Primed with intranasal lactobacilli prevents Pseudomonas aeruginosa acute pneumonia in mice.

Marie-Sarah FANGOUS
Universite de Bretagne Occidentale Faculte de Medecine et des Sciences de la Sante de Brest

Philippe Gosset
Institut Pasteur de Lille

Nicolas Galakhoff
Universite de Bretagne Occidentale Faculte de Medecine et des Sciences de la Sante de Brest

Stéphanie Gouriou
Universite de Bretagne Occidentale Faculte de Medecine et des Sciences de la Sante de Brest

Charles-Antoine Guilloux
Universite de Bretagne Occidentale Faculte de Medecine et des Sciences de la Sante de Brest

Christopher Payan
Universite de Bretagne Occidentale Faculte de Medecine et des Sciences de la Sante de Brest

Sophie Vallet
Universite de Bretagne Occidentale Faculte de Medecine et des Sciences de la Sante de Brest

Geneviève Héry-Arnaud
Universite de Bretagne Occidentale Faculte de Medecine et des Sciences de la Sante de Brest

Rozenn Le Berre (rozenn.leberre@chu-brest.fr)
University of Brest

Research article

Keywords: Lactobacillus, probiotics, intranasal administration, Pseudomonas aeruginosa, respiratory tract infection, mice

DOI: https://doi.org/10.21203/rs.3.rs-47604/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Increasing resistance to antibiotics of *Pseudomonas aeruginosa* leads to therapeutic deadlock and alternative therapies are needed. We aimed to evaluate the effects of *Lactobacillus* clinical isolates *in vivo*, through intranasal administration on a murine model of *Pseudomonas aeruginosa* pneumonia.

Results: We screened *in vitro* 50 pulmonary clinical isolates of *Lactobacillus* for their ability to decrease the synthesis of two QS dependent-virulence factors (elastase and pyocyanin) produced by *Pseudomonas aeruginosa* strain PAO1.

Two blends of three *Lactobacillus* isolates were then tested *in vivo*: one with highly effective anti-PAO1 virulence factors properties (blend named L.rff for *L. rhamnosus*, two *L. fermentum* strains), and the second with no properties (blend named L.psb, for *L. paracasei*, *L. salivarius* and *L. brevis*). Each blend was administered intranasally to mice 18h prior to PAO1 pulmonary infection. Animal survival, bacterial loads, cytological analysis, and cytokines secretion in the lungs were evaluated at 6 or 24h post infection with PAO1.

Intranasal priming with both lactobacilli blends significantly improved 7-day mice survival from 12% for the control PAO1 group to 71% and 100% for the two groups receiving L.rff and L.psb respectively. No mortality was observed for both control groups receiving either L.rff or L.psb. Additionally, the PAO1 lung clearance was significantly enhanced at 24h. A 2-log and 4-log reduction was observed in the L.rff+PAO1 and L.psb+PAO1 groups respectively, compared to the control PAO1 group. Significant reductions in neutrophil recruitment and proinflammatory cytokine and chemokine secretion were observed after lactobacilli administration compared to saline solution, whereas IL-10 production was increased.

Conclusions: These results demonstrate that intranasal priming with lactobacilli acts as a prophylaxis, and avoids fatal complications caused by *Pseudomonas aeruginosa* pneumonia in mice. These results were independent of *in vitro* anti-*Pseudomonas aeruginosa* activity on QS-dependent virulence factors. Further experiments are required to identify the immune mechanism before initiating clinical trials.

Background

Pulmonary infection with *Pseudomonas aeruginosa* in patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease, is characterized by high morbidity and mortality (1, 2). Recently, the prevalence of *P. aeruginosa* community-acquired pneumonia among those with chronic lung disease and already colonised with *P. aeruginosa* was 67% (3). In parallel, antibiotic resistance is increasingly leading to therapeutic deadlock. The European Centre for Disease Prevention and control found that 13.7% of *P. aeruginosa* isolates were resistant to at least three main antimicrobial groups and 5.5% were resistant to five antimicrobials groups (4).
Many antibiotic alternatives, such as probiotics, have been tested. Probiotics are defined as living microorganisms which, when administered in adequate amounts, confer a health benefit to the host (5). *Lactobacillus* spp., the most studied probiotic, can be isolated from food and human mucosa. Their beneficial effect operates through different means, especially immunomodulatory and antibacterial activities (5). Since lactobacilli produce acids that inhibit the growth of *P. aeruginosa* (6), their potential could not be evaluated through bactericidal activity. Instead, *P. aeruginosa* virulence factors were evaluated. Thus, *in vitro* several strains have been shown to harbour anti-elastase and anti-biofilm properties (6–8). *In vivo*, Khailova *et al.* highlighted that oral administration of *L. rhamnosus* GG improves 7-day survival following *P. aeruginosa*-induced pneumonia. It is thought that regulatory T cells may play a role in this protection (9). Randomized trials suggest that administration of probiotics decreases the incidence of ventilator acquired pneumonia, but many biases are reported (10). A large randomized control trial PROSPECT study is recruiting (ClinicalTrials.gov Identifier: NCT02462590) (11).

