A NONLINEAR SUPPLY-DRIVEN INPUT-OUTPUT MODEL

Nooraddin Sharify*

Abstract
One of the major limitations of the supply-driven input-output (I-O) Ghosh model concerns its linear production function. Using the I-O table, this paper replaces the linear production function with the Cobb-Douglas (CD) production function within the supply-driven model. The two models are compared both theoretically and empirically. Nonlinear production function, relative substitutability of primary factors, and variability of the proportion of intermediate inputs over product levels are the characteristics of the proposed model. The consideration of sectors’ Solow residual as Total Factor Productivity (TFP) of sectors is yet another characteristic of the proposed model. The model is also plausible in value added and supply shock computations.

Keywords: nonlinear input-output model, Cobb-Douglas production function, Ghosh model, plausible supply-driven input-output model

JEL Classification: C63, C67, E27

1. Introduction

I-O models are mainly based upon linear functions. The Ghosh supply-driven I-O model is one of these models, which has a linear function form. Although the linear functions are adequate for a number of empirical cases, they have some characteristics that prevent them from being used for many purposes.

There are many conditions, in which variables may have nonlinear relationships with each other. In addition, there are some other problems that make the Ghosh supply-driven I-O model implausible. The perfect substitution of primary inputs is one of these, which assumes that these inputs can be substituted by each other perfectly. The assumption of perfect complementarity of aggregate primary inputs with intermediate inputs is taken into account as another problem of this model. Such characteristics lead this model to be considered as implausible.

One attempt has been made to propose a nonlinear I-O model by Zhao et al. (2006). Although the model is a great contribution to the non-linear I-O model, it fails to compute the parameters of the model from the I-O table. Besides, the estimation of the model is, to some extent, dependent upon the planner’s decisions.

To overcome these deficiencies, this paper suggests a CD production function instead of a linear one. The parameters of the model are specified from an I-O table. The model has a number of characteristics, which seem more suitable if employed in empirical cases.

* Nooraddin Sharify, Department of Economics, University of Mazandaran, Babolsar, Iran (nsharify@umz.ac.ir).
The components of primary inputs can be relatively substituted for each other. The intermediate and primary inputs can also be substituted relatively in the proposed model. Hence, the implausibility problem of the Ghosh supply-driven model will be removed. In addition, the model allows the researchers to specify the TFP of sectors through Solow residual. Finally, all parameters of the model can be calculated from the I-O table.

The paper contains four sections. The Ghosh model is reviewed in the second section. Capabilities and deficiencies of the model are also reviewed in this section. The third section develops the proposed model. In addition, the characteristics of the proposed model are demonstrated in this section. The implementation of the proposed model has been presented in the fourth section. Results of the proposed model are compared with those of the Ghosh model. And finally, the concluding section will end the paper.

2. The Ghosh Model

This model proposed by Ghosh (1958) is in value terms. The model was proposed to relate gross outputs of industries to supply factors. It relies on the constancy of b_{ij}, the direct coefficient of consumption of products for different levels of outputs:

$$b_{ij} = \frac{x_{ij}}{q_i} \Rightarrow x_{ij} = b_{ij} \cdot q_i,$$ \hspace{1cm} (1)

where x_{ij} refers to transaction between sector i to j, and q_i refers to total output of sector i. Hence, the total inputs of sectors can be formulated as follows:

$$q = qB + v \Rightarrow q - qB = v \Rightarrow q = v \times (I - B)^{-1} = v \times G,$$ \hspace{1cm} (2)

$B = [b_{ij}]$ denotes the matrix of the fixed intermediate output coefficient, q the row vector of total inputs of sectors, v the row vector of primary inputs of sectors, and $G = (I - B)^{-1}$ the matrix of Ghoshian inverse.

This model has some characteristics and is employed for different purposes. Bon (1988), Dietzenbacher (1989, 1997) and Lenzen et al. (2010) refer to the Ghosh supply driven I-O model to be as plausible as the Leontief demand driven I-O model. It has been employed for forward linkage in some studies such as Augustinovics (1970) and Cai (2004). Dietzenbacher (1997) advocates using this model for price change analysis. In addition, a modified version of this model was also implemented by Gallego and Lenzen (2005), which divides responsibility into mutually exclusive and collectively exhaustive portions, that are assigned to producers and consumers as shared responsibilities.

