Uma análise sobre o desenvolvimento de tecnologias digitais em saúde para o enfrentamento da COVID-19 no Brasil e no mundo

An analysis of the development of digital health technologies to fight COVID-19 in Brazil and the world

Un análisis sobre el desarrollo de tecnologías digitales en salud para el combate a la COVID-19 en Brasil y en el mundo

Ianka Cristina Celuppi 1,2
Geovana dos Santos Lima 2
Elaine Rossi 2
Raul Sidnei Wazlawick 2
Eduardo Monguilhott Dalmarco 2

doi: 10.1590/0102-311X00243220

Resumo

A pandemia de coronavírus que atingiu o mundo no final de 2019 segue batendo recordes de novos casos e óbitos relacionados à doença. As orientações para o manejo clínico dos pacientes infectados e a prevenção de novos casos estão centradas nas medidas de controle dos sintomas, hábitos de higiene, isolamento social e diminuição da aglomeração de pessoas. Tal fato forçou uma mudança no modo como os serviços de saúde prestam cuidados, protagonizando a incorporação de novas tecnologias em saúde. Assim, este Ensaio objetiva compilar e analisar algumas experiências de uso das tecnologias digitais em saúde, para minimizar os impactos da COVID-19. Identificou-se o desenvolvimento de soluções tecnológicas de manejo clínico do paciente, diagnóstico por imagem, uso de inteligência artificial para análise de riscos, aplicativos de geolocalização, ferramentas para análise de dados e relatórios, autodiagnóstico e, inclusive, de orientação à tomada de decisão. A grande maioria das iniciativas listadas tem sido eficaz na minimização dos impactos da COVID-19 nos sistemas de saúde, de modo que visa à diminuição da aglomeração de pessoas e assim facilita o acesso aos serviços, bem como contribui para a incorporação de novas práticas e modos de cuidar, em saúde.

Tecnologia da Informação; Infecções por Coronavírus; Pandemias; Telemedicina; Políticas de eSaúde

Correspondência

E. M. Dalmarco
Universidade Federal de Santa Catarina.
Rua Lauro Linhares 2055, Torre Flora, Sala 302, Florianópolis, SC 88036-002, Brasil.
edalmarco@gmail.com

1 Universidade Federal da Fronteira Sul, Chapecó, Brasil.
2 Universidade Federal de Santa Catarina, Florianópolis, Brasil.
Introdução

A pandemia de COVID-19 é considerada uma emergência de saúde pública internacional que, conforme o regulamento sanitário, é o mais alto nível de alerta da Organização Mundial da Saúde (OMS). O número de casos confirmados ultrapassa 44 milhões no mundo, com mais de 1 milhão de mortes. No Brasil, já são mais de 5 milhões casos confirmados, com mais de 150 mil mortes causadas pela doença.

Para o controle da disseminação do novo coronavírus, a Organização Pan-Americana da Saúde orienta a adoção de medidas de proteção, como higiene das mãos, evitar tossir ou espirrar, incentivar o isolamento social e evitar a aglomeração de pessoas, bem como somente procurar os serviços de saúde em situações de quadro clínico agravado, com o surgimento de febre (acima de 37,8ºC) e dispneia. Nesse sentido, o isolamento clinicamente monitorado, via aplicativo, software, ligação ou videoconferência pode conter o crescimento exponencial de transmissão do SARS-CoV-2.

O contexto de pandemia forçou uma mudança no modelo tradicional de atendimento. As organizações de saúde tiveram de renunciar ao rotineiro cuidado presencial e investir em soluções tecnológicas para realizar o acompanhamento clínico não presencial dos pacientes. Em vista disso, os profissionais de saúde enfrentam um duplo desafio: avançar nos conhecimentos sobre uma nova doença e adaptar-se a uma nova maneira de prestar cuidado. Acredita-se que o avanço em tecnologias interativas em saúde pode ser uma opção efetiva e segura para facilitar o contato entre profissionais da saúde e pacientes.

Residem muitas dúvidas sobre o desenvolvimento e implantação de novas tecnologias digitais na saúde. A pandemia está sendo um marco na revolução tecnológica do setor, pois impôs a necessidade de novas estratégias e adequação dos serviços para a atuação frente à realidade de distanciamento social. Com base nesse contexto, o objetivo geral deste estudo é compilar e analisar o uso das tecnologias digitais em saúde para minimizar os impactos da COVID-19. Para alcançar o propósito, delimitou-se os seguintes objetivos específicos: (a) elencar tecnologias digitais desenvolvidas para o enfrentamento do novo coronavírus no Brasil e no mundo; e (b) discutir sobre a contribuição dessas tecnologias para o manejo clínico dos pacientes em tempos de pandemia.

O uso de tecnologias digitais em saúde para o controle da COVID-19 no Brasil

No cenário brasileiro, destaca-se uma ferramenta que contribui para a prática de trabalho da atenção primária à saúde (APS): o e-SUS APS, que é uma estratégia do Departamento de Saúde da Família, Secretaria de Atenção Primária à Saúde, Ministério da Saúde, para estruturar as informações em saúde da APS no Brasil e também possibilitar o acesso às...
informações e uso do prontuário eletrônico do cidadão. O e-SUS APS apresenta a funcionalidade de agenda online, na qual os pacientes podem agendar consultas nas unidades de saúde de maneira remota. Essa agenda está vinculada ao aplicativo Conecte SUS Cidadão (https://conectesus-paciente.saude.gov.br/), que tem o objetivo de permitir que a população acesse informações pessoais e clínicas disponíveis nas bases de dados, o que possibilita o acesso a inúmeras informações de saúde, inclusive aos resultados de exames da COVID-19.

