ELEMENTARY AMENABLE GROUPS OF COHOMOLOGICAL DIMENSION 3

JONATHAN A. HILLMAN

Abstract. We show that torsion-free elementary amenable groups of Hirsch length \(\leq 3 \) are solvable, of derived length \(\leq 3 \). This class includes all solvable groups of cohomological dimension 3. We show also that groups in the latter subclass are either polycyclic, semidirect products \(BS(1, n) \rtimes \mathbb{Z} \), or properly ascending HNN extensions with base \(\mathbb{Z}^2 \) or \(\pi_1(Kb) \).

D. Gildenhuys showed that the solvable groups of cohomological dimension at most 2 are either subgroups of the rationals \(\mathbb{Q} \) or to be solvable Baumslag-Solitar groups \(BS(1, m) \) \([5]\). In particular, every such group has Hirsch length at most 2. We show that finitely generated, torsion-free elementary amenable groups of Hirsch length \(\leq 3 \) are in fact solvable minimax groups, of derived length \(\leq 3 \). We show also that such a group is finitely presentable if and only if it is constructible, and such groups are either polycyclic, semidirect products with base a solvable Baumslag-Solitar group, or properly ascending HNN extensions with base \(\mathbb{Z}^2 \) or \(\pi_1(Kb) \). Our interest in this class of groups arose from recent work on aspherical 4-manifolds with non-empty boundary and elementary amenable fundamental group \([4]\). Such groups have cohomological dimension \(\leq 3 \) and are of type \(FP \), and thus are in the class considered here. (One of the results of \([4]\) is that the groups arising there are all either polycyclic or solvable Baumslag-Solitar groups, and so may be considered well understood.)

1. BACKGROUND

Let \(G \) be a torsion-free elementary amenable group of finite Hirsch length \(h = h(G) \). Then \(G \) is virtually solvable \([6]\), and so has a subgroup of finite index which is an extension of a finitely generated free abelian group \(\mathbb{Z}^v \) by a nilpotent group \([3]\). Since \(v \leq h < \infty \) we may assume that \(v \) is the virtual first Betti number of \(G \), i.e., the maximum of the ranks of abelian quotients of subgroups of finite index in \(G \). If \(G \neq 1 \) then \(0 < v \leq h = h(G) \leq c.d.G \leq h + 1 \).

Key words and phrases. cohomological dimension, elementary amenable, finitely presentable, Hirsch length, solvable, torsion-free.
We recall that the *Hirsch-Plotkin radical* \sqrt{G} of a group G is the (unique) maximal locally nilpotent normal subgroup of the group. (For the groups G considered below, either \sqrt{G} is abelian or G is virtually nilpotent.) If G is solvable and \sqrt{G} is abelian then \sqrt{G} is its own centralizer in G (by the maximality assumption), and so the homomorphism from G/\sqrt{G} to $\text{Aut}(\sqrt{G})$ induced by conjugation in G is a monomorphism.

A solvable group is *minimax* if it has a composition series whose sections are either finite or isomorphic to $\mathbb{Z}[\frac{1}{m}]$, for some $m > 0$. A solvable group is *constructible* if it is in the smallest class containing the trivial group which is closed under finite extensions and HNN extensions [1]. If G is a torsion-free virtually solvable group then $c.d.G = h \iff G$ is of type $FP \iff G$ is constructible [7].

Let $BS(m, n)$ be the Baumslag-Solitar group with presentation

$$\langle a, t \mid ta^m t^{-1} = a^n \rangle,$$

and let $\overline{BS}(m, n)$ be the metabelian quotient $BS(m, n)/\langle\langle a \rangle\rangle'$, where $\langle\langle a \rangle\rangle'$ is the commutator subgroup of the normal closure of the image of a in $BS(m, n)$. We may assume that $m > 0$ and $|n| \geq m$. (When $m = 1$ and $n = \pm 1$ we get \mathbb{Z}^2 and $\pi_1(Kb)$.) Since we are only interested in torsion-free groups we shall assume also that $(m, n) = 1$.

