New-Onset Atrial Fibrillation is an Independent Predictor of Mortality in Patients With Candidemia

Zengli Xiao  
Peking University People's Hospital

Anqi Du  
Peking University People's Hospital

Youzhong An  (✉ bjicu@163.com )  
Peking University People's Hospital

Research Article

Keywords: New-onset atrial fibrillation, critically ill, candidemia, mortality, risk factors

Posted Date: October 19th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-941836/v1

License: Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Candidemia, or invasive candidiasis infection, is prevalent in critically ill patients and significantly contributes to the mortality and morbidity of such patients. New-onset atrial fibrillation (NOAF) also occurs frequently in critically ill patients. However, the association between NOAF and candidemia is still uncertain. This study aims to determine whether NOAF could increase the mortality rate of critically ill patients who have candidemia.

Methods: We retrospectively identified NOAF in all patients who were admitted into a non-cardiac intensive care unit (ICU) and diagnosed as candidemia from January 2011 to March 2018. These patients were divided into 3 groups (NOAF, Prior AF, No AF). Clinical information and long-term outcome were collected and compared between three groups. Risk factors for these patients’ short-term and long-term mortality were also analyzed.

Results: Ninety-two patients with candidemia were included from 2011 to 2018. Among these patients, 26 (28.3%) developed NOAF during their ICU hospitalization. Patients with NOAF had lower survival rate than those who never developed AF. The multivariate logistic regression analysis indicated that stroke, anemia, Sequential Organ Failure Assessment (SOFA) score and NOAF were independent risk factors for in-hospital mortality and NOAF was also an independent risk factor for 1 year mortality.

Conclusions: There was a high incidence of NOAF in patients with candidemia. In this study, we found NOAF was an independent predictor of in-hospital mortality and 1 year mortality after hospital discharge for patients with candidemia.

Introduction

Atrial fibrillation (AF) is the most common arrhythmia found in critically ill patients [1–4]. Several critical medical or surgical conditions have been proven to be associated with cardiac arrhythmia. For patients in intensive care units, the development of atrial fibrillation can be triggered by fluid shift, neurohormonal disturbances or systemic inflammatory responses, and they are sometimes viewed as a response to physiological stress [5]. NOAF is both a marker of disease severity as well as a likely contributor to poor outcomes [6, 7].

Patients with fungal infections are representative of the critically ill category. Invasive fungal infections are a leading cause of ICU-associated infections and are also significantly predictors of mortality and morbidity in the critically ill [7–10]. Candida species have been reported as the most common cause of fungal diseases, and the incidence rate of candidemia in ICU patients is nearly 10 to 20 times greater than in non-ICU patients [11, 12]. Patients with candidemia often have serious underlying diseases and the crude mortality is extremely high, ranging from 36–63% [13–16]. Moreover, among those patients with septic shock, candidemia is considered the clinical condition with the highest attributable mortality, ranging from 54%-66% [13–16].
Although previous studies have provided sufficient information to ascertain a relationship between candidemia and mortality or NOAF and mortality, no previous study has determined the epidemiology or predicted the mortality of candidemia patients who also have NOAF. Therefore, we retrospectively identified NOAF in all patients admitted to our ICU with candidemia and analyzed the effect of NOAF occurrence on patients’ outcomes.

**Materials And Methods**

**Study population**

We retrospectively identified and analyzed all patients admitted to a non-cardiac ICU with candidemia, as reported by the microbiological department of Peking University People’s Hospital in China from January 2011 to March 2018. Patients were categorized into 3 groups: 1) NOAF; 2) Prior AF; 3) No AF. The medical records of all patients were collected and reviewed. The data included the age, sex, height, weight, BMI, patient source (medical/surgical ward), underlying conditions (diabetes, hypertension, vascular disease, cerebral stroke, pneumonia, chronic renal dysfunction, and solid tumors), the worst laboratory data recorded within 3 days after admission to the ICU (hemoglobin level, temperature, serum total protein level, serum albumin level), the worst SOFA score recorded within 3 days after admission to the ICU and the CHA$_2$DS$_2$-VASc score. We also considered complications (heart failure and stroke), short-term outcome data (death in hospital, length of ICU stay, length of hospital stay, and duration of mechanical ventilation), and finally long-term outcome data (death within 3 years after hospital discharge).

