Data Article

Data set for diffusion coefficients and relative creep rate ratios of 26 dilute Ni-X alloy systems from first-principles calculations

Chelsey Z. Hargather, Shun-Li Shang, Zi-Kui Liu

A comprehensive first-principles study of solute elements in dilute Ni alloys: Diffusion coefficients and their implications to tailor creep rate by Hargather et al. [1].

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

DOI of original article: https://doi.org/10.1016/j.actamat.2018.07.020

* Corresponding author.
E-mail address: chelsey.hargather@nmt.edu (C.Z. Hargather).
1. Computational methodology

Dilute solute diffusion coefficients as a function of temperature were calculated in the present work using density functional theory within the confines of the 5-frequency model [2,3]. 26 solute atoms were studied in the present work: Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr.

Total energy calculations are carried out for a 32-atom supercell using the plane wave density functional code, Vienna ab-initio Simulation Package (VASP) [4]. A constant plane wave energy cutoff of 350 eV is used for all calculations, which is 1.3 times the default plane wave energy cutoff of nickel and larger than plane wave energy cutoff of all other solute atoms considered. A Monkhorst-Pack k-mesh scheme is used for all calculations, with a sampling of 8 × 8 × 8 for each system studied. For relaxation during the VASP calculations, the Methfessel-Paxton smearing method [5] is used for the calculation of forces acting on the atoms, and a final static calculation is performed after each relaxation using the linear tetrahedron method with Blöchl’s [6] correction for an accurate total energy calculation. Total electronic energy is converged to be at least 10⁻⁵ eV/atom. Due to the ferromagnetism of nickel up until its Curie point, [7], all calculations are performed in the present work within the spin polarized approximation. Further details of diffusion and computational theory can be found in the main article by Hargather et al. [1].

2. Data

2.1. 0 K results

Fig. 1 shows the effect of having one solute atom and no vacancies present in the 32-atom Ni supercell at 0 K on the following properties: equilibrium volume \(V_0 \), bulk modulus, \(B_0 \), first derivative
2.2. Atomic jump frequencies and thermodynamic parameters for all 26 Ni\textsubscript{31}X systems

The data in this section presents all factors relating to dilute solute diffusion as a function of temperature for all 26 Ni\textsubscript{31}X systems studied in the present work. Data is presented at \(T = 700 \) K and \(T = 1700 \) K. A detailed explanation of each of the jump frequencies and importance of the thermodynamic parameters can be found in the main article by Hargather et al. [1]. Table 1 gives the Gibbs energy of migration for each jump in the 5-frequency model for each of the 26 solutes in a Ni host lattice at the designated temperatures.

Table 2 presents all of the thermodynamic factors entering into dilute solute diffusion for all 26 Ni\textsubscript{31}X systems studied in the present work. The thermodynamic factors include the correlation factor, \(f_2 \), the enthalpy of vacancy formation adjacent to the solute, \(\Delta H_f \), the enthalpy of migration of the solute atom moving into an adjacent vacancy, \(\Delta H_m \), the entropy of vacancy formation adjacent to a solute, \(\Delta S_f \), entropy of migration of the solute atom, \(\Delta S_m \), and the temperature dependence of the correlation factor, \(C \).
Table 1
Gibbs energy of migration, ΔG_m, for each of the five jump frequencies for dilute solute diffusion of all 26 Ni$_3$X systems studied in the present work.

