Families of Geodesic Orbit Spaces and Related Pseudo-Riemannian Manifolds

Joseph A. Wolf

Received: 4 November 2022 / Accepted: 11 March 2023 / Published online: 24 April 2023
© Mathematica Josephina, Inc. 2023

Abstract

Two homogeneous pseudo-Riemannian manifolds \((G/H, ds^2)\) and \((G'/H', ds'^2)\) belong to the same real form family if their complexifications \((G_C/H_C, ds^2_C)\) and \((G'_C/H'_C, ds'^2_C)\) are isometric. The point is that in many cases, a particular space \((G/H, ds^2)\) has interesting properties, and those properties hold for the spaces in its real form family. Here we prove that if \((G/H, ds^2)\) is a geodesic orbit space with a reductive decomposition \(g = h \oplus m\), then the same holds all the members of its real form family. In particular, our understanding of compact geodesic orbit Riemannian manifolds gives information on geodesic orbit pseudo-Riemannian manifolds. We also prove similar results for naturally reductive spaces, for commutative spaces, and in most cases for weakly symmetric spaces. We end with a discussion of inclusions of these real form families, a discussion of D’Atri spaces, and a number of open problems.

Keywords Geodesic orbit space · Real form family · Weakly symmetric space · Naturally reductive space · Commutative space · D’Atri space · Pseudo-Riemannian manifold · Homogeneous manifold

Mathematics Subject Classification 22E45 · 43A80 · 32M15 · 53B30 · 53B35

1 Introduction

Let \((G/H, ds^2)\) be a homogeneous pseudo-Riemannian manifold. For convenience of exposition, we assume that \(M\) and \(G\) are connected. We have the complexification \((G_C/H_C, ds^2_C)\) where \(ds^2\) is extended by complex bilinearity on every tangent space. \((G_C/H_C, ds^2_C)\) is pseudo-Riemannian of signature \((n, n)\) where \(n = \dim M\).
The **real form family** of \((G/H, ds^2)\) consists of all pseudo-Riemannian manifolds \((G'/H', ds^2)\) with the same (up to isometry) complexification \((G_C/H_C, ds^2_C)\). Following [13], we write \(\{(G/H, ds^2)\}\) for the real form family of \((G/H, ds^2)\).

There is some ambiguity in the literature. In this paper, \((G_C/H_C, ds^2_C)\) does not belong to \(\{(G/H, ds^2)\}\); we refer to \((G_C/H_C, ds^2_C)\) as the **crown** of \(\{(G/H, ds^2)\}\) and write \((G_C/H_C, ds^2_C) = \text{cr}\{\{(G/H, ds^2)\}\}\).

From now on, suppose that we have a reductive decomposition: \(g = h \oplus m\) with \(\text{Ad}(H)m = m\). Then \(m\) represents the tangent space at \(o = 1H\) and \(\langle \cdot, \cdot \rangle\) denotes the inner product on \(m\) defined by \(ds^2\).

If \((G'/H', ds^2) \in \{(G/H, ds^2)\}\), then \(\{(G/H, ds^2)\} = \{(G'/H', ds^2)\}\). In particular, \((G/H, ds^2)\) and \((G'/H', ds^2)\) have isometric complexifications, \((G_C/H_C, ds^2_C) \cong (G'_C/H'_C, ds^2_C)\), i.e., \(\text{cr}\{\{(G/H, ds^2)\}\} \cong \text{cr}\{\{(G'/H', ds^2)\}\}\). Further, we have a reductive decomposition \(g' = h' \oplus m'\) stable under an involutive isometry \(\theta'\) of \(G'\) and an isomorphism \(f : G \cong G'\) such that \(f(H) = H'\) and \(f^*(ds^2) = ds^2\). One can exchange the rôles of \((G/H, ds^2)\) and \((G'/H', ds^2)\) here.

Thus, it is an equivalence relation for \((G/H, ds^2)\) and \((G'/H', ds^2)\) belongs to the same real form family.

A nonzero element \(\eta \in g\) is a **geodesic vector** (at \(o\)) if \(t \mapsto \exp(t\eta)o\) is a geodesic. A geodesic \(t \mapsto \gamma(t)\) is called **homogeneous** if it comes from a geodesic vector as above. \((G/H, ds^2)\) is a **geodesic orbit space** or **GO space** if every geodesic on \((G/H, ds^2)\) is homogeneous.

