Вettesа 0020 1,0 \times 10^6 0,195 0,46 0,465 \approx 1,0

На этапе 5 по формуле (6) вычисляют расчетное значение коэффициента мощности полноразмерного Н-ротора ветроустановки ВЕСТА 0020 мощностью 20 кВт, как функции основных безразмерных проектных параметров ротора Дарье: коэффициента заполнения \(\sigma \), коэффициента быстроходности \(\lambda \), а также аэродинамических коэффициентов подъемной силы \(C_L \) и сопротивления \(C_D \) профиля лопасти ротора для чисел Re лопасти, реализуемых при испытании.

Полученное расчетное значение коэффициента мощности Н-ротора показано в табл. 3.

На этапе 6 по формуле (7) определяют относительные потери мощности полноразмерного Н-ротора относительно расчетной мощности его математической модели в виде коэффициента потерь мощности \(P_k \).

Полученное расчетное значения коэффициента потери мощности ротора показано в табл. 3.

На этапе 7 по данным таблиц 2 и 3 строим график зависимости коэффициента потерь мощности от числа Re. Данная кривая хорошо аппроксимируется следующей функцией:
\[
C_k = 8,86 \times 10^{-8} \cdot Re^{-1,886 \times 10^{-7} \cdot \Delta T},
\]

если \(Re \) меньше 1\times 10^6, если \(Re \) больше 1\times 10^6.

Рис. 3. Зависимость коэффициента потерь мощности от числа Рейнольдса

На этапе 8 прогнозируемый коэффициент мощности полномасштабного Н-ротора определяется по формуле:
\[
P_C = \sqrt{\frac{1}{1 + \frac{C_k}{1 - \frac{C_k}{2}}}}.
\]

Выводы. В результате представленных исследований получены соотношения, позволяющие по коэффициенту мощности физической маломасштабной модели Н-ротора любых размеров, определенному при испытании модели в аэродинамической трубе при низких числах Re, прогнозировать коэффициент мощности полноразмерного ротора, работающего при числах Re, превышающих 1\times 10^6.

Библиографические ссылки
1. Мхитарян, А. М. Аэродинамика [Текст] / А. М. Мхитарян. – М.: Машиностроение, 1976. – 449 с.
2. Danao, L. A. D. The Influence of Unsteady Wind on the Performance and Aerodynamics of Vertical Axis Wind Turbines [Текст] / L. A. D. Danao // PhD Thesis, University of Sheffield, 2012. – 219 p.
3. Paraschivoiu, I. Wind Turbine Design: with Emphasis on Darrieus Concept [Текст] / I. Paraschivoiu. – Politechnic International Press, 2002. – 2002. – P. 346–349.
4. Sheldahl, R. E. Aerodynamic characteristics of seven symmetrical airfoil sections through 180 degrees angle of attack for use in aerodynamic analysis of vertical axis wind turbines [Текст] / R. E. Sheldahl, P. C. Klimas. – SAND80-2114, Sandia National Laboratories, 1981. – 118 p.
5. Templin, R. J. Performance Theory for the NRC Vertical Axis Wind Turbine [Текст] / R. J. Templin // Technical Report LTR-LA-160, National Research Council Canada, National Aeronautical Establishment Laboratory, 1974. – 17 p.
6. Wilson, R. E. Aerodynamic performance of wind turbine [Текст] / R. E. Wilson, R. B. S. Lissaman, S. N. Walker. – Washington, 1976. – 194 p.

Надійшла до редколегії 05.11.2019

UDK 533.6.011.35

R. I. Peka, E. V. Kravets

Oles Honchar Dnipro National University

DEPENDENCE OF THE PROFILE AERODYNAMIC CHARACTERISTICS ON THE SURFACE HEATING AT SUBSONIC VELOCITY OF FLOWING AROUND

Показана актуальность задачи по совершенствованию современного воздушного транспорта. Проведен краткий обзор некоторых работ, посвященных теоретическим, экспериментальным и численным исследованиям влияния теплообмена на аэродинамические характеристики профиля крыла при его обтекании. Приведена математическая модель сопряженной задачи гидродинамики и теплообмена с учетом k-ε модели турбулентности.

