ON RADÓ’S THEOREM FOR POLYANALYTIC FUNCTIONS

ABTIN DAGHIGHI

Abstract. We prove versions of Radó’s theorem for polyanalytic functions in one variable and also on simply connected \(\mathbb{C} \)-convex domains in \(\mathbb{C}^n \). Let \(\Omega \subset \mathbb{C} \) be a bounded, simply connected domain and let \(q \in \mathbb{Z}_+ \). Suppose at least one of the following conditions holds true: (i) \(g \in C^q(\Omega) \). (ii) \(g \in C^\kappa(\Omega) \), for \(\kappa = \min\{1, q-1\} \), such that \(g \) is \(q \)-analytic on \(\Omega \setminus g^{-1}(0) \) and such that \(\text{Re} \ g \) (\(\text{Im} \ g \) respectively) is a solutions to the \(p' \)-Laplace equation (\(p'' \)-Laplace equation respectively) on \(\Omega \setminus g^{-1}(0) \), for some \(p', p'' > 1 \). Then \(g \) agrees (Lebesgue) a.e. with a function that is \(q \)-analytic on \(\Omega \). In the process we give a simple proof of the fact that if \(f \in C^q(\Omega) \) is \(q \)-analytic on \(\Omega \setminus f^{-1}(0) \) then \(f \) is \(q \)-analytic on \(\Omega \). The extensions of the results to several complex variables are straightforward using known techniques.

1. Introduction

Radó’s theorem states that a continuous function on an open subset of \(\mathbb{C}^n \) that is holomorphic off its zero set extends to a holomorphic function on the given open set. For the one-dimensional result see Radó [7], and for a generalization to several variables, see e.g. Cartan [4].

Definition 1.1. Let \(\Omega \subset \mathbb{C} \) be an open subset. A function \(f \) on \(\Omega \) is called polyharmonic of order \(q \) if \(\Delta^q f = 0 \) on \(\Omega \), where \(\Delta \) denotes the Laplace operator.

Definition 1.2. Let \(\Omega \subseteq \mathbb{R}^n \) be an open subset. For a fixed \(p > 1 \), the \(p \)-Laplace operator of a real-valued function \(u \) on \(\Omega \) is defined as

\[
\Delta_p := \text{div}(|\nabla u|^{p-2} \nabla u)
\]

The operator can also be defined for \(p = 1 \) (it is then the negative of the so-called mean curvature operator) and \(p = \infty \) but we shall not concern ourselves with such cases.

Remark 1.3. Note the subtle similarity between the notation for the \(p \)-Laplace operator

\[
\Delta_p = \text{div}(|\nabla u|^{p-2} \nabla u)
\]

and that of the \(p \)th power of the Laplace operator \(\Delta^p \). We have that \(\Delta_2 = \Delta \).

More generally, we have

\[
\Delta_p u = |\nabla u|^{p-4} \left(|\nabla u|^2 \Delta u + (p-2) \sum_{i,j=1}^n \partial_{x_i} u \cdot \partial_{x_j} u \cdot \partial_{x_i} \partial_{x_j} u \right)
\]
Note that Δ_p is quasilinear. At least they both share the property of being elliptic operators. In the case of Δ^p this is a direct consequence of the fact that Δ is a elliptic operator and therefore any finite power is also, in particular the elliptic regularity theorem applies to Δ^p and to Δ_p, and implies that any real-valued distribution solution u to $\Delta^p u = 0$ (or to Δ_p) on a domain $\Omega \subset \mathbb{R}^n$ is Lebesgue a.e. equal to a C^∞-smooth solution \tilde{u} to $\Delta^p \tilde{u} = 0$ (or to $\Delta_p \tilde{u} = 0$) on Ω.

Kilpeläinen [5] proved the following.

Theorem 1.4. If $\omega \subset \mathbb{R}^2$ is a domain and if $u \in C^1(\Omega)$ satisfies the p-Laplace equation $\text{div}(|\nabla|^{p-2} \nabla u) = 0$ on $\Omega \setminus u^{-1}(0)$ then u is a solution to the p-Laplacian on Ω.