**Definitions**

We defined candidemia as the isolation of Candida species from at least one blood culture in patients with symptoms or signs of a systemic infection. NOAF was categorized if it was first detected by bedside telemetry and then confirmed by 12-lead ECG during hospitalization or pharmacologic therapy was initiated without previous AF. Anemia was defined as a hemoglobin level < 70 g/l. Hypoproteinemia was defined as a total protein level < 60 g/dl or serum albumin level < 25 g/dl.

**Statistical analysis**

The data were analyzed with SPSS software version 21.0. For continuous variables, we calculated the means with SDs. We compared independent groups using the *t* test, and paired groups using paired sample *t* test. One-way analysis of variance was used to compare between multiple groups, and the LSD method was used for post-hoc comparison. For categorical variables, we used percentage and counts. The count data were described by case number (n), and the difference between groups was tested by the Chi-square test. Factors with a *p* < 0.05 in univariate tests were analyzed with a binary logistic regression model to identify the independent risk factors. The difference was statistically significant when *p* < 0.05.

**Results**
Incidence of new-onset atrial fibrillation and baseline characteristics

Ninety-two patients with candidemia were identified over a 7-year period from 2011 to 2018. Among these patients with candidemia, 26 (28.3%) developed NOAF during their hospital stay and 7 (7.6%) had a prior history of AF before hospital admission. The baseline characteristics of these patients are shown in Table 1. Patients in the NOAF and Prior AF groups were older than the patients who did not have AF (mean age 74.04±11.41 years and 81.29±5.94 years vs. 67.12±16.24 years). The NOAF and Prior AF patients had a higher occurrence of complications verses the No AF patients; the complications included heart failure (38.5% and 42.9% vs. 10.2%), and stroke (76.9% and 85.7% vs. 37.3%). The NOAF and Prior AF patients also had a higher CHA\textsubscript{2}DS\textsubscript{2}-VASc score verses the No AF patients (5.14±2.12 and 3.65±1.77 vs. 2.83±1.81).

Distribution of Candida species

Distribution of Candida spp. in these patients is shown in Figure 1. *Candida albicans* was the most prevalent fungal species in patients with or without AF, followed by *Candida parapsilosis, Candida glabrata* and *Candida tropicalis*.

AF status associated with increased mortality

Patients with prior AF and NOAF had a higher mortality rate than patients with no AF (p=0.002) (Figure 2). Over 80% of the patients with NOAF and all the patients with prior AF who were discharged from hospital died within 1 year, which is significantly higher than the mortality rate of survivors with no AF. According to the Kaplan-Meier univariate analysis, the overall average survival time is 22.9 months, the 6-month survival rate is 81.4%, the 1-year survival rate is 60.5%, and the 3-year survival rate is 44.2%. AF indicators have a significant impact on the survival rate of patients (P<0.05). And the survival rate of NOAF group was lower than that of No AF group (Figure 3).

In the univariate analysis, in-hospital mortality was associated with cerebral stroke, heart failure, stroke, anemia, CHA\textsubscript{2}DS\textsubscript{2}-VASc score, SOFA Score, new-onset AF and total mechanical ventilation days as shown in Table 2. In the logistic regression analysis, stroke, anemia, SOFA score and NOAF were independent risk factors for in-hospital mortality (Table 3).

For long-term outcome, the univariate analysis showed that NOAF, hypertension, solid tumors and stroke were associated with 1 year mortality after discharge (Table 4). Furthermore, the logistic regression analysis indicated that NOAF was an independent risk factor for 1 year mortality (Table 5).

Discussion

The identification of prognostic factors that are associated with the outcomes of critically ill patients can be helpful to physicians in making treatment plans and discussing goals of care with patients and their relatives. In-hospital mortality is high in critically ill patients with candidemia, and its incidence increases
when these patients also have NOAF. Although much remains to be understood, heightened awareness and early intervention may help reduce the suffering of these patients.

The incidence of NOAF varies from 1% to 5% in regular inpatients [22, 23], 4.5% to 29.5% in mixed ICU patients [24], 8% to 10% in patients with sepsis, 6% to 22% in patients with severe sepsis [25-27], and 23% to 44% in patients with septic shock [28-30]. In our study, we demonstrated that 28.3% of all patients with candidemia developed NOAF which is much higher than the incidence reported in previous studies on NOAF in critically ill patients (1.8% to 10%) and similar to the incidence for patients with septic shock [31-33]. This increasing incidence may support the hypothesis that a systemic inflammatory response, increased physiological stress and autonomic dysfunction are major triggering factors for the development of AF in these patients[34, 35].