Proposition 1.1 Geodesic Lemma Let \((G/H, ds^2)\) be a homogeneous pseudo-Riemannian manifold with a reductive decomposition \(g = h \oplus m, [h, m] \subset m\). Then \((G/H, ds^2)\) is a geodesic orbit space if and only if

\[
\text{given } \xi \in m \text{ there exist } \alpha \in h \text{ and } c \in \mathbb{R} \text{ such that } \\
\langle [\xi + \alpha, \zeta]_m, \xi \rangle = c \langle \xi, \zeta \rangle \text{ for all } \zeta \in m. \quad (1.2)
\]

Further, if \(\langle \xi, \xi \rangle \neq 0 \text{ in } (1.2)\) then \(c = 0\), so if \(c \neq 0 \text{ in } (1.2)\) then the geodesic is null.

For the notion of homogeneous geodesic and the Formula (1.2) characterizing geodesic vectors in the Riemannian case, see [9]. The pseudo-Riemannian case appeared in [4] and [10], but without a proof. The correct mathematical formulation with the proof was given in [3].

We are going to study the structure of real form families of geodesic orbit spaces (in Sect.3) using the form of the Geodesic Lemma. Then we look at corresponding structural matters for naturally reductive spaces (in Sect.4), for commutative spaces (in Sect.5), for weakly symmetric spaces (in Sect.6), and for D’Atri spaces (in Sect.7), ending with a list of open problems.

2 The Moduli Spaces

The moduli spaces \(\mathcal{M}\) and \(\mathcal{M}_C\) will allow us to carry the GO property between various spaces in a real form family. Define real and complex polynomials

\[\text{Springer} \]
In the notation of Theorem 3.3 we start by pinning down the moduli spaces 3 Geodesic Orbit Spaces

Families of Geodesic Orbit Spaces and Related Pseudo-Riemannian

by "\{\}

\(\varphi : m \oplus h \oplus m \oplus \mathbb{R} \to \mathbb{R}\) by \(\varphi(\xi, \alpha, \zeta, c) = \langle [\xi + \alpha, \zeta]_m, \xi \rangle - c(\xi, \zeta)\) and
\(\varphi_C : m_C \oplus h_C \oplus m_C \oplus \mathbb{C} \to \mathbb{C}\)

by \(\varphi_C(\xi, \alpha, \zeta, c) = \langle [\xi + \alpha, \zeta]_{m_C}, \xi \rangle - c(\xi, \zeta)\),

(2.1)

where \(\langle \cdot, \cdot \rangle\) extends from \(m \oplus m\) to \(m_C \oplus m_C\) by complex bilinearity. Note that \(\varphi_C(\xi, \alpha, \zeta, c)\) is linear in \(\zeta\), in \(\alpha\), and in \(c\); and it is quadratic in \(\xi\). Define subvarieties
\(\Omega = \{(\xi, \alpha, c) \in (m \oplus h \oplus \mathbb{R}) \mid \varphi(\xi, \alpha, \zeta, c) = 0 \text{ for every } \zeta \in m\}\)
\(\Omega_C = \{(\xi, \alpha, c) \in (m_C \oplus h_C \oplus \mathbb{C}) \mid \varphi_C(\xi, \alpha, \zeta, c) = 0 \text{ for every } \zeta \in m_C\}\).

As one might guess from the notation, we have

Proposition 2.3 The real affine variety \(\Omega = \Omega_C \cap (m \oplus h \oplus m \oplus \mathbb{R})\), and it is a real form of the complex affine variety \(\Omega_C\). In other words \(\Omega_C\) is the complexification of \(\Omega\). In particular, if \(f\) is a holomorphic function on \(\Omega_C\) and \(f|_{\Omega} \equiv 0\), then \(f \equiv 0\).