Solute	Temp, (K)	ΔG_{m0} (eV)	ΔG_{m1} (eV)	ΔG_{m2} (eV)	ΔG_{m3} (eV)	ΔG_{m4} (eV)
Al	T = 700 K	1.12	1.36	0.79	1.29	1.11
	T = 1700 K	1.07	1.43	0.86	1.34	1.19
Co	T = 700 K	1.12	1.24	1.38	1.23	1.27
	T = 1700 K	1.07	1.27	1.41	1.27	1.32
Cr	T = 700 K	1.12	1.18	1.30	1.20	1.27
	T = 1700 K	1.07	1.25	1.20	1.19	1.32
Cu	T = 700 K	1.12	1.27	0.98	1.25	1.17
	T = 1700 K	1.07	1.34	1.04	1.31	1.24
Fe	T = 700 K	1.12	1.29	1.20	1.23	1.25
	T = 1700 K	1.07	1.33	1.26	1.27	1.32
Hf	T = 700 K	1.12	1.73	0.40	1.36	0.79
	T = 1700 K	1.07	1.75	0.51	1.40	0.92
Ir	T = 700 K	1.12	1.41	1.72	1.07	1.17
	T = 1700 K	1.07	1.46	1.77	1.14	1.25
Mn	T = 700 K	1.12	1.24	0.95	1.35	1.27
	T = 1700 K	1.07	2.02	1.72	2.23	1.45
Mo	T = 700 K	1.12	1.44	1.31	1.15	1.07
	T = 1700 K	1.07	1.48	1.37	1.20	1.18
Nb	T = 700 K	1.12	1.58	0.76	1.24	0.92
	T = 1700 K	1.07	1.60	0.85	1.27	1.03
Os	T = 700 K	1.12	1.38	1.89	1.06	1.21
	T = 1700 K	1.07	1.42	1.95	1.14	1.32
Pd	T = 700 K	1.12	1.44	1.11	1.19	1.04
	T = 1700 K	1.07	1.49	1.18	1.25	1.13
Pt	T = 700 K	1.12	1.43	1.37	1.13	1.07
	T = 1700 K	1.07	1.47	1.42	1.18	1.15
Re	T = 700 K	1.12	1.38	1.89	1.09	1.18
	T = 1700 K	1.07	1.44	1.97	1.16	1.31
Rh	T = 700 K	1.12	1.41	1.40	1.13	1.14
	T = 1700 K	1.07	1.44	1.43	1.18	1.21
Ru	T = 700 K	1.12	1.39	1.51	1.09	1.16
	T = 1700 K	1.07	1.42	1.53	1.15	1.24
Table 1 (continued)

Solute	Temp, (K)	ΔG_{m0} (eV)	ΔG_{m1} (eV)	ΔG_{m2} (eV)	ΔG_{m3} (eV)	ΔG_{m4} (eV)
Sc	T = 700 K	1.12	−0.65	0.81	1.12	0.78
	T = 1700 K	1.07	0.15	1.65	1.89	1.93
Si	T = 700 K	1.12	1.12	0.95	1.34	1.22
	T = 1700 K	1.07	1.16	0.99	1.28	1.37
Ta	T = 700 K	1.12	1.56	0.92	1.21	0.95
	T = 1700 K	1.07	1.59	1.02	1.24	1.06
Tc	T = 700 K	1.12	1.38	1.57	1.10	1.16
	T = 1700 K	1.07	1.42	1.63	1.15	1.25
Ti	T = 700 K	1.12	1.43	0.61	1.28	1.02
	T = 1700 K	1.07	1.46	0.69	1.31	1.11
V	T = 700 K	1.12	1.26	1.09	1.22	1.17
	T = 1700 K	1.07	1.29	1.15	1.24	1.25
W	T = 700 K	1.12	1.45	1.50	1.13	1.09
	T = 1700 K	1.07	1.51	1.60	1.20	1.22
Y	T = 700 K	1.12	2.42	0.25	0.26	−1.28
	T = 1700 K	1.07	2.45	0.40	0.41	−0.79
Zn	T = 700 K	1.12	1.34	0.80	1.31	1.11
	T = 1700 K	1.07	1.41	0.89	1.38	1.18
Zr	T = 700 K	1.12	1.82	0.27	0.14	−0.66
	T = 1700 K	1.07	1.80	0.35	0.20	−0.60

Table 2

Thermodynamic parameters at 700 K and 1700 K given for all factors entering into vacancy mediated dilute solute diffusion for the 26 Ni$_3$X systems studied in the present work. Calculated values include the correlation factor, f_2, the enthalpy of vacancy formation adjacent to the solute, ΔH_f, the enthalpy of migration of the solute atom moving into an adjacent vacancy, ΔH_m, the entropy of vacancy formation adjacent to a solute, ΔS_f, entropy of migration of the solute atom, ΔS_m, and the temperature dependence of f_2, C.

