Data Article

Odor impact of volatiles emitted from marijuana, cocaine, heroin and their surrogate scents

Somchai Ricea,b, Jacek A. Koziela,b,*

a Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
b Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, USA

\textbf{Abstract}

Volatile compounds emitted into headspace from illicit street drugs have been identified, but until now odor impact of these compounds have not been reported. Data in support of identification of these compounds and their odor impact to human nose are presented. In addition, data is reported on odor detection thresholds for canines highlighting differences with human ODTs and needs to address gaps in knowledge. New data presented here include: (1) compound identification, (2) gas chromatography (GC) column retention times, (3) mass spectral data, (4) odor descriptors from 2 databases, (5) human odor detection thresholds from 2 databases, (6) calculated odor activity values, and (7) subsequent ranking of compounds by concentration and ranking of compounds by odor impact (reported as calculated odor activity values). For further interpretation and discussion, see Rice and Koziel[1] and Rice[2].

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

\textbf{Specifications table}

\begin{tabular}{|c|c|}
\hline
Subject area & Chemistry \\
\hline
More specific subject area & Forensics, Analytical Chemistry, Olfactometry \\
Type of data & Table \\
\hline
\end{tabular}

DOI of original article: http://dx.doi.org/10.1016/j.forsciint.2015.08.027
* Corresponding author.
E-mail address: koziel@iastate.edu (J.A. Koziel).

http://dx.doi.org/10.1016/j.dib.2015.09.053
2352-3409© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
How data was acquired

Multidimensional gas chromatography (Agilent 6890), mass spectroscopy (Agilent 5973), olfactometry (MOCON, Round Rock, TX).

Data format

Analyzed mass spec using Automatic Mass Spectral Deconvolution and Identification System (AMDIS) (NIST, Gaithersburg, MD).

Experimental factors

Volatile emissions from marijuana, cocaine, and heroin samples were collected on Carboxen/polydimethylsiloxane (PDMS) solid-phase microextraction (SPME) fiber at room temperature, static, for 1 h.

Experimental features

SPME fibers were thermally desorbed in a multidimensional gas chromatography-mass spectrometry-olfactometry (MDGC-MS-O) instrument, allowing for simultaneous chemical and sensory analysis. Surrogate scents for each drug were also analyzed as previously stated, and aromas were compared using calculated odor activity values (OAVs).

Data source location

Department of Agricultural and Biosystems Engineering at Iowa State University, Ames, IA 50011.

Data accessibility

Data is with this article.

Value of the data

- This data is the most comprehensive summary of volatiles emitted from real and surrogate scents of marijuana (221, 78), cocaine (153, 15), and heroin (41, 19), respectively, to date.
- This data includes organoleptic percepts from 2 known databases, odor detection thresholds from 2 benchmark databases, significant ions from mass spectral data, and calculated odor activity values (OAVs, if available) for each compound.
- This data shows rank of drug volatiles by concentration in relation to the rank by odor impact (as calculated OAV).
- Odor activity value data can open up new ways of forensic drug analysis.
- Data from previous research on canine odor detection thresholds (ODTs) is reported for further insight, highlighting differences with human ODTs and needs to address gaps in knowledge.

1. Data

1.1. CAS Registry Number

A CAS Registry Number is a unique numeric identifier that corresponds to only one substance. The CAS has no chemical significance, but can be used as a link to more information about a specific chemical substance [3]. CAS number is useful to identify a compound that has multiple synonyms. CAS numbers were used in all data tables in this report.

1.2. Odor Detection Threshold (ODTs)

Published ODT values are not fixed numbers, but are set to represent the lowest concentration that 50% of the population can detect [4]. For the purposes of calculating odor activity values, standardized human ODTs from Devos et al. [5] were used when available. The compilation from Devos et al. contained a total of 2075 ODT values in air for 641 chemical compounds, gathered from 372 references. ODTs were weighted and averaged [5]. If ODT for a compound was not given in Devos et al., the LRI Database [6] was used. LRI database contains 1500+ records on ODT and odor percepts [6]. ODTs for canines were compiled from previous literature. See Rice and Koziel [1] for full discussion on human and canine ODTs. ODTs were used in reporting data in Tables 1–5.

1.3. Column retention time in chromatography

Column retention time (RT, min) is the time between sample introduction via thermal desorption in the gas chromatography (GC) inlet and the analyte peak reaching the mass spectrometer and/or
sniff port at the end of the analytical column. It was not appropriate to use retention indexes (Kovats RI) for identification because: (1) the non-polar and polar columns were connected in series when analyzing in multidimensional GC; (2) use of indices of medium polarity column could lead to large errors for compounds that are affected by one of the columns more than the other. Known retention times of standards previously analyzed on this system were used for compound identification, and indicated by + symbol in Tables 3–5. RTs are also reported in Tables 3–5.

1.4. Aroma descriptors

Aroma descriptors were compiled from Flavornet and The Good Scents Company. Flavornet has aroma descriptors from 738 compounds, compiled from studies using GC-olfactometry [7]. The Good Scents Company is dedicated to providing organoleptic information to the flavor, food and fragrance industry [8]. Aroma descriptors from these 2 databases were used in reporting data in Tables 3–5.

1.5. Sample code

Aromas were characterized by human nose from volatiles emitted into the headspace of illicit marijuana, cocaine, and heroin. Various states of seizure were examined: (1) 50 kg of marijuana in a cloth military style duffel bag (Sample Code A1–A3); (2) 1 g marijuana packaged in a plastic zip-top sandwich bag (Sample Code A4–A5); (3) 1 g old, desiccated marijuana with no packaging (Sample Code A6–A7); (4) plastic zip-top sandwich bag with 1 g marijuana removed (Sample Code B1–B4); (5) 1 g crack cocaine packaged as tear drops (Sample Code D1); (6) 1 g cocaine adulterated with Levamisole (Sample Code D2); (7) 1 kg evidence pack containing cocaine (Sample Code D3); (8) 1 g cocaine in an opened plastic bag (Sample Code D4–D5); (9) 1 g heroin seized in 1997 (Sample Code F1); (10) 1 g heroin seized in 2010 (Sample Code F2). Sigma Pseudo™ Narcotic Scent Marijuana formulation (Fluka, P7309) (Sample Code C1–C3), Sigma Pseudo™ Narcotic Scent Cocaine formulation (Fluka, P2423) (Sample Code E1), and Sigma Pseudo™ Narcotic Scent Heroin formulation (Fluka, P2548) (Sample Code G1) were purchased from Sigma-Aldrich (St. Louis, MO). These sample codes were used in reporting data in Tables 3–5.

1.6. Target mass spec libraries, models, and net % match, peak area counts

AMDIS (NIST, Gaithersburg, MD) software was used for identification of unknown compounds. Six specialty mass spectral libraries were used for compound identification: NISTEPA (1086 compounds in the EPA’s ‘list of lists’), NISTDRUG (739 compounds in the Canadian AAFS Toxicology Section MS Database Committee and the Association of Official Racing Chemists libraries), NISTFF (991 compounds in the Philip Morris Flavor and fragrance collection), NISTTOX (1213 compounds represented in Finnigan Corporation’s Toxicology library), NISTFDA (415 compounds in an FDA collection of mass spectra), and NISTCW (62 compounds relevant to detection of chemical weapons).

A model is the mass-to-charge ratio (m/z) of a deconvoluted peak, and are listed in order of highest to lowest relative abundance. For example, under a ‘Models’ column heading, 2: 58 88 signifies 2 models with m/z 58 and 88 were used for identification.

Net % Match is the final match quality value (100 = perfect match) between the deconvoluted component and the target library spectra. The minimum match value was set at 65 for all analysis of this data.

Peak area counts (PAC) refers to the relative abundance of the analyte, or the area under the chromatographic peak. The mass detector was assumed to have equal response factors for each compound, for the purposes of calculating OAV.

These parameters were used in reporting data in Tables 3–5.

1.7. Odor activity values (OAV)

OAV is defined as the unit less ratio of concentration of a compound in gas phase to the odor detection threshold. For illustrative purposes, the PAC was used for the concentration value of each compound. See Rice and Koziel [1] and Rice [2] for further discussion on OAV. This ratio was used to calculate the OAVs reported in Tables 3–5.
1.8. Ranking definitions

Compounds from each drug were ranked by concentration (highest concentration = ranked 1) and then by calculated OAV (highest odor impact = ranked 1). In most cases, there was no apparent correlation between chemical concentration and odor impact, i.e., rank 1 by concentration did not usually rank as 1 by OAV. This ranking and sorting was used to report data in Tables 6–8.

2. Experimental design, materials and methods

2.1. Surrogate scent formulations

Sigma Pseudo™ Narcotic Scent Marijuana formulation composition is listed as pyrogenic colloidal silica (1%), cellulose (98.5%), butane-2,3-diol (0.4%), and p-mentha-1,4-diene (0.1%). Sigma Pseudo™ Narcotic Scent Cocaine formulation composition is listed as cellulose (98.9%), pyrogenic colloidal silica (1%), and methyl benzoate (0.1%). Sigma Pseudo™ Narcotic Scent Heroin formulation composition is listed as cellulose (74.1%), o-acetylsalicylic acid (25.2%), acetic acid (0.3%), and pyrogenic colloidal silica (0.3%).

2.2. Methodology

Carboxen/PDMS, 85 μm Stable-flex, 24 gauge SPME fibers were used (Sigma-Aldrich, St. Louis, MO, USA). Briefly, experimental conditions were as follows: drugs were placed in separate, pre-cleaned and oven-baked 16 ounce mason jars with modified lids. The Carboxen/PDMS SPME fibers were exposed to the headspace and volatiles were passively extracted; equilibration time was the same as extraction time (1 h at ambient temperature). When the extraction step was completed, the SPME fiber was retracted, wrapped in pre-baked aluminum foil, placed in a pre-cleaned mason jar, and transported back to the laboratory in a cooler on ice. In the laboratory, fibers were stored as described above in a 4 °C refrigerator pending placement into the heated injection port of the MDGC-MS-O for thermal desorption and analysis.

MDGC-MS-O analysis was performed on an Agilent 6890 GC, with a restrictor guard column, non-polar capillary column (BP-5, 56 m × 530 μm inner diameter × 1.00 μm thickness, SGE, Austin, TX, USA) and polar capillary column (BP-20, 25 m × 530 μm inner diameter × 1.00 μm thickness, SGE, Austin, TX, USA) connected in series. Outflow from analytical column was held at 70 cc/min. Sample flow was split 3:1 via open split interface to the sniff port and mass spectrometer, respectively, as determined by restrictor column inner diameter. Desorption time was 2 min in splitless mode at 270 °C under flow of helium carrier gas (99.995% purity). Analysis of the same fiber immediately after sample injection, revealed no carry over, with all compounds desorbed in the initial analysis. The oven temperature was programmed as follows: 40 °C for 3.00 min, then increased to 220 °C at a rate of 700 °C per min, and held for 11.29 min (40 min total run time). The carrier gas was set at constant pressure at the midpoint (junction point of the non-polar and polar column) at 5.8 psi. Transfer line to the MS was set at 240 °C; transfer line to the sniff port was set at 240 °C with humidified air set at 8.00 psi. MS heated zones were 150 °C for the quadrupole and 230 °C for the source. Mass spectrometer parameters were electron impact (EI), electron energy set to 70 eV, with acquisition range m/z 33–280.

The instrument was tuned daily and analysis of column blanks did not show any contaminating compounds. Analysis of blank trip fiber (an unloaded SPME fiber taken to the site and back, stored with fibers to be analyzed) at the end of each sampling run did not demonstrate contaminating compounds. VOCs were identified tentatively using the Automatic Mass Spectral Deconvolution and Identification System (AMDIS) (National Institute of Standards and Technology, Gaithersburg, MD) and six specialty mass spectral libraries provided derived from the NIST05/EPA/NIH mass spectral database. Known retention times of standards previously analyzed on this system were used for identification. Chemical standards available in house were analyzed to match retention times and mass spectra of unknown compounds. Select reference standards were used for identification, purchased from Sigma-Aldrich (St. Louis, MO, USA). These standards are indicated with ‘+’ in Tables 3–5. Each sample (as outlined in Section 1.5) was collected on a single SPME fiber, each fiber sample was analyzed by one panelist. The same panelist analyzed all samples with volatiles from each drug and surrogate scent formulation.
Table 1
Comparison of odor detection thresholds and odor activity values between canines (based on Passe and Walker [9]) and humans (based on Devos et al. [5]).

