Discovery of two magnetic massive stars in the Orion Nebula Cluster: a clue to the origin of neutron star magnetic fields?

V. Petit1⋆, G.A. Wade2, L. Drissen1, T. Montmerle3 and E. Alecian2,4†

1Dépt. de physique, génie physique et optique, Université Laval, Québec (QC), Canada, G1K 7P4 and Centre de recherche en astrophysique du Québec
2Dept. of Physics, Royal Military College of Canada, PO Box 17000, Stn Forces, Kingston, Canada, K7K 4B4
3Laboratoire d’Astrophysique de Grenoble, Université Joseph Fourier, CNRS, BP 53, 38041 Grenoble Cedex, France
4Observatoire de Paris, LESIA, Place Jules Janssen, F-92195 Meudon Cedex, France

Accepted 2008 March ?, Received 2008 February ?; in original form 2008 February ?

ABSTRACT
The origin of the magnetic fields in neutron stars, and the physical differences between magnetars and strongly magnetised radio pulsars are still under vigorous debate. It has been suggested that the properties of the progenitors of neutron stars (the massive OB stars), such as rotation, magnetic fields and mass, may play an important role in the outcome of core collapse leading to type II SNe. Therefore, knowing the magnetic properties of the progenitor OB stars would be an important asset for constraining models of stellar evolution leading to the birth of a neutron star. We present here the beginning of a broad study with the goal of characterising the magnetic properties of main sequence massive OB stars. We report the detection of two new massive magnetic stars in the Orion Nebula Cluster: Par 1772 (HD 36982) and NU Ori (HD 37061), for which the estimated dipole polar strengths, with 1σ error bars, are 1150±320−200 G and 650±220−170 G respectively.

Key words: stars: magnetic fields– stars: early-type – stars: neutron – pulsar: general.

1 INTRODUCTION
Strong, organised magnetic fields are observed to exist in some main sequence stars of spectral type A, B and O. Two general models have been proposed to explain the presence of these magnetic fields:

(i) In the dynamo model, the field is generated by a dynamo mechanism, occurring classically in the convective regions or induced by strong shear during differential rotation.
(ii) In the fossil model, the field is a remnant from a dynamo active during a previous evolutionary phase, or swept up from the interstellar medium (ISM) during star formation. This scenario implies that the field must somehow survive the various internal structural changes encountered during stellar evolution. The magnetic flux is usually assumed to be conserved to some extent.

Although dynamo models reproduce well the characteristics of late-type main sequence stars and giants, they fail to explain the fields of magnetic early-type stars, as their envelopes are primarily radiative. Some models of dynamo activity in the small convective cores of those stars have been put forward, but they still have fundamental difficulties reproducing the observed field characteristics (Charbonneau & MacGregor 2001). Their simple magnetic geometries, lack of significant mass-field strength or period-field strength relation, and the fact that the observed characteristics of magnetic fields in pre-main sequence Herbig Ae/Be stars (Alecian et al. 2008; Catala et al. 2007; Folsom et al. 2007; Wade et al. 2007, 2005) are qualitatively identical to those of their main sequence descendants, point toward a fossil origin. Furthermore, the incidence, geometries and strengths of white dwarf magnetic fields are at least qualitatively compatible with evolution from magnetic main sequence A and B stars, suggesting that the fields of white dwarfs may also be of fossil origin (e.g. Wickramasinghe & Ferrario 2005).