While the oral route is often studied to analyse lactobacilli effects, the nasal route could provide benefits for respiratory infections by stimulating the nasopharynx-associated lymphoid tissue (NALT) (12). Accordingly, studies show that intranasal administration of various *Lactobacillus* strains decrease mortality in viral pneumonia murine models (13, 14). Recently, we conduct a pilot study to investigate the protective effect of intratracheally inoculated lactobacilli against *P. aeruginosa* acute pneumonia on a mouse model (15). It highlighted that this route of *Lactobacillus* administration may prevent from *P. aeruginosa* infection by decreasing the bacterial lung load and modulating the cytokine levels.

In this study, in the light of our previous results, we screened for new lung-adapted probiotic strains to consider for *in vivo* studies. Lactobacilli obtained from CF expectorations were screened based on their capacity to inhibit two *P. aeruginosa* QS-dependent virulence factors (elastase and pyocyanin). We then evaluated the effect of intranasal administration of two blends of three selected lactobacilli strains on *P. aeruginosa* murine acute pneumonia. Primary outcomes were the survival and bacterial lung load 24 hours after *P. aeruginosa* induced pneumonia. To decipher the effects of lactobacilli, cytological analysis, chemokines, and cytokine secretions from bronchoalveolar lavage (BAL) were measured.

Results

In vitro screening of lactobacilli isolated from CF respiratory samples

Forty strains (80%) exhibited anti-elastolytic activity (mean activity = -37.4%±0.15), and 12 (24%) exhibited anti-pyocyanin activity (mean activity = -18.13%±0.15).

To constitute 2 blends of lactobacilli to administrate to the mice model of *P. aeruginosa* pneumonia, 3 strains with the highest anti-*P. aeruginosa* QS dependent virulence factor activities (L.rff) and 3 strains with no anti-*P. aeruginosa* QS dependent virulence factor activities (L.psb) were selected (S1 Table).
L.rff was constituted with 2 *L. fermentum* strains and 1 *L. rhamnosus* strain (*L. rhamnosus* 2C, *L. fermentum* 9C and *L. fermentum* 10C).

L.psb was constituted with 1 *L. paracasei*, 1 *L. salivarius* and 1 *L. brevis* strain (*L. paracasei* 9N, *L. salivarius* 20C and *L. brevis* 24C).

Nasal priming with lactobacilli enhances the survival rate

C57BL/6 mice were inoculated intranasally with each blend of lactobacilli 18 hours prior to PAO1 administration (Fig. 1). All but two control PAO1 mice died (12% survival). Mice receiving L.rff responded with 71% survival (p < 0.001). Mice receiving L.psb were fully protected (100% survival) (p < 0.001). None of the control L.rff or control L.psb mice died or exhibited any clinical signs of distress (Fig. 2a).

Administration of lactobacilli decreases the lung P. aeruginosa load

After 24 h a 2-log and 4-log reduction was observed in the L.rff + PAO1 and L.psb + PAO1 groups respectively, compared to the control PAO1 group (p < 0.001, Fig. 2b).

No increase in lactobacilli load was observed in either group. However, lactobacilli were still present in the lung 24 h after the instillation, with 1×10^4 and 1×10^3 CFU/g for the L.rff + PAO1 and L.psb + PA01 groups respectively (data not shown).

White blood cell count and cytokine analysis in BAL fluid

To elucidate the mechanism of the *P. aeruginosa* lung load reduction, we investigated the WBC recruitment and cytokine synthesis in the BAL fluid (Fig. 3).

No difference was observed in the WBC at T6 and T24 between the control L.rff group and the control sham group. However, qualitatively, the BAL fluid infiltrate was mostly composed of PMN in the control L.rff group at T6 whereas the BAL fluid of sham mice only included AM. As expected, mice from the control PAO1 group exhibited a strong increased number of WBC, which was mainly composed of neutrophils. This recruitment is more significant (3 and 9 times more respectively at T6 and T24) than in the control L.rff mice. A significant decrease of PMN in BAL fluid was observed at T6 and T24 in the L.rff + PAO1 and L.psb + PA01 groups compared to the PAO1 group.

We investigated the immunological response due to prophylactic administration of lactobacilli through cytokine and chemokine dosage in the BAL fluid.

Administration of lactobacilli alone did not induce the secretion of CXCL1, CXCL2, IL-1β, IL-6 and TNF-α compared to sham mice. Infection of PAO1 induced a cytokine burst particularly at 6 h. Prophylactic administration of lactobacilli leads to lower secretions of chemokines CXCL1 and CXCL2 (at T6) and proinflammatory cytokines IL-1β, IL-6 and TNF-α (both at T6 and T24) in both L.rff + PAO1 and L.psb + PA01 groups compared to the control PAO1 group (Figs. 4 and 5, data not shown for CXCL2). The IL-10
production was significantly increased in the L.psb group compared to the control PAO1 groups, (Fig. 6) but no difference was observed with the sham group.