Выполнено двумерное моделирование дозвукового обтекания профиля NACA-23012 вязкой несжимаемой жидкостью методом конечных элементов с применением стандартной k-ε модели турбулентности в изотермической постановке, а также при нагреве (охлаждении) нижней (верхней) поверхностей профиля. В результате численного моделирования получены графические зависимости коэффициента подъемной силы от чисел Рейнольдса в диапазоне Re = 10^4 ÷ 10^7 для случаев изотермического обтекания, а также при последовательном нагреве верхней и нижней поверхностей, соответствующих разности температур 100 К. Для Re = 10^4 ÷ 10^5 приведены кривые аэродинамических коэффициентов профиля при одновременном нагреве верхней и охлаждении нижней поверхностей профиля по отношению к температуре потока «на бесконечности» для разности температур поверхностей профиля, лежащих в диапазоне ΔT = 0 ÷ 100 K.

© Peka R. I., Kravets E. V., 2019
Влияние увеличения коэффициента подъемной силы профиля оценено по приведенной зависимости \(\Delta C_y = \Delta C_y(\Delta T) \) при \(Re = 10^4; 10^5 \). Рекомендован оптимальный тепловой режим по критерию «минимальное аэродинамическое сопротивление – максимальная подъемная сила» – одновременный нагрев нижней поверхности профиля и охлаждение его верхней поверхности.

Ключевые слова: несжимаемое течение вязкой жидкости, метод конечных элементов, модель турбулентности, обтекание профиля, теплообмен, температура, аэродинамическое сопротивление, подъемная сила.

Показана актуальность задачи с усовершенствованием сечения воздушного транспорта. Проведено краткий обзор некоторых работ, посвященных теоретическим, экспериментальным и численным исследованиям влияния теплообмена на аэродинамические характеристики профиля крила при его обтекании. Наведено математическую модель связанной задачи гидродинамики и теплообмена с участием к-ε моделей турбулентности. В результате численного моделирования отмечено графически заложенность коэффициента подъемной силы вида чисел Рейнольдса в диапазоне \(Re = 10^4 \div 10^7 \) для винтокрылов изотермического обтекания, а также при последовательном нагреве верхней и нижней поверхности, что ведет к резкому изменению температуры 100 К. Для \(Re = 10^4 \div 10^5 \) наведено кривые аэродинамических коэффициентов профиля при одноразовом нагреве верхней и нижней поверхностей профиля в диапазоне температур 100 К. Величины заложенности коэффициента подъемной силы профиля оценены на наведенной заложенности \(\Delta C_y = \Delta C_y(\Delta T) \) при \(Re = 10^4; 10^5 \). Рекомендован оптимальный тепловой режим по критерию "минимальный аэродинамический оптимум - максимальная подъемная сила" – одновременный нагрев нижней и верхней поверхностей профиля в диапазоне верхней поверхности.

Ключевые слова: несжимаемая вязкая жидкость, метод конечных элементов, модель турбулентности, обтекание профиля, теплообмен, температура, аэродинамическое сопротивление, подъемная сила.

Introduction. In the modern world an air transport occupies a leading role in civil, trade and economic and soldiery aims. There is a growing need to improve the energy efficiency of air transport, which, in turn, is achieved by improving the aerodynamic characteristics of aircraft and their elements.

There are two basic directions of perfection the aerodynamic quality of aircrafts [3].

The first method consists in the improvement of geometry: in particular – profiles of wings; in general – all aircraft by exceptionally geometrical methods. Presently this direction did not yet exhaust itself; however, every winning of aerodynamic quality is given with constantly increasing complication of calculations.
Other method is based on the use of active power facilities the management of flowing around. This direction is most perspective, because allows to overcome the theoretical barrier of increase the aerodynamic descriptions of profile.

