ARE STARBURST GALAXIES THE HOSTS OF GAMMA-RAY BURSTS?1
R. CHARY,2,3 E. E. BECKLIN,2 AND L. ARMUS4

Received 2001 July 31; accepted 2001 September 9

ABSTRACT

We present deep 2.2 \mu m imaging of 12 gamma-ray burst host galaxies. Template spectral energy distributions are fitted to the multiband photometry between visible and near-infrared wavelengths to derive a better constraint on the stellar mass of these galaxies. The internal extinction in the host galaxies is estimated using the rest-frame ultraviolet (UV) slope. We find that the extinction-corrected star formation rates (SFRs) of the galaxies are significantly larger than rates derived from emission lines in the visible or the UV continuum. The ratio between the extinction-corrected SFRs and stellar mass for seven of the host galaxies is high compared to local starbursts, and three of the hosts have derived far-infrared luminosities comparable to infrared luminous galaxies. In addition, existing observational data reveal that at least six of the 11 putative hosts seem to be disturbed or have companion galaxies within a projected angular separation of \sim 2.5. If we assume that the host and the companion are at similar redshifts, this corresponds to a physical separation of less than 20 kpc, providing some evidence for an ongoing/recent tidal encounter. We conclude that tidally induced starbursts such as those found in infrared luminous galaxies might be possible birthplaces for gamma-ray bursts. The age of the stellar population in four out of six galaxies is rather young, of order 10 Myr. This favors models where gamma-ray bursts result from the core collapse of isolated, massive stars and explosion of the resultant black hole/accretion disk system.

Subject headings: cosmology: observations — galaxies: starburst — gamma rays: bursts — infrared: galaxies

1. INTRODUCTION

The detection of decaying X-ray, visible, near-infrared, and radio transients associated with long-duration (>2 s) gamma-ray bursts (GRBs) has resulted in an accurate localization of the burst positions in the sky (e.g., Kulkarni et al. 2000; Piro 2000; Frail et al. 1997; van Paradijs et al. 1997). Redshift studies of the transients have confirmed the cosmological origin of at least some of the bursts. After the transients have faded, it has been possible to search for an underlying galaxy that may be associated with the bursts as predicted in most cosmological scenarios for GRBs. The searches have been successful at visible wavelengths, with an underlying galaxy (hereafter, a “host”) being detected for most of the bursts that have associated transients at other wavelengths (e.g., Frail et al. 1999; Bloom et al. 1999a). This has provided limited insight, however, into the progenitors of the bursts, although observations of the transients have provided many critical constraints for theoretical models of GRBs, especially with respect to the energetics and radiation mechanisms in an expanding fireball (e.g., Mészáros & Rees 1997). Since it seems impossible to directly observe the progenitors of the bursts, studying the characteristics of the underlying host galaxy may provide some insight into their origin. For example, if the progenitors of GRBs were massive stars that collapse into black holes (Woosley 1993), GRBs would tend to lie in sites of active star formation. On the other hand, models that involve coalescing neutron stars or black holes (Narayan, Paczyński, & Piran 1992) would tend to produce a significant number of bursts that are offset from the nucleus of their hosts because of the large kick imparted to the remnant from its supernova. A third likely possibility is that if GRBs originate in supermassive black holes that constitute the central engine of quasars, one would find the burst positions to be located at the nucleus of galaxies (Roland, Frossati, & Teyssier 1994).

Bloom, Kulkarni, & Djorgovski (2001b) have compared the observed offset of GRBs from the centers of their host galaxy to the predicted offset for two different GRB models. They find that the median observed offset for the GRBs has a projected distance of 3.1 kpc and that the distribution is inconsistent with a GRB model involving delayed coalescence of stellar remnants, which would result in significantly larger offsets between the bursts and the host galaxies (Bloom, Sigurdsson, & Pols 1999d). The observed offsets, however, are consistent with a “collapsar” model involving the explosion of a massive star through a black hole–accretion disk system (MacFadyen & Woosley 1999; Fryer, Woosley, & Hartmann 1999), provided one assumes that massive star formation takes place in an exponential disk. Further tentative evidence for a stellar origin for the bursts comes from the apparent connection between SN 1998bw and GRB 980425 (Galama et al. 1999), as well as analysis of the light curve at visible bands of GRB 980326 and GRB 970228 (Bloom et al. 1999b; Galama et al. 2000), both of which showed an increase in brightness \sim 3 weeks after the burst. The time evolution of the optical transient brightness for these two cases was interpreted as a power-law GRB light curve co-added on a Type Ic supernova light curve at the appropriate redshift. The two strongest pieces of evidence for an association between GRBs and massive stars, though, come from the detection of the host galaxy of GRB 980703 at radio wavelengths (Berger, Kulkarni, & Frail 2001) and the X-ray detection of an iron line and the
iron recombination edge in GRB 991216 (Piro et al. 2000). The radio detection of the GRB 980703 host implies that the galaxy is undergoing a violent starburst with a star formation rate (SFR) in massive stars of ~140 M_\odot yr$^{-1}$. The detection of the iron line suggests that the GRB progenitor exploded in a mass-rich environment that probably resulted from recent outflows from the progenitor star. This appears to disfavor merging black hole–neutron star systems as the cause for GRBs, since the stellar progenitors of these objects would have moved away from their original environments over the merger timescale.

Recent analysis of the cosmic infrared background and mid- and far-infrared galaxy number counts have revealed that the bulk of the high-redshift star formation takes place in dust-enshrouded regions (Chary & Elbaz 2001; Xu et al. that the bulk of the high-redshift star formation takes place of these objects would have moved away from their original environments over the merger timescale.

Re-estimation of galaxy morphology. At higher redshifts, the typical point-source sensitivity in our final reduced images was 1

2. OBSERVATIONS AND REDUCTION

The near-infrared observations were made using the Near Infrared Camera (NIRC) instrument (Matthews & Soifer 1994) at the t/25 focus of the 10 m Keck I telescope on UT 1998 November 29–December 1, 1999 January 11–12, 1999 January 29–30, 1999 April 28–29, and 2000 April 19. NIRC contains a 256 × 256 InSb array with a pixel size of 0.15, implying a field of view of 38′4 × 38′4. A standard K filter ($λ_0 = 2.21 \mu m$, $Δλ = 0.4 \mu m$) and K_s filter ($λ = 2.16 \mu m$, $Δλ = 0.3 \mu m$) was used. The nights of 1998 November–December and 1999 April 28 were not photometric. Observations were made by dithering in a random pattern with integrations of duration 8 × 15 s (co-adds × exposure) or 12 × 5 s per position. Table 1 summarizes the observations, along with typical seeing values and sensitivities. Seeing values were determined from the FWHM of field star profiles. Several standards from the Hubble Space Telescope (HST) faint standard lists were observed over each night (Persson et al. 1998).

