Hypergeometric functions and the Tricomi operator

J. Barros-Neto*
Rutgers University, Hill Center
110 Frelinghuysen Rd, Piscataway, NJ 08854-8019
e-mail: jbn@math.rutgers.edu

Fernando Cardoso†
Departamento de Matemática, Universidade Federal de Pernambuco
50540-740 Recife, Pe, Brazil
e-mail: fernando@dmat.ufpe.br

Abstract
In this paper we show how certain hypergeometric functions play an important role in finding fundamental solutions for a generalized Tricomi operator.

1 Introduction
In this article we consider the operator

$$T = y \Delta_x + \frac{\partial^2}{\partial y^2},$$

(1.1)
in \mathbb{R}^{n+1}, where $\Delta_x = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}$, $n \geq 1$. This is a natural generalization of the classical Tricomi operator in \mathbb{R}^2 already considered by us in the article [2] where it was called generalized Tricomi operator.

*Partially supported by NSF, Grant # INT 0124940
†Partially supported by CNPq (Brazil)
In that article we obtained, by the method of partial Fourier transformation, explicit expressions for fundamental solutions to \mathcal{T}, relative to points on the hyperplane $y = 0$. That lead us to calculate inverse Fourier transforms of Bessel functions which, in turn, revealed the importance of certain hypergeometric functions (depending on the “space dimension” n) that are intimately related to the operator \mathcal{T}.

In the present article we look for fundamental solutions of \mathcal{T} relative to an arbitrary point (x_0, y_0), located in the hyperbolic region ($y < 0$) of the operator, and which are supported by the “forward” characteristic conoid of \mathcal{T} with vertex at (x_0, y_0). We follow the method of S. Delache and J. Leray in [5] where they introduced hypergeometric distributions, a notion also considered by I. M. Gelfand and G. E. Shilov in [7].

The plan of this article is the following. In Section 2 we deal with preliminary material that is needed throughout the paper. Hypergeometric distributions are introduced in Section 3 where we obtain the basic formula (3.21) which is used in Sections 4, 5, and 6 to obtain fundamental solutions respectively in the cases $n = 1$ (the classical Tricomi operator), n even, and n odd. The case n odd ≥ 3 differs from the other two cases by the fact that the fundamental solution is then a sum of two terms one supported by the “forward” conoid (as in the cases $n = 1$ and n even) and another supported by the boundary of the conoid. In Section 4 we also show how to derive from the method used in this paper the results obtained previously by Barros-Neto and Gelfand in [4]. Finally, in the Appendix we prove or indicate the proof of results mentioned and utilized in Section 4.

2 Preliminaries

Let \mathcal{T} be the operator given by (1.1) at the beginning of Section 1. Defining the modified gradient

$$\hat{\nabla} u = (yu_{x_1}, \ldots, yu_{x_n}, u_y),$$

one verifies that $\mathcal{T}u = \text{div}(\hat{\nabla} u)$ and that

$$\int\int_D (u\mathcal{T}v - v\mathcal{T}u) \, dV = \int_{\partial D} (u\hat{\nabla}v - v\hat{\nabla}u) \cdot \vec{n} \, dS$$

(2.2)

for all smooth u and v on the closure of an open bounded domain D with smooth boundary ∂D.

2
If \(y < 0 \) and we set \(t = 2(-y)^{3/2}/3 > 0 \), then the change of variables

\[
x = x, \quad t = 2(-y)^{3/2}/3 \quad \iff \quad x = x, \quad y = -(2/3)^{-2/3}t^{2/3},
\]

(2.3)

whose Jacobian is

\[
\frac{\partial(x, y)}{\partial(x, t)} = -(2/3)^{1/3}t^{-1/3},
\]

(2.4)

transforms \(T \) into the operator

\[
2\left(\frac{3t}{2}\right)^{2/3} T_h,
\]

(2.5)

with

\[
T_h = \frac{1}{2} \left(\frac{\partial^2}{\partial t^2} - \Delta_x \right) + \frac{1}{6t} \frac{\partial}{\partial t}.
\]

(2.6)

We call \(T_h \) the reduced hyperbolic Tricomi operator. Its formal adjoint is

\[
T_h^* = \frac{1}{2} \left(\frac{\partial^2}{\partial t^2} - \Delta_x \right) - \frac{1}{6t} \frac{\partial}{\partial t} + \frac{1}{6t^2}.
\]

(2.7)

It is a matter of verification that

\[
T_h^* (t^{1/3} u) = t^{1/3} T_h (u).
\]

Thus, if \(u \) is a solution of \(T_h (u) = 0 \), then \(v = t^{1/3} u \) is a solution of \(T_h^* v = 0 \), and conversely. Moreover, suppose that \(E(x, t; 0, t_0) \), with \(t_0 \neq 0 \), is a fundamental solution of \(T_h \) relative to the point \((0, t_0) \), that is,

\[
T_h E = \delta(x, t - t_0),
\]

then \((t/t_0)^{1/3} E \) is a fundamental solution of \(T_h^* \) relative to the same point.

We now recall the definition of the distribution \(\chi_q(s) \) (see \[5, 7, 8\]). Let \(q \in \mathbb{C} \) be such that \(\text{Re} \, q > -1 \). The locally integrable function

\[
\chi_q(s) = \frac{s^q}{\Gamma(q+1)} \text{ if } s > 0, \quad \chi_q(s) = 0 \text{ if } s \leq 0
\]

(2.8)

defines a distribution in \(\mathbb{R} \) that depends analytically on \(q \) and that extends by analytic continuation to an entire function of \(q \). We have

\[
\chi_q(s) = \frac{d}{ds} \chi_{q+1}(s).
\]
Moreover, $\chi_q(s)$ is positive homogeneous of degree q and Euler’s formula holds
\[s\chi_{q-1}(s) = q\chi_q(s). \] (2.9)
We also have that $\chi_q(s) = \delta^{(-q-1)}(s)$ if q is an integer < 0 (see [7]).

Consider the function
\[k(x, t - t_0) = \begin{cases}
(t - t_0)^2 - |x|^2 & \text{if } t - t_0 > |x| \\
0 & \text{if } t - t_0 \leq |x|,
\end{cases} \] (2.10)
defined in the whole of \mathbb{R}^{n+1}. Since $k(x, t - t_0)$ is positive in the semi-cone $C = \{(x, t) \in \mathbb{R}^{n+1} : t - t_0 > |x|\}$, and identically zero outside of C, it follows that $\chi_q(k(x, t - t_0))$ (which, for simplicity and when no confusion is possible, we denote by $\chi_q(k(\cdot))$) is a distribution in \mathbb{R}^{n+1} which is an entire analytic function of $q \in \mathbb{C}$. In particular, if q is an integer < 0, then
\[\chi_q(k(\cdot)) = \delta^{(-q-1)}((k(\cdot))) \]
is a distribution concentrated on the boundary of C (see [4]).

