Isolation and characterization of high exopolysaccharide-producing *Weissella confusa* VP30 from young children’s feces

Hui Jin¹, Yunju Jeong¹,², Sang-Ho Yoo³, Tony V. Johnston⁴, Seockmo Ku⁴* and Geun Eog Ji¹,²*

Abstract

Background: Lactic acid bacteria (LAB) are known to have a significant ability to colonize the human intestinal tract and adhere to the surface of intestinal epithelial cells. Among the various lactic acid bacteria, exopolysaccharide (EPS) producing strains are known to provide a variety of health benefits for their hosts (e.g. anti-inflammatory, antioxidant, antitumor and stress tolerant effects). Recently, EPSs and EPS-producing lactic acid cultures have gained interest within the food industry and are playing important roles as biothickeners and texturizing agents due to their hydrocolloidal nature. In this study, 156 lactic acid bacterial strains isolated from fecal samples of healthy young children were screened and evaluated for active EPS-production capability.

Results: Among the various human origin lactic acid flora isolated, *Weissella confusa* VP30 showed the highest EPS productivity and its EPS producing properties were characterized under various cultural conditions in this research. To document the safety of *W. confusa* VP30, antibiotic resistance, hemolytic, and ammonia production properties were evaluated in addition. No significant negative results were observed. The maximum EPS production by *W. confusa* VP30 was 59.99±0.91 g/l after 48 h of cultivation in media containing 10% sucrose, far exceeding EPS production by other bacterial strains reported elsewhere. Based on gel permeation chromatography (GPC), the molecular weight of EPS produced by *W. confusa* VP30 was 3.8 × 10⁶ Da. Structural analysis of the released EPS fraction by ¹³C and ¹H nuclear magnetic resonance (NMR) spectroscopy revealed that *W. confusa* VP30 can produce dextran with glucose units linked with 96.5% α(1 → 6) glycosidic bonds and 3.5% α(1 → 3) branches.

Conclusion: The high EPS production capability and safety of *W. confusa* VP30 justify food industry consideration of this cell strain for further evaluation and potential industrial use.

Keywords: Exopolysaccharide, *Weissella confusa*, Dextran, Lactic acid bacteria, Safety, Structure

Introduction

Numerous LAB genera, including *Carnobacterium*, *Enterococcus*, *Lactobacillus*, *Lactococcus*, *Leuconostoc*, *Oenococcus*, *Pediococcus*, *Streptococcus*, *Tetragenococcus*, *Vagococcus* and *Weissella* sp. have been isolated from a variety of human, animal, plant and environmental sources and widely utilized for processed food production [1–4]. According to recent industry analysis reports [5, 6], the global LAB and probiotics market is characterized by three applications and/or end-uses: (i) probiotics in foods and beverages [e.g. cereal, dry, dairy, non-dairy, baked food and fermented meat products], (ii) probiotic dietary supplements [e.g. nutraceuticals, single cell protein, specialty nutrients, infant formula], and (iii) animal feed probiotics [e.g. substitutes of antibiotic-based growth stimulants]. According to Global Market Insights [7], the US and EU markets were estimated at over USD 1.8 billion and 630 million, respectively, in 2017. This three-part market of significant value is projected to

*Correspondence: seockmo.ku@mtsu.edu; geji@snu.ac.kr

¹ Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, South Korea

² Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA

Full list of author information is available at the end of the article

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
grow even further due to increased consumer interest in health and expanding consumer income. An increasing number of food and feed companies are therefore trying to utilize LAB in their products to meet customer demand, improve product quality, and diversify their product lines [8].

Among LAB strains, human origin LAB strains have shown high resistance to gastric juice and bile as well as high survival rates in the gastrointestinal tract, due to their ability to adhere to the surface of intestinal epithelial cells [8, 9]. Multiple researchers have demonstrated the diverse biofunctionalities (e.g. anti-allergic effects, anti-cancer properties, bacteriocin production, high transmigration rates and high adherence ability) of human origin LAB and their metabolic substances through in vitro and in vivo experiments [10–14]. Due to the verified safety and functional effects of human origin LAB, these special LAB have been widely examined and applied to foods and livestock feeds as supplements, resulting in steadily increasing market demand [5, 6]. Therefore, the isolation of novel functional human origin intestinal bacteria and characterization of their bioactive molecules are important for the production of new added-value products [8]. The screening of novel microorganisms and characterization of their metabolites is regarded as the first step in their utilization as probiotics and drugs, as well as for metabolic engineering [15–17].

Among the bioactive molecules produced by LAB, there is growing demand for EPSs, which are used as biobased polymers [18]. EPS has been widely studied for its economic importance in food processing and beneficial effects. EPS produced by LAB can act as a viscosifier and/or emulsifying agent and play an important role in the processing of yogurt, cheese, and other fermented foods as a stabilizer [19]. Multiple groups have reported that EPS from LAB has significant biofunctional properties and its functionality varies depending on structure and the bacterial strain which produced it. For example, EPS derived from Lactobacillus rhamnosus KL37 has been shown to suppress active arthritis by the inhibition of the production of arthritogenic antibodies [20]. According to London et al. [21], β-glucan enriched EPS from Lactobacillus paracasei NFBC 338 showed modulatory effects on lipid metabolism. EPS produced by Streptococcus thermophilus ST10 and Weissella cibaria GAA4 exhibited physical defense functionality that strengthens the tight junction between human intestinal cells [22], and antioxidant effects [23], respectively. Despite these promising food applications and biofunctionalities, EPS is not yet widely utilized by food processors as a food additive, mainly due to low production rates by LAB [24]. Therefore, screening for novel LAB with high EPS production rates is justified.

In this work, high EPS producing LAB strains with potential food processing applications were isolated from young children's fecal samples and characterized. One hundred fifty-six human origin LAB strains were screened. All 156 LAB samples were inoculated and cultured in seven modified de Man, Rogosa, and Sharpe (MRS) agar (Becton, Dickinson, and Company) medias, each with a different carbon source. The amount of EPS produced from each of the 1248 different groups was qualitatively and/or quantitatively analyzed. Based on our results, the highest EPS-producing LAB (Weissella confusa VP30) and its key carbon source (sucrose) for high EPS production were determined. Further structural characterization using NMR analysis allowed us to elucidate the conformation of EPS from W. confusa VP30. This strain is also safe to use as an edible LAB from a food safety standpoint, according to our previous research [25].