Compared with patients who have never developed AF, the duration of mechanical ventilation for patients with NOAF was significantly prolonged, which translated into more resource utilization and higher costs. Patients with NOAF also had an extremely high in-hospital mortality rate (73.1%) and 1 year mortality rate after discharge from hospital (85.7%). In the Kaplan-Meier univariate analysis and multivariate logistic regression analysis, NOAF was significantly associated with higher in-hospital mortality and 1 year mortality in patients with candidemia, which indicated that NOAF could be a predictor for poor outcomes of these patients.

According to a previous study, patients with NOAF had an increased risk of embolic stroke[36]. In our study, NOAF in patients with candidemia was associated with an increased risk of stroke compared with patients without AF. In the multivariate analysis, stroke was also associated with in-hospital mortality. The possible explanations are that AF could cause embolic and ischaemic stroke which could be attributable to haemodynamic instability and biochemical disturbances and lead to clinical deterioration and death [37-39].

The CHA2DS2-VASc score incorporates congestive heart failure, hypertension, age (65-74 years, ≥75 years [doubled]), diabetes, previous stroke or TIA (doubled), vascular disease, and sex. It has been widely used for the assessment of thromboembolic risk and guiding antithrombotic therapy in patients with AF. Several studies have demonstrated that a higher CHA2DS2-VASc score is an independent predictor for mortality in patients with AF [40-44]. In our study, the CHA2DS2-VASc score was higher in patients with AF than those without AF, and multivariate analysis revealed that it was also a risk factor for in-hospital mortality, suggesting that the CHA2DS2-VASc score may be a prognostic factor associated with poor outcomes in critically ill patients with candidemia.

The SOFA score is used to determine the extent of a patient’s organ dysfunction or failure. Unsurprisingly, the SOFA score was closely related to in-hospital mortality [40-44]. Anemia is a common clinical situation which could occur due to many factors, such as blood loss, nutritional deficiency, renal dysfunction, and inflammation. Similar to previous studies, patients with anemia had an increased rate of in-hospital
mortality in our study. This result reminded us that we should act quickly to treat anemia appropriately according to the cause.

**Strengths and limitations**

To our knowledge, this study is the first to demonstrate that NOAF is associated with in-hospital mortality and 1 year mortality in critically illa patients with candidemia, which suggests that NOAF may be considered as an important predictor of deterioration among these patients.

There are several limitations in our study. Firstly, these data were retrospectively collected, and it is possible that the number of prior-AF cases may be inaccurate as many patients may have asymptomatic AF. Secondly, this was a single center study and the number of cases was relatively small, which limits the strength of our conclusions. Thirdly, the majority of patients with NOAF died within 1 year after discharge from hospital, so there was not enough data to assess long-term outcomes. Therefore, the results of our study might not be fully generalizable. Hence, a multicenter prospective, randomized controlled trial should be conducted to overcome these limitations.

**Conclusions**

Our study identified an important novel association between NOAF and poor outcomes, which includes short-term and long-term mortality in critically ill patients with candidemia. Further studies should involve larger, multicenter, prospective studies in order to obtain more accurate results that can assist clinicians in adjusting treatment plans and communicating with patients and their relatives.

**Abbreviations**

**NOAF**: New-onset atrial fibrillation

**AF**: Atrial fibrillation

**ICU**: Intensive care unit

**BMI**: Body mass index

**COPD**: Chronic obstructive pulmonary disease

**SOFA**: Sequential Organ Failure Assessment score

**Declarations**

**Availability of data and materials**

The datasets used and analyzed in this study are available from the corresponding author upon reasonable request.
Ethics approval and consent to participate

This study was approved by the Medical Ethics Committee of Peking University People's Hospital. Due to nature of retrospective study, this study would not interfere with patients who were enrolled, the study had got consent waiver from the Ethics Committee (No. 20210608). Clinical information was obtained from electrical medical system and the authors guarantee patients’ data confidentiality. All methods of this study were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Availability of data and materials

The data used in this study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that there are no competing interests.

Funding

None.

Authors’ Contributions

YZA designed this study and revised the manuscript for important intellectual content. ZLX and AQD collected and analysed the data and ZLX drafted this manuscript. All authors read and approved the final manuscript.

Acknowledgements

None.

