PARTITIONS AND COMPOSITIONS OVER FINITE FIELDS

AMELA MURATOVIĆ-RIBIĆ AND QIANG WANG

Abstract. In this paper we find exact formulas for the numbers of partitions and compositions of an element into m parts over a finite field, i.e. we find the number of nonzero solutions of the equation $x_1 + x_2 + \cdots + x_m = z$ over a finite field when the order does not matter and when it does, respectively. We also give an application of our results in the study of polynomials of prescribed ranges over finite fields.

1. Introduction

Let n and m be positive integers. A composition of n is an ordered list of positive integers whose sum is n. A m-composition of n is an ordered list of m positive integers (m parts) whose sum is n. It is well known that there is a bijection between all m-compositions of n and $(m-1)$-subsets of $[n-1] = \{1, 2, \ldots, n-1\}$ and thus there are $\binom{n-1}{m-1}$ m-compositions of n and 2^{n-1} compositions of n. Similarly, a weak composition of n is an ordered list of non-negative integers whose sum is n and a weak m-composition of n is an ordered list of m non-negative parts whose sum is n. Using substitution of variables, we can easily obtain that the number of weak m-compositions of n (i.e., the number of non-negative integer solutions to $x_1 + x_2 + \cdots + x_m = n$) is equal to the number of m-compositions of $n + m$ (i.e., the number of positive integer solutions to $x_1 + x_2 + \cdots + x_m = n + m$), which is $\binom{n+m-1}{m-1} = \binom{n+m-1}{n}$. The combinatorial interpretation of $\binom{n+m-1}{m-1} = \binom{n+m-1}{n}$ is the number of ways in selecting m-multisets from a set M with m elements, which is sometimes called n-combinations of M with repetitions. Disregarding the order of the summands, we have the concepts of partitions of n into m parts, partitions of n into at most m parts, and so on. For more details we refer the reader to [5].

Let \mathbb{F}_q be a finite fields of $q = p^r$ elements. The subset problem over a subset $D \subseteq \mathbb{F}_q$ is to determine for a given $z \in \mathbb{F}_q$, if there is a nonempty subset $\{x_1, x_2, \ldots, x_m\} \subseteq D$ such that $x_1 + x_2 + \cdots + x_m = z$. This subset sum problem is known to be NP-complete. In the study of the subset sum problem over finite fields, Li and Wan [3] estimated the number, $N(m, b, D) = \#\{\{x_1, x_2, \ldots, x_m\} \subseteq D \mid x_1 + x_2 + \cdots + x_m = z\}$, of m-subsets of $D \subseteq \mathbb{F}_q$ whose sum is $z \in \mathbb{F}_q$. In particular, exact formulas are obtained in cases that $D = \mathbb{F}_q$ or $\mathbb{F}_q^* \cup \{0, 1\}$. Similarly, we are interested in the number $S(m, z, D) = \#\{(x_1, x_2, \ldots, x_m) \in D \times D \times \cdots \times D \mid x_1 + x_2 + \cdots + x_m = z\}$, that is, the number of ordered m-tuples whose sum is z and each coordinate belongs to $D \subseteq \mathbb{F}_q$, as well as the number $M(m, z, D)$ which counts the number of m-multisets of $D \subseteq \mathbb{F}_q$ whose sum is $z \in \mathbb{F}_q$. In particular, when $D = \mathbb{F}_q$ or \mathbb{F}_q^*, this motivated us to introduce the following.

2000 Mathematics Subject Classification. 11B30, 05A15, 11T06.

Key words and phrases. composition, partition, subset sum, polynomials, finite fields.

Research is partially supported by NSERC of Canada.
Definition 1. A partition of $z \in \mathbb{F}_q$ into m parts is a multiset of m nonzero elements in \mathbb{F}_q^* whose sum is z. The m nonzero elements are the parts of the partition. We denote by $M(m, z, \mathbb{F}_q^*)$ or $\tilde{P}_m(z)$ the number of partitions of z into m parts over \mathbb{F}_q. Similarly, we denote by $M(m, z, \mathbb{F}_q)$ or $\hat{P}_m(z)$ the number of partitions of z into at most m parts over \mathbb{F}_q and by $\hat{P}(z)$ the total number of partitions of z over finite field \mathbb{F}_q.

We remark that $N(m, z, \mathbb{F}_q^*)$ is the number of partitions of an element z over finite field \mathbb{F}_q such that all summands are distinct, and $M(m, z, \mathbb{F}_q^*)$ is the number of partitions of an element z into m parts over finite field \mathbb{F}_q, dropping the restriction that all summands are distinct.

We also remark that in the study of polynomials of prescribed ranges over finite fields [4] there has arisen a need as well for counting the number $M(m, 0, \mathbb{F}_q)$ of partitions of 0 with at most m parts over finite field \mathbb{F}_q, which in turn leads us to answer a recent conjecture by Gács et al on polynomials of prescribed ranges over finite fields [4].

In this article we first obtain an exact formula for the number of partitions of an element $z \in \mathbb{F}_q$ into m parts over \mathbb{F}_q.

Theorem 1. Let m be a non-negative integer, \mathbb{F}_q be a finite field of $q = p^r$ elements with prime p, and $z \in \mathbb{F}_q$. The number of partitions of z into m parts over \mathbb{F}_q is given by

$$\hat{P}_m(z) = \frac{1}{q} \left(\frac{q + m - 2}{m} \right) + D_m(z),$$

where

$$D_m(z) = \begin{cases} 0, & \text{if } m \not\equiv 0 \pmod{p} \text{ and } m \not\equiv 1 \pmod{p}; \\ -\frac{1}{q} \left(\frac{q}{p-1} \right), & \text{if } m = jp, j \geq 0, \text{ and } z = 0; \\ -\frac{1}{q} \left(\frac{q}{p-1} \right), & \text{if } m = jp + 1, j \geq 0, \text{ and } z = 0; \\ \frac{1}{q} \left(\frac{q}{p-1} \right), & \text{if } m = jp, j \geq 0, \text{ and } z \in \mathbb{F}_q^*; \\ \frac{1}{q} \left(\frac{q}{p-1} \right), & \text{if } m = jp + 1, j \geq 0, \text{ and } z \in \mathbb{F}_q^*. \\ \end{cases}$$

Similarly, we have the following definition of compositions over finite fields.

Definition 2. A composition of $z \in \mathbb{F}_q$ with m parts is a solution (x_1, x_2, \ldots, x_m) to the equation

$$z = x_1 + x_2 + \cdots + x_m,$$

with each $x_i \in \mathbb{F}_q^*$. Similarly, a weak composition of $z \in \mathbb{F}_q$ with m parts is a solution (x_1, x_2, \ldots, x_m) to Equation (1) with each $x_i \in \mathbb{F}_q$. We denote the number of compositions of z having m parts by $S(m, z, \mathbb{F}_q^*)$ or $S_m(z)$. The number of weak compositions of z with m parts is denoted by $S(m, z, \mathbb{F}_q)$. The total number of compositions of z over \mathbb{F}_q is denoted by $S(z)$.

