Population pharmacokinetic analyses of regorafenib and capecitabine in patients with locally advanced rectal cancer (SAKK 41/16 RECAP)

Eduard Schmulenson1 | Cédric Bovet2 | Regula Theurillat2 |
Laurent Arthur Decosterd3 | Carlo R. Largiadèr2 | Jean-Christophe Prost2 |
Chantal Csajka4 | Daniela Bártchi5 | Matthias Guckenberger6 |
Roger von Moos7 | Sara Bastian7 | Markus Joerger8 | Ulrich Jaehde1

1Institute of Pharmacy, Department of Clinical Pharmacy, University of Bonn, Bonn, Germany
2Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
3Laboratory of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
4Clinical Pharmaceutical Sciences, Lausanne University, Lausanne, Switzerland
5SAKK Coordinating Center, Bern, Switzerland
6Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
7Cantonal Hospital Graubünden, Chur, Switzerland
8Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland

Aims: Locally advanced rectal cancer (LARC) is an area of unmet medical need with one third of patients dying from their disease. With response to neoadjuvant chemoradiotherapy being a major prognostic factor, trial SAKK 41/16 assessed potential benefits of adding regorafenib to capecitabine-amplified neoadjuvant radiotherapy in LARC patients.

Methods: Patients received regorafenib at three dose levels (40/80/120 mg once daily) combined with capecitabine 825 mg/m² bidaily and local radiotherapy. We developed population pharmacokinetic models from plasma concentrations of capecitabine and its metabolites 5′-deoxy-5-fluorocytidine and 5′-deoxy-5-fluorouridine as well as regorafenib and its metabolites M-2 and M-5 as implemented into SAKK 41/16 to assess potential drug–drug interactions (DDI). After establishing parent-metabolite base models, drug exposure parameters were tested as covariates within the respective models to investigate for potential DDI. Simulation analyses were conducted to quantify their impact.

Results: Plasma concentrations of capecitabine, regorafenib and metabolites were characterized by one and two compartment models and absorption was described by
1 | INTRODUCTION

Colorectal cancer (CRC) is the third most common cause of cancer cases worldwide and ranks second in cancer deaths. While the overall incidence of CRC declined in many high-income countries in recent years, CRC incidence in adults younger than 50 years increased substantially, mainly driven by rising cases of rectal cancer. Rectal cancer comprises about one third of the total colorectal cancer cases. Neoadjuvant chemo-radiotherapy followed by potentially curative surgery is standard of care in patients with locally advanced rectal cancer (LARC). Alternatively, the watchful waiting strategy after complete pathological response of neoadjuvant chemo-radiotherapy is another approach in LARC patients, requiring intensification of therapy. Response to neoadjuvant chemo-radiotherapy is an important independent prognostic factor, still the rate of complete pathological response is only 10–25%, and one third of patients with LARC relapse after chemo-radiotherapy and surgery. Recent studies added tyrosine kinase inhibitors (TKI) such as sorafenib or cediranib to capecitabine-based chemo-radiotherapy in LARC to improve clinical outcome. Trial SAKK 41/16 added the second-generation multi-TKI regorafenib to capecitabine-based chemo-radiotherapy, and this trial included a pharmaco-translational part with extensive pharmacokinetic (PK) analysis of both anticancer drugs to assess for potential drug–drug interactions (DDI).

Neoadjuvant chemo-radiation with capecitabine has been shown to be tolerated both alone and in combination with irinotecan or oxaliplatin. Optimal dosing of oral capecitabine in combination with radiotherapy has been established at 825 mg/m² bidaily given throughout the course of radiotherapy. Regorafenib is an oral multi-TKI with broad activity, including inhibition of angiogenesis (VEGFR1–3, TIE2), impact on the tumour microenvironment (PDGFR-α, FGFR) and oncogenesis (KIT, PDGFR and RET). Regorafenib has been approved as monotherapy in patients with advanced CRC, hepatocellular carcinoma and gastrointestinal stromal tumours at a daily dose of 160 mg. Regorafenib has a bioavailability of 69% and is metabolized to active metabolites M-2 (regorafenib N-oxide) and M-5 (desmethyl-regorafenib) by CYP3A4 and UGT1A9. Mean elimination half-life of M-2 and M-5 is 24 and 51–64 hours, respectively. Excretion of regorafenib is mainly via faeces (50%) and less via the kidneys (19%). Capecitabine is sequentially converted to 5'-deoxy-5-fluorocytidine (DFCR) by hepatic carboxylesterase and to 5'-deoxy-5-fluorouridine (DFUR) by cytidine deaminase. The intermediate DFUR is converted to fluorouracil by the enzyme thymidine phosphorylase in the final activating step. Capecitabine is known inhibitor of CYP2C9, but potential DDI based on CYP2C9 are not expected as regorafenib is not metabolized by this enzyme. However, as regorafenib and capecitabine have overlapping toxicity, including palmar-plantar erythrodysesthesia and diarrhoea, it is important to identify potential DDI.