Além disso, o Ministério da Saúde desenvolveu serviços de atendimento pré-clínico com quatro formas de atendimento à população, por meio do App Corona Virus, que tem o objetivo de orientar sobre a prevenção do vírus, coletar dados da população sobre sua condição de saúde e, dependendo das respostas, indicar o encaminhamento clínico do paciente. O Ministério da Saúde também disponibilizou um chat online (no site https://coronavirus.saude.gov.br/), um número para atendimento telefônico (136) e um canal de comunicação via WhatsApp com o objetivo de facilitar a comunicação entre o paciente e o serviço de saúde, minimizando os riscos de exposição e contágio.

Desde a chegada da pandemia de COVID-19 no Brasil, identificou-se a instituição de diversas iniciativas ligadas à telessaúde/telemedicina fazendo parte de alguns planos de contingência da epidemia elaborados por governos estaduais, com atuação na assistência, comunicação e capacitação dos profissionais de saúde. Também identificou-se o desenvolvimento de ferramentas tecnológicas de autoavaliação que funcionam de maneira integrada visando à identificação de pacientes contaminados com o novo coronavírus. Essas tecnologias têm o objetivo de reduzir a exposição e o contato de usuários infectados com outras pessoas, diminuindo a propagação do vírus.

Em nível local também é possível identificar algumas iniciativas, a exemplo da Prefeitura de Curitiba, Paraná, que implantou consulta via telemedicina na APS. O serviço está estruturado em uma central de atendimento telefônico composta por profissionais médicos que realizam a triagem e avaliação dos sintomas. Posterior a isso, as informações referentes à consulta são enviadas para o prontuário eletrônico do paciente e a unidade de saúde responsável continua o seu acompanhamento clínico, por meio de ligações diárias para avaliação dos sintomas e orientação do usuário. Outro exemplo é o programa AlôSaúde Floripa (https://alosaudefloripa.com.br/), instituído no Município de Florianópolis, Santa Catarina, que também é um serviço de atendimento pré-clínico que fornece orientações em saúde aos cidadãos e disponibiliza a comunicação por meio de ligações gratuitas, videochamadas ou contato via WhatsApp. Na mesma perspectiva, a Prefeitura do Recife, Pernambuco, juntamente com o governo do estado lançaram um aplicativo web que garante orientações virtuais sobre a COVID-19, permite a classificação de risco do paciente e, se necessário, a realização de videochamada com enfermeiros ou médicos. A ferramenta pode ser acessada por celular ou computador (pelo endereço http://www.atendeemcasa.pe.gov.br).

A China desenvolveu uma ferramenta vinculada ao aplicativo WeChat que analisa dados de usuários e rastreia contatos próximos de todos os pacientes, o que permite o rastreamento e o isolamento precoce de possíveis fontes de infecção. Os dados oriundos dessa análise também podem ser utilizados com outros dados para prever tendências epidêmicas e calcular riscos individuais e coletivos. A China também apresentou avanços no desenvolvimento de estratégias para o diagnóstico por imagem e telemedicina. Pesquisadores da área de eHealth e o setor de informática clínica do país desenvolveram soluções de diagnóstico assistido por computador para o tratamento da COVID-19. A experiência chinesa mostra que as tecnologias digitais em saúde desempenham um papel fundamental na resposta à pandemia da COVID-19, visando a fortalecer as ferramentas tecnológicas de enfrentamento à pandemia de COVID-19.

O uso de tecnologias digitais em saúde para o controle da COVID-19 no resto do mundo

A China desenvolveu uma ferramenta vinculada ao aplicativo WeChat que analisa dados de usuários e rastreia contatos próximos de todos os pacientes, o que permite o rastreamento e o isolamento precoce de possíveis fontes de infecção. Os dados oriundos dessa análise também podem ser mesclados com outros dados para prever tendências epidêmicas e calcular riscos individuais e coletivos. A China também apresentou avanços no desenvolvimento de estratégias para o diagnóstico por imagem e telemedicina. Pesquisadores da área de eHealth e o setor de informática clínica do país desenvolveram soluções de diagnóstico assistido por computador para o tratamento da COVID-19. A experiência chinesa mostra que as tecnologias digitais em saúde desempenham um papel fundamental na resposta à pandemia da COVID-19. Os recursos de inteligência artificial e base de dados colaboraram para o rastreamento de casos e para a logística do país no que diz respeito à distribuição de suprimentos médicos.
Identificou-se que no Reino Unido o Serviço Nacional de Saúde (National Health Service – NHS) disponibilizou serviços telefónicos para informação e solução de dúvidas da população. Além disso, o NHS também dispôs de um verificador de sintomas online e oferta outros recursos virtuais, por meio do site NHS 111 online (https://111.nhs.uk/). Desse modo, os pacientes com sintomas leves e sem complicações podem realizar consultas de casa, e os casos agravados são encaminhados ao serviço de saúde adequado. Os atestados médicos também podem ser obtidos diretamente do site NHS 111 online. Com o isolamento social, causado pela pandemia, no Reino Unido pesquisadores desenvolveram um aplicativo com base em requisitos únicos, usando a inteligência artificial por voz, que visa a conectar as pessoas, especialmente idosos com seus familiares e amigos, diminuindo os danos sociais, físicos e mentais causados pelo isolamento.

