On Symmetry of Independence Polynomials

Vadim E. Levit
Ariel University Center of Samaria, Israel
levitv@ariel.ac.il

Eugen Mandrescu
Holon Institute of Technology, Israel
eugen.m@hit.ac.il

Abstract

An independent set in a graph is a set of pairwise non-adjacent vertices, and \(\alpha(G) \) is the size of a maximum independent set in the graph \(G \). A matching is a set of non-incident edges, while \(\mu(G) \) is the cardinality of a maximum matching.

If \(s_k \) is the number of independent sets of cardinality \(k \) in \(G \), then

\[
I(G; x) = s_0 + s_1x + s_2x^2 + \ldots + s_\alpha x^{\alpha}, \quad \alpha = \alpha(G),
\]

is called the independence polynomial of \(G \) (Gutman and Harary [7]). If \(s_j = s_{\alpha-j} \), \(0 \leq j \leq \lfloor \alpha/2 \rfloor \), then \(I(G; x) \) is called symmetric (or palindromic). It is known that the graph \(G \circ 2K_1 \) obtained by joining each vertex of \(G \) to two new vertices, has a symmetric independence polynomial [23].

In this paper we show that for every graph \(G \) and for each non-negative integer \(k \leq \mu(G) \), one can build a graph \(H \), such that: \(G \) is a subgraph of \(H \), \(I(H; x) \) is symmetric, and \(I(G \circ 2K_1; x) = (1+x)^k \cdot I(H; x) \).

Keywords: independent set, independence polynomial, symmetric polynomial, palindromic polynomial

MSC Classification 2010: 05C31; 05C69.

1 Introduction

Throughout this paper \(G = (V,E) \) is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set \(V = V(G) \) and edge set \(E = E(G) \). If \(X \subset V \), then \(G[X] \) is the subgraph of \(G \) spanned by \(X \). By \(G-W \) we mean the subgraph \(G[V-W] \), if \(W \subset V(G) \). We also denote by \(G-F \) the partial subgraph of \(G \) obtained by deleting the edges of \(F \), for \(F \subset E(G) \), and we write shortly \(G-e \), whenever \(F = \{e\} \). The neighborhood of a vertex \(v \in V \) is the set \(N_G(v) = \{w : w \in V \text{ and } vw \in E\} \), and \(N_G[v] = N_G(v) \cup \{v\} \); if there is no ambiguity on \(G \), we write \(N(v) \) and \(N[v] \). \(K_n, P_n, C_n \) denote, respectively, the complete graph on \(n \geq 1 \) vertices, the chordless path on \(n \geq 1 \) vertices, and the chordless cycle on \(n \geq 3 \) vertices.
The disjoint union of the graphs G_1, G_2 is the graph $G = G_1 \cup G_2$ having as vertex set the disjoint union of $V(G_1), V(G_2)$, and as edge set the disjoint union of $E(G_1), E(G_2)$. In particular, nG denotes the disjoint union of $n > 1$ copies of the graph G.

If G_1, G_2 are disjoint graphs, $A_1 \subseteq V(G_1), A_2 \subseteq V(G_2)$, then the Zykov sum of G_1, G_2 with respect to A_1, A_2, is the graph $(G_1, A_1) + (G_2, A_2)$ with $V(G_1) \cup V(G_2)$ as vertex set and $E(G_1) \cup E(G_2) \cup \{v_1v_2 : v_1 \in A_1, v_2 \in A_2\}$ as edge set. If $A_1 = V(G_1)$ and $A_2 = V(G_2)$, we simply write $G_1 + G_2$.

The corona of the graphs G and H with respect to $A \subseteq V(G)$ is the graph $(G, A) \circ H$ obtained from G and $|A|$ copies of H, such that each vertex of A is joined to all vertices of a copy of H. If $A = V(G)$ we use $G \circ H$ instead of $(G, V(G)) \circ H$ (see Figure 1 for an example).

![Figure 1: G, H and $L = (G, A) \circ H$, where $A = \{a, b\}$.](image)

Let G, H be two graphs and C be a cycle on q vertices of G. By $(G, C) \triangle H$ we mean the graph obtained from G and q copies of H, such that each two consecutive vertices on C are joined to all vertices of a copy of H (see Figure 2 for an example).

![Figure 2: G and $W = (G, C) \triangle H$, where $V(C) = \{a, b, c, d\}$ and $H = K_1$.](image)

An independent (or a stable) set in G is a set of pairwise non-adjacent vertices. By $\text{Ind}(G)$ we mean the family of all independent sets of G. An independent set of maximum size will be referred to as a maximum independent set of G, and the independence number of G, denoted by $\alpha(G)$, is the cardinality of a maximum independent set in G.

