Near-optimal Offline Reinforcement Learning with Linear Representation: Leveraging Variance Information with Pessimism

Ming Yin1,2, Yaqi Duan4, Mengdi Wang3, and Yu-Xiang Wang1

1Department of Computer Science, UC Santa Barbara
2Department of Statistics and Applied Probability, UC Santa Barbara
3Department of Electrical and Computer Engineering, Princeton
4Department of Operations Research and Financial Engineering, Princeton

ming.yin@ucsb.edu yaqid@princeton.edu mengdiw@princeton.edu yuxiangw@cs.ucsb.edu

Abstract

Offline reinforcement learning, which seeks to utilize offline/historical data to optimize sequential decision-making strategies, has gained surging prominence in recent studies. Due to the advantage that appropriate function approximators can help mitigate the sample complexity burden in modern reinforcement learning problems, existing endeavors usually enforce powerful function representation models (\textit{e.g.} neural networks) to learn the optimal policies. However, a precise understanding of the statistical limits with function representations, remains elusive, even when such a representation is linear.

Towards this goal, we study the statistical limits of offline reinforcement learning with linear model representations. To derive the tight offline learning bound, we design the \textit{variance-aware pessimistic value iteration} (VAPVI), which adopts the conditional variance information of the value function for time-inhomogeneous episodic linear \textit{Markov decision processes} (MDPs). VAPVI leverages estimated variances of the value functions to reweight the Bellman residuals in the least-square pessimistic value iteration and provides improved offline learning bounds over the best-known existing results (whereas the Bellman residuals are equally weighted by design). More importantly, our learning bounds are expressed in terms of system quantities, which provide natural instance-dependent characterizations that previous results are short of. We hope our results draw a clearer picture of what offline learning should look like when linear representations are provided.

To appear at International Conference on Learning Representations (ICLR), 2022.
1 Introduction

Offline reinforcement learning (offline RL or batch RL Lange et al. [2012], Levine et al. [2020]) is the framework for learning a reward-maximizing policy in an unknown environment (Markov Decision Process or MDP)1 using the logged data coming from some behavior policy μ. Function approximations, on the other hand, are well-known for generalization in the standard supervised learning. Offline RL with function representation/approximation, as a result, provides generalization across large state-action spaces for the challenging sequential decision-making problems when no iteration is allowed (as opposed to online learning). This paradigm is crucial to the success of modern RL problems as many deep RL algorithms find their prototypes in the literature of offline RL. For example, Xie and Jiang [2020] provides a view that Fitted Q-Iteration [Gordon, 1999, Ernst et al., 2005] can be considered as the theoretical prototype of the deep Q-networks algorithm (DQN) Mnih et al. [2015] with neural networks being the function representors. On the empirical side, there are a huge body of deep RL-based algorithms [Mnih et al., 2015, Silver et al., 2017, Fujimoto et al., 2019, Kumar et al., 2019, Wu et al., 2019, Kidambi et al., 2020, Yu et al., 2020, Kumar et al., 2020, Janner et al., 2021, Chen et al., 2021a, Kostrikov et al., 2022] that utilize function approximations to achieve respective successes in the offline regime. However, it is also realized that practical function approximation schemes can be quite sample inefficient (e.g. millions of samples are needed for deep Q-network to solve certain Atari games Mnih et al. [2015]).

To understand this phenomenon, there are numerous studies consider how to achieve sample efficiency with function approximation from the theoretical side, as researchers find sample efficient algorithms are possible with particular model representations, in either online RL (e.g. Yang and Wang [2019, 2020], Modi et al. [2020], Jin et al. [2020], Ayoub et al. [2020], Jiang et al. [2017], Du et al. [2019], Sun et al. [2019], Zanette et al. [2020], Zhou et al. [2021a], Jin et al. [2021a], Du et al. [2021]) or offline RL (e.g. Munos [2003], Chen and Jiang [2019], Xie and Jiang [2020], Jin et al. [2021b], Xie et al. [2021a], Duan et al. [2021], Min et al. [2021], Nguyen-Tang et al. [2021], Zanette et al. [2021]).

Among them, the linear MDP model [Yang and Wang, 2020, Jin et al., 2020], where the transition is represented as a linear combinations of the given d-dimensional feature, is (arguably) the most studied setting in function approximation and there are plenty of extensions based upon it (e.g. generalized linear model [Wang et al., 2021b], reward-free RL [Wang et al., 2020], gap-dependent analysis [He et al., 2021] or generative adversarial learning [Liu et al., 2021]). Given its prosperity, however, there are still unknowns for understanding function representations in RL, especially in the offline case.

- While there are surging researches in showing provable sample efficiency (polynomial sample complexity is possible) under a variety of function approximation schemes, how to improve the sample efficiency for a given class of function representations remains understudied. For instance, given a neural network approximation class, an algorithm that learns the optimal policy with complexity $O(H)$ is far worse than the one that can learn in $O(H^3)$ sample complexity, despite that both algorithms are considered sample efficient. Therefore, how to achieve the optimal/tight sample complexity when function approximation is provided is a valuable question to consider. On the other hand, it is known that tight sample complexity,

1The environment could have other forms as well, e.g. partially-observed MDP (POMDP) or non-markovian decision process (NMDP).
due to the limit of the existing statistical analysis tools, can be very tough to establish when function representation has a very complicated form. However, does this mean tight analysis is not hopeful even when the representation is linear?

- Second, in the existing analysis of offline RL (with function approximation or simply the tabular MDPs), the learning bounds depend either explicitly on the data-coverage quantities (e.g. uniform concentrability coefficients Chen and Jiang [2019], Xie and Jiang [2020], uniform visitation measure Yin et al. [2021], Yin and Wang [2021a] and single concentrability Rashidinejad et al. [2021], Xie et al. [2021b]) or the horizon length H [Jin et al., 2021b, Uehara and Sun, 2021]. While those results are valuable as they do not depend on the structure of the particular problem (therefore, remain valid even for pathological MDPs), in practice, the empirical performances of offline reinforcement learning are often far better than those non-adaptive bounds would indicate. Can the learning bounds reflect the nature of individual MDP instances when the MDP model has a certain function representation?

In this work, we think about offline RL from the above two aspects. In particular, we consider the fundamental linear model representations and ask the following question of interest:

Can we achieve the statistical limits for offline RL when models have linear representations?

1.1 Related works

Offline RL with general function representations. The finite sample analysis of offline RL with function approximation is initially conducted by Fitted Q-Iteration (FQI) type algorithms and can be dated back to [Munos, 2003, Szepesvári and Munos, 2005, Antos et al., 2008a,b]. Later, Chen and Jiang [2019], Le et al. [2019], Xie and Jiang [2020] follow this line of research and derive the improved learning results. However, owing to the aim for tackling general function approximation, those learning bounds are expressed in terms of the stringent concentrability coefficients (therefore, are less adaptive to individual instances) and are usually only information-theoretical, due to the computational intractability of the optimization procedure over the general function classes. Other works impose weaker assumptions (e.g. partial coverage [Liu et al., 2020, Kidambi et al., 2020, Uehara and Sun, 2021]), and their finite sample analysis are generally suboptimal in terms of H or the effective horizon $(1 - \gamma)^{-1}$.

Offline RL with tabular models. For tabular MDPs, tight learning bounds can be achieved under several data-coverage assumptions. For the class of problems with uniform data-visitation measure d_m, the near-optimal sample complexity bound has the rate $O(H^3/d_m\epsilon^2)$ for time-inhomogeneous MDPs [Yin et al., 2021] and $O(H^2/d_m\epsilon)$ for time-homogeneous MDPs [Yin and Wang, 2021a, Ren et al., 2021]. Under the single concentrability assumption, the tight rate $O(H^3SC^*/\epsilon^2)$ is obtained by Xie et al. [2021b]. In particular, the recent study Yin and Wang [2021b] introduces the intrinsic offline learning bound that is not only instance-dependent but also subsumes previous optimal results. More recently, Shi et al. [2022] uses the model-free approaches to achieve the minimax rate with a $[0, H^{-1}]$ ϵ-range.

Offline RL with linear model representations. Recently, there is more focus on studying the provable efficient offline RL under the linear model representations. Jin et al. [2021b] first shows offline RL with linear MDP is provably efficient by the pessimistic value iteration. Their analysis deviates from their lower bound by a factor of $d \cdot H$ (check their Theorem 4.4 and 4.6). Later, Xie
et al. [2021a] considers function approximation under the Bellman-consistent assumptions, and, when realized to linear MDP setting, improves the sample complexity guarantee of Jin et al. [2021b] by an order $O(d)$ (Theorem 3.2). However, their improvement only holds for finite action space (due to the dependence $\log |A|$) and by the direct reduction (from Theorem 3.1) their result does not imply a computationally tractable algorithm with the same guarantee.

Concurrently, Zanette et al. [2021] considers the Linear Bellman Complete model and designs the actor-critic style algorithm that achieves tight result under the assumption that the value function is bounded by 1. While their algorithm is efficient (which is based on solving a sequence of second-order cone programs), the resulting learning bound requires the action space to be finite due to the mirror descent updates in the Actor procedure [Agarwal et al., 2021]. Besides, assuming the value function to be less than 1 simplifies the challenges in dealing with horizon H since when rescaling their result to $[0, H]$, there is a H factor blow-up, which makes no horizon improvement comparing to Jin et al. [2021b]. As a result, none of the existing algorithms can achieve the statistical limit for the well-structured linear MDP model with the general (infinite or continuous) state-action spaces. On the other hand, Wang et al. [2021a], Zanette [2021] study the statistical hardness of offline RL with linear representations by proving the exponential lower bounds. Recently, Foster et al. [2021] shows realizability and concentrability are not sufficient for offline learning when state space is arbitrary large.

Variance-aware studies
Talebi and Maillard [2018] first incorporates the variance structure in online tabular MDPs and Zanette and Brunskill [2019] tightens the result. For linear MDPs, Zhou et al. [2021a] first uses variance structure to achieve near-optimal result and the Weighted OFUL incorporates the variance structure explicitly in the regret bound. Recently, Variance-awareness is also considered in Zhang et al. [2021] for horizon-free setting and for OPE problem [Min et al., 2021]. In particular, We point out that Min et al. [2021] is the first work that uses variance reweighting for policy evaluation in offline RL, which inspires our study for policy optimization problem. The guarantee of Min et al. [2021] strictly improves over Duan et al. [2020] for OPE problem.

1.2 Our contribution
In this work, we study offline RL for time-inhomogeneous episodic linear Markov decision processes. Linear MDPs serve as one critical step towards understanding function approximation in RL since: 1. unlike general function representation, linear MDP representation has the well-structured form by the given feature representors, which makes delicate statistical analysis hopeful; 2. unlike tabular representation, which only works for finite models, linear MDP provides generalization as it adapts to infinite or continuous state-action spaces.

Especially, we design the variance-aware pessimistic value iteration (VAPVI, Algorithm 1) which incorporates the conditional variance information of the value function and, by the variance structure, Theorem 3.2 is able to improve over the aforementioned state-of-the-art guarantees. In addition, we further improve the state-action guarantee by designing an even tighter bonus (4). VAPVI-Improved (Theorem 3.3) is near-minimax optimal as indicated by our lower bound (Theorem 3.5). Importantly, the resulting learning bounds from VAPVI/VAPVI-Improved are able to characterize the adaptive nature of individual instances and yield different convergence rates for different problems. Algorithmically, our design builds upon the nice Min et al. [2021] with pessimism as we use the

This comparison is based on translating their infinite horizon discounted setting to the finite-horizon case.
estimated variances to reweight the Bellman residual learning objective so that the (training) samples with high uncertainty get less attention (Section 3). This is the key to obtaining instance-adaptive guarantees.

2 Preliminaries

2.1 Problem settings

Episodic time-inhomogeneous linear Markov decision process. A finite-horizon Markov Decision Process (MDP) is denoted as $M = (S, A, P, r, H, d_1)$ [Sutton and Barto, 2018], where S is the arbitrary state space and A is the arbitrary action space which can be infinite or even continuous. A time-inhomogeneous transition kernel $P_h : S \times A \rightarrow S^H$ (S^H represents a probability simplex) maps each state action (s_h, a_h) to a probability distribution $P_h(\cdot|s_h, a_h)$ and P_h can be different across time. In addition, $r : S \times A \rightarrow \mathbb{R}$ is the mean reward function satisfying $0 \leq r \leq 1$. d_i is the initial state distribution. H is the horizon. A policy $\pi = (\pi_1, \ldots, \pi_H)$ assigns each state $s_h \in S$ a probability distribution over actions according to the map $s_h \mapsto \pi_h(\cdot|s_h) \forall h \in [H]$ and induces a random trajectory $s_1, a_1, r_1, \ldots, s_H, a_H, r_H, s_{H+1}$ with $s_1 \sim d_1, a_h \sim \pi(\cdot|s_h), s_{h+1} \sim P_h(\cdot|s_h, a_h), \forall h \in [H]$. In particular, we adopt the linear MDP protocol from Jin et al. [2020, 2021b], meaning that the transition kernel and the mean reward function admit linear structures in the feature map.\footnote{3}

Definition 2.1 (Linear MDPs).\footnote{4} An episodic MDP (S, A, H, P, r) is called a linear MDP with a known (unsigned) feature map $\phi : S \times A \rightarrow \mathbb{R}^d$ if there exist d unknown (unsigned) measures $\nu_h = (\nu_h^{(1)}, \ldots, \nu_h^{(d)})$ over S and an unknown vector $\theta_h \in \mathbb{R}^d$ such that $P_h(s' \mid s, a) = \langle \phi(s, a), \nu_h(s') \rangle$, $r_h(s, a) = \langle \phi(x, a), \theta_h \rangle$, $\forall s', s \in S, a \in A, h \in [H]$.\footnote{4}

where $\|\nu_h(S)\|_2 \leq \sqrt{d}$ and $\max(\|\phi(s, a)\|_2, \|\theta_h\|_2) \leq 1$ for all $h \in [H]$ and $\forall s, a \in S \times A$. $\|\mu_h(S)\| = \int_S \|\mu_h(s)\| ds$.

V-values and Q-values. For any policy π, the V-value functions $V_h^\pi(\cdot) \in \mathbb{R}^S$ and Q-value functions $Q_h^\pi(\cdot, \cdot) \in \mathbb{R}^{S \times A}$ are defined as: $V_h^\pi(s) = \mathbb{E}_\pi[\sum_{t=1}^H r_t | s_t = s]$, $Q_h^\pi(s, a) = \mathbb{E}_\pi[\sum_{t=1}^H r_t | s_t = s, a_t = a]$, $\forall s, a, h \in S, A, [H]$. The performance measure is defined as $v^\pi := \mathbb{E}_{d_1}[V_1^\pi] = \mathbb{E}_{\pi, d_1}\left[\sum_{t=1}^H r_t\right]$. The Bellman (optimality) equations follow $\forall h \in [H]$:

$Q_h^\pi = r_h + P_hV_{h+1}^\pi$, $V_h^\pi = \max_a Q_h^\pi(\cdot, a)$ (where Q_h, V_h, P_h are vectors). By Definition 2.1, the Q-values also admit linear structures, \ie $Q_h^\pi = \langle \phi, w_h^\pi \rangle$ for some $w_h^\pi \in \mathbb{R}^d$ (Lemma H.9). Lastly, for a policy π, we denote the induced occupancy measure over the state-action space at any time $h \in [H]$ to be: for any $E \subseteq S \times A$, $d_h^\pi(E) := \mathbb{E}[\{s_h, a_h\} \in E | s_1 \sim d_1, a_i \sim \pi(\cdot|s_i), s_i \sim P_{i-1}(\cdot|s_{i-1}, a_{i-1}), 1 \leq i \leq h]$ and $\mathbb{E}_{\pi, h}[f(s, a)] := \int_{S \times A} f(s, a) d_h^\pi(s, a) ds da$. Here for notation simplicity we abuse $d_h^\pi(\cdot)$ to denote either probability measure or density function.

Offline learning setting. Offline RL requires the agent to learn the policy π that maximizes v^π, provided with the historical data $D = \{(s_h^i, a_h^i, r_h^i, s_{h+1}^i)\}_{(h, i) \in [H] \times [K]}$ rolled out from some behavior policy μ. The offline nature requires we cannot change μ and in particular we do not know the data generating
distribution of μ. To sum up, the agent seeks to find a policy π_{alg} such that $v^* - v_{\pi_{\text{alg}}} \leq \epsilon$ for the given batch data D and a given targeted accuracy $\epsilon > 0$.

2.2 Assumptions

It is known that learning a near-optimal policy from the offline data D cannot be sample efficient without certain data-coverage assumptions [Wang et al., 2021a, Yin and Wang, 2021b]. To begin with, we define the population covariance matrix under the behavior policy μ for all $h \in [H]$:

$$\Sigma^\mu_h := \mathbb{E}_{\mu,h} \left[\phi(s,a)\phi(s,a)^T \right],$$

since Σ^μ_h measure the coverage of state-action space for data D, we make the following assumption.

Assumption 2.2 (Feature Coverage). The data distributions μ satisfy the minimum eigenvalue condition: $\forall h \in [H], \kappa_h := \lambda_{\min}(\Sigma^\mu_h) > 0$ and denote $\kappa := \min_h \kappa_h$. Note κ is a system-dependent (non-universal) quantity as it is upper bounded by $1/d$ (Assumption 2 in Wang et al. [2021a]).

We make this assumption for the following reasons. First of all, our offline learning guarantee (Theorem 3.2) provides simultaneously comparison to all the policies, which is stronger than only competing with the optimal policy (whereas relaxed assumption suffices, e.g. $\sup_{x \in \mathbb{R}^d} \frac{\sum_{x} x^T x}{2\Sigma_{\mu} x^T} < \infty$ [Uehara and Sun, 2021]). As a consequence, the behavior distribution μ must be able to explore each feature dimension for the result to be valid.

Even if Assumption 2.2 does not hold, we can always restrict our algorithmic design to the effective subspan of Σ^μ_h, which causes the alternative notion of $\kappa := \min_{h \in [H]} \{\kappa_h : s.t. \kappa_h = $ smallest positive eigenvalue at time $h\}$ (see Appendix G.1 for detailed discussions). In this scenario, learning the optimal policy cannot be guaranteed as a constant suboptimality gap needs to be suffered due to the lack of coverage and this is formed as assumption-free RL in Yin and Wang [2021b]. Lastly, previous works analyzing the linear MDPs impose very similar assumptions, e.g. Xie et al. [2021a] Theorem 3.2 where Σ^{-1} exists and Min et al. [2021] for the OPE problem.

Next, for any function $V_{h+1}(\cdot) \in [0, H-h]$, we define the conditional variance $\sigma_{V_{h+1}} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}_+$ as $\sigma_{V_{h+1}}(s,a)^2 := \max \{1, \text{Var}_{P_h}(V_{h+1})(s,a) \}$. Based on this definition, we can define the variance-involved population covariance matrices as:

$$\Lambda^\mu_h := \mathbb{E}_{\mu,h} \left[\sigma_{V_{h+1}}(s,a)^{-2} \phi(s,a)\phi(s,a)^T \right].$$

In particular, when $V_h = V^*_h$, we use the notation $\Lambda^{\star\mu}_h$ instead. Since $\sup_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sigma_{V_h}(s,a)^2 \leq H^2$, then by Assumption 2.2 we directly have the following corollary.

Corollary 2.3. Define $\iota_h := \lambda_{\min}(\Lambda^\mu_h)$, $\iota := \min_h \iota_h$. Then $\iota_h \geq \frac{\kappa^2}{H^2} > 0 \forall h \in [H]$, and $\iota > 0$.

3 Algorithm

Least square regression is usually considered as one of the “default” tools for handling problems with linear structures (e.g. LinUCB algorithm for linear Bandits) and finds its popularity in RL as well.
The former has the horizon dependence the optimal result (Yin and Wang [2021b] Theorem 4.1) gives MDPs) weight in (2)). This suggests reweighting scheme might help improve the learning guarantee and \(\beta \)

Denote \(D \) By the offline nature, we can use the independent episodic data by the previous Zhou et al. [2021a] (for online learning) and Min et al. [2021] (for policy evaluation).

Now we explain our framework that incorporates the variance information. Our design is motivated to be less “reliable” than the one (\(s \)) conceptually, the sample piece (\(h \)) to estimate the conditional variance of any \(s,h,a \) \(k \) \(k \in [H] \) \(\tau \in [K] \) (from \(\mu \)) to estimate the conditional variance of any \(V \)-values \(V_{h+1} \) via the definition \(\text{Var}_h V_{h+1}(s,a) = [P_h(V_{h+1})^2](s,a) - ([P_h V_{h+1}](s,a))^2 \). For the second order moment, by Definition 2.1, it holds

\[
[P_h V_{h+1}^2](s,a) = \int_{\Sigma} V_{h+1}^2(s') \ dP_h(s' \mid s,a) = \phi(s,a)^\top \int_S V_{h+1}^2(s') \ d\nu_h(s') .
\]

Denote \(\beta_h := \int_{\Sigma} V_{h+1}^2(s') \ d\nu_h(s') \), then \(P_h V_{h+1}^2 = \langle \phi, \beta_h \rangle \) and we can estimator it via:

\[
\bar{\beta}_h = \arg\min_{\beta \in \mathbb{R}^d} \sum_{k=1}^K \left[\langle \phi(s_h^k,a_h^k), \beta \rangle - V_{h+1}^2(s_h^k | s_{h+1}^k) \right]^2 + \lambda \|\beta\|_2^2 = \sum_{k=1}^K \phi(s_h^k,a_h^k)V_{h+1}^2(s_h^k | s_{h+1}^k)
\]

since Least-Square Value Iteration (LSVI, Jin et al. [2020]) is shown to be provably efficient for linear MDPs, due to that \(V_{h+1}(s') \) is an unbiased estimator of \([P_h V_{h+1}](s,a)\). Concretely, it solves the ridge regression problems at each time steps (with \(\lambda > 0 \) being the regularizar parameter):

\[
\hat{w}_h := \arg\min_{w \in \mathbb{R}^d} \lambda \|w\|_2^2 + \sum_{k=1}^K \left[\langle \phi(s_h^k,a_h^k), w \rangle - r_h^k - V_{h+1}(s_h^k | s_{h+1}^k) \right]^2 \tag{2}
\]

and has the closed-form solution \(\hat{w}_h = \Sigma_h^{-1} \sum_{k=1}^K \phi(s_h^k,a_h^k)[r_{k,h} + V_{h+1}(s_h^k)] \) with the cumulative sample covariance \(\Sigma_h^{-1} = \sum_{k=1}^K \phi(s_h^k,a_h^k)\phi(s_h^k,a_h^k)^\top + \lambda I \). In offline RL, this has also been leveraged in pessimistic value iteration [Jin et al., 2021b] and fitted Q-evaluation [Duan et al., 2020]. Nevertheless, LSVI could only yield suboptimal guarantees, as illustrated by the following example.