Proof As \(\varphi\) and \(\varphi_C\) are linear in \(\zeta\), we can replace the “every \(\zeta\)” conditions in (2.2) by “\(\{\zeta_1, \ldots, \zeta_{\ell}\}\)” conditions, where \(\{\zeta_1, \ldots, \zeta_{\ell}\}\) is a basis of \(m\). In other words, \(\Omega\) is defined by the \(\ell\) real polynomial functions \(\varphi_j : (\xi, \alpha, c) \mapsto \varphi(\xi, \alpha, \zeta_j, c)\) on \(m \oplus h \oplus \mathbb{R}\), and \(\Omega_C\) is defined by the \(\ell\) complex polynomial functions \(\varphi_j : (\xi, \alpha, c) \mapsto \varphi_C(\xi, \alpha, \zeta_j, c)\) on \(m_C \oplus h_C \oplus \mathbb{C}\). As \(\varphi_j = \varphi_j|_{(m \oplus h \oplus \mathbb{R})}\), the Proposition is immediate.

\(\square\)

3 Geodesic Orbit Spaces

We start by pinning down the moduli spaces \(\Omega\) and \(\Omega_C\) for the geodesic orbit case. From the definitions

Lemma 3.1 In the notation of (2.2), \(\xi + \alpha\) is a geodesic vector for \((G/H, ds^2)\) if and only if \(\xi + \alpha \in \Omega\), and \(\xi + \alpha\) is a geodesic vector for the crown \(\text{cr}\{((G/H, ds^2))\}\) if and only if \(\xi + \alpha \in \Omega_C\).

Thus we have a minor reformulation of the Geodesic Lemma (Proposition 1.1), as follows.

Proposition 3.2 In the notation of (2.2), \((G/H, ds^2)\) is a geodesic orbit space if and only if, for every \(\xi \in m\) there is an \(\alpha \in h\) with \((\xi, \alpha) \in \Omega\), and the crown \(\text{cr}\{((G/H, ds^2))\}\) is a geodesic orbit space if and only if, for every \(\xi \in m_C\) there is an \(\alpha \in h_C\) with \((\xi, \alpha) \in \Omega_C\).

Now we combine Propositions 2.3 and 3.2:

Theorem 3.3 In the notation of (2.2), \((G/H, ds^2)\) is a geodesic orbit space if and only if the crown \(\text{cr}\{((G/H, ds^2))\}\) is a geodesic orbit space. In particular, if \((G'/H', ds'^2) \in \{((G/H, ds^2))\}\), then \((G/H, ds^2)\) is a geodesic orbit space if and only if \((G'/H', ds'^2)\) is a geodesic orbit space.
Proof Proposition 3.2 says that \((G/H, ds^2)\) is a geodesic orbit space if and only if the projection \(\pi : \Omega \to m\) by \(\pi(\xi, \alpha) = \xi\), is surjective; and also \((G_C/H_C, ds_C^2)\) is a geodesic orbit space if and only if the projection \(\pi_C : \Omega_C \to m_C\), by \(\pi_C(\xi, \alpha) = \xi\), is surjective. But Proposition 2.3 ensures that \(\pi\) is surjective if and only if \(\pi_C\) is surjective. That proves the first assertion. Since \(\{(G'/H', ds'^2)\} = \{(G/H, ds^2)\}\) the corresponding \(\pi' : \Omega' \to m'\) is surjective if and only if \(\pi_C\) is surjective. The second assertion follows. \(\square\)

4 Naturally Reductive Spaces

A homogeneous space \((G/H, ds^2)\) with a reductive decomposition \(g = h \oplus m\), \(\text{Ad}(H)m = m\), is called naturally reductive if

\[
\text{if } \xi \in m \text{ then } t \mapsto \exp(t\xi)H \text{ is a complete geodesic in } (G/H, ds^2). \tag{4.1}
\]

The Lie algebra formulation of (4.1) is

\[
\langle [\xi, \eta]_m, \zeta \rangle + \langle \eta, [\xi, \zeta]_m \rangle = 0 \quad \text{for all } \xi, \eta, \zeta \in m. \tag{4.2}
\]

The case \(\zeta = \xi\) is \(\langle [\xi, \eta]_m, \zeta \rangle + \langle \eta, [\xi, \zeta]_m \rangle = \langle [\xi, \eta]_m, \xi \rangle + \langle \eta, [\xi, \xi]_m \rangle = \langle [\xi, \eta]_m, \xi \rangle\), so naturally reductive spaces are geodesic orbit spaces. Or one can see this by noting that (4.1) is the case \(\alpha = 0\) of (1.2).

