Interferon plus ribavirin and interferon alone in preventing hepatocellular carcinoma: A prospective study on patients with HCV related cirrhosis

Azzaroli Francesco, Accogli Esterita, Negro Giovanni, Trerè Davide, Giovanelli Silvia, Miracolo Anna, Lodato Francesca, Montagnani Marco, Tamè Mariarosa, Colecchia Antonio, Mwangemi Constance, Festi Davide, Roda Enrico, Derenzini Massimo, Mazzella Giuseppe

Francesco Azzaroli, Accogli Esterita, Negro Giovanni, Giovanelli Silvia, Miracolo Anna, Lodato Francesca, Montagnani Marco, Tamè Mariarosa, Colecchia Antonio, Mwangemi Constance, Festi Davide, Roda Enrico, Massimo D, Giuseppe M. Interferon plus ribavirin and interferon alone in preventing hepatocellular carcinoma: A prospective study on patients with HCV related cirrhosis. World J Gastroenterol 2004; 10(21): 3099-3102

INTRODUCTION

A number of studies have reported that treatment of HCV related cirrhosis might have a preventive effect on hepatocellular carcinoma development. This has been recently confirmed by a meta-analysis concluding that “Interferon (IFN) prevents or delays the development of hepatocellular carcinoma (HCC) in patients with HCV-related cirrhosis, the magnitude of the overall effect is low and the benefit may be partly due to spurious associations. The preventive effect seems more evident among sustained responders to IFN”. However, with old interferon schedules, sustained responders did not exceed 10-15% of treated patients.

The response rate to IFN has changed since the introduction of ribavirin, the induction protocols and, finally, the pegylated interferons. Data on the preventive effect on HCC of more powerful therapeutic schemes are lacking.

Our study was started in 1997 with the purpose of assessing the efficacy of interferon (given with an induction protocol) plus ribavirin (the gold standard treatment at that time) in the prevention of HCC development.

MATERIALS AND METHODS

Patients

A total of one hundred and one consecutive patients (62 males and 39 females, mean age 55.1±1.4 years) with HCV related liver cirrhosis diagnosed by liver biopsy plus compatible biochemical parameters and ultrasonographic signs of portal hypertension were enrolled in the study. The baseline histologic activity of the liver was assessed and the patients were stratified according to sex and AgNOR-PI (cut-off = 2.5). Forty-one patients (27 males, 14 females) were only followed up after the end of an yearly treatment with IFN-alpha2b (old treatment control group = OTCG). Sixty naive patients were stratified according to sex and AgNOR-PI and then randomized in two groups: 30 were treated with IFN-alpha2b + ribavirin (treatment group = TG), the remaining were not treated (control group = CG). Nonresponders (NR) or relapers in the TG received further IFN/ribavirin treatments after a 6 mo withdrawal.

RESULTS: AgNOR-PI was significantly lowered by IFN (P<0.001). HCC incidence was higher in patients with AgNOR-PI>2.5 (26% vs 3%, P<0.01). Two NR in the OTCG, none in the TG and 9 patients in the CG developed HCC during follow-up. The Kaplan-Mayer survival curves showed statistically significant differences both between OTCG and CG (P<0.004) and between TG and CG (P<0.003).

CONCLUSION: IFN/ribavirin treatment associated with retreatment courses of NR seems to produce the best results in terms of HCC prevention. AgNOR-PI is a useful marker of possible HCC development.

Francesco A, Esterita A, Giovanni N, Davide T, Silvia G, Anna M, Francesca L, Marco M, Mariarosa T, Antonio C, Constance M, Davide F, Enrico R, Massimo D, Giuseppe M. Interferon plus ribavirin and interferon alone in preventing hepatocellular carcinoma: A prospective study on patients with HCV related cirrhosis. World J Gastroenterol 2004; 10(21): 3099-3102

http://www.wjgnet.com/1007-9327/10/3099.asp

Abstract

AIM: To determine the role of interferon (IFN) with or without ribavirin in preventing or delaying hepatocellular carcinoma (HCC) development in patients with hepatitis C virus (HCV) related cirrhosis. Data on the preventive effect of IFN plus ribavirin treatment are lacking.

