Some properties for superprocess under a stochastic flow

Kijung Leea, Carl Muellera,1 and Jie Xiongb,c,2

aDepartment of Mathematics, University of Rochester
Rochester, NY 14627
bDepartment of Mathematics, University of Tennessee,
Knoxville, TN 37996-1300, USA.
cDepartment of Mathematics, Hebei Normal University,
Shijiazhuang 050016, PRC

March 29, 2022

Abstract

For a superprocess under a stochastic flow, we prove that it has a density with respect to the Lebesgue measure for \(d = 1 \) and is singular for \(d > 1 \). For \(d = 1 \), a stochastic partial differential equation is derived for the density. The regularity of the solution is then proved by using Krylov’s \(L_p \)-theory for linear SPDE. A snake representation for this superprocess is established. As applications of this representation, we prove the compact support property for general \(d \) and singularity of the process when \(d > 1 \).

Keywords: Superprocess, random environment, snake representation, stochastic partial differential equation.

AMS 2000 subject classifications: Primary 60G57, 60H15; secondary 60J80.

1 Introduction

Superprocesses under stochastic flows have been studied by many authors since the work of Wang (\cite{W1},\cite{W2}) and Skoulakis and Adler \cite{SA}. At an early stage, this problem was studied as the high-density limit of a branching particle system while the motion of

\begin{footnotesize}
1Supported by an NSF grant.
2Supported by an NSA grant.
\end{footnotesize}
each particle is governed by an independent Brownian motion as well as by a common
Brownian motion which determines the stochastic flow. The limit is characterized by
a martingale problem whose uniqueness is established by a moment duality. Before we
go any further, let us introduce the model in more detail.

Let \(b : \mathbb{R}^d \rightarrow \mathbb{R}^d, \sigma_1, \sigma_2 : \mathbb{R}^d \rightarrow \mathbb{R}^{d \times d} \) be measurable functions. Let \(W, B_1, B_2, \cdots \) be independent \(d \)-dimensional Brownian motions. Consider a branching particle system performing independent binary branching. Between branching times, the motion of the \(i \)th particle is governed by the following stochastic differential equation (SDE):

\[
d\eta_i(t) = b(\eta_i(t))dt + \sigma_1(\eta_i(t))dW(t) + \sigma_2(\eta_i(t))dB_i(t). \tag{1.1}
\]

It is proved by Skoulakis and Adler [9] that the high-density limit \(X_t \) is the unique solution to the following martingale problem (MP): \(X_0 = \mu \in \mathcal{M}_F(\mathbb{R}^d) \), where \(\mathcal{M}_F(\mathbb{R}^d) \) denotes the space of finite nonnegative measures on \(\mathbb{R}^d \) and for any \(\phi \in C^2_0(\mathbb{R}^d) \),

\[
M_t(\phi) \equiv \langle X_t, \phi \rangle - \langle \mu, \phi \rangle - \int_0^t \langle X_s, L\phi \rangle \, ds \tag{1.2}
\]

is a continuous martingale with quadratic variation process

\[
\langle M(\phi) \rangle_t = \int_0^t \left(\langle X_s, \phi^2 \rangle + \left| \langle X_s, \sigma_1^T \nabla \phi \rangle \right|^2 \right) \, ds \tag{1.3}
\]

where

\[
L\phi = \sum_{i=1}^d b^i \partial_i \phi + \frac{1}{2} \sum_{i,j=1}^d a^{ij} \partial^2_{ij} \phi,
\]

\[
a^{ij} = \sum_{k=1}^d \sum_{\ell=1}^2 \sigma_{k \ell}^i \sigma_{k \ell}^j, \quad \partial_i \text{ means the partial derivative with respect to the } i\text{th component of } x \in \mathbb{R}^d, \quad \sigma_1^T \text{ is the transpose of the matrix } \sigma_1, \quad \nabla = (\partial_1, \cdots, \partial_d)^T \text{ is the gradient operator and } \langle \mu, f \rangle \text{ represents the integral of the function } f \text{ with respect to the measure } \mu. \]

It was conjectured in [9] that the conditional log-Laplace transform of \(X_t \) should be the unique solution to a nonlinear stochastic partial differential equation (SPDE). Namely

\[
\mathbb{E}_\mu \left(e^{-\langle X_t, f \rangle} \bigg| W \right) = e^{-\langle \mu, y_{0,1} \rangle} \tag{1.4}
\]
and
\[y_{s,t}(x) = f(x) + \int_s^t (Ly_{r,t}(x) - y_{r,t}(x)^2) \, dr + \int_s^t \nabla^T y_{r,t}(x) \sigma_1(x) \, \hat{d}W(r) \] (1.5)

where \(\hat{d}W(r) \) represents the backward Itô integral:
\[
\int_s^t g(r) \hat{d}W(r) = \lim_{|\Delta| \to 0} \sum_{i=1}^n g(r_i) (W(r_i) - W(r_{i-1}))
\]
where \(\Delta = \{r_0, r_1, \ldots, r_n\} \) is a partition of \([s, t]\) and \(|\Delta| \) is the maximum length of the subintervals.

This conjecture was confirmed by Xiong [13] under the following conditions (BC) which will be assumed throughout this paper: \(f \geq 0, \ b, \ \sigma_1, \ \sigma_2 \) are bounded with bounded first and second derivatives. \(\sigma_2^T \sigma_2 \) is uniformly positive definite, \(\sigma_1 \) has third continuous bounded derivatives. \(f \) is of compact support.

Making use of the conditional log-Laplace functional, the long-term behavior of this process is studied in [14]. Also, the model has been extended in that paper to allow infinite measures \(\mu \in \mathcal{M}_{tem}(\mathbb{R}^d) \), namely, \(\int_{\mathbb{R}^d} e^{-\lambda |x|} \mu(dx) < \infty \) for some \(\lambda > 0 \). We shall assume \(\mu \in \mathcal{M}_{tem}(\mathbb{R}^d) \) throughout this paper. A similar model has been investigated by Wang [12] and Dawson et al [1] when the spatial dimension is 1. Further, in that case, it is proved by Dawson et al [2] that their process is density-valued and solves a SPDE. The regularity of the solution was left open in that article.

