Unidirectional ("stripe") charge density wave order has now been established as a ubiquitous feature in the phase diagram of the cuprate high-temperature superconductors, where it generally competes with superconductivity. Nonetheless, on theoretical grounds it has been conjectured that stripe order (or other forms of "optimal" inhomogeneity) may play an essential positive role in the mechanism of high-temperature superconductivity. Here, we report density matrix renormalization group studies of the Hubbard model on long four- and six-leg cylinders, where the hopping matrix elements transverse to the long direction are periodically modulated—mimicking the effect of putative period 2 stripe order. We find that even modest amplitude modulations can enhance the long-distance superconducting correlations by many orders of magnitude and drive the system into a phase with a substantial spin gap and superconducting quasi-long-range order with a Luttinger exponent, $\kappa_{sc} \sim 1$.

Significance

The Hubbard model plays a central role in the theory of highly correlated systems. Its simplicity allows conceptual issues—which are generally complicated in the context of experiments on interesting materials—to be sharply posed and definitively answered. Recently, a variety of numerical studies have led to the conclusion that the "pure" Hubbard model on the square lattice at intermediate coupling, U, is not superconducting in the range of electron densities in which many previous approximate treatments had inferred high-temperature superconductivity. Here, using controlled density matrix renormalization group methods, we show that superconductivity is spectacularly enhanced if the hopping matrix elements are periodically modulated in a stripe-like pattern, with important (if suggestive) implications concerning the mechanism of unconventional superconductivity.

Author contributions: H.C.J. and S.A.K. designed research, performed research, analyzed data, and wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: hcjiang@stanford.edu or kivelson@stanford.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109406119/-/DCSupplemental.
The Model

We employ DMRG (35) to study the ground-state properties of the Hubbard model on the square lattice, which is defined by the Hamiltonian

$$H = -\sum_{(i,j)} t'_{ij} (\hat{c}_{ia}^\dagger \hat{c}_{ja} + h.c.) + U \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}. \quad [1]$$

Here, \hat{c}_{ia}^\dagger is the electron creation (annihilation) operator on site $i = (x_i, y_i)$ with spin polarization σ, and $\hat{n}_{i\sigma}$ is the electron number operator. We take the lattice geometry to be cylindrical with periodic (open) boundary condition in the \hat{y} (\hat{x}) direction, as shown in Fig. 1. (i,j) denotes NN sites. $t'_{ij} = t$, $t_y = t + dt$, and $t'_{ij} = t - dt$ are the on-site hopping integrals between NN sites in the \hat{x} and \hat{y} directions, respectively. Here, we focus on cylinders with width L_y and length L_x, where L_x and L_y are the numbers of sites along the \hat{x} and \hat{y} directions, respectively. The total number of sites is $N = L_x \times L_y$, the number of electrons is N_e, and the doping level of the system is defined as $\delta = N_h/N$, where $N_h = N - N_e$ is the number of doped holes relative to the half-filled insulator that arises when $N_e = N$.

In the present study, we choose units of energy such that $t = 1$ and consider $dt \leq 0.4$. We consider $U = 12$ at $\delta = 1/12$ and $\delta = 1/8$ doping levels and focus on $L_y = 4$ and 6-leg cylinders of length up to $L_x = 48$. We perform around 60 sweeps and keep up to $m = 20,000$ states for $L_y = 4$ cylinders with a typical truncation error $\epsilon \sim 5 \times 10^{-7}$ and up to $m = 35,000$ states for $L_y = 6$ cylinders with a typical truncation error $\epsilon \sim 3 \times 10^{-6}$.

The results of our calculations (as explained below) are summarized for $\delta = 1/12$ in the remaining figures and quantified in Table 1. More details, including further analysis of truncation error and results for $\delta = 1/8$, are provided in SI Appendix.