Solute	Temp, (K)	f_2	ΔH_f (eV)	ΔH_m (eV)	ΔS_f (kB)	ΔS_m (kB)	C (eV)
Al	T = 700 K	0.0006	1.62	0.75	2.13	−0.607	0.532
	T = 1700 K	0.104	1.69	0.70	2.84	−1.11	0.482
Co	T = 700 K	0.973	1.70	1.37	1.95	−0.17	−0.004
	T = 1700 K	0.896	1.76	1.33	2.55	−0.60	−0.016
Cr	T = 700 K	0.951	1.71	1.36	1.72	0.97	−0.009
	T = 1700 K	0.755	1.76	1.41	2.20	1.41	−0.056
Cu	T = 700 K	0.030	1.62	0.96	2.17	−0.38	0.273
	T = 1700 K	0.340	1.69	0.88	2.92	−1.12	0.181
Table 2 (continued)

Solute	Temp. (K)	\(f_2 \)	\(\Delta H_f \) (eV)	\(\Delta H_m \) (eV)	\(\Delta S_f \) (\(k_B \))	\(\Delta S_m \) (\(k_B \))	C (eV)
Fe	T = 700	0.614	1.71	1.18	1.97	−0.35	0.020
	T = 1700	0.725	1.79	1.12	2.69	−0.91	0.014
Hf	T = 700	0.000	1.35	0.34	1.80	−0.98	1.022
	T = 1700	0.005	1.43	0.27	2.54	−1.60	1.172
Ir	T = 700	1.000	1.66	1.69	1.90	−0.38	0.000
	T = 1700	0.995	1.72	1.64	2.50	−0.93	−0.003
Mn	T = 700	0.010	1.87	0.60	7.35	−5.87	0.345
	T = 1700	0.159	3.02	−0.10	18.21	−12.44	0.125
Mo	T = 700	0.970	1.65	1.27	1.75	−0.52	−0.004
	T = 1700	0.898	1.70	1.22	2.19	−1.04	−0.015
Nb	T = 700	0.000	1.52	0.71	1.80	−0.76	0.554
	T = 1700	0.123	1.58	0.66	2.40	−1.28	0.495
Os	T = 700	1.000	1.70	1.87	1.80	−0.44	0.000
	T = 1700	0.998	1.77	1.81	2.50	−1.00	−0.001
Pd	T = 700	0.366	1.57	1.09	2.17	−0.41	0.079
	T = 1700	0.619	1.66	1.02	3.02	−1.03	0.031
Pt	T = 700	0.993	1.58	1.36	2.06	−0.26	−0.002
	T = 1700	0.931	1.66	1.31	2.80	−0.76	−0.018
Re	T = 700	1.000	1.71	1.86	1.51	−0.51	0.000
	T = 1700	0.998	1.76	1.79	1.95	−1.21	−0.001
Rh	T = 700	0.996	1.64	1.40	1.99	−0.16	−0.001
	T = 1700	0.935	1.68	1.37	2.39	−0.43	−0.020
Ru	T = 700	1.000	1.73	1.44	2.81	−1.06	0.000
	T = 1700	0.973	1.98	1.25	4.17	−1.96	−0.013
Sc	T = 700 K	1.0000	1.31	0.36	8.97	−7.34	0.000
	T = 1700 K	1.0000	1.85	−0.18	14.09	−12.51	0.000
Si	T = 700 K	0.06	1.57	0.95	1.91	−0.16	0.169
	T = 1700 K	0.32	1.63	0.90	2.57	−0.61	0.162
Ta	T = 700	0.010	1.58	0.86	1.72	−0.91	0.383
	T = 1700	0.366	1.63	0.80	2.19	−1.51	0.234
Tc	T = 700	1.000	1.69	1.55	1.80	−0.35	0.000
	T = 1700	0.985	1.75	1.49	2.39	−0.94	−0.007
2.3. Dilute solute diffusivity plots