Let s_k be the number of independent sets of size k in a graph G. The polynomial

$$I(G; x) = s_0 + s_1x + s_2x^2 + ... + s_\alpha x^\alpha, \quad \alpha = \alpha(G),$$

is called the independence polynomial of G [7], the independent set polynomial of G [11]. In [6], the dependence polynomial $D(G; x)$ of a graph G is defined as $D(G; x) = I(G; -x)$.

A matching is a set of non-incident edges of a graph G, while $\mu(G)$ is the cardinality of a maximum matching. Let m_k be the number of matchings of size k in G. The polynomial

$$M(G; x) = m_0 + m_1x + m_2x^2 + ... + m_\mu x^\mu, \quad \mu = \mu(G),$$

is called the matching polynomial of G [1].
Figure 3: G_2 is the line-graph of G_1.

is called the **matching polynomial** of G [5].

The independence polynomial has been defined as a generalization of the matching polynomial, because the matching polynomial of a graph G and the independence polynomial of its line graph are identical. Recall that given a graph G, its **line graph** $L(G)$ is the graph whose vertex set is the edge set of G, and two vertices are adjacent if they share an end in G. For instance, the graphs G_1 and G_2 depicted in Figure 3 satisfy $G_2 = L(G_1)$ and, hence, $I(G_2; x) = 1 + 6x + 7x^2 + x^3 = M(G_1; x)$.

In [7] a number of general properties of the independence polynomial of a graph are presented. As examples, we mention that:

$$I(G_1 \cup G_2; x) = I(G_1; x) \cdot I(G_2; x),$$

$$I(G_1 + G_2; x) = I(G_1; x) + I(G_2; x) - 1.$$

The following equalities are very useful in calculating the independence polynomial for various families of graphs.

Theorem 1.1 (i) [7] $I(G; x) = I(G - v; x) + x \cdot I(G - N[v]; x)$ holds for every $v \in V(G)$.

(ii) [9] $I(G \circ H; x) = (I(H; x))^n \cdot I(G; \frac{1}{I(H; x)})$, where $n = |V(G)|$.

A finite sequence of real numbers $(a_0, a_1, a_2, \ldots, a_n)$ is said to be:

- **unimodal** if there is some $k \in \{0, 1, \ldots, n\}$, such that

 \[a_0 \leq \ldots \leq a_{k-1} \leq a_k \geq a_{k+1} \geq \ldots \geq a_n; \]

- **log-concave** if $a_i^2 \geq a_{i-1} \cdot a_{i+1}$ for $i \in \{1, 2, \ldots, n-1\}$.

- **symmetric** (or **palindromic**) if $a_i = a_{n-i}$, $i = 0, 1, \ldots, \lfloor n/2 \rfloor$.

It is known that every log-concave sequence of positive numbers is also unimodal.

A polynomial is called unimodal (log-concave, symmetric) if the sequence of its coefficients is unimodal (log-concave, symmetric, respectively). For instance, the independence polynomial

- $I(K_{42} + 3K_7; x) = 1 + 63x + 147x^2 + 343x^3$ is log-concave;

- $I(K_{43} + 3K_7; x) = 1 + 64x + 147x^2 + 343x^3$ is unimodal, but non-log-concave, because $147 \cdot 147 - 64 \cdot 343 = -343 < 0$;

- $I(K_{127} + 3K_7; x) = 1 + 148x + 147x^2 + 343x^3$ is non-unimodal;
\[I(K_{18} + 3K_3 + 4K_1; x) = 1 + 31x + 33x^2 + 31x^3 + x^4 \text{ is symmetric and log-concave}; \]

\[I(K_{52} + 3K_4 + 4K_1; x) = 1 + 68x + 54x^2 + 68x^3 + x^4 \text{ is symmetric and non-unimodal}. \]

It is easy to see that if \(\alpha(G) \leq 3 \) and \(I(G; x) \) is symmetric, then it is also log-concave.

For other examples, see [1], [14], [15], [16] and [18]. Alavi, Malde, Schwenk and Erdős proved that for any permutation \(\pi \) of \(\{1, 2, ..., \alpha\} \) there is a graph \(G \) with \(\alpha(G) = \alpha \) such that \(s_{\pi(1)} < s_{\pi(2)} < ... < s_{\pi(\alpha)} \).

In this paper we show that every graph \(H \) derived from the graph \(G \) by Stevanović’s rules [23] gives rise to the following decomposition

\[I(G \circ 2K_1; x) = (1 + x)^k \cdot I(H; x), \]

for every non-negative integer \(k \leq \mu(G) \).

2 Preliminaries

The symmetry of the matching polynomial and the characteristic polynomial of a graph were examined in [13], while for the independence polynomial we quote [10], [23], and [3]. Recall from [13] that \(G \) is called a equible graph if \(G = H \circ K_1 \) for some graph \(H \). Both matching polynomials and characteristic polynomials of equible graphs are symmetric [13]. Nevertheless, there are non-equible graphs whose matching polynomials and characteristic polynomials are symmetric.

