Atrofia muscular bulboespinhal ligada ao cromossomo X (doença de Kennedy): o primeiro caso descrito na Amazônia brasileira

X-linked spinal and bulbar muscular atrophy (Kennedy's disease): the first case described in the Brazilian Amazon

Camila Nascimento Alves\(^1\), Tiago Kiyoshi Kitabayashi Braga\(^2\), Danusa Neves Somensi\(^2\), Bruno Sérgio Vilhena do Nascimento\(^1\), José Antônio Santos de Lima\(^1\), Satomi Fujihara\(^1\)

\(^1\) Hospital Ophir Loyola, Belém, PA, Brasil.
\(^2\) Universidade do Estado do Pará, Belém, PA, Brasil.

DOI: 10.1590/S1679-45082018RC4011

RESUMO

A atrofia muscular bulboespinhal ligada ao cromossomo X (doença de Kennedy) é uma rara doença de neurônio motor inferior, recessiva, ligada ao X, e caracterizada por fraqueza, atrofia e fasciculações da musculatura apendicular e bulbar. É causada por uma expansão da repetição CAG no gene do receptor de androgênio. Pacientes com doença de Kennedy apresentam mais de 39 repetições CAG. O paciente deste relato era do sexo masculino, 57 anos, morador de Monte Dourado (PA, Brasil), com queixa de paresia braquiocrural há 3 anos, acompanhada de fasciculações e tremores de extremidades. Em seguida, ele desenvolveu disartria, disfagia e disfunção sexual. Também apresentava comprometimento da marcha, hiporeflexia global, atrofia muscular proximal dos membros superiores, desvio da úvula para direita à fonética e atrofia de língua com fasciculações. Foi realizada cirurgia para tratamento de ginecomastia há 30 anos. A eletroneuromiografia sugeriu quadro de atrofia muscular espinhal. Imagens de ressonância magnética demonstraram afilamento da medula espinhal cervical e torácica. A creatina quinase estava elevada. Diante dos achados, solicitou-se investigação para doença de Kennedy, e foram identificadas 46 repetições CAG no gene do receptor de androgênio, o que confirmou a suspeita diagnóstica. Este foi o primeiro caso de doença de Kennedy diagnosticado e descrito na Amazônia brasileira. Existem, além deste relato, apenas outros quatro trabalhos publicados sobre a doença em pacientes do Brasil. Também realizamos breve revisão de aspectos etiopatogênicos, clínicos e diagnósticos.

Descritores: Atrofia bulboespinhal ligada ao X; Síndrome de Kennedy; Neurônios motores; Doença dos neurônios motores; Bulbo; Amazônia; Brasil; Relatos de casos

ABSTRACT

The X-linked spinal and bulbar muscular atrophy (Kennedy’s disease) is a rare X-linked, recessive, lower motor neuron disease, characterized by weakness, atrophy, and fasciculations of the appendicular and bulbar muscle. The disease is caused by an expansion of the CAG repetition in the androgen receptor gene. Patients with Kennedy’s disease have more than 39 CAG repetitions. We report a case of 57-year-old man, resident of Monte Dourado (PA, Brazil) who complained of brachio-cranial paresis evolving for 3 years along with fasciculations and tremors of extremities. In addition, he also developed dysarthria, dysphagia, and sexual dysfunction. The patient clinical picture included gait impairment, global hyporeflexia, proximal muscle atrophy of upper limbs, deviation of the uvula to right during phonation and tongue atrophy with fasciculations. The patient...
report that about 30 years ago he had undergone gynecomastia surgery. His electromyography suggested spinal muscular atrophy, and nuclear magnetic resonance imaging showed tapering of the cervical and thoracic spinal cord. Patient’s creatine kinase level was elevated. In view of the findings, an exam was requested to investigate Kennedy’s disease. The exam identified 46 CAG repetitions in the androgen receptor gene, which confirmed the diagnostic suspicion. This was the first case of Kennedy’s disease diagnosed and described in the Brazilian Amazon. To our knowledge only four papers were published on this disease in Brazilian patients. A brief review is also provided on etiopathogenic, clinical and diagnostic aspects.