Example 3.1. Instantiate PEVI (Theorem 4.4 in Jin et al. [2021b]) with \(\phi(s,a) = 1_{s,a} \) (i.e. tabular MDPs)\(^6\), by direct calculation the learning bound has the form \(O(dH \cdot \sum_{s,h,a} d_h^*(s,a) \sqrt{\text{Var}_{s,a} / K d_h^*(s,a)}) \) and the optimal result (Yin and Wang [2021b] Theorem 4.1) gives \(O((\sum_{s,h,a} d_h^*(s,a))^{3/2}) \) by law of total variance.

Motivation. By comparing the above two expressions, it can be seen that PEVI cannot get rid of the explicit \(H \) factor due to missing the variance information (w.r.t \(V^* \)). If we go deeper, one could find that it might not be all that ideal to put equal weights on all the training samples in the least square objective (2), since, unlike linear regression where the randomness coming from one source distribution, we are regressing over a sequence of distributions in RL (i.e. each \(s_h, a_h \) corresponds to a different distribution \(P(\cdot | s_h, a_h) \) and there are possibly infinite many of them). Therefore, conceptually, the sample piece \((s_h,a_h,s_{h+1}) \) that has higher variance distribution \(P(\cdot | s_h, a_h) \) tends to be less “reliable” than the one \((s_h',a_h',s_{h+1}) \) with lower variance (hence should not have equal weight in (2)). This suggests reweighting scheme might help improve the learning guarantee and reweighting over the variance of the value function stands as a natural choice.

3.1 Variance-Aware Pessimistic Value Iteration

Now we explain our framework that incorporates the variance information. Our design is motivated by the previous Zhou et al. [2021a] (for online learning) and Min et al. [2021] (for policy evaluation).

By the offline nature, we can use the independent episodic data \(D' = \{(s_{h}^k, a_{h}^k, r_{h}^k, s_{h+1}^k)\}_{\tau \in [K]} \) (from \(\mu \)) to estimate the conditional variance of any \(V \)-values \(V_{h+1} \) via the definition \(\text{Var}_h V_{h+1}(s,a) = [P_h(V_{h+1})^2](s,a) - ([P_h V_{h+1}](s,a))^2 \). For the second order moment, by Definition 2.1, it holds

\[
[P_h V_{h+1}^2](s,a) = \int_{\Sigma} V_{h+1}^2(s') \ dP_h(s' \mid s,a) = \phi(s,a)^\top \int_{\Sigma} V_{h+1}^2(s') \ d\nu_h(s') .
\]

Denote \(\beta_h := \int_{\Sigma} V_{h+1}^2(s') \ d\nu_h(s') \), then \(P_h V_{h+1}^2 = \langle \phi, \beta_h \rangle \) and we can estimator it via:

\[
\bar{\beta}_h = \arg\min_{\beta \in \mathbb{R}^d} \sum_{k=1}^K \left[\langle \phi(s_h^k,a_h^k), \beta \rangle - V_{h+1}^2(s_h^k | s_{h+1}^k) \right]^2 + \lambda \|\beta\|_2^2 = \sum_{k=1}^K \phi(s_h^k,a_h^k)V_{h+1}^2(s_h^k | s_{h+1}^k)
\]

\(^6\)This provides a valid illustration since tabular MDP is a special case of linear MDPs.
and, similarly, the first order moment \(P_h V_{h+1} := \langle \phi, \theta_h \rangle \) can be estimated via:

\[
\hat{\theta}_h = \arg \min_{\theta \in \mathbb{R}^d} \sum_{k=1}^K \left[\left(\phi(s^k_h, a^k_h), \theta \right) - V_{h+1} \left(s^k_{h+1} \right) \right]^2 + \lambda \| \theta \|^2 = \Sigma^{-1}_h \sum_{k=1}^K \phi(s^k_h, a^k_h) V_{h+1} \left(s^k_{h+1} \right)
\]

The final estimator is defined as \(\hat{\sigma}_h^2 \hat{\theta}_h \): \[\max\{1, \text{Var}_{h+1}, \langle \hat{\sigma}_h \rangle \} \] with \(\text{Var}_{h+1} \langle \hat{\sigma}_h \rangle \) recovery Algorithm 1 line 8. Here \(\hat{\Sigma}_h = \sum_{\tau=1}^K \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h) + \lambda I_d \).

Algorithm 1 Variance-Aware Pessimistic Value Iteration (VAPVI)

1: **Input:** Dataset \(D = \{ (s^\tau_h, a^\tau_h, r^\tau_h) \}_{\tau,h=1}^{K,H} \); Universal constant \(C \).
2: **Initialization:** Set \(\hat{V}_{h+1}(\cdot) \leftarrow 0 \).
3: for \(h = H, H-1, \ldots, 1 \) do
 4: Set \(\hat{\Sigma}_h \leftarrow \sum_{\tau=1}^K \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h) + \lambda I \)
 5: Set \(\hat{\beta}_h \leftarrow \hat{\Sigma}^{-1}_h \sum_{\tau=1}^K \phi(s^\tau_h, a^\tau_h) \cdot \hat{V}_{h+1}(s^\tau_{h+1})^2 \)
 6: Set \(\hat{\theta}_h \leftarrow \hat{\Sigma}^{-1}_h \sum_{\tau=1}^K \phi(s^\tau_h, a^\tau_h) \cdot \hat{V}_{h+1}(s^\tau_{h+1}) \)
 7: Set \(\left\lbrack \text{Var}_{h+1} \langle \hat{\sigma}_h \rangle \right\rbrack_{\tau,h=1}^{K,H} \) \[\max\{1, \text{Var}_{h+1} \langle \hat{\sigma}_h \rangle \} \] with \(\text{Var}_{h+1} \langle \hat{\sigma}_h \rangle \) recovery Algorithm 1 line 8. Here \(\hat{\Sigma}_h = \sum_{\tau=1}^K \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h) + \lambda I_d \).

Variance-weighted LSVI. The idea of LSVI (2) is based on approximate the Bellman updates: \(\hat{T}_h(V)(s,a) := r_h(s,a) + (P_h V)(s,a) \). With variance estimator \(\hat{\sigma}_h \) at hand, we can modify (2) to solve the variance-weighted LSVI instead (Line 10 of Algorithm 1)

\[
\hat{w}_h := \arg \min_{w \in \mathbb{R}^d} \lambda \| w \|^2 + \sum_{k=1}^K \left[\langle \phi(s^k_h, a^k_h), w \rangle - r^k_h - \hat{V}_{h+1} \left(s^k_{h+1} \right) \right]^2 = \hat{\Lambda}^{-1}_h \sum_{k=1}^K \phi(s^k_h, a^k_h) \cdot \left[\hat{r}^k_h + \hat{V}_{h+1}(s^k_{h+1}) \right]
\]

where \(\hat{\Lambda}_h = \sum_{k=1}^K \phi(s^k_h, a^k_h) \phi(s^k_h, a^k_h) + \lambda I_d \). The estimated Bellman update \(\hat{T}_h \) (acts on \(\hat{V}_{h+1} \)) is defined as: \((\hat{T}_h \hat{V}_{h+1})(\cdot) = \phi(\cdot)^\top \hat{w}_h \) and the pessimism \(\Gamma_h \) is assigned to update \(\hat{Q}_h \approx \hat{T}_h \hat{V}_{h+1} \) + \(\Gamma_h \), i.e. Bellman update + Pessimism (Line 10-12 in Algorithm 1).

Tighter Pessimistic Design. To improve the learning guarantee, we create a tighter penalty design that includes \(\hat{\Lambda}^{-1}_h \) rather than \(\hat{\Sigma}_h^{-1} \) and an extra higher order \(O \left(\frac{1}{K} \right) \) term:

\[
\Gamma_h \leftarrow O \left(\sqrt{d} \cdot (\phi(\cdot)^\top \hat{\Lambda}^{-1}_h \phi(\cdot))^{1/2} \right) + \frac{2H^3 \sqrt{d}}{K}
\]

\(^7\)The truncation used here is a standard treatment for making the estimator to be within the valid range.
Note such a design admits no explicit factor in H in the main term (as opposed to Jin et al. [2021b]) therefore is the key for achieving adaptive/problem-dependent results (as we shall discuss later).

The full algorithm VAPVI is stated in Algorithm 1. In particular, we halve the offline data into two independent parts with $\mathcal{D} = \{(s_h^\tau, a_h^\tau, r_h^\tau, s_h^{\tau+1})\}_{h \in [H]}$ and $\mathcal{D}' = \{(\bar{s}_h^\tau, \bar{a}_h^\tau, \bar{r}_h^\tau, \bar{s}_h^{\tau+1})\}_{h \in [H]}$ for different purposes (estimating variance and updating Q-values).

3.2 Main result

We denote quantities $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4$ as in the notation list Λ. Then VAPVI provides the following result. The complete proof is provided in Appendix C.

Theorem 3.2. Let K be the number of episodes. If $K > \max\{\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4\}$ and $\sqrt{d} > \xi$, where $\xi := \sup_{V \in [0, H], s' \sim P_h(s, a), h \in [H]} \left| \frac{r_h + V(s') - (T_h V)(s, a)}{\sigma_V(s, a)} \right|$. Then for any $0 < \lambda < \kappa$, with probability $1 - \delta$, for all policy π simultaneously, the output $\bar{\pi}$ of Algorithm 1 satisfies

$$v^\pi - v^{\bar{\pi}} \leq \tilde{O}(\sqrt{d} \cdot \sum_{h=1}^{H} \mathbb{E}_\pi \left[\sqrt{\phi(\cdot, \cdot)^\top \Lambda_h^{-1} \phi(\cdot, \cdot)} \right] + \frac{2H^4 \sqrt{d}}{K})$$

where $\Lambda_h = \sum_{k=1}^{K} \frac{\phi(s_h^k, a_h^k) \phi(s_h^k, a_h^k)^\top}{\sigma_{\bar{V}_{h+1}}(s_h^k, a_h^k)} + \lambda I_d$. In particular, we have with probability $1 - \delta$,

$$v^* - v^{\bar{\pi}} \leq \tilde{O}(\sqrt{d} \cdot \sum_{h=1}^{H} \mathbb{E}_{\pi^*} \left[\sqrt{\phi(\cdot, \cdot)^\top \Lambda_h^{\ast -1} \phi(\cdot, \cdot)} \right] + \frac{2H^4 \sqrt{d}}{K})$$

where $\Lambda_h^{\ast} = \sum_{k=1}^{K} \frac{\phi(s_h^k, a_h^k) \phi(s_h^k, a_h^k)^\top}{\sigma_{\bar{V}_{h+1}}(s_h^k, a_h^k)} + \lambda I_d$ and \tilde{O} hides universal constants and the Polylog terms.

Theorem 3.2 provides improvements over the existing best-known results and we now explain it. However, before that, we first discuss about our theorem condition.

Comparing to Zhou et al. [2021a]. In the online regime, Zhou et al. [2021a] is the first result that achieves optimal regret rate with $O(dH \sqrt{T})$ in the linear (mixture) MDPs. However, this result requires the condition $d \geq H$ (their Theorem 6 and Remark 7). In offline RL, VAPVI only requires a milder condition $\sqrt{d} > \xi$ comparing to $d \geq H$ since for any fixed $V \in [0, H]$, the standardized quantity $\frac{r + V(s') - (T V)(s, a)}{\sigma_V(s, a)}$ is bounded by constant with high probability, e.g. by *chebyshev* inequality, which makes our result apply to a wider range of linear MDPs.

Comparing to Jin et al. [2021b]. Jin et al. [2021b] first shows *pessimistic value iteration* (PEVI) is provably efficient for Linear MDPs in offline RL. VAPVI improves PEVI over $O(\sqrt{d})$ on the feature dimension, and improves the horizon dependence as $\Lambda_h \asymp \frac{1}{H^2} \Sigma_h$ implies $\Lambda_h^{-1} \leq H^2 \Sigma_h^{-1}$. In addition, when instantiate to the tabular case, i.e. $\phi(s, a) = 1_{s,a}$, VAPVI gives $O(\sqrt{d} \sum_{h,s,a} d_h^{\ast -1}(s, a) \sqrt{\text{Var}_{p,\pi}(r + V^{\ast + 1})(s, a)})$, which enjoys $O(\sqrt{H})$ improvement over PEVI (recall Example 3.1) and the order $O(H^{3/2})$ is tight (check Section G for the detailed derivation).

Comparing to Xie et al. [2021a]. Their linear MDP guarantee in Theorem 3.2. enjoys the same rate as VAPVI in feature dimension but the horizon dependence is essentially the same as Jin et al.
Comparing to Zanette et al. [2021]. Concurrently, Zanette et al. [2021] considers offline RL with the linear Bellman complete model, which is more general than linear MDPs and, with the assumption \(Q^\pi \leq 1 \), their PACLE algorithm provides near-minimax optimal guarantee in this setting. However, when recovering to the standard setting \(Q^\pi \in [0, H] \), their bound will rescale by an \(H \) factor, which could be suboptimal due to the variance-unawareness. The reason behind this is:

- when \(Q^\pi \leq 1 \), lack of variance information encoding will not matter, since in this case \(\text{Var}_P(V^\pi) \leq 1 \) has constant order (therefore will not affect the optimal rate); when \(Q^\pi \in [0, H] \), \(\text{Var}_P(V^\pi) \) can be as large as \(H^2 \), effectively leveraging the variance information can help improve the sample efficiency, e.g. via law of total variances, just like VAPVI does. On the other hand, their guarantee also requires finite action space, due to the mirror descent style analysis. Nevertheless, we do point out Zanette et al. [2021] has improved state-action measure than VAPVI, as \(\| E_\pi[\phi(\cdot, \cdot)] \|_{M^{-1}} \leq \| E_\pi[\phi(\cdot, \cdot)] \|_{M^{-1}} \) by Jensen’s inequality and that norm \(\| \cdot \|_{M^{-1}} \) is convex for some positive-definite matrix \(M \).

Adaptive characterization and faster convergence. Comparing to existing works, one major improvement is that the main term for VAPVI \(\sqrt{d} \sum_{h=1}^{H} \mathbb{E}_{\pi^*} \left[\sqrt{\phi(\cdot, \cdot)^{\top} \Lambda^{-1}_h \phi(\cdot, \cdot)} \right] \) admits no explicit dependence on \(H \), which provides a more adaptive/instance-dependent characterization. For instance, if we ignore the technical treatment by taking \(\lambda = 0 \) and \(\sigma^*_h \approx \text{Var}_P(V^*_{h+1}) \), then for the partially deterministic systems (where there are \(t \) stochastic \(P_h \)'s and \(H - t \) deterministic \(P_h \)'s), the main term diminishes to \(\sqrt{d} \sum_{i=1}^{t} \mathbb{E}_{\pi^*} \left[\sqrt{\phi(\cdot, \cdot)^{\top} \Lambda^{-1}_{h_i} \phi(\cdot, \cdot)} \right] \) with \(h_i \in \{ h : \text{s.t. } P_h \text{ is stochastic} \} \) and can be a much smaller quantity when \(t \ll H \). Furthermore, for the fully deterministic system, VAPVI automatically provides faster convergence rate \(O(1/K) \) from the higher order term, given that the main term degenerates to 0. Those adaptive/instance-dependent features are not enjoyed by [Xie et al., 2021a, Zanette et al., 2021], as they always provide the standard statistical rate \(O(1/\sqrt{K}) \) (also check Remark C.9 for a related discussion).

3.3 VAPVI-Improved: Further improvement in state-action dimension

Can we further improve the VAPVI? Indeed, by deploying a carefully tuned tighter penalty, we are able to further improve the state-action dependence if the feature is non-negative (\(\phi \geq 0 \)). Concretely, we replace the following \(\Gamma^I_h \) in Algorithm 1 instead, and call the algorithm VAPVI-Improved (or VAPVI-I for short). The proof can be found in Appendix D.

\[
\Gamma^I_h(s, a) \leftarrow \phi(s, a)^{\top} \hat{\Lambda}_h^{-1} \sum_{\tau=1}^{K} \phi(s^\tau_h, a^\tau_h) \cdot \left(r^\tau_h + \hat{V}_{h+1}(s^\tau_{h+1}) - \left(\hat{\tau}_h \hat{V}_{h+1} \right)(s^\tau_h, a^\tau_h) / \hat{\sigma}^2_h(s^\tau_h, a^\tau_h) \right) + \tilde{O}\left(\frac{H^3d}{K} \right) \tag{4}
\]

Theorem 3.3. Suppose the feature is non-negative (\(\phi \geq 0 \)). Let \(K \) be the number of episodes. If \(K > \max\{M_1, M_2, M_3, M_4\} \) and \(\sqrt{d} > \xi \). Deploying \(\Gamma^I_h \) (4) in Algorithm 1. Then for any
0 < \lambda < \kappa$, with probability $1 - \delta$, for all policy π simultaneously, the output $\hat{\pi}$ of Algorithm 1 (VAPVI-I) satisfies

$$v^\pi - v^{\hat{\pi}} \leq \bar{O}(\sqrt{d} \cdot \sum_{h=1}^{H} \sqrt{\mathbb{E}_\pi[\phi(\cdot, \cdot)]^\top \Lambda_h^{-1} \mathbb{E}_\pi[\phi(\cdot, \cdot)]}) + \bar{O}(\frac{H^4d/\kappa}{K})$$

In particular, when choosing $\pi = \pi^*$, the above guarantee holds true with Λ_h^{-1} replaced by Λ_h^{*-1}. Here Λ_h^{-1}, Λ_h^{*-1}, ξ are defined the same as Theorem 3.2.

Theorem 3.3 maintains nearly all the features of Theorem 3.2 (except higher order term is slightly worse) and the dominate term evolves from $\mathbb{E}_\pi \|\phi\|_{\Lambda_h^{-1}}$ to $\|\mathbb{E}_\pi[\phi]\|_{\Lambda_h^{-1}}$. Clearly, the two bounds differ by the magnitude of Jensen’s inequality. To provide a concrete view of how much improvement is made, we check the parameter dependence in the context of tabular MDPs (where we ignore the higher order term for conciseness). In particular, we compare the results under the single-policy concentrability.

Assumption 3.4 (Rashidinejad et al. [2021], Xie et al. [2021b]). There exists a optimal policy π^*, s.t. $\sup_{h,s,a} d^\pi(s,a)/d^{\pi^*}(s,a) = C^* < \infty$, where d^π is the marginal state-action probability under π.

In tabular RL, $\phi(s,a) = 1_{s,a}$ and $d = S \cdot A$ (S, A be the finite state, action cardinality), then

$$\text{Theorem 3.2} \rightarrow \sqrt{SA} \sum_{h} \sum_{s,a} d^\pi(s,a) \sqrt{\mathbb{E}_{P_h}(r + V_{h+1})^2} \leq \sqrt{\frac{H^3C^*SA}{K}};$$

$$\text{Theorem 3.3} \rightarrow \sqrt{SA} \sum_{h} \sum_{s,a} d^\pi(s,a) \sqrt{\mathbb{E}_{P_h}(r + V_{h+1})^2} \leq \sqrt{\frac{H^3C^*SA}{K}}.$$

Theorem 3.3 enjoys a S state improvement over Theorem 3.2 and nearly recovers the minimax rate $\sqrt{\frac{H^3C^*S}{K}}$ [Xie et al., 2021b]. The detailed derivation can be found in Appendix G. Also, to show our result is near-optimal, we provide the corresponding lower bound. The proof is in Appendix E.

Theorem 3.5 (Minimax lower bound). There exist a pair of universal constants $c, c' > 0$ such that given dimension d, horizon H and sample size $K > c'd^3$, one can always find a family of linear MDP instances \mathcal{M} such that (where $\Lambda_h^* = \sum_{k=1}^{K} \phi(s_h^k, a_h^k)\phi(s_h^k, a_h^k)^\top$) satisfies $(\Lambda_h^*)^{-1}$ exists and $\text{Var}_h(V_{h+1}^*)(s_h^k, a_h^k) > 0 \forall M \in \mathcal{M}$

$$\inf_{\hat{\pi}} \sup_{M \in \mathcal{M}} \mathbb{E}_M[v^\pi - v^{\hat{\pi}}]/\left(\sqrt{d} \cdot \sum_{h=1}^{H} \sqrt{\mathbb{E}_\pi[\phi]^\top (\Lambda_h^*)^{-1} \mathbb{E}_\pi[\phi]}\right) \geq c.$$

Theorem 3.5 nearly matches the main term in VAPVI-I (Theorem 3.3) and certifies it is near-optimal. On the other hand, it is worth understanding how the above lower bound compares to the lower bound in Jin et al. [2021b]. In general, they are not directly comparable since both results are global minimax (not instance-dependent/local-minimax) lower bounds as the hardness only hold for a family of hard instances (which makes comparison outside of the family instances vacuum). However, for all the instances within the family, we can verify our lower bound 3.5 is tighter (see Appendix E.6 for detailed discussion).
4 Proof Overview

In this section, we provide a brief overview of the key proving ideas of the theorems. We begin with Theorem 3.2. First, by the extended value difference lemma (Lemma H.7), we can convert bounding the suboptimality gap of \(v^* - \hat{v}^* \) to bounding \(\sum_{h=1}^{H} 2 \cdot \mathbb{E}_{\tau} [\Gamma_h(s_h, a_h)] \), given that \(|(\tau_h \hat{V}_{h+1} - \hat{V}_h V_{h+1})| \leq \Gamma_h(s, a) \) for all \(s, a, h \). To bound \(\tau_h \hat{V}_{h+1} - \hat{V}_h V_{h+1} \), by decomposing it reduces to bounding the key quantity

\[
\phi(s, a)^{\top} \Lambda_h^{-1} \left[\sum_{\tau=1}^{K} \phi(s_h^\tau, a_h^\tau) \cdot \left(r_h^\tau + \hat{V}_{h+1}(s_{h+1}^\tau) - \left(\tau_h \hat{V}_{h+1} \right)(s_h^\tau, a_h^\tau) \right) / \tilde{\sigma}_h^2(s_h^\tau, a_h^\tau) \right]
\]

The term is treated in two steps. First, we bound the gap of \(\|\sigma_{\hat{V}_{h+1}}^2 - \tilde{\sigma}_h^2\| \) so we can convert \(\tilde{\sigma}_h^2 \) to \(\sigma_{\hat{V}_{h+1}}^2 \). Next, since \(\text{Var} \left[r_h^\tau + \hat{V}_{h+1}(s_{h+1}^\tau) - \left(\tau_h \hat{V}_{h+1} \right)(s_h^\tau, a_h^\tau) \right] \approx \sigma_{\hat{V}_{h+1}}^2 \), therefore by the variance-weighted scheme in (7), we can leverage the recent technical development Bernstein inequality for self-normalized martingale (Lemma H.3) for acquiring the tight result, in contrast to the previous treatment of Hoeffding inequality for self-normalized martingale + Covering. For the second part, one needs to further convert \(\sigma_{\hat{V}_{h+1}}^2 \) to \(\sigma_{\hat{V}_{h+1}}^2 \) with appropriate concentrations. The proof of Theorem 3.3 is similar but with more complicated computations and relies on using the linear representation of \(\phi \) in \(\Gamma_h \) (4), so that the expectation over \(\pi \) is inside the square root by taking expectation over the linear representation at the beginning. The lower bound proof uses a simple modification of Zanette et al. [2021] which consists of the reduction from learning to testing with Assouad’s method, and the use of standard information inequalities (e.g. from total variation to KL divergence). For completeness, we provide the full proof in Appendix E.