Author information

Affiliations

Intensive Care Unit, Peking University People's Hospital, 100044, Beijing, China

Zengli Xiao, Anqi Du, Youzhong An,

References

1. Kanji S, Williamson DR, Yaghchi BM, Albert M, McIntyre L. Epidemiology and management of atrial fibrillation in medical and noncardiac surgical adult intensive care unit patients. J Crit Care
2. Guenancia C, Binquet C, Laurent G, Vinault S, Bruyere R, Prin S, et al. Incidence and Predictors of New-Onset Atrial Fibrillation in Septic Shock Patients in a Medical ICU: Data from 7-Day Holter ECG Monitoring. *Plos One* 2015,10:e127168.

3. Arrigo M, Bettex D, Rudiger A. Management of atrial fibrillation in critically ill patients. *Crit Care Res Pract* 2014,2014:840615.

4. Labbe V, Bagate F, Cohen A, Voiriot G, Fartoukh M, Mekontso-Dessap A. A survey on the management of new onset atrial fibrillation in critically ill patients with septic shock. *J Crit Care* 2021,61:18–20.

5. Heinz G. Atrial fibrillation in the intensive care unit. *Intensive Care Med* 2006,32:345–348.

6. Bosch NA, Cimini J, Walkey AJ. Atrial Fibrillation in the ICU. *Chest* 2018,154:1424–1434.

7. Shoham S, Marwaha S. Invasive fungal infections in the ICU. *J Intensive Care Med* 2010,25:78–92.

8. Leroy O, Gangneux JP, Montravers P, Mira JP, Gouin F, Sollet JP, et al. Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005-2006). *Crit Care Med* 2009,37:1612–1618.

9. Ostrosky-Zeichner L, Pappas PG. Invasive candidiasis in the intensive care unit. *Crit Care Med* 2006,34:857–863.

10. Meersseman W, Vandecasteele SJ, Wilmer A, Verbeken E, Peetermans WE, Van Wijngaerden E. Invasive aspergillosis in critically ill patients without malignancy. *Am J Respir Crit Care Med* 2004,170:621–625.

11. Epelbaum O, Chasan R. Candidemia in the Intensive Care Unit. *Clin Chest Med* 2017,38:493–509.

12. Playford EG, Nimmo GR, Tilse M, Sorrell TC. Increasing incidence of candidaemia: long-term epidemiological trends, Queensland, Australia, 1999-2008. *J Hosp Infect* 2010,76:46–51.

13. Barchiesi F, Orsetti E, Mazzanti S, Trave F, Salvi A, Nitti C, Manso E. Candidemia in the elderly: What does it change? *Plos One* 2017,12:e176576.

14. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. *Clin Microbiol Rev* 2007,20:133–163.

15. Nucci M, Queiroz-Telles F, Tobon AM, Restrepo A, Colombo AL. Epidemiology of opportunistic fungal infections in Latin America. *Clin Infect Dis* 2010,51:561–570.

16. Bassetti M, Taramasso L, Nicco E, Molinari MP, Mussap M, Viscoli C. Epidemiology, species distribution, antifungal susceptibility and outcome of nosocomial candidemia in a tertiary care hospital in Italy. *Plos One* 2011,6:e24198.

17. Bassetti M, Righi E, Ansaldi F, Merelli M, Trucchi C, De Pascale G, et al.. A multicenter study of septic shock due to candidemia: outcomes and predictors of mortality. *Intensive Care Med* 2014,40:839–845.

18. Kollef M, Micek S, Hampton N, Doherty JA, Kumar A. Septic shock attributed to Candida infection: importance of empiric therapy and source control. *Clin Infect Dis* 2012,54:1739–1746.
19. Bassetti M, Giacobbe DR, Vena A, Trucchi C, Ansaldi F, Antonelli M, et al. Incidence and outcome of invasive candidiasis in intensive care units (ICUs) in Europe: results of the EUCANDICU project. Crit Care 2019,23:219.

20. Guzman JA, Tchokonte R, Sobel JD. Septic shock due to candidemia: outcomes and predictors of shock development. J Clin Med Res 2011,3:65–71.

21. Bassetti M, Vena A, Meroi M, Cardozo C, Cuervo G, Giacobbe DR, et al. Factors associated with the development of septic shock in patients with candidemia: a post hoc analysis from two prospective cohorts. Crit Care 2020,24:117.

22. Walkey AJ, Benjamin EJ, Lubitz SA. New-onset atrial fibrillation during hospitalization. J Am Coll Cardiol 2014,64:2432–2433.

