Superconducting Properties of Atomic-Disordered Compound MgCNi$_3$

A. Karkin,1 B. Goshchitskii,1 E. Kurmaev,1 Z. A. Ren,2 and G. C. Che2

1Institute of Metal Physics, UB RAS, 620219, Ekaterinburg, GSP-170, Russia
2National Laboratory for Superconductivity, Institute of physics, Chinese academy of Sciences, P. O. Box 603, Beijing 100080, P. R. China

(Dated: November 21, 2018)

The effect of radiation-induced disordering in a nuclear reactor (fast neutrons fluence $\Phi = 5 \times 10^{19}$ cm$^{-2}$, $T_{irr} = 340$ K) on resistivity ρ, superconducting transition temperature T_C and upper critical field H_{C2} of polycrystalline MgCNi$_3$ samples was investigated. It was found that T_C decreases under irradiation from 6.5 to 2.9 K and completely recovers after annealing at 600 °C. Temperature dependences $\rho(T)$ are characteristic of compounds with strong electron-phonon interaction. The dH_{C2}/dT behaviour testifies to a considerable decrease in density of electronic state at Fermi level $N(E_F)$ in the course of disordering.

Radiation-induced disordering caused by irradiation with high-energy particles is a unique method of investigating the properties of superconducting and normal states of ordered crystals $^{[1, 2]}$. Even in broad-band metals, such as intermetallic compounds with A15 structure, long-range ordering loss leads to considerable rearrangement of the electronic spectrum, resulting in disappearance of individual features of the electronic structure. Disordering causes decrease in densities at Fermi level $N(E_F)$ and respective noticeable drop of T_C in compounds with high initial $N(E_F)$ (Nb$_3$Sn or V$_3$Si), and considerable (from 1.5 to 7 K) rise of T_C in compounds with low $N(E_F)$ and T_C due to growth of $N(E_F)$ (Mo$_3$Si and Mo$_3$Ge) $^{[3, 4, 5]}$. In type HTSC compounds, disordering leads to more significant changes in properties: fast and complete T_C degradation is accompanied with $N(E_F)$ decrease and metal-insulator transition $^{[6]}$. Thus investigation of response of a system to radiation-induced disordering serves as a kind of a test to reveal the characteristic features of its electron states. It was shown in recent papers $^{[6, 7]}$ that T_C drop from 38 to 5 K observed at MgB$_2$ under radiation-induced disordering is connected mainly with considerable drop of $N(E_F)$, similar to Nb$_3$Sn or V$_3$Si compounds. In our investigation, we concentrated on the effect of disordering on the properties of superconducting compound MgCNi$_3$ ($T_C \sim 8$ K) with perovskite cubic structure of type SrTiO$_3$, unconventional for intermetallics $^{[8]}$. Our interest in this system was explained by the fact that its ground state is close to ferromagnetic due to the presence of a narrow peak in $N(E)$ located 45 meV below the Fermi level $^{[9]}$. This allowed us to regard it as a candidate for an unconventional (possibly triplet) superconductivity, similar to Sr$_2$RuO$_4$ compound. It is known that in Sr$_2$RuO$_4$, as distinct from conventional superconducting compounds (intermetallics), T_C undergoes anomalously strong suppression even under a slight disorder $^{[10]}$. In MgCNi$_3$, maximum T_C is achieved at excess of carbon content only (nominal composition MgC$_{1.5}$Ni$_3$), even though, according to neutron diffraction study, the actual composition is closer to Mg$_{0.96}$CNi$_3$, and excess carbon occupies the region between sample grain boundaries $^{[11]}$.

In the sample preparation, fine powders Mg, C and Ni with purity better than 99.5% were used as starting materials. The mixtures of appropriate composition were pressed into pellets; the pellets were wrapped in Ta foil and enclosed in an evacuated quartz tube, placed in a furnace, heated to 950 °C at a rate of 150 °C/h and kept at this temperature for 5 h, followed by furnace-cooling to room temperature. The highest $T_C = 6.5$ K and the best superconducting transition corresponded to the nominal composition $x = 1.45$ $^{[12]}$. Samples 0.5 × 1 × 5 mm3 in size were irradiated with fast neutrons at $T_{irr} = (330 \pm 10)$ K, then annealed during 20 min at temperatures T_{ann} from 100 to 600 °C in step of 100 °C. Resistivity $\rho(T)$ in fields up to 13.6 T was measured using a standard four-probe method.