SC Pair-Field Correlations

We have calculated the equal-time spin-singlet SC pair-field correlation function

$$\Phi_{\alpha\beta}(r; y_0, y) = \langle \Delta_{\alpha}(x_0, y_0) \Delta_{\beta}(x+r, y+y_0) \rangle. \quad [2]$$

Here, $\Delta_{\alpha}(x, y) = \frac{1}{2} [c_{i\uparrow}(x, y) \sigma_{\alpha} c_{j\downarrow}(x, y) + c_{i\downarrow}(x, y) \sigma_{\alpha} c_{j\uparrow}(x, y)]$ is the spin-singlet pair creation operator on the NN bond from site (x, y) oriented in the \hat{x} or \hat{y} direction. We are interested in the decay of this quantity at large distances along the cylinder, r, as a function of both the relative orientation of the two bonds, α and β, and their relative displacement transverse to the cylinder, y. We take (x_0, y_0) to be the “origin,” chosen to be a site near the center of the system with $x_0 \sim L_x/4$ and $y_0 = 1$. At long distances ($r \gg 1$), $\Phi_{\alpha\beta}$ exhibits power-law decay (i.e., quasi–long-range order [QLO]) characterized by the Luttinger exponent K_{LUT}:

$$\Phi_{\alpha\beta}(r; y_0, y) \sim r^{-K_{\text{LUT}}} \Delta_{\alpha}(y_0) \Delta_{\beta}(y+y_0). \quad [3]$$

The nature of the pairing is encoded in the behavior of the amplitudes, $\Delta_{\alpha}(y)$. Specifically, were there true long-range order (i.e., in the limit $L_y \to \infty$), we could classify SC states (e.g., d wave vs. s wave) by the behavior under symmetry transformations of these amplitudes. Thus, to develop some intuition concerning the meaning of these amplitudes, we analyze what they would mean in this limit. The spatial symmetries of the striped model are such that there are two inequivalent y-directed bonds and a unique x-directed bond. In a state with SC long-range order and if we assume that the translation symmetry of the model is not spontaneously broken, then the most general singlet order parameter on NN bonds can be parameterized as

$$\Delta_y(y) = \Delta_s + \Delta_d + e^{i\pi(y-1)} \Delta_s \quad \text{and} \quad \Delta_y(y) = \Delta_s - \Delta_d. \quad [4]$$

In the limit $dt = 0$, each of these parameters would be associated with a state with different symmetries—nonzero values of Δ_s or Δ_d would characterize an “extended s-wave” or “d-wave state,” while Δ_s nonzero would correspond to a period 2 pair density.

Table 1. Summary of extracted parameters

L_y	dt	K_{cdw}	Δ_d	Δ_s	Δ_s^*	K_{cdw}	ξ_s	ξ_0
4	0.0	1.38 (3)	0.0	0.0	0.066	1.27 (1)	8.6 (4)	3.9 (2)
4	0.1	1.22 (3)	0.019	-0.011	0.074	1.35 (1)	7.1 (2)	3.6 (2)
4	0.2	1.08 (2)	0.032	-0.016	0.082	1.46 (1)	4.7 (2)	3.0 (1)
4	0.3	1.02 (2)	0.042	-0.021	0.091	1.48 (1)	2.9 (1)	2.5 (1)
6	0.0	∞	0.0	0.0	0.0	0.3 (2)	3.9 (4)	2.4 (3)
6	0.3	1.04 (9)	0.070	0.004	0.038	3.5 (2)	1.7 (1)	1.8 (1)
6	0.4	1.03 (8)	0.062	-0.011	0.065	3.3 (2)	1.3 (1)	2.2 (1)

The parameters are obtained by fitting the DMRG results to theoretically expected asymptotic forms of various correlation functions for $\delta = 1/12$ and the given values of L_y and dt. Exponentially falling correlations are represented by a Luttinger exponent of ∞. Precise levels of uncertainty due to finite size effects—especially with regard to the Luttinger exponents—are difficult to estimate.

