Review

Advances in regenerative therapy: A review of the literature and future directions

Edward H. Ntege a, b, Hiroshi Sunami b, Yusuke Shimizu a, *

a Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
b Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan

ARTICLE INFO

Article history:
Received 11 November 2019
Received in revised form 14 January 2020
Accepted 26 January 2020

Keywords:
Regenerative therapies
Tissue engineering
Tissue derived stem cells
Mesenchymal stem cells
Adipose-derived stem cells
Ex vivo culture-expanded stem cells
Scaffold free-cellsheet technology
Scaffold-based cellsheet technology

ABSTRACT

There is enormous global anticipation for stem cell-based therapies that are safe and effective. Numerous pre-clinical studies present encouraging results on the therapeutic potential of different cell types including tissue derived stem cells. Emerging evidences in different fields of research suggest several cell types are safe, whereas their therapeutic application and effectiveness remain challenged. Multiple factors that influence treatment outcomes are proposed including immunocompatibility and potency, owing to variations in tissue origin, ex-vivo methodologies for preparation and handling of the cells. This communication gives an overview of literature data on the different types of cells that are potentially promising for regenerative therapy. As a case in point, the recent trends in research and development of the mesenchymal stem cells (MSCs) for cell therapy are considered in detail. MSCs can be isolated from a variety of tissues and organs in the human body including bone marrow, adipose, synovium, and peri-natal tissues. However, MSC products from the different tissue sources exhibit unique or varied levels of regenerative abilities. The review finally focuses on adipose tissue-derived MSCs (ASCs), with the unique properties such as easier accessibility and abundance, excellent proliferation and differentiation capacities, low immunogenicity, immunomodulatory and many other trophic properties. The suitability and application of the ASCs, and strategies to improve the innate regenerative capacities of stem cells in general are highlighted among others.

© 2020, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction .. 136
 1.1. Embryonic stem cells ... 136
 1.2. Tissue derived stem cells ... 137
 1.2.1. Induced pluripotent stem cells .. 137
 1.2.2. Fetal stem cells .. 138
 1.2.3. Adult stem cells .. 139
 2. Research involving the use of culture expanded ASCs ... 140
 2.1. Investigating the therapeutic impact of ASCs in aesthetic surgery ... 140
 2.1.1. ASCs clinical study implementation ... 141
 2.2. Approaches to enhance the regenerative capacity of ASCs .. 141
 2.2.1. The tissue engineering approaches .. 142
 2.2.2. Investigations with scaffold based cell sheet technology .. 143
 2.3. Observation of ASCs cardiomyocyte differentiation .. 146

* Corresponding author. Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa 903-0215, Japan.
E-mail address: yyssprs@gmail.com (Y. Shimizu).
Peer review under responsibility of the Japanese Society for Regenerative Medicine.

https://doi.org/10.1016/j.reth.2020.01.004
2332-3204/© 2020, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Regenerative therapy is the therapeutic application of stem cells and/or progenitor cells based on their potential to stimulate repair mechanisms and restore function in damaged body tissues or organs [1–4]. Stem cells (SCs) are defined by their self-renewal and differentiation capacity into one or multiple specialized cell types [5,6], as well as their unlimited regenerative potential through various trophic properties [7–9]. SCs are classified into two broad categories according to their differentiation capacity and tissue of origin (Table 1). SCs are referred to as totipotent, pluripotent, multipotent or unipotent cells depending on their differentiation ability [10,11]. Totipotent cells are those capable of giving rise to a new organism as they can differentiate into all tissues including germline and extra-embryonic tissues. Pluripotent cells are able to generate all body cells including germ cells. Multipotent cells are capable of generating a single cell type. The classification according to origin is essentially divided into two main cell types: embryonic stem cells (ESCs) [12] and tissue derived (somatic) stem cells [13,14]. The tissue derived stem cells are further divided into: fetal stem cells isolated from fetal tissues [15] such as placenta [16], amniotic fluid [17], Wharton jelly [18], umbilical cord blood [19], adult stem cells isolated from various tissues including bone marrow (BM-MSCs) [20], adipose tissue (ASCs) [8], dental pulp [21], skeletal muscle [22], skin [23], peripheral blood [24], liver [25], neural tissue [26], heart [27], and intestine [28]. Recently, two more sub-divisions of tissue-derived stem cells have been reported: induced pluripotent stem (iPS) cells [29–32] and induced tissue-specific stem (iTS) cells [14,33,34].

This review describes several important aspects of each SC category based on their origin, and offers greater emphasis on adult stem cells. The adult stem cells also known as multipotent mesenchymal stromal/stem cells (MSCs) have been extensively studied for over three decades for their therapeutic potential over a wide range of diseases. A plethora of preclinical studies have demonstrated the consistent ability of MSCs to promote tissue healing, reduce excessive inflammation and improve outcomes in a wide range of animal disease models [35]. However, human clinical translation in advanced phases present variable and discordant outcomes. Therefore, deciphering the reasons of dissonance is indeed paramount. The currently proposed factors contributing to the differences between animal model findings and clinical outcomes include inter alia differences in the preparation, potency, and functionality of MSCs in terms of tissue source, culture, and expansion [35]. ASCs are particularly promising candidates for diverse clinical applications, owing to their excellent proliferation and differentiation capacity [8,36], low immunogenicity [37,38], and ability for immunomodulation [37,39–43]. Here, the clinical suitability of MSCs is highlighted in detail while focusing more on current applications, benefits, challenges, and strategies to improve the therapeutic efficacy of stem cells.

1.1. Embryonic stem cells

Embryonic stem cells (ESCs) are pluripotent cells with the ability to differentiate into any mature cell types of the trilaminar germ lines. ESCs are obtained from the inner cell mass of the early (5–7 days post-fertilization) pre-implantation blastocyst. They were initially derived from mouse embryos in the early 1980s, and later from a number of different species including rat, rabbit, sheep, pig, horse and human [12]. Human ESCs are promising candidates for cell-based therapy given their distinctive properties such as; self-renewal, pluripotency and genomic stability [44]. At the beginning of the 21st century, ESCs generated great interest in different fields namely regenerative medicine, immunotherapy, and drug discovery. However, application of these cells is challenged by the limited access to the tissues of origin. Moreover, they are currently considered high risk because of their potential to form teratomas,
cells are almost identical to ESCs because of their inherent abilities to self-renew, proliferate and produce germ line competent-chimeras. iPS cells have the additional advantages of easy accessibility and expandability, and that they can be induced to differentiate into hundreds of cell types [51,52]. Moreover, iPS cells are derived from adult cells, not embryos, overcoming major ethical restrictions to use. Armed with such properties, iPS cells have in the past not only contributed to advances in stem cell biology and regenerative medicine, especially in the direction of personalized medicine. Also, the iPS cell technology has incorporated innovative technologies such as gene editing and three-dimensional organoids, which have greatly boosted efforts in disease modeling, drug discovery, and cell therapy [53,54]. Notwithstanding, even with the integration of such methodologies and technologies, differentiation to target cells remains a challenge [45,55–57]. With existing reports of stem cell lines acquiring certain genetic alterations that are associated with human cancer [58], both genomic stability and human clinical translation of iPS cells remain areas of contention. Some scientists urge caution with the use of iPS-based cell therapies in human trials, and challenge the need for genetically manipulated cells for the practice of medicine [59]. Indeed, some evidence promote a debate on concerns that iPS cells may exhibit tumorigenic features [31,48,60].

Table 1
Classification of stem cells according to differentiation capacity and origin.

Differentiation capacity	Properties	Notes
Totipotent	Differentiation into embryonic and extraembryonic cell types, Capacity to form complete, viable organism	Result from fusion of egg and sperm and initial fertilization of egg
Pluripotent	Differentiation into nearly all cells of trilaminar germ layers: ectoderm, endoderm and mesoderm	Descendants of totipotent cells and Induced tissue derived stem cells
Multipotent	Differentiation into a number of particularly closely related cell types.	Examples include Embryonic stem cells and Hematopoietic stem cells
Oligopotent	Differentiation into only a few cell types	Examples include Endothelial stem cells and Mesenchymal stem cells
Unipotent	Self renewal and proliferation, but produce own cell type only	Example: Spermatogonial stem cells

According to origin

Sub-types	Notes
Embryonic stem cells	
Fetal stem cells	Fetal: Fetal blood, Bone marrow, etc.
Extra fetal: Placenta, Amniotic fluid, Wharton’s Jelly, Umbilical cord (UMSCs)	Induced pluripotent stem cells (iPS) can be derived from all tissues
Decidua basalis, Decidua parietalis	Induced induced pluripotent stem cells (iPS) can be derived from all tissues
Adult stem cells	- Derived from inner cell mass of a blastocyst,
- Have similar properties of ESCs at cellular level	
- Generated by transient overexpression of the reprogramming factors	
- Have angiogenic, immunomodulatory, inflammatory and apoptotic properties	
- Generated by overexpressing embryonic genes; Oct4/3, Sox2, Klf4, and c-Myc	
- Envisaged increase in usage in the elucidation of stem cell and disease pathways as well as personalized drug discovery	
- Clinical use remains challenged with cost and standard of production, and questionable safety due to potentials of teratoma formation [32–35,51,55,73]	
- Derived from inner cell mass of a blastocyst,	
- Generated by overexpressing embryonic genes; Oct4/3, Sox2, Klf4, and c-Myc	
- Envisaged increase in usage in the elucidation of stem cell and disease pathways as well as personalized drug discovery	
- Clinical use remains challenged with cost and standard of production, and questionable safety due to potentials of teratoma formation [32–35,51,55,73]	
- Derived from inner cell mass of a blastocyst,	
- Generated by overexpressing embryonic genes; Oct4/3, Sox2, Klf4, and c-Myc	
- Envisaged increase in usage in the elucidation of stem cell and disease pathways as well as personalized drug discovery	
- Clinical use remains challenged with cost and standard of production, and questionable safety due to potentials of teratoma formation [32–35,51,55,73]	
- Generated from adult cells, not embryos, overcoming major ethical restrictions to use. Armed with such properties, iPS cells have in the past not only contributed to advances in stem cell biology and regenerative medicine, especially in the direction of personalized medicine. Also, the iPS cell technology has incorporated innovative technologies such as gene editing and three-dimensional organoids, which have greatly boosted efforts in disease modeling, drug discovery, and cell therapy [53,54]. Notwithstanding, even with the integration of such methodologies and technologies, differentiation to target cells remains a challenge [45,55–57]. With existing reports of stem cell lines acquiring certain genetic alterations that are associated with human cancer [58], both genomic stability and human clinical translation of iPS cells remain areas of contention. Some scientists urge caution with the use of iPS-based cell therapies in human trials, and challenge the need for genetically manipulated cells for the practice of medicine [59]. Indeed, some evidence promote a debate on concerns that iPS cells may exhibit tumorigenic features [31,48,60].	
Moreover, the comparison of the transcriptomes of iPSCs with the transcriptomes of cancer cells has demonstrated that induced pluripotency and oncogenic transformation are related processes [61–63]. There is also the argument that naturally pluripotent stem cells exist and can be isolated without first being genetically modified [64–67]. The essence of these limitations lies in the fact that it takes a long time to achieve stable iPSC cell lines due to their unlimited proliferation and inherent ability to form tumors. Relentless efforts are, however, intended to eliminate malignant transformation risks through the use of differentiated iPSCs. It is critical though that the populations of these differentiated cells are well defined and not contaminated [68]. Therefore, deciphering strategies to promote standards and guidelines to obtain large, well-defined and well-characterized sets of cells is of paramount importance [69]. However, such efforts are still in a developing stage; yet universally acceptable standard functional assays for selection of differentiation biomarkers has not been achieved.