METHODS: A total of 101 patients (62 males and 39 females, mean age 55.1±1.4 years) with histologically proven HCV related liver cirrhosis plus compatible biochemical and ultrasonography were enrolled in the study. Biochemistry and ultrasonography were performed every 6 mo. Ultrasound guided liver biopsy was performed on all detected focal lesions. Follow-up lasted for 5 years. Cellular proliferation, evaluated by measuring Ag-NOR proteins in hepatocytes nuclei, was expressed as AgNOR-Proliferative index (AgNOR-PI) (cut-off = 2.5). Forty-one patients (27 males, 14 females) were only followed up after the end of an yearly treatment with IFN-alpha2b (old treatment control group = OTCG). Sixty naive patients were stratified according to sex and AgNOR-PI and then randomized in two groups: 30 were treated with IFN-alpha2b + ribavirin (treatment group = TG), the remaining were not treated (control group = CG). Nonresponders (NR) or relapers in the TG received further IFN/ribavirin treatments after a 6 mo withdrawal.

RESULTS: AgNOR-PI was significantly lowered by IFN (P<0.001). HCC incidence was higher in patients with AgNOR-PI>2.5 (26% vs 3%, P<0.01). Two NR in the OTCG, none in the TG and 9 patients in the CG developed HCC during follow-up. The Kaplan-Mayer survival curves showed statistically significant differences both between OTCG and CG (P<0.004) and between TG and CG (P<0.003).

CONCLUSION: IFN/ribavirin treatment associated with retreatment courses of NR seems to produce the best results in terms of HCC prevention. AgNOR-PI is a useful marker of possible HCC development.

Francesco A, Esterita A, Giovanni N, Davide T, Silvia G, Anna M, Francesca L, Marco M, Mariarosa T, Antonio C, Constance M, Davide F, Enrico R, Massimo D, Giuseppe M. Interferon plus ribavirin and interferon alone in preventing hepatocellular carcinoma: A prospective study on patients with HCV related cirrhosis. World J Gastroenterol 2004; 10(21): 3099-3102

http://www.wjgnet.com/1007-9327/10/3099.asp
Liver biopsy

1 yr

Follow-up without therapy: 5 yr

End FU

41 pts

IFN*

No therapy

OTCG

*6MU ad×12 mo

Liver biopsy

Follow-up: 5 yr

60 naive pts, 6 mo follow-up, randomised by sex and AgNor-PI

30 IFN+ribavirin; further courses for NR and relapsers 6 mo after withdrawal

30

No therapy

TG

CG

*IFN-α2b dosage: 6 MU/d for a month followed by 3 MU/d for 11 mo
Ribavirin dosage: 1 g/d

OTCG = old treatment control group TG = treatment group CG = control group

Figure 1 Study design.

The study was carried out according to the Helsinki protocol and all patients gave their written informed consent.

Ultrascanographies, blood cell count, α1-fetoprotein, γGT, transaminases, PT, total protein and their fractions were performed every 3 mo in all patients. Additional tests were performed in patients under active treatment: blood cell count every 10 d for two months and then monthly; transaminases, urea, creatinine and uric acid were tested monthly. When focal lesions were detected by ultrasound (US), US-guided liver biopsy was performed.

Protocol treatments

The 41 patients in OTCG were treated with IFNα2-2b 6 MU/d for a month followed by 3 MU/d for 11 mo. The 30 patients in TG received the following α-2b schedule: 6 MU/d for a mo then 3 MU/d for 11 mo plus ribavirin 1 g/d for 12 mo. IFN and ribavirin dose reductions were made according to the biochemistry and tolerance of each patient. However, a total dose equal to or greater than 540 MU and 400 mg of ribavirin per day were considered suitable. Nonresponders and/or relapsers received further IFN treatment courses after a 6-mo withdrawal.

Liver histology and AgNOR-PI determination

Ultrasound guided liver biopsies were fixed in 40 g/L formaldehyde solution for 6 h and embedded in paraffin wax. Four 4 µm thick sections were cut from routinely processed paraffin blocks. Hematoxylin-eosin, silver impregnation, Pearl’s staining were performed to define the severity of parenchymal, portal and periporal inflammation and the stage of disease by evaluating fibrosis and the presence of stainable iron into the liver. Histology was evaluated by two blinded independent observers according to Scheuer score.