Additional plots of diffusivity as a function of 1000/T for the solute systems that were not presented in the main article [1] and have known experimental data are presented in this section. It should be noted that all of the plots are produced from data calculated directly from first-principles, and do not represent Arrhenius fits of data. The following plots in Figs. 2–15 are shown for 2nd row solute elements: Si, for 3d transition row solute elements: Ti, V, Cr, Mn, Fe, and Co, for 4d transition row solute elements: Zr and Mo, and for 5d transition row solute elements: Hf, Ta, W, Re, and Pt. The corresponding plots for the following solutes are shown in the main article [1]: Al, Cu, Nb, and W.

2.3.1. 2nd row solute elements

see Fig. 2.

![Fig. 2. Solute diffusion coefficient Si in Ni calculated in the present work (solid line) compared to poly-crystal data of Allison et al. [8] and Swalin et al. [9].](image_url)
2.3.2. 3d transition row solute elements

see Fig. 3.

![Graph Ti in Ni](image)

Fig. 3. Solute diffusion coefficient Ti in Ni calculated in the present work (solid line) compared to poly-crystal data of Bergner [10] and Swalin et al. [11].

![Graph V in Ni](image)

Fig. 4. Solute diffusion coefficient V in Ni calculated in the present work (solid line) compared to poly-crystal data of Murarka et al. [12].

![Graph Cr in Ni](image)

Fig. 5. Solute diffusion coefficient Cr in Ni calculated in the present work (solid line) compared to poly-crystal data of Monma et al. [13], Růžičková et al. [14], Tutunnik et al. [15], and Glinchuk et al. [16].
Fig. 6. Solute diffusion coefficient Mn in Ni calculated in the present work (solid line) compared to poly-crystal data of Swalin et al. [11].

Fig. 7. Solute diffusion coefficient Fe in Ni calculated in the present work (solid line) compared to single-crystal data of Bakker et al. [17], and to poly-crystal data of Guiardlenq [18] and Badia et al. [19].

Fig. 8. Solute diffusion coefficient Co in Ni calculated in the present work (solid line) compared to single-crystal data of Vladimirov et al. [20] and to poly-crystal data of Badia et al. [19], Hirano et al. [21], Hassner et al. [22], Divya et al. [23], and McCoy et al. [24].
2.3.3. 4d transition row solute elements

see Fig. 4.

![Graph showing solute diffusion coefficient Zr in Ni](image1)

Fig. 9. Solute diffusion coefficient Zr in Ni calculated in the present work (solid line) compared to poly-crystal data of Allison et al. [8] and Bergner [10].

![Graph showing solute diffusion coefficient Mo in Ni](image2)

Fig. 10. Solute diffusion coefficient Mo in Ni calculated in the present work (solid line) compared to poly-crystal data of Swalin et al. [9].

2.3.4. 5d transition row solute elements

see Fig. 5.

![Graph showing solute diffusion coefficient Hf in Ni](image3)

Fig. 11. Solute diffusion coefficient Hf in Ni calculated in the present work (solid line) compared to the poly-crystal data of Bergner [10].
Fig. 12. Solute diffusion coefficient Ta in Ni calculated in the present work (solid line) compared to the poly-crystal data of Bergner [10].

Fig. 13. Solute diffusion coefficient W in Ni calculated in the present work (solid line) compared to the single-crystal data of Vladimirov et al. [20], and the poly-crystal data of Bergner [10], Swalin et al. [11], and Monma [25].

Fig. 14. Solute diffusion coefficient Re in Ni calculated in the present work (solid line) compared to poly-crystalline diffusion couple experimental data by [26].
Table 3: Elastic [28] and stacking fault energy [29] data used for calculation of the relative creep rate ratio in the main article [1].