Source reference in [9]	Methods	Compound	CAS	Canine ODT [9] (ppm)	Human ODT [5] (ppm)	ODT_C:ODT_H	Canine OAV of 1 ppm	Human OAV of 1 ppm	OAV_C:OAV_H
Neuhaus [10]	Dogs chose from 3 odor ports. Pushing a box behind the correct port uncovered sugar for reward.	Acetic acid	64-19-7	4.99E-11	1.45E-01	3.44E-10	2.00E+10	6.90E+00	2.90E+09
		Propanoic acid	79-09-4	3.09E-11	3.55E-02	8.70E-10	3.24E+10	2.82E+01	1.15E+09
	Butyric acid	107-92-6	1.46E-12	3.89E-03	3.76E-10	6.84E+11	2.57E+02	2.66E+09	
		Pentanoic acid	109-52-4	5.36E-12	4.79E-03	1.12E-09	1.87E+11	2.09E+02	8.94E+08
		Hexanoic acid	142-62-1	7.67E-12	1.26E-02	6.09E-10	1.30E+11	7.94E+01	1.64E+09
		Octanoic acid	124-07-2	1.20E-11	3.98E-03	3.01E-09	8.34E+10	2.51E+02	3.32E+08
Ashton, Eayrs and Moulton [11]	Crucibles containing odorous solutions was placed on the floor. Dog alerted by sitting when odor was present.	Formic acid	64-18-6	1.30E+03	2.82E+01	4.60E+01	7.71E-04	3.55E-02	2.17E-02
		Acetic acid	64-19-7	1.73E+02	1.45E-01	1.19E+03	5.77E-03	6.90E+00	8.37E-04
		Propanoic acid	79-09-4	1.78E+01	3.55E-02	5.01E+02	5.63E-02	2.82E+01	2.00E-03
	Butyric acid	107-92-6	3.67E+00	3.89E-03	9.44E+02	2.72E-01	2.57E+02	1.06E-03	
		Pentanoic acid	109-52-4	5.24E+01	4.79E-03	1.09E+04	1.91E-02	2.09E+02	9.14E-05
		Hexanoic acid	142-62-1	3.20E+01	1.26E-02	2.54E+03	3.13E-02	7.94E+01	3.94E-04
		Heptanoic acid	111-14-8	1.76E+01	2.75E-02	6.39E+02	5.69E-02	3.64E+01	1.57E-03
		Octanoic acid	124-07-2	8.11E+00	3.98E-03	2.04E+03	1.23E-01	2.51E+02	4.91E-04
Moulton, Ashton, and Eayrs [12]	Crucibles containing odorous solutions was placed on the floor. Dog alerted by sitting when odor was present.	Formic acid	64-18-6	1.96E-02	2.82E+01	6.96E-04	5.09E+01	3.55E-02	1.44E+03
		Acetic acid	64-19-7	5.73E-04	1.45E-01	3.95E-03	1.74E+03	6.90E+00	2.53E+02
		Propanoic acid	79-09-4	1.23E-05	3.55E-02	3.46E-04	8.13E+04	2.82E+01	2.89E+03
	Butyric acid	107-92-6	4.95E-07	3.89E-03	1.27E-04	2.02E+06	2.57E+02	7.85E+03	
		Pentanoic acid	109-52-4	1.55E-05	4.79E-03	3.23E-03	6.47E+04	2.09E+02	3.10E+02
		Hexanoic acid	142-62-1	3.13E-06	1.26E-02	2.48E-04	3.20E+05	7.94E+01	4.03E+03
		Heptanoic acid	111-14-8	5.55E-07	2.75E-02	2.02E-05	1.80E+06	3.64E+01	4.95E+04
		Octanoic acid	124-07-2	1.12E-07	3.98E-03	2.81E-05	8.93E+06	2.51E+02	3.56E+04
		Isobutyric acid	79-31-2	5.56E-07	1.95E-02	2.85E-05	1.80E+06	5.13E+01	3.51E+04
Source reference in [9]	Methods	Compound	CAS [9] (ppm)	Canine ODT [5] (ppm)	Human ODT [5] (ppm)	ODT_C: ODT_H	Canine OAV of 1 ppm	Human OAV of 1 ppm	OAV_C: OAV_H
-------------------------	---------	----------	--------------	---------------------	---------------------	------------------	----------------	----------------	------------------
Moulton and Marshal [13]	Trial was initiated by manipulating a treadle, dogs chose from 3 odor ports. Alert was placing nose in correct odorant for 5 seconds.	α-ionone	127-41-3	4.02E-13	5.75E-05	6.99E-09	2.49E +12	1.74E +04	1.43E +08
Marshall, Blumer and Moulton [14]	Same test apparatus as Moulton and Marshal (1976). 1 sample port, alert was keeping nose in port for 5 sec.	Pentanoic acid	109-52-4	1.51E-07	4.79E-03	3.15E-05	6.62E +06	2.09E +02	3.17E +04
Krestel, Passe, Smith and Jonsson [15]	Conditioned suppression using odor ports.	Amyl acetate	628-63-7	1.93E-07	3.09E-02	6.23E-06	5.19E +06	3.24E +01	1.60E +05

REF = reference; ODT = odor detection threshold; OAV = odor activity value; ODT_C = canine odor detection threshold; ODT_H = human odor detection threshold; OAV_C = odor activity value for canines; OAV_H = odor activity value for humans. All gas phase calculations assumed 1 atm at 25 °C.
Table 2
Comparison of ODT and OAV in canines vs. humans in two recent field studies.

REF	Method	Mixture ratio	Compound	CAS	Conc. tested (ppm)	% of canines alerted	Canine ODT (ppm)	Human ODT (ppm)	ODT\text{C}:ODT\text{H}	Canine OAV of 1 ppm	Human OAV of 1 ppm	OAV\text{C}:OAV\text{H}	
Lorenzo, Wan, Harper, Hsu, Chow, Rose, Furton [16]	Scent solution was spiked onto filter paper, placed in a metal box with holes drilled on top.		Insosafrole	120-58-1	6.76E+02	0	6.27E+02	1.60E-03	1.95E+01	2.09E+02	7.35E-06		
			Phorone	504-20-1	6.27E+02	4	5.13E-02	1.36E+05	1.53E-03				
			Camphor	76-22-2	6.43E+02	0	6.27E+02	9.55E-03	1.60E-03	9.60E+00			
			Piperonal	120-57-0	6.52E+02	17	4.79E-03	2.31E+04	1.04E-03	2.40E+01	4.33E-05		
			Benzaldehyde	94-59-7	6.61E+02	0	5.13E-02	3.60E+00	1.95E-03				
			Acetic acid	120-57-0	1.71E+03	0	1.45E-01	4.17E-04	2.12E-06	1.76E-06			
			1-phenyl-2-propanol	100-86-7	6.35E+02	9	6.35E-02	7.35E-06					
			Acetophenone	98-86-2	8.37E+02	0	3.63E-01	2.31E+00	2.40E+01	4.33E-05			
	1:1	MD-P2P	Insosafrole	4676-39-5	5.49E+01	0	4.79E-03	2.09E+02	2.09E+02				
		Piperonal	120-57-0	6.52E+01	0	4.79E-03	2.09E+02	2.09E+02					
	3:1	MD-P2P	Insosafrole	4676-39-5	6.52E+01	0	4.79E-03	2.09E+02	2.09E+02				
		Piperonal	120-57-0	6.52E+01	0	4.79E-03	2.09E+02	2.09E+02					
	5:1	MD-P2P	Insosafrole	4676-39-5	5.49E+02	0	4.79E-03	2.09E+02	2.09E+02				
		Piperonal	120-57-0	6.52E+01	0	4.79E-03	2.09E+02	2.09E+02					
	10:1	MD-P2P	Insosafrole	4676-39-5	6.52E+01	0	4.79E-03	2.09E+02	2.09E+02				
		Piperonal	120-57-0	6.52E+01	0	4.79E-03	2.09E+02	2.09E+02					
	5:1	MD-P2P	Insosafrole	4676-39-5	1.37E+03	0	4.79E-03	2.09E+02	2.09E+02				
		Piperonal	120-57-0	6.52E+01	0	4.79E-03	2.09E+02	2.09E+02					
		MDMA	NA	5.07E+00	0	4.79E-03	2.09E+02	2.09E+02					
		MD-P2P	NA	5.49E+02	0	4.79E-03	2.09E+02	2.09E+02					
		Piperonal	120-57-0	6.52E+03	83	4.79E-03	2.09E+02	2.09E+02					
		Methamphetamine	537-46-2	3.28E+05	0	4.79E-03	2.09E+02	2.09E+02					
Unknown mixture	Methamphetamine												
Williams and Johnston [17]	Cotton balls were spiked with target odor and placed in a can.	Allyl sulfide	592-88-1	6.01E+05	> 80%	6.01E+05	1.66E-06				4.22E-08		
		Cumene	98-82-8	5.68E+05	> 80%	5.68E+05	2.40E-02	1.76E-06	4.17E+01	1.35E-06	4.22E-08		
		dimethylthiazole	541-58-2	7.39E+05	> 80%	7.39E+05	2.37E+07						
		α-pinene	80-56-8	4.99E+05	> 80%	6.92E-01	7.21E-05	2.00E-06	1.45E+00	1.39E-06			
		benzaldehyde	100-52-7	7.80E+05	> 80%	7.80E+05	3.00E-03	2.60E+08	1.28E-06	3.33E+02	3.85E-09		
Table 2 (continued)

REF	Method	Mixture ratio	Compound	CAS	Conc. tested (ppm)	% of canines alerted	Canine ODT (ppm)	Human ODT (ppm)	ODTc:ODTh	Canine OAV of 1 ppm	Human OAV of 1 ppm	OAVc:OAVH
			Menthol	89-78-1	4.51E+05	> 80%	4.51E+05	4.17E-02	1.08E+07	2.22E-06	2.40E+01	9.24E-08
			Cyclohexanone	108-91-1	7.65E+05	> 80%	7.65E+05	7.08E-01	1.08E+06	1.31E-06	1.41E+00	9.25E-07
			Eucalyptol	470-82-6	4.74E+05	> 80%	4.74E+05	1.62E-02	2.93E+07	2.11E-06	6.17E+01	3.42E-08
			Pentanethiol	110-66-7	6.39E+05	> 80%	6.39E+05	1.20E-04	5.31E+09	1.57E-06	8.32E+03	1.88E-10
			Toluene	108-88-3	7.48E+05	> 80%	7.48E+05	1.55E+00	4.83E+05	1.34E-06	6.45E-01	2.07E-06

REF = reference; MD-P2P = 3,4-methylenedioxyphenyl-2-propanone; Mixture ratio = ratio of MD-P2P to Piperonal; ODT = odor detection threshold; OAV = odor activity value; ODTc = canine odor detection threshold; ODTh = human odor detection threshold; OAVc = odor activity value for canines; OAVH = odor activity value for humans. *Volume of can was not specified. In this table the can dimensions were assumed to be a cylinder of radius 5.08 cm, 4.62 cm height, displaced volume of cotton balls was not accounted for. All gas phase calculations assumed 1 atm at 25 °C.
Table 3
Summary of VOCs emitted from all illicit marijuana samples (sample code A and B in Section 1.5) and Sigma Pseudo™ Narcotic Scent Marijuana formulation (sample code C in Section 1.5) and sampled over 1 h at room temperature. Sigma Pseudo™ Narcotic Scent Marijuana formulation is indicated by underlined fonts.

Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV			
Ethylene oxide	75-21-8	1.07		8.51E +02	A 1	2: 44 45	66	1.51E +06	1.77E +03			
					A 3	2: 43 42	66	2.12E +06	2.49E +03			
					A 4	2: 43 42	65	3.37E +06	3.96E +03			
					A 7	2: 44 43	89	8.62E +03	1.01E +01			
					B 1	2: 44 43	66	3.75E +06	4.40E +03			
					B 4	2: 44 45 129 43	66	1.86E +06	2.18E +03			
					C 1	2: 44 45 46	66	1.35E +06	1.59E +03			
					C 2	2: 43 43	85	2.14E +05	2.51E +02			
					C 3	4: 44 46 43 131	67	1.36E +06	1.60E +03			
+2-nitropropane	79-46-9	1.13		7.24E +00	A 5	2: 41 43	75	6.30E +03	8.69E +02			
					A 6	4: 43 39 56 42	83	4.16E +04	5.74E +03			
2,4-dimethylpentane	108-08-7	1.20		8.71E +01	A 7	2: 57 43	66	8.15E +03	9.36E +01			
Isobutane	75-28-5	1.22		1.00E +01	A 1	13: 43 41 57 72 39 55 56 38	84	2.02E +07	2.02E +06			
					A 2	11: 43 42 41 57 72 40 53 51 38	85	1.47E +07	1.47E +06			
					A 3	5: 57 42 43 41 39	67	2.03E +04	2.03E +03			
					A 4	10: 43 42 41 39 72 55 50 73	84	7.18E +06	7.18E +05			
					A 5	4: 43 39 56 42	88	4.16E +04	4.16E +03			
					A 6	10: 43 42 41 57 39 72 55 56	85	2.94E +06	2.94E +05			
					A 7	71 58	73 37	2.20E +06	2.20E +05			
					B 1	14: 43 42 41 57 39 72 55 55 55	85	7.00E +05	7.00E +04			
					B 2	71 50 70 53 38 37	84	7.00E +05	7.00E +04			
+Acetaldehyde	75-07-0	1.27	Pungent, Ether	Pungent, Ethereal, Aldehyde, Fruity	1.50E-02	1.86E-01	84	2.49E +04	2.49E +03			
					B 4	4: 43 42 41 39	88	6.45E +04	6.45E +03			
					A 4	2: 44 42	91	3.10E +04	1.67E +05			
					A 6	2: 43 44	90	2.69E +04	1.44E +05			
					A 7	2: 43 42	88	8.62E +03	4.63E +04			
					B 2	7: 42 41 72 53 55 56 38	84	6.11E +03	3.28E +04			
					B 3	4: 43 42 41 39	96	2.85E +04	1.53E +05			
					B 4	4: 42 43 57 72	96	8.88E +04	4.77E +05			
					C 2	2: 43 44	95	2.95E +04	1.58E +05			
					C 3	2: 43 41	96	6.95E +04	3.73E +05			
Trichloromonofluoromethane	75-69-4	1.27			B 1	2: 103 101	75	4.34E +03	1.98E +04			
					B 4	2: 101 103	81	1.72E +04	1.72E +03			
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV			
---------------------------	---------	----------	-----------------------	---------------------	-------------	--------	-------------	-----	-----			
2,3-dimethylbutane	79-29-8	1.28			A 6	3: 43 71 42	73	1.06E+04				
					B 2	66	5.01E+03					
					B 3	4: 43 42 41 39	71	2.49E+04				
					A 5	1: 41	70	5.22E+04				
					A 6	3: 43 42 39	81	2.30E+04				
Ethylenimine	151-56-4	1.30			A 7	3: 41 42 59	74	3.81E+04				
					B 1	3: 42 41 55	72	1.04E+05				
					C 2	2: 41 42	73	3.11E+03				
+ Ethyl ether	60-29-7	1.31	Ethereal		A 4	3: 39 53 51	85	3.34E+04				
Ketene	463-51-4	1.31			A 7	1: 67	71	1.73E+04				
					B 1	3: 67 53 65	69	2.08E+04				
					B 3	1: 67	77	4.59E+03				
Isoprene	78-79-5	1.33			B 4	5: 67 41 53 66	95	7.61E+04				
(E)-1,3-Pentadiene	2004-70-8	1.34			C 2	3: 67 39 53	81	1.42E+04				
+ 1,3-Pentadiene	504-60-9	1.34			B 4	94		2.13E+04				
Hexane	110-54-3	1.34	Alkane	2.19E+01	A 1	7: 41 76 57 56 86 43 39	69	1.33E+05 6.09E+03				
					A 2	4: 62 56 42 86	66	2.53E+04 1.16E+03				
					A 3	2: 56 41	88	8.55E+04 3.91E+03				
					A 4	5: 57 42 43 41 39	78	2.03E+04 9.27E+02				
					A 5	2: 41 57	75	1.84E+04 8.43E+02				
					A 6	4: 76 42 56 43	74	1.57E+05 7.18E+03				
					A 7	1: 86	86	5.53E+04 2.53E+03				
					B 1	2: 57 56	79	3.71E+04 1.69E+03				
					B 2	2: 43 57	74	3.37E+04 1.54E+03				
					B 3	67	67	2.96E+04 1.35E+03				
					B 4	94		2.13E+04				
4-methyldecane	2847-72-5	1.39			A 1	12: 43 42 71 41 57 39 70 55 56	66	2.55E+06				
					A 2	13: 43 71 42 41 57 39 56 86	66	2.66E+06				
					A 3	17: 43 42 41 70 86 56 50 40 57	65	4.43E+06				
					A 4	38 63 63 51 69 37 85 67	75	1.66E+04				
					A 5	66		1.35E+06				
Chemical Name	CAS Number	Characteristic	10:	9:	8:	7:	6:	5:	4:	3:	2:	1:
--------------------------------	------------	----------------	-----	----	----	----	----	----	----	----	----	----
2-methylpentane	107-83-5	1.39	52	67								
3,4,5-trimethyl-1-hexene	56728-10-0	1.39	56	40	12	72	70	86	56	40	65	50
+γ-butyrolactone	96-48-0	1.40	39	55	41	86	53	69	38	52	67	
Acrylic acid	79-10-7	1.40	2.95E-01									
2,3,4-trimethylpentane	565-75-3	1.40	72	55	39							
3-methylpentane	96-14-0	1.45	39	55	41	86	53	69	38	52	67	
2-methylaziridine	75-55-8	1.45	39	55	41	86	53	69	38	52	67	