Furthermore, because iPSC-based cell therapies are geared for global application, allogeneic supplies are preferred amidst concerns inter alia immune reactions and infections. This is because the allogeneic approach can reduce both cost and time of production as it is possible to perform prior comprehensive quality testing and generate a sufficient number of clinical grade iPSC cells. Against this backdrop, to reduce the risk of immune reactions the University of Kyoto Center of iPSC Cell Research and Application (CIRA) has recently developed an approach of generating safe iPSC stocks from healthy HLA homoygous donors, that maximizes matching of local consumer population at a major HLA locus [70]. However, solutions to other challenges including the development of animal disease models to appropriately recapitulate human disease for pre-clinical studies, lack of in-depth understanding of therapeutic mechanism of action, and the costs of clinical-grade iPSC cell production and quality control that are significantly high are still highly sought after [56].

Therefore, owing to the existence of several unresolved issues related to the use of iPSC cells for clinical therapies, particularly their potential for tumor formation and limited ability to generate pure populations of differentiated cell types in vitro, Noguchi Hirofumi of the Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, and colleagues [14,33,34] have recently successfully generated tissue-specific stem cells and coined the term induced tissue-specific stem cells (iTS). The iTS cells were generated from mouse pancreas and liver by transient overexpression of the reprogramming factors using the transcription factors: pancreatic and duodenal homeobox factor-1 (Pdx1) and hepatocyte nuclear factor 4 alpha (HNF4α). Their recent review describing the epigenetic memory phenomenon in iPSCs and iTS cells, emphasizes the relative importance of iTS to clinical application of stem cells, the superior differentiation capacity and the lack of teratoma formation [14].

1.2.2. Fetal stem cells

Fetal Stem Cells are multipotent and with minimal ethical restrictions [71]. The most intensively studied are hematopoietic (HSCs) and MSCs. Fetal MSCs can be harvested from fetal tissues such as blood and bone marrow or extra fetal (perinatal) tissues like placenta, amniotic fluid, Wharton jelly, umbilical cord blood, decidua basalis, and decidua parietalis [15–19]. Fetal MSCs have reportedly better intrinsic homing and engraftment ability, greater multipotency and lower immunogenicity compared to adult stem cells [46]. Notwithstanding, the harvesting, potential and clinical application of fetal MSCs remains controversial. Some studies consider the harvesting process relatively harmless, and do not clearly distinguish fetal and adult sources given that sometimes the origin can be both maternal and fetal [16,18,72,73]. MSCs from perinatal tissues are morphologically and immunophenotypically similar to those from adult sources and some such as umbilical cord blood derived MSCs (UCB-MSCs) possess unique properties. For instance, Kern Susanne et al. [74], in their comparative analysis, reported that UCB-MSCs were superior to BM-MSCs and ASCs regarding culture length and proliferation capacity. UCB-MSCs can be expanded in higher numbers regardless of isolation success rates, and can be stored for longer periods for both allogenic and autologous use [75]. However, in vitro studies have reported contradictory results on the procoagulant effects of MSCs upon contact with blood both in animals and humans [76]. Some of the initial reports on the use of human placenta-derived MSC-like cells in a Phase 1b/2a study in Crohn’s disease highlighted the occurrence of venous thrombotic events in two patients [77], and posited tissue factor (TF) expression by the clinical-grade therapeutic MSCs as a possible cause [78,79]. Furthermore, subsequent in vitro studies comparing placenta-derived decidua stromal cells (DSCs) to BM-MSCs found a 15-fold higher expression of TF in the DSCs [80]. Furthermore, a recent study reported thromboembolism in two patients treated with UCB- MSC products [81].

1.2.3. Adult stem cells

The biological history of adult stem cells dates back to 1909 with the discovery of HSCs in bone marrow [82]. These cells were first identified as multipotent in the 1970s by Alexander Friedenstein and colleagues [83]. They referred to a unique rodent bone marrow cell population with characteristics of plastic adherence and multilineage differentiation capacity as colony forming unit fibroblasts (CFU-F) [84]. In the early 1990s, CFU-F generated global interest in science and clinical practice, and became popularly known as “Mesenchymal Stem Cells (MSCs)” because of their multilineage differentiation capacity, immunomodulation, and regenerative abilities. MSCs have since become the most clinically studied experimental cell therapy platform, albeit with a mixture of successes and challenges [35,85]. Extensive investigations have consistently demonstrated MSCs as heterogeneous, nonclonal mix of multipotent stem cells, committed progenitors, and differentiated cells [86]. Hence, the MSCs nomenclature has been often contested, and indeed over time the cells have been called different names including “Marrow Stromal Cells,” “Multipotent Stromal Cells,” “Mesodermal Stem Cells,” and “Mesenchymal Stromal Cells.”

Latterly, persistent discussions on the accurate description of the origin, developmental potential, and biological functions of MSCs have proposed that “Tissue-Specific Progenitor Cells” or “Medicinal Signaling Cells” as more appropriate terms [87–91]. Conceivably, the definition entailing bone marrow origin, plastic-adherence, and the two true stem cell criteria of self-renewal and differentiation potential provide for in vitro manipulation, in bulk and at single-cell level, with no clear description of the characteristics displayed by unmanipulated MSCs in vivo. Moreover, it has now been demonstrated that MSCs arise from pericytes; in fact, they can be isolated from almost every tissue that is vascularized including bone marrow (BM) [20], adipose tissue [8], umbilical cord [19], dental pulp [21], and skin [23]. These cells additionally function as paracrine and secretory centers at injury sites in the body [64,91,92].

In 2006, the Mesenchymal and Tissue Stem Cell Committee of International Society for Cellular Therapy (ISCT) published minimum criteria for the identification of MSCs [93]. ISCT recommends that MSCs should be plastic adherent, with more than 95% of the cell population expressing flow-cytometrically determined CD73 5′-nucleotidase, CD90/Thy-1, and CD105/endoglin. In addition, less than 2% of the population should express CD34, CD45, CD11b integrin alpha M or CD14, CD 79 alpha or CD 19, and HLA class Ia. Also, the cells must demonstrate tri-lineage differentiation.
potential into osteoblasts, adipocytes, and chondroblasts under in vitro conditions. Additionally, surface markers CD13, CD29, and CD44 should be constitutively expressed by >80% of ASCs, while CD31, CD45, and CD235a, which are primarily negative markers, should be expressed by less than 2% of cells [94]. Of note, however, currently no single surface marker is capable of identifying cells in vitro and in vivo, that satisfy the minimal criteria of MSCs from various tissue sources. A number of candidate markers possibly related to the stemness of MSCs in vitro including Stro-1, SSEA-4, CD271, and CD146 have been reported, but not yet conclusively established due to large differences in their expression in cells from various sources probably arising from the dynamic influence of various culturing factors [95–97].

Despite encouraging pre-clinical findings from a wide range of disease models, after more than three decades, the efficacy of MSCs in advanced clinical trials remains challenged. However, the quest for an efficacious MSCs population in the clinic has intensified. The promising evidence for MSCs therapeutic success is based on cells’ relative ease of isolation and expansion in culture, multilineage differentiation capacity, immunomodulatory, anti-inflammatory, anti-microbial, and regenerative effects, homing and migratory capacity to injury sites, safety profile in allogeneic transplantation, and the few ethical restrictions [91,98–102]. However, deeper understanding of factors contributing to the biological and pharmacological disparities between pre-clinical research and human translational studies is needed. Suggested factors significantly contributing to the dissonance include differences in cell preparation, potency, and functionality among MSCs tissue sources, culture methods, and expansion levels, and variations in cell handling including thawing, route of delivery, and dosing [35]. Indeed different researchers have demonstrated that the yield, proliferation, differentiation, biological and therapeutic functions of MSCs are influenced by tissue of origin, method and site of harvest, cell isolation and clinical application procedures [103–105]. Among the tissue sources, BM and adipose tissue are the most studied and prevalent in the clinical trials of MSCs [35,106]. As summarized in Table 2, BM-MSCs exhibit significant potential for most studied tissue regeneration, protecting ischemic tissues at risk, and modulating inflammation and autoimmunity [107]. Indeed BM-MSCs could be the most promising among MSCs cellular therapies, but clinical implementation remains challenging [35]. A small fraction of true pluripotent stem cells exist in BM compared to an overwhelming proportion of HSCs [108,109]. Therefore, utilizing BM-MSCs for therapeutic purposes typically requires large amounts of BM.