However, since the constant amount of g_{ij} shows the effect of a unit change in primary inputs of sector j on the level of total products of sector i, it is concluded that: 1) Because of the products of sectors they have linear relationships with respect to all primary factors, the marginal impact of primary inputs on total products of sectors is constant for different levels of these inputs. As a result of this characteristics, the aggregate primary and intermediate inputs are perfectly complementary. 2) The effect of a unit of different
kinds of primary inputs on products of sectors is the same. Hence, a unit of labour force and
capital have the same effect on the level of products of sectors. On the other hand, these
inputs are perfectly substitutable for each other, so it is possible to release one of these
inputs in the production process.

Note that, due to perfect complementing relationship between total intermediate and
total primary inputs of sectors, the implementation of the Ghosh model in impact studies
suffers from a lack of credible results Oosterhaven (1988, 1989), Gruver (1989) and
Mesnard (2009). To this end, Guerra and Sancho (2011) attempted to solve the implausibility
problem of this model in value-added and allocation change of supply shocks. However,
Oosterhaven (2012) claimed that this solution makes the model more implausible.

3. The Proposed Model and Its Characteristics

3.1 The model

To introduce the model, let \(a_{ij} \) stands on the technical coefficient in which:

\[
\begin{align*}
q_j = a_{ij} \cdot q_j,
\end{align*}
\]

where \(q_j \) refers to total input of sector \(j \).

The CD production function of Sector 1 can be developed using the related non-zero
inputs and corresponding technical coefficient as the share of the inputs in produc-
tion of the sector.

\[
\begin{align*}
x_1^{a_{11}} \cdot x_2^{a_{12}} \cdot \ldots \cdot x_n^{a_{1n}} \cdot k_1^f \cdot l_1^e = m_1,
\end{align*}
\]

\(k_1 \) and \(l_1 \) denote the size of capital and labour, respectively, in Sector 1. \(f_1 \) and \(e_1 \) denote
the share of capital and labour in total inputs of Sector 1, respectively. \(m_1 \) refers to the level
of products of Sector 1 that is defined by the inputs.

To form a relationship between \(m_1 \) and \(q_1 \), Equation 5 is introduced as follows:

\[
\begin{align*}
p_1 = \frac{q_1}{m_1} \Rightarrow q_1 = m_1 \cdot p_1,
\end{align*}
\]

where \(p_1 \), the undefined proportion of total output of Sector 1, concerns the Solow residual
of this sector.

The logarithm of Equation 5, with respect to Equation 4, allows us to change
the equation into a semi-linear one.

\[
\begin{align*}
\log x_1^{a_{11}} + \log x_2^{a_{12}} + \ldots + \log x_n^{a_{1n}} + f_1 \log k_1 + e_1 \log l_1 + \log p_1 = \log q_1.
\end{align*}
\]

Equation 1 is employed to link production equations of the sectors. Thus, Equation 6 can be
rewritten with respect to Equation 1 as follows:
\[a_{11} (\log b_{11} + \log q_1) + a_{21} (\log b_{21} + \log q_2) + \cdots + a_{n1} (\log b_{n1} + \log q_n) + f_i (\log k_i) + e_i (\log l_i) + \log p_i = \log q_i \] \hspace{1cm} (7)

Now, Equation 7 is developed for all sectors:

\[
\begin{aligned}
\log q_1 - (a_{11} \log q_1 + a_{21} \log q_2 + \cdots + a_{n1} \log q_n) &= a_{11} \log b_{11} + a_{21} \log b_{21} + \cdots + a_{n1} \log b_{n1} + f_1 \log k_1 + e_1 \log l_1 + \log p_i \\
\log q_2 - (a_{12} \log q_1 + a_{22} \log q_2 + \cdots + a_{n2} \log q_n) &= a_{12} \log b_{12} + a_{22} \log b_{22} + \cdots + a_{n2} \log b_{n2} + f_2 \log k_2 + e_2 \log l_2 + \log p_2 \\
\vdots \\
\log q_n - (a_{1n} \log q_1 + a_{2n} \log q_2 + \cdots + a_{nn} \log q_n) &= a_{1n} \log b_{1n} + a_{2n} \log b_{2n} + \cdots + a_{nn} \log b_{nn} + f_n \log k_n + e_n \log l_n + \log p_n
\end{aligned}
\] \hspace{1cm} (8)

