Symptom status, body perception, and risk of anxiety and depression in breast cancer patients receiving paclitaxel: a prospective longitudinal study

Gamze Gokce Ceylan1 · Zehra Gok Metin2

Received: 3 May 2021 / Accepted: 8 October 2021 / Published online: 17 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Background Paclitaxel regimen which is widely used in clinical treatment causes many negative physical and psychological consequences on women with breast cancer (BC). This longitudinal study firstly aimed to investigate symptom status, body perception changes, and the risk of anxiety and depression in BC patients receiving during paclitaxel regimen.

Materials and methods This descriptive and prospective study was conducted with 84 BC patients receiving paclitaxel regimen. “Chemotherapy Symptom Assessment Scale (C-SAS),” “Body Perception Scale (BPS),” and “Hospital Anxiety and Depression Scale (HADS)” were applied at five time points (T1, before the first Paclitaxel infusion; T2, at the end of first cycle; T3, at the end of fourth cycle; T4, at the end of eighth cycle; T5, at the end of twelfth cycle). Data was analyzed using descriptive statistics, Cochrane Q, and linear mix model regression analysis.

Results The frequency of needling and numbness in hands and feet, pain, and skin or nail changes significantly increased in the subsequent assessment points (T2, T3, T4, and T5) compared to the initial assessment (T1) (p < 0.05). The mean scores of BPS significantly decreased at T2, T4, and T5 compared to T1 (F = 8.152, p < 0.001). The mean scores of the anxiety subscale of the HADS scale decreased at the T3, T4, and T5 compared to T1 (F = 6.865, p < 0.001), and the mean scores of the depression subscale significantly increased at the T5 compared to T1 (F = 3.708, p = 0.006).

Conclusions The oncology nurse should comprehensively evaluate the patients who scheduled to receive paclitaxel treatment, and provide counseling to the patients during these specific weeks. Better management of the symptoms that increase with the paclitaxel regimen with repeated interviews under the supervision of the nurse will also prevent the deterioration of body perception. In addition, since the risk of depression increases over time in patients receiving paclitaxel, nurses should periodically screen the risk of depression, and timely consult the patients for the appropriate support.

Keywords Anxiety · Body perception · Breast cancer · Depression · Nursing · Paclitaxel

Introduction
Breast cancer (BC) is the most common type of cancer among women worldwide, causing significant rates of mortality and morbidity [1, 2]. In recent years, adjuvant and neoadjuvant systemic therapies have started to take an important place in BC treatment to reduce the associated mortality rate, in addition to the classical treatment methods such as surgery, chemotherapy, and radiotherapy [3].

Paclitaxel is frequently preferred during adjuvant and neoadjuvant therapies [4]. Paclitaxel is a taxane group drug and can be administered weekly (12 weeks) or every 21 days (four cycles) after four cycles of Adriamycin–cyclophosphamide (AC) treatment in patients with early-stage BC [5–7]. With the increasing clinical use of paclitaxel in BC, it is reported that therapeutic response, survival, and disease-free survival rates have increased [6].

Paclitaxel, which cannot cross the blood–brain barrier, induces symptoms by causing toxic effects in the periphery. Dynamic instability of microtubules in the cell is necessary.
for mitosis. Paclitaxel stabilizes the microtubule by binding to the lumens of the cell, stops mitosis, and eventually causes apoptosis. In particular, neurons are frequently affected by paclitaxel even though they are not dividing cells [8]. Paclitaxel often causes significant symptoms such as neutropenia, nausea, vomiting, diarrhea, oral mucositis, amenorrhea, alopecia, arthralgia, myalgia, peripheral neuropathy, skin and nail changes, liver and renal toxicity, and hypersensitivity reactions in BC patients depending on the number of cycles, and the dose administered [5, 6, 9–11]. In particular, during the weekly administered paclitaxel regimen, patients are found feeling uncomfortable due to arthralgia and myalgia, taste changes, peripheral neuropathy, fatigue, cognitive problems, and insomnia [12]. In addition, neurotoxicity is reported to be associated with the increasing cumulative dose of the paclitaxel [11]. Patients with BC receiving paclitaxel also experience anxiety, depression, and decrease in body perception due to physiological effects of paclitaxel including alopecia, changes in sexual life, menstrual disorders, weight changes, and changes in nails/skin [13–15].

Parallel to the increasing symptom status during the BC treatment, patients find it increasingly difficult to adapt to the treatment. Changes in physical, cognitive, and emotional statuses may also cause a decline in body perception [16]. Body perception in BC patients is negatively affected during the paclitaxel regimen as a result of edema, weight changes, alopecia, differentiation in skin color and nails, oral mucositis, menstrual cycle disorders, and sexual life problems [17, 18]. At the same time, as in many cultures, imputed meanings related to aesthetic appearance, femininity, attractiveness, sexuality, and motherhood in Turkish culture make the treatment process even more difficult for patients with BC [19, 20]. Several studies have also highlighted that chemotherapy and mastectomy, which have an important place in the BC treatment, negatively affect the body perception in BC patients [13, 14, 21].

Another clinical situation that needs to be considered is that emotional changes, including distress, anxiety, and depression in BC patients. Experienced symptoms, decreased body perception, and increased anxiety during BC treatment cause more difficulty in coping with the treatment process in BC patients, and lead to the formation of a risk group for depression [17]. Previous studies conducted with BC patients reported that alopecia, weight changes, fatigue, and difficulties in sexual life are directly related to higher anxiety, and depression levels in those undergoing surgery and chemotherapy [15, 22, 23]. Besides, numerous studies have emphasized that the anxiety levels are higher in the first year after a BC diagnosis [24], which gradually decrease during the treatment [25].

