Combination of CMS searches for heavy resonances decaying to pairs of bosons or leptons

The CMS Collaboration

Abstract

A statistical combination of searches for heavy resonances decaying to pairs of bosons or leptons is presented. The data correspond to an integrated luminosity of 35.9 fb$^{-1}$ collected during 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. The data are found to be consistent with expectations from the standard model background. Exclusion limits are set in the context of models of spin-1 heavy vector triplets and of spin-2 bulk gravitons. For mass-degenerate W' and Z' resonances that predominantly couple to the standard model gauge bosons, the mass exclusion at 95% confidence level of heavy vector bosons is extended to 4.5 TeV as compared to 3.8 TeV determined from the best individual channel. This excluded mass increases to 5.0 TeV if the resonances couple predominantly to fermions.

Submitted to Physics Letters B
1 Introduction

Over the past half century, successive searches for heavy resonances in two-body decays have often led to discoveries of new states. At the CERN LHC, searches for W' and Z' resonances (collectively referred to as V') that couple through the electroweak (EW) interaction to standard model (SM) particles have been performed by ATLAS and CMS in final states with two SM bosons [1–18], two leptons [19–22], and two light-flavor [23, 24] or heavy-flavor quarks [25–29]. These new states would couple predominantly to either SM fermions, as in the case of minimal W' and Z' models [30–32], or SM bosons, as in strongly coupled composite Higgs and little Higgs models [33–39]. In addition, models based on warped extra dimensions provide a candidate for a massive resonance, such as the spin-2 first Kaluza–Klein excitation of the graviton (G) [40–42]. In bulk graviton models [43], the SM fermions and gauge bosons are located in the bulk five-dimensional spacetime, and the graviton has a sizable branching fraction to pairs of W, Z, and H bosons.

This Letter describes a statistical combination of CMS searches for heavy resonances that decay to pairs of bosons or leptons [1–10, 19, 20]. The event selection, the simulated samples, the background estimation, and the systematic uncertainties of the individual analyses are unchanged. The results are used to set exclusion limits on models that invoke heavy vector resonances and on a model with a bulk graviton.

The SM bosons produced in the decay of resonances X with masses m_X that exceed 1 TeV are expected to have a large Lorentz boost [44]. The decay products of the SM bosons are therefore highly collimated, requiring dedicated techniques for their identification and reconstruction. In the case of hadronic decays, the pair of quarks produce a single large-cone jet with a two-prong structure. In addition, Higgs bosons can also be identified by tagging the b quarks originating from their decays. In models where heavy vector bosons couple predominantly to fermions, the combined contribution from the leptonic decays $W' \rightarrow \ell \nu$ and $Z' \rightarrow \ell \ell$ dominates, and these channels [19, 20] are included in the combination, providing complementary sensitivity to the searches in diboson channels. The analyses considered in this Letter are based on a data sample of proton-proton (pp) collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment in 2016, and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. A similar combination performed on a comparable set of data has been recently published by ATLAS [45].

2 The CMS detector and event reconstruction

The CMS detector features a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. These detectors reside within a superconducting solenoid, which provides a magnetic field of 3.8 T. Forward calorimeters extend the pseudorapidity coverage up to $|\eta| < 5.2$. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A detailed description of the CMS detector, together with a definition of the coordinate system and the kinematic variables, can be found in Ref. [46].

The information from various elements of the CMS detector is used by a particle-flow (PF) algorithm [47] to identify stable particles reconstructed in the detector as electrons, muons, photons, and charged or neutral hadrons. The energy of electrons is determined from a combination of the electron momentum, as determined in the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originat-
ing from the electron track. The dielectron mass resolution for \(Z \rightarrow ee\) decays ranges from 1.9% when both electrons are in the ECAL barrel, to 2.9% when both electrons are in the endcaps [48]. The momentum of muons is obtained from the curvature of the corresponding track. The \(p_T\) resolution in the barrel is better than 7% for muons with \(p_T\) up to 1 TeV [49]. The \(\tau\) leptons that decay to hadrons and a neutrino (labeled \(\tau_h\)) are reconstructed by combining one or three charged PF candidates with up to two neutral pion candidates [50]. The energy of charged hadrons is determined from a combination of their momenta measured in the tracker and the matching ECAL and HCAL energy deposits. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies.

Jets are reconstructed from PF candidates clustered with the anti-\(k_T\) algorithm [51], with a distance parameter 0.4 (AK4 jets) or 0.8 (AK8 jets), using the FASTJET 3.0 package [52, 53]. The four-momenta of the AK4 and AK8 jets are obtained by clustering candidates passing the charged-hadron subtraction algorithm [54]. The contribution of neutral particles originating from additional pp interactions within the same or neighboring bunch crossings (pileup) is proportional to the jet area, and is estimated using the median area method implemented in FASTJET, and then subtracted from the jet energy. The jet energy resolution, after the application of corrections to the jet energy, is 4% at 1 TeV [55]. The missing transverse momentum vector \(\vec{p}_T^{\text{miss}}\) is computed as the negative vector sum of the transverse momenta of all the PF candidates in an event, and its magnitude is denoted as \(p_T^{\text{miss}}\) [56]. The \(\vec{p}_T^{\text{miss}}\) is corrected for adjustments to the energy scale of the reconstructed AK4 jets in the event.

While AK4 jets are used for single quarks, AK8 jets are adopted to reconstruct large momentum SM bosons that decay to quarks. Reconstructing the AK8 jet mass (\(m_j\)) and substructure relies on the pileup-per-particle identification algorithm [54, 57]. The contributions from soft radiation and additional interactions are removed using the soft-drop algorithm [58, 59], with parameters \(\beta = 0\) and \(z_{\text{cut}} = 0.1\). Dedicated mass corrections, obtained from simulation and data in a region enriched with \(t\bar{t}\) events with merged \(W(q\bar{q}')\) decays, are applied to the jet mass to reduce any residual jet \(p_T\) dependence [6, 60], and to match the jet mass scale and resolution observed in data. The measured soft-drop jet mass resolution is approximately 10% [60]. Exclusive \(m_j\) intervals labeled \(m_W, m_Z, \) and \(m_H\) , which range from 65 to 85, 85 to 105, and 105 to 135 GeV, respectively, are defined according to the SM boson masses and the jet mass resolution.

Hadronic decays of \(W\) and \(Z\) bosons are identified using the ratio between 2-subjettiness and 1-subjettiness [61], \(\tau_{21} = \tau_2/\tau_1\). The variables \(m_f\) and \(\tau_{21}\) are calibrated using a top quark-antiquark sample enriched in hadronically decaying \(W\) bosons [62]. The decay of a Higgs boson to a pair of \(b\) quarks is identified using one of two \(b\) tagging algorithms, depending on the background composition. The first consists of a dedicated \(b\) tagging discriminator, specifically designed to identify a pair of \(b\) quarks clustered in a single jet [63]. The second relies on splitting the AK8 jet into two subjets, then applying the combined secondary vertex algorithm [63] to the subjets. The latter is also applied to AK4 jets to identify isolated \(b\) quarks in the event.