Discussion

In this study, intranasal administration of lactobacilli in a murine model of *P. aeruginosa* pneumonia significantly improved lung *P. aeruginosa* clearance 24 hours post infection, and prevented mice death. This prophylactic treatment was associated with a lower secretion of chemokines and proinflammatory cytokines, and a lower neutrophil recruitment. This shows the implication of the innate immune response in this mechanism.

Pulmonary effects of *Lactobacillus* administration have been explored through oral gavage (9, 16–21) or intranasal administration (13, 14, 22–25) and mainly focused on virus pathogens or *S. pneumoniae*. Oral gavage suggests that the protective abilities of *Lactobacillus* are based on the immunomodulation mediated by the gut-lung axis. Indeed, the gut microbiota interferes with the immune system, notably with granulocytosis by priming it through commensal components and pathogenic microorganisms which activate pattern recognition receptors (PRR) (26). This reverberates on the lung and thus, any modification of the gut microbiota with oral administration of probiotics may influence lung immunity at distance. The lung microbiota may also directly interfere with the immune system through AM and dendritic cells which express various PRR. In our study, lactobacilli were administered intranasally in order to act directly on the airway mucosa immune system and to bypass the gut-lung axis (although swallowing cannot be totally excluded). We expected an enhanced, faster, and more appropriate response compared to the one following oral gavage. For the first time, our data showed that lactobacilli could sufficiently stimulate the respiratory mucosal immune system in situ to protect from bacterial infection. This approach already highlighted interesting results notably when used as a vaccine, against the flu or *S. pneumoniae* (27, 28). This way of administration is otherwise totally safe for the mice, allowing a transient colonisation with a low number of PMN recruitment and absence of anti-*Lactobacillus* antibody secretion (23, 29, 30).

To our knowledge, our study is the first to explore the effects of intranasal administration of lactobacilli against *P. aeruginosa* respiratory infection. We observed an enhancement of lung *P. aeruginosa* clearance at 24 hours post infection, associated with the decrease of chemokines and proinflammatory cytokines, the increase of IL-10 and a reduction in neutrophil recruitment. The host immune response against acute *P. aeruginosa* infection is mainly based on the PMNs recruitment and activation, as neutropenic mice lead to higher *P. aeruginosa* mortality (31). The PMNs recruitment is triggered secondly to *P. aeruginosa* interaction with AM or the airway epithelium, and through the TLR signalling pathway (32). However, an excess of PMNs was not always effective to clear the bacteria and caused serious tissue damage. A favourable outcome to *P. aeruginosa* infection is based on the adapted PMN recruitment, which allows for survival by clearance of the pathogen without excessive inflammation. The regulation of the inflammatory response is mainly based on anti-inflammatory cytokines, notably the IL-10 (33). In our study, lactobacilli administered intranasally seemed to act on the innate immunity, particularly on PMNs.
Indeed, PMNs were more significantly recruited in the control L.rff group compared to sham mice, with no consequence on the mortality, suggesting a beneficial preventive PMNs recruitment. After *P. aeruginosa* infection, the priming resulted in a reduced inflammatory response triggered by *P. aeruginosa*, and attenuated the recruitment of PMNs through a decreased secretion of proinflammatory cytokines and chemokines. Even with less PMNs, the *P. aeruginosa* clearance was enhanced, and the survival improved. Some previous studies focusing on priming with probiotics against various pathogens mostly agreed that probiotics could beneficially regulate the balance between pro and anti-inflammatory cytokines (16, 18, 24). Others studies focusing on *P. aeruginosa* using the oral route to administer lactobacilli highlighted interesting results. According to Khailova and colleagues, the adaptive immunological response may be involved through regulatory T cells (9). Alvarez and colleagues implicate the innate response, through an enhancement of the phagocytic activity of AM, associated with the activation of the specific response through secretion of IgA and IgM in the BAL fluid (20). In our study, we did not observe any lymphocyte recruitment following the administration of lactobacilli. However, we used different strains, means of administration, and mice. Our results may also implicate the innate response, through the modulation of the phagocytic activity conducted by decreased proinflammatory cytokines and chemokines, and increased IL-10. The *P. aeruginosa* clearance led by lactobacilli may be based on the modulation of the bactericidal and phagocytic activities of PMNs. The use of neutropenic mice may help to clarify the exact mechanism.