Materials and methods

Sampling and isolation of LAB from young children's feces

Using a study protocol approved by the Seoul National University Institutional Review Board (IRB No. 1702/002-013), fresh fecal samples were collected from five young children between 1 and 6 years old for this study. The fecal samples were transported to the laboratory at 4 °C for LAB isolation in a laminar flow hood. One gram samples from each feces collected was mixed with a sterilized phosphate buffered saline solution (PBS; 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM KH2PO4, pH 7.4) [26]. After serial dilution, the suspension of each sample was plated on Lactobacillus Selection agar (LBS) (Difco) agar or transgalctosylated oligiosaccharide (TOS-MUP) (MB cell) agar and incubated under anaerobic conditions at 37 °C for 48 h for LAB isolation. LBS agar was used to screen Lactobacillus and Bifidobacterium spp. from fecal samples, respectively.

One hundred fifty-six morphologically different microbial colonies were randomly collected and the selected colonies were Gram stained and morphologically evaluated using an optical microscope. The isolated LAB strains were then cultured in modified MRS media according to our previous studies [9, 26, 31, 32]. In brief, all 156 LAB samples were inoculated and cultured in seven types of modified MRS agar media with different carbon sources [10% (w/v) of glucose (Sigma), sucrose (Sigma), galactose (Sigma), lactose (Difco), fructose (Sigma), raffinose (Sigma) and maltose (Sigma)] and tested for EPS production.

According to Ruas-Madiedo and De Los Reyes-Gavilán [33], mucinous strands can be observed visually when sterilized inoculation loop are contacted with microbial
colonies that produce EPS as a metabolite. Therefore, we conducted an initial screening using a sterilized inoculation loop or sterilized toothpicks to screen for EPS production candidates. From the 1248 samples, the 10 most mucoid and slimy colonies and/or media conditions were selected for further study. 16S rRNA gene sequencing was performed to accurately identify these 10 strains at the molecular level.

Phylogenetic analysis

The selected microbial isolates were then subjected to phylogenetic analysis. DNA from each isolate was isolated, amplified by PCR, and the 16S rRNA genes in the PCR products were sequenced. The PCR primers used were 27F (5'AGAGTTTGATCMTGGCTCAG-3')/1492R (5'TACGGYTACCTTGTTACGACTT-3'). The PCR sequencing step was executed by Macrogen, Inc. (Seoul, Korea), and the full sequence of 16S rRNA gene was aligned using the NCBI database, to the species level [34].

Analysis of EPS production properties of 10 LAB strains

The level of EPS production of 10 LAB strains cultivated in modified MRS broth containing 10% (w/v) sucrose instead of glucose was enumerated and compared using our previously published protocol with slight modifications [9, 26, 31, 32]. Specifically, cultured bacteria was boiled for 15 min and treated with 17% (v/v) 85% trichloroacetic acid (TCA) (Sigma) 2 h after cell cultivation for 24 h at 37 °C. LAB pellets were separated from culture media via centrifugation at 18,000 g × 10,000 for 30 min. The BHI supernatant was centrifuged at 18,000 g × 10,000 for 30 min. The BHI supernatant was discarded. Crude EPS precipitant was collected and mixed with 5 ml of water. Water and crude EPS mixture was dialyzed using a commercially available dialysis bag (12 to 14 kDa) and DI water at 4 °C for 48 h. The EPS sample inside each bag was collected and dried in a Speed Vacuum Concentrator (ScanSpeed 40, SCANVAC; LaboGene) at 2000 rpm and 35 °C for 24 h. The EPSs in the media supernatants were then quantified by the phenol–sulfuric acid method in a microplate format using glucose as the reference standard [35]. EPS yields ranged from 0.12 ± 0.04 to 59.99 ± 0.91 g/l. The highest EPS-producing LAB strains were selected for further analysis.

Structural analysis

The monosaccharide composition of EPS was analyzed after hydrolysis. Hydrolysis of EPS (10 mg) was performed with 2 ml of 2 M Trifluoroacetic acid (TFA) in a sealed tube at 110 °C for 6 h, and the TFA was removed by speed vacuum. The dried hydrolyzed samples were dissolved in distilled water (1 ml) and analyzed by HPLC (Thermo Fisher Scientific) [36]. The HPLC system consisted of an Ultimate 3000 pump with an auto sampler and Shodex RI-101 (Shodex, Japan) detector. Sugars were analyzed by sugar-pak (Waters, 300'6.5 mm, USA) column maintained at 70 °C. Ten microliter samples were injected and eluted with triple distilled water at a flow rate of 0.5 ml/min. GPC and NMR analyses of the EPS produced was performed by the National Instrumentation Center for Environmental Management (NICEM) at Seoul National University Molar mass was determined by GPC [Thermo Dionex HPLC, Ultimate 3000 RI System (Thermo Fisher Scientific)]. A calibration curve was established with Pullulan standards of Mw 0.342, 10, 113, 393, 805 kDa dissolved in water containing 0.1 M sodium azide (NaN3). Three columns, Waters Ultrahydrogel 120, Waters Ultrahydrogel 500 and Waters Ultrahydrogel 1000, with respective exclusion volumes of 5 × 10^2 and 1 × 10^3 Da, were connected in series. The injected sample volume was 50 μl and the mobile phase was the same sodium azide buffer used to dissolve the sample, flowing at 1 ml/min at a temperature of 40 °C. NMR analysis was conducted using a High Resolution NMR Spectrometer (AVANCE 600, Bruker, Germany). Briefly, W. confusa VP30 was cultured in mMRS broth with 10% (w/v) of sucrose for 24 h anaerobically. The collected EPS was purified in the manner previously mentioned. 10 mg samples of purified EPS were dissolved in 1 ml of D2O and the process of 3H NMR, 13C NMR and 2D NMR was heteronuclear single-quantum coherence (HSQC), and Heteronuclear Multiple Bond Correlation (HMBC), at 600 MHz at 25 °C.

Safety evaluations of W. confusa VP30

A safety assessment of W. confusa VP30 via ammonia production, hemolysis of blood cells and antimicrobial susceptibility analysis was conducted according to previously reported methods [25]. To evaluate the concentration of secreted ammonia, W. confusa VP30 was cultured in Brain Heart infusion (BD Bacto™ BHI, LOT 8114937), and the cell-free broth supernatants were recovered after centrifugation at 10,000 × g at 4 °C for 30 min. The BHI was adjusted to pH 7 using 1 N NaOH before cell inoculation. As previously mentioned, two types of chemical reagents were prepared. The 1st reagent consisted of 1 g phenol and 0.005 g sodium nitroferricyanide dehydrate (Na3[Fe(CN)5NO]·2H2O) dissolved in 100 ml DI water, and the 2nd reagent consisted of 500 mg NaOH and 0.04 g NaClO dissolved in 100 ml DI water. Aliquots (100 μl) of Solutions 1 and 2 were added to Corning® 96
well plates (Costar # 3595, Corning, NY, USA) with 10 μl of the cell-free broth supernatants of W. confusa VP30. An ammonia solution (Junsei Chemical, Japan) was used as a control solution. The 96 well plates were incubated in 25 °C for 1 h, and spectroscopy analysis was conducted at 625 nm. Cell-free BHI broth was used as a negative control and the ammonia concentration was assessed using a standard curve. Three replications of this test were conducted for statistical analysis of ammonia production from W. confusa VP30.

