Temperature dependent structure and dynamics in smectite interlayers: 23Na MAS NMR spectroscopy of Na- Hectorite

Raju Nanda1,2, Geoffrey M. Bowers3, Narasimhan Loganathan1, Sarah D. Burton4, R. James Kirkpatrick1,5

1Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA

2Present address: Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel, 52900

3Department of Chemistry and Biochemistry, St. Mary’s College of Maryland, St. Mary’s City, MD, 20686, USA

4William R. Wiley Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA

5Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, 48824, USA

Supporting Information

Table S1. Fitted peak maxima, full-widths at half-height (FWHH), and relative peak intensities of 23Na MAS NMR spectra of Na- Hectorite collected at the indicated temperatures and relative humidities (R.H.s).

T ($^\circ$C)	δ (ppm)	FWHH (ppm)	Relative Intensity/%
40	-19.1	8.7	92.8
	-28.7	5.4	7.2
-60	-19.4	7.9	86.2
	-29.0	6.6	13.8
-80	-19.5	7.8	87.7
	-29.2	6.7	12.3
-100	-19.4	7.8	86.4
	-29.3	6.9	13.6
--------	-------	------	------
-120	-19.3	8.2	85.8
	-29.3	6.5	14.2
29% R.H.			
40	-6.4	4.0	64.6
	-21.7	4.7	8.1
	-26.8	13.5	27.4
0	-6.1	4.9	63.2
	-21.9	4.8	10.1
	-27.5	12.2	26.7
-20	-5.9	5.6	71.6
	-21.8	5.6	11.7
	-28.3	12.6	16.7
-40	-5.9	6.6	61.8
	-21.9	4.8	10.8
	-27.4	12.6	27.5
-60	-5.2	8.3	72.7
	-21.6	5.2	14.1
	-28.1	10.8	13.2
-80	-0.1	4.1	30.8
	-6.5	4.0	14.7
	-11.4	6.5	15.5
	-21.7	5.9	19.2
	-28.4	12.0	19.9
-100	1.1	7.5	38.0
	-6.7	3.5	9.5
	-11.7	7.5	16.7
	-21.6	5.7	21.6
	-28.3	9.7	14.2
-120	1.1	7.6	26.2
	-6.6	4.8	21.5
	-11.9	8.2	9.8
	-21.8	5.7	21.3
	-27.2	12.9	21.3
43% R.H.			
40	-5.3	3.4	73.0
	-19.4	6.7	27.4
20	-5.5	4.0	65.8
	-19.6	6.7	34.2
0	-4.4	2.8	26.7
	-6.5	3.7	45.3
	-19.7	6.5	28.0
-20	-4.1	3.2	27.8
	-6.7	4.2	44.0
	-19.8	6.4	28.2
-40	-4.0	4.0	31.8
	-7.0	5.5	40.2
------	------	------	------
-19.8	6.2	28.0	
-4.1	4.0	8.6	
-6.3	9.9	53.0	
-19.9	6.9	38.4	
-80	-0.1	4.1	22.3
-5.8	5.2	22.2	
-11.1	5.9	18.0	
-20.0	7.2	37.1	
-100	0.6	5.8	25.5
-6.3	4.1	15.0	
-11.6	6.8	22.6	
-20.4	6.7	37.0	
-120	1.0	7.0	26.3
-6.3	5.5	17.3	
-12.0	8.7	22.3	
-20.6	6.1	33.2	
-27.4	7.0	1.0	

70% R.H.

40	-2.7	1.9	76.2
	-21.1	6.2	23.8
20	-2.2	2.0	83.9
	-19.8	6.5	16.1
0	-2.2	2.4	79.8
	-19.4	5.5	20.2
-20	-2.0	2.9	74.2
	-19.7	6.0	25.8
-40	-1.7	3.9	74.4
	-21.1	6.2	25.6
-60	-1.2	3.8	36.2
	-3.9	9.6	35.0
	-20.0	6.0	28.9
-80	-0.2	2.7	42.5
	-5.5	11.4	26.1
	-20.0	6.4	31.4
-100	0.4	5.0	45.2
	-6.0	6.0	32.0
	-20.1	5.2	22.8
-120	1.1	6.6	50.8
	-6.2	7.5	33.9
	-20.0	5.3	15.3

100% R.H.

40	-0.9	1.1	82.9
	-20.1	6.0	17.2
20	-0.4	1.1	83.6
	-19.8	6.3	16.4
Figure S1: A representative example of the fitting of the 23Na MAS NMR spectra discussed in this paper using the DMfit. This spectrum is for Na- Hectorite exposed to 29% R.H. at -80°C and fit with five Lorentzian components. The blue and red lines are the experimental and fitted spectra, respectively.