The H/Q-correspondence and a generalization of the supergravity c-map

Vicente Cortés and Kazuyuki Hasegawa

July 21, 2022

Abstract

Given a hypercomplex manifold with a rotating vector field (and additional data), we construct a conical hypercomplex manifold. As a consequence, we associate a quaternionic manifold to a hypercomplex manifold of the same dimension with a rotating vector field. This is a generalization of the HK/QK-correspondence. As an application, we show that a quaternionic manifold can be associated to a conical special complex manifold of half its dimension. Furthermore, a projective special complex manifold (with a canonical c-projective structure) associates with a quaternionic manifold. The latter is a generalization of the supergravity c-map. We do also show that the tangent bundle of any special complex manifold carries a canonical Ricci-flat hypercomplex structure, thereby generalizing the rigid c-map.

2020 Mathematics Subject Classification : 53C10, 53C56, 53C26.
Keywords : conical hypercomplex manifold, H/Q-correspondence, generalized supergravity c-map.

Contents

1 Introduction 2
2 Preliminaries 3
3 Conification of hypercomplex manifolds 5
4 The hypercomplex/quaternionic-correspondence 9
5 Examples of the H/Q-correspondence 13
6 The tangent bundle of a special complex manifold and a generalization of the rigid c-map 19
1 Introduction

The HK/QK-correspondence is a construction of a (pseudo-)quaternionic Kähler manifold from a (pseudo-)hyper-Kähler manifold of the same dimension with a rotating vector field (see Definition 3.1 and \[15, 2, 16, 4\]). This correspondence gives also the supergravity c-map, which associates a quaternionic Kähler manifold with a projective special Kähler manifold. The supergravity c-map was introduced in theoretical physics \[13\].

The inverse construction of the HK/QK-correspondence is called the QK/HK-correspondence. It has been generalized to a Q/H-correspondence, a construction of hypercomplex manifolds from quaternionic manifolds \[10\]. The purpose of this paper is to construct a quaternionic manifold from a hypercomplex manifold endowed with a rotating vector field and some extra data. We shall call this construction the hypercomplex/quaternionic-correspondence (H/Q-correspondence for short). We briefly explain how we obtain this correspondence. First we define the notion of a conical hypercomplex manifold (Definition 2.1). Next we construct a conical hypercomplex manifold \(\hat{M}\) for every hypercomplex manifold \(M\) with a rotating vector field \(Z\) (Theorem 3.9) and additional data: a two-form \(\Theta\) on \(M\), a U(1)-bundle over \(M\) whose curvature satisfies (3.1) and a function \(f\) on \(M\) such that \(df = -\iota_Z \Theta\). The manifold \(\hat{M}\) is endowed with a free action of the Lie algebra \(\text{Lie} \mathbb{H}^* \cong \mathbb{R} \oplus \text{su}(2)\) and its quotient space \(\bar{M}\) carries a quaternionic structure, provided that the quotient map \(\hat{M} \rightarrow \bar{M}\) is a submersion. The H/Q-correspondence is then defined as \(M \mapsto \bar{M}\) (Theorems 4.1 and 4.8).

In addition, we show that \(\bar{M}\) carries not only a quaternionic connection but also an (induced) affine quaternionic vector field (Proposition 4.7). Note that we give an example of our H/Q-correspondence from a hypercomplex Hopf manifold, which does not admit any hyper-Kähler structure (Example 5.3). Therefore the H/Q-correspondence is a proper generalization of the HK/QK-correspondence. Examples like hypercomplex or quaternionic Hopf manifolds show that hypercomplex and quaternionic manifolds arise naturally beyond the context of hyper-Kähler and quaternionic Kähler geometry. We refer to \[25, 18, 19\] for the theory of quaternionic manifolds and constructions of such manifolds.

The rigid c-map \[2\] allows to associate with a conical special Kähler manifold its cotangent bundle endowed with a hyper-Kähler structure with a rotating vector field \[2\]. In the absence of a metric, we show that the tangent bundle of a special complex manifold carries a canonical hypercomplex structure and that its Obata connection is Ricci flat (Theorem 6.5). In this way we establish a generalization of the rigid c-map which assigns a Ricci flat hypercomplex manifold to each special complex manifold. When the special complex manifold is conical, the resulting hypercomplex manifold is shown to admit a canonical rotating vector field (Lemma 8.1). The notion of a (conical) special complex manifold was introduced in \[3\]. It is a generalization of a (conical)
special Kähler manifold. We give a local example which does not arise as a special Kähler manifold (Example 8.9). In addition, we find many (different) quaternionic structures on the tangent bundle of a conical special complex manifold in this example (Example 8.9), using a generalization of the supergravity c-map.

As an application of our H/Q-correspondence, we indeed generalize the supergravity c-map by associating a quaternionic manifold with every conical special complex manifold and therefore with every projective special complex manifold (using the extra data involved in the H/Q-correspondence), see Theorem 8.3. It is shown in Proposition 7.3 that any projective special complex manifold possesses a canonical c-projective structure and in Theorem 7.10 that its c-projective Weyl curvature is of type (1, 1). So our generalized supergravity c-map can be formulated as associating a quaternionic manifold to a projective special complex manifold endowed with its canonical c-projective structure with c-projective Weyl curvature of type (1, 1). This addresses one of the questions raised in [6], where a different construction of quaternionic manifolds from c-projective structures was obtained, compare Remark 8.5.

In the special case of the HK/QK-correspondence, the two-form Θ, which is part of the data entering the H/Q-correspondence, is the Z-invariant Kähler form ω₁ in the hyper-Kähler-triple (ω₁, ω₂, ω₃). However, in general, we have a freedom in the choice of Θ in the H/Q-correspondence (see Section 5). In particular we find two choices of Θ in Example 5.4 which yield different quaternionic structures on the resulting space. This shows that our H/Q-correspondence is not an inverse construction of the Q/H-correspondence without a further specification of Θ. It is left for future studies to find a suitable choice of Θ which gives an inverse construction.

We summarize our constructions in this paper as the following commutative diagram.

\[\begin{array}{c}
M: \text{conical hypercomplex} \\
\tilde{M}: \text{quaternionic} \\
N: \text{conical special complex} \\
\tilde{N}: \text{projective special complex}
\end{array} \]

\[\begin{array}{c}
(P, \eta) \\
\xrightarrow{U(1)} \\
(M = TN, f, \Theta) \xrightarrow{\text{conification}} \tilde{M} = C_P(M)
\end{array} \]

\[\begin{array}{c}
(N, J, \nabla, \xi) \xrightarrow{\text{rigid c-map}} (\tilde{N}, \tilde{J}, P_{\tilde{N}}) \\
\xrightarrow{\text{Theorem 5.9}} (\tilde{N}, \tilde{J}, P_{\tilde{N}}) \rightarrow \tilde{M} = \tilde{M}/\mathcal{D}
\end{array} \]

\[\begin{array}{c}
\text{Proposition 4.2} \\
\text{Theorems 5.7 and 1.3} \\
\text{Theorem 5.3} \\
\text{H/Q-corresp.}
\end{array} \]

\[\begin{array}{c}
\text{generalized supergravity c-map}
\end{array} \]

2 Preliminaries

Throughout this paper, all manifolds are assumed to be smooth and without boundary and maps are assumed to be smooth unless otherwise mentioned. The space of sections of a vector bundle $E \to M$ is denoted by $\Gamma(E)$.
In this section we introduce hypercomplex and quaternionic structures and derive some properties of conical hypercomplex manifolds.

We say that M is a quaternionic manifold with the quaternionic structure Q if Q is a subbundle of $\text{End}(TM)$ of rank 3 which at every point $x \in M$ is spanned by endomorphisms $I_1, I_2, I_3 \in \text{End}(T_x M)$ satisfying

$$I_1^2 = I_2^2 = I_3^2 = -\text{id}, \quad I_1 I_2 = -I_2 I_1 = I_3,$$

and there exists a torsion-free connection ∇ on M such that ∇ preserves Q, that is, $\nabla_X \Gamma(Q) \subset \Gamma(Q)$ for all $X \in \Gamma(TM)$. Such a torsion-free connection ∇ is called a quaternionic connection and the triplet (I_1, I_2, I_3) is called an admissible frame of Q at x. Note that we use the same letter ∇ for the connection on $\text{End}(TM)$ induced by ∇. The dimension of the quaternionic manifold M is denoted by $4n$.

An almost hypercomplex manifold is defined to be a manifold M endowed with 3 almost complex structures I_1, I_2, I_3 satisfying the quaternionic relations (2.1). If I_1, I_2, I_3 are integrable, then M is called a hypercomplex manifold. There exists a unique torsion-free connection on a hypercomplex manifold for which the hypercomplex structures are parallel. It is called the Obata connection [22]. Obviously, hypercomplex manifolds are quaternionic manifolds with $Q = \langle I_1, I_2, I_3 \rangle$.

Definition 2.1. We say that a hypercomplex manifold $(M, (I_1, I_2, I_3))$ with a vector field V is conical if $\nabla^0 V = \text{id}$ holds, where ∇^0 is the Obata connection. The vector field V is called the Euler vector field.

We state some lemmas for conical hypercomplex manifolds, which will be used later.

Lemma 2.2. Let $(M, (I_1, I_2, I_3), V)$ be a conical hypercomplex manifold. Then we have $L_V I_\alpha = 0$, $L_{I_\alpha V} I_\alpha = 0$ for $\alpha \in \{1, 2, 3\}$ and $L_{I_\alpha V} I_\beta = -2I_\gamma$ for any cyclic permutation (α, β, γ).

Proof. The formulas follow immediately from $L_V = \nabla^0 V - \nabla^0 V = \nabla^0 V - \text{id}$ and $L_{I_\alpha V} = \nabla^0_{I_\alpha V} - I_\alpha$. □

For a connection ∇ and $X \in \Gamma(TM)$, we define

$$L_X \nabla Y Z := L_X (\nabla Y Z) - \nabla L_X Y Z - \nabla_Y (L_X Z),$$

where $Y, Z \in \Gamma(TM)$. Note that $L_X \nabla$ is a tensor.

Lemma 2.3. Let $(M, (I_1, I_2, I_3), V)$ be a conical hypercomplex manifold. Then we have $L_V \nabla^0 = 0$ and $L_{I_\alpha V} \nabla^0 = 0$.

Proof. By Lemma 2.2 V and $I_\alpha V$ are quaternionic vector fields, namely $L_V \Gamma(Q) \subset \Gamma(Q)$ and $L_{I_\alpha V} \Gamma(Q) \subset \Gamma(Q)$, where $Q = \langle I_1, I_2, I_3 \rangle$. By [10] Proposition 4.2], it is enough to check $\text{Ric}^\nabla(V, \cdot) = 0$ and $\text{Ric}^\nabla(I_\alpha V, \cdot) = 0$. We have

$$\text{Ric}^\nabla(V, Y) = -\text{Ric}^\nabla(Y, V) = -\text{Tr} R^\nabla(\cdot, Y)V = 0.$$

Here we used the skew-symmetry of the Ricci tensor of the Obata connection. It follows that also $\text{Ric}^\nabla(I_\alpha V, \cdot) = -\text{Ric}^\nabla(V, I_\alpha \cdot) = 0$, by the hermitian property of the Ricci tensor of the Obata connection. □
Alternatively we could have used Lemma 2.2 and the explicit form of the Obata connection to check $L_{I_α}∇^0 = 0$. Note that $L_V∇^0 = 0$ follows from the uniqueness of the Obata connection, since the vector field V preserves the hypercomplex structure.

Example 2.4 (The Swann bundle). The principal $\mathbb{R}^+ \times SO(3)$ bundle over a quaternionic manifold, whose fibers consist of all volume elements and admissible frames at each point, possesses a hypercomplex structure (see [24, 10]). It is conical and is called the Swann bundle. The fundamental vector field generated by $c(\neq 0) \in T_1\mathbb{R}^+ = \mathbb{R}$ is the Euler vector field, as can be easily checked from the explicit representation of the Obata connection (see [5] for example). In the notation of [10] with $ε = -1$ and $c = -4(n + 1)$, a basis of fundamental vector fields for the principal action is given by the vector fields $V = Z_0$ and $Z_α = -I_αZ_0$ with non-trivial commutators $[Z_α, Z_β] = -2Z_γ$ and Lie derivatives $L_{Z_α}I_β = -2I_γ$ for any cyclic permutation of $\{1, 2, 3\}$, where we have denoted by (I_1, I_2, I_3) the hypercomplex structure of the Swann bundle. Specializing to the Swann bundle $\mathbb{H}^*/\{±1\}$ of a point, we see that Z_0 corresponds to 1 and (Z_1, Z_2, Z_3) to (i, j, k) in $T_1(\mathbb{H}^*/\{±1\}) = T_1\mathbb{H} = \mathbb{H}$.

Lemma 2.5. On any conical hypercomplex manifold $(M, (I_1, I_2, I_3), V)$, the distribution $\mathcal{D} := \langle V, I_1V, I_2V, I_3V \rangle$ on $\{x \in M \mid V_x \neq 0\}$ is integrable.

Proof. This follows from Lemma 2.2.

3 Conification of hypercomplex manifolds

The main result of this section is a construction of conical hypercomplex manifolds \hat{M} of dimension $\dim \hat{M} = \dim M + 4$ from hypercomplex manifolds M with a rotating vector field.

Let M be a hypercomplex manifold of dimension $4n$ with a hypercomplex structure $H = (I_1, I_2, I_3)$.

Definition 3.1. A vector field Z on a hypercomplex manifold $(M, (I_1, I_2, I_3))$ is called rotating if $L_ZI_1 = 0$ and $L_ZI_2 = -2I_3$.

Note that if Z is rotating, then $L_ZI_3 = 2I_2$. In this section we will essentially show that by choosing a (local) primitive of the one-form $ι_ZΘ$ we can construct a conical hypercomplex manifold (\hat{M}, \hat{H}, V) for a hypercomplex manifold (M, H) with a rotating vector field Z and a closed two-form $Θ$ such that $L_ZΘ = 0$.

Let f be a smooth function on M such that $df = -ι_ZΘ$ and $f_1 := f - (1/2)Θ(Z, I_1Z)$ is nowhere vanishing. Consider a principal $U(1)$-bundle $π : P \to M$ with a connection form $η$ whose curvature form is

$$dη = π^* \left(Θ - \frac{1}{2}d((ι_ZΘ) \circ I_1) \right).$$

Since the curvature $dη$ is a basic form, we will usually identify it with its projection $Θ - \frac{1}{2}d((ι_ZΘ) \circ I_1)$ on M. With this understood we have the following lemma, which follows immediately from the definition of f_1.

5
Lemma 3.2. \(df_1 = -t_Zdf \).

Define a vector field \(Z_1 \) on \(P \) by \(Z_1 = Z^{h_0} + (\pi^*f_1)x_P \), where \(Z^{h_0} \) is the \(\eta \)-horizontal lift and \(X_P \) is the fundamental vector field such that \(\eta(X_P) = 1 \). We will write \(f_1 \) for \(\pi^*f_1 \).

Remark 3.3. Note that \([X_P, Z_1] = 0\). Therefore if \(Z_1 \) generates a U(1)-action on \(P \), then its action commutes with the principal action of \(\pi : P \to M \).

Set \(\hat{M} = \mathbb{H}^* \times P \). Let \((e_0^R, e_1^R, e_2^R, e_3^R) \) (resp. \((e_0^L, e_1^L, e_2^L, e_3^L) \)) be the right-invariant (resp. the left-invariant) frame of \(\mathbb{H}^* \) which coincides with \((1, i, j, k) \) at \(1 \in \mathbb{H}^* \). Note that \([e_1^R, e_2^R] = -2e_3^R \). We will use the same letter for vectors or vector fields canonically lifted to the product \(\hat{M} = \mathbb{H}^* \times P \) as for those on the factors \(\mathbb{H}^* \) and \(P \). Set

\[V_1 := e_1^L - Z_1. \]

We denote the space of integral curves of \(V_1 \) by \(\hat{M} \). We assume that the quotient map \(\hat{\pi} : \hat{M} \to \hat{M} \) is a submersion. Note that “submersion” requires that the quotient space \(\hat{M} \) is smooth.

Lemma 3.4. We assume that the equation (3.7) holds. If \(L_ZI_1 = 0 \) and \(L_Z\Theta = 0 \), we have

\[L_{V_1}Y^{h_0} = -[Z, Y]^{h_0} \]

for all \(Y \in \Gamma(TM) \).

Proof.

\[
-L_{V_1}Y^{h_0} = -[e_1^L - Z_1, Y^{h_0}] = [Z_1, Y^{h_0}]
= [Z^{h_0}, Y^{h_0}] + [f_1X_P, Y^{h_0}] = [Z^{h_0}, Y^{h_0}] - (Y^{h_0}f_1)X_P
= [Z, Y]^{h_0} + \eta([Z^{h_0}, Y^{h_0}])X_P - (Y^{h_0}f_1)X_P
= [Z, Y]^{h_0} - d\eta(Z, Y)X_P - (Yf_1)X_P
= [Z, Y]^{h_0},
\]

where we have used Lemma 3.2. \(\Box \)

Note that

\[
T_{(z, p)}\hat{M} \cong T_z\mathbb{H}^* \oplus T_pP = \langle e_0^R, e_1^R, e_2^R, e_3^R \rangle_z \oplus \langle X_P \rangle_p \oplus \text{Ker } \eta_p
= \langle V_1 \rangle_{(z, p)} \oplus \langle e_0^R, e_1^R, e_2^R, e_3^R \rangle_z \oplus \text{Ker } \eta_p
\]

for \((z, p) \in \mathbb{H}^* \times P \). We define three endomorphisms fields \(\tilde{I}_1, \tilde{I}_2, \tilde{I}_3 \) on \(\hat{M} \) of rank \(\tilde{I}_\alpha = 4n + 4 \) \((\alpha = 1, 2, 3) \) as follows:

\[
\tilde{I}_\alpha V_1 = 0, \quad \tilde{I}_\alpha e_\alpha^R = e_\alpha^R, \quad \tilde{I}_\alpha e_\alpha^L = -e_\alpha^L, \quad \tilde{I}_\alpha e_\beta^R = e_\gamma^R, \quad \tilde{I}_\alpha e_\gamma^R = -e_\beta^R,
\]

\[
(\tilde{I}_\alpha)_{(z, p)}((Y^{h_0})_{(z, p)}) = ((I_\alpha^p)_{(z, p)}(\pi_*(Y)))^{h_0}_{(z, p)}
\]
for \(Y \in T_pM \). Here \(I'_\alpha \) is defined by

\[
(3.2) \quad I'_\alpha = \sum_{\beta=1}^{3} A_{\alpha\beta} I_\beta,
\]

where \(A = (A_{\alpha\beta}) \in \text{SO}(3) \) is the representation matrix of \(\text{Ad}_z|_{\text{ImH}} \) with respect to the basis \((i, j, k)\). Note that \(\text{Ker} \tilde{I}_\alpha = \langle V_1 \rangle \), \(\text{Im} \tilde{I}_a = T\mathbb{H}^* \oplus \text{Ker} \eta (\alpha = 1, 2, 3) \) and that \(\tilde{I}_1, \tilde{I}_2, \tilde{I}_3 \) satisfy the quaternionic relations on \(T\mathbb{H}^* \oplus \text{Ker} \eta \).