This paper is organized as follows: In Section 2, we establish a snake representation for \(X_t \). As immediate consequences to this representation, we get the compact support property of \(X_t \) (for all \(d \)) and for \(d > 1 \), \(X_t \) takes values in the set of singular measures. Then, for \(d = 1 \), we prove in Section 3 that \(X_t \) is absolutely continuous with respect to Lebesgue measure and show that the density \(X(t, x) \) satisfies the following SPDE
\[
\partial_t X = L^*X - \partial_x (\sigma_1 X) \dot{W}_t + \sqrt{X} \dot{B}_{tx} \] (1.6)
where B is a Brownian sheet and L^* is the adjoint operator of L. The main result of this paper is to show the Hölder continuity of $X(t, x)$.

Here is the main result. First recall that for $n \in \mathbb{R}$ and $p \in [2, \infty)$, H^n_p is the space of Bessel potentials with norm
\[
\|u\|_{n,p} = \|(I - \Delta)^{n/2}u\|_p.
\]

Theorem 1.1 Suppose that Condition (BC) is satisfied. Then

i) If $d > 1$, then X_t is singular a.s.

ii) If $d = 1$, then X_t is absolutely continuous with respect to Lebesgue measure and the density satisfies the SPDE (1.6).

iii) If in addition, μ satisfies $\mu \in H^{1/2 - \epsilon - 2/p}_p$ with $\epsilon \in (0, 1/8)$ and $p > 1/\epsilon$, and also satisfies
\[
\sup_{t,x} \langle \mu, \varphi_t(x - \cdot) \rangle < \infty,
\]
then the density $X(t, x)$ is Hölder continuous in x with index $1/2 - 2\epsilon$ for (a.e.) t a.s., where $\varphi_t(x)$ is the density of a normal random variable with mean 0 and variance t.

Note that (1.7) is satisfied if μ has bounded density with respect to Lebesgue measure.

Suppose that we apply the usual integral equation as in [10], Chapter 3, for (1.6) in order to prove the Hölder continuity. Then formally we have
\[
X(t, x) = \int p_0(t, x, y)X(0, y)dy + \int_0^t \int \sigma_1(y)X(s, y)\partial_y p_0(t - s, x, y)dydW(s)
+ \int_0^t \int \sqrt{X(s, y)}p_0(t - s, x, y)B(dsdy)
\]
where p_0 is the transition function of the Markov process with generator L. However, the second term on the right hand side of the above equation is about
\[
\int_0^t (t - s)^{-1/2}dW(s)
\]
which is not convergent. Therefore, the convolution argument used by Konno and Shiga [5] does not apply to our model. In Section 4, we freeze the nonlinear term in (1.6) and apply Krylov’s L_p-theory for linear SPDE to get the Hölder continuity with index slightly less than $\frac{1}{2}$ for X.

Note that the SPDE in [2] is (1.6) in current paper with \dot{W}_t replaced by a space-time noise which is colored in space and white in time. The method of this paper can be applied to that equation to prove the regularity for its solution.

2 Snake representation

In this section, we construct a path-valued process Y_t such that the process X_t can be represented according to this process. Then, as an easy application of this representation, we derive the properties for X_t.

For the convenience of the reader, we recall some basic definitions and facts taken from Le Gall [8]. Let $\zeta \geq 0$ and let f be a continuous function from \mathbb{R}_+ to \mathbb{R}^d such that $f(s) = f(\zeta)$, \forall $s \geq \zeta$. We call such pair (f, ζ) a stopped path with ζ being the lifetime of the path. We denote the collection of all stopped paths by \mathcal{W}. For $(f, \zeta), (f', \zeta') \in \mathcal{W}$, define a distance

$$\delta((f, \zeta), (f', \zeta')) = \sup_{s \geq 0} |f(s) - f'(s)| + |\zeta - \zeta'|.$$

Then (\mathcal{W}, δ) is a Polish space. In [8], Le Gall constructed a continuous time-homogeneous strong Markov process (Z_t, ζ) taking values on \mathcal{W}. ζ_t is a one-dimensional reflecting Brownian motion. Given ζ, the process Z has the following property: for all $r < t$, and for all $s \leq m_{r,t} := \inf_{r \leq u \leq t} \zeta_u$ we have $Z_r(s) = Z_t(s)$. Furthermore, given $m_{r,t}$ and $Z_r(m_{r,t})$, the processes $Z_r(s) : s \geq m_{r,t}$ and $Z_t(s) : s \geq m_{r,t}$ are conditionally independent Brownian motions with lifetimes ζ_r and ζ_t respectively.
Denote the strong solution to the SDE

$$d\eta(t) = b(\eta(t))dt + \sigma_1(\eta(t))dW(t) + \sigma_2(\eta(t))dB(t)$$

by $\eta(t) = F(t, W, B)$. Define the following path-valued process

$$\mathcal{Y}_t(s) = F(s, W, Z_t)$$

with the life-time process ζ_t.

Lemma 2.1 (\mathcal{Y}_t, ζ_t) is a continuous \mathcal{W}-valued process.

Proof: Note that for all $r < t$ and for all $s < m_{r,t}$, we have $\mathcal{Y}_r(s) = \mathcal{Y}_t(s)$. Furthermore, for given $\mathcal{Y}_r(m_{r,t})$, the processes $\mathcal{Y}_r(s) : s \geq m_{r,t}$ and $\mathcal{Y}_t(s) : s \geq m_{r,t}$ are the motions of two particles (say, η_1 and η_2) given as in the introduction with lifetimes ζ_r and ζ_t starting from the same position $\mathcal{Y}_r(m_{r,t})$. A simple application of Burkholder’s inequality gives

$$E \left[\sup_{m \leq s \leq M} |\eta_1(s) - \eta_2(s)|^k \right] \leq K |M - m|^{k/2},$$

where $m = m_{r,t}$ and $M = \zeta_r \lor \zeta_t$. Denote by E^ζ the conditional expectation given ζ.