The aim of this study was to implement population PK models of regorafenib, capecitabine and their metabolites in LARC patients, and to investigate potential interactions between both drugs.
2 | METHODS

2.1 | Patients and data

This open-label, multi-centre, non-randomized phase IB trial explored the recommended dose of and pathological response to regorafenib when added to capecitabine-augmented neoadjuvant chemo-radiotherapy in patients with AJCC stage II/III rectal cancer (mT3/4 N0, mTx N1–2 cM0). SAKK 41/16 recruited 25 patients from six Swiss sites between March 2017 and April 2021. The trial includes a dose-escalation part and an expansion cohort after establishing the recommended phase-2 dose. All patients were tested for mutations of the dihydropyrimidine dehydrogenase gene (DPYD), and patients harbouring one of four dysfunctional DPYD mutations (DPYD c.1679T>G [rsrs55886062], c.1905+1G>A [rsrs3918290], c.2846A>T [rs67376798], c.1129-5923C>G [rs75017182]) were excluded from SAKK 41/16.20,21 Furthermore, only patients between 18 and 75 years with adequate renal (creatinine clearance >50 mL/min) and hepatic function (markers such as bilirubin, alanine/aspartate aminotransferase ≤1.5 × the upper limit of normal) were included. The study was conducted according to the Declaration of Helsinki and patients provided written informed consent before participation. The study protocol was approved by the respective regulatory authorities and registered under clinicaltrials.gov number NCT02910843.

PK data from 12 patients enrolled into the dose-escalation cohort were used for the development of the population PK models as no blood samples were obtained from patients belonging to the expansion cohort. Patients received oral capecitabine 825 mg/m² bidaily on Days 1 to 38. Regorafenib was administered at three dose levels (40, 80 and 120 mg) once daily on Days 1 to 14 and Days 22 to 35. Local radiotherapy was given in all patients at 1.8 Gy per day in 28 fractions (5.6 weeks) for a total dose of 50.4 Gy. Patients underwent rectal cancer surgery 6–12 weeks (± 1 week) after completion of chemo-radiotherapy. Plasma samples for analysis of regorafenib, capecitabine and their metabolites were collected on Day 1 (0.5, 1, 2, 3, 4 and 6 h after dosing) followed by post-dose sampling on Days 2, 4, 8, 15, 22, 29 and 36. PK sampling after Day 1 occurred at the time of the patient’s appointment and was not bound to a specific time point. Patient characteristics are outlined in Table 1.

2.2 | Quantification of drug concentrations

Plasma concentrations of regorafenib and its active metabolites M-2 and M-5 were quantified using a validated liquid chromatography coupled to tandem mass spectrometry assay as previously described.22 Plasma concentrations of capecitabine and its metabolites DFCR and DFUR were quantified using a second validated assay by liquid chromatography coupled to tandem mass spectrometry between 0.5 and 10 μg/mL plasma. This assay was validated according to the US Food and Drug Administration and C62-A of the Clinical and Laboratory Standards Institute Guidelines.23,24 Validation parameters fulfilled the acceptance criteria of these guidelines. The results of the validation parameters are shown in Tables S1.1 to S1.4 in the Supporting Information. The lower limit of quantification for the assay was 0.25 μg/mL. Reference standards for capecitabine and DFCR/DFUR were obtained from Santa Cruz Biotechnology, Inc. (Heidelberg, Germany) and TCI Deutschland GmbH (Eschborn, Germany, respectively). The isotope-labelled internal standards capecitabine 2H11, DFCR 13C15N2, DFUR 13C15N2 were obtained from Toronto Research Chemicals (Toronto, Canada). Stock solutions and dilutions were prepared in acetonitrile:water 1:1 (v/v). Calibrators (0.5–10 μg/mL) and quality controls (1, 5 and 9 μg/mL) were prepared in pooled plasma (Dunn Labortecnik GmbH). After thawing the plasma samples at 4 °C, 10 μL acetonitrile:water 1:1 (v/v) (for calibrators and QCs the corresponding standard dilution) and 140 μL acetonitrile:ethanol 1:1 (v/v) containing the internal standards were added to 50 μL of plasma in a 96-well plate. The plate was sealed and shaken on a plate shaker at 1000 rpm and room temperature for 5 minutes. After centrifugation (4000 relative centrifugal force, room temperature, 20 minutes), 20 μL of the supernatant was diluted with 300 μL of water in a new 96-well plate with a pipetting robot (Liquid Handling Station LHS, Brand, Germany). Finally, the plate was sealed and shaken on a plate shaker at room temperature at 1000 rpm for 5 minutes. 3 μL of the extracted samples was analysed by reversed-phase chromatography (Acquity UPLC HSS T3 column, 2.1 × 50 mm, 1.7 μM, Waters) on a triple quadrupole mass spectrometer (Xevo TQ-S, Waters) coupled to an UPLC Acquity I-Class system (Waters). Capecitabine, DFCR and DFUR were separated at 0.4 mL/min with a gradient using water (A) and methanol (B) acidified with 0.05% (v/v) formic acid as mobile phases (0.0–1.0 min, 1% B; 1.0–4.5 min, 1–95% B; held for 1 min, then switched back to 1% B and equilibrated from 5.1–7.0 min). The source offset and transition parameters were

