Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Gene expression patterns in peripheral blood leukocytes in patients with recurrent ciguatera fish poisoning: Preliminary studies

Maria-Cecilia Lopez a, Ricardo F. Ungaro b, Henry V. Baker a,b,c, Lyle L. Moldawer b, Alison Robertson d, Margaret Abbott e, Sparkle M. Roberts f, Lynn M. Grattan f, J. Glenn Morris Jr. e,g,*

a Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
b Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
c Genetics Institute, University of Florida, Gainesville, FL 32610, USA
d Marine Ecotoxicology Lab, Department of Marine Sciences, University of South Alabama & Dauphin Island Sea Lab, USA
e Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
f Department of Neurology, Division of Neuropsychology, University of Maryland School of Medicine, 110 S., Poca St., 3rd Floor, Baltimore, MD 21201, USA
f Department of Medicine, College of Medicine, Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Box 10009, Gainesville, FL 32610, USA

ABSTRACT

Ciguatera fish poisoning (ciguatera) is a common clinical syndrome in areas where there is dependence on tropical reef fish for food. A subset of patients develops recurrent and, in some instances, chronic symptoms, which may result in substantial disability. To identify possible biomarkers for recurrent/chronic disease, and to explore correlations with immune gene expression, peripheral blood leukocyte gene expression in 10 ciguatera patients (7 recurrent and 3 acute) from the U.S. Virgin Islands, and 5 unexposed Florida controls were evaluated. Significant differences in gene expression were noted when comparing ciguatera patients and controls; however, it was not possible to differentiate between patients with acute and recurrent disease, possibly due to the small sample sizes involved.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ciguatera fish poisoning (CFP) is caused by consumption of tropical reef fish carrying ciguatoxin, a toxin which originates in species of the dinoflagellate Gambierdiscus, and is passed up through the marine food chain. Global estimates of incidence are in the range of 50,000–500,000 cases per year (Fleming et al., 1998). In studies conducted by the research team in 2011–2012 on St. Thomas, U.S. Virgin Islands, incidence was 12 cases/1000 people/year, with 41% of cases representing recurrent illness (Radke et al., 2013a).

Illness is characterized by a distinctive combination of gastrointestinal (diarrhea and/or vomiting) and neurologic (cummor and/or extremity paresthesias, weakness and pain in legs, fatigue) symptoms; while gastrointestinal symptoms tend to resolve within 48 h, neurologic symptoms can persist in acute cases for several weeks (Morris et al., 1982a; Bagnis et al., 1979; Radke et al., 2013b). Multiple studies have found that patients who have had ciguatera once are significantly more likely to have recurrent episodes (Bagnis et al., 1979; Glaziou & Martin, 1993; Morris et al., 1982b; Radke et al., 2013a). A subset of patients develop “chronic” ciguatera, which is marked by persistence of symptoms, fatigue (reminiscent of chronic fatigue syndromes (Pearn, 1997)), and long-term disability.

There are currently no diagnostic tests for ciguatera: diagnosis is based on clinical presentation, and confirmatory electromyograpghy, where appropriate. Factors responsible for increased rates of recurrence among persons who have had an initial episode of ciguatera are not well understood, nor is it understood why a subset of patients go on to have symptoms of chronic disease. To look for biomarkers of illness, and explore factors that may contribute to clinical presentation, gene expression in peripheral
blood leukocytes (PBLs) collected from 10 patients in the U.S. Virgin Islands who had been diagnosed with CFP and 5 healthy control subjects from Florida was assessed.

2. Methods

Ten patients with CFP were drawn from a larger study of acute and recurrent CFP on the Island of St. Thomas, U.S. Virgin Islands. As previously described (Radke et al., 2013), patients were enrolled from the Emergency Department of the Roy Lester Schneider Hospital (the only hospital on St. Thomas), with follow-ups at 3, 6, and 12 months after acute presentation. Seven of the 10 patients had been followed for between 3 and 12 months after acute illness, and had recurrent symptoms. Three patients did not have recurrent symptoms after their initial illness. For one patient, blood was drawn for the current study approximately 4 months from the time of acute illness; the remaining two patients were approximately 2 weeks from the time of their acute episode of illness, and still had residual symptoms. The mean age of ciguatera case patients was 55 years; 4 were male and 6 female. Eight of the 10 patients had an underlying medical diagnosis, including diabetes (2 patients), arthritis (2), hypertension (4), atherosclerotic heart disease (1), thyroid disease (1), and asthma (1). Samples were also collected from 5 control persons: mean age was 35; 4 were male and 1 was female; all lived in Florida; all were in good health; and none had any medical history consistent with CFP. Studies were approved by the Institutional Review Board of the University of Florida.