Temp, (K)	Solute	D, m2/sec	b, Å	G, GPa	γ_{SFE}, mJ/m2	E, GPa
300 K	Al	3.08E-54	1.447	86.31	109.15	223.38
	Co	1.14E-57	1.444	92.26	113.56	237.34
	Cr	3.50E-57	1.445	89.91	100.11	232.05
	Cu	1.88E-53	1.446	87.56	115.12	226.21
	Fe	3.07E-55	1.445	90.52	109.86	232.99
	Hf	1.39E-51	1.456	81.67	68.87	212.19
	Ir	1.58E-62	1.451	88.65	102.77	229.09
	Mn	1.77E-52	1.447	88.43	110.86	228.01
	Mo	1.95E-55	1.450	85.52	62.08	223.23
	Nb	2.77E-52	1.453	82.80	64.31	215.79
	Ni	2.31E-53	1.444	92.22	128.20	236.66
	Os	4.25E-66	1.450	91.74	86.31	236.58
	Pd	4.57E-52	1.451	87.98	118.12	226.82
	Pt	2.07E-55	1.452	88.96	121.06	229.68
	Re	1.90E-66	1.449	88.00	66.57	228.02
	Rh	5.49E-57	1.450	86.10	107.33	223.08
	Ru	2.53E-59	1.449	91.78	91.12	236.18
	Sc	2.88E-34	1.454	82.39	74.82	213.94
	Si	4.62E-51	1.444	85.79	112.50	222.85
	Ta	9.51E-53	1.453	83.10	71.44	216.82
	Tc	1.06E-60	1.449	89.72	71.08	231.67
	Ti	3.63E-54	1.449	86.42	83.08	223.79
	V	2.08E-54	1.446	87.41	81.33	226.56
	W	4.16E-59	1.450	85.93	66.54	223.45
	Y	3.32E-17	1.463	73.79	48.26	193.31
	Zn	4.81E-54	1.447	82.89	111.69	215.57
	Zr	3.85E-30	1.458	79.99	60.31	208.69

Fig. 15. Solute diffusion coefficient Pt in Ni calculated in the present work (solid line) compared to poly-crystalline diffusion couple experimental data by [27].
Temp, (K)	Solute	\(D, \text{m}^2/\text{sec}\)	\(b, \text{Å}\)	\(G, \text{GPa}\)	\(\gamma_{\text{SFE}}, \text{mJ/m}^2\)	\(E, \text{GPa}\)
600 K	Al	1.38E-29	1.447	82.19	105.85	212.01
	Co	1.33E-31	1.444	87.82	109.79	225.37
	Cr	3.32E-31	1.445	84.98	99.05	218.59
	Cu	3.31E-29	1.446	83.60	111.26	215.20
	Fe	1.96E-30	1.445	86.80	106.45	222.45
	Hf	1.41E-28	1.456	78.26	66.57	202.18
	Ir	4.50E-34	1.451	83.34	99.59	214.86
	Mn	5.01E-29	1.447	84.36	107.40	216.68
	Mo	1.37E-30	1.450	80.99	60.20	211.41
	Nb	6.70E-29	1.453	79.30	62.37	205.87
	Ni	2.41E-29	1.444	87.91	124.22	224.72
	Os	6.77E-36	1.450	87.40	84.31	224.67
	Pd	1.07E-28	1.451	84.22	114.17	216.33
	Pt	1.84E-30	1.452	85.39	117.22	219.57
	Re	3.94E-36	1.449	83.80	64.89	216.37
	Rh	3.07E-31	1.450	83.93	103.97	216.39
	Ru	1.94E-32	1.449	87.03	88.40	223.30
	Sc	6.37E-20	1.454	78.82	71.85	204.08
	Si	2.62E-28	1.444	81.42	109.21	210.97
	Ta	3.99E-29	1.453	79.53	69.48	206.83
	Tc	3.57E-33	1.449	86.31	69.43	222.09
	Ti	1.21E-29	1.449	82.19	80.49	212.04
	V	7.98E-30	1.446	83.32	78.74	215.37
	W	1.71E-32	1.450	81.49	64.59	211.30
	Y	6.40E-12	1.463	70.09	45.49	183.50
	Zn	1.83E-29	1.447	79.26	107.92	205.41
	Zr	4.14E-18	1.458	76.41	58.12	198.75
900 K	Al	2.67E-21	1.460	78.09	102.02	200.54
	Co	7.79E-23	1.458	83.25	105.42	212.92
	Cr	1.89E-22	1.460	80.55	97.81	206.30
	Cu	4.51E-21	1.459	79.40	106.78	203.60
	Fe	4.33E-22	1.459	82.79	102.51	211.77
	Hf	8.77E-21	1.469	74.45	63.95	191.98
	Ir	1.66E-24	1.464	78.43	95.93	201.56
	Mn	5.74E-21	1.460	79.93	103.39	204.32
	Mo	3.07E-22	1.463	76.52	58.03	199.39
	Nb	6.79E-21	1.467	75.43	60.16	194.99
	Ni	3.22E-21	1.458	83.41	119.62	212.43
	Os	9.62E-26	1.463	82.95	82.03	212.40
	Pd	7.51E-21	1.465	79.97	109.58	204.59
	Pt	4.64E-22	1.466	81.46	112.80	208.51
	Re	5.92E-26	1.462	79.64	62.96	204.68
	Rh	1.42E-22	1.463	81.32	100.08	208.54
	Ru	2.22E-23	1.463	81.84	85.28	209.27
	Sc	4.65E-15	1.468	74.85	68.41	193.15
	Si	1.26E-20	1.457	76.93	105.37	198.72
	Ta	4.89E-21	1.466	75.68	67.26	196.07
	Tc	6.45E-24	1.462	82.58	67.54	211.61
	Ti	2.79E-21	1.462	77.66	77.53	199.55
	V	1.24E-21	1.459	78.93	75.74	203.30
	W	1.49E-23	1.464	76.80	62.35	198.49
	Y	4.36E-10	1.478	66.07	42.28	172.76
	Zn	3.26E-21	1.461	75.37	103.55	194.51
	Zr	4.78E-14	1.471	72.51	55.63	187.98
2.4. Relative creep rate ratio data table