S. Rice, J.A. Koziel / Data in Brief 5 (2015) 653–706
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV			
Isocyanatomethane	624-83-9	1.46	Flavornet [7]			B 4 2: 57 56	80	5.56E+04				
			TGSC [8]			A 3 2: 57 39	80	1.20E+04				
						A 4 2: 57 39	80	5.01E+04				
						A 6 2: 57 39	80	1.03E+05				
						A 7 2: 57 39	80	1.22E+05				
Cyanogen chloride	506-77-4	1.47	LRI and Odor [6]			B 1 2: 57 56	79	7.68E+03				
1,2-dichloro-, (2)-ethene	156-59-2	1.47	Devos et al. [5]			B 1 2: 57 56	79	7.77E+03				
						B 2 2: 56 57	79	1.20E+03				
+Furan	110-00-9	1.47	Ethereal			B 1 2: 57 56	79	1.20E+03				
1,1-dichloro ethene	75-35-4	1.47				B 2 2: 56 57	79	1.20E+03				
+Dimethylsulfide	75-18-3	1.51	Cabbage, Sulfur, Sulfur, Onion, Sweet corn, Vegetable, Cabbage, Tomato, Green, Radish	2.24E-03	A 2 3: 47 39 35	66	5.52E+04	2.47E+07				
Carbon disulfide	75-15-0	1.52				A 4 4: 76 39 86 59	82	6.35E+04	6.65E+05			
+3-pentanone	96-22-0	1.53	Ether			A 4 2: 57 86	74	9.06E+04	2.86E+05			
+Butane	106-97-8	1.57				A 6 2: 57 86	74	9.06E+04	2.86E+05			
Hordenine	539-15-1	1.57				A 3 5: 41 59 44 37 60	84	1.88E+06	9.21E+03			
+Propanal	123-38-6	1.59	Solvent, Earthy, Alcoholic, Wine, Whiskey, Cocoa, Nutty	1.00E-02	A 1 1: 58	66	3.41E+04					
Substance	CAS Registry Number	Melting Point										
--	---------------------	---------------										
1-Propanamine, 3-dibenzo[b,e]thiepin-11(6H)-ylidene-N,N-dimethyl-, S-oxide	1447-71-8	1.61										
+Acetone	67-64-1	1.66										
+Acetic anhydride	108-24-7	1.70										
Isobutyraldehyde	78-84-2	1.76										
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV			
-------------------------	---------	----------	---------------------------------------	---------------------	-------------	----------------	-------------	------	-----			
+Methyl acetate	79-20-9	1.77	Ethereal									
Cyclohexene	110-83-8	2.02										
Methacrolein	78-85-3	2.14	Wild hyacinth foliage									
+Butyraldehyde	123-72-8	2.16	Pungent, Cocoa, Musty, Green, Malty, Bread									
+2-butenal	4170-30-3	2.31	Flower									
methylhydrazine	60-34-4	2.32										
Diazomethane	334-88-3	2.33										
+Isopropyl alcohol	67-63-0	2.33	Alcohol, Musty, Woody									
+Formic acid	64-18-6	2.33	Acetic									
Nitrogen dioxide	10102-44-0	2.34										
+Ethanol	64-17-5	2.34	Sweet, Alcoholic									
Compound	CAS Number	pKa	Sensory Descriptions	pH	µM	2.92E-04	9.77E-04	1.56E-04	4.68E-01	3.39E-00	7.77E-00	1.87E+00
---------------------------	------------	-----	---	----	----	-----------	-----------	-----------	-----------	-----------	-----------	-----------
Methylene chloride	75-09-2	2.42				2.82E+01	2.91E+01	3.01E+01	3.43E+01	3.78E+01	4.68E+01	5.86E+03
Amitrole	61-82-5	2.44				8.85E+04	7.19E+04	2.92E+04	1.30E+07	1.04E+04	1.92E+03	1.96E+04
Allyl alcohol	107-18-6	2.75	Pungent, Mustard			2.69E-01	7.77E+01	1.94E+04	7.19E+04	1.04E+04	1.92E+03	1.96E+04
+ Methylbutanal	590-86-3	2.75	Malt, Ethereal, Aldehydic, Chocolate, Peach, Fatty			1.00E+00	2.24E-03	1.76E+05	6.23E+03	1.06E+04	5.92E+02	5.74E+03
Allyl alcohol	107-18-6	2.75				2.69E-01	1.08E+05	2.92E+04	1.30E+07	1.04E+04	1.92E+03	1.96E+04
Acetonitrile	75-05-8	3.28				9.77E-01	1.20E+05	1.20E+05	9.42E+02	1.20E+03	9.42E+02	9.42E+02
Chloroform	67-66-3	3.78				1.18E+05	1.20E+03	1.20E+03	9.42E+02	1.20E+03	9.42E+02	9.42E+02
Propyl formate	110-74-7	3.91	Sweet, Ethereal, Green, Rum, Fruity, Berry			3.39E+00	1.56E+05	4.59E+04	4.59E+04	4.59E+04	4.59E+04	4.59E+04
Hydrazine	302-01-2	3.92				3.00E+00	2.35E+03	7.85E+02	7.85E+02	7.85E+02	7.85E+02	7.85E+02
3-pentanol	584-02-1	3.92	Fruit, Herbal			4.68E-01	1.56E+05	4.59E+04	4.59E+04	4.59E+04	4.59E+04	4.59E+04
+ 1,1-dimethyl-hydrazine	57-14-7	3.92				7.77E+00	1.87E+05	1.87E+05	1.87E+05	1.87E+05	1.87E+05	1.87E+05
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV			
--------------------------------	-----------	----------	-----------------------	---------------------	-------------	---------------	-------------	-------	-------			
Ethylenediamine	107-15-3	3.92			B 4	9: 59 42 60 41 39 58 40 36 80 6.00E+05	7.94E+04	8.76E+04				
					A 1	79						
					A 2	75						
					A 3	71	2.81E+04					
					A 7	75	1.41E+05					
					B 1	75	1.01E+05					
					B 3	71	4.76E+05					
					B 4	79	5.13E+05					
tert-butanol	75-65-0	3.93	Camphor		A 2	70	1.53E+04					
					B 3	77	7.79E+05					
					B 4	74	2.14E+06					
Methyl formate	107-31-3	3.93	Fruity, Plum	9.33E+01	A 1	1: 33	5.81E+03	6.22E+01				
					A 4	72	3.42E+03	3.67E+01				
					B 4	71	5.62E+05	6.02E+03				
Propylamine	107-10-8	3.94	Ammoniacal	1.10E-02	A 2	76	5.74E+04	5.23E+06				
					B 4	73	2.12E+06	1.94E+08				
Tetrahydrofurfuryl acetate	637-64-9	4.07	Sweet, Fruity, Brown, Rum, Ether, Caramel		A 6	70	2.00E+04					
					B 3	67	1.57E+04					
+ Phenylethyl alcohol	60-12-8	5.06	Floral	1.70E-02	A 2	74	9.14E+04	5.38E+06				
+ Toluene	108-88-3	5.07	Honey, Spice, Rose, Lilac	1.55E+00	A 1	81	1.39E+04	8.98E+03				
					A 2	96	9.14E+04	5.90E+04				
+ Pentanal	110-62-3	5.97	Almond, Malt, Pungent, Grass, Tallow, Fat	6.03E-03	A 3	79	5.82E+04	3.76E+04				
+ Hexanal	66-25-1	5.99	Green	4.00E-03	A 6	70	3.47E+04	5.76E+06				
					A 7	85	4.12E+04	2.98E+06				
Glutaraldehyde	111-30-8	6.02			B 3	73	2.30E+04	1.66E+06				
					B 1	69	1.15E+05					
					B 2	70	5.45E+05					
+ 1-butanol	71-36-3	6.09	Medicine, Fruit	4.90E-01	A 3	79	1.25E+05	2.54E+05				
					A 4	77	1.82E+04	3.72E+04				
					A 6	79	3.76E+04	7.67E+04				
					A 7	83	3.18E+04	6.48E+04				
Compound	CAS Number	Odor	S. Rice, J.A. Koziel / Data in Brief 5 (2015) 653–766									
----------------------------	------------	---------------	---									
Butyl formate	592-84-7	Fruity										
+ Isobutanol	78-83-1	Wine, Solvent										
Propanoic acid, anhydride	123-62-6	Bitter										
4-methyl-3-penten-2-one	141-79-7	Sweet, Chemical	Pungent, Earthy, Vegetable, Acrylic	5.62E-02								
2,2’-Bioxirane	1464-53-5	6.66										
α-angelica lactone	591-12-8	6.66										
α-isoamyl alcohol	123-51-3	7.52	Whiskey, Malt, Burnt Fusel oil, Alcoholic, Whiskey, Fruity, Banana	4.47E-02								
Amyl alcohol	71-41-0	7.52	Balsamic Fusel, Oil, Sweet, Balsam	4.68E-01								
2-isopropenyl-3-methylpyrazine	145984-65-2	7.67	Terpenic, Mint, Spice	Terpenic								
α-phenlandrene	99-83-2	7.89										
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV			
----------	-----------	----------	-----------------------	---------------------	-------------	----------	-------------	------	------			
			Flavornet [7]	TGSC [8]	LRI and Odor [6]	Devos et al. [5]						
α-pinene	80-56-8	7.90	Pine, Herbal, Turpentine	6.92E-01	C 1	90	8.81E+04	3.75E+04				
					C 2	86	8.42E+04	8.80E+06				
					C 3	89	8.41E+04	3.08E+05				
					A 1	93	1.05E+06	1.52E+06				
					A 2	97	6.09E+06	8.80E+06				
					A 3	92	2.14E+05	3.08E+05				
					A 5	93	3.65E+05	5.28E+05				
					A 6	93	1.61E+05	2.33E+05				
					A 7	97	4.88E+05	7.05E+05				
					B 1	98	1.79E+06	2.58E+06				
					B 2	98	1.24E+06	1.79E+06				
					B 3	88	9.49E+04	1.37E+05				
					B 4	83	3.25E+04	4.69E+04				
					C 1	71	5.23E+04	7.56E+04				
					C 2	75	3.75E+04	5.42E+04				
					C 3	70	8.42E+04	1.22E+05				
Betahistine	5638-76-6	7.90			A 1	65	2.02E+07	1.04E+04				
					A 2	69	4.37E+04	1.04E+04				
					A 3	67	1.03E+04	1.04E+04				
					A 4	70	5.56E+05	5.42E+04				
					C 1	73	4.42E+05	5.42E+04				
					C 2	68	5.61E+05	5.42E+04				
					C 3	67	1.29E+06	5.42E+04				
					B 1	67	1.29E+06	5.42E+04				
					B 2	69	5.94E+03	5.42E+04				
Conessine	546-06-5	8.31			B 3	69	5.94E+03	2.02E+07				
2-formyl pyrrole	1003-29-8	9.09	Musty, Beefy, Coffee		B 4	74	5.31E+04	2.02E+07				
1,4-dimethoxybenzene	150-78-7	9.19	Sweet, Green, New mown hay, Fennel		B 5	74	5.31E+04	2.02E+07				
+ α-ionol	25312-34-9	9.20	Ionone, Tropical, Sweet, Floral, Violet, Woody		B 6	73	2.42E+04	2.42E+04				
Menthy acetate	16409-45-3	9.20	Tea cooling, Minty, Fruity, Berry	6.17E+00	C 1	74	1.46E+05	2.37E+04				
					C 2	79	5.85E+04	8.49E+04				
Compound	CAS	MP	Odor Notes	Pubchem Properties								
---------------------------	------	-----	---	--------------------								
4-methyl guaiacol	93-51-6	9.20	Spicy									
2-acetyl-6-methyl pyrazine	22047-26-3	9.26	Roasted coffee, Cocoa, Popcorn									
Tricyclene	508-32-7	9.30										
2-indanone	615-13-4	9.47										
+ Styrene	100-42-5	9.48	Balsamic, Gasoline	1.45E-01								
β-pinene	18172-67-3	9.90	Pine, Resin, Terpenic, Turpentine									
DL-menthol	89-78-1	10.34	Peppermint, Cool, Woody	4.17E-02								
+(-)-menthol	1490-04-6	10.34	Minty	4.17E-02								
+o-dimethyl hydroquinone	91-16-7	10.34	Vanilla									
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV			
------------------------------	--------------	----------	-----------------------	--------------------	-------------	--------	-------------	-----	-----			
(+)-carvomenthene	1195-31-9	10.34										
Menthol	15356-70-4	10.36		4.17E-02								
2,4,6-trimethylphenol	527-60-6	10.48	Phenolic									
+α-terpinene	99-86-5	10.50	Lemon Woody									
(±)-4-Carene	29050-33-7	10.50		4.00E+00								
Furfurylmethylamphetamine	13445-60-8	10.50										
+Phenylacetic acid	103-82-2	10.53	Honey, Flower									

