EVALUATION AND OPTIMIZATION OF ANTIOXIDANT POTENTIALITY OF XYLARIA FEEJEENSI S HMJAU22039

DURGA REBBAPRAGADA*, RAJAGOPAL KALYANARAMAN
Department of Biotechnology, School of Life Sciences, Vels University, Chennai - 600 117, Tamil Nadu, India.
Email: pallavi.durga@yahoo.co.in
Received: 27 June 2016, Revised and Accepted: 04 July 2016

ABSTRACT

Objective: Antioxidants neutralize free radicals generated in the human body and prevent them from causing damage. The present study is aimed to evaluate and optimize the antioxidant activity of Xylaria feejeensis HMJAU22039 an endophyte isolated from Tectona grandis.

Methods: The antioxidant potential was measured by 1-1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging assay and nitric oxide (NO) scavenging assay. Total phenolic content (TPC) of the samples was measured by Folin–Ciocalteu reagent based assay, and the values were obtained from the regression equation: y = 0.006141x + 0.157733.

Results: Potato dextrose yeast extract broth medium was selected as the basal medium as it reported a high antioxidant activity. The basal medium was optimized with 2% dextrose, 0.2% yeast extract, and 200 g/L potato infusion. Dextrose and yeast extract were selected as carbon and nitrogen sources, respectively, as they reported high antioxidant activity. The antioxidant activity and phenolic content are highest at static condition (18.14 mg/g). Incubation temperature of 30°C and pH of the initial medium at 6 were found to be optimum conditions for high antioxidant activity. Incubation period of 20 days reported the highest antioxidant activity and phenolic content. Methanol extract recorded high antioxidant activity with a DPPH (73.86%) followed by ethyl acetate and chloroform fractions.

Conclusion: The study highlights the importance of different physicochemical parameters in the production of secondary metabolites having antioxidant properties. The results reveal a significant positive correlation between DPPH radical scavenging assay, NO scavenging assay, and TPC.

Keywords: 1-1-diphenyl-2-picryl-hydradzil, Total phenolic content, Endophytic fungus, Tectona grandis.

INTRODUCTION

Natural products are naturally derived bioactive metabolites and byproducts from microorganisms, plants, or animals. These products have been exploited for human use for many years and plants have been the main source of the compounds used for medicine. Besides plants, microorganisms also constitute a major source of natural products with preferable bioactive properties. Researchers are in quest of new bioactive metabolites from new sources. Endophytic fungi appear to be one such interesting source of research. As a consequence of their contribution to the host plant, endophytes may produce a surplus of substances that may have potential use in modern medicine, agriculture, and industry. Bioactive compounds produced by endophytes have been promising prospective utility in safety and human health concerns. Endophytes provide a wide range of bioactive secondary metabolites with a unique structure, including alkaloids, benzopyranones, flavonoids, phenolic acids, quinones, terpenoids, steroids, tetralones, xanthones, and others [1]. These bioactive secondary metabolites have a wide range of application as agrochemicals, antibiotics, immunosuppressants, antiparasitics, antioxidants, and anticancer agents [2-4].

Antioxidants also called as free radical scavengers are chemicals that interact and neutralize free radicals, thus preventing them from causing damage to the organism. Free radicals are produced constantly in the human body during normal physiological processes and cause various degenerative processes such as aging, inflammation, cardiovascular diseases, atherosclerosis, diabetes, cancer, cataracts, Alzheimer’s disease, and neurodegenerative disorders [5]. Antioxidants can be either used as dietary supplement or as a drug. Food industries use synthetic antioxidants such as butylated hydroxyanisole, tert-butylhydroquinone, and butylated hydroxytoluene as food additives to prevent lipid peroxidation. Synthetic antioxidants are found to be carcinogenic and are reported to involve other toxic side effects thus compelling the search for natural antioxidants. As a result, attention has been drawn on the characterization of the antioxidant properties of products from several natural resources and isolation and identification of those important constituents. Plants and mushrooms are major sources of natural antioxidants. In recent times, fungi have emerged as the new sources of antioxidants in the form of their secondary metabolites [6]. Discovery of pestacin and isopestacin as antioxidant compounds from Pestalotiopsis microspora an endophyte in Terminalia morobensis led to the exploration of the antioxidant potential of this less explored group of fungi. Graphis lactone A was isolated from Cephalosporium sp. IFB-E001, an endophytic in Trachelospermum jasminoides. The compound was confirmed to have stronger antioxidant activity in vitro as compared to butylated hydroxytoluene and ascorbic acid [7].