In the literature, no studies have been found that investigated changes in symptom status, body perception, and the risk of anxiety, and depression prospectively in patients with BC scheduled to receive paclitaxel regimen. This study is the first attempt to fill this research gap by investigating changes in body perception, symptom status, and the risk of anxiety and depression concurrently, and determining the time intervals of deterioration in these three variables in BC patients who scheduled to receive paclitaxel regimen. Therefore, this study aimed to determine the symptom status, body perception changes, and the risk of anxiety and depression in patients with BC for a total of 12 weeks. It is assumed that determining the time intervals during the paclitaxel treatment when the risk of anxiety and depression occurs can enable the planning of comprehensive education programs and counseling sessions for BC patients and reduce the symptom burden and the deterioration in body perception with structured nursing interventions.

Research questions

- How do the symptom status change in BC patients during the paclitaxel regimen?
- How do body perception levels change in BC patients during the paclitaxel regimen?
- How do the symptoms of anxiety and depression change in BC patients during the paclitaxel regimen?

Methods

Study design and setting

This descriptive and prospective study was conducted between July 29, 2019, and June 15, 2020, at three centers including the Hacettepe University Oncology Hospital, Health Sciences University Dr Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, and Ankara City Hospital located in Ankara, Turkey. Participants were recruited from the outpatient clinics of the Departments of Clinical Oncology of the three local public hospitals. All patients selected for this study received a total of 12 paclitaxel infusions in the oncology outpatient clinic once a week, for a total of 12 weeks.

Participants

The population of the study consisted of patients with BC who received the first cure of the paclitaxel regimen in the daytime treatment units. The patients who met the inclusion criteria were included in the study without using any sampling method. Considering the correlation coefficient as 0.30 between the BPS and the HADS total scores, the sample size was calculated at least 84 patients with a power of 80% through the G Power 3.1.10 program. Patients aged between
18 and 65 years, who were diagnosed of BC and had completed four cycles of AC regimen prior to the paclitaxel regimen and all the 12 cycles of the paclitaxel, were included in the study. Those who had communication problems, had a psychiatric diagnosis (major depression, etc.), had a different cancer diagnosis, had previous history of radiotherapy, using relaxation techniques or antidepressants during the study, could not complete 12 cycles of the paclitaxel regimen, and were not willing to participate were excluded from the study. In this context, a total of 88 patients were assessed; four patients were excluded due to following reasons: did not want to continue the study \((n = 2)\), could not be reached after the fourth cycle \((n = 1)\), and did not want to receive her treatment due to fear of coronavirus-19 disease \((COVID-19)\) \((n = 1)\). Finally, this study was completed with 84 patients.

Data collection tools

Demographic and clinical information form

This form developed based on the literature \([4–6, 26]\), and consisted of age, height, weight, body mass index, educational level, marital status, income level, employment status, whether having children or not, accompanying comorbidities, duration of BC diagnosis, BC stage, previous treatments, mastectomy status, people living together with, and residency in Ankara, Turkey.

Chemotherapy Symptom Assessment Scale (C-SAS)

This scale was developed to determine the symptom status of cancer patients receiving chemotherapy treatment \([20]\). The Turkish version of the C-SAS was studied by Aslan et al. \((2006)\) \([19]\). It includes 24 different symptoms that may occur during chemotherapy. Patients are asked to identify the status of experiencing each symptom as “yes”/”no.” Since each symptom is evaluated separately, the arithmetic mean values are not used in evaluating the scale scores. In the Turkish validity and reliability study of the scale, the Cronbach alpha coefficient was found as 0.82 \([19, 20]\). In this study, Cronbach’s alpha coefficient was calculated as 0.62.

Body Perception Scale (BPS)

This scale was developed by Secord and Jourard \((1953)\) \([27]\). It contains 40 five-point Likert-type questions about body region or function. These 40 items include five assessment criteria related to each organ or body function (starting from 1 = “I do not like” to 5 = “I like very much”). Total score that can be obtained from the scale varies between 40 and 200. An increase in the total score indicates that a person’s satisfaction with the part or functionality that makes up his/her body increases. The Turkish validity and reliability study of the scale was conducted by Hovardağlı \((1993)\) and the Cronbach alpha coefficient was found as 0.91 \([28]\). In this study, the Cronbach’s alpha coefficient value was calculated to be 0.84.

Hospital Anxiety and Depression Scale (HADS)

HADS was developed by Zigmond and Snaith \((1983)\) \([29]\) to determine the risk status for anxiety and depression in patients with physical disorders, and its Turkish version was studied by Aydemir et al. \((1997)\) \([30]\). It includes 14 questions and two sub-dimensions as anxiety and depression. Seven questions (odd numbered) measure anxiety \((HAD-A)\) while the other seven questions (even numbered) measure depression \((HAD-D)\). In the scale, questions are scored on a four-point Likert scale, each ranging from 0 to 3. The lowest score that a patient can get from each sub-dimension is 0, and the highest score is 21. As the total scores increase, patients are considered at risk for anxiety and depression. In the Turkish validity and reliability study of the scale, the Cronbach alpha coefficient was found as 0.85 and 0.77 for the anxiety and depression sub-dimensions, respectively \([30]\). In this study, the Cronbach’s alpha coefficient values were calculated as 0.86 and 0.79 for the anxiety and depression sub-dimensions in this study, respectively.

Data collection procedure

Baseline data \((T_1)\) were collected on the day of the first paclitaxel infusion, before the first infusion was given, using the demographic and clinical information form, C-SAS, BPS, and HADS from the patients who met the inclusion criteria. The patients were prospectively followed by the principal investigator \((PI)\) during the paclitaxel regimen for a total of 12 weeks. The C-SAS, BPS, and the HADS were reapplied to the patients by the PI at the end of the first cycle \((first week, T_2)\), fourth cycle \((fourth week, T_3)\), eighth cycle \((eighth week, T_4)\), and twelfth cycle \((twelfth week, T_5)\) during the paclitaxel regimen.

