A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NO\textsubscript{x} with NH\textsubscript{3}: reaction mechanism and catalyst deactivation

Shengen Zhang, * Bolin Zhang, Bo Liu and Shuailing Sun

Atmospheric pollutants of nitrogen oxides (NO\textsubscript{x}) can be reduced by selective catalytic reduction (SCR). SCR of NO\textsubscript{x} with ammonia (NH\textsubscript{3}) at low temperatures has attracted much interest for high nitric oxide (NO) conversion, and this method is dominated by catalysts. Manganese (Mn)-containing oxide catalysts exhibit high activity and selectivity for the unique redox property of manganese oxides (MnO\textsubscript{x}). The reaction mechanisms and deactivation processes are summarized in this review. SCR of NO\textsubscript{x} with NH\textsubscript{3} follows both the Langmuir–Hinshelwood and the Eley–Rideal mechanisms, which also contribute to the nitrous oxide formation. Fast SCR has a higher reaction rate than standard SCR. Mn-containing catalysts could also be deactivated by sulfur oxides and water vapor. The deactivation process of sulfur dioxide can be classified into two categories: deposition of (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} and sulfation of active sites. The deactivation caused by water vapor can be attributed to the competitive adsorption. The adsorption of water on catalysts' surface blocked the active sites, which are provided for the adsorption of NH\textsubscript{3} and NO. Alkali, alkaline earth and heavy metal ions existing in fine fly ash can also damage the catalysts' acid sites. A notable improvement on performance was obtained when Mn-containing catalysts were doped with a transition metal, for these enhanced its adsorption capacity and oxidation ability. Furthermore, this review gives a comprehensive discussion of the synergistic mechanism between bi-metal or multi-metal oxides. Major conclusions and several possible directions for further research are presented finally.

1. Introduction

Nitrogen oxides (NO\textsubscript{x}) are a series of active gases, and include nitrogen dioxide (NO\textsubscript{2}), nitrogen oxide (NO) and nitrous oxide (N\textsubscript{2}O), and so on. Human activities cause a huge emission rate of NO\textsubscript{x}, which is double that of the biotic and abiotic nitrogen fixation rates. Released NO\textsubscript{x} can cause a series of environmental issues, such as photochemical smog, acid rain, and ozone depletion, and it can affect global tropospheric chemistry.1,4 Great efforts have been devoted to abating the emission of NO\textsubscript{x}.

The technologies used to control NO\textsubscript{x} emission can be categorized as combustion controls and post-combustion controls.5,6 Combustion controls, which aim to control the production of NO\textsubscript{x}, include low NO\textsubscript{x} burners,7 air graded burning and staged fuel combustion.8 Post-combustion controls aim to decrease the NO\textsubscript{x} produced by reducing active N to fixed nitrogen gas (N\textsubscript{2}). The technologies for reducing NO\textsubscript{x} from flue gas can be divided into: direct decomposition,9,10 selective catalytic reduction (SCR),11,12 selective non-catalytic reduction (SNCR),13,14 hybrid SNCR/SCR15 and NO\textsubscript{x} storage-reduction catalysis.16 With the advantages of high efficiency and low cost, NO\textsubscript{x} emitted from stationary sources (e.g., thermal plants or industrial boilers) has been predominantly controlled by SCR of NO with ammonia (NH\textsubscript{3}-SCR) in the presence of excess oxygen (O\textsubscript{2}) for decades.17

The catalyst to be used is a decisive factor in the process of decreasing NO\textsubscript{x} (deNO\textsubscript{x}). The common catalysts include noble metal catalysts,18 metal-exchanged zeolite catalysts,19 metal oxide catalysts,20,21 heteropoly acid catalysts,22 and so on. Metal oxide catalysts are widely applied in NH\textsubscript{3}-SCR. Nowadays, the most widely used catalysts are vanadium(v)-based catalysts and tungsten trioxide (WO\textsubscript{3}) and/or molybdenum trioxide (MoO\textsubscript{3}) doped vanadium(v) oxide (V\textsubscript{2}O\textsubscript{5})/titanium dioxide (TiO\textsubscript{2}) catalysts. These are usually installed at the upstream of flue gas because they require a higher working temperature of 300–400 °C.23 However, some tough problems have not been solved, such as the effect of excessive dust pollution to the catalysts upstream of the flue, the deactivation by sulfur dioxide (SO\textsubscript{2}) and alkali metal ions, the poor thermal stability at high temperatures and the toxicity of vanadium from the disabled catalysts.24 One of the efficient ways to overcome these obstacles is transferring the SCR reactor from upstream to downstream of

Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, PR China. E-mail: zhangshengen@mater.ustb.edu.cn
the flue gas, where there is relatively less dust and sulfur oxides in the flue gas but a lower temperature below 300 °C.

A series of metal oxide catalysts have been investigated to adapting low temperature, such as cerium (Ce), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni) and V. Of these, manganese oxides (MnO\textsubscript{x}) catalysts show a notable NO conversion and N\textsubscript{2} selectivity for its multi oxidation state, high valence state and characteristic crystallinity. Peña \textit{et al.} advocated that MnO\textsubscript{2}/TiO\textsubscript{2} had the highest activity among Co, chromium (Cr), Cu, Fe, Mn, Ni and V oxides supported on TiO\textsubscript{2} at low temperatures. Manganese dioxide (MnO\textsubscript{2}) and manganese(III) oxide (Mn\textsubscript{2}O\textsubscript{3}) show the highest activity and N\textsubscript{2} selectivity, respectively, among several MnO\textsubscript{x}. The activity and poison tolerance can be improved by doping with other transition metals. Ceria (CeO\textsubscript{2}) provides sufficient oxygen in the reaction of redox NO\textsubscript{x}, and improves the activity of MnO\textsubscript{x} catalysts.

To date, advances in low temperature NH\textsubscript{3}-SCR of NO\textsubscript{x} have been reviewed. A review by Li \textit{et al.} summarized the use of metal oxides and zeolite catalysts and focused on the catalysts’ components, preparation process and catalytic performance, however, the reaction mechanisms were not clarified clearly. A recent review in 2016 by Liu \textit{et al.} summarized the use of MnO\textsubscript{2}-based catalysts and concentrated on the technological processes and improvement methods, however, little effort was made to summarize the reaction mechanisms and catalyst deactivation processes. In this review, the advances in the use of Mn containing oxide catalysts are summarized. The focal point of this review is to address the reaction mechanisms and deactivation processes of Mn containing oxide catalysts. The N\textsubscript{2} selectivity and side reactions are discussed together. This review gives a comprehensive discussion of the synergistic effects between bi-metal or multi-metal oxides. The deactivation process using sulfur oxides, water vapor, alkali metal and heavy metal ions and the regeneration methods are summarized. Finally, the major conclusions and several possible directions of research are presented.

2. Reaction mechanisms

To meet the newest and stringent emission standards, (NO\textsubscript{x} concentration ≤ 50 mg m-3), academic researchers and engineers are more interested in use of low temperature SCR, which is one of the efficient ways to install a processor downstream of the flue. A number of metal oxide catalysts have been investigated so far. Transition metal oxides play an important role in low temperature SCR catalysts, such as V\textsubscript{2}O\textsubscript{5}, MnO\textsubscript{2}, CeO\textsubscript{2} and copper oxide (CuO). Of these, MnO\textsubscript{2} shows an excellent performance because of its different crystallinity, special surface area and multi oxidation. It is vital to elucidate the reaction mechanisms for future research. In this section, the reaction mechanisms of NH\textsubscript{3}-SCR over Mn-containing oxide catalysts are summarized.

2.1 Standard SCR

The NH\textsubscript{3}-SCR of NO aims to reduce active N to fixed N\textsubscript{2}, which is harmless to the atmosphere. In the presence of excess O\textsubscript{2}, the main overall reaction is eqn (1). A great number of studies have proposed that eqn (1) shows the reaction stoichiometry in typical SCR conditions. In the absence of O\textsubscript{2}, reaction in eqn (1) would convert into the reaction in eqn (2):

\[
\begin{align*}
4NH_3 + 4NO + O_2 & \rightarrow 4N_2 + 6H_2O(g), \Delta G_{298} = -1651 \text{ kJ mol}^{-1} \quad (1) \\
4NH_3 + 6NO & \rightarrow 5N_2 + 6H_2O(g), \Delta G_{298} = -1821 \text{ kJ mol}^{-1} \quad (2)
\end{align*}
\]

Because the content of NO is more than 90% among NO\textsubscript{x}, eqn (1) is proposed as the standard SCR reaction and dominates the reaction stoichiometry. It is reported widely that the NH\textsubscript{3}-SCR of the NO reaction when comparing the stoichiometric conditions follows both the Langmuir–Hinshelwood (L–H) mechanism and the Eley–Rideal (E–R) mechanism. Through the L–H mechanism, both NH\textsubscript{3} and NO are adsorbed on the surface of catalysts. However, via the E–R mechanism, adsorbed NH\textsubscript{3} reacts with gaseous NO. It is suggested that the gaseous NH\textsubscript{3} could be adsorbed on both Lewis acid sites and Brønsted acid sites, however, the gaseous NO is mainly adsorbed by a physical adsorption process. The adsorption of NH\textsubscript{3} has been recognized as the first step of the SCR reaction because it is easier for NH\textsubscript{3} to be adsorbed on acid sites rather than NO\textsubscript{2} and the reaction products. The SCR process over MnO\textsubscript{2} catalysts via the L–H mechanism can be approximately described as follows:

\[
\begin{align*}
\text{NH}_3(g) & \rightarrow \text{NH}_3(\text{ad}) \quad (3) \\
\text{NO}(g) & \rightarrow \text{NO(\text{ad})} \quad (4) \\
\text{Mn}^{n+} + \text{O} + \text{NO(\text{ad})} & \rightarrow \text{Mn}^{(n-1)+} - \text{O} - \text{NO} \quad (5) \\
\text{NH}_3(\text{ad}) + \text{Mn}^{(n-1)+} - \text{O} - \text{NO} & \rightarrow \text{Mn}^{(n-1)+} - \text{O} - \text{NH}_3 \rightarrow \text{Mn}^{(n-1)+} - \text{OH} + \text{N}_2 + \text{H}_2\text{O} \quad (6) \\
\text{Mn}^{(n-1)+} - \text{OH} + 1/4\text{O}_2 & \rightarrow \text{Mn}^{n+} + \text{H}_2\text{O} \quad (7)
\end{align*}
\]

Eqn (3) and (4) are the adsorption of gaseous NH\textsubscript{3} and NO. NH\textsubscript{3} is usually adsorbed on the Lewis acid sites and Brønsted acid sites to form adsorbed NH\textsubscript{3} species of coordinated NH\textsubscript{3} and ionic NH\textsubscript{4}+, respectively. Nevertheless, the coordinated NH\textsubscript{3} on the Lewis acid sites possesses a higher thermal stability than the ionic NH\textsubscript{4}+ on Brønsted acid sites. Manganese cations can provide a great number of Lewis acid sites.