In more massive OB stars, magnetic fields have only been discovered recently, mostly via clues provided by unusual X-ray properties. Traditionally, the X-ray emission...
from O and B stars, with a typical level $L_X/L_{bol} \sim 10^{-7}$, has been explained by radiative instabilities via a multitude of shocks in the wind (Lucy & White 1984; Owocki & Cohen 1994). However, the very strong and rotationally modulated X-ray emission of the brightest Trapezium star, θ^1 Ori C (O7, $P=15.4$ d, Gagné et al 1997) was explained by Babel & Montmerle (1997) in terms of the “magnetically confined wind shock” model (MWCS). In this model, the stellar magnetic field is sufficiently strong, and the radiative wind sufficiently weak, to allow a dipolar magnetic field to confine the outflowing wind in the immediate circumstellar environment, resulting in a closed magnetosphere with a large-scale equatorial shock which heats the wind plasma. In this way, the X-ray emission is enhanced and may be modulated by stellar rotation. The MCWS model provided a quantitative prediction of a magnetic field in θ^1 Ori C; such a field (1.1 ± 0.1 kG) was subsequently discovered by Donati et al. (2002). At the present time, θ^1 Ori C and HD 191612 (1.5 kG, Donati et al 2006) are the only known O-type stars with directly detected magnetic fields. However, it has been speculated that magnetism may be widespread among massive stars. Some clues to the presence of magnetic fields comes from X-ray photometry and spectroscopy (Stelzer et al 2003; Waldron & Cassinelli 2007), non-thermal radio synchrotron emission (Schmerr et al 2007) and cyclical variations of UV wind spectral lines (Fullerton 2003; Kaper et al 1996). Hence, this lack of magnetic field detection may well be due to the fact that direct measurement of magnetic fields present in the atmosphere of O-type and early-B type stars is extremely difficult. These difficulties arise from the small number of photospheric lines present in the optical spectrum and the large intrinsic width of the lines, worsened by the usual fast rotation of these stars.

Neutron stars, evolved from the massive OB-stars, are characterised by a wide range of magnetic field strengths. Inferred from spin down rates of radio pulsars, their strengths are in the range of 10^{13}-10^{14} G. Two groups of neutron stars, the anomalous X-ray pulsars (AXPs) and the soft gamma repeaters (SGRs), host super-strong magnetic fields (10^{14}-10^{15} G), and are referred to as magnetars. It is thought that the physical distinction between radio pulsars and magnetars is not simply the dipole field strength, as there is a small population of radio pulsar with fields at a magnetar-like level, but that does not show the same X-ray characteristics (Kaspi & McLaughlin 2003). There is some observational evidence that neutron stars may evolve from stars as massive as $45 M_{\odot}$, and that many magnetars are linked strongly to these massive stars (Gaensler et al 2003; Muno et al 2006).

The magnetic flux of θ^1 Ori C ($45 M_{\odot}$) is $(7 \pm 3) \times 10^{27}$ G cm2 (using the stellar radius from Simon-Diaz et al 2004). This magnetic flux is roughly of the same scale as the highest field magnetar SGR 1806-20 (0.3 $\times 10^{28}$ G cm2, assuming a 10 km radius). Therefore, in principle there is enough magnetic flux present in a massive star like θ^1 Ori C to explain the super-strong fields seen in some neutron stars, under the simple assumption that the magnetic flux is completely conserved during its post-MS stellar evolution and transformation into a neutron star. Furthermore, provided that OB-star magnetic fields are remnants from the ISM, the fossil hypothesis could provide a powerful explanation of the wide range of magnetic fields present in neutron stars (Ferrario & Wickramasinghe 2006).

On the other hand, it has been suggested that neutron star magnetic fields could instead be generated during the core collapse itself, by a dynamo mechanism induced by differential rotation (Braithwaite 2006). Present studies assume that any primordial fields present in the progenitor star are weak enough to be expelled by the dynamo process. However, if the initial field is strong enough, the evolution will be different, as this field is likely to interfere with differential rotation and therefore with the dynamo process itself (Heger et al 2003).

Hence, there seem to be three fundamental parameters that may play key roles in the origin of neutron star magnetic fields, and in the explanation of the differences between magnetars and radio pulsars: the primordial magnetic field of the progenitor, the rotation of the star and its mass. Therefore, knowing the magnetic properties of the progenitor OB stars would be an important asset for constraining models of stellar evolution leading to neutron star birth. Many observational efforts are underway to characterise magnetic fields throughout massive star evolution. We present here the beginning of a broad study with the goal of characterising the magnetic properties of main sequence massive OB stars.