The number of solutions to Equation (1) (or in more general way as diagonal equations) have been extensively studied. However, it is less studied the number of solutions (compositions) such that none of variables are zero. A formula for the number of compositions over \mathbb{F}_p is given in [4]. However, we are not aware of a general formula for arbitrary q so we also include such a formula here for the sake of completeness.
Theorem 2. Let \(m > 2 \), \(\mathbb{F}_q \) be a finite field of \(q = p^r \) elements with prime \(p \), and \(z \in \mathbb{F}_q \). The number of compositions of \(z \) with \(m \) parts over \(\mathbb{F}_q \) is given by
\[
S_m(z) = (q - 1)^{m-2}(q - 2) + S_{m-2}(z).
\]
It follows that
\[
S_m(0) = (q - 1)^m + (-1)^m(q - 1)\frac{q}{q}
\]
and
\[
S_m(z) = (q - 1)^m - (-1)^m\frac{q}{q}, \text{ if } z \neq 0.
\]

Using the fact that additive group \((\mathbb{F}_q, +)\) is isomorphic to the additive group \((\mathbb{Z}_p, +)\), we obtain that the numbers of partitions and compositions of elements over \(\mathbb{Z}_p \) are the same as the numbers of partitions and compositions of corresponding elements over \(\mathbb{F}_q \).

Finally, we demonstrate an application of Theorem 1 in the study of polynomials of prescribed range. First let us recall that the range of the polynomial \(f(x) \in \mathbb{F}_q[x] \) is a multiset \(M \) of size \(q \) such that \(M = \{f(x) : x \in \mathbb{F}_q\} \) as a multiset (that is, not only values, but also multiplicities need to be the same). Here and also in the following sections we abuse the set notation for multisets as well. A nice reveal of connections among a combinatorial number theoretical result, polynomials of prescribed ranges and hyperplanes in vector spaces over finite fields can be found in [2], which we refer it to the readers for more details. In this paper, we obtain the following result as an application of Theorem 1.

Theorem 3. Let \(\mathbb{F}_q \) be a finite field of \(q = p^r \) elements. For every \(\ell \) with \(\frac{q}{2} \leq \ell \leq q - 3 \) there exists a multiset \(M \) with \(\sum_{b \in M} b = 0 \) and the highest multiplicity \(\ell \) achieved at \(0 \in M \) such that every polynomial over the finite field \(\mathbb{F}_q \) with the prescribed range \(M \) has degree greater than \(\ell \).

We note that Theorem 3 generalizes Theorem 1 in [4] which disproves Conjecture 5.1 in [2]. In the following sections, we give the proofs of Theorems 1-3 respectively.

2. Proof of Theorem 1

In this section we prove Theorem 1. First of all we prove a few technical lemmas.

Lemma 1. Let \(a \in \mathbb{F}_q^* \) and \(m \) be a positive integer. Then \(\tilde{P}_m(a) = \tilde{P}_m(1) \).

Proof. Let \(x_1 + x_2 + \cdots + x_m = 1 \). The following mapping between two multisets defined by
\[
\{x_1, x_2, \ldots, x_m\} \mapsto \{ax_1, ax_2, \ldots, ax_m\}
\]
for some \(a \in \mathbb{F}_q^* \) is one-to-one and onto, which results in \(ax_1 + ax_2 + \cdots + ax_m = a \). Thus \(\tilde{P}_m(a) = \tilde{P}_m(1) \). \(\square \)

It is obvious to see that \(\tilde{P}_1(z) = 1 \) if \(z \in \mathbb{F}_q^* \) and \(\tilde{P}_1(0) = 0 \). However, we can show that \(\tilde{P}_m(0) = \tilde{P}_m(z) \) if \(m \neq 0 \) (mod \(p \)) and \(m \neq 1 \) (mod \(p \)) as follows.

Lemma 2. Let \(m \) be any positive integer satisfying \(m \neq 0 \) (mod \(p \)) and \(m \neq 1 \) (mod \(p \)). Then \(\tilde{P}_m(0) = \tilde{P}_m(1) \).
Proof. Let \(x_1 + x_2 + \cdots + x_m = 0 \) be a partition of 0 into \(m \) parts. Then \((x_1 + \, \cdots + (x_m + 1) = m \) is a partition of \(m \in \mathbb{F}_q^* \) with at most \(m \) parts (if \(x_j = p - 1 \) then \(x_j + 1 = 0 \)), but since \(x_j \neq 0 \) there is no \(x_j + 1 = 1 \). Moreover, there is a bijective correspondence of multisets \{ \(x_1, \ldots, x_m \) \} \(\to \{ x_1 + 1, \ldots, x_m + 1 \} \).

Therefore, in order to find the number \(\hat{P}_m(0) \) of partitions of 0 into \(m \) parts over \(\mathbb{F}_q \), we need to find the number of partitions of \(m \) with at most \(m \) parts but no element is equal to 1. This means these partitions of \(m \) can have parts equal to the zero.

Let \(x_1 + x_2 + \cdots + x_m = m \). We assume that the parts equal to 1 (if any) appear in the beginning of the list: \(x_1, x_2, \ldots, x_m \). If \(x_1 = 1 \) then \(x_1 + x_2 + \cdots + x_m = m \) implies \(x_2 + \cdots + x_m = m - 1 \). Conversely, each partition of \(m \) into \(m - 1 \) parts can generate a partition of \(m \) into \(m \) parts with the first part equal to 1. So the number of partitions of \(m \) into \(m \) parts with at least one part equal to 1 is equal to the number of partitions of \(m - 1 \) into \(m - 1 \) parts. Let \(U_0 \) be the family of partitions of \(m \) into \(m \) parts without zero elements and no part is equal to 1. Therefore \(|U_0| = \hat{P}_m(m) - \hat{P}_{m-1}(m-1) \).

Let \(U_1 \) be the family of partitions of \(m \) with \(m \) parts with exactly one element equal to 0 and no element equal to 1. Let \(x_1 + x_2 + \cdots + x_m = m \) be a partition in \(U_1 \) and \(x_i = 0 \) and \(x_j \neq 0, 1 \) for \(j = 2, \ldots, m \). Obviously, it is equivalent to a partition \(x_2 + \cdots + x_m = m \) of \(m - 1 \) parts with all parts not equal to 1. Similarly as in the case for \(U_0 \) we have \(|U_1| = \hat{P}_{m-1}(m) - \hat{P}_{m-2}(m-1) \).

More generally, let \(U_i \) be the family of partitions with \(m \) parts with \(i \) parts equal to the zero, say \(x_1 = x_2 = \cdots = x_i = 0 \), and \(x_j \neq 0, 1 \) for \(j = i + 1, \ldots, m \). Then we have a partition of \(m \) into \(m - i \) parts, \(x_{i+1} + \cdots + x_m = m \), such that no part is equal to 1. Similarly, we have \(|U_i| = \hat{P}_{m-i}(m) - \hat{P}_{m-i-1}(m-1) \). In particular, for \(i = m - 1 \) there is only one solution of the equation \(x_m = m \) and thus \(|U_{m-1}| = \hat{P}_1(m) = 1 \).