2. **Hirsch length 2**

In this section we shall consider groups of Hirsch length 2, which arise naturally in the analysis of groups of Hirsch length 3. (Note also that some groups of Hirsch length 2 have cohomological dimension 3.)

Theorem 1. Let G be a torsion-free elementary amenable group of Hirsch length 2. Then \sqrt{G} is abelian, and either \sqrt{G} has rank 1 and $G \cong \sqrt{G} \times \mathbb{Z}$ or \sqrt{G} has rank 2 and $[G : \sqrt{G}] \leq 2$.

Proof. Since G is virtually solvable [6] and the lowest non-trivial term of the derived series of a solvable group is a non-trivial abelian normal subgroup, $\sqrt{G} \neq 1$. Since any two members of \sqrt{G} generate a torsion-free nilpotent group of Hirsch length ≤ 2 they commute. Hence \sqrt{G} is abelian, of rank $r = 1$ or 2, say, and $h(G/\sqrt{G}) = 2 - r$.

Let $C = C_G(\sqrt{G})$ be the centralizer of \sqrt{G} in G. If $N \leq C$ is a normal subgroup of G with locally finite image in G/\sqrt{G} then N' is locally finite, by an easy extension of Schur’s Theorem [8, 10.1.4]. Hence $N' = 1$, so N is abelian, and then $N \leq \sqrt{G}$, by the maximality of \sqrt{G}. Therefore any locally finite normal subgroup of G/\sqrt{G} must act effectively on \sqrt{G}.
If \sqrt{G} has rank 1 then G/\sqrt{G} can have no non-trivial torsion normal subgroup. If $C \neq \sqrt{G}$ is infinite then it has an infinite abelian normal subgroup (since it is non-trivial, virtually solvable, and has no non-trivial torsion normal subgroup). But the preimage of any such subgroup in G is nilpotent (since it is a central extension of an abelian group). This contradicts the maximality of \sqrt{G}. Hence $=\sqrt{G}$ and so G/\sqrt{G} acts effectively on \sqrt{G}. Since $h(G/\sqrt{G}) = 1$ and $\text{Aut}(\sqrt{G}) \leq \mathbb{Q}^\times$, and G/\sqrt{G} has no normal torsion subgroup, we see that $G/\sqrt{G} \cong \mathbb{Z}$.

If \sqrt{G} has rank 2 then G/\sqrt{G} is a torsion group, and $\text{Aut}(\sqrt{G})$ is isomorphic to a subgroup of $\text{GL}(2, \mathbb{Q})$. If G/\sqrt{G} is infinite then it must have an infinite locally finite normal subgroup (since it is a virtually solvable torsion group). But finite subgroups of $\text{GL}(2, \mathbb{Q})$ have order dividing 24, and so G/\sqrt{G} is finite. If g in G has image of finite order $p > 1$ in G/\sqrt{G} then conjugation by g fixes $g^p \in \sqrt{G}$. It follows that g must have order 2 and its image in $\text{GL}(2, \mathbb{Q})$ must have determinant -1. Hence $[G : \sqrt{G}] \leq 2$. □

If G is finitely generated then \sqrt{G} is finitely generated as a module over $\mathbb{Z}[G/\sqrt{G}]$, with respect to the action induced by conjugation in G. If $h(\sqrt{G}) = 1$ then \sqrt{G} is not finitely generated as an abelian group, while $G/\sqrt{G} \cong \mathbb{Z}$. Hence $\mathbb{Z}[G/\sqrt{G}] \cong \mathbb{Z}[t, t^{-1}]$, and the action of t is multiplication by some $n/m \in \mathbb{Q} \setminus \{0, \pm 1\}$, since \sqrt{G} is torsion-free and of rank 1. After replacing t by t^{-1}, if necessary, we may assume that $\sqrt{G} \cong \mathbb{Z}[t, t^{-1}]/(mt - n)$, for some m, n with $(m, n) = 1$ and $|n| > m > 0$. Hence $G \cong \text{BS}(m, n)$. Then $c.d.G = 2 \iff G$ is finitely presentable $\iff m = 1$ [5].

