N-Carboxyanhydride-Mediated Fatty Acylation of Amino Acids and Peptides for Functionalization of Protocell Membranes

Enver Cagri Izgu, Anders Björkbom, Neha P Kamat, Victor S. Lelyveld, Weicheng Zhang, Tony Z Jia, and Jack W. Szostak

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.6b08801 • Publication Date (Web): 28 Nov 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.
N-Carboxyanhydride-Mediated Fatty Acylation of Amino Acids and Peptides for Functionalization of Protocell Membranes

Enver Cagri Izgu,†‡ Anders Björkbom†‡,§,‖,⊥Neha P. Kamat,†‡ Victor S. Lelyveld,†‡ Weicheng Zhang,†‡ Tony Z. Jia†‡,§ and Jack W. Szostak†‡,§,*

†Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
‡Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
§Department of Biosciences, Åbo Akademi University, Åbo FI-20520, Finland.
‖Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
⊥Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States

ABSTRACT: Early protocells are likely to have arisen from the self-assembly of RNA, peptide, and lipid molecules that were generated and concentrated within geologically favorable environments on the early Earth. The reactivity of these components in a prebiotic environment that supplied sources of chemical energy could have produced additional species with properties favorable to the emergence of protocells. The geochemically plausible activation of amino acids by carbonyl sulfide has been shown to generate short peptides via the formation of cyclic amino acid N-carboxyanhydrides (NCAs). Here, we show that the polymerization of valine-NCA in the presence of fatty acids yields acylated amino acids and peptides via a mixed anhydride intermediate. Notably, N⁶-oleylarginine, a product of the reaction between arginine and oleic acid in the presence of valine-NCA, partitions spontaneously into vesicle membranes and mediates the association of RNA with the vesicles. Our results suggest a potential mechanism by which activated amino acids could diversify the chemical functionality of fatty acid membranes and co-localize RNA with vesicles during the formation of early protocells.

INTRODUCTION: Modern cell membranes consist of a phospholipid bilayer with protein channels that control the uptake of nutrients and the export of waste and metabolic products. These structurally complex lipid membranes are hypothesized to have evolved from the membranes of protocells, the ancestors of modern biological cells. Protocell membranes are thought to have assembled from prebiotically available amphiphiles that form bilayer membranes similar to but simpler than those in modern cells. In particular, fatty acids are attractive protocell membrane components because they can self-assemble to form bilayer membrane vesicles and are relatively permeable to both ions (e.g., Na⁺ or K⁺) and small organic molecules (e.g., 5'-imidazole activated nucleotides) useful for the replication of encapsulated genetic materials such as RNA or alternative information-coding polymers. In addition, fatty acids can be synthesized via prebiotically plausible routes, in particular by Fischer-Tropsch type processes and short-chain fatty acids have also been found in carbonaceous meteorites.

Understanding how simple membranes may enhance metabolic reactions has been a major aim in studying the origin of the first cells. Beyond encapsulating nucleic acids and other reactive solutes, our group and others have begun to uncover routes through which fatty acid membranes can directly influence chemical transformations by providing a unique chemical and physical environment. At the same time, the mutual compatibility of laboratory-developed prebiotic chemistries is an important logical validation of proposed reactions. Previous studies suggest that geochemical conditions relevant to the early Earth could support the formation of amino acids and subsequently peptides. One prebiotically plausible route to peptide synthesis is the decarboxylative ring-opening polymerization of α-amino acid carboxyanhydrides (NCAs). However, the chemistry of this polypeptide-forming reaction in the presence of protocellular membranes, particularly those formed from simple fatty acid, has not been previously investigated.

To explore chemically compatible and potentially synergistic interactions among the constituents of a model
Figure 1. Val-NCA mediated acylation of amino acids and peptides. (a) Schematic of Val-NCA-mediated peptide acylation in the presence of either oleic acid or octanoic acid. (b-e) Overlay of extracted high resolution mass spectrometry (HRMS) spectra ([M-H]⁻) for peptide or acyl-peptide products observed in 24-h incubated reaction mixtures starting from Val-NCA (20 mM), tryptophan (W) (20 mM), EPPS (300 mM) and either oleic acid (20 mM) (b, c, and d) or octanoic acid (20 mM) (e). For similar HRMS analyses of the oligo-valine products (Vₙ) [R⁺ = CH(CH₃)₂], see Fig. S1, SI). HRMS experiments were carried out in negative mode. Panels (b) and (d) highlight the W-containing native peptides observed in the presence of oleic acid and octanoic acid, respectively. Panels (c) and (e) highlight the W-containing oleoylated (Ol-) and octanoylated (Oc-) products, respectively. See the SI for tabulation of mass errors and an HPLC extracted ion chromatogram showing the product distribution observed in the case of oleic acid (b–c).