3 Signal modeling

The response of the CMS detector to the production and decay of heavy resonances is evaluated through simulated events, which are reconstructed using the same algorithms as used in collision data. The spin-1 gauge bosons, \(W'\) and \(Z'\), are simulated at leading order (LO) using the MADGRAPH5_aMC@NLO 2.4.2 matrix element generator [64], in the heavy vector triplet (HVT) framework [65, 66], which introduces a triplet of heavy vector bosons with sim-
ilar mass, of which one is neutral \((Z') \) and two are electrically charged \((W'^\pm) \). The coupling strength of the heavy vector bosons to SM bosons and fermions is determined from the combinations \(g_H = g_V c_H \) and \(g_t = g^2 c_F / g_V \), respectively. The parameter \(g_V \) is the strength of the new interaction; \(c_H \) characterizes the interaction between the HVT bosons, the Higgs boson, and longitudinally polarized SM vector bosons; \(c_F \) represents the direct interaction between the \(V' \) bosons and the SM fermions; \(g \) is the SM SU\((2)_L\) gauge coupling constant. The HVT framework is presented in two scenarios, henceforth referred to as model A and model B, depending on the couplings to the SM particles [65]. In the former, the coupling strengths to the SM bosons and fermions are comparable, and the new particles decay primarily to fermions. In the latter, the couplings to the SM fermions are small, and the branching fraction to the SM bosons is nearly 100%. Events are simulated with different \(m_X \) hypotheses in the range of 800 to 4500 GeV, assuming a negligible resonance width compared to the experimental resolution (3–20%). The kinematic distributions of the signal do not depend on the choice of benchmark scenario, and the samples are reweighted according only to the cross sections and branching fractions.

The bulk graviton events are also simulated at LO using the same MadGraph5_aMC@NLO generator. The cross section and the width of the bulk graviton mainly depend on its mass and the ratio \(\tilde{\kappa} \equiv \kappa / M_{Pl} \), where \(\kappa \) is a curvature factor of the model and \(M_{Pl} \) is the reduced Planck mass [43, 67]. The graviton signals are generated assuming \(\tilde{\kappa} = 0.5 \), which guarantees that the width of the graviton is smaller than the experimental resolution.

The signal events are generated using the NNPDF 3.0 [65] parton distribution functions (PDFs), and are interfaced to Pythia 8.205 [69] for parton showering and hadronization, adopting the MLM matching scheme [70]. Pileup interactions are superimposed on the simulated processes, and their frequency distribution is weighted to match the number of interactions per bunch crossing observed in data. Generated events are processed through the CMS detector simulation, based on Geant4 [71].

4 Search channels

The search strategies for the analyses contributing to the combination are summarized in this Section. More details are provided in the relevant publications [1–10, 19, 20].

4.1 Fully hadronic diboson channels

Diboson resonances have been searched for in several final states, depending on the decay modes of the bosons. The final states targeted were \(VV \rightarrow q\bar{q}q\bar{q} \) [11], \(VH \rightarrow q\bar{q}b\bar{b} \) [6], and \(HH \rightarrow b\bar{b}b\bar{b} \) final states [9, 10]. Each boson is reconstructed as a two-prong, large-cone jet, so that for diboson resonances, the two jets would recoil against each other. The presence of a diboson resonance would be observed in the dijet invariant mass spectrum \(m_{jj} \). The \(W \) and \(Z \) bosons are identified via the \(m_t \) and \(\tau_{21} \) variables, and \(b \) tagging is used to identify \(b \) quarks from Higgs bosons in addition to \(m_t \). Although the signal yield is large, because of the large fraction of Higgs boson decays to \(b \) quarks, these channels are subject to an overwhelming background from quantum chromodynamics (QCD) multijet production.

In the \(VV \) and \(VH \) analyses, the background is estimated directly from data, assuming that the invariant mass distribution of the background can be described by a smooth, parameterizable, monotonically decreasing function of \(m_{jj} \). The signal template, based on a Gaussian core, is fitted to the data simultaneously with the background function. The \(HH \) analyses also use an additional region in the fit, obtained by inverting the \(b \) tagging selection on the \(H \) candidates,
which constrains the parameters of the background function.

4.2 Semi-leptonic diboson channels

Searches for VV, VH, and HH resonances have been performed in channels where one of the SM bosons decays to leptons and the other to quarks (ZV → ννqq [2], WV → ℓνqq [3], ZV → ℓνqq [4], ZH → ννb̄b [7], WH → ℓνb̄b [7], ZH → ℓνb̄b [7], VH → q̄qττ [8] and HH → b̄bττ [8]). These final states represent an attractive alternative to all-jet final states, thanks to the large selection efficiencies and natural discrimination against multijet background stemming from the presence in the signal of energetic and isolated leptons or neutrinos.

The decay of a Z boson to neutrinos can be identified through its large p_T^{miss}, and the resonance mass can be inferred from the transverse mass between the \vec{p}_T^{miss} and the jet originating from the hadronic decay of the other boson. For the $W \rightarrow ℓν$ decay, there is a single, isolated lepton associated with a moderate p_T^{miss}, and the vector boson can therefore be reconstructed by imposing a constraint from the W boson mass to recover the longitudinal momentum of the neutrino. In $Z \rightarrow ℓℓ$ decays, two opposite-sign, same-flavor leptons with a combined invariant mass compatible with the Z boson mass are used to determine accurately the Z boson four-momentum. A Higgs boson decaying to $τ$ leptons is identified from dedicated $τ$ decay reconstruction and isolation techniques [8], and its mass is estimated through the measured momenta of the visible decay products of the $τ$ leptons and the p_T^{miss}, with the SVFIT algorithm [72]. The bosons that decay to a pair of quarks are reconstructed as AK8 jets.

In the semi-leptonic analyses, the main V+jets background is estimated from a fit to data in the m_j sidebands of the hadronic jet, and extrapolated to the signal region using a transfer function ("α function") obtained from simulation. The top quark pair production is estimated from simulation, but its normalization is rescaled to match the data in control regions obtained by requiring an additional b-tagged AK4 jet in the event [2, 7, 8].

In addition, the WV → ℓνqq analysis introduces a novel signal extraction method based on a two-dimensional (2D) fit to data [3]. The backgrounds are separated into non-resonant and resonant categories depending on the presence or absence of W bosons and top quarks in the jet mass spectrum, and are fitted simultaneously in the space of m_j and m_{WV}, accounting for the correlation between the two variables.

4.3 Fully leptonic diboson channels

Searches for diboson resonances decaying to a pair of Z bosons have been performed in fully leptonic final states, with one boson undergoing the decay $Z \rightarrow ℓℓ$ and the other $Z \rightarrow νν$ [5]. The presence of the leptons and neutrinos defines a very clean final state with reduced backgrounds, but the small branching fraction makes this channel competitive only for small resonant mass values.

4.4 Decays to a pair of fermions

The decay of a heavy resonance to a pair of fermions can be sizable when the couplings to SM fermions are large. If the resonance is electrically charged, as in the case of $W'^±$, the decay to a neutrino and an electron or muon yields a broad excess in the $ℓν$ transverse mass spectrum [19]. If the new state is neutral, as in the case of Z', a narrow resonance would emerge from the dielectron or dimuon ($ℓℓ$) invariant mass spectra [20]. The analyses of these fermionic decays extend to masses above 5 TeV, and employ selection techniques optimized to identify and measure very energetic electrons and muons in the detector [19, 20].
5 Event selection

The search regions of the analyses entering in the combination are statistically independent because of mutually exclusive selections on the number of leptons and their flavor, number of AK8 jets, and jet mass intervals. Analyses with hadronic final states reject events with isolated leptons or with large p_T^{miss}. Overlaps between channels that share the same lepton multiplicity are avoided by selecting different jet mass ranges. The $W' \rightarrow \ell \nu$ search does not share any events with the $W' \rightarrow VW$ and $W' \rightarrow WH$ analyses because of the requirements on the angular separation $\Delta \phi(\ell, p_T^{\text{miss}})$ between the p_T^{miss} and the lepton direction. The $Z' \rightarrow \ell \ell$ analysis includes events with a dilepton invariant mass $m_{\ell \ell} > 120 \text{ GeV}$, which is incompatible with the $70 < m_{\ell \ell} < 110 \text{ GeV}$ selection used in the diboson channels, in which the Z boson is on-shell. The two searches for resonant HH bosons that decay to b quarks have common events explicitly removed \[10\].