5 Discussion and Conclusion

This work studies offline RL with linear MDP representation and contributes Variance Aware Pessimistic Value Iteration (VAPVI) which adopts the conditional variance information of the value function. VAPVI uses the estimated variances to reweight the Bellman residuals in the least-square pessimistic value iteration and provides improved offline learning bounds over the existing best-known results. VAPVI-I further improves over VAPVI in the state-action dimension and is near-minimax optimal. One highlight of the theorems is that our learning bounds are expressed in terms of system quantities, which automatically provide natural instance-dependent characterizations that previous results are short of.

On the other hand, while VAPVI/VAPVI-I close the existing gap from previous literature [Jin et al., 2021b, Xie et al., 2021a], the optimal guarantee is in the minimax sense. Although our upper bounds possess instance-dependent characterizations, the lower bound only holds true for a class of hard instances. In this sense, whether “instance-dependent optimality” can be achieved remains elusive in the current linear MDP setting (such a discussion is recently initiated in MAB problems [Xiao et al., 2021]). Furthermore, removing the dependence on \(\kappa \) in the higher order terms (e.g. Theorem 3.3) is challenging and the recent development [Wagenmaker et al., 2021] using robust estimation has the potential to address this issue. We leave these as future works.

\(^9\)Variance-reweighting in (7) is important, since applying Bernstein inequality for self-normalized martingale (Lemma H.3) without variance-reweighting cannot provide any improvement.
Acknowledgments

The authors would like to thank Quanquan Gu for explaining Min et al. [2021] and introducing a couple of related literatures. Ming Yin would like to thank Zhuoran Yang for the helpful suggestions and Dan Qiao for a careful proofreading. Mengdi Wang gratefully acknowledges funding from Office of Naval Research (ONR) N00014-21-1-2288, Air Force Office of Scientific Research (AFOSR) FA9550-19-1-0203, and NSF 19-589, CMMI-1653435. Ming Yin and Yu-Xiang Wang are gratefully supported by National Science Foundation (NSF) Awards #2007117 and #2003257.

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–2320, 2011.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning Research, 22(98):1–76, 2021.

Sanae Amani, Christos Thrampoulidis, and Lin F Yang. Safe reinforcement learning with linear function approximation. arXiv preprint arXiv:2106.06239, 2021.

Andras Antos, Remi Munos, and Csaba Szepesvari. Fitted q-iteration in continuous action-space mdps. In Advances in Neural Information Processing Systems, pages 9–16, 2008a.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-residual minimization based fitted policy iteration and a single sample path. Machine Learning, 71(1):89–129, 2008b.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement learning with value-targeted regression. In International Conference on Machine Learning, pages 463–474. PMLR, 2020.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization. In International Conference on Machine Learning, pages 1283–1294. PMLR, 2020.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In International Conference on Machine Learning, pages 1042–1051, 2019.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. arXiv preprint arXiv:2106.01345, 2021a.

Zixiang Chen, Dongruo Zhou, and Quanquan Gu. Almost optimal algorithms for two-player markov games with linear function approximation. arXiv preprint arXiv:2102.07404, 2021b.

Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a survey. Internet Mathematics, 3(1):79–127, 2006.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford. Provably efficient rl with rich observations via latent state decoding. In International Conference on Machine Learning, pages 1665–1674. PMLR, 2019.
Simon S Du, Sham M Kakade, Jason D Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong Wang. Bilinear classes: A structural framework for provable generalization in rl. *International Conference on Machine Learning*, 2021.

Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear function approximation. In *International Conference on Machine Learning*, pages 8334–8342, 2020.

Yaqi Duan, Chi Jin, and Zhiyuan Li. Risk bounds and rademacher complexity in batch reinforcement learning. *International Conference on Machine Learning*, 2021.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning. *Journal of Machine Learning Research*, 6:503–556, 2005.

Dylan J Foster, Akshay Krishnamurthy, David Simchi-Levi, and Yunzong Xu. Offline reinforcement learning: Fundamental barriers for value function approximation. *arXiv preprint arXiv:2111.10919*, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration. In *International Conference on Machine Learning*, pages 2052–2062. PMLR, 2019.

Minbo Gao, Tianle Xie, Simon S Du, and Lin F Yang. A provably efficient algorithm for linear Markov decision process with low switching cost. *arXiv preprint arXiv:2101.00494*, 2021.

Geoffrey J Gordon. *Approximate solutions to Markov decision processes*. Carnegie Mellon University, 1999.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning with linear function approximation. In *International Conference on Machine Learning*, pages 4171–4180. PMLR, 2021.

Michael Janner, Qiyang Li, and Sergey Levine. Reinforcement learning as one big sequence modeling problem. *arXiv preprint arXiv:2106.02039*, 2021.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contextual decision processes with low bellman rank are pac-learnable. In *International Conference on Machine Learning-Volume 70*, pages 1704–1713, 2017.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement learning with linear function approximation. In *Conference on Learning Theory*, pages 2137–2143. PMLR, 2020.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl problems, and sample-efficient algorithms. *arXiv preprint arXiv:2102.00815*, 2021a.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In *International Conference on Machine Learning*, pages 5084–5096. PMLR, 2021b.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-based offline reinforcement learning. *Advances in Neural Information Processing Systems*, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with in-sample q-learning. In *International Conference on Learning Representations*, 2022.
Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Pac reinforcement learning with rich observations. Advances in neural information processing systems, 2016.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforcement learning. Advances in Neural Information Processing Systems, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement learning, pages 45–73. Springer, 2012.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In International Conference on Machine Learning, pages 3703–3712, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforcement learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

Zhihan Liu, Yufeng Zhang, Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Provably efficient generative adversarial imitation learning for online and offline setting with linear function approximation. arXiv preprint arXiv:2108.08765, 2021.

Yifei Min, Tianhao Wang, Dongruo Zhou, and Quanquan Gu. Variance-aware off-policy evaluation with linear function approximation. Advances in neural information processing systems, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity of reinforcement learning using linearly combined model ensembles. In International Conference on Artificial Intelligence and Statistics, pages 2010–2020. PMLR, 2020.

Rémi Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pages 560–567, 2003.

Thanh Nguyen-Tang, Sunil Gupta, Hung Tran-The, and Svetla Venkatesh. On finite-sample analysis of offline reinforcement learning with deep relu networks. arXiv preprint arXiv:2103.06671, 2021.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline reinforcement learning and imitation learning: A tale of pessimism. arXiv preprint arXiv:2103.12021, 2021.

Tongzheng Ren, Jialian Li, Bo Dai, Simon S Du, and Sujay Sanghavi. Nearly horizon-free offline reinforcement learning. Advances in neural information processing systems, 2021.

Paul D Sampson and Peter Guttorp. Nonparametric estimation of nonstationary spatial covariance structure. Journal of the American Statistical Association, 87(417):108–119, 1992.
Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic q-learning for offline reinforcement learning: Towards optimal sample complexity. *arXiv preprint arXiv:2202.13890*, 2022.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. *nature*, 550(7676):354–359, 2017.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based rl in contextual decision processes: Pac bounds and exponential improvements over model-free approaches. In *Conference on learning theory*, pages 2898–2933. PMLR, 2019.

Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

Csaba Szepesvári and Rémi Munos. Finite time bounds for sampling based fitted value iteration. In *Proceedings of the 22nd international conference on Machine learning*, pages 880–887, 2005.

Mohammad Sadegh Talebi and Odalric-Ambrym Maillard. Variance-aware regret bounds for undiscounted reinforcement learning in mdps. In *Algorithmic Learning Theory*, pages 770–805. PMLR, 2018.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. *Foundations of computational mathematics*, 12(4):389–434, 2012.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline rl: Pac bounds and posterior sampling under partial coverage. *arXiv preprint arXiv:2107.06226*, 2021.

Andrew Wagenmaker, Yifang Chen, Max Simchowitz, Simon S Du, and Kevin Jamieson. First-order regret in reinforcement learning with linear function approximation: A robust estimation approach. *arXiv preprint arXiv:2112.03432*, 2021.

Ruosong Wang, Simon S Du, Lin F Yang, and Ruslan Salakhutdinov. On reward-free reinforcement learning with linear function approximation. *Advances in neural information processing systems*, 2020.

Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of offline rl with linear function approximation? *International Conference on Learning Representations*, 2021a.

Yining Wang, Ruosong Wang, Simon Shaolei Du, and Akshay Krishnamurthy. Optimism in reinforcement learning with generalized linear function approximation. In *International Conference on Learning Representations*, 2021b.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. *arXiv preprint arXiv:1911.11361*, 2019.

Chenjun Xiao, Yifan Wu, Jincheng Mei, Bo Dai, Tor Lattimore, Lihong Li, Csaba Szepesvari, and Dale Schuurmans. On the optimality of batch policy optimization algorithms. In *International Conference on Machine Learning*, pages 11362–11371. PMLR, 2021.

Tengyang Xie and Nan Jiang. Q* approximation schemes for batch reinforcement learning: A theoretical comparison. In *Uncertainty in Artificial Intelligence*, pages 550–559, 2020.
Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent pessimism for offline reinforcement learning. *Advances in neural information processing systems*, 2021a.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging sample-efficient offline and online reinforcement learning. *Advances in neural information processing systems*, 2021b.

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features. In *International Conference on Machine Learning*, pages 6995–7004. PMLR, 2019.

Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and regret bound. In *International Conference on Machine Learning*, pages 10746–10756. PMLR, 2020.

Ming Yin and Yu-Xiang Wang. Asymptotically efficient off-policy evaluation for tabular reinforcement learning. In *International Conference on Artificial Intelligence and Statistics*, pages 3948–3958. PMLR, 2020.

Ming Yin and Yu-Xiang Wang. Optimal uniform ope and model-based offline reinforcement learning in time-homogeneous, reward-free and task-agnostic settings. *Advances in neural information processing systems*, 2021a.

Ming Yin and Yu-Xiang Wang. Towards instance-optimal offline reinforcement learning with pessimism. *Advances in neural information processing systems*, 2021b.

Ming Yin, Yu Bai, and Yu-Xiang Wang. Near-optimal provable uniform convergence in offline policy evaluation for reinforcement learning. In *International Conference on Artificial Intelligence and Statistics*, pages 1567–1575. PMLR, 2021.

Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch rl can be exponentially harder than online rl. *International Conference on Machine Learning*, 2021.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement learning without domain knowledge using value function bounds. In *International Conference on Machine Learning*, pages 7304–7312. PMLR, 2019.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near optimal policies with low inherent bellman error. In *International Conference on Machine Learning*, pages 10978–10989. PMLR, 2020.

Andrea Zanette, Martin J. Wainwright, and Emma Brunskill. Provable benefits of actor-critic methods for offline reinforcement learning, 2021.

Zihan Zhang, Jiaqi Yang, Xiangyang Ji, and Simon S Du. Variance-aware confidence set: Variance-dependent bound for linear bandits and horizon-free bound for linear mixture mdp. *arXiv preprint arXiv:2101.12745*, 2021.
Appendix

A Notation List

\[\Sigma_h^{p} = \mathbb{E}_{\mu,h} \left[\phi(s,a)\phi(s,a)^\top \right] \]
\[\Lambda_h^{p} = \mathbb{E}_{\mu,h} \left[\sigma_{V_{h+1}}(s,a)^{-2}\phi(s,a)\phi(s,a)^\top \right] \]
\[\kappa = \min_h \lambda_{\text{min}}(\Sigma_h^{p}) \]
\[\iota = \min_h \lambda_{\text{min}}(\Lambda_h^{p}) \geq \kappa/H^2 \text{ for any } V_h \]
\[\sigma_{V_h}(s,a) = \max\{1, \text{Var}_{P_h}(V)(s,a)\} \text{ for any } V \]
\[\sigma_{V_{h+1}}(s,a) = \max\{1, \text{Var}_{P_h}(V_{h+1})(s,a)\} \]
\[\sigma_{\bar{V}_h}(s,a) = \max\{1, \text{Var}_{P_h}(\bar{V}_{h+1})(s,a)\} \]
\[\Sigma_h = \sum_{\tau=1}^{K} \phi(s_h^\tau, a_h^\tau)\phi(s_h^\tau, a_h^\tau)^\top + \lambda I_d \]
\[\hat{\Lambda}_h = \sum_{k=1}^{K} \phi(s_h^k, a_h^k)\phi(s_h^k, a_h^k)^\top / \sigma^2_h(s_h^k, a_h^k) + \lambda I_d \]
\[M_1 = \max\{2\lambda, 128\log(2d/\delta), 128H^4 \log(2d/\delta)/\kappa^2 \} \]
\[M_2 = \max\{\frac{\lambda^2}{\kappa \log((\lambda + K)H/\lambda\delta)^2}, 96^2H^{12}d \log((\lambda + K)H/\lambda\delta)^2 \} \]
\[M_3 = \max\\{512H^4/\kappa \log^2(\frac{2d}{\delta}), 4\lambda H^2/\kappa \} \]
\[M_4 = 12\sqrt{H^4d \log((\lambda + K)H/\lambda\delta)/\kappa} \]
\[\delta \] is failure probability
\[\xi \] is failure probability
\[C_{H,d,K} = 36 \sqrt{\frac{H^4d^3}{\kappa} \log \left(\frac{(\lambda + K)2KdH^2}{\lambda^3} \right)} + 12\lambda \frac{H^2\sqrt{d}}{\kappa} \]

B Extended Literature Review

B.1 Linear model representation and its extension in online RL

There are numerous works in online RL that study linear model representations. Yang and Wang [2019, 2020], Jin et al. [2020] propose Linear MDP, which assumes the transition kernel and the reward are linear in given features. Cai et al. [2020], Ayoub et al. [2020], Modi et al. [2020], Zhou
et al. [2021b] propose Linear mixture MDP, which assumes the transition probability is a linear combination of some base kernels. Linear Bellman Complete model [Zanette et al., 2020] generalizes linear MDP model by allowing linear functions to approximate the Q-function and the function class is closed under the Bellman update. The notion of low Bellman rank [Jiang et al., 2017] subsumes not only linear MDPs but also models including linear quadratic regulator (LQR), Reactive POMDP [Krishnamurthy et al., 2016] and Block MDP [Du et al., 2019]. There are also other models, e.g. factored MDP [Sun et al., 2019], Bellman Eluder dimension [Jin et al., 2021a] and Bilinear class [Du et al., 2021]. With the linear MDP model itself, there are also fruitful extensions, e.g. gap-dependent analysis with logarithmic regret [He et al., 2021], low-switching cost RL [Gao et al., 2021], safe RL [Amani et al., 2021], reward-free RL [Wang et al., 2020], generalized linear model (GLM) [Wang et al., 2021b], two-player markov game [Chen et al., 2021b] and generative adversarial learning [Liu et al., 2021]. In particular, Zhou et al. [2021a] shows UCRL-VTR+ is near-minimax optimal when feature dimension $d \geq H$.

B.2 Existing results in offline RL with model representations

Offline RL with general function representations. The finite sample analysis of offline RL with function approximation is initially conducted by Fitted Q-Iteration (FQI) type algorithms and can be dated back to [Munos, 2003, Szepesvári and Munos, 2005, Antos et al., 2008a,b]. Later, Chen and Jiang [2019], Le et al. [2019], Xie and Jiang [2020] follow this line of research and derive the improved learning results. However, owing to the aim for tackling general function approximation, those learning bounds are expressed in terms of the stringent concentrability coefficients (therefore, are less adaptive to individual instances) and are usually only information-theoretical, due to the computational intractability of the optimization procedure over the general function classes. Other works impose weaker assumptions (e.g. partial coverage [Liu et al., 2020, Kidambi et al., 2020, Uehara and Sun, 2021]), and their finite sample analysis are generally suboptimal in terms of H or the effective horizon $(1 - \gamma)^{-1}$.

Offline RL with tabular models. For tabular MDPs, tight learning bounds can be achieved under several data-coverage assumptions. For the class of problems with uniform data-visitation measure d_m, the near-optimal sample complexity bound has the rate $O(H^3/d_m\epsilon^2)$ for time-inhomogeneous MDPs [Yin et al., 2021] and $O(H^2/d_m\epsilon)$ for time-homogeneous MDPs [Yin and Wang, 2021a, Ren et al., 2021]. Under the single concentrability assumption, the tight rate $O(H^3SC^*/\epsilon^2)$ is obtained by Xie et al. [2021b]. In particular, the recent study Yin and Wang [2021b] introduces the intrinsic offline learning bound that is not only instance-dependent but also subsumes previous optimal results.

Offline RL with linear model representations. Recently, there are more focus on studying the provable efficient offline RL under the linear model representations. Jin et al. [2021b] first shows offline RL with linear MDP is provably efficient by the pessimistic value iteration (PEVI), which is an offline counterpart of LSVI-UCB in Jin et al. [2020]. Their analysis deviates from their lower bound by a factor of $d \cdot H$ (check their Theorem 4.4 and 4.6). Later, Xie et al. [2021a] considers function approximation under the Bellman-consistent assumptions, and, when realized to linear MDP setting, improve the sample complexity guarantee of Jin et al. [2021b] by a order $O(d)$ (Theorem 3.2). However, their improvement only holds for finite action space (due to the dependence $\log |A|$) and by the direct reduction (from Theorem 3.1) their result does not imply a computationally tractable algorithm. In addition, there is no improvement on the horizon dependence. Concurrently, Zanette
et al. [2021] considers the Linear Bellman Complete model (which originates from its online version Zanette et al. [2020]) and designs the actor-critic style algorithm that achieves tight result under the assumption that the value function is bounded by 1. While their algorithm is efficient (which is based on solving a sequence of second-order cone programs), the resulting learning bound requires the action space to be finite due to the mirror descent/natural policy gradient updates in the Actor procedure [Agarwal et al., 2021]. Besides, assuming the value function to be less than 1 simplifies the challenges in dealing with horizon H since when rescale their result to $[0, H]$, there is a H factor blow-up, which makes no improvement in the horizon dependence comparing to Jin et al. [2021b]. On the other hand, Wang et al. [2021a], Zanette [2021] study the statistical hardness of offline RL with linear representations by proofing the exponential lower bounds. As a result, none of the existing algorithms can achieve the statistical limit for the well-structured linear MDP model with the general (infinite or continuous) state-action spaces in the offline regime.

Variance-aware studies. Talebi and Maillard [2018] first incorporates the variance structure in online tabular MDPs and Zanette and Brunskill [2019] tightens the result. For linear MDPs, Zhou et al. [2021a] first uses variance structure to achieve near-optimal result and the Weighted OFUL incorporates the variance structure explicitly in the regret bound. Recently, Variance-awareness is also considered in Zhang et al. [2021] for horizon-free setting and for OPE problem [Min et al., 2021]. In particular, We point out that Min et al. [2021] is the first work that uses variance reweighting for policy evaluation in offline RL, which inspires our study for policy optimization problem. The guarantee of Min et al. [2021] strictly improves over Duan et al. [2020] for OPE problem.

C Proofs in Section 3.2

Instead of proofing the result for $v^* - v^\hat{\pi}$, in most parts of the proof we deal with $V_1^* - V_1^\hat{\pi}$, which is more general.

C.1 Some preparations

Define the Bellman update error $\zeta_h(s, a) := (T_h \hat{V}_{h+1})(s, a) - \hat{Q}_h(s, a)$ and recall $\hat{\pi}(s) = \arg\max_{\pi_h} (\hat{Q}_h(s, \cdot), \pi_h(\cdot | s))$, then by the direct application of Lemma H.8

$$V_1^\pi(s) - V_1^{\hat{\pi}}(s) \leq \sum_{h=1}^{H} \mathbb{E}_{\pi_h}[\zeta_h(s_h, a_h) \mid s_1 = s] - \sum_{h=1}^{H} \mathbb{E}_{\hat{\pi}}[\zeta_h(s_h, a_h) \mid s_1 = s]. \quad (8)$$

The next lemma shows it is sufficient to bound the pessimistic penalty, which is the key in the proof.

Lemma C.1. Suppose with probability $1 - \delta$, it holds for all $h, s, a \in [H] \times \mathcal{S} \times \mathcal{A}$ that $|(T_h \hat{V}_{h+1} - \hat{T}_h \hat{V}_{h+1})(s, a)| \leq \Gamma_h(s, a)$, then it implies $\forall s, a, h \in \mathcal{S} \times \mathcal{A} \times [H], 0 \leq \zeta_h(s, a) \leq 2\Gamma_h(s, a)$. Furthermore, it holds for any policy π simultaneously, with probability $1 - \delta$,

$$V_1^\pi(s) - V_1^{\hat{\pi}}(s) \leq \sum_{h=1}^{H} 2 \cdot \mathbb{E}_{\pi}[\Gamma_h(s_h, a_h) \mid s_1 = s].$$

Proof of Lemma C.1. We first show given $|(T_h \hat{V}_{h+1} - \hat{T}_h \hat{V}_{h+1})(s, a)| \leq \Gamma_h(s, a)$, then $0 \leq \zeta_h(s, a) \leq 2\Gamma_h(s, a), \forall s, a, h \in \mathcal{S} \times \mathcal{A} \times [H]$.

20
Step 1: we first show $0 \leq \zeta_h(s, a), \forall s, a, h \in S \times A \times [H]$. Indeed, if $\hat{Q}_h(s, a) \leq 0$, then by definition $\hat{Q}_h(s, a) = 0$ and in this case $\zeta_h(s, a) := (T_h \hat{V}_{h+1})(s, a) - \hat{Q}_h(s, a) = (T_h \hat{V}_{h+1})(s, a) \geq 0$; if $Q_h(s, a) > 0$, then $\hat{Q}_h(s, a) \leq Q_h(s, a)$ and

$$
\zeta_h(s, a) := (T_h \hat{V}_{h+1})(s, a) - \hat{Q}_h(s, a) \geq (T_h \hat{V}_{h+1})(s, a) - \hat{Q}_h(s, a)
$$

$$
= (T_h \hat{V}_{h+1})(s, a) - (\hat{T}_h \hat{V}_{h+1})(s, a) + \Gamma_h(s, a) \geq 0.
$$

Step 2: next we show $\zeta_h(s, a) \leq 2 \Gamma_h(s, a), \forall s, a, h \in S \times A \times [H]$. Indeed, we have $\hat{Q}_h(s, a) = \max(\hat{Q}_h(s, a), 0)$ and this is because: $\hat{Q}_h(x, a) = (T_h \hat{V}_{h+1})(x, a) - \Gamma_h(x, a) \leq (T_h \hat{V}_{h+1})(x, a) \leq H - h + 1$. Therefore, in this case we have:

$$
\zeta_h(s, a) := (T_h \hat{V}_{h+1})(s, a) - \hat{Q}_h(s, a) \leq (T_h \hat{V}_{h+1})(s, a) - Q_h(s, a)
$$

$$
= (T_h \hat{V}_{h+1})(s, a) - (\hat{T}_h \hat{V}_{h+1})(s, a) + \Gamma_h(s, a) \leq 2 \cdot \Gamma_h(s, a).
$$

For the last statement, denote $\mathcal{F} := \{0 \leq \zeta_h(s, a) \leq 2 \Gamma_h(s, a), \forall s, a, h \in S \times A \times [H]\}$. Note conditional on \mathcal{F}, then by (8), $V_1^\pi(s) - V_1^\pi(s) \leq \sum_{h=1}^{H} \mathbb{E}_\pi[\Gamma_h(s_h, a_h) \mid s_1 = s]$ holds for any policy π almost surely. Therefore,

$$
\mathbb{P} \left[\forall \pi, \ V_1^\pi(s) - V_1^\pi(s) \leq \sum_{h=1}^{H} 2 \cdot \mathbb{E}_\pi[\Gamma_h(s_h, a_h) \mid s_1 = s] \right]
$$

$$
= \mathbb{P} \left[\forall \pi, \ V_1^\pi(s) - V_1^\pi(s) \leq \sum_{h=1}^{H} 2 \cdot \mathbb{E}_\pi[\Gamma_h(s_h, a_h) \mid s_1 = s] \middle| \mathcal{F} \right] \cdot \mathbb{P}[\mathcal{F}]
$$

$$
+ \mathbb{P} \left[\forall \pi, \ V_1^\pi(s) - V_1^\pi(s) \leq \sum_{h=1}^{H} 2 \cdot \mathbb{E}_\pi[\Gamma_h(s_h, a_h) \mid s_1 = s] \middle| \mathcal{F}^c \right] \cdot \mathbb{P}[\mathcal{F}^c]
$$

$$
\geq \mathbb{P} \left[\forall \pi, \ V_1^\pi(s) - V_1^\pi(s) \leq \sum_{h=1}^{H} 2 \cdot \mathbb{E}_\pi[\Gamma_h(s_h, a_h) \mid s_1 = s] \right] \cdot \mathbb{P}[\mathcal{F}] \geq 1 \cdot \mathbb{P}[\mathcal{F}] \geq 1 - \delta,
$$

which finishes the proof.