Lemma 3.5. \(L_{e^R_0} \tilde{I}_\alpha = 0. \)

Proof. The flow \(\varphi_t : (z, p) \mapsto (e^t z, p) \) of \(e^R_0 \) preserves the decomposition \(\tilde{M} = \mathbb{H}^* \times P \) and acts trivially on the second factor. In particular, it preserves the distribution \(\text{Ker} \eta \). The action on the first factor is tri-holomorphic with respect to the (standard) hyper-complex structure induced by \(\tilde{I}_\alpha \) on \(\mathbb{H}^* \). Since \(\text{Ad}_z = \text{Ad}_z e \) for all \(r > 0 \), we also see that \(\varphi_t \) preserves the tensors \(\tilde{I}_\alpha|_{\text{Ker} \eta} \).

Lemma 3.6. If \(Z \) is rotating and \(L_Z \Theta = 0 \), then we have \(L_{V_1} \tilde{I}_\alpha = 0. \)

Proof. By the definition of \(\tilde{I}_\alpha \), it is easy to obtain \((L_{V_1} \tilde{I}_\alpha)V_1 = 0 \) and \((L_{V_1} \tilde{I}_\alpha)e^R_0 = 0 \) \((\delta = 0, \ldots, 3)\). Moreover, by Lemma 3.4 we have

\[
(L_{V_1} \tilde{I}_\alpha)(z, p)(Y^{h_0}) = [V_1, \tilde{I}_\alpha Y^{h_0}](z, p) - \tilde{I}_\alpha[V_1, Y^{h_0}](z, p)
\]

\[
= [e^t_1, \tilde{I}_\alpha Y^{h_0}](z, p) - [Z_1, \tilde{I}_\alpha Y^{h_0}](z, p) + \tilde{I}_\alpha[Z_1, Y]^{h_0}(z, p)
\]

\[
= [e^t_1, \tilde{I}_\alpha Y^{h_0}](z, p) - [Z^h, \tilde{I}_\alpha Y^{h_0}](z, p) - [f_1 X_P, \tilde{I}_\alpha Y^{h_0}](z, p) + (I'_{\alpha}[Z, Y])^{h_0}(z, p)
\]

\[
= [e^t_1, \tilde{I}_\alpha Y^{h_0}](z, p) - ([L_{V_1'} Y]Y^{h_0})(z, p),
\]

where we have used that \([Z^h_\eta, \tilde{I}_\alpha Y^{h_0}] + [f_1 X_P, \tilde{I}_\alpha Y^{h_0}] = [Z, I'_{\alpha} Y]^{h_0} + \eta([Z, I'_{\alpha} Y])X_P - (I'_{\alpha} Y)(f_1)X_P = [Z, I'_{\alpha} Y]^{h_0} \) at the point \((z, p)\), by Lemma 3.2 Taking the flow \(\varphi_t \) generated by \(e^t_1 \), we have

\[
[e^t_1, \tilde{I}_\alpha Y^{h_0}](z, p) = \sum_{\beta=1}^{3} \left(\frac{d}{dt} \bigg|_{t=0} A_{\alpha\beta}(t) \right) (I_\beta Y)^{h_0}(z, p),
\]

where

\[
A(t) = (A_{\alpha\beta}(t)) = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos 2t & \sin 2t \\
0 & -\sin 2t & \cos 2t
\end{pmatrix} \in \text{SO}(3),
\]

is the matrix associated with \(\varphi_t(z) \). On the other hand, we see that

\[
L_Z I'_1 = -2A_{12} I_3 + 2A_{13} I_2,
\]

\[
L_Z I'_2 = -2A_{22} I_3 + 2A_{23} I_2,
\]

\[
L_Z I'_3 = -2A_{32} I_3 + 2A_{33} I_2.
\]
and hence
\[
L_Z(I'_1, I'_2, I'_3) = (L_Z I'_1, L_Z I'_2, L_Z I'_3) = (I_1, I_2, I_3) \left(\frac{d}{dt} A(t) \right).
\]

Therefore we have \((LV_i I_\alpha)(z,\rho)(Y^{h_\alpha}) = 0\).

By Lemma \ref{lemma3.6} we can define an almost hypercomplex structure \((\hat{I}_1, \hat{I}_2, \hat{I}_3)\) on \(\hat{M}\) satisfying \(\pi_s \circ \hat{I}_\alpha = \hat{I}_\alpha \circ \pi_s\).

Lemma 3.7. The almost hypercomplex structure \(\hat{H} = (\hat{I}_1, \hat{I}_2, \hat{I}_3)\) is integrable, that is, \((\hat{M}, \hat{H})\) is a hypercomplex manifold.

Proof. Let \(\hat{X}\) and \(\hat{Y}\) be projectable vector fields on the total space of the submersion \(\pi : \hat{M} \to \hat{M}\) and denote by \(X = \pi_s \hat{X}, Y = \pi_s \hat{Y}\) their projections. Then we have \(\pi_s (N^I_\alpha (X, Y)) = N^I_\alpha (\hat{X}, \hat{Y})\), where \(N^I_\alpha\) and \(N^\hat{I}_\alpha\) are the Nijenhuis tensors of \(\hat{I}_\alpha\) and \(\hat{I}_\alpha\), respectively. Using that \(\hat{I}_\alpha V_1 = 0\) and \(L_{V_1} \hat{I}_\alpha = 0\) (Lemma \ref{lemma3.6}) we see that \(N^I_\alpha (V_1, \cdot) = 0\). Since \(N^I_\alpha\) and \(N^\hat{I}_\alpha\) are tensors, it is sufficient to show that the horizontal component of \(N^I_\alpha (A, B)\) vanishes for sections \(A\) and \(B\) of \(\langle e_0^R, e_1^R, e_2^R, e_3^R \rangle \oplus \text{Ker} \eta\). It is easy to see that \(N^I_\alpha (e_a^R, e_b^R) = 0\) and \(N^I_\alpha (e_a^R, X^{h_\alpha}) = 0\), for all \(a, b \in \{0, \ldots, 3\}\). So we only need to show that the horizontal component of \(N^I_\alpha (X^{h_\alpha}, Y^{h_\beta})\) vanishes, i.e. the component in \(\langle e_0^R, e_1^R, e_2^R, e_3^R \rangle \oplus \text{Ker} \eta\). It is given by

\[
([X, Y] + I'_\alpha [X, I'_\alpha Y] + I'_\alpha [I'_\alpha X, Y] - [I'_\alpha X, I'_\alpha Y])^{h_\alpha} = 0,
\]

since \((I'_1, I'_2, I'_3)\) is a hypercomplex structure on \(M\), for every \(z \in \mathbb{H}^*\).

Since \(L_{V_1} e_0^R = 0\), we can define a vector field \(V = \pi_s e_0^R\) on \(\hat{M}\). Let \(\hat{V}^0\) be the Obata connection with respect to \(\hat{H}\).

Lemma 3.8. We have \(\hat{V}^0 V = \text{id}\).

Proof. Using the explicit representation of the Obata connection (see \ref{section3} for example) and Lemma \ref{lemma3.5} we have

\[
12(\hat{V}^0_{\pi_s Y} \pi_s e_0^R) = \pi_s \left(\sum_{(\alpha, \beta, \gamma)} (\hat{I}_\alpha [\hat{I}_\beta Y, e_\gamma^R] + \hat{I}_\alpha [e_\beta^R, \hat{I}_\gamma Y]) + 2 \sum_{a=1}^3 \hat{I}_a [e_a^R, Y] \right),
\]

where \((\alpha, \beta, \gamma)\) indicates sum over cyclic permutations of \((1, 2, 3)\) and \(Y\) is a projectable vector field on \(\hat{M}\) commuting with \(e_0^R\). Evaluating the expression on \(Y = e_a^R\) and \(Y = U^{h_\alpha}\), we obtain \(12 \pi_s Y\).

As a consequence, by Lemmas \ref{lemma3.7} and \ref{lemma3.8} we can conclude
Theorem 3.9 (Conification). Let M be a hypercomplex manifold with a hypercomplex structure $H = (I_1, I_2, I_3)$, a closed two-form Θ and a rotating vector field Z such that $L_Z \Theta = 0$. Let f be a smooth function on M such that $df = -\iota_Z \Theta$ and assume $f_1 := f - (1/2)\Theta(Z, I_1 Z)$ does nowhere vanish. Consider a principal $U(1)$-bundle $\pi : P \to M$ with a connection form η whose curvature form is

$$d\eta = \pi^* \left(\Theta - \frac{1}{2} d((\iota_Z \Theta) \circ I_1) \right).$$

If the quotient map $\tilde{\pi} : \tilde{M} \to \hat{M}$ is a submersion, then (\hat{M}, \hat{H}) is a conical hypercomplex manifold with the Euler vector field $V = \tilde{\pi}^* e^0_R$.

Remark 3.10. The assumption that $\tilde{\pi}$ is a submersion is always satisfied locally by considering local 1-parameter subgroup generated by V_1, since the vector field V_1 has no zeros. Note that “submersion” requires that the quotient space is a smooth manifold.

We say that (\hat{M}, \hat{H}, V) is the conification of (M, H, Z, f, Θ) associated with (P, η) and denote it by $(\hat{M}, \hat{H}, V) = \mathcal{C}_P(M, H, Z, f, \Theta)$ (or simply $\hat{M} = \mathcal{C}_P(M)$ if there is no confusion).

4 The hypercomplex/quaternionic-correspondence

Building on the conification construction of the last section we will now construct a quaternionic manifold \tilde{M} of dimension $\dim \tilde{M} = \dim M$ from a hypercomplex manifold M with rotating vector field. The resulting quaternionic manifold is endowed with a torsion-free quaternionic connection and an affine quaternionic vector field X.

The space of leaves of the integrable distribution $\mathcal{D} := \langle V, I_1 V, I_2 V, I_3 V \rangle$ on \hat{M} is denoted by \tilde{M}. We shall show that $\tilde{M} = \mathcal{C}_P(M)/\mathcal{D}$ is a quaternionic manifold, which is the main theorem of this paper. In addition, we show that \hat{M} has a natural quaternionic connection $\tilde{\nabla}$ and an affine quaternionic vector field X induced from the fundamental vector field X_P of $P \to M$.

Using Theorem 3.9 and a similar argument as in [24, Theorem 2.1], we prove Theorem 4.1.

Theorem 4.1 (H/Q-correspondence). Let M be a hypercomplex manifold with a hypercomplex structure $H = (I_1, I_2, I_3)$, a closed two-form Θ and a rotating vector field Z such that $L_Z \Theta = 0$. Let f be a smooth function on M such that $df = -\iota_Z \Theta$ and assume that $f_1 := f - (1/2)\Theta(Z, I_1 Z)$ does nowhere vanish. Consider a principal $U(1)$-bundle $\pi : P \to M$ with a connection form η whose curvature form is

$$d\eta = \pi^* \left(\Theta - \frac{1}{2} d((\iota_Z \Theta) \circ I_1) \right).$$

If both quotient maps $\tilde{\pi} : \tilde{M} \to \hat{M}$ and $\hat{\pi} : \hat{M} \to \tilde{M}$ defined above are submersions, then there exists an induced quaternionic structure \hat{Q} on \tilde{M}.
Proof. As we proved in Theorem 3.9, \(\bar{M} = \mathcal{C}_p(M) \) is a conical hypercomplex manifold with the hypercomplex structure \(H = (I_1, I_2, I_3) \). Let \(\varphi = \sum_{a=0}^{3} \varphi_a i_a \) (\((i_0, i_1, i_2, i_3) = (1, i, j, k) \)) be the right-invariant Maurer-Cartan form on \(\mathbb{H}^* \) and extend it with the same letter to \(\bar{M} \) as \(\varphi|_\mathbb{P} = 0 \). Set \(\bar{\theta}_0 = \varphi_0 \). Since \(L_{\bar{V}} \bar{\theta}_0 = 0 \), we can define the one-form \(\bar{\theta}_0 \) on \(\bar{M} \) such that \(\bar{\theta}_0 = \bar{\pi}^* \bar{\theta}_0 \). We define \(\bar{\theta}' = \bar{\theta}_0 + \sum_{a=1}^{3} (\bar{\theta}_0 \circ \bar{I}_a) i_a \) and take the Euler vector field \(\bar{V} \) on \(\bar{M} \) as in Theorem 3.9. Here define an \(\bar{I}_a \)-invariant distribution

\[
\bar{\mathcal{H}} := \text{Ker} \bar{\theta}'.
\]

It holds that \(T\bar{M} = \mathcal{D} \oplus \bar{\mathcal{H}} \). Since \(L_{\bar{V}} \bar{\theta}' = 0 \) and \(L_{\bar{I}_a V} \bar{\theta}' = 2(\bar{\theta}_0 \circ \bar{I}_a) i_a \beta - 2(\bar{\theta}_0 \circ \bar{I}_a) i_\beta \) for any cyclic permutation \((\alpha, \beta, \gamma) \) (these are checked by straightforward calculations), the distribution \(\bar{\mathcal{H}} \) is invariant along leaves of \(\mathcal{D} \). Since \(\bar{\pi} \) is a submersion, there exist a neighborhood \(\mathcal{U} \subset \bar{M} \) of \(x \in \bar{M} \) and a section \(s : \mathcal{U} \to \bar{M} \). Then we can define

\[
\bar{I}_a(Y) := \bar{\pi}_s(\bar{I}_a(Y_{\bar{\pi}(y)})�,
\]

for \(y \in \mathcal{U} \), where \(Y \in T_y \bar{M} \) and \(Y^{h\psi} \) is the \(\bar{\theta}' \)-horizontal lift of \(Y \) with respect to \(\bar{\mathcal{H}} \). Although each \(\bar{I}_a \) depends on the sections, the subbundle \(\bar{\mathcal{Q}} = \langle \bar{I}_1, \bar{I}_2, \bar{I}_3 \rangle \subset \text{End}(T\bar{M}) \) is independent of the section by Lemma 2.2. This means that \((\bar{M}, \bar{\mathcal{Q}})\) is an almost quaternionic manifold.

Next we show that there exists a torsion-free connection which preserves \(\bar{\mathcal{Q}} \). We define a connection \(\bar{\nabla} \) on \(\bar{M} \) by

\[
(4.1) \quad \bar{\nabla}_Y W = \bar{\pi}_s(\bar{\nabla}_Y^{h\psi} W^{h\psi}), \quad Y, W \in \Gamma(T\bar{M}),
\]

where \(\bar{\nabla}^{h\psi} \) is the Obata connection of \(\bar{M} \). Note that \(\bar{\nabla} \) is well-defined by Lemma 2.3. Since the Obata connection is torsion-free, then so is \(\bar{\nabla} \). To show that \(\bar{\nabla} \) preserves \(\bar{\mathcal{Q}} \), we consider \(I \in \Gamma(\bar{\mathcal{Q}}) \). Then \((IW)^{h\psi} = \sum_{a=1}^{3} a_{\alpha} \bar{I}_a W^{h\psi} \) for some functions \(a_{\alpha} \) with \(\sum_{a=1}^{3} a_{\alpha}^2 = 1 \), which implies

\[
(\bar{\nabla}_Y I)W = \bar{\pi}_s(\sum_{a=1}^{3} (Y^{h\psi} a_{\alpha}) \bar{I}_a W^{h\psi}),
\]

showing that \(\bar{\nabla} \) preserves \(\bar{\mathcal{Q}} \). Therefore \((\bar{M}, \bar{\mathcal{Q}}, \bar{\nabla})\) is a quaternionic manifold. \(\square \)

Remark 4.2. The assumption that \(\bar{\pi} \) is a submersion is always satisfied locally.

Next we shall show that our construction induces a vector field \(\bar{X} \) which is an affine quaternionic vector field of \((\bar{M}, \bar{\mathcal{Q}}, \bar{\nabla})\), where \(\bar{\nabla} \) is given by (4.1). \(\square \)

Lemma 4.3. We have \(L_{\bar{V}_1} X_P = 0 \) and \(L_{X_P} \bar{I}_a = 0 \).

Proof. The first equation can be checked by a straightforward calculation. The second follows from \([X_P, \bar{I}_a Y^{h\eta}] = [X_P, (\bar{I}_a Y)^{h\eta}] = 0\). \(\square \)

By Lemma 4.3 we can define a vector field \(\bar{X}_P := \bar{\pi}_s X_P \) on \(\bar{M} \). Moreover \(\bar{X}_P \) satisfies the following.
Lemma 4.4. We have \(L_{X_P} \hat{\theta}_0 = 0 \), in addition, \(L_{X_P} \hat{\nabla}^0 = 0 \).

Proof. The first claim follows from Lemma 4.3, as \((L_{X_P} \hat{\theta}_0) \circ \hat{\pi}_* = \hat{\pi}_* \circ (L_{X_P} \hat{\theta}_0)\). Since the Obata connection is uniquely determined by the hypercomplex structure, we have \(L_{X_P} \hat{\nabla}^0 = 0 \) by the invariance of the hypercomplex structure \((\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3)\) under \(\hat{X}_P \). \(\square \)

The next two lemmas follow respectively from \([e^R_p, X_P] = 0\) and \(L_{X_P} \hat{\theta}_0 = 0 \) by projection.

Lemma 4.5. We have \(L_Y \hat{X}_P = 0 \) and \(L_{\hat{A}_V} \hat{X}_P = 0 \).

Lemma 4.6. We have \(L_{\hat{X}_P} \hat{\theta}_0 = 0 \) on \(\hat{M} \).