In the protocellular system, here we describe the prebiotic synthesis of fatty acylated amino acids (AAs) and peptides in the presence of fatty acid monomers, micelles, and vesicles. Specifically, we show that in the presence of oleic acid vesicles the N-carboxyanhydride of valine, a prebiotically available AA, can generate oleoylated AAs and peptides. Notably, N'-oleoylarginine (Ol-Arg), a product observed when arginine is mixed with Val-NCA and oleic acid, incorporates spontaneously into vesicle membranes and mediates RNA-vesicle association. Localization of RNAs to the membrane may have significant implications for model protocells, as it increases the local concentration of otherwise dilute functional RNAs, potentially facilitating RNA-substrate binding and catalysis. Our study sheds light on potential chemical pathways leading to the formation of lipophilically modified AAs and peptides and suggests a novel mechanism by which prebiotically plausible activated AAs may have played a role in the early coevolution of cell membranes and RNA.

RESULTS: Peptide formation in the presence of fatty acids. To facilitate peptide synthesis, we used Val-NCA (1) (Fig. 1a), which we obtained in large quantity via con-
ventional synthesis.4 We treated 1 (a suspension of 0.04 mmoles in a 2 mL reaction volume) with a buffered [sodium salt of 300 mM 4-(2-hydroxyethyl)-1-piperazine-propane-sulfonic acid (EPPS)] mixture of a free AA substrate (20 mM, see Methods and Table S1 in SI for the list of AAs) and either oleic acid [pKₐ (pKₐ obs) of ca. 8.5]25 or octanoic acid (C8) (20 mM) at 20 °C and pH ca. 8.5. At this pH, oleic acid, with an observed pKₐ (pKₐ obs) of ca. 8.5,25 forms bilayer membranes, whereas octanoic acid exists only as deprotonated monomers.26,27

Qualitative analysis of reaction aliquots by electrospray ionization/high-resolution mass spectrometry (ESI-HRMS) indicated the presence of a complex mixture of peptides 2 (up to 6 AA residues or longer) composed of both (Val)ᵢₐ-AA and (Val)ᵢₐ peptides both in reactions containing oleic acid and in reactions containing octanoic acid (Fig. 1a; for HRMS analyses of oligo-Val products see Fig. S1, SI). Surprisingly, these analyses also revealed fatty acylated products of both the newly formed peptides and the free AA substrates in both fatty acid systems. As a representative example, Figure 1b–e shows HRMS analyses of the polymerization of 1 in the presence of Trp and either oleic acid (Fig. 1b–c) or octanoic acid (Fig. 1d–e). In order to measure the yields of the major acylated and unacylated peptides accurately, we specifically relied on the UV absorption of the products containing tryptophan, which has a distinct UV absorbance at 280 nm. Therefore, we determined the overall yield of Trp-containing products by UV absorption spectroscopy of purified fractions (see the SI for details). Starting from a 20-mL suspension of 0.4 mmoles of substrates (1, Trp and either oleic or octanoic acid), Trp-containing, unacylated peptides (2) were obtained in 23% and 30% overall yields, respectively. Of the Trp-containing products, 2 to 3% were acylated (Fig. S1, SI). Surprisingly, these analyses also revealed fatty acid vesicles, ca. 5% of the Trp-containing products were octanoylated. This particular reaction mixture was slightly turbid and required a larger concentration of EPPS buffer (600 mM) to maintain the pH at around 8.5. In the presence of oleic acid vesicles, ca. 5% of the Trp-containing products were oleoylated.28 Importantly, the formation of acylated amino acids could be achieved in the absence of EPPS (vide infra).

Mechanistic insights into the acylation of amino acids and peptides formed in situ. In addition to ring-opening polymerization, NCAs have been reported to form isocyanato carboxylates by N-H deprotonation at pH 9 and higher,29 or acylic phospho-carboxy anhydrides by reaction with phosphate nucleophiles.30,32 With regard to the former pathway, we did not observe peptide urea products of Val (e.g., N,N-divalyl urea or N,N-valyl-AAA urea), which would result from trapping Val-isocyanato carboxylate by either free Val, generated by the hydrolysis of 1, or the AA substrate initially introduced into the reaction mixtures. The latter reaction mechanism, which involves oxygen nucleophiles, is more directly relevant to our experimental observations. In the context of prebiotic phosphorylation of alcohols, Biron et al. showed31 that 1 and HPO₄$^{2-}$ form a carboxylic acid-phosphoric acid mixed anhydride, which selectively phosphorylates—instead of acylating—methanol, affording methyl phosphate. Subsequently, Leman et al. demonstrated32 the formation of aminoacyl adenylates through the addition of adenosine 5’-monophosphate to NCAs. These reports suggest that delocalized oxyanions such as oxygen nucleophiles are sufficiently nucleophilic to attack NCAs and induce ring opening. Similarly, here we hypothesize (Fig. 2) that at a pH near or above the pKₐ of the fatty acid, the carboxylic anion attacks 1 at its more electrophilic carbonyl center, C-5,33 generating a putative mixed anhydride 4 (in equilibrium with its protonated form) that can either undergo intramolecular rearrangement to give N’-acyclvaline (path i, Fig. 2), or induce peptide bond formation (path ii),34 or serve as an intermolecular acylating agent (path iii).29

