ON THE MAXIMAL NUMBER OF ELEMENTS PAIRWISE GENERATING THE FINITE ALTERNATING GROUP

FRANCESCO FUMAGALLI, MARTINO GARONZI, AND PIETRO GHERI

Abstract. Let G be the alternating group of degree n. Let $\omega(G)$ be the maximal size of a subset S of G such that $\langle x, y \rangle = G$ whenever $x, y \in S$ and $x \neq y$ and let $\sigma(G)$ be the minimal size of a family of proper subgroups of G whose union is G. We prove that, when n varies in the family of composite numbers, $\sigma(G)/\omega(G)$ tends to 1 as $n \to \infty$. Moreover, we explicitly calculate $\sigma(A_n)$ for $n \geq 21$ congruent to 3 modulo 18.

1. Introduction

Given a finite group G that can be generated by 2 elements but not by 1 element, set $\omega(G)$ to be the largest size of a pairwise generating set $S \subseteq G$, that is, a subset S of G with the property that $\langle x, y \rangle = G$ for any two distinct elements x, y of S. Also, set $\sigma(G)$ to be the covering number of G, that is the minimal number of proper subgroups of G whose union is G. We will reserve the term “covering” of G for any family of proper subgroups of G whose union is G.

Since any proper subgroup of G contains at most one element of any pairwise generating set, $\omega(G) \leq \sigma(G)$ always.

S. Blackburn [2] and L. Stringer [15] proved that if n is odd and $n \neq 9, 15$ then $\sigma(S_n) = \omega(S_n)$ and that if $n \equiv 2 \pmod{4}$ then $\sigma(A_n) = \omega(A_n)$. Stringer also proved that $\omega(S_9) < \sigma(S_9)$. In [2] it is conjectured that, if S is a finite non abelian simple group, then $\sigma(S)/\omega(S)$ tends to 1 as the order of S goes to infinity. We remark that, apart from the above, the only cases in which the precise value of $\omega(G)$ is known are for groups G of Fitting height at most 2 ([13]) and for certain linear groups (see [3]).

In this paper, we prove the following results.

Theorem 1. Let n vary in the set of composite positive integers. Then

$$\lim_{n \to \infty} \frac{\sigma(A_n)}{\omega(A_n)} = 1.$$
Note that Stringer’s result implies our theorem when \(n \equiv 2 \pmod{4} \), so we will only prove it when \(n \) is divisible by 4 or an odd composite integer.

Our second result concerns the precise value of \(\sigma(A_n) \) when \(n \equiv 3 \pmod{18} \).

Theorem 2. Let \(n > 3 \) be an integer with \(n \equiv 3 \pmod{18} \) and let \(q := n/3 \). Then

\[
\sigma(A_n) = \sum_{i=1}^{q-2} \binom{n}{i} + \frac{1}{6} \frac{n!}{q!^3}.
\]

A minimal covering of \(A_n \) consists of the intransitive maximal subgroups of type \((S_i \times S_{n-i}) \cap A_n\), for \(i = 1, \ldots, q-2 \), and the imprimitive maximal subgroups with 3 blocks, which are isomorphic to \((S_q \wr S_3) \cap A_n\).

2. **Technical lemmas**

In this section we will collect some technical results we will need throughout the paper.

Lemma 1 (Lemma 10.3.3 in [15]). Let \(n \) be an odd integer which is the product of at least three primes (not necessarily distinct). Then if \(n \) is sufficiently large we have

\[
\frac{|S_{n/p} \wr S_p|}{|S_{n/m} \wr S_m|} \geq 2^{\sqrt{n}-3}
\]

where \(m \) is any nontrivial proper divisor of \(n \) different from \(p \).

The following lemma is a generalization of [2] Lemma 4] and its proof uses the same ideas. We need to apply it for \(k \leq 3 \).

Lemma 2. Let \(a_1, \ldots, a_k \) be positive integers with \(\sum_{i=1}^{k} a_i = n \). Let \(M \) be a subgroup of \(S_n \). The number of conjugates of \(M \) in \(S_n \) containing a fixed element of type \((a_1, \ldots, a_k)\) is at most \(n^k \).

Proof. Let \(N \) be the number of elements of \(S_n \) of type \((a_1, \ldots, a_k)\) and let \(g \) be an element of this type. We want to show that \(N \geq n!/n^k \). Assume that \(a_1, \ldots, a_k \) are organized so that \(k_i \) of them equal \(a_i \) for \(i = 1, \ldots, t \), so that \(k_1 + \cdots + k_t = k \) and \(a_1k_1 + \cdots + a_tk_t = n \). Since the centralizer of \(g \) in \(S_n \) is isomorphic to \(\prod_{i=1}^{t} C_{a_i} \wr S_{k_i} \), we deduce that

\[
N = \frac{n!}{a_1^{k_1}k_1! \cdots a_t^{k_t}k_t!} \geq \frac{n!}{(a_1k_1)^{k_1} \cdots (a_tk_t)^{k_t}} \geq \frac{n!}{n^k},
\]

being \(n^k = (a_1k_1 + \cdots + a_tk_t)^{k_1+\cdots+k_t} \).

