Elevated Ca$^{2+}$ at the triad junction underlies dysregulation of Ca$^{2+}$ signaling in dysferlin-null skeletal muscle

Valeriy Lukyanenko1, Joaquin Muriel1, Daniel Garman1,2, Leonid Breydo3 and Robert J. Bloch1*

1Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States, 2Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, United States, 3Formulation Development, Regeneron Pharmaceuticals, Tarrytown, NY, United States

Dysferlin-null A/J myofibers generate abnormal Ca$^{2+}$ transients that are slightly reduced in amplitude compared to controls. These are further reduced in amplitude by hypooosmotic shock and often appear as Ca$^{2+}$ waves (Lukyanenko et al., J. Physiol., 2017). Ca$^{2+}$ waves are typically associated with Ca$^{2+}$-induced Ca$^{2+}$ release, or CICR, which can be myopathic. We tested the ability of a permeable Ca$^{2+}$ chelator, BAPTA-AM, to inhibit CICR in injured dysferlin-null fibers and found that 10–50 nM BAPTA-AM suppressed all Ca$^{2+}$ waves. The same concentrations of BAPTA-AM increased the amplitude of the Ca$^{2+}$ transient in A/J fibers to wild type levels and protected transients against the loss of amplitude after hypoosmotic shock, as also seen in wild type fibers. Incubation with 10 nM BAPTA-AM led to intracellular BAPTA concentrations of ~60 nM, as estimated with its fluorescent analog, Fluo-4AM. This should be sufficient to restore intracellular Ca$^{2+}$ to levels seen in wild type muscle. Fluo-4AM was ~10-fold less effective than BAPTA-AM, however, consistent with its lower affinity for Ca$^{2+}$. EGTA, which has an affinity for Ca$^{2+}$ similar to BAPTA, but with much slower kinetics of binding, was even less potent when introduced as the -AM derivative. By contrast, a dysferlin variant with GCaMP6fu in place of its C2A domain accumulated at triad junctions, like wild type dysferlin, and suppressed all abnormal Ca$^{2+}$ signaling. GCaMP6fu introduced as a Venus chimera did not accumulate at junctions and failed to suppress abnormal Ca$^{2+}$ signaling. Our results suggest that leak of Ca$^{2+}$ into the triad junctional cleft underlies dysregulation of Ca$^{2+}$ signaling in dysferlin-null myofibers, and that dysferlin’s C2A domain suppresses abnormal Ca$^{2+}$ signaling and protects muscle against injury by binding Ca$^{2+}$ in the cleft.

KEYWORDS

CICR, Ca-induced Ca release, dysferlinopathy, GCaMP, BAPTA, injury, osmotic shock
Introduction

Dysferlin is an integral membrane protein of skeletal muscle that is missing in individuals with Limb Girdle Type 2B (LGMD2B), Miyoshi Myopathy (MMD1) and other, rarer muscular dystrophies (Aoki and Takahashi 1993; Utitzberez et al., 2008; Amato and Brown, 2011; Fanin and Angelini 2016). Studies of membrane repair in skeletal muscle have suggested that dysferlin plays a key role in the process (Bansal et al., 2003; Bansal and Campbell 2004; Ho et al., 2004; Glover and Brown 2007; Han and Campbell 2007), though its role may be secondary to that of other repair proteins (Lennon et al., 2003; Demonbreun et al., 2016; Demonbreun and McNally 2016; McDade et al., 2021). This is consistent with results from our laboratory showing that membrane repair after eccentric injury of skeletal muscle in vivo is not impaired by the absence of dysferlin (Roche et al., 2010), and that deficits in membrane integrity in dysferlin-null muscle are due in part to secondary effects associated with inflammation (Roche et al., 2010; Roche et al., 2015). The subcellular localization of dysferlin, originally reported to be at the sarcolemma and in intracellular vesicles (Matsuda et al., 1999; Bansal et al., 2003; Cenacchi et al., 2005), has more recently been demonstrated to concentrate primarily in the transverse tubular membranes at triad junctions (Roche et al., 2011; Kerr et al., 2013), where the bulk of the protein is exposed to the sarcoplasm and the short C-terminal sequence is extracellular (Kerr et al., 2013).

This localization suggested to us that dysferlin might play a role in regulating Ca²⁺ signaling in healthy muscle, and that the dystrophic phenotypes that arise in its absence may be due in part to changes in the regulation of Ca²⁺, which are believed to be pathogenic in many diseases of skeletal muscle (e.g., Allen et al., 2010; Burr and Molkentin 2015; Kushnir et al., 2018; Mareedu et al., 2021). We tested this idea by studying the Ca²⁺ transients of dysferlin-null A/J myofibers in culture, before and after mild injury caused by a brief hypoosmotic shock. Our previous studies had shown that the transients generated in A/J fibers were ~15% smaller than those in control myofibers or in fibers transfected to express dysferlin (Lukyanenko et al., 2017; Muriel et al., 2022). After osmotic shock, however, A/J fibers showed a precipitous drop in the amplitude of Ca²⁺ transients compared to controls. In addition, many shocked fibers showed spontaneous Ca²⁺ transients accompanied by Ca²⁺ sparks and waves, typically associated with Ca²⁺-induced Ca²⁺ release (CICR). These phenotypes were completely reversed by transfection of fibers to express dysferlin or by treatment of the fibers before and during hypoosmotic shock with drugs that block the L-type Ca²⁺ channels (LTCC; also known as dihydropyridine receptors, DHPR) and ryanodine receptors (RyR1) that mediate the release of Ca²⁺ (Lukyanenko et al., 2017). We interpreted these results to mean that dysferlin in healthy muscle suppresses CICR and that upon injury in the absence of dysferlin, CICR becomes an important contributor to Ca²⁺ signaling, potentially contributing to pathogenesis (Kerr et al., 2014).