The AgNOR staining was performed on routine sections of liver tissue on poly-lysine pretreated slides after immersion in xylene and ethanol. After progressive re-hydration sections were covered with plastic resistant to high temperature, put in pressured ovens (120 °C for 10 min, at 37 °C). Then, sections were stained by silver impregnation in a gelatine solution (formic acid 10 mL/L and silver nitrate 500 g/L, 100:2 v/v) according to Ploton[20], for 13 (43%) (9 genotype 2 and 4 genotype 1). None of the re-treated patients showed a sustained response.

A significant reduction in AgNOR-PI was observed after IFN-treatment (Figure 2).

A significant difference in HCC development was observed according to AgNOR-PI: 9 out of 35 (26%) with basal AgNOR-PI >2.5% vs 2 out of 66 (3%) with basal AgNOR-PI <2.5% (P<0.01) (Figure 3).

Virological response

Six months after IFN withdrawal 8 out of 19 responders (24.5%) achieved sustained response (6 with genotype 2 or 3 and 2 with genotype 1) in the OTCG. Twenty one out of 30 patients in TG (70%) achieved a virological response that was sustained in 13 (43%) (9 genotype 2 and 4 genotype 1). None of the re-treated patients showed a sustained response.

Statistical analysis

Results were expressed as mean±SE. The statistical analysis was carried out according to the intention to treat analysis. Wilcoxon test was used when appropriate and the Kaplan-Mayer model was applied to the evaluation of survival probability.

RESULTS

Biochemistry

Demographic and biochemical characteristics of the patients at enrollment are shown in Table 1. The three groups were comparable for age, sex, biochemical parameters, genotype distribution and AgNOR-PI.

Table 1 Baseline patient characteristics

	OTCG	TG	CG	P<
M:F ratio	27:14	17:13	18:12	NS
Age (yr)	55.3±1.8	54.6±2.1	57.2±2.0	NS
AST (U/L)	67.1±6.6	61.9±7.2	79.4±8.4	NS
ALT (U/L)	92.5±10.8	79.8±8.7	91.8±9.1	NS
γGT (U/L)	56.5±7.2	52.1±7.3	62.9±9.4	NS
Albumin (g/dL)	4.2±0.07	4.2±0.07	4.1±0.06	NS
α1feto (ng/mL)	6.8±1.25	8.4±2.36	6.3±1.0	NS
HCV1b (%)	63%	67%	65%	NS
AgNOR-PI (%)	20.1±2.35	19.6±2.84	18.2±2.6	NS

OTCG = old treatment control group; TG = treatment group, CG = control group.

AgNOR PI

A significant reduction in AgNOR-PI was observed after IFN-treatment (Figure 2).

A significant difference in HCC development was observed according to AgNOR-PI: 9 out of 35 (26%) with basal AgNOR-PI >2.5% vs 2 out of 66 (3%) with basal AgNOR-PI <2.5% (P<0.01) (Figure 3).

Virological response

Six months after IFN withdrawal 8 out of 19 responders (24.5%) achieved sustained response (6 with genotype 2 or 3 and 2 with genotype 1) in the OTCG. Twenty one out of 30 patients in TG (70%) achieved a virological response that was sustained in 13 (43%) (9 genotype 2 and 4 genotype 1). None of the re-treated patients showed a sustained response.
significant differences both between OTCG and CG (Figure 4). The Kaplan-Mayer survival model showed statistically
subject in TG while 9 (30%) patients in CG developed HCC
of follow-up after about 50 mo from interferon withdrawal. No
Two nonresponders in OTCG developed HCC during 5 years
HCC appearance
and between TG and CG (Figure 2).

Figure 2 AgNOR-PI in OTCG before and after 1 year of IFN
treatment.

Figure 3 Incidence of HCC according to AgNOR-PI.

Figure 4 Percentage of HCC according to response to IFN.

Figure 5 Survival probability evaluated by Kaplan-Mayer model.

HCC appearance

Two nonresponders in OTCG developed HCC during 5 years
of follow-up after about 50 mo from interferon withdrawal. No
subject in TG while 9 (30%) patients in CG developed HCC
(Figure 4). The Kaplan-Mayer survival model showed statistically
significant differences both between OTCG and CG (P<0.004)
and between TG and CG (P<0.003) (Figure 5). The HCC annual
rate of incidence in the CG was 5%.