Characteristic	n or median (range)
Number of males/females	7/5
Number of patients with regorafenib dose of 40/80/120 mg	3/6/3
AJCC tumour staging	
Tumour stage (T1/T2/T3)	0/0/12
Nodal status (N0/N1/N2/Nx)	1/4/6/1
Metastases (M0/M1)	12/0
Age (years)	57 (48–75)
Weight (kg)	71.7 (55.9–96.0)
Body surface area (m²)	1.86 (1.59–2.16)
Body mass index (kg/m²)	24.4 (20.4–33.2)
Bilirubin concentration (μmol/L)	6 (2–14)
Alanine aminotransferase (U/L)	16 (10–34)
Aspartate aminotransferase (U/L)	20 (13–30)
Haemoglobin concentration (g/L)	138 (127–157)
Absolute neutrophil count (10³/μL)	4.76 (4.03–7.98)
Creatinine clearance (mL/min)	98 (63–118)
optimized for each analyte. The raw data were processed with TargetLynx available in the MassLynx software (version 4.1, Waters).

2.3 Population pharmacokinetic models

Population PK analysis of the concentration–time data of regorafenib and capecitabine was performed using the nonlinear mixed-effect modelling software NONMEM version 7.5 (double precision, level 1.1).\(^{25}\) NONMEM uses a maximum likelihood criterion to simultaneously estimate population values of fixed-effects variables (e.g., drug clearance) and values of random-effects variables (e.g., interindividual, interoccasion and residual variability). The likelihood-ratio test was used to discriminate between nested models. The inclusion of an extra parameter required a statistically significant reduction (\(P < .05\)) of the objective function value (OFV) provided by NONMEM\(^{26}\). Non-nested models were compared by the Akaike Information Criterion (AIC). Implemented scripts in PsN (version 5.0.0)\(^{26,27}\) were used for model development and R (version 4.1.0)\(^{28}\) was used for graphical purposes. Piraña (version 2.9.7)\(^{29}\) served as front interface.

2.3.1 Structural model development of the capecitabine-metabolite model

In order to describe the absorption process of capecitabine, different absorption models were tested (first-, zero-order absorption, combined zero- and first-order absorption, transit absorption models). Additionally, we tested absorption models as described previously for oral capecitabine,\(^{30–32}\) as the corresponding plasma concentrations supported a fast initial absorption phase (Figure S2.1 in the Supporting Information).

The population PK parent-metabolite model was developed in three sequential steps. After establishing the parent drug model, its structural parameters were fixed and the subsequent metabolites were included in a stepwise fashion. Eventually, all parameters were estimated simultaneously.\(^{33}\) One- and two-compartment models were evaluated for the description of the plasma concentration–time course of capecitabine and its metabolites. Since the bioavailability \(F\) of capecitabine and the fractions converted to the metabolites were structurally unidentifiable, model parameters were estimated relative to these values (e.g., clearance/\(F\)). Overall, plasma concentrations below the lower limit of quantification (0.25 μg/mL for capecitabine and metabolites, 0.02 μg/mL for regorafenib and metabolites) were included for model development.\(^{35}\)

2.3.2 Structural model development of the regorafenib-metabolite model

Model development steps for regorafenib, M-2 and M-5 were identical to the procedure for capecitabine and its metabolites. Besides one- and two-compartment models, three-compartment models were investigated for the description of the plasma concentrations of the respective compounds as well. In addition, different enterohepatic circulation (EHC) models as described previously\(^{36–38}\) were additionally investigated.

2.3.3 Statistical model development

Population PK parameters were assumed to be log-normally distributed and interindividual variability (IIV) was implemented as an exponential function.\(^{39}\) We tested different error models (additive, proportional, combined additive/proportional) to describe residual PK variability.\(^{39}\) Interoccasion variability (IOV) was explored on clearance and absorption parameters as well.\(^{39}\)

2.3.4 Covariate analysis

The resulting capecitabine- and regorafenib-metabolite base models were used to generate drug exposure parameters. In a covariate analysis, concentrations over time and cumulative area under the curve (AUC) over time of regorafenib, M-2 and M-5 were tested on the clearance of capecitabine and its metabolites, and the same PK parameters were also tested on the clearance of regorafenib and its metabolites. Laboratory parameters were preselected as covariates if they were associated with a Common Terminology Criteria for Adverse Events (CTCAE) grade >0\(^{40}\) in at least 15% of total measurements. Covariates were implemented into the model in a stepwise forward inclusion and backward elimination approach using the smc script implemented in PsN.\(^{26,27}\) In the forward selection process, covariates which led to a significant decrease of the OFV (\(P < .05\)) were kept for further evaluation. The final forward model was re-evaluated by backward elimination of each covariate with a significance level of \(P < .01\). If a covariate was still significant in this step, the plausibility of its effect as well as a successful model convergence was assessed and eventually kept in the model. Exponential and linear parameter-covariate relations were tested for continuous and categorical covariates, respectively.

