Computational Part

Table of Contents

1. Computational Methods .. S2
2. Hydrogenation of 2-butyne using the neutral ruthenium catalyst: Description of additional pathways .. S2
3. Hydrogenation of the alkyne substrate (8b) using the neutral ruthenium catalyst .. S6
4. Hydrogenation of 2-butyne using the cationic ruthenium catalyst .. S8
5. Energy table for the reaction of the model substrate (2-butyne) with the neutral Ru(II) catalyst .. S10
6. Energy table for the reaction of the substrate (8b) with the neutral Ru(II) catalyst .. S11
7. Energy table for the reaction of the model substrate (2-butyne) with the cationic Ru(II) catalyst .. S12
8. Comparison of the computed gas-phase structure and the X-ray structure of 9b .. S14
9. Coordinates ... S15
10. References ... S139
1. Computational Methods

Density functional theory (DFT) was used to elucidate the mechanism of the Ru(II) catalyzed hydrogenation of alkynes. All geometry optimizations were performed using the M06\(^1\) functional. The triple-\(\zeta\) quality def2-TZVP\(^2\) basis set was used for all atoms. The 28 inner-shell core electrons of the ruthenium atom were described by the corresponding def2 effective core potential\(^3\) accounting for scalar relativistic effects (def2-ecp).

Stationary points were characterized by evaluating the harmonic vibrational frequencies at the optimized geometries. Zero-point vibrational energies (ZPVE) were computed from the corresponding harmonic vibrational frequencies without scaling. Relative free energies (\(\Delta G\)) were determined at standard pressure (1 bar) and at room temperature (298 K). The thermal and entropic contributions were evaluated within the rigid-rotor harmonic-oscillator approximation. Solvation contributions were included for dichloromethane on the optimized gas-phase geometries employing the SMD solvation model\(^4\) using the same functional and basis set. All calculations were performed using Gaussian09 with the ultrafine grid.\(^5\)

2. Hydrogenation of 2-butyne using the neutral ruthenium catalyst: Description of additional pathways

Hydrogenation has experimentally been shown to lead to the formation of side products. The pathways involved are discussed here in some detail.

The association of H\(_2\) to C\(_2\) is uphill in Gibbs free energy by 11.3 kcal/mol (Scheme S1). From the association complex R\(_1\), oxidative addition of hydrogen affords the dihydride R\(_2\) which readily delivers a hydride to the \(\alpha\)-carbon forming R\(_3\) which exhibits an \(\alpha\)-agostic interaction.

Intermediate R\(_3\) can undergo facile rotation about the Ru-C bond to enable agostic interactions with either hydrogen at the \(\beta\) position (Scheme S2). The barrier is negligible for formation of an agostic interaction with a primary hydrogen of the methyl group (TS\(_{R3-D1}\)) affording D\(_1\) which can undergo \(\beta\)-hydride elimination with a low barrier (TS\(_{D1-D2}\), 3.7 kcal/mol); from the resulting complex D\(_2\), molecular hydrogen H\(_2\) can easily be extruded. An alternative low-energy rotation about the Ru-C bond transforms R\(_3\) into B\(_1\) showing an agostic interaction with a secondary hydrogen of the ethyl group (via TS\(_{R3-B1}\), 2.1 kcal/mol).
Scheme S1. Detailed mechanism for the addition of H₂ to C₂ from the side of the methyl group. Values in parenthesis are Gibbs free energies in units of kcal·mol⁻¹.

Intermediate B₁ exhibits a strong preference for Ru-H reductive elimination to form the saturated product B₂ rather than β-hydride elimination. By contrast, Ru-H reductive elimination from D₁ is hampered by a less favorable alignment as compared with that in B₁.

Scheme S2. Detailed mechanism for the conversion of R₃ to the saturated (B₂) and isomerized (D₄) products. Values in parenthesis are Gibbs free energies in units of kcal·mol⁻¹.
We also studied the approach of molecular hydrogen from the side of the ethyl group (Schemes S3 and S4). The computed Gibbs free energy profile is shown in Figure S1. The landscape is very similar to that obtained for the approach from the side of the methyl group (see Scheme 3 of the main paper). The approach from the ethyl side yields the saturated alkane B_2' and the desired E-alkene (E_2) while the approach from the methyl side leads to the isomerized product (D_4) and the saturated alkane.

Figure S1. Gibbs free energy profile for addition of H_2 to C_2 from the side of the ethyl group.

Scheme S3. Detailed mechanism for the addition of H_2 to C_2 from the side of the ethyl group. Values in parenthesis are Gibbs free energies in units of kcal mol$^{-1}$.

S4
Scheme S4. Detailed mechanism for the conversion of \(\text{R3}' \) to the saturated alkane (\(\text{B2}' \)) and the \textit{trans}-alkene (\(\text{E2} \)) products. Values in parenthesis are Gibbs free energies in units of kcal·mol\(^{-1}\).

There are two further pathways from \(\text{C2} \) that have not yet been discussed in detail, namely direct formation of \textit{trans}-alkene \(\text{E2} \) and isomerization in the absence of \(\text{H}_2 \). The corresponding Gibbs free energy profiles are displayed in Figure S2. The direct 1,2-hydrogen transfer exhibits the highest barrier of any process investigated presently and is thus unlikely to happen to any measurable extent. The isomerization from \(\text{C2} \) to \(\text{D4} \) involves an initial primary \(\beta \)-hydrogen abstraction by \(\text{Ru} \) from the methyl group. The computed overall barrier is similar to that for formation of the \textit{cis}-alkene \(\text{Z3} \) (compare \(\text{TS}_{\text{Z1-Z2}} \) with \(\text{TS}_{\text{Z1-Z2}} \)). Alternative pathways involving molecular hydrogen remain energetically most favorable and will thus be more likely.
Figure S2. Gibbs free energy profile (in units of kcal mol\(^{-1}\)) for direct formation of E2 from C2 and for isomerization in the absence of H\(_2\).

3. Hydrogenation of the alkyne substrate (8b) using the neutral ruthenium catalyst

After the thorough study of all mechanistic pathways for the model substrate 2-butynel using the neutral ruthenium(II) catalyst, we computed selected pathways for the actual substrate 8b using the same neutral ruthenium catalyst. These pathways are indicated in Schemes S5 and S6. The key results are: (1) The Gibbs free energy barrier for hydride transfer (via TS\(_{A2-A3}\)) is lowered by 8 kcal mol\(^{-1}\) compared to the model substrate. This lowering most probably arises from the hydrogen bonding interaction between the hydroxyl group and the chloride ligand. (2) The formation of carbene C2 from E1 is preferred by 2.6 kcal mol\(^{-1}\) over the competing path that directly leads to E-alkene. Therefore, C2 should mostly be formed from E1. (3) In the E1→C2 conversion, an intermediate similar to C1 (for the model substrate) does not exist. (4) C2 may adopt a less stable conformation, in which the methoxy group is not coordinated to the Ru center; this destabilizes the carbene C2' by 6.6 kcal mol\(^{-1}\) relative to C2. (5) All the paths originating from C2 have high energy barriers (in kcal mol\(^{-1}\)): TS\(_{E1-E2}\) (26.6), TS\(_{C2-E2}\) (31.5), and TS\(_{R1'-R3'}\) (38.6). Therefore, the highly stable carbene C2 acts as a thermodynamic sink in this reaction.
These results are in full agreement with the experimental finding that only C2 is formed when using the actual substrate 8b with the neutral ruthenium catalyst.

Scheme S5. Formation of the metallacyclic complex E1. Hydrogen bonding interactions are shown in red. Gibbs free energies in kcal mol$^{-1}$ are relative to the initial adduct.

Scheme S6. Pathways from E1 leading to either E-alkene or alkane. Hydrogen bonding interactions are shown in red. Gibbs free energies in kcal mol$^{-1}$ are relative to the initial adduct.
4. Hydrogenation of 2-butyne using the cationic ruthenium catalyst

We also considered the cationic catalyst [Cp*Ru(CH$_3$CN)$_3$]$^+$, in place of the neutral catalyst, to study the change in reactivity towards hydrogenation of 2-butyne (see Figures S3 – S5). We use the same labeling scheme as in the neutral case. Here, we only pinpoint key reactivity differences. In the cationic case, A1 undergoes H$_2$ activation and C-H bond formation in a concerted manner via TS$_{A1-A3}$ to yield A3, whereas the reaction is stepwise in the neutral case (Figure S3). Moreover, the formation of A3 is more facile in the cationic case due to a reduced barrier of 22.9 kcal mol$^{-1}$, compared with 27.8 kcal mol$^{-1}$ in the neutral case. Intermediate C2 is less stable than in the neutral case. The reaction between C2 and H$_2$ again involves a concerted H$_2$ activation and C-H bond formation (via TS$_{R1-R3}$/TS$_{R1'-R3'}$), which is different from the stepwise process in the neutral case (Figure S4). C2 is more easily hydrogenated than in the neutral case by 6.0 kcal mol$^{-1}$. Other than this, we find no major differences.

Figure S3. Gibbs free energy profile (in units of kcal-mol$^{-1}$) for the hydrogenation of 2-butyne with the cationic catalyst.
Figure S4. Gibbs free energy profile (in units of kcal·mol⁻¹) for the reaction of carbene C2 with H₂ in the case of the cationic catalyst. H₂ may approach either from the ethyl or methyl side. Primed (unprimed) labels denote the H₂ addition from the ethyl (methyl) side.

Figure S5. Gibbs free energy profile (in units of kcal·mol⁻¹) for direct formation of E2 from C2 and isomerization in the absence of H₂ (in the case of the cationic catalyst).
5. Energy table for the reaction of the model substrate (2-butyne) with the neutral Ru(II) catalyst

Table S1. Listed are the SCF energy, zero point vibrational energy (ZPVE), enthalpy correction (H corr), and Gibbs free energy correction (G corr) determined on the gas-phase geometries for all stationary points calculated using the neutral Ru catalyst with the 2-butyne substrate. The single imaginary frequency (υi cm\(^{-1}\)) is also listed for all transition states. Single point solvent (DCM) corrected SCF energies on the gas phase geometries are also documented. All energies are in atomic units.

	SCF gas	SCF DCM	ZPVE	H corr	G corr	υi (cm\(^{-1}\))
H\(_2\)	-1.170676	-1.170379	0.009802	0.013160	-0.001642	
COD\(^e\)	-311.885137	-311.895992	0.179556	0.187981	0.148036	
2-butyne	-155.909153	-155.916818	0.084023	0.090553	0.054557	
A0	-1257.045711	-1257.069358	0.405931	0.429301	0.357267	
A1	-1102.221195	-1102.244527	0.325399	0.348672	0.275921	
TS\(_{A1-A2}\)	-1102.210663	-1102.233644	0.323785	0.346078	0.276381	i242
A2	-1102.212742	-1102.235656	0.325984	0.348381	0.278153	
TS\(_{A2-A3}\)	-1102.205382	-1102.229081	0.323508	0.345889	0.275004	i460
A3	-1102.215509	-1102.241864	0.327269	0.349804	0.278601	
TS\(_{A3-E1}\)	-1102.215400	-1102.242330	0.327108	0.348993	0.279117	i31
E1	-1102.231583	-1102.254222	0.328121	0.350319	0.279811	
TS\(_{E1-E2}\)	-1102.223233	-1102.245404	0.327278	0.348907	0.279170	i37
E2	-1102.287611	-1102.312147	0.332766	0.354917	0.284219	
TS\(_{E1-C1}\)	-1102.220078	-1102.243464	0.327047	0.348985	0.279224	i644
C1	-1102.223333	-1102.246574	0.327793	0.350302	0.278611	
TS\(_{C1-C2}\)	-1102.221485	-1102.244794	0.326783	0.348953	0.277775	i449
C2	-1102.252791	-1102.278138	0.331010	0.353699	0.280593	
TS\(_{C2-Z1}\)	-1102.225181	-1102.249585	0.327354	0.349208	0.279344	i557
Z1	-1102.228292	-1102.252327	0.328087	0.350438	0.279260	
TS\(_{Z1-Z2}\)	-1102.217448	-1102.240521	0.327720	0.349334	0.280024	i44
Z2	-1102.226201	-1102.248598	0.327958	0.350338	0.279233	
TS\(_{Z2-Z3}\)	-1102.224513	-1102.246874	0.326795	0.348798	0.278856	i481
Z3	-1102.284838	-1102.309165	0.330349	0.355035	0.285069	
TS\(_{A3-Z1}\)	-1102.210127	-1102.237070	0.327045	0.348885	0.279276	i179
TS\(_{C2-R1}\)	-1103.420214	-1103.444479	0.344606	0.368439	0.294651	i215
R1	-1103.428659	-1103.451036	0.348876	0.372025	0.299383	
TS\(_{R1-R2}\)	-1103.419613	-1103.441294	0.347725	0.369841	0.299586	i33
R2	-1103.419820	-1103.441285	0.348038	0.370895	0.298507	
TS\(_{R2-R3}\)	-1103.417505	-1103.439549	0.346722	0.369267	0.297909	i470
R3	-1103.430921	-1103.455571	0.351464	0.373784	0.302813	
TS\(_{R3-D1}\)	-1103.425875	-1103.455841	0.351174	0.373233	0.303033	i89
D1	-1103.451315	-1103.476033	0.352164	0.374262	0.304014	
TS\(_{D1-D2}\)	-1103.444955	-1103.467209	0.348903	0.370770	0.301143	i487
6. Energy table for the reaction of the substrate (8b) with the neutral Ru(II) catalyst

Table S2. Listed are the SCF energy, zero point vibrational energy (ZPVE), enthalpy correction \((H_{\text{corr}}) \), and Gibbs free energy correction \((G_{\text{corr}}) \) computed on the gas-phase geometries from Schemes S5 and S6. Single imaginary frequencies \((\nu_i \text{ cm}^{-1}) \) are also listed for all transition states. Single point solvent (DCM) corrected SCF energies on the gas phase geometries are also documented. All energies are in atomic units.

| | SCF\(_{\text{gas}}\) | SCF\(_{\text{DCM}}\) | ZPVE | \(H_{\text{corr}} \) | \(G_{\text{corr}} \) | \(\nu_i \text{ cm}^{-1} \) |
|----------|---------------------|---------------------|-------|------------------------|------------------------|----------------|----------|
| \(\text{H}_2 \) | -1.170676 | -1.170379 | 0.009802 | 0.013160 | -0.001642 | \(\text{not applicable} \) |
| \(\text{COD} \) | -311.885137 | -311.895992 | 0.179556 | 0.187981 | 0.328132 | \(\text{not applicable} \) |

\(^a \) COD = 1,5-cyclooctadiene.
7. Energy table for the reaction of the model substrate (2-butyne) with the cationic Ru(II) catalyst

Table S3. Listed are the SCF energy, zero point vibrational energy (ZPVE), enthalpy correction (H_{corr}), and Gibbs free energy correction (G_{corr}) computed on the gas-phase geometries from Figures S3, S4, and S5. Single imaginary frequencies (ν_i cm$^{-1}$) are also listed for all transition states. Single point solvent (DCM) corrected SCF energies on the gas phase geometries are also documented. All energies are in atomic units.