*Note that in the model as defined, the decoupled two-leg ladder limit reached when $dt \to 0$ has $t_y/t_x = 2$, which exceeds the critical value at which the Luther–Emery phase is observed; however, since this limit could be approached in multiple ways, the intuition that the finite dt state can be thought of from the perspective of weakly coupled Luther–Emery liquids is probably still valid.

Fig. 1. The Hubbard model on the square cylinder. Periodic and open boundary conditions are imposed, respectively, along the directions specified by the lattice basis vectors $\hat{y} = (0, 1)$ and $\hat{x} = (1, 0)$. $t_x = t$ and $t_y = t + dt$ ($t'_x = t - dt$) are hopping integrals between NN sites in the \hat{x} and \hat{y} directions. U is the on-site Coulomb repulsion, and L_x and L_y are the numbers of sites.
wave (also known as a “π-pairing” state). Note that, by symmetry, the pair field vanishes on all x-directed bonds in the π-pairing state. However, for nonzero $d t$, the symmetry distinction between these states is removed, so some mixture of all three is expected. However, it is still reasonable (and conventional) to refer to the case in which $| \Delta_d |$ is the largest component as “d-wave–like” pairing.

For noninfinite L_y, the amplitudes in Eq. 3 can be viewed as reflecting the local symmetry of the pairing and as indicators of the preferred form of pairing that should be expected in the $L_y \to \infty$ limit. Importantly, for $d t = 0$, even for noninfinite L_y, there is a sharp distinction between π pairing (with $\Delta_\pi \neq 0$ and $\Delta_d = 0$) and d-wave–like pairing (with $\Delta_d = 0$ and $\Delta_d \neq 0$). To date, there is no evidence of a tendency toward π pairing on anything other than the four-leg cylinder. However, since for $L_y = 4$, π pairing is equivalent to d-wave pairing on plaquettes oriented perpendicular to the long axis of the cylinder, such a state has been seen and has been referred to in this context as “true d-wave” (9) or “plaquette d-wave” (13) pairing. More generally, for $d t \neq 0$, we can loosely identify distinct states by which component is largest (dominant). (These symmetry arguments are made more precise in SI Appendix, section D.)

Fig. 24 shows $\Phi_{xy}(r; 1, 0)$ (i.e., between y bonds) for $L_y = 4$ cylinders at $\delta = 1/12$. The exponent K_{sc}, obtained by fitting the results using Eq. 3, is $K_{sc} = 1.38(3)$ for the uniform case, $d t = 0$, while for $d t = 0.2 – 0.3$, $K_{sc} \sim 1$. We also have computed other components of $\Phi_{xy}(r; 1, 0)$ and $\Phi_{xx}(r; 1, 0)$, which are shown in SI Appendix, Fig. S2. For the isotropic case with $d t = 0.0$, $\Phi_{xx}(r; 1, 0)$ and $\Phi_{xy}(r; 1, 0)$ decay exponentially as $\Phi_{xx}(r; 1, 0) \sim e^{-r/\xi_{xx}}$ with $\xi_{xx} \sim 1.8$ (8, 13) and $\Phi_{xy}(r; 1, 0) \sim (1 - 1)^{\prime}$ (i.e., the amplitudes are consistent with π-pairing QLRO with $\Delta_\pi = 0.066$ and $\Delta_d = \Delta_d = 0$). This is consistent with previous studies of the $L_y = 4$ Hubbard and t-J models with $d t = 0$ (8, 10, 11, 13). The key observation is that $\Phi_{xy}(r; 0, 0)$ and $\Phi_{yy}(r; 0, 0)$ are significantly enhanced for $d t > 0$, so that they decay as a power law with a similar K_{cs} as Φ_{xy}. In particular, not only is K_{cs} decreased from its $d t = 0$ value, $| \Delta_d |$ increases rapidly as well. For example, for $d t = 0.3$, $\Delta_\pi = 0.042$, $\Delta_\pi = 0.021$, and $\Delta_\pi = 0.091$. (More complete results are presented in Table 1.)

