FOOD SCIENCE & TECHNOLOGY | RESEARCH ARTICLE

Status and utilization of medicinal and aromatic plants in Eastern Hararghe, Ethiopia

Melese Mengistu1*, Dargo Kebede2, Dereje Atomsa3, Arayaselassie Abebe4 and Dinkayehu Alemnie1

Abstract: Medicinal and aromatic plants are playing remarkable role in primary health care of human and livestock. This study was conducted in three districts of Eastern Hararghe to identify status and utilization of medicinal and aromatic plants. In the inventory, total of 87 plant species belonging to 50 families were recorded from the study areas distributed in wild, farmland, home gardens and roadsides. Of which 72 (82.8%) were identified for their medicinal value and the rest 15 (17.2%) were utilized as both medicinal and aromatic. Fabaceae (18.75%) was the most species-rich family in the plants used for medicinal purpose. In the medicinal and aromatic plant categories family Lamiaceae and Rutaceae accounts the highest species richness. The average Shannon diversity index (H') of medicinal plants were 3.68 whereas 2.32 were for medicinal and aromatic plants in the three study areas. ICF value of the identified MAPs used to treat 17 frequently occurring human and 11 livestock health problems showed that the selection is based on well-defined criteria. The most frequently utilized plant parts of the identified plants were the leaf (52.9%), followed by the roots (18.4%) and bark (17.2%). The route of administration for prepared traditional medicine were oral (56%) followed by external application (17%) and nasal (12%). The majority of medicinal and aromatic plant

ABOUT THE AUTHORS

Melese Mengistu is lecturer and researcher in Haramaya University. His area of research interest is ethnobotany, biodiversity and conservation of natural resource for better human welfare. Currently, he is conducting research related to ethnobotany.

Dargo Kebede is lecturer and researcher in Haramaya University. He has research interest on agroforestry, soil conservation and rehabilitation of degraded lands.

Dereje Atomsa is lecturer and researcher in Haramaya University. His research interest is on biodiversity conservation, plant ecology and ethnobotany.

Arayaselassie Abebe is lecturer and researcher in Haramaya University. His research interest area is plant ecology, biodiversity conservation and ecosystem management.

Dinkayehu Alemnie is lecturer and researcher in Haramaya University. He has research interest related to the application of biotechnology for better future.

PUBLIC INTEREST STATEMENT

Medicinal and aromatic plants are playing a remarkable role in the primary health care of human and livestock in the Eastern Hararghe. These plants were distributed in wild, farmlands, home gardens and roadsides. The majority of the plants were identified for their medicinal and the others were utilized as both medicinal and aromatic. Fabaceae was the most species-rich family in the medicinal plant category.

The most frequently utilized plant parts of the identified as medicinal and aromatic were the leaves followed by roots and barks. Conservation awareness should be created for the local peoples for better future utilization of medicinal and aromatic plants of the area. In addition, further scientific investigation is required on the phytochemical properties and efficacy of the frequently utilized plant species.
growth forms were identified as trees (48.30%), herbs (29.90%), shrubs (19.50%) and climbers (2.3%). Anthropogenic activities and natural factors were the most prominent factors responsible for reduction of medicinal and aromatic plants in the study areas.

Subjects: Environment & Agriculture; Bioscience; Environmental Studies & Management; Food Science & Technology

Keywords: families; aromatic; plant species; medicinal plants; growth form

1. Introduction

Worldwide, it is estimated that up to 70,000 species are used in folk medicines (Farnsworth & Soejarto, 1991). The number of medicinal and aromatic plant species varies in different countries which makes determining exactly the number of all medicinal and aromatic plant species used worldwide impossible. However, it can be stated, that at least every fourth plant is in use, a calculation based upon the estimated total number of 300–350,000 flowering plants (Lange, 2004).

The numbers of medicinal and aromatic plant species used in some regions are impressive: In India, which is said to have probably the oldest, richest and most diverse cultural traditions in the use of medicinal plants, about 7,500 species are used in ethnomedicines (Shankar & Majumdar, 1997) which is half of the country’s 17,000 Indian native plant species. In China, the total numbers of medicinal plants used in different parts of the country add up to some 6,000 species according to Xiao (1991). Of these, approximately 1,000 plant species are commonly used in Chinese medicine, and about half of these are considered as the main medicinal plants (He & Sheng, 1997). In Europe with its long tradition in the use of botanicals, about 2,000 medicinal and aromatic plant species are used on a commercial basis (Lange, 1998). In Spain, it is estimated that 800 medicinal and aromatic plant species are used of which 450 species are associated with commercial use (Blanco & Breaux, 1997; Lange, 1998). In Africa, over 5,000 plant species are known to be used for medicinal purposes (Iwu, 1993).

Ethiopia is rich in biodiversity with presence of rich plant diversity. Medicinal plants are distributed all over the country. In the country, plants have been used as a source of medicine for a long to treat different ailments. Traditional medicine has become an integral part of the culture. About 80% of Ethiopians depends on traditional medicine for health care and more than 95% of traditional medicinal preparations are of plant origin (Kassaye, Amberbir, Getachew, & Mussema, 2006). There are about 887 plant species recorded as having medicinal uses for people. The majority of the medicinal plants are herbs, followed by shrubs and trees. Twenty four (2.7 per cent) of the medicinal plant species are endemic to Ethiopia, and most are found in the wild. Therefore, the threats and trends for medicinal plants are similar to those for the forest plant species (Institute of Biodiversity Conservation [IBC], 2009). According to Kelbessa, Demissew, Woldu, and Edwards (1992) and Edwards (2001), habitat and species are being lost rapidly as a result of the combined effects of environmental degradation, agricultural expansion, deforestation and over harvesting of species. There is no organized cultivation of plants species for medicinal purposes in Ethiopia except few aromatic species. The reason for this is that the quantities of medicinal and aromatic plants traded are very small, and there is no organized large scale value addition and processing (Bekele, 2007). Therefore, this study was conducted to assess current status, utilization and associated challenges to medicinal and aromatic plants in Eastern Ethiopia.

2. Materials and methodology

2.1. Location of the study area

This study was conducted in Eastern Hararghe Zone between December 2016 and August 2018, Oromia Regional State, Eastern Ethiopia. The Zone is bordered on the southwest by the Shebelle River which separates it from Bale, on the west by West Hararghe, on the north by Dire Dawa and on the north and east by the Somali Region. The Zone comprises of 18 districts, namely Babille,
Bedeno, Chinaksen, Deder, Fedis, Girawa, Gola Oda, Goro Gutu, Gursum, Haramaya, Jarso, Kersa, Kombolcha, Kurfa Chele, Malka Balo, Meyumuluke, Midega Tola and Goro Muti. Haramaya, Babile and Fedis are the three districts of the Zone in which the present study was carried out. In each district, the potential Kebeles (villages) to use medicinal and aromatic plant to treat different human and livestock diseases were selected for detailed data collection (Figure 1).