Substrate	SCF$_{\text{gas}}$	SCF$_{\text{DCM}}$	ZPVE	H_{corr}	G_{corr}	ν_i (cm$^{-1}$)						
H$_2$	-1.170676	-1.170379	0.009802	0.013160	-0.001642	i648						
CH$_3$CN	-132.709408	-132.719151	0.045207	0.049731	0.021232							
Substrate	-155.909153	-155.916818	0.084023	0.090553	0.054557							
A0	-882.893965	-882.966911	0.363915	0.392357	0.303341							
A1	-774.526044	-774.599262	0.372269	0.398281	0.318301							
TS$_{A1-A3}$	-774.509312	-774.581394	0.369200	0.394765	0.315863	i648						
A3	-774.520908	-774.595117	0.373835	0.399315	0.320423							
TS$_{A3-E1}$	-774.520894	-774.595966	0.373519	0.398288	0.321125	i51						
E1	-774.530419	-774.604269	0.374734	0.399891	0.321392							
TS$_{E1-E2}$	-774.520281	-774.594635	0.373982	0.398637	0.321233	i643						
E2	-774.582284	-774.659706	0.379505	0.404424	0.326956							
TS$_{E1-C1}$	-774.519668	-774.593589	0.373391	0.398156	0.319854	i69						
C1	-774.523392	-774.597224	0.375048	0.399966	0.323069							
TS$_{C1-C2}$	-774.521506	-774.594664	0.373443	0.398393	0.320599	i425						
C2	-774.546072	-774.621932	0.377198	0.402851	0.322441							
TS$_{C2-Z1}$	-774.525462	-774.598846	0.373699	0.398463	0.321099	i607						
Z1	-774.529181	-774.602270	0.374855	0.39986	0.322603							
TS$_{Z1-Z2}$	-774.515719	-774.589987	0.373936	0.398451	0.321969	i59						
Z2	-774.523753	-774.597899	0.374443	0.399758	0.321193							
	TS_{22-23}	TS_{33-31}										
-------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------		
	-774.522535	-774.596607	0.373253	0.398274	0.320235	i393	-774.516821	-774.591048	0.373486	0.398338	0.319774	i157
R1	-775.729650	-775.803949	0.394955	0.421201	0.340151	i347	-775.734265	-775.810462	0.398205	0.423281	0.345756	i93
R3	-775.728209	-775.809622	0.397955	0.422697	0.345857	i93	-775.728209	-775.809622	0.397955	0.422697	0.345857	i93
D1	-775.754758	-775.829239	0.399246	0.423958	0.347453	i845	-775.746630	-775.820523	0.394944	0.419689	0.342982	i845
D3	-775.75615	-775.834197	0.396709	0.422502	0.343284	i347	-775.759802	-775.833804	0.397811	0.423289	0.344855	i93
D4	-775.719999	-775.799535	0.397327	0.422607	0.344145	i182	-775.719999	-775.799535	0.397327	0.422607	0.344145	i182
B1	-775.759802	-775.833804	0.397811	0.423289	0.344855	i93	-775.759409	-775.833575	0.397595	0.422486	0.345126	i387
B2	-775.782106	-775.858228	0.401953	0.427617	0.347301	i845	-775.75615	-775.834197	0.396709	0.422502	0.343284	i845

	TS_{22-23}	TS_{33-31}										
R1	-775.718051	-775.794339	0.389638	0.417200	0.332020	i117	-774.506161	-774.583579	0.373600	0.399089	0.318348	i976
R3'	-775.728434	-775.809782	0.398178	0.422840	0.346540	i93	-775.728434	-775.809782	0.398178	0.422840	0.346540	i93
D1	-775.755857	-775.829754	0.398882	0.423720	0.344870	i387	-775.75615	-775.834197	0.396709	0.421549	0.344014	i178
R3	-775.728209	-775.809622	0.397955	0.422697	0.345857	i93	-775.759054	-775.833791	0.397325	0.422305	0.344221	i371
B2	-775.781313	-775.858117	0.401843	0.426607	0.348884	i976	-775.781313	-775.858117	0.401843	0.426607	0.348884	i976

	TS_{22-23}	TS_{33-31}										
R1	-775.730544	-775.804339	0.394914	0.421093	0.340559	i597	-774.520358	-774.593636	0.374874	0.399720	0.321949	i545
R3	-775.730544	-775.804339	0.394914	0.421093	0.340559	i597	-775.518760	-775.592790	0.374091	0.398268	0.321586	i50
I2	-775.723130	-775.597439	0.375224	0.399935	0.323057	i568	-775.517773	-775.592210	0.373833	0.398355	0.321707	i568
8. Comparison of the computed gas-phase structure and the X-ray structure of 9b

Table S4. Selected bond distances (Å) and angles (°) of structure 9b (X-ray) / C2 (DFT). M06/def2-TZVP (ultrafine grid) was used for geometry optimization. The DFT computed geometry is in close agreement with the X-ray derived structure. Hydrogen atoms are removed for clarity.

Geometry structure	X-ray	DFT
Bond		
Ru-C1	1.88	1.89
Ru-Cl	2.41	2.42
Ru-O1	2.23	2.31
C1-C2	1.52	1.51
C2-C3	1.52	1.53
C3-O1	1.46	1.44
C1-C4	1.52	1.51
C4-O2	1.43	1.41
Angle		
Ru-C1-C2	115.6	115.8
C1-C2-C3	112.3	112.8
C2-C3-O1	102.9	103.6
Ru-C1-C4	128.6	128.2
C1-C4-O2	110.9	111.6
9. Coordinates

All graphics included in this section were generated using the CYLview program.\(^6\)

XYZ coordinates (Å) for the molecules present in the hydrogenation of 2-butyne using the neutral catalyst

![Diagram](image)

\begin{verbatim}
Ru 0.777064 1.278906 1.443995
Cl -0.101411 1.196073 -0.865948
C 0.115427 3.449149 1.463179
C 1.410460 3.331773 0.827023
C 2.330327 2.843646 1.773277
C 1.614112 2.613590 3.000993
C 0.262396 3.050870 2.805823
C -1.100957 4.002884 0.818649
H -1.985267 3.861381 1.441064
H -1.283123 3.514697 -0.141720
H -0.989063 5.076549 0.637005
C 1.762533 3.782686 -0.541526
H 0.889505 3.832377 -1.189202
H 2.474399 3.101756 -1.012137
H 2.223394 4.775831 -0.497542
C 3.796543 2.723912 1.555866
H 4.298468 2.240048 2.394163
H 4.245709 3.714908 1.437237
H 4.028652 2.156858 0.651136
C 2.241044 2.291830 4.310985
H 1.504073 1.959869 5.042880
H 2.735671 3.175907 4.726656
H 2.996958 1.508592 4.228055
C -0.777305 3.142053 3.861300
C -1.780066 2.994767 3.456801
H -0.755321 4.132021 4.327303
H -0.624408 2.408118 4.654282
H -0.175543 -2.442896 1.704246
C -0.231566 -1.670469 0.930064
C 1.121223 -1.539123 0.202746
H -0.984693 -2.014155 0.218565
C -0.718548 -0.384041 1.550267
C 1.959354 -0.418830 0.728752
H 1.666388 -2.485873 0.259763
H 0.926662 -1.347680 -0.854283
C 2.224946 -0.225392 2.090015
H 2.668552 -0.007606 0.012920
C 1.753057 -1.166131 3.180204
\end{verbatim}
S16

A1

![Image of molecular structure]

Atom	X	Y	Z
Ru	0.494118	1.639484	1.367353
Cl	-1.754135	1.266784	0.494887
C	1.064388	0.625319	-0.609384
C	1.656229	0.016799	0.283809
H	-0.298007	0.609256	2.557482
H	0.318652	0.110212	2.263078
C	2.486557	-0.991405	0.938778
C	0.527529	1.048533	-1.894662
C	0.417360	3.813813	1.062701
C	1.741726	3.373919	0.796008
C	2.272463	2.768550	1.983353
C	1.266644	2.851710	2.989025
C	0.105837	3.482995	2.427391
C	-0.503026	4.512896	0.132520
H	-1.491144	4.047762	0.147460
H	-0.140087	4.047759	-0.895766
H	-0.614041	5.564099	0.416170
C	2.522908	3.571877	-0.451454
C	1.902631	3.940839	-1.268155
H	3.000170	2.645262	-0.779707
H	3.318253	4.304606	-0.283445
C	3.670247	2.293297	2.148382
H	3.761553	1.590941	2.978995
H	4.351218	3.127725	2.348530
H	4.029901	1.792029	1.246969
C	1.411650	2.391595	4.395203
C	1.411650	2.391595	4.395203
H	0.448443	2.117643	4.828008
H	1.842606	3.180014	5.019699
H	2.065261	1.520029	4.463301
C	-1.156131	3.846214	3.122561
H	-2.020917	3.625612	2.493919
H	-1.180147	4.912492	3.370889
H	-1.276385	3.286452	4.051224
H	-0.563409	1.057187	-1.851111
H	0.850139	0.370063	-2.688683
H	0.850404	2.058120	-2.152414
H	3.184971	-0.539980	1.647458
H	3.063577	-1.559354	0.204181
H	1.867518	-1.695875	1.500799
Element	x	y	z
---------	------	------	------
Ru	-0.218908	0.164546	-0.484334
Cl	-0.890211	-2.073672	-1.152513
C	-2.239399	0.024219	0.526188
C	-2.374164	0.847416	-0.380502
H	-0.381352	0.308265	-2.073003
H	-0.447370	1.473428	-1.343999
C	-3.023368	1.793243	-1.282807
C	-2.531285	-0.951332	1.568103
C	1.242468	-0.735314	1.047389
C	0.790025	0.477511	1.603432
C	1.058589	1.525732	0.672595
C	1.789154	0.955132	-0.432336
C	1.870303	-0.448623	-0.224645
C	1.157496	-2.091901	1.642399
H	0.615614	-2.767868	0.973060
H	0.643877	-2.083402	2.604373
H	2.157242	-2.507580	1.797930
C	0.171331	0.702930	2.933810
H	-0.033586	-0.230327	3.457757
H	-0.763737	1.263810	2.854476
H	0.844178	1.293648	3.563361
C	0.803091	2.967950	0.931512
H	0.876771	3.557393	0.016916
H	1.520811	3.377089	1.650735
H	-0.197794	3.121862	1.341924
C	2.422924	1.712041	-1.544714
H	2.445329	1.123541	-2.462413
H	3.453500	1.978458	-1.291480
H	1.884554	2.635773	-1.760652
C	2.581384	-1.449454	-1.058221
H	1.973209	-2.347132	-1.186322
H	3.529444	-1.741426	-0.594264
H	2.800696	-1.055860	-2.051080
H	-1.975847	-0.756240	2.487261
H	-2.265184	-1.949009	1.210116
H	-3.597547	-0.938681	1.807950
H	-2.565870	2.783496	-1.215059
H	-4.085464	1.887223	-1.044835
H	-2.928434	1.460308	-2.318371
TS_{A2-A3}

Atom	X	Y	Z
Ru	-0.227446	0.416746	0.084648
Cl	-1.284378	0.835405	-2.061778
C	-2.036053	-0.712172	0.365763
C	-2.230171	0.318295	1.059339
H	-0.319826	2.008039	0.024221
H	-0.907287	1.027833	1.424623
C	-3.156748	1.254846	1.712698
C	-2.498059	-1.913999	-0.324392
C	1.393036	-0.868488	-0.890442
C	1.076858	-1.499364	0.334834
C	1.269641	-0.553866	1.387057
C	1.787456	0.655309	0.807597
C	1.825087	0.475925	-0.612421
C	1.305834	-1.457700	-2.249892
H	0.682252	-0.838231	-2.899761
H	0.879539	-2.460903	-2.233560
H	2.302576	-1.523108	-2.698480
C	0.673247	-2.912758	0.540823
H	0.257298	-3.357459	-0.362361
H	-0.067009	-3.008191	1.338057
H	1.540073	-3.513216	0.835340
C	1.105147	-0.846939	2.834926
H	1.098866	0.064670	3.429260
H	1.918206	-1.481303	3.207186
H	0.166869	-1.375687	3.027268
C	2.292299	1.834937	1.560116
H	2.224975	2.744196	0.962535
H	3.340145	1.695749	1.847739
C	1.719567	2.002795	2.473253
C	2.348491	1.417049	-1.635817
H	1.690570	1.444349	-2.506546
H	3.346453	1.118472	-1.972506
H	2.415292	2.432423	-1.244153
H	-1.995893	-2.813073	0.039774
H	-2.284736	-1.814641	-1.392411
H	-3.574169	-2.056029	-0.194601
H	-2.843431	1.509399	2.727857
H	-4.159529	0.826759	1.755283
H	-3.199750	2.184018	1.138115
Atom	X	Y	Z
------	-----	-----	-----
Ru	-0.097135	-0.130895	-0.467618
Cl	-0.923584	-2.377924	-0.786020
C	-1.952942	0.156911	0.310164
C	-2.256253	1.009526	-0.656671
H	0.319012	-0.483146	-1.987120
H	-1.400027	1.501699	-1.177679
C	-3.587652	1.273236	-1.282277
C	-2.778536	-0.564421	1.287855
C	1.085908	-0.473302	1.284207
C	0.688511	0.900018	1.373233
C	1.194956	1.587986	0.240010
C	1.956245	0.664620	-0.541881
C	1.897378	-0.616032	0.095072
C	0.832542	-1.550899	2.273121
H	0.585132	-2.485797	1.767589
H	-0.003182	-1.304103	2.929452
H	1.713990	-1.723272	2.899033
C	-0.070152	1.541201	2.478173
H	-0.543665	0.803472	3.125800
H	-0.849708	2.206417	2.101371
H	0.602373	2.141787	3.098362
C	1.006303	3.034324	-0.036527
H	1.149829	3.262568	-1.093509
H	1.719186	3.640358	0.532166
H	0.004317	3.365352	0.245776
C	2.749859	1.017838	-1.748563
H	2.952230	0.140551	-2.362186
H	3.709689	1.459316	-1.462507
H	2.225321	1.740550	-2.374968
C	2.601508	-1.859878	-0.305619
H	1.942811	-2.724313	-0.208587
H	3.484983	-2.027267	0.318731
H	2.924539	-1.815075	-1.346028
H	-2.526110	-0.241708	2.503662
H	-2.587153	-1.637447	1.220835
H	-3.848215	-0.379337	1.145078
H	-3.801070	2.343339	-1.340718
H	-4.387600	0.793164	-0.717084
H	-3.617861	0.880185	-2.301706
TS_{E1-E2}