23. Carrera P, Thongprayoon C, Cheungpasitporn W, Iyer VN, Moua T. Epidemiology and outcome of new-onset atrial fibrillation in the medical intensive care unit. J Crit Care 2016,36:102–106.

24. Yoshida T, Fujii T, Uchino S, Takinami M. Epidemiology, prevention, and treatment of new-onset atrial fibrillation in critically ill: a systematic review. J Intensive Care 2015,3:19.

25. Annane D, Sebille V, Duboc D, Le Heuzey JY, Sadoul N, Bouvier E, Bellissant E. Incidence and prognosis of sustained arrhythmias in critically ill patients. Am J Respir Crit Care Med 2008,178:20–25.

26. Goodman S, Shirov T, Weissman C. Supraventricular arrhythmias in intensive care unit patients: short and long-term consequences. Anesth Analg 2007,104:880–886.

27. Arora S, Lang I, Nayyar V, Stachowski E, Ross DL. Atrial fibrillation in a tertiary care multidisciplinary intensive care unit—incidence and risk factors. Anaesth Intensive Care 2007,35:707–713.

28. Kuipers S, Klein KP, Cremer OL. Incidence, risk factors and outcomes of new-onset atrial fibrillation in patients with sepsis: a systematic review. Crit Care 2014,18:688.

29. Guenancia C, Binquet C, Laurent G, Vinault S, Bruyere R, Prin S, et al. Incidence and Predictors of New-Onset Atrial Fibrillation in Septic Shock Patients in a Medical ICU: Data from 7-Day Holter ECG Monitoring. Plos One 2015,10:e127168.

30. Klein KP, Frencken JF, Kuipers S, Ong DS, Peelen LM, van Vught LA, et al. Incidence, Predictors, and Outcomes of New-Onset Atrial Fibrillation in Critically Ill Patients with Sepsis. A Cohort Study. Am J Respir Crit Care Med 2017,195:205–211.

31. Seguin P, Signouret T, Laviolle B, Branger B, Malledant Y. Incidence and risk factors of atrial fibrillation in a surgical intensive care unit. Crit Care Med 2004,32:722–726.

32. Meierhenrich R, Steinhilber E, Eggermann C, Weiss M, Voglic S, Bogelein D, et al. Incidence and prognostic impact of new-onset atrial fibrillation in patients with septic shock: a prospective observational study. Crit Care 2010,14:R108.

33. Moss TJ, Calland JF, Enfield KB, Gomez-Manjarres DC, Ruminski C, DiMarco JP, et al. New-Onset Atrial Fibrillation in the Critically Ill. Crit Care Med 2017,45:790–797.
34. Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, Rautaharju P, Kronmal RA, et al. Inflammation as a risk factor for atrial fibrillation. *Circulation* 2003,108:3006–3010.

35. Klein KP, Frencken JF, Kuipers S, Ong DS, Peelen LM, van Vught LA, et al. Incidence, Predictors, and Outcomes of New-Onset Atrial Fibrillation in Critically Ill Patients with Sepsis. A Cohort Study. *Am J Respir Crit Care Med* 2017,195:205–211.

36. Walkey AJ, Wiener RS, Ghobrial JM, Curtis LH, Benjamin EJ. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. *JAMA* 2011,306:2248–2254.

37. Massera D, Wang D, Vorchheimer DA, Negassa A, Garcia MJ. Increased risk of stroke and mortality following new-onset atrial fibrillation during hospitalization. *Europace* 2017,19:929–936.

38. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. *Stroke* 1991,22:983–988.

39. Gialdini G, Nearing K, Bhave PD, Bonuccelli U, Iadecola C, Healey JS, Kamel H. Perioperative atrial fibrillation and the long-term risk of ischemic stroke. *JAMA* 2014,312:616–622.

40. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, et al. 2011 ACCF/AHA/HS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. *Circulation* 2011,123:e269-e367.

41. Ntaios G, Lip GY, Makaritsis K, Papavasileiou V, Vemmou A, Koroboki E, et al. CHADS(2), CHA(2)S(2)DS(2)-VASc, and long-term stroke outcome in patients without atrial fibrillation. *Neurology* 2013,80:1009–1017.

42. Cetin M, Cakici M, Zencir C, Tasolar H, Baysal E, Balli M, Akturk E. Prediction of coronary artery disease severity using CHADS2 and CHA2DS2-VASc scores and a newly defined CHA2DS2-VASc-HS score. *Am J Cardiol* 2014,113:950–956.