3 Hypergeometric distributions

Our aim is to find fundamental solutions for the Tricomi operator T relative to an arbitrary point $(0, b)$, $b < 0$, in \mathbb{R}^{n+1}, that is, a distribution $E(x, y; 0, b)$ defined in \mathbb{R}^{n+1} so that $TE = \delta(x, y - b)$. In guise of motivation, suppose that $E(x, y; 0, b)$ is locally integrable function. Then in view of formulas (2.3), (2.4), (2.5), and (2.6), we may write
\[\phi(0, b) = \langle TE, \phi \rangle = \int_{\mathbb{R}^{n+1}} E(x, y; 0, b)T\phi \, dx \, dy \] (3.1)
\[= 2\left(\frac{3}{2}\right)^{1/3} \int_{\mathbb{R}^{n+1}} t^{1/3}E^\sharp(x, t; 0, t_0)T_h\psi(x, t) \, dx \, dt, \]
where in the last formula $E^\sharp(x, t; 0, t_0)$ and $\psi(x, t)$ denote, respectively, $E(x, y; 0, b)$ and ϕ in the variables x and t, and we have set $t_0 = 2(-b)^{3/2}/3$. Thus, our problem reduces to finding fundamental solutions relative to $(0, t_0)$ for the adjoint operator T^*_h, which according to our remark in Section 1 is equivalent to finding fundamental solutions for T^*_h relative to the same point.
The operator \(T_h \) belongs to a class of operators, called Euler–Poisson–Darboux operators, studied by Delache and Leray in [5], where they obtained explicit formulas for fundamental solutions of those operators. For sake of completeness, we outline Delache and Leray’s method in [5] relative to the reduced hyperbolic Tricomi operator \(T_h \), or more generally, the operator

\[
\mathcal{P}_\alpha = \frac{1}{2} \left(\frac{\partial^2}{\partial t^2} - \Delta_x \right) + \frac{\alpha}{t} \frac{\partial}{\partial t},
\]

(3.2)

where \(\alpha \in \mathbb{C} \). Note that \(\mathcal{P}_\alpha \) remains invariant under the action of the group that leaves \(t \) unchanged and transforms \((x_1, \ldots, x_n)\) by translations. Since \(\mathcal{P}_\alpha \) is homogeneous of degree \(-2\) and \(\delta(x, t - t_0) \) is homogeneous of degree \(-(n + 1)\), a fundamental solution \(E_\alpha \) of \(\mathcal{P}_\alpha \) should be homogeneous of degree \(1 - n \). Monomials of the type

\[
t_0^{-j} t^{-\alpha - j} x_{j+1/2-n/2}(k(x, t - t_0)),
\]

have the desired homogeneity degree. On the other hand, if \(\Box_{(x,t)} = (\partial^2 / \partial t^2 - \Delta_x) \) denotes the wave operator in \(\mathbb{R}^{n+1} \), it is shown in [5] that

\[
\Box_{(x,t)} \left(\frac{1}{2} \pi^{1/2-n/2} x_{1/2-n/2}(k(x, t)) \right) = \delta(x, t),
\]

(3.3)

in other words, the distribution \(\pi^{1/2-n/2} x_{1/2-n/2}(k(x, t))/2 \) is a fundamental solution of the wave operator.

As a consequence, it is natural to look for a fundamental solution to \(\mathcal{P}_\alpha \) as a formal series

\[
E_\alpha(x, t; 0, t_0) = \pi^{1/2-n/2} t_0^\alpha \sum_{j=0}^{\infty} c_j(t_0 t)^{-j} x_{j+1/2-n/2}(k(\cdot)),
\]

(3.4)

with a suitable choice of the coefficients \(c_j \). By applying \(\mathcal{P}_\alpha \) to both sides of (3.4) one obtains, after routine calculations where the two identities

\[
\Box_{(x,t)} x_{j+1/2-n/2}(k(\cdot)) = 4 j x_{j-1/2-n/2}(k(\cdot))
\]

and

\[
\frac{\partial}{\partial t} [x_{j+1/2-n/2}(k(\cdot))] = 2(t - t_0) x_{j-1/2-n/2}(k(\cdot))
\]

are used, the following result:

\[
\mathcal{P}_\alpha E_\alpha = c_0 \delta(x, t - t_0) +
\]

(3.5)
\[+ \pi^{1/2-n/2} \sum_{j=1}^{\infty} \left\{ \frac{1}{2} (j - 1 + \alpha)(j - \alpha)c_{j-1} + 2jc_j \right\} t_0^{-j+1} t^{\alpha-j-1} \chi_{j-1/2-n/2}(k(\cdot)). \]

If we choose the coefficients \(c_j \) so that

\[c_0 = 1 \quad \text{and} \quad \frac{1}{2} (j - 1 + \alpha)(j - \alpha)c_{j-1} + 2jc_j = 0, \quad j \geq 1, \quad (3.6) \]

then (3.5) reduces to

\[\mathcal{P}_\alpha E_\alpha = \delta(x, t - t_0), \quad (3.7) \]

that is \(E_\alpha \) is a fundamental solution of \(\mathcal{P}_\alpha \). Now recalling notations

\[(a)_0 = 1, \quad (a)_j = a(a + 1) \cdots (a + j - 1) = \frac{\Gamma(a + j)}{\Gamma(a)}, \quad j \geq 1, \quad (3.8) \]

it follows from (3.6) that

\[c_j = (-\frac{1}{4})^j (\alpha)_j(1 - \alpha)_j \frac{1}{j!}, \quad j \geq 0. \quad (3.9) \]

Hence we may rewrite (3.4) as

\[E_\alpha(x, t; 0, t_0) = \pi^{1/2-n/2} (\frac{t_0}{t})^\alpha \Phi_\alpha(x, t), \quad (3.10) \]

where

\[\Phi_\alpha(x, t) = \sum_{j=0}^{\infty} \frac{(\alpha)_j(1 - \alpha)_j}{j!} (-\frac{1}{4t_0t})^j \chi_{j+1/2-n/2}(k(\cdot)). \quad (3.11) \]

This series converges for \(|k(\cdot)/4t_0t| < 1\). \(\Phi_\alpha(x, t) \) is the hypergeometric distribution introduced by Delache and Leray in [5]. Hypergeometric distributions were also considered by Gelfand and Shilov in [7].

The expression of \(\Phi_\alpha \) depends on the space dimension \(n \). To see this consider three cases.

Case I: \(n = 1 \). We have

\[\Phi_\alpha(x, t) = \chi_0(k(\cdot)) + \sum_{j=1}^{\infty} \frac{(\alpha)_j(1 - \alpha)_j}{j!} (-\frac{1}{4t_0t})^j \chi_j(k(\cdot)). \quad (3.12) \]
From Euler’s formula (2.9) it follows that \(\chi_j(s) = s^j \chi_0(s)/j! \), \(j \geq 0 \). By recalling the expression of \(\chi_j(k(\cdot)) \) we rewrite (3.12) as follows

\[
\Phi_\alpha(x,t) = \chi_0(k(\cdot)) \sum_{j=0}^{\infty} \frac{(\alpha)_{j}(1-\alpha)_{j}}{j!j!} \frac{(t-t_0)^2 - x^2}{-4t_0t} j^j
\]

(3.13)

\[
= \chi_0(k(\cdot)) F(\alpha, 1-\alpha, 1; \frac{(t-t_0)^2 - x^2}{-4t_0t}).
\]