Whole Blood was collected into a 7.0 mL K3 EDTA vacutainer tube (Becton Dickinson #366450). The whole blood was lysed with Buffer EL (Qiagen #79217) to eliminate red blood cells and isolate the total leukocyte population. For the CFP patient samples only, RNAprotect Cell Reagent (Becton Dickinson #76526) was added to the resultant total leukocyte population to stabilize the cells for subsequent shipment to Florida. The total leukocytes for the CFP and control patients were then processed with the Qiagen RNeasy Plus Mini Kit (Qiagen #74134) to isolate the RNA.

Total RNA was quantified spectrophotometrically using the NanoDrop 1000 instrument (Thermo Scientific, Wilmington, DE). RNA quality was assessed using an RNA PicoChip on an Agilent 2100 Bioanalyzer (Agilent, Andover, MA). All specimens had RNA Integrity Number (RIN) scores greater than 5. Hundred nanograms of total RNA was processed for GeneChip analysis using the GeneChip® WT PLUS Reagent Kit (Affymetrix, Santa Clara, CA) following manufacturer’s recommendations. 5.5 μg of resulting cDNA was fragmented, terminally labeled, and targets were hybridized to Affymetrix GeneChip® Human Transcriptome Array 2.0 (HTA 2.0) for 16 h at 45 °C and washed according to Affymetrix fluidics protocols FS450_001. Microarrays were normalized using Robust Multi-array Average (RMA) as implemented in Partek Genomics Suite 6.6 (Partek Incorporated, St Louis MO). Only annotated probe sets were used in the subsequent analysis. The resulting 26,831 annotated probe sets represented 25,193 genes. Significant genes (p < 0.001) were identified using the class prediction tool implemented in Biometric Research Branch BRB-ArrayTools version 4.3.0 Stable Release, developed by Richard Simon & BRB-ArrayTools Development Team (http://linus.nci.nih.gov/BRB-ArrayTools.html). The ability of genes significant at p < 0.001 to distinguish between the classes was determined using leave-one-out-cross-validation studies and Monte Carlo simulations using algorithms implemented in BRB-Array Tools. Gene set analysis was also conducted using BRB ArrayTools.

3. Results and discussion

Significant differences in PBL gene expression patterns were seen in CFP patients compared with controls, with 3285 of 26,831 genes screened having a significance of p < 0.001. Findings are reflected in the principal component analysis shown in Fig. 1, and the heat map in Fig. 2. Significant differences in gene expression were not seen when CFP patients with recurrent symptoms were compared with those with only acute symptoms. In assessing differences in patterns of expression of genes/gene pathways, the strongest associations were with genes linked with platelet aggregation (h_aphA4Pathway) and chemokine gene expression (h_fMLPPathway) (Table 1).

The finding of significant differences in PBL gene expression patterns between patients in the U.S. Virgin Island ciguatera population and a healthy control population from Florida must be approached with caution. It is well recognized that gene expression studies have the potential to yield false positive findings if the ancestry of cases and controls are not appropriately matched, as gene expression can be both heritable and under strong genetic control (Byrnes et al., 2009; Cheung et al., 2005). In these studies, the majority of the CFP patients came either from the Virgin Islands or neighboring islands in the Caribbean; the controls, in contrast, tended to have Caucasian backgrounds. To confirm the findings, it will be necessary to conduct additional studies, with carefully matched cases and controls. Similarly, failure to find significant differences in gene expression between patients with recurrent and acute ciguatera is of uncertain relevance: acute case numbers, in particular, were small, and blood was drawn, in one instance, 4 months after the initial acute episode.

