Effect of air pollution on metabolism-associated fatty liver disease: A hospital-based study
Ming-Wei Wang1#, Wen Wen1#, Meng-Yun Zhou2#, Nan Wang3, Chun-yi Wang1, Jie Ni1, Jing-jie Jiang1, Xing-wei Zhang1, Zhan-Hui Feng4*, Yong-Ran Cheng5*

Affiliations:
1 Metabolic Disease Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China;
2 Department of Molecular & Cellular Physiology, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
3 The Second Hospital of Anhui Medical University;
4 Neurological Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China;
5 School of public health, Hangzhou Medical college, Hangzhou, 311300, China
Ming-Wei Wang, Wen Wen and Meng-Yun Zhou contributed equally to this work
Footnote Page

Author:

Ming-Wei Wang E-mail: wmw990556@163.com
Wen Wen E-mail: wangyi1996@163.com
Meng-Yun Zhou E-mail: anchorchou@163.com
Nan Wang E-mail: wanghai1547@163.com
Chun-yi Wang E-mail: wcyqueeny@163.com
Jie Ni E-mail: 826085086@qq.com
Jing-jie Jiang E-mail: 1473119514@qq.com
Xing-wei Zhang E-mail: hsdzxw@126.com
Corresponding Author:
Zhan-Hui Feng E-mail: h9450203@126.com;
Yong-Ran Cheng E-mail: chengyr@zjams.com.cn

List of Abbreviations:
MAFLD - metabolism-associated fatty liver disease; NFLD - nonalcoholic fatty liver disease; T2DM - type 2 diabetes mellitus; DEP - diesel exhaust particulates; PM - particulate matter; O₃ - ozone; NO₂ - nitrogen dioxide; SO₂ - sulfur dioxide.

Financial Support:
Youth fund of Zhejiang Academy of Medical Sciences (No.2019Y009); Medical and Technology Project of Zhejiang Province (No.2021HY127, No.2020362651, No.2021KY890); Hangzhou science and Technology Bureau fund (No.20191203B96, No.20191203B105); Clinical Research Fund of Zhejiang Medical Association (No.2020ZYC-A13); Hangzhou Health and Family Planning Technology Plan key projects (2017ZD02)
Abstract:

Background Many studies have shown that the fine particulate matter in air is related to the incidence rate of chronic diseases. However, research on air pollution and metabolism-associated fatty liver disease (MAFLD) is limited. The purpose of this study was to explore the relationship between the incidence rate of MAFLD and air pollutants.

Methods using a quasi-Poisson regression generalized additive model. Stratified analyses by season and age were also performed.

Results A 10 µg/m3 increase of PM10, PM2.5, and NO2 concentrations corresponded to 0.82 (95% CI: 0.49, 1.15), 0.57 (95% CI: 0.18, 0.98), and 0.86 (95% CI: 0.59, 1.13) elevation in MAFLD. In terms of season, the impact estimates of NO2 and PM2.5 were 3.55 (95% CI, 1.23-5.87) and 1.12 (95% CI, 0.78-1.46) in the hot season and transition season, respectively. Compared with warm season, the impact estimates of PM10 were more significant in the cool season: 2.88 (95% CI, 0.66-5.10). NO2 has the highest effect in the transition season, while PM10 has the highest effect in the cool and hot seasons. In the two age groups with 45 years as the dividing line, PM2.5 has the highest impact estimate: 2.69 (95% CI, 0.77-5.61) and 2.88 (95% CI, 0.37-6.40). The impact values of PM2.5 in male and Female were 3.60 (95% CI, 0.63-6.57) and 1.65 (95% CI, 1.05-2.25), respectively. The most important link is in different lag models, there is a significant correlation.

Conclusion: This study shows that the air pollutants are related to the incidence rate of MAFLD. The effects of different air pollutants on MAFLD incidence rate were different in different seasons, ages, and gender. It is found that air pollution has a lag effect on MAFLD.