DISCUSSION
The present data add new evidence on the clinical efficacy of
IFN re-treatment of cirrhotic patients and show the usefulness
of AgNOR-PI. The ability of IFN to prevent HCC development
is evident both alone and in combination with ribavirin.

Previous observations in patients with chronic hepatitis C[21-24],
with or without cirrhosis, reported that re-treatment with IFN
was more effective than single courses in preventing HCC
appearance. However, in these studies[21-24], the vast majority
of patients had chronic hepatitis and no conclusions could be
drawn on cirrhotic patients. We extended those observations
to patients with HCV related cirrhosis. In accordance with a
previous study[11], a single course of IFN did not seem to be
protective toward HCC appearance in a long term follow-up. In
fact, in the two nonresponder patients of OTCG, HCC developed
after about 50 mo, suggesting that the protective effect of IFN
may vanish over time. This hypothesis is strengthened by the
observation that re-treatment of nonresponders in the TG
prevented HCC development during the 5 years of follow-up.

It is interesting to note that no statistically significant
difference was observed in survival between TG and OTCG.
This may suggest that the addition of ribavirin to IFN did not
add any significant benefit in cirrhotics. However, the number
of patients was probably not sufficient to appreciate any possible
difference coming from the higher rate of sustained response
obtained with the combination treatment. However, it remains
that the key to HCC prevention is treatment with interferon that
might be helpful even after a curative resection of HCC[23].

Our study also showed that AgNOR-PI was a useful marker
of hepatocyte regeneration which is able to predict a possible
evolution to HCC. Furthermore, the two patients who developed
HCC in the OTCG were those with the highest AgNOR-PI
without improvement after treatment. This underlines the
relevance of the index in the clinical setting, particularly in
nonresponders to IFN. In fact, it may restrict the need of a strict
surveillance only to those patients with a higher risk of
developing HCC.

Previous observations with different techniques[26-30] have
shown that high hepatocyte proliferation is associated with
HCC development. A recent paper evaluating nucleolar
hypertrophy in patients with HBV and HCV related cirrhosis
reported the index was significantly predictive of HCC
development only in patients with HBV related cirrhosis[16]. In
patients with HCV related cirrhosis the index was not significantly
related with HCC development, although a trend could be
appreciated. A much larger and more homogeneous population
of patients with HCV related cirrhosis (only Child A) in our
study could account for the different results between the two
studies.

In conclusion, the preventive effect of IFN on HCC
development in HCV related cirrhosis is confirmed. Furthermore,
a more efficacious treatment associated with re - treatment
courses of nonresponders seems to produce the best results in
term of HCC prevention. AgNOR-PI is a useful marker of
hepatocyte proliferation that identifies patients at higher risk
of developing HCC.

REFERENCES

1. Nishiguchi S, Kuroki T, Nakatani S, Morimoto H, Takeda T,
Nakajima S, Shiomi S, Seki S, Kobayashi K, Otani S.
Randomised trial of effects of interferon-alpha on incidence of
hepatocellular carcinoma in chronic active hepatitis C with
cirrhosis. *Lancet* 1995; 346: 1051-1055

2. Mazzella G, Accogli E, Sottoli S, Festi D, Orsini M, Salzetta A,
Novelli V, Cipolla A, Fabbri C, Pezzoli A, Roda E. Alpha inter-