Moreover, isolation and expansion of BM-MSCs in culture require careful monitoring and minimal passaging to avoid cell senescence. It has been demonstrated that senescence potentially affects efficacy of the treatment of diseases, for example intervertebral disc degeneration [110]. In addition, although considered a safe procedure, the aspiration of BM commonly from the sternum and posterior iliac crest has documented fatal complications [111]. However, adipose tissue is abundant in most individuals, and a small amount (25–100 ml) can be harvested using a simple liposuction procedure with minor adverse effects and yield orders of magnitude more MSCs per unit volume [95,112–114]. ASCs can maintain chromosomal stability in extended passing [115], and are capable of exhibiting tri-lineage differentiation potential with unique expression of certain cell adhesion molecules [116,117]. Numerous preclinical studies support the safety and efficacy of ASCs for regenerative medicine [118,119]. Therefore, this review preferentially provides a more detailed account of the unique properties, clinical application and proposed further research of ASCs in the subsequent sections.

Table 2

Comparison between bone marrow derived (BM-MSCs) and adipose tissue derived stem cells (ASCs).

Type of cell	BM-MSCs	ASCs	
Cell source	Bone marrow (triphine) biopsy and aspiration; serious complications such as pain, bleeding, infection and death exist but rare [117]	Subcutaneous white adipose tissue from trunk and extremities	
Harvesting technique	100-1000 MSCs, Easier isolation and in vitro expansion (3–5 weeks), Chromosomal instability with more passing (Senescence)	Direct excision during surgery, and liposuction (e.g. Coleman technique); comparatively easier, safer, and considerably larger amounts of samples are accessible [244–247]	
Yield and expansion	Approx. 5000 MSCs, Higher number of population doublings [305]	Better chromosomal stability with more passing [121]	
(per unit of tissue substrate)	Chromosomal instability with more passing (Senescence)	Not completely applicable to the minimum phenotype requirements,	
Cytometric characteristics	Applicable to the minimum criteria, i.e. presence of CD105, CD73, CD90 (>95% positivity) and absence of CD45, CD34, CD14 or CD11b, CD79a or CD19 (<2%) and cannot express HLA-DR [93], Expresses CD106 (VCAM-1) molecule which identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties [306]	Phenotypically defined by absence of CD45, CD235a, CD31, CD106 and presence of CD73, CD90, CD10, CD26, CD49d, CD49e and CD146 surface markers [59], Specifically, express key extinguishing marker of isolation, CD34 [19,129,306],	Greater pre-angiogenic capacities, Appreciable functional properties regarding inhibition of inflammatory and immune responses [42]
Secretome function	Higher concentration of VEGF		
adherent and culture expanded cell population containing both adipose derived stromal cells (ADSCs) and MSCs [8]. Most studies indicate that depending on the processing, ASCs represent up to 10% of the SVF [127,130].

ASCs like other MSCs, have been widely studied and increasingly becoming an MSC product of choice in clinical applications [79,95,131–133]. These cells exhibit excellent proliferation and differentiation ability into endodermal [134,135], mesodermal [136–138], and ectodermal cell lines [139]. Liposuction is a less sophisticated procedure with minor adverse effects and ethical restrictions (Table 2) [114,140]. ASCs can be isolated from adipose tissue using two approaches: Enzymatic and Non-enzymatic (Mechanical). Introduced by Zuk and colleagues [8], the enzymatic approach utilizes collagenase type II to digest adipose tissues, and has long been developed and optimized. Although popular, and considered the most useful and effective for clinical use, this procedure still requires standardization. Hence, the establishment of a standard protocol for isolation of ASCs that generates comparatively more viable stem cells (9.06 × 10^6 cells per 100 mL of adipose tissue with 99% cell viability), in a shorter period of time with reduced risks of contamination [141]. The non-enzymatic approach is reportedly more economical, but less effective [105,142].

The unique morphological characteristics of ASCs. Due to the heterogeneous nature of ASCs, cells should be characterized each time before being used in clinical applications. Phenotypic validation is part of the safety evaluation that ensures that the isolated and expanded cell population is genuinely MSC phenotype. Immunophenotypic analysis should be performed following both the isolation and expansion phases, as part of the criteria for using the cells in clinical applications. ASCs are distinct in terms of surface-marker expression profile [143], but a unique single marker that characterizes these cells remains elusive. Therefore, during immunophenotyping the use of a multicolor identification panel of several cell surface markers is recommended. Additionally, a viability marker is also suggested to eliminate dead or apoptotic cells. The selected markers for classification of ASC populations may vary, as any variation in isolation and culture can influence their morphological characteristics [105,127,144]. In addition to the existing recommendations [93,94], ASCs should be positive for surface markers CD10, CD13, CD29, CD44, CD166, and negative for CD13. Also, there is a perceptible list of some indeterminate markers such as CD31, CD106, CD146. ASCs reportedly have moderate levels of CD34 expression, particularly during the early phase of cell culture, that decreases with continued cell division [145,146]. Multiple classes of CD34 antibodies exist that recognize unique immunogens, and the choice of CD34 antibody can substantially influence the signal intensity detected on a given cell population. Moreover, the histological analysis of adipose tissue has revealed that CD34-positive cells are primarily associated with vascular structures [125]. Although small numbers of these cells are probably CD31-positive capillary endothelial cells, a CD34+/CD31- cell population of pericytic origin may be derived from adipose tissue [147]. Original ASCs lack CD45, CD235a and CD31 markers, while cultured ASCs express CD73, CD90, CD105, and CD44, but are negative for CD45 and CD31.

To distinguish ASCs from BM-MSCs, the use of CD36 (fatty acid translocase) and CD106 (VCAM-1) markers has been proposed. In contrast to BM-MSCs, ASCs do not express CD106 but are moderately positive for CD36 [94,146,148,149]. Additional markers can further strengthen ASC characterization. For instance, Bourin and coworkers have suggested that CD10, CD26 (DPP4), CD49d (VLA4), CD49e (VLA5), and CD146 (MCAM) can be included as additional positive markers, but with variable expression, depending on donor or culture passage. In contrast, low expression (<2%) levels of additional negative markers—CD3, CD11b (Mac-1), CD49f (VLA6), and podocalyxin-like protein—can be observed. Nevertheless, it is likely that ASC populations, identified using basic surface antigens, will display heterogeneity for additional surface antigens [148].

1.2.3.1.2. Multiple factors for ASCs preference. A review article by Pablo and Majumdar [150] has highlighted reports on the distinctive, heterogeneous cellular composition of SVF contributing to better therapeutic outcomes observed in animal studies compared to ASCs. Moreover, SVF is reportedly much more easily acquired, without the influence of cell separation or culturing factors that could impact safety and other regulatory requirements. However, ASCs are preferable, firstly, for their suitability for both autologous and allogeneic treatment purposes. Allogeneic ASCs are generally preferred over other cell types due to their low immunogenicity as demonstrated by low expression of major histocompatibility complex (MHC) class II molecules, and T and B cell costimulatory molecules CD80, CD86, and CD40 in vitro [37,38,151]. Autologous ASCs are especially useful in applications where larger cell numbers are needed [152]. SVF is especially useful in soft tissue reconstruction and suitable for autologous treatments only because of its heterologous nature associated with increased chances of immunological rejection [153]. Secondly, culture expansion of ASCs improves cell homogeneity, precise identification and dosage, that are of paramount importance for obtaining the desired high reproducibility of clinical outcomes [97,154]. Thirdly, there is a number of peer-reviewed scientific reports demonstrating effects encouraging enough to merit the choice of ASCs-based therapy. For instance, (i) for various reasons the in vivo engraftment and survival of implanted SCs in regenerative therapy remain a challenge. ASCS however, can localize, survive and engraft in host tissue, and have the capacity of multi lineage differentiation within a new microenvironment [59]. (ii) emerging evidence shows that MSC (including dead, or inactivated fragmented MSCs [155]) secretome is responsible for the cells' biological and pharmacological properties such as immunomodulation, immunosuppression, anti-inflammatory, anti-apoptosis, and angiogenesis [91,99–101]. Numerous studies [156–161] have demonstrated that the ASC secretome in particular has:

- higher levels of vascular endothelial growth factor (VEGF-D) mRNA and growth factors such as platelet-derived growth factor (PDGF), transforming growth factor (TGF-β), fibroblast growth factor (b-FGF) supporting angiogenesis and proliferation
- higher levels of pro-inflammatory cytokines such as interleukin (IL) –8, 1,6, and 12, tissue necrosis factor (TNF-α), interferon gamma (IFN-γ) supporting recruitment and activation of innate and adaptive immunity cells, fibroblasts, and MSC
- anti-inflammatory cytokines such as; IL-10, 13 and Prosta-glandin E2 mediating immunosuppression
- Chemokines such as IL-8, monocyte chemoattractant protein (MCP) MCP-1 (CCL-2), macrophage inflammatory protein (MIP) MIP-1α (chemokine ligand CCL-3), MIP-1β (CCL-4) promoting migration of innate and adaptive immunity cells, fibroblasts, and MSCs
- Adipokines such as Leptin, higher levels of insulin-like growth factor (IGF) IGF-1, adiponectin, steroid hormones, resistin, plasminogen activator-inhibitor 1 (PAI-1) for adipose tissue homeostasis
- Matrix proteins such as Collagen-1 for extracellular matrix (ECM) synthesis
- Matrix protease such as matrix metalloproteinase (MMP) MMP-1, MMP-2 for ECM remodeling and permitting cell transit and
- many other putative paracrine factors [162].

