Incidence and Pattern of Mandible Fractures in the Madinah Region: A Retrospective Study

Mahmood Samman, Syed Waheed Ahmed, Hassan Beshi, Turki Abdulaziz Almohammadi*, Santosh R Patil

College of Dentistry, Al Jouf University, Sakaka, Aljouf, Saudi Arabia

Abstract

Objectives: To study the incidence and pattern of mandible fractures in the holy city of Madinah in the Kingdom of Saudi Arabia over a retrospective period of three years from 2013 (1434H) – 2016 (1436H) and to compare the results with those from other regions of Saudi Arabia and elsewhere. Materials and Method: Relevant data of patients admitted in the King Fahad Hospital, Madinah with fracture of the Mandible during the study period was collected from their medical records and radiographs. The age, gender, etiology, role of the patient, site and number of fractures in the patients were evaluated. The data was analysed by standard statistical methods. Results: One hundred ninety seven patients with fracture of the mandible were admitted in the period of the study by the Oral Maxillofacial surgery department, King Fahad Hospital, Madinah. There were 165 male and 32 female patients. The ages ranged from 3 to 86 years with a mean of 24years. A total of 260 fractures of Mandible were documented. The largest number (113) of patients was found in the age group between 16 – 30 years. Trauma caused by motor vehicle road traffic accidents was the main etiology of the fractures followed by falls and assault. Majority of the patients were in the role of vehicle drivers. The condylar anatomical site of mandible was most frequently affected and constituted the largest number (103) of fractures followed by the angle (51), parasympysis (45) and then by the body (23) of the mandible. Dentoalveolar fractures were present in 22 cases. Very less number of coronoid fractures (7), followed by those of the ramus (5) and least number at the symphysis (4) of the mandible were found. Conclusion: Road traffic accident was the most common etiology for trauma and fracture of the Mandible. The males outnumbered the female patients, the largest number of patients with trauma and mandible fracture was found in the age group between 16 – 30 years and frequency of condylar fractures was higher.

Keywords: Madinah; RTA; Mandible; Fracture; Behaviour

Introduction

Road traffic accidents are the leading cause of all trauma admissions in hospitals worldwide. [1] Saudi Arabia ranks second after Oman among Arab countries and 23rd globally in terms of deaths due to road accidents, accounting for 4.7% of all mortalities compared to 1.7% in the UK and USA. [2,3] Trauma, chiefly due to the road traffic accidents places a huge burden on the health care service in Saudi Arabia associated with a high morbidity and mortality. The incidence of maxillofacial trauma with fractures of the facial bones is very common and forms a major portion in the workload of an Oral and Maxillofacial surgeon in this country.

The Mandible is particularly more prone for maxillofacial trauma and fractures due to its unique mobility, shape and chin prominence in the facial skeleton. It is the second, most frequent of the facial bones affected by traumatic injuries and shown to account for 15.5% to 59% of all facial fractures. [4] The mandible can be seen fractured alone or in combination with fracture of other bones in the maxillofacial region. A broken lower jaw is accompanied by pain, deranged occlusion and loss of masticatory function, speech impairment and aesthetic disfigurement with psychological effects apart from significant financial cost. [5,6]

The epidemiology of Mandible fractures is highly variable with time among several countries. The mechanism of injury or etiology is also inconsistent in the literature. Etiology of fracture is multifactorial and based variably on socio-economic status, culture, technology, demography and economic factors. [7]

Purpose of our study was to evaluate the incidence, etiology and pattern of fractures of the Mandible in the Holy city of Madinah over a retrospective period of three years from 2013 - 2016 and to compare the results with those from other regions of Saudi Arabia and elsewhere.

Materials and Methods

This was a retrospective study of the incidence and pattern of Mandible fractures in the Holy city of Madinah over a period of three years from 1434H (2013) – 1435H (2016) amongst patients admitted in the King Fahad Hospital, Madinah. The King Fahad Hospital, Madinah is a major referral MOH hospital.
with 500 beds receiving all trauma cases over a catchment area of 450 km radius.

Relevant data of patients with fracture of the Mandible during the study period was collected from their medical records and radiographs. The age, sex, etiology, role of the patient, site and number of fractures in the patients were evaluated.

The data was analysed by standard statistical methods using SPSS (ver. 16.0; SPSS Inc., Chicago, IL, USA), by applying chi-square test.