Let us double-count the size of the set \(X \) of pairs \((h, H)\) such that \(H \) is a subgroup of \(S_n \) conjugate to \(M \) and \(h \in H \) is of type \((a_1, \ldots, a_k)\). We have \(|X| = N \cdot a(M) \) where \(a(M) \) is the number of conjugates of \(M \) containing a fixed \(h \in G \) of this type and \(|X| = |S_n : NS_n(M)| \cdot b(M) \leq |S_n| \) where \(b(M) \leq |M| \) is the number of elements of \(M \) of type \((a_1, \ldots, a_k)\). We obtain

\[
n! \geq |X| = N \cdot a(M) \geq (n!/n^k)a(M).
\]

It follows that \(a(M) \leq n^k \). \(\square \)
In the following we make frequent use of Stirling’s inequalities, which holds for every integer \(t \geq 2 \),
\[
\sqrt{2\pi t} \cdot (t/e)^t < t! < e\sqrt{t} \cdot (t/e)^t.
\]

Lemma 3. Let \(X := \{(x, y) \in \mathbb{N}^2 : 2 \leq x \leq y - 2\} \). Then
\[
\lim_{\|(x, y)\| \to \infty \atop (x, y) \in X} \frac{y!^{x-1}}{x!^{y-1}} = +\infty.
\]

Proof. Set
\[
f(x, y) := \frac{y!^{x-1}}{x!^{y-1}}.
\]
Note that \(f(x, y) \leq f(x, y + 1) \) whenever \((x, y) \in X \). This is because the claimed inequality is equivalent to \(x! \leq (y + 1)^{x-1} \) for \((x, y) \in X \), which is a consequence of the inequality \(x! \leq x^{x-1} \), which can be easily proved by induction.

We are left to check that \(f(x, x+2) \) tends to \(+\infty \) when \(x \) tends to \(+\infty \). This can be proved directly using calculus techniques and again the fact that \(x! \leq x^{x-1} \). □

Lemma 4. Let \(d \geq 2 \), \(k \geq 5 \) be integers such that and \(n = dk \geq 26 \). Then
\[
|S_d \setminus S_k| = d^k k! \leq (n/5e)^n(5n)^{5/2}e\sqrt{n}.
\]

Proof. Set \(f(x) := (nx)^{x/2}/e^n \) for any real \(x \geq 5 \). The derivative of \(f \) is \(f'(x) = (1/(2x))f(x)g(x) \) where \(g(x) = x \log(nx) - 2n + x \), so \(f'(5) < 0 \) being \(n \geq 14 \), and \(f \) is decreasing in \(x = 5 \). Since \(g'(x) = \log(nx) + 2 \) is positive (being \(x \geq 5 \)) and the sign of \(f' \) equals the sign of \(g \), we deduce that in the interval \([5, n/5]\) we have \(f(x) \leq \max\{f(5), f(n/5)\} \) and this equals \(f(5) \) being \(n \geq 25 \). Therefore, using the bound \(m! \leq (m/e)^m e\sqrt{m} \), if \(k \leq n/5 \) we obtain
\[
d^k k! \leq (d/e)^{dk} e^{k/2} (k/e)^k k!^{1/2} = f(k) \cdot (n/e)^n e\sqrt{k} \leq (n/5e)^n(5n)^{5/2} e\sqrt{n}.
\]
The case \(k > n/5 \) corresponds to \(d < 5 \) and can be done case by case. For \(d = 4 \) we need \(n \geq 18 \), for \(d = 3 \) we need \(n \geq 2 \) and for \(d = 2 \) we need \(n \geq 26 \). □

Lemma 5. Let \(n \) be an even positive integer, \(r \) an odd divisor of \(n \) such that \(3 \leq r \leq n/3 \) and set \(g(n, r) = (r!)^{n/3} (n/r)! + r \cdot r! \cdot ((n/r)!)^3 \). Then there exists a positive constant \(C \) such that \(g(n, r) \leq C((n/3)!)^3 \) for every \(n \) large enough.

Proof. Let \(n \) and \(r \) as in the statement and note that since \(n \) is even and \(r \) is odd we have \(3 \leq r \leq n/4 \). If \(r = 3 \) then \(g(n, r) = 6^{n/3}(n/3)! + 18((n/3)!)^3 < 19((n/3)!)^3 \) for large enough \(n \). Using Stirling’s inequalities (1), it is easy to prove that \((n/4)^n \leq n \cdot (3/4)^n \) for large enough \(n \), and this easily implies the result when \(r = n/4 \).

Assume therefore that \(5 \leq r \leq n/5 \). We apply Lemma 4 and deduce that
\[
g(n, r) \leq (r + 1) \left(\frac{n}{5e} \right)^n (5n)^{5/2} e\sqrt{n} \leq \left(\frac{n}{5e} \right)^n (5n)^{5/2} n^{3/2} e.
\]
By another application of (1), we get that there exists a positive constant \(D \) such that
\[
\frac{g(n, r)}{((n/3)!)^3} \leq (3/5)^n n^{5/2} \cdot D,
\]
which tends to zero as \(n \) tends to infinity. □
3. Proof of Theorem 1

Let Γ be an (undirected) graph. Recall that the degree of a vertex of Γ is defined as the number of vertices of Γ that are adjacent to it. Also, a set of vertices is called independent if no two of its elements are connected by an edge. We prove Theorem 1 as an application of following result due to P.E. Haxell.

Theorem 3 (Theorem 2 in [7]). Let k be a positive integer, let Γ be a graph of maximum degree at most k, and let $V(\Gamma) = V_1 \cup \cdots \cup V_n$ be a partition of the vertex set of Γ. Suppose that $|V_i| \geq 2k$ for each i. Then Γ has an independent set \{ v_1, \ldots, v_n \} where $v_i \in V_i$ for each i.

