Causal isotonic regression

Ted Westling,
University of Massachusetts Amherst, USA

Peter Gilbert
Fred Hutchinson Cancer Research Center, Seattle, USA

and Marco Carone
University of Washington, Seattle, USA

[Received February 2019. Revised March 2020]

Summary. In observational studies, potential confounders may distort the causal relationship between an exposure and an outcome. However, under some conditions, a causal dose–response curve can be recovered by using the G-computation formula. Most classical methods for estimating such curves when the exposure is continuous rely on restrictive parametric assumptions, which carry significant risk of model misspecification. Non-parametric estimation in this context is challenging because in a non-parametric model these curves cannot be estimated at regular rates. Many available non-parametric estimators are sensitive to the selection of certain tuning parameters, and performing valid inference with such estimators can be difficult. We propose a non-parametric estimator of a causal dose–response curve known to be monotone. We show that our proposed estimation procedure generalizes the classical least squares isotonic regression estimator of a monotone regression function. Specifically, it does not involve tuning parameters and is invariant to strictly monotone transformations of the exposure variable. We describe theoretical properties of our proposed estimator, including its irregular limit distribution and the potential for doubly robust inference. Furthermore, we illustrate its performance via numerical studies and use it to assess the relationship between body mass index and immune response in human immunodeficiency virus vaccine trials.

Keywords: Backdoor formula; Cross-fitting; Dose–response; Grenander-type estimator; Monotonicity; Shape-constrained estimation

1. Introduction

1.1. Motivation and literature review

Questions regarding the causal effect of an exposure on an outcome are ubiquitous in science. If investigators can carry out an experimental study in which they randomly assign a level of exposure to each participant and then measure the outcome of interest, estimating a causal effect is generally straightforward. However, such studies are often not feasible, and data from observational studies must be relied on instead. Assessing causality is then more difficult, in large part because of potential confounding of the relationship between exposure and outcome. Many non-parametric methods have been proposed for drawing inference about a causal effect by using observational data when the exposure of interest is either binary or categorical—these include, among others, inverse-probability-weighted estimators (Horvitz and Thompson, 1952),...
augmented inverse-probability-weighted (AIPW) estimators (Scharfstein et al., 1999; Bang and Robins, 2005) and targeted minimum-loss-based estimators (van der Laan and Rose, 2011).

In practice, many exposures are continuous, in the sense that they may take any value in an interval. A common approach to dealing with such exposures is simply to discretize the interval into two or more regions, thus returning to the categorical exposure setting. However, it is frequently of scientific interest to learn the causal dose–response curve, which describes the causal relationship between the exposure and outcome across a continuum of the exposure. Much less attention has been paid to continuous exposures. Robins (2000) and Zhang et al. (2016) studied this problem by using parametric models, and Neugebauer and van der Laan (2007) considered inference on parameters obtained by projecting a causal dose–response curve onto a parametric working model. Other researchers have taken a non-parametric approach instead. Rubin and van der Laan (2006) and Diaz and van der Laan (2011) discussed non-parametric estimation using flexible data-adaptive algorithms. Kennedy et al. (2017) proposed an estimator based on local linear smoothing. Finally, van der Laan et al. (2018) have recently presented a general framework for inference on parameters that fail to be sufficiently smooth as a function of the data-generating distribution and for which regular root-n-estimation theory is therefore not available. This is indeed the case for the causal dose–response curve, and van der Laan et al. (2018) discussed inference on such a parameter as a particular example.

Despite a growing body of literature on non-parametric estimation of causal dose–response curves, to the best of our knowledge, existing methods do not permit valid large sample inference and may be sensitive to the selection of certain tuning parameters. For instance, smoothing-based methods are often sensitive to the choice of a kernel function and bandwidth, and these estimators typically have non-negligible asymptotic bias, which complicates the task of performing valid inference.

In many settings, it may be known that the causal dose–response curve is monotone in the exposure. For instance, exposures such as daily exercise performed, cigarettes smoked per week and air pollutant levels are all known to have monotone relationships with various health outcomes. In such cases, an extensive literature suggests that monotonicity may be leveraged to derive estimators with desirable properties—Groeneboom and Jongbloed (2014) provides a comprehensive overview. For example, in the absence of confounding, isotonic regression may be employed to estimate the causal dose–response curve (Barlow et al., 1972). The isotonic regression estimator does not require selection of a kernel function or bandwidth, is invariant to strictly increasing transformations of the exposure and on centring and scaling by $\frac{n}{n-1} = 3$, converges in law pointwise to a symmetric limit distribution with mean 0 (Brunk, 1970). The convergence property is useful since it facilitates asymptotically valid pointwise inference.

Non-parametric inference on a monotone dose–response curve when the exposure–outcome relationship is confounded is more difficult to tackle and is the focus of this paper. To the best of our knowledge, this problem has not been comprehensively studied before.

1.2. Parameter of interest and its causal interpretation

The prototypical data unit that we consider is $O = (Y, A, W)$, where Y is a response, A a continuous exposure and W a vector of covariates. The support of the true data-generating distribution P_0 is denoted by $O = \mathcal{Y} \times \mathcal{A} \times \mathcal{W}$, where $\mathcal{Y} \subseteq \mathbb{R}$, $\mathcal{A} \subseteq \mathbb{R}$ is an interval and $\mathcal{W} \subseteq \mathbb{R}^p$. Throughout, the use of subscript 0 refers to evaluation at or under P_0. For example, we write θ_0 and F_0 to denote θ_{P_0} and F_{P_0} respectively, and E_0 to denote expectation under P_0.

Our parameter of interest is the so-called G-computed regression function from \mathcal{A} to \mathbb{R}, defined as
Isotonic Regression

\[a \mapsto \theta_0(a) := E_0 \{ E_0(Y|A = a, W) \}, \]

where the outer expectation is with respect to the marginal distribution \(Q_0 \) of \(W \). In some scientific contexts, \(\theta_0(a) \) may have a causal interpretation. Adopting the Neyman–Rubin potential outcomes framework, for each \(a \in A \), we denote by \(Y(a) \) a unit’s potential outcome under exposure level \(A = a \). The causal parameter \(m_0(a) := E_0 \{ Y(a) \} \) corresponds to the average outcome under assignment of the entire population to exposure level \(A = a \). The resulting curve \(m_0 : A \to \mathbb{R} \) is what we formally define as the causal dose–response curve. Under varying sets of causal conditions, \(m_0(a) \) may be identified with functionals of the observed data distribution, such as the unadjusted regression function \(r_0(a) := E_0(Y|A = a) \) or the \(G \)-computed regression function \(\theta_0(a) \).

Suppose that

(a) each unit’s potential outcomes are independent of all other units’ exposures, and
(b) the observed outcome \(Y \) equals the potential outcome \(Y(A) \) corresponding to the exposure level \(A \) that is actually received.

Identification of \(m_0(a) \) further depends on the relationship between \(A \) and \(Y(a) \). If assumptions (a) and (b) hold and, in addition,

(c) \(A \) and \(Y(a) \) are independent, and
(d) the marginal density of \(A \) is positive at \(a \),

then \(m_0(a) = r_0(a) \). Condition (c) typically holds in experimental studies only (e.g. randomized trials). In observational studies there are often common causes of \(A \) and \(Y(a) \)—so-called confounders of the exposure–outcome relationship—that induce dependence. In such cases, \(m_0(a) \) and \(r_0(a) \) do not generally coincide. However, if \(W \) contains a sufficiently rich collection of confounders, it may still be possible to identify \(m_0(a) \) from the observed data. If assumptions (a) and (b) hold and, in addition,

(e) \(A \) and \(Y(a) \) are conditionally independent given \(W \), and
(f) the conditional density of \(A \) given \(W \) is almost surely positive at \(A = a \),

then \(m_0(a) = \theta_0(a) \). This is a fundamental result in causal inference (Robins, 1986; Gill and Robins, 2001). Whenever \(m_0(a) = \theta_0(a) \), our methods can be interpreted as drawing inference on the causal dose–response parameter \(m_0(a) \).

We note that the definition of the counterfactual outcome \(Y(a) \) presupposes that the intervention setting \(A = a \) is uniquely defined. In many situations, this stipulation requires careful thought. For example, in Section 6 we consider an application in which body mass index BMI is the exposure of interest. There is an on-going scientific debate about whether such an exposure leads to a meaningful causal interpretation, since it is not clear what it means to intervene on BMI.

Even if the identifiability conditions that were stipulated above do not strictly hold or the scientific question is not causal in nature, when \(W \) is associated with both \(A \) and \(Y \), \(\theta_0(a) \) often has a more appealing interpretation than the unadjusted regression function \(r_0(a) \). Specifically, \(\theta_0(a) \) may be interpreted as the average value of \(Y \) in a population with exposure fixed at \(A = a \) but otherwise characteristic of the study population with respect to \(W \). Because \(\theta_0(a) \) involves both adjustment for \(W \) and marginalization with respect to a single reference population that does not depend on the value \(a \), the comparison of \(\theta_0(a) \) over different values of \(a \) is generally more meaningful than for \(r_0(a) \).

When \(P_0(A = a) = 0 \), the parameter \(P \mapsto \theta_P(a) \) is not pathwise differentiable at \(P_0 \) with respect
to the non-parametric model (Diaz and van der Laan, 2011). Heuristically, because of the continuous nature of A, $\theta_p(a)$ corresponds to a local feature of P. As a result, regular root-n-rate estimators cannot be expected, and standard methods for constructing efficient estimators of pathwise differentiable parameters in non-parametric and semiparametric models (e.g. estimating equations, one-step estimation or targeted minimum loss-based estimation) cannot be used directly to target and obtain inference on $\theta_0(a)$.

1.3. Contribution and organization of the paper
We denote by $F_p : A \to \mathbb{R}$ the distribution function of A under P, by \mathcal{F}_0 the class of non-decreasing real-valued functions on A and by \mathcal{F}_F the class of strictly increasing and continuous distribution functions supported on A. The statistical model that we shall work in is $\mathcal{M} := \{ P : \theta_p \in \mathcal{F}_0, F_p \in \mathcal{F}_F \}$, which consists of the collection of distributions for which θ_p is non-decreasing over A and the marginal distribution of A is continuous with positive Lebesgue density over A.

In this paper, we study non-parametric estimation and inference on the G-computed regression function $a \mapsto \theta_0(a) = E_0\{E_0(Y|A=a, W)\}$ for use when A is a continuous exposure and θ_0 is known to be monotone. Specifically, our goal is to make inference about $\theta_0(a)$ for $a \in \mathcal{A}$ by using independent observations O_1, O_2, \ldots, O_n drawn from $P_0 \in \mathcal{M}$. This problem is an extension of classical isotonic regression to the setting in which the exposure–outcome relationship is confounded by recorded covariates—this is why we refer to the method proposed as causal isotonic regression. As mentioned above, to the best of our knowledge, non-parametric estimation and inference on a monotone G-computed regression function have not been comprehensively studied before. In what follows, we

(a) show that our proposed estimator generalizes the unadjusted isotonic regression estimator to the more realistic scenario in which there is confounding by recorded covariates,
(b) investigate finite sample and asymptotic properties of the estimator proposed, including invariance to strictly increasing transformations of the exposure, doubly robust consistency and doubly robust convergence in distribution to a non-degenerate limit,
(c) derive practical methods for constructing pointwise confidence intervals, including intervals that have valid doubly robust calibration and
(d) illustrate numerically the practical performance of the estimator.

We note that, in Westling and Carone (2019), we studied estimation of θ_0 as one of several examples of a general approach to monotonicity-constrained inference. Here, we provide a comprehensive examination of estimation of a monotone dose–response curve. In particular, we establish novel theory and methods that have important practical implications. First, we provide conditions under which the estimator converges in distribution even when one of the nuisance estimators that are involved in the problem is inconsistent. This contrasts with the results in Westling and Carone (2019), which required that both nuisance parameters be estimated consistently. We also propose two estimators of the scale parameter arising in the limit distribution, one of which requires both nuisance estimators to be consistent, and the other of which does not. Second, we demonstrate that our estimator is invariant to strictly monotone transformations of the exposure. Third, we study the joint convergence of our proposed estimator at two points and use this result to construct confidence intervals for causal effects. Fourth, we study the behaviour of our estimator in the context of discrete exposures. Fifth, we propose an alternative estimator based on cross-fitting the nuisance estimators and demonstrate that this strategy removes the need for empirical process conditions that were required in Westling and Carone (2019). Finally,
we investigate the behaviour of our estimator in comprehensive numerical studies and compare its behaviour with that of the local linear estimator of Kennedy et al. (2017).