In the $WV \rightarrow \ell\nuq\bar{q}$ channel \[3\] the background is estimated using a 2D fitting technique that scans the full jet mass range, and is therefore not independent of the $WH \rightarrow \ell\nu b\bar{b}$ channel. For this reason, in the W', Z', and V' interpretations, where the two signals might be present simultaneously, the “α function” is used to estimate the background instead. This method considers only events in the m_j regions of the W and Z bosons, thereby preventing double counting of events in the Higgs boson mass region. The results of the alternative background estimation method are consistent with those obtained in the 2D fit, but the method is about 10% less sensitive. The main selections that define the exclusivity of the analyses are summarized in Table 1.

Table 1: Summary of the main selection that guarantee the exclusivity between individual final states. The symbol ℓ represents an electron or a muon; τ leptons are considered separately. The AK4 b jets are additional b tagged AK4 jets that do not geometrically overlap with AK8 jets. The symbol “—” implies that no selection is applied.

Ref.	Channel	Final state	ℓ	τ_h	AK8 jets	AK8 jet mass	AK4 b jets
1	WW, WZ, ZZ	$q\bar{q}q\bar{q}$	veto	—	2	$[m_W, m_Z]$	—
2	WZ, ZZ	$\nu\nu q\bar{q}$	veto	veto	1	m_V	veto
3	WW, WZ	$\ell\nu q\bar{q}$	1	—	1	m_j shape/$[m_W, m_Z]$	veto
4	WZ, ZZ	$\ell\ell q\bar{q}$	2	—	1	m_V	—
5	ZZ	$\ell\ell\nu\nu$	2	—	—	—	—
6	WH, ZH	$q\bar{q}b\bar{b}$	veto	veto	2	$[m_W, m_Z, m_H]$	—
7	ZH	$\nu\nu b\bar{b}$	0	veto	1	m_H	veto
7	ZH	$\ell\ell b\bar{b}$	2	veto	1	m_H	—
8	WH, ZH	$q\bar{q}\tau\tau$	—	2	1	$[m_W, m_Z]$	veto
9	HH	$\tau\tau b\bar{b}$	—	—	2	m_H	—
10	HH	$b\bar{b}b\bar{b}$	—	—	1	m_H	2
19	$\ell\nu$	1	—	—	—	—	—
20	$\ell\ell$	2	—	—	—	—	—

6 Systematic uncertainties

The systematic uncertainties originating from the background estimation in the individual channels are considered uncorrelated, because the backgrounds are determined from statis-
tically independent control regions. The uncertainties arising from the reconstruction and calibration are instead correlated among the different channels. These include the uncertainties in jet energy and resolution, and in the e, μ, and τ lepton energy, reconstruction, and identification. The uncertainties in the identification of the SM bosons that decay to quarks are dominant in final states containing at least one such decay, and originate from the m_j scale and resolution, the τ_{21} selection and its extrapolation at large jet p_T, and the b tagging. These uncertainties affect the signal distribution, selection efficiency, and induce event migration effects between search regions. The uncertainty covering the selection of events in the jet mass window of the Higgs boson is also included. The uncertainties in the proton-proton inelastic cross section [73], the integrated luminosity during the 2016 data-taking [74] and the kinematic acceptance of final-state particles, which affect the signal normalization, are also considered as correlated among channels. Theoretical uncertainties in the cross section and in the signal geometric acceptance related to the choice of PDFs used in the event generators [75], and the uncertainties in the factorization and renormalization scales, are evaluated according to the PDF4LHC recommendations [73]. The impact of these uncertainties on the signal cross section can be as large as 78%, depending on the signal mass and the initial state ($q\bar{q}$ or gg). A summary of the main systematic uncertainties is given in Table 2.

7 Statistical combination

No significant excess is observed above the SM background expectations. Upper limits are set at 95% confidence level (CL) [76, 77] on the cross section of a heavy resonance, which is rescaled by a signal strength modifier parameter μ with uniform prior. Systematic uncertainties are represented by nuisance parameters θ_j and affect both signal and background expectations [78]. Systematic uncertainties are considered fully (anti-)correlated when related to a common nuisance parameter, or uncorrelated when different nuisance parameters are used. The prior on these parameters is either flat (represented by the symbol “f” in Table 2) or lognormal distributed (identified with “s”, “b”, “t” in Table 2). The statistical procedure is based on a likelihood constructed as:

$$ L(\text{data}|\mu, \theta) = \prod_c \prod_i P(\text{data}|\mu s_{c,i}(\theta) + b_{c,i}(\theta)) \prod_j p_j(\hat{\theta}_j|\theta_j), $$

where P represents the Poisson probability, and $p_j(\hat{\theta}_j|\theta_j)$ is the frequentist pdf of the nuisance parameter θ_j and its default value $\tilde{\theta}_j$ associated with the jth uncertainty. The values $s_{c,i}(\theta)$ and $b_{c,i}(\theta)$ represent the number of signal and background events in the channel c and bin i, respectively. The test statistic is based on the profile likelihood ratio q:

$$ q(\mu) = -2 \log \frac{L(\text{data}|\mu, \hat{\theta}_\mu)}{L(\text{data}|\hat{\mu}, \hat{\theta}_\mu)}, $$

and the quantities $\hat{\mu}, \hat{\theta}_\mu, \hat{\theta}_\mu$ are fixed to their best-fit value, and the range of μ is limited in the $0 \leq \hat{\mu} \leq \mu$ interval. The uncertainties that affect the signal normalization (PDFs and factorization and renormalization scales, marked with “t” in Table 2) are treated differently depending on how the exclusion is presented. When deriving upper limits on the cross section, these uncertainties are not varied in the fit, but are reported separately as the uncertainty of the theoretical cross sections from the model. When placing limits on the model parameters, these nuisance parameters are fixed at the best-fit values, in the same manner as to the other systematic uncertainties.
Table 2: Summary of the main systematic uncertainties. The second column reports whether a systematic uncertainty is considered fully correlated or not across different channels. The third column indicates whether the uncertainty affects the yield, the shape of the distributions, or both, or if it induces migration (migr.) effects across search regions. The fourth column reports the smallest and largest effect of the uncertainty in either the yield or the signal shape parameters. The symbols “s”, “b” indicate that the uncertainty affects the signal, the main backgrounds of the analysis, respectively. The treatment of non-dominant backgrounds is often different and not reported here. The symbol “f” indicates that the parameters are not constrained, or associated with large uncertainties as in the case of multi-dimensional fits. The entries labeled with “t” are treated differently depending on the interpretation of the exclusion limit, as discussed in Section 7. Uncertainties marked with “—” are not applicable or are negligible.

Uncertainty	Correlation	Type	Variation
Bkg. modeling	no	shape	—
Bkg. normalization	no	yield	2–30%
Jet energy scale	yes	yield	1–2%
Jet energy resolution	yes	yield	3–7%
Jet mass scale	yes	yield	1–36%
Jet mass resolution	yes	yield	5–25%
Jet triggers	yes	yield	1–15%
e, µ id., iso., trigger	yes	yield	1–3%
e, µ scale and res.	yes	yield	1–6%
τ^h reco., id., iso.	yes	yield	6–13%
τ^h energy scale	yes	yield	1–5%
τ^h high-p_T extr.	yes	yield	18–30%
p_T^miss scale and res.	yes	yield	1–2%
p_T^miss triggers	yes	yield	1–2%
b quark identification	yes	yield	1–9%
τ^21 identification	yes	yield	11–33%
τ^21 high-p_T extr.	yes	yield	2–40%
m_{H} selection	yes	yield	6%
Pileup	yes	yield	1–2%
Luminosity	yes	yield	2.5%
PDF and QCD accept.	yes	yield	1–2%
PDF and QCD norm.	yes	yield	2–78%

The upper limit on µ is derived from the 95% CL_s criterion, defined as CL_s(μ) = p(μ) / (1 − p(0)), such that CL_s(μ) = 0.05. The quantities p(μ) and 1 − p(0) represent the probabilities to have a value of ˜q equal to, or larger than the observed value in the signal or background (µ = 0) hypotheses, respectively, and are derived from analytical functions using the asymptotic approximation [79]. This approximation leads to limits that are up to 30% stronger in regions with a small number of data events, compared to those obtained from the Monte Carlo generation of pseudo-experiments [78].