We note that these families of \(U_i \)'s are pairwise disjoint and their union is the family of partitions of \(m \) into \(m \) parts with no part equal to 1. Therefore we have \(\hat{P}_m(0) = |U_0| + |U_1| + \cdots + |U_{m-1}| = (\hat{P}_m(m) - \hat{P}_{m-1}(m-1)) + (\hat{P}_{m-1}(m) - \hat{P}_{m-2}(m-1)) + \cdots + (\hat{P}_2(m) - \hat{P}_1(m-1)) + \hat{P}_1(m) \).

If \(m \neq 0 \) (mod \(p \)) and \(m \neq 1 \) (mod \(p \)), then \(m - 1 \) and \(m \) are both nonzero elements in \(\mathbb{F}_q \). By Lemma\(^1\) we can cancel \(\hat{P}_i(m-1) = \hat{P}_i(m) \) for \(i = 1, \ldots, m-1 \). Hence \(\hat{P}_m(0) = \hat{P}_m(m) = \hat{P}_m(1) \).

Using the above two lemmas, we obtain the exact counts of \(\hat{P}_m(z) \) when \(m \neq 0 \) (mod \(p \)) and \(m \neq 1 \) (mod \(p \)).

Lemma 3. If \(z \in \mathbb{F}_q \) and \(m \) is any positive integer satisfying \(m \neq 0 \) (mod \(p \)) and \(m \neq 1 \) (mod \(p \)) then we have

\[
\hat{P}_{m}(z) = \frac{1}{q \binom{q + m - 2}{m}}.
\]

Proof. We note that there are \((q-1)+m-1\) multisets of \(m \) nonzero elements from \(\mathbb{F}_q \) in total and the sum of elements in each multiset can be any element in \(\mathbb{F}_q \). Using Lemmas\(^1\) and\(^2\) we have

\[
\sum_{s \in \mathbb{F}_q} \hat{P}_{m}(s) = q \hat{P}_{m}(1) = \binom{(q - 1) + m - 1}{m}.
\]
and therefore
\[\bar{P}_m(z) = \bar{P}_m(1) = \frac{1}{q} \left(q + m - 2 \right) \]
for every \(z \in \mathbb{F}_q \).

In order to consider other cases, we use an interesting result by Li and Wan [3], which gives the number \(N(k, b, \mathbb{F}_q^*) \) of sets with (all distinct) \(k \) nonzero elements that sums to \(b \in \mathbb{F}_q \). Namely,

\[N(k, b, \mathbb{F}_q^*) = \frac{1}{q} \left(q - 1 \right) \left(\binom{k}{1} \bar{P}_{m-1}(1) + N(1, 0, \mathbb{F}_q^*) \bar{P}_{m-1}(0) \right) \]

where \(k \) is even, \(k > m \), and \(k \) is odd, \(k < m \).

First we can prove

\[\text{Lemma 4.} \]

\[\text{Let } N(k, b, \mathbb{F}_q^*) \text{ be the number of sets with } k \text{ nonzero elements that sums to } b \in \mathbb{F}_q \text{ and } m > 1 \text{ be a positive integer. Then} \]

\[\bar{P}_m(0) = \left((q - 1)N(1, 1, \mathbb{F}_q^*) \bar{P}_{m-1}(1) + N(1, 0, \mathbb{F}_q^*) \bar{P}_{m-1}(0) \right) \]

\[- \left((q - 1)N(2, 1, \mathbb{F}_q^*) \bar{P}_{m-2}(1) + N(2, 0, \mathbb{F}_q^*) \bar{P}_{m-2}(0) \right) \]

\[+ \ldots \]

\[+ \left(-1 \right)^{m-1} \left((q - 1)N(m - 2, 1, \mathbb{F}_q^*) \bar{P}_2(1) + N(m - 2, 0, \mathbb{F}_q^*) \bar{P}_2(0) \right) \]

\[+ \left(-1 \right)^{m} \left(q - 1 \right)N(m - 1, 1, \mathbb{F}_q^*) + \left(-1 \right)^{m+1} N(m, 0, \mathbb{F}_q^*) \].

\[\text{Proof.} \]

Denote by \(\mathcal{U} \) the family of all multisets of \(m \) nonzero elements that sums to the zero, i.e. \(\bar{P}_m(0) = |\mathcal{U}| \). Let \(\mathcal{B}_a \) be the family of all multisets of \(m \) nonzero elements such that \(a \) is a member of each multiset and the sum of elements of each multiset equal to \(0 \). Namely, \(\mathcal{B}_a \subseteq \mathcal{B} \) implies \(\sum_{s \in \mathcal{B}_a} s = 0 \) and \(a \in \mathcal{B}_a \). Obviously, \(\mathcal{U} = \bigcup_{a \in \mathbb{F}_q^*} \mathcal{B}_a \).

Now we will use the principle of inclusion-exclusion to find the cardinality of \(\mathcal{U} \). For distinct \(a_1, \ldots, a_k \in \mathbb{F}_q^* \) and \(k > m \), it is easy to see that

\[\mathcal{B}_{a_1} \cap \mathcal{B}_{a_2} \cap \ldots \cap \mathcal{B}_{a_k} = \emptyset, \]

because each multiset \(\mathcal{B}_{a_i} \) contains only \(m \) nonzero elements. Moreover, if \(k = m \) then the number of multisets in the union of intersections is \(N(m, 0, \mathbb{F}_q^*) \).

If \(B \in \mathcal{B}_{a_1} \cap \mathcal{B}_{a_2} \cap \ldots \cap \mathcal{B}_{a_k} \) and \(k \leq m - 1 \) then

\[B = \{ a_1, a_2, \ldots, a_k, x_{k+1}, \ldots, x_m \}. \]

Because \(x_{k+1} + \cdots + x_m = -(a_1 + \cdots + a_k) \), the number of elements in the intersection \(\mathcal{B}_{a_1} \cap \mathcal{B}_{a_2} \cap \ldots \cap \mathcal{B}_{a_k} \) is the same as the number of partitions of \(-(a_1 + \cdots + a_k) \) into \(m - k \) parts, i.e.

\[|\mathcal{B}_{a_1} \cap \mathcal{B}_{a_2} \cap \ldots \cap \mathcal{B}_{a_k}| = \bar{P}_{m-k}(a_1 - \cdots - a_k). \]

We note that none of \(a_i \)'s \((i = 1, \ldots, k) \) is equal to zero and \(N(k, b, \mathbb{F}_q^*) = N(k, 1, \mathbb{F}_q^*) \) for any \(b \in \mathbb{F}_q^* \). In particular, if \(k < m - 1 \), then the sum \(a_1 + \cdots + a_{m-1} \) can be any element in \(\mathbb{F}_q \) and thus there are \((q - 1)N(k, 1, \mathbb{F}_q^*) \bar{P}_{m-k}(1) + N(k, 0, \mathbb{F}_q^*) \bar{P}_{m-k}(0) \) such multisets \(B \in \mathcal{B}_{a_1} \cap \mathcal{B}_{a_2} \cap \ldots \cap \mathcal{B}_{a_k} \) for all choices of nonzero distinct \(a_1, \ldots, a_k \).

