Macrocycle Based Dinuclear Dysprosium(III) Single Molecule Magnets with Local D_{5h} Coordination Geometry

Jianfeng Wu, a,b Serhiy Demeshko, a Sebastian Dechert, a and Franc Meyer* a

a Institut für Anorganische Chemie, Universität Göttingen, Tammanstr. 4, D-37077 Göttingen, Germany.

b School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China

1. Schematic drawing of the ligands
2. IR Spectroscopy
3. Powder XRD and thermogravimetric analyses
4. Crystallographic Details
5. Direct current (dc) magnetic susceptibility measurements
6. Alternating current (ac) magnetic susceptibility measurements
7. CC-Fit results
8. Calculations with Magellan program
9. References
1. Schematic drawing of the ligands

Scheme S1. Schematic drawing of the proligands H$_2$L1 (top), H$_2$L2 (middle), and H$_2$L3 (bottom).
2. IR Spectroscopy

Fig. S1 IR(ATR) spectrum of a solid sample of complex Dy₄.

Fig. S2 IR(ATR) spectra of solid samples of complexes Dy₂·Cl, Dy₂⁺·Cl, and Dy₂·SCN.
3. Powder XRD and thermogravimetric analyses

Fig. S3 Powder XRD analysis of Dy$_2$Cl. The black line is the simulated pattern based on the single crystal diffraction data.

Fig. S4 Powder XRD analysis of Dy$_2^+$Cl. The black line is the simulated pattern based on the single crystal diffraction data.

Fig. S5 Thermogravimetric analyses of Dy$_2$Cl (red line) and Dy$_2^+$Cl (black line).
4. Crystallographic Details

Table S1. Crystallographic data of complexes Dy₄, Dy₂·Cl, Dy₂⁺·Cl, and Dy₂·SCN.

	Dy₄	Dy₂·Cl	Dy₂⁺·Cl	Dy₂·SCN
empirical formula	C₇₂H₁₀₂Cl₄Dy₄O₳₃	C₇₂H₁₀₂Cl₄Dy₂N₁₀	C₆₂H₄Cl₄Dy₂N₁₀	C₆₂H₄Dy₂N₁₄O₂S₄
formula weight, g·mol⁻¹	2523.51	931.43	959.48	1086.03
crystal size, mm³	0.500 x 0.300 x 0.150	0.210 x 0.180 x 0.160	0.160 x 0.150 x 0.100	0.210 x 0.080 x 0.050
crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
space group	P₂₁/n	P₂₁/c	P₂₁/c	P-1
T, K	133(2)	133(2)	133(2)	133(2)
λ, Å	0.71073	0.71073	0.71073	0.71073
a, Å	14.0320(2)	8.9982(3)	8.9524(3)	8.7415(4)
b, Å	16.1940(3)	11.6001(3)	11.7805(5)	9.1291(4)
c, Å	25.7815(4)	14.8941(5)	15.8173(6)	12.9791(5)
α, °	90	90	90	79.287(3)
β, °	96.4540(10)	103.545(3)	102.837(3)	73.578(3)
γ, °	90	90	90	87.499(4)
V, Å³	5821.31(16)	1511.41(8)	1626.46(11)	976.15(7)
Z	2	2	2	1
ρ (cal), g·cm⁻³	1.440	2.047	1.959	1.847
F(000)	2496	900	932	534
θ range [°]	1.488 to 26.790	2.250 to 26.855	2.175 to 26.865	1.663 to 26.747
Tmin / Tmax	0.8436 / 0.5310	0.4310 / 0.2492	0.8004 / 0.6557	0.8473 / 0.4952
measured refl.	84214	19848	13782	13784
unique refl. [Rint]	12347, 0.0285	3205 / 0.0239	3450 / 0.0360	4139 / 0.0275
goodness-of-fit (F²)	1.048	1.115	1.071	1.118
data / restr. / param.	12347 / 119 / 636	3205 / 0 / 184	3450 / 31 / 241	4139 / 1 / 247
R₁, wR₂ (I > 2σ(I))	0.0235, 0.0569	0.0248, 0.0589	0.0293, 0.0638	0.0229, 0.0537
R₁, wR₂ (all data)	0.0274, 0.0584	0.0275, 0.0600	0.0400, 0.0668	0.0282, 0.0558
res. el. dens. [e·Å⁻³]	0.736 / -0.686	1.257 / -0.717	1.882 / -0.700	1.492 / -0.336

Table S2. Selected bond distances (Å) in complex Dy₄.