Fang \textit{et al.} investigated the adsorption of NH\textsubscript{3} on the Mn\textsubscript{3}O\textsubscript{4} (222), manganese(n,II) oxide (Mn\textsubscript{2}O\textsubscript{3}) (211) and MnO\textsubscript{2} (110) surfaces using density functional theory. It is claimed that, with more negative adsorption energy values and the shorter
Mn–N bonds, Mn$_2$O$_3$ (222) and Mn$_3$O$_4$ (211) surfaces were more active for NH$_3$ adsorption than the MnO$_2$ (110) surface, which contributed to a higher performance (Table 1). Kapteijn et al. proposed that the highest NO conversion is exhibited by MnO$_2$, followed by MnO$_x$, Mn$_2$O$_3$, and Mn$_3$O$_4$.

The adsorbed NO is oxidized by the high valency state Mn$^{n+}$ cations, (e.g., Mn$^{4+}$) on the catalysts’ surface to form adsorbed monodentate nitrite (Mn$^{(n-1)+}$–O–NO) and the very metal cations are reduced as Mn$^{(n-1)+}$ [eqn (5)]. Furthermore, Mn$^{(n-1)+}$–O–NO reacts with adsorbed NH$_3$ species to form Mn$^{(n-1)+}$–O–NO–NH$_3$, which decomposes subsequently to N$_2$ and water (H$_2$O) [eqn (6)]. Then, the reduced Mn$^{(n-1)+}$ ions are regenerated by gaseous O$_2$ [eqn (7)].

The SCR process over MnO$_x$ catalysts via the E–R mechanism can be described approximately as follows:35,38,61

\[
\text{NH}_3(g) \rightarrow \text{NH}_3(ad) \quad (8)
\]

\[
\text{NH}_3(ad) + \text{Mn}^{n+} \rightarrow \text{NH}_2(ad) + \text{Mn}^{(n-1)+} - \text{OH} \quad (9)
\]

\[
\text{NH}_2(ad) + \text{NO}(g) \rightarrow \text{NH}_2\text{NO} \rightarrow \text{N}_2 + \text{H}_2\text{O} \quad (10)
\]

\[
\text{Mn}^{(n-1)+} - \text{OH} + 1/4\text{O}_2 \rightarrow \text{Mn}^{n+} = \text{O} + 1/2\text{H}_2\text{O} \quad (11)
\]

The adsorption of NH$_3$ on the Lewis acid sites is recognized as the first step of NO reduction via the E–R mechanism. Coordinated NH$_3$ could be deprived of a hydrogen and be activated by the labile oxygen or the lattice oxygen of metal oxides to form an amine (NH$_3$) species [eqn (9)]. Labile oxygen can be released via the change of the valence states of Mn. Activated NH$_3$ species on the catalysts’ surface reacted with gaseous NO to form the most important intermediate of NH$_2$NO, which subsequently decomposes to N$_2$ and H$_2$O [eqn (10)]. Then, the reduced Mn$^{(n-1)+}$ cations could be oxidized by O$_2$.

Furthermore, the formation of NH$_2$NO$_2$ is a typical SCR mechanism for Mn-containing catalysts. Qi and Tang,65 and Eigenmann et al.62 proposed an amide–nitrosamine type mechanism, which is actually similar to the E–R mechanism. An extra species of NH$_2$NO$_2$ was presented in this mechanism. NH$_2$NO$_2$ could be decomposed to NH$_2$NO and H$_2$O, and is then decomposed to N$_2$ and H$_2$O [eqn (12)–(14)]:

\[
\text{OH(ad)} + \text{NO}_2(ad) \rightarrow \text{O(ad)} + \text{HNO}_2(ad) \quad (12)
\]

\[
\text{NH}_3(ad) + \text{HNO}_2(ad) \rightarrow \text{NH}_4\text{NO}_2(ad) \rightarrow \text{NH}_2\text{NO(ad)} + \text{H}_2\text{O} \quad (13)
\]

\[
\text{NH}_2\text{NO(ad)} \rightarrow \text{N}_2 + \text{H}_2\text{O} \quad (14)
\]

In accordance with the transient eqn (3)–(11), Mn$^{3+}$–O–NO–NH$_3$ and NH$_2$NO are the most important intermediate in the reaction of the L-H mechanism and E-R mechanism, respectively. There is a quite similarity between these two different mechanisms. A comproportionation, (i.e., N$_4^{3+}$ and N$_3^{3-}$, N$_2^{2+}$ and N$_4^{2-}$) occurs on both the L–H and E–R mechanism (eqn (6) and (10)).35,63

2.2 Fast SCR

A fast SCR reaction of NH$_3$ with NO + NO$_2$ over Mn-containing oxide catalysts has been reported. It is suggested that the fast SCR has a higher reaction rate than standard SCR.64 Fast SCR was firstly investigated by Koebel et al., and Madia et al.65–67 The general reaction can be described as follows:56,69

\[
4\text{NH}_3 + 2\text{NO}_2 + \text{O}_2 \rightarrow 3\text{N}_2 + 6\text{H}_2\text{O(g)}, \Delta G^{298}_0 = -1412 \text{kJ mol}^{-1} \quad (15)
\]

\[
4\text{NH}_3 + 2\text{NO} + 2\text{NO}_2 \rightarrow 4\text{N}_2 + 6\text{H}_2\text{O}, \Delta G^{298}_0 = -1581 \text{kJ mol}^{-1} \quad (16)
\]

In the presence of O$_2$, NO can be oxidized by active oxygen to form NO$_2$ [eqn (17)].70 Judged by the Gibbs free energy, the reaction shown in eqn (15) does not occur easily and consequently limits the rate of eqn (15) or (16). Mn-containing metal oxide catalysts could catalyze this reaction in some extent.71,72

\[
2\text{NO} + \text{O}_2 \rightarrow 2\text{NO}_2, \Delta G^{298}_0 = -70 \text{kJ mol}^{-1} \quad (17)
\]

NO$_2$ is the difference between fast SCR standard SCR. NO$_2$ acts as a more efficient oxidizing agent than O$_2$ in the redox process of the SCR reaction. NO$_2$ can form surface nitrates and nitrates via dimerization:73

\[
2\text{NO}_2 \rightarrow \text{N}_2\text{O}_4 \quad (18)
\]

\[
\text{N}_2\text{O}_4 + \text{H}_2\text{O} \rightarrow \text{HNO}_2 + \text{HNO}_3 \quad (19)
\]

NH$_4$NO$_3$ is formed by the reaction between NH$_3$ and HNO$_3$. NH$_4$NO$_3$ or its related surface species is the key intermediate in the fast SCR process. The reaction processes can be described as follows:

\[
2\text{NH}_3 + 2\text{NO}_2 \rightarrow \text{N}_2 + \text{NH}_4\text{NO}_3 + \text{H}_2\text{O} \quad (20)
\]

\[
\text{NH}_4\text{NO}_3 + \text{NO} \rightarrow \text{N}_2 + \text{NO}_2 + 2\text{H}_2\text{O} \quad (21)
\]

Many researchers considered that NH$_4$NO$_3$ would be solid below 170°C. NH$_4$NO$_3$ could be reduced by NO at a higher temperatures [eqn (21)].34,74 It is pointed out that NH$_3$ can restrain fast SCR by inhibiting the formation of NO$_2$ at 150–170°C.75 Actually, eqn (21) can be described as two intermediate reactions:

Table 1 The NO conversion of pure MnO$_x$5971

MnO$_x$	NO conversion (%)
	K
MnO$_2$	13
MnO$_x$	14
MnO$_4$	18
Reaction temperature	353 373 393 413 433

a Reaction conditions: [NO] = 720 ppm, [NH$_3$] = 800 ppm, [O$_2$] = 3%. (Reprinted with permission from ref. 59. Copyright 2013 Elsevier.)
NH₄NO₃ → NH₃ + HNO₃

2HNO₃ + NO → 3NO₂ + H₂O

There is a chemical equilibrium in the fast SCR process [eqn (22)]. The formation of HNO₃ will be restrained while the NH₃ concentration is raised, and that inhibits the formation of NO₂ [eqn (23)]. Among the fast SCR processes, the vital process is the redox reaction between NO and HNO₃, which dominates the rate of fast SCR.

The performance of low temperature SCR has been extensively investigated. Excellent NO conversion and N₂ selectivity has been observed using simulated flue gas in the laboratory. Qi and Yang⁵⁶ obtained more than 99% of NO conversion on the MnO₂(0.3)-CeO₂ catalyst sintered at 120 °C. Long et al.⁷⁷ investigated the Fe–Mn-based catalysts. These catalysts showed nearly 100% NO conversion at 100–180 °C. Recently, France et al.⁷⁸ studied the CeO₂ modified FeMnOₓ catalysts, and more than 95% NO conversion was obtained at 90–135 °C without the influence of SO₂ and H₂O. Zhu et al.⁷⁹ studied the holmium (Ho) modified Fe–Mn/TiO₂ catalysts, which revealed good performance for NO conversion and high SO₂ tolerance. However, more attempts need to be made to understand the fundamental mechanism of low temperature SCR, such as surface chemistry, crystal structure, kinetics and scientific reaction mechanism. These have a great influence on the performance of catalysts and knowledge of them would be beneficial in designing a new catalyst.