Clipped averages of the dark current images were subtracted from all the frames taken over a night. Bad pixels were masked as were bright field sources. These dark-subtracted masked frames were then medianed together and normalized to create a sky superflat. In the reduction of the individual object frames, appropriate sky frames were generated from the masked images to minimize any pattern that may persist in the reduced frames because of the presence of bright sources in the field. The generated sky was normalized to the object frame by the ratio of the modes and subtracted. A second-order sky was also fitted to the individual frames and subtracted. The dark and sky-subtracted flat-fielded images were stacked and averaged by aligning on one of the bright, unsaturated, field stars. The typical point-source sensitivity in our final reduced images was 1 σ ~ 24 mag in the K band.

In almost all the cases, deep visible-light observations have indicated the presence of an underlying host galaxy (Table 2). Photometry on our infrared images was performed in a beam centered on the position of the host galaxy. If the host was undetected in the visible-light images, the beam was centered at the position of the radio or visible-light transient, which was determined by aligning an earlier epoch observation that detected the transient and other reference objects in the field with our final reduced frames. Corrections for the finite beam size were applied by curve-of-growth analysis of one of the field star profiles. Atmospheric extinction corrections (~0.05 mag air mass$^{-1}$) were also applied. The few observations that were done in nonphotometric conditions had other photometric data available (except GRB 980329), which served as a basis for the detection of transients at other wavelengths. These are GRB 970228, GRB 970508, GRB 971214, GRB 980326, GRB 980329, GRB 980519, GRB 980613, GRB 980703, GRB 981220, GRB 990123, GRB 991208, and GRB 000301C.

5 ULIGs have $L_{IR} > 10^{12} L_\odot$, while luminous infrared galaxies (LIGs) have $10^{12} L_\odot > L_{IR} > 10^{11} L_\odot$.

...
our derived upper limit is reliable. The period of the observations, and hence we conclude that a field star. The zero point varied by less than 0.1 mag over frames. Any variation of the zero point during the observations.

Average zero point from two observations of a standard, performing relative photometry with respect to field objects. For GRB 980329, the photometry was performed using the average zero point from two observations of a standard, which were taken just prior and 2 hours prior to the target frames. Any variation of the zero point during the observations of the burst field was monitored by photometry on a field star. The zero point varied by less than 0.1 mag over the period of the observations, and hence we conclude that our derived upper limit is reliable.

Table 2 shows the observed parameters of GRB host galaxies. Wherever possible, observations that are further in time from the burst, i.e., “late time,” are listed to minimize the effect of afterglow contamination. In cases where

GRB	R.A. (J2000.0)	Decl. (J2000.0)	UT Date*	On-Source Time (s)	Seeing FWHM (arcsec)	Sensitivity (3σ)
970228	05 01 46.7	11 46 53	Jan 11.4, 12.3	12840	0.51	23.7
970508	06 53 49.5	79 16 20	Nov 30.5	7080^d	0.47	22.6
971214	11 56 26.4	65 12 01	Jan 12.6	7200	0.42	23.4
980326	08 36 34.3	−18 51 24	Jan 11.5, 12.4	11625	0.63	23.0
980329	07 02 38.0	38 30 44	Dec 2.4	5220^d	0.4	22.8
980519	23 22 21.5	77 15 43	Jan 11.2, 12.2	10200	0.9	23.0
980613	10 17 57.6	71 27 26	Jan 11.6	7275	1.0	23.1
980703	23 59 06.7	08 35 07	Jan 11.2	1350	0.55	22.4
981220	03 42 28.9	17 09 15	Jan 11.3	2700	0.5	22.8
990123	15 25 30.3	44 45 59	Jan 29.7	1800	0.8	23.0
991208	16 33 53.5	46 27 21	Apr 19.5	2880	0.8	22.5
000301C	16 20 18.6	29 26 36	Apr 19.6	3600	0.7	22.6

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

a Dates are 1998 Nov 29–Dec 1, 1999 Jan 11–12, 1999 Jan 29–30, 1999 Apr 28–29, and 2000 Apr 19.

b In a beam of diameter 1.5". The sensitivity was calculated from the standard deviation in the background values.

c Observations made in filter.

d Photometric conditions.

Table 2 shows the observed parameters of GRB host galaxies. Wherever possible, observations that are further in time from the burst, i.e., “late time,” are listed to minimize the effect of afterglow contamination. In cases where

GRB	Redshift	B	V	R	I	K*	Others	Angular Size (arcsec)	Reference
970228	0.695	26.4 ± 0.3	25.8 ± 0.3	25.2 ± 0.3	24.7 ± 0.2	22.6 ± 0.2	H = 23.3 ± 0.1	0.8	1, 2, 3
970508	0.835	25.9 ± 0.2	25.3 ± 0.2	25.1 ± 0.2	24.4 ± 0.3	22.9 ± 0.2	0.6	4, 5	
971214	3.418	>26.8	26.6 ± 0.2	25.6 ± 0.2	>24.5	22.4 ± 0.2	0.4	6, 7	
980326	...	29.3 ± 0.3				22.9 ± 0.4^b	8		
980329	...	28.0 ± 0.3				>22.8	9		
980519	...	28.0 ± 0.3				>24.5^b	0.5	10, 11	
980613	1.097	25.1 ± 0.3	24.2 ± 0.2	23.8 ± 0.2	24.3 ± 0.1	21.7 ± 0.1	2	5, 12	
980703	0.966	23.4 ± 0.2	23.0 ± 0.1	22.6 ± 0.1	22.3 ± 0.2	19.6 ± 0.1	J = 21.1 ± 0.2	<0.6	5, 13, 24, 25
981220	...	>24.6	>24.2	26.4 ± 0.4^d	>23.0	19.0 ± 0.1	<0.7	14, 15, 16	
990123	1.6	25.0 ± 0.2	24.6 ± 0.2	24.5 ± 0.1	24.1 ± 0.3	21.7 ± 0.3	1	5, 17, 18, 19	
991208	0.706	25.2 ± 0.2	24.6 ± 0.2	24.3 ± 0.2	23.3 ± 0.2	21.7 ± 0.2	<0.1	5, 20, 21	
000301C	2.034	28.0 ± 0.3^b				230 ± 0.5^b	22, 23		

* This paper.
^b ≤3σ detection.
^c Gunn band.
^d Possible afterglow contamination.

References.—(1) Fruchter et al. 1999a; (2) Galama et al. 2000; (3) Bloom et al. 2001a; (4) Bloom et al. 1998b; (5) Sokolov et al. 2001; (6) Kulkarni et al. 1998; (7) Odewahn et al. 1998; (8) Fruchter et al. 2001; (9) Holland et al. 2000b; (10) Sokolov et al. 1998; (11) Bloom et al. 1998c; (12) Djorgovski et al. 2001; (13) Djorgovski et al. 1998a; (14) Bloom et al. 1998c; (15) Metzger et al. 1999; (16) Taylor et al. 1999; (17) Bloom et al. 1999a; (18) Kulkarni et al. 1999; (19) Fruchter et al. 1999b; (20) Dodonov et al. 1999; (21) Castro-Tirado et al. 2001; (22) Fruchter & Vreeswijk 2001; (23) Castro et al. 2000; (24) Bloom et al. 1998a, (25) Holland et al. 2001.
late-time visible photometry is not available, the published magnitudes for the host have been derived from a fit to the integrated light of the transient and the host, assuming a power-law decay of the transient and a constant brightness for the underlying host. For the analysis, the magnitudes were corrected for Galactic extinction based on the model of Schlegel, Finkbeiner, & Davis (1998). The Galactic extinction values are shown in Table 3 and an $R_V = A_V/E(B - V)$ of 3.1 was adopted. Extinction at other wavelengths was calculated using the Galactic extinction curve of Mathis (1990). The derived luminosity of the galaxies between UV and near-infrared wavelengths that is shown in Table 3 is derived by integrating over the spectral energy distribution derived from the multiband photometry. For the luminosity distances, an $\Omega_m,0 = 0.3, \Omega_\Lambda = 0.7, H_0 = 75$ km s$^{-1}$ Mpc$^{-1}$ cosmology was adopted.