This Zone has a total population of 2,723,850 of whom 1,383,198 are men and 1,340,652 women; with an area of 17,935.40 square kilometers and has a population density of 151.87. A total of 580,735 households were counted in this Zone, which results in an average of 4.69 persons to a household, and 560,223 housing units. The two largest ethnic groups reported were the Oromo (96.43%) and the Amhara (2.26%); all other ethnic groups made up 1.31% of the population. Oromiffa was spoken as a first language by 94.6%, Somali was spoken by 2.92% and Amharic by 2.06%; the remaining 0.42% spoke all other primary languages reported. The majority of the inhabitants were Muslims (96.51%), while 3.12% of the population professed Christianity (CSA, 2007).

2.2. Sample size and sampling technique

Preliminary survey was conducted to gather information on the physical features and potentials of medicinal and aromatic plant utilization in the study areas. Out of 18 districts in the zone, three districts; namely, Haramaya, Fedis and Babile were selected based on potential of medicinal and aromatic plant utilization. From each district, four Kebeles were selected due to their plant resources for ethnobotanical data collection. Study participants (132 informants) were selected using the snowball sampling method (Redzic, 2006), and we particularly focused on local people who regularly use plants for medicinal purposes. In the processes the Woredas agriculture development offices of the districts have been helped in identifying potential areas (Kebeles) for practicing traditional medicine.

2.3. Ethnobotanical data collection

The data were collected using semi-structured interview questionnaires, focus group discussion and field observation. Semi-structured interviews were then employed to collect ethnobotanical data with the help of local people and field assistants. Data on human and livestock diseases treated, local names of plants used, degree of management (wild/cultivated), status, parts used, methods of preparation, routes of administration, other uses of the medicinal and aromatic plant species, existing factors to these plants were gathered during the interviews. The interview

Figure 1. Study area map, 2017.
questionnaires were prepared in English and then translated into local languages (Affan Oromo). Data collectors, based on their educational background and social status, were selected in each Kebele and detail orientation was given for them. The importance of the study, on how data are filled in the questionnaires and interview with the respondents. In focus group discussion key informants (those who have traditional knowledge on medicinal plants) were selected with the help of field assistances in each Kebeles.

During field observation, with the guidance of field assistances, status of medicinal and aromatic plants and their diversity were conducted. All the vernacular names were in the Afan Oromo and Amharic. In the field plant identification was carried out with the help of Flora of Ethiopia and Eritrea (Edwards, Demissew, & Hedberg, 1997; Hedberg et al., 2009; Hedberg, Edwards, & Sileshi, 2003, 2006) and Useful Trees and Shrubs for Ethiopia (Bekele- Tessema, 2007). Some of specimens which were difficult to identify in the field were collected, pressed, dried and brought to Haramaya University for further identification comparing specimen in the herbarium.

2.4. Data analysis
A descriptive statistical method (e.g., percentage, frequency) was employed to summarize ethnobotanical data. The diversities of medicinal and aromatic plants were analyzed using PAST (PAleontological Statistical) software. Informant consensus factor (ICF) will be calculated for categories of human/livestock ailments to identify the agreements of the informants on the reported cures following the approaches used by Teklehaimanot and Giday (2007). ICF will be calculated as follows: number of use citations for categories aliment (nur) minus the number of species used (nt) for that aliment, divided by the number of use citations for each aliment minus one.

\[
ICF = \frac{nur - nt}{nu - 1}
\]

Where:

- \(nur \) = Number of usage-reported by informant.
- \(nt \) = Number of plant species used.

The ICF values reveal the strength of reliance of respondents on various plants and plant products for the treatment of different human/livestock diseases and/or ill-health conditions. The ICF values range from 0 to 1. A high value (close to 1) indicates that there is a well-defined selection principle for certain specific plants and plant products traditionally used to treat human/livestock diseases and/or ill-health conditions in the community and/or there is sharing of information amongst the ethno practitioners offering traditional medicine services in that particular community. A low value (close to 0) on the other hand indicate that plants and plant products used for the treatment of human/livestock diseases and/or ill-health conditions are chosen from a wide range of plants and plant products without relying on specific proven ones and/or the ethno practitioners offering traditional medicine services do not share information amongst themselves.

Priority ranking was conducted following Martin (1995), for important medicinal and aromatic plants used to treat most common disease in the study area. Randomly selected informants were participated in this activity in order to identify best preferred medicinal plants for treatment of commonly known disease.

3. Results and discussions

3.1. Respondents socio-demographic status
In the present study, a total of 132 respondents were interviewed from the three districts (44 from each) of which the majority were male respondents 108 (81.2%) and the rest 24(18.2%) were female respondents. However, females were engaged largely on production of aromatic plant species around their homestead and utilize these plants in their own house consumption or use as...
and income source from local markets. With regard to the age, highest age group ranges between 35 and 50 which accounts of 56.8% of the respondent followed by 50–65(27.2%) age categories.

The educations of the respondents were poor due to the difficult to access school before 20 years ago in the study areas. Thus, majority of respondents with traditional knowledge on plants resources were not attained their education to tertiary level in the study areas. However, young people have better education than elders and females have lower education than males. Majority of respondents have family size ranging between 5 and 10 which account 53.8% of the total respondents (Table 1).

3.2. Medicinal and aromatic plants of the study area

In this study, total of 87 species under 50 families were recorded from the three study districts distributed in wild, farmland, homegardens and roadsides. Of which 72 (82.8%) were identified for their medicinal value and the rest 15(17.2%) were utilized as both medicinal and aromatic (Table 3). In addition many of these plant also used for fencing, fuel, shade, bee keeping and food as indicated by the informants in the study areas.

The most frequent plant families with the highest percentage of the total identified plant species in medicinal and medicinal and aromatic plant categories were shown in Tables 2 and 4. Among the plants used for medicinal purpose the family Fabaceae accounts with 9(18.75%) species, followed by five families (Euphorbiaceae, Rosaceae, Apiaceae, Asteraceae and Solanaceae) each consisting of two species (Table 2). In the medicinal and aromatic plant categories family Lamiaceae and Rutaceae accounts with 3(6.25%) species each followed by family Myrtaceae with 2(4.16%) species. Majority 30(60%) of the families were represented by single species each.