We will apply Theorem 3 to prove Theorem 1, first for n odd and composite, then for n divisible by 4. This will correspond to two different graphs.

3.1. Case n odd. We first consider the case n is an odd composite number. In this section, p will always be the smallest prime divisor of n. For each proper nontrivial divisor m of n, let P_m be the set of partitions of the set \{ $1, \ldots, n$ \} into m blocks each of cardinality n/m. We want to find a maximal set of n-cycles in A_n pairwise generating A_n and in particular we will prove the following.

Proposition 1. If n is a sufficiently large odd composite number and p denotes the smallest prime divisor of n, then $\omega(A_n) \geq |P_p|$.

Since the imprimitive maximal subgroups of A_n preserving a partition with p blocks cover all the n-cycles in A_n, and since the elements of A_n which are not n-cycles are covered by the maximal intransitive subgroups of type $(S_i \times S_{n-i}) \cap A_n$ with $1 \leq i \leq n/3$, we deduce from Proposition 1 that

$$|P_p| \leq \omega(A_n) \leq \sigma(A_n) \leq |P_p| + \sum_{i=1}^{\lfloor n/3 \rfloor} \binom{n}{i}.$$

This proves Theorem 1 since the sum on the right-hand side is less than 2^n, so it is asymptotically irrelevant compared to

$$|P_p| = \frac{n!}{(n/p)!p!} \geq \frac{(n/e)^{n(e/p)^{p/2}}}{(n/e)^{n(p/e)^p e^{\sqrt{p}}}} = \frac{p^n}{e^{\sqrt{p}}} \cdot \left(e^{2 \sqrt{n/p^3}} \right)^p \geq 3^n$$

where the last inequality holds for sufficiently large n.

We are therefore reduced to prove Proposition 1.

For every $\Delta \in P_m$ let $C(\Delta)$ be the set of n-cycles $x \in A_n$ such that Δ is the set of orbits of the element x^n. In other words, $C(\Delta)$ is the set of n-cycles contained in the maximal imprimitive subgroup of A_n whose block system is Δ. Using the fact that every n-cycle belongs to a unique imprimitive maximal subgroup of S_n with m blocks, it is easy to see that $|C(\Delta)| = |S_{n/m} \wr S_m|/n$ using a double counting argument. With a slight abuse of notation, for any maximal subgroup H of A_n, we call $C(H)$ the set of n-cycles contained in H.

We define a graph Γ whose vertex set is $V(\Gamma)$ and whose edge set is $E(\Gamma)$ in the following way. $V(\Gamma)$ is the set of n-cycles of A_n and, for distinct $x, y \in V(\Gamma)$, we say that $\{x, y\} \in E(\Gamma)$ if and only if $\{x, y\} \neq A_n$ and the orbits of x^n do not coincide with those of y^n, in other words there is no $\Delta \in P_p$ such that both x and y belong to $C(\Delta)$.

Since the n-cycles are pairwise conjugate in S_n, the graph Γ is vertex-transitive, so it is regular, in other words, every vertex has the same valency k. In order to prove Proposition 1, it is enough to prove that $|C(\Delta)| \geq 2k$ for all $\Delta \in P_p$, since then the result will follow from Theorem 3 applied to the partition of the vertex-set of Γ given by the $C(\Delta)$ with $\Delta \in P_p$.

If x is any vertex, then

$$k \leq \sum_{H \in \mathcal{H}_x} |C(H)|$$

where \mathcal{H}_x is the set of maximal subgroups of A_n containing x, except for the maximal imprimitive subgroup with p blocks. Clearly, no intransitive subgroup contains x so \mathcal{H}_x is made of imprimitive and primitive subgroups. Let \mathcal{H}_x^{imp} be the set of maximal imprimitive subgroups of A_n containing x whose number of blocks is not p, and let \mathcal{H}_x^{prim} be the set of maximal primitive subgroups of A_n containing x. Then

$$k \leq \sum_{H \in \mathcal{H}_x^{imp}} |C(H)| + \sum_{H \in \mathcal{H}_x^{prim}} |C(H)|.$$

We bound the first term of the above sum. Let $\Delta_m(x)$ be the partition in P_m whose blocks are the orbits of the element x^m. Since n has at most $2\sqrt{n}$ positive divisors,

$$\sum_{H \in \mathcal{H}_x^{imp}} |C(H)| = \sum_{m|n, m \neq p} |C(\Delta_m(x))| \leq 2\sqrt{n} \max_{m|n, m \neq p} |S_{n/m} \wr S_m|/n$$

where the second summation and the maximum is on all nontrivial proper divisors m of n that are different from p.

Note that, if $n \neq p^2$, the last term in (2) is at least c^n for any given constant c, if n is sufficiently large. This can be checked easily using $|S_{n/m} \wr S_m| = (n/m)!^m m!$ and Stirling inequalities (1).

Lemma 1 implies that the last term in (2) is asymptotically irrelevant compared to $|C(\Delta)|$ for $\Delta \in P_p$ when n is the product of at least three primes.