As in (2.1), one has corresponding polynomials

\[
\psi : m \oplus m \oplus m \to \mathbb{R} \text{ by } \psi(\xi, \eta, \zeta) = \langle [\xi, \eta]_m, \zeta \rangle + \langle \eta, [\xi, \zeta]_m \rangle \text{ and } \\
\psi_C : m_C \oplus m_C \oplus m_C \to \mathbb{C} \text{ by } \psi_C(\xi, \eta, \zeta) = \langle [\xi, \eta]_{m_C}, \zeta \rangle + \langle \eta, [\xi, \zeta]_{m_C} \rangle. \tag{4.3}
\]

As in (2.2), those polynomials define corresponding moduli spaces

\[
\Psi = \{(\xi, \eta, \zeta) \in (m \oplus m \oplus m) \mid \psi(\xi, \eta, \zeta) = 0\} \text{ and } \\
\Psi_C = \{(\xi, \eta, \zeta) \in (m_C \oplus m_C \oplus m_C) \mid \psi_C(\xi, \eta, \zeta) = 0\}. \tag{4.4}
\]

Then we have the analog of Proposition 2.3:

Proposition 4.5 The real affine variety \(\Psi = \Psi_C \cap (m \oplus m \oplus m)\), and it is a real form of the complex affine variety \(\Psi_C\). In other words, \(\Psi_C\) is the complexification of \(\Psi\). In particular, if \(f\) is a holomorphic function on \(\Psi_C\) and \(f|_\Psi \equiv 0\), then \(f \equiv 0\).

We reformulate the definition (4.2) of naturally reductive space:

Proposition 4.6 In the notation of (4.4), \((G/H, ds^2)\) is a naturally reductive space if and only if \(\psi(\xi, \eta, \zeta) \in \Psi\) whenever \((\xi, \eta, \zeta) \in (m \oplus m \oplus m)\). The crown \(\text{cr}((G/H, ds^2))\) is a naturally reductive space if and only if \(\psi(\xi, \eta, \zeta) \in \Psi_C\) whenever \((\xi, \eta, \zeta) \in (m_C \oplus m_C \oplus m_C)\).

Now we combine Propositions 4.5 and 4.6:
Theorem 4.7 In the notation of (4.4), \((G/H, ds^2)\) is a naturally reductive space if and only if the crown \(\text{cr}\{((G/H, ds^2))\}\) is a naturally reductive space. In particular, if \((G'/H', ds^2)\) \(\in\{((G/H, ds^2))\}\), then \((G/H, ds^2)\) is a naturally reductive space if and only if \((G'/H', ds^2)\) is a naturally reductive space.

5 Commutative Spaces

Consider a pseudo-Riemannian manifold \((G/H, ds^2)\) where \(G\) is the identity component of the group of all isometries. The \(G\)-invariant differential operators on \(G/H\) form an associative algebra \(\mathcal{D}(G, H)\). We say that \((G/H, ds^2)\) is \textit{commutative} if the algebra \(\mathcal{D}(G, H)\) is commutative. This is the usual definition when \(H\) is compact and \((G/H, ds^2)\) is Riemannian, but it makes perfectly good sense (and is appropriate for us) in any signature.

We will discuss D’Atri spaces in Sect. 7, but the point here is that commutative spaces are D’Atri spaces [6]. In dimensions \(\leq 5\), one can say a bit more. There, a homogeneous Riemannian manifold is commutative if and only if it is naturally reductive.

Without loss of generality, suppose that \(G/H\) is connected and simply connected, and that \(G = I^0(G/H, ds^2)\). Then also \(H\) is connected. As before, we start with a reductive decomposition \(g = \mathfrak{h} \oplus \mathfrak{m}\). Identify \(\mathfrak{m}\) with the tangent space \(T_{x_0}(G/H)\) at the base point \(x_0 = 1H \subseteq G/H\). That gives an obvious \(\text{Ad}(H)\)-equivariant bijection between \(\mathcal{D}(G, H)\) and the \(\text{Ad}(H)\)-invariants \(S(m)^H\) in the symmetric algebra \(S(m)\).