Results

Majority of the patients in this study were males (165) compared to females (32) with a male: female ratio of 5.15: 1. One hundred ninety seven patients with fracture of the Mandible were admitted in the period of the study with the age of the patients ranging from 3 to 86 years and a mean age of 24 (23.93) years [Table 1]. Trauma caused by road traffic accidents in 178 patients with a frequency of 90.35% was the main etiology of mandible fractures in this study. This was followed by falls in 12 patients (6.09%) and Assault or inter-personal violence in 5 patients (2.53%). Only two patients had sport related injury [Table 2].

Majority of the patients (114, 57.86%) were motor vehicle (car) drivers and all of them were males. 64 or 14.72% of the number of patients were occupants in the vehicle with 35 males and 29 females [Table 3]. The mandibular condyle was the most common site of fracture in this study found in a vast majority of trauma patients (n-103, 39.61%) involving 95 males and 8 females followed by the mandibular body, angle and parasymphyse [Table 4]. Majority of patients (n-96, 48.73%) had unilateral type of mandibular fractures followed by 72 (35.54%) patients with bi-lateral fractures [Table 5].

Multiple fractures or fracture in more than two sites were noted in 29 (14.72%) patients. The most common combination of bilateral fractures in our study is condyle with parasymphyse in 18 patients [Table 6].

| Table 1: Age and gender distribution of study population. |
Age Group (years)	Male (%)	Female (%)	Total number of Patients	Chi square test t	p
1 →15	34 (77.27)	10 (22.72)	44	155.62	0.000
16 →30	100 (88.49)	13 (11.50)	113		
31 45	21 (77.77)	6 (22.22)	27		
46 →60	7 (70)	3 (30)	10		
61 75	1 (100)	0	1		
76 Above	2 (100)	0	2		
Total	165 (83.76)	32 (16.24)	197		

| Table 2: Distribution of the Mandibular fractures according to Etiology. |
Etiology	Male	Female	Number of Patients (%)
Falls	10	2	12 (6.09)
Road Traffic Accidents	149	29	178 (90.35)
Interpersonal Violence	4	1	5 (2.53)
Sports Injury	2	0	2 (1.01)
Total	165	32	197 (100)

| Table 3: Distribution of Mandibular fractures according to Role. |
Role	M	F	Number of Patients
Vehicle Car Driver	114 (100%)	0	114 (57.86%)
Occupant	35 (54.68%)	29 (45.31%)	64 (32.48%)
Bicycle rider	10 (100%)	0	10 (5.07%)
Motor Cyclist	2 (50%)	2 (50%)	4 (2.03%)
Pedestrian	3 (75)	1 (25%)	4 (2.03%)
Worker	1 (50%)	0	1 (0.3%)
Total	165 (83.75%)	32 (16.24%)	197 (100%)

| Table 4: Distribution of Mandibular fractures according to Location. |
Anatomical site	Male	Female	Number of Fractures (%)
Dentoalveolar	12	4	22 (8.46)
Symphysis	4	0	4 (1.53)
Parasymphysis	27	8	45 (17.30)
Body	16	4	23 (8.84)
Angle	30	8	51 (19.61)
Ramus	5	0	5 (1.92)
Coronoid process	7	0	7 (2.69)
Condylar process	65	8	103 (39.61)
Total	165	32	260
Bilateral and similar site fractures of Mandible were found in 36 patients and most of these were bilateral Angle fracture (116; 44.44%) followed by bilateral condylar fractures in 13 patients (36.11%). 5 patients had bilateral parasympysis (13.88%) and two patients (5.55%) had bilateral body fracture of the mandible [Table 7].

Table 6: Combination of Mandibular fractures (N – 51/260; 19.61%).

Fracture Combination	Number (%)
Parasympysis with Angle	9 17.64
Parasympysis with Body	6 11.76
Parasympysis with Condyle	18 35.29
Parasympysis with Ramus	3 5.88
Body with Condyle	4 7.84
Body with Angle	6 11.76
Angle with Condyle	5 9.80
Total	51 100

Table 7: Bilateral (Similar Site) Mandibular fractures.

Fracture	Number (%)
Bilateral Angle #’s	16 44.44
Bilateral Condylar #’s	13 36.11
Bilateral Parasympysis #’s	5 13.88
Bilateral Body #’s	2 5.55
Total	36 99.98%

Discussion

Our study revealed 260 fractures of the mandible in 197 maxillofacial trauma patients over the retrospective study period of three years between 2013 (1432H) and 2016 (1436H).