2.3 Side reactions

As the reductant, NH₃ is a vital resource in the SCR reaction. NH₃ is consumed mainly via N₂ and N₂O formation and the oxidation of the catalyst to NOx.⁸² The wastage of NH₃ is a huge additional cost of the deNOₓ process. To decrease the wastage of NH₃, an appropriate NH₃/NO ratio is necessary. Authors agree that a NH₃/NO ratio near to 1 is good. Furthermore, undesired reactions can occur during the SCR process. Eqn (24) and (25) show the undesired ammonia loss:

4NH₃ + 4O₂ → 2N₂O + 6H₂O, ΔG₂₉₈ = −1102 kJ mol⁻¹ (24)

4NH₃ + 3O₂ → 2N₂ + 6H₂O, ΔG₂₉₈ = −1310 kJ mol⁻¹ (25)

These are the thermodynamically favored reactions but they occur rarely in practice.⁸⁰ In addition, there is another undesired reaction during the NH₃-SCR process:

4NH₃ + 5O₂ → 4NO + 6H₂O, ΔG₂₉₈ = −964 kJ mol⁻¹ (26)

Wang et al.⁸¹ claim that eqn (26) may replace eqn (1) as the dominant reaction over MnO₂/TiO₂ catalysts when the temperature was raised higher than 175 °C. This was proved by the determination of the components of outlet flue gas. This oxidation of NH₃ gives a decline in NO conversion and extra consumption of NH₃.

When the concentration of NH₃ is appropriate, the formation of N₂O is the primary waste of NH₃ and this decreases the N₂ selectivity [eqn (27)].⁴⁵

4NH₃ + 4NO + 3O₂ → 4N₂O + 6H₂O(g), ΔG₂₉₈ = −1240 kJ mol⁻¹ (27)

Adsorbed NH₃ is oxidized on the catalyst surface to form an amine species (NH₃), which subsequently reacts with NO to form N₂ and H₂O. However, when a further hydrogen atom is abstracted from NH₃ to form an NH species, a N₂O species will be formed by the reaction of the NO and NH species.⁸³ Both the L–H mechanism and the E–R mechanism pathways contribute to N₂O formation.

As previously mentioned, in the L–H mechanism, physically adsorbed NO can be oxidized by Mn⁷⁺ to Mn⁴⁻–O–NO, which can be further oxidized to monodentate nitrate (Mn⁷⁺–O–NO₂) [eqn (28)]. The Mn⁷⁺–O–NO₂ can react with adsorbed NH₃ to form Mn⁴⁻–O–NO₂–NH₃. Subsequently, Mn⁷⁺–O–NO₂–NH₃ will be decomposed to N₂O [eqn (29)]:

Mn⁷⁺–O–NO + (1/2)O₂ → Mn⁴⁻–O–NO₂ (28)

Mn⁷⁺–O–NO₂ + NH₃(ad) → Mn⁴⁻–O–NO₂–NH₃ → Mn⁴⁻–OH + N₂O + H₂O (29)

As previously mentioned in Section 2.2, the reaction of NH₄NO₃ with NO is a vital step in the fast SCR process. Zhu et al.⁷⁴ speculated that NH₄NO₃ could be decomposed to N₂O and H₂O via the L–H mechanism [eqn (30)]. Referring to eqn (28) and (29), the formation of N₂O could be attributed to the better capacity for NH₃ activation and adsorbed active nitrate species.

NH₄NO₃ → N₂O + 2H₂O (30)

As mentioned previously, in the E–R mechanism, NH₂ species can react with gaseous NO to form N₂ and H₂O. While the NH₂ species is further oxidized on the metal cation to NH species, N₂O will be formed by the reaction of the NH species and gaseous NO [eqn (31) and (32)].⁵⁵,⁶⁴ It is obvious that the formation of NH₂NO is a crucial step of NO reduction, which is directly related to the NO conversion and N₂ selectivity.⁵⁸

N₂H₂ + Mn⁷⁺–O → NH + Mn⁴⁻–OH (31)

NH + NO(g) → N₂O + H⁺ (32)

Whether the adsorbed NO is oxidized to monodentate nitrate or the NH₂ species is dehydrated to NH₃, the N₂ selectivity will be restrained and N₂O is formed.⁸⁵ This is an important difference from the standard SCR. The formation of N₂ and N₂O during the SCR process is illustrated in Fig. 1. Hinted at by the previous equations, it is obvious that the two N atoms in N₂O originate from NO and NH₃, respectively. Suárez et al.⁶⁶ pointed out that N₂O did not primarily originate from the NH₃ oxidation reaction. The feasible main reaction path is that between the coordinated NO₃⁻ (generated from NO/
NO$_2$ in the presence of O$_3$) and the adsorbed NH$_3$. Tang et al.53 demonstrated that the N$_2$O selectivity of the SCR reaction over β-MnO$_2$ was higher than that over α-Mn$_2$O$_3$ at 150 °C. The N$_2$O is generated directly from the reaction of NO with NH$_3$ via the E–R mechanism. Use of calcium (Ca) modification improves the performance of N$_2$ selectivity for Mn-containing catalysts.87 It is suggested that N$_2$O formation mainly resulted via the E–R mechanism. Yang et al.35 studied the mechanism of N$_2$O formation over Mn–Fe spinel catalysts. N$_2$O formation via the E–R mechanism was much more than via the L–H mechanism over the Mn–Fe spinel catalysts. In addition, N$_2$O selectivity was not promoted by increasing the NO concentration, but it was increased with the increase in NH$_3$ concentration. N$_2$O selectivity is also related to the gas hourly space velocity (GHSV). It was also found that N$_2$O in the SCR reaction over Mn–Ce catalysts was generated via the E–R mechanism, not the L–H mechanism.88 The choice of E–R or L–H mechanisms will vary with the changes of temperature. It is reported that the L–H mechanism plays the main role below 150 °C, and the E–R mechanism way dominates the SCR reaction at higher temperatures.55,89

2.4 Synergistic effect

A pure metal oxide may not be suitable for practical applications because of its defects. However, the property of one metal oxide can be improved by introducing foreign metal cations into its lattice. There will also be an interaction between different metal oxides. For example, reports in the literature indicate that Mn–Ce mixed oxide catalysts demonstrated the best performance among a multitude of metal oxide catalysts. Ceria can enhance the adsorption of NO and O$_2$, which benefits the oxidation of NO to NO$_2$ and improve sulfur resistance. Qi and Tang66 found that the oxidation of NO to NO$_2$ was increased significantly after addition of ceria to MnO$_2$ and that it speeded up the overall process. Actually, pure CeO$_2$ cannot be applied in industry because of its small specific surface area and low thermal stability.89 Meanwhile, as is reported,29 modification with titanium (Ti) or tin (Sn) can improve the SCR property of cerium oxides. Qi et al. and Imamura et al.27,92 found using X-ray diffraction patterns that there was no manganese oxide phase in the calcined Mn–Ce catalyst prepared by a co-precipitation method. This indicated that strong interactions exist between manganese and cerium oxides, because Mn$_2$O$_3$ and CeO$_2$ can be detected in pure manganese oxide calcined at the same temperature.

The redox property of catalysts is the key factor of the NH$_3$-SCR processes.29 Electronic transfer, showing as oxidation and reduction, plays quite an important role in catalytic reactions. The redox couples exist over the metal oxide catalysts, such as Mn$^{4+}$/Mn$^{3+}$, Ce$^{4+}$/Ce$^{3+}$ and Fe$^{3+}$/Fe$^{2+}$, which provide the redox cycles with excess oxygen. The activity of bi-metal and multi-metal oxide catalysts could be promoted by dual redox cycles. The general formula can be described as follows:

$$M^{n+} + N^{m+} \leftrightarrow M^{(n-1)+} + N^{(m+1)+}$$ (33)

There is a typical SCR reaction process via the E–R mechanism on Mn–Ce/TiO$_2$ and Mn–Ce/aluminium oxide (Al$_2$O$_3$) catalysts.77,93 Manganese oxides and ceria oxides also interact. They can form a solid solution because of the similarity of their structure.24 Ceria has a superior oxygen storage performance. Thus, the process of oxidizing Mn$^{3+}$ to Mn$^{4+}$ is enhanced by using ceria.24

Liu et al.96 investigated a Mn–Ce–Ti mixed oxide catalyst prepared using a hydrothermal method, and found that there were dual redox cycles, such as Mn$^{4+} + Ce^{3+} \rightarrow Mn^{3+} + Ce^{4+}$ and Mn$^{4+} + Ti^{3+} \rightarrow Mn^{3+} + Ti^{4+}$. These dual redox cycles can promote each other and facilitate the electron transfer between Mn, Ce and Ti active sites by decreasing the migration energy. The proposed schemes are as follows (Fig. 2).

