EDITORIAL

Dengue, West Nile virus, chikungunya, Zika—and now Mayaro?

Peter J. Hotez1,2,3,4,5,6*, Kristy O. Murray1,7*

1 Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America,
2 Department of Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America,
3 Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America,
4 Department of Biology, Baylor University, Waco, Texas, United States of America,
5 James A Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America,
6 Scowcroft Institute of International Affairs, The Bush School of Government and Public Service, Texas A&M University, College Station, Texas, United States of America,
7 Center for Vector-Borne and Zoonotic Diseases, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America

* hotez@bcm.edu (PJH); kmurray@bcm.edu (KOM)

Is Mayaro virus infection the latest in a series of new arbovirus diseases expanding across the Western Hemisphere?

Since the launch of the 2000 Millennium Development Goals, we have seen an explosion of new arboviruses affecting the Americas. According to the Global Burden of Disease Study 2015, there has been a 143.1% increase in dengue fever cases between 2005 and 2015 [1], while between 1990 and 2013, dengue incidence in the Caribbean and tropical regions of Latin America increased severalfold [2]. In 1999, West Nile virus (WNV) was discovered in New York City, and by 2004, it had reached the West Coast [3]. Since its introduction, WNV has clinically affected more than 41,000 people, causing more than 1,700 deaths in the United States alone [4]. Then, in 2013–2014, both chikungunya virus and Zika virus infections emerged in the Americas, with both viruses rapidly spreading to dozens of countries over the course of 1 year. Both viruses have now affected millions of people, resulting in widespread morbidity [5, 6]. The factors responsible for the rapid expansion of arboviruses in the Western Hemisphere are still under investigation, but they likely include some of the new “Anthropocene” forces of climate change, deforestation, economic downturns and poverty, and the changing patterns of human migrations and urbanization [7].

But it does not look like the emergence and rapid expansion of new human arbovirus infections will abate anytime soon. In addition to Bourbon, Cache Valley, chikungunya, Heartland, Itaqui, Oropouche, Powassan, and Zika viruses [5], one of the latest to cause concern is Mayaro virus infection.

Like chikungunya virus, Mayaro virus is an alphavirus and a member of the Togaviridae family of enveloped RNA viruses (Fig 1) [5, 6]. Mayaro virus was first isolated by Charles Anderson and his colleagues during the 1950s from humans with febrile illnesses in Trinidad and later characterized as an alphavirus by Jordi Casals and L. Whitman [8,9]. Subsequent outbreaks were reported from Bolivia and Brazil [10].

Mayaro virus has since been identified in the Amazon and other tropical regions of South America, where it has been mostly transmitted by Haemogogus mosquitoes and likely involves forest-dwelling nonhuman primates and possibly migratory birds as animal reservoirs [11]. However, the urban mosquito *Aedes aegypti* has now been also shown to be an experimental vector for Mayaro virus [12], so there is concern that just as yellow fever virus can exhibit a
sylvatic (jungle) enzootic cycle to become urbanized and utilize Aedes mosquito species, Mayaro virus could follow a similar path [13]. However, it is still unknown whether Ae. aegypti or other Aedes mosquitoes are efficient vectors for Mayaro virus. In addition, there is a single report of Mayaro virus isolation from birds [14], but the role of birds in virus transmission remains unstudied.

Human Mayaro virus infection produces a constellation of symptoms that closely resemble the alphavirus infection caused by chikungunya, including fever, rash, and severe and prolonged arthralgias [6, 15]. One of the largest outbreaks of Mayaro virus was reported in 2015 by Scott Weaver’s group in a rural village located in northwestern Venezuela, where 77 cases were reported, including 19 individuals confirmed as seropositive [16]. Such findings together with the first report of Mayaro virus infection in an HIV-infected patient [17] prompted concerns that Mayaro virus could become an important emerging pathogen in South America [16], leading to early attempts to develop attenuated or other vaccines [18]. However, it remains unclear if there have been any significant ecological changes associated with the Venezuelan outbreak or whether the findings reflect improvements in pathogen surveillance technologies.

In 2016, Mayaro virus was recovered from an 8-year-old boy with an acute febrile illness in a “semirural” area (Gressier-Leogane) approximately 20 miles west of Port-au-Prince, Haiti (Fig 2) [19]. Of note, the patient was found to be coinfected with dengue virus [19]. The fact that Mayaro virus infection was found in someone from a nonforest area and it occurred in the context of a dengue coinfection suggests that Ae. aegypti may have been the mosquito vector responsible for transmission. It has been further noted that Haiti is not native to wild
nonhuman primates, which could suggest a different reservoir or human-to-human transmis-
sion by *Aedes* mosquitoes.