P. aeruginosa pneumonia is still a lethal infection despite the use of antibiotics, especially among intensive care unit patients or patients with chronic respiratory diseases such as cystic fibrosis. There is an urgent need to develop alternative treatments to antibiotic therapy. Probiotics have demonstrated their capability to protect from pathogens through heterologous immunity. Several studies on the murine model of pneumonia highlighted that the administration of *Lactobacillus* could cross-protect from a later viral or bacterial infection (9, 14, 16, 20–22, 25). Furthermore, their abilities to protect humans from pulmonary infections have also been demonstrated (5). The heterologous immunity is thus expanding as a therapeutically strategy (34). Various *Lactobacillus* strains are used to prevent respiratory infections, with probiotic activity being strain dependent (9, 35, 36). Few authors tried to screen their own strains before experimenting (6, 19, 29, 30, 36). Screening usually focuses on the strain’s ability to inhibit virulence factors of the studied pathogen (6, 36, 37), to produce inhibitory substances (29, 36) or cytokines (19), or to select the strains with the better adhesive properties in their experiment models (30, 36). In our study, we screened for new lung-adapted probiotic strains with anti-*P. aeruginosa* abilities. This screening was based on a previous work, which studied the prevalence of lactobacilli in the lung of CF patients in regard to their *P. aeruginosa* colonisation status (38). As no difference in species diversity or frequency was observed, we secondly screened a representative sample of 50 strains for their *in vitro* ability to inhibit two virulence factors produced by *P. aeruginosa*, the elastase and pyocyanine. These two major virulence factors are regulated by quorum sensing, cause a wide range of pathogenic effects and extensive tissue damage, and their pathogenicity has been confirmed *in vivo* on murine models of *P. aeruginosa* pneumonia (39, 40). Furthermore, this screening strategy is based on the inhibition of two virulence factors after neutralising the coculture. This neutralisation avoids the direct antibacterial effect
due to *Lactobacillus* lactic and acetic acids production. Our approach is original as we choose to highlight novel respiratory strains with great *in vitro* potential against *P. aeruginosa*. Despite thoughtful screening, analogous *in vivo* results were observed whatever the blend of lactobacilli administered as a prophylactic treatment. Otherwise, the L.psb blend constituted with ineffective strains against *P. aeruginosa* QS-dependent virulence factors *in vitro* seemed to better act *in vivo* against *P. aeruginosa*. This study suggests that the lactobacilli abilities *in vitro* cannot predict their *in vivo* abilities to fight against *P. aeruginosa* pneumonia. These two QS-dependent virulence factors probably do not interfere directly with the immune response in our murine model of *P. aeruginosa* pneumonia. Indeed, numerous *P. aeruginosa*-virulence factors have been identified but the contribution of each of them in lung pathogenicity is not deciphered.

Conclusions

In summary, we screened *in vitro* 50 *Lactobacillus* strains on their ability to inhibit the synthesis of 2 *P. aeruginosa* PAO1 virulence factors. Two blends of three *Lactobacillus* strains were constituted and intranasally administrated in a mice model of murine acute pneumonia. Our results firstly showed that intranasal administration of *Lactobacillus* strains can prevent from *P. aeruginosa* acute pneumonia by enhancing the mice survival, and modulating their local lung immunity. Secondly, *in vitro* abilities cannot predict lactobacilli *in vivo* abilities, as both blend of *Lactobacillus* improved mice survival, even when *Lactobacillus* strains administered didn't diminished *P. aeruginosa* virulence factors production *in vitro*. These new *Lactobacillus* strains may be used intranasally for the prevention of *P. aeruginosa* pneumonia in humans, but the comprehension of the mechanisms involved in the immunomodulation requires further experimentation. The priming mediated by each strain of the promising L.psb cocktail (*L. paracasei* 9N, *L. salivarius* 20C, *L. brevis* 24C) should be studied in distinct *in vivo* experimentations.

Methods

Inhibition tests of Lactobacillus strains on PAO1 on elastase and pyocyanin virulence factors

P. aeruginosa PAO1 was chosen as the reference strain for all experiments (41). Samples were stored at −80 °C prior to subculturing on Mueller Hilton agar plates (MH) (bioMérieux) before experiments. Fifty *Lactobacillus* strains previously isolated from respiratory samples from patients with CF (38) were screened *in vitro* for their ability to decrease the synthesis of 2 *P. aeruginosa* QS-dependent virulence factors: pyocyanin and elastase. All isolates were frozen at −80 °C before subculture on 5% sheep-blood agar (bioMérieux) in 5% CO₂ at 37 °C 2 days before experiments.

Elastase :PAO1 and each *Lactobacillus* isolate were separately cultivated overnight at 37 °C in Brain Heart Infusion broth (BHI) (Oxoïd) in 50 ml Falcon conical tubes. The inhibition of the elastolytic activity of PAO1 by *Lactobacillus* isolates was investigated by colorimetric assay, using Elastin Congo Red (ECR) (Sigma) as adapted by Alexandre *et al.* (6). Succinctly, overnight aerobic culture of PAO1 in BHI broth under agitation was washed twice with isotonic saline solution and adjusted to 5×10^7 CFU/ml in broth.
 Overnight static culture of *Lactobacillus* in BHI broth was neutralised with NaOH 0.1M and adjusted to 5×10^7 CFU/ml in broth media. A 2 ml co-culture was made for each *Lactobacillus* isolates, by transferring 1 ml of the neutralised *Lactobacillus* broth to 1 ml of the PAO1 broth (vol/vol) and incubated in a tube under agitation 20 hours under aerobic conditions at 37 °C. After centrifugation (20’ at 3500 g), 50 µL of the supernatant was mixed with 1 ml of Elastin Congo Red solution (20 mg/ml in a 10 mM sodium phosphate buffer) in a 2 ml-Eppendorf tube and incubated for 20 hours more with rotation. Finally, the soluble fraction released in the supernatant by elastase was measured at 495 nm after centrifugation (20’ at 3500 g) in a microplate spectrophotometer (Multiskan FC Micro-plate Photometer, Thermo Scientific).

