K. BŁOCH*, M. NABIALEK*, M. DOŚPIAŁ*, S. GARUS*

CRYSTALLIZATION OF Fe-BASED BULK AMORPHOUS ALLOYS

KRystalizacja Masywnych Stopów Amorficznych na Bazię Żelaza

The aim of this paper is to present the results of crystallization studies for the bulk amorphous (Fe_{0.61}Co_{0.10}Zr_{0.025}Hf_{0.025}Ti_{0.02}W_{0.02}B_{0.20})_{98}Y_{2}, Fe_{61}Co_{10}Ti_{3}Y_{6}B_{20}, Fe_{61}Co_{10}Ti_{3}Y_{7}B_{20} alloys. The crystallization of the alloys was studied by differential scanning calorimetry (DSC). The amorpicity of the investigated alloys in the as-quenched state was testified using Mössbauer spectroscopy, X-ray diffractometry and transmission electron microscopy. Moreover, X-ray diffractometry was applied to structure investigations of partially crystallized samples. The crystallization process in the investigated alloys occurs in one or two stages. Two peaks in the DSC curves can be overlapped or well separated indicating the complex crystallization processes. From X-ray diffraction we have stated that in both types of devitrification the crystalline phase can be ascribed to the α-FeCo. In the first stage the crystalline grains seem to grow from the nuclei frozen in the samples during the rapid quenching, whereas in the second one both the growth of the existed grains and creation of new ones during annealing may occur.

Keywords: bulk amorphous alloys, differential scanning calorimetry (DSC), X-ray diffractometry, transmission electron microscopy, Mössbauer spectroscopy

1. Introduction

Iron-based amorphous ferromagnetic alloys have attracted much attention due to their great potential application and low material cost [1-3]. Conventional amorphous alloys are usually prepared by rapidly quenching of a molten material on a rotating wheel at cooling rate of the order of \(10^6\) K s\(^{-1}\) and have a shape of thin ribbons with thickness of about 40 µm. The packing density of the material in magnetic cores is low because of air gaps between layers. Multicomponent systems enable to produce amorphous materials at relatively low cooling rate of 1-10\(^2\) K s\(^{-1}\) in the form of rods, tubes and thick ribbons [4-7]. One of the important parameters, which determine the application of amorphous material, is the thermal stability of the structure and magnetic properties. Instability of the amorphous alloys, connected with irreversible structure relaxations, leads to their crystallization at high temperature. We may distinguish two types of amorphous alloys [8,9]. Type one devitrifies directly to the crystalline phase. Whereas in the second type at first the quasicrystalline state is created and then during further heating it transforms to crystalline state [10-11].

The aim of this paper is to present the results of crystallization studies of the bulk amorphous (Fe_{0.61}Co_{0.10}Zr_{0.025}Hf_{0.025}Ti_{0.02}W_{0.02}B_{0.20})_{98}Y_{2}, Fe_{61}Co_{10}Ti_{3}Y_{6}B_{20}, Fe_{61}Co_{10}Ti_{3}Y_{7}B_{20} alloys.

2. Experimental procedure

Alloy ingots with nominal composition (Fe_{0.61}Co_{0.10}Zr_{0.025}Hf_{0.025}Ti_{0.02}W_{0.02}B_{0.20})_{98}Y_{2}, Fe_{61}Co_{10}Ti_{3}Y_{6}B_{20}, Fe_{61}Co_{10}Ti_{3}Y_{7}B_{20} were prepared by arc melting of high purity elements in an argon protective atmosphere. Each ingot was remelted four times to obtain the homogenous material. Amorphous rods 1 mm in diameter and 20 mm long (Fig. 1.) were obtained by a suction-casting method of the molten alloy into a copper mould cooled with water [12].

* INSTITUTE OF PHYSICS, CZESTOCHOWA UNIVERSITY OF TECHNOLOGY, 19 ARMII KRAJOWEJ AV., 42-200 CZESTOCHOWA, POLAND
The structure of the samples was investigated using Mössbauer spectroscopy, X-ray diffractometry and transmission electron microscopy. The Mössbauer spectrum and X-ray diffraction patterns were measured for powdered samples. The crystallization of the alloys was studied by differential scanning calorimetry (DSC) for the samples in the form of rods and after powdering. The heat treatment of the samples was carried out in an argon atmosphere using a differential scanning calorimeter.

3. Results and discussion

In the Fig. 2 X-ray diffractions patterns for as-received (Fe$_{0.61}$Co$_{0.10}$Zr$_{0.025}$Hf$_{0.025}$Ti$_{0.02}$W$_{0.02}$B$_{0.20}$)$_{98}$Y$_2$, Fe$_{61}$Co$_{10}$Ti$_3$Y$_6$B$_{20}$, Fe$_{61}$Co$_{10}$Ti$_2$Y$_7$B$_{20}$ alloys are presented.