The initial sample resistivity curve of transition to superconducting state (Fig. 1) is stretched in the direction of higher temperatures, onset is about 8 K. Mean transition temperature is 6.5 K. We defined the superconducting transition temperature T_C as the temperature exhibiting half of the normal-state resistivity. Irradiation leads to T_C drop to 2.9 K, and transition becomes narrower. Annealing at 500 °C almost completely recovers the initial form of dependence $\rho(T)$, while after annealing at 600 °C, transition becomes more abrupt with a higher $T_C = 7.1$ K compared with the initial sample.

Temperature dependences $\rho(T)$ of the initial, irradiated and isochronally annealed MgCNi$_3$ samples (Fig. 3) present curves with saturation, typical of the systems with strong electron-phonon interaction of types Nb$_3$Sn or V$_3$Si $^{[8]}$. A rather large value of residual resistivity $\rho_0 = 0.137$ mOhm cm (found by ρ extrapolation to $T = 0$) of a sample in the initial state testifies to an insufficient degree of ordering. The absolute value of $\rho(T)$ approximately coincides with the data in $^{[8]}$ and is three times higher than in $^{[8]}$, even though temperatures dependences $\rho(T)$ are practically

*Corresponding author. E-mail: karkin@uraltc.ru
FIG. 1: Temperature dependences of reduced resistivity ρ/ρ_0 of initial MgCNi$_3$ sample (1), sample irradiated under fast neutrons fluence $\Phi = 5 \cdot 10^{19}$ cm$^{-2}$ (2) and sample annealed at $T = (100 - 600)$ °C during 20 min. (3 - 8). Solid lines are drawn across experimental points.

FIG. 2: Temperature dependences of MgCNi$_3$ sample resistivity $\rho(T)$; for designations, see Fig. 1. Solid lines present the calculation using expression (7).
FIG. 3: Temperature dependences of upper critical field H_{C2} for MgCNi$_3$ sample; for designations, see Fig. 1. Solid lines are drawn across experimental points.

identical in all cases. Evidently, after irradiation and subsequent annealing at 600 °C, further ordering and residual resistivity drop to $\rho_0 = 0.124$ mOhm-cm occur in the sample.

The upper critical field H_{C2}, as determined from the half-transition temperature (0.5 of the normal-state resistivity), has a form typical of second-order superconductors (Fig. 3), the initial sample value of dH_{C2}/dT is in good agreement with the data of paper [13]. A relatively weak change in the slope of dH_{C2}/dT should be noted; a very similar behaviour at disordering was observed for MgB$_2$ [6]. So, for dirty superconductor

$$(-dH_{C2}/dT)_{\text{dirty}} = \left(8ek_B/\pi\right)(1 + \lambda)N(E_F)\rho_0,$$

the relatively weak change in dH_{C2}/dT (Fig. 3) would evidently be compensated by a considerable (about 2.5 times) decrease in $N(E_F)$.

Deviations from the Block-Grüneisen law

$$\rho(T) = \rho_0 + \lambda_{tr}F_{BG}(\theta/T),$$

defining linear behaviour of $\rho(T)$ at high T, where θ is Debye temperature, λ_{tr} is electron-phonon interaction constant proportional to parameter λ in the McMillan expression for superconducting transition temperature

$$T_C \sim (\omega_{\text{in}}/1.2)\exp\left\{-1/(1 + \lambda)/(\lambda - \mu)\right\}, \quad \mu \sim 0.1,$$

are often described by an empirical expression

$$1/\rho(T) = 1/\rho_{\text{sat}} + 1/(\rho_0 + \lambda_{tr}F_{BG}(\theta/T)),$$

so $\rho(T)$ cannot exceed the value of saturation resistivity ρ_{sat}, which for type A15 intermetallics is about 0.2 mOhm-cm. Intuitive substantiation of (4) boils down to the fact that electron scattering becomes inefficient when the electron free path l_{tr} becomes shorter than the Fermi wavelength, inversely proportional to wave-vector k_F; therefore, in the expression for conductivity $\sigma \sim (k_F)^2l_{tr}$, l_{tr} should be substituted by a value close to $(k_F)^{-1}$. The interpolation formula $\sigma \sim (k_F)^2l_{tr} + k_F$ is equivalent to (4).