Dy(1)-O(6)	2.2608(18)	Dy(2)-O(6)	2.2726(19)
Dy(1)-O(5)	2.3152(18)	Dy(2)-O(8)	2.320(2)
Dy(1)-O(7)	2.351(2)	Dy(2)-O(5)	2.3890(18)
Dy(1)-O(5)#	2.4034(17)	Dy(2)-N(6)#	2.411(2)
Dy(1)-N(1)	2.424(2)	Dy(2)-N(2)#	2.431(2)
Dy(1)-N(7)	2.429(2)	Dy(2)-N(3)#	2.517(2)
Dy(1)-O(1)	2.5179(19)	Dy(2)-N(5)#	2.531(2)
Dy(1)-O(3)	2.5892(19)	Dy(2)-N(4)#	2.570(2)
Dy(1)-Dy(1)#	3.8066(2)	Dy(1)-Dy(2)	3.72071(18)

Symmetry transformations used to generate equivalent atoms: # -x+1,-y+1,-z+1.
Table S3. Selected bond angles (°) in complex Dy₄⁺.

Bond	Angle 1	Angle 2	Angle 3	Angle 4
O(6)-Dy(1)-O(7)	82.39(7)			
O(5)-Dy(1)-O(7)	105.47(7)			
O(7)-Dy(1)-N(1)	78.31(8)			
O(5)#-Dy(1)-N(1)	74.10(7)			
O(5)-Dy(1)-N(7)	80.54(7)			
O(5)#-Dy(1)-N(7)	75.54(7)			
N(1)-Dy(1)-N(7)	75.15(8)			
O(6)-Dy(1)-O(1)	85.28(7)			
O(7)-Dy(1)-O(1)	86.00(7)			
N(7)-Dy(1)-O(1)	105.67(7)			
O(6)-Dy(1)-O(3)	78.91(7)			
O(5)#-Dy(1)-O(3)	82.41(6)			
N(1)-Dy(1)-O(3)	109.12(7)			
O(1)-Dy(1)-O(3)	78.54(7)			

Symmetry transformations used to generate equivalent atoms: # -x+1,-y+1,-z+1

Table S4. Selected bond distances (Å) and angles (°) in complexes Dy⁺⁺Cl, Dy⁺⁺⁺Cl, and Dy⁺⁺⁻SCN.

Bond	Distance 1	Distance 2	Distance 3
Dy(1)-N(1)	2.441(3)	2.447(4)	2.397(3)
Dy(1)-N(2)	2.455(3)	2.452(3)	2.423(3)
Dy(1)-N(5)	2.458(3)	2.453(4)	2.454(3)
Dy(1)-N(3)	2.467(3)	2.469(4)	2.455(3)
Dy(1)-N(4)	2.488(4)	2.547(4)	2.472(3)
Dy(1)-Cl(2)	2.6030(11)	2.6050(12)	2.484(3)
Dy(1)-Cl(1)	2.6143(12)	2.6123(12)	2.486(3)
Cl(2)-Dy(1)-Cl(1)	169.18(4)	174.17(4)	2.550(3)

Table S5. Selected bond angles (°) in complexes Dy⁺⁺Cl, Dy⁺⁺⁺Cl, and Dy⁺⁺⁻SCN.

