Phase models and clustering in networks of oscillators with delayed coupling

Sue Ann Campbella, Zhen Wangb

aDepartment of Applied Mathematics and Centre for Theoretical Neuroscience, University of Waterloo Waterloo ON N2L 3G1 Canada (e-mail: sacampbell@uwaterloo.ca).
bDepartment of Applied Mathematics, University of Waterloo Waterloo ON N2L 3G1 Canada (e-mail: z377wang@uwaterloo.ca).

Abstract

We consider a general model for a network of oscillators with time delayed, circulant coupling. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to study the existence and stability of cluster solutions. Cluster solutions are phase locked solutions where the oscillators separate into groups. Oscillators within a group are synchronized while those in different groups are phase-locked. We give model independent existence and stability results for symmetric cluster solutions. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.

Keywords: Time delay, neural network, oscillators, clustering solutions, stability

1. Introduction

Coupled oscillator models have been used to study many biological and physical systems, for example neural networks \cite{1,2}, laser arrays \cite{3,4}, flashing of fireflies \cite{5}, and movement of a slime mold \cite{6}. A basic question explored with such models is whether the elements in the system will phase-lock, i.e., oscillate with some fixed phase difference, and how the physical parameters affect the answer to this question. Clustering is a type of phase
locking behavior where the oscillators in a network separate into groups. Each group consists of fully synchronized oscillators, and different groups are phase-locked with nonzero phase difference. Symmetric clustering refers to the situation when all the groups are the same size while non-symmetric clustering means the groups have different sizes.

A phase model represents each oscillator with a single variable as shown in Figure 1. A differential equation for each phase variable indicates how the phase of the oscillator changes in time:

\[\frac{d\theta_i}{dt} = \Omega_i + H_i(\theta_1, \theta_2, \ldots, \theta_N) \]

Here \(\Omega_i \) is the intrinsic frequency of the \(i^{th} \) oscillator and the functions \(H_i \) described how the coupling between oscillators influences the phases. Phase models have been used to study the behaviour of networks of coupled oscillators beginning with the work of [7]. Phase models are sometimes posed as models for coupled oscillators [5, 7, 8, 9]. When the coupling between oscillators is sufficiently weak, however, a phase model representation of a system can be derived from a higher dimensional differential equation model, such one obtained from a physical or biological description of the system [10, 11, 12, 13]. The low dimensional phase model can then be used to predict behaviour in original high dimensional physical model. This approach has proved useful in studying synchronization properties of many different neural models [1, 14, 15, 16, 17, 18, 19, 20]. Phase models can be linked.
to experimentally derived phase resetting curves \[10, 13\], thus this approach has also been used to make predictions about synchronization properties of experimental preparations \[19\].

Okuda \[8\] was the first to use phase models to study clustering behaviour. Considering a phase model for a network of arbitrary size with all-to-all coupling, Okuda \[8\] established general criteria for the stability of all possible symmetric cluster solutions as well as some non-symmetric cluster solutions. He showed that these results gave a good prediction of stability for a variety of model networks. Recently, similar results have been obtained for networks with nearest-neighbour coupling \[21\]. Phase model analysis has been extensively used to study phase-locking in pairs of model and experimental neurons \[12, 22, 19\]. More recently it has been used to study clustering in larger neural networks \[23, 24\].

In many systems there are time delays in the connections between the oscillators due to the time for a signal to propagate from one element to the other. In neural networks this delay is attributed to the conduction of electrical activity along an axon or a dendrite \[15, 12\]. Much work has been devoted to the study of the effect of time delays in neural networks. However, the majority of this work has focussed on systems where the neurons are excitable not oscillatory, (e.g., \[25, 26, 27, 28, 29, 30\]), the networks have only a few neurons (e.g., \[9, 31, 12, 32, 33\]) or focussed exclusively on synchronization (e.g., \[15, 34, 35, 36, 29\]). Extensive work has been done on networks Stuart-Landau oscillators with delayed diffusive coupling (e.g., \[37, 38, 39\]) where the model for the individual oscillators is the normal form for a Hopf bifurcation and thus the system is often amenable to theoretical analysis. Numerical approaches to study the stability of cluster solutions in delayed neural oscillator networks have also been developed \[30, 40\]. We note that there is a vast literature on time delays in artificial neural networks which we do not attempt to cite here.

Initial studies of phase models for systems with delayed coupling considered models where the delay occurs in the argument of the phases \[33, 34, 41, 42, 43\]. However, it has been shown \[12, 14, 15\] that for small enough time delays it is more appropriate to include the time delay as phase shift in the argument of the coupling function. Crook et al. \[15\] use this type of model to study a continuum of cortical oscillators with spatially decaying coupling and axonal delay. Bressloff and Coombes \[14, 46\] study phase locking in chains and rings of pulse coupled neurons with distributed delays and show that distributed delays result in phase models with a distribution of phase
shifts. They consider phase models derived from integrate and fire neurons and the Kuramoto phase model.

In this paper, we use phase models to investigate the effect of time delayed coupling on the clustering behavior of oscillator networks. The plan for our article as as follows. In the next section we will review how a general network model with delayed coupling may be reduced to a phase model. In section 3 we give conditions for existence and stability of symmetric cluster solutions in a network with a circulant coupling matrix. In section 4 we consider a particular application: a network of Morris-Lecar oscillators. We derive the particular phase model for this system and compare the predictions of the phase model theory to numerical continuation and simulation studies. In section 5 we consider networks where the connection matrix is no longer circulant. In section 6 we discuss our work.

2. Reduction to a phase model

In this section, we review how to reduce a general model for a network of all-to-all coupled oscillators with time-delayed connections to a phase model. We begin by considering our model for a single oscillator. This is a n-dimensional system of ordinary differential equations

$$\frac{dX}{dt} = F(X(t)), \quad (1)$$

which admits an exponentially asymptotically stable periodic orbit, denoted by $\hat{X}(t)$, with period T. Linearizing the model (1) about the periodic solution $\hat{X}(t)$ we obtain

$$\frac{dX}{dt} = DF(\hat{X}(t))X, \quad (2)$$

and its adjoint system

$$\frac{dZ}{dt} = -[DF(\hat{X}(t))]^TZ. \quad (3)$$

Here $DF(\hat{X}(t))$ represents the Jacobian matrix of F with respect to X, evaluated on the periodic orbit $\hat{X}(t)$. Denote by $Z = \hat{Z}(t)$ the unique periodic solution of the adjoint system (3) satisfying the normalization condition:

$$\frac{1}{T} \int_0^T \hat{Z}(t) \cdot F(\hat{X}(t))dt = 1.$$
Now, consider the following network of identical oscillators with all-to-all, time-delayed coupling

\[\frac{dX_i}{dt} = F(X_i(t)) + \epsilon \sum_{j=1}^{N} w_{ij} G(X_i(t), X_j(t - \tau_{ij})), \quad i = 1, \cdots, N. \tag{4} \]

Here \(G : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) describes the coupling between two oscillators, \(\epsilon \) is referred to as the coupling strength, and \(W = [w_{ij}] \) is the coupling matrix.

When \(\epsilon \) is sufficiently small and \(w_{ij} \) are of order 1 with respect to \(\epsilon \), we can apply the theory of weakly coupled oscillators to reduce (4) to a phase model \([10, 11, 12]\). The ways in which the time delay enters into the phase model depends on the size of the delay relative to other time constants in the model. Let \(\Omega = \frac{2\pi}{T} \). It has been shown \([12, 44, 45]\) that if the delays satisfy \(\Omega \tau_{ij} = O(1) \) with respect to the coupling strength \(\epsilon \), then the appropriate model is

\[\frac{d\theta_i}{dt} = \Omega + \epsilon \sum_{j=1}^{N} W_{ij} H(\theta_j - \theta_i - \eta_{ij}) + O(\epsilon^2), \quad i = 1, 2, \cdots, N, \tag{5} \]

where \(\eta_{ij} = \Omega \tau_{ij} \). That is, the delays enter as phase lags. The interaction function \(H \) is a \(2\pi \)-periodic function which satisfies

\[H(\theta) = \frac{1}{T} \int_0^T \hat{Z}(s) \cdot G(\hat{X}(s), \hat{X}(s + \theta/\Omega)) \, ds. \]

with \(\hat{Z} \) and \(\hat{X} \) as defined above.