Lemma 4.5 allows us to define a vector field \(X := \hat{\pi}_* \hat{X}_P \) on \(\hat{M} \).

Proposition 4.7. Let \((\hat{M}, \hat{Q})\) be a quaternionic manifold obtained from a hypercomplex manifold \(M \) satisfying the assumptions in Theorem 4.1 and \(\nabla \) the quaternionic connection defined by (4.1). The vector field \(X \) is an affine quaternionic vector field of \((\hat{M}, \hat{Q}, \hat{\nabla})\), that is, satisfies \(L_X \Gamma(\hat{Q}) \subset \Gamma(\hat{Q}) \) and \(L_X \hat{\nabla} = 0 \).

Proof. It follows easily from Lemma 4.4 that \(X \) preserves the quaternionic structure \(\hat{Q} \). From Lemma 4.6 and the closure of \(\theta_0 \) we do also obtain that \(p_h[\hat{X}_P, Y^{h\theta}] = 0 \), where \(p_h \) and \(p_v \) denote the projections from \(T\hat{M} \) onto the horizontal and vertical subbundles, respectively. Using this, for any vector fields \(Y \) and \(W \) on \(\hat{M} \), we compute

\[
(L_X \hat{\nabla})_Y W = \hat{\pi}_* \left([\hat{X}_P, \hat{\nabla}^0] Y^{h\theta} W^{h\phi} - \hat{\nabla}^0 p_h[\hat{X}_P, Y^{h\theta}] W^{h\phi} - \hat{\nabla}^0 Y^{h\theta} p_h[\hat{X}_P, W^{h\phi}] \right)
\]

We call the correspondence from a hypercomplex manifold \((M, H, Z, f, \Theta)\) to a quaternionic manifold \((\hat{M}, \hat{Q}, \hat{\nabla}, \hat{X})\) described in Theorem 4.1 (and Proposition 4.7 for the additional structure \(X \)) the hypercomplex/quaternionic-correspondence \((H/Q\)-correspondence\) for short. As we mentioned in Remarks 3.10 and 4.2, the global assumption in Theorem 4.1 (H/Q-correspondence) that \(\hat{\pi} \) and \(\hat{\pi} \) are submersions is always satisfied locally. Under stronger assumptions and by considering Swann’s twist [27], we have the following global result. We use the notation \(\zeta_A \) for the action induced from the group \(\langle A \rangle \) generated by a vector field \(A \) to distinguish \(U(1) \)-actions.

Theorem 4.8 (H/Q-correspondence, second version). Let \(M \) be a hypercomplex manifold with a hypercomplex structure \(H = (I_1, I_2, I_3) \), a closed two-form \(\Theta \) and a rotating vector field \(Z \) such that \(L_Z \Theta = 0 \). Let \(f \) be a smooth function on \(M \) such that \(df = -\iota_Z \Theta \) and assume that \(f_1 := f - (1/2)\Theta(Z, I_1Z) \) does nowhere vanish. Consider a principal \(U(1) \)-bundle \(\pi : P \to M \) with a connection form \(\eta \) whose curvature form is

\[
d\eta = \pi^* \left(\Theta - \frac{1}{2} d((\iota_Z \Theta) \circ I_1) \right).
\]

If \(Z_1 = Z^{h\eta} + f_1 X_P \) generates a free \(U(1) \)-action on \(P \), then the conification \(\hat{M} \) of \(M \) is \(\mathbb{H}^n \times_{\langle V_1 \rangle} P \) and the quaternionic manifold \(\hat{M} \) coincides with the twist of \(M \) given by the twist data \((\Theta - \frac{1}{2} d((\iota_Z \Theta) \circ I_1), Z, f_1) \) as manifolds.
Proof. By Lemma 3.2, we see \(\iota_Z d\eta = -df_1 \). It follows that \(L_Z \Theta = 0 \) and \(L_Z I_1 = 0 \). Therefore we obtain a twist \(M' := P/\langle Z_1 \rangle \) of \(M \) with the twist data \((\Theta - \frac{1}{2} d((\iota_Z \Theta) \circ I_1), Z, f_1) \) since \(Z_1 = Z^{\theta_1} + f_1 X_F \) generates a free U(1)-action. Let \(\pi' : P \to M' \) be the quotient map by the action of \(\langle Z_1 \rangle \). We define an action of \(\langle V_1 \rangle (\cong U(1)) \subset \langle e_1^F \rangle \times \langle Z_1 \rangle \) on \(\mathbb{H}^* \times P \) by

\[
\zeta_{V_1}(u)(z, p) = (\zeta_{V_1}(u)z, \zeta_{Z_1}(u^{-1})p)
\]

for \((z, p) \in \mathbb{H}^* \times P\). We see that the conification \(\tilde{M} \) of \(M \) is a fiber bundle \((\mathbb{H}^* \times P)/\langle V_1 \rangle \) over \(M' \), which is associated with \(\pi' : P \to M' \) and usually denoted by \(\mathbb{H}^* \times_{\langle V_1 \rangle} P \). Moreover the quotient of \(\tilde{M} \) by \(\mathbb{H}^* \) is \(M' \), that is, \(\tilde{M} = M' \).

\[
\tilde{M} = \mathbb{H}^* \times P \\
P \downarrow \pi_2 \downarrow \tilde{\pi} \\
\pi \\
\tilde{M} = \mathbb{H}^* \times_{\langle V_1 \rangle} P \\
P \downarrow \pi' \downarrow \tilde{\pi}' \\
\pi' \downarrow \tilde{\pi}' \\
\tilde{M} = \mathbb{H}^* \times P \\
\tilde{\pi} \downarrow \tilde{\pi} \\
\tilde{M} = \mathbb{H}^* \times P
\]

In the above diagram, \(\pi_2 \) is the projection onto the second factor \(P \). \(\square \)

Remark 4.9. Note that the bundle \(\tilde{\pi} : \tilde{M} \to \tilde{M} \) is associated to the principal \(U(1) \)-bundle \(P \to \tilde{M} = M' = P/\langle Z_1 \rangle \). Therefore sections of \(\tilde{\pi} \) are in one-to-one correspondence with equivariant maps \(P \to \mathbb{H}^* \). Let \(\lambda : P \to \mathbb{H}^* \) be such that \(\lambda(\zeta_{Z_1}(u)p) = \zeta_{e_1^F}(u^{-1})\lambda(p) \) for all \(u \in U(1) \) and \(p \in P \) and set \(F_{\lambda} := [\lambda, \text{id}]_{\langle V_1 \rangle} : P \to \tilde{M} \). If we consider a local section \(s : U(\subset \tilde{M} = M') \to P \), then \(s' := F_{\lambda} \circ s : U \to \tilde{M} \) is a local section of \(\tilde{\pi} : \tilde{M} \to \tilde{M} \) and the equivariance of \(\lambda \) implies that \(s' \) is independent of \(s \). As we observed in the proof of Theorem 4.1, the quaternionic structure \(\tilde{Q} = \langle \tilde{I}_1, \tilde{I}_2, \tilde{I}_3 \rangle \) on \(\tilde{M} \) is induced from the hypercomplex structure on \(\tilde{M} \) and a local section \(s' \). For \(Y \in T_x \tilde{M} \), we have

\[
\tilde{I}_\alpha(Y) = \hat{\pi}_s(\tilde{I}_\alpha Y_{s(X)}^{h_{\theta_1^F}}) = \hat{\pi}_s(\tilde{I}_\alpha s' Y),
\]

since the decomposition \(T\tilde{M} = D \oplus \mathcal{H} \) is \(\hat{I}_\alpha \)-invariant. From \(s' = F_{\lambda} \circ s = [\lambda \circ s, s]_{\langle V_1 \rangle} = \tilde{\pi} \circ (\lambda \circ s, s) \), it holds that

\[
\tilde{I}_\alpha(Y) = \hat{\pi}_s(\tilde{I}_\alpha s' Y) = \hat{\pi}_s(\tilde{I}_\alpha ((\lambda \circ s)_s(Y) + s_s Y)) = \hat{\pi}_s(\tilde{I}_\alpha ((\lambda \circ s)_s(Y) + s_s Y)) = \pi' (\pi' s(\tilde{I}_\alpha s_s Y)).
\]
Note that \((\lambda \circ s)_s(Y) + s_s Y \in T(\lambda(s(x)), s(x)) \tilde{M}\).

Next we consider the decomposition \(TP|_{s(U)} = (Z_1) \oplus s_*(TU)\). Let \(p^\vee\) be the projection from \(TP|_{s(U)}\) onto \(s_*(TU)\). Note that \(s_*(T_z U)\) is generated by the tangent vectors of the form \(p^\vee(W_{h_0}^\alpha) \coloneqq W^\vee\) at each point \(s(x)\), where \(W\) is a tangent vector of \(M\) at \(\pi(s(x))\) and \(\eta\) is the connection form on \(P\). We define (an almost hypercomplex structure) \(I^\vee_\alpha\) on \(s(U)\) by \(I^\vee_\alpha(W^\vee) = (I^\vee_\alpha W)^\vee\) for each \(W^\vee \in s_*(T_z U)\), where \(I^\vee_\alpha\) is given by (3.2) for \(z = \lambda(s(x))\). Since \(\tilde{I}_\alpha(Z_1) = \tilde{I}_\alpha(e_1^\prime) \in T\mathbb{H}^*\) (by \(\tilde{I}_\alpha V_1 = 0\)), we have
\[
(4.3) \quad p^\vee(\pi_2s(\tilde{I}_\alpha(W^\vee))) = p^\vee(\pi_2s(\tilde{I}_\alpha(W_{h_0} + aZ_1))) = p^\vee(\tilde{I}_\alpha W_{h_0}) = p^\vee((I^\vee_\alpha W)^{h_0}) = (I^\vee_\alpha W)^\vee = I^\vee_\alpha(W^\vee),
\]
where \(a \in \mathbb{R}\). Then it holds that
\[
\tilde{I}_\alpha(Y) = \pi_1s(\pi_2s(\tilde{I}_\alpha s_s Y)) = \pi_1s(p^\vee(\pi_2s(\tilde{I}_\alpha s_s Y))) = \pi_1s((I^\vee_\alpha s_s Y))
\]
from (4.2) and (4.3). Therefore \(\tilde{Q}\) can be identified with \((I^\vee_1, I^\vee_2, I^\vee_3)\) on \(s(U)\). Note that \((I^\vee_1, I^\vee_2, I^\vee_3)\) is independent of the choice of \(\lambda\), and hence it is shown again that \(\tilde{Q}\) is independent of the choice of \(\lambda\), which is identified with a section of \(\tilde{M}\).

Note that a quaternionic Kähler metric obtained by the HK/QK-correspondence is described directly in terms of the objects on \(P\) (instead of \(M\)) in [4, 21].

Remark 4.10. The conification \(\tilde{M}\) of \(M\) is locally isomorphic to the Swann bundle of \(M\), which is conical as discussed in Example 2.3. Note that the Swann bundle is an \(\mathbb{H}^*/\{\pm 1\}\)-bundle over a quaternionic manifold whereas \(\tilde{M}\) is the quotient of \(\tilde{M}\) by \(\mathbb{H}^*\) as above. Indeed, take an open set \(U\) of \(\tilde{M}\) and local sections \(s : U \rightarrow \tilde{M}\), \(s' : U \rightarrow \mathcal{U}(M)\), where \(\pi^{Sw} : \mathcal{U}(M) \rightarrow \tilde{M}\) is the Swann bundle of \(M\). For a local trivialization \(\Phi : \hat{\pi}^{-1}(U) \rightarrow U \times \mathbb{H}^*\) associated to \(s\) and given by \(\Phi(x) = (\hat{\pi}(x), \phi(x))\), we can define a double covering \(F : \hat{\pi}^{-1}(U) \rightarrow (\pi^{Sw})^{-1}(U)\) by
\[
F(x) = \Phi^{-1}(s'((\hat{\pi}(x)), p(\phi(x))).
\]
Here \(\Phi' : (\pi^{Sw})^{-1}(U) \rightarrow U \times \mathbb{H}^*/\{\pm 1\}\) is a local trivialization associated to \(s'\) and \(p : \mathbb{H}^* \rightarrow \mathbb{H}^*/\{\pm 1\}\) is the projection. See [21, 6] for the (twisted) Swann bundle.

5 Examples of the H/Q-correspondence

In this section, we give examples of the H/Q-correspondence.

Example 5.1 (HK/QK-correspondence). Let \((M, g, H = (I_1, I_2, I_3))\) be a (possibly indefinite) hyper-Kähler manifold with a rotating Killing vector field \(Z\) and \(f\) a nowhere vanishing smooth function such that \(df = -i_\zeta \Theta\), where \(\Theta\) is the Kähler form with respect to \(g\) and \(I_1\). Set \(f_1 = f - (1/2)g(Z, Z)\) and assume that the functions \(g(Z, Z)\) and \(f_1\) are nowhere zero. From these data, we can obtain a (possibly indefinite) quaternionic Kähler manifold \((\tilde{M}, \tilde{g})\) [13, 21, 4]. The metric \(\tilde{g}\) is positive definite under the assumptions specified in [2, Corollary 2] for the signs of the functions \(f, f_1\) and for the signature of \(g\). Also the sign of the scalar curvature of \(\tilde{M}\) is determined by these choices.
In the HK/QK-correspondence, the initial data Θ is a non-degenerate 2-form. In our more general setting, we may also choose $\Theta = 0$, like in the following example.

Example 5.2 (Conical hypercomplex manifold). Let $(M, (I_1, I_2, I_3), V)$ be a conical hypercomplex manifold with the Euler vector field V. Choose $f_1 = f = 1$, $\Theta = 0$, and consider the trivial principal bundle $P = M \times U(1)$ with the connection $\eta = dt$, where t is the angular coordinate of $U(1)$ such that $dt(X_P) = 1$ on the fundamental vector field X_P. We assume that $Z := I_1 V$ generates a free $U(1)$-action on M and that the periods of Z, X_P and e^t_1 are the same. It holds that Z is rotating from Lemma [2.2]. Then V_1 generates a free $U(1)$-action on $\tilde{M} = H^* \times P = H^* \times M \times U(1)$ of the same period.

Therefore

$$\tilde{M}(= (H^* \times M \times U(1))/\langle V_1 \rangle) \ni [z, p, q] = [zq, \zeta (q^{-1})p, 1] \mapsto (zq, \zeta (q^{-1})p) \in H^* \times M$$

gives a diffeomorphism $\tilde{M} \cong H^* \times M$, and hence $\tilde{M} \cong M$ as smooth manifolds. In fact, we can define a diffeomorphism $\varphi : M \rightarrow M'(= \tilde{M})$ by $\varphi'(x) = \pi'(x, 1)$. A global section $\tilde{M} \rightarrow \tilde{M}$ gives rise to a hypercomplex structure $(\tilde{I}_1, \tilde{I}_2, \tilde{I}_3)$ on \tilde{M} but the latter does not coincide with (I_1, I_2, I_3) in general (under the diffeomorphism φ'). The quaternionic structure \tilde{Q} on \tilde{M}, however, coincides with (I_1, I_2, I_3). Note that \tilde{Q} is independent of the section, as shown in the proof of Theorem [4.1] and Remark [4.3]. More explicitly, considering $\lambda_2 : M \times U(1) \rightarrow H^*$ defined by $\lambda_2(x, u) = z \cdot u^{-1}$ ($z \in H^*$) and the section $s : \tilde{M} \rightarrow P$ defined by $s(x) = ((\varphi')^{-1}(x), 1)$, we see that the section $F_{\lambda_1} \circ s$ gives the hypercomplex structure $(\tilde{I}_1, \tilde{I}_2, \tilde{I}_3)$ and, hence, the quaternionic structure $\langle \tilde{I}_1, \tilde{I}_2, \tilde{I}_3 \rangle$ on $\tilde{M} \cong M$.

The next example shows that our H/Q-correspondence is a proper generalization of the HK/QK-correspondence.

Example 5.3 (Hypercomplex Hopf manifold). Consider $H^n \cong R^{4n}$ as a right-vector space over the quaternions with the standard hypercomplex structure

$$\tilde{H} = (\tilde{I}_1 = t, \tilde{I}_2 = R_t, \tilde{I}_3 = \tilde{I}_1 \tilde{I}_2 = -R_t)$$

and the standard flat hyper-Kähler metric \tilde{g} and set $\tilde{M} = H^n \setminus \{0\}$. Take $A \in Sp(n)Sp(1)$ and $\lambda > 1$. Then $\langle \lambda A \rangle$ is a group of homotheties which acts freely and properly discontinuously on the simply connected manifold \tilde{M}. The quotient space $\tilde{M}/\langle \lambda A \rangle$ inherits a quaternionic structure \tilde{Q} and a quaternionic connection $\tilde{\nabla}$ which are invariant under the centralizer G^Q of λA in $GL(n, H)Sp(1)$. In fact, the quaternionic structure \tilde{Q} on \tilde{M} is $GL(n, H)Sp(1)$-invariant and induces therefore an almost quaternionic structure Q on $\tilde{M}/\langle \lambda A \rangle$, since $\langle \lambda A \rangle \subset GL(n, H)Sp(1)$. Moreover, the Levi-Civita connection $\tilde{\nabla}$ on (\tilde{M}, \tilde{g}), which coincides with the Obata connection with respect to \tilde{H}, is invariant under all homotheties of \tilde{M}. Since $\langle \lambda A \rangle$ acts by homotheties, we see that $\tilde{\nabla}$ induces a torsion-free connection ∇ on $\tilde{M}/\langle \lambda A \rangle$, which preserves Q. This means that Q is a quaternionic structure on $\tilde{M}/\langle \lambda A \rangle$. In particular, if $A \in Sp(n)$, then the quotient $\tilde{M}/\langle \lambda A \rangle$ inherits an induced hypercomplex structure $H = (I_1, I_2, I_3)$ from \tilde{H}, which is invariant under the centralizer G^H of λA in $GL(n, H)$, since $\langle \lambda A \rangle$ preserves \tilde{H}. We say
that \((\tilde{M}/\langle \lambda A \rangle, Q)\) (resp. \((\tilde{M}/\langle \lambda A \rangle, H)\)) is a quaternionic (resp. hypercomplex) Hopf manifold. See [23, 10].

