ON INSTANTON HOMOLOGY OF CORKS W_n

ERIC HARPER

ABSTRACT. We consider a family of corks, denoted W_n, constructed by Akbulut and Yasui. Each cork gives rise to an exotic structure on a smooth 4-manifold via a twist τ on its boundary $\Sigma_n = \partial W_n$. We compute the instanton Floer homology of Σ_n and show that the map induced on the instanton Floer homology by $\tau : \Sigma_n \to \Sigma_n$ is non-trivial.

1. Introduction

In [4], Akbulut and Yasui defined a cork C as a compact Stein 4-manifold with boundary together with an involution $\tau : \partial C \to \partial C$ which extends as a self-homeomorphism of C but not as a self-diffeomorphism. In addition, $C \subset X$ is a cork of a smooth 4-manifold X if cutting C out and regluing it via τ changes the diffeomorphism type of X.

We will consider the family of corks W_n, $n \geq 1$, obtained by surgery on the link in Figure 1 where a positive integer m in a box indicates m right-handed half-twists. The boundary Σ_n of W_n is the integral homology 3-sphere with surgery description as in Figure 2. The involution $\tau : \Sigma_n \to \Sigma_n$ interchanges the two components of the link in Figure 2. It is best seen when the underlying link L_n is drawn symmetrically, as in Figure 3. Note that the quotient manifold $\Sigma'_n = \Sigma_n/\tau$ is homeomorphic to S^3 so Σ_n can be viewed as a double branched cover of S^3 with branch set k_n as shown in Figure 4.

The goal of this paper is to study the instanton Floer homology $I_* (\Sigma_n)$ and the map $\tau_* : I_* (\Sigma_n) \to I_* (\Sigma_n)$ induced on it by τ.

2010 Mathematics Subject Classification. Primary: 57M27, Secondary: 57R58.

Key words and phrases. Instanton Floer homology, corks, involutions, Casson invariant, equivariant Casson invariant.

The author was partially supported by a CIRGET postdoctoral fellowship and a post-doctoral fellowship from McMaster University.
Theorem. (1) For every integer \(n \geq 1 \), the instanton Floer homology group \(I_j(\Sigma_n) \), \(j = 0, \ldots, 7 \), is trivial if \(j \) is even, and is a free abelian group of rank \(n(n + 1)(n + 2)/6 \) if \(j \) is odd.

(2) The homomorphism \(\tau_* : I_*(\Sigma_n) \to I_*(\Sigma_n) \) is non-trivial for all \(n \geq 1 \).

The first example of an involution acting non-trivially on the instanton Floer homology of an irreducible homology 3-sphere was given in [1] and [16]; in fact, that example was exactly our \(\tau : \Sigma_1 \to \Sigma_1 \). The technique we use to show non-triviality of \(\tau_* \) is the same as the technique that was used in [15] to reprove the result of [16]: compare the Lefschetz number of \(\tau_* : I_*(\Sigma_n) \to I_*(\Sigma_n) \) with the Lefschetz number of the identity map. If the two are different, then the involution must be non-trivial. For any integral homology 3-sphere \(\Sigma \), the Lefschetz number of the identity equals the Euler characteristic of \(I_*(\Sigma) \), which by Taubes [18] is twice the Casson invariant \(\lambda(\Sigma) \). Ruberman and Saveliev [14] showed that the Lefschetz number of \(\tau_* \) equals twice the equivariant Casson invariant \(\lambda^\tau(\Sigma) \), defined in [7]. Therefore the non-triviality of \(\tau_* \) will follow as soon as we show that \(\lambda(\Sigma_n) \neq \lambda^\tau(\Sigma_n) \).

The calculation of \(I_*(\Sigma_n) \to I_*(\Sigma_n) \) is done using surgery techniques.

It should be noted that Akbulut and Karakurt proved a Heegaard Floer analogue of this result. In [2] they showed that the involution \(\tau : \Sigma_n \to \Sigma_n \) acts non-trivially on the Heegaard Floer homology group \(HF^+(\Sigma_n) \).

Acknowledgements. I would like to thank Nikolai Saveliev for many helpful conversations and useful comments on this work, and Çağrı Karakurt for bringing [13] to our attention.