To study cluster solutions we will make two simplifications. First, we assume that all the delays are equal:

\[\tau_{ij} = \tau, \quad \text{i.e.}, \quad \eta_{ij} = \eta. \tag{6} \]

Second, we will assume the network has some symmetry. In particular, we will consider the coupling matrix to be in circulant form:

\[W = \text{circ}(w_0, w_1, w_2, \cdots, w_{N-1}), \quad \text{equivalently}, \quad W_{ij} = w_{j-i} \mod N. \tag{7} \]

Following \([21]\), we will say the network has connectivity radius \(r \), if \(w_k > 0 \) for all \(k \leq r \), and \(w_k = 0 \) for all \(k > r \). For example, a network with nearest neighbor coupling has connectivity radius \(r = 1 \). Our results will be
derived with the coupling matrix (7), but can be applied to coupling with any connectivity radius by setting the appropriate $w_k = 0$.

Finally, we will assume there is no self coupling, thus $w_0 = 0$. These simplifications will apply for the next two sections. In section 5, we will return to the general model (5).

3. Existence and stability of cluster solutions

Rewriting (5) using the simplifications (6)-(7) and dropping the higher order terms in ϵ we have

$$\frac{d\theta_i}{dt} = \Omega + \epsilon \sum_{j=1, j\neq i}^N w_{j-i \text{ (mod } N)} H(\theta_j - \theta_i - \eta), \ i = 1, 2, \cdots , N. \quad (8)$$

Now the right hand sides of equation (8) depend only on the difference of phases. Thus, introducing the phase difference variables:

$$\phi_i = \theta_{i+1} - \theta_i, \ i = 1, \ldots , N, \quad (9)$$

we can transform the phase equation (8), to the following system

$$\frac{d\phi_i}{dt} = \epsilon \sum_{k=1}^{N-1} w_k \left(H(\sum_{s=0}^{k-1} \phi_{i+s+1 \text{ (mod } N)} - \eta) - H(\sum_{s=0}^{k-1} \phi_{i+s \text{ (mod } N)} - \eta) \right) \quad (10)$$

for $i = 1, 2, \cdots , N$.

Note that the N phase difference variables are not independent but satisfy the relation

$$\sum_{i=1}^N \phi_i = 0 \mod 2\pi. \quad (11)$$

Thus, the N-dimensional system (10) could be reduced to system of dimension $N - 1$. However, to take advantage of the symmetry, we choose instead to work with the full set of N equations and apply the constraint (11).

As discussed above, a cluster solution of the DDE model (4) is one where all the oscillators have the same waveform, but they separate into different groups or clusters. Oscillators within a cluster are synchronized, while oscillators in different clusters are phase-locked with some fixed phase difference. It follows that in a cluster solution the difference between the phases
of any two oscillators are fixed. Using \cite{8} we can show that, to order ϵ, these solutions correspond to the lines

$$\theta_i = (\Omega + \epsilon \omega)t + \theta_{i0}. \quad (12)$$

See \cite{8} for details of this calculation in the case that $\eta = 0$ and $w_k = w$. The case we are considering is completely analogous. Further, from the definition \cite{9}, it is clear that cluster solutions correspond to equilibrium points of the phase difference equation (10). Therefore, by studying the existence of the equilibrium points of the phase difference model (10), we can obtain the existence of the corresponding cluster solutions of the original DDE model.

For the sake of simplicity and generality, we focus our analysis on equilibrium solutions which are independent of H, and the w_k. It is clear from eq. (10) that one such equilibrium point is given by $\phi_i = \psi, i = 1, \ldots, N$. Observe that the constraint condition (11) forces

$$N\psi = 0 \mod 2\pi. \quad (13)$$

Different values of ψ correspond to different cluster solutions. For example, $\psi = 0$ corresponds to the in-phase or fully synchronized solution. When N is even, $\psi = \pi$ corresponds to the anti-phase solution which is the state where oscillators segregate into two clusters and the two clusters oscillate with half-period phase difference. For a solution with more than two clusters, the value of ψ determines the ordering of the clusters/neurons in the solution. Different values of ψ can have the same number of clusters with different oscillators in the clusters and/or a different ordering of the clusters in the solution. We shall see some examples of this in section 4.

Theorem 1 (Existence of phase-locked solutions). The phase difference model (10) admits N equilibrium points of the form $\phi_i = \psi, i = 1, \ldots, N$:

(i) $\psi = 0$ corresponds to the 1-cluster, or fully synchronized solution.

(ii) $\psi = \frac{2pn}{N}$ where p, N are relatively prime corresponds to an N-cluster, or splay solution.

(iii) $\psi = \frac{2mn}{N}$ where $1 < n < N$ divides N evenly, $1 \leq m < n$, and m, n are relatively prime corresponds to a symmetric n-cluster solution.

If ψ is a solution then so is $2\pi - \psi$ and they have the same number of clusters. The ordering of the clusters of the $2\pi - \psi$ solution is the reverse of the ψ solution.
Proof. The proof is similar to that found in [21], hence we omit it. \qed

Remark 1. For any $N > 2$, the in-phase and at least two splay solutions always exist. For any even number N, the 2-cluster solution always exists.

3.1. Stability - general circulant coupling

To study the stability, we linearize (10) about the equilibrium point $\phi_i = \psi$, and obtain

$$\frac{d\phi}{du} = J\phi,$$

where $\phi = (\phi_1, \ldots, \phi_N)^T$, and the Jacobian matrix is a circulant matrix $J = \text{circ}(c_0, c_1, \ldots, c_{N-1})$

$$c_k = \begin{cases} w_k H'(k\psi - \eta), & 1 \leq k \leq N - 1, \\ -\sum_{s=1}^{N-1} w_s H'(s\psi - \eta), & k = 0. \end{cases}$$

A standard result for circulant matrices [47] shows that the eigenvalues of J are given by

$$\lambda_j = c_0 + \sum_{k=1}^{N-1} c_k e^{\frac{2\pi i}{N}kj}$$

$$= -\sum_{k=1}^{N-1} w_k H'(k\psi - \eta)(1 - e^{\frac{2\pi i}{N}kj}), \quad j = 0, \ldots, N - 1. \quad (15)$$

Note that there is always a zero eigenvalue ($\lambda_0 = 0$). For the phase difference model this comes from the fact that the phase differences are not independent. It can be verified that if the constraint (11) is used to reduce the phase difference model (10) to $N - 1$ equations then the linearization yields only the eigenvalues λ_j, $j = 1, \ldots, N - 1$. Thus stability of the equilibrium points is determined by these eigenvalues.

We note that linearizing [8] about the corresponding solution (12) yields the same eigenvalues (15). See [8] for details of this calculation in the case that $\eta = 0$ and $w_k = w, k = 0, 1, \ldots, N - 1$. Recall that a cluster solution corresponds to a line in the phase model. The zero eigenvalue corresponds to the motion along this line.
From the discussion above, the system has a synchronized solution corresponding to $\psi = 0$. The elements of the Jacobian matrix for this solution are

$$c_k = \begin{cases}
 w_k H'(-\eta), & 1 \leq k \leq N - 1, \\
 -H'(-\eta) \sum_{s=1}^{N-1} w_s, & k = 0.
\end{cases}$$

It follows that the real parts of eigenvalues in (15) are

$$Re(\lambda_j) = -H'(-\eta) \sum_{k=1}^{N-1} w_k (1 - \cos \frac{2\pi k j}{N}).$$ \hspace{1cm} (16)

This leads to the following result.

Theorem 2 (Stability of the synchronized solution). *The stability of the synchronized solution of the phase difference model (10) is independent of the size of the network and coupling between oscillators (w_k). In particular, the synchronized solution is asymptotically stable when $H'(-\eta) > 0$, and unstable when $H'(-\eta) < 0$.\)

We know that when N is even, the phase model always admits a 2-cluster solution, which corresponds to $\psi = \pi$ in the phase difference model. In this case, the Jacobian matrix satisfies

$$c_k = \begin{cases}
 w_k H'(-\pi - \eta), & k = 1, 3, 5, \ldots, N - 1, \\
 w_k H'(-\eta), & k = 2, 4, 6, \ldots, N - 2, \\
 -\sum_{s=1}^{N-1} c_s, & k = 0.
\end{cases}$$

Therefore, the real parts of nonzero eigenvalues in (15) are given by

$$Re(\lambda_{\frac{N}{2}}) = -2H'(\pi - \eta) \sum_{k=1}^{N-1} w_k$$

and, for $j = 1, \ldots, \frac{N}{2} - 1, \frac{N}{2} + 1, \ldots, N - 1$:

$$Re(\lambda_j) = -H'(\pi - \eta) \sum_{k=1, k \text{ odd}}^{N-1} w_k (1 - \cos \frac{2\pi k j}{N}) - H'(-\eta) \sum_{k=2, k \text{ even}}^{N-2} w_k (1 - \cos \frac{2\pi k j}{N}).$$

This leads to the following
Theorem 3 (Stability of the anti-phase solution). If N is even the phase difference model \([10]\) admits the anti-phase cluster solution where adjacent oscillators are out of phase by one half the period. If $H'(\eta) > 0$ and $H'(\pi - \eta) > 0$ then this solution is asymptotically stable. If $H'(\pi - \eta) < 0$ then this solution is unstable.