The matrix form of the model is employed to summarise the equations.

\[
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & 0 & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
a_{11} & a_{21} & \cdots & a_{n1} \\
a_{12} & a_{22} & \cdots & a_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1n} & a_{2n} & \cdots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
\log q_1 \\
\log q_2 \\
\vdots \\
\log q_n
\end{bmatrix}
=
\begin{bmatrix}
\log b_{11} + \log b_{21} + \cdots + \log b_{n1} + f_1 \log k_1 + e_1 \log l_1 + \log p_i \\
\log b_{12} + \log b_{22} + \cdots + \log b_{n2} + f_2 \log k_2 + e_2 \log l_2 + \log p_2 \\
\vdots \\
\log b_{1n} + \log b_{2n} + \cdots + \log b_{nn} + f_n \log k_n + e_n \log l_n + \log p_n
\end{bmatrix}
\] \hspace{1cm} (9)

And then,

\[
\begin{bmatrix}
\log q_1 \\
\log q_2 \\
\vdots \\
\log q_n
\end{bmatrix}
=
\begin{bmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n1} & c_{n2} & \cdots & c_{nn}
\end{bmatrix}
\begin{bmatrix}
a_{11} \log b_{11} + a_{21} \log b_{21} + \cdots + a_{n1} \log b_{n1} + f_1 \log k_1 + e_1 \log l_1 + \log p_i \\
a_{12} \log b_{12} + a_{22} \log b_{22} + \cdots + a_{n2} \log b_{n2} + f_2 \log k_2 + e_2 \log l_2 + \log p_2 \\
\vdots \\
a_{1n} \log b_{1n} + a_{2n} \log b_{2n} + \cdots + a_{nn} \log b_{nn} + f_n \log k_n + e_n \log l_n + \log p_n
\end{bmatrix}
\] \hspace{1cm} (10)

where \((I - A')^{-1} = [c_{ij}] = C\)

And finally, Equation 10 is rewritten into multiplying form to change into CD function.
3.2 The characteristics of the Model

One characteristics of the proposed model relies on its CD form that is the basis of relative substitutability of primary factors:

Theorem 1: The proposed model relies on relative substitutability of primary factors.

Proof Let the Marginal Rate of Technical Substitution (MRTS) K for L be calculated as follows:

$$
\log q_i = \begin{bmatrix}
\log a_{i1}, a_{i2}, \ldots, a_{it} \cdot k_i^{f_i} \cdot l_i^p \cdot p_i \\
\log a_{i1}^{h_1}, a_{i2}^{h_2}, \ldots, a_{it}^{h_t} \cdot k_i^{f_i} \cdot l_i^p \cdot p_i \\
\vdots \\
\log a_{i1}^{h_n}, a_{i2}^{h_n}, \ldots, a_{it}^{h_t} \cdot k_i^{f_i} \cdot l_i^p \cdot p_i
\end{bmatrix}
\times
\begin{bmatrix}
\log b_{i1}, b_{i2}, \ldots, b_{it} \\
\log b_{i1}^{h_1}, b_{i2}^{h_2}, \ldots, b_{it}^{h_t} \\
\vdots \\
\log b_{i1}^{h_n}, b_{i2}^{h_n}, \ldots, b_{it}^{h_t}
\end{bmatrix}
= \begin{bmatrix}
(\log a_{i1}, a_{i2}, \ldots, a_{it} \cdot k_i^{f_i} \cdot l_i^p \cdot p_i) \\
(\log a_{i1}^{h_1}, a_{i2}^{h_2}, \ldots, a_{it}^{h_t} \cdot k_i^{f_i} \cdot l_i^p \cdot p_i) \\
\vdots \\
(\log a_{i1}^{h_n}, a_{i2}^{h_n}, \ldots, a_{it}^{h_t} \cdot k_i^{f_i} \cdot l_i^p \cdot p_i)
\end{bmatrix}
$$

