RESEARCH ARTICLE

Developing assessment criteria for operation control of local security health fund in the upper central area, Thailand

[version 1; peer review: awaiting peer review]

Prapot Boonmee¹, Pattapong Kessomboon¹, Supattarayan Thongjit²

¹Department of Community Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 30004, Thailand
²Department of Family and Community Oral Health, Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, 34000, Thailand

First published: 26 Nov 2021, 10:1207
https://doi.org/10.12688/f1000research.74405.1

Abstract

Background: The government's support for public health care in Thailand is very important and necessary. Therefore, there must be a supervisory process for budgeting to create the most equality and fairness to all people. At present, the instruments used to monitor health fund performance cannot be comprehensively assessed for effectiveness such as planning, organizing, leading and controlling. To address this gap, we created the Assessment Criteria for Operation control of Local security health Fund (ACOLF) which evaluates old assessment criteria, review literature and experience as separate constructs.

Methods: The ACOLF is a 42-item survey with 12 old assessment criteria, 26 review literature and four experience items rated on scale from 0-9. In an observational analytical study, the survey was administered to 406 general population participants working in a provincial office for local administration. Validity and reliability were evaluated by testing construct validity. Exploratory factor analysis was conducted to confirm the item of old assessment criteria, review literature and experience. Reliability of the questionnaires was tested using Cronbach's alpha coefficient.

Results: The ACOLF demonstrated convergent construct validity (KMO = 0.88 and Bartlett's Test; p value <0.001) and explaining 88.95% of the variance of this construct. There were seven factors involved and all factors consisted of a total of 41 variables observed by the weight of the composition of the observed variables ranged from 0.780 to 0.972 at the significance level of 0.05. The reliability of the assessment criteria was tested using Cronbach's alpha coefficient, the total results was at 0.889.

Conclusions: The ACOLF is a short, cover activity, valid, and reliable instrument for assessment operation control of local security health fund. Based on research findings the tool can be used to

Open Peer Review

Reviewer Status AWAITING PEER REVIEW

Any reports and responses or comments on the article can be found at the end of the article.
comprehensively assess the performance of local security health fund.

Keywords
Local Health Security Fund, Quality Criteria Assessment, indicators

Corresponding author: Pattapong Kessomboon (pattapng@kku.ac.th)

Author roles: Boonmee P: Conceptualization, Data Curation, Formal Analysis, Methodology, Software, Writing – Original Draft Preparation; Kessomboon P: Conceptualization, Methodology, Supervision, Writing – Review & Editing; Thongjit S: Data Curation, Formal Analysis, Methodology, Visualization, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This study was funded by Faculty of Medicine, Khon Kaen University, Thailand (IN 63202)

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Boonmee P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Boonmee P, Kessomboon P and Thongjit S. *Developing assessment criteria for operation control of local security health fund in the upper central area, Thailand [version 1; peer review: awaiting peer review]* F1000Research 2021, 10:1207 https://doi.org/10.12688/f1000research.74405.1

First published: 26 Nov 2021, 10:1207 https://doi.org/10.12688/f1000research.74405.1
Introduction
World Health Organization (WHO) attention to the policy of creating universal health insurance (Universal Coverage Scheme)\(^1\) and need for collaborative working was highlighted in the 1986 Ottawa Charter for Health Promotion. The health promotion demands coordinated action by all concerned: by governments, by health and other social and economic sectors, by nongovernmental and voluntary organizations, by local authorities, by industry and by the media. The recognition of the role those social determinants play in the health of the population makes it clear that health cannot be the responsibility of just one agency and, over the last three decades, collaboration has been an increasing focus of health promotion internationally.\(^2\) In 1997 the Jakarta Declaration identified partnerships for health and social development between different sectors as one of its five key priorities. It stressed the need to strengthen existing partnerships and urged the development of new partnerships\(^3\) (Jakarta 1997). These priorities were further highlighted in 2005 when the Bangkok Charter stated that “partnerships, alliances, networks and collaborations provide exciting and rewarding ways of bringing people and organizations together around common goals and joint actions to improve the health of populations”\(^4\) (WHO 2005).