feron treatment may prevent hepatocellular carcinoma in HCV-related liver cirrhosis. J Hepatol 1996; 24: 141-147
3 Bruno S, Silini E, Cossignani A, Borzio F, Leandro G, Bono F, Asti M, Rossi S, Larghi A, Cerino A, Podda M, Mondelli MU. Hepatitis C virus genotypes and risk of hepatocellular carcinoma in cirrhosis: a prospective study. Hepatology 1997; 25: 754-758
4 Fattovich G, Giustina G, Degos F, Tremolada F, Diodati G, Almasio P, Nevens F, Solanas A, Mura D, Brouwer JT, Thomas H, Nijpoum C, Casarin C, Bonetti P, Fuschetti P, Baschi J, Tocco A, Bhalla A, Galassini R, Noventa F, Schalm SW, Realdi G. Morbidity and mortality in compensated cirrhosis type C: a retrospective follow-up study of 384 patients. Gastroenterology 1997; 112: 463-472
5 International Interferon-alpha Hepatocellular Carcinoma Study Group. Effect of interferon-alpha on progression of cirrhosis to hepatocellular carcinoma: a retrospective cohort study. Lancet 1998; 351: 1535-1539
6 Imai Y, Kawata S, Tamura S, Yabuuchi I, Noda S, Inada M, Maeda Y, Shirai Y, Fukuzaki T, Kaji I, Ishikawa H, Matsuda Y, Nishikawa M, Seki K, Matsuzawa Y. Relation of interferon therapy and hepatocellular carcinoma in patients with chronic hepatitis C. Ann Intern Med 1998; 129: 94-99
7 Gramenzi A, Andreone P, Fiorino S, Camma G, Giunta M, Magalotti D, Cursario C, Calabrese C, Arienti V, Rossi C, Di Febo G, Zoli M, Craxi A, Gasbarrini G, Bernardi M. Impact of interferon therapy on the natural history of hepatitis C virus related cirrhosis. Gut 2001; 48: 843-848
8 Serfaty L, Aumaitre H, Chazouilleres O, Bonnard AM, Rosmorduc O, Poupon RE, Poupon R. Determinants of outcome of compensated hepatitis C virus-related cirrhosis. Hepatology 1998; 27: 1435-1440
9 Sofia S, Casali A, Buscarni E, Castagnetti E, Rapaccini GL, Levantesi L, Salmi A, Boccia S, Miglio F, Ricca Rossellini S, Casali A, Buscarini E, Castagnetti E, Rapaccini GL. Interferon therapy and hepatocellular carcinoma developing after treatment of interferon in patients. J Hepatol 1999; 30: A67
10 Benvegnu L, Chemello L, Noventa F, Fattovich G, Pontisso P, Alberti A. Retrospective analysis of the effect of interferon therapy on the clinical outcome of patients with viral cirrhosis. Cancer 1998; 83: 901-909
11 Shioda A, Moriyama M, Kaneko M, Shimizu T, Gotou I, Tanaka N, Ooboku H, Arakawa Y. Long term prognosis of hepatocellular carcinoma developing after treatment of interferon in patients with chronic hepatitis C and liver cirrhosis. Hepatology 1999; 30: A268
12 Yoshida H, Shiratori Y, Moriyama M, Arakawa Y, Ide T, Sata M, Inoue O, Yano M, Tanaka M, Fujiyama S, Nishiguchi S, Kuroki T, Imazeki F, Yokusuka O, Kinoyama S, Yamada G, Omata M. Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IIH IT Study Group. Inhibition of Hepatocarcinogenesis by Interferon Therapy. Ann Intern Med 1999; 131: 174-181
13 Mura D, Delliperi R, Fastame L, Carlini A, Cussu PA, Pisanu G, Dore MP, Realdi G. Five years follow-up after interferon therapy in HCV positive compensated cirrhosis. Ital J Gastroenterol Hepatol 1998; 30: A114
14 Valla DC, Chevallier M, Marcellin P, Payen JL, Trepo C, Fonck M, Bourliere M, Boucher E, Miquel JP, Parlier D, Lemonnier C, Opolon P. treatment of hepatitis C virus-related cirrhosis: a randomized, controlled trial of interferon alfa-2b versus no treatment. Hepatology 1999; 29: 1870-1875
15 Ikeda K, Saitoh S, Arase Y, Chayama K, Suzuki Y, Kobayashi M, Tsubota A, Nakamura I, Murashima N, Kumada H, Kawanishi M. Effect of interferon therapy on hepatocellular carcinogenesis in patients with chronic hepatitis type C: A long-term observation study of 1,643 patients using statistical bias correction with proportional hazard analysis. Hepatology 1999; 29: 1124-1130