The remainder of the paper is organized as follows. In Section 2, we concretely define the estimator proposed. In Section 3, we study theoretical properties of the estimator. In Section 4, we propose methods for pointwise inference. In Section 5, we perform numerical studies to assess the performance of the estimator and, in Section 6, we use this procedure to investigate the relationship between BMI and immune response to human immunodeficiency virus (HIV) vaccines by using data from several randomized trials. Finally, we provide concluding remarks in Section 7. Proofs of all theorems are provided in on-line supplementary material.

Some example data and the programs that were used to analyse them can be obtained from https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-b-datasets.

2. Proposed approach

2.1. Review of isotonic regression

Since the proposed estimator of $\theta_0(a)$ builds on isotonic regression, we briefly review the classical least squares isotonic regression estimator of $r_0(a)$. The isotonic regression r_n of Y_1, Y_2, \ldots, Y_n on A_1, A_2, \ldots, A_n is the minimizer in r of $\sum_{i=1}^n \{Y_i - r(A_i)\}^2$ over all monotone non-decreasing functions. This minimizer can be obtained via the pool adjacent violators algorithm (Ayer et al., 1955; Barlow et al., 1972) and can also be represented in terms of greatest convex minorants (GCMs). The GCM of a bounded function f on an interval $[a, b]$ is defined as the supremum over all convex functions g such that $g \leq f$. Letting F_n be the empirical distribution function of A_1, A_2, \ldots, A_n, $r_n(a)$ can be shown to equal the left derivative, evaluated at $F_n(a)$, of the GCM over the interval $[0, 1]$ of the linear interpolation of the so-called cumulative sum diagram

$$\left\{ \frac{1}{n} \left(i, \sum_{j=0}^{i} Y_{(j)}^* \right) : i = 0, 1, \ldots, n \right\},$$

where $Y_{(0)}^* := 0$ and $Y_{(i)}^*$ is the value of Y corresponding to the observation with ith smallest value of A.

The isotonic regression estimator r_n has many attractive properties. First, unlike smoothing-based estimators, isotonic regression does not require the choice of a kernel function, bandwidth or any other tuning parameter. Second, it is invariant to strictly increasing transformations of A. Specifically, if $H : A \to \mathbb{R}$ is a strictly increasing function, and r_n^* is the isotonic regression of Y_1, Y_2, \ldots, Y_n on $H(A_1), H(A_2), \ldots, H(A_n)$, it follows that $r_n^* = r_n \circ H^{-1}$. Third, r_n is uniformly consistent on any strict subinterval of A. Fourth, $n^{1/3} \{r_n(a) - r_0(a)\}$ converges in distribution to $\{4r_0'(a)\sigma_0^2(a)/f_0(a)\}^{1/3} \mathbb{W}$ for any interior point a of A at which $r_0'(a)$, $f_0(a) := F_0'(a)$ and $\sigma_0^2(a) := E_0[\{Y - r_0(a)\}^2 | A = a]$ exist and are positive and continuous in a neighbourhood of a. Here, $\mathbb{W} := \arg \max_{u \in \mathbb{R}} \{Z_0(u) - u^2\}$, where Z_0 denotes a two-sided Brownian motion originating from zero, and is said to follow Chernoff’s distribution. Chernoff’s distribution has been extensively studied: among other properties, it is a log-concave and symmetric law centred at zero, has moments of all orders and can be approximated by an $N(0, 0.52)$ distribution (Chernoff, 1964; Groeneboom and Wellner, 2001). It appears often in the limit distribution of monotonicity-constrained estimators.

2.2. Definition of proposed estimator

For any given $P \in \mathcal{M}$, we define the outcome regression pointwise as $\mu_P(a, w) := E_P(Y|A =
\[a, W = w \], and the normalized exposure density as \(g_p(a, w) := \pi_p(a|w)/f_p(a) \), where \(\pi_p(a|w) \) is the evaluation at \(a \) of the conditional density function of \(A \) given \(W = w \) and \(f_p \) is the marginal density function of \(A \) under \(P \). Additionally, we define the pseudo-outcome \(\xi_{\mu, g, Q}(y, a, w) \) as

\[
\xi_{\mu, g, Q}(y, a, w) := \frac{y - \mu(a, w)}{g(a, w)} + \int \mu(a, z) Q(dz).
\]

As noted by Kennedy et al. (2017), \(E_0\{\xi_{\mu, g, Q}(Y, A, W)|A = a\} = \theta_0(a) \) if either \(\mu = \mu_0 \) or \(g = g_0 \). They used this fact to motivate an estimator \(\bar{\theta}_{n, h}(a) \) of \(\theta_0(a) \), defined as the local linear regression estimator, we define

\[
\bar{\theta}_{n, h}(a) = \arg\min_{\theta} \sum_{i=1}^{n} \left[y_i - \theta(A_i, W_i) \right]^2 + h^2 \sum_{i=1}^{n} \sum_{j=1}^{n} \left(A_i - A_j \right) \left(W_i - W_j \right)
\]

over \([0, 1]\). Kennedy et al. (2017) showed that if either \(\mu_n \) or \(g_n \) is consistent. Additionally, under regularity conditions, they showed that, if both nuisance estimators converge sufficiently fast and the bandwidth \(h_n \to 0 \) at rate \(n^{-1/5} \), then

\[
n^{2/5} \{ \bar{\theta}_{n, h_n}(a) - \theta_0(a) \} \xrightarrow{d} N\{b_0(a), v_0(a)\},
\]

where \(b_0(a) \) is an asymptotic bias depending on the second derivative of \(\theta_0 \), and \(v_0(a) \) is an asymptotic variance.

In our setting, \(\theta_0 \) is known to be monotone. Therefore, instead of using a local linear regression to estimate the conditional mean of the pseudo-outcomes, it is natural to consider as an estimator the isotonic regression of the pseudo-outcomes on \(A_1, A_2, \ldots, A_n \). Using the GCM representation of isotonic regression that was stated in the previous section, we can summarize our estimation procedure as follows.

Step 1: construct estimators \(\mu_n \) and \(g_n \) of \(\mu_0 \) and \(g_0 \) respectively.

Step 2: for each \(a \) in the unique values of \(A_1, A_2, \ldots, A_n \), compute and set

\[
\Gamma_n(a) := \frac{1}{n} \sum_{i=1}^{n} I(\langle -\infty, a \rangle(A_i) \frac{Y_i - \mu_n(A_i, W_i)}{g_n(A_i, W_i)} + \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} I(\langle -\infty, a \rangle(A_i) \mu_n(A_i, W_j).
\]

Step 3: compute the GCM \(\bar{\Psi}_n \) of the set of points \(\{(0, 0)\} \cup \{(F_n(A_i), \Gamma_n(A_i)) : i = 1, 2, \ldots, n\} \) over \([0, 1]\).

Step 4: define \(\theta_n(a) \) as the left derivative of \(\bar{\Psi}_n \) evaluated at \(F_n(a) \).

As in the work of Kennedy et al. (2017), although the proposed estimator \(\theta_n \) can be defined as an isotonic regression, the asymptotic properties of our estimator do not appear to follow simply from classical results for isotonic regression because the pseudo-outcomes depend on the estimators \(\mu_n \), \(g_n \) and \(Q_n \), which themselves depend on all the observations. However, \(\theta_n \) is of generalized Grenander type, and thus the asymptotic results of Westling and Carone (2019) can be used to study its asymptotic properties. To see that \(\theta_n \) is a generalized Grenander-type estimator, we define \(\psi_p := \theta_p \circ F_p^{-1} \), and note that, since \(\theta_p \) and \(F_p^{-1} \) are increasing, so is \(\psi_p \). Therefore, the primitive function

\[
\Psi_p(t) := \int_0^t \psi_p(u) du = \int_{-\infty}^{F_p^{-1}(t)} \theta_p(v) F_p(dv)
\]

is convex. Next, we define \(\Gamma_p := \Psi_p \circ F_p \), so that
\[\Gamma_p(a) = \int_{-\infty}^{a} \theta_p(u) F_P(du) = \int \int_{-\infty}^{\infty} \mu_p(u,w) F_P(du) Q_P(dw). \]

The parameter \(\Gamma_p(a_0) \) is pathwise differentiable at \(P \) in \(\mathcal{M} \) for each \(a_0 \), and its non-parametric efficient influence function \(\Phi_{\mu_p,g_P,F_P,Q_P,a_0} \) can be computed to be

\[
(y,a,w) \mapsto I_{(-\infty,a_0]}(a) \frac{y - \mu_p(a,w)}{g_P(a,w)} + \int_{-\infty}^{a_0} \mu_p(u,w) F_P(du) + I_{(-\infty,a_0]}(a) \theta_p(a) - 2 \Gamma_p(a_0).
\]

Denoting by \(P_n \) any estimator of \(P_0 \) that is compatible with estimators \(\mu_n, g_n, F_n \) and \(Q_n \) of \(\mu_0, g_0, F_0 \) and \(Q_0 \) respectively, the one-step estimator of \(\Gamma_0(a) \) is given by

\[
\Gamma_n(a) := \Gamma_{\mu_n,F_n,Q_n}(a) + \frac{1}{n} \sum_{i=1}^{n} \Phi_{\mu_n,g_n,F_n,Q_n,a}(Y_i),
\]

where we define

\[
\Gamma_{\mu_n,F_n,Q_n}(a) := \int \int_{-\infty}^{a} \mu_n(u,w) F_n(du) Q_n(dw).
\]

This one-step estimator is equivalent to that defined in expression (1). We then define \(\Psi_n := \Gamma_n \circ F_n^{-1} \) for \(F_n \) the empirical quantile function of \(A \) as our estimator of \(\Psi_0 \), and \(\psi_n \) as the left derivative of the GCM of \(\Psi_n \). Thus, we find that \(\theta_n = \psi_n \circ F_n \) is the estimator that is defined in steps 1–4. This form of the estimator was described in Westling and Carone (2019), where it was briefly discussed as one of several examples of a general strategy for non-parametric monotone inference.

If \(\theta_0(a) \) were only known to be monotone on a fixed subinterval \(A_0 \subset A \), we would define \(F_P(a) := P(A \leq a | A \in A_0) \) as the marginal distribution function restricted to \(A_0 \), and \(F_n \) as its empirical counterpart. Similarly, \(I_{(-\infty,a]}(A_i) \) in expression (1) would be replaced with \(I_{(-\infty,a]} \cap A_0(A_i) \). In all other respects, our estimation procedure would remain the same.

Finally, as alluded to earlier, we observe that the proposed estimator generalizes classical isotonic regression in a way that we now make precise. If it is known that \(A \) is independent of \(W \) (condition 1), so that \(g_0(a,w) = 1 \) for all supported \((a,w)\), we may take \(g_n = 1 \). If, furthermore, it is known that \(Y \) is independent of \(W \) given \(A \) (condition 2), then we may construct \(\mu_n \) such that \(\mu_n(a,w) = \mu_n(a) \) for all supported \((a,w)\). Inserting \(g_n = 1 \) and any such \(\mu_n \) into expression (1), we obtain that

\[
\Gamma_n(a) = \frac{1}{n} \sum_{i=1}^{n} I_{(-\infty,a]}(A_i) Y_i
\]

and thus that \(\theta_n(a) = r_n(a) \) for each \(a \). Hence, in this case, our estimator reduces to least squares isotonic regression.