Then

$$E \left[\sup_{s \geq 0} |\mathcal{Y}_r(s) - \mathcal{Y}_t(s)|^k \right] = E \left[E^\zeta \left\{ \sup_{s \geq m_{r,t}} |\mathcal{Y}_r(s) - \mathcal{Y}_t(s)|^k \right\} \right]$$

$$\leq E \left[K |\zeta_r + \zeta_t - 2m_{r,t}|^{k/2} \right]$$

$$\leq K E \left[\sup_{s \in [r,t]} |\zeta_s - \zeta_r|^{k/2} \right]$$

$$\leq K |t - r|^{k/4}.$$

The conclusion follows from Kolmogorov’s criteria by taking $k > 4$; see \[10\] for Kolmogorov’s criteria.
Theorem 2.2

\[X_t(f) = \int_t^\tau f(\mathcal{Y}_s(\zeta_s))d\ell_s^t \] \hspace{1cm} (2.1)

where \(\ell^t \) is the local time process of \(\zeta \) at level \(t \) and

\[\tau = \inf\{s : \ell_s^0 \geq 1\}. \]

Proof: Fix a parameter \(h > 0 \). For every \(t \geq 0 \), denote by \([a^1_t, b^1_t], [a^2_t, b^2_t], \ldots, [a^{N_t}_t, b^{N_t}_t]\) the excursion intervals of \((\zeta_s)_{0 \leq s \leq \tau}\) above level \(t \), corresponding to excursions of height greater than \(h \). Set

\[X^h_t = 2h \sum_{i=1}^{N_t} \delta_{a^i_t(t)}. \]

Then \(X^h_t \) is the measure-valued process corresponding to the branching particle system described as follows: At time \(t = 0 \), we have \(N_0 \) particles in \(\mathbb{R}^d \) with Poisson random measure with intensity measure \(h^{-1}\mu \). The particles then move according to (1.1) with common \(W \) and independent \(B_i \)'s. Each of them has a finite lifetime (independent of others) which is exponential with mean \(h \). When a particle dies, it gives rise to either 0 or 2 new particles with probability \(\frac{1}{2} \). The new particles start from the position of the their father. As in the proof of Theorem 2.1 in [8], by the well-known approximation of Brownian local time by upcrossing numbers, we have that \(X^h_t \) converges weakly to \(X_t \), where \(X_t \) is given by the right hand side of (2.1). \[\square \]

As an application of the snake representation, we have the following immediate consequence.

Corollary 2.3 If \(\mu \) is a finite measure, then for any \(t > 0 \), \(X_t \) has compact support a.s.

Proof: By the snake representation, there exists a finite set \(I \) such that

\[\langle X_t, f \rangle = \sum_{i \in I} \int_0^{\tau_i} f(\mathcal{Y}^i_s) d\ell^i_s(\zeta^i) \]
where \(\hat{Y}^i_s \) is the tip of the \(i \)th snake. It is not hard to show that \(\hat{Y}^i_s \) is continuous and hence, for any \(t_0 > 0 \),

\[
\bigcup_{t \geq t_0} \text{supp}(X_t) \subset \bigcup_{i \in I} \text{Range} \left(\hat{Y}^i \right) = \bigcup_{i \in I} \{ \hat{Y}^i_s : 0 \leq s \leq \tau_i \}
\]

(2.2)
is compact.

To consider the case for \(\mu \) being \(\sigma \)-finite, the following conditional martingale problem (CMP) is useful. The following lemma was proved in [1]...

Lemma 2.4 i) If \(X_t \) is the solution to MP, then there exists a Brownian motion \(W_t \) such that for any \(\phi \in C_0^2(\mathbb{R}^d) \),

\[
N_t(\phi) \equiv \langle X_t, \phi \rangle - \langle \mu, \phi \rangle - \int_0^t \langle X_s, L\phi \rangle \, ds - \int_0^t \langle X_s, \sigma_1^T \nabla \phi \rangle \, dW_s
\]

(2.3)
is a continuous \((\mathbb{P}, \mathcal{G}_t)\)-martingale with quadratic variation process

\[
\langle N(\phi) \rangle_t = \int_0^t \langle X_s, \phi^2 \rangle \, ds
\]

(2.4)

where \(\mathcal{G}_t = \mathcal{F}_t \vee \mathcal{F}_W^\infty \).

ii) If \(X_t \) is a solution to CMP, then it is a solution to MP.

As another application of the snake representation, we have

Corollary 2.5 If \(d \geq 2 \), then \(X_t \) is singular.

Proof: If \(\mu \) is finite and \(d > 1 \), it follows from (2.2) the support is of Lebesgue measure 0 since \(\{ \hat{Y}^i_s : 0 \leq s \leq \tau_i \} \) is a continuous (one-dimensional) curve in \(\mathbb{R}^d \). If \(\mu \) is \(\sigma \)-finite, we can take \(\mu = \sum_{n=1}^\infty \mu^n \) with \(\mu^n \) finite. Construct the solution \(X^n_t \) to CMP with the same \(W \) and with initial \(\mu^n, n = 1, 2, \ldots \). Then

\[
X_t = \sum_{n=1}^\infty X^n_t
\]
is the solution to CMP with initial \(\mu \). Then \(\text{supp}(X^n_t) \) has Lebesgue measure 0 and hence, so does the support of \(X_t \). This implies that \(X_t \) is a singular measure a.s.
\[\blacksquare\]
3 SPDE for $d = 1$

In this section, we prove that X_t has a density which satisfies the SPDE (1.6) whose mild form is

$$
\langle X_t, f \rangle = \langle \mu, f \rangle + \int_0^t \langle X_s, Lf \rangle \, ds + \int_0^t \langle X_s, \sigma_1 f' \rangle \, dW_r \\
+ \int_0^t \int \sqrt{X_s(x)} f(x) B(dsdx).
$$