Remark 2. In the above stability results, we assume $\epsilon > 0$. If $\epsilon < 0$, the stability of asymptotically stable solutions and totally unstable solutions will be reversed, and the saddle type solutions will remain of saddle type.

3.2. Stability analysis for bi-directional, distance dependent coupling

In this section, we consider a special case where the coupling strength is distance-dependent and bi-directional. In real neural networks, coupling strength is not necessarily determined by the physical distance. However, the “distance” here can be generalized to include functional distance [9]: the degree of correlation in the activity of coupled neurons. Therefore, we consider a coupling matrix that satisfies

$$W = \text{circ}(0, w_1, w_2, \ldots, w_{N/2}, \ldots, w_2, w_1)$$ (17)

if N is even, and

$$W = \text{circ}(0, w_1, w_2, \ldots, w_{(N-1)/2}, w_{(N-1)/2}, \ldots, w_2, w_1)$$ (18)

if N is odd.

Applying the results above to this system we find that the elements of the Jacobian matrix are

$$c_k = \begin{cases} w_k H'(k\psi - \eta), & 1 \leq k \leq N/2, \\ w_{N-k} H'(k\psi - \eta), & k > N/2 \\ -\sum_{k=1}^{N-1} w_k \{H'(k\psi - \eta) + H'((N-k)\psi - \eta)\} - \frac{N}{2} H'(\frac{N\psi}{2} - \eta), & k = 0 \end{cases}$$

when N is even, and

$$c_k = \begin{cases} w_k H'(k\psi - \eta), & 1 \leq k \leq (N-1)/2, \\ w_{N-k} H'(k\psi - \eta), & k > (N-1)/2 \\ -\sum_{k=1}^{(N-1)/2} w_k \{H'(k\psi - \eta) + H'((N-k)\psi - \eta)\}, & k = 0 \end{cases}$$

when N is odd.

Recall that ψ and $2\pi - \psi$ correspond to the same type of cluster solution. For a network with bi-directional coupling, these solutions have a stronger relationship.
Theorem 4. For the phase model with coupling matrix given by (17) or (18), the solutions \(\phi_i = \psi \) and \(\phi_i = 2\pi - \psi \) have the same stability.

Proof. Denote the Jacobian matrix for the linearization equation at \(\phi_i = \psi \) and \(\phi_i = 2\pi - \psi \) to be \(J = \text{circ}(c_0, c_1, \ldots, c_{N-1}) \), and \(\tilde{J} = \text{circ}(\tilde{c}_0, \tilde{c}_1, \ldots, \tilde{c}_{N-1}) \), respectively. By Theorem 1, we know that there are \(N \) possible \(\psi \) values, \(\psi = \frac{2k\pi}{N}, k = 0, 1, \ldots, N - 1 \). Therefore,

\[
\tilde{c}_{N-1} = w_{N-1} H'(\frac{(N - k)(N - 1)2\pi}{N} - \eta) = w_{N-1} H'(\frac{2\pi m}{N} - \eta).
\]

Since \(w_{N-1} = w_1 \), we have \(\tilde{c}_{N-1} = c_1 \). Similarly, we have \(\tilde{c}_0 = c_0 \), and \(\tilde{c}_{N-2} = c_2, \ldots \). Therefore, \(J \) and \(\tilde{J} \) have the same eigenvalues. Thus, \(\psi \) and \(2\pi - \psi \) have the same stability.

A special case of bi-directional coupling is when the only nonzero coupling coefficient is \(w_1 \). This is commonly called nearest-neighbour coupling. In this case the stability of any symmetric cluster solution is easily determined.

Theorem 5. For the phase model with coupling matrix given by (17) or (18) with \(w_1 \neq 0 \) and \(w_j = 0, j = 2, \ldots, N \), the symmetric cluster solution with \(\phi_i = \psi \) is asymptotically stable if \(H'(\psi - \eta) + H'(-\psi - \eta) > 0 \) and unstable if \(H'(\psi - \eta) + H'(-\psi - \eta) < 0 \).

Proof. A straightforward calculation from (15) shows that the real parts of the eigenvalues of the solution \(\phi_i = \psi \) are given by

\[
\text{Re}(\lambda_j) = -w_1 [H'(\psi - \eta) + H'(-\psi - \eta)] (1 - \cos(2\pi j/N)), j = 1, \ldots, N - 1
\]

The result follows.

Note that this is an extension of a result of [21] to the case when the coupling is delayed.

3.3. Stability analysis for global homogeneous coupling

We next consider a special case: \(W_1 = \text{circ}(0, 1, \ldots, 1) \). That is, all the coupling weights are the same. A straightforward calculation show that the
eigenvalues \([15]\) for a symmetric \(n\)-cluster solution in this case can be written as follows:

\[
\begin{align*}
\lambda_0 &= 0, \\
\lambda^{(n)}_0 &= -\frac{N}{n} \sum_{k=0}^{n-1} H'(\frac{2\pi k}{n} - \eta), \text{ multiplicity } N - n, \\
\lambda^{(n)}_j &= -\frac{N}{n} \sum_{k=0}^{n-1} H'(\frac{2\pi k}{n} - \eta)(1 - e^{i2\pi kj/n}), \quad p = 1, \ldots, n - 1.
\end{align*}
\]

(19)

This is identical to what was shown in \([48]\), where they made the following observation. The stability of an \(n\)-cluster solution (with \(n < N\)) depends on the number of clusters and the phase differences, not the size of the network. For example, any network with \(N = 3m\) (\(m\) a positive integer) has a 3-cluster solution with \(\psi = 2\pi/3\). The stability of this solution is the same for all networks with \(m > 1\).

Remark 3. As discussed in \([48]\), since networks with global homogeneous coupling are unchanged by any rearrangement of the indices, there are many more cluster solutions. For example, consider a network where \(N > 2\) is even. When the connection matrix is circulant with different \(w_k\), there is one 2-cluster solution with oscillators 1, 3, 5, \ldots, \(N - 1\) forming one cluster and oscillators 2, 4, \ldots, \(N\) forming the second cluster. For a network with global homogeneous coupling, any division of the oscillators into two groups of \(N/2\) oscillators is an admissible 2-cluster solution with stability described by (19) with \(n = 2\).

3.4. Other types of cluster solutions

If more conditions are put on the coupling matrix then different cluster solutions may occur. For example, consider a 2-cluster solution where the phase differences between adjacent elements is not the same, but is described by

\[
\phi_1 = \phi_3 = \cdots = \phi_{N-1} = 0, \quad \text{and} \quad \phi_2 = \phi_4 = \cdots = \phi_N = \pi,
\]

(20)
or

\[
\phi_1 = \phi_3 = \cdots = \phi_{N-1} = \pi, \quad \text{and} \quad \phi_2 = \phi_4 = \cdots = \phi_N = 0.
\]

(21)

In this situation the elements group into pairs, so that each element is synchronized with one of its nearest neighbours and one-half period out of phase with its other nearest neighbour. As shown by the next result, these solutions exist under appropriate conditions on the connectivity matrix.
Theorem 6. For a network with a circulant connectivity matrix, the system (10) admits solutions of the form (20) and (21) if $N = 4p$ for some integer p, and $\sum_{k=0}^{p-1} w_{4k+1} = \sum_{k=0}^{p-1} w_{4k+3}$.

Proof. Applying the constraint condition (11) to (20) or (21), we have that, for some integer p,

$$\frac{N}{2} \cdot \pi = 2p\pi.$$

Therefore, $N = 4p$, for some integer p.

Substituting solution (20) or (21) into the system (10), we have that

$$\sum_{k=0}^{p-1} w_{4k+1} \left(H(\pi - \eta) - H(-\eta) \right) = \sum_{k=0}^{p-1} w_{4k+3} \left(H(\pi - \eta) - H(-\eta) \right).$$

To satisfy this for any H, we must have $\sum_{k=0}^{p-1} w_{4k+1} = \sum_{k=0}^{p-1} w_{4k+3}$.

Remark 4. Note that, for networks with bi-directional coupling or global homogeneous coupling, the second condition, $\sum_{k=0}^{p-1} w_{4k+1} = \sum_{k=0}^{p-1} w_{4k+3}$, is automatically satisfied if $N = 4p$.

