Design and analysis of a novel large-range 3-DOF compliant parallel micromanipulator

Jinhai Gao¹²³, Xiaoqiang Han¹²³, Lina Hao⁴ and Ligang Chen¹²³

Abstract
Compared with the traditional rigid mechanism, the flexible mechanism has more advantages, which play an important role in critical situations such as microsurgery, IC (integrated circuit) fabrication/detection, and some precision operating environment. Especially, there is an increasing need for 3-DOF (degrees-of-freedom) compliant translational micro-platform (CTMP) providing good performance characteristics with large motion range, low cross coupling, and high spatial density. Decoupled topology design of the CTMP can easily realize these merits without increasing the difficulty of controlling. This paper proposes a new three DOF compliant hybrid micromanipulator which have large range of motion up to 100 μm × 100 μm × 100 μm in the direction in the dimension of 90 mm × 90 mm × 50 mm, smaller cross-axis coupling (the max coupling only 2.5%) than the initial XY compliant platform in XY axial.

Keywords
Micromanipulator, compliant, cross-axis coupling, large range, nonlinear control

Date received: 16 May 2021; accepted: 28 June 2021

Handling Editor: James Baldwin

Introduction
The traditional rigid 3-DOF platform is usually assembled by a single-DOF platform with stepper motor driven, which composed of a fixed base and a motion stage translating along X-, Y-, and Z-axes in a plane. Compared with traditional rigid platform, compliant micro platform has become one of the main branches of the mechanisms and robotic systems due to their natural merits, such as reduced number of parts, no friction, and so on¹² which make a CTMP more precise to have a variety of needs: cell manipulation,³⁴ scanning probe nano-lithography,⁵⁶ atomic force microscopy,⁷ IC or targets fabrication,⁸⁹ and data storage.¹⁰ So a desired high precision CTMP should have the large motion range, minimal cross-axis coupling, without increasing the complexity of controlling.

Regarding a number of 3-DOF compliant micromanipulators, researchers pay a lot of efforts from theory to application. However, most of them based on the traditional rigid body model such as 3-RRR, 3-PRR, 3-PSS, or 3-PUU¹¹–¹⁴ (P: Prismatic pair; R: Revolute pair; S: spherical hinge; U: Hooke vice), and rarely involves three translational micromanipulations.¹⁵–¹⁸

¹College of Aeronautical Engineering, Binzhou University, Binzhou, Shandong, China
²Shandong Engineering Research Center of Aeronautical Materials and Devices, Binzhou, Shandong, China
³Key Laboratory of Aeronautical Optoelectronic Materials and Devices, Binzhou, Shandong, China
⁴School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning, China

Corresponding author:
Jinhai Gao, School of Mechanical Engineering and Automation, Northeastern University, No. 3-11, Wenhua Road, Heping District, Shenyang, Liaoning 110819, China.
Email: haijingao@163.com
Xu and Li14 presents the stiffness modeling of a three prismatic-universal-universal (3-PUU) compliant parallel manipulator with orthogonally mounted actuators, that is designed to provide three spatial translational DOF for nano-scale manipulation. Jensen et al.19 introduces a three degree of freedom XYZ Micromanipulator, which components on a platform using three legs, each composed of a slider mechanism and a parallelogram mechanism. Pinskier et al.20 presented a modular flexure-based micro/nano manipulator, which has a measured range of translational motion of approximately 38.9 μm. Yangmin et al.13,21 proposed a novel 3-DOF compliant parallel mechanism for solving the conflict between large stroke and high precision of the mechanism of large stroke and high resolution of the mechanism without a need for amplifier mechanisms. However, these compliant micromanipulators still have some shortcomings, such as small motion range, large coupling, complex structure, and non-pure translational motion.