It is worth mentioning that one can produce graphs with symmetric independence polynomials in different ways. We summarize some of them in the sequel.

2.1 Gutman’s construction [8]

For integers \(p > 1 \), \(q > 1 \), let \(J_{p,q} \) be the graph built in the following manner [8]. Start with three complete graphs \(K_1, K_p \) and \(K_q \) whose vertex sets are disjoint. Connect the vertex of \(K_1 \) with \(p - 1 \) vertices of \(K_p \) and with \(q - 1 \) vertices of \(K_q \). The graph thus obtained has a unique maximum independent set of size three, and its independence polynomial is equal to

\[I(J_{p,q}; x) = 1 + (p + q + 1)x + (pq + 2)x^2 + x^3. \]

Hence the independence polynomial of \(G = J_{p,q} + K_{pq-p-q+1} \) is

\[I(G; x) = I(J_{p,q}; x) + I(K_{pq-p-q+1}; x) - 1 = 1 + (2 + pq)x + (2 + pq)x^2 + x^3, \]

which is clearly symmetric and log-concave.
2.2 Bahls and Salazar’s construction \[3\]

The \(K_t\)-path of length \(k \geq 1\) is the graph \(P(t,k) = (V,E)\) with \(V = \{v_1, v_2, ..., v_{t+k-1}\}\) and \(E = \{v_i v_{i+j} : 1 \leq i \leq t+k-2, 1 \leq j \leq \min\{t-1, t+k-i-1\}\}\). Such a graph consists of \(k\) copies of \(K_t\), each glued to the previous one by identifying certain prescribed subgraphs isomorphic to \(K_{t-1}\). Let \(G = (V,E)\) be a subset of its vertices. Suppose that each of the graphs \(G, U\) is symmetric, then we write \(G = (V,E)\) and \(U \subseteq V\) be a subset of its vertices. Let \(v \notin V\) and define the cone of \(G\) on \(U\) with vertex \(v\), denoted \(G^{*}(U,v) = (G,U) + K_1\), where \(K_1 = (\{v\}, \emptyset)\). Given \(G\) and \(U\) and a graph \(H\), we write \(H + (G,U)\) instead of \((H,V(H)) + (G,U)\).

Theorem 2.1 \[3\] Let \(t \geq 2, k \geq 1, \) and \(d \geq 0\) be integers, and let \(G = (V,E)\) be a graph with \(U \subseteq V\) a distinguished subset of vertices. Suppose that each of the graphs \(G, G - U\), and \((G,U) + K_1\) have symmetric and unimodal independence polynomials, and that \(\deg(I(G; x)) = \deg(I((G,U) + K_1; x)) = \deg(I(G - U; x)) + 2\). Then the independence polynomial of the graph \(P(t,k,d) = (G,U)\) is symmetric and unimodal.

2.3 Stevanović’s constructions \[23\]

Taking into account that \(s_0 = 1\) and \(s_1 = |V(G)| = n\), it follows that if \(I(G; x)\) is symmetric, then \(s_0 = s_0 \) and \(s_1 = s_0 - 1\), i.e., \(G\) has only one maximum independent set, say \(S\), and \(n - \alpha(G) - 1\), that are not subsets of \(S\).

Theorem 2.2 \[23\] If there is an independent set \(S\) in \(G\) such that \(|N(A) \cap S| = 2 |A|\) holds for every independent set \(A \subseteq V(G) - S\), then \(I(G; x)\) is symmetric.

The following result is a consequence of Theorem 2.2.

Corollary 2.3 \[23\] (i) If \(\alpha(G) = \alpha, s_0 = 1, s_{\alpha-1} = |V(G)|\), and for the unique stability system \(S\) of \(G\) it is true that \(|N(v) \cap S| = 2\) for each \(v \in V(G) - S\), then \(I(G; x)\) is symmetric.

(ii) If \(G\) is a claw-free graph with \(\alpha(G) = \alpha, s_0 = 1, s_{\alpha-1} = |V(G)|\), then \(I(G; x)\) is symmetric.

Corollary 2.3 gives three different ways to construct graphs having symmetric independence polynomials \[23\].

- **Rule 1.** For a given graph \(G\), define a new graph \(H\) as: \(H = G \circ 2K_1\).

![Figure 5: G and H1 = G \circ 2K1.](image-url)
For an example, see the graphs in Figure 5. \(I(G; x) = 1 + 6x + 9x^2 + 3x^3, \) while

\[
I(H_1; x) = (1 + x)^6 \left(1 + 12x + 48x^2 + 77x^3 + 48x^4 + 12x^5 + x^6 \right) = \\
= 1 + 18x + 135x^2 + 565x^3 + 1485x^4 + 3126x^5 + \\
+ 2601x^6 + 1485x^7 + 565x^8 + 135x^9 + 18x^{10} + x^{11}.
\]

- A cycle cover of a graph \(G \) is a spanning graph of \(G \), each connected component of which is a vertex (which we call a vertex-cycle), an edge (which we call an edge-cycle), or a proper cycle. Let \(\Gamma \) be a cycle cover of \(G \).

