Changes in Neuroendovascular Procedural Volume During the COVID-19 Pandemic: An International Multicenter Study

Adnan I. Qureshi, Samiat Agunbiade, Wei Huang, Iqra N. Akhtar, Michael G. Abraham, Naveed Akhtar, Fawaz Al-Multi, Emrah Aytac, Ferhat Balgetir, Mikayel Grigoryan, Camilo R. Gomez, Amer E. Hassan, Vishal Jani, Nazil A. Janjua, Liqun Jiao, Rakesh Khatri, Jawad F. Kirmani, Adam Kobayashi, Osman Kozak, Jun Lee, Iryna Lobanova, Ossama Yassin Mansour, Alberto Maud, Mikael Mazighi, Michel Piotin, Gustavo J. Rodriguez, Farhan Siddiq, M. Fareed K. Suri, and Wondwossen G. Tekle

From the Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO (AQ, SA, WH, INA, CRG, IL); Division of Neurological Surgery, University of Missouri, Columbia, MO (SA, FS); Departments of Neurology and Radiology, University of Kansas Medical Center, Kansas City, KS (MGA); Department of Neurointervention, Marion Bloch Neuroscience Institute/Saint Luke’s Hospital, Kansas City, MO (NA); Departments of Neurology, Neurosurgery and Radiology, Westchester Medical Center at New York Medical College, Valhalla, NY (FA-M); Zeenat Qureshi Stroke Institute, Department of Neurology, University of FIRAT, Elazig, Turkey (EA, FB); Adventist Health Glendale Comprehensive Stroke Center, Los Angeles, CA (MG); Department of Neurology, University of Texas Rio Grande Valley - Valley Baptist Medical Center, Harlingen, TX (AEH, WGT); Department of Neurology, Creighton University Medical Center/CHI Health, Omaha, NE (VJ); Asia Pacific Comprehensive Stroke Institute, Hilo, Hi (NAJ); Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China (JL); Department of Neurology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX (RK, AM, GJR); Stroke and Neurovascular Center, Hackensack Meridian Health-JFK University Medical Center, Hackensack, NJ (JFK); Department of Neurology and Interventional Stroke Treatment Centre, Kazimierz Pulaski University of Technology and Humanities, Radom, Poland (AK); Department of Neurology, Jefferson Health Abington, Philadelphia, PA (OK); Department of Neurology, Yeungnam University School of Medicine, Daegu, Korea (JL); Department of Neurology, Stroke and Neurointervention Section, Alexandria University Hospital, Faculty of medicine, Alexandria, Egypt (OYM); Department of Interventional Neuroradiology, Rothschild Foundation, Paris, France (MM, MP); and St. Cloud Hospital, St. Cloud, MN (MFKS)

ABSTRACT

BACKGROUND AND PURPOSE: The effect of coronavirus disease 2019 (COVID-19) pandemic on performance of neuroendovascular procedures has not been quantified.

METHODS: We performed an audit of performance of neuroendovascular procedures at 18 institutions (seven countries) for two periods; January-April 2019 and 2020, to identify changes in various core procedures. We divided the region where the hospital was located based on the median value of total number of COVID-19 cases per 100,000 population-into high and low prevalent regions.

RESULTS: Between 2019 and 2020, there was a reduction in number of cerebral angiograms (30.9% reduction), mechanical thrombectomy (8% reduction), carotid artery stent placement for symptomatic (22.7% reduction) and asymptomatic (43.4% reduction) stenoses, intracranial angioplasty and/or stent placement (45% reduction), and endovascular treatment of unruptured intracranial aneurysms (44.6% reduction) and ruptured (22.9% reduction) and unruptured brain arteriovenous malformations (66.4% reduction). There was an increase in the treatment of ruptured intracranial aneurysms (10% increase) and other neuroendovascular procedures (34.9% increase). There was no relationship between procedural volume change and intuitional location in high or low COVID-19 prevalent regions. The procedural volume reduction was mainly observed in March-April 2020.

CONCLUSIONS: We provided an international multicenter view of changes in neuroendovascular practices to better understand the gaps in provision of care and identify individual procedures, which are susceptible to change.

Keywords: COVID-19, corona virus, neuroendovascular procedures, carotid stent, mechanical thrombectomy.