8 Results and interpretation

The data are in agreement with the expected background from SM processes. The largest deviation from the expected limit is observed in the V' model A at a mass of 1.3 TeV, with a local significance of 2.7 standard deviations, corresponding to a global significance of 1.6 standard
deviations. The local significances are obtained in the asymptotic approximation [79], and the global significances are evaluated using the trial factors method [80].

The exclusion limit on the cross section of each diboson channel (WW, WZ, ZZ, WH, ZH, HH) is depicted in Fig. 1 for the combination of all contributing channels, reported in Table 1, according to the spin of the new resonance. The generated signal can be either a spin-1 heavy vector (W' or Z') as in the HVT model or a spin-2 boson (as in the bulk graviton model). In fact, the spin and polarization of the heavy resonance does affect the final state, signal acceptance, and selection efficiencies. The exclusion limits are not presented above 4.5 TeV, since at larger masses the background estimation procedure used in diboson analyses becomes less reliable because of the lack of events in data.

![Figure 1: Observed and expected 95% CL upper limits on the product of the cross section and branching fraction of a spin-1 (left) or spin-2 resonance (right) decaying to a pair of SM bosons.](image)

The combined exclusion limits for the spin-1 singlet hypotheses (W' or Z') in the HVT model B framework, where the branching fractions to SM bosons are dominant, are shown in Fig. 2. In this scenario, the contribution of the dilepton channels is negligible because their branching fraction is of the order of a few permil. The contribution from VH decays to VV channels, caused by an underestimation of m_{ρ}, is also considered. The predictions of the HVT model B are superimposed on the exclusion limits, showing that a W' boson of mass below 4.3 TeV, and a Z' boson with mass below 3.7 TeV are excluded at 95% CL.

The HVT hypothesis is tested in Fig. 3 by combining all diboson channels, showing that a mass-degenerate state with mass below 4.5 TeV can be excluded in HVT model B, and extending the exclusion with respect to the best individual channel by approximately 700 GeV [1]. This result significantly improves the previous $\sqrt{s} = 8$ and 13 TeV CMS combination [51], which excluded a triplet of heavy resonances with masses up to 2.4 TeV in the same model. The dilepton resonances provide the most stringent results within the HVT model A framework, and are combined with the diboson searches in Fig. 3. A heavy triplet of V' resonances is excluded up to a mass of 5.0 TeV.

The exclusion limits on the resonance cross sections shown in Fig. 3 are also interpreted as limits in the $[g_H, g_t]$ plane of the HVT parameters. The excluded region of parameter space for narrow resonances obtained from the combination of all the channels is shown in Fig. 4. The dilepton and diboson searches constrain different regions of the parameter space, as the dilepton searches can probe the region where the coupling to the SM bosons approaches zero. In the triplet interpretation, the ratio of the W' to Z' cross sections is assumed to be determined by the ratio of the partonic luminosities, and to depend only weakly on the model parameters. The fraction of the parameter space where the natural width of the resonances is larger than the

![Figure 4: Observed and expected 95% CL upper limits on the product of the cross section and branching fraction of a spin-1 or spin-2 resonances decaying to a pair of SM bosons.](image)
Combination of the VV and VH channels considered. The expected limits in individual channels are represented by the colored dashed lines. The solid curves surrounded by the shaded areas show the cross sections predicted by the HVT model B and their uncertainties.

average experimental resolution of 5%, and the narrow-width approximation is thus invalid, is also indicated in Fig. 4.

In the spin-2 bulk graviton model, the WW, ZZ, and HH channels are combined, setting upper limits of up to 1.1 fb on the cross section of a graviton with mass up to 4.5 TeV. In the $k = 0.5$ scenario, a graviton with a mass smaller than 850 GeV is excluded at 95% CL, as shown in Fig. 5. Larger k values increase the production cross sections, but also the graviton natural width, which can be comparable or larger than the experimental resolution. In these cases, the narrow-width approximation is no longer valid.

These results represent the most stringent limits on heavy vector models set by CMS and are comparable at large V' mass to the limits obtained the ATLAS in the combination of similar channels [45]. At lower masses, the ATLAS combination excludes smaller cross sections be-
cause of the inclusion of final states with three or more leptons. The exclusion limits in the bulk graviton model are not directly comparable because of the large $\tilde{\kappa} = 1.0$ parameter adopted by ATLAS, which increases the cross section but also implies a non-negligible natural width.

Figure 4: Observed exclusion limits on the couplings of heavy vector resonances to fermions and SM vector bosons and the Higgs boson for the statistical combination (solid lines) of the dilepton (dotted lines) and diboson channels (dashed lines). Three resonance masses hypotheses (3.0, 4.0, and 4.5 TeV) are considered. The hatched bands indicate the regions excluded. The areas bounded by the thin gray contour lines correspond to regions where the resonance widths ($\Gamma_{V'}$) are predicted to be larger than the average experimental resolution (5%).

Figure 5: Observed and expected 95% CL upper limit on the cross section of the spin-2 bulk graviton as a function of its mass for the statistical combination of the WW, ZZ, and HH channels. The inner green and outer yellow bands represent the ±1 and ±2 standard deviation variations on the expected limit. The solid curve and its shaded area represent the cross section derived with the parameter $\bar{\kappa} = 0.5$ and the associated uncertainty.
9 Summary

A statistical combination of searches for heavy resonances decaying into pairs of vector bosons, a vector boson and a Higgs boson, two Higgs bosons, or pairs of leptons, has been presented. The results are based on data collected by the CMS experiment at $\sqrt{s} = 13$ TeV during 2016 corresponding to an integrated luminosity of 35.9 fb$^{-1}$. In models with warped extra dimensions, upper limits of up to 1.1 fb are set at 95% confidence level on the production cross section of the spin-2 bulk graviton. For models with a triplet of narrow spin-1 resonances, heavy vector bosons with masses below 5.0 and 4.5 TeV are excluded at 95% confidence level in models where the W' and Z' bosons couple predominantly to fermions and bosons, respectively. In the latter, the statistical combination extends the exclusion limit by 700 GeV as compared to the best individual channel.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COELCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MIBE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z181100004218003; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428,
Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Education, grant no. 3.2989.2017 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

[1] CMS Collaboration, “Search for massive resonances decaying into WW, WZ, ZZ, qW, and qZ with dijet final states at √s = 13 TeV”, Phys. Rev. D 97 (2018) 072006, doi:10.1103/PhysRevD.97.072006, arXiv:1708.05379

[2] CMS Collaboration, “Search for a heavy resonance decaying into a Z boson and a vector boson in the τνq̅q̅ final state”, JHEP 07 (2018) 075, doi:10.1007/JHEP07(2018)075, arXiv:1803.03838

[3] CMS Collaboration, “Search for a heavy resonance decaying to a pair of vector bosons in the lepton plus merged jet final state at √s = 13 TeV”, JHEP 05 (2018) 088, doi:10.1007/JHEP05(2018)088, arXiv:1802.09407

[4] CMS Collaboration, “Search for a heavy resonance decaying into a Z boson and a Z or W boson in 2ℓ2q final states at √s = 13 TeV”, JHEP 09 (2018) 101, doi:10.1007/JHEP09(2018)101, arXiv:1803.10093