If \(k = m - 1 \) then the sum \(a_1 + \cdots + a_{m-1} \) can not be equal to the zero, there are in total \((q - 1)N(m - 1, 1, \mathbb{F}_q^*) \) such multisets contained in the intersection of \(m - 1 \) families of \(\mathcal{B}_{a_i} \)'s.
Finally we combine the above cases and use the principle of inclusion-exclusion to complete the proof.

In the sequel we also need the following result.

Lemma 5. For all positive integers s, we have

$$
\sum_{j=1}^{s} (-1)^{j+1} \binom{q-1}{j} \left(\frac{q-2+s-j}{s-j} \right) = \left(\frac{q-2+s}{s} \right)
$$

Proof. Multiplying $(1 + x)^{q-1} = \sum_{k=0}^{\infty} \binom{q-1}{k} x^k$ and series

$$
\frac{1}{(1 + x)^{q-1}} = \sum_{k=0}^{\infty} \binom{q-2+k}{k} (-1)^k x^k,
$$

We obtain

$$
1 = (1 + x)^{q-1},
$$

$$
\frac{1}{(1 + x)^{q-1}} = \left(\sum_{k=0}^{\infty} \binom{q-1}{k} x^k \right) \left(\sum_{k=0}^{\infty} \binom{q-2+k}{k} (-1)^k x^k \right) = \sum_{s=0}^{\infty} \sum_{j=0}^{s} (-1)^{s-j} \binom{q-1}{j} \left(\frac{q-2+s-j}{s-j} \right) x^s.
$$

Therefore for $s \geq 1$ we have $\sum_{j=0}^{s} (-1)^{s-j} \binom{q-1}{j} \left(\frac{q-2+s-j}{s-j} \right) = 0$. This implies

$$
\sum_{j=1}^{s} (-1)^{s-j+1} \binom{q-1}{j} \left(\frac{q-2+s-j}{s-j} \right) = (-1)^s \left(\frac{q-2+s}{s} \right).
$$

Finally multiplying both sides of the last equality by $(-1)^s$ we complete the proof.

Next we prove Theorem 1. In order to do so, we let

$$
\tilde{P}_m(z) = \frac{1}{q} \binom{q-2+m}{m} + D_m(z).
$$

We assume $q > 2$. Obviously, by Lemma 3, we have $D_m(z) = 0$ for any $z \in \mathbb{F}_q$ if $m \not\equiv 0 \pmod{p}$ and $m \not\equiv 1 \pmod{p}$. Further $D_m(z) = D_m(1)$ by Lemma 1 for all $z \not\equiv 0$. Because $\tilde{P}_m(0) + (q-1)\tilde{P}_m(1) = \binom{q-2+m}{m}$, we have

$$
D_m(0) + (q-1)D_m(1) = 0, \quad D_m(1) = -\frac{1}{q-1} D_m(0).
$$

Next we use convention that $\tilde{P}_0(0) = 1$ and $\tilde{P}_0(1) = 0$ so that $D_0(0) = \frac{q-1}{q}$ and $D_0(1) = -\frac{1}{q}$. Similarly, $\tilde{P}_1(0) = 0$ and $\tilde{P}_1(1) = 1$ and thus $D_1(0) = -\frac{q-1}{q}$ and $D_1(1) = \frac{1}{q}$. For the rest of this section, we only need to compute $D_m(0)$ when $m = jp$ or $m = jp + 1$ for some positive integer j because of Equation (4). To do this, we apply Lemmas 4 and 5 along with Equations (2) (3), and the following equation

$$
(q-1)N(m, 1, \mathbb{F}_q^*) + N(m, 0, \mathbb{F}_q^*) = \binom{q-1}{m}.
$$
Let us consider \(m = u p \) first. In this case, by Lemma 5 and Equation (3), we have:

\[
\hat{P}_m(0) = \sum_{s=1}^{m-2} (-1)^{s+1} \binom{q-1}{s} \binom{q-2+m-s}{m-s} ((q-1)N(s,1,F_q^*) + N(s,0,F_q^*)) + (q-1)N(s,1,F_q^*)D_{m-s}(1) + N(s,0,F_q^*)D_{m-s}(0) \\
+ (-1)^{m+1}(q-1)N(m-1,1,F_q^*) + (-1)^{m+1}N(m,0,F_q^*).
\]

Using Equations (5) and (2), we obtain

\[
\hat{P}_m(0) = \frac{1}{q} \sum_{s=1}^{m-2} (-1)^{s+1} \binom{q-1}{s} \binom{q-2+m-s}{m-s} \\
+ \sum_{s=1}^{m-2} (-1)^{s+1} \frac{1}{q} \binom{q-1}{s} ((q-1)D_{m-s}(1) + D_{m-s}(0)) \\
+ \sum_{s=1}^{m-2} (-1)^{s+1}(q-1)(-1)^{s+[s/p]} \frac{1}{q} \binom{q/p-1}{[s/p]} (-D_{m-s}(1) + D_{m-s}(0)) \\
+ (-1)^m(q-1)\frac{1}{m-1} + (-1)^{m+1} \frac{1}{q} \binom{q-1}{m} \\
+ (-1)^m(q-1)\frac{1}{(m-1)/p} - \frac{1}{q} \binom{q/p-1}{[(m-1)/p]} \\
+ (-1)^{m+1}(-1)^{m+[m/p]} \frac{q-1}{q} \binom{q/p-1}{[m/p]}
\]

After rearranging terms, we use Lemma 5, Lemma 3, Equations (3) and (4) to simplify the above as follows:

\[
= \frac{1}{q} \sum_{s=1}^{m} (-1)^{s+1} \binom{q-1}{s} \binom{q-2+m-s}{m-s} \\
+ \sum_{1 \leq s \leq m-2, s \equiv 0,1 \pmod{p}} (-1)^{s+1}(-1)^{s+[s/p]} \frac{1}{q} \binom{q/p-1}{[s/p]} D_{m-s}(0) \\
+ (-1)^{u-1}q-1 \frac{1}{q} \left[\binom{q/p-1}{u-1} + \binom{q/p-1}{u} \right] \\
= \frac{1}{q} \left(q - 2 + up \right) + \sum_{1 \leq s \leq up, s \equiv 0,1 \pmod{p}} (-1)^{1+[s/p]} \binom{q/p-1}{[s/p]} D_{up-s}(0),
\]

where we use Lemma 5 and \(-D_0(0) = D_1(0) = -\frac{q-1}{q}\) to obtain the last equality. Now let us rewrite this as

\[
\hat{P}_{up}(0) = \frac{1}{q} \left(q - 2 + up \right) + \sum_{t=0}^{u-1} (-1)^{1+(u-t)} \binom{q/p-1}{u-t} D_{tp}(0) + \sum_{t=0}^{u-1} (-1)^{u-t} \binom{q/p-1}{u-t} D_{tp+1}(0).
\]
Similarly, for \(m = up + 1 \), we have
\[
P_{up+1}(0) = \frac{1}{q} (q - 2 + (up + 1)) + \sum_{1 \leq s \leq up + 1 \atop s \equiv 0 (\text{mod } p)} (-1)^{1+\lfloor s/p \rfloor \choose \lfloor s/p \rfloor} D_{up+1-s}(0)
\]
\[
= \frac{1}{q} (q - 2 + (up + 1)) + \sum_{t=1}^{up - 1} (-1)^{1+u-t} \left(q/p - 1 \choose u-t \right) (D_{tp}(0) + D_{tp+1}(0)) - D_{up}(0).
\]