Ru -0.368492 -0.179788 0.236650
Cl -0.218294 -2.316653 1.337415
C -2.224419 -0.461999 0.287287
C -2.182324 0.837737 -0.249789
H -1.142669 -1.101071 -0.901549
H -2.436220 1.639294 0.450533
C -2.601548 1.118515 -1.669623
C -3.264113 -1.447422 0.584243
C 1.936998 -0.212591 0.207085
C 1.439640 0.494335 1.368808
C 0.730456 1.629889 0.914995
C 0.743053 1.601228 -0.523338
C 1.513099 0.475706 -0.942413
C 2.803511 -1.413793 0.263934
H 2.992356 -1.821718 -0.729158
H 2.343734 -2.199151 0.868706
H 3.769286 -1.162073 0.712990
C 1.738416 0.112352 2.770604
H 1.539455 -0.949251 2.932431
H 1.131770 0.676592 3.479350
H 2.791365 0.299879 3.004310
C 0.117153 2.696408 1.744240
H -0.858186 2.999141 1.354672
H 0.747769 3.591121 1.762436
H -0.025948 2.367802 2.773828
C 0.291898 2.700223 -1.412603
H -0.044740 2.330174 -2.382042
H 1.121840 3.390361 -1.584066
H -0.520301 3.277959 -0.969997
C 1.793696 0.119383 -2.357060
H 2.014519 -0.942368 -2.466259
H 2.650005 0.682369 -2.741705
H 0.938104 0.344574 -2.996714
H -2.848702 -2.413483 0.865019
H -3.945668 -1.557640 -0.267365
H -3.863309 -1.066940 1.418237
H -2.194822 0.378222 -2.361663
H -2.286891 2.105968 -2.010198
H -3.694987 1.088488 -1.753862
TS\textsubscript{E1-C1}

Ru $\quad -0.355473 \quad -0.434415 \quad -0.204525$
Cl $\quad 0.483829 \quad -2.375233 \quad -1.344897$
C $\quad 1.292720 \quad 0.402862 \quad -0.321471$
C $\quad 1.211260 \quad 0.320847 \quad 1.070044$
H $\quad -0.244611 \quad -1.427773 \quad 1.038652$
H $\quad 0.483829 \quad -2.375233 \quad -1.344897$
C $\quad 2.160299 \quad -0.575491 \quad 1.823289$
C $\quad 2.250077 \quad 0.727857 \quad -1.344897$
C $\quad 1.837865 \quad 0.043012 \quad -1.903427$
C $\quad 1.501394 \quad 1.257712 \quad -1.283796$
H $\quad -0.244611 \quad -1.427773 \quad 1.038652$
H $\quad 0.878007 \quad 1.200341 \quad 1.627032$
H $\quad 0.244611 \quad -1.427773 \quad 1.038652$
H $\quad -0.483829 \quad -2.375233 \quad -1.344897$
H $\quad -0.244611 \quad -1.427773 \quad 1.038652$
H $\quad 0.483829 \quad -2.375233 \quad -1.344897$
H $\quad 0.244611 \quad -1.427773 \quad 1.038652$
H $\quad 0.878007 \quad 1.200341 \quad 1.627032$
H $\quad 0.244611 \quad -1.427773 \quad 1.038652$
H $\quad 0.483829 \quad -2.375233 \quad -1.344897$
H $\quad 0.878007 \quad 1.200341 \quad 1.627032$
H $\quad 0.244611 \quad -1.427773 \quad 1.038652$
Ru -0.382869 -0.329275 0.084149
Cl -0.196930 -2.640475 0.656716
C 1.301582 0.144078 -0.568348
C 1.528292 0.330149 0.798890
H 0.343111 -0.257806 1.660914
H 1.536105 1.364730 1.162362
C 2.377915 -0.602255 1.619264
C 1.989332 0.500498 -1.810337
C -1.671560 0.074874 1.841165
C -1.396282 1.269229 -1.102933
C -2.000403 1.152903 0.193415
C -2.628421 -0.129334 0.254810
C -2.412408 -0.782801 -0.996116
C -1.315041 -0.205234 -3.258605
H -0.869097 -1.143542 -3.373267
H -0.402157 0.524767 -3.648545
H -2.190644 -0.167903 -3.902743
C -0.758782 2.511435 1.616530
H -0.133751 2.323181 -2.490086
H -0.132230 2.838321 -0.855396
H -1.519941 3.241252 -1.909767
C -2.072628 2.238331 1.206712
H -2.277861 1.840032 2.200777
H -2.864300 2.954000 0.961779
H -1.133999 2.793086 1.264544
C -3.415596 -0.702709 1.378644
H -3.121620 -1.736785 1.571991
H -4.487086 -0.697166 1.153466
H -3.265240 -0.141028 2.501213
C -2.926173 -2.130041 -1.341400
H -2.605834 -2.440901 -2.335815
H -4.019998 -2.137701 -1.318491
H -2.568019 -2.876156 -0.627096
H 1.428104 0.251994 -2.711799
H 2.941442 -0.041324 -1.842807
H 2.248166 1.566750 -1.821460
H 2.337189 -1.618658 1.228303
H 2.042007 -0.637238 2.657214
H 3.419724 -0.263537 1.615888
TSCl_C2

C -1.666469 0.508786 -0.392428
C -1.272165 0.802026 0.936024
C -1.100563 -0.442252 1.643097
C -1.495034 -1.501462 0.756397
C -1.804462 -0.917322 -0.487909
Ru 0.398810 -0.400435 0.055485
C 2.387028 -0.189478 0.866459
C 3.597746 -0.716113 0.139432
C -1.173339 2.150866 1.551564
C -0.775026 -0.586135 3.086757
C -1.552351 -2.951391 1.085199
C -2.255557 -1.627515 -1.709058
C -1.984552 1.465781 -1.483816
Cl 1.037297 -1.387875 -2.025576
C 1.668815 0.914216 0.359671
C 1.896665 2.358419 0.293145
H 1.320763 -1.578364 0.626345
H 2.454810 -0.288088 1.955027
H -0.950101 2.923230 0.814331
H -0.402391 2.192310 2.322983
H -2.122478 2.419430 2.025362
H -0.139341 0.230661 3.434829
H -0.241508 -1.518709 3.280009
H -1.678307 -0.586982 3.705583
H -1.215142 -3.561363 0.245202
H -2.570878 -3.264026 1.336480
H -0.914686 -3.191577 1.937066
H -1.720356 -1.275176 -2.592026
H -3.325477 -1.456373 -1.866202
H -2.089408 -2.702005 -1.635780
H -3.065548 1.577064 -1.621898
H -1.565611 1.125621 -2.433323
H -1.574930 2.456919 -1.281115
H 1.076409 2.900535 -0.180376
H 2.803119 2.531674 -0.299540
H 2.091943 2.786548 1.283731
H 3.469801 -0.637262 -0.940070
H 3.786863 -1.764916 0.374600
H 4.480505 -0.139589 0.435023
Z2

Ru -0.335768 -0.264955 -0.276593
Cl -0.184754 -2.655262 -0.017896
C -2.173235 -0.555370 -0.353907
C -2.138566 0.832765 -0.556107
H -0.488821 -0.569774 -1.831087
C -2.745085 1.735232 0.485076
H -2.243172 1.204599 -1.578327
C -3.201486 -1.592808 -0.352816
C 1.700986 -0.284898 -0.181973
C 1.443355 -0.052847 1.146180
C 0.746652 1.170645 1.129293
C 0.792258 1.680336 -0.219295
C 1.598605 0.799448 -0.997620
C 2.849736 -1.432029 -0.549893
H 2.994879 -1.483620 -1.628631
H 2.422116 -2.367724 -0.215615
H 3.833382 -1.305449 -0.083482
C 1.700562 -0.932181 2.312604
H 1.411114 -1.962845 2.090302
H 1.144661 -0.605998 3.192017
H 2.764778 -0.930758 2.568648
C 0.162872 1.858043 2.311504
H -0.597921 2.584625 2.029147
H 0.941009 2.396515 2.861971
H -0.297000 1.150085 3.003036
C 0.330270 3.013073 -0.685875
H -0.132805 2.954578 -1.672852
H 1.177168 3.702757 -0.762402
H -0.393403 3.459359 -0.004850
C 1.971352 1.022951 -2.418353
H 2.206891 0.086732 -2.924451
H 2.849231 1.673072 -2.489290
H 1.162010 1.503053 -2.970483
H -2.821308 -2.562938 -0.039310
H -3.656228 -1.632972 -1.354938
H -4.017179 -1.276260 0.308133
H -2.361804 2.756721 0.434043
H -2.573643 1.352969 1.493798
H -3.829822 1.798674 0.337397
Atoms	X	Y	Z
Ru	-0.354161	-0.097101	-0.187275
Cl	-1.090814	-2.366754	0.179861
C	-2.165968	0.273203	-0.496857
C	-1.654196	1.578658	0.479427
H	-0.906028	0.321277	1.700941
C	-2.089321	2.528500	0.602259
H	-1.422926	2.059572	-1.432329
C	-3.482832	-0.346264	-0.629957
C	1.784365	-0.921156	-0.091516
C	1.370386	-0.485868	1.224507
C	1.134682	0.902440	1.70002
C	1.357857	1.322231	-0.189228
C	1.799269	0.203285	0.939941
C	2.204894	-2.302854	-0.425269
H	2.344508	-2.433611	-1.498600
H	1.457139	-3.027056	-0.094576
H	3.152166	-2.541941	0.068358
C	1.310380	-1.363110	2.418703
H	0.706616	-2.251278	2.216727
H	0.875066	-0.846499	3.274529
H	2.314517	-1.694676	2.701649
C	0.800755	1.773845	2.326688
H	0.346406	2.712926	2.012844
H	1.703633	2.019994	2.894629
H	0.105715	1.283569	3.010441
C	1.363833	2.731739	-0.684389
H	1.021349	2.791540	-1.719261
H	2.376594	3.146360	-0.651605
H	0.724414	3.381650	-0.084676
C	2.192070	0.231068	-2.372401
H	2.051337	-0.741365	-2.845415
H	3.245448	0.507548	-2.480999
H	1.601774	0.958058	-2.932232
H	3.459290	-1.418861	-0.447372
H	3.903259	-0.146428	-1.621651
H	-4.154098	0.132876	0.092686
H	-1.378069	3.346180	0.743500
H	-2.209573	2.015514	1.559102
H	-3.050596	2.988801	0.345231
Element	x	y	z
---------	---------	---------	---------
Ru	1.136561	0.413449	-1.828358
Cl	3.358924	-0.240329	-2.553361
C	2.162369	0.962564	-0.166814
C	1.929376	-0.226005	0.353130
H	0.879059	-1.086299	-2.337665
H	1.702569	-1.045474	-0.380363
C	1.837040	-0.647250	1.783327
C	2.767560	2.187134	0.367004
C	0.854646	2.297732	-2.832018
C	-0.134008	2.208962	-1.801129
C	-0.970439	1.080960	-2.099024
C	-0.547797	0.516108	-3.324106
C	0.606541	1.224802	-3.766501
C	1.918450	3.322742	-2.995214
H	2.883875	2.848048	-3.185873
H	2.024767	3.937115	-2.100214
H	1.699789	3.988789	-3.235576
C	-0.388487	3.163811	-0.689285
H	0.374453	3.940565	-0.640006
H	-0.417541	2.660618	0.280440
H	-1.352794	3.662061	-0.827605
C	-2.147155	0.662569	-1.285604
H	-2.357669	-0.400512	-1.409709
H	-3.044829	1.215644	-1.582481
H	-1.984795	0.847325	-0.222331
C	-1.221415	-0.590668	-4.051922
H	-0.518545	-1.149604	-4.669402
H	-1.998681	-0.189674	-4.710039
H	-1.696731	-1.294189	-3.367668
C	1.346759	0.994944	-5.031202
H	2.388851	1.297796	-4.335593
H	0.893293	1.562007	-5.850908
H	1.347203	-0.060983	-5.304155
H	2.106132	3.053565	0.300893
H	3.653177	2.416510	-0.236004
H	3.092025	2.072428	1.406303
H	0.817391	-0.942722	2.045086
H	2.128105	0.169839	2.446091
H	2.483090	-1.503898	1.989992
Atom	X	Y	Z
------	------	------	------
Ru	0.343643	0.062379	-0.206990
Cl	-0.395845	2.108155	-1.304511
C	0.186483	-0.910687	1.857398
H	-1.194427	0.349245	-2.932196
H	-0.904547	-1.246893	3.670537
C	0.656552	0.200728	-4.000697
C	0.553161	-2.343594	1.993482
C	0.070934	-1.318490	1.488534
C	-1.261069	-1.035644	1.058893
C	-1.474027	0.348515	1.211971
C	-0.301685	0.937518	1.822370
C	0.639182	-0.088543	2.009308
C	0.649652	-2.676549	1.668668
H	1.739931	-2.656569	1.641361
H	0.312086	-3.367450	0.894332
H	0.350360	-3.098246	2.633826
C	-2.236655	-2.030164	0.540343
H	-1.733568	-2.883477	0.081826
H	-2.896324	-1.591846	-0.210425
H	-2.865789	-2.420424	1.346438
C	-2.715388	1.096311	0.903223
H	-2.496494	1.973161	0.288990
H	3.186754	1.440874	1.828957
H	3.437853	0.480170	0.367468
C	-0.189083	2.367720	2.202431
H	0.818308	2.613425	2.539128
H	-0.882081	2.614307	3.013042
H	-0.423717	3.011947	1.539090
C	1.960206	0.020306	2.682823
H	2.691542	-0.659087	2.243285
H	1.874968	-0.227714	3.745480
H	2.364705	1.029799	2.606364
H	1.184079	-2.723209	-1.192186
H	1.038513	-2.530786	-2.959382
H	-0.373859	-2.934295	-2.017891
H	1.080153	1.075694	-3.507209
H	0.240194	0.511364	-4.959851
H	1.460643	-0.512732	-4.198001
H	1.680923	-0.773907	-0.228289
H	1.730492	0.796349	-0.521874
R2

Ru 0.246622 0.007445 -0.462823
C 1.922009 0.664501 0.227671
C 3.145489 -0.124064 0.560587
H 2.880069 -1.082013 1.007395
H 3.773434 0.435880 1.265350
C 3.942030 -0.716975 0.484909
H 2.149768 2.113487 0.884909
H 3.101651 2.430517 0.038956
H 4.163693 0.537833 1.252102
C 1.862953 1.466741 -0.122764
C 1.256865 0.855335 1.084795
C -1.515312 -0.524125 0.929948
C -1.921779 -0.770163 -0.437759
H -2.187562 -0.188249 -3.139923
H -1.621171 1.469701 -2.993192
H -3.290519 1.075055 -2.585457
C -1.408712 2.929750 -0.460958
H -0.737180 3.468471 0.209261
H -2.411997 3.342482 -0.312099
H -1.109098 3.155184 -1.485162
C -0.903924 1.557015 2.346397
H -0.362989 0.903297 3.031971
H -1.802977 1.907818 2.862800
H -0.277718 2.431117 2.159061
C -1.495886 -1.560822 1.989901
H -0.878693 -2.411161 1.687667
H -2.509309 -1.928943 2.177379
H -1.100933 -1.172750 2.929012
C -2.359803 -2.089926 -0.954462
H -3.305640 -2.394498 -0.495405
H -1.613998 -2.857407 -0.732305
H -2.505195 -2.068210 -2.034705
Cl 1.020342 -2.274908 -0.142242
H 0.759789 0.384951 -1.924648
H 0.618132 1.166781 -1.472991
TSR2-R3