Here we test this idea by examining the effects of a permeable form of BAPTA, a chelator with an affinity for Ca²⁺ of ~160 nM. We incubated control and dysferlin-null A/J myofibers with very low concentrations of BAPTA-AM, insufficient to affect the levels of Ca²⁺ generated during a Ca²⁺ transient, and then studied the effects on the transients, before and after hypoosmotic shock injury. Our experiments show that, upon uptake into muscle fibers to a concentration we estimate at ~60 nM, BAPTA-AM is sufficient to revert A/J fibers to the control Ca²⁺ signaling phenotype. We then tested two other Ca²⁺ chelators, Fluo-4 and EGTA, each introduced as their -AM derivatives. These reagents bind Ca²⁺ with lower affinity (Fluo-4) or slower kinetics (EGTA) and thus higher concentrations were needed to generate results similar to BAPTA’s. Finally, we examined myofibers expressing dysferlin containing GCaMP6fΔC2A (Helassa et al., 2016) in place of its most N-terminal C2 domain (GCaMP6fΔC2A). This molecule targets the triad junction like wild type (WT) dysferlin and like WT dysferlin it supports Ca²⁺ signaling at WT levels. In comparison, GCaMP6fΔC2A is less potent. Our results suggest that leak of Ca²⁺ into the triad junction underlies dysregulation of Ca²⁺ signaling in dysferlin-null myofibers. They further suggest that dysferlin’s ability to bind Ca²⁺ in the triad junction is sufficient to protect muscle from changes in Ca²⁺ signaling induced by injury or exercise.

Materials and methods

Ethical approval

All procedures involving mice complied with the Guide for the Care and Use of Laboratory Animals (NIH publication No. 85–23, revised 1996). Experimental protocols were approved by the Institutional Animal Care and Use Committee of the University of Maryland School of Medicine.

Mice

Dysferlin-null (A/J) and control (A/JCr, C57Bl/6) mice were obtained from the Jackson Laboratory (A/J, C57Bl/6) or the National Cancer Institute, Frederick, MD (A/JCr) or bred at the University of Maryland, Baltimore (C57Bl/6). Mice were anesthetized with 2.5–4.5% isoflurane vaporized in oxygen and euthanized by cervical dislocation. Mice were 12–16 weeks of age at the time their tissues were studied.

Plasmid constructs and transfection

mVenus-dysferlin (N-terminal Venus) (Addgene plasmid 29,768) (Covian-Nares et al., 2010) was provided by The Jain
Isolation of myofibers from FDB muscle

Mice were anesthetized and FDB muscles from both feet were harvested. A 2 week period was allowed after electroporation. Single myofibers were prepared in DMEM with 2% (wt/vol) BSA, 1 µl/ml gentamicin, and 2 mg/ml type II collagenase (Gibco, ThermoFisher, Waltham, MA) for 2 h at 37°C. Myofibers were kept for 12–14 h at 37°C and plated on 96-well plates coated with laminin (Sigma-Aldrich, St. Louis, MO) 1 h before experimentation. Fibers were then washed in normal Tyrode’s solution, pH 7.4, containing 140 mM NaCl, 5 mM KCl, 0.5 mM MgCl₂, 0.3 mM NaH₂PO₄, 5 mM HEPES, 5.5 mM glucose, 1.8 mM CaCl₂, 1.1 MgCl₂ (to yield [Mg²⁺]free = 1 mM), pH 7.4. The concentrations were calculated with WEBMAXC STANDARD. Line-scan images through the solution were taken at 1.9 ms per line at maximal aperture. Averaged data from 5 experiments were used to build the calibration curve. We used identical conditions to scan fibers preloaded with 10 nM Fluo-4AM.

Immunoblotting

Immunoblotting for RyR used antibodies specific for RyR1 (ThermoFisher/Invitrogen), RyR2 (ProteinTech) and RyR3 (Millipore, ThermoFisher/Invitrogen), diluted 1:500. Gels were 3–8% Tris-Acetate with Tris-acetate-SDS running buffer (NuPAGE/Invitrogen). Secondary antibodies were HRP conjugates (anti-rabbit from Invitrogen; anti-mouse from Jackson ImmunoResearch), used at 1:10,000. Blots were
visualized with SuperSignal West Femto Maximum Sensitivity Substrate (ThermoFisher) and imaged with a BioRad ChemiDoc MP instrument.

Statistical analysis

Quantitative data are shown as mean ± SE. Statistical significance was determined with Student’s *t* test and *Χ*² analysis. A value of *p* < 0.05 was considered statistically significant.

Materials

BAPTA-AM and EGTA-AM were from MilliporeSigma. Fluo-4AM was from Invitrogen. Unless specified otherwise, all other chemicals were from Sigma-Aldrich.