One of methods by the management of flowing around, as authors of work mark [3–6], there is influence of heat transfer on flowing around – one of possible power methods of increase of aerodynamic quality of subsonic aircrafts. Unlike other power methods, for example, such as admission of energy in a supersonic zone with the purpose of reduction of impedance, this method being based on heating/cooling of the streamlined surfaces has a greater practical and theoretical value.

In accordance with the theory of influence of weak heat transfer on the lift of flat surfaces [9], heating of bottom surface increases lift, and heating of top surface – decreases it. A most effect will be realized at the simultaneous heating of bottom and cooling top surfaces of body. The author notes that areas of energy supply and removal are the sources of new turbulences formation. Circulations on the top side of profile at removal of energy form additional velocity $\Delta V > 0$, that, in turn, results in the additional decompressing on this surface and, as a result, to the increase of lift. Circulation at supply of energy to the bottom surface of profile initiates appearance of additional velocity $\Delta V < 0$, which also results in the increase of pressure and lift.

However, if to heat up not surface of a profile, and jet, flowing around a profile, then the improvement of aerodynamic characteristics of profile is not observed. According to the authors of [2], the heating of the jet, directed perpendicularly to the stream flowing around the wing, does not affect its lift. The paper presents the results of an experimental research of influence the stream temperature simulating jet stream of an aircraft engine on the magnitude of the lift of an isolated triangular wing at undisturbed flow near the screen. The tests were carried out in a wind tunnel with an open working part using the installation that provides heating of the jet. It is shown that the lift of wing does not change at heating of stream to the temperatures in a range 25–600°C.

Formulation of the problem. Flowing around of aerodynamic profile of NACA-23012 by viscous incompressible liquid for the numbers of Reynolds, changing from 10^4 to 10^7, in the isothermal formulation, and also at heating (cooling) bottom (top) profile surfaces is consider. Influence on a profile lift and drag from difference of temperatures top and bottom surfaces, equal 30, 60 and 100°C was investigated. The got results of problem with heating were compared to the results of analogical isothermal problem.

In the case of a laminar isothermal incompressible flow the system of equations included the equation of motion in the form Navier-Stokes and the continuity equation [8]:

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = F_i - \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \nabla^2 u_i, \quad i, j = 1, 2;$$

$$\frac{\partial u_j}{\partial x_j} = 0, \quad j = 1, 2. \quad (1)$$

The system of motion equations in the form of Reynolds and the continuity equation were used to describe the turbulent isothermal flow [8]:

$$\frac{\partial \bar{u}_i}{\partial t} + u_j \frac{\partial \bar{u}_i}{\partial x_j} = F_i - \frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + (\nu + \nu_t) \nabla^2 \bar{u}_i, \quad i, j = 1, 2;$$

$$\frac{\partial \bar{u}_j}{\partial x_j} = 0, \quad j = 1, 2. \quad (3)$$
\[\frac{\partial u_j}{\partial x_j} = 0, \quad j = 1, 2, \]

where \(x_i \) – Cartesian coordinates; \(t \) – time (problem parameter); \(u_i \) – Cartesian velocity vector components; \(\bar{u}_i \) – averaged velocity vector components; \(u'_i \) – pulsating velocity vector components; \(p \) – pressure; \(\rho \) – density; \(\nu \) and \(\nu_t \) – molecular and turbulent kinematic viscosity coefficients.

The system (3–4) was supplemented by a «k-\(\varepsilon \)»-model of turbulence, according to which the turbulent viscosity

\[\mu_t = C_\mu \rho \frac{k^2}{\varepsilon}, \quad C_\mu = 0.09, \]

determined from the system solution \[8\]

\[\frac{\partial p}{\partial t} + \frac{\partial (pu_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\mu_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right) + \mu_t \Phi - \rho \varepsilon, \]

\[\frac{\partial \rho \varepsilon}{\partial t} + \frac{\partial (\rho u_j \varepsilon)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\mu_t}{\sigma_\varepsilon} \frac{\partial \varepsilon}{\partial x_j} \right) + C_{\varepsilon 1} \mu_t \frac{\varepsilon}{k} \frac{\Phi - C_{\varepsilon 2} \rho \varepsilon^2}{k}, \]

\[C_{\varepsilon 1} = 1.44; \quad C_{\varepsilon 2} = 1.92; \quad \sigma_k = 1.0; \quad \sigma_\varepsilon = 1.3. \]