Nos Estados Unidos, percebeu-se que a telessaúde desempenhou um papel significativo na prestação de serviços durante as três fases da pandemia de COVID-19: (1) atendimento ambulatorial em regime de internação domiciliar; (2) surto hospitalar inicial da COVID-19; e (3) recuperação e tratamento dos casos.

Além disso, em nível mundial foi desenvolvida uma tecnologia que por meio das postagens no Twitter é possível o rastreamento de pessoas que tiveram alguma experiência com o vírus ou os sintomas causados por ele. Essa análise é feita baseando-se em uma busca por palavras-chave e foram encontrados 4.492.954 tweets com termos relacionados à COVID-19, 63% deles nos Estados Unidos.

Nessa perspectiva, alguns governos, tais como o da Província de Alberta no Canadá, e os de Austrália, França, Alemanha e Reino Unido implantaram ou expressaram interesse no rastreamento digital de contatos. A maioria desses aplicativos de rastreamento de contatos da COVID-19 usa a força do sinal bluetooth para inferir a distância entre smartphones e definir o status da exposição com base na distância e na duração da proximidade de um indivíduo posteriormente identificado como infectado. Os aplicativos baseados em bluetooth foram lançados em Alberta, Austrália e Singapura, usando uma estrutura desenvolvida pela Agência de Tecnologia do Governo de Singapura.

Alguns países, como Singapura, Estados Unidos, Indonésia, Polónia e Israel, também investiram em aplicativos móveis para rastrear os casos e notificar as autoridades, usando a tecnologia bluetooth. Com o objetivo de rastrear os viajantes que apresentam sintomas de COVID-19, o Taiwan integrou o banco de dados nacional de seguro de saúde com o banco de dados de imigração e alfândega, visando a criar um recurso de big data para análises. As informações foram usadas para classificar os viajantes de risco e gerar alertas em tempo real durante as visitas clínicas.

A Índia também desenvolveu um aplicativo que pode detectar outros smartphones de modo a mensurar o risco de infecção com base em outros casos positivados para o novo coronavírus. A base desse cálculo é feita usando-se bluetooth, algoritmos e inteligência artificial. Ainda, o governo indiano desenvolveu um chatbot (robô de bate-papo) que ajuda os usuários a obter respostas para suas perguntas sobre a COVID-19 e a analisar o risco de infecção com relação a seus sintomas.

Também verificou-se o desenvolvimento de tecnologias digitais direcionadas ao atendimento psiquiátrico e saúde mental nos Estados Unidos e Croácia. Os pesquisadores americanos concluíram que os aplicativos direcionados ao atendimento de saúde mental são mais efetivos quando podem ser personalizados de acordo com as necessidades e cuidados de cada paciente. A experiência croata aponta para avanços no desenvolvimento de ferramentas e métodos para a mensuração de emoções, inoção do estresse e prevenção de distúrbios relacionados ao estresse.

A Comunidade Autônoma da Catalunha, localizada no nordeste da Espanha, considerada polo de desenvolvimento e referência em eHealth no país, desenvolveu várias iniciativas digitais para o enfrentamento da COVID-19. A primeira delas foi a criação de um call center para facilitar o cadastro da população nos serviços de saúde. Posterior a isso, foi investido em aprimoramentos no sistema de visitas virtuais, conhecido como eConsult, de modo a permitir que os profissionais de saúde marquem videoconferências com os pacientes, tanto nos serviços de atenção primária quanto na atenção especializada. Também foi desenvolvido um aplicativo para a autoavaliação dos sintomas da doença, chamado Stop Covid Cat (https://www.intelligentcitieschallenge.eu/stop-covid19-cat), que além de auxiliar o usuário na compreensão sobre sua condição de saúde, também inclui a função de geolocalização.

Ainda, o governo da Espanha implantou um portal web (https://www.mscbs.gob.es/sanidad/portada/home.htm) para gerenciamento emocional da população e instituíu relatórios diários...
para o acompanhamento do status de saúde de pacientes internados em casas de repouso (públicas e privadas). Também desenvolveu técnicas de análise de dados para prever o número necessário de leitos de unidade de terapia intensiva (UTI), bem como métodos de análise automática de relatórios de emergência e hospitalização, visando a explorar fatores predisponentes e casos positivos não codificados.

A Catalunha também reduziu barreiras burocráticas nos processos de assistência em saúde, permitindo que os pacientes acasem os seus dados, facilitando o acesso de farmácias aos planos de medicamentos dos pacientes via sistema eletrônico de prescrição, a fim de reduzir o ônus dos cidadãos e dos centros de atenção primária, e viabilizou a extensão automática de planos de tratamento para doenças crônicas.

