Breast cancer follow-up strategies in randomized phase III adjuvant clinical trials: a systematic review

Isabella Sperduti1, Patrizia Vici2, Nicola Tinari3, Teresa Gamucci4, Michele De Tursi3, Giada Cortese5, Antonino Grassadonia3, Stefano Iacobelli3 and Clara Natoli3*

Abstract
The effectiveness of different breast cancer follow-up procedures to decrease breast cancer mortality are still an object of debate, even if intensive follow-up by imaging modalities is not recommended by international guidelines since 1997. We conducted a systematic review of surveillance procedures utilized, in the last ten years, in phase III randomized trials (RCTs) of adjuvant treatments in early stage breast cancer with disease free survival as primary endpoint of the study, in order to verify if a similar variance exists in the scientific world. Follow-up modalities were reported in 66 RCTs, and among them, minimal and intensive approaches were equally represented, each being followed by 33 (50%) trials. The minimal surveillance regimen is preferred by international and North American RCTs (P = 0.001) and by trials involving more than one country (P = 0.004), with no relationship with the number of participating centers (P = 0.173), with pharmaceutical industry sponsorship (P = 0.80) and with trials enrolling > 1000 patients (P = 0.14). At multivariate regression analysis, only geographic location of the trial was predictive for a distinct follow-up methodology (P = 0.008): Western European (P = 0.004) and East Asian studies (P = 0.010) use intensive follow-up procedures with a significantly higher frequency than international RCTs, while no differences have been detected between North American and international RCTs. Stratifying the studies according to the date of beginning of patients enrollment, before or after 1998, in more recent RCTs the minimal approach is more frequently followed by international and North American RCTs (P = 0.01), by trials involving more than one country (P = 0.01) and with more than 50 participating centers (P = 0.02). It would be highly desirable that in the near future breast cancer follow-up procedures will be homogeneous in RCTs and everyday clinical settings.

Keywords: Breast cancer, Follow-up, Phase III clinical trial, Systematic review

Introduction
In the last years, a substantial increase in the number of women surviving breast cancer [1], the most frequent female cancer in the world [2-5], has been reported. This leads to the necessity to focus on breast cancer follow-up procedures for the high relevance they have for both patients and professional personnel [6]. The primary aim of routine post-operative surveillance after early stage breast cancer surgery, referred to as ‘follow-up’, is to enhance survival, psychosocial and physical well-being of patients. The effectiveness of different breast cancer follow-up procedures for early detection of metastatic disease is an old issue, starting in the 1980s [7-10]. In the 1990s, evidences from phase III randomized trials (RCTs) demonstrated that intensive follow-up procedures do not improve outcome or quality of life when compared to patients’ educations about symptoms referral and regular physical examinations [11-18]. Nowadays, there is a general agreement on the utility of yearly mammography for detecting local recurrences and/or second primary cancers while intensive follow-up practices by imaging techniques (i.e. chest radiograph, bone scan and liver sonography) are not recommended by current international guidelines [19,20]. Nevertheless, the appropriateness of screening tests to be used as well as the frequency of follow-up procedures and the optimal follow-up duration are still object
of debate [21-24], which reflects in the wide use of intensive surveillance and in the long-term follow-up period in everyday clinical practice [6,25-28].

Based on these premises, we conducted a systematic review of the surveillance procedures utilized in phase III RCTs of adjuvant treatments in early stage breast cancer in order to assess if a similar variance exists in the scientific world.

Methods

Literature search and eligibility criteria

We searched PubMed (PubMed, available at URL: www.ncbi.nlm.nih.gov/pubmed) from January 1, 2002 to December 31, 2012 for phase III RCTs of early breast cancer medical adjuvant therapies with disease free survival (DFS) as primary endpoint of the study [29]. We selected only full text publications (not abstracts), written in English-language. Trials on neoadjuvant therapies, neoadjuvant followed by adjuvant therapies, adjuvant bisphosphonates alone, non medical treatments, radiation therapies, adjuvant chemotherapy for loco-regional relapses and non-phase III trials were excluded. When multiple publications of the same RCT were identified, the first publication was selected. We used as keywords: breast cancer adjuvant therapy, clinical trial, phase III, phase 3 and randomized.

Data extraction

Information extracted from each trial included: date of beginning of patients enrollment, geographic location, number of participating countries, sponsorship by pharmaceutical companies, number of participating centers, number of enrolled patients, follow-up description (modalities, frequency and duration). Follow-up was classified as minimal when only history/physical examination and/or automated blood chemistry studies, and intensive when chest radiographs ± bone scan ± liver sonography ± tumor markers were included. Screening and data extraction were performed independently by two investigators.

Statistics

Descriptive statistics were used to report relevant study information. The associations between variables and follow-up data were tested by the Pearson’s chi-square test or Fisher’s exact test, as appropriate. All p values are reported as 2-sided and p values less than 0.05 denotes statistically significant association. A multiple correspondence analysis (MCA), an exploratory multivariate statistical technique, was used to analyze possible relationships among all variables and identify specific profiles [30]. In the MCA, associations between variables are displayed graphically as maps, and their position in the graphic is exclusively informative. The prediction of follow-up procedures was evaluated using a stepwise multivariate logistic regression. The cut-off p value for inclusion or exclusion in the model was set at 0.10 and 0.15, respectively. The Odds Ratio (OR) and the 95% confidence intervals (95% CI) were estimated for each variable. The SPSS software (SPSS version 19.0, SPSS Inc., Chicago, Illinois, USA) was used for all statistical evaluations.