Introduction

An estimated 182,485 and 269,383 patients with ischemic stroke and coronavirus disease 2019 (COVID-19) may be diagnosed, assuming that 9,988,254 patients were infected with Covid-19 in the world on June 27, 2020, with an estimated 21-31% of patients required hospitalization.1 Some procedures, such as mechanical thrombectomy for acute ischemic stroke, carotid angioplasty, and stent placement, were expected to increase with increasing numbers of acute ischemic stroke patients.1 Paradoxically, there was a decrease in the early phase of the pandemic in some centers.2 Certain elective procedures are likely to decrease3 due to declining hospital visits. A 32-60% decrease between March 1 and 29, compared against pre-COVID-19 volumes, was reported in an analysis of more than 500 hospitals in the United States of America (USA).4 One of the research priorities identified by an international panel1 was changes in aspects of care for patients with cerebrovascular diseases during the COVID-19 pandemic to better understand the unmet needs and guide resource allocation.

Methods

The study was performed as a collaborative effort between 11 institutions from the USA and 7 international institutions (from
Study or subgroup	Total number in 2019	Total number in 2020	Change %	Median number in 2019 (95% confidence interval)	Median number in 2020 (95% confidence interval)	Quantile regression P-value
Overall	2,917	2,015	−30.9%	27.5(15-41)	17.5(12-30)	2.016
Location according to COVID-19 prevalence						
Low	1,620	935	−42.3%	9(7-42)	9(5-30)	1
High	1,297	1,080	−16.7%	32.5(19-46)	22(17-49)	.291
Institutional location						
USA	1,354	1,163	−14.1%	29.5(19-41)	20(14-35)	2.417
Non-USA	1,563	852	−45.5%	7.5(3-55)	6(2-30)	.946
Mechanical thrombectomy for acute ischemic stroke						
Overall	690	767	−8.0%	7(6-10)	7(6-8)	1
Location according to COVID-19 prevalence						
Low	262	263	0%	5(3-10)	6(5-8)	.6018
High	428	372	−13.1%	9(7-12)	8(6-11)	.5602
Institutional location						
USA	341	332	−2.6%	7(6-9)	7(6-8)	1
Non-USA	349	303	−13.2%	7.5(3-14)	7.5(4-12)	.8121
Carotid stent placement for symptomatic internal carotid artery stenosis						
Overall	233	180	−22.7%	3(2-3)	2(1-3)	.0814
Location according to COVID-19 prevalence						
Low	136	100	−26.5%	3(1-5)	2(1-3)	.3789
High	97	80	−17.5%	2.5(2-3)	1.5(1-3)	1
Institutional location						
USA	121	120	−8%	3(2-3)	2(1-4)	.1715
Non-USA	112	60	−46.4%	3(1-5)	.5(0-2)	.0334
Carotid stent placement for asymptomatic internal carotid artery stenosis						
Overall	106	60	−43.4%	0(0-0)	0(0-0)	
Location according to COVID-19 prevalence						
Low	95	54	−43.2%	1(0-2)	0(0-1)	.0135
High	11	6	−45.5%	0(0-0)	0(0-0)	
Institutional location						
USA	13	11	−15.4%	0(0-0)	0(0-0)	
Non-USA	93	49	−47.3%	1.5(0-3)	0(0-1)	.0901
Endovascular treatment of ruptured intracranial aneurysms						
Overall	216	239	10.6%	2(1-3)	2(1-3)	1
Location according to COVID-19 prevalence						
Low	88	112	27.3%	1(0-2)	2(1-3)	.1857
High	128	127	−8%	3(2-4)	2(1-4)	.3196
Institutional location						
USA	93	98	5.4%	2(1-2)	2(1-2)	1
Non-USA	123	141	14.6%	3.5(1-4)	4(1-7)	1
Endovascular treatment of unruptured intracranial aneurysms						
Overall	444	246	−44.6%	3(2-4)	1(1-3)	.0125
Location according to COVID-19 prevalence						
Low	253	100	−60.5%	2(0-3)	1(0-2)	.2606
High	191	146	−23.6%	4(3-7)	3(1-5)	.5062
Institutional location						
USA	136	98	−27.9%	3(1-4)	1.5(0-3)	.1715
Non-USA	308	148	−51.9%	3.5(2-11)	1(0-7)	.493
Endovascular treatment of ruptured brain arteriovenous malformations						
Overall	48	37	−22.9%	0(0-1)	0(0-0)	1
Location according to COVID-19 prevalence						
Low	26	16	−38.5%	0(0-1)	0(0-0)	
High	22	21	−4.5%	0(0-1)	0(0-1)	1
Institutional location						
USA	23	20	−13.0%	0(0-1)	0(0-1)	1
Non-USA	25	17	−32.0%	0(0-1)	0(0-0)	1
Endovascular treatment of unruptured brain arteriovenous malformations						
Overall	199	40	−66.4%	0(0-1)	0(0-0)	
Location according to COVID-19 prevalence						
Low	94	22	−76.6%	.5(0-2)	0(0-0)	
High	25	18	−28.0%	0(0-1)	0(0-1)	1
Institutional location						
USA	27	13	−51.9%	0(0-1)	0(0-0)	