Pyocyanin: PAO1 was grown overnight in Bacto-Peptone (BP) broth (20 mg/L BP, MgCl$_2$ 1.4 g/L, K$_2$SO$_4$ 10 g/L) (Oxoid) and *Lactobacillus* isolates in MRS broth (bioMérieux). A 2 ml vol/vol co-culture was made as previously described for the elastase experiments, and incubate under aerobic conditions at 37 °C. The inhibition of the pyocyanin synthesis was investigated by colorimetric assay after extraction as previously described by Schaber et al. (42). After centrifugation (20’ at 3500 g) of the co-culture, 50 µL of the supernatant was mixed with 50 µL of chloroform. The lower phase was transferred in a 15 ml Falcon conical tube and mixed with 2 ml of HCl (0.2 M). Finally, the pyocyanin extracted in the organic layer was measured at 520 nm in a microplate spectrophotometer (Multiskan FC Micro-plate Photometer, Thermo Scientific).

Pyocyanin and elastase results were normalised according to the OD$_{595}$ of the co-culture and expressed as a ratio of the absorbance observed in presence of the *Lactobacillus* isolate to the absorbance observed with a monoculture of PAO1. Two experiments were conducted independently.

Preparation of the bacterial strains:

For the murine model of pneumonia, two blends of strains were made. Lactobacilli were grown overnight in MRS broth under aerobic conditions at 37 °C. Three strains with the highest inhibitory abilities against PAO1 virulence factors were equally mixed in a blend named “L.rff” (*L. rhamnosus 2C*, *L. fermentum 9C* and *L. fermentum 10C*). Three strains without inhibitory activity were mixed as a control in a blend named “L.psb” (*L. paracasei 9N*, *L. salivarius 20C* and *L. brevis 24C*).

P. aeruginosa PAO1 was chosen as the reference strain for all experiments (41). Samples were stored at −80 °C prior to subculturing on Mueller Hilton agar plates (MH) (bioMérieux) before experiments. Then, PAO1 was grown overnight in Luria-Bertani broth (Sigma) under aerobic conditions at 37 °C. Each culture was washed twice with isotonic saline solution (SS) and adjusted to 10^9 CFU.ml$^{-1}$ for the PAO1 suspension, or to 10^7 CFU.ml$^{-1}$ for the L.rff and L.psb suspensions, based on the OD$_{595}$nm and controlled by serial dilution and plating on MH in triplicates.

Murine model of acute pneumonia
This study (APAFIS#9623-2017040717237994 and APAFIS#12025-2017110311134961) has been approved by the french ethics committee for animal experiments n° 074 under the responsibility of the french ministry of higher education and research.

C57BL/6J mice, aged 6–8 weeks old, were purchased from Janvier Labs (Le Genest Saint Isle, France) and maintained at the University of Brest, France. The mice were maintained in constant temperature (22 °C) and environment humidity room. Mice were fed *ad libitum* and monitored every eight hours until being sacrificed. All mice received human care.

For the survival experiments, 67 mice were randomly assigned to the 5 groups (n = 6 for control group and n = 17 for the other groups). For the other experiments, mice were randomly assigned to the 5 groups (n = 5). The control mice (sham) received isotonic saline solution. Mice were intranasally inoculated with 20 µL of the bacterial suspension (10 µL per nostril), under intraperitoneal anaesthesia with ketamine/xylazine (100/10 mg/kg).

Lactobacilli suspension (L.rff or L.psb) was administered 18 hours prior to infection with PAO1. The control PAO1 group received SS instead of lactobacilli. The L.rff and L.psb control groups received SS instead of PAO1.

Six (T6) or 24 hours (T24) post infection with PAO1, mice were anesthetized with intraperitoneal injection of ketamine/xylazine (100/10 mg/kg) and sacrificed by intracardiac exsanguination. BAL was performed after euthanasia by cannulation of the trachea and injection and aspiration of 500 µl of SS three times.

Blood, BAL fluid, lung and spleen tissues were harvested from animals under aseptic conditions.

Survival experiments

Mice were monitored during 7 days after infection with PAO1. Fur aspect, activity, behaviour, posture, eyelids, respiration, chest sounds, and body weight were followed frequently during the whole experiment, and scored from 1 to 4 according to the M-CASS scoring system (43). When mice reached a score of 11 during the day, buprenorphine was administered subcutaneously (0.05 mg/kg/12 h) for analgesia. Mice were sacrificed when they reached a score of 4 in the 8 parameters during the day, or in one parameter at night to prevent overnight death.