If G is finitely generated and $h(\sqrt{G}) = 2$ then $G \cong \mathbb{Z}^2$ or $\pi_1(Kb)$, and so $c.d.G = 2$.

Let $\mathbb{Z}_{(2)}$ be the localization of \mathbb{Z} at 2, in which all odd integers are invertible, and let $\mathbb{Z}_{(2)}$ act on \mathbb{Q} through the surjection to $\mathbb{Z}_{(2)}/2\mathbb{Z}_{(2)} \cong \mathbb{Z}^\times = \{\pm 1\}$. Let $\mathbb{Q} \otimes Kb$ be the extension of $\mathbb{Z}_{(2)}$ by \mathbb{Q} with this action. Then if $h = 2$ and G is not finitely generated it is either a subgroup of $\mathbb{Q} \times \mathbb{Z}$, for some nonzero m, n with $(m, n) = 1$ (if $h(\sqrt{G}) = 1$), or is a subgroup of $\mathbb{Q} \otimes Kb$ (if $h(\sqrt{G}) = 2$). Every such group has cohomological dimension 3.

3. HIRSCH LENGTH

Suppose now that $h(G) = 3$. Then $h(\sqrt{G}) = 1, 2$ or 3.
Theorem 2. Let G be a torsion-free elementary amenable group of Hirsch length 3. If $h(\sqrt{G}) = 1$ then \sqrt{G} is abelian and $G/\sqrt{G} \cong \mathbb{Z}^2$. If $h(\sqrt{G}) = 2$ then \sqrt{G} is abelian and $G/\sqrt{G} \cong \mathbb{Z}, D_\infty$ or $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. If $h(\sqrt{G}) = 3$ then G is virtually nilpotent. In all cases, G has derived length at most 3.

Proof. If $h(\sqrt{G}) = 1$ then \sqrt{G} is isomorphic to a subgroup of \mathbb{Q} and (as in Theorem 1) G/\sqrt{G} has no locally finite normal subgroup. Since $C_G(\sqrt{G})$ is virtually solvable, it follows that $C_G(\sqrt{G}) = \sqrt{G}$ and so G/\sqrt{G} embeds in $Aut(\sqrt{G})$, which is isomorphic to a subgroup of \mathbb{Q}^\times. Hence $G/\sqrt{G} \cong \mathbb{Z}^2$, and so G has derived length 2.

If $h(\sqrt{G}) = 2$ then \sqrt{G} is abelian and (as in Theorem 1 again) the maximal locally finite normal subgroup of G/\sqrt{G} has order at most 2. Since G/\sqrt{G} is virtually solvable and $h(G/\sqrt{G}) = 1$, it has an abelian normal subgroup A of rank 1, which we may assume torsion-free and of finite index in G/\sqrt{G}. Moreover, G/\sqrt{G} embeds in $Aut(\sqrt{G})$, which is now isomorphic to a subgroup of $GL(2, \mathbb{Q})$. No nontrivial element of A can have both eigenvalues roots of unity, for otherwise $C_G(\sqrt{G}) > \sqrt{G}$. Since the eigenvalues of A have degree ≤ 2 over \mathbb{Q}, it follows that no nontrivial element of A can be infinitely divisible in A. Hence G/\sqrt{G} is virtually \mathbb{Z}, and so it is either \mathbb{Z} or the infinite dihedral group $D_\infty = \mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z}$, or an extension of one of these by $\mathbb{Z}/2\mathbb{Z}$.

If G has a normal subgroup H such that $H/\sqrt{G} \cong \mathbb{Z}/2\mathbb{Z}$ then conjugation in G must preserve the filtration $0 < H' < \sqrt{G}$ of \sqrt{G}. Therefore elements of G' act nilpotently on \sqrt{G}, and so G/H cannot be D_∞. Thus if $h(\sqrt{G}) = 2$ then $G/\sqrt{G} \cong \mathbb{Z}, D_\infty$ or $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, and G has derived length 2, 3 or 2, respectively.