Key words: Air pollutants, metabolism-associated fatty liver disease, time-series study

1.Introduction

Metabolism-associated fatty liver disease (MAFLD) (formerly known as nonalcoholic fatty liver disease (NFLD)) is the leading cause of liver disease worldwide. Its diagnosis is based on the detection of hepatic steatosis (liver histology, noninvasive biomarkers, or imaging) and the presence of at least one of the three criteria, including clinical evidence of overweight or obesity, type 2 diabetes mellitus (T2DM), or metabolic dysfunction, such as waist circumference and dyslipidemia or hyperglycemia(1). Studies have shown that the prevalence of MAFLD has increased to a worrying level, bringing a huge burden on individuals and the health care system(2). In the past 20 years, MAFLD has developed from a relatively unknown disease to the most common chronic liver disease in the world. With the rapid change in lifestyle, the prevalence of MAFLD is considered to be increasing worldwide (3-4). In a model study of eight countries, it was estimated that China’s MAFLD population will increase by 29.1% from 2016 to 2030, reaching 3145.8 million cases(1).

According to the analysis of WHO on the disease burden caused by air pollution, more than two million premature deaths each year can be attributed to urban outdoor and indoor air pollution(5). Four common air pollutants include particulate matter (PM), ozone (O$_3$), nitrogen dioxide (NO$_2$), and sulfur dioxide (SO$_2$) (6). The global burden of disease study identified air pollution as the main cause of global burden of disease, especially in developing countries(7-8). Studies have shown that air pollution not only affects respiratory diseases, but also affects acute myocardial infarction, arrhythmia, conjunctivitis, and maletal disorders (9-12).

Besides, studies have shown that long-term exposure to PM2.5, PM10, and NO$_2$ is positively associated with the prevalence of metabolic syndrome in children and adolescents.
More and more evidence shows that environmental pollutants such as diesel exhaust particulates (DEP), suspended PM, metals, and polychlorinated compounds are important risk factors for the development of NFLD (16). According to the research of Giovanni Tarantino et al., exposure to ambient air particles with an aerodynamic diameter of ≤ 2.5 mm (PM2.5) can enhance NFLD. Therefore, the effect of environmental factors on liver disease has attracted much attention (17). Up to now, some studies on the relationship between fatty liver disease and air pollution have been conducted in animals (18-20). Therefore, in this study we performed a time series was used to analyze the relationship between short-term air pollution exposure and fatty liver disease based on the cases of Affiliated Hospital of Hangzhou Normal University in Hangzhou.

2. Materials and methods

Air pollution and meteorological data

Air quality monitoring stations are located in Hangzhou, providing daily values of PM2.5 ($\mu g/m^3$), PM10 ($\mu g/m^3$), SO$_2$ ($\mu g/m^3$), O$_3$ ($\mu g/m^3$), NO$_2$ ($\mu g/m^3$), CO ($\mu g/m^3$), relative humidity (%), and mean temperature ($^\circ C$). The details of Affiliated Hospital of Hangzhou Normal University and specific air quality monitoring stations are shown in Appendix S1. The daily air pollution parameters and temperatures of Hangzhou between January 1, 2017 and August 31, 2019 were downloaded from the China Meteorological Administration website (http://data.cma.cn/). The daily concentrations are represented 24-h averages, and the O$_3$ concentration was the maximal 8-h average from all valid monitoring sites in this study.

Hospital case data

The data of MAFLD from January 2017 to August 2019 were collected from the outpatient database of Affiliated Hospital of Hangzhou Normal University. Patients diagnosed with MAFLD were included in this study. The diagnosis of MAFLD is based on the detection of hepatic steatosis (liver histology, noninvasive biomarkers, or imaging) and the presence of at least one of the three criteria, including clinical evidence of overweight or obesity, T2DM, or metabolic dysfunction, such as waist circumference and dyslipidemia or hyperglycemia (Eslam et al., 2020). In this study, 378 cases of missing information and error were excluded, and 791 cases not living in Hangzhou for a long time were also excluded. Finally, 10,562 patients with MAFLD were enrolled. The ethics committee of Affiliated Hospital of Hangzhou Normal University approved all the procedures performed in this study.

Statistical methods

A generalized additive model (GAM) was used in the statistical analysis to analyze the data. Because daily hospital cases typically followed an over dispersed Poisson distribution, quasi-Poisson regression was used in the GAM (21). Several covariates including natural splines were introduced to control their potential confounding effects. First, a natural cubic regression smoothing function of calendar time with 7 degrees of freedom (df) per year excluded unmeasured long-term and seasonal trends longer than two months. Second, a natural smooth function of the mean temperature ($6 df$) and relative humidity ($3 df$) controlled the nonlinear confounding effects of weather conditions. Third, indicator variables were implemented for “day of the week” and public holidays (Yang et al., 2014). Briefly, the following log-linear GAM was fitted to obtain the estimated pollution log-relative rate β in the selected city:
where \(E(Y_t) \) is the expected number of MAFLD cases at day \(t \); \(\beta \) is the log-related rate of MAFLD associated with a unit increase of air pollutants; \(Z_t \) is the pollutant concentrations at day \(t \); \(DOW \) is a dummy variable for the day of the week; \(ns \) is the natural cubic regression smooth function (22).