In this paper, the main research contents include the design of the new XYZ CTMP, the analysis of the corresponding performance our and the physical control experiment based on the previous research. The remainder of this paper is organized as follows. Section 2 designs a new 3-DOF CTMP based on the 4-PP (prismatic joints) model. Section 3 shows the corresponding performance our of the 3-DOF CTMP by FEA. Section 4 shows the experimental results for verifying improved XYZ CTMP based on hysteresis compensation control strategy. The last part is the conclusion.
Where E is the material elastic modulus; w is the width of the flexible structure; t is the thickness of the flexible structure; R is the radius of the circular, v is Poisson’s ratio, $G = E/(2(1 + v))$.

According to the transformation of force and displacement from the coordinate Oi to the coordinate Oj, the compliance of the free-end Oj with respect to the ground can be derived by:

$$C_{oj} = T_{oi}^{oj}C_{oi}(T_{oi}^{oj})^T$$

T_{oi}^{oj} is the compliance transformation from Oi to Oj, which takes on the following form:

$$T_{oi}^{oj} = \begin{bmatrix} R_{oi}^{oj} & 0 \\ 0 & R_{oj}^{oi} \end{bmatrix} \begin{bmatrix} I \\ (p_{oi}^{oj})^T \end{bmatrix}$$

In this paper, we only need to study hinge force and movement of three directions: X, Y axis force and linear displacement, around the Z axis of couple and angular displacement. For the transform matrix:

$$T_{oi}^{oj} = \begin{bmatrix} r_{11} & r_{12} & 0 \\ r_{21} & r_{22} & 0 \\ 0 & 0 & r_{33} \end{bmatrix} \begin{bmatrix} 1 & 0 & p_y \\ 0 & 1 & -p_x \\ 0 & 0 & 1 \end{bmatrix}$$
Where \(r_{ij} \) is the coordinate transformation matrix elements, \(r_{ij} \) is the element of the \(i \)th row, the \(j \)th column. \(p_{1x}, p_{1y} \) is the vector \(O_1O_j \) coordinates under coordinate system \(O_{1-xyz} \).

The compliance models of the amplifier and parallel plate

Compared with the lever amplifying mechanism, the bridge amplifying mechanism has better performance. So the bridge amplifying mechanism is selected as the \(P \) hinge of CTMP, which is shown in Figure 7. Because of the symmetry of the bridge amplifier, the analysis process can be simplified. Taking the left half as an analysis object, the point \(E \) is connected to the fixed ground through hinges 1, 2 in series and hinges 3, 4 in series, the two branches are in parallel. The compliance of the left half part at point \(E \) can be derived by:

\[
{1}C{E} = T^{E}_{o1}C_{o1}(T^{E}_{o1})^{T} + T^{E}_{o2}C_{o2}(T^{E}_{o2})^{T}
\]

\[
{2}C{E} = T^{E}_{o3}C_{o3}(T^{E}_{o3})^{T} + T^{E}_{o4}C_{o4}(T^{E}_{o4})^{T}
\]

\[
{\text{one}}C{E} = (_{1}C_{E})^{-1} + (_{2}C_{E})^{-1}
\]

In the same way, the compliance of the right half part at point \(E \) can be obtained:

\[
{\text{two}}C{E} = R(\pi)_{\text{one}}C_{E}(R(\pi))^{T}
\]

Where \(R(\pi) \) is the compliance transformation that around \(y \) axis of point \(E \) rotate 180°.

Because of the symmetry of the bridge amplifier, the compliance of the amplifier at point \(E \) can be derived by:

\[
C_{E} = ((_{\text{one}}C_{E})^{-1} + (_{\text{two}}C_{E})^{-1})^{-1}
\]

As shown in Figure 8, the compliance of the parallel plate can be derived by:

\[
C_{A} = \begin{bmatrix}
\frac{4\theta}{E\nu w} & 0 & -\frac{4\theta}{E\nu w} \\
0 & \frac{1}{E\nu w} & 0 \\
-\frac{4\theta}{E\nu w} & 0 & \frac{12l}{E\nu w}
\end{bmatrix}
\]

Where \(E \) is the material elastic modulus; \(w \) is the width of the flexible structure; \(t \) is the thickness of the flexible structure; \(l \) is the length of linkage.