Mandibular fractures have been reported as significantly more common than middle-third facial fractures in many countries. [5-8]. Variation is noted in the number of fractures of mandible in different regions of Saudi Arabia due to differences in regional factors, sample size and period of the studies done. [9,14] [Table 8].

Table 8: Number of Fractures of Mandible reported in some regions of Saudi Arabia.

No	Author	Year	Region	Number of Mandibular Fractures
1	Alanazi et al.	2016	Qurayat	452
2	Ahmed et al.	2015	Jeddah	722
3	Almasri et al.	2015	Makkah	523
4	Abdullah et al.	2013	Riyadh	132
5	Nwoku et al.	2004	Riyadh	466
6	Rabi et al.	2002	Madinah	280
7	Present study	2016	Madinah	197

A male to female ratio ranging between 2:9; 1 to 7:1: 1; and above has been reported from many other countries. [5-8] Studies in some cities of the Kingdom have reported a M: F ratio of 4.4:1; in Makkah [10]: M: F ratio6:1 both in Riyadh and Jeddah [9,11] and M: F ratio of 2.1:1; in Qurayat city. [12] The M: F ratio of 5.15: 1; in our study is similar to that reported earlier in Madina by Rabi et al., who found an M: F ratio of 5.2:1 [14]. However, the M: F ratio found in our study is significantly less than the ratio of 10: 1; seen in Aseer [15] a mountainous region of the Kingdom with high risk of RTA. Males are more frequently liable to be injured than females due to their increased outdoor activity and involvement in interpersonal violence. In addition, Saudi Arabian women are not permitted to drive by law which explains their lesser number.

The highest number (113) of patients was found in the age group between 16 – 30 years (57.36%) which included 100 males and 13 females. Our finding is in agreement with the earlier 5 year Madinah study of Rabi and Khateery [14] who found majority of patients with fracture of the Mandible in the group aged 21 to 30 years (33%) and concurs with studies with a similar observation. [7,16,17] This typical age group is considered to comprise of young adults and are often described as a risk population for occurrence of mandibular fractures. [7] Few studies also found the age group 16-35 years to be commonly involved in accidents and occurrence of fracture which is closer to our finding. [13,18,19] 140 patients in the present study were between 16 – 45 years and formed a significantly huge number (71%) of patients with trauma and fracture of mandible in concurrence with a study in Makkah. [10] This implies a need to target and motivate this vulnerable and ‘at risk’ age group towards safer driving.

44 patients (22.33%) in the group of 1 – 15 years had fracture of the mandible. Sakr et al., [20] quote a higher incidence of fracture in children in the first decade of age. 10 (5.07%) patients were between 46 – 60 years of age. Only one patient was seen in the age group of 61 – 75 years and two were above 76 years. A restricted sedentary life style may explain less RTA related trauma in elderly individuals.

Our finding of RTA as the main etiology of maxillofacial injuries with mandible fractures is in agreement with several studies done in developing countries including KSA and UAE. [9,10,21-23] Few others have found motorcycle accidents to be a major cause of mandible fractures. [24,25]

The very high frequency of RTA and related fracture of mandible is not surprising because, Saudi Arabia is ranked 23rd in the world on the list of countries having highest death rates in road accidents among high income states (accident to death ratio is 32.1 versus 283:1 in USA), and RTA is considered to be the country’s main cause of death for 16-30 years old males. Road injuries are reported to be the most serious in this country with an accident to injury ratio of 8:6, compared with the international ratio of 8:1. The rate of RTA caused by 4-wheeled vehicles in Saudi Arabia is the highest of all worldwide accidents. [3,26,27]

In this study a history of fall was given by 12 patients (6.09%) which is the second but a much less frequent cause than RTA for mandible fracture in Madinah. This is in agreement with Harshitha et al., [28] whereas in a Turkish study, falls were the main cause of mandible fracture. [29] In Madinah, falls from bicycles, motor cycles, desert bikes and falls from staircase or escalators in shopping malls were some of the reasons given.