METHODS

Isolation and identification
Xylaria feejeensis HMJAU22039 was isolated from Tectona grandis and grown on potato dextrose agar (PDA) medium substituted with chloramphenicol. After 1 week of growth, the culture was transferred to PDA slants and stored at 4°C. Molecular identification of the strain was confirmed by NFCCI, Pune.

Antioxidant activity assays
Free radical scavenging activity measured by 1-1-diphenyl-2-picryl-hydrazil
The free radical scavenging activity of all the extracts was measured by DPPH radical scavenging assay [8]. An aliquot of 1 ml of 0.1 mM DPPH solution in methanol and 0.5 ml of extract were mixed. The mixture was shaken vigorously and allowed to reach a steady state at room temperature for 30 minutes, and absorbance was measured at 517 nm. The DPPH radical scavenging effect was calculated according to the

Conclusion: The study highlights the importance of different physicochemical parameters in the production of secondary metabolites having antioxidant properties. The results reveal a significant positive correlation between DPPH radical scavenging assay, NO scavenging assay, and TPC.

Keywords: 1-1-diphenyl-2-picryl-hydradzil, Total phenolic content, Endophytic fungus, Tectona grandis.

INTRODUCTION

Natural products are naturally derived bioactive metabolites and byproducts from microorganisms, plants, or animals. These products have been exploited for human use for many years and plants have been the main source of the compounds used for medicine. Besides plants, microorganisms also constitute a major source of natural products with preferable bioactive properties. Researchers are in quest of new bioactive metabolites from new sources. Endophytic fungi appear to be one such interesting source of research. As a consequence of their contribution to the host plant, endophytes may produce a surplus of substances that may have potential use in modern medicine, agriculture, and industry. Bioactive compounds produced by endophytes have been promising prospective utility in safety and human health concerns. Endophytes provide a wide range of bioactive secondary metabolites with a unique structure, including alkaloids, benzopyranones, flavonoids, phenolic acids, quinones, terpenoids, steroids, tetralones, xanthones, and others [1]. These bioactive secondary metabolites have a wide range of application as agrochemicals, antibiotics, immunosuppressants, antiparasitics, antioxidants, and anticancer agents [2-4].

Antioxidants also called as free radical scavengers are chemicals that interact and neutralize free radicals, thus preventing them from causing damage to the organism. Free radicals are produced constantly in the human body during normal physiological processes and cause various degenerative processes such as aging, inflammation, cardiovascular diseases, atherosclerosis, diabetes, cancer, cataracts, Alzheimer’s disease, and neurodegenerative disorders [5]. Antioxidants can be either used as dietary supplement or as a drug. Food industries use synthetic antioxidants such as butylated hydroxyanisole, tert-butylhydroquinone, and butylated hydroxytoluene as food additives to prevent lipid peroxidation. Synthetic antioxidants are found to be carcinogenic and are reported to involve other toxic side effects thus compelling the search for natural antioxidants. As a result, attention has been drawn on the characterization of the antioxidant properties of products from several natural resources and isolation and identification of those important constituents. Plants and mushrooms are major sources of natural antioxidants. In recent times, fungi have emerged as the new sources of antioxidants in the form of their secondary metabolites [6]. Discovery of pestacin and isopestacin as antioxidant compounds from Pestalotiopsis microspora an endophyte in Terminalia morobensis led to the exploration of the antioxidant potential of this less explored group of fungi. Graphis lactone A was isolated from Cephalosporium sp. IFB-E001, an endophytic in Trachelospermum jasminoides. The compound was confirmed to have stronger antioxidant activity in vitro as compared to butylated hydroxytoluene and ascorbic acid [7].

METHODS

Isolation and identification
Xylaria feejeensis HMJAU22039 was isolated from Tectona grandis and grown on potato dextrose agar (PDA) medium substituted with chloramphenicol. After 1 week of growth, the culture was transferred to PDA slants and stored at 4°C. Molecular identification of the strain was confirmed by NFCCI, Pune.

