A Khasminskii type averaging principle for stochastic reaction-diffusion equations *

Sandra Cerrai
Dip. di Matematica per le Decisioni
Università di Firenze
Via C. Lombroso 6/17
I-50134 Firenze, Italy

May 5, 2008

Abstract

We prove that an averaging principle holds for a general class of stochastic reaction-diffusion systems, having unbounded multiplicative noise, in any space dimension. We show that the classical Khasminskii approach for systems with a finite number of degrees of freedom can be extended to infinite dimensional systems.

1 Introduction

Consider the deterministic system with a finite number of degrees of freedom

\[
\begin{aligned}
\frac{d\hat{X}_\epsilon(t)}{dt} &= \epsilon b(\hat{X}_\epsilon(t), \hat{Y}_\epsilon(t)), \quad \hat{X}_\epsilon(0) = x \in \mathbb{R}^n, \\
\frac{d\hat{Y}_\epsilon(t)}{dt} &= g(\hat{X}_\epsilon(t), \hat{Y}_\epsilon(t)), \quad \hat{Y}_\epsilon(0) = y \in \mathbb{R}^k,
\end{aligned}
\]

for some parameter \(0 < \epsilon << 1\) and some mappings \(b : \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^n\) and \(g : \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^k\). Under reasonable conditions on \(b\) and \(g\), it is clear that, as the parameter \(\epsilon\) goes to zero, the first component \(\hat{X}_\epsilon(t)\) of the perturbed system (1.1) converges to the constant first component \(x\) of the unperturbed system, uniformly with respect to \(t\) in a bounded interval \([0, T]\), for any fixed \(T > 0\).

But in applications what is more interesting is the behavior of \(\hat{X}_\epsilon(t)\) for \(t\) in intervals of order \(\epsilon^{-1}\) or even larger. Actually, it is indeed on those time scales that the most significant changes happen, such as exit from the neighborhood of an equilibrium point or of a periodic trajectory. With the natural time scaling \(t \mapsto t/\epsilon\), if we set \(X_\epsilon(t) := \hat{X}_\epsilon(t/\epsilon)\)

*Key words and phrases: Stochastic reaction diffusion equations, invariant measures, ergodic and strongly mixing processes, averaging principle.
and $Y_{\epsilon}(t) := \tilde{Y}_{\epsilon}(t/\epsilon)$, equation (1.1) can be rewritten as

$$
\begin{cases}
\frac{dX_{\epsilon}}{dt}(t) = b(X_{\epsilon}(t), Y_{\epsilon}(t)), & X_{\epsilon}(0) = x \in \mathbb{R}^n, \\
\frac{dY_{\epsilon}}{dt}(t) = \frac{1}{\epsilon} g(X_{\epsilon}(t), Y_{\epsilon}(t)), & Y_{\epsilon}(0) = y \in \mathbb{R}^k,
\end{cases}
$$

(1.2)

and with this time scale the variable X_{ϵ} is always referred as the slow component and Y_{ϵ} as the fast component. In particular, the study of system (1.1) in time intervals of order ϵ^{-1} is equivalent to the study of system (1.2) on finite time intervals.

Now, assume that for any $x \in \mathbb{R}^n$ there exists the limit

$$
\bar{b}(x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T b(x, Y^x(t)) \, dt,
$$

(1.3)

where $Y^x(t)$ is the fast motion with frozen slow component $x \in \mathbb{R}^n$

$$
\frac{dY^x}{dt}(t) = g(x, Y^x(t)), & Y^x(0) = y.
$$

Such a limit exists for example in the case the function $Y^x(t)$ is periodic. Moreover, assume that the mapping $\bar{b} : \mathbb{R}^n \to \mathbb{R}^n$ satisfies some reasonable assumption, for example it is Lipschitz continuous. In this setting, the averaging principle says that the trajectory of X_{ϵ} can be approximated by the solution \bar{X} of the so-called averaged equation

$$
\frac{d\bar{X}}{dt}(t) = \bar{b}(\bar{X}(t)), & \bar{X}(0) = x,
$$

uniformly in $t \in [0, T]$, for any fixed $T > 0$. This means that by averaging principle a good approximation of the slow motion can be obtained by averaging its parameters in the fast variables.

The theory of averaging, originated by Laplace and Lagrange, has been applied in its long history in many fields, as for example celestial mechanics, oscillation theory and radio-physics, and for a long period it has been used without a rigorous mathematical justification. The first rigorous results are due to Bogoliubov (cfr. [22]) and concern both the case of uncoupled systems and the case of $g(x, y) = g(x)$. Further developments of the theory, for more general systems, were obtained by Volosov, Anosov and Neishtadt (to this purpose we refer to [23] and [29]) and a good understanding of the involved phenomena was obtained by Arnold et al. (cfr. [1]).

A further development in the theory of averaging, which is of great interest in applications, concerns the case of random perturbations of dynamical systems. For example, in system (1.1) the coefficient g may be assumed to depend also on a parameter $\omega \in \Omega$, for some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, so that the fast variable is a random process, or even the perturbing coefficient b may be taken random. Of course, in these cases one has to reinterpret condition (1.3) and the type of convergence of the stochastic process X_{ϵ} to \bar{X}. One possible way is to require (1.3) with probability 1, but in most of the cases this assumption turns out to be too restrictive. More reasonable is to have (1.3) either in probability or in
the mean, and in this case one expects to have convergence in probability of X_ϵ to \bar{X}. As far as averaging for randomly perturbed systems is concerned, it is worthwhile to quote the important work of Brin, Freidlin and Wentzell (see for example [3], [12], [13], [14]) and also the work of Kifer and Veretennikov (see for example [17], [18], [19], [20] and [28]).

An important contribution in this direction is given by Khasminskii with his paper [16] appeared in 1968. In this paper he has considered the following system of stochastic differential equations

$$
\begin{align*}
\left\{ \begin{array}{l}
\text{d}X_\epsilon(t) &= A(X_\epsilon(t), Y_\epsilon(t)) \text{d}t + \sum_{r=1}^l \sigma^r(X_\epsilon(t), Y_\epsilon(t)) \text{d}w_r(t), \quad X_\epsilon(0) = x_0, \\
\text{d}Y_\epsilon(t) &= \frac{1}{\epsilon} B(X_\epsilon(t), Y_\epsilon(t)) \text{d}t + \frac{1}{\sqrt{\epsilon}} \sum_{r=1}^l \varphi^r(X_\epsilon(t), Y_\epsilon(t)) \text{d}w_r(t), \quad Y_\epsilon(0) = y_0,
\end{array} \right.
\end{align*}
$$

(1.4)

for some l-dimensional Brownian motion $w(t) = (w_1(t), \ldots, w_l(t))$. In this case the perturbation in the slow motion is given by the sum of a deterministic part and a stochastic part

$$
\epsilon b(x, y) \text{d}t = \epsilon A(x, y) \text{d}t + \sqrt{\epsilon} \sigma(x, y) \text{d}w(t),
$$

and the fast motion is described by a stochastic differential equation.

In [16] the coefficients $A : \mathbb{R}^{l_1} \times \mathbb{R}^{l_2} \rightarrow \mathbb{R}^{l_1}$ and $\sigma : \mathbb{R}^{l_1} \times \mathbb{R}^{l_2} \rightarrow M(l \times l_1)$ in the slow motion equation are assumed to be Lipschitz continuous and uniformly bounded in $y \in \mathbb{R}^{l_2}$. The coefficients $B : \mathbb{R}^{l_1} \times \mathbb{R}^{l_2} \rightarrow \mathbb{R}^{l_2}$ and $\varphi : \mathbb{R}^{l_1} \times \mathbb{R}^{l_2} \rightarrow M(l \times l_2)$ in the fast motion equation are assumed to be Lipschitz continuous, so that in particular the fast equation with frozen slow component x

$$
dY^{x,y}(t) = B(x, Y^{x,y}(t)) \text{d}t + \sum_{r=1}^l \varphi^r(x, Y^{x,y}(t)) \text{d}w_r(t), \quad Y^{x,y}(0) = y,
$$

admits a unique solution $Y^{x,y}$, for any $x \in \mathbb{R}^{l_1}$ and $y \in \mathbb{R}^{l_2}$. Moreover, it is assumed that there exist two mappings $\bar{A} : \mathbb{R}^{l_1} \rightarrow \mathbb{R}^{l_1}$ and $\{a_{ij} \} : \mathbb{R}^{l_1} \rightarrow M(l \times l_1)$ such that

$$
\left| \mathbb{E} \frac{1}{T} \int_0^T A(x, Y^{x,y}(t)) \text{d}t - \bar{A}(x) \right| \leq \alpha(T) \left(1 + |x|^2 \right),
$$

(1.5)

and for any $i = 1, \ldots, l_1$ and $j = 1, \ldots, l_2$

$$
\left| \mathbb{E} \frac{1}{T} \int_0^T \sum_{r=1}^l \sigma^r_i \sigma^r_j(x, Y^{x,y}(t)) \text{d}t - a_{ij}(x) \right| \leq \alpha(T) \left(1 + |x|^2 \right),
$$

for some function $\alpha(T)$ vanishing as T goes to infinity.

In his paper, Khasminskii shows that an averaging principle holds for system (1.4). Namely, the slow motion $X_\epsilon(t)$ converges in weak sense, as ϵ goes to zero, to the solution \bar{X} of the **averaged** equation

$$
dX(t) = \bar{A}(X(t)) \text{d}t + \bar{\sigma}(X(t)) \text{d}w(t), \quad X(0) = x_0,
$$
where $\bar{\sigma}$ is the square root of the matrix $\{a_{ij}\}$.

The behavior of solutions of infinite dimensional systems on time intervals of order ϵ^{-1} is at present not very well understood, even if applied mathematicians do believe that the averaging principle holds and usually approximate the slow motion by the averaged motion, also with $n = \infty$. As far as we know, the literature on averaging for systems with an infinite number of degrees of freedom is extremely poor (to this purpose we refer to the papers [26] by Seidler-Vrkoč and [22] by Maslowski-Seidler-Vrkoč, concerning with averaging for Hilbert-space valued solutions of stochastic evolution equations depending on a small parameter, and to the paper [21] by Kuksin and Piatnitski concerning with averaging for a randomly perturbed KdV equation) and almost all has still to be done.

In the present paper we are trying to extend the Khasminskii argument to a system with an infinite number of degrees of freedom. We are dealing with the following system of stochastic reaction-diffusion equations on a bounded domain $D \subset \mathbb{R}^d$, with $d \geq 1$,

\[
\begin{aligned}
\frac{\partial u_\epsilon}{\partial t}(t, \xi) &= A_1 u_\epsilon(t, \xi) + b_1(\xi, u_\epsilon(t, \xi), v_\epsilon(t, \xi)) + g_1(\xi, u_\epsilon(t, \xi), v_\epsilon(t, \xi)) \frac{\partial w_{Q_1}}{\partial t}(t, \xi), \\
\frac{\partial v_\epsilon}{\partial t}(t, \xi) &= \frac{1}{\epsilon} [A_2 v_\epsilon(t, \xi) + b_2(\xi, u_\epsilon(t, \xi), v_\epsilon(t, \xi))] + \frac{1}{\sqrt{\epsilon}} g_2(\xi, u_\epsilon(t, \xi), v_\epsilon(t, \xi)) \frac{\partial w_{Q_2}}{\partial t}(t, \xi), \\
u_\epsilon(0, \xi) &= x(\xi), \quad v_\epsilon(0, \xi) = y(\xi), \quad \xi \in D, \\
N_1 u_\epsilon(t, \xi) &= N_2 v_\epsilon(t, \xi) = 0, \quad t \geq 0, \quad \xi \in \partial D.
\end{aligned}
\]

for a positive parameter $\epsilon << 1$. The stochastic perturbations are given by Gaussian noises which are white in time and colored in space, in the case of space dimension $d > 1$, with covariances operators Q_1 and Q_2. The operators A_1 and A_2 are second order uniformly elliptic operators, having continuous coefficients on D, and the boundary operators N_1 and N_2 can be either the identity operator (Dirichlet boundary condition) or a first order operator satisfying a uniform nontangentiality condition.

In our previous paper [7], written in collaboration with M. Freidlin, we have considered the simpler case of $g_1 \equiv 0$ and $g_2 \equiv 1$, and we have proved that an averaging principle is satisfied by using a completely different approach based on Kolmogorov equations and martingale solutions of stochastic equations, which is more in the spirit of the general method introduced by Papanicolaou, Strook and Varadhan in their paper [24] of 1977. Here, we are considering the case of general reaction coefficients b_1 and b_2 and diffusion coefficients g_1 and g_2, and the method based on the martingale approach seems to be very complicated to be applied.

We would like to stress that both here and in our previous paper [7] we are considering averaging for randomly perturbed reaction-diffusion systems, which are of interest in the description of diffusive phenomena in reactive media, such as combustion, epidemic propagation, diffusive transport of chemical species through cells and dynamics of populations. However the arguments we are using adapt easily to more general models of semi-linear stochastic partial differential equations.
Together with system (1.6), for any \(x, y \in H := L^2(D) \) we introduce the fast motion equation

\[
\begin{cases}
\frac{\partial v}{\partial t}(t, \xi) = [A_2v(t, \xi) + b_2(\xi, x(\xi), v(t, \xi))] + g_2(\xi, x(\xi), v(t, \xi)) \frac{\partial w^{Q_2}}{\partial t}(t, \xi), \\
v(0, \xi) = y(\xi), \quad \xi \in D, \quad N_2v(t, \xi) = 0, \quad t \geq 0, \quad \xi \in \partial D,
\end{cases}
\]

with initial datum \(y \) and frozen slow component \(x \), whose solution is denoted by \(v^{x,y}(t) \). The previous equation has been widely studied, as far as existence and uniqueness of solutions are concerned. In Section 3 we introduce the transition semigroup \(P^\epsilon_t \) associated with it and, by using methods and results from our previous paper [6], we study its asymptotic properties and its dependence on the parameters \(x \) and \(y \) (cfr. also [4] and [5]).

Under this respect, in addition to suitable conditions on the operators \(A_i \) and \(Q_i \) and on the coefficients \(b_i \) and \(g_i \), for \(i = 1, 2 \) (see Section 2 for all hypotheses), in the spirit of Khasminskii’s work we assume that there exist a mapping \(\alpha(T) \) which vanishes as \(T \) goes to infinity and two Lipschitz-continuous mappings \(\tilde{B}_1 : H \to H \) and \(\tilde{G} : H \to \mathcal{L}(L^\infty(D), H) \) such that for any choice of \(T > 0, t \geq 0 \) and \(x, y \in H \)

\[
\mathbb{E} \left| \frac{1}{T} \int_t^{t+T} \langle B_1(x, v^{x,y}(s)), h \rangle_H \ ds - \langle \tilde{B}_1(x), h \rangle_H \right| \leq \alpha(T) \left(1 + |x|_H + |y|_H \right) |h|_H, \tag{1.7}
\]

for any \(h \in H \), and

\[
\left| \frac{1}{T} \int_t^{t+T} \mathbb{E} \langle G_1(x, v^{x,y}(s))h, G_1(x, v^{x,y}(s))k \rangle_H \ ds - \langle \tilde{G}(x)h, \tilde{G}(x)k \rangle_H \right| \leq \alpha(T) \left(1 + |x|_H^2 + |y|_H^2 \right) |h|_{L^\infty(D)} |k|_{L^\infty(D)}, \tag{1.8}
\]

for any \(h, k \in L^\infty(D) \). Here, \(B_1 \) and \(G_1 \) are the Nemytskii operators associated with \(b_1 \) and \(g_1 \), respectively. Notice that, unlike \(B_1 \) and \(G_1 \) which are local operators, the coefficients \(\tilde{B} \) and \(\tilde{G} \) are not local. Actually, they are defined as general mappings on \(H \) and, also in applications, there is no reason why they should be composition operators.

In Section 3 we describe some remarkable situations in which conditions (1.7) and (1.8) are fulfilled: for example when the fast motion admits a strongly mixing invariant measure \(\mu^r \), for any fixed frozen slow component \(x \in H \), and the diffusion coefficient \(g_1 \) of the slow motion equation is bounded and non-degenerate.

Our purpose is showing that under the above conditions the slow motion \(u_\epsilon \) converges weakly to the solution \(\bar{u} \) of the averaged equation

\[
\begin{cases}
\frac{\partial u}{\partial t}(t, \xi) = A_1u(t, \xi) + \bar{B}(u(t, \xi)) + \bar{G}(u(t, \xi)) \frac{\partial w^{Q_1}}{\partial t}(t, \xi), \\
u(0, \xi) = x(\xi), \quad \xi \in D, \quad N_1u(t, \xi) = 0, \quad t \geq 0, \quad \xi \in \partial D,
\end{cases}
\]

(1.9)

More precisely, we prove that for any \(T > 0 \) and \(\eta > 0 \)

\[
\mathcal{L}(u_\epsilon) \to \mathcal{L}(\bar{u}) \quad \text{in} \quad C([0,T]; H), \quad \text{as} \quad \epsilon \to 0, \tag{1.10}
\]
Moreover, in the case the diffusion coefficient \(g_1 \) in the slow equation does not depend on the fast oscillating variable \(v_\epsilon \), we show that the convergence of \(u_\epsilon \) to \(\bar{u} \) is in probability, that is for any \(\eta > 0 \)
\[
\lim_{\epsilon \to 0} \mathbb{P} \left(|u_\epsilon - \bar{u}|_{C([0,T];H)} > \eta \right) = 0,
\]
(see Theorem 6.2).

In order to prove (1.11), we have to proceed in several steps. First of all we show that the family \(\{\mathcal{L}(u_\epsilon)\}_{\epsilon \in [0,1]} \) is tight in \(\mathcal{P}(C([0,T];H)) \) and this is obtained by a-priori bounds for processes \(u_\epsilon \) in a suitable H"older norm with respect to time and in a suitable Sobolev norm with respect to space. We would like to stress that, as we are only assuming (1.7) does not depend on the fast oscillating variable \(v_\epsilon \), to pass through the martingale formulation. For any \(\epsilon_n \downarrow 0 \) the sequence \(\{\mathcal{L}(u_{\epsilon_n})\}_{n \in \mathbb{N}} \) converges weakly to \(\mathcal{Q} \) and hence (1.10) holds. Moreover, in the case \(g_1 \) does not depend on \(v_\epsilon \), by a uniqueness argument this implies convergence in probability.

Once we have the tightness of the family \(\{\mathcal{L}(u_\epsilon)\}_{\epsilon \in [0,1]} \), we have the weak convergence of the sequence \(\{\mathcal{L}(u_{\epsilon_n})\}_{n \in \mathbb{N}} \), for some \(\epsilon_n \downarrow 0 \), to some probability measure \(\mathbb{Q} \) on \(C_{\epsilon_n}([0,T];H) \). The next steps consist in identifying \(\mathbb{Q} \) with \(\mathcal{Q}(\bar{u}) \) and proving that limit (1.10) holds. To this purpose we introduce the martingale problem with parameters \((x,A_1,\bar{B},\bar{G},Q_1) \) and we show that \(\mathbb{Q} \) is a solution to such martingale problem. As the coefficients \(\bar{B} \) and \(\bar{Q} \) are Lipschitz-continuous, we have uniqueness and hence we can conclude that \(\mathbb{Q} = \mathcal{Q}(\bar{u}) \). This in particular implies that for any \(\epsilon_n \downarrow 0 \) the sequence \(\{\mathcal{L}(u_{\epsilon_n})\}_{n \in \mathbb{N}} \) converges weakly to \(\mathcal{Q}(\bar{u}) \) and hence (1.10) holds. Moreover, in the case \(g_1 \) does not depend on \(v_\epsilon \), by a uniqueness argument this implies convergence in probability.

In the general case, the key point in the identification of \(\mathbb{Q} \) with the solution of the martingale problem associated with the averaged equation (1.19) is the following limit
\[
\lim_{\epsilon \to 0} \mathbb{E} \left| \int_{t_1}^{t_2} \mathbb{E} \left(\mathcal{L}_{st}(\varphi(u_\epsilon(r),v_\epsilon(r)) - \mathcal{L}_{av}(\varphi(u_\epsilon(r))) | \mathcal{F}_{t_1} \right) dr \right| = 0,
\]
where \(\mathcal{L}_{st} \) and \(\mathcal{L}_{av} \) are the Kolmogorov operators associated respectively with the slow motion equation, with frozen fast component, and with the averaged equation, and \(\{\mathcal{F}_{t}\}_{t \geq 0} \) is the filtration associated with the noise. Notice that it is sufficient to check the validity of such a limit for any cylindrical function \(\varphi \) and any \(0 \leq t_1 \leq t_2 \leq T \). The proof of the limit above is based on the Khasminskii argument introduced in [16], but it is clearly more delicate than in [16], as it concerns a system with an infinite number of degrees of freedom (with all well known problems arising from that).