Statistical analysis

Data analysis was performed using Statistical Package for the Social Sciences \((SPSS\) version 23; IBM, Armonk, New York). Descriptive statistics \((mean, median, standard deviation, minimum, maximum, percentage, and frequency) were used in the evaluation of the socio-demographic data. Data were analyzed for normality using Kolmogorov–Smirnov test. The Cochran’s Q test, a nonparametric way, was used to determine the changes in the frequency of symptoms evaluated by C-SAS. Longitudinal processing was used for the analysis of repeated measurements. Linear mix model of repeated measurements was used to analyze the progression.
of BPS and HADS scores at T1 (reference category), T2, T3, T4, and T5. The statistical significance value in the study was set as \(p < 0.05 \).

Ethical considerations

Ethical approval was obtained from the Hacettepe University Non-Interventional Clinical Research Ethics Committee (2019/06–10), and institutional permissions were obtained from hospital administrations. All information was collected in accordance with the Declaration of Helsinki. Informed consent forms were obtained from all the patients included in the study. The PI gave information to the patients about the importance, purpose, and contributions of the study in the first interview, received the contact numbers of the patients, and applied the data collection tools using a face-to-face interview technique.

Results

The descriptive characteristics of the patients are given in Table 1. Most of the sample had completed primary school (60.7%) and did not work (73.8%); however, half of the patients reported having a mid-level income. The great majority of participants were married (85.7%) and had children (89.3%). A total of 47.6% of the patients had stage-2 BC, 77.4% had undergone breast surgery and chemotherapy treatments before, and 26.2% had come from other cities to receive their scheduled treatment. The big majority of patients (94%) lived with their family, and nearly half (45.2%) of those had at least one additional chronic disease.

The mean age of patients was 49.57 ± 8.14 years. The mean value of the body mass index was 29.49 ± 5.50, and the average number of children was 2.14 ± 1.04. The mean time of

Table 1 Participants’ characteristics (n = 84)

Variable	Category	Number (n)	Percent (%)
Educational level	Primary school	51	60.7
	Middle school	10	11.9
	High school	19	22.6
	Associate/license	4	4.8
Marital status	Single	12	14.3
	Married	72	85.7
Income level	Low	40	47.6
	Middle	42	50.0
	High	2	2.4
Employment	Not working	62	73.8
	Working	22	26.2
Having a child	Absent	9	10.7
	Present	75	89.3
People that living together	Alone	5	6.0
	With family	79	94.0
Residency in Ankara	Yes	62	73.8
	No	22	26.2
Comorbidities	Present	38	45.2
	Absent	46	54.8
BC stage	Stage 1	10	11.9
	Stage 2	40	47.6
	Stage 3	34	40.5
Previous treatments	Chemotherapy	19	22.6
	Surgery and chemotherapy	65	77.4
Mastectomy status	No	21	25.0
	Yes	63	75.0
Variable	Min	X ± SD*	
	Max		
Age	29	64	49.57 ± 8.14
BMI	17.92	46.48	29.49 ± 5.50
Duration of BC diagnosis (months)	3	12	5.51 ± 1.66
Number of children	0	4	2.14 ± 1.04

X ± SD, mean, standard deviation; *BC*, breast cancer; *BMI*, body mass index
diagnosis was 5.51 ± 1.66 months; the time since diagnosis was 3–6 months in 81% of the patients.

Changes in symptom frequency among the patients were prospectively evaluated at five different time points (T_1, T_2, T_3, T_4, and T_5) during the 12-week paclitaxel regimen (Table 2). Cochran’s Q test results showed the differences in matched sets of symptoms in this longitudinal study. When the symptoms of nausea and vomiting (after treatment), constipation, weight loss or weight gain, changes in appetite, problems with the eyes, feelings of extraordinary fatigue, headaches, anxiety or distress, pessimism and sadness, changes in sexual life, and changes in the menstrual cycle were compared with symptom statuses of the baseline assessment (T_1), a significant decrease was observed in the aforementioned symptoms in all the subsequent measurements (T_2, T_3, T_4, and T_5) ($p < 0.05$). Besides, the frequency of feeling needling, numbness, and pain in the hands and feet increased in the subsequent assessments (T_2, T_3, T_4, and T_5) compared to the baseline assessment (T_1) ($p < 0.05$). In addition, according to the baseline assessment (T_1) and the assessment at the end of the first cycle (T_2), the increase in the frequency of sleep disturbances in the fifth assessment (T_5) cycle remained statistically significant ($p < 0.05$). Finally, the frequency of skin and nail changes gradually increased from T_2 to T_5 ($p < 0.05$). However, the differences between the measurements (T_1, T_2, T_3, T_4, T_5) were not statistically significant in terms of nausea and vomiting (before treatment), diarrhea, dyspnea, signs of infection, bleeding or bruising, hair loss, weakness, and problems with the mouth and throat ($p > 0.05$).

Regarding the changes in the mean BPS scores of the patients during the paclitaxel regimen, the corresponding scores were 134.75 ± 13.73 at T_1, 130.54 ± 14.63 at T_2, 132.33 ± 12.01 at T_3, 129.60 ± 12.62 at T_4, and 124.07 ± 10.44 at T_5 (Table 3). When the reference category was taken as the T_1 (before the first paclitaxel infusion), body perception scores at T_2 time were 4.214 less than the T_1. The corresponding scores at T_4 time were 5.155 less than T_1. Body perception scores at T_5 time were 10.679 less than T_1. No significant effect was found at T_3 time compared to the reference category (T_1) (Table 4). Considering Table 3, the effects of measurements repeated at different times on BPS scores were statistically significant based on the linear mix model established ($F = 8.152$, $p < 0.001$).