For the coupled problems of hydrodynamics and heat transfer, the energy equation is added to the equations listed \[1, 7\]:

\[\frac{\partial T}{\partial t} + u_j \frac{\partial T}{\partial x_j} = \frac{\partial}{\partial x_j} \left(a + a_t \frac{\partial T}{\partial x_j} \right), \quad j = 1, 2, \]

where \(T \) – fluid temperature; \(a \) – coefficient of conductivity; \(a_t = \mu_t / (\rho Pr_t) \), where \(Pr_t = 0.9 \) – turbulent analogue of the Prandtl number.

The boundary conditions were set as follows.

In the entrance section – plane-parallel flow with velocity \(V_\infty \); on the top and bottom boundaries of the computational domain – simulation of flow past “at infinity”:

\[u = V_\infty; \quad v = 0. \]

In the output section – zero pressure:

\[p = 0. \]

On the surface of profile is a condition of adhesion:
\[u = 0; \quad v = 0. \]

The temperature \(T_p \) was set on the profile surface, which differed from the ambient flow temperature:

\[T = T_p. \]

Aerodynamic drag and lift coefficients were determined by formulas (14,15), respectively [10]:

\[C_X = \frac{X}{\rho V_{\infty}^2 S_{PL}}; \quad C_Y = \frac{Y}{\rho V_{\infty}^2 S_{PL}}, \]

where \(X \) – drag force; \(Y \) – lift force; \(C_X \) – drag coefficient; \(C_Y \) – lift coefficient; \(V_{\infty} \) – flow velocity at infinity; \(S_{PL} = h \times L \) – wing area in plan; \(L = 1 \) – wing span (equal to one for two-dimensional setting); \(h \) – profile chord.

Results. The Figure 1 shows the curves for the lift coefficient of the profile \(C_Y \) on the Reynolds number \(Re \) for three variants of heating the profile surface: curves 1 and 3 correspond to the heating of the bottom and top surfaces, respectively; curve 2 is constructed for isothermal flow at a temperature difference of the surface \(\Delta T = 0 \).

From the curves in Fig. 1 it follows that heating the bottom profile surface increases the lift coefficient, and heating the top surface reduces it, which fully coincides with the theoretical conclusions of the work [9].

The values of the lift coefficient for an isothermal flow (curve 2, Fig. 1) were compared with the corresponding results of [10] at \(Re = 4.4 \times 10^5 \). The difference did not exceed 3.6%, which suggests a satisfactory accuracy of calculations.

![Fig. 1. Lift coefficient \(C_Y \) depending on the Reynolds number \(Re \) for three variants of heating the profile surface](image-url)
Analysis of the curves in Fig. 1 also shows that the effect of increasing/decreasing the lift coefficient during heating of the lower/upper surface of the profile practically ceases to appear at high flow velocities corresponding to Reynolds numbers \(Re > 10^5 \). In this flow region, all three curves coincide with each other, which corresponds to the isothermal regime of flow around of the profile.

Fig. 2 shows the groups of curves of the aerodynamic coefficients \(C_x \) and \(C_y \) of the profile for the Reynolds numbers \(Re = 10^4 \div 10^5 \) with the simultaneous action of heating the bottom and cooling the top surfaces of the profile – the most optimal heating mode, as indicated in [9].

Curves in Fig. 2 obtained at the temperature difference between the top and bottom surfaces equal 0, 30, 60 and 100 °C.

Analysis of fig. 2 shows that at flowing around of profile with Reynolds numbers \(Re = 10^4 \div 10^5 \), corresponding to the area of the thermal effect action, with the simultaneous action of heating the bottom and cooling the top surfaces relative to the free-stream temperature, a decrease in the drag coefficient and an increase in the lift coefficient of the profile is obtained, right proportional to the temperature difference between the heated and cooled surfaces.