Rule 2. Construct a new graph \(H \) from \(G \), denoted by \(H = \Gamma \{ G \} \), as follows: if \(C \in \Gamma \) is
 1. a vertex-cycle, say \(v \), then add two vertices and join them to \(v \);
 2. an edge-cycle, say \(uv \), then add two vertices and join them to both \(u \) and \(v \);
 3. a proper cycle, with \(V(C) = \{ v_i : 1 \leq i \leq s \} \), \(E(C) = \{ v_i v_{i+1} : 1 \leq i \leq s-1 \} \cup \{ v_1 v_s \} \), then add \(s \) vertices, say \(\{ w_i : 1 \leq i \leq s \} \) and each of them is joined to two consecutive vertices on \(C \), as follows: \(w_1 \) is joined to \(v_s, v_1 \), then \(w_2 \) is joined to \(v_1, v_2 \), further \(w_3 \) is joined to \(v_2, v_3 \), etc.

Figure 6 contains an example, namely, \(I(G; x) = 1 + 6x + 9x^2 + 3x^3, \) while

\[
I(H_2; x) = 1 + 13x + 60x^2 + 125x^3 + 125x^4 + 60x^5 + 13x^6 + x^7 = \\
= (1 + x) \left(1 + 12x + 48x^2 + 77x^3 + 48x^4 + 12x^5 + x^6 \right).
\]

![Figure 6: G and H2 = Γ(G), where Γ = \{\{x\}, \{a, b, c\}, \{y, z\}\}](image)

- A clique cover of a graph \(G \) is a spanning graph of \(G \), each connected component of which is a clique. Let \(\Phi \) be a clique cover of \(G \).

Rule 3. Construct a new graph \(H \) from \(G \), denoted by \(H = \Phi \{ G \} \), as follows: for each \(Q \in \Phi \), add two non-adjacent vertices and join them to all the vertices of \(Q \).

Figure 7 contains an example, namely, \(I(G; x) = 1 + 6x + 9x^2 + 3x^3, \) while

\[
I(H_3; x) = 1 + 12x + 48x^2 + 77x^3 + 48x^4 + 12x^5 + x^6.
\]
Let \(H \) be the graph obtained from a graph \(G \) according to one of the Rules 1, 2 or 3. Then \(H \) has a symmetric independence polynomial.

Let us remark that \(I(H_1; x) = (1 + x)^6 \cdot I(H_3; x) \) and \(I(H_2; x) = (1 + x) \cdot I(H_3; x) \), where \(H_1, H_2 \) and \(H_3 \) are depicted in Figures 5, 6, and 7, respectively.

2.4 Inequalities and equalities following from Theorem 2.4

Proposition 2.5 \([20]\) Let \(G = H \circ 2K_1 \) be with \(\alpha(G) = \alpha \), and \((s_k)\) be the coefficients of \(I(G; x) \). Then \(I(G; x) \) is symmetric, and

\[
\begin{align*}
 s_0 & \leq s_1 \leq \ldots \leq s_p \text{ for } p = \left\lfloor \frac{2\alpha + 2}{5} \right\rfloor,

 s_t & \geq \ldots \geq s_{\alpha-1} \geq s_\alpha \text{ for } t = \left\lceil \frac{3\alpha - 2}{5} \right\rceil.
\end{align*}
\]

Theorem 2.6 \([20]\) Let \(H \) be a graph of order \(n \geq 2 \), \(\Gamma \) be a cycle cover of \(H \) that contains no vertex-cycles, \(G \) be obtained by Rule 2, and \(\alpha(G) = \alpha \). Then \(I(G; x) \) is symmetric and its coefficients \((s_k)\) satisfy the subsequent inequalities:

\[
\begin{align*}
 s_0 & \leq s_1 \leq \ldots \leq s_p \text{ for } p = \left\lfloor \frac{\alpha + 1}{3} \right\rfloor,

 s_q & \geq \ldots \geq s_{\alpha-1} \geq s_\alpha \text{ for } q = \left\lceil \frac{2\alpha - 1}{3} \right\rceil.
\end{align*}
\]

Let \(H_n, n \geq 1 \), be the graphs obtained according to Rule 3 from \(P_n \), as one can see in Figure 8.

Theorem 2.7 \([19]\) If \(J_n(x) = I(H_n; x), n \geq 0 \), then
(i) $J_0(x) = 1, J_1(x) = 1 + 3x + x^2$ and $J_n, n \geq 2,$ satisfies the following recursive relations:

\[J_{2n}(x) = J_{2n-1}(x) + x \cdot J_{2n-2}(x), \quad n \geq 1, \]

\[J_{2n-1}(x) = (1 + x)^2 \cdot J_{2n-2}(x) + x \cdot J_{2n-3}(x), \quad n \geq 2; \]

(ii) J_n is both symmetric and unimodal.