There are also uncertainties regarding the physiologic relevance of the gene pathways that were shown to have significantly different expression patterns. Ciguatoxin, the causative agent for the disease, potentiates voltage-gated sodium channels, with resultant effects on neurons; there is also a suggestion that it has direct, calcium-mediated enterotoxins (Fasano et al., 1991). While relevance to human cases is uncertain, there is one study of gene expression in mouse brains exposed to ciguatoxin in which there was enrichment of expression pathways related to complement and coagulation cascades (Ryan et al., 2010). Given the clinical similarities between chronic ciguatera and chronic fatigue syndromes, it could be hypothesized that similar physiologic mechanisms were operational in the two syndromes. There was
Biocarta pathway	Pathway description	Number of genes	Least Square permutation p-value	Kolmogorov–Smirnov permutation p-value	Efron–Tibshirani’s Gene Set Analysis (GSA) maxmean test
h_eph4API4Pathway	Eph Kinases and ephrins support platelet aggregation	8	<0.005	<0.005	<0.005 (--)
h_mlfPathway	FMLP induced chemokine gene expression in HMC-1 cells	34	<0.005	<0.005	<0.005 (+)
h_i77Pathway	IL-7 Signal Transduction	15	<0.005	<0.005	0.04 (--)
h_mapkPathway	MAPKinase Signaling Pathway	85	<0.005	<0.005	0.04 (+)
h_pdtinsPathway	Phosphoinositides and their downstream targets.	23	<0.005	<0.005	<0.005 (+)
h_keratinocytePathway	Keratinocyte Differentiation	57	<0.005	<0.005	0.085 (--)
h_pky2Pathway	Links between Pyk2 and Map Kinases	27	<0.005	<0.005	0.003 (+)
h_bcrPathway	BCR Signaling Pathway	33	<0.005	<0.005	0.015 (--)
h_mrtPathway	Signaling of Hepatocyte Growth Factor Receptor	33	<0.005	<0.005	0.075 (--)
h_tcrPathway	T Cell Receptor Signaling Pathway	44	<0.005	<0.005	0.03 (--)
h_monocytePathway	Monocyte and its Surface Molecules	12	<0.005	<0.005	0.025 (--)
h_uacalpainPathway	uCalpain and friends in Cell spread	14	<0.005	<0.005	0.065 (--)
h_lymphocytePathway	Adhesion Molecules on Lymphocyte	10	<0.005	<0.005	0.01 (--)
h_tidPathway	Chaperones modulate interferon Signaling Pathway	29	<0.005	<0.005	0.08 (+)
h_p53hypoxiaPathway	Hypoxia and p53 in the Cardiovascular system	24	<0.005	<0.005	0.06 (+)
h_scl1Pathway	Fc Epsilon Receptor I Signaling in Mast Cells	39	<0.005	<0.005	0.18 (--)
h_integrinPathway	Integrin Signaling Pathway	34	<0.005	<0.005	0.01 (--)
h_hivPathway	HIV-1 Nef: negative effector of Fas and TNF	67	<0.005	<0.005	0.23 (--)
h_neutrophilPathway	Neutrophil and Its Surface Molecules	9	<0.005	<0.005	0.015 (--)
h_il2rbPathway	IL-2 Receptor Beta Chain in T cell Activation	37	<0.005	<0.005	0.135 (--)
h_parapathway	Mechanism of Gene Regulation by Peroxosome Proliferators via PPARa(alfa)	63	<0.005	<0.005	0.035 (--)
h_arrestin-srclPathway	Roles of L-arrestin-dependent Recruitment of Src Kinases in GPCR Signaling	17	<0.005	<0.005	0.015 (--)
h_biopeptidesPathway	Bioactive Peptide Induced Signaling Pathway	29	<0.005	<0.005	0.04 (+)
h_sarsPathway	SARS Coronavirus Protease	7	<0.005	<0.005	<0.005 (--)
h_helperPathway	T Helper Cell Surface Molecules	12	<0.005	<0.005	0.125 (--)
h_rac1Pathway	Rac 1 cell motility signaling pathway	21	<0.005	<0.005	0.085 (--)