\begin{equation}
\Rightarrow
\end{equation}

\begin{align}
q_i &= \left[(a_{i1}^{h_1}, a_{i2}^{h_2}, \ldots, a_{it}^{h_t} \cdot k_i^{f_i} \cdot l_i^p \cdot p_i)^{h_1} \right] \\
q_j &= \left[(a_{j1}^{h_1}, a_{j2}^{h_2}, \ldots, a_{jt}^{h_t} \cdot k_j^{f_j} \cdot l_j^p \cdot p_j)^{h_1} \right] \\
q_n &= \left[(a_{n1}^{h_1}, a_{n2}^{h_2}, \ldots, a_{nt}^{h_t} \cdot k_n^{f_n} \cdot l_n^p \cdot p_n)^{h_1} \right]
\end{align}

\begin{equation}
\tag{11}
\end{equation}

Since the ratio of e_j / f_j is constant in the model, the size of MRTS depends on the levels of k_i and l_i. Thus, the MRTS of primary factors of the proposed model is related to the level of these factors. In addition, with respect to the structure of the CD production function, a perfect substitution of primary factors leads to no production in any sector. Hence, it is not possible to replace a factor with another one perfectly.

In contrast to the basic Gosh model in which the aggregate primary and intermediate inputs are perfectly complementary, it can be demonstrated that these are relatively substitutable in the proposed model:

Theorem 2: The aggregated primary inputs of sectors are relatively substitutable with their intermediate inputs.

Proof To investigate the relationship between aggregated primary inputs with total inputs and consequently with intermediate inputs of sectors, an aggregated form of value added of sectors has been replaced with wages and operation surplus. To do so, $k_i^{f_i} \cdot l_i^p$ in Equation 11 is replaced with $v_j^{f_j}$ in Equation 13.
\[
\log q_i = \begin{bmatrix} c_{i1} & c_{i2} & \cdots & c_{in} \\
\end{bmatrix} \begin{bmatrix} \log q_1 \\
\log q_2 \\
\vdots \\
\log q_n \\
\end{bmatrix} = \begin{bmatrix} a_{i1}^{\nu_1} \ldots a_{i1}^{\nu_k} \cdot v_1^{\nu_1} \cdot p_1 \\
a_{i2}^{\nu_1} \ldots a_{i2}^{\nu_k} \cdot v_2^{\nu_1} \cdot p_2 \\
\vdots \\
a_{in}^{\nu_1} \ldots a_{in}^{\nu_k} \cdot v_n^{\nu_1} \cdot p_n \\
\end{bmatrix} \Rightarrow
\]

\[q_1 = \left(a_{i1}^{\nu_1} \ldots a_{i1}^{\nu_k} \cdot v_1^{\nu_1} \cdot p_1 \right)^{\nu_1} \left(a_{i2}^{\nu_1} \ldots a_{i2}^{\nu_k} \cdot v_2^{\nu_1} \cdot p_2 \right)^{\nu_2} \ldots \left(a_{in}^{\nu_1} \ldots a_{in}^{\nu_k} \cdot v_n^{\nu_1} \cdot p_n \right)^{\nu_n}
\]

\[q_2 = \left(a_{i1}^{\nu_1} \ldots a_{i1}^{\nu_k} \cdot v_1^{\nu_1} \cdot p_1 \right)^{\nu_1} \left(a_{i2}^{\nu_1} \ldots a_{i2}^{\nu_k} \cdot v_2^{\nu_1} \cdot p_2 \right)^{\nu_2} \ldots \left(a_{in}^{\nu_1} \ldots a_{in}^{\nu_k} \cdot v_n^{\nu_1} \cdot p_n \right)^{\nu_n}
\]

\[q_n = \left(a_{i1}^{\nu_1} \ldots a_{i1}^{\nu_k} \cdot v_1^{\nu_1} \cdot p_1 \right)^{\nu_1} \left(a_{i2}^{\nu_1} \ldots a_{i2}^{\nu_k} \cdot v_2^{\nu_1} \cdot p_2 \right)^{\nu_2} \ldots \left(a_{in}^{\nu_1} \ldots a_{in}^{\nu_k} \cdot v_n^{\nu_1} \cdot p_n \right)^{\nu_n}
\]

\[v_j\text{ refers to the value added of sector } j, \text{ and } g_j\text{ refers to the share of value added in total inputs of sector } j.
\]