3. CHARACTERISTICS OF GRB HOSTS

3.1. Morphology and Companions

The effect of redshift-induced band shifting on morphology of galaxies has been well demonstrated in the Hubble Deep Field–North (Bunker et al. 2000; Dickinson 2000; Corbin et al. 2001). High-redshift galaxies appear to be more irregular at observed blue wavelengths than at red/near-infrared wavelengths. This is because $z > 1$ galaxies have their rest-frame UV light, which is dominated by patchy star formation, redshifted into the visible bands. In addition, extinction in the UV is much stronger than in the visible, amplifying the irregular distribution of UV light. In contrast, the rest frame visible and near-infrared light from these galaxies, which is dominated by main-sequence stars and K giants, respectively, is less extincted and is redshifted into the K band. Of the GRB hosts listed in Table 2, GRB 970228, GRB 971214, GRB 980519, GRB 980613, and GRB 990123 show somewhat distorted morphologies at visible wavelengths (see references in Table 2). In comparison, GRB 970228, GRB 980519, GRB 980613, GRB 981220, and GRB 990123 are significantly extended in the K-band images. In addition, 9 of the 12 bursts (GRB 970228, GRB 971214, GRB 980519, GRB 980613, GRB 980703, GRB 981220, GRB 990123, GRB 991208, and GRB 000301C) show the presence of one or more companion galaxies within ~2.5 of the burst position (Fig. 1). At a depth of $K = 23$ mag, the number density of galaxies is about 10^2 deg$^{-2}$, or 7.7×10^{-3} arcsec$^{-2}$ (Djorgovski et al. 1995). Hence, the probability that eight of the reliably determined hosts (except GRB 981220) would have companion galaxies within a 2.5 radius represents an overdensity by an order of magnitude and seems intriguing. In comparison, only about 20% of the field galaxies observed at visible wavelengths seem to show evidence of a companion within the same projected distance at redshifts ~1 (Le Fèvre et al. 2000). Although the sample size is small, at least for some of the listed cases, it seems reasonable to surmise that the companion galaxy is tidally interacting with the host, inducing a starburst that could provide the progenitors of gamma-ray bursts.

3.2. Extinction-corrected Star Formation Rates

We now attempt to derive physical properties of the host galaxies such as the amount of internal extinction and the extinction-corrected SFR from their rest-frame UV photometry using the β-slope technique described in Meurer, Heckman, & Calzetti (1999).

The β-slope technique was developed because a large fraction of the visible/UV light in starbursts/infrared luminous galaxies is thermally reprocessed by dust into the far-infrared. The relative attenuation of the visible/UV light is dependent on the relative extinction properties of dust at those wavelengths. So, a measurement of the UV slope traces the amount of dust extinction in the galaxy and, except for the most luminous far-infrared sources, provides a good measure of the star formation obscured by dust. The technique fails for ULIGs in that it provides only a strong lower limit to the opacity and thereby the amount of dust-obscured star formation. This is because ULIGs have regions of very high dust opacity ($\tau_{UV} \gg 1$) where all the UV photons are thermally reprocessed by the dust grains. As a result, the UV slope of a ULIG is sensitive only to the light coming from optically thin regions ($\tau_{UV} \lesssim 1$) and does not trace the rate of star formation in the high-opacity regions.

Using the photometry in Table 2, we determined the rest-frame UV slope (β) shortward of about 350 nm, which, for most galaxies, since they are at $z > 1$, is derived from a power-law fit to the B, V, and R-band observed magnitudes. It should be emphasized that this is an extremely liberal definition of the UV slope, primarily because the

GRB	Galactic Extinction*	L_{UV-SFR} ($10^8 L_\odot$)	L_{IR} ($10^9 L_\odot$)	Galaxy Type	UV SFR (M_\odot yr$^{-1}$)	β-Slope SFR (M_\odot yr$^{-1}$)	M_{pot} ($10^8 M_\odot$)	\dot{M}/M (10^{-4} yr$^{-1}$)
970228...	0.20	0.9	9.3	Disk?	0.5-1	1.6	1.6	1.5
970508...	0.04	1.2	14	Elliptical	0.2-1.4	2.5	0.8	4.1
971214...	0.02	25	2000	Irregular	1-5	340	300	1.1
980326...	0.08
980329...	0.15
980519...	0.35	Interacting?
980613...	0.09	4	400	Interacting	5	70	10	7.5
980703...	0.06	18	170	Unresolved	6-20	30	35	1.2
981220...	0.20	AGN?
990123...	0.03	13	38	Irregular	4	7	36	0.3
991208...	0.02	0.9	45	Interacting?	5-18	<8	9	2.1
000301C...	0.05	3.9

* From the dust maps of Schlegel et al. 1998.
Fig. 1.—Deep K-band images of selected GRB host galaxies where north is up and east to the left. The images are 15$''$ on a side and the host is located either at the center of the field or marked with a circle. In many cases a companion galaxy can be seen within about 2.5 radius of the host. From left to right, top to bottom, the images are of 970228, 970508, 971214, 980326, 980519, 980613, 980703, 981220, 990123, and 991208.
broadband photometry could be contaminated by absorption and emission lines. Second, the uncertainty in the photometry is substantial and the measurements are consistent with a wide range of UV slopes that translate to large uncertainties in the derived extinction values. For example, a 20% error in the UV-slope measurement results in a 0.4 mag error in the derived extinction at UV wavelengths and a 50% uncertainty in the dust-obscured SFR value. This effect is particularly important for GRB 970228, GRB 971214, and GRB 991208, all of which have observations at only two filters tracing the UV light. Finally, for the low-redshift objects, the V-band traces rest-frame 320 nm, which is much longer than the 250 nm adopted by Meurer et al. (1999) for performing the calibration between the UV slope and the far-IR luminosity. This does not seem to be a significant problem if the starburst extinction law of Calzetti et al. (2000) is adopted. This is because, for a young stellar population, even large values of extinction such as $A_V \sim 2$ mag result in an observed spectrum that can be well fit by a single power law between 100 and 400 nm.