h_bcmvPathway	Human Cytomegalovirus and Map Kinase Pathways	17	<0.005	<0.005	0.045 (--)
h_ecmpathway	Erk and PI-3 Kinase Are Necessary for Collagen Binding in Corneal Epithelia	19	<0.005	<0.005	0.145 (--)
h_erkPathway	Erk1/Erk2 Mapk Signaling pathway	27	<0.005	<0.005	0.1 (--)
h_nozil12Pathway	NO2-dependent IL-12 Pathway in NK cells	15	<0.005	<0.005	0.015 (--)
h_dcpPathway	Dendritic cells in regulating TH1 and TH2 Development	17	<0.005	<0.005	0.2 (--)
h_nkcellsPathway	Ras-Independent pathway in NK cell-mediated cytotoxicity	27	<0.005	<0.005	0.070 (--)
h_ceramidePathway	Ceramide Signaling Pathway	21	<0.005	0.140	0.05 (+)
h_stat3Pathway	Stat3 Signaling Pathway	8	<0.005	<0.005	0.05 (+)
h_chemicalPathway	Apoptotic Signaling in Response to DNA Damage	18	<0.005	<0.005	0.105 (--)
h_rasPathway	Ras Signaling Pathway	22	<0.005	<0.005	0.015 (--)
h_agrPathway	Agrin in Postsynaptic Differentiation	35	<0.005	<0.005	0.175 (--)
h_at1rPathway	Angiotensin II mediated activation of JNK Pathway via Pyk2 dependent signaling	27	<0.005	<0.005	0.045 (--)
h_crebPathway	Transcription factor CREB and its extracellular signals	22	<0.005	<0.005	0.07 (+)
h_cxcr4Pathway	CXCR4 Signaling Pathway	19	<0.005	<0.005	0.055 (--)
h_stathminPathway	Stathmin and breast cancer resistance to antimitotocuble agents	20	<0.005	<0.005	0.12 (--)
h_calcineurinPathway	Effects of calcineurin in Keratinocyte Differentiation	18	<0.005	<0.005	0.06 (--)
h_cytotoxicPathway	T Cytotoxic Cell Surface Molecules	12	<0.005	<0.005	0.135 (--)
h_erk5Pathway	Role of Erk5 in Neuronal Survival	14	<0.005	<0.005	0.025 (--)
h_fasPathway	FAS signaling pathway (CD95)	34	<0.005	0.234	0.225 (--)
h_ghPathway	Growth Hormone Signaling Pathway	27	<0.005	<0.005	0.035 (--)
h_d4gd1Pathway	D4-GD1 Signaling Pathway	12	<0.005	<0.005	0.012 (--)
h_raccyclfPathway	Influence of Ras and Rho proteins on G1 to S Transition	26	<0.005	<0.005	0.123 (--)
h_ptenPathway	PTEN dependent cell cycle arrest and apoptosis	18	<0.005	<0.005	0.055 (--)
h_tcapoPathway	HIV Induced T Cell Apoptosis	9	<0.005	<0.005	0.14 (--)
h_malPathway	Role of MAL in Rho-Mediated Activation of SRF	19	<0.005	<0.005	0.01 (--)
h_psp1Pathway	Presenilin action in Notch and Wnt signaling	14	<0.005	<0.005	0.08 (--)
h_mef2dPathway	Role of MEF2D in T-cell Apoptosis	17	<0.005	<0.005	0.01 (--)
h_hdacPathway	Control of skeletal myogenesis by HDAC & calcium/calmodulin-dependent kinase (CaMK)	25	<0.005	<0.005	0.235 (--)
h_relaPathway	RelA/Cyclin D2 Pathway	21	<0.005	<0.005	0.125 (--)
h_rabnbp2Pathway	SUMOylation by RanBP2 Regulates Transcriptional Repression	11	<0.005	<0.005	0.07 (--)
h_salmonellaPathway	How does salmonella hijack a cell	5	<0.005	<0.005	0.15 (--)
h_pita2Pathway	Multi-step Regulation of Transcription by Pita2	15	<0.005	<0.005	0.14 (--)
h_lf4Pathway	The Co-Stimulatory Signal During T-cell Activation	30	<0.005	<0.005	0.255 (--)
h_classicPathway	Classical Complement Pathway	27	<0.005	<0.005	0.515 (--)
h_compPathway	Complement Pathway	38	<0.005	<0.005	0.465 (--)
some overlap with gene pathways identified in patients with chronic fatigue (e.g., ARF1 (Vernon et al., 2002); CEACAM family (Kaushik et al., 2005); however, more recent studies have raised questions about the relevance of these findings (Byrnes et al., 2009).