In the particular case of \(g_1 \) not depending on \(v_\epsilon \), in order to prove (1.11) we do not need to pass through the martingale formulation. For any \(h \in D(A_1) \) we write
\[
\langle u_\epsilon(t), h \rangle_H = \langle x, h \rangle_H + \int_0^t \langle u_\epsilon(s), A_1 h \rangle_H ds + \int_0^t \langle \bar{B}_1(u_\epsilon(s)), h \rangle_H ds
\]
\[
+ \int_0^t \langle G_1(u_\epsilon(s)) h, dw_1^{Q_1}(s) \rangle_H + R_\epsilon(t),
\]
where
\[
R_\epsilon(t) := \int_0^t \langle B_1(u_\epsilon(s), v_\epsilon(s)) - \bar{B}_1(u_\epsilon(s)), h \rangle_H ds,
\]

(see Theorem 6.4).
and, by adapting the arguments introduced by Khasminskii in [16] to the present infinite dimensional setting, we show that for any $T > 0$

\[
\lim_{\epsilon \to 0} \mathbb{E} \sup_{t \in [0,T]} |R_\epsilon(t)| = 0.
\]

(1.12)

Thanks to the Skorokhod theorem and to a general argument due to Gyöngy and Krylov (see [15]), this allows to obtain (6.4).

2 Assumptions and preliminaries

Let D be a smooth bounded domain of \mathbb{R}^d, with $d \geq 1$. Throughout the paper, we shall denote by H the Hilbert space $L^2(D)$, endowed with the usual scalar product $\langle \cdot, \cdot \rangle_H$ and with the corresponding norm $| \cdot |_H$. The norm in $L^\infty(D)$ will be denoted by $| \cdot |_0$.

We shall denote by $B_b(H)$ the Banach space of bounded Borel functions $\varphi : H \to \mathbb{R}$, endowed with the sup-norm $\| \varphi \|_0 := \sup_{x \in H} | \varphi(x) |$.

$C_b(H)$ is the subspace of uniformly continuous mappings and $C_b^k(H)$ is the subspace of all k-times differentiable mappings, having bounded and uniformly continuous derivatives, up to the k-th order, for $k \in \mathbb{N}$. $C_b^k(H)$ is a Banach space endowed with the norm

\[
| \varphi |_k := | \varphi |_0 + \sum_{i=1}^k \sup_{x \in H} | D^i \varphi (x) |_{C^i(H)} =: | \varphi |_0 + \sum_{i=1}^k [\varphi]_i,
\]

where $\mathcal{L}^1(H) := H$ and, by recurrence, $\mathcal{L}^i(H) := \mathcal{L}(H, \mathcal{L}^{i-1}(H))$, for any $i > 1$. Finally, we denote by Lip(H) the set of functions $\varphi : H \to$ such that

\[
[\varphi]_{\text{Lip}(H)} := \sup_{x, y \in H \atop x \neq y} \frac{| \varphi (x) - \varphi (y) |}{| x - y |_H} < \infty.
\]

We shall denote by $\mathcal{L}(H)$ the space of bounded linear operators in H and we shall denote by $\mathcal{L}_2(H)$ the subspace of Hilbert-Schmidt operators, endowed with the norm

\[
\| Q \|_2 = \sqrt{\text{Tr} [Q^* Q]}.
\]

The stochastic perturbations in the slow and in the fast motion equations (1.6) are given respectively by the Gaussian noises $\partial w^Q_1 / \partial t(t, \xi)$ and $\partial w^Q_2 / \partial t(t, \xi)$, for $t \geq 0$ and $\xi \in D$, which are assumed to be white in time and colored in space, in the case of space dimension $d > 1$. Formally, the cylindrical Wiener processes $w^Q_i(t, \xi)$ are defined as the infinite sums

\[
w^Q_i(t, \xi) = \sum_{k=1}^{\infty} Q_i e_k(\xi) \beta_k(t), \quad i = 1, 2,
\]

where $\{ e_k \}_{k \in \mathbb{N}}$ is a complete orthonormal basis in H, $\{ \beta_k(t) \}_{k \in \mathbb{N}}$ is a sequence of mutually independent standard Brownian motions defined on the same complete stochastic basis $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ and Q_i is a compact linear operator on H.

7
The operators A_1 and A_2 appearing respectively in the slow and in the fast motion equation, are second order uniformly elliptic operators, having continuous coefficients on D, and the boundary operators N_1 and N_2 can be either the identity operator (Dirichlet boundary condition) or a first order operator of the following type

$$\sum_{j=1}^d \beta_j(\xi) D_j + \gamma(\xi) I, \quad \xi \in \partial D,$$

for some $\beta_j, \gamma \in C^1(\bar{D})$ such that

$$\inf_{\xi \in \partial D} |\langle \beta(\xi), \nu(\xi) \rangle| > 0,$$

where $\nu(\xi)$ is the unit normal at $\xi \in \partial D$ (uniform nontangentiality condition).

The realizations A_1 and A_2 in H of the differential operators A_1 and A_2, endowed respectively with the boundary conditions N_1 and N_2, generate two analytic semigroups e^{tA_1} and e^{tA_2}, $t \geq 0$. In what follows we shall assume that A_1, A_2 and Q_1, Q_2 satisfy the following conditions.

Hypothesis 1. For $i = 1, 2$ there exist a complete orthonormal system $\{e_{i,k}\}_{k \in \mathbb{N}}$ in H and two sequences of non-negative real numbers $\{\alpha_{i,k}\}_{k \in \mathbb{N}}$ and $\{\lambda_{i,k}\}_{k \in \mathbb{N}}$, such that

$$A_i e_{i,k} = -\alpha_{i,k} e_{i,k}, \quad Q_i e_{i,k} = \lambda_{i,k} e_{i,k}, \quad k \geq 1,$$

and

$$\kappa_i := \sum_{k=1}^\infty \lambda_{i,k}^\rho_{i,k} |e_{i,k}|_0^2 < \infty, \quad \zeta_i := \sum_{k=1}^\infty \alpha_{i,k}^{-\beta_i} |e_{i,k}|_0^2 < \infty, \quad (2.1)$$

for some constants $\beta_i \in (0, +\infty)$ and $\rho_i \in (2, +\infty]$ such that

$$\frac{\beta_i (\rho_i - 2)}{\rho_i} < 1. \quad (2.2)$$

Moreover,

$$\inf_{k \in \mathbb{N}} \alpha_{2,k} =: \lambda > 0. \quad (2.3)$$

Remark 2.1. 1. In several cases, as for example in the case of space dimension $d = 1$ and in the case of the Laplace operator on a hypercube, endowed with Dirichlet boundary conditions, the eigenfunctions e_k are equi-bounded in the sup-norm and then conditions (2.1) become

$$\kappa_i = \sum_{k=1}^\infty \lambda_{i,k}^\rho_{i,k} < \infty, \quad \zeta_i = \sum_{k=1}^\infty \alpha_{i,k}^{-\beta_i} < \infty,$$

for positive constants β_i, ρ_i fulfilling (2.2). In general

$$|e_{i,k}|_\infty \leq c k^{a_i}, \quad k \in \mathbb{N},$$

for some $a_i \geq 0$. Thus, conditions (2.1) become

$$\kappa_i := \sum_{k=1}^\infty \lambda_{i,k}^\rho_{i,k} k^{2a_i} < \infty, \quad \zeta_i := \sum_{k=1}^\infty \alpha_{i,k}^{-\beta_i} k^{2a_i} < \infty.$$
2. For any reasonable domain $D \subset \mathbb{R}^d$ one has
\[\alpha_{i,k} \sim k^{2/d}, \quad k \in \mathbb{N}. \]
Thus, if the eigenfunctions e_k are equi-bounded in the sup-norm, we have
\[\zeta_i \leq c \sum_{k=1}^{\infty} \alpha_{i,k}^{-\beta_i} \sim \sum_{k=1}^{\infty} k^{-\frac{2\beta_i}{d}}. \]
This means that, in order to have $\zeta_i < \infty$, we need
\[\beta_i > \frac{d}{2}. \]
In particular, in order to have also $\kappa_i < \infty$ and condition \ref{2.2} satisfied, in space dimension $d = 1$ we can take $\rho_i = +\infty$, so that we can deal with white noise, both in time and in space. In space dimension $d = 2$ we can take any $\rho_i < \infty$ and in space dimension $d \geq 3$ we need
\[\rho_i < \frac{2d}{d-2}. \]
In any case, notice that it is never required to take $\rho_i = 2$, which means to have a noise with trace-class covariance. To this purpose, it can be useful to compare these conditions with Hypothesis 2 and Hypothesis 3 in \cite{5}.

As far as the coefficients b_1, b_2 and g_1, g_2 are concerned, we assume the following conditions.

Hypothesis 2.

1. The mappings $b_i : D \times \mathbb{R}^2 \to \mathbb{R}$ and $g_i : D \times \mathbb{R}^2 \to \mathbb{R}$ are measurable, both for $i = 1$ and $i = 2$, and for almost all $\xi \in D$ the mappings $b_i(\xi, \cdot) : \mathbb{R}^2 \to \mathbb{R}$ and $g_i(\xi, \cdot) : \mathbb{R}^2 \to \mathbb{R}$ are Lipschitz-continuous, uniformly with respect to $\xi \in D$. Moreover
\[\sup_{\xi \in D} |b_2(\xi, 0, 0)| < \infty. \]

2. It holds
\[\sup_{\xi \in D} \sup_{\sigma_2, \rho_2 \in \mathbb{R}} \frac{|b_2(\xi, \sigma_1, \sigma_2) - b_2(\xi, \sigma_1, \rho_2)|}{|\sigma_2 - \rho_2|} =: L_{b_2} < \lambda, \quad (2.4) \]
where λ is the constant introduced in \ref{2.3}.

3. There exists $\gamma < 1$ such that
\[\sup_{\xi \in D} |g_2(\xi, \sigma)| \leq c (1 + |\sigma_1| + |\sigma_2|^{\gamma}), \quad \sigma = (\sigma_1, \sigma_2) \in \mathbb{R}^2. \quad (2.5) \]

Remark 2.2.

1. Notice that condition \ref{2.5} on the growth of $g_2(\xi, \sigma_1, \cdot)$ could be replaced with the condition
\[\sup_{\xi \in D} [g_2(\xi, \sigma_1, \cdot)]_{1,\text{lip}} \leq \eta, \]
for some η sufficiently small.
2. In what follows we shall set

\[L_{g_2} := \sup_{\xi \in D} \sup_{\sigma_1, \rho_1 \in \mathbb{R}} \frac{|g_2(\xi, \sigma_1, \sigma_2) - g_2(\xi, \sigma_1, \rho_2)|}{|\sigma_2 - \rho_2|}. \]

In what follows we shall set

\[B_i(x, y)(\xi) := b_i(\xi, x(\xi), y(\xi)) \]

and

\[[G_i(x, y)z](\xi) := g_i(\xi, x(\xi), y(\xi))z(\xi), \]

for any \(\xi \in D, x, y, z \in H \) and \(i = 1, 2 \). Due to Hypothesis \[2\], the mappings

\[(x, y) \in H \times H \mapsto B_i(x, y) \in H, \]

are Lipschitz-continuous, as well as the mappings

\[(x, y) \in H \times H \mapsto G_i(x, y) \in \mathcal{L}(H; L^1(D)) \]

and

\[(x, y) \in H \times H \mapsto G_i(x, y) \in \mathcal{L}(L^\infty(D); H). \]

Now, for any fixed \(T > 0 \) and \(p \geq 1 \), we denote by \(\mathcal{H}_{T,p} \) the space of processes in \(C([0, T]; L^p(\Omega; H)) \), which are adapted to the filtration \(\{\mathcal{F}_t\}_{t \geq 0} \) associated with the noise. \(\mathcal{H}_{T,p} \) is a Banach space, endowed with the norm

\[\|u\|_{\mathcal{H}_{T,p}} = \left(\sup_{t \in [0, T]} \mathbb{E} |u(t)|_H^p \right)^{\frac{1}{p}}. \]

Moreover, we denote by \(\mathcal{C}_{T,p} \) the subspace of processes \(u \in L^p(\Omega; C([0, T]; H)) \), endowed with the norm

\[\|u\|_{\mathcal{C}_{T,p}} = \left(\mathbb{E} \sup_{t \in [0, T]} |u(t)|_H^p \right)^{\frac{1}{p}}. \]

With all notations we have introduced, system (1.6) can be rewritten as the following abstract system

\[
\begin{align*}
 du_\epsilon(t) &= \left[A_1 u_\epsilon(t) + B_1(u_\epsilon(t), v_\epsilon(t)) \right] dt + G_1(u_\epsilon(t), v_\epsilon(t)) \, dw_1^\epsilon(t), \quad u_\epsilon(0) = x \\
 dv_\epsilon(t) &= \frac{1}{\epsilon} \left[A_2 v_\epsilon(t) + B_2(u_\epsilon(t), v_\epsilon(t)) \right] dt + \frac{1}{\sqrt{\epsilon}} G_2(u_\epsilon(t), v_\epsilon(t)) \, dw_2^\epsilon(t), \quad v_\epsilon(0) = y.
\end{align*}
\]

As known from the existing literature (see for example \[8\]), according to Hypotheses \[1\] and \[2\] for any \(\epsilon > 0 \) and \(x, y \in H \) and for any \(p \geq 1 \) and \(T > 0 \) there exists a unique mild
solution \((u_\varepsilon, v_\varepsilon) \in C_{T,p} \times C_{T,p}\) to system \((1.6)\). This means that there exist two processes \(u_\varepsilon\) and \(v_\varepsilon\) in \(C_{T,p}\), which are unique, such that

\[
u_\varepsilon(t) = e^{tA_1}x + \int_0^t e^{(t-s)A_1}B_1(u_\varepsilon(s), v_\varepsilon(s)) \, ds + \int_0^t e^{(t-s)A_1}G_1(u_\varepsilon(s), v_\varepsilon(s)) \, dw^{Q_1}(s),
\]

and

\[
u_\varepsilon(t) = e^{tA_2/\varepsilon}y + \frac{1}{\varepsilon} \int_0^t e^{(t-s)A_2}B_2(u_\varepsilon(s), v_\varepsilon(s)) \, ds + \frac{1}{\sqrt{\varepsilon}} \int_0^t e^{(t-s)A_2}G_2(u_\varepsilon(s), v_\varepsilon(s)) \, dw^{Q_2}(s).
\]

2.1 The fast motion equation

For any fixed \(x \in H\), we consider the problem

\[
\begin{align*}
\frac{\partial v}{\partial t}(t, \xi) &= A_2 v(t, \xi) + b_2(\xi, x(\xi), v(t, \xi)) + g_2(\xi, x(\xi), v(t, \xi)) \frac{\partial w^{Q_2}}{\partial t}(t, \xi), \\
v(0, \xi) &= y(\xi), \quad \xi \in D, \quad N_2 v(t, \xi) = 0, \quad t \geq 0, \quad \xi \in \partial D.
\end{align*}
\]

Under Hypotheses 1 and 2 such a problem admits a unique mild solution \(v^{x,y} \in C_{T,p}\), for any \(T > 0\) and \(p \geq 1\), and for any fixed frozen slow variable \(x \in H\) and any initial condition \(y \in H\) (for a proof see e.g. [9, Theorem 5.3.1]).

By arguing as in the proof of [6, Theorem 7.3], it is possible to show that there exists some \(\delta_1 > 0\) such that for any \(p \geq 1\)

\[
E|v^{x,y}(t)|_H^p \leq c_p (1 + |x|_H^p + e^{-\delta_1 pt} |y|_H^p), \quad t \geq 0.
\]

In particular, as shown in [6], this implies that there exists some \(\theta > 0\) such that for any \(a > 0\)

\[
\sup_{t \geq a} E|v^{x,y}(t)|_{D(\delta_2 a)} \leq c_a (1 + |x|_H + |y|_H).
\]

Now, for any \(x \in H\) we denote by \(P^x_t\) the transition semigroup associated with problem \((2.7)\), which is defined by

\[
P^x_t \varphi(y) = E \varphi(v^{x,y}(t)), \quad t \geq 0, \quad y \in H,
\]

for any \(\varphi \in B_b(H)\). Due to \((2.9)\), the family \(\{L(v^{x,y}(t))\}_{t \geq a}\) is tight in \(P(H, B(H))\) and then by the Krylov-Bogoliubov theorem, there exists an invariant measure \(\mu^x\) for the semigroup \(P^x_t\). Moreover, due to \((2.8)\) for any \(p \geq 1\) we have

\[
\int_H |z|_H^p \mu^x(dz) \leq c_p (1 + |x|_H^p)
\]

(for a proof see [7, Lemma 3.4]).

As in [6, Theorem 7.4], it is possible to show that if \(\lambda\) is sufficiently large and/or \(L_{b_2}, L_{g_2}, \xi_2\) and \(\kappa_2\) are sufficiently small, then there exist some \(c, \delta_2 > 0\) such that

\[
\sup_{x \in H} E|v^{x,y_1}(t) - v^{x,y_2}(t)|_H \leq c e^{-\delta_2 t} |y_1 - y_2|_H, \quad t \geq 0,
\]

(2.11)
for any $y_1, y_2 \in H$. In particular, this implies that μ^x is the unique invariant measure for P^x_t and is strongly mixing. Moreover, by arguing as in [7] Theorem 3.5 and Remark 3.6, from (2.10) and (2.11) we have

$$\left| P^x_t \varphi(y) - \int_H \varphi(z) \mu^x(dz) \right| \leq c (1 + |x|_H + |y|_H) e^{-\delta_2 t} |\varphi|_{\text{Lip}(H)},$$

(2.12)

for any $x, y \in H$ and $\varphi \in \text{Lip}(H)$. In particular, this implies the following fact.

Lemma 2.3. Under the above conditions, for any $\varphi \in \text{Lip}(H), T > 0, x, y \in H$ and $t \geq 0$

$$\mathbb{E} \left| \frac{1}{T} \int_t^{t+T} \varphi(v^{x,y}(s)) ds - \int_H \varphi(z) \mu^x(dz) \right| \leq \frac{c}{\sqrt{T}} (H_{\varphi}(x, y) + |\varphi(0)|),$$

(2.13)

where

$$H_{\varphi}(x, y) := [\varphi]_{\text{Lip}(H)} (1 + |x|_H + |y|_H).$$

(2.14)

Proof. We have

$$\mathbb{E} \left(\frac{1}{T} \int_t^{t+T} \varphi(v^{x,y}(s)) ds - \bar{\varphi}^x \right)^2$$

$$= \frac{1}{T^2} \int_t^{t+T} \int_t^{t+T} \mathbb{E} (\varphi(v^{x,y}(s)) - \bar{\varphi}^x) (\varphi(v^{x,y}(r)) - \bar{\varphi}^x) ds dr$$

$$= \frac{2}{T^2} \int_t^{t+T} \int_t^{t+T} \mathbb{E} (\varphi(v^{x,y}(s)) - \bar{\varphi}^x) (\varphi(v^{x,y}(r)) - \bar{\varphi}^x) ds dr,$$

where

$$\bar{\varphi}^x := \int_H \varphi(z) \mu^x(dz).$$

From the Markovianity of $v^{x,y}(t)$, for $r \leq s$ we have

$$\mathbb{E} (\varphi(v^{x,y}(s)) - \bar{\varphi}^x) (\varphi(v^{x,y}(r)) - \bar{\varphi}^x) = \mathbb{E} [(\varphi(v^{x,y}(r)) - \bar{\varphi}^x) P_{s-r} (\varphi(v^{x,y}(r)) - \bar{\varphi}^x)],$$

so that, in view of (2.8) and (2.12),

$$\mathbb{E} \left(\frac{1}{T} \int_t^{t+T} \varphi(v^{x,y}(s)) ds - \bar{\varphi}^x \right)^2$$

$$\leq \frac{c}{T^2} \int_t^{t+T} \int_t^{t+T} \left([\varphi]_{\text{Lip}(H)} (\mathbb{E} |v^{x,y}(r)|_H^2)^{\frac{1}{2}} + |\varphi(0)| + |\bar{\varphi}^x| \right)$$

$$\times \left(\mathbb{E} [P_{s-r} \varphi(v^{x,y}(r)) - \bar{\varphi}^x]^2 \right)^{\frac{1}{2}} ds dr$$

$$\leq \frac{c}{T^2} \left(H_{\varphi}(x, y) + |\varphi(0)| + |\bar{\varphi}^x| \right) H_{\varphi}(x, y) \int_t^{t+T} \int_r^{t+T} e^{-\delta_2 (s-r)} ds dr$$

$$\leq \frac{c}{T} \left(H_{\varphi}(x, y) + |\varphi(0)| + |\bar{\varphi}^x| \right) H_{\varphi}(x, y),$$

12
with $H_{\varphi}(x,y)$ defined as in (2.14). As from (2.10) we have

$$|\bar{\varphi}^x| \leq [\varphi]_{\text{Lip}(H)}(1 + |x|_H) + |\varphi(0)|,$$

we can conclude that (2.13) holds. \hfill \Box

2.2 The averaged coefficients

In the next hypotheses we introduce the coefficients of the averaged equation, and we give conditions which assure the convergence of the slow motion component u_ϵ to its solution. For the reaction coefficient we assume the following condition.

