Gravity Probe B Experiment in 7D Space-and-time Continuum

Yuriy A. Portnov
Moscow State University of Printing Arts
2A, Pryanishnikova st., Moscow, 127550, Russia
portnovyura@yandex.ru

Abstract
This article discussed the equations of the gravitational field in a seven-dimensional space-time. It has been shown that the use of the seven-dimensional equations of motion allows describing the translational and rotational motion of a gyroscope. In the work the use of the seven-dimensional equations was taken into account to describe the motion of a satellite around a massive body. It was indicated that rotation of a gyroscope around a massive body will lead to the creation of geodetic precession and the precession caused by the interaction of the rotational momentum gyroscope and a rotating Earth (Lense-Thirring effect). In work, it was shown that the analysis of data experiment Gravity Probe B indicates 5% a divergence between data experiment Gravity Probe B and predictions of the general theory of relativity of Lense-Thirringa. Identified methodological error in the formulation of the experiment, the authors experiment Gravity Probe B expect orthogonality of the angular velocity of precession and the angular velocity of rotation of a gyroscope. By choosing the desired angle smaller than ninety degrees, complete correspondence of the theory can be achieved in the experiment.

Keywords
7D Space-and-time; Geodetic Precession; Lense–thirring Effect; Gyroscope; Gravity Probe B; Euler Angles

Introduction
Gravity Probe B is a space mission of the USA aimed at measuring extremely low effects of geodetic precession of the gyroscopes on circumterrestrial orbit which are predicted by Einstein’s relativity theory. The satellite was launched on April 20, 2004 while data acquisition process commenced in August 2004. The satellite was for total 17 months on its orbit and completed its mission on October 3, 2005. Reduction was completed in May 2011. The experimental findings were published in the final report [Everitt et al. (2011)]. The geodetic gyroscope precession effect coincided with the estimated value with accuracy of 0.25%. The effect caused by the interaction between spin and orbital moment differs from the estimated value for more than 5%. This study suggested excluding the effect caused by spinning of bodies from the design equations.

Main Part
As shown in equations [Portnov (2011)], the dynamics of both translation and spin motion of bodies in gravity fields may be explained using seven-dimensional space-and-time continuum which, in addition to time and three spatial coordinates, comprises three coordinates that orient a body in space and may be described as Euler angles $x^4 = \varphi$, $x^5 = \psi$, $x^6 = \theta$. For flat space, the metrics of a spherical body in an empty seven-dimensional space-and-time continuum is given by

$$ g_{00} = 1, \quad g_{aa} = -1, \quad g_{44} = g_{55} = g_{66} = -\frac{J}{m}, \quad g_{45} = g_{54} = -\frac{J \cos \theta}{m}, $$

(1)

where J is the sample body inertia relative to spin axes, precession and nutation, m is the body mass, $\alpha = 1, 2, 3$.

Equations [Portnov (2011)] show that metrics (1) allows for obtaining three classical equations of sample spherical body motion in empty space

$$ a_x = 0, \quad a_y = 0, \quad a_z = 0, $$

(2)

and three gyroscope equations which cannot be derived by the general four-dimensional relativity theory

$$ e_\varphi = \frac{\alpha_x \alpha_y}{\sin(\theta)} - \frac{\cos(\theta)}{\sin(\theta)} \alpha_y \alpha_\varphi, $$

$$ e_\psi = \frac{\alpha_x \alpha_y}{\sin(\theta)} - \frac{\cos(\theta)}{\sin(\theta)} \alpha_y \alpha_\psi, $$

$$ e_\theta = \frac{\alpha_x \alpha_y}{\sin(\theta)} - \frac{\cos(\theta)}{\sin(\theta)} \alpha_y \alpha_\theta, $$

(3)
Gravity equations in seven-dimensional space-and-time continuum may be written as
\[R_{mn} = k(T_{mn} - \frac{1}{2} \delta_{mn} T) + \Lambda_{mn}, \] (4)
where \(\Lambda_{mn} \) is supplementary tensor [Portnov Yu.A., 2011]. Variable \(\Lambda_{mn} \) must be introduced because not all components of \(R_{mn} \) with metrics (1) are reduced to zero in the absence of matter \(T_{mn} = 0 \).

Let us project the body spin vector \(\omega^4 \) on the coordinate space
\[\omega^4 = \omega^4_0 dx^\alpha \]
and consider translation of vector \(\omega^4 \) along the geodetic coordinate
\[\frac{d\omega^4_\alpha}{dt} = \Gamma^\mu_{\alpha\beta}^{\mu} \omega^\mu, \] (5)
where \(\alpha, \beta, \mu = 1, 2, 3 \).