For covariate analysis, the above-mentioned drug exposure parameters as well as demographic data (sex, age, weight, height, body surface area, body mass index), bilirubin and haemoglobin concentration were preselected. Even though bilirubin concentration exhibited a rather narrow range at baseline (Table 1), it was nevertheless included as the number of CTCAE grades >0 increased during the course of therapy (concentration range 2–32 μmol/L).

2.3.5 Model evaluation

The precision of model parameter estimates defined as the relative standard error (RSE) assisted in model evaluation. Models which converged with a successful covariance step, were considered for further analysis. In order to assess the model fit, goodness-of-fit plots\(^{41}\) as...
well as prediction-corrected visual predictive checks (pcVPC) were used. For the development of a pcVPC 5th, 50th and 95th percentiles with the respective 95% confidence intervals (CI) were generated from 1000 simulated datasets based on the observed dataset and superimposed by the observed plasma concentrations over time. Both simulated and observed plasma concentrations were normalized with respect to the median prediction.42 pcVPC were constructed in R using a modified code originally provided by the PMX Solutions website.43 In addition, model robustness as well as precision and bias of parameter estimates were evaluated by non-parametric bootstrap analysis without stratification. Median and 95% CI of parameter estimates were derived from 1000 replicate datasets obtained from sampling individuals from the original dataset with replacement.

2.4 | Simulation study

The final population PK and covariate models were forwarded to extensive simulation studies. Here, the impact of potential covariates including drug interactions on the PK of capecitabine, regorafenib or their metabolites were analysed. The PK model of capecitabine containing the identified exposure parameter of regorafenib as covariate was therefore simulated. Values of this regorafenib drug exposure parameter were previously generated via simulation of its PK model. For Days 1, 8, 15, 22, 29 and 36, geometric mean drug clearances of capecitabine were calculated, along with their respective 95% CI.

3 | RESULTS

3.1 | Model building

For the development of the population PK parent-metabolite models, 86 capecitabine, 126 DFCR and 132 DFUR plasma concentration measurements were included as well as 151 regorafenib, 141 M-2 and 113 M-5 plasma concentration measurements (Figures S2.1–S2.6 in the Supporting Information).

3.1.1 | Capecitabine and metabolites

The observed plasma concentration–time course of capecitabine, DFCR and DFUR were best described by a one-compartment model (Figure 1). Model parameter estimates and bootstrap results are presented in Table 2. Residual variability was modelled using a proportional error model. Implementation of IOV was not successful due to run errors. In order to describe capecitabine absorption, a parallel first- and zero-order absorption model was most appropriate (Table S3.1 in the Supporting Information). The relatively slow first-order absorption process of capecitabine in combination with a rapid elimination indicated a flip-flop PK for capecitabine. Estimating the volume of distribution of the metabolite DFUR resulted in values close to the boundary of zero. This finding in combination with a similar decay of DFCR and DFUR plasma concentrations (Figures S2.2 and S2.3 in the Supporting Information) indicated a flip-flop PK for DFUR as well.32 Therefore, only an elimination rate constant for DFUR (k_e, DFUR) was estimated and an IIV term on this rate constant was implemented.

The covariate analysis for the capecitabine-metabolite model is presented in Table S3.2 in the Supporting Information. The final model included regorafenib cumulative AUC as a covariate on capecitabine clearance, which led to a stable model along with a significant drop in OFV compared to the base model (-33.918, $P < .00001$).

The identified exponential covariate led to a reduction of capecitabine clearance estimates:

$$CL_{\text{Cap}} = CL_{\text{Cap, pop}} \times e^{(-\theta \times \text{AUC}_{\text{Reg, cum}})} \times e^{\eta_{i, CL_{\text{Cap, pop}}}}$$

where CL_{Cap} denotes the individual capecitabine clearance estimate, $CL_{\text{Cap, pop}}$ the population estimate of capecitabine clearance, θ is the covariate effect estimate, $\text{AUC}_{\text{Reg, cum}}$ is the cumulative AUC over time of regorafenib and $\eta_{i, CL_{\text{Cap, pop}}}$ represents the IIV term for the capecitabine population clearance of the ith individual with a mean of 0 and a variance of ω^2. The median reduction of capecitabine clearance was

![Model structure of the capecitabine-metabolite model. DFCR: 5'-deoxy-5-fluorocytidine; DFUR: 5'-deoxy-5-fluorouridine; CL\textsubscript{Cap}/F, CL\textsubscript{DFCR}/F: apparent capecitabine/DFCR clearance; V\textsubscript{Cap}/F, V\textsubscript{DFCR}/F: apparent capecitabine/DFCR volume of distribution; ke, DFUR: elimination rate constant for DFUR; ka: first-order absorption rate constant.](image)
45.6% at Day 36 (derived from a median regorafenib cumulative AUC from Day 0 to Day 36 of 1458.5 μmol·h/L).