Table 1. Demographic characteristics of respondents

Characteristic Categories	Babile District N (%)	Fedis District N (%)	Haramaya District N (%)	Total N (%)
Sex				
Male	33(75)	39(88.6)	36(81.8)	108(81.8)
Female	11(25)	5(11.4)	8(18.2)	24(18.2)
Age				
20–35	5(11.4)	4(9.1)	2(4.5)	11(8.4)
35-50	22(50)	24(54.5)	29(66)	75(56.8)
50–65	14(31.8)	11(25)	11(25)	36(27.2)
>65	3(6.8)	5(11.4)	2(4.5)	10(7.6)
Education level				
Illiterate	32(42.7)	20(45.5)	16(36.4)	68(51.5)
1st cycle	9(20.5)	15(34)	21(47.7)	45(34.1)
2nd cycle	3(6.8)	9(20.5)	7(15.9)	19(14.4)
Tertiary	0	0	0	0
Family size				
<5	13(29.5)	11(25)	19(43.2)	43(32.6)
5–10	26(59.1)	24(54.5)	21(47.7)	71(53.8)
>10	5(11.4)	9(20.5)	4(9.1)	18(13.6)
accounting 2.08% of the total families and the remaining 19(38%) of the families were represented by more than one plant species. Similarly, of the total families recorded 10(20.4%) were comprised of medicinal ad aromatic plant species (Table 4).

3.3. Diversity of medicinal and aromatic plants

Peoples of the study areas were utilizing diversity of locally available medicinal and aromatic plants for different purposes. One of the uses of these plants was traditionally to treat different human and livestock diseases and provide flavors to food or act as repellent with their odors released from different parts of the plant (Table 3). The diversity distribution of the identified medicinal and aromatic plants was indicated in Table 4 below.

The result revealed that there is no a significant variation in terms of Shannon Wiener diversity index of medicinal plants in the study areas (Babile, Haramya and Fedis). However, aromatic plant species diversity is higher in Babile ($H' = 2.37$) and Haramaya ($H' = 2.44$) as compared to Fedis ($H' = 2.16$). The lower index in the Fedis indicates that only few of aromatic plant species were more abundant. This is also true in the dominance index of aromatic plant in Fedis ($D = 0.12$) which were higher than the other two. The evenness index result showed that it is similar in all the study areas for both medicinal and aromatic plant species (Table 5).

3.4. Common human and livestock diseases

In the present study, total of 22 human and 11 livestock health problems were identified for which peoples of study areas were using traditional medicine to treat it. The most common human diseases were abdominal pain, digestion disorder and vomiting, diarrhea, kidney diseases, evil spirit, pneumonia, cough/common cold, skin diseases and intestinal constipation. Similarly, frequently occurring livestock health problems were skin diseases, bloating, diarrhea, wound and inflammation and constipation.

The result revealed that the majority of medicinal and aromatic plants 59(67.8%) were used to treat human health problem, whereas 17(19.5%) were used to treat livestock diseases and the remaining 11(12.7%) were used treat both for human and livestock health problems (Figure 2).
Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and preparation methods	Route of AD.
Medicinal Plants							
Acacia albida Del.	Gerbi	Fabaceae	Hu and L	T	Intestinal ulcer	Bark: barks grounded with water and the extract will be given:	Oral
Acacia brevispica	Hamarecha	Fabaceae	L	T	Bloating	Root: root extracts with water and ingredient salt will be added	Oral
Acacia lahai Benth.	Burquque	Fabaceae	L	T	Skin diseases:	Bark: grinded squeezes applied on infected part	External
Acacia nilotica (L.) Delile	Kasale	Fabaceae	Hu	T	Diarrhea	Bark and Leaf: grounded and the extract will be drunken with milk	Oral
Acacia nubica Benth.	Wanga	Fabaceae	Hu	SH	Rheumatism	Bark: bark extract is used to treat the diseases	Oral
Acacia Senegal (L.) Wild.	Sabansa dima	Fabaceae	L	T	Endoparasites	Bark and root: extracts from bark and root mixed with water and salt and little edible oil	Decoctions
Aloe vera (L.) Burm	Aregesa	Aloeaceae	Hu & L	SH	Wounds, skin irritations and blackheads or cuts.	Leaf and Root: roots are used to dry wound and skin irritation and leaf sap used to treat abdominal pain	External
Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and methods of preparation	Route of AD.
------------------	-------------	--------------	----------------	-------	----------------	--------------------------------------	--------------
Aloe vulgaris DC.	Aregesa	Aloaceae	Hu	H	Stomach pain	Leaf: leaf juice mixed in water and drink at morning	Oral
Amaranthus caudatus L.		Amaranthaceae	Hu	H	Teeth bleed	Seed: dried seed powdered and the boil to make a soup	Oral
Anogeissus leiocarpus (DC.) Guill. & Perr. Antiaris toxicaria Lesch.	Kewo Mukalate	Combretaceae Moraceae	Hu Hu	T T	Abdominal pain Skin diseases and endoparasites	Bark: grinded bark saps mixed with water and drink Leaves and seed: leaf extracts mixed with water and grounded seed boiled to make an extract to wash on skin and drink the soup	Oral
Azedarich indica A. Juss	Galalo	Meliaceae	Hu	T	Intestinal disorder	Leaf, bark and root: fresh parts grounded to produce an extract with water	Oral
Balanites aegyptiaca (L.) Delile	Baddano	Balanitaceae	Hu	T	Intestinal constipation wound	The whole plant: infusion from roots and fruit consumed for intestinal constipation and bark squeezes used for wound	Oral
Berchemia discolor (Klotzsch) Hemsl.	Jejeeba	Rhamnaceae	Hu	T	Kidney diseases	Root: crushed root mixed with water and drink	Oral
Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and methods of preparation	Route of AD
----------------------------------	-------------	------------------	----------------	-------	-------------------	--	---------------
Bersama abyssinica Fresen.	Qaracha	Melianthaceae	Hu SH		Skin diseases	Leaf and bark: crushed leaves applied on infected skins, bark juice	External
Bridelia micrantha (Hochst.) Baill.	Galio	Euphorbiaceae	L T		Bloating	Bark and root: both parts together chopped to produce the extract to be mixed with water	Oral
Calotropis procera (Ait.)	Falfala adal	Asclepiadaceae	L SH		Skin wound	Bark: grinded barks mixed with water and for wound	External
Capparis tormentosa (Lam.)	Harangama	Capparidaceae	Hu SH		Evil eye	Root: few slices of root tied on the neck	External
Carica papaya. L.	Papayii	Caraceae	L H		Gastrointestinal disorder	Seed: grounded chopped seed extracts mixed with water and milk	Oral
Commiphora africana (A.Rich.) Engl.	Hamessa	Burseraceae	L T		Bloating and abdominal disorder	The whole plant: crushed roots and bark mixed with water adding salt and drink grinded seed smear	Oral/anal
Cordia africana L.	Wodesa	Boraginaceae	Hu T		Evil spirit	Bark: fresh bark extract after chopping mixed with water	Oral/nasal