The results are still more dramatic for $L_y = 6$. Consistent with previous studies on the isotropic Hubbard model, on $L_y = 6$ cylinders with $d t = 0$, we find that the SC correlations are relatively weak and appear to decay exponentially with distance as shown, for $\delta = 1/12$, in Fig. 2C and D. However, as was the case for $L_y = 4$ cylinders, we find that the SC pair-field correlations are dramatically enhanced by a finite $d t > 0$, where we find that $\Phi_{xy}(r) \sim r^{-K_{sc}}$ with $K_{sc} \sim 1$. Moreover, the SC pairing symmetry is d-wave like with $\Phi_{xy}(r) \sim -\Phi_{xy}(r)$. For example, for $d t = 0.3$, $\Delta_\pi = 0.042$, $\Delta_\pi = 0.004$, and $\Delta_\pi = 0.038$. As summarized in SI Appendix, the results we have obtained for $\delta = 1/8$ are qualitatively similar to those with $\delta = 1/12$. For instance, for $d t = 0.3$ at $\delta = 1/8$, $K_{sc} = 1.07(7)$, $\Delta_\pi = 0.074$, $\Delta_\pi = 0.007$, and $\Delta_\pi = 0.032$.

CDW Correlations

To measure the charge order, we define the rung density operator $n(x) = \sum_y \hat{n}_y(x, y)$ and its expectation value $\langle n(x) \rangle = \langle \hat{n}(x) \rangle$. Fig. 3A and B shows the charge density distribution $n(x)$ for $L_y = 4$ cylinders, which is consistent with “half-filled charge stripes” with wavelength $\lambda_{cdw} = 1/2$. This

![Fig. 2. SC pair-field correlations. (A) $\Phi_{xy}(r; 1, 0)$ and (B) $\Phi_{xx}(r; 1, 0)$ on $N = 48 \times 4$ cylinders at $\delta = 1/12$ with different $d t$ and (C) $\Phi_{xy}(r; 1, 0)$ and (D) $\Phi_{xy}(r; 1, 0)$ on $N = 48 \times 6$ cylinders at $\delta = 1/12$ with different $d t$ on double-logarithmic scales. (C, Inset and D, Inset) $\Phi_{xy}(r; 1, 0)$ and $\Phi_{xy}(r; 1, 0)$ in double-logarithmic scales with $d t = 0.4$ on both $N = 32 \times 6$ and $N = 48 \times 6$ cylinders. r is the distance between two Cooper pairs in the x direction. Note that only the central half region with $2 \leq r \leq L_y/2 + 1$ is shown and used in the fitting, whereas the remaining data points from each end are removed to minimize boundary effects. The dashed lines denote power-law fitting to $\Phi(r) \sim r^{-K_{sc}}$.](https://doi.org/10.1073/pnas.2109406119)
Fig. 3. Charge density profiles. Charge density distribution \(n(x)\) at \(\delta = 1/12\) doping level on \(N = 48 \times 4\) cylinders with (A) \(dt = 0.0\) and (B) \(dt = 0.3\) and on \(N = 48 \times 6\) cylinders with (C) \(dt = 0.0\) and (D) \(dt = 0.4\). The exponent \(K_{\text{cdw}}\) is extracted using Eq. 5, where the red lines are fitting curves. A few data points in light gray are neglected to minimize boundary effects.

corresponds to an ordering wave vector \(Q = 4\pi\delta\) (i.e., viewing the cylinder as a one-dimensional [1D] system, two holes per 1D unit cell). The charge density profile \(n(x)\) for \(L_y = 6\) cylinders is shown in Fig. 3 C and D, which has wavelength \(\lambda_{\text{cdw}} = 2/3\delta\), consistent with “two third–filled” charge stripes. This corresponds to an ordering wave vector \(Q = 3\pi\delta\) (i.e., four holes per 1D unit cell).