Keywords: Bulbo-spinal atrophy, X-Linked; Kennedy disease; Motor neurons; Motor neuron disease; Medulla oblongata; Amazonian ecosystem; Brazil; Case reports

INTRODUÇÃO

A atrofia muscular bulboespinhal (SBMA - spinal and bulbar muscular atrophy), ou doença de Kennedy, é uma rara doença de neurônio motor inferior, herança recessiva ligada ao X, caracterizada por fraqueza, atrofia e fasciculações da musculatura apendicular e bulbar. Esta doença é causada por uma expansão da repetição citosina-adenina-guanina (CAG) no exon 1 do gene do receptor de androgênio (AR - androgen receptor), no cromossomo Xq11-q12, sendo a primeira mutação de expansão de repetição descoberta. (1,2)

A repetição CAG codifica um trato de poliglutamina, que tem entre 10 e 36 resíduos em pessoas normais, enquanto que os pacientes SBMA têm mais de 39 resíduos. (3)

A prevalência da doença varia entre os estudos. Kaimen-Maciel et al., (4) citam em torno de 1 caso em 50 mil homens; La Spada et al., (5) cita 1 caso em 300 mil homens. Não existe, atualmente, tratamento específico para a SBMA, mas apenas tratamento de suporte, como fisioterapia e reabilitação (incluindo uso de braces e andadores), cirurgia para ginecomastia quando necessário, prevenção de complicações secundárias (principalmente as que resultam da fraqueza bulbar, como pneumonia e asfixia, pois podem ser fatais), vigilância anual da força muscular e vigilância com testes de função pulmonar (anualmente, em casos avançados). (5) O exercício físico também pode ser benéfico aos pacientes. (1)

No Brasil, são escassos os indivíduos descritos com SBMA. Ao todo, são 16 pacientes, sendo 2 por Seelfeld et al., (6) 3 por Kaimen-Maciel et al., (4) 1 por Kouyoumdjian et al., (7) e 10 por Dias et al. (2) Este é o primeiro caso diagnosticado e descrito na Amazônia brasileira.

RELATO DE CASO

Homem, 57 anos, morador de Monte Dourado (PA, Brasil), foi encaminhado à neurologia, em Belém (PA, Brasil), por paresia braquiocrural com evolução de 3 anos. O quadro se iniciou nos membros inferiores (MMII). Após 1 ano, os membros superiores (MMSS) apresentaram paresia, com fasciculações e tremores de extremidades. Em seguida, desenvolveu disartria, disfagia e disfunção sexual. Fora realizada uma correção cirúrgica de ginecomastia há 30 anos.

Ao exame neurológico, o paciente apresentava marcha comprometida, incapacidade de andar nas pontas dos pés, atrofia muscular proximal dos MMSS, e fasciculações em MMSS e MMII. Os reflexos miotáticos tricipital, bicipital, braquiorradial, cúbito-pronador e patelar apresentavam hiperreflexia bilateralmente (grau 1 na escala de reflexos osteotendinosos). O reflexo aquileu direito e o esquerdo estavam abolidos (grau zero). Na escala Medical Research Council (MRC), foi encontrada força muscular grau 4 nos MMII e na porção proximal dos MMSS bilateralmente.

Evidenciou-se comprometimento bulbar pelo desvio da úvula para direita à fonación e pela atrofia da língua com fasciculações (Figura 1). No tórax, observaram-se as cicatrizes cirúrgicas do tratamento de ginecomastia (Figura 2).

Em janeiro de 2015, em imagens de ressonância magnética (RM), foi evidenciado afilamento da medula espinhal cervical e torácica, com tênue alteração de sinal em C4, C5 e C6, sem captação ao contraste e de aspecto inespecífico.

Na electromiografia, ocorreram, em repouso, fasciculações difusas em MMSS, notadamente de tríceps, extensor comum dos dedos e primeiro interósseo dorsal da mão; em MMII, foram notadas fasciculações em tibial anterior. A atividade muscular era rarefeita globalmente, exibindo poucas unidades motoras com duração
Atrofia muscular bulboespinhal ligada ao cromossomo X (doença de Kennedy)

Einstein (São Paulo). 2018;16(2):1-5

e amplitude aumentadas. No estudo de neurocondução dos MMSS, foi notada condução sensitiva inexcitável e condução motora exibindo latências aumentadas no nervo mediano bilateralmente.

A creatinofosfoquinase (CPK) mostrou-se elevada em dois momentos, com valores de 1757U/l, em junho de 2015, e de 1638U/l, em dezembro de 2015.