43. Chua SK, Lo HM, Chiu CZ, Shyu KG. Use of CHADS(2) and CHA(2)DS(2)-VASc scores to predict subsequent myocardial infarction, stroke, and death in patients with acute coronary syndrome: data from Taiwan acute coronary syndrome full spectrum registry. *Plos One* 2014,9:e111167.

44. Rozenbaum Z, Elis A, Shuvy M, Vorobeichik D, Shlomo N, Shlezinger M, et al. CHA2DS2-VASc score and clinical outcomes of patients with acute coronary syndrome. *Eur J Intern Med* 2016,36:57–61.

45. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. *Intensive Care Med* 1996,22:707–710.

46. Ferreira FL, Bota DP, Bross A, Melot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. *JAMA* 2001,286:1754–1758.

Tables
Table 1: Baseline characteristics of patients with candidemia by AF status

| Variable                          | No AF       | New-onset AF | Prior AF    | F/X²     | P       |
|-----------------------------------|-------------|--------------|-------------|----------|---------|
| Age                               | 67.12±16.24 | 74.04±11.41  | 81.29±5.94  | 4.277    | 0.017   |
| Gender                            |             |              |             | 0.726    | 0.695   |
| Male                              | 39(66.1)    | 15(57.7)     | 5(71.4)     |          |         |
| Female                            | 20(33.9)    | 11(42.3)     | 2(28.6)     |          |         |
| Height (cm)                       | 166.44±7.46 | 164.35±8.42  | 168.86±8.23 | 1.149    | 0.322   |
| Weight (kg)                       | 64.05±12.32 | 59.88±9.44   | 64.71±8.40  | 1.312    | 0.274   |
| BMI                               | 23.04±3.73  | 22.27±3.94   | 22.66±1.95  | 0.390    | 0.679   |
| Hospital adission                 |             |              |             | 2.605    | 0.272   |
| Medical ward                      | 16(27.1)    | 9(34.6)      | 4(57.1)     |          |         |
| Surgical ward                     | 43(72.9)    | 17(65.4)     | 3(42.9)     |          |         |
| Comorbid conditions               |             |              |             |          |         |
| Hypertension                      | 27(45.8)    | 12(46.2)     | 5(71.4)     | 1.733    | 0.421   |
| Diabetes                          | 19(32.2)    | 7(26.9)      | 4(57.1)     | 2.172    | 0.338   |
| Vascular Disease                  | 15(25.4)    | 6(23.1)      | 3(42.9)     | 1.059    | 0.589   |
| Cerebral Stroke                   | 16(27.1)    | 8(30.8)      | 4(57.1)     | 2.448    | 0.294   |
| Pneumonia                         | 21(35.6)    | 14(53.8)     | 6(85.7)     | 7.996    | 0.018   |
| Hematological disease             |             |              |             |          |         |
| Chronic renal dysfunction         | 14(23.7)    | 3(11.5)      | 3(42.9)     | 3.526    | 0.171   |
| Solid tumor                       | 24(40.7)    | 10(38.5)     | 2(28.6)     | 0.406    | 0.816   |
| Heart Failure                      | 6(10.2)     | 10(38.5)     | 3(42.9)     | 10.709   | 0.005   |
| Stroke                            | 22(37.3)    | 20(76.9)     | 6(85.7)     | 15.597   | 0.000   |
| Laboratory data                   |             |              |             |          |         |
| Anemia                            | 21(35.6)    | 11(42.3)     | 3(42.9)     | 0.417    | 0.812   |
| Temperature≤38℃                   | 48(81.4)    | 23(88.5)     | 7(100.0)    | 3.112    | 0.211   |
| Hypoproteinemia                   | 53(89.8)    | 26(100.0)    | 7(100.0)    | 2.683    | 0.272   |
| CHA²DS²-VA score                  | 2.83±1.81   | 3.65±1.77    | 5.14±2.12   | 5.987    | 0.004   |
| SOFA Score                        | 8.85±4.83   | 9.31±4.21    | 11.00±3.06  | 0.720    | 0.489   |
| Short-term Outcome(days)          |             |              |             |          |         |
| Hospital length of stay           | 50.73±40.93 | 64.38±31.38  | 55.00±35.49 | 1.158    | 0.319   |
| Total ICU length of stay          | 32.80±35.09 | 52.65±37.25  | 45.57±35.94 | 2.895    | 0.061   |
| Mechanical ventilation            | 13.71±26.22 | 33.69±34.46  | 15.43±12.87 | 4.623    | 0.012   |
| Hospital Death                    | 23(39.0)    | 19(73.1)     | 6(85.7)     | 12.431   | 0.002   |
| Long-term Outcome                 |             |              |             |          |         |
| 1 year                            | 11(31.4)    | 6(85.7)      | 1(100.0)    | 8.088    | 0.006   |
| 2 year                            | 3(12.0)     | 0(0.0)       | 0           | 0.250    | 1.000   |
| 3 year                            | 4(19.0)     | 0(0.0)       | 0           | 0.412    | 1.000   |