We consider the 2-cluster solutions in the form of (20) first. Assume the conditions of Theorem 6 are satisfied. Linearizing the system (10) at (20), we obtain that

$$\frac{d\phi}{dt} = \epsilon L\phi,$$

where the Jacobian matrix has the form

$$L = \begin{pmatrix}
\alpha_0 & \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_{N-1} \\
\beta_N & \beta_0 & \beta_1 & \beta_2 & \cdots & \beta_{N-2} \\
\alpha_{N-2} & \alpha_{N-1} & \alpha_0 & \alpha_1 & \cdots & \alpha_{N-3} \\
\beta_{N-3} & \beta_{N-2} & \beta_{N-1} & \beta_0 & \cdots & \beta_{N-4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 & \cdots & \alpha_1 \\
\beta_1 & \beta_2 & \beta_3 & \beta_4 & \cdots & \beta_0
\end{pmatrix},$$

(23)
with

$$\alpha_0 = -H'(-\eta)\left(\sum_{k=0}^{p-1} w_{4k+1} + \sum_{k=1}^{p-1} w_{4k}\right) - H'(\pi - \eta)\sum_{k=0}^{p-1} (w_{4k+2} + w_{4k+3}),$$

$$\beta_0 = -H'(-\eta)\left(\sum_{k=0}^{p-1} w_{4k+3} + \sum_{k=1}^{p-1} w_{4k}\right) - H'(\pi - \eta)\sum_{k=0}^{p-1} (w_{4k+1} + w_{4k+2}),$$

and for \(k = 1, \ldots, N - 1\)

$$\alpha_k = \begin{cases} w_k H'(\pi - \eta) + \left(H'(\pi - \eta) - H'(-\eta)\right)\left(\sum_{j=s+1}^{p-1} w_{4j+1} - \sum_{j=s}^{p-1} w_{4j+3}\right), & k = 4s + 1, 4s + 2 \\ w_k H'(-\eta) + \left(H'(\pi - \eta) - H'(-\eta)\right)\left(\sum_{j=s+1}^{p-1} w_{4j+1} - \sum_{j=s+1}^{p-1} w_{4j+3}\right), & k = 4s + 3, 4s \end{cases}$$

for all the possible \(s\) values, and

$$\beta_k = \begin{cases} w_k H'(-\eta) - \left(H'(\pi - \eta) - H'(-\eta)\right)\left(\sum_{j=s+1}^{p-1} w_{4j+1} - \sum_{j=s}^{p-1} w_{4j+3}\right), & k = 4s + 1, \\ w_k H'(\pi - \eta) - \left(H'(\pi - \eta) - H'(-\eta)\right)\left(\sum_{j=s+1}^{p-1} w_{4j+1} - \sum_{j=s}^{p-1} w_{4j+3}\right), & k = 4s + 2, \\ w_k H'(-\eta) - \left(H'(\pi - \eta) - H'(-\eta)\right)\left(\sum_{j=s+1}^{p-1} w_{4j+1} - \sum_{j=s+1}^{p-1} w_{4j+3}\right), & k = 4s + 3 \\ w_k H'(\pi - \eta) - \left(H'(\pi - \eta) - H'(-\eta)\right)\left(\sum_{j=s+1}^{p-1} w_{4j+1} - \sum_{j=s+1}^{p-1} w_{4j+3}\right), & k = 4s \end{cases}$$

for all the possible \(s\) values.

Remark 5. Solutions (20) and (21) have the same stability. The Jacobian matrix of the linearization of system (16) at (21) is in the form

$$\hat{L} = \begin{pmatrix} \beta_0 & \beta_1 & \beta_2 & \beta_3 & \cdots & \beta_{N-1} \\ \alpha_{N-1} & \beta_0 & \alpha_1 & \alpha_2 & \cdots & \alpha_{N-2} \\ \beta_{N-2} & \beta_{N-1} & \beta_0 & \beta_1 & \cdots & \beta_{N-3} \\ \alpha_{N-3} & \alpha_{N-2} & \alpha_{N-1} & \beta_0 & \alpha_1 & \cdots & \alpha_{N-4} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \beta_2 & \beta_3 & \beta_4 & \beta_5 & \cdots & \beta_1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \cdots & \alpha_0 \end{pmatrix}, \quad (24)$$

which is equivalent to \(L\).

We were not able to obtain general results about the eigenvalues of (23) and (24). Thus, we are not able to make any general conclusions about the stability of solutions (20) and (21). However, in particular cases the eigenvalues can be calculated numerically from the expressions above. We will do this for the example in the next section.
4. Application to networks of Morris-Lecar oscillators with global synaptic coupling

In this section, we apply our results to a specific network: globally coupled Morris-Lecar oscillators. Since the nondimensional form of Morris-Lecar equation is more convenient to work with, we adopt the dimensionless Morris-Lecar model which is formulated by Rinzel and Ermentrout in [49] and used in Campbell and Kobelevskiy [31]. Considering N identical Morris-Lecar oscillators with delayed synaptic coupling, we have the following model

\[
\begin{align*}
v'_i &= I_{\text{app}} - g_{Ca} m_\infty(v_i)(v_i - v_{Ca}) - g_K w_i(v_i - v_K) \\
&\quad - g_L(v_i - v_L) - \frac{g_{\text{syn}}}{N-1} \sum_{j=1,j\neq i}^{N} s(v_j(t - \tau))(v_i(t) - E_{\text{syn}}), \\
w'_i &= \varphi \lambda(v_i)(w_\infty(v_i) - w_i),
\end{align*}
\]

where $i = 1, \ldots, N$ and

\[
\begin{align*}
m_\infty(v) &= \frac{1}{2} \left(1 + \tanh((v - \nu_1)/\nu_2)\right), \\
w_\infty(v) &= \frac{1}{2} \left(1 + \tanh((v - \nu_3)/\nu_4)\right), \\
\lambda(v) &= \cosh((v - \nu_3)/2\nu_4), \\
s(v) &= \frac{1}{2} \left(1 + \tanh(10v)\right).
\end{align*}
\]

Using the parameter set I from [31] Table 1, when there is no coupling in the network each oscillator has a unique exponentially asymptotically stable limit cycle with period $T \approx 23.87$ corresponding to $\Omega = 0.2632$.

4.1. Phase model analysis

The calculation of the phase model interaction function, H, described in section 2, may be carried out numerically. We used the numerical simulation package XPPAUT [50] to do this for model (25) with $\tau = 0$, and to calculate a finite number of terms in the Fourier series approximation for H. This gives an explicit approximation for H:

\[
H(\phi) \approx a_0 + \sum_{k=1}^{K} (a_k \cos(k\phi) + b_k \sin(k\phi)).
\]
Parameter	Name	value
v_{Ca}	Calcium equilibrium potential	1
v_K	Potassium equilibrium potential	-0.7
v_L	Leak equilibrium potential	-0.5
g_K	Potassium ionic conductance	2
g_L	Leak ionic conductance	0.5
ϕ	Potassium rate constant	$\frac{1}{3}$
ν_1	Calcium activation potential	-0.01
ν_2	Calcium reciprocal slope	0.15
ν_3	Potassium activation potential	0.1
ν_4	Potassium reciprocal slope	0.145
g_{Ca}	Calcium potential conductance	1
I_{app}	Applied current	0.09

Table 1: Parameters used in system (25) [31, Table 1]

The first nine terms of Fourier coefficients are shown in Table 2. Figure 2 shows the plot of the interaction function (red solid), H, together with the approximations using one (black solid) and 20 terms (green dashed) of Fourier Series. Obviously, the one term approximation is not enough to explain the behavior of H. However, the 20-term approximation is indistinguishable with the numerically calculated H. Therefore, we adopt the 20-term approximation for subsequent calculations.

k	a_k	b_k	k	a_k	b_k
0	-2.0214064	0	5	-0.01054942	0.010251001
1	1.994447	-0.93897837	6	-0.002131111	0.0046384884
2	0.010604946	0.27575842	7	9.9814584e-05	0.0013808256
3	-0.051657807	0.042355601	8	0.00015646126	7.391713e-05
4	-0.029127343	0.01801952	9	-8.1846403e-05	-0.00024995379

Table 2: Fourier coefficients of the interaction function for model (25).

With the explicit approximation for H (26) and the value of the coefficients a_j, b_j, we can determine the asymptotic stability of any possible symmetric cluster states for any N using the eigenvalues (15) calculated in
the last section. In this section, we consider two coupling matrices

\[
W_1 = \text{circ}(0, 1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{2}, 1), \text{ bi-directional, distance dependent (27)}
\]
\[
W_2 = \text{circ}(0, 1, 1, \cdots, 1), \text{ global homogeneous. (28)}
\]

With the coupling matrices \(W_1\) and \(W_2\), various values of \(\epsilon\) and the time delay \(\tau\), we used our phase model results above to predict the stability of all possible symmetric cluster solutions for \(N = 2, \cdots, 10\). The results are shown in Tables 3-4.