The scheme shows that Mn$^{n+}$ sites may be the main active site for the adsorption of N. Furthermore, the addition of Ce, Fe, Cu, Ni and so on, may show a synergistic effect, which
facilitates the generation of Mn$^{4+}$ from Mn$^{3+}$. Kwon et al.97 studied the MnO$_x$/CeO$_2$–TiO$_2$ catalyst system. When Ce was added to Mn/Ti, an oxygen bridge of Mn–O–Ce was formed and, thus enhanced the binding between Mn and O$_2$. This oxygen bridge provided a channel for the electron transfer between manganese and cerium cations, and particularly accelerated the oxidation of Mn$^{3+}$ to Mn$^{4+}$ by Ce$^{4+}$.23

\[
\text{Mn}_2\text{O}_3 + 2\text{CeO}_2 \rightarrow 2\text{MnO}_2 + \text{Ce}_2\text{O}_3 \quad (34)
\]

Among the Mn–Fe mixed oxide catalysts, electronic transfer occurs between the different oxidation states of Fe$^{3+}$, Fe$^{2+}$, Mn$^{4+}$, and Mn$^{3+}$.98 The performance of the Mn/TiO$_2$ catalyst was improved by the addition of Fe.99 The process can be described approximately as follows:

\[
\begin{align*}
\text{Fe}^{3+} + \text{Mn}^{3+} & \leftrightarrow \text{Fe}^{2+} + \text{Mn}^{4+} \\
\text{NO} + \text{Mn}^{4+} & \rightarrow \text{NO}^\text{(ad)} + \text{Mn}^{3+} \\
\frac{1}{2}\text{O}_2 + \text{Fe}^{2+} & \rightarrow \text{Fe}^{3+} + \text{O}^-\text{(ad)} \\
\text{NO}^\text{(ad)} + \text{O}^-\text{(ad)} & \rightarrow \text{NO}_2 \\
\text{Fe}^{2+} + \text{Fe}^{3+} & \leftrightarrow \text{Fe}^{3+} + \text{Fe}^{2+} \\
\end{align*}
\]

\[
\begin{align*}
\text{Fe}^{3+} + \text{Mn}^{3+} & \leftrightarrow \text{Fe}^{2+} + \text{Mn}^{4+} \\
\text{NO} + \text{Mn}^{4+} & \rightarrow \text{NO}^\text{(ad)} + \text{Mn}^{3+} \\
\frac{1}{2}\text{O}_2 + \text{Fe}^{2+} & \rightarrow \text{Fe}^{3+} + \text{O}^-\text{(ad)} \\
\text{NO}^\text{(ad)} + \text{O}^-\text{(ad)} & \rightarrow \text{NO}_2 \\
\text{Fe}^{2+} + \text{Fe}^{3+} & \leftrightarrow \text{Fe}^{3+} + \text{Fe}^{2+} \\
\end{align*}
\]

Liu et al.100,101 investigated a series of WO$_3$-doped Mn–zirconium (Zr) mixed oxide catalysts. Using catalyst performance measurements, the SCR performance and poisoning tolerance of the Mn–Zr catalyst doped with WO$_3$ was higher than that for the Mn–Zr catalyst alone. There were redox couples of Mn$^{4+}$/Mn$^{3+}$ and W$^{6+}$/W$^{5+}$, i.e., W$^{5+} + \text{Mn}^{4+} \leftrightarrow W^{6+} + \text{Mn}^{3+}$. The redox property and the electron transfer was improved using these dual redox couples (Fig. 3). Thus, the electron transfer between Mn and W active sites was promoted and this contributes to the activation of NH$_3$ and an improvement of the NO conversion (Fig. 4).

Metal oxides could catalyze the reduction of NO with NH$_3$ via the transfer of electrons.102,103 As is known, catalysts play a role in accelerating the reaction rate. Referring to Fig. 2, it can be seen that metal cations provide the adsorption sites and function as the transfer station of electrons in the SCR process. Manganese mainly acts as the adsorption center for nitrogen. Mn$^{4+}$ receives an electron from NO or NH$_3$ and will be reduced into Mn$^{3+}$. Then the reduced Mn$^{3+}$ would be restored to Mn$^{4+}$ by an extra oxygen and then the next redox cycle starts. However, a faster pathway is via the transfer of an electron between metal oxides, such as Ce, Fe, W and so on. Therefore, to design a catalyst, it is necessary to introduce an element for the role of the adsorption and oxidation of nitrogen. Simultaneously, another element is required for superior oxygen storage to quickly restore the reduced element. The coordination of these two types of elements will improve the performance of SCR.

It is essential to characterize the catalysts’ structure in order to design an excellent catalyst. The current technology for treating the exhaust gas is supported vanadium-based catalysts.

![Fig. 3](image3.png)

Fig. 3 The electron transfer of redox couples of Mn$^{4+}$/Mn$^{3+}$ and W$^{6+}$/W$^{5+}$.

![Fig. 4](image4.png)

Fig. 4 NO$_x$ conversion over MnZr and WMnZr catalysts at 300 °C. Reaction conditions: [NO] = [NH$_3$] = 500 ppm, [O$_2$] = 5%, [H$_2$O] = 5%, [SO$_2$] = 50 ppm, GHSV = 128 000 h$^{-1}$. (Reprinted from ref. 100. Copyright 2015, with permission from Elsevier.)
on TiO₂ modified by W or Mo addition. Depending on the coverage, different polymeric vanadium oxides (VO₃) could segregate at the surface and these exhibited different turnover frequency (TOF) and selectivity.¹⁰⁴,¹⁰⁵ This could be interesting if the same trend existed for MnOₓ species, however, there has been little research proposed on use of different polymeric MnOₓ corresponding to their different performances. Ettireddy et al.¹⁰⁶ studied TiO₂ supported manganese oxide catalysts. Different TOFs were obtained on the Mn/TiO₂ loaded with different amounts of manganese (Table 2). It was proposed that the polymeric or microcrystalline form of MnOₓ was envisaged at higher loadings. As a general trend, the TOF and selectivity decreased with the polymeric form increasing at higher loadings. However, further study should be done to confirm which kind of polymeric manganese was formed and its TOF and selectivity should also be determined.

In this section, the reaction mechanisms have been summarized. It was supposed originally that NO₂ could be the main reactant for the SCR process while NO₂ is reduced to N₂ and so on. However, further study should be done to confirm the selectivity should also be determined.

3. Catalyst deactivation

Because of the demands of high temperature operation, conventional SCR catalysts suffer a huge amount of damage from the sulfur oxides, water vapor, heavy metal ions and alkali and alkaline earth metal ions in the upstream of the flue gas.¹⁰⁶ Installing the reactor downstream of the desulfurizer and precipitator is an excellent way to avoid deactivation. Many metal oxide catalysts have been reported as being low temperature SCR catalysts,⁹⁹,¹⁰⁹,¹¹⁰ however, commercial low temperature SCR catalysts have narrow fields of application because they are not immune to the residual SO₂ and H₂O contained in real flue gas. The poor tolerance of SO₂ and H₂O has been a major obstacle for practical applications.¹¹¹ Therefore, it is significant to illuminate the poisoning mechanisms of SO₂, H₂O and so on.

3.1 SO₂ and H₂O

Sulfur oxides are mainly generated from the combustion of fossil fuels and the sintering of ore. Residual SO₂ after desulfurization can still damage the metal oxide catalysts. The deposition of ammonium sulfates, such as ammonium bisulfate [(NH₄)HSO₄] and ammonium sulfate [(NH₄)₂SO₄] is the primary cause for the deactivation of metal oxide catalysts at low temperature.¹¹² The decomposition temperature of ammonium sulfite [(NH₄)₂SO₃] and (NH₄)₂SO₄ salts is higher than the operation temperature of the catalysts. Most researchers regard the poisoning of SO₂ as a major problem. The deactivation of SO₂ can be classified into two categories: deposition of (NH₄)₂SO₄ and sulfation of active sites. The undesired metal sulfates and (NH₄)₂SO₄ would occupy active sites on the surface and gradually deactivate the catalyst. The deactivation caused by water vapor can contribute to the competitive adsorption. The adsorption of H₂O on the catalysts’ surface blocks the active sites, which are provided for the adsorption of NH₃ and NO.

3.1.1 Deposition of ammonium sulfates

The harm caused by (NH₄)₂SO₄ and (NH₄)₂SO₃ is to mainly block the active sites. The micropore surface area and volume was decreased after SO₂ was introduced in to a simulated flue gas.¹¹³ When excess O₂ exists in the flue gas, the trace residual SO₂ can be oxidized to SO₃, a reaction catalyzed by the metal active sites [eqn (34)]. Furthermore, it was proved that the SO₂ could be easily oxidized on the MnOₓ catalysts’ surface. Also, NO₃ would further facilitate the oxidation of SO₂ to SO₃ [eqn (35)].¹¹⁴ The reaction could be described approximately as follows:

\[
\text{SO}_2 + 1/2 \text{O}_2 \rightarrow \text{SO}_3 \quad (40)
\]

\[
\text{NO}_2 + \text{SO}_2 \rightarrow \text{NO} + \text{SO}_3 \quad (41)
\]

Gaseous NH₃ was assisted by the Bronsted acid sites to form NH₄⁺, which could react with SO₂ or SO₃ to form (NH₄)₂SO₄ or (NH₄)₂SO₃, respectively. In addition, NH₄HSO₄ species were also generated in the flue gas. The formation of NH₄HSO₄, (NH₄)₂SO₃ and (NH₄)₂SO₄ can be described as follows:¹¹⁵

\[
\text{SO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4 \quad (42)
\]

\[
\text{H}_2\text{SO}_4 + \text{NH}_3 \rightarrow \text{NH}_4\text{HSO}_4 \quad (43)
\]

\[
2\text{NH}_3 + \text{SO}_2 + \text{H}_2\text{O} \rightarrow (\text{NH}_4)_2\text{SO}_4 \quad (44)
\]

\[
2\text{NH}_3 + \text{SO}_3 + \text{H}_2\text{O} \rightarrow (\text{NH}_4)_2\text{SO}_4 \quad (45)
\]

Actually, (NH₄)₂SO₃ and (NH₄)₂SO₄ can be decomposed at a relatively higher temperature. However, low temperature SCR of NO₃ is usually requested at a low operation temperature, which is lower than the decomposition temperature of the (NH₄)₂SO₃ and (NH₄)₂SO₄. Therefore, removing the undesired side-products of (NH₄)₂SO₄ salts is a big challenge to researchers.

