EXISTENCE OF UNCOUNTABLY MANY ASYMPTOTICALLY CONSTANT SOLUTIONS TO DISCRETE NONLINEAR THREE-DIMENSIONAL SYSTEM WITH p-LAPLACIAN

Magdalena Nockowska-Rosiak
Institute of Mathematics
Lodz University of Technology
Wolczanska 215, 90-924 Lodz, Poland

Piotr Hachuła*
Institute of Logistics and Warehousing
Estkowskiego 6, 61-755 Poznan, Poland

Ewa Schmeidel
Institute of Mathematics
University of Białystok
Ciolkowskiego 1M, 15-245 Białystok, Poland

Abstract. This work is devoted to the study of the existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with p-Laplacian.

1. Introduction and preliminaries. Equations involving the discrete p-Laplacian operator have been widely studied by many authors and several approaches, see for example [4], [5] and [6]. Agarwal, Perera and O’Regan obtain multiple positive solutions of singular discrete p-Laplacian problems via variational methods in [1]. Paper [2] is devoted to the study of the existence of at least one (non-zero) solution to a problem involving the discrete p-Laplacian. In [8], He by means of a fixed point theorem in a cone, studies the existence of positive solutions of p-Laplacian difference equations. In [9], Lee and Lee consider p-Laplacian systems with singular weights. By exploiting Amann type three solutions theorem for a singular system, the authors prove the existence, nonexistence, and multiplicity of positive solutions when nonlinear terms have a combined sublinear effect at infinity.

Three-dimensional systems were considered in [10], [13] and [14]. Here we continue such a study by considering the following three-dimensional system of difference equations with p-Laplacian operator

$$
\begin{align*}
\Delta(\Phi_p(x(n))) &= a(n)f(y(n - l)) \\
\Delta(y(n)) &= b(n)g(z(n - m)) \\
\Delta(z(n)) &= c(n)h(x(n - k))
\end{align*}
$$

(1)

where $n \geq n_0 = \max \{ k, l, m \} \in \mathbb{N}_0 = \{ 0, 1, 2, \ldots \}$ and Δ is the forward difference operator, $(a(n)), (b(n)), (c(n))$ are sequences of real numbers, l, k, m are nonnegative

2010 Mathematics Subject Classification. 39A12, 39A22.

Key words and phrases. p-Laplacian, three-dimensional system of difference equations.

* Corresponding author: Piotr Hachuła.
integers, functions $f, g, h : \mathbb{R} \to \mathbb{R}$ are continuous functions. Moreover, for $p \in \mathbb{R}$, $p > 1$ the p-Laplacian operator $\Phi_p : \mathbb{R} \to \mathbb{R}$ is defined by formula

$$\Phi_p(t) = \begin{cases} |t|^{p-2}t, & \text{for } t \neq 0 \\ 0, & \text{for } t = 0 \end{cases}.$$ \hfill (2)

In system (1), $(x(n))$, $(y(n))$ and $(z(n))$ are real sequences defined for $n \in \mathbb{N}$. Throughout this paper, $X(n)$ denotes a vector $[x(n), y(n), z(n)]^T$. By a solution of system (1) we mean a sequence $X = (X(n))$ which fulfils system (1) for $n \geq n_0$.

Notice that by taking $p = 2$ system (1) reduces to the system which was considered in [11] and [12].

For the elements of \mathbb{R}^3 the symbol $|\cdot|$ stands for the maximum norm. By B we denote the Banach space of all bounded sequences in \mathbb{R}^3 with the supremum norm, i.e.,

$$B = \left\{ X : \mathbb{N} \to \mathbb{R}^3 : \|X\| = \sup_{n \in \mathbb{N}} |X(n)| < \infty \right\}.$$

It is well known that Φ_p given by (2) is a homeomorphism on \mathbb{R}, with $(\Phi_p)^{-1} = \Phi_{p^*}$, where

$$\frac{1}{p} + \frac{1}{p^*} = 1 \quad \text{(or equivalently } p^* = \frac{p}{p-1}).$$

Under continuity of functions f, g, h and assumptions

$$\sum_{n=0}^{\infty} |a(n)| < \infty, \quad \sum_{n=0}^{\infty} |b(n)| < \infty, \quad \sum_{n=0}^{\infty} |c(n)| < \infty,$$

we prove the sufficient conditions under which for any real constants d_1, d_2, d_3 there exists a solution to the considered system convergent to $[d_1, d_2, d_3]^T$. That connects the subject of this paper with so-called permanence of solutions, which is important for example in mathematical modelling of problems arising in biology.