Hypothesis 3. There exists a Lipschitz-continuous mapping $\bar{B} : H \to H$ such that for any $T > 0$, $t \geq 0$ and $x, y, h \in H$

$$\left| \frac{1}{T} \int_t^{t+T} \mathbb{E} \langle B_1(x, v^{x,y}(s), h), h \rangle_H ds - \langle \bar{B}(x), h \rangle_H \right| \leq \alpha(T) \left(1 + |x|_H + |y|_H \right) |h|_H,$$

(2.15)

for some function $\alpha(T)$ such that

$$\lim_{T \to \infty} \alpha(T) = 0.$$

Concerning the diffusion coefficient, we assume the following condition.

Hypothesis 4. There exists a Lipschitz-continuous mapping $\bar{G} : H \to \mathcal{L}(L^\infty(D); H)$ such that for any $T > 0$, $t \geq 0$, $x, y \in H$ and $h, k \in L^\infty(D)$

$$\left| \frac{1}{T} \int_t^{t+T} \mathbb{E} \langle G_1(x, v^{x,y}(s))h, G_1(x, v^{x,y}(s))k \rangle_H ds - \langle \bar{G}(x)h, \bar{G}(x)k \rangle_H \right|$$

\begin{equation}
\leq \alpha(T) \left(1 + |x|_H^2 + |y|_H^2 \right) |h|_\infty |k|_\infty, \tag{2.16}
\end{equation}

for some $\alpha(T)$ such that

$$\lim_{T \to \infty} \alpha(T) = 0.$$

3 The averaged equation

In this section we describe some relevant situations in which Hypotheses 3 and 4 are verified and we give some notations and some results about the martingale problem and the mild solution for the averaged equation.

3.1 The reaction coefficient \bar{B}

For any fixed $x, h \in H$, the mapping

$$y \in H \mapsto \langle B_1(x,y), h \rangle_H \in \mathbb{R},$$
Lemma 3.1. Assume that $B(x) := \int_H B_1(x, z) \mu^x(dz), \quad x \in H,$

thanks to (2.12) we have that limit (2.15) holds, with $\alpha(T) = c/\sqrt{T}$.

Due to (2.15), for any $x_1, x_2, y, h \in H$ we have

$$\langle \tilde{B}_1(x_1) - \tilde{B}_1(x_2), h \rangle_H = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \int_0^T (B_1(x_1, v^{x_1,y}(s)) - B_1(x_2, v^{x_2,y}(s)), h) \mu_H ds.$$

Then, as the mapping $B_1 : H \times H \to H$ is Lipschitz continuous, we have

$$|\langle \tilde{B}_1(x_1) - \tilde{B}_1(x_2), h \rangle_H| \leq c |h|_H \limsup_{T \to \infty} \frac{1}{T} \int_0^T (|x_1 - x_2|_H + \mathbb{E} |v^{x_1,y}(s) - v^{x_2,y}(s)|_H) ds$$

$$= c |h|_H \left(|x_1 - x_2|_H + \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathbb{E} |\rho(s)|_H ds \right),$$

where $\rho(t) := v^{x_1,y}(t) - v^{x_2,y}(t)$, for any $t \geq 0$. In the next lemma we show that under suitable conditions on the coefficients there exists some constant $c > 0$ such that for any $T > 0$

$$\frac{1}{T} \int_0^T \mathbb{E} |\rho(s)|_H ds \leq c |x_1 - x_2|_H.$$

Clearly, this implies the Lipschitz continuity of \tilde{B}_1.

Lemma 3.1. Assume that

$$\left(\frac{L_{b_2}}{\lambda} \right)^2 + L_{g_2}^2 \left(\frac{\beta_2}{\rho_2} \right)^\frac{\beta_2(\rho_2 - 2)}{\rho_2} \frac{\zeta_2}{\kappa_2} \frac{2}{\lambda(\rho_2 + 2)} \left(\frac{\rho_2}{\lambda(\rho_2 + 2)} \right)^{1 - \frac{\beta_2(\rho_2 - 2)}{\rho_2}} =: M_0 < \frac{1}{2}. \quad (3.1)$$

Then, under Hypotheses 1 and 2 there exists $c > 0$ such that for any $x_1, x_2, y \in H$ and $t > 0$

$$\frac{1}{t} \int_0^t \mathbb{E} |v^{x_1,y}(s) - v^{x_2,y}(s)|_H ds \leq c |x_1 - x_2|_H.$$

Proof. We set $\rho(t) := v^{x_1,y}(t) - v^{x_2,y}(t)$ and we define

$$\Gamma(t) := \int_0^t e^{(t-s)A_2} [G_2(x_1, v^{x_1,y}(s)) - G_2(x_2, v^{x_2,y}(s))] dw^{G_2}(s),$$

and set $\Lambda(t) := \rho(t) - \Gamma(t)$. For any $\eta \in (0, \lambda/2)$ we can fix $c_{1, \eta} > 0$ such that

$$\frac{1}{2} \frac{d}{dt} |\Lambda(t)|_H^2 \leq -\lambda |\Lambda(t)|_H^2 + \left(c |x_1 - x_2|_H + L_{b_2} |\rho(t)|_H \right) |\Lambda(t)|_H$$

$$\leq - \left(\frac{\lambda}{2} - \eta \right) |\Lambda(t)|_H^2 + \frac{L_{b_2}^2}{2\lambda} |\rho(t)|_H^2 + c_{1, \eta} |x_1 - x_2|^2.$$

14
This implies
\[|\Lambda(t)|_H^2 \leq \left(1 + \frac{2c_1,\eta}{\lambda - 2\eta} \right) |x_1 - x_2|^2 + \frac{L_{b2}^2}{\lambda} \int_0^t e^{-(\lambda-2\eta)(t-s)} |\rho(s)|_H^2 ds, \]
so that
\[\mathbb{E} |\rho(t)|_H^2 \leq 2 \left(1 + \frac{2c_1,\eta}{\lambda - 2\eta} \right) |x_1 - x_2|^2 + \frac{2L_{b2}^2}{\lambda} \int_0^t e^{-(\lambda-2\eta)(t-s)} \mathbb{E} |\rho(s)|_H^2 ds + 2 \mathbb{E} |\Gamma(t)|_H^2. \]
(3.2)

Thanks to Hypothesis [1], for any \(J \in \mathcal{L}(L^\infty(D), H) \cap \mathcal{L}(H, L^1(D)) \), with \(J = J^* \) and for any \(s \geq 0 \) we have
\[\| e^{sA_2}JQ_2 \|_2^2 = \sum_{k=1}^\infty \lambda_{2,k}^2 |e^{sA_2}J e_{2,k}|_H^2 \]
\[\leq \left(\sum_{k=1}^\infty \lambda_{2,k}^2 |e_{2,k}|_0^2 \right)^{2/p_2} \left(\sum_{k=1}^\infty |e^{sA_2}J e_{2,k}|_H^{2p_2} \right)^{-\frac{2}{p_2}} \left(\sum_{k=1}^\infty |e_{2,k}|_H^{2p_2} \right)^{\frac{2}{p_2}}
\leq \kappa_2^2 \sup_{k \in \mathbb{N}} |e^{sA_2}J e_{2,k}|_H^{2/p_2} |e_{2,k}|_0^{-\frac{2}{p_2}} \left(\sum_{k=1}^\infty |e^{sA_2}J e_{2,k}|_H^{2p_2} \right)^{\frac{2}{p_2}}. \]
Hence, thanks to (2.3), we obtain
\[\| e^{sA_2}JQ_2 \|_2^2 \leq \kappa_2^2 \| J \|_{\mathcal{L}(L^\infty(D), H)}^{2/p_2} e^{-\frac{4s}{p_2}} \left(\sum_{k=1}^\infty |e^{sA_2}J e_{2,k}|_H^{2p_2} \right)^{\frac{2}{p_2}}. \]
(3.3)

We have
\[\sum_{k=1}^\infty |e^{sA_2}J e_{2,k}|_H^2 = \sum_{k=1}^\infty \sum_{h=1}^\infty |\langle e^{sA_2}J e_{2,k}, e_{2,h} \rangle_H|^2 = \sum_{h=1}^\infty \sum_{k=1}^\infty |\langle e_{2,k}, J e^{sA_2} e_{2,h} \rangle_H|^2
= \sum_{h=1}^\infty |Je_{2,h}|_H^2 e^{-2s_\alpha_2 h s} \leq e^{-\lambda s} \| J \|_{\mathcal{L}(L^\infty(D), H)}^2 \sum_{h=1}^\infty |e_{2,h}|_0^2 e^{-\alpha_2 h s}. \]
Then, as any \(\beta > 0 \)
\[e^{-\alpha t} \leq \left(\frac{\beta}{e} \right)^\beta t^{-\beta} e^{-\beta}, \quad \alpha, t > 0, \]
(3.4)
if we take \(\beta_2 \) as in condition (2.1), we get
\[\sum_{k=1}^\infty |e^{sA_2}J e_{2,k}|_H^2 \leq \left(\frac{\beta_2}{e} \right)^{\beta_2} s^{-\beta_2} e^{-\lambda s} \| J \|_{\mathcal{L}(L^\infty(D), H)}^2 \sum_{h=1}^\infty |e_{2,h}|_0^2 e^{-\alpha_2 h}
\leq \left(\frac{\beta_2}{e} \right)^{\beta_2} \zeta_2 s^{-\beta_2} e^{-\lambda s} \| J \|_{\mathcal{L}(L^\infty(D), H)}^2. \]
and from (3.3) we can conclude
\[\| e^{sA_2} J Q_2 \|_2^2 \leq \left(\frac{\beta_2}{e} \right) \frac{\beta_2(\rho_2 - 2)}{\rho_2} \frac{\rho_2 - 2}{\kappa_2^2} \frac{2}{s^2} - \frac{\lambda(\rho_2 + 2)}{\rho_2} s \| J \|_E^2 \right)_{L^\infty(D,H)}. \] (3.5)

This means that if we set
\[K_2 := \left(\frac{\beta_2}{e} \right) \frac{\beta_2(\rho_2 - 2)}{\rho_2} \frac{\rho_2 - 2}{\kappa_2^2} \frac{2}{s^2}, \]
and if we take
\[J := G_2(x_1, v^{x_1,y}(s)) - G_2(x_2, v^{x_2,y}(s)), \]
for any \(\eta > 0 \) we can find some \(c_{2, \eta} > 0 \) such that
\[
\mathbb{E} |\Gamma(t)|_H^2 = \int_0^t \mathbb{E} \| e^{(t-s)A_2} [G_2(x_1, v^{x_1,y}(s)) - G_2(x_2, v^{x_2,y}(s))Q_2] \|_2^2 ds \\
\leq K_2 \int_0^t (t-s)^{-\frac{\beta_2(\rho_2 - 2)}{\rho_2} \frac{\rho_2 - 2}{\kappa_2^2} \frac{2}{s^2}} e^{-\frac{\lambda(\rho_2 + 2)}{\rho_2} (t-s)} \mathbb{E} (c |x_1 - x_2|_H + L_{g_2} |\rho(s)|_H)^2 ds \\
\leq c_{2, \eta} |x_1 - x_2|_H^2 + (1 + \eta)L_{g_2}^2 K_2 \int_0^t (t-s)^{-\frac{\beta_2(\rho_2 - 2)}{\rho_2} \frac{\rho_2 - 2}{\kappa_2^2} \frac{2}{s^2}} e^{-\frac{\lambda(\rho_2 + 2)}{\rho_2} (t-s)} \mathbb{E} |\rho(s)|_H^2 ds,
\]
last inequality following from the fact that, according to (2.2), \(\beta_2(\rho_2 - 2)/\rho_2 < 1 \).

Now, if we plug the inequality above into (3.2), for any \(\eta \leq \eta_1 \), we obtain
\[
\mathbb{E} |\rho(t)|_H^2 \leq 2 \left(1 + \frac{2c_{1, \eta}}{\lambda - 2\eta} \right) |x_1 - x_2|^2 + \frac{2L_{g_2}^2}{\lambda} \int_0^t e^{-(\lambda-2\eta)(t-s)} \mathbb{E} |\rho(s)|_H^2 ds \\
+ 2c_{2, \eta} |x_1 - x_2|_H^2 + 2(1 + \eta)L_{g_2}^2 K_2 \int_0^t (t-s)^{-\frac{\beta_2(\rho_2 - 2)}{\rho_2} \frac{\rho_2 - 2}{\kappa_2^2} \frac{2}{s^2}} e^{-\frac{\lambda(\rho_2 + 2)}{\rho_2} (t-s)} \mathbb{E} |\rho(s)|_H^2 ds,
\]
and hence, if we integrate with respect to \(t \) both sides, from the Young inequality we get
\[
\int_0^t \mathbb{E} |\rho(s)|_H^2 ds \leq 2 \left(1 + \frac{2c_{1, \eta}}{\lambda - 2\eta} + c_{2, \eta} \right) t |x_1 - x_2|_H^2 \\
+ 2 \left[\frac{L_{g_2}^2}{\lambda} \int_0^t e^{-(\lambda-2\eta)s} ds + (1 + \eta)L_{g_2}^2 K_2 \int_0^t s^{-\frac{\beta_2(\rho_2 - 2)}{\rho_2} \frac{\rho_2 - 2}{\kappa_2^2} \frac{2}{s^2}} e^{-\frac{\lambda(\rho_2 + 2)}{\rho_2} s} ds \right] \int_0^t \mathbb{E} |\rho(s)|_H^2 ds \\
\leq c_{3, \eta} t |x_1 - x_1|_H^2 + 2M_\eta \int_0^t \mathbb{E} |\rho(s)|_H^2 ds,
\]
where
\[
M_\eta := \frac{L_{g_2}^2}{\lambda(\lambda - 2\eta)} + (1 + \eta)L_{g_2}^2 \left(\frac{\beta_2}{e} \right) \frac{\beta_2(\rho_2 - 2)}{\rho_2} \frac{\rho_2 - 2}{\kappa_2^2} \frac{2}{s^2} \left(\frac{\rho_2}{\lambda(\rho_2 + 2)} \right)^{1-\frac{\beta_2(\rho_2 - 2)}{\rho_2}}. \] (3.6)
Now, as in (3.1) we have assumed that $M_0 < 1/2$, we can fix $\tilde{\eta} \in (0, \lambda/2)$ such that $2M_\tilde{\eta} < 1$, and hence
\[
\int_0^t \mathbb{E} |\rho(s)|_H^2 ds \leq \frac{c_3 \tilde{\eta}}{1 - 2M_\tilde{\eta}} t |x_1 - x|_H^2.
\]
This implies
\[
\frac{1}{t} \int_0^t \mathbb{E} |\rho(s)|_H ds \leq \left(\frac{c_3 \tilde{\eta}}{1 - 2M_\tilde{\eta}} \right)^{\frac{1}{2}} |x_1 - x|_H,
\]
and the proof of the lemma is finished. \qed

3.2 The diffusion coefficient \bar{G}

If we assume that the function $g_1 : D \times \mathbb{R}^2 \to \mathbb{R}$ is uniformly bounded, the mapping G_1 is well defined from H into $\mathcal{L}(H)$. Moreover, for any fixed $x, h, k \in H$ the mapping
\[
z \in H \mapsto \langle G_1(x, z) h, G_1(x, z) k \rangle_H \in \mathbb{R},
\]
is Lipschitz continuous. Thus, under the assumptions described above, if we take
\[
\langle S(x) h, k \rangle_H = \int_H \langle G_1(x, z) h, G_1(x, z) k \rangle_H \mu^x(dz),
\]
we have that $S : H \to \mathcal{L}(H)$ and, due to (2.12), for any $T > 0, t \geq 0$ and $x, y, h, k \in H$
\[
\left| \frac{1}{T} \int_t^{t+T} \mathbb{E} \langle G_1(x, v^{x,y}(s)) h, G_1(x, v^{x,y}(s)) k \rangle_H ds - \langle S(x) h, k \rangle_H \right| \leq \alpha(T) \left(1 + |x|^2_H + |y|^2_H \right) |h|_H |k|_H,
\]
for some function $\alpha(T)$ going to zero as $T \uparrow \infty$.

It is immediate to check that $S(x) = S(x)^*$ and $S(x) \geq 0$, for any $x \in H$. Then, as well known, there exists an operator $\bar{G}(x) \in \mathcal{L}(H)$ such that $\bar{G}(x)^2 = S(x)$. If we assume that there exists $\delta > 0$ such that
\[
\inf_{\xi \in D} g_1(\xi, \sigma) \geq \delta,
\]
we have that $S(x) \geq \delta^2$, and hence $\bar{G}(x) \geq \delta$. In particular, $\bar{G}(x)$ is invertible and
\[
\|\bar{G}(x)^{-1}\|_{\mathcal{L}(H)} \leq \frac{1}{\delta}.
\]
Next, we notice that for any $x_1, x_2 \in H$
\[
S(x_1)S(x_2) = S(x_2)S(x_1).
\]
Actually, according to (3.7) for any $h, k \in H$
\[
\langle S(x_1)S(x_2) h, k \rangle_H = \int_H \langle G_1(x_1, z) S(x_2) h, G_1(x_1, z) k \rangle_H \mu^{x_1}(dz)
= \int_H \int_H \langle G_1^2(x_2, w) h, G_1^2(x_1, z) k \rangle_H \mu^{x_2}(dw) \mu^{x_1}(dz)
= \int_H \int_H \langle G_1^2(x_1, z) h, G_1^2(x_2, w) k \rangle_H \mu^{x_1}(dz) \mu^{x_2}(dw) = \langle S(x_2)S(x_1) h, k \rangle_H.
\]
In particular, from (3.8) for any \(x_1, x_2 \in H \) we have
\[
\tilde{G}(x_1)\tilde{G}(x_2) = \tilde{G}(x_2)\tilde{G}(x_1).
\] (3.10)

Now, as \(g_1(\xi, \cdot) : \mathbb{R}^2 \to \mathbb{R}^2 \) is bounded and Lipschitz-continuous, uniformly with respect to \(\xi \in D \), we have that \(g_1^T(\xi, \cdot) : \mathbb{R}^2 \to \mathbb{R}^2 \) is Lipschitz-continuous as well, uniformly with respect to \(\xi \in D \). This implies that for any \(x_1, x_2, y \in H, h \in L^\infty(D) \) and \(k \in H \)
\[
\left| \langle \left[G^2(x_1, v^{x_1:y}(s)) - G^2(x_2, v^{x_2:y}(s)) \right] h, k \rangle_H \right|
\leq c \left| (x_1 - x_2)_H + |v^{x_1:y}(s) - v^{x_2:y}(s)|_H \right| |h|_\infty |k|_H,
\]
so that, according to (3.8)
\[
\left| \langle (S(x_1) - S(x_2))h, k \rangle_H \right|
\leq c |h|_\infty |k|_H \limsup_{T \to \infty} \frac{1}{T} \int_0^T |(x_1 - x_2)_H + \mathbb{E} |v^{x_1:y}(s) - v^{x_2:y}(s)|_H \rangle \ ds
\]
\[
= c |h|_\infty |k|_H \left(|x_1 - x_2|_H + \limsup_{T \to \infty} \frac{1}{T} \int_0^T \mathbb{E} |v^{x_1:y}(s) - v^{x_2:y}(s)|_H \ ds \right).
\]

Then, thanks to Lemma 3.1 we can conclude that \(S : H \to \mathcal{L}(L^\infty(D), H) \) is Lipschitz-continuous.

This implies that \(\tilde{G} : H \to \mathcal{L}(L^\infty(D), H) \) is Lipschitz-continuous as well. Actually, thanks to (3.10) and to the fact that \(\tilde{G}(x_1) + \tilde{G}(x_2) \) is invertible, for any \(h \in L^\infty(D) \) and \(k \in H \)
\[
\langle \left[\tilde{G}(x_1) - \tilde{G}(x_2) \right] h, k \rangle_H = \langle \left[S(x_1) - S(x_2) \right] h, \left[\tilde{G}(x_1) + \tilde{G}(x_2) \right]^{-1} k \rangle_H.
\] (3.11)

Then, as
\[
\| \left[\tilde{G}(x_1) + \tilde{G}(x_2) \right]^{-1} \|_{\mathcal{L}(H)} \leq \frac{1}{2\delta},
\] (3.12)
we obtain
\[
\left| \langle \left[\tilde{G}(x_1) - \tilde{G}(x_2) \right] h, k \rangle_H \right| \leq c |x_1 - x_2|_H |h|_\infty \frac{1}{2\delta} |k|_H,
\]
and this implies the Lipschitz-continuity of \(\tilde{G} : H \to \mathcal{L}(L^\infty(D), H) \).

We conclude by showing that the operator \(\tilde{G} \) introduced in Hypothesis 4 satisfies a suitable Hilbert-Schmidt property which assures the well-posedness of the stochastic convolution
\[
\int_0^t e^{(t-s)A_1} \tilde{G}(u(s)) dw^{Q_1}(s), \quad t \geq 0,
\]
in \(L^p(\Omega; C([0, T]; H)) \), for any \(p \geq 1 \) and \(T > 0 \) and for any process \(u \in C([0, T]; L^p(\Omega; H)) \).