Next we show \(D_{up+1}(0) = -D_{up}(0) \) for all \(u \geq 0 \) by the mathematical induction. The base case \(u = 0 \) holds because \(D_{1}(0) = D_{0}(0) = -\frac{q-1}{q} \). Assume now \(-D_{sp}(0) = D_{sp+1}(0) \) for all \(0 \leq s < u \) and plug into the above formula we obtain
\[
P_{up+1}(0) = \frac{1}{q} (q - 2 + up + 1) - D_{up}(0)
\]
Because \(P_{up+1}(0) = \frac{1}{q} (q-2+up+1) + D_{up+1}(0) \), we conclude that \(D_{up+1}(0) = -D_{up}(0) \). Hence it is true for all \(u \geq 0 \). Using this relation we simplify Equation (6) to
\[
P_{up}(0) = \frac{1}{q} (q - 2 + up) + \sum_{t=0}^{u-1} (-1)^{u-t+1} \left(q/p - 1 \choose u-t \right) D_{tp}(0)
\]
\[
= \frac{1}{q} (q - 2 + up) + \sum_{t=0}^{u-1} (-1)^{u-t+1} \left(q/p \choose u-t \right) D_{tp}(0)
\]
and by using \(P_{up}(0) = \frac{1}{q} (q-2+up) + D_{up}(0) \) we obtain
\[
D_{up}(0) = \sum_{t=0}^{u-1} (-1)^{u-t+1} \left(q/p \choose u-t \right) D_{tp}(0).
\]

Let \(f(x) = \sum_{j=0}^{\infty} D_{jp}(0)x^j \) be the generating function of the sequence \(\{D_{up}(0) : u = 0, 1, 2, \ldots\} \). Then
\[
(1-x)^{q/p} f(x) = \left(\sum_{l=0}^{\infty} \left(q/p \choose l \right) x^l \right) \left(\sum_{j=0}^{\infty} D_{jp}(0)x^j \right)
\]
\[
= D_{0}(0) + \sum_{u=1}^{\infty} \left(\sum_{t=0}^{u-1} \left(q/p \choose u-t \right) (-1)^{u-t} D_{tp}(0) \right) x^u
\]
\[
= D_{0}(0) + \sum_{u=1}^{\infty} (-D_{up}(0) + D_{up}(0)) x^u = D_{0}(0) = \frac{q-1}{q}.
\]

Now \((1-x)^{q/p} f(x) = \frac{q-1}{q} \) implies
\[
f(x) = \frac{q-1}{q} \frac{1}{(1-x)^{q/p}} = \frac{q-1}{q} \sum_{t=0}^{\infty} \left(q/p - 1 + t \right) x^t.
\]

Hence \(D_{jp}(0) = \frac{q-1}{q} (q/p - 1 + j) / j \) for \(j = 0, 1, 2, \ldots \). Moreover, we use Equation (6) and \(D_{jp+1}(0) = -D_{jp}(0) \) to conclude
\[
D_{jp}(0) = \frac{q-1}{q} \left(\frac{q/p - 1 + j}{j} \right); \quad D_{jp}(1) = -\frac{1}{q} \left(\frac{q/p - 1 + j}{j} \right).
\]
there are \(q = x z \) being equal to \(S + (a m = 1 \text{ because } a \text{ for each } s \text{ solutions to } S \).

Finally, together with Lemma 3 we complete the proof of Theorem 1.

Finally we note that it is straightforward to derive the following corollary.

Corollary 1. Let \(m \) be a non-negative integer, \(\mathbb{F}_q \) be a finite field of \(q = p^e \) elements with prime \(p \), and \(z \in \mathbb{F}_q \). The number of partitions of \(z \) into at most \(m \) parts over \(\mathbb{F}_q \) is given by

\[
\hat{P}_m(z) = \sum_{k=0}^{m} \hat{P}_k(z) = \frac{1}{q} \left(\frac{q - 1 + m}{m} \right) + \hat{D}_m(z),
\]

where

\[
\hat{D}_m(z) = \begin{cases}
D_m(z), & \text{if } m \equiv 0 \pmod{p}; \\
0, & \text{otherwise}.
\end{cases}
\]

3. **Proof of Theorem 2**

In this section we prove Theorem 2. Obviously the result holds trivially for \(m = 1 \) because \(S_1(0) = 0 \) and \(S_1(z) = 1 \) for any \(z \in \mathbb{F}_q^* \). Moreover, when \(m = 2 \), it is easy to see that \(S_2(0) = q - 1 \) and \(S_2(z) = q - 2 \) where \(z \in \mathbb{F}_q^* \). Indeed, \(a + (p - 1)a = 0 \) for any \(a \in \mathbb{F}_q^* \), but \(a + x = z \) where \(z \neq 0 \) has a nonzero solution for each \(a \in \mathbb{F}_q^* - \{ z \} \).

Assume now \(m \geq 3 \) and \(z = x_1 + x_2 + \cdots + x_m \) for a fixed \(z \in \mathbb{F}_q \). We consider \(x_1 + \cdots + x_{m-2} \) in the following two cases:

(i) \(x_1 + \cdots + x_{m-2} = z \). In this case, there are \((q - 1)S_{m-2}(z)\) solutions to \(z = x_1 + x_2 + \cdots + x_m \) with all \(x_i \)'s not equal to 0 because we can always find \(x_m = -x_{m-1} \) such that \(x_{m-1} + x_m = 0 \) for any choice of \(x_{m-1} \in \mathbb{F}_q^* \).

(ii) \(x_1 + \cdots + x_{m-2} \neq z \). As we can choose \(x_1, \ldots, x_{m-2} \) in \((q - 1)^{m-2} - S_{m-2}(z)\) such ordered tuples. But \(x_{m-1} \in \mathbb{F}_q^* \) cannot be equal to \(z - (x_1 + x_2 + \cdots + x_{m-2}) \neq 0 \) because this would imply \(x_m = 0 \). Therefore we have only \((q - 2)\) choices for \(x_{m-1} \) and \(x_m \) is uniquely determined by \(x_m = z - (x_1 + \cdots + x_{m-1}) \). Therefore there are \((q - 1)^{m-2} - S_{m-2}(z)) (q - 2)\) solutions to \(z = x_1 + x_2 + \cdots + x_m \) with all \(x_i \)'s not equal to 0 in this case.