The following theorems will be used in the sequel.

Theorem 1.1 (Schauder’s Fixed Point Theorem, [3], p. 24). Let M be a nonempty, compact and convex subset of a Banach space and let $T : M \to M$ be continuous. Then T has a fixed point in M.

By c_0 we denote the Banach space of all convergent to zero sequences with the supremum norm.

Theorem 1.2 ([7], p. 107). A set $A \subset c_0$ is relatively norm compact if and only if there is a sequence $\lambda = (\lambda(n)) \in c_0$ such that $|x(n)| \leq \lambda(n)$ for any $x = (x(n)) \in A$ and for any $n \in \mathbb{N}$.

2. Main results. In this section, we present conditions under which there exists asymptotically constant solution to system (1). In the first step we prove the following existence result.

Theorem 2.1. Assume that

(A$_1$) $p \in \mathbb{R}$, $p > 1$ and $k, l, m \in \mathbb{N}_0$,

(A$_2$) $f, g, h : \mathbb{R} \to \mathbb{R}$ are continuous functions,

If

$$\sum_{n=0}^{\infty} |a(n)| < \infty, \quad \sum_{n=0}^{\infty} |b(n)| < \infty, \quad \sum_{n=0}^{\infty} |c(n)| < \infty,$$ \hfill (3)
then for any real constants \(d_1, d_2, d_3\) there exists a sequence \((X(n))\) which fulfils system (1) for sufficiently large \(n\) such that
\[
\lim_{n \to \infty} X(n) = [d_1, d_2, d_3]^T.
\]

Proof. Taking into consideration that \(\Phi_p : \mathbb{R} \to \mathbb{R}\) is a homeomorphism, then the considered system (1) by substitution \(\bar{x}(n) = \Phi_p(x(n))\) is equivalent to the following problem
\[
\begin{align*}
\Delta(\bar{x}(n)) &= a(n)f(y(n - l)) \\
\Delta(y(n)) &= b(n)g(z(n - m)) \\
\Delta(z(n)) &= c(n)(h \circ \Phi_p)(\bar{x}(n - k)).
\end{align*}
\]

Let \(d_1, d_2, d_3 \in \mathbb{R}, \delta > 0\). From (A2) there exist \(M_f, M_g, M_h > 1\) such that
\[
\begin{align*}
|f(t)| &\leq M_f, \quad t \in [d_2 - \delta, d_2 + \delta], \\
|g(t)| &\leq M_g, \quad t \in [d_3 - \delta, d_3 + \delta], \\
|h(t)| &\leq M_h, \quad t \in [\Phi_p(d_1) - \delta, \Phi_p(d_1) + \delta],
\end{align*}
\]
where \(\bar{h} := h \circ \Phi_p\). From (3) there exists \(n_1 \geq \max\{l, m, k\}\) such that
\[
\sum_{s=n_1}^{\infty} |a(s)| \leq \frac{\delta}{M_f}, \quad \sum_{s=n_1}^{\infty} |b(s)| \leq \frac{\delta}{M_g}, \quad \sum_{s=n_1}^{\infty} |c(s)| \leq \frac{\delta}{M_h}.
\]

Set \(D = [\Phi_p(d_1), d_2, d_3]^T\) and \(n_2 = n_1 + n_0\). We define
\[
\Omega = \left\{ X = (X(n)) \in B : (X(n)) = D, n < n_2, \left| \left(x(n) - \Phi_p(d_1)\right) \right| \leq M_f \sum_{s=n}^{\infty} |a(s)|, \right.
\]
\[
\left. |y(n) - d_2| \leq M_g \sum_{s=n}^{\infty} |b(s)|, \quad |z(n) - d_3| \leq M_h \sum_{s=n}^{\infty} |c(s)|, \quad n \geq n_2 \right\}.
\]

It is easy to see that \(\Omega\) is a closed and convex subset of Banach space \(B\). Taking into consideration that \(c_0\) is a closed subspace of space \(B\), to prove that \(\Omega\) is a compact subset of \(B\) we use the relative compactness criterion in \(c_0\). From (3) we get that
\[
\left(M_f \sum_{s=n}^{\infty} |a(s)| \right) \in c_0, \quad \left(M_g \sum_{s=n}^{\infty} |b(s)| \right) \in c_0, \quad \left(M_h \sum_{s=n}^{\infty} |c(s)| \right) \in c_0.
\]

From Theorem 1.2 and above we get that for any sequences \((X^k) = ([x^k, y^k, z^k]^T) \subset \Omega\) there exist subsequences \((x^{k_1} - \Phi_p(d_1)), (y^{k_1} - d_2), (z^{k_1} - d_3)\) which are convergent sequences in \(c_0\) to \(x, y, z \in c_0\), respectively. Hence, \((X^{k_1})\) is convergent to \(X = [x + \Phi_p(d_1), y + d_2, z + d_3]^T \in \Omega\).