![Fig. 2. Aerodynamic coefficients of the profile depending on the Reynolds number while simultaneously heating the bottom and cooling the top surfaces: a – drag coefficient \(C_x \); b – lift coefficient \(C_y \)](image)

For the most complete analysis of the results in Fig. 3 shows a quantitative estimate of the increase in the lift coefficient from the temperature difference of the profile surface with the simultaneous effect of heating the top and cooling its bottom surfaces.

Curves in fig. 3 show an increase in the lift coefficient \(C_y \) (values as a percentage) for \(Re = 10^4 \) (left scale of the y-axis) and \(Re = 10^5 \) (right scale of the y-axis).

The behavior of the curves in Fig. 3 confirms the effect of heating/cooling of the profile surfaces when it flows around for \(Re = 10^4 \) and \(10^5 \) to increase the lift coefficient, which shows up itself to a greater degree at the value \(Re = 10^4 \).
Analysis of the curves in Fig. 1 also shows that the effect of increasing/decreasing the lift coefficient during heating of the lower/upper surface of the profile practically ceases to appear at high flow velocities corresponding to Reynolds numbers \(Re > 10^5 \). In this flow region, all three curves coincide with each other, which corresponds to the isothermal regime of flow around the profile.

Fig. 2 shows the groups of curves of the aerodynamic coefficients \(C_x \) and \(C_y \) of the profile for the Reynolds numbers \(Re = 10^4 \div 10^5 \) with the simultaneous action of heating the bottom and cooling the top surfaces of the profile – the most optimal heating mode, as indicated in [9].

Curves in Fig. 2 obtained at the temperature difference between the top and bottom surfaces equal 0, 30, 60 and 100 °С.

Analysis of fig. 2 shows that at flowing around the profile with Reynolds numbers \(Re = 10^4 \div 10^5 \), corresponding to the area of the thermal effect action, with the simultaneous action of heating the bottom and cooling the top surfaces relative to the free-stream temperature, a decrease in the drag coefficient and an increase in the lift coefficient of the profile is obtained, right proportional to the temperature difference between the heated and cooled surfaces.

For the most complete analysis of the results in Fig. 3 shows a quantitative estimate of the increase in the lift coefficient from the temperature difference of the profile surface with the simultaneous effect of heating the top and cooling its bottom surfaces.

Curves in fig. 3 show an increase in the lift coefficient \(C_y \) (values as a percentage) for \(Re = 10^4 \) (left scale of the y-axis) and \(Re = 10^5 \) (right scale of the y-axis).

The behavior of the curves in Fig. 3 confirms the effect of heating/cooling of the profile surfaces when it flows around for \(Re = 10^4 \) and \(10^5 \) to increase the lift coefficient, which shows up itself to a greater degree at the value \(Re = 10^4 \).

Thus, the effect of heating/cooling of the bottom/top profile surfaces, respectively, increases its lift, the greater the magnitude of the temperature difference between the bottom and top profile surfaces.

Conclusions. Undertaken investigations and analysis of the got results in solution of the problem about the influence of heating/cooling the profile surface on its aerodynamic drag and lift coefficients in a flow around profile at subsonic velocity allowed formulating the following conclusions:

1) heating/cooling the profile surface influences on a change of its aerodynamic characteristics;
2) the highest aerodynamic characteristics of the profile according to the criterion “minimum coefficient of drag – maximum coefficient of lift” were achieved while simultaneously heating the bottom surface and cooling the top surface of the profile compared to the isothermal problem;
3) the effect indicated in point 2 of the conclusions increases with increasing temperature difference on the top and bottom surfaces of the profile;
4) influence of heating/cooling of the profile surface on its aerodynamic characteristics at flowed around subsonic flow decreases with increasing Reynolds number. When \(Re > 10^5 \) heat transfer already has almost no effect on the change in lift and drag of the profile.