We mention that, more recently, Tarkhanov & Ly [6] proved the following related result in higher dimension.

Theorem 1.5. Let $\Omega \subset \mathbb{R}^n$ be an open subset. If $u \in C^1(\Omega) \cap C^2(\overline{\Omega})$ such that $\text{div}(|\nabla|^{p-2} \nabla u) = 0$ on $\Omega \setminus u^{-1}(0)$ then this holds true on all of Ω.

We shall use the result of Kilpeläinen [5] in order to prove a natural version of Radó’s theorem for polyanalytic functions. Avanissian & Traoré [1, 2] introduced the following definition of polyanalytic functions of order $\alpha \in \mathbb{Z}_+^n$ in several variables.

Definition 1.6. Let $\Omega \subset \mathbb{C}^n$ be a domain, let $\alpha \in \mathbb{Z}_+^n$ and let $z = x + iy$ denote holomorphic coordinates in \mathbb{C}^n. A function f on Ω is called polyanalytic of order α if in a neighborhood of every point of Ω, \((\frac{\partial}{\partial z_j})^\alpha f(z) = 0, 1 \leq j \leq n\).

Definition 1.7. Let $\Omega \subset \mathbb{C}^n$ be an open subset and let (z_1, \ldots, z_n) denote holomorphic coordinates for \mathbb{C}^n. A function f, on Ω, is said to be separately C^k-smooth with respect to the z_j-variable, if for any fixed $(c_1, \ldots, c_{n-1}) \in \mathbb{C}^{n-1}$, chosen such that the function

$$z_j \mapsto f(c_1, \ldots, c_{j-1}, z_j, c_j, \ldots, c_{n-1}),$$

is well-defined (i.e. such that $(c_1, \ldots, c_{j-1}, z_j, c_j, \ldots, c_{n-1})$ belongs to the domain of f) is C^k-smooth with respect to $\text{Re } z_j, \text{Im } z_j$. For $\alpha \in \mathbb{Z}_+^n$ we say that f is separately α-smooth if f is separately C^{α_j}-smooth with respect to z_j for each $1 \leq j \leq n$.

We shall need the following result.

Theorem 1.8. (See [2] Theorem 1.3, p. 264) Let $\Omega \subset \mathbb{C}^n$ be a domain and let $z = (z_1, \ldots, z_n)$, denote holomorphic coordinates in \mathbb{C}^n with $\text{Re } z =: x, \text{Im } z = y$. Let f be a function which, for each j, is polyanalytic of order α_j in the variable $z_j = x_j + iy_j$ (in such case we shall simply say that f is separately polyanalytic of order α). Then f is jointly smooth with respect to (x, y) on Ω and furthermore is polyanalytic of order $\alpha = (\alpha_1, \ldots, \alpha_n)$ in the sense of Definition [1,6].

2. Statement and proof of the result

Let us make the following first observation.

Proposition 2.1. Let $\Omega \subset \mathbb{C}$ be a simply connected domain, let $q \in \mathbb{Z}_+$ and let $f \in C^q(\Omega)$ be a q-analytic function on $\Omega \setminus f^{-1}(0)$. Then f is q-analytic on Ω.
Proof. If \(f \equiv 0 \) then we are done, so assume \(f \not\equiv 0 \). Since \(f \) is \(C^\kappa \)-smooth the function \(\partial_z f \) is continuous. By assumption \(\partial_z f = 0 \) on \(\Omega \setminus f^{-1}(0) \). Set \(Z := (f^{-1}(0))^o \) (\(^o \) denoting the interior) and \(X := \{ f \neq 0 \} \cup Z \). Now \(f|_Z \) clearly satisfies \(\partial_z f = 0 \). Let \(p \in \partial X \). If \(p \) is an isolated zero of \(f \), then by continuity we have \(\partial_z f(p) = 0 \). Suppose \(p \) is a non-isolated zero. We have for each sufficiently large \(j \in \mathbb{Z}_+ \) that \(\{ |z - p| < 1/j \} \cap X \neq \emptyset \). This implies that there exists a sequence \(\{ z_j \}_{j \in \mathbb{Z}_+} \) of points \(z_j \in X \) such that \(z_j \to p \) as \(j \to \infty \). By continuity we have

\[
\partial_z f(p) = \lim_{j \to \infty} \partial_z f(z_j) = 0
\]