3. Theoretical properties

3.1. Invariance to strictly increasing exposure transformations

An important feature of the estimator proposed is that, as with the isotonic regression estimator, it is invariant to any strictly increasing transformation of \(A \). This is a desirable property because the scale of a continuous exposure is often arbitrary from a statistical perspective. For instance, if \(A \) is temperature, whether \(A \) is measured in degrees Fahrenheit or Celsius or in kelvins does not change the information that is available. In particular, if the parameters \(\theta_0 \) and \(\theta_0^* \) correspond to using as exposure \(A \) and \(H(A) \) respectively for \(H \) some strictly increasing transformation, then
θ₀ and θ*₀ encode exactly the same information about the effect of A on Y after adjusting for W. It is therefore natural to expect any sensible estimator to be invariant to the scale on which the exposure is measured.

Setting X := H(A) for a strictly increasing function H : A → ℝ, we first note that the function θ*₀ : x → E₀{E₀(Y|X = x, W)} = θ₀ ◦ H⁻¹(x) is non-decreasing. Next, we define μ*₀(x, w) := E₀(Y|X = x, W = w) and g₀*(x, w) = π₀*(x|w)/f₀*(x), where π₀*(x|w) is the evaluation at x of the conditional density of X given W = w and f₀* is the marginal density function of X under P₀, and we denote by μ*₀ and g*₀ estimators of μ*₀ and g₀* respectively. The estimation procedure that was defined in the previous section but using exposure X instead of A then leads to estimator \(\hat{θ}_n^*(x) := \hat{ψ}_n^* \circ \hat{F}_n^*(x) \), where \(F_n^* := F_n \circ H^{-1} \) is the empirical distribution function based on \(X_1, X_2, \ldots, X_n \), and \(\hat{ψ}_n^* \) is the left derivative of the GCM of \(Ψ_n^* := Γ_n^* \circ F_n^* \) for

\[
Γ_n^*(x) := \frac{1}{\sum_{i=1}^n} \left\{ I_{(−∞,x]}(X_i) \frac{Y_i - μ_n^*(X_i, W_i)}{g_n^*(X_i, W_i)} + \int_{−∞}^x μ_n^*(x, W_i) F_n^*(dx) \right\}
= \frac{1}{\sum_{i=1}^n} \left\{ I_{(−∞,H^{-1}(x)]}(A_i) \frac{Y_i - μ_n^*(H(A_i), W_i)}{g_n^*(H(A_i), W_i)} + \int_{−∞}^{H^{-1}(x)} μ_n^*(H(a), W_i) F_n(da) \right\}.
\]

If \(μ_n^*(H(a), w) = μ_n(a, w) \) and \(g_n^*(H(a), w) = g_n(a, w) \), implying that nuisance estimators \(μ_n \) and \(g_n \) are themselves invariant to a strictly increasing transformation of \(A \), then we have that \(Γ_n = Γ_n \circ H^{-1} \), and so \(Ψ_n^* = Γ_n \circ H^{-1} \circ H = Ψ_n \). It follows then that \(\hat{θ}_n^* = θ_n \circ H^{-1} \). In other words, the proposed estimator \(\hat{θ}_n \) of \(θ_n \) is invariant to any strictly increasing transformation of the exposure variable.

We note that it is easy to ensure that \(μ_n^*(H(a), w) = μ_n(a, w) \) and \(g_n^*(H(a), w) = g_n(a, w) \). Set \(U := F_n(A) \), which is also equal to \(F_n^*(X) \), and let \(\hat{μ}_n(u, w) \) be an estimator of the conditional mean of \(Y \) given \(U = u \). Then, taking \(\hat{μ}_n(u, w) := μ_n \{ F_n(a), w \} \), we have that \(μ_n^*(x, w) := μ_n^* \{ F_n^*(x), w \} \) satisfies the desired property. Similarly, letting \(\hat{g}_n(u, w) \) be an estimator of the conditional density of \(U = u \) given \(W = w \) and, setting \(g_n(a, w) := g_n \{ F_n(a), w \} \), we may take \(g_n^*(x, w) := g_n^* \{ F_n^*(x), w \} \).

3.2. Consistency
We now provide sufficient conditions under which consistency of \(\hat{θ}_n \) is guaranteed. Our conditions require controlling the uniform entropy of certain classes of functions. For a uniformly bounded class of functions \(F \), a finite discrete probability measure \(Q \), and any \(ε > 0 \), the ε-covering-number \(N(ε, F, L_2(Q)) \) of \(F \) relative to the \(L_2(Q) \) metric is the smallest number of \(L_2(Q) \) balls of radius less than or equal to \(ε \) needed to cover \(F \). The uniform ε-entropy of \(F \) is then defined as \(\log[\sup_Q N(ε, F, L_2(Q))] \), where the supremum is taken over all finite discrete probability measures. For a thorough treatment of covering numbers and their role in empirical process theory, we refer readers to van der Vaart and Wellner (1996).

Below, we state three sufficient conditions that we shall refer to in the following theorem.

Condition 1. There exist constants \(C, δ, K_0, K_1, K_2 \in (0, ∞) \) and \(V \in [0, 2) \) such that, almost surely as \(n → ∞ \), \(μ_n \) and \(g_n \) are contained in classes of functions \(F_0 \) and \(F_1 \) respectively, satisfying

- (a) \(|μ| ≤ K_0 \) for all \(μ ∈ F_0 \), and \(K_1 ≤ g ≤ K_2 \) for all \(g ∈ F_1 \), and
- (b) \(\log[\sup_Q N(ε, F_0, L_2(Q))] ≤ Ce^{−V/2} \) and \(\log[\sup_Q N(ε, F_1, L_2(Q))] ≤ Ce^{−V} \) for all \(ε ≤ δ \).

Condition 2. There exist \(μ_∞ ∈ F_0 \) and \(g_∞ ∈ F_1 \) such that \(P_0(μ_n − μ_∞)^2 →^p 0 \) and \(P_0(g_n − g_∞)^2 →^p 0 \).
Condition 3. There exist subsets S_1, S_2 and S_3 of $A \times \mathcal{W}$ such that $P_0(S_1 \cup S_2 \cup S_3) = 1$ and

(a) $\mu_{\infty}(a, w) = \mu_0(a, w)$ for all $(a, w) \in S_1$,
(b) $g_{\infty}(a, w) = g_0(a, w)$ for all $(a, w) \in S_2$ and
(c) $\mu_{\infty}(a, w) = \mu_0(a, w)$ and $g_{\infty}(a, w) = g_0(a, w)$ for all $(a, w) \in S_3$.

Under these three conditions, we have the following result.

Theorem 1 (consistency). If conditions 1–3 hold, then $\theta_n(a) \to^P \theta_0(a)$ for any value $a \in A$ such that $F_0(a) \in (0, 1)$, θ_0 is continuous at a and F_0 is strictly increasing in a neighbourhood of a. If θ_0 is uniformly continuous and F_0 is strictly increasing on A, then $\sup_{a \in A_0} |\theta_n(a) - \theta_0(a)| \to^P 0$ for any bounded strict subinterval $A_0 \subset A$.

We note that, in the pointwise statement of theorem 1, $F_0(a)$ is required to be in the interior of $[0, 1]$ and, similarly, the uniform statement of theorem 1 covers only strict subintervals of A. This is due to the well-known boundary issues with Grenander-type estimators. Various remedies have been proposed in particular settings, and it would be interesting to consider these in future work (see, for example, Woodroofe and Sun (1993), Balabdaoui et al. (2011) and Kulikov and Lopuhaä (2006)).

Condition 1 requires that μ_n and g_n eventually be contained in uniformly bounded function classes that are sufficiently small for certain empirical process terms to be controlled. This condition is easily satisfied if, for instance, F_0 and F_1 are parametric classes. It is also satisfied for many infinite dimensional function classes. Uniform entropy bounds for many such classes may be found in chapter 2.6 of van der Vaart and Wellner (1996). We note that there is an asymmetry between the entropy requirements for F_0 and F_1 in part (b) of condition 1. This is due to the term $\int f_0^a \mu_n(u, w) F_0(du) Q_n(dw)$ appearing in $\Gamma_n(a)$. To control this term, we use an upper bound of the form $\int_0^1 \log[\sup_Q N(\epsilon, F_0, L_2(Q))] \, d\epsilon$ from the theory of empirical U-processes (Nolan and Pollard, 1987)—this contrasts with the uniform entropy integral $\int_0^1 (\log[\sup_Q N(\epsilon, F, L_2(Q))]^{1/2} \, d\epsilon$ that bounds ordinary empirical processes indexed by a uniformly bounded class \mathcal{F}. In Section 3.7, we consider the use of cross-fitting to avoid the entropy conditions in condition 1.

Condition 2 requires that μ_n and g_n tend to limit functions μ_{∞} and g_{∞}, and condition 3 requires that either $\mu_{\infty}(a, w) = \mu_0(a, w)$ or $g_{\infty}(a, w) = g_0(a, w)$ for $(F_0 \times Q_0)$ almost every (a, w). If either

(a) S_1 and S_3 are null sets or
(b) S_2 and S_3 are null sets,

then condition 3 is known simply as double robustness of the estimator θ_n relative to the nuisance functions μ_n and g_n: θ_n is consistent as long as $\mu_{\infty} = \mu_0$ or $g_{\infty} = g_0$. Doubly robust estimators are at this point a mainstay of causal inference and have been studied for over two decades (see, for example, Robins et al. (1994), Rotnitzky et al. (1998), Scharfstein et al. (1999), van der Laan and Robins (2003), Neugebauer and van der Laan (2005) and Bang and Robins (2005)). However, condition 3 is more general than classical double robustness, as it allows neither μ_n nor g_n to tend to their true counterparts over the whole domain, as long as at least one of μ_n or g_n tends to the truth for almost every point in the domain.

3.3. Convergence in distribution

We now study the convergence in distribution of $n^{1/3} \{\theta_n(a) - \theta_0(a)\}$ for fixed a. We first define for any square integrable functions $h_1, h_2 : A \times \mathcal{W} \to \mathbb{R}$, $\epsilon > 0$ and $\mathcal{S} \subseteq A \times \mathcal{W}$ the pseudodistance
the functions θ of the nuisance estimators is consistent at a rate faster than n and g.

We also denote by $\sigma_0^2(a, w)$ the conditional variance $E_0[(Y - \mu_0(A, W))^2 | A = a, W = w]$ of Y given $A = a$ and $W = w$ under P_0. Below, we shall refer to these two additional conditions.

Condition 4. There exists $\varepsilon_0 > 0$ such that

(a) $\max \{d(\mu_n, \mu_\infty; a, \varepsilon_0, S_1), d(g_n, g_\infty; a, \varepsilon_0, S_2)\} = o_p(n^{-1/3})$,

(b) $\max \{d(\mu_n, \mu_\infty; a, \varepsilon_0, S_2), d(g_n, g_\infty; a, \varepsilon_0, S_1)\} = o_p(1)$ and

(c) $d(\mu_n, \mu_\infty; a, \varepsilon_0, S_2) d(g_n, g_\infty; a, \varepsilon_0, S_2) = o_p(n^{-1/3})$.

Condition 5. $F_0, \mu_0, \mu_\infty, g_0, g_\infty$ and σ_0^2 are continuously differentiable in a neighbourhood of a uniformly over $w \in \mathcal{W}$.

Under conditions that have been introduced so far, we have the following distributional result.

Theorem 2 (convergence in distribution). If conditions 1–5 hold, then

$$n^{1/3} \{\theta_n(a) - \theta_0(a)\} \xrightarrow{d} \left\{ \frac{4\theta_0(a)\kappa_0(a)}{f_0(a)} \right\}^{1/3} \mathcal{W}.$$

for any $a \in A$ such that $F_0(a) \in (0, 1)$, where \mathcal{W} follows the standard Chernoff distribution and

$$\kappa_0(a) := E_0 \left(E_0 \left(\left\{ \frac{Y - \mu_\infty(a, W)}{g_\infty(a, W)} + \theta_\infty(a) - \theta_0(a) \right\}^2 | A = a, W \right) g_0(a, W) \right)$$

with $\theta_\infty(a)$ denoting $\int \mu_\infty(a, w) Q_0(dw)$.