![Figure 2](https://example.com/figure2.png)

Figure 2. Possible pathways of a reaction between Val-NCA (1) and a carboxylate nucleophile.30 Product 3 also represents acyl-Val since free Val (from hydrolysis of 1) reacts with 4 via path iii.
Our initial efforts to observe the protonated form of 4 by mass spectrometry were not successful in the case of either oleic or octanoic acid. However, if such an intermediate indeed forms, at least one of the chemically equivalent oxygen atoms of the carboxylate nucleophile must be incorporated into the acylated product after either the intramolecular rearrangement of 4 (path i) or nucleophilic attack at the fatty acyl carbonyl center (path iii). Therefore, we sought to explore the acylation mechanism by using an isotopically labeled carboxylic acid and then detecting the change in mass of the resulting acylated Val species. To accomplish this, we performed tandem mass spectrometry (Fig. 3) of reaction mixtures obtained by treating 1 (40 mM) with a wet mixture of triethylamine (TEA) (1 M) and either octanoic acid (1 M), as the control, or 18O-enriched octanoic acid (1 M, 87% isotopic enrichment). See Fig. S5 in SI for a similar investigation carried out under a more dilute condition. The volatile base TEA was used to set the initial reaction pH in a manner compatible with direct injection ESI-MS. In the case of natural octanoic acid, we did not observe a 244 m/z signal in positive ionization mode, which would correspond to the protonated mixed anhydride species [M + H]$^+$, presumably because this species is quite transient. However, we did detect the [M – H]$^-$ signal at 244 m/z in negative ionization mode, suggesting that an intramolecular rearrangement or an intermolecular acylation of free Val may have occurred to generate the isomeric and negatively ionizable N-containing anhydride-Val (5a; the 1H NMR spectrum of the crude reaction mixture matched that of the product isolated from a reaction of Val and octanoic chloride; see SI for details). Isolation and fragmentation of this 244 m/z ion gave rise to a major 116 m/z fragment (Fig. 3b), as expected for the monoisotopic mass of natural abundance Val (6a). In the case of oleic acid, we also observed this 116 m/z signal as a result of fragmenting the 380 m/z precursor, which corresponds to N18-oleoylvaline formed from 1 and oleic acid (for details see Fig. S4, SI). Notably,
under anhydrous and anaerobic conditions, 1 underwent near-full conversion to the corresponding Nα-fatty acylvaline, presumably through path i, in the presence of ca. 50 equivalents fatty acid and TEA.

Similar experiments carried out with 18O-enriched octanoic acid provided both the [M – H]− = 244 m/z and [M – H]− = 246 m/z signals in negative ionization mode. The presence of the former species suggests that an intramolecular displacement via path iii had occurred with the natural abundance Val to yield a mono-18O containing octanoyl valine 5b, while the 246 m/z signal is consistent with formation of a di-18O containing counterpart 5c by intramolecular rearrangement (path i), such that one 18O is on the valine carboxylate and one on the amide carbonyl. Isolation and fragmentation of the 244 and 246 m/z precursors gave rise to 116 and 118 m/z species respectively (Fig. 3c), which we attribute to the natural abundance 6a and mono-18O containing fragmentation product 6b. We also observed the decarboxylation products resulting from fragmentation of the precursor ions. While the natural abundance 242 m/z ion gave rise to a 198 m/z signal, both the mono- and di-18O containing 244 m/z and 246 m/z ions fragmented into a 200 m/z species, as expected from the mono-18O containing decarboxylated amido products. These observations are consistent with the formation of a transient mixed anhydride intermediate 4, which we propose is the major component that drives fatty acylation of both Val (via path i) and of free AA substrates and the short peptides generated in situ (via path iii). This hypothesis is in line with the recent mechanistic investigations of Murillo-Sánchez et al.12 on the formation of mixed anhydrides from 5(4H)-oxazolones and carboxylic acids, as well as the earlier postulate of Miva and Stahmann that the benzoate anion could attack NCAs to form a carboxylic-benzoic mixed anhydride.35

Insertion of Nα-oleylarginine into phospholipid and oleic acid membranes. As fatty acylated amphiphiles have been shown to preferentially localize to lipid membranes,36,37 we investigated whether an Nα-oleoylated AA with a cationic side chain could also localize to lipid membranes. Because short arginine-containing peptides have been shown to effectively localize RNA to fatty acid membranes,38 we focused on Nα-oleylarginine (Ol-Arg), one of the acylation byproducts formed when Arg and oleic acid are mixed with 1 at pH ca. 8.5 (Fig. S3, SI). We tested the incorporation of Ol-Arg (see Methods) into preformed oleic acid and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles. To monitor the membrane growth that would occur upon the insertion of Ol-Arg into the membrane, we used a Förster resonance energy transfer (FRET) assay37 (Fig. S8, SI) by labeling the phospholipid and oleic acid membranes with a FRET donor-acceptor fluorescent dye pair [N-(7-nitro-2,1,3-benzoxadiazol-4-yl) (NBD) and