Case II: \(n \) even. We have

\[
\Phi_\alpha(x,t) = \chi_{1/2-n/2}(k(\cdot)) + \sum_{j=1}^{\infty} \frac{(\alpha)_{j}(1-\alpha)_{j}}{j!} \frac{\alpha_j}{4t_0t} \chi_{j+1/2-n/2}(k(\cdot)).
\]

(3.14)

From Euler’s formula (2.9) it follows by induction that

\[
s^j \chi_q(s) = (q+1) j \chi_{q+j}(s),
\]

for all integer \(j \geq 0 \). Inserting the corresponding formula with \(q = 1/2 - n/2 \) into (3.14) we obtain

\[
\Phi_\alpha(x,t) = \chi_{1/2-n/2}(k(\cdot)) \sum_{j=0}^{\infty} \frac{(\alpha)_{j}(1-\alpha)_{j}}{(3/2-n/2)_{j!} j!} \frac{(t-t_0)^2 - |x|^2}{-4t_0t} j^j
\]

(3.15)

\[
= \chi_{1/2-n/2}(k(\cdot)) F(\alpha, 1-\alpha, 3/2 - n/2; \frac{(t-t_0)^2 - |x|^2}{-4t_0t}).
\]

Case III: \(n \) odd > 1. Let \(n = 2m + 1, m \geq 1 \). Note that in this case \(1/2 - n/2 = -m \), a negative integer. We split \(\Phi_\alpha \) into two terms:

\[
\Phi_\alpha(x,t) = \sum_{j=0}^{m-1} \frac{(\alpha)_{j}(1-\alpha)_{j}}{j!} \frac{\alpha_j}{4t_0t} \chi_{j-m}(k(\cdot)) + \sum_{j=m}^{\infty} \frac{(\alpha)_{j}(1-\alpha)_{j}}{j!} \frac{\alpha_j}{4t_0t} \chi_{j-m}(k(\cdot)).
\]

(3.16)

Whenever \(j - m < 0 \), \(\chi_{j-m}(k(\cdot)) = \delta^{(m-j-1)}(k(\cdot)) \) is a distribution concentrated on the surface of the semi-cone \(C \). Thus the first term in (3.16) corresponds to a finite sum of distributions supported by the boundary of \(C \).
Recalling that $\chi_j(s) = s^j \chi_0(s)/j!$ and setting $j' = j - m$, rewrite the second term in (3.16) as

$$S = \chi_0(k(\cdot)) \left(\frac{1}{-4t_0t} \right)^m \sum_{j'=0}^{\infty} \frac{(\alpha)_{j'+m}(1-\alpha)_{j'+m}}{(j'+m)!} \left(\frac{k(\cdot)}{-4t_0t} \right)^{j'}$$

Now $(\alpha)_{j'+m} = (\alpha)_m(\alpha + m)_{j'}$, $(1-\alpha)_{j'+m} = (1-\alpha)_m(1-\alpha + m)_{j'}$, and $(j'+m)! = m!(m+1)_{j'}$. Therefore

$$S = \chi_0(k(\cdot)) c_m \left(\frac{1}{-4t_0t} \right)^m F(\alpha + m, 1 - \alpha + m, m + 1, \frac{(t - t_0)^2 - |x|^2}{-4t_0t}),$$

where $c_m = (\alpha)_m(1-\alpha)_m/m!$. Thus the expression (3.16) for Φ_α becomes

$$\Phi_\alpha(x, t) = \sum_{j=0}^{m-1} \frac{(\alpha)_j(1-\alpha)_j}{j!} \left(-\frac{1}{4t_0t} \right)^j \delta^{(m-j-1)}(k(\cdot)) + \chi_0(k(\cdot)) c_m \left(\frac{1}{-4t_0t} \right)^m F(\alpha + m, 1 - \alpha + m, m + 1, \frac{(t - t_0)^2 - |x|^2}{-4t_0t}).$$

Remarks

1) The support of all fundamental solutions above described is the closure of the semi-cone C defined at the end of Section 2. In the case n odd integer > 1, besides the term that contains the hypergeometric function whose support is the closure of C there are a finite number of terms whose support is the boundary of C.

2) Formula (3.17) can be viewed as a derivative with respect to $k(\cdot)$ of a certain hypergeometric distribution. More precisely, consider the hypergeometric distribution $\chi_0(s) F(a, b, 1; rs)$ where r is a real or complex parameter. The following formula holds

$$\frac{d^m}{ds^m}[\chi_0(s) F(a, b, 1; rs)] = \sum_{j=0}^{m-1} \frac{(a)_j(b)_j}{j!} r^j \delta^{(m-j-1)}(s) + \chi_0(s)c_mr^m F(a + m, b + m, m + 1; rs).$$

Indeed, just note that if $f(s)$ is a smooth function defined near $s = 0$, then $f(s) \delta(s) = f(0) \delta(s)$, and whenever $c \neq 0, -1, -2, \cdots$ one has

$$\frac{d}{dz} F(a, b, c; z) = \frac{ab}{c} F(a + 1, b + 1, c + 1; z).$$
Thus we may rewrite (3.17) as a derivative:

\[\Phi_\alpha(x,t) = \frac{d^n}{d(k(\cdot))^n}[\chi_0(k(\cdot))F(\alpha, 1 - \alpha, 1, \frac{k(\cdot)}{-4t_0})]. \]

Formulas (3.18) and (3.19) are analogous to formulas considered by Gelfand and Shilov in [7] and involving complex order derivatives of hypergeometric distributions of the type \(\chi_0(s)F(a, b, c; s) \).

Returning to the operator \(\mathcal{T}_h \) formula (3.10) with \(\alpha = 1/6 \) gives us a fundamental solution relative to the point \((0, t_0)\):

\[E_{1/6}(x, t; 0, t_0) = \pi^{1/2-n/2}(\frac{t_0^0}{t})^{1/6}\Phi_{1/6}(x, t). \]

In view of our remarks at the end of Section 1, the distribution

\[(t/t_0)^{1/3}E_{1/6}(x, t; 0, t_0) = \pi^{1/2-n/2}(\frac{t}{t_0})^{1/6}\Phi_{1/6}(x, t) \]

is then a fundamental solution of \(\mathcal{T}_h^* \) relative to the same point. Motivated by formula (3.1) we define the distribution \(E^\sharp \) by

\[2(\frac{3}{2})^{1/3}t^{1/3}E^\sharp(x, t; 0, t_0) = \pi^{1/2-n/2}(\frac{t}{t_0})^{1/6}\Phi_{1/6}(x, t), \]

or,

\[E^\sharp(x, t; 0, t_0) = \frac{\pi^{1/2-n/2}}{2^{1/3}3^{1/3}4^{1/6}t_0^0}\Phi_{1/6}(x, t). \]

In the next sections, we derive from this formula fundamental solutions to the Tricomi operator (1.1) and relative to a point \((0, b)\), \(b < 0 \). We must distinguish three cases: (I) \(n = 1 \) which corresponds to the classical Tricomi operator, (II) \(n \) an even, and (III) \(n \) odd > 1. In order to simplify notations we write, in what follows, \(E(x, t; 0, t_0) \) instead of \(E^\sharp(x, t; 0, t_0) \).