We now turn to primitive subgroups. When $n > 23$ (and n is not a prime) the primitive maximal subgroups of A_n containing n-cycles are permutational isomorphic to $\text{PTL}(m, s) \cap A_n$, where

$$n = \frac{s^m - 1}{s - 1}$$

for some $m \geq 2$ and some prime power s, its action on points (or on hyperplanes) of a projective space of dimension m over the field of $s = p^f$ elements (10 Theorem 3). Therefore in particular we have that if H is such a subgroup of A_n then

$$|C(H)| < |\text{PTL}(s)| < 2^{n-1}.$$

By Lemma 2 there are at most n conjugates of H containing a fixed n-cycle x. Moreover we show now that S_n has at most $\log_2(n)$ conjugacy classes of such maximal primitive subgroups, and therefore this number is at most $2 \log_2(n)$ for A_n. First observe that, being n odd, if (m, s) is a pair satisfying equation (3) then s is the biggest power of p dividing $n - 1$. The possible choices for s are at most the number of primes dividing $n - 1$, that is at most $\pi(n - 1)$ which is trivially smaller than $\log_2(n)$. Once that s is chosen there is at most only one possible value for m such that (m, s) satisfies (3). Thus the number of these pairs is bounded from above.
by $\log_2(n)$. Now, for a fixed pair (m, s) satisfying (3) the group A_n contains at most two conjugacy classes of primitive maximal subgroups isomorphic to $PGL_m(s) \cap A_n$ (it can be proved that the two actions of such a group respectively on the projective points and on the projective hyperplanes are equivalent in S_n). Thus the number of conjugacy classes of proper primitive maximal subgroups containing an n-cycle is at most $2 \log_2(n)$. It follows that

$$ \sum_{H \in \mathcal{H}_{pr}^{c,m}} |C(H)| \leq n \log_2(n) \cdot 2^n$$

and so it is easy to see that the last term in (2) is an upper bound also for this sum (remember that we are considering $n \neq p^2$).

Assume that n is a product of at least three primes, not necessarily distinct. If $\Delta \in \mathcal{P}_p$, then by Lemma 1 we have

$$ \sum_{H \in \mathcal{H}_{pr}^{c,m}} |C(H)| \leq n \log_2(n) \cdot 2^n$$

and we only have to prove that, for large enough n, the right-hand side is larger than 2. This follows from Lemma 3.

3.2. Case n divisible by 4. We now prove Theorem 1 when n is divisible by 4.

In [13], Maróti proved that $\sigma(G) \sim 2^{n-2}$. We want to prove that $\omega(G)$ is also asymptotic to 2^{n-2} in this case, so that $\omega(G) \sim \sigma(G)$. Since $\omega(G) \leq \sigma(G)$, it is enough to find a lower bound for $\omega(G)$ which is asymptotic to 2^{n-2}.

We consider the set

$$ \mathcal{S} = \{ \Delta \subseteq \{1, \ldots, n\}, \ 1 < |\Delta| < n/2, \ |\Delta| \text{ odd} \}.$$

Since the number of subsets of $\{1, \ldots, n\}$ of even size is equal to the number of subsets of odd size (this can be seen by expanding the equality $0 = (1 - 1)^n$ with the binomial theorem), we have

$$ |\mathcal{S}| = \sum_{i=2}^{n/4} \binom{n}{2i-1} = 2^{n-2} - n \sim 2^{n-2}.$$
Let \(V \) be the set of elements of \(A_n \) of cycle type \((a, n-a)\) for \(a \) odd and \(1 < a < n/2 \). We have \(V = \bigcup_{\Delta \in S} C(\Delta) \), where \(C(\Delta) \) is the set of bicycles with orbits \(\Delta \) and \(\Omega \setminus \Delta \).

As in the case \(n \) odd, we define a graph \(\Gamma \) with now vertex set \(V(\Gamma) = V \) and whose edge set \(E(\Gamma) \) is the family of size 2 subsets \(\{x, y\} \subseteq V \) such that \(\langle x, y \rangle \neq A_n \) and \(x \) and \(y \) do not belong to the same \(C(\Delta) \), for all \(\Delta \in S \).

The sets \(C(\Delta) \) determine a partition of \(V(\Gamma) \) and by Theorem 3 we are done if we can prove that, for all \(\Delta \in S \),

\[|C(\Delta)| \geq 2k, \]

where \(k \) is the maximum degree of a vertex in \(\Gamma \).

In [17, Theorem 1.5] and [18, Theorem 1.1] a careful and detailed description of the primitive permutation groups containing a permutation with at most four cycles is given. From that analysis it follows that, when \(n \) is divisible by 4 and sufficiently large there are only two cases in which a product of two disjoint cycles of odd length in \(S_n \) can be contained in a primitive permutation group \(H \leq S_n \) not containing the alternating group \(A_n \), and in both cases the cycles have lengths 1 and \(n-1 \). By our choice of \(S \), \(|\Delta| \neq 1 \), therefore, since by the definition of \(V \) the intransitive subgroups of \(A_n \) cannot contain subsets of the form \(\{x, y\} \in E(\Gamma) \), the only maximal subgroups of \(A_n \) containing such sets are the imprimitive ones.

We now evaluate the maximum degree \(k \) of our graph. Namely, for any fixed \(x \in C(\Delta) \) we bound the number of elements \(y \in V \setminus C(\Delta) \) such that \(\langle x, y \rangle \neq A_n \).

Let \(\mathcal{H}^{\text{imp}}_x \) be the set of maximal imprimitive subgroups of \(A_n \) containing \(x \). The above discussion implies that

\[k \leq \sum_{H \in \mathcal{H}^{\text{imp}}_x} |H| \]

Assume that \(x \in C(\Delta) \) with \(|\Delta| = a \), so that \(x \) is a product of two disjoint cycles of lengths \(a \) and \(n-a \). Moreover assume that \(x \) belongs to an imprimitive maximal subgroup \(W \), say \(W \simeq S_d \ltimes S_m \), with \(d, m > 1 \) and \(dm = n \).