Lemma 3.2. Assume Hypotheses 7, 8 and 9. Then, for any \(t > 0 \) and \(x_1, x_2 \in H \) we have
\[
\| e^{tA_1} \left[\tilde{G}(x_1) - \tilde{G}(x_2) \right] Q_1 \|_2 \leq c(t) |x_1 - x_2|_H t^{-\beta_{1}(\rho_2 - 2)\rho_1},
\]
for some continuous increasing function \(c(t) \).
Proof. According to Hypothesis 1, we have

\[
\|e^{tA_1} [\bar{G}(x_1) - \bar{G}(x_2)] Q_1\|_2^2 = \sum_{k=1}^{\infty} \|e^{tA_1} [\bar{G}(x_1) - \bar{G}(x_2)] e_{1,k}\|_H^2
\]

\[
\leq \left(\sum_{k=1}^{\infty} \alpha_{1,k}^2 \|e_{1,k}\|_\infty^2\right)^{\frac{2}{\gamma_1}} \left(\sum_{k=1}^{\infty} \|e_{1,k}\|_\infty^{\frac{4}{\gamma_1} - 2} \|e^{tA_1} [\bar{G}(x_1) - \bar{G}(x_2)] e_{1,k}\|_H^{\frac{2\gamma_1 - 2}{\gamma_1}}\right)^{\frac{\gamma_1 - 2}{\gamma_1}}
\]

\[
\leq c \sup_{k \in \mathbb{N}} \|e_{1,k}\|_\infty^{\frac{4}{\gamma_1}} \|e^{tA_1} [\bar{G}(x_1) - \bar{G}(x_2)] e_{1,k}\|_H^{\frac{4}{\gamma_1}} \left(\sum_{k=1}^{\infty} \|e^{tA_1} [\bar{G}(x_1) - \bar{G}(x_2)] e_{1,k}\|_H^2\right)^{\frac{\gamma_1 - 2}{\gamma_1}},
\]

and then, as \(\bar{G} : H \to \mathcal{L}(L^\infty(D), H)\) is Lipschitz-continuous, we conclude

\[
\|e^{tA_1} [\bar{G}(x_1) - \bar{G}(x_2)] Q_1\|_2^2 \leq c(t) |x_1 - x_2|_H^2 \left(\sum_{k=1}^{\infty} \|e^{tA_1} [\bar{G}(x_1) - \bar{G}(x_2)] e_{1,k}\|_H^2\right)^{\frac{\gamma_1 - 2}{\gamma_1}},
\]

for some continuous increasing function \(c(t)\).

Now, by using again the Lipschitz-continuity of \(\bar{G} : H \to \mathcal{L}(L^\infty(D), H)\), we have

\[
\sum_{k=1}^{\infty} \|e^{tA_1} [\bar{G}(x_1) - \bar{G}(x_2)] e_{1,k}\|_H^2 = \sum_{k=1}^{\infty} \sum_{h=1}^{\infty} \|e^{tA_1} [\bar{G}(x_1) - \bar{G}(x_2)] e_{1,k} e_{1,h}\|_H^2
\]

\[
= \sum_{h=1}^{\infty} \|[\bar{G}(x_1) - \bar{G}(x_2)] e_{1,h}\|_H^2 e^{-2\alpha_{1,h}} \leq c |x_1 - x_2|_H^2 \sum_{h=1}^{\infty} e^{-2\alpha_{1,h}} |e_{1,h}|_H^2
\]

and then, if we take \(\beta_1\) as in Hypothesis 1, we obtain

\[
\sum_{k=1}^{\infty} \|e^{tA_1} [\bar{G}(x_1) - \bar{G}(x_2)] e_{1,k}\|_H^2 \leq c |x_1 - x_2|_H^2 \sum_{h=1}^{\infty} e^{-\alpha_{1,h}} |e_{1,h}|_H^2 \leq c |x_1 - x_2|_H^2 t^{-\beta_1}.
\]

Thanks to (3.13), this implies our thesis. \(\Box\)

3.3 Martingale problem and mild solution of the averaged equation

Since both the mapping \(\bar{B} : H \to H\) and the mapping \(\bar{G} : H \to \mathcal{L}(L^\infty(D), H)\) are Lipschitz-continuous and Lemma 3.2 holds, for any initial datum \(x \in H\) the averaged equation

\[
du(t) = [A_1 u(t) + \bar{B}(u(t))] dt + \bar{G}(u(t)) dw^{Q_1}(t), \quad u(0) = x,
\]

admits a unique mild solution \(\bar{u}\) in \(L^p(\Omega, C([0, T]; H))\), for any \(p \geq 1\) and \(T > 0\) (for a proof see for example [5 Section 3]). This means that there exists a unique adapted process \(\bar{u} \in L^p(\Omega, C([0, T]; H))\) such that for any \(t \leq T\)

\[
\bar{u}(t) = e^{tA_1} x + \int_0^t e^{(t-s)A_1} \bar{B}(\bar{u}(s)) ds + \int_0^t e^{(t-s)A_1} \bar{G}(\bar{u}(s)) dw^{Q_1}(s),
\]

(3.14)
or, equivalently,

\[\langle \bar{u}(t), h \rangle_H = \langle x, h \rangle_H + \int_0^t \left[\langle \bar{u}(s), A_1 h \rangle_H + \langle \bar{B}(\bar{u}(s)), h \rangle_H \right] \, ds + \int_0^t \langle \bar{G}(\bar{u}(s))d\omega^{Q_1}(s), h \rangle_H, \]

for any \(h \in D(A_1). \)

Now, we recall the notion of martingale problem with parameters \((x, A_1, \bar{B}, \bar{G}, Q_1)\). For any fixed \(x \in H \), we denote by \(C_x([0,T];H) \) the space of continuous functions \(\omega : [0,T] \to H \) such that \(\omega(0) = x \) and we denote by \(\eta(t) \) the canonical process on \(C_x([0,T];H) \), which is defined by

\[\eta(t)(\omega) = \omega(t), \quad t \in [0,T]. \]

Moreover, we denote by \(\mathcal{E}_t \) the canonical filtration \(\sigma(\eta(s), s \leq t) \), for \(t \in [0,T] \), and by \(\mathcal{E} \) the canonical \(\sigma \)-algebra \(\sigma(\eta(s), s \leq T) \).

Definition 3.3. A function \(\varphi : H \to \mathbb{R} \) is a regular cylindrical function associated with the operator \(A_1 \) if there exist \(k \in \mathbb{N} \), \(f \in C_c^\infty(\mathbb{R}^k) \), \(a_1, \ldots, a_k \in H \) and \(N \in \mathbb{N} \) such that

\[\varphi(x) = f(\langle x, P_N a_1 \rangle_H, \ldots, \langle x, P_N a_k \rangle_H), \quad x \in H, \]

where \(P_N \) is the projection of \(H \) onto \(\text{span} \{e_{1,1}, \ldots, e_{1,N}\} \) and \(\{e_{1,n}\}_{n \in \mathbb{N}} \) is the orthonormal basis diagonalizing \(A_1 \) and introduced in Hypothesis \([7]\).

In what follows we shall denote the set of all regular cylindrical functions by \(\mathcal{R}(H) \). For any \(\varphi \in \mathcal{R}(H) \) and \(x \in H \) we define

\[
\begin{align*}
\mathcal{L}_{av} \varphi(x) &:= \frac{1}{2} \text{Tr} \left[(G(x)Q_1)^* D^2 \varphi(x) G(x)Q_1 \right] + \langle A_1 D \varphi(x), x \rangle_H + \langle D \varphi(x), \bar{B}(x) \rangle_H \\
&= \frac{1}{2} \sum_{i,j=1}^k D^2_{ij} f(\langle x, P_N a_1 \rangle_H, \ldots, \langle x, P_N a_k \rangle_H) \langle G(x)Q_1 P_N a_i, G(x)Q_1 P_N a_j \rangle_H \\
&\quad + \sum_{i=1}^k D_i f(\langle x, P_N a_1 \rangle_H, \ldots, \langle x, P_N a_k \rangle_H) \left(\langle x, A_1 P_N a_i \rangle_H + \langle \bar{B}(x), P_N a_i \rangle_H \right) .
\end{align*}
\]

\(\mathcal{L}_{av} \) is the Kolmogorov operator associated with the averaged equation \((3.14)\). Notice that the expression above is meaningful, as for any \(i = 1, \ldots, k \)

\[Q_1 P_N a_i = \sum_{k=1}^N \lambda_{1,k} \langle a_i, e_{1,k} \rangle_H e_{1,k} \in L^\infty(D), \]

and

\[A_1 P_N a_i = -\sum_{k=1}^N \alpha_{1,k} \langle a_i, e_{1,k} \rangle_H e_{1,k} \in H. \]
Definition 3.4. A probability measure Q on $(C_x([0,T];H),\mathcal{E})$ is a solution of the martingale problem with parameters (x, A_1, B, G, Q_1) if the process

$$
\varphi(\eta(t)) - \int_0^t L^\varphi(\eta(s)) \, ds, \quad t \in [0,T],
$$

is an \mathcal{E}_t-martingale on $(C_x([0,T];H),\mathcal{E}, Q)$, for any $\varphi \in \mathcal{R}(H)$.

As the coefficients \bar{B} and \bar{G} are Lipschitz-continuous, the solution Q to the martingale problem with parameters $(x, A_1, \bar{B}, \bar{G}, Q_1)$ exists, is unique and coincides with $\mathcal{L}(\bar{u})$ (to this purpose see [8, Chapter 8] and also [27, Theorem 5.9 and Theorem 5.10]).

4 A priori bounds for the solution of system (1.6)

In the present section we prove uniform estimates, with respect to $\epsilon \in (0,1]$, for the solution u_ϵ of the slow motion equation and for the solution v_ϵ of the fast motion equation in system (1.6). As a consequence, we will obtain the tightness of the family $\{\mathcal{L}(u_\epsilon)\}_{\epsilon \in (0,1]}$ in $C([0,T];H)$, for any $T > 0$.

In what follows, for the sake of simplicity, we denote by $|\cdot|$ the norm $|\cdot|_{D((-A_1)^\theta)}$. Moreover, for any $\epsilon > 0$ we denote

$$
\Gamma_{1,\epsilon}(t) := \int_0^t e^{(t-s)A_1}G_1(u_\epsilon(s), v_\epsilon(s)) \, dw^{Q_1}(s), \quad t \geq 0. \tag{4.1}
$$

Lemma 4.1. Under Hypotheses 1 and 2, there exists $\bar{\theta} > 0$ and $\bar{p} \geq 1$ such that for any $\epsilon > 0$, $T > 0$, $p > \bar{p}$ and $\theta \in [0,\bar{\theta}]$

$$
\mathbb{E} \sup_{t \leq T} |\Gamma_{1,\epsilon}(t)|_\theta^p \leq c_{T,p,\theta} \int_0^T \left(1 + \mathbb{E} |u_\epsilon(r)|_{H}^p + \mathbb{E} |v_\epsilon(r)|_{H}^p \right) \, ds, \tag{4.2}
$$

for some positive constant $c_{T,p,\theta}$ which is independent of $\epsilon > 0$.

Proof. By using a factorization argument, for any $\alpha \in (0,1/2)$ we have

$$
\Gamma_{1,\epsilon}(t) = c_{\alpha} \int_0^t (t-s)^{\alpha-1} e^{(t-s)A_1} Y_{\epsilon,\alpha}(s) \, ds,
$$

where

$$
Y_{\epsilon,\alpha}(s) := \int_0^s (s-r)^{-\alpha} e^{(s-r)A_1} G_{1,\epsilon}(r) \, dw^{Q_1}(r)
$$

and

$$
G_{1,\epsilon}(s) := G_1(u_\epsilon(s), v_\epsilon(s)).
$$

For any $p > 1/\alpha$ and $\theta > 0$, we have

$$
\sup_{s \leq t} |\Gamma_{1,\epsilon}(s)|_\theta^p \leq c_{\alpha,p} \left(\int_0^t (s^{(\alpha-1)p})^{\alpha-1} \, ds \right)^{\alpha-1} \int_0^t |Y_{\epsilon,\alpha}(s)|_\theta^p \, ds = c_{\alpha,p} t^{\alpha p-1} \int_0^t |Y_{\epsilon,\alpha}(s)|_\theta^p \, ds. \tag{4.3}
$$
According to the Burkholder-Davis-Gundy inequality we have
\[
\mathbb{E} \int_0^t |Y_{\epsilon,\alpha}(s)|_p^p \, ds \leq c_p \int_0^t \mathbb{E} \left(\int_0^s (s-r)^{-\alpha} \left\| (-A_1)^\theta e^{(s-r)A_1} G_{1,\epsilon}(s) Q_1 \right\|_2^2 \, dr \right)^{\frac{p}{2}} \, ds.
\]
By the same arguments as those used in the proof of Lemma 3.1 we have
\[
\left\| (-A_1)^\theta e^{(s-r)A_1} G_{1,\epsilon}(s) Q_1 \right\|_2^2 \leq \sup_{k \in \mathbb{N}} \left\| (-A_1)^\theta e^{(s-r)A_1} G_{1,\epsilon}(s)e_{1,k} \right\|_H \frac{4^k}{\rho_1} \left\| e_{1,k} \right\|_H^{-\frac{4^k}{\rho_1}}
\]
\[
\times \kappa_1^{\frac{2}{\rho_1}} \left(\sum_{k=1}^\infty \left\| (-A_1)^\theta e^{(s-r)A_1} G_{1,\epsilon}(s)e_{1,k} \right\|_H^2 \right)^{\frac{2^{\rho_1-2}}{2^{\rho_1}}}
\]
\[
\leq c_\theta \kappa_1^{\frac{2}{\rho_1}} (s-r)^{-\frac{4^k}{\rho_1}} \left\| G_{1,\epsilon}(s) \right\|_{L^\infty(D)} G_{1,\epsilon}(s) \left\| (\sum_{k=1}^\infty \left\| (-A_1)^\theta e^{(s-r)A_1} G_{1,\epsilon}(s)e_{1,k} \right\|_H^2 \right)^{\frac{2^{\rho_1-2}}{2^{\rho_1}}}
\]
By proceeding again as in the proof of Lemma 3.1 we have
\[
\sum_{k=1}^\infty \left\| (-A_1)^\theta e^{(s-r)A_1} G_{1,\epsilon}(s)e_{1,k} \right\|_H^2 \leq \left\| G_{1,\epsilon}(s) \right\|_{L^\infty(D)}^2 \sum_{k=1}^\infty \left\| e_{1,k} \right\|^{2\theta} \left\| e_{1,k} e^{-\frac{\alpha}{\rho_1}(s-r)} \right\|,
\]
and then, thanks to (3.4), we get
\[
\sum_{k=1}^\infty \left\| (-A_1)^\theta e^{(s-r)A_1} G_{1,\epsilon}(s)e_{1,k} \right\|_H^2 \leq \left(\frac{\beta_1 + \theta}{e} \right)^{\beta_1 + \theta} \zeta_1 (s-r)^{-\left(\beta_1 + \theta\right)} \left\| G_{1,\epsilon}(s) \right\|_{L^\infty(D)}^2.
\]
Therefore, if we fix \(\bar{\theta} > 0 \) such that
\[
\frac{\beta_1 (\rho_1 - 2) + \bar{\theta} (\rho_1 + 2)}{\rho_1} < 1,
\]
and if we set
\[
K_{1,\theta} := c_\theta \left(\frac{\beta_1 + \theta}{e} \right)^{\frac{(\beta_1 + \theta) (\rho_1 - 2)}{\rho_1}} \zeta_1 \frac{\rho_1 - 2}{\rho_1} \kappa_1^{\frac{2}{\rho_1}},
\]
for any \(\theta \in [0, \bar{\theta}] \) we have
\[
\mathbb{E} \int_0^t |Y_{\epsilon,\alpha}(s)|_H^p \, ds
\]
\[
\leq c_p K_{1,\theta}^{\frac{p}{\rho_1}} \int_0^t \mathbb{E} \left(\int_0^s (s-r)^{-\left(\frac{2\alpha + \beta_1 (\rho_1 - 2) + \theta (\rho_1 + 2)}{\rho_1}\right)} \left\| G_{1,\epsilon}(r) \right\|_{L^\infty(D)}^2 \right)^{\frac{p}{2}} \, dr \, ds.
\]
Hence, if we choose \(\bar{\alpha} > 0 \) such that
\[
2\bar{\alpha} + \frac{\beta_1 (\rho_1 - 2) + \bar{\theta} (\rho_1 + 2)}{\rho_1} < 1
\]
and \(p > \bar{p} := 1/\tilde{\alpha} \), by the Young inequality this yields for \(t \in [0, T] \)

\[
\mathbb{E} \int_0^t |Y_{\epsilon, \alpha}(s)|_0^p \, ds \\
\leq c_p R_{1, \theta}^p \left(\int_0^t s^{-\left(2\alpha + \frac{\beta_1(2\alpha - 2) + \theta(\alpha + 2)}{p_1}\right)} \, ds \right) \frac{p}{2} \mathbb{E} \int_0^t \|G_{1, \epsilon}(s)\|_{L^p(L^\infty(D), H)}^p \, ds \\
\leq c_{T, p} \int_0^t \left(1 + \mathbb{E} |u_\epsilon(s)|_H^p + \mathbb{E} |v_\epsilon(s)|_H^p \right) \, ds.
\]

Thanks to (4.3), this implies (4.2). \(\square \)

Now, we can prove the first a-priori bounds for the solution \(u_\epsilon \) of the slow motion equation and for the solution \(v_\epsilon \) of the fast motion equation in system (1.3).

Proposition 4.2. Under Hypotheses \(\mathcal{H} \) and \(\mathcal{H}_2 \) for any \(T > 0 \) and \(p \geq 1 \) there exists a positive constant \(c(p, T) \) such that for any \(x, y \in H \) and \(\epsilon \in (0, 1] \)

\[
\mathbb{E} \sup_{t \in [0, T]} |u_\epsilon(t)|_H^p \leq c(p, T)(1 + |x|_H^p + |y|_H^p),
\]

and

\[
\int_0^T \mathbb{E} |v_\epsilon(t)|_H^p \, dt \leq c(p, T)(1 + |x|_H^2 + |y|_H^2).
\]

Moreover,

\[
\sup_{t \in [0, T]} \mathbb{E} |v_\epsilon(t)|_H^2 \leq c_T(1 + |x|_H^2 + |y|_H^2).
\]

Proof. Let \(\epsilon > 0 \) and \(x, y \in H \) be fixed once for all and let \(\Gamma_{1, \epsilon}(t) \) be the process defined in (4.1). If we set \(\Lambda_{1, \epsilon}(t) := u_\epsilon(t) - \Gamma_{1, \epsilon}(t) \), we have

\[
\frac{d}{dt}\Lambda_{1, \epsilon}(t) = A_1 \Lambda_{1, \epsilon}(t) + B_1(\Lambda_{1, \epsilon}(t) + \Gamma_{1, \epsilon}(t), v_\epsilon(t)), \quad \Lambda_{1, \epsilon}(0) = x,
\]

and then for any \(p \geq 2 \) we have

\[
\frac{1}{p} \frac{d}{dt} |\Lambda_{1, \epsilon}(t)|_H^p = \langle A_1 \Lambda_{1, \epsilon}(t), \Lambda_{1, \epsilon}(t) \rangle_H |\Lambda_{1, \epsilon}(t)|_H^{p-2}
\]

\[
+ \langle B_1(\Lambda_{1, \epsilon}(t) + \Gamma_{1, \epsilon}(t), v_\epsilon(t)) - B_1(\Gamma_{1, \epsilon}(t), v_\epsilon(t)), \Lambda_{1, \epsilon}(t) \rangle_H |\Lambda_{1, \epsilon}(t)|_H^{p-2}
\]

\[
+ \langle B_1(\Gamma_{1, \epsilon}(t), v_\epsilon(t)), \Lambda_{1, \epsilon}(t) \rangle_H |\Lambda_{1, \epsilon}(t)|_H^{p-2} \leq c_p |\Lambda_{1, \epsilon}(t)|_H^p + c_p |B_1(\Gamma_{1, \epsilon}(t), v_\epsilon(t))|_H^p
\]

\[
\leq c_p |\Lambda_{1, \epsilon}(t)|_H^p + c_p \left(1 + |\Gamma_{1, \epsilon}(t)|_H^p + |v_\epsilon(t)|_H^p \right).
\]

This implies that

\[
|\Lambda_{1, \epsilon}(t)|_H^p \leq c_p t |x|_H^p + c_p \int_0^t e^{c_p(t-s)} \left(1 + |\Gamma_{1, \epsilon}(s)|_H^p + |v_\epsilon(s)|_H^p \right) \, ds,
\]

23
so that, for any $t \in [0, T]$

$$|u_\varepsilon(t)|_H^p \leq c_p |\Gamma_{1,\varepsilon}(t)|_H^p + c_p e^{c_p t} |x|_H^p + c_p \int_0^t e^{c_p (t-s)} (1 + |\Gamma_{1,\varepsilon}(s)|_H^p + |v_\varepsilon(s)|_H^p) \, ds$$

$$\leq c_{T,p} \left(1 + |x|_H^p + \sup_{s \leq t} |\Gamma_{1,\varepsilon}(s)|_H^p + \int_0^t |v_\varepsilon(s)|_H^p \, ds \right).$$