If $h(\sqrt{G}) = 3$ then $h(G/\sqrt{G}) = 0$, and so G is virtually nilpotent. Since iterated commutators live in finitely generated subgroups, the derived length of G is the maximum of the derived lengths of its finitely generated subgroups. Finitely generated torsion-free virtually nilpotent groups of Hirsch length 3 are polycyclic, and are fundamental groups of Nil^3-manifolds. These are Seifert fibred over flat 2-orbifolds without reflector curves, and so these groups have derived length ≤ 3. Hence G has derived length ≤ 3. □

Corollary 3. If G is finitely generated then it is a minimax group.

Proof. If $h(\sqrt{G}) = 1$ and G is finitely generated then \sqrt{G} is finitely generated as a $\mathbb{Z}[\mathbb{Z}^2]$-module. Since it is also torsion-free and of rank 1 as an abelian group, it is in fact a cyclic $\mathbb{Z}[\mathbb{Z}^2]$-module. Hence $\sqrt{G} \cong \mathbb{Z}[1/\mathbb{Z}]$ for some $D > 0$.

If \(h(\sqrt{G}) = 2 \) then \(G \) has a subgroup \(K \) of index \(\leq 2 \) such that \(K/\sqrt{G} \cong \mathbb{Z} \). If \(G \) is finitely generated then \(K \) is also finitely generated. Then \(\sqrt{G} \) is again finitely generated as a \(\Lambda \)-module, and is torsion-free and of rank 2 as an abelian group. Hence it is isomorphic as a group to a subgroup of \(\mathbb{Z}[\frac{1}{m}]^2 \), for some \(m > 0 \).

If \(G \) is finitely generated and \(h(\sqrt{G}) = 3 \) then \(G \) is polycyclic. In all cases it is clear that \(G \) is a minimax group. \(\square \)

We shall consider more closely the cases with \(h(\sqrt{G}) = 1 \) or 2.

Lemma 4. If \(G \) is finitely generated and \(h(\sqrt{G}) = 1 \) then \(G \) is a semidirect product \(\mathbb{BS}(m, n) \rtimes \mathbb{Z} \), where \(mn \) has at least 2 distinct prime factors.

Proof. If \(h(\sqrt{G}) = 1 \) then \(G \) has a presentation
\[
\langle a, t, u | t a^m t^{-1} = a^n, \ u a^p u^{-1} = a^q, \ u t u^{-1} = ta^e, \ \langle \langle a \rangle \rangle' \rangle,
\]
for some nonzero \(m, n, p, q \) with \((m, n) = (p, q) = 1 \) and some \(e \in \mathbb{Z}[\frac{1}{D}] \), where \(D \) is the product of the prime factors of \(mnpq \). Hence \(\sqrt{G} \cong \mathbb{Z}[\frac{1}{D}] \). After a change of basis for \(G/\sqrt{G} \), if necessary, we may assume that \(mn \) has a prime factor which does not divide \(pq \). We may further arrange that \(p \) divides \(m \) and \(q \) divides \(n \), after replacing \(t \) by \(tu^N \) or \(tu^{-N} \) for \(N \) large enough, if necessary. Hence \(D \) is the product of the prime factors of \(mn \). It must have at least 2 prime factors, since \(G/\sqrt{G} \cong \mathbb{Z}^2 \) maps injectively to \(Aut(\sqrt{G}) \cong \mathbb{Z}[\frac{1}{D}]^\times \).

Thus \(G \cong \mathbb{BS}(m, n) \rtimes \mathbb{Z} \), for some automorphism \(\theta \) of \(\mathbb{BS}(m, n) \). \(\square \)

Theorem 5. A finitely generated torsion-free elementary amenable group \(G \) of Hirsch length 3 is coherent if and only if it is FP\(_2\) and \(h(\sqrt{G}) \geq 2 \).

Proof. If \(G \) is coherent then it is finitely presentable and hence FP\(_2\).

Suppose that \(h(\sqrt{G}) = 1 \). Then \(\sqrt{G} \cong \mathbb{Z}[\frac{1}{D}] \) for some \(D > 1 \), and the image of \(G/\sqrt{G} \) in \(Aut(\sqrt{G}) \cong \mathbb{Z}[\frac{1}{D}]^\times \) has rank 2. Hence it contains a proper fraction \(\frac{p}{q} \) with \(p, q \neq \pm 1 \), and so \(G \) has a subgroup isomorphic to \(\mathbb{BS}(p, q) \). Since this subgroup is not even FP\(_2\) \[2\], \(G \) is not coherent.