We start with a hypercomplex Hopf manifold \(M := \tilde{M}/\langle \lambda A \rangle\), where \(A \in \text{Sp}(n)\). Take \(q \in \text{Sp}(1)\) such that \(q \neq \pm 1\). The centralizer of \(q\) in \(\text{Sp}(1)\) is isomorphic to \(\text{Sp}(n)\). We consider a \(U(1)\)-action : \(z \mapsto ze^{-it}\) on \(\tilde{M}\) defined by the right multiplication of \(U(1) \cong U_q(1) \subset \text{Sp}(n)\). This action induces one on \(M\) and the corresponding vector field \(Z\) is rotating. Therefore we can apply the same procedure as in Example 5.2 under the setting \(P = M \times U_q(1)\) (resp. \(\tilde{P} = \tilde{M} \times U_q(1)\)) and \(\Theta = 0\), and we have the quaternionic manifold \(\tilde{M}(= M')\) (resp. \(\tilde{M}(= \tilde{M}')\)) by the \(H/Q\)-correspondence.

The quotient map of an action by a group \(G\) is denoted by \(\pi_G\) and the objects associated with \(\tilde{M}\) are denoted by the corresponding letters for \(M\) with \(\tilde{}\), for example, the projection of the twist from \(\tilde{M} \times U_q(1)\) is denoted as \(\tilde{\pi}'\), where we use the notation of Theorem 4.8. Let \(R_q\) be the right multiplication by \(q\).

\[
\begin{align*}
\tilde{M}' &= \tilde{M} = \tilde{M} \quad \xrightarrow{\langle \lambda AR_q \rangle} \quad M' = \tilde{M} \\
\tilde{P} &= \tilde{M} \times U_q(1) \quad \xrightarrow{\langle \lambda A \rangle} \quad P = M \times U_q(1) \\
\tilde{M} &\xrightarrow{\langle \lambda A \rangle} \quad M
\end{align*}
\]

Since \(\pi' \circ \pi_{\langle \lambda A \rangle} = \pi_{\langle \lambda AR_q \rangle} \circ \tilde{\pi}'\), and \(\tilde{M}' = \tilde{M}\) is a manifold with an invariant quaternionic structure under the action of \(\langle \lambda AR_q \rangle\) (Example 5.2 and Proposition 4.7), we have

\[\tilde{M} = M' = \tilde{M}/\langle \lambda AR_q \rangle.\]

Therefore it holds that

\[M = \tilde{M}/\langle \lambda A \rangle \quad \xrightarrow{\text{H/Q}} \quad \tilde{M} = \tilde{M}/\langle \lambda AR_q \rangle.\]

In particular, we can choose \(A = E_n \in \text{Sp}(n)\). Then the centralizer \(G^n\) of \(\lambda = \lambda E_n\) is \(\mathbb{R}^{>0} \times \text{SL}(n, \mathbb{H})\). We take the subgroup \(\mathbb{R}^{>0} \times \text{Sp}(n)\) of \(G^n\), which acts transitively on \(M\). Then

\[M = (\mathbb{R}^{>0}/\langle \lambda \rangle) \times \frac{\text{Sp}(n)}{\text{Sp}(n - 1)}.\]

On the other hand, considering the subgroup \(\mathbb{R}^{>0} \times \text{Sp}(n)U_q(1)\) of the centralizer \(G^Q\) of \(\lambda R_q\), we see that

\[
(\mathbb{R}^{>0}/\langle \lambda \rangle) \times \frac{\text{Sp}(n)}{\text{Sp}(n - 1)} \quad \xrightarrow{\text{H/Q}} \quad (\mathbb{R}^{>0}/\langle \lambda \rangle) \times \frac{\text{Sp}(n)U(1)}{\text{Sp}(n - 1)\Delta U(1)}.
\]
where \(\Delta_{U(1)} \) is a diagonally embedded subgroup of \(\text{Sp}(n)U(1) \subset \text{Sp}(n)\text{Sp}(1) \) which is isomorphic to \(U(1) \). Considering the case of \(n = 2 \), we have an invariant quaternionic structure on the homogeneous space

\[
\tilde{M} = \mathbb{R}^+ \times \frac{\text{Sp}(2)U(1)}{\text{Sp}(1)\Delta_{U(1)}} = \frac{T^2 \cdot \text{Sp}(2)}{U(2)}
\]

by the H/Q-correspondence. Note that \(T^2 \times \text{Sp}(2) \) carries a hypercomplex structure and \((T^2 \times \text{Sp}(2))/U(2) \) is a homogeneous quaternionic manifold considered in [19].

Since \(M \) is diffeomorphic to \(S^1 \times S^{4n-1} \), \(M \) cannot admit any hyper-Kähler structure. Therefore the HK/QK-correspondence cannot be applied to the hypercomplex Hopf manifold \(M \). The H/Q-correspondence is thus a proper generalization of the HK/QK one.

In the following example, the closed form \(\Theta \) is non-zero and degenerate.

Example 5.4 (Lie group with left-invariant hypercomplex structure). Consider \(G = \text{SU}(3) \). The Lie algebra \(\mathfrak{g} \) of \(G \) is decomposed as \(\mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1 \), where \(\mathfrak{g}_0 = \mathfrak{s}(u(1) \oplus u(2)) \cong u(1) \oplus \mathfrak{su}(2) \cong \mathbb{H} \) and \(\mathfrak{g}_1 \) is the unique complementary \(\mathfrak{g}_0 \)-module with the action of \(\mathbb{H} \) obtained from the adjoint action of \(\mathfrak{g}_0 \) [19]. Denote by \(V \in \mathfrak{g}_0 \) the vector which corresponds to \(1 \in \mathbb{H} \). We use the same letters for left-invariant vector fields and corresponding elements of \(\mathfrak{g} \) in this example. Three complex structures \(I_1, I_2, I_3 \) on \(\mathfrak{g} \) can be defined as follows. They preserve the decomposition \(\mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1 \) and act on \(\mathfrak{g}_0 = \mathbb{H} \) by the standard hypercomplex structure \((R_i, R_j, R_iR_j = -R_k) \). On \(\mathfrak{g}_1 \) they are defined by

\[
(5.1) \quad I_\alpha|_{\mathfrak{g}_1} = -\text{ad}_{I_\alpha V}|_{\mathfrak{g}_1}, \quad \alpha = 1, 2, 3.
\]

These structures extend to a left-invariant hypercomplex structure on \(G \) [19], which we denote again by \((I_1, I_2, I_3) \).

Let \(G_0 \cong (U(1) \times SU(2))/\{\pm 1\} \cong U(2) \) be the subgroup of \(G \) corresponding to \(\mathfrak{g}_0 \). Note that \(G_0 \subset G \) is a hypercomplex submanifold and therefore totally geodesic with respect to the Obata connection \(\nabla^G \) of \(G \) [24]. The Obata connection \(\nabla^{G_0} \) of \(G_0 \) is given by \(\nabla^G_{X}Y = XY \) for \(X, Y \in \mathfrak{g}_0 = \mathbb{H} \), where \(XY \) denotes the product of the quaternions \(X \) and \(Y \). Indeed, \(\nabla^{G_0} \) is torsion-free and \(I_1, I_2, I_3 \) are parallel with respect to \(\nabla^{G_0} \). Then it holds \(\nabla^G_X V = \nabla^{G_0}_X V = X \) for \(X \in \mathfrak{g}_0 \). For \(X \in \mathfrak{g}_1 \), by (5.1) and the explicit expression of the Obata connection (see [3]), we also find that \(\nabla^G_X V = X \). Hence the hypercomplex manifold \((G, (I_1, I_2, I_3))\) is conical with the Euler vector field \(V \) (see also [26]).

Consider the right-action of \(U(2) \) on \(SU(3) \) given by

\[
AB := A \begin{pmatrix} B & 0 \\ 0 & \text{det}(B)^{-1} \end{pmatrix}
\]

for \(A \in SU(3) \) and \(B \in U(2) \). Let \(l : SU(3) \rightarrow SU(3)/U(2) \cong \mathbb{C}P^2 \) be the projection and \(k : S^5 \rightarrow \mathbb{C}P^2 \) the Hopf fibration. The pullback bundle \(P := l^#S^5 \) of \(k : S^5 \rightarrow \mathbb{C}P^2 \)
by \(l \) is a \(U(1) \)-bundle over \(SU(3) \). The usual identification between the Stiefel manifold \(V_2(\mathbb{C}^3) \) and \(SU(3) \) is given by
\[
V_2(\mathbb{C}^3) \ni (a_1, a_2) \leftrightarrow A = (a_1, a_2, \bar{a}_1 \times \bar{a}_2) \in SU(3).
\]
We can write
\[
P = \{ (A, u) \in SU(3) \times S^5 \mid l(A) = k(u) \}
= \{ (A, u) \in SU(3) \times S^5 \mid \langle c_3(A) \rangle = \langle u \rangle \in \mathbb{C}P^2 \}
= \{ (A, \alpha c_3(A)) \in SU(3) \times S^5 \mid \alpha \in U(1) \}
\cong SU(3) \times U(1),
\]
where \(c_3(A) \) denotes the third column of \(A \). This shows that \(P \) is a trivial bundle. Let \(l_\# : P \to S^5 \) be the bundle map given by \(l_\#(A, \alpha) = \alpha(\bar{a}_1 \times \bar{a}_2) = \alpha c_3(A) \). Consider the pullback connection \(l_\#^* \eta \) on \(P \) from the standard one \(\eta \) of \(k \) and take \(\Theta = l^* \omega \), where \(\omega \) is the Kähler form on \(\mathbb{C}P^2 \). Set \(Z := I_1 V \). We see that \(Z \) generates a \(U(1) \)-action on \(SU(3) \) and is rotating by Lemma 2.2. Since
\[
\langle Z \rangle \subset SU(2) \subset U(2),
\]
\(Z \) is tangent to the fiber of \(l \). Hence, we have \(l_\# Z \Theta = 0, L_\# Z \Theta = 0 \), and also have \(d\Theta = 0 \) by \(d\omega = 0 \). So we can choose \(f = f_1 = 1 \) (see Section 3 for the notation) and then see that \(Z_1 \) generates a free \(U(1) \)-action on \(P \) given by
\[
\zeta_{Z_1}(u)(A, \alpha) = (\zeta_Z(u)(A), u\alpha), \quad u \in U(1).
\]
To see this, it is sufficient to check that \(Z \) is horizontal with respect to the pullback connection. The vector field \(Z \) is lifted to \(SU(3) \times U(1) \) as \(Z_{(A, \alpha)} = (Z_A, 0) \in TSU(3) \times TU(1) \) for \(A \in SU(3) \) and \(\alpha \in U(1) \) with the same letter \(Z \). From \(Z \in su(2) \), it holds that
\[
l_\#_* Z_{(A, \alpha)} = \frac{d}{dt} l_\#_*((\zeta_{Z_1}(e^{it})(A, \alpha))) \bigg|_{t=0}
= \frac{d}{dt} l_\#((\zeta_{Z_1}(e^{it}))(A), \alpha)) \bigg|_{t=0}
= \frac{d}{dt} \alpha c_3(\zeta_{Z_1}(e^{it})(A)) \bigg|_{t=0}
= \frac{d}{dt} \alpha c_3(A) \bigg|_{t=0} = 0.
\]
In particular, \((l_\#^* \eta)(Z) = 0 \), that is, \(Z \) is horizontal with respect to the pullback connection. So we see that \(Z_1 = Z + X_P \). Therefore, by applying the H/Q-correspondence to \(G = SU(3) \), we have a quaternionic manifold
\[
\bar{G} = P/\langle Z_1 \rangle = (SU(3) \times U(1))/U(1) \cong SU(3).
\]
The identification is given by

$$(SU(3) \times U(1))/U(1) \ni [(A, \alpha)]_{(Z_1)} = [(\zeta Z(\alpha^{-1})A, 1)]_{(Z_1)} \cong \zeta Z(\alpha^{-1})A \in SU(3).$$

Note that there exists no Riemannian metric g on G such that g is hyper-Kählerian with respect to (I_1, I_2, I_3) since G is compact. The situation is summarized in the following diagram.

Note also that $SU(3) \times U(1)$ is a three-fold covering of $U(3) : (A, \alpha) \mapsto \alpha A$. The kernel is the cyclic group $\{(\zeta 1, \zeta^{-1}) \mid \zeta^3 = 1\}$. The principal bundle $P \to SU(3)$ induces a principal bundle $U(3) = P/\mathbb{Z}_3 \to PSU(3) = SU(3)/\mathbb{Z}_3$. The actions generated by Z_1 and Z commutes with that of \mathbb{Z}_3. The vector field Z (resp. Z_1) on $SU(3)$ (resp. $SU(3) \times U(1)$) induces one on $PSU(3)$ (resp. $U(3)$), which is denoted by the same letter Z (resp. Z_1). We obtain the following diagram.

We can apply the H/Q-correspondence to the Lie group $G_1 = PSU(3)$ with the induced left-invariant hypercomplex structure and see that its resulting space is $SU(3)/\mathbb{Z}^3$. In fact, since the action of $\langle Z_1 \rangle$ on $U(3)$ is given by $\zeta Z_1(u)(\alpha A) = (ua)(\zeta Z(u)(A))$ and its orbit $\{(ua)(\zeta Z(u)(A)) \mid u \in \langle Z_1 \rangle\}$ of $\alpha A \in U(3)$ intersects $SU(3)$ at exactly three
points, then the resulting space $U(3)/\langle Z_1 \rangle$ is $SU(3)/Z^3$. Consequently, we have $G_1 \cong G_1$ again.

Next we compare the quaternionic structures on the resulting space(s) derived from the pullback connection η_1, which is not flat, and the trivial connection η_0 as in Example 5.2. Recall the notation in Remark 4.9. We claim that the two quaternionic structures are different. We label the objects obtained from η_i by the symbol η_i or just by the letter i ($i = 0, 1$), when no confusion is possible. Since $Z^{h_{00}} = Z^{h_{10}}$, $i\bar{Z}\Theta_0 = i\bar{Z}0 = 0$ and $i\bar{Z}\Theta_1 = 0$, the vector field Z_1 on P is $Z_1 = Z + X_P$ for both connections η_0 and η_1. Then the resulting spaces \bar{G}^0 and \bar{G}^1 coincide and we simply write \bar{G} for both. Let a be the 1-form on \bar{G} such that $\eta_1 - \eta_0 = \pi^*a$. Consider a local section $s: \bar{G} \to P$. Since $W^{h_{01}} - W^{h_{00}} = -a(W)X_P$ for a tangent vector W at $\pi(s(x)) \in \bar{G}$ (we omit the reference points of tangent vectors), we have

$$W^{\vee 1} - W^{\vee 0} = -a(W)\mathfrak{x}$$

where $\mathfrak{x} = p^\vee(X_P)$ and we recall that $W^{\vee i} = p^\vee(W^{h_{0i}})$. Therefore we see that

$$I^{\vee 1}_\alpha(W^{\vee 1}) = (I^{\vee}_\alpha W)^{\vee 1} = (I^{\vee}_\alpha W)^{\vee 0} - a(I^{\vee}_\alpha W)\mathfrak{x} = I^{\vee 0}_\alpha(W^{\vee 0}) - a(I^{\vee}_\alpha W)\mathfrak{x} = I^{\vee 0}_\alpha(W^{\vee 1}) + a(W)I^{\vee 0}_\alpha\mathfrak{x} - a(I^{\vee}_\alpha W)\mathfrak{x}.$$

On the other hand, since $W^{\vee 1} = W^{h_{01}} + cZ_1 = W^{h_{01}} + c(Z^{h_{01}} + X_P)$, we have $\eta_1(W^{\vee 1}) = c$ and $\pi_*(W^{\vee 1}) = W + cZ$. It holds that

$$(\pi^*a)(W^{\vee 1}) = a(W) + ca(Z) = a(W) + a(Z)\eta_1(W^{\vee 1}).$$

Hence we have

$$I^{\vee 1}_\alpha = I^{\vee 0}_\alpha + (\pi^*a - a(Z)\eta_1) \otimes (I^{\vee 0}_\alpha\mathfrak{x}) - ((\pi^*a - a(Z)\eta_1) \circ I^{\vee 1}_\alpha) \otimes \mathfrak{x}.$$

Set $\rho := \pi^*a - a(Z)\eta_1$ and $A := \rho \otimes (I^{\vee 0}_\alpha\mathfrak{x}) - (\rho \circ I^{\vee 1}_\alpha) \otimes \mathfrak{x}$. If $Q^{\vee 0} := \langle I^{\vee 1}_0, I^{\vee 0}_2, I^{\vee 0}_3 \rangle$, then $A^2 = -|A|^2 I$, where $| \cdot |$ is the norm induced from the metric on $Q^{\vee 0}$ such that $I^{\vee 0}_1, I^{\vee 0}_2, I^{\vee 0}_3$ are orthonormal. As the rank of A is at most 2, this is only possible if $A = 0$. This implies $\rho = \pi^*a - a(Z)\eta_1 = 0$, which is equivalent to $a = 0$. By Remark 4.9, the quaternionic structure Q^i can be identified with $Q^{\vee i}$ ($i = 0, 1$). Then we see that $\bar{Q}^0 \neq \bar{Q}^1$ since $\eta_0 \neq \eta_1$. This proves the claim.

6 The tangent bundle of a special complex manifold and a generalization of the rigid c-map

In this section, we consider a generalization of the rigid c-map \[9, 14, 8\]. The generalization associates a hypercomplex manifold M, the Obata connection of which is Ricci-flat, with a special complex manifold. In the case of a \textit{conical} special complex manifold, we
shall show that the hypercomplex manifold carries a canonical rotating vector field Z^M (Lemma 6.1), such that we can apply our H/Q correspondence. Consequently, we shall construct a quaternionic manifold from a conical special complex manifold as the generalized supergravity c-map (Theorem 8.3). We start with defining a class of manifolds generalizing conical special Kähler manifolds [3, 21].

Definition 6.1. A special complex manifold (N, J, ∇) is a complex manifold (N, J) endowed with a torsion-free flat connection ∇ such that the $(1,1)$-tensor field ∇J is symmetric. A conical special complex manifold (N, J, ∇, ξ) is a special complex manifold (N, J, ∇) endowed with a vector field ξ such that

- $\nabla \xi = \text{id}$ and
- $L_\xi J = 0$ or, equivalently, $\nabla_\xi J = 0$.

The connection ∇ is called the **special connection**. To see that $L_\xi J = 0$ is equivalent to $\nabla_\xi J = 0$ it suffices to write $L_\xi \xi = \nabla \xi \xi = \nabla \xi - \text{id}$, using that ∇ is torsion-free and $\nabla \xi = \text{id}$. We also note that the integrability of J follows from the symmetry of ∇J since ∇ is torsion-free. We set $A := \nabla J$.