Bacterial burden in lung homogenates

Mice were sacrificed at T24 and lungs removed and homogenized with SS with Ultra-Turrax. Bacterial loads of PAO1 and *Lactobacillus* blends were determined by plating serial dilutions of total lung homogenate on Cetrimide (bioMérieux) and MRS agar plates. Each dilution was plated in duplicate. Plates were incubated 24 h to 48 h at 37 °C under aerobic conditions. Colonies were identified using MALDI-TOF mass spectrometry (Microflex LT, Bruker Daltonics, Bremen, Germany).

White Blood Cell count
The total white blood cell (WBC) count on BAL fluid was enumerated by a manual counting method with a hemocytometer (Kova slide) by light microscopy.

Alveolar macrophages (AM), polymorphonuclear cells (PMNs) and lymphocytes were differentiated after centrifugation, cytopspins preparation and May-Grünwald-Giemsa staining.

Cytokine measurement on BAL fluid

The cytokines studied were IL-1β, IL-6, IL-10, TNF-α, and the 2 chemokines CXCL-1 and CXCL-2. IL-1β, IL-6 and IL-10 (eBiosciences), TNF-α and the chemokines CXCL1 and CXCL2 (R&D System, Abingdon, UK) were determined in the BAL fluid by enzyme-linked immunosorbent assay (ELISA), using commercial kits according to the manufacturer’s recommendations. The lower levels of detection were 7 pg/ml for CXCL1 and CXCL2, 4 pg/ml for IL-1β and IL-6, 8 pg/ml for IL-10 and TNF-α.

Statistics

Results are presented as a boxplot. Comparisons between the groups were analysed by the Mann-Whitney test. The analysis of survival was performed with the Kaplan-Meier method. Results were considered statistically significant for p < 0.05. All statistical tests were performed using the R software.

Declarations

Ethics approval and consent to participate

This study (APAFIS#9623-2017040717237994 and APAFIS#12025-2017110311134961) has been approved by the french ethics committee for animal experiments n° 074 under the responsibility of the french ministry of higher education and research.

** Consent for publication**

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

All authors have no interests to declare.

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.
Authors' contributions

Conceived and designed the study: MSF, RLB, PG. Collected the data: MSF, PG, NG, SG. Performed the analysis: MSF, RLB, PG, NG, SG, CAG. Wrote the first draft: MSF, PG, RLB. Reviewed the paper: MSF, PG, RLB, CP, SV, GHA and gave final approval: All the authors.

Acknowledgements

We would like to thank Kristin McHale for the English proofreading.

References

1. Langan KM, Kotsimbos T, Peleg AY. Managing Pseudomonas aeruginosa respiratory infections in cystic fibrosis. Curr Opin Infect Dis. 2015;28(6):547–56.
2. Fujitani S, Sun HY, Yu VL, Weingarten JA. Pneumonia due to Pseudomonas aeruginosa: part I: epidemiology, clinical diagnosis, and source. Chest. 2011;139(4):909–19.
3. Restrepo MI, Babu BL, Reyes LF, Chalmers JD, Soni NJ, Sibila O, et al. Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: a multinational point prevalence study of hospitalised patients. Eur Respir J. 2018;52(2).
4. ECDC. Antimicrobial resistance surveillance in Europe 2011. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). 2012.
5. Alexandre Y, Le Blay G, Boisrame-Gastrin S, Le Gall F, Hery-Arnaud G, Gouriou S, et al. Probiotics: a new way to fight bacterial pulmonary infections? Med Mal Infect. 2014;44(1):9–17.
6. Alexandre Y, Le Berre R, Barbier G, Le Blay G. Screening of Lactobacillus spp. for the prevention of Pseudomonas aeruginosa pulmonary infections. BMC Microbiol. 2014;14:107.
7. Valdez JC, Peral MC, Rachid M, Santana M, Perdigon G. Interference of Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns: the potential use of probiotics in wound treatment. Clin Microbiol Infect. 2005;11(6):472–9.
8. Ramos AN, Cabral ME, Noseda D, Bosch A, Yantorno OM, Valdez JC. Antipathogenic properties of Lactobacillus plantarum on Pseudomonas aeruginosa: the potential use of its supernatants in the treatment of infected chronic wounds. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2012;20(4):552–62.
9. Khailova L, Baird CH, Rush AA, McNamee EN, Wischmeyer PE. Lactobacillus rhamnosus GG improves outcome in experimental pseudomonas aeruginosa pneumonia: potential role of regulatory T cells. Shock. 2013;40(6):496–503.
10. Bo L, Li J, Tao T, Bai Y, Ye X, Hotchkiss RS, et al. Probiotics for preventing ventilator-associated pneumonia. Cochrane Database Syst Rev. 2014(10):CD009066.
11. Johnstone J, Heels-Ansdell D, Thabane L, Meade M, Marshall J, Lauzier F, et al. Evaluating probiotics for the prevention of ventilator-associated pneumonia: a randomised placebo-controlled multicentre trial protocol and statistical analysis plan for PROSPECT. BMJ Open. 2019;9(6):e025228.