The diffusivity data from the present work is combined with the elastic constant calculations from Shang et al. [28] and the stacking fault energy calculations from Shang et al. [29] on the same 26 Ni31X systems to calculate a relative creep rate ratio. The relative creep rate ratio shows the effect of each solute element on the creep rate of the dilute Ni-X alloy compared to the creep rate of pure Ni. The data used for the relative creep rate ratio plots in the main article [1] is presented in Table 3.

Acknowledgements

This work was funded partially by the Office of Naval Research (ONR) under contract no. N0014-07-1-0638 and no. N00014-17-1-2567 and partially by the National Natural Science Foundation of China with Grant No. 51429101. First-principles calculations were carried out partially on the LION clusters supported by the Materials Simulation Center and the Research Computing and Cyber infrastructure unit at the Pennsylvania State University, partially on the resources of NERSC supported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-05CH11231, and partially on the resources of XSEDE supported by National Science Foundation with Grant ACI-1053575. 51429101.

Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.08.144.
References

[1] C.Z. Hargather, S.L. Shang, Z.K. Liu, A comprehensive first-principles study of solute elements in dilute Ni alloys: Diffusion coefficients and their implications to tailor creep rate, Acta Materialia 157 (2018) 126–141.

[2] A.B. Lidiard, Impurity diffusion in crystals (mainly ionic crystals with the sodium chloride structure, Philos. Mag. Ser. 7 46 (382) (1955) 1218–1237 (CXXXIII).

[3] A.D. LeClaire, A.B. Lidiard, Correlation effects in diffusion in crystals, Philos. Mag. 1 (1956) 518–527.

[4] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (16) (1996) 11169–11186.

[5] M. Methfessel, A.T. Paxton, High-precision sampling for brillouin-zone integration in metals, Phys. Rev. B 40 (1989) 3616.

[6] P.E. Blochl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for brillouin-zone integrations, Phys. Rev. B 40 (1994) 10223.

[7] Y.S. Touloukian, Properties of Selected Ferrous Alloying Elements, Hemisphere, New York, N.Y., 1989.

[8] H.W. Allison, H. Samelson, Diffusion of aluminum, magnesium, silicon, and zirconium in nickel, J. Appl. Phys. 30 (9) (1959) 1419–1424.