4 The classical Tricomi operator

If \(n = 1 \), then (1.1) is the classical Tricomi operator in two variables. For this operator we will obtain two distinct fundamental solutions: one with support in a region entirely contained in the hyperbolic half-plane and the
other with support in the complement of that region. From formula (3.21) we get

\[E(x,t;0,t_0) = \frac{1}{2^{1/3}3^{1/3}} \left(\frac{1}{4t_0} \right)^{1/6} \Phi_{1/6}(x,t). \]

(4.1)

On the other hand, since \(F(a,b,c;z) = F(b,a,c;z) \), we get from (3.13) that

\[\Phi_{1/6}(x,t) = \chi_0(k(\cdot))F\left(\frac{5}{6}, \frac{1}{6}; 1; -\frac{k(\cdot)}{4t_0}\right). \]

(4.2)

Note that \(\chi_0(k(\cdot)) \) is the characteristic function of the semi-cone \(C \). Recall that

\[F(a,b,c;z) = (1 - z)^{-b}F(c-a,b,c; \frac{z}{z-1}). \]

(4.3)

If we set \(z = (t-t_0)^2 - x^2 / -4t_0t \), then

\[1 - z = \frac{(t+t_0)^2 - x^2}{4t_0t} \quad \text{and} \quad \frac{z}{z-1} = \frac{(t-t_0)^2 - x^2}{(t+t_0)^2 - x^2}, \]

(4.4)

hence

\[F\left(\frac{5}{6}, \frac{1}{6}; 1; -\frac{k(\cdot)}{4t_0}\right) = \left(\frac{(t+t_0)^2 - x^2}{4t_0t} \right)^{-1/6} F\left(\frac{1}{6}, \frac{1}{6}; 1; \frac{(t-t_0)^2 - x^2}{(t+t_0)^2 - x^2}\right), \]

(4.5)

and we rewrite (4.1) as follows

\[E(x,t;0,t_0) = \chi_0(k(\cdot)) \left(\frac{(t+t_0)^2 - x^2}{2^{1/3}3^{1/3}} \right)^{-1/6} F\left(\frac{1}{6}, \frac{1}{6}; 1; \frac{(t-t_0)^2 - x^2}{(t+t_0)^2 - x^2}\right), \]

(4.6)

which is, as we pointed out at the end of Section 3, a fundamental solution to \(T_b^* \). Since \(\chi_0(k(\cdot)) \) is the characteristic function of the semi-cone \(C \), it follows that \(E(x,t;0,t_0) \) is supported by the closure of \(C \). Moreover, the last factor in formula (4.6) represents the hypergeometric series, because the absolute value of its argument (denoted by \(z/z-1 \) in formula (4.4)) is less than 1.

If one translates formula (4.6) in terms of the variables \(x \) and \(y \), one obtains a fundamental solution of the classical Tricomi operator, relative to the point \((0,b), b < 0\), and supported by the closure of the region in \(\mathbb{R}^2 \) that corresponds to the semi-cone \(C \). More specifically, consider the change of variables (4.1) and let \(a > 0 \) be such that \(t_0 = 2(-b)^{3/2}/3 = a \). Then, we have

\[(t-t_0)^2 - x^2 = -\frac{1}{9} \left[9(x^2 - a^2) + 12a(-y)^{3/2} + 4y^3 \right] \]

(4.7)
and
\[(t + t_0)^2 - x^2 = -\frac{1}{9}[9(x^2 - a^2) - 12a(-y)^{3/2} + 4y^3]. \tag{4.8}\]

In what follows and in order to simplify notations, we set
\[u = 9(x^2 - a^2) + 12a(-y)^{3/2} + 4y^3, \quad v = 9(x^2 - a^2) - 12a(-y)^{3/2} + 4y^3. \tag{4.9}\]

One can see that
\[u = [3(x - a) + 2(-y)^{3/2}][3(x + a) - 2(-y)^{3/2}]
\]
where the curve \(3(x - a) + 2(-y)^{3/2} = 0\) is one of the characteristics of \(T\) through \((0, b)\) and \(3(x + a) - 2(-y)^{3/2} = 0\), the other. Similarly,
\[v = [3(x - a) - 2(-y)^{3/2}][3(x + a) + 2(-y)^{3/2}].\]

The curve \(r_a\) of equation \(3(x - a) - 2(-y)^{3/2} = 0\) corresponds to one of the branches of the characteristic curve originating from \((a, 0)\) while \(r_{-a}\), the curve of equation \(3(x + a) + 2(-y)^{3/2} = 0\), corresponds to one of the branches of the characteristic originating from \((-a, 0)\).

It is a matter of verification that the semi-cone \(C\) corresponds in \(\mathbb{R}^2\) to the region
\[D_{b,-} = \{(x, y) \in \mathbb{R}_-^2 : 9(x^2 - a^2) + 12a(-y)^{3/2} + 4y^3 < 0, y < b\}, \tag{4.10}\]
denoted by \(D_I\) in the article \[4\]. One may now represent \(E(x, t; 0, t_0)\) in terms of \(x\) and \(y\), via the expressions \(u\) and \(v\), by
\[E_-(x, y; 0, b) = \chi_{D_{b,-}}(x, y) \cdot \frac{(-v)^{-1/6}}{2^{1/3}} F\left(\frac{1}{6}, \frac{1}{6}, 1; \frac{u}{v}\right) \tag{4.11}\]
where \(\chi_{D_{b,-}}\) is the characteristic function of \(D_{b,-}\).

In order to get another fundamental solution supported by the closure of the complement of \(D_{b,-}\) we introduce, as explained in the Appendix, \(\tilde{F}(1/6, 1/6, 1; \zeta)\), the principal branch of the analytic continuation of the corresponding hypergeometric series, and define in the whole of \(\mathbb{R}^2\) the function
\[\tilde{E}(x, y; 0, b) = \frac{(-v)^{-1/6}}{2^{1/3}} \tilde{F}\left(\frac{1}{6}, \frac{1}{6}, 1; \frac{u}{v}\right). \tag{4.12}\]

We will see in the Appendix that \(\tilde{E}(x, y; 0, b)\) is locally integrable in \(\mathbb{R}^2\), singular when \(v = 0\), real analytic in \(\mathbb{R}^2 \setminus (r_a \cup r_{-a})\), and a solution \(Tu = 0\) in the sense of distributions. We have the following result:
Theorem 4.1. The distribution \(E_\cdot \) defined by

\[
E_\cdot(x, y; 0, b) = \begin{cases}
\tilde{E}(x, y; 0, b) & \text{in } D_{b,-} \\
0 & \text{elsewhere}
\end{cases}
\] (4.13)

is a fundamental solution of the Tricomi operator \(T \) relative to the point \((0, b)\). Its support is the closure of \(D_{b,-} \).

Proof. \(E_\cdot \) is just another way of writing the expression (4.11). \(\square \)

Remarks. 1. Since in \(D_{b,-} \) both \(u \) and \(v \) are \(< 0\), it follows that \(E_\cdot(x, y; 0, b) \) is real valued.

2. In [2] this fundamental solution was obtained by a method different than the one here described and based upon the existence of the Riemann function for the reduced hyperbolic operator \(T_h \).