Lemma 6.2. For every conical special complex manifold, we have $L_\xi J = A \xi = 0$.

Proof. Based on the symmetry of ∇J, we compute

$$A_\xi A = A(J \xi) = -J(A \xi) = -JA \xi = 0.$$

Using this and the properties listed in Definition 6.1, we then obtain

$$(L_\xi J)X = -A_{JX} \xi + JA_X \xi = 0$$

for all $X \in \Gamma(TN)$. Note that in the last step we have used the symmetry of $A = \nabla J$. \hfill \square

Next we consider the tangent bundle $TN =: M$ of a special complex manifold (N, J, ∇). We can define the ∇-horizontal lift X^{hv} and the vertical lift X^v of $X \in \Gamma(TN)$. See [7] for example. The $C^\infty(M)$-module $\Gamma(TM)$ is generated by vector fields of the form $X^{hv} + Y^v$, where $X, Y \in \Gamma(TN)$. On M, we define a triple of $(1,1)$-tensors (I_1, I_2, I_3) by

$$I_1(X^{hv} + Y^v) = (JX)^{hv} - (JY)^v,$$

$$I_2(X^{hv} + Y^v) = Y^{hv} - X^v,$$

$$I_3(X^{hv} + Y^v) = (JY)^{hv} + (JX)^v$$

for $X^{hv} + Y^v \in TM$. Note that (I_1, I_2, I_3) is an almost hypercomplex structure. In fact, it is easy to see $I_2^2 = -\text{id}$ and

$$(I_1 \circ I_2)(X^{hv} + Y^v) = I_1(Y^{hv} - X^v) = (JY)^{hv} + (JX)^v = I_3(X^{hv} + Y^v),$$

$$(I_2 \circ I_1)(X^{hv} + Y^v) = I_2((JX)^{hv} - (JY)^v) = -(JY)^{hv} - (JX)^v = -I_3(X^{hv} + Y^v)$$

for $X^{hv} + Y^v \in TM$. Note that it holds

$$[X^{hv}, Y^{hv}] = [X, Y]^{hv}, [X^{hv}, Y^v] = (\nabla_X Y)^v, [X^v, Y^v] = 0$$

for $X, Y \in \Gamma(TN)$.

20
Lemma 6.3. For every special complex manifold \((N,J,\nabla)\), the canonical almost hypercomplex structure \((I_1, I_2, I_3)\) on \(M = TN\) is integrable, that is, \((M, (I_1, I_2, I_3))\) is a hypercomplex manifold.

Proof. Thanks to (6.4), the Nijenhuis tensors of \(I_1\) and \(I_2\) can be easily calculated and we find the following. Using that \(J\) is integrable, \(\nabla\) is flat and \(\nabla J\) is symmetric, we see that \(I_1\) is integrable. Because \(\nabla\) is flat and torsion-free, \(I_2\) is integrable. The integrability of \(I_3\) follows from that of \(I_1\) and \(I_2\) [5, Theorem 3.2].

We define a connection \(\nabla'\) by
\[
\nabla' := \nabla - \frac{1}{2}J(\nabla J) = \nabla - \frac{1}{2}JA.
\]
Then we see that \(\nabla'J = 0\) and \(\nabla'\) is torsion-free for every special complex manifold. Moreover, when the special complex manifold is conical, it holds that \(\nabla'\xi = \nabla\xi = \text{id}\).

Lemma 6.4. For every special complex manifold \((N,J,\nabla)\), we have
\[
R_{X,Y}^{\nabla'} = -\frac{1}{4}[A_X, A_Y]
\]
for \(X, Y \in TN\).

Proof. Set \(S = -(1/2)J(\nabla J)\). Since \(\nabla\) is flat, we see that the curvature \(R^{\nabla'}\) of \(\nabla'\) is given by
\[
R_{X,Y}^{\nabla'} = (\nabla_X S)_Y - (\nabla_Y S)_X + [S_X, S_Y]
\]
for \(X, Y \in TN\). By
\[
(\nabla_X S)_Y - (\nabla_Y S)_X = -\frac{1}{2}[A_X, A_Y] - \frac{1}{2}J(R_{X,Y}^{\nabla'}),
\]
\[
[S_X, S_Y] = \frac{1}{4}[A_X, A_Y],
\]
we have the conclusion. \(\square\)

Hence a special complex manifold admits the complex connection \(\nabla'\) such that \(R^{\nabla'}\) is of type \((1, 1)\). In fact, it follows from \(A_{JX} = -JA_X\) for all \(X \in TN\). The following theorem is a generalization of the rigid c-map in the absence of a metric.

Theorem 6.5 (Generalized rigid c-map). The tangent bundle of any special complex manifold \((N,J,\nabla)\) carries a canonical hypercomplex structure, defined by (6.1)-(6.3), and the Obata connection of the hypercomplex manifold \((M = TN, (I_1, I_2, I_3))\) is Ricci flat.

Proof. The integrability of the canonical almost hypercomplex structure defined by (6.1)-(6.3) was proven in Lemma 6.3. Let \(\tilde{\nabla}^0\) be its Obata connection. Using the explicit expression of the Obata connection, we have
\[
\tilde{\nabla}^0_{X^{hv}Y^{hv}} = (\nabla_X Y)^{hv}, \quad \tilde{\nabla}^0_{U^vX^{hv}} = -\frac{1}{2}(JA_X U)^v = -\frac{1}{2}(JA_UX)^v
\]
\[
\tilde{\nabla}^0_{X^{hv}}U^v = (\nabla_X U)^v, \quad \tilde{\nabla}^0_{U^vV^v} = \frac{1}{2}(JA_VU)^hv = \frac{1}{2}(JA_UV)^hv.
\]
for $X, Y, U, V, W \in \Gamma(TN)$. It can be also checked directly, using by (6.1)-(6.4), that the above formulas for $\tilde{\nabla}^0$ on horizontal and vertical lifts extend uniquely to a torsion-free connection $\tilde{\nabla}^0$ for which I_1, I_2, I_3 are parallel. We see that the bundle projection from $(TN, \tilde{\nabla}^0)$ onto (N, ∇^v) is an affine submersion [1]. Again, a straightforward calculation (or the fundamental equations of an affine submersion) gives

\[
R_{U^v, V^v}^{\tilde{\nabla}^0} W^v = -\frac{1}{4} (A_U A_V W)^v + \frac{1}{4} (A_V A_U W)^v = (R_{U^v, V^v}^{\nabla^v} W)^v,
\]

\[
R_{U^v, V^v}^{\tilde{\nabla}^0} X^{hv} = -\frac{1}{4} (A_U A_V X)^{hv} + \frac{1}{4} (A_V A_U X)^{hv} = (R_{U^v, V^v}^{\nabla^v} X)^{hv},
\]

\[
R_{U^v, X^{hv}}^{\tilde{\nabla}^0} Y^v = -\frac{1}{2} (J(H_{U^v, X}^\nabla) X)^{hv} - \frac{1}{4} (A_X A_U V)^{hv} - \frac{1}{4} (A_U A_X V)^{hv},
\]

\[
R_{U^v, X^{hv}}^{\tilde{\nabla}^0} Y^{hv} = \frac{1}{2} (J(H_{X, Y}^\nabla) U)^v + \frac{1}{4} (A_X A_U V)^v + \frac{1}{4} (A_U A_X Y)^v,
\]

\[
R_{X^{hv}, Y^{hv}}^{\tilde{\nabla}^0} U^v = (R_{X^{hv}, Y^{hv}}^{\nabla^v} U)^v,
\]

\[
R_{X^{hv}, Y^{hv}}^{\tilde{\nabla}^0} Z^{hv} = (R_{X^{hv}, Z}^{\nabla^v})^{hv}
\]

for $X, Y, Z, U, V, W \in TN$, where H^∇ is the Hessian (the second covariant derivative) with respect to ∇ and we have used Lemma 6.4. Note that $(H_{X, Y}^\nabla)(Z) = (H_{X, Z}^\nabla)(Y)$ for all $X, Y, Z \in TN$, since ∇J is symmetric. Hence the flatness of ∇ means that the Hessian of J with respect to ∇ is totally symmetric. By these equations, the Ricci tensor of $\tilde{\nabla}^0$ satisfies

\[
Ric^{\tilde{\nabla}^0}(X^{hv}, Y^{hv}) = \frac{1}{2} \text{Tr}(H_{X, Y}^\nabla) + \frac{1}{2} \text{Tr} A_X A_Y,
\]

\[
Ric^{\tilde{\nabla}^0}(X^{hv}, U^v) = Ric^{\tilde{\nabla}^0}(U^v, X^{hv}) = 0,
\]

\[
Ric^{\tilde{\nabla}^0}(U^v, V^v) = \frac{1}{2} \text{Tr}(H_{U^v, V^v}^\nabla) + \frac{1}{2} \text{Tr} A_U A_V
\]

for $X, Y, U, V \in TN$. From $(\nabla J)J = -J(\nabla J)$, it holds that

\[
\text{Tr}(H_{X, Y}^\nabla) + \text{Tr} A_X A_Y = 0
\]

for all $X, Y \in TN$. Therefore the Obata connection of the manifolds obtained from our hypercomplex version of the c-map is Ricci flat.

\[\square\]

Remark 6.6. The horizontal distribution on M is integrable by [6.4] and each leaf is totally geodesic with respect to the Obata connection $\tilde{\nabla}^0$, since $\tilde{\nabla}^0_{X^{hv}} Y^{hv} = (\nabla^v_X Y)^{hv}$ for $X, Y \in \Gamma(TN)$.

Remark 6.7. In [12] Theorem A1, a hypercomplex structure was obtained on a neighborhood of the zero section of the tangent bundle of a complex manifold with a complex connection whose curvature is of type $(1,1)$. By contrast, our generalized rigid c-map gives a hypercomplex structure on the whole tangent bundle when the manifold is special complex.
7 The c-projective structure on a projective special complex manifold

In this section, we discuss projective special complex manifolds and obtain the c-projective Weyl curvature of a canonically induced c-projective structure. Let (N, J, ∇, ξ) be a conical special complex manifold. Since $L_\xi J = 0$ and $L_J \xi J = 0$, we obtain a complex structure \bar{J} on the quotient $\bar{N} := N/\langle \xi, J\xi \rangle$ if \bar{N} is a smooth manifold.

Lemma 7.1. We have $L_\xi \nabla' = 0$ and $L_J \xi \nabla' = 0$.

Proof. By Lemmas 6.4 and 6.2, we have

$$(L_\xi \nabla')_X Y = [\xi, \nabla'_X Y] - \nabla'_{[\xi, X]} Y - \nabla'_X [\xi, Y]$$

$$= \nabla'_\xi \nabla'_X Y - \nabla'_X \nabla'_Y \xi - \nabla'_{[\xi, X]} Y - \nabla'_X \nabla'_Y \xi + \nabla'_X \nabla'_Y \xi$$

$$= R_{\xi, X} Y = 0$$

and

$$(L_J \xi \nabla')_X Y = [J\xi, \nabla'_X Y] - \nabla'_{[J\xi, X]} Y - \nabla'_X [J\xi, Y]$$

$$= \nabla'_{J\xi} \nabla'_X Y - \nabla'_X \nabla'_Y J\xi - \nabla'_{[J\xi, X]} Y - \nabla'_X \nabla'_Y J\xi + \nabla'_X \nabla'_Y J\xi$$

$$= R_{J\xi, X} Y = 0$$

for all $X, Y \in \Gamma(TN)$.

Recall [17] that a smooth curve $t \mapsto c(t)$ on a complex manifold (M, J) is called J-planar with respect to a connection ∇ if $\nabla_c c' \in \text{span}\{c', Jc'\}$. We say that torsion-free complex connections ∇^1 and ∇^2 on a complex manifold (M, J) are c-projectively related [8] if they have the same J-planar curves. It is known that ∇^1 and ∇^2 are c-projectively related if and only if there exists a one-form θ on M such that

$$\nabla^1_X Y = \nabla^2_X Y + \theta(X) Y + \theta(Y) X - \theta(JX) JY - \theta(JY) JX$$

for $X, Y \in \Gamma(TM)$. See [17] for example. This defines an equivalence relation on the space of torsion-free complex connections on M. The equivalence classes are called c-projective structures.

Definition 7.2. We call the complex manifold (\bar{N}, J) a projective special complex manifold if $p_N: (N, J, \nabla, \xi) \to (\bar{N}, \bar{J})$ is a principal \mathbb{C}^\times-bundle, where the principal \mathbb{C}^\times-action is generated by the holomorphic vector field $\xi - \sqrt{-1} J\xi$.

Note that a projective special Kähler manifold is a Kähler quotient of a conical special Kähler manifold. Similarly, a projective special complex manifold carries an induced c-projective structure as follows.

Proposition 7.3. Any projective special complex manifold (\bar{N}, \bar{J}) carries a canonical c-projective structure.
Proof. Consider a connection form \(\hat{\alpha} = \alpha - \sqrt{-1}(\alpha \circ J) \) of type (1, 0) on the principal \(\mathbb{C}^* \)-bundle \(p_N : N \to \hat{N} \). (Note that any \(\mathbb{C}^* \)-invariant real one-form \(\alpha \) such that \(\alpha(\xi) = 1 \) is the real part of such a connection.) We have \(TN = \text{Ker} \hat{\alpha} \oplus (\xi, J\xi) \), where \(\text{Ker} \hat{\alpha} \) is \(J \)-invariant. We denote the \(\hat{\alpha} \)-horizontal lift of \(X \in \Gamma(T\hat{N}) \) by \(X^{\hat{\alpha}} \). By Lemma 7.4 we can define \(\nabla^{\alpha} \) by

\[
\nabla^{\alpha}_{X}Y = p_{N^*}(\nabla'_{X^{\hat{\alpha}}}Y^{\hat{\alpha}})
\]

for \(X, Y \in \Gamma(T\hat{N}) \). We claim that \(\nabla^{\alpha}J = 0 \). In fact, using that \(JY^{\hat{\alpha}} = (JY)^{\hat{\alpha}} \) for \(Y \in T\hat{N} \) we have

\[
\nabla^{\alpha}_{X}(JY) = p_{N^*}(\nabla'_{X^{\hat{\alpha}}}JY^{\hat{\alpha}}) = p_{N^*}J(\nabla'_{X^{\hat{\alpha}}}Y^{\hat{\alpha}}) = J(p_{N^*}(\nabla'_{X^{\hat{\alpha}}}Y^{\hat{\alpha}})).
\]

To show that the \(c \)-projective structure \([\nabla^{\alpha}] \) does not depend on \(\alpha \), we consider another connection form \(\hat{\beta} = \beta - \sqrt{-1}(\beta \circ J) \) of type \((1, 0) \). Then there exist one-forms \(\theta_0 \) and \(\theta_1 \) on \(\hat{N} \) such that

\[
\hat{\beta} - \hat{\alpha} = (p_{N^*}\theta_0) + (p_{N^*}\theta_1)\sqrt{-1}.
\]

On the other hand, we can write \(X^{\hat{\alpha}} - X^{\hat{\beta}} = a\xi + bJ\xi \) for some functions \(a, b \) on \(N \). It is easy to see that

\[
a = \theta_0(X) \circ p_N, \ b = -\theta_0(JX) \circ p_N, \ \theta_1 = -\theta_0 \circ J
\]

for \(X \in T\hat{N} \). By the definition (7.1) of the induced connection on \(\hat{N} \), we have

\[
\nabla^{\alpha}_{X}Y = p_{N^*}(\nabla'_{X^{\hat{\alpha}}}Y^{\hat{\alpha}})
\]

for \(X, Y \in \Gamma(T\hat{N}) \), which means that \(\nabla^{\alpha} \) and \(\nabla^{\beta} \) are \(c \)-projectively related. Here we write \(\theta_0(X) \) for \(\theta_0(X) \circ p_N \) etc. \(\blacksquare \)

We denote the induced \(c \)-projective structure given in Proposition 7.3 by \(\mathcal{P}_{\nabla} \) (without a label \(\alpha \)). Next we prove that the \(c \)-projective Weyl curvature of \(\mathcal{P}_{\nabla} \), is of type \((1, 1)\) (see Theorem 7.10).

Note that \(\xi, J\xi \) are the fundamental vector fields generated by \(1, \sqrt{-1} \in \mathbb{C} = \text{Lie} \mathbb{C}^* \), respectively. Recall that \(A = \nabla J \) and \(A_\xi = A_{J\xi} = 0 \). We also have that \(L_\xi A = 0 \), since \(L_\xi \nabla = 0 \) and \(L_\xi J = 0 \).

Lemma 7.4. \(L_{J\xi} \nabla = A, \ L_{J\xi} A = -2JA \) and \(L_{J\xi}(JA) = 2A \).
Let η be a connection form on the principal bundle \(p_N : N \to \tilde{N} \). As before, we assume that \(\text{Ker} \eta \) is \(J \)-invariant or, equivalently, that \(\eta \) is of type \((1,0)\) (but not necessarily holomorphic). Using \(\eta \) we can project the connection \(\nabla' \) on \(N \) to a connection \(\nabla'' \) on \(\tilde{N} \), which is complex with respect to \(\tilde{J} \), as shown in the proof of Proposition \[7.3\]. Note that the quotient \(p_N : (N, \nabla') \to (\tilde{N}, \nabla'') \) is an affine submersion with the horizontal distribution \(\mathcal{H} := \text{Ker} \eta \) (in the sense defined in \[1\]). From now on the \(\eta \)-horizontal lift of \(X \in TN \) is denoted by \(\tilde{X} \). Note that our sign convention for the curvature tensor is different from the one in \[1\]. Let \(h : TN \to \mathcal{H} \) and \(v : TN \to V \) be the projections with respect to the decomposition \(TN = \mathcal{H} \oplus V \), where \(V = \text{Ker} p_{N*} \). We define the fundamental tensors \(A_{\nabla'} \) and \(T_{\nabla'} \) by

\[
A_{\nabla'}^E F = v(\nabla'_{h_E}hF) + h(\nabla'_{h_E}vF)
\]

and

\[
T_{\nabla'}^E F = h(\nabla'_{v_E}vF) + v(\nabla'_{v_E}hF)
\]

for \(E, F \in \Gamma(TN) \).