Abbreviations: CI: confidence interval; AF: Atrial fibrillation; SOFA score: Sequential Organ Failure Assessment score; ICU: Intensive care unit.

Table 2: Baseline characteristics for in-hospital mortality of patients with candidemia
| Variable                        | Hospital Death                  | t/χ² | P   |
|--------------------------------|---------------------------------|------|-----|
|                                | No(n=44)                        |      |     |
|                                | Yes(n=48)                       |      |     |
| Age                            | 68.18±16.0871.96±13.93          | -1.207 | 0.231 |
| Age                            | 71.96±13.93                     |      |     |
| Gender                         | 0.116                           |      |     |
|                                  | 0.733                           |      |     |
| Male                           | 29(65.9)                        |      |     |
| Female                         | 15(34.1)                        |      |     |
| Height(cm)                     | 166.59±8.30165.52±7.38          | 0.655 | 0.514 |
| Weight(kg)                     | 64.66±13.23                    | 1.386 | 0.170 |
| BMI                            | 23.23±4.18                      | 1.088 | 0.280 |
| Hospital admission             | 0.153                           |      |     |
| Medical ward                   | 13(29.5)                        |      |     |
| Surgical ward                  | 31(70.5)                        |      |     |
| Comorbid conditions            |                                 |      |     |
| Hypertension                   | 17(38.6)                        | 2.854 | 0.091 |
| Diabetes                       | 13(29.5)                        | 0.360 | 0.548 |
| Vascular Disease               | 8(18.2)                         | 2.733 | 0.098 |
| Cerebral Stroke                | 8(18.2)                         | 5.980 | 0.014 |
| Pneumonia                      | 17(38.6)                        | 1.200 | 0.273 |
| Hematological disease          |                                 |      |     |
| Chronic renal dysfunction      | 7(15.9)                         | 1.685 | 0.194 |
| Solid tumor                    | 16(36.4)                        | 0.271 | 0.603 |
| Heart Failure                  | 5(11.4)                         | 4.440 | 0.035 |
| Stroke                         | 13(29.5)                        | 17.306 | 0.000 |
| Laboratory data                |                                 |      |     |
| Anemia                         | 12(27.3)                        | 4.151 | 0.042 |
| Temperature ≥38℃              | 35(79.5)                        | 1.793 | 0.181 |
| Hypoproteinemia                | 41(93.2)                        | 0.012 | 0.912 |
| CHA₂DS₂-VASc score            | 2.68±1.79                      | 3.75±1.91 | -2.764 | 0.007 |
| SOFA score                     | 6.59±3.76                      | 11.48±3.93 | -6.082 | 0.000 |
| New-onset AF                   | 7(15.9)                         | 6.346 | 0.012 |
| Hospital length of stay        | 50.52±38.7358.94±37.65          | 1.056 | 0.294 |
| Total ICU length of stay       | 31.50±29.0046.60±41.22         | 2.046 | 0.044 |
| Total mechanical ventilation days | 11.70±21.8726.63±33.33         | 2.558 | 0.012 |

**Abbreviations:** CI: confidence interval; AF: Atrial fibrillation; SOFA score: Sequential Organ Failure Assessment score; ICU: Intensive care unit.