9: 95 94 138 96 123 67 53 81
79

C 1 85 1.01E+05
C 2 85 8.21E+04
C 3 86 1.90E+05
C 4 66 8.02E+04 1.92E+06

Flavornet [7]
TGSC [8]
LRI and Odor [6]
Devos et al. [5]
Chemical Name	CAS Number	Mass	Subcategory	pK_α	A	87	5.03E+04	1.15E+06	1.33E+05
1-hexanol	111-27-3	10.73	Resin, Flower, Breen	4.37E-02	A	6	87	5.03E+04	1.15E+06
Diacetone alcohol	123-42-2	10.78		8.91E-01	A	7	77	5.51E+04	6.18E+04
(1R)-(−)-trans-isolimonene	5113-87-1	10.85			B	3	87	2.54E+05	2.85E+05
2,2,5-trimethylhexane + Limonene	3522-94-9	10.88	Lemon, Orange Citrus	1.00E-02	A	4	80	1.28E+05	7.64E+07
+ Camphene	79-92-5	10.93	Camphor Woody		A	6	87	2.06E+05	4.71E+05
+ Limonene	138-86-3	10.89		4.37E-01	A	1	95	3.33E+07	7.64E+07
+ Limonene	138-86-3	10.89		4.37E-01	A	2	95	2.21E+07	5.05E+07
+ Limonene	138-86-3	10.89		4.37E-01	A	3	95	1.97E+06	4.51E+06
+ Limonene	138-86-3	10.89		4.37E-01	A	4	95	4.35E+05	9.97E+05
+ Camphene	79-92-5	10.93			A	5	95	4.38E+05	7.26E+05
+ Camphene	79-92-5	10.93			A	6	87	1.62E+05	3.71E+05
+ Camphene	79-92-5	10.93			A	7	87	3.86E+04	8.84E+04

S. Rice, J.A. Koziel / Data in Brief 5 (2015) 653–706
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
+p-cymene	99-87-6	11.36	Solvent, Gasoline, Citrus						
Eucalyptol	470-82-6	10.97	Mint, Sweet Eucalyptus, Herbal, Camphor	1.62E-02					
N-Benzyl-2-phenethylamine	3647-71-0	11.32							
Phenyl propane	103-65-1	11.32							
3-ethyl-o-xylene	933-98-2	11.35							
m-cymene	535-77-3	11.36							

Table 3 (continued)
1,2,3,4-tetramethylbenzene 488-23-3 11.36 Gasoline, Sweet 2.63E-02

1-ethyl-2,4-dimethylbenzene 874-41-9 11.36

1-phenyl-1-decanone 6048-82-4 11.40

N,N-dimethylbenzenamine 121-69-7 11.40

Isodurene 527-53-7 11.40

1-(3-methylphenyl)-ethanone 585-74-0 11.41

Dihydromethylcyclopentapyrazine 23747-48-0 11.41 Roast, Nut Earthy, Baked potato, Peanut, Roasted

1-ethyl-3,5-dimethylbenzene 934-74-7 11.46
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Models	Sample code	Net % match	PAC	OAV
+Methylisohexenyl ketone	110-93-0	11.51	Pepper, Mushroom,						
			Citrus						
4-ethyl-1,2-dimethylbenzene	934-80-5	11.57	Citrus						
+5-3-carene	13466-78-9	11.57	Lemon, Resin						
Sabinene	3387-41-5	11.59	Pepper, Turpentine,						
			Wood						
Name	CAS No.	Boiling Point (°C)	Comments	Remarks					
---	---------	--------------------	-------------------------------	------------------------------					
γ-terpinene	99-85-4	11.79	Gasoline, Terpenic Turpentine						
+Terpinolene	586-62-9	11.83	Pine, Plastic Herbal	2.00E-01					
Ethyl benzene	100-41-4	11.84		2.88E+00					
Acetic acid	64-19-7	12.23	Sour Acidic	1.45E-01					
N-methyl-N-nitroso urea	684-93-5	12.26		8.16E+01					
(z)-rose oxide	16409-43-1	12.28	Green, Red rose, Spic, Fresh geranium						
Phenetole	103-73-1	12.52		1.18E+05					
2-hydroxyacetophenone	118-93-4	12.53	Phenolic						
1-methyl-2-propyl benzene	1074-17-5	12.63							
2-phenyl propionaldehyde	93-53-8	12.63	Fresh, Sharp, Green, Hya- cinth, Leaf, Lilac						
Table 3 (continued)

Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
+o-xylene	95-47-6	13.07	Geranium	8.51E-01	A 2	5: 77 134 106 119 52	73	9.60E+04	1.13E+05
+p-xylene	106-42-3	13.08	Geranium	4.90E-01	A 2	81	4.01E+04		
4-methylphenethylamine	3261-62-9	13.08			A 2	69	4.01E+04		
2,3-dimethyl-cyclohexanol	1502-24-5	13.19			B 3	68	1.94E+04		
Fenchone	1195-79-5	13.47		9.33E-02	A 6	6: 81 69 152 53 80 67	95	2.96E+05	3.17E+06
					B 3	4: 41 39 109 77	91	1.41E+05	1.31E+06
					C 1	19: 81 41 53 55 79 39 82 91 80	98	1.36E+06	1.46E+07
						137 67 70 42 105 123 85 38			
						153 77			
						13: 153 152 80 55 77 78 91 42	99	1.43E+06	1.51E+07
						71 66 52 40 123			
						20: 81 69 152 67 80 41 66 68	98	1.50E+06	1.67E+06
						82 39 109 72 91 52 55 137 97			
Linalool oxide	5989-33-3	13.67	Flower, Wood	1.91E+05	A 5	11: 207 266 83 70 79 55 112	65	8.06E+04	9.99E+04
			Earthy, Floral, Sweet, Woody			67 85 53 97	83	3.23E+05	
					A 6	19: 93 55 111 70 92 71 94 43	80	3.07E+05	
					A 7	67 81 83 68 91 69 84 74 57			
						137 82			
						137 82			
						119 77 120 82 135 51 39			
1,3-diethylbenzene	141-93-5	13.81		8.43E+04	A 2	14: 105 93 94 137 81 53 65	68	3.07E+05	
+2-ethylhexanol	104-76-7	13.81	Rose, Green, Citrus	2.45E-01	A 5	87	1.48E+05	6.05E+05	
					A 6	85	9.88E+04	4.03E+05	
					A 7	7: 84 41 54 112 43 56 70	91	3.39E+05	3.18E+06
					B 1	3: 82 56 71	95	5.55E+05	2.26E+06
					B 3	4: 83 71 57 41	92	1.23E+05	5.01E+05
					B 4	66	2.31E+04	9.39E+04	
+Methyl vinyl ketone	78-94-4	13.82	Sweet	8.43E+04	A 6	4: 70 55 39 82	67	1.34E+04	
Tranylcypromine	155-09-9	13.91		1.31E+06	A 2	7: 132 117 102 118 91 115 99	69	1.31E+06	
+Propanoic acid	79-09-4	13.91	Pungent, Rancid, Soy	3.55E-02	A 6	3: 73 74 60	65	1.76E+05	4.97E+06
5-methylindane	874-35-1	13.91		2.94E+05	A 1	5: 132 116 39 131 57	88	2.94E+05	
					A 2	5: 132 116 39 131 57	88	2.94E+05	
					B 1	5: 91 132 115 116 64	78	4.44E+04	
2-ethenyl-1,3-dimethylbenzene	2039-90-9	13.91		1.31E+06	A 2	7: 132 117 102 118 91 115 99	94	1.31E+06	
					B 1	5: 91 132 115 116 64	82	4.44E+04	
Compound	CAS	Boiling Point	Properties	Sensory Profile					
--------------------------------	---------	---------------	----------------------------------	--------------------------------------					
Propylene glycol	57-55-6	13.98							
Indane	496-11-7	13.98							
2-chloroacetophenone	532-27-4	14.09	Apple blossom						
+ Benzaldehyde	100-52-7	14.09	Almond, Fruity, Burnt sugar						
+ Ethyl lactate	97-64-3	14.10	Fruit, Sharp, Tart, Fruity, Buttery, Butterscotch						
Isobutyrophenone	611-70-1	14.10	Green						
Dimethyl octanol	106-21-8	14.11	Waxy, Soapy, Aldehydic, Leathery, Musty, Citrus, Green						
1-Dodecanol	112-53-8	14.11	Fat, Wax, Earthy, Soapy, Waxy, Fatty, Honey, Coconut						
+ 1-Decanol	112-30-1	14.11	Fat, Fatty, Waxy, Floral, Orange, Sweet, Clean, Watery						
1-Nonanol	143-08-8	14.12	Fat, Green, Fresh, Clean, Fatty, Floral, Rose, Orange, Dusty, Wet, Oily						
+ Undecane	1120-21-4	14.13	Alkane						
+ Nonane	111-84-2	14.13	Alkane, Gasoline						
+ Dodecane	112-40-3	14.13	Alkane						
+ Tridecane	629-50-5	14.14	Alkane						
2,2-dimethylbutane	75-83-2	14.15							
Table 3 (continued)

Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
3-isopropyl phenol	618-45-1	14.19			A 1	7: 121 77 55 136 67 120 79	77	3.82E+05	
					A 2	7: 122 105 103 93 121 51 57	82	7.66E+05	
					C 3	20: 121 136 122 103 78 77 105	81	1.39E+06	
						80 41 106 107 39 43 94 120	115 52 135 67 54		
3-(1-methylethyl)-phenol methylcarbamate	64-00-6	14.20			A 1	8: 121 105 136 106 91 77 79	76	7.43E+05	
					A 2	13: 105 121 51 79 136 77 78	74	7.94E+05	
					A 4	53 103 106 39 120 43			
					A 7	13: 121 78 136 68 103 117 80	66	3.18E+05	
						52 51 77 106 107 81			
Acetone cyanohydrin	75-86-5	14.27			B 1	3: 136 91 107	74	4.44E+04	
					B 1	4: 70 83 112 69	69	3.20E+04	
					B 3	1: 70	70	8.97E+03	
1,4-diethylbenzene	105-05-5	14.47			A 1	9: 120 55 115 93 135 52 108	85	5.16E+05	
					A 2	103 133			
o-cymene	527-84-4	14.47			A 2	18: 91 52 119 106 134 93 55	88	4.83E+05	
						105 92 115 103 117 79 65 120	63 133 116		
1,2-diethylbenzene	135-01-3	14.47			A 1	18: 91 52 119 106 134 93 55	88	4.95E+04	
					A 2	105 92 115 103 117 79 65 120	84	8.70E+05	
p-tert-butylphenol	98-54-4	14.48	Leathery		A 7	1: 121 77 55 136 67 120 79	68	1.54E+04	
tert-butyl-benzene	98-06-6	14.48	Leathery		A 1	7: 122 105 103 93 121 51 57	89	6.59E+04	
					A 2	86		3.38E+05	
o-methylacetophenone	577-16-2	14.48	Floral	6.61E-03	A 1	3: 91 120 134	76	6.51E+04	
2-methoxethanol	109-86-4	14.62			A 6	2: 43 55	65	1.39E+05	
+2-Butanol	78-92-2	14.66	Wine	1.70E+00	C 2	13: 45 43 47 44 55 46 42 54	69	2.96E+07	
			Sweet, Apricot			60 58 76 38 86		1.74E+07	
Maltol	118-71-8	14.67	Caramel	6.61E-03	A 4	3: 98 126 71	66	5.65E+03	
			Sweet, Caramel, Cotton candy, Jam, Fruity, Baked						
Linalyl acetate	115-95-7	15.09	Sweet, Fruit	8.91E-03	A 4	1: 121 77 55 136 67 120 79	77	2.39E+04	
			Herbal		A 6	1: 83	74	4.56E+04	
Geranyl butyrate	106-29-6	15.09	Fruit, Rose, Waxy Apple		A 4	1: 83	68	1.45E+04	
Substance	CAS Number	Aromatic Description	Aromatic Value	Flavor Description					
--------------------------------	------------	----------------------------	----------------	-------------------------------------					
Isobornyl thiocyanate	115-31-1	15.11	A 1	20: 92 105 80 51 117 66 137 66 3.33E+07					
			A 2	20: 68 93 67 94 136 59 107 91 2.21E+07					
			A 3	9: 81 137 95 106 122 43 42 67 9.69E+05					
			A 6	20: 55 65 77 93 39 41 136 80 7.74E+05					
			A 7	20: 93 69 80 71 72 122 41 92 3.68E+05					
			B 3	10: 72 139 94 65 70 57 67 92 1.18E+06					
			B 3	10: 56 84 51 56 53 72 137 126 6.45E+05					
Linalyl propionate	144-39-8	15.11	A 1	3: 69 71 43 85 9.62E+04 1.79E+06					
		Fresh, Bergamot, Lily,	A 2	89 1.00E+05 1.87E+06					
		Woody, Rose, Rum	A 5	91 3.31E+05 6.16E+06					
			A 6	96 8.95E+05 1.67E+06					
			A 7	20: 93 69 80 71 72 122 41 92 3.68E+05 6.85E+06					
			B 3	10: 56 84 51 56 53 72 137 126 6.45E+05					
Linalool	78-70-6	15.12	A 1	3: 69 71 43 85 9.62E+04 1.79E+06					
		Flower, Lavender	A 2	89 1.00E+05 1.87E+06					
Ethyl cyclohexane	1678-91-7	15.17	C 1	6: 55 83 84 67 169 139 71 3.95E+05					
1-methyl-1H-imidazole	616-47-7	15.20	C 2	8: 21 168 67 1.48E+05					
cis-2-pinanol	4948-29-2	15.41	C 3	3: 82 69 168 1.48E+05					
		Herbal	A 5	96 1.30E+04					
			A 6	20: 81 99 79 97 121 67 77 43 95 8.31E+05					
			B 3	10: 72 139 94 65 70 57 67 92 1.18E+06 2.19E+07					
trans-carveol	1197-07-5	15.51	C 1	4: 94 93 58 72 79 1.66E+04					
		Caraway, Solvent,	C 2	19: 109 106 43 137 67 119 69 94 1.36E+06					
β-cyclocitral	432-25-7	15.52	C 1	20: 95 134 119 138 77 106 121 87 115 115 121 1.15E+06					
		Mint	C 2	20: 95 134 119 138 77 106 121 87 9.49E+05					
		Tropical, Saffron, Herbal,	C 3	152 137 67 107 41 79 65 91 78 8.54E+05					
		clean, Rose, Sweet, Tobacco,	C 4	152 137 67 107 41 79 65 91 78 8.54E+05					
tetrahydro-2-methyl-2-furanol	7326-46-7	15.57	C 1	7: 71 43 72 78 39 41 82 76 2.27E+05					
Fenchyl alcohol	1632-73-1	15.72	A 1	76 4.88E+04					
		Camphor, Borneol, Pine,	A 2	76 4.88E+04					
		Woody, Dry, Sweet, Lemon	A 4	72 121 53 96 67 2.37E+05					
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC OAV	
----------	----------	----------	--	---------------------	-------------	--------	-------------	---------	
						A 5	72	5.65E+04	
						6	98	1.84E+06	
+1-methyl-1H-pyrrole	96-54-8	15.72	Smoky, Woody, Herbal	1.29E-01	8	5	98	5.65E+04	
(-)-terpinen-4-ol	20126-76-5	16.20	Turpentine, Nutmeg, Menthol, Citrus, Terpiny, Spicy	6.43E-04	3	95	77	6.59E+04	
1-terpinen-4-ol	562-74-3	16.20	Woody, Ceding, mentholic, Citrus, Terpiny, Spicy	3.90E-04	8	77	109	6.59E+04	
Thujone	546-80-5	16.22	Cedar leaf	1.29E-01	2	77	8.49E+03	6.59E+04	
2-Methyl-4-(1-methylethyl)-2-cyclohexenone	41469-46-9	16.33				6	98	1.94E+04	
Camphor	76-22-2	16.33	Camphor	5.13E-02	4	109	95	2.28E+06	
Pulegone	89-82-7	16.34	Peppermint, Camphor, Fresh, Herbal, Buchu	3.39E-03	3	109	95	2.67E+04	
2,4,4-trimethylpentane	540-84-1	16.57				6	77	1.45E+04	
γ-hexalactone	695-06-7	17.20	Coumarin, Sweet	1.20E+06	6	81	8.39E+04	1.45E+04	
Borneol	507-70-0	17.60	Camphor	2.09E-03	6	139	96	1.45E+04	
Isobornyl acetate	125-12-2	17.60	Balsamic			6	3.89E+04	1.85E+07	
+Laevororne	464-45-9	17.60	Pine, Woody, Camphor			6	7.58E+05	1.85E+07	
+α-terpineol	98-55-5	17.73	Oil, Anise, Mint	3.72E-02	1	6	84	6.15E+06	
α-terpinyl acetate	80-26-2	17.73	Wax			8	80	1.66E+06	
						90	80	1.40E+06	