![Figure 4. Oleic acid membrane growth (a) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane growth (b) upon oleate (OA) micelle and Ol-arginine (Ol-Arg) addition. The change in membrane surface area is reported upon the addition of various additives to 7.5 mM oleate or POPC vesicles in 200 mM Bicine buffer, pH 8.5. OA micelles or Ol-Arg were dissolved by addition of either 4 mM NaOH or 4 mM HCl, respectively, and control additions of either the base or acid alone are indicated. n = 3, error bars represent standard deviation.](image)
RNA localization to vesicles containing Ol-Arg. We next sought to determine whether the presence of Ol-Arg in preformed vesicles could induce RNA localization to vesicle membranes (Fig. 5). In principle, localization of RNA to vesicle membranes provides a potential route to concentrating functional RNA sequences which might otherwise exist at significantly lower concentrations, and enhance intermolecular chemical transformations. We recently observed that cationic and membrane-associating peptides can localize short RNA oligomers (15-mer) to the surface of phospholipid and fatty acid membranes. Based on our observations, fatty acylated amino acids might have formed naturally on the prebiotic earth and could have similarly served to mediate the interaction of RNA with protocell membranes. To investigate this possibility, we prepared giant vesicles (GVs) that contained Ol-Arg in their membranes from either oleic acid or POPC. We then added a fluorescently tagged 15-mer RNA strand and incubated each sample for 30 minutes at room temperature (see Methods for details). Membranes without Ol-Arg did not localize RNA with either vesicle composition (top rows, Fig. 5a-b). However, both OA and POPC membranes containing Ol-Arg localized RNA to the vesicles. Interestingly, the predominant form of RNA association with OA vesicles that contained Ol-Arg was encapsulation inside of the vesicles (bottom row, Fig. 5a). In POPC vesicle samples containing Ol-Arg (Fig. 5b, bottom row), we observed that RNA clearly binds to the surface of the POPC membrane but does not penetrate the outer membrane; we also observed the appearance of RNA aggregates bound to the surface of vesicles.

DISCUSSION: We have shown that Val-NCA (1) can mediate the condensation of unactivated amino acids and peptides with fatty acids to generate Nα-acylated products. Our hypothesis for the mechanism of this fatty acylation process is that the nucleophilic addition of the fatty acid carboxylate to carbonyl C-5 of 1 generates a mixed anhydride intermediate 4, which can serve as a prebiotic fatty acyl transfer agent. In the case of octanoic acid, the efficiency of this acyl transfer mechanism is proportional to the concentration of octanoic acid. The observation that free AAs and peptides are octanoylated at pH ca. 8.5 in the presence of octanoic acid, which does not form vesicles, suggests that vesicle formation, which occurs with the longer chain oleic acid, is not necessary for the fatty acylation chemistry to take place. The relative flux of the reaction through these competing pathways is likely to be influenced by the abundance of competing free AA and peptide nucleophiles, and by whether the reactions are taking place in aqueous solution or in a drying mixture. It is also notable that intermediate 4 is subject to hydrolysis, particularly in a pH regime where the Nα of AAs and peptides is largely unprotonated and therefore has adequate nucleophilic character (ca. pH ≥ 8). We have measured the observed rate constant of hydrolysis of 1 at pH ca. 8.5 as 0.018 sec⁻¹ (See Fig. S7 SI for details). Although this hydrolysis competes with the fatty acylation pathway, a constant supply of geochemical energy (e.g., in the form of carbonyl sulfide) could regenerate NCAs and lead to the continued formation of both peptides and acylated peptides. In addition, once acylated, AAs and peptides should be quite stable under moderate pHs and temperatures because amide bonds have half-lives on the order of 100-500 years at room temperature.

Figure 5. Microscopy of RNA-membrane localization with Ol-Arg. Confocal images of a 5′ Alexa Fluor-647 labeled 15-mer RNA oligonucleotide (green) association with giant vesicles composed of (a) 100% oleic acid (OA) (b) 100% POPC vesicles. An NBD-PE dye (red, panel a) and Lissamine Rhodamine PE dye (red, panel b) was used to label OA and POPC vesicle membranes, respectively. (Top rows, panels a and b) In the absence of Ol-Arg (control), RNA does not associate with either OA or POPC vesicles. (Bottom rows, panels a and b) Upon incubation with RNA (+ Ol-Arg), OA containing 25 mol% Ol-Arg and POPC vesicles containing 50 mol% Ol-Arg internalize or localize RNA. Increased regions of RNA fluorescence indicate aggregates of RNA that have bound the membrane. Differential interference contrast (DIC) images (gray) and fluorescence images (NBD or Rhodamine (red), AlexaFluor-647 (green), and a merge of the Rhodamine and Alexa Fluor-647 channels) are shown for each field of view to show the location of RNA with respect to the vesicle membranes. Images are contrast adjusted. Scale bars represent 10 µm.
and could potentially accumulate within protocells over time by selectively partitioning into fatty acid vesicles.