(3.1)

Let $p_0(t, x, y)$ and $q_0(t, (x_1, x_2), (y_1, y_2))$ be the transition density functions of the Markov processes $\eta_1(t)$ and $(\eta_1(t), \eta_2(t))$ respectively. By Theorem 1.5 of [13], we have

$$
\mathbb{E} \left[\langle X_t, f \rangle \right] = \int_{\mathbb{R}^2} f(y)p_0(t, x, y)dy\mu(dx)
$$

(3.2)

and

$$
\mathbb{E} \left[\langle X_t, f \rangle \langle X_t, g \rangle \right]
= \int_{\mathbb{R}^4} f(y_1)g(y_2)q_0(t, (x_1, x_2), (y_1, y_2))dy_1dy_2\mu(dx_1)\mu(dx_2) \\
+ 2\int_0^t \int_{\mathbb{R}^4} p_0(t-s, z, y)f(z_1)g(z_2)q_0(s, (y, y), (z_1, z_2))dz_1dz_2dy\mu(dz).
$$

(3.3)

Theorem 3.1 If $\mu(\mathbb{R}) < \infty$, then $X_t \in H_0 \equiv L^2(\mathbb{R})$ a.s.

Proof: Take $f = p_0(\epsilon, x, \cdot)$ and $g = p_0(\epsilon', x, \cdot)$ in (3.3). Note that as $\epsilon, \epsilon' \rightarrow 0$,

$$
\int_{\mathbb{R}^4} p_0(\epsilon, x, z_1)p_0(\epsilon', x, z_2)p_0(t-s, z, y)q_0(t, y, y), (z_1, z_2))dz_1dz_2 \\
\rightarrow p_0(t-s, z, y)q_0(t, (y, y), (x, x)).
$$

Note that by Theorem 6.4.5 in Friedman [3], we have

$$
p_0(\epsilon, x, y) \leq c\varphi_{\epsilon'}(x-y),
$$

$$
q_0(s, (y, y), (z_1, z_2)) \leq c\varphi_{\epsilon'}(y-z_1)\varphi_{\epsilon'}(y-z_2)
$$
where $\varphi_t(x)$ is the normal density with mean 0 and variance t (introduced earlier).

Note that c' is a constant which is usually greater than 1. Since it does not play an essential role, to simplify the notations, we assume $c' = 1$ throughout the rest of this paper. Hence,

$$
\int_{\mathbb{R}^2} p_0(\epsilon, x, z_1)p_0(\epsilon', x, z_2)p_0(t - s, z, y)q_0(s, (y, y), (z_1, z_2))dz_1dz_2 \\
\leq c \int_{\mathbb{R}^2} \varphi_\epsilon(x - z_1)\varphi_{\epsilon'}(x - z_2)\varphi_{t-s}(z - y)\varphi_s(y - z_1)\varphi_s(y - z_2)dz_1dz_2 \\
= c\varphi_{s+\epsilon}(x - y)\varphi_{s+\epsilon'}(x - y)\varphi_{t-s}(z - y).
$$

As

$$
\lim_{\epsilon, \epsilon' \to 0} \int_0^T dt \int dx \int_0^t ds \int_{\mathbb{R}^2} \varphi_{s+\epsilon}(x - y)\varphi_{s+\epsilon'}(x - y)\varphi_{t-s}(z - y)dy\mu(dz) \\
= \lim_{\epsilon, \epsilon' \to 0} \int_0^T dt \int dx \int_0^t ds \varphi_{2s+\epsilon+\epsilon'}(0)\mu(\mathbb{R}) \\
= \int_0^T dt \int dx \int_0^t ds \varphi_{2s}(0)\mu(\mathbb{R}) \\
= \int_0^T dt \int dx \int_0^t ds \int_{\mathbb{R}^2} \varphi_{t-s}(z - y)\varphi_s(x - y)\varphi_s(x - y)dy\mu(dz),
$$

by the dominated convergence theorem, we see that as $\epsilon, \epsilon' \to 0$,

$$
\int_0^T dt \int dx \int_0^t ds \int_{\mathbb{R}^2} p_0(t - s, z, y)p_0(\epsilon, x, z_1)p_0(\epsilon', x, z_2)q_0(s, (y, y), (z_1, z_2))dz_1dz_2dy\mu(dz) \\
\to \int_0^T dt \int dx \int_0^t ds \int_{\mathbb{R}^2} p_0(t - s, z, y)q_0(t, (y, y), (x, x))dy\mu(dz).
$$

Similarly, we have

$$
\int_0^T dt \int dx \int_{\mathbb{R}^4} p_0(\epsilon, x, y_1)p_0(\epsilon', x, y_2)q_0(t, (x_1, x_2), (y_1, y_2))dy_1dy_2\mu(dx_1)\mu(dx_2) \\
\to \int_0^T dt \int dx \int_{\mathbb{R}^2} q_0(t, (x_1, x_2), (x, x))\mu(dx_1)\mu(dx_2).
$$

Hence

$$
\int_0^T dt \int dx \left(\langle X_t, p(\epsilon, x, \cdot) \rangle \langle X_t, p(\epsilon', x, \cdot) \rangle \right)
$$
\[
\int_0^T dt \int dx \int_{\mathbb{R}^2} q_0(t,(x_1,x_2),(x,x)) \mu(dx_1)\mu(dx_2)
+ \int_0^T dt \int dx \int_0^t ds \int_{\mathbb{R}^2} p_0(t-s,x,y)q_0(t,(y,y),(x,x)) dy \mu(dx).
\]

From this, we can show that \(\{\langle X_t, p_0(\epsilon,x,\cdot) \rangle : \epsilon > 0\}\) is a Cauchy sequence in \(L^2(\Omega \times [0,T] \times \mathbb{R})\). This implies the existence of the density \(X_t(x)\) of \(X_t\) in \(L^2(\Omega \times [0,T] \times \mathbb{R})\).