1.2.3.1.3. Overview of ASCs clinical application. The therapeutic utility of ASCs is based on autologous and allogeneic approaches.
ASCs in cell therapy can be applied in a single step as non-expanded cells or in vitro expanded cells. In vitro expansion helps in selecting a more homogenous cell population to meet standard criteria for MSC identification, and precise determination of cell dosage to ensure high reproducibility of the results [97], but it is costly and may present with concerns described later herein. The autologous ASCs approach involves adipose tissue harvesting from an individual, isolation and ex vivo expansion of the ASCs before transplanting them to the same individual. This often increases patient hospital stay or visits, and in peril of donor site morbidity, the most important being scars, infection and loss of function [163,164]. The allogeneic ASCs approach is based on the understanding that ASCs have a low immunogenicity in vitro, their secretome varies across different cell donors leading to highly variable outcomes, and are quickly available as an off-the-shelf product for immediate use [165]. Various reports have shown that allogeneic ASCs have the ability to elicit humoral and cellular immune responses in vivo particularly at sites of inflammation, and hence are not fully immune privileged [148,163,166–169]. However, a meta-analysis report of 82 preclinical studies has demonstrated that the approach is safe and as effective as autologous therapy [170]. Moreover, allotransplantation is very useful in especially the elderly and/or those patients affected by co-morbidities where autologous ASCs may have reduced regenerative and therapeutic potential [171–174]. Both approaches of ASCs-based therapy present some drawbacks and should to be considered on a case by case basis. Nonetheless, allogeneic ASCs seem to attract more clinical interest, as many patients can benefit from one or more donor cells having optimized characteristics and being selected for specific applications [165]. Recently, MSCs-based clinical trials mainly at phase I and II, have been conducted for a variety of human diseases with increasing utility of ASCs cell type. Chu et al. [175] in a recently published review have highlighted that the studies about ASCs human trials have been increasing year by year starting from 2007 and reaching its peak in 2015 with up to 187 clinical trials using adipose stem cells. Other reports [165] have indicated a total of 282 registered trials in late 2018, although 22 (8%) of them utilized SVF and only 13 (5%) had progressed to advanced phases.

The clinical utilization of ASC-based therapy is mostly in medical and surgical conditions including aesthetic, orthopedic, immune system, cardiovascular, craniomaxillofacial, skin and connective tissue, nervous system, nutritional and metabolic diseases. Clinical application details regarding some of the registered clinical studies of ASCs for different diseases including Osteoarthritis, Ischemic heart disease, Critical Limb Ischemia, Amyotrophic Lateral Sclerosis, Multiple System Atrophy, and Spinal cord Injury are summarized in Table 3 [176–178]. The application of ASCs in aesthetic surgery is common in trials involving repair of soft tissue defects [179]. The fat grafting procedure has long been employed to repair soft tissue defects. However, it presents with substantially variable successes in different surgical hands, and significant complications such as loss of volume, fibrosis, and necrosis. Therefore, ASCs are used to take advantage of their angiogenic, survival enhancement, proliferation, and differentiation properties for the improvement of graft viability. Pioneering work involving the use of SVF in combination with intact liposaprate of tissue in breast reconstruction or augmentation had positive outcomes such as improved volume retention, no evidence of fibrosis or adhesions, but also a few minor complications such as cyst formation or microcalcifications [126,180–182]. Other reports have indicated significant improvement in the healing of post mastectomy radiated skin and dermis complications with both SVF and ASCs [183].

Although notable success in MSCs efficacy and safety has been published [184], after almost two decades of large investments, cell therapy for CVD, particularly in heart muscle regeneration using BM-MSCs and cardiac stem cells remains elusive [185,186]. Further rigorous studies on earlier established strategies to trigger heart repair and regeneration such as use of human heart progenitors and cardiomyocytes derived from pluripotent stem cells, tissue engineering of heart patches, paracrine-factor therapeutics with proteins, and others are recommended [187–189]. Such efforts could benefit from the use of ASCs and/or ASC-derived cardiomyocytes. For example, ADSCs have been used in a phase II (MyStromalCell) trial to treat patients with chronic ischemic heart disease. This was the first single-center, double-blind, randomized, and placebo-controlled study of intramyocardial injections of autologous adipose-derived MSCs in patients with chronic ischemic heart disease and refractory angina but preserved ejection fraction [177,190]. The MSCs were obtained from abdominal adipose tissue, culture-expanded in vitro and stimulated with VEGF-A a week before treatment. Six-month follow-up results demonstrated safety, and a significant increase in exercise capacity in patients treated with MSCs but not with placebo.

The use of ASCs for regenerative therapy directly depends on efficient adaptive transfer of the critical therapeutic effects in animal models including inter alia, proliferation, potency, homing/
migration, and paracrine actions [191–193]. Effective human clinical translations require careful attention to factors that affect performance as well as safety of ASCs. Numerous publications [165] have highlighted the impact of various factors on the function of ASCs including age, sex, body mass index (BMI), adipose tissue origin, donor comorbidity states such as diabetes, cell biological and culture factors. Highlighted in a recent review [127], the ability of stem cells to renew appears to decrease with aging and is associated with down-regulation of SIRT-1 (silent information regulator 1) by micro-RNAs; miR-486-5p has been proposed to play a role in ASCs replicative senescence [194,195]. Aging is associated with down-regulation of genes responsible for maintenance of genomic integrity and chromatin remodeling, leading to functional attenuation and risk of neoplastic transformations [196]. Moreover, the influence of age on tri-lineage differentiation potential of MSC has been demonstrated to negatively affect osteogenic potential and enhance adipogenic potential [197], suggesting differential growth factor expression in senescence, whereby there is a reduction in BMP2/4 and upregulation in TGF-β expression [198]. Also, aged MSC are known to express higher levels of pro-inflammatory cytokines, in the absence of cytokine and chemokine receptors, impairing their ability to respond to injury [199]. Distinct developmental origins of adipose tissue potentially affect cell expansion, differentiation, and therapeutics. It has been demonstrated that different visceral fat depots are remarkably heterogeneous, and gene expression profiles and differentiation capabilities differ significantly between ASCs derived from different fat depots. Moreover, the depth of adipose tissue harvest appears to be critical on ASC proliferation and adipogenic potential, as ASCs from subcutaneous adipose tissue have increased proliferation and adipogenic capacities compared to ASCs of visceral origin [165]. Finally, as mentioned earlier conditions including but not limited to cell isolation and culture can affect ASC proliferation, differentiation, and paracrine function [200–202].

Nevertheless, some reports have highlighted safety concerns related to the use of in vitro expanded MSCs [203–206]. The expansion of cells outside their natural environment is thought to increase risk for genomic instability or altered differentiation potential, and may be associated with significant adverse effects such as tumors, teratomas and severe immune reactions, perhaps due to lack of counter immune surveillance and the influence of different culture induction factors. Regarding genomic stability, it has been demonstrated that cultured ASCs are stable in long-term cultures after multiple cell doublings, even under xenofree conditions [207–210]. However, there is controversy when it comes to the risk of neoplastic transformations, which requires further studies. The cytokine features of promoting angiogenesis, cell migration, proliferation, renewal, epithelial trans-differentiation and immuno-modulation for MSCs are reportedly potentially tumorigenic. MSCs can be attracted to sites of tissue injury as well as tumor micro-environments, and are able to differentiate into myofibroblasts known to promote tumor growth; such features are key contributors to tumor aggression and invasiveness in breast lipofilling [211,212]. BM-MSCs have been shown to increase tumorigenicity and invasiveness of breast cancer cells by inducing de novo expression of CCL5, a chemokine that acts in a paracrine manner to increase cell migration (in vitro) and extravascular translocation (in vivo) [206]. Similarly, induced de novo expression of the chemokine CXCL-12 (SDF-1) has been reported in ASCs, which increased tumorigenicity and invasiveness that were reversed by inhibition of the corresponding receptor [213]. Among the additional reports supporting the possibility of malignant transformations are the popular report on sarcoma formation in immuno-deficient mice following the injection of in vitro post-senescence transformed ASCs [214] and that on the use of fetal calf serum in cell culture presenting a risk for prion exposure [215]. The former was retracted because, later it was shown that the cells used in the transformation studies were cross-contaminated by cancerous cells that initially grew slowly in the presence of human MSCs [216], and the latter remains debatable. However, ASC and ASC-conditioned supernatant have been shown to induce necrosis in a range of tumor cell lines in vitro and in vivo [217]. A recent study designed to evaluate whether fat engraffment offers a supportive environment for tumor growth concluded, emphatically, has shown that it does not and may even be suppressive [218]. This conclusion appears to be supported by reviews of clinical studies of fat grafting for oncological breast reconstruction [219,220]. Other safety concerns arguably include exhibition of highly procoagulant activity and even lethal effects upon infusion of ASCs in preclinical models [221–223], and cases of peripheral microthrombosis, pulmonary embolisms, and even suspected cases of death in patients receiving ASC intravascular infusions [224–226].

Nonetheless, MSC products are generally considered safe in the clinic [227]; the international federation for adipose therapeutics and science (IFATS) has not yet reported ASCs based clinical studies associated with increased risk for adverse events/infusion toxicity [228]. Moreover, in a recent dose-escalation study, intravenous infusions of ASCs from healthy donors were well tolerated by humans up to 4 × 10^6 cells/kg body weight [229]. Remarkably, currently there are efforts to encourage the use of regenerative therapy including the application of ASCs as an MSC product in different countries across the world. For instance; the United States of America, the European Union, and Japan have initiated expedited approval processes aimed at giving patients better access to innovative drugs and regenerative medicine products albeit still subject to changes in the future [230,231]. Perhaps through clinical experiences, several hurdles or limitations can quickly be identified and solutions forged in a relatively shorter time frame.

2. Research involving the use of culture expanded ASCs

2.1. Investigating the therapeutic impact of ASCs in aesthetic surgery

The University of the Ryukyus hospital is the leading institution in advancing stem cell research in Okinawa, Japan. The institution actively implements basic, translational, and clinical research on ASCs, for a substantial contribution to the promotion of regenerative medicine through various studies at its Regenerative Medicine Center and the advanced medical care specialties. To conduct research in accordance with local and international standards, the university hospital launched a Cell Processing Facility (CPF) in March 2015. The CPF was licensed for Good Laboratory Practice (GLP) and Good Manufacturing Practices (cGMP) according to guidelines set by the regulatory framework of Pharmaceuticals and Medical Devices Agency (PMDA) and the Ministry of Health, Labor and Welfare (MHLW) [232,233]. In addition, the CPF is engaged in the highly skilled technical and clinical specialties of processing and applying viable cell therapies. In early 2016, the hospital department of plastic and reconstructive surgery took advantage of the existing vibrant collaborations and the GMP facility, and initiated a clinical trial with culture expanded ASCs to recontour depressed scars for the first time in Japan. Depressed scars of different origin can lead to cosmetic and psychosocial challenges, as well as the possibility of impeding normal body function. Several surgical approaches to treat such lesions have been described, but they are only adopted in selected cases and may achieve suboptimal results [234]. The approach of combining fat grafting with ex-vivo cultured cells is still under investigation. Published work by Coleman in the mid-1990s on treating depressed scars with fat grafting...
Regenerative Medicine (ASRM) [232,233]. Thus, the department conducted in accordance with the 2014 enacted Act on the Safety of open-label, non-randomized, uncontrolled, phase I/II study. It was cultured adipose derived stem cells, 2.1.1. ASCs clinical study implementation

ment decided to actively investigate the application of fat grafting play a primary role in the regenerative medicine of the 21st century, the use of highly puriﬁcation of ASCs is critical for their therapeutic outcomes [244], and development of biotechnological techniques have greatly improved the use of highly puriﬁed ASCs [245,246]. As a result, ASCs might play a primary role in the regenerative medicine of the 21st century, provided that risk factors related to manipulation, cryopreservation, concentration, and route of administration are controlled and standardized [244]. Thus, with the available resources the department decided to actively investigate the application of fat grafting in combination with culture expanded ASCs in cosmetic surgery.