Fitting of experimental data on MgCNi$_3$ to expression (4), containing 4 fitting parameters ρ_{sat}, ρ_0, λ_{tr} and θ, yields good agreement with the close values of $\theta = (140 - 155)$ K. A similar fitting procedure for MgCNi$_3$ ($T_C \sim 8$ K) carried out in [12] with Einstein, instead of Debye, spectrum, yields the following parameters: Einstein temperature $\theta_E = 206$ K, $\rho_{\text{sat}} = 0.574$ mOhm-cm. The obtained value of θ is noticeably lower than that obtained in heat capacity measurements, Debye temperature $\theta_D \sim 235$ K [8]. However, using the value of $\theta = 150$ K and on the assumption of the Debye spectrum, we obtain $\omega_{\text{in}} = \exp(-1/3) \cdot \theta \sim 105$ K, which is considerably lower than $\omega_{\text{in}} \sim 480$ K for
Fig. 4: Upper critical field derivative $-dH_C/dT$ (left) and electron-phonon interaction constant λ (right) for MgCNi$_3$ sample as a function of residual resistivity ρ_0. Solid lines present the calculation using expressions (8) and (4), respectively.

MgB$_2$ [14]. Expression (3) yields $\lambda \sim 0.8$, which compares well with the value of $\lambda \sim 1.1$ for MgB$_2$ [13]. Value λ as a function of ρ_0 (Fig. 4) may be described with a linear dependence

$$\lambda = \lambda_0 (1 - (\rho_0/R)),$$

where $\lambda_0 = 0.92$, and $R = 0.85$ mOhm-cm.

The relatively large value of λ (and hence, λ_{tr}) is generally in an agreement with significant nonlinearity of $\rho(T)$ characteristic of compounds with strong electron-phonon interaction. However, fitting parameter ρ_{sat}, varies significantly from 0.85 mOhm-cm for the initial sample to 0.5 mOhm-cm for the irradiated sample, which agrees poorly with the meaning of value $\rho_{sat} \sim (kF)^{-1}$, which must be constant in case of a broad-band metal.

The origin of $\rho(T)$ "saturation" for systems with strong electron-phonon interaction were analyzed in terms of the mean field theory in [15], where it was shown that (in case of a relatively weak coupling which does not lead to formation of a pseudogap) scattering rate is proportional not to the value of ions r.m.s. displacement $\langle u^2 \rangle$, but rather to $\langle (u^2)^{0.5} \rangle$, and so, in this case, instead of (2), we have

$$\rho(T) = \{(\rho_0)^2 + \lambda_{tr} F_{BG}(\theta/T)\}^{0.5},$$

which results in type $\rho(T) \sim T^{0.5}$ behaviour at high T. However, use of (6) fails to yield a satisfactory data description. The probable reason is that value λ_{tr}, in its turn, also depends on disordering (is characterized by a sum of static and thermal displacements), i.e., on $\rho(T)$; the same reason causes decrease in λ with increase in ρ_0 (Fig. 4). Considering λ_{tr} being in dependence on $\rho(T)$, similar to that of λ on ρ_0 in (4), expression (6) is transformed into an equation

$$\rho(T) = \{(\rho_0)^2 + \lambda_{tr0}(1 - \rho(T)/R_{tr})(F_{BG}(\theta/T))\}^{0.5},$$

which, when solved for $\rho(T)$, yields the required expression, also containing four fitting parameters R_{tr}, ρ_0, λ_{tr} and θ. Expression (7) describes data with the same accuracy as expression (4), with similar values of θ, but with almost equal fitting parameters R_{tr} varying within (0.75 - 0.88) mOhm-cm. Such a good agreement between the values of R in (5) and R_{tr} in (7) does not look casual.