The microscopy experiments carried out with POPC and OA vesicles containing Ol-Arg indicate a significant increase in the local concentration of a 15-mer RNA. In many POPC + Ol-Arg vesicles RNA was present both uniformly on the membrane and in larger aggregates. We occasionally observed smaller POPC + Ol-Arg vesicles encapsulated within a larger vesicle; in such cases, only the outermost membrane showed RNA labeling, suggesting that this particular vesicle membrane composition did not allow the associated RNA to transit the membrane. The appearance of RNA aggregates on the surface of POPC membranes that contain Ol-Arg may be related to previous observations of the interaction of RNA with arginine rich peptides, which form condensed phases in aqueous solution. In contrast, the predominant form of RNA association with OA vesicles that contained Ol-Arg was encapsulation inside of the membrane vesicles. In some large, apparently unilamellar OA + Ol-Arg vesicles, RNA had clearly become concentrated in the internal lumen of the vesicle. Although the mechanism behind this surprising effect is unclear, one possible pathway would involve initial binding of RNA to Ol-Arg on the outer surface of the membrane, followed by translocation of the RNA to the inner surface and equilibration with the internal volume of the vesicle; alternatively, Ol-Arg-induced vesicle fusion may allow RNA to become internalized within larger vesicles. However, in other more complex and multilamellar OA + Ol-Arg vesicles, RNA appeared internalized inside smaller membrane compartments or localized between internal membranes, suggesting that significant membrane reorganization must occur to explain the observed distribution of RNA within OA + Ol-Arg vesicles. We suggest that strong intermembrane adhesion resulting from the charge-charge interaction of olate and Ol-Arg may lead to the engulfment of smaller vesicles by larger vesicles. This mechanism of RNA internalization and membrane reorganization in the presence of Ol-Arg is currently the subject of ongoing study in our laboratory.

CONCLUSION: We have presented a mechanism for fatty acylation of AAs and in situ formed peptides from prebiotically plausible substrates. Motivated by our observation of prebiotic fatty acylation, we then investigated the effect of Ol-Arg, an amphiphilic product generated when Val-NCA was mixed with Arg and oleic acid, on fatty acid and POPC vesicles. We showed that Ol-Arg incorporates spontaneously into the membrane of both oleic acid and POPC vesicles. Notably, fatty acid vesicles preformed in the presence of Ol-Arg enabled a 15-mer RNA oligonucleotide to increase its local concentration by being either localized on the membrane exterior or encapsulated inside the vesicle.

As a two-dimensional matrix, the lipid membrane of the cell surface has been demonstrated to promote a variety of chemical transformations. Similarly, primordial membranes derivatized with amino acids or peptides could have provided advantages to early cells by localizing functional RNA sequences, including ribozymes, to a surface; functional interactions could have been facilitated by the reduction in translational degrees of freedom.

The unique reactivity of NCAs has the potential to enable diverse chemical transformations, enzymatic variants of which are also seen in modern biology. For example, the N-acetylation of proteins is hypothesized to have evolved as a mechanism for protecting against spontaneous degradation in eukaryotic cells. In addition, many signaling pathways depend upon N-acylation of proteins for membrane localization. Specifically, α-amino lipidaion (e.g., Nα-myristoylation; C14) of peptides is a cotranslational or post-translational covalent modification in eukaryotes, which plays an essential role in protein-protein interaction in eukaryotes, which plays an essential role in protein-protein interaction. Prebiotically formed N-acylated peptides are therefore of great biological interest as a potential substrate for subsequent evolutionary processes, once cellular life formed. Using the chemical energy harvested in cyclic anhydrides to activate carboxylates could be a conceptual approach to prebiotic acylation of diverse nucleophiles, including non-peptide-based nucleophilic constituents of protocols, such as nucleotides. Studying these reactions will lead us closer to understanding how the interactions among RNA, fatty acids, and peptides could have led to the emergence of the first protocells.

METHODS: Materials. LCMS-grade water (Optima) was purchased from Thermo Fisher Scientific and used in all experiments unless otherwise reported. Amino acids (AAs: tryptophan (Trp), arginine (Arg), valine (Val), histidine (His), lysine (Lys), glutamine (Gln), asparagine (Asn)) and 4-(2-hydroxyethyl)-1-piperazinepropane-sulfonic acid (EPPS) were purchased from Sigma-Aldrich (St. Louis, MO). Oleic acid and octanoic acid were purchased from Nu-Chek Prep (Elyssian, MN). The phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was purchased from Avanti Polar Lipids. The phospholipids N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-diheaxadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (Liss Rh-PE) were purchased from Life Technologies (Grand Island, NY). RNA (HPLC purified) was purchased from Integrated DNA Technologies (IDT, Coralville, IA). Nα-oleoylgarginine (Ol-Arg) was prepared following a previously reported protocol. Valine-N-carboxy anhydride (Val-NCA)-mediated polymerization of AAs in the presence of fatty acids. Into a 4 mL screw thread vial containing Val-NCA (30
μmol, 1 equiv) and equipped with a magnetic stir bar was added a mixture (1.5 mL) of a single AA (30 μmol, 1 equiv, e.g., tryptophan, arginine, histidine, lysine, glutamine or asparagine, also see Table S1, SI), the fatty acid (oleic acid or octanoic acid; 30 μmol, 1 equiv), and EPPS buffer [300 mM, pH 8.5–8.8] at room temperature. The reaction vial was sealed and the content was mixed first by vortexing for 1 min and then by stirring on a stir plate over 24 hours.