If \(h(\sqrt{G}) = 2 \) then we may assume that \(G/\sqrt{G} \cong \mathbb{Z} \). If, moreover, \(G \) is FP\(_2\) then \(G \) is an HNN extension with base a finitely generated subgroup of \(\sqrt{G} \) \[2\], and the HNN extension is ascending, since \(G \) is solvable. Any finitely generated subgroup of \(G \) is either a subgroup of the base or is itself an ascending HNN extension with finitely generated base, and so is finitely presentable.

If \(h(\sqrt{G}) = 3 \) then \(G \) is polycyclic, and every subgroup is finitely presentable. \(\square \)
It remains an open question whether an FP_2 torsion-free solvable group G with $h(G) = 3$ and $h(\sqrt{G}) = 1$ must be finitely presentable. Note also that the argument shows that G is *almost coherent* (finitely generated subgroups are FP_2) if and only if it is coherent.

We shall assume next that $h(\sqrt{G}) = 2$ and that $G/\sqrt{G} \cong \mathbb{Z}$. Since $\mathbb{Q} \otimes \sqrt{G} \cong \mathbb{Q}^2$, the action of G/\sqrt{G} on \sqrt{G} by conjugation in G determines a conjugacy class of matrices M in $GL(2, \mathbb{Q})$. Hence $G \cong \sqrt{G} \rtimes_M \mathbb{Z}$.

Lemma 6. A matrix $M \in GL(2, \mathbb{Q})$ is conjugate to an integral matrix if and only if $\det M$ and $\text{tr} M \in \mathbb{Z}$.

Proof. These conditions are clearly necessary. If they hold then the characteristic polynomial is a monic polynomial with \mathbb{Z} coefficients. If $x \in \mathbb{Q}^2$ is not an eigenvector for M then the subgroup generated by x and Mx is a lattice. Since M preserves this lattice, by the Cayley-Hamilton Theorem, it is conjugate to an integral matrix. □

If G is finitely generated then \sqrt{G} is finitely generated as a $\mathbb{Z}[G/\sqrt{G}]$-module, since $\mathbb{Z}[G/\sqrt{G}]$ is noetherian. It is finitely generated as an abelian group (and so G is polycyclic) if and only if M is conjugate to a matrix in $GL(2, \mathbb{Z})$ if and only if $\det M = \pm 1$ and $\text{tr} M \in \mathbb{Z}$.

If G is FP_2 then G is an ascending HNN extension with base \mathbb{Z}^2 (as in Theorem 4 above). Hence M (or M^{-1}) must be conjugate to an integral matrix, and G is finitely presentable. On the other hand, if $G \cong \sqrt{G} \rtimes_M \mathbb{Z}$ and neither M nor M^{-1} is conjugate to an integral matrix then G cannot be FP_2.

We conclude this section by giving some examples realizing the other possibilities for G/\sqrt{G} allowed for by Theorem 2. Torsion-free polycyclic groups G with $h(\sqrt{G}) = 2$ are Sol^3-manifold groups. There are such groups with $G/\sqrt{G} \cong \mathbb{Z}$, D_∞ or $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. (The examples with $G/\sqrt{G} \cong D_\infty$ are fundamental groups of the unions of two twisted I-bundles over a torus along their boundaries.)

For instance, the group G with presentation

$$\langle u, v, y \mid uyu^{-1} = y^{-1}, vvy^{-1} = v^{-2}y^{-1}, v^2 = u^2y \rangle$$

is a generalized free product with amalgamation $A *_C B$ where $A = \langle u, y \rangle \cong B = \langle v, u^2y \rangle \cong \pi_1(Kb)$ and $C = \langle u^2, y \rangle \cong \mathbb{Z}^2$. It is clear that $G/C \cong D_\infty$, and it is easy to check that $C = \sqrt{G}$.

