Tangent Spaces of Orbit Closures for Representations of Dynkin Quivers of Type \mathbb{D}

Grzegorz Bobiński1 · Grzegorz Zwara1

Abstract

Let \mathbb{k} be an algebraically closed field, Q a finite quiver, and denote by rep_d^Q the affine \mathbb{k}-scheme of representations of Q with a fixed dimension vector d. Given a representation M of Q with dimension vector d, the set O_M of points in \mathbb{k} isomorphic as representations to M is an orbit under an action on $\text{rep}_d^Q(\mathbb{k})$ of a product of general linear groups. The orbit O_M and its Zariski closure \overline{O}_M, considered as reduced subschemes of rep_d^Q, are contained in an affine scheme C_M defined by suitable rank conditions associated to M. For all Dynkin and extended Dynkin quivers, the sets of points of O_M and C_M coincide, or equivalently, O_M is the reduced scheme associated to C_M. Moreover, $O_M = C_M$ provided Q is a Dynkin quiver of type A, and this equality is a conjecture for the remaining Dynkin quivers (of type D and E). Let Q be a Dynkin quiver of type \mathbb{D} and M a finite dimensional representation of Q. We show that the equality $T_N O_M = T_N C_M$ of Zariski tangent spaces holds for any closed point N of \overline{O}_M. As a consequence, we describe the tangent spaces to \overline{O}_M in representation theoretic terms.

Keywords Representations of quivers · Orbit closures · Zariski tangent spaces

Mathematics Subject Classification (2010) Primary 14L30 · 16G20; Secondary 14B05

1 Introduction and the Main Results

Throughout the paper \mathbb{k} denotes an algebraically closed field of arbitrary characteristic. We will identify a \mathbb{k}-scheme \mathcal{X} with its functor of points, i.e. the functor from the
category of commutative \(k \)-algebras to the category of sets sending \(R \) to the set of morphisms \(\text{Spec}(R) \to X \). Let \(k[\varepsilon] \) denote the \(k \)-algebra of dual numbers and consider the map
\[
X(\pi) : X(k[\varepsilon]) \to X(k),
\]
where \(\pi : k[\varepsilon] \to k \) is the canonical surjective homomorphism. Given a \(k \)-rational point \(x \) of \(X \), i.e. \(x \in X(k) \), the fiber \(X(\pi)^{-1}(x) \) is the Zariski tangent space \(T_x X \) to \(X \) at \(x \). We are mostly interested in affine schemes \(X \) of finite type over \(k \), i.e. the schemes of the form \(\text{Spec}(R) \), where \(R \) is a finitely generated commutative \(k \)-algebra. For such schemes \(X(k) \) is the set of closed points of \(X \).

Let \(Q = (Q_0, Q_1) \) be a finite quiver, i.e. a finite set \(Q_0 \) of vertices and a finite set \(Q_1 \) of arrows \(\alpha : sa \to ta \), where \(sa \) and \(ta \) denote the starting and the terminating vertex of \(\alpha \), respectively. A representation of \(Q \) over \(k \) is a collection \(M = (M_a, M_\alpha : a \in Q_0, \alpha \in Q_1) \) of \(k \)-vector spaces \(M_a \) and \(k \)-linear maps \(M_\alpha : M_{sa} \to M_{ta} \). A morphism \(f : M \to N \) between two representations is a collection \(f = (f_a : M_a \to N_a ; a \in Q_0) \) of \(k \)-linear maps such that
\[
f_{ta} \circ M_\alpha = N_\alpha \circ f_{sa}, \quad \text{for all} \ a \in Q_1.
\]

We denote by \(\text{rep}(Q) \) the category of finite dimensional representations of \(Q \), i.e. the representations \(M \) such that all vector spaces \(M_a \) are finite dimensional. For a representation \(M \) in \(\text{rep}(Q) \) we define its dimension vector \(\text{dim} M = (\dim_k M_a) \in \mathbb{N}^{Q_0} \).

We denote by \(\mathbb{M}_{p,q} \) the \(k \)-scheme of \(p \times q \)-matrices and by \(\text{GL}_d \) the group \(k \)-scheme of invertible \(d \times d \)-matrices, for any positive integers \(p, q \) and \(d \). Given a dimension vector \(d = (d_a) \in \mathbb{N}^{Q_0} \) we have the affine scheme
\[
\text{rep}^d Q = \prod_{a \in Q_1} \mathbb{M}_{d_{ta} \times d_{sa}}.
\]

Thus the points of \(\text{rep}^d Q(k) \) can be identified with the representations \(M \) of \(Q \) such that \(M_a = k^{d_a} \) for any \(a \in Q_0 \). The group scheme
\[
\text{GL}_d = \prod_{a \in Q_0} \text{GL}_{d_a}
\]
acts on \(\text{rep}^d Q \) via
\[
g \ast M = (g_{ta} \cdot M_\alpha \cdot g_{sa}^{-1}),
\]
for any \(g = (g_a) \in \text{GL}_d(R), M = (M_a) \in \text{rep}^d Q(R), \) and a commutative \(k \)-algebra \(R \). Given a representation \(M \) in \(\text{rep}(Q) \), we denote by \(\mathcal{O}_M \) the \(\text{GL}_d(k) \)-orbit in \(\text{rep}^d Q(k) \) which consists of the representations in \(\text{rep}^d Q(k) \) isomorphic to \(M \), where \(d = \text{dim} M \). By abuse of notation, we treat \(\mathcal{O}_M \) and its closure \(\overline{\mathcal{O}_M} \) as reduced subschemes of \(\text{rep}^d Q \). It is an open and interesting problem to describe the defining ideal of \(\overline{\mathcal{O}_M} \) or even to exhibit polynomials having \(\overline{\mathcal{O}_M} \) as their zero set. If \(M \) and \(N \) are representations satisfying \(\mathcal{O}_N \subseteq \overline{\mathcal{O}_M} \), then we say that \(M \) degenerates to \(N \). Note that \(\overline{\mathcal{O}_M} \) is the union of \(\mathcal{O}_N(k) \), where \(N \) runs through the representations to which \(M \) degenerates.

In case of an equioriented Dynkin quiver of type \(A \) or a loop degenerations can be described by simple rank conditions (see \([1, 9]\)). These rank conditions can be interpreted as inequalities between the dimensions of homomorphism spaces. Let \([X, Y] = \dim_k \text{Hom}_Q(X, Y) \), for \(X, Y \in \text{rep}(Q) \). It is well-known that if \(M \) degenerates to \(N \) then
\[
[X, N] \geq [X, M] \quad \text{and} \quad [N, X] \geq [M, X], \quad \text{for any} \ X \in \text{rep}(Q) \quad (1.1)
\]
(see for instance [13] 2.1). Moreover, due to Bongartz [4, 5], the reverse implication holds under an additional assumption on \(Q \).

Theorem 1.1 Let \(Q \) be a Dynkin or an extended Dynkin quiver. Assume \(M \) and \(N \) belong to \(\text{rep}(Q) \) and \(\dim M = \dim N \). Then \(M \) degenerates to \(N \) if and only if the condition (1.1) is satisfied.

Inspired by the above inequalities (see also [4] Proposition 1), a closed \(\text{GL}_d \)-subscheme \(C_M \) of \(\text{rep}_Q^d \) containing \(\overline{O}_M \) was defined in [14]. Let \(\mathbb{k} Q = \bigoplus_{a,b \in Q_0} \mathbb{k} Q(a, b) \) denote the path algebra of \(Q \), where \(\mathbb{k} Q(a, b) \) is the vector space with a \(\mathbb{k} \)-basis formed by the paths in \(Q \) starting at \(b \) and terminating at \(a \). For any commutative \(\mathbb{k} \)-algebra \(R \), \(X \in \text{rep}_Q^d(R) \) and \(\omega \in \mathbb{k} Q(a, b) \), the matrix \(X_{\omega} \in M_{d_a,d_b}(R) \) is defined in the obvious way.

Let \(p, q \in \mathbb{N} \), and consider two sequences \((a_1, \ldots, a_p)\) and \((b_1, \ldots, b_q)\) of vertices in \(Q_0 \) and a \(p \times q \)-matrix \(\omega = (\omega_{i,j}) \) such that each \(\omega_{i,j} \) belongs to \(\mathbb{k} Q(a_i, b_j) \). We define a regular morphism

\[
\Theta_\omega : \text{rep}_Q^d \to M_{p',q'}, \quad \Theta_\omega(N) = \begin{bmatrix}
N_{\omega_{1,1}} & \cdots & N_{\omega_{1,q}} \\
\vdots & \ddots & \vdots \\
N_{\omega_{p',1}} & \cdots & N_{\omega_{p',q'}}
\end{bmatrix},
\]

where \(p' = \sum d_{a_i} \) and \(q' = \sum d_{b_j} \). For \(M \) in \(\text{rep}(Q) \), put \(\mathbf{d} = \text{dim} M \) and fix \(M' \) in \(O_M \).

Let \(\mathcal{I}_{M,\omega} \) be the ideal in the coordinate algebra \(\mathbb{k}[\text{rep}_Q^d] \) of \(\text{rep}_Q^d \) generated by the images via \((\Theta_\omega)^*\) of the minors of size \(1 + \text{rk } \Theta_\omega(M') \) in \(\mathbb{k}[M_{p',q'}] \). We set \(\mathcal{I}_M = \bigcap_{\omega} \mathcal{I}_{M,\omega} \), where \(\omega \) runs through all possible matrices of linear combinations of paths with all possible sequences of starting and terminating vertices. Then \(C_M = \text{Spec}(\mathbb{k}[\text{rep}_Q^d]/\mathcal{I}_M) \) is a closed \(\text{GL}_d \)-subscheme of \(\text{rep}_Q^d \) containing \(\overline{O}_M \). Moreover, \(C_M(\mathbb{k}) \) consists of the representations \(N \in \text{rep}_Q^d(\mathbb{k}) \) satisfying (1.1). Hence we can reformulate Theorem 1.1 by saying that \(C_M(\mathbb{k}) = \overline{O}_M(\mathbb{k}) \) provided \(Q \) is a Dynkin or an extended Dynkin quiver. Note that this equality does not hold for the representation

\[
M = \mathbb{k} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \frac{\mathbb{k}^2}{\mathbb{k}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbb{k}.
\]

Here \(C_M(\mathbb{k}) \) has two irreducible components of dimension 5, with one of them being \(\overline{O}_M(\mathbb{k}) \) (see [14] Example 8.9).

Lakshmibai and Magyar described in [10] generators of the defining ideal of \(\overline{O}_M \) in case \(Q \) is an equioriented Dynkin quiver of type \(A \). They used the Zelevinsky immersion of \(\text{rep}_Q^d \) in a Schubert variety of a flag variety, and applied a description of generators of the defining ideal of this Schubert variety. It turned out that they showed that the defining ideal of \(\overline{O}_M \) equals \(\mathcal{I}_M \). The result was generalized in [14] Theorem 6.4 to the Dynkin quivers of type \(A \) with an arbitrary orientation:

Theorem 1.2 Let \(Q \) be a Dynkin quiver of type \(A \) and \(M \in \text{rep}(Q) \). Then \(C_M = \overline{O}_M \).
tangent spaces in these cases. Note that this is not true even for the simplest extended Dynkin quiver. Namely, consider representations

\[M = k^2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad N = k^2 \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}. \]

Then \(N \in \mathcal{O}_M, T_N \mathcal{O}_M \) has dimension 3, while \(T_N \mathcal{C}_M \) has dimension 4 (the trace function does not belong to the ideal \(\mathcal{I}_M \), see [14] Example 3.7).

Our main result shows that \(\mathcal{C}_M \) and \(\mathcal{O}_M \) have identical tangent spaces in type \(D \):

Theorem 1.3 Let \(Q \) be a Dynkin quiver of type \(D \) and \(M \in \text{rep}(Q) \). Then \(\mathcal{O}_M(\mathbb{k}[\varepsilon]) = \mathcal{C}_M(\mathbb{k}[\varepsilon]) \). In other words, \(T_N \mathcal{O}_M = T_N \mathcal{C}_M \) for any \(N \) in \(\mathcal{O}_M(\mathbb{k}) = \mathcal{C}_M(\mathbb{k}) \).

We conjecture that the similar result holds for the Dynkin quivers of type \(E \). However, in that case the combinatorics of short exact sequences with indecomposable end terms is more involved and the proof requires new techniques. We plan to tackle this problem in a forthcoming paper.