[5] CMS Collaboration, “Search for ZZ resonances in the 2ℓ2ν final state in proton-proton collisions at 13 TeV”, JHEP 03 (2018) 003, doi:10.1007/JHEP03(2018)003, arXiv:1711.04370

[6] CMS Collaboration, “Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at √s = 13 TeV”, Eur. Phys. J. C 77 (2017) 636, doi:10.1140/epjc/s10052-017-5192-z, arXiv:1707.01303

[7] CMS Collaboration, “Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos and b quarks at √s = 13 TeV”, JHEP 11 (2018) 172, doi:10.1007/JHEP11(2018)172, arXiv:1807.02826

[8] CMS Collaboration, “Search for heavy resonances decaying into two Higgs bosons or into a Higgs boson and a W or Z boson in proton-proton collisions at 13 TeV”, JHEP 01 (2019) 051, doi:10.1007/JHEP01(2019)051, arXiv:1808.01365

[9] CMS Collaboration, “Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at √s = 13 TeV”, Phys. Lett. B 781 (2018) 244, doi:10.1016/j.physletb.2018.03.084, arXiv:1710.04960

[10] CMS Collaboration, “Search for production of Higgs boson pairs in the four b quark final state using large-area jets in proton-proton collisions at √s = 13 TeV”, JHEP 01 (2019) 040, doi:10.1007/JHEP01(2019)040, arXiv:1808.01473
[11] ATLAS Collaboration, “Search for diboson resonances with boson-tagged jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, Phys. Lett. B 777 (2018) 91, doi:10.1016/j.physletb.2017.12.011 arXiv:1708.04445

[12] ATLAS Collaboration, “Search for WW/WZ resonance production in $\ell v q q$ final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, JHEP 03 (2018) 042, doi:10.1007/JHEP03(2018)042 arXiv:1710.07235

[13] ATLAS Collaboration, “Searches for heavy ZZ and ZW resonances in the $\ell\ell q q$ and $\nu\nu q q$ final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, JHEP 03 (2018) 009, doi:10.1007/JHEP03(2018)009 arXiv:1708.09638

[14] ATLAS Collaboration, “Search for heavy resonances decaying into WW in the $e\nu\mu\nu$ final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, Eur. Phys. J. C 78 (2018) 24, doi:10.1140/epjc/s10052-017-5491-4 arXiv:1710.01123

[15] ATLAS Collaboration, “Search for resonant WZ production in the fully leptonic final state in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, Phys. Lett. B 787 (2018) 68, doi:10.1016/j.physletb.2018.10.021 arXiv:1806.01532

[16] ATLAS Collaboration, “Search for heavy ZZ resonances in the $\ell^+\ell^-\ell^+\ell^-$ and $\ell^+\ell^-\nu\bar{\nu}$ final states using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, Eur. Phys. J. C 78 (2018) 293, doi:10.1140/epjc/s10052-018-5686-3 arXiv:1712.06385

[17] ATLAS Collaboration, “Search for heavy resonances decaying to a W or Z boson and a Higgs boson in the $q\bar{q}(t)bb$ final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, Phys. Lett. B 774 (2017) 494, doi:10.1016/j.physletb.2017.09.066 arXiv:1707.06958

[18] ATLAS Collaboration, “Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb$^{-1}$ of $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector”, JHEP 03 (2018) 174, doi:10.1007/JHEP03(2018)174 arXiv:1712.06518

[19] CMS Collaboration, “Search for high-mass resonances in final states with a lepton and missing transverse momentum at $\sqrt{s} = 13$ TeV”, JHEP 06 (2018) 128, doi:10.1007/JHEP06(2018)128 arXiv:1803.11133

[20] CMS Collaboration, “Search for high-mass resonances in dilepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JHEP 06 (2018) 120, doi:10.1007/JHEP06(2018)120 arXiv:1803.06292

[21] ATLAS Collaboration, “Search for a new heavy gauge boson resonance decaying into a lepton and missing transverse momentum in 36 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment”, Eur. Phys. J. C 78 (2018) 401, doi:10.1140/epjc/s10052-018-5877-y arXiv:1706.04786

[22] ATLAS Collaboration, “Search for new high-mass phenomena in the dilepton final state using 36 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector”, JHEP 10 (2017) 182, doi:10.1007/JHEP10(2017)182 arXiv:1707.02424
[23] CMS Collaboration, “Search for narrow and broad dijet resonances in proton-proton collisions at $\sqrt{s} = 13$ TeV and constraints on dark matter mediators and other new particles”, *JHEP* **08** (2018) 130, [doi:10.1007/JHEP08(2018)130](https://doi.org/10.1007/JHEP08(2018)130), arXiv:1806.00843

[24] ATLAS Collaboration, “Search for new phenomena in dijet events using 37 fb$^{-1}$ of pp collision data collected at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *Phys. Rev. D* **96** (2017) 052004, [doi:10.1103/PhysRevD.96.052004](https://doi.org/10.1103/PhysRevD.96.052004), arXiv:1703.09127.

[25] CMS Collaboration, “Search for resonant $t\bar{t}$ production in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* **04** (2019) 031, [doi:10.1007/JHEP04(2019)031](https://doi.org/10.1007/JHEP04(2019)031), arXiv:1810.05905.

[26] CMS Collaboration, “Search for resonant $t\bar{t}$ production in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* **04** (2019) 031, [doi:10.1007/JHEP04(2019)031](https://doi.org/10.1007/JHEP04(2019)031), arXiv:1810.05905.

[27] ATLAS Collaboration, “Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton-proton collisions at 13 TeV”, *Phys. Lett. B* **777** (2018) 39, [doi:10.1016/j.physletb.2017.12.006](https://doi.org/10.1016/j.physletb.2017.12.006), arXiv:1708.08539.

[28] ATLAS Collaboration, “Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *Eur. Phys. J. C* **78** (2018) 565, [doi:10.1140/epjc/s10052-018-5995-6](https://doi.org/10.1140/epjc/s10052-018-5995-6), arXiv:1804.10823.

[29] ATLAS Collaboration, “Search for $W' \rightarrow tb$ decays in the hadronic final state using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *Phys. Lett. B* **781** (2018) 327, [doi:10.1016/j.physletb.2018.03.036](https://doi.org/10.1016/j.physletb.2018.03.036), arXiv:1801.07893.

[30] C. Grojean, E. Salvioni, and R. Torre, “A weakly constrained W' at the early LHC”, *JHEP* **07** (2011) 002, [doi:10.1007/JHEP07(2011)002](https://doi.org/10.1007/JHEP07(2011)002), arXiv:1103.2761.

[31] V. D. Barger, W.-Y. Keung, and E. Ma, “A gauge model with light W and Z bosons”, *Phys. Rev. D* **22** (1980) 727, [doi:10.1103/PhysRevD.22.727](https://doi.org/10.1103/PhysRevD.22.727).

[32] E. Salvioni, G. Villadoro, and F. Zwirner, “Minimal Z' models: present bounds and early LHC reach”, *JHEP* **09** (2009) 068, [doi:10.1088/1126-6708/2009/11/068](https://doi.org/10.1088/1126-6708/2009/11/068), arXiv:0909.1320.

[33] R. Contino, D. Pappadopulo, D. Marzocca, and R. Rattazzi, “On the effect of resonances in composite Higgs phenomenology”, *JHEP* **10** (2011) 081, [doi:10.1007/JHEP10(2011)081](https://doi.org/10.1007/JHEP10(2011)081), arXiv:1109.1570.

[34] D. Marzocca, M. Serone, and J. Shu, “General composite Higgs models”, *JHEP* **08** (2012) 13, [doi:10.1007/JHEP08(2012)013](https://doi.org/10.1007/JHEP08(2012)013), arXiv:1205.0770.