Bootstrap estimates were in accordance with estimates from the final model. The models correctly described the observed data as depicted in the pcVPC (Figure 2) and in the goodness-of-fit plots (Figures S3.1–S3.3 in the Supporting Information). The pcVPC additionally indicated flip-flop PK for capecitabine, DFCR and DFUR due to a slow absorption or formation process.

3.1.2 Regorafenib and metabolites

Plasma concentrations of regorafenib, M-2 and M-5 were best described by two-compartment models with a proportional error model. Due to a non-significant reduction in OFV, IOV was not incorporated. A summary of the model parameter estimates including the bootstrap results is presented in Table 3. A transit compartment model with Erlang distribution as previously described by Lindauer et al. and Rousseau et al. was
Table 3: Parameter estimates of the regorafenib-metabolite model.

Parameter	Estimate (relative standard error, %)	Shrinkage [%]	Bootstrap median (95% confidence intervals)
$\text{CL}_{\text{Regorafenib}}/F$ [L/h]	1.94 (12.1)		1.91 (1.47–2.46)
V_c/F [L]	10.4 (33.2)		9.83 (2.37–23.2)
$\text{MAT}_{\text{Regorafenib}}$ [h]	3.01 (9.6)		3.05 (2.03–4.05)
V_p/F [L]	63.9 (8.7)		64.4 (50.3–85.2)
Q/F [L/h]	13.5 (10.8)		13.7 (9.64–17.7)
$\text{CL}_{\text{M-2}}/F$ [L/h]	0.936 (10.8)		0.932 (0.731–1.19)
$k_{\text{g, met}}$ [1/h]	0.265 (12.8)		0.267 (0.168–0.449)
$\text{MAT}_{\text{M-2}}$ [h]	1.90 (14.1)		1.91 (1.31–2.96)
$\text{CL}_{\text{M-5}}/F$ [L/h]	2.01 (21.7)		2.02 (1.14–3.16)

Interindividual variability

Parameter	Estimate (relative standard error, %)	Shrinkage [%]	Bootstrap median (95% confidence intervals)
$\text{CL}_{\text{Regorafenib}}/F$ [%]	38.1 (23.6)	3.1	34.5 (14.8–48.0)
V_c/F [%]	131.5 (24.2)	3.7	126.9 (82.3–238.7)
MAT (Regorafenib) [%]	21.7 (24.7)	4.4	19.9 (5.92–30.0)
$\text{CL}_{\text{M-2}}/F$ [%]	25.2 (33.6)	11.6	23.7 (6.15–37.9)
$\text{CL}_{\text{M-5}}/F$ [%]	75.6 (22.3)	0.1	72.6 (50.1–99.3)

Residual variability

Component	Estimate (relative standard error, %)	Shrinkage [%]	Bootstrap median (95% confidence intervals)
Regorafenib [%]	52.6 (7.4)	3.6	51.2 (42.5–59.0)
M-2 [%]	57.9 (8.1)	1.5	57.9 (52.2–63.6)
M-5 [%]	54.1 (9.1)	4.7	53.6 (48.1–59.4)

$\text{CL}_{\text{Regorafenib}}/F$, $\text{CL}_{\text{M-2}}/F$, $\text{CL}_{\text{M-5}}/F$: apparent regorafenib/M-2/M-5 clearance; V_c/F: apparent shared central volume of distribution; V_p/F: apparent shared peripheral volume of distribution; Q/F: apparent shared intercompartmental clearance; $\text{MAT}_{\text{Regorafenib}}$, $\text{MAT}_{\text{M-2}}$: mean absorption time of regorafenib/M-2 defined as n transit compartments/mean absorption time; $k_{\text{g, met}}$: presystemic metabolic rate constant.

![Figure 3](image-url)
Figure 3: Model structure of the regorafenib-metabolite model. $\text{CL}_{\text{Regorafenib}}/F$, $\text{CL}_{\text{M-2}}/F$, $\text{CL}_{\text{M-5}}/F$: apparent regorafenib/M-2/M-5 clearance; V_c/F: apparent shared central volume of distribution; V_p/F: apparent shared peripheral volume of distribution; Q/F: apparent shared intercompartmental clearance; $k_{\text{tr}, \text{Regorafenib}}$, $k_{\text{tr}, \text{M-2}}$: transfer rate constants defined as n transit compartments/mean absorption time; $k_{\text{g, met}}$: presystemic metabolic rate constant.
the most suitable in order to describe regorafenib absorption (Table S3.3 in the Supporting Information). Mean absorption time (MAT) was estimated and a transfer rate constant (k_{tr}) between these compartments was calculated as follows:

$$k_{tr} = \frac{\text{Number of transit compartments}}{\text{MAT}}$$ \hspace{1cm} (2)$$