Results

BAPTA

We first examined the effects of incubating dysferlin-null A/J myofibers with increasing concentrations of BAPTA-AM in the presence of 4.4 µM Rhod-2AM. We elicited Ca²⁺ transients with field stimulation and recorded the increase in Rhod-2 fluorescence, which tracks [Ca²⁺]i (Lukyanenko et al., 2017; Muriel et al., 2022). Figures 1, 2 show that incubation with ≥100 nM BAPTA-AM reduces the apparent amplitude of the Ca²⁺ transient, perhaps because the BAPTA generated by cleavage of the -AM moieties in the sarcoplasm accumulates to levels high enough to compete with the Rhod-2 and reduce its fluorescence during the transient. By contrast, concentrations of BAPTA-AM of ≤50 nM increase the amplitude of the Ca²⁺ transient by ~15% (Figures 1C, 2A), to levels seen in dysferlin-positive, control A/JCr myofibers. This difference is significant (*p* < 0.05). DMSO, the vehicle, had no effect in the absence of the chelator (2.40 ± 0.10, *n* = 138 vs. 2.57 ± 0.07, *n* = 280, A/JCr fibers with DMSO present vs. DMSO absent, respectively, *p* = 0.09). These results show that low concentrations of BAPTA-AM enhance the amplitude of Ca²⁺ transients in A/J muscle fibers, restoring them to control levels.
We next examined the effects of BAPTA-AM on the Ca$^{2+}$ transients of dysferlin-null A/J myofibers after a brief osmotic shock injury (OSI). As above, we recorded the transients via Rhod-2 fluorescence in response to electrical stimulation. As we reported earlier (Kerr et al., 2013; Lukyanenko et al., 2017; Muriel et al., 2022), OSI significantly decreases the amplitude of Ca$^{2+}$ transients of A/J fibers 5 min after injury, and the transients that appear are frequently accompanied by Ca$^{2+}$ waves and spontaneous transients (Figures 1, 2B–D). In fibers incubated in 10 nM BAPTA-AM, however, the amplitudes of the transients were not reduced after osmotic shock injury (Figure 2B), and waves and spontaneous transients were reduced to control levels (Figures 1, 2C,D). These changes did not occur with DMSO alone (Figures 3B–D, A/J alone), suggesting that BAPTA mediates these effects.

We studied the concentration dependence of the inhibition of abnormal Ca$^{2+}$ signaling as a function of BAPTA-AM concentration. We found that 5 nM BAPTA-AM was not sufficient to protect the transient against loss of amplitude after OSI, but that concentrations of 10 and 50 nM were effective (Figures 2A,B). These results suggest that the presence of the chelator was sufficient to maintain normal Ca$^{2+}$ signaling following OSI, mimicking the activity of dysferlin in this assay.

We next measured the effects of the -AM derivative of Fluo-4, a variant of BAPTA that fluoresces upon binding of Ca$^{2+}$. Although Fluo-4AM partitions into the sarcoplasm and is cleaved by intracellular esterases much like BAPTA-AM (Paredes et al., 2008; Smith et al., 2018), ten-fold higher concentrations were required to mimic the effect of BAPTA-AM on the recovery of the Ca$^{2+}$ transient after OSI and to reduce the appearance of Ca$^{2+}$ waves (Figures 3B–D). Even at 250 nM, Fluo-4AM failed to reduce Ca$^{2+}$ waves to the levels seen with 10 nM BAPTA-AM (compare Figures 3D–2D). Thus, Fluo-4AM is less effective than BAPTA-AM, perhaps because its affinity for Ca$^{2+}$ is ~2-fold poorer (Paredes et al., 2008). Fluo-4 is also larger, carries a negative charge and has a dielectric constant that is 20-fold higher than BAPTA’s, and so may accumulate in the sarcoplasm less efficiently than BAPTA.

FIGURE 2
Effect of osmotic shock injury on Ca$^{2+}$ transients in FDB fibers preloaded with different concentrations of BAPTA-AM. Data from experiments like those shown in Figure 1 were analyzed. (A), averaged amplitudes of Ca$^{2+}$ transients before OSI presented as (Fmax-F0)/F0. (B), averaged data for recovery of Ca$^{2+}$ transients at 5 min after OSI. (C), averaged data for frequency of Ca$^{2+}$ waves at 5 min after OSI. (D), % fibers that produced Ca$^{2+}$ waves at 5 min after OSI. N is indicated in each bar. * p < 0.05 compared to A/J (sham). **, p < 0.05 compared to A/JCr control. Student’s t test was used for A–C; Χ2 was used for (D). VICT = Voltage-induced Ca$^{2+}$ transient.
Despite the differences between Fluo-4AM and BAPTA-AM, we used the former to approximate the intracellular concentration of BAPTA needed to reduce the abnormalities in Ca\(^{2+}\) signaling that we routinely assay. We measured the fluorescence intensity of intracellular Fluo-4 in myofibers incubated with 10 nM Fluo-4AM under conditions identical to those we used with BAPTA-AM and compared it to a standard curve, with the assumption that the concentration of free intracellular Ca\(^{2+}\) is ~100 nM (e.g., López et al., 1983; Harkins et al., 1993; Head 1993; Pressmar et al., 1994; Konishi and Watanabe 1995; Baylor and Hollingworth 2007). For the standard curve, we measured the fluorescence intensities at different concentrations of the K\(^+\) salt of Fluo-4 in the presence of 100 nM Ca\(^{2+}\) and under identical confocal imaging conditions (see Methods). The results indicate that Fluo-4 reached concentrations in the sarcoplasm of ~60 nM, or about 6 times higher than its concentration in the bath (Supplemental Figure S1). Given the significant differences between the effects of BAPTA-AM and Fluo-4AM, BAPTA may accumulate to levels significantly higher than 60 nM, thereby buffering sarcoplasmic free [Ca\(^{2+}\)] after OSI to ≤100 nM.