Antioxidant activity assays
Free radical scavenging activity measured by 1-1-diphenyl-2-picryl-hydrazil
The free radical scavenging activity of all the extracts was measured by DPPH radical scavenging assay [8]. An aliquot of 1 ml of 0.1 mM DPPH solution in methanol and 0.5 ml of extract were mixed. The mixture was shaken vigorously and allowed to reach a steady state at room temperature for 30 minutes, and absorbance was measured at 517 nm. The DPPH radical scavenging effect was calculated according to the
following equation:

\[
\text{DPPH scavenging effect (\%) = } \frac{A_0 - A_1}{A_0} \times 100
\]

Where, \(A_0\) is the absorbance of the control and \(A_1\) is the absorbance of the sample.

Determination of nitric oxide scavenging activity

An equal amount (6 ml) of sodium nitroprusside (5 mM) solution was mixed with 6 ml of extract and incubated at 27°C for 2½ hrs. Afterward, 0.5 ml of the reaction mixture was mixed with an equal amount of Griess reagent, and absorbance was taken at 546 nm [9]. The nitric oxide (NO) scavenging effect was calculated according to the following equation:

\[
\text{NO scavenging effect (\%) = } \frac{A_0 - A_1}{A_0} \times 100
\]

Where, \(A_0\) is the absorbance of the control reaction, and \(A_1\) is the absorbance of the sample.

Determination of total phenolic content

Total phenol content was estimated using Folin–Ciocalteu (FC) reagent based assay using gallic acid as standard [10]. The extract was dissolved in methanol (1 mg/mL), and 500 µl of (50%) FC reagent was added followed by the addition of 1.5 mL of 20% of Na₂CO₃. The final volume was made up to 5 mL by adding distilled water. The mixture was kept at room temperature for 30 minutes, and the absorbance was recorded at 765 nm. This procedure was also repeated to aliquots of 10-100 µg/mL methanolic gallic acid solutions which were used as a standard for the calibration curve. Total phenolic value of the samples was obtained from the regression equation:

\[
y = 0.006141x + 0.157733 \text{ with } R^2 = 0.9975 \text{ and expressed as mg/g gallic acid equivalent.}
\]

Medium optimization

Standardization of basal medium

Standardization of basal medium for optimum antioxidant activity consists of (g/L) Potato dextrose broth containing potato (200.0 g) and dextrose (20.0 g); Czapek-Dox Broth containing NaNO₃ (3.0 g), K₂HPO₄ (1.0 g), MgSO₄ (0.5 g), KCl (0.5 g), FeSO₄ (0.01 g), and sucrose (30.0g); Sabouraud dextrose broth containing peptone (10 g/L) and glucose (40 g/L); potato dextrose yeast extract broth (PDB) containing potato (2000.0 g), dextrose (200.0 g), and yeast extract (2.0 g); Malt extract broth (ME) containing ME (20.0 g), peptone (1.0 g), and glucose (20.0 g) media were used. The culture was kept in static condition and an initial pH of 7 for all cultures. After 14 days of incubation at 26 ± 2°C, the culture filtrate was extracted 3 times with ethyl acetate. The antioxidant activity was measured by DPPH, NO scavenging assay, and the total phenolic content (TPC) was recorded.

Effect of carbon source

Various carbon sources such as dextrose, sucrose, glucose, lactose, and maltose were amended separately into the basal medium (PDYEB) at a concentration of 2%. *X. feejeensis* HMJAU22039 was inoculated to each of the media and incubated at 26 ± 2°C in dark for 14 days in static condition, and their respective antioxidant activity was recorded.

Effect of nitrogen source

Various nitrogen sources such as sodium nitrate, casein, yeast extract, peptone, and ME were amended into the basal medium (PDYEB) at a concentration of nitrogen source 0.2%. *X. feejeensis* HMJAU22039 was inoculated to the respective medium and incubated at 26 ± 2°C in dark for 14 days in static condition, and their respective antioxidant activity was recorded.

Effect of shaking

X. feejeensis was inoculated into PDYEB basal medium and was grown in static and shaking conditions. In shaking condition, the broth culture was kept on an orbital shaker at 120 rpm and 240 rpm for 1 week. After 14 days, the antioxidant activity and phenolic content were recorded.

Effect of temperature

The strain HMJAU22039 was inoculated into PDYEB basal medium and was grown in various ranges of temperature from 20 to 40°C at a difference of 5°C for 14 days in dark under static conditions, and the antioxidant activity and TPC were recorded.