3. \(E_\cdot \) is the unique fundamental solution of \(T \), relative to \((0, b)\) whose support is \(\bar{D}_{b,-} \). Indeed, any other such fundamental solution is of the form \(E_\cdot + f \), with \(Tf = 0 \) and \(y \leq b \) on \(\text{supp} f \). Since the convolution \(E_\cdot * f \) is well defined because the map

\[
\text{supp } E_\cdot \times \text{supp } f \ni ((x, y), (x', y')) \rightarrow (x + x', y + y')
\]

is proper, we have

\[
f = TE_\cdot * f = E_\cdot * Tf = 0.
\]

As a consequence of Theorem 4.1 we obtain one of the fundamental solutions described in [3].

Corollary 4.1. As \((0, b) \rightarrow (0, 0)\), the fundamental solution (4.13) converges, in the sense of distributions, to the fundamental solution

\[
F_\cdot(x, y) = \begin{cases}
\frac{1}{2^{1/3}} F(\frac{1}{6}, \frac{1}{6}, 1; 1)|9x^2 + 4y^3|^{-1/6} & \text{in } D_- \\
0 & \text{elsewhere}
\end{cases}
\] (4.14)

where \(D_- = \{(x, y) \in \mathbb{R}^2 : 9x^2 + 4y^3 < 0\} \).
Since $\mathcal{T} \tilde{E} = 0$ in the sense of distributions, it follows that the distribution $E_0 - \tilde{E}$, identically zero in the region D_{b_0}, is also a fundamental solution of \mathcal{T}. Denote by D_{b_+} the complement in \mathbb{R}^2 of D_{b_0} and define the distribution

$$E_+(x, y; 0, b) = \begin{cases} -\tilde{E}(x, y; 0, b) & \text{in } D_{b_+} \\ 0 & \text{elsewhere.} \end{cases}$$

(4.15)

We clearly have

Theorem 4.2. E_+ is a fundamental solution of \mathcal{T} relative to $(0, b)$ whose support is the closure of the region D_{b_+}.

This fundamental solution is not unique. If we replace the exponential factor in (4.12) by $e^{-i\pi/6}$ we obtain another fundamental solution. Moreover, it does not follow as in the case of E_+, that E_+ converges, as $b \to 0$, to the fundamental solution $F_+(x, y)$ described in [3]. In order to obtain such a result, one needs to consider a suitable linear combination of these two fundamental solutions before taking limits (see [4]).

We thus have

Corollary 4.2. As $(0, b) \to (0, 0)$, a suitable linear combination of fundamental solutions of the type E_+ converges, in the sense of distributions, to the fundamental solution

$$F_+(x, y) = \begin{cases} -\frac{1}{2^{1/3}3^{1/2}}F(\frac{1}{6}, \frac{1}{6}, 1; 1)(9x^2 + 4y^3)^{-1/6} & \text{in } D_+ \\ 0 & \text{elsewhere,} \end{cases}$$

(4.16)

where $D_+ = \{(x, y) \in \mathbb{R}^2 : 9x^2 + 4y^3 > 0\}$.

5 The Tricomi operator, n even

We begin with formula (3.21)

$$E(x, t; 0, t_0) = \frac{\pi^{1/2-n/2}}{2^{1/3}3^{1/3}} \left(\frac{1}{4t_0 t}\right)^{1/6} \Phi_{1/6}(x, t),$$

where $\Phi_{1/6}$, given by (3.15), is

$$\Phi_{1/6}(x, t) = \chi_{1/2-n/2}(k(\cdot)) F\left(\frac{5}{6}, \frac{1}{6}, \frac{3}{2} - \frac{n}{2}; -\frac{k(\cdot)}{4t_0 t}\right).$$

(5.1)
Recalling formulas (2.8), (4.3) and (4.4) we obtain

\[
E(x, t; 0, t_0) = \frac{\pi^{1/2-n/2}}{2^{1/3}3^{1/3}} \chi_{1/2-n/2}([k(\cdot)]) [(t + t_0)^2 - |x|^2]^{-1/6} \times \\
\times F(\frac{2}{3} - \frac{n}{2}, \frac{3}{2} - \frac{n}{2}, (t + t_0)^2 - |x|^2). \tag{5.2}
\]

To obtain a fundamental solution to \(T \) we represent (5.2) in terms of \(x \) and \(y \). If we set

\[
u = 9(|x|^2 - a^2) + 12a(-y)^{3/2} + 4y^3, \quad v = 9(|x|^2 - a^2) - 12a(-y)^{3/2} + 4y^3, \tag{5.3}
\]

then

\[(t - t_0)^2 - |x|^2 = -\frac{1}{9} u \quad \text{and} \quad (t + t_0)^2 - |x|^2 = -\frac{1}{9} v. \tag{5.4}
\]

These two formulas are the counterpart to (4.7) and (4.8) in the case \(n = 1 \).

Define, as we did in Section 4 case \(n = 1 \), the region

\[D_{b_{-}}^{n} = \{(x, y) \in \mathbb{R}^{n+1} : 9(|x|^2 - a^2) + 12a(-y)^{3/2} + 4y^3 < 0, y < b\} \tag{5.5}
\]

which corresponds to the semi-cone \(C \), and let \(\chi_{D_{b_{-}}^{n}} \) be its characteristic function.

In terms of \(x \) and \(y \) the distribution (5.2) becomes

\[
E_{-}(x, y; 0, b) = c(n)\chi_{D_{b_{-}}^{n}}(x, y)(-u)^{1/2-n/2}(-v)^{-1/6}F(\frac{2}{3} - \frac{n}{2}, \frac{3}{2} - \frac{n}{2}, \frac{u}{v}), \tag{5.6}
\]

where

\[
c(n) = \frac{\pi^{1/2-n/2}}{2^{1/3}3^{1/3} \Gamma(\frac{3}{2} - \frac{n}{2})}. \tag{5.7}
\]

Thus we obtain the following result:

Theorem 5.1. \(E_{-}(x, y; 0, b) \) is a fundamental solution of \(T \) relative to \((0, b) \) whose support is the closure of the region \(D_{b_{-}}^{n} \).

If we let \(b \to 0 \), we obtain a fundamental solution of \(T \) relative to the origin, namely
Corollary 5.1. The limit, in the sense of distributions, of \(E_-(x,y;0,b) \) as \((0,b) \to (0,0)\) is

\[
F_-(x,y) = \begin{cases}
\frac{\pi^{1/2-n/2}}{2^{1/3}3^{1-n}\Gamma\left(\frac{3}{2} - \frac{n}{2}\right)} F\left(\frac{2}{3} - \frac{n}{2}, \frac{1}{2}; \frac{3}{2} - \frac{n}{2}, 1\right) |9|x|^2 + 4y^3|^{\frac{1}{3} - \frac{n}{2}} & \text{in } D^n \\
0 & \text{elsewhere,}
\end{cases}
\] (5.8)

a fundamental solution of \(T \) relative to the origin whose support is the closure of the region \(D^n = \{(x,y) \in \mathbb{R}^{n+1} : 9|x|^2 + 4y^3 < 0\} \).