We give now a representation theoretic interpretation of Theorem 1.3. The sets \(\text{rep}_d(Q)(\mathbb{k}) \) and \(\text{rep}_d(Q)(\mathbb{k}[\varepsilon]) \) have natural structures of vector spaces over \(\mathbb{k} \). Using the decomposition \(\mathbb{k}[\varepsilon] = \mathbb{k} \cdot 1 \oplus \mathbb{k} \cdot \varepsilon \) one can write each element of \(\text{rep}_d(Q)(\mathbb{k}[\varepsilon]) \) uniquely in the form \(N + \varepsilon \cdot Z \), where \(N \) and \(Z \) belong to \(\text{rep}_d(Q)(\mathbb{k}) \). Here \(N \) is a closed point of \(\text{rep}_d(Q) \) and \(Z \) is a tangent vector in \(T_N \text{rep}_d(Q) \). It is a simple but ingenious idea (see [16]) to associate to such element \(N + \varepsilon \cdot Z \) a representation in \(\text{rep}_2(Q)(\mathbb{k}) \) of the following block form

\[
\begin{bmatrix} N & Z \\ 0 & N \end{bmatrix} = \left(\begin{bmatrix} N_\alpha & Z_\alpha \\ 0 & N_\alpha \end{bmatrix} : \alpha \in Q_1 \right).
\]

By [14] Corollary 7.4, Theorem 1.3 implies that if \(N \in \mathcal{O}_M \), then \(T_N \mathcal{O}_M \) consists of the \(Z \) satisfying the following two equivalent conditions:

- \(\left[X, \begin{bmatrix} N & Z \\ 0 & N \end{bmatrix} \right] = 2 \cdot [X, N] \) for all \(X \in \text{rep}(Q) \) with \([X, N] = [X, M] \),
- \(\left[\begin{bmatrix} N & Z \\ 0 & N \end{bmatrix}, X \right] = 2 \cdot [N, X] \) for all \(X \in \text{rep}(Q) \) with \([N, X] = [M, X] \).

We remark that Theorem 1.3 should have applications in the problem of describing the singular locus of \(\mathcal{O}_M \) in representation theoretic terms, for the representations \(M \) of Dynkin quivers of type \(D \) (see [14] Section 8).

The paper is organized as follows: in Section 2 we prove necessary facts about exact sequences in \(\text{rep}(Q) \) (in fact we formulate them in a more general setup of triangles in the derived category of \(\text{rep}(Q) \)), while in Section 3 we apply results of Section 2 in a geometric context and prove the main result. For basic background on representation theory of quivers we refer to [2, 3, 15].

2 Derived Categories for Representations of Dynkin Quivers

In order to prove Theorem 1.3, we need a result about existence of short exact sequences in \(\text{rep}(Q) \) with some special properties, where \(Q \) is a Dynkin quiver of type \(D \) (Corollary 2.23). Our idea is to use the embedding of \(\text{rep}(Q) \) in its derived category \(D^b(Q) = D^b(\text{rep}(Q)) \), and to prove the existence of triangles in \(D^b(Q) \) satisfying similar properties (Proposition 2.19). An advantage of working with the derived category is that its structure, including Auslander-Reiten theory, is more “regular” than the structure of \(\text{rep}(Q) \). In particular, the
formulation of Corollaries 2.14 and 2.15 would be much more complicated if we worked in the category of representations. We refer to [8] as a general reference for this section.

2.1 Dynkin Graphs

Throughout this section $\Delta = (\Delta_0, \Delta_1)$ is a Dynkin graph of one of the types A_n, $n \geq 1$, D_n, $n \geq 4$, or E_6, E_7, E_8, where Δ_0 is the set of n vertices of Δ, and Δ_1 is its set of edges, i.e. two element subsets of Δ_0. If (a, b) is an edge we say that a and b are adjacent. We denote by a^- the (open) neighbourhood of a vertex a, i.e. the set of vertices adjacent to a. The degree of a equals, by definition, the cardinality of a^-. Let $\text{dist}(a, b)$ be the length of the shortest walk in Δ between a and b.

We define an integer n_Δ as follows:

$$n_{A_n} = n + 1, \quad n_{D_n} = 2n - 2, \quad n_{E_6} = 12, \quad n_{E_7} = 18, \quad n_{E_8} = 30. \quad (2.1)$$

With Δ we associate (Tits) quadratic form

$$q_\Delta : \mathbb{Z}^{\Delta_0} \rightarrow \mathbb{Z}, \quad q_\Delta(d) = \sum_{a \in \Delta_0} d_a^2 - \sum_{\{a, b\} \in \Delta_1} d_a \cdot d_b, \quad (2.2)$$

which is positive definite, i.e. $q_\Delta(d) > 0$ for any non-zero d. If $q_\Delta(d) = 1$ we say d is a root. Obviously, if d is a root, then $-d$ is also a root. There are $n \cdot n_\Delta$ roots, half of them are positive, where a vector d is called positive provided $d \neq 0$ and $d_a \geq 0$, for each a. There is a unique maximal root h_Δ (i.e. $h_\Delta - d$ is positive for any root $d \neq h_\Delta$) which equals

A_n :

```
1 1 ... 1
```

D_n :

```
1
2 2 ...
```

E_6 :

```
1 2 3 2 1
```

E_7 :

```
2 3 4 3 2 1
```

E_8 :

```
2 4 6 5 3 2
```

2.2 Derived Category for Acyclic Quivers

Throughout this subsection Q is a finite quiver without oriented cycles. We denote by $D^b(Q) = D^b(\text{rep}(Q))$ the derived category of the abelian category $\text{rep}(Q)$. The category $D^b(Q)$ is triangulated, hence there is an auto-equivalence [1] of $D^b(Q)$ called the shift functor (“the suspension functor” and “the translation functor” are alternative names used by other authors) and a class of triangles (the name “distinguished triangles” is commonly used), written in the form $A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} A[1]$. There is a canonical full embedding of $\text{rep}(Q)$ in $D^b(Q)$, and we shall identify $\text{rep}(Q)$ with its image in $D^b(Q)$. In particular,

$$\text{Hom}_Q(X, Y) = \text{Hom}_{D^b(Q)}(X, Y) \quad \text{and} \quad \text{Ext}^1_Q(X, Y) = \text{Hom}_{D^b(Q)}(X, Y[1]),$$
for all $X, Y \in \text{rep}(Q)$. Based on the latter equality, there is a strong relationship between the short exact sequences in $\text{rep}(Q)$ and triangles in $\mathcal{D}^b(Q)$. Namely, for each short exact sequence $\sigma : 0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ in $\text{rep}(Q)$ there is a unique morphism $\gamma \in \text{Hom}_{\mathcal{D}^b(Q)}(C, A[1])$ such that $\hat{\sigma} : A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} A[1]$ is a triangle in $\mathcal{D}^b(Q)$. Conversely, if $A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} A[1]$ is a triangle in $\mathcal{D}^b(Q)$ with A and C in $\text{rep}(Q)$, then there is an isomorphism $g : B \to B'$ in $\mathcal{D}^b(Q)$ such that $\sigma : 0 \to A \xrightarrow{g \circ \alpha} B' \xrightarrow{\beta \circ g^{-1}} C \to 0$ is a short exact sequence in $\text{rep}(Q)$. Moreover, in the above situation $\hat{\sigma}$ has the form $A \xrightarrow{g \circ \alpha} B' \xrightarrow{\beta \circ g^{-1}} C \xrightarrow{\gamma} A[1]$.

We now generalize the notions of a split exact sequence and a pullback to triangles. Let σ be a triangle $A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} A[1]$ in $\mathcal{D}^b(Q)$. We say that σ splits if one of the following equivalent conditions is satisfied: (i) α is a section, (ii) β is a retraction, (iii) $\gamma = 0$, (iv) B is isomorphic to $A \oplus C$. Observe that an exact sequence σ splits if and only if the triangle $\hat{\sigma}$ splits.

Given a triangle $\sigma : A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} A[1]$ and a morphism $h : C' \to C$ in $\mathcal{D}^b(Q)$ we get the following commutative diagram

\[
\begin{array}{ccc}
A & \xrightarrow{\alpha} & B' \\
\downarrow & & \downarrow \gamma \circ h \\
A & \xrightarrow{\beta} & C \\
\downarrow h & & \downarrow \\
A[1] & \xrightarrow{\gamma} & A[1],
\end{array}
\]

where the upper row, called the pullback of σ along h, is a triangle (note that the pullback is unique up to isomorphism of triangles). One defines pushouts dually. Observe that if σ' is the pullback of a short exact sequence σ along a homomorphism $h : C' \to C$ in $\text{rep}(Q)$, then $\hat{\sigma}'$ is the pullback of $\hat{\sigma}$ along h (viewed as a morphism in $\mathcal{D}^b(Q)$).

We say that a triangle σ is almost split (or an Auslander-Reiten triangle) if A and C are indecomposable, σ does not split, but its pullbacks split for all morphisms to X, Y which are not sections. The last condition can be replaced by the requirement that the pushouts of σ split for all morphisms from A which are not sections.

An important fact about the category $\mathcal{D}^b(Q)$ is that it has a Serre duality, i.e. there is an auto-equivalence $\nu : \mathcal{D}^b(Q) \to \mathcal{D}^b(Q)$, called a Serre functor, such that there are isomorphisms

\[
\text{Hom}_{\mathcal{D}^b(Q)}(Y, \nu X) \simeq D \text{Hom}_{\mathcal{D}^b(Q)}(X, Y) \simeq \text{Hom}_{\mathcal{D}^b(Q)}(\nu^{-1} Y, X),
\]

(2.3)

which are natural in X and Y, where D is the duality $\text{Hom}_k(_ , _)$ on k (see [11] Section I). The Serre functor ν restricts to an equivalence between the subcategory \mathcal{P}_Q of the projective representations in $\text{rep}(Q)$ and the subcategory \mathcal{I}_Q of the injective representations in $\text{rep}(Q)$. This restriction is called a Nakayama functor. For each vertex a of Q, we denote by P_a and I_a the indecomposable projective and injective representation in $\text{rep}(Q)$ at a, respectively. We note that up to isomorphism, these are the only indecomposable objects of \mathcal{P}_Q and \mathcal{I}_Q, respectively.

The existence of a Serre functor ν is closely related to the existence of almost split triangles in $\mathcal{D}^b(Q)$. Namely, we consider the auto-equivalence $\tau = \nu \circ [-1] \simeq [-1] \circ \nu$ of $\mathcal{D}^b(Q)$, and call it the Auslander-Reiten translation. Then there is an almost split triangle of the form $\tau C \to B \to C \to (\tau C)[1]$ for any indecomposable object C in $\mathcal{D}^b(Q)$, and there
is an almost split triangle of the form \(A \to B' \to \tau^{-1}A \to A[1] \) for any indecomposable object \(A \) in \(\mathcal{D}^b(Q) \).

One defines the Grothendieck group \(K_0(\text{rep}(Q)) \) of \(\text{rep}(Q) \) as the quotient of the free abelian group with basis formed by the isomorphism classes \([X]\) of objects \(X \) in \(\text{rep}(Q) \), modulo the subgroup generated by \([A] - [B] + [C]\) for all short exact sequences \(0 \to A \to B \to C \to 0 \) in \(\text{rep}(Q) \). The group \(K_0(\text{rep}(Q)) \) is isomorphic with \(\mathbb{Z}Q_0 \) via the map sending the class of \([X]\) to \(\dim X \). We will treat this isomorphism as an identification.

The Grothendieck group \(K_0(\mathcal{D}^b(Q)) \) of the category \(\mathcal{D}^b(Q) \) is defined in a similar way, the only difference is that one takes \([A] - [B] + [C]\) for the triangles \(A \to B \to C \to A[1] \) when forming the quotient. The embedding of \(\text{rep}(Q) \) in \(\mathcal{D}^b(Q) \) induces a group isomorphism from \(K_0(\text{rep}(Q)) \) to \(K_0(\mathcal{D}^b(Q)) \), which we will treat as an identification. In particular we will use the notation \(\dim X \) for \(X \in \mathcal{D}^b(Q) \). Note that \(\dim X[i] = (-1)^i \cdot \dim X \) for any object \(X \in \mathcal{D}^b(Q) \) and any integer \(i \).