C.2 Bounding $\left| (T_h \hat{V}_{h+1})(s, a) - (\hat{T}_h \hat{V}_{h+1})(s, a) \right|$.

By Lemma C.1, it remains to bound $\left| (T_h \hat{V}_{h+1})(s, a) - (\hat{T}_h \hat{V}_{h+1})(s, a) \right|$. Suppose w_h is the coefficient corresponding to the $T_h \hat{V}_{h+1}$ (such w_h exists by Lemma H.9), i.e. $T_h \hat{V}_{h+1} = \phi^\top w_h$, and recall
\((\hat{T}_h \hat{V}_{h+1})(s, a) = \phi(s, a) \hat{\varphi} = \phi(s, a) \hat{\varphi} w_h\), then:
\[
\left(\hat{T}_h \hat{V}_{h+1}\right)(s, a) - \left(\hat{T}_h \hat{V}_{h+1}\right)(s, a) = \phi(s, a)^\top (w_h - \hat{w}_h)
\]
\[
= \phi(s, a)^\top w_h - \phi(s, a)^\top \hat{\Lambda}_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s_h^\tau, a_h^\tau) \cdot \left(\hat{T}_h \hat{V}_{h+1} \left(\hat{s}_h^\tau \hat{a}_h^\tau\right)\right) / \hat{\sigma}_h^2(s_h^\tau, a_h^\tau)\right)
\]
\[
= \phi(s, a)^\top w_h - \phi(s, a)^\top \hat{\Lambda}_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s_h^\tau, a_h^\tau) \cdot \left(\hat{T}_h \hat{V}_{h+1} \left(\hat{s}_h^\tau \hat{a}_h^\tau\right)\right) / \hat{\sigma}_h^2(s_h^\tau, a_h^\tau)\right)
\]
\[
\leq \phi(s, a)^\top \hat{\Lambda}_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s_h^\tau, a_h^\tau) \cdot \left(\hat{T}_h \hat{V}_{h+1} \left(\hat{s}_h^\tau \hat{a}_h^\tau\right)\right) / \hat{\sigma}_h^2(s_h^\tau, a_h^\tau)\right)
\]
\[
\leq \phi(s, a)^\top \hat{\Lambda}_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s_h^\tau, a_h^\tau) \cdot \left(\hat{T}_h \hat{V}_{h+1} \left(\hat{s}_h^\tau \hat{a}_h^\tau\right)\right) / \hat{\sigma}_h^2(s_h^\tau, a_h^\tau)\right)
\]
\[
\leq H^3 \sqrt{d}/K.
\]

The term (i) is dealt by the following lemma.

Lemma C.2. Recall \(\kappa\) in Assumption 2.2. Suppose \(K \geq \max\{512H^4/\kappa^2 \log (\frac{2d}{\delta}) , 4\lambda H^2/\kappa\}\), then with probability \(1 - \delta\), for all \(s, a, h \in \mathcal{S} \times \mathcal{A} \times [H]\)
\[
\left| \phi(s, a)^\top w_h - \phi(s, a)^\top \hat{\Lambda}_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s_h^\tau, a_h^\tau) \cdot \left(\hat{T}_h \hat{V}_{h+1} \left(\hat{s}_h^\tau \hat{a}_h^\tau\right)\right) / \hat{\sigma}_h^2(s_h^\tau, a_h^\tau)\right) \right| \leq \frac{2\lambda H^3 \sqrt{d}/\kappa}{K}.
\]

Proof. Recall \(\hat{T}_h \hat{V}_{h+1} = \phi^\top w_h\) and apply Lemma H.6, we obtain with probability \(1 - \delta\), for all \(s, a, h \in \mathcal{S} \times \mathcal{A} \times [H]\),
\[
\left| \phi(s, a)^\top w_h - \phi(s, a)^\top \hat{\Lambda}_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s_h^\tau, a_h^\tau) \cdot \left(\hat{T}_h \hat{V}_{h+1} \left(\hat{s}_h^\tau \hat{a}_h^\tau\right)\right) / \hat{\sigma}_h^2(s_h^\tau, a_h^\tau)\right) \right| \leq \frac{\lambda H^3 \sqrt{d}/\kappa}{K}.
\]

where \(\hat{\Lambda}_h^p := \mathbb{E}_{\mu, h} \left[\tilde{\sigma}_h(s, a)^{-2} \phi(s, a) \phi(s, a)^\top\right]\) and the second inequality is by Lemma H.6 (with \(\phi' = \phi / \hat{\sigma}_h\) and \(\|\phi / \hat{\sigma}_h\| / \|\phi\| / 1 \geq C\)) and the third inequality uses \(\sqrt{a^\top \cdot a} / \|a\| \leq \|a\| / \|a\| / 2\) with \(a\) to be either \(\phi\) or \(w_h\). Moreover, \(\lambda_{\min}(\hat{\Lambda}_h^p) \geq \kappa / \max_{h, a} \sigma_h(s, a)^2 \geq \kappa / H^2\) implies \(\|\hat{\Lambda}_h^p\|^{-1} \leq H^2 / \kappa\), therefore for all \(s, a, h \in \mathcal{S} \times \mathcal{A} \times [H]\), with probability \(1 - \delta\)
\[
\left| \phi(s, a)^\top w_h - \phi(s, a)^\top \hat{\Lambda}_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s_h^\tau, a_h^\tau) \cdot \left(\hat{T}_h \hat{V}_{h+1} \left(\hat{s}_h^\tau \hat{a}_h^\tau\right)\right) / \hat{\sigma}_h^2(s_h^\tau, a_h^\tau)\right) \right| \leq \frac{2\lambda H^3 \sqrt{d}/\kappa}{K}.
\]
For term (ii), denote: \(x_\tau = \frac{\phi(s_h^*, a_h^*)}{\sigma(s_h^*, a_h^*)} \), \(\eta_\tau = \left(r_\tau + \hat{V}_{h+1}(s_{h+1}^*) - \left(\hat{T}_h \hat{V}_{h+1} \right) (s_h^*, a_h^*) \right) / \hat{\sigma}(s_h^*, a_h^*) \), then by Cauchy inequality it follows

\[
\left| \phi(s, a)^\top \Lambda_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s_h^*, a_h^*) : (r_\tau + \hat{V}_{h+1}(s_{h+1}^*) - \left(\hat{T}_h \hat{V}_{h+1} \right) (s_h^*, a_h^*) / \hat{\sigma}(s_h^*, a_h^*) \right) \right| \leq \sqrt{\phi(s, a)^\top \Lambda_h^{-1} \phi(s, a)} \cdot \| \sum_{\tau=1}^{K} x_\tau \eta_\tau \|_{\Lambda_h^{-1}}
\]

(10)

C.2.1 Analyzing the term \(\sqrt{\phi(s, a)\Lambda_h^{-1}\phi(s, a)} \)

Recall (in Theorem 3.2) the estimated \(\hat{\Lambda}_h = \sum_{\tau=1}^{K} \phi(s_h^*, a_h^*) \phi(s_h^*, a_h^*)^\top / \hat{\sigma}^2(s_h^*, a_h^*) + \lambda \cdot I \) and \(\Lambda_h = \sum_{\tau=1}^{K} \phi(s_h^*, a_h^*) \phi(s_h^*, a_h^*)^\top / \sigma^2_{\hat{V}_{h+1}}(s_h^*, a_h^*) + \lambda I \). Then we have the following lemma to control the term \(\sqrt{\phi(s, a)\Lambda_h^{-1}\phi(s, a)} \).

Lemma C.3. Denote the quantities \(C_1 = \max\{2\lambda, 128\log(2d/\delta), 128H^4\log(2d/\delta)/\kappa^2\} \) and \(C_2 = \max\{\frac{\lambda^2}{\kappa\log((\lambda + K)H/\lambda\delta)}, \frac{96^2H^2\log((\lambda + K)H/\lambda\delta)/\kappa^5}{\} \). Suppose the number of episode \(K \) satisfies \(K > \max\{C_1, C_2\} \), then with probability \(1 - \delta \),

\[
\sqrt{\phi(s, a)\Lambda_h^{-1}\phi(s, a)} \leq 2\sqrt{\phi(s, a)\Lambda_h^{-1}\phi(s, a)}, \quad \forall s, a \in S \times A.
\]

Proof of Lemma C.3. By definition \(\sqrt{\phi(s, a)\Lambda_h^{-1}\phi(s, a)} = \| \phi(s, a) \|_{\Lambda_h^{-1}} \). Then denote

\[
\hat{\Lambda}'_h = \frac{1}{K} \hat{\Lambda}_h, \quad \Lambda'_h = \frac{1}{K} \Lambda_h,
\]

where \(\Lambda_h = \sum_{\tau=1}^{K} \phi(s_h^*, a_h^*)^\top \phi(s_h^*, a_h^*) / \sigma^2_{\hat{V}_{h+1}}(s_h^*, a_h^*) + \lambda I \). Under the condition of \(K \), by Lemma C.7, with probability \(1 - \delta \)

\[
\left\| \hat{\Lambda}'_h - \Lambda'_h \right\| \leq \sup_{s, a} \left\| \phi(s, a) \phi(s, a)^\top - \phi(s, a) \phi(s, a)^\top \right\| \leq \sup_{s, a} \left\| \phi(s, a) \phi(s, a)^\top \right\| \left\| \phi(s, a) \right\|^2 \leq \sup_{s, a} \left\| \phi(s, a) \phi(s, a)^\top \right\| \left(\frac{\sigma^2_{\hat{V}_{h+1}}(s, a)}{\sigma^2_h(s, a) \sigma^2_{\hat{V}_{h+1}}(s, a)} \right) \left(\frac{\hat{\sigma}^2_h(s, a) \sigma^2_{\hat{V}_{h+1}}(s, a)}{\sigma^2_h(s, a) \sigma^2_{\hat{V}_{h+1}}(s, a)} \right) \leq 12 \sqrt{\frac{H^4 d}{\kappa K} \log \left(\frac{(\lambda + K)H}{\lambda\delta} \right)} + 12 \lambda \frac{H^2 \sqrt{d}}{\kappa K}.
\]

Next by Lemma H.5 (with \(\phi \) to be \(\phi/\sigma_{\hat{V}_{h+1}} \) and \(C = 1 \)), it holds with probability \(1 - \delta \),

\[
\left\| \Lambda'_h - \left(E_{\mu, h} \phi(s, a) \phi(s, a)^\top / \alpha_{\hat{V}_{h+1}}^2(s, a) \right) + \frac{\lambda}{K} I_d \right\| \leq 4\sqrt{\frac{2}{\kappa K} \left(\log \frac{2d}{\delta} \right)^{1/2}}.
\]
Therefore by Weyl’s spectrum theorem and the condition \(K > \max \{2\lambda, 128 \log (2d/\delta), 128H^4 \log (2d/\delta)/\kappa^2 \} \), the above implies

\[
\| \Lambda_h' \| = \lambda_{\max}(\Lambda_h') \leq \lambda_{\max} \left(\mathbb{E}_{\mu,h}[\phi(s,a)\phi(s,a)^\top/\sigma^2_{\nu_{h+1}}(s,a)] \right) + \frac{\lambda}{K} + \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \\
= \left\| \mathbb{E}_{\mu,h}[\phi(s,a)\phi(s,a)^\top/\sigma^2_{\nu_{h+1}}(s,a)] \right\|_2 + \frac{\lambda}{K} + \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \\
\leq \| \phi(s,a) \|^2 + \frac{\lambda}{K} + \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \leq 1 + \frac{\lambda}{K} + \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \leq 2,
\]

\[
\lambda_{\min}(\Lambda_h') \geq \lambda_{\min} \left(\mathbb{E}_{\mu,h}[\phi(s,a)\phi(s,a)^\top/\sigma^2_{\nu_{h+1}}(s,a)] \right) + \frac{\lambda}{K} - \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \\
\geq \lambda_{\min} \left(\mathbb{E}_{\mu,h}[\phi(s,a)\phi(s,a)^\top/\sigma^2_{\nu_{h+1}}(s,a)] \right) - \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \\
\geq \frac{\kappa}{H^2} - \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \geq \frac{\kappa}{2H^2}.
\]

Hence with probability \(1 - \delta \), \(\| \Lambda_h' \| \leq 2 \) and \(\| \Lambda_h'^{-1} \| = 1/\lambda_{\min}(\Lambda_h') \leq 2H^2/\kappa \). Similarly, one can show \(\| \hat{\Lambda}_h'^{-1} \| \leq 2H^2/\kappa \) with high probability.

Now apply Lemma H.4 to \(\hat{\Lambda}_h' \) and \(\Lambda_h' \) and a union bound, we obtain with probability \(1 - \delta \), for all \(s,a \)

\[
\| \phi(s,a) \|_{\hat{\Lambda}_h'^{-1}} \leq \left[1 + \sqrt{\| \Lambda_h'^{-1} \| \| \Lambda_h' \| \cdot \left\| \hat{\Lambda}_h' - \Lambda_h' \right\| \cdot \| \phi(s,a) \|_{\Lambda_h'^{-1}} \right] \cdot \| \phi(s,a) \|_{\Lambda_h'^{-1}} \\
\leq \left[1 + \frac{2H^2}{\kappa} \cdot 1 \cdot \frac{2H^2}{\kappa} \cdot \left\| \hat{\Lambda}_h' - \Lambda_h' \right\| \cdot \| \phi(s,a) \|_{\Lambda_h'^{-1}} \right] \cdot \| \phi(s,a) \|_{\Lambda_h'^{-1}} \\
\leq \left[1 + \frac{48H^4}{\kappa^2} \left(\sqrt{\frac{H^4d}{\kappa K} \log \left(\frac{(\lambda + K)H}{\lambda \delta} \right) + \frac{H^2d}{\kappa K}} \right) \right] \cdot \| \phi(s,a) \|_{\Lambda_h'^{-1}} \\
\leq \left[1 + \frac{96H^4}{\kappa^2} \sqrt{\frac{H^4d}{\kappa K} \log \left(\frac{(\lambda + K)H}{\lambda \delta} \right) } \right] \cdot \| \phi(s,a) \|_{\Lambda_h'^{-1}} \leq 2 \| \phi(s,a) \|_{\Lambda_h'^{-1}}
\]

where the third inequality uses (11) and the last and the second last inequality use \(K > \max \{\frac{\lambda^2}{\kappa \log ((\lambda + K)H/2d)}, 96^2H^{12}d/K)H/(\lambda\delta)/\kappa^5 \} \). Note the above is equivalent to \(\sqrt{\phi(s,a)\hat{\Lambda}_h'^{-1}\phi(s,a)} \leq 2\sqrt{\phi(s,a)\Lambda_h'^{-1}\phi(s,a)} \) by multiplying \(1/\sqrt{K} \) on both sides.

\[\square\]
C.2.2 Analyzing the term $\left\| \sum_{\tau=1}^{K} x_{\tau} \eta_{\tau} \right\|_{\hat{\lambda}^{-1}}$

Lemma C.4. Recall $x_{\tau} = \frac{\phi(s_{\tau}^r, a_{\tau}^r)}{\sigma(s_{\tau}^r, a_{\tau}^r)}$ and $\eta_{\tau} = \left(\frac{r^\tau_h + \hat{V}_{h+1}(s_{h+1}^r) - \left(T_h \hat{V}_{h+1} \right)(s_{h+1}^r, a_{h}^r)}{\hat{\sigma}(s_{h}^r, a_{h}^r)} \right)$.

Let $C_{H,d,\kappa,K} := 36 \sqrt{\frac{H^4 d^3}{\kappa}} \log \left(\frac{\lambda + K^2 d H^2}{\lambda \delta} \right) + 12 \lambda \frac{H^2 \sqrt{d}}{\kappa}$ and denote

$$\xi := \sup_{V \in [0,H], s' \sim P_h(s,a), h \in [H]} \left\| \frac{r_h + V(s') - (T_h V)(s,a)}{\sigma_V(s,a)} \right\|.$$

If $K \geq 4C_{H,d,\kappa,K}^2$ and $K \geq \tilde{O}(H^6 d/\kappa)$, then with probability $1 - \delta$,

$$\left\| \sum_{\tau=1}^{K} x_{\tau} \eta_{\tau} \right\|_{\hat{\lambda}^{-1}} \leq 16 \sqrt{d \log \left(1 + \frac{K}{\lambda d} \right) \log \left(\frac{4K^2 \delta}{\delta} \right)} + 4\xi \log \left(\frac{4K^2 \delta}{\delta} \right) \leq \tilde{O} \max \{ \sqrt{d}, \xi \},$$

where \tilde{O} absorbs the constants and Polylog terms.

Proof of Lemma C.4. By construction, we have $\|x_{\tau}\| \leq \|\phi/\hat{\sigma}\| \leq 1$ and by Lemma C.7, with probability $1 - \delta/3$,

$$\left\| \sigma_{\hat{V}_{h+1}} - \hat{\sigma}_h \right\|_{\infty} = \sup_{s,a} \left\| \frac{\sigma^2_{\hat{V}_{h+1}}(s,a) - \hat{\sigma}^2_h(s,a)}{\sigma_{\hat{V}_{h+1}}(s,a) + \hat{\sigma}_h(s,a)} \right\| \leq \frac{1}{2} \left\| \sigma^2_{\hat{V}_{h+1}} - \hat{\sigma}^2_h \right\|_{\infty} \leq C_{H,d,\kappa,K} \sqrt{\frac{1}{K}}$$

Therefore, when $K \geq 4C_{H,d,\kappa,K}^2$, $C_{H,d,\kappa,K} \sqrt{\frac{1}{K}} \leq 1/2 \leq \sigma_{\hat{V}_{h+1}}(s_{h}^r, a_{h}^r)/2$ and hence

$$|\eta_{\tau}| \leq \frac{r^\tau_h + \hat{V}_{h+1}(s_{h+1}^r) - \left(T_h \hat{V}_{h+1} \right)(s_{h+1}^r, a_{h}^r)}{\sigma_{\hat{V}_{h+1}}(s_{h}^r, a_{h}^r)} \leq 2 \left| \frac{r^\tau_h + \hat{V}_{h+1}(s_{h+1}^r) - \left(T_h \hat{V}_{h+1} \right)(s_{h+1}^r, a_{h}^r)}{\sigma_{\hat{V}_{h+1}}(s_{h}^r, a_{h}^r)} \right| \leq 2 \sup_{V \in [0,H], s' \sim P_h(s,a)} \left| \frac{r + V(s') - (T_h V)(s,a)}{\sigma_V(s,a)} \right| := \xi.$$

Next, for a fixed function V, we define the Bellman error as $B_h(V)(s,a) = r_h + V(s') - (T_h V)(s,a)$,
where the first inequality is by Lemma H.11, the second inequality is by \(T_h \) is non-expansive, the third inequality is by Lemma C.8, the next equality is by Markovian property, and the fourth inequality is by Lemma C.7 and Lemma C.10. The fifth inequality uses definition \(\sigma_{h,V}(s,a)^2 := \max\{1, \text{Var}_{P_h}(V)(s,a)\} \) and the last one is by condition \(K \geq \tilde{O}(H^d d/\kappa) \) and \(\sigma_{h,V^*}(s,a)^2 := \max\{1, \text{Var}_{P_h}(V^*)(s,a)\} \geq 1 \). Thus, by Bernstein inequality for self-normalized martingale (Lemma H.3),\(^{10} \) with probability \(1 - \delta \),

\[
\left\| \sum_{\tau=1}^{K} x_{\tau} \eta_{\tau} \right\|_{\hat{\lambda}^{-1}} \leq \tilde{O}\left(\sqrt{d \log\left(1 + \frac{K}{\lambda d}\right) \cdot \log\left(\frac{4K^2}{\delta}\right)} \right) + 4\xi \log\left(\frac{4K^2}{\delta}\right) \leq \tilde{O} \max\{\sqrt{d}, \xi\}
\]

where \(\tilde{O} \) absorbs the constants and Polylog terms.