(Continued)
Egypt, China, Turkey, South Korea, France each, and two from Poland). All investigators who were a part of an internal collaboration developed to form guidelines for management of acute ischemic stroke in patients with COVID-19, were invited to the study. 1,5 Additional centers were added based on referral of original investigators. Each institution provided data for number of practitioners (including fellows), number of cerebral angiograms, mechanical thrombectomy for acute ischemic stroke, carotid stent placement for internal carotid artery (ICA) stenosis separated by symptomatic and asymptomatic ICA stenosis, endovascular treatment of intracranial aneurysms, separated by ruptured and unruptured status, endovascular treatment of brain arteriovenous malformations (BAVMs), separated by ruptured and unruptured status, intracranial angioplasty and/or stent placement, other neuroendovascular (spinal angiogram and WADA) and nonendovascular (vertebroplasty, lumbar puncture, and lumbar catheter placement) procedures. The neuroendovascular procedures were selected as they have been used in previous studies of benchmarking procedural capability. 6–8 The data were provided for each month for a total of 8 months; January-April 2019 and January-April 2020. All sites except two provided data on number of patients who underwent procedures and had either suspected or confirmed COVID-19 at time of procedure.

Statistical Analysis

The analysis was predominantly descriptive. The changes were quantified for each period as percentage change in 2020 using the values from 2019 as denominator. We further estimated the change for January and February in 2020 (early phase) and March and April 2020 (established phase for COVID-19 pandemic). The median number of each procedure per center for the period under study was compared between 2019 and 2020 using quantile regression method. We divided the region where the hospital was located based on the median value of number of COVID-19 cases per 100,000 population on April 30th, 2020 into high and low prevalent regions with values above the median considered as high prevalence and values below as low prevalence. All analysis was performed using SAS studio (Release: 3.8; Enterprise Edition) software.

Results

A total of 9,738 procedures were performed during the two study periods, 5,539 during pre-COVID-19 period in 2019 and 4,199 in 2020. There was a decrease in the total number of practitioners from 759 to 589 in pre-COVID-19 and during COVID-19 periods. The average number of procedures per practitioner decreased from 7.29 to 7.12 in pre-COVID-19 and during COVID-19 periods. Fifty-three patients with confirmed COVID-19 infection and 135 with suspected COVID-19 infection underwent procedures during COVID-19 period. The procedure numbers are presented for each neuroendovascular procedure for each month in Figure 1.