12. Kiyono H, Fukuyama S. NALT- versus Peyer's-patch-mediated mucosal immunity. Nat Rev Immunol. 2004;4(9):699–710.

13. Izumo T, Maekawa T, Ida M, Noguchi A, Kitagawa Y, Shibata H, et al. Effect of intranasal administration of Lactobacillus pentosus S-PT84 on influenza virus infection in mice. Int Immunopharmacol. 2010;10(9):1101–6.

14. Dyer KD, Drummond RA, Rice TA, Percopo CM, Brenner TA, Barisas DA, et al. Priming of the Respiratory Tract with Immunobiotic Lactobacillus plantarum Limits Infection of Alveolar Macrophages with Recombinant Pneumonia Virus of Mice (rK2-PVM). J Virol. 2016;90(2):979–91.

15. Fangous MS, Alexandre Y, Hymery N, Gouriou S, Arzur D, Blay GL, et al. Lactobacilli intra-tracheal administration protects from Pseudomonas aeruginosa pulmonary infection in mice - a proof of concept. Benef Microbes. 2019;10(8):893–900.

16. Racedo S, Villena J, Medina M, Aguero G, Rodriguez V, Alvarez S. Lactobacillus casei administration reduces lung injuries in a Streptococcus pneumoniae infection in mice. Microbes Infect. 2006;8(9–10):2359–66.

17. Belkacem N, Bourdet-Sicard R, Taha MK. Lactobacillus paracasei feeding improves the control of secondary experimental meningococcal infection in flu-infected mice. BMC Infect Dis. 2018;18(1):167.

18. Tanaka A, Seki M, Yamahira S, Noguchi H, Kosai K, Toba M, et al. Lactobacillus pentosus strain b240 suppresses pneumonia induced by Streptococcus pneumoniae in mice. Lett Appl Microbiol. 2011;53(1):35–43.

19. Kechaou N, Chain F, Gratadoux JJ, Blugeon S, Bertho N, Chevalier C, et al. Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening. Appl Environ Microbiol. 2013;79(5):1491–9.

20. Alvarez S, Herrero C, Bru E, Perdigon G. Effect of Lactobacillus casei and yogurt administration on prevention of Pseudomonas aeruginosa infection in young mice. J Food Prot. 2001;64(11):1768–74.

21. Khailova L, Petrie B, Baird CH, Domínguez Rieg JA, Wischmeyer PE. Lactobacillus rhamnosus GG and Bifidobacterium longum attenuate lung injury and inflammatory response in experimental sepsis. PLoS One. 2014;9(5):e97861.

22. Cangemi de Gutierrez R, Santos V, Nader-Macias ME. Protective effect of intranasally inoculated Lactobacillus fermentum against Streptococcus pneumoniae challenge on the mouse respiratory tract. FEMS Immunol Med Microbiol. 2001;31(3):187–95.

23. Cangemi de Gutierrez RC, Santos de Araoz VS, Nader-Macias ME. Effect of intranasal administration of Lactobacillus fermentum on the respiratory tract of mice. Biol Pharm Bull. 2000;23(8):973–8.

24. Gabryszewski SJ, Bachar O, Dyer KD, Percopo CM, Killoran KE, Domachowske JB, et al. Lactobacillus-mediated priming of the respiratory mucosa protects against lethal pneumovirus
infection. J Immunol. 2011;186(2):1151–61.

25. Garcia-Crespo KE, Chan CC, Gabryszewski SJ, Percopo CM, Rigaux P, Dyer KD, et al. Lactobacillus priming of the respiratory tract: Heterologous immunity and protection against lethal pneumovirus infection. Antiviral Res. 2013;97(3):270–9.

26. Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15(1):55–63.

27. Mohn KG, Smith I, Sjursen H, Cox RJ. Immune responses after live attenuated influenza vaccination. Hum Vaccin Immunother. 2018;14(3):571–8.

28. Laino J, Villena J, Suvorov A, Zelaya H, Ortiz Moyano R, Salva S, et al. Nasal immunization with recombinant chimeric pneumococcal protein and cell wall from immunobiocyt bacteria improve resistance of infant mice to Streptococcus pneumoniae infection. PLoS One. 2018;13(11):e0206661.

29. Cangemi de Gutierrez R, Santos VM, Nader-Macias ME. Colonization capability of lactobacilli and pathogens in the respiratory tract of mice: microbiological, cytological, structural, and ultrastructural studies. Methods in molecular biology. 2004;268:373–85.

30. Santos V, Cangemi R, Winik B, Nader ME. Ultrastructural studies on the respiratory tract of mice inoculated intranasally with L. fermentum. Biocell. 2001;25(2):121–9.

31. Koh AY, Priebe GP, Ray C, Van Rooijen N, Pier GB. Inescapable need for neutrophils as mediators of cellular innate immunity to acute Pseudomonas aeruginosa pneumonia. Infect Immun. 2009;77(12):5300–10.

