Leishmaniasis: A Review on Parasite, Vector and Reservoir Host

Bereket Alemayehu1* and Mihiretu Alemayehu2

1Biomedical Science Division, Department of Biology, College of Natural and Computational Sciences, Wolaita Sodo University, Ethiopia
2School of Public Health, College of Health Sciences and Medicine, Wolaita Sodo University, Ethiopia

*Corresponding author: Bereket Alemayehu, Biomedical Science Division, Department of Biology, College of Natural and Computational Science, Wolaita Sodo University, Ethiopia, Tel: +251911767459; E-mail: bereketalemayehu@gmail.com

Received date: 02 August 2017; Accepted date: 24 August 2017; Published date: 31 August 2017

Copyright: © 2017 Alemayehu B, et al. This is an open-access article distributed under the terms of the creative Commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Citation: Alemayehu B, Alemayehu M (2017) Leishmaniasis: A Review on Parasite, Vector and Reservoir Host. Health Sci J. Vol. 11 No. 4: 519.

Abstract

Leishmaniasis is a vector-borne disease affecting millions of people worldwide. The disease is caused by different species of Leishmania, and it is manifested by three major clinical forms namely cutaneous, muco-cutaneous and visceral leishmaniasis. This review is aimed to address briefly the parasite, the vector and the reservoir aspects in transmission of leishmaniasis in different regions of the world. The complexity of transmission of the disease lays on the complex life cycle of the parasite which involves sand fly vectors and mammalian reservoirs. The transmission can either be zoonotic and/or anthroponotic through the bite of an infected female sand fly. There is uneven global distribution of the disease often because of the various distribution patterns of the parasite, the vector and the reservoir host species. Various sand fly species in the genus Phlebotomus and Lutzomyia are responsible for transmission of leishmaniasis in the old and new worlds. Animal reservoirs are important for maintaining infections in various areas, and hence are important for zoonotic and rural/sylvatic transmission of the disease. A high prevalence of infection has been reported from small to large domestic and wild mammals. Control and elimination of leishmaniasis require detection of human and animal cases, identification of reservoir hosts, and implementation of effective vector control strategies in areas.

Keywords: Leishmaniasis; Leishmania spp; Sand fly; Zoonosis; Anthroponosis; Reservoir host; Vector-borne

Introduction

Leishmaniasis is a vector-borne zoonotic disease caused by obligate intracellular parasitic protozoa of the genus Leishmania. The disease gets into human population when human, flies and the reservoir hosts share the same environment [1-3]. Leishmania infection is transmitted to humans and to other mammals by the bite of an infected sand fly vector [4]. The infection can rarely be transmitted by other means such as blood transfusions [5], needle sharing [6], or from mother to child during pregnancy [7]. The World Health Organization (WHO) has stated that leishmaniasis is one of the most neglected diseases, with 350 million people considered at risk of contracting the disease, a burden of about 12 million people currently infected in 98 countries, and two million new cases estimated to occur annually [8,9]. There are three clinical forms of leishmaniasis in human namely cutaneous, mucocutaneous, and visceral involving the skin, mucous membranes and visceral organs respectively. Cutaneous leishmaniasis is a less severe form of the disease which usually manifests self-healing ulcers. Mucocutaneous leishmaniasis results in disfiguring lesions of the nose, mouth and throat mucous membranes. Visceral leishmaniasis is the most severe form of the disease which can result in 100% mortality of infected patients if not treated.

The present paper reviewed the interplay of the parasite, the vector, and the hosts in the transmission dynamics of leishmaniasis.

The parasite

The genus Leishmania belongs to a family Trypanosomatidae (order Kinetoplastida) [10,11]. The parasite is categorized in two main groups; the old world species occurring in Europe, Africa and Asia, and the new world species occurring in America [11,12]. About 53 species of the parasite have been described from different regions of the world; of these, 31 species are known to be parasites of mammals and 20 species are pathogenic for human beings [9,13]. Many of the leishmania species infecting human are zoonotic, having a complex variation in domestic and wild mammal reservoir hosts; while, other species of the parasite are anthroponotic, having human-to-human transmission in the presence of the vector [9]. Leishmania donovani is usually considered to be an anthroponotic parasite though studies reported the presence of parasite or circulating antibodies against the parasite antigens in domestic and wild animals of India and East [8,14]. The global distribution of each of Leishmania species determines the type of disease that occurs in an area. L. donovani causes visceral leishmaniasis in South Asia and Africa; while L. infantum causes this disease in the
Mediterranean, the Middle East, Latin America and parts of Asia. Leishmania major causes cutaneous leishmaniasis in Africa, the Middle East and parts of Asia; while *L. tropica* causes this disease in the Middle East, the Mediterranean and parts of Asia, and *L. aethiopica* causes cutaneous disease in the horn of Africa. In south America, again several species of Leishmania cause cutaneous form of the disease [11,15] (Table 1).

