The impact of lifestyle and reproductive factors on the risk of a second new primary cancer in the contralateral breast: a systematic review and meta-analysis

Delal Akdeniz1 · M. Maria Klaver1 · Chloé Z. A. Smith1 · Linetta B. Koppert2 · Maartje J. Hooning1

Received: 8 July 2019 / Accepted: 18 February 2020 / Published online: 4 March 2020
© The Author(s) 2020

Abstract

Purpose The risk of being diagnosed with contralateral breast cancer (CBC) is an important health issue among breast cancer survivors. There is an increasing interest in the effect of lifestyle and reproductive factors on CBC risk, since these factors may partly be modifiable. We performed a systematic review and meta-analysis and aimed to evaluate the impact of lifestyle and reproductive factors on CBC risk in population-based breast cancer studies.

Methods The PubMed electronic database was searched up to 2nd November 2019, for relevant publications. Of the included studies, a meta-analysis per lifestyle or reproductive factor was performed.

Results Thirteen out of 784 publications were used for the meta-analysis. Body mass index (≥ 25 vs. < 25 kg/m²; RR = 1.22; 95% CI 1.01–1.47) was associated with increased CBC risk. The estimates for alcohol use (ever vs. never; RR = 1.15; 95% CI 1.02–1.31) and age at primiparity (≥ 25 vs. < 25 years; RR = 1.06; 95% CI 1.02–1.10) also showed an association with increased CBC risk. For parity (≥ 4 vs. nulliparous; RR = 0.56; 95% CI 0.42–0.76) and age at menopause (< 45 vs ≥ 45 years; RR = 0.79; 95% CI 0.67–0.93), results from two studies suggested a decreased CBC risk. We observed no association between CBC and smoking, age at menarche, oral contraceptive use, gravidity, breastfeeding, or menopausal status. Overall, the number of studies per risk factor was limited (n = 2–5).

Conclusions BMI is a modifiable risk factor for CBC. Data on the effect of other modifiable lifestyle and reproductive factors are limited. For better counseling of patients on lifestyle effects, more studies are urgently needed.

Keywords Metachronous · Second primary neoplasms · Breast cancer · Risk factors · Life style · Reproductive history · Review (publication type) · Meta-analysis (publication type)

Introduction

Over the last decades, the survival rate of breast cancer patients has been improving as a result of earlier diagnosis and better treatment [1, 2]. This leads to an increasing number of women who have been previously diagnosed with breast cancer, and are at risk for developing a second new malignancy in the opposite breast over time, i.e., metachronous contralateral breast cancer (CBC). Ten-year cumulative risk of CBC is around 4–5% in the general population [3, 4].

The risk of being diagnosed with CBC is therefore an important health issue among breast cancer survivors and often a recurring subject during follow-up at the outpatient clinic. This can also be observed from the increasing number of breast cancer survivors choosing for prophylactic removal of the contralateral breast. However, in a majority of the
women with breast cancer, no survival benefit has been reported following this procedure [5, 6].

For this reason, it is important to evaluate the risk of developing CBC in individual breast cancer patients in a tailored fashion to provide them with an accurate follow-up strategy. Not only genetic and breast cancer treatment-related factors, but also lifestyle and reproductive factors should be assessed for this purpose.

Nowadays, there is an increasing interest in the impact of lifestyle and reproductive factors on CBC risk among healthcare professionals and breast cancer survivors, since these factors may partly be modifiable. Current available estimates on lifestyle and reproductive factors need to be combined to get estimates that are based on the highest level of evidence.

We therefore conducted a systematic review with meta-analysis and aimed to evaluate the impact of lifestyle and reproductive factors on metachronous CBC risk in population-based breast cancer cohorts.

Methods

This systematic review with meta-analysis is conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [7].

Literature search

We searched the PubMed electronic database for publications on 2nd November 2019, by using search terms related to CBC in combination with lifestyle or reproductive factors that are potentially associated with CBC risk. More specific, we were interested in the impact of dietary habits, exercise, body mass index (BMI), alcohol use, smoking, age at menarche, oral contraceptive use, gravity, age at primiparity, parity, breastfeeding, menopausal status, and age at menopause on metachronous CBC risk in population-based studies, i.e., studies with general, unselected breast cancer populations, without any germline mutation being tested on. Metachronous CBC is defined as a second primary breast cancer developed in the contralateral breast over time, from now onwards referred to as CBC.

Metachronous refers to a certain time lapse between the first primary breast cancer (PBC) diagnosis and the CBC diagnosis, but in literature this has not been clearly defined yet; mainly a time lapse of 3–12 months is being used. Our literature search included search terms for second breast cancer, thereby potentially including publications that studied the risks of developing ipsilateral second PBC, along with CBC. However, the literature states that only 5% of the second PBCs developed in the ipsilateral breast [8].

The literature search was limited to publications written in English from 1st January 1990, onwards. A description of the full search strategy is given in Table S1.

Study selection

Two reviewers (MMK, CZAS) identified potentially eligible publications by reading each title and abstract. From the selected publications, the full text was read. Publications were subsequently excluded if they met at least one of the exclusion criteria, which were defined as publications without pooled data (e.g., narrative review, research report, guideline, comment editorial), publications without relative risk (RR) estimates (i.e., no relative risk, odds ratio or hazard ratio) or publications with less than 20 CBC events reported. Further exclusion concerned publications on high-risk breast cancer patients (e.g., BRCA-related breast cancer, familial/hereditary breast cancer), publications on non-invasive CBC, publications on CBC analyzed in the context of recurrent disease or publications on topics not related to the effect of lifestyle or reproductive factors on CBC risk. When in doubt about including a paper (n = 17), a third reviewer was consulted (DA).

In addition, references of the eligible publications were checked for additional records missed by the initial literature search.

Data extraction

The main study characteristics from the included publications were extracted and collected in an overview (Table 1). These study characteristics included the author, year of publication, origin of cancer or hospital registry, study design, date of first PBC diagnosis, selection criteria, number of first PBC and CBC patients, mean/median years of follow-up (including range) and age (including range) of women with first PBC, required time lapse between first PBC and CBC diagnosis, lifestyle and/or reproductive factors of interest, and time of assessment of the risk factor status (e.g., at first PBC or CBC diagnosis).