See Helgason [5, Chap. II, Theorem 4.6], for the details.

Given any real basis \(\{\xi_1, \ldots, \xi_\ell\}\) of \(\mathfrak{h}\), \(S(m)^H\) is the intersection \(\bigcap_{1 \leq j \leq \ell} S(m)^{\xi_j}\) of null spaces of the \(\text{ad}(\xi_j)\) on \(S(m)\). As \(\{\xi_j\}\) is a complex basis of \(m\), we have

Lemma 5.1 The algebra \(\mathcal{D}(G_C, H_C)\) is the complexification \(\mathcal{D}(G, H)\) of the algebra \(\mathcal{D}(G, H)\).

Now \(\mathcal{D}(G_C, H_C)\) is commutative if and only if \(\mathcal{D}(G, H)\) is commutative. We apply this to real form families.

Theorem 5.2 The pseudo-Riemannian manifold \((G/H, ds^2)\) is commutative if and only if its complexification \((G_C/H_C, ds_C^2)\) is commutative. If \((G'/H', ds^2)\in\{((G/H, ds^2))\}\), then \((G'/H', ds^2)\) is commutative if and only if \((G/H, ds^2)\) is commutative.

6 Weakly Symmetric Spaces

Recall that a pseudo-Riemannian manifold \((M, ds^2)\) is weakly symmetric if, given \(x \in M\) and a tangent vector \(\xi \in T_x(M)\), there is an isometry \(s_{x, \xi} \in I(M, ds^2)\) such that \(s_{x, \xi}(x) = x\) and \(ds_{x, \xi}(\xi) = -\xi\). The familiar special case: \((M, ds^2)\) is symmetric if, given \(x \in M\) there is an isometry \(s_x \in I(M, ds^2)\) such that \(s_x(x) = x\) and \(ds_x(\xi) = -\xi\) for every \(\xi \in T_x(M)\).

\(^1\) By an abuse of notation, we write \(\text{Ad}(H)\) instead of \(S(\text{Ad}(H))\) for the symmetric powers that form the action of \(H\) on \(S(m)\).
Riemannian weakly symmetric spaces were introduced by Selberg [11] in the context of harmonic analysis and algebraic geometry. One of his results was that Riemannian weakly symmetric spaces are commutative. In view of Theorem 5.2,

Corollary 6.1 Let \((G/H, ds^2)\) be a Riemannian weakly symmetric space. Then \(\text{cr}((G/H, ds^2))\) is commutative, and every \((G'/H', ds'^2) \in \{(G/H, ds^2)\}\) is commutative.

Weakly symmetric pseudo-Riemannian manifolds are geodesic orbit spaces [1, Theorem 4.2]. Thus, if \((G/H, ds^2)\) is weakly symmetric then, by Theorem 3.3, every \((G'/H', ds'^2) \in \{(G/H, ds^2)\}\) is a geodesic orbit space.

There are \(\aleph_0\) examples in the tables of [2] and [13]. Tables 3.6, 4.12, 5.1, 5.2, and 5.3 in [2] list various classes of real form families \(\{(G/H, ds^2)\}\) with \((G/H, ds^2)\) weakly symmetric, \(G\) semisimple and \(H\) reductive. The Tables in [13] list various classes of real form families \(\{(G/H, ds^2)\}\) for which \((G/H, ds^2)\) is a weakly symmetric nilmanifold with \(G = N \rtimes H\).

The question here is just when weak symmetry of \((G/H, ds^2)\) implies weak symmetry for the members of its real form family \(\{(G/H, ds^2)\}\). A partial answer is implicit in the result of Akhiezer and Vinberg quoted in [12, Theorem 12.6.10]; specifically see [12, Corollary 12.6.12]:

Proposition 6.2 Let \((G/H, ds^2)\) be a weakly symmetric pseudo-Riemannian manifold with \(G\) connected and reductive, and \(H\) reductive in \(G\). Then every \((G'/H', ds'^2) \in \{(G/H, ds^2)\}\) is weakly symmetric.