The fundamental solution given by formula (5.8) coincides with the fundamental solution given by formula (4.2) in Theorem 4.1 of [2]. The only apparent discrepancy between these two formulas is the multiplying constants. In (5.8), the multiplicative constant is

\[
A = \frac{\pi^{1/2-n/2}}{2^{1/3}3^{1-n}\Gamma\left(\frac{3}{2} - \frac{n}{2}\right)} F\left(\frac{2}{3} - \frac{n}{2}, \frac{1}{2}; \frac{3}{2} - \frac{n}{2}, 1\right) \] (5.9)

while in [2], page 490, the multiplicative constant for \(F_-(x,y) \) is

\[
C_- = \frac{3^n\Gamma(4/3)}{2^{2/3}\pi^{n/2}\Gamma\left(\frac{4}{3} - \frac{n}{2}\right)}.
\] (5.10)

Since

\[
F(a, b, c; 1) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)}
\]
a formula that holds whenever \(\text{Re} \, c > \text{Re} \, b + \text{Re} \, a \), we may rewrite \(A \) as

\[
A = \frac{\pi^{1/2-n/2}\Gamma(2/3)}{2^{1/3}3^{1-n}\Gamma(5/6)\Gamma\left(\frac{4}{3} - \frac{n}{2}\right)}.
\]

In order for \(A = C_- \) one must have the identity

\[
\frac{2^{1/3}\pi^{1/2}\Gamma(2/3)}{3\Gamma(5/6)\Gamma(4/3)} = 1.
\]

But this is a consequence of the following relations for the Gamma function: \(\Gamma(z + 1) = z\Gamma(z) \), \(\Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z + 1/2) \), and \(\Gamma(z)\Gamma(1 - z) = \pi \csc(\pi z) \).
In [2] we showed that the distribution

\[F_+(x, y) = \begin{cases}
C_+(9|x|^2 + 4y^3)^{1/3-n/2} & \text{in } D_+^n \\
0 & \text{elsewhere,}
\end{cases} \]

(5.11)

where

\[C_+ = -\frac{3^{n-2}\Gamma\left(\frac{n}{2} - \frac{1}{3}\right)}{2^{2/3}\pi^{n/2}\Gamma(2/3)} \]

(5.12)

and

\[D_+^n = \{(x, y) \in \mathbb{R}^{n+1} : 9|x|^2 + 4y^3 > 0\}, \]

(5.13)

is a fundamental solution of \(\mathcal{T} \) supported by the closure of \(D_+^n \). It is a matter of verification that the ratio between the constants \(C_+ \) and \(C_- \) is

\[\frac{C_+}{C_-} = -\frac{1}{2\sqrt{3}\sin\left(\frac{n}{2} - \frac{1}{3}\right)}. \]

(5.14)

Therefore the constant \(C_+ \) in [2] can also be represented in terms of the above hypergeometric function.

6 The Tricomi operator, \(n \text{ odd} \geq 1 \)

Let \(n = 2m + 1 \) with \(m \geq 1 \). Again from formula (3.21) we have

\[E(x, t; 0, t_0) = A_m\left(\frac{1}{4t_0t}\right)^{1/6}\Phi_{1/6}(x, t), \]

(6.1)

where \(A_m = 1/2^{1/3}3^{1/3}\pi^m \). From formula (3.17) \(\Phi_{1/6} \) is given by

\[\Phi_{1/6}(x, t) = \sum_{j=0}^{m-1} c_j\left(-\frac{1}{4t_0t}\right)^{5/6}(m-j-1)(k(\cdot)) + \]

(6.2)

\[+ \chi_0(k(\cdot))c_m\left(-\frac{1}{4t_0t}\right)^{5/6}F\left(m + \frac{5}{6}, m + \frac{1}{6}, m + 1, \frac{k(\cdot)}{-4t_0t}\right). \]

with

\[c_j = \frac{\Gamma(j + 5/6)\Gamma(j + 1/6)}{\Gamma(5/6)\Gamma(1/6)\Gamma(j + 1)}, \quad 0 \leq j \leq m. \]

(6.3)
In view of (4.3) and (4.4), the hypergeometric function in (6.2) is equal to
\[
\frac{(t + t_0)^2 - |x|^2}{4t_0 t} - m^{-1/6} \left(\frac{1}{6}, m + \frac{1}{6}, m + 1; \frac{(t - t_0)^2 - |x|^2}{(t + t_0)^2 - |x|^2} \right) - \frac{1}{m - 1/6} F \left(1, \frac{m + 1}{6}, \frac{m + 1}{6}, \frac{(t - t_0)^2 - |x|^2}{(t + t_0)^2 - |x|^2} \right)
\]
and we may rewrite \(E(x, t; 0, t_0) \) as
\[
E(x, t; 0, t_0) = \sum_{j=0}^{m-1} (-1)^j c_j \left(\frac{4t_0 t}{j} \right)^{-j - 1/6} \delta^{(m-j-1)}(k(\cdot)) + \]
\[
+ (-1)^m A m \sum_{j=0}^{m-1} \left(\frac{4t_0 t}{j} \right)^{-j - 1/6} \delta^{(m-j-1)}(k(\cdot)) \chi_0(k(\cdot)).
\]
Note that all terms in the sum contain distributions of the form \(\delta^{(q)}(k(\cdot)) \) which are supported by the surface of the semi-cone \(C \). However, the support of the last term in (6.4) is the closure of \(C \).

In [7] Gelfand and Shilov introduced the distribution \(\delta(P) \) supported by the surface \(S \) given by \(P = 0 \), where \(P \) is a smooth function such that \(\nabla P \neq 0 \) on \(S \). In particular, they proved that if \(a(\cdot) \) is a nonvanishing function, then
\[
\delta^{(q)}(aP) = a^{-(q+1)} \delta^{(q)}(P).
\]
These results extend to our case, where \(P = k(\cdot) \) has a singular point at \((0, t_0)\). We have the following

Lemma 6.1. For all \(0 \leq j \leq m - 1 \),
\[
(4t_0 t)^{-j - 1/6} \delta^{(m-j-1)}(k(\cdot)) = (4t_0 t)^{5/6} \delta^{(m-j-1)}((4t_0 t)^{j+1/m-j} k(\cdot)).
\]

Proof. Indeed we have
\[
(4t_0 t)^{-j - 1/6} \delta^{(m-j-1)}(k(\cdot)) = (4t_0 t)^{5/6} (4t_0 t)^{-j - 1/6} \delta^{(m-j-1)}(k(\cdot)) =
\]
\[
= (4t_0 t)^{5/6} \left((4t_0 t)^{j+1/m-j} \right)^{-j - 1/6} \delta^{(m-j-1)}((4t_0 t)^{j+1/m-j} k(\cdot)),
\]
by virtue of (6.5) and the fact that \(4t_0 t \neq 0 \) in the region \(t - t_0 > |x| \).

As a consequence of this lemma, all terms that contain derivatives of \(\delta \) in (6.4) tend to zero, as \(t_0 \to 0 \). By taking limits, it follows that the distribution
\[
E(x, t; 0, 0) = \]
\[
(6.6)
\]
is a fundamental solution of \(T_b \) supported by the closure of the semi-cone \(\{(x, t) : t > |x|\} \).