Table 1 The main species of leishmania that cause human disease [11,15,16].

Leishmania species	Disease form in humans	Geographical distribution	Reservoir hosts	Vectors
Leishmania aethiopica	Localised cutaneous leishmaniasis, diffuse cutaneous leishmaniasis	Ethiopia, Kenya	Rock hyraxes	*Phlebotomus longipes,* *P. pedifer*
L. major	Localised cutaneous leishmaniasis	North Africa, Middle East and Central Asia, Sub-Saharan Africa and Sahel belt, Sudan, North India, Pakistan	Rodents	*P. papatassi,* *P. duboscqi*
L. mexicana	Localised cutaneous leishmaniasis	Central America	Forest rodents	*Lutzomyia olmeca*
L. amazonensis	Localised cutaneous leishmaniasis	South America, north of the Amazon	Forest rodents	*L. flaviscutellata*
L. braziliensis	Localised cutaneous leishmaniasis; mucocutaneous leishmaniasis	South America,	Forest rodents,	*Psychodopygus*
L. peruviana	Localised cutaneous leishmaniasis	West Andes of Peru, Argentine highlands	Peridomestic animals	*Lutzomyia spp.*
L. infantum	Visceral leishmaniasis; Localised cutaneous leishmaniasis	Mediterranean basin; Middle East and Central Asia to Pakistan; China; Central and South America, southern Europe, northwest Africa	Dogs, cats, foxes, jackals	*P. pomciosus,* *P. arias*
L. donovani	Visceral leishmaniasis	Ethiopia, Sudan, Kenya, India, China, Bangladesh, Burma	Human anthroponosis, Rodents Sudan, Canines	*Phlebotomus argentipes,* *P. ornitalis,* *P. martini*

Old world species
New world species

Leishmania species have a heteroxenous life cycle. The parasite exhibits two morphological forms in its life cycle; amastigote in macrophages of the mammalian host and promastigote in the gut of the sand fly vectors [11]. Human stage of the life-cycle starts when a parasitized female sand fly injects metacyclic promastigotes into human body. The promastigotes are then phagocytosed by the host’s macrophages, and consequently, the parasite transforms into non-flagellated form, amastigote, which reproduce by binary fission. The multiplication of the parasites occurs inside the macrophages. The macrophage lyses and the multiplication cycle continues when other hosts’ phagocytes are infected [11,15].

Table 2 Sand flies transmitting most human leishmaniasis [18].

Sand fly species	Geographical distribution
Phlebotomus papatasi, *Phlebotomus dubosqi,* *Phlebotomus salehi*	Central and West Asia, North Africa, Sahel of Africa, Central and West Africa
Phlebotomus sergenti	Central and West Asia, North Africa
Phlebotomus longipes, *Phlebotomus pedifer*	Ethiopia, Kenya

The vector

Leishmaniasis is transmitted by the bite of infected female sand flies. There are over 600 species of sand flies divided into five genera: *Phlebotomus* and *Sergentomyia* in the Old World and *Lutzomyia*, *Brumptomyia*, and *Warileya* in the New World [4,16,17]. Although human-biting sandflies occur in various genera, the only proven vectors of human leishmaniasis are species and subspecies of the genus *Phlebotomus* and *Lutzomyia* (Table 2). Various species in the genus *Phlebotomus* are responsible for transmission of leishmaniasis in the Old World and *Lutzomyia* species in the New World. Each sand fly species typically transmits only one species of parasite and each parasite leads to a particular type of disease [8,18,19].
mongoose, dogs, cats, foxes, jackals, wolves, bats, primates, and armadillos and other domestic animals are among the multiple host reservoirs to maintain transmission of leishmaniasis in different localities [23-25]. However, leishmania reservoirs are so complex that they show regional and temporal variations [26], and only a local studies involving ecological and parasitological analysis can determine whether these animals are playing a role as reservoir in a given environment [24].

The sylvatic transmission of leishmaniasis is effected as a result of established wildlife populations in and around human settlements in the presence of appropriate vector. Dogs and cats may be involved in the transmission cycles of these parasites in urban areas, and the presence and frequency of these animals may have a significant effect on disease pressure to humans. In urban and peri-urban areas, the frequency of contact between wildlife and humans changes from sporadic encounters to permanently sharing the environment, thus greatly increasing the chance of transmission of leishmania parasite to humans [27].