All these cases were stratified by age (<45 and ≥45 years), by Gender (male female) and cool season (November to March), hot season (June to August), and transition season (April, May, September, and October). After establishing the basic model, single-pollutant models were initially used and introduced, a priori, in turn each air pollutant concentration on the concurrent day (lag0). Given that the health effects of ambient air pollutants could last for multiple days, more single lag days were used (lag0, lag1, lag2, lag3, lag4, lag5, and lag6), and the moving average exposure of multiple days (lag01, lag02, lag03, lag04, lag05, lag06, and lag07) were obtained. To verify the stability of the model, two-pollutant models were built to evaluate the stability of effect estimates after adjusting for the co-pollutants. Co-pollutants with a correlation coefficient < 0.7 were added to the two-pollutant model.

The effects are expressed as the percentage of change and 95% CI in daily hospital MAFLD cases per 10 \(\mu g/m^3 \) increase in pollutant concentrations. The statistical tests were two-sided, and the effects with \(p < 0.05 \) were considered to be statistically significant. All statistical models were constructed using R software version 3.6.0 (R Foundation for Statistical Computing, version 3.6.1; http://www.Rproject.org) using the MGCV package.

3. Results

The basic descriptive statistics of the number of cases, pollutants, and meteorological data are shown in Table 1. From January 1, 2017 to August 31, 2019, 10,562 confirmed cases were reported. During this period, the average number of cases per day was 8.94, and the number of cases in winter was more than that in summer and Transition seasons. During the study period, the daily average concentrations of NO\(_2\), SO\(_2\), PM10, O\(_3\), and PM2.5 were 48.43 \(\mu g/m^3 \), 35.89 \(\mu g/m^3 \), 56.80 \(\mu g/m^3 \), 137.50 \(\mu g/m^3 \), and 48.91 \(\mu g/m^3 \), respectively. The daily average humidity and temperature were 75.21% and 18.45 ºC, respectively.

Fig. 1 shows significant differences among the five different air pollution indicators and number of cases in three different seasons. The daily air pollution concentration and the number of MAFLD cases (except O\(_3\)) are the highest in the cool season and the lowest in the hot season. The number of cases is the most in hot seasons. The Spearman correlation coefficients of PM2.5, PM10, SO\(_2\), and NO\(_2\) were 0.68-0.95. The maximum 8-h mean O\(_3\) concentration negatively correlated with PM2.5, PM10, SO\(_2\), and NO\(_2\) (Spearman correlation coefficient ranged from −0.27 to −0.06) (Fig. 2).

According to Table 2, in terms of seasons, the effect of ambient air pollution on the total number of cases with MAFLD shows significant differences among the three seasons. The impact estimates of NO\(_2\) and PM2.5 were 3.55 (95% CI, 1.23-5.87) and 1.12 (95% CI, 0.78-1.46) in the transition season, respectively. Compared with the warm season, the impact estimates of PM10 were more significant in the cool season: 2.88 (95% CI, 0.66-5.10). NO\(_2\) has the highest effect in the transition season, while PM10 has the highest effect in the cool and hot seasons. Regarding age, the study shows an increase in the correlation percentage between NO\(_2\), PM10, PM2.5, and the total number of outpatients with MAFLD varies with
age groups. The older the age, the higher the impact estimate. In the two age groups with 45 years as the dividing line, PM2.5 has the highest impact estimate: 2.69 (95% CI, 0.77-5.61) and 2.88 (95% CI, 0.37-6.40), respectively. Regarding gender, compared with female, NO2, PM10, and PM2.5 had a greater impact on male, especially PM2.5. The impact values of PM2.5 in male and female were 3.60 (95% CI, 0.63-6.57) and 1.65 (95% CI, 1.05-2.25), respectively.