2.1.1. ASCs clinical study implementation

The ASCs clinical trial at University of the Ryukyus hospital dubbed “Clinical study of treatment for depressed lesions using cultured adipose derived stem cells,” was an investigator-driven, open-label, non-randomized, uncontrolled, phase I/II study. It was conducted in accordance with the 2014 enacted Act on the Safety of Regenerative Medicine (ASRM) [232,233]. Thus, the department was granted ASRM Class II approval in line with treatments using cells from a patient but performing a different function. Moreover, the trial was in compliance with the study protocol, the International Conference on Harmonization’s Good Clinical Practice standards, and the Declaration of Helsinki. Approvals for the protocol, subject information and informed consent forms were obtained from the institutional review board (IRB) of Ryukyu University (No. 857). The trial is registered under one identiﬁer at UMIN-CTR Clinical Trial (https://www.umin.ac.jp/ctr/) with unique ID number; UMIN000020530. Based on the underlying treatment concept and on the promising data taken from preclinical and clinical studies regarding the use of ASCs in treating a wide range of other conditions, for evaluation of safety and probable efﬁcacy a maximum number of 11 patients was targeted for this clinical trial. Participation was restricted to 10 years old and above male or female patients with (a) congenital or acquired depressed lesion for which fat grafting was advised, such as breast deﬁcit after breast cancer, traumatic tissue defects, hemifacial atrophy, facial muscle atrophy after facial palsy, enophthalmos due to anophthalmia, funnel chest, and others, (b) depressed lesions undergoing secondary revision surgery with fat grafting, (c) in case of secondary revision surgery, at least three months should have passed after ﬁrst surgery, (d) willingness to provide informed consent, (e) history of at least 10 years of no serial illnesses, (f) willingness to live in Okinawa prefecture at least 6 months following treatment, and ﬁnally (g) potentially eligible patients participating in another study about developing an extraction system of safe and good quality adipose derived stem cells were considered. However, patients who were pregnant, at risk of recurrence or metastasis of a malignant tumor, under anti-cancer agent or immunosuppressive agent treatment, or those who had local infection in or near the depressed lesion were excluded.

The trial design was interventional, and followed standard fat grafting techniques commonly performed in three stages: harvesting of adipose tissue from a suitable donor site, processing of the liposaprate to eliminate cellular debris, acellular oil and excess of inﬁltrated solution, reinjection of the puriﬁed adipose tissue [242]. Speciﬁcally, for this trial a small amount of fat was aseptically transferred to the CPF for the isolation and expansion of ASCs prior to administration into the depressed lesions in combination with free fat.

Adipose tissue was carefully harvested and processed with a procedure that aimed at minimizing massive destruction of adipocytes and maximizing yield of ASCs [247–250]. The technical details of harvesting, GMP processing and transplantation of the cultured ASCs will be published in the ﬁnal scientiﬁc reports of the trial. Anticipated outcomes of the trial include improved graft survival rate, reduced calcification, and cyst formation as well as incidence, severity, and duration of adverse events following 1 week, and 1, 3, 6 months after treatment.

Preliminary data are available for 5 patients with depressed facial scars caused by complications ranging from cancer treatment to Parry–Romberg syndrome. The ﬁrst trial subject was a case of malar deformity following surgical management of maxillary sinus carcinoma (Fig. 1). All the patients were treated and followed up according to the study protocol. Briefly, Informed consent to treatment and publication of outcomes was obtained in writing from the patients prior to any procedures. Evaluation of clinical improvement was based on patient interviews and standard photographs taken before, 1 week, and 1, 3, and 6 months after treatment. Results suggested that the patients’ depressed scars were recontoured with satisfactory results, and no adverse events were reported even after two and half years, a period outside the study follow up schedule.

Such promising data obtained during this phase I/II trial represent the ﬁrst milestone in the clinical evaluation of the concept of repairing soft tissue defects with fat grafts combined with culture expanded ASCs in Japan. Fat grafts have an important role in the treatment of depressed or altered scars and other surgical problems [242]. So far, the trial experiences are in agreement with previous reports [105,141,251]. The department faces similar challenges, particularly related to the high cost of clinical grade ASCs production and sustainability of the GMP facility, the long time required to process and prepare cells for transplantation (3–5 weeks), and the variability in the autologous ASCs product and use of biological reagents, which are likely to inﬂuence clinical outcomes.

2.2. Approaches to enhance the regenerative capacity of ASCs

2.2.1. The tissue engineering approaches

Despite developments in different aspects of clinical practice, there are still shortcomings related to availability of donor tissues that require novel approaches to overcome. Tissue engineering (TE) is a highly interdisciplinary research field driven by the goal to restore, replace, or regenerate defective tissues [252–254]. As this is in tandem with the objectives of the advanced medical services, the university hospital regards TE a concept of paramount signiﬁcance. Hence, the clinical application of ASCs with this concept is under intense investigation and various approaches have been proposed in the different specialties including orthopedic, plastic and maxillofacial surgeries [255].

Historically, Atala and co-workers [256] were the ﬁrst to report the use of tissue-engineered constructs in patients. Between 2008 and 2014, a range of engineered tissues including the trachea [257,258], urethra [259], and nasal cartilage [260] were reported, arguably with questionable successes [261]. Remarkably however, TE has overcome a number of challenges that had hindered its
clincial application in the past [253,262], although some of them such as vascularization of larger volume tissues [263,264], and risk of tumorigenesis [265] remain of concern. Tremendous progress toward improving the methodology for TE is notable through areas of (i) discovery of methods to generate functional cells such as the iPSC and adult stem cells from different sources, (ii) substrate stiffness establishment as a modulator of stem cell differentiation leading to new ways of controlling cell phenotypes using physical cues, (iii) advanced chemistries that enable more efficient and versatile biomaterial conjugations, for precise patterning of biomolecules and biomaterials, (iv) refinement of delivery mechanisms that enable biochemical cues such as growth factors and cytokines to be presented with improved bioavailability and bioactivity, (v) understanding of the interaction between foreign bodies and the body’s immune surveillance system, that promote rational design of biomaterials to mitigate inflammatory responses, (vi) development of new biomaterials and scaffolds that lead to fabrication of better biomimetic tissues, (vii) advances in biofabrication technologies including programmed self-assembly and three-dimensional (3D) bioprinting, which allow generation of complex biological structures with integrated vasculature and multiple cell or extracellular matrix types at high spatial resolution [266]. It has been suggested that advances in these areas could potentially eliminate the need for donor specific sites and their morbidity, reduce hospital stay and associated costs in the field of plastic surgery [267].

The fundamental requirements for providing durability of tissue-engineered constructs include a cell source to synthesize new tissue matrix, a scaffold, biomolecules and a microenvironment to provide trophic cues that guide proliferation and differentiation [268]. TE uses tissue-derived cells that may be stem cells or not, but currently there is no consensus on the ideal source for such purposes. Thus, a thorough understanding of the advantages and disadvantages of each cell type is crucial for the selection of the appropriate cells and the optimal culture conditions in order to engineer specific tissue types [267]. The technological approaches of TE can be principally categorized into two conventional strategies; scaffold-based and scaffold-free. Some reports suggest a third strategy which integrates the advantages of the two traditional approaches [254], but this is beyond the scope of this review.

2.2.1.1. Scaffold free-cell sheet technology. Scaffold free is a bottom–up strategy employing cell sheets, spheroids, or tissue strands as building blocks. It relies on the inherent ability of these building blocks to fuse and form larger constructs [254]. Cell sheets are 3-D cell structures consisting of multiple layers of confluent cells arising from high-density cell seeding that are transplantable without an additional carrier [269]. There are several methods for culturing cell sheets, including high-density seeding or incubation with magnetic nanoparticles-liposomes [270,271]. Also, different culture surfaces are used to form cell sheets and assist cell sheet detachment. Besides conventional tissue culture polystyrene dishes with or without a special coating, temperature-responsive culture dishes are being used [272]. Temperature responsive culture dishes allow cell sheets to be easily harvested by changing the dish temperature. These temperature responsive culture dishes are coated with a polymer named poly (N-isopropylacrylamide) (PIPAAm), which has extraordinary properties. At 37 °C the surface is slightly hydrophobic allowing cell attachment and proliferation. When the temperature is lowered to 32 °C or below the surface becomes hydrophilic and the polymer expands causing spontaneous detachment of cell sheets [273]. This technique leads to less cell damage compared to traditional methods of cell detachment that utilize enzymatic digestion or mechanical peeling which may disrupt cell structures. Moreover, temperature-responsive culture dishes preserve cell surface adhesion proteins and the extracellular matrix (ECM) connecting the cells, which may facilitate cell sheet attachment to tissues [274].