To evaluate microbial hemolytic properties, W. confusa VP30 was anaerobically cultured in BHI agar supplemented with 1.5% agar, 10% of sucrose and 5% horse blood at 37 °C for 2 days. Listeria ivanovii subsp. ivanovii ATCC 19119, a positive control for hemolysis, was aerobically cultivated in BHI agar at 37 °C for 2 days. According to our previous protocol [25], the plate was then observed for the presence of microbial hemolysis by holding the plate to a light source and looking through both sides of the plate. Strains showing blood lysis (transparent region) around the colony were classified as microorganisms having hemolytic (β-hemolytic) characteristics. Strains that produced green-hued zones around the colonies (α-hemolysis) or no hemolysis on the blood plates (γ-hemolysis) were considered non-hemolytic.

Minimum inhibitory concentration (MIC) tests were conducted to evaluate antimicrobial susceptibility [25]. Sixteen antimicrobial agents were used: ampicillin sodium salt (Sigma, Lot# BCBW1243), carbenicillin disodium salt (Sigma, Lot# 126M4775V), chloramphenicol (Sigma, Lot# SLBR8869V), clindamycin hydrochloride (Sigma, Lot# 021M1533), dicloxacillin sodium salt hydrate (Sigma, Lot# SZBD263XV), erythromycin (Sigma, Lot# WXBC4044V), gentamicin sulfate (Sigma, Lot# SLBP3082V), kanamycin sulfate (Sigma, Lot# 066M4019V), methicillin sodium salt (Sigma, Lot# BCBR6817V), metronidazole (Sigma, Lot# MKBZ3056V), neomycin sulfate (Sigma, Lot# LRAB3300), phosphomycin disodium salt (Sigma, Lot# 096M4031V), polymyxin B sulfate salt (Sigma, Lot# 126M4071V), spectinomycin sulphate (Sigma, Lot# LRAB3670), streptomycin sulfate salt (Sigma, Lot# SLBT8451), tetracycline (Sigma, Lot# 126M4769V), vancomycin hydrochloride (sigma Lot# LRAB3620). Each of the antibiotic powders were dissolved and diluted in appropriate diluents and filter sterilized prior to addition to LAB susceptibility test medium (LSM) supplemented with cysteine (LSM-Cys) broth medium, composed of 90% of Iso-Sensitest Broth (IST) (Mbcell Lot#P2745063MS, Seoul, Korea) and 10% of MRS (BD Difco™, Franklin Lakes, NJ, USA) broth medium. Serial dilutions of antimicrobial agents ranging from 1024 to 0.0032 μg/ml were prepared. MIC values for all bacterial isolates were determined by the ISO 10932:2010 broth microdilution procedure [37]. The LSM-Cys broth medium supplemented with 0.03% (w/v) L-cysteine HCl containing antibiotics at different concentrations was used to prepare each well of a microwell plate. The inoculum was adjusted to a turbidity equivalent to 0.16 to 0.2 at 625 nm as measured by a spectrophotometer (SpectraMax 190 Microplate reader, Molecular Devices). The solution corresponded to approximately 3 × 10^8 cfu/ml. Each inoculum was added to a double strength LSM-Cys broth medium at a rate of 0.2%. A 50 μl diluted bacterial suspension was added to each well; no negative control well was employed. The microdilution plates were prepared with a series of twofold dilutions of antibiotics. The microdilution plates were incubated at 37 °C for 48 h in an anaerobic (5% CO₂, 10% H₂ and 85% N₂) chamber. The MIC was defined as the lowest concentration of antibiotic giving a complete inhibition of visible growth in comparison to an antibiotic-free control well. The experiments were replicated three times.

Statistical analysis
To evaluate EPS production levels, statistical analysis was performed with one-way ANOVA using SPSS 24.0 at a significance level of p < 0.05.

Results and discussion
Selection of high EPS-producing cell strains
Multiple groups have screened and identified LAB capable of producing EPSs by cell and colony phenotypes in solid medium. This visual cell classification tool has been widely used for many years to identify EPS producing LAB from naturally occurring microbiota as a preselection process. This preselection process has the advantage of being able to screen multiple samples rapidly without special and expensive tools. However, this cell screening process is almost impossible to standardize because colony morphological differences are distinguished via subjective interpretation by the researcher [33]. In addition, some extracellular macromolecules and polymers from LAB might not show significant slime-forming properties and may thus potentially be misidentified as false negatives. According to Rühmann et al. [38], one option to overcome this experimental issue is comparison of colony characteristics (shape, size, pigmentation, etc.) between induced and non-induced EPS production conditions. Since microbial culture conditions and the carbon source of the medium significantly affect EPS productivity and metabolite characteristics [39], effective substrate dependent EPS-producing LAB screening can be achieved by culturing selected cell strains on media supplemented with various carbon sources.
In this work, a total of 156 morphologically different human origin LAB cell colonies were screened from five young (1 to 6 years old) children's fecal samples using selective media (i.e. LBS or TOS-MUP) as a prescreening step. All 156 LAB colonies were subcultured in commercially available MRS, and pure microbial cultures were obtained by streaking on agar plates. The pure LAB cultures were then cultivated in seven kinds of mMRS media containing one of seven sugars (glucose, sucrose, galactose, lactose, fructose, raffinose and maltose) or commercially available MRS plates. Stickiness was visually and qualitatively observed by touching the microbial colonies with a sterilized inoculation loop or sterilized toothpicks. All 156 of the LAB colonies grown in sucrose showed the most sticky and viscous characteristics versus those grown with other carbohydrate sources. From these, 10 putative EPS-producing LAB candidates were chosen for further study due to their mucoid, slimy, and string-forming appearance. The 16s rRNA of each of these colonies was sequenced and the crude EPS was extracted and obtained by the protocol described by Mendi et al. [35]. Crude EPS solutions from these 10 LAB cultures were used to assess their total carbohydrate content via phenol–sulfuric acid assay. Data comparison with NCBI database sequences for the variable region of the 16S rRNA gene to the species level identified eight out of 10 putative EPS-producing LAB as belonging to the genus *Lactobacillus* and other two to *Weissella* and *Bifidobacterium*. The EPS production of each LAB strain is shown in Table 1. *W. confusa* VP30 (Fig. 1a) produced significantly more EPS than the other LAB strains with significant mucoid appearance (Fig. 1b). In the mMRS broth, the *W. confusa* VP30 produced 59.99 ± 0.91 g/l