Thailand’s policy on universal health coverage (UHC) has made good progress since its inception in 2002 by National Health Security Office Thailand (NHSO). Every Thai citizen is now entitled to essential health services at all life stages.\(^5\) The NHSO has a duty to support Coordinate and prescribe rules for local authorities to operate and administer the health insurance system at the local level as readily or appropriately to create health insurance for the population in each region. Well-coordinated district health systems enable individuals to seek care or referral at health units close to home.\(^6\)

The NHSO is working with local governments to establish the Local Health Security Fund (LHF), with the key goal of increasing access to health promotion and disease prevention services in the community. There is a process by community participation in solving health problems that has been ongoing since 2006 to the present. Over the past 10 years, the local health insurance fund has been established and developed continuously. Therefore, the assessment and monitoring tools are very important for the Fund’s development in order to know the factors affecting the coverage of health services such as education level, health, socioeconomic status.\(^7\) LHF Performance Assessment Emphasis is placed on work processes requiring the creation and development of LHF management evaluation criteria, which must be developed and improved to suit the current situation. In particular, the indicators can indicate that the fund management committee is effective and can reflect the level of strength and sustainability of the LHF.\(^8\)

However, the original LHF efficacy model did not cover all aspects of fund management and people still had insufficient access to local government services.\(^9\) Therefore, the development of an LHF operated and managed by the local government that can drive the health care of local people more efficiently and sustainably requires the development of an efficient and effective assessment tool to provide an overview of its operations.

In this research, it has been developed and designed to be used as a guideline to assess the quality of LHF management to be effective in the future.

Methods
Study design
Cross-sectional analytical study.

Setting
The study was conducted in eight provinces in central areas of Thailand include Saraburi, Lop Buri, Sing Buri, Ang Thong, Phra Nakhon Si Ayutthaya, Pathum Thani, Nonthaburi and Nakhon Nayok. The subject answered question during a convenient time that did not disturb them from working. The study was conducted from January to December 2019.

Initial development of the assessment criteria
The ACOLF is a 42-item survey with 12 old assessment criteria 26 review literature and four experience items rated on scale from 0-9. The content validity index (CVI) was tested by four experts, which is the primary method used to determine whether a test has content validity that purport to the same content domain and the results item content validity were between 0.76-1.0.

Measures
We collected data from a sample size involved in the local government organization, one representative at a time, using questions made up of three parts, totaling 42 item or a 42 item Observed Variable (OV) survey with 12 old assessment criteria, 26 review literature and four experience items rated on scale from 0-9. The questionnaire was developed to
measure the factors Assessment Criteria for Operation control of Local security health Fund (ACOLF) dividing into 12 Latent Variable (LV): LV1 Fund Management. (Observe variable 2-4) LV2 Fund Allocation. LV3 Support for activities of the Fund. LV4 health benefits. LV5 Organizational Leadership. LV6 Assignment of people in the organization. LV7 Health Strategic Plan Formulation. LV8 Human Resource Development of the Fund. LV9 Health Network Potential Development. LV10 Database Management. LV11 Public Relations of the Fund. LV12 Monitoring and Evaluation. The content of the questionnaire was discussed with the experts in the field and then revised accordingly. Self-reported questionnaire bias may develop recall bias in data collection, which is eliminated by designing questionnaires to be easy to answer in accordance with the participants’ regular work activities.

Statistical methods

Sample size

Using the rule of sample size, in the factor analysis at least 300 for the Exploratory Factor Analysis (EFA). Purposive sampling was used to obtain data from a sample group that corresponds to the health fund management questionnaire, including representatives of the Health Security Fund Committee and representatives of health network partners from the public and public sectors. The consent to participate in the research was carried out by sending a questionnaire to the sample group and having the consenting person respond to the questionnaire back to the researcher. The study had 402 participants consisting of 23 local politicians, 343 government officers, 40 Public Health Technical Officers. The subjects were selected by a multi-stage sampling. The study was conducted in the upper central area, Thailand. Ethical permission (number HE 621205) was received from Khon Kaen University Ethics Committee for Human Research. The researcher was aware of the rights of participants and sufficient information was provided to the research participants before making a decision to participate and answering the questionnaire.