Lemma 7.5. We have \(T_{\nabla'} = 0 \), \(A_{\nabla'}^X \xi = X \) and \(A_{\nabla'}^X J\xi = JX \) for any horizontal vector \(X \).

Let \(a \) and \(b \) be \((0,2)\)-tensors defined by

\[
A_{\nabla'}^X Y = a(X, Y)\xi + b(X, Y)J\xi
\]

for horizontal vectors \(X \) and \(Y \). Since \(\nabla' \) and the projections \(v, h \) are \(\mathbb{C}^* \)-invariant, \(A_{\nabla'} \) is \(\mathbb{C}^* \)-invariant, and hence, \(a = p_N^*\tilde{a} \) and \(b = p_N^*\tilde{b} \) for some tensors \(\tilde{a} \) and \(\tilde{b} \) on \(\tilde{N} \).

For any \((0,2)\)-tensor \(k \) on a complex manifold with a complex structure \(J \), define the \((0,2)\)-tensor \(k_J \) by \(k_J(X, Y) := k(X, JY) \).

Lemma 7.6. We have

\[
v((\nabla'_X J)\tilde{Y}) = (\tilde{a}(X, \tilde{J}Y) + \tilde{b}(X, Y)) \xi + (\tilde{b}(X, \tilde{J}Y) - \tilde{a}(X, Y)) J\xi
\]

for \(X, Y \in T\tilde{N} \).

Lemma 7.7. We have \(\tilde{b}(X, Y) = -\tilde{a}(X, \tilde{J}Y) = -\tilde{a}_J(X, Y) \) for tangent vectors \(X \) and \(Y \) on \(\tilde{N} \). Consequently, the fundamental tensor \(A_{\nabla'} \) satisfies

\[
(7.2) \quad A_{\nabla'}^X \tilde{Y} = \tilde{a}(X, Y)\xi - \tilde{a}_J(X, Y)J\xi
\]

for tangent vectors \(X, Y \) on \(\tilde{N} \).

Proof. By \(\nabla' J = 0 \) and Lemma \[7.6\] we have the conclusion. \(\square \)

Let \((r, \theta)\) be the polar coordinates with respect to a (smooth) local trivialization \(p_N^{-1}(U) \cong U \times \mathbb{C}^* \) of the principal \(\mathbb{C}^* \)-bundle \(p_N : N \to \tilde{N} \) such that \(\xi = r\partial/\partial r \) and \(J\xi = \partial/\partial \theta \). A principal connection \(\eta \) is locally given by

\[
\eta := \eta_1 \otimes 1 + \eta_2 \otimes \sqrt{-1} = p_N^*(\gamma_1 \otimes 1 + \gamma_2 \otimes \sqrt{-1}) + \left(\frac{dr}{r} \otimes 1 + d\theta \otimes \sqrt{-1} \right)
\]

25
for a \mathbb{C}-valued one-form $\gamma_1 \otimes 1 + \gamma_2 \otimes \sqrt{-1}$ on $\tilde{U} \subset \tilde{N}$. For each local trivialization $p_N^{-1}(U) \cong \tilde{U} \times \mathbb{C}^*$, we set

$$B := e^{2\theta} A \ (e^{2\theta} = (\cos 2\theta)\text{id} + (\sin 2\theta)J).$$

The symmetric (1, 2)-tensor field B is defined \textit{locally} and B is projectable by Lemma 7.8, i.e. horizontal (i.e. $B_\xi = B_{J\xi} = 0$) and \mathbb{C}^*-invariant. Therefore we obtain an induced \textit{locally} defined symmetric tensor field \tilde{B} on \tilde{N}.

\textbf{Lemma 7.8.} The tensor $B^2 : (X, Y) \mapsto B_X \circ B_Y$ is a globally defined tensor field on N, in particular, $[B, B]$ is so. As a consequence, we have the globally defined tensor fields B^2 and $[B, B]$ on \tilde{N}.

\textit{Proof.} It follows from $B^2 = A^2$. \hfill \qed

For a $(0, 2)$-tensor a and a $(1, 1)$-tensor K, we define an $\text{End}(TN)$-valued 2-form $a \wedge K$ by $$(a \wedge K)_{X,Y} Z = a(X, Z)KY - a(Y, Z)KX$$

for tangent vectors X, Y and Z.

\textbf{Proposition 7.9.} The curvature $R_{\tilde{\nabla}^n}$ of $\tilde{\nabla}^n$ is of the form

$$R_{\tilde{\nabla}^n} = -\frac{1}{4}[\tilde{B}, \tilde{B}] + 2\mathfrak{a}^a \otimes \text{Id} - 2(\tilde{a}_j)^a \otimes \tilde{J} + \tilde{a} \wedge \text{Id} - \tilde{a}_j \wedge \tilde{J},$$

where $(\cdot)^a$ denotes anti-symmetrization. Moreover we have $d\gamma_1 = -2\tilde{a}^a$ and $d\gamma_2 = 2(\tilde{a}_j)^a$.

\textit{Proof.} By the fundamental equation for an affine submersion [1], we have

$$(R_{\tilde{\nabla}^n} Z)_{\tilde{\nabla}^n} = \tilde{h}(B_{X,Y} \tilde{Z}) + \tilde{h}(\tilde{\nabla}'_{v[\tilde{X}, \tilde{Y}]} \tilde{Z}) + A_{X}^\nabla \cdot A_{\tilde{Y}}^\nabla \tilde{Z} - A_{X}^\nabla \cdot A_{\tilde{Y}}^\nabla \tilde{Z}$$

for $X, Y, Z \in \Gamma(TN)$. Since

$$v[\tilde{X}, \tilde{Y}] = \eta_1([\tilde{X}, \tilde{Y}]) \xi + \eta_2([\tilde{X}, \tilde{Y}]) J\xi$$

$$= -(d\eta_1)(\tilde{X}, \tilde{Y}) \xi - (d\eta_2)(\tilde{X}, \tilde{Y}) J\xi$$

$$= -(d\gamma_1)(X, Y) \xi - (d\gamma_2)(X, Y) J\xi,$$

we have

$$h(\tilde{\nabla}'_{v[\tilde{X}, \tilde{Y}]} \tilde{Z}) = h(\tilde{\nabla}'_{\tilde{Z}} v[\tilde{X}, \tilde{Y}])$$

$$= h(\tilde{\nabla}'_{\tilde{Z}}(-(d\gamma_1)(X, Y) \xi - (d\gamma_2)(X, Y) J\xi))$$

$$= -(d\gamma_1)(X, Y) \tilde{Z} - (d\gamma_2)(X, Y) (J\tilde{Z}).$$

Moreover, by

$$A_{\tilde{X}}^\nabla \tilde{Y} - A_{\tilde{Y}}^\nabla \tilde{X} = v[\tilde{X}, \tilde{Y}] = -d\gamma_1(X, Y) \xi - d\gamma_2(X, Y) J\xi,$$

we have $d\gamma_1 = -2\tilde{a}^a$ and $d\gamma_2 = 2(\tilde{a}_j)^a$. \hfill \qed
From these equations, it follows that we obtain

\begin{equation}
(7.5) \quad \bar{a} = \frac{1}{8(n+1)} \mathcal{B} - \frac{1}{2} P^{\nabla^c}. \tag{7.5}
\end{equation}

Now we set \(\dim N = 2(n+1) \). By Proposition 7.3 and \(\text{Tr} \bar{B}_X = 0 \) for all \(X \in TN \), we obtain

\begin{equation}
(7.3) \quad \text{Ric}^{\nabla^c}(Y, Z) = \frac{1}{4} \text{Tr} \bar{B}_Y \bar{B}_Z + (\bar{a}(Z, Y) - \bar{a}(Y, Z))
- (\bar{a}(\bar{J}Y, \bar{J}Z) + \bar{a}(Y, Z)) - 2n\bar{a}(Y, Z) + \bar{a}(Y, Z) - \bar{a}(\bar{J}Y, \bar{J}Z)
= \frac{1}{4} \text{Tr} \bar{B}_Y \bar{B}_Z - (2n+1)\bar{a}(Y, Z) + \bar{a}(Z, Y)
- \bar{a}(\bar{J}Y, \bar{J}Z) - \bar{a}(\bar{J}Z, JY).
\end{equation}

We define a \((0, 2)\)-tensor \(P^D \) on a complex manifold \((M, J)\), which is called the Rho tensor of a connection \(D \), by

\[
P^D(X, Y) = \frac{1}{m+1} \left(\text{Ric}^D(X, Y) + \frac{1}{m-1} \left(\left((\text{Ric}^D)^s(X, Y) - (\text{Ric}^D)^s(JX, JY) \right) \right) \right),
\]

for \(X, Y \in TM \), where \(2m = \dim M \geq 4 \), \(\text{Ric}^D \) is the Ricci tensor of \(D \) and \((\cdot)^s\) is the symmetrization of a \((0, 2)\)-tensor. The c-projective Weyl curvature \(W^{c, |\bar{D}|} \) of a c-projective structure \([\bar{D}]\) is given by

\[
(7.4) \quad W^{c, |\bar{D}|} = R^\bar{D} + (P^D)^a \otimes \text{Id} - (P^\bar{D})^a \otimes \bar{J} + \frac{1}{2} P^D \wedge \text{Id} - \frac{1}{2} P^\bar{D} \wedge \bar{J}.
\]

See [8]. We shall compute the c-projective Weyl curvature of \([\nabla^c]^\eta\). From (7.3) it holds

\[
(\text{Ric}^{\nabla^c})^s(Y, Z) = \frac{1}{4} \text{Tr} \bar{B}_Y \bar{B}_Z - 2n\bar{a}^s(Y, Z) - 2\bar{a}^s(\bar{J}Y, \bar{J}Z),
\]

\[
(\text{Ric}^{\nabla^c})^s(\bar{J}Y, \bar{J}Z) = \frac{1}{4} \text{Tr} \bar{B}_Y \bar{B}_Z - 2n\bar{a}^s(\bar{J}Y, \bar{J}Z) - 2\bar{a}^s(Y, Z)
\]

and hence

\[
(\text{Ric}^{\nabla^c})^s(Y, Z) - (\text{Ric}^{\nabla^c})^s(\bar{J}Y, \bar{J}Z) = -2(n-1) \left(\bar{a}^s(Y, Z) - \bar{a}^s(\bar{J}Y, \bar{J}Z) \right).
\]

From these equations, it follows that

\[
(n+1)P^{\nabla^c}(Y, Z) = \frac{1}{4} \text{Tr} \bar{B}_Y \bar{B}_Z - (2n+1)\bar{a}(Y, Z) + \bar{a}(Z, Y) - \bar{a}(\bar{J}Y, \bar{J}Z) - \bar{a}(\bar{J}Z, \bar{J}Y)
- 2(\bar{a}^s(Y, Z) - \bar{a}^s(\bar{J}Y, \bar{J}Z))
= \frac{1}{4} \text{Tr} \bar{B}_Y \bar{B}_Z - (2n+1)\bar{a}(Y, Z) + \bar{a}(Z, Y) - (\bar{a}(Y, Z) + \bar{a}(Z, Y))
= \frac{1}{4} \text{Tr} \bar{B}_Y \bar{B}_Z - 2(n+1)\bar{a}(Y, Z).
\]

Setting \(\bar{B}(Y, Z) = \text{Tr} \bar{B}_Y \bar{B}_Z \), which is a symmetric, \(\bar{J} \)-hermitian globally defined \((0, 2)\)-tensor on \(N \), we have

\[
(7.5) \quad \bar{a} = \frac{1}{8(n+1)} \bar{B} - \frac{1}{2} P^{\nabla^c}.
\]
Therefore the coefficients of the curvature form $d\eta = d\gamma_1 + \sqrt{-1}d\gamma_2 = -2\bar{a}^a + 2\sqrt{-1}(\bar{a}_j)^a$ are determined by

\begin{align}
\bar{a}^a &= -\frac{1}{2} (P^{\tilde{\nabla}'\eta})^a \left(-\frac{1}{2(n+1)} (Ric^{\tilde{\nabla}'\eta})^a \right), \\
(\bar{a}_j)^a &= \frac{1}{8(n+1)} \bar{B}_j - \frac{1}{2} (P^{\tilde{\nabla}'\eta})^a \left(\frac{1}{8(n+1)} \bar{B}_j - \frac{1}{2(n+1)} (Ric^{\tilde{\nabla}'\eta})^a \right).
\end{align}

By the above calculations we arrive at the following theorem.

Theorem 7.10. Let (N, J, ∇, ξ) be a conical special complex manifold which is the total space of a (holomorphic) principal \mathbb{C}^*-bundle $p_N : N \to \tilde{N}$, the base of which is a projective special complex manifold \tilde{N} with $\dim \tilde{N} = 2n \geq 4$. The c-projective Weyl curvature $W^{c,\bar{P}\bar{\nabla}'}$ of the canonically induced c-projective structure $\bar{P}\bar{\nabla}'$ is given by

\[W^{c,\bar{P}\bar{\nabla}'} = -\frac{1}{4} [\bar{B}, \bar{B}] - \frac{1}{4(n+1)} \bar{B}_j \otimes \bar{J} + \frac{1}{8(n+1)} \bar{B} \wedge \text{Id} - \frac{1}{8(n+1)} \bar{B}_j \wedge \bar{J}. \]

In particular, $W^{c,\bar{P}\bar{\nabla}'}_{\bar{J}_(-), \bar{J}_(-)} = W^{c,\bar{P}\bar{\nabla}'}$, that is, $W^{c,\bar{P}\bar{\nabla}'}$ is of type $(1, 1)$ as an $\text{End}(T\tilde{N})$-valued two-form.

Proof. Take a principal connection η of type $(1, 0)$. By Proposition 7.3, the canonically induced c-projective structure is $[\bar{\nabla}'\eta]$. From Proposition 7.9 equation (7.4) and the symmetry of \bar{B}, it holds that

\[W^{c,\bar{\nabla}'\eta} = -\frac{1}{4} [\bar{B}, \bar{B}] - \frac{1}{4(n+1)} \bar{B}_j \otimes \bar{J} + \frac{1}{8(n+1)} \bar{B} \wedge \text{Id} - \frac{1}{8(n+1)} \bar{B}_j \wedge \bar{J}. \]

Since \bar{B}_j, $[\bar{B}, \bar{B}]$ and $\bar{B} \wedge \text{Id} - \bar{B}_j \wedge \bar{J}$ are of type $(1, 1)$, $W^{c,\bar{P}\bar{\nabla}'}$ is of type $(1, 1)$. \hfill \Box

The following corollary is a direct consequence of Theorem 7.10.

Corollary 7.11. Any complex manifold (\tilde{N}, \bar{J}) with a c-projective structure \bar{P} such that $W^{c,\bar{P}}$ is not of type $(1, 1)$ can not be realized as a projective special complex manifold whose canonical c-projective structure is \bar{P}.

8 A generalization of the supergravity c-map

The supergravity c-map associates a (pseudo-)quaternionic Kähler manifold with any projective special Kähler manifold. In this section, we give a generalization of the supergravity c-map by using the results in previous sections. Let (N, J, ∇, ξ) be a conical special complex manifold and set $Z := J\xi$.

Lemma 8.1. $2Z^{hv}$ is a rotating vector field on TN.

28
Proof. Since $L_Z J = 0$ and $\nabla_Z J = 0$ (cf. Lemma 6.2), we have $L_{Z^{hv}} I_1 = 0$. Moreover we have

$$(L_{Z^{hv}} I_2)(X^{hv} + Y^v) = [Z, Y]^{hv} - (\nabla_Z X)^v - (\nabla_Z Y)^{hv} + [Z, X]^v$$

$$= - (\nabla_Y Z)^{hv} - (\nabla_X Z)^v$$

$$= -(JY)^{hv} - (JX)^v$$

$$= -I_3(X^{hv} + Y^v)$$

for all $X, Y \in \Gamma(TN)$.

\[\square \]

Remark 8.2. By the equations for $\tilde{\nabla}^0$ in the proof of Theorem 6.5, we have

$$\tilde{\nabla}^0_{X^{hv}} \xi^{hv} = (\nabla'_{X^{hv}} \xi)^{hv} = (\nabla_X \xi - \frac{1}{2} JA_X \xi)^{hv} = X^{hv},$$

$$\tilde{\nabla}^0_{X^{hv}} \xi^{hv} = -\frac{1}{2} (JA_X \xi)^v = 0$$

for $X \in TN$, when (N, J, ∇, ξ) is a conical special complex manifold.

We have the following theorem.

Theorem 8.3 (Generalized supergravity c-map). Let (N, J, ∇, ξ) be a $2(n+1)$-dimensional conical special complex manifold. Let Θ be a closed two-form on $M = TN$ such that $L_{Z^M} \Theta = 0$, where $Z^M = 2Z^{hv}$. Consider a $U(1)$-bundle $\pi : P \to M$ over M and η a connection form whose curvature form is

$$d\eta = \pi^* \left(\Theta - \frac{1}{2} d((\iota_{Z^M} \Theta) \circ I_1) \right).$$

Let f be a smooth function on M such that $df = -\iota_{Z^M} \Theta$ and $f_1 := f - (1/2) \Theta(Z^M, I_1 Z^M)$ does nowhere vanish. If $\tilde{\pi} : \tilde{M} \to \tilde{M}$ and $\tilde{\pi} : \tilde{M} \to \tilde{M}$ are submersions, we have an assignment from a $2n$-dimensional projective special complex manifold $(\tilde{N}, J, \mathcal{P}_{\tilde{\nabla}})$ whose c-projective Weyl curvature is of type $(1, 1)$ to a $4(n+1)$-dimensional quaternionic manifold

$$\tilde{M}(= \tilde{TN}) = C_{(P, \eta)}(M, \langle I_1, I_2, I_3 \rangle, Z^M, f, \Theta)/\mathcal{D}$$

foliated by $(2n+4)$-dimensional leaves such that \tilde{N} coincides with the space of its leaves.