Overall Comparison of Pre-COVID-19 and During COVID-19 Periods

Between 2019 and 2020, there were reductions in cerebral angiograms (30.9%), mechanical thrombectomies (8%), carotid stent placement for symptomatic (22.7%) and asymptomatic (43.4%) ICA stenoses, and intracranial angioplasty and/or stent placements (45%), treatment of unruptured intracranial aneurysms (44.6%) and ruptured (22.9%), and unruptured...
Study or subgroup	Total number in 2019	Total number in 2020	Change	Median number in 2019 (95% confidence interval)	Median number in 2020 (95% confidence interval)	Quantile regression P-value	
Cerebral angiogram	Overall	1,332	1,226	-8.6%	24 (13-41)	21 (15-45)	.9128
	Location according to COVID-19 prevalence						
	Low	690	539	-21.9%	9 (3-45)	14 (2-44)	.8139
	High	642	687	7.0%	29.5 (14-46)	37 (17-53)	.7888
	Institutional location						
	USA	625	723	15.7%	29.5 (14-42)	30 (17-49)	.8227
	Non-USA	707	503	-28.9%	7.5 (2-103)	7 (2-82)	.9729
Mechanical thrombectomy for acute ischemic stroke	Overall	310	313	1.0%	7 (5-10)	6.5 (6-10)	.5686
	Location according to COVID-19 prevalence						
	Low	103	127	23.3%	4 (2-10)	7 (4-12)	.4321
	High	207	186	-10.1%	8 (7-13)	6.5 (5-12)	.7105
	Institutional location						
	USA	163	162	-0%	7.5 (11)	6 (5-10)	.571
	Non-USA	147	151	2.7%	6.5 (1-20)	11 (4-13)	.5273
Carotid stent placement for symptomatic internal carotid artery stenosis	Overall	110	106	-3.6%	2 (1-4)	2.5 (1-4)	1
	Location according to COVID-19 prevalence						
	Low	66	58	-12.1%	3 (0-5)	2.5 (0-5)	1
	High	44	48	9.1%	2 (1-3)	2.5 (0-5)	1
	Institutional location						
	USA	51	71	39.2%	2 (1-4)	3 (1-5)	.3573
	Non-USA	59	35	-40.7%	3.5 (1-5)	0 (0-6)	.0965
Carotid stent placement for asymptomatic internal carotid artery stenosis	Overall	49	32	-34.7%	0 (0-1)	0 (0-0)	1
	Location according to COVID-19 prevalence						
	Low	44	29	-34.1%	1 (0-2)	1.5 (0-1)	1
	High	5	3	-40.0%	0 (0-0)	0 (0-0)	–
	Institutional location						
	USA	5	7	40.0%	0 (0-0)	0 (0-1)	1
	Non-USA	44	25	-43.2%	1.5 (0-4)	0 (0-2)	.3246
Endovascular treatment of ruptured intracranial aneurysms	Overall	102	124	21.6%	2 (1-3)	2 (1-4)	1
	Location according to COVID-19 prevalence						
	Low	39	55	41.0%	1 (0-3)	2 (1-4)	.3158
	High	63	69	9.5%	3 (1-4)	2.5 (1-7)	.485
	Institutional location						
	USA	41	49	19.5%	1.5 (1-3)	2 (1-3)	1
	Non-USA	61	75	23.0%	4 (0-9)	4.5 (1-11)	.7413
Endovascular treatment of unruptured intracranial aneurysms	Overall	167	154	-7.8%	3 (2-4)	2 (1-4)	.2606
	Location according to COVID-19 prevalence						
	Low	74	64	-13.5%	1.5 (0-3)	1 (0-3)	1
	High	93	90	-3.2%	4 (2-8)	3.5 (2-7)	1
	Institutional location						
	USA	59	59	0%	2 (1-4)	2 (1-4)	1
	Non-USA	108	95	-12.0%	3.5 (1-13)	2 (0-13)	1
Endovascular treatment of ruptured brain arteriovenous malformations	Overall	25	27	8.0%	0 (0-1)	0 (0-1)	1
	Location according to COVID-19 prevalence						
	Low	14	14	0%	0 (0-1)	0 (0-1)	1
	High	11	13	18.2%	0 (0-1)	1 (0-1)	.002
	Institutional location						
	USA	10	12	20.0%	0 (0-1)	0 (0-1)	1
	Non-USA	15	15	0%	0 (0-2)	0 (0-2)	1
Endovascular treatment of unruptured brain arteriovenous malformations	Overall	43	31	-27.9%	0 (0-1)	0 (0-1)	1
	Location according to COVID-19 prevalence						
	Low	33	17	-48.5%	0.5 (0-2)	0 (0-1)	1
	High	10	14	40.0%	0 (0-1)	0.5 (0-1)	1
	Institutional location						
	USA	11	11	0%	0 (0-1)	0 (0-1)	1
Study or subgroup	Total number in 2019	Total number in 2020	Change %	Median number in 2019 (95% confidence interval)	Median number in 2020 (95% confidence interval)	Quantile regression P-value	
-------------------	---------------------	---------------------	----------	--	--	---------------------------	
Non-USA	32	20	−37.5%	0(0-4)	0(0-3)	1	
Intracranial angioplasty/stent for intracranial stenosis	Overall 67	51	−23.9%	0(0-1)	0(0-1)	1	
	Low 52	29	−44.2%	0(0-1)	0(0-1)	1	
	High 15	22	46.7%	0(0-2)	0(0-1)	1	
Location according to COVID-19 prevalence	Institutional location	USA 14	23	64.3%	0(0-1)	1	
	Non-USA 53	28	−47.2%	1(0-2)	0(0-2)	12.45	
Other neuroendovascular procedures (spinal angiograms, WADA, others)	Overall 99	162	63.6%	0.5(0-2)	1(0-4)	1	
Location according to COVID-19 prevalence	Institutional location	USA 43	79	83.7%	2(0-2)	1	
	Low 29	46	58.6%	1.5(0-2)	0(0-5)	.4891	
	High 70	116	65.7%	0(0-4)	1.5(0-7)	.635	
Other nonendovascular procedures	Overall 153	204	33.3%	0(0-1)	0(0-4)	1	
Location according to COVID-19 prevalence	Institutional location	USA 133	170	27.8%	0(0-7)	1	
	Low 133	170	70.0%	0(0-1)	0(0-11)	1	
	High 20	34	0%	0(0-1)	0(0-1)	1	
Cerebral angiogram	USA 138	190	37.7%	0(0-8)	0(0-13)	1	
	Cerebral angiogram	15	14	−6.7%	0(0-1)	−	