(Continued)
Table 3. (Continued)

Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and methods of preparation	Route of AD.
Croton microstachys Del.	Makanisa	Euphorbiaceae	Hu and L	T	Shivering/inflammation	The whole plant: exudes from leaf applied on wound; grounded extract of stem bark and root given to livestock, flowers used to treat inflammation	Oral
Cucumber pepo L.	Baaqil	Cucurbitaceae	Hu and L	H	Constipation	Leaf and seed: grounded seed mixed with water and drink	Oral
Dalbergia melanoxylon Guill. & Perr.	Maghano	Fabaceae	Hu	T	Fever	Root and Leaf: mix of the parts crushed with water and drink	Nasal
Dodonaea viscosa (L.) Jacq.	Etacha	Sapindaceae	Hu	SH	Malaria diseases	Leaf: leaves boiled and discard suspension	Oral
Ehretia cymosa Thonn.	Hulaga	Boraginaceae	Hu	T	Wounds	Root: root juice applied externally on wounds	External
Euphorbia abyssinica J. F. Gmel Adami	Euphorbiaceae	L	T		External parasites	Leaf: white latex can be used to kill ticks on cattle	External
Foeniculum vulgare Mill	Insila	Apiaceae	Hu and L	H	Stomach disorder	Leaf: chew fresh leaves or make the extract for drink	Oral
Gyssipium herbaceum L.	Qbri/tit	Malvaceae	L	Sh	Body system	Leaf: when camel feeds on the fresh leaves it will kill them	Oral