We note that the limit distribution in theorem 2 is the same as that of the standard isotonic regression estimator up to a scale factor. As noted above, when either

(a) Y and W are independent given A or

(b) A is independent of W,

the functions θ_0 and r_0 coincide. As such, we can directly compare the respective limit distributions of $n^{1/3} \{\theta_n(a) - \theta_0(a)\}$ and $n^{1/3} \{r_n(a) - r_0(a)\}$ under these conditions. When both $\mu_\infty = \mu_0$ and $g_\infty = g_0$, $r_n(a)$ is asymptotically more concentrated than $\theta_n(a)$ in scenario (a), and less concentrated in scenario (b). This is analogous to findings in linear regression, where including a covariate that is uncorrelated with the outcome inflates the standard error of the estimator of the coefficient corresponding to the exposure, whereas including a covariate that is correlated with the outcome but uncorrelated with the exposure deflates its standard error.

Condition 4 requires that, on the set S_1 where μ_n is consistent but g_n is not, μ_n converges faster than $n^{-1/3}$ uniformly in a neighbourhood of a, and similarly for g_n on the set S_2. On the set S_3 where both μ_n and g_n are consistent, only the product of their rates of convergence must be faster than $n^{-1/3}$. Hence, a non-degenerate limit theory is available as long as at least one of the nuisance estimators is consistent at a rate faster than $n^{-1/3}$, even if the other nuisance estimator is inconsistent. This suggests the possibility of performing doubly robust inference for $\theta_0(a)$, i.e. of constructing confidence intervals and tests based on $\theta_n(a)$ with valid calibration even when one of μ_0 and g_0 is inconsistently estimated. This is explored in Section 4. Finally, as in theorem 1, we allow that neither μ_n nor g_n be consistent everywhere, as long as for $(F_0 \times Q_0)$ almost every (a, w) at least one of μ_n or g_n is consistent.
We remark that, if it is known that $\mu_n(a, \cdot)$ is consistent for $\mu_0(a, \cdot)$ in an $L_2(Q_0)$ sense at rate faster than $n^{-1/3}$, the isotonic regression of the plug-in estimator $\theta_{\mu_n}(a) := \int \mu_n(a, w) Q_n(dw)$—which can be equivalently obtained by setting $g_n(a, \cdot) = \infty$ in the construction of $\theta_n(a)$—achieves a faster rate of convergence to $\theta_0(a)$ than does $\theta_n(a)$. This might motivate an analyst to use $\theta_{\mu_n}(a)$ rather than $\theta_n(a)$ in such a scenario. However, the consistency of $\theta_{\mu_n}(a)$ hinges entirely on the fact that $\mu_\infty = \mu_0$ and, in particular, $\theta_{\mu_n}(a)$ will be inconsistent if $\mu_\infty \neq \mu_0$, even if $g_\infty = g_0$. Additionally, the estimator $\theta_{\mu_n}(a)$ may not generally admit a tractable limit theory on which to base the construction of valid confidence intervals, particularly when machine learning methods are used to build μ_n.

3.4. Grenander-type estimation without domain transformation

As indicated earlier, the isotonic regression estimator based on estimated pseudo-outcomes coincides with a generalized Grenander-type estimator for which the marginal exposure empirical distribution function is used as domain transformation. An alternative estimator could be constructed via Grenander-type estimation without the use of any domain transformation. Specifically, we let $a_-, a_+ \in \mathbb{R}$ be fixed, and we define $\Theta_0(a) = \int_{a_-}^a \theta_0(u)du$. Under regularity conditions, for $a \leq a_+$, the one-step estimator of $\Theta_0(a)$ given by

$$\Theta_n(a) := \frac{1}{n} \sum_{i=1}^{n} \left\{ I_{[a_-, a]}(A_i) \frac{Y_i - \mu_n(A_i, W_i)}{\pi_n(A_i, W_i)} + \int_{a_-}^{a} \mu_n(u, W_i)du \right\}$$

is asymptotically efficient, where π_n is an estimator of π_0, the conditional density of A given W under P_0. The left derivative of the GCM of Θ_n over $[a_-, a_+]$ defines an alternative estimator $\tilde{\theta}_n(a)$.

It is natural to ask how $\tilde{\theta}_n$ compares with the estimator θ_n that we have studied thus far. First, we note that, unlike $\tilde{\theta}_n$, $\tilde{\theta}_n$ neither generalizes the classical isotonic regression estimator nor is invariant to strictly increasing transformations of A. Additionally, utilizing the transformation F_0 fixes $[0, 1]$ as the interval over which the GCM should be performed. If A is known to be a bounded set, $[a_-, a_+]$ can be taken as the end points of A, but otherwise the domain $[a_-, a_+]$ must be chosen in defining $\tilde{\theta}_n$. Turning to an asymptotic analysis, using the results of Westling and Carone (2019), it is possible to establish conditions akin to conditions 1–5 under which

$$n^{1/3} \{ \tilde{\theta}_n(a) - \theta_0(a) \} \overset{d}{\to} \{ 4\tilde{\theta}_0(a)\tilde{\kappa}_0(a) \}^{1/3} \mathbb{W}$$

with scale parameter

$$\tilde{\kappa}_0(a) := E_0 \left(E_0 \left[\frac{Y - \mu_\infty(A, W)}{\pi_\infty(A|W)} | A = a, W \right] \pi_0(a|W) \right),$$

where π_∞ is the limit of π_n in probability. We denote by $\{ 4\tilde{\theta}_0(a)\tilde{\kappa}_0(a) \}^{1/3}$ and $\{ 4\tilde{\tau}_0(a) \}^{1/3}$ the limit scaling factors of $n^{1/3} \{ \tilde{\theta}_n(a) - \theta_0(a) \}$ and $n^{1/3} \{ \tilde{\tau}_n(a) - \theta_0(a) \}$ respectively. If $g_\infty = \pi_\infty / f_0$ and $\mu_\infty = \mu_0$, then $\tau_0(a) = \tilde{\tau}_0(a)$, and $n^{1/3} \{ \tilde{\theta}_n(a) - \theta_0(a) \}$ and $n^{1/3} \{ \tilde{\tau}_n(a) - \theta_0(a) \}$ have the same limit distribution. If instead $g_\infty = \pi_\infty / f_0 = g_0$ but $\mu_\infty \neq \mu_0$, this is no longer so. In fact, we can show that

$$\tau_0(a) = \theta'_0(a) E_0 \left(E_0 \left[\frac{Y - \mu_\infty(A, W)}{\pi_0(a|W)} | A = a, W \right] \pi_0(a|W) \right) = \theta'_0(a) \frac{\theta_\infty(a) - \theta_0(a)}{f_0(a)},$$

$$\tilde{\tau}_0(a) = \theta'_0(a) E_0 \left(E_0 \left[\frac{Y - \mu_\infty(A, W)}{\pi_0(a|W)} | A = a, W \right] \pi_0(a|W) \right) = \tilde{\theta}(a).$$
Hence, when the outcome regression estimator \(\mu_n \) is inconsistent, gains in efficiency are achieved by utilizing the transformation, and the relative gain in efficiency is directly related to the amount of asymptotic bias in the estimation of \(\mu_0 \).

3.5. Discrete domains

In some circumstances, the exposure \(A \) is discrete rather than continuous. Our estimator works equally well in these cases, since, as we highlight below, it turns out then to be asymptotically equivalent to the well-studied AIPW estimator. As a result, the large sample properties of our estimator can be derived from the large sample properties of the AIPW estimator, and asymptotically valid inference can be obtained by using standard influence-function-based techniques.

Suppose that \(A = \{a_1 < a_2 < \ldots < a_m \} \) and \(\sum_{j=1}^{m} f_{0,j} = 1 \). Our estimation procedure remains the same with one exception: in defining \(g_0 := \pi_0/f_0 \), we now take \(\pi_0 \) to be the conditional probability \(\pi_0(a_j|W) := P_0(A = a_j|W = w) \) rather than the corresponding conditional density, and we take \(f_0 \) as the marginal probability \(f_0(a_j) := P_0(A = a_j) = f_{0,j} \) rather than the corresponding marginal density. We then set \(g_n := \pi_n/f_n \) as the estimator of \(g_0 \), where \(\pi_n \) is any estimator of \(\pi_0 \) and \(f_n(a_j) := n_j/n \) for \(n_j := \sum_{i=1}^{n} I(A_i = a_j) \). In all other respects, our estimation procedure is identical to that defined previously. With these definitions, we denote by \(\xi_{n,i} \) the estimated pseudo-outcome for observation \(i \). Our estimator is then the isotonic regression of \(\xi_{n,1}, \xi_{n,2}, \ldots, \xi_{n,n} \) on \(A_1, A_2, \ldots, A_n \). However, since for each \(i \) there is a unique \(j \) such that \(A_i = a_j \), this is equivalent to performing isotonic regression of \(\theta_1(a_1), \theta_1(a_2), \ldots, \theta_1(a_m) \) on \(a_1, a_2, \ldots, a_m \), where \(\theta_1(a_j) := n_j^{-1} \sum_{i=1}^{n} I(a_j)(A_i) \xi_{n,i} \). It is straightforward to see that

\[
\theta_n(a_j) = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{I(a_j)(A_i)}{n} \right\} \left(\frac{Y_i - \mu_n(a_j, W_i)}{\pi_n(a_j|W_i)} + \mu_n(a_j, W_i) \right),
\]

which is exactly the AIPW estimator of \(\theta_0(a_j) \). Therefore, in this case, our estimator reduces to the isotonic regression of the classical AIPW estimator constructed separately for each element of the exposure domain.

The large sample properties of \(\theta_n \), including doubly robust consistency and convergence in distribution at the regular parametric rate \(n^{-1/2} \), are well established (Robins et al., 1994). Therefore, many properties of \(\theta_n \) in this case can be determined by using the results of Westling et al. (2018), who studied the behaviour of the isotonic correction of an initial estimator. In particular, \(\max_{a \in A} |\theta_n(a) - \theta_0(a)| \leq \max_{a \in A} |\theta^0_n(a) - \theta_0(a)| \) as long as \(\theta_0 \) is non-decreasing on \(A \). Uniform consistency of \(\theta_n \) over \(A \) thus implies uniform consistency of \(\theta_n \). Furthermore, if \(\theta_0 \) is strictly increasing on \(A \) and \(\{n^{1/2}[\theta_n(a) - \theta_0(a)] : a \in A \} \) converges in distribution, then \(\max_{a \in A} |\theta_n(a) - \theta^0_n(a)| = o_P(n^{-1/2}) \), so large sample standard errors for \(\theta_n \) are also valid for \(\theta_n \).

If \(\theta_0 \) is not strictly increasing on \(A \) but instead has flat regions, then \(\theta_n \) is more efficient than \(\theta_0 \) on these regions, and confidence intervals centred near \(\theta_n \) but based on the limit theory for \(\theta_n \) will be conservative.

3.6. Large sample results for causal effects

In many applications, in addition to the causal dose–response curve \(a \mapsto m_0(a) \) itself, causal effects of the form \((a_1, a_2) \mapsto m_0(a_1) - m_0(a_2) \) are of scientific interest as well. Under the identification conditions that were discussed in Section 1.2 applied to each of \(a_1 \) and \(a_2 \), such causal effects are identified with the observed data parameter \(\theta_0(a_1) - \theta_0(a_2) \). A natural estimator for such a causal effect in our setting is \(\theta_n(a_1) - \theta_n(a_2) \). If the conditions of theorem 1 hold for both \(a_1 \) and
integer and that a priori researchers can rarely specify T from 2.2, with mentioned conditions, and that the bivariate limit distribution of $Z_n(a_1, a_2)$ has independent components.

Theorem 3 (joint convergence in distribution). If conditions 1–5 hold for $a \in \{a_1, a_2\} \subseteq \mathcal{A}$ and $F_0(a_1), F_0(a_2) \in (0, 1)$, then $Z_n(a_1, a_2)$ converges in distribution to $\{4\tau_0(a_1)\}^{1/3} \mathcal{W}_1$, $\{4\tau_0(a_2)\}^{1/3} \mathcal{W}_2$, where \mathcal{W}_1 and \mathcal{W}_2 are independent standard Chernoff distributions and the scale parameter τ_0 is as defined in theorem 2.