This completes the proof. \(\square \)

Theorem 2.2. Let \(\Omega \subset \mathbb{C} \) be a bounded, simply connected domain, let \(q \in \mathbb{Z}_+ \) and let \(f \) be a function \(q \)-analytic on \(\Omega \setminus f^{-1}(0) \). Suppose at least one of the following conditions holds true:

(i) \(f \in C^\kappa(\Omega) \), for \(\kappa = \min\{1, q - 1\} \), and Re \(f \) (Im \(f \) respectively) is a solution to the \(p' \)-Laplace equation (\(p'' \)-Laplace equation respectively) on \(\Omega \setminus f^{-1}(0) \), for some \(p', p'' > 1 \).

(ii) \(f \in C^q(\Omega) \).

Then \(f \) agrees (Lebesgue) a.e. with a function that is \(q \)-analytic on \(\Omega \).

Proof. The case (ii) follows from Proposition 2.1. So suppose (i) holds true. If \(q = 1 \) the theorem is well-known and due to Radó [2], so assume \(q \geq 2 \). Let \(f = u + iv \) where \(u = \text{Re} f \), \(v = \text{Im} f \). Now \(f^{-1}(0) = u^{-1}(0) \cap v^{-1}(0) \), whence \(u \) (and \(v \) respectively) is a solution to the \(p' \)-Laplace equation (\(p'' \)-Laplace equation respectively) on \(\Omega \setminus u^{-1}(0) \) (\(\Omega \setminus v^{-1}(0) \) respectively). If \(f \in C^\kappa(\Omega) \) and \(q \geq 2 \) then \(u \) and \(v \) respectively are at least \(C^1 \)-smooth thus satisfy the conditions of Theorem 1.4. Hence it follows that \(u \) (\(v \) respectively) are solutions to the \(p' \)-Laplace equation (\(p'' \)-Laplace equation respectively) on all of \(\Omega \). By Remark 1.3 (in particular Elliptic regularity) it follows that \(u \) and \(v \) respectively agree (Lebesgue) a.e. on \(\Omega \) with \(C^\infty \)-smooth functions \(\bar{u} \) and \(\bar{v} \) respectively. This implies that the function \(\tilde{f} := \bar{u} + i \bar{v} \) is \(C^\infty \)-smooth on \(\Omega \) and agrees (Lebesgue) a.e. on \(\Omega \) with \(f \). Suppose there exist a point \(p_0 \in \Omega \) such that \(\partial_z \tilde{f}(p_0) \neq 0 \). Set \(Z := (f^{-1}(0))^o \) and \(X := \{ f \neq 0 \} \cup Z \). By continuity there exists an open neighborhood \(U_{p_0} \) of \(p_0 \) in \(\Omega \) such that \(\partial_z \tilde{f} \neq 0 \) on the open subset \(U_{p_0} \cap X \). By the definition of \(\tilde{f} \) there exists a set \(E \) of zero measure such that on \(V_{p_0} := (\Omega \setminus U_{p_0}) \setminus E \) we have that \(\partial_z \tilde{f} \) exists (since \(X \) contains no point of \(f^{-1}(0) \setminus Z \)) and satisfies \(0 = \partial_z \tilde{f} = \partial_z \tilde{f} \) on \(V_{p_0} \), which could only happen if \(V_{p_0} \) is empty which is impossible since \(E \) cannot possess interior points. We conclude that \(\partial_z \tilde{f} = 0 \) on \(\Omega \). This completes the proof. \(\square \)