Outro exemplo de solução tecnológica para o enfrentamento da COVID-19 foi desenvolvido em Israel, chamado TeleICU (https://www.soctelemed.com/resources/telemedicine-glossary/what-is-teleicu/), que é uma ferramenta que utiliza análises preditivas baseadas em inteligência artificial para expandir exponencialmente a capacidade e os recursos das UTI. Seus algoritmos são treinados para identificar antecipadamente a deterioração respiratória, permitindo intervenções precoces que podem alterar o resultado clínico, principalmente em pacientes com COVID-19. Isso permite que os profissionais de saúde identifiquem a gravidade da doença em um centro de comando remoto. As unidades de campo usarão tecnologias de telemedicina para fornecer monitoramento remoto do paciente com base em instalações centralizadas de comando e controle.

Alguns países da América Latina, como Equador, Argentina, Peru, Uruguai, Colômbia e México, também investiram em soluções tecnológicas para o enfrentamento da pandemia, como aplicativos de comunicação e orientação à tomada de decisão do usuário, aplicativos de autodiagnóstico, guias de cuidados, guias de serviços que podem ser utilizados em caso de agravamento do quadro clínico, geolocalização dos casos ativos e estruturação de rede de telessaúde para ofertar orientação médica e gratuita em tempo real (AliSaúde Floripa. https://alissaudefloripa.com.br/).

O Quadro 1 sintetiza as ferramentas criadas e usadas para o enfrentamento da COVID-19 no Brasil e no mundo.

Ainda, pode-se visualizar um resumo dos tipos de ferramentas tecnológicas implantadas e as suas funcionalidades para o combate à COVID-19 (Quadro 2).

Discussão

A atuação da APS ganha maior relevância neste momento de pandemia do novo coronavírus, necessitando que sejam reconhecidas suas peculiaridades e necessidades para o exercício do cuidado em saúde. O modelo de organização da APS no Brasil possibilita o manejo dos casos suspeitos de síndrome gripal, com notificação compulsória e prescrição do isolamento domiciliar. Nesse cenário, as tecnologias digitais em saúde como o e-SUS APS e sua funcionalidade de agenda ganham protagonismo como ferramentas facilitadoras do processo de cuidado, principalmente neste momento de reorganização dos serviços para o atendimento da demanda gerada com a pandemia de COVID-19.

As novas práticas de cuidado que emergiram com a pandemia revolucionaram a forma de “fazer saúde”, o que enfatiza alguns desafios que serem enfrentados. Baseando-se em experiências internacionais, destacam-se orientações para a implantação de tecnologias de cuidado não presencial, com enfoque no treinamento e supervisão de profissionais, licenciamento profissional para atendimento em âmbito nacional, estabelecimento de mecanismos de segurança digital, proteção à privacidade e avaliação contínua das intervenções realizadas nesse novo modelo de atendimento.

Até o ano de 2019, a telemedicina era definida e regulamentada pelo Conselho Federal de Medicina (CFM) pelo uso de métodos interativos de comunicação de áudio e vídeo, mas apenas com o objetivo de assistência, pesquisa em saúde e educação. O CFM permitia que os profissionais da área realizassem teleconsultas, telecirurgias e telediagnóstico. Em 2020, com a pandemia da COVID-19, foi necessário expandir as possibilidades de atendimento online para pacientes em isolamento e, com isto, é preciso ter domínio de ferramentas tecnológicas com o intuito de flexibilizar as rotinas e aumentar a produtividade que são inerentes à qualidade dos serviços.
Quadro 1
Apresentação dos tipos de tecnologia implementados no Brasil e no mundo para o enfrentamento da COVID-19.

PAÍS	FERRAMENTAS TECNOLÓGICAS
Brasil	Agenda online e-SUS APS App Coronavírus Chatbot para esclarecimento de dúvidas Serviço telefônico (136) e via WhatsApp Telemedicina Softwares de autoavaliação
China	Software de geolocalização Telemedicina Diagnóstico por imagem
Inglaterra	Serviço telefônico (111) Telemedicina Verificador de sintomas online Software de geolocalização
Estados Unidos e Índia	Software de geolocalização Chatbot para esclarecimento de dúvida Telemedicina Telepsiquiatria
Croácia	Chatbot para esclarecimento de dúvida Telepsiquiatria
Canadá, Austrália, França, Alemanha, Singapura, Indonésia, Polônia e Taiwan	Software de geolocalização
Israel	Software de geolocalização Software para gestão de recursos em serviços de saúde Telemedicina
Espanha	Call center Telemedicina Software de autoavaliação Software de geolocalização Prontuário eletrônico do paciente
Equador, Argentina, Peru, Uruguai, Colômbia e México	Telemedicina Software de autoavaliação Software de geolocalização

Fonte: elaboração dos autores.