According to (4.2) (with $\theta = 0$), we obtain

$$\mathbb{E} \sup_{s \leq t} |u_\varepsilon(s)|_H^p \leq c_{T,p} \left(1 + |x|_H^p + c_{T,p} \int_0^t \mathbb{E} |v_\varepsilon(s)|_H^p \, ds \right) \leq c_{T,p} \left(1 + \mathbb{E} \left(\sup_{t \leq s} |u_\varepsilon(s)|_H^p \right) \right) \, ds,$$

and hence, by comparison,

$$\mathbb{E} \sup_{s \leq t} |u_\varepsilon(s)|_H^p \leq c_{T,p} \left(1 + |x|_H^p + \int_0^t \mathbb{E} |v_\varepsilon(s)|_H^p \, ds \right). \quad (4.7)$$

Now, we have to estimate

$$\int_0^t \mathbb{E} |v_\varepsilon(s)|_H^p \, ds.$$

If we define

$$\Gamma_{2,\varepsilon}(t) := \frac{1}{\sqrt{\varepsilon}} \int_0^t e^{(t-s)\varepsilon A_2 G_2(u_\varepsilon(s), v_\varepsilon(s))} \, dw^{Q_2}(s),$$

and set $L_{2,\varepsilon}(t) := v_\varepsilon(t) - \Gamma_{2,\varepsilon}(t)$, we have

$$\frac{d}{dt} \Lambda_{2,\varepsilon}(t) = \frac{1}{\varepsilon} \left[A_2 \Lambda_{2,\varepsilon}(t) + B_2(u_\varepsilon(t), L_{2,\varepsilon}(t)) + \Gamma_{2,\varepsilon}(t) \right], \quad \Lambda_{2,\varepsilon}(0) = y.$$

Hence, as before, for any $p \geq 1$ we have

$$\frac{1}{p} \frac{d}{dt} |\Lambda_{2,\varepsilon}(t)|_H^p = \frac{1}{\varepsilon} \langle A_2 \Lambda_{2,\varepsilon}(t), L_{2,\varepsilon}(t) \rangle_H |\Lambda_{2,\varepsilon}(t)|_H^{p-2}$$

$$+ \frac{1}{\varepsilon} \langle B_2(u_\varepsilon(t), \Lambda_{2,\varepsilon}(t) + \Gamma_{2,\varepsilon}(t)) - B_1(u_\varepsilon(t), \Lambda_{2,\varepsilon}(t)), \Lambda_{2,\varepsilon}(t) \rangle_H |\Lambda_{2,\varepsilon}(t)|_H^{p-2}$$

$$+ \frac{1}{\varepsilon} \langle B_2(u_\varepsilon(t), \Gamma_{2,\varepsilon}(t)), \Lambda_{2,\varepsilon}(t) \rangle_H |\Lambda_{2,\varepsilon}(t)|_H^{p-2}$$

$$\leq \frac{\lambda - L_{b_2}}{2\varepsilon} |\Lambda_{2,\varepsilon}(t)|_H^p + \frac{c_p}{\varepsilon} (1 + |u_\varepsilon(t)|_H^p + |\Gamma_{2,\varepsilon}(t)|_H^p).$$

By comparison this yields

$$|v_\varepsilon(t)|_H^p \leq c_p |\Lambda_{2,\varepsilon}(t)|_H^p + c_p |\Gamma_{2,\varepsilon}(t)|_H^p$$

$$\leq c_p e^{\frac{\lambda - L_{b_2}}{2\varepsilon} t} |y|_H^p + \frac{c_p}{\varepsilon} \int_0^t e^{-\frac{\lambda - L_{b_2}}{2\varepsilon} (t-s)} (1 + |u_\varepsilon(s)|_H^p + |\Gamma_{2,\varepsilon}(s)|_H^p) \, ds + c_p |\Gamma_{2,\varepsilon}(t)|_H^p. \quad (4.8)$$
Therefore, by integrating with respect to \(t \), we easily obtain
\[
\int_0^t |v_\epsilon(s)|_{H^p}^p \, ds \leq c_p \left(\epsilon |y|_{H^p}^p + \int_0^t |\Gamma_{2,\epsilon}(s)|_{H^p}^p \, ds + \int_0^t |u_\epsilon(s)|_{H^p}^p \, ds + 1 \right). \tag{4.9}
\]
According to the Burkholder-Davis-Gundy inequality and to (3.5), we have
\[
E |\Gamma_{2,\epsilon}(s)|_{H^p}^p \leq c_p e^{-\frac{p}{2}} E \left(\int_0^s \left(|e^{(s-r)}A_2 G_2(u_\epsilon(r), v_\epsilon(r))Q_2|^2 \right)^{\frac{p}{2}} \, dr \right)
\leq c_p K_2^\frac{p}{2} e^{-\frac{p}{2}} E \left(\int_0^s \left(\frac{s-r}{e} \right)^{-\frac{\beta_2(p-2)}{\rho_2}} e^{-\frac{\lambda(p-2+2)}{\rho_2} (s-r)} \|G_2(u_\epsilon(r), v_\epsilon(r))\|_{L(\infty(D),H)}^2 \, dr \right)^{\frac{p}{2}}
\leq c_p K_2^\frac{p}{2} e^{-\frac{p}{2}} E \left(\int_0^s \left(\frac{s-r}{e} \right)^{-\frac{\beta_2(p-2)}{\rho_2}} e^{\frac{\lambda(p-2+2)}{\rho_2} (s-r)} \left(1 + |u_\epsilon(r)|_{H^p}^2 + |v_\epsilon(r)|_{H^p}^{2\gamma} \right) \, dr \right)^{\frac{p}{2}},
\]
so that
\[
\int_0^t E |\Gamma_{2,\epsilon}(s)|_{H^p}^p \, ds \leq c_p \int_0^t \left(1 + E |u_\epsilon(s)|_{H^p}^p + E |v_\epsilon(s)|_{H^p}^{p\gamma} \right) \, ds. \tag{4.11}
\]
Due to (4.9) this allows to conclude
\[
\int_0^t E |v_\epsilon(s)|_{H^p}^p \, ds \leq c_p \left(\epsilon |y|_{H^p}^p + \int_0^t \left(1 + E |u_\epsilon(s)|_{H^p}^p \right) \, ds + \int_0^t E |v_\epsilon(s)|_{H^p}^{p\gamma} \, ds + 1 \right),
\]
and then, as \(\gamma \) is assumed to be strictly less than 1, if \(\epsilon \in (0,1] \) and \(t \in [0,T] \) we obtain
\[
\int_0^t E |v_\epsilon(s)|_{H^p}^p \, ds \leq \frac{1}{2} \int_0^t E |v_\epsilon(s)|_{H^p}^p \, ds + c_p |y|_{H^p}^p + c_p \int_0^t E |u_\epsilon(s)|_{H^p}^p \, ds + c_{p,T}.
\]
This yields
\[
\int_0^t E |v_\epsilon(s)|_{H^p}^p \, ds \leq c_p |y|_{H^p}^p + c_p \int_0^t E \sup_{r \leq s} |u_\epsilon(r)|_{H^p}^p \, ds + c_{p,T}. \tag{4.12}
\]
Hence, if we plug (4.12) into (4.7), we get
\[
E \sup_{s \leq t} |u_\epsilon(s)|_{H^p}^p \leq c_{T,p} \left(1 + |x|_{H^p}^p + |y|_{H^p}^p \right) + c_{T,p} \int_0^t E \sup_{r \leq s} |u_\epsilon(r)|_{H^p}^p \, ds,
\]
and from the Gronwall lemma (4.4) follows. Now, in view of estimates (4.4) and (4.11), from (4.9) we obtain (4.5).

Finally, let us prove (4.6). From (4.10) with \(p = 2 \) we get
\[
\sup_{t \leq T} E |\Gamma_{2,\epsilon}(t)|_{H^p}^2 \leq c_2 |y|_{H^p}^2 + c_2 \left(1 + \sup_{t \leq T} E |u_\epsilon(t)|_{H^p}^2 + \sup_{t \leq T} E |v_\epsilon(t)|_{H^p}^2 \right),
\]

25
and then, if we substitute in (4.8), we obtain
\[\mathbb{E} |v_\epsilon(t)|^2_H \leq c_2 \left(1 + |y|^2_H + \sup_{t \leq T} \mathbb{E} |u_\epsilon(t)|^2_H\right) + c_2 \sup_{t \leq T} \mathbb{E} |v_\epsilon(t)|^{2\gamma}_H.\]

As \(\gamma < 1\), for any \(\eta > 0\) we can fix \(c_\eta > 0\) such that
\[c_2 \sup_{t \leq T} \mathbb{E} |v_\epsilon(t)|^{2\gamma}_H \leq \eta \sup_{t \leq T} \mathbb{E} |v_\epsilon(t)|^2_H + c_\eta.\]

Therefore, if we take \(\eta \leq 1/2\), we obtain
\[\frac{1}{2} \sup_{t \leq T} \mathbb{E} |v_\epsilon(t)|^2_H \leq c_2 \left(1 + |y|^2_H + \sup_{t \leq T} \mathbb{E} |u_\epsilon(t)|^2_H\right),\]
and (4.6) follows from (4.4).

Next, we prove uniform bounds for \(u_\epsilon\) in \(L^\infty(0, T; D((-A_1)\alpha))\), for some \(\alpha > 0\).

Proposition 4.3. Under Hypotheses [4] and [2] there exists \(\alpha > 0\) such that for any \(T > 0\), \(p \geq 1\), \(x \in D((-A_1)^\alpha)\), with \(\alpha \in [0, \bar{\alpha}]\), and \(y \in H\)
\[\sup_{t \leq T} \mathbb{E} \sup_{\epsilon \in (0, 1]} |u_\epsilon(t)|^{p\alpha}_\alpha \leq c_{T, \alpha, p} \left(1 + |x|^{p\alpha}_\alpha + |y|^2_H\right),\] (4.13)
for some positive constant \(c_{T, \alpha, p}\).

Proof. Assume that \(x \in D((-A_1)^\alpha)\), for some \(\alpha \geq 0\). We have
\[u_\epsilon(t) = e^{tA_1}x + \int_0^t e^{(t-s)A_1} B_1(u_\epsilon(s), v_\epsilon(s)) \, ds + \int_0^t e^{(t-s)A_1} G_1(u_\epsilon(s), v_\epsilon(s)) \, dw^{Q_1}(s).\]

If \(\alpha < 1/2\), \(t \leq T\) and \(p \geq 2\)
\[\left|\int_0^t e^{(t-s)A_1} B_1(u_\epsilon(s), v_\epsilon(s)) \, ds\right|^{p\alpha}_\alpha \leq c_{p, \alpha} \left(\int_0^t (t-s)^{-\alpha} |B_1(u_\epsilon(s), v_\epsilon(s))|_H\, ds\right)^p\]
\[\leq c_{p, \alpha} \left(\int_0^t (t-s)^{-\alpha} (1 + |u_\epsilon(s)|_H + |v_\epsilon(s)|_H)\, ds\right)^p\]
\[\leq c_{p, \alpha} \left(1 + \sup_{s \leq T} |u_\epsilon(s)|^{p\alpha}_\alpha\right) T^{(1-\alpha)p} + c_{p, \alpha} \left(\int_0^T s^{-2\alpha}\, ds\right)^{\frac{p}{2}} \left(\int_0^T |v_\epsilon(s)|^{p\alpha}_\alpha\, ds\right)^{\frac{p}{2}},\]
so that, thanks to (4.4) and (4.5),
\[\mathbb{E} \sup_{t \leq T} \left|\int_0^t e^{(t-s)A_1} B_1(u_\epsilon(s), v_\epsilon(s)) \, ds\right|^{p\alpha}_\alpha \leq c_{T, \alpha, p} \left(1 + |x|^{p\alpha}_\alpha + |y|^2_H\right),\] (4.14)
26
Concerning the stochastic term $\Gamma_{1,t}(t)$, due to Lemma 4.1 and to (4.4) there exists $\tilde{\alpha} > 0$ such that for any $\alpha \leq \tilde{\alpha}$ and $p \geq 1$

$$
\mathbb{E} \sup_{t \leq T} |\Gamma_{1,t}(t)|^p_{\alpha} \leq c_{T,\alpha,p} \left(1 + |x|^p_H + |y|^p_H \right).
$$

(4.15)

Hence, if we choose $\tilde{\alpha} := \tilde{\alpha} \wedge 1/2$, thanks to (4.13) and (4.15), for any $p \geq 2$ we have

$$
\mathbb{E} \sup_{t \leq T} |u_\epsilon(t)|^p_{\tilde{\alpha}} \leq \sup_{t \leq T} \left| e^{tA_1} x \right|^p_{\alpha} + \mathbb{E} \sup_{t \leq T} \left| \int_0^t e^{(t-s)A_1} B_1(u_\epsilon(s), v_\epsilon(s)) \, ds \right|^p_{\alpha}
$$

$$
+ \mathbb{E} \sup_{t \leq T} |\Gamma_{1,t}(t)|^p_{\alpha} \leq c_{T,\alpha,p} \left(1 + |x|^p_{\alpha} + |y|^p_H \right).
$$

Next, we prove uniform bounds for the increments of the mapping $t \in [0, T] \mapsto u_\epsilon(t) \in H$.

Proposition 4.4. Under Hypotheses 1 and 2, for any $\alpha > 0$ there exists $\beta(\alpha) > 0$ such that for any $T > 0$, $p \geq 2$, $|h| \leq 1$, $x \in D((-A_1)^\alpha)$ and $y \in H$ it holds

$$
\sup_{\epsilon \in (0,1)} \mathbb{E} |u_\epsilon(t + h) - u_\epsilon(t)|^p_H \leq c_{T,\alpha,p} |h|^\beta(\alpha) p \left(|x|^p_H + |y|^p_H + 1 \right), \quad t \in (0, T).
$$

(4.16)

Proof. Without any loss of generality we can assume $h \geq 0$. For any $t, h \geq 0$ we have

$$
u_\epsilon(t + h) - u_\epsilon(t) = \left(e^{hA_1} - I \right) u_\epsilon(t)
$$

$$
+ \int_t^{t+h} e^{(t+h-s)A_1} B_1(u_\epsilon(s), v_\epsilon(s)) \, ds + \int_t^{t+h} e^{(t+h-s)A_1} G_1(u_\epsilon(s), v_\epsilon(s)) \, dwQ_1(s).
$$

In view of (4.13), if we fix $\alpha \in (0, \tilde{\alpha})$ and $p \geq 1$ we have

$$
\mathbb{E} \left| \left(e^{hA_1} - I \right) u_\epsilon(t) \right|^p_H \leq c_p h^\alpha p \mathbb{E} |u_\epsilon(t)|^p_{\alpha} \leq c_{T,\alpha,p} h^\alpha p \left(1 + |x|^p_{\alpha} + |y|^p_H \right).
$$

(4.17)

In view of (4.14) and (4.15)

$$
\mathbb{E} \left| \int_t^{t+h} e^{(t+h-s)A_1} B_1(u_\epsilon(s), v_\epsilon(s)) \, ds \right|^p_H \leq c h^{p-1} \int_t^{t+h} \left(1 + \mathbb{E} |u_\epsilon(s)|^p_H + \mathbb{E} |v_\epsilon(s)|^p_H \right) \, ds
$$

$$
\leq c_T h^p \left(1 + \sup_{s \leq T} \mathbb{E} |u_\epsilon(s)|^p_H \right) + c h^{p-1} \int_0^T \mathbb{E} |v_\epsilon(s)|^p_H \, ds \leq c_{T,p} (1 + |x|^p_H + |y|^p_H) h^{p-1}.
$$

(4.18)
Finally, for the stochastic term, by using (3.5), for any $t \leq T$ and $p \geq 1$ we have

$$
\mathbb{E} \left| \int_t^{t+h} e^{(t+h-s)A_1} G_1(u_\epsilon(s), v_\epsilon(s)) \, dw^{Q_1} \right|^p_H
\leq c_p \mathbb{E} \left(\int_t^{t+h} \|e^{(t+h-s)A_1} G_1(u_\epsilon(s), v_\epsilon(s))Q_1 \|_2^2 \, ds \right)^{\frac{p}{2}}
\leq c_p K_1^p \left(\int_t^{t+h} (t + h - s)^{-\frac{\beta_2(\rho_2 - 2)}{\rho_2}} \|G_1(u_\epsilon(s), v_\epsilon(s))\|_{L(\bar{D},H)}^2 \, ds \right)^{\frac{p}{2}}.
$$

Then, if we take $\bar{p} \geq 1$ such that

$$
\frac{\beta_2(\rho_2 - 2)}{\rho_2} \bar{p} - 2 < 1,
$$
for any $p \geq \bar{p}$ we have

$$
\mathbb{E} \left| \int_t^{t+h} e^{(t+h-s)A_1} G_1(u_\epsilon(s), v_\epsilon(s)) \, dw^{Q_1} \right|^p_H
\leq c_{T,p} h^{\frac{p-2 - \frac{\beta_2(\rho_2 - 2)}{\rho_2} \bar{p}}{2}} \int_0^T \left(1 + \mathbb{E} |u_\epsilon(s)|_H^p + \mathbb{E} |v_\epsilon(s)|_H^p \right) \, ds,
$$

and, thanks to (4.4) and (4.5), we conclude

$$
\mathbb{E} \left| \int_t^{t+h} e^{(t+h-s)A_1} G_1(u_\epsilon(s), v_\epsilon(s)) \, dw^{Q_1} \right|^p_H
\leq c_{T,p} \left(1 + |x|_H^p + |y|_H^p \right) h^{\left(1 - \frac{2 - \frac{\beta_2(\rho_2 - 2)}{\rho_2}}{2}\right) \bar{p}}.
$$

Therefore, collecting together (4.17), (4.18) and (4.19), we obtain

$$
\mathbb{E} |u_\epsilon(t+h) - u_\epsilon(t)|_H^p \leq c_{T,\alpha,p} h^{\alpha p} \left(1 + |x|_\alpha^p + |y|_H^p \right) + c_{T,p} \left(h^{\left(1 - \frac{2 - \frac{\beta_2(\rho_2 - 2)}{\rho_2}}{2}\right) \bar{p}} + h^{p-1} \right) \left(1 + |x|_H^p + |y|_H^p \right),
$$

and, as we are assuming $|h| \leq 1$, (4.16) follows for any $p \geq \bar{p}$ by taking

$$
\beta(\alpha) := \min \left\{ \alpha, \frac{1}{2} \left(1 - \frac{2 - \frac{\beta_2(\rho_2 - 2)}{\rho_2}}{\bar{p}} \right) \right\}.
$$

Estimate (4.16) for $p < \bar{p}$ follows from the Hölder inequality.

As a consequence of Proposition 4.3 and Proposition 4.4 we have the following fact.
Corollary 4.5. Under Hypotheses 4 and 2 for any \(T > 0 \), \(x \in D((-A_1)^\alpha) \), with \(\alpha > 0 \), and \(y \in H \) the family \(\{ \mathcal{L}(u_\epsilon) \}_{\epsilon \in (0, 1]} \) is tight in \(C([0, T]; H) \).

Proof. Let \(\alpha > 0 \) be fixed and let \(x \in D((-A_1)^\alpha) \) and \(y \in H \). According to (4.16), in view of the Garcia-Rademich-Rumsey Theorem, there exists \(\beta > 0 \) such that for any \(p \geq 1 \)

\[
\sup_{\epsilon \in (0, 1]} \mathbb{E} |u_\epsilon|_{C^\beta([0, T]; H)}^p \leq c_{T,p} \left(1 + |x|_\alpha^p + |y|_H^p \right).
\]

Due to Proposition 4.3 this implies that for any \(\eta > 0 \) we can find \(R_\eta > 0 \) such that

\[
\mathbb{P} \left(u_\epsilon \in K_{R_\eta} \right) \geq 1 - \eta, \quad \epsilon \in (0, 1],
\]

where, by the Ascoli-Arzelà Theorem, \(K_{R_\eta} \) is the compact subset of \(C([0, T]; H) \) defined by

\[
K_{R_\eta} := \left\{ u \in C([0, T]; H) : |u|_{C^\beta([0, T]; H)} + \sup_{t \in [0, T]} |u(t)|_\alpha \leq R_\eta \right\}.
\]

This implies that the family of probability measures \(\{ \mathcal{L}(u_\epsilon) \}_{\epsilon \in (0, 1]} \) is tight in \(C([0, T]; H) \).

We conclude this section by noticing that with arguments analogous to those used in the proof of Propositions 4.2, 4.3 and 4.4 we can obtain a priori bounds also for the conditional second momenta of \(u_\epsilon \) and \(v_\epsilon \).

Proposition 4.6. Assume Hypotheses 4 and 2. Then, for any \(0 \leq s < t \leq T \) and any \(\epsilon \in (0, 1] \) the following facts holds.