Could Mayaro virus infection become the “next chikungunya” in the Americas? Drs. Mario
Luis Garcia de Figueiredo and Luiz Tadeu Moraes Figueiredo from Brazil’s prestigious Univer-
sity of Sao Paulo have suggested that both of these alphaviruses can “mutate and/or adapt to
new zoonotic cycles and thus acquire a higher potential for emergency” to cause significant
epidemics [20]. This is an important hypothesis that requires investigation but one that will be
complicated to investigate given the possible immunological cross-reactivities to these 2
alphaviruses.

The Caribbean and tropical regions of Latin America have now become high-risk areas for
the emergence of Mayaro virus infection epidemics. The countries at highest risk of emergence
are also resource limited and lack diagnostic capacity at the local level; therefore, it is highly
likely that any Mayaro virus infections would be presumed as chikungunya virus due to the
similarity of clinical symptoms, possibly allowing rapid transmission and subsequent spread
throughout Central and North America to occur under our global health radar.

Fig 2. Map of Haiti, with area of Mayaro isolation highlighted. *Modified from University of Texas Perry-Castañeda Library, http://www.lib.utexas.edu/maps/americas/haiti_rel99.pdf.*

https://doi.org/10.1371/journal.pntd.0005462.g002
With locally acquired infections of both chikungunya and Zika virus now occurring in Texas and Florida in the US, we would presume these areas to also be at high risk for emergence of Mayaro virus. In May of 2016, the Texas Department of State Health Services reported on the first locally acquired case of chikungunya in Cameron County, Texas [21], while 2 years earlier, the United States Centers for Disease Control and Prevention (CDC) reported on chikungunya transmission in Florida [22]. In August 2016, Zika virus emerged in Florida with the first cases of local transmission identified in Miami, and by November, the first locally acquired case was reported from the Rio Grande Valley of Texas [23]. Therefore, we are also concerned about the emergence of Mayaro virus infection in North America, including the US.

Emerging arbovirus infections have become a “new normal” for the Americas [24], including now the continental US, which has seen dengue [25], WNV, chikungunya, and Zika [26] outbreaks over the last 15 years. As we think about public health emergency preparedness and the Global Health Security Agenda (GHSA) for 2017, we now need to add Mayaro virus infection to the growing list of emerging arbovirus diseases.

References
1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388:1545–602. https://doi.org/10.1016/S0140-6736(16)31678-6 PMID: 27733282
2. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016; 16(6):712–23. https://doi.org/10.1016/S1473-3099(16)00026-8 PMID: 26874619
3. Murray KO, Walker CM, Gould E. The virology, epidemiology, and clinical impact of West Nile virus: a decade of advancements in research since its introduction into the Western Hemisphere. Epidemiol Infection. 2011; 139:807–817.
4. Centers for Disease Control. West Nile virus. https://www.cdc.gov/westnile/statsmaps/index.html, accessed December 3, 2016.
5. Vasconcelos PF, Calisher CH. Emergence of Human Arboviral Diseases in the Americas, 2000–2016. Vector Borne Zoonotic Dis. 2016; 16(6):295–301. https://doi.org/10.1089/vbz.2016.1952 PMID: 26991057
6. Lwande OW, Obanda V, Bucht G, Mosontai G, Otilo V, et al. Global emergence of Alphaviruses that cause arthritis in humans. Infect Ecol Epidemiol. 2015; 5:2985. https://doi.org/10.3402/iee.v5.29853 PMID: 26689654
7. Hotez PJ. Neglected Tropical Diseases in the Anthropocene: The Cases of Zika, Ebola, and Other Infections. PLoS Negl Trop Dis. 2016; 10(4):e0004648. https://doi.org/10.1371/journal.pntd.0004648 PMID: 27058728
8. Anderson CR, Downs WG, Watattle GH, Ahin NW, Reese AA. Mayaro virus: a new human disease agent. I. Isolation from blood of patients in Trinidad, B.W.I. Am J Trop Med Hyg. 1957; 6(6):1012–6. PMID: 13487973
9. Casals J, Whitman L. Mayaro virus: a new human disease agent. I. Relationship to other arbor viruses. Am J Trop Med Hyg. 1957; 6(6):1004–11. PMID: 13487972
10. Pinheiro FP, LeDuc JW. Mayaro Virus Disease. In Monath TP. The Arboviruses: Epidemiology and Ecology. CRC Press. 1988; 3:137–50.
11. Terzian ACB, Auguste AJ, Vedovello D, Ferreira MU, da Silva-Nunes M, Speranca MA, Suzuki RB, Juncansen C, Arauo fr JP, Weaver SC, Nogueira MJL. Isolation and characterization of Mayaro virus from a human in Acre, Brazil. Am J Trop Med Hyg. 2015; 92(2):401–4. https://doi.org/10.4269/ajtmh.14-0417 PMID: 25610721
12. Long KC, Ziegler SA, Thangamani S, Haussser NL, Kochel TJ, Higgs S, et al. Experimental transmission of Mayaro virus by Aedes aegypti. Am J Trop Med Hyg. 2011; 85:750–7. https://doi.org/10.4269/ajtmh.2011.11-0359 PMID: 21976983
13. Mackay IM, Arden KE. Mayaro virus: a forest virus primed for a trip to the city? Microbes Infect. 2016; 18(12):724–34. https://doi.org/10.1016/j.micinf.2016.10.007 PMID: 27989728
14. Calisher CH, Gutiérrez E, Maness KS, Lord RD. Isolation of Mayaro virus from a migrating bird captured in Louisiana in 1967. Bull Pan Am Health Organ. 1974; 8(3):243–8. PMID: 4418030