Fig. 3 shows the results obtained from the single-lag day (lag0–lag6) and cumulative exposure models (lag01–lag07) for the percent increase in MAFLD outpatients per 10 μg/m³ increase in pollutants. Statistically significant results were observed at lag 0–4 and 01–07 day for NO2, Lag 0 and 01–04 day for PM10, Lag 0 and 01–03 day for PM2.5, and Lag 01-03 day for SO2. Table 3 shows the results of two-pollutant models using exposure at lag 01. The magnitudes of all five pollutants were stable. The effect estimates of NO2, PM10, and PM2.5 pollutants remained statistically significant when adjusting for co-pollutants.

4.Discussion

This study shows that the air pollutants in Hangzhou are related to the incidence rate of MAFLD. The effects of different air pollutants on MAFLD incidence rate were different in different seasons, ages, and gender. The most significant associations of air pollution appeared on singer days and the associations in the cumulative exposure models were still positive. Regarding seasonal aspect, NO2 showed the highest effect in the transition season, while PM10 had the highest effect in the cool and hot seasons. The effect of PM10 was more significant in the cool season. Regarding age aspect, in the two age groups with 45 years as the dividing line, PM2.5 has the highest impact estimation: the older the person, the greater the impact. Regarding gender, this study shows that male are more vulnerable to air pollutants, especially PM2.5. Our study shows a significant correlation between the PM in the air and the incidence rate of MAFLD.

With regard to the pathogenesis of MAFLD, inflammation and oxidative stress caused by metabolic syndrome are widely considered as the key factors in the pathogenesis of NFLD (23). Besides, many studies showed that the systemic proinflammatory and oxidative responses induced by air pollutants are associated with metabolic syndrome(24). Therefore, it can be concluded that air pollutants are related to the pathogenesis of MAFLD. Our conclusion is consistent with this conclusion. Besides oxidative stress, activation of Kupffer cells/macrophages, and production of cytokines/chemokines play a central role in the progression of MAFLD(25). Studies have shown that the particles in the air enter the circulation through the alveolar membrane and reach the liver; the fine particles in the circulation can then accumulate in the Kupffer cells and induce the secretion of cytokines in Kupffer cells, in turn leading to inflammation and collagen synthesis in hepatic stellate cells (24,26). This study suggests gender differences in the effects of air pollutants on fatty liver disease. Relevant studies indicate that this gender difference can be attributed to the differences in biological characteristics, such as sex hormone levels, body size, lung size, and growth, which may affect the biological transport of environment-derived chemicals (27).

In addition, studies have shown that lifestyle such as physical activity patterns and dietary intake may also lead to gender-specific air pollution effects. Compared with girls, boys are more likely to engage in outdoor sports and take in more solid substances (13,27); besides, boys participate in more moderate-to-intense sports activities (13,27,28). This may cause boys
to be more vulnerable to air pollution exposure than girls. Regarding the difference in age, previous studies have shown that the elderly people are more vulnerable to air pollution than the young people (12, 29, 30); however, some studies have reported that compared with the elderly people, young people may be more prone to lipid metabolism disorders (31). In addition, we did not find relevant literature to explain the mechanism of age in the effect of air pollutants on MAFLD; therefore, our conclusion that “the older the age, the greater the impact of air pollutants” should be verified by increasing the sample size.

However, this study has some limitations. Potential confounding factors such as the body mass index, education level, smoking habits, and drug use history may also have a potential impact on the relationship between air pollutants and fatty liver disease. Second, we only collected the daily number of cases from one hospital, which may not represent the overall level of the city. Therefore, we can further expand the number of cases and environmental factors to further support our findings.

5. Conclusion:
In conclusion, this study concluded that MAFLD is related to air pollution exposure. The effects of different air pollutants on MAFLD incidence rate were different in different seasons, ages, and gender. It suggests that sufficient health counseling about hot temperature exposure and cooling measures in summer should be included in care programs for MAFLD patients.

Funding
The presented study was supported by Youth fund of Zhejiang Academy of Medical Sciences (No.2019Y009); Medical and Technology Project of Zhejiang Province (No.2021HY127, No.2020362651, No.2021KY890); Hangzhou science and Technology Bureau fund (No.20191203B96, No.20191203B105); Clinical Research Fund of Zhejiang Medical Association (No.2020ZYC-A13); Hangzhou Health and Family Planning Technology Plan key projects (2017ZD02)

Availability of data and materials
The original data are available on request to Ming-Wei Wang, or at the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310014, China

Conflict of interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Consent for publication
Not applicable. All data were supplied and analysed in an anonymous format, without access to personal identifying information