As ferramentas digitais que promovem a interação entre profissionais de saúde e paciente de forma virtual oportunizam uma avaliação à distância da condição de saúde dos usuários. Assim, o profissional consegue definir estratégias para o questionamento e a formulação de hipóteses clínicas, visando a compreender a situação de saúde dos pacientes. Remotamente, define-se um plano de cuidado ou são realizados outros encaminhamentos.22

Essa iniciativa demonstra que a inserção da tecnologia interativa e diagnóstica no setor da saúde apresenta posição de destaque e vem sendo uma forte aliada no combate à pandemia de COVID-19. Além disso, os métodos de cuidado não presencial oportunizam o acesso facilitado aos serviços de saúde, tudo isso em um cenário de caos na saúde pública mundial. Vale contextualizar que a implantação de tecnologias interativas requer adequação, treinamento de recursos humanos e logística de acesso.6,38,39
Os pacientes podem necessitar de serviços de diferentes níveis de complexidade e, com o uso adequado de instrumentos tecnológicos, pode-se contribuir para o encaminhamento certeiro dos cidadãos ao local mais adequado. Assim, previne-se o contato entre um paciente possivelmente infectado e diversos atores da saúde. A telemedicina é uma tecnologia disseminada nos sistemas de saúde do mundo e está em processo de regulamentação no Brasil. O Ministério da Saúde publicou no dia 23 de março de 2020 a Portaria no 467/2020, em caráter excepcional e temporário, que dispõe sobre atividades da telemedicina no Brasil, seja no âmbito do SUS ou para os planos de saúde privada.

O estudo de Caetano et al. apresenta desafios para a efetiva implantação da telessaúde/telemedicina no cenário brasileiro, especialmente pela resistência dos Conselhos Regionais de Medicina (CRM) que alegam que esta prática desrespeita o Art. 37 do Código de Ética Médica: “prescrever tratamento e outros procedimentos sem exame direto do paciente”. Além disso, destacam-se o baixo grau de integração da telemedicina com as diretrizes nacionais de saúde pública, falta de regulamentação e incentivo financeiro, necessidade de desenvolvimento de diretrizes clínicas, padronização de questionários e algoritmos para o atendimento ao paciente e o estabelecimento de mecanismos de compartilhamento de dados em saúde, visando a integrar os bancos de dados da telemedicina com a vigilância epidemiológica.

Apenas dos desafios dispostos por Caetano et al., a telemedicina passou a ser uma ponte para a integração do atendimento, tornando-o mais acessível, mais conveniente, com maior confidencialidade e menor risco de contágio, que são chamados de “cinco Cs” e irão moldar o futuro da telemedicina, porém, sabe-se que para sua implantação em um cenário não pandêmico haverá muitos desafios. No entanto, as proposições jurídicas e legais para a viabilização e a normatização das práticas de telemedicina são muito importantes para que se desenvolvam avanços no setor, além de questões de viabilidade de acordo com cada realidade enfrentada por todo o país. Indo ao encontro do exposto,
a Índia lançou as Diretrizes de Prática em Telemedicina, 2020, com o objetivo de avançar na construção de uma medicina moderna. O desenvolvimento de chatbots ajuda os pacientes no reconhecimento dos primeiros sintomas, na educação sobre métodos de prevenção, bem como encaminhá-los para os serviços de saúde. Nesse cenário, o uso da Inteligência Artificial por hospitais na China, que dispõem de um grande banco de dados sobre casos positivos da COVID-19, úteis para a estruturação de algoritmos, pode ser utilizada na triagem de casos suspeitos, por exemplo, analisando o histórico de viagens para a China, Irã ou Coreia do Sul, ou a exposição a casos confirmados e posteriormente no isolamento destes casos. Assim, a utilização de sistemas de triagem baseados em inteligência artificial pode aliviar a carga clínica dos profissionais que atuam no enfrentamento da COVID-19. Ainda, aplicativos telefônicos que detectam e registram os dados dos pacientes como temperatura e sintomas diários, podem impedir consultas desnecessárias. Assim como ocorre em Israel, que usa uma ferramenta baseada em inteligência artificial como forma de adaptar e melhorar o manejo das UTIs com algoritmos treinados para identificar com rapidez uma possível descompensação respiratória, possibilitando, assim, uma melhor intervenção feita pela equipe de saúde.

A tradicional chamada telefônica pode ser utilizada como uma ferramenta segura e tem seus benefícios para a realização de consultas relacionadas à COVID-19, principalmente quando se trata de orientações, relatos de sintomas, dentre outros cenários de menor gravidade. Já a chamada de vídeo pode ser uma alternativa de acompanhamento clínico mais confiável por fornecer informações visuais adicionais, pistas de diagnóstico e sensação terapêutica, que podem ser observadas pelo profissional de saúde. Assim, o vídeo pode ser mais apropriado para casos com sintomas intensos, associação com outras comorbidades e análise de circunstâncias sociais que influenciam o curso da doença. O caminho para a saúde digital acontece pela transformação do modo tradicional de assistência à saúde, que engloba vários recursos como o amplo acesso a registros eletrônicos de saúde, soluções de monitoramento remoto, criação de portais de acesso para os pacientes, desenvolvimento de aplicativos móveis de saúde, métodos de análise de dados e outras tecnologias.

Nessa perspectiva, enfatiza-se a importância da consolidação do setor de eHealth no cenário atual brasileiro e mundial como estratégia para melhorar a qualidade do cuidado e expandir o acesso aos serviços de saúde. Os países vivem um momento de reconstrução do setor saúde, com a incorporação de novas tecnologias, visando a simplificar os cuidados e melhorar o fluxo das informações de saúde.

