A note on PL-disks and rationally slice knots

Kristen Hendricks, Jennifer Hom, Matthew Stoffregen, and Ian Zemke

Abstract. We give infinitely many examples of manifold-knot pairs \((Y, J)\) such that \(Y\) bounds an integer homology ball, \(J\) does not bound a non-locally-flat PL-disk in any integer homology ball, but \(J\) does bound a smoothly embedded disk in a rational homology ball. The proof relies on formal properties of involutive Heegaard Floer homology.

Every knot \(K\) in \(S^3\) bounds a non-locally-flat PL-embedded disk in \(B^4\), obtained by taking the cone over \(K\). (Throughout, we will not require PL-disks to be locally-flat.) The analogous statement does not hold for knots in more general manifolds. Adam Levine [9, Theorem 1.2] found examples of manifold-knot pairs \((Y, J)\) such that \(Y\) bounds a contractible 4-manifold and \(J\) does not bound a PL-disk in any homology ball \(X\) with \(\partial X = Y\); see also [7].

The main result of this note concerns rationally slice knots in homology spheres bounding integer homology balls:

Theorem 1. There exist infinitely many manifold-knot pairs \((Y, J)\) where \(Y\) is an integer homology sphere and

1. \(Y\) bounds an integer homology 4-ball,
2. \(J\) does not bound a PL-disk in any integer homology 4-ball,
3. \(J\) does bound a smoothly embedded disk in a rational homology 4-ball.

Throughout, let \(Y\) be an integer homology sphere. Recall that a knot \(J \subset Y\) is rationally slice if \(J\) bounds a smoothly embedded disk in a rational homology 4-ball \(W\) with \(\partial W = Y\). Two manifold-knot pairs \((Y_0, J_0)\) and \((Y_1, J_1)\) are integrally (respectively rationally) homology concordant if \(J_0\) and \(J_1\) are concordant in an integral (respectively rational) homology cobordism between \(Y_0\) and \(Y_1\). A knot \(J \subset Y\) is integrally (respectively rationally) homology concordant to a knot \(K\) in \(S^3\) if and only if \(J \subset Y\) bounds a PL-disk in an integer (respectively rational) homology ball.

Theorem [1] is an immediate consequence of the following theorem, where \(\overline{V}_0\) and \(\overline{V}_0\) are the involutive knot Floer homology invariants of [5] and \(V_0\) the knot Floer homology invariant defined in [10, Section 2.2] (see also [13], [11]):

2020 Mathematics Subject Classification. Primary 57K10, 57K18.

The first author was partially supported by NSF grant DMS-2019396 and a Sloan Research Fellowship. The second author was partially supported by NSF grants DMS-1552285 and DMS-2104144. The third author was partially supported by NSF grant DMS-1702532. The fourth author was partially supported by NSF grant DMS-1703685.
THEOREM 2. Let K be a negative amphichiral rationally slice knot in S^3 with $V_0 \geq 1$ and $V_0 = \overline{V}_0 = 0$ and let μ be the core of surgery in $M = S^3_{1/\ell}(K)$, where ℓ is an odd positive integer. Consider $J = \mu \# U \subset M \# -M$, where U denotes the unknot in $-M$. Then $(M \# -M, J)$ is rationally slice, hence rationally homology concordant to a knot in S^3, but $(M \# -M, J)$ is not integrally homology concordant to any knot in S^3.

REMARK 3. The figure-eight satisfies the hypotheses of Theorem 2 by [3] (see also [1], Section 3] and [5], Theorem 1.7]). More generally, the genus one knots K_n with n positive full twists in one band and n negative full twists in the other band, n odd, also satisfy the hypotheses of Theorem 2; see Figure 1. By [2], Theorem 4.16, K_n is rationally slice. (Alternatively, K_n is strongly negative amphichiral, hence rationally slice [8], Section 2].) Furthermore, $\sigma(K_n) = 0$ since K_n is amphichiral. The knot K_n has Seifert form

\[
\begin{pmatrix} n & 1 \\ 0 & -n \end{pmatrix}
\]

which implies that $\text{Arf}(K_n) = 1$ if and only if n is odd. Since K_n is alternating, it now follows from [5], Theorem 1.7 that for n odd, $V_0 = 1$ and $\overline{V}_0 = \overline{V}_0 = 0$.

Remark 4. Note that M does not bound an integer homology ball (since, for instance, $d(M) = 2V_0 \neq 0$), but $M \# -M$ does.

The proof of Theorem 2 is inspired by the proof of [7], Theorem 1.1(1)]. Our proof relies on the following result from [4] relating the involutive correction term d [5], Section 5] with the ordinary Heegaard Floer correction term d [12], Section 4], for even denominator surgery on knots in S^3:

PROPOSITION 5 ([4], Proposition 1.7]). Let K be a knot in S^3 and let $p, q > 0$ be relatively prime integers, with p odd and q even. Then

\[d(S^3_{p/q}(K), [p/2q]) = d(S^3_{p/q}(K), [p/2q]) \]

where $[p/2q]$ denotes the unique self-conjugate Spinc structure on $S^3_{p/q}(K)$.

The key feature from the above proposition is that for even denominator surgery on a knot in S^3, we have that d is equal to d for the unique self-conjugate Spinc structure on the surgery. More generally, we have the following corollary of Proposition 5:
Corollary 6. Let J be a knot in an integer homology sphere Y and let $p, q > 0$ be relatively prime integers, with p odd and q even. If (Y, J) is integrally homology concordant to a knot in S^3, then

$$d(Y_{p/q}(J), [p/2q]) = d(Y_{p/q}(J), [p/2q])$$

where $[p/2q]$ denotes the unique self-conjugate Spinc structure on $Y_{p/q}(J)$.