During the paclitaxel regimen in this study, the mean scores of the HADS-A sub-dimension were 6.61 ± 4.74 at T_1, 5.63 ± 3.86 at T_2, 4.48 ± 3.33 at T_3, 4.18 ± 3.01 at T_4, and 4.30 ± 3.15 at T_5 (Table 3). When the reference category was taken as the T_1 (before the first paclitaxel infusion), anxiety scores at T_2 time were 2.131 lower than T_1. Anxiety scores at T_4 time were 4.30 less than T_1. Anxiety scores at T_5 time were 3.15 less than T_1 (Table 5). No significant effect was found at T_2 time compared to the reference category (T_1). As for the mean scores of the HADS-D sub-dimension, it was found to be 6.00 ± 4.16 at T_1, 5.64 ± 3.37 at T_2, 6.13 ± 3.65 at T_3, 6.90 ± 3.23 at T_4, and 7.44 ± 2.85 at T_5. The mean depression scores decreased in T_2 compared to T_1, increased in T_3 compared to T_2 and T_4 compared to T_3, and increased again in T_5 compared to T_4 (Table 3). Depression scores at T_4 time were 1.440 higher than T_1. And no significant effect was determined at T_2, T_3, and T_4 times compared to the reference category (Table 5). Table 5 summarizes the results of the mixed linear model analysis for HADS-A and HADS-D scores, respectively. The effects of measurements repeated at different times on anxiety ($F = 6.865$, $p < 0.001$) and depression ($F = 3.708$, $p = 0.006$) scores were statistically significant.

Discussion

In this prospective study, we investigated the symptom status, body perception level changes, and the symptoms of anxiety and depression in BC patients receiving paclitaxel treatment using five different measurement points. While frequency of symptoms nausea-vomiting, fatigue, headaches, anxiety-distress decreased, needling, numbness, pain in the hands and feet, sleep disturbances, and skin-nail changes increased during the paclitaxel regimen in the present study. Like our findings, neuropathy, skin and nail toxicities, arthralgia, and myalgia were frequently reported in patients receiving paclitaxel regimen [8, 31–33]. Chemotherapy is reported to first affect the receptors in the gastrointestinal tract, inducing neurotransmitter release and stimulating the muscles in the stomach to create nausea/vomiting response in the relevant part of the brain [34], and triggers the mechanisms of acute, delayed, and anticipatory emesis. Previous studies have highlighted that chemotherapy-induced peripheral neurotoxicity, neuropathic pain, anxiety, and depression have been reported to be important risk factors for sleep disturbance and poor sleep quality in BC survivors [35]. Fatigue may be associated with cancer itself, and ongoing treatment, sleep problems, anxiety, depression, and peripheral neuropathy may also contribute to neuromuscular fatigue [36]. As paclitaxel cannot cross the blood–brain barrier, it frequently causes problems in the periphery, such as neuropathy. Proposed mechanisms for taxane-induced peripheral neuropathy and neuropathic pain include inflammation, peripheral nerve toxicity with nociceptor sensitization, resultant hyperalgesia, and immune system activation [35, 37]. In this prospective study, we firstly evaluated the symptom status before and after the treatment in BC patients and also reported that anxiety decreased and pain increased [38]. Bao et al. (2016) [39] confirmed that 58.4% of the BC patients receiving taxane chemotherapy had numbness.
Variable	Status	T₁ (n=75)	T₂ (n=84)	T₃ (n=84)	p value	Q	Difference between end of care measurements
Nausea before treatment	Present	2 2.4	2 2.4	1 1.2	0.934	0.429	T1-T2 (p<0.001, Q=0.667)
	Absent	82 97.6	82 97.6	83 98.8			T1-T3 (p<0.001, Q=0.774)
Nausea after treatment	Present	75 98.3	19 22.6	10 11.9	p<0.001	188.960	T1-T2 (p<0.001, Q=0.667)
	Absent	9 10.7	65 77.4	74 88.1			T1-T3 (p<0.001, Q=0.774)
Vomiting before treatment	Present	19 22.6	3 3.6	1 1.2	p<0.001	29.200	T1-T2 (p<0.001, Q=0.667)
	Absent	65 77.4	81 96.4	83 98.8			T1-T3 (p<0.001, Q=0.774)
Constipation	Present	44 52.4	31 36.9	21 25.0	p<0.001	43.461	T1-T2 (p<0.001, Q=0.667)
	Absent	40 40.7	53 63.1	63 75.0			T1-T3 (p<0.001, Q=0.774)
Diarrhea	Present	15 17.9	3 3.6	10 11.9	0.052	9.385	T1-T2 (p<0.001, Q=0.667)
	Absent	69 82.1	81 96.4	74 88.1			T1-T3 (p<0.001, Q=0.774)
Pain	Present	35 41.7	59 70.2	54 64.3	p<0.001	33.026	T1-T2 (p<0.001, Q=0.667)
	Absent	49 58.3	25 29.8	30 35.7			T1-T3 (p<0.001, Q=0.774)
Dyspnea	Present	5 6.0	6 7.1	6 7.1	0.997	0.154	T1-T2 (p<0.001, Q=0.667)
	Absent	79 94.0	78 92.9	78 92.9			T1-T3 (p<0.001, Q=0.774)
Signs of infection	Present	2 2.4	3 3.6	3 3.6	0.991	0.286	T1-T2 (p<0.001, Q=0.667)
	Absent	82 97.6	81 96.4	81 96.4			T1-T3 (p<0.001, Q=0.774)
Bleeding or bruising	Present	1 1.2	0* 0	2 2.4	0.717	0.667	T1-T2 (p<0.001, Q=0.667)
	Absent	83 98.8	84 100	82 97.6			T1-T3 (p<0.001, Q=0.774)
Pins and needles in hands, feet	Present	24 28.6	20 23.8	38 45.2	p<0.001	111.97	T1-T2 (p<0.001, Q=0.667)
	Absent	60 71.4	64 76.2	46 54.8			T1-T3 (p<0.001, Q=0.774)
Problems with the skin or nails	Present	68 81.0	55 65.5	63 75.0	p<0.001	30.481	T1-T2 (p<0.001, Q=0.667)
	Absent	16 19.0	29 34.5	21 25.0			T1-T3 (p<0.001, Q=0.774)
Hair loss	Present	84* 100	0* 0	3 3.6	p=0.148	3.818	T1-T2 (p<0.001, Q=0.667)
	Absent	0 100	0* 0	3 3.6			T1-T3 (p<0.001, Q=0.774)
Problems with the mouth and throat	Present	65 87.4	52 61.9	54 64.3	p=0.058	9.117	T1-T2 (p<0.001, Q=0.667)
	Absent	19 22.6	32 38.1	30 35.7			T1-T3 (p<0.001, Q=0.774)
Change in appetite	Present	72 85.7	41 48.8	54 64.3	p<0.001	33.990	T1-T2 (p<0.001, Q=0.667)
	Absent	12 14.3	43 51.2	30 35.7			T1-T3 (p<0.001, Q=0.774)
Table 2 (continued)