4.2. Numerical studies

Numerical continuation studies of the full model (25) were carried out in DDE-BIFTOOL [51] in MATLAB. This package allows one to compute branches of periodic orbits and their stability as a parameter is varied. Using the delay as a continuation parameter, we used this package to compute the stability of all possible symmetric cluster solutions for \(N = 2, 3, \cdots, 10\) with the two different coupling matrices \(W_1, W_2\) and four different values
N	n	ψ	Phase model prediction	$\epsilon = 0.01$	$\epsilon = 0.05$
4	1	0	ψ (0.1, 5.3) ∪ (14.28, 23.87)	(2.47, 10.46)	(2.20, 10.21)
		π	(0.57, 3.22) ∪ (8.69, 14.69)	(0.296, 13.64)	(0.183, 11.19)
5	1	0	ψ (0.1, 5.3) ∪ (14.28, 23.87)	(1.26, 2.48) ∪ (10.84, 13.46)	(0.292, 13.64)
	5	$\frac{\pi}{2}$	(1.6, 3.66) ∪ (4.26, 13.09)	(1.5, 12.61)	(0.7, 11.49)
6	1	0	ψ (0.1, 5.3) ∪ (14.28, 23.87)	(2.64, 9.45)	(0.41, 13.31)
		π	(0.58, 0.87) ∪ (12.32, 14.10)	(0.151, 12.01, 13.11)	(0.111, 9.21, 10.31)
7	7	$\frac{\pi}{2}$	(2.51, 3.45) ∪ (4.04, 4.93) ∪ (5.48, 5.96) ∪ (7.47, 13.13)	(2.51, 4.91) ∪ (6.91, 12.11)	(1.70, 3.81) ∪ (5.70, 10.82)
8	1	0	ψ (0.1, 5.3) ∪ (14.28, 23.87)	(2.63, 9.53)	(2.25, 9.05)
	4	$\frac{\pi}{2}$	(1.71, 3.22) ∪ (8.69, 14.57)	(0.31, 2.81) ∪ (8.11, 13.71)	(0.18, 6.21, 11.20)
	8	$\frac{\pi}{2}$	(13.34, 13.95)	(0.101, 12.31, 12.71)	(0.10, 8.52, 9.42)
	8	π	(3.96, 13.13)	(3.41, 12.41)	(0.11, 2.61, 10.82)
9	1	0	ψ (0.1, 5.3) ∪ (14.28, 23.87)	(0.144, 12.04, 23.87)	(0.174, 7.27, 23.87)
	3	$\frac{\pi}{2}$	(0.41, 5.04) ∪ (8.08, 12.93)	(0.41, 4.61) ∪ (7.71, 12.41)	(0.33, 5.80, 10.60) ∪ (16.61, 19.31)
	9	$\frac{\pi}{2}$	(2.50, 2.57) ∪ (8.81, 13.94)	(0.41, 2.61) ∪ (9.11, 13.01)	(0.17, 6.51, 10.41)
	9	π	(2.90, 3.77) ∪ (8.08, 11.38)	(2.61, 4.01) ∪ (7.51, 11.01)	(1.60, 3.12) ∪ (5.92, 8.81)

Table 3: Comparison of phase model prediction of τ-intervals of asymptotic stability for n-cluster solution with numerical of the full model. The coupling matrix is W_1. Other parameter values are given in Table 1.
N	n	Phase model prediction	$\tau = 0.01$	Full model	$\tau = 0.05$
2	1	$(0.1,53) \cup (14.28, 21.87)$	$(0.146) \cup (13.56, 23.87)$	$(0.1.43) \cup (11.53, 23.87)$	$(0.12) \cup (9.53, 23.87)$
	2	$(2.35, 13.46)$	$(2.33, 13.43)$	$(1.93, 13.32)$	$(1.26) \cup (9.12, 23.87)$
3	1	$(0.1,53) \cup (14.28, 21.87)$	$(0.148) \cup (13.09, 23.87)$	$(0.152) \cup (9.53, 23.87)$	$(0.126) \cup (9.12, 23.87)$
	3	$(0.41, 13.74)$	$(0.50, 13.40)$	$(0.13) \cup (9.12, 23.87)$	
4	1	$(0.1,53) \cup (14.28, 21.87)$	$(0.147) \cup (12.57, 23.87)$	$(0.170) \cup (8.51, 23.87)$	$(0.196) \cup (7.53, 23.87)$
	2	$(2.37, 9.19) \cup (8.69, 14.47)$	$(2.41, 8.91)$	$(1.71, 7.71) \cup (7.53, 23.87)$	$(0.196) \cup (6.97, 12.27)$
	3	$(0.1,53) \cup (14.28, 21.87)$	$(0.149) \cup (11.99, 23.87)$	$(0.170) \cup (7.22, 23.87)$	
	4	$(1.57, 9.20) \cup (9.76, 13.20)$	$(0.93, 13.20)$	$(0.132) \cup (6.13, 10.42)$	
5	1	$(0.1,53) \cup (14.28, 21.87)$	$(0.149) \cup (11.91, 23.87)$	$(0.170) \cup (7.22, 23.87)$	
	2	$(2.37, 9.19) \cup (8.69, 14.47)$	$(2.41, 8.91)$	$(1.71, 7.71) \cup (7.53, 23.87)$	$(0.196) \cup (6.97, 12.27)$
	3	$(0.1,53) \cup (14.28, 21.87)$	$(0.149) \cup (11.91, 23.87)$	$(0.170) \cup (7.22, 23.87)$	
	4	$(1.57, 9.20) \cup (9.76, 13.20)$	$(0.93, 13.20)$	$(0.132) \cup (6.13, 10.42)$	
6	1	$(0.1,53) \cup (14.28, 21.87)$	$(0.149) \cup (11.91, 23.87)$	$(0.170) \cup (7.22, 23.87)$	
	2	$(2.37, 9.19) \cup (8.69, 14.47)$	$(2.41, 8.91)$	$(1.71, 7.71) \cup (7.53, 23.87)$	$(0.196) \cup (6.97, 12.27)$
	3	$(0.1,53) \cup (14.28, 21.87)$	$(0.149) \cup (11.91, 23.87)$	$(0.170) \cup (7.22, 23.87)$	
	4	$(1.57, 9.20) \cup (9.76, 13.20)$	$(0.93, 13.20)$	$(0.132) \cup (6.13, 10.42)$	
7	1	$(0.1,53) \cup (14.28, 21.87)$	$(0.149) \cup (11.91, 23.87)$	$(0.170) \cup (7.22, 23.87)$	
	2	$(2.37, 9.19) \cup (8.69, 14.47)$	$(2.41, 8.91)$	$(1.71, 7.71) \cup (7.53, 23.87)$	$(0.196) \cup (6.97, 12.27)$
	3	$(0.1,53) \cup (14.28, 21.87)$	$(0.149) \cup (11.91, 23.87)$	$(0.170) \cup (7.22, 23.87)$	
	4	$(1.57, 9.20) \cup (9.76, 13.20)$	$(0.93, 13.20)$	$(0.132) \cup (6.13, 10.42)$	
8	1	$(0.1,53) \cup (14.28, 21.87)$	$(0.149) \cup (11.91, 23.87)$	$(0.170) \cup (7.22, 23.87)$	
	2	$(2.37, 9.19) \cup (8.69, 14.47)$	$(2.41, 8.91)$	$(1.71, 7.71) \cup (7.53, 23.87)$	$(0.196) \cup (6.97, 12.27)$
	3	$(0.1,53) \cup (14.28, 21.87)$	$(0.149) \cup (11.91, 23.87)$	$(0.170) \cup (7.22, 23.87)$	
	4	$(1.57, 9.20) \cup (9.76, 13.20)$	$(0.93, 13.20)$	$(0.132) \cup (6.13, 10.42)$	
9	1	$(0.1,53) \cup (14.28, 21.87)$	$(0.149) \cup (11.91, 23.87)$	$(0.170) \cup (7.22, 23.87)$	
	2	$(2.37, 9.19) \cup (8.69, 14.47)$	$(2.41, 8.91)$	$(1.71, 7.71) \cup (7.53, 23.87)$	$(0.196) \cup (6.97, 12.27)$
	3	$(0.1,53) \cup (14.28, 21.87)$	$(0.149) \cup (11.91, 23.87)$	$(0.170) \cup (7.22, 23.87)$	
	9	$(13.30, 13.65)$	$(11.36, 11.96)$	$(0.90) \cup (7.56, 8.37)$	

Table 4: Comparison of phase model prediction of τ-intervals of asymptotic stability for n-cluster solution with numerical of the full model. The coupling matrix is W_2. Other parameter values are given in Table 1.
Table 5: Phase model prediction of intervals of τ where stable 1-, 2-, 5-, 7-, and 10-cluster solutions exist. The network has 140 oscillators and the coupling matrix W_1 or W_2.