Next theorem considers infinite measure.

Theorem 3.2 If \(\mu \in \mathcal{M}_{\text{tem}}(\mathbb{R}^d)\), then \(X_t\) has a density \(X_t(x)\).

Proof: If \(\mu\) is \(\sigma\)-finite, we can construct \(X^n\) with \(X_0^n = \mu^n\) being finite as those in the proof of Corollary 2.5. Then

\[
X_t = \sum_{n=1}^{\infty} X^n_t
\]

is the solution to CMP with initial \(\mu\). Let

\[
X_t(x) = \sum_{n=1}^{\infty} X^n_t(x). \tag{3.4}
\]

By (3.2), we have

\[
\mathbb{E} X^n_t(x) = \int_{\mathbb{R}} p_0(t,y,x)\mu^n(dy).
\]

As

\[
p_0(t,x,y) \leq c\varphi_t(x-y) \leq c(t,\lambda,x)e^{-\lambda|y|},
\]

for any \(\lambda > 0\), we have

\[
\mathbb{E} \sum_{n=1}^{\infty} X^n_t(x) = \sum_{n=1}^{\infty} \int_{\mathbb{R}} p_0(t,y,x)\mu^n(dy)
= \int_{\mathbb{R}} p_0(t,y,x)\mu(dy) < \infty.
\]

Hence, \(X_t(x)\) is well-defined by (3.2). It is then easy to show that \(X_t(x)dx = X_t(dx)\).
Finally, we derive the SPDE satisfied by the density.

Theorem 3.3 If \(d = 1 \), then \(X_t \) is the (weak) unique solution to the SPDE (3.1).

Proof: Note that \(N_t(\phi) \) is a continuous \((\mathbb{P}, \mathcal{G}_t)\)-martingale with quadratic variation process

\[
\langle N(\phi) \rangle_t = \int_0^t \int_{\mathbb{R}} \left(\sqrt{X_s(x)\phi(x)} \right)^2 \, dx \, ds.
\]

By the martingale representation theorem ([4], Theorem 3.3.5), there exists an \(L^2(\mathbb{R}) \)-cylindrical Brownian motion \(\tilde{B} \) on an extension of \((\Omega, \mathcal{F}, \mathcal{G}_t, \mathbb{P})\) such that

\[
N_t = \int_0^t \left\langle \sqrt{X_s}, \, d\tilde{B}_s \right\rangle_{L^2(\mathbb{R})}.
\]

There exists a standard Brownian sheet \(B \) such that

\[
\tilde{B}_t(h) = \int_0^t \int_{\mathbb{R}} h(x) B(dsdx), \quad \forall h \in L^2(\mathbb{R}).
\]

Therefore,

\[
N_t(\phi) = \int_0^t \int_{\mathbb{R}} \sqrt{X_s(x)\phi(x)} B(dsdx).
\]

As \(B \) is a Brownian sheet on an extension of \(\mathcal{G}_t \), it is easy to show that \(B \) is independent of \(W \).

\[\blacksquare\]

4 Hölder Continuity

This section is devoted to the proof of the main result: Theorem 1.1 (iii). Namely, in this section, we consider the regularity of the solution to the nonlinear SPDE (1.6). We use the linearization and Krylov’s \(L_p \)-theory for linear SPDE.

We will paraphrase the condition (BC) to find some reasonable assumptions for \(\sigma_1, \sigma_2, b \) to make our regularity argument easy. Note that these functions are scalar functions since we are dealing with the situation \(d = 1 \). Therefore, we have \(L = \frac{1}{2} a \partial_{xx} + b \partial_x \) and \(L^* = \frac{1}{2} a' \partial_{xx} + (a' - b) \partial_x + (\frac{1}{2} a'' - b'). \)
We start by defining some basic spaces. We denote

\[[f]_0 = \sup_{x \in \mathbb{R}} |f(x)|, \quad [f]_\gamma = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\gamma} \]

for \(\gamma \in (0, 1] \). Using this notation, we define

\[\|f\|_{C^0,\gamma} = [f]_0 + [f]_\gamma, \quad \|f\|_{C^1,\gamma} = [f]_0 + [f']_0 + [f']_\gamma \]

\[\|f\|_{C^1} = [f]_0 + [f']_0, \quad \|f\|_{C^2} = [f]_0 + [f']_0 + [f'']_0 \]

assuming that \(f' \) or \(f'' \) exist if they appear in the corresponding definition. Then we define the Banach spaces:

\[C^{0,\gamma} = \{ f : \|f\|_{C^{0,\gamma}} < \infty \}, \quad C^{1,\gamma} = \{ f : \|f\|_{C^{1,\gamma}} < \infty \} \]

\[C^1 = \{ f : \|f\|_{C^1} < \infty \}, \quad C^2 = \{ f : \|f\|_{C^2} < \infty \}. \]

Remark 4.1 Zygmund spaces \(C^{0,\gamma}, C^{1,\gamma} \) are the usual Hölder spaces if \(\gamma \in (0, 1) \). It is easy to see that we have \(\|f\|_{C^{0,\gamma}} \leq 2\|f\|_{C^{0,1}}, \|f\|_{C^{1,\gamma}} \leq 2\|f\|_{C^{1,1}} \) and \(\|f\|_{C^{0,1}} \leq \|f\|_{C^1}, \|f\|_{C^{1,1}} \leq \|f\|_{C^2} \) when \(f' \) or \(f'' \) exists.

Now, we state assumptions on \(\sigma_1, \sigma_2, b \). First, our condition (BC) gives us the following assumption:

\[\sigma_1, \sigma_2 \in C^2, \quad b \in C^1 \quad (4.1) \]

which, in particular, implies \(a = \sigma_1^2 + \sigma_2^2 \in C^2 \). We also assume that

\[\delta \leq \frac{1}{2} a, \quad \frac{1}{2} \sigma_2^2 \leq K, \quad \|\sigma_1\|_{C^2}, \|\sigma_2\|_{C^2}, \|b\|_{C^1} \leq K \quad (4.2) \]

for some positive constants \(\delta, K \).

