On 4-dimensional cosmological models locally embedded in a 5-dimensional Ricci-flat space

A. G. Agnese* and M. La Camera†

Dipartimento di Fisica dell’Università di Genova
Istituto Nazionale di Fisica Nucleare, Sezione di Genova
Via Dodecaneso 33, 16146 Genova, Italy

Abstract

We employ a theorem due to Campbell to build some simple 4-dimensional cosmological models which originate from solutions describing waves propagating along the extra-dimension of a 5-dimensional Ricci-flat space. The dimensional reduction is performed in the Jordan frame according to the induced-matter theory of Wesson.

PACS numbers: 04.50.+h, 11.10.Kk

*Email: agnese@ge.infn.it
†Email: lacamera@ge.infn.it
An interesting version of 5-dimensional General Relativity has been developed in recent years by Wesson [1,2,3]. The central thesis of his induced-matter theory is that the 4D Einstein’s field equations with matter

$$G_{\alpha\beta} = 8\pi T_{\alpha\beta}$$ \hspace{1cm} (1)

are a subset of the 5D field equations for vacuum in terms of the Ricci tensor

$$R_{AB} = 0$$ \hspace{1cm} (2)

The theory also allows to obtain flat cosmological solutions containing the usual 4D perfect fluid energy-momentum tensor [4].

Due to its primary significance in the present context, it is worth quoting a theorem due to Campbell [5], which states as follows:

Theorem: Any analytic Riemannian space $V_n(s,t)$ can be locally embedded in a Ricci-flat Riemannian space $V_{n+1}(s+1,t)$ or $V_{n+1}(s,t+1)$.

This theorem has been recently brought to light by Romero et al. [6,7] and employed both in applying Wesson’s method [1] and in investigating the embedding of lower-dimensional spacetimes.

In this Brief Note we consider the cosmological solution describing waves propagating in the extra-dimension of a (4+1)-dimensional Ricci-flat space and, after selecting particular modes, we obtain the corresponding (3+1)-dimensional cosmologies. The final result will be written in the Jordan frame,
according to the dimensional reduction prescribed by the “induced-matter theory of Wesson”.

We start from the 5D line element

\[ds_5^2 = e^\omega (dr^2 + d\Omega^2) - e^\nu dt^2 + e^\mu dl^2 \]

where \(d\Omega^2 = d\theta^2 + \sin \theta d\phi^2 \) and \(l \) is the extra coordinate.

The metric coefficients \(\omega, \nu \) and \(\mu \) will depend in general on both \(t \) and \(l \), the dependence on \(r \) being ruled out in the absence of sources. The case when sources are present and the metric coefficients depend only on \(r \), has been treated in a more general context in ref. [8]. Moreover we can put, by simmetry considerations, \(\nu = \mu \).

The relevant Ricci equations are:

\[3 \nu' \omega' - 3 \omega'^2 - 2 \nu'' - 6 \omega'' + 3 \nu \dot{\omega} + 2 \ddot{\nu} = 0 \]

(4a)

\[3 \nu' \omega' + 2 \nu'' + 3 \nu \ddot{\omega} - 3 \dot{\omega}^2 - 2 \ddot{\nu} - 6 \ddot{\omega} = 0 \]

(4b)

\[\omega' \dot{\nu} + \nu' \dot{\omega} - \omega' \ddot{\omega} - 2 \dot{\omega} = 0 \]

(4c)

\[3 \omega'^2 + 2 \omega'' - 3 \dot{\omega}^2 - 2 \ddot{\omega} = 0 \]

(4d)

Here partial derivatives with respect to \(t \) and \(l \) are denoted by an overdot and a prime respectively.

One can immediately see that equation (4d) admits 3-brane wave solutions, propagating along the fifth dimension of a 5-dimensional bulk, of the form
\[\omega_\pm = \omega(t \pm l) \text{ and } \nu_\pm = \nu(t \pm l). \] Denoting by an asterisk derivatives with respect to \(t \pm l \), equations (4a), (4b) and (4c) all become, after substitution:

\[
2 \dot{\nu}_\pm \dot{\omega}_\pm - \ddot{\omega}_\pm^2 - 2 \dddot{\omega}_\pm = 0
\] (5)

Therefore, selecting a particular form of \(\omega_\pm \), the other metric coefficients are given by

\[
e^{\nu_\pm} = e^{\mu_\pm} = L \dot{\omega}_\pm e^{\frac{\omega_\pm}{2}}
\] (6)

where \(L \) is a suitable constant of integration.