Additionally, we extracted the relative risk estimates with the corresponding confidence interval (CI) and factors that were adjusted for in the analysis.

Statistical analyses

Relative risk estimates with the corresponding CI were collected, log-transformed, and pooled per lifestyle or reproductive factor. A random-effects model was used for the meta-analyses. If a study did not report an overall risk estimate for a specific factor, subgroup estimates were combined to create an overall risk estimate with the use of a random effects model.
First author, year of publication	Origin of cancer/hospital registry (study name)	Study design	Date	Selection criteria	Number of 1st (PBC) patients	Number of CBC patients available for analysis	Median years of FU (range)	Mean age (range)	Time lapse required between 1st PBC and CBC (months)	Lifestyle and/or reproductive factors	Assessment risk factor status	Factors adjusted for	
Knight, 2017 [24]	USA, CAN, DNK (WECARE)	Case-control	1985–2008	Age < 55 years at 1st PBC diagnosis; Stage I–III 1st PBC	2,212	1,521	N/A	Med. 46 (23–54)	≥ 12 (when PBC diagnosed 1985–1999); ≥ 24 (when PBC diagnosed 1990–2008)	Alcohol use; Smoking	1st PBC diagnosis	FH1; Men; BMI; Age; FTP; His; Stage; ER; Ctx; Rtx; Etx; Smok (in analysis for alcohol use); Ak (in analysis for smoking)	
Brooks, 2016 [17]	USA, CAN, DNK (WECARE)	Case-control	1985–2008	Age ≤ 55 years at 1st PBC diagnosis; Stage I–III 1st PBC	2,045	1,386	N/A	Med. 46 (23–55)	≥ 12	BMI	1st PBC diagnosis	FH1; Men; FTP; Age; Stage, ER; Ctx; Etx	
Shankar, 2015 [10]	IND	Cohort	1997–2006	Stage I–IV 1st PBC	532	24	N/A	47 (30–69)	> 6	Menopausal status	1st PBC diagnosis	N/A	
Sisti, 2015 [25]	USA, CAN, DNK (WECARE)	Case-control	1985–2009	Age ≤ 55 years at 1st PBC diagnosis; Stage I–III 1st PBC	2,212	1,521	N/A	Med. 46 (23–55)	≥ 12	Menarche; Gravidity; Age at primiparity; Parity	BMI	1st PBC diagnosis	FH; Par; Men; Menos; Hb; Age; Stage; His; Ctx; Etx; Smok (in analysis for alcohol use); Ak (in analysis for smoking)
Brooks, 2012 [11]	USA, DNK (WECARE)	Case-control	1985–2000	Age ≤ 55 years at 1st PBC diagnosis; Stage I–III 1st PBC	999	511	N/A	Med. 45 (23–55)	≥ 12	BMI	1st PBC diagnosis	FH1; FTP; Men; Age; Stage; His; ER; Ctx; Etx	
Majed, 2011 [18]	FRA	Cohort	1981–1999	Stage I–III 1st PBC	15,166	1,370	10 (≤ 24)	54 (≥ 18)	> 6	BMI	1st PBC diagnosis	FH; Menopausal; Age; Per; N; His; HR; Tx	
First author, year of publication	Origin of cancer/hospital registry (study name)	Study design	Datea	Selection criteria	Number of 1st (P)BC patientsb	Number of CBC patients available for analysis	Median years of FU (range)	Mean age (range)c	Time lapse required between 1st PBC and CBC (months)	Lifestyle and/or reproductive factorsd	Assessment risk factor status	Factors adjusted for factors adjusted for	
----------------------------------	---	--------------	--------	--------------------	-------------------------------	---	--------------------------	----------------	---	---------------------------------	---------------------------------	---------------------------------	
Poynter, 2010 [26]	USA, DNK (WECARE)	Case–control	1985–1999	Only information from non-carriers was used; Age ≤ 55 years at 1st PBC diagnosis; Stage I–III 1st PBC	1,325 (non-carriers)	597	N/A	NR (<55)	≥ 12	Menarche	Age at primiparitye	CBC diagnosis	FTP; Men; Menopausal; Age; Stage, Ctx, Etx
Figueiredo, 2010 [27]	USA, DNK (WECARE)	Case–control	1985–1999	Age ≤ 55 years at 1st PBC diagnosis; Stage I–III 1st PBC	1,325	597	N/A	46 (20–55)	≥ 12	Oral contraceptive use	Before CBC diagnosis	Age (Tested for other potential confounders as well, but no significant influence was observed. Factors tested: FH1; FTP; Men; Menopausal; Stage; His; Ctx; Etx)	
Li, 2009 [12]	USA (CSS)	Case–control	1990–2005	Stage I–IIIB 1st PBC, ER-positive 1st PBC	726	365	N/A	NR (40–79)	≥ 6	BMI Alcohol use	1st PBC diagnosis	Ctx, Etx	Matching variables (implicitly adjusted for): County, Race; Age; Per; Stage; ST. Additionally, BMI was adjusted for use of Ht at 1st PBC diagnosis; AIC for BMI at reference date; Smok for FH1
First author, year of publication	Origin of cancer/hospital registry (study name)	Study design	Datea	Selection criteria	Number of 1st (P)BC patientsb	Number of CBC patients available for analysis	Median years of FU (range)	Mean age (range)c	Time lapse required between 1st PBC and CBC (months)	Lifestyle and/or reproductive factorsd	Assessment risk factor status	Factors adjusted for	
----------------------------------	---	--------------	-------	---------------------	-------------------------------	--	-------------------------------	----------------	--	----------------------------------	----------------------------------	----------------------	
Figueiredo, 2008 [13]	USA, DNK (WECARE)	Case-control	1985–2001	Age ≤ 55 years at 1st PBC diagnosis; Stage I-III 1st PBC	1,399	708	N/A	46 (23–55)	≥ 12	Oral contraceptive use	Before CBC diagnosis	FH; FTP; Men; Menopausal at reference age; Age; Stage; His; Ctx; Etx; Rtx	
Trentham-Dietz, 2007 [19]	USA	Cohort	1987–2000	Age 18–79 years at 1st PBC diagnosis; Stage I-IV 1st PBC;	10,953	488	Mean 7.1 (1–19)	59 (18–79)	> 12	BMI; Alcohol use; Smoking; Menarche; Oral contraceptive use; Age at primiparity; Parity; Menopausal status; Age at menopause	1st PBC diagnosis	FH, BMI; pack-years of cigarette smoking; recent alcohol intake; FTP; Menopausal; Ht; Per; Stage. Regression model was conditional on age	
Largent, 2007 [28]	USA, DNK (WECARE)	Case-control	1985–1999	Age ≤ 55 years at 1st PBC diagnosis; Stage I-III 1st PBC;	1,399	708	N/A	46 (23–55)	≥ 12	Menarche; Gravidity; Age at primiparity; Parity; Breastfeeding; Menopausal status; Age at menopause	N/A	Before CBC diagnosis	

b: Number of 1st (P)BC patients.