Next, we recall the basic definitions of some function spaces defined in [7]. In addition to the definition about space of Bessel potentials in the Theorem 1.1, we also
define the following: For $n \in \mathbb{R}$ and $p \in [2, \infty)$ let $H^n_p(l_2)$ be the space with norm

$$\|g\|_{n,p} = \left\| (I - \Delta)^{n/2} g \right\|_{l_2}$$

for l_2-valued functions $g = \{g^k\}$. Then we define

$$\mathbb{H}^n_p(T) = \mathbb{L}_p(\Omega \times [0, T], \mathcal{P}, H^n_p(l_2)) \quad \text{and} \quad \mathbb{H}^n_p(T, l_2) = \mathbb{L}_p(\Omega \times [0, T], \mathcal{P}, H^n_p(l_2))$$

where \mathcal{P} is the predictable σ-field. We denote $\mathbb{L}_p(T) = \mathbb{H}^0_p(T)$. Let \{w^k_t : k = 1, 2, \ldots\} be a family of independent one-dimensional Brownian motions.

We say $u \in \mathcal{H}^n_p(T)$ if $\partial_{xx} u \in \mathcal{H}^{n-2}_p(T)$ and $u(0, \cdot) \in \mathbb{L}_p(\Omega, H^{n-2/p}_p)$ and there exists $(f, g) \in \mathcal{H}^{n-2}_p(T) \times \mathcal{H}^{n-1}_p(T, l_2)$ such that $\forall \phi \in C^\infty_0(\mathbb{R})$, (a.s.)

$$\langle u_t, \phi \rangle = \langle u_0, \phi \rangle + \int_0^t \langle f_s, \phi \rangle \, ds + \sum_{k=0}^\infty \int_0^t \langle g^k_s, \phi \rangle \, dw^k_s$$

holds for all $t \leq T$. We denote

$$\|u\|_{\mathcal{H}^n_p(T)} = \|\partial_{xx} u\|_{\mathcal{H}^{n-2}_p(T)} + \|f\|_{\mathcal{H}^{n-2}_p(T)} + \|g\|_{\mathcal{H}^{n-1}_p(T, l_2)} + \left(E \|u_0\|_{\mathcal{H}^{n-2/p}_p} \right)^{1/p}$$

Reader can find motivation of this definition and detailed remarks in [7].

Now, we fix $\epsilon \in (0, \frac{1}{4})$ and proceed to the Proof of Theorem 1.1 (iii): First, we freeze the nonlinear term of SPDE (1.6) and consider the following auxiliary linear SPDE for $Y_t(x)$:

$$\left\{ \begin{array}{ll}
\partial_t Y &= L^* Y + \sqrt{X} \dot{B}_t \, x \\
Y_0 &= \mu
\end{array} \right. \quad \text{(4.3)}$$

where we assume $\mu \in H^{4-n-2/p}_p$.

Then $Z = X - Y$ satisfies

$$\left\{ \begin{array}{ll}
\partial_t Z &= L^* Z - (\partial_x (\sigma_1 Z) + \partial_x (\sigma_1 Y)) \dot{W}_t \\
Z_0 &= 0.
\end{array} \right. \quad \text{(4.4)}$$

We apply Theorem 8.5 of [7] to (4.3). To do this we need the coefficients of L^* and \sqrt{X} to satisfy

$$\|a\|_{C^{1.1}} < \infty, \quad \|a' - b\|_{C^{0.1}} < \infty, \quad \left[\frac{1}{2} a'' - b' \right]_0 < \infty, \quad \|\sqrt{X}\|_{L_p(T)} < \infty.$$
In fact, we have
\[\|a\|_{C^{1,1}} \leq K, \quad \|a' - b\|_{C^{0,1}} \leq 2K, \quad \left[\frac{1}{2}a'' - b' \right]_0 \leq 2K \]
by our assumptions (4.1) and (4.2) and Remark 4.1. We will prove \(\|\sqrt{X}\|_{L^p(T)} < \infty \) later and take this for granted in this proof.

Now, by Theorem 8.5 of [7] to (4.3) and the first assertion of Lemma 8.4 and the fact that \(\mu \) is nonrandom, we have a unique solution \(Y \) in \(H^{\frac{1}{2} - \epsilon}(T) \) with estimate
\[\|Y\|_{H^{\frac{1}{2} - \epsilon}(T)} \leq N(\|\sqrt{X}\|_{L^p(T)} + \|\mu\|_{\frac{1}{2} - \epsilon - 2/p,p}) \]
(4.5)
where \(N \) depends only on \(\epsilon, p, \delta, K, T \).

Now we use Theorem 5.1 in [7] for equation (4.4) above with \(n = -\frac{3}{2} - \epsilon \in (-2, -\frac{3}{2}) \).
Note \(\partial_x(\sigma_1 Z) = \sigma_1 \partial_x Z + \partial_x \sigma_1 Z \). If we read [7] carefully, we can see that the following conditions are required:

(i) \[\delta \leq \frac{1}{2}a - \frac{1}{2}\sigma_1^2 (= \frac{1}{2}\sigma_2^2) \leq K_1 \]
for some positive \(\delta, K_1 \).

(ii) \(a, \sigma_1 \) are Lipschitz continuous with Lipschitz constant \(K_1 \).

(iii) \(a \in C^{1,\gamma_1}, \sigma_1 \in C^{0,\gamma_2} \) for some \(\gamma_1, \gamma_2 \in (0,1) \) and \(\|a\|_{C^{1,\gamma_1}} + \|\sigma\|_{C^{0,\gamma_2}} \leq K_1 \)

(iv) \(\|a' - b\|_{C^{0,\gamma_3}} + [\frac{1}{2}(a'' - b')]_0 + [\partial_x \sigma_1]_0 \leq K_1 \) for some \(\gamma_3 \in (0,1) \).