No.	16s rRNA Strain	EPS produced, mean ± SD (g/l)	Host gender	Host age
1	*Weissella confusa* VP30	59.99 ± 0.91^A	Male	5
2	*Bifidobacterium longum* subsp. *longum* JH628	0.29 ± 0.06^B	Male	1
3	*Lactobacillus plantarum* JH43A	0.28 ± 0.02^B	Female	4
4	*Lactobacillus plantarum* JH102	0.26 ± 0.07^B	Male	3
5	*Lactobacillus fermentum* JH43B	0.25 ± 0.11^B	Female	4
6	*Lactobacillus paracasei* JH907	0.23 ± 0.02^B	Female	3
7	*Lactobacillus plantarum* subsp. *plantarum* JH917	0.21 ± 0.04^B	Male	1
8	*Lactobacillus plantarum* JH639	0.21 ± 0.01^B	Female	4
9	*Lactobacillus rhamnosus* JH914	0.19 ± 0.04^B	Male	1
10	*Lactobacillus paracasei* JH124	0.12 ± 0.04^C	Female	4

All microorganisms were anaerobically cultured in glucose-free basal MRS supplemented with 10% (w/v) sucrose at 37 °C for 24 h. One-way ANOVA followed by Duncan’s post hoc test statistical analyses were performed. EPS produced (g l⁻¹) ± SE with different letters (where A > B > C) are significantly different at *p* < 0.05 (*n* = 3)

Table 1 Overall ranking of isolated strains based on EPS production in mMRS with 10% sucrose (w/v)

Fig. 1 a Scanning electron microscope images of *W. confusa* VP30 isolated from a fecal sample from a 5 year old boy, and b Morphological aspects of EPS production by *W. confusa* VP30 grown under mMRS with 10% sucrose culture for 24 h
of EPS, while the other identified LAB strains produced < 0.3 g/l of EPS.

Weissella was originally classified as *Leuconostoc* or *Lactobacillus*. However, distinctive biochemical features in *Leuconostoc* or *Lactobacillus* were identified by Collins et al. and reclassified as *Weissella* in 1993 [40]. As a naturally occurring microbiota, *Weissella* has been widely engaged in spontaneous lactic acid fermentation and coolship alcoholic beverage fermentations [41], and various *Weissella* strains have recently attracted attention from academia due to their high EPS production ability. Unlike other studies that utilized food-origin bacteria, we isolated and used human-origin strains in this study. The major carbon sources that induce high EPS production varies depending on the microorganism [33]. Sugar transportation pathways, enzyme synthesis metabolism and sugar-nucleotide precursors can be regulated by catabolite repression [33]. In the screening step, all the carbon sources mentioned in the previous study were used. These results show that sucrose is the main carbon source for the production of EPS, which is consistent with previous studies [42, 43]. As shown in Table 2, *Weissella* spp. have higher EPS production capacity than other LAB strains. However, the EPS production properties of *W. confusa* VP30 in this report are significantly higher than those previously reported.

Table 2 Various LAB culture conditions utilized for EPS quantitative analysis by other groups

Strain	Source	Medium Type	Type of EPS	Molecular mass (Da)	Production (g/l)	Method	Standard	References
W. confusa VP30	Young children	MRS + 10% sucrose	Dextran	3.8×10^6	600 ± 0.9	Phenol–sulfuric acid method	Glucose	This work
W. cibaria WC4	Sourdough	MRS + 10% sucrose 30 °C 6 days	Glucan	1.1-1.3 $\times 10^4$	7.9 ± 0.1	Phenol–sulfuric method	–	[46]
W. cibaria MG1	Sourdough	MRS + 10% sucrose 30 °C 48 h	Dextran	7.2×10^8	364	–	–	[78]
W. confusa KR78067	Idli batter	MRS + 2% sucrose 30 °C 48 h	Galactan	ND	17.2	Dry weight	–	[88]
W. confusa NH02	Nham	MRS + 4% sucrose 37 °C 12 h	ND	1.13×10^8	18.08	–	–	[48]
W. helleica SKkimchi3	Kimchi	MRS + sucrose 20 °C 48 h	Glucan	2.03×10^5	5.12	–	–	[49]
W. cibaria 27	Kimchi	60 g/l sucrose 22 °C and pH 6.2 for 24 h	Glucan	1.2×10^7	24.8	Lyophilized dry weight	–	[47]
Leu. pseudomesenteroides	Soybean paste	5% sucrose 30 °C for 48 h	Glucan	–	12.5	Phenol–sulfuric acid method	–	[60]
W. confusa	–	80 g/l sucrose	–	–	25.2	Freeze drying dry weight	–	[90]
Leu. citreum B-2	Homemade fermentation product of pineapple	75 g/l sucrose	Glucan	3.77×10^6	28.3	Lyophilized dry weight	–	[51]
W. confusa OF126	Ogi	24.0 g/l sucrose, pH (7.00)	Glucan	1.1×10^6	3.10	Lyophilized dry weight	–	[50]
Leu. Mesenteroides 109	Plant	20 g/l of fructose, 50 g/l of sucrose	Glucan	1.4×10^6	19.0	Polymer dry mass 42 °C 48 h	–	[52]
W. cibaria	Fermented sauropus androgynus	Sucrose	Glucan	–	6.4	Lyophilized dry weight	–	[45]
W. sp. PSMS4-4	Plasom	5% White-sugar 30 °C	Glucan	–	8.7	Phenol–sulfuric acid method	Glucose	[91]
Evaluation of EPS constituents

The carbohydrate composition of EPS isolated from *W. confusa* VP30 was consisted predominantly of glucose. The weight-average molecular weight (Mw) of the EPS was determined by GPC analysis with three columns (i.e. Waters Ultrahydrogel 120, Waters Ultrahydrogel 500 and Waters Ultrahydrogel 1000), where a typical sharp symmetrical peak was observed (Fig. 2) [44, 45]. *W. confusa* VP30 produced 3.8×10^6 Da EPS which is significantly larger than those from other *Weissella* spp. (Table 2) [46–52].