n	ψ	Stability w.r.t. τ	
1	0	$(0, 1.52) \cup (14.28, 23.87)$	$(0, 1.52) \cup (14.28, 23.87)$
2	π	$(2.73, 9.19)$	$(2.73, 9.19)$
5	$\frac{2\pi}{5} \cdot \frac{8\pi}{5}, \frac{6\pi}{5}$	$(1.52, 2.61) \cup (10.78, 12.55)$	$(1.57, 2.69) \cup (10.03, 12.54)$
	$\frac{2\pi}{5} \cdot \frac{12\pi}{5}$	$(1.61, 2.81) \cup (6.21, 7.77) \cup (10.03, 12.55)$	$(1.57, 2.69) \cup (10.03, 12.54)$
7	$\frac{2\pi}{7} \cdot \frac{10\pi}{7}$	$(8.13, 9.81) \cup (11.12, 13.28)$	$(12.47, 13.28)$
	$\frac{2\pi}{7} \cdot \frac{6\pi}{7}, \frac{8\pi}{7}$	$(8.45, 9.88) \cup (11.11, 13.13)$	$(12.47, 13.28)$
5	$\frac{2\pi}{10} \cdot \frac{7\pi}{10}$	$(7.85, 7.86) \cup (11.80, 12.62)$	All unstable
	$\frac{2\pi}{10} \cdot \frac{5\pi}{10}$	$(7.85, 7.86) \cup (11.80, 12.62)$	All unstable

These results indicated that the phase model prediction is accurate up to $\epsilon = 0.01$. The results for $\epsilon = 0.01, 0.05$ are shown in Tables 3 and 4.

Using dde23 in MATLAB, we are able to numerically simulate the solution for larger sizes of networks. In the following, we show several numerical simulations that verify the predictions of the phase model for the case of a network with $N = 140$ oscillators. This network admits 1-cluster, 2-cluster, 5-cluster, 7-cluster, 10-cluster, 14-cluster, 35-cluster, 70-cluster, and 140-cluster solutions. From the phase model analysis, we are able to predict the stability regions for all the cluster states. Table 5 summarize the stability intervals with respect to τ for the first five cluster types.

The phase model predicts that, for bidirectional coupling, there should be four stable 5-cluster solutions when $\tau = 12$ corresponding to $\psi = \frac{k\pi}{5}$, $k = 1, 2, 3, 4$. In these 5-cluster solutions, the clusters are the same and given by

$$C_1 = \{1, 6, 11, \ldots, 136\},$$
$$C_2 = \{2, 7, 12, \ldots, 137\},$$
$$\vdots$$
$$C_5 = \{5, 10, 15, \ldots, 140\}.$$
$\psi = 4\pi/5$ (see Figure 3 (b)), $C_1 - C_3 - C_5 - C_2 - C_4$ with $\psi = 6\pi/5$ (see Figure 3 (c)) and $C_1 - C_5 - C_4 - C_3 - C_2$ with $\psi = 8\pi/5$ (see Figure 3 (d)). Note that in Figure 3 we reorder the indices so that oscillators that belong to the same cluster are plotted together.

Now consider the 7-cluster solution with connection matrix W_1. The phase model predicts that when $\tau = 13$ there exist six stable 7-cluster solutions with clusters:

$$C_1 = \{1, 8, 15, \ldots, 134\},$$
$$C_2 = \{2, 9, 16, \ldots, 135\},$$
$$\vdots$$
$$C_7 = \{7, 14, 21, \ldots, 140\}.$$

For $\psi = \frac{6\pi}{7}$, the cluster ordering is $C_1 - C_6 - C_4 - C_2 - C_7 - C_5 - C_3$ (see Figure 4 (a)), while for $\psi = \frac{8\pi}{7}$, the cluster ordering is $C_1 - C_3 - C_5 - C_7 - C_2 - C_4 - C_6$ (see Figure 4 (b)). In Figure 4 we reorder the oscillator indices so that oscillators that belong to the same cluster are plotted together. We were unable to find the other 7-cluster solutions numerically.

Remark 6. We have observed other types of stable cluster solutions. For example, Figure 5 shows solutions of the type (20) and (21) which appear to be stable. With $N = 8$ and bidirectional coupling in (27), the phase model predicts that the solutions of the type (20) and (21) are unstable for all τ when $\epsilon > 0$, and stable for $\tau \in (1.5, 2.0] \cup (13.8, 14.1)$ when $\epsilon < 0$. This prediction is consistent the numerically observed solution which occurs for $\epsilon = -0.01$, and $\tau = 2$.

From Tables 3 and 4 it is clear that the system exhibits multistability for a large of range of τ values. To further investigate the multistability, we carried out numerical simulations of the model (25) with $N = 6$ and coupling matrix W_1 using XPPAUT [50]. We start with a constant initial conditions $(v_i(t) = v_{i0}, w_i(t) = w_{i0}, -\tau \leq t \leq 0)$, and apply a small perturbation to the input current of one or more neurons during the simulation. The perturbations could cause switching between two different cluster types or between different realizations of the same cluster type. Figure 6 show two examples, where the dark bars indicate when a particular neuron spikes. When $\tau = 8$, both the 2-cluster solutions and 3-cluster solutions are stable. Figure 6 (a) shows that when $\tau = 8$, a perturbation to neurons 1, 2, 3, 4 and
Figure 3: Raster plots showing a stable 5-cluster solutions in a network with $N = 140$ neurons and bi-directional coupling (connectivity matrix W_1). $\tau = 12$ and $\epsilon = 0.001$ all other parameters values are given in Table 7. (a) $\psi = 2\pi/5$, cluster ordering $C_1 - C_2 - C_3 - C_4 - C_5$ (b) $\psi = 4\pi/5$, cluster ordering $C_1 - C_4 - C_2 - C_5 - C_3$ (c) $\psi = 6\pi/5$, cluster ordering $C_1 - C_3 - C_5 - C_2 - C_4$ (d) $\psi = 8\pi/5$, cluster ordering $C_1 - C_5 - C_4 - C_3 - C_2$
Figure 4: Raster plots showing stable 7-cluster solutions with $\tau = 13$, $\epsilon = 0.01$ in a network with $N = 140$ neurons and bi-directional coupling (connectivity matrix W_1). (a) $\psi = \frac{6\pi}{7}$, cluster ordering $C_1 - C_6 - C_4 - C_7 - C_5 - C_3$. (b) $\psi = \frac{8\pi}{7}$, cluster ordering $C_1 - C_3 - C_5 - C_7 - C_2 - C_4 - C_6$.

(a) $\psi = 8\pi/7$
(b) $\psi = 6\pi/7$
Figure 5: 2-cluster solutions of the form (a) and (b) for $N = 8$, $\epsilon = -0.01$, $\tau = 2$ and connectivity matrix W_1.
6 for $600 \leq t \leq 650$ switches the networks from a 3-cluster solution (with clusters (1, 4), (2, 5) and (3, 6)) to a 2-cluster solution (with clusters (1, 3, 5), and (2, 4, 6)). Figure 6 (b) shows when $\tau = 8$, a perturbation to neuron 2, 4, 5, and 6 for $600 \leq t \leq 650$ switches the network from a 3-cluster solution with clusters ordering (1, 4)-(3, 6)-(2, 5) to a 3-cluster solution with clusters ordering (1, 4)-(2, 5)-(3, 6).

Figure 6: Numerical simulations showing multistability in a 6 neuron network with bidirectional coupling (27). (a) Switching from a 3-cluster solution to a 2-cluster solution. (b) Switching from a 3-cluster solution to a 3-cluster solution. $\tau = 8$ and $\epsilon = 0.001$. All other parameters are given in Table 1.

5. Persistence under symmetry breaking.

By the weakly connected theory, the phase model analysis should persist under ϵ-perturbation of the original model. From the steps of phase model reduction, we can see that if we perturb the connectivity matrix $W = \begin{pmatrix} w_{ij} \end{pmatrix}$ as $\tilde{W} = w_{ij}(1 + \epsilon m_{ij})$, the ϵ-perturbation term will finally add to $O(\epsilon^2)$ term in the phase model (8). A similar conclusion is obtained if we perturb
the time delay τ as $\tau_{ij} = \tau(1 + \epsilon \sigma_{ij})$. Here $M = (m_{ij})$, and $S = (\sigma_{ij})$ are $N \times N$ matrices with elements which are $O(1)$ with respect to ϵ. τ_{ij} represents transmission time from the jth oscillator to the ith oscillator. Note that, after the perturbation, system (4) no longer possesses any symmetry. To $O(\epsilon)$ the symmetry persists, however. We thus expect that, for ϵ sufficiently small, the analysis of section 3 should still predict the behaviour of the system.