Diante dos achados, solicitou-se teste genético para investigação do número de repetições CAG no gene AR por reação em cadeia da polimerase (PCR). O exame foi realizado no Centro de Pesquisas sobre o Genoma Humano e Células-Tronco da Universidade de São Paulo. Foram identificadas 46 repetições CAG, confirmando a doença.

O paciente tinha dez irmãos e seis irmãs. Dos irmãos, seis apresentavam sintomas, como dificuldade na marcha e para subir escadas. Porém, apenas dois dos dez irmãos foram investigados para SBMA recentemente, sendo confirmada a doença por teste genético em janeiro de 2017 (44 repetições CAG) em um deles. Este irmão apresentava perda de força muscular proximal dos MMII e ginecomastia. Os demais não realizaram a investigação por questões financeiras e pela distância que residiam de grandes centros urbanos.

DISCUSSÃO

O AR é um receptor intracelular. Na ausência de um ligante, testosterona ou di-hidrotestosterona, o receptor se dissocia destas proteínas e entra no núcleo, onde interage com outras proteínas nucleares e liga-se, como um dímero, às sequências de reconhecimento no DNA dos genes alvos. Dessa forma, o AR funciona como um fator de transcrição dependente de ligante, que altera a expressão gênica alvo.(1)

Foi feito um levantamento sobre os casos de SBMA descritos no Brasil. Para tanto, realizou-se uma busca nos sites PubMed, BIREME e SciELO, com os descritores: (“Kennedy’s Disease” or “Spinal and Bulbar Muscular Atrophy” or “Bulbospinal Muscular Atrophy” or “Bulbo Spinal Atrophy”). No PubMed e na BIREME, para filtrar a pesquisa, ainda se adicionou “Brazil”, ou “Brasil”, como o país de afiliação dos autores. Ao todo, foram encontrados quatro artigos sobre a SBMA em pacientes do Brasil, com total de 16 pacientes descritos (Tabela 1).

Figura 2. Cicatrizes cirúrgicas da correção de ginecomastia

Tabela 1. Casos de doença de Kennedy descritos no Brasil

Autores	Número de casos	Estado – Região do país
Dias et al.(2)	10	Paraná – Sul
Kaimen-Maciel et al.(4)	4*	Paraná – Sul
Seefeld et al.(6)	2	Paraná – Sul
Kouyoumdjan et al.(7)	1	São Paulo – Sudeste
Nosso caso	1	Pará – Norte

* Três casos e uma mulher portadora assintomática.

Nosso caso foi o primeiro diagnosticado e descrito na Amazônia brasileira. Ainda, a casuística estudada de SBMA ainda é pequena no país. Importante salientar que, apesar dos trabalhos de Seefeld et al.,(6) e de Dias et al.,(2) terem sido vinculados à mesma instituição, eles apresentaram casuísticas diferentes.

Analisando-se os casos brasileiros, nota-se que a média de idade do início dos sintomas foi de 35,5 anos, variando de 14 a 49 anos, nos 16 pacientes. Dos sintomas iniciais relatados, a disfonia ocorreu em um indivíduo,(7) disfagia e disartria ocorreram em um,(4) câibras em um,(6) aumento de volume mamário em um,(4,6) e fraqueza muscular em três.(4,6) Dias et al.,(2,7) não forneceram detalhes sobre os sintomas iniciais dos seus dez pacientes; mas, no momento do estudo, todos tinham fraqueza apendicular, principalmente proximal, associada a sintomas bulbarres, e o tremor postural das mãos era o mais comum dos tipos de tremores. A ginecomastia foi encontrada em 14 dos 16 pacientes. Apenas dois artigos relataram o número de repetições CAG,(2,7) o menor número foi de 41 e o maior de 53. Kaimen-Maciel et al.,(4) utilizaram...
o número de pares de base do \(AR\) para o diagnóstico. No artigo de Seelfeld et al.,\(^{(6)}\) o heredograma de um dos pacientes mostra que existiam outros dez casos com sintomas parecidos na família. Kaimen-Maciel et al.,\(^{(4)}\) apresentaram heredograma em que, além dos três casos descritos, existiam sete homens que tinham sintomas de SBMA (um deles já morto), mas que não foram investigados com teste genético (Tabela 2).