Ru 0.090255 0.195514 -0.262610
C 1.072225 1.814438 0.189512
C 2.557211 1.972549 0.152032
H 3.030514 1.106116 0.618053
H 2.848209 2.874659 0.705029
C 3.056032 2.085232 -1.285948
C 0.402775 3.099481 0.529324
H 0.623565 3.318478 1.581822
H -0.676413 3.097231 0.391234
H 0.836932 3.929734 -0.043587
H 2.538246 2.881923 -1.828492
H 2.890400 1.147165 -1.816067
H 4.123534 2.308523 -1.298924
C -1.851842 -0.503015 -1.047091
C -2.107400 0.594578 -0.148228
C -1.751355 0.177268 1.164814
C -1.233101 -1.140270 1.073386
C -1.313494 -1.576399 -0.291069
C -2.223491 -0.523752 -2.487059
H -1.625170 -1.245595 -3.043552
H -2.074817 0.452098 -2.951610
H -3.277332 -0.792995 -2.612276
C -2.852115 1.828568 -0.519386
H -2.780776 2.598566 0.249952
H -3.915880 1.606640 -0.653540
H -2.488905 2.256441 -1.455587
C -1.914944 0.965342 2.415076
H -1.109560 0.762898 3.122756
H -2.859262 0.721947 2.912343
H -1.919725 2.038999 2.220217
C -0.753885 -1.985876 2.194175
H 0.257055 -2.353107 1.997683
H -1.409600 -2.852630 2.321328
H -0.735242 -1.437747 3.136259
C -0.934953 -2.931566 -0.766653
H -1.649678 -3.686147 -0.422820
H 0.053806 -3.209018 -0.393501
H -0.900230 -2.976164 -1.855738
Cl 2.000399 -1.139696 0.394596
H 0.754893 -0.248405 -1.633378
H 0.217939 1.399705 -1.325465
R3

Ru 0.133337 -0.108771 -0.504750
C 1.907593 0.643042 0.161411
C 3.150043 -0.125757 0.544532
H 2.887305 -1.131152 0.878494
H 3.627460 0.392102 1.384884
C 4.134386 -0.237663 -0.108771
C 1.999743 2.075406 0.608778
H 1.950794 2.128243 1.700979
H 1.220872 2.713160 0.192056
H 2.970916 2.505232 0.327728
H 4.397533 0.746828 -1.008898
H 3.696463 -0.829883 -1.415850
H 5.057789 -0.727997 -0.296035
C -1.904725 0.475785 -1.139646
C -1.462675 1.495172 -0.236048
C -1.210841 0.885752 1.018444
C -1.459033 -0.519999 0.890886
C -1.933744 -0.770345 -0.442887
C -2.374714 0.738216 -2.525300
H -2.391663 -0.172518 -3.123488
H -1.729224 1.455388 -0.304738
H -3.387292 1.154631 -2.514803
C -1.411456 2.943004 -0.566390
H -0.918827 3.524360 0.213302
H -2.421870 3.346745 -0.687915
H -0.878728 3.120279 -1.503385
C -0.838138 1.561473 2.287362
C -0.120407 0.970804 2.859279
H -1.724501 1.694522 2.915574
H -0.403527 2.546873 2.120860
C -1.378990 -1.526594 1.978198
H -1.136888 -2.512018 1.581005
H -2.334455 -1.595635 2.509113
H -0.607155 -1.269560 2.705155
C -2.401454 -2.085713 -0.950081
H -3.354224 -2.368161 -0.491910
H -1.670364 -2.867220 -0.732460
H -2.540799 -2.065146 -2.031510
Cl 1.125461 -2.302657 -0.451899
H 0.004057 -0.657638 -1.390937
H 1.771545 0.627509 -1.017262
Atomo	x	y	z
Ru	0.001457	0.000140	-1.029809
C	1.980102	0.389243	-0.354689
C	2.581372	-0.195908	0.893664
H	2.327705	-1.260812	0.929591
H	2.142114	0.273746	1.782069
C	4.093380	-0.038456	0.952878
C	2.093641	1.887039	-0.509332
H	1.804000	2.424924	0.398161
H	1.478370	2.265337	-1.339139
H	1.321327	2.185671	-0.755315
H	4.387680	1.014097	0.977901
H	4.560909	-0.493755	0.075965
H	4.510904	-0.517406	1.840987
C	-2.123283	0.593342	-1.023201
C	-1.470537	1.524164	-0.158023
C	-0.882829	0.810282	0.913273
C	-1.105608	-0.586846	0.689628
C	-1.921173	-0.722841	-0.500729
C	-2.969114	0.977523	-2.184385
H	-3.141815	0.133136	-2.851189
H	-2.504214	1.770171	-2.772634
H	-3.942962	1.345934	-1.845811
C	-1.496000	2.998642	-0.324841
C	-0.725262	3.488352	0.270674
H	-2.464639	3.405080	-0.015032
H	-1.347153	3.283943	-1.368364
C	-0.289808	1.419837	2.130373
H	0.287724	0.698517	2.706708
H	-1.098104	1.792862	-2.779970
H	0.360355	2.265817	1.902996
C	-0.732778	-1.703465	1.592713
H	-0.518158	-2.607957	1.023179
H	-1.549467	-1.924267	2.288220
H	0.155361	-1.467104	2.180252
C	-2.504343	-1.995287	-0.993201
H	-3.325652	-2.322780	-0.347768
H	-1.750331	-2.783697	-1.017207
H	-2.890979	-1.887446	-2.007065
Cl	0.999846	-2.105599	-1.628919
H	-0.547403	-0.358487	-2.481722
H	2.444963	-0.105598	-1.219679
Element	X	Y	Z
---------	-------	-------	-------
Ru	0.031068	-0.181934	0.018920
C	2.088958	0.376623	0.085002
C	2.791887	0.842942	1.329377
H	2.990145	-0.002698	1.992050
H	2.154581	1.541353	1.886926
C	4.115645	1.517475	0.998720
C	1.488820	1.429034	-0.750302
H	1.604433	2.437330	-0.344445
H	0.300316	1.390696	-0.825989
H	1.747554	1.376522	-1.807002
H	3.966417	2.401960	0.374082
H	4.768685	0.835919	0.448259
H	4.643489	1.832092	1.901577
C	-1.809676	0.054805	1.131222
C	-0.743340	0.271025	2.064260
C	-0.015637	-0.950080	2.189682
C	-0.571148	-1.894109	1.289311
C	-1.704549	-1.292616	0.645920
C	-2.899444	1.025528	0.847132
H	-3.388847	0.811650	-0.103250
H	-2.519015	2.047242	0.798500
H	-3.661812	0.995175	1.632539
C	-0.565032	1.509378	2.868999
H	0.395782	1.525033	3.383936
H	-1.348369	1.599248	3.628602
H	-0.617846	2.402694	2.242062
C	1.059433	-1.255378	3.166800
H	1.863475	-1.840376	2.716901
H	0.648090	-1.849152	3.989208
H	1.497293	-0.356725	3.599210
C	-0.128934	-3.296814	1.096035
H	-0.172389	-3.575980	0.042414
H	-0.768256	-3.983228	1.660739
H	0.899512	-3.441776	1.428158
C	-2.630069	-2.008424	-0.270658
H	-3.246244	-2.726902	0.279109
H	-2.074009	-2.554197	-1.034967
H	-3.297272	-1.315302	-0.784039
Cl	0.804944	-1.563317	-1.819878
H	-0.966940	0.126903	1.185879
H	2.665696	-0.356300	0.476400
D2

Ru 0.006558 0.561177 -0.272290
C 2.173059 0.071699 -0.479729
C 2.990011 -0.053067 0.767487
H 2.735316 -0.952796 1.330176
H 2.798980 0.803075 1.421917
C 4.479601 -0.099357 0.420776
C 1.952148 1.319466 -1.046724
H 2.308249 2.202250 -0.525473
H 0.481582 1.791399 0.767487
H 1.795268 1.433540 -2.110442
H 4.798312 0.815863 -0.092250
H 4.698805 -0.936784 -0.246275
H 5.098247 -0.211185 1.313470
C -1.563121 0.689299 1.189549
C -0.452406 -0.016622 1.798613
C -0.352386 -1.300569 1.172249
C -1.302217 -1.354483 0.143632
C -2.048315 -0.117263 0.126399
C -2.163532 1.958282 1.678714
H -2.631561 2.514118 0.866062
H -1.415885 2.609912 2.131634
H -2.930462 1.754009 2.432277
C 0.239891 0.387353 3.050196
H 1.279655 0.058586 3.063695
H -0.256225 -0.051368 3.922079
H 0.236332 1.470216 3.176910
C 0.544081 -2.417662 1.572094
H 1.137344 -2.788275 0.732640
H -0.043055 -3.260007 1.949561
H 1.230388 -2.121838 2.365020
C -1.566312 -2.505373 -0.748187
H -1.407418 -2.224775 -1.793819
H -2.606197 -2.828761 -0.644602
H -0.919850 -3.352254 -0.518028
C -3.208542 0.149212 -0.760557
H -4.079206 -0.438720 -0.452087
H -2.970905 -0.112226 -1.793668
H -3.490136 1.202247 -0.741737
Cl -0.197112 -0.131879 -2.590132
H -0.408171 1.950381 -0.914358
H 2.173166 -0.793499 -1.140004
Element	X	Y	Z
Ru	0.230361	-0.182283	-0.182731
Cl	0.865162	-2.455335	-0.653060
C	2.150668	0.522072	-0.666634
C	2.393575	0.144126	0.749846
H	1.478584	-0.419554	1.213846
C	2.462226	1.027931	1.388010
C	3.525159	-0.842261	0.984674
C	2.334415	1.962233	-1.042962
C	-1.275842	1.281517	-0.642808
C	-0.950744	1.421360	0.733347
C	-1.347733	0.200868	1.404034
C	-1.900001	-0.681504	0.462389
C	-1.803285	-0.055847	-0.827595
C	-1.202263	2.339099	-1.683578
H	-1.012112	1.913236	-2.669958
H	-0.403889	3.053025	-1.476787
H	-2.142014	2.897507	-1.739746
C	-0.474636	2.649255	1.423684
H	-0.080833	3.379835	0.716406
H	0.315378	2.430728	2.146602
H	-1.289710	3.131170	1.973846
C	-1.192702	-0.035485	2.864126
H	-1.166874	-1.098935	3.102369
H	-2.023855	0.413568	3.417344
H	-0.274617	0.414761	3.247204
C	-2.425029	-2.049662	0.692474
H	-1.856175	-2.781823	0.112255
H	-3.473540	-2.116819	0.388118
H	-2.361699	-2.336197	1.742111
C	-2.348898	-0.640435	-2.080064
H	-1.977364	-0.115908	-2.960762
H	-3.442529	-0.588144	-2.029494
H	-2.060134	-1.688677	-2.174611
H	1.924908	2.167942	-2.034744
H	3.396633	2.236158	-1.067920
H	1.842739	2.630440	-0.330129
H	3.354690	-1.749373	0.402805
H	3.612796	-1.119705	2.036530
H	4.470322	-0.396801	0.667092
H	2.658232	-0.156026	-1.354129
H	0.455332	-0.098159	-1.747234
Element	X	Y	Z
---------	-------	-------	-------
Ru	0.281824	-0.462667	-0.050415
C	2.274015	-0.525684	1.017383
C	2.175545	-1.511696	2.135455
H	1.411497	-1.221045	2.860784
H	3.130718	-1.586230	2.668394
H	1.937069	-2.512571	1.766573
C	1.796624	0.766214	1.077102
H	1.333159	1.106842	2.001398
C	2.319536	1.830787	0.162409
C	-1.271390	1.007905	0.109884
C	-1.298050	0.193441	1.281515
C	-1.499452	-1.157328	0.853484
C	-1.711297	-1.157628	-0.573603
C	-1.546932	0.166451	-1.035066
C	-1.157221	2.486987	0.064704
H	-0.656612	2.821894	-0.084587
H	-0.596317	2.877128	0.915505
H	-2.148122	2.952694	0.082249
C	-1.222664	0.651847	2.692266
H	-0.650515	-0.039751	3.314724
H	-2.223580	0.728967	3.128630
H	-0.756663	1.634576	2.777499
C	-1.594636	-2.348599	1.732619
H	-1.169813	-3.230222	1.249162
H	-2.639255	-2.573536	1.973930
H	-1.062077	-2.195733	2.672265
C	-1.985841	-2.364850	-1.391898
H	-1.696442	-2.219557	-2.432248
H	-3.050388	-2.617532	-1.363065
H	-1.425485	-3.225825	-1.023769
C	-1.617832	0.636993	-2.439424
H	-2.603740	1.055790	-2.666039
H	-1.423446	-0.174824	-3.140168
H	-0.875107	1.414859	-2.627595
Cl	1.421264	-1.720849	-1.677394
H	3.001289	-0.761334	0.244104
H	2.651648	1.399840	-0.785337
H	3.181413	2.332581	0.617422
H	1.577367	2.600313	-0.055292
TS$_{R3-B1'}$

Ru	0.014614	-0.041514	-0.564151
C	1.987395	-0.737679	-0.187491
C	2.073730	-2.230106	0.056058
H	1.606773	-2.590874	1.008766
H	3.112281	-2.579437	0.107732
H	1.582172	-2.790873	-0.741403
C	2.697236	0.087730	0.875022
H	2.354132	-0.207917	1.873178
H	2.434172	1.147228	0.763063
C	4.213218	-0.040489	0.815670
C	-1.859189	1.185745	-0.043933
C	-0.926947	1.178999	1.059259
C	-0.760176	1.160006	1.490422
C	-1.480381	-0.993164	0.560574
C	-2.201429	-0.140661	-0.359141
C	-2.391335	2.422805	-0.672680
H	-2.798422	2.232282	-1.655556
H	-1.620069	3.188563	-0.767976
H	-3.191679	2.841531	-0.054941
C	-0.365199	2.396196	1.694997
H	0.498773	2.159142	2.316415
H	-1.109019	2.893509	2.326669
H	-0.040789	3.118373	0.942761
C	-0.111801	-0.627708	2.741854
H	0.445771	-1.554564	2.597169
H	-0.873322	-0.823236	3.503723
H	0.576330	0.113717	3.147272
C	-1.602107	-2.470889	0.618429
H	-1.722273	-2.893824	-0.379935
H	-2.473502	-2.760805	1.215670
H	-0.721411	-2.929823	1.070430
C	-3.104812	-0.617480	-1.434483
H	-4.052789	-0.979740	-1.024606
H	-2.644240	-1.432916	-1.995451
H	-3.326593	0.175663	-2.149055
Cl	0.344671	-1.005677	2.686825
H	-0.409862	1.088793	-1.562726
H	2.443531	-0.524773	-1.165206
H	4.587093	0.248654	-0.170079
H	4.537628	-1.066777	1.000939
H	4.700006	0.596869	1.557586
TSb1\-b2