The formation of M-2 and M-5 is outlined in Figure 3. M-2 metabolism was best described by presystemic formation occurring from the first transit compartment of regorafenib. A series of transit compartments was chosen for the description of M-2 absorption as well. Since PK data after direct administration of M-2 and M-5 were not available and the conversion percentages were unknown, the volumes of distribution of M-2 and M-5 could not be estimated. Therefore, it was assumed that their volumes of distribution as well as the intercompartmental clearances were the same as that of regorafenib. IVIV terms on the clearances of all three compounds, the shared volume of distribution and the mean absorption time of regorafenib were successfully included. Available plasma concentration data of regorafenib and its metabolites did not support the implementation of EHC models.

Covariate analyses of regorafenib-metabolite base models are presented in Table S3.4 in the Supporting Information. None of the identified covariates remained in the final model. The pcVPC (Figure 4) as well as the goodness-of-fit plots (Figures S3.4–S3.6 in the Supporting Information) showed an adequate description of the observed data although the depiction of the observed data versus the population predictions of M-2 and M-5 revealed a tendency towards an underprediction of higher plasma concentration values.

3.2 Simulation study

The impact of regorafenib cumulative AUC on capecitabine clearance was submitted to simulation analysis as described above. The final regorafenib-metabolite model was used to simulate 1000 subjects for each regorafenib dose level (40/80/120 mg once daily) until Day 36. The treatment schedule was the same as the schedule from the study (2 weeks of treatment, 7-day break, another 2 weeks of treatment). A capecitabine dose of 1500 mg bidaily (corresponding to 825 mg/m² bidaily) was chosen and simulation was subsequently performed including the regorafenib cumulative AUC as covariate for the same time period. In addition, 1000 patients without regorafenib were simulated. The simulation results are depicted in Figure 5 (from 792–864 hours) and Figure S4.1 in the Supporting Information (total simulation time period). Calculated capecitabine clearance values are presented for various time points in Table S4.1 in the Supporting Information. A higher regorafenib dose and subsequent cumulative AUC was associated with a lower capecitabine clearance (Table S4.1) and hence reduced capecitabine metabolism to active metabolites. Whereas capecitabine
clearance was comparable between regorafenib dose levels on Day 1, the impact of regorafenib on capecitabine clearance increased with increasing cumulative regorafenib exposure (Table S4.1). With decreasing capecitabine clearance, formation of DFCR and DFUR was expected to decrease likewise. Like for capecitabine, CIs of the concentration–time curves of DFCR and DFUR overlapped in the beginning as well, whereas they diverged more with increasing cumulative regorafenib exposure. However, the differences in metabolite exposure were negligible between the different regorafenib dose levels including simulations with 0 mg regorafenib. The respective plots are presented in Figure 5 as well as in Figures S4.2 and S4.3 in the Supporting Information.

4 | DISCUSSION

This is the first study to evaluate the addition of the multi-TKI regorafenib to capecitabine-augmented local radiotherapy in LARC patients. We successfully developed population PK and covariate parent-metabolite models of regorafenib and capecitabine in patients of trial SAKK 41/16 RECAP. The description of capecitabine absorption by parallel first- and zero-order processes differed from the absorption models of published capecitabine models in which parallel first-order, transit compartments or first-order absorption with lag time were established. In fact, capecitabine absorption is highly variable due to, for example, double peaks, the impact of age, food or alterations in the gastrointestinal tract including potential gastrectomy in patients with gastro-oesophageal cancer, for example. One possible explanation for the identification of a dual absorption process may be the reflection of different absorption sites, namely the small intestine and the stomach. The slow first-order absorption process as well as comparatively slower metabolite formations were presumably responsible for the occurrence of flip-flop PK for capecitabine, DFCR, and DFUR in our model. This was also indicated by biphasic declines of the concentration–time curves despite using one-compartment models. It should, however, be noted that the patients’ first observations were almost exclusively those with the highest plasma concentrations. An additional sample could be drawn between 0 and 0.5 hours post dose intake, e.g. after 15 minutes, as observed in the model of Jacobs et al. to gain more certainty about capecitabine absorption. The establishment of one-compartment models for capecitabine, DFCR and DFUR was in accordance with several published population PK models. Additionally, the identified flip-flop PK of DFUR could also be observed in the model of Jacobs et al.

The population PK model structure and parameters of the regorafenib-metabolite model were similar to the published model of Keunecke et al. However, in our model the formation of M-5 from M-2 was established, whereas Keunecke et al. assumed that M-5 is directly formed by regorafenib. The proposed metabolic pathway of Gerisch et al. indicated that M-5 is indeed formed by M-2 and our population PK model did not allow us to distinguish between both proposed pathways (Table S3.3 in the Supporting Information). The implementation of covariates was not successful either since the inclusion of additional parameters led to model instabilities presumably due to overparameterization. The inclusion of identified covariates from the study of Keunecke et al. (sex on clearance of regorafenib, M-2 and M-5, respectively, as well as BMI on regorafenib clearance) led to estimated covariate parameters with large RSE (≥58%) and a non-significant drop in OFV compared to the base model.
hence additional sampling of regorafenib and its metabolites should be considered, as in this trial the last sample was drawn at 6 hours.