We define \(F : \Omega \to B\), where \(F = [F_1, F_2, F_3]^T\) as follows
\[
(FX)(n) = \begin{bmatrix}
\Phi_p(d_1) - \sum_{s=n}^{\infty} a(s)f(y(s - l)) \\
d_2 - \sum_{s=n}^{\infty} b(s)g(z(s - m)) \\
d_3 - \sum_{s=n}^{\infty} c(s)h(x(s - k))
\end{bmatrix}
\]
for \(n \geq n_2\),

and \((FX)(n) = D\) for \(0 < n < n_2\). Firstly, we will show that \(F : \Omega \to \Omega\). For \(s \geq n_2\) and \(X \in \Omega\) we get from (9)
\[
|y(s - l) - d_2| \leq M_g \sum_{s=n}^{\infty} |b(s)| \leq \delta,
\]
and from (6)
\[|f(y(s - l))| \leq M_f. \]

Hence,
\[|(F_1X)(n) - \Phi_p(d_1)| \leq \sum_{s=n}^{\infty} |a(s)||f(y(s - l))| \leq M_f \sum_{s=n}^{\infty} |a(s)|. \]

(10)

For \(s \geq n_2 \) and \(X \in \Omega \) we get from (9)
\[|z(s - m) - d_3| \leq M_h \sum_{s=n}^{\infty} |c(s)| \leq \delta, \]

and from (7)
\[|g(z(s - m))| \leq M_g. \]

Hence,
\[|(F_2X)(n) - d_2| \leq \sum_{s=n}^{\infty} |b(s)||g(z(s - m))| \leq M_g \sum_{s=n}^{\infty} |b(s)|. \]

(11)

For \(s \geq n_2 \) and \(X \in \Omega \) we get from (9)
\[|x(s - k) - \Phi_p(d_1)| \leq M_f \sum_{s=n}^{\infty} |a(s)| \leq \delta, \]

and from (8)
\[|\bar{h}(x(s - k))| \leq M_{\bar{h}}. \]

Hence,
\[|(F_3X)(n) - d_3| \leq \sum_{s=n}^{\infty} |c(s)||\bar{h}(x(s - k))| \leq M_{\bar{h}} \sum_{s=n}^{\infty} |c(s)|. \]

(12)

Therefore, \(F(\Omega) \subset \Omega \).

Now we prove the continuity of \(F \). Let \(X = (X(n)) = [x(n), y(n), z(n)]^T \in \Omega, \)
\(X_j = (X_j(n)) = [x_j(n), y_j(n), z_j(n)]^T \in \Omega \) such that \(X_j \to X \) as \(j \to \infty \). Let \(\varepsilon > 0 \).

The functions \(f, g, \bar{h} \) are uniformly continuous on any compact interval, so then there exists \(\delta_1 > 0 \) such that
\[|f(u) - f(v)| \leq \delta_1, \quad |u - v| \leq \delta_1, \quad u, v \in [d_2 - \delta, d_2 + \delta], \]
\[|g(u) - g(v)| \leq \delta_2, \quad |u - v| \leq \delta_2, \quad u, v \in [d_3 - \delta, d_3 + \delta], \]
\[|\bar{h}(u) - \bar{h}(v)| \leq \delta_3, \quad |u - v| \leq \delta_3, \quad u, v \in [\Phi_p(d_1) - \delta, \Phi_p(d_1) + \delta], \]

(13) (14) (15)

where \(A := 1 + \sum_{s=0}^{\infty} |a(s)|, \ B := 1 + \sum_{s=0}^{\infty} |b(s)|, \ C := 1 + \sum_{s=0}^{\infty} |c(s)|. \)