The Orion Nebula Cluster (ONC) presents a unique opportunity to characterise the magnetic fields of a nearby co-evolved and co-environmental population of massive OB stars. Furthermore, a Chandra large program, the Chandra Orion Ultradeep Project (COUP) was dedicated to observe the ONC in X-ray (Stelzer et al 2003), enabling a study of the connections between stellar winds, magnetic fields and X-rays emission, which will be presented in a subsequent paper. The ONC contains 9 massive OB stars. They range from B3 V ($\sim 8 M_{\odot}$) to O7 V ($\sim 40 M_{\odot}$), approximately the mass range from which neutron stars are thought to be formed. In this paper we report the detection of two new massive magnetic stars in the Orion Nebula Cluster.

2 OBSERVATIONS

We conducted spectropolarimetric observations with the ESPaDOnS spectropolarimeter at CFHT in January 2006 and March 2007. We obtained high-resolution (R\sim65,000) and high S/N spectra of 8 of the 9 massive OB stars of the ONC, in both epochs. Additional measurements of θ^1 Ori C and Par 1772 were taken with ESPaDOnS in December 2007 and with ESPaDOnS’s twin Narval, installed at TBL, France, in November 2007 respectively.

A complete circular polarisation observation consists of series of 4 sub-exposures between which the polarimeter quarter-wave plate is rotated back and forth between position angles, which make it possible to reduce systematic errors. For a complete description of observation procedures and reduction procedures with the Esprit reduction package (which is fundamentally the same as the Libre-Esprit package provided by CFHT), see Donati et al 1997.

In order to increase the magnetic sensitivity of our data, we applied the Least Squares Deconvolution (LSD) proce-
Discovery of two magnetic massive stars in the ONC

Figure 1. Least Squares Deconvolved profiles for θ¹ Ori C (left), Par1772 (middle) and NU Ori (right). The curves are the mean Stokes I profiles (bottom), the mean Stokes V profiles (top) and the N diagnostic null profiles (middle), black for January 2006 and red for March 2007.

Table 1. Observation log for the detected stars, along with detection diagnostics and derived longitudinal field components

Star	Date (UT)	HJD	Total exp. time	Peak snr	LSD snr	Detection	P (%)	B$_{l}$(G)
θ¹ Ori C	2006-01-09	53744.792	4 800s	1 700	3 000	Marginal	99.98	131 ± 56
(O7V)	2007-03-10	54168.835	3 200s	2 000	2 600	Definite	> 99.9999	471 ± 53
	2007-12-21	54456.748	3 200s	1 700	3 000	None	66.8	−53 ± 44
	2006-01-12	53747.728	9 600s	760	3 400	Definite	> 99.9999	84 ± 45
Par 1772	2007-03-07	54166.699	9 600s	370	1 500	None	50.5	82 ± 52
(B2V)	2007-11-11	54416.550	6 000s	1 300	15 000	Definite	> 99.9999	165 ± 56
NU Ori	2006-01-12	53747.852	9 600s	1 300	3 700	None	99.9	−321 ± 95
(B0.5V)	2007-03-08	54167.703	9 600s	1 300	15 000	None	99.9	−321 ± 95

Table 1. Observation log for the detected stars, along with detection diagnostics and derived longitudinal field components.

Star	Date (UT)	HJD	Total exp. time	Peak snr	LSD snr	Detection	P (%)	B$_{l}$(G)
θ¹ Ori C	2006-01-09	53744.792	4 800s	1 700	3 000	Marginal	99.98	131 ± 56
(O7V)	2007-03-10	54168.835	3 200s	2 000	2 600	Definite	> 99.9999	471 ± 53
	2007-12-21	54456.748	3 200s	1 700	3 000	None	66.8	−53 ± 44
	2006-01-12	53747.728	9 600s	760	3 400	Definite	> 99.9999	84 ± 45
Par 1772	2007-03-07	54166.699	9 600s	370	1 500	None	50.5	82 ± 52
(B2V)	2007-11-11	54416.550	6 000s	1 300	15 000	Definite	> 99.9999	165 ± 56
NU Ori	2006-01-12	53747.852	9 600s	1 300	3 700	None	99.9	−321 ± 95
(B0.5V)	2007-03-08	54167.703	9 600s	1 300	15 000	None	99.9	−321 ± 95

a Per 1.8 km/s pixel for the summed spectra

Figure 1. Least Squares Deconvolved profiles for θ¹ Ori C (left), Par1772 (middle) and NU Ori (right). The curves are the mean Stokes I profiles (bottom), the mean Stokes V profiles (top) and the N diagnostic null profiles (middle), black for January 2006 and red for March 2007.