Theorem 2.3 (Radó’s theorem for polyanalytic functions in several complex variables). Let \(\Omega \subset \mathbb{C}^n \) be a bounded \(\mathbb{C} \)-convex domain. Let \(\alpha \in \mathbb{Z}_+^n \). Suppose \(f \) is \(\alpha \)-analytic on \(\Omega \setminus f^{-1}(0) \) such that one of the following conditions hold true:

(i) For each \(j = 1, \ldots, n \), the function \(f \) is separately \(C^{\kappa_j} \)-smooth with respect to \(z_j \) (i.e. for each fixed value of the remaining variables \(z_k \), \(k \neq j \), \(f \) becomes a \(C^{\kappa_j} \)-smooth function of \(z_j \), \(\kappa_j = \min\{1, \alpha_j - 1\} \) and Re \(f \) (Im \(f \) respectively) are solutions to the \(p' \)-Laplace equation (\(p'' \)-Laplace equation respectively) for some \(p', p'' > 1 \).

(ii) For each \(j = 1, \ldots, n \), the function \(f \) is separately \(C^{\alpha_j} \)-smooth with respect to
Then f agrees (Lebesgue) a.e. with a function that is α-analytic on Ω.

Proof. Denote for a fixed $c \in \mathbb{C}^{n-1}$, $\Omega_{c,k} := \{z \in \Omega : z_j = c_j, j < k, z_j = c_{j-1}, j > k\}$. Since Ω is \mathbb{C}-convex, $\Omega_{c,k}$ is simply connected. Consider the function $f_c(z_k) := f(c_1, \ldots, c_{k-1}, z_k, c_k, \ldots, c_{n-1})$. Clearly, f_c is α_k-analytic on $\Omega_{c,k} \setminus f^{-1}(0)$ for any $c \in \mathbb{C}^{n-1}$. Since $f_c^{-1}(0) \subseteq f^{-1}(0)$, Theorem 2.2 applies to f_c meaning that f agrees a.e. with a function \tilde{f} that is separately polyanalytic of order α_j in the variable $z_j, 1 \leq j \leq n$. By Theorem 1.8 the function \tilde{f} must be polyanalytic of order α on Ω. This completes the proof.

Corollary 2.4. Let $\Omega \subset \mathbb{C}$ be a bounded \mathbb{C}-convex domain and let $\alpha \in \mathbb{Z}_n^+$. Suppose f is separately C^{α_j}-smooth with respect to $z_j, j = 1, \ldots, n$. If f is α-analytic on $\Omega \setminus f^{-1}(0)$, then f agrees (Lebesgue) a.e. with a function that is α-analytic on Ω.

References

1. V. Avanissian, A. Traoré, Sur les fonctions polyanalytiques de plusieurs variables, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no.17, A743-A746
2. V. Avanissian, A. Traoré, Extension des théorèmes de Hartogs et de Lindelöf aux fonctions polyanalytiques de plusieurs variables, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 4, A263-A265
3. M.B. Balk, Polyanalytic functions and their generalizations, Encyclopaedia of Mathematical Sciences (Eds: A.A. Gonchar, V.P. Havin, N.K. Nikolski), Complex Analysis I, Vol.85, p.197-253, Springer, 1997
4. H. Cartan, Sur une extension d’un théorème de Radó, Math. Ann. 125 (1952), 49-50
5. T. Kilpeläinen, A Radó type theorem for p-harmonic functions in the plane, Electron. J. Diff. Equ. 9 (1994), 1-4
6. I. Ly, N. Tarkhanov, A Radó theorem for p-harmonic functions, Bol. Soc. Mat. Mex. 22 (2016), 461-472
7. T. Radó, Über eine nicht fortsetzbare Riemannsche Mannigfaltigkeit, Math. Z. 20 (1924), 1-6