There were increases in endovascular treatment of ruptured intracranial aneurysms (10%) and other neuroendovascular procedures (34.9%). The slight increase in endovascular treatment of ruptured intracranial aneurysms was more prominent in low COVID-19 prevalent regions and non-USA institutions (Table 1).

Comparison of Pre-COVID-19 and During COVID-19 Periods (March-April)

There were reductions in cerebral angiograms, mechanical thrombectomy, and carotid stent placement for symptomatic (30.2%) and asymptomatic (12.5%) stenoses, intracranial angioplasty and/or stent placement (45%), and endovascular treatment of unruptured intracranial aneurysms (40.3%) and ruptured (63.9%) and unruptured (71.0%) BAVMs, and endovascular treatment of ruptured intracranial aneurysms (7.3%). There was a slight increase in endovascular treatment of rupture intracranial aneurysms and slight increase in low COVID-19 prevalent regions.

Comparison of January and February (Early Phase) and March and April (Established Phase) in 2020

There were reductions in cerebral angiograms (55.4%) carotid artery stent placement for symptomatic (30.2%) and asymptomatic (12.5%) stenoses, intracranial angioplasty and/or stent placement (45%), and endovascular treatment of unruptured intracranial aneurysms (40.3%) and ruptured (63.9%) and unruptured (71.0%) BAVMs, and endovascular treatment of ruptured intracranial aneurysms (7.3%). There was a minor increase in mechanical thrombectomy (2.9%).

Discussion

Comparisons of procedures between January to April 2019 and 2020 demonstrated a reduction in almost all neuroendovascular procedures, except the treatment of ruptured intracranial aneurysms in 2020 compared with 2019. In January and February, there was some heterogeneity in changes in various neuroendovascular procedures. In March and April, there was a reduction in almost all neuroendovascular procedures except the treatment of ruptured intracranial aneurysms in 2020 compared with 2019. There was no clear relationship between location of hospital (high or low COVID-19 prevalent regions) and changes in procedures.

