Nondegenerate internal squeezing: An all-optical, loss-resistant quantum technique for gravitational-wave detection

James W. Gardnera,b, Min Jet Yapa,b, Vaishali Adyaa,b,c, Sheon Chuaa,b, Bram J. J. Slagmolena,b, and David E. McClellanda,b

aCentre for Gravitational Astrophysics, The Australian National University, Acton, Australian Capital Territory 2601, Australia.

bOzGrav-ANU, The Australian Research Council Centre of Excellence for Gravitational Wave Discovery, The Australian National University, Acton, Australian Capital Territory 2601, Australia.

cNow at The Department of Applied Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm SE-106 91, Sweden.

The detection of kilohertz-band gravitational waves promises discoveries in astrophysics, exotic matter, and cosmology \cite{1}. At kilohertz frequencies, e.g. 1–4 kHz, interferometric gravitational-wave detectors are limited by the quantum nature of light \cite{2}.

In this theoretical study using an analytic Hamiltonian method, we show that our proposed technique \cite{3} of using quantum squeezed light generated directly inside the detector with distinct frequencies is tolerant to detection losses unlike previously proposed schemes for quantum enhancement \cite{4}. We also show that this all-optical technique is feasible for sensitivity improvements of gravitational-wave detectors in a broadband fashion when combined with an optimal readout scheme. This broadband sensitivity could increase the astrophysical range of future detectors to the observable universe.

\begin{thebibliography}{9}
\bibitem{1} H. Miao, H. Yang, and D. Martynov, Phys. Rev. D \textbf{98}, 044044 (2018).
\bibitem{2} A. Buikema, C. Cahillane, G. L. Mansell, C. D. Blair, R. Abbott, C. Adams, R. X. Adhikari, A. Ananyeva, S. Appert, K. Arai et al., Phys. Rev. D \textbf{102}, 062003 (2020).
\bibitem{3} J. W. Gardner, M. J. Yap, V. Adya, S. Chua, B. J. J. Slagmolen, D. E. McClelland, Accepted July 2022 to appear in Phys. Rev. D. Available at \url{https://arxiv.org/abs/2206.06529}.
\bibitem{4} M. Korobko, Y. Ma, Y. Chen, and R. Schnabel, Light Sci. \textbf{390} Appl. 8, 118 (2019).
\end{thebibliography}