Proof. By Theorem 4.1, Lemma 8.1 and Proposition 7.3, we have an assignment from a $2n$-dimensional projective special complex manifold $(\tilde{N}, \tilde{J}, \mathcal{P}_{\tilde{\nabla}})$ to a $4(n+1)$-dimensional quaternionic manifold \tilde{TN}. By virtue of Theorem 7.10, the c-projective Weyl curvature of $\mathcal{P}_{\tilde{\nabla}}$, is of type $(1, 1)$. Next we give a foliation on \tilde{TN} whose leaves space is \tilde{N}. Set $\mathcal{L} := \mathcal{V} \oplus \langle \xi^{hv}, Z^{hv} \rangle$, where \mathcal{V} is the vertical distribution of $T(TN) \to TN$. The distribution \mathcal{L} is $Z^M = 2Z^{hv}$-invariant and integrable by (6.4). Therefore each leaf L of \mathcal{L} is a $Z^M = 2Z^{hv}$-invariant submanifold of TN. Consider the pull-back $\iota^# P$ of P by the inclusion $\iota : L \to TN$ with the bundle map $\iota^# : \iota^# P \to P$ and $\tilde{L} := \mathbb{H}^* \times \iota^# P$. Since V_1 is tangent to \tilde{L}, then $\tilde{L} := \tilde{L}/\langle V_1 \rangle$ is a submanifold \tilde{M}. Moreover $V, \tilde{I}_1(V), \tilde{I}_2(V)$,
\(\hat{I}_3(V) \) are tangent to \(\hat{L} \) because \(V \) is induced by \(e_0^R \). Taking the quotient again, we obtain a submanifold \(L := \hat{L}/(V, \hat{I}_1(V), \hat{I}_2(V), \hat{I}_3(V)) \) on a quaternionic manifold \(\overline{TN} \). Therefore the quaternionic manifold \(\overline{TN} \) is foliated by \((2n + 4)\)-dimensional leaves such that the space of its leaves \(\overline{L} \) is the projective special complex manifold \(\overline{N} \).

Remark 8.4. If we assume that \(Z_1 = (Z^M)^{h_\eta} + f_1 X_P \) generates a free \(U(1) \)-action on \(P \) instead of assuming that \(\tilde{\pi} : \tilde{M} \to M \) and \(\hat{\pi} : \hat{M} \to \hat{M} \) are submersions, we obtain the same result as in Theorem 8.3 (see Theorem 4.8).

Remark 8.5. Borówka and Calderbank have given a construction of a quaternionic manifold from a complex manifold of half the dimension with a c-projective structure, known as the quaternionic Feix-Kaledin construction [6]. Their construction generalizes the original construction [11, 20], which yields a hyper-Kähler structure on a neighborhood of any Kähler manifold. They also point out that this construction is a generalization of [12, Theorem A] (see [6, Proposition 5.4]). More precisely, the initial data of the quaternionic Feix-Kaledin construction are a complex manifold with a c-projective structure of type \((1, 1) \) and a complex line bundle with a connection of type \((1, 1) \). Note that this construction is different from our generalization of the supergravity c-map, in which the real dimension of the quaternionic manifold \(\overline{TN} \) is related to the real dimension of the projective special complex manifold \(\overline{N} \) by \(\dim(\overline{TN}) = 2 \dim(\overline{N}) + 4 \).

We consider a conical special complex manifold \((N, J, \nabla, \xi) \), which we endow now with an additional structure. Let \(\psi \) be a \(J \)-hermitian, \(\nabla \)-parallel two-form on \((N, J, \nabla, \xi) \). We consider a function \(\mu = (1/2)\psi(\xi, J\xi) \) on \(N \). Then we see \(d\mu = -\iota_Z \psi \). Set

\[
\begin{align*}
\Theta &= -\pi_{TN}^* \psi, \\
f &= -2\pi_{TN}^* \mu + c
\end{align*}
\]

for some constant \(c \). Then it holds that

\[
df = -\iota_{Z^M} \Theta, \quad f_1 = f - \frac{1}{2} \Theta(Z^M, I_1 Z^M) = 2\pi_{TN}^* \mu + c,
\]

where \(\pi_{TN} : TN \to N \) is the bundle projection. In fact, we have

\[
df = -2d(\pi_{TN}^* \mu) = 2\pi_{TN}^* (\iota_Z \psi) = -\iota_{Z^M} \Theta
\]

and

\[
f_1 = f - \frac{1}{2} \Theta(Z^M, I_1 Z^M) \\
= -\psi(\xi, J\xi) \circ \pi_{TN} - 2\Theta(Z^{h\nu}, I_1 Z^{h\nu}) + c \\
= \psi(J\xi, \xi) \circ \pi_{TN} + c = 2\pi_{TN}^* \mu + c.
\]

Corollary 8.6. Let \((N, J, \nabla, \xi) \) be a \(2n \)-dimensional conical special complex manifold and \(\psi \) a \(J \)-hermitian, \(\nabla \)-parallel two-form on \(N \). Consider a \(U(1) \)-bundle \(\pi : P \to M \) over \(M = TN \) and \(\eta \) a connection form whose curvature form is

\[
d\eta = (\pi_{TN} \circ \pi)^* \psi.
\]
If $\tilde{\pi} : \tilde{M} \to \hat{M}$ and $\hat{\pi} : \hat{M} \to \bar{M}$ are submersions and $\mu^{-1}(-c/2) = \emptyset$, then the generalized supergravity c-map of Theorem 8.3 can be specialized to this setting such that the data Θ and f are related to ψ by equations (8.1) and (8.2).

Proof. By a straightforward calculation, we have $d((\iota_Z \psi) \circ J) = 2\psi$. Then it is easy to check

$$d\eta = (\pi_{TN} \circ \pi)^* \psi = (\pi_{TN} \circ \pi)^* \left(-\psi + d((\iota_Z \psi) \circ J)\right) = (\pi_{TN} \circ \pi)^* \left(-\psi + \frac{1}{2} d((\iota_2 Z \psi) \circ J)\right) = \pi^* \left(\Theta - \frac{1}{2} d((\iota_Z M \Theta) \circ I_1)\right),$$

where Θ is the two-form given by (8.1). Since $d\psi = 0$ and $\iota_Z \psi = -d\mu$, it holds $L_Z M \Theta = 0$. The function $f_1 = f - (1/2)\Theta(Z_m^M, I_1 Z_m^M)$ does nowhere vanish by $\mu^{-1}(-c/2) = \emptyset$. Therefore Theorem 8.3 leads to the conclusion.

Therefore a conical special complex manifold (N, J, ∇, ξ) with a J-hermitian, ∇-parallel two-form ψ such that $(1/2\pi)\Theta(Z_m^M, I_1 Z_m^M) \in H^2_{DR}(N, \mathbb{Z})$ and $\mu = (1/2)\Theta(\xi, J\xi)$ is not surjective gives rise to a quaternionic manifold of dimension $2\dim N$ under a suitable choice of the constant c.

For $t \in \mathbb{R}/\pi\mathbb{Z}$, we define a connection ∇^t by $\nabla^t = e^{t J} \circ \nabla \circ e^{-t J}$, which is a special complex connection by [3, Proposition 1]. Moreover, by

$$\nabla^t = \nabla - (\sin t) e^{t J}(\nabla J)$$

([3, Lemma 1]), we see that ∇^t satisfies $\nabla^t \xi = \text{id}$. Therefore $\{\nabla^t\}_{t \in \mathbb{R}/\pi\mathbb{Z}}$ is a family of conical special complex connections if $\nabla J \neq 0$.

Lemma 8.7. If ψ is J-hermitian and ∇-parallel, then ψ is ∇^t-parallel.

Proof. Since $\nabla^t - \nabla$ is a linear combination of ∇J and $J(\nabla J) = -(\nabla J)J$, it suffices to remark that $\nabla \psi = 0$, $J \cdot \psi = 0$ and, hence, $(\nabla_X J) \cdot \psi = 0$ for all X. Here the dot stands for the action on the tensor algebra by derivations. □

Hence, Corollary 8.6 and Lemma 8.7 imply

Corollary 8.8. If $A(= \nabla J) \neq 0$, there exists an $(\mathbb{R}/\pi\mathbb{Z})$-family of quaternionic manifolds obtained from a conical special complex manifold with ψ under the same assumptions of Corollary 8.6 by the H/Q-correspondence (for any chosen function f in the construction).

Proof. By Lemma 8.7, $\nabla^t_X \psi = 0$. Since (N, J, ∇^t, ξ) are conical special complex manifolds, we have the conclusion. □
To give an example, we recall the (local) characterization of a conical special complex manifold [3]. Let \((\mathbb{C}^{n+1}, J)\) be the standard complex vector space and \(U\) an open subset in \(\mathbb{C}^{n+1}\) with the standard coordinate system \((z_0, \ldots, z_n)\). We consider a holomorphic one-form \(\alpha = \sum F_idz_i\) on \(U\), which is also viewed as a holomorphic map \(\phi = \phi_\alpha\) from \(U\) to \((T^*U = U \times \mathbb{C}^{n+1} \subset \mathbb{C}^{2(n+1)}\). If \(\text{Re} \phi : U \to \mathbb{R}^{2(n+1)}\) is an immersion, which is equivalent to \(\phi\) being totally complex [3], then we can find an affine connection \(\nabla\) such that \((U, J, \nabla)\) is a special complex manifold. In fact, we can take a local coordinate system
\[
(x_0 := \text{Re} z_0, \ldots, x_n := \text{Re} z_n, y_0 := \text{Re} F_0, \ldots, y_n := \text{Re} F_n)
\]
on \(U\) induced by \(\phi\) and a connection \(\nabla\) defined by the condition that \((x_0, \ldots, x_n, y_0, \ldots, y_n)\) is affine. Moreover, \(\sum\) is affine. Moreover, \(\sum\) is an immersion, which is equivalent to \(\phi\) being totally complex [3], then we can find an affine connection \(\nabla\) such that \((U, J, \nabla)\) is an affine coordinate system \((\alpha = dz_0)\) in that special case. In addition to being holomorphic and totally complex, we assume that \(\phi\) is conical, which is equivalent to the condition that functions \(F_0, \ldots, F_n\) are homogeneous of degree one, i.e. \(F_i(\lambda z) = \lambda F_i(z)\) for all \(\lambda\) near \(1 \in \mathbb{C}^*\) and \(z \in U\). Then \(U\) is conical, that is, any conical holomorphic one-form \(\phi\) such that \(\text{Re} \phi\) is an immersion on \(U\) defines a conical special complex (and symplectic) manifold structure of complex dimension \(n\). Conversely, any such manifold can be locally obtained in this way (see [3] Corollary 5).

If we choose \(\alpha = -\sum\sqrt{-1}z_i dz_i\) on \(\mathbb{C}^{n+1}\setminus\{0\}\), then the generalized c-map associates an open submanifold of \((\mathbb{H}^{n+1}, Q)\) with the standard quaternionic structure \(Q\) to the complex projective space \((\mathbb{C}P^n, J^s, [\nabla^{FS}])\), where \(J^s\) is the standard complex structure and \(\nabla^{FS}\) is the Levi-Civita connection of the Fubini-Study metric. Here we have chosen \(\Theta = 0\). We can also apply Corollary [8.6] by choosing the standard symplectic form as \(\psi\). More generally, we have the following example.

Example 8.9. For a holomorphic function \(g\) of homogeneous degree one, we consider the holomorphic 1-form
\[
\alpha = gdz_0 - \sqrt{-1}\sum_{i=1}^{n} z_i dz_i
\]
on \(U := \{(z_0, z_1, \ldots, z_n) \in \mathbb{C}^{n+1} \mid \text{Im} g_0 \neq 0\}\), where \(g_i = \frac{\partial g}{\partial z_i} (i = 0, 1, \ldots, n)\). [Comment Vicente: we should perhaps use a different symbol for \(F\) to avoid Note that \(d\alpha \neq 0\) if there exists \(i\) such that \(g_i \neq 0\) \((i \geq 1)\). Setting \(z_i = u_i + \sqrt{-1}v_i\) \((i = 0, 1, \ldots, n)\), we have
\[
(x_0, \ldots, x_n, y_0, y_1, \ldots, y_n) = \text{Re} \phi(u_0, \ldots, u_n, v_0, \ldots, v_n)
= (\text{Re} z_0, \ldots, \text{Re} z_1, \text{Re} g, \text{Re} (-\sqrt{-1}z_1), \ldots, \text{Re} (-\sqrt{-1}z_n))
= (u_0, \ldots, u_n, \text{Re} g, v_1, \ldots, v_n).
\]
Since its Jacobian matrix is given by

$$
\frac{\partial (x_0, \ldots, y_n)}{\partial (u_0, \ldots, v_n)} = \begin{pmatrix}
1 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
\Re g_0 & \Re g_n & -\Im g_0 & -\Im g_1 & \ldots & -\Im g_n \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & & 0 & 1 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \ddots & \ddots \\
0 & \ldots & 0 & 0 & 0 & 0 & 1
\end{pmatrix},
$$

we see that $\Re \phi$ is an immersion and we obtain a conical special complex structure on U. The coordinate vector fields of (x_0, \ldots, y_n) are given by

$$
\frac{\partial}{\partial x_i} = \frac{\partial}{\partial u_i} + \frac{\Re g_i}{\Im g_0} \frac{\partial}{\partial v_0} \quad (i \geq 0),
$$

$$
\frac{\partial}{\partial y_0} = -\frac{1}{\Im g_0} \frac{\partial}{\partial v_0}, \quad \frac{\partial}{\partial y_j} = -\frac{\Im g_j}{\Im g_0} \frac{\partial}{\partial v_0} + \frac{\partial}{\partial v_j} \quad (j \geq 1)
$$
on U. Let ∇ (resp. ∇^{st}) be the flat affine connection on U such that (x_0, \ldots, y_n) (resp. (u_0, \ldots, v_n)) is a ∇ (resp. ∇^{st})-affine coordinate system. We define S by $\nabla = \nabla^{st} + S$. Then we calculate

$$
0 = \nabla_X \frac{\partial}{\partial x_i} = (\nabla^{st}_X + S_X) \left(\frac{\partial}{\partial u_i} + \frac{\Re g_i}{\Im g_0} \frac{\partial}{\partial v_0} \right)
= X \left(\frac{\Re g_i}{\Im g_0} \right) \frac{\partial}{\partial v_0} + S_X \frac{\partial}{\partial u_i} + \frac{\Re g_i}{\Im g_0} S_X \frac{\partial}{\partial v_0} \quad (i \geq 0)
$$

and similarly we have

$$
-X \left(\frac{1}{\Im g_0} \right) \frac{\partial}{\partial v_0} - \frac{1}{\Im g_0} S_X \frac{\partial}{\partial v_0} = 0,
$$

$$
-X \left(\frac{\Im g_j}{\Im g_0} \right) \frac{\partial}{\partial v_0} - \frac{\Im g_j}{\Im g_0} S_X \frac{\partial}{\partial v_0} + S_X \frac{\partial}{\partial v_j} = 0 \quad (j > 0).
$$

From these equations, it holds that

$$
(8.3) \quad S_X \frac{\partial}{\partial u_i} = -X \Re g_i \frac{\partial}{\partial v_0}, \quad S_X \frac{\partial}{\partial v_i} = \frac{X \Im g_i}{\Im g_0} \frac{\partial}{\partial v_0} \quad (i \geq 0).
$$

Using $A_X Y = (\nabla_X J)(Y) = S_X J Y - JS_X Y$ and (8.3), we have the matrix representation

$$
(8.4) \quad A = \nabla J = \frac{1}{\Im g_0} \begin{pmatrix}
A_0 & \ldots & A_n \\
0_2 & \ldots & 0_2 \\
\vdots & \ddots & \vdots \\
0_2 & \ldots & 0_2
\end{pmatrix}
$$

33
of A with respect to the frame
\[
\left(\frac{\partial}{\partial u_0}, \frac{\partial}{\partial v_0}, \ldots, \frac{\partial}{\partial u_n}, \frac{\partial}{\partial v_n} \right),
\]
where
\[
A_i = \begin{pmatrix} -d\text{Re } g_i & d\text{Im } g_i \\ d\text{Im } g_i & d\text{Re } g_i \end{pmatrix}
\]
and $0_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Note that we change the order of the frame for simplicity. This means that $A \neq 0$ if there exists i such that $g_i \neq$ constant. By Lemma 7.8 and (8.4), $A^2 = (\nabla J)^2$ induces a globally defined tensor on \bar{U}, in particular
\[
\operatorname{Tr} A^2 = \operatorname{Tr}_{A^2} = \frac{2}{(\text{Im } g_0)^2} (d\text{Re } g_0 \otimes d\text{Re } g_0 + d\text{Im } g_0 \otimes d\text{Im } g_0)
\]
also induces the the symmetric tensor \mathcal{B} on \bar{U}. By Lemma 6.4 and (8.4), we see that
\[
R_{\nabla'} = -\frac{1}{4} A \wedge A = -\frac{1}{4(\text{Im } g_0)^2} \begin{pmatrix} A_0 \wedge A_0 & A_0 \wedge A_1 & \cdots & A_0 \wedge A_n \\ 0_2 & 0_2 & \cdots & 0_2 \\ \vdots & \vdots & \ddots & \vdots \\ 0_2 & 0_2 & \cdots & 0_2 \end{pmatrix}
\]
as the matrix representation.

Since
\[
dx_i = du_i \quad (i \geq 0), \quad dy_0 = \sum_{i=0}^n \text{Re } g_i \, du_i - \text{Im } g_i \, dv_i,
\]
\[
(0_2 \wedge 0_2)(\frac{\partial}{\partial u_0}, \frac{\partial}{\partial u_i}) = \text{Re } g_i \quad \text{and} \quad (0_2 \wedge 0_2)(J \frac{\partial}{\partial u_0}, J \frac{\partial}{\partial u_i}) = 0.
\]
Moreover since
\[
\xi = \sum_{i=0}^n x_i \frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial y_i} = \cdots + \sum_{i=1}^n u_i \frac{\partial}{\partial u_i} + v_i \frac{\partial}{\partial v_i},
\]
\[
J\xi = \cdots + \sum_{i=1}^n u_i \frac{\partial}{\partial v_i} - v_i \frac{\partial}{\partial u_i},
\]
we have $\mu = \psi(\xi, J\xi) = (1/2) \sum_{i=1}^n (u_i^2 + v_i^2)$. Take a $\text{U}(1)$-bundle $\pi : T\bar{U} \times \text{U}(1) \to T\bar{U}$ with a connection form
\[
\eta = (\pi_{TU} \circ \pi)^* \left(\sum_{i=1}^n u_i dv_i \right) + d\theta.
\]
where \(\theta \) is the angular coordinate of \(U(1) \). The special case Corollary 8.6 of Theorem 8.3 can be applied and then we obtain a quaternionic manifold.