Table 3 Multivariate logistic regression model for in-hospital mortality

|                            | B     | S.E. | Wals | P    | OR   | OR95% C.I. |
|---------------------------|-------|------|------|------|------|------------|
| Cerebral Stroke           | 1.854 | 1.142 | 2.638 | 0.104 | 6.387 | 0.682   | 59.854 |
| Heart Failure             | -0.386 | 0.990 | 0.152 | 0.696 | 0.680 | 0.098   | 4.727 |
| Stroke                    | 1.789 | 0.760 | 5.545 | **0.019** | 5.981 | 1.350   | 26.503 |
| Anemia                    | 1.501 | 0.738 | 4.139 | **0.042** | 4.487 | 1.056   | 19.054 |
| CHA₂DS₂-VASc score        | 0.111 | 0.261 | 0.183 | 0.669 | 1.118 | 0.671   | 1.864 |
| SOFA score                | 0.376 | 0.100 | 14.129 | **0.000** | 1.456 | 1.197   | 1.772 |
| New-onset AF              | 1.630 | 0.792 | 4.231 | **0.040** | 5.105 | 1.080   | 24.130 |
| Hospital length of stay   | 0.020 | 0.012 | 2.848 | 0.091 | 1.021 | 0.997   | 1.045 |
| Total mechanical ventilation days | -0.001 | 0.016 | 0.005 | 0.946 | 0.999 | 0.967   | 1.031 |

**Abbreviations:** CI: confidence interval; AF: Atrial fibrillation; SOFA score: Sequential Organ Failure Assessment score; ICU: Intensive care unit.
### Table 4 Baseline characteristics for 1 year mortality of patients with candidemia

| Variable                           | Death within 1 year after discharge | t/χ² | P     |
|------------------------------------|-------------------------------------|------|-------|
|                                    | No (n=25)                           | 71.28±14.22 | -0.968 0.339 |
| Gender                             |                                     |      |       |
| Male                               | 14 (56.0)                           |      |       |
| Female                             | 11 (44.0)                           |      |       |
| Height (cm)                        | 165.48±8.91                         |      |       |
| Weight (kg)                        | 65.44±12.37                         |      |       |
| BMI                                | 23.82±3.95                          |      |       |
| Hospital admission                 |                                     |      |       |
| Medical ward                       | 8 (32.0)                            |      |       |
| Surgical ward                      | 17 (68.0)                           |      |       |
| Hypertension                       | 13 (52.0)                           |      |       |
| Diabetes                           | 7 (28.0)                            |      |       |
| COPD                               |                                     |      |       |
| Vascular disease                   | 3 (12.0)                            |      |       |
| Cerebral Stroke                    | 5 (20.0)                            |      |       |
| Pneumonia                          | 8 (32.0)                            |      |       |
| Hematological disease              |                                     |      |       |
| Chronic renal dysfunction          | 4 (16.0)                            |      |       |
| CVVH                               |                                     |      |       |
| Solid tumor                        | 7 (28.0)                            |      |       |
| Heart Failure                      | 1 (4.0)                             |      |       |
| Stroke                             | 4 (16.0)                            |      |       |
| Laboratory data                    |                                     |      |       |
| Anemia                             | 7 (28.0)                            |      |       |
| Temperature ≥ 38°C                 | 20 (80.0)                           |      |       |
| Hypoproteinemia                    | 23 (92.0)                           |      |       |
| CHA₂DS₂-VASc score                | 2.68±1.93                           |      |       |
| SOFA score                         | 5.84±3.58                           |      |       |
| New-onset AF                       | 1 (4.0)                             |      |       |
| Hospital length of stay            | 59.16±43.72                         |      |       |
| Total ICU length of stay           | 37.36±32.88                         |      |       |
| Total mechanical ventilation days  | 13.08±25.28                         |      |       |

**Abbreviations:** CI: confidence interval; AF: Atrial fibrillation; SOFA score: Sequential Organ Failure Assessment score; ICU: Intensive care unit.

### Table 5 Multivariate logistic regression model for 1 year mortality after discharge

| B       | S.E. | Wals | P     | OR    | 95% C.I. |
|---------|------|------|-------|-------|----------|
| New-onset AF | 2.528 | 1.276 | 3.926 | 0.048 | 12.526 1.028 152.682 |
| Hypertension | -0.944 | 0.820 | 1.326 | 0.249 | 0.389 0.078 1.940 |
| Solid tumor | 0.848 | 0.790 | 1.520 | 0.283 | 2.336 0.496 10.996 |
| Stroke | 0.769 | 0.856 | 0.807 | 0.369 | 2.157 0.403 11.542 |

**Abbreviations:** CI: confidence interval; AF: Atrial fibrillation.

### Figures
Figure 1

Distribution of candida spp. of these patients by AF status
Figure 2

AF is associated with increased mortality in patients with candidemia

\[ \chi^2 = 9.846 \]

\[ P = 0.002 \]

Kaplan-Meier univariate analysis

Figure 3