S. Rice, J.A. Koziel / Data in Brief / S (2015) 553-706
Compound	CAS Number	Boiling Point	Odor Notes						
Terpinyl butyrate	2153-28-8	17.74	Sour, Rosemary, Fruity,						
			Balsam						
2-ethyl-3,5-dimethylpyridine	1123-96-2	17.91							
+p-cresyl acetate	140-39-6	18.14	Narcissus, Phenolic, Animal						
m-tert-butylphenol	585-34-2	18.15							
Verbenone	80-57-9	18.16	Camphor, Menthol, Celery						
1-Tetradecanol	112-72-1	18.32	Coconut						
3-methylhexane	589-34-4	18.32							
+1-Tridecane	2437-56-1	18.33							
1-undecanol	112-42-5	18.34	Mandarin, Waxy						
Octyl formate	112-32-3	18.34	Fruity, rose, Orange, Waxy,						
α-copaene	3856-25-5	18.39	Cucumber						
α-cubebeene	17699-14-8	18.50	Herb, Wax						
(+)-sativene	3650-28-0	19.40							
Nitro cyclohexane	1122-60-7	19.46							
β-caryophyllene	87-44-5	19.66	Wood, Spice, Spice						
+Benzyl alcohol	100-51-6	19.74	Floral						
Benzyl alcohol	100-51-6	19.74	Floral						
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
----------	----------	----------	-----------------------	---------------------	-------------	--------	-------------	------	-----
Tyramine	51-67-2	19.74	Meaty			A 7	96	5.83E+06	
						B 1	13: 108 79 78 51 91 109 90 39	3.59E+06	
						B 2	86 62 92 74 37	8.86E+05	
						B 2	11: 108 107 77 80 76 106 49		
α-guaiene	3691-12-1	19.85	Wood, Balsamic			A 5	6: 51 85 38 62 90 75	70	9.20E+06
						B 7	5: 90 62 109 37 61	70	3.71E+06
						B 1	1: 53	70	4.00E+06
						B 2	91 105 53 41	72	6.78E+05
						B 1	13: 108 107 77 80 76 106 49		
						B 2	91 105 53 41	99	8.86E+05
+Dimethylsulfone	67-71-0	20.12	Sulfur, Burnt			A 7	13: 109 71 28 39	91	4.00E+05
						B 4	13: 107 204 135 79 133 119	88	9.51E+04
δ-cadinene	483-76-1	20.20	Thyme, Medicine, Wood			A 7	105 147 81 148 73 65 95	80	1.93E+04
						B 3	2: 94 79		
2,6-pyridinediamine	141-86-6	20.49	Wood			A 5	19: 147 93 121 67 92 105 81	74	1.51E+04
						A 5	1: 109	71	4.03E+03
						A 1	19: 147 93 121 67 92 105 81	97	1.68E+06
						A 2	135 103 120	91	1.76E+05
						A 5	19: 147 93 121 67 92 105 81	98	3.99E+06
						A 6	189 106 82 204 95	96	1.75E+06
						A 7	19: 92 79 94 105 95 91 148 63	97	1.42E+06
						B 3	117	97	1.47E+06

S. Rice, J.A. Koziel / Data in Brief 5 (2015) 653–706
Compound	CAS Number	Retention Time (min)	Type	Type
β-selinene	17066-67-0	21.25	Herb	Herb
Longifolene	475-20-7	21.27	Wood	
Alloaromadendrene	25246-27-9	21.41	Wood	Wood
α-bulnesene	3691-11-0	21.41		
α-gurjunene	489-40-7	21.43	Wood	Balsamic
Aromadendrene	489-39-4	21.48	Wood	Wood

Peak	m/z	intensity	m/z	intensity					
B 4	93	2.10E+05	1.75E+06						
A 1	93	3.35E+05							
A 2	86	6.14E+04							
A 6	14: 161 135 108 119 163 81 94 109 105 78 41 93 82 149	89	3.26E+05						
A 7	15: 161 162 134 94 190 43 91	72	1.56E+05						
81 204 121 123 95 92 131 175									
B 3	92	1.84E+05							
B 4	85	4.15E+04							
A 1	20: 133 69 79 161 105 120 136	89	6.01E+06						
81 77 106 119 162 121 39 109 94 175 92 82 123									
A 2	17: 189 106 92 41 148 190 81	89	2.39E+06						
80 93 78 95 121 77 161 94 91 120									
A 5	17: 147 205 68 133 161 148	91	6.66E+05						
189 105 175 93 107 135 109 123 53 69 134									
A 6	20: 41 133 93 69 107 147 148	90	4.19E+06						
120 66 55 121 80 42 176 119 95 53 43 145 136									
A 7	87	1.16E+05							
B 3	90	3.11E+06							
B 4	105 135 69 43 42 109	89	1.96E+05						
106 119 149 162 161 123 95 92 131 175									
A 6	20: 55 135 96 121 79 93 105	96	1.07E+06						
161 148 106 204 120 91 80 127 94 77 122 205 104									
α-gurjunene	489-40-7	21.43	Wood	Balsamic					
A 1	85	2.68E+05							
A 2	73	1.22E+04							
A 5	88	2.34E+05							
A 6	3: 145 147 109	82	2.85E+05						
A 7	10: 147 131 107 133 109 204 81	81	1.34E+05						
119 79 95 105									
B 3	81	5.86E+04							
B 4	81	3.10E+04							
Aromadendrene	489-39-4	21.48	Wood	Wood					
A 1	65	6.94E+04							
A 2	73	1.48E+05							
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
--------------------------	---------	----------	-----------------------	---------------------	-------------	--------	-------------	-----	-----
2,4,6-trimethylpyridine	108-75-8	21.66				A 5	71	8.73E+04	
+ Phenol	108-95-2	21.68	Phenolic	Phenolic	1.10E-01	A 6	81	5.80E+04	
Dyclocaine	586-60-7	21.69				A 1	91	1.16E+05	
(-)-Aristolene	6831-16-9	21.74				A 7	87	9.66E+04	
+2-ethylphenol	90-00-6	21.91	Phenolic			A 1	72	1.01E+04	
(+)-calarene	1734-55-3	22.08				A 5	70	6.94E+04	
α-cedrene	469-61-4	22.08	Woody, Cedar, Sweet, Fresh			A 2	71	2.89E+04	
Longicyclene	1137-12-8	22.10				A 5	78	6.42E+05	
						A 7	72	1.74E+04	
						A 5	78	1.57E+05	
Compound	CAS Number	Odor							
--------------------------------	------------	------------							
γ-gurjunene	22567-17-5	Musty							
α-longipinene	5989-08-2	22.18							
Cedryl acetate	77-54-3	Wood							
Valencene	4630-07-3	Green, Oil Citrus							
2-hydroxyethyl acrylate	5951-61-1	22.61							
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
--	-------------	----------	-----------------------	---------------------	-------------	--------	-------------	-----	--------------
+ Butylated Hydroxytoluene	128-37-0	22.66	Mild, Phenolic, Camphor		B 4				7.39E+05
Xylazine	7361-61-7	22.67			B 1	84			3.39E+04
2,3,6-trimethylpyridine	1462-84-6	23.95			B 2	90			7.76E+04
Toluene-2,4-diamine	95-80-7	23.97			A 2	66			7.76E+04
Propofol	2078-54-8	23.97	Phenolic		A 2	65			1.78E+04
Butylated Hydroxytoluene and Xylazine		79			A 2	4			7.76E+04
1-(3,6-Dimethyl-2-pyrazinyl)-2-methyl-1-propanone	145984-66-3	23.98			A 2	83			7.76E+04
Methyl isoeugenol	93-16-3	23.98	Clove, Spice, Spice		A 2	121			1.50E+06
Caryophyllene oxide	1139-30-6	24.09	Herb, Sweet, Spice		A 2	119			1.43E+05
p-acetanisole	100-06-1	24.58	Anisic		A 2	117			2.69E+04
3-methyl-5-(1-methylethyl)-Phe- nol methylcarbamate	2631-37-0	24.64			A 2	115			1.43E+05
Thymol	89-83-8	24.78	Herbal	1.55E-02	C 1	135	68	1.31E+04	
+ Carvacrol	499-75-2	24.78	Spicy	1.12E-02	C 1	135	70	1.31E+04	
2,4-di-tert-butylphenol	96-76-4	26.36	Phenolic		A 4	191	68	2.90E+04	
α-bisabolol	72691-24-8	26.43			A 5	207	77	3.95E+04	
Cyclobarbital	52-31-3	35.80			A 7	207	65	9.20E+03	
1,4-Dioxane	123-91-1	38.37			B 3	58	71	2.39E+03	

If two references of ODTs are available, ODT from Devos, et al. [5] is used to calculate OAV. RT = Retention Time. ODT = Odor Detection Threshold. Code, see Section 1.5. Models = significant ions used for identification/semi-quantitation, # before colon is number of significant ions, #’s after colon are m/z. Net % match as calculated using AMDIS and target specialty mass spectral libraries. PAC = Peak Area Counts, and refers to relative abundance as given by the mass spectral detector. OAV = Odor Activity Value, and is calculated as ratio of PAC: OAV. Underlined items highlight the compounds found in Pseudo Scent Marijuana. + Compounds indicate confirmation with reference standards, matching retention time and spectra.
Table 4
Summary of VOCs emitted from all illicit cocaine samples (sample code D in Section 1.5) and Sigma Pseudo™ Narcotic Scent Cocaine formulation (sample code E in Section 1.5) and sampled over 1 h at room temperature. Sigma Pseudo™ Narcotic Scent Cocaine formulation is indicated by underlined fonts.

Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
Ethylene oxide	75-21-8	1.07		8.51E+02	D 4	66	3.83E+06	4.50E+03	
+2-nitropropane	79-46-9	1.11		7.24E+00	D 1	66	2.28E+06	2.68E+03	
2,4-dimethylpentane	108-08-7	1.16		8.71E+01	D 1	70	1.41E+05	1.62E+03	
1,2-dimethyl hydrazine	540-73-8	1.18		1.00E+01	D 1	74	1.91E+04		
Ethyleimidine	151-56-4	1.20			D 2	68	7.08E+04		
Isobutane	75-28-5	1.24			D 3	85	3.13E+06	3.13E+05	
Ethyl Chloride	75-00-3	1.26			D 4	82	2.27E+05	2.27E+04	
+Butane	106-97-8	1.26		2.04E+02	D 5	81	1.53E+05	1.53E+04	
Trichloromonofluoromethane	75-69-4	1.27	Pungent, Ether	Pungent, Ethereal, Aldehydic, Fruity	1.50E-02	1.86E-01	5.39E+03		
+Acetaldehyde	75-07-0	1.28	Ethereal	4.35E+00	D 2	77	5.39E+03		
+Ethyl ether	60-29-7	1.31	Ethereal		D 4	86	1.43E+04		
Isoprene	78-79-5	1.33	Ethereal		D 4	82	2.29E+04		
4-methyldecane	2847-72-5	1.39	Ethereal		D 1	72	7.44E+04		
					D 2	65	5.04E+05		
					D 3	84	8.36E+05		
					D 4	65	2.98E+05		
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
--------------------------	-----------	----------	-----------------------	---------------------	-------------	-----------------------	-------------	------	-------
			Flavornet [7] TGSC [8]		LRI & Odor	Devos et al. [5]			
2-methylpentane	107-83-5	1.39							
2,3-dimethylbutane	79-29-8	1.40							
Hexane	110-54-3	1.44	Alkane	2.19E+01					
Cyclopentane	287-92-3	1.45	Petroleum						
2-methylaziridine	75-55-8	1.45							
3-methylpentane	96-14-0	1.45							
Isocyanatomethane	624-83-9	1.46							
2-hydroxy propanenitrile	78-97-7	1.48							
3,4,5-trimethyl-1-hexene	56728-10-0	1.51							
Compound	CAS Number	Odor Description	Relative Odor Concentration						
---	------------	--------------------	-----------------------------						
Propanal	123-38-6	Earthy, Alcohol, Wine, Whiskey, Cocoa, Nutty Sharp, Vinegar	1.00E-02						
Acetic anhydride	108-24-7	Pungent	5.89E-01						
2,2,4,4-tetramethyl-3-pentanone	815-24-7	Sharp, Vinegar	5.89E-01						
2-methyl-2-propanamine	75-64-9	Pungent	1.00E-02						
2,2,4,4-tetramethyl-3-pentanone	815-24-7	Pungent	5.89E-01						
Acetone	67-64-1	Solvent	1.45E+01						
Methyl acetate	79-20-9	Ethereal	1.45E+01						
Acrolein	107-02-8	Almond, Cherry	1.74E-01						
Propene	115-07-1	Pungent	5.25E+01						
Methacrylic anhydride	760-93-0	Spicy	4.07E-02						
Isobutyraldehyde	78-84-2	Pungent, Malt, Green	3.60E+03						
1-(ethenyloxy)-butane	111-34-2	Sweet, Musty, Alcoholic	2.34E-01						
2,4-Pentanedione	123-54-6	Minty, Acetone	4.45E+05						
Mefruside	7195-27-9	Sweet, Musty	2.34E-01						
Cyclohexane	110-82-7	Minty, Acetone	4.45E+05						
2,3,4-trimethylpentane	565-75-3	Sweet, Musty, Alcoholic	2.34E-01						
(S)-2-propylpiperidine	458-88-8	Sweet, Musty	2.34E-01						
2-ethyl-1-butanol	97-95-0	Sweet, Musty, Alcoholic	2.34E-01						
Nimorazole	108-94-1	Minty, Acetone	7.08E-01						
2,3,4-trimethylpentane	565-75-3	Minty, Acetone	7.08E-01						
(S)-2-propylpiperidine	458-88-8	Sweet, Musty	2.34E-01						
2-ethyl-1-butanol	97-95-0	Sweet, Musty, Alcoholic	2.34E-01						
Nimorazole	108-94-1	Minty, Acetone	7.08E-01						
2,3,4-trimethylpentane	565-75-3	Minty, Acetone	7.08E-01						
(S)-2-propylpiperidine	458-88-8	Sweet, Musty	2.34E-01						
2-ethyl-1-butanol	97-95-0	Sweet, Musty, Alcoholic	2.34E-01						
Nimorazole	108-94-1	Minty, Acetone	7.08E-01						

