34. Bowers, E. K. et al. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird. *Ecology* **97**, 2880–2891 (2016).
35. Wesołowski, T. & Rowinski, P. Do blue tits *Cyanistes caeruleus* synchronize reproduction with caterpillar peaks in a primeval forest? *Bird Study* **61**, 231–245 (2014).
36. Reed, T. E., Jenouvrier, S. & Visser, M. E. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. *J. Anim. Ecol.* **82**, 131–144 (2013).
37. Marrot, P., Charmantier, A., Blondel, J. & Garant, D. Current spring warming as a driver of selection on reproductive timing in a wild passerine. *J. Anim. Ecol.* 87, 754–764 (2018).
38. Viswanathan, M. E., Te Marlvede, L. & Lof, M. Adaptive phenological mismatches of birds and their food in a warming world. *J. Ornithol.* 153, 575–584 (2012).
39. Brown, C. R. & Brown, M. B. Weather-mediated natural selection on arrival time in cliff swallows (* Petrochelidon pyrrhonta*). *Behav. Ecol. Sociobiol.* 47, 339–345 (2000).
40. LoF, M. E., Reid, T. E., McNamara, J. M. & Visser, M. E. Timing in a fluctuating environment: environmental variability and asymmetric fitness curves can lead to adaptively mismatched avian reproduction. *Proc. Biol. Sci.* 279, 3161–3169 (2012).
41. Ruel, J. J. & Ayres, M. P. Jensen's inequality predicts effects of environmental variability. *Trends Ecol. Evol.* 14, 361–366 (1999).
42. Martin, T. L. & Huey, R. B. Why "suboptimal" is optimal: Jensen's inequality and ectotherm thermal preferences. *Am. Nat.* 171, E102–E118 (2008).
43. Jonzén, N., Hedenström, A. & Lundberg, P. Climate change and the optimal arrival of migratory birds. *Proc. Biol. Sci.* 274, 269–274 (2007).
44. Johansson, J. & Jonzén, N. Effects of territory competition and climate change on timing of arrival to breeding grounds: a game-theory approach. *Am. Nat.* 179, 463–474 (2012).
45. Stevenson, I. R. & Bryant, D. M. Climate change and constraints on breeding. *Nature* 406, 366–367 (2000).
46. te Marlvede, L., Webber, S. L., Meijer, H. A. J. & Visser, M. E. Energy variability in North Atlantic cod and match–mismatch dynamics. *PLoS One* 12, e17456 (2011).
47. Stevenson, I. R. & Bryant, D. M. Climate change and constraints on breeding. *Nature* 406, 366–367 (2000).
48. Ruel, J. J. & Ayres, M. P. Jensen's inequality predicts effects of environmental variability. *Trends Ecol. Evol.* 14, 361–366 (1999).
49. Martin, T. L. & Huey, R. B. Why "suboptimal" is optimal: Jensen's inequality and ectotherm thermal preferences. *Am. Nat.* 171, E102–E118 (2008).
50. Jonzén, N., Hedenström, A. & Lundberg, P. Climate change and the optimal arrival of migratory birds. *Proc. Biol. Sci.* 274, 269–274 (2007).
51. Christiansen, T., Drinkwater, K. F., Lough, R. G. & Sundby, S. Recruitment variability in North Atlantic cod and match–mismatch dynamics. *PLoS One* 6, e17456 (2011).
52. Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. *Proc. Biol. Sci.* 278, 835–842 (2011).
53. Dotson, M., Gauthier, G. & Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. *Glob. Change Biol.* 21, 4364–4376 (2015).
54. Saino, N. et al. Climate change effects on migration phenology may mismatch brood parasitic cuckoos and their hosts. *Biol. Lett.* 5, 539–541 (2009).
55. Pard, E. & Mismatch between birth date and vegetation phenology slows the demography of roe deer. *PLoS Biol.* 12, e1001828 (2014).
56. Ross, M. V., Alisauskas, R. T., Douglas, D. C. & Kellett, D. K. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic. *Ecology* 98, 1869–1883 (2017).
57. Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 363, 2369–2375 (2008).
58. Kristiansen, T., Drinkwater, K. F., Lough, R. G. & Sundby, S. Recruitment variability in North Atlantic cod and match–mismatch dynamics. *PLoS One* 6, e17456 (2011).
59. Regular, P. M. et al. Why timing is everything: energetic costs and reproductive consequences of resource mismatch for a chick-rearing seabird. *Ecosphere* 5, (2014).
60. Day, E. & Kokko, H. Relaxed selection when you least expect it: why declining bird populations might fail to respond to phenological mismatches. *Oikos* 124, 62–68 (2015).
61. Pelletier, F., Garant, D. & Hendry, A. P. Eco-evolutionary dynamics. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 364, 1483–1489 (2009).
62. Giennapp, P. et al. Genomic quantitative genetics to study evolution in the wild. *Trends Ecol. Evol.* 32, 897–908 (2017).
63. Rudman, S. M. et al. What genomic data can reveal about eco-evolutionary dynamics. *Nat. Ecol. Evol.* 2, 9–15 (2018).
64. Verhulst, S. & Nilsson, J. A. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 363, 399–410 (2007).
65. Rafferty, N. E. & Ives, A. R. Effects of environmental shifts in flowering phenology on plant-pollinator interactions. *Ecol. Lett.* 14, 69–74 (2011).
66. Donnelly, A., Caffarra, A. & O’Neill, B. F. A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. *Int. J. Biometeorol.* 55, 805–817 (2011).