Then there are two possibilities.

- \(\Delta \) is the union of some of the blocks of \(W \). In this case \(d \mid a \) and \(W \) is uniquely determined by \(x \), since its blocks are exactly the orbits of \(x^m \).
- \(m \mid a \) and \(\Delta \) (and \(\Omega \setminus \Delta \)) intersects each block of \(W \) in exactly \(a/m \) (resp. \((n-a)/m \)) elements. In this case there are exactly \(m \) conjugates of \(W \) containing \(x \); they can be obtained by pairing cyclically each orbit of \(x_1^m \) with an orbit of \(x_2^m \), where \(x_1 \) and \(x_2 \) are respectively the restrictions of \(x \) to \(\Delta \) and to \(\Omega \setminus \Delta \).

It follows that

\[
(4) \quad \sum_{H \in \mathcal{H}^{\text{imp}}_x} |H| \leq \sum_{r \mid \gcd(a, n)} \left(|S_r \ltimes S_{n/r}| + r \cdot |S_{n/r} \ltimes S_r| \right) \]

\[
= \sum_{r \mid \gcd(a, n)} \left((r!)^{n/r} (n/r)! + r \cdot r! \cdot ((n/r)!)^r \right). \]
Since $|C(\Delta)| = (|\Delta| - 1)!(n - |\Delta| - 1)! \geq (2/n)^2(n/2)!^2$, inequality (1) together with Lemma 5 gives, for large enough n,
\[
\frac{k}{|C(\Delta)|} \leq \frac{\sum_{H \in \mathcal{H}_r^{\text{imp}}} |H|}{(2/n)^2(n/2)!^2} \leq \frac{Cn(n/3)!^3}{(2/n)^2(n/2)!^2} \leq c_2(2/3)^nn^3
\]
for some constant c_2. The last inequality can be proved easily using Stirling’s inequalities (1). This proves that $k/|C(\Delta)|$ tends to zero as $n \to \infty$, hence it is smaller than 1/2 for sufficiently large n, which is what we wanted to prove.

4. Proof of Theorem 2

The following argument is a slight generalization of [10] Section 3.

Let G be any finite non-cyclic group and let T be a finite group containing G as a normal subgroup. Let \mathcal{M} be a family of maximal subgroups of G and let Π be a subset of G. Let $\{M_i \mid i \in I_T\}$ be a set of pairwise non-T-conjugate maximal subgroups of G such that every maximal subgroup of G is T-conjugate to some M_i, with $i \in I_T$, and let $\mathcal{M}_i := \{t^{-1}M_it : i \in I_T\}$ and $\Pi_i := \Pi \cap \bigcup_{M \in \mathcal{M}_i} M$, for all $i \in I_T$. Let $I \subseteq I_T$. Suppose that the following holds.

1. $\mathcal{M} = \bigcup_{i \in I} \mathcal{M}_i$;
2. $x^t \in \Pi$ for all $x \in \Pi, t \in T$;
3. Π is contained in $\bigcup_{M \in \mathcal{M}} M$;
4. if $A, B \in \mathcal{M}$ and $A \neq B$ then $A \cap B \cap \Pi = \emptyset$;
5. $M \cap \Pi \neq \emptyset$ for all $M \in \mathcal{M}$.

Note that this implies in particular that $\{\Pi_i\}_{i \in I}$ is a partition of Π. Moreover if A, B are T-conjugate subgroups then since Π and each Π_i (for $i \in I_T$) are unions of T-conjugacy classes of elements of T, we have $|A \cap \Pi| = |B \cap \Pi|$ and $|A \cap \Pi_i| = |B \cap \Pi_i|$.

For any maximal subgroup M of G outside \mathcal{M} define
\[
d(M) := \sum_{i \in I} \frac{|M \cap \Pi_i|}{|M_i \cap \Pi_i|}.
\]

The proof of the following proposition is essentially the same as the one in [10] Section 3 but we include it for completeness.

Proposition 2. Assume the above setting. If $d(M) \leq 1$ for all maximal subgroup M of G outside \mathcal{M} then any family of proper subgroups of G whose union contains Π has size at least $|\mathcal{M}|$. In other words, \mathcal{M} is a minimal covering of Π. Moreover, if $d(M) < 1$ for all maximal subgroup M of G outside \mathcal{M} then \mathcal{M} is the unique minimal covering of Π.

Proof. Let \mathcal{K} be any family of maximal subgroups of G such that $\bigcup_{K \in \mathcal{K}} K \supseteq \Pi$ and suppose $\mathcal{K} \neq \mathcal{M}$. We want to prove that $|\mathcal{M}| \leq |\mathcal{K}|$. Define
\[
\mathcal{M}' := \mathcal{M} - (\mathcal{M} \cap \mathcal{K}), \quad \mathcal{K}' := \mathcal{K} - (\mathcal{M} \cap \mathcal{K}).
\]

For any $i \in I$, let n_i be the number of subgroups from \mathcal{M}_i in \mathcal{M}', and for any $j \in I_T$ let k_j be the number of subgroups from \mathcal{M}_j in \mathcal{K}'.