In order to investigate the effect of the ϵ-perturbation on the connectivity matrix and time delay, we carried out sets of numerical simulations. For each set, we compare the original model with W and τ, to a model with \bar{W} and τ, and a model with W and $\bar{\tau}_{ij}$. Take $N = 6$, $W = \text{circ}\{0, 1, 1/2, 1/3, 1/2, 1\}$, and m_{ij}, σ_{ij} to be random numbers between 0 and 1. We simulate the original model and two perturbed models with $\tau = 1, \cdots, 15$, and $\epsilon = 0.001, 0.01, 0.05, 0.1$, respectively. From the simulation results, we see that for $\epsilon = 0.001, 0.01, 0.05$ the behavior of the perturbed models are the same as the unperturbed one for large time t. More accurately, the perturbed models take longer to settle at steady states than the original model. For $\epsilon = 0.1$, the behavior of unperturbed model almost captures the behavior of the perturbed ones. However, the system is sensitive to the τ values where steady states switch stability. Therefore, we conclude that for a network with 6 oscillators, the analysis of the original model is valid under perturbation with ϵ up to 0.05. Furthermore, for a network with N oscillators, the analysis of the system (4) should persist under sufficiently small ϵ-perturbation.

6. Conclusions and future work

In this paper, we studied a general system of identical oscillators with global circulant, time-delayed coupling and showed that clustering behavior is a quite prevalent pattern of solution. We classified different clusters by the phase differences between neighboring oscillators, and investigated the existence and linear stability of clustering solutions. We focussed on symmetric cluster solutions, where the same number of oscillators belong to each cluster. In particular, we showed that certain symmetric cluster solutions exist for any type of oscillator and any value of the delay – their existence depends only on the presence of circulant coupling. We gave a complete analysis of the linear stability of these cluster solutions. In the case of global bidirectional coupling and global homogeneous coupling, more details about how the stability changes with parameters could be obtained using the symmetry.
Further exploration was done through numerical continuation and numerical simulation studies of a specific example: circulantly coupled Morris-Lecar oscillators. We considered both small ($N = 6, 8$) and large ($N = 140$) networks and two types of coupling: homogeneous and bi-directional, distance dependent. As expected, the numerical studies agree with the theoretical predictions of the phase model, so long as the strength of the coupling (ϵ) was sufficiently small. For the parameters we explored this was $\epsilon \lesssim 0.05$. In all cases we explored, the 1−cluster (synchronous) solution was the only asymptotically stable solution when there was no delay in the system. For non-zero delay, this solution could become unstable and other cluster solutions became stable. We found ranges of the delay for which the system exhibits a high degree of multistability. The multistability persisted even under in perturbations of the coupling matrix (W), and time delay (τ) which break the symmetry of the model. The perturbed model agreed with the phase model prediction for $\epsilon \lesssim 0.01$.

Delay-induced multistability has been observed in Hopfield neural networks (e.g., [52, 53]), in networks of spiking neurons [54, 55, 56], and even in experimental systems [57], where it has been postulated as a potential mechanism for memory storage. The multistability we observe has similar potential. It also provides the network with a simple way to respond dif-

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
τ & PMP & $\epsilon = 0.001$ & & & & $\epsilon = 0.01$ & & & & $\epsilon = 0.05$ & & & & $\epsilon = 0.1$ & & \\
\hline
1 & 1C/3C & 1C & 1C & 1C & & NC & NC & NC & & NC & NC & NC & & 6C & NC & NC \\
2 & 3C & 6C & 6C & 6C & & 3C & 3C & 3C & & 2C & 2C & 2C & & 2C & 2C & 2C \\
3 & 2C/3C & 2C & 2C & 2C & & 3C & 3C & 3C & & 2C & 2C & 2C & & 2C & 2C & 2C \\
4 & 2C/3C & 2C & 2C & 2C & & 2C & 2C & 2C & & 2C & 2C & 2C & & 2C & 2C & 2C \\
5 & 2C/3C & 2C & 2C & 2C & & 2C & 2C & 2C & & 2C & 2C & 2C & & 2C & 2C & 2C \\
6 & 2C/3C & 2C & 2C & 2C & & 2C & 2C & 2C & & 2C & 2C & 2C & & 2C & 2C & 2C \\
7 & 2C/3C & 2C & 2C & 2C & & 2C & 2C & 2C & & 2C & 2C & 2C & & 1C & 1C & 1C \\
8 & 2C/3C & 2C & 2C & 2C & & 2C & 2C & 2C & & 3C & 3C & NC & & 1C & 1C & 1C \\
9 & 2C/3C & 2C & 2C & 2C & & 2C & 2C & 2C & & NC & 1C & 1C & & 1C & 1C & 1C \\
10 & 3C & 3C & 3C & 3C & & 1C & 1C & 1C & & 1C & 1C & 1C & & 1C & 1C & 1C \\
11 & 3C & NC & NC & NC & & NC & NC & NC & & 1C & 1C & 1C & & 1C & 1C & 1C \\
12 & 3C & NC & NC & NC & & NC & NC & NC & & 1C & 1C & 1C & & 1C & 1C & 1C \\
13 & 3C/6C & 6C & 6C & 6C & & 1C & 1C & 1C & & 1C & 1C & 1C & & 1C & 1C & 1C \\
14 & 6C & 6C & 6C & 6C & & 1C & 1C & 1C & & 1C & 1C & 1C & & 1C & 1C & 1C \\
15 & 1C & 1C & 1C & 1C & & 1C & 1C & 1C & & 1C & 1C & 1C & & 1C & 2C & NC \\
\hline
\end{tabular}
\caption{Comparison of the original model and the two perturbed models for $\tau = 1, 2, \ldots, 15$ with $N = 6$. The first column shows the stable cluster solutions predicted by the phase model for each τ.}
\end{table}
ferently to different inputs, without changing synaptic weights. Switching between solutions with a different number of clusters changes the network average frequency, which could then change how the network affects downstream neurons.

Multistability between different cluster solutions also has potential connections with the concept of neural assemblies. A neural assembly is a group of neurons which transiently act together to achieve a particular purpose [58, 59, 60]. A network with multiple stable cluster solutions provides a basic model for such behaviour. As the system switches between different cluster solutions different neurons become synchronized with each other. As we have shown, it possible for network to possess multiple stable solutions with the same number of clusters but with different groupings of the neurons.

In the future, it would be interesting to pursue a variety of the directions suggested by our results. The switching of stability of the cluster solutions as the delay is varied should be associated with bifurcations in the model. In the case of system with two neurons it has been shown that delay induced stability changes of the 1− and 2− cluster solutions are associated with pitchfork and saddle-node bifurcations in the phase model and sometimes involve other phase-locked solutions [31]. It would be interesting to explore the delay induced bifurcations that occur in our network model. Preliminary numerical investigations of the phase model (not shown) indicate a quite complex bifurcation structure. It would also be interesting to compute the bifurcation structure of the cluster solutions in the (\(\tau, \epsilon\)) parameter plane to get a better understanding of the limits of the validity of the phase model.

References

[1] D. Hansel, G. Mato, C. Meunier, Phase dynamics for weakly coupled Hodgkin-Huxley neurons, Europhys. Lett. 23 (5) (1993) 367–372.

[2] N. Kopell, G. Ermentrout, Coupled oscillators and the design of central pattern generators, Math. Biosci. 90 (1988) 87–109.

[3] H. Winful, S. Wang, Dynamics of phaselocked semiconductor laser arrays, Appl. Phys. Lett. 52 (21) (1988) 1774–1776.

[4] H. Winful, S. Wang, Stability of phase locking in coupled semiconductor laser arrays, Applied Physics Letters 53 (20) (1988) 1894–1896.
[5] R. Mirollo, S. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math. 50 (6) (1990) 1645–1662.

[6] A. Takamatsu, T. Fujii, I. Endo, Time delay effect in a living coupled oscillator system with plasmodium of *physarum polycephalum*, Phys. Rev. E 85 (9) (2000) 2026–2029.

[7] Y. Kuramoto, Cooperative dynamics of oscillator community. A study based on lattice of rings., Prog. Theor. Phys. Suppl. 79 (1984) 223–240.

[8] K. Okuda, Variety and generality of clustering in globally coupled oscillators, Physica D 63 (1993) 424–436.

[9] Y.-X. Li, Clustering in neural networks with heterogeneous and asymmetrical coupling strengths, Physica D 180 (2003) 210–234.

[10] G. Ermentrout, D. Terman, Mathematical Foundations of Neuroscience, Springer, New York, NY, 2010.

[11] F. Hoppensteadt, E. Izhikevich, Weakly connected neural networks, Springer-Verlag, New York, 1997.

[12] N. Kopell, G. Ermentrout, Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators, in: B. Fiedler (Ed.), Handbook of Dynamical Systems, vol 2: Toward Applications, Elsevier, Amsterdam, 2002, pp. 3–54.