From \(X_j \to X \) we get that there exists \(j_0 \in \mathbb{N}_0 \) such that
\[|x_j(s - k) - x(s - k)| \leq \delta_1, \quad |y_j(s - l) - y(s - l)| \leq \delta_1, \quad |z_j(s - m) - z(s - m)| \leq \delta_1 \]
(16)

for any \(j \geq j_0, s \geq n_0. \) Then from (13), (16) we get for any \(n \geq n_2, j \geq j_0 \)
\[|(F_1X_j)(n) - (F_1X)(n)| \leq \sum_{s=n}^{\infty} |a(s)||f(y_j(s - l)) + \sum_{s=n}^{\infty} |a(s)||f(y(s - l))| \leq \delta \sum_{s=n}^{\infty} |a(s)| \leq \varepsilon. \]
We get conditions $\|(F_2 X_j)(n) - (F_2 X)(n)\| \leq \varepsilon$, $\|(F_3 X_j)(n) - (F_3 X)(n)\| \leq \varepsilon$ for $n \geq n_2$, $j \geq j_0$ in an analogous way from (15). Because $(F X)(n) = (F X_j)(n)$ for $n < n_2$ and $j \in \mathbb{N}_0$ we get that for $j \geq j_0$

$$\|FX_j - FX\| \leq \varepsilon,$$

which means that F is continuous on Ω.

By Theorem 1.1, F has the fixed point on Ω, denoted by $\bar{X} = (\bar{X}(n)) = (\bar{x}(n), y(n), z(n))$. For $n \geq n_2$ it means that $(F_1 \bar{X})(n) = \bar{x}(n)$ and hence

$$\bar{x}(n) = \Phi_p(d_1) - \sum_{s=n}^{\infty} a(s)f(y(s-l)).$$

By applying the forward difference to the obtained equation we get

$$\Delta(\bar{x}(n)) = a(n)f(y(n-l)), \quad n \geq n_2.$$

By an analogous way we get for $n \geq n_2$

$$\Delta y(n) = b(n)g(z(n-m))$$

$$\Delta z(n) = c(n)h(\bar{x}(n-k)).$$

It means that $(\bar{X}(n))$ fulfills (5) for $n \geq n_2$. From (10), (11), (12) and (3) we get that

$$\lim_{n \to \infty} \bar{X}(n) = [\Phi_p(d_1), d_2, d_3]^T.$$

Since Φ_p is a homeomorphism on \mathbb{R}, then for any $n \geq n_2$ there exists $x(n)$ such that $\bar{x}(n) = \Phi_p(x(n))$. This implies that $X(n) = [x(n), y(n), z(n)]^T$ satisfies (1) for any $n \geq n_2$ with $\lim_{n \to \infty} X(n) = [d_1, d_2, d_3]^T$. \square

Example 1. Let us consider the following system:

$$\begin{cases}
\Delta(\Phi_p(x(n))) = \frac{(3^{n(2-p)}3^{1-p} - 1)}{2 \cdot 3^{n-3}} y(n-1) \\
\Delta y(n) = -2 \cdot \frac{3^{2n-1} - 1}{3^{n-2}} x^2(n-1) \\
\Delta z(n) = \frac{8}{81} \cdot \frac{1}{3^n} x(n-2)
\end{cases}$$

All assumptions of Theorem 2.1 are satisfied. It is easy to check that

$$X(n) = \left[\frac{1}{3^n} \cdot 2 + \frac{1}{3^n} \cdot 3 - \frac{1}{3^{2n}}\right]^T$$

is the solution of the above system having the property $\lim_{n \to \infty} X(n) = [0, 2, 3]^T$.

Remark 1. Assume that (A_1), (A_2) and (3) are satisfied. If (A_3) f, g, h are invertible, (A_4) $a(n)b(n)c(n) \neq 0$ for any $n \in \mathbb{N}_0$,

then for any real constants d_1, d_2, d_3 there exists a solution $(X(n))$ to system (1) satisfying condition (4).

Proof. On virtue of Theorem 2.1, there exists a sequence $(X(n))$, satisfying condition (4), which fulfils system (1) for sufficiently large n. Since (A_3) and (A_4) hold, we can rewrite system (1) in the following form

$$\begin{cases}
y(n-l) = f^{-1}\left(\frac{\Phi_p(x(n+l)) - \Phi_p(x(n))}{a(n)}\right) \\
z(n-m) = g^{-1}\left(\frac{y(n+l) - y(n)}{b(n)}\right), \quad n \geq n_2, \\
x(n-k) = h^{-1}\left(\frac{z(n+l) - z(n)}{c(n)}\right)
\end{cases}$$
Using the above system we find $X(n_2 - 1), X(n_2 - 2), \ldots, X(0)$. Hence, sequence $(X(n))$ fulfills system (1) for $n \geq n_0$. \hfill \Box

Next, we present the necessary condition for existence of asymptotically constant solution to system (1).