Ru 0.772848 -0.853743 -1.633334 -1.633334
C 2.167700 -0.298138 -0.122072 0.900233
H 1.780111 -2.169128 0.900233
H 3.210812 -2.194973 0.900233
H 1.639979 -2.351452 0.857088
C 1.697195 0.442023 1.102945
H 0.771373 -0.016571 1.471688
H 1.442385 1.472300 0.831633
C 2.745137 0.449468 2.202763
H -0.761049 -0.031730 -2.812992
H -1.094547 -1.113381 -1.931782
C -1.309854 1.477700 -0.712484
C -1.688757 -1.454325 0.519281
H -2.136844 -2.316065 0.912988
H -2.752779 -1.711518 0.554141
C -2.513515 -0.620051 1.204213
C -1.204259 -3.539572 -1.768973
C -0.683619 -4.077590 -2.561295
C -2.253183 -3.852465 -1.782500
C -0.785569 -3.865335 -0.814334
C -0.567496 -1.939185 -4.477339
C -0.583334 -3.028999 -4.467308
C 0.410174 -1.625310 -4.852450
C -1.329337 -1.598062 -5.184571
Cl 2.627985 -1.072118 -3.157103
H 1.413041 0.592531 -1.242588
H 3.107610 0.102947 -0.504380
H 3.671060 0.913178 1.853442
H 2.989245 -0.566802 2.523513
H 2.405479 1.002069 3.080780
TS_{12.04}

C -1.203446 0.327775 1.411589
C -1.102122 -1.068680 1.220224
C -1.550281 -1.361053 -0.122287
C -1.998628 -0.139721 -0.710060
C -1.774277 0.896416 0.210787
Ru 0.274150 -0.115723 -0.220501
C 1.393892 -1.893160 -0.456515
H 1.115776 2.487283 1.326918
C -0.660433 -2.060037 2.232981
C -1.734845 -2.705210 -0.725397
C -2.582505 -0.014195 -2.070244
C -2.115100 2.328799 0.046294
C -0.889087 1.101712 2.638156
Cl 1.199354 2.105084 -0.053077
C 2.024931 -0.648692 -0.608896
C 3.373384 -0.123047 -0.851059
H 0.774315 -0.047964 -1.780613
H 1.618691 -2.485910 0.431871
H 0.145891 -1.662543 2.852346
H -0.299310 -2.978965 1.769787
H -1.486248 -2.321711 2.897397
H -1.132607 -3.462768 -0.223615
H -1.455805 -2.709071 -1.781406
H -2.782409 -3.017082 -0.662042
H -2.428084 0.982797 -2.482892
H -3.659867 -0.206360 -2.050767
H -2.133963 -0.729764 -2.760824
H -1.241352 2.960083 0.225899
H -2.892543 2.614420 0.761484
H -2.485065 2.544143 -0.956016
H -1.806098 1.443876 3.128909
H -0.289082 1.982283 2.396897
H -0.330426 0.502093 3.357528
H 3.317281 0.925559 -1.145049
H 3.851210 -0.692613 -1.656616
C 4.188805 -0.255060 0.432380
H 4.212727 -1.289253 0.783974
H 3.749178 0.365484 1.214812
H 5.216418 0.070241 0.266348
Atom	X	Y	Z
C	-1.479248	-1.514872	0.953550
C	-0.773376	-2.568405	0.329679
C	-0.776081	-2.313676	-1.091188
C	-1.569290	-1.152918	-1.332487
C	-1.973540	-0.640634	-0.088330
Ru	0.355028	-0.675944	-0.086302
C	2.132166	-1.673590	-0.599391
H	2.560498	-1.531401	-1.592290
C	-0.181593	-3.763363	0.981242
C	-0.262473	-3.225720	-2.145440
C	-1.894789	-0.604418	-2.674494
C	-2.839628	0.537013	0.152794
C	-1.767613	-1.327205	2.397549
Cl	0.214327	1.383022	1.146093
C	2.162883	-0.634473	0.343777
C	3.180624	0.184510	1.013673
H	0.716083	0.274079	-1.317124
H	2.179294	-2.709028	-0.255792
H	-0.128100	-3.641993	2.063175
H	0.829539	-3.970997	0.620821
H	-0.780099	-4.655571	0.772921
H	0.492440	-3.909684	-1.757534
H	0.186387	-2.669673	-2.970630
H	-1.076299	-3.830445	-2.559082
H	-2.074972	0.469986	-2.636438
H	-2.792587	-1.080648	-3.080990
H	-1.082102	-0.777413	-3.381219
H	-2.403600	1.192996	0.909141
H	-3.823974	0.214593	0.506535
H	-2.983367	1.124756	-0.753823
H	-2.830762	-1.481928	2.607408
H	-1.509333	-0.312505	2.711449
H	-1.199912	-2.022772	3.016065
H	2.760944	0.619201	1.924069
H	3.361213	1.048014	0.358247
C	4.472980	-0.568443	1.274686
H	4.909116	-0.937012	0.343860
H	4.300617	-1.430701	1.922489
H	5.206645	0.073624	1.764111
TS_C2-12

C -1.248306 -1.195146 0.925618
C -0.540423 -2.291365 0.407448
C -0.769957 -2.334326 -1.014061
C -1.725240 -1.321809 0.540423
C -1.979920 -2.291365 -0.366832
Ru 0.237291 -0.381906 0.638652
C 2.068465 -0.725073 0.407448
H 2.549507 0.110199 2.201035
C 0.290192 -3.263690 1.694443
C -0.261410 -3.381218 1.936227
C -2.333171 -1.115183 2.684647
C -2.906105 -0.566832 0.006202
C -1.314619 -0.734071 2.334427
Cl 0.330220 1.764020 0.433655
C 2.020488 -0.736547 -0.298410
C 2.910895 -0.831366 0.858838
H 0.525830 0.556611 -1.924274
H 2.115853 -1.658153 2.586677
H 0.679388 -2.832903 2.099210
H 1.141957 -3.612806 0.577446
H -0.295901 -4.147177 1.436988
H 0.737636 -3.720146 -1.654717
H -0.205240 -3.013895 2.964293
H -0.913754 -4.260431 1.936487
H -2.675864 -0.088477 -2.814366
H -3.194216 -0.775722 2.828425
H -1.619337 -1.324611 3.482453
H -2.419826 1.387133 0.526916
H -3.793842 0.272373 0.562516
H -3.239275 0.951802 -0.970338
H -2.319317 0.873719 2.745496
H -1.070476 0.329863 2.402936
H -0.616863 -1.280234 2.970709
H 2.329677 -0.827936 1.786151
C 3.845691 0.308633 0.827000
H 3.499116 -1.756519 0.817867
H 3.262133 1.302906 0.839040
H 4.462927 0.372302 -0.072783
H 4.502460 0.371027 1.697026
TS\textsubscript{C2-E2}

Ru 0.084553 -0.157825 -0.162085
Cl 1.110585 -2.200838 -0.817647
C 1.943961 0.794189 -0.499449
C 3.100345 0.615500 -0.649957
H 4.012923 1.135835 -0.073753
H 2.455720 -0.318570 0.699957
C 3.200208 -0.177119 1.491339
C 2.043420 1.683369 -1.703868
C -1.726327 0.825587 -0.659735
C -1.122680 1.523000 0.432876
C -0.976728 0.586465 1.500696
C -1.579044 -0.668672 1.091902
C -2.052095 -0.516218 -0.231362
C -2.048256 1.394716 -1.992099
H -1.955848 0.639387 -2.774657
H -1.379478 2.218608 -2.247654
H -3.074435 1.777248 -2.022133
C -0.733141 2.956356 0.466978
H -0.543839 3.109687 -0.535544
H 0.174853 3.109687 1.055125
H -1.520749 3.574212 0.910624
C -0.407470 0.870619 2.841835
H 0.066277 -0.016195 3.267508
H -1.183071 1.197844 3.543255
H 0.347274 1.658272 2.791900
C -1.634632 -1.894388 1.927372
H -1.737800 -2.789026 1.312625
H -2.474692 -1.864173 2.628959
H -0.717883 -2.010565 2.510411
C -2.698460 -1.551614 -1.077034
H -2.346783 -1.490151 -2.109217
H -3.787775 -1.441270 -1.088242
H -2.464590 -2.555739 -0.721537
H 1.594847 1.213120 -2.581021
H 3.069186 1.987623 -1.946750
H 1.463216 2.588597 -1.506631
H 2.329247 -0.824468 1.617947
H 3.229731 0.515655 2.338960
H 4.113710 -0.773186 1.529564
XYZ coordinates (Å) for the molecules present in the hydrogenation of the actual substrate using the neutral catalyst

Alkyne 8b

O 2.196052000 -1.006168000 -0.134210000
O -2.905270000 -0.172328000 1.369312000
H -2.399116000 -0.853764000 1.822197000
C -0.980049000 0.063820000 0.006137000
C 0.216604000 0.149225000 -0.001352000
C 1.672858000 0.312776000 -0.003894000
C 3.583181000 -1.147331000 -0.041105000
H 3.807926000 -2.190328000 -0.265312000
H 3.964502000 -0.926788000 0.963898000
H 4.126257000 -0.522904000 -0.761963000
C -2.439042000 -0.096411000 0.028097000
C -3.120459000 1.118013000 -0.571746000
H -4.202786000 0.987575000 -0.510812000
H -2.833705000 1.242184000 -1.616800000
H -2.844430000 2.016091000 -0.018690000
C -2.822207000 -1.361351000 -0.727026000
H -2.350194000 -2.235194000 -0.272212000
H -2.501089000 -1.307537000 -1.769044000
H -3.906319000 -1.486722000 -0.690661000
C 2.071202000 1.180483000 -1.193268000
H 3.145821000 1.373223000 -1.198788000
H 1.558063000 2.141911000 -1.140495000
H 1.792365000 0.686775000 -2.125041000
C 2.102379000 0.965044000 1.305536000
H 3.170604000 1.191231000 1.302360000
H 1.879505000 0.360440000 2.146383000
H 1.559526000 1.900574000 1.445902000
Element	X-Coordinate	Y-Coordinate	Z-Coordinate
Ru	-0.628357	0.327766	-0.384171
Cl	-0.585830	1.164013	-2.322059
O	2.955407	-2.021336	0.236171
O	-0.189732	3.057793	0.249033
H	-0.539161	2.768863	-0.612965
C	0.926133	0.940663	0.233526
C	1.610280	-0.148785	3.057753
O	-0.189732	3.057793	0.249033
H	0.926133	0.940663	0.233526
C	4.040028	-2.834259	-0.104418
H	3.892897	-3.787769	0.403459
H	5.001705	-2.421809	0.226128
C	4.098178	-3.027209	-1.182275
C	1.064866	2.422308	1.913046
H	1.579742	3.841348	1.913046
C	2.552956	2.354857	1.963812
H	0.882793	2.342866	2.551333
C	2.021691	2.990418	-0.648102
H	1.659534	2.761494	-1.651734
H	3.032594	2.593014	-0.541106
C	3.287987	-0.517044	-1.656986
H	4.293955	-0.859973	-1.910368
H	3.196735	0.527726	-1.957028
C	2.555708	-1.093012	-2.230529
C	4.021591	0.094305	0.678094
H	5.030457	-0.281404	0.495087
H	3.786160	-0.029576	1.736656
C	4.023100	1.158315	0.441383
C	2.654827	0.319599	0.279564
C	-1.902054	0.183611	1.473890
C	-1.387486	-1.143057	1.525175
C	-1.904529	-1.869366	0.394918
C	-2.684855	-0.954815	-0.388567
C	-3.391787	1.525731	-0.170948
H	-3.199920	1.726652	-1.227289
H	-3.100790	2.409115	0.397509
H	-4.469729	1.380545	-0.048275
C	-1.722674	1.236357	2.505291
H	-1.501577	2.203889	2.052034
H	-0.914890	0.987963	3.194870
H	-2.638485	1.335210	3.096533
C	-0.522249	-1.696064	2.599312
H	0.017740	-2.580150	2.256584
H	-1.107652	-1.979670	3.479090
H	0.224582	-0.964810	2.918412
C	-1.742691	-3.329491	0.161874
H	-1.911704	-3.584217	-0.884555
H	-2.451941	-3.901814	0.767825
H	-0.736895	-3.665375	0.420057
C	-3.488019	-1.243825	-1.604273
H	-3.345847	0.463816	2.354545
H	-4.555506	-1.293606	-1.366476
H	-3.198240	-2.191878	-2.057956
H	-0.496745	-1.341697	-1.616794
H	0.961716	-1.143941	-0.034912
Element	x	y	z
---------	--------------------	--------------------	--------------------
Ru	-0.555269000	0.214441000	-0.058528000
Cl	-1.612802000	2.243314000	-0.912994000
O	0.652760000	3.582855000	0.544779000
H	-0.178210000	3.406632000	0.070920000
C	1.026731000	1.210325000	0.186005000
C	1.479954000	-0.078151000	0.538872000
C	2.666668000	2.710024000	1.252924000
H	0.432862000	0.638599000	-1.320939000
H	1.601222000	-0.226614000	1.617380000
C	2.533200000	-0.920467000	1.980302000
C	3.549079000	2.117648000	1.020121000
C	2.165040000	2.923993000	-1.190015000
H	2.596699000	3.927924000	-1.168460000
C	2.375255000	-0.987141000	-1.693170000
H	3.198294000	-1.546532000	-2.141070000
C	2.390520000	0.016622000	-2.118690000
H	1.431186000	-1.449976000	-1.980302000
C	3.916585000	-0.373976000	0.153094000
C	4.701454000	-1.038440000	-0.214683000
H	4.033959000	-0.267120000	1.233466000
C	4.074277000	0.598081000	-0.316275000
C	-2.802799000	-0.407588000	0.011797000
C	-2.194680000	-0.545315000	1.294716000
C	-1.155546000	-1.506514000	1.171261000
C	-1.113082000	-1.993207000	-0.207597000
C	-2.128433000	-1.236555000	-0.914759000
C	-4.011205000	0.401240000	-0.261809000
H	-4.111830000	0.646298000	-1.318022000
H	-4.012143000	1.335520000	0.298411000
H	-4.891935000	-0.176175000	0.040758000
C	-2.640365000	0.151968000	2.528368000
H	-2.832589000	1.200999000	2.334263000
H	-1.886544000	0.093639000	3.313834000
H	-3.564471000	-0.286781000	2.919681000
C	-0.370175000	-2.075532000	2.294355000
H	0.584546000	-2.475888000	1.953000000
C	-0.931705000	-2.879890000	2.779650000
H	-0.162469000	-1.319544000	3.054997000
C	-0.380370000	-3.116869000	-0.734814000
H	-0.086226000	-2.985653000	-1.777758000
H	-1.031552000	-3.996152000	-0.694548000
H	0.514567000	-3.324281000	-0.154228000
C	-2.447808000	-1.367024000	-2.359656000
H	-2.725113000	-0.401134000	-2.785891000
H	-3.278240000	-2.059595000	-2.529567000
O	-1.587464000	-1.735680000	-2.920575000
C	2.402697000	-2.212196000	0.423954000
C	3.151775000	-3.267583000	-0.100427000
H	4.227561000	-3.058037000	-0.137428000
H	3.001791000	-4.121640000	0.562532000
H	2.823582000	-3.559590000	-1.106860000