Recall \(\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}, \mathcal{M}_{4} \) in List A. Based on the above results, we have the following key lemma:

Lemma C.5. Assume \(K > \max\{\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}, \mathcal{M}_{4}\} \), for any \(0 < \lambda < \kappa \), suppose \(\sqrt{d} > \xi \), where \(\xi := \sup_{V \in [0,H], \ s' \sim P_h(s,a), \ h \in [H]} \left| \frac{r_h + V(s') - (T_h V)(s,a)}{\sigma_V(s,a)} \right| \). Then with probability \(1 - \delta \), for all \(h, s, a \in [H] \times \mathcal{S} \times \mathcal{A} \),

\[
\left| (T_h \hat{V}_{h+1} - T_h \hat{V}_{h+1})(s,a) \right| \leq \tilde{O}\left(\sqrt{d} \sqrt{\phi(s,a)} \Lambda^{-1}_h \phi(s,a) \right) + \frac{2H^3 \sqrt{d}}{K},
\]

\(^{10} \)To be rigorous, Lemma H.3 needs to be modified since the absolute value bound and the variance bound here are in the high probability sense. However, this will not affect the validity of the result as the weaker version can also be obtained (see Chung and Lu [2006] and a related discussion in Yin et al. [2021] Remark E.7.) To make the proof more readable, we do not include them here to avoid over-technicality.
where } \Lambda_h = \sum_{\tau=1}^K \phi(s_h^{\tau}, a_h^{\tau})^\top \phi(s_h^{\tau}, a_h^{\tau}) / \sigma_{V_{h+1}}^2 (s_h^{\tau}, a_h^{\tau}) + \lambda I \text{ and } \tilde{O} \text{ absorbs the universal constants and Polylog terms.}

\textbf{Proof of Lemma C.5.} Combing (9), Lemma C.2, (10), Lemma C.3 and C.4 and a union bound to finish the proof. \hfill \blacksquare

\subsection{C.3 Proof of the first part of Theorem 3.2}

\textbf{Theorem C.6} (First part of Theorem 3.2). Let } K \text{ be the number of episodes. Suppose } \sqrt{d} > \xi, \text{ where } \xi := \sup_{V \in [0, H], s' \sim P_h(s,a), h \in [H]} \left| r_h + V(s') - (\hat{T}_h V)(s, a) \right| \text{ and } K > \max\{ M_1, M_2, M_3, M_4 \} \text{. Then for any } 0 < \lambda < \kappa, \text{ with probability } 1 - \delta, \text{ for all policy } \pi \text{ simultaneously, the output } \hat{\pi} \text{ of Algorithm 1 satisfies}

\begin{align*}
V^\pi_1 - V^\hat{\pi}_1 \leq \tilde{O} \left(\sqrt{d} \cdot \sum_{h=1}^H \mathbb{E}_\pi \left[\left(\phi(\cdot, \cdot)^\top \Lambda_h^{-1} \phi(\cdot, \cdot) \right)^{1/2} \right] \right) + \frac{2H^4\sqrt{d}}{K}
\end{align*}

where } \Lambda_h = \sum_{\tau=1}^K \frac{\phi(s_h^{\tau}, a_h^{\tau})\phi(s_h^{\tau}, a_h^{\tau})^\top}{\sigma_{V_{h+1}}^2 (s_h^{\tau}, a_h^{\tau})} + \lambda I \text{ and } \tilde{O} \text{ absorbs the universal constants and the Polylog terms.}

\textbf{Proof of Theorem C.6.} Combing Lemma C.1 and Lemma C.5, we directly have with probability } 1 - \delta, \text{ for all policy } \pi \text{ simultaneously,

\begin{align*}
V^\pi_1(s) - V^\hat{\pi}_1(s) \leq \tilde{O} \left(\sqrt{d} \cdot \sum_{h=1}^H \mathbb{E}_\pi \left[\left(\phi(\cdot, \cdot)^\top \Lambda_h^{-1} \phi(\cdot, \cdot) \right)^{1/2} \right| s_1 = s \right] \right) + \frac{2H^4\sqrt{d}}{K}, \quad (12)
\end{align*}

now take the initial distribution } d_1 \text{ on both sides to get the stated result. } \hfill \blacksquare

\subsection{C.4 Two Intermediate results}

The next two lemmas provide intermediate results in finishing the whole proofs.

\subsection*{C.4.1 Bounding the variance}

\textbf{Lemma C.7.} Recall the definition } \tilde{\sigma}_h(\cdot, \cdot)^2 = \max\{1, \text{Var}_P \hat{\phi}(\cdot) \hat{V}_{h+1}(\cdot)\} + 1 \text{ and } \sigma_{V_{h+1}}^2 (\cdot, \cdot)^2 := \max\{1, \text{Var}_P \hat{\phi}(\cdot) \hat{V}_{h+1}(\cdot)\} + 1 \text{. Moreover, } \text{Var}_P \hat{\phi}(\cdot) \hat{V}_{h+1}(\cdot) = (\phi(\cdot, \cdot), \tilde{\beta}_h)_{[0,(H-h+1)^2]} - (\phi(\cdot, \cdot), \tilde{\beta}_h)_{[0,(H-h+1)^2]}^2 (\text{where } \tilde{\beta}_h \text{ and } \tilde{\beta}_h \text{ are defined in Algorithm 1). Let } K \geq \max\{512(1/\kappa)^2 \log \left(\frac{4Hd}{\delta} \right), 4\lambda/\kappa \}, \text{ then with probability } 1 - \delta,

\begin{align*}
\sup_h \left| \tilde{\sigma}_h^2 - \sigma_{V_{h+1}}^2 \right|_\infty \leq 36 \sqrt{\frac{H^4d^3}{\kappa K}} \log \left(\frac{(\lambda + K)2KdH^2}{\lambda \delta} \right) + 12 \lambda \frac{H^2\sqrt{d}}{\kappa K}.
\end{align*}

\textbf{Proof.} \textbf{Step1:} we first show for all } h, s, a \in [H] \times \mathcal{S} \times \mathcal{A}, \text{ with probability } 1 - \delta,

\begin{align*}
\left| \langle \phi(s, a), \tilde{\beta}_h \rangle_{[0,(H-h+1)^2]} - \mathbb{P}_h(\hat{V}_{h+1})^2(s, a) \right| \leq 12 \sqrt{\frac{H^4d^3}{\kappa K}} \log \left(\frac{(\lambda + K)2KdH^2}{\lambda \delta} \right) + 4\lambda \frac{H^2\sqrt{d}}{\kappa K}.
\end{align*}

\text{The definition of } M_i \text{ is in List A.}
Proof of Step 1. Note

\[
\left| \langle \phi(s, a), \beta_h \rangle_{[H - h + 1]^2} - \mathbb{P}_h(\hat{V}_{h+1})^2(s, a) \right| \leq \left| \langle \phi(s, a), \beta_h \rangle - \mathbb{P}_h(\hat{V}_{h+1})^2(s, a) \right|
\]

\[
= \left| \phi(s, a)^T \Sigma_h^{-1} \sum_{\tau=1}^K \phi(\tilde{s}_h^\tau, \tilde{a}_h^\tau) \cdot \hat{V}_{h+1}(\tilde{s}_h^\tau) - \phi(s, a)^T \int_S (\hat{V}_{h+1})^2(s') d\nu_h(s') \right|
\]

\[
= \left| \phi(s, a)^T \Sigma_h^{-1} \sum_{\tau=1}^K \phi(\tilde{s}_h^\tau, \tilde{a}_h^\tau) \cdot \hat{V}_{h+1}(\tilde{s}_h^\tau) - \phi(s, a)^T \left\{ \sum_{\tau=1}^K \phi(\tilde{s}_h^\tau, \tilde{a}_h^\tau) \phi(\tilde{s}_h^\tau, \tilde{a}_h^\tau)^T + \lambda I \right\} \int_S (\hat{V}_{h+1})^2(s') d\nu_h(s') \right|
\]

\[
\leq \phi(s, a)^T \Sigma_h^{-1} \sum_{\tau=1}^K \phi(\tilde{s}_h^\tau, \tilde{a}_h^\tau) \cdot \left(\hat{V}_{h+1}(\tilde{s}_h^\tau)^2 - \mathbb{P}_h(\hat{V}_{h+1})^2(\tilde{s}_h^\tau, \tilde{a}_h^\tau) \right) + \lambda \left| \phi(s, a)^T \Sigma_h^{-1} \int_S (\hat{V}_{h+1})^2(s') d\nu_h(s') \right|
\]

\[
\Rightarrow \tag{1}
\]

\[
\Rightarrow \tag{2}
\]

For \(\Phi \), since \(K \geq \max \{ 512(1/\kappa)^2 \log \left(\frac{4Hd}{\delta} \right), 4\lambda/\kappa \} \), by Lemma H.6 and a union bound over \(h \in [H] \), with probability \(1 - \delta \) for all \(h, s, a \in [H] \times S \times A \),

\[
\mathbb{E} \leq \lambda \| \phi(s, a) \|_{\Sigma_h^{-1}} \left| \int_S (\hat{V}_{h+1})^2(s') d\nu_h(s') \right| \leq \frac{2}{\sqrt{K}} \| \phi(s, a) \|_{\Sigma_h^{-1}} \left| \int_S (\hat{V}_{h+1})^2(s') d\nu_h(s') \right| \leq 4\lambda \| \Sigma_h^{-1} \|_{\Sigma_h^{-1}} \frac{H^2\sqrt{d}}{K} \leq 4\lambda \frac{H^2\sqrt{d}}{\kappa K}. \tag{13}
\]

For \(\Phi \), we have

\[
\Phi \leq \| \phi(s, a) \|_{\Sigma_h^{-1}} \left| \int_S (\hat{V}_{h+1})^2(s') d\nu_h(s') \right| \leq \frac{2}{\sqrt{K}} \| \phi(s, a) \|_{\Sigma_h^{-1}} \left| \int_S (\hat{V}_{h+1})^2(s') d\nu_h(s') \right| \leq 4\lambda \| \Sigma_h^{-1} \|_{\Sigma_h^{-1}} \frac{H^2\sqrt{d}}{K} \leq 4\lambda \frac{H^2\sqrt{d}}{\kappa K}. \tag{13}
\]

Bounding using covering. Note for any fix \(V_{h+1} \), we can define \(x_r = \phi(\tilde{s}_h^\tau, \tilde{a}_h^\tau) \) (\(\| \phi \| \leq 1 \)) and \(\eta_r = V_{h+1}(\tilde{s}_h^\tau)^2 - \mathbb{P}_h(V_{h+1})^2(\tilde{s}_h^\tau, \tilde{a}_h^\tau) \) is \(H^2 \)-subgaussian, by Lemma H.2 (where \(t = K \) and \(L = 1 \)) with probability \(1 - \delta \),

\[
\left| \sum_{\tau=1}^K \phi(\tilde{s}_h^\tau, \tilde{a}_h^\tau) \cdot (V_{h+1}(\tilde{s}_h^\tau)^2 - \mathbb{P}_h(V_{h+1})^2(\tilde{s}_h^\tau, \tilde{a}_h^\tau)) \right|_{\Sigma_h^{-1}} \leq \sqrt{8H^2 \cdot \frac{d}{2} \log \left(\frac{\lambda + K}{\lambda \delta} \right)}
\]

let \(\mathcal{N}_h(\epsilon) \) be the minimal \(\epsilon \)-cover (with respect the supremum norm) of \(V_h := \{ V_h : V_h(\cdot) = \max_{a \in A} \{ \min \{ \phi(s, a)^T \theta - C_1 \sqrt{d} \cdot \phi(\cdot, \cdot)^T \bar{A}_h^{-1} \phi(\cdot, \cdot) - C_2, H - h + 1 \} \} \). That is, for any \(V \in V_h \), there exists a value function \(V' \in \mathcal{N}_h(\epsilon) \) such that \(\sup_{s \in S} | V(s) - V'(s) | < \epsilon \). Now by a union bound, we obtain with probability \(1 - \delta \)

\[
\sup_{V_{h+1} \in \mathcal{N}_{h+1}(\epsilon)} \left| \sum_{\tau=1}^K \phi(\tilde{s}_h^\tau, \tilde{a}_h^\tau) \cdot (V_{h+1}(\tilde{s}_h^\tau)^2 - \mathbb{P}_h(V_{h+1})^2(\tilde{s}_h^\tau, \tilde{a}_h^\tau)) \right|_{\Sigma_h^{-1}} \leq \sqrt{8H^2 \cdot \frac{d}{2} \log \left(\frac{\lambda + K}{\lambda \delta} | \mathcal{N}_{h+1}(\epsilon) | \right)}.
\]
which implies

\[
\left\| \sum_{\tau=1}^{K} \phi(s_{h}^{\tau}, \bar{a}_{h}^{\tau}) \cdot \left(\hat{V}_{h+1}(\bar{s}_{h+1}^{\tau})^2 - \mathbb{P}_{h}(\bar{V}_{h+1})^2(\bar{s}_{h}^{\tau}, \bar{a}_{h}^{\tau}) \right) \right\|_{\Sigma_{h}^{-1}} \leq \sqrt{8H^4 \cdot \frac{d^3}{2} \log \left(\frac{\lambda + K}{\lambda \delta} |\mathcal{N}_{h+1}(\epsilon)| \right) + 4H^2 \sqrt{\epsilon^2 K^2 / \lambda}}
\]

choosing \(\epsilon = d\sqrt{\lambda} / K \), applying Lemma B.3 of Jin et al. [2021b] to the covering number \(\mathcal{N}_{h+1}(\epsilon) \) w.r.t. \(V_{h+1} \), we can further bound above by

\[
\leq \sqrt{8H^4 \cdot \frac{d^3}{2} \log \left(\frac{\lambda + K}{\lambda \delta} \cdot 2dHK \right) + 4H^2 \cdot d^3 \log \left(\frac{\lambda + K}{\lambda \delta} \cdot 2dHK \right)}
\]

Apply a union bound for \(h \in [H] \), we have with probability \(1 - \delta \), for all \(h \in [H] \),

\[
\left\| \sum_{\tau=1}^{K} \phi(s_{h}^{\tau}, \bar{a}_{h}^{\tau}) \cdot \left(\hat{V}_{h+1}(\bar{s}_{h+1}^{\tau})^2 - \mathbb{P}_{h}(\bar{V}_{h+1})^2(\bar{s}_{h}^{\tau}, \bar{a}_{h}^{\tau}) \right) \right\|_{\Sigma_{h}^{-1}} \leq 6 \sqrt{H^4 d^3 \log \left(\frac{(\lambda + K)2KdH^2}{\lambda \delta} \right)}
\]

and similar to \(\varnothing \), with probability \(1 - \delta \) for all \(h, s, a \in [H] \times \mathcal{S} \times \mathcal{A} \),

\[
\|\phi(s, a)\|_{\Sigma_{h}^{-1}} \leq \frac{2 \left\| (\Sigma_{h})^{-1/2} \right\|_{1/2}^{1/2}}{2 \sqrt{\kappa K}}.
\]

Combing (13), (14), (15) and (16) we obtain with probability \(1 - \delta \) for all \(h, s, a \in [H] \times \mathcal{S} \times \mathcal{A} \),

\[
\left| \langle \phi(s, a), \tilde{\theta}_{h} \rangle_{[0, H-h+1]} - \mathbb{P}_{h}(\hat{V}_{h+1})(s, a) \right| \leq 12 \sqrt{H^4 d^3 \log \left(\frac{(\lambda + K)2KdH^2}{\lambda \delta} \right)} + 4\lambda \frac{H^2 \sqrt{d}}{K}.
\]

Step2: we show for all \(h, s, a \in [H] \times \mathcal{S} \times \mathcal{A} \), with probability \(1 - \delta \)

\[
\left| \langle \phi(s, a), \tilde{\theta}_{h} \rangle_{[0, H-h+1]} - \mathbb{P}_{h}(\hat{V}_{h+1})(s, a) \right| \leq 12 \sqrt{H^4 d^3 \log \left(\frac{(\lambda + K)2KdH^2}{\lambda \delta} \right)} + 4\lambda \frac{H^2 \sqrt{d}}{K}.
\]

The proof of Step2 follows nearly the identical way as Step1 except \(\hat{V}_{h}^2 \) is replaced by \(\hat{V}_{h} \).

Step3: We prove \(\sup_{h} \left\| \hat{\sigma}_{h}^2 - \sigma_{h}^2 \right\|_{\infty} \leq 36 \sqrt{H^4 d^3 \log \left(\frac{(\lambda + K)2KdH^2}{\lambda \delta} \right)} + 12\lambda \frac{H^2 \sqrt{d}}{K} \).

Proof of Step3. By (17),

\[
\left| \left(\langle \phi(\cdot, \cdot), \tilde{\theta}_{h} \rangle_{[0, H-h+1]} \right)^2 - \left(\mathbb{P}_{h}(\hat{V}_{h+1})(s, a) \right)^2 \right|
\]

\[= \left| \langle \phi(s, a), \tilde{\theta}_{h} \rangle_{[0, H-h+1]} + \mathbb{P}_{h}(\hat{V}_{h+1})(s, a) \right| \cdot \left| \langle \phi(s, a), \tilde{\theta}_{h} \rangle_{[0, H-h+1]} - \mathbb{P}_{h}(\hat{V}_{h+1})(s, a) \right|
\]

\[\leq 2H \cdot \left| \langle \phi(s, a), \tilde{\theta}_{h} \rangle_{[0, H-h+1]} - \mathbb{P}_{h}(\hat{V}_{h+1})(s, a) \right| \leq 24 \sqrt{H^4 d^3 \log \left(\frac{(\lambda + K)2KdH^2}{\lambda \delta} \right)} + 8\lambda \frac{H^2 \sqrt{d}}{K}.
\]

\[\text{Note that the same result in Jin et al. [2021b] applies even though we have an extra constant } C_2.\]
Combining this with Step1 we receive \(\forall h, s, a \in [H] \times S \times A \), with probability \(1 - \delta \)

\[
\left| \text{Var}_h \hat{V}_{h+1}(s, a) - \text{Var}_P \hat{V}_{h+1}(s, a) \right| \leq 36 \sqrt{\frac{H^4d^3}{\kappa K} \log \left(\frac{(\lambda + K)2KdH^2}{\lambda \delta} \right)} + 12\lambda H^2 \sqrt{d} \sqrt{\kappa K}.
\]

Finally, by the non-expansiveness of operator \(\max \{1, \cdot\} \), we have the stated result.

\[\square\]

C.4.2 A crude bound on \(\sup_h ||V_h^* - \hat{V}_h||_\infty \).

Lemma C.8. Define \(\hat{\sigma}_h(s, a) = \sqrt{\max \left\{ 1, \text{Var}_P \hat{V}_{h+1}(s, a) \right\}} + 1 \), if \(K \geq \max \{ M_1, M_2, M_3, M_4 \} \) and \(K > C \cdot H^4 \kappa^2 \), then with probability at least \(1 - \delta \),

\[
\sup_h ||V_h^* - \hat{V}_h||_\infty \leq \tilde{O} \left(\frac{H^2 \sqrt{d}}{\sqrt{\kappa K}} \right).
\]

Proof. Step1: We show with probability at least \(1 - \delta \), \(\sup_h ||V_h^* - \hat{V}_h||_\infty \leq \tilde{O} \left(\frac{H^2 \sqrt{d}}{\sqrt{\kappa K}} \right). \)

Indeed, combining Lemma C.1 and Lemma C.5, similar to the proof of Theorem C.6, we directly have with probability \(1 - \delta \), for all policy \(\pi \) simultaneously, and for all \(s \in S, h \in [H] \)

\[
V_h^\pi(s) - \hat{V}_h^\pi(s) \leq \tilde{O} \left(\sqrt{d} \cdot \sum_{t=h}^{H} \mathbb{E}_\pi \left[\left(\phi(\cdot, \cdot)^\top \Lambda_t^{-1} \phi(\cdot, \cdot) \right)^{1/2} \right| s_h = s \right) + 2H^4 \sqrt{d} \sqrt{K},
\]

Next, since \(K \geq \max \left\{ 512(1/\kappa)^2 \log \left(\frac{4Hd}{\delta} \right), 4\lambda/\kappa \right\} \), by Lemma H.6 and a union bound over \(h \in [H] \), with probability \(1 - \delta \)

\[
\sup_{s, a} ||\phi(s, a)||_{\tilde{\Lambda}_h^{-1}} \leq \frac{2}{\sqrt{K}} \sup_{s, a} ||\phi(s, a)||_{\tilde{A}_h^{p-1}} \leq \frac{2H}{\sqrt{K}}, \quad \forall h \in [H].
\]

Lastly, taking \(\pi = \pi^* \) in (18) to obtain

\[
0 \leq V_h^{\pi^*}(s) - \hat{V}_h^{\pi}(s) \leq \tilde{O} \left(\sqrt{d} \cdot \sum_{t=h}^{H} \mathbb{E}_{\pi^*} \left[\left(\phi(\cdot, \cdot)^\top \Lambda_t^{-1} \phi(\cdot, \cdot) \right)^{1/2} \right| s_h = s \right) + 2H^4 \sqrt{d} \sqrt{K}
\]

\[\leq \tilde{O} \left(\frac{H^2 \sqrt{d}}{\sqrt{\kappa K}} \right) + 2H^4 \sqrt{d} \sqrt{\kappa K}.
\]

This implies by using the condition \(K > C \cdot H^4 \kappa^2 \), we finish the proof of Step1.

Step2: We show with probability \(1 - \delta \), \(\sup_h ||\hat{V}_h - V_h^\pi||_\infty \leq \tilde{O} \left(\frac{H^2 \sqrt{d}}{\sqrt{\kappa K}} \right). \)
Indeed, applying Extended Value Difference Lemma H.7 for $\pi = \pi' = \hat{\pi}$, then with probability $1 - \delta$, for all s, h

\[
\left| \hat{V}_h(s) - \hat{V}_h^\pi(s) \right| = \sum_{t=h}^H \mathbb{E}_{\hat{\pi}} \left[\hat{Q}_h(s_h, a_h) - \left(T_h \hat{V}_{h+1} \right) (s_h, a_h) \right] |s_h = s|
\leq \sum_{t=h}^H \left\| (T_h \hat{V}_{h+1} - T_h \hat{V}_{h+1})(s, a) \right\| + \left\| \Gamma_h(s, a) \right\|
\leq \tilde{O} \left(H \sqrt{d} \left\| \sqrt{\phi(s, a) \Lambda^{-1}_h \phi(s, a)} \right\| \right) + \frac{4H^4 \sqrt{d}}{K} \leq \tilde{O} \left(\frac{H^2 \sqrt{d}}{\sqrt{\kappa K}} \right)
\]

where the second inequality uses Lemma C.513 and the last inequality follows the same procedure as Step1.

Step3: Combine Step1 and Step2, by triangular inequality and a union bound we finish the proof of the lemma.

Remark C.9. Note as an intermediate calculation, (19) ensures a learning bound with order $\tilde{O}(H^3 \sqrt{d}/\sqrt{\kappa K})$. Here, the convergence rate is the standard statistical rate $1/\sqrt{K}$ and the H^2 dependence is loose. However, the feature dependence $\sqrt{d/\kappa}$ is roughly tight, since, in the well-explored case (Assumption 2 of Wang et al. [2021a]), $\kappa = 1/d$ and the $\sqrt{d/\kappa} = \sqrt{d}$ recovers the optimal feature dependence $dH\sqrt{T}$ in the online setting [Zhou et al., 2021a]. If $\kappa \ll 1/d$, then doing offline learning requires sample size proportional to d/κ, which reveals offline RL is harder when the exploration of behavior policy is insufficient. When $\kappa = 0$, learning the optimal policy accurately cannot be guaranteed even if the sample/episode size $K \to \infty$.