Human beings are directly involved as a principal reservoir host in two forms of the disease: visceral leishmaniasis caused by L. donovani and cutaneous leishmaniasis caused by L. tropica. Although infections due to L. tropica and L. donovani have been assumed to be anthropocontact by most reports [18,28], there is evidence for the possible involvement of zoonotic transmission of these two species with uncertain reservoir hosts in some foci [8,29]. In addition, there are recent reports on zoonotic involvement of L. donovani as natural infections of dogs [30], domestic animals [23] and rodents [31] with L. donovani complex were reported in different regions of both old and new world.

Although dogs are considered the most important domestic reservoirs of L. infantum, the role of other domesticated mammals as reservoirs have also been implied and their synanthropic capability could facilitate the connection between wild and peri-domestic environments [8].

Moreover, many rodent species have been identified as reservoirs of different species of leishmania showing competence to maintain the parasite. Small mammals like rodents are important reservoir hosts to maintain leishmania transmission cycle [1]. Even though few studies done on flying animals to confirm their reservoir host status, leishmania

Species	Region
Phlebotomus argentinipes, Phlebotomus orientalis, Phlebotomus martini	Indian subcontinent, East Africa
Phlebotomus ariasi, Phlebotomus perniciosus	Mediterranean basin, Central and West Asia
Lutzomyia longipalpis	Central and South America
Lutzomyia olmeca olmeca	Central America
Lutzomyia flaviscutellata	South America
Lutzomyia wellcomei, Lutzomyia complexus, Lutzomyia carrerai	Central and South America
Lutzomyia peruensis, Lutzomyia verrucarum	Peru
Lutzomyia umbratilis	South America
Lutzomyia trapidii	Central America

The development of leishmania parasite within the vector sand flies is an inevitable stage for the transmission of leishmaniasis among various hosts. Female sand flies acquire leishmania parasites when they feed on an infected mammalian host in search of a blood-meal. The amastigote forms of the parasites taken up by sand flies are not usually found in the peripheral circulation; rather they are present in the skin itself. Parasites present in organs such as liver and spleen are not accessible to sand flies. Amastigotes are intracellular parasites found in phagolysosomes of macrophages and other phagocytes [20], and their uptake by the blood-feeding sand fly is assisted by the cutting action of the mouthparts. Thus sand flies are pool feeders, meaning they insert their saw-like mouthparts into the skin and agitate them to produce a small wound into which the blood flows from superficial capillaries [21]. It is this tissue damage associated with the creation of the wound that releases skin macrophages and/or freed amastigotes into the pool of blood, and enables their subsequent uptake into the abdomen of the sand fly. Then the parasite multiplies and further differentiates into other stages, metacyclic promastigote being the final mammalian-infective stage which moves to the foregut of the vector sand fly [22]. The metacyclic promastigotes are deposited in the skin of a new mammalian host when the fly takes another blood meal, leading to the transmission of disease.

The reservoir host

Animal reservoirs are important for maintaining the life cycle of many Leishmania species and hence are important for transmission of zoonotic and rural/sylvatic infections. There are two main sources of human leishmaniasis, zoonotic leishmaniasises, in which the reservoir hosts are wild animals, commensals or domestic animals, and anthropocontact leishmaniasises, in which the reservoir host is human. Although each Leishmania species generally falls into one or the other of these categories, there are exceptions where the anthropocontact species cause zoonotic transmissions [8]. Several species of wild, domestic and synanthropic mammals have been recorded as hosts and/or reservoirs of Leishmania spp. in different parts of the world. Rock hyraxes, rodents, mongoose, dogs, cats, foxes, jackals, wolves, bats, primates, and armadillos and other domestic animals are among the multi-host reservoirs to maintain transmission of leishmaniasis in different localities [23-25]. However, leishmania reservoirs are so complex that they show regional and temporal variations [26], and only a local studies involving ecological and parasitological analysis can determine whether these animals are playing a role as reservoir in a given environment [24].
parasites (L. infantum) were isolated from the blood of bats [32-34] (Table 3).

Table 3 Reservoir hosts of human leishmaniasis in some endemic countries [8,24,27,35,36].