Assault or Inter personal violence was reported in only 2.5% of patients in this study with fracture of the mandible. This is
in total contrast with studies that have shown assault or IPV as the most common cause of maxillofacial injuries including mandibular fractures in many countries of the developed western world. [26,30-32] as well as in Australia and New Zealand. [33,34] Very high assault rates of 72.5% in Sydney, Australia and 74% in Manchester, United Kingdom have been documented by Rix and Asadi. [35,36] Compared to RTA in urban areas, assault is recognized as the main cause of Mandibular fractures in rural population. [4,33,37] Alcohol and drug consumption, Behavioural problems, Stress, Socioeconomic conditions, Political, Racial and Cultural provocations or domestic squabbles are several reasons cited for increased IPV or Assault across the globe. [38]

The conservative nature of Saudi society and family values, strict punitive laws for assault and fear of job loss in expatriates occasionally results in pre-hospital compromise between individuals and causes under-reporting of alleged assault at the time of hospital admission.

Ten bicyclists and four motor cyclists suffered fracture of the mandible due to direct trauma by falls from the bicycle or motor cycle. The males were mostly hurt by falling from the motor cycle while trying to perform ‘stunts’ or ‘drag racing’ on the roads whereas two female patients were injured during joy riding on a desert motorbike. Four of the patients with fracture of mandible were pedestrians and one worker sustained occupation tool related trauma.

In a study, the drivers’ knowledge regarding road traffic rules and risks did not match their behaviour and it was found that fatal and non-fatal injuries are significantly determined by speeding, particularly at daytime, and head-on collision to affect the magnitude of the accident. [39] Excessive speed, improper turning, traffic violations, tyre failure, fatigue with lack of sleep and hypoglycaemia were some causes attributed for the accidents. [39] However, driver error was found to be the main contributing factor in approximately two-thirds of all RTAs. [40]

Our finding is in agreement with a high frequency of condylar fractures found by Ahmed Jan et al., [11] in Jeddah, Saudi Arabia. Studies from other countries done by Bereket C, [29] Schön et al., [41] Matos et al., [42] and Van Beek [43] have also found condyle to be the most frequently affected site. While RTA was the main etiology of the condylar fractures in our study, fall and assault have been found to be most commonly associated with condylar fractures by others. [22,44,45] Few studies have reported the condyle as being the second most frequently fractured site. While RTA was the main etiology of condylar fractures in our study, fall and assault have been found to be most commonly associated with condylar fractures by others. [22,44,45] Few studies have reported the condyle as being the second most frequently fractured site. However, driver error was found to be the main contributing factor in approximately two-thirds of all RTAs. [40]

In our study Angle fracture was the second more frequent site of mandible fracture. Angle of the mandible as the most frequent site fractured has been reported in Riyadh [13,20] and other countries. [50] Studies from different countries show wide variation in the location of the fracture site in the Mandible. Differences in regional and patient factors, etiology and mechanism of injury may be some of the contributing causes for the variation.

The most common combination of bilateral fractures in our study is condyle with parasympysis in 18 patients. This is in agreement with a Turkish study. [34] A horizontally directed impact to the Parasympysis is believed to cause a concentration of tensile strain at the condylar neck resulting in a condylar fracture. Our observation is contrary to Dongas and Hall [37] who reported Parasympysis with angle and Ogundare et al., [21] who found body with angle as the most frequent mandibular fracture combination.

Conclusions

- Motor vehicle road traffic accident was the most common etiology of mandibular fractures in Madinah followed by fall and assault.
- Majority of the victims were Saudi nationals and in the role of vehicle drivers. Most of the patients were males with a M: F ratio of 5.15:1
- Highest number of patients was found in the age group of 16 – 30 years, recognizable as a risk group.
- Our study found the condylar region to be the most common anatomical site of mandible fractured followed by the body, angle and Parasympysis.
- Most frequent combination of bilateral mandibular fractures was condyle with Parasympysis. Bilateral same site fracture was seen more at the Angle
- The results of this retrospective study show similarity with some studies and differ with those of several others.
- There is an undisputed, urgent need in Saudi Arabia for road
safety education and behaviour modification of drivers especially in the ‘at risk age group’ of 16 – 30 years. Relying solely on strict traffic rules and penalties will not address the basic contributing cause of reckless human attitude on the roads.

Conflict of Interest

All authors disclose that there was no conflict of interest.