θ¹ Ori C is the canonical example of a magnetic O star showing rotationally-modulated spectral and X-ray variations caused by magnetic confinement of its stellar wind (Babel & Montmerle 1997; Donati et al. 2002). This most massive star of the Trapezium is a speckle binary with a 0.037 separation, composed of a 45 M$_{\odot}$ primary (O7V) and a $\gtrsim 6$ M$_{\odot}$ secondary (Schertl et al. 2003). Optical, UV and X-ray features all vary according to a 15.422±0.002 d period (Gagné et al. 1997; Stahl et al. 1994). We obtained 4 observations of this star, and according to this ephemeris, our observations correspond to phase 0.49, 0.05, 0.66 and 0.72 for January 2006, March 2007 and the 2 observations of December 2007 respectively. The corresponding derived longitudinal fields are in good agreement with previous spectropolarimetric measurements (Donati et al. 2002, Wade et al. 2006).
and therefore with their derived dipolar field strength of about 1.1 kG (Fig. 2).

Par 1772 is a main sequence (or possibly pre-main sequence) B2 star (\(\sim 6 \, M_\odot \)), with a projected rotational velocity of 80 ± 20 km/s (Wolff et al. 2004). The March 2007 Stokes V signature is a good example of a cross-over signature, where the longitudinal field component is nearly null (here 84 ± 45 G), but the symmetry of the polarized Zeeman components is broken by Doppler shifts induced by stellar rotation. The measurement of 91 ± 193 G obtained by Bagmilo et al. (2006) with FORS1 at VLT was likely at such a cross-over phase, the magnetic field going undetected because of the lower spectral resolving power of that instrument.

NU Ori is a triple system, containing a B0.5V primary (14 M_\odot), along with a spectroscopic companion of \(\sim 3 \, M_\odot \) (component C, 80 mas separation) and a \(\sim 1 \, M_\odot \) visual companion (component B) with a 471 ± 17 mas separation (Preibisch et al. 1999). The primary is a rapidly rotating star, with a \(v \sin i = 225 \pm 50 \) km/s (Wolff et al. 2004), making it the most rapidly rotating early-B star with a detected field. Although such high rotational velocity usually occurs only in Be stars, the small and narrow emission in H\(\alpha \), \(\beta \) and \(\gamma \) seems more related to nebular emission than to a Be behaviour. While there was no formal signal detection for the January 2006 observation, the March 2007 observation showed a definite signal detection. A close inspection of the intensity spectrum revealed the weak, sharp spectral lines of the spectroscopic companion. The width of the Stokes V signatures compared to the width of the companion spectral lines rules out associating the polarization signature with the companion – the magnetic field and the profile asymmetries are clearly intrinsic to the primary.

3 SURFACE MAGNETIC FIELDS

In order to extract the surface field characteristics from the observed Stokes V profiles, we compared them with theoretical profiles for a large grid of dipolar magnetic field configurations, calculated with the polarised LTE radiative transfer code Zeeman2 (Landstreet 1983; Wade et al. 2001). We sampled the 4-dimensional parameter space (\(i, \beta, \varphi, B \)) which describes a centered dipolar magnetic configuration. In such a model, \(i \) is the projected inclination of the rotation axis to the line of sight, \(\beta \) is the obliquity of the magnetic axis with respect to the rotation axis, \(\varphi \) is the rotational phase and \(B \) is the polar field strength at the stellar surface. For each configuration, we calculated the reduced \(\chi^2 \) of the model fit to the observed mean Stokes V profiles. Assuming that only the phase may change between two observations of a given star, the goodness-of-fit of a given rotation-independent (\(i, \beta, B \))-configuration is expressed in terms of Bayesian probability density. This ensures that a good magnetic (\(i, \beta, B \))-configuration can produce Stokes V profiles that fit all observations, as the rotational period is not known with enough accuracy to determine a priori the phase difference. Any features that cannot be explained by the rotating dipole model are treated formally as additional Gaussian noise, which will lead to the most conservative estimates of the parameters, according to the maximum entropy principle.