c: Mean age (range) is reported for CBC patients.
d: Lifestyle and/or reproductive factors include various health behaviors and demographic characteristics.
First author, year of publication	Origin of cancer/hospital registry (study name)	Study design	Datea	Selection criteria	Number of 1st (PBC patients)b	Number of CBC patients available for analysis	Median years of FU (range)	Mean age (range)c	Time lapse required between 1st PBC and CBC (months)	Lifestyle and/or reproductive factorsd	Assessment risk factor status	Factors adjusted for
Kuo, 2006 [20]	TAI	Cohort	1990–1999	Frequently diagnosed with PBC < 50 years	2,022	120	3.21 (NR)	50 (NR)	> 6	Smoking; Menopausal status	1st PBC diagnosis	Time to event. Additionally significant factors from the univariable analysis were taken into account. Factors taken into account: Meno; lobular His; Ctx; Etx; Rtx
Dignam, 2006 [21]	USA (NSABP)	Cohort	1981–1998	Stage I–III 1st PBC; ER-negative and lymph node-negative 1st PBC	4,077	242	NR	NR	BMI	1st PBC diagnosis	Race; Age; T; Tx	Race; Age; Menopausal; ER; PR; Tx
Dignam, 2003 [22]	USA (NSABP)	Cohort	1982–1987	Stage I–III 1st PBC; ER-positive and lymph node-negative 1st PBC	3,385	193	13.8 (NR)	NR	BMI	1st PBC diagnosis	Race; Age; Menopausal; ER; PR; Tx	
Li, 2003 [14]	USA (CSS)	Cohort	1983–1992	Age ≤ 45 years at 1st PBC diagnosis; Stage I–IV 1st PBC	1,285	77	Mean 9.0 (NR)	38 (<45)	≥ 6	BMI; Alcohol use; Menarche; Oral contraceptive use; Gravidity; Age at primiparity; Parity	1st PBC diagnosis	Study; Age; Per; Stage; Ctx
Vaittinen, Hemminki, 2000 [29]	SWE	Cohort	1970–1996	Age 20–89 years at 1st PBC diagnosis	72,096	1,675	NR	NR (20–89)	≥ 6	Age at primiparity; Parity	FH; FTP; Primi; Age; Yr; Time	
Cook, 1996 [15]	USA (CSS)	Case–control	1978–1990	Age < 85 years at 1st PBC diagnosis; Stage I–III 1st PBC	424	216	N/A	NR (<85)	≥ 6	BMI; Gravidity; Parity; Menopausal status	1st PBC diagnosis	FH; Menopausal; His Matched factors; Age; Stage; Time
First author, year of publication	Origin of cancer/hospital registry (study name)	Study design	Date^b	Selection criteria	Number of 1st (PBC) patients^b	Number of CBC patients available for analysis	Median years of FU (range)	Mean age (range)^c	Time lapse required between 1st PBC and CBC (months)	Lifestyle and/or reproductive factors^d	Assessment risk factor status	Factors adjusted for
---------------------------------	---	--------------	-----------------	-------------------	-----------------------------	---	--------------------------	---------------------	--	----------------------------------	------------------	-----------------
Bernstein, 1992 [23] USA Cohort	1980–1982 Age 20–54 years at 1st PBC diagnosis; Stage I–IV 1st PBC	136	Mean 4.3 (NR)	44 (20–54)	> 6	Alcohol use Smoking Menarche Oral contraceptive use Gravidity Age at primiparity Parity Breastfeeding Menopausal status	1st PBC diagnosis FH; Edu; BMI; FTP; Prim; Men; Meno; Menopausal; Age; Stage; Lobular His; History of benign disease					

Duplicate studies (i.e., with the same selection of patients) excluded from the meta-analyses are highlighted in bold.
Factors excluded from the meta-analyses because only a univariable estimate was provided (6) are highlighted in italics.

BC breast cancer, **PBC** primary breast cancer, **CBC** contralateral breast cancer, **BMI** body mass index, **FU** follow-up, **USA** United States of America, **CAN** Canada, **DNK** Denmark, **FRA** France, **IND** India, **TAI** Taiwan, **SWE** Sweden, **Med** median, **Race** race/ethnicity, **FH** family history of breast cancer, **FH1** first degree family history of breast cancer, **FHI** first degree family history of breast cancer, **Edu** education, **Smok** smoking, **Alc** alcohol use, **BF** breast feeding, **FTP** number of full term pregnancies, **Prim age** at primiparity, **Par age** at parity, **Men age** at menarche, **Menopause** menopause, **Menopausal** menopausal status, **Ht** postmenopausal hormone therapy, **Age** age at primary breast cancer diagnosis, **Yr** year of birth, **Per** period of recruitment/year of first PBC diagnosis, **Stage** stage of primary breast cancer, **N** number of positive lymph nodes, **Tumor size** histology of primary breast cancer, **ER** estrogen receptor status of primary breast cancer, **PR** progesterone receptor status of primary breast cancer, **HR** hormonal receptor status, not specified, **Tx** treatment, not specified, **Ctx** chemotherapy, **Etx** endocrine therapy, **Rtx** radiotherapy, **Time** time between primary breast cancer and CBC diagnosis, **Surv** survival time, **N/A** not applicable, **NR** not reported.