![X-ray diffraction patterns](image)

Fig. 2. XRD patterns obtained for as-received powdered samples (a) – (Fe$_{0.61}$Co$_{0.10}$Zr$_{0.025}$Hf$_{0.025}$Ti$_{0.02}$W$_{0.02}$B$_{0.20}$)$_{98}$Y$_2$, (b) – Fe$_{61}$Co$_{10}$Ti$_3$Y$_6$B$_{20}$, (c) – Fe$_{61}$Co$_{10}$Ti$_2$Y$_7$B$_{20}$

X-ray diffraction patterns are characteristic of the amorphous state and consist of broad maxima. No narrow peaks typical of crystalline phases are present.

Transmission Mössbauer spectra and obtained from them hyperfine field induction distributions for the same samples are shown in Fig. 3.

Mössbauer spectra are typical of amorphous alloys and have the form of sextet with broad and overlapped lines. The hyperfine induction distributions do not exhibit the unimodal character and we may distinguished in them at least two components corresponding to the different environment of 57Fe atoms.

![Transmission Mössbauer spectra and corresponding hyperfine field induction distributions](image)

Fig. 3. Transmission Mössbauer spectra (a, b, c) and corresponding hyperfine field induction distributions (d, e, f) for amorphous powdered alloys after preparation: (a, d) – (Fe$_{0.61}$Co$_{0.10}$Zr$_{0.025}$Hf$_{0.025}$Ti$_{0.02}$W$_{0.02}$B$_{0.20}$)$_{98}$Y$_2$, (b, e) – Fe$_{61}$Co$_{10}$Ti$_3$Y$_6$B$_{20}$, (c, f) – Fe$_{61}$Co$_{10}$Ti$_2$Y$_7$B$_{20}$

The amorphous structure of the as-received alloys was also confirmed by transmission electron microscopy working at high resolution mode (HREM). In Fig. 4 the bright-field HREM-image of the sample of (Fe$_{0.61}$Co$_{0.10}$Zr$_{0.025}$Hf$_{0.025}$Ti$_{0.02}$W$_{0.02}$B$_{0.20}$)$_{98}$Y$_2$ alloy, as an example, is depicted.

![Bright-field HREM-image](image)

Fig. 4. Bright-field HREM-image (a) and corresponding electron diffraction pattern (b) obtained for the as-received (Fe$_{0.61}$Co$_{0.10}$Zr$_{0.025}$Hf$_{0.025}$Ti$_{0.02}$W$_{0.02}$B$_{0.20}$)$_{98}$Y$_2$ alloy

In bright-field image no crystalline phases are observed and corresponding selected area diffraction pattern has form of a halo ring characteristic of an amorphous phase.

Fig. 5. shows DSC tracers obtained for small pieces (5 mm long) cut out from the as-quenched rods.
DSC curves recorded at heating rate of 10 K min\(^{-1}\) for amorphous rods and powdered samples are presented in Fig. 7.

The peaks in the DSC curves obtained for powdered samples are more pronounced and slightly shifted to lower temperature than for rods. It is connected with temperature distribution in the cross-section of rods during measurements of DSC curves.

In order to determine the phase composition of the samples in different stages of crystallization, X-ray diffraction patterns were measured for the samples in the proper stage of crystallization. In Fig. 8 DSC curves for the amorphous powdered \((\text{Fe}_{61}\text{Co}_{10}\text{Ti}_{3}\text{Y}_{6}\text{B}_{20})_{98}\text{Y}_{2}\) sample measured in the temperature range from 800 K up to 920 K and from 800 K up to 1010 K and X-ray diffraction patterns recorded after breaking heat treatment at 920 K and 1010 K are shown.

The X-ray diffractograms show the narrow peaks at 2\(\theta\) = 44.8° corresponding to the crystalline phase. The intensity of this peak in X-ray pattern obtained for the sample is higher after the second stage of crystallization. The similar results were obtained for the bulk amorphous \(\text{Fe}_{61}\text{Co}_{10}\text{Ti}_{3}\text{Y}_{6}\text{B}_{20}\) alloy (Fig. 9).
The first peak observed in DSC curves for \((\text{Fe}_{0.61}\text{Co}_{0.10}\text{Zr}_{0.025}\text{Hf}_{0.025}\text{Ti}_{0.02}\text{W}_{0.02}\text{B}_{0.20})_{98}\text{Y}_{2} \) and \(\text{Co}_{10}\text{Ti}_{2}\text{Y}_{0.20} \) alloys corresponds to the creation of crystalline grains from nuclei quenched in during alloys preparation. However, the second peak is connected with the growth of existing grains and nuclei which were created during heating. DSC curve and X-ray diffraction pattern of the amorphous FeCo alloy are shown in Fig. 10.

DSC curve obtained for this alloy exhibits only one maximum. From the analysis of X-ray diffraction patterns it has been stated that during crystallization of the investigated alloys the FeCo phase appears.