Given two objects \(X \) and \(Y \) in \(\mathcal{D}^b(Q) \) we denote by \([X, Y]\) the dimension of \(\text{Hom}_{\mathcal{D}^b(Q)}(X, Y) \). Moreover, we set \([X, Y]^i = [X[-i], Y] = [X, Y[i]]\) for any integer \(i \). If \(X \) and \(Y \) belong to \(\text{rep}(Q) \) then \([X, Y]^i = 0 \) provided \(i \not\in \{0, 1\} \). We define the bilinear form \(b_Q : \mathbb{Z}Q_0 \times \mathbb{Z}Q_0 \to \mathbb{Z} \) by the formula

\[
b_Q(\mathbf{d}, \mathbf{e}) = \sum_{a \in Q_0} d_a \cdot e_a - \sum_{a \in Q_1} d_a \cdot e_{\alpha a},
\]

for all \(\mathbf{d}, \mathbf{e} \in \mathbb{Z}Q_0 \). Then

\[
b_Q(\dim X, \dim Y) = \sum_{i \in \mathbb{Z}} (-1)^i \cdot [X, Y]^i,
\]

for all \(X, Y \in \mathcal{D}^b(Q) \) (see \[8\] III.1). In particular, if \(X, Y \in \text{rep}(Q) \), then

\[
b_Q(\dim X, \dim Y) = [X, Y]_0 - [X, Y]^1 = \dim_k \text{Hom}_Q(X, Y) - \dim_k \text{Ext}_Q^1(X, Y).
\]

Observe that the quadratic form associated with \(b_Q \) coincides with \(q_\Delta \), where \(\Delta \) is the underlying graph of \(Q \) and \(q_\Delta \) is the quadratic form introduced in Eq. 2.2. Recall that the Yoneda lemma states that if \(a \in Q_0 \) and \(M \in \text{rep}(Q) \), then \([P_a, M] \) is the \(a \)-th coordinate of \(\dim M \). This easily implies that \(b_Q(\dim P_a, \mathbf{d}) = d_a \), for each \(\mathbf{d} \in \mathbb{Z}Q_0 \).

We collect below a few facts concerning indecomposable objects in \(\mathcal{D}^b(Q) \) under the assumption that \(Q \) is a Dynkin quiver.

Lemma 2.1 Let \(Q \) be a Dynkin quiver, and \(X \) and \(Y \) be indecomposable objects in \(\mathcal{D}^b(Q) \).

Then:

1. \(X \simeq \tau^n aX \) for a unique pair \((n_X, a_X) \in \mathbb{Z} \times Q_0\).
2. \([X, X] = 1 \) and \(q_\Delta(\dim X) = 1 \).
3. \([X, Y]^i \) is non-zero for at most one integer \(i \).
4. \([X, Y] \leq h^\Delta_{a_X} \).

Proof The first three properties are well known (see for example \[8\] Chapter I).

(4) We may assume that \([X, Y] > 0 \). Applying the automorphism \(\tau^{-n_X} \) we get

\[
[X, Y] = [\tau^{n_X}P_{a_X}, Y] = [P_{a_X}, \tau^{-n_X}Y] = b_Q(\dim P_{a_X}, \dim \tau^{-n_X}Y),
\]

where the last equality follows from (3) and the assumption \([X, Y] > 0 \). As we observed above \(b_Q(\dim P_{a_X}, \dim \tau^{-n_X}Y) \) is the \(a_X \)-th coordinate of the vector \(\dim \tau^{-n_X}Y \). By (2),
2.3 Mesh Categories for Dynkin Graphs

Throughout this subsection $\Delta = (\Delta_0, \Delta_1)$ is a Dynkin graph. We say that two elements (p, a) and (q, b) of the product $\mathbb{Z} \times \Delta_0$ are equivalent provided the integer $(q - p) + \text{dist}(a, b)$ is even. This is an equivalence relation since Δ is a tree, and thus $\mathbb{Z} \times \Delta_0$ is partitioned into two parts

$$\mathbb{Z} \times \Delta_0 = (\mathbb{Z} \times \Delta_0)^v \sqcup (\mathbb{Z} \times \Delta_0)^m,$$

where we use the former set to parameterize the vertices and the latter one to parameterize the meshes of the quiver $\mathbb{Z}\Delta$ defined below. In order to decide which part stands for $(\mathbb{Z} \times \Delta_0)^v$, we choose a base vertex $b_0 \in \Delta_0$ and require that $(0, b_0)$ belongs to $(\mathbb{Z} \times \Delta_0)^v$.

We define an infinite quiver $\mathbb{Z}\Delta$ without multiple arrows as follows. The set $(\mathbb{Z}\Delta)_0$ of vertices of $\mathbb{Z}\Delta$ consists of $v_{p,a}$, where $(p, a) \in (\mathbb{Z} \times \Delta_0)^v$. There is an arrow in $\mathbb{Z}\Delta$ starting at $v_{p,a}$ and terminating at $v_{q,b}$ if and only if a and b are adjacent in Δ and $q - p = 1$. For example, if $\Delta = A_4$:

$$\bullet \quad \bullet \quad \bullet \quad \bullet$$

and we choose $b_0 = b$, then $\mathbb{Z}\Delta$ has the form

For each pair (p, a) in $(\mathbb{Z} \times \Delta_0)^m$, we consider the smallest subquiver $m_{p,a}$ of $\mathbb{Z}\Delta$, called a mesh, containing all paths (of length two) starting at $v_{p-1,a}$ and terminating at $v_{p+1,a}$:

$$v_{p,b_1} \quad v_{p,b_r} \quad \bullet \quad \bullet \quad v_{p-1,a} \quad v_{p+1,a}$$

where $\{b_1, \ldots, b_r\} = a^-$. We denote by $(\mathbb{Z}\Delta)_2$ the set of meshes $m_{p,a}$, where $(p, a) \in (\mathbb{Z} \times \Delta_0)^m$. With each mesh $m_{p,a}$ we associate its mesh relation, i.e. the sum of the paths starting at $v_{p-1,a}$ and terminating at $v_{p+1,a}$, considered as morphisms in the path category $\mathbb{k}[\mathbb{Z}\Delta]$ of $\mathbb{Z}\Delta$. The mesh category $\mathbb{k}(\mathbb{Z}\Delta)$ of $\mathbb{Z}\Delta$ is the quotient of $\mathbb{k}[\mathbb{Z}\Delta]$ modulo the ideal generated by all mesh relations.

Now let Q be a Dynkin quiver with underlying graph Δ. An important fact is that $\mathbb{k}(\mathbb{Z}\Delta)$ is equivalent as a \mathbb{k}-linear category to the category of indecomposable objects in
When Q is fixed, then we shall identify \((\mathbb{Z}\Delta)_0\) with a complete set of pairwise non-isomorphic indecomposable objects of \(\mathcal{D}^b(Q)\). Moreover, we may also assume that under this identification \(P_a = v_{p_a,a}\) with an appropriate integer \(p_a\), for each vertex \(a \in Q_0 = \Delta_0\). The three crucial auto-equivalences of \(\mathcal{D}^b(Q)\): the Auslander-Reiten translation \(\tau\), the Serre functor \(\nu\) and the shift functor \([1]\) act on the indecomposable objects by the formulas

\[
\tau(v_{p,a}) = v_{p-2,a}, \quad \nu(v_{p,a}) = v_{p+n_\Delta - 2, \phi_\Delta(a)}, \quad v_{p,a}[1] = v_{p+n_\Delta, \phi_\Delta(a)},
\]

where \(n_\Delta\) was defined in Eq. 2.1 and \(\phi_\Delta\) is the automorphism of \(\Delta\) defined as follows: \(\phi_\Delta\) is the unique non-trivial involution of \(\Delta\) provided \(\Delta\) is either of type \(A_n\) with \(n \geq 2\), or \(\mathbb{D}_n\) with \(n\) odd, or \(\mathbb{E}_6\); and \(\phi_\Delta\) is the identity on \(\Delta\) for the remaining Dynkin graphs. We note that the automorphism of \(\mathbb{Z}\Delta\) induced by \(\nu\) is sometimes called a Nakayama permutation ([7] 6.5). We also remark that the quiver \(\mathbb{Z}\Delta\) is isomorphic to the quiver \(\mathbb{Z}Q\) defined in [12].

The almost split triangles in \(\mathcal{D}^b(Q)\) are parameterized by the meshes in \(\mathbb{Z}\Delta\). More precisely, there is an almost split triangle of the form

\[
\text{AR}(m_{p,a}): v_{p-1,a} \to \bigoplus_{b \in a^-} v_{p,b} \to v_{p+1,a} \to v_{p-1,a}[1],
\]

where \(v_{p-1,a}[1] = v_{p+n_\Delta - 1, \phi_\Delta(a)}\), for any mesh \(m_{p,a} \in (\mathbb{Z}\Delta)_2\).

We note that the paths in \(\mathbb{Z}\Delta\) have the form

\[
\omega: v_{p,a} \to v_{p+1,a} \to \cdots \to v_{q-1,a} \to v_{q,a},
\]

where each two consecutive vertices in the sequence \((a_p, a_{p+1}, \ldots, a_{q-1}, a_q)\) are adjacent. Therefore \(\omega\) can be viewed as a lifting of a walk in \(\Delta\). In particular, \(q - p \geq \text{dist}(a_p, a_q)\).

The path \(\omega\) is called sectional if \(a_{i-1} \neq a_{i+1}\) for any integer \(i\) with \(p < i < q\). Since \(\Delta\) is a tree, this condition is equivalent to the fact that the vertices \(a_p, \ldots, a_q\) are pairwise different, and also equivalent to the equality \(q - p = \text{dist}(a_p, a_q)\).

Lemma 2.2 Let \(v_{p,a}\) and \(v_{q,b}\) be vertices in \(\mathbb{Z}\Delta\). Then:

1. \([v_{p,a}, v_{p,a}] = 1\).
2. \([v_{p,a}, v_{q,b}] = [v_{q,b}, v_{p+n_\Delta - 2, \phi_\Delta(a)}]\).
3. If \([v_{p,a}, v_{q,b}] > 0\) then \(p + \text{dist}(a, b) \leq q \leq p + n_\Delta - 2 - \text{dist}(b, \phi_\Delta(a))\).
4. \([v_{p,a}, v_{q,b}] \leq \min(h^A_a, h^B_b)\).

Proof (1) follows from Lemma 2.1(2), but can also be derived directly from the definition of the mesh category \(\text{lk}(\mathbb{Z}\Delta)\). (2) is a consequence of the Serre duality (2.3).

(3) If \([v_{p,a}, v_{q,b}] > 0\) then also \([v_{q,b}, v_{p+n_\Delta - 2, \phi_\Delta(a)}] > 0\), by (2). Hence there are paths in \(\mathbb{Z}\Delta\) from \(v_{p,a}\) to \(v_{q,b}\) and from \(v_{q,b}\) to \(v_{p+n_\Delta - 2, \phi_\Delta(a)}\).

(4) Since \(P_a = v_{p,a}, v_{p,a} = \tau^r P_a\) for some integer \(r\). By Lemma 2.1(4), \([v_{p,a}, v_{q,b}] \leq h^A_a\). The other inequality \([v_{p,a}, v_{q,b}] \leq h^B_b\) follows from the first one and (2). \(\square\)

Let us explain how using the above lemma and almost split sequences, we can calculate the dimension \([v_{p,a}, v_{q,b}]\) for all vertices \(v_{p,a}\) and \(v_{q,b}\). Namely, if \(q \leq p\) or \(q \geq p + n_\Delta - 1\) then \([v_{p,a}, v_{q,b}] = 0\) except \([v_{p,a}, v_{p,a}] = 1\). We obtain formulas in the remaining cases by induction on \(q\), using the following lemma.

Lemma 2.3 Let \(v_{p,a}\) and \(v_{q,b}\) be vertices in \(\mathbb{Z}\Delta\) such that \(p < q < p + n_\Delta\). Then

\[
[v_{p,a}, v_{q,b}] = \sum_{c \in b^-} [v_{p,a}, v_{q-1,c}] - [v_{p,a}, v_{q-2,b}].
\]
Proof Applying the functor $\text{Hom}_{D^b(Q)}(v_p,a,?)$ to the triangle $\text{AR}(m_{q-1,b})$ we get the exact sequence
\[
\cdots \rightarrow \text{Hom}(v_p,a,v_{q-n} \Delta, \phi(b)) \rightarrow \text{Hom}(v_p,a,v_{q-2}b) \rightarrow \bigoplus_{c \in b^-} \text{Hom}(v_p,a,v_{q-1}c) \rightarrow \text{Hom}(v_p,a,v_{q,b}) \rightarrow \text{Hom}(v_p,a,v_{q+n} \Delta, \phi(b)) \rightarrow \cdots
\]
The two extreme homomorphism spaces are zero by Lemma 2.2(3), and the claim follows.

Applying the above to sectional paths we get the following.

Lemma 2.4 If $v_{p,a} \rightarrow v_{p+1,a+1} \rightarrow \cdots \rightarrow v_{q-1,a-1} \rightarrow v_{q,a}$ is a sectional path in $\mathbb{Z} \Delta$ then $[v_{p,a}, v_{q,a}] = 1$.