As we did in the previous sections, we rewrite \(E(x, t; 0, t_0) \) in terms of the variables \(x \) and \(y \). From formulas (5.3) and (5.4) we derive that

\[
4t_0 t = \frac{v - u}{9}
\]

and, following Gelfand and Shilov’s notations, we replace \(\delta^{(q)}(k(\cdot)) \) by \(\delta^{(q)}(u(\cdot)) \), with the understanding that \(u(\cdot) \) now means \(u(x, y) \), with \(y \leq b \). Thus (6.4) becomes

\[
E_-(x, y; 0, b) = \sum_{j=0}^{m-1} (-1)^{j} c_j \left(\frac{v - u}{9} \right)^{-j-1/6} \delta^{(m-j-1)}(u(\cdot)) + (-1)^m A_m c_m \left(\frac{v}{9} \right)^{-m-1/6} F \left(\frac{1}{6}, m + \frac{1}{6}, m + 1; \frac{u}{v} \right) \chi_{D_{b,-}}(x, y)
\]

where \(\chi_{D_{b,-}} \) is the characteristic function of the set (5.5). Then the following result holds:

Theorem 6.1. The distribution \(E_-(x, y; 0, b) \) is a fundamental solution of \(T \) relative to \((0, b) \) supported by the closure of the set \(D_{b,-} \).

Note that in (6.7) all terms inside the summation are supported by the boundary of \(D_{b,-} \) while the last term is supported by the closure of \(D_{b,-} \). If we let \(b \to 0 \), we obtain at the limit, the fundamental solution \(F_-(x, y) \) described in our previous paper \([2]\), namely

Theorem 6.2. The distribution

\[
F_-(x, y) = \begin{cases}
3^m \Gamma \left(\frac{4}{3} \right) 2^{3/2} \pi^{n/2} \Gamma \left(\frac{4}{3} - \frac{n}{2} \right) \frac{9}{2} |x|^2 + 4y^3 \frac{1}{3} \frac{1}{2} & \text{in } D_- \\
0 & \text{elsewhere,}
\end{cases}
\]

supported by the closure of the region \(D_- = \{(x, y) \in \mathbb{R}^{n+1} : 9|x|^2 + 4y^3 < 0\} \), is a fundamental solution of \(T \).

Proof. Recall that \(t = 2(-y)^{3/2}/3 \) and that \(t^2 - |x|^2 = \frac{1}{9} (-9|x|^2 - 4y^3) \). Hence, the right hand-side of (6.6) equals

\[
AF \left(\frac{1}{6}, m + \frac{1}{6}, m + 1 + 1; 1 \right) 9 |x|^2 + 4y^3 \frac{1}{2} \frac{1}{2} - m - 1/6
\]

18
where
\[A = \frac{(-1)^m 3^m}{2^{n/3} \pi n} \frac{\Gamma(m + 5/6) \Gamma(m + 1/6)}{\Gamma(5/6) \Gamma(1/6) \Gamma(m + 1)}. \] (6.9)

Now the exponent \(-m - 1/6\) equals \(1/3 - n/2\) because \(n = 2m + 1\). On the other hand, it is a matter of verification that the constant
\[\frac{3^n \Gamma(4/3)}{2^{2n/3} \pi n/2 \Gamma(4/3 - n/2)} \] (6.10)
(denoted by \(C_\cdot\) in [2]) which appears in (6.8) is the same as \(A\). \(\square\)

7 Appendix

We are going to prove that the function \(\tilde{E}(x, y; 0, b)\) defined by formula (4.12) in Section 4 is locally integrable in \(\mathbb{R}^2\), singular when \(v = 0\), real analytic in \(\mathbb{R}^2 \setminus (r_a \cup r_{-a})\), and a solution of \(T w = 0\) in the sense of distributions. Recall that \(r_a\) is the characteristic curve \(3(x - a) - 2(-y)^{3/2} = 0\) originating from \((a, 0)\), and \(r_{-a}\), the characteristic curve \(3(x + a) + 2(-y)^{3/2} = 0\), originating from \((-a, 0)\).

Following Whittaker and Watson [10], let \(\alpha, \beta, \text{ and } \gamma\) be complex numbers, \(\gamma \neq 0, -1, -2, \cdots\), and let
\[(\alpha)_0 = 1, (\alpha)_n = \alpha(\alpha + 1) \cdots (\alpha + n - 1) = \frac{\Gamma(\alpha + n)}{\Gamma(\alpha)}. \] (7.1)

The power series
\[F(\alpha, \beta, \gamma; \zeta) = \sum_{n=0}^{\infty} \frac{(\alpha)_n (\beta)_n}{(\gamma)_n n!} \zeta^n \] (7.2)
is called the hypergeometric series. The ratio test guarantees absolute convergence for \(|\zeta| < 1\). If \(\Re(\gamma - \alpha - \beta) > 0\), then the series converges for \(|\zeta| \leq 1\) and
\[F(\alpha, \beta, \gamma; 1) = \frac{\Gamma(\gamma) \Gamma(\gamma - \alpha - \beta)}{\Gamma(\gamma - \alpha) \Gamma(\gamma - \beta)}. \] (7.3)

Barnes’ contour integral defines a single-valued analytic function of \(\zeta\) in the region \(|\arg(-\zeta)| < \pi\), that is, \(\mathbb{C}\) minus the positive real axis, which gives the principal branch of the analytic continuation of the hypergeometric series \(F(\alpha, \beta, \gamma; \zeta)\). More precisely we quote the following theorem whose proof is found in [10].
Theorem 7.1. (Barnes) The integral
\[\frac{1}{2\pi i} \int_{-\infty}^{i\infty} \frac{\Gamma(\alpha+s)\Gamma(\beta+s)\Gamma(-s)}{\Gamma(\gamma+s)} (-\zeta)^s \, ds, \] (7.4)
where the contour of integration is curved (if necessary) to ensure that the poles of \(\Gamma(\alpha+s)\Gamma(\beta+s) \), i.e., \(s = -\alpha - n, -\beta - n, n = 0, 1, 2, \cdots \), lie on the left of the contour and the poles of \(\Gamma(-s) \), i.e., lie on the right of the contour, define a single-valued analytic function in the region \(|\arg(-\zeta)| < \pi\). Moreover, in the unit disk \(|\zeta| < 1\), it coincides with the hypergeometric series
\[\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\gamma)} F(\alpha, \beta, \gamma; \zeta). \]

Following traditional practice we use the notation \(F(\alpha, \beta, \gamma; \zeta) \) to denote either the hypergeometric series or the principal branch of its analytic continuation, and call it the hypergeometric function.

Barnes’ integral may also be used to obtain a representation of the hypergeometric function in the form of a power series in \(\zeta^{-1} \), convergent when \(|\zeta| > 1\). By choosing a suitable contour of integration one can prove (see [10]) that if \(\alpha - \beta \) is not an integer or zero, then
\[F(\alpha, \beta, \gamma; \zeta) = A(-\zeta)^{-\alpha} F(\alpha, 1 - \gamma + \alpha, 1 - \beta + \alpha; \zeta^{-1}) \] (7.5)
where \(A \) and \(B \) are suitable constants and \(|\arg(-\zeta)| < \pi\). This formula also describes the asymptotic behaviour of the function \(F(\alpha, \beta, \gamma; \zeta) \) near \(|\zeta| = \infty\). If \(\alpha - \beta \) is an integer or zero, formula (7.5) must be modified because some of the poles of \(\Gamma(\alpha+s)\Gamma(\beta+s) \) are double poles. The reader should find the expression for \(F(\alpha, \beta, \gamma; \zeta) \) in [3], chapter on hypergeometric functions.

