Addition File for “Modular co-evolution of metabolic networks”

1. Reference organisms

Table A1 List of the 115 reference organisms applied in the computation of phylogenic profiles of enzymes in the *H. sapiens* metabolic network

Category	Taxonomy	Organism		
Eukaryotes	1	1	hsa	Homo sapiens (human)
	2	2	ptr	Pan troglodytes (chimpanzee)
	3	3	mmu	Mus musculus (mouse)
	4	4	rno	Rattus norvegicus (rat)
	5	5	cfa	Canis familiaris (dog)
	6	6	xla	Xenopus laevis (African clawed frog)
	7	7	xtr	Xenopus tropicalis (western clawed frog)
	8	8	dre	Danio rerio (zebrafish)
	9	9	dme	Drosophila melanogaster (fruit fly)
	10	10	cel	Caenorhabditis elegans (nematode)
	11	11	ath	Arabidopsis thaliana (thale cress)
	12	12	sce	Saccharomyces cerevisiae
	13	13	spo	Schizosaccharomyces pombe
	14	14	pfa	Plasmodium falciparum
	15	15	tbr	Trypanosoma brucei
	16	16	ehi	Entamoeba histolytica
Bacteria	15	17	eco	Escherichia coli K-12 MG1655
	18	18	ecj	Escherichia coli K-12 W3110
	19	19	ece	Escherichia coli O157 EDL933
	20	20	ecs	Escherichia coli O157 Sakai
	21	21	ecc	Escherichia coli CFT073
	22	22	sty	Salmonella typhi
	23	23	stm	Salmonella typhimurium
	24	24	ype	Yersinia pestis CO92
	25	25	ypk	Yersinia pestis KIM
	26	26	sfl	Shigella flexneri
	27	27	buc	Buchnera sp. APS
	28	28	bas	Buchnera aphidicola Sg
	16	29	hin	Haemophilus influenzae
	30	30	pmu	Pasteurella multocida
	31	31	xfa	Xylella fastidiosa
	32	32	xcc	Xanthomonas campestris
	33	33	xac	Xanthomonas axonopodis
	17	34	vch	Vibrio cholerae
	18	35	pae	Pseudomonas aeruginosa
19	36	son	Shewanella oneidensis	
20	37	nme	Neisseria meningitidis MC58 (serogroup B)	
21	39	rso	Ralstonia solanacearum	
22	40	hpy	Helicobacter pylori 26695	
23	42	cje	Campylobacter jejuni	
24	43	rpr	Rickettsia prowazekii	
25	45	mlo	Mesorhizobium loti	
26	47	atu	Agrobacterium tumefaciens C58 (UWash/Dupont)	
27	53	bsu	Bacillus subtilis	
28	61	lla	Lactococcus lactis	
29	70	cac	Clostridium acetobutylicum	
30	72	tte	Thermoanaerobacter tengcongensis	
31	73	mge	Mycoplasma genitalium	
32	74	mpn	Mycoplasma pneumoniae	

19	36	nma	Neisseria meningitidis Z2491 (serogroup A)
20	37	nme	Neisseria meningitidis MC58 (serogroup B)
21	39	rso	Ralstonia solanacearum
22	40	hpy	Helicobacter pylori 26695
23	42	cje	Campylobacter jejuni
24	43	rpr	Rickettsia prowazekii
25	45	mlo	Mesorhizobium loti
26	47	atu	Agrobacterium tumefaciens C58 (Cereon)
27	53	bsu	Bacillus subtilis
28	61	lla	Lactococcus lactis
29	70	cac	Clostridium acetobutylicum
30	72	tte	Thermoanaerobacter tengcongensis
31	73	mge	Mycoplasma genitalium
32	74	mpn	Mycoplasma pneumoniae
No.	Reference	Organism
75	mpu	Mycoplasma pulmonis
76	uur	Ureaplasma urealyticum
77	mtu	Mycobacterium tuberculosis H37Rv (lab strain)
78	mtc	Mycobacterium tuberculosis CDC1551
79	mle	Mycobacterium leprae
80	egl	Corynebacterium glutamicum
81	cef	Corynebacterium efficiens
82	sco	Streptomyces coelicolor
83	blo	Bifidobacterium longum
84	fmu	Fusobacterium nucleatum
85	ctr	Chlamydia trachomatis
86	cmu	Chlamydia muridarum
87	cpn	Chlamydia pneumoniae CWL029
88	cpa	Chlamydia pneumoniae AR39
89	cpj	Chlamydia pneumoniae J138
90	bbu	Borrelia burgdorferi
91	tpa	Treponema pallidum
92	lil	Leptospira interrogans
93	syn	Synechocystis sp. PCC6803
94	tel	Thermosynechococcus elongatus Anabaena sp. PCC7120 (Nostoc sp. PCC7120)
95	ana	Thermotoga maritima
96	cte	Chlorobium tepidum
97	dra	Deinococcus radiodurans
98	aae	Aquifex aeolicus
99	tma	Thermotoga maritima

Archaea

43	mja	Methanococcus jannaschii
44	mac	Methanosarcina acetivorans
45	mth	Methanobacterium thermoautotrophicum
46	mka	Methanopyrus kandleri
47	afu	Archaeoglobus fulgidus
48	hal	Halobacterium sp. NRC-1
49	tac	Thermoplasma acidophilum
50	pho	Pyrococcus horikoshii
51	ape	Aeropyrum pernix
52	sso	Sulfolobus solfataricus
53	sto	Sulfolobus tokodaii
2. Comparison the *H. sapiens* metabolic network with its random counterparts

2.1 topological null model

Module	Inter-module degree	number of nodes
14	3	27
25	3	16
7	4	45
13	7	33
22	8	35
16	11	32
20	11	33
19	14	28
9	18	39
15	20	29
5	21	36
23	22	20
8	25	34
4	26	40
10	27	46
1	28	44
21	29	36
2	30	37
11	32	39
17	33	43
18	34	37
12	39	44
24	41	51
6	52	60
3	56	64
2.2 biological null model

Figure A1 - Cartographic representation of the metabolic network for *H. sapiens*, in which enzymes were randomly shuffled. The topology of the network is unchanged compared with the *Homo sapiens* network, but the reactions are coupled with different enzymes.
Figure A2 Comparison of the similar extent of phylogenetic profiles for enzymes pairs within each module with that within the global random network.

(A) Average Jaccard coefficient (JC) of enzyme pairs within modules. The red column represents the global network. The modules are ordered according to their average JC in a decreasing way.

(B) Percentage of enzyme pairs within modules with JC\geq0.66 (threshold definition). The red column represents the global network. The modules are drawn in the same order as in (A).