Statistical methods

A preliminary data analysis program using Microsoft Excel and EFA analysis was performed using SPSS Statistics for windows version 19, a copyright of Khon Kaen University. Double data entry was used to check for to data duplication and missing. EFA was performed to examine latent variables under the observation variables by grouping or combining variables that were related to one another. The relationship, both positive and negative, were used. Variables within the same element were highly correlated. Each component must have an Eigen value > 1, Factor loading > 0.5, and each group must have two observation variables, which would be appropriate for computation. If not, it would not be included in the model. The statistics used to describe subgroups were Kaiser-Meyer-Olkin (KMO) and Bartlett’s test.

Results

Construct validity

Data obtained from the questionnaire were analyzed by factorial analysis using EFA. Seven components were identified, each with Eigen value > 1, Factor loading> 0.5, Bartlett’s test p-value <0.001, can explain the variance = 88.95%. The results are shown in Tables 1-2 and can be expressed as Factor loading in the Table 3.

When analyzing by EFA, the latent factor was left with seven factors and the related observed variable was reduced to 41. The seven latent factors and their observation factor were as follows: LV1 Basic management has been component OV2-6 and factor loading were between 0.79-0.95. LV2 Service deliver for health care has been component OV7-11 and factor loading were between 0.78-0.85. LV3 Leadership and governance has been component OV12-17 and factor loading were between 0.78-0.88. LV4 Strategic planning has been component OV18-24 and factor loading were between 0.85-0.93. LV5 Human resource development has been component OV25-30 and factor loading were between 0.83-0.97. LV6 Health information system has been component OV31-37 and factor loading were between 0.78-0.95. LV7 Monitoring and evaluation has been component OV38-42 and factor loading were between 0.79-0.96.

Table 1. Test adequate sample.
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.
Bartlett’s Test of Sphericity
Table 2. Orthogonal factors.

Component	Initial Eigen values	Extraction sums of squared loadings	Rotation sums of squared loading						
	Total	% of variance	Cumulative %	Total	% of variance	Cumulative %	Total	% of variance	Cumulative %
LV1	13.69	32.60	32.60	13.69	32.60	32.60	6.74	16.05	16.05
LV2	5.14	12.25	44.86	5.14	12.25	44.86	6.20	14.77	30.83
LV3	4.61	10.99	55.86	4.61	10.97	55.86	5.46	13.01	43.84
LV4	4.01	9.55	65.41	4.01	9.55	65.416	4.79	11.40	55.25
LV5	3.33	7.93	73.34	3.33	7.93	73.34	4.40	10.47	65.73
LV6	3.04	7.24	80.59	3.04	7.24	80.59	4.313	10.27	76.01
LV7	2.22	5.28	85.87	2.22	5.28	85.87	4.02	9.59	85.59
LV8	1.29	3.07	88.95	1.29	3.07	88.95	1.40	3.35	88.95
LV9	0.89	2.13	91.08						
LV10	0.84	2.01	93.09						
LV11	0.50	1.21	94.30						
LV12	0.33	0.79	95.10						
LV13	0.25	0.601	95.70						
LV14	0.23	0.56	96.26						
LV15	0.22	0.54	96.81						
To further test whether the variable in the study will can be used to analyze the causal relationship (Causal model) with the Structural Equation Modeling (SEM) method, the relationship between the two variables was tested to make sure that there was no Multicollinearity. Details of the relationship between observed variables are shown in Table 3.