Ciguatera remains an important clinical entity in areas where there is high dependence on tropical reef fish for food. Identification of a biomarker for CFP (particularly recurrent or chronic CFP), and/or for CFP susceptibility, would have substantial clinical relevance, both in terms of diagnosis, and as a basis for development of therapeutic interventions. Findings of this preliminary study are intriguing: there is a need to follow-up on these results (with appropriate control populations) and to further explore potential physiologic relevance of the identified gene pathways.

Acknowledgments

Funding was provided, in part, by a grant to JGM from the U.S. Centers for Disease Control and Prevention (Grant # U01EH00421). We thank the physicians and staff of the Emergency Department of the Roy Lester Schneider Hospital on St. Thomas, U.S. Virgin Islands, for their assistance in recruitment of patients who were part of this study.

[SS]

References

Bagnis, R., Kuberski, T., Lauzier, S., 1979. Clinical observations on 3009 cases of ciguatera (fish poisoning) in the South Pacific. Am. J. Trop. Med. Hyg. 28, 1067–1073.

Byrnes, A., Jacks, A., Dahlman-Wright, K., Evengard, B., Wright, F.A., Pedersen, N.L., Sullivan, P.F., 2009. Gene expression in peripheral blood leukocytes in monozygotic twins discordant for chronic fatigue: no evidence of a biomarker. PLoS One 4 (6), e5805.

Cheung, V.G., Spielman, R.S., Ewens, K.G., Weber, T.M., Morley, M., Burdick, J.T., 2005. Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 1365–1369.

Fasano, A., Hokama, Y., Russell, R., Morris Jr., J.G., 1991. Diarrhea in ciguatera fish poisoning: preliminary evaluation of pathophysiological mechanisms. Gastroenterology 100 (2), 471–476.

Fleming, L.E., Baden, D.G., Bean, J.A., Weissman, R., Blythe, D.G., 1998. Seafood toxin diseases: issues in epidemiology and community outreach. In: Regueria, R., Blanco, J., Fernandez, M.L., Wyatt, T. (Eds.), Harmful Algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Paris, pp. 245–248.

Glaziou, P., Martin, P.M.V., 1993. Study of factors that influence the clinical response to ciguatera fish poisoning. Toxicon 31 (9), 1151–1154.

Kaushik, N., Fear, D., Richards, S.C.M., McDermott, C.R., Nuwaysir, E.F., Kellam, P., Harrison, T.J., Wilkinson, R.J., Tyrrell, D.A.J., Holgate, S.T., Kerr, J.R., 2005. Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome. J. Clin. Pathol. 58 (8), 826–832.

Morris Jr., J.G., Lewin, P., Smith, C.W., Blake, P.A., Schneider, R., 1982a. Ciguatera fish poisoning: epidemiology of the disease on St. Thomas, U.S. Virgin Islands. Am. J. Trop. Med. Hyg. 31 (3 Pt 1), 574–578.

Morris Jr., J.G., Lewin, P., Hargrett, N.T., Smith, C.W., Blake, P.A., Schneider, R., 1982b. Clinical features of ciguatera fish poisoning: A study of the disease in the U.S. Virgin Islands. Arch. Intern. Med. 142, 1090–1092.

Pearn, J.H., 1997. Chronic fatigue syndrome: chronic ciguatera poisoning as a differential diagnosis. Med. J. Aust. 166 (6), 302–310.

Radke, E.G., Grattan, L.M., Cook, R.L., Smith, T.B., Anderson, D.M., Morris Jr., J.G., 2013a. Ciguatera incidence in the U.S. Virgin Islands has not increased over a 30 year time period, despite rising seawater temperatures. Am. J. Trop. Med. Hyg. 88 (5), 908–913.

Radke, E.G., Grattan, L.M., Morris, J.G., 2013b. Association of cardiac disease and alcohol use with the development of severe ciguatera. South. Med. J. 106 (12), 655–657.

Ryan, J.C., Morey, J.S., Bottein, M.Y., Ramsdell, J.S., Dolah, F.M., 2010. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response. BMC Neurosci. 11, 107.

Vernon, S.D., Unger, E.R., Dimulescu, I.M., Rajeevan, M., Reeves, W.C., 2002. Utility of the blood for gene expression profiling and biomarker discovery in chronic fatigue syndrome. Dis. Markers 18 (4), 193–199.