Cell sheet technology is a promising cell-based treatment strategy that can be used in both tissue engineering and regenerative medicine [275,276]. Cell sheets can be stacked to create a 3-D tissue in culture. Different cell types can be combined in a cell sheet to enhance tissue repair and revascularization. For example, endothelial cells can be combined with different tissue cell types to promote angiogenesis of cardiac tissue [277], skin [271] or oral mucosa [278] repair. MSC sheets have been studied in several disease models in order to enhance healing of injured tissue, such as cardiac muscle [271,275,279], skin [280], bone [281] and cartilage [282]. The downside of this approach is that the inferior mechanical properties of individual building blocks, lead to possible cell damage during their manipulation, and the immobilization phase necessary for the initial fusion of the building blocks and deposition of ECM to obtain a cohesive construct is long [271,283]. ASC have shown increased angiogenesis and tissue healing when injected or delivered via a scaffold. However, injection provides inefficient delivery of cells and scaffolds are accompanied by the risk of infection. Delivering ASC in the form of a cell sheet offers a unique delivery method that may best take advantage of these cells. There has been a limited number of studies examining the used cell sheets composed of ASC, for instance, in the repair of scarred myocardium in rats [279,284]. However, better understanding of ASC sheet characteristics, therapeutic potential and application areas are needed in order to optimize ASC cell sheet as a tissue repair strategy.
2.2.1.2. Scaffold-based cell sheet technology. The scaffold-based approach relies on the use of appropriate ‘templates’ supporting living cell attachment, proliferation, and subsequent formation of 3D tissue [254]. Scaffolds are generally classified as biological (organic) or synthetic (inorganic). Desirably, scaffolds should be biomimetic [285] biodegradable [286], have appropriate mechanical strength and optimal micropores enabling vascularization and allowing metabolic needs to be met. They should also be biocompatible [287], non-immunogenic [288], and versatile with regard to manufacturing methods, functionalization potential [289], and 3D control of microarchitecture. It is important to understand that the biophysicalchemical 3D environment is crucial for tissue engineering. Cells not only require a scaffold for structural and biological support but also require an environment that provides the correct combination of growth supplements, differentiation signals, perfusion of nutrients, gaseous/waste exchange, pH regulation, and mechanical forces.

2.2.2. Investigations with scaffold-based cell sheet technology

Investigations to improve the differentiation potential of ASCs towards target tissue cells including inter alia cardiomyocytes, chondrocytes and tenocytes are required. For instance, several novel approaches are now sought to improve heart muscle regeneration in the field of cardiovascular cell therapy [185], and ASC transdifferentiation could be a viable approach. Therefore, the University of the Ryukyus hospital department of plastic and reconstructive surgery in collaboration with the Regenerative Medicine Center, aims to decipher critical factors affecting ASC transdifferentiation. A deeper understanding of how different culturing conditions and mechanical forces impact the regenerative abilities of ASCs using the scaffold-based cell sheet technology is being actively pursued.

2.2.2.1. Acquisition of ASCs for the research. After liposapirate collection from aesthetic surgery patients at the University of the Ryukyus hospital, the adipose tissue is separated from the tumescent solution, oil, serum, cell debris, and blood by centrifugation. The adipose tissue was mainly used in graft transplantation, and prior to current regenerative therapy interests, all excess tissue with the rest of supernatant debris were discarded. However, currently with the informed consent of patients, part of the excess tissue is quickly transferred in cooler boxes at 2–8 °C, under aseptic conditions to the basic research facilities for isolation, expansion, characterization, and differentiation as well as pre-clinical studies of the ASCs. The isolation of ASCs from freshly harvested adipose tissue is based on well-established protocols [290], but with slight modifications. The tissue is transferred to appropriate sterile centrifuge tubes, labeled, weighed, and washed in wash buffer. Thereafter, through a repeated process the tissue is completely digested by equal volumes of 0.25% trypsin and 0.1% of type I collagenase, minced and thoroughly mixed under incubation at 37 °C in 5% CO2 within an hour. The process of tissue digestion is stopped by stromal medium and through a series of strainings and centrifugations, SVF is separated from free lipids and mature adipocytes. After several washing steps and an optional erythrocyte lysis, the SVF cells are resuspended in growth medium such as high glucose Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% antibiotic–myotic solution at 37 °C with 5% CO2 and cultured for 24 h to produce the plastic adherent ASCs. Growth medium is changed every 2–3 days until the ASCs reach an appropriate confluence suitable for further studies. To keep cells at low density, preventing cell death and spontaneous differentiation, cultures are passaged using 0.25% trypsin/ethylene diamine tetra acetic acid on reaching 80% confluence. Because the differentiation potential and mechanical properties of MSCs decline with extended cell passaging, its recommended to utilize cells between the second and fifth passages [291]. ASCs are verified according to the ISCT and IFATS criteria including use of flow cytometry to quantify surface marker expression, and the ability to differentiate into osteoblasts, adipocytes, and chondroblasts under in vitro conditions [93,94]. In addition, relevant assays to monitor cell viability and proliferation are performed as previously described [292].

2.2.2.2. Exploring factors that influence the regenerative potential of ASCs. Investigations into the impact of different factors on ASC transdifferentiation are exemplified in this review by considering cardiomyocytes differentiation. There are various cardiomyocyte differentiation techniques based on different cell induction approaches, each one having its own advantages and disadvantages [138,293–295]. The investigation of factors related to culture conditions involves differentiation of ASCs towards cardiomyocytes by adding various supplements and growth factors to the basic medium. For these ongoing studies, ASCs are differentiated to cardiomyocytes through an initial 24 h induction phase using 5-aza-2-deoxycytidine in DMEM. Here, DMEM is supplemented with 15% FBS, 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM l-glutamine and 1% Insulin-Transferrin-Selenium (ITS) + premix (6.25 µg/ml of human recombinant insulin and transferrin, 6.25 ng/ml of selenious acid, 1.25 mg/ml of bovine serum albumin, and 5.35 µg/ml of linoleic acid). The induced culture is maintained by changing the supplemented DMEM every third day for 4 weeks.

For the evaluation of factors related to mechanical forces, the concept of scaffold and 3-Dimensional culturing is explored. In the recent past, three-dimensional constructs have been developed to foster cell—cell communication and overcome growth inhibition by mimicking the physiological milieu. Also, scaffolds covered with different chemotactic agents, as well as matrices of varying stiffness values have been designed to achieve directional migration and stable cell cultures. In line with developing this technology, we have recently published work on modulation of surface stiffness and cell patterning [300]. Here, a new technology was developed to selectively produce areas of high and low surface Young’s modulus on biomedical polymer films using micropatterns. When NIH3T3 fibroblasts were cultured on micropattern-supported films, they preferentially accumulated in regions with high Young’s moduli, suggesting that the technology can regulate regions of high and low surface Young’s modulus on a cellular scaffold with high planar resolution and direct cellular patterning.

Non-woven fiber scaffold sheets are used to investigate the influence of mechanical stress over cell differentiation. Before ASCs seeding, the scaffold sheets are prepared; they are placed in well-plates with a supporting O-ring on top for stabilization, and sterilized before adding growth media. Additionally, any existing air bubbles in each well are degassed and the wetted sheets are incubated overnight at 37 °C. The ASCs at passages between 2 and 5 are seeded onto the scaffold sheets at a determined cell density and cultured in standard growth media until they reach 60–70% confluence before subjecting them to the 5-aza-2-deoxycytidine induction phase. The culture medium is replaced every third day after induction of cell differentiation.

The induction of cell differentiation under mechanical stress is an innovative concept in artificial tissue generation. It has been established that the cytoskeleton interprets and responds differentially to mechanical forces from the microenvironment [301]. In this context, cellular actin filaments have been shown to be a key initial regulator of cell morphology in response to extracellular mechanical forces [301]. Although preliminary results show high potential and promising future for mechanical cardiomyocyte
Western blot analysis, and microarray analysis techniques are being used (Fig. 2). Additionally, real-time polymerase chain reaction (PCR), isoform (MLC-2), myosin regulatory light chain 2, atrial isoform NKX2.5, myosin regulatory light chain 2, ventricular/cardiac muscle ASC differentiation and in vivo induction stimuli. However, an ideal technique that would enhance the potential of cells remains elusive. For example, a narrative review of MSC function in CVD [302] provided a systematic evaluation of a total of 41 studies examining CVD-related MSC (dys)function. Their findings revealed that CVD affects MSC characteristics and regenerative potential but many of these studies presented conflicting results. Remarkably though, this and many other studies in different treatment fields have contributed enormously to the comprehension of complex biological processes underlying regeneration regardless. This has enabled the current understanding that the classical concept of regeneration where an insulted tissue or organ can be repaired by the administration and engraftment of large numbers of cells — stem cells or not— is inadequate. Instead, as reported previously, regeneration should be considered as a global and balanced process involving the entirety of target tissue structures in addition to the cell types [303]. Furthermore, to achieve the ultimate goal of building functional tissues or organs, the following priority areas of research are suggested: in-depth understanding of cell proliferation processes and their control mechanisms, development of means to identify and track cell subpopulation(s) capable of division in the insulted target tissue or organ based on ploidy and other characteristics, identification of markers of cell proliferation rather than of cell cycle activity, analysis of transcriptional pathways underlying target tissue cell dedifferentiation, replication, migration, and maturation [303].

The practical advantage of adipose tissue derived MSCs in clinical practice is their primary source — the adipose tissue being abundant and easy to obtain with minimal adverse effects. However, compared to ESCs and iPS cells, the multipotency of ASCs is limited. Moreover, their differentiation potential can be influenced by multiple factors such as anatomic location of fat, the donor’s gender, age and comorbidity, and the key molecular mechanisms of proliferation and differentiation remain unraveled [304]. With promising data from the current research at the university of the Ryukyus hospital, and the guidance from related experiences elsewhere, carefully designed, and enriching studies are anticipated. Following completion of the assessment of safety and effectiveness of site-specific autologous ASCs instillations, the university hospital department of plastic and reconstructive surgery plans to conduct clinical evaluation of allogeneic ASCs in treating various diseases. Moreover, in the near future, pre-clinical studies will be considered as well, to assess the therapeutic impact of site-specific administration of combined cell types: regenerative and bona fide differentiated cells, using the scaffold based cell sheet technology.

Declaration of Competing Interest

The authors have no conflicts of interest to declare for this work.

Acknowledgements

We gratefully acknowledge the support of Okinawa prefectural government, that provided funding for this work through the Construction of Okinawa Science and Technology Innovation System project. We also thank Editage (http://www.editage.jp/) for their invaluable assistance in proofreading of the final manuscript.