One surprising finding was the reduction in mechanical thrombectomy for acute ischemic stroke and carotid stent place-
Study or subgroup	Total number in 2019	Total number in 2020	Change %	Median number in 2019 (95% confidence interval)	Median number in 2020 (95% confidence interval)	Quantile regression P-value	
Cerebral angiogram	1,585	789	-50.2%	27.5(15.0-49)	12.6(8.0-30)	.1184	
Location according to COVID-19 prevalence	930	396	-57.4%	11.5(2.0-50)	6.5(1.3-39)	.9431	
High	655	393	-40.0%	38.1(18.8-51)	20.7(13.4-34)	.1387	
Institutional location	729	440	-39.6%	31.5(18.4-49)	13.5(7.3-35)	.133	
USA	349	393	-59.2%	7.5(2.6-69)	4.1(1.4-33)	.9129	
Non-USA	729	440	-39.6%	31.5(18.4-49)	13.5(7.3-35)	.133	
Location according to COVID-19 prevalence	159	136	-14.5%	5.5(2.1-14)	5.5(4.4-8)	.7408	
High	221	186	-15.8%	9.5(6.1-14)	8.5(7.1-13)	1	
Location according to COVID-19 prevalence	178	170	-4.5%	7.5(5.1-12)	7.5(5.1-11)	1	
Low	930	396	-57.4%	11.5(2.0-50)	6.5(1.3-39)	.9431	
High	655	393	-40.0%	38.1(18.8-51)	20.7(13.4-34)	.1387	
Institutional location	USA	349	393	-59.2%	7.5(2.6-69)	4.1(1.4-33)	.9129
Location according to COVID-19 prevalence	159	136	-14.5%	5.5(2.1-14)	5.5(4.4-8)	.7408	
High	221	186	-15.8%	9.5(6.1-14)	8.5(7.1-13)	1	
Location according to COVID-19 prevalence	178	170	-4.5%	7.5(5.1-12)	7.5(5.1-11)	1	
Low	930	396	-57.4%	11.5(2.0-50)	6.5(1.3-39)	.9431	
High	655	393	-40.0%	38.1(18.8-51)	20.7(13.4-34)	.1387	
Institutional location	USA	349	393	-59.2%	7.5(2.6-69)	4.1(1.4-33)	.9129
Location according to COVID-19 prevalence	159	136	-14.5%	5.5(2.1-14)	5.5(4.4-8)	.7408	
High	221	186	-15.8%	9.5(6.1-14)	8.5(7.1-13)	1	
Location according to COVID-19 prevalence	178	170	-4.5%	7.5(5.1-12)	7.5(5.1-11)	1	
Low	930	396	-57.4%	11.5(2.0-50)	6.5(1.3-39)	.9431	
High	655	393	-40.0%	38.1(18.8-51)	20.7(13.4-34)	.1387	
Institutional location	USA	349	393	-59.2%	7.5(2.6-69)	4.1(1.4-33)	.9129
Location according to COVID-19 prevalence	159	136	-14.5%	5.5(2.1-14)	5.5(4.4-8)	.7408	
High	221	186	-15.8%	9.5(6.1-14)	8.5(7.1-13)	1	
Location according to COVID-19 prevalence	178	170	-4.5%	7.5(5.1-12)	7.5(5.1-11)	1	
Low	930	396	-57.4%	11.5(2.0-50)	6.5(1.3-39)	.9431	
High	655	393	-40.0%	38.1(18.8-51)	20.7(13.4-34)	.1387	
Institutional location	USA	349	393	-59.2%	7.5(2.6-69)	4.1(1.4-33)	.9129
Location according to COVID-19 prevalence	159	136	-14.5%	5.5(2.1-14)	5.5(4.4-8)	.7408	
High	221	186	-15.8%	9.5(6.1-14)	8.5(7.1-13)	1	
Location according to COVID-19 prevalence	178	170	-4.5%	7.5(5.1-12)	7.5(5.1-11)	1	
Low	930	396	-57.4%	11.5(2.0-50)	6.5(1.3-39)	.9431	
High	655	393	-40.0%	38.1(18.8-51)	20.7(13.4-34)	.1387	
Institutional location	USA	349	393	-59.2%	7.5(2.6-69)	4.1(1.4-33)	.9129
Location according to COVID-19 prevalence	159	136	-14.5%	5.5(2.1-14)	5.5(4.4-8)	.7408	
High	221	186	-15.8%	9.5(6.1-14)	8.5(7.1-13)	1	
Location according to COVID-19 prevalence	178	170	-4.5%	7.5(5.1-12)	7.5(5.1-11)	1	
Low	930	396	-57.4%	11.5(2.0-50)	6.5(1.3-39)	.9431	
High	655	393	-40.0%	38.1(18.8-51)	20.7(13.4-34)	.1387	
Institutional location	USA	349	393	-59.2%	7.5(2.6-69)	4.1(1.4-33)	.9129
Location according to COVID-19 prevalence	159	136	-14.5%	5.5(2.1-14)	5.5(4.4-8)	.7408	
High	221	186	-15.8%	9.5(6.1-14)	8.5(7.1-13)	1	
Location according to COVID-19 prevalence	178	170	-4.5%	7.5(5.1-12)	7.5(5.1-11)	1	
Low	930	396	-57.4%	11.5(2.0-50)	6.5(1.3-39)	.9431	
High	655	393	-40.0%	38.1(18.8-51)	20.7(13.4-34)	.1387	