Variable	Status	T_1	T_2	T_3	T_4	T_5	p value	Q	Difference between end of cure measurements
Losing or gaining weight	Present	50	59.5	12	14.3	34	40.5	32	$p < 0.001$
			(%)	(%)	(%)	(%)	(%)	(%)	37 44.0
	Absent	34	40.5	72	85.7	50	59.5	52	61.9
			(%)	(%)	(%)	(%)	(%)	(%)	47 56.0
Problems with the eyes	Present	51	60.7	7	8.3	15	17.9	16	$p < 0.001$
			(%)	(%)	(%)	(%)	(%)	(%)	29 34.5
	Absent	33	39.3	77	91.7	69	72.1	68	81.0
			(%)	(%)	(%)	(%)	(%)	(%)	55 65.5
Fatigue	Present	84*	100	68	81.0	73	86.9	74	88.1
			(%)	(%)	(%)	(%)	(%)	(%)	75 89.3
	Absent	0	0	16	19.0	11	13.1	10	11.9
			(%)	(%)	(%)	(%)	(%)	(%)	9 10.7
Feeling exceptionally tired	Present	66	78.6	10	11.9	20	23.8	10	$p < 0.001$
			(%)	(%)	(%)	(%)	(%)	(%)	20 23.8
	Absent	18	21.4	74	88.1	64	76.2	74	88.1
			(%)	(%)	(%)	(%)	(%)	(%)	64 76.2
Difficulty sleeping	Present	35	41.7	35	41.7	41	48.8	42	$p = 0.016$
			(%)	(%)	(%)	(%)	(%)	(%)	51 60.7
	Absent	49	58.3	49	58.3	43	51.2	42	50.0
			(%)	(%)	(%)	(%)	(%)	(%)	33 39.3
Headaches	Present	48	57.1	26	31.0	40	47.6	30	$p = 0.001$
			(%)	(%)	(%)	(%)	(%)	(%)	32 38.1
	Absent	36	42.9	58	69.0	44	52.4	54	64.3
			(%)	(%)	(%)	(%)	(%)	(%)	52 61.9
Feeling anxious or troubled	Present	61	72.6	47	56.0	44	52.4	48	$p = 0.008$
			(%)	(%)	(%)	(%)	(%)	(%)	43 51.2
	Absent	23	27.4	37	44.0	40	47.6	36	42.9
			(%)	(%)	(%)	(%)	(%)	(%)	41 48.8
Feeling pessimistic, upset	Present	52	61.9	38	45.2	34	40.5	39	$p = 0.015$
			(%)	(%)	(%)	(%)	(%)	(%)	43 51.2
	Absent	32	38.1	46	54.8	50	59.5	45	53.6
			(%)	(%)	(%)	(%)	(%)	(%)	41 48.8
Change in sexual life	Present	54	64.3	0*	0	5	6.0	5	$p < 0.001$
			(%)	(%)	(%)	(%)	(%)	(%)	6 1.2
	Absent	30	35.7	84	100	79	94.0	79	94.0
			(%)	(%)	(%)	(%)	(%)	(%)	83 98.8
Change in the menstrual cycle	Present	46	54.8	1	1.2	2	2.4	1	$p < 0.001$
			(%)	(%)	(%)	(%)	(%)	(%)	1 1.2
	Absent	38	45.2	83	98.8	82	97.6	83	98.8
			(%)	(%)	(%)	(%)	(%)	(%)	83 98.8

T_1, before cure; T_2, end of 1st cure; T_3, end of 4th cure; T_4, end of 8th cure; T_5, end of 12th cure; Q, Cochran Q test (Bonferroni Correction)

"Since the value on the boxes is "0," it could not be included in the statistical analysis"
in their hands and feet. In contrast to the present study, Azim et al. (2011) showed that women receiving adjuvant therapy had more serious sexual problems compared to those receiving other treatments [40]. In the current study, BC patients receive paclitaxel regimen. In after four cycles of AC chemotherapy were followed within the scope of the standard paclitaxel regimen used only in the treatment of early-stage BC. Due to the high side effect profile of the AC cycle, many symptoms were found to be quite high at the beginning of the cycle and relatively lower at the end of the first cycle. The researchers assumed that the gradual decrease in the symptom frequency perceived by the BC patients in the later stages of adjuvant paclitaxel courses in the study sample could be due to easier tolerance for the paclitaxel therapy as against for the systematic and aggressive chemotherapy protocol, including the AC treatment. It is also known that repeated courses of paclitaxel cause peripheral neuropathy due to axonal degeneration at cumulative doses [41]. In our study, the increase in numbness and pain in the hands and feet confirms the previous literature.