References

1. Meena RK, Singh AM, Singh CA, Chishti S, Kumar AG, Langshong R. Pattern of fractures and dislocations in a tertiary hospital in North-East India. Internet J Epidemiol 2013; 11:1
2. The co-operation council for the Arab states of the gulf (GCC) 2012. Statistics department (cited 2014 Feb) available http://www.gcc.ag.org/eng/
3. World Health Organization Global Status Report on Road Safety, Geneva (CH): World health organization 2013 available from http://www.who.igd/violence_injury_prevention/road_safety_status/2013/
4. Ellis E, Moos KF, El-Attar A. Ten years of mandibular fractures: an analysis of 2,137 cases. Oral Surg Oral Med Oral Pathol 1985; 59:120-129
5. Down KE, Boot DA, Gorman DF. Maxillofacial and associated injuries in severely traumatized patients: implications of a regional survey. Int J Oral Maxillofac Surg. 1995; 24:409-412
6. Qudah MA, Bataineh AB. A retrospective study of selected oral and maxillofacial fractures in a group of Jordanian children. Oral Surg Oral Med Oral Pathol Radiol Endod 2002; 94:310-314.
7. Andreas ZJ. Incidence, actiology and pattern of mandibular fractures in central Switzerland Swiss Medical Weekly, 2011; 141:w13207
8. Al Ahmed HE, Jaber MA, Abu Fanas SH, Karas M. The pattern of maxillofacial fractures in Sharjah, United Arab Emirates: a review of 230 cases. Oral Surg. Oral Med. Oral Pathol Oral Radiol Endod 2004; 98:166-170.
9. Abdullah WA, Al-Mutairi K, Al-Ali Y, Al-Soghier A, Al-Shnwani A. Patterns and etiology of maxillofacial fractures in Riyadh City, Saudi Arabia. Saudi Dent J 2013; 25:33-38.
10. Almasri M, Amin D, AboOla A, Shargawi J. Maxillofacial Fractures in Makka City in Saudi Arabia; an 8-year Review of Practice. Am J Public Health Res. 2015; 3:56-59.
11. Jan AMA, Alsehaimy M, Al-Sebaei M, Jadu FM. A descriptive study of the epidemiology of maxillofacial trauma in Jeddah. Saudi Arabia J Am Sci 2015; 11:57-61.
12. Alanazi YM, Latif K, Alrwuili MR, Salfiti F, Bilal M, Wyse KR, et al. Incidence of Maxillofacial Injuries reported in Al-Quayyat General Hospital Over a Period of 3 Years. Prena Med Argenti 2016; 102:1-4.
13. Nwoku AL, Uluaydi BA. Retrospective analysis of 1206 maxillofacial fractures in an urban Saudi hospital: 8 year review. Pak Oral Dent J 2008; 24:13-16
14. Rabi AG, Khateery SM. Maxillofacial trauma in al Madina region of Saudi Arabia: a 5-year retrospective study. Asian J Oral Maxillofac Surg. 2002; 14:10-14
15. Almasri M. Severity and causality of maxillofacial injuries in the southern region of Saudi Arabia. Saudi Dent J 2013; 25:107-110
16. Elghehani RA, Orafi MI. Incidence of mandibular fractures in Eastern part of Libya. Med Oral Patol Oral Cir Bucale 2009; 14:e529-e532.
17. Bataneih AB. Etiology and incidence of maxillofacial fractures in the north of Jordan. Oral Surg Oral Med Oral Pathol Oral Rehabil Radiol Endod 1998; 86:31-35
18. Ogundare BO, Bonnick A, Bayley N. Pattern of mandibular fractures in an urban major trauma center. J Oral Maxillofac Surg. 2003; 61:713-718.
19. Simsek S, Simsek B, Abubaker AO, Laskin DM. A comparative study of mandibular fractures in the United States and Turkey. Int J Oral Maxillofac Surg. 2007; 36:395-397.
20. Sakr K, Farag IA, Zeitoun IM. Review of 509 mandibular fractures treated at the University Hospital, Alexandria Egypt. Br J Oral Maxillofac Surg. 2006; 44:107-111
21. Oikarinen K, Schutz P, Thalib L, Sandor GK, Clokie C, Meisami T et al. Differences in the etiology of mandibular fractures in Kuwait, Canada and Finland. Dent Traumatol. 2004; 20:241-245.
22. Lee KH. Epidemiology of mandibular fractures in tertiary trauma center. Emerg Med J. 2008; 25:565-568.
23. AlKhateeb T, Abdullah FM. Cranio-maxillofacial injuries in the United Arab Emirates: A retrospective study. J Oral Maxillofac Surg 2007; 65:1094-1110.
24. Atanasov DT. A retrospective study of 3326 mandibular fractures in 2252 patients. Folia Med (Plovdiv) 2003; 45:38-42.
25. Wong KH. Mandibular fractures: A 3 year retrospective study of cases seen in an oral surgical unit in Singapore. Singapore Dent J 2000; 23:6-10.
26. Ansari S, Akhdar F, Mandoorah M, Moutaery K. Causes and effects of road traffic accidents in Saudi Arabia. Public Health 2000; 114:37-39.
27. Al Turki YA. How can Saudi Arabia use the Decade of Action for Road Safety to catalyse road injury prevention policy and interventions? Int J Inj Contr Saf Promot 2014; 21:397-402.
28. Harshitha KR, Reddy MP, Srinath KS. Etiology and pattern of mandibular fracture in and around Kolar: A retrospective study. International J of Appl Res. 2016; 2:562-565.
29. Bereket C, Sener I, Senel E, Ozkan N, Yilmaz N. Incidence of mandibular fractures in black sea region of Turkey. J Clin Exp Dent. 2015; 7:e410-e413.
30. Strom C, Nordenram A, Fischer K. Jaw fractures in the county of Kopparberg and Stockholm 1979–1988. A retrospective comparative study of frequency and cause with special reference to assault. Swed Dent J. 1991; 15:285-289.
31. Layton S, Dickinson AJ, Norris S. Maxillofacial fractures: a study of recurrent victims. Injury. 1994; 25:523-525.
32. Kheirallah M, Matenko D. The epidemiological analysis of mandibular fractures in the material of I Department of Maxillofacial Surgery of Warsaw University in the years 1988-1992. Czasopism Stom. 1994; 2:123-129.
33. Edwards TJ, David DJ, Simpson DA, Abbott AA. Patterns of mandibular fractures in Adelaide, South Australia. Aust NZ J Surg. 1994; 64:307-311.
34. Dongas P, Hall GM. Mandibular fracture patterns in Tasmania, Australia. J Trauma. 2002; 47:131-137.
35. Riex L, Stevenson AR, Punnia-Moorathy A. An analysis of 80 cases of mandibular fractures treated with miniplate osteosynthesis. Int J Oral Maxillofac Surg. 1991; 20:337-341.
36. Asadi SG, Asadi Z. The etiology of mandibular fractures at an urban centre. J Roy Soc Health. 1997; 117:164-167.
37. Schon R, Roveda SIL, Carter B. Mandibular fractures in Townsville, Australia: incidence, actiology and treatment using the 2.0 AO/ASIF miniplate system. Br J Oral Maxillofac Surg. 2001; 39:145-148.
42. Matos FP, Arnez MF, Sverzut CE, Trivellato AE. A retrospective study of mandibular fracture in a 40-month period. Int J Oral Maxillofac Surg. 2010; 39: 10-15.