Continued
Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and methods of preparation	Route of AD.
Hagenia abyssinica (Bruce.) J. F. Gmel	Heto	Rosaceae	Hu	T	Internal parasites	Flower: dried flower grinded and mix with water then drunk on the morning to ride off tapeworm	Oral
Ilex mitis (L.) Radlk.	Hamsika	Aquifoliaceae	Hu	T	Abdominal pain	Bark: boiled bark juice drunk	Oral
Justicia schimperiana (Nees.)	Tumuga	Acanthaceae	Hu	SH	Wound Inflammation	Leaf: leaf heated and touched on inflammatory parts	External
Lepidium sativum L.	Shiffu	Brassicaceae	Hu	H	Pneumonia	Seed: dry seed grounded and the powder will be mixed with milk	Oral
Lepidium virginicum L.	Madersa	Brassicaceae	Hu	H	Blood clothing	Leaf: squeeze the extract from fresh leaves on the cutting	External
Linum usitatissimum. L.	Qontaar	Linnaceae	Hu	H	Stomach ulcer	Seed: seeds grounded powered mixed with water and drink at morning	Oral
Ilex aquifolium L.	Harmelaa	Aquifoliaceae	L	H	Lactation problem	Leaf: fresh leaves were given to the lactating cattle when milk production decreases	Oral/anal
Markhamia lutea (Benth.) K. Schum.	Baturu	Bignoniaceae	Hu	T	Abdominal pain, food appetite	Leaf: grounded leaves were given for children	Oral
Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and methods of preparation	Route of AD.
----------------------------------	-------------	--------------	----------------	-------	--	---	------------------
Maytenus senegalensis(Lam.) Excell	Ombolcha	Celastraceae	Hu	SH	Intestinal constipation, skin irritation	The whole plant: leaf and bark extracts mixed with cold water; root extract externally applied on skin	Oral/external
Melia azedarich L.	Neem	Meliaceae	Hu	T	Abdominal pain	Leaf: fresh leaf grounded and mixed with water then drink; or directly chew the leaves	Oral
Moringa stenapetal (Baker f.) Cufod.	Shiferaa	Moringaceae	Hu	T	Blood pressure/stomach disorders	Leaf: leaves boil in water and consume as food: sap of leaves also drunken	Oral
Musa paradosiaca L.	Muzza	Musaceae	L	H	Gastrointestinal problem	Leaf and Rhizome: fresh leaves or the rhizomes will give to livestock	Oral
Myrica salicifolia (Hochst)	Hataba	Myricaceae	Hu	SH	Skin diseases	Leaf: Dried powdered leaves are mixed with water and used to treat skin diseases	External
Nicotiana tabacum L.	Tamboo	Solanaceae	L	H	Pneumonia	Leaf: leaf grinded adding salt and mix with water the extract applied in the nose	Nasal
Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and methods of preparation	Route of AD.
------------------	-------------	--------------	----------------	-------	----------------	--	--------------
Nigella sativa L.	Abashed	Ranunculaceae	Hu H	Respiratory inflammation Abdominal pain	Seed: dry seeds will be powdered and mixed with water	Nasal	
Ocimum grattissimum L.	Suke	Lamiaceae	Hu H	Headache, common cold	Leaf: fresh leaves chopped and extract will be mixed with water	Oral or nasal	
Oncoba spinosa Farssk.	Daggoo	Flacourtiaceae	Hu T	Intestinal and urinary complaints	Root: root extracts mixed with water and drunk	Oral	
Petroselinum hortense Mill.	Kamzaraa	Apiaceae	Hu H	Digestion problem	Leaf: extract of boiled leaves taken or boiled leaves eaten	Oral	
Phytolacca dodecandra L’Her.	Handode	Phytolaccaceae	Hu L and L	External parasites	The whole plant: extracts from all parts kill parasites	External	
Piper betle Linn.		Piperaceae	Hu H	Digestion disorder	Leaf: leaves crushed with water and the extracts filtered	Oral	
Premna schimperi Engl.	Hurgessa	Verbenaceae	Hu T	Diarrhea	Leaf: crushed leaves mixed with water and drink	Oral	
Prunus africana (Hook.f.) Kal.	Buraya	Rosaceae	Hu T	Kidney problem	Bark and Leaf: extracts were mixed with water adding small amount of honey	Oral	
Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and methods of preparation	Route of AD
---------------------------------------	-------------	--------------	----------------	-------	--------------------------	--	----------------------
Psidium guajava L.	Zeytuna	Myrtaceae	Hu	T	Stomach pain/ diarrhea	Leaf: 3–5 leaves boiled and the extract given to children	Oral
Reseda luteola L.	Icinee	Resedaceae	Hu	H	Teeth decay	Root: fresh root used to polish the infected teeth	Chew
Rhamnus prinoides L’Her.	Gesho	Rhamnaceae	Hu	T	Blood pressure	Root and Leaf: the roots contain ingredients that purify the blood. The leaves are used to flavor the local drinks	Oral
Rhoicissus tridentate R.B. Drumm.	Hida refe	Vitaceae	Hu	Sh	Toothache	Root: fresh root used to polish teeth	External
Rhus natalensis (Krauss)	Debobosso,	Anacardiaceae	Hu	T	Intestinal Diarrhea	Leaf and root: the extracts are mixed with water	Oral
Rosa abyssinica R. Br.	Goro	Rosaceae	L	SH	Malaria	Root and Fruit: fresh parts grounded and extracts will be mixed with water	Oral
Salvadora persica L.	Hadahoo	Salvadoraceae	Hu	T	Tooth decay	Bark and stem: The stick used to polish teeth that contains an antibiotic that keeps the mouth clean and helps to prevent tooth decay	External
Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and methods of preparation	Route of AD.
------------------	-------------	--------------	----------------	-------	----------------	--	-------------
Schinus molle L.	Qonduberber	Anacardiaceae	Hu and L	T	Sore throat	Leaf and seeds; leaves were used to repel insects and seed grounded	Nasal
Sclerocarya birrea (A. Rich.) Hochst.	Didissa	Anacardiaceae	Hu	T	Dysentery and diarrhea	Bark: extract of bark mix with water	Oral
Senna tropoeolifolius, A. Rich	Jieersa	Asteraceae	Hu	Cl	Diarrhea	Leaf: leaves grounded and the extract mixed with water	Oral
Sesbania sesban (L.) Merr.	Harcha	Fabaceae	L	T	Bloating	Leaf: grounded fresh leaves extracted and mix with water	Oral
Solanum incanium L.		Solanaceae	Hu	SH	Sadden abdominal pain	Root: crushed fresh root mixed with water	Oral
Steganotaenia araliacea Hochst.	Jirma	Apiaceae	L	T	Exoparasites	Root: crushed root mixed with water and the extracts rubbed on the skin	Externally
Syzygium guineense (Willd.) DC.	Dokma	Myrtaceae	Hu	T	Vomit	Leaf: fresh leaf extracts were mixed with water and add spoon of salt	Oral
Tamarindus indica L.	Roka	Fabaceae	Hu	T	Diarrhea and abdominal pain	The whole plant: extracts of these parts given orally	Oral
Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and methods of preparation	Route of AD.
--	-------------	--------------	----------------	-------	---	--	--------------
Terminalia brownie	Berensa,	Combretaceae	Hu	T	Headache	**Leaf and Bark:** carefully discarded extracts inhaled through nose	Nasal
Fresen. Mus. Sen							
Thladiantha dubia	Kamona	Cucurbitaceae	Hu and L	H	Kidney diseases and urination problem	**Leaf and seeds:** dry seed will be powdered and mixed with water; extracts of fresh leaves will be given for cattle	Oral
Bunge.							
Vernonia amyldegansis	Ebicha	Asteraceae	L	T	Shivering	**Leaf and Root:** extracts mixed with water; also used to clean containers to store water	Oral
Deile							
Withania somnifera	Gizawaa	Solanaceae	Hu and L	Sh	Pneumonia	**Leaf:** the extract will be mixed with water for drink; also give to hens when diseased	Oral/nasal
(L.) Dunal							
Ximenia americana L.	Hudli diyee	Olaceae	L	T	Body swelling	**Leaf:** extract from fresh leaves with water and salt will be given	Oral
Zingiber officinale	Gingbel	Zingiberaceae	Hu and L	H	Abdominal pain	**Rhizome:** chopped slice boiled and then drink with tea; also used as spices	Oral
Roscoe							
Acacia albida Del.	Gerbi	Fabaceae	Hu and L	T	Intestinal ulcer	**Bark:** barks grounded with water and the extract will be given:	Oral
Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and methods of preparation	Route of AD.
------------------	-------------	--------------	----------------	-------	----------------	--	-------------
Allium cepa L.	Qilibii	Alliaceae	Hu and L	H	Pneumonia, common cold	**Bulb**: crushed bulbs mixed with honey and eaten in morning	Oral
Artemisia afra Jacq, ex Wild.	Ariti	Asteraceae	Hu	H	Stomachache; anti-malarial	**Leaf**: ground the leaves, mix with water and drink, and sometimes chew the leaves.	Oral
Citrus auranti folia (Christm. & Panzer) Swin.	Lomi	Rutaceae	Hu	Sh	Abdominal pain and digestion	**Fruit and Leaf**: fruit juice mixed with water and drink in the morning	Oral
Citrus medica L.	Turungo	Rutaceae	Hu	T	Gum bleeding and digestion	**Leaf and Fruit**: fruit juice mixed drink; leaf chewed for gum blood	Oral
Combretum collinum Fresen.	Dabacha	Combretaceae	Hu	T	Evil spirits	**Leaf**: smoke local milking pots and also believed to repel evil spirits	Smoke
Cymbopogon citratus (DC.) Stapf.	Giffashi’shekisa	Poaceae	Hu	H	Gastro intestinal problem, headaches	**Leaf**: chew the leaves with salt and take the extract inside	Oral/chew
Eucalyptus globulus Labill.	Bahrzaf	Myrtaceae	Hu	T	Common cold, Fungal diseases	**Leaf**: externally apply on toes after shoe; also bailed and drink	Smoke/External
Scientific names	Local names	Family names	Treat for Hu/L	Habit	Disease treated	Parts used and methods of preparation	Route of AD.
------------------	-------------	--------------	----------------	-------	----------------	--	--------------
Myrtus communis L.	Addisa	Myrtaceae	Hu	SH	Bad smell and repel insects	Leaf: smoke used in rooms as pleasant scent during the traditional ceremony	Nasal
Nuxia congesta R.Br. ex Fresen.	Hanfare	Buddleiacese	Hu	SH	Evil spirits	Leaf: leaves are used as containers clean and smelling.	Nasal
Ocimum basibicum L.	Bashobila	Lamiaceae	Hu	H	Abdominal pain	Leaf and flower: added to food for flavor or ground these parts and drink the extract	Oral/nasal
Ocotea kenyensis (Chiov.) Robyns & R. Wilczek	Gigicha	Lauraceae	Hu	T	Common cold	Root and bark: both parts are used to treat respiratory infection	Nasal
Olea capensis L.	Onoma	Oleaceae	Hu and L	T	Common cold	Bark: smokes inhaled covering the head and cattle too	Nasal
Otostegia integrifolia Benth.	Tingiti	Lamiaceae	Hu	Sh	Evil spirit	Leaf: milking containers(jars) are smoked and scented by burning the leaves, also repel bad spirit	Smoke
Rosmarinus officinalis L.	Balaatoni	Lamiaceae	Hu	H	Abdominal pain	Leaf: leaves choked and the extract taken orally	Oral
Ruta chalepensis L.	Dhalatam	Rutaceae	Hu	H	Abdominal pain	Leaf: chewing the fresh leaves or boil and drink	Oral

Hu = human, L = Livestock, T = Tree, H = herb, Sh = shrub, Cl = climber, AD = administration
Whole plant part = leaf, stem bark, root and flower used as tradition medicine
Among the human health problems, the highest proportions of medicinal and aromatic plants (19.7%) were used to treat abdominal pain followed by diarrhea (6.9%).