The covariate analysis in this study revealed a significant negative influence of regorafenib cumulative AUC over time on the formation of capecitabine active metabolites. Already 1 week after regorafenib intake, capecitabine clearance values were significantly reduced depending on regorafenib dose levels (Table S4.1). This should lead to a reduced formation of its metabolites DFCR, DFUR as well as fluorouracil, which is finally converted to active metabolites. However, DFCR and DFUR exposure remained unaffected by the reduced capecitabine clearance (Figures S4.2 and S4.3), which translates to an unaffected exposure of fluorouracil. Accordingly, we assume a negligible clinical relevance of this DDI since capecitabine-associated adverse events are mainly attributed to its metabolites. However, fluorouracil was not quantified in this study since its formation occurs intracellularly and thus it exhibits very low plasma concentrations after capecitabine administration. A possible explanation for the identified DDI could be the inhibition of the ATP-binding cassette (ABC) transporters P-glycoprotein (Pgp) or breast cancer resistance protein (BCRP) by regorafenib since there have been hints that capecitabine might be a substrate for ABC transporters. However, a clinical study with regorafenib and the Pgp substrate digoxin as well as the BCRP substrate rosvastatin showed no influence on digoxin PK but on rosvastatin exposure by regorafenib. In addition, similar effects on capecitabine exposure were observed in two clinical trials in which capecitabine was administered in combination with sorafenib which is the defluorinated form of regorafenib. Both studies reported moderately increased capecitabine AUC while co-administering sorafenib compared to control groups with capecitabine monotherapy. From published population PK models of capecitabine, bilirubin concentration as a linear covariate on capecitabine clearance was tested but resulted in a failure of the covariance step. Since only patients with adequate hepatic and renal function (see “Methods” section) were included in this study, covariate analysis of elimination parameters for all compounds was impeded as the respective laboratory parameters exhibited a rather narrow range. It should be noted that our identified covariate effect should be carefully interpreted due to the small number of patients in this analysis. Furthermore, regorafenib was administered in lower doses than the approved dose of 160 mg daily. Therefore, the impact of the usual daily dose of regorafenib could not be evaluated in our study. In order to assess the clinical relevance of our finding, a future double-arm study which investigates patients under capecitabine monotherapy and patients under the combination of capecitabine and regorafenib should be conducted in a larger number of study participants. Intracellular concentrations of active metabolites of fluorouracil such as 5-fluorouridine 5’-triphosphate as predictor for capecitabine toxicity could be additionally quantified.

In conclusion, the developed population PK models suggest a negligible effect of regorafenib cumulative AUC on the metabolic activation of capecitabine. Our models may serve as a basis for future DDI studies in patients under therapy with both oral anticancer drugs.

ACKNOWLEDGEMENT

Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS

All authors declare that they have no conflicts of interest that are relevant to the content of this manuscript.

CONTRIBUTORS

C.R.L., C.C., D.B., R.v.M., S.B. and M.J. designed the study. E.S., C.B., R.T., L.A.D., C.R.L., J.-C.P., M.G., R.v.M., S.B. and M.J. performed the research. E.S., M.J. and U.J. analysed the data. E.S., C.B., R.T., C.R.L., J.-C.P., D.B., M.G., R.v.M., S.B., M.J. and U.J. wrote or contributed to the writing of the manuscript.

DATA AVAILABILITY STATEMENT

The modelling codes are provided in the Supporting Information available online. Data are available from the Swiss Group for Clinical Cancer Research (SAKK) upon reasonable request.

ORCID

Eduard Schmulenson https://orcid.org/0000-0002-8026-609X
Ulrich Jaehde https://orcid.org/0000-0002-2493-7370

REFERENCES

1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660
2. Araghi M, Soerjomataram I, Bardot A, et al. Changes in colorectal cancer incidence in seven high-income countries: a population-based study. Lancet Gastroenterol Hepatol. 2019;4(7):511-518. doi:10.1016/S2468-1253(19)30147-5
3. Saad el Din K, Loree JM, Sayre EC, et al. Trends in the epidemiology of young-onset colorectal cancer: a worldwide systematic review. BMC Cancer. 2020;20(1):288. doi:10.1186/s12885-020-06766-9
4. Glynne-Jones R, Wyrwicz L, Tiret E, et al. Rectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv22-iv40. doi:10.1093/annonc/mdx224
5. Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145-164. doi:10.3322/caac.21601
6. López-Campos F, Martín-Martín M, Fornell-Pérez R, et al. Watch and wait approach in rectal cancer: current controversies and future directions. World J Gastroenterol. 2020;26(29):4218-4239. doi:10.3748/wjg.v26.i29.4218
7. Karagkounis G, Thai L, Mace AG, et al. Prognostic implications of pathological response to neoadjuvant chemoradiation in pathologic stage III rectal cancer. Ann Surg. 2019;269(6):1117-1123. doi:10.1097/SLA.0000000000002719
43. PMX Solutions. A step-by-step guide to prediction corrected visual predictive checks (VPC) of NONMEM models. https://www.pmxsolutions.com/2018/09/21/a-step-by-step-guide-to-prediction-corrected-visual-predictive-checks-vpc-of-nonmem-models/ Accessed December 22, 2021.