43. Van Beek GJ, Merkx CA. Changes in the pattern of fractures of the maxillofacial skeleton. Int J Oral maxillofac Surg. 1999; 28: 424-428.

44. King RE, Scianna JM, Petruzzelli GJ. Mandibular fracture patterns: a suburban trauma center experience. AM J Otolaryngol. 2004; 25: 301-307.

45. Malik S, Singh G. Incidence, Aetiology and Pattern of Mandible Fractures In Sonepat, Haryana (India). Int J Med Dent. 2014; 4: 51-59.

46. Motamedi MH, Dadgar E, Ebrahimi A, Shirani G, Haghighat A, Jamalpour MR. Pattern of maxillofacial fractures: A 5-year analysis of 8,818 patients. J Trauma Acute Care Surg. 2014; 77: 630-634.

47. Kadkhodaei MH. Three year review of facial fractures at a teaching hospital in northern Iran. Br J Oral Maxillofac Surg. 2006; 44: 229-231.

48. Kheirallah M, Almeshaly H. Epidemiological analysis of mandibular fractures in KSA. Conference Paper. 2016 available from https://www.researchgate.net/publication/303389924

49. Natu SS1, Pradhan H, Gupta H, Alam S, Gupta S, Pradhan R et al. An Epidemiological Study on Pattern and Incidence of Mandibular Fractures. Plast Surg Int. 2012; 2012: 834364

50. Chalya PL, Mchembe M, Mabula JB, Kanumba ES, Gilyoma JM. Etiological spectrum, injury characteristics and treatment outcome of maxillofacial injuries in a Tanzanian teaching hospital. J Trauma Manag Outcomes. 2011; 5: 7.