The derivation of production function of sector \(i\) is calculated with respect to the aggregate primary factor of sector \(j\). As it is shown in Equation 14, the effect of a unit change in the primary factor of sector \(j\) on total output of sector \(i\) is dependent on the level of the aggregated primary factor of this sector. Thus, since the production functions of sectors are non-linear with respect to primary factors, the marginal impact of these factors on total products of sectors is related to the level of these inputs.

\[
\frac{dq_i}{dv_j} = g_j \cdot c_j \cdot v_j^{c_j-1} \left(a_{i1}^{\nu_1} \ldots a_{i1}^{\nu_k} \cdot v_1^{\nu_1} \cdot p_1 \right)^{c_1} \left(a_{i2}^{\nu_1} \ldots a_{i2}^{\nu_k} \cdot v_2^{\nu_1} \cdot p_2 \right)^{c_2} \ldots \left(a_{in}^{\nu_1} \ldots a_{in}^{\nu_k} \cdot v_n^{\nu_1} \cdot p_n \right)^{c_n}
\]

And finally, on the plausibility of the proposed model:

Theorem 3 The proposed model is plausible.

Proof Since all inputs including primary factors of production sectors can relatively be substituted by others, a unit change in primary factors of a sector can influence total products of all sectors through intermediate inputs. Hence, the model is plausible to be employed for value added and supply shock computation affairs that were negotiated in previous studies.

In addition, the proposed model allows the researchers to measure the total productivity of sectors, \(p_j\), through the Solow residual.

4. Results and Discussion

The empirical results of implementing the proposed and Ghosh models are examined in this section. To this end, Table 1 is employed as an example database to compare the models.

Using Table 1, Equation 15 is calculated from Equation 11. As it is shown, the products of sectors have a CD production function. The total products of sectors are dependent on the level of capital, labour and TFP of all sectors.
Table 1 | An Example I-O Table as Database

Sector	Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Final Demand	Imports	Total Output
Sector 1	240	400	0	800	500	2,000	540	3,400
Sector 2	0	400	600	400	600	1,800	300	3,500
Sector 3	800	900	700	0	800	2,200	1,000	4,400
Sector 4	400	700	900	800	100	2,000	500	4,400
Sector 5	400	600	700	800	600	2,800	900	5,000
Labour	560	200	500	600	1,200			
Capital	1,000	300	1,000	1,000	1,200			
Total Input	3,400	3,500	4,400	4,400	5,000			5,000

\[
q_1 = \begin{bmatrix}
0.058 \cdot k_{1}^{0.35} \cdot k_{2}^{0.01} \cdot k_{3}^{0.10} \cdot k_{4}^{0.07} \cdot l_{1}^{0.20} \cdot l_{2}^{0.01} \cdot l_{3}^{0.05} \cdot l_{4}^{0.04} \cdot l_{5}^{0.08} \cdot p_{1}^{1.2} \cdot p_{2}^{1.1} \cdot p_{3}^{0.4} \cdot p_{4}^{0.3} \cdot p_{5}^{0.3}
\end{bmatrix}
\]

Equation 15 displays all primary factors and TFP elasticity of total products of sectors. As it is shown, due to relative substitutability among all primary inputs, the effect of a one percent change in primary factors of a sector affects the products of all sectors. In addition, the effect of change in the TFP of a sector can be traced on total outputs of all sectors. For instance, one percent increment in the level of TFP of Sector 1 leads to 0.2 percent increment in total output of Sector 3.