C.5 Proof of the second part of Theorem 3.2

Lemma C.10. Recall $\hat{\sigma}_h = \sqrt{\max \left\{ 1, \text{Var}_{P_h} \hat{V}_{h+1} \right\} } + 1$ and $\sigma_h^* = \sqrt{\max \left\{ 1, \text{Var}_{P_h} V_h^* \right\} } + 1$. Let $K \geq \max \{ 512(1/\kappa)^2 \log \left(\frac{4H^2}{\delta} \right), 4\lambda/\kappa \}$ and $K \geq \max \{ \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4 \}$, then with probability $1 - \delta$,

\[
\sup_h \left\| \hat{\sigma}_h^2 - \sigma_h^* \right\|_\infty \leq \tilde{O} \left(\frac{H^3 \sqrt{d}}{\sqrt{\kappa K}} \right).
\]

13To be absolutely rigorous, we cannot directly apply Lemma C.5 here since the crude bound has already been used in Lemma C.4. However, this can be resolved completely by first deriving an even cruder bound for $\sup_h \| V_h^* - \hat{V}_h \|_\infty$ that has $1/\sqrt{K}$ rate without using Lemma C.5 (which we call it Lemma C.8\textdegree), and we can use Lemma C.8\textdegree to show a similar result Lemma C.5\textdegree. Finally, we can use Lemma C.5\textdegree here to finish the proof of this Lemma C.8. However, we avoid explicitly doing this to prevent over-technicality.
Proof. By definition and the non-expansiveness of \(\max\{1, \cdot \} + 1 \), we have

\[
\| \sigma^2_{\hat{V}_{h+1}} - \sigma_h^2 \|_\infty \leq \| \text{Var}\hat{V}_{h+1} - \text{Var}V^*_{h+1} \|_\infty \\
\leq \| \mathbb{P}_h (\hat{V}_{h+1}^2 - V^2_{h+1}) \|_\infty + \| (\mathbb{P}_h \hat{V}_{h+1})^2 - (\mathbb{P}_h V^*_{h+1})^2 \|_\infty \\
\leq \| \hat{V}_{h+1}^2 - V^2_{h+1} \|_\infty + \| (\mathbb{P}_h \hat{V}_{h+1} + \mathbb{P}_h V^*_{h+1}) (\mathbb{P}_h \hat{V}_{h+1} - \mathbb{P}_h V^*_{h+1}) \|_\infty \\
\leq 2H\| \hat{V}_{h+1} - V^*_{h+1} \|_\infty + 2H\| \mathbb{P}_h \hat{V}_{h+1} - \mathbb{P}_h V^*_{h+1} \| \leq \tilde{O}\left(\frac{H^3\sqrt{d}}{\sqrt{\kappa K}} \right).
\]

with probability \(1 - \delta \) for all \(h \in [H] \), where the last inequality comes from Lemma C.8. Combining this with Lemma C.7, we have the stated result.

Lemma C.11. Denote the quantities \(C_1 = \max\{2\lambda, 128\log(2d/\delta), 128H^4\log(2d/\delta)/\kappa^2 \} \) and \(C_2 = \max\{\frac{\lambda^2}{\lambda K}, 96^2H^2d\log((\lambda + K)H/\lambda\delta)/\kappa^5 \} \). Suppose the number of episode \(K \) satisfies \(K > \max\{C_1, C_2 \} \), then with probability \(1 - \delta \),

\[
\sqrt{\phi(s, a)\Lambda_h^{-1}\phi(s, a)} \leq 2\sqrt{\phi(s, a)\Lambda_h^{-1}\phi(s, a)}, \quad \forall s, a \in S \times A,
\]

Proof of Lemma C.11. By definition \(\sqrt{\phi(s, a)\Lambda_h^{-1}\phi(s, a)} = \| \phi(s, a) \|_{\Lambda_h^{-1}} \). Then denote

\[
\Lambda_h = \frac{1}{K}\Lambda_h, \quad \Lambda_h^* = \frac{1}{K}\Lambda_h^*,
\]

where \(\Lambda_h = \sum_{r=1}^K \phi(s^r_h, a^r_h)^\top \phi(s^r_h, a^r_h)/\sigma^2_{\hat{V}_{h+1}}(s^r_h, a^r_h) + \lambda I \). Under the condition of \(K \), by Lemma C.10, with probability \(1 - \delta \)

\[
\left\| \Lambda_h - \Lambda_h^* \right\| \leq \sup_{s, a} \left\| \frac{\phi(s, a)\phi(s, a)^\top}{\sigma^2_h(s, a)} - \frac{\phi(s, a)\phi(s, a)^\top}{\sigma^2_{\hat{V}_{h+1}}(s, a)} \right\| \\
\leq \sup_{s, a} \left| \frac{\sigma^2_h(s, a) - \sigma^2_{\hat{V}_{h+1}}(s, a)}{\sigma^2_h(s, a)} \right| \cdot \| \phi(s, a) \|^2 \leq \sup_{s, a} \left| \frac{\sigma^2_h(s, a) - \sigma^2_{\hat{V}_{h+1}}(s, a)}{1} \right| \cdot 1 \quad (20)
\]

Next by Lemma H.5 (with \(\phi \) to be \(\phi/\sigma_{\hat{V}_{h+1}}^* \) and \(C = 1 \)), it holds with probability \(1 - \delta \),

\[
\left\| \Lambda_h^* - \left(\mathbb{E}_{\mu, h}[\phi(s, a)\phi(s, a)^\top/\sigma^2_{\hat{V}_{h+1}}(s, a)] + \frac{\lambda}{K}I_d \right) \right\| \leq \frac{4\sqrt{2}}{\sqrt{\kappa}} \left(\log \frac{2d}{\delta} \right)^{1/2}.
\]

Therefore by Weyl’s spectrum theorem and the condition \(K > \max\{2\lambda, 128\log(2d/\delta), 128H^4\log(2d/\delta)/\kappa^2 \} \), the above implies
\[
\|\Lambda_h^\star\| = \lambda_{\text{max}}(\Lambda_h^\star) \leq \lambda_{\text{max}} \left(\mathbb{E}_{\mu,h}[\phi(s,a)\phi(s,a)^\top / \sigma_{V_{h+1}}^2(s,a)] \right) + \frac{\lambda}{K} + \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \\
\leq \|\mathbb{E}_{\mu,h}[\phi(s,a)\phi(s,a)^\top / \sigma_{V_{h+1}}^2(s,a)]\| + \frac{\lambda}{K} + \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \\
\leq \|\phi(s,a)\|^2 + \frac{\lambda}{K} + \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \leq 1 + \frac{\lambda}{K} + \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \leq 2,
\]

\[
\lambda_{\text{min}}(\Lambda_h^\star) \geq \lambda_{\text{min}} \left(\mathbb{E}_{\mu,h}[\phi(s,a)\phi(s,a)^\top / \sigma_{V_{h+1}}^2(s,a)] \right) + \frac{\lambda}{K} - \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \\
\geq \lambda_{\text{min}} \left(\mathbb{E}_{\mu,h}[\phi(s,a)\phi(s,a)^\top / \sigma_{V_{h+1}}^2(s,a)] \right) - \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \\
\geq \frac{\kappa}{H^2} - \frac{4\sqrt{2}}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2} \geq \frac{\kappa}{2H^2}.
\]

Hence with probability \(1 - \delta\), \(\|\Lambda_h^\star\| \leq 2\) and \(\|\Lambda_h^{\star -1}\| = 1/\lambda_{\text{min}}(\Lambda_h^\star) \leq 2H^2/\kappa\). Similarly, \(\|\Lambda_h^{-1}\| \leq 2H^2/\kappa\) with high probability.

Now apply Lemma H.4 to \(\Lambda_h^\star\) and \(\Lambda_h\) and a union bound, we obtain with probability \(1 - \delta\), for all \(s, a\)

\[
\|\phi(s,a)\|_{\Lambda_h^{\star -1}} \leq \left[1 + \sqrt{\|\Lambda_h^{\star -1}\| \cdot \|\Lambda_h^{\star -1}\| + \|\Lambda_h^{\star} - \Lambda_h\|} \cdot \|\phi(s,a)\|_{\Lambda_h^{\star -1}} \right] \\
\leq \left[1 + \sqrt{\frac{2H^2}{\kappa} \cdot \frac{2H^2}{\kappa} \cdot \|\Lambda_h^{\star} - \Lambda_h\|} \cdot \|\phi(s,a)\|_{\Lambda_h^{\star -1}} \right] \\
\leq \left[1 + \sqrt{\frac{H^4}{\kappa^2}} \left(\frac{H^3\sqrt{d}}{\sqrt{K}} \right) \right] \cdot \|\phi(s,a)\|_{\Lambda_h^{\star -1}} \leq 2 \|\phi(s,a)\|_{\Lambda_h^{\star -1}}
\]

where the third inequality uses (20) and the last inequality uses \(K > \max\{\frac{\lambda^2}{\kappa \log((\lambda+K)H/\lambda\delta)}, 96^2H^2d \log((\lambda+K)H/\lambda\delta)/\kappa^5\}\). The claimed result follows straightforwardly by multiplying \(1/\sqrt{K}\) on both sides of the above.

\[\blacksquare\]

Proof of Theorem 3.2. The first part of the theorem has been shown in Theorem C.6. For the second part, apply Theorem C.6 with \(\pi = \pi^*\), then with probability \(1 - \delta\),

\[
v^{\pi^*} - v^{\hat{\pi}} \leq \bar{O} \left(\sqrt{d} \cdot \sum_{h=1}^H \mathbb{E}_{\pi^*} \left[\left(\phi(\cdot, \cdot)^\top \Lambda_h^{-1} \phi(\cdot, \cdot) \right)^{1/2} \right] \right) + \frac{2H^4\sqrt{d}}{K},
\]

33
Now apply Lemma C.11 and a union bound, with probability $1 - \delta$,
\[
0 \leq v^* - v^\pi \leq \tilde{O}
\left(
\sqrt{d} \cdot \sum_{h=1}^{H} \mathbb{E}_{\pi^*} \left[
\left(\phi(\cdot, \cdot) \Lambda_h^{-1} \phi(\cdot, \cdot)\right)^{1/2}
\right]
\right) + \frac{2H^4\sqrt{d}}{K}.
\]

\section{Proof of Theorem 3.3}
First of all, we show the following lemma.

Lemma D.1. Suppose $K > \max\{ M_1, M_2, M_3, M_4 \}$. Plug
\[
\Gamma_h^I(s, a) \leftarrow \phi(s, a)^\top \Lambda_h^{-1} \sum_{\tau=1}^{K} \phi(s^\tau_h, a^\tau_h) \cdot \left(r^\tau_h + \hat{V}_{h+1} (s^\tau_{h+1}) - \left(\hat{T}_h \hat{V}_{h+1}\right)(s^\tau_h, a^\tau_h) \right) / \hat{\sigma}_h^2(s^\tau_h, a^\tau_h) + \tilde{O}(\frac{H^3d}{\kappa})
\]
in Algorithm 1 and let T_h be the Bellman operator and \hat{T}_h be the approximated Bellman operator. Then we have with probability $1 - \delta$:
\[
|(T_h \hat{V}_{h+1} - \hat{T}_h \hat{V}_{h+1})(s, a)| \leq \Gamma_h^I(s, a), \quad \forall s, a \in S \times A.
\]

Proof of Lemma D.1. Suppose w_h is the coefficient corresponding to the $T_h \hat{V}_{h+1}$ (such w_h exists by Lemma H.9), i.e. $T_h \hat{V}_{h+1} = \phi^\top w_h$, and recall $(\hat{T}_h \hat{V}_{h+1})(s, a) = \phi(s, a)^\top \hat{w}_h$, then:
\[
\begin{align*}
\left(T_h \hat{V}_{h+1} \right)(s, a) - \left(\hat{T}_h \hat{V}_{h+1} \right)(s, a) &= \phi(s, a)^\top (w_h - \hat{w}_h) \\
&= \phi(s, a)^\top w_h - \phi(s, a)^\top \Lambda_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s^\tau_h, a^\tau_h) \cdot \left(r^\tau_h + \hat{V}_{h+1} (s^\tau_{h+1}) - \left(\hat{T}_h \hat{V}_{h+1}\right)(s^\tau_h, a^\tau_h) \right) / \hat{\sigma}_h^2(s^\tau_h, a^\tau_h) \right) \\
&= \phi(s, a)^\top w_h - \phi(s, a)^\top \Lambda_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s^\tau_h, a^\tau_h) \cdot \left(T_h \hat{V}_{h+1} \right)(s^\tau_h, a^\tau_h) / \hat{\sigma}_h^2(s^\tau_h, a^\tau_h) \right)
\end{align*}
\]
\begin{align}
&+ \phi(s, a)^\top \Lambda_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s^\tau_h, a^\tau_h) \cdot \left(r^\tau_h + \hat{V}_{h+1} (s^\tau_{h+1}) - \left(\hat{T}_h \hat{V}_{h+1}\right)(s^\tau_h, a^\tau_h) \right) / \hat{\sigma}_h^2(s^\tau_h, a^\tau_h) \right) \\
&+ \phi(s, a)^\top \Lambda_h^{-1} \left(\sum_{\tau=1}^{K} \phi(s^\tau_h, a^\tau_h) \cdot \left(\hat{T}_h \hat{V}_{h+1} \right)(s^\tau_h, a^\tau_h) - \left(T_h \hat{V}_{h+1} \right)(s^\tau_h, a^\tau_h) \right) / \hat{\sigma}_h^2(s^\tau_h, a^\tau_h) \right)
\end{align}
\]
\[
\hspace{1cm} \quad \text{(i)}
\]
\[
\hspace{1cm} \quad \text{(ii)}
\]
\[
\hspace{1cm} \quad \text{(iii)}
\]
For term (i), by Lemma C.2 it is bounded by $\frac{2\Lambda H^3 \sqrt{d}/\kappa}{K}$ with probability $1 - \delta/2$.\footnote{Note Here Lemma C.2 still applies even if the Γ_h changes since it works for all $\hat{V} \in [0, H]$ so that $\|w_h\|_2 \leq 2H \sqrt{d}$ and the truncation (Line 13 in Algorithm 1) guarantees this.}

\[34\]
For term (ii), it is bounded by
\[
\phi(s, a) \top \hat{\Lambda}_h^{-1} \sum_{\tau=1}^K \phi(s_h^\tau, a_h^\tau) \cdot \frac{\left((\hat{T}_h \hat{V}_{h+1}) (s_h^\tau, a_h^\tau) - \left(\hat{T}_h \hat{V}_{h+1} \right) (s_h^\tau, a_h^\tau) \right)}{\hat{\sigma}_h^2 (s_h^\tau, a_h^\tau)}.
\]

For term (iii), by Cauchy inequality
\[
\phi(s, a) \top \hat{\Lambda}_h^{-1} \left(\sum_{\tau=1}^K \phi(s_h^\tau, a_h^\tau) \cdot \frac{\left((\hat{T}_h \hat{V}_{h+1}) (s_h^\tau, a_h^\tau) - \left(\hat{T}_h \hat{V}_{h+1} \right) (s_h^\tau, a_h^\tau) \right)}{\hat{\sigma}_h^2 (s_h^\tau, a_h^\tau)} \right)
\leq \|\phi(s, a)\|_{\hat{\Lambda}_h^{-1}} \cdot \sum_{\tau=1}^K \phi(s_h^\tau, a_h^\tau) \cdot \frac{\left((\hat{T}_h \hat{V}_{h+1}) (s_h^\tau, a_h^\tau) - \left(\hat{T}_h \hat{V}_{h+1} \right) (s_h^\tau, a_h^\tau) \right)}{\hat{\sigma}_h^2 (s_h^\tau, a_h^\tau)}
\leq \frac{2H}{\sqrt{\kappa K}} \cdot \sum_{\tau=1}^K \phi(s_h^\tau, a_h^\tau) \cdot \frac{\left((\hat{T}_h \hat{V}_{h+1}) (s_h^\tau, a_h^\tau) - \left(\hat{T}_h \hat{V}_{h+1} \right) (s_h^\tau, a_h^\tau) \right)}{\hat{\sigma}_h^2 (s_h^\tau, a_h^\tau)}
\leq \frac{2H}{\sqrt{\kappa K}} \cdot \tilde{O}(\frac{H^2 \sqrt{d/\kappa}}{\sqrt{K}}) = \tilde{O}(\frac{H^3 d/\kappa}{K})
\]

where the first inequality is by Lemma H.6 (with \(\phi' = \phi/\hat{\sigma}_h \) and \(\|\phi/\hat{\sigma}_h\| \leq \|\phi\| \leq 1 := C \)) and the third inequality uses \(\sqrt{a \top A \cdot a} \leq \sqrt{\|a\|_2 \|A\|_2} \|a\|_2 = \|a\|_2 \sqrt{\|A\|_2} \) with \(a \) to be either \(\phi \) or \(w_h \). Moreover, \(\lambda_{\min}(\hat{\Lambda}_h^p) \geq \kappa \max_{h, s, a} \hat{\sigma}_h(s, a)^2 \geq \kappa/\kappa^2 \) implies \(\left\| (\hat{\Lambda}_h^p)^{-1} \right\| \leq H^2/\kappa \).

The second inequality is true by denoting \(x_\tau = \phi(s_h^\tau, a_h^\tau)/\hat{\sigma}(s_h^\tau, a_h^\tau) \) and \(\eta_\tau = \frac{\left((\hat{T}_h \hat{V}_{h+1}) (s_h^\tau, a_h^\tau) - \left(\hat{T}_h \hat{V}_{h+1} \right) (s_h^\tau, a_h^\tau) \right)}{\hat{\sigma}_h(s_h^\tau, a_h^\tau)} \)
and use Lemma H.10 as the condition for applying Lemma H.2. By collecting those three terms together we have the result.

\[\Box\]

D.1 Proof of Theorem 3.3

Proof. Use Lemma D.1 as the condition for Lemma C.1 and average over initial distribution \(d_1 \), we obtain with probability \(1 - \delta \),
\[
\sum_{h=1}^H \mathbb{E}_{s_h} \left[\phi(s, a) \right] \top \hat{\Lambda}_h^{-1} \sum_{\tau=1}^K \phi(s_h^\tau, a_h^\tau) \cdot \frac{\left((\hat{T}_h \hat{V}_{h+1}) (s_h^\tau, a_h^\tau) - \left(\hat{T}_h \hat{V}_{h+1} \right) (s_h^\tau, a_h^\tau) \right)}{\hat{\sigma}_h^2 (s_h^\tau, a_h^\tau)} + \tilde{O}(\frac{H^4 d/\kappa}{K})
\]

(22)
Denote $A_h := \sum_{\tau=1}^K \frac{\phi(s_h^\tau,a_h^\tau) \cdot (r_h^\tau + \hat{V}_{h+1}(s_{h+1}^\tau) - (\hat{T}_h \hat{V}_{h+1})(s_h^\tau,a_h^\tau))}{\hat{\sigma}_h^2(s_h^\tau,a_h^\tau)}$, then

$$ \mathbb{E}_{\pi_h} [\phi(s,a)]^T \left| \hat{\Lambda}_h^{-1} \sum_{\tau=1}^K \frac{\phi(s_h^\tau,a_h^\tau) \cdot (r_h^\tau + \hat{V}_{h+1}(s_{h+1}^\tau) - (\hat{T}_h \hat{V}_{h+1})(s_h^\tau,a_h^\tau))}{\hat{\sigma}_h^2(s_h^\tau,a_h^\tau)} \right| $$

$$ \leq \mathbb{E}_{\pi_h} [\phi]^T \cdot |\hat{\Lambda}_h^{-1} A_h| + \mathbb{E}_{\pi_h} [\phi]^T \left| \hat{\Lambda}_h^{-1} \sum_{\tau=1}^K \frac{\phi(s_h^\tau,a_h^\tau) \cdot (\hat{T}_h \hat{V}_{h+1}(s_h^n,a_h^n) - \hat{T}_h \hat{V}_{h+1}(s_h^n,a_h^n))}{\hat{\sigma}_h^2(s_h^\tau,a_h^\tau)} \right| $$

For the second term, it can be bounded similar to term (iii) in Lemma D.1 and for the first term we have the following:

$$ \mathbb{E}_{\pi_h} [\phi]^T \cdot |\hat{\Lambda}_h^{-1} A_h| = \mathbb{E}_{\pi_h} [\phi]^T \cdot \hat{\Lambda}_h^{-1} \cdot \hat{\Lambda}_h \cdot |\hat{\Lambda}_h^{-1} A_h| \leq \|\mathbb{E}_{\pi_h} [\phi]\|_{\hat{\Lambda}_h^{-1}} \cdot \|\hat{\Lambda}_h|\hat{\Lambda}_h^{-1} A_h||_{\hat{\Lambda}_h^{-1}} $$

$$ \leq \|\mathbb{E}_{\pi_h} [\phi]\|_{\hat{\Lambda}_h^{-1}} \cdot \|\hat{\Lambda}_h\|_{\hat{\Lambda}_h^{-1}} \leq \tilde{O}(\sqrt{d}) \|\mathbb{E}_{\pi_h} [\phi]\|_{\hat{\Lambda}_h^{-1}} \leq \tilde{O}(\sqrt{d} \|\mathbb{E}_{\pi_h} [\phi]\|_{\hat{\Lambda}_h^{-1}}), $$

where the first inequality uses Cauchy’s inequality, the second inequality uses $\hat{\Lambda}_h$ is coordinate-wise positive (since we assume here $\phi \geq 0$), the third inequality is identical to the analysis in Section C.2.2 and the fourth inequality is identical to the analysis in Section C.2.1 with ϕ replaced by $\mathbb{E}[\phi]$. Plug this back to (22) we finish the proof for the first part. For the second part, converting Λ_h^{-1} to Λ_h^{-1} is identical to Section C.5. This finishes the proof.

E Proof of Minimax Lower bound Theorem 3.5

The proof follows the lower bound proof of Zanette et al. [2021]. For completeness, we provide all the details in below.

E.1 Construction

Similar to the proof of [Zanette et al. [2021], Theorem 2], we construct a family of MDPs, each parameterized by a Boolean vector $u = (u_1, \ldots, u_H)$ with each $u_h \in \{-1, +1\}^{d-2}$ for $h \in [H]$. The MDPs share the same transition kernel and are only different in the reward observations.

State space: At each time step h, there are two states $S = \{+1, -1\}$.

Action space: The action space $A = \{-1, 0, +1\}^{d-2}$.

Feature map: The feature map $\phi : S \times A \mapsto \mathbb{R}^d$ is given by

$$ \phi(+1, a) = \begin{pmatrix} \frac{a}{\sqrt{2d}} \\ \frac{\sqrt{2d}}{\sqrt{2}} \\ 0 \end{pmatrix} \in \mathbb{R}^d, \quad \phi(-1, a) = \begin{pmatrix} \frac{a}{\sqrt{2d}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} \in \mathbb{R}^d. $$

The construction ensures the condition $\|\phi(s,a)\|_2 \leq 1$ for any $(s,a) \in S \times A$.

36
Transition kernel: The transition probability \(P_h(s' \mid s, a) \) is independent of action \(a \). In other words, the Markov decision process reduces to a homogeneous Markov chain with transition matrix

\[
P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \in \mathbb{R}^2.
\]

By letting

\[
\nu_h(+1) = \nu_h(-1) = \begin{pmatrix} 0 \\ \sqrt{d-2} \\ \sqrt{2} \end{pmatrix} \in \mathbb{R}^d,
\]

we have \(P_h(s' \mid s, a) = \langle \phi(s, a), \nu_h(s') \rangle \) to be a valid probability transition.