In the case that interests us, that is, \(\alpha = \beta \), that expression is
\[F(\alpha, \alpha, \gamma; \zeta) = (-\zeta)^{-\alpha} [\log(-\zeta) U(\zeta) + V(\zeta)], \] (7.6)
where \(|\arg(-\zeta)| < \pi\), and both \(U(\zeta) \) and \(V(\zeta) \) are power series in \(\zeta^{-1} \) convergent for \(|\zeta| > 1\). The reader expressions are found in [3] or [4]. We also mention that if \(\Re(\gamma - \alpha - \beta) > 0 \), we have convergence for \(|\zeta| \geq 1\).

From the above results and in particular from (7.6) it follows that
\[\tilde{E}(x, y; 0, b) = \frac{(\log b)^{-1/6}}{2^{1/3}} F\left(\frac{1}{6}, \frac{1}{6}, 1; \frac{u}{\log b}\right), \]
with u and v defined by (4.9), is locally integrable in \mathbb{R}^2, singular when $v = 0$, and real analytic in $\mathbb{R}^2 \setminus (r_a \cup r_{-a})$.

It remains to prove that $\tilde{E}(x, y; 0, b)$ is a solution to $Tw = 0$ in the sense of distributions. For this we need several results proved in the paper [3]. In that paper we showed that the function

$$E(\ell, m; \ell_0, m_0) = (\ell - m)^{-1/6}(\ell_0 - m)^{-1/6}F\left(\frac{1}{6}, \frac{1}{6}, 1; \frac{(\ell - \ell_0)(m - m_0)}{(\ell_0 - m_0)(m - \ell_0)}\right)$$

is a classical solution of

$$Thw = \frac{\partial^2 w}{\partial \ell \partial m} - \frac{1/6}{\ell - m} \left(\frac{\partial w}{\partial \ell} - \frac{\partial w}{\partial m} \right) = 0,$$

the reduced hyperbolic Tricomi equation. Here

$$\ell = x + \frac{2}{3}(-y)^{3/2}, \quad m = x - \frac{2}{3}(-y)^{3/2}$$

are the characteristic coordinates. Now, except for the constant $1/2^{1/3}$, $\tilde{E}(x, y; 0, b)$ is obtained from $E(\ell, m; \ell_0, m_0)$ after replacement of ℓ and m by their expressions above and by setting $\ell_0 = -m_0 = 2(b)^{3/2}/3$. Thus, away from the set $\{v = 0\} = r_a \cup r_{-a}$, $\tilde{E}(x, y; 0, b)$ is a classical solution of $Tw = 0$.

To show that $T\tilde{E} = 0$, in the sense of distributions, we have to contend with the fact that $\tilde{E}(x, y; 0, b)$ has logarithmic singularities along the two characteristics r_{-a} and r_a, or, equivalently, that $E(\ell, m; \ell_0, m_0)$ has logarithmic singularities along the lines $\ell = -\ell_0$ and $m = \ell_0$. Since, as we have remarked, $T\tilde{E} = 0$ away from the characteristics r_{-a} and r_a, in order to prove that $T\tilde{E} = 0$ in the sense of distributions, it suffices to prove that

$$\langle \tilde{E}, T\phi \rangle = \int \int_{\mathbb{R}^2} \tilde{E}T\phi dx \, dy = 0 \quad (7.7)$$

for all $\phi \in C_c^\infty(\mathbb{R}^2)$ whose support intersects at least one of the characteristics r_{-a} or r_a. If $\text{supp} \phi$ does not intersect either of these characteristics, then (7.7) is automatically satisfied.

Suppose that $\text{supp} \phi$ is contained in an open disk D centered, say at $(a, 0)$, and with radius R. Let $0 < r < R$ and denote by D_r the set of points of D.
at a distance $> \epsilon$ from the characteristic r_α. Then, from Green’s formula for T (see [4], formula (4.5)) one gets

$$
\int \int_D \tilde{E} T \phi \, dx \, dy = \lim_{\epsilon \to 0} \int \int_{D_\epsilon} \tilde{E} T \phi \, dx \, dy
$$

(7.8)

$$
= \lim_{\epsilon \to 0} \int \int_{\Gamma_\epsilon \cup \gamma_\epsilon \cup \Gamma'_\epsilon} \tilde{E} (y \phi_x \, dy - \phi_y \, dx) - \phi (y \tilde{E}_x \, dy - \tilde{E}_y \, dx),
$$

where Γ_ϵ is the characteristic $3(x-\alpha+\epsilon)-2(-y)^{3/2}=0$, γ_ϵ the circumference center at α with radius ϵ, and Γ'_ϵ the characteristic $3(x-\alpha-\epsilon)-2(-y)^{3/2}=0$. In order to prove (7.7) we must prove that the last limit in (7.8) is zero.

Most details of the proof are to be found in Section 4 of the paper [4]. We just point out that the integrand in (7.8) remains bounded along γ_ϵ thus, along this contour, the integral tends to zero with ϵ. Along both Γ_ϵ and Γ'_ϵ we must take into account the asymptotic behaviour of $F(1/6, 1/6, 1; \zeta)$ and its derivative $F(7/6, 7/6, 2; \zeta)$, at $\zeta = \infty$, according with (7.6). It turns out that at the limit, the values of these integrals cancel each other and this completes the proof.

References

[1] J. Barros-Neto, *On Fundamental Solutions for the Tricomi Operator*, Atas do 49o Seminário Brasileiro de Análise, 1999, 69–88.

[2] J. Barros-Neto and F. Cardoso, *Bessel integrals and fundamental solutions for a generalized Tricomi operator*, Jour. of Funct. Analysis, 183 (2001), 472–497.

[3] J. Barros-Neto and I. M. Gelfand, *Fundamental solutions for the Tricomi operator*, Duke Math. J. 98 (1999), 465–483.

[4] J. Barros-Neto and I. M. Gelfand, *Fundamental solutions for the Tricomi operator, II*, Duke Math. J. 111 (2002), 561–584.

[5] S. Delache and J. Leray, *Calcul de la solution élémentaire de l’opérateur d’Euler-Poisson-Darboux et de l’opérateur de Tricomi-Clairaut, hyperbolique d’ordre 2*, Bull. Soc. Math. France, 99 (1971), 313–336.

[6] A. Erdély, *Higher Transcendental Functions*, Vols. I, II, III, McGraw-Hill, New York (1953).
[7] I. M. Gelfand and G. E. Shilov, *Generalized Functions, Vol. I: Properties and Operations*, Academic Press, New York (1964).

[8] L. Schwartz, *Théorie des Distributions*, Hermann, Paris, (1950–51).

[9] F. Tricomi, *Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto*, Rendiconti, Atti dell’Accademia Nazionali dei Lincei, Serie 5, 14, (1923), 134-247.

[10] E. T. Whittaker and G. N. Watson, *A course of Modern Analysis*, 4th ed., Cambridge Press, New York, 1962.