The 1H NMR spectrum of the *W. confusa* VP30 produced EPS is shown in Fig. 3a. The peaks were distributed into two regions, upfield of 3.5–4.0 ppm and downfield of 4.9–5.3 ppm. This was in agreement with the 1H NMR spectrum of dextran where the proton signals at C-2, C-3, C-4, C-5, and C-6 were found in the range of...
3–4 ppm while C-1 was found in the 4–6 ppm region [47, 53–55]. The chemical structure of EPS should be alpha as the chemical shift is 100.57/4.99 ppm for \(^{13}C/\text{H}\) while 5.3–5.7 ppm for \(^1\text{H}\) and 103–106 ppm for \(^{13}C\) belongs to beta form [47]. From the spectrum, two peaks of anomic protons were observed. The high intensity peak at 4.99 ppm was referred to as the anomic proton of the \(\alpha (1 \rightarrow 6)\) linkages in the main chain [47, 56], whereas the low intensity peak at 5.33 ppm represented the anomic proton of the \(\alpha (1 \rightarrow 3)\) branch linkages [56]. A ratio of 96.5:3.5 was obtained from the integration of the relative intensity of the signal at 4.99 and 5.33 ppm. This result suggests that the dextran was composed of 96.5% \(\alpha (1 \rightarrow 6)\) linkages in the main chain and 2.6% \(\alpha (1 \rightarrow 3)\) branch linkages. The \(^{13}C\) NMR spectrum revealed six peaks appearing between 68 and 100 ppm (Fig. 3b). In previous studies, anomer carbon signals were generally found downfield, in the region of 95–105 ppm. The signals in 95–101 ppm were related to \(\alpha\)-anomeric carbons, and the signals in 101–105 ppm were due to \(\beta\)-anomeric carbons in \(^{13}C\) NMR spectra, which corresponded with the \(^1\text{H}\) NMR spectra [57]. Carbon signals at C-2, C-3, C-4, and C-5 were found in the range of 70–75 ppm, while C-6 was found in the upfield region at about 60 ppm [58]. Moreover, dextran branch linkage signals were found around 77–85 ppm [59]. In this study, the signal at 100.57 ppm was clearly due to the anomer carbon C-1, while the signal at 68.39 ppm was due to C-6. This peak was also observed at a lower intensity compared to the other peaks since some parts of the \(\alpha (1 \rightarrow 6)\) linkages had been replaced by \(\alpha (1 \rightarrow 3)\) branches. However, the signal referring to branch linkages around 77–85 ppm was absent due to the small amount of \(\alpha (1 \rightarrow 3)\) linkages. To assign the peaks, the data from 2D NMR were also analyzed. HSQC(c) and HMBC(d), which provided the correlation between \(^1\text{H}\) and \(^{13}C\) direct bond and two bonds, respectively, were used to confirm the structure of the polysaccharide (Fig. 3c, d). From the HSQC spectrum, seven protons in the glucose residue were found to correlate. The correlation of \(^1\text{H}\) at 4.99 ppm and \(^{13}C\) at 100.57 ppm confirmed the presence of \(\alpha (1 \rightarrow 6)\) glycosidic bond. Other assignments from the HSQC and HMBC analysis of each position are presented in Table 3. The NMR results are similar to dextran produced by \(W.\ confusa\) R003 [56] and this HSQC, and HMBC similarities confirmed that the dextran was composed of glucose units linked with 96.5% \(\alpha (1 \rightarrow 6)\) glycosidic bonds and 3.5% \(\alpha (1 \rightarrow 3)\) branches. This data is consistent with others’ data and reconfirms the special chemical structure of \(W.\ confusa\) EPS (dextran) which shows high linearity with long chains and low branching [56, 60]. The highly linear dextran from \(W.\ confusa\) VP30 could be used as a food modifier for thickening, viscosifying and also as a potential soluble fiber which can act as a prebiotic [61].

Safety evaluation

Multiple \(W.\) strains have been detected and screened from traditional fermented foods as naturally occurring microbiota. Specifically, \(W.\) \(\text{viridescens}\), \(W.\) \(\text{confusa}\) and \(W.\) \(\text{cibaria}\) were extracted from fermented vegetables [62–64] (e.g. kimchi and sauerkraut); from fermented meat products [65, 66] (i.e. Italian fermented sausages and Greek dry salami), \(W.\) \(\text{hellinica}\), \(W.\) \(\text{parasementeroides}\), \(W.\) \(\text{viridescens}\), \(W.\) \(\text{parasementeroides}\), \(W.\) \(\text{minor}\) and \(W.\) \(\text{halotolerans}\) were isolated. \(W.\) \(\text{hellenica}\), \(W.\) \(\text{halotolerans}\) and \(W.\) \(\text{viridescens}\) were identified from fermented dairy product [67–69] (e.g. Romanian, mozzarella and cheddar cheeses).

Many research groups are trying to identify the bio-functional activities of \(W.\) spp. and practically apply them to food, feed, and/or cosmetic products as a starter cultures and/or additives [70–73]. Recently, Lee et al. [74] proposed two \(W.\) \(\text{confusa}\) spp. (i.e. \(W.\) \(\text{confusa}\) 20 and 31) screened from human fecal samples as potential probiotic bacteria due to their high antibiotic sensitivity and cell adhesion properties. \(W.\) \(\text{kimchii}\) PL9023 was isolated from the vagina of a healthy premenopausal woman and has been proposed as a potential probiotic bacteria due to its inhibitory effects on fungal and

Atom position	1	2	3	4	5	6
\(W.\) \(\text{confusa}\) R003 [56]	\(\text{H}\) 4.98	3.58	3.72	3.52	3.9	3.76/3.98
\(\text{C}\) 100.28	74.1	76.09	72.28	72.88	68.33	
\(W.\) \(\text{confusa}\) VP30	\(\text{H}\) 4.99	3.59	3.72	3.54	3.91	3.77/3.99
\(\text{C}\) 100.57	74.26	76.26	72.39	73.04	68.39	
bacterial vagina infection by *Candida albicans*, *Escherichia coli*, *Staphylococcus aureus* and *Streptococcus agalactiae* [75]. Fusco et al. [76] reported six types of bacteriocin-producing *Weissella* spp. (i.e. *W. paramesenteroides*, *W. hellenica*, and *W. cibarian*). Recently, Kang et al. [77] practically applied *W. cibaria* to chewing gum and evaluated cell survival rates with changed environmental factors (e.g. temperature and additives). Zannini et al. [78] applied *W. cibaria* MG1 isolated from cereal to wort (beer substrate) production. Recently Abriouel et al. [79] published reviews of anti-viral, anti-tumoral, anti-obesity, anti-inflammatory, and antioxidant activities of *Weissella* and suggested the possibility of their use as a starter culture.