(v) \(\partial_x(\sigma_1 Y) \in H^{n+1}_p(T) (= \mathbb{H}^{\frac{1}{2} - \epsilon}(T)) \).

But, conditions (i) through (iv) are satisfied under (4.1) and (4.2) and Remark 4.1. Note that we can take some constant multiple of \(K^2 \) as \(K_1 \). On the other hand, (v) is
also satisfied. For

\[\| \partial_x (\sigma_1 Y) \|_{H_p^{\frac{1}{2} - \epsilon}(T)} \leq N \| \sigma_1 Y \|_{H_p^{\frac{1}{2} - \epsilon}(T)} \]

(4.6)

\[\leq N \| \sigma \|_{C^0} \| Y \|_{H_p^{\frac{1}{2} - \epsilon}(T)} \]

(4.7)

\[\leq N \| \sigma \|_{C^1} \| Y \|_{H_p^{\frac{1}{2} - \epsilon}(T)} \]

(4.8)

\[\leq N \| Y \|_{H_p^{\frac{1}{2} - \epsilon}(T)} \]

(4.9)

\[\leq N \| \sqrt{X} \|_{L_p(T)} + N \| \mu \|_{\frac{1}{2} - \epsilon/p, p} < \infty. \]

(4.10)

(4.6) follows the observation \(\partial_x = \partial_x (I - \Delta)^{-1/2} (I - \Delta)^{1/2} \) and the boundness of the operator \(\partial_x (I - \Delta)^{-1/2} \). (4.7) follows Lemma 5.1 (i) in [7]. Up to this step, \(N \) only depends on \(\epsilon, p \). Note that \(\frac{1}{2} - \epsilon + \frac{1}{4} \) is still in \((0, 1)\) since \(\frac{1}{2} - \epsilon \in (\frac{1}{4}, \frac{1}{2}) \). Hence, we have (4.8) by (4.2) and Remark 4.1. (4.9) follows Theorem 3.7 in [7] and \(N \) depends only on \(\epsilon, p, K, T \) now. Finally, (4.5) gives us (4.11) with \(N = N(\epsilon, p, \delta, K, T) \).

Therefore, we have a unique solution \(Z \) in \(H_p^{\frac{1}{2} - \epsilon}(T) \) with

\[\| Z \|_{H_p^{\frac{1}{2} - \epsilon}(T)} \leq N \| \partial_x (\sigma_1 Y) \|_{H_p^{\frac{1}{2} - \epsilon}(T)} \leq N \| \sqrt{X} \|_{L_p(T)} + N \| \mu \|_{\frac{1}{2} - \epsilon/2, p} \]

(4.11)

where \(N = N(\epsilon, p, \delta, K, T) \).

Thus, combining (4.5) and (4.11), we have \(X = Y + Z \in H_p^{\frac{1}{2} - \epsilon}(T) \) with estimate

\[\| X \|_{H_p^{\frac{1}{2} - \epsilon}(T)} \leq N \| \sqrt{X} \|_{L_p(T)} + N \| \mu \|_{\frac{1}{2} - \epsilon/2, p}. \]

(4.12)

By the embedding Theorem 7.1 in [7], this implies

\[\left(E \int_0^T \| X_t \|_{C^{\frac{1}{2} - \epsilon/p}}^p dt \right)^{1/p} \leq N \| \sqrt{X} \|_{L_p(T)} + N \| \mu \|_{\frac{1}{2} - \epsilon/2, p}. \]

So, for large \(p > \frac{1}{\epsilon} \), we have

\[\| X_t \|_{C^{\frac{1}{2} - \epsilon}} < \infty \]

for (a.e.) \(t \in [0, T] \) a.s., we are done with the proof.

Finally, we use the moment dual to prove that

\[\mathbb{E} \int_0^T \int_{\mathbb{R}} X(t, x)^n dx dt < \infty \]

(4.13)

for all \(n \in \mathbb{N} \).

Let \(n_t \) be a pure-death Markov chain with \(n_0 = 0 \) and, at a rate \(\frac{1}{2} n(n - 1) \), jumps from \(n \) to \(n - 1 \). Let \(0 = \tau_0 < \tau_1 < \cdots < \tau_{n-1} \) be the jump times. Let \(f_0 = \delta_{y}^{\otimes n} \) and for \(t < \tau_1 \), \(f_t(y) = p^n_\tau(t, (x, \cdots, x), y) \), \(\forall y \in \mathbb{R}^n \) where \(p^n_\tau \) is the transition function of the \(n \)-dimensional diffusion \((\eta_1(t), \cdots, \eta_n(t))\). For \(f \in C(\mathbb{R}^n) \), let \(G_{ij} f \in C(\mathbb{R}^{n-1}) \) be given by

\[G_{ij} f(y_1, \cdots, y_{n-2}, y_{n-1}) = f(y_1, \cdots, y_{n-1}, \cdots, y_{n-1}, \cdots, y_{n-2}) \]

where \(y_{n-1} \) is at \(i \)th and \(j \)th position. Let

\[f_{\tau_1} = \Gamma_1 f_{\tau_1} \]

where \(\Gamma_1 \) is a random element taking values in \(\{ G_{ij} : 1 \leq i < j \leq n \} \) uniformly. We continue this procedure to get the process \(f_t \). Replace \(f_0 \) by a smooth function \(f^k_0 \geq 0 \) approximating \(f_0 \). Denote the process constructed above with \(f^k_0 \) in place of \(f_0 \) by \(f^k_t \).