This study also evaluated the changes in body perception levels during the paclitaxel regimen. Based on the findings, the body perception scores of the patients were found to be highest at T1, and lowest at T5. Similarly, Villar et al. (2017) found that the body perception levels of the BC patients receiving chemotherapy decreased in the last evaluation compared to the first evaluation [38]. Two studies carried out in Brazil and Israel reported that the body perception levels of BC patients receiving chemotherapy decreased by 74.8% and 80.9%, respectively [42, 43]. In a systematic review conducted by Paterson et al. (2016), the body perception of BC patients was negatively affected in 35 out of the 36 studies [14]. It is presumed that the changes in symptom status such as alopecia, skin and nail changes, and neuropathic pain in BC patients during the paclitaxel regimen might be influential on the perceived negative changes in body perception. These conditions may lead to a significant decrease in the body perception levels over time.

Another important finding of this study was that the mean scores of the HAD-A subscale decreased in the first four measurements (T1, T2, T3, and T4) and relatively increased in the last measurement (T5). Similarly, Villar et al. (2017) reported that the anxiety levels decreased significantly following the chemotherapy and radiotherapy treatments in BC patients [38]. Moreira and Canavarro (2010) also concluded that the anxiety levels of BC patients decreased during the period following surgery and chemotherapy [22]. Bergerot et al. (2017) stated that the anxiety levels of the cancer

| Table 3: Time-related changes in the Body Perception Scale and Hospital Anxiety and Depression Scale Scores (n=84) |
|-------------|-------------|-------------|-------------|
| Time (BPS) | Mean (SD) | Coefficient of variation | F; p |
| T1 | 134.75 (13.73) | 10.2% | 8.152 |
| T2 | 130.54 (14.63) | 11.2% | 0.000* |
| T3 | 132.33 (12.01) | 9.1% | |
| T4 | 129.60 (12.62) | 9.7% | |
| T5 | 124.07 (10.44) | 8.4% | |
| Total | 130.2571 (13.19) | 10.10% | |
| Time (HADS-A) | Mean (SD) | Coefficient of variation | F; p |
| T1 | 6.61 (4.74) | 71.8% | 6.865 |
| T2 | 5.63 (3.86) | 68.6% | 0.000* |
| T3 | 4.48 (3.33) | 74.4% | |
| T4 | 4.18 (3.01) | 72.1% | |
| T5 | 4.30 (3.15) | 73.4% | |
| Total | 5.04 (3.78) | 75.0% | |
| Time (HADS-D) | Mean (SD) | Coefficient of variation | F; p |
| T1 | 6.00 (4.16) | 69.4% | 3.708 |
| T2 | 5.64 (3.37) | 59.7% | 0.006* |
| T3 | 6.13 (3.65) | 59.6% | |
| T4 | 6.90 (3.23) | 46.8% | |
| T5 | 7.44 (2.85) | 38.3% | |
| Total | 6.42 (3.53) | 54.9% | |

T1, before cure; T2, end of 1st cure; T3, end of 4th cure; T4, end of 8th cure; T5, end of 12th cure; BPS, Body Perception Scale; HADS, Hospital Anxiety and Depression Scale; SD, standard deviation

* p < 0.05

| Table 4: Coefficients of Effects of Body Perception Scale (n=84) |
|-------------------|-------------------|-------------------|-------------------|-------------------|
| | Estimate | Std. error | t | p |
| | | | | |
| T1 (reference category) | | | | |
| T2 | −4.214 | 1.970 | −2.139 | 0.033* |
| T3 | −2.417 | 1.970 | −1.227 | 0.221 |
| T4 | −5.155 | 1.970 | −2.617 | 0.009* |
| T5 | −10.679 | 1.970 | −5.420 | 0.000* |

T1, before cure; T2, end of 1st cure; T3, end of 4th cure; T4, end of 8th cure; T5, end of 12th cure

* p < 0.05
patients were highest on the first day and lowest on the last day of chemotherapy [44]. Considering all the findings of the studies, higher anxiety levels in the patients before the paclitaxel regimen may be related to the initiation of a new chemotherapy regimen and the uncertainties that may be experienced during the process. The decrease in the anxiety levels of the BC patients over time may be due to the relatively lower and moderate symptom severity during the paclitaxel regimen, and the improvement of physiological and psychological, individual coping strategies along with the increase in knowledge of and experience related to BC and its treatment.

We have also examined the changes in depression scores. Accordingly, the depression scores decreased at the end of T2 compared to T1 and gradually increased at T3, T4, and T5. Confirming the findings of this study, Byar et al. (2006) had reported earlier that depression levels were low at the beginning and increased as the treatment progressed in BC patients receiving adjuvant chemotherapy [45]. Oh and Cho (2020) also stated that while the depression rate was 4% in South Korean BC patients before the chemotherapy started, it reached 30% after the chemotherapy [46]. Considering all the results, the lower levels of depression at the end of the first cycle and the higher levels as the course progressed may be related to the symptoms, the lack of comprehensive management of these symptoms, and the changes in body perception and anxiety levels following 12 weeks of paclitaxel regimen. The increase in the symptoms of depression at the end of the treatment may be attributed to the uncertainties in the prognoses and the treatment options to be continued.

Limitations

Our findings should be interpreted in the context of some limitations. Since the treatment hours were at the same time in all the three study centers, some patients were missed and could never include in the study. Another limitation is that the first, fourth, eighth, and the twelfth (end of cure) assessments of 36 patients were compulsorily completed via phone interviews due to the announcement of the COVID-19 pandemic and the suspension of research in hospitals in Turkey as March 2020. Finally, we were limited with our demographic and clinical information form including cancer stage, previous treatments, number of children that may be associated with perceived anxiety, and depression. Therefore, further studies examining different variables that may increase the level of anxiety and depression, for example, providing care for children or older people, presence of family support, and employment status, are needed.