After estimating the UV slope, we use the relationship derived by Meurer et al. (1999):

$$A_{1600} = 4.43 + 1.99 \beta,$$

$$\log [L_{\text{FIR}}/\nu L_\alpha(1600)] = \log (10^{0.4A_{1600}} - 1) + 0.076,$$

(1) (2)
to determine the far-infrared luminosity of the galaxy. In the above equations, A_{1600} is the extinction at 160 nm, which in the Calzetti et al. (2000) extinction law is approximately 2.4 A_V and in the Galactic extinction law is approximately 2.6 A_V, where A_V is the extinction in the V band. The far-infrared luminosity is typically about 83% of the total infrared luminosity, which can then be transformed into an SFR. The calibration of Kennicutt (1998) yields

$$\rho(M_\odot \text{yr}^{-1}) = 1.71 \times 10^{-10} (L_{\text{IR}}/L_\odot).$$

(3)

From this, we can derive a lower limit to the true SFR, which is typically higher than the UV-derived value. The value is a lower limit because, for reasons mentioned earlier, Meurer et al. (2000) find that the β-slope technique underestimates the far-infrared luminosity of ULGs that contribute ~30% of the global star formation at high redshift. Thus, we derive dust-shrouded SFRs of 1.6, 2.5, 70, 30, 7, and 8 $M_\odot \text{yr}^{-1}$ for the host galaxies of GRB 970228, GRB 970508, GRB 980613, GRB 980703, GRB 990123, and GRB 991208. The corresponding A_{1600} values are 2.3, 2.5, 4.5, 2.2, 1.2, and 3.8 mag, while the predicted lower limits to their infrared luminosity L_{IR} are 9.3 $\times 10^9$, 1.4 $\times 10^{10}$, 4 $\times 10^{11}$, 1.7 $\times 10^{11}$, 3.8 $\times 10^{10}$, and 4.5 $\times 10^9$ L_\odot, respectively. The object with one of the highest SFR here, GRB 980703, was also detected in the radio by Berger et al. (2001), but the SFR in massive stars derived from the radio luminosity is about a factor of 5 higher.

There is some uncertainty in the V-band photometry of GRB 971214, which differs by about a magnitude between Odewahn et al. (1998) and Sokolov et al. (2001). If we adopt a geometric mean of the two values that corresponds to $V = 26.2 \pm 0.3$ mag, then the rest-frame UV slope suggests an average $A_V \sim 1.8$ mag. An empirically derived correction of $\beta_{\text{phot}} - \beta_{\text{spec}} = 0.5$ has been applied in the derivation of the UV slope of GRB 971214 to account for the difference between a spectroscopically derived UV slope and the slope derived from broadband photometry (Meurer et al. 1999). This difference is due to stellar and interstellar absorption features that redden the flux at these UV wavelengths. The derived infrared luminosity corresponding to this UV slope is $2 \times 10^{12} L_\odot$, and the SFR is $340 M_\odot \text{yr}^{-1}$, which would make it a starburst comparable to the host of GRB 980703. Further high-quality multiband photometry at visible wavelengths is required to assess the accuracy of this unusually high number because our value is a lower limit, as explained earlier, and is barely consistent with the submillimeter upper limit of Smith et al. (1999). The possibility of contamination from active galactic nucleus (AGN) also cannot be ruled out, although the spectra presented in Kulkarni et al. (1998) do not show any broad lines.

Thus, we find that the internal extinction in GRB hosts calculated from their UV slope is significant, with an average value of $A_V \sim 1.2$ mag, which is similar to that derived by Sokolov et al. (2001). As a result, the dust-shrouded SFR values derived above are typically higher than those derived from observations of the UV continuum (Table 3). However, the total (obscured+UV) SFR in these galaxies is still not unusually high. It is useful to note that although only two of the galaxies have derived $L_{\text{IR}} > 10^{11} L_\odot$ and high resultant SFRs, the ratio between the dust-obscured SFR and the unobscured SFR (i.e., the ratio between col. [7] and col. [6] in Table 3, excluding GRB 971214) for the GRB hosts has an average value of ~4. This is in agreement with the redshift-dependent value of 3-7 that Chary & Elbaz (2001) find for the ratio between the global comoving dust-obscured SFR and the unobscured SFR derived from the UV continuum.

3.3. Mass and Age Estimates

In this section, we calculate the SFR per unit stellar mass (M/M) of the GRB host galaxies. Our K-band data allow a better constraint on the stellar mass of the host galaxy than derived by Sokolov et al. (2001), which was based in most cases on BVRI photometry. For this purpose, we used the newest version (2000) of the population synthesis spectral energy distributions (SEDs) of Bruzual & Charlot (1993), considering templates with both solar and 0.02 times solar metallicity. A variety of star formation histories of the form $\exp(-t/\tau)$ are selected for the templates, ranging from a τ of 1 Myr, which corresponds to a single, brief epoch of star formation, to near constant with a τ of 10 Gyr. Screen extinction internal to the host galaxy was also incorporated using the extinction curve of Mathis (1990) and the starburst extinction curve of Calzetti et al. (2000). The fits were performed by minimizing the sum of absolute errors weighted by the photometric uncertainty at each of the wavelengths. The parameters that are derived from the fits to the observed magnitudes are the total stellar mass (M_{gal}), internal extinction (A_p), age of the starburst (τ), template metallicity, and the e-folding timescale of the starburst (τ). Of these, the metallicity and e-folding timescale are relatively unconstrained by the quality of the available photometry. The range of acceptable values for the three other parameters, i.e., mass, age, and extinction, are obtained from fits with different constraints, e.g., with and without extinction, Galactic extinction and starburst extinction, and low metallicity and high metallicity. The true statistical uncertainty in the parameters derived from these fits is much larger, as has been illustrated in Papovich, Dickinson, & Ferguson (2001).

GRB 970228.—The host of GRB 970228 has been found to have a redshift of 0.695 (Bloom, Djorgovski, & Kulkarni
than local starbursts. Bursts, Arp 220 and M82, and the relatively quiescent Sbc galaxy M51 (Silva et al. 1998). GRB hosts have SFRs per unit stellar mass much higher than local starbursts.

The derived luminosity at visible wavelengths is \(\sim 0.1L_{\odot} \), i.e., quite subluminous. Estimates of the SFR from the O II line flux and UV luminosity provide a value \(\sim 0.5M_{\odot}\) yr\(^{-1}\) (Bloom et al. 2001a). As a result, it has been classified as a late-type dwarf by Bloom et al. (2001a), and the observed magnitudes were fitted by a reddened Sc galaxy template by Galama et al. (2000). Estimates of the mass of the galaxy have thus far been poorly constrained. If we assume no extinction or the starburst extinction curve, our template fits yield a mass for the host galaxy of \((1.2-2) \times 10^{8} M_{\odot}\), \(t \sim 40-80\) Myr, and \(\tau = 1-20\) Myr, with \(A_V < 0.2\) mag. If we instead adopt the Galactic extinction curve, the derived range of values depending on the metallicity are \(A_V \sim 0.2-0.9\) mag, \(M_{\text{gal}} \sim (1.6-2.5) \times 10^{8} M_{\odot}\), \(t = 20-140\) Myr, and \(\tau = 20-70\) Myr. This latter estimate of \(A_V\) agrees with that derived from the \(\beta\)-slope technique. For this galaxy, however, both the \(B\)-band and \(V\)-band photometry used to derive the UV slope have large uncertainties associated with them. Therefore, the amount of dust extinction in this galaxy derived from the \(\beta\)-slope technique is somewhat uncertain. Irrespective of this, the \(M_*/M\) ratio for the host is rather high while the age of the stellar population in the best-fitting templates is low, suggestive of a recent starburst in this dwarf galaxy (Fig. 2). For reference, the brightness of the galaxy 2.5 to the northeast of the host is \(K = 21.6 \pm 0.1\) mag.