Almost all of reported MnOₓ catalysts were affected by the introduction of SO₂ in the feed gas.¹¹⁶ Zhang et al.¹¹⁶ introduced 100 ppm SO₂ in the feed gas, which induced an apparent
decrease of NO conversion over the Mn–Ce metal oxide catalysts supported on carbon nanotubes. Lu et al.117 fed 200 ppm SO\textsubscript{2} to the flue gas, and then the NO\textsubscript{x} conversion of Mn–Ce/TiO\textsubscript{2} catalyst decreased from an initial value of 99\% to about 78\%.

Jiang et al.118 investigated the effect of SO\textsubscript{2} on MnO\textsubscript{2}/Cu\textsubscript{2}O/TiO\textsubscript{2} catalysts prepared by three methods, sol–gel, impregnation and co-precipitation. The NO conversions had an apparent decrease for these catalysts (Fig. 5a).

Yu et al.111 prepared MnO\textsubscript{2}–Fe\textsubscript{2}O\textsubscript{3}–CeO\textsubscript{2}–TiO\textsubscript{2} catalysts. The performance of this catalyst was decreased by introducing SO\textsubscript{2}. The NH\textsubscript{4}+ species and the SO\textsubscript{4}2− species were determined from Fourier-transform infrared spectra. The NH\textsubscript{4}+ species were chemisorbed on to the Bronsted acid sites.119 This means that the poisoning of SO\textsubscript{2} can be via the formation and deposition of (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}, which blocks the active channels of the catalyst. The NO conversion was decreased to 50\% from 90\% (Fig. 5b).

Xu et al.120 also found that NH\textsubscript{4}HSO\textsubscript{4} and NH\textsubscript{4}H\textsubscript{2}SO\textsubscript{4} formed via the reaction of SO\textsubscript{2} and NH\textsubscript{3}, which could be deposited on catalysts’ surface and blocked the active sites [eqn (34)–(39)]. Furthermore, more Bronsted acid sites will be generated while the sulfates are formed by SO\textsubscript{2} adsorption on surface. The Lewis acid site could be transformed to the Bronsted acid site by adsorption of a water molecule.121 This means that a wet atmosphere would promote the formation of the Bronsted acid sites, which facilitates the sorption of NH\textsubscript{4}+.122 In terms of diffuse reflectance infrared Fourier transform (DRIFT) spectra, Jiang et al.123 proved that the formation of NH\textsubscript{4}+ was promoted after introducing SO\textsubscript{2}. However, even though Bronsted acid sites were formed by the sulfatization, NO conversion was decreased because SO\textsubscript{2} occupied the NO adsorption sites.

Therefore, to obtain high NO conversion, it is necessary to prevent the formation of (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}. Actually, it is nearly impossible to eliminate the residual SO\textsubscript{2} completely. Efficient ways to do it may be preventing the oxidation of SO\textsubscript{2} and decreasing the decomposition temperature of (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} and NH\textsubscript{4}H\textsubscript{2}SO\textsubscript{4} on the Mn/TiO\textsubscript{2} catalyst determined to be 213 °C and 361 °C, respectively. However, in the case of the Mn–Ce/TiO\textsubscript{2} catalyst, the decomposition temperature of NH\textsubscript{4}H\textsubscript{2}SO\textsubscript{4} was approximately 286 °C, which was much lower than 361 °C. This indicated that the thermal stability of NH\textsubscript{4}H\textsubscript{2}SO\textsubscript{4} on the catalyst was greatly reduced after introducing cerium. This inference was also proved by the DRIFT results. Therefore, ceria improved the performance of Mn/TiO\textsubscript{2} catalyst.

There is a universal agreement that residual SO\textsubscript{2} damages the metal oxide catalysts and decreases the NO conversion. (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{3} and (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} were formed on catalysts’ surface by the reaction of SO\textsubscript{2}. Researchers found that the NO conversion would increase for a while when SO\textsubscript{2} was introduced and then finally decrease. The adsorption of SO\textsubscript{2} improved the amount of Lewis acid sites, and thus the capacity of NH\textsubscript{3} was improved. However, the sulfation damages the manganese cations, which are the active sites of NO.

3.1.2 Sulfation of active sites. The presence of SO\textsubscript{2} could trigger the sulfation of the dominating active phase of metal oxide catalysts. Furthermore, the harm caused by the sulfation would be permanent and irreversible.124 Jiang et al.125 described a proposed mechanism of SO\textsubscript{2} deactivation effect for a Fe–Mn/Ti catalyst. The scheme in Fig. 6a shows the formation of Lewis acid sites. Mn cations are the active sites for the adsorption of NO to form bidentate or monodentate nitrates (Fig. 6b), however, when both NO and SO\textsubscript{2} exist in the flue gas, NO and SO\textsubscript{2} were adsorbed competitively. The adsorption ability of SO\textsubscript{2} was much higher than that of NO (Fig. 6c), so SO\textsubscript{2} occupied the active sites and the catalyst was sulfated. Furthermore, Fig. 6d shows that NH\textsubscript{3} could be adsorbed on the Lewis acid site of the Mn cations. When the active sites were sulfated, the Lewis acid sites could be transformed to the Bronsted acid sites via bonding of a water molecule. Therefore, this did not affect the adsorption of NH\textsubscript{3}, because NH\textsubscript{3} could also be adsorbed on the Bronsted acid sites (Fig. 6e). It is therefore, proposed that the effect of SO\textsubscript{2} was mainly on the adsorption of NO rather than on the adsorption of NH\textsubscript{3}.

Yu et al.111 investigated the formation of metal sulfation on fresh Mn–Fe–Ce–Ti catalyst impregnated (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}. In terms of
metal oxide catalysts. Ceria may trap SO2 for NO Lewis acid sites than Mn/TiO2 catalysts. This result implied that pre-treatment with SO2, Ce doped Mn/TiO2 catalysts had more stra et al. and then combined with Mn species to form manganese sulfate in inhibit the formation of (NH4)2SO4 and NH4HSO4. Ce while the SO2 was added. SO2 was oxidized to SO3 or sulfa-

tion species on MnO2. Lewis acid sites could be preserved e

the formation schematic of bulk like sulfate on Mn–Ce/Ti catalysts. (Reprinted from ref. 25. Copyright 2013, with permission from Elsevier.)

\[
2\text{CeO}_2 + 3\text{SO}_2 + \text{O}_2 \rightarrow \text{Ce}_4(\text{SO}_4)_3
\] (46)

Furthermore, it is reported that Zr could optimize the redox property and strengthen SO2 tolerance. Chang et al. and Shi et al. compared the resistance of the Mn/TiO2 catalyst and the hierarchically macro-mesoporous Mn/TiO2 (HM-Mn/TiO2) catalyst prepared by the sol–gel method. After feeding 30 ppm SO2 to the system, the NO conversion of the Mn/TiO2 catalyst decreased sharply from 57% to 15%, however, the NO conversion of the HM-Mn/TiO2 catalyst kept a higher value of more than 84%. The result indicated that maybe the SO2 resistance could be improved by using a hierarchically macro-mesoporous structure.

As previously, because NH3 could be adsorbed on both the Lewis acid sites and the Brønsted acid sites, there is little influence on the adsorption of NH3. However, the adsorption ability of SO2 was higher than that of NO. Residual SO2 would be adsorbed on Mn cations, which are the active sites for the adsorption of NO. The damage caused by sulfation would be permanent and irreversible. Doping with ceria should be a good choice to divert this damage from Mn. More research should be done to investigate the reaction mechanism between SO2 and
Mn cations. The correlations should be established between the extent of sulfation and the degree of dispersion of MnO$_2$ species at the surface.

3.1.3 Effect of H$_2$O. Water vapor could decrease the activity and show a notable inhibition on low temperature SCR. H$_2$O can be generated from the original flue gas or the reaction of SCR of NO. Even though there is no H$_2$O in the original flue gas, H$_2$O vapor will be generated during the SCR reaction, as shown in eqn (1). This means that the presence of H$_2$O is nearly inevitable. Therefore, many efforts have been made to evaluate the durability of metal oxide catalysts in the presence of H$_2$O vapor. As mentioned previously, trace SO$_2$ could still decrease the activity of the metal catalyst. The deactivation process of SO$_2$ would be enhanced in the case of H$_2$O vapor.

The main reason for the decrease of activity can be attributed to the competitive adsorption of H$_2$O. Many researchers reported that the adsorption of H$_2$O on the catalysts’ surface blocked the active sites, which are provided for the adsorption of oxides (NbO$_x$). Port of the adsorption of H$_2$O inhibited the adsorption of NO, which apparently decreased the NO conversion. There is a summary of Mn-containing catalysts’ performance in the presence and in the absence of SO$_2$ and H$_2$O (Table 4).

3.1.4 Regeneration. Many articles reported that the deactivated (NH$_4$)$_2$SO$_4$ could be regenerated after use. Water washing, thermal regeneration, thermal reduction regeneration and reductive regeneration were the usual methods to regenerate the deactivated catalysts. 137,149 Yu et al. 150 investigated the regeneration of the SCR catalyst using dilute sodium hydroxide solution. The catalyst was deactivated by the deposition of sulfates on the surface. Pourkhalil et al. 111 regenerated the deactivated MnO$_2$ catalysts via heating at 350 °C for 2 h. This was a reversible process because of (NH$_4$)$_2$SO$_4$ salts can be decomposed, Jin et al. 15 regenerated the Mn/Ti and Mn–Ce/Ti catalysts with water washing (Fig. 9a). Shi et al. 129 regenerated the CeO$_2$ catalysts using a thermal treatment (Fig. 9b).