Bond	Angle 1	Angle 2	Angle 3	Angle 4	Angle 5
N(1)-Dy(1)-N(2)	92.58(10)	66.32(13)	112.19(10)		
N(2)-Dy(1)-N(5)	66.02(11)	91.34(11)	81.24(9)		
N(1)-Dy(1)-N(3)	66.12(11)	66.33(12)	71.50(9)		
N(5)-Dy(1)-N(4)	68.46(13)	67.26(13)	127.67(10)		
N(3)-Dy(1)-N(4)	66.81(13)	68.76(13)	76.78(9)		
N(1)-Dy(1)-Cl(2)	92.58(8)	90.98(13)	91.53(9)		
N(2)-Dy(1)-Cl(2)	94.97(8)	93.43(8)	80.86(10)		
N(5)-Dy(1)-Cl(2)	90.78(9)	89.92(9)	80.60(10)		
N(3)-Dy(1)-Cl(2)	88.08(8)	86.31(9)	65.20(9)		
N(4)-Dy(1)-Cl(2)	85.43(12)	88.08(9)	90.11(10)		
N(1)-Dy(1)-Cl(1)	93.73(8)	90.22(13)	84.64(10)		
N(2)-Dy(1)-Cl(1)	93.53(8)	92.28(8)	65.31(9)		
Fig. S6 Packing models along the a and b axes of complex Dy_4.

Fig. S7 Packing models along the a and b axes of complex $\text{Dy}_2\cdot \text{Cl}$. The green dash lines represent the hydrogen bondings.

Fig. S8 Packing models along the a and b axes of complex $\text{Dy}_2\cdot \text{Cl}$. The green dash lines represent the hydrogen bondings.
Fig. S9 Packing models along the a and b axes of complex $\text{Dy}_2\cdot\text{SCN}$.

Table S6. CShM values calculated by SHAPE 2.11 for Dy_4.

Central atom	Coordination Geometry	Dy1	Dy2
Dy	Cube (O_h)	10.878	12.616
	Square antiprism (D_{4d})	1.358	2.900
	Triangular dodecahedron (D_{2d})	2.124	2.075
	Johnson gyrobifastigium J26 (D_{2d})	15.159	11.704
	Johnson elongated triangular bipyramid (D_{3h})	28.301	25.449
	Biaugmented trigonal prism (C_3v)	2.147	1.898
	Snub diphenoid J84 (D_{2d})	4.694	3.447

Fig. S10 Coordination polyhedron of Dy1 (left) and Dy2 (right) in complex Dy_4.

Table S7. CShM values calculated by SHAPE 2.11 for $\text{Dy}_2\cdot\text{Cl}$ and $\text{Dy}_2^+\cdot\text{Cl}$.

Central atom	Coordination Geometry	Dy$_2\cdot\text{Cl}$	Dy$_2^+\cdot\text{Cl}$
Dy	Hexagonal pyramid (C_{6v})	24.940	24.584
	Pentagonal bipyramid (D_{5h})	0.801	0.689
	Capped octahedron (C_{3v})	8.759	8.143
	Capped trigonal prism (C_{3v})	6.947	6.420
	Johnson pentagonal bipyramid J13 (D_{15})	5.420	5.268
	Johnson elongated triangular pyramid J7 (C_{3v})	24.391	23.565
Fig. S11 Coordination polyhedra of the DyIII ions in complexes Dy$_2$·Cl (left) and Dy$_2^*$·Cl (right).

Table S8. CShM values calculated by SHAPE 2.11 for Dy$_2$·SCN.

Central atom	Coordination Geometry	Dy$_2$·SCN
Dy	Cube (O_h)	8.776
	Square antiprism (D_{4d})	4.194
	Triangular dodecahedron (D_{2d})	**2.600**
	Johnson gyrobiastigium J26 (D_{2d})	9.308
	Johnson elongated triangular bipyramid (D_{3h})	26.603
	Biaugmented trigonal prism (C_3)	2.818
	Snub diphenoid J84 (D_{3h})	5.724

Fig. S12 Coordination polyhedra of the DyIII ions in complex Dy$_2$·SCN.
5. Direct current (dc) magnetic susceptibility measurements

Fig. S13 Molar magnetization (M) vs. field (H) for Dy$_4$ at 2.0 K.