Considerações finais

A implantação das soluções tecnológicas apresentadas neste estudo contribui para a redução da aglomeração de pessoas nos espaços de saúde e proporciona rapidez e facilidade de acesso aos serviços. Dentre as experiências internacionais apresentadas, destacam-se as implementações em países que já apresentavam considerável avanço tecnológico na área de eHealth, com a efetivação de soluções tecnológicas de manejo clínico do paciente, diagnóstico por imagem, uso de inteligência artificial para analisar riscos e propor intervenções, rastreamento de casos, desenvolvimento de aplicativos para a geolocalização, ferramentas para análise de dados e relatórios, ferramentas de autodiagnóstico e orientação à tomada de decisão, dentre outros.

Em comparação às experiências internacionais, as iniciativas brasileiras também estão na direção das inovações em saúde impulsionadas pela pandemia, com a implantação de tecnologias para atendimento pré-clínico não presencial, agendamento online, telemedicina, autoavaliação dos sintomas, canais de chat, canais telefônicos, recrutamento e treinamento de recursos humanos. Embora a pandemia de COVID-19 seja uma situação crítica e não desejada, entende-se que as experiências vivenciadas neste período podem oportunizar a melhoria de processos e fluxos no uso de tecnologias de informática e telecomunicação na saúde. Neste momento, e no futuro dos serviços de saúde, as tecnologias digitais podem facilitar e melhorar o acesso e qualidade dos atendimentos. Assim, é de extrema importância oportunizar a reflexão, encorajar estudos sobre a implantação de novas tecnologias, bem como buscar usá-las da melhor maneira e avaliar o impacto de sua efetivação nas práticas dos sistemas de saúde.
Este estudo justifica sua relevância acadêmica, política e social pois apresenta e contextualiza algumas iniciativas tecnológicas em saúde na esfera pública e privada, no Brasil e em outros países do mundo. Ainda, apresenta estratégias implementadas em cenários nos quais o enfrentamento da pandemia está em estágio avançado.

Colaboradores

I. C. Celuppi, G. S. Lima e E. Rossi contribuíram na concepção e projeto do estudo, análise e interpretação dos dados, redação do artigo, revisão crítica relevante do conteúdo intelectual e aprovação final da versão a ser publicada; são responsáveis por todos os aspectos do trabalho na garantia da exatidão e integridade de qualquer parte da obra. R. S. Wazlawick contribuiu na revisão de conteúdo e aprovação final da versão a ser publicada e é responsável por todos os aspectos de qualidade e integridade e da exatidão das informações do manuscrito e sua obediência às regras do periódico. E. M. Dalmarco contribuiu na concepção e projeto do estudo, análise e interpretação dos dados, revisão de conteúdo e redação do artigo e revisou criticamente o conteúdo intelectual e aprovou a versão final a ser publicada.

Informações adicionais

ORCID: Ianka Cristina Celuppi (0000-0002-2518-6644); Geovana dos Santos Lima (0000-0002-2299-5569); Elaine Rossi (0000-0002-3130-0570); Raul Sidnei Wazlawick (0000-0003-4293-1359); Eduarndo Monguilhott Dalmarco (0000-0002-5220-5396).

Agradecimentos

Os autores agradecem ao Ministério da Saúde, que financiou esta pesquisa como parte integrante do Projeto e-SUS APS Etapa 4.