^aDate of first PBC diagnosis
^bNumber of first PBC patients or BC patients (i.e., first PBC and CBC patients) for case–control and cohort studies, respectively
^cMean age (range) of women with first PBC
^dSelected lifestyle and reproductive factors per study
^eAmong parous women only
^fOnly the data of non-carrier cases and controls were used for the meta-analysis
^gThe underlying cohort of this study was composed of women with only estrogen receptor-positive first PBC
^hAmong postmenopausal women only
ⁱBilateral BC cases of which 44 synchronous BC, 75 metachronous BC and 1 unknown type of BC
^jThe underlying cohort of this study was composed of women with only estrogen receptor-negative first PBC
^kNo definition for metachronous CBC was provided, but the paper focussed on events occurring over time, therefore assumed that the focus was on metachronous CBC events
^lNo definition for metachronous CBC was provided, but from the figures, we observed the first CBC event to appear at least 3 months after first PBC diagnosis
Relative risk estimates from univariable and multivariable analyses were analyzed separately. If both an adjusted (i.e., using multivariable risk estimates) and a crude meta-analysis (i.e., using univariable risk estimates) could be conducted for a factor, we only selected the papers eligible for the adjusted meta-analysis.

Subsequently, we evaluated whether there was potential overlap in patients from the different papers. In case of overlap, we selected either the most recent or the most relevant (i.e., on topic) paper.

To examine the continuous effects (trend analysis) of BMI and number of full-term pregnancies (FTP), we used the dose–response method described by Greenland et al. Results from this analysis were subsequently pooled using a random-effects meta-analysis and the p-value for trend was extracted from the confidence interval of the pooled estimate.

Additionally, we tested for heterogeneity using the I^2-statistics and reported the p-value for heterogeneity for each lifestyle or reproductive factor in the figures.

We used the METAN package of Stata Statistical Software version 14.0 to conduct the statistical analyses.

Results

Search results and study selection

Our PubMed literature search identified 784 publications, of which 707 met the inclusion criteria (Fig. 1). Based on relevance, 41 of the remaining publications were selected for further review. Hereof, 20 publications were eligible for inclusion after applying the exclusion criteria. No additional publications were found by checking the references of the eligible publications. In addition, seven out of these 20 publications were ineligible for the (adjusted) meta-analyses due to non-preferable risk estimates (i.e., solely reporting univariable risk estimates [10]) or overlap in patients [11–16] and were therefore excluded.

From the 13 papers finally used for the meta-analysis, there were between 424–72,096 first PBC and 24–2515 CBC patients available for the analyses. A majority of the studies (9 out of 13) were at least partially performed in the USA.

Meta-analyses

The adjusted estimates for lifestyle and reproductive factors are presented in an overall plot in Figs. 2 and 3, respectively, and per lifestyle or reproductive factor in Supplementary Figs. S1–16.

Heterogeneity will only be reported for risk factor estimates in case of moderate or high heterogeneity (i.e., I^2 > 50%, p < 0.05 as reported in the figures).

Lifestyle factors (Fig. 2; Supplementary Figs. S1–5)

Eight publications studied the impact of potentially modifiable lifestyle factors (BMI, alcohol use, and smoking) on CBC risk (Table 1) [11, 17–24].

Overweight and obesity (BMI ≥ 25 kg/m^2) compared to having a normal weight (BMI < 25 kg/m^2) assessed at first PBC diagnosis were associated with an increased CBC risk (RR = 1.22; 95% CI 1.01–1.47); however, heterogeneity was high (I^2 = 75.4%, p = 0.003; Fig. S1) [17–19, 21, 22]. The main outlier was the study performed by Brooks et al. [17], possibly due to inclusion of mainly young, premenopausal women at first PBC diagnosis (further elaborated on in “Discussion” section). Excluding this study resulted in a decrease in heterogeneity and a slight increase in CBC risk (RR = 1.31; 95% CI 1.15–1.50; I^2 = 35%). Trend analysis on BMI showed a significant increased CBC risk with increasing BMI (p-trend < 0.0001).

The meta-analysis on three studies concerning alcohol use (ever vs. never; assessed at first PBC diagnosis) was suggestive of increased CBC risk (RR = 1.15; 95% CI 1.02–1.31; Fig. S4) [19, 23, 24]. Four studies on smoking did not result in an association with CBC risk (ever vs. never; assessed at first PBC diagnosis; Fig. S5) [19, 20, 23, 24].

There were no data available on the association between dietary habits or physical exercise and CBC risk.

Reproductive factors (Fig. 3; Supplementary Figs. S6–16)

Eight publications studied the impact of reproductive factors (age at menarche, oral contraceptive use, gravidity, age at primiparity, parity, breastfeeding, menopausal status, age at menopause) on CBC risk (Table 1) [19, 20, 23, 25–29].

Older age at primiparity (≥ 25 years vs. < 25 years; assessed at/before CBC diagnosis) was investigated in four studies and was associated with increased CBC risk (RR = 1.06; 95% CI 1.02–1.10; Fig. S9) [19, 23, 25, 29].

The two studies on age at menopause (< 45 years vs. ≥ 45 years; assessed at/before CBC diagnosis) suggested a decreased CBC risk association for this factor (RR = 0.79; 95% CI 0.67–0.93; Figure S16) [19, 26].

Three studies on parity (≥ 1 FTPs vs. nulliparous; assessed at/before CBC diagnosis) showed no significant association with CBC risk (Fig. S10) [19, 25, 29], although trend-analysis resulted in a decreasing risk with increasing numbers of FTPs (p-trend < 0.0001). Moreover, subgroup analysis on two papers suggested that having ≥ 4 FTPs compared to being nulliparous (assessed at/before CBC diagnosis) was protective for CBC risk (RR = 0.56; 95% CI 0.42–0.76; Fig. S12) [19, 28]. Having ≥ 2 FTPs compared to 1 FTP (assessed at first PBC diagnosis), which was investigated in three papers, showed a protective effect for
CBC risk as well (RR = 0.86; 95% CI 0.79–0.94; Fig. S13) [23, 25, 29]. The association between breastfeeding (ever vs. never; assessed at/before CBC diagnosis) and CBC risk was borderline significant, but the meta-analysis was based on two papers only (RR = 0.87; 95% CI 0.74–1.01; Fig. S14) [23, 25].