EGTA-AM

Although the affinities of BAPTA and Fluo-4 for Ca\(^{2+}\) (in Mg\(^{2+}\)-free conditions) are ~160 and ~370 nM, respectively, they both have relatively high “on” and “off” rates for Ca\(^{2+}\) and thus are able to chelate Ca\(^{2+}\) rapidly. The affinity of EGTA for Ca\(^{2+}\) is close to that of BAPTA, but its “on” and “off” rates for binding Ca\(^{2+}\) are ~100-fold slower than BAPTA’s. We used EGTA-AM to test the idea that rapid, transient changes in the concentration of Ca\(^{2+}\), rather than changes in the equilibrium concentration alone, play a role in the abnormal Ca\(^{2+}\) signaling that we observe in A/J myofibers before and after OSI. Our results (Figure 4) show that incubating myofibers with concentrations of EGTA-AM up to 25-fold higher than the effective concentration of BAPTA-AM fails to protect the transient against disruption by OSI, although low concentrations are able to enhance the amplitude of the

FIGURE 3
Effect of osmotic shock injury on Ca\(^{2+}\) transients in A/J FDB fibers preloaded with different concentrations of Fluo-4AM. As in Figure 2, but with myofibers loaded with Fluo-4AM. (A), averaged amplitudes of Ca\(^{2+}\) release before OSI presented as (F\(_{\text{max}}\) - F\(_{0}\))/F\(_{0}\). (B), averaged data for recovery of Ca\(^{2+}\) transients at 5 min after OSI. (C), averaged data for frequency of Ca\(^{2+}\) waves at 5 min after OSI. (D), % fibers that produced Ca\(^{2+}\) waves at 5 min after OSI. Dashed lines represent values obtained with A/JCr fibers. *, p < 0.05 compared to A/J. N is indicated in each bar. Student’s t test was used for (A–C). Chi\(^2\) was used for (D). VICT = Voltage-induced Ca\(^{2+}\) transient.
transient before injury. This suggests that the dysregulation of Ca2+ that alters the stability, but not the initial amplitude, of the Ca2+ transient in A/J fibers is due to rapid, transient changes in Ca2+ rather than the overall levels of Ca2+ in the cytoplasm.

GCaMP6fu-DYSF-ΔC2A

Loading myofibers with BAPTA, Fluo-4 or EGTA, as we have done, can reduce the resting and peak levels of free Ca2+ in the sarcoplasm, which may only indirectly alter levels at the triad junction. We have postulated that abnormal Ca2+ signaling that follows injury of A/J fibers is due to rapid, transient changes in Ca2+ at the triad junction that destabilize the LTCC-RyR1 couplons there, reducing normal Ca2+ release and promoting CICR. Here we test if suppression of local increases in Ca2+ at the triad junction is indeed sufficient to protect the Ca2+ transient from injury.

For these studies, we placed GCaMP6fu at the N-terminus of Venus-dysferlin lacking the C2A domain (GCaMP6fu-DYSF-ΔC2A; Figure 5A). We chose this GCaMP variant because, like the C2A domain (Abdullah et al., 2014; Wang et al., 2021), GCaMP6fu binds Ca2+ rapidly and with high affinity (Helassa et al., 2016). We found that, similar to the Venus construct of DYSF-ΔC2A, GCaMP6fu-DYSF-ΔC2A traffics normally to membranes at the level of the A-I junction (Figure 5B), concentrating in transverse tubules of the triad junction like both Dysf-ΔC2A and WT dysferlin (Muriel et al., 2022). By contrast, GCaMP6fu expressed as a Venus fusion protein (Figure 5A) distributes much more uniformly in the sarcoplasm and, like GFP itself, only accumulates at the level of Z-disks (Figure 5B). When A/J fibers expressing GCaMP6fu in the sarcoplasm or at the triad junction are loaded with Rhod-2 and electrically stimulated, both the GCaMP6fu moiety and Rhod-2 register the changes in Ca2+ concentration. The signals generated by Rhod-2 were brighter than those generated by GCaMP6fu, but we were generally able to use either for measurements of transient amplitudes and waves.

Remarkably, fibers expressing GCaMP6fu-DYSF-ΔC2A show an increase in the amplitude of the Ca2+ transient similar to that observed with BAPTA and that seen when WT...
dysferlin is restored to dysferlin-null fibers (Figures 6A,B). (Please note that the amplitudes of the transients in uninjured myofibers subjected to electroporation are higher than those studied without electroporation, as reported Lukyanenko et al., 2017). Moreover, the transient after OSI remains at control levels, similar to fibers expressing WT dysferlin (Figures 6A,C). In addition, fibers expressing GCaMP6fu-DYSF-ΔC2A rarely show Ca2+ waves (Figure 6D). These results are consistent across a wide range in the level of expression of the fusion protein (Figure 6E), suggesting that it is acting in a limited volume, i.e., the triad junction.

By contrast, GCaMP6fu expressed as a Venus fusion protein fails to increase the amplitude of the transient in uninjured fibers (Figure 7B), and is somewhat less protective of the Ca2+ transients after OSI (e.g., Figures 7A,C). More strikingly, however, it fails to suppress the appearance of Ca2+ waves (Figure 7D). The differences with GCaMP6fu-DYSF-ΔC2A in amplitude and wave frequency after recovery from OSI were both statistically significant (p < 0.05). These results were far less consistent as a function of concentration than those of GCaMP6fu-DYSF-ΔC2A (Figure 7E; data obtained with Rhod-2, only). These results suggest that GCaMP6fu in the sarcoplasm acts as a weak Ca2+ chelator and thus is considerably less effective than GCaMP6fu-DYSF-ΔC2A in the triad junction.