Effect of pH

Initial pH was adjusted from 5 to 9 at a difference of one to PDYEB medium and was incubated for 14 days in dark at 26 ± 2°C under static condition, and their antioxidant activity and TPC were recorded.

Determination of incubation period

The strain HMJAU22039 was inoculated into PDYEB medium and incubated up to 25 days in static condition in dark at 26 ± 2°C. Their antioxidant activity and TPC were measured at an interval of 5 days from the initial day of inoculation till the 25th day.

Effect of solvent

The fungal strain was inoculated into 5 flasks containing PDYEB basal medium. The temperature was maintained at 26 ± 2°C in dark. After 14 days of incubation, the culture was passed through four layers of cheesecloth to remove solids and extracted with ethyl acetate, chloroform, diethyl ether, and tuluene. The fungal mat was crushed, soaked in methanol for 24 h, and filtered. The antioxidant activity and the TPC of all the solvent extracts were recorded.

RESULTS

Standardization of basal medium

Although PDA medium was used for the isolation of *X. feejeensis* HMJAU22039, further standardization of medium showed that PDYEB was a better medium for antioxidant activity (Fig. 1). Comparative study of antioxidant activity measured by DPPH, NO scavenging activity,
and TPC indicated a significantly higher antioxidant activity and TPC (18.1 mg/g) in PDYEB by X. feejeensis compared to others. Hence, PDYEB medium was used to optimize different environmental parameters for antioxidant activity and phenol production.

Effect of carbon source
Table 1 shows the effect of carbon source on antioxidant activity and phenol content. A significantly higher value of DPPH radical scavenging (69.34%), NO scavenging activity (36.41%), and total phenol content (17.41 mg/g) were produced when dextrose was the carbon source. It was followed by glucose with DPPH, NO scavenging activity, and TPC at 61.38%, 36.41%, and 11.42 mg/g, respectively. Sucrose, maltose, and lactose showed moderate to low amount of antioxidant activity and phenol content.

Effect of nitrogen source
Table 2 shows the effect of nitrogen source on antioxidant activity and phenol content. A significantly higher DPPH (70.39%), NO scavenging activity (41.74%), and total phenol content (16.81 mg/g) were produced when yeast extract was the carbon source by X. feejeensis. Although sodium nitrate as nitrogen source gave good antioxidant activity, it is very less compared to that of yeast extract. ME, casein, and peptone showed very less antioxidant activity.

Effect of shaking
Table 3 shows the effect of shaking on antioxidant activity and phenolic content. A higher DPPH (71.34%), NO scavenging activity (43.17%), and total phenol content (17.14 mg/g) were produced when the culture was kept at static condition by X. feejeensis HMJAU22039. The antioxidant activity was lowered when the culture was kept at 120 rpm shaking condition and was significantly lowered at 240 rpm shaking condition.

Effect of temperature
Maximum antioxidant activity of DPPH, NO scavenging, and TPC 72.41%, 44.14%, and 14.11 mg/g, respectively, was recorded at 30°C (Fig. 2). Low antioxidant activity and phenol content were found at very low and high temperatures 20°C and 40°C, respectively. An increasing antioxidant activity was recorded at a temperature between 20°C and 30°C after which a decrease in activity and phenol content was observed.

Effect of pH
Medium with initial pH 6 was found to be optimal for DPPH (68.12%), NO scavenging activity (39.03%), and total phenol content (16.61 mg/g) (Fig. 3). pH 5 and pH 7 also reported good antioxidant activity. Very little antioxidant activity was observed at pH 9.

Effect of incubation period
The incubation period at 20 days was observed to be optimum for maximum antioxidant activity, with 84.32%, 52.14%, and 24.42 mg/g for DPPH, NO scavenging, and TPC, respectively (Fig. 4). Maximum antioxidant activity was reported after the fungus reached its stationary phase after 20 days of incubation, the antioxidant activity was slightly lowered on the 25th day of the incubation period.

Effect of solvent
Maximum antioxidant activity of DPPH, NO scavenging, and TPC at 73.86%, 49.97%, and 18.36 mg/g, respectively, by X. feejeensis was reported by methanolic extract of the culture followed by ethyl acetate and chloroform extract (Table 4). Diethyl ether and toluene reported low antioxidant activity.