Theorem 3 implies that, under the conditions stated, $n^{1/3}\left[\{\theta_n(a_1) - \theta_n(a_2)\} - \{\theta_0(a_1) - \theta_0(a_2)\}\right]$ converges in distribution to $\{4\tau_0(a_1)\}^{1/3} \mathcal{W}_1 - \{4\tau_0(a_2)\}^{1/3} \mathcal{W}_2$.

3.7. Use of cross-fitting to avoid empirical process conditions

Theorems 1 and 2 reveal that the statistical properties of θ_n depend on the nuisance estimators μ_n and g_n in two important ways. First, we require in condition 1 that μ_n or g_n fall in sufficiently small classes of functions, as measured by metric entropy, to control certain empirical process remainder terms. Second, we require in conditions 2 and 3 that at least one of μ_n or g_n be consistent almost everywhere (for consistency), and in condition 4 that the product of their rates of convergence be faster than $n^{-1/3}$ (for convergence in distribution). In observational studies, researchers can rarely specify a priori correct parametric models for μ_0 and g_0. This motivates use of data-adaptive estimators of these nuisance functions to meet the second requirement. However, such estimators often lead to violations of the first requirement, or it may be onerous to determine that they do not. Thus, because it may be difficult to find nuisance estimators that are both sufficiently data adaptive to meet required rates of convergence and fall in sufficiently small function classes to make empirical process terms negligible, simultaneously satisfying these two requirements can be challenging in practice.

In the context of asymptotically linear estimators, it has been noted that cross-fitting nuisance estimators can resolve this challenge by eliminating empirical process conditions (Zheng and van der Laan, 2011; Belloni et al., 2018; Kennedy, 2019). We therefore propose to employ cross-fitting of μ_n and g_n in the estimation of Γ_0 to avoid entropy conditions in theorems 1 and 2. Specifically, we fix $V \in \{2, 3, \ldots, n/2\}$ and suppose that the indices $\{1, 2, \ldots, n\}$ are randomly partitioned into V sets $\mathcal{V}_{n, 1}, \mathcal{V}_{n, 2}, \ldots, \mathcal{V}_{n, V}$. We assume for convenience that $N := n/V$ is an integer and that $|\mathcal{V}_{n, v}| = N$ for each v, but all our results hold as long as $\max_v N/|\mathcal{V}_{n, v}| = O_P(1)$. For each $v \in \{1, 2, \ldots, V\}$, we define $T_{n, v} := \{O_i : i \not\in \mathcal{V}_{n, v}\}$ as the training set for fold v and denote by $\mu_{n, v}$ and $g_{n, v}$ the nuisance estimators that are constructed by using only the observations from $T_{n, v}$. We then define pointwise the cross-fitted estimator Γ_0^c of Γ_0 as

$$
\Gamma_0^c(a) := \frac{1}{V} \sum_{v=1}^{V} \left\{ \frac{1}{N} \sum_{i \in \mathcal{V}_{n, v}} I(-\infty, a](A_i) \frac{Y_i - \mu_{n, v}(A_i, W_i)}{g_{n, v}(A_i, W_i)} + \frac{1}{N^2} \sum_{i, j \in \mathcal{V}_{n, v}} I(-\infty, a](A_i) \mu_{n, v}(A_i, W_j) \right\}.
$$

(3)

Finally, the cross-fitted estimator θ_0^c of θ_0 is constructed by using steps 1–4 outlined in Section 2.2, with Γ_n replaced by Γ_0^c.

As we now demonstrate, utilizing the cross-fitted estimator θ_0^c enables us to avoid the empirical process condition 1. We first introduce the following two conditions, which are analogues of conditions 1 and 2.
4.1. Wald-type confidence intervals

The distributional results of theorem 2 can be used to construct a confidence interval for $\theta_0(a)$. Since the limit distribution of $n^{1/3}\{\theta_n(a) - \theta_0(a)\}$ is symmetric around zero, a Wald-type construction seems appropriate. Specifically, writing $\tau_0(a) := \theta'_0(a)/f_0(a)$ and denoting by $\tau_n(a)$ any consistent estimator of $\tau_0(a)$, a Wald-type $(1 - \alpha)$-level asymptotic confidence interval for $\theta_0(a)$ is given by

$$\left[\theta_n(a) - \left\{\frac{4\tau_n(a)}{n}\right\}^{1/3} q_{1-\alpha/2}, \theta_n(a) + \left\{\frac{4\tau_n(a)}{n}\right\}^{1/3} q_{1-\alpha/2}\right],$$

where q_{α} denotes the pth quantile of \mathcal{W}. Quantiles of the standard Chernoff distribution have been numerically computed and tabulated on a fine grid (Groeneboom and Wellner, 2001) and are readily available in the statistical programming language R. Estimation of $\tau_0(a)$ involves, either directly or indirectly, estimation of $\theta'_0(a)/f_0(a)$ and $\kappa_0(a)$. We focus first on the former.
We first consider settings in which both \(u_j \) and \(f_0 \) separately and consider the ratio of these estimators, or that we could instead estimate \(\psi_0 \) directly and compose it with the estimator of \(F_0 \) that is already available. The latter approach has the desirable property that the resulting scale estimator is invariant to strictly monotone transformations of the exposure. As such, this is the strategy that we favour. To estimate \(\psi_0 \), we recall that the estimator \(\psi_n \) from Section 2 is a step function and is therefore not differentiable. A natural solution consists of computing the derivative of a smoothed version of \(\psi_0 \). We have found local quadratic kernel smoothing of points \(\{(u_j, \psi_n(u_j)) : j = 1, 2, \ldots, K\} \), for \(u_j \) the midpoints of the jump points of \(\psi_n \), to work well in practice.

Theorem 3 can be used to construct Wald-type confidence intervals for causal effects of the form \(\theta_0(a_1) - \theta_0(a_2) \). We first construct estimates \(\tau_n(a_1) \) and \(\tau_n(a_2) \) of the scale parameters \(\tau_0(a_1) \) and \(\tau_0(a_2) \) respectively, and then compute an approximation \(\hat{q}_{\alpha/2} \) of the \((1 - \alpha/2)\) quantile of \(\{4\tau_n(a_1)\}^{1/3} \mathbb{W}_1 - \{4\tau_n(a_2)\}^{1/3} \mathbb{W}_2 \), where \(\mathbb{W}_1 \) and \(\mathbb{W}_2 \) are independent Chernoff distributions, using Monte Carlo simulations, for example. An asymptotic \((1 - \alpha)\)-level Wald-type confidence interval for \(\theta_0(a_1) - \theta_0(a_2) \) is then

\[
\hat{\theta}_n(a_1) - \hat{\theta}_n(a_2) \pm \hat{q}_{1 - \alpha/2} n^{-1/3}.
\]

In the next two subsections, we discuss different strategies for estimating the scale factor \(\kappa_0(a) \).

4.2. Scale estimation relying on consistent nuisance estimation

We first consider settings in which both \(\mu_n \) and \(g_n \) are consistent estimators, i.e. \(g_\infty = g_0 \) and \(\mu_\infty = \mu_0 \). In such cases, we have that \(\kappa_0(a) = E_0[\sigma^2_0(a, W)/g_0(a, W)] \) with \(\sigma^2_0(a, w) \) denoting the conditional variance \(E_0[\{Y - \mu_0(a, W)\}^2 | A = a, W = w] \). Any regression technique could be used to estimate the conditional expectation of \(Z_n := \{Y - \mu_n(A, W)\}^2 \) given \(A \) and \(W \), yielding an estimator \(\sigma^2_n(a, w) \) of \(\sigma^2_0(a, w) \). A plug-in estimator of \(\kappa_0(a) \) is then given by

\[
\kappa_n(a) := \frac{1}{n} \sum_{i=1}^n \frac{\sigma^2_n(a, W_i)}{g_n(a, W_i)}.
\]

Provided that \(\mu_n, g_n \) and \(\sigma^2_n \) are consistent estimators of \(\mu_0, g_0 \) and \(\sigma^2_0 \) respectively, \(\kappa_n(a) \) is a consistent estimator of \(\kappa_0(a) \). We note that, in the special case of a binary outcome, the fact that \(\sigma^2_0(a, w) = \mu_0(a, w)\{1 - \mu_0(a, w)\} \) motivates the use of \(\mu_n(a, w)\{1 - \mu_0(a, w)\} \) as estimator \(\sigma^2_n(a, w) \) and thus eliminates the need for further regression beyond the construction of \(\mu_n \) and \(g_n \). In practice, we typically recommend the use of an ensemble method—e.g. Super Learner (van der Laan et al., 2007)—to combine a variety of regression techniques, including machine learning techniques, to minimize the risk of inconsistency of \(\mu_n, g_n \) and \(\sigma^2_n \).

4.3. Doubly robust scale estimation

As noted above, theorem 2 provides the limit distribution of \(n^{1/3} \{\hat{\theta}_n(a) - \theta_0(a)\} \) even if one of the nuisance estimators is inconsistent, as long as the consistent nuisance estimator converges sufficiently fast. We now show how we may capitalize on this result to provide a doubly robust estimator of \(\kappa_0(a) \). Since \(\psi_0 \) is itself a doubly robust estimator of \(\psi_0 \), so will be the proposed estimator \(\psi'_n \) of \(\psi_0 \) and hence also of the resulting estimator \(\tau_n(a) \) of \(\tau_0(a) \). This contrasts with the estimator of \(\kappa_0(a) \) that was described in the previous section, which required the consistency of both \(\mu_n \) and \(g_n \).

To construct an estimator of \(\kappa_0(a) \) that is consistent even if either \(\mu_\infty \neq \mu_0 \) or \(g_\infty \neq g_0 \), we begin by noting that \(\kappa_0(a) = \lim_{h \to 0} E_0[K_h \{F_0(A) - F_0(a)\} \eta_\infty(Y, A, W)] \), where \(K_h : u \mapsto h^{-1} K(uh^{-1}) \) for some bounded density function \(K \) with bounded support, and we have defined

\[
\eta_\infty(Y, A, W) := \left\{\begin{array}{ll} 1 & \text{if } \eta_0(Y, A, W) = 1, \\
0 & \text{otherwise.}
\end{array}\right.
\]
\[\eta_\infty : (y, a, w) \mapsto \left\{ \frac{y - \mu_\infty(a, w)}{g_\infty(a, w)} + \theta_\infty(a) - \theta_0(a) \right\}^2. \]

Setting \(\theta_{\mu_n}(a) := \int \mu_n(a, w) Q_n(dw) \) with \(Q_n \) the empirical distribution based on \(W_1, W_2, \ldots, W_n \), we define

\[\kappa_{n,h}^*(a) := \frac{1}{n} \sum_{i=1}^n K_h \{ F_n(A_i) - F_n(a) \} \eta_n(Y_i, A_i, W_i) \]

with \(\eta_n \) obtained by substituting \(\mu_\infty, g_\infty, \theta_\infty \) and \(\theta_0 \) by \(\mu_n, g_n, \theta_{\mu_n} \) and \(\theta_n \) respectively in the definition of \(\eta_\infty \). Under conditions 1–5, it can be shown that \(\kappa_{n,h_n}^*(a) \to^p \kappa_0(a) \) by standard kernel smoothing arguments for any sequence \(h_n \to 0 \). In particular, \(\kappa_{n,h_n}^*(a) \) is consistent under the general form of doubly robustness specified by condition 3.