32. Sadikot RT, Zeng H, Joo M, Everhart MB, Sherrill TP, Li B, et al. Targeted immunomodulation of the NF-kappaB pathway in airway epithelium impacts host defense against Pseudomonas aeruginosa. J Immunol. 2006;176(8):4923–30.

33. Sawa T, Corry DB, Gropper MA, Ohara M, Kurahashi K, Wiener-Kronish JP. IL-10 improves lung injury and survival in Pseudomonas aeruginosa pneumonia. J Immunol. 1997;159(6):2858–66.

34. Mourits VP, Wijkmans JC, Joosten LA, Netea MG. Trained immunity as a novel therapeutic strategy. Curr Opin Pharmacol. 2018;41:52–8.

35. Maassen CB, van Holten-Neelen C, Balk F, den Bak-Glashouwer MJ, Leer RJ, Laman JD, et al. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine. 2000;18(23):2613–23.

36. van den Broek MFL, De Boeck I, Claes IJJ, Nizet V, Lebeer S. Multifactorial inhibition of lactobacilli against the respiratory tract pathogen Moraxella catarrhalis. Benef Microbes. 2018;9(3):429–39.

37. Lagraveuille R, Miquel S, Balestrino D, Vareille-Delarbre M, Chain F, Langella P, et al. Opposing effect of Lactobacillus on in vitro Klebsiella pneumoniae in biofilm and in an in vivo intestinal colonisation model. Benef Microbes. 2018;9(1):87–100.

38. Fangous MS, Lazzouni I, Alexandre Y, Gouriou S, Boisrame S, Vallet S, et al. Prevalence and dynamics of Lactobacillus sp. in the lower respiratory tract of patients with cystic fibrosis. Res Microbiol. 2018;169(4–5):222–6.
39. Le Berre R, Nguyen S, Nowak E, Kipnis E, Pierre M, Quenee L, et al. Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia. Crit Care Med. 2011;39(9):2113–20.

40. Kipnis E, Sawa T, Wiener-Kronish J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect. 2006;36(2):78–91.

41. Holloway BW, Krishnapillai V, Morgan AF. Chromosomal genetics of Pseudomonas. Microbiol Rev. 1979;43(1):73–102.

42. Schaber JA, Carty NL, McDonald NA, Graham ED, Cheluvappa R, Griswold JA, et al. Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol. 2004;53(Pt 9):841–53.

43. Huet O, Ramsey D, Miljavec S, Jenney A, Aubron C, Aprico A, et al. Ensuring animal welfare while meeting scientific aims using a murine pneumonia model of septic shock. Shock. 2013;39(6):488–94.

Figures

Figure 1

Study design. C57BL/6 mice were intranasally inoculated with lactobacilli (either L.rff or L.psb blend) or SS 18h prior intranasally infection with PAO1. SS, isotonic saline solution
Figure 2

a) Mice survival rate. Priming of the respiratory tract with L.psb (1 × 10^6 CFU/mouse) or L.rff (6 × 10^6 CFU/mouse) resulted in survival in response to P. aeruginosa infection (6 × 10^6 CFU/mouse). Statistical significance: *, p<0.001 for the L.rff+PAO1 and L.psb+PAO1 groups compared to the control PAO1 group.

b) Pulmonary P. aeruginosa burden measured on total lung homogenates. Priming of the respiratory tract with L.psb (2 × 10^5 CFU/mouse) or L.rff (4 × 10^6 CFU/mouse) 18h prior to P. aeruginosa infection (6 × 10^6 CFU/mouse) enhanced the clearance of P. aeruginosa. Statistical significance: *, p<0.05 compared to the control PAO1 group.
Figure 3

a) and b) Total white blood cell count in BAL fluids at 6h and 24h post infection with P. aeruginosa. c) and d) Polymorphonuclear cell ratio in BAL fluids at 6h and 24h post infection with P. aeruginosa. Statistical significance: *, p<0.05; BAL, Bronchoalveolar lavage; PMN, Polymorphonuclear cells; WBC, White blood cells.
Figure 4

a) and b) CXCL1 levels in BALs at 6h and 24h post infection with P. aeruginosa. c) and d) IL-1b levels in BAL fluids at 6h and 24h post infection with P. aeruginosa. Statistical significance: *, p<0.05; BAL, Bronchoalveolar lavage
Figure 5

a) and b) IL-6 levels in BAL fluids at 6h and 24h post infection with P. aeruginosa. c) and d) TNF-α levels in BAL fluids at 6h and 24h post infection with P. aeruginosa. Statistical significance: *, p<0.05; BAL, Bronchoalveolar lavage
Figure 6

a) and b) IL-10 levels in BAL fluids at 6h and 24h post infection with P. aeruginosa. Statistical significance: *, p<0.05. BAL, Bronchoalveolar lavage

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- S1Table.docx
- AdditionalfileArriveGuidelinesChecklist.docx