If G is the group with presentation

$$\langle t, x, y \mid tx = xt, tyt^{-1} = y^n, xyx^{-1} = y^{-1} \rangle$$
then \sqrt{G} is normally generated by x^2 and y, so $h(\sqrt{G}) = 2$ and $G/\sqrt{G} \cong \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

If $G/\sqrt{G} \cong D_\infty$ then G is generated by \sqrt{G} and two elements u, v with squares in \sqrt{G}. The matrices in $GL(2, \mathbb{Q})$ corresponding to the actions of u and v have determinant -1. Hence $t = uv$ corresponds to a matrix with determinant 1. There are finitely generated examples of this type which are not polycyclic. For instance, let F be the group with presentation

$$\langle u, v, x, y \mid u^2 = x, yu y^{-1} = y^{-1}, v^2 = xy, vy y^{-1} = x^2 y^{-1} \rangle,$$

and let K be the normal closure of the image of $\{x, y\}$ in F. Then $F/K \cong D_\infty$ and $K/K' \cong \mathbb{Z}[\frac{1}{3}]^2$, and F/K' is torsion-free, solvable and $h(F/K') = 3$.

However, if such a group G is FP_2 then so is the subgroup generated by \sqrt{G} and t. Hence this subgroup is an ascending HNN extension with finitely generated base $H \leq \sqrt{G}$, and F/K' is torsion-free, solvable and $h(F/K') = 3$.

In our next theorem we shall need the stronger hypothesis that G be finitely presentable.

Theorem 7. Let G be a torsion-free solvable group of Hirsch length 3. Then G is finitely presentable if and only if it is constructible.

Proof. If G is constructible then it is finitely presentable. Assume that G is finitely presentable. If \sqrt{G} has rank 1 then G has a presentation

$$\langle a, t, u \mid t a^m t^{-1} = a^n, u a^p u^{-1} = a^q, u t u^{-1} t^{-1} = C(a, t, u), R \rangle,$$

for some nonzero m, n, p, q with $(m, n) = (p, q) = 1$ and word $C(a, t, u)$ of weight 0 in each of t and u, and some finite set of relators R. Let D be the product of the prime factors of $mnpq$. Then $\sqrt{G} \cong \mathbb{Z}[\frac{1}{D}]$, and contains the image of c in G. As observed after Corollary 3 we may assume that p and q divide m and n, respectively and that mn has a prime factor which does not divide pq. 4. FINITELY PRESENTABLE IMPLIES CONSTRUCTIBLE

In this section we shall show that if a torsion-free solvable group G of Hirsch length 3 is finitely presentable then it is in fact constructible, and we shall describe all such groups.

If G is FP_2 and G/G' is infinite then G is an HNN extension $H \ast \varphi$ with finitely generated base H [2], and the extension is ascending since G is solvable. Clearly $h(H) = h(G) - 1 = 2$, and $c.d. G \leq c.d. H + 1$. In our next theorem we shall need the stronger hypothesis that G be finitely presentable.
We may assume that each of the relations in \(R \) has weight 0 in each of \(t \) and \(u \). Then we may write \(C(a, t, u) \) and each relator in \(R \) as a product of conjugates \(b_{i,j} = t^i u^j a u^{-j} t^{-i} \) of \(a \). Since \(R \) is finite the exponents \(i, j \) involved lie in a finite range \([-L, L]\), for some \(L \geq 0 \). The relations imply that the normal closure of the image of \(a \) in \(G \) is \(\sqrt{G} \cong \mathbb{Z}[\frac{1}{L}] \). Hence the images of the \(b_{i,j} \)'s in \(G \) commute, and are powers of an element \(\alpha \) represented by a word \(w = W(a, t, u) \) which is a product of powers of (some of) the \(b_{i,j} \)'s. In particular, \(a = \alpha^N \) and \(b_{i,j} = \alpha^{e(i,j)} \), for some exponents \(N \) and \(e(i, j) \). Clearly \(N = e(0, 0) \).