References

[1] Ptaszek LM, Mansour M, Ruskin JN, Chien KR. Towards regenerative therapy for cardiac disease. Lancet 2012;378(9819):933–42.

[2] Li M, Ma J, Gao Y, Yang L. Cell sheet technology: a promising strategy in regenerative medicine. Cytotherapy 2019;21(1):3–16.

[3] Weinberg RS. Overview of cellular therapy. In: Transfusion medicine and hemostasis. Elsevier; 2010. p. 505–12.

[4] Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016;2016:8940283.

[5] Kolos G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration 2013;85(1):3–10.

[6] Lerou PH, Daley GQ. Therapeutic potential of embryonic stem cells. Blood Rev 2005;19(6):321–31.

[7] Fuchs E, Segre JA. Stem cells: a new lease on life. Cell 2000;100(1):143–55.
Maumus M, Peyra Gutowski KA, Force AFGT. Current applications and safety of autologous fat grafts: a report of the ASPS fat graft task force. Plast Reconstr Surg 2010;126(3):845–54.

Lee SW, Min SO, Bak SY, Hwang HK, Kim KS. Endothelial function of human adipose stem cells using various concentrations of Activin A for hepatic regeneration. Bioresour Technol 2015;64(4):1178–84.

Grottkaue BE, Lin Y. Osteogenesis of adipose-derived stem cells. Bone Res 2015;11F. 17.12.

Garcia-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, et al. The challenge of transdifferentiation of human adipose-derived mesenchymal stem cells with low immunogenicity constructing tissue-engineered bone for repairing bone defects in pigs. Cell Transplant 2012;21(12):2711–71.

Casteilla L, et al. Native human adipose stromal cells: localization, differentiation and functional characterization of freshly isolated and cultured cells derived from the fatty tissue. J Cell Physiol 2006;208(1):64–75.

Park CW, Kim K-S, Bae S, Son HK, Myung P-K, Hong HJ, et al. Human adipose-derived mesenchymal stem cells: mechanisms of action of living, apoptotic, and dead MSCs. Front Pharmacol 2017;8:115963.

Yoshinoura K, Sencer-T, Matsumoto D, Sato T, Takayaki Y, Aiba-Rojenna E, et al. Characterization of freshly isolated and cultured cells derived from the fatty tissue and fluid portions of liposuction aspirates. J Cell Physiol 2006;208(1):64–75.

Gutowski KA. Force AFGT. Current applications and safety of autologous fat grafts: a report of the ASPS fat graft task force. Plast Reconstr Surg 2010;126(3):845–54.

Mitchell JR, McIntosh K, Zvoncic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived stem cells: temporal changes instromal-associated and stem cell–associated markers. Stem Cells Transl Med 2017;6(1):145.

Chu D-T, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, Thanh VV, et al. Chondrogenesis of Rhesus adipose stromal cells. J Cell Sci 2004;117(18):89.

Lee SW, Min SO, Bak SY, Hwang HK, Kim KS. Human adipose stem cells: selection for transcriptional characterization of human adipose-derived adherent stromal cells from patients with rheumatoid arthritis display impaired function in vivo. J Cell Physiol 2010;226(3):843–51.

Bora P, Majumdar AS. Adipose tissue-derived vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther 2017;8(1):145.

Zhang J, Huang X, Wang H, Liu X, Zhang T, Wang Y, et al. The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Res Ther 2015;6(12):234.

Rafajczuk S, Sena ES, Duckers HG, et al. Similar effect of autologous and allogeneic stem cell therapy for ischemic heart disease: systematic review and meta-analysis of large animal studies. Circ Res 2015;116(1):80–9.

Borga P, Majumdar AS. Adipose tissue-derived vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther 2017;8(1):145.

Park S, Colombini A, Moretti M, di Girolamo L. Injectable mesenchymal stem cell-based treatments for knee osteoarthritis: from mechanisms of action to current clinical evidences. Knee Surg Sports Traumatol Arthrosc 2019;27(9):3003–20.

Raicevic G, Najar M, Pieters K, De Bruyn C, Meuleman N, Bron D, et al. Inflammation modifies the pattern and the function of Toll-like receptor 4/6/8 expressed by human mesenchymal stem cells. Hum Immunol 2010;71(3):235–44.

Janssen of Lorkeers SJ, Edjing JC, Vesterinen HM, van der Spoel TJG, Sena ES, Duckers HG, et al. Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: systematic review and meta-analysis of large animal studies. Circ Res 2015;116(1):80–9.

Atesok K, Fu FH, Sekiya I, Stoltzing A, Ochi M, Rodeo SA. Stem cells in degenerative orthopaedic pathologies: effects of aging on therapeutic potential. Knee Surg Sports Traumatol Arthrosc 2017;25(2):626–36.

Casteilla L, et al. Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes 2011;35(9):1141.

Jahol KS, Lecq, Adj, Adipose-derived stem cells: selecting for trans- lational success. Regen Med 2015;10(1):79–96.

Fachon-Pena G, Yu G, Tucker A, Wu X, Vendrell J, Bunnell B, et al. Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J Cell Physiol 2011;226(3):843–51.

Katz AJ, Tholpady A, Tholpady SS, Khan SN, Riazzuddin S. Adipose stem cells differentiated chondrocytes regenerate damaged cartilage in rat model of osteoarthritis. Cell Biol Int 2016;40(5):579–88.

Choi YS, Dusting GJ, Stubbs S, Arunothayaraj S, Han XL, Collas P, et al. Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med 2010;14(4):878–85.

Kang SK, Putnam LA, Ylostalo J, Popescu IR, Dufour J, Belousov A, et al. Osteogenesis of Rhesus adipose stromal cells. J Cell Sci 2004;117(18):89.

Zhao F, Li Y, Zou J, Wu X, Qiu S, Yang Z, et al. Allogeneic adipose stem cells with low immunogenicity constructing tissue-engineered bone for repairing bone defects in pigs. Cell Transplant 2012;21(12):2711–2711.

Lee SW, Min SO, Bak SY, Hwang HK, Kim KS. Human adipose stem cells: selection for transcriptional characterization of human adipose-derived adherent stromal cells from patients with rheumatoid arthritis display impaired function in vivo. J Cell Physiol 2010;226(3):843–51.

Mitchell JR, McIntosh K, Zvoncic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived stem cells: temporal changes instromal-associated and stem cell–associated markers. Stem Cells Transl Med 2017;6(1):145.

Yoshinoura K, Sincer-T, Matsumoto D, Sato T, Takayaki Y, Aiba-Rojenna E, et al. Characterization of freshly isolated and cultured cells derived from the fatty tissue and fluid portions of liposuction aspirates. J Cell Physiol 2006;208(1):64–75.

Gutowski KA. Force AFGT. Current applications and safety of autologous fat grafts: a report of the ASPS fat graft task force. Plast Reconstr Surg 2010;126(3):845–54.

Mitchell JR, McIntosh K, Zvoncic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived stem cells: temporal changes instromal-associated and stem cell–associated markers. Stem Cells Transl Med 2017;6(1):145.
Jayara JS, Janapala R, Qaseem A, Usman N, Fathima N, Kashif T, et al. Efficacy and safety of stem cell therapy in advanced heart failure patients: a systematic review with a meta-analysis of recent trials between 2017 and 2019. Cureus 2019;11(9).

Chien KR, Frišen J, Fritsche-Danielson R, Melton DA, Murry CE, Weissman IL. Regenerating the field of cardiovascular cell therapy. Nat Biotechnol 2019;1.

Mohan N, P, Brown D, Lennard S, Anderson MJ, Barrett JC, Eriksson U, et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov 2018;17(3):167.

Sahara M, Santoro F, Chien KR. Programming and reprogramming a human heart. EMBO J 2009;28(5):359–37.

Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 2018;173(1):104–116, e112.

Qayyum AA, Haack-Sørensen M, Mathiasen AB, Jørgensen E, Ekblond A, et al. In vivo and ex vivo regeneration with adipose tissue-derived stem cells reprogram myocardial ischemia (MyStromalCell Trial): study design. Regen Med 2012;7(2):421–8.

Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemotherapy 2016;43(4):268–74.

Gneccchi M, Danieli P, Malpasso G, Ciuffreda MC. Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in experimental heart failure. Cell Stem Cell Ther 2009;3:15–35.

Mohamed TM, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Mohamed TM, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 2018;173(1):104–116, e112.

Qayyum AA, Haack-Sørensen M, Mathiasen AB, Jørgensen E, Ekblond A, et al. In vivo and ex vivo regeneration with adipose tissue-derived stem cells reprogram myocardial ischemia (MyStromalCell Trial): study design. Regen Med 2012;7(2):421–8.

Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 2007;5(8):201–13.

Kim M, Kim C, Choi YS, Kim M, Park C, Suk H. Aging-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implication to age-associated bone diseases and degenerative osteoarthritis. J Mech Aging Ageing 2012;33(5):215–25.

Sethe S, Scutt A, Zolsting A. Aging of mesenchymal stem cells. Aging Res Rev 2006;5(1):91–116.

Bustos ML, Huleihel L, Kapetanaki MG, Lino-Cardenas CL, Mroz L, Ellis BM, et al. Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am J Respir Crit Care Med 2014;189:778–98.

Alahari Z, Oplander A, Almaki S, Fritz A, Vogt M, Pallua N. Conventional vs. micro-fat harvesting: how fat harvesting technique affects tissue-engineering approaches using adipose tissue-derived stem/stromal cells. J Plast Reconstr Aesthetic Surg 2013;66(9):1271–8.

Kim DS, Lee MW, Ko YJ, Chin YH, Kim HY, Sung KW, et al. Culture cell density affects the proliferation activity of human adipose tissue derived stem cells. Cell Biochem Funct 2016;34(1):16–24.

Sukhto P, Kirensitejin J, Hesselink JW, van Osch GJ, Verseijden F, Bastiaansen-Jenniskens YM. Effect of cell seeding density and inflammatory cytokines on adipose tissue-derived stem cells: an in vitro study. Stem Cell Rev and Rep 2013;17(2):267–77.

Lin PP, Wang Y, Lozano G. Mesenchymal stem cells and the origin of Ewing's sarcoma. Sarcoma 2011;2011:276463.