Fig. S14 Molar magnetization (M) vs. field (H) for Dy$_2$Cl at 2.0 K.
Fig. S15 Molar magnetization \((M)\) vs. field \((H)\) for \(\text{Dy}_2^*\cdot\text{Cl}\) at 2.0 K.

Fig. S16 Molar magnetization \((M)\) vs. field \((H)\) for \(\text{Dy}_2^*\cdot\text{SCN}\) at 2.0 K.
6. Alternating current (ac) magnetic susceptibility measurements

Fig. S17 Temperature-dependent ac susceptibility of Dy\(_4\) at indicated dc fields with frequency of 1488 Hz.

Fig. S18 Field-dependent ac susceptibility of Dy\(_4\) at indicated temperatures with frequency of 1488 Hz.
Fig. S19 Temperature-dependent ac susceptibility of Dy$_4$ at indicated frequencies under zero (left) and 800 Oe (right) dc field.

Fig. S20 Temperature-dependent ac susceptibility of Dy$_2$-Cl (left) and Dy$_2^*$-Cl (right) at zero dc field with a frequency of 1488 Hz.

Fig. S21 Field-dependent ac susceptibility of Dy$_2$-Cl (left) and Dy$_2^*$-Cl (right) at 2 K with a frequency of 1488 Hz.
Fig. S22 Frequency-dependent ac susceptibility of $\text{Dy}_2 \cdot \text{Cl}$ (left) and $\text{Dy}_2^* \cdot \text{Cl}$ (right) at indicated temperatures under 300 Oe dc field.

Fig. S23 Cole-Cole plots (top) and plots of τ vs. T^{-1} (bottom) for $\text{Dy}_2 \cdot \text{Cl}$ (left), $\text{Dy}_2^* \cdot \text{Cl}$ (middle), and $\text{Dy}_2 \cdot \text{SCN}$ (right) under indicated dc field. The red line represents the best fits using equation 1.
7. CC-Fit results

Table S9. CC-Fit2 results for frequency-dependent ac susceptibility of Dy$_4$ under zero dc field.

T / K	$\chi_{S,tot}$	Δf_1	τ_1/s	α_1	Δf_2	τ_2/s	α_2	Residual 2
2	0.59044	8.13929	0.01481	0.32966	2.64099	0.09655	2.19926E-8	0.01591
2.5	0.5123	8.08732	0.01224	0.31826	2.93527	0.07771	3.18221E-8	0.00088
3	0.4305	8.05426	0.01076	0.32733	2.59776	0.05837	5.76599E-8	0.00764
3.5	0.37351	7.74295	0.00872	0.32463	2.23654	0.04503	1.18424E-7	0.00712
4	0.32768	7.29461	0.0066	0.32239	1.93835	0.03572	1.94098E-7	0.00725
4.5	0.274	6.84936	0.00482	0.32419	1.70276	0.02866	3.94594E-7	0.00647
5	0.22708	6.386	0.00344	0.32719	1.5474	0.02289	7.95211E-7	0.00522
6	0.13659	5.53512	0.00171	0.33536	1.37677	0.01423	1.36364E-6	0.00559
7	0.11242	4.80641	9.03371E-4	0.34297	1.2644	0.00879	1.63469E-6	0.00509
8	0.07596	4.23591	4.81184E-4	0.36112	1.1917	0.00533	2.83498E-6	0.00695
9	0.15701	3.64447	2.70302E-4	0.37318	1.14825	0.00328	2.66936E-6	0.00192
10	0.5111	2.92288	1.98751E-4	0.35343	1.05345	0.00212	1.89458E-5	0.00817
12	0.99713	1.94597	1.11583E-4	0.28187	0.84326	8.84435E-4	2.65224E-5	0.00364
14	0.90483	1.72157	3.72505E-5	0.24227	0.64899	3.7311E-4	9.21447E-7	0.00178
16	0.97553	1.52834	2.23824E-5	0.14896	0.39461	1.83002E-4	1.00345E-6	0.00139

Table S10. CC-Fit results for frequency-dependent ac susceptibility of Dy$_4$ under 800 Oe dc field.