Now summing up these numbers we obtain

\[
S_m(z) = (q - 1)S_{m-2}(z) + ((q - 1)^{m-2} - S_{m-2}(z)) (q - 2) = (q - 1)^{m-2}(q - 2) + S_{m-2}(z).
\]

Therefore, when \(m = 2k \), we have

\[
S_m(0) = (q - 1)^{m-2}(q - 2) + S_{m-2}(0) = (q - 1)^{m-2}(q - 2) + (q - 1)^{m-4}(q - 2) + S_{m-4}(0) = \ldots
\]

\[
= (q - 2)((q - 1)^{m-2} + (q - 1)^{m-4} + \cdots + (q - 1)^2) + S_2(0) = (q - 2)(q - 1)^{m-1} \frac{(q - 1)^2 - 1}{(q - 1)^2 - 1} - (q - 2) + (q - 1) = (q - 2)(q - 1)^{m-1} \frac{1}{(q - 1)^2 - 1} + 1 = \frac{(q - 1)^m - 1 + q}{q}.
\]
Similarly for $z \neq 0$ and $m = 2k$, we have
\[S_m(z) = \frac{(q - 1)^{m - 1}}{q}. \]
Moreover, if $m = 2k + 1$ then we have
\[
S_m(0) = (q - 1)^{m-2}(q - 2) + S_{m-2}(z)
= (q - 1)^{m-4}(q - 2) + S_{m-4}(z)
= \ldots
= (q - 2)[(q - 1)^{m-2} + (q - 1)^{m-4} + \ldots + (q - 1)] + S_1(0)
= (q - 2)(q - 1)\frac{(q - 1)^{m-1} - 1}{(q - 1)^2 - 1} = \frac{(q - 1)^m - (q - 1)}{q},
\]
and similarly
\[
S_m(z) = (q - 2)(q - 1)\frac{(q - 1)^{m-1} - 1}{(q - 1)^2 - 1} + 1 = \frac{(q - 1)^m + 1}{q}
\]
for $z \in \mathbb{F}_q^*$. This completes the proof of Theorem 2.

Corollary 2. The number of weak m-composition of $z \in \mathbb{F}_q$ is
\[
\sum_{k=0}^{m} \binom{m}{m-k} S_k(z) = q^{m-1}.
\]

Proof. For each composition with $m - k$ nonzero elements, there are \(\binom{m}{m-k} \) subsets of variables x_i that takes value zero and for the rest of variables we can have a composition of z with k parts. Thus there are \(\binom{m}{m-k} S_k(z) \) solutions of the diagonal equation with $m - k$ variables equals to the zero. Summing up these numbers we complete the proof.

Corollary 3. The number of solutions, none of x_i is zero for $i = 1, \ldots, n$, to the diagonal equation
\[x_1^{u_1} + x_2^{u_2} + \cdots + x_n^{u_n} = z \]
where $z \in \mathbb{F}_q$ and u_1, u_2, \ldots, u_n are relatively prime to the $q - 1$ is given by $S_n(z)$.

If x_i is allowed to be zero, then the number of solutions is q^{n-1}.

If all but one exponent, say for example u_n, out of u_1, \ldots, u_n are relatively prime to $q - 1$ and $d = \gcd(q - 1, u_n) > 1$, then the number of the solutions of the corresponding diagonal equation, where all $x_i \neq 0$, $i = 1, \ldots, n$, is $dS_{n-1}(0) + (q - 1 - d)S_{n-1}(1)$ if there exists $u \in \mathbb{F}_q^*$ such that $s = u^d$ and the number is $(q - 1)S_{n-1}(1)$ otherwise.

Proof. Assume first that all of u_1, u_2, \ldots, u_n are relatively prime to the $q - 1$.

Because each mapping $x \mapsto x^{u_i}$ is a bijection and thus the number of solutions of the diagonal equation above is equal to the number of the compositions of z into n parts.

If $\gcd(u_n, q - 1) = d$ and $\gcd(u_i, q - 1) = 1$ for $i = 1, \ldots, n - 1$, then we have a diagonal equation of the form
\[x_1^{u_1} + \cdots + x_{n-1}^{u_{n-1}} = z - x_n^{u_n}. \]

If $z \neq w^d$ for all $w \in \mathbb{F}_q^*$ then for all $x_n \in \mathbb{F}_q^*$ $z - x_n^{u_n} \neq 0$ and thus the number of solutions to the above equation is
\[\sum_{x_n \in \mathbb{F}_q^*} S_{n-1}(z - x_n^{u_n}) = (q - 1)S_{n-1}(1); \]
otherwise,
for d values of x_n we have $z - x_n^{u_n} = 0$. Hence the number of solutions in this case is $\sum_{x_n \in \mathbb{F}_q^*} S_{n-1}(z - x_n^{u_n}) = dS_{n-1}(0) + (q - 1 - d)S_{n-1}(1)$. \hfill \square

4. **Proof of Theorem 3**

Let $\ell = q - m$. The assumption $\frac{q}{2} \leq \ell < q - 3$ implies that $4 \leq m \leq \frac{q}{2}$. As in [4], we denote by \mathcal{T} the family of all subsets of \mathbb{F}_q of cardinality m, i.e.,

$$\mathcal{T} = \{T \mid T \subseteq \mathbb{F}_q, |T| = m\}.$$

Denote by \mathcal{M} the family of all multisets M of order q containing 0 with the highest multiplicity $\ell = q - m$ and the sum of elements in M is equal to 0, i.e.,

$$\mathcal{M} = \{M \mid 0 \in M, \text{ multiplicity}(0) = q - m, \sum_{b \in M} b = 0\}.$$

We note that the polynomial with the least degree $q - m$ such that it sends $q - m$ values to 0 can be represented by

$$f_{(\lambda;T)}(x) = \lambda \prod_{s \in \mathbb{F}_q \setminus T} (x - s),$$

which uniquely determines a mapping

$$\mathcal{F} : \mathbb{F}_q^* \times \mathcal{T} \rightarrow \mathcal{M},$$

defined by

$$(\lambda, T) \mapsto \text{range}(f_{\lambda,T}(x)).$$

In Lemma 2 [2] we found an upper bound for the number $|\text{range}(\mathcal{F})|$ of the images of the polynomial with the least degree $q - m$ such that it sends $q - m$ values to 0, when $m < p$. Using this upper bound, we proved that, for every m with $3 < m \leq \min\{p - 1, q/2\}$, there exists a multiset M with $\sum_{b \in M} b = 0$ and the highest multiplicity $q - m$ achieved at $0 \in M$ such that every polynomial over \mathbb{F}_q with the prescribed range M has degree greater than $q - m$ (Theorem 1, [4]). This result disproved Conjecture 5.1 in [2]. In this section, we drop the restriction of $m < p$ and then use the formula obtained in Theorem 1 to prove Theorem 3 which generalizes Theorem 1 in [4]. First of all, we prove the following result.

Lemma 6. Let q be a prime power, $m \leq \frac{q}{2}$ be a positive integer and $d = \gcd(q - 1, m - 1)$. Let $\mathcal{F} : \mathbb{F}_q^* \times \mathcal{T} \rightarrow \mathcal{M}$ be defined as in Equation (10). Then

$$|\text{range}(\mathcal{F})| \leq \frac{(q - 1)(q - 2) \ldots (q - m + 1)}{m!} + \sum_{\substack{i \mid t \mid m-1 \delta}} \phi(i) \left(\frac{q-1}{m-1} \frac{1}{t} \right) + \frac{\delta(q - 1)}{q} \left(\frac{q}{m/p}\right),$$

where $\delta = 1$ if $p \mid m$ and zero otherwise.