Conclusions

To the best of our knowledge, this is the first study evaluating BC patients receiving paclitaxel in terms of symptom status, body perception levels, and the risk of anxiety and depression at five different time points during the paclitaxel protocol. Findings from this longitudinal study indicate that an increase in symptoms including pain, pins and needles in hands-feet, problems with the skin or nails, and difficulty sleeping, while a decrease in anxiety, and body perception and increase in depression at the end of paclitaxel regimen compared with the baseline. Paclitaxel regimen had a negative impact on both perceived
physical and psychological health on a population of BC. Our findings indicate that BC patients are particularly susceptible to such disruptions. Oncology nurses should be aware which symptoms may increase or decrease in BC patients receiving paclitaxel and plan their interventions for better management of these symptoms, and periodically screen and consult them regarding the changes in body perception, and the risk of anxiety and depression. Thus, vulnerable BC patients may be identified at an early stage and referred to professionals for appropriate support. This study showed that a comprehensive follow-up of BC patients by oncology nurses becomes important to alleviate the symptoms, improve body perception, and decrease the risk of anxiety and depression.

Acknowledgements The authors would like to thank all the participants, the nurses, and administrative staff working in the Hacettepe University Oncology Hospital, Dr. A.Y., Ankara Oncology Hospital, and Ankara City Hospital. Without the participants’ voluntary participation and support of the nurses and administrative staff, this study would not have been possible. The authors also express their thank to head of medical oncology unit Prof. Dr. Ömür Berna Çakmak Öksüzoglu and nurse Zeynep Sipahi Karsli for their collaboration and great support.

Author contribution Gamze Gökçe Ceylan is the first author of this study. She has responsibility in conceptualization, data curation, formal analysis, investigation, methodology, resources, visualization, and writing. Zehra Gök Metin is the co-author of the study. She has responsibility in data curation, methodology, project administration, supervision, validation, and writing—review and editing. The final version of this manuscript is approved by all of the authors.

Data availability The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability Not applicable.

Declarations

Ethics approval Ethical approval was obtained from Hacettepe University Non-Interventional Clinical Research Ethics Committee (2019/06–10), and institutional permissions were obtained from hospital administrations to start the study. All information was collected in accordance with the Declaration of Helsinki.

Consent to participate Informed consent was obtained from all individual participants included in the study.

Consent for publication Informed consent was obtained from all individual participants included in the study.

Conflicts of interest The authors declare no competing interests.