To determine an appropriate value of the bandwidth \(h \) in practice, we propose the following empirical criterion. We first define the integrated scale \(\gamma_0 := \int \kappa_0(a) F_0(da) \) and construct the estimator \(\gamma_n(h) := \int \kappa_{n,h}(a) F_n(da) \) for any candidate \(h > 0 \). Furthermore, we observe that \(\gamma_0 = E_0 \{ \eta_\infty(Y, A, W) \} \), which suggests the use of the empirical estimator \(\tilde{\eta}_n := (1/n) \sum_{i=1}^n \eta_n(Y_i, A_i, W_i) \). This motivates us to define \(h_n^* := \arg \min_h \left\{ \gamma_n(h) - \tilde{\eta}_n \right\}^2 \), i.e. the value of \(h \) that makes \(\gamma_n(h) \) and \(\tilde{\eta}_n \) closest. The proposed doubly robust estimator of \(\kappa_0(a) \) is thus \(\kappa_{n,DR}(a) := \kappa_{n,h_n^*}(a) \).

We make two final remarks regarding this doubly robust estimator of \(\kappa_0(a) \). First, we note that this estimator depends only on \(A \) and \(a \) through the ranks \(F_n(A) \) and \(F_n(a) \). Hence, as before, our estimator is invariant to strictly monotone transformations of the exposure \(A \). Second, we note that, if \(\mu_n(a, w) = \mu_n(a) \) does not depend on \(w \) and \(g_n = 1 \), \(\kappa_{n,DR}(a) \) tends to the conditional variance \(\text{var}_0(Y|A=a) \), which is precisely the scale parameter appearing in standard isotonic regression.

4.4. Confidence intervals via sample splitting

As an alternative, we note here that the sample splitting method that was recently proposed by Banerjee et al. (2019) could also be used to perform inference. Specifically, to implement their approach in our context, we randomly split the sample into \(m \) subsets of roughly equal size, perform our estimation procedure on each subset to form subset-specific estimates \(\theta_{n,1}, \theta_{n,2}, \ldots, \theta_{n,m} \), and then define \(\bar{\theta}_{n,m}(a) := (1/m) \sum_{j=1}^m \theta_{n,j}(a) \). Banerjee et al. (2019) demonstrated that, if \(m > 1 \) is fixed, then under mild conditions \(\bar{\theta}_{n,m}(a) \) has strictly better asymptotic mean-squared error than \(\bar{\theta}_n(a) \), and that, for moderate \(m \),

\[
\left[\frac{\sigma_{n,m}(a)}{\sqrt{mn^{1/3} t_{1-\alpha/2,m-1}}} \bar{\theta}_{n,m}(a) + \frac{\sigma_{n,m}(z)}{\sqrt{mn^{1/3} t_{1-\alpha/2,m-1}}} \right]
\]

forms an asymptotic \((1 - \alpha) \)-level confidence interval for \(\theta_0(a) \), where

\[\sigma^2_{n,m}(a) := \frac{1}{m-1} \sum_{j=1}^m \{ \theta_{n,j}(a) - \bar{\theta}_{n,m}(a) \}^2 \]

and \(t_{1-\alpha/2,m-1} \) is the \((1 - \alpha/2) \)-quantile of the \(t \)-distribution with \(m - 1 \) degrees of freedom.

5. Numerical studies

In this section, we perform numerical experiments to assess the performance of the proposed estimators of \(\theta_0(a) \) and of the three approaches for constructing confidence intervals, which we also compare with that of the local linear estimator and associated confidence intervals that were proposed in Kennedy et al. (2017).
In our experiments, we simulate data as follows. First, we generate $W \in \mathbb{R}^d$ as a vector of four independent standard normal variates. A natural next step would be to generate A given W. However, since our estimation procedures requires estimating the conditional density of $U := F_0(A)$ given W, we instead generate U given W, and then transform U to obtain A. This strategy makes it easier to construct correctly specified parametric nuisance estimators in the context of these simulations. Given $W = w$, we generate U from the distribution with conditional density function $\tilde{g}_0(u|w) = I_{[0,1]}(u) [\lambda(w) + 2u \{1 - \lambda(w)\}]$ for $\lambda(w) := 0.1 + 1.8 \expit(\beta^T w)$. We note that $\tilde{g}_0(u|w) \geq 0.1$ for all $u \in [0, 1]$ and $w \in \mathbb{R}^d$, and, also, that $\int \tilde{g}_0(u|w) Q_0(dw) = I_{[0,1]}(u)$, so that U is marginally uniform. We then take A to be the evaluation at U of the quantile function of an equal weight mixture of two normal distributions with means -2 and 2 and standard deviation 1, which implies that A is marginally distributed according to this bimodal normal mixture. Finally, conditionally on $A = a$ and $W = w$, we simulate Y as a Bernoulli random variate with conditional mean function given by $\mu_0(a,w) := \expit(\gamma_1^T w + \gamma_2^T wa + \gamma_3 a^2)$, where w denotes $(1,w)$. We set $\beta = (-1, -1, 1, 1)^T$, $\gamma_1 = (-1, -1, -1, 1, 1)^T$, $\gamma_2 = (3, -1, -1, 1, 1)^T$ and $\gamma_3 = 3$ in the experiments that we report on.

We estimate the true confounder-adjusted dose–response curve θ_0 by using the causal isotonic regression estimator θ_n, the local linear estimator of Kennedy et al. (2017) and the sample splitting version of θ_n that was proposed by Banerjee et al. (2019) with $m = 5$ splits. For the local linear estimator, we use the data-driven bandwidth selection procedure that was proposed in section 3.5 of Kennedy et al. (2017). We consider three settings in which either both μ_n and g_n are consistent, only μ_n is consistent or only g_n consistent. To construct a consistent estimator μ_n, we use a correctly specified logistic regression model, whereas, to construct a consistent estimator g_n, we use a maximum likelihood estimator based on a correctly specified parametric model. To construct an inconsistent estimator μ_n, we still use a logistic regression model but omit covariates W_3 and W_4 and all interactions. To construct an inconsistent estimator g_n, we posit the same parametric model as before but omit W_3 and W_4. We construct pointwise confidence intervals for θ_0 in each setting, using the Wald-type construction described in Section 4 with both the plug-in and the doubly robust estimators of $\kappa_0(a)$. We expect intervals based on the doubly robust estimator of $\kappa_0(a)$ to provide asymptotically correct coverage rates for $\theta_0(a)$ for each of the three settings, but we expect only asymptotically correct coverage rates in the first setting when the plug-in estimator of $\kappa_0(a)$ is used. We construct pointwise confidence intervals for the local linear estimator by using the procedure that was proposed in Kennedy et al. (2017), and for the sample splitting procedure by using the procedure that was discussed in Section 4.4. We consider the performance of these inferential procedures for values of a between -3 and 3.

Fig. 1(a) shows a single sample path of the causal isotonic regression estimator based on a sample of size $n = 5000$ and consistent estimators μ_n and g_n. Also included in Fig. 1(a) are asymptotic 95% pointwise confidence intervals constructed by using the doubly robust estimator of $\kappa_0(a)$. Fig. 1(b) shows the unadjusted isotonic regression estimate based on the same data and corresponding 95% asymptotic confidence intervals. The true causal and unadjusted regression curves are the smooth curves. We note that $\theta_0(a) \neq r_0(a)$ for $a \neq 0$, since the relationship between Y and A is confounded by W, and indeed the unadjusted regression curve does not have a causal interpretation. Therefore, the marginal isotonic regression estimator will not be consistent for the true causal parameter. In this data-generating setting, the causal effect of A on Y is larger than the marginal effect of A on Y in the sense that $\theta_0(a)$ has greater variation over values of a than does $r_0(a)$.

We perform 1000 simulations, each with $n \in \{500, 1000, 2500, 5000\}$ observations. Fig. 2 displays the empirical standard error of the three estimators considered over these 1000 simulated data sets as a function of a and for each value of n. We first note that the standard error of the
local linear estimator is smaller than that of \(\theta_n \), which is expected because of the faster rate of convergence of the local linear estimator. The sample splitting procedure also reduces the standard error of \(\theta_n \). Furthermore, the standard deviation of the local linear estimator appears to decrease faster than \(n^{-1/3} \), whereas the standard deviation of the estimators based on \(\theta_n \) do not, in line with the theoretical rates of convergence of these estimators. We also note that inconsistent estimation of the propensity has little effect on the standard errors of any of the estimators, but inconsistent estimation of the outcome regression results in slightly larger standard errors.

Fig. 3 displays the absolute bias of the three estimators. For most values of \(a \), the estimator \(\theta_n \) that is proposed here has smaller absolute bias than the local linear estimator, and its absolute bias decreases faster than \(n^{-1/3} \). The absolute bias of the local linear estimator depends strongly on \(a \), and in particular is largest where the second derivative of \(\theta_0 \) is large in absolute value, agreeing with the large sample theory that was described in Kennedy et al. (2017). The sample splitting estimator has larger absolute bias than does \(\theta_n \) because it inherits the bias of \(\theta_n/m \). The bias is especially large for values of \(a \) in the tails of the marginal distribution of \(A \).

Fig. 4 shows the empirical coverage of nominal 95% pointwise confidence intervals for a range of values of \(a \) for the four methods that were considered. For both the plug-in and the doubly robust intervals centred near \(\theta_n \), the coverage improves as \(n \) grows, especially for values of \(a \) in the tails of the marginal distribution of \(A \). Under correct specification of outcome and propensity regression models, the plug-in method attains close to nominal coverage rates for \(a \) between \(-3\) and \(3\) by \(n = 1000 \). When the propensity estimator is inconsistent, the plug-in method still performs well in this example, although we do not expect this to be the case always. However, when \(\mu_n \) is inconsistent, the plug-in method is very conservative for positive values of \(a \). The doubly robust method attains close to nominal coverage for large samples as long as one of \(g_n \) or \(\mu_n \) is consistent. Compared with the plug-in method, the doubly robust method requires larger sample sizes to achieve good coverage, especially for extreme values of \(a \). This is because the doubly robust estimator of \(\kappa_B(a) \) has a slower rate of convergence than does the plug-in estimator, as demonstrated by box plots of these estimators that are provided in the on-line supplementary material.

The confidence intervals that are associated with the local linear estimator have poor coverage for values of \(a \) where the bias of the estimator is large, which, as mentioned above, occurs when the second derivative of \(\theta_0 \) is large in absolute value. Overall, the sample splitting estimator has
Fig. 2. Standard error of the three estimators scaled by $n^{1/3}$ as a function of n for various values of a and in contexts in which μ_n and g_n are either consistent or inconsistent, computed empirically over 1000 simulated data sets of different sizes (---, sample size 500; ..., sample size 1000; --, sample size 2500; ---, sample size 5000): (a) correct outcome regression, correct propensity; (b) correct outcome regression, incorrect propensity; (c) incorrect outcome regression, correct propensity.
Fig. 3. Absolute bias of the three estimators scaled by $n^{1/3}$ as a function of n for various values of a and in contexts in which μ_n and g_n are either consistent or inconsistent, computed empirically over 1000 simulated data sets of different sizes (---, sample size 500; ----, sample size 1000; --, sample size 2500; ---, sample size 5000): (a) correct outcome regression, correct propensity; (b) correct outcome regression, incorrect propensity; (c) incorrect outcome regression, correction propensity.
Fig. 4. Observed coverage of pointwise 95% confidence intervals by using θ_n and the plug-in method (top row), θ_n and the doubly robust method (second row), the local linear estimator and associated intervals (third row) and the sample splitting estimator (bottom row), considered for various values of a and computed empirically over 1000 simulated data sets of different sizes ($- - -$, nominal coverage rate; $- - -$, sample size 500; $- - -$, sample size 1000; $- - -$, sample size 2500; $- - -$, sample size 5000): (a) correct outcome regression, correct propensity; (b) correct outcome regression, incorrect propensity; (c) incorrect outcome regression, correct propensity
Fig. 5. Observed coverage of pointwise 95% doubly robust and plug-in confidence intervals by using machine learning estimators based on simulated data including \(n = 1000 \) observations (— — —, nominal coverage rate; causal isotonic plus plug in; causal isotonic plus doubly robust; cross-fitted causal isotonic plus doubly robust; local linear): (a) correct outcome regression, correct propensity; (b) correct outcome regression, incorrect propensity; (c) incorrect outcome regression, correct propensity.

excellent coverage, except perhaps for values of \(a \) in the tails of the marginal distribution of \(A \) when \(n \) is small or moderate, in which case the coverage is near 90%.