Region	Countries	Reservoir hosts
Old world	North Africa, central and west Asia	Dog, human, rodent
	Ethiopia, Kenya	Rodents, dog, domestic animals, bats, human, rock hyrax
	Indian subcontinent, (India, Nepal, Bangladesh) and east Africa	Dog, human, rock hyrax, rodent
	Mediterranean basin, central, west Asia and west Africa	Dog, fox, rodent, human
	Europe	Dog, fox
New world	Argentina, Belize, Bolivia, Brazil, Colombia, Costa Rica, Dominican, Ecuador, El Salvador, French Guiana, Guadeloupe, Guatemal, Guyana, Honduras, Martinique, Mexico, Nicaragua, USA, Venezuela, Paraguay, Peru, Surinam, Panama,	Dog, cats, rodent, marsupials, anteater, fox, monkey, coati, sloth, armadillo, porcupines, kinkajou, raccoon, red squirrel
Acknowledgement

The authors are thankful to Wolaita Sodo University for provision of full internet service, e-books and library to access books and journals for the review.

Conflict of Interests

The authors declare that they have no conflicting interests.

References

1. Lemma W, Bizuneh A, Tekie H, Belay H, Wondimu H, et al. (2017) Preliminary study on investigation of zoonotic visceral leishmaniasis in endemic foci of Ethiopia by detecting Leishmania infections in rodents. Asian Pac J Trop Med 10: 418-422.

2. Assimina Z, Charilaos K, Fotoulia B (2008) Leishmaniasis: An overlooked public health concern. Heal Sci J 2: 196-205.

3. Bryceson ADM (1996) Leishmaniasis. In: Cook GC (ed.). Manson’s Tropical Diseases. Saunders Elsevier, US. pp: 1213-1245.

4. Ready PD (2013) Biology of phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol 58: 227-250.

5. Cohen C, Coraza F, De Mol P, Brasseur D (1991) Leishmaniasis acquired in Belgium. Lancet 338: 128.

6. Cruz I, Morales MA, Noguer I, Rodriguez A, Alvar J (2002) Congenital transmission of visceral leishmaniasis (kala azar) from an asymptomatic mother to her child. Pediatrics 104: e65.

7. Meinecke CK, Schotelli J, Oskam L, Fleischer B (1999) Congenital transmission of visceral leishmaniasis (kala azar) from an asymptomatic mother to her child. Pediatrics 104: e65.

8. World Health Organization (2010) Control of the leishmaniases. World Health Organ Tech Rep Ser 949: 1-186.

9. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, et al. (2012) WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7: e35671.

10. Hide M, Bucheton B, Kamhawi S, Bras-Gonçalves R, Sundar S, et al. (2007) Understanding human leishmaniasis: The need for an integrated approach in encyclopedia of infectious diseases book of microbiology. John Wiley and Sons Inc., US. pp: 87-107.

11. Cox FEG (1993) A text book of parasitology (2nd edn). Blackwell Science Ltd., London.

12. Center for Food Security and Public Health (2009) Leishmaniasis (cutaneous and visceral). Lowa State University, College of Veterinary Medicine, Lowa.

13. Gramiccia M, Gradoni L (2005) The current status of zoonotic leishmaniasis and approaches to disease control. Int J Parasitol 35: 1169-1180.

14. Alam MS, Ghosh D, Khan MG, Islam MF, Mondal D, et al. (2011) Survey of domestic cattle for anti-Leishmania antibodies and Leishmania DNA in a visceral leishmaniasis endemic area of Bangladesh. BMC Vet Res 7: 27.

15. Roberts LS, Janovy J, Schmidt GD (2009) Foundations of parasitology (8th edn). McGraw-Hill, Boston.

16. Kumar A (2013) Leishmania and leishmaniasis. Springer, New York. pp: 7-10.

17. Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L (2012) Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol 27: 123-147.

18. Bates PA (2007) Transmission of leishmania metacyclic promastigotes by phlebotomine sand flies. Elsevier Int J Parasitol 37: 1097-1106.

19. Young DG, Duncan MA (1994) Guide to the identification and geographic Distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae), Memoirs of the American Entomological Institute No. 54, Associated Publishers, Gainesville, pp: 881-885.

20. Handeman E, Bullen DVR (2002) Interaction of Leishmania with the host macrophage. Trends Parasitol 18: 332-334.

21. Lane RP (1993) Sandflies (Phlebotominae). In: Lane RP, Crosskey RW (eds.). Medical Insects and Arachnids. Chapman and Hall, London. pp: 78-119.

22. Rogers ME, Chance ML, Bates PA (2002) The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology 124: 495-508.

23. Rohousova I, Talmi-Frank D, Kostalova T, Polanska N, Lestinova T, et al. (2015) Exposure to Leishmania spp. and sand flies in domestic animals in northwestern Ethiopia. Parasit Vectors 8: 360.

24. Roque Al, Jansen AM (2014) Wild and synanthropic reservoirs of Leishmania species in the Americas. Int J Parasitol Parasites Wildl 3: 251-262.