(Continued)
Table 3. Continued

Study or subgroup	Total number in 2019	Total number in 2020	Change %	Median number in 2019 (95% confidence interval)	Median number in 2020 (95% confidence interval)	Quantile regression P-value
Non-USA	60	7	-88.3%	.5(0-4)	0(0-1)	1
Intracranial angioplasty/stent for intracranial stenosis	Overall	115	-58.3%	0(0-1)	0(0-1)	1
Location according to COVID-19 prevalence	Low	92	-63.0%	0(0-1)	0(0-1)	1
High	23	14	-39.1%	0(0-2)	0(0-1)	1
Institutional location	USA	28	-32.1%	0(0-2)	0(0-1)	1
Non-USA	87	29	-66.7%	0(0-2)	0(0-1)	1
Other neuroendovascular procedures (spinal angiograms, WADA, others)	Overall	144	15.3%	1(0-3)	2(0-4)	.3789
Location according to COVID-19 prevalence	Low	57	-26.3%	1(0-5)	0(0-4)	.4764
High	87	124	42.5%	0(0-6)	2.5(1-5)	.288
Institutional location	USA	70	-8.6%	1.5(0-5)	3(1-4)	.4694
Non-USA	74	102	37.8%	.5(0-7)	0(0-9)	1
Other nonendovascular procedures	Overall	188	-38.3%	0(0-1)	0(0-0)	–
Location according to COVID-19 prevalence	Low	169	-36.7%	0(0-14)	0(0-6)	1
High	19	9	-52.6%	0(0-1)	0(0-0)	–
Institutional location	USA	155	-32.9%	0(0-6)	0(0-1)	1
Non-USA	33	12	-63.6%	0(0-4)	0(0-0)	–

The large reduction in elective procedures, such as carotid stent placement for asymptomatic ICA stenosis and endovascular treatment of unruptured intracranial aneurysms and BAVMs, was expected. Several local and regional authorities had issued mandates to defer all elective procedures. A survey reported that more than 27% of patients in the United States had an elective surgery, appointment, or procedure delayed or cancelled due to the COVID-19 pandemic. Many patients may also avoid elective procedures due to loss of employment and medical insurance. We also noted an unexpected decrease in total number of practitioners from 759 to 589 in pre-COVID-19 and during COVID-19 periods, respectively. The exact reasons for this decrease are not known. Possible reasons could be exclusion of practitioners who may be at high risk for acquiring COVID-19 and/or reallocation to other hospitals or services to meet increasing demands due to COVID-19. We acknowledge that a reduction in number of practitioners may have influenced the number of neuroendovascular procedures performed. However, there was also a reduction in the number of procedures per practitioner during the COVID-19 pandemic.

There are certain limitations that must be considered prior to the interpretation of our study. The data were derived from large stroke institution from various geographical settings with their own COVID-19 related restrictions and timelines of implementation, which may have introduced heterogeneity within observed results. While such data provide a broader perspective of neuroendovascular practice changes, in-depth analysis of eligible patients and procedures performed was not possible and therefore, we are unable to comment upon any changes in patient demographics or clinical characteristics among those undergoing procedures during the COVID-19 pandemic. We used a sampling period of 2 months post epidemic and previous year data from same months as reference as has been used in previous studies. Some studies have used even a shorter period of 2 weeks to study changes in acute stroke admissions and mechanical thrombectomy procedures to study the effect of COVID-19 pandemic. However, the pandemic has been prolonged beyond initial projections with dynamic changes in regional prevalence of COVID-19. Such dynamic changes pose challenges in defining in regions where hospitals were located as high prevalence and low prevalence. Many of the regions would have been reclassified particularly in the resurgence of
COVID-19 in months that followed. These changes were not anticipated when the study was first designed.

We provided an international multicenter view of changes in neuroendovascular practices to better understand the gaps in provision of care to address the previously unmet needs of the ongoing COVID-19 pandemic. Any gaps in the provision of care during COVID-19 pandemic must be identified in future analyses to avoid increasing the rate of unfavorable outcomes among patients with ischemic stroke and transient ischemic attack.