We also conducted a small simulation study to illustrate the performance of the proposed procedures when machine learning techniques are used to construct \(\mu_n \) and \(g_n \). To estimate \(\mu_0 \) consistently, we used Super Learner (van der Laan et al., 2007) with a library consisting of generalized linear models, multivariate adaptive regression splines and generalized additive models. To estimate \(g_0 \) consistently, we used the method that was proposed by Díaz and van der Laan (2011) with covariate vector \(W_1, W_2, W_3, W_4 \). To produce inconsistent estimators \(\mu_n \) or \(g_n \), we used the same estimators but omitted covariates \(W_1 \) and \(W_2 \). We also considered the estimator \(\theta_n^c \) that was obtained via cross-fitting these nuisance parameters, as discussed in Section 3.7, as well as the local linear estimator. Because of computational limitations, we performed 1000 simulations at sample size \(n = 1000 \) only. Fig. 5 shows the coverage of nominal 95% confidence intervals. The plug-in intervals achieve very close to nominal coverage under consistent estimation of both nuisances, and they also achieve surprisingly good coverage rates when the propensity is inconsistently estimated. The plug-in intervals are somewhat conservative when the outcome regression is inconsistently estimated. The doubly robust method is anti-conservative under inconsistent estimation of both nuisances and also when the propensity is inconsistently estimated, with coverage rates mostly between 90% and 95%. Good coverage rates are also achieved when the outcome regression is inconsistently estimated. These results suggest that the doubly robust intervals may require larger sample sizes to achieve good coverage, particularly when machine learning estimators are used for \(\mu_n \) and \(g_n \). The plug-in intervals appear to be relatively robust to moderate misspecification of models for the nuisance parameters in smaller samples. Histograms of the estimators of \(\kappa_0(a) \) and \(\psi_0'(a) \) are provided in the on-line supplementary material. Confidence intervals based on the local linear estimator show a similar pattern to that in the previous simulation study, undercovering where the second derivative of the true function is large in absolute value. Cross-fitting had little effect on coverage.

As noted above, we found in our numerical experiments that the plug-in estimator of the scale parameter was surprisingly robust to inconsistent estimation of the nuisance parameters, whereas its doubly robust estimator was anticonservative even when the nuisance parameters were estimated consistently. This can be explained in terms of the bias and variance of the
two scale estimators proposed. On one hand, under inconsistent estimation of any nuisance function, the plug-in estimator of the scale parameter is biased, even in large samples. However, its variance decreases relatively quickly with sample size, since it is a simple empirical average of estimated functions. On the other hand, the doubly robust estimator is asymptotically unbiased, but its variance decreases much slower with sample size. These trends can be observed in the figures that are provided in the on-line supplementary material. In sufficiently large samples, the doubly robust estimator is expected to outperform the plug-in estimator in terms of mean-squared error when one of the nuisances is inconsistently estimated. However, the sample size that is required for this trade-off to affect confidence interval coverage significantly depends on the degree of inconsistency. Although we did not see this trade-off at the sample sizes that were used in our numerical experiments, we expect the benefits of the doubly robust confidence interval construction to become apparent in smaller samples in other settings.

6. Body mass index and T-cell response in human immunodeficiency virus vaccine studies

The scientific literature indicates that, for several vaccines, obesity or BMI is inversely associated with immune responses to vaccination (see, for example, Sheridan et al. (2012), Young et al. (2013), Jin et al. (2015), Painter et al. (2015) and Liu et al. (2017)). Some of this literature has investigated potential mechanisms of how obesity or higher BMI might lead to impaired immune responses. For example, Painter et al. (2015) concluded that obesity may alter cellular immune responses, especially in adipose tissue, which varies with BMI. Sheridan et al. (2012) found that obesity is associated with decreased CD8+ T-cell activation and decreased expression of functional proteins in the context of influenza vaccines. Liu et al. (2017) found that obesity reduced hepatitis B immune responses through ‘leptin-induced systemic and B cell intrinsic inflammation, impaired T cell responses and lymphocyte division and proliferation’. Given this evidence of a monotone effect of BMI on immune responses, we used the methods that are presented in this paper to assess the covariate-adjusted relationship between BMI and CD4+ T-cell responses using data from a collection of clinical trials of candidate HIV vaccines. We present the results of our analyses here.

Jin et al. (2015) compared the rate of CD4+ T cell response with HIV peptide pools among low (BMI < 25) medium (25 ≤ BMI < 30) and high (BMI ≥ 30) BMI participants, and they found that low BMI participants had a statistically significantly greater response rate than high BMI participants by using Fisher’s exact test. However, such a marginal assessment of the relationship between BMI and immune response can be misleading because there are known common causes, such as age and sex, of both BMI and immune response. For this reason, Jin et al. (2015) also performed a logistic regression of the binary CD4+ responses against sex, age, BMI (not discretized), vaccination dose and number of vaccinations. In this adjusted analysis, they found a significant association between BMI and CD4+ cell response rate after adjusting for all other covariates (odd ratio 0.92; 95% confidence interval 0.86, 0.98; p = 0.007). However, such an adjusted odds ratio has a formal causal interpretation only under strong parametric assumptions. As discussed in Section 1.2, the covariate-adjusted dose–response function \(\theta_0 \) is identified with the causal dose–response curve without making parametric assumptions and is therefore of interest for understanding the continuous covariate-adjusted relationship between BMI and immune responses.

We note that there is some debate in the causal inference literature about whether exposures such as BMI have a meaningful interpretation in formal causal modelling. In particular, some researchers suggest that causal models should always be tied to hypothetical randomized
Fig. 6. Estimated probabilities of CD4+ T-cell response and 95% pointwise confidence intervals as a function of BMI, adjusted for sex, age, number of vaccinations received, vaccine dose and study: (a) estimator proposed here; — — , confidence intervals based on the plug-in estimator of the scale parameter; — — , confidence interval based on the doubly robust estimator of the scale parameter; (b) local linear estimator of Kennedy et al. (2017); (c) sample splitting version of our estimator with $m = 5$ splits
experiments (see, for example Bind and Rubin (2019)), and it is difficult to imagine a hypothetical randomized experiment that would assign participants to levels of BMI. From this perspective, it may therefore not be sensible to interpret $\theta_0(a)$ in a causal manner in the context of this example. Nevertheless, as discussed in Section 1, we contend that $\theta_0(a)$ is still of interest. In particular, it provides a meaningful summary of the relationship between BMI and immune response accounting for measured potential confounders. In this case, we interpret $\theta_0(a)$ as the probability of immune response in a population of participants with BMI-value a but sex, age, vaccination dose, number of vaccinations and study with a similar distribution to that of the entire study population.

We pooled data from the vaccine arms of 11 phase I–II clinical trials, all conducted through the HIV Vaccine Trials Network. 10 of these trials were previously studied in the analysis that was presented in Jin et al. (2015), and a detailed description of the trials are contained therein. The final trial in our pooled analysis is HVTN 100, in which 210 participants were randomized to receive four doses of the ALVAC-HIV vaccine (vCP1521). The ALVAC-HIV vaccine, in combination with an AIDSVAX boost, was found to have statistically significant vaccine efficacy against HIV type 1 in the RV-144 trial that was conducted in Thailand (Rerks-Ngarm et al., 2009). CD4+ and CD8+ T-cell responses to HIV peptide pools were measured in all 11 trials by using validated intracellular cytokine staining at HIV Vaccine Trials Network laboratories. These continuous responses were converted to binary indicators of whether there was a significant change from baseline by using the method described in Jin et al. (2015). We analysed these binary responses at the first visit following administration of the last vaccine dose—either 2 or 4 weeks after the final vaccination depending on the trial. After accounting for missing responses from a small number of participants, our analysis data sets consisted of a total of $n = 439$ participants for the analysis of CD4+ cell responses and $n = 462$ participants for CD8+ cell responses. Here, we focus on analysing CD4+ cell responses; we present the analysis of CD8+ cell responses in the on-line supplementary material.

We assessed the relationship between BMI and T-cell response by estimating the covariate-adjusted dose–response function θ_0 using our cross-fitted estimator θ_0^n, the local linear estimator and the sample splitting version of our estimator with $m = 5$ splits. We adjusted for sex, age, vaccination dose, number of vaccinations and study. We estimated μ_0 and g_0 as in the machine-learning-based simulation study that was described in Section 5, and we constructed confidence intervals for our estimator by using both the plug-in and the doubly robust estimators that were described above.

Fig. 6 presents the estimated probability of a positive CD4+ T-cell response as a function of BMI for BMI-values between the 0.05- and 0.95-quantile of the marginal empirical distribution of BMI by using our estimator (Fig. 6(a)), the local linear estimator (Fig. 6(b)) and the sample-splitting estimator (Fig. 6(c)). Pointwise 95% confidence intervals are shown as broken or dotted curves. The three methods found qualitatively similar results. We found that the change in probability of CD4+ cell response appears to be largest for BMI < 20 and BMI > 30. We estimated the probability of having a positive CD4+ T-cell response, after adjusting for potential confounders, to be 0.52 (95% doubly robust confidence interval 0.44–0.59) for a BMI of 20, 0.47 (0.42–0.52) for a BMI of 25, 0.47 (0.32–0.62) for a BMI of 30 and 0.29 (0.12–0.47) for a BMI of 35. We estimated the difference between these probabilities for BMIs of 20 and 35 to be 0.22 (confidence interval 0.03–0.41).

7. Concluding remarks

The work that we have presented in this paper lies at the interface of causal inference and...
shape-constrained non-parametric inference, and there are natural future directions building on
developments in either of these areas. Inference on a monotone causal dose–response curve when
outcome data are only observed subject to potential coarsening, such as censoring, truncation or
missingness, is needed to increase the applicability of our proposed method. To tackle such cases,
itis most fruitful to follow the general primitive strategy that was described in Westling
and Carone (2019) based on a revised causal identification formula allowing such coarsening.

It would be useful to develop tests of the monotonicity assumption, like Durot (2003) did
for regression functions. Such a test could probably be developed by studying the large sample
behaviour of $|\tilde{\Psi}_n - \Psi_n|_p$ under the null hypothesis that θ_0 is monotone, where Ψ_n and $\tilde{\Psi}_n$ are
the primitive estimator and its greatest convex minorant as defined in Section 2.2. Such a result
would probably permit testing with a given asymptotic size when θ_0 is strictly increasing, and
asymptotically conservative inference otherwise. It would also be useful to develop methods for
uniform inference. Uniform inference is difficult in this setting because $\{n^{1/3}(\theta_n(a) - \theta_0(a)) : a \in A\}$ does not convergence weakly as a process in the space $l^\infty(A)$ of bounded functions on A
to a tight limit process. Indeed, theorem 3 indicates that $\{n^{1/3}(\theta_n(a) - \theta_0(a)) : a \in A\}$ converges
to an independent white noise process, which is not tight, so this convergence is not useful for
constructing uniform confidence bands. Instead, it may be possible to extend the work of Durot
et al. (2012) to our setting (and other generalized Grenander-type estimators) by demonstrating
that $\log(n)\{n/\log(n)\}^{1/3} \sup_{a \in A_n} |\theta_n(a) - \theta_0(a)|/\alpha_0 - c_n$ converges in distribution to a non-
degenerate limit for some constant α_0 depending on P_0, a deterministic sequence c_n and
a suitable sequence of subsets A_n increasing to A. Developing procedures for uniform inference
and tests of the monotonicity assumption are important areas for future research.