The variables were both positive and correlated. The observed variables were positively correlated between 0.278 and 0.684, and the seven highest positive correlation coefficients were: LV2 and LV1 (r = 0.647, p-value <.01), LV4 and LV3 (r = 0.684, p-value <.01), LV6 and LV3 (r = 0.623, p-value <.01), LV7 and LV4 (r = 0.612, p-value <.01), LV6 and LV4 (r = 0.614, p-value <.01), LV7 and LV4 (r = 0.612, p-value <.01) and LV7 and LV6 (r = 0.659, p-value <.01).

The couple with the least positive relationship were the observation which was made by LV5 and LV1 (r = 0.278, p-value <.05). When considering the correlation coefficients of the observed variables, it was found that none of the variables had a relationship greater than 0.85, which might cause linearity problems (Multicollinearity).

Therefore, when considering the Pearson product moment correlation coefficient between variables, the value was not higher than the set value. It can be concluded that all variables do not have multiple linear states. The data in this set can be used to analyze the linear equation modeling (SEM).

Reliability

Cronbach’s alpha was calculated for the ACOLF LV1-LV7 to measure the extent to which the items within the subscales correlated with each other and measured a similar construct. The five LV1 items had a Cronbach’s alpha of 0.86 and average inter-item covariance 232.48. The five LV2 items had a Cronbach’s alpha of 0.86 and average inter-item covariance of 234.04. The six LV3 items had a Cronbach’s alpha of 0.83 and average inter-item covariance of 234.52. The seven LV4 items had a Cronbach’s alpha of 0.83 and average inter-item covariance of 222.47. The six LV5 items had a Cronbach’s alpha of 0.86 and average inter-item covariance of 245.97. The seven LV6 items had a Cronbach’s alpha of 0.83 and average inter-item covariance of 227.73. The five LV7 items had a Cronbach’s alpha of 0.83 and average inter-item covariance of 240.34.

Discussion

Analysis of factors related to effective LHF management found that seven items were derived from the accompanying analysis. It was found that some factors were not variables for the implementation of local health insurance funds. The variables that the researcher chose to exclude variables from the statistic were values less than 0.5 out of the 1 variable (LV1). By collecting data from a sample group covering each size of LHF representatives in Thailand, both urban and rural communities, each category of the assessment had different assessment questions as follows.

In item 1 (LV1) Basic management was component OV2-6, which contains questions about fund management by carrying out activities in the development of the LHF in order to achieve its goals. A Case Study on Tacoma–Pierce County, Washington, in Assessing the Role of State and Local Public Health in Outreach and Enrollment for Expanded Coverage, found action by local governments in health care to obtain funding. Government sectors need to have good financial management or planning. A study of key factors for inefficient district health management practices in Ghana found inadequate planning in health management.

In LV2 Service deliver for health care has been component OV7-11 is a measure of individual health care services. It is a measure of the effectiveness of LHF health services. Several studies have been conducted on the effectiveness of
collaboration between government and local governments in evaluating public health promotion actions. Randomized controlled trials occurred in the Jerusalem region, Israel, to investigate the effectiveness of local government health services, measure illness-related absenteeism, handwashing behaviors before lunch and after using the bathroom. In 2008, a study in Copenhagen and Aarhus, Denmark, measured Symptoms on the Scale for Assessment of Psychotic Symptoms and others to measure the effectiveness of local government health services. It was found that the knowledge and attitudes of the people towards the health services of the local government were measured.10,17

LV3 Leadership and governance has been component OV12-17. It measures the part of organizational leaders in managing policies and managing funds for maximum efficiency. Several studies have found that the management or decision-making of a leader in health administration is extremely important. The study Assessing the Role of State and Local Public Health in Outreach and Enrollment for Expanded Coverage to determine Factors influencing the work efficiency of district health managers found that one important factor was a narrow decision space that constrains the authority of health leaders. A 2007 study in Tanzania found that corporate leaders play a key role in managing the Community Health Fund.