References
1. Qureshi AI, Abd-Allah F, Al-Senani F, et al. Management of acute ischemic stroke in patients with COVID-19 infection: report of an international panel. Int J Stroke 2020;15:540-4.
2. Kerleroux B, Fabacher T, Bricout N, et al. Mechanical thrombectomy for acute ischemic stroke amid the COVID-19 outbreak: decreased activity, and increased care delays. Stroke 2020;51:2012-7.
3. COVID-19: guidance for triage of non-emergent surgical procedures. Available from: https://www.facs.org/COVID-19/clinical-guidance/triage. Accessed July 16, 2020.
4. Pecchi AW. 3 revenue cycle hurdles for resuming elective procedures. Available from: https://www.healthleadersmedia.com/finance/3-revenue-cycle-hurdles-resuming-elective-procedures. Accessed July 16, 2020.
5. Qureshi AI, Abd-Allah F, Al-Senani F, et al. Management of acute ischemic stroke in patients with COVID-19 infection: insights from an international panel. Am J Emerg Med 2020;38:1548.e5-7.
6. Day AI, Siddiqui AH, Meyers PM, et al. Training standards in neuroendovascular surgery: program accreditation and practitioner certification. Stroke 2017;48:2318-25.
7. Grigoryan M, Chaudhry SA, Hassan AE, et al. Neurointerventional procedural volume per hospital in United States: implications for comprehensive stroke center designation. Stroke 2012;43:1309-14.
8. Qureshi AI, Abou-Chebl A, Jovin TG. Qualification requirements for performing neurointerventional procedures: a report of the practice guidelines committee of the American Society of Neuroimaging and the Society of Vascular and Interventional Neurology. J Neuroimaging 2008;18:433-47.
9. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016;387:1723-31.
10. Qureshi AI, Ishfaq MF, Rahman HA, et al. Endovascular treatment versus best medical treatment in patients with acute ischemic stroke: a meta-analysis of randomized controlled trials. AJNR Am J Neuroradiol 2016;37:1068-73.
11. De Rango P, Brown MM, Chaturvedi S, et al. Summary of evidence on early carotid intervention for recently symptomatic stenosis based on meta-analysis of current risks. Stroke 2015;46:3423-36.
12. Savardekar AR, Narayan V, Patra DP, et al. Timing of carotid endarterectomy for symptomatic carotid stenosis: a snapshot of current trends and systematic review of literature on changing paradigm towards early surgery. Neurosurgery 2019;85:E214-25.
13. Bernat AL, Giammattei L, Abbritti R, et al. Impact of COVID-19 pandemic on subarachnoid hemorrhage. J Neurosurg Sci 2020;64:409-10.
14. Goertz L, Pflaeging M, Hamisch C, et al. Delayed hospital admission of patients with aneurysmal subarachnoid hemorrhage: clinical presentation, treatment strategies, and outcome. J Neurosurg 2020. https://doi.org/10.3171/2020.2.JNS20148
15. Hospital visits down sharply and patients may not be in a rush to reschedule appointments. Available from: https://newsroom.transunion.com/hospital-visits-down-sharply-and-patients-may-not-be-in-a-rush-to-reschedule-appointments. Accessed July 23, 2020.
16. Kim J, Kim J, Lee SK, et al. Effects of epidemic disease outbreaks on financial performance of restaurants: event study method approach. J Hosp Tour Manage 2020;43:32-41.
17. Pop R, Hasni A, Bolognini F, et al. Stroke thrombectomy in patients with COVID-19: initial experience in 13 cases. AJNR Am J Neuroradiol 2020. https://doi.org/10.3174/ajnr.A6750
18. Qureshi AI, Huang W, Khan S, et al. Mandated societal lockdown and road traffic accidents. Accid Anal Prev 2020;146:105747.
19. Qureshi AI, Siddiq F, French BR, et al. Effect of COVID-19 pandemic on mechanical thrombectomy for acute ischemic stroke treatment in United States. J Stroke Cerebrovasc Dis 2020;29:105140.
20. Kansagra AP, Goyal MS, Hamilton S, et al. Collateral effect of COVID-19 on stroke evaluation in the United States. N Engl J Med 2020;383:400-1.