At the end of this mixing period, an aliquot (ca. 10 μL) was taken and diluted 1000-times with HPLC-grade water for electro-spray ionization/high-resolution mass spectrometry ESI-HRMS analysis (for Trp as the AA substrate, see Fig. 1b-c and Fig. S1, SI, and for Arg as the AA substrate, see Fig. S2, SI). Typically, the pH of the reaction media decreases by ca. 0.3 units during the course of the experiment, and the product distributions show essentially no variation after 12 hours.

Mass spectrometry. For mechanistic fragmentation analysis, reaction samples were analyzed by direct injection from a syringe pump into a Bruker Esquire 6000 ESI ion trap mass spectrometer. The mechanistic studies shown in Fig. 3 were carried out in the presence of 1 M octanoic acid and 1 M triethylamine. For more dilute conditions, see the SI. Precursor ions were selected for MS/MS fragmentation with an isolation width of 1 m/z and a fragmentation amplitude between 0.2 – 0.3. For high resolution LC-MS analyses of peptides and acylated products, reaction samples were separated and analyzed on an Agilent 1200 HPLC coupled to an Agilent 6520 Q-TOF or an Agilent 6230 TOF. The systems were equipped with a solvent degasser, column oven, autosampler, and diode array detector. Samples were analyzed in a multi-mode source operated in the mixed-mode [atmospheric pressure chemical ionization (APCI) and ESI] configuration using the following settings: drying gas temperature, 250 °C; vaporizer temperature, 200 °C; drying gas flow, 5 L/min; nebulizer pressure, 40 psig; charging electrode, 2000 V; capillary voltage, 2500 V; corona current 1 µA; fragmentor, 140 V; and skimmer, 65 V. Polarity for mass analysis was as indicated in figure legends. The scan range was 100 m/z – 1200 m/z with a scan rate of 2 spectra/s. Samples were separated on a 75 mm Agilent ZORBAX Eclipse Amino Acid Analysis column (4.6 mm i.d. and 3.5 μm particle size) using a mobile phase of water / methanol with a step gradient (from 2 to 100% methanol at a flow rate of 0.450 mL/min). Extracted spectra for products were obtained using Agilent’s Find by Formula algorithm in Agilent’s MassHunter Qualitative Analysis platform.

Vesicle Preparation. POPC and OA vesicles for the membrane growth assay were prepared by thin film hydration of the lipid or fatty acid in a chloroform solution. The solution was dried with N2 on the surface of a glass vial, and the solvent was evaporated in a vacuum oven for > 12 h. Lipid films were hydrated with BICINE buffer (200 mM, pH 8.5) and tumbled overnight before extrusion through 100 nm membranes. For microscopy, giant unilamellar vesicles were prepared by thin film hydration methods on the bottom of glass vials. Vesicles were prepared from POPC or oleic acid and contained 0.15 mol % Liss Rh-PE or NBD-PE. Vesicle samples with Ol-Arg were prepared by premixing POPC or OA with 50 mol% Ol-Arg and 0.15 mol% Liss Rh-PE or NBD-PE in chloroform, before being dried on the surface of glass vials. Solvent was evaporated in a vacuum oven for > 12 h and lipid films were hydrated with sucrose solution (200 mM) for POPC vesicles or sucrose + Tris solution (200 mM sucrose + 100 mM Tris-HCl buffer, pH 8.5) for OA vesicles and heated at 65°C overnight to form giant unilamellar vesicles.

Membrane growth assay. POPC vesicles were prepared with 0.1 mol % of the FRET dyes NBD-PE and Liss Rh-PE. Growth from the addition of OA or Ol-Arg (see SI for preparation) was assessed by adding each reagent to a vesicle solution (1, 2, and 4 mM) and monitoring the resulting change in FRET signal as previously described.37 Ol-Arg was dissolved in a 100 mM HCl solution and oleate micelles were prepared by dissolving OA in 500 mM NaOH (20 mM oleate final concentration). FRET was measured using the fluorescence ratio between the donor (λem 517 nm) and the acceptor (λem 590 nm) lipids, with an excitation at 463 nm. The FRET signal was converted into relative surface area through a standard curve correlating mol % of FRET dyes in the membrane to FRET signal (Fig. S8, SI). The change in surface area after a 10 h incubation with each reagent was reported.