In conclusion, let us consider the probable causes of superconductivity degradation in MgCNi$_3$ under disordering. Loss of long-range order must lead to smearing of the fine structure of electron densities of state; at that, function $N(E)$ smoothes out, but without becoming zero. For superconductors with electron-phonon interaction, $\lambda \sim N(E_F)$, therefore T_C should never go down exactly to zero; the latter requirement is evidently satisfied for the majority of compounds which may be related to broad-band intermetallics. A qualitatively different behaviour is observed in HTSC compounds: in all cases superconductivity is completely depressed at a much higher rate than in intermetallics, probably due to non electron-phonon mechanisms of superconductivity as well as to a proximity to metal-insulator transition [16].
Value λ calculated by expression (3) decreases 1.5 times at MgCNi$_3$ under irradiation (Fig. 3), while the above value of $N(E_F)$ estimated using expression (1) decreases almost 2.5 times. Probably, such discrepancy in change of λ and $-dH_{C_2}/dT$, as it was similarly supposed for, e.g., MgB$_2$ [8], may be due to the fact that the dirty limit of $l_{\sigma} \ll \xi$ is not reached in the given region. Coherent length ξ may be estimated from the relation

$$\xi^2 = \Phi_0/(2\pi(-0.69dH_{C_2}/dT)T_C),$$

which yields $\xi = 55$ and 75 Å for the initial and the irradiated samples, respectively. Free path l_{σ} may be estimated from an conventional expression used for conductivity

$$(\rho_0)^{-1} = (3\pi^2)^{-1/3}(e^2/\hbar)n^{2/3}l_{\sigma},$$

which yields $l_{\sigma} \sim 20$ Å for $\rho_0 = 0.137$ mOhm-cm (initial sample) and $l_{\sigma} \sim 8$ Å for $\rho_0 = 0.337$ mOhm-cm (irradiated sample). These relations of l_{σ} and ξ are definitely closer to the dirty limit. Further, expression (1) allows us to estimate $(-dH_{C_2}/dT)$ using the experimental values of γ and ρ_0 or those obtained from band calculations $N(E_F)$. According to band calculations [9, 17, 18], $N(E_F) \sim 2.5$ (eV·spin-cell)$^{-1}$ = 2.8×10^{37} (J·m$^{-3}$)$^{-1}$, using $\lambda \sim 0.8$, $\rho_0 \sim 0.1$ mOhm-cm, we obtain $(-dH_{C_2}/dT) \sim 3$ T/K, which is quite commensurate with the experimental value $(-dH_{C_2}/dT) \sim 2.5$ T/K. Thus there are probably no reasons to doubt the dirty limit applicability in the given case. Assuming $\lambda \sim N(E_F)$, using (1) and (5), we obtain the dependence

$$(-dH_{C_2}/dT)_{\text{dirty}} \sim \lambda(1 + \lambda)\rho_0 = \lambda_0(1 - (\rho_0/R))(1 + \lambda_0(1 - (\rho_0/R)))\rho_0,$$

(8)

shown as a solid line in Fig. 3. The causes of noticeable deviations at $\rho_0 > 0.25$ mOhm-cm are unclear, it should be noted only that very similar changes in dH_{C_2}/dT at radiation-induced disordering were observed for MgB$_2$ [14]. Nevertheless, for MgCNi$_3$, the response to disordering is similar to that observed for conventional systems (intermetallics) with strong electron-phonon interaction.

Acknowledgments

Work supported by Minpromnauka, Russia (State Contracts No. 40.012.1.1.1150, No. 40.012.1.1.1146/Contract No. 15/02), Program of government support to leading scientific schools of Russia (Project No. 00-15-96581) and Russian Foundation for Fundamental Research (Project No. 01-02-16877).