Although the superior functionality and universality of the *Weissella* spp. in fermented foods is of interest within academia, several studies have also warned of the possibility for side effects (e.g. hemolytic activity, production of toxic substances during ammonia metabolism, and antibiotic resistance by their host). Recently Abriouel et al. [79] conducted in silico gene expression analysis with several *Weissella* spp. and reported the presence of antibiotics (e.g. daunorubicin, fosfomycin, methicillin and tetracycline) resistance, hemolysin gene in these microorganisms. Jung and Lee [80] evaluated the antibiotic resistance, hemolysis and biogenic amine production properties of 45 *Weissella* strains (i.e. *W. cibaria* [n=33], *W. confusa* [n=11] and *W. paramesenteroides* [n=1]) isolated from kimchi for kimchi starter development. They reported that all *Weissella* strains (n=45) showed significant antibiotic resistance against streptomycin when the disk diffusion test was applied. Specifically, 54.5% of tested *W. cibaria* (n=18) was resistant to gentamicin, and 15.2% to penicillin G (n=5). 8.5% of *W. confusa* was resistant to gentamicin (n=3). In their study, only one species of *W. paramesenteroides* (n=1) was used, and this strain showed antibiotic resistance against gentamicin. In addition, some LAB are known to produce ammonia, which is generally regarded as a toxic substance produced by edible microorganisms via utilization of nitrogen sources during fermentation [81, 82]. Therefore, safety evaluation is critically required for further industrial applications even though *W. confusa* VP30 has been isolated from the feces of healthy children.

Listeria ivanovii subsp. *ivanovii* ATCC 19119 and *W. confusa* VP30 were streaked on BHI with 1.5% agar and 5% horse blood and incubated at 37 °C for 48 h. The microorganisms that produced clear and/or transparent zones around the cell colonies were classified as β-hemolytic. Microorganisms that did not generate any visual changes on the blood agar were regarded non-hemolytic cell. Figure 4 shows significant transparent and clean zones around the β-hemolytic positive control *Listeria ivanovii* subsp. *ivanovii* ATCC 19119, due to the complete lysis of red blood cells on the media. Other strains belonging to the *Weissella confusa* species have been reported as alpha-hemolytic [83]. However, *W. confusa* VP30 generated no clear or transparent zones on the blood agar around their microbial colonies, indicating that *W. confusa* VP30 is non-hemolytic (a.k.a. γ-hemolytic).

LAB’s ammonia production property can potentially be related to host gastrointestinal health. Some researchers have reported ammonia production properties of

Fig. 4 a Comprehensive lysis of red blood cells was observed with clear zones around the *Listeria ivanovii* subsp. *ivanovii* ATCC 19119 (positive control). b *W. confusa* VP30 growth with no blood cell lysis on the blood agar. The hemolytic activity of each strain was assessed in triplicate.
Lactobacillus spp. [82, 84]. Therefore it is necessary to evaluate W. confusa VP30's ammonia production capability and demonstrate its safety for further application in processed food production [25]. A colorimetric assay was used to assess the level of ammonia in the media after incubation. Enterobacter cloacae KCTC 2361, the positive control for ammonia production, produced 11.5±0.9 µg/ml of ammonia while W. confusa VP30 was negative.

Excessive use of antibiotics has been reported to contribute to increasing numbers of pathogens having antibiotic resistance, which is considered a serious threat to the treatment of bacterial infection. Although many LAB are not commonly regarded as pathogenic bacteria, it is desirable that they be sensitive to commercially available antibiotics at low concentrations. To evaluate the antimicrobial resistance properties of W. confusa VP30, we conducted MIC tests based on the International Organization for Standardization (ISO) standard protocol. Based on the MIC criteria for microorganisms used in food or feeds prescribed in EFSA [85], W. confusa VP30 was found to have no significant resistance to gentamicin, kanamycin, streptomycin, tetracycline, clindamycin, ampicillin (< 4 µg/ml, Table 4). Although there are no reference concentration and/or guidelines for methicillin, dicloxacillin hydrate, polymyxin B sulfate, bacitracin, neomycin, carbenicillin and spectinomycin resistance, W. confusa VP30 was found to be sensitive to these antibiotics as well, with MIC values ranging from 1 to 32 µg/ml. On the other hand, W. confusa VP30 was resistant to erythromycin and chloramphenicol. (MIC ranging from 2 to 8 µg/ml). Compared with other W. confusa strains [86, 87], Lactobacillus plantarum ATCC 14917 [37] and Lactobacillus paracasei ATCC334 [37], W. confusa VP30 have similar or lower MIC concentrations of gentamicin, kanamycin, tetracycline, clindamycin, ampicillin and erythromycin.

Conclusion

The objective of this work was to screen and characterize high level EPS-producing LAB from healthy children's feces for potential functional food applications. As a prescreening process, 156 LAB cell strains were screened and isolated using LAB selective media (i.e. LBS and TOS-MUP) and cultivated in eight different modified MRS broths containing various sugars. When the 156 LAB strains were cultivated in media supplemented with sucrose as the major carbon source, the viscosity of microbial colonies was increased. The 10 most mucoid and slimy colony-producing colonies

Table 4 MIC distributions of seventeen antibiotics for W. confusa VP30 isolates from a child fecal sample determined by the ISO 10932:2010 broth microdilution procedure