S. Rice, J.A. Koziel / Data in Brief 5 (2015) 653–706
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
2-(diethylamino)-1-phenyl-1-propanone	90-84-6	2.19			D 3	1: 100	66	8.60E+03	
+ Heptane	142-82-5	2.22	Alkane, Sweet, Ethereal		D 3	12: 43 71 41 100 56 55 70 54 39 42 85 40	98	1.40E+06 1.43E+05	
+ 2-methyl-3-pentanone	565-69-5	2.22	Mint		D 4	3: 100 57 41	67	1.24E+04	
1,2-diethyl hydrazine	1615-80-1	2.31	Mint		D 4	6: 88 70 89 73 87 60	73	5.77E+05	
+ Ethylacetate	141-78-6	2.31	Pineapple	Ethereal, Fruity, Sweet, Weedy, Green	D 1	9: 43 61 70 73 62 71 60 89 55	99	3.08E+06 1.17E+06	
+ 2-methyl-3-pentanone	565-69-5	2.22	Mint		D 3	6: 61 70 73 62 90 60	71	4.00E+06 1.52E+06	
+ Heptane	142-82-5	2.22	Alkane, Sweet, Ethereal		D 3	10: 43 61 42 70 88 45 73 62	99	3.29E+06 1.25E+06	
+ 2-methyl-3-pentanone	565-69-5	2.22	Mint		D 4	7: 70 88 73 42 74 62 59	71	2.31E+06 8.80E+05	
+ Ethylacetate	141-78-6	2.31	Pineapple	Ethereal, Fruity, Camphor	D 5	7: 70 88 73 42 74 62 59	71	2.31E+06 8.80E+05	
Methyl thiocyanate	556-64-9	2.33	Sulfur	Sulfury, Onion	D 5	4: 42 73 46 60	66	3.15E+05 2.03E+06	
+ Ethanol	64-17-5	2.34	Sweet	Alcoholic	D 2	1: 45	87	4.09E+05 1.42E+04	
+ Isopropyl alcohol	67-63-0	2.34	Alcohol, Musty, Woody		D 2	1: 45	81	2.69E+05 2.63E+04	
+ Formic acid	64-18-6	2.34	Acetic		D 4	1: 45	80	5.72E+05 5.59E+04	
Nitrogen dioxide	10102-44-0	2.34	Acetic		D 4	1: 45	79	5.72E+05 5.59E+04	
methylhydrazine	60-34-4	2.35			D 5	1: 46	78	1.95E+05 9.05E+04	
Acetic acid ethenyl ester	108-05-4	2.41			D 5	1: 46	76	6.16E+03 3.31E+04	
+ Methylen chloride	75-09-2	2.41			D 5	1: 46	76	6.16E+03 3.31E+04	
Tolycaine	3686-58-6	2.43	Ether, Fruit	Sweet, Fruity, Ethereal, Wine, Banana, Woody	D 5	4: 86 49 84 43	72	6.97E+04 4.50E+04	
+ 2-Pentanone	107-87-9	2.43	Ether, Fruit	Sweet, Fruity, Ethereal, Wine, Banana, Woody	D 5	4: 86 49 84 43	72	6.97E+04 4.50E+04	
Amitrole	61-82-5	2.49			D 3	3: 84 46 57	79	2.35E+04	
Piperoxan	59-39-2	2.60			D 3	5: 98 85 84 69 82	67	3.15E+04	
Chemical Name	CAS Number	Molecular Weight	Notes						
---------------	------------	------------------	--						
Methyl cyclohexane	108-87-2	106.18	2.61 D 3 5: 83 56 41 69 39 94 1.24E +05						
+n-Propyl acetate	109-60-4	106.17	2.68 D 3 5: 98 55 82 85 75 4.99E +06						
+1-Heptanol	111-70-6	118.19	2.77 D 3 7: 70 88 73 42 74 62 59 2.31E +06						
Ethanedinitrile	460-19-5	74.08	3.00 D 3 5: 83 69 82 55 39 94 1.24E +05						
Benzene	71-43-2	78.11	Aromatic 3.63E +00 D 1 93 1.32E +05						
2,5-dimethyl hexane	592-13-2	90.19	3.17 D 3 6: 70 53 43 39 99 56 9.76E +05						
3-methylheptane	589-81-1	90.19	3.35 D 3 6: 70 53 43 39 99 56 9.76E +05						
Sorbic Acid	110-44-1	124.02	1.29E +05						
+Isothiocyanato methane	556-61-6	126.07	3.76 D 3 7: 70 88 73 42 74 62 59 2.31E +06						
Chloroform	67-66-3	94.02	3.77 D 3 5: 83 69 82 55 39 94 1.24E +05						
Ethylenediamine	107-15-3	60.13	3.93 D 3 5: 83 69 82 55 39 94 1.24E +05						
+1,1-dimethyl-hydrazine	57-14-7	64.10	3.95 D 3 5: 83 69 82 55 39 94 1.24E +05						
3-pentanol	584-02-1	72.13	3.95 Fruit D 3 5: 83 69 82 55 39 94 1.24E +05						
Hydrazine	302-01-2	40.05	3.96 D 3 5: 83 69 82 55 39 94 1.24E +05						
+Octane	111-65-9	86.15	4.00 D 3 5: 83 69 82 55 39 94 1.24E +05						
Tetrahydrofurfuryl acetate	637-64-9	110.20	4.07 D 3 5: 83 69 82 55 39 94 1.24E +05						
Isobutyl acetate	110-19-0	100.19	4.86 D 3 5: 83 69 82 55 39 94 1.24E +05						
+Isobutyric acid	79-31-2	88.19	4.88 D 3 5: 83 69 82 55 39 94 1.24E +05						
+Toluene	108-88-3	92.19	5.05 D 3 5: 83 69 82 55 39 94 1.24E +05						
+Phenylethyl alcohol	60-12-8	106.19	5.05 D 3 5: 83 69 82 55 39 94 1.24E +05						
+1-butanol	71-36-3	74.19	6.15 D 3 5: 83 69 82 55 39 94 1.24E +05						
+Isobutanol	78-83-1	88.19	6.17 D 3 5: 83 69 82 55 39 94 1.24E +05						

S. Rice, J.A. Koziel / Data in Brief 5 (2015) 653–706
Compound	CAS	RT (min)	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV		
Propanoic acid, anhydride	123-62-6	6.49				LRI & Odor [6] Devos et al. [5]					
4-methyl-3-penten-2-one	141-79-7	6.65	Sweet, Chemical		D 3 1: 57						
+Decane	124-18-5	6.66	Alkane		D 3 1: 57						
+Isoamyl alcohol	123-51-3	7.52	Whiskey, Malt, Burnt Balsamic		D 4 3: 55 70 53						
Amyl alcohol	71-41-0	7.54	Fusel oil, Alcoholic, Whiskey, Fruity, Banana		D 1 79 2.43E+04 5.45E+05						
4-p-xylene	106-42-3	7.65	Pine, Turpentine, Turpentine, Terpenic		D 3 2: 91 105						
a-pinene	80-56-8	7.90	Parfum, Turpentine, Mint, Spice Camphor		D 1 79 1.18E+04 1.70E+04						
a-phellandrene	99-83-2	7.91	Pine, Terpentine, Terpentine, Woody		D 1 79 1.18E+04						
+Camphene	79-92-5	10.21	Sweet, Camphor		D 3 5: 120 105 91 155 136						
p-ethyltoluene	622-96-8	10.25	Sweet, Camphor		D 3 4: 105 154 77 91						
2-ethyltoluene	611-14-3	10.61	Sweet, Camphor		D 3 7: 57 70 112 83 69 72 155						
2,2,5-trimethylhexane	3522-94-9	10.67	Resin, Flower, Green		D 5 2: 91 105						
1-hexanol	111-27-3	10.73	Resin, Flower, Green		D 5 2: 91 105						
Diacetone alcohol	123-42-2	10.79			D 3 1: 57						
1,3,5-trimethylbenzene	108-67-8	11.02			D 5 2: 91 105						
+Piperidine	110-89-4	11.20			D 3 2: 91 105						
2,4,5-trimethylbenzenamine	137-17-7	11.30			D 3 1: 57						
Compound	CAS	RT (min)	Published descriptors	Published descriptors	Published descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
------------------------	----------	-----------	-----------------------	-----------------------	-----------------------	---------------------	-------------	--------------	-------------	-----------	-----------
								LRI & Odor			
								Devos et al. [5]			
Indane	496-11-7	14.10									
Isobutyrophenone	611-70-1	14.10									
+ Nonane	111-84-2	14.13	Alkane	Gasoline		1.26E+00	D 3				
2-chloroacetophenone	532-27-4	14.14				2.57E-02	D 1				
+ Undecane	1120-21-4	14.14	Alkane			1.17E+00	D 3				
2,2-dimethylbutane	75-83-2	14.15									
+ Dodecane	112-40-3	14.15	Alkane	Alkane		2.04E+00	D 5				
+ Tridecane	629-50-5	14.17	Alkane	Alkane		2.14E+00	D 1				
Octyl acetate	112-14-1	14.20				3.98E-03	D 1				
N-Nitrosodimethylamine	62-75-9	14.66									
+ Ethyl lactate	97-64-3	14.90	Fruit	Sharp, Tart, Fruity, Buttery, Butterscotch	1.62E+00	D 5	2: 45 55	68	4.23E+05	2.61E+05	
Hydroxyethylhydrazine	109-84-2	14.91	Fruit								
+ Ethyl octanoate	106-32-1	15.23	Fruit, Fat	Fruity, Wine, Waxy, Sweet, Apricot, Banana, Brandy, Pear	5.75E-04	E 1	9: 101 43 73 102 88 61 60 129 87	168	9.77E+04	9.77E+04	
tetrahydro-2-methyl-2- furanol	7326-46-7	15.59									
+ 1-methyl-1H-pyrrole	96-54-8	15.72									
2-ethoxyethanol	110-80-5	15.79									
Compound	CAS No.	RT	Detection Threshold	Code	OAV						
--------------------------------	---------	-------	---------------------	------	-------						
Hexestrol	84-16-2	15.85	D 1	73	8.19E+04						
Methyl benzoate	93-58-3	16.30	Prune, Lettuce, Herb, Sweet	1.07E-01	D 1	11: 105 77 136 76 137 106 39 99 1.81E+06 1.69E+07					
Cumene	98-82-8	16.49	Phenolic	2.40E-02	D 3	5: 105 135 120 77 78 77 2.84E+05 1.18E+07					
+Acetophenone	98-86-2	16.49	Floral	6.50E-02	D 3	5: 105 135 120 77 78 93 2.84E+05 7.81E+05					
3-ethyltoluene	620-14-4	16.50	Fruit, Sweet, Herb, Sweet	4.90E-02	D 3	4: 78 105 120 106 78 1.52E+05					
2,2,4-trimethylpentane	540-84-1	16.53	Coffee bean, Nutty	3.63E-01	D 3	4: 56 57 55 43 66 8.44E+04					
2-ethyl-5-methylpyrazine	13360-64-0	16.81	Fruit, Sweet, Herb, Sweet	5.07E-02	D 3	3: 121 122 81 73 3.39E+04					
γ-hexalactone	695-06-7	17.20	Coffee bean, Nutty	5.65E-02	D 3	4: 56 85 69 51 68 2.89E+05					
2-ethyl-3,5-dimethylpyridine	1123-96-2	17.90	Mild, Green, Sweet, Earthy	1.80E+05	D 3	6: 122 105 78 77 136 102 89 1.71E+05					
+α-α-Dimethylbenzenemethanol	617-94-7	18.05	Sweet, Fruity, Spicy, Anisic, Balsam	8.76E-02	D 3	7: 43 70 41 56 39 42 100 70 4.60E+03					
p-methoxyphenylacetone	122-84-9	18.07	Sweet, Fruity, Spicy, Anisic, Balsam	8.76E-02	D 3	5: 198 140 154 82 100 98 3.83E+06					
3-methylhexane	589-34-4	18.33	Alkane	6.76E-02	D 3	4: 111 83 97 106 74 2.87E+04 4.24E+05					
+Tetradecane	629-59-4	18.34	Alkane	6.76E-02	D 3	5: 83 56 41 69 39 74 2.15E+05					
1-undecanol	112-42-5	18.37	Waxy	6.76E-02	D 3	5: 198 140 154 82 100 98 3.83E+06					
Nitrocyclohexane	1122-60-7	19.50	Alkane	6.76E-02	D 3	5: 182 112 154 82 100 98 3.83E+06					
β-caryophyllene	87-44-5	19.68	Wood, Spice	6.40E-02	D 3	6: 122 105 78 77 136 102 89 1.71E+05					
+Pentadecane	629-62-9	20.28	Alkane	6.76E-02	D 3	8: 41 56 57 86 85 99 112 70 86 1.74E+05					
+Butanoic acid, butyl ester	109-21-7	20.97	Alkane	6.76E-02	D 3	8: 41 56 57 86 85 99 112 70 86 1.74E+05					
Longifolene	475-20-7	21.28	Waxy	6.76E-02	D 3	8: 41 56 57 86 85 99 112 70 86 1.74E+05					
Toluene-2,4-diamine	95-80-7	23.91	Alkane	6.76E-02	D 3	8: 41 56 57 86 85 99 112 70 86 1.74E+05					
2,3,6-trimethylpyridine	1462-84-6	23.96	Alkane	6.76E-02	D 3	8: 41 56 57 86 85 99 112 70 86 1.74E+05					

If two references for ODTs are available, ODT from Devos, et al. [5] is used to calculate OAV. RT = Retention Time. ODT = Odor Detection Threshold. Code, see Section 1.5. Models = significant ions used for identification/semi-quantitation, # before colon is number of significant ions, #’s after colon are m/z. Net % match as calculated using AMDIS and target specialty mass spectral libraries. PAC = Peak Area Counts, and refers to relative abundance as given by the mass spectral detector. OAV = Odor Activity Value, and is calculated as ratio of PAC: OAV. Underlined items highlight the compounds found in Pseudo Scent Cocaine. + Compounds indicate confirmation with reference standards, matching retention time and spectra.
Table 5
Summary of VOCs emitted from all illicit heroin samples (sample code F in Section 1.5) and Sigma Pseudo™ Narcotic Scent Heroin formulation (sample code G in Section 1.5) and sampled over 1 h at room temperature. Sigma Pseudo™ Narcotic Scent Heroin formulation is indicated by underlined fonts.