Bibliographic references

1. Багоутдинова, А. Г. Математическая модель сопряженной задачи теплообмена при турбулентном течении в каналах сложной формы [Текст] / А. Г. Багоутдинова, Я.Д. Золотоносов // Известия КГАСУ. Сер. Теплоснабжение, вентиляция, кондиционирование воздуха, газоснабжение и освещение. – 2013. – № 2 (24). – С. 157–167.
2. Висков, А. Н. Влияние температуры струи, направленной перпендикулярно набегающему потоку, на подъемную силу треугольного крыла [Текст] / А. Н. Висков, А. Ф. Ражин, С. И. Руденко // Ученые записки ЦАГИ. – 1971. – Том II, № 2. – С. 98–100.

3. Ву, Т. Ч. Исследование влияния теплообмена на подъемную силу модели прямоугольного крыла при дозвуковых скоростях [Текст] / Т. Ч. Ву, В. В. Вышинский // Труды МФТИ. – Сер. Аэрогидромеханика. – 2013. – Том 5. – № 2. – С. 88–93.

4. Ву, Т. Ч. Исследование влияния теплообмена на аэродинамические характеристики модели прямоугольного крыла при дозвуковых скоростях [Текст] / Т. Ч. Ву, В. В. Вышинский, Н. Т. Данг // Труды МФТИ. – Сер. Аэрогидромеханика. – 2012. – Том 4. – № 2. – С. 148–153.

5. Вышинский, В. В. Аэродинамические характеристики профиля крыла с учетом теплообмена с потоком вязкого, сжимаемого газа при дозвуковых скоростях [Текст] / В. В. Вышинский, А. С. Петров, Ву Тхань Чунг // Научный вестник МГТУ ГА. – Сер. Аэромеханика и прочность. – 2010. – № 151. – С. 7–11.

6. Вышинский, В. В. Аэродинамические характеристики профиля крыла с учетом теплообмена с потоком вязкого, сжимаемого газа при дозвуковых скоростях [Текст] / В. В. Вышинский, А. С. Петров, Т. Ч. Ву // Труды XV Международного симпозиума «Методы дискретных особеностей в задачах математической физики». – Харьков-Херсон. – 2011. – С. 115–118.

7. Исаченко, В. П. Теплопередача [Текст] /В. П. Исаченко, В. А. Осипова, А. С. Сукомел. – М.: Энергия, 1975. – 488 с.

8. Кравец, Е. В. Гидродинамика течения между прямоугольными призмами, расположенными тандемом над экраном [Текст]: Диссерт. на соиск. ученой степени к. ф.-м. н. по спец. 01.02.05 – Механика жидкости, газа и плазмы / Е. В. Кравец. – Днепропетровск, 2009. – 229 с.

9. Петров, А. С. Теория аэродинамических сил при дозвуковых скоростях: учебное пособие [Текст] /А.С. Петров. – М.: МФТИ, 2007. – 236 с.

10. Kravets, E. V. Influence of Turbulence Model on Exactness Calculation of Wing Aerodynamics in Subsonic Stream [Текст] / E. V. Kravets // Вісник Дніпропетровського університету. Сер. Механіка. – 2018. – Вип. 22. – № 5. – Т. 26. – С. 96–102.

Надійшла до редколегії 01.03.2019

УДК 532.3

О. Г. Гоман, Т. М. Никулина
Днепровский национальный университет имени Олеся Гончара

УДАРНОЕ ВЗАИМОДЕЙСТВИЕ ТЕЛА В ВИДЕ КРУГОВОГО СЕГМЕНТА С ЖИДКОСТЬЮ С ОБРАЗОВАНИЕМ ЗОНЫ ОТРЫВА

В работе в плоской постановке рассматривается задача об ударе гладкого криволинейного тела, предварительно погруженного в жидкость, занимающую безграничное полутоространство. Жидкость считается несжимаемой, а погруженная в жидкость часть тела имеет форму кругового сегмента. Предполагается, что в некоторый момент времени происходит нецентральный удар, в результате которого тело мгновенно получает горизонтальную U и вертикальную V скорость движения, а также угловую скорость вращения о вокруг оси, перпендикулярной плоскости, в которой рассматривается течение.

© Гоман О. Г., Никулина Т. М., 2019

54