Proof The claim follows by induction on the length $(q - p)$ of the path, where the base step $q - p = 0$ follows from Lemma 2.2. For the induction step we apply Lemma 2.3 for $v_{p,a} = v_{p,a}$ and $v_{q,b} = v_{q,a}$, and use that there is no path in $\mathbb{Z} \Delta$ from $v_{p,a}$ to $v_{q-2,a}$, and if there is a path from $v_{p,a}$ to $v_{q-1,c}$ with $c \in (a_q)^-$ then $c = a_{q-1}$.

2.4 Defect Functions on Meshes

Throughout this subsection Q is a Dynkin quiver with underlying graph Δ. In particular, $Q_0 = \Delta_0$. Consider a triangle
\[
\sigma : A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} A[1]
\]
and an object X in $D^b(Q)$. There is a commutative diagram of the form
\[
\begin{array}{ccc}
\text{Hom}_{D^b(Q)}(X,C) & \xrightarrow{\text{Hom}_{D^b(Q)}(X,\gamma)} & \text{Hom}_{D^b(Q)}(X,A[1]) \\
D \text{Hom}_{D^b(Q)}(C[-1],\tau X) & & D \text{Hom}_{D^b(Q)}(A,\tau X)
\end{array}
\]
where the vertical arrows represent k-linear isomorphisms obtained by applying the Auslander-Reiten translation τ and the Serre duality (2.3). This motivates the definition of the following integer-valued function measuring how far a triangle is from being split.

Definition 2.5 Given a triangle $\sigma : A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} A[1]$ in $D^b(Q)$ we define a non-negative function
\[
\delta_\sigma : (\mathbb{Z} \Delta)_2 \rightarrow \mathbb{Z}, \quad \delta_\sigma(m_{p,a}) = \text{rk}(\text{Hom}_{D^b(Q)}(v_{p+1,a}, \gamma)) = \text{rk}(\text{Hom}_{D^b(Q)}(\gamma[-1], v_{p-1,a})).
\]

Some fundamental properties of δ_σ, easy consequences of the definition, are collected in the following lemma.

Lemma 2.6 Let $\sigma : A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} A[1]$ be a triangle in $D^b(Q)$. Then the following hold:
\begin{itemize}
\item[(1)] σ splits if and only if $\delta_\sigma = 0$.
\item[(2)] If $B = 0$, then $\delta_\sigma(m_{p,a}) = [A, v_{p-1,a}] = [v_{p+1,a}, C]$.
\end{itemize}
Tangent Spaces of Orbit Closures for Representations Dynkin Quivers...

(3) $\delta_\sigma(m_{p,a}) \leq [A, v_{p-1,a}]$ and $\delta_\sigma(m_{p,a}) \leq [v_{p+1,a}, C]$.

(4) $\delta_\sigma' \leq \delta_\sigma$ if σ' is a pullback or a pushout of σ.

(5) If $\sigma = AR(m_{q,b})$, then

$$\delta_\sigma(m_{p,a}) = \begin{cases} 1, & (p, a) = (q, b), \\
0, & \text{otherwise.} \end{cases}$$

Example 2.7 Let Δ be the Dynkin graph \mathbb{D}_6:

Thus $n_\Delta = 10$ and the quiver $\mathbb{Z}\Delta$ has the form

We consider the triangle $\sigma : A \to 0 \to A[1] \to A[1]$ with $A = v_{3,b_1}$. Then $A[1] = v_{13,b_1}$ and $\delta_\sigma(m_{q,b}) = [v_{3,b_1}, v_{q-1,b}] = [v_{q+1,b}, v_{13,b_1}]$, by Lemma 2.6(2). We find δ_σ by calculating the dimensions $[v_{3,b_1}, v_{q-1,b}]$, which can be done by the method based on Lemma 2.3. We illustrate the function δ_σ by writing each non-zero value $\delta_\sigma(m_{p,a})$ between the vertices $v_{p-1,a}$ and $v_{p+1,a}$:

Here we replace the arrows by edges, and additionally draw dashed segments between $v_{p-1,a}$ and $v_{p+1,a}$ if the vertex a has degree 1 in Δ.

We set $\langle X, Y \rangle = \sum_{i \leq 0} (-1)^i \cdot [X, Y]^i$ for any objects X and Y in $\mathcal{D}^b(Q)$. Our next aim is to define integer-valued functions on the set of meshes, using $\langle X, Y \rangle$. We derive from Lemma 2.2(3) the following fact.

Corollary 2.8 Assume (p, a) and (q, b) belong to $(\mathbb{Z} \times \Delta_0)^\circ$. If $\langle v_{p,a}, v_{q,b} \rangle \neq 0$ then $q - p \geq \text{dist}(a, b)$.

Lemma 2.9 Let $X, M, N \in \mathcal{D}^b(Q)$ with $\text{dim}M = \text{dim}N$. Then

$$\langle X, N \rangle - \langle X, M \rangle = \langle N, \tau X \rangle - \langle M, \tau X \rangle.$$
Proof By Eq. 2.3, \([N, \tau X] = [N, \tau (X[i])] = [v^{-1}\tau (X[i]), N] = [X[i - 1], N] = [X, N]^{i-1}\), for any integer \(i\). Consequently,
\[
\langle X, N \rangle - \langle N, \tau X \rangle = b_Q(\text{dim}X, \text{dim}N) = b_Q(\text{dim}X, \text{dim}M) = \langle X, M \rangle - \langle M, \tau X \rangle. \]

Definition 2.10 Let \(M, N \in \mathcal{D}^b(Q)\) be such that \(\text{dim}M = \text{dim}N\). We define the function \(\delta_{M,N}\) : \((\mathbb{Z}/\Delta_1)^2 \rightarrow \mathbb{Z}\) by

\[
\delta_{M,N}(m_{p,a}) = \langle v_{p+1,a}, N \rangle - \langle v_{p+1,a}, M \rangle = \langle N, v_{p-1,a} \rangle - \langle M, v_{p-1,a} \rangle,
\]

for any mesh \(m_{p,a} \in (\mathbb{Z}/\Delta_1)^2\).

By Corollary 2.8 we conclude the following fact.

Corollary 2.11 Let \(M, N \in \mathcal{D}^b(Q)\) with \(\text{dim}M = \text{dim}N\). Then \(\delta_{M,N}(m_{p,a}) \neq 0\) only for finitely many meshes \(m_{p,a} \in (\mathbb{Z}/\Delta_1)^2\).

Applying Hom functors we get the following.

Corollary 2.12 \(\delta_{\sigma} = \delta_{B,A@C}\) for any triangle \(\sigma : A \rightarrow B \rightarrow C \rightarrow A[1]\) in \(\mathcal{D}^b(Q)\).

Combining the above corollary and Lemma 2.6(5) we get the following fact.

Lemma 2.13 Let \((p, a)\) and \((q, b)\) belong to \((\mathbb{Z} \times \Delta_0)\). Then

\[
\langle v_{p,a} \oplus v_{p+2,a}, v_{q,b} \rangle - \bigoplus_{c \in a^-} v_{p+1,c} \oplus v_{q,b} = \langle v_{q,b}, v_{p-2,a} \oplus v_{p,a} \rangle - \bigoplus_{c \in a^-} v_{p-1,c} = \begin{cases} 1, & (q, b) = (p, a), \\ 0, & \text{otherwise}. \end{cases}
\]

Let \(N\) and \(X\) be objects of \(\mathcal{D}^b(Q)\) and assume that \(X\) is indecomposable. We denote by \(\text{mult}_X(N)\) the multiplicity of \(X\) as a direct summand of \(N\). In particular,

\[
N \simeq \bigoplus_{(p,a) \in (\mathbb{Z} \times \Delta_0)} (v_{p,a})^{\text{mult}_{p,a}(N)}.
\]

As an immediate consequence of Lemma 2.13 we get:

Corollary 2.14 For any object \(N\) of \(\mathcal{D}^b(Q)\) and \((p, a) \in (\mathbb{Z} \times \Delta_0)\)

\[
\text{mult}_{v_{p,a}}(N) = \langle v_{p,a}, N \rangle - \sum_{b \in a^-} \langle v_{p+1,b}, N \rangle + \langle v_{p+2,a}, N \rangle
\]

\[
= \langle N, v_{p-2,a} \rangle - \sum_{b \in a^-} \langle N, v_{p-1,b} \rangle + \langle N, v_{p,a} \rangle.
\]

Corollary 2.15 Let \(M, N \in \mathcal{D}^b(Q)\) with \(\text{dim}M = \text{dim}N\) and \(v_{p,a} \in (\mathbb{Z}/\Delta_0)\). Then

\[
\text{mult}_{v_{p,a}}(N) - \text{mult}_{v_{p,a}}(M) = \delta_{M,N}(m_{p-1,a}) - \sum_{b \in a^-} \delta_{M,N}(m_{p,b}) + \delta_{M,N}(m_{p+1,a}).
\]

Applying the above corollary for the vertices lying on a sectional path we obtain the following fact.
Corollary 2.16 Let $M, N \in D^b(Q)$ with $\dim M = \dim N$ and
\[v_{p,a_p} \rightarrow v_{p+1,a_{p+1}} \rightarrow \cdots \rightarrow v_{q-1,a_{q-1}} \rightarrow v_{q,a_q} \]
be a sectional path in $\mathbb{Z} \Delta$. Let \mathcal{M} be the subset of $(\mathbb{Z} \times \Delta_0)^m$ consisting of the pairs (j, b) such that $p \leq j \leq q$ and b is adjacent to a_j, but does not belong to the set $\{a_p, \ldots, a_q\}$. Then
\[
\sum_{i=p}^{q} (\text{mult}_{v_{i,a_i}}(N) - \text{mult}_{v_{i,a_i}}(M)) = \delta_{M,N}(m_{p-1,a_p}) - \sum_{(j,b) \in \mathcal{M}} \delta_{M,N}(m_{j,b}) + \delta_{M,N}(m_{q+1,a_q}).
\]

Observe in the above situation that if b is adjacent to a_j, then b belongs to the set $\{a_p, \ldots, a_q\}$ if and only if either $j > p$ and $b = a_{j-1}$ or $j < q$ and $b = a_{j+1}$.

Given a non-negative function $\delta : (\mathbb{Z} \Delta)^2 \rightarrow \mathbb{Z}$, for instance δ_{σ} for a triangle σ, we define its support
\[\text{supp}(\delta) = \{ m \in (\mathbb{Z} \Delta)^2 ; \delta(m) > 0 \}. \]

2.5 Application to Type D

Throughout this subsection Q is a Dynkin quiver of type D_n, $n \geq 4$, with underlying graph Δ:

\[c' \quad b_0 \quad b_1 \quad \cdots \quad b_{n-5} \quad b_{n-4} \quad c \]

In particular, $h_a^c = 1$ if $a \in \{c, c', c''\}$, and $h_a^c = 2$ otherwise. Applying Lemmas 2.1(4) and 2.6(3), we get the following corollaries.

Corollary 2.17 We have $[v_{p,a}, v_{q,b}] \leq 2$. Moreover, if a or b belongs to $\{c, c', c''\}$, then $[v_{p,a}, v_{q,b}] \leq 1$.

Corollary 2.18 Let $\sigma : A \rightarrow B \rightarrow C \rightarrow A[1]$ be a triangle in $D^b(Q)$ with A or C indecomposable. Then $\delta_{\sigma}(m_{p,a}) \leq 2$ and the inequality is strict if a belongs to $\{c, c', c''\}$.

The main aim of this subsection is to prove the following fact, which is the key to the proof of Theorem 1.3.

Proposition 2.19 Let $\sigma : A \rightarrow B \rightarrow C \rightarrow A[1]$ be a triangle in $D^b(Q)$ with A and C indecomposable. Assume that $M, N \in D^b(Q)$ satisfy $\dim M = \dim N$, $\delta_{M,N} \geq 0$, $\text{supp}(\delta_{\sigma}) \subseteq \text{supp}(\delta_{M,N})$, but the inequality $\delta_{M,N} \geq \delta_{\sigma}$ does not hold.

Then there is an indecomposable direct summand C' of N together with a morphism $h : C' \rightarrow C$ such that the pullback $\sigma' : A \rightarrow B' \rightarrow C' \rightarrow A[1]$ of σ along h does not split, $\delta_{\sigma'} \leq \delta_{M,N}$ and $\text{supp}(\delta_{\sigma} - \delta_{\sigma'}) \subseteq \text{supp}(\delta_{M,N} - \delta_{\sigma'})$.