16 Camma C, Giunta M, Andreone P, Craxi A. Interferon and prevention of hepatocellular carcinoma in viral cirrhosis: an evidence-based approach. J Hepatol 2001; 34: 593-602
17 Davis GL. Combination treatment with interferon and ribavirin for chronic hepatitis C. Clin Liver Dis 1999; 3: 811-826
18 Vrolijck JM, Bekkerling FC, Brouwer JT, Hansen BE, Schalm SW. High sustained virological response in chronic hepatitis C by combining induction and prolonged maintenance therapy. J Viral Hepat 2003; 10: 205-209
19 McHutchison JG, Fried MW. Current therapy for hepatitis C: pegylated interferon and ribavirin. Clin Liver Dis 2003; 7: 149-161
20 Ploton D, Menager M, Jeannesson P, Himbir G, Pigeon F, Adnet JJ. Improvement in the staining and in the visualization of the argyrophilic proteins of the nucleolar organizer region at the optical level. Histochim J 1986; 8: 5-14
21 Hino K, Kitase A, Satoh Y, Fujiwara D, Yamaguchi Y, Korenaga M, Shingai Y, Konishi T, Yamashita S, Uchida K, Mori K, Hanada H, Kodama T, Nukui K, Okita K. Interferon retreatment reduces or delays the incidence of hepatocellular carcinoma in patients with chronic hepatitis C. J Viral Hepat 2002; 9: 370-376
22 Tanaka H, Tsukuma H, Kasahara A, Hayashi N, Yoshihara H, Masuzawa M, Kanda T, Kashiwagi T, Inoue A, Kato M, Oshima A, Kinoshita Y, Kamada T. Effect of interferon therapy on the incidence of hepatocellular carcinoma and mortality of patients with chronic hepatitis C: a retrospective cohort study of 738 patients. Int J Cancer 2000; 87: 741-749
23 Toyoeda H, Kumada T, Nakano S, Takeda I, Sugiyama K, Kiriyama S, Sone Y, Hisanaga Y. The effect of retreatment with interferon-alpha on the incidence of hepatocellular carcinoma in patients with chronic hepatitis C. Cancer 2000; 88: 58-65
24 Takimoto M, Ohkoshi S, Ichida T, Takeda Y, Nomoto M, Asakura H, Naito A, Mori S, Hata K, Igarashi K, Hara H, Ohta H, Soga K, Watanabe T, Kaminura T. Interferon inhibits progression of liver fibrosis and reduces the risk of hepatocarcinogenesis in patients with chronic hepatitis C: a prospective multicenter analysis of 652 patients. Dig Dis Sci 2002; 47: 170-176
25 Sun HC, Tang ZY. Preventive treatments for recurrence after curative resection of hepatocellular carcinoma: A literature review of randomized controlled trials. World J Gastroenterol 2003; 9: 635-640
26 Taro K, Ohkawa S, Shimizu A, Hara M, Nakamura Y, Ito Y, Tamai S, Hoshino H, Inoue T, Kanisawa M. Significance of hepatocellular proliferation in the development of hepatocellular carcinoma from anti-hepatitis C virus-positive cirrhotic patients. Cancer 1994; 73: 1149-1154
27 Ballardini G, Groff P, Zoli M, Bianchi G, Giostra F, Francesconi R, Lenzi M, Zauli D, Cassani F, Bianchi F. Increased risk of hepatocellular carcinoma development in patients with cirrhosis and with high hepatocellular proliferation. J Hepatol 1994; 20: 218-222
28 Sangiovanni A, Colombo E, Radaelli F, Bortoli A, Bovo G, Casiraghi MA, Ceriani R, Rolfi L, Redaelli A, Rossini A, Spinzi G, Minoli G. Hepatocyte proliferation and risk of hepatocellular carcinoma in cirrhotic patients. Am J Gastroenterol 2001; 96: 1575-1580
29 Donato MF, Arosio E, Del Ninno E, Ronchi G, Lampertico P, Morabito A, Balestrieri MR, Colombo M. High rates of hepatocellular carcinoma in cirrhotic patients with high liver cell proliferative activity. Hepatology 2001; 34: 523-528
30 Treder D, Borzio M, Morabito A, Borzio F, Roncalli M, Derenzini M. Nucleolar hypertrophy correlates with hepatocellular carcinoma development in cirrhosis due to HBV infection. Hepatology 2003; 37: 72-78

Edited by Wang XL and Xu FM