TSE1-E2
XYZ coordinates (Å) for the molecules for the hydrogenation of 2-butyne using the cationic catalyst

A0
S103
Element	X	Y	Z
Ru	0.060654000	-0.226652000	-0.018922000
C	0.375599000	-2.447578000	0.092473000
C	-0.944332000	-2.257945000	-0.542679000
H	-1.684375000	-2.306256000	0.542679000
H	1.068836000	-2.712729000	-0.705239000
C	-1.440536000	-2.485928000	1.489916000
C	-0.085976000	-2.437755000	2.227297000
H	-1.777278000	-2.257786000	1.737172000
H	0.984462000	-3.819109000	1.610209000
H	-0.657564000	-2.299306000	-2.382247000
H	-2.300882000	-1.866211000	-1.895581000
C	-1.757842000	-3.527368000	-1.756598000
C	-0.058288000	1.731497000	0.856935000
C	-1.163474000	0.918814000	1.304240000
C	-1.967174000	0.588138000	0.172890000
C	-3.314674000	1.120233000	-0.982111000
C	-0.149989000	1.852880000	-0.552364000
C	0.981325000	2.307489000	1.744744000
H	1.867726000	2.609805000	1.187154000
H	1.292085000	1.591670000	2.508268000
C	0.598491000	3.191370000	2.265898000
C	-1.439263000	0.554760000	2.712686000
H	-0.515195000	0.406940000	3.273681000
H	-2.031777000	-0.358082000	2.785090000
H	-1.999004000	1.351986000	3.212218000
C	-3.299086000	-0.064526000	0.216668000
H	-3.527284000	-0.610400000	-0.698417000
H	-4.076628000	0.694110000	0.342253000
H	-3.389762000	-0.757756000	1.053351000
C	-1.782583000	1.049362000	-2.385949000
H	-0.971360000	0.774191000	-3.063241000
H	-2.153391000	2.027878000	-2.706771000
H	-2.590215000	0.330592000	-2.515813000
C	0.753372000	2.601524000	-1.459962000
H	1.709482000	2.826152000	-0.987152000
H	0.300530000	3.552325000	-1.755259000
H	0.952761000	2.037955000	-2.373797000
C	3.274967000	-0.228953000	-0.374764000
N	2.136837000	-0.274507000	-0.240760600
C	4.703766000	-0.174685000	-0.544254000
H	5.199695000	-0.364226000	0.408721000
H	5.024036000	-0.931763000	-1.261240000
H	5.006024000	0.807494000	-0.909393000
TS_{E1-ci}

\[
\begin{array}{cccc}
\text{Ru} & -0.113402000 & 0.217411000 & -0.271894000 \\
C & -0.481462000 & 1.890031000 & 0.517823000 \\
C & -0.137050000 & 2.336872000 & -0.752331000 \\
H & -0.450193000 & 0.351510000 & -1.842120000 \\
H & 0.891642000 & 2.650428000 & -1.934201000 \\
C & -1.170344000 & 3.010800000 & -1.614929000 \\
C & -0.481462000 & 1.890031000 & 0.517823000 \\
C & -1.015361000 & 2.442818000 & 1.752481000 \\
H & -0.430193000 & 0.351510000 & -1.842120000 \\
H & -0.137050000 & 2.336872000 & -0.752331000 \\
H & 0.891642000 & 2.650428000 & -1.934201000 \\
H & -2.170600000 & 2.630709000 & -1.397554000 \\
C & -0.312993000 & 3.161623000 & 2.188989000 \\
C & 0.733300000 & -1.271763000 & 1.215128000 \\
C & 2.090743000 & -0.028388000 & -0.182416000 \\
H & 0.577525000 & -2.673892000 & 2.819448000 \\
C & 1.607000000 & 0.694002000 & 2.310019000 \\
C & 2.017315000 & 1.719700000 & 1.995090000 \\
C & 1.592063000 & -1.134253000 & -0.942284000 \\
C & 0.577704000 & -3.989244000 & 0.247413000 \\
C & 2.017315000 & -0.028388000 & -0.182416000 \\
C & 2.090743000 & -0.028388000 & -0.182416000 \\
C & 1.592063000 & -1.134253000 & -0.942284000 \\
C & 0.733300000 & -1.271763000 & 1.215128000 \\
C & 2.017315000 & 1.719700000 & 1.995090000 \\
C & 1.592063000 & -1.134253000 & -0.942284000 \\
C & 0.733300000 & -1.271763000 & 1.215128000 \\
C & 2.017315000 & 1.719700000 & 1.995090000 \\
C & 1.592063000 & -1.134253000 & -0.942284000 \\
C & 0.733300000 & -1.271763000 & 1.215128000 \\
C & 2.017315000 & 1.719700000 & 1.995090000 \\
C & 1.592063000 & -1.134253000 & -0.942284000 \\
C & 0.733300000 & -1.271763000 & 1.215128000 \\
C & 2.017315000 & 1.719700000 & 1.995090000 \\
C & 1.592063000 & -1.134253000 & -0.942284000 \\
C & 0.733300000 & -1.271763000 & 1.215128000 \\
C & 2.017315000 & 1.719700000 & 1.995090000 \\
C & 1.592063000 & -1.134253000 & -0.942284000 \\
C & 0.733300000 & -1.271763000 & 1.215128000 \\
C & 2.017315000 & 1.719700000 & 1.995090000 \\
C & 1.592063000 & -1.134253000 & -0.942284000 \\
C & 0.733300000 & -1.271763000 & 1.215128000 \\
C & 2.017315000 & 1.719700000 & 1.995090000 \\
C & 1.592063000 & -1.134253000 & -0.942284000 \\n\end{array}
\]
C1

Ru -0.133211000 0.261080000 -0.203896000
C 0.036709000 2.031654000 0.454886000
C -0.443122000 2.508589000 -0.823981000
H -0.628936000 0.321316000 -1.713602000
H 0.294645000 2.685254000 -1.539085000
C -1.843519000 2.785939000 -1.096707000
C -0.443122000 2.308589000 -0.823881000
H -0.628936000 0.321316000 -1.713602000
C 0.036709000 2.031654000 0.454886000
H 1.031641000 2.210122000 2.353290000
H 1.511339000 3.391796000 -1.157362000
H 0.294645000 2.685254000 -1.539085000
H 1.031641000 2.210122000 2.353290000
C 1.371181000 -0.774511000 1.227062000
C 2.041200000 -0.132185000 0.136915000
C 1.609768000 -0.747342000 -1.084298000
C 0.659799000 -1.764571000 -0.744512000
C 0.513826000 -1.760632000 0.677433000
C 1.597064000 -0.552014000 2.679502000
H 0.659330000 -0.455587000 3.230200000
H 2.191543000 0.341426000 2.869091000
H 2.140990000 -1.395881000 3.114204000
C 3.137340000 0.867881000 0.222970000
H 3.161468000 1.376677000 1.186204000
H 3.055469000 1.625353000 -0.559496000
H 4.104164000 0.373823000 0.091397000
C 2.176980000 -0.464224000 -2.427565000
H 1.510634000 -0.792842000 -3.224638000
H 3.132470000 -0.981485000 -2.555226000
H 2.361694000 0.603911000 -2.568053000
C 0.008508000 -2.720470000 -1.673624000
H -1.030201000 -2.910497000 -1.403123000
H 0.527726000 -3.682973000 -1.676462000
H 0.011223000 -2.345278000 -2.702763000
C -0.344020000 -2.677502000 1.468209000
H -0.763634000 -2.180508000 2.344687000
H 0.243648000 -3.527611000 1.827253000
H -1.165210000 -3.079842000 0.874414000
C -3.236792000 -0.418361000 0.257027000
N -2.140010000 -0.124848000 0.105134000
C -4.620113000 -0.771743000 0.445770000
H -4.985784000 -1.334837000 -0.413798000
H -4.738658000 -1.378673000 1.344028000
H -5.221773000 0.132044000 0.551954000
Element	X	Y	Z
Ru	-0.126643000	0.285617000	-0.157897000
C	0.402033000	1.307718000	0.701034000
C	0.067711000	2.418829000	-0.544785000
H	-0.445049000	0.535067000	-1.696681000
H	-0.157897000	2.758236000	-0.718042000
C	1.106077000	3.025476000	1.398904000
C	1.235481000	2.396959000	1.795521000
H	-0.445049000	0.535067000	-1.696681000
H	-0.952025000	2.758236000	-0.718042000
C	2.144385000	2.866725000	1.398904000
H	1.136817000	4.113402000	-1.334313000
C	-0.203066000	-1.887806000	0.536606000
C	0.843637000	-1.251600000	1.258309000
C	1.793386000	-0.765859000	0.307291000
C	1.332955000	-1.116806000	-1.004240000
C	0.095472000	-1.829498000	-0.856671000
C	-1.378552000	-2.536440000	1.150713000
H	-2.212270000	-2.627684000	0.451920000
H	-1.722306000	-2.022642000	2.040013000
C	-1.119984000	-3.570970000	1.458615000
C	0.953410000	-1.206907000	2.736010000
H	0.013771000	-0.910690000	3.209188000
H	1.728254000	-0.517020000	3.073179000
H	1.213678000	-2.194620000	3.131940000
C	3.121835000	-0.168537000	0.599239000
H	3.402892000	0.576570000	-0.146769000
C	3.890761000	-0.946275000	0.581637000
H	3.161659000	0.302292000	1.581082000
C	2.097620000	-0.915745000	-2.262855000
H	1.447860000	-0.358960000	-3.136455000
H	2.848564000	-1.702102000	-2.382306000
H	2.622075000	0.040758000	-2.264655000
C	-0.693378000	-2.473678000	-1.940479000
H	-1.767049000	-2.374636000	-1.771313000
H	-0.469642000	-3.542530000	-1.999832000
H	-0.473467000	-2.034251000	-2.913131000
C	-3.303729000	0.691074000	0.033976000
N	-2.165855000	0.570245000	-0.019999000
C	-4.734143000	0.845757000	0.101948000
H	-4.997214000	1.558547000	0.884493000
H	-5.120699000	1.209188000	-0.850985000
H	-5.203980000	-0.111375000	0.329938000
Ru	-0.0539511000	0.311976000	-0.232662000
-----	---------------	-------------	--------------
C	-0.2574490000	2.171025000	-0.532090000
C	1.1259660000	2.146425000	-0.386030000
H	-0.280003000	0.731273000	-1.782659000
C	1.7726360000	2.864829000	0.761947000
H	1.7422880000	2.056539000	-1.280605000
C	-1.2796600000	3.197040000	-0.707275000
H	-2.2995600000	2.831159000	-0.617516000
H	-1.1602620000	3.691284000	-1.677840000
H	-1.1120470000	3.974838000	0.048590000
H	2.7501010000	2.446932000	1.007914000
H	1.1513710000	2.837443000	1.659214000
H	1.9395660000	3.914311000	0.496755000
C	-0.0594810000	-1.941585000	1.1301920000
C	0.13422898000	-0.767667000	1.1836970000
C	1.9131640000	-0.764372000	-0.145874000
C	1.0603730000	-1.535620000	-0.989947000
C	-1.1703560000	-2.796319000	-0.714479000
H	-1.4741910000	-2.528685000	-1.727174000
H	-2.0472530000	-2.732080000	-0.070242000
H	-0.8645390000	-3.849338000	-0.733148000
C	-0.7572690000	-1.777653000	2.2829120000
H	-1.8022670000	-1.899620000	1.9853040000
H	-0.6934980000	-1.006774000	3.0513980000
C	-0.4693720000	-2.726904000	2.7441210000
C	1.9701340000	-0.210554000	2.4087990000
H	2.7039200000	0.560854000	2.1815530000
H	2.4899630000	-1.002627000	2.9561940000
H	1.2292890000	0.219557000	3.0843580000
C	3.2621920000	-0.277936000	-0.524940000
H	3.2866130000	0.084796000	-1.553615000
H	3.9873080000	-1.093995000	-0.453209000
H	3.6109100000	0.524389000	0.1246410000
C	1.3206800000	-1.864692000	-2.413233000
H	0.3966640000	-2.047952000	-2.961519000
H	1.9324090000	-2.768871000	-2.483736000
H	1.8601750000	-1.064611000	-2.920631000
C	-3.2453070000	0.175950000	0.0839000000
N	-2.1091890000	0.275508000	-0.024074000
C	-4.6737800000	0.046702000	0.2194760000
H	-5.0278320000	0.620903000	1.0764580000
H	-5.1717120000	0.409220000	-0.680694000
H	-4.9392070000	-1.001342000	0.3656700000
TS\textsubscript{A3-Z1}

Ru -0.10366000 0.024842000 -0.339399000
C -1.128470000 1.643220000 0.397328000
C -1.372775000 1.391186000 -0.847150000
H -0.122514000 0.599016000 -1.821038000
H -1.290913000 1.175789000 -1.625853000
C -1.613824000 3.338302000 -1.449623000
C -1.309971000 2.329306000 1.683299000
C 1.058978000 -0.502877000 1.432044000
C 1.718802000 -1.262166000 -1.625853000
C 1.719809000 -1.262166000 -1.625853000
C 1.033855000 -0.502877000 1.432044000
C 0.562185000 -0.530665000 2.831675000
C 2.115428000 1.894241000 1.313297000
H 1.740555000 -2.179876000 0.692165000
H 1.761111000 1.966468000 1.356707000
C 2.249620000 0.913645000 -0.550723000
H 2.569610900 1.970341000 -1.398108000
H 2.067436000 -2.174154000 -1.778928000
C 1.323537000 -2.959619000 -1.909871000
C 0.493374000 -0.331107000 -0.361078000
H -0.331107000 -2.912497000 1.56236000
C 1.269581000 -3.597566000 1.302305000
H 0.135719000 -3.482356000 -0.043016000
H -0.361078000 2.524570000 2.186628000
H -1.900150000 1.705939000 2.36142000
H -1.837870000 3.279594000 1.562782000
H -0.771874000 3.640142000 -2.077172000
H -1.738929000 4.089460000 -0.669541000
H -2.503539000 3.340616000 -2.081583000
C -2.991368000 -1.410028000 -0.267110000
N -1.975515000 -0.882436000 -0.293248000
C -4.268991000 -2.075552000 -0.239554000
H -5.021066000 -1.420620000 0.209569000
H -4.582653000 -2.327891000 -1.253211000
H -4.203348000 -2.993446000 0.345690000