Huang et al. 153 investigated a series of Fe–Mn oxide catalysts supported on mesoporous silica (MPS), which showed good activity. When H$_2$O and SO$_2$ was fed in to the system at 190 °C, the NO conversion over Mn–Fe/MPS was finally decreased to 85.3% from 99.2%. This was attributed to the formation of the NH$_4$HSO$_4$ and (NH$_4$)$_2$SO$_4$ in the presence of both H$_2$O and SO$_2$. However, the deactivated catalyst could be regenerated using a heating treatment, because the deactivation was because of the catalyst pore plugging and surface area loss by the deposition of (NH$_4$)$_2$SO$_4$. When the temperature is above 140 °C, H$_2$O has no negative effect on its activity.

Guan et al. 151 investigated the resistance to deactivation by H$_2$O and SO$_2$ of Ti$_{0.9}$Ce$_{0.05}$V$_{0.05}$O$_2$ catalysts, which showed a high NO conversion and N$_2$ selectivity. After feeding 400 ppm SO$_2$ for 26 h at 150 °C, the surface of catalyst was deposited with significant agglomeration and bulk NH$_4$NO$_3$ and (NH$_4$)$_2$SO$_4$ with a size of 30–50 μm. Then, the NH$_4$NO$_3$ and (NH$_4$)$_2$SO$_4$ was decomposed when the catalyst was calcined at 200 °C and 400 °C, because the decomposition temperatures were 170 °C and 300 °C, respectively. The surfaces were scanned using scanning electron microscopy (SEM), and the transformation of the surface is shown in Fig. 10.

3.2 Alkali and alkaline earth metal ions

Fine fly ash still exists in the downstream of the flue gas after desulfurizing and dedusting. Amounts of alkali and alkaline earth metals were released from the raw materials or coal, such

Table 3 Capacity of Mn–Fe spinel for NH$_3$ and NO$_x$ adsorption at 150 °C μmol g$^{-1}$

Condition	NH$_3$ (μmol g$^{-1}$)	NO$_x$ (μmol g$^{-1}$)
In the absence of H$_2$O	122	82
In the presence of 5% H$_2$O	105	46

Fig. 8 Dependence of NO conversion rate on gaseous NO concentration over Mn–Fe spinel: (a) in the absence of H$_2$O; (b) in the presence of 5% H$_2$O. (Reproduced from ref. 108 with permission from the Royal Society of Chemistry.)
Catalysts	Preparation process	Conversion (%)	Poison condition	Ref.	
Mn	Co-precipitation/500°C	100%	NO: 0.1% NH₃: 0.1% O₂: 2%	110	62% (110°C)
Mn	Sol-gel/400°C	98%	NO: 0.05% NH₃: 0.05% O₂: 1%	110	>90% (180°C)
Mn	Citric acid/300°C	92%	NO: 0.05% NH₃: 0.05% O₂: 1%	110	>90% (180°C)
Mn	Citric acid/650°C	80%	NO: 0.1% NH₃: 0.1% O₂: 2%	110	>80% (180°C)
Mn	Citric acid/630°C	70%	NO: 0.1% NH₃: 0.1% O₂: 2%	110	>70% (180°C)
Mn	Citric acid/550°C	60%	NO: 0.1% NH₃: 0.1% O₂: 2%	110	>60% (180°C)
Mn	Co-precipitation/500°C	50%	NO: 0.05% NH₃: 0.05% O₂: 1%	110	>50% (180°C)
Mn	Sol-gel/340°C	40%	NO: 0.1% NH₃: 0.1% O₂: 2%	110	>40% (180°C)
Mn	Citric acid/550°C	30%	NO: 0.1% NH₃: 0.1% O₂: 2%	110	>30% (180°C)

Note: Preparation process means the preparation method, calcination temperature and time. Conversion conditions are the concentration of SO₂ and H₂O introduced on the basis of the reaction gas. No conversion is specified as conversion of reaction gas at a certain temperature after introducing SO₂ and/or H₂O.
as in the cement production process. Alkali salts are important components in fly ash, which not only plugs the pores of catalysts, but also decreases SCR activity by reacting with the active phase.154–156 In addition, because of the water solubility or ion exchange, alkali metal has a high liquidity to neutralize the acid sites.157 For the traditional V\textsubscript{2}O\textsubscript{5}-based SCR catalysts, alkali metal deactivated these by affecting the acid sites on the surface.154,158 Alkali metals could lower MnO\textsubscript{x} reducibility, decrease specific surface areas and damage the acid sites of low temperature catalysts.159 Zhou \textit{et al.}159 reported that sodium sulfate, used to simulate the combined effects of alkali metal and SO\textsubscript{2} in the flue gas, had strong effects on the activity of the Mn–Ce/TiO\textsubscript{2} catalyst, such as simultaneous pore occlusion and sulfation effect. Guo \textit{et al.}160 investigated the deactivation effect of sodium (Na) and potassium (K) on a Mn/TiO\textsubscript{2} catalyst. The catalyst was prepared using a sol–gel method and Na and K were doped via an impregnation method. The Mn/TiO\textsubscript{2} catalysts exhibited a high activity of 90% NO conversion. However, when Na or K was doped, the conversion was decreased from 95% to 78% and 27%, respectively. In this study, the effect of K was apparently more serious than that of Na.161 Furthermore, Chen \textit{et al.}155 found that on the catalysts’ surface chemisorbed oxygen was reduced by alkali and alkaline earth ions together with a decrease of SCR activity. The downward trend was K > Na > Ca > Mg.

Shen \textit{et al.}162,163 studied the effects of K, Na and Ca on a Mn–Ce/Zr catalyst. From the NH\textsubscript{3}-TPD measurements, the adsorption of NH\textsubscript{3} was decreased when the catalyst was doped with alkali metal ions. This may indicate that the alkali metal on the surface of the catalysts may destroy the surface acidic sites, and decrease the redox property and chemisorbed oxygen. Furthermore, they also found that K was more harmful to the catalyst compared to Na or Ca. However, Kustov \textit{et al.}164 found that V\textsubscript{2}O\textsubscript{5} supported on sulfated zirconium dioxide showed a good resistance towards alkali ions. Chen \textit{et al.}70 reported that the K resistance of the Mn/TiO\textsubscript{2} catalyst could be improved by doping it with Co, which increased the adsorption of NH\textsubscript{3} and NO\textsubscript{x} species.

3.3 Heavy metal ions

Heavy metal ions, regarded as hazardous pollutants, can deactivate the SCR catalysts. Heavy metal ions in the flue gas are mainly generated from coal used as fuel.165 It has been proved that heavy metals could lead to the deactivation of vanadium-based SCR catalysts.166 Kong \textit{et al.}167 found that the Brønsted acid sites of a V–W/TiO\textsubscript{2} catalyst were impacted when mercury chloride was introduced. Actually, there is little heavy metal ions found in the downstream of the precipitator because the heavy metal ions usually exist in the fly ash. Moreover, water
vapor exists in the flue gas all along. For the water solubility of heavy metal ions, it is necessary to take the effect of heavy metals into consideration.

Lead (Pb) and zinc (Zn) are typical heavy metals found in the flue gas of coal fired power plants. Guo et al.156,168 and Li et al.159 compared the poisoning effect of Pb and Zn on a Mn/TiO2 catalyst. The Pb or Zn was loaded on to the Mn/TiO2 catalyst using impregnation. As a result, both Pb and Zn were found to have a negative effect on the Mn/TiO2 catalyst (Fig. 11a). From the characterization experiments, the redox ability of Zn–Mn/TiO2 and Pb–Mn/TiO2 was found to be decreased because of the drop of Mn4+ and chemisorbed oxygen. Zhou et al.159 investigated the deactivation effects of lead(II) oxide (PbO) on the Mn–Ce/TiO2 catalyst. It was proposed that the surface area, the concentration of Mn4+, Ce3+ and chemisorbed oxygen was decreased after introducing PbO. Consequently, the performance of the Mn–Ce/TiO2 catalyst was greatly decreased because of the poisoning of PbO (Fig. 11b).

Mercury (Hg0) is a toxic trace element in the atmosphere and has a high concentration in coals used in China, such as anthracite, bituminous coal and lignite.171 Researchers have attempted to remove the NO and Hg0 simultaneously. However, Hg0 is harmful to the catalysts of SCR of NO because it will compete with NH3 for adsorption on the active sites. Xu et al.41 investigated the influence of Hg0 on the NO conversion over a LaMnO4 catalyst. The NO conversion had a slight decrease in the presence of Hg0 (Fig. 12).

4. Conclusions and perspectives

NH3-SCR of NOx in the presence of O2 is one of the important strategies in controlling NOx emissions. Low temperature SCR has been investigated for several decades. Mn-containing metal oxide catalysts generally gave the preferable performance. SCR of NOx with NH3 follows both the L–H and the E–R mechanisms. There is quite a similarity between these two different mechanisms. A comproportionation occurs in both the L–H and E–R mechanisms. Fast SCR has a higher reaction rate than standard SCR and it depends on the formation of NO2. N2O formation can mainly be explained using the E–R mechanism. A synergistic mechanism is vital for designing a remarkable metal oxide catalyst. Multi-metal cations will promote the performance mutually. Manganese cations mainly serve as the adsorption center for nitrogen. Thus, it is necessary to introduce an element for the adsorption of oxygen and to provide a redox cycle.

A big challenge in the industrial use of Mn-containing oxide catalysts is their durability. They are vulnerable to the effects of both SO2 and H2O. Sulfur oxides and water vapor cause the deactivation of Mn-containing catalysts. Alkali metals could lower manganese oxide reducibility, decrease specific surface areas and damage the acid sites of low temperature catalysts. The poisoning process of SO2 can be classified into two categories: deposition of (NH4)2SO4 and sulfation of the active sites. For the low temperature downstream of the flue gas, the deposition of (NH4)2SO4 or NH4HSO4 occurs more easily and NH3 is evidently adsorbed by H2O in comparison with the
operation upstream. Many efforts have been made to improve the durability. Nonetheless, few techniques have been useful in practical industrial applications.