It was conjectured in [19] that $I(H_n; x)$ is log-concave and has only real roots. This conjecture has been resolved as follows.

Theorem 2.8 [24] Let $n \geq 1$. Then

(i) the independence polynomial of H_n is

\[I(H_n; x) = \prod_{s=1}^{\lfloor (n+1)/2 \rfloor} \left(1 + 4x + x^2 + 2x \cdot \cos \frac{2s\pi}{n+2} \right); \]

(ii) $I(H_n; x)$ has only real zeros, and, therefore, it is log-concave and unimodal.

3 Results

The following lemma goes from the well-known fact that the polynomial $P(x)$ is symmetric if and only if it equals its reciprocal, i.e.,

\[P(x) = x^{\deg(P)}P\left(\frac{1}{x}\right). \quad (*) \]

Lemma 3.1 Let $f(x), g(x)$ and $h(x)$ be polynomials satisfying $f(x) = g(x) \cdot h(x)$. If any two of them are symmetric, then the third is symmetric as well.

For $H = 2K_1$, Theorem [14] gives

\[I(G \circ 2K_1; x) = (1 + x)^{2n} \cdot I\left(G; \frac{x}{(1+x)^2}\right). \]

Since \(\frac{x}{(1+x)^2} = \frac{1}{(1+x)^2} \) and $\deg(I(G \circ 2K_1; x)) = 2n$, one can easily see that the polynomial $I(G \circ 2K_1; x)$ satisfies the identity [1]. Thus we conclude with the following.

Theorem 3.2 [23] For every graph G, the polynomial $I(G \circ 2K_1; x)$ is symmetric.

3.1 Clique covers

Lemma 3.3 If A is a clique in a graph G, then for every graph H

\[I((G, A) \circ H; x) = I(H; x)^{|A|-1} \cdot I((G, A) + H; x). \]
Proof. Let $G_1 = (G, A) \circ H$ and $G_2 = ((G, A) + H) \cup ((|A| - 1)H)$.

For $S \in \text{Ind}(G)$, let denote the following families of independent sets:

$$
\Omega_{G_1}^S = \{ S \cup W : W \subseteq V(G_1 - G), S \cup W \in \text{Ind}(G_1) \},
$$

$$
\Omega_{G_2}^S = \{ S \cup W : W \subseteq V(G_2 - G), S \cup W \in \text{Ind}(G_2) \}.
$$

Since A is a clique, it follows that $|S \cap A| \leq 1$.

Case 1. $S \cap A = \emptyset$.

In this case $S \cup W \in \Omega_{G_1}^S$ if and only if $S \cup W \in \Omega_{G_2}^S$. Hence, for each size $m \geq |S|$, we get that

$$
\left| \{ S \cup W \in \Omega_{G_1}^S : |S \cup W| = m \} \right| = \left| \{ S \cup W \in \Omega_{G_2}^S : |S \cup W| = m \} \right|.
$$

Case 2. $S \cap A = \{a\}$.

Now, every $S \cup W \in \Omega_{G_1}^S$ has $W \cap V(H) = \emptyset$ for exactly one H, namely, the graph H whose vertices are joined to a. Hence, W may contain vertices only from $(|A| - 1)H$.

On the other hand, each $S \cup W \in \Omega_{G_2}^S$ has $W \cap V(H) = \emptyset$ for the unique H appearing in $(G, A) + H$. Therefore, W may contain vertices only from $(|A| - 1)H$.

Hence, for each positive integer $m \geq |S|$, we obtain that

$$
\left| \{ S \cup W \in \Omega_{G_1}^S : |S \cup W| = m \} \right| = \left| \{ S \cup W \in \Omega_{G_2}^S : |S \cup W| = m \} \right|.
$$

Consequently, one may infer that for each size, the two graphs, G_1 and G_2, have the same number of independent sets, in other words, $I(G_1; x) = I(G_2; x)$.

Since $G_2 = ((G, A) + H) \cup ((|A| - 1)H)$ has $|A| - 1$ disjoint components identical to H, it follows that $I(G_2; x) = I(H; x)^{|A| - 1} \cdot I((G, A) + H; x)$. \(\blacksquare\)

Corollary 3.4 If A is a clique in a graph G, then

$$
I((G, A) \circ 2K_1; x) = (1 + x)^{2|A|-2} \cdot I((G, A) + 2K_1; x).
$$

Theorem 3.5 If G is a graph of order n and Φ is a clique cover, then

$$
I(G \circ 2K_1; x) = (1 + x)^{2n - 2|\Phi|} \cdot I(\Phi(G); x).
$$

Proof. Let $\Phi = \{ A_1, A_2, ..., A_q \}$. According to Corollary 3.4, each

(a) vertex-clique of Φ yields $(1 + x)^{2 - 2} = 1$ as a factor of $I(G \circ 2K_1; x)$, since a vertex defines a clique of size 1;

(b) edge-clique of Φ yields $(1 + x)^{2}$ as a factor of $I(G \circ 2K_1; x)$, since an edge defines a clique of size 2;

(c) clique $A_j \in \Phi, |A_j| \geq 3$, produces $(1 + x)^{2|A_j|-2}$ as a factor of $I(G \circ 2K_1; x)$.