Proof. As in Lemma 2 of [2] we consider the group \mathcal{G} of all non-constant linear polynomials in $\mathbb{F}_q[x]$ acting on the set $\mathbb{F}_q^* \times \mathcal{T}$ with action $\Phi : (cx + b, (\lambda;T)) \mapsto (c^{m-1}\lambda, cT + b)$. All the elements of the same orbit in $\mathbb{F}_q^* \times \mathcal{T}$ are all mapped to the same range $M \in \mathcal{M}$. Thus we need to find the number N of orbits under this group action. Using the Burnside’s Lemma, we need to find the number of fixed points $|([\mathbb{F}_q^* \times \mathcal{T}]_g)|$ in $\mathbb{F}_q^* \times \mathcal{T}$ under the action of $g(x) = cx + b$. As in Lemma 2 [2], for $g(x) = x$ there are $(q - 1)\left(\frac{q}{m}\right)$ elements fixed by $g(x)$. Moreover, if $g(x) = cx + b$, $c \neq 1$ then elements are fixed by $g(x)$ only if $i = \text{ord}(c) \mid d = \gcd(q - 1, m - 1)$ and
in this case we have \(|(F_q^* \times T)_g| = (q - 1)\left(\frac{q^2}{m-1}\right)|. Under the assumption \(m < p\) in Lemma 2 \[2\], we don’t need to consider \(g(x) = x + b\), \(b \neq 0\), because it has \(p\)-cycles of the form \((x, x + b, \ldots, x + (p-1)b)\) and has no fixed elements. However, for arbitrary \(m\), we must consider this case. In fact, if \(g(x) = x + b\) fixes some subset \(T\) of \(F_q^\ast\) with \(m\) elements then we must have \(p \mid m\) and \(T\) consists of \(p\)-cycles. In particular, there are \(\binom{\frac{q}{p}}{m}\) of such subsets \(T\) fixed by \(g(x) = x + b\) for each \(b \in F_q^\ast\).

Varying \(\lambda\) and \(b\), we therefore obtain \(|(F_q^* \times T)_g| = \delta(q-1)^2\left(\frac{q/p}{m/p}\right)|. Now using Burnside’s Lemma we obtain

\[
N = \frac{1}{|G|} \sum_{g \in G} |(F_q^* \times T)_g|
\]

\[
= \frac{1}{q(q-1)}\left((q-1)\left(\frac{q}{m}\right) + q(q-1) \sum_{i>0,j \mid d} \phi(i)\left(\frac{q-1}{m-1}\right) + \delta(q-1)^2\left(\frac{q/p}{m/p}\right)\right)
\]

\[
= \frac{1}{q}\left(\frac{q}{m}\right) + \sum_{i>0,j \mid d} \phi(i)\left(\frac{q-1}{m-1}\right) + \delta(q-1)\left(\frac{q/p}{m/p}\right).
\]

In order to prove Theorem \[3\] it is clear that we only need to show

\[(11) \frac{(q-1)(q-2)\ldots(q-m+1)}{m!} + \sum_{i \geq 1} \phi(i)\left(\frac{q-1}{m-1}\right) + \delta(q-1)\left(\frac{q/p}{m/p}\right) < \tilde{P}_m(0).
\]

By Theorem \[1\] it is enough to show

\[(12) \frac{(q-1)(q-2)\ldots(q-m+1)}{m!} + \sum_{i \geq 1} \phi(i)\left(\frac{q-1}{m-1}\right) + \frac{q-1}{q}\left(\frac{q/p-1+j}{m}\right) < \frac{1}{q}\left(\frac{q+m-2}{m}\right).
\]

for \(m = jp + 1\) and

\[(13) \frac{(q-1)(q-2)\ldots(q-m+1)}{m!} + \sum_{i \geq 1} \phi(i)\left(\frac{q-1}{m-1}\right) < \frac{1}{q}\left(\frac{q+m-2}{m}\right),
\]

for all other cases, because \(\frac{q-1}{q}\left(\frac{q/p}{j}\right) = \frac{q-1}{q}\left(\frac{q/p}{j+1}\right)\) when \(m = jp\) and \(j \geq 1\).

For the cases \(m = 4\) and \(m = 5\), because \(q \geq 2m\), we can check directly that Inequality \[(12)\] holds and thus Inequality \[(13)\] holds.

We now show Inequalities \[(12)\] and \[(13)\] hold for \(m > 5\) by using a combinatorial argument. Let \(G = \langle a \rangle\) be a cyclic group of order \(q-1\) with generator \(a\). Let \(\mathcal{M}'\) be the set of all multisets with \(m\) elements chosen from \(G\). Then \(|\mathcal{M}'| = (q-2+m)\). To estimate the left hand side of Inequalities \[(12)\] and \[(13)\] we count now the number of multisets in some subsets of \(\mathcal{M}'\) defined as follows. These subsets of multisets of \(m\) elements are defined from subsets of \(k\)-subsets of \(G\) when \(k \leq m\). First of all, let \(\mathcal{M}_0\) be the set of all subsets of \(G\) with \(m\) elements. So \(\mathcal{M}_0 \subseteq \mathcal{M}'\) and \(|\mathcal{M}_0| = \binom{q-1}{m}|.

Let \mathcal{A} be the set of all subsets of G with $m - 1$ elements. For each $A = \{a^{u_1}, a^{u_2}, \ldots, a^{u_{m-1}}\} \in \mathcal{A}$ where $0 \leq u_1 < u_2 < \ldots < u_{m-1} < q - 1$ we can find a multiset $M = \{a^{u_1}, a^{u_2}, a^{u_3}, \ldots, a^{u_{m-1}}\}$ corresponding to A in the unique way. We can use notation $s^{(i)}$ to denote an element s in a multiset M with multiplicity i. Hence the above multiset M can also be denoted by

$$M = \{(a^{u_1})^{(2)}, a^{u_2}, a^{u_3}, \ldots, a^{u_{m-1}}\}.$$

The set of all these multisets, denoted by \mathcal{M}_1, has $|\mathcal{A}| = \binom{q - 1}{m - 1}$ elements. Moreover $\mathcal{M}_0 \cap \mathcal{M}_1 = \emptyset$. Now let $\mathcal{M}_01 = \mathcal{M}_1 \cup \mathcal{M}_1$. Then $|\mathcal{M}_01| = \binom{q - 1}{m} + \binom{q - 1}{m - 1} = \left(\frac{q}{m}\right)$.

For each i satisfying $m - 1 > i \geq 2$ and $i \mid d$, we let $S_i = \langle a^i \rangle$ be a cyclic subgroup of G with $\frac{m - 1}{i}$ elements. From each set \mathcal{C}_i of all subsets of S_i with $\frac{m - 1}{i}$ elements, we can define two disjoint subclasses of \mathcal{M} containing multisets with m elements in G corresponding to \mathcal{C}_i.