No significant association was found for age at menarche (≥ 13 years vs. < 13 years; Fig. S6) [19, 23, 27], oral contraceptive use (ever vs. never; assessed before CBC diagnosis) [19, 23, 27], gravidity (ever pregnant vs. never pregnant; assessed at first PBC diagnosis; Fig. S8) [23, 25], menopausal status (postmenopausal vs. premenopausal; assessed at/before first PBC diagnosis; Fig. S15), and CBC risk [19, 20, 23, 25]. However, for all these factors, the number of papers was limited (n = 2–4).

Discussion

In this systematic review and meta-analysis, we studied the impact of lifestyle and reproductive factors on CBC risk in population-based breast cancer cohorts. We observed a moderately increased CBC risk in women being overweight. Further, alcohol use and older age at...
Fig. 2 Forest plot of the overall adjusted meta-analyses per lifestyle factor on the risk of developing contralateral breast cancer in population-based cohorts Npapers = number of papers used for the analysis; I^2 = test for heterogeneity; p-value = p-value for heterogeneity; $p<0.05$ considered significant; estimate = relative risk estimate combining relative risks, odds ratios, and hazard ratios.

Factor	Subgroup	Npapers	I^2	p-value	Estimate (95% CI)
Body mass index (kg/m²): ≥25 vs. <25	5	75.4	.003		1.22 (1.01, 1.47)
25–30 vs. <25	4	62	.048		1.13 (0.85, 1.49)
≥30 vs. <25	3	60	.082		1.23 (0.88, 1.72)
Alcohol use: ever vs. never	3	0	.588		1.15 (1.02, 1.31)
Smoking: ever vs. never	4	0	.792		1.07 (0.97, 1.18)

Fig. 3 Forest plot of the overall adjusted meta-analyses per reproductive factor on the risk of developing contralateral breast cancer in population-based cohorts Npapers = number of papers used for the analysis; I^2 = test for heterogeneity; p-value = p-value for heterogeneity; $p<0.05$ considered significant; estimate = relative risk estimate combining relative risks, odds ratios, and hazard ratios. yrs years, FTP(s) full-term pregnancy/pregnancies.

Factor	Subgroup	Npapers	I^2	p-value	Estimate (95% CI)
Menarche (yrs): ≥13 vs. <13	3	0	.531		0.94 (0.83, 1.06)
Oral contraceptive use: ever vs. never	3	0	.967		0.90 (0.79, 1.03)
Gravidity: ever vs. never	2	0	.912		0.92 (0.77, 1.09)
Age at primiparity (yrs): ≥25 vs. <25	4	0	.912		1.06 (1.02, 1.10)
Parity: ≥1 FTPs vs. nulliparous	3	0	.664		0.92 (0.80, 1.05)
1–3 FTPs vs. nulliparous	2	0	.908		0.96 (0.82, 1.11)
≥4 FTPs vs. nulliparous	2	21.6	.259		0.56 (0.42, 0.76)
Breastfeeding: ever vs. never	2	0	.578		0.87 (0.74, 1.01)
Menopausal status: postmenopausal vs. premenopausal	4	0	.433		1.12 (0.97, 1.30)
Age at menopause (yrs): <45 vs. ≥45	2	0	.928		0.79 (0.67, 0.93)
primiparity were suggestive of increased CBC risk, whereas a high number of full-term pregnancies and younger age at menopause seemed associated with decreased CBC risk. Overall, the number of papers available for the meta-analyses was limited.

We observed high heterogeneity in the meta-analysis concerning BMI. Difference in menopausal status at first PBC diagnosis could have led hereto, since most women of the lower risk outliers [17, 21] were pre/perimenopausal as opposed to the other studies [18, 19, 22] in which the majority of women was postmenopausal at first PBC diagnosis. It is sometimes hypothesized that high BMI in premenopausal women may lead to anovulation and reduction of circulating estrogen and progesterone and thereby reducing PBC risk [30]. Contrarily, in postmenopausal women, a high BMI is observed to be a risk factor for first PBC [31, 32], likely due to increasing estrogen concentration through adipose tissue production and reduction of sex hormone-binding globulins [33]. These mechanisms may also be applied to the association between BMI and CBC. Still, literature supporting the inverse association between BMI and premenopausal first PBC is scarce and lacks strong evidence [31, 32].

In contrast to the systematic review of Simapivapan et al. [34] in which no conclusive association between alcohol consumption and second PBC was found, we did observe a positive association between alcohol consumption and CBC risk. Simapivapan et al. included the same publications as we did [12, 14, 16, 19, 23], but did not exclude the publications of Li et al. [12, 14] which we considered to overlap in patient cohort with Knight et al. [24]. Consequently, because of the limited number of available publications, we had to use a dichotomous outcome (i.e., ever vs. never), whereas Simapivapan et al. gave a narrative overview of the frequency and/or period of exposure (e.g., pre or post breast cancer diagnosis) to alcohol consumption.

Despite contradicting evidence relating to the impact of parity on CBC risk, it seems that multiple FTPs are protective for developing a CBC as shown by the trend-analysis for an increasing number of FTPs and subgroup analyses for parity (≥ 4 FTPs vs. nulliparous and ≥ 2 FTPs vs. 1 FTP). The fact that some analyses did not show a significantly decreased CBC risk for parity (≥ 1 FTPs vs. nulliparous and 1–3 FTPs vs. nulliparous) could be explained by a lack of power from small contrast in numbers of FTP and from including a small number of studies (n = 2–3).

Just as for first PBC [35], having multiple full-term pregnancies seemed protective for developing CBC, whereas primiparity at an older age showed an increased risk of CBC. Pregnancy induces terminal differentiation of mammary luminal cells through exposure to human chorionic gonadotrophin (hCG). This results in changing gene expression in the mammary stem cells, becoming more refractory to carcinogenesis through increased DNA repair pathway and apoptosis control. Older age at primiparity delays the formation of this protective ‘genomic signature’ and extends the exposure time to carcinogens, thereby making the breast more susceptible to carcinogenesis [36]. We assume that the underlying mechanisms for parity and age at primiparity on first PBC risk may apply for CBC as well.