Table 2 | The MTRS of \(k_{3} \) for Different Levels of \(l_{3} \)

\(l_{3} \)	800	600	400	200	0
Proposed model	0.2	1.0	1.91	5.8	∞
Ghosh model	1	1	1	1	1

Source: own calculation

Using Equation 12, Table 2 displays the MTRS of \(k_{3} \) for different levels of \(l_{3} \) in Sector 3. It measures the size of \(k_{3} \) which will be released for a unit increment in the size of \(l_{3} \) to protect the level of total outputs of Sector 3. As it is shown, the MTRS of \(k_{3} \) for \(l_{3} \) in the proposed model is dependent on the size of \(l_{3} \), whereas using the Ghosh model, it is equal to 1 for all levels of \(l_{3} \). In addition, in contrast to the Ghosh model, where it is possible to replace a primary factor instead of the other one perfectly, both primary factors are required in the production process of the proposed model.
Table 3 | The Changes in the Levels of Products of Sectors Due to One Unit Change in the Size of Aggregated Primary Factors in Sector 1 Using the Ghosh and Proposed Models

v_1	q_1^{c}	q_2^{c}	q_3^{c}	q_4^{c}	q_5^{c}	q_1^{p}	q_2^{p}	q_3^{p}	q_4^{p}	q_5^{p}
1,560	3,400	3,500	4,400	4,400	5,000	3,400	3,500	4,400	4,400	5,000
1,561	3,401.19	3,500.34	4,400.23	4,400.45	5,000.33	3,401.19	3,500.34	4,400.23	4,400.45	5,000.33

| Δq_j | 1.19 | 0.34 | 0.23 | 0.45 | 0.33 | 1.19 | 0.34 | 0.23 | 0.45 | 0.33 |

v_2	q_1^{c}	q_2^{c}	q_3^{c}	q_4^{c}	q_5^{c}	q_1^{p}	q_2^{p}	q_3^{p}	q_4^{p}	q_5^{p}
2,560	4,594.1	3,838.3	4,633.6	4,854.3	5,325.5	4,460.02	3,771.38	4,584.29	4,765.42	5,257.91
2,561	4,595.3	3,838.6	4,633.9	4,854.8	5,325.8	4,460.98	3,771.60	4,584.44	4,765.72	5,258.12

| Δq_j | 1.19 | 0.34 | 0.23 | 0.45 | 0.33 | 0.95 | 0.22 | 0.15 | 0.30 | 0.21 |

v_3	q_1^{c}	q_2^{c}	q_3^{c}	q_4^{c}	q_5^{c}	q_1^{p}	q_2^{p}	q_3^{p}	q_4^{p}	q_5^{p}
3,560	5,788.21	4,176.52	4,867.29	5,308.59	5,650.90	5,343.18	3,963.62	4,711.25	5,025.37	5,436.94
3,561	5,789.41	4,176.86	4,867.53	5,309.05	5,651.23	5,344.00	3,963.79	4,711.35	5,025.59	5,437.10

| Δq_j | 1.19 | 0.34 | 0.23 | 0.45 | 0.33 | 0.82 | 0.17 | 0.11 | 0.23 | 0.16 |

* q_j^c to q_j^c refer to the level of products of Sectors 1 to 5 using the Ghosh model, q_j^p to q_j^p refer to the level of products of Sectors 1 to 5 using the proposed model, respectively.

Source: own calculations

The changes in the levels of aggregate primary factors of a sector on total products of all sectors are investigated through Equation. 14. Table 3 displays the changes in the level of products of sectors as a result of a unit of increment in the size of v_1 in different levels of this factor. As it is shown, using Equation 2, increment in the level of v_1, has a constant effect on the level of products of sectors irrespective of the value of v_1 in the Ghosh model, whereas it has decreasing effects in the proposed model. For instance, through the Ghosh model, one unit increment in the size of v_1 leads to a 1.19 unit increment in the level of the products of Sector 1, irrespective of the value of v_1. Whereas, using the proposed model, the effects of one unit increment in the size of v_1 on the level of products of Sector 1, vary with respect to the value of v_1 from 1.19 to 0.82 units.

5. Conclusion

In this study, in order to improve the capability of the I-O model, a CD nonlinear supply-driven I-O model has been proposed. It has been demonstrated that it is possible to employ an I-O table for a nonlinear model. The model has a number of characteristics, which are generally more appropriate for production functions.