[13] M. Schwemmer, T. Lewis, The theory of weakly coupled oscillators, in: N. Schultheiss, A. Prinz, R. Butera (Eds.), Phase Response Curves in Neuroscience, Springer, New York, NY, 2012, pp. 3–31.

[14] P. Bressloff, S. Coombes, Symmetry and phase-locking in a ring of pulse-coupled oscillators with distributed delays, Physica D 126 (1999) 99–122.

[15] S. Crook, G. Ermentrout, M. Vanier, J. Bower, The role of axonal delay in synchronization of networks of coupled cortical oscillators, J. Comp. Neurosci. 4 (1997) 161–172.

[16] G. Ermentrout, Type I membranes, phase resetting curves, and synchrony, Neural Comput. 8 (1996) 979–1001.
[17] R. F. Galán, The phase oscillator approximation in neuroscience: an analytical framework to study coherent activity in neural networks, in: Coordinated Activity in the Brain, Springer, 2009, pp. 65–89.

[18] D. Hansel, G. Mato, C. Meunier, Synchrony in excitatory neural networks, Neural Comput. 7 (1995) 307–337.

[19] J. G. Mancilla, T. J. Lewis, D. J. Pinto, J. Rinzel, B. W. Connors, Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex, J. Neuroscience 27 (8) (2007) 2058–2073.

[20] T. Zahid, F. Skinner, Predicting synchronous and asynchronous network groupings of hippocampal interneurons coupled with dendritic gap junctions., Brain Research 1262 (2009) 115–129.

[21] J. Miller, H. Ryu, Z. Teymuroglu, X. Wang, V. Booth, S. Campbell, Clustering in inhibitory neural networks with nearest neighbor coupling, in: T. Jackson, A. Radunskaya (Eds.), Applications of Dynamical Systems in Biology and Medicine, Springer, New York, 2015, pp. 99–121.

[22] F. Saraga, L. Ng, F. K. Skinner, Distal gap junctions and active dendrites can tune network dynamics, J. Neurophysiology 95 (3) (2006) 1669–1682.

[23] Z. P. Kilpatrick, B. Ermentrout, Sparse gamma rhythms arising through clustering in adapting neuronal networks, PLoS computational biology 7 (11) (2011) e1002281.

[24] R. F. Galán, G. B. Ermentrout, N. N. Urban, Predicting synchronized neural assemblies from experimentally estimated phase-resetting curves, Neurocomputing 69 (10) (2006) 1112–1115.

[25] N. Burić, D. Todorović, Dynamics of Fitzhugh-Nagumo excitable systems with delayed coupling, Phys. Rev. E 67 (2003) 066222.

[26] N. Burić, D. Todorović, Bifurcations due to small time-lag in coupled excitable systems, Int. J. Bifurc. Chaos 15 (5) (2005) 1775–1785.

[27] N. Burić, I. Grozdanović, N. Vasović, Type I vs type II excitable systems with delayed coupling, Chaos, Solitons and Fractals 23 (2005) 1221–1233.
[28] M. Dahlem, G. Hiller, A. Panchuk, E. Schöll, Dynamics of delay-coupled excitable neural systems, Int. J. Bifurc. Chaos 29 (2) (2009) 745–753.

[29] A. Panchuk, D. P. Rosin, P. Hövel, E. Schöll, Synchronization of coupled neural oscillators with heterogeneous delays, International J. Bifurcation and Chaos 23 (12).

[30] E. Schöll, G. Hiller, P. Hövel, M. A. Dahlem, Time-delay feedback in neurosystems, Philosophical Transactions Royal Society A 367 (2009) 1079–10956.

[31] S. Campbell, I. Kobelevskiy, Phase models and oscillators with time delayed coupling, Dynamics of Discrete and Continuous Systems 38 (8) (2012) 2653–2673.

[32] Y.-X. Li, Y.-Q. Wang, R. Miura, Clustering in small networks of excitatory neurons with heterogeneous coupling strengths, J. Computational Neuroscience 14 (2003) 139–159.

[33] H. Schuster, P. Wagner, Mutual entrainment of two limit cycle oscillators with time delayed coupling, Prog. Theor. Phys. 82 (5).

[34] T. Luzyanina, Synchronization in an oscillator neural network model with time-delayed coupling, Network: Computation in Neural Systems 6 (1995) 43–59.

[35] G. Orosz, Decomposing the dynamics of delayed networks: equilibria and rhythmic patterns in neural systems, in: 10th IFAC Workshop on Time Delay Systems, 2012, pp. 173–178.

[36] G. Orosz, Decomposing the dynamics of delayed Hodgkin-Huxley neurons, in: Delay Systems, Springer, 2014, pp. 343–357.

[37] C.-U. Choe, T. Dahms, P. Hövel, E. Schöll, Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states, Phys. Rev. E 81 (2) (2010) 025205.

[38] C.-U. Choe, T. Dahms, P. Hövel, E. Schöll, Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states, Phys. Rev. E 81 (2010) 025205.
[39] T. Dahms, J. Lehnert, E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E 86 (1) (2012) 016202.

[40] G. Orosz, Decomposition of nonlinear delayed networks around cluster states with applications to neurodynamics, SIAM J. Applied Dynamical Systems 13 (4) (2014) 1353–1386.

[41] S. Kim, S. H. Park, C. Ryu, Multistability in coupled oscillator systems with time delay, Phys. Rev. Lett. 79 (1997) 2911–2914.

[42] E. Niebur, H. Schuster, D. Kammen, Collective frequencies and metastability in networks of limit-cycle oscillators with time delay, Phys. Rev. Lett. 67 (1991) 2753–2756.

[43] M. Yeung, S. Strogatz, Time delay in the Kuramoto model of coupled oscillators, Phys. Rev. Lett. 82 (1999) 648–651.

[44] G. Ermentrout, An introduction to neural oscillators, in: F. Ventriglia (Ed.), Neural Modelling and Neural Networks, Pergamon, Oxford, UK, 1994, pp. 79–110.

[45] E. M. Izhikevich, Phase models with explicit time delays, Phys. Rev. E 58 (1998) 905–908.

[46] P. Bressloff, S. Coombes, Travelling waves in chains of pulse-coupled integrate-and-fire oscillators with distributed delays, Physica D 130 (1999) 232–254.

[47] R. M. Gray, Toeplitz and circulant matrices: A review, now publishers inc, 2006.

[48] Z. Wang, S. A. Campbell, Phase models and clustering in networks of oscillators with delayed, all-to-all coupling, in: 12th IFAC Workshop on Time Delay Systems, 2015, pp. 105–110.

[49] J. Rinzel, G. Ermentrout, Analysis of neural excitability and neural oscillations, in: C. Koch, I. Segev (Eds.), Methods in Neuronal Modeling: From synapses to networks, MIT Press, Cambridge, MA, 1989, pp. 251–291.
[50] B. Ermentrout, Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, Vol. 14, SIAM, 2002.

[51] K. Engelborghs, T. Luzyanina, G. Samaey, DDE-BIFTOOL v. 2.00: a matlab package for bifurcation analysis of delay differential equations., Tech. Rep. TW-330, Department of Computer Science, K.U. Leuven, Leuven, Belgium (2001).

[52] J. Ma, J. Wu, Multistability and gluing bifurcation to butterflies in coupled networks with non-monotonic feedback, Nonlinearity 22 (6) (2009) 1383.

[53] S. Zou, Y. Chen, J. Ma, J. Wu, Delay for the capacity-simplicity dilemma in associative memory attractor networks, Neural Networks 29 (2012) 37–51.

[54] J. Ma, J. Wu, Multistability in spiking neuron models of delayed recurrent inhibitory loops, Neural Comp. 19 (2007) 2124–2148.

[55] J. Foss, A. Longtin, B. Mensour, J. Milton, Multistability and delayed recurrent feedback, Phys. Rev. Lett. 76 (1996) 708–711.

[56] J. Foss, F. Moss, J. Milton, Noise, multistability and delayed recurrent loops, Phys. Rev. E 55 (1997) 4536–4543.

[57] J. Foss, J. Milton, Multistability in recurrent neural loops arising from delay, J. Neurophysiol. 84 (2000) 975–985.

[58] G. Dragoi, G. Buzsáki, Temporal encoding of place sequences by hippocampal cell assemblies, Neuron 50 (1) (2006) 145–157.

[59] K. Harris, J. Csicsvari, H. Hirase, G. Dragoi, G. Buzsáki, Organization of cell assemblies in the hippocampus, Nature 424 (6948) (2003) 552–556.

[60] E. Pastalkova, V. Itskov, A. Amarasingham, G. Buzsáki, Internally generated cell assembly sequences in the rat hippocampus, Science 321 (5894) (2008) 1322–1327.