Our findings suggest that GCaMP6fu localized by DYSF-ΔC2A to the triad junction, but not as a cytoplasmic protein, can serve the function of the C2A domain of dysferlin in Ca2+ signaling. Thus, one of dysferlin’s likely roles in maintaining the health of skeletal muscle is to bind Ca2+ at triad junctions and thereby protect the muscle from injury.

Other ryanodine receptors

As the presence of non-junctional RyR isoforms could account for CICR in A/J muscle fibers, we used immunoblotting of muscle extracts to determine if RyR2 and RyR3 were expressed together with RyR1. The blots of extracts of
Tibialis anterior muscles from A/J mice, which like FDB fibers are primarily fast twitch, showed RyR1 to be present at high levels but RyR2 and RyR3 to be undetectable (Figure 8). They were readily detectable in heart and brain, however (not shown). This is consistent with several reports in GEO Profiles which show much lower levels of RyR2 and RyR3 mRNAs than RyR1 mRNA in Tibialis anterior muscles (see also Futatsugi et al., 1995; Marziali et al., 1996). Thus, RyR2 and RyR3 are unlikely to contribute significantly to abnormal Ca²⁺ signaling in dysferlinopathic muscle.

Discussion

Previous reports from our laboratory showed that Ca²⁺ signaling is defective in dysferlin-null A/J muscle fibers, and...
that this phenotype can be reversed by the reintroduction of a Venus chimaera of WT dysferlin or by blocking the L-type Ca\(^{2+}\) channel (LTCC) and RyR1s (Lukyanenko et al., 2017). The defects include a small decrease in the amplitude of the Ca\(^{2+}\) transient in uninjured myofibers, a large decrease in transient amplitude in fibers injured by hypoosmotic shock, and the appearance of spontaneous Ca\(^{2+}\) transients, waves and sparks following shock. These features, which are typical of Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR), would be expected if the triad junctional regions of dysferlin-null muscle fibers experienced a small Ca\(^{2+}\) leak in the resting state that increased with injury. Although the leak in the resting state does not result in a detectable increase in [Ca\(^{2+}\)], (Kerr et al., 2013), it has been measured and modeled in healthy in muscle (Cully et al., 2018; Barclay and Launikonis, 2022). An increase in resting leak could explain the lower amplitude of the Ca\(^{2+}\) transients we observe in A/J myofibers, due to a decrease in the amount of Ca\(^{2+}\) available for release upon electrical stimulation. Furthermore, additional increases in sarcoplasmic Ca\(^{2+}\) levels caused by hypoosmotic shock could evince spontaneous Ca\(^{2+}\) release events via CICR.
We hypothesized that BAPTA, introduced into the sarcoplasm at low levels as the -AM derivative, would chelate the Ca2+ responsible for CICR and thereby reduce the effect of osmotic shock on the Ca2+ transient and suppress Ca2+ waves. Here we show that incubation of A/J myofibers with 10 nM BAPTA-AM is indeed sufficient to protect A/J myofibers against the loss of transient amplitude and to suppress waves. Consistent with this, the -AM derivatives of other Ca2+ chelators with reduced abilities to bind Ca2+ were less effective than BAPTA-AM. Our studies with the Dysf-ΔC2A-GCaMP6\textsubscript{fu} chimera further suggest that the increase in Ca2+ that results in CICR-related dysregulation of Ca2+ signaling occurs primarily at or near the triad junction.

Our initial experiments utilized concentrations of BAPTA-AM that were considerably higher than 10 nM. These reduced the amplitude of the Ca2+ transients in uninjured fibers, measured with Rhod-2. It is likely that exposure of fibers to BAPTA-AM at concentrations ≥100 nM leads to sarcoplasmic concentrations of BAPTA that compete with Rhod-2 for free Ca2+ released following electrical stimulation. Remarkably, however, we found that concentrations of BAPTA-AM as low as 10 nM, much lower than concentrations used by other investigators (e.g., Jacquemond et al., 1991; Anderson and Meissner 1995; Gómez et al., 2006; Shkryl and Shirokova 2006; Ainbinder et al., 2015; Lamboley et al., 2015), were effective in suppressing abnormal Ca2+ signaling both before and after OSI.

As we could not directly measure BAPTA in the sarcoplasm, we used a close analog, Fluo-4AM, instead, and determined its concentration from its fluorescence uptake, cleavage and equilibrium with sarcoplasmic Ca2+. We were obliged to perform these measurements with the aperture of our confocal microscope completely open, i.e., the identical conditions we used to observe myofibers, as we were unable to observe quantifiable fluorescence at low concentrations of Fluo-4 with the apertures consistent with confocal resolution. These conditions undoubtedly led to our inclusion of some out-of-focus fluorescence, too. Although we cannot compare the relative contributions to our measurements of out-of-focus fluorescence in myofibers and in solution, it is likely that our calibration, which indicates that Fluo-4 in the sarcoplasm reaches ~60 nM in fibers incubated with 10 nM Fluo-4AM, underestimates the actual concentration of Fluo-4. This value should therefore be considered an estimate of the minimal concentration reached in myofibers exposed to 10 nM Fluo-4AM.