Compound	CAS	RT (min)	Published Descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
Ethylene oxide	75-21-8	1.06		8.51E+02	F 1	3: 44 45 46	66	3.54E+06 4.16E+03	
+2-nitropropane	79-46-9	1.12		7.24E+00	F 2	3: 43 41 58	74	1.30E+04 1.80E+03	
Methyl chloride	74-87-3	1.15	Wine, Solvent,		F 1	2: 50 52	73	1.00E+04	
+Isobutanol	78-83-1	1.19	Ethereal, Winey		F 1	2: 50 52	70	4.81E+04	
Hexane	110-54-3	1.19	Alkane	2.19E+01	F 1	6: 43 57 41 56 39	68	7.74E+04 3.54E+03	
Isobutane	75-28-5	1.23		1.00E+01	F 1	10: 43 42 57 72 39 55 56 83	8.96E+05 8.96E+04		
Isobutyraldehyde	78-84-2	1.23	Pungent, Malt,	4.07E-02	F 1	10: 43 42 57 72 39 55 56 83	8.96E+05 2.20E+07		
4-methyldecane	2847-72-5	1.39			F 1	3: 43 41 42	67	4.33E+05	
2-methylpentane	107-83-5	1.39		4.25E+01	F 2	3: 42 39 41	66	4.19E+05	
Ethylenimine	151-56-4	1.40			F 1	3: 43 42 41	66	4.33E+05	
2,3-dimethylbutane	79-29-8	1.40			F 1	3: 43 42 41	66	4.33E+05	
3,4,5-trimethyl-1-hexene	56728-10-0	1.40			F 1	3: 43 42 41	66	4.33E+05	
3-methylhexane	589-34-4	1.40			F 2	3: 43 42 41	66	4.33E+05	
+1-butanol	71-36-3	1.42	Medicine, Fruit,	4.90E-01	F 1	3: 43 42 41 57 52 39	66	7.94E-04 1.58E+05	
3-methylpentane	96-14-0	1.45			F 1	3: 43 42 41	66	4.33E+05	
2-methylaziridine	75-55-8	1.49		4.25E+01	F 2	3: 42 39 41	66	4.19E+05	
Isocyanatomethane	624-83-9	1.52	Solvent	5.25E+01	F 2	3: 42 39 41	73	3.41E+04 6.50E+02	
Tolycaine	3686-58-6	1.52	Solvent	2.04E+02	F 1	4: 58 45 42 38	74	1.45E+05 7.10E+02	
+Propene	115-07-1	1.65			F 1	4: 58 45 42 38	79	2.36E+05 1.15E+03	
+Butane	106-97-8	1.66			F 2	4: 58 45 42 38	92	1.45E+05 1.00E+04	

S. Rice, J.A. Kozel / Data in Brief 5 (2015) 653–706
Chemical Name	CAS Number	Mol. Wt.	Odor Descriptions	F 1	F 2				
Hydrazine	302-01-2	43	3.00E+00, 1.97	F 2	5: 43 58 39 37 38 97	3.14E+05 2.18E+04			
Cyclohexane	110-82-7	1.98	2.19E+01 G 1: 39 84 56 42 55 69 85 50 54	F 1	1: 33 78	1.19E+03 3.97E+02			
+ Ethylacetate	141-78-6	2.32	Pineapple Ethereal, Fruity, Sweet, Weedy, Green	F 2	96	2.71E+05 1.24E+04			
Propylene glycol	57-55-6	2.33	2.63E+00	F 2	96	2.41E+05 5.17E+04			
+ Isopropyl alcohol	67-63-0	2.33	Alcohol, Musty, Woody	F 2	65	8.74E+04			
+ Ethanol	64-17-5	3.66	2.88E+01 F 2: 3 45 61 44	F 2	68	6.90E+04 2.39E+03			
+ Acetic anhydride	108-24-7		5.89E-01 F 2: 2 43 42	F 2	76	6.24E+03 1.06E+04			
nitrocyclohexane	1122-60-7	10.29	G 1 1: 43	G 2	69	3.64E+04 6.18E+04			
m-cymene	535-77-3	11.33	G 1 3: 83 55 41	G 1	74	2.39E+04			
1-(3-methylphenyl)-	585-74-0	11.34	G 1 1: 43	G 1	93	4.08E+04			
tert-butyl-benzene	98-06-6	11.34	G 1 1: 43	G 1	86	2.84E+04			
1,2,3,4-tetramethylbenzene	488-23-3	11.35	G 1 1: 43	G 1	88	2.84E+04			
+ p-cymene	99-87-6	11.35	2.63E-02 F 1: 3 120 119 134	F 1	66	2.94E+04 1.12E+06			
Isodurene	527-53-7	11.37	1.45E-01 F 2: 5 43 60 41 59 47	F 2	97	5.74E+07 3.97E+08			
Nitrogen dioxide	10102-44-0	12.29	1.86E-01 G 1: 1: 46	G 1	76	9.21E+02 4.95E+03			
+ Furfural	98-01-1	12.71	7.76E-01 F 2: 3 120 119 134	F 2	93	3.22E+04 4.15E+04			
Fenbendazole	43210-67-9	12.98	3.55E-02 F 1: 3 267 269 268	F 1	66	5.95E+04			
+ Propanoic acid	79-09-4	13.91	5.40E-02 F 2: 105 77 105	G 1	76	5.40E+04 1.30E+06			
Propanoic acid,	123-62-6	13.91	4.79E-03 F 2: 5 57 209 193 82 69	F 2	68	3.17E+03			
anhydride	100-52-7	14.10	3.00E-03 F 2: 105 77	G 1	66	4.74E+03			
Benzaldehyde	352-27-4	14.10	2.57E-02 G 1: 1 267 268	G 1	77	5.40E+04 2.10E+06			
+ 2-chloroacetophenone	611-70-1	14.10	Green	G 1	66	3.06E+04			
Ethyl cyclohexane	1678-91-7	15.20	G 1 1: 83	G 1	70	7.33E+04			
Butyric acid	107-92-6	15.53	3.89E-03 F 1: 3 60 42 37	F 1	95	4.20E+05 1.08E+08			
+ Pentanoic acid	109-52-4	15.53	4.79E-03 F 1: 5 60 45 73 43 39	F 1	89	3.45E+05 7.22E+07			
2,2-dimethylbutane	75-83-2	15.87	1.07E-01 G 1: 2	G 1	97	1.74E+05 1.63E+06			
Methyl benzoate	93-58-3	16.26	1.55E+00 F 2: 80	F 2	80	2.84E+04 1.84E+04			
+ Toluene	108-88-3	19.16							
Compound	CAS	RT (min)	Published Descriptors	Published ODT (ppm)	Sample code	Models	Net % match	PAC	OAV
------------------	--------	----------	-----------------------	--------------------	-------------	--------	-------------	---------	---------
+Dimethylsulfone	67-71-0	20.11	Sulfur, Burnt	TGSC [8]	Devos et al. [5]	F 2	2: 79 62	96	1.9E+05
Methyl formate	107-31-3	22.87	Sulfurous, Burnt	9.33E+01	60	1: 60	73	1.83E+03	1.96E+01
Diethyl Phthalate	84-66-2	27.46	Fruity, Plum	9.71E+03					

If two references for ODTs are available, ODT from Devos, et al. [5] is used to calculate OAV. RT = Retention Time. ODT = Odor Detection Threshold. Code, see Section 1.5. Models = significant ions used for identification/semi-quantitation, # before colon is number of significant ions, #’s after colon are m/z. Net % match as calculated using AMDIS and target specialty mass spectral libraries. PAC = Peak Area Counts, and refers to relative abundance as given by the mass spectral detector. OAV = Odor Activity Value, and is calculated as ratio of PAC: OAV. Underlined items highlight the compounds found in Pseudo Scent Heroin. + Compounds indicate confirmation with reference standards, matching retention time and spectra.
Compound	CAS	Sample code	Rank conc.	Rank OAV	Change in ranking
Limonene	138-86-3	A 1	1	1	–4
Limonene	138-86-3	A 2	2	2	–5
Isobutane	75-28-5	A 3	3	3	–5
Ethylene oxide	75-21-8	A 4	4	4	–16
(±)-sativene	3650-28-0	A 5	5	5	No ODT
Acetic acid	64-19-7	A 6	6	1	–1
Benzylic alcohol	100-51-6	A 7	1	1	No ODT
Tyramine	51-67-2	B 1	1	1	No ODT
β-pinene	18172-67-3	B 2	1	1	No ODT
Acetic acid	64-19-7	B 3	1	1	–1
Butyl formate	592-84-7	B 4	1	1	No ODT
γ-terpinene	99-85-4	C 1	1	1	No ODT
γ-terpinene	99-85-4	C 2	1	1	No ODT
Camphene	79-92-5	C 3	1	1	No ODT
Camphene	79-92-5	A 1	1	2	No ODT
Camphene	79-92-5	A 2	2	2	No ODT
2-methylpentane	107-83-5	A 3	2	2	No ODT
Acetone	67-64-1	A 4	2	1	12
Benzylic alcohol	100-51-6	A 5	2	1	No ODT
Methylisohexenyl ketone	110-93-0	A 6	2	3	–1
Acetone	67-64-1	A 7	2	21	–19
β-pinene	18172-67-3	B 1	1	1	No ODT
Myrcene	123-35-3	B 2	2	1	+1
Methylisohexenyl ketone	110-93-0	B 3	2	3	–1
Acetone	67-64-1	B 4	2	2	14
Ethyl benzene	100-41-4	C 1	2	2	–1
Terpinolene	586-62-9	C 2	2	3	–1
γ-terpinene	99-85-4	C 3	2	2	No ODT
Isobornyl thiocyanacetate	115-31-1	A 1	3	3	No ODT
Isobornyl thiocyanacetate	115-31-1	A 2	3	3	No ODT
3,4,5-trimethyl-1-hexene	56728-10-0	A 3	3	3	No ODT
Limonene	138-86-3	A 4	3	4	–1
Tyramine	51-67-2	A 5	3	3	No ODT
β-caryophyllene	87-44-5	A 6	3	4	–1
Tyramine	51-67-2	A 7	3	3	No ODT
Myrcene	123-35-3	B 1	3	3	+2
Limonene	138-86-3	B 2	3	4	–1
β-caryophyllene	87-44-5	B 3	3	4	–1
3-pentanol	584-02-1	B 4	3	5	–2
m-cymene	535-77-3	C 1	3	3	No ODT
Ethyl benzene	100-41-4	C 2	3	5	–2
Terpinolene	586-62-9	C 3	3	3	0
β-pinene	18172-67-3	A 1	4	4	No ODT
Isobutane	75-28-5	A 2	4	13	–9
4-methyldecane	2847-72-5	A 3	4	4	No ODT
Camphene	79-92-5	A 4	4	4	No ODT
Isobutane	75-28-5	A 5	4	9	No ODT
Longifolene	475-20-7	A 6	4	4	No ODT
Isobutane	75-28-5	A 7	4	22	–18
Ethylene oxide	75-21-8	B 1	4	28	–24
Camphene	79-92-5	B 2	4	2	No ODT
Longifolene	475-20-7	B 3	4	4	No ODT
tert-butanol	75-65-0	B 4	4	4	No ODT
p-cymene	99-87-6	C 1	4	1	+3
m-cymene	535-77-3	C 2	4	4	No ODT
m-cymene	535-77-3	C 3	4	4	No ODT
Isobutane	75-28-5	A 1	5	11	–6
Isobutylaldehyde	78-84-2	A 2	5	3	+2
Compound	CAS	Sample code	Rank conc.	Rank OAV	Change in ranking
-------------------------------	-----------	-------------	------------	----------	-------------------
Ethylene oxide	75-21-8	A 3	5	19	–14
2,2,4-trimethylpentane	540-84-1	A 4	5	No ODT	
γ-gurjunene	22567-17-5	A 5	5	No ODT	
Acetone	**67-64-1**	A 6	5	**22**	–17
Butane	**106-97-8**	A 7	5	**34**	–29
Benzyl alcohol	100-51-6	B 1	5	No ODT	
α-phellandrene	99-83-2	B 2	5	No ODT	
Fenchyl alcohol	1632-73-1	B 3	5	No ODT	
Propylene oxide	107-10-8	B 4	5	1	+4
1,2,3,4-tetramethylbenzene	488-23-3	C 1	5	2	+3
p-cymene	99-87-6	C 2	5	1	+4
p-cymene	99-87-6	C 3	5	1	+4
Isobutyraldehyde	78-84-2	A 1	6	1	+5
β-pinene	18172-67-3	A 2	6	No ODT	
Limonene	138-86-3	A 3	6	4	+2
Methylene chloride	75-09-2	A 4	6	15	–9
α-humulene	6753-98-6	A 5	6	17	–11
Butane	**106-97-8**	A 6	6	**31**	–25
α-phellandrene	99-83-2	A 7	6	No ODT	
Butane	106-97-8	B 1	6	25	–19
α-pinene	80-56-8	B 2	6	5	+1
Butane	106-97-8	B 3	6	35	–29
Ethylene oxide	75-21-8	B 4	6	23	–17
1-ethyl-3,5-dimethylbenzene	934-74-7	C 1	6	No ODT	
1,2,3,4-tetramethylbenzene	488-23-3	C 2	6	2	+4
1,2,3,4-tetramethylbenzene	488-23-3	C 3	6	2	+4
Betahisine	5638-76-6	A 1	7	No ODT	
α-pinene	80-56-8	A 2	7	10	–3
Camphene	79-92-5	A 3	7	No ODT	
Methylisohexenyl ketone	110-93-0	A 4	7	2	+5
Valencene	4630-07-3	A 5	7	No ODT	
Fenchyl alcohol	**1632-73-1**	A 6	7	No ODT	
δ-3-carene	**13466-78-9**	A 7	7	**20**	–13
Acetone	67-64-1	B 1	7	17	–10
Benzyl alcohol	100-51-6	B 2	7	No ODT	
Acetone	67-64-1	B 3	7	31	–24
Diacetone alcohol	123-42-2	B 4	7	10	–3
Isodurene	527-53-7	C 1	7	No ODT	
2-acetyl-6-methyl pyrazine	22047-26-3	C 2	7	No ODT	
2-Butanol	78-92-2	C 3	7	4	+3
α-phellandrene	99-83-2	A 1	8	No ODT	
Terpinolene	586-62-9	A 2	8	8	0
Isobutyraldehyde	78-84-2	A 3	8	2	+6
2-butane	78-93-3	A 4	8	13	–5
3,4,5-trimethyl-1-hexene	56728-10-0	A 5	8	No ODT	
α-humulene	**6753-98-6**	A 6	8	**8**	0
α-humulene	**6753-98-6**	A 7	8	**8**	0
Isobutane	75-28-5	B 1	8	15	–7
Isobutane	75-28-5	B 2	8	12	–4
α-humulene	6753-98-6	B 3	8	9	–1
1-butanol	71-36-3	B 4	8	8	0
Dihydromethylcyclopentapyrazine	23747-48-0	C 1	8	No ODT	
Isopropyl alcohol	67-63-0	C 2	8	15	–7
Ethyl lactate	97-64-3	C 3	8	6	+2
Sabine	3387-41-5	A 1	9	No ODT	
α-terpinene	99-86-5	A 2	9	No ODT	
Myrcene	123-35-3	A 3	9	1	+8
Methyl acetate	79-20-9	A 4	9	No ODT	
4-methyldecane	2847-72-5	A 5	9	No ODT	
Methyl acetate	**79-20-9**	A 6	9	No ODT	
Table 6 (continued)