Reward observations: For any MDP \(M_u \), at each times step \(h \), the reward follows a Gaussian distribution with

\[
R_{u,h}(s, a) \sim \mathcal{N} \left(\frac{s}{\sqrt{6}} + \frac{\delta}{\sqrt{2d}} \langle a, u_h \rangle, 1 \right),
\]

where \(\delta \in [0, \frac{1}{\sqrt{3d}}] \) determines to what extent the MDP models are different from each other. The mean reward function satisfies \(r_{u,h}(s, a) = \langle \phi(s, a), \theta_{u,h} \rangle \) with

\[
\theta_{u,h} = \begin{pmatrix} \frac{\delta u_h}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{pmatrix} \in \mathbb{R}^d.
\]

Offline data collection Scheme: The dataset \(D = \{(s^r_h, a^r_h, r^r_h, s^r_{h+1})\}_{\tau \in [K]} \) consist of \(K \) i.i.d. trajectories. All the trajectories initiate from uniform distribution. We take a behavior policy \(\mu(\cdot \mid s) \) that is independent of state \(s \). Let \(\{e_1, e_2, \ldots, e_{d-2}\} \) be the canonical bases of \(\mathbb{R}^{d-2} \) and \(0_{d-2} \in \mathbb{R}^{d-2} \) be the zero vector. The behavior policy \(\mu \) is set as

\[
\mu(e_j \mid s) = \frac{1}{d} \quad \text{for any } j \in [d-2] \quad \text{and} \quad \mu(0_{d-2} \mid s) = \frac{2}{d}.
\]

E.2 Overview of proof

The proof of the theorem is based on Assouad’s method, where we first reduce the problem to binary hypothesis tests (Lemmas E.1 and E.2) and then connect the testing error to the uncertainty quantity in the upper bound (Lemma E.3).

Lemma E.1 (Reduction to testing). There exists a universal constant \(c_1 > 0 \) such that

\[
\inf_{\pi} \max_{u \in U} \mathbb{E}_u [V^*_u - \hat{V}^\pi_u] \geq c_1 \delta \sqrt{d} H \min_{u, u' \in U : D_H(u, u') = 1} \inf_{\psi} \mathbb{P}_u(\psi \neq u) + \mathbb{P}_{u'}(\psi \neq u'),
\]

where \(\hat{\pi} \) denotes the output of any algorithm that maps from observations to an estimated policy. \(\psi \) is any test function for parameter \(u \) and \(D_H \) is the hamming distance.
Lemma E.2. There exists a universal constant $c_2 > 0$ such that when taking $\delta := \frac{c_2}{\sqrt{K}}$, we have
\[
\min_{u, u' \in \mathcal{U}} \mathbb{E}_H(u; u) = \mathbb{E}_H(u'; u) \geq \frac{1}{2}.
\] (23)

When $K \gtrsim d^3$, $\delta := \frac{c_2}{\sqrt{K}}$ ensures that $\delta \leq 1/\sqrt{3d}$. Combining Lemmas E.1 and E.2 yields a lower bound
\[
\inf_{\hat{u}} \max_{u \in \mathcal{U}} \mathbb{E}_u \left[V_{u}^* - V_{u}^\pi \right] \geq c \frac{d \sqrt{d} H}{\sqrt{K}},
\] (24)
where $c > 0$ is a universal constant.

Lemma E.3. There exists a universal constant $c_3 > 0$ such that for all $M \in \mathcal{M}$,
\[
\sum_{h=1}^{H} \sqrt{\mathbb{E}_\pi \left[\phi \right] \left(\Lambda_h^* \right)^{-1} \mathbb{E}_\pi \left[\phi \right]} \leq c_3 \frac{d H}{\sqrt{K}}.
\] (25)

Plugging inequality (E.3) into the bound (24), we obtain the minimax lower bound (6) in the statement of theorem.

E.3 Reduction to testing via Assouad’s method

Proof of Lemma E.1. For any index vector $u = (u_1, \ldots, u_H) \in \mathcal{U} = \{-1, +1\}^{(d-2) \times H}$, the optimal policy for MDP instance M_u is simply $\pi^*_h(\cdot) = u_h$ for $h \in [H]$.

Similar to the proof of Lemma 9 in Zanette et al. [2021], we can show that the value suboptimality of policy π on MDP M_u is given by
\[
V_u^* - V_u^\pi = \frac{\delta}{\sqrt{2d}} \sum_{h=1}^{H} \left\| u_h - \mathbb{E}_\pi [a_h] \right\|_1.
\]

Define $u^\pi = (u^\pi_1, \ldots, u^\pi_H)$ with $u^\pi_h := \text{sign}(\mathbb{E}_\pi [a_h])$, then the ℓ_1-norm is lower bounded as
\[
\left\| u_h - \mathbb{E}_\pi [a_h] \right\|_1 \geq D_H(u^\pi_h; u_h),
\]
where $D_H(\cdot; \cdot)$ denotes the Hamming distance. It follows that
\[
V_u^* - V_u^\pi \geq \frac{\delta}{\sqrt{2d}} D_H(u^\pi; u).
\] (26)

We then apply Assouad’s method (Lemma 2.12 in Sampson and Guttorp [1992]) and obtain that
\[
\inf_{\hat{u}} \max_{u \in \mathcal{U}} \mathbb{E}_u \left[D_H(\hat{u}; u) \right] \geq \frac{(d-2)H}{2} \min_{u, u' \in \mathcal{U}, D_H(u'; u) = 1} \mathbb{E}_u \left[\mathbb{P}_u (\psi \neq u) + \mathbb{P}_{u'} (\psi \neq u') \right],
\] (27)
where ψ is any test functions mapping from observations to $\{u, u'\}$. Combining inequalities (26) and (27), we finish the proof.

38
E.4 Lower bound on the testing error

Proof of Lemma E.2. The proof of Lemma E.2 is similar to that of Lemma 10 in Zanette et al. [2021]. We first apply Theorem 2.12 in Sampson and Guttorp [1992] to lower bound the testing error using Kullback–Leibler divergence and obtain

\[
\min_{u, u' \in \mathcal{U} : D_H(u'; u) = 1} \inf_{\psi} \left[\mathbb{P}_u(\psi \neq u) + \mathbb{P}_{u'}(\psi \neq u') \right] \geq 1 - \left(\frac{1}{2} \max_{u, u' \in \mathcal{U} : D_H(u'; u) = 1} D_{KL}(Q_u || Q_{u'}) \right)^{1/2}. \tag{28}
\]

It only remains to estimate \(D_{KL}(Q_u || Q_{u'}) \).

The probability density \(Q_u \) takes the form

\[
Q_u(D) = \prod_{k=1}^{K} \xi_1(s_k^1) \prod_{h=1}^{H} \mu(a_k^h \mid s_h^1) \left[R_{u,h}(s_h^1, a_h^1) \right] \left(r_h^1 \right) \mathbb{P}_h(s_{h+1}^1 \mid s_h^1, a_h^1)
\]

where \(\xi_1 = \left[\frac{1}{2}, \frac{1}{2} \right] \) is the initial distribution. It follows that

\[
D_{KL}(Q_u || Q_{u'}) = \mathbb{E}_u \left[\log(Q_u / Q_{u'}) \right]
\]

\[
= K \cdot \sum_{h=1}^{H} \mathbb{E}_u \left[\log \left(\frac{\left[R_{u,h}(s_h^1, a_h^1) \right] \left(r_h^1 \right)}{\left[R_{u',h}(s_h^1, a_h^1) \right] \left(r_h^1 \right)} \right) \right]
\]

\[
= \frac{K}{d} \sum_{j=1}^{d-2} D_{KL}(\mathcal{N}(\frac{\delta}{\sqrt{2d}}(e_j, u_h), 1) \parallel \mathcal{N}(\frac{\delta}{\sqrt{2d}}(e_j, u_h'), 1)).
\]

If we take \(\delta = \frac{c_2 \sqrt{d}}{\sqrt{K}} \), then inequality (28) ensures inequality (23), as claimed in the statement of the lemma.

E.5 Connection to the uncertainty term

Proof of Lemma E.3. We first calculate the explicit form of the inverse of variance-rescaled covariance matrix \(\Lambda_{u}^{*p} \). For each time step \(h \in [H] \), the value function \(V_{u,h+1}^{*} \) takes the form

\[
V_{u,h+1}^{*} = \mathbb{E}_{\pi}^{*} \cdot r_{u,h+1} + (\mathbb{P}_{u,h+2}^{*} V_{u,h+2}^{*}).
\]

Since \((\mathbb{P}_{h+1} V_{u,h+2}^{*})(+1) = (\mathbb{P}_{h+1} V_{u,h+2}^{*})(-1) \) and \(r_{u,h+1}(+1, a) - r_{u,h+1}(-1, a) = 2/\sqrt{6} \), we have

\[
\text{Var}_{P_h}(V_{u,h+1}^{*})(+1, a) = \text{Var}_{P_h}(\mathbb{E}_{\pi}^{*} \cdot r_{u,h+1})(+1, a) = \frac{1}{6}.
\]

Similarly,

\[
\text{Var}_{P_h}(V_{u,h+1}^{*})(-1, a) = \text{Var}_{P_h}(V_{u,h+1}^{*})(+1, a) = \frac{1}{6}.
\]
By routine calculation, we find that the population-level rescaled covariance matrix takes the form
\[\Lambda^*_h = \frac{3K}{2} \begin{pmatrix} \frac{2}{d^2} I_{d-2} & \frac{1}{d\sqrt{d}} 1_{(d-2)\times 2} \\ \frac{1}{d\sqrt{d}} 1_{2\times(d-2)} & I_2 \end{pmatrix} \in \mathbb{R}^{d\times d} \]
for any \(h \in [H] \). Applying Gaussian elimination on \(\Lambda^*_h \), we have
\[(\Lambda^*_h)^{-1} = \frac{2}{3K} \begin{pmatrix} \frac{d^2}{2} \left\{ I_{d-2} + \frac{1}{d^2} 1_{(d-2)\times(d-2)} \right\} & -\frac{d\sqrt{d}}{2(d-2)} 1_{(d-2)\times2} \\ -\frac{d\sqrt{d}}{2(d-2)} 1_{2\times(d-2)} & \frac{1}{d^2} \left(d - 1 \right) \end{pmatrix}. \]

For each time step \(h \in [H] \), we have (by Jensen’s inequality)
\[\sqrt{\mathbb{E}_{\pi^*}[\phi^\top (\Lambda^*_h)^{-1}\mathbb{E}_{\pi^*}[\phi]]} \leq \frac{1}{2} \| \phi(+1, u_h) \|_{(\Lambda^*_h)^{-1}} + \frac{1}{2} \| \phi(-1, u_h) \|_{(\Lambda^*_h)^{-1}}. \]

Recall that by our construction,
\[\phi(+1, u_h) = \begin{pmatrix} u_h \\ \sqrt{2d} \\ 0 \end{pmatrix} \in \mathbb{R}^d, \quad \phi(-1, u_h) = \begin{pmatrix} u_h \\ 0 \\ \sqrt{2d} \end{pmatrix} \in \mathbb{R}^d. \]

It follows that
\[\| \phi(+1, u_h) \|^2_{(\Lambda^*_h)^{-1}} = \| \phi(-1, u_h) \|^2_{(\Lambda^*_h)^{-1}} \]
\[= \frac{2}{3K} \left\{ \frac{d^2}{4} u_h^\top I_{d-2} + \frac{1}{d^2} 1_{(d-2)\times(d-2)} u_h - \frac{d}{2(d-2)} 1_{d-2}^\top u_h + \frac{d-1}{2(d-2)} \right\} \]
\[= \frac{2}{3K} \left\{ \frac{d^2}{4} + \frac{d}{4(d-2)} \left(1 - 1_{d-2}^\top u_h \right)^2 + \frac{1}{4} \right\} \]
\[\leq \frac{2}{3K} \left\{ \frac{d^2}{4} + \frac{d(d-1)^2}{4(d-2)} + \frac{1}{4} \right\} = \frac{2}{3K} \left\{ \frac{d^2}{2} + \frac{d-1}{2(d-2)} \right\} \approx d^2/K. \]

Therefore,
\[\sqrt{\mathbb{E}_{\pi^*}[\phi^\top (\Lambda^*_h)^{-1}\mathbb{E}_{\pi^*}[\phi]]} \lesssim d/\sqrt{K}. \]

Taking the summation over \(h \in [H] \), we obtain the bound (25) as claimed in the lemma statement.

\[\blacksquare \]

E.6 Comparison to Lower bound in Jin et al. [2021b]

Generally speaking, Theorem 3.5 and lower bound in Jin et al. [2021b] are not directly comparable since both results are global minimax (not instance-dependent/local-minimax) lower bounds and their hardness only hold for a family of hard instances (which makes comparison outside of the family instances vacuum). However, for all the instances within the family, we can compare them. Since both
papers use tabular hard instance constructions, we only compare \(\sqrt[d]{\sum_{h=1}^{H} \mathbb{E}_{\pi}[\phi]^{\top}(\Lambda_h^{*})^{-1}\mathbb{E}_{\pi}[\phi]}\) and \(\sum_{h=1}^{H} \mathbb{E}_{\pi}[\sqrt{\phi(s_h, a_h)^{\top}\Lambda_{h}^{*}-1\phi(s_h, a_h)}]\) under the tabular setting.

Indeed, under the tabular setting \(\phi(s, a) = 1_{s,a}, d = SA\), we have

\[
\sum_{h=1}^{H} \mathbb{E}_{\pi}[\phi(a, \tau)^{\top}\Lambda_{h}^{*}-1\phi(a, \tau)] = \sum_{h=1}^{H} \sum_{s,a} d_{h}^{\pi}(s, a)\sqrt{1_{s,a}^{\top}\Lambda_{h}^{*}-11_{s,a}} \\
= \sum_{h=1}^{H} \sum_{s,a} d_{h}^{\pi}(s, a)\sqrt{\text{Var}_{\pi}(V_{h+1}^{*})} \frac{1_{s,a}}{n_{h,s,a}}

\]

where the last step uses C-S inequality. This finishes verification.

\[F\] A Numerical Simulation

\[F.1\] A Linear MDP construction

We consider a synthetic linear MDP example that is similar to Min et al. [2021] but with some modifications for the offline learning task. The MDP instance we use consists of \(|S| = 2\) states and \(|A| = 100\) actions, and feature dimension \(d = 100\) respectively. For each action \(a \in \{0, 1, \ldots, 99\}\), we use binary encoding to obtain a vector \(\mathbf{a} \in \mathbb{R}^{8}\) using its binary representation (i.e. each coordinate is either 0 or 1). We interchangeably use \(a\) and and its vector representation \(\mathbf{a}\) for the ease of explanation. We first define \(\delta(s, a) = \begin{cases} 1 & \text{if } 1_s = 0 \text{ and } 1_a = 0 \\ 0 & \text{otherwise} \end{cases}\), then the non-stationary linear MDP is specified by the following configuration:

- Feature mapping:

\[
\phi(s, a) = \begin{pmatrix} a^\top, \delta(s, a), 1 - \delta(s, a) \end{pmatrix}^\top \in \mathbb{R}^{10}
\]
• The true measure ν_h

$$\nu_h(s) = (0, \ldots, 0, (1 - s) \oplus \alpha_h, s \oplus \alpha_h),$$

where $\{\alpha_h\}_{h \in [H]}$ is a sequence of integers taking values 0 or 1 and \oplus is the standard XOR operator. We define

$$\theta_h \equiv (0, \ldots, 0, r, 1 - r) \in \mathbb{R}^10$$

with the choice of $r = 0.9$. The transition follows $P_h(s'|s, a) = \langle \phi(s, a), \nu_h(s') \rangle$ and the mean reward function $r_h(s, a) = \langle \phi(s, a), \theta_h \rangle$.

• Behavior policy: always choose action $a = 0$ with probability p, and other actions uniformly with probability $(1 - p)/99$. The initial distribution chooses $s = 0$ and $s = 1$ with equal probability $1/2$. We use $p = 0.6$.

![Graphs showing suboptimality vs. episode for different fixed horizons](image)

(a) Suboptimality vs. Episode K (Horizon $H = 20$) (b) Suboptimality vs. Episode K (Horizon $H = 30$) (c) Suboptimality vs. Episode K (Horizon $H = 50$)

Figure 1: Comparison between PEVI and VAPVI in the non-stationary linear MDP instance described above. In each figure, y-axis denotes suboptimality gap $v^* - \hat{v}^\pi$, x-axis denotes number of episodes K. The problem horizons are fixed to be $H = 20, 30, 50$. The solid line denotes the average suboptimality gap over 50 trials and the error bar area is the corresponding standard deviation. The range of K is from 5 to 1000.

F.2 Empirical comparison between PEVI and VAPVI on the constructed linear MDP

We compare Pessimistic Value Iteration (PEVI) in Jin et al. [2021b] and our VAPVI Algorithm 1 in Figure 1, with horizon to be $H = 20, 30, 50$. In addition, we add the non-pessimistic version for both algorithms, i.e. least-square value iteration (LSVI) and variance-aware value iteration (VAVI). The true optimal value v^* is computed via value iteration using the underlying transition kernels. For the empirical validation of VAPVI, we do not split the data and, in particular, in all the methods we choose $\lambda = 0.01$ (instead of $\lambda = 1$ used in theory [Jin et al., 2021b] which causes over-regularization in the simulation).

We can observe VAPVI outperforms PEVI and the gap becomes larger when horizon H increases. One main reason for this to happen is due to the bonus used in PEVI [Jin et al., 2021b]

$$O \left[dH \cdot (\phi(\cdot, \cdot)^\top \Sigma_h^{-1} \phi(\cdot, \cdot))^{1/2} \right]$$

is overly pessimistic comparing to our

$$O \left[\sqrt{d} \cdot (\phi(\cdot, \cdot)^\top \Lambda_h^{-1} \phi(\cdot, \cdot))^{1/2} \right]$$

42
when H becomes larger and this could potentially make the learning less accurate. In addition, both non-pessimistic algorithms exhibit similar accuracy, and this is partially owing to our truncation scheme $\hat{\sigma}_h(\cdot, \cdot)^2 \leftarrow \max\{1, \text{Var}_h \hat{V}_{h+1}(\cdot, \cdot)\}$ so $\hat{\sigma}_h(\cdot, \cdot)^2$ will just be 1 when the estimated variance is small. Lastly, variance-aware pessimism eventually outperforms non-pessimism algorithms when sample size is large and this might come from that the pessimistic bonus is estimated more accurately when more samples are collected.

G Some missing derivations and discussions

G.1 Regarding coverage assumption

Now we discuss the feature coverage assumption. Indeed, even if Assumption 2.2 is not satisfied, we can still learn in the effective subspan of $\Sigma^p_h := \mathbb{E}_{\mu,h}[\phi(s,a)\phi(s,a)\top]$. Concretely, since Σ^p_h is symmetric, by orthogonal decomposition we have $\Sigma^p_h = Z_h \Lambda Z_h\top$, where Z_h (can be estimated using the samples for practical purpose) consists of orthogonal basis and Λ consists of eigenvalues of Σ^p_h in the diagonal. Suppose we do not have a full coverage, i.e.

$$\Lambda = \text{diag}[\lambda_1, \lambda_2, ..., \lambda_{d'}, 0, ..., 0] \quad \text{with} \quad d' < d,$$

then we can create transformed features $\phi'_h(s,a) = Z_h \cdot \phi_h(s,a)$, and then

$$\mathbb{E}_{\mu,h}[\phi'_h(s,a)\phi'_h(s,a)\top] = \Lambda = \text{diag}[\lambda_1, \lambda_2, ..., \lambda_{d'}, 0, ..., 0].$$

Then we can do learning w.r.t. the truncated features $\phi'_{h|1:d'}$’s instead of the original ϕ. It reduces to the weaker notion of $\kappa := \min_{h \in [H]}\{\kappa_h : s.t. \kappa_h = \text{smallest positive eigenvalue at time } h\}$.

G.2 On Variance-Awareness for Linear Mixture MDP

In this section we provide a short discussion of applying VAPVI for the setting where the model is described by a mixture of linear kernels. We first recall the definition of linear mixture MDP models.

Definition G.1 (Linear Mixture Models). We assume the MDP is linear w.r.t. feature map $\psi : \Sigma \times A \times \Sigma \to \mathbb{R}^d$, i.e., for any $h \in [H]$, there exists $\theta_h \in \mathbb{R}^d$ with $\|\theta_h\|_2 \leq B$ for B bounded such that

$$P_h(s'|s, a) = \psi(s, a, s')\top \theta_h$$

for all $(s, a, s') \in \Sigma \times A \times \Sigma$. Also, for any bounded function $V : \Sigma \to [0, 1],$

$$\left\| \int_{\Sigma} \psi(s, a, s') \cdot V(s') ds' \right\|_2 \leq \sqrt{d}$$

for any $(s, a) \in \Sigma \times A$.

In this setting, similar to Cai et al. [2020], one can create a value-dependent state-action feature as

$$\phi^V_h(\cdot, \cdot) = \int_{\Sigma} \psi(\cdot, \cdot, s')V_{h+1}(s') ds'$$

Then replacing the all the feature mapping ϕ in Algorithm 1 by ϕ^V, VAPVI can be similarly conducted for Linear mixture MDPs. However, there are three differences:
• ϕ_h^V depends on V, which could incur extra randomness when instantiated with VAPVI (since V is plugged by \hat{V}_{h+1});
• Unlike ϕ in linear MDP, ϕ_h is different for all the time step h (since it is coupled with V_{h+1});
• The reward might not admit linear in feature structure, which requires modifications of the algorithm (e.g. regressing over $P_hV_{h+1}(\cdot, \cdot)$ instead of $P_hV_{h+1}(\cdot, \cdot) + r_h(\cdot, \cdot) = Q_h(\cdot, \cdot)$ in Cai et al. [2020]).

We leave how to analyze VAPVI-style algorithm for linear mixture MDPs as the future works.