As it is shown in [Steven Weinberg (1972)] expand field equation (4) into series by velocity exponents. Using translation equation (5) the gyroscope angular velocity variation equation was derived:
\[\frac{d\omega^4}{dt} = \Omega \times \omega^4, \] (6)
where
\[\Omega = \frac{c}{2} (\tilde{\nu} \times \tilde{\zeta}) - \frac{3}{2} (\tilde{u} \times \tilde{\phi}) \] (7)
is angular precession velocity, \(\phi \) and \(\zeta \) are gravity potentials. Herewith due to orthogonality of its components, the angular precession velocity may be expressed as the sum of two orthogonal vectors
\[\Omega = \Omega' + \Omega^*, \]
where
\[\Omega' = -\frac{3}{2} (\tilde{u} \times \tilde{\phi}) \]
is angular precession velocity,
\[\Omega^* = \frac{c}{2} (\tilde{\nu} \times \tilde{x}) \]
is angular velocity of spin-spin interaction of the gyroscope and the Earth. Thus, the angular acceleration of the gyroscope may be expressed as
\[\epsilon' = [\Omega' \times \omega^4], \] (8)
\[\epsilon^* = [\Omega^* \times \omega^4]. \] (9)
Alternatively, using gyroscope equation (3) with the assumption that the gyroscope angular velocity is \(\omega^4 = \text{const} \), it is possible to derive the equations for angular precession acceleration
\[\epsilon' = \omega^4 \omega^4_\alpha \sin(\theta), \] (10)
and angular nutation acceleration
\[\epsilon_\theta = -\omega^4 \omega^\beta \sin(\theta). \] (11)
Using the properties of spin, angular precession and angular nutation velocity vectors [Portnov (2011)], and comparing equations (8), (9), (10) and (11) it was discovered that
\[\omega_\alpha = -\frac{\Omega'}{\sin \theta}, \]
\[\omega_\theta = \Omega^*. \] (13)
Henceforth we deem values \(\omega_\alpha \) and \(\omega_\theta \) obtained in Gravity Probe B experiment to be angular velocities of the gyroscope axis displacement.

In the performance of Gravity Probe B experiment the angular precession velocity was expected to be orthogonal to the gyroscope spin velocity (\(\theta = \pi / 2 \)). But it should be wrong that due to recession it is impossible to uniquely determine by a small motion arc of spin axis \(AB \) if the arc occurs exclusively due to nonorthogonality of precession or a complex motion of orthogonal precession \(AB' \) and orthogonal nutation \(BB' \) (see Fig. 1).
and virtual nutation \(\omega'_v \) to actual precession \(\omega'_p \) and nutation angle \(\theta \) (see Fig. 1) the equation can be derived

\[
\omega'_v = \frac{\omega'_p (\sin \theta)^2 \sin \psi}{\sqrt{1 - \left(2 \left(\sin \left(\frac{\psi}{2}\right)\right)^2 \left(\sin \theta\right)^2 - 1\right)^2}}, \tag{14}
\]

\[
\omega'_v = \frac{\omega'_p \sin \theta \sin \psi \left(1 - 2 \left(\sin \left(\frac{\theta}{2}\right)\right)^2\right)}{1 - \sin \theta (\sin \psi)^2} \tag{15}
\]

Substituting (12) into resulting relations (14) and (15), we have

\[
\Omega'_v \sin \theta \sin \psi = \sqrt{1 - \left(2 \left(\sin \left(\frac{\psi}{2}\right)\right)^2 \left(\sin \theta\right)^2 - 1\right)^2}, \tag{16}
\]

\[
\Omega'_v \sin \psi \left(1 - 2 \left(\sin \left(\frac{\theta}{2}\right)\right)^2\right) \tag{17}
\]

Therefore, it was maintained that

\[
\Omega'_v = \omega'_v \tag{18}
\]

\[
\Omega'_v = \omega'_v + \omega'_p \tag{19}
\]

were measurable values in Gravity Probe B experiment.

As it appears from [Everitt et al. (2011)] that the angular velocity of spin-spin interaction differs from the actual value for about 19%. The functions (Fig. 2, Fig. 3) show that the discrepancy between the theoretical and the experimental data may be avoided if it is assumed that the angular nutation velocity is contributed to misinterpretation of the angular precession velocity, that is the difference of nutation angle \(\theta \) from \(\pi / 2 \). In particular, at \(\theta \approx 1.3965 \) radian the estimated virtual angular velocity of nutation is

\[
\omega'_v = 3.027 \cdot 10^{-4} \Omega' \text{ equal to } \omega'_p \approx 2 \text{ angular milliseconds per year. Thus, if the measurable angular velocity of nutation } \Omega'_v \text{ is equal to the sum of a theoretical value of angular nutation velocity } \omega'_v \text{ (refer to (13)) and a virtual value of angular precession velocity } \omega'_p, \text{ the estimated value shall be exactly the same as the measurable value. Deviation of angular precession velocity } \Omega'_v \text{ from the estimated value at nutation angle } \theta \approx 1.3965 \text{ radian will not exceed } 10^{-6} \%
\]

\[
\text{FIG. 2 FUNCTION OF VIRTUAL ANGULAR VELOCITY OF PRECESSION } \omega'_v \text{ TO NUTATION ANGLE } \theta
\]

\[
\text{FIG. 3 FUNCTION OF VIRTUAL ANGULAR VELOCITY OF NUTATION } \omega'_v \text{ TO NUTATION ANGLE } \theta
\]

Conclusion

Finally, it should be noted that considering the Gravity Probe B experiment in terms of a seven-dimensional gravitation model, it is possible to obtain unorthogonal direction of the angular precession velocity relatively to the gyroscope angular spin velocity. This fact allows for interpreting the gyroscope spin axis motion as virtual precessional and virtual nutation motions. In view of the virtual angular nutation velocity contribution, it was discovered that the experimental and estimated values of angular nutation velocity coincide at the particular angle \(\theta \).

REFERENCES

Everitt, C.W.F., DeBra, D.B., Parkinson, B.W., etc. // Physical review letters, PRL 106, 221101, (2011).

Portnov, Yu.A. // Gravitation & Cosmology, Vol. 17, No. 2, (2011) pp. 152-160.

Steven Weinberg Gravitation and cosmology, John Wiley and Sons, Inc., (New York, 1972).