2. The instanton Floer homology of \(\Sigma_n \)

Let \(\Sigma \) be an oriented integral homology 3-sphere. The instanton homology groups \(I_*(\Sigma) \) are eight abelian groups arising as the Floer homology of the Chern-Simons functional on the space of irreducible \(SU(2) \) connections on \(\Sigma \) modulo gauge equivalence. The Euler characteristic of \(I_*(\Sigma) \) is twice the Casson invariant \(\lambda(\Sigma) \), see Taubes [18].

Let \(\Sigma_n(p) \) be the integral homology sphere with surgery description obtained by replacing the 0-framing of the unknot on the left-hand side of
Figure 2 by a p-framing. In [16], Saveliev used the Floer exact triangle to show that the instanton homology groups of $I_*(\Sigma_1)(p)$ are independent of p. The same argument holds for $I_*(\Sigma_n)(p)$.

The homology 3-sphere $\Sigma_n(2n + 2)$ was shown by Maruyama [13] to be homeomorphic to the Brieskorn homology sphere $\Sigma(2n + 1, 2n + 2, 2n + 3)$. In Theorem 10 of [17], Saveliev proved that the Floer homology group $I_j(\Sigma(2n + 1, 2n + 2, 2n + 3))$ is trivial when j is even, and is isomorphic to a free abelian group of rank $n(n + 1)(n + 2)/6$ when j is odd. This completes the calculation of $I_*(\Sigma_n)$. In particular, the Casson invariant of Σ_n is given by

$$\lambda(\Sigma_n) = -\frac{1}{3}n(n + 1)(n + 2).$$
3. **The Casson invariant**

Although the instanton Floer homology groups of Σ_n are known, and therefore so is its Casson invariant, we can compute $\lambda(\Sigma_n)$ using topological methods.

Let L be a framed 2-component link in S^3, and assume that the 3-manifold Σ resulting from surgery on L is a homology 3-sphere. Boyer and Lines [5] compute $\lambda(\Sigma)$ as a sum of derivatives of the multivariable Alexander polynomial Δ_L of the underlying oriented link L (and those of its sublinks), and Dedekind sums that only depend on the framings of the link components.

In our case, both components of L_n are framed by zero, and the Boyer-Lines [5] formula for $\lambda(\Sigma_n)$ is simply

$$\lambda(\Sigma_n) = -\frac{1}{\det(B)} \frac{\partial^2 \Delta_{L_n}}{\partial x \partial y}(1,1),$$

where B is the framing matrix for Σ_n. Thus to compute $\lambda(\Sigma_n)$ we will need only to compute Δ_{L_n}.

3.1. The Alexander polynomial and Conway potential function.

Rather than computing Δ_L directly we will consider the related Conway potential function ∇_L. Given an oriented link L in S^3, normalize $\Delta_L(x,y)$ using the Conway potential function $\nabla_L(x,y)$ of Hartley [11] by requiring that

$$\Delta_L(x^2,y^2) = \nabla_L(x,y).$$ \hspace{1cm} (2)

Note that (2) implies that

$$\frac{\partial^2 \Delta_L}{\partial x \partial y}(1,1) = \frac{1}{4} \frac{\partial^2 \nabla_L}{\partial x \partial y}(1,1),$$

hence we only need to compute the Conway potential function of L and its partial derivatives.

The Conway potential function ∇_L enjoys the replacement relation

$$\nabla_\ell + \nabla_r = (xy + x^{-1}y^{-1})\nabla_s,$$\hspace{1cm} (4)

where ∇_ℓ, ∇_r, and ∇_s are Conway functions of links that differ only in a neighborhood of a single crossing as shown in Figure 5. Note that the arcs may belong to the same component of L or to different components. If the
three links differ as in Figure 5 but with one of the arcs oppositely oriented, then we have the relation
\[\nabla_\ell + \nabla_r = (xy^{-1} + x^{-1}y)\nabla_s. \] (5)

Also, we will note that the Conway potential function vanishes for split links and is equal to 1 for the right-handed Hopf link.

In order to calculate the Conway potential function of \(L_n \) we will use the replacement relations (4) and (5) to produce a linear recurrence which we will then solve.