44. Lindauer A, Siepmann T, Oertel R, et al. Pharmacokinetic/pharmacodynamic modelling of venlafaxine: pupillary light reflex as a test system for noradrenergic effects. Clin Pharmacokin. 2008;47(11):721-731. doi:10.2165/00003088-200847110-00003

45. Rousseau A, Léger F, Le Meur Y, et al. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther Drug Monit. 2004;26(1):23-30. doi:10.1097/00007691-200402000-00006

46. Reigner B, Verweij J, Dirix L, et al. Effect of food on the pharmacokinetics of capecitabine and its metabolites following oral administration in cancer patients. Clin Cancer Res. 1998;4(4):941-948.

47. Neyens M, Crauwels HM, Perez-Ruixo JJ, Rossenu S. Population pharmacokinetics of the rilpivirine long-acting formulation after intramuscular dosing in healthy subjects and people living with HIV. J Antimicrob Chemother. 2021;76(12):3255-3262. doi:10.1093/jac/dkaa338

48. Gerisch M, Hafner F-T, Lang D, et al. Mass balance, metabolic disposition, and pharmacokinetics of a single oral dose of regorafenib in healthy human subjects. Cancer Chemother Pharmacol. 2017;81(1):195-206. doi:10.1007/s00280-017-3480-9

49. Ma WW, Saif MW, El-Rayes BF, et al. Emergency use of uridine triacetate for the prevention and treatment of life-threatening 5-fluorouracil and capecitabine toxicity. Cancer. 2017;123(2):345-356. doi:10.1002/cncr.33021

50. Wang Y-J, Zhang Y-K, Zhang G-N, et al. Regorafenib overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter in colorectal cancer: in vitro and in vivo study. Cancer Lett. 2017;396:145-154. doi:10.1016/j.canlet.2017.03.011

51. Strumberg D, Al-Batran S-E, Takacs I, et al. A phase I study to determine the effect of regorafenib (REG) on the pharmacokinetics (PK) of substrates of P-glycoprotein (P-gp; digoxin) and breast cancer resistant protein (BCRP; rosuvastatin) in patients with advanced solid tumors. Ann Oncol. 2016;27:VI156. doi:10.1093/annonc/mdw370.23

52. Zhang J, Zhang L, Yan Y, et al. Are capecitabine and the active metabolite 5-Fu CNS penetrable to treat breast cancer brain metastasis? Drug Metab Dispos. 2015;43(3):411-417. doi:10.1124/dmd.114.061820

53. Lou Y, Wang Q, Zheng J, et al. Possible pathways of capecitabine-induced hand-foot syndrome. Chem Res Toxicol. 2016;29(10):1591-1601. doi:10.1021/acs.chemrestox.6b00215

54. Varma A, Mathaiyan J, Shewade D, Dubashi B, Sunitha K. Influence of ABCB-1, ERCC-1 and ERCC-2 gene polymorphisms on response to capecitabine and oxaliplatin (CAPOX) treatment in colorectal cancer (CRC) patients of South India. J Clin Pharm Ther. 2020;45(4):617-627. doi:10.1111/jcpt.13166

55. Awada A, Gil T, Wh enam N, et al. Safety and pharmacokinetics of sorafenib combined with capecitabine in patients with advanced solid tumors: results of a phase 1 trial. J Clin Pharmacol. 2011;51(12):1674-1684. doi:10.1177/0091270010386226

56. Infante JR, Jones SF, Bendell JC, et al. A drug interaction study evaluating the pharmacokinetics and toxicity of sorafenib in combination with capecitabine. Cancer Chemother Pharmacol. 2012;69(1):137-144. doi:10.1007/s00280-011-1674-0

57. Janssen JM, Jacobs BAW, Roosendaal J, et al. Population pharmacokinetics of intracellular 5-fluorouridine 5’-triphosphate and its relationship with hand-and-foot syndrome in patients treated with capecitabine. AAPS J. 2021;23(1):23. doi:10.1208/s12248-020-00533-1

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Schmulenson E, Bovet C, Theurillat R, et al. Population pharmacokinetic analyses of regorafenib and capecitabine in patients with locally advanced rectal cancer (SAKK 41/16 RECAP). Br J Clin Pharmacol. 2022;88(12):5336-5347. doi:10.1111/bcp.15461