1. There exists \(\bar{\alpha} > 0 \) such that for any \(x \in D((-A_1)^\alpha) \), with \(\alpha \in [0, \bar{\alpha}] \), and \(y \in H \)

\[
\mathbb{E} \left(|u_\epsilon(t)|_H^2 \mid \mathcal{F}_s \right) \leq c_{T,\alpha} \left(1 + |u_\epsilon(s)|_\alpha^2 + |v_\epsilon(s)|_H^2 \right), \quad \mathbb{P} \text{-a.s.,}
\]

for some constant \(c_{T,\alpha} \) independent of \(\epsilon \).

2. For any \(x, y \in H \)

\[
\mathbb{E} \left(|v_\epsilon(t)|_H^2 \mid \mathcal{F}_s \right) \leq c_{T} \left(1 + |u_\epsilon(s)|_H^2 + |v_\epsilon(s)|_H^2 \right), \quad \mathbb{P} \text{-a.s.,} \quad (4.20)
\]

for some constant \(c_{T} \) independent of \(\epsilon \).

3. For any \(\alpha > 0 \) there exists \(\beta(\alpha) > 0 \) such that for any \(x \in D((-A_1)^\alpha) \) and \(y \in H \)

\[
\mathbb{E} \left(|u_\epsilon(t) - u_\epsilon(s)|_H^2 \mid \mathcal{F}_s \right) \leq c_{T,\alpha}(t - s)^{2\beta(\alpha)} \left(|u_\epsilon(s)|_\alpha^2 + |v_\epsilon(s)|_H^2 + 1 \right), \quad \mathbb{P} \text{-a.s.,}
\]

for some constant \(c_{T,\alpha} \) independent of \(\epsilon \).
5 The key lemma

We introduce the Kolmogorov operator associated with the slow motion equation, with frozen fast component, by setting for any $\varphi \in \mathcal{R}(H)$ and $x, y \in H$

$$L_{sl} \varphi(x, y)$$

$$= \frac{1}{2} \text{Tr} \left[Q_1 G_1(x, y) D^2 \varphi(x) G_1(x, y) Q_1 \right] + \langle A_1 D \varphi(x), x \rangle_H + \langle D \varphi(x), B_1(x, y) \rangle_H$$

$$= \frac{1}{2} \sum_{i,j=1}^k D^2_{ij} f(\langle x, P_N a_i \rangle_H, \ldots, \langle x, P_N a_k \rangle_H) \langle G_1(x, y) Q_1, N a_i, G_1(x, y) Q_1, N a_j \rangle_H$$

$$+ \sum_{i=1}^k D_i f(\langle x, P_N a_i \rangle_H, \ldots, \langle x, P_N a_k \rangle_H) \left(\langle x, A_1 N a_i \rangle_H + \langle B_1(x, y), P_N a_i \rangle_H \right).$$

Lemma 5.1. Assume Hypotheses 1-4 and fix $x \in D((-A_1)^\alpha)$, with $\alpha > 0$, and $y \in H$. Then, for any $\varphi \in \mathcal{R}(H)$ and $0 \leq t_1 < t_2 \leq T$

$$\lim_{\epsilon \to 0} \mathbb{E} \left| \int_{t_1}^{t_2} \mathbb{E} \left(L_{sl} \varphi(u_\epsilon(r), v_\epsilon(r)) - L_{av} \varphi(u_\epsilon(r)) \mid F_{t_1} \right) dr \right| = 0. \quad (5.2)$$

Proof. By using the Khasminskii idea introduced in [16], we realize a partition of $[0, T]$ into intervals of size $\delta_\epsilon > 0$, to be chosen later on, and for each $\epsilon > 0$ we denote by $\hat{v}_\epsilon(t)$ the solution of the problem

$$\hat{v}_\epsilon(t) = e^{(t-k\delta_\epsilon)\frac{\alpha_2}{\epsilon}} v_\epsilon(k\delta_\epsilon) + \frac{1}{\epsilon} \int_{k\delta_\epsilon}^t e^{(s-k\delta_\epsilon)\frac{\alpha_2}{\epsilon}} B_2(u_\epsilon(k\delta_\epsilon), \hat{v}_\epsilon(s)) \, ds$$

$$+ \frac{1}{\sqrt{\epsilon}} \int_{k\delta_\epsilon}^t e^{(s-k\delta_\epsilon)\frac{\alpha_2}{\epsilon}} G_2(u_\epsilon(k\delta_\epsilon), \hat{v}_\epsilon(s)) \, dw^Q(s), \quad t \in [k\delta_\epsilon, (k+1)\delta_\epsilon),$$

for $k = 0, \ldots, \lfloor T/\delta_\epsilon \rfloor$. In what follows we shall set $\zeta_\epsilon := \delta_\epsilon / \epsilon$.

Step 1. Now, we prove that there exist $\kappa_1, \kappa_2 > 0$ such that if we set

$$\zeta_\epsilon = \left(\log \frac{1}{\epsilon \kappa_2} \right)^{\kappa_1},$$

then

$$\lim_{\epsilon \to 0} \sup_{t \in [0, T]} \mathbb{E} \left| \hat{v}_\epsilon(t) - v_\epsilon(t) \right|_H^2 = 0. \quad (5.4)$$

If we fix $k = 0, \ldots, \lfloor T/\delta_\epsilon \rfloor$ and take $t \in [k\delta_\epsilon, (k+1)\delta_\epsilon)$, we have

$$v_\epsilon(t) = e^{(t-k\delta_\epsilon)\frac{\alpha_2}{\epsilon}} v_\epsilon(k\delta_\epsilon) + \frac{1}{\epsilon} \int_{k\delta_\epsilon}^t e^{(s-k\delta_\epsilon)\frac{\alpha_2}{\epsilon}} B_2(u_\epsilon(s), v_\epsilon(s)) \, ds$$

$$+ \frac{1}{\sqrt{\epsilon}} \int_{k\delta_\epsilon}^t e^{(s-k\delta_\epsilon)\frac{\alpha_2}{\epsilon}} G_2(u_\epsilon(s), v_\epsilon(s)) \, dw^Q,$$
Moreover so that

\[
\mathbb{E} |\dot{v}_\epsilon(t) - v_\epsilon(t)|_H^2 \leq \frac{2 \delta}{\epsilon^2} \int_{k_\delta}^t \mathbb{E} |B_2(u_\epsilon(k\delta), \dot{v}_\epsilon(s)) - B_2(u_\epsilon(s), v_\epsilon(s))|^2_H \, ds
\]

\[+ \frac{2}{\epsilon} \mathbb{E} \left| \int_{k_\delta}^t e^{(t-s)\frac{\delta}{\epsilon}} \left[G_2(u_\epsilon(k\delta), \dot{v}_\epsilon(s)) - G_2(u_\epsilon(s), v_\epsilon(s)) \right] \, dw^{Q_2} \right|^2_H. \]

For the first term, we have

\[
\frac{\delta}{\epsilon^2} \int_{k_\delta}^t \mathbb{E} |B_2(u_\epsilon(k\delta), \dot{v}_\epsilon(s)) - B_2(u_\epsilon(s), v_\epsilon(s))|^2_H \, ds
\]

\[\leq \frac{c}{\epsilon} \int_{k_\delta}^t \zeta_\epsilon \left(\mathbb{E} |u_\epsilon(k\delta) - u_\epsilon(s)|_H^2 + \mathbb{E} |\dot{v}_\epsilon(s) - v_\epsilon(s)|_H^2 \right) \, ds. \tag{5.5}
\]

For the second term, by proceeding as in the proof of Proposition 4.2 we obtain

\[
\mathbb{E} \left| \int_{k_\delta}^t e^{(t-s)\frac{\delta}{\epsilon}} \left[G_2(u_\epsilon(k\delta), \dot{v}_\epsilon(s)) - G_2(u_\epsilon(s), v_\epsilon(s)) \right] \, dw^{Q_2} \right|^2_H
\]

\[\leq c \int_{k_\delta}^t \left(t - s \right) \frac{-\beta_2(\rho_2-2)}{\rho_2} \left(1 + \frac{\lambda(\rho_2-2)}{\epsilon \rho_2} \right) \left(1 + |x|^2_H + |y|^2_H \right) \, ds. \tag{5.6}
\]

In view of (4.16), we have

\[
\frac{1}{\epsilon} \int_{k_\delta}^t \left[\left(t - s \right) \frac{-\beta_2(\rho_2-2)}{\rho_2} \left(1 + \frac{\lambda(\rho_2-2)}{\epsilon \rho_2} \right) \zeta_\epsilon \right] \mathbb{E} |u_\epsilon(k\delta) - u_\epsilon(s)|_H^2 \, ds
\]

\[\leq c_T \int_{k_\delta}^t \left[\left(t - s \right) \frac{-\beta_2(\rho_2-2)}{\rho_2} \left(1 + \frac{\lambda(\rho_2-2)}{\epsilon \rho_2} \right) \zeta_\epsilon \right] \left(s - k\delta \right)^{2\beta(\alpha)} \, ds \left(1 + |x|^2_H + |y|^2_H \right)
\]

\[\leq c_T \delta_\epsilon^{2\beta(\alpha)} \left(1 + \zeta_\epsilon^2 \right) \left(1 + |x|^2_H + |y|^2_H \right). \]

Moreover

\[
\frac{1}{\epsilon} \int_{k_\delta}^t \left[\left(t - s \right) \frac{-\beta_2(\rho_2-2)}{\rho_2} \left(1 + \frac{\lambda(\rho_2-2)}{\epsilon \rho_2} \right) \zeta_\epsilon \right] \mathbb{E} |\dot{v}_\epsilon(s) - v_\epsilon(s)|_H^2 \, ds
\]

\[\leq \frac{c}{\epsilon} \left(\frac{-\beta_2(\rho_2-2)}{\rho_2} \left(1 + \frac{\lambda(\rho_2-2)}{\epsilon \rho_2} \right) \right) \int_{k_\delta}^t \left(t - s \right) \frac{-\beta_2(\rho_2-2)}{\rho_2} \mathbb{E} |\dot{v}_\epsilon(s) - v_\epsilon(s)|_H^2 \, ds.
\]
Then, thanks to (5.5) and (5.6), we obtain
\[
\mathbb{E} |\hat{v}_\epsilon(t) - v_\epsilon(t)|^2_H \leq c_T \delta^{2\beta(\alpha)} \epsilon \left(1 + \zeta^2_\epsilon \right) \left(1 + \epsilon^{2-\theta-1} \right) \left(1 + \epsilon^{2-\theta-1} \right) \left(1 + \epsilon^{2-\theta-1} \right)
\]
\[
+c \epsilon \left(1 + \zeta^2_\epsilon \right) \left(1 + \epsilon^{2-\theta-1} \right) \int_{k\delta}^t (t-s)^{-\beta_2(\rho_2-2)} \mathbb{E} |\hat{v}_\epsilon(s) - v_\epsilon(s)|^2_H ds.
\]
(5.7)

Now, we recall the following simple fact (for a proof see e.g. [11]).

Lemma 5.2. If \(M, L, \theta \) are positive constant and \(g \) is a nonnegative function such that
\[
g(t) \leq M + L \int_{t_0}^t (t-s)^{\theta-1} g(s) ds, \quad t \geq t_0,
\]
then
\[
g(t) \leq M + \frac{ML}{\theta} (t-t_0)^{\theta} + L^2 \int_{t_0}^1 r^{\theta-1} (1-r)^{\theta-1} dr \int_{t_0}^t (t-s)^{2\theta-1} g(s) ds, \quad t \geq t_0.
\]

Notice that if we iterate the lemma above \(n \)-times, we find
\[
g(t) \leq c_{1,n,\theta} M \left(1 + L^{2n-1} (t-t_0)^{2n-1} \right) + c_{2,n,\theta} L^{2n} \int_{t_0}^t (t-s)^{2n\theta-1} g(s) ds,
\]
for some positive constants \(c_{1,n,\theta} \) and \(c_{2,n,\theta} \).

If we apply \(\bar{n} \)-times Lemma 5.2 to (5.7), with \(\bar{n} \in \mathbb{N} \) such that
\[
2^{\bar{n}} \theta := 2^{\bar{n}} \left(1 - \frac{\beta_2(\rho_2-2)}{\rho_2} \right) > 1,
\]
we get
\[
\mathbb{E} |\hat{v}_\epsilon(t) - v_\epsilon(t)|^2_H
\]
\[
\leq c_T \delta^{2\beta(\alpha)} (1 + \zeta^2_\epsilon) \left(1 + \epsilon^{2-\theta-1} \right) \int_{k\delta}^t (t-s)^{-\beta_2(\rho_2-2)} \mathbb{E} |\hat{v}_\epsilon(s) - v_\epsilon(s)|^2_H ds
\]
\[
\leq c_T \delta^{2\beta(\alpha)} (1 + \zeta^2_\epsilon) \left(1 + \epsilon^{2-\theta-1} \right) \int_{k\delta}^t \mathbb{E} |\hat{v}_\epsilon(s) - v_\epsilon(s)|^2_H ds.
\]

From the Gronwall Lemma this yields
\[
\mathbb{E} |\hat{v}_\epsilon(t) - v_\epsilon(t)|^2_H \leq c T \delta^{2\beta(\alpha)} \epsilon \left(1 + \zeta^2_\epsilon \right) \left(1 + \epsilon^{2-\theta-1} \right) \left(1 + \epsilon^{2-\theta-1} \right) \exp \left(c \zeta^{2\theta+1}_\epsilon \right).
\]

Now, since we have
\[
\exp \left(c \zeta^{2\theta+1}_\epsilon \right) = \exp \left(c \left(\log \frac{1}{\epsilon^{\kappa_2}} \right)^{\kappa_1 2^{\bar{n}+1}} \right).
\]

32
if we take \(\kappa_1 := 2^{-(\alpha+1)} \) and \(\kappa_2 < 2\beta(\alpha)c^{-1} \), we conclude that (5.4) holds.

Moreover, as for \(t \in [k\delta, (k+1)\delta] \) the process \(\hat{v}_\epsilon(t) \) is the mild solution of the problem

\[
dv(t) = \frac{1}{\epsilon} \left[A_2v(t) + B_2(u_\epsilon(k\delta), v(t)) \right] dt + \frac{1}{\sqrt{\epsilon}} G_2(u_\epsilon(k\delta), v(t)) dw^{Q_2}(t), \quad v(k\delta) = v_\epsilon(k\delta),
\]

with the same arguments as those used to prove (4.6) and (4.20) we obtain

\[
\sup_{t \in [0,T]} \mathbb{E} |\hat{v}_\epsilon(t)|^2_H \leq c_T \left(1 + |x|^2_H + |y|^2_H \right)
\]

(5.8)

and, for any \(t \in [k\delta, (k+1)\delta] \),

\[
\mathbb{E} \left(|\hat{v}_\epsilon(t)|^2_H \mathcal{F}_{k\delta} \right) \leq c \left(1 + |u_\epsilon(k\delta)|^2_H + |v_\epsilon(k\delta)|^2_H \right), \quad \mathbb{P} - \text{a.s.}
\]

Step 2. Now, we fix \(\varphi \in \mathcal{R}(H) \). We can assume that

\[
\varphi(x) = f(\langle x, P_{Na_1} \rangle_H, \ldots, \langle x, P_{Na_k} \rangle_H),
\]

for some \(f \in C^\infty_c(\mathbb{R}^k) \) and \(k, N \in \mathbb{N} \). According to (3.15) and (5.1), we have

\[
\mathcal{L}_{sl} \varphi(u_\epsilon(r), v_\epsilon(r)) - \mathcal{L}_{av} \varphi(u_\epsilon(r)) = \frac{1}{2} \sum_{i,j=1}^{k} I^r_{ij}(r) + \sum_{i=1}^{k} J^r_i(r),
\]

where

\[
I^r_{ij} := D^2_{ij} f(\langle u_\epsilon, P_{Na_1} \rangle_H, \ldots, \langle u_\epsilon, P_{Na_k} \rangle_H)
\]

\[
= \langle \langle G_1(u_\epsilon, v_\epsilon)Q_{1,Na_i}, G_1(u_\epsilon, v_\epsilon)Q_{1,Na_j} \rangle_H - \langle \bar{G}(u_\epsilon)Q_{1,Na_i}, \bar{G}(u_\epsilon)Q_{1,Na_j} \rangle_H \rangle
\]

and

\[
J^r_i = D_i f(\langle u_\epsilon, P_{Na_1} \rangle_H, \ldots, \langle u_\epsilon, P_{Na_k} \rangle_H) \langle B_1(u_\epsilon, v_\epsilon) - \bar{B}(u_\epsilon), P_{Na_i} \rangle_H.
\]

Hence, if we prove that for any \(i, j = 1, \ldots, k \)

\[
\lim_{\epsilon \to 0} \mathbb{E} \left| \int_{t_1}^{t_2} \mathbb{E} \left(I^r_{ij}(r) \mathcal{F}_{t_1} \right) \, dr \right| = 0
\]

(5.9)

and

\[
\lim_{\epsilon \to 0} \mathbb{E} \left| \int_{t_1}^{t_2} \mathbb{E} \left(J^r_i(r) \mathcal{F}_{t_1} \right) \, dr \right| = 0,
\]

(5.10)

we immediately get (5.2).

We have

\[
\int_{t_1}^{t_2} \mathbb{E} \left(I^r_{ij}(r) \mathcal{F}_{t_1} \right) \, dr = \sum_{i=1}^{3} \int_{t_1}^{t_2} \mathbb{E} \left(I^r_{i,j}(r) \mathcal{F}_{t_1} \right) \, dr,
\]

33
where

\[I^1_{i,j}(r) := D^2_{i,j}f((u_ε(r), P_{Na_1})_H, \ldots, (u_ε(r), P_{Na_k})_H) \]

\[⟨G_1(u_ε(r), v_ε(r))Q_{1,Na_i}, G_1(u_ε(r), v_ε(r))Q_{1,Na_j}⟩_H \]

\[-D^2_{i,j}f((u_ε([r/δ_ε]δ_ε), P_{Na_1})_H, \ldots, (u_ε([r/δ_ε]δ_ε), P_{Na_k})_H) \]

\[⟨G_1(u_ε([r/δ_ε]δ_ε), \hat{v}_ε(r))Q_{1,Na_i}, G_1(u_ε([r/δ_ε]δ_ε), \hat{v}_ε(r))Q_{1,Na_j}⟩_H , \]

and

\[I^2_{i,j}(r) := D^2_{i,j}f((u_ε([r/δ_ε]δ_ε), P_{Na_1})_H, \ldots, (u_ε([r/δ_ε]δ_ε), P_{Na_k})_H) \]

\[G(u_ε([r/δ_ε]δ_ε), \hat{v}_ε(r))Q_{1,Na_i}, G(u_ε([r/δ_ε]δ_ε), \hat{v}_ε(r))Q_{1,Na_j}⟩_H \]

\[-⟨G(u_ε([r/δ_ε]δ_ε))Q_{1,Na_i}, Q_{1,Na_j}⟩_H , \]

and

\[I^3_{i,j}(r) := D^2_{i,j}f((u_ε([r/δ_ε]δ_ε), P_{Na_1})_H, \ldots, (u_ε([r/δ_ε]δ_ε), P_{Na_k})_H) \]

\[⟨G(u_ε([r/δ_ε]δ_ε))Q_{1,Na_i}, G(u_ε([r/δ_ε]δ_ε))Q_{1,Na_j}⟩_H \]

\[-D^2_{i,j}f((u_ε(r), P_{Na_1})_H, \ldots, (u_ε(r), P_{Na_k})_H) ⟨G(u_ε(r))Q_{1,Na_i}, Q_{1,Na_j}⟩_H . \]

It is immediate to check that

\[|I^1_{i,j}(r)| + |I^3_{i,j}(r)| \leq c (|u_ε([r/δ_ε]δ_ε) − u_ε(r)|_H + |v_ε(r) − \hat{v}_ε(r)|_H) \]

\[(1 + |u_ε(r)|^2_H + |v_ε(r)|^2_H + |u_ε([r/δ_ε]δ_ε)|_H + |\hat{v}_ε(r)|_H) , \]

so that

\[
\left(\mathbb{E} \int_{t_1}^{t_2} \left[|I^1_{i,j}(r)| + |I^3_{i,j}(r)| \right] dr \right)^2 \]

\[\leq c \int_{t_1}^{t_2} \left[\mathbb{E} |u_ε([r/δ_ε]δ_ε) − u_ε(r)|^2_H + \mathbb{E} |v_ε(r) − \hat{v}_ε(r)|^2_H \right] dr \]

\[\times \int_{t_1}^{t_2} \left[1 + \mathbb{E} |u_ε(r)|^2_H + \mathbb{E} |v_ε(r)|^2_H + \mathbb{E} |u_ε([r/δ_ε]δ_ε)|^2_H + \mathbb{E} |\hat{v}_ε(r)|^2_H \right] dr. \]

According to (4.16), (4.14), (4.5) and (5.8), we conclude

\[
\left(\mathbb{E} \int_{t_1}^{t_2} \left[|I^1_{i,j}(r)| + |I^3_{i,j}(r)| \right] dr \right)^2 \]

\[\leq c_T \left(\delta_ε^2 + \sup_{t \in [0,T]} \mathbb{E} |v_ε(t) − \hat{v}_ε(t)|^2_H \right) \left(1 + |x|^2_H + |y|^2_H + |x|^2_α \right) , \]

34
so that, due to (5.4)
\[
\lim_{\epsilon \to 0} \mathbb{E} \int_{t_1}^{t_2} \left[|I_{1,ij}(r)| + |I_{3,ij}(r)| \right] dr = 0. \tag{5.11}
\]

Next, let us estimate \(I_{2,ij} \). We have
\[
\int_{t_1}^{t_2} \mathbb{E} \left(I_{2,ij}(r) | \mathcal{F}_{t_1} \right) dr = \sum_{k = \lfloor t_1/\delta_\epsilon \rfloor + 1}^{\lfloor t_2/\delta_\epsilon \rfloor - 1} \int_{k\delta_\epsilon}^{(k+1)\delta_\epsilon} \mathbb{E} \left(\mathbb{E} \left(I_{2,ij}(r) | \mathcal{F}_{k\delta_\epsilon} \right) | \mathcal{F}_{t_1} \right) dr
\]
\[
+ \int_{t_1}^{(t_1/\delta_\epsilon) + 1}\delta_\epsilon \mathbb{E} \left(I_{2,ij}(r) | \mathcal{F}_{t_1} \right) dr + \int_{(t_1/\delta_\epsilon)}^{t_2} \mathbb{E} \left(\mathbb{E} \left(I_{2,ij}(r) | \mathcal{F}_{(t_2/\delta_\epsilon)\delta_\epsilon} \right) | \mathcal{F}_{t_1} \right) dr.
\]

The distribution of the process
\[
v_{1,\epsilon}(r) := \hat{v}_\epsilon(k\delta_\epsilon + r), \quad r \in [0, \delta_\epsilon],
\]
coincides with the distribution of the process
\[
v_{2,\epsilon}(r) := \tilde{v}^{u_\epsilon(k\delta_\epsilon),v_\epsilon(k\delta_\epsilon)}(r/\epsilon), \quad r \in [0, \delta_\epsilon],
\]
where \(\tilde{v}^{u_\epsilon(k\delta_\epsilon),v_\epsilon(k\delta_\epsilon)} \) is the solution of problem (2.7) with random frozen slow component \(u_\epsilon(k\delta_\epsilon) \), random initial datum \(v_\epsilon(k\delta_\epsilon) \) and noise \(\tilde{w}^{Q_2} \) independent of \(u_\epsilon(k\delta_\epsilon) \) and \(v_\epsilon(k\delta_\epsilon) \).