T / K	χ_S	χ_T	τ/s	α	Residual
2	0.899	12.6174	0.02894	0.34231	0.07056
2.5	0.83	12.4717	0.02089	0.33558	0.09002
3	0.76931	11.6902	0.01471	0.32453	0.12673
3.5	0.72041	10.7396	0.01018	0.31072	0.15109
4	0.66365	9.8181	0.00696	0.29754	0.16413
4.5	0.61313	8.99414	0.00478	0.28615	0.15874
5	0.57009	8.2771	0.00332	0.27714	0.15522
6	0.50603	7.11298	0.0017	0.26438	0.1403
7	0.49822	6.21768	9.39959E-4	0.25406	0.11875
8	0.59089	5.51423	5.58594E-4	0.24155	0.09559
9	0.77069	4.94512	3.47387E-4	0.22478	0.06007
10	1.00678	4.48003	2.18822E-4	0.20507	0.03133
12	1.55972	3.77789	9.01896E-5	0.15865	0.00468
Table S11. Parameters obtained from the fitting of the relaxation time (τ) vs. 1/T plots of Dy₄ under zero and 800 Oe dc field.

dc Field	U_{eff} / K	n / s	τ_{QTM} / s	A/τ₀	C	n	
0 Oe	SR	59.21	9.2632E-6	0.1066	0	29684	3
	FR	48.66	1.0839E-5	0.01414	0	16781	4.40712
800 Oe	46.01	1.2087E-5	0.10134	9.41073	0.36298	4.01693	

Table S12. CC-Fit results for frequency-dependent ac susceptibility of Dy₂Cl under 1200 Oe dc field.

T / K	χ₅	χ₉	τ / s	α	Residual
6	1.1397	3.44922	6.5531E-5	0.27193	0.00726
5.6	1.54109	3.64313	1.15704E-4	0.22785	0.00742
5.2	1.74555	3.86974	1.64343E-4	0.21238	0.00743
4.8	1.93081	4.12384	2.17445E-4	0.20528	0.00667
4.4	2.15013	4.42094	2.84882E-4	0.19433	0.0069
4	2.36507	4.7635	3.53657E-4	0.19766	0.00723
3.6	2.63061	5.16303	4.31948E-4	0.2013	0.01003
3.2	2.94591	5.62515	5.19721E-4	0.21235	0.01019
2.8	3.33487	6.18075	6.09794E-4	0.23033	0.01758
2.4	3.86546	6.81802	7.03546E-4	0.25244	0.01993
2	4.47729	7.61702	7.76157E-4	0.31706	0.03457

Table S13. CC-Fit results for frequency-dependent ac susceptibility of Dy₂*:Cl under 1200 Oe dc field.

T / K	χ₅	χ₉	τ / s	α	Residual
6	2.13221	3.5558	5.31887E-5	0.11228	0.00408
5.6	2.09976	3.77139	7.23319E-5	0.12661	0.00344
5.2	2.32506	4.01674	1.22483E-4	0.08761	0.01621
4.8	2.30376	4.29555	1.59001E-4	0.11594	0.00702
4.4	2.40194	4.61804	2.18446E-4	0.13551	0.01218
4	2.61389	4.97832	3.00672E-4	0.13002	0.02068
3.6	2.88533	5.41094	4.00273E-4	0.13047	0.02073
3.2	3.19282	5.91298	5.01834E-4	0.1421	0.04243
2.8	3.61486	6.51272	6.15237E-4	0.14721	0.05933
2.4	4.1006	7.25575	7.44169E-4	0.19283	0.06518
2	4.75651	8.12786	8.31683E-4	0.22474	0.10165
Table S14. CC-Fit results for frequency-dependent ac susceptibility of Dy$_2$SCN under zero dc field.