It follows also that \(t\alpha^m t^{-1} = \alpha^n \) and \(u\alpha^p u^{-1} = \alpha^q \). Hence adjoining a new generator \(\alpha \) and new relations

\[
\begin{align*}
(1) \quad a &= \alpha^N; \\
(2) \quad t\alpha^m t^{-1} &= \alpha^n; \\
(3) \quad u\alpha^p u^{-1} &= \alpha^q; \\
(4) \quad \alpha &= W(a, t, u); \text{ and} \\
(5) \quad t^i u^j a u^{-j} t^{-i} &= \alpha^{e(i,j)}, \text{ for all } i, j \in [-L, L].
\end{align*}
\]

gives an equivalent presentation.

We may use the first relation to eliminate the generator \(a \). Since the image of \(\alpha \) in \(G \) generates an infinite cyclic subgroup, the relations \(R \) must be consequences of these, and so we may delete the relations in \(R \). Moreover the relation \(\alpha = W(a, t, u) \) collapses to a tautology, and so may also be deleted, and we may use the final set of relations to write \(C(a, t, u) \) as a power of \(\alpha \). Since \(t^i u^j a u^{-j} t^{-i} = \alpha^{e(i,j)} \), for all \(i, j \in [-L, L] \).

Thus \(G \) has the finite presentation

\[
\langle t, u, \alpha \mid ta^mt^{-1} = \alpha^n, \quad u\alpha^pu^{-1} = \alpha^q, \quad utu^{-1}t^{-1} = \alpha^c \rangle,
\]

for some \(c \in \mathbb{Z} \). Since the subgroup generated by the images of \(t \) and \(\alpha \) is isomorphic to \(BS(m, n) \) and is solvable, either \(m \) or \(n = 1 \) [2].

If \(h(\sqrt{G}) = 2 \) then \(G \) has a subgroup \(J \) of index \(\leq 2 \) which is an ascending HNN extension with finitely generated base \(H \leq \sqrt{G} \). Since \(h(H) = 2 \), we have \(H \cong \mathbb{Z}^2 \). Hence \(J \) is constructible, and \(G \) is also constructible.

If \(h(\sqrt{G}) = 3 \) then \(G \) is virtually nilpotent, and so is again constructible. \(\Box \)

Theorem 8. Let \(G \) be a torsion-free elementary amenable group of Hirsch length 3. Then \(G \) is constructible if and only if either
(1) $G \cong BS(1, n) \rtimes \theta \mathbb{Z}$ for some $n \neq 0$ or ± 1 and some $\theta \in \text{Aut}(BS(1, n))$;
(2) $G \cong H \ast \phi$ is a properly ascending HNN extension with base $H \cong \mathbb{Z}^2$ or $\pi_1(Kb)$; or
(3) G is polycyclic.

Proof. It shall suffice to show that if G is constructible then it is one of the groups listed here, as they are all clearly constructible. We may also assume that G is not polycyclic, and so $h(\sqrt{G}) = 1$ or 2.

Since G is constructible it has a subgroup J of finite index which is an ascending HNN extension with base a constructible solvable group of Hirsch length 2. Since G is not polycyclic, we may assume that $J = G$, by Theorem 2 (when $h(\sqrt{G}) = 1$) and by Theorem 2 with the observations towards the end of §3 (when $h(\sqrt{G}) = 2$). Constructible solvable groups of Hirsch length 2 are in turn Baumslag-Solitar groups $BS(1, m)$ with $m \neq 0$.

If $h(\sqrt{G}) = 1$ then $|m| > 1$ and $G \cong BS(1, m) \ast \phi$, for some injective endomorphism of $BS(1, m)$. We shall use the presentation for $BS(1, m)$ given in §2. After replacing a by $t^{-k}at^k$, if necessary, we may assume that $\phi(a) = a^q$ and $\phi(t) = ta^r$, for some $q \neq 0$ and r in \mathbb{Z}. Then G has a presentation

$$\langle a, t, u \mid tat^{-1} = a^m, uau^{-1} = a^q, utu^{-1} = ta^r \rangle.$$

Let $s = tu$ and $n = mq$. Then $sas^{-1} = a^n$, and the subgroup $H \cong BS(1, n)$ generated by a and s is normal in G. Conjugation by u generates an automorphism θ of H, since q is invertible in $\mathbb{Z}[\frac{1}{n}]$. Hence $G \cong BS(1, n) \rtimes \theta \mathbb{Z}$, and so G is of type (1).