Microscopy. OA and POPC vesicles were mixed with an equimolar solution of 125 mM Tris-HCl, pH 8.5 and imaged in Lab-Tek II Coverglass (Thermo Fisher Scientific) chambers that were pre-blocked with a 1% bovine serum albumin (BSA) (Sigma Aldrich) solution. For OA membranes, vesicles were diluted into a 50 μM solution of oleic acid (200 μM) to maintain the concentration of fatty acid above the critical aggregation concentration of oleic acid. Vesicles were imaged on a Nikon (Tokyo, Japan) A1R MP Confocal Microscope (60X oil objective) and processed in ImageJ. For studies of RNA localization to the outside of vesicle membranes with Ol-Arg, vesicle membranes containing 10, 25, and 50 mol % Ol-Arg were mixed with RNA, so that the final concentration of each component was 100 μM POPC vesicles, 10, 25, or 50 μM Ol-Arg, and 2μM RNA for studies with POPC vesicles and was 10 mM OA vesicles, 1, 2.5, or 5 mM Ol-Arg, and 10 μM RNA for studies with oleic acid vesicles (the oleic acid vesicle concentration was increased to maintain vesicle stability). After a 30-min incubation, 15 μL of the vesicle/peptide/RNA mixture was diluted 20-times into either 125 mM Tris-HCl or 500 μM oleic acid (200 μM) and imaged. The RNA used was 5′-(Alexa Fluor-647)-GCG-UAG-ACU-GAC-UGG-3′ (HPLC Purified).
ASSOCIATED CONTENT
Supporting Information. Detailed experimental procedures, additional HRMS analyses, FRET assays, synthesis and spectroscopic characterization of new compounds accompanied with 1H and 13C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION
Corresponding Author
szostak@molbio.mgh.harvard.edu

Present Addresses
·Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark.

Funding Sources
J.W.S. is an Investigator of the Howard Hughes Medical Institute. A.B. was supported by a fellowship from the Academy of Finland. This work was supported in part by a grant (290363) from the Simons Foundation to J.W.S.

ACKNOWLEDGMENTS
We thank Prof. Sheref Mansy, Dr. Lijun Zhou, Dr. Li Li and Ms. Claudia Bonfio for critical discussions and technical insights. We also thank Dr. Daniel Duzdevich for helpful comments on the manuscript.