3.2. The recurrence relation. Let \(f_n = \nabla_{L_n} \) and \(g_n = \nabla_{H_n} \), where \(H_n \) is the link in Figure 6. A straightforward calculation shows that
\[g_n = \left(\frac{1}{r_2 - r_1} \right) r_1^n + \left(\frac{1}{r_1 - r_2} \right) r_2^n \]
with \(v = xy^{-1} + x^{-1}y \), \(r_1 = (v + \sqrt{v^2 - 4})/2 \), and \(r_2 = (v - \sqrt{v^2 - 4})/2 \). Using Hartley’s replacement relations (4), we change crossings of \(L_n \) two at a time, until we have undone the upper tangle in Figure 2. We obtain the recurrence \(f_{n+2} = -f_n + u f_{n+1} \) with initial conditions \(f_0 = -g_{n+1} + ug_n \) and \(f_1 = -ug_{n+1} + (u^2 - 1)g_n \), where \(u = xy + x^{-1}y^{-1} \).

Solving the recurrence relation, we obtain a formula for \(f_n \) in terms of \(x, y, \) and \(n \),
\[f_n = \left(f_0 + \frac{f_0 s_1 - f_1}{s_2 - s_1} \right) s_1^n + \left(\frac{f_1 - f_0 s_1}{s_2 - s_1} \right) s_2^n \]

where \(s_1 = (u + \sqrt{u^2 - 4})/2 \) and \(s_2 = (u - \sqrt{u^2 - 4})/2 \). We then find an explicit formula for \(\lambda(\Sigma_n) \) by having Maple differentiate \(f_n \) twice and putting together (1) and (3). The answer is

\[\lambda(\Sigma_n) = -\frac{1}{3} n(n + 1)(n + 2). \]

(6)

4. The Equivariant Casson Invariant

Let \(\tau : \Sigma \to \Sigma \) be an orientation preserving involution on a homology 3-sphere, and suppose that the fixed point set of \(\tau \) is non-empty. Then the quotient manifold \(\Sigma' = \Sigma/\tau \) is a homology 3-sphere, and the projection map \(\Sigma \to \Sigma' \) is a double branched cover with branch set a knot \(k \subset \Sigma' \). In [7], Collin and Saveliev computed the equivariant Casson invariant \(\lambda^\tau(\Sigma) \) in terms of \(\lambda(\Sigma') \) and the knot signature \(\sigma(k) \). When \(\Sigma' = S^3 \), we have simply

\[\lambda^\tau(\Sigma) = \frac{1}{8} \sigma(k). \]

Since we know that \(\lambda(\Sigma_n) \) is decreasing as \(n \to \infty \), see (6), our strategy for showing that \(\lambda^\tau(\Sigma_n) \neq \lambda(\Sigma_n) \) will be to show that \(\sigma(k_n)/8 \) is bounded from below by a function strictly greater than \(\lambda(\Sigma_n) \), where \(k_n \) is the knot shown in Figure 4.

4.1. Bounding knot signatures. The knot signature of a knot \(k \subset S^3 \) may be bounded from below using the formula

\[\sigma(k_r) \leq \sigma(k_\ell) \leq \sigma(k_r) + 2, \]

see Conway [8] or Giller [10]. Here \(k_r \) and \(k_\ell \) are knots that only differ in a neighborhood of a crossing as shown in Figure 7. Note that our sign convention is opposite of Giller’s. By [7], the signature of a knot \(k \) is bounded from below by negative twice the number of right-handed crossings that must be changed in order to undo the knot \(k \). Note that we may need to change some left handed crossings while undoing \(k \) but this will not contribute to our estimate.
We will now apply this observation to the knot k_n shown in Figure 4. In order to see k_n more clearly, we will isotope the link diagram in Figure 4 so that the 1-framed curve is interchanged with the branch set k_n and then blow down the 1-framed curve. The blow down has the effect of a full left-handed twist on the $2n + 4$ strands passing through the 1-framed curve, see Figure 8.