15. Santiago FW, Halsey ES, Siles C, Vilcarromero S, Guevara C, Silvas JA, et al. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response. PLoS Negl Trop Dis. 2015; 9(10):e0004104. https://doi.org/10.1371/journal.pntd.0004104 PMID: 26496497

16. Auguste AJ, Liria J, Forrester NL, Giambalvo D, Moncada M, Long KC et al. Evolutionary and ecological characterization of Mayaro virus strains isolated during an outbreak, Venezuela, 2010. Emerg Infect Dis. 2015; 21(10):1742–50. https://doi.org/10.3201/eid2110.141660 PMID: 26401714

17. Estofolete CF, Mota MT, Vedovello D, Gongora DV, Maia IL, Nogueira ML. Mayaro fever in an HIV-infected patient suspected of having chikungunya fever. Rev Soc Bras Med Trop. 2016; 49(5):648–52. https://doi.org/10.1590/0037-8682-0093-2016 PMID: 27812665

18. Weise WJ, Hermance ME, Forrester N, Adams AP, Langsjoen R, et al. A novel live-attenuated vaccine candidate for Mayaro fever. PLoS Negl Trop Dis. 2014; 8(8):e2969. https://doi.org/10.1371/journal.pntd.0002969 PMID: 25101995

19. Lednicky J, Madsen V, De Rochars B, Elbadry M, Loeb J, Telisma T, et al. Mayaro virus in child with acute febrile illness, Haiti, 2015. Emerg Infect Dis. 2016; 22(11): 2000–2. https://doi.org/10.3201/eid2211.161015 PMID: 27767924

20. De Figueiredo MLG, Figueiredo LTM. Emerging alphaviruses in the Americas: Chikungunya and Mayaro. Rev Soc Bras Med Trop. 2014; 47(6):677–83. https://doi.org/10.1590/0037-8682-0246-2014 PMID: 25626645

21. Texas Department of State Health Services. News Release. DSHS Announces First Texas-Acquired Chikungunya Case. http://www.dshs.texas.gov/news/releases/2016/20160531.aspx, accessed November 25, 2016.

22. Kendrick K, Stanek D, Blackmore C; Centers for Disease Control and Prevention (CDC). Notes from the field: Transmission of chikungunya virus in the continental United States—Florida, 2014. MMWR Morb Mortal Wkly Rep. 2014; 63(48):1137. PMID: 25474035

23. Centers for Disease Control. Zika Virus. http://www.cdc.gov/zika/geo/united-states.html, accessed December 3, 2016.

24. Hotez PJ. Vice news. Zika Virus, Ghostbusters, and the Strange New Normal of Tropical Disease Pandemics. https://news.vice.com/article/zika-virus-ghostbusters-tropical-disease-pandemics, accessed November 25, 2016.

25. Murray KO, Rodríguez LF, Herrington E, Kharat V, Vasilakis N, et al. Identification of dengue fever cases in Houston, Texas, with evidence of autochthonous transmission between 2003 and 2005. Vector Borne Zoonotic Dis. 2013; 13(12):835–45. https://doi.org/10.1089/vbz.2013.1413 PMID: 24107180

26. Likos A, Griffin I, Bingham AM, Stanek D, Fischer M, et al. Local Mosquito-Borne Transmission of Zika Virus - Miami-Dade and Broward Counties, Florida, June-August 2016. MMWR Morb Mortal Wkly Rep. 2016; 65(38):1032–8. https://doi.org/10.15585/mmwr.mm6538e1 PMID: 27684886