We introduce two integer-valued functions φ and ψ on $(\mathbb{Z} \Delta)^2$ as the compositions of the canonical bijection $(\mathbb{Z} \Delta)^2 \rightarrow \mathbb{Z} \times \Delta_0$ followed by the maps
\[(p, a) \mapsto p + \text{dist}(c, a) \quad \text{and} \quad (p, a) \mapsto p - \text{dist}(c, a), \]
respectively.
Lemma 2.20 Let $\sigma : A \rightarrow B \rightarrow C \rightarrow A[1]$ be a triangle in $D^b(Q)$ such that A and C are indecomposable. Let m be a mesh in $\mathbb{Z}\Delta$ such that $\delta_\sigma(m) = 2$ (in particular, $m = m_{p_0,b_r}$ for some pair (p_0,b_r) in $(\mathbb{Z} \times \Delta_0)m$). Then

$$\delta_\sigma(m_{p,a}) = h_a^\delta$$

for all meshes $m_{p,a}$ satisfying $\varphi(m_{p,a}) \geq \varphi(m)$ and $\psi(m_{p,a}) \leq \psi(m)$.

We illustrate the above statement about the function δ_σ for $r = 2$ (hence $n \geq 6$) by the following picture

![Diagram](image.png)

Proof The claim follows by induction on $r \geq 0$ from the following two properties of δ_σ:

(i) If $r > 0$ then $\delta_\sigma(m_{p_0-1,b_r-1}) = \delta_\sigma(m_{p_0+1,b_r-1}) = 2$.

(ii) If $r = 0$ then $\delta_\sigma(m_{p_0-1,c_r}) = \delta_\sigma(m_{p_0+1,c_r}) = \delta_\sigma(m_{p_0+1,c_r}) = 1$.

Indeed, the base step follows from (ii) and the induction step from (i).

Combining the assumption $\delta_\sigma(m_{p_0,b_r}) = 2$ with Lemma 2.6(3) and Corollary 2.17 gives the equalities $[A, v_{p_0-1,b_r}] = 2 = [v_{p_0+1,b_r}, C]$. Since A and C are indecomposable, $[v_{p_0+1,b_r}, A] = 0 = [C, v_{p_0-1,b_r}]$, by Lemma 2.2(3).

Let \mathcal{L} be the set of vertices lying on the following sectional path in $\mathbb{Z}\Delta$:

$$v_{p_0-n+r+2,c} \rightarrow v_{p_0-n+r+3,b_n-4} \rightarrow \cdots \rightarrow v_{p_0-1,b_r}.$$

Let $p' = p_0 - n + r + 1$. Applying Corollary 2.16 for $v \in \mathcal{L}$ we get

$$\sum_{v \in \mathcal{L}} (\text{mult}_v(A \oplus C) - \text{mult}_v(B)) = \delta_\sigma(m_{p',c_r}) + \delta_\sigma(m_{p_0,b_r}) - \begin{cases} \delta_\sigma(m_{p_0-1,b_r-1}), & r > 0, \\ \delta_\sigma(m_{p_0-1,c_r}) + \delta_\sigma(m_{p_0-1,c_r}), & r = 0. \end{cases}$$

For any $v \in \mathcal{L}$, $[v, v_{p_0-1,b_r}] = 1$, by Lemma 2.4, thus v is isomorphic neither to A nor to C, and consequently $\text{mult}_v(A \oplus C) = 0$. Remembering that $\delta_\sigma(m_{p_0,b_r}) = 2$, we get

$$2 \leq \begin{cases} \delta_\sigma(m_{p_0-1,b_r-1}), & r > 0, \\ \delta_\sigma(m_{p_0-1,c_r}) + \delta_\sigma(m_{p_0-1,c_r}), & r = 0. \end{cases}$$

On the other hand, by Corollary 2.18, $\delta_\sigma(m_{p_0-1,b_r-1}) \leq 2$, $\delta_\sigma(m_{p_0-1,c_r}) \leq 1$ and $\delta_\sigma(m_{p_0-1,c_r}) \leq 1$. Consequently, we get three equalities of the six equalities appearing in (i) and (ii).

Dual considerations for the following sectional path in $\mathbb{Z}\Delta$:

$$v_{p_0+1,b_r} \rightarrow \cdots \rightarrow v_{p_0+n-r-3,b_n-4} \rightarrow v_{p_0+n-r-2,c}$$

lead to the remaining three equalities in (i) and (ii). \square

Proof of Proposition 2.19. Let m_{p_0,a_0} be a mesh satisfying $\delta_{M,N}(m_{p_0,a_0}) < \delta_\sigma(m_{p_0,a_0})$. By Corollary 2.11, we can choose m_{p_0,a_0} such that the value $\psi(m_{p_0,a_0})$ is minimal. We conclude from the assumption $\text{supp}(\delta_\sigma) \subseteq \text{supp}(\delta_{M,N})$ and Corollary 2.18 that...
The key observation is that by Corollary 2.15 we get the formula
\[
\sum_{\nu_{p,a} \in \mathcal{R}} h_{\sigma}^\Delta \cdot (\text{mult}_{\nu_{p,a}}(N) - \text{mult}_{\nu_{p,a}}(M)) = -2 \cdot \delta_{M,N}(\mathbf{m}_{p_0,b_r})
\]
\[+ \delta_{M,N}(\mathbf{m}_{p_0-r-1,c'}) + \delta_{M,N}(\mathbf{m}_{p_0-r-1,c''}) + \delta_{M,N}(\mathbf{m}_{p_0+r-1,c'}) + \delta_{M,N}(\mathbf{m}_{p_0+r+1,c''}).\]

Combining Lemma 2.20 with the assumption supp(δ_{σ}) \(\subseteq\) supp($\delta_{M,N}$) and using $\delta_{M,N}(\mathbf{m}_{p_0,b_r}) = 1$, we get that the right-hand side is at least 2. Hence mult$_C(N) > 0$ for some $C' = \nu_{p',a'} \in \mathcal{R}$. Again by Lemma 2.20, $\delta_{\sigma}((\mathbf{m}_{p'-1,a'}) > 0$, which from the definition of δ_{σ} means that $\gamma \circ h \neq 0$ for some morphism $h: C' \to C$. Let σ' be the pullback of σ along h. We need to prove that $\delta_{\sigma'} \leq \delta_{M,N}$ and supp($\delta_{\sigma} - \delta_{\sigma'}$) \(\subseteq\) supp($\delta_{M,N} - \delta_{\sigma'}$).

Since $\delta_{\sigma'} \leq \delta_{\sigma}$ and supp(δ_{σ}) \(\subseteq\) supp($\delta_{M,N}$), it suffices to show that $\delta_{M,N}(\mathbf{m}_{p,a}) \geq \delta_{\sigma}(\mathbf{m}_{p,a})$ whenever $\delta_{\sigma}(\mathbf{m}_{p,a}) > 0$. Thus we assume that $\delta_{\sigma}(\mathbf{m}_{p,a}) > 0$. By Lemma 2.6(3), $[\nu_{p+1,a}, C'] > 0$, and from Lemma 2.2(3) we conclude that $\psi(\nu_{p+1,a}) \leq \psi(C')$. Using the fact that C' belongs to \mathcal{R} and how the latter was defined, we get the following sequence of inequalities
\[
\psi(\mathbf{m}_{p,a}) < \psi(\nu_{p+1,a}) \leq \psi(C') < \psi(\mathbf{m}_{p_0,b_r}).
\]
It follows from our choice of the mesh \mathbf{m}_{p_0,b_r} that $\delta_{M,N}(\mathbf{m}_{p,a}) \geq \delta_{\sigma}(\mathbf{m}_{p,a})$, which finishes the proof.

2.6 Passage from $\mathcal{D}^b(Q)$ to rep(Q)

The main aim of this subsection is to prove a result analogous to Proposition 2.19, concerning the category rep(Q), where Q is a Dynkin quiver of type \mathbb{D}. Throughout this subsection Q is a Dynkin quiver with underlying graph Δ.

As observed in Section 2.3, the \mathbb{k}-linear structure of the category $\mathcal{D}^b(Q)$ is fully described by the quiver $\mathbb{Z}\Delta$. Similarly, the category rep(Q) is fully described by its Auslander-Reiten quiver Γ_Q. Moreover, the identification of rep(Q) as a full subcategory of $\mathcal{D}^b(Q)$ corresponds to the identification of Γ_Q as a full convex subquiver of $\mathbb{Z}\Delta$, which we are going to explain. We note that introducing the Auslander-Reiten quiver Γ_Q as a subquiver of $\mathbb{Z}\Delta$ was done already in [7] 6.5.

By a slice in $\mathbb{Z}\Delta$ we mean a full convex subquiver containing exactly one vertex $\nu_{r,a}$ for each $a \in \Delta_0$. Thus $|r_a - r_b| = 1$ for any adjacent vertices a and b. Recall that $P_a = \nu_{p_a,a}$ for any vertex $a \in Q_0 = \Delta_0$. The vertices $P_a, a \in Q_0, together with the arrows connecting them form a slice \mathcal{S} isomorphic to Q^{op}, where Q^{op} is the opposite quiver of Q having the
same set of vertices, but with the arrows reversed. Consequently, the vertices \(I_a = v(P_a) = v_{p_{a + \Delta - 2, \Delta}(a)}, a \in Q_0 \), lie on a slice \(vS \), which is also isomorphic to \(Q^{\text{op}} \). Then the Auslander-Reiten quiver \(\Gamma_Q \) is the smallest full convex subquiver of \(Z \Delta \) containing \(S \) and \(vS \). We denote by \((\Gamma_Q)_2 \) the set of all meshes in \(Z \Delta \) which are contained in \(\Gamma_Q \).

The shifts \((\Gamma_Q)[i], i \in \mathbb{Z}, \) are pairwise disjoint subquivers of \(Z \Delta \), hence we have the following inclusion

\[\bigcup_{i \in \mathbb{Z}} (\Gamma_Q)[i] \subseteq Z \Delta. \]

In fact, this inclusion is the equality on the sets of vertices, and only the arrows connecting \(vS[i] \) with \(S[i + 1], i \in \mathbb{Z}, \) are missing (see for instance [8] I.5.5). For example, if \(Q \) is the quiver

\[
\begin{array}{ccc}
 & b & \\
 a & \rightarrow & c & \leftarrow & d
\end{array}
\]

then the above embedding of quivers looks as follows.

\[
\begin{array}{ccc}
 & & b & \\
 a & \rightarrow & c & \leftarrow & d
\end{array}
\]

\[
\begin{array}{ccc}
 & \Gamma_Q[-1] & \\
 P_a & \rightarrow & P_b
\end{array}
\]

\[
\begin{array}{ccc}
 & \Gamma_Q & \\
 P_c & \rightarrow & P_d
\end{array}
\]

\[
\begin{array}{ccc}
 & \Gamma_Q[1] & \\
 I_a & \rightarrow & I_d
\end{array}
\]

Let \(X \) and \(Y \) be representations in \(\text{rep}(Q) \). Then \([X, Y]^i = 0 \) for \(i < 0 \), and hence \((X, Y) = [X, Y] \). Therefore the definition of the integer-valued function \(\delta_{M,N} \) simplifies if we restrict to the subcategory \(\text{rep}(Q) \) as the following result explains.

Lemma 2.21 Let \(Q \) be a Dynkin quiver. Assume that \(M \) and \(N \) belong to \(\text{rep}(Q) \) and \(\text{dim}M = \text{dim}N \). Let \(m_{p,a} \) be a mesh in \((Z \Delta)_2 \). Then

\[
\delta_{M,N}(m_{p,a}) = [v_{p+1,a}, N] - [v_{p+1,a}, M] = [N, v_{p-1,a}] - [M, v_{p-1,a}]
\]

if \(m_{p,a} \) belongs to \((\Gamma_Q)_2 \), and \(\delta_{M,N}(m_{p,a}) = 0 \), otherwise.

Recall that for an exact sequence \(\sigma : 0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0 \) in \(\text{rep}(Q) \) we have the corresponding triangle \(\tilde{\sigma} : A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} A[1] \) in \(D^b(Q) \). We set \(\delta_\sigma = \delta_{\tilde{\sigma}} \). In this case Definition 2.5 and Corollary 2.12 simplify as shown in the following lemma. We also note that the function \(\delta_\sigma \) is closely related to the defect functors considered in [2] IV.4.