The proposed model replaces the less realistic characteristics of the Ghosh model with more appropriate ones. For instance, the perfect complementary characteristics between total intermediate inputs with total primary inputs, are replaced by relative substitutability of all production factor characteristics. In addition, the perfect substitutability characteristics of primary factors has changed to a relatively substitutable characteristics of these factors in the proposed model. These characteristics allow the proposed model to overcome the implausible problem of the Ghosh supply-driven I-O model.
The parameters of the proposed model can be employed to specify the conditions of the economy. Using the Solow residual of equations, it is possible to specify the effect of change in the TFP of a sector on total outputs of all sectors. It is also possible to study the effect of change in primary inputs on total products of sectors.

References

Augustinovics, M. (1970). Methods of International and Intertemporal Comparison of Structure. in: Carter AP and Brody A (eds.) Contribution to Input-Output Analysis: 249–269. North Holland Publishing Company.

Bon, R. (1988). Supply-Side Multiregional Input-Output Models. Journal of Regional Science, 28(1), 41–50, https://doi.org/10.1111/j.1467-9787.1988.tb01194.x

Cai, J., Leung, P. (2004). Linkage Measures: A Revisit and a Suggested Alternative. Economic Systems Research, 16(1), 65–85, https://doi.org/10.1080/0953531032000164800

De Mesnard, L. (2009). Is the Ghosh Model Interesting? Journal of Regional Science, 49(2), 361–372, https://doi.org/10.1111/j.1467-9787.2008.00593.x

Dietzenbacher, E. (1989). On the Relationship between the Supply-Driven and the Demand Driven Input-Output Model. Environment and Planning A, 21(11), 1533–1539, https://doi.org/10.1068/a211533

Dietzenbacher, E. (1997). In Vindication of the Ghosh Model: A Reinterpretation As a Price Model. Journal of Regional Science, 37(4), 629–651, https://doi.org/10.1111/0022-4146.00073

Gallego, B., Lenzen, M. (2005). A Consistent Input-Output Formulation of Shared Producer and Consumer Responsibility. Economic Systems Research, 17(4), 365–391, https://doi.org/10.1080/09535310500283492

Ghosh, A. (1958). Input-Output Approach in an Allocation System. Economica, 25(1), 58–64, https://doi.org/10.2307/2550694

Gruver, G. W. (1989). On the Implausibility of the Supply-Driven Input-Output Model: A Theoretical Basis for Input-Output Coefficient Change. Journal of Regional Science, 29(3), 441–450, https://doi.org/10.1111/j.1467-9787.1989.tb01389.x

Guerra, A. I., Sancho, F. (2011). Revisiting the Original Ghosh Model: Can It Be Made More Plausible? Economic Systems Research, 23(3), 319–328, https://doi.org/10.1080/09535314.2011.566261

Lenzen, M., Benrimoj, C., Kotic, B. (2010). Input-Output Analysis for Business Planning: A Case Study of the University of Sydney. Economic Systems Research, 22(2), 155–179, https://doi.org/10.1080/09535314.2010.484012

Oosterhaven, J. (1988). On the Plausibility of the Supply-Driven Input-Output Model. Journal of Regional Science, 28(2), 203–217 https://doi.org/10.1111/j.1467-9787.1988.tb01208.x

Oosterhaven, J. (1989). The Supply-Driven Input-Output Model: A New Interpretation But Still Implausible. Journal of Regional Science, 29(3), 459–465, https://doi.org/10.1111/j.1467-9787.1989.tb01391.x

Oosterhaven, J. (2012). Adding Supply-Driven Consumption Makes the Ghosh Model Even More Implausible. Economic System Research, 24(1), 101–111, https://doi.org/10.1080/09535314.2011.635137

Zhao, N., Huanwen, T., Xiaona, L. (2006). Research on Non-Linear Input–Output Model Based on Production Function Theory and a New Method to Update IO Coefficients Matrix. Applied Mathematics and Computation, 181(1), 478–486, https://doi.org/10.1016/j.amc.2006.01.045