Note that when n is odd, Figure 8 is a diagram of k_n where no right-handed crossings must be changed in order to undo the knot, hence $\sigma(k_n)$ must be non-negative. When n is even, the left-most strand of the strands being twisted in Figure 8 is oriented oppositely of the other strands being twisted. In this case there are $2n + 3$ right-handed crossings that must be changed. We change them to arrive at a knot with only left-handed crossings that further need to be changed. Thus the signature of k_n is bounded from below by $-4n - 6$, and we have shown that

$$\lambda(\Sigma_n) = -\frac{n(n+1)(n+2)}{3} < -\frac{4n+6}{8} \leq \lambda^7(\Sigma_n).$$
Lastly, we remark that for small n the equivariant Casson invariant can be computed explicitly using the following technique. If we undo the upper left tangle in Figure 8 by changing crossings, then we will arrive at a knot that is isotopic to a torus knot. If n is odd, then the corresponding torus knot is the $T(2n+4, 2n+3)$ torus knot. If n is even, then the corresponding torus knot is $T(2n+2, 2n+1)$. If $n \leq 4$, then we need to change at most 3 crossings, and consequently the signature of k_n differs from that of the corresponding torus knot by at most ± 6.

For example, if $n = 1$ or $n = 2$, then the corresponding torus knot is $T(6, 5)$ and the signature $\sigma(T(6, 5))$ is 16. Since the signature of k_n is divisible by 8, we have that $\sigma(k_1) = \sigma(k_2) = 16$. Similarly, if $n = 3$ or $n = 4$, then the corresponding torus knot is $T(10, 9)$ and

$$\sigma(k_3) = \sigma(k_4) = \sigma(T(10, 9)) = 48.$$

References

[1] S. Akbulut, An involution permuting Floer homology. Tr. J. of Math. 18(1994), 16–22
[2] S. Akbulut, Ç. Karakurt, Action of the cork twist on Floer homology. Preprint arXiv:1104.2247v1
[3] S. Akbulut, Ç. Karakurt, Heegaard Floer homology of some Mazur type manifolds. Preprint arXiv:1204.3862v1
[4] S. Akbulut, K. Yasui, Corks, plugs, and exotic structures. Preprint arXiv:0806.3010v3
[5] S. Boyer, D. Lines, Surgery formulae for Casson’s invariant and extensions to homology lens spaces, J. reine angew. Math. 405 (1990), 181–220
[6] P.J. Braam, S.K. Donaldson, Floer’s work on instanton homology, knots, and surgery. In: The Floer memorial volume, 195 – 256, Progr. Math. 133, Birkhäuser, 1995.
[7] O. Collin, N. Saveliev Equivariant Casson invariants via gauge theory, J. reine angew. Math. 541 (2001), 143–169
[8] J. H. Conway, An enumeration of knots and links and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, New York, (1970), 329–358
[9] A. Floer, *Instanton homology, surgery, and knots*. In: Geometry of low-dimensional manifolds, 1 (Durham, 1989), 97–114, London Math. Soc. Lecture Note Ser., 150, Cambridge Univ. Press, (1990)

[10] C. Giller, *A family of links and the Conway calculus*, Trans. Amer. Math. Soc. 270(1) (1982), 75–109

[11] R. Hartley, *The Conway potential function for links*, Comment. Math. Helvetici 58 (1983), 365–378

[12] Maple 17. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.

[13] N. Maruyama, *Notes on homology 3-spheres which bound contractible 4-manifolds (I)*, J. Tsuda College 14 (1982), 7–24

[14] D. Ruberman, N. Saveliev, *Casson-type invariants in dimension 4*, Proceedings of the Fields-McMaster Conference on Geometry and Topology of Manifolds. Fields Institute Communications 47(2005), 281–306.

[15] D. Ruberman, N. Saveliev, *Rohlin’s invariant and gauge theory II. Mapping tori*, Geometry and Topology 8 (2004), 35–76

[16] N. Saveliev, *A note on Akbulut corks*, Math. Res. Lett. 10(2003), 777–785

[17] N. Saveliev, *Floer homology and invariants of homology cobordism*, Int. J. Math. 9 (1998), 885–919

[18] C. Taubes, *Casson’s invariant and gauge theory*, J. Differential Geom. 31 (1990), 547–599

Department of Mathematics, McMaster University, Hamilton, Ontario

E-mail address: eharper@math.mcmaster.ca