Proof. If (Y, J) is integrally homology concordant to a knot (S^3, K), then $Y_{p/q}(J)$ and $S^3_{p/q}(K)$ are integrally homology cobordant; the homology cobordism is given by surgering along the concordance annulus from (Y, J) to (S^3, K). Since d and d are invariants of integer homology cobordism, the result follows from Proposition 5.

The proof of Theorem 2 relies on finding manifold-knot pairs (Y, J) where d and d of even denominator surgery along J differ; the result then follows from Corollary 6.

Proof of Theorem 2. We first show that $(M \# -M, J)$ is rationally slice. Since K is rationally slice, the core of surgery in $M = S^3_{1/\ell}(K)$ is rationally homology concordant to the core of surgery in $S^3_{1/\ell}(U)$, which is the unknot in S^3; that is, (M, μ) is rationally slice. Hence $(M \# -M, J)$ is also rationally slice.

We now show that $(M \# -M, J)$ is not integrally homology concordant to any knot in S^3. Since μ is the core of surgery in $S^3_{1/\ell}(K)$, we have that

$$M_{1/n}(\mu) = S^3_{1/(n-\ell)}(K).$$

Choose an even positive integer n such that $n > \ell$. Since ℓ is odd, n is even, and $n - \ell > 0$, by Proposition 1.7 we have that

$$d(M_{1/n}(\mu)) = d(S^3_{1/(n-\ell)}(K)) = -2V_0(K)$$

and

$$d(M_{1/n}(\mu)) = d(S^3_{1/(n-\ell)}(K)) = -2V_0(K) = 0.$$

Since $J = \mu \# U \subset M \# -M$, we have that

$$(M \# -M)_{1/n}(J) = M_{1/n}(\mu) \# -M.$$

Note that $-M = S^3_{1/\ell}(-K) = S^3_{1/\ell}(K)$, where the last equality follows from the fact that K is negative amphichiral. Since $\ell > 0$, Proposition 1.7 implies that

$$d(-M) = -2V_0(K) \quad \text{and} \quad d(-M) = \overline{d}(-M) = 0.$$

Recall that Proposition 1.3 states that if Y_1 and Y_2 are integer homology spheres, then

$$d(Y_1 \# Y_2) = d(Y_1) + \overline{d}(Y_2).$$

Hence $d(M_{1/n}(\mu) \# -M) \leq -2V_0(K)$. Since d is additive under connected sum, we have that $d(M_{1/n}(\mu) \# -M) = 0$.

We have shown that

$$d((M \# -M)_{1/2}(J)) \leq -2V_0(K) \quad \text{and} \quad d(((M \# -M)_{1/2}(J)) = 0.$$

Recall that $V_0(K) \geq 1$. Now by Corollary 4 it follows that $(M \# -M, J)$ is not integrally homology concordant to any knot in S^3.

□
Acknowledgments

We thank JungHwan Park for helpful conversations and Chuck Livingston for thoughtful comments on an earlier draft.

References

[1] Selman Akbulut and Kyle Larson, Brieskorn spheres bounding rational balls, Proc. Amer. Math. Soc. 146 (2018), no. 4, 1817–1824, DOI 10.1090/proc/13828. MR3754363
[2] Jae Choon Cha, The structure of the rational concordance group of knots, Mem. Amer. Math. Soc. 189 (2007), no. 885, x+95, DOI 10.1090/memo/0885. MR2343079
[3] Ronald Fintushel and Ronald J. Stern, A μ-invariant one homology 3-sphere that bounds an orientable rational ball, Four-manifold theory (Durham, N.H., 1982), Contemp. Math., vol. 35, Amer. Math. Soc., Providence, RI, 1984, pp. 265–268, DOI 10.1090/conm/035/780582. MR780582
[4] Kristen Hendricks, Jennifer Hom, Matthew Stoffregen, and Ian Zemke, Surgery exact triangles in involutive Heegaard Floer homology, 2020, Preprint, arXiv:2011.00113
[5] Kristen Hendricks and Ciprian Manolescu, Involutive Heegaard Floer homology, Duke Math. J. 166 (2017), no. 7, 1211–1299, DOI 10.1215/00127094-3793141. MR3649355
[6] Kristen Hendricks, Ciprian Manolescu, and Ian Zemke, A connected sum formula for involutive Heegaard Floer homology, Selecta Math. (N.S.) 24 (2018), no. 2, 1183–1245, DOI 10.1007/s00029-017-0332-8. MR3782422
[7] Jennifer Hom, Adam Simon Levine, and Tye Lidman, Knot concordance in homology cobordisms, Duke Math. J. 171 (2022), no. 15, 3089–3131, DOI 10.1215/00127094-2021-0110. MR4497224
[8] Akio Kawauchi, Rational-slice knots via strongly negative-amphicheiral knots, Commun. Math. Res. 25 (2009), no. 2, 177–192. MR2554510
[9] Adam Simon Levine, Nonsurjective satellite operators and piecewise-linear concordance, Forum Math. Sigma 4 (2016), Paper No. e34, 47, DOI 10.1017/fms.2016.31. MR3589337
[10] Yi Ni and Zhongtao Wu, Cosmetic surgeries on knots in S^3, J. Reine Angew. Math. 706 (2015), 1–17, DOI 10.1515/crelle-2013-0067. MR3393360
[11] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116, DOI 10.1016/j.aim.2003.05.001. MR2065507
[12] Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261, DOI 10.1016/S0001-8708(02)00030-0. MR1957829
[13] Jacob Andrew Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Harvard University. MR2704683

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08854 Email address: kristen.hendricks@rutgers.edu

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332 Email address: hom@math.gatech.edu

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 Email address: stoffre1@msu.edu

Department of Mathematics, Princeton University, Princeton, New Jersey 08544 Email address: izemke@math.princeton.edu