We observed a decreased CBC risk in women with younger age at menopause (i.e., early/premature menopause), but the number of papers was limited (n = 2). Nonetheless, older age at menopause has previously been described as a risk factor for first PBC [37], possibly due to a higher number of menstrual cycles experienced [38], thereby having longer exposure to high estrogen levels [39]. Therefore, it makes sense that a younger age at menopause is associated with a decreased CBC risk. Moreover, first PBC risk increases less for every year older at menopause than for every year younger at menarche, implying that not only the number of menstrual cycles plays a role in the relationship between childbearing years and first PBC risk (and possibly CBC risk) [37] but also the number of reproductive years before the first FTP is even more important. Nonetheless, we did not find any association between age at menarche and CBC risk.

There are several limitations to our study that need to be considered. First, there were only few studies available per studied risk factor (two to five per meta-analysis), underlining that little is known about the impact of lifestyle and reproductive factors on CBC risk. For example, only two publications were included in the meta-analyses for gravidity, subgroups of parity (1–3 or ≥ 4 full-term pregnancies vs. nulliparous), breastfeeding, and age at menopause. In addition, we had to use a dichotomous outcome (i.e., ever vs. never) for the meta-analyses concerning smoking, alcohol use, oral contraceptive use, gravity, and breastfeeding. The outcomes of these analyses should therefore be interpreted with caution. In addition, the small number of papers that was available per factor inhibited us from being able to inspect the presence of publication bias.

Second, the analyzed data are heterogeneous regarding the timing of assessment of the lifestyle and reproductive factors. All lifestyle factors (BMI, alcohol use, and smoking) were assessed at first PBC diagnosis, whereas most reproductive factors were assessed at or before CBC diagnosis. Factors assessed at first PBC may be useful for risk prediction but are not that helpful for the prediction of risk modification. Although several modifiable factors were included in this meta-analysis, the potential effect of actual changes in lifestyle factors after first PBC diagnosis has not been addressed.

Third, our literature search included search terms for second breast cancer, thereby including publications that studied the risks of developing ipsilateral second breast cancers as well. However, considering that the large majority (95%)
of second PBCs is contralateral as compared to ipsilateral [8], we do not expect large risk alterations.

Fourth, we did not perform a quality assessment of the included studies; instead, we applied our own selection criteria (e.g., selecting only papers with a minimum number of events and evaluating the statistical methods that were used). Moreover, we know from literature that quality assessment tools in meta-analyses do not prevent nor resolve potential bias [40, 41].

Many breast cancer survivors express their concern on developing breast cancer in the other breast during follow-up at the outpatient clinic. In a previous meta-analysis, we assessed the impact of genetic and clinical factors (i.e., pathological characteristics and treatment) on CBC risk [42]. For example, breast cancer patients with a positive mutation status (e.g., BRCA1, BRCA2 or CHEK2 c.1100delC) have a two to four times higher relative risk of developing a CBC [42]. The contribution of lifestyle and reproductive factors on CBC risk is compared hereto relatively small. Nonetheless, there is a specific interest from breast cancer survivors in factors that can be modified after first PBC diagnosis (e.g., weight, alcohol use), thereby potentially decreasing the risk of developing a CBC.

To our knowledge, this is the first meta-analysis that studied the impact of multiple lifestyle and reproductive factors on CBC risk, thereby seeking for the best possible evidence on this topic. Healthy BMI seems to be associated with a lower risk of developing a CBC as compared to high BMI. However, we could not prove that losing weight after the first PBC actually has a risk reducing effect on developing a CBC. More research on the impact of weight loss after the first PBC on CBC risk is therefore necessary. Nonetheless, losing weight is considered beneficial for breast cancer survivors who are overweight or obese, if not for decreasing CBC risk, then either for other health outcomes. Weight loss intervention programs could be considered as part of the rehabilitation program for breast cancer survivors and have already gained some success in weight loss in breast cancer patients [43, 44]. In addition, breast cancer survivors in general may be advised to maintain a healthy lifestyle.

Most importantly, this systematic review and meta-analysis highlighted the current gaps in our knowledge and stressed the importance of further investigations that are needed to improve CBC risk management in breast cancer survivors. The results pointed in a specific direction for alcohol use, number of FTPs, age at primiparity, and age at menopause, but to provide strong conclusions, more research is definitely needed.

Moreover, more research on the impact of modifiable lifestyle factors (e.g., exercise, dietary habits, extent and timing of alcohol use) and known reproductive risk factors for a first PBC (e.g., parity, menopausal status) on CBC risk is necessary to offer breast cancer patients personalized evidence-based CBC risk estimates.

Acknowledgments We would like to thank Daniele Giardiello (Netherlands Cancer Institute) for his efforts in performing the statistical trend analysis.