[35] B. Bellazzini, C. Csaki, and J. Serra, “Composite Higgses”, *Eur. Phys. J. C* **74** (2014) 2766, [doi:10.1140/epjc/s10052-014-2766-x](https://doi.org/10.1140/epjc/s10052-014-2766-x), arXiv:1401.2457.

[36] K. Lane and L. Pritchett, “The light composite Higgs boson in strong extended technicolor”, *JHEP* **06** (2017) 140, [doi:10.1007/JHEP06(2017)140](https://doi.org/10.1007/JHEP06(2017)140), arXiv:1604.07085.
[37] T. Han, H. E. Logan, B. McElrath, and L.-T. Wang, “Phenomenology of the little Higgs model”, *Phys. Rev. D* 67 (2003) 095004, [arXiv:hep-ph/0301040](https://arxiv.org/abs/hep-ph/0301040).

[38] M. Schmaltz and D. Tucker-Smith, “Little Higgs theories”, *Ann. Rev. Nucl. Part. Sci.* 55 (2005) 229, [arXiv:hep-ph/0502182](https://arxiv.org/abs/hep-ph/0502182).

[39] M. Perelstein, “Little Higgs models and their phenomenology”, *Prog. Part. Nucl. Phys.* 58 (2007) 247, [arXiv:hep-ph/0512128](https://arxiv.org/abs/hep-ph/0512128).

[40] L. Randall and R. Sundrum, “A large mass hierarchy from a small extra dimension”, *Phys. Rev. Lett.* 83 (1999) 3370, [arXiv:hep-th/9906064](https://arxiv.org/abs/hep-th/9906064).

[41] ATLAS Collaboration, “Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb^{-1} of proton-proton collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *Phys. Rev. D* 98 (2018) 052008, [arXiv:1808.02380](https://arxiv.org/abs/1808.02380).

[42] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, *JINST* 3 (2008) S08004, [arXiv:1706.04965](https://arxiv.org/abs/1706.04965).

[43] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JINST* 10 (2015) P06005, [arXiv:1502.02701](https://arxiv.org/abs/1502.02701).

[44] CMS Collaboration, “Reconstruction and identification of τ lepton decays to hadrons and ν_τ at CMS”, *JINST* 11 (2016) P01019, [arXiv:1510.07488](https://arxiv.org/abs/1510.07488).

[45] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, *JHEP* 04 (2008) 063, [arXiv:0802.1189](https://arxiv.org/abs/0802.1189).
[52] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[53] M. Cacciari, G. P. Salam, and G. Soyez, “The catchment area of jets”, JHEP 04 (2008) 005, doi:10.1088/1126-6708/2008/04/005, arXiv:0802.1188.

[54] CMS Collaboration, “Pileup removal algorithms”, CMS Physics Analysis Summary CMS-PAS-JME-14-001, CERN, 2014.

[55] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.

[56] CMS Collaboration, “Performance of missing transverse momentum in pp collisions at sqrt(s)=13 TeV using the CMS detector”, CMS Physics Analysis Summary CMS-PAS-JME-17-001, CERN, 2018.

[57] D. Bertolini, P. Harris, M. Low, and N. Tran, “Pileup per particle identification”, JHEP 10 (2014) 59, doi:10.1007/JHEP10(2014)059, arXiv:1407.6013.

[58] M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, “Towards an understanding of jet substructure”, JHEP 09 (2013) 029, doi:10.1007/JHEP09(2013)029, arXiv:1307.0007.

[59] A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, “Soft drop”, JHEP 05 (2014) 146, doi:10.1007/JHEP05(2014)146, arXiv:1402.2657.

[60] CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, CERN, 2017.

[61] J. Thaler and K. Van Tilburg, “Identifying boosted objects with N-subjettiness”, JHEP 03 (2011) 015, doi:10.1007/JHEP03(2011)015, arXiv:1011.2268.

[62] CMS Collaboration, “Identification techniques for highly boosted W bosons that decay into hadrons”, JHEP 12 (2014) 017, doi:10.1007/JHEP12(2014)017, arXiv:1410.4227.

[63] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2018) P05011, doi:10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.

[64] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[65] J. de Blas, J. M. Lizana, and M. Perez-Victoria, “Combining searches of Z’ and W’ bosons”, JHEP 01 (2013) 166, doi:10.1007/JHEP01(2013)166, arXiv:1211.2229.

[66] D. Pappadopulo, A. Thamm, R. Torre, and A. Wulzer, “Heavy vector triplets: bridging theory and data”, JHEP 09 (2014) 60, doi:10.1007/JHEP09(2014)060, arXiv:1402.4431.

[67] W. D. Goldberger and M. B. Wise, “Modulus stabilization with bulk fields”, Phys. Rev. Lett. 83 (1999) 4922, doi:10.1103/PhysRevLett.83.4922, arXiv:hep-ph/9907447.
[68] NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849

[69] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012

[70] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, doi:10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569

[71] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8

[72] L. Bianchini et al., “Reconstruction of the Higgs mass in events with Higgs bosons decaying into a pair of τ leptons using matrix element techniques”, Nucl. Instrum. Meth. A 862 (2017) 54, doi:10.1016/j.nima.2017.05.001, arXiv:1603.05910

[73] CMS Collaboration, “Measurement of the inelastic proton-proton cross section at $\sqrt{s} = 13$ TeV”, JHEP 07 (2018) 161, doi:10.1007/JHEP07(2018)161, arXiv:1802.02613

[74] CMS Collaboration, “CMS luminosity measurement for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, CERN, 2017.

[75] J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, J. Phys. G 43 (2016) 23001, doi:10.1088/0954-3899/43/2/023001, arXiv:1510.03865

[76] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[77] A. L. Read, “Presentation of search results: the CL_s technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313

[78] CMS and ATLAS Collaborations, “Procedure for the LHC Higgs boson search combination in Summer 2011”, CMS Note CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, CERN, 2011.

[79] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727 [Erratum: doi:10.1140/epjc/s10052-013-2501-2].

[80] E. Gross and O. Vitells, “Trial factors for the look elsewhere effect in high energy physics”, Eur. Phys. J. C 70 (2010) 525, doi:10.1140/epjc/s10052-010-1470-8, arXiv:1005.1891

[81] CMS Collaboration, “Combination of searches for heavy resonances decaying to WW, WZ, ZZ, WH, and ZH boson pairs in proton-proton collisions at $\sqrt{s} = 8$ and 13 TeV”, Phys. Lett. B 774 (2017) 533, doi:10.1016/j.physletb.2017.09.083, arXiv:1705.09171.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambroggi, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Er, A. Escalante Del Valle, M. Flechl, R. Frühwirth, M. Jeitler, N. Krammer, I. Krschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, J. Schieck, R. Schö beck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Drugakov, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, A. Lelek, M. Pieters, H. Rejeb Sfar, H. Van Haevermaet, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D’Hondt, J. De Clercq, D. Lontkovskyij, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart, A. Grebenyuk, A.K. Kalsi, J. Luetic, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, Q. Wang

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, I. Khvastunov, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Varmassen, M. Vit, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
O. Bondu, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco, G. Krintiras, V. Lemaître, A. Magiterti, K. Piotrzkowski, J. Prisciandaro, A. Saggio, M. Vidal Marono, P. Vischia, J. Zobec

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
F.L. Alves, G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, J. Martins, D. Matos Figueiredo, M. Medina Jaime, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, So Paulo, Brazil
S. Ahuja, C.A. Bernandes a, L. Calligaris a, T.R. Fernandez Perez Tomei a, E.M. Gregores b, D.S. Lemos, P.G. Mercadante b, S.F. Novaes a, Sandra S. Padula a