Results

Of 441 potentially relevant abstracts identified, 98 papers met full inclusion criteria: follow-up modalities were reported in 66 RCTs [31-95] while no information was given in the remaining 32 [96-127]. Two different trials, the ABCSG trial 8 and ARNO 95 trial, are reported in the same paper by Jakesz et al. [58]. The flowchart of search strategy is shown in Figure 1.

As shown in Table 1, there is a trend towards more frequently describing surveillance procedures in papers from international, West European or East Asian (Japan, Vietnam and China) RCTs than in those from North American (USA and Canada) RCTs (P = 0.06); no relationship has been found between other variables taken into account and the availability of follow-up data.

Among the 66 papers describing follow-up methodology, minimal and intensive approaches were equally represented, each being followed by 33 (50%) trials. Only 6 papers report the use of tumor markers measurement (carcinoembryonic antigen and carbohydrate antigen 15–3) during follow-up [46,48,57,75,82,88] and none includes the use of computed tomography scans, positron emission tomography scanning and magnetic resonance imaging.

Table 2 shows that the minimal surveillance regimen is preferred by international and North American RCTs (P = 0.001) and by trials involving more than one country (P = 0.004), while there is no relationship with the number of participating centers (P = 0.173), the pharmaceutical industry sponsorship (P = 0.80), trials enrolling > 1000 patients (P = 0.14). Breast cancer follow-up guidelines, recommending the minimal approach, were published by the American Society of Clinical Oncology in 1997 [128]. Interestingly, no differences in follow-up modalities have been detected in RCTs enrolling patients before and after 1998 (P = 0.58). Stratifying data according to the date of beginning of patients enrollment (i.e. before or after 1998), even if numbers are small, in more recent studies there is a higher use of the minimal approach by international and North American RCTs (P = 0.01) and by trials involving more than one country (P = 0.01), and more than 50 participating centers (P = 0.02), with a trend toward statistical significance for trials enrolling > 1000 patients (P = 0.06) (Table 3).

The graphical map of MCA (Figure 2) shows that intensive follow-up procedures cluster with Western European and East Asian studies, studies with less than...
50 participating centers and less than 1000 enrolled patients, and with patients enrollment beginning before 1998, while the minimal approach clusters with RCTs enrolling more than 1000 patients and beginning enrollment after 1998 (Figure 2). At multivariate regression analysis, only geographic location of the trial was predictive for a distinct follow-up methodology ($P = 0.008$). In particular, setting as a reference the international studies, Western European ($P = 0.004$) and East Asian studies ($P = 0.010$) use intensive follow-up procedures with a significantly higher frequency than international RCTs, while no differences are detected between North American and international RCTs.

For each follow-up approach, the frequency at which the different exams are performed is highly variable, ranging from 1 to 4 times/year for history and/or physical examinations, and from 1 to 3 times/year for imaging modalities, as shown in Table 4. Almost all RCTs showed the highest number of evaluations/year in the first 1–2 years of follow-up; 5-year follow-up and annually thereafter was chosen by almost all studies, with the following exceptions: two studies interrupted all imaging modalities at the 3rd year [83,84]; one study discontinued chest radiographs and bone scan at the 4th year [46] and one study ended chest radiographs at the 3rd year [66].

Discussion

The results of our systematic review demonstrates that among phase III RCTs of adjuvant therapies for early stage breast cancer, minimal and intensive follow-up approaches are equally used. However, it should be noted that not all the papers, mainly from North America, report the modalities of follow-up [91-121], even if we selected RCTs with primary endpoint represented by DFS, which can be affected by the surveillance methodologies applied. Possible explanations could be that i) the authors and referees do not think this is a relevant issue or ii) a follow-up according to established guidelines was applied, thus making it unnecessary to specify. The second hypothesis may be more likely, since the minimalist follow-up suggested by international guidelines is more frequently followed by North American while intensive follow-up is preferred by Western European and East Asian trialists.
Our analysis also suggests that the use of the different strategies of follow-up is not dictated by the necessity of costs containment as it has been suggested [129-131], since no relationship with industrial sponsorships, number of participating centers and number of enrolled patients has been found. It seems more likely that the intensive surveillance methodology in RCTs follows Western European and East Asian cultural attitudes of scientists and medical oncologists towards the care of breast cancer patients [132]. In this respect, it has recently been reported that many European and East Asian breast cancer patients receive more intensive follow-up care than recommended by the current guideline [6,25,26,133,134] even if, at a lesser extent, this has been also reported for American and Canadian patients [27,28].

The frequency of follow-up is higher in the first 2–3 years after surgery and tends to decrease thereafter. Almost all RCTs, except few studies [46,83,84], continue programmed controls at least 5 years after treatment, independently from the chosen follow-up methodology. These issues are still object of debate [135], since neither the optimum frequency nor duration of follow-up has been clearly defined [23,136,137].

Results from two Italian phase III RCTs, both published in 1994 [11,12] and several retrospective studies [138-141] demonstrated that intensive follow-up strategies including chest radiography, bone scan, liver ultrasound and tumor markers measurements do not improve survival as compared to history taking, physical examinations and annual mammography. On the basis of these data, the American Society of Clinical Oncology published in 1997 and periodically updated thereafter [19,128,142] breast cancer follow-up guidelines recommending a minimal approach. We found no increase in the use of minimalist follow-up among RCTs beginning to enroll patients one year after published