T / K	χ_S	χ_T	τ / s	α	Residual
2	7.86539	8.5371	7.70218E-4	0.14204	0.00285
2.4	6.71108	7.30889	7.1906E-4	0.14849	0.00176
2.8	5.84562	6.37441	6.82227E-4	0.14875	0.00103
3.2	5.18467	5.67092	6.25023E-4	0.16672	8.58981E-4
3.6	4.67764	5.11506	6.11415E-4	0.17049	7.4554E-4
4	4.26489	4.66411	5.54544E-4	0.16664	7.58629E-4
4.4	3.92149	4.29602	4.98617E-4	0.15572	5.50063E-4
4.8	3.65469	3.98292	4.34641E-4	0.16145	4.80032E-4
5.2	3.40823	3.71984	3.99466E-4	0.16245	2.40736E-4
5.6	3.20394	3.49263	3.54213E-4	0.15223	2.10716E-4
6	3.02766	3.29277	3.08067E-4	0.1598	3.14756E-4
6.4	2.87414	3.11717	2.66174E-4	0.12979	2.72768E-4
6.8	2.74039	2.96045	2.0796E-4	0.14973	1.8885E-4
7.2	2.6145	2.82158	1.68795E-4	0.19989	1.79973E-4
7.6	2.48542	2.69619	1.35009E-4	0.162	1.8817E-4
8	2.41214	2.58167	1.02639E-4	0.19051	2.40235E-4
8.4	2.3207	2.47823	7.34E-4	0.162	1.8817E-4

Table S15. Parameters obtained from the fitting of the relaxation time (τ) vs. $1/T$ plots of Dy$_2$Cl, Dy$_2$Cl$^+$, and Dy$_2$SCN.

	U_{eff} / K	n / s	τ_{QTM} / s	AH^4	C	n
Dy$_2$Cl	19.08	1.37486E-5	1.57E-3	321.65034	0.00849	7.57941
Dy$_2$Cl$^+$	25.06	1.30265E-4	1.12E-3	121.91791	2.49935	4.83978
Dy$_2$SCN	43.1	2.11156E-6	7.34E-4	0	5.11551	3.07443

S17
8. Calculations with Magellan program

Fig. S24 Partial charges assigned to the ligands in complexes Dy$_2$·Cl (left), Dy$_2$·Cl* (middle), and Dy$_2$·SCN (right) with one negative charge in axial directions.

Fig. S25 Partial charges assigned to the ligands in complexes Dy$_2$·Cl (left), Dy$_2$·Cl* (middle), and Dy$_2$·SCN (right) with half negative charge in axial directions.

Fig. S26 Orientations of the main magnetic axes and local magnetizations of the ground states for the one (red) and half (blue) negative charge models of the Dy$_2$·Cl (left), Dy$_2$·Cl* (middle), and Dy$_2$·NCS (right).

Table S16. Minimal reorientation energies (cm$^{-1}$) and intersection angles (°) of anisotropy axes calculated from two different models by Magellan program3 for complexes Dy$_2$·Cl, Dy$_2$·Cl*, and Dy$_2$·SCN.

	Dy$_2$·Cl	Dy$_2$·Cl*	Dy$_2$·SCN			
Center atom	Center atom	Center atom	Center atom			
One charge	Dy(1)	884.0	Dy(1)	906.8	Dy(1)	1217
Half charge	Dy(1)	205.4	Dy(1)	223.3	Dy(1)	509.4
Deviation angle	1.082	0.885	4.497			

S18
9. References

1. a) D. Casanova, P. Alemany, J. M. Bofill and S. Alvarez, Chem. Eur. J., 2003, 9, 1281-1295; b) S. Alvarez and M. Llunell, J. Chem. Soc., Dalton Trans., 2000, 3288-3303.

2. D. Reta and N. F. Chilton, PCCP, 2019, 21, 23567-23575.

3. N. F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny and A. Soncini, Nat. Commun., 2013, 4, 2551.