Funding This study was funded by the Dutch Cancer Society/Alpe d’HuZes (Grant Number: A6C/6253).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. You must obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Integraal Kanker Centrum Nederland (2012) Cijfers over kanker. https://www.cijfersoverkanker.nl. Accessed 12 July 2017
2. SEER Stat Fact Sheets: Breast Cancer, 1975–2013. National Cancer Institute (2013) https://seer.cancer.gov/csr/1975_2013/. Accessed 2 Apr 2017
3. van den Broek van ‘t Veer AJLJ, Hooning MJ, Cornelissen S, Broeks A, Rutgers EJ, Smit VT, Cornelisse CJ, van Beek M, Jansen-Heijnen ML, Seynaeve C, Westenend PJ, Jobsen JJ, Siesling S, Tollenaar RA, van Leeuwen FE, Schmidt MK (2016) Impact of age at primary breast cancer on contralateral breast cancer risk in BRCA1/2 mutation carriers. J Clin Oncol 34(5):409–418. https://doi.org/10.1200/JCO.2015.62.3942
4. Xiong Z, Yang L, Deng G, Huang X, Li X, Xie W, Wang J, Shuang Z, Wang X (2018) Patterns of occurrence and outcomes of contralateral breast cancer: analysis of SEER data. J Clin Med. https://doi.org/10.3390/jcm7060133
5. Wong SM, Freedman RA, Sagara Y, Aydogan F, Barry WT, Golshan M (2017) Growing use of contralateral prophylactic mastectomy despite no improvement in long-term survival for invasive breast cancer. Ann Surg 265(3):581–589. https://doi.org/10.1097/SLA.0000000000001698
6. Murphy JA, Milner TD, O’Donoghue JM (2013) Contralateral risk-reducing mastectomy in sporadic breast cancer. Lancet Oncol 14(7):e262–269. https://doi.org/10.1016/S1470-2045(13)70047-0
7. Mohrer D, Liberei A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005
8. Witteveen A, Kwast AB, Sonke GS, IJzerman MJ, Siesling S (2015) Survival after locoregional recurrence or second primary breast cancer: impact of the disease-free interval. PLoS ONE 10(4):e0120832. https://doi.org/10.1371/journal.pone.0120832
9. Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135(11):1301–1309
10. Shankar A, Roy S, Malik A, Kamal VK, Bhandari R, Kishor K, Mahajan M, Sachdev J, Jeyaraj P, Rath G (2015) Contralateral breast cancer: a clinico-pathological study of second primaries in opposite breasts after treatment of breast malignancy. Asian Pac J Cancer Prev 16(3):1207–1211
11. Brooks JD, John EM, Mellemkjaer L, Reiner AS, Malone KE, Lynch CF, Figueiredo JC, Haile RW, Shore RE, Bernstein JL, Bernstein L (2012) Body mass index and risk of second primary breast cancer: the WECARE Study. Breast Cancer Res Treat 131(2):571–580. https://doi.org/10.1007/s10549-011-1743-4
12. Li CI, Daling JR, Porter PL, Tang MT, Malone KE (2009) Relationship between potentially modifiable lifestyle factors and risk of second primary contralateral breast cancer among women diagnosed with estrogen receptor-positive invasive breast cancer. J Clin Oncol 27(32):5312–5318. https://doi.org/10.1200/JCO.2009.23.1597
13. Figueiredo JC, Bernstein L, Capanu M, Malone KE, Lynch CF, Anton-Culver H, Stovall M, Bertelsen L, Haile RW, Bernstein JL (2008) Oral contraceptives, postmenopausal hormones, and risk of asynchronous bilateral breast cancer: the WECARE Study Group. J Clin Oncol 26(9):1411–1418. https://doi.org/10.1200/JCO.2007.14.3081
14. Li CI, Malone KE, Porter PL, Daling JR (2003) Epidemiologic and molecular risk factors for contralateral breast cancer among young women. Br J Cancer 89(3):513–518. https://doi.org/10.1038/sj.bjc.6601042
15. Cook LS, White E, Schwartz SM, McKnight B, Daling JR, Weiss NS (1996) A population-based study of contralateral breast cancer following a first primary breast cancer (Washington, United States). Cancer Causes Control 7(3):382–390
16. Knight JA, Bernstein L, Largent J, Capanu M, Begg CB, Mellemkjaer L, Lynch CF, Malone KE, Reiner AS, Liang X, Haile RW, Boice JD Jr, Bernstein JL (2009) Alcohol intake and cigarette smoking and risk of a contralateral breast cancer: The Women’s Environmental Cancer and Radiation Epidemiology Study. Am J Epidemiol 169(8):962–968. https://doi.org/10.1093/aje/kwn422
17. Brooks JD, John EM, Mellemkjaer L, Lynch CF, Knight JA, Malone KE, Reiner AS, Bernstein L, Liang X, Shore RE, Stovall M, Bernstein JL (2016) Body mass index, weight change, and risk of second primary breast cancer in the WECARE study: influence of estrogen receptor status of the first breast cancer. Cancer Med 5(11):3282–3291. https://doi.org/10.1002/cam4.890
18. Majed B, Dozol A, Ribassin-Majed L, Senouci K, Asselain B (2011) Increased risk of contralateral breast cancers among overweight and obese women: a time-dependent association. Breast Cancer Res Treat 126(3):729–738. https://doi.org/10.1007/s10549-010-1153-z
19. Trentham-Dietz A, Newcomb PA, Nichols HB, Hampton JM (2007) Breast cancer risk factors and second primary malignancies among women with breast cancer. Breast Cancer Res Treat 105(2):195–207. https://doi.org/10.1007/s10549-006-9446-y
20. Kuo WH, Yen AM, Lee PH, Hou MF, Chen SC, Chen KM, Chen TH, Chang KJ (2006) Incidence and risk factors associated with bilateral breast cancer in area with early age diagnosis but low incidence of primary breast cancer: analysis of 10-year longitudinal cohort in Taiwan. Breast Cancer Res Treat 99(2):221–228. https://doi.org/10.1007/s10549-006-9194-z
21. Dignam JJ, Wieand K, Johnson KA, Raich P, Anderson SJ, Smokcin C, Wickerham DL (2006) Effects of obesity and race on prognosis in lymph node-negative, estrogen receptor-negative breast cancer. Breast Cancer Res Treat 97(3):245–254. https://doi.org/10.1007/s10549-005-9118-3
22. Dignam JJ, Wieand K, Johnson KA, Fisher B, Xu L, Mamounas EP (2003) Obesity, tamoxifen use, and outcomes in women with estrogen receptor-positive early-stage breast cancer. J Natl Cancer Inst 95(19):1467–1476
23. Bernstein JL, Thompson WD, Risch N, Holford TR (1992) Risk factors predicting the incidence of second primary breast cancer among women diagnosed with a first primary breast cancer. Am J Epidemiol 136(8):925–936
24. Knight JA, Fan J, Malone KE, John EM, Lynch CF, Langballe R, Bernstein L, Shore RE, Brooks JD, Reiner AS, Woods M, Liang X, Bernstein JL (2017) Alcohol consumption and cigarette smoking in combination: a predictor of contralateral breast cancer risk in the WECARE study. Int J Cancer 141(5):916–924. https://doi.org/10.1002/ijc.30791
25. Sisti JS, Bernstein JL, Lynch CF, Reiner AS, Mellemkjaer L, Brooks JD, Knight JA, Bernstein L, Malone KE, Woods M, Liang X, John EM (2015) Reproductive factors, tumor estrogen receptor status and contralateral breast cancer risk: results from the WECARE study. Springerplus 4:825. https://doi.org/10.1186/s40064-015-1642-y
26. Poynter JN, Langholz B, Largent J, Mellemkjaer L, Bernstein L, Malone KE, Lynch CF, Borg A, Concannon P, Teraoka SN, Xue S, Diep AT, Torgren T, Begg CB, Capauha M, Haile RW, Bernstein JL (2010) Reproductive factors and risk of contralateral breast cancer by BRCA1 and BRCA2 mutation status: results from the WECARE study. Cancer Causes Control : CCC 21(6):839–846. https://doi.org/10.1007/s1055-010-9510-0
27. Figueiredo JC, Haile RW, Bernstein L, Malone KE, Largent J, Langholz B, Lynch CF, Bertelsen L, Capana M, Concannon P, Borg A, Borresen-Dale AL, Diep A, Teraoka S, Torgren T, Xue S, Bernstein JL (2010) Oral contraceptives and postmenopausal hormones and risk of contralateral breast cancer among BRCA1 and BRCA2 mutation carriers and noncarriers: the WECARE Study. Breast Cancer Res Treat 120(1):175–183. https://doi.org/10.1007/s10549-009-0455-5
28. Largent JA, Capana M, Bernstein L, Langholz B, Mellemkjaer L, Malone KE, Begg CB, Haile RW, Lynch CF, Anton-Culver H, Wolitzer A, Bernstein JL (2007) Reproductive history and risk of second primary breast cancer: the WECARE study. Cancer Epidemiol Biomarkers Prev 16(5):906–911. https://doi.org/10.1158/1055-9965.EPI-06-1003
29. Vaittinen P, Hemminki K (2000) Risk factors and age-incidence relationships for contralateral breast cancer. Int J Cancer 88(6):998–1002. https://doi.org/10.1002/1097-0215(20000121.)215:88:6%3c998:AID-IJC25%3e3.0.CO;2-0
30. Potischman N, Swanson CA, Sitiëri P, Hoover RN (1996) Reversal of relation between body mass and endogenous estrogen concentrations with menopausal status. J Nat Cancer Inst 88(11):756–758
31. Munsell MF, Sprague BL, Berry DA, Chisholm G, Trentham-Dietz A (2014) Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev 36:114–136. https://doi.org/10.1093/epirev/mxt010
32. Neuhauser ML, Aragaki AK, Prentice RL, Manson JE, Chlebowski R, Carty CL, Ochs-Balcom HM, Thomson CA, Caan BJ, Tinker LF, Urrutia RP, Knudson J, Anderson GL (2015) Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women’s health initiative randomized clinical trials. JAMA Oncol 1(5):611–621. https://doi.org/10.1001/jamaoncol.2015.1546
33. Key TJ, Appleby PN, Reeves GK, Roddam A, Dorgan JF, Longcope C, Stanczyk FZ, Stephenson HE Jr, Falk RT, Miller R, Schatzkin A, Allen DS, Fentiman IS, Key TJ, Wang DY, Dowsett M, Thomas HV, Hankinson SE, Toniolo P, Akhmedkhanov A, Koenig K, Shore RE, Zeleznich-Jaquette A, Berrino F, Muti P, Micheli A, Krogh V, Sieri S, Pala V, Venturelli E, Secreto G,
Barrett-Connor E, Laughlin GA, Kabuto M, Akiba S, Stevens RG, Neriishi K, Land CE, Cauley JA, Kuller LH, Cummings SR, Helzlsouer KJ, Alberg AJ, Bush TL, Comstock GW, Gordon GB, Miller SR, Longcope C, EHBC Collaborative G (2003) Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Nat Cancer Inst 95(16):1218–1226