In contrast to Fluo-4AM, which carries a negative charge, BAPTA-AM is uncharged, suggesting that it should permeate the muscle cell membrane more efficiently. Nevertheless, if we assume that BAPTA accumulates like Fluo-4, and not considering the contribution of out-of-focus fluorescence to our calibration, intracellular concentrations of BAPTA should be ~60 nM after myofibers are loaded with 10 nM BAPTA-AM. If the affinity of BAPTA for Ca2+ in the sarcoplasm is ~160 nM (https://www.interchim.fr/ft/4/486103.pdf) and if we estimate [Ca2+]; after hypoosmotic shock in the absence of BAPTA is ~120 nM, then BAPTA would be expected to reduce the resting [Ca2+]; after shock to ~100 nM. A concentration of 120 nM is in the same range reported for the ability of Ca2+ to activate isolated RyR1, as well as RyR2 (Györke et al., 1994). CICR in the heart is also suppressed by BAPTA (Sham 1997) at concentrations sufficient to reduce [Ca2+;] from 120 nM to <100 nM (Lukyanenko and Györke 1999). Our results are consistent with the idea that even low concentrations of BAPTA-AM can suppress CICR and Ca2+ waves in injured dysferlin-null myofibers.

Our results further indicate that BAPTA has a significant effect on the Ca2+ transient in uninjured A/J fibers. The reduced amplitude of the Ca2+ transient that we observe in A/J myofibers before injury or treatment with BAPTA is likely due to the activation of RyR1 by sarcoplasmic Ca2+ and the consequent small depletion of the luminal Ca2+ stores in the terminal cisternae of the sarcoplasmic reticulum, both of which would be inhibited by chelation of sarcoplasmic Ca2+ by BAPTA. Notably, murine muscle expresses undetectable levels of the two other major forms of the RyR, RyR2 and RyR3 (Figure 8), consistent with the idea that any effect on Ca2+ release is mediated by RyR1. As noted above, RyR1 has been linked to CICR-associated pathogenesis in other diseases of muscle (Endo 2009; see also Kushnir et al., 2006; Ainbinder et al., 2015; Lamboley et al., 2015).
Our results suggest that it is likely to contribute to pathogenesis in dysferlinopathies as well.

As CICR mediated by the RyR1 in skeletal muscle is thought to be suppressed when the channels are well ordered in LTCC-RyR1 couplons at triad junctions, the absence of dysferlin may well lead to a "couplonopathy" (Ríos et al., 2015; Ríos 2018), in which couplon organization is weakened, making it susceptible to further disruption upon hypoosmotic shock and thus enabling RyR1-mediated CICR in injured muscle. Others have reported that triad junctional architecture is altered in dysferlinopathy (Barefield et al., 2021).

Our evidence suggests that the couplon can be stabilized not only by uniformly chelating sarcoplasmic Ca\(^{2+}\) with BAPTA, but also by placing a mutant form of dysferlin with an enhanced ability to bind Ca\(^{2+}\) in the cleft of the triad junction itself. These experiments took advantage of our earlier observation that dysferlin lacking its N-terminal C2 domain, C2A, trafficked normally to the transverse tubules but did not support normal Ca\(^{2+}\) signaling (Muriel et al., 2022). Notably, the C2A domain has several binding sites for Ca\(^{2+}\) with affinities in the micromolar range (Abdullah et al., 2014, Wang et al., 2021).

Because DYSF-ΔC2A largely suppresses Ca\(^{2+}\) waves (Muriel et al., 2022), we do not know if placing GCaMP6f in the junctional cleft is sufficient to suppress waves. Further studies with additional constructs that also target the triad junction may be informative in this regard. Such studies may also permit us to use GCaMP-based methods to measure the concentrations of Ca\(^{2+}\) in the junctional cleft in healthy and dysferlin-null muscle, before and after injury.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Materials, further inquiries can be directed to the corresponding author.

Ethics statement

The animal study was reviewed and approved by the Institutional Animal Care and Use Committee, University of Maryland, Baltimore.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Funding

Annual grants from the Jain Foundation have supported our work on dysferlin. Our research was supported by grants to RB from the NIH (RB: 2 RO1 AR064268) and from the Jain Foundation (Bellevue, WA), by funds generously provided to RB from the Department of Physiology, University of Maryland School of Medicine, and by resources from the Campus Microscopy and Imaging Facility (CMIF). LB is employed by Regeneron Pharmaceuticals.
Acknowledgments

We thank Andrea O’Neill and Ujwala Pimparkar for technical support and Dr. I. Dick for a useful discussion.

Conflict of interest

LB is employed by Regeneron Pharmaceuticals.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2022.1032447/full#supplementary-material

References

Abdullah, N., Padmanarayana, M., Marty, N. J., and ohson C. J. (2014). Quantitation of the calcium and membrane binding properties of the C2 domains of dysferlin. Biophys. J. 106, 382–389. doi:10.1016/j.bpj.2013.11.4492

Ambinder, A., Boncompagni, S., Protasi, F., and Dirksen, R. T. (2015). Role of ifitufin-2 in mitochondrial localization and calcium uptake in skeletal muscle. Cell Calcium 57, 14–24. doi:10.1016/j.ceca.2014.11.002

Allen, D. G., Gervasio, O. L., Yeung, E. W., and Whitehead, N. P. (2010). Calcium and the damage pathways in muscular dystrophy. Curr. J. Physiol. Pharmacol. 88, 83–91. doi:10.1139/Y09-058

Amato, A. A., and Brown, R. H., (2011). Handb. Clin. NeuroL. 101, 111–118. doi:10.1097/978-0-08-045031-5.00007-4

Anderson, K., and Meissner, G. (1995). T-tubule depolarization-induced SR Ca2+ release is controlled by dihydropyridine receptor- and Ca2+-dependent mechanisms in cell homogenates from rabbit skeletal muscle. J. Gen. Physiol. 105, 363–383. doi:10.1085/jgp.105.3.363

Aoki, M., and Takahashi, T. (1993). in Dysferlinopathy. GeneReviews®. M. P. Adam and H. H. Ardinger. Editors (Seattle, WA: University of Washington).