G.3 Derivation of (5)

When reducing Theorem 3.2,3.3 to the tabular case, set $\phi(s, a) = 1_{s, a}$, $d = SA$, $\lambda = 0$, and recall by Assumption 3.4 (let’s assume π^* is a deterministic policy as it always exists in tabular MDP) $C^* := \sup_{h,s,a} d_h^\pi(s, a)/d_h^\mu(s, a)$, then for Theorem 3.2

$$\sqrt{d} \sum_{h=1}^H \mathbb{E}_{\pi} \left[\phi(\cdot, \cdot)^T \Lambda_{h-1}^\pi \phi(\cdot, \cdot) \right] = \sqrt{d} \sum_{h=1}^H \sum_{s,a} d_h^\pi(s, a) \sqrt{\frac{1_{s,a}^T \Lambda_{h-1}^\pi \Lambda_{h}^\pi 1_{s,a}}{1_{s,a}^T \Lambda_{h}^\pi 1_{s,a}}}$$

$$= \sqrt{SA} \sum_{h=1}^H \sum_{s,a} d_h^\pi(s, a) \sqrt{\frac{\text{Var}_{p_{\pi^*}}(V_h^*_{h+1})}{n_{h,s,a}}}$$

$$\leq \sqrt{SA} \sum_{h=1}^H \sum_{s,a} d_h^\pi(s, a) \frac{\text{Var}_{p_{\pi^*}}(V_h^*_{h+1})}{K \cdot d_h^\mu(s, a)}$$

$$\leq \frac{SAC^*/K}{SAC^*} \sum_{h=1}^H \sum_{s,a} \sqrt{d_h^\pi(s, a) \text{Var}_{p_{\pi^*}}(V_h^*_{h+1})}$$

$$= \sqrt{S^2AC^*/K} \cdot \sum_{h=1}^H \sum_{s,a} \sqrt{S \cdot \sum_{s} d_h^\pi(s, a) \text{Var}_{p_{\pi^*}}(V_h^*_{h+1})}$$

where the first inequality is by Chernoff bound and the last one is by Lemma 3.4. of Yin and Wang [2020] (Law of total variances). The rest of them are from Cauchy’s inequality. Similarly, for
Theorem 3.3, we also have

\[
\sqrt{d} \cdot \sum_{h=1}^{H} \sqrt{E_{\pi^*} \left[\phi^\top \Lambda_h^{-1} \phi \right]} = \sqrt{d} \cdot \sum_{h=1}^{H} \sqrt{\text{Vec}(d^{\pi^*}) \Lambda_h^{-1} \text{Vec}(d^{\pi^*})}
\]

\[
= \sqrt{d} \cdot \sum_{h=1}^{H} \sqrt{\text{Vec}(d^{\pi^*}) \text{diag} \left(\frac{\text{Var}_{P_{\pi^*}}(V_{h+1}^*)}{n_{h,s,a}} \right) \text{Vec}(d^{\pi^*})}
\]

\[
\leq \sqrt{SA} \cdot \sum_{h=1}^{H} \sqrt{\sum_{s,a} d_h^*(s,a) \frac{\text{Var}_{P_{\pi^*}}(V_{h+1}^*)}{n_{h,s,a}}}
\]

\[
\leq \sqrt{SAC^*/K} \cdot \sum_{h=1}^{H} \sqrt{\sum_{s,a} d_h^*(s,a) \text{Var}_{P_{\pi^*}}(V_{h+1}^*)}
\]

\[
= \sqrt{SAC^*/K} \cdot \sum_{h=1}^{H} \sqrt{\sum_s d_h^*(s,\pi^*(s)) \text{Var}_{P_{\pi^*}(s)}(V_{h+1}^*)}
\]

\[
\leq \sqrt{SAC^*/K} \cdot \sqrt{H \cdot \sum_{h=1}^{H} E_{\pi^*} \left[\text{Var}_{P_{\pi^*}}(V_{h+1}^*) \right]} \leq \sqrt{H^3 SAC^*/K}.
\]

H Auxiliary Lemmas

Lemma H.1 (Matrix McDiarmid inequality / Matrix Chernoff bound [Tropp, 2012]). Let \(z_k, k = 1, \ldots, K \) be independent random vectors in \(\mathbb{R}^d \), and let \(H \) be a mapping that maps \(K \) vectors to a \(d \times d \) symmetric matrix. Assume there exists a sequence of fixed symmetric matrices \(\{A_k\}_{k \in [K]} \) such that for \(z_k, z_k' \) ranges over all possible values for each \(k \in [K] \), it holds

\[
(H(z_1, \ldots, z_k, \ldots, z_K) - H(z_1, \ldots, z_k', \ldots, z_K))^2 \leq A_k^2.
\]

Define \(\sigma^2 := \|\sum_k A_k^2\| \). Then for any \(t > 0 \),

\[
\mathbb{P} \left\{ \|H(z_1, \ldots, z_K) - \mathbb{E}H(z_1, \ldots, z_K)\| \geq t \right\} \leq d \cdot \exp \left(\frac{-t^2}{8\sigma^2} \right)
\]

Lemma H.2 (Hoeffding inequality for self-normalized martingales [Abbasi-Yadkori et al., 2011]). Let \(\{\eta_t\}_{t=1}^{\infty} \) be a real-valued stochastic process. Let \(\{\mathcal{F}_t\}_{t=0}^{\infty} \) be a filtration, such that \(\eta_t \) is \(\mathcal{F}_t \)-measurable. Assume \(\eta_t \) also satisfies \(\eta_t \) given \(\mathcal{F}_{t-1} \) is zero-mean and \(R \)-subgaussian, i.e.

\[
\forall \lambda \in \mathbb{R}, \quad \mathbb{E} \left[e^{\lambda \eta_t} \mid \mathcal{F}_{t-1} \right] \leq e^{\lambda^2 R^2/2}
\]

45
Let \(\{x_t\}_{t=1}^{\infty} \) be an \(\mathbb{R}^d \)-valued stochastic process where \(x_t \) is \(\mathcal{F}_{t-1} \) measurable and \(\|x_t\| \leq L \). Let \(\Lambda_t = \lambda I_d + \sum_{s=1}^{t} x_s x_s^\top \). Then for any \(\delta > 0 \), with probability \(1 - \delta \), for all \(t > 0 \),
\[
\left\| \sum_{s=1}^{t} x_s \eta_s \right\|_{\Lambda_t^{-1}}^2 \leq 8R^2 \cdot \frac{d}{2} \log \left(\frac{\lambda + tL}{\lambda \delta} \right).
\]

Lemma H.3 (Bernstein inequality for self-normalized martingales [Zhou et al., 2021a]). Let \(\{\eta_t\}_{t=1}^{\infty} \) be a real-valued stochastic process. Let \(\{\mathcal{F}_t\}_{t=1}^{\infty} \) be a filtration, such that \(\eta_t \) is \(\mathcal{F}_t \)-measurable. Assume \(\eta_t \) also satisfies
\[
|\eta_t| \leq R, \mathbb{E}[|\eta_t| | \mathcal{F}_{t-1}] = 0, \mathbb{E}[\eta_t^2 | \mathcal{F}_{t-1}] \leq \sigma^2.
\]

Let \(\{x_t\}_{t=1}^{\infty} \) be an \(\mathbb{R}^d \)-valued stochastic process where \(x_t \) is \(\mathcal{F}_{t-1} \) measurable and \(\|x_t\| \leq L \). Let \(\Lambda_t = \lambda I_d + \sum_{s=1}^{t} x_s x_s^\top \). Then for any \(\delta > 0 \), with probability \(1 - \delta \), for all \(t > 0 \),
\[
\left\| \sum_{s=1}^{t} x_s \eta_s \right\|_{\Lambda_t^{-1}}^2 \leq 8\sigma^2 \sqrt{d \log \left(1 + \frac{tL^2}{\lambda \delta} \right) + 4R \log \left(\frac{4t^2}{\delta} \right)}.
\]

Lemma H.4 (Converting the variance under the matrix norm). Let \(\Lambda_1 \) and \(\Lambda_2 \in \mathbb{R}^{d \times d} \) are two positive semi-definite matrices. Then:
\[
\|\Lambda_1^{-1}\| \leq \|\Lambda_2^{-1}\| + \|\Lambda_1^{-1}\| \cdot \|\Lambda_2^{-1}\| \cdot \|\Lambda_1 - \Lambda_2\|
\]

and
\[
\|\phi\|_{\Lambda_1^{-1}} \leq \left[1 + \sqrt{\|\Lambda_2^{-1}\| \|\Lambda_2\| \cdot \|\Lambda_1^{-1}\| \cdot \|\Lambda_1 - \Lambda_2\|} \right] \cdot \|\phi\|_{\Lambda_2^{-1}}.
\]

for all \(\phi \in \mathbb{R}^d \).

Proof. For the first part, note
\[
\|\Lambda_1^{-1}\| \leq \|\Lambda_2^{-1}\| + \|\Lambda_1^{-1} - \Lambda_2^{-1}\| \leq \|\Lambda_2^{-1}\| + \|\Lambda_2^{-1}\| \cdot \|\Lambda_1 - \Lambda_2\| \cdot \|\Lambda_1^{-1}\|
\]

For the second one,
\[
\|\phi\|_{\Lambda_1^{-1}} = \sqrt{\phi^\top \Lambda_1^{-1} \phi} = \sqrt{\phi^\top (\Lambda_1^{-1} - \Lambda_2^{-1}) \phi + \phi^\top \Lambda_2^{-1} \phi} \\
= \sqrt{\phi^\top \Lambda_2^{-1/2} \left((\Lambda_2^{-1})^{1/2} \Lambda_1^{-1} (\Lambda_2^{-1})^{1/2} - I + I \right) \Lambda_2^{-1/2} \phi} \leq \sqrt{\|\phi\|_{\Lambda_2^{-1}} \cdot \left(1 + \|\Lambda_2^{-1} (\Lambda_2^{-1} - \Lambda_1) \Lambda_2^{-1} \|^{1/2} \right) \cdot \|\phi\|_{\Lambda_2^{-1}}} \\
\leq \left(1 + \|\Lambda_2\| \|\Lambda_1^{-1}\| \|\Lambda_2^{-1}\| \|\Lambda_1 - \Lambda_2\| \right) \cdot \|\phi\|_{\Lambda_2^{-1}}
\]
Lemma H.5 (Lemma H.4 of Min et al. [2021]). Let \(\phi : S \times A \to \mathbb{R}^d \) satisfies \(\|\phi(s,a)\| \leq C \) for all \(s, a \in S \times A \). For any \(K > 0, \lambda > 0 \), define \(G_K = \sum_{k=1}^{K} \phi(s_k, a_k)\phi(s_k, a_k)^	op + \lambda I_d \) where \((s_k, a_k) \)'s are i.i.d samples from some distribution \(\nu \). Then with probability \(1 - \delta \),
\[
\| \frac{G_K}{K} - \mathbb{E}_\nu \left[\frac{G_K}{K} \right] \| \leq \frac{4 \sqrt{2} C^2}{\sqrt{K}} \left(\log \frac{2d}{\delta} \right)^{1/2}.
\]

Proof of Lemma H.5. For completeness, we provide the proof of Lemma H.5. Let \(x_k = \phi(s_k, a_k) \). Denote \(\Sigma_h \) as the matrix obtained by replacing the k-th vector \(x_k \) in \(\Sigma_h \) by \(\bar{x}_k \) and leaving the rest \(K - 1 \) vectors unchanged. Then
\[
\left(\frac{\Sigma_h}{K} - \frac{\bar{\Sigma}_h}{K} \right)^2 = \left(\frac{x_k x_k^\top - \bar{x}_k \bar{x}_k^\top}{K} \right) \leq \frac{1}{K^2} \left(2x_k x_k^\top x_k x_k^\top + 2\bar{x}_k \bar{x}_k^\top \bar{x}_k \bar{x}_k^\top \right) \leq \frac{4C^4}{K^2} I_d := A_k.
\]
Notice that \(\| \sum_k A_k^2 \| = \frac{4C^4}{K} \), by Lemma H.1 we have the result.

Lemma H.6 (Lemma H.5 of Min et al. [2021]). Let \(\phi : S \times A \to \mathbb{R}^d \) be a bounded function s.t. \(\|\phi\|_2 \leq C \). Define \(G_K = \sum_{k=1}^{K} \phi(s_k, a_k)\phi(s_k, a_k)^	op + \lambda I_d \) where \((s_k, a_k) \)'s are i.i.d samples from some distribution \(\nu \). Let \(G = \mathbb{E}_\nu[\phi(s,a)\phi(s,a)^	op] \). Then for any \(\delta \in (0, 1) \), if \(K \) satisfies
\[
K \geq \max \left\{ 512C^4 \|G^{-1}\|^2 \log \left(\frac{2d}{\delta} \right), 4\lambda \|G^{-1}\| \right\}.
\]
Then with probability at least \(1 - \delta \), it holds simultaneously for all \(u \in \mathbb{R}^d \) that
\[
\|u\|_{G^{-1}} \leq \frac{2}{\sqrt{K}} \|u\|_{G^{-1}}.
\]

Lemma H.7 (Extended Value Difference (Section B.1 in Cai et al. [2020])). Let \(\pi = \{\pi_h\}_{h=1}^H \) and \(\pi' = \{\pi'_h\}_{h=1}^H \) be two arbitrary policies and let \(\{\bar{Q}_h\}_{h=1}^H \) be any given Q-functions. Then define \(\bar{V}_h(s) := \langle \bar{Q}_h(s, \cdot), \pi_h(\cdot | s) \rangle \) for all \(s \in S \). Then for all \(s \in S \),
\[
\bar{V}_1(s) - V_1^{\pi'}(s) = \sum_{h=1}^H \mathbb{E}_{\pi'} \left[\langle \bar{Q}_h(s_h, \cdot), \pi_h(\cdot | s_h) - \pi'_h(\cdot | s_h) \rangle \mid s_1 = s \right] + \sum_{h=1}^H \mathbb{E}_{\pi'} \left[\bar{Q}_h(s_h, a_h) - \left(T_h \bar{V}_{h+1} \right)(s_h, a_h) \mid s_1 = s \right]
\]
(29)
where \((T_h V)(\cdot, \cdot) := r_h(\cdot, \cdot) + (P_h V)(\cdot, \cdot) \) for any \(V \in \mathbb{R}^S \).

Proof. Denote \(\xi_h = \bar{Q}_h - T_h \bar{V}_{h+1} \). For any \(h \in [H] \), we have
\[
\bar{V}_h - V_h^{\pi'} = \langle \bar{Q}_h, \pi_h \rangle - \langle Q_h^{\pi'}, \pi'_h \rangle
= \langle \bar{Q}_h, \pi_h - \pi'_h \rangle + \langle \bar{Q}_h - Q_h^{\pi'}, \pi'_h \rangle
= \langle \bar{Q}_h, \pi_h - \pi'_h \rangle + \langle P_h(\bar{V}_{h+1} - V_{h+1}^{\pi'}), \pi'_h \rangle + \xi_h, \pi'_h \rangle
= \langle \bar{Q}_h, \pi_h - \pi'_h \rangle + \langle P_h(\bar{V}_{h+1} - V_{h+1}^{\pi'}), \pi'_h \rangle + \langle \xi_h, \pi'_h \rangle
\]
47
recursively apply the above for $\hat{V}_{h+1} - V_{h+1}^{\pi'}$ and use the $\mathbb{E}_{\pi'}$ notation (instead of the inner product of P_h, π'_h) we can finish the proof of this lemma.

Lemma H.8. Let $\hat{\pi} = \{\hat{\pi}_h\}_{h=1}^H$ and $\hat{Q}_h(\cdot, \cdot)$ be the arbitrary policy and Q-function and also $\hat{V}_h(s) = \langle \hat{Q}_h(s, \cdot), \hat{\pi}_h(\cdot|s) \rangle$ \forall s \in S$. and $\zeta_h(s, a) := (T_hV_{h+1})(s, a) - \hat{Q}_h(s, a)$ (element-wisely) to be the Bellman update error. Then for any arbitrary π, we have

$$V_1^\pi(s) - V_1^{\hat{\pi}}(s) = \sum_{h=1}^H \mathbb{E}_{\pi}[\zeta_h(s_h, a_h) \mid s_1 = s] - \sum_{h=1}^H \mathbb{E}_{\hat{\pi}}[\zeta_h(s_h, a_h) \mid s_1 = s]$$

$$+ \sum_{h=1}^H \mathbb{E}_{\pi}\left[\langle \hat{Q}_h(s_h, \cdot), \pi_h(\cdot|s_h) - \hat{\pi}_h(\cdot|s_h) \rangle \mid s_1 = x \right]$$

where the expectation are taken over s_h, a_h.

Proof. Note the gap can be rewritten as

$$V_1^\pi(s) - V_1^{\hat{\pi}}(s) = V_1^\pi(s) - \hat{V}_1(s) + \hat{V}_1(s) - V_1^{\hat{\pi}}(s).$$

By Lemma H.7 with $\pi = \hat{\pi}$, $\pi' = \pi$, we directly have

$$V_1^\pi(s) - \hat{V}_1(s) = \sum_{h=1}^H \mathbb{E}_{\pi}[\zeta_h(s_h, a_h) \mid s_1 = s] + \sum_{h=1}^H \mathbb{E}_{\pi}\left[\langle \hat{Q}_h(s_h, \cdot), \pi_h(\cdot|s_h) - \hat{\pi}_h(\cdot|s_h) \rangle \mid s_1 = s \right]$$

Next apply Lemma H.7 again with $\pi = \pi' = \hat{\pi}$, we directly have

$$\hat{V}_1(s) - V_1^{\hat{\pi}}(s) = - \sum_{h=1}^H \mathbb{E}_{\hat{\pi}}[\zeta_h(s_h, a_h) \mid s_1 = s].$$

Combine the above two results we prove the stated result.

Lemma H.9. For a linear MDP, for any $0 \leq V(\cdot) \leq H$, then there exists a $w_h \in \mathbb{R}^d$ s.t. $T_hV = \langle \phi, w_h \rangle$ and $\|w_h\|_2 \leq 2H\sqrt{d}$ for all $h \in [H]$. Here $T_h(V)(s, a) = r_h(x, a) + (P_hV)(s, a)$. Similarly, for any π, there exists $w_h^\pi \in \mathbb{R}^d$, such that $Q_h^\pi = \langle \phi, w_h^\pi \rangle$ with $\|w_h^\pi\|_2 \leq 2(H - h + 1)\sqrt{d}$.

Proof. By definition,

$$T_hV = r_h + (P_hV) = \langle \phi, \theta_h \rangle + \langle \phi, \int_S V(s)dv_h(s) \rangle$$

$$\Rightarrow w_h = \theta_h + \int_S V(s)dv_h(s),$$

therefore $\|w_h\|_2 \leq \|\theta_h\|_2 + H \cdot \|v_h(S)\| \leq 1 + H\sqrt{d} \leq 2H\sqrt{d}$. The proof of the second part is similar by backward induction and the fact $V_1^\pi \leq H - h + 1$ for any π.
Lemma H.10. For any pessimistic bonus design Γ_h, suppose $K > \max\{M_1, M_2, M_3, M_4\}$, then with probability $1 - \delta$, Algorithm 1 yields

$$\left\| T_h \hat{V}_{h+1} - \tilde{T}_h \tilde{V}_{h+1} \right\|_\infty \leq \tilde{O}(\frac{H^2 \sqrt{d/\kappa}}{\sqrt{K}}).$$

Proof of Lemma H.10. Suppose w_h is the coefficient corresponding to the $T_h \hat{V}_{h+1}$ (such w_h exists by Lemma H.9), i.e. $T_h \hat{V}_{h+1} = \phi^\top w_h$, and recall $(\tilde{T}_h \tilde{V}_{h+1})(s, a) = \phi(s, a)^\top \tilde{w}_h$, then:

$$\left(T_h \hat{V}_{h+1} \right)(s, a) - \left(\tilde{T}_h \tilde{V}_{h+1} \right)(s, a) = \phi(s, a)^\top (w_h - \tilde{w}_h)$$

For term (ii), by Cauchy inequality it is bounded by

$$\phi(s, a)^\top w_h - \phi(s, a)^\top \tilde{\Lambda}_h^{-1} \sum_{\tau=1}^K \phi(s_h, a_h^\tau) \cdot \left(r_h + \hat{V}_{h+1} (s_h^\tau) / \hat{\sigma}_h^2(s_h, a_h^\tau) \right)$$

For term (i), it is bounded by

$$\phi(s, a)^\top \tilde{\Lambda}_h^{-1} \sum_{\tau=1}^K \phi(s_h, a_h^\tau) \cdot \left(r_h + \hat{V}_{h+1} (s_h^\tau) - \left(T_h \hat{V}_{h+1} \right)(s_h^\tau, a_h^\tau) / \hat{\sigma}_h^2(s_h, a_h^\tau) \right)$$

(iii)

$$\phi(s, a)^\top \tilde{\Lambda}_h^{-1} \sum_{\tau=1}^K \phi(s_h, a_h^\tau) \cdot \left(T_h \hat{V}_{h+1} (s_h^\tau, a_h^\tau) / \hat{\sigma}_h^2(s_h, a_h^\tau) \right)$$

(ii)

For term (i), it is bounded by $\frac{2\lambda H^3 \sqrt{d/\kappa}}{K}$ with probability $1 - \delta$ by Lemma C.2.

For term (ii), by Cauchy inequality it is bounded by

$$\|\phi(s, a)\| \tilde{\Lambda}_h^{-1} \cdot \left\| \sum_{\tau=1}^K \phi(s_h, a_h^\tau) \cdot \left(r_h + \hat{V}_{h+1} (s_h^\tau) - \left(T_h \hat{V}_{h+1} \right)(s_h^\tau, a_h^\tau) / \hat{\sigma}_h^2(s_h, a_h^\tau) \right) \right\| \tilde{\Lambda}_h^{-1}$$

$$\leq \frac{2H}{\sqrt{\kappa K}} \left\| \sum_{\tau=1}^K \phi(s_h, a_h^\tau) \cdot \left(r_h + \hat{V}_{h+1} (s_h^\tau) - \left(T_h \hat{V}_{h+1} \right)(s_h^\tau, a_h^\tau) / \hat{\sigma}_h^2(s_h, a_h^\tau) \right) \right\| \tilde{\Lambda}_h^{-1}$$

$$\leq \frac{2H}{\sqrt{\kappa K}} \cdot \tilde{O}(H \sqrt{d}) = \tilde{O}(\frac{H^2 \sqrt{d/\kappa}}{\sqrt{K}}),$$

where the first inequality is by Lemma H.6 (with $\phi' = \phi / \hat{\sigma}_h$ and $\|\phi / \hat{\sigma}_h\| \leq \|\phi\| \leq 1 := C$) and the third inequality uses $\sqrt{a^\top A} \cdot a \leq \sqrt{\|a\|^2 \|A\|_2} \leq \|a\|_2 \sqrt{\|A\|_2}$ with a to be either ϕ or w_h. Moreover, $\lambda_{\min}(\tilde{\Lambda}_h^\top) \geq \kappa / \max_{h,s,a} \tilde{\sigma}_h(s, a)^2 \geq \kappa / H^2$ implies $\| (\tilde{\Lambda}_h^\top)^{-1} \| \leq H^2 / \kappa$.

The second inequality comes from Lemma H.2 with $R = H$ since $|\eta_r| = |(r_h + \hat{V}_{h+1} (s_h^\tau) - (T_h \hat{V}_{h+1})(s_h^\tau, a_h^\tau)) / \hat{\sigma}_h(s_h, a_h^\tau)| \leq H$ and $|x_r| = |\phi(s_h, a_h^\tau) / \hat{\sigma}_h(s_h, a_h^\tau)| \leq 1$.

The final result is obtained by absorbing the term (i) via the condition $K > \max\{M_1, M_2, M_3, M_4\}$.

Lemma H.11. Suppose random variables $\|X\|_\infty \leq 2H$, $\|Y\|_\infty \leq 2H$, then

$$|\text{Var}(X) - \text{Var}(Y)| \leq 8H \cdot \|X - Y\|_\infty.$$
Proof of Lemma H.11.

\[
|\text{Var}(X) - \text{Var}(Y)| = |E[X^2] - E[Y^2] - (E[X]^2 - E[Y]^2)| = |E[(X + Y)(X - Y)] - (E[X + Y])(E[X - Y])| \\
\leq E[|X + Y| \cdot |X - Y|] + 4H \cdot \|X - Y\|_{\infty} \\
\leq 4H E[|X - Y|] + 4H \cdot \|X - Y\|_{\infty} = 8H \cdot \|X - Y\|_{\infty}
\]