At long distance, the spatial decay of the CDW correlation is dominated by a power law with the Luttinger exponent \(K_{\text{cdw}}\). The exponent \(K_{\text{cdw}}\) can be obtained by fitting the charge density oscillations induced by the boundaries of the cylinder (17, 33)

\[
n(x) = n_0 + A(x) \cos(Qx + \phi) \tag{5}
\]

\[
A(x) = A_Q \left(x^{-K_{\text{cdw}}/2} + (L_x + 1 - x)^{-K_{\text{cdw}}/2} \right).
\]

Here, \(A_Q\) is an amplitude, \(\phi\) is a phase shift, \(n_0 = 1 - \delta\) is the mean density, and \(Q = 4\pi\delta\) for \(L_y = 4\) cylinders and \(Q = 3\pi\delta\) for \(L_y = 6\) cylinders. Note that to improve the fitting quality, a few data points (corresponding to the light gray points in Fig. 3) are excluded to minimize the boundary effect. Values of \(K_{\text{cdw}}\) are summarized in Table 1. The fact that \(K_{\text{cdw}} > K_{\text{sc}}\) for all cases in which \(dt > 0\) suggests that CDW order is secondary compared with SC. The one exception is \(L_y = 6\) and \(dt = 0\), where the CDW correlations are at best slowly decaying and are clearly stronger than the SC. Our results are consistent with CDW QLRO with a value of \(K_{\text{cdw}} \leq 0.3\), consistent with previous results for the \(t-J\) model (14). Note that similar values of \(K_{\text{cdw}}\) can also be obtained from the asymptotic falloff of the density–density correlation function, as shown in SI Appendix.

Spin–Spin Correlations

To describe the magnetic properties of the ground state, we calculate the spin–spin correlation functions defined as

\[
F(r) = \langle \vec{S}_{i_0} \cdot \vec{S}_{i_0 + r} \rangle, \quad \tag{6}
\]

Here, \(\vec{S}_{i_0}\) is the spin operator on site \(i = (x, y)\), and \(i_0 = (x_0, y_0)\) is the reference site with \(x_0 \sim L_x/4\). Fig. 4 shows \(F(r)\) for both

Fig. 4. Spin–spin correlations at \(\delta = 1/12\). (A) \(F(r)\) on \(N = 48 \times 4\) cylinders with different \(dt\) and (B) \(F(r)\) on \(N = 48 \times 6\) cylinders with different \(dt\) in semilogarithmic scale. Dashed lines denote exponential fit \(F(r) \sim e^{-r/\xi}\), where \(r\) is the distance between two sites in the \(x\) direction.
$L_y = 4$ and $L_y = 6$ cylinders at $\delta = 1/12$ with different dt. It is clear that $F(r)$ decays exponentially as $F(r) \sim e^{-r/\xi}$ at long distances, with a finite correlation length ξ (i.e., there must be a finite gap in the spin sector). Moreover, ξ decreases with increasing dt on both $L_y = 4$ and $L_y = 6$ cylinders. In addition, we also observe for both $L_y = 4$ and $L_y = 6$ cylinders that the spin–spin correlation has spatial modulation with a wavelength λ, that is twice that of the charge (i.e., $\lambda = 2\lambda_{\text{cdw}}$). Values of ξ_s for $\delta = 1/12$ and various values of dt are given in Table 1.

Single-Particle Green Function

We have also calculated the single-particle Green function, defined as

$$G(r) = \langle \langle \hat{c}^\dagger_{(y_0, y), \sigma} \hat{c}_{(y_0 + r, y), \sigma} \rangle \rangle.$$ \[7\]

Fig. 5 shows $G(r)$ for both $L_y = 4$ and $L_y = 6$ cylinders at $\delta = 1/12$ with different dt. The long-distance behavior of $G(r)$ is consistent with exponential decay $G(r) \sim e^{-r/\xi}$. The extracted correlation lengths $\xi_G < 4$ for both $L_y = 4$ and $L_y = 6$ cylinders are comparable with ξ_s, as also shown in Table 1.

Summary of Results

What we have generically found, both for $L_y = 4$ and $L_y = 6$, over the entire investigated range of stripe modulation strength, dt, and doped hole concentration, δ, is a form of SC QLRO with exponentially falling spin and single-particle correlations and with typically weaker but presumably also power-law–correlated CDW QLRO. These results are summarized in Table 1 where the values of the Luttinger exponents K_{sc} and K_{cdw}, the various superconducting amplitudes, Δ_1, Δ_2, and Δ_1, and the correlation lengths ξ_s and ξ_G are given as a function of dt for both the 4 and 6 leg cylinders.

Conclusions

It is both conceptually and practically important to understand what aspects of electronic structure are optimal for superconductivity. Circumstantial evidence has been adduced in several ways that certain organized forms of spatially inhomogeneous structure can enhance superconductivity, but we feel that the present results constitute the clearest and most unambiguous evidence to date that this is a real and robust effect. They also are interesting in the context of the still more basic question of whether the two-dimensional repulsive Hubbard model can support high-temperature superconductivity: the present results offer encouraging evidence of an affirmative answer, as they constitute some of the strongest long-range SC correlations documented to date on systems wider than four legs. It is worth acknowledging that the present results on period 2 CDW order cannot be directly compared with the situation in the cuprates, where the CDW order typically has period closer to three ($Y_1Ba_2Cu_3O_{6+\delta}$) or four ($Bi_2Sr_2CaCu_2O_{8+x}$) and $La_2−xSr_xCuO_4$). Nonetheless, it suggests that a more nuanced approach to the intertwining of CDW and SC orders may be appropriate in the cuprate context.

Finally, there is the question of obtaining a conceptual understanding of the numerical results we have reported. This is an ongoing endeavor. However, it is worth mentioning a possible connection between the present results and recent DMRG results that exhibit enhanced superconductivity in a lightly doped quantum spin liquid (36). Indeed, in the discussion of the “spingap proximity effect” in ref. 22, an analogy was made between the effects of stripe order and a mechanism based on a doped spin liquid.

It is reasonable to conclude that the low-energy magnetic fluctuations associated with antiferromagnetic order or near order (i.e., with energies small compared with the SC gap) are detrimental to SC; they would generally be expected to be pair breaking (a clear discussion is in ref. 37). However, higher-energy, short-range correlated antiferromagnetic fluctuations can produce precisely the sort of momentum-dependent interactions that are most conducive to d-wave SC. In this sense, a fully gapped spin liquid would seem to have just the right spectrum of magnetic fluctuations to be an optimal parent to a high-temperature superconductor. Indeed, it is possible to view the gap in such a state as the pairing gap of a superconductor that is waiting to be liberated. In a similar sense, the undoped ($\delta = 0$) two-leg Hubbard ladder has a spin gap and can be viewed as a Mott insulator of preexisting Cooper pairs (rung singlets). In this sense, doping into a modulated array of effective two-leg ladders may be analogous to doping a fully gapped quantum spin liquid.

Data Availability. There are no data underlying this work.

ACKNOWLEDGMENTS. We thank Dror Orgad, Vladimir Calvera, Richard Scalettar, Doug Scalapino, John Tranquada, and Thomas Devreux for helpful discussions. This work was supported by Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division Contract DE-AC02-76SF00515.

1. E. Fradkin, S. A. Kivelson, J. M. Tranquada, Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).
2. D. P. Arovas, E. Berg, S. A. Kivelson, S. Raghu, The Hubbard model. Annu. Rev. Condens. Matter Phys., 10.1146/annurev-conmatphys-031620-100204 (2021).
3. M. Qin, T. Schäfer, S. Andergassen, P. Corboz, E. Gull, The Hubbard model: A computational perspective. Annu. Rev. Condensed Matter Phys., 10.1146/annurev-conmatphys-090921-033948 (2021).
4. B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, J. Zaanen, High temperature superconductivity in the cuprates. Nature 518, 179 (2015).