Lemma 2.22 Let \(\sigma : 0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0 \) be a short exact sequence in \(\text{rep}(Q) \) and \(m_{p,a} \) be any mesh in \(Z \Delta \). Then \(\delta_\sigma(m_{p,a}) = 0 \) if \(m_{p,a} \) does not belong to \((\Gamma_Q)_2 \). Otherwise,

\[
\delta_\sigma(m_{p,a}) = [v_{p+1,a}, A \oplus C] - [v_{p+1,a}, B] = [A \oplus C, v_{p-1,a}] - [B, v_{p-1,a}]
\]

equals the ranks of the last \(\mathbb{K} \)-linear morphisms in the induced exact sequences:

\[
0 \rightarrow \text{Hom}_Q(v_{p+1,a}, A) \rightarrow \text{Hom}_Q(v_{p+1,a}, B) \rightarrow \text{Hom}_Q(v_{p+1,a}, C) \rightarrow \text{Ext}_Q^1(v_{p+1,a}, A)
\]

and

\[
0 \rightarrow \text{Hom}_Q(C, v_{p-1,a}) \rightarrow \text{Hom}_Q(B, v_{p-1,a}) \rightarrow \text{Hom}_Q(A, v_{p-1,a}) \rightarrow \text{Ext}_Q^1(C, v_{p-1,a}).
\]
We are ready to restrict Proposition 2.19 to the category $\text{rep}(Q)$.

Corollary 2.23 Let Q be a Dynkin quiver of type \mathbb{D} and $\sigma : 0 \to A \to B \to C \to 0$ be a short exact sequence in $\text{rep}(Q)$ with A and C indecomposable. Assume that $M, N \in \text{rep}(Q)$ satisfy $\dim M = \dim N$, $\delta_{M,N} \geq 0$, $\text{supp}(\delta_{\sigma}) \subseteq \text{supp}(\delta_{M,N})$, but the inequality $\delta_{M,N} \geq \delta_{\sigma}$ does not hold.

Then there is an indecomposable direct summand C' of N together with a homomorphism $h : C' \to C$ such that the pullback $\sigma' : A \to B' \to C' \to 0$ of σ along h does not split, $\delta_{\sigma'} \leq \delta_{M,N}$ and $\text{supp}(\delta_{\sigma} - \delta_{\sigma'}) \subseteq \text{supp}(\delta_{M,N} - \delta_{\sigma'})$.

3 Schemes of Representations of Quivers

The set $\text{rep}^d_Q(R)$, where R is a commutative \mathbb{k}-algebra, has a natural structure of a vector space over \mathbb{k}, and using the addition simplifies working with elements of this set. In particular, any element of $\text{rep}^d_Q(\mathbb{k}[\varepsilon])$ can be uniquely presented in the form $N + \varepsilon \cdot Z$, where N and Z belong to $\text{rep}^d_Q(\mathbb{k})$. At the same time Z is viewed as a tangent vector in the Zariski tangent space $T_N \text{rep}^d_Q$. Hence $T_N \text{rep}^d_Q = \text{rep}^d_Q(\mathbb{k})$ for any $N \in \text{rep}^d_Q(\mathbb{k})$. We start this section with a more adequate representation-theoretic interpretation of elements of $T_N \text{rep}^d_Q$.

3.1 Tangent Vectors and Short Exact Sequences

Throughout this subsection Q is a finite quiver. If $U = (U_a; a \in Q_0)$ and $V = (V_a; a \in Q_0)$ are collections of finite dimensional vector spaces indexed by the vertices of Q, then we define \mathbb{k}-schemes \mathcal{V}_V^U and \mathcal{A}_V^U by

$$
\mathcal{V}_V^U(R) = \prod_{a \in Q_0} \text{Hom}_R(R \otimes U_a, R \otimes V_a) \quad \text{and} \quad \mathcal{A}_V^U(R) = \prod_{a \in Q_1} \text{Hom}_R(R \otimes U_{sa}, R \otimes V_{ta}),
$$

where all tensor products in this section are taken over \mathbb{k}. In particular, if $\mathbb{k}^d = (\mathbb{k}^d_a)$ and we identify the R-homomorphisms of the form $R \otimes \mathbb{k}^d \to R \otimes \mathbb{k}^e$ with the corresponding matrices in $M_{e \times d}(R)$, then

$$
\mathcal{A}_\mathbb{k}^d = \text{rep}^d_Q.
$$

Similarly GL_d is an open subscheme of $\mathcal{V}_\mathbb{k}^d_a$.

If $h \in \mathcal{V}_V^U(R)$ and $Z \in \mathcal{A}_V^U(R)$, then we define $Z \circ h \in \mathcal{A}_V^U(R)$ by

$$
(Z \circ h)_a = Z_a \circ h_{sa},
$$

for any $a \in Q_1$. We define $\circ : \mathcal{V}_V^U(R) \times \mathcal{A}_V^U(R) \to \mathcal{A}_V^U(R)$ dually. Finally we have $\circ : \mathcal{V}_V^U(R) \times \mathcal{V}_V^U(R) \to \mathcal{V}_V^U(R)$ defined in the obvious way. We note that the action \star of $\text{GL}_d \subseteq \mathcal{V}_\mathbb{k}^d_a$ on $\text{rep}^d_Q = \mathcal{A}_\mathbb{k}^d$ can be written as $g \star M = g \circ M \circ g^{-1}$.

If $U = \bigoplus_{s \in S} U_s^a$ (i.e. $U_a = \bigoplus_{s \in S} U_a^s$ for each $a \in Q_0$) and $V = \bigoplus_{s' \in S'} V_{s'}$, then

$$
\mathcal{V}_V^U = \prod_{s \in S, s' \in S'} \mathcal{V}_{V_{s'}}^{U_s} \quad \text{and} \quad \mathcal{A}_V^U = \prod_{s \in S, s' \in S'} \mathcal{A}_{V_{s'}}^{U_s}.
$$

For $h \in \mathcal{V}_V^U(R)$, $q \in S$ and $p \in S'$, we denote by $h^{p,q}$ the image of h under the projection $\mathcal{V}_V^U(R) \to \mathcal{V}_{V_{p}}^{U_{q}}(R)$ induced by the former of the above decompositions. Conversely, given $h^{p,q} \in \mathcal{V}_{V_{p}}^{U_{q}}(R)$, then $h^{p,q}$ denotes the image of $h^{p,q}$ under the section $\mathcal{V}_{V_{p}}^{U_{q}}(R) \to \mathcal{V}_V^U(R)$.

\[\square \]
We define $Z^{p,q} \in \mathcal{A}_{V, p}^U(R)$, for $Z \in \mathcal{A}_V^U(R)$, and $\tilde{Z}^{p,q} \in \mathcal{A}_V^U(R)$, for $Z^{p,q} \in \mathcal{A}_{V, p}^U(R)$, analogously. In particular,

$$h = \sum_{s \in S, s' \in S'} h^{s, s'}$$

and

$$Z = \sum_{s \in S, s' \in S'} \tilde{Z}^{s, s'}.$$ \hspace{1cm} (3.3)

If $U = (U_a, U_\alpha)$ and $V = (V_a, V_\alpha)$ are representations in $\text{rep}(Q)$, then we put

$$\mathcal{V}_V^U = \mathcal{V}_{(V_a)}^U \quad \text{and} \quad \mathcal{A}_V^U = \mathcal{A}_{(V_a)}^U.$$

Moreover, we define $Z_Q^1(U, V) = \mathcal{A}_V^U(\mathbb{k})$. Since $\text{Hom}_Q(U, V) \subseteq \mathcal{V}_V^U(\mathbb{k})$, we note that using the compositions defined above we obtain that $Z_Q^1(?, ?)$ is a functor from $\text{rep}(Q)^{\text{op}} \times \text{rep}(Q)$ to $\text{mod} \mathbb{k}$. Observe that if $N \in \text{rep}_Q^d(\mathbb{k})$, then

$$Z_Q^1(N, N) = \mathcal{A}_N^k(\mathbb{k}) = \text{rep}_Q^d(\mathbb{k}) = T_N \text{rep}_Q^d,$$ \hspace{1cm} (3.4)

and we will view the elements of $Z_Q^1(N, N)$ as tangent vectors.

For representations U and V in $\text{rep}(Q)$ and $Z \in Z_Q^1(V, U)$, let $W = W(U, Z, V)$ denote the representation such that $W_a = U_a \oplus V_a$ and

$$W_a: U_{\alpha a} \oplus V_{\alpha a} \xrightarrow{\begin{bmatrix} U_a Z_a \\ 0 \end{bmatrix}} U_{\alpha a} \oplus V_{\alpha a}.$$

Let $\varphi: U \rightarrow W$ and $\psi: W \rightarrow V$ denote the homomorphisms such that $\varphi_a: U_a \rightarrow U_a \oplus V_a$ is the canonical section and $\psi_a: U_a \oplus V_a \rightarrow V_a$ is the canonical projection, for any $a \in Q_0$. Then

$$\sigma(U, Z, V): 0 \rightarrow U \xrightarrow{\varphi} W(U, Z, V) \xrightarrow{\psi} V \rightarrow 0$$

is a short exact sequence in $\text{rep}(Q)$. If it causes no confusion, we will present the sequence $\sigma(U, Z, V)$ symbolically in the form

$$0 \rightarrow U \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} \begin{bmatrix} U \\ Z \end{bmatrix} \xrightarrow{\begin{bmatrix} 0 \\ 1 \end{bmatrix}} V \rightarrow 0.$$

Moreover, if $h \in \text{Hom}_Q(V', V)$ then $\sigma(U, Z, h, V')$ is the pullback of $\sigma(U, Z, V)$ along h leading to the following commutative diagram

$$\begin{array}{cccc}
0 & \rightarrow & U & \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} \begin{bmatrix} U \\ Z \end{bmatrix} & \xrightarrow{\begin{bmatrix} 0 \\ 1 \end{bmatrix}} V' & \rightarrow & 0 \\
0 & \rightarrow & U & \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} \begin{bmatrix} U \\ Z \end{bmatrix} & \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix} h} V & \rightarrow & 0
\end{array}$$

Dually $\sigma(U', h' \circ Z, V)$ is the pushout of $\sigma(U, Z, V)$ along h', for any homomorphism $h': U \rightarrow U'$.

Let U and V be representations in $\text{rep}(Q)$. We denote by $\mathbb{B}_Q^1(V, U)$ the image of the map

$$\eta_{V, U}: \mathcal{V}_V^U(\mathbb{k}) \rightarrow \mathcal{A}_V^U(\mathbb{k}) = Z_Q^1(V, U), \quad \eta_{V, U}(h) = h \circ (V_a) - (U_a) \circ h.$$

Then $\mathbb{B}_Q^1(?, ?)$ is a \mathbb{k}-linear subfunctor of $Z_Q^1(?, ?)$. Moreover, $Z \in Z_Q^1(V, U)$ belongs to $\mathbb{B}_Q^1(V, U)$ if and only if the short exact sequence $\sigma(U, Z, V)$ splits. The quotient of $Z_Q^1(V, U)$ by $\mathbb{B}_Q^1(V, U)$ can be identified with the extension group $\text{Ext}_Q^1(V, U)$ of V by U, and we have the following exact sequence

$$0 \rightarrow \text{Hom}_Q(V, U) \rightarrow \mathcal{V}_V^U(\mathbb{k}) \xrightarrow{\eta_{V, U}} \mathcal{A}_V^U(\mathbb{k}) \rightarrow \text{Ext}_Q^1(V, U) \rightarrow 0.$$
Applying the above for \(U = N = V \), where \(N \in \text{rep}_Q^d(\mathbb{k}) \), we get the exact sequence

\[
0 \to \text{End}_Q(N) \to \mathcal{Y}^{\text{ld}}_d(\mathbb{k}) \xrightarrow{\eta_{N,N}} \mathcal{A}^{\text{ld}}_d(\mathbb{k}) \to \text{Ext}^1_Q(N, N) \to 0.
\]

The space \(\mathcal{Y}^{\text{ld}}_d(\mathbb{k}) \) can be identified with the tangent space \(T_1 \text{GL}_d \), the space \(\mathcal{A}^{\text{ld}}_d(\mathbb{k}) = Z^1_Q(N, N) \) with the tangent space \(T_{N} \text{rep}_Q^d \), and \(\eta_{N,N} \) with the tangent map induced by the orbit map

\[
\text{GL}_d \to \text{rep}_Q^d, \quad g \mapsto g \star N.
\]

Under this identification, \(T_N \mathcal{O}_N = \mathbb{B}^1_Q(N, N) \) and the normal space \(T_N \text{rep}_Q^d / T_N \mathcal{O}_N \) at \(N \) to \(\mathcal{O}_N \) in \(\text{rep}_Q^d \) coincides with \(\text{Ext}^1_Q(N, N) \), which is a famous result by Voigt [16].