The output compliance model

As shown in Figure 4, the output compliance is defined as the compliance at the point \(O \) (the center of the moving platform), where the external force is exerted, is related to the ground. Because of the double symmetric property, we only select the limb down left for the purpose of compliance model analysis.
\[C_{\text{downleft}} = C_A^E + C_A^O \]
\[C_{\text{down}} = (C_{\text{downleft}}^{-1} + C_{\text{downright}}^{-1})^{-1} \]

Accordingly, the compliances of limb left, right, and top can be derived. The output compliance of the \(XY \) stage can be calculated by:
\[XYC_O = ((C_{\text{down}})^{-1} + (C_{\text{top}})^{-1} + (C_{\text{left}})^{-1} + (C_{\text{right}})^{-1})^{-1} \]

In the same way, the output compliance of the \(Z \) stage can be calculated by:
\[ZC_O = ((C_E^O)^{-1} + (C_E^O)^{-1})^{-1} \]

Performance analysis

Material selection

The compliant micromanipulation based on the elastic deformation of the flexible hinge to achieve high precision movement, so the material mechanics performance requirements are higher.

The material for the \(XYZ \) CTMP is chosen to be an aluminum alloy, AL7075-T6, due to the material’s high \(\sigma_s/E \) ratio, low internal stresses, good strength, and long term phase stability, which makes it suitable for precision engineering applications. The attributes of this material are as follows Table 1.

Strain and deformation

The strain and deformation results reflect the performance of compliance, sensitivity, linearity, and verify the motion of the proposed CTMP. A set of selected piezoelectric linear actuators generate a representative force of 25 N on \(X \) axial of the mechanism in Figure 9. It can be observed that the maximal elastic strain with

![Figure 9](image-url)
When three set of piezoelectric actuators are acted on \(X/Y/Z \) with 25 N force respectively, similarly with the preceding situation, the total deformation and elastic strain is illustrated in Figure 10. It can be found that the maximal elastic strain is \(3.03 \times 10^{-4} \text{ mm/mm} \). Besides, the moving platform is the maximal deformation with 16.96 \(\mu \text{m} \).

It is shown that the \(X \)-axis load–displacement curves basically satisfy the linear relationship under the load condition \(A \) or \(B \), a varied \(X \)-actuation range is over 0–100 N and a zero \(Y/Z \)-actuation (condition \(A \)) or a 25 N \(Y/Z \)-actuation (condition \(B \)), as shown in Figure 11. It can be seen that the load–displacement relationships for the CTMP can be regarded as linear under the two different load conditions. Based on finite element analysis, when the maximum output displacement (100 \(\mu \text{m} \)) is given in the direction of \(X/Y/Z \), the maximum allowable stress of CTMP is 213 MPa, which less than the allowable stress of the material.
Cross-axis coupling

The output-displacement coupling error EX (the displacement fluctuation of motion stage along Y (EX_y) or Z (EX_z) axis caused by X-actuation), EZ (the displacement fluctuation of motion stage along X (EZ_x) or Y (EZ_y) axis caused by Z-actuation) is shown in Figure 12 reflecting the cross-axis decoupling. It can be seen that the maximum coupling error of the CTMP is 2.743 μm. We can calculate that the maximum compared with coupling error is 2.52% at EZ_x. It is slightly larger than that we expect (According to the preview research, the cross-axis coupling of the initial XY compliant platform in XY axial is about 4.2%). This may be mainly caused by the deformation or gravity of platform.

Experimental verification

Experimental scheme design

This system includes micro-platform, PZT, PZT driving power, capacitive displacement sensor, DC power, PCI6221, and PC, as shown in Figure 13. We know that the PZT actuator has instinctive complex nonlinear phenomena. So we designed a nonlinear control systems based on the EUPI controller to reduce the complex complex hysteresis phenomena (It’s the result of my previous research.). The MATLAB simulink schematic is shown as in Figure 14.
Discussions of experimental results
As shown in Figure 14, when the PZT driver micro-positioning platform of nonlinear control systems added the step signal (Just consider the \(Z \) motion), so we completed the nonlinear composite closed-loop control to the platform, we can get the tracking performance and tracking error as shown in Figure 15, and we know that the system of the step signal average tracking error is only 1.43%.