Referências

1. Organização Pan-Americana da Saúde. Regulamento Sanitário Internacional (RSI). https://www.paho.org/bra/index.php?option=com_content&view=article&id=5847:regulamento-sanitario-internacional-rsi&Itemid=812#:~:text=O%20Regulamento%20Sanit%C3%A1rio%20 Internacional%20(RSI)%2C%20Mundo%20da Sa%C3%A1ude%20(OMS) (acessado em 27/Mai/2020).
2. Organização Pan-Americana da Saúde. Folha informativa – COVID-19 (doença causada pelo novo coronavírus). https://www.paho.org/bra/index.php?option=com_content&view=article&id=6101:covid19&Itemid=875 (acessado em 25/Jul/2020).
3. World Health Organization. WHO Director-General’s statement on IHR Emergency Committee on Novel Coronavirus (2019-nCoV). https://www.who.int/dg/speeches/detail/who-director-general-s-statement-on-ihr-emergency-committee-on-novel-coronavirus (acessado em 29/Out/2020).
4. Ministério da Saúde declara transmissão comunitária nacional. G1 2020; 20 mar. https://g1.globo.com/bemestar/coronavirus/noticia/2020/03/20/ministerio-decla-transmissao-comunitaria-nacional-do-novo-coronavirus.ghtml.
5. Greenhalgh T, Koh GC, Car J. Covid-19: a remote assessment in primary care. BMJ 2020; 368:m1182.
6. Fagherazzi G, Goetzinger C, Rashid MA, Aguayo GA, Huiart L. Digital health strategies to fight COVID-19 worldwide: challenges, recommendations, and a call for papers. J Med Internet Res 2020; 22:e19284.
7. Medeiros JB. A prática de fichamentos, resumos, resenhas. São Paulo: Atlas; 2000.
8. Laboratório Bridge. Pesquisa e inovação em TI: soluções tecnológicas inovadoras para qualificar a gestão pública, visando ao benefício social. https://bridge.ufsc.br/ (acessado em 02/Mai/2020).
9. Conselho Nacional de Secretários de Saúde. e-SUS atenção básica é lançado pelo Ministério da Saúde. Brasília: Conselho Nacional de Secretários de Saúde; 2013.
10. Ministério da Saúde. Coronavírus: o que você precisa saber e como prevenir o contágio. https://coronavirus.saude.gov.br (acessado em 09/Jul/2020).
11. Secretaria de Saúde do Estado de Minas Gerais. Plano estadual de contingência para Emergência em Saúde Pública: infeção humana pelo SARS-CoV-2 (doença pelo coronavírus - COVID-19). Belo Horizonte: Secretaria de Estado de Saúde de Minas Gerais; 2020.
12. Secretaria de Estado de Saúde do Distrito Federal. Plano de contingência do Distrito Federal para infeção humana pelo novo coronavírus – Covid-19. Brasília: Secretaria de Estado de Saúde do Distrito Federal; 2020.
13. Centro de Operações de Emergência em Saúde Pública. Plano de contingência do Estado de São Paulo para infeção humana pelo novo coronavírus – 2019-nCoV. São Paulo: Coordenadoria de Controle de Doenças, Secretaria de Estado da Saúde; 2020.
14. Secretaria de Estado de Saúde do Amazonas. Plano de contingência estadual para infeção humana pelo novo coronavírus 2019-nCoV. Manaus: Secretaria de Estado de Saúde do Amazonas; 2020.
15. Secretaria de Estado do Ceará. Plano estadual de contingência para resposta às emergências em saúde pública em meio novo coronavírus (2019-nCoV). Fortaleza: Secretaria de Estado de Saúde do Ceará; 2020.
16. Agudelo M, Chomali E, Suniaga J, Núñez G, Jordán V, Rojas F, et al. Las oportunidades de la digitalización en América Latina frente al Covid-19. 2020. Caracas: Banco de Desarrollo de América Latina.
17. Secretaria Municipal de Saúde de Curitiba. Coronavírus: a melhor proteção é a prevenção. https://www.curitiba.pr.gov.br/noticiaespeciais/coronavirus-a-melhor-protocoe-e-a-prevencao/11 (acessado em 15/Mai/2020).
18. Prefeitura do Recife. PCR e Governo lançam aplicativo web para população ser orientada à distância por profissionais de saúde. Notícias 2020; 23 mar. http://www2.recife.pe.gov.br/noticias/26/03/2020/prc-e-governo-lancam-aplicativo-web-para-populacao-ser-orienta da-distancia-por.
19. Prefeitura de São Paulo. Prefeitura de São Paulo busca soluções tecnológicas de startup para combater os efeitos negativos do coronavírus na economia da capital. Notícias 2020; 3 abr. https://www.prefeitura.sp.gov.br/cidade/secretarias/desenvolvimento/noticias/?p=295937.
20. Sistema Mineiro de Inovação. Covid-19. http://www.simio.org.br/covid19 (acessado em 22/Jun/2020).
21. Wang S, Ding S, Xiong L. A new system for surveillance and digital contact tracing for COVID-19: spatiotemporal reporting over network and GPS. JMIR Mhealth Uhealth 2020; 8:e19457.
22. Ye Q, Zhou J, Wu H. Using information technology to manage the COVID-19 pandemic: development of a technical framework based on practical experience in China. JMIR Med Inform. 2020; 8:e19515.
23. Lin B, Wu S. COVID-19 (coronavirus disease 2019): opportunities and challenges for digital health and the internet of medical things in China. OMICS 2020; 24:231-2.
24. Meiner E, Múñoz-Ives M, Surodina S, Lam C. Agile requirements engineering and software planning for a digital health platform to engage the effects of isolation caused by social distancing: case study. JMIR Public Health Surveill 2020; 6:e19297.
25. Wosik J, Fudim M, Cameron B, Gellad ZF, Cho A, Phinney D, et al. Telehealth transformation: COVID-19 and the rise of virtual care. J Am Med Inform Assoc 2020; 27:957-62.
26. Sarbadhikari S, Sarbadhikari SN. The global experience of digital health interventions in COVID-19 management. Indian J Public Health 2020; 64:117.
27. Mackey T, Purushothaman V, Li J, Shah N, Nali M, Bardier C, et al. Machine learning to detect self-reporting of symptoms, testing access, and recovery associated with COVID-19 on Twitter: retrospective Big Data Infoveillance Study. JMIR Public Health Surveill 2020; 6:e19509.
28. Kleinman RA, Merkel C. Digital contact tracing for COVID-19. CMJ 2020; 192:E653-E6.
29. Alwashmi MF. The use of digital health in the detection and management of COVID-19. Int J Environ Res Public Health 2020; 17:2906.
30. Torous J, Myrick KJ, Rauseo-Ricupero N, Firth JJ. Digital mental health and COVID-19: Using technology today to accelerate the curve on access and quality tomorrow. JMIR Ment Health 2020; 7:e18848.
31. Čosić K, Popović S, Šarlija M, Kesedžić I. Impact of human disasters and Covid-19 pandemic on mental health: potential of digital psychiatry. Psychiatr Danub 2020; 32:25-31.
32. Pérez Sust P, Solanas O, Fajardo JC, Peralta MM, Rodenas P, Gabaldà J, et al. Turning the crisis into an opportunity: digital health strategies deployed during the COVID-19 outbreak. JMIR Public Health Surveill 2020; 6:e19106.
33. Barbosa S, Silva de Pinho AV. A prática da atenção primária à saúde no combate da COVID-19: APS em Revista 2020; 2:17-9.
34. Santos AB, França MV, dos Santos JL. Atenção primária à saúde no combate da COVID-19: a experiência do ambulatório da comunidade da Escola Bahiana de Medicina e Saúde Pública em Salvador, Bahia. APS em Revista 2020; 2:169-76.
35. Secretaria de Atenção Primária à Saúde, Ministério da Saúde. Protocolo de manejo clínico do Coronavírus (COVID-19) na atenção primária à saúde. Brasília: Ministério da Saúde; 2020.