	Weissella confusa VP30 (µg/ml)	Weissella confusa [87] (µg/ml)	Weissella confusa [86] (µg/ml)	Lactobacillus paracasei ATCC334 (µg/ml)	Lactobacillus plantarum ATCC14917 [37] (µg/ml)	EFSA cut-off of Leuconostoc [85] (µg/ml)
Gentamicin	1	≤ 2	3	1 to 4	–	16
Kanamycin	4	–	–	16 to 64	–	16
Vancomycin	> 128	Resistant	> 256	–	–	nr
Streptomycin	32	–	–	8 to 12	–	64
Tetracycline	2	4 to 8	–	1 to 4	8 to 32	8
Clindamycin	< 0.032	≤ 0.5	0.06	0.06 to 0.25	0.5 to 4	1
Ampicillin	0.5	0.5	0.5	0.5 to 2	0.25 to 2	2
Erythromycin	2	≤ 0.25	0.13	0.06 to 0.5	0.25 to 2	1
Methicillin	32	–	–	–	–	–
Dicloxacillin salt hydrate	8	–	–	–	–	–
Polymyxin B sulfate salt	32	–	–	–	–	–
Bacitracin	1	–	–	–	–	–
Methronidazole	512	> 256	–	–	–	–
Phosphomycin disodium salt	> 1024	–	–	–	–	–
Neomycin	2	–	–	–	–	–
Carbenicillin	2	–	–	–	–	–
Chloramphenicol	8	8	–	2 to 8	4 to 16	4
Spectinomycin	32	–	–	–	–	–
were selected based on their solid agar media phenotypes as EPS positive strains. 16S rRNA gene sequencing analysis showed that these high EPS-producing cell strains were members of *Weissella confusa*, *Bifidobacterium longum*, *Lactobacillus plantarum*, *Lactobacillus fermentum*, *Lactobacillus paracasei* and *Lactobacillus rhamnosus* genus and species. Among them, *W. confusa* VP30 showed significantly higher EPS productivity compared to the other cell strains and was selected for further testing. The maximum EPS production by *W. confusa* VP30 was 59.99 ± 0.91 g/l. Structural analysis of the released EPS fraction by NMR revealed that *W. confusa* VP30 can produce dextran of 3.8 × 10^6 Da, containing glucose units linked with 96.5% α (1 → 6) glycosidic bonds and 3.5% α (1 → 3) branches. Safety assessment of *W. confusa* VP30 was accomplished via ammonia production, hemolysis of blood cells and antibiotic resistance analyses. There is no evidence that this LAB strain is unsafe for human consumption, based on our results. Considering the active EPS producing capability and safety of *W. confusa* VP30, this microbial cell strain can be considered for use by the food industry.

Acknowledgements
The authors thank Mrs. Fushi Piao for assistance with fecal sample collection and National Instrumentation Center for Environmental Management (NICEM) at Seoul National University for assistance with HPLC, GPC, NMR and SEM analysis.

Authors’ contributions
HJ initiated this work in partial fulfillment of her PhD degree at Seoul National University under the supervision of SK and GEJ. HJ performed most experiments under the mentorship of S-HY, SK and GEJ. HJ, YJ and S-HY analyzed data. HJ, YJ, SK and TVJ collaboratively wrote the manuscript and performed the literature review. All authors discussed the drafts. All authors read and approved the final manuscript.

Funding
This work was carried out with support from the National Research Foundation of Korea (NRF) Grant (No. 2017R1A2B2012390) funded by the Korean government (MSIP), High Value-added Food Technology Development Program (No. 317043-3), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET), Ministry of Agriculture, Food and Rural Affairs (MAFRA), and the Technological Innovation R&D Program (No. S2463318) funded by the Small and Medium Business Administration, and Rural Affairs (MAFRA), and the Technological Innovation R&D Program of the Ministry of Science and ICT, Republic of Korea, and the Faculty Research and Creative Activity Committee (FRCAC) Grant (No. 221745) funded by Middle Tennessee State University (MTSU).

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, South Korea. 2 Research Center, BFIDO Co., Ltd., Hongcheon 25117, South Korea. 3 Department of Food Science & Biotechnology, and Carbohydrate Biproduct Research Center, Sejong University, Seoul 143-747, South Korea. 4 Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.

Received: 23 April 2019 Accepted: 8 June 2019
Published online: 13 June 2019

References
1. Saranja P, Naidu M, Sivasakthivelan P. Lactic acid bacteria and its antimicrobial properties: a review. Int J Pharm Biol Arch. 2013;4:1124–33.
2. Muyanja C, Navrhus JA, Teirong J, Langsруid T. Isolation, characterisation and identification of lactic acid bacteria from bushara: a Ugandan traditional fermented beverage. Int J Food Microbiol. 2003;80:201–10.
3. Ringe E, Gatesoupe F-J. Lactic acid bacteria in fish: a review. Aquaculture. 1998;160:177–203.
4. Moreno-Ambas MV, Polo MC, Jorganes F, Muñoz R. Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol. 2003;84:117–23.
5. Toğhyani M, Toğhyani M, Tabiedian S. A. Effect of probiotic and prebiotic as antibiotic growth promoter substitutes on productive and carcass traits of broiler chicks. In: International conference on food engineering and biotechnology IPCBEE. 2011. p. 82–6.
6. Zoumpopoulou G, Kazou M, Alexandridi V, Angelopoulou A, Papadimitriou K, Pot B, Tsakalidou E. Probiotics and prebiotics: an overview on recent trends. Probiotics and prebiotics in animal health and food safety. Berlin: Springer; 2018. p. 1–34.
7. Global Market Insights. https://www.gminsights.com/industry-analysis/probiotics-market. Accessed 6 Mar 2019.
8. Ku S, Park M, Ji G, You H. Review on bifidobacterium bifidum bgn4: functionality and nutraceutical applications as a probiotic microorganism. Int J Mol Sci. 2016;17:1544.
9. Ku S, You HJ, Ji GE. Enhancement of anti-tumorigenic polysaccharide production, adhesion, and branch formation of *Bifidobacterium bifidum* BGN4 by phytic acid. Food Sci Biotechnol. 2009;18:749–54.
10. Ai C, Ma N, Zhang Q, Wang G, Liu X, Tian F, Chen P, Chen W. Immunomodulatory effects of different lactic acid bacteria on allergic response and its relationship with in vitro properties. PLoS ONE. 2016;11:164697.
11. Kaur R, Kumar Tiwari S. Optimization of culture conditions for bacteriocin production by soil isolates *Pedococcus pentosaceus* LB44 and *Weissella confusa* LM85. Int J Infect. 2017;4:e15842.
12. Urarpian S, Hongpattarakere T. Antagonistic characteristics against food-borne pathogenic bacteria of lactic acid bacteria and bifidobacteria isolated from feces of healthy thai infants. Jundishapur J Microbiol. 2015;8:e18264.
13. Yoon JS, Sohn W, Lee OY, Lee SP, Lee KN, Jun DW, Lee HL, Yoon BC, Choi HS, Chung WS. Effect of multispecies probiotics on irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J Gastroenterol Hepatol. 2014;29:52–9.
14. Rizzio G, Orlando A, D’Atoma B, Guerra V, Valerio F, Lavermicocca P, De Candia S, Russo F. Randomised Clinical trial: efficacy of *Lactobacillus paracasei* enriched artichokes in the treatment of patients with functional constipation—a double-blind, controlled, crossover study. Alim Pharmacol Ther. 2012;35:441–50.
15. Ja W, Li H, Zhao L, Nicholson JK. Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Disc. 2008;7:123.
16. Krivoruchko A, Zhang Y, Siewers V, Chen Y, Nielsen J. Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng. 2015;28:22–42.
17. Meadow JF, Altrichter AE, Bateman AC, Stenson J, Brown GZ, Green JL, Bohannan BJM. Humans differ in their personal microbial cloud. PeerJ. 2015;3:e1258.
18. Rühmann B, Schmid J, Sieber V. High throughput exopolysaccharide screening platform: from strain cultivation to monosaccharide composition and carbohydrate fingerprinting in one day. Carbohydr Polym. 2015;122:212–20.
of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol. 1993;75:595–603.