As shown in Figure 14, when the PZT driver micro-positioning platform of nonlinear control systems added a sine wave signal \((30 \sin(2\pi t/50) + 30)\), so we completed the nonlinear composite closed-loop control to the platform, we can get the tracking performance and tracking error as shown in Figure 16, and we know that the system of a sine wave signal average tracking error is about 7.17%.

Conclusions
In this paper, an improved \(XYZ \) CTMP has been developed and tested. Compared between the original \(XY \) CTMP design and the improved design, we can find that the improved design have a higher degree of cross-axis decoupling with cross-axis coupling error (2.52%) less than the original \(XY \) CTMP (4.2%). Through nonlinear closed-loop control based on the EUPI controller, tracking error of \(XYZ \) CTMP is only 7.17%. The reason why the error is still large is that the filtering ability of capacitance displacement sensor is not enough. But the improved \(XYZ \) CTMP have convincing performance by FEA and experiment analysis. It provides a reference for the research of micro-platform.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partially supported by the National...
Natural Science Foundation of China under Grant Nos. 61573093, U1613205, and U1731121, Shandong Province Key Research and Development Projects No. 2019GSF109105, and Doctoral Research Funding of BZU No. 2020Y32. The authors also thank sincerely the reviewers and editors for their very pertinent remarks that helped this article become clearer and more precise.