Bansal, D., and Campbell, K. P. (2004). Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol. 14, 206–213. doi:10.1016/j.tcb.2004.03.001

Bansal, D., Miyake, K., Vogel, S. S., Groh, S., Chen, C. C., Williamson, R., et al. (2003). Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423, 168–172. doi:10.1038/nature01573

Barclay, C. J., and Launikiskis, B. S. (2022). A mathematical model to quantify RYR Ca2+ leak and associated heat production in resting human skeletal muscle fibers. J. Gen. Physiol. 154, e202112994. doi:10.1085/jgp.202112994

Barefield, D. Y., Sell, J. J., Tahtah, I., Kearns, S. D., McNally, E. M., and Demonbreun, A. R. (2021). Loss of dysferlin or myoferlin results in differential release is controlled by dihydropyridine receptor- and Ca2+-dependent mechanisms. J. Physiol. 101, 115–1176. doi:10.1122/physrev.00040.2008

Futatsugi, A., Kuwajima, G., and Mikoshiba, K. (1995). Tissue-specific and developmentally regulated alternative splicing in mouse skeletal muscle ryanodine receptor mRNA. Biochem. J. 305 (2), 373–378. doi:10.1042/bj3050373

Glover, L., and Brown, R. H., Jr. (2007). Dysferlin in membrane trafficking and patch repair. Traffic 8, 785–794. doi:10.1111/j.1600-0854.2007.00573.x

Gómez, J., Neco, P., DiFranco, M., and Vergara, J. (2006). Calcium release domains in mammalian skeletal muscle studied with two-photon imaging and spot detection techniques. J. Gen. Physiol. 127, 623–637. doi:10.1525/jgp.200509475

Gryourke, S., Vélez, P., Suárez-Isla, B., and Fill, M. (1994). Activation of single cardiac and skeletal ryanodine receptor channels by flash photolysis of caged Ca2+. Biophys. J. 66, 1879–1886. doi:10.1016/S0006-3495(94)80981-6

Han, R., and Campbell, K. P. (2007). Dysferlin and muscle membrane repair. Curr. Opin. Cell Biol. 19, 409–416. doi:10.1016/jceb.2007.07.001

Harkins, A. B., Kurebayashi, N., and Baylor, S. M. (1993). Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3. Biophys. J. 65, 865–881. doi:10.1016/S0006-3495(93)81112-3

Head, S. I. (1993). Membrane potential, resting calcium and calcium transients in isolated muscle fibers from normal and dystrophic mice. J. Physiol. 469, 11–19. doi:10.1113/jphysiol.1993.sp119801

Helassa, N., Podor, B., Fine, A., and Tirok, K. (2016). Design and mechanistic insight into ultrafast calcium indicators for monitoring intracellular calcium dynamics. Sci. Rep. 6, 38276. doi:10.1038/srep38276
Ho, M., Post, C. M., Donahue, L. R., Lidov, H. G., Bronson, R. T., Goodsky, H., et al. (2004). Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency. *Hum. Mol. Genet.* 13, 1999–2010. doi:10.1093/hmg/ddh212

Jacquemond, V., Csernoch, L., Klein, M. G., and Schneider, M. F. (1991). Effects of low myoplasmic Mg2+ on calcium binding by parvalbumin and calcium uptake by the sarcoplasmic reticulum in frog skeletal muscle. *J. Gen. Physiol.* 60, 115–135. doi:10.1085/jgp.100.1.115

Kerr, J. P., Ward, C. W., and Bloch, R. J. (2014). Dysferlin at transverse tubules regulates Ca(2+)-dependent homeostasis in skeletal muscle. *Front. Physiol.* 5, 89. doi:10.3389/fphys.2014.00089

Kerr, J. P., Ziman, A. P., Mueller, A. L., Muriel, J. M., Kleinhaus-Weltle, E., Gumerson, J. D., et al. (2013). Dysferlin stabilizes stress-induced Ca2+ signaling in the transverse tubule membrane. *Proc. Natl. Acad. Sci. U. S. A.* 110, 20831–20836. doi:10.1073/pnas.1309736110

Konishi, M., and Watanabe, M. (1995). Resting cytoplasmic free Ca2+ concentration in frog skeletal muscle measured with fura-2 conflated to high molecular weight dextran. *J. Gen. Physiol.* 106, 1123–1150. doi:10.1085/jgp.106.6.1123

Kushnir, A., Waisberg, B., and Marks, A. R. (2018). Ryanodine receptor dysfunction in human disorders. *Biochim. Biophys. Acta. Mol. Cell Res.* 1865, 1687–1697. doi:10.1016/j.bbrc.2018.07.011

Lambeley, C. R., Kake Gouma, S. A., Touré, F., Hébert, C., Yaddaden, L., Nadeau, S., et al. (2013). New method for determining total calcium content in tissue applied to skeletal muscle with and without calceinstra. *J. Gen. Physiol.* 145, 127–153.