A expansão de poliglutamina, determinada pelo aumento de repetições CAG, resulta tanto em perda de função de \(AR\). A perda se manifesta por ginecomastia, redução da fertilidade, degeneração muscular e neuronal, já que os andrógenos são tróficos para os neurônios motores e anabólicos para os músculos. O ganho de função do \(AR\) seria a toxicidade adquirida por esta proteína mutante contra o neurônio e o músculo, explicando de forma mais satisfatória o quadro clínico; outras condições que cursam com síndrome de insensibilidade androgênica não apresentam manifestações motoras.\(^{(1)}\)

Atsuta et al.,\(^{(6)}\) notaram que o tremor de mão foi o sintoma mais precoce a ocorrer, com média de idade de 33 anos, seguido da fraqueza muscular, predominantemente de MMII (44 anos), da necessidade de corrida para subir escadas (49 anos), disartria (50 anos), disfagia (54 anos), uso de bengala (59 anos) e uso de cadeiras de rodas (61 anos). Dos 223 pacientes, 15 foram a óbito — em média com 65 anos. A pneumonia aspirativa foi a causa mais comum (8 dos 15) da morte.

No estudo de Fratta et al.,\(^{(9)}\) a disfunção erétil começou entre 50 e 60 anos, e a média de idade do óbito foi de 79 anos. O sintoma inicial mais comum foi fraqueza nos MMII, acometendo 86,7% dos pacientes. Durante a progressão da doença, 58,7% desenvolveram sintomas sensoriais e 73,9% desenvolveram ginecomastia.

Tabela 2. Características dos 16 casos de doença de Kennedy descritos no Brasil

Características	Resultados
Média de idade do início dos sintomas	35,5 anos (14-49)
Média de repetições CAG*	46,72 repetições (41-53)
Síntoma inicial descrito\(^{13}\)	Fraqueza muscular: 3 indivíduos
	Ginecomastia: 1 indivíduo
	Cãibras: 1 indivíduo
	Disfagia e disartria: 1 indivíduo
	Disfonia: 1 indivíduo
Ginecomastia	14 dos 16 pacientes
Familiares acometidos\(^{6}\)	Seelfeld et al.: 10 homens com
	sintomas de SBMA
	Kaimen-Maciel et al.: 7 homens
	sintomas de SBMA (sendo 1 morto)

\(^{1}\) Levou-se em consideração apenas os trabalhos de Dias et al.\(^{\text{6}}\) e Koyuncuoglu et al.\(^{\text{10}}\) pois informaram o número de repetições CAG. O artigo Seelfeld et al.\(^{\text{10}}\) não possui esta informação. Kaimen-Maciel et al.\(^{\text{10}}\) utilizaram o número de pares de base: o artigo de Dias et al.\(^{\text{6}}\) não foi incluído, pois não fornece detalhes sobre o síndrome inicial dos pacientes. "Kaimen-Maciel et al.\(^{\text{10}}\) descreveram um dos sintomas iniciais de um paciente com o termo "debilidade global". Este termo não foi considerado pela sua imprecisão descriptiva; apenas Seelfeld et al.\(^{\text{10}}\) e Kaimen-Maciel et al.\(^{\text{10}}\) relataram os familiares acometidos.

O início dos sintomas geralmente ocorreu na vida adulta, em média com 43,4 anos. Em uma revisão, a idade de início da SBMA variou de 4 a 76 anos.\(^{(10)}\)

Dias et al.,\(^{(6)}\) notaram que o tremor estava presente em oito dos dez pacientes com SBMA avaliados e tinha características similares do tremor essencial.

Em relação à neurocondução, a redução de potenciais de ação de nervo sensorial (PANS) é uma característica comum na SBMA, e o potencial de ação muscular composto (PAMC) do nervo mediano pode estar alterado em 40% dos pacientes.\(^{(3,7)}\)

Na eletromiografia, alterações neurogênicas crônicas geralmente são as mais evidentes, com os potenciais de unidade motora aumentados e o recrutamento reduzido.\(^{(9)}\)

Sperfeld et al.,\(^{(11)}\) evidenciaram atrofia significante da medula espinhal, ao nível cervical e torácico, em pacientes SBMA. Portêm, não foram observadas na RM alterações de sinal do sistema nervoso central, sendo consideradas alterações infrequentes em doenças do neurônio motor.

Querin et al.,\(^{(12)}\) detectaram níveis elevados de creatinina quinase (CK) em 94% dos pacientes. A elevação sérica de CK e as alterações miopáticas encontradas nas biópsias de músculos sugerem a possibilidade de uma miopatia subjacente na SBMA.