DISCUSSION
Recent research showed that a number of potent antioxidants had been isolated from endophytic fungi [11-13]. Like many other metabolites

C source	DPPH	NO scavenging	TPC
Glucose	61.38±0.25	36.41±0.43	11.42±0.35
Dextrose	69.34±0.31	38.89±0.38	14.31±0.14
Maltose	33.12±0.56	18.13±0.33	4.37±0.59
Sucrose	59.64±0.12	20.64±0.52	8.83±0.28
Lactose	34.39±0.18	20.14±0.15	2.14±0.1

All values are reported as mean±SD (n=3). DPPH: DPPH radical scavenging activity, NO: NO scavenging activity, TPC: Total phenolic content, SD: Standard deviation, DPPH: 1-diphenyl-2-picryl-hydrazil, NO: Nitric oxide

N source	DPPH	NO scavenging	TPC
Yeast extract	70.39±0.23	41.63±0.27	16.81±0.5
Malt extract	34.33±0.45	17.41±0.13	4.73±0.16
Peptone	38.19±0.44	19.29±0.48	5.97±0.22
Sodium nitrate	49.14±0.35	21.45±0.46	9.36±0.39
Casein	42.47±0.51	26.39±0.57	7.19±0.34

All values are reported as mean±SD (n=3). DPPH: DPPH radical scavenging activity, NO: NO scavenging activity, TPC: Total phenolic content, SD: Standard deviation, DPPH: 1-diphenyl-2-picryl-hydrazil, NO: Nitric oxide

Condition	DPPH	NO scavenging	TPC
Static	71.34±0.5	43.17±0.2	17.14±0.18
Shaking 120 rpm	64.81±0.42	40.23±0.37	15.71±0.24
Shaking 240 rpm	53.91±0.45	33.76±0.16	11.32±0.31

All values are reported as mean±SD (n=3). DPPH: DPPH radical scavenging activity, NO: NO scavenging activity, TPC: Total phenolic content, SD: Standard deviation, DPPH: 1-diphenyl-2-picryl-hydrazil, NO: Nitric oxide

Fig. 2: Effect of incubation temperature on antioxidant potential of Xylaria feejeensis. DPPH: DPPH radical scavenging activity; NO: NO scavenging activity; TPC: Total phenolic content. All values are reported as mean±SD (n=3). DPPH: 1-diphenyl-2-picryl-hydrazil, NO: Nitric oxide, SD: Standard deviation

Fig. 2 shows the effect of incubation period on antioxidant potential of Xylaria feejeensis. DPPH: DPPH radical scavenging activity; NO: NO scavenging activity; TPC: Total phenolic content.
Fig. 3: Effect of pH on antioxidant potential of *Xylaria feejeensis*. DPPH: DPPH radical scavenging activity; NO: NO scavenging activity; TPC: Total phenolic content. All values are reported as mean±SD (n=3). DPPH: 1-diphenyl-2-picryl-hydrazil, NO: Nitric oxide, SD: Standard deviation.

Fig. 4: Effect of incubation period on antioxidant potential of *Xylaria feejeensis*. DPPH: DPPH radical scavenging activity; NO: NO scavenging activity; TPC: Total phenolic content. All values are reported as mean±SD (n=3). DPPH: 1-diphenyl-2-picryl-hydrazil, NO: Nitric oxide, SD: Standard deviation.

Table 4: Effect of extraction with different solvents on antioxidant potential of *Xylaria feejeensis*

Solvent	DPPH (mg/L)	NO scavenging (%)	TPC (mg/g)
Ethyl acetate	69.2±4.05	38.43±0.55	15.02±0.32
Chloroform	60.2±3.41	31.14±0.37	13.11±0.36
Diethyl ether	39.07±2.0	15.84±0.24	7.89±0.11
Methanol	73.86±0.49	44.97±0.26	18.36±0.4
Toluene	21.76±0.19	9.33±0.58	6.29±0.17

All values are reported as mean±SD (n=3). DPPH: DPPH radical scavenging activity, NO: NO scavenging activity, TPC: Total phenolic content, SD: Standard deviation, DPPH: 1-diphenyl-2-picryl-hydrazil, NO: Nitric oxide.