3.2 Proof of the Main Result

Throughout this subsection \(Q \) is a Dynkin quiver, \(M \) a representation in \(\text{rep}(Q) \) and \(d = \dim M \). We will work with closed subschemes of \(\text{rep}_Q^d \) and hence we start with a few general remarks on subschemes. If \(\mathcal{X} \) is a subscheme of a \(\mathbb{k} \)-scheme \(\mathcal{Y} \), then the corresponding map \(\mathcal{X}(R) \to \mathcal{Y}(R) \) is injective, and we will identify \(\mathcal{X}(R) \) with its image in \(\mathcal{Y}(R) \), for any commutative \(\mathbb{k} \)-algebra \(R \). The following fact can be concluded from [6] I.2.6.1:

Lemma 3.1 Let \(\mathcal{X} \) be a closed subscheme of a \(\mathbb{k} \)-scheme \(\mathcal{Y} \) and \(\varphi : R \to S \) an injective homomorphism of commutative \(\mathbb{k} \)-algebras. Then \(\mathcal{X}(R) = \mathcal{Y}(\varphi)^{-1}(\mathcal{X}(S)) \).

We will use the above lemma several times for a \(\mathbb{k} \)-scheme \(\mathcal{Y} \) which is affine (specifically for \(\mathcal{Y} = \text{rep}_Q^d \)). Then the closed embedding \(\mathcal{X} \subseteq \mathcal{Y} \) is isomorphic to \(\text{Spec}(\psi) : \text{Spec}(A/I) \to \text{Spec}(A) \), where \(\psi : A \to A/I \) is the canonical surjective homomorphism, for some commutative \(\mathbb{k} \)-algebra \(A \) and an ideal \(I \). Hence the claim translates to an obvious fact about the existence of a homomorphism completing a given commutative diagram in the category of \(\mathbb{k} \)-algebras to another commutative diagram, as follows:

\[
\begin{array}{ccc}
A & \longrightarrow & R \\
\downarrow \psi & & \downarrow \varphi \\
A/I & \longrightarrow & S
\end{array} \quad \Rightarrow \quad \begin{array}{ccc}
A & \longrightarrow & R \\
\downarrow \psi & & \downarrow \varphi \\
A/I & \longrightarrow & S
\end{array}
\]

If \(\varphi : R \to S \) is an injective \(\mathbb{k} \)-algebra homomorphism, \(\mathcal{X} \) is a \(\mathbb{k} \)-scheme and \(x \in \mathcal{X}(R) \), it will be convenient to denote the image of \(x \) under the map \(\mathcal{X}(\varphi) : \mathcal{X}(R) \to \mathcal{X}(S) \) also by \(x \).
Let $\pi : \mathbb{k}[\varepsilon] \to k$ denote the canonical surjective homomorphism. Since \overline{O}_M is a closed subscheme of C_M and the latter is a closed subscheme of rep^d_Q, we have the following commutative diagram with inclusions:

$$
\begin{array}{ccc}
\overline{O}_M(\mathbb{k}[\varepsilon]) & \subseteq & C_M(\mathbb{k}[\varepsilon]) \\
\downarrow & & \downarrow \\
\overline{O}_M(k) & = & C_M(k) \subseteq \text{rep}^d_Q(k)
\end{array}
$$

where the equality in the second row follows from (a reformulation of) Theorem 1.1. Observe that $\overline{O}_M(\mathbb{k}[\varepsilon]) = C_M(\mathbb{k}[\varepsilon])$ if and only if $T_N\overline{O}_M = T_NC_M$ for all points $N \in \overline{O}_M(k)$. It follows from Theorem 1.1 and [14] Corollary 7.4 that

$$
\overline{O}_M(k) = C_M(k) = \{ N \in \text{rep}^d_Q(k); \ \delta_{M,N} \geq 0 \},
$$

(3.5)

$C_M(\mathbb{k}[\varepsilon]) = \{ N + \varepsilon \cdot Z \in \text{rep}^d_Q(\mathbb{k}[\varepsilon]); \ \delta_{M,N} \geq 0 \text{ and } \text{supp}(\delta_{\sigma(N,Z,N)}) \subseteq \text{supp}(\delta_{M,N}) \}$.

(3.6)

Let $N \in C_M(\mathbb{k})$. Given U and V in $\text{rep}(Q)$ we denote by $\mathbb{Z}^1_{M,N}(V, U)$ the subset of $\mathbb{Z}^1_Q(V, U)$ consisting of the elements Z such that $\text{supp}(\delta_{\sigma(U,Z,V)}) \subseteq \text{supp}(\delta_{M,N})$. In particular,

$$
T_NC_M = \mathbb{Z}^1_{M,N}(N, N).
$$

It follows from [14, Section 7] that $\mathbb{Z}^1_{M,N}(?, ?, ?, ?)$ is a \mathbb{k}-linear subfunctor of $\mathbb{Z}^1_Q(?, ?, ?, ?)$ containing $\mathbb{B}^1_Q(?, ?, ?)$.

Let $N \in \text{rep}^d_Q(\mathbb{k})$. Assume that we have a fixed decomposition $N = \bigoplus_{s \in S} N^s$ as a representation of Q. In particular, the collection $(N_\alpha) = k^d$ decomposes as $\bigoplus_{s \in S} (N^s_\alpha)$. If $p, q \in S$, then using the notation introduced after Eq. 3.2 we have $H^{p,q} \in \mathcal{A}^q_{N^p}(k)$ for each $H \in \mathcal{A}^q_{k^d}(k)$. Equality (3.4) implies that we can apply the above notation both when $H = L$ is a point of $\text{rep}^d_Q(k)$, and when $H = Z$ is viewed as tangent vector. Conversely, given $H^{p,q} \in \mathcal{A}^q_{N^p}(k)$ we have $\overline{H}^{p,q} \in \mathcal{A}^q_{k^d}(k)$. Observe that $N^{p,p}$ is the collection (N^p_α) and $N^{p,q} = 0$, for all $p \neq q \in S$, hence $N = \sum_{s \in S} \mathbb{N}^s$. Analogously, applying the notation introduced after Eq. 3.2 for the scheme $\mathcal{V}^s_{k^d}$ we also have $g^{p,q} \in \mathcal{V}^q_{N^p}(R)$ for $g \in \text{GL}_d(R)$. Finally, if $s \in S$, we set 1^s for the identity on N^s, which is an element of $\mathcal{V}^s_{N^s}(\mathbb{k})$. Consequently, $\sum_{s \in S} 1^s$ is the identity on $(N_\alpha) = k^d$.

Lemma 3.2 Let N be a point in $\text{rep}^d_Q(k)$ with a fixed decomposition $N = \bigoplus_{s \in S} N^s$. Consider a representation $L = N + Z^{p,q}$ in $\text{rep}^d_Q(\mathbb{k})$ for $Z^{p,q} \in \mathcal{A}^q_{N^p}(k)$, then the following conditions hold:

1. $\delta_{L,N} = \delta_{\sigma(N^{p,p}, Z^{p,q}, N^{q,q})}$.
2. L degenerates to N, i.e. $N \in \overline{O}_L(k)$.
3. $L \simeq N$ if and only if $Z^{p,q}$ belongs to $\mathbb{B}^1_Q(\mathbb{N}^q, N^{p,p})$.

Proof Since $L = \sum_{s \in S} \mathbb{N}^s + Z^{p,q}$, we have the following isomorphism of representations

$$
L \simeq \bigoplus_{s \neq p,q} N^s \oplus \left[\begin{array}{c} N^p \\ 0 \end{array} \right] Z^{p,q} \right] ,
$$

\[\bigoplus_{s \neq p,q} N^s \oplus \left[\begin{array}{c} N^p \\ 0 \end{array} \right] Z^{p,q} \right] .
and (1) follows. In particular, \(\delta_{L,N} \geq 0 \), hence (2) holds, by Eq. 3.5.

(3). We have from (1) that \(L \) is isomorphic to \(N \) if and only if the sequence \(\sigma(N^p, Z^{p,q}, N^q) \) splits. The latter means that \(Z^{p,q} \) belongs to \(\mathbb{B}^1_Q(N^q, N^p) \).

\[\sum_{s \in S} N^s \] be a fixed decomposition of a point \(N \) in \(\mathcal{O}_M(\mathbb{k}) \). Let \(Z^{p,q} \in A^N_{N^p}(\mathbb{k}) \), for \(p \neq q \) in \(S \), be such that \(\delta_{\sigma(N^p, Z^{p,q}, N^q)} \leq \delta_{M,N} \). Then

\[N + Z^{p,q} \in \mathcal{O}_M(\mathbb{k}) \quad \text{and} \quad N + \varepsilon \cdot Z^{p,q} \in \mathcal{O}_M(\mathbb{k}[\varepsilon]) \] (equivalently, \(Z^{p,q} \in T_N(\mathcal{O}_M) \)).

Proof Let \(L = N + Z^{p,q} \). By Lemma 3.2(1), \(\delta_{L,N} = \delta_{\sigma(N^p, Z^{p,q}, N^q)} \) and \(\delta_{M,L} = \delta_{M,N} - \delta_{\sigma(N^p, Z^{p,q}, N^q)} \geq 0 \). Hence \(L \in \mathcal{O}_M(\mathbb{k}) \), by Eq. 3.5.

We claim that the point \(N + t \cdot Z^{p,q} \) of \(\text{rep}^d_Q(\mathbb{k}[t]) \) belongs to \(\mathcal{O}_M(\mathbb{k}[t]) \). Consider the element \(g \) in \(\text{GL}_d(\mathbb{k}[t, t^{-1}]) \) given by \(g = \sum_{s \neq p} \hat{t}^s + t \cdot \hat{t}^p \). Obviously \(g^{-1} = \sum_{s \neq p} \hat{t}^s + t^{-1} \cdot \hat{t}^p \). Since \(L = \sum_{s \in S} \hat{N}^{s,s} + Z^{p,q} \),

\[g \ast L = g \circ L \circ g^{-1} = \sum_{s \in S} \hat{N}^{s,s} + t \cdot Z^{p,q} = N + t \cdot Z^{p,q} \]

as elements of \(\text{rep}^d_Q(\mathbb{k}[t, t^{-1}]) \). Hence the claim follows from the fact that \(\mathcal{O}_M(\mathbb{k}[t]) \) is a \(\text{GL}_d \)-invariant subscheme of \(\text{rep}^d_Q(\mathbb{k}) \) and by Lemma 3.1 applied to the canonical injective homomorphism \(\mathbb{k}[t] \to \mathbb{k}[t, t^{-1}] \).

Applying the homomorphism \(\mathbb{k}[t] \to \mathbb{k}[\varepsilon] \) sending \(t \) to \(\varepsilon \) we get that \(N + \varepsilon \cdot Z^{p,q} \) belongs to \(\mathcal{O}_M(\mathbb{k}[\varepsilon]) \).

The above lemma gives a method for detecting vectors tangent to \(\mathcal{O}_M(\mathbb{k}) \). This method is sufficient for the representations of Dynkin quivers of type \(\mathbb{A} \) as the proposition below shows. Obviously this proposition follows also immediately from Theorem 1.2.

Proposition 3.4 Let \(Q \) be a Dynkin quiver of type \(\mathbb{A} \) and \(M \in \text{rep}(Q) \). Then \(\mathcal{O}_M(\mathbb{k}[\varepsilon]) = \mathcal{C}_M(\mathbb{k}[\varepsilon]) \). In other words, \(T_N(\mathcal{O}_M) = T_N(\mathcal{C}_M) \) for any \(N \) in \(\mathcal{O}_M(\mathbb{k}) \).

Proof Let \(N \in \mathcal{O}_M(\mathbb{k}) \) and fix a decomposition \(N = \bigoplus N^s \) of \(N \) such that each \(N^s \) is indecomposable.

Choose \(Z \in T_N(\mathcal{C}_M) = \mathbb{Z}^1_{M,N}(N, N) \). Since \(Z = \sum_{p,q \in S} Z^{p,q} \) (see Eq. 3.3), it is sufficient to show that \(Z^{p,q} \in T_N(\mathcal{O}_M) \), for all \(p, q \in S \). Fix \(p \) and \(q \). We may assume \(Z^{p,q} \notin \mathbb{B}^1_Q(N, N) \), as \(\mathbb{B}^1_Q(N, N) = T_N(\mathcal{O}_N) \subseteq T_N(\mathcal{O}_M) \). Since \(\mathbb{Z}^1_{M,N}(?, ?, N^q, N^p) \) are subfunctors of \(\mathbb{Z}^1_Q(?, ?) \), \(Z^{p,q} \) belongs to \(\mathbb{Z}^1_{M,N}(N^q, N^p) \) but not to \(\mathbb{B}^1_Q(N^q, N^p) \). In particular, \(\text{Ext}^1_Q(N^q, N^p) \) is non-zero. Since \(Q \) is a Dynkin quiver, \(N^q \) is not isomorphic to \(N^p \), hence \(q \neq p \).