Then, if we set
\[
h(x) := D^2_{ij}f(\langle x, P_N a_1 \rangle_H, \ldots, \langle x, P_N a_k \rangle_H), \quad x \in H,
\]
for any \(k = \lfloor t_1/\delta_\epsilon \rfloor + 1, \ldots, \lfloor t_2/\delta_\epsilon \rfloor - 1 \) we have
\[
\int_{k\delta_\epsilon}^{(k+1)\delta_\epsilon} \mathbb{E} \left(I_{2,ij}(r) | \mathcal{F}_{k\delta_\epsilon} \right) dr
\]
\[
= \int_0^{\delta_\epsilon} \mathbb{E} \left(h(u_\epsilon(k\delta_\epsilon)) \right) \left[\langle G_1(u_\epsilon(k\delta_\epsilon), v_{1,\epsilon}(r))Q_{1,N}a_i, G_1(u_\epsilon(k\delta_\epsilon), v_{1,\epsilon}(r))Q_{1,N}a_j \rangle_H \right.
\]
\[
- \langle G(u_\epsilon(k\delta_\epsilon))Q_{1,N}a_i, G(u_\epsilon(k\delta_\epsilon))Q_{1,N}a_j \rangle_H \right] | \mathcal{F}_{k\delta_\epsilon} \right) dr
\]
\[
+ \int_0^{\delta_\epsilon} \mathbb{E} \left(h(u_\epsilon(k\delta_\epsilon)) \right) \left[\langle G_1(u_\epsilon(k\delta_\epsilon), v_{2,\epsilon}(r))Q_{1,N}a_i, G_1(u_\epsilon(k\delta_\epsilon), v_{2,\epsilon}(r))Q_{1,N}a_j \rangle_H \right.
\]
\[
- \langle G(u_\epsilon(k\delta_\epsilon))Q_{1,N}a_i, G(u_\epsilon(k\delta_\epsilon))Q_{1,N}a_j \rangle_H \right] | \mathcal{F}_{k\delta_\epsilon} \right) dr
\]
and, with a change of variables,
\[
\int_{k\delta_\epsilon}^{(k+1)\delta_\epsilon} \mathbb{E} \left(I_{2,ij}(r) | \mathcal{F}_{k\delta_\epsilon} \right) dr = \epsilon \int_0^{\delta_\epsilon} \mathbb{E} \left(h(u_\epsilon(k\delta_\epsilon)) \right)
\]
\[
\left[\langle G_1(u_\epsilon(k\delta_\epsilon), \tilde{v}^{u_\epsilon(k\delta_\epsilon),v_\epsilon(k\delta_\epsilon)}(r))Q_{1,N}a_i, G_1(u_\epsilon(k\delta_\epsilon), \tilde{v}^{u_\epsilon(k\delta_\epsilon),v_\epsilon(k\delta_\epsilon)}(r))Q_{1,N}a_j \rangle_H \right.
\]
\[
- \langle G(u_\epsilon(k\delta_\epsilon))Q_{1,N}a_i, G(u_\epsilon(k\delta_\epsilon))Q_{1,N}a_j \rangle_H \right] | \mathcal{F}_{k\delta_\epsilon} \right) dr.
\]
Therefore, due to the Markov property, we obtain
\[
\int_{k\delta_e}^{(k+1)\delta_e} \mathbb{E} \left(I_{2,ij}(r) \, | \mathcal{F}_{k\delta_e} \right) \, dr = \epsilon \int_{0}^{\delta_e} \left(\mathbb{E} \langle G(x, v^x, y(r))Q_{1,Na_i}, G(x, v^x, y(r))Q_{1,Na_j} \rangle_H h(x) \right. \\
- \left. \langle \tilde{G}(x)Q_{1,Na_i}, \tilde{G}(x)Q_{1,Na_j} \rangle_H h(x) \right)_{x=u_e(k\delta_e), y=v_e(k\delta_e)} \, dr,
\]
and hence, according to (2.16),
\[
\left| \int_{k\delta_e}^{(k+1)\delta_e} \mathbb{E} \left(I_{2,ij}(r) \, | \mathcal{F}_{k\delta_e} \right) \, dr \right| \leq c_{ij} \delta_e \alpha(\delta_e/\epsilon) \left(1 + |u_e(k\delta_e)|_H^2 + |v_e(k\delta_e)|_H^2 \right), \quad \mathbb{P} \text{- a.s.}
\]
Analogously,
\[
\left| \int_{t_1}^{(t_1/\delta_e)+1} \mathbb{E} \left(I_{2,ij}(r) \, | \mathcal{F}_{t_1} \right) \, dr \right| \leq c_{ij} \delta_e \left(1 - \{t_1/\delta_e\} \right) \alpha \left(1 - \{t_1/\delta_e\} \right) \delta_e/\epsilon \left(1 + |u_e(t_1)|_H^2 + |v_e(t_1)|_H^2 \right), \quad \mathbb{P} \text{- a.s.}
\]
and
\[
\left| \int_{[t_2/\delta_e]}^{t_2} \mathbb{E} \left(I_{2,ij}(r) \, | \mathcal{F}_{[t_2/\delta_e]} \right) \, dr \right| \leq c_{ij} \delta_e \left\{ t_2/\delta_e \right\} \alpha \left(\left\{ t_2/\delta_e \right\} \delta_e/\epsilon \right) \left(1 + |u_e([t_2/\delta_e]\delta_e)|_H^2 + |v_e([t_2/\delta_e]\delta_e)|_H^2 \right), \quad \mathbb{P} \text{- a.s.}
\]
Thanks to (4.4) and (4.6), the three inequality above imply
\[
\lim_{\epsilon \to 0} \mathbb{E} \left| \int_{t_1}^{t_2} \mathbb{E} \left(I_{2,ij}(r) \, | \mathcal{F}_{t_1} \right) \, dr \right| = 0,
\]
so that from (5.11) we conclude that (5.9) holds.

In an analogous way (just by replacing assumption (2.16) with assumption (2.15)), we can prove that (5.10) holds and then, combining together (5.9) with (5.10), we obtain (5.2).

6 The averaging limit

Before concluding with the proof of the averaging limit, we introduce an approximating slow motion equation and prove a limiting result.

For any \(n \in \mathbb{N} \), we define
\[
A_{1,n} := A_1 P_n, \quad Q_{1,n} := Q_1 P_n,
\]
where \(P_n \) is the projection of \(H \) into spam \(\langle e_{1,1}, \ldots, e_{1,n} \rangle \), and we denote by \(u_{\epsilon,n} \) the solution of the problem

\[
du(t) = [A_{1,n}u(t) + B_1(u(t), v_\epsilon(t))] \, dt + G_1(u(t), v_\epsilon(t)) \, d\omega^{Q_1,n}(t), \quad u(0) = x. \tag{6.1}
\]

Notice that, as \(A_{1,n} \in \mathcal{L}(H) \) and \(Q_1,n \) has finite rank, \(u_{\epsilon,n} \) is a strong solution to (6.1), that is

\[
u_{\epsilon,n}(t) = x + \int_0^t [A_{1,n}u_{\epsilon,n}(s) + B_1(u_{\epsilon,n}(s), v_\epsilon(s))] \, ds + \int_0^t G_1(u_{\epsilon,n}(s), v_\epsilon(s)) \, d\omega^{Q_1,n}(s). \tag{6.2}
\]

By standard arguments it is possible to show that for any \(p \geq 1 \) and \(\epsilon > 0 \)

\[
\lim_{n \to \infty} \mathbb{E} \sup_{t \in [0,T]} |u_{\epsilon,n}(t) - u_{\epsilon,n}(t)|_H^p = 0. \tag{6.3}
\]

Moreover, for any \(p \geq 1 \) and \(\epsilon > 0 \) it holds

\[
\sup_{n \in \mathbb{N}} \mathbb{E} \sup_{t \in [0,T]} |u_{\epsilon,n}(t)|_H^p < \infty. \tag{6.4}
\]

In analogy to (5.1), we introduce the Kolmogorov operator associated with the approximating slow motion equation (6.1), with frozen fast component \(y \in H \), by setting

\[
\mathcal{L}_{sl}^n \varphi(x,y) = \frac{1}{2} \text{Tr} \left[Q_1,n G_1(x,y) D^2 \varphi(x) G_1(x,y) Q_1,n \right] + \langle A_{1,n} D \varphi(x), x \rangle_H + \langle D \varphi(x), B_1(x,y) \rangle_H
\]

\[
= \frac{1}{2} \sum_{i,j=1}^k D_{ij}^2 f(\langle x, P_N a_1 \rangle_H, \ldots, \langle x, P_N a_k \rangle_H) (G_1(x,y) Q_{1,N\wedge n} a_i, G_1(x,y) Q_{1,N\wedge n} a_j)_H
\]

\[
+ \sum_{i=1}^k D_i f(\langle x, P_N a_1 \rangle_H, \ldots, \langle x, P_N a_k \rangle_H) (\langle x, A_{1,N\wedge n} a_i \rangle_H + \langle B_1(x,y), P_N a_i \rangle_H).
\]

In the next lemma we show that the Kolmogorov operator \(\mathcal{L}_{sl}^n \) approximates in a proper way the Kolmogorov operator \(\mathcal{L}_{sl} \).

Lemma 6.1. Assume Hypotheses I and II. Then for any \(\varphi \in \mathcal{R}(H) \) and \(\epsilon > 0 \)

\[
\lim_{n \to \infty} \mathbb{E} \sup_{t \in [0,T]} |\mathcal{L}_{sl}^n \varphi(u_{\epsilon,n}(t), v_\epsilon(t)) - \mathcal{L}_{sl} \varphi(u_{\epsilon}(t), v_\epsilon(t))| = 0. \tag{6.5}
\]

Proof. Let

\[
\varphi(x) = f(\langle x, P_N a_1 \rangle_H, \ldots, \langle x, P_N a_k \rangle_H), \quad x \in H,
\]

for some \(k, N \in \mathbb{N}, a_1, \ldots, a_k \in H \) and \(f \in C_c^\infty(\mathbb{R}^k) \). If \(n \geq N \), then

\[
\mathcal{L}_{sl}^n \varphi(x,y) - \mathcal{L}_{sl} \varphi(x,y) = 0, \quad x, y \in H,
\]

37
so that for any \(\epsilon > 0 \) and \(n \geq N \)

\[
L^n_{sl} \varphi(u_{\epsilon,n}(t), v_{\epsilon}(t)) - L_{sl} \varphi(u_{\epsilon}(t), v_{\epsilon}(t)) = L_{sl} \varphi(u_{\epsilon,n}(t), v_{\epsilon}(t)) - L_{sl} \varphi(u_{\epsilon}(t), v_{\epsilon}(t)).
\]

Now, due to the assumptions on the coefficients \(B_1 \) and \(G_1 \) and on the function \(f \), it is immediate to check that for \(x_1, x_2, y \in H \)

\[
|L_{sl} \varphi(x_1, y) - L_{sl} \varphi(x_2, y)| \leq c |x_1 - x_2|_H (1 + |x_1|^2_H + |x_2|^2_H + |y|^2_H).
\]

Then

\[
\sup_{t \in [0,T]} |L_{sl} \varphi(u_{\epsilon,n}(t), v_{\epsilon}(t)) - L_{sl} \varphi(u_{\epsilon}(t), v_{\epsilon}(t))| \\
\leq c \sup_{t \in [0,T]} |u_{\epsilon,n}(t) - u_{\epsilon}(t)|_H (1 + \sup_{t \in [0,T]} |u_{\epsilon,n}(t)|^2_H + \sup_{t \in [0,T]} |u_{\epsilon}(t)|^2_H + \sup_{t \in [0,T]} |v_{\epsilon}(t)|^2_H).
\]

According to (6.3) and (6.4), this implies (6.5).

Finally, we conclude with the proof of the averaging limit.

Theorem 6.2. Assume Hypotheses [4] and fix any \(x \in D((-A)^\alpha) \), with \(\alpha > 0 \), and any \(y \in H \). Then, if \(\bar{u} \) is the solution of the averaged equation (3.14), for any \(T > 0 \) and \(\eta > 0 \) we have

\[
w - \lim_{\epsilon \to 0} L(u_\epsilon) = L(\bar{u}), \quad \text{in } C([0,T]; H).
\]

Proof. As \(u_{\epsilon,n} \) verifies (6.2), for any \(\varphi \in \mathcal{R}(H) \) we can apply Itô’s formula to \(\varphi(u_{\epsilon,n}) \) and we obtain that the process

\[
t \in [0,T] \mapsto \varphi(u_{\epsilon,n}(t)) - \varphi(x) - \int_0^t L^n_{sl} \varphi(u_{\epsilon,n}(s), v_{\epsilon}(s)) \, ds,
\]

is a martingale with respect to \(\{\mathcal{F}_t\}_{t \in [0,T]} \). Then, by taking the limit as \(n \) goes to infinity, due to (6.3) and to (6.5) that for any \(\epsilon > 0 \) we have the process

\[
t \in [0,T] \mapsto \varphi(u_\epsilon(t)) - \varphi(x) - \int_0^t L_{sl} \varphi(u_\epsilon(s), v_\epsilon(s)) \, ds,
\]

is an \(\mathcal{F}_t \)-martingale. In particular, for any \(0 \leq s \leq t \leq T \) and any bounded \(\mathcal{F}_s \)-measurable random variable \(\Psi \)

\[
\mathbb{E} \left(\Psi \left[\varphi(u_\epsilon(t)) - \varphi(u_\epsilon(s)) - \int_s^t L_{sl} \varphi(u_\epsilon(r), v_\epsilon(r)) \, dr \right] \right) = 0. \tag{6.6}
\]

Due to the tightness of the sequence \(\{L(u_\epsilon)\}_{\epsilon \in (0,1]} \) in \(\mathcal{P}(C_\mathbb{R}([0,T]; H), \mathcal{E}) \) (see Proposition 4.3), there exists a sequence \(\{\epsilon_k\}_{k \in \mathbb{N}} \downarrow 0 \) such that the sequence \(\{L(u_\epsilon_k)\}_{k \in \mathbb{N}} \) converges weakly to some \(\mathbb{Q} \). If we are able to identify \(\mathbb{Q} \) with \(L(\bar{u}) \), where \(\bar{u} \) is the unique mild solution of the averaged equation (3.14), then we conclude that the whole sequence \(\{L(u_\epsilon)\}_{\epsilon \in (0,1]} \) weakly converges to \(L(\bar{u}) \) in \(C([0,T]; H) \).
We denote by \mathbb{E}^Q and \mathbb{E}^{Q_k} the expectations in $(C_{\mathcal{x}}([0,T];H),\mathcal{E})$ with respect to the probability measures Q and Q_k, where $Q_k = \mathcal{L}(u_{\epsilon_k})$, and we denote by $\eta(t)$ the canonical process in $(C_{\mathcal{x}}([0,T];H),\mathcal{E})$. Then, for any bounded \mathcal{E}_s-measurable random variable

$$\Phi = F(\eta(t_1),\ldots,\eta(t_N)),$$

with $F \in C_b(\mathbb{R}^N)$ and $0 \leq t_1 < \ldots < t_N$, any function $\varphi \in \mathcal{R}(H)$ and any $0 \leq s \leq t \leq T$ we have

$$\mathbb{E}^Q \left(\Phi \left[\varphi(\eta(t)) - \varphi(\eta(s)) - \int_s^t \mathcal{L}_{av} \varphi(\eta(r)) \, dr \right] \right)$$

$$= \lim_{k \to \infty} \mathbb{E}^{Q_k} \left(\Phi \left[\varphi(\eta(t)) - \varphi(\eta(s)) - \int_s^t \mathcal{L}_{av} \varphi(\eta(r)) \, dr \right] \right)$$

$$= \lim_{k \to \infty} \mathbb{E} \left(\Phi \circ u_{\epsilon_k} \left[\varphi(u_{\epsilon_k}(t)) - \varphi(u_{\epsilon_k}(s)) - \int_s^t \mathcal{L}_{av} \varphi(u_{\epsilon_k}(r)) \, dr \right] \right).$$

In view of (6.6), this implies

$$\mathbb{E}^Q \left(\Phi \left[\varphi(\eta(t)) - \varphi(\eta(s)) - \int_s^t \mathcal{L}_{av} \varphi(\eta(r)) \, dr \right] \right)$$

$$= \lim_{k \to \infty} \mathbb{E} \left(\Phi \circ u_{\epsilon_k} \int_s^t [\mathcal{L}_{sl} \varphi(u_{\epsilon_k}(r), v_{\epsilon_k}(r)) - \mathcal{L}_{av} \varphi(u_{\epsilon_k}(r))] \, dr \right).$$

We have

$$\left| \mathbb{E} \left(\Phi \circ u_{\epsilon_k} \int_s^t [\mathcal{L}_{sl} \varphi(u_{\epsilon_k}(r), v_{\epsilon_k}(r)) - \mathcal{L}_{av} \varphi(u_{\epsilon_k}(r))] \, dr \right) \right|$$

$$= \left| \mathbb{E} \left(\Phi \circ u_{\epsilon_k} \int_s^t \mathbb{E} (\mathcal{L}_{sl} \varphi(u_{\epsilon_k}(r), v_{\epsilon_k}(r)) - \mathcal{L}_{av} \varphi(u_{\epsilon_k}(r)) | \mathcal{F}_s) \, dr \right) \right|$$

$$\leq ||\Phi||_{\infty} \mathbb{E} \int_s^t \mathbb{E} (\mathcal{L}_{sl} \varphi(u_{\epsilon_k}(r), v_{\epsilon_k}(r)) - \mathcal{L}_{av} \varphi(u_{\epsilon_k}(r)) | \mathcal{F}_s) \, dr \right|.$$

Hence, according to (5.2) we can conclude that

$$\mathbb{E}^Q \left(\Phi \left[\varphi(\eta(t)) - \varphi(\eta(s)) - \int_s^t \mathcal{L}_{av} \varphi(\eta(r)) \, dr \right] \right) = 0.$$

This means that Q solves the martingale problem with parameters (x, A_1, B, G, Q_1), and, due to what we have seen in subsection 3.3, $Q = \mathcal{L}(\bar{u})$.

□

39
6.1 Averaging limit in probability

In the case the diffusion coefficient g_1 in the slow motion equation does not depend on the fast variable, it is possible to prove that the sequence $\{u_\epsilon\}_{\epsilon \in (0,1]}$ converges in probability to \bar{u} and not just in weak sense.

To this purpose we need to replace Hypothesis [3] with the following stronger condition.