First, let $B = \{a^{u_1}, a^{u_2}, \ldots, a^{u_{m-1}}\}$ be a subset of S_i where $0 \leq u_1 < u_2 < \ldots < \frac{m-1}{i}$. For each fixed t such that $0 \leq t < i$ and $\gcd(i,t) = 1$, we can construct a multiset corresponding to B as follows:

$$M = \{(a^t a^{u_1})^{(i)}, (a^t a^{u_2})^{(i)}, \ldots, (a^t a^{\frac{m-1}{i}})^{(i)}, a_m\}$$

where a_m is arbitrarily element in G. For each fixed t this class of multisets formed from \mathcal{C}_i is denote by \mathcal{M}_i^t. Then $|\mathcal{M}_i^t| = (q - 1)\left(\frac{q - 1}{m - 1}\right)$.

Secondly, for $B = \{a^{u_1}, a^{u_2}, \ldots, a^{u_{m-1}}\} \in \mathcal{C}_i$ and each fixed t, we can construct another multiset

$$\hat{M} = \{(a^{t+1} a^{u_1})^{(i)}, (a^t a^{u_2})^{(i)}, \ldots, (a^t a^{\frac{m-1}{i}})^{(i)}, 1\},$$

corresponding to B. The set of these multisets is denoted by $\hat{\mathcal{M}}_i^t$. Then $|\hat{\mathcal{M}}_i^t| = \left(\frac{q - 1}{m - 1}\right)$.

Note that $i \leq \frac{m - 1}{2}$ implies $\mathcal{M}_i^t \cap \hat{\mathcal{M}}_i^t = \emptyset$. Hence we have

$$|\mathcal{M}_i| = \left|\bigcup_{1 \leq t \leq i, \gcd(i,t) = 1} \mathcal{M}_i^t \cup \hat{\mathcal{M}}_i^t\right| = \phi(i) \left((q - 1)\left(\frac{q - 1}{m - 1}\right) + \left(\frac{q - 1}{m - 1}\right)\right) = q\phi(i)\left(\frac{q - 1}{m - 1}\right).$$

Finally, if $m - 1 \nmid q - 1$ then we let $\mathcal{M}_m = \emptyset$. Otherwise, if $(m - 1) \nmid q - 1$ then we let \mathcal{M}_{m-1}^t contains all the multisets of the form $M = \{(a^{t+j(m-1)})^{(m-1)}, a_m\}$, for $j = 0, 1, \ldots, \frac{q - 1}{m - 1} - 1$, any positive integer $t < m - 1$ with $\gcd(m - 1, t) = 1$, and any $a_m \in G$. Let \mathcal{M}_{m-1}^t contain all the multisets of the form $\{(a^{t+j(m-1)})^{(m-2)}, (a^{m-1})^{(2)}\}$.

It is obvious that \(a^{m-1} \neq a^{t+j(m-1)} \). By comparing the multiplicities of two multisets we see that \(\mathcal{M}_{m-1}^t \cap \mathcal{M}_{m-1}^t = \emptyset \). Moreover,

\[
|\mathcal{M}_{m-1}| = \left| \bigcup_{1 \leq t < s \leq m-1} \mathcal{M}_{m-1}^t \cup \mathcal{M}_{m-1}^s \right|
\]

\[
= \phi(m-1) \left((q-1) \left(\frac{q-1}{m-1} \right) + \left(\frac{q-1}{m-1} \right) \right)
\]

\[
= q \phi(m-1) \left(\frac{q-1}{m-1} \right).
\]

Finally, if \(m \neq jp+1 \) for some \(j \geq 1 \) we let \(\mathcal{M}_m = \emptyset \). Otherwise, if \(m = jp+1 \) for some \(j \geq 1 \) we let \(C = \{ s_1, s_2, \ldots, s_{q/p} \} \) be a subset of \(G \) with \(q/p < q-1 \) elements. For each subset of \(j \) elements from \(C \) we find a corresponding multiset \(\mathcal{M} \) in \(\mathcal{M}_m \) from \(\mathcal{M} \) in the following way

\[
\mathcal{M} = \{ s_1^{(p)}, s_2^{(p)}, \ldots, s_j^{(p)}, a_m \}
\]

where \(a_m \) is arbitrary chosen to be an element from \(G \). Thus there are \((q - 1) \left(q/p^j - 1 \right) \) multisets in \(\mathcal{M}_m \). Obviously, \(\mathcal{M}_m \) is disjoint \(\mathcal{M}_i \) where \(i \mid \gcd(m-1, q-1) \) because the multiplicity of at least one of its elements is \(p \nmid q-1 \). Indeed, it could possibly have common elements only with \(\mathcal{M}_{m-1} \) but in this case \(m-1 = jp \nmid q-1 \) so \(\mathcal{M}_{m-1} = \emptyset \). Now \(|\mathcal{M}_m| = (q - 1) \left(q/p^j - 1 \right) \).

Define \(\delta' = 0 \) if \(m \neq jp+1 \) for some \(j \) and \(\delta' = 1 \) if \(m = jp+1 \). Then we obtain

\[
|\mathcal{M}_{LHS}| := \left| \mathcal{M}_{01} \bigcup \left(\bigcup_{i \mid \gcd(m-1, q-1)} \mathcal{M}_i \right) \bigcup \mathcal{M}_m \right|
\]

\[
= \left(\frac{q}{m} \right) + q \sum_{i \mid \gcd(m-1, q-1)} \phi(i) \left(\frac{q-1}{m-1} \right) + \delta' (q-1) \left(\frac{q+p+(m-1)/p-1}{(m-1)/p} \right).
\]

We note that the multiset \(\{ 1, 1, 1, a, a^2, \ldots, a^{m-3} \} \) is not included in the \(\mathcal{M}_{LHS} \) and thus \(|\mathcal{M}_{LHS}| < |\mathcal{M}'| \). Dividing both sides by \(q \), we have

\[
\frac{1}{q} \left(\frac{q}{m} \right) + \sum_{i \mid \gcd(m-1, q-1)} \phi(i) \left(\frac{q-1}{m-1} \right) + \delta' (q-1) \left(\frac{q+p+(m-1)/p-1}{(m-1)/p} \right) < \frac{1}{q} \left(\frac{q+m-2}{m} \right).
\]

Hence both Inequalities (12) and (13) are satisfied. This completes the proof of Theorem 3.

References

[1] B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998.

[2] A. Gács, T. Héger, Z. L. Nagy, D. Pálvölgyi, Permutations, hyperplanes and polynomials over finite fields, Finite Field Appl. 16 (2010), 301-314.

[3] J. Li and D. Wan, On the subset sum problem over finite fields, Finite Field Appl., 14 (2008), 911-929.
[4] A. Muratović-Ribić and Q. Wang, On a conjecture of polynomials with prescribed range, *Finite Field Appl.* (2012), doi:10.1016/j.ffa.2012.02.004.

[5] R. P. Stanley, Enumerative Combinatorics, Vol I, Cambridge University Press, 1997.

University of Sarajevo, Department of Mathematics, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina

E-mail address: amela@pmf.unsa.ba

School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, CANADA

E-mail address: wang@math.carleton.ca