8 FRANCESCO FUMAGALLI, MARTINO GARONZI, AND PIETRO GHERI
Observe that since \mathcal{K} covers Π_i and \mathcal{M} partitions Π, the members of \mathcal{K}' must cover the elements of Π_i contained in $\bigcup_{M \in \mathcal{M}} M$. Since \mathcal{M} partitions Π, the number of such elements is $m_i | M_i \cap \Pi_i |$. Therefore

$$m_i | M_i \cap \Pi_i | \leq \sum_{j \notin I} k_j | M_j \cap \Pi_i |.$$

We claim that if $d(M) \leq 1$ for all $M \in \mathcal{K}'$ then $|\mathcal{M}| \leq |\mathcal{K}|$. Indeed, we have

$$|\mathcal{M}'| = \sum_{i \in I} m_i \leq \sum_{i \in I} \sum_{j \notin I} k_j \frac{|M_j \cap \Pi_i|}{|M_i \cap \Pi_i|} = \sum_{j \notin I} k_j \sum_{i \in I} \frac{|M_j \cap \Pi_i|}{|M_i \cap \Pi_i|} = \sum_{j \notin I} k_j d(M_j) \leq \sum_{j \notin I} k_j = |\mathcal{K}'|.$$

This implies

$$|\mathcal{M}| = |\mathcal{M} \cap \mathcal{K}| + |\mathcal{M}'| \leq |\mathcal{M} \cap \mathcal{K}| + |\mathcal{K}'| = |\mathcal{K}|,$$

and therefore \mathcal{M} is a covering of Π of minimal size. Moreover, if $d(M) < 1$ for all maximal subgroup M of G outside \mathcal{M}, then the above argument shows that $|\mathcal{M}| < |\mathcal{K}|$ whenever $\mathcal{M} \neq \mathcal{K}$, proving that \mathcal{M} is the unique covering of Π of minimal size. \qed

From now on let $n \geq 21$ be a positive integer congruent to 3 modulo 18 and let $q := n/3, G := A_n, T := S_n$. Note that $q \equiv 1 \pmod{6}$. We prove Theorem 2 by showing (with the use of Proposition 2) the existence of a minimal covering \mathcal{M} for A_n of size

$$\frac{1}{6} \frac{n!}{q!^3} + \sum_{i=1}^{q-2} \binom{n}{i}.$$

If $n = \sum_{i=1}^t a_i$ and $1 \leq a_1 \leq a_2 \leq \ldots \leq a_t$ we denote by (a_1, \ldots, a_t) the set of elements of A_n whose cycle structure consists of t disjoint cycles each of length a_i, for $i = 1, \ldots, t$. Note that each (a_1, \ldots, a_t) is either empty or an A_n-conjugacy class or the union of two A_n-conjugacy classes. The latter case occurs if and only if the numbers a_1, \ldots, a_t are all odd and pairwise distinct.

Let $\Pi_{-1} = (n)$ be the set of all n-cycles and for every integer a such that $1 \leq a \leq q-2$ define

$$\Pi_a := \begin{cases} (a, \frac{n-a-1}{2}, \frac{n-a+1}{2}) & \text{if } a \equiv 0 \pmod{2} \\ (a, \frac{n-a}{2} - 1, \frac{n-a}{2} + 1) & \text{if } a \equiv 1 \pmod{2}. \end{cases}$$

We define the collection \mathcal{M} of S_n-conjugacy classes of maximal subgroups of A_n as follows.

\mathcal{M}_{-1} is the set of maximal imprimitive subgroups of A_n with 3 blocks. Thus the elements of \mathcal{M}_{-1} are subgroups isomorphic to $(S_q \wr S_3) \cap A_n$.

For every a such that $1 \leq a \leq q-2$ define \mathcal{M}_a to be the set of maximal intransitive subgroups of A_n which are the stabilizers of a set of size a.

Finally, let

$$\Pi := \bigcup_{a = -1, 1, \ldots, q-2} \Pi_a \quad \text{and} \quad \mathcal{M} := \bigcup_{a = -1, 1, \ldots, q-2} \mathcal{M}_a.$$
Lemma 6. If $j \in I_{S_n}$ and $M_j \in \mathcal{M}_j$ then
\[
|M_j \cap \Pi_i| = \frac{m_j(i) \cdot |N_{S_n}(M_j)| \cdot |\Pi_i|}{|S_n|} \leq \frac{m_j(i) \cdot |M_j| \cdot |\Pi_i|}{|A_n|}.
\]
Moreover, if M_j is not primitive then this inequality is actually an equality.

Proof. Consider the bipartite graph with set of vertices $\Pi_i \cup \mathcal{M}_j$ and where there is an edge between $g \in \Pi_i$ and $M \in \mathcal{M}_j$ if and only if $g \in M$. Since Π_i is a conjugacy class of S_n, the family \mathcal{M}_j covers Π_i if one of its members intersects it. By assumption the number of edges of this graph equals both $m_j(i) \cdot |\Pi_i|$ and $|S_n : N_{S_n}(M_j)| \cdot |M_j \cap \Pi_i|$. We are left to prove that
\[
|A_n : M_j| \leq |S_n : N_{S_n}(M_j)|
\]
This follows from the fact that M_j is self-normalized in A_n, being a maximal subgroup (and $n \geq 5$), and $|S_n : N_{S_n}(M_j)|$ is the number of S_n-conjugates of M_j, while $|A_n : M_j| = |A_n : N_{A_n}(M_j)|$ is the number of A_n-conjugates of M_j.