Amargamlo N, Hirshberg A, Sclertheuer BA, Cohen Y, Loewenthal R, Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, et al. Mesenchymal stem cells and the origin of Ewing's sarcoma. Sarcoma 2011;2011:276463.

Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008;8(9):726.

Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature 2007;449(7162):557.

Haack-Sørensen M, Juhi M, Follin B, Harary Sandergaard R, Kirchhoff M, Kastrup J, et al. Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate. Scand J Clin Lab Invest 2018;78(4):293–300.

Grimes BR, Steiner CM, Merfeld-Clauss S, Trakténov D, Smith D, Reese A, et al. Interphase FISH demonstrates that human adipose stromal cells maintain a high level of genomic stability in long-term culture. Stem Cell Dev 2008;18(5):717–24.

Neri S, Guidotti S, Lilli NL, Cattini L, Mariani E. Infiltrative partial fat-padded mesenchymal stromal cells from osteoarthritics patients: in vitro genetic stability and replicative senescence. J Orthop Surg Res 2017;35(5):1025–37.

Blázquez-Prunera A, Díez JM, Gajardo R, Grancha S. Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction. Stem Cell Res Ther 2017;8(1):103.
Findlay MW, Dolderer JH, Trost N, Craft RO, Cao Y, Cooper-White J, et al. Khademhosseini A, Langer R. Microengineered hydrogels for tissue engineering. Trends in Biotechnology 2005;23(5):22–29.

Shimizu K, Ito A, Lee JK, Yoshida T, Ikeda Y, et al. Construction of multi-layered cartilage tissue for nasal reconstruction after tumor resection: an observational study. Plast Reconstr Surg 2011;128(5):1571–775.

Al-Himadi S, Jessop ZM, Al-Sabah A, Combrellack E, Ibrahim A, Doak SH, et al. Tissue-engineered solutions in plastic and reconstructive surgery: principles and practice. Front Med 2017:4:4.

Ikeda Y. Challenges in tissue engineering. J Soc Interface 2006;3(10):589–601.

Coleman SR. Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg 1995;19(3):421–5.

Coleman SR. Facial contouring with lipoinjection. Clin Plast Surg 1997;24(2):347–67.

Simonec F, Bertozzi N, Greco MP, Grignaffini E, Rapposio E, Procedure, applications, and outcomes of autologous fat grafting. Ann Med Surg (Lond) 2015;7:2:1. doi:10.1016/j.amsu.2015.01.007.

Kuno S, Yoshimura K. Condensation of tissue and stem cells for fat grafting. Clin Plast Surg 2015;42(2):191–7.

Kelle S-FT, Fischer-Nielsen A, Mathiesen AB, Elberg JJ, Oliveri RS, Coviolinski PV, et al. Enrichment of autologous fat grafts with ex vivo expanded adipose tissue-derived stem cells for graft survival: a randomized placebo-controlled trial. Lancet 2013;382(9898):1113–20.

Bellini E, Greco MP, Raposio E. The science behind autologous fat grafting. Clin Med Mag 2017;2:45–73.

Hong P, Yang H, Wu Y, Li K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther 2019;10(1):242.

Mazini L, Rochette L, Amin M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci 2019;20(10):2523.

Duckers HJ, Pinkelnell K, Mleistein AM, Hedrick MH. The Bedside cell system for isolation of adipose derived regenerative cells. EuroIntervention 2006;2(3):395–8.

Katz AJ, Hedrick MH, Llull R, Futrell JW. A novel device for the simple and efficient refinement of liposuctioned tissue. Plast Reconstr Surg 2001;107(2):539–53.

Coleman SR. Structural fat grafting: more than a permanent fat transfer. Plast Reconstr Surg 2006;118(3):1085–205.

Cilli D, and evins CM. Comparative analysis of aspiration techniques for the suction-assisted lipoplasty method of lipoaspiration. Aesthetic Plast Surg 1991;15(1):92–7.

Ozsoz Z, Kul Z, Bilir A. The role of cannula diameter in improved adipocytic viability: a quantitative analysis. Aesthetic Surg J 2006;26(3):287–9.

Rapposio E, Caruana G, Petrella M, Bononimi S, Greco MP. A standardized method of isolating adipose-derived stem cells for clinical applications. Ann Plast Surg 2016;76(1):124–6.

Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–6.

Khademhosseini A, Vacanti JP, Langer R. Progress in tissue engineering. Sci Am 2009;300(5):64–71.

Ovsianikov A, Khademhosseini A, Mitrovich Y. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol 2018;36(4):347–58.

Sterodimas A, de Faria J, Nicaretta B, Pitanguy I. Tissue engineering with adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci 2019;20(10):2523.

Carvalho PH, Daibert APF, Monteiro BS, Okano BS, Carvalho JL, Cunha DNQd, et al. Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections. Cardiovasc Res 2011;91(3):483–91.

Haraguchi Y, Shimizu T, Matsura K, Sekine H, Tanaka N, Tadakuma K, et al. Cell sheet technology for cardiac tissue engineering. In: Cardiac tissue engineering. Springer; 2013. p. 39–55.

Sekein H, Shimizu T, Hohob K, Sekiya S, Yang J, Yamato M, et al. Endothelial cell coculture within tissue-engineered cardiomycocytes sheet enhances neovascularization and modulates the cardiac function of ischemic hearts. Circulation 2008;118(14_suppl_1):S145–52.

Lee J, Kim EH, Shin D, Roh J-L. Accelerated oral wound healing using a prevascularized mucosal cell sheet. Sci Rep 2017;7(1):10667.

Hamdi H, Planat-Benard V, Bel A, Pyrimiat G, Geha R, Pidal I, et al. Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections. Cardiovasc Res 2011;91(3):483–91.

Cerqueira M, Pirraco RP, Santos T, Rodrigues D, Frías A, Martins A, et al. Human adipose stem cell sheet constructs impact epidermal morphology and new bone formation in a rat nonunon model. Bone 2010;46(2):418–24.

Qi Y, Du Y, Li W, Dai X, Zhao T, Yan W. Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc 2014;22(5):1424–33.

Okano T. Current progress of cell sheet tissue engineering and future perspectives. Tissue Engineering Part A 2014;20(9):1035–43.

Nakamura A, Akahane M, Shigematsu H, Tadokoro M, Morita Y, Ohgushi H, et al. Cell sheet transplantation of cultured mesenchymal stem cells enhances bone formation in a rat nonunion model. Bone 2010;46(2):418–24.

Bhatnagar RS, Li S. Biomimetic scaffolds for tissue engineering. In: The 26th annual international conference of the IEEE engineering in medicine and biology society, IEEE; 2004. p. 2011–2.

Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005;4:7:518.

Kit M, Neeley MS. Development of biocompatible synthetic extracellular matrix materials for tissue engineering. Trends Biotechnol 1998;16(5):224–30.

Lutfi M, Hubbell J. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. BioTechniques 2005;32:1:47.

Sanghi AB, Miller KP-H, Belcher AM, Schmidt CE. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nat Mater 2005;4:6:496.

Binnelli BA, Flaat M, Gagliardi C, Patel B, Ripoll CP. Adipose-derived stem cell: isolation, expansion and differentiation. Methods 2008;45:2:115–20.

Stromps J-P, Paul NE, Rath B, Nourbakhsh M, Bernhagen J, Pallua N. Chondrogenic differentiation of human adipose-derived stem cells: a new path in articular cartilage defect management? BioMed Res Int 2014:2014.

Riss T, Moravec R, Niles A, Duellman S, Benink H, Wozella T, et al (InterNet): In: Sittampalam GS, Coussens NP, Nelson H, et al., editors. Cell viability assays. Assay guidance manual. Bethesda (MD): Eli Lilly and Company; 2008. p. 170–2.

In: The National Center for Advancing Translational Sciences; 2013. Available from: Assay guidance manual. Bethesda (MD): https://www.ncbi.nlm.nih.gov/. 2013.

Lavender D, McQueen B. Differentiation of adipose tissue-derived mesenchymal stem cells into articular cartilage. BioMed Res Int 2014:2014.

Fung K, Wang Z, Liu W, Wang Y. Accurate measurement, determination, and directed differentiation of adult adipose-derived stem cells towards cartilage–like cells induced by angiotensin II. Appl Biochem Biotechnol 2013;170(2):459–70.

Zhou Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct Cell Biochem Modulation Active Agents Dis 2008;26(6):645–74.
Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM, et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 2004;94(2):223–9.

van Dijk A, Niessen HW, Zandieh Doulabi B, Visser FC, van Milligen FJ. Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell Tissue Res 2008;334(3):457–67.

Rangappa S, Fen C, Lee EH, Bongso A, Wei ESK. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 2003;75(3):775–9.

Park E, Patel AN. PKC-delta induces cardiomyogenic gene expression in human adipose-derived stem cells. Biochem Biophys Res Commun 2010;393(4):582–6.

Sunami H, Shimizu Y, Denda J, Yokota I, Yoshizawa T, Uechi Y, et al. Modulation of surface stiffness and cell patterning on polymer films using micropatterns. J Biomed Mater Res B Appl Biomater 2018;106(3):976–85.

González-Cruz RD, Darling EM. Adipose-derived stem cell fate is predicted by cellular mechanical properties. Adipocyte 2013;2(2):87–91.

van Rijn-Brouwer F, Gremmels H, Fledderus J, Verhaar M. Mesenchymal stromal cell characteristics and regenerative potential in cardiovascular disease: implications for cellular therapy. Cell Transplant 2018;27(5):765–85.

Gregorian Shamagian I, Madonna R, Taylor D, Clement AM, Prosper F, Bras-Rosario L, et al. Perspectives on directions and priorities for future preclinical studies in regenerative medicine. Circ Res 2019;124(6):938–51.

Mizuno H, Tobita M, Uysal AC. Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 2012;30(5):804–10.

Strem BM, Hicok KC, Zhu M, Wuhr I, Alfonso Z, Schreiber RE, et al. Multi-potential differentiation of adipose tissue-derived stem cells. Keio J Med 2005;54(3):132–41.

Yang ZX, Han Z-R, Ji YR, Wang YW, Liang L, Chi Y, et al. CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 2013;8(3):e59354.