If $h(\sqrt{G}) = 2$ then $m = \pm 1$, and so $H \cong \mathbb{Z}^2$ or $\pi_1(Kb)$. Since the HNN extension is properly ascending, G is not polycyclic, and so G is of type (2).

We have allowed an overlap between classes (1) and (2) in Theorem 8 for simplicity of formulation. Polycyclic groups of Hirsch length 3 are virtually semidirect products $\mathbb{Z}^2 \rtimes \mathbb{Z}$. Such semidirect products are ascending HNN extensions, but the extensions are not properly ascending, and so classes (2) and (3) are disjoint.

Taking into account the fact that solvable groups G with $c.d.G = h(G)$ are constructible [2], we may summarize the above two theorems as follows.

Corollary 9. If G is a torsion-free elementary amenable group of Hirsch length 3 then $c.d.G = 3 \iff G$ is constructible $\iff G$ is finitely presentable $\iff G$ is one of the groups listed in Theorem 8 above. \[\square\]
We conclude with some remarks on realizing such groups as fundamental groups of aspherical manifolds. If G is a finitely presentable group of type $\mathcal{F}\mathcal{F}$ then there is a finite $K(G, 1)$-complex of dimension $\max\{3, c.d. G\}$ \[9\]. Thickening such a complex gives a compact aspherical manifold of twice the dimension and with fundamental group G. We may define the manifold dimension of G to be the minimal dimension $m.d. G$ of such a manifold. If $c.d. G = h$ (and $h \neq 2$) then there is a finite $K(G, 1)$-complex of dimension h, and so $m.d. G \leq 2h$. If G is virtually polycyclic then $K(G, 1)$ is homotopy equivalent to a closed h-manifold, and so $m.d. G = h$. However if G is not virtually polycyclic then $m.d. G > h + 1$ \[4\].

In particular, groups of the first two types allowed by Theorem 8 are not realizable by aspherical 4-manifolds. The 2-complex associated to the standard 1-relator presentation of $BS(1, m)$ is aspherical, and so $m.d. BS(1, m) \leq 4$ (with equality if $m \neq \pm 1$). Surgery arguments show that every automorphism θ of $BS(1, m)$ is induced by a self-homeomorphism Θ of such a 4-manifold \[4\]. The mapping torus of Θ is an aspherical 5-manifold, and so $m.d. BS(1, m) \rtimes_\theta \mathbb{Z} = 5$ (if $m \neq \pm 1$). The question remains open for properly ascending HNN extensions with base \mathbb{Z}^2 or $\pi_1(K b)$.

References

[1] Baumslag, G. and Bieri, R. Constructable solvable groups, Math. Z. 151 (1976), 249–257.
[2] Bieri, R. and Strebel, R. Almost finitely presentable soluble groups, Comment. Math. Helv. 53 (1978), 258–278.
[3] Čarin, V. S. On soluble groups of type A_4, Mat. Sbornik 94 (1960), 895–914.
[4] Davis, J. F. and Hillman, J. A. Aspherical 4-manifolds with elementary amenable fundamental group, in preparation.
[5] Gildenhuys, D. Classification of soluble groups of cohomological dimension two, Math. Z. 166 (1979), 21–25.
[6] Hillman, J. A. and Linnell, P. A. Elementary amenable groups of finite Hirsch length are locally-finite by virtually solvable, J. Aust. Math. Soc. 52 (1992), 237–241.
[7] Kropholler, P. H. Cohomological dimension of soluble groups, J. Pure Appl. Alg. 43 (1986), 281–287.
[8] Robinson, D. J. S. A Course in the Theory of Groups, GTM 80, Springer-Verlag, Berlin – Heidelberg – New York (1982).
[9] Wall, C. T. C. Finiteness conditions on CW complexes. II, Proc. Roy. Soc. Ser. A 295 (1966), 129–139.

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Email address: jonathanhillman47@gmail.com