Similar to Theorem 11 in Xiong and Zhou [15], we have

\[\mathbb{E} \langle X_t^{\otimes n}, f^k_0 \rangle = \mathbb{E} \left(\langle \mu^{\otimes n}, f_t^{k} \rangle \exp \left(\frac{1}{2} \int_0^t n_s(n_s - 1) ds \right) \right) . \]

Taking limits and using Fatou’s lemma, we have

\[\mathbb{E} X(t, x)^n \leq \mathbb{E} \left(\langle \mu^{\otimes n}, f_t \rangle \exp \left(\frac{1}{2} \int_0^t n_s(n_s - 1) ds \right) \right) \]

\[\leq \exp \left(\frac{1}{2} n(n - 1)t \right) \sum_{i=1}^{n} \mathbb{E} \left(\langle \mu^{\otimes n}, f_t \rangle 1_{\tau_{i-1} \leq t < \tau_i} \right) . \]

Let \(i = 3 \). Then

\[f_t(x_1, \cdots, x_{n-2}) \leq c \int_{\mathbb{R}^{n-2}} \Pi_{i=1}^{n-2} \varphi_{t-\tau_2}(x_i - y_i) \Gamma_2 f_{\tau_2}(y) dy \]
\[
\begin{align*}
\leq c \int_{\mathbb{R}^{n-2}} & \Pi_{i=1}^{n-2} \varphi_{t-\tau_2}(x_i - y_i) \sum_{1 \leq k < \ell} \frac{2}{(n-2)(n-3)} \\
& f_{\tau_2}(y_1, \cdots, y_{n-2}, \cdots, y_{n-3})dy \\
\leq c \int_{\mathbb{R}^{n-2}} & \Pi_{i=1}^{n-2} \varphi_{t-\tau_2}(x_i - y_i) \sum_{1 \leq k < \ell} \frac{2}{(n-2)(n-3)} \\
& \int_{\mathbb{R}^{n-1}} \Pi_{j=1}^{n-1} \varphi_{\tau_2-\tau_1}(y_j - z_j) \varphi_{\tau_1}(z_1 - x) \cdots \\
& \cdots \varphi_{\tau_1}(z_{n-2} - x) \varphi_{\tau_1}(z_{n-1} - x)^2dz.
\end{align*}
\]

Thus
\[
\langle \mu^\otimes_{n-2}, f_t \rangle \leq c \int_{\mathbb{R}} \varphi_{t-\tau_2}(x_{n-2} - y_{n-2}) \mu(dx_{n-2}) \int_{\mathbb{R}} dy_{n-2} \sum_{1 \leq k < \ell} \frac{2}{(n-2)(n-3)} \varphi_{\tau_2-\tau_1}(y_{n-2} - z_k) \varphi_{\tau_2-\tau_1}(y_{n-2} - z_\ell) \\
\leq c \int_{\mathbb{R}} \varphi_{t-\tau_2}(x_{n-2} - y_{n-2}) \mu(dx_{n-2}) \int_{\mathbb{R}} dy_{n-2} \frac{1}{\sqrt{\tau_1(\tau_2 - \tau_1)}} \varphi_{\tau_2}(y_{n-2} - x).
\]

Therefore
\[
\int_{\mathbb{R}} \langle \mu^\otimes_n, f_t \rangle 1_{\tau_2 \leq t < \tau_3} dx \leq c\mu(\mathbb{R})E \frac{1}{\sqrt{\tau_1(\tau_2 - \tau_1)}} < \infty.
\]

The other terms can be proved similarly. This finishes the proof of Theorem 1.1.

Acknowledgement: Most of this work was done during the second author’s visit of University of Tennessee and the third author’s visit of University of Rochester. Financial support and hospitality from both institutes are appreciated.

References

[1] D. A. Dawson, Z. Li and H. Wang (2001). Superprocesses with dependent spatial motion and general branching densities. *Electronic Journal of Probability, 6*, 1-33.
[2] Dawson, D. A.; Vaillancourt, J. and Wang, H. (2000). Stochastic partial differential equations for a class of interacting measure-valued diffusions. *Ann. Inst. Henri Poincaré, Probabilités et Statistiques*, 36, 2:167–180, 2000.

[3] A. Friedman (1975). *Stochastic Differential Equations and Applications*. Volume 1. Academic Press.

[4] G. Kallianpur and J. Xiong (1995). Stochastic Differential Equations on Infinite Dimensional Spaces, *IMS Lecture notes-monograph series*, Vol. 26, 1995.

[5] N. Konno and T. Shiga (1988). Stochastic partial differential equations for some measure-valued diffusions. *Probab. Theory Related Fields* 79, 2, 201-225.

[6] N.V. Krylov (2002). Some new results in the theory of SPDEs in Sobolev spaces. *Lecture Notes in Pure and Applied Mathematics* 227, 325-336. Edited by G. Da Prato and L. Tubaro, 2002.

[7] N.V. Krylov (1999). An analytic approach to SPDEs, Stochastic partial differential equations: six perspectives, *Math. Surveys Monogr.*, 64, 185-242, Amer.Math.Soc., Providence, RI, 1999.

[8] J.F. Le Gall (1993). A class of path-valued Markov processes and its applications to superprocesses. *Probability Theory Related Fields* 95, No. 1, 25-46.

[9] G. Skoulakis and R.J. Adler (2001). Superprocesses over a stochastic flow. *Ann. Appl. Probab.* 11, no. 2, 488-543.

[10] Walsh, J.B.: *An Introduction to Stochastic Partial Differential Equations*. in École d’été de probabilités de Saint-Flour, XIV-1984, Lecture Notes in Mathematics 1180, Springer-Verlag, Berlin, Heidelberg, New York (1986), 39–55.
[11] Wang, H.: State classification for a class of measure-valued branching diffusions in a Brownian medium. Probab. Theory Related Fields 109 (1997), 39–55.

[12] H. Wang (1998). A class of measure-valued branching diffusions in a random medium. Stochastic Anal. Appl. 16, 753-786.

[13] J. Xiong (2004). A stochastic log-Laplace equation. Ann. Probab. 32, 2362-2388.

[14] Xiong, J. (2004). Long-term behavior for superprocesses over a stochastic flow. Electron. Comm. Probab., Vol.9: 36–52, 2004.

[15] J. Xiong and X. Zhou (2004). Superprocess over a stochastic flow with superprocess catalyst. International Journal of Pure and Applied Mathematics 17, No. 3, 353-382.