LV4 Strategic planning has been component OV18-24. This section assesses management planning to ensure that the Fund implements health activities in the best interests of the people. A Philippine Local Government Health Administration study found that lack of Strategic planning would result in less inequality and less access to local government health care systems among citizens.19,20

LV5 Human resource development has been component OV25-30. A study by Bruzzese et al. in 2006 examined the management of asthma between schools, families, and primary care providers similar to health management with the participation of government or local residents. It was found that the potential development of personnel in the patient care network required training. Developing potential to have knowledge to be able to work effectively.

LV6 Health information system has been component OV31-37. We believe that the provision of health information and information management will lead to the most efficient management of the LHF. A 2011 study by Florence et al. found that an information sharing partnership between health services, police, and local government in Cardiff, Wales, altered policing and other strategies to prevent violence based on information collected from patients treated in emergency departments after injury sustained in violence.

LV7 Monitoring and evaluation has been component OV38-42. It is an important process to monitor the progress and results of LHF activities to ensure continuity and maximum efficiency. Kamuzara and Gilson (2007) study found that the influencing factors in the implementation of local health funds in Tanzania suggests that a lack of good management plans prevents the inability to assess or monitor the progress of implementation. This will affect future follow-up supervision.

Conclusions
In summary, the ACOLF is a 41-item survey rated on a sliding scale from 0-9, with 5 Basic management, 5 Service deliver for health care, 6 Leadership and governance, 7 Strategic planning, 6 Human resource development, 7 Health information system and 5 Monitoring and evaluation. The ACOLF subscales demonstrated convergent validity, internal consistency and reliability. The ACOLF is a concise, valid, and reliable instrument for evaluating local organization management differences in Basic management, Service delivers for health care, Leadership and governance, Strategic planning, Human resource development, Health information system and Monitoring and evaluation. This measure provides a new tool for ranking operation control of local security health fund in Thailand.

Author roles
Boonmee P.: Conceptualization, Data Curation, Formal Analysis, Methodology, Software, Writing – Original Draft Preparation; Kessomboon P.: Conceptualization, Methodology, Supervision, Writing – Review & Editing; Thongjit S.: Data Curation, Formal Analysis, Methodology, Visualization, Writing – Review & Editing.

Grant information
This study was granted by Faculty of Medicine, Khon Kaen University, Thailand; IN 63202.

Data availability
Underlying data
Data Archiving and Networked Services: Developing Assessment Criteria for Operation Control of Local Security Health Fund in the Upper Central Area, Thailand, https://doi.org/10.17026/dans-245-3wxu.
This project contains the following underlying data:

- DATA_EFA prapot_F1000.dat
- DATA_EFA prapot_F1000.dta
- DATA_EFA prapot_F1000.sav
- DATA_EFA prapot_F1000.sps

The name of data set shown is different in the file type so that it can be used in accordance with that program, for example file type “.sps” can be analyzed in the SPSS program.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Acknowledgements
The authors would like to thank the participants, and the members of the faculty of medicine in Khon Kaen University for their support of this project.