REFERENCES

(1) Chen, I. A.; Walde, P. Cold Spring Harbor Perspect. Biol., 2010, 2, a002170.
(2) Apel, C. L.; Deamer, D. W.; Mautner, M. N. Biochim Biophys Acta 2001, 1550, 1–9.
(3) Chen, I. A.; Szostak, J. W. Proc. Natl. Acad. Sci. USA 2004, 101, 7965–7970.
(4) Adamala, K.; Szostak, J. W. Science 2013, 342, 1098–1100.
(5) Mansy, S. S.; Schrum, J. P.; Krishnamurthy, M.; Tober, S.; Treco, D. A.; Szostak, J. W. Nature 2008, 454, 122–125.
(6) McCollom, T. M.; Ritter, G.; Simeneit, B. R. Orig. Life Evol. Biosph. 1999, 29, 153–166.
(7) Rushdi, A. I.; Simeneit, B. R. Orig. Life Evol. Biosph. 2001, 31, 103–118.
(8) Yuen, G. U.; Kvenvolden, K. A. Nature 1973, 246, 301–303.
(9) Brocher, M.; Liu, D.; Walde, P.; Luisi, P. L. Macromolecules 1999, 32, 7332–7334.
(10) Grochmal, A.; Prout, L.; Makin-Taylor, R.; Prohens, R.; Tomas, S. J. Am. Chem. Soc. 2015, 137, 12269–12275.
(11) Adamala, K.; Engelhart, A. E.; Szostak, J. W. Nat. Commun. 2016, 7, 10041.
(12) Murillo-Sánchez, S.; Beaufils, D.; González Mañas, J. M.; Pascal, R. & Ruiz-Mirazo, K. Chem. Sci. 2016, 7, 3406–3413.
(13) Patel, B. H.; Percivalle, C.; Ritson, D. J.; Duffy, C. D.; Sutherland, J. D. Nut. Chem. 2015, 7, 301–307.
(14) Sawai, H. & Orgel, L. E. J. Mol. Evol. 1975, 6, 185–197.
(15) Armstrong, D. W., Seguin, R., McNeal C. J., Macfarlane, R. D., Fendler, J. J. H. Am. Chem. Soc., 1978, 100, 4605–4606.
(16) Huber, C.; Wächtershäuser, G. Science 1998, 281, 670–672.
(17) Huber, C., Eisenreich, W., Hecht, S.; Wächtershäuser, G. Science 2003, 301, 938–940.
(18) Leman, L.; Orgel, L.; Ghadiri, M. R. Science 2004, 306, 283–286.
(19) Danger, G., Boiteau, L., Cottet, H.; Pascal, R. J. Am. Chem. Soc. 2006, 128, 7412–7413.
(20) Kricheldorf, H. R. Angew. Chem. Int. Ed., 2006, 45, 5752–5784.
(21) Danger, G.; Plasson, R.; Pascal, R. Chem. Soc. Rev., 2012, 41, 5416–5429.
(22) Kvenvolden, K.; Lawless, J.; Pering, K.; Peteson, E.; Flores, J.; Ponnamperuma, C.; Kaplan, I. R.; Moore, C. Nature 1970, 228, 925–926.
(23) Strulson, C. A., Molden, R. C., Keating, C. D.; Bevilacqua, P. C. Nat. Chem. 2012, 4, 941–946.
(24) Daly, W. H. & Poché, D. Tetrahedron Lett. 1988, 29, 5859–5862.
(25) Cistola, D. P., Hamilton, J. A., Jackson, D. & Small, D. M. Biochemistry 1998, 27, 1881–1888.
(26) Weast R. C. (Editor) Handbook of Chemistry and Physics. 53st Ed. The Chemical Rubber Co., Cleveland, OH, 1970.
(27) Walde, P.; Namani, T.; Morigaki, K.; Hauser, H. In Liposome Technology, 3rd edition (Gregoriadis G., ed.), Vol. I, Informa Healthcare, New York, 2006, pp. 1-19.
(28) We have performed parallel experiments with 100 mM acetate at pH 8.5. We did not observe the formation of any acetylated AAs or peptides by MS, while unacetylated peptides of up to 5-mer in length were observed. This result is consistent with the idea that, under aqueous conditions, the hydrophobic Val-NCA reacts preferentially with hydrophobic fatty acids.
(29) We have been unable to observe by MS the anions (286 or 424 m/z) that would correspond to the carbamates of Nα-octanoylvaline or Nα-octenoylvaline, even by direct injection of unquenched reactions, suggesting that these intermediates are highly unstable. As a result, we are unable to assess the possibility that slow decarboxylation is what allows the observed intermolecular reactions, paths ii and iii as shown in Fig. 2.
(30) Hirschmann, R., Strachan, R. G.; Schwam, H.; Schoenwaldt, E. F.; Joshua, H.; Barkemeyer, B.; Veber, D. F.; Paleveda, W. J.; Jacob, T. A.; Beesley, T. E.; Denkewalter, R. G. J. Org. Chem. 1967, 32, 3415–3425.
(31) Biron, J.-P.; Pascal, R. J. Am. Chem. Soc. 2004, 126, 9198–9199.
(32) Leman, L., Orgel, L.; Ghadiri, M. R. J. Am. Chem. Soc. 2006, 128, 20–21.
(33) Sekiguchi, H. Pure Appl. Chem. 1981, 53, 1689–1714.
For a conceptually relevant and complementary novel mechanism to produce peptides and peptide derivatives that could possess useful functions in prebiotic chemistry, see Forsythe, J. G.; Yu, S.-S.; Mamajanov, I.; Grover, M. A.; Krishnamurthy, R.; Fernández, F. M.; Hud, N. V., *Angew. Chem., Int. Ed.* **2015**, *54*, 9871−9875.

Miva, T. K.; Stahmann, M. A. Polyamino acids, polypeptides, and proteins (ed. Stahmann, M. A.), *University of Wisconsin Press, Madison 1962*, p. 81.

Thomas, R. M., Baici, A., Werder, M., Schulthess, G.; Hauser, H. *Biochemistry* **2002**, *41*, 1591-1601.

Chen, I. A.; Szostak, J. W. *Biophys. Journal* **2004**, *87*, 988–998.

Kamat, N. P., Tobe, S., Hill, I. T.; Szostak, J. W. *Angew. Chem. Int. Ed.* **2015**, *54*, 11735–11739.

Peterlin, P., Arrigler, V., Kogej, K., Svetina, S.; Walde, P. *Chem. Phys. Lipids* **2009**, *159*, 67–76.

Zhu, T. F.; Szostak, J. W. *J. Am. Chem. Soc.* **2009**, *131*, 5705–5713.

Radzicka, A.; Wolfenden, R. *J. Am. Chem. Soc.* **1996**, *118*, 6105-6109.

Jia, T. Z.; Fahrenbach, A. C.; Kamat, N. P.; Adamala, K. P.; Szostak, J. W. *Nat. Chem.* **2016**, *8*, 915–921.

Walde, P.; Umakoshi, H.; Stano, P.; Mavelli, F. *Chem. Commun.* **2014**, *50*, 10177–10197.

Brown, J. L.; Roberts, W. *K. J. Biol. Chem.* **1976**, *251*, 1009–1014.

Resh, M. D. *Biochim. Biophys. Acta* **1999**, *1451*, 1-16.

Zha, J., Weiler, S., Oh, K. J., Wei, M. C., and Korsmeyer, S. *J. Science* **2000**, *290*, 1761-1765.

Murray, D.; Ben-Tal, N.; Honig, B.; McLaughlin, S. *Structure* **1997**, *5*, 985–989.

Resh, M. D. *Cell. Signalling* **1996**, *8*, 403–412.

Brady, S. F.; Clardy, J. *Org. Lett.* **2005**, *7*, 3613–3616.