Author contributions
YRC, ZHF conceived the study and designed the analysis, YRC and NW performed statistical analysis, MWW and WW wrote the first draft of the manuscript, MYZ, JN, JJ, CYW and WXZ
Participate in revision the manuscript, and all other authors contributed to revision of the manuscript.
References:
1. Eslam, M., Sarin, SK., Wong, V.W., Fan, J.G., Kawaguchi, T., Ahn, S.H., et al., 2020. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int. 14, 889-919.
2. Wong, M.C.S., Huang, J.L.W., George, J., Huang, J., Leung, C., Eslam, M., et al., 2019. The changing epidemiology of liver diseases in the Asia-Pacific region. Nat Rev Gastroenterol Hepatol. 16, 57-73.
3. Li, J., Zou, B., Yeo, Y.H., Feng, Y., Xie, X., Lee, D.H., et al., 2019. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 4, 389-398.
4. Younossi, Z., Tacke, F., Arrese, M., Chander, Sharma, B., Mostafa, I., Bugianesi, E., et al., 2019. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology. 69, 2672-2682.
5. Murray, C.J., Ezzati, M., Flaxman, A.D., Lim, S., Lozano, R., Michaud, C.et al., 2012. GBD 2010: design, definitions, and metrics. Lancet. 380, 2063-6.
6. Lee, K.W., Choi, Y.H., Hwang, S.H., Paik, H.J., Kim, M.K., Wee, W.R., et al., 2017. Outdoor Air Pollution and Pterygium in Korea. J Korean Med Sci. 32, 143-150.
7. GBD 2015 Risk Factors Collaborators, 2016. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the global burden of disease study 2015. Lancet. 388, 1659–1724.
8. Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., et al., 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet. 389, 1907–1918.
9. Wang, M.W., Chen, J., Cai, R., 2018. Air quality and acute myocardial infarction in adults during the 2016 Hangzhou G20 summit. Environ Sci Pollut Res Int. 25, 9949-9956.
10. Wang, M., Chen, J., Zhang, Z., Yu, P., Gan, W., Tan, Z., et al., 2020. Associations between air pollution and outpatient visits for arrhythmia in Hangzhou, China. BMC Public Health. 20, 1524.
11. Chen, J., Cheng, Y., Zhou, M., Ye, L., Wang, N., Wang, M., et al., 2020. Machine learning prediction on number of patients due to conjunctivitis based on air pollutants: a preliminary study. Eur Rev Med Pharmacol Sci. 24, 10330-10337.
12. Qiu, H., Zhu, X., Wang, L., Pan, J., Pu, X., Zeng, X., et al., 2019. Attributable risk of hospital admissions...
13. Zhang, J.S., Gui, Z.H., Zou, Z.Y., Yang, B.Y., Ma, J., Jing, J., et al., 2021. Long-term exposure to ambient air pollution and metabolic syndrome in children and adolescents: A national cross-sectional study in China. Environ Int. 148, 106383.

14. Yang, B.Y., Qian, Z.M., Li, S., Fan, S., Chen, G., Syberg, K.M., et al., 2018. Long-term exposure to ambient air pollution (including PM 1) and metabolic syndrome: The 33 Communities Chinese Health Study (33CCHS). Environ Res. 164, 204-211.

15. Voss, S., Schneider, A., Huth, C., Wolf, K., Markevych, I., Schwettmann, L., et al., 2021. ENVINT-D-20-01309: Long-term exposure to air pollution, road traffic noise, residential greenness, and prevalent and incident metabolic syndrome: Results from the population-based KORA F4/FF4 cohort in Augsburg, Germany. Environ Int. 147, 106364.

16. Yang, J., Wei, Q., Peng, X., Peng, X., Yuan, J., Hu, D., 2016. Relationship between Methyl Tertiary Butyl Ether Exposure and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study among Petrol Station Attendants in Southern China. Int J Environ Res Public Health. 13, 946

17. Tarantino, G., Capone, D., Finelli, C., 2013. Exposure to ambient air particulate matter and non-alcoholic fatty liver disease. World J Gastroenterol. 19, 3951-3956.

18. VoPham, T., 2019. Environmental risk factors for liver cancer and nonalcoholic fatty liver disease. Curr Epidemiol Rep. 6, 50-66.

19. Treviño, L.S., Katz, T.A., 2018. Endocrine Disruptors and Developmental Origins of Nonalcoholic Fatty Liver Disease. Endocrinology. 159, 20-31.