Since the cliques of Φ are pairwise vertex disjoint, one can apply Corollary 3.4 to all the q cliques one by one.
Using Corollary 3.4 and the fact that \(A_1 \cap A_2 = \emptyset \), we have

\[
I((G, A_1 \cup A_2) \circ 2K_1; x) = I(((G, A_1) \circ 2K_1), A_2) \circ 2K_1; x) = (1 + x)^{2|A_2|-2} \cdot I(((G, A_1) \circ 2K_1), A_2 \cup 2K_1; x)
\]

Repeating this process with \(\{A_3, A_4, \ldots, A_q\} \), and taking into account that all the cliques of \(\Phi \) are pairwise disjoint, we obtain

\[
I((G \circ 2K_1; x) = I((G, A_1 \cup A_2 \cup \ldots \cup A_q) \circ 2K_1; x) = (1 + x)^{2(|A_1| + |A_2| + \ldots + |A_q|)-2} \cdot I(((G, A_1) + 2K_1), A_2\ldots, A_q + 2K_1; x) = (1 + x)^{2n-2|\Phi|} \cdot I(\Phi(G); x),
\]

as required. \(\blacksquare \)

Lemma 3.1 and Theorem 3.5 imply the following.

Corollary 3.6 [23] For every clique cover \(\Phi \) of a graph \(G \), the polynomial \(I(\Phi(G); x) \) is symmetric.

3.2 Cycle covers

Lemma 3.7 If \(C \) is a proper cycle in a graph \(G \), then for every graph \(H \)

\[
I((G, C) \circ 2H; x) = I(H; x)^{|C|} \cdot I((G, C) \triangle H; x).
\]

Proof. Let \(C = (V(C), E(C)), q = |V(C)|, G_1 = (G, C)c2H, \) and \(G_2 = ((G, C) \triangle H) \cup (qH) \).
For an independent set $S \subset V(G)$, let us denote:

$$\Omega^G_{S^1} = \{S \cup W : W \subseteq V(G_1) - V(G), S \cup W \in \text{Ind}(G_1)\}$$
$$\Omega^G_{S^2} = \{S \cup W : W \subseteq V(G_2) - V(G), S \cup W \in \text{Ind}(G_2)\}.$$

Case 1. $S \cap V(C) = \emptyset$.
In this case $S \cup W \in \Omega^G_{S^1}$ if and only if $S \cup W \in \Omega^G_{S^2}$, since W is an arbitrary independent set of $2qH$. Hence, for each size $m \geq |S|$, we get that

$$|\{S \cup W \in \Omega^G_{S^1} : |S \cup W| = m\}| = |\{S \cup W \in \Omega^G_{S^2} : |S \cup W| = m\}|.$$

Case 2. $S \cap V(C) \neq \emptyset$.
Then, we may assert that

$$|\Omega^G_{S^1}| = |\{S \cup W : W \text{ is an independent set in } 2(q - |S \cap V(C)|)H\}| = |\Omega^G_{S^2}|,$$

since W has to avoid all the "H-neighbors" of the vertices in $S \cap V(C)$, both in G_1 and G_2.

Hence, for each positive integer $m \geq |S|$, we get that

$$|\{S \cup W \in \Omega^G_{S^1} : |S \cup W| = m\}| = |\{S \cup W \in \Omega^G_{S^2} : |S \cup W| = m\}|.$$

Consequently, one may infer that for each size, the two graphs, G_1 and G_2, have the same number of independent sets. In other words, $I(G_1; x) = I(G_2; x)$.

Since G_2 has $|C|$ disjoint components identical to H, it follows that $I(G_2; x) = (1 + x)^{|C|} \cdot I((G, C) \Delta H; x)$.

Corollary 3.8 If C is a proper cycle in a graph G, then

$$I((G, C) \circ 2K_1; x) = (1 + x)^{|C|} \cdot I((G, C) \Delta K_1; x).$$

Theorem 3.9 If G is a graph of order n and Γ is a cycle cover containing k vertex-cycles, then $I(G \circ 2K_1; x)$ satisfies

$$I(G \circ 2K_1; x) = (1 + x)^n - k \cdot I(\Gamma(G); x).$$

Proof. According to Corollaries 3.8 and 3.1, each

(a) vertex-cycle of Γ yields $(1 + x)^{2 - 2} = 1$ as a factor of $I(G \circ 2K_1; x)$, since a vertex defines a clique of size 1;

(b) edge-cycle of Γ yields $(1 + x)^2$ as a factor of $I(G \circ 2K_1; x)$, since an edge defines a clique of size 2;

(c) proper cycle $C \in \Gamma$ produces $(1 + x)^{|C|}$ as a factor.