Lennon, N. J., Kho, A., Bacsai, B. J., Perlmutter, S. L., Hyman, T., and Brown, R. H., Jr. (2005). Dysferlin interacts with annexins A1 and A2 and mediates sarcocellular wound-healing. *J. Biol. Chem.* 278 (50), 50466–50473. doi:10.1074/jbc.M505024200

López, J. R., Alamo, L., Caputo, C., DiPolo, R., and Vergara, S. (1983). Determination of ionic calcium in frog skeletal muscle fibers. *Biophys. J.* 43, 1–4. doi:10.1016/S0006-3495(83)84316-1

Lukyanenko, V., and Goytory, S. (1999). Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes. *J. Physiol.* 521 (3), 575–585. doi:10.1111/j.1469-7793.1999.00575.x

Lukyanenko, V., Muriel, J. M., and Bloch, R. J. (2014). Coupling of excitation to Ca(2+)-release is modulated by dysferlin. *J. Physiol.* 595, 5191–5207. doi:10.1113/jphysiol.2013.2747200

Mareda, S., Millon, E. D., Duan, D., and Babu, G. J. (2021). Abnormal calcium handling in Duchenne muscular dystrophy: Mechanisms and potential therapies. *Front. Physiol.* 12, 647010. doi:10.3389/fphys.2021.647010

Marradi, G., Rossi, D., Giannini, G., Charlesworth, A., and Sorrentino, V. (1996). cDNA cloning reveals a tissue specific expression of alternatively spliced transcripts of the Ryanodine receptor type 3 (RyR3) calcium release channel. *FEBS Lett.* 394, 76–82. doi:10.1016/0014-5793(96)00944-1

Matsuda, C., Aoki, M., Hayashi, Y. K., Ho, M. F., Arashata, K., and Brown, R. H., Jr. (1999). Dysferlin is a surface membrane-associated protein that is absent in Miyoshi myopathy. *Neurology* 53, 1119–1122. doi:10.1212/wnl.53.5.1119

McCade, J. R., Nayler, M. T., and Michele, D. E. (2021). Sarcocolumna wound activates dynamin-dependent endocytosis in striated muscle. *FEBS J.* 288, 160–174. doi:10.1111/febs.15556

Muriel, J., Lukyanenko, V., Kwiatkowski, T., Bhattacharya, S., Garman, D., Weisleder, N., et al. (2022). The C2 domains of dysferlin, roles in membrane localization, Ca(2+) signalling and sarcolemmal repair. *J. Physiol.* 636, 1953–1968. doi:10.1113/JP232648

Paredes, R. M., Etzler, J. C., Watts, L. T., Zheng, W., and Lechleiter, J. D. (2008). Chemical calcium indicators. *Methods* 46, 143–151. doi:10.1016/j.ymeth.2008.09.025

Pressmar, J., Brinkmeier, H., Seerwald, M. J., Naumann, T., and Rüdel, R. (1994). Intracellular Ca2+ concentrations are not elevated in resting cultured muscle from Duchenne (DMD) patients and in MDX mouse muscle fibers. *Pflugers Arch.* 426, 499–505. doi:10.1007/BF00378525

Rios, E. (2018). Calcium-induced release of calcium in muscle, 50 years of work and the emerging consensus. *J. Gen. Physiol.* 150, 521–537. doi:10.1085/jgp.201711959

Rios, E., Figueroa, L., Manno, C., Kraeva, N., and Rizzi, S. (2015). The coulombopones, A comparative approach to a class of diseases of skeletal and cardiac muscle. *J. Gen. Physiol.* 145, 459–474. doi:10.1085/jgp.201411321

Roche, J. A., Lovering, R. M., and Bloch, R. J. (2008). Impaired recovery of dysferlin-null skeletal muscle after contraction-induced injury in vivo. *Neuroreport* 19, 1579–1584. doi:10.1097/WNR.0b013e32832311ca55

Roche, J. A., Lovering, R. M., Roche, R., Lu, W. W., Reed, P. W., and Bloch, R. J. (2010). Extensive mononuclear infiltration and myogenesis characterize recovery of dysferlin-null skeletal muscle from contraction-induced injury. *Am. J. Physiol. Cell Physiol.* 298, C298–C312. doi:10.1152/ajpcell.00122.2009

Roche, J. A., Lu, W. W., O’Neill, A. M., Resneck, W. G., Lovering, R. M., and Bloch, R. J. (2011). Unmasking potential intracellular roles for dysferlin through improved immunolabeling methods. *J. Histoch. Cytochem.* 59, 964–975. doi:10.1369/jhc.20101126

Roman, W., Pinheiro, H., Pimentel, M. R., Segálés, J., Oliveira, L. M., García-Domínguez, E., et al. (2021). Muscle repair after physiological damage relies on nuclear migration for cellular reconstruction. *Science* 374, 3355–3359. doi:10.1126/science.abe5620

Sham, J. S. (1997). Ca2+ release-induced inactivation of Ca2+ current in rat ventricular myocytes, evidence for local Ca2+ signalling. *J. Physiol.* 500 (2), 285–295. doi:10.1113/jphysiol.1997.sp022020

Shkryl, V. M., and Shirokova, N. (2006). Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle. *J. Biol. Chem.* 281, 1547–1554. doi:10.1074/jbc.M501042000

Smith, N. A., Kress, B. T., Lu, Y., Chandler-Militello, D., Benraiss, A., and Nedergeraad, M. (2018). Fluorescent Ca2+- indicators directly inhibit the Na,K-ATPase and disrupt cellular functions. *Sci. Signal.* 11, eaal2039. doi:10.1126/scisignal.aal2039

Urtizberea, J. A., Basese, G., Leturcq, F., Nguyen, K., Krahn, M., and Levy, N. (2008). *Neuropl. Neurol. Neuropsych.* 56, 289–297. doi:10.1111/j.1365-2886.2008.02137.x

Wang, Y., Tadayon, R., Santamaria, L., Mercier, P., Forristal, C. J., and Shaw, G. S. (2021). Calcium binding and rigidities of the dysferlin C2A domain in a tightly coupled manner. *Biochem. J.* 478, 197–215. doi:10.1042/BCJ20200773