20. Deierlein, A.L., Rock, S., Park, S., 2017. Persistent Endocrine-Disrupting Chemicals and Fatty Liver Disease. Curr Environ Health Rep. 4, 439-449.

21. Chen, R., Yin, P., Meng, X., Liu, C., Wang, L., Xu, X., et al., 2017. Fine particulate air pollution and daily mortality. A Nationwide analysis in 272 Chinese cities. Am. J. Respir. Crit. Care Med. 196, 73–81.

Yang, C., Chen, A., Chen, R., Qi, Y., Ye, J., Li, S., et al., 2014. Acute effect of ambient air pollution on heart failure in Guangzhou, China. Int J Cardiol. 177, 436–441.

22. Li, H., Chen, R., Meng, X., Zhao, Z., Cai, J., Wang, C., et al., 2015. Short-term exposure to ambient air pollution and coronary heart disease mortality in 8 Chinese cities. Int J Cardiol. 197, 265–270.

Estes, C., Anstee, Q.M., Arias-Loste, M.T., Bantel, H., Bellentani, S., Caballeria, J., et al., 2018. Modeling for overall and specific mental disorders due to particulate matter pollution: A time-series study in Chengdu, China. Environ Res. 170, 230-237.
NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J Hepatol. 69, 896-904.

23. Xu, M.X., Ge, C.X., Qin, Y.T., Gu, T.T., Lou, D.S., Li, Q., et al., 2019. Prolonged PM2.5 exposure elevates risk of oxidative stress-driven nonalcoholic fatty liver disease by triggering increase of dyslipidemia. Free Radic Biol Med. 130, 542-556.

24. Kelishadi, R., Mirghaffari, N., Poursafa, P., Gidding, S.S., 2009. Lifestyle and environmental factors associated with inflammation, oxidative stress and insulin resistance in children. Atherosclerosis. 203, 311-319.

25. McCullough, A.J., 2006. Pathophysiology of nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 40 Suppl 1, S17-29.

26. Tan, H.H., Fiel, M.I., Sun, Q., Guo, J., Gordon, R.E., Chen, L.C., et al., 2009. Kupffer cell activation by ambient air particulate matter exposure may exacerbate non-alcoholic fatty liver disease. J Immunotoxicol. 6, 266-75.

27. Clougherty, J.E., 2010. A growing role for gender analysis in air pollution epidemiology. Environ Health Perspect. 118, 167-176.

28. Cohen, D.A., McKenzie, T.L., Sehgal, A., Williamson, S., Golinelli, D., Lurie, N., 2007. Contribution of public parks to physical activity. Am. J. Public. Health. 97, 509-514.

29. Tong, L., Li, K., Zhou, Q., 2016. Season, sex and age as modifiers in the association of psychosis morbidity with air pollutants: A rising problem in a Chinese metropolis. Sci Total Environ. 541, 928-933.

30. Song, J., Zheng, L., Lu, M., Gui, L., Xu, D., Wu, W., et al., 2018. Acute effects of ambient particulate matter pollution on hospital admissions for mental and behavioral disorders: A time-series study in Shijiazhuang, China. Sci Total Environ. 636, 205-211.

31. Chen, H.J., Li, G.L., Sun, A., Peng, D.S., Zhang, W.X., Yan YE., 2019. Age Differences in the Relationship between Secondhand Smoke Exposure and Risk of Metabolic Syndrome: A Meta-Analysis. Int J Environ Res Public Health. 16, 1409.
Figure Legends

Fig. 1. Box plots of five air pollutants in the cool, transition, warm seasons and cases. Boxes indicate the interquartile range (25–75th percentile); lines within boxes indicate medians; whiskers below the boxes represent minimum values; whiskers and dots above the boxes indicate the maximum values.

Fig. 2. NO$_2$, O$_3$, PM10, PM2.5, and SO$_2$ correlation coefficient matrix. (The upper right corner matrix represents the correlation size, the lower left corner matrix is the correlation coefficient, and the right bar is the correlation coefficient contrast color)

Fig. 3. Percent increase of MAFLD cases with 10 μg/m3 increase of NO$_2$, O$_3$, PM10, PM2.5, and SO$_2$ in different lag days.

Appendix S1: The air quality monitoring point is near the Affiliated Hospital of Hangzhou Normal University