Hypothesis 5. There exists a mapping $\bar{B}_1 : H \to H$ such that for any $T > 0$, $t \geq 0$ and $x, y, h \in H$

$$\mathbb{E} \left| \frac{1}{T} \int_t^{t+T} \langle B_1(x, v^{x,y}(s)), h \rangle_H \, ds - \langle \bar{B}_1(x), h \rangle_H \right| \leq \alpha(T) \left(1 + |x|_H + |y|_H \right) |h|_H,$$ \hspace{1cm} (6.7)

for some $\alpha(T)$ such that

$$\lim_{T \to \infty} \alpha(T) = 0.$$

In Subsection [2.1] by referring our previous paper [6] we have seen that if the dissipativity constant of the operator A_1 is large enough and/or the Lipschitz constants L_{b_2} and L_{g_2} and the constants ζ_2 and κ_2 introduced in Hypothesis [1] are small enough (in this spirit see condition [3.1]), then the fast transition semigroup admits a unique invariant measure μ^x, which is strongly mixing and such that (2.12) holds.

In Lemma 2.3 we have seen that this implies that for any $\varphi \in \text{Lip}(H)$, $T > 0$, $x, y \in H$ and $t \geq 0$

$$\mathbb{E} \left| \frac{1}{T} \int_t^{t+T} \varphi(u^{x,y}(s)) \, ds - \int_H \varphi(z) \mu^x(dz) \right| \leq \frac{c}{\sqrt{T}} \left([\varphi]_{\text{Lip}(H)} (1 + |x|_H + |y|_H) + |\varphi(0)| \right).$$

Then, if we apply the inequality above to to $\varphi = \langle B_1(x, \cdot), h \rangle_H$ and if we set $\bar{B}_1(x) = \langle \bar{B}_1(x, \cdot), \mu^x \rangle$, we have that Hypothesis [5] holds.

As u_ϵ is the mild solution of the slow motion equation in system (1.6) (see also (2.6) for its abstract version), for any $h \in D(A_1) \cap L^\infty(D)$ we have

$$\langle u_\epsilon(t), h \rangle_H = \langle x, h \rangle_H + \int_0^t \langle u_\epsilon(s), A_1 h \rangle_H \, ds + \int_0^t \langle \bar{B}_1(u_\epsilon(s)), h \rangle_H \, ds$$

$$+ \int_0^t \langle G_1(u_\epsilon(s))h, dw^{Q_1}(s) \rangle_H + R_\epsilon(t),$$

where

$$R_\epsilon(t) := \int_0^t \langle B_1(u_\epsilon(s), v_\epsilon(s)) - \bar{B}_1(u_\epsilon(s)), h \rangle_H \, ds.$$

In order to prove the averaging limit, we need the following key lemma, which is the counterpart of Lemma 5.1.

Lemma 6.3. Assume Hypotheses [1, 2, and 5] and fix $T > 0$. Then, for any $x \in D((-A_1)^\alpha)$, with $\alpha > 0$, and $y, h \in H$ we have

$$\lim_{\epsilon \to 0} \mathbb{E} \sup_{t \in [0,T]} |R_\epsilon(t)| = 0.$$
Proof. Step 1. We prove that

\[
\lim_{\epsilon \to 0} \mathbb{E} \sup_{t \in [0,T]} \left| \int_0^t \langle B_1(u_{\epsilon}([s/\delta_{\epsilon}]) \hat{v}_{\epsilon}(s)), \hat{v}_{\epsilon}(s) \rangle - \bar{B}_1(u_{\epsilon}(s)), h \rangle_H \ ds \right| = 0, \quad (6.9)
\]

where \(\hat{v}_{\epsilon}(t) \) is the solution of problem (5.3) Let \(k = 0, \ldots, [T/\delta_{\epsilon}] \) be fixed. If we take a noise \(\bar{\nu}^{Q_2}(t) \) independent of \(u_{\epsilon}(k\delta_{\epsilon}) \) and \(v_{\epsilon}(k\delta_{\epsilon}) \) in the fast motion equation (2.7), it is immediate to check that the process

\[
z_{1,\epsilon}(s) := \hat{v}_{u_{\epsilon}(k\delta_{\epsilon}),v_{\epsilon}(k\delta_{\epsilon})}(s/\epsilon), \quad s \in [0, \delta_{\epsilon}],
\]

coincides in distribution with the process

\[
z_{2,\epsilon}(s) := \hat{v}_{\epsilon}(k\delta_{\epsilon} + s), \quad s \in [0, \delta_{\epsilon}].
\]

This means that

\[
\mathbb{E} \left| \int_{k\delta_{\epsilon}}^{(k+1)\delta_{\epsilon}} \langle B_1(u_{\epsilon}(k\delta_{\epsilon}), \hat{v}_{\epsilon}(s)) - \bar{B}_1(u_{\epsilon}(k\delta_{\epsilon})), h \rangle_H \ ds \right|
\]

\[
= \mathbb{E} \left| \int_{0}^{\delta_{\epsilon}} \langle B_1(u_{\epsilon}(k\delta_{\epsilon}), z_{2,\epsilon}(s)) - \bar{B}_1(u_{\epsilon}(k\delta_{\epsilon})), h \rangle_H \ ds \right|
\]

\[
= \mathbb{E} \left| \int_{0}^{\delta_{\epsilon}} \langle B_1(u_{\epsilon}(k\delta_{\epsilon}), z_{1,\epsilon}(s)) - \bar{B}_1(u_{\epsilon}(k\delta_{\epsilon})), h \rangle_H \ ds \right|
\]

\[
= \delta_{\epsilon} \mathbb{E} \left| \frac{1}{\epsilon} \int_{0}^{\zeta_{\epsilon}} \langle B_1(u_{\epsilon}(k\delta_{\epsilon}), \hat{v}_{u_{\epsilon}(k\delta_{\epsilon}),v_{\epsilon}(k\delta_{\epsilon})}(s)) - \bar{B}_1(u_{\epsilon}(k\delta_{\epsilon})), h \rangle_H \ ds \right|
\]

Hence, according to Hypothesis 5 due to (4.4) and (4.6), we have

\[
\mathbb{E} \left| \int_{k\delta_{\epsilon}}^{(k+1)\delta_{\epsilon}} \langle B_1(u_{\epsilon}(k\delta_{\epsilon}), \hat{v}_{\epsilon}(s)) - \bar{B}_1(u_{\epsilon}(k\delta_{\epsilon})), h \rangle_H \ ds \right|
\]

\[
\leq \delta_{\epsilon} \alpha(\zeta_{\epsilon}) (1 + \mathbb{E} |u_{\epsilon}(k\delta_{\epsilon})|_H + \mathbb{E} |v_{\epsilon}(k\delta_{\epsilon})|_H) |h|_H \leq c_T (1 + |x|_H + |y|_H) |h|_H \delta_{\epsilon} \alpha(\zeta_{\epsilon}).
\]

This allows to obtain (6.9). Actually, we have

\[
\mathbb{E} \sup_{t \in [0,T]} \left| \int_0^t \langle B_1(u_{\epsilon}([s/\delta_{\epsilon}]) \hat{v}_{\epsilon}(s)), \hat{v}_{\epsilon}(s) \rangle - \bar{B}_1(u_{\epsilon}(s)), h \rangle_H \ ds \right|
\]

\[
\leq \sum_{k=0}^{[T/\delta_{\epsilon}]} \mathbb{E} \left| \int_{k\delta_{\epsilon}}^{(k+1)\delta_{\epsilon}} \langle B_1(u_{\epsilon}([s/\delta_{\epsilon}]) \hat{v}_{\epsilon}(s)), \hat{v}_{\epsilon}(s) \rangle - \bar{B}_1(u_{\epsilon}(k\delta_{\epsilon})), h \rangle_H \ ds \right|
\]

\[
+ \sum_{k=0}^{[T/\delta_{\epsilon}]} \mathbb{E} \left| \langle \bar{B}_1(u_{\epsilon}(k\delta_{\epsilon})), \bar{B}_1(u_{\epsilon}(s)), h \rangle_H \right| \ ds,
\]

41
and, as \hat{B}_1 is Lipschitz continuous, thanks to (4.16) we get
\[
\mathbb{E} \sup_{t \in [0, T]} \left| \int_0^t \langle B_1(\nu(\lfloor s/\delta \rfloor \delta), \nu_\varepsilon(s)) - \hat{B}_1(\nu_\varepsilon(s)), h \rangle_H \, ds \right|
\]
\[
\leq cT \frac{T}{\delta} (1 + |x|_H + |y|_H) \delta \alpha \zeta_e + cT \frac{T}{\delta} (1 + |x|_\alpha + |y|_H) |h|_H \delta^{1+\beta(\alpha)},
\]
and (6.9) follows.

Step 2. It holds
\[
\lim_{\varepsilon \to 0} \sup_{t \in [0, T]} \mathbb{E} |R_\varepsilon(t)| = 0.
\]
Thanks to (6.9), we have
\[
\lim_{\varepsilon \to 0} \sup_{t \in [0, T]} \left| \int_0^T \langle B_1(\nu_\varepsilon(s), \nu_\varepsilon(s)) - B_1(\nu_\varepsilon(\lfloor s/\delta \rfloor \delta), \nu_\varepsilon(s), h \rangle_H \, ds \right|
\]
\[
\leq \lim_{\varepsilon \to 0} \mathbb{E} \int_0^T \langle B_1(\nu_\varepsilon(s), \nu_\varepsilon(s)) - B_1(\nu_\varepsilon(\lfloor s/\delta \rfloor \delta), \nu_\varepsilon(s), h \rangle_H \, ds
\]
\[
+ \lim_{\varepsilon \to 0} \mathbb{E} \sup_{t \in [0, T]} \left| \int_0^T \langle B_1(\nu_\varepsilon(\lfloor s/\delta \rfloor \delta), \nu_\varepsilon(s)) - \hat{B}_1(\nu_\varepsilon(s), h \rangle_H \, ds \right|
\]
\[
= \lim_{\varepsilon \to 0} \mathbb{E} \int_0^T \langle B_1(\nu_\varepsilon(s), \nu_\varepsilon(s)) - B_1(\nu_\varepsilon(\lfloor s/\delta \rfloor \delta), \nu_\varepsilon(s), h \rangle_H \, ds \, ds.
\]
By using (4.16) we have
\[
\mathbb{E} \int_0^T |\langle B_1(\nu_\varepsilon(s), \nu_\varepsilon(s)) - B_1(\nu_\varepsilon(\lfloor s/\delta \rfloor \delta), \nu_\varepsilon(s), h \rangle_H | \, ds
\]
\[
\leq c \int_0^T \mathbb{E} |\nu_\varepsilon(s) - \nu_\varepsilon(\lfloor s/\delta \rfloor \delta)|_H + \mathbb{E} |\nu_\varepsilon(s) - \nu_\varepsilon(s)|_H \, ds |h|_H
\]
\[
\leq cT (1 + |x|_\alpha + |y|_H) |h|_H \delta^{1+\beta(\alpha)} + T \sup_{t \in [0, T]} \mathbb{E} |\nu_\varepsilon(t) - \nu_\varepsilon(t)|_H |h|_H,
\]
and then, due to (5.4), we have
\[
\lim_{\varepsilon \to 0} \mathbb{E} \int_0^T |\langle B_1(\nu_\varepsilon(s), \nu_\varepsilon(s)) - B_1(\nu_\varepsilon(\lfloor s/\delta \rfloor \delta), \nu_\varepsilon(s), h \rangle_H | \, ds = 0.
\]
This allows to conclude.

Theorem 6.4. Assume that the diffusion coefficient g_1 in the slow motion equation does not depend on the fast variable v_ε and fix $x \in D((-A_1)^\alpha)$, for some $\alpha > 0$, and $y \in H$. Then, under Hypotheses [1], [2], and [3] for any $T > 0$ and $\eta > 0$ we have
\[
\lim_{\varepsilon \to 0} \mathbb{P} \left(\|u_\varepsilon - \bar{u}\|_{C([0, T]; H)} > \eta \right) = 0,
\]
(6.10)
where \bar{u} is the solution of the averaged equation (3.14).
Proof. We have seen that the family of probability measures \(\{ \mathcal{L}(u_\epsilon) \}_{\epsilon \in (0,1]} \) is tight in \(\mathcal{P}(C([0,T];H)) \), for any fixed \(T > 0 \). Moreover, due to Lemma 6.3, the remainder \(R_\epsilon(t) \) converges to zero in \(L^1(\Omega,\mathcal{F},\mathbb{P}) \), uniformly with respect to \(t \in [0,T] \). Then the proof of (6.10) proceeds as in [7, Theorem 6.4].

Since the sequence \(\{ \mathcal{L}(u_\epsilon) \}_{\epsilon > 0} \) is tight in \(\mathcal{P}(C([0,T];H)) \), if we fix any two sequences \(\{ \epsilon_n \}_{n \in \mathbb{N}} \) and \(\{ \epsilon_m \}_{m \in \mathbb{N}} \) which converge to zero, due to the Skorokhod theorem we can find subsequences \(\{ \epsilon_n(k) \}_{k \in \mathbb{N}} \) and \(\{ \epsilon_m(k) \}_{k \in \mathbb{N}} \) and a sequence

\[
\{ X_k \}_{k \in \mathbb{N}} := \left\{ \left(u_{\epsilon_n(k)}, u_{\epsilon_m(k)} \right) \right\}_{k \in \mathbb{N}} \subseteq C := C([0,T];H) \times C([0,T];H),
\]

defined on some probability space \((\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P}}) \), such that

\[
\mathcal{L}(X_k) = \mathcal{L}(u_{\epsilon_n(k)}, u_{\epsilon_m(k)}), \quad k \in \mathbb{N}, \tag{6.11}
\]

and \(X_k \) converges to some \(X := (u_1, u_2) \in C, \hat{\mathbb{P}} \)-a.s. We will show that if \(u_1 = u_2 \), then there exists some \(u \in C([0,T];H) \) such that the whole sequence \(\{ u_\epsilon \}_{\epsilon > 0} \) converges to \(u \) in probability.

For \(k \in \mathbb{N} \) and \(i = 1,2 \), we define

\[
R_i^k(t) := \langle u_i^k(t), h \rangle_H - \langle x, h \rangle_H - \int_0^t \langle u_i^k(s), A_1 h \rangle_H ds
- \int_0^t \langle \bar{B}_1(u_i^k(s)), h \rangle_H - \int_0^t \langle G_1(u_i^k(s))h, d\hat{w}Q_1(s) \rangle_H,
\]

where

\[
\hat{w}(t, \xi) = \sum_{j \in \mathbb{N}} Q_1 e_j(\xi) \hat{\beta}_j(t),
\]

and \(\{ \hat{\beta}_j(t) \}_{j \in \mathbb{N}} \) is a sequence of mutually independent standard Brownian motions on \((\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P}}) \). In view of (6.11), by using Lemma 6.3, we have

\[
\lim_{k \to \infty} \hat{\mathbb{E}} \sup_{t \in [0,T]} |R_i^k(t)| = 0, \quad i = 1,2,
\]

then, if we pass possibly to a subsequence, we can take the \(\hat{\mathbb{P}} \)-almost sure limit in (6.12), and we get that both \(u_1 \) and \(u_2 \) solve the problem

\[
\langle u(t), h \rangle_H = \langle x, h \rangle_H + \int_0^t \langle u(s), A_1 h \rangle_H ds
+ \int_0^t \langle \bar{B}_1(u(s)), h \rangle_H ds + \int_0^t \langle G_1(u(s))h, d\hat{w}Q_1(s) \rangle_H,
\]

for any \(h \in D(A_1) \cap L^\infty(D) \). This means that \(u_1 = u_2 \), as they coincide with the unique solution of equation

\[
du(t) = [A_1u(t) + \bar{B}_1(u(t))] \, dt + G_1(u(t)) \, d\hat{w}Q_1(t), \quad u(0) = x,
\]

43
and then the sequences \(\{ \mathcal{L}(u_{\epsilon_n(k)}) \} \) and \(\{ \mathcal{L}(u_{\epsilon_m(k)}) \} \) weakly converge to the same limit. This allows to conclude that (6.10) is true, as in Gyöngy and Krylov [15, Lemma 1.1] it is proved that if \(\{ Z_n \} \) is a sequence of random element in a Polish space \(X \), then \(\{ Z_n \} \) converges in probability to a \(X \)-valued random element if and only if for every pair of subsequences \(\{ Z_l \} \) and \(\{ Z_m \} \) there exists a subsequence \(v_k = (Z_{l_k}, Z_{m_k}) \) converging weakly to a random element \(v \) supported on the diagonal of \(X \times X \). □

References

[1] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, MATHEMATICAL ASPECTS OF CLASSICAL AND CELESTIAL MECHANICS. [DYNAMICAL SYSTEMS. III], third edition, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2006.

[2] N. N. Bogoliubov, Y. A. Mitropolsky, ASYMPTOTIC METHODS IN THE THEORY OF NON-LINEAR OSCILLATIONS, Gordon and Breach Science Publishers, New York 1961.

[3] M. Brin, M. I. Freidlin, On stochastic behavior of perturbed Hamiltonian systems, Ergodic Theory and Dynamical Systems 20 (2000), pp. 55-76.

[4] S. Cerrai, SECOND ORDER PDE’S IN FINITE AND INFINITE DIMENSION. A PROBABILISTIC APPROACH, Lecture Notes in Mathematics Series 1762, Springer Verlag (2001).

[5] S. Cerrai, Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probability Theory and Related Fields 125 (2003), pp. 271-304.

[6] S. Cerrai, Asymptotic behavior of systems of SPDE’s with multiplicative noise, Stochastic Partial Differential Equations and Applications VII, Lecture Notes in Pure and Applied Mathematics 245 (2005), Chapman and Hall/CRC Press, pp. 61-75.

[7] S. Cerrai, M. Freidlin, Averaging principle for a class of SPDE’s, to appear in Probability Theory and Related Fields.

[8] G. Da Prato, J. Zabczyk, STOCHASTIC EQUATIONS IN INFINITE DIMENSIONS, Cambridge University Press, Cambridge (1992).

[9] G. Da Prato, J. Zabczyk, ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS, London Mathematical Society, Lecture Notes Series 229, Cambridge University Press, Cambridge (1996).

[10] E.B. Davies, HEAT KERNELS AND SPECTRAL THEORY, Cambridge University Press, Cambridge (1989).

[11] J. Fontbona, Nonlinear martingale problems involving singular integrals, Journal of Functional Analysis 200 (2003), pp. 198-236.

[12] M. I. Freidlin, On stable oscillations and equilibrium induced by small noise, Journal of Statistical Physics 103 (2001), pp. 283-300.
[13] M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Second Edition, Springer Verlag (1998).

[14] M. I. Freidlin, A. D. Wentzell, Long-time behavior of weakly coupled oscillators, Journal of Statistical Physics 123 (2006), pp. 1311-1337.

[15] I. Gyöngy, N.V. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probability Theory and Related Fields 103 (1996), pp. 143-158.

[16] R. Z. Khasminskii, On the principle of averaging the Itô’s stochastic differential equations (Russian), Kibernetika 4 (1968), pp. 260-279.

[17] Y. Kifer, Some recent advances in averaging, Modern dynamical systems and applications, pp. 385-403, Cambridge Univ. Press, Cambridge, 2004.

[18] Y. Kifer, Diffusion approximation for slow motion in fully coupled averaging, Probability Theory and Related Fields 129 (2004), pp. 157-181.

[19] Y. Kifer, Averaging and climate models, Stochastic climate models (Chorin, 1999), pp. 171-188, Progress in Probability 49, Birkhäuser, Basel, 2001.

[20] Y. Kifer, Stochastic versions of Anosov’s and Neistadt’s theorems on averaging, Stochastics and Dynamics 1 (2001), pp. 1-21.

[21] S. B. Kuksin, A. L. Piatnitski, Khasminski-Whitman averaging for randomly perturbed KdV equations, Preprint (2006).

[22] B. Maslowski, J. Seidler, I. Vrkoč, An averaging principle for stochastic evolution equations. II, Mathematica Bohemica 116 (1991), pp. 191-224.

[23] A. I. Neishtadt, Averaging in multyfrequency systems, Soviet Physics Doktagy 21 (1976), pp. 80-82.

[24] G. C. Papanicolaou, D. Stroock, S. R. S. Varadhan, Martingale approach to some limit theorems, in PAPERS FROM THE DUKE TURBULENCE CONFERENCE (DUKE UNIV. DUHRAM, N.C. 1976), Paper 6, ii+120 pp. Duke Univ. Math. Ser. Vol. III, Duke Univ. Duham, N.C. (1977).

[25] S. Peszat, Existence and uniqueness of the solution for stochastic equations on Banach spaces, Stochastics and Stochastics Reports 55 (1995), pp. 167-193.

[26] J. Seidler, I. Vrkoč, An averaging principle for stochastic evolution equations, Časopis Pěst. Mat. 115 (1990), pp. 240-263.

[27] G. Tessitore, J. Zabczyk, Wong-Zakai approximations of stochastic evolution equations, Journal of Evolution Equations 6 (2006), pp. 621-655.

[28] A. Y. Veretennikov, On the averaging principle for systems of stochastic differential equation, Mathematics of the USSR-Sbornik 69 (1991), pp. 271-284.

[29] V. M. Volosov, Averaging in systems of ordinary differential equations, Russian Mathematical Surveys 17 (1962), pp. 1-126.