Let $\Gamma = \{C_j : 1 \leq j \leq q\} \cup \{v_i : 1 \leq i \leq k\}$ be a cycle cover containing k vertex-cycles, namely, $\{v_i : 1 \leq i \leq k\}$.
cycles of Γ are pairwise vertex disjoint, we obtain

$$I((G, C_1 \cup C_2) \circ 2K_1; x) = I(((G, C_1) \circ 2K_1), C_2) \circ 2K_1; x) =$$

$$= (1 + x)^{|C_2|} \cdot I(((G, C_1) \circ 2K_1), C_2) \triangle K_1; x)$$

$$= (1 + x)^{|C_2|} \cdot I(((G, C_2) \triangle K_1), C_1) \circ 2K_1; x)$$

$$= (1 + x)^{|C_2|} \cdot I(((G, C_2) \triangle K_1), C_1) \triangle K_1; x).$$

Repeating this process with $\{C_3, C_4, ..., C_q\}$, and taking into account that all the cycles of Γ are pairwise vertex disjoint, we obtain

$$I((G \circ 2K_1; x) = I((G, C_1 \cup C_2 \cup ... \cup C_q) \circ 2K_1; x) =$$

$$= (1 + x)^{|C_1| + |C_2| + ... + |C_q|} \cdot I(((G, C_1) \triangle K_1), C_2, ..., C_q) \triangle K_1; x) =$$

$$= (1 + x)^{n-k} \cdot I(\Gamma(G); x),$$

as claimed. ■

Lemma 3.1 and Theorem 3.9 imply the following.

Corollary 3.10 [23] *For every cycle cover Γ of a graph G, the polynomial $I(\Gamma(G); x)$ is symmetric.*

4 Conclusions

In this paper we have given algebraic proofs for the assertions in Theorem 2.4 due to Stevanović [23]. In addition, we have showed that for every clique cover Φ, and every cycle cover Γ of a graph G, the polynomial $I(G \circ 2K_1; x)$ is divisible both by $I(\Phi(G); x)$ and $I(\Gamma(G); x)$.

For instance, the graphs from Figure 12 have: $I(G; x) = 1 + 6x + 9x^2 + 2x^3$, while

$$I(G \circ 2K_1; x) = (1 + x)^6 (1 + 12x + 48x^2 + 76x^3 + 48x^4 + 12x^5 + x^6) =$$

$$= (1 + x)^5 \cdot I(\Gamma(G); x) = (1 + x)^6 \cdot I(\Phi(G); x),$$

$I(\Gamma(G); x) = 1 + 13x + 60x^2 + 124x^3 + 124x^4 + 60x^5 + 13x^6 + x^7$, $I(\Phi(G); x) = 1 + 12x + 48x^2 + 76x^3 + 48x^4 + 12x^5 + x^6$.

Figure 11: $G_1 = C_4 \circ 2K_1$, $G_2 = 4K_1 \cup \Gamma(C_4)$ and $I(G_1; x) = (1 + x)^4 \cdot I(\Gamma(C_4); x)$
Clearly, for every $k \leq \mu(G)$ there exists a clique cover containing k non-trivial cliques, namely, edges. Consequently, we obtain the following.

Theorem 4.1 For every graph G and for each non-negative integer $k \leq \mu(G)$, one can build a graph H, such that: G is a subgraph of H, $I(H;x)$ is symmetric, and $I(G \circ 2K_1;x) = (1 + x)^k \cdot I(H;x)$.

The characterization of graphs whose independence polynomials are symmetric is still an open problem [23].

Let us mention that there are non-isomorphic graphs with the same independence polynomial, symmetric or not. For instance, the graphs G_1, G_2, G_3, G_4 presented in Figure 13 are non-isomorphic, while

$$I(G_1;x) = I(G_2;x) = 1 + 5x + 5x^2, \text{ and}$$
$$I(G_3;x) = I(G_4;x) = 1 + 6x + 10x^2 + 6x^3 + x^4.$$
of the antiregular graph A_n is:

$$I(A_{2k-1}; x) = (1 + x)^k + (1 + x)^{k-1} - 1 ~ \text{and} ~ I(A_{2k}; x) = 2 \cdot (1 + x)^k - 1, \quad k \geq 1.$$

Let us mention that $I(A_{2k}; x) = I(K_{k,k}; x)$ and $I(A_{2k-1}; x) = I(K_{k,k-1}; x)$, where $K_{m,n}$ denotes the complete bipartite graph on $m+n$ vertices. Notice that the coefficients of the polynomial

$$I(A_{2k}; x) = 2 \cdot (1 + x)^k - 1 = \sum_{j=0}^{k} s_j x^j$$

satisfy $s_j = s_{k-j}$ for $1 \leq j \leq \lfloor k/2 \rfloor$, while $s_0 \neq s_k$, i.e., $I(A_{2k}; x)$ is “almost symmetric”.