Estudos já notaram correlação significativa entre o comprimento de repetições CAG e a idade de início da doença. Porém, não se nota relação entre o comprimento da repetição e a progressão da doença.\(^{(8,9)}\) Atsuta et al.,\(^{(8)}\) encontraram associação entre o número de repetições e a idade em que os pacientes começaram a apresentar tremor de mãos, fraqueza muscular, disartria, disfagia e idade em que foram ao óbito. No entanto, não houve associação entre o comprimento CAG e o tempo de evolução entre o início da fraqueza muscular e o óbito.

Finsterer et al.,\(^{(10)}\) observaram que muitos estudos encontraram a relação entre o início dos sintomas motores e o comprimento da repetição CAG. Porém, quando sintomas não motores são considerados, não há relação com o número de repetições.

Grunseich et al.,\(^{(13)}\) descreveram o indivíduo portador de SBMA com o maior número de repetições CAG (68 repetições). Este paciente apresentava pênis curvo congênito, que foi corrigido aos 7 anos; atrofia testicular e dificuldades de ejaculação. Aos 16 anos, começou a apresentar ginecomastia. Aos 18 anos, iniciou perda de força muscular na porção proximal dos MMII, fadiga após exercício físico, fasciculações, câlicas e tremores. Além disto, evidenciou-se que o paciente apresentava disfunção sudomotora. Aos 29 anos, foi feito o diagnóstico com teste genético.

Na doença de Huntington, a penetração reduzida está mais bem estabelecida, a qual ocorre quando há de 36
a 41 repetições CAG.(14) Na SBMA, isto não está bem. Spada et al.,(5) chegaram a dividir os alelos da SBMA em algumas categorias: alelos normais teriam 34 ou menos repetições; alelos com penetrância completa teriam 38 ou mais repetições CAG.

Ainda, existiriam os alelos com penetrança reduzida,(5) que foram sugeridos com base no trabalho de Kuhlenbäumer et al.,(4) Estes autores relataram uma mulher de 86 anos assintomática, com 37/51 repetições CAG, e seu filho homem de 46 anos assintomático, com 37 repetições. Assim, foram propostas duas possibilidades: a primeira seria que houvesse um limite mais preciso entre os alelos normais (até 37 CAG) e os patológicos (a partir de 38 CAG); a segunda é a de que 37 repetições CAG levariam a uma penetrança reduzida da doença, podendo, por sua vez, levar à SBMA em uma idade muito mais tardia – tão tardia que a maioria dos pacientes morreria antes de a doença tornar-se evidente. Mas isso só poderá ser solucionado quando observarmos mais indivíduos nessa mesma faixa de comprimento de repetições.(14)

Atrofia muscular bulboespinhal é frequentemente confundida com a Esclerose Lateral Amiotrófica (ELA), cerca de 1 em 25 pacientes com diagnóstico de ELA possui, na verdade, SBMA. Por isso, ELA é um importante diagnóstico diferencial. A diferenciação pode ser feita com história clínica e exame físico. Deve-se lembrar que ELA afeta tanto neurônios superiores quanto os inferiores; logo, é esperado que haja hiperreflexia e espasticidade, o que já não ocorre na SBMA. Indivíduos com ELA também apresentam uma gama maior de grupos musculares acometidos, bem como uma progressão mais rápida. Uma informação relevante que deve ser lembrada é que a SBMA apresenta insensibilidade androgénica, então homem com ginecomastia é um sinal deSBMA.(5) Além disto, a história de familiares do sexo masculino acometidos favorece o diagnóstico de SBMA.

O entendimento atual da patogênese é de que a proteína mutante torna-se tóxica na presença do ligante (testosterona ou di-hidrotestosterona). Os mecanismos de proteção incluem a resposta ao choque térmico, a via ubiquitina-proteassoma e a autofagia.(1) Há alguns anos, estudos com humanos, testando-se leuprorrelina e dutasterida (terapias antiandrogênicas), mostraram-se ineficazes. Atualmente, muitas terapias têm sido testadas em modelos animais.(5)