ORCID iD
Jinhai Gao https://orcid.org/0000-0002-1266-9030

References
1. Hao G and Kong X. Novel XY compliant parallel manipulators for large displacement translation with enhanced stiffness. In: ASME international design engineering technical conferences & computers and information in engineering conference, Montreal, Quebec, Canada, 15–18 August 2010, pp.15–18.
2. Yu J, Xie Y, Li Z, et al. Design and experimental testing of an improved large-range decoupled XY compliant parallel micro-manipulator. J Mech Robot 2015; 7: 044503.
3. Karimirad F, Shirinzadeh B, Zhong Y, et al. Modelling a precision loadcell using neural networks for vision-based force measurement in cell micromanipulation. In: 2013 IEEE/ASME international conference on advanced intelligent mechatronics, Wollongong, NSW, Australia, 9–12 July 2013, pp.106–110. IEEE.
4. Karimirad F, Chauhan S, Shirinzadeh B, et al. Vision-based robot-assisted biological cell micromanipulation. In: The 23rd IEEE international symposium on robot and human interactive communication, Edinburgh, UK, 25–29 August 2014, pp.347–352. IEEE.
5. Li YF, Sugiyama M, Toshiyoshi H, et al. Scalable throughput and stable scanning probenanolithography based on local anodic oxidation by arrayed wear-sensitive sidewall microprobes. J Microelectromech Syst 2015; 24(5): 1471–1478.
6. Mehdizadeh E and Pourkamali S. Deep submicron parallel scanning probe lithography using two-degree-of-freedom microelectro-mechanical systems actuators with integrated nanotips. IET Micro Nano Lett 2014; 9(10): 673–675.
7. Liu Z, Jeong Y and Menq C-H. Real-time reconstruction of multimode tip motion of microcantilevers in dynamic atomic force microscopy. IEEE/ASME Trans Mechatron 2016; 21(2): 825–837.
8. Aoki K, Miyazaki HT, Hirayama H, et al. Micromanipulation as an assembly tool for three-dimensional photonic crystals. In: Proceedings of 2003 5th international conference on transparent optical networks, Warsaw, Poland, 29 June–3 July 2003, pp.1–182. IEEE.
9. Liu J, Chen T, Liu H, et al. PZT driven triple-finger end effectors for micro-manipulation. In: 2015 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER), Shenyang, China, 8–12 June 2015, pp.1156–1161. IEEE.
10. Tamadazte B, Paindavoine M, Agnus J, et al. Four d.o.f. Piezoelectric microgripper equipped with a smart CMOS camera. J Microelectromech Syst 2012; 21(2): 256–258.
11. Bing-Xiao D, Xiao X and Yang-Min L. Design a 3-DOF compliant parallel mechanism with large stroke. J Tianjin Univ Technol 2015; 31(4): 28–32.
12. Xiao-Hui J and Jin-Yue L. Optimal design and simulations of a 3-PRR flexure-based parallel mechanism. J Mach Des 2014; 31(1): 26–29.
13. Yangmin L, Xiao X and Hui T. Design and analysis of a novel 3-DOF large stroke micro-positioning platform. J Mech Eng 2013; 49(19): 48–54.
14. Xu Q and Li Y. Stiffness modeling for an orthogonal 3-PU-U compliant parallel micromanipulator. In: International conference on mechatronics and automation, Luoyang, China, 25–28 June 2006, pp.124–129. IEEE.
15. Guo Z, Tian Y, Liu X, et al. An inverse Prandtl–Ishlinskii model based decoupling control methodology for a 3-DOF flexure-based mechanism. Sens Actuators A Phys 2015; 230: 52–62.
16. Yang G, Teo TJ, Chen I-M, et al. Analysis and design of a 3-DOF flexure-based zero-torsion parallel manipulator for nano-alignment applications. In: IEEE international conference on robotics and automation, Shanghai, China, 9–13 May 2011, pp.2751–2756. IEEE.
17. Bhagat U, Shirinzadeh B, Clark L, et al. Design and analysis of a novel flexure-based 3-DOF mechanism. Mech Mach Theory 2014; 74: 173–187.
18. Guo Z, Tian Y, Liu C, et al. Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning. Robot Comput Integr Manuf 2015; 32: 93–105.
19. Jensen KA, Lusk CP and Howell LL. An XYZ Micro-manipulator with three translational degrees of freedom. Robotica 2006; 24: 305–314.
20. Pinskier J, Shirinzadeh B, Bhagat U, et al. Design, development and analysis of a haptic-enabled modular flexure-based manipulator. In: 2015 international conference on manipulation, manufacturing and measurement on the nanoscale (3M-NANO), Changchun, China, 5–9 October 2015, pp.49–54. IEEE.
21. Xiao X and Li Y. Development and control of a compact 3-DOF micromanipulator for high-precise positioning. In: IEEE/ASME international conference on advanced intelligent mechatronics, Besancon, France, 8–11 July 2014, pp.1480–1485. IEEE.
22. Lina H and Ruimin C. A large-workspace fast response X-Y micro-plantform with two parallel displacement amplification mechanism. China, ZL201401065010.0; 2017.05.03.
23. Li Y and Xiao S. Design, modeling, control and experiment for a 2-DOF compliant micro-motion stage. Int J Precis Eng Manuf 2014; 15(4): 735–744.
24. Gong J, Hu G and Zhang Y. Closed loop design method of micro-driving displacement amplifier module targeting for stiffness. J Mech Eng 2012; 48(15): 58–64.
25. Awtar S and Parmar G. Design of a large range XY nanopositioning system. J Mech Rob 2013; 5(2): 021008.
26. Howell LL. *Compliant mechanisms*. New York: Wiley-Interscience, 2001.
27. Zhang D and Gao Z. Performance analysis and optimization of a five-degrees-of-freedom compliant hybrid parallel micromanipulator. *Robot Comput Integr Manuf* 2015; 34: 20–29.
28. Hao L, Gao J and Che H. Feed-forward frictional-order proportional–integral–derivative based feedback control of a piezoactuated microposition stage using an extended unparallel Prandtl–Ishlinskii hysteresis compensator. *Proc IMechE Part C: J Mechanical Engineering Science* 2019; 233(8): 2867–2878.