Compound	CAS	Sample code	Rank conc.	Rank OAV	Change in ranking (Rank Conc. – Rank OAV)
β-caryophyllene	87-44-5	A	7	9	5
Limonene	138-86-3	B	1	9	6
Isobutyraldehyde	78-84-2	B	2	9	3
Alloaromadendrene	25246-27-9	B	3	9	No ODT
β-caryophyllene	87-44-5	B	4	9	2
Ethyl lactate	97-64-3	C	1	9	8
Ethyl lactate	97-64-3	C	2	9	10
δ-3-carene	13466-78-9	C	3	9	12
β-caryophyllene	87-44-5	A	1	10	4
(+)-4-Carene	29050-33-7	A	2	10	16
α-terpinyl acetate	80-26-2	A	3	10	No ODT
Fenchyl alcohol	1632-73-1	A	4	10	No ODT
Benzaldehyde	100-52-7	A	5	10	14
Valencene	4630-07-3	A	6	10	No ODT
2-chloroacetophenone	532-27-4	A	7	10	3
Camphene	79-92-5	B	1	10	No ODT
Tyramine	51-67-2	B	2	10	No ODT
Isobornyl thiocyanatoacetate	115-31-1	B	3	10	No ODT
Longifolene	475-20-7	B	4	10	No ODT
δ-3-carene	13466-78-9	C	1	10	14
Propylene glycol	57-55-6	C	2	10	No ODT
α-terpinene	99-86-5	C	3	10	No ODT

Sample code, see Section 1.5, corresponding to sample identification. ODT = odor detection threshold from Devos et al. [5].

Table 7

Comparing rank of top 10 most concentrated VOCs with the calculated OAV in all cocaine samples. Bolded font signifies 1 g real cocaine (sample code D4/D5). Underlined font signifies 1 g surrogate cocaine (sample code E1).

Compound	CAS	Sample Code	Rank conc.	Rank OAV	Change in ranking (Rank Conc. – Rank OAV)
Isobutanol	78-83-1	D	1	1	37
Isobutyraldehyde	78-84-2	D	2	1	1
Acetic acid	64-19-7	D	3	1	2
Acetic acid	64-19-7	D	4	1	1
Acetic acid	64-19-7	D	5	1	1
Methyl benzoate	93-58-3	E	1	1	1
n-Propyl acetate	109-60-4	D	1	2	8
Isobutane	75-28-5	D	2	2	7
n-Propyl acetate	109-60-4	D	3	2	9
Ethylene oxide	75-21-8	D	4	2	23
n-Propyl acetate	109-60-4	D	5	2	2
Isobutyrophenone	611-70-1	E	1	2	12
Acetone	67-64-1	D	1	3	20
4-methyldecane	2847-72-5	D	2	3	17
Phenylethyl alcohol	60-12-8	D	3	3	1
n-Propyl acetate	109-60-4	D	4	3	4
Ethylacetate	141-78-6	D	5	3	10
Ethylene oxide	75-21-8	E	1	3	8
Butane	106-97-8	D	1	4	30
2-methylpentane	107-83-5	D	2	4	18
Toluene	108-88-3	D	3	4	10
Ethylacetate	141-78-6	D	4	4	8
2-butanone	78-93-3	D	5	4	12
2-chloroacetophenone	532-27-4	E	1	4	3
Tetradecane	629-59-4	D	1	5	38

S. Rice, J.A. Koziel / Data in Brief 5 (2015) 653–706
Compound	CAS	Sample Code	Rank conc.	Rank OAV	Change in ranking (Rank Conc. – Rank OAV)
3,4,5-trimethyl-1-hexene	56728-10-0	D 2	5	19	–14
2-chloroacetophenone	532-27-4	D 3	5	3	+2
Diacetonitrile	123-42-2	D 4	5	7	–2
Diacetone alcohol	123-42-2	D 5	5	8	–3
Dodecane	112-40-3	E 1	6	10	–1
Ethylacetate	141-78-6	D 1	6	9	–3
Isopropyl alcohol	67-63-0	D 2	6	4	+2
Acetone	67-64-1	D 4	6	14	–8
Ethyl octanoate	106-32-1	E 1	7	1	+6
Propanoic acid	79-09-4	D 1	8	1	+6
Ethanol	64-17-5	D 2	7	11	–4
2-ethylhexanol	104-76-7	D 3	7	7	0
1,2-diethylhydrazine	1615-80-1	D 4	7	29	–22
Ethyl lactate	97-64-3	D 5	7	13	–6
Decane	124-18-5	E 1	7	7	0
Methyl benzoate	93-58-3	D 1	8	5	+3
Propylene glycol	57-55-6	D 2	8	20	–12
2-butanone	78-93-3	D 3	8	18	–10
Isopropyl alcohol	67-63-0	D 4	8	16	–8
Hexane	110-54-3	D 5	8	21	–13
1-undecanol	112-42-5	E 1	8	5	+3
2-chloroacetophenone	532-27-4	D 1	9	2	+7
Acetone	67-64-1	D 2	9	10	–1
Ethylacetate	141-78-6	D 3	9	13	–4
Propylene glycol	57-55-6	D 4	9	30	–21
Methyl thioycanate	556-64-9	D 5	9	5	+4
Cyclohexane	110-82-7	E 1	9	11	–2
Isobutyrophenone	611-70-1	D 1	10	39	–29
methylhydrazine	60-34-4	D 2	10	21	–11
Isobutylaldehyde	78-84-2	D 3	10	5	+5
2-Hydroxyethylethydrazine	109-84-2	D 4	10	31	–21
Isopropyl alcohol	67-63-0	D 5	10	20	–10
Acetone	67-64-1	E 1	10	10	0

Code, see Section 1.5, corresponding to sample identification. ODT = odor detection threshold from Devos et al., [5].
Table 8
Comparing rank of top 10 most concentrated VOCs with the calculated OAV in all heroin samples. Bolded font signifies 1 g real heroin (sample code F1/F2). Underlined font signifies 1 g surrogate marijuana (sample code G1).

Compound	CAS	Sample Code	Rank conc.	Rank OAV	Change in ranking
					(Rank Conc. – Rank OAV)
Acetic acid	64-19-7	F 1	1	1	0
Isobutyraldehyde	78-84-2	F 2	1	1	0
Acetic acid	64-19-7	G 1	1	1	0
Ethylene oxide	75-28-5	F 2	2	12	–10
Isobutane	78-84-2	F 1	3	4	–1
4-methyldecane	2847-72-5	F 2	3	9	–6
Cyclohexane	110-82-7	G 1	3	0	0
Isobutane	75-28-5	F 1	4	9	–5
2-methylpentane	107-83-5	F 2	4	0	No ODT
Methyl benzoate	93-58-3	G 1	4	4	0
4-methyldecane	2847-72-5	F 1	5	0	No ODT
3,4,5-trimethyl-1-hexene	56728-10-0	F 2	5	0	No ODT
Ethyl cyclohexane	1678-91-7	G 1	9	0	No ODT
2-methylpentane	107-83-5	F 1	6	3	No ODT
Ethylenimine	151-56-4	F 2	6	0	No ODT
1-butanol	71-36-3	G 1	7	1	–1
Butyric acid	107-92-6	F 1	7	2	+5
2,3-dimethylbutane	79-29-8	F 2	7	0	No ODT
2-chloroacetophenone	532-27-4	G 1	7	3	+4
Pentanoic acid	109-52-4	F 1	8	3	+5
Acetone	67-64-1	F 2	8	0	+2
Benzaldehyde	100-52-7	G 1	8	6	+2
3,4,5-trimethyl-1-hexene	56728-10-0	F 1	9	0	No ODT
3-methylhexane	589-34-4	F 2	9	0	No ODT
p-cymene	99-87-6	G 1	9	2	+7
Acetone	67-64-1	F 1	10	11	–1
Acetic acid	64-19-7	F 2	10	2	+8
1,2,3,4-tetramethylbenzene	488-23-3	G 1	10	2	+5

Code, see Section 1.5, corresponding to sample identification. ODT = odor detection threshold from Devos et al. [5].

Acknowledgments

The authors would like to acknowledge Iowa Division of Criminal Investigation, Drug Identification Section, for providing samples tested in this study.

References

[1] S. Rice, J.A. Koziel, The relationship between chemical concentration and odor activity value explains the inconsistency in making a comprehensive surrogate scent training tool representative of illicit drugs, Forensic Sci. Int. 257 (2015) 257–270 10.1016/j.forsciint.2015.08.027.
[2] S. Rice, Investigating the Aroma of Marijuana, Cocaine, and Heroin for Forensic Applications Using Simultaneous Multidimensional Gas Chromatography – Mass Spectrometry – Olfactometry, Department of Agricultural and Biosystems Engineering, 2015.
[3] CAS (Chemical Abstracts Service), The American Chemical Society, Available from: (www.cas.org) (accessed 18.08.15).
[4] G. Leonards, D. Kendall, N. Barnard, Odor threshold determinations of 53 odorant chemicals, J. Air Pollut. Control. Assoc. 19 (1969) 91–95.
[5] M. Devos, F. Patte, J. Rouault, P. Laffort, L.J. Van Gemert, Standardized Human Olfactory Thresholds, IRL Press at Oxford Press. Print, NY, New York, 1990.
[6] R. Mottram, LRI & Odour Database, Available from: (www.odour.org.uk/index.html) (accessed 08.08.14).
[7] T.E. Acree, H. Arn, Flavornet and human odor space, 2004, Available from: [http://flavornet.org/flavornet.html] (accessed 08.08.14).

[8] TGSC, The Good Scents Company Information System, Available from: [http://www.thegoodscentcompany.com/index.html] (accessed 08.09.14).

[9] D.H. Passe, J.C. Walker, Odor psychophysics in vertebrates, Neurosci. Biobehav. Rev. 9 (1985) 431–467.

[10] W. Neuhaus, Uber die Riechscharfe des Hundes fur Fettsauren, Z. Vergl. Physiol. 53 (1953) 527–552.

[11] E.H. Ashton, J.T. Eayrs, D.G. Moulton, Olfactory acuity in the dog, Nature 179 (1957) 1069–1070.

[12] D.G. Moulton, E.H. Ashton, J.T. Eayrs, Studies in olfactory acuity, 4. Relative detectability of n-aliphatic acids by the dog, Anim. Behav. 8 (1960) 117–128.

[13] D.G. Moulton, D.A. Marshall, The performance of dogs in detecting a-ionone in the vapor phase, J. Comp. Physiol. 110 (1976) 287–306.

[14] D.A. Marshall, L. Blumer, D.G. Moulton, Odor detection curves for n-pentanoic acid in dogs and humans, Chem. Senses 6 (1981) 445–453.

[15] D. Krestel, D. Passe, J.C. Smith, L. Jonsson, Behavioural determination of olfactory thresholds to amyl acetate in dogs, Neurosci. Biobehav. Rev. 8 (1984) 169–174.

[16] N. Lorenzo, T. Wan, R.J. Harper, Y.L. Hsu, M. Chow, S. Rose, K.G. Furton, Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans, Anal. Bioanal. Chem. 376 (2003) 1212–1224.

[17] M. Williams, J.M. Johnston, Training and maintaining the performance of dogs (Canis familiaris) on an increasing number of odor discriminations in a controlled setting, Appl. Anim. Behav. Sci. 78 (2002) 55–65.