GRB 970508.—Bloom et al. (1998b) confirmed that the redshift of the GRB 970508 host galaxy is 0.835. HST/Space Telescope Imaging Spectrograph (STIS) observations (Fruchter et al. 2000) revealed that the galaxy is quite compact and that the GRB was centered within \(\sim 70\) pc of the nucleus of the galaxy. The host has an intrinsic luminosity at visible wavelengths of \(\sim 0.1L_{\odot}\), again suggesting a dwarf galaxy with a UV-derived SFR of \(0.2-1.4M_{\odot}\) yr\(^{-1}\).

In the absence of extinction, we find the mass of the galaxy to be \(3.4 \times 10^{8} M_{\odot}\), with \(t \sim 100\) Myr and \(\tau = 1-10\) Myr. If we consider the Galactic extinction curve, we find that the observed flux densities are best fit by a low-metallicity template with \(A_V \sim 0.8\) mag, \(M_{\text{gal}} \sim 8 \times 10^7 M_{\odot}\), \(t = 7\) Myr, and \(\tau = 1\) Myr. This value is in good agreement with the estimate of internal extinction derived from the \(\beta\)-slope technique.

There are three other possibly unrelated galaxies in the vicinity of the host, which are denoted by G1, G2, and G3 in Zharikov, Sokolov, & Baryshev (1998). For reference, we derive the brightness of G1, G2, and G3 to be \(22.1 \pm 0.1, 20.5 \pm 0.1,\) and \(21.6 \pm 0.1\) mag, respectively. There is a fourth object \(\sim 6\) north-northwest of the host with \(K = 21.3 \pm 0.1\) mag, which we call G4. To the best of our knowledge, the redshifts of these individual objects have not been measured.

GRB 971214.—HST imaging revealed a galaxy of irregular morphology with rest-frame luminosity \(L_{\text{UV}} \sim 0.2L_{\odot}\) (Odewahn et al. 1998). It has a measured redshift of 3.418 (Kulkarni et al. 1998). The results from our template-fitting method are quite uncertain since there are measurements at only three bands, of which the photometry in the \(V\)-band differs by more than 1 mag between Sokolov et al. (2001) and Odewahn et al. (1998). We adopt a weighted geometric mean of the two \(V\)-band measurements, which results in \(V = 26.2 \pm 0.3\) mag. In addition, interstellar absorption features, Ly\(\alpha\) emission, and the Lyman forest could be responsible for contaminating the \(V\)- and \(R\)-band photometry for which we have applied an empirical correction in the derivation of the UV slope but not to the individual photometry values. Since the age of the universe at \(z = 3.418\) is 1.7 Gyr, this places an additional constraint on the template ages in our fits to the multiband photometry. Fits without extinction result in \(M_{\text{gal}} \sim 8 \times 10^9 M_{\odot}\) with \(t \sim 200\) Myr and \(\tau \sim 30\) Myr. Fits including extinction \((A_V \sim 0.5\) mag\) suggest higher masses and older stellar populations with \(M_{\text{gal}} \sim (1-5) \times 10^{10} M_{\odot}\), \(t \sim 100-700\) Myr, and \(\tau \sim 0.03-2\) Gyr. The UV slope suggests an average \(A_V \sim 1.8\) mag, an infrared luminosity of \(2 \times 10^{12} L_{\odot}\), and an SFR of \(\sim 350 M_{\odot}\) yr\(^{-1}\). This is quite similar to the 3 \(\sigma\) upper limit of 3 mJy obtained for this galaxy at 850 \(\mu\)m, which, at \(z = 3.418\), translates to \(L_{\text{IR}}\) for the galaxy of \(3.3 \times 10^{12} L_{\odot}\) (Smith et al. 1999). The best-fitting exponentially decaying star formation history, however, results in a galaxy mass that exceeds the derived stellar mass. In addition, this would be a galaxy quite unlike a typical ULIG, since much of the derived star formation apparently takes place in optically thin regions (§3.2). While it is possible that this is a massive galaxy undergoing a violent starburst, we conclude that better multiband photometry at visible wavelengths is required to determine the true parameters of this galaxy. For reference, the brightness of the galaxy located 2° to the west-northwest is \(K = 21.5 \pm 0.1\) mag.

GRB 980326.—The HST/STIS observations of Fruchter et al. (2001) yielded a tentative detection of the host galaxy with \(V = 29.3 \pm 0.3\) mag, but the object is too faint for any
other characteristics to be derived. When the HST image is aligned with ours, the flux in our image at the position of the galaxy corresponds to \(K = 22.9 \pm 0.4 \) mag. The presence of bright stars in the frame and high residuals in that part of the image reduces the credibility of this detection. For reference, the object 2\(^{\prime}\)4 to the east has \(K = 21.1 \pm 0.1 \) mag.

GRB 980329.—Holland et al. (2000b) provided tentative evidence for a host galaxy located about 0\(^{\prime}\)5 southwest of the position of the optical transient with \(R = 28 \) mag. Again, the object is too faint at visible wavelengths and undetected in the near-infrared for any characteristics of the host to be derived. It does seem, however, that the Djorgovski et al. (1998b) measurement of the GRB 980329 host has revealed a faint underlying galaxy as well as a companion. The host to the southwest (Holland et al. 2000a). The host \(V = 28 \pm 0.3 \) mag, while the companion has \(V = 27 \pm 0.1 \) mag. Our infrared observations confirm the detection of the combined system with \(K = 22.5 \pm 0.3 \) mag. The object is at the limit of detectability, however, and as a result we are unable to derive any physical parameters for the host.

GRB 980319.—Visible-light observations of GRB 980319 revealed a faint underlying galaxy as well as a companion galaxy 1\(^{\prime}\)5 to the southwest (Holland et al. 2000a). The host \(V = 28 \pm 0.3 \) mag, while the companion has \(V = 27 \pm 0.1 \) mag. Our infrared observations confirm the detection of the combined system with \(K = 22.5 \pm 0.3 \) mag. The object is at the limit of detectability, however, and as a result we are unable to derive any physical parameters for the host.