Lemma 7. Assume m is a positive integer divisible by 3. An element of S_m of cycle type (a, b, c), with $a, b, c \geq 1$ and $a + b + c = m$, stabilizes a partition of \{1, \ldots, m\} with 3 blocks if and only if at least one of the following holds:

1. $a = b = c = m/3$.
2. 3 divides $\gcd(a, b, c)$.
3. One of a, b, c equals $2m/3$.
4. One of a, b, c equals $m/3$ and the other two are even.

Proof. Straightforward.

We have the following.

1. $\bigcup_{M \in \mathcal{M}} M = A_n$. To see this let $g \in A_n$, and let $(a_1, \ldots, a_k), 1 \leq a_1 \leq \ldots \leq a_k,$ be the cycle type of g, with $\sum_{i=1}^{k} a_i = n$. Note that, since $g \in A_n$ and n is odd, k must be odd. If $a_1 < q - 1$ then g belongs to a member of \mathcal{M}_{a_1}. Now assume that $a_1 \geq q - 1$, so that $a_i \geq q - 1$ for all $i = 1, \ldots, k$. It follows that $3q = n = \sum_{i=1}^{k} a_i \geq k(q - 1)$, therefore $k \leq 3$ being $q > 3$ odd. If $k = 1$ then g belongs to a member of \mathcal{M}_{-1}, so now assume that $k = 3$. Since $q - 1 \leq a_1 \leq a_2 \leq a_3$, the only possibilities for (a_1, a_2, a_3) are either $(q - 1, q - 1, q + 2)$ or $(q - 1, q, q + 1)$, therefore g belongs to a member of \mathcal{M}_{-1} by Lemma 7 since $q \equiv 1 \pmod{6}$ (respectively case (2) and case (4)). Note that here is the point where we use the crucial assumption $n \equiv 3 \pmod{18}$.

2. For every $g \in \Pi_1$ there exists a unique $M \in \mathcal{M}$ such that $g \in M$. More precisely, if $g \in \Pi_1$ then the unique member of \mathcal{M} containing g is the unique member of \mathcal{M}_{-1} whose blocks are the three orbits of g^3, and if
If \(g \in \Pi_a, \ a \in \{1, \ldots, q-2\} \), then the unique member of \(\mathcal{M} \) containing \(g \) is the subgroup in \(\mathcal{M}_a \) sharing an orbit of size \(a \) with \(g \). This is because no element of \(\Pi \) which is not an \(n \)-cycle stabilizes a partition with 3 blocks, a fact that can be easily proved by using Lemma\(^2\).

From now on let \(\mathcal{M}_j \) be a \(S_n \)-class of maximal subgroups of \(A_n \) not contained in \(\mathcal{M} \) (in other words we think of \(j \) as an index in \(I_{S_n} \setminus I \)) and let \(M_j \) be any element of \(\mathcal{M}_j \). We deduce from Lemma\(^3\) that, if \(i \in I \), then

\[
d(M_j) = \sum_{i \in I} \frac{|M_j \cap \Pi_i|}{|\Pi_i \cap \Pi_j|} \leq \sum_{i \in I} \frac{m_j(i)|M_j|}{m_i(i)|\Pi_i|} \leq |M_j| \sum_{i \in I} \frac{m_j(i)}{|\Pi_i|}.
\]

Now, if \(\mathcal{M}_j \) is a \(S_n \)-class of maximal intransitive subgroups of \(A_n \) then \(m_j(-1) = 0 \), while \(m_j(i) \leq 1 \) for \(1 \leq i \leq q-2 \) and also \(m_j(i) = 0 \), except for at most 4 values of \(i \). This is because, thinking of \(j \) as the size of an orbit of the members of \(\mathcal{M}_j \), with \(q-1 \leq j < n/2 \), the possible values of \(i \) such that \(1 \leq i \leq q-2 \) and \(m_j(i) \neq 0 \) are obtained by solving the equations \(j = (n-i)/2-1, j = (n-i)/2+1, j = (n-i-1)/2 \) and \(j = (n-i+1)/2 \). Note that if \(M_j \) is of type \((S_{q-1} \times S_{2q+1}) \cap A_n \), then \(M_j \cap \Pi = \emptyset \), implying that \(d(M_j) = 0 \). If this is not the case then \(|M_j| \leq q!/(2q)! \), therefore

\[
d(M_j) \leq \frac{4 \cdot q! \cdot (2q)!}{(q-2)! \cdot (2q+2)!} = \frac{4(q-1)}{(q-2)(2q+1)(2q+2)} < 1.
\]

If \(\mathcal{M}_j \) is a \(S_n \)-class of transitive subgroups of \(A_n \) then \(m_j(i) \leq n^3 \) by Lemma\(^2\). Moreover, if \(M_j \) is imprimitive then \(|M_j| \leq (n/5e)^n(5n)^{5/2}e\sqrt{n} \) by Lemma\(^3\) and if \(M_j \) is primitive then \(|M_j| \leq 2^n \) by\(^4\). Since \(|M_j| \geq |(S_q \wr S_3) \cap A_n| = 3q!^3 > 3(n/3e)^n \) for every \(i \in I \) and \(|I| < n \), we obtain that

\[
d(M_j) \leq |M_j| \sum_{i \in I} \frac{m_j(i)}{|\Pi_i|} \leq \frac{n^4(5n)^{5/2}e\sqrt{n}}{3(n/3e)^n} = \frac{5^{5/2}e}{3} n^7(3/5)^n < 1,
\]

as long as \(n \geq 65 \).