Starting from the above solutions, which describe waves propagating along the extra dimension of a 5-dimensional Ricci-flat spacetime with line element

\[
ds_5^2 = e^{\omega_\pm} (dr^2 + r^2 d\Omega^2) + L \dot{\omega}_\pm e^{\frac{\omega_\pm}{2}} (-dt^2 + dl^2)
\] (7)

we build some simple cosmological models in a 4-dimensional spacetime with line element

\[
ds_4^2 = e^{\omega(t)} (dr^2 + r^2 d\Omega^2) - L \dot{\omega}(t) e^{\frac{\omega(t)}{2}} dt^2
\] (8)

obtained from (7) by a section with a hypersurface at constant \(l \) chosen, without loss of generality, as \(l = 0 \).

Components of the Einstein tensor in mixed form, derived from the above metric (8), are

\[
G^r_t = G^\phi_\phi = C^\rho_\rho = - \frac{e^{-\frac{3}{2} \frac{\omega}{2}} (\dot{\omega}^2 + \dddot{\omega})}{2 L \dot{\omega}}
\]

\[
G^r_\tau = \frac{3 e^{-\frac{3}{2} \frac{\omega}{2}} \dddot{\omega}}{4 L}
\] (9)
We wish to match the terms in (9) with the components of the usual 4D perfect fluid energy-momentum tensor $T_{\alpha\beta} = (p + \rho) u_\alpha u_\beta + pg_{\alpha\beta}$. In our case the pressure and density are given by $T^r_r = p$ and $T^t_t = -\rho$, and therefore we can simply identify G^r_r with $8\pi p$ and G^t_t with $-8\pi \rho$.

Of course the choice of the function $\omega(t)$ is to a large extent arbitrary so we suggest, to make some physically meaningful examples, the following one:

$$\omega(t) = \alpha \ln \left(1 + \frac{t}{\alpha L} \right)$$

(10)

where α is an assignable constant.

As a consequence, the line element (8) becomes

$$ds_4^2 = \left(1 + \frac{t}{\alpha L} \right)^\alpha (dr^2 + r^2 d\Omega^2) - \left(1 + \frac{t}{\alpha L} \right)^\frac{\alpha + 2}{2} dt^2$$

(11)

and clearly characterizes a conformally flat spacetime when $\alpha + 2 = 0$.

To go further, it is useful to make in (11) the change of variable

$$\tau = \begin{cases}
\frac{4 \alpha L}{\alpha + 2} \left[\left(1 + \frac{t}{\alpha L} \right)^{\frac{\alpha + 2}{\alpha + 2}} - 1 \right] & \text{if } \alpha + 2 \neq 0 \\
-2L \ln \left(1 - \frac{t}{2L} \right) & \text{if } \alpha + 2 = 0
\end{cases}$$

(12)

thus obtaining

$$ds_4^2 = \left(1 + \frac{(\alpha + 2) \tau}{4 \alpha L} \right)^{\frac{\alpha + 2}{\alpha + 2}} (dr^2 + r^2 d\Omega^2) - d\tau^2$$

if $\alpha + 2 \neq 0$ (13)

and

$$ds_4^2 = e^{\tau} (dr^2 + r^2 d\Omega^2) - d\tau^2$$

if $\alpha + 2 = 0$ (14)
where in both cases $1/(2L)$ represents the Hubble constant H_0. Accordingly, pressure and density of the perfect fluid can be rewritten respectively as

$$8\pi p = \frac{2(1 - \alpha) H_0^2}{\left(1 + \frac{(\alpha + 2) H_0\tau}{2\alpha}\right)^2}$$

and

$$8\pi \rho = \frac{3H_0^2}{\left(1 + \frac{(\alpha + 2) H_0\tau}{2\alpha}\right)^2}$$

(15)

and

$$8\pi p = -3H_0^2$$

$$8\pi \rho = 3H_0^2$$

(16)

It is apparent that the case $\alpha + 2 = 0$ describes a de-Sitter Universe with cosmological constant $\Lambda = 3H_0^2$. On the other hand, the case $\alpha + 2 \neq 0$, provides the equation of state of radiation $3p = \rho$ when $\alpha = 2/3$, and the equation of state of matter $p = 0$ when $\alpha = 1$.
References

[1] Wesson P. S., *Phys. Lett. B*, 276 (1992) 299.

[2] Overduin J. M. and Wesson P. S., *Phys. Reports*, 283 (1997) 304.

[3] Wesson P. S., *Space - Time - Matter. Modern Kaluza-Klein theory*, (World Scientific, Singapore) 1999.

[4] Billyard A. and Wesson P. S., *Gen. Rel. Grav.*, 28 (1996) 129.

[5] Campbell J. E., *A Course of differential Geometry*, (Clarendon Press, Oxford) 1926.

[6] Romero C., Tavakol R. and Zalaletdinov R., *Gen. Rel. Grav.*, 28 (1996) 365.

[7] Lidsey J. E., Romero C., Tavakol R. and Rippl S., gr-qc 9907040. Preprint 1999.

[8] Agnese A. G. and La Camera M., *Phys. Rev. D*, 58 (1998) 087504.