On the basis of the previous analysis, some conclusions can be drawn as follows:

(1) Most research is related to the performance of the catalysts, such as NO conversion, N₂ selectivity and poisons' tolerance, as well as the mechanism of this process. An excellent NO conversion of catalysts has been obtained, however, the N₂ selectivity is not satisfactory.

(2) Less effort has been made on determining the relationship of metal oxide crystal structure and its performance, which is required for the design of catalysts. More attention should be given to the relationship between the catalysts' structure and its reaction mechanism, which guides us exactly to design a low temperature SCR catalyst for different fuel gases.

(3) Mn-containing metal oxide catalysts show notable SCR performance at low temperature. However, the single manganese oxide catalysts have a poor tolerance of SO₂ and H₂O, which has been improved by modifying other elements in bench scale experiments. Researchers have been engaged in improving Mn-containing catalysts by modifying them with different metal oxides. Ce can enhance the adsorption of NO and O₂ which benefits the oxidation of NO to NO₂ and improves sulfur resistance, and inhibits the formation of (NH₄)₂SO₄ and NH₄HSO₄. Ce has good selectivity for improving the catalysts' performance. More research efforts should be made on the activity and poisoning tolerance.

(4) Most catalysts were powder rather than monolith catalysts, such as honeycomb or slab. A laboratory study is a small scale test that will react differently to industrial tests. Specific surface area is important to the activity and closely related to the particles' size, shape and aggregation. The preparation method is also important to the catalysts' performance. Researchers should give more attention to pilot scale tests or industrial tests.

(5) The low temperature SCR catalysts have been investigated for several decades. Lots of elements have been studied in the catalysts. To avoid repetitive work and waste of resources, a low temperature SCR catalysts' materials database should be built.

(6) Heaps of disabled SCR catalysts should be regenerated and reused. The regeneration and recycling of SCR catalysts is another big task for researchers. This problem should be taken into consideration while researchers are designing new SCR catalysts.

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Grants U1360202, 51472030, 51672024 and 51502014) and the 111 Project (No. B17003). The authors would like to thank the editor for editing the manuscript and the anonymous reviewers for their detailed and helpful comments.

References

1 H. Amini, S.-M. Taghavi-Shahri, S. B. Henderson, V. Hosseini, H. Hassankhany, M. Naderi, S. Ahadi, C. Schindler, N. Künzli and M. Yunesian, Sci. Rep., 2016, 6, 32970.
2 A. Richter, J. P. Burrows, H. Nusz, C. Granier and U. Niemeier, Nature, 2005, 437, 129–132.
3 J. N. Galloway, F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, C. C. Cleveland, P. A. Green, E. A. Holland, D. M. Karl, A. F. Michaels, J. H. Porter, A. R. Townsend and C. J. Vöosmart, Biogeochemistry, 2004, 70, 153–226.
4 J. Zhu and A. Thomas, Appl. Catal., B, 2009, 92, 225–233.
5 M. Fu, C. Li, P. Lu, L. Qu, M. Zhang, Y. Zhou, M. Yu and Y. Fang, Catal. Sci. Technol., 2014, 4, 14–25.
6 C. Tang, H. Zhang and L. Dong, Catal. Sci. Technol., 2016, 6, 1248–1264.
7 B. Liu, Y. H. Wang and H. Xu, J. Energy Eng., 2016, 142, 10.
8 B. Liu, B. Bao, Y. Wang and H. Xu, J. Energy Inst., 2016, 90, 441–451.
9 T. Ishihara, J. Catal., 2003, 220, 104–114.
10 D. G. Streets and S. T. Waldhoff, Atmos. Environ., 2000, 34, 363–374.
11 P. Forzatti, Appl. Catal., A, 2001, 222, 221–236.
12 M. Koebel, G. Madia and M. Elsener, Catal. Today, 2002, 73, 239–247.
13 M. T. Javed, N. Irfan and B. M. Gibbs, J. Environ. Manage., 2007, 83, 251–289.
14 S. W. Bae, S. A. Roh and S. D. Kim, Chemosphere, 2006, 65, 170–175.
15 J. O. L. Wendt, W. P. Linak, P. W. Groff and R. K. Srivastava, AIChE J., 2001, 47, 2603–2617.
16 S. Roy and A. Baiker, Chem. Rev., 2009, 109, 4054–4091.
17 G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal., B, 1998, 18, 1–36.
18 K.-I. Shimizu, J. Shibata, H. Yoshida, A. Satsuma and T. Hattori, Appl. Catal., B, 2001, 30, 151–162.
19 S. Brandenberger, O. Kroecher, A. Tissler and R. Althoff, Catal. Rev.: Sci. Eng., 2008, 50, 492–531.
20 L. Casagrande, L. Lietti, I. Nova, P. Forzatti and A. Baiker, Appl. Catal., B, 1999, 22, 63–67.
21 K. Bourikas, C. Fountzoula and C. Kordulis, Appl. Catal., B, 2004, 52, 145–153.
22 S. Hodjati, K. Vaezzadeh, C. Petit, V. Pitchon and A. Kiennemann, Top. Catal., 2001, 16, 151–155.
23 G. Qi and R. T. Yang, Chem. Commun., 2003, 848–849, DOI: 10.1039/b212725c.
24 R. Qu, X. Gao, K. Cen and J. Li, Appl. Catal., B, 2013, 142–143, 290–297.
25 R. Jin, Y. Liu, Y. Wang, W. Cen, Z. Wu, H. Wang and X. Weng, Appl. Catal., B, 2014, 148–149, 582–588.
26 D. A. Peña, B. S. Uphade and P. G. Smirniotis, J. Catal., 2004, 221, 421–431.
27 G. Qi, R. T. Yang and R. Chang, Appl. Catal., B, 2004, 51, 93–106.
28 B. Thirupathi and P. G. Smirniotis, Appl. Catal., B, 2011, 110, 195–206.
29 W. Shan, F. Liu, H. He, X. Shi and C. Zhang, Appl. Catal., B, 2012, 115, 100–106.
30 N. Apostolescu, B. Geiger, K. Hizbullah, M. T. Jan, S. Kureti, D. Reichert, F. Schott and W. Weisweiler, Appl. Catal., B, 2006, 62, 104–114.
31 F. Kapteijn, L. Singoreddjo, A. Andreini and J. A. Mouljin, Appl. Catal., B, 1994, 3, 173–189.
32 F. c. Larachi, J. Pierre, A. Adnot and A. Bernis, Appl. Surf. Sci., 2002, 195, 236–250.
33 B. Shen, F. Wang and T. Liu, Powder Technol., 2014, 253, 152–157.
34 F. Liu, H. He, C. Zhang, Z. Feng, L. Zheng, Y. Xie and T. Hu, Appl. Catal., B, 2010, 96, 408–420.
35 S. Yang, S. Xiong, Y. Liao, X. Xiao, F. Qi, Y. Peng, Y. Fu, W. Shan and J. Li, Environ. Sci. Technol., 2014, 48, 10354–10362.
36 H. Hu, S. Cai, H. Li, L. Huang, L. Shi and D. Zhang, ACS Catal., 2015, 5, 6069–6077.
37 Z. Chen, Q. Yang, H. Li, X. Li, L. Wang and S. Chi Tsang, J. Catal., 2010, 276, 56–65.
38 M. A. Zamudio, N. Russo and D. Fino, Ind. Eng. Chem. Res., 2011, 50, 6668–6672.
39 M. Kang, E. D. Park, J. M. Kim and J. E. Yie, Catal. Today, 2006, 111, 236–241.
40 D. Fang, J. Xie, D. Mei, Y. Zhang, F. He, X. Liu and Y. Li, RSC Adv., 2014, 4, 25540.
41 H. Xu, Z. Qu, C. Zong, F. Quan, J. Mei and N. Yan, Appl. Catal., B, 2016, 186, 30–40.
42 Z. Liu and S. Ihl Woo, Catal. Rev., 2006, 48, 43–89.
43 J. Li, H. Chang, L. Ma, J. Hao and R. T. Yang, Catal. Today, 2011, 175, 147–156.
44 C. Liu, J.-W. Shi, C. Gao and C. Niu, Appl. Catal., A, 2016, 522, 54–69.
45 http://www.sdpcc.gov.cn/gztz/2010/2010/107019_262640.html, accessed Dec. 7th, 2016.
46 P. R. Ettireddy, N. Ettireddy, T. Bongarini, R. Pardemann and P. G. Smirniotis, J. Catal., 2012, 292, 53–63.
47 G. Busca, M. A. Larrubia, L. Arrighi and G. Ramis, Catal. Today, 2005, 107–108, 139–148.
48 G. Zhou, B. Zhong, W. Wang, X. Guan, B. Huang, D. Ye and H. Wu, Catal. Today, 2011, 175, 157–163.
49 L. Qiu, J. Meng, D. Pang, C. Zhang and F. Ouyang, Catal. Lett., 2015, 145, 1500–1509.
50 D. Ye, Practical Inorganic Thermodynamic Data Manual, Metallurgical Industry Press, Beijing, 1st edn, 1981.
51 I. Nam, J. Catal., 1989, 119, 269.
52 S. Yang, F. Qi, Y. Liao, S. Xiong, Y. Lan, Y. Fu, W. Shan and J. Li, Ind. Eng. Chem. Res., 2014, 53, 5810–5819.
53 S. Yang, F. Qi, S. Xiong, H. Dang, Y. Liao, P. K. Wong and J. Li, Appl. Catal., B, 2016, 181, 570–580.
54 T. Chen, B. Guan, H. Lin and L. Zhu, Chin. J. Catal., 2014, 35, 294–301.
55 S. Yang, C. Wang, J. Li, N. Yan, L. Ma and H. Chang, Appl. Catal., B, 2011, 110, 71–80.
56 G. Qi and R. T. Yang, J. Phys. Chem. B, 2004, 108, 15738–15747.
57 F. Liu and H. He, Catal. Today, 2010, 153, 70–76.
58 Z. Wu, B. Jiang, Y. Liu, H. Wang and J. Jin, Environ. Sci. Technol., 2007, 41, 5812–5817.
112 G. Xie, Z. Liu, Z. Zhu, Q. Liu, J. Ge and Z. Huang, Y.-J. Shi, H. Shu, Y.-H. Zhang, H.-M. Fan, Y.-P. Zhang and J. Yu, F. Guo, Y. Wang, J. Zhu, Y. Liu, F. Su, S. Gao and Z. Liu, Y. Liu, Y. Li, H. Su and L. Ma, B. Jiang, B. Deng, Z. Zhang, Z. Wu, X. Tang, S. Yao and H. Lu, J. Phys. Chem. C, 2014, 118, 14866–14875.