3.5. Informants consensus factor (ICF)
Informant consensus factor value of 17 different categories of human health problems and 11 livestock diseases were analyzed. Of the total of 22 human health problems identified in this study, the commonly mentioned 17 were used to find the ICF values (Table 6). Human health problems that were found to be popular in the area were treated by different MAPs. Majority of human health problems (82.4%), have (ICF value > 0.80) and only three diseases, common cold, body swelling and digestion disorder and vomiting have ICF value less than 0.80 (Table 6). On the other hand, in the category livestock diseases ICF value is highest (ICF > 0.90) for all the diseases identified (Table 7).

The result revealed that the utilization of specific MAPs to treat human/livestock health problem in study area is based on defined selection criteria and healing potential of the particular plant for the frequently occurring diseases.

3.6. Medicinal and aromatic plant parts used
The result of analysis of medicinal and aromatic plants in the three districts showed that 9 plant parts were identified as major parts used to treat different human and livestock health problems. However, in most cases these parts were used in different combination and which is taken as a whole part of the plant. The most frequently utilized plant parts for remedy purpose in the study area is the leaf (52.9%), followed by the roots (18.4%) and bark (17.2%) (Figure 3).

The finding of present study agree with the report of Meragiaw, Asfaw, and Argaw (2016) in that leaves were the most frequently used parts (32.6%) used to treat various ailments, followed by roots (21.7%). Similarly, number of works carried out previously on medicinal plants elsewhere in Ethiopia revealed that leaves followed by roots were the common plant parts used to treat various human and livestock health problems (Bayafers, 2000; Dawit & Estifanos, 1991; Mirutse & Gobana, 2003). Such wide utilizing of leaves compared to other parts is important for survival of the plant providing the leaf and has a less negative impact on the survival and continuity of useful medicinal and aromatic plants and hence does not affect sustainable utilization of the plants in the area. However, predominant utilization of root, rhizomes and stem leads for destruction of the whole or the part of the plant and affect the survival of plants underutilization. But, in the present study the utilization of roots, barks, bulk and stem is minimal and not expected much effect on the survival of plants used for MAPs. Dawit and Ahadu (1993) reported that herbal preparation that involves roots, rhizomes, bulbs, barks, stems or whole parts have effects on the survival of the mother plants.

Families name	No. of plant species	%
Myrtaceae	2	4.16
Buddleiacae	1	2.08
Lauroceae	1	2.08
Oleaceae	1	2.08
Lamiaceae	3	6.25
Asteraceae	1	2.08
Rutaceae	3	6.25
Combretaceae	1	2.08
Alliaceae	1	2.08
Poaceae	1	2.08

Table 4. Families recorded with medicinal and aromatic plant species
Table 5. Diversity of medicinal and aromatic plants identified in the study area

Study areas	Plant categories	Diversity indices				
		Individuals	Dominance	Shannon(H')	Simpson(D)	Evenness(E)
Babile	Medicinal	327	0.026	3.69	0.97	0.91
	Medicinal and aromatic	11	0.097	2.37	0.90	0.97
Haramaya	Medicinal	378	0.027	3.68	0.97	0.92
	Medicinal and aromatic	14	0.091	2.44	0.91	0.95
Fedis	Medicinal	413	0.027	3.68	0.97	0.90
	Medicinal and aromatic	10	0.12	2.16	0.88	0.96
3.7. Route of administration and dosage

The results of analyses of route of administration revealed that majority of prepared traditional medicine were given oral (56%) followed by external application (17%) and nasal (12%). The rests were given by combination of two ways or smoking (3.4%) as well as chewing (1.2%) as indicated in Figure 4. The findings in the present study agree with the results of various ethnobotanical researchers elsewhere in Ethiopia (Debela, 2001; Ermias, 2005; Getachew, Dawit, & Kelbesa, 2001; Kebu, Ensermu, & Zemedu, 2004; Meragiaw et al., 2016) that indicates oral as the predominant route of application. The key informants indicated that the remedies were prepared through the use of water as a solvent, and sometimes milk and honey for human diseases treatment. In few cases, again, the salt would be used as an ingredient for the effectiveness of the remedy.

Majority of the respondents and the key informants indicated that the measurements units used to determine the dosages are not standardized and more likely estimation which depend on the age and type of health problem, and description of the person who need it. Less dose would be
order for children and younger, such as, half a glass or one coffee cup, for adults it would be more, one full glass. The dose also would be measured with the number of leaves, seeds or fruits. Similar finding was reported by Meragiaw et al. (2016) in Delanta, Northern Ethiopia, that units of measurements to determine dosage are not standardized and were coffee cup, finger length and teaspoon. The quantity of plant part used is measured by number of leaves, seeds and fruits and length of root. Amare (1976), Sofowora (1982) and Abebe (1986) have also reported lack of precision and standardization as one drawback for the recognition of the traditional health care system. The present study indicated that there is lack of precision in the determination of doses in the area and it was prepared mainly based on the estimation with the local material.

3.8. Diversity of medicinal and aromatic plants growth form

In this study four major medicinal and aromatic plant growth forms were identified in the study areas. These growth forms were trees (48.30%), herbs (29.90%), shrubs (19.50%) and climbers (2.3%) (Figure 5).

The result showed that the parts of MAPs collected for utilization as medicinal purpose comes from tree plants in the study areas. This shows that traditional practitioner harvest leaves and other parts from tree plant without damaging the mother plant for sustainable and

Table 7. Common livestock diseases that treated by MAPs and ICF values

Disease types	nt	nur	nur-nt	nur-1	ICF
1. Bloating	4	85	81	84	0.96
2. Skin diseases	6	59	53	58	0.91
3. External parasites	2	92	90	91	0.98
4. Internal parasites	2	48	46	47	0.97
5. Diarrhea	3	103	100	102	0.98
6. Wound and Inflammation	3	21	18	20	0.90
7. Pneumonia/ Respiratory problem	2	16	14	15	0.93
8. Evil spirit	1	43	42	42	1.00
9. Shivering	2	23	21	22	0.95
10. Lactation problem	1	51	50	50	1.00
11. Constipation	3	69	66	68	0.97

Figure 3. Plant parts used for medicinal purpose.
continual utilization. The finding of present study agrees with Maiti and Geetha (2007) reported growth form classification of MAPs showed that trees (33%) were the most predominantly utilized growth forms followed by herbs (32%). However, the result is inconsistent with Belayneh, Asfaw, Demissew, and Bussa (2012) report, Erer Valley of Babile Wereda in that majority of growth habit distribution of medicinal plant species fall under shrubs followed by trees.