[9] R.A. Swalin, A. Martin, R. Olson, Diffusion of magnesium, silicon, and molybdenum in nickel, J. Met. 9 (1957) 936.

[10] D. Bergner, Fremdfdiffusion von metallnen: Beitrag von mikrosondenverfahren zur losung von diffusions problemen, (Ph.D. Thesis), Technische Universität Bergakademie, 1977.

[11] R.A. Swalin, A. Martin, Solute diffusion in nickel-base substitutional solid solutions, J. Met. 8 (1956) 567.

[12] S.P. Murarka, M.S. Anand, R.P. Agarwala, Diffusion of vanadium in aluminium and nickel, Acta Metall. 16 (1) (1968) 69–72.

[13] K. Monma, H. Suto, H. Oikawa, J. Jpn. Inst. Met. 28 (1964) 188.

[14] J. Ruzichova, B. Million, Self-diffusion of the components in the F.C.C. phase of binary solid solutions of the Fe-Ni-Cr system, Mater. Sci. Eng. 50 (1) (1981) 59–64.

[15] A.D. Tutunnik, G.E. Estoulin, Fiz. Met. I Met. 4 (1957) 558.

[16] M.D. Glinchuk, D.F. Katinovich, I.I. Kovenskii, M.D. Smolin, Inzhenenero-Fiz. Zh. 8 (1960) 78.

[17] H. Bakker, J. Backus, F. Waals, A curvature in the Arrhenius plot for the diffusion of iron in single crystals of nickel in the temperature range from 1200 to 1400 C, Phys. Status Solidi (b) 45 (2) (1971) 633–638.

[18] Guiarldenq, Comptes Rendus de l’Acadmie des Sciences 254 (1962) 1994.

[19] M. Badia, A. Vignes, Diffusion du fer, du nickel et du cobalt dans les metaux de transition du groupe du fer, Acta Metall. 17 (2) (1969) 177–187.

[20] A.B. Vladimirov, V.N. Kaygorodov, S.M. Klotsman, I.H. Trakhtenberg, Volumetrical diffusion of cobalt and tungsten in nickel, Phys. Met. Met. 46 (1978) 94–101.

[21] K. Hirano, R.P. Agarwala, B.L. Averbach, M. Cohen, Diffusion in cobalt-nickel alloys, J. Appl. Phys. 33 (10) (1962) 3049–3054.

[22] A. Hassner, W. Lange, Volumenselbst diffusion in Kohalt – nickel – legierungen, Phys. Status Solidi (b) 8 (1) (1965) 77–91.

[23] V.D. Divya, U. Ramamurti, A. Paul, Diffusion in Co-Ni system studied by multifoil technique, in: A. Ochsner, G.E. Murch, J. M.P. Delgado (Eds.), Diffusion in Solids and Liquids VI: Defect and Diffusion Forum, 2011, pp. 466–471.

[24] H.E. McCoy Jr., J.F. Murdock, Influence of argon and hydrogen environments on the rate of diffusion of cobalt-60 in nickel, Am. Soc. Met., Trans. Q. 56 (1963) 11.

[25] K. Monma, H. Suto, H. Oikawa, Diffusion of Ni-63 and W-189 in nickel-tungsten alloys, J. Jpn. Inst. Met. 28 (1964) 197.

[26] Q. Zeng, S. Ma, Y. Zheng, S. Liu, T. Zhai, A study of Re and Al diffusion in Ni, J. Alloy. Compd. 480 (2) (2009) 987–990.

[27] S.L. Shang, D.E. Kim, C.L. Zacherl, Y. Wang, Y. Du, Z.K. Liu, Effects of alloying elements and temperature on the elastic properties of dilute Ni-base superalloys from first-principles calculations, J. Appl. Phys. 112 (5) (2012) 053515.

Further reading

Million B. Million, Diffusion of cobalt in Ni-Co Alloys at temperature up to 1000-degrees-C, Zeitschrift fur Metallkunde 53(8), 1972, 484.