41. Stiles ME, Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997;36:1–29.

42. Han J, Xu X, Gao C, Liu Z, Wu Z. Levan-producing “named-content-genus-species” Leucostoc cireneum strain BD1707 and its growth in tomato juice supplemented with sucrose. Appl Environ Microbiol. 2016;82:1383–90.

43. Meng X, Dobruchowska JM, Piężing T, Gerwig GJ, Dijkhuizen L. Synthesis of new hyperbranched α-glucans from sucrose by Lactobacillus reuteri 180 glucansucrase mutants. J Agric Food Chem. 2016;64:433–42.

44. Bae JT, Sim GS, Lee DH, Lee BC, Pyo HB, Choe TB, Yun JW. Production of exopolysaccharide from mycelial culture of Grifola frondosa and its inhibitory effect on matrix metalloproteinase-1 expression in UV-irradiated human dermal fibroblasts. FEMS Microbiol Lett. 2005;251:347–54.

45. Satyanakarum DS, Harikumar S, Beena DJ, Pandey A, Namnoothiri KM. Physicochemical characterization of an exopolysaccharide produced by a newly isolated Weissella cibaria. Appl Biochem Biotechnol. 2015;176:440–53.

46. Di Gagni R, De Angelis M, Limitone A, Minervini F, Carnevali P, Corsetti A, Gaemelie M, Criot M, Gobetti M. Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum. J Agric Food Chem. 2006;54:9873–81.

47. Yu F-J, Chen Z, Chen PT, Ng I-S. Production, characterization and antibacterial activity of exopolysaccharide from a newly isolated Weissella cibaria under sucrose effect. J Biosci Bioeng. 2018;126:769–77.

48. Wongsuphachat W, Maneerat S. Optimization of exopolysaccharide production by Weissella confusa NH202 isolated from Thai fermented sausages. Songklanakarin J Sci Technol. 2010;32:27.

49. Kim MJ, Seo HN, Hwang TS, Lee SH, Park DH. Characterization of exopolysaccharide (EPS) produced by Weissella helvetica SKimrich3 isolated from kimchi. J Microbiol. 2008;46:535–41.

50. Adesulu-Dahunsi AT, Sanni AI, Jeyaram K, Ojediran JO, Ogunsakin AO, BGN4 and ST10 to prospectively restore the gut physiological barrier: a pilot study. J Clin Gastroenterol. 2014;48:260–4.

51. Feng F, Zhou QQ, Yang YF, Zhao FK, Du RP, Han Y, Xiao HZ, Zhou ZJ. Isolation, purification and characterization of exopolysaccharide produced by Leuconostoc pseudomesenteroides BGN4 from soybean paste. Int J Biol Macromol. 2009;57:10889–97.

52. Grosu-Tudor SS, Stancu MM, Stefan IR, Cornea CP, Zamfri M. Physico-chemical and rheological properties of some exopolysaccharides produced by lactic acid bacteria isolated from plant origin materials. Roman Biotechnol Lett. 2017;22:12694–705.
61. Thauari D, Tintingari JMR, Goyal A. In vitro analysis of dextran from Leuconostoc mesenteroides NRRL B-1426 for functional food application. Bioactive Carbohydrate Dietary Fibre. 2015;6:35–61.

62. Yang J, Ji Y, Park H, Lee J, Park S, Yeo S, Shin H, Holzapfel WH. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel). J Int Food Microbiol. 2014;191:164–71.

63. Lee J-S, Lee KC, Ahn J-S, Mheen T-I, Puyun Y-R, Park Y-H. Weissella koreensis sp. nov., isolated from kimchi. Int J Syst Evol Microbiol. 2002;52:1257–61.

64. Plengvidhya V, Breidt F, Lu Z, Fleming HP. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl Environ Microbiol. 2007;73:7697–702.

65. Parente E, Greco S, Crudele M. Phenotypic diversity of lactic acid bacteria isolated from fermented sausages produced in Basilicata (Southern Italy). J Appl Microbiol. 2001;90:943–52.

66. Kamenik J, Duslovik M, Šedo O, Salaková A, Pavlík Z, Držálav Z, Karpišková R. Lactic acid bacteria in hot smoked dry sausage (non-fermented salami): thermal resistance of Weissella viridescens strains isolated from hot smoked dry sausages. LWT-Food Sci Technol. 2015;61:492–5.

67. Morea M, Baruzzi F, Cappa F, Ciconcelli P. Molecular characterization of the Lactobacillus community in traditional processing of Mozzarella cheese. Int J Food Microbiol. 1998;43:53–60.

68. Zamfir M, Vancanneyt M, Makras L, Vaningelgem F, Lefebvre K, Pot B, Swings J, De Vuyst L. Biodiversity of lactic acid bacteria in Romanian dairy products. Syst Appl Microbiol. 2006;29:487–95.

69. Williams AG, Banks JM. Proteolytic and other hydrolytic enzyme activities in non-starter lactic acid bacteria (NSLAB) isolated from Cheddar cheese manufactured in the United Kingdom. Int Dairy J. 1997;7:763–74.

70. Choi H, Kim Y-W, Hwang I, Kim J, Yoon S. Evaluation of Leuconostoc citreum HO12 and Weissella koreensis HO20 isolated from kimchi as a starter culture for whole wheat sourdough. Food Chem. 2012;134:2208–16.

71. Di Cagno R, Sunco RF, Minervini G, De Angelis M, Rizzello CG, Gobbetti M. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel). Int J Food Microbiol. 2014;191:164–71.

72. Wolter A, Hager A-S, Zannini E, Rabier P, Vayssier Y, Fontagné-Faucher L. Identification of lactic acid bacteria isolated from human blood cultures. FEMS Immunol Med Microbiol. 2014;73:7697–702.

73. Robert H, Gabriel V, Lefebvre D, Rabier P, Vayssier Y, Fontagné-Faucher L. Identification of lactic acid bacteria isolated from human blood cultures. FEMS Immunol Med Microbiol. 2014;73:7697–702.

74. Yang J, Ji Y, Park H, Lee J, Park S, Yeo S, Shin H, Holzapfel WH. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel). Int J Food Microbiol. 2014;191:164–71.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.