Finally when \(n = 21, 39 \) or 57, then \(q \) is a prime, respectively: 7, 13 and 19. Since \(|I| = q-1 \) and \(m_j(i) \leq n^3 \), we can use the bound

\[
d(M_j) \leq |M_j| \sum_{i \in I} \frac{m_j(i)}{|\Pi_i|} \leq \frac{(q-1)n^3|M_j|}{3 \cdot q!^3},
\]

which gives the result when \(n \in \{39, 57\} \) or when \(n = 21 \) and \(M_j \) is primitive, by making use of the bound \(|M_j| \leq 3!^q \cdot q! \). Here we use the list of primitive subgroups of a given (small) degree, available in\(^5\) Table B.2.

Now assume \(n = 21 \) and \(M = M_j \) is imprimitive, so that \(M \cong (S_3 \wr S_7) \cap A_{21} \). Then the only elements of \(\Pi \) that stabilize a partition with 7 blocks are those of type \((21) \) or of type \((4, 8, 9) \). Moreover \(|M \cap \Pi_{-1}| = |M|/21 \) and \(|M \cap \Pi_4| = \left(\frac{7}{9}\right)^{3!} \cdot 3! \cdot 2^3 \cdot 7! = 48, \) while \(|M_{-1} \cap \Pi_{-1}| = |M_{-1}|/21 \) and \(|M_4 \cap \Pi_4| = 3! \cdot \left(\frac{7}{8}\right)^4 \cdot 7! \cdot 8! \), hence

\[
d(M) = \frac{3!^7 \cdot 7!}{7!^3 \cdot 3!} + \frac{7! \cdot 48}{3! \cdot \left(\frac{7}{8}\right)^4 \cdot 7! \cdot 8!} = \frac{315059}{171531360} < 1.
\]

References

[1] N. Alon, J. H. Spencer. The probabilistic method. Fourth edition. Wiley Series in Discrete Mathematics and Optimization. John Wiley and Sons, Inc., Hoboken, NJ, 2016.
[2] S. R. Blackburn. Sets of permutations that generate the symmetric group pairwise. *J. Combin. Theory Ser. A* 113 (2006), no. 7, 1572–1581.
[3] J. R. Britnell, A. Evseev, R. M. Guralnick, P. E. Holmes, A. Maróti. Sets of elements that pairwise generate a linear group. *J. Combin. Theory Ser. A* 115 (2008), no. 3, 442–465.
[4] P. J. Cameron, C. Y. Ku, Intersecting families of permutations. *European Journal of Combinatorics* 24 (2003) 881–890.
[5] J. D. Dixon, B. Mortimer, Permutation groups, *Graduate Texts in Mathematics*, 163, Springer-Verlag, New York, 1996.
[6] P. Erdős, L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions, A. Hajnal, R. Rado, V. Sós (Eds.), *Colloquium Math. Society Janos Bolyai*, vol. 11, North-Holland, Amsterdam, 1973, pp. 609–627.
[7] P.E. Haxell, A Note on Vertex List Colouring, *Combinatorics, Probability and Computing*, 10 (2001), no. 4, 345–347.
[8] Isaacs, I. Martin, Character theory of finite groups, *Dover Publications*, Inc., New York, 1994 or *AMS Chelsea Publishing*, Providence RI, 2006.
[9] G. James, A. Kerber, The representation theory of the symmetric group. *Encyclopedia of Mathematics and its Applications*, 16. Addison-Wesley Publishing Co., Reading, Mass., 1981.
[10] G. A. Jones, Cyclic regular subgroups of primitive permutation groups, *J. Group Theory*, 5, (2002), no. 4, 403–407.
[11] A. Lucchini, A. Maróti. On the clique number of the generating graph of a finite group. *Proc. Amer. Math. Soc.* 137 (2009), no. 10, 3207–3217.
[12] M.W. Liebeck, A. Shalev, Maximal subgroups of symmetric groups, *J. Combin. Theory Ser. A* 75 (1996) 341–352.
[13] A. Maróti, Covering the symmetric groups with proper subgroups, *J. Combin. Theory Ser. A* 110 (2005), no. 1, 97–111.
[14] A. Maróti, On the orders of primitive groups, *J. Algebra* 258 (2002), no. 2, 631–640.
[15] L. Stringer, Pairwise generating sets for the symmetric and alternating groups, PhD thesis, *Royal Holloway, University of London* (2008).
[16] E. Swartz. On the covering number of symmetric groups having degree divisible by six. *Discrete Math.* 339(11): 2593–2604, 2016.
[17] S. Guest, J. Morris, C.E. Praeger and P. Spiga, Affine transformations of finite vector spaces with large orders or few cycles, *J. Pure Appl. Algebra* (2015), no. 2, 308–330.
[18] S. Guest, J. Morris, C.E. Praeger and P. Spiga, Finite primitive permutation groups containing a permutation having at most four cycles, *J. Algebra* (2016), 233–251.

Dipartimento di Matematica e Informatica ‘Ulisse Dini’, Viale Morgagni 67/A, 50134 Firenze, Italy

Email address: francesco.fumagalli@unifi.it

Departamento de Matemática, Universidade de Brasília, Campus Universitário, Darcy Ribeiro, Brasília-DF, 70910-900, Brazil.

Email address: mgaronzi@gmail.com

Dipartimento di Matematica e Informatica ‘Ulisse Dini’, Viale Morgagni 67/A, 50134 Firenze, Italy

Email address: pietro.gheri@unifi.it