It follows from the definition of \(\mathbb{Z}^1_{M,N}(?, ?) \) that \(\text{supp}(\delta_{\sigma(N^p, Z^{p,q}, N^q)}) \subseteq \text{supp}(\delta_{M,N}) \). Combining Lemmas 2.2(4) and 2.6(3) we get that the values of the function \(\delta_{\sigma(N^p, Z^{p,q}, N^q)} \) do not exceed 1. Hence we conclude the inequality \(\delta_{\sigma(N^p, Z^{p,q}, N^q)} \leq \delta_{M,N} \), thus \(Z^{p,q} \) belongs to \(T_N(\mathcal{O}_M) \), by Lemma 3.3.

The above method does not extend to Dynkin quivers of types \(\mathbb{D} \) and \(\mathbb{E} \). A reason for this is that for these quivers there exist short exact sequences \(\sigma \) with indecomposable end terms such that the functions \(\delta_{\sigma} \) attain values larger than 1.
Proposition 3.5 Let Q be a Dynkin quiver of type \mathbb{D} and $N = \bigoplus_{s \in S} N^s$ be a decomposition of $N \in \overline{\mathcal{O}}_M(k)$ such that each representation N^s is indecomposable. Let $Z_{p,q} \in \mathbb{Z}_{M,N}(N^q,N^p)$, for $p \neq q$ in S, be such that the inequality $\delta_{\sigma(N^p,Z_{p,q},N^q)} \leq \delta_{M,N}$ does not hold.

Then there is an index r in $S \setminus \{p,q\}$ and a homomorphism $h^{q,r}$ in $\text{Hom}_Q(N^r,N^q)$ such that for $Y^{p,r} = Z_{p,q} \circ h^{q,r}$ the following conditions hold:

1. The point $L = N + Y^{p,r}$ in $\text{rep}_Q^d(k)$ belongs to $\overline{\mathcal{O}}_M(k)$.
2. N is a proper degeneration of L, i.e. $\mathcal{O}_N \subsetneq \overline{\mathcal{O}}_L$. In particular, $\dim \mathcal{O}_N < \dim \mathcal{O}_L$.
3. The point $L + \varepsilon \cdot \hat{Z}_{p,q}^r$ in $\text{rep}_Q^d(k[\varepsilon])$ belongs to $\mathcal{C}_M(k[\varepsilon])$ (equivalently, $\hat{Z}_{p,q}^r \in T_L \mathcal{C}_M$).

Proof We apply Corollary 2.23 for $\sigma = \sigma(N^p,Z_{p,q},N^q)$. Hence there is an index r in S and a homomorphism $h^{q,r}$ in $\text{Hom}_Q(N^r,N^q)$ such that for $Y^{p,r} = Z_{p,q} \circ h^{q,r}$ the following conditions hold:

1. The sequence $\sigma(N^p,Y^{p,r},N^r): 0 \to N^p \xrightarrow{[1 \ 0]} \begin{bmatrix} N^p & Y^{p,r} \end{bmatrix}_0 \to N^r \to 0$ does not split. Equivalently, $Y^{p,r}$ does not belong to $\mathbb{B}_Q^1(N^r,N^p)$.
2. $\delta_{\sigma(N^p,Y^{p,r},N^r)} \leq \delta_{M,N}$.
3. $\text{supp}(\delta_{\sigma(N^p,Z_{p,q},N^q)} - \delta_{\sigma(N^p,Y^{p,r},N^r)}) \subseteq \text{supp}(\delta_{M,N} - \delta_{\sigma(N^p,Y^{q,r},N^r)})$.

We claim that $r \neq p,q$. Note that (i) means that $Y^{p,q} = Z_{p,q} \circ h^{q,r}$ does not belong to $\mathbb{B}_Q^1(N^r,N^p)$. In particular $\text{Ext}_1^Q(N^r,N^p)$ is non-zero, hence $r \neq p$. Moreover $h^{q,r}$ is non-zero. Suppose that $q = r$. By Lemma 2.1(2), $\text{End}_Q(N^q) = k$, hence $h^{q,r}$ would be an isomorphism, thus $\delta_{\sigma(N^p,Y^{p,r},N^r)} = \delta_{\sigma(N^p,Z_{p,q},N^q)}$. Then (ii) contradicts the assumptions on $\delta_{\sigma(N^p,Z_{p,q},N^q)}$. Consequently, $r \neq q$, and the claim is proved.

Now (1) follows from (ii) and Lemma 3.3, and (2) is a consequence of (i) and Lemma 3.2. In order to prove (3) it suffices by Eq. 3.6 to show that

4. $\text{supp}(\delta_{\sigma(L,\hat{Z}_{p,q}^r,L)}) \subseteq \text{supp}(\delta_{M,L})$.

As in the proof of Lemma 3.2, we see that L is isomorphic to $\bigoplus_{s \neq p,q} N^s \oplus \begin{bmatrix} N^p & Y^{p,r} \end{bmatrix}_0$. Observe that $\sigma(L,\hat{Z}_{p,q}^r,L)$ is the direct sum of the following split sequence

$$0 \to \bigoplus_{s \neq p,r} N^s \to \bigoplus_{s \neq p,r} N^s \oplus \bigoplus_{s \neq p,q,r} N^s \oplus \begin{bmatrix} N^p & Y^{p,r} \end{bmatrix}_0 \to N^s \oplus \begin{bmatrix} N^p & Y^{p,r} \end{bmatrix}_0 \to 0$$

and the sequence

$$0 \to \begin{bmatrix} N^p & Y^{p,r} \end{bmatrix}_0 \to \begin{bmatrix} N^p & Y^{p,r} & Z_{p,q} \end{bmatrix}_0 \to \begin{bmatrix} N^p & Y^{p,r} \end{bmatrix}_0 \to N^q \to 0.$$
Proof of Theorem 1.3 Let \(Q \) be a Dynkin quiver of type \(\mathbb{D} \). By decreasing induction on \(\dim O_N \) we prove that \(T_N \overline{O}_M = T_N C_M \) for all \(N \in \overline{O}_M(\mathbb{k}) = C_M(\mathbb{k}) \). Choose \(N \in \overline{O}_M(\mathbb{k}) \) and assume \(T_L \overline{O}_M = T_L C_M \) for all \(L \in \overline{O}_M \) with \(\dim O_L > \dim O_N \). We also fix a decomposition \(N = \bigoplus N^s \) of \(N \) such that each \(N^s \) is indecomposable.

Let \(Z \in \mathbb{Z}_{1,M,N}(N,N) \). Similarly as in the proof of Proposition 3.4 it is enough to show that \(\overline{Z}^{p,q} \in T_N \overline{O}_M \), for all \(p,q \in S \). By repeating arguments from that proof, we may assume \(p \neq q \) and the inequality \(\delta_O(N^p, Z^{p,q}, N^q) \leq \delta_M, N \) does not hold, thus we may apply Proposition 3.5. In particular, there exists \(Y^{p,r} \in \mathbb{Z}_Q(N^r, N^p) \) such that \(L = N + Y^{p,r} \) belongs to \(\overline{O}_M(\mathbb{k}) \), \(\dim O_L > \dim O_N \), and \(\overline{Z}^{p,q} \) belongs to \(T_L C_M \). But the latter equals \(T_L \overline{O}_M \) by induction hypothesis, hence \(N + Y^{p,r} + \varepsilon \cdot \overline{Z}^{p,q} \) belongs to \(\overline{O}_M(\mathbb{k}[\varepsilon]) \).

We claim that the point \(N + t \cdot Y^{p,r} + \varepsilon \cdot \overline{Z}^{p,q} \) of \(\text{rep}_d^d(\mathbb{k}[t] \otimes \mathbb{k}[\varepsilon]) \) belongs to \(\overline{O}_M(\mathbb{k}[\varepsilon]) \). Consider the element \(g \in \text{GL}_d(\mathbb{k}[t, t^{-1}] \otimes \mathbb{k}[\varepsilon]) \) given by \(g = \sum_{s \neq r} \hat{1}^s + t^{-1} \cdot \hat{1}^r \). Then \(g^{-1} = \sum_{s \neq r} \hat{1}^s + t \cdot \hat{1}^r \). Moreover,

\[
g \ast (N + Y^{p,r} + \varepsilon \cdot \overline{Z}^{p,q}) = g \circ \left(\sum_{s \in S} N^{s,s} + Y^{p,r} + \varepsilon \cdot \overline{Z}^{p,q} \right) \circ g^{-1} = \sum_{s \in S} N^{s,s} + t \cdot Y^{p,r} + \varepsilon \cdot \overline{Z}^{p,q} = N + t \cdot Y^{p,r} + \varepsilon \cdot \overline{Z}^{p,q}
\]

as elements of \(\text{rep}_d^d(\mathbb{k}[t, t^{-1}] \otimes \mathbb{k}[\varepsilon]) \). Now the claim follows from the fact that \(\overline{O}_M \) is a \(\text{GL}_d^d \)-invariant subscheme of \(\text{rep}_d^d \) and by Lemma 3.1 applied to the canonical injective homomorphism \(\mathbb{k}[t] \otimes \mathbb{k}[\varepsilon] \to \mathbb{k}[t, t^{-1}] \otimes \mathbb{k}[\varepsilon] \).

Applying the homomorphism \(\mathbb{k}[t] \otimes \mathbb{k}[\varepsilon] \to \mathbb{k}[\varepsilon] \) sending \(1 \otimes \varepsilon \) to \(\varepsilon \) and \(t \otimes 1 \) to 0 we get that \(N + \varepsilon \cdot \overline{Z}^{p,q} \) belongs to \(\overline{O}_M(\mathbb{k}[\varepsilon]) \). Consequently, \(\overline{Z}^{p,q} \in T_N \overline{O}_M \), which finishes the proof. \(\square \)

Acknowledgements The both authors gratefully acknowledge the support of the National Science Centre grant no. 2020/37/B/ST1/00127.

Data Availability Statement Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Conflict of Interests There are no known conflicts of interest associated with this publication.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abeasis, S., Del Fra, A.: Degenerations for the representations of an equioriented quiver of type \(A_m \). Boll. Un. Mat. Ital. Suppl. 2, 157–171 (1980)
2. Auslander, M., Reiten, I., Smalø, S.O.: Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., vol. 36. Cambridge Univ. Press, Cambridge (1995)
3. Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. vol. 1, London Math. Soc. Stud. Texts, vol. 65, Cambridge Univ. Press, Cambridge (2006)
4. Bongartz, K.: Degenerations for representations of tame quivers. Ann. Sci. École Norm. Sup. (4) 28(5), 647–668 (1995)
5. Bongartz, K.: On degenerations and extensions of finite-dimensional modules. Adv. Math. 121(2), 245–287 (1996)
6. Demazure, M., Gabriel, P.: Introduction to Algebraic Geometry and Algebraic Groups, North-Holland Math. Stud. vol., 39, North-Holland, Amsterdam-New York (1980)
7. Gabriel, P.: Auslander-Reiten sequences and representation-finite algebras, Representation Theory, I, Lecture Notes in Math., vol. 831, pp. 1–71. Springer, Berlin (1980)
8. Happel, D.: Triangulated Categories in the Representation Theory of Finite-dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119. Cambridge Univ. Press, Cambridge (1988)
9. Hesselink, W.: Singularities in the nilpotent scheme of a classical group. Trans. Amer. Math. Soc. 222, 1–32 (1976)
10. Lakshmibai, V., Magyar, P.: Degeneracy schemes, quiver schemes, and Schubert varieties. Internat. Math. Res. Notices 12, 627–640 (1998)
11. Reiten, I., Van den Bergh, M.: Noetherian hereditary abelian categories satisfying Serre duality. J. Amer. Math. Soc. 15(2), 295–366 (2002)
12. Riedtmann, Ch.: Algebren, Darstellungskörer, Überlagerungen und zurück. Comment. Math. Helv. 55(2), 199–224 (1980)
13. Riedtmann, Ch.: Degenerations for representations of quivers with relations. Ann. Sci. École Norm. Sup. (4) 19(2), 275–301 (1986)
14. Riedtmann, Ch., Zwara, G.: Orbit closures and rank schemes. Comment. Math. Helv. 88(1), 55–84 (2013)
15. Ringel, C.M.: Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., vol. 1099. Springer, Berlin (1984)
16. Voigt, D.: Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen, Lecture Notes in Math., vol. 592. Springer, Berlin (1977)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.