GRB 980613.—The GRB apparently originated in an interacting system at \(z = 1.097 \), where the host has at least two faint galaxy companions and two bright ones, all of which are seen in the visible image and denoted A (host), B, C, D, and E (Djorgovski et al. 2001). We found values of \(K = 21.7 \pm 0.2, 21.6 \pm 0.2, 20.2 \pm 0.2, 20.3 \pm 0.2, \) and \(22.3 \pm 0.2 \) mag for A, B, C, D, and E, respectively, in reasonable agreement with the \(K \) values of Djorgovski et al. (2001). Components A and E are relatively blue compared to components B, C, and D. The SFR as derived from the visible/UV emission is \(~5 M_{\odot} \) yr\(^{-1} \) and its luminosity is lower than present-day \(L_{\star} \) galaxies, leading Djorgovski et al. (2001) to conclude that the galaxy is undergoing a mild starburst. Fits to the multiband photometry without extinction are quite poor. Fits including extinction \((A_V = 1\text{--}2 \) mag) yield a mass of \(M_{\text{gal}} = (0.5\text{--}2.6) \times 10^9 M_{\odot}, t = 3\text{--}8 \) Myr, and \(\tau = 3\text{--}30 \) Myr. The lower limit to the obscured SFR derived from the \(\beta \) slope technique is 70 \(M_{\odot} \) yr\(^{-1} \) with \(A_V = 1.8 \) mag. Alternatively, applying an extinction correction to the SFR derived from the UV continuum results in \(60 M_{\odot} \) yr\(^{-1} \), in excellent agreement with our \(\beta \) slope value.

GRB 980703.—This is one of the brightest hosts seen in our sample and is located at \(z = 0.966 \) (Djorgovski et al. 1998a). HST/STIS imaging has determined that it is a very compact galaxy with a faint companion galaxy 2\(^{\prime}\) to the south-southeast (Holland et al. 2001). If the internal extinction in the host is assumed to be negligible, the SFR derived from the UV continuum and the O II line flux is in the range 8--20 \(M_{\odot} \) yr\(^{-1} \) (Djorgovski et al. 1998a). While there is evidence for extinction in this galaxy based on the visible-light spectrum of the host and analysis of the X-ray/visible/near-infrared light curve of the transient (Castro-Tirado et al. 1999), the range of values span a wide range, from \(A_V = 0.3 \) to 2.2 mag. The galaxy has also been detected at radio wavelengths by Berger et al. (2001). The radio luminosity of the galaxy yields an SFR from massive stars \((M > 5 M_{\odot})\) of \(\approx 140 M_{\odot} \) yr\(^{-1} \). This has been extrapolated using a Salpeter mass function to yield a total SFR of 750 \(M_{\odot} \) yr\(^{-1} \). The derived far-infrared luminosity, adopting the relation derived by Condon (1992), is greater than \(10^{12} L_{\odot} \), clear evidence that this galaxy is a ULIG. Furthermore, the position of the GRB is very close to the nucleus of the galaxy, suggestive of an origin in a nuclear starburst.

Template fits to the multiband photometry with no extinction are rather poor. If we include extinction, \(A_V \) spans the range 0.3--1.2 mag, \(t = 10\text{--}30 \) Myr, \(M_{\text{gal}} = (1.4\text{--}6) \times 10^9 M_{\odot}, \) and \(\tau = 1\text{--}20 \) Myr. The \(\beta \) slope technique yields a lower limit of \(A_V \approx 0.9 \) mag and an obscured SFR of 30 \(M_{\odot} \) yr\(^{-1} \). Assuming an \(A_V \approx 1 \) mag results in an extinction-corrected SFR from the UV continuum of 45 \(M_{\odot} \) yr\(^{-1} \). The SFR estimate from the extinction-corrected UV continuum is in excellent agreement with that obtained from the sum of the \(\beta \) slope technique and the observed UV continuum. However, this value is a factor of 5 different from the SFR in massive stars derived from the radio luminosity. It could be that the star formation in this galaxy is biased toward the high-mass end. Alternatively, it is possible that much of the star formation in this galaxy is in optically thick regions and, as a result, insensitive to measurements in the UV.

GRB 981120.—A radio transient presumably associated with GRB 981120 was detected within a few days of the burst (Galama et al. 1998). Bloom et al. (1999e) found a variable source in their visible-light images located at the position of the radio transient and that was therefore presumed to be the visible-light afterglow superposed on the host. Later Very Long Baseline Array (VLBA) observations of the radio transient revealed that it has a core-jet morphology extending to the southwest (Taylor, Frail, & Kulkarni 1999). This was therefore interpreted to be an intraday variable source unrelated to the GRB. However, the brightness of this source has not varied over the two epochs of the infrared observations, and it is extended in the northeast-southwest direction in seeing conditions of 0\(^{\prime}\)5. There is also an excess of flux 1\(^{\prime}\)3 to the west, which we refer to as a “companion.” The brightness of the object and companion are \(K = 19.0 \pm 0.1 \) and 22.0 \pm 0.3 mag, respectively. Comparison with published visible-light photometry (Bloom et al. 1999e) indicates that the object is very red \((R - K = 7.4 \pm 0.5 \) mag) compared to the other host galaxies, which would indicate that it is either a unique host or a source that has varied between the time of the visible light and infrared observations. The companion (object K in Bloom et al.) is relatively bluer at \(R - K = 3.5 \pm 0.5 \) mag and similar in color to the other hosts. While it is possible that this is an interacting system, the association of these objects to GRB 981120 is unclear but probably spurious since the discussed source is outside the refined IPN error box of the burst.

GRB 990123.—HST/STIS imaging of the host galaxy of GRB 990123 indicates that it has a disturbed morphology (Bloom et al. 1999a; Fruchter et al. 1999b) with knots of star formation that have been denoted as A, A1, A2, 1, and B. Analysis of the STIS data by Holland & Hjorth (1999) provided magnitudes of \(V = 28.1 \pm 0.3 \) mag for knots A1, A2, and 1. The host, which is presumed to be knot A since it is the brightest object in the system, is located at a redshift of 1.6 (Andersen et al. 1999; Kulharni et al. 1999) and has a \(V \) magnitude of 24.25 \pm 0.2 mag (Fruchter et al. 1999b; Holland & Hjorth 1999). The derived SFR for knot A is \(\approx 4 M_{\odot} \) yr\(^{-1} \) and its blue luminosity \(L_B \approx 0.5 L_{B \odot} \). In comparison, the knots are thought to have an SFR of only about 0.1--0.2 \(M_{\odot} \) yr\(^{-1} \) (Holland & Hjorth 1999). The proximity of the different knots makes it difficult to resolve them.
and perform photometry on each component in the K-band data. So, we provide an integrated brightness of $K = 21.7 \pm 0.2$ mag for the entire system. For reference, field objects L and M (see Bloom et al. 1999a) have $K = 19.56 \pm 0.1$ and 19.44 ± 0.1 mag, respectively.

It has also been shown that the galaxy is quite blue but not very luminous for galaxies at that redshift. Interestingly, our estimate of the internal extinction in this host is quite small. We find $A_V = 0.5$ mag based on the β-slope technique, while the template fits to the multiband photometry yield $A_V = 0$ mag, $M_{gal} = 3.6 \times 10^8 M_\odot$ with $t = 140\,\text{--}\,180$ Myr and $\tau \sim 30$ Myr. This could be interpreted as evidence that not all interacting systems necessarily result in strong star formation in dust-enshrouded regions. On the other hand, it is equally likely that there are regions of strongly obscured star formation that are located in the midst of the detected knots of emission, but they are optically thick to UV light. Good observational evidence for such a hypothesis comes from the Antennae galaxy, which shows strong mid-infrared emission arising from warm dust in regions that are inconspicuous in UV light (Mirabel et al. 1998).