We can determine the probability density of the field strength by marginalizing over inclination and obliquity. We then extract a 95% credible region for the surface dipole field strength of each star with the technique described by Gregory (2005). Figure 3 and Figure 4 show the resulting probability density functions for Par 1772 and NU Ori respectively. The 95% credible regions are [800, 2450] G for Par 1772 and [370, 1220] G for NU Ori. The inferred values of the dipole polar strength, with 1\(\sigma \) error bars, are then 1150\(^{+320}_{−200} \) G and 650\(^{+270}_{−170} \) G respectively.

4 DISCUSSION

As an illustrative example of the potential of these new data to constrain models of neutron star field origins, we can compare them with the predictions of Ferrario & Wickramasinghe (2004) of the magnetic field distribution of massive stars (8-45 M_\odot) on the main sequence. This distribution is based on the observed properties of radio pulsars from the 1374-MHz Parkes Multi-Beam Survey of isolated radio pulsar, assuming a simple fossil field origin with a complete conservation of magnetic flux. They
obtained a continuous magnetic field distribution in the progenitor OB stars, peaking at \(\sim 46 \) G with 5 per cent of the stars having a field in excess of 1 kG.

Of course, our sample contains only 8 stars, but we can still make some rough comparisons. Taking the predicted field strength distribution, we assume that it is the true parent distribution from which we draw a random sample of 8 stars. We define three possible outcomes: [0-500] G, [500-1000] G and over 1000 G, with respective probabilities derived from the parent theoretical distribution. According to the multinomial distribution, the probability of obtaining the distribution of magnetic field strengths observed in the ONC is about 1%.

This result might be interpreted, at first glance, to suggest that massive OB stars are more magnetic than it would be required to explain the magnetic fields of radio pulsars. However, some points are important to consider: (i) The sample of observed stars may not be representative of a general parent distribution, as the stars all come from the same cluster. This region could be unusually magnetic, especially if the fields of the OB stars themselves are also of fossil origin from the ISM. (ii) The assumed parent distribution is not in fact the true parent distribution because some assumptions are incorrect, or some elements are missing from the model. Examples of such missing physics might be partial flux conservation or the influence of dynamo processes during core collapse.

In order to better explore these possibilities, a larger sample of OB stars, from clusters and from the field, must be studied in order to increase the population of neutron star progenitors with known magnetic properties. Our team has undertaken an extensive spectropolarimetric study of massive stars in other young star clusters to provide these important data.

ACKNOWLEDGMENTS

VP acknowledges support from Fonds québécois de la recherche sur la nature et les technologies. LD acknowledges support from the Canada Research Chair program and the Discovery Grants programme of the Natural Science and Engineering Research Council of Canada. GAW acknowledges support from the Discovery Grants programme of the Natural Science and Engineering Research Council of Canada. EA is supported by the Marie Curie FP6 program. Finally, we thank the anonymous referee, whose helpful comments led to the improvement of the paper.

REFERENCES

Alecian E., Catala C., Wade G., Donati Petit P., J.-F., Landstreet J., Böm T., Bouret J.-C., Bagunlo S., Folsom C., Grunhut J., Silvester J., 2008, MNRAS, p. accepted

Babel J., Montmerle T., 1997, A&A, 402, 267

Bagnulo S., Landstreet J. D., Mason E., Andretta V., Silaj J., Wade G. A., 2006, A& A, 450, 777

Braithwaite J., 2006, A& A, 449, 451

Catala C., Alecian E., Donati J.-F., Wade G. A., Landstreet J. D., Böm T., Bouret J.-C., Bagunlo S., Folsom C., Silvester J., 2007, A& A, 462, 293

Charbonneau F., MacGregor K. B., 2001, ApJ, 559, 1094

Donati J.-F., Babel J., Harries T. J., Howarth I. D., Petit P., Semel M., 2002, MNRAS, 333, 55