90 T.-Y. Li, S.-J. Chiang, B.-J. Liaw and Y.-Z. Chen, Appl. Catal., B, 2011, 103, 143–148.

91 R. Farra, M. García-Melchor, M. Eichelbaum, M. Hashagen, W. Frandsen, J. Allan, F. Girsdies, L. Szentmiklósi, N. López and D. Teschner, ACS Catal., 2013, 3, 2256–2268.

92 S. Imamura, A. Doi and S. Ishida, Ind. Eng. Chem. Prod. Res. Dev., 1985, 24, 75–80.

93 D. A. Peña, B. S. Uphade, E. P. Reddy and P. G. Smirniotis, J. Phys. Chem. B, 2004, 108, 9927–9936.

94 H. Chang, J. Li, J. Yuan, L. Chen, Y. Dai, H. Arandianji, J. Xu and J. Hao, Catal. Today, 2013, 201, 139–144.

95 R. Jin, Y. Liu, Z. Wu, H. Wang and T. Gu, Chemosphere, 2010, 78, 1160–1166.

96 Z. Liu, J. Zhu, J. Li, L. Ma and S. I. Woo, ACS Appl. Mater. Interfaces, 2014, 6, 14500–14508.

97 D. W. Kwon, K. B. Nam and S. C. Hong, Appl. Catal., A, 2015, 497, 160–166.

98 Z. Chen, F. Wang, H. Li, Q. Yang, L. Wang and X. Li, Ind. Eng. Chem. Res., 2012, 51, 202–212.

99 Y. J. Kim, H. J. Kwon, I.-S. Nam, J. W. Cheung, J. K. Kil, H.-J. Kim, M.-S. Cha and G. K. Yeo, Catal. Today, 2010, 151, 244–250.

100 Z. Liu, Y. Liu, Y. Li, H. Su and L. Ma, Chem. Eng. J., 2016, 283, 1044–1050.

101 Z. Liu, Y. Li, T. Zhu, H. Su and J. Zhu, Ind. Eng. Chem. Res., 2014, 53, 12964–12970.

102 P. Lu, C. Li, G. Zeng, L. He, D. Peng, H. Cui, S. Li and Y. Zhai, Appl. Catal., B, 2010, 96, 157–161.

103 Y. Shen, S. Zhu, T. Qiu and S. Shen, Catal. Commun., 2009, 11, 20–23.

104 G. Ramis, J. Catal., 1990, 124, 574–576.

105 G. Busca, Appl. Catal., B, 1998, 18, 1–36.

106 P. R. Ettridgey, N. Ettridgey, S. Mamedov, P. Boolchand and P. G. Smirniotis, Appl. Catal., B, 2007, 76, 123–134.

107 M. Inomata, J. Catal., 1980, 62, 140–148.

108 S. Xiong, Y. Liao, X. Xiao, H. Dang and S. Yang, Catal. Sci. Technol., 2015, 5, 2132–2140.

109 X. Zhang, B. Shen, K. Wang and J. Chen, J. Ind. Eng. Chem., 2013, 19, 1272–1279.

110 X. Wang, X. Li, Q. Zhao, W. Sun, M. Tade and S. Liu, Chem. Eng. J., 2016, 288, 216–222.

111 J. Yu, F. Guo, Y. Wang, J. Zhu, Y. Liu, F. Su, S. Gao and G. Xu, Appl. Catal., B, 2010, 95, 160–168.

112 G. Xie, Z. Liu, Z. Zhu, Q. Liu, J. Ge and Z. Huang, J. Catal., 2004, 224, 36–41.

113 Y. Wang, X. Li, L. Zhan, C. Li, W. Qiao and L. Ling, Ind. Eng. Chem. Res., 2015, 54, 2274–2278.

114 Y.-J. Shi, H. Shu, Y.-H. Zhang, H.-M. Fan, Y.-P. Zhang and L.-J. Yang, Fuel Process. Technol., 2016, 150, 141–147.

115 X. Lu, C. Song, C.-C. Chang, Y. Teng, Z. Tong and X. Tang, Ind. Eng. Chem. Res., 2014, 53, 11601–11610.
144. B. Shen, X. Zhang, H. Ma, Y. Yao and T. Liu, *J. Environ. Sci.*, 2013, 25, 791–800.
145. H. Xu, Q. Zhang, C. Qiu, T. Lin, M. Gong and Y. Chen, *Chem. Eng. Sci.*, 2012, 76, 120–128.
146. M. Casapu, O. Kröcher, M. Mehring, M. Nachtegaal, C. Borca, M. Harfouche and D. Grolimund, *J. Phys. Chem. C*, 2010, 114, 9791–9801.
147. M. Casapu, O. Kroeber and M. Elsener, *Appl. Catal., B*, 2009, 88, 413–419.
148. B. Yang, D.-H. Zheng, Y.-S. Shen, Y.-S. Qiu, B. Li, Y.-W. Zeng, S.-B. Shen and S.-M. Zhu, *J. Ind. Eng. Chem.*, 2015, 24, 148–152.
149. B. Yang, Y. Shen, S. Shen and S. Zhu, *J. Rare Earths*, 2013, 31, 130–136.
150. Y. Yu, C. He, J. Chen, L. Yin, T. Qiu and X. Meng, *Catal. Commun.*, 2013, 39, 78–81.
151. M. Pourkhalil, A. Z. Moghaddam, A. Rashidi, J. Towfighi and Y. Mortazavi, *Appl. Surf. Sci.*, 2013, 279, 250–259.
152. J. Huang, Z. Tong, Y. Huang and J. Zhang, *Appl. Catal., B*, 2008, 78, 309–314.
153. B. Guan, H. Lin, L. Zhu and Z. Huang, *J. Phys. Chem. C*, 2011, 115, 12850–12863.
154. R. Khodayari and C. U. I. Odenbrand, *Appl. Catal., B*, 2001, 38, 87–99.
155. L. Chen, J. Li and M. Ge, *Chem. Eng. J.*, 2011, 170, 531–537.
156. R.-T. Guo, Q.-S. Wang, W.-G. Pan, Q.-L. Chen, H.-L. Ding, X.-F. Yin, N.-Z. Yang, C.-Z. Lu, S.-X. Wang and Y.-C. Yuan, *J. Mol. Catal. A: Chem.*, 2015, 407, 1–7.
157. L. Zhang, S. Cui, H. Guo, X. Ma and X. Luo, *J. Mol. Catal. A: Chem.*, 2014, 390, 14–21.
158. F. Moradi, J. Brandin, M. Sohrabi, M. Faghihi and M. Sanati, *Appl. Catal., B*, 2003, 46, 65–76.
159. A. Zhou, D. Yu, L. Yang and Z. Sheng, *Appl. Surf. Sci.*, 2016, 378, 167–173.
160. R.-T. Guo, Q.-S. Wang, W.-G. Pan, W.-L. Zhen, Q.-L. Chen, H.-L. Ding, N.-Z. Yang and C.-Z. Lu, *Appl. Surf. Sci.*, 2014, 317, 111–116.
161. X. S. Du, X. Gao, R. Y. Qu, P. D. Ji, Z. Y. Luo and K. F. Cen, *Chemcatchem*, 2012, 4, 2075–2081.
162. S. Boxiong, Y. Yan, C. Jianhong and Z. Xiaopeng, *Microporous Mesoporous Mater.*, 2013, 180, 262–269.
163. B. Shen, L. Deng and J. Chen, *Front. Environ. Sci. Eng.*, 2013, 7, 512–517.
164. A. L. Kustov, M. Y. Kustova, R. Fehrmann and P. Simonsen, *Appl. Catal., B*, 2005, 58, 97–104.
165. R. Stolle, H. Koeser and H. Gutberlet, *Appl. Catal., B*, 2014, 144, 486–497.
166. Y. Jiang, X. Gao, Y. Zhang, W. Wu, H. Song, Z. Luo and K. Cen, *J. Hazard. Mater.*, 2014, 274, 270–278.
167. M. Kong, Q. Liu, L. Jiang, F. Guo, S. Ren, L. Yao and J. Yang, *Catal. Commun.*, 2016, 85, 34–38.
168. R.-T. Guo, C.-Z. Lu, W.-G. Pan, W.-L. Zhen, Q.-S. Wang, Q.-L. Chen, H.-L. Ding and N.-Z. Yang, *Catal. Commun.*, 2015, 59, 136–139.
169. W. Li, R.-T. Guo, S.-X. Wang, W.-G. Pan, Q.-L. Chen, M.-Y. Li, P. Sun and S.-M. Liu, *Fuel Process. Technol.*, 2016, 154, 235–242.
170. L. Zhou, C. Li, L. Zhao, G. Zeng, L. Gao, Y. Wang and M. E. Yu, *Appl. Surf. Sci.*, 2016, 389, 532–539.
171. C. Zhu, H. Tian, K. Cheng, K. Liu, K. Wang, S. Hu, J. Gao and J. Zhou, *J. Cleaner Prod.*, 2016, 114, 343–351.
172. P. Wang, S. Su, J. Xiang, H. You, F. Cao, L. Sun, S. Hu and Y. Zhang, *Chemosphere*, 2014, 101, 49–54.