See [12, Sect. 15.4] for a discussion of commutativity for weakly symmetric Riemannian nilmanifolds.

7 D’Atri Spaces

We say that a pseudo-Riemannian manifold \((M, ds^2)\) is a **D’Atri space** if its local geodesic symmetries \(\sigma_x : \exp(t\xi) \mapsto \exp(-t\xi), \xi \in T_x(M)\) and \(t\) reasonably small, are volume preserving. This is the standard definition when \((M, ds^2)\) is Riemannian, but it makes perfectly good sense (and is appropriate for us) in any signature.

A geodesic orbit Riemannian manifold is a D’Atri space [7, Theorem 1]. That argument of Kowalski and Vanhecke goes through *mutatis mutandis* for pseudo-Riemannian manifolds, using the definition introduced just above. Or see [8] to develop this in the more general setting of two-point functions. In any case, we now have inclusions of real form families of pseudo-Riemannian manifolds:

\[(\text{weakly symmetric spaces}) \subset (\text{geodesic orbit spaces}) \subset (\text{D’Atri spaces}) \subset (\text{naturally reductive spaces}) \subset (\text{D’Atri spaces}) \quad (7.1)\]

This suggests a number of open problems, one of which was noted toward the end of Sect. 6:
• If \((G/H, ds^2)\) is weakly symmetric and \((G'/H', ds'^2) \in \{(G/H, ds^2)\}\), is \((G'/H', ds'^2)\) weakly symmetric?
• Can the naturally reductive weakly symmetric spaces be characterized as the weakly symmetric spaces \((G/H, ds^2)\) for which every \((G'/H', ds'^2) \in \{(G/H, ds^2)\}\) is weakly symmetric?
• If \((G/H, ds^2)\) is a D’Atri space and \((G'/H', ds'^2) \in \{(G/H, ds^2)\}\) is weakly symmetric?
• What happens if we restrict these questions to the case of spaces \((G/H, ds^2)\) for which \(G\) is semisimple (or real reductive) and \(H\) is reductive in \(G\)?
• What happens if we restrict these questions to the case of spaces \((G/H, ds^2)\) for which \(G\) is of the form \(N \rtimes H\) with \(N\) nilpotent?

Acknowledgements
Research partially supported by a Simons Foundation Grant.

References

1. Chen, Z., Wolf, J.A.: Pseudo-Riemannian weakly symmetric manifolds. Ann. Glob. Anal. Geom. 41, 381–390 (2012)
2. Chen, Z., Wolf, J.A.: Semisimple weakly symmetric pseudo-Riemannian manifolds. Abh. Math. Semin. Univ. Hambg 88, 331–369 (2018). The tables are easier to read in the arXiv version [arXiv: 1707.01181]
3. Dusek, Z., Kowalski, O.: Light-like homogeneous geodesics and the geodesic lemma for any signature. Publ. Math. Debr. 71, 245–252 (2007)
4. Figueroa-O’Farrill, J., Meessen, P., Philip, S.: Homogeneity and plane-wave limits. J. High Energy Phys. 05, 050ff (2005)
5. Helgason, S.: Groups and Geometric Analysis. Academic, New York (1984)
6. Kowalski, O., Vanhecke, L.: Opérateurs différentiels invariants et symétries géodésiques préservant le volume. C. R. Acad. Sci. Paris 296, 1001–1003 (1983)
7. Kowalski, O., Vanhecke, L.: A generalization of a theorem on naturally reductive homogeneous spaces. Proc. Am. Math. Soc. 91, 433–435 (1984)
8. Kowalski, O., Vanhecke, L.: Two point functions on Riemannian manifolds. Ann. Glob. Anal. Geom. 3, 95–119 (1985)
9. Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. B (7) 5, 189–246 (1991)
10. Philip, S.: Penrose limits of homogeneous spaces. J. Geom. Phys. 56, 1516–1533 (2006)
11. Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series. J. Indian Math. Soc. 20, 47–87 (1956)
12. Wolf, J.A.: Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs, vol. 142. American Mathematical Society, Providence (2007)
13. Wolf, J.A., Chen, Z.: Weakly symmetric pseudo-Riemannian nilmanifolds. J. Differ. Geom. 121, 541–572 (2022)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.