Therefore, it is possible that the integrated SFR for the system is actually much higher than the sum of its parts. It should also be noted that for this galaxy, much of the early photometry for the host galaxy was performed by masking or fitting the point source corresponding to the transient. This seems to induce a significant inaccuracy in the early-time photometry values, as is illustrated in the difference between the values of Sokolov et al. (2001) and Fruchter et al. (1999b), and between our near-infrared values and those derived by Bloom et al. (1999a).

GRB 991208.—The near-infrared image of GRB 991208 reveals the host and a companion galaxy, “A,” about 1” southeast of the host, which is also seen in the HST/STIS image (Castro-Tirado et al. 2001). There appears to be an additional object, “B,” that is 2.5 east and slightly north of the host that is not visible in the STIS image, but it is not clear from the image if these objects are connected by a tidal stream. The brightnesses of the host galaxy and galaxies A and B are $K = 21.7 \pm 0.2$, 23.1 ± 0.4, and 22.4 ± 0.2 mag, respectively. The $V-K$ color of the host, which is compact in the HST images, is 3.0 ± 0.3 mag (Castro-Tirado et al. 2001). If all these galaxies are at a $z \sim 0.7$ as inferred for the GRB (Dodonov et al. 1999; Djorgovski et al. 1999), their projected physical separation is about 7 kpc arcsec$^{-1}$. It is necessary to measure the redshift of these three objects to establish any dynamical interaction between them. Castro-Tirado et al. (2001) inferred from the broadband photometry that the galaxy is not exceptionally bright and has an SFR $\sim 5\text{--}18 M_\odot$ yr$^{-1}$. The best fits to the multiband photometry result from low-metallicity templates with little or no extinction. The derived mass of the host is $8.6 \times 10^8 M_\odot$ for $\tau \approx 70$ Myr and $t \sim 300$ Myr. The low value of extinction is inconsistent with our estimate from the β-slope technique. We conclude, however, that the UV-slope result for this galaxy is uncertain for reasons mentioned in §3.2.

GRB 000301C.—The HST/STIS image of Fruchter & Vreeswijk (2001) with the transient was aligned with our image and photometry was performed at the position of the transient. This yielded a magnitude of $K = 23.0 \pm 0.5$ mag. We do not have full confidence in this detection, since the observed brightness of the host is significant only at the $\sim 2.5 \sigma$ level. If the measurement is real, however, it must be the host galaxy because the transient should have faded to a level fainter than ~ 24 mag (Rhoads & Fruchter 2001). When compared with the V-band photometry of Fruchter & Vreeswijk (2001), the host galaxy has an observed $V-K$ color of 5.0 ± 0.6 mag, which is redder than most hosts. The companion galaxy located at an angular separation of 2.5 to the northwest (18 kpc projected distance) has a brightness of $K = 19.8 \pm 0.1$ mag, which results in $R-K = 4.5 \pm 0.3$ mag. There is no evidence, however, of any tidal debris between the burst position and this galaxy. For reference, the bright star located to the southwest has a brightness of $K = 16.02 \pm 0.05$ mag.

Although the masses derived for individual GRB host galaxies from the different fits span a relatively narrow range, the statistical uncertainty in the derived masses can be quite large, about an order of magnitude depending on the photometric uncertainties. In addition, fitting a single template to the multiband photometry often results in the lowest mass system because of the low mass-to-light ratio of a young stellar population. Papovich et al. (2001) have demonstrated that including an older stellar component in the fits typically results in an upper limit on the mass that is a factor of 2--3 higher than that derived from fitting a single template. Irrespective of this, the sense of Figure 2 remains the same even if the masses of the GRB hosts were corrected upward by a factor of 3.

In addition, fits that include both a younger and an older stellar population typically result in a lower derived age for the component of stars formed in the more recent starburst. The presence of young stellar populations (less than 10^8 yr) in GRB host galaxies, combined with their high SFR per unit stellar mass, seems to suggest that most GRB host galaxies have undergone a recent starburst. The age of the stellar populations is comparable to the lifetimes of massive (more than $10 M_\odot$) stars, providing some evidence for GRBs originating from collapsars rather than from the inspiral and merger of double degenerate objects, which can typically take a few hundred Myr from the onset of star formation (Fryer et al. 1999).

4. CONCLUSIONS

Of the 12 putative gamma-ray burst positions that were observed, all except GRB 981220 had definite identification of a visible-light transient associated with the burst. For the remaining 11 bursts, visible-light observations of the transient position detected an underlying host galaxy after the transient had faded. Our observations reveal that at least six of the 11 hosts appear to be in systems with another galaxy within a projected angular separation of 2.5. We have derived extinction corrected SFRs for seven of the hosts that have measured redshifts using the UV-slope technique. In addition, we have derived other physical parameters of the host galaxies such as their mass, age of the starburst, and internal extinction based on fits to the multiband photometry between visible and near-infrared wavelengths. We find that the extinction-corrected SFRs are significantly higher than the estimates derived from rest-frame UV continuum emission and the O II line strengths. More interestingly, the SFRs per unit stellar mass (M/M) of these galaxies is higher than for typical nearby starburst galaxies. In addition, the template fits to four of the objects provide evidence of a young stellar population of age about 10--50 Myr, a typical timescale for the formation of a collapsar through the core collapse of an isolated massive star and explosion of the resultant black hole/accretion disk system.
The high incidence of GRB hosts in close pairs of galaxies and high M/M_\odot values strengthen the argument that the progenitors of at least some of the long-duration GRBs are high-mass stars in starbursts. High-quality multiband photometry of a statistically large sample of host galaxies will be required to assess whether the stellar mass function in high-redshift starbursts is biased toward the high-mass end.

We are very grateful to Gerry Neugebauer, David Hogg, and Mark Morris for their support of this project. We thank Casey Papovich for his assistance with the Bruzual & Charlot template spectral energy distributions. We also wish to acknowledge Scott Barthelmy for operating the GCN System, which has been a useful resource for the entire GRB community. The comments of an anonymous referee are also much appreciated. This work is partly funded by NASA grant NAG 5-3042 and is based on observations made at the W. M. Keck Observatory, which is operated as a scientific partnership between the University of California, the California Institute of Technology, and the National Aeronautics and Space Administration.