4. Conclusions

We found that the crystallization process of bulk amorphous alloys strongly depends on their chemical composition. The amorphous \((\text{Fe}_{0.61}\text{Co}_{0.10}\text{Zr}_{0.025}\text{Hf}_{0.025}\text{Ti}_{0.02}\text{W}_{0.02}\text{B}_{0.20})_{98}\text{Y}_{2} \) alloy crystallizes in two stages with well separated temperature. DSC curve for \(\text{Fe}_{0.61}\text{Co}_{10}\text{Ti}_{2}\text{Y}_{0.20} \) alloy shows near situated peaks, whereas the crystallization process for \(\text{Fe}_{0.61}\text{Co}_{10}\text{Ti}_{2}\text{Y}_{0.20} \) alloy takes place in one stage.

REFERENCES

[1] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279-306 (2000).
[2] C.Y. Lin, T.S. Chin, Soft magnetic (Fe, M)-Y-B(M = Co or Ni) bulk magnetic glasses. J. Alloys Compd 437, 191-196 (2007).
[3] K. Sobczyk, J. Swierczek, J. Gondro, J. Zbroszczyk, W.H. Ciurzyńska, J. Olszewski, P. Bragiel, M. Nabiałek, Microstructure and some magnetic properties of bulk amorphous \((\text{Fe}_{0.61}\text{Co}_{0.10}\text{Zr}_{0.025}\text{Hf}_{0.025}\text{Ti}_{0.02}\text{W}_{0.02}\text{B}_{0.20})_{98}\text{Y}_{2} \) alloys. J. Magn. Magn. Mater. 324 (4), 540-549 (2012).
[4] A. Inoue, Bulk amorphous alloys: Preparation and fundamental characterization. Mater. Sci. Fundations 6, Trans Tech Publications, 1-116 (1998).
[5] J. Zbroszczyk, J. Olszewski, W. Ciurzyńska, M. Nabiałek, P. Pawlik, M. Hasiak, A. Łukiewska, K. Perduta, Glass-forming ability and magnetic properties of bulk \(\text{Fe}_{0.61}\text{Co}_{10}\text{Zr}_{2.5}\text{Hf}_{2.5}\text{W}_{x}\text{B}_{y}\text{Me}_{z} \) (\(y = 0 \) or \(2 \), \(Me = Mo, Ti \)) alloys. J. Magn. Magn. Mater. 304, 724-726 (2006).
[6] A. Łukiewska, J. Zbroszczyk, M. Nabiałek, J. Olszewski, J. Swierczek, W. Ciurzyńska, K. Sobczyk, M. Dospial, Low and high magnetic field properties of nanocrystalline \(\text{Fe}_{0.61}\text{Co}_{10}\text{Zr}_{2}\text{Y}_{0.2}\text{Nb}_{4}\text{B}_{15} \) rods, Arch. Metall. Mater. 53 (3), 881-886 (2008).
[7] J. Zbroszczyk, P. Bragiel, M. Nabiałek, W.H. Ciurzyńska, J. Swierczek, A. Łukiewska, K. Sobczyk, Microstructure and magnetic behaviour of bulk amorphous \((\text{Fe}_{0.61}\text{Co}_{0.10}\text{Zr}_{0.025}\text{Hf}_{0.025}\text{Ti}_{0.02}\text{W}_{0.02}\text{B}_{0.20})_{98}\text{Y}_{2} \) (\(x = 0 \) or \(2 \)) alloys. J. Phys.: Conf. Ser. 79, 012029 (2007).
[8] Z.M. Stadnik, Ö. Rapp., V. Srinivas, J. Sáida, A. Inoue, Mössbauer and transport studies of amorphous and icosahedral Zr-Ni-Cu-Ag-Al alloys. J. Phys.: Condens. Matter 14, 6883-6896 (2002).
[9] H. Bińczycka, S. Schneider, P. Schaff, Mössbauer effect and x-ray diffraction study of Zr-Ti-Cu-Ni-Be bulk metallic glasses. J. Phys.: Condens. Matter 15 (6), 945-955 (2003).
[10] R.C. O’Handley, Physics of ferromagnetic amorphous alloys. J. Appl. Phys. 62, R15-R49 (1987).
[11] J. Gondro, J. Zbroszczyk, W. Ciurzyńska, J. Olszewski, M. Nabiałek, K. Sobczyk, J. Swierczek, A. Łukiewska, Structure and soft magnetic properties of bulk amorphous \((\text{Fe}_{0.61}\text{Co}_{0.10}\text{Zr}_{0.025}\text{Hf}_{0.025}\text{Ti}_{0.02}\text{B}_{0.20})_{98}\text{Y}_{2} \) alloy. Arch. Metall. Mater. 55 (1), 85-90 (2010).
[12] J. Olszewski, J. Zbroszczyk, M. Hasiak, J. Kaleta, M. Nabiałek, P. Bragiel, K. Sobczyk, A. Łukiewska, Microstructure and magnetic properties of Fe-Co-Nd-Y-B alloys obtained by suction casting method, J. Rare Earths 27 (4), 680-683 (2009).