Donati J.-F., Howarth I. D., Bouret J.-C., Petit P., Catala C., Landstreet J., 2006, MNRAS, 365, L6

Donati J.-F., Semel M., Carter B. D., Rees D. E., Collier Cameron A., 1997, MNRAS, 291, 658

Ferrario L., Wickramasinghe D., 2006, MNRAS, 367, 1323

Folsom C. P., Wade G. A., Bagunlo S., Landstreet J. D., 2007, MNRAS, 376, 361

Fullerton A. W., 2003, in Balona L. A., Henrichs H. F., Medupe R., eds, Magnetic Fields in O, B and A Stars, Vol. 305 of ASPC Series. p. 333

Gaensler B. M., McClure-Griffiths N. M., Oey M. S., Havercorn M., Dickey J. M., Green A. J., 2005, ApJ, 620, L95

Gagné M., Caillault J.-P., Stauffer J. R., Linsky J. L., 1997, ApJ, 478, L87

Gregory P. C., 2005, Bayesian Logical Data Analysis for the Physical Sciences. Edited by P. C. Gregory. ; Published by Cambridge University Press, Cambridge, UK.

Heger A., Woosley S. E., Spruit H. C., 2005, ApJ, 626, 350

Kaper L., Henrichs H. F., Nichols J. S., Snoek L. C., Volten H., Zwart H. G. A. A., 1996, A& A, 116, 257

Kaspi V. M., McLaughlin M. A., 2005, ApJ, 618, L41

Landstreet J. D., 1988, ApJ, 326, 967

Lucy L. B., White R. L., 1980, ApJ, 241, 300

Muno M. P., Clark J. S., Crowther P. A., Dougherty S. M., de Grijs R., Law C., McMillan S. L. W., Morris M. R., Negueruela I., Pooley D., Portegies Zwart S., Yusef-Zadeh F., 2006, ApJ, 636, L41

Owocki S. P., Cohen D. H., 1999, ApJ, 520, 833

Preibisch T., Balaeg Y., Hofmann K.-H., Weigelt G., Zinnecker H., 1999, New Astronomy, 4, 531

Schertl D., Balaeg Y. Y., Preibisch T., Weigelt G., 2003, A& A, 402, 267

Schnee R. S., Rygl K. L. J., van der Horst A. J., Oosterloo T. A., Miller-Jones J. C. A., Henrichs H. F., Spoeistra T. A. T., Foley A. R., 2007, A& A, 470, 1105

Simón-Díaz S., Herrero A., Esteban C., Najarro F., 2006, A& A, 448, 351

Stahl O., Kaufer A., Rivinius T., Schildt T., Wolf B., Gaeng T., Gummersbach C. A., Jankovics I., Kovacs J., Mandel H., Pakull M. W., Peitz J., 1996, A & A, 312, 539

Stelzer B., Flaccomio E., Montmerle T., Micela G., Sciortino S., Favata F., Preibisch T., Feigelson E. D., 2005, ApJS, 160, 557

Wade G. A., Bagunlo S., Drouin D., Landstreet J. D., Monin D., 2007, MNRAS, 376, 1145

Wade G. A., Bagunlo S., Kochukhov O., Landstreet J. D., Piskunov N., Stift M. J., 2001, A& A, 374, 265

Wade G. A., Donati J.-F., Landstreet J. D., Shorlin S. L. S., 2000, MNRAS, 313, 851

Wade G. A., Drouin D., Bagunlo S., Landstreet J. D., Mason E., Silvester J., Alecian E., Böhm T., Bouret J.-C., Catala C., Donati J.-F., 2005, A& A, 442, L31

Wade G. A., Fullerton A. W., Donati J.-F., Landstreet J. D., Petit P., Strasser S., 2006, A& A, 451, 195

\(^2\) Although Ferrario & Wickramasinghe (2006) state 8%, recalculaton based on the detailed model distribution provided by L. Ferrario gives 5%
Waldron W. L., Cassinelli J. P., 2007, ApJ, 668, 456
Wickramasinghe D. T., Ferrario L., 2005, MNRAS, 356, 1576
Wolff S. C., Strom S. E., Hillenbrand L. A., 2004, ApJ, 601, 979