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia,
Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang\(^7\), X. Gao\(^7\), L. Yuan

Institute of High Energy Physics, Beijing, China
M. Ahmad, G.M. Chen, H.S. Chen, M. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, S.M. Shaheen\(^8\), A. Spiezia, J. Tao, E. Yazgan, H. Zhang, S. Zhang\(^8\), J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang

Tsinghua University, Beijing, China
Z. Hu, Y. Wang

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. Gonzalez Hernandez, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanović, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Ceci, D. Ferencek, K. Kadija, B. Mesic, M. Roguljic, A. Starodumov\(^9\), T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger\(^10\), M. Finger Jr.\(^10\), A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran\(^11,12\), S. Elgammal\(^12\)

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, J. Pekkanen, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland
F. Garcia, J. Havukainen, J.K. Heikkil, T. Jrvinen, V. Karimki, R. Kinnunen, T. Lampn, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindn, P. Luukka, T. Menp, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

IRFU, CEA, Universit Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.. Sahin, A. Savoy-Navarro, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universit Paris-Saclay, Palaiseau, France
C. Amendola, F. Beaudette, P. Busson, C. Charlot, B. Diab, R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche

Universit de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte, J.-C. Fontaine, D. Gel, U. Goerlach, M. Jansov, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Universit de Lyon, Universit Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nuclaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, C. Camen, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, F. Lagarde, I.B. Laktineh, H. Lattaun, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
T. Toriaishvili

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, M. Erdmann, S. Erdweg, T. Esch, B. Fischer, R. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook, A. Pozdnyakov, T. Quast, M. Radziej, Y. Rath, H. Reithler, M. Rieger, A. Schmidt, S.C. Schuler, A. Sharma, S. Ther, S. Wiedenbeck

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Fligge, W. Haj Ahmad, O. Hlushchenko, T. Kress, T. Miller, A. Nehrkor, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, D. Teyssier, Z.L. Trocsanyi, B. Ujvari

Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary
T.F. Csorgo, W.J. Metzger, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati, C. Kar, P. Mal, V.K. Muraleedharan Nair Bindhu, A. Nayak, S. Roy Chowdhury, D.K. Sahoo, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari, M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi, G. Walia

University of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, M. Bharti, R. Bhattacharya, S. Bhattacharya, U. Bhawandep, D. Bhowmik, S. Dey, S. Dutta, S. Ghosh, M. Maity, K. Mondal, S. Nandan, A. Purohit, P.K. Rout, A. Roy, G. Saha, S. Sarkar, T. Sarkar, M. Sharan, B. Singh, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, P. Kalbhor, A. Muhammad, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, D.K. Mishra, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, RavindraKumar Verma

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, N. Sahoo, S. Sawant

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarami, E. Eskandari Tadavani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Universit di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, C. Calabria, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, A. Di Florio, L. Fiore, A. Gelmi, G. Iaselli, M. Ince, S. Lezki.
Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
Z.A. Ibrahim, F. Mohamad Idris, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, M.C. Duran-Osuna, I. Heredia-De La Cruz, R. Lopez-Fernandez, R.I. Rabadan-Trejo, G. Ramirez-Sanchez, R. Reyes-Almanza, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valeria

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autonoma de San Luis Potos, San Luis Potos, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, M. Grski, M. Kazana, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, J. Seixas, R. Strong, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voityshin, A. Zarubin
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chhipounov, V. Golovtsov, Y. Ivanov, V. Kim39, E. Kuznetsova40, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshtein, V. Gavrilo, N. Lychkovskaya, A. Nikitenko41, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov42, M. Danilov42, D. Philippov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin38, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin43, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
A. Barnyakov44, V. Blinov44, T. Dimova44, L. Kardapoltsev44, Y. Skovpen44

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshe, S. Bityukov, V. Kachanov, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Trosin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Izuhakov, V. Okhotnikov

Tomsk State University, Tomsk, Russia
V. Borchsh, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences
P. Adzic45, P. Cirkovic, D. Devetak, M. Dordevic, P. Milenovic46, J. Milosevic, M. Stojanovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Ivarez Fernández, I. Bachiller, M. Barrio Luna, J.A. Brochero Cifuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, C. Navarro Tobar, A. Prez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sanchez Navas, M.S. Soares, A. Triossi, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocni
Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. Gonzalez Fernández, E. Palencia Cortezon, V. Rodriguez Bouza, S. Sanchez Cruz

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernandez Manteca, A. Garcia Alonso, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
K. Malagalage

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, E. Bossini, C. Bottó, E. Brondolin, T. Camporesi, A. Caratelli, G. Cerminara, E. Chapon, G. Cucciati, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, N. Deelen, M. Deile, M. Dobson, M. Doner, N. Dupont, A. Elliott-Peisert, F. Fallavollita, D. Fasanella, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gill, F. Gloeckner, G. Graciani, E. Innocente, A. Jafari, P. Janot, O. Karacheban, J. Kaspar, J. Kieseler, M. Kramer, C. Lange, P. Lecoq, C. Loureno, L. Malgeri, M. Mannelli, A. Massironi, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba, S. Nourbakhsh, S. Orfaneli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Pietrilli, G. Petrascu, A. Pfeiffer, M. Pierini, F.M. Pitters, M. Quinto, D. Rabady, A. Racz, M. Rovere, H. Sakulin, C. Schfer, C. Schwick, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Sphicas, J. Steggemann, V.R. Tavolaro, D. Treille, A. Tsirou, A. Vartak, M. Verzetti, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Widerkehr

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, N. Chernyakovskaya, G. Dissertori, M. Dittmar, M. Doneg, C. Dorfer, T.A. Gmez Espinosa, C. Grab, D. Hits, T. Klijnsma, W. Luster, R.A. Lutz, M. Marionneau, M.T. Meinhard, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pauss, G. Perrin, L. Perrozzi, S. Pigazzini, M. Reichmann, C. Reissel, M. Salerno, K. Schweiger, C. Setz, Y. Takahashi, S. Wertz, A. Zucchetta

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, B. Kilminster, S. Leontsinis, V.M. Mikuni, I. Neutelings, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, S. Wertz, A. Zucchetta

National Central University, Chung-Li, Taiwan
T.H. Doan, C.M. Kuo, W. Lin, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.Y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen
Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

ukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Bat, F. Boran, S. Cerci\(^{51}\), S. Damarseckin\(^{52}\), Z.S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, G. Gokbulut, EmineGurpinar Guler\(^{53}\), Y. Guler, I. Hos\(^{54}\), C. Isik, E.E. Kangal\(^{55}\), O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Ogłakci, G. Onen, K. Ozturk, S. Ozturk\(^{57}\), A.E. Simsek, D. Sunar Cerci\(^{51}\), U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak\(^{58}\), G. Karapinar\(^{59}\), M. Yalvac

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Glmez, M. Kaya\(^{60}\), O. Kaya\(^{61}\), B. Kaynak, . zelik, S. Ozkorucuklu\(^{62}\), S. Tekten, E.A. Yetkin\(^{63}\)

Istanbul Technical University, Istanbul, Turkey
A. Cakir, Y. Komurcu, S. Sen\(^{64}\)

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
F. Ball, E. Bhal, S. Bologna, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, S. Paramesvaran, B. Penning, T. Sakuma, S. Seif El Nasr-Storey, D. Smith, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev\(^{65}\), C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, GurpreetSingh CHAHAL\(^{56}\), D. Colling, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, P. Everaerts, G. Hall, G. Iles, T. James, M. Komm, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, J. Nash\(^{67}\), V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, T. Strebler, S. Summers, A. Tapper, K. Uchida, T. Virdee\(^{17}\), N. Wardle, D. Winterbottom, J. Wright, A.G. Zecchinelli, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
K. Call, J. Dittmann, K. Hatakayama, C. Madrid, B. McMaster, N. Pastika, C. Smith