REFERENCES

Andersen, M. I., et al. 1999, Science, 283, 2075
Berger, E., Kulkarni, S. R., & Frail, D. A. 2001, ApJ, 560, 652
Bloom, J. S., et al. 1998a, ApJ, 508, L21
Bloom, J. S., et al. 1999b, Nature, 401, 453
Bloom, J. S., Djorgovski, S. G., & Kulkarni, S. R. 2001a, ApJ, 554, 678
Bloom, J. S., Djorgovski, S. G., Kulkarni, S. R., Brauer, J., Frail, D. A., Goodrich, R., & Chaffee, F. 1999c, GCN Circ. 196 (http://gcn.gsfc.nasa.gov/gcn/gcn3/196.gcn3)
Bloom, J. S., Djorgovski, S. G., Kulkarni, S. R., & Frail, D. A. 1998b, ApJ, 507, L25
Bloom, J. S., Kulkarni, S. R., & Djorgovski, S. G. 2001b, AJ, in press
Bloom, J. S., Kulkarni, S. R., Djorgovski, S. G., Gal, R. R., Eichelson, A., & Frail, D. A. 1998c, GCN Circ. 149 (http://gcn.gsfc.nasa.gov/gcn/gcn3/149.gcn3)
Bloom, J. S., Sigurdsson, S., & Pols, R. O. 1999, MNRAS, 305, 763
Bruzual, A. G., & Charlot, S. 1993, ApJ, 405, 538
Bunker, A., Spinrad, H., Stern, D., Thompson, R., Moustakas, L., Davis, M., & Dey, A. 2000, in Proc. Galaxies in the Young Universe II, ed. H. Hippelein & K. Meisenheimer (Berlin: Springer), in press
Calzetti, D., Armus, L., Bolin, R. C., Kinney, A. L., Koornneef, J., & Storchi-Bergmann, T. 2000, ApJ, 533, 682
Castander, F. J., & Lamb, D. Q. 1999, ApJ, 523, 593
Castro, S. M., Dierks, A., Djorgovski, S. G., Kulkarni, S. R., Galama, T. J., Bloom, J. S., Harrison, F. A., & Frail, D. A. 2000, GCN Circ. 605 (http://gcn.gsfc.nasa.gov/gcn/gcn3/605.gcn3)
Castro-Tirado, A. J., et al. 1999, ApJ, 511, L85
Chary, R., & Elbaz, D. 2001, ApJ, 556, 562
Condon, J. J. 1992, ARA&A, 30, 575
Corbin, M., Urban, A., Stobie, E., Thompson, R., & Scheider, G. 2001, ApJ, 551, 23
Dickinson, M. 2000, in Proc. XIX Moriond Astro. Meeting, Building Galaxies: from the Primordial Universe to the Present, ed. F. Hammer, T. X. Cayatte, B. Guiderdoni, & J. Than (Paris: Edi-Thuaü n, Tra ü nh Va ü n)
Fruchter, A. S., & Vreeswijk, P. 2001, GCN Circ. 475 (http://gcn.gsfc.nasa.gov/gcn/gcn3/475.gcn3)
Fryer, C. L., Woosley, S. E. & Hartmann, D. H. 1999, ApJ, 526, 152
Galama, T. J., & the GRB Team. 1998, GCN Circ. 168 (http://gcn.gsfc.nasa.gov/gcn/gcn3/168.gcn3)
Galama, T. J., van Paradijs, J., Kouveliotou, C., Strom, R., & de Bruyn, G. 1998, GCN Circ. 698 (http://gcn.gsfc.nasa.gov/gcn/gcn3/698.gcn3)
Holland, S., et al. 2000a, GCN Circ. 698 (http://gcn.gsfc.nasa.gov/gcn/gcn3/698.gcn3)
Holland, S., et al. 2000b, GCN Circ. 778 (http://gcn.gsfc.nasa.gov/gcn/gcn3/778.gcn3)
Holland, S., & Hjorth, J. 1999, A&A, 344, L67
Kennicutt, R. C. 1998, ARA&A, 36, 189
Kulkarni, S. R., et al. 1999, Nature, 393, 35
Kulkarni, S. R., et al. 2000, Nature, 398, 389
— 2000, in AIP Conf. Proc. 526, 5th Huntsville Symp. on Gamma-Ray Bursts, R. M. Kippen, R. S. Mallozzi, & G. J. Fishman (New York: AIP), 277
Le Fèvre, O., et al. 2000, MNRAS, 311, 565
MacFadyen, A., & Woosley, S. 1999, ApJ, 524, 262
Mathis, J. S. 1990, ARA&A, 28, 37
Matthews, K., & Soifer, B. T. 1994, in Infrared Astronomy with Arrays: The Next Generation, ed. I. McLean (Dordrecht: Kluwer), 239
Meszáros, P., & Rees, M. J. 1997, ApJ, 476, 232
Metzger, M. R., Martin, C., & Kern, B. 1999, GCN Circ. 191 (http://gcn.gsfc.nasa.gov/gcn/gcn3/191.gcn3)
Meurer, G. R., Heckman, T. M., & Calzetti, D. 1999, ApJ, 521, 64
Meurer, G. R., Heckman, T. M., Seibert, M., Goldader, J. D., Calzetti, D., Sanders, D., & Steidel, C. C. 2000, in IAU Highlights of Astron. 12, Cold Gas and Dust at High Redshift, ed. D. J. Willner (Dordrecht: Kluwer), in press
Mirabel, I. F., et al. 1998, A&A, 333, L1
Narayan, R., Paczyński, B., & Piran, T. 1992, ApJ, 395, L83
Odewahn, S. C., et al. 1998, ApJ, 509, L5
Papovich, C., Dickinson, M., & Ferguson, H. C. 2001, ApJ, 559, 620
Persson, S. E., Murphy, D. C., Krzeminski, W., Roth, M., & Rieke, M. 1998, AJ, 116, 2475
Piro, L. 2001, in AIP Conf. Proc. 526, X-Ray Astronomy: Stellar Endpoints, AGN, and the Diffuse X-Ray Background, ed. N. E. White, G. Malaguti, & G. Palumbo (New York: AIP), 295
Piro, L., et al. 2000, Science, 290, 955
Rhoads, J. S., & Fruchter, A. S. 2001, ApJ, 546, 117
Roland, J., Fossati, G., & Teyssier, R. 1994, A&A, 290, 364
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. A. 1998, ApJ, 500, 525
Silva, L., Granato, G. L., Bressan, A., & Danese, L. 1998, ApJ, 509, 103
Smith, I. A., et al. 1999, A&A, 347, 92
Sokolov, V. V., et al. 2001, A&A, 372, 438
Sokolov, V. V., Frail, D. A., Kulkarni, S. R. Bloom, J. S., Djorgovski, S. G., & the BeppoSAX GRB Team. 1998, GCN Circ. 141 (http://gcn.gsfc.nasa.gov/gcn/gcn3/141.gcn3)
Taylor, G. B., Frail, D. A., & Kulkarni, S. R. 1999, GCN Circ. 287 (http://gcn.gsfc.nasa.gov/gcn/gcn3/287.gcn3)
van Paradijs, J., et al. 1997, Nature, 386, 868
Woosley, S. E. 1993, ApJ, 405, 273
Xu, C., Lonsdale, C. J., Shupe, D. L., OÏLinger, J., & Masci, F. 2001, ApJ, 562, 179
Zharkov, S. V., Sokolov, V. V., & Baryshev, Y. V. 1998, A&A, 337, 356