Problem 4.2 Characterize graphs whose independence polynomials are almost symmetric.

It is known that the product of a polynomial $P(x) = \sum_{k=0}^{n} a_k x^k$ and its reciprocal $Q(x) = \sum_{k=0}^{n} a_{n-k} x^k$ is a symmetric polynomial. Consequently, if $I(G_1; x)$ and $I(G_2; x)$ are reciprocal polynomials, then the independence polynomial of $G_1 \cup G_2$ is symmetric, because $I(G_1 \cup G_2; x) = I(G_1; x) \cdot I(G_2; x)$.

Problem 4.3 Describe families of graphs whose independence polynomials are reciprocal.

References

[1] Y. Alavi, P. J. Malde, A. J. Schwenk, P. Erdős, *The vertex independence sequence of a graph is not constrained*, Congressus Numerantium **58** (1987) 15-23.

[2] J. L. Arocha, *Propiedades del polinomio independiente de un grafo*, Revista Ciencias Matematicas, vol. **V** (1984) 103-110.

[3] P. Bahls, N. Salazar, *Symmetry and unimodality of independence polynomials of path-like graphs*, The Australasian Journal of Combinatorics **47** (2010) 165-176.

[4] M. Behzad, D. M. Chartrand, *No graph is perfect*, American Mathematical Monthly **74** (1967) 962-963.

[5] E. J. Farrell, *Introduction to matching polynomials*, Journal of Combinatorial Theory **B 27** (1979) 75-86.

[6] D. C. Fisher, A. E. Solow, *Dependence polynomials*, Discrete Mathematics **82** (1990) 251-258.

[7] I. Gutman, F. Harary, *Generalizations of the matching polynomial*, Utilitas Mathematica **24** (1983) 97-106.
[8] I. Gutman, Independence vertex palindromic graphs, Graph Theory Notes of New York Academy of Sciences XXIII (1992) 21-24.

[9] I. Gutman, Independence vertex sets in some compound graphs, Publications de l’Institut Mathématique 52 (1992) 5-9.

[10] I. Gutman, A contribution to the study of palindromic graphs, Graph Theory Notes of New York Academy of Sciences XXIV (1993) 51-56.

[11] C. Hoede, X. Li, Clique polynomials and independent set polynomials of graphs, Discrete Mathematics 125 (1994) 219-228.

[12] J. Keilson, H. Gerber, Some results for discrete unimodality, Journal of American Statistical Association 334 (1971) 386-389.

[13] J. W. Kennedy, Palindromic graphs, Graph Theory Notes of New York Academy of Sciences XXII (1992) 27-32.

[14] V. E. Levit, E. Mandrescu, On unimodality of independence polynomials of some well-covered trees, DMTCS 2003 (C. S. Calude et al. eds.), LNCS 2731, Springer-Verlag (2003) 237-256.

[15] V. E. Levit, E. Mandrescu, A family of well-covered graphs with unimodal independence polynomials, Congressus Numerantium 165 (2003) 195-207.

[16] V. E. Levit, E. Mandrescu, Very well-covered graphs with log-concave independence polynomials, Carpathian Journal of Mathematics 20 (2004) 73-80.

[17] V. E. Levit, E. Mandrescu, The independence polynomial of a graph - a survey, Proceedings of the 1st International Conference on Algebraic Informatics, Aristotele University of Thessaloniki, Greece, (2005) 233-254. http://web.auth.gr/cai05/papers/20.pdf

[18] V. E. Levit, E. Mandrescu, Independence polynomials of well-covered graphs: Generic counterexamples for the unimodality conjecture, European Journal of Combinatorics 27 (2006) 931-939.

[19] V. E. Levit, E. Mandrescu, A family of graphs whose independence polynomials are both palindromic and unimodal, Carpathian Journal of Mathematics 23 (2007) 108-116.

[20] V. E. Levit, E. Mandrescu, Graph operations and partial unimodality of independence polynomials, Congressus numerantium 190 (2008) 21-31.

[21] V. E. Levit, E. Mandrescu, On the independence polynomial of an antiregular graph, arXiv:1007.0880 [cs.DM] (2010) 11 pp.

[22] R. Merris, Graph theory, Wiley-Interscience, New York, 2001.

[23] D. Stevanović, Graphs with palindromic independence polynomial, Graph Theory Notes of New York Academy of Sciences XXXIV (1998) 31-36.
[24] Yi Wang, Bao-Xuan Zhu, *On the unimodality of independence polynomials of some graphs*, European Journal of Combinatorics **32** (2011) 10-20.