36. Taylor CB, Fitzsimmons-Craft EE, Graham AK. Digital technology can revolutionize mental health services delivery: the COVID-19 crisis as a catalyst for change. Int J Eat Disord 2020; 53:1155-7.

37. Caetano R, Silva AB, Guedes ACCM, Paiva CCN, Ribeiro GD, Santos DL, et al. Desafios e oportunidades para telessaúde em tempos da pandemia pela COVID-19: uma reflexão sobre os espaços e iniciativas no contexto brasileiro. Cad Saúde Pública 2020; 36:e00088920.

38. Ye J. The role of health technology and informatics in a global public health emergency: practices and implications from the COVID-19 pandemic. JMIR Med Inform 2020; 8:e19866.

39. Mahmood S, Hasan K, Carras MC, Labrique A. Global preparedness against COVID-19: we must leverage the power of digital health. JMIR Public Health Surveill 2020; 6:e18980.

40. Ministério da Saúde. Portaria no 467, de 20 de março de 2020. Dispõe, em caráter excepcional e temporário sobre as ações de Telemedicina, com o objetivo de regulamentar e operacionalizar as medidas de enfrentamento da emergência de saúde pública de importância internacional previstas no art. 3o da Lei nº 13.979, de 6 de fevereiro de 2020, decorrente da epidemia de COVID-19. Diário Oficial da União 2020; 23 mar.

41. Dorsey E, Okun MS, Bloem BR. Care, convenience, comfort, confidentiality, and contagion: the 5 c’s that will shape the future of telemedicine. J Parkinsons Dis 2020; 10:893-7.

42. Ting DS, Carin L, Dzau V, Wong TY. Digital technology and COVID-19. Nat Med 2020; 26:459-61.
Abstract

The coronavirus pandemic that struck the world in late 2019 continues to break records of new cases and deaths from the disease. Guidelines for clinical management of infected patients and prevention of new cases focus on measures to control symptoms, hygiene habits, social distancing, and decrease in human crowding. This forced a change in the way health services provide care, generating the incorporation of new health technologies. The Essay thus aims to compile and analyze experiences in the use of digital health technologies to minimize the impacts of COVID-19. The authors identified the development of technological solutions for clinical management of patients, imaging diagnosis, use of artificial intelligence for risk analysis, geolocation apps, data analysis and reports, self-diagnosis, and even orientation for decision-making. The great majority of the initiatives listed here prove effective in minimizing the impacts of COVID-19 on health systems and aim to decrease human crowding and thus facilitate access to services, besides contributing to the incorporation of new health practices and modes of care.

Information Technology; Coronavirus Infections; Pandemics; Telemedicine; eHealth Policies

Resumen

La pandemia de coronavirus que afectó al mundo al final de 2019 sigue batiendo récords de nuevos casos y óbitos relacionados con la enfermedad. Las orientaciones para el manejo clínico de los pacientes infectados y la prevención de nuevos casos están centradas en las medidas de control de los síntomas, hábitos de higiene, aislamiento social y disminución de la aglomeración de personas. Tal hecho forzó un cambio en el modo en el que los servicios de salud prestan cuidados, protagonizando la incorporación de nuevas tecnologías en salud. Así, este Ensayo tiene como objetivo compilar y analizar algunas experiencias en el uso de tecnologías digitales en salud, para minimizar los impactos de la COVID-19. Se identificó el desarrollo de soluciones tecnológicas de manejo clínico del paciente, diagnóstico por imagen, uso de inteligencia artificial para análisis de riesgos, aplicaciones de geolocalización, herramientas para el análisis de datos e informes, auto diagnóstico e, inclusive, de orientación para la toma de decisiones. La gran mayoría de las iniciativas listadas se demuestran eficaces en la minimización de los impactos de la COVID-19 en los sistemas de salud, de modo que, tienen como objetivo la disminución de la aglomeración de personas, así facilitan el acceso a los servicios, del mismo modo que contribuyen a la incorporación de nuevas prácticas y modos de cuidar en salud.

Tecnología de la Información; Infecciones por Coronavirus; Pandemias; Telemedicina; Políticas de eSalud