34. Simapivapan P, Boltong A, Hodge A (2016) To what extent is alcohol consumption associated with breast cancer recurrence and second primary breast cancer?: a systematic review. Cancer Treat Rev 50:155–167. https://doi.org/10.1016/j.ctrv.2016.09.010

35. Lambe M, Hsieh CC, Chan HW, Ekbom A, Trichopoulos D, Adami HO (1996) Parity, age at first and last birth, and risk of breast cancer: a population-based study in Sweden. Breast cancer Res Treat 38(3):305–311

36. Russo J, Moral R, Balogh GA, Mailo D, Russo IH (2005) The protective role of pregnancy in breast cancer. Breast Cancer Res 7(3):131–142. https://doi.org/10.1186/bcr1029

37. Collaborative Group on Hormonal Factors in Breast C (2012) Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118,964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13(11):1141–1151. https://doi.org/10.1016/S1470-2045(12)70425-4

38. Chavez-MacGregor M, Elias SG, Onland-Moret NC, van der Schouw YT, Van Gils CH, Momminkhof E, Grobbee DE, Peeters PH (2005) Postmenopausal breast cancer risk and cumulative number of menstrual cycles. Cancer Epidemiol Biomarkers Prev 14(4):799–804. https://doi.org/10.1158/1055-9965.EPI-04-0465

39. Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2(3):133–140. https://doi.org/10.1016/S1470-2045(00)00254-0

40. Ahn S, Becker BJ (2011) Incorporating quality scores in meta-analysis. J Educ Behav Stat 36(5):555–585. https://doi.org/10.3102/1076998610393968

41. Greenland S, O'Rourke K (2001) On the bias produced by quality scores in meta-analysis, and a hierarchical view of proposed solutions. Biostatistics 2(4):463–471. https://doi.org/10.1093/biostatistics/2.4.463

42. Akdeniz D, Schmidt MK, Seynaeve CM, McCool D, Giardiello D, van den Broek AJ, Hauptmann M, Steyerberg EW, Hooning MJ (2019) Risk factors for metachronous contralateral breast cancer: a systematic review and meta-analysis. Breast 44:1–14. https://doi.org/10.1016/j.breast.2018.11.005

43. Reeves MM, Terranova CO, Eakin EG, Demark-Wahnefried W (2014) Weight loss intervention trials in women with breast cancer: a systematic review. Obes Rev 15(9):749–768. https://doi.org/10.1111/obr.12190

44. Playdon M, Thomas G, Sanft T, Harrigan M, Ligibel J, Irwin M (2013) Weight loss intervention for breast cancer survivors: a systematic review. Curr Breast Cancer Rep 5(3):222–246. https://doi.org/10.1007/s12609-013-0113-0

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.