3.9. Preference ranking
Preference ranking was analyzed for the frequently mentioned seven medicinal and aromatic plant species to treat commonly occurring human health problem, abdominal disorder in the study area. The result revealed that *Senecio tropaeolofolius* is the most preferred medicinal and aromatic plant to treat abdominal pain followed by *Tamarindus indica* and *Moringa stenopetal* in that order (Table 8).

3.10. Threats to medicinal and aromatic plants of the study area
There are different threats to medicinal and aromatic plants resources availability and indigenous knowledge utilizing these resources in the study area. It was reported by key informants that; less attention is given to medicinal plants by young generation and rather they focus on modern drug. Moreover, majority of respondents agreed that anthropogenic activities were responsible for reduction on the status of MAPs in the study areas. The most common factors identified were agricultural expansion, over harvesting, overgrazing, construction, drought, collection for firewood. All informants were agreed that due to the decrease in plant resources of medicinal value from the study area, they were forced to travel long distances even from one district to the other in search of the plant in use. Similar findings on the factors influencing the medicinal plants were reported from different parts of the country by different authors, Fentalle (Kebu et al., 2004), Konso (Tizazu, 2005), Gimbi (Etana, 2007) and Loma and Gena Bosa area (Mathewos, Sebsebe, & Zemede, 2013) confirmed that agricultural expansion, over harvesting, overgrazing, drought and collection for firewood were highly threatened to medicinal plants and indigenous knowledge on them.
Medicinal and aromatic Plants	Local names	Respondents (R)										
	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	Total	
Ruta chalepensis. L	6	2	3	1	3	7	3	3	5		36	5th
Tamarindus indica. L	6	5	7	5	3	3	4	2	5	5	46	2nd
Senecio tropaeolofolius. A. Rich	4	5	4	6	7	6	5	4	5	6	52	1st
Moringa stenopetal. L	5	5	3	5	4	3	5	4	5		44	3rd
Croton microstachys Del	2	3	3	2	4	5	3	2	3	2	29	7th
Zingiber officinale Roscoe	2	4	5	5	4	5	4	4	5	5	43	4th
Hagenia abyssinica. L	3	2	5	4	3	2	3	4	5	3	34	6th

Table 8. Preference ranking of frequently used plant species to treat most commonly occurring human health problem, abdominal pain.
4. Conclusion

The present study find out that peoples of eastern Hararghe zone have profound traditional knowledge on the utilization of medicinal and aromatic plants. These plants were collected from wild, farmland, homegardens and roadsides. Elders and traditional healers as a primary source of information participated in the survey and shared their eminent experiences on the utilization of MAPs. In this study, utilization of 87 plant species as medicinal and aromatic that have been used for the treatment of 22 types of major human and 11 types of animal ailments were documented. The finding of this study insights the baseline information on indigenous knowledge and further investigation on phytochemical analysis of MAPs of the study areas and scientific methods to evaluate the safety, efficacy and dosage prescription of the commonly reported medicinal and aromatic plants.

Acknowledgements

The authors would like to thank Office of Vice President for Research Affairs of Haramaya University, for providing necessary fund for this study. We would also like to thanks local peoples of the study areas and all field assistances, for their willingness to disclose traditional knowledge and cooperation during the data collection.

Competing Interests

The authors declare no competing interests.

Author details

Melese Mengistu1
E-mail: melese63@yahoo.com
Dargo Kebede2
E-mail: dargokebede@gmail.com
Dereje Atomsa3
E-mail: datomsa@yahoo.com
Arayaselasie Abebe4
E-mail: ppbrmaraya@gmail.com
Dinkayehu Aleminne5
E-mail: dinalamnie@gmail.com
1 School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia.
2 School of Natural Resource Management, Haramaya University, Dire Dawa, Ethiopia.
3 School of Biological Sciences, Haramaya University, Dire Dawa, Ethiopia.
4 School of animal Sciences (Range Ecology and Biodiversity Management) Dire Dawa, Haramaya University, Dire Dawa, Ethiopia.

Citation information

Cite this article as: Status and utilization of medicinal and aromatic plants in Eastern Hararghe, Ethiopia, Melese Mengistu, Dargo Kebede, Dereje Atomsa, Arayaselasie Abebe & Dinkayehu Aleminne, Cogent Food & Agriculture (2019), 5: 1701349.

References

Abebe, D. (1986). Traditional Medicine in Ethiopia: The Attempts being made to promote it for effective and better utilization. SINET: Ethiopian Journal of Science, 9, 61–69.
Amare, G. (1976). Some common medicinal and poisonous plants used in Ethiopian folk medicine (pp. 63). Addis Ababa, Ethiopia: Academic press.
Bayefers, T., 2000. A floristic analysis and ethnobotanical study of the semi-wetland of Cheffa area, South Welo, Ethiopia (M.Sc. Thesis). Addis Ababa University, Ethiopia.
Bekele, E. (2007). Study on actual situation of medicinal plants in Ethiopia, Japan Assosiation for International Collaboration of Agriculture and Forestry (JAICAF). Retrieved from http://www.endashaw.com
Bekele- Tessemo, A., 2007. Useful Trees and shrubs of Ethiopia: Identification, propagation and management for 17 Agro climatic zones (Technical manual). World Agro-forestry, 550 pp. doi:10.1094/PDIS-91-4-04676
Belwayeh, A., Asfaw, Z., Demissew, S., & Bussa, N. F. (2012). Medicinal plants potential and use by pastoral and agro-pastoral communities in Erer Valley of Babile Wereda, Eastern Ethiopia. Journal of Ethnobiology and Ethnomedicine, 2012(8), 42. doi:10.1186/1746-4269-8-42
Blanco, E., & Breaux, J. (1997). Results of the study of commercialisation, exploitation and conservation of medicinal and aromatic plants in Spain. CSA. (2007). Ethiopian statistical authority. Addis Ababa, Ethiopia.
Dawit, A., & Ahadu, A. (1993). Medicinal plants and enigmatic health practice of North Ethiopia. Addis Ababa, Ethiopia: Berhanina Selam Printing Enterprise.
Dawit, A., & Estifanos, H. (1991). Plants as a primary source of drugs in the traditional health practices of Ethiopia. In J. M. Engels, J. G. Hawkess, & M. Woreda (Eds.), Plant genetic resources of Ethiopia (pp. 101). Cambridge: Cambridge University Press.
Debele, H., 2001. Use and management of traditional medicinal plants by indigenous people of Bosat Woreda, Wolenchiti area: An ethnobotanical approach (M.Sc. Thesis), Addis Ababa University, Ethiopia.
Edwards, S. (2001). The ecology and conservation status of medicinal plants on Ethiopia. What do we know? In M. Zewdu & A. Demissie (Eds.), Conservation and sustainable use of medicinal plants in Ethiopia, proceedings of national workshop on biodiversity conservation and sustainable use of medicinal plants in Ethiopia (pp. 46–55). Addis Ababa: Institute of Biodiversity Conservation and Research.
Edwards, S., Demissew, S., & Hedberg, I. (eds.). (1997). Flora of Ethiopia and Eritrea (Vol. 6). Ethiopia: Addis Ababa.
Ermias, L. 2005. Ethnobotanical study of medicinal plants and floristic composition of mana ongatu moist montane forest, Bale, Ethiopia (M.Sc. Thesis). A ddis Ababa University, Ethiopia.
Etana, T., 2007. Use and conservation of traditional medicinal plants by indigenous people in Gimbil Woreda, Western Wellega, Ethiopia (M.Sc. Thesis). Addis Ababa University, Addis Ababa, p. 111. doi:10.1094/PDIS-91-4-04671.
Fornsworth, N. R., & Soejarto, D. D. (1991). Global importance of medicinal plants. In O. Akerele, V. Heywood, & H. Synge (Eds.), The conservation of medicinal plants (pp. 25–51). Cambridge: Cambridge University Press.
Getachew, A., Dawit, A., & Kelbesa, U. (2001). A survey of medicinal traditional plants in Shika district, Arsi Zone, +++, Ethiopia. The Ethiopian Pharmaceutical Journal, 19, 30–47.
He S.-A., & Sheng, N., 1997. Utilization and conservation of medicinal plants in China with special reference to Atractylodes lancea. p. 109–115. In eds. G. Bodeker. Rome: FAO.