The study highlights the importance of different media and physicochemical parameters in the production of secondary metabolites having antioxidant properties by *X. feejeensis* HMJAU22039. The results reveal a significant positive correlation between the DPPH radical scavenging activity, NO scavenging activity, and TPC.

REFERENCES

1. Tan RX, Zou WX. Endophytes: A rich source of functional metabolites. Nat Prod Rep 2001;18(4):448-59.
2. Gunatilaka AA. Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity and implication of their occurrence. J Nat Prod 2006;69(3):509-26.
3. Ruma K, Sunil K, Prakash HS. Antioxidant, anti-inflammatory, antimicrobial and cytotoxic properties of fungal endophytes from *Garcinia* species. Int J Pharm Pharm Sci 2013;5(3):889-97.
4. Prabukumar S, Rajkuberan C, Ravindran K, Sivaramakrishnan S. Isolation and characterization of endophytic fungi from medicinal plant *Crescentia cujete* L. And their antibacterial, antioxidant and antinecrosis properties. Int J Pharm Pharm Sci 2013;5(11):316-21.
5. Gursoy N, Sarikurcu C, Cengiz M, Solak MH. Antioxidant activities, metal contents, total phenolics and flavonoids of seven *Morchella* species. Food Chem Toxicol 2009;47(9):2381-8.
6. Rodrigues KF, Costa GL, Carvalho MP, Epifanio RA. Evaluation of extracts produced by some tropical fungi as potential cholinesterase inhibitors. World J Microbiol Biotechnol 2005;21:1617-21.
7. Song YC, Huang WY, Sun C, Wang FW, Tan RX. Characterization of graphislaclone a as the antioxidant and free radical-scavenging substance from the culture of Cephalosporium sp. IFB-E001, an endophytic fungus in Trachelospermum jasminoides. Biol Pharm Bull 2005;28(3):506-9.
8. Zhao GR, Xiang ZJ, Ye TX, Yuan YJ, Guo ZX. Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem 2006;99:767-74.
9. Kang KS, Yokozawa T, Kim HY, Park JH. Study on the nitric oxide scavenging effects of ginseng and its compounds. J Agric Food Chem 2006;54(7):2558-62.
10. Singleton VL, Ortofehr R, Lamuela-Raventos RM. Analysis of total pheno1s and other oxidation substrate and antioxidants by means of Folin–Ciocalteau reagent. Methods Enzymol 1999;299:152-78.
11. Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, et al. Pestacin: A 1,3 dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 2003;59:2471-76.
12. Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, et al. Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 2002;60(2):179-83.
13. Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G. Antioxidant activity and phenolics of an endophytic Xylaria sp. From Ginkgo biloba. Food Chem 2007;105(2):554-84.
14. Thakur D, Bora TC, Bordoloi GN, Maiumdar S. Influence of nutrition and culturing conditions for optimum growth and antimicrobial metabolite production by Streptomyces sp.201. J Med Mycol 2009;19:161-7.
15. Agastian P, Merlin JN, Nimal Christhadas IV, Praveen Kumar P. Optimization of growth and bioactive metabolite production: Fusarium solani. Asian J Pharm Clin Res 2013;6(3):98-103.
16. Ramesh V, Karunakaran C, Rajendran A. Optimization of submerged culture conditions for mycelial biomass production with enhanced antibacterial activity of the medicinal macro fungus Xylaria sp. Strain R006 against drug resistant bacterial pathogens. Curr Res Environ Appl Mycol 2014;4(1):88-98.
17. Arora DS, Chandra P, Kau GJ. Optimization and assay of antioxidant potential of two Penicillium spp. By different procedures. Curr Biotechnol 2012;1(1):2-10.
18. Abo-Elmagd HI. Evaluation and optimization of antioxidant potentiality of Chaetomium madrasense AUMC 9376. J Genet Eng Biotechnol 2014;12(1):21-6.
19. Bhattacharyya PN, Jha DK. Optimization of cultural conditions affecting growth and improved bioactive metabolite production by a subsurface Aspergillus strain TSF 146. Int J Appl Biol Pharm 2011;2(4):134-43.
20. Gazi MR, Kanda K, Kato F. Optimization of various cultural conditions on growth and antioxidant activity aeration by Saccharomyces cerevisiae IFO 2373. J Biol Sci 2004;4(2):224-28.
21. Yamanaka T. The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia 2003;95(4):584-9.