25. Dereure J, Boni M, Pratlong F, El Hadi Osman M, Bucheton B, et al. (2000) Visceral leishmaniasis in Sudan: First identifications of Leishmania from dogs. Trans R Soc Trop Med Hyg 94: 154-155.

26. Raymond RW, McHugh CP, Witt LR, Kerr SF (2003) Temporal and spatial distribution of Leishmania mexicana infections in a population of Neotoma micropus. Mem Inst Swaldo Cruz 98: 171-180.

27. Dazsak P, Cunningham AA, Hyatt AD (2000) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78: 103-116.

28. Chappuis F, Sundar S, Hallu A, Ghahib H, Rijal S, et al. (2007) Visceral leishmaniasis: What are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5: 873-882.

29. Ashford RW (2000) The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol 30: 1269-1281.

30. Bashaye S, Nombela N, Argaw D, Mulugeta A, Herrero M, et al. (2009) Risk factors for visceral leishmaniasis in a new epidemic site in Amhara Region, Ethiopia. Am J Trop Med Hyg 81: 34-39.
31. Kassahun A, Sadlova J, Benda P, Kostalova T, Warburg A, et al. (2015) Natural infection of bats with Leishmania in Ethiopia. Acta Trop 150: 166-170.
32. Kassahun A, Sadlova J, Dvorak M, Kostalova T, Fried A, et al. (2015) Detection of Leishmania donovani and L. tropica in Ethiopian wild rodents. Acta Trop 145: 39-44.
33. De Lima H, Rodriguez N, Barrios MA, Avila A, Canizales I, et al. (2008) Isolation and molecular identification of Leishmania chagasi from a bat (Carollia perspicillata) in northeastern Venezuela. Mem Inst Oswaldo Cruz 103: 412-414.
34. Berzunza-Cruz M, Rodriguez-Moreno Á, Gutiérrez-Granados G, González-Salazar C, Stephens CR, et al. (2015) Leishmania (L.) mexicana infected bats in Mexico: Novel potential reservoirs. PLoS Negl Trop Dis 9: e0003438.
35. Akhoundi M, Kuhl S, Kannet A, Votýpka J, Marty P, et al. (2016) A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis 10: e0004349.
36. Hallui T, Yimer M, Mulu W, Aberra B (2016) Challenges in visceral leishmaniasis control and elimination in the developing countries: A review. J Vector Borne Dis 53: 193-198.
37. Jansen AM, Roque ALR (2010) Domestic and wild mammalian reservoirs. In: Telleria J, Tibayrenc M (eds.). American trypanosomiasis- Chagas disease. Elsevier, London. pp: 249-276.
38. Quinell RJ, Dye C, Shaw JJ (1992) Host preferences of the phlebotomine sandfly Lutzomyia longipalpis in Amazonian Brazil. Med Vet Entomol 6: 195-200.
39. Costa CHN, Gomes RBB, Silva MRB, Garcez LM, Ramos PK S, et al. (2000) Competence of the human host as a reservoir for Leishmania chagasi. Concise Parasitol 30: 1395-1405.
40. Ready PD (2008) Leishmaniasis emergence and climate change. In: de la Roque S (ed.). Climate change: The impact on the epidemiology and control of animal diseases. Rev Sci Tech Off Int Epiz 27: 399-412.
41. Oryan A, Akbari M (2016) Worldwide risk factors in leishmaniasis: A review. Asian Pac J Trop Med 9: 925-932.
42. Patz JA, Gracyk TK, Geller N, Quinnell RJ, Courtenay O (2009) Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology 136: 1915-1934.
43. World Health Organization (2009) Leishmaniasis: Background information. A brief history of the disease. WHO, Geneva.
44. Palatnik-de-Sousa CB, Day MJ (2011) One health: The global challenge of epidemic and endemic leishmaniasis. Parasit Vectors 4: 197.
45. Calborn DM (2010) The biology and control of leishmaniasis vectors. J Glob Infect Dis 2: 127-134.
46. Tsegaw T, Gadisa E, Ali A, Aberra B, Teshome A, et al. (2012) The burden of neglected tropical diseases in Ethiopia, and opportunities for integrated control and elimination. Parasit Vectors 5: 240.
47. Lemma W, Tekie H, Yared S, Balkew M, Gebre-Michael T, et al. (2015) Sero-prevalence of Leishmania donovani infection in labour migrants and entomological risk factors in extra domestic habitats of Kaffa-Humera lowlands–kala-azar endemic areas in the northwest Ethiopia. BMC Infect Dis 15: 99.