Hedberg, I., Edwards, S., Friis, I., Ensennu, K., Mesfin, T., Sebshehe, D., ... Gehre, E. (2009). Flora of Ethiopia and Eritrea Volume 8. General parts and index to Vols 1–7. Addis Ababa: The National Herbarium.

Hedberg, I., Edwards, S., & Sileshi, N. (2003). Flora of Ethiopia and Eritrea,* Part 1. Apiaceae to dipsacaceae. Addis Ababa: The National Herbarium.

Hedbergs, L., Kelbessa, E., Edwards, S., & Demissew, S. (2006). Flora of Ethiopia and Eritrea, Vol. S. Gentianaceae to Cyclocheilaceae. Sweden: The National Herbarium, Addis Ababa University and Uppsala University, Department of Systematic Botany, Uppsala University.

Institute of Biodiversity Conservation (IBC). 2009. Convention on biological diversity (CBD) Ethiopia’s 4th country report institute of biodiversity conservation.

Iwu, M. M. (1993). Handbook of African medicinal plants. Boca Raton: CRC Press.

Kassaye, K. D., Amberbir, A., Getachew, B., & Mussema, Y. (2006). A historical overview of traditional medicine practices and policy in Ethiopia. The Ethiopian Journal of Health Development, 20(2), 127–134.

Kebu, B., Ensermu, K., & Zemede, A. (2004). Indigenous medicinal utilization, management and threats in Fentale area, Eastern Shewa, Ethiopia. The Ethiopian Journal of Biological Sciences, 3, 1–7.

Kelbessa, E., Demissew, S., Woldu, Z., & Edwards, S. (1992). Some threatened endemic plants of Ethiopia. In S. Edwards & Z. Asfaw (Eds.), The status of some plant resources in parts of tropical Africa Botany 2000 East and Central Africa NAPRECA monograph series no. 2 (pp. 35–55). Addis Ababa, Ethiopia: NAPRECA, Addis Ababa University.

Lange, D. (1998). Europe’s medicinal and aromatic plants: Their use, trade and conservation. Cambridge: TRAFFIC International.

Lange, D. (2004). Medicinal and aromatic plants: Trade, production, and management of botanical resources. German: University of Landau, Institute of Biology.

Maiti, S., & Geetha, K. A. (2007). Medicinal and aromatic plants in India. National Research Center for Medicinal and Aromatic Plants Boriví, Anand -. 387, 310.

Martin, G. J. (1995). Ethnobotany: A method manual (pp. 265–270). London: Chapman and Hall.

Mathewos, A., Sebsbe, D., & Zemede, A. (2013). Ethnobotany of medicinal plants in Loma and Genia Bosa Districts(Woredas) of Dawro Zone, Southern Ethiopia. Topclass Journal of Herbal Medicine, Vol.2(9), 194–212.

Meragiw, M., Asfaw, Z., & Argaw, M. (2016). The status of ethnobotanical knowledge of medicinal plants and the impacts of resettlement in Delanta, Northwestern Wello, Northern Ethiopia. Evidence-Based Complementary and Alternative Medicine, 2016, 24. Article ID 5060247 doi:10.1155/2016/5060247

Mirutse, G., & Gobana, A. (2003). An ethnobotanical survey on plants of veterinary importance in two woredas of Southern Tigray, Northern Ethiopia. SINET: Ethiopian Journal of Science, 26, 123–136.

Redzic, S. (2006). Wild edible plants and their traditional use in the human nutrition in Bosnia-Herzegovina. Ecology of Food and Nutrition, 45, 189–232. doi:10.1080/03670240600648963

Shankar, D., & Majumdar, B. (1997). Beyond the biodiversity convention: The challenge facing the biocultural heritage of India’s medicinal plants. In G. Bodeker, K. K. S. Bhat, J. Burley, & P. Vantomme (Eds.), Medicinal plants for forest conservation and health care. Non-wood forest products 11 (pp. 87–99). Rome: FAO.

Sofowora, A. (1982). Medicinal plants and traditional medicine in Africa (pp. 255–256). New York: John Wiley and Sons.

Teklehaymanot, T., & Giday, M. (2007). Ethnobotanical study of medicinal plants used by people in Zegie peninsula, north western Ethiopia. Journal of Ethnobiology and Ethnomedicine, 3, 12. doi:10.1186/1746-4269-3-12

Tizazu, G., 2005. Ethnobotanical study of medicinal plants in the Konso Special Woreda (SNNPR), Ethiopia (M.Sc. Thesis). Addis Ababa University, Addis Ababa.

Xiao, P.-G. (1991). The Chinese approach to medicinal plants – Their utilization and conservation. In O. Akerele, V. Heywood, & H. Syne (Eds.), The conservation of medicinal plants (pp. 305–313). Cambridge: Cambridge University Press.