We consider the horizontal subbundle of \(p_\mathcal{V} : U \to \bar{U} \) given by the kernel of \(\kappa = -(1/2s)d\mu \circ J \) on each level set \(\mu^{-1}(s) \subset U \) \((s \neq 0)\). We retake \(U \) as an open set in \(\bigcup_{s > 0} \mu^{-1}(s) \). For horizontal vector fields \(X \) and \(Y \) tangent to each level set \(\mu^{-1}(s) \), \(XY_\mu = 0 \) means that

\[
(p_\mathcal{V}^* \bar{a})(X, Y) = \frac{1}{2s} \psi(JX, Y),
\]

where \(\bar{a} \) is the \(\xi \)-component of the fundamental tensor of \(\mathcal{A}_\mathcal{V} \) as in Section 7. Here we used \(d\kappa = \psi/s \). This means that \(\bar{a} \) is symmetric and \(J \)-hermitian, and hence the Ricci tensor of the connection \(\bar{\nabla}^{\kappa} \) on \(\bar{U} \) induced from \(\kappa \) is symmetric and \(J \)-hermitian. Therefore it holds

\[
p_\mathcal{V}^* \bar{a} = -\frac{1}{\sum_{i=1}^n (u_i^2 + v_i^2)} \sum_{i=1}^n du_i \otimes dv_i + dv_i \otimes dv_i.
\]

Hence the Ricci tensor \(Ric^{\bar{\nabla}^{\kappa}} \) of \(\bar{\nabla}^{\kappa} \) satisfies

\[
-\frac{1}{\sum_{i=1}^n (u_i^2 + v_i^2)} \sum_{i=1}^n du_i \otimes dv_i + dv_i \otimes dv_i = \frac{1}{4(n+1)(\Im g_0)^2}(d\Re g_0 \otimes d\Re g_0 + d\Im g_0 \otimes d\Im g_0) - \frac{1}{2(n+1)} p_\mathcal{V}^*(Ric^{\bar{\nabla}^{\kappa}})
\]

by (7.3). In particular, we see that \(Ric^{\bar{\nabla}^{\kappa}} \geq 0 \). For example, when we choose \(g = -\sqrt{-1} z_1/z_0^{-1} \) for \(l(\neq 1) \in \mathbb{Z} \), we obtain

\[
\begin{align*}
d\Re g_0 &= \frac{\sqrt{-1}}{2}(-l + 1)l(-w^{l-1}dw + \bar{w}^{l-1}d\bar{w}), \\
d\Im g_0 &= -\frac{1}{2}(-l + 1)l(w^{l-1}dw + \bar{w}^{l-1}d\bar{w}), \\
d\Re g_1 &= \frac{\sqrt{-1}}{2}(-l + 1)l(w^{l-2}dw - \bar{w}^{l-1}d\bar{w}), \\
d\Im g_1 &= \frac{1}{2}(-l + 1)l(w^{l-2}dw + \bar{w}^{l-2}d\bar{w}), \\
d\Re g_j &= d\Im g_j = 0 \quad (j > 1),
\end{align*}
\]

where \(w = z_1/z_0 \). We denote the corresponding objects with subscript \(l \) for ones given by \(g = -\sqrt{-1} z_1^l/z_0^{-1} \). It holds that

\[
(8.5) \quad R^{\bar{\nabla}^{\kappa}} = -\frac{\sqrt{-1} l^2 |w|^{2(l-2)}}{(w^l + \bar{w}^l)^2} \begin{pmatrix} 0 & -|w|^2 & -\Im w & \Re w & 0 & \ldots & 0 \\ -|w|^2 & 0 & -\Re w & -\Im w & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \end{pmatrix} \quad dw \wedge d\bar{w}
\]
and
\[
(8.6) \quad \text{Tr}(A^l)^2 = \text{Tr}(\nabla^l J)^2 = \frac{4l^2 |w|^2(l-1)}{(w^l + \bar{w}^l)^2} (dw \otimes d\bar{w} + d\bar{w} \otimes dw).
\]

Finally we consider the quaternionic Weyl curvature of \(TU\). Let \(W^q\) be the quaternionic Weyl curvature of the quaternionic structure \(Q = \langle I_1, I_2, I_3 \rangle\). In \([5]\), the explicit expression of \(W^q\) is given and it is shown that \(W^q\) is independent of the choice of the quaternionic connection. Since the Obata connection of the c-map is Ricci flat by Remark 8.11, we see that \(W^{q,l} = R^{q,l}\) for \(g = -\sqrt{-1}z_1/\bar{z}_0^{l-1}\). If \(l \neq 1\), then we see that
\[
W^{q,l}_{Xv,Yv} Z^v = R^{q,l}_{Xv,Yv} Z^v = \left(R^{q,l}_{X,Y} \right)^v.
\]

Because the vertical lift is determined by a differential manifold structure (not by a connection), we see that \(W^{q,l} \neq W^{q,k}\) on \(T(U_k \cap U_l)\) if \(l \neq k\), where \(U_j = \{(z_0, z_1, \ldots, z_n) \in \mathbb{C}^{n+1} \mid \text{Im} g_0 \neq 0\} = \{(z_0, z_1, \ldots, z_n) \in \mathbb{C}^{n+1} \mid \text{Re} (z_1/z_0) \neq 0\}\) for \(g = -\sqrt{-1}z_1/\bar{z}_0^{l-1}\). Here we used (8.5). So we can find different quaternionic structures \(Q^{\alpha_1}, \ldots, Q^{\alpha_n}\) on \(T(\cap_{i=1}^l U_{\alpha_i})\), where \(1 \neq \alpha_i \in \mathbb{Z}\). Note that \(Q^0\) is the flat quaternionic structure.

Remark 8.10. Since \(d\alpha \neq 0\) except the trivial case \(g = -\sqrt{-1}z_0\), Example 8.9 with \(g = -\sqrt{-1}z_1/\bar{z}_0^{l-1}\) (\(l \neq 0\)), which is local one, is not given by a local special Kählerian one.

Remark 8.11. For a conical special Kähler manifold \(N\), the particular twist data which yields the quaternionic Kähler structure of the supergravity c-map on \(T^*N \cong TN\) is given in [21, Lemma 5.1] in consistency with [4]. As we noted in the introduction, we also have a freedom in the choice of the data \(\Theta\) etc. for our generalized supergravity c-map. For illustration, the two form \(\Theta\) can be chosen as trivial (\(\Theta = 0\)) or as in equation (8.11). For illustration, we can give yet another possible choice of \(\Theta\). Assume that \(\dim N \geq 6\). Let \(\{\bar{U}_\alpha\}_{\alpha \in \Lambda}\) be an open covering of \(N\) with local trivializations \(U_\alpha := p_N^{-1}(\bar{U}_\alpha) \cong \bar{U}_\alpha \times \mathbb{C}^*\) and \(g_{\alpha\beta} : \bar{U}_\alpha \cap \bar{U}_\beta \to \mathbb{C}^*\) be the corresponding transition functions. Let \((r_\alpha, \theta_\alpha)\) be the polar coordinates with respect to a (smooth) local trivialization \(p_N^{-1}(\bar{U}_\alpha) \cong \bar{U}_\alpha \times \mathbb{C}^*\) for each \(\alpha \in \Lambda\). A principal connection \(\eta\) is locally given by

\[
\eta = p_N^*(\gamma_1^\alpha \otimes 1 + \gamma_2^\alpha \otimes \sqrt{-1}) + \left(\frac{dr_\alpha}{r_\alpha} \otimes 1 + d\theta_\alpha \otimes \sqrt{-1} \right)
\]

for a \(\mathbb{C}\)-valued one-form \(\gamma_1^\alpha \otimes 1 + \gamma_2^\alpha \otimes \sqrt{-1}\) on \(\bar{U}_\alpha \subset \bar{N}\) for each \(\alpha \in \Lambda\). If we write \(g_{\alpha\beta} = e^{f^1_{\alpha\beta} + f^2_{\alpha\beta} \sqrt{-1}}\), then

\[
\begin{align*}
f^1_{\alpha\beta} + f^1_{\beta\gamma} - f^1_{\alpha\gamma} & = 0, \\
f^2_{\alpha\beta} + f^2_{\beta\gamma} - f^2_{\alpha\gamma} & \in 2\pi \mathbb{Z}, \\
\gamma^1_\beta - \gamma^1_\alpha & = df^1_{\alpha\beta}, \\
\gamma^2_\beta - \gamma^2_\alpha & = df^2_{\alpha\beta}.
\end{align*}
\]
Therefore we obtain a principal U(1)-bundle \(p_S : S \to \tilde{\mathcal{N}} \) with transition functions
\[e^{f_{\alpha \beta} \sqrt{-1}} : U_\alpha \cap U_\beta \to U(1) \]
and connection \(\eta_S \) locally given by
\[p_S^*(\gamma_2^\alpha \otimes \sqrt{-1}) + d\theta_\alpha \otimes \sqrt{-1}. \]
In fact, the collection \(\{e^{f_{\alpha \beta} \sqrt{-1}}\} \) of local U(1)-valued functions satisfies the cocycle condition and the collection \(\{\gamma_\alpha\} \) of local \(\sqrt{-1}\mathbb{R} \)-valued one-forms satisfying \(\gamma_\beta^2 - \gamma_\alpha^2 = df_{\alpha \beta}^2 \)
defines a connection form \(\eta_S \). By Proposition [7.9] and (7.7), its curvature \(d\eta_S(= p_S^*(d\gamma_2^\alpha)) \)
is \(2(\bar{a}_j)^\alpha \), where \((\bar{a}_j)^\alpha \) is given by
\[(\bar{a}_j)^\alpha = \frac{1}{8(n+1)} \mathcal{B}_j - \frac{1}{2} (P^\alpha_j)^a. \]
On \(TN \), we choose the two-form \(\Theta = 2(p_N \circ \pi_{TN})^*(\bar{a}_j)^\alpha \) and consider the pull-back connection \((p_N^\# \circ \pi_{TN^\#})^*\eta_S \) on the pull-back bundle \(P = \pi_{TN^\#}p_N^\#S \). Since \(\iota_{Z^M}\Theta = 0 \), we can see that the assumptions in Theorem [8.3] hold. It is left for future studies to find a canonical choice of \(\Theta \) for the generalized supergravity c-map, which allows to invert the H/Q-correspondence of [10].

As an application of Theorem [8.3], we have the following corollary by patching quaternionic manifolds locally constructed by the generalized supergravity c-maps.

Corollary 8.12. Let \((M, J, \sqrt{\nabla})\) be a complex manifold with a c-projective structure \(\sqrt{\nabla} \) and \(\dim M = 2n \). If \(2n = \dim M \geq 4 \) and the harmonic curvature of its normal Cartan connection vanishes, then there exists a \(4(n+1) \)-dimensional quaternionic manifold \((\tilde{M}, Q)\) with the vanishing quaternionic Weyl curvature foliated by \((n+2)\)-dimensional complex manifolds whose leaves space is \(M \).

Proof. Since \(\dim M \geq 4 \) and the harmonic curvature of its normal Cartan connection vanishes, \((M, J, \sqrt{\nabla})\) is locally isomorphic to \((\mathbb{C}P^n, J^c, [\nabla^{FS}])\) (see [8] for example). So we may assume that \(M = \bigcup_\alpha U_\alpha \), where \(U_\alpha \) is an open subset \(\mathbb{C}P^n \). Set \(V_\alpha := p^{-1}(U_\alpha) \), where \(p : \mathbb{C}^{n+1}\backslash\{0\} \to \mathbb{C}P^n \) is the projection. We consider the standard complex structure and the standard flat connection induced from \(\mathbb{C}^{n+1} \) on each \(V_\alpha \). By Theorem [8.3] we have a quaternionic manifold \(W_\alpha := \varphi'(TV_\alpha) \subset \mathbb{H}^{n+1} \), where \(\varphi' \) is the diffeomorphism given in Example [5.2]. Here we have chosen the two-form \(\Theta = 0 \) and \(f = f_1 = 1 \) on \(TV_\alpha \) for each \(\alpha \). We set \(\tilde{M} := \bigcup_\alpha W_\alpha \). The induced quaternionic structure on each \(W_\alpha \) coincides with the standard one from \(\mathbb{H}^{n+1} \). Hence an almost quaternion structure \(Q \) on \(\tilde{M} \) can be obtained. Since there exists a quaternionic connection on each \(W_\alpha \), one can obtain a quaternionic connection on \(\tilde{M} \) by the partition of unity, that is, \(Q \) is a quaternionic structure with vanishing quaternionic Weyl curvature. For each \(p \in TV_\alpha \cap TV_\beta \), the leaf of \(L \) through \(p \) in \(TV_\alpha \) is denoted by \(L^\alpha \) and corresponding leaf in \(W_\alpha \) is denoted by \(\tilde{L}^\alpha \), that is \(\tilde{L}^\alpha = \varphi'(L^\alpha) \). Since \(\tilde{L}^\alpha = \tilde{L}^\beta \) in \(M \), we obtain leaves in \(\tilde{M} \) and see that its leaves space is \(M \). Since the subbundle \(L \) is an \(I_1 \)-invariant in \(T(TV_\alpha) \), each leaf \(L \) is a complex manifold with \(I := I_{L|L} \). Each leaf \(\tilde{L} \) on \(\tilde{M} \) is obtained by the Swann’s twist with an almost complex structure \(\tilde{I} \). By [27, Proposition 3.8] and \(\Theta = 0 \), \(\tilde{I} \) is integrable. \(\square \)
Acknowledgments. We thank Aleksandra Borówka for comments. Research by the first author is partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2121 Quantum Universe – 390833306. The second author’s research is partially supported by JSPS KAKENHI Grant Number 18K03272.

References

[1] N. Abe and K. Hasegawa, An affine submersion with horizontal distribution and its applications, Differential Geom. Appl. 14 (2001), 235-250.

[2] D. Alekseevsky, V. Cortés and T. Mohaupt, Conification of Kähler and hyper-Kähler manifolds, Comm. Math. Phys. 324 (2013), 637-655.

[3] D. Alekseevsky, V. Cortés and C. Devchand, Special complex manifolds, J. Geom. Phys. 42 (2002), 85-105.

[4] D. Alekseevsky, V. Cortés, M. Dyckmanns and T. Mohaupt, Quaternionic Kähler metrics associated with special Kähler manifolds, J. Geom. Phys. 92 (2015), 271-287.

[5] D. Alekseevsky and S. Marchiafava, Quaternionic structures on a manifold and subordinated structures, Ann. Mat. Pura Appl. (4) 171 (1996), 205-273.

[6] A. Borówka and D. Calderbank, Projective geometry and the quaternionic Feix-Kaledin construction, Trans. Amer. Math. Soc., 372 (2019), 4729-4760.

[7] D. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition. Progress in Mathematics, 203. Birkhäuser Boston, Ltd., 2010.

[8] D. Calderbank, M. Eastwood, V. S. Matveev and K. Neusser, C-projective geometry, Mem. Amer. Math. Soc. 267 (2020).

[9] S. Cecotti, S. Ferrara and L. Girardello, Geometry of type II superstrings and the moduli of superconformal field theories, Journal of Modern Physics A, 4(10) (1989), 2475-2529.

[10] V. Cortés and K. Hasegawa, The quaternionic/hypercomplex-correspondence, Osaka J. Math. 58 (2021), 213-238.

[11] B. Feix, Hyperkähler metrics on cotangent bundles, J. Reine Angew. Math. 532 (2001), 33-46.

[12] B. Feix, Hypercomplex manifolds and hyperholomorphic bundles, Math. Proc. Cambridge Philos. Soc. 133 (2002), 443-457.

[13] S. Ferrara and S. Sabharwal, Quaternionic manifolds for type II superstring vacua of Calabi Yau spaces, Nuclear Physics B, 332(2) (1990), 317-332.

38
[14] D. S. Freed, \textit{Special Kähler manifolds}, Comm. Math. Phys. 203 (1999), 31-52.

[15] A. Haydys, \textit{Hyper-Kähler and quaternionic Kähler manifolds with S^1-symmetries}, J. Geom. Phys. 58 (2008), 293-306.

[16] N. Hitchin, \textit{On the hyperkähler/quaternion Kähler correspondence}, Comm. Math. Phys. 324 (2013), 77-106.

[17] S. Ishihara, \textit{Holomorphically projective changes and their groups in an almost complex manifold}, Tohoku Math. J. (2) 9 (1957), 273-297.

[18] D. Joyce, \textit{The hypercomplex quotient and the quaternionic quotient}, Math. Ann. 290 (1991), 323-340.

[19] D. Joyce, \textit{Compact hypercomplex and quaternionic manifolds}, J. Differential Geometry, 35 (1992), 743-761.

[20] D. Kaledin, \textit{A canonical hyperkähler metric on the total space of a cotangent bundle}, Quaternionic structures in mathematics and physics (Rome, 1999), 195–230, Univ. Studi Roma “La Sapienza”, Rome, 1999.

[21] O. Macia and A. Swann, \textit{Twist geometry of the c-map}, Commun. Math. Phys. 336 (2015), 1329-1357.

[22] M. Obata, \textit{Affine connections on manifolds with almost complex, quaternion or Hermitian structure}, Jap. J. Math., 26 (1956), 43-79.

[23] L. Ornea and P. Piccinni, \textit{Locally conformal Kähler manifold structures in quaternionic geometry}, Trans. Amer. Math. Soc., 349 (1997), 641-355.

[24] H. Pedersen, Y. Poon and A. Swann, \textit{Hypercomplex structures associated to quaternionic manifolds}, Differential Geom. Appl. 9 (1998), 273-292.

[25] S. Salamon, \textit{Differential geometry of quaternionic manifolds}, Ann. Scient. Éc. Norm. Sup. 19 (1986), 31-55.

[26] A. Soldatenkov, \textit{Holonomy of the Obata connection in SU(3)}, Int. Math. Res. Not. 15 (2012), 3483-3497.

[27] A. Swann, \textit{Twisting hermitian and hypercomplex geometries}, Duke Math. J. 155 (2010), 403-431.

Vicente Cortés
Department of Mathematics
and Center for Mathematical Physics
University of Hamburg
Bundesstraße 55,
D-20146 Hamburg, Germany.
email: vicente.cortes@uni-hamburg.de

Kazuyuki Hasegawa
Faculty of teacher education
Institute of human and social sciences
Kanazawa university
Kakuma-machi, Kanazawa,
Ishikawa, 920-1192, Japan.
e-mail: kazuhase@staff.kanazawa-u.ac.jp