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West
Boston University, Boston, USA
D. Arcaro, T. Bose, Z. Demiragli, D. Gastler, S. Girgis, D. Pinna, C. Richardson, J. Rohlf, D. Sperka, I. Suarez, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubez, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, S. Sagir, R. Syarif, E. Usai, D. Yu

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breeden, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B.R. Yates, Y. Zhang

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, M. Derdzinski, R. Gerose, D. Gilbert, B. Hashemi, D. Klein, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Wrthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, C. Campagnari, M. Citron, V. Dutta, M. Franco Sevilla, L. Gouskos, J. Incandela, B. Marsh, H. Mei, A. Övcharova, H. Qu, J. Richman, U. Sarica, D. Stuart, S. Wang, J. Yoo

California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, J.M. Lawhorn, N. Lu, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, A. Johnson, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, A. Frankenthal, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grnendahl, O. Gutsche, AllisonReinsvold Hall,
J. Hanlon, R.M. Harris, S. Hasegawa, R. Heller, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, J. Lewis, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, V. Papadimitriou, K. Pedro, C. Pena, G. Rakness, F. Ravera, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Updegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, A. Carnes, V. Cherepanov, D. Curry, F. Errico, R.D. Field, S.V. Gleyzer, B.M. Joshi, M. Kim, J. Konigsberg, A. Korytov, K.H. Lo, P. Ma, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Wang, S. Wang, X. Zuo

Florida International University, Miami, USA
Y.R. Joshi

Florida State University, Tallahassee, USA
T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, T. Perry, H. Prosper, C. Schiber, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, M. Hohlmann, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, C. Mills, T. Roy, M.B. Tonjes, N. Varelas, H. Wang, X. Wang, Z. Wu

The University of Iowa, Iowa City, USA
M. Alhusseini, B. Bilki, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandraju, M. Haytmyradov, V. Khristenko, O.K. Kseyan, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel

Johns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, W.T. Hung, P. Maksimovic, J. Roskes, M. Swartz, M. Xiao

The University of Kansas, Lawrence, USA
C. Baldenegro Barrera, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, T. Isidori, S. Khalil, J. King, A. Kropivnitskaya, C. Lindsey, D. Majumder, W. Mcbrayer, N. Minafra, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, S. Nabil, F. Ricci-Tam, M. Seidel, Y.H. Shin, A. Skuja, S.C. Tonwar, K. Wong
Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, S. Guts, P. Hansen, J. Hiltbrand, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, R. Rusack, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA
C. Harrington, I. Iashvili, A. Kharchilava, C. Mclean, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, D.M. Morse, T. Orimoto, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, C. Mueller, Y. Musienko, M. Planer, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, C. Hill, W. Ji, A. Lefeld, T.Y. Ling, B.L. Winer

Princeton University, Princeton, USA
S. Cooperstein, G. Dezoort, P. Elmer, J. Hardenbrook, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Pirou, J. Salfeld-Nebgen, D. Stickland, C. Tully, Z. Wang

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, B. Mahakud, D.H. Miller, G. Negro, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar
Rice University, Houston, USA
K.M. Ecklund, S. Freed, F.J. Geurts, M. Kilpatrick, Arun Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, A.G. Stahl Leiton, Z. Tu, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Yt. Duh, J.L. Dulemba, C. Fallon, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, E. Ranken, P. Tan, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gallant, J. Heideman, G. Riley, S. Spanier

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, J. Heideman, G. Riley, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, S. Luo, D. Marley, R. Mueller, D. Overton, L. Perni, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, G. Cummings, R. Hirosky, M. Joyce, A. Ledovskoy, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, Z. Zaleski

University of Wisconsin - Madison, Madison, WI, USA
J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, I. De Bruyn, L. Dodd, B. Gomber, M. Herndon, A. Herv, U. Hussain, P. Klubbers, A. Lanaro, K. Long, R. Loveless, T. Ruggles, A. Savin, V. Sharma, W.H. Smith, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at IRFU, CEA, Universit Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at UFMS/CPNA Federal University of Mato Grosso do Sul/Campus of Nova Andradina, Nova Andradina, Brazil
6: Also at Universidade Federal de Pelotas, Pelotas, Brazil
7: Also at Université Libre de Bruxelles, Bruxelles, Belgium
8: Also at University of Chinese Academy of Sciences, Beijing, China
9: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
10: Also at Joint Institute for Nuclear Research, Dubna, Russia
11: Also at Suez University, Suez, Egypt
12: Now at British University in Egypt, Cairo, Egypt
13: Also at Purdue University, West Lafayette, USA
14: Also at Universit de Haute Alsace, Mulhouse, France
15: Also at Tbilisi State University, Tbilisi, Georgia
16: Also at Erzincan Binali Yildirim University, Erzincan, Turkey
17: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
19: Also at University of Hamburg, Hamburg, Germany
20: Also at Brandenburg University of Technology, Cottbus, Germany
21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
22: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
23: Also at MTA-ELTE Lendlet CMS Particle and Nuclear Physics Group, Etvs Lornd University, Budapest, Hungary
24: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
25: Also at Institute of Physics, Bhubaneswar, India
26: Also at Shoolini University, Solan, India
27: Also at University of Visva-Bharati, Santiniketan, India
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT, Bologna, Italy
30: Also at CENTRO SICILIANO DI FISICA NUCLEARE E DI STRUTTURA DELLA MATERIA, Catania, Italy
31: Also at Universit degli Studi di Siena, Siena, Italy
32: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
33: Also at Riga Technical University, Riga, Latvia
34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
35: Also at Consejo Nacional de Ciencia y Tecnologia, Mexico City, Mexico
36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
37: Also at Institute for Nuclear Research, Moscow, Russia
38: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
40: Also at University of Florida, Gainesville, USA
41: Also at Imperial College, London, United Kingdom
42: Also at P.N. Lebedev Physical Institute, Moscow, Russia
43: Also at California Institute of Technology, Pasadena, USA
44: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
45: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
46: Also at University of Belgrade, Belgrade, Serbia
47: Also at INFN Sezione di Pavia a, Universit di Pavia b, Pavia, Italy
48: Also at National and Kapodistrian University of Athens, Athens, Greece
49: Also at Universiti Zrich, Zurich, Switzerland
50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
51: Also at Adiyaman University, Adiyaman, Turkey
52: Also at Siam University, SIRNAK, Turkey
53: Also at Beykent University, Istanbul, Turkey
54: Also at Istanbul Aydin University, Istanbul, Turkey
55: Also at Mersin University, Mersin, Turkey
56: Also at Piri Reis University, Istanbul, Turkey
57: Also at Gaziosmanpasa University, Tokat, Turkey
58: Also at Ozyegin University, Istanbul, Turkey
59: Also at Izmir Institute of Technology, Izmir, Turkey
60: Also at Marmara University, Istanbul, Turkey
61: Also at Kafkas University, Kars, Turkey
62: Also at Istanbul University, Istanbul, Turkey
63: Also at Istanbul Bilgi University, Istanbul, Turkey
64: Also at Hacettepe University, Ankara, Turkey
65: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
66: Also at Institute for Particle Physics Phenomenology Durham University, Durham, United Kingdom
67: Also at Monash University, Faculty of Science, Clayton, Australia
68: Also at Bethel University, St. Paul, USA
69: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
70: Also at Bingol University, Bingol, Turkey
71: Also at Sinop University, Sinop, Turkey
72: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
73: Also at Texas A&M University at Qatar, Doha, Qatar
74: Also at Kyungpook National University, Daegu, Korea
75: Also at University of Hyderabad, Hyderabad, India