S117
	x	y	z
Ru	-0.059661000	-0.025859000	-0.296998000
H	-0.746329000	0.115236000	-3.072448000
H	-0.231131000	0.491455000	-2.668473000
C	-0.590049000	-1.859795000	-0.443995000
C	-1.182128000	-2.674803000	0.652971000
H	-0.962533000	-2.320710000	1.627970000
H	-0.781768000	-3.697697000	0.643450000
C	-2.701162000	-2.731305000	0.478191000
C	-0.279074000	-2.649810000	-1.663303000
H	0.497282000	-3.384661000	-1.409834000
H	0.066798000	-2.062477000	-2.513113000
H	-1.149783000	-3.243302000	-1.968439000
H	-2.981935000	-3.172052000	-0.479737000
H	-3.134413000	-1.731417000	0.533133000
H	-3.145038000	-3.339024000	1.266380000
C	1.618310000	1.470068000	-0.402837000
C	2.094838000	0.094114000	-0.447417000
C	1.761795000	-0.530467000	0.782422000
C	0.960989000	0.398705000	1.532507000
C	0.947890000	1.655339000	0.809118000
C	1.853875000	2.474374000	-1.470081000
H	1.132441000	3.290636000	-1.428139000
H	1.801113000	2.030497000	-2.465422000
H	2.851671000	2.911899000	-1.369052000
C	2.907408000	-0.480564000	-1.547859000
H	2.925287000	-1.569912000	-1.511079000
H	3.942257000	-0.129596000	-1.487651000
H	2.523720000	-0.185513000	-2.526489000
C	2.189368000	-1.877482000	1.238131000
H	1.463436000	-2.331553000	1.913688000
H	3.135932000	-1.806890000	1.780877000
H	2.343800000	-2.560588000	0.401707000
C	0.432116000	0.204074000	2.902971000
H	-0.528374000	0.705123000	3.033996000
H	1.122729000	0.622783000	3.642317000
H	0.297324000	-0.850843000	3.142732000
C	0.271861000	2.886581000	1.288355000
H	0.902735000	3.418309000	2.006099000
H	-0.666331000	2.654310000	1.796294000
H	0.051902000	3.573895000	0.470745000
C	-2.933153000	1.472844000	-0.380404000
N	-1.940089000	0.900554000	-0.352126000
C	-4.184705000	2.183398000	-0.418483000
H	-4.200166000	2.869910000	-1.266057000
H	-5.011700000	1.479794000	-0.522141000
H	-4.322301000	2.756632000	0.499757000
TSr3-d1

Atom	X	Y	Z
Ru	0.095300000	0.211900000	-0.570700000
C	-1.362150000	-1.330550000	-0.609900000
C	-2.297664000	-1.679342000	0.516068000
H	-2.688352000	-0.756490000	0.958973000
H	-1.742773000	-2.194716000	1.308115000
C	-3.457065000	-2.561801000	0.075527000
C	-0.658973000	-2.495070000	-1.265421000
H	-0.251578000	-3.203609000	0.516068000
H	-0.149900000	-2.166062000	-1.932554000
H	-1.351413000	-3.046275000	-0.742363000
C	2.237526000	0.634841000	0.897488000
C	2.093570000	-0.767112000	-0.036017000
C	1.224544000	-0.945860000	1.471542000
C	0.753723000	0.340860000	1.471542000
C	1.418991000	1.337017000	0.653213000
C	3.195105000	1.221023000	-1.258774000
H	2.964923000	2.263188000	-1.476531000
H	3.193763000	0.675550000	-2.202879000
H	4.211503000	1.177693000	-0.856349000
H	-4.151946000	-2.737360000	0.897488000
C	2.323752600	0.634841000	-0.285890000
C	2.093570000	-0.767112000	-0.036017000
C	1.224544000	-0.945860000	1.471542000
H	3.890513000	-1.816811000	-0.448855000
C	0.983729000	-2.215450000	1.797237000
H	0.058751000	-2.193858000	2.371631000
H	1.799567000	-2.376596000	2.508747000
H	0.960341000	-3.083398000	1.139014000
C	-0.126597000	0.622176000	2.630933000
H	-0.614608000	1.592414000	2.538755000
H	0.458349000	0.638019000	3.555812000
H	-0.901023000	-0.138130000	2.744123000
C	1.348357000	2.804588000	0.856350000
H	1.613423000	3.348214000	-0.050187000
H	2.036852000	3.113694000	1.648436000
H	0.347565000	3.119853000	1.153805000
C	-2.505482000	2.068447000	-0.417279000
N	-1.587336000	1.385530000	-0.477198000
C	-3.653588000	2.936793000	-0.354695000
C	-4.115609000	3.014513000	-1.339050000
H	-4.389314000	2.544447000	0.348040000
H	-3.353392000	3.934136000	-0.031056000
H	0.423174000	1.367139000	-1.638058000
H	-1.914698000	-0.776609000	-1.387095000
TS\textsubscript{R3-d1}'

\begin{tabular}{cccc}
Ru & -0.106310000 & -0.102817000 & -0.508906000 \\
H & -0.362160000 & -0.986870000 & -1.827331000 \\
H & -1.399342000 & 1.855000000 & -0.880004000 \\
C & -0.661054000 & 1.900419000 & -0.056290000 \\
C & 0.501727000 & 2.740791000 & -0.520629000 \\
H & 1.053813000 & 2.207355000 & 1.087291000 \\
H & 1.205602000 & 2.908097000 & 1.399342000 \\
\end{tabular}
Atom	X-coordinate	Y-coordinate	Z-coordinate
Ru	-0.119872000	0.116736000	-0.325741000
H	-0.536933000	-0.367785000	-0.778038000
C	-1.852899000	1.719585000	1.000162000
C	-0.842210000	1.904127000	0.636615000
C	-0.801623000	2.309441000	-0.325741000
H	-0.358093000	1.456791000	-1.497760000
H	-0.029913000	3.066548000	-0.949784000
C	-2.117799000	2.655973000	-1.442101000
C	-0.039153000	2.714607000	1.605141000
C	0.980563000	2.880260000	1.254551000
C	0.003585000	2.261155000	2.595012000
H	-0.505068000	3.695550000	1.731891000
H	-2.516467000	1.864432000	-1.286472000
H	-2.851929000	2.809597000	-2.515726000
C	0.973778000	-1.755477000	-0.452886000
C	0.800565000	-1.463744000	0.941981000
C	1.519856000	-0.280124000	1.250150000
C	2.075733000	0.225085000	0.035864000
C	1.770097000	-0.702844000	-1.014444000
C	0.512212000	-2.923820000	-1.135030000
H	-0.503379000	-2.873562000	-2.218166000
H	-0.497884000	-3.268272000	-0.825850000
H	1.170160000	-3.821960000	-0.894736000
C	0.086827000	-2.314682000	1.925952000
H	-0.433081000	-1.714339000	2.674355000
H	0.796232000	-2.957117000	2.456148000
C	-0.642509000	-2.964668000	1.442459000
C	1.745186000	0.224909000	2.625423000
H	2.114226000	1.248279000	2.644223000
C	2.495865000	-0.402300000	3.116260000
H	0.841035000	0.175949000	3.234349000
C	3.973904000	1.399103000	-0.123869000
H	2.693468000	2.008715000	-0.983474000
H	4.003780000	1.068928000	-0.285567000
H	2.972755000	2.040743000	0.758455000
C	2.316905000	-0.631883000	-2.393882000
C	3.338284000	-1.023096000	-2.416042000
H	2.353911000	0.395688000	-2.757809000
C	1.721427000	-1.212799000	-3.097988000
C	-3.124253000	0.923407000	0.138659000
N	-2.071322000	0.504240000	-0.029737000
C	-4.449683000	1.451718000	0.341529000
H	-4.403945000	-2.368018000	0.931293000
H	-5.067228000	-0.725923000	0.871766000
H	-4.915928000	-1.675420000	-0.618798000
D3'

Atom	x	y	z
Ru	-0.019862000	0.144072000	-0.404219000
H	-0.222981000	0.754326000	-2.194625000
H	-1.195243000	2.641487000	-0.921747000
C	-0.547469000	2.375538000	-0.086648000
C	0.803236000	2.289718000	-0.357097000
H	-0.003171000	-0.044852000	-2.172001000
H	1.469516000	2.305538000	0.502074000
C	1.123659000	2.627744000	1.266744000
H	-0.433779000	2.341202000	-1.762268000
H	-2.066080000	2.099007000	1.420888000
C	-1.395706000	3.694897000	1.387856000
C	1.879788000	3.700377000	-1.530058000
H	0.701343000	2.770422000	-2.453259000
H	2.233763000	2.032981000	-1.958240000
C	1.429030000	-1.527909000	-0.524485000
C	0.205012000	-1.976395000	0.054816000
C	0.013457000	-1.243142000	1.282778000
C	1.101302000	-0.345356000	1.434973000
C	1.971938000	-0.498740000	0.297094000
C	2.058813000	-0.252109000	-1.762268000
H	2.581559000	-1.267174000	-2.310891000
H	1.395706000	-2.506771000	-2.432433000
H	2.796237000	-2.819287000	-1.509263000
C	-0.650840000	-3.084541000	-0.441633000
H	-1.701439000	-2.922089000	-0.197880000
H	-0.355945000	-4.036639000	0.008710000
H	-0.576792000	-3.195793000	-1.523989000
C	-1.087061000	-1.446877000	2.257469000
H	-1.376262000	-0.510881000	2.738124000
H	-0.776668000	-2.140264000	3.044310000
H	-1.972833000	-1.869985000	1.783535000
C	1.397299000	0.463402000	2.643279000
H	1.856388000	1.425080000	2.410470000
H	2.107135000	-0.079447000	3.275010000
H	0.506057000	0.647453000	3.243086000
C	3.312563000	0.117971000	0.130724000
H	4.076856000	-0.511530000	0.596474000
H	3.397815000	1.101008000	0.597097000
H	3.582746000	0.227800000	-0.920477000
C	-3.248361000	-0.004702000	-0.584766000
N	-2.106010000	0.087271000	-0.524898000
C	-4.683980000	-0.123025000	-0.609415000
H	-5.032161000	-0.816309000	0.157238000
H	-5.149364000	0.848524000	-0.439501000
H	-4.995849000	-0.495361000	-1.586075000
At.	X	Y	Z
------	----------	----------	----------
Ru	-0.066267	0.194692	0.041908
H	0.255390	0.774802	-1.399724
C	1.179469	2.571800	-0.417824
C	1.504287	1.620533	0.004421
C	2.864270	1.223226	-0.496370
C	2.818552	1.053100	-1.576659
C	3.159294	0.270514	-0.041839
C	3.908351	2.284280	-0.188565
C	1.254197	1.528876	1.462664
C	0.533164	-1.627808	0.984481
C	-0.887528	-1.395695	-1.153825
C	-2.981377	-1.468746	0.369591
H	-3.450242	-0.718720	-0.269260
H	-3.210819	-1.223621	1.406633
H	-3.458407	-2.426633	0.142920
C	-0.690860	-1.988577	2.539310
C	0.126599	-1.550328	0.128004
C	-0.051636	-1.769862	1.081054
C	0.768823	-1.805463	0.400988
C	0.533164	-1.627808	0.984481
C	-0.887528	-1.395695	-1.153825
C	-2.981377	-1.468746	0.369591
H	-3.450242	-0.718720	-0.269260
H	-3.210819	-1.223621	1.406633
H	-3.458407	-2.426633	0.142920
C	-0.690860	-1.988577	2.539310
C	0.126599	-1.550328	0.128004
C	-0.051636	-1.769862	1.081054
H	-1.626841	-1.567708	2.906263
C	2.056357	-2.154879	1.054394
H	2.908175	-1.967066	0.401555
H	2.071522	-3.216994	1.316379
H	2.212020	-1.596633	1.980112
C	1.526517	-1.755135	-2.078106
C	1.274175	-1.123408	-2.930234
H	1.563502	-2.789168	2.432154
H	2.529442	-1.484166	-1.748756
C	-1.608910	-1.249635	-2.443720
H	-2.011568	-2.212829	-2.770568
H	-0.953481	-0.878019	-3.231077
H	-2.447310	-0.556822	-2.355049
C	-2.199941	2.607970	0.000541
N	-1.433744	1.749796	0.038668
C	-3.166529	3.668435	-0.053214
H	-4.120397	3.336045	0.357927
H	-2.814825	4.523621	0.525054
H	-3.318672	3.984145	-1.086157

S141
TsB1'-B2'

Ru 0.0625220000 0.17885000 -0.0697110000
H -0.4705310000 0.8736490000 1.2639130000
H -1.2289580000 2.5852950000 0.3961060000
C -1.5309740000 1.6147740000 0.0005600000
C -2.8914290000 1.2104990000 1.5860690000
H -2.8560460000 1.0687810000 0.0689420000
H -3.3674500000 0.2410570000 0.0689420000
C -4.9461410000 2.2476410000 0.1544440000
C -3.1923200000 1.5088450000 -1.4637990000
H -3.1120530000 1.0265970000 -1.3978290000
H -3.6930800000 0.8648880000 -1.7750790000
H -4.0352500000 2.4534570000 -1.9336200000
C -3.6967340000 0.3961060000 0.5871900000
C -4.9265410000 2.3798100000 -0.9267040000
H -4.9265410000 1.9579030000 0.5335240000
C -0.7352300000 -1.8427070000 -0.3707600000
C -0.4982670000 -1.6236780000 1.0104600000
C 0.9100300000 -1.3488300000 1.1752530000
C 3.0025040000 -1.3976550000 -0.3573870000
H 3.4588720000 -0.6391020000 0.2801600000
H 3.2197000000 -1.1443020000 -1.3952340000
H 3.5016710000 -2.3455790000 -0.1369240000
C 0.7237380000 -2.0326570000 -2.5066410000
H -0.1041660000 -1.6297560000 -3.0924820000
H 0.7600980000 -3.1080560000 -2.7054080000
H 1.6493450000 -1.5972120000 -2.8826840000
C -2.0182380000 -2.2279980000 -1.0133510000
H -2.8711650000 -2.0428660000 -0.3608080000
H -3.0178340000 -3.2942160000 -1.2578110000
H -3.1862280000 -1.6862940000 -1.9469950000
C -1.4926250000 -1.7333680000 2.1069870000
H -1.2502080000 -1.0726410000 2.9399600000
H -1.5120560000 -2.7564810000 2.4925990000
H -2.5002150000 -1.4901080000 1.7700130000
C 1.6234490000 -1.1426370000 2.4612380000
H 2.0283480000 -2.0871450000 2.8364450000
H 0.9613900000 -0.7375060000 3.2265020000
H 2.4591130000 -0.4505110000 2.3461260000
C 2.1729740000 2.6122980000 -0.0148150000
N 1.4118420000 1.7557930000 -0.0534550000
C 3.1347890000 3.6837840000 0.0382260000
H 4.0333270000 3.4135450000 -0.5176980000
H 2.7124760000 4.5898910000 -0.3977150000
H 3.4097590000 3.8899500000 1.0734470000
	\text{Ru}	\text{C}	\text{H}	\text{C}												
	-0.132339	0.133782	0.136232	0.236225	-0.125036	0.675730	-0.471962	-1.098871	-0.847107	0.645647	0.610535	0.707488	1.737007	1.786669	0.736066	0.070772
	0.067894	1.891467	3.176376	3.442724	1.374991	1.315873	-0.342922	1.567384	3.442480	2.679243	4.412134	-2.031751	-1.061347	-0.165925	-0.512674	-1.660443
	0.460522	0.067894	0.344778	-0.125036	2.159994	2.897917	1.977561	2.610828	-1.235250	-1.764189	-1.426003	0.189089	0.441282	-0.685147	-1.572989	-1.015016
	0.067894	0.067894	0.879509	0.969360	0.487100	0.879509	0.487100	0.969360	0.487100	0.879509	0.487100	0.879509	0.487100	0.879509	0.487100	0.879509
	0.067894	0.067894	0.344778	-0.125036	2.159994	2.897917	1.977561	2.610828	-1.235250	-1.764189	-1.426003	0.189089	0.441282	-0.685147	-1.572989	-1.015016
	0.067894	0.067894	0.344778	-0.125036	2.159994	2.897917	1.977561	2.610828	-1.235250	-1.764189	-1.426003	0.189089	0.441282	-0.685147	-1.572989	-1.015016
	0.067894	0.067894	0.344778	-0.125036	2.159994	2.897917	1.977561	2.610828	-1.235250	-1.764189	-1.426003	0.189089	0.441282	-0.685147	-1.572989	-1.015016