Theorem 2.2. Assume that (A_1) and (A_2) are satisfied, and
\begin{equation}
(a(n)), (b(n)), (c(n)) \text{ are positive sequences.} \tag{17}
\end{equation}
If for real constants d_1, d_2, d_3 such that
$$f(d_2)g(d_3)h(d_1) \neq 0,$$
there exists a solution $(X(n))$ to system (1) satisfying condition (4), then (3) holds.

Proof. If $f(d_2) \neq 0$ then there exists $\varepsilon > 0$ such that $f(t)$ is of one sign, say positive, for $t \in [d_2 - \varepsilon, d_2 + \varepsilon] = U(d_2, \varepsilon)$. Set $L = \min \{f(t) : t \in U(d_2, \varepsilon)\}$. Let us take n_3 so large that $f(y(n - l)) \in U(d_2, \varepsilon)$ for $n \geq n_3$. Hence,
$$0 < L < f(y(n - l)). \tag{18}$$
From the first equation of system (1)
$$|\Phi_p(x(n)) - \Phi_p(x(n_3))| = |\sum_{n=n_3}^{n-1} a(n)f(y(n - l))|.$$
Since $\lim_{n \to \infty} |\Phi_p(x(n)) - \Phi_p(x(n_3))| = |\Phi_p(d_1) - \Phi_p(x(n_3))| < \infty$, we obtain $|\sum_{n=n_3}^{\infty} a(n)f(y(n - l))| < \infty$. This, (17) and (18) imply $\sum_{n=0}^{\infty} |a(n)| < \infty$. \hfill \Box

REFERENCES

[1] R. Agarwal, K. Perera and D. O’Regan, Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, *Adv. Difference Equ.*, 2005 (2005), 93–99.

[2] G. Bisci and D. Repovš, *Existence of solutions for p-Laplacian discrete equations*, *Appl. Math. Comput.*, 242 (2014), 454–461.

[3] A. Burton, *Stability by Fixed Point Theory for Functional Differential Equations*, Dover Publications, Inc., Mineola, NY, 2006.

[4] A. Cabada, *Extremal solutions for the difference ϕ-Laplacian problem with nonlinear functional boundary conditions*, *Comput. Math. Appl.*, 42 (2001), 593–601.

[5] A. Cabada and V. Otero-Espinar, *Existence and comparison results for difference ϕ-Laplacian boundary value problems with lower and upper solutions in reverse order*, *J. Math. Anal. Appl.*, 267 (2002), 501–521.

[6] M. Cecchi, Z. Došlá and M. Marini, *Intermediate solutions for nonlinear difference equations with p-Laplacian*, *Adv. Stud. Pure Math.*, 53 (2009), 33–40.

[7] C. Costara and D. Popa, *Exercises in Functional Analysis*, Kluwer Academic Publisher Group, Dordrecht, 2003.

[8] Z. He, *On the existence of positive solutions of p-Laplacian difference equations*, *J. Comput. Appl. Math.*, 161 (2003), 193–201.

[9] E. Lee and Y. Lee, *A result on three solutions theorem and its application to p-Laplacian systems with singular weights*, *Boundary Value Problems*, 2012 (2012), 20pp.

[10] M. Migda, E. Schmeidel and M. Zdanowicz, *Existence of nonoscillatory solutions for system of neutral difference equations*, *Appl. Anal. Discrete Math.*, 9 (2015), 271–284.

[11] E. Schmeidel, *Boundedness of solutions of nonlinear three-dimensional difference systems with delays*, *Fasc. Math.*, 44 (2010), 107–113.

[12] E. Schmeidel, *Oscillation of nonlinear three-dimensional difference systems with delays*, *Math. Bohem.*, 135 (2010), 163–170.

[13] E. Schmeidel, *Properties of solutions of system of difference equations with neutral term*, *Funct. Differ. Equ.*, 18 (2011), 293–302.
[14] E. Thandapani and B. Ponnammal, Oscillatory properties of solutions of three dimensional difference systems, *Math. Comput. Modelling*, 42 (2005), 641–650.

Received July 2016; revised December 2016.

E-mail address: magdalena.nockowska@p.lodz.pl
E-mail address: piotr.hachula@gmail.com
E-mail address: eschmeidel@math.uwb.edu.pl