References

Reference	Title	
1.	World Health Organization: Ottawa Charter for Health Promotion: First International Conference on Health Promotion Ottawa. 21 November 1986. Reference Source	
2.	Marmot M: Social determinants of health inequalities. Lancet. 2005; 365: 1099-1104. Publisher Full Text	
3.	World Health Organization: Jakarta Declaration. Jakarta: Fourth International Conference on Health Promotion. 1997. Reference Source	
4.	Rissel C: The Bangkok Charter for Health Promotion in Globalized World. W. S. W. Public Health Bull. 2005; 16: 156–158. PubMed Abstract	Publisher Full Text
5.	Silverman R, Sakuma Y, Post L, et al.: Health access for all: Thailand’s universal coverage scheme. Glassman A, Temin M, editors. Millions saved: new cases of proven success in global health. 3rd ed. Washington: Center for Global Development; 2016; pp. 89–96. Reference Source	
6.	Nittayarakmong S: Evolution of primary health care in Thailand: what policies worked?. Health Policy Plan. 1990; 5(3): 246-254. Publisher Full Text	
7.	Sukartini T, Ariffin H, Kurniawati Y, et al.: Factors Associated with National Health Insurance Coverage in Indonesia [version 1; peer review: awaiting peer review]. F1000Res. 2021; 10: 563. Publisher Full Text	
8.	National Health Security Office: 2014; Health Security Fund Operation Manual at Local or Local Level. Bangkok: National Health Security Office. Reference Source	
9.	Khongthanachayapoti S, Laohasirivong W: Accessibility to health services among migrant workers in the Northeast of Thailand [version 1; peer review: 2 approved]. F1000Res. 2017; 6: 972. PubMed Abstract	Publisher Full Text
10.	Hair JF Jr, Black WC, Babbin BJ, Anderson RE: Multivariate Data Analysis. 2010; 120-130. PubMed Abstract	Reference Source
11.	Kline RB: Principles and Practice of Structural Equation Modeling. (2nd ed.). New York, Guilford. 2005. Publisher Full Text	
12.	Bharmal N, Williams MV, Martin LT, et al.: Assessing the Role of State and Local Public Health in Outreach and Enrollment for Expanded Coverage: A Case Study on Tacoma-Pierce County, Washington, Santa Monica, Calif.: RAND Corporation, RR-983-DHHS, 2016; As of August 23, 2021. Publisher Full Text	Reference Source
13.	Bonenberger M, Aikins M, Awuah F, et al.: Factor Influencing the Work Efficiency of District Health Managers in Low-resource Setting: a Qualitative Study in Ghana. BMC Health Serv. Res. 2016; 16: 12. Publisher Full Text	
14.	Rosen L: Can a handwashing intervention make a difference? Results from a randomized controlled trial in Jerusalem preschools. Prev. Med. 2006; 42(1): 27–32. PubMed Abstract	Publisher Full Text
15.	Bertelsen M, Jeppesen P, Petersen L, et al.: Five-year follow-up of a randomized multicenter trial of intensive early intervention vs. standard treatment for patients with a first episode of psychotic illness. Arch. Gen. Psychiatry. 2008; 65(7): 762–771. PubMed Abstract	Publisher Full Text
16.	Tucker JS, Fitzmaurice AE, Imamura M, et al.: The effect of the national demonstration project Healthy Respect on teenage sexual health behaviour. Eur. J. Pub. Health. 2007; 17(1): 33–41. PubMed Abstract	Publisher Full Text
17.	Smylie L, Maticka-Tyndale E, Boyd DE-MA, et al.: Evaluation of a school-based sex education programme delivered to Grade Nine students in Canada. Sex Education. 2008; 8(1): 25–46. Publisher Full Text	
18.	Kamuzora P, Gilson L: Factors Influencing Implementation of the Community Health Fund in Tanzania. Health Policy Plan. 2007; 22(2): 95–102. Publisher Full Text	
19.	Bossert Tj, Beausais Jc: Decentralization of Health Systems in Ghana, Zambia, Uganda and the Philippines: A Comparative Analysis of Decision Space. Health Policy Plan. 2002; 17: 14–31. PubMed Abstract	Publisher Full Text
20.	Capuno JJ, Quimbo SA, Kraft AD, et al.: The effects of term limits and yardstick competition on local government provision of health insurance and other public services: The Philippine case. UPSE Discussion Paper, No. 2012-01, University of the Philippines, School of Economics (UPSE), Quezon City 2012; 1–44. Reference Source	
21.	Bruzzone J, Evans D, Wiesemann S, et al.: Using school staff to establish a preventive network of care to improve elementary school students’ control of asthma. J. Sch. Health. 2006; 76(6): 307-312. PubMed Abstract	Publisher Full Text
22.	Florence C, Shepherd J, Brennan L, et al.: Effectiveness of anonymised information sharing and use in healthcare service,	
23. Dr. Thongjit S (Khon Kaen University): Developing assessment criteria for operation control of local security health fund in the upper central area, Thailand. DANS, 2021.

PubMed Abstract | Publisher Full Text
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com