An alternative approach to estimating a causal dose–response curve is to use local linear
regression, like Kennedy et al. (2017) did. As is true in the context of estimating classical uni-
variate functions such as density, hazard and regression functions, there are certain trade-offs
between local linear smoothing and monotonicity-based methods. On the one hand, local linear
regression estimators exhibit a faster $n^{-2/5}$-rate of convergence whenever optimal tuning
rates are used and the true function has two continuous derivatives. However, the limit distribution
involves an asymptotic bias term depending on the second derivative of the true function,
so confidence intervals based on optimally chosen tuning parameters provide asymptotically
 correct coverage only for a smoothed parameter rather than the true parameter of interest. In
contrast, monotonicity-constrained estimators such as the estimator that is proposed here ex-
hibit a rate of convergence of $n^{-1/3}$ whenever the true function is strictly monotone and has
one continuous derivative, do not require choosing a tuning parameter, are invariant to strictly
increasing transformations of the exposure and their limit theory does not include any asympto-
totic bias (as illustrated by theorem 2). We note that both estimators achieve the optimal rate
of convergence for pointwise estimation of a univariate function under their respective smooth-
ness constraints. In our view, the ability to perform asymptotically valid inference by using
a monotonicity-constrained estimator is one of the most important benefits of leveraging the
monotonicity assumption rather than using smoothing methods. This advantage was evident
in our numerical studies when comparing the isotonic estimator that is proposed here and the
local linear method of Kennedy et al. (2017). Undersmoothing can be used to construct cal-
bribed confidence intervals by using kernel smoothing estimators, but performing adequate
undersmoothing in practice is challenging.

The two methods for pointwise asymptotic inference that we presented require estimation of
the derivative $\theta_0'(a)$ and the scale parameter $\kappa_0(a)$. We found that the plug-in estimator of
$\kappa_0(a)$ had low variance but possibly large bias depending on the levels of inconsistency of μ_n
and g_n, and that its doubly robust estimator instead had high variance but low bias as long as
either μ_n or g_n is consistent. In practice, we found that the low variance of the plug-in estimator often outweighed its bias, resulting in better coverage rates for intervals based on the plug-in estimator of $\kappa_0(a)$, especially in samples of small and moderate sizes. Whether a doubly robust estimator of $\kappa_0(a)$ with smaller variance can be constructed is an important question to be addressed in future work. We found that sample splitting with as few as $m = 5$ splits provided doubly robust coverage, and the sample splitting estimator also had smaller variance than the original estimator, at the expense of some additional bias.

It would be even more desirable to have inferential methods that do not require estimation of additional nuisance parameters or sample splitting. Unfortunately, the standard non-parametric bootstrap is not generally consistent in Grenander-type estimation settings and, although alternative bootstrap methods have been proposed, to our knowledge, all such proposals require the selection of critical tuning parameters (Kosorok, 2008; Sen et al., 2010). Likelihood-ratio-based inference for Grenander-type estimators has proven fruitful in a variety of contexts (see, for example, Banerjee and Wellner (2001) and Groeneboom and Jongbloed (2015)), and extending such methods to our context is also an area of significant interest in future work.

Acknowledgements

Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health grant AI068635 (PBG) and by the National Lung, Heart, and Blood Institute of the National Institutes of Health grant R01HL137808 (MC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors are also grateful to the members of the University of Pennsylvania Center for Causal Inference working group for helpful feedback on an early version of this work, and to two reviewers and an Associate Editor for their detailed and insightful comments. The authors also thank the study participants and investigators of the HIV Vaccine Trials Network studies 044, 052, 060, 063, 064, 068, 069, 070, 080, 100 and 204.

References

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T. and Silverman, E. (1955) An empirical distribution function for sampling with incomplete information. *Ann. Math. Statist.*, 26, 641–647.

Balabdaoui, F., Jankowski, H., Pavlides, M., Seregin, A. and Wellner, J. (2011) On the Grenander estimator at zero. *Statist. Sin.*, 21, 873–899.

Banerjee, M., Durot, C. and Sen, B. (2019) Divide and conquer in nonstandard problems and the super-efficiency phenomenon. *Ann. Statist.*, 47, 720–757.

Banerjee, M. and Wellner, J. A. (2001) Likelihood ratio tests for monotone functions. *Ann. Statist.*, 29, 1699–1731.

Bang, H. and Robins, J. M. (2005) Doubly robust estimation in missing data and causal inference models. *Biometrics*, 61, 962–973.

Barlow, R. E., Bartholomew, D. J., Brenner, J. M. and Brunk, H. D. (1972) *Statistical Inference under Order Restrictions: the Theory and Application of Isotonic Regression*. New York: Wiley.

Belloni, A., Chernozhukov, V., Chetverikov, D. and Wei, Y. (2018) Uniformly valid post-regularization confidence regions for many functional parameters in Z-estimation framework. *Ann. Statist.*, 46, no. 6B, 3643–3675.

Bind, M.-A. C. and Rubin, D. B. (2019) Bridging observational studies and randomized experiments by embedding the former in the latter. *Statist. Meth. Med. Res.*, 28, 1958–1978.

Brunk, H. D. (1970) Estimation of isotonic regression. In *Nonparametric Techniques in Statistical Inference* (ed. M. L. Puri), pp. 177–197. London: Cambridge University Press.

Chernoff, H. (1964) Estimation of the mode. *Ann. Inst. Statist. Math.*, 16, 31–41.

Diaz, I. and van der Laan, M. J. (2011) Super learner based conditional density estimation with application to marginal structural models. *Int. J. Biostatist.*, 7, 1–20.

Durot, C. (2003) A Kolmogorov-type test for monotonicity of regression. *Statist. Probab. Lett.*, 63, 425–433.

Durot, C., Kulikov, V. N. and Lopuhaä, H. P. (2012) The limit distribution of the L_∞-error of Grenander-type estimators. *Ann. Statist.*, 40, 1578–1608.
Gill, R. D. and Robins, J. M. (2001) Causal inference for complex longitudinal data: the continuous case. *Ann. Statist.*, **29**, 1785–1811.

Groeneboom, P. and Jongbloed, G. (2014) *Nonparametric Estimation under Shape Constraints*. New York: Cambridge University Press.

Groeneboom, P. and Jongbloed, G. (2015) Nonparametric confidence intervals for monotone functions. *Ann. Statist.*, **43**, 2019–2054.

Groeneboom, P. and Wellner, J. A. (2001) Computing Chernoff’s distribution. *J. Computnl Graph. Statist.*, **10**, 388–400.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. *J. Am. Statist. Ass.*, **47**, 663–685.

Jin, X., Morgan, C., Yu, X., DeRosa, S., Tomaras, G. D., Montefiori, D. C., Kublin, J., Corey, L., Keefer, M. C. and NIAID HIV Vaccine Trials Network (2015) Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials. *Vaccine*, **33**, 2347–2353.

Kennedy, E. H. (2019) Nonparametric causal effects based on incremental propensity score interventions. *J. Am. Statist. Ass.*, **114**, 645–656.

Kennedy, E. H., Ma, Z., McHugh, M. D. and Small, D. S. (2017) Non-parametric methods for doubly robust estimation of continuous treatment effects. *J. R. Statist. Soc. B.*, **79**, 1229–1245.

Kosorok, M. R. (2008) Bootstrapping the Grenander estimator. In *Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen* (eds N. Balakrishnan, E. A. Peñ and M. J. Silvapulle), vol. 1, pp. 282–292. Hayward: Institute of Mathematical Statistics.

Kulikov, V. N. and Lopuhaä, H. P. (2006) The behavior of the NPMLE of a decreasing density near the boundaries of the support. *Ann. Statist.*, **34**, 742–768.

van der Laan, M. J., Bibaut, A. and Luedtke, A. R. (2018) CV-TMLE for nonpathwise differentiable target parameters. In *Targeted Learning in Data Science: Causal Inference for Complex Longitudinal Studies* (eds M. J. van der Laan and S. Rose), pp. 455–481. New York: Springer.

van der Laan, M. J., Polley, E. C. and Hubbard, A. E. (2007) Super Learner. *Statist. Appl. Genet. Molec. Biol.*, **6**, no. 1.

van der Laan, M. J. and Robins, J. M. (2003) *Unified Methods for Censored Longitudinal Data and Causality*. New York: Springer Science and Business Media.

van der Laan, M. J. and Rose, S. (2011) *Targeted Learning: Causal Inference for Observational and Experimental Data*. New York: Springer.

Liu, F., Guo, Z. and Dong, C. (2017) Influences of obesity on the immunogenicity of hepatitis b vaccine. *Hum. Vacc. Immunotherp.*, **13**, 1014–1017.

Neugebauer, R. and van der Laan, M. (2005) Why prefer double robust estimators in causal inference? *J. Statist. Planing Inf.*, **129**, 405–426.

Neugebauer, R. and van der Laan, M. J. (2007) Nonparametric causal effects based on marginal structural models. *J. Statist. Planing Inf.*, **137**, 419–434.

Nolan, D. and Pollard, D. (1987) U-processes: rates of convergence. *Ann. Statist.*, **15**, 780–799.

Painter, S. D., Ovsyannikova, I. G. and Poland, G. A. (2015) The weight of obesity on the human immune response to vaccination. *Vaccine*, **33**, 4422–4429.

Rerkas-Ngarm, S., Pitisuttithum, P., Kaewkungwal, J., Chiu, J., Paris, R., Premsri, N., Namwat, C., Birx, D. L., Chunsuttiwat, S., Khambounruang, C., Thongcharoen, P., Robb, M. L., Michael, N. I., Kunasol, P. and Kim, J. H. (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. *New Engl. J. Med.*, **361**, 2209–2220.

Robins, J. (1986) A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. *Math. Modlling*, **7**, 1393–1512.

Robins, J. M. (2000) Marginal structural models versus structural nested models as tools for causal inference. In *Statistical Models in Epidemiology, the Environment, and Clinical Trials* (eds M. E. Halloran and D. Berry), pp. 95–133. New York: Springer.

Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994) Estimation of regression coefficients when some regressors are not always observed. *J. Am. Statist. Ass.*, **89**, 846–866.

Rotnitzky, A., Robins, J. M. and Scharfstein, D. O. (1998) Semiparametric regression for repeated outcomes with nonignorable nonresponse. *J. Am. Statist. Ass.*, **93**, 1321–1339.

Rubin, D. and van der Laan, M. J. (2006) Extending marginal structural models through local, penalized, and additive learning. *Working Paper* 212. Division of Biostatistics, University of California at Berkeley, Berkeley.

Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999) Adjusting for nonignorable drop-out using semiparametric nonresponse models. *J. Am. Statist. Ass.*, **94**, 1096–1120.

Sen, B., Banerjee, M. and Woodroofe, M. (2010) Inconsistency of the bootstrap: the Grenander estimator. *Ann. Statist.*, **38**, 1953–1977.

Sheridan, P. A., Paich, H. A., Handy, J., Karlsson, E. A., Hudgens, M. G., Sammon, A. B., Holland, L. A., Weir, S., Noah, T. L. and Beck, M. A. (2012) Obesity is associated with impaired immune response to influenza vaccination in humans. *Int. J. Obesity*, **36**, no. 8, 1072–1077.
van der Vaart, A. W. and Wellner, J. A. (1996) *Weak Convergence and Empirical Processes*. New York: Springer.
Westling, T. and Carone, M. (2019) A unified study of nonparametric inference for monotone functions. *Ann. Statist.* to be published.
Westling, T., van der Laan, M. J. and Carone, M. (2018) Correcting an estimator of a multivariate monotone function with isotonic regression. *Preprint arXiv:1810.09022*. University of Massachusetts Amherst, Amherst.
Woodroofe, M. and Sun, J. (1993) A penalized maximum likelihood estimate of $f(0^+)$ when f is nonincreasing. *Statist. Sin.*, 3, 501–515.
Young, K. M., Gray, C. M. and Bekker, L.-G. (2013) Is obesity a risk factor for vaccine non-responsiveness? *PLOS One*, 8, no. 12, article e82779.
Zhang, Z., Zhou, J., Cao, W. and Zhang, J. (2016) Causal inference with a quantitative exposure. *Statist. Meth. Med. Res.*, 25, 315–335.
Zheng, W. and van der Laan, M. J. (2011) Cross-validated targeted minimum loss based estimation. In *Targeted Learning: Causal Inference for Observational and Experimental Data* (eds M. J. van der Laan and S. Rose), ch. 27, pp. 459–473. New York: Springer.

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:
‘Supplementary material for: Causal isotonic regression’.