References

1. Mungan İ, Doğru O, Aygen E, Dağlı AF (2019) The relations of vascular endothelial growth factor-C and lymph node metastasis in breast cancer patients. J Surg Med 3:124–127
2. WHO (2018) [Erişim Tarihi: 05.12.2018], International Agency for Research on Cancer [Internet]. [Online]. Available: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf. [Accessed]
3. Desantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A (2017) Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin 67:439–448
4. Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332:1004–1014
5. Shapiro CL, Recht A (2001) Side effects of adjuvant treatment of breast cancer. N Engl J Med 344:1997–2008
6. Erdemoglu N, Şener B (2000) The antitumor effects of the taxane class compounds. Ankara Ecz Fak Derg 29:77–90
7. BC Cancer Kemoterapi Protokolleri. (2019, July). [Internet]. https://www.kanser.org/saglik/
8. Gorinstein E, Schwartz TL (2014) The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology 76A:175–183
9. Sibaud V, Lebeuf NR, Roche H, Belum VR, Gladiell L, Deslandres M, Mastrantuor, Em C, Vigaros E, Dalene F (2016) Dermatological adverse events with taxane chemotherapy. Eur J Dermato 26:427–443
10. Reeves BN, Dakhil SR, Sloan JA, Wolf SL, Burger KN, Kamal A, Le-Lindqwister NA, Soori GS, Jaslojski AJ, Kelaghan J (2012) Further data supporting that paclitaxel-associated acute pain syndrome is associated with development of peripheral neuropathy: North Central Cancer Treatment Group trial N08C1. Cancer 118:5171–5178
11. Pace A, Nisticò C, Cuppone F, Bria E, Galié E, Graziano G, Natoli G, Spedutti I, Jandolo B, Calabretta F (2007) Peripheral neurotoxicity of weekly paclitaxel chemotherapy: a schedule or a dose issue? Clin Breast Cancer 7:550–554
12. Boehmke MM, Dickerson SS (2005) Symptom, symptom experiences, and symptom distress encountered by women with breast cancer undergoing current treatment modalities. Cancer Nurs 28:382–389
13. Begovic-Juhant A, Chmielewski A, Iwuagwu S, Chapman LA (2012) Impact of body image on depression and quality of life among women with breast cancer. J Psychosoc Oncol 30:446–460
14. Choi EK, Kim IR, Chang O, Kang D, Nam SJ, Lee JE, Lee SK, Im YH, Park YH, Yang JH (2014) Impact of chemotherapy-induced alopecia distress on body image, psychosocial well-being, and depression in breast cancer patients. Psychooncology 23:1103–1110
15. Paterson C, Lengacher CA, Donovan KA, Kip KE, Toftshagen CS (2016) Body image in younger breast cancer survivors: a systematic review. Cancer Nurs 39:E39–E58
16. Tazegül Ü (2018) Sporcuların kişilik özellikleri ile bedenlerini beğenmeleri arasındaki ilikinin belirlenmesi. Elektronik Sosyal Bilimler Dergisi 17:1518–1526
17. Cordero MJÁ, Villar NM, Sánchez MN, Pimentel-Ramírez ML, García-Rillo A, Valverde EG (2015) Breast cancer and body image as a prognostic factor of depression: a case study in México City. Nutr Hosp 31:371–379
18. Prates ACL, Freitas-Junior R, Prates MFO, Veloso MDF, Barros NDM (2017) Influence of body image in women undergoing treatment for breast cancer. Rev Bras Ginecol Obstet 39:175–183
19. Aslan Ö, Vural H, Kömürçu Ş, Öz et A (2006) Kemoterapi Alan Kanser Hastalarına Verilen Eğitim ve Kemoterapi Sempptomlarına Etkisi. CÜ Hemsirelik Yüksekokulu Dergisi 10:15–28
20. Brown V, Sitzia J, Richardson A, Hughes J, Hannan H, Oakley C (2001) The development of the Chemotherapy Symptom Assessment Scale (C-SAS): a scale for the routine clinical assessment of the symptom experiences of patients receiving cytotoxic chemotherapy. Int J Nurs Stud 38:497–510
21. Grogan S, Mechan J (2017) Body image after mastectomy: a thematic analysis of younger women’s written accounts. J Health Psychol 22:1480–1490
22. Cairo Notari S, Notari L, Favez N, Delaloye JF, Ghielmetta P (2017) The protective effect of a satisfying romantic relationship on women’s body image after breast cancer: a longitudinal study. Psychooncology 26:836–842
23. Moreira H, Canavarro MC (2010) A longitudinal study about the body image and psychosocial adjustment of breast cancer patients during the course of the disease. Euro J Oncol Nurs 14:263–270
24. Burgess C, Cornelius V, Love S, Graham J, Richards M, Ramirez A (2005) Depression in women with early breast cancer: five year observational cohort study. BMJ 330:702
25. İzcı F, Özdem G, İlgün AS, Ağçaçayak F, Duymag T, Erdoğan Z, Alço G, Elbüken F, Öztürk A, Ordu Ç (2020) Pre-treatment and post-treatment anxiety, depression, sleep and sexual function levels in patients with breast cancer. Euro J Breast Health 16:219
26. Sevinç AI (2015) Erken evre meme kanserinde tedavi seconekleri. In: IN: AYDIN S. A. T., EDITORS. (ed.) Tüm Yönleriyle Meme Kanseri. Adana: Nobels Kitabevi
27. Secord PF, Jourard SM (1953) The appraisal of body-cathexis: body-cathexis and the self. J Consult Psychol 17:343–347
28. Hovardadouglu S (1993) Vücut algıları ölçü. Psikoyatri, Psikoloji, Psikofarmakoloji (3P) Dergisi, 1, 26–7
29. Zigmond AS, Snith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370
30. Aydınemir O (1997) Hastane anksiyete ve depresyon olceği. Turkce formunun geçerlilik ve güvenilirligi. Turk Psikoyatri Derg 8:187–280
31. Abudayyah M, Yalçın CÖ, Korkut E (2018) Kemoterapi Ile İndüklenmiş Periferal Nöropatinin Tanısal ve Önlenmesi Yönelik Farmakolojik Yaklaşmalar. FABAD J Pharm Sci 43:113–127
32. Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H (2007) Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 6:609–621
33. Marks DH, Qureshi A, Friedman A (2018) Evaluation of prevention interventions for taxane-induced dermatologic adverse events: a systematic review. JAMA Dermatol 154:1465–1472
34. Rudd JA, Andrews PLR (2005) Mechanisms of acute, delayed, and anticipatory emesis induced by antitumor therapies. In: Hesketh PJ (ed) Management of Nausea and Vomiting in Cancer and Cancer Treatment. Jones and Bartlett, Sudbury, pp 15–65
35. Chan YN, Cheng YW, Wang YJ (2021) Chemotherapy-induced peripheral neurotoxicity as a risk factor for poor sleep quality in breast cancer survivors treated with docetaxel. Asia Pac J Oncol Nurs 8(1):68–73
36. Zangardi MLA (2017) Taxing consequence: taxane acute pain syndrome. JHOP 7(2):80–82
37. Park SB et al (2011) Early, progressive, and sustained dysfunction of sensory axones underlies paclitaxel-induced neuropathy. Muscle Nerve 43(3):367–374
38. Villar RR, Fernández SP, Garea CC, Pillado M, Barreiro VB and Martín CG (2017) Quality of life and anxiety in women with breast cancer before and after treatment. Revista Latino-American de Enfermagem 25:e2958
39. Bao T, Basal C, Seluzicki C, Li SQ, Seidman AD, Mao JJ (2016) Long-term chemotherapy-induced peripheral neuropathy among breast cancer survivors: prevalence, risk factors, and fall risk. Breast Cancer Res Treat 159:327–333
40. Azim H Jr, De Azambuja E, Colozza M, Bines J, Piccart M (2011) Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann Oncol 22:1939–1947
41. Gornstein E, Schwartz TL (2014) The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropsychopharmacology 76:175–183
42. Pud D (2015) The psychometric properties of the Hebrew version of the Memorial Symptom Assessment Scale (MSAS-Heb) in patients with breast cancer. J Pain Symptom Manage 49:790–795
43. Guedes TSR, De Oliveira NPD, Holanda AM, Reis MA, Da Silva CP, e Silva BLR, De Camargo Cancela M, De Souza DLB (2018) Body image of women submitted to breast cancer treatment. Asian Pac J Cancer Prev 19:1487
44. Bergerot CD, Mitchell H-R, Ashing KT, Kim Y (2017) A prospective study of changes in anxiety, depression, and problems in living during chemotherapy treatments: effects of age and gender. Support Care Cancer 25(6):1897–1904
45. Byar KL, Berger AM, Bakken SL and Cetak MA Impact of adjuvant breast cancer chemotherapy on fatigue, other symptoms, and quality of life. Oncology nursing forum, 2006. Oncology Nursing Society, E18
46. Oh P-J, Cho J-R (2020) Changes in fatigue, psychological distress, and quality of life after chemotherapy in women with breast cancer: a prospective study. Cancer Nurs 43:E54–E60

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.