Fischbeck et al.,(1) cita um número de alvos moleculares em que a terapia foi eficaz em camundongos transgênicos: aumento da resposta ao choque térmico por meio da inibição da \textit{Heat Shock Protein} 90 (\textit{HSP90}) com o uso de derivados de geldanamicina, 17-dimethylaminoethylamo-17-demethoxy-geldanamycin (17-DMAG) e allylamino-17-demethoxygeldanamycin (17-AAG); aumento da degradação do AR e ativação de vias de proteção com derivados de curcumina, 5-hydroxy-1,7-bis (3,4-dimethoxyphenyl)-1,4,6-heptatrien-3-one (ASC-J9) e (1E,4Z,6E)-4-(cyclobutylmethyl)-1,7-bis (3,4-dimethoxyphenyl)-5-hydroxyhepta-1,4,6-trien-3-one (ASC-JM17); inibição da sinalização calcitonin gene-related peptide α - e-Jun N-terminal kinase (CGRP-JNK) com narantripatina; resgates da função mitocondrial por meio do peroxisome proliferator-activated receptor gamma (PPARγ) com a pioglitazona.

Outra terapia que apresentou eficácia em camundongos foi o uso de \textit{insulin-like growth factor 1} (IGF-1), que ativa a proteína 	extit{Akt}, a qual causa a fosforilação do AR mutante.(1,5) Ainda, existem as estratégias terapêuticas para reduzir a expressão gênica da doença com microRNA (miRNA) e oligonucleotídeos, os quais tiveram resultados promissores pré-clínicos e estão se aproximando da aplicação clínica.(1)

\textbf{REFERÊNCIAS}

1. Fischbeck KH. Spinal and Bulbar Muscular Atrophy Overview. J Mol Neurosci. 2016;58(3):317-20. Review.
2. Dias FA, Munhoz RP, Raskin S, Werneck LC, Teive HA. Tremor in X-linked recessive spinal and bulbar muscular atrophy (Kennedy’s disease). Clinics (Sao Paulo). 2011;66(9):956-7.
3. Jokela ME, Udd B. Diagnostic Clinical, electrodiagnostic and muscle pathology features of spinal and bulbar muscular atrophy. J Mol Neurosci. 2016;58(3):330-4. Review.
4. Kaimen-Maciell DR, Medeiros M, Climaco V, Kelian GR, da Silva LS, de Souza MM, et al. X-linked recessive bulbospinal muscular atrophy (Kennedy’s disease): A family study. Arq Neuropsiquiatr. 1998;56(39):639-45. Portuguese.
5. La Spada A. Spinal and Bulbar Muscular Atrophy. 1999 Feb 26 [updated 2017 Jan 26]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1333
6. Seefeld M, Cunha FM, Ferraz LE, Scola RH, Werneck LC. Kennedy disease: report of 2 cases. Arq Neuropsiquiatr. 1995;53(3-A):471-4. Portuguese.
7. Kouyoumdjian JAI, Morita MD, Araújo RG. X-linked spinal and bulbar muscular atrophy (Kennedy’s disease) with long-term electrophysiological evaluation: case report. Arq Neuropsiquiatr. 2005;63(1):154-9.
8. Atsuta N, Watanabe H, Ito M, Banno H, Suzuki K, Katsuno M, et al. Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients. Brain. 2006;129(pt 6):1446-55.
9. Fratta P, Nirmalananthan N, Massett L, Skorupinska I, Collins T, Cortese A, et al. Correlation of clinical and molecular features in spinal bulbar muscular atrophy. Neurology. 2014;82(23):2077-84.
10. Finsterer J, Soraru G. Onset manifestations of spinal and bulbocerebellar atrophy (Kennedy’s disease). J Mol Neurosci. 2016;58(3):321-9. Review.
11. Sterfler AD, Bretschneider V, Flaitz L, Unrath A, Hanemann CO, Ludolph AC, et al. MR-pathologic comparison of the upper spinal cord in different motor neuron diseases. Eur Neurol. 2006;55(3):74-7.
12. Querin G, Bertolin C, Da Re E, Volpe M, Zara G, Pegoraro E, Caretta N, Foresta C, Silvano M, Corrado D, Iafrate M, Angelini L, Sartori L, Pennuto M, Gaiani A, Bello L, Semplici C, Parayson D, Silani V, Ermani M, Ferlin A, Soraru G, Italian Study Group on Kennedy’s disease. Non-neural phenotype of spinal and bulbocerebellar atrophy: results from a large cohort of Italian patients. J Neurol Neurosurg Psychiatry. 2016;87(8):810-6.
13. Ropper AH,精品 WR, Terry RD. Atrofia muscular bulboespinhal ligada ao cromossomo X (doença de Kennedy)