TSc2-11
	Ru	C	H	C	C	H	C	C	H	C	H	C	C	H	C
	0.025952000	0.008788000	-0.562389000												
	0.497621000	1.810381000	-0.909240000												
	1.144725000	2.566649000	-0.293537000												
H	0.365200000	3.737644000	-0.186316000												
H	1.806532000	3.911960000	-1.060431000												
C	1.875778000	2.728860000	1.010344000												
C	-0.117583000	1.489203000	-2.107706000												
H	-1.142860000	1.800474000	-1.060431000												
H	0.069493000	0.719911000	-1.986774000												
H	0.489924000	1.418250000	-3.007662000												
H	2.658573000	1.970837000	0.886375000												
H	1.196804000	2.370577000	1.784890000												
H	2.340886000	3.664360000	1.369342000												
C	-0.689407000	-1.142860000	-2.307356000												
C	-1.700548000	-1.419675000	-0.147267000												
C	-2.129618000	-0.057824000	-0.049522000												
C	-1.460454000	0.540814000	1.080995000												
C	-0.551946000	-0.401378000	1.602943000												
H	0.035991000	-2.882247000	1.096707000												
H	1.028148000	-2.694813000	1.509620000												
H	0.452596000	-3.486468000	0.196071000												
H	-0.509145000	-3.489924000	1.829545000												
C	-2.254615000	-2.437178000	-1.076055000												
H	-1.536553000	-3.229974000	-1.284673000												
H	-2.551859000	-1.996143000	-2.027497000												
H	-3.142048000	-2.901691000	-0.636518000												
C	-3.235158000	0.550921000	-0.825332000												
H	-3.128418000	1.643955000	-0.895840000												
H	-4.198151000	0.363214000	-0.344832000												
H	-3.286676000	0.160728000	-1.839379000												
C	-1.778795000	1.891540000	1.614622000												
H	-0.996491000	2.270941000	2.271625000												
H	-2.705943000	1.857459000	2.194670000												
H	-1.933308000	2.619415000	0.815315000												
C	0.303914000	-0.273509000	2.811570000												
H	1.343577000	-0.538440000	2.605041000												
H	-0.047633000	-0.940138000	3.604321000												
H	0.294354000	0.740645000	3.210274000												
C	3.047597000	-1.068502000	-0.449593000												
N	1.987111000	-0.638660000	-0.494707000												
C	4.381599000	-1.610891000	-0.407906000												
H	4.693953000	-1.916788000	-1.407291000												
H	5.082673000	-1.864787000	-0.031989000												
H	4.411308000	-2.480820000	0.249376000												
10. References

(1) Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.* **2008**, *120*, 215-241.
(2) a) Schäfer, A.; Horn, H.; Ahlrichs, R. *J. Chem. Phys.* **1992**, *97*, 2571-2577. b) Weigend, F.; Ahlrichs, R. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305. c) Weigend, F. *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057-1065.
(3) Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; *Theor. Chim. Acta* **1990**, *77*, 123-141.
(4) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. *J. Phys. Chem. B* **2009**, *113*, 6378-6396.
(5) Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
(6) CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, **2009**(http://www.cylview.org)
Figure S-1. Structure of the ruthenium carbene 9b (R = Me) in the solid state, showing the two independent molecules in the unit cell; hydrogen atoms are omitted for clarity, except those of the –OH group and the –CH₂- group flanking the carbene center; color code: Ru = blue, O = red, Cl = green

Figure S-2. Different projection showing one of the two independent molecules of ruthenium carbene 9b (R = Me) present in the unit cell; hydrogen atoms are omitted for clarity, except the one on O1 involved in hydrogen bonding with Cl1 and the geminal H-atoms at C2 flanking the carbene center C1; color code: Ru = blue, O = red, Cl = green
X-ray Crystal Structure Analysis of Complex 9b: C_{19}H_{33}ClO_2Ru, M_r = 429.97 g · mol^{-1}, orange block, crystal size 0.18 x 0.10 x 0.02 mm, triclinic, space group P\overline{1}, a = 9.1699(13) Å, b = 14.0446(13) Å, c = 15.7493(16) Å, α = 86.283(10), β = 89.332(10), γ = 83.746(10), V = 2012.0(4) Å³, T = 100 K, Z = 4, \(D_{\text{calc}} = 1.419 \text{ g·cm}^{-3}, \lambda = 0.71073 \text{ Å}, \mu(\text{Mo-K}α) = 0.919 \text{ mm}^{-1}, \) Gaussian absorption correction (\(T_{\text{min}} = 0.85, T_{\text{max}} = 0.98), \) Bruker-AXS Smart APEX-II diffractometer, 2.799 < 2θ < 32.032°, 39856 measured reflections, 13943 independent reflections, 10867 reflections with \(I > 2\sigma(I), \) Structure solved by direct methods and refined by full-matrix least-squares against \(F^2 \) to \(R_1 = 0.038 [I > 2\sigma(I)], wR_2 = 0.099, 437 \) parameters, H atoms riding, \(S = 1.019, \) residual electron density 1.5 / -1.5 e Å^{-3}.

CCDC 1406683 contains the supporting crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
NMR INVESTIGATIONS

General. The CD$_2$Cl$_2$ used in these experiments was dried by distillation over CaCO$_3$ and stored in a Schlenk-flask in a glovebox. Unless stated otherwise, all commercially available compounds were used as received and stored under argon. [Cp*Ru(CH$_3$CN)$_3$]PF$_6$ was prepared according to a literature procedure.$^{[1]}$ [Cp*Ru(cod)Cl] was purchased from Strem.

Sample Preparation. All samples were prepared in a glovebox. The substrate (0.1 mmol) and the catalyst (5.5 mol%) were dissolved in 0.4 mL CD$_2$Cl$_2$ in a 2 mL GC vial. After transferring the material into the pressure NMR-tube (5 mm medium wall precision pressure/vacuum valve NMR sample tube, Wilmad) via syringe, the tube was connected to the p-H$_2$-storage container or directly to the generator. The tubing was flushed with p-H$_2$ to ensure that no other gases were present. Then the Swagelok® connection to the NMR tube was tightened and the pressure valve opened to fill the tube with hydrogen. After closing the valve, the tube was shaken and directly transferred into the NMR magnet.

NMR Measurements. All spectra were acquired on an Bruker Ascend AVIII 500 MHz NMR spectrometer (11.7 Tesla) equipped with an Bruker 5mm BBFOplus 500 MHz SmartProbeTM (PA BBO 500S1 BBF-H-D-05 Z Plus) or Bruker 5mm TBI Probe (PH TBI 500S1 H/C-BB-D-05 Z) at 298 K unless otherwise mentioned.

The acquired 1H NMR spectra were referenced to the residual solvent signal ($\delta_{\text{CDCl}_3} = 5.32$ ppm)$^{[2]}$. The 13C NMR spectra were referenced with the Ξ-scale.$^{[3,4]}$

For the OPSY-EXSY spectrum, a mixing time of 300 ms was used.

NMR data was processed with Bruker’s Topspin 3.2. For the simulation of the NMR spectra, the DAISY module of Topspin was used. The NMR assignment of the carbenes 9 was performed with MestreNova 9.1.

para-Hydrogen Generation. The p-H$_2$ enrichment above the thermal equilibrium of 25% was achieved in two different ways.

Initially, the p-H$_2$ was enriched to 50% using the “U-shaped tube” method (Figure S-3)$^{[5]}$. The tube was filled with a mixture (3:1) of activated charcoal (Norit PK1-3, Sigma Aldrich) and iron(III) oxide (99%, meshed powder, Alfa Aesar). The filled tube was evacuated and heated with a heat gun (150 °C) to remove any residual water and oxygen from the catalyst. This tube was used several times before the catalyst had to be reactivated. To enrich the p-H$_2$, the tube was loaded with 20 bar of hydrogen gas (99.995%, dry) and placed in a Dewar flask filled with liquid nitrogen (77 K). After an equilibration time of 1h, the enriched hydrogen gas was transferred to an evacuated storage bottle or directly transferred to the NMR tube.
An enrichment of approx. 92 % was achieved with the commercially available Parahydrogen pH2 Generator from Bruker BioSpin GmbH.

2D-EXSY with OPSY Filter. A 2D-EXSY (Exchange Spectroscopy) experiment was adapted to p-H$_2$ induced polarization with an OPSY-d-filter (Figure S-4) to follow chemical exchanges involving the hydrogenated species during the reaction. Typically, experiments were recorded with 512 increments and 2 scans (8k points) per increments. Mixing times of $\tau_{\text{mix}} = 2\tau = 300$ ms were used. Short repetition times of 1.1 s ($\tau_{\text{mix}} + \text{aq}$) allowed for an overall experimental time of 20 min (relaxation delays were unnecessary).
Figure S-4. NOESY/EXSY with OPSY-d-Filter (OPSY-d-EXSY): Black thin bars represent 90° pulses and thick bars represent 180° pulses; pulses are applied with x-phase unless the phase is indicated above the bar. Phase cycle: \(\phi_1 = [x,-x] \), \(\phi_2 = [(x)_d (-x)_d] \), \(\phi_3 = [x,x,-x,y,y,-y,-y] \), \(\phi_{aq} = [x,-x,x,y,y,-y,y,-y] \). Half-sine 1ms gradients were used with gradient ratio \(g_1:g_2:g_3:g_4 = 10:20:4:-4 \), and were each followed by a 0.2 ms recovery delay. The chemical exchange mixing time is represented by \(2\tau \).

NMR Assignments of the Stable Carbenes. Standard \(^1\text{H},^1\text{H}-\text{NOESY} (t_{\text{mix}} = 1s)\), \(^1\text{H},^{13}\text{C}-\text{HSQC} \) and \(^1\text{H},^{13}\text{C}-\text{HMBC} \) experiments were used for the characterization of the stable carbenes.

Figure S-5. NMR assignments of 9a (a) and 9b (c) and selected connections observed in the 2D NMR spectra (b and d)
Sign of the J_{HH} Couplings. The shape of the PASADENA antiphase signal gives information about the sign of the coupling constant. In the case of a positive coupling the first signal of the doublet is positive, whereas the second one is negative. This can be seen for the vicinal coupling of the olefinic protons of 5a (Fehler! Verweisquelle konnte nicht gefunden werden., left). If the coupling is negative, the sign of the antiphase signals is inverted. This can be nicely seen in the case the hyperpolarized protons of 7a and 6a proving that the coupling is indeed negative (Figure S1, middle & left). Negative couplings are normally observed for geminal proton-proton couplings.

Figure S-6: Hyperpolarized antiphase signals of 5a, 6a and 7a
Figure S-7: Top: OPSY-d-spectrum during the reaction 4a in the presence of p-H₂ and 2; Bottom: Comparison of the acquired OPSY-Spectrum (black) and the simulated spectrum (green).
The 1H-OPSY-COSY spectrum contains various structure informations about the carbene intermediates $6a$ and $7b$. On the one hand it clearly shows the cross peaks between the geminal protons ($H2\alpha \leftrightarrow H2\beta$, $H1\alpha \leftrightarrow H1\beta$). On the other hand asymmetrical cross peaks to the CH$_3$-groups (H3) can be seen. The asymmetrical cross peaks are explained by the different polarization of the methyl and the methylene protons. The hyperpolarized geminal protons generate this cross peak (H1/2→H3), whereas the non-hyperpolarized methyl group may generate a cross peak (H3→H2/1), but the intensity is lower than the noise level and so not visible.

![Diagram of carbene intermediates](image)

Figure S-8. Aliphatic region of the 1H-OPSY-COSY spectrum confirming the coupling between the observed signals and the coupling to neighbored CH$_3$-groups.
Exchange Spectroscopy. The analysis of the OPSY-EXSY spectrum of the reaction 4b to 5b finds exchange correlations from the hyperpolarized hydrogens of the carbene 6c to a number of products and by-products, namely 5b, 10, 11 and free H₂, as shown in Figure 4 of the main text of the publication. These results are in excellent accord with the pathways 1 and 2 as proposed in Scheme 3. These observed exchange correlations are depicted by red arrows in Scheme S1. Interestingly, pathway 1 correctly predicts that only one of the olefinic hydrogens originates from the carbene 6c.
Scheme S1: Comparison of the exchange correlations (red arrows) extracted from the OPSY-EXSY from the carbene 6b. Greyed species are not observed by NMR. Hydrogens are colored to help follow their fate.

References

[1] M. D. Mbaye, B. Demerseman, J.-L. Renaud, L. Toupet, C. Bruneau, Adv. Synth. Catal. 2004, 346, 835–841.

[2] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176–2179.

[3] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman, K. W. Zilm, Pure Appl. Chem. 2008, 80, 59–84.

[4] M. Findeisen, S. Berger, 50 and More Essential NMR Experiments: A Detailed Guide, Wiley-VCH, 2013.

[5] J. Bargon, J. Kandels, K. Woelk, Zeitschrift für Phys. Chem. 1993, 180, 65–93.