[1] B.N. Goshchitskii, V.Ye. Arkhipiv, Yu.G. Chukalkin. Neravnoesnye sostoyania uporyadochnykxh kristallov, obluchen-nykh bystryymi neitromami. Sov. Scient. Rev/Sec. A: Phys. Rev., (1987), v.8, pp.519-608.
[2] A. Ananyev, A. Gerashenko, K. Okulova, S. Verkhovskii, A. Davletshin and B. Goshchitskii. NMR Study of Magnetic Moments Arising in Superconducting Cuprates under Electron/Neutron Irradiation. Appl. Magn. Reson., (2000), v. 18, p. 235.
[3] A. E. Karkin, V. E. Arkhipov, V. D. Parkhomenko, B. N. Goshchitskii. Influence of defects on Nb$_3$Sn and V$_3$Si superconducting properties. Phys.stat.sol. (a) (1980), v.59, K53.
[4] V.Ye. Arkhipov, V.I. Voronin, A.Ye. Karkin, A.V. Mirmelshtein. Teployemkost soyedineniya Mo$_3$Si: sverkhprovodimost i smyagcheniye fonomogo spektra. FMM (1983), v. 55, p.79.
[5] A.Ye. Karkin, V.Ye. Arkhipov, A.V. Mirmelshtein, V.I. Voronin. Strukturnyoe sostoyanie i sverkhprovodimost soyedineniya Mo$_3$Ge, obluchenogo bystryymi neitromami. FMM (1984), v. 57, p. 1021.
[6] A.Ye. Karkin, V.I. Voronin, T.V. Dyachkova, N.O. Kadyrova, A.P. Tutunik, V.G. Zubkov, Yu.G. Zainulin, M.V. Sadovsky and B.N. Goshchitskii. Sverkhprovodyashchiye svoistva atomno-razuporyadochnykogo soyedineniya MgB$_2$. Letters to ZhETF (2001), v. 73, issue 10, p. 640.
[7] A. P. Gerashenko, K. N. Mikhailiev, S. V. Verkhovskii, A. E. Karkin and B. N. Goshchitskii. Reduction in the electron density of states in superconducting MgB$_2$ disordered by neutron irradiation. 11B and 25Mg NMR estimates. Phys. Rev. B (2002), v. 65, 132506.
[8] T. He, Q. Huang, A. P. Ramirez, W. Yang, K. A. Regan, N. Rodago, M. A. Hayward, M. K. Haas, J. S. Sulsby, K. Inumaru, H. W. Zandbergen, N. P. Ong, and R. J. Cava. Superconductivity in the non-oxide perovskite MgCNi$_3$. cond-mat/0103290 (2001); Letters to Nature 411, 54 (2001).
[9] H. Rosner, R. Weht, M. D. Johannes, W. E. Pickett, and E. Tosatti. Superconductivity near Ferromagnetism in MgCNi$_3$. Phys. Rev. Lett. (2002), v. 88, No. 2, p. 027001.
[10] Z. Q. Mao, Y. Mory, Y. Maeno. Suppression of superconductivity in Sr$_2$RuO$_4$ caused by defects. Phys. Rev. B, 60, No. 1, p. 610. (1999).
[11] L. D. Cooly, X. Song, J. Jiang, D. C. Larbalestier, T. He, K. A. Regan, R. J. Cava. Core pinning by intragranular nanoprecipitates in polycrystalline MgCNi3. Phys. Rev. B, 65, 214518 (2002).

[12] Z. A. Ren, G. C. Che, S. L. Jia, H. Chen, Y. M. Ni, Z. X. Zhao, Effect of Mg and C contents in MgCNi3, and structure and superconductivity of MgCNi3−xCox. cond-mat/0105366 (2001); Science in China (Series A) (2001) v.44, 1205.

[13] S. Y. Li, R. Fan, X. H. Chen, C. H. Wang, W. Q. Mo, K. Q. Ruan, Y. M. Xiong, X. G. Luo, H. T. Zhang, L. Li, Z. Sun, L. Z. Cao. Normal state resistivity, upper critical field, and Hall effect in superconducting perovskite MgCNi3. Phys. Rev. B, 64, 1.2505 (2001).

[14] Y. Wang, T. Plackowski, A. Junod. Specific heat in the superconducting and normal state (2-300K, 0-16 Teslas), and magnetic susceptibility of the 38-K superconductor MgB2: evidence for a multicomponent gap. cond-mat/0103181 (2001).

[15] A. J. Millis, Jun Hu and S. Das Sarma. Resistivity saturation: Results from a dynamical mean field theory. Phys. Rev. Lett. (1999), v. 82, No. 11, p. 2354.

[16] M.V. Sadovsky. Superconductivity and Localization. Physics Reports (1997), v.282, No.5&6, pp. 225-348

[17] D. J. Singh and I. I. Mazin. Superconductivity and electronic structure of perovskite MgCNi3. Phys. Rev. B, 64, 140507(R) (2001).

[18] I. R. Shein, A. L. Ivanovskii, E. Z. Kurmaev, A. Moewes, S. Chiuzeian, L. D. Finkelstein, M. Neumann, Z. A. Ren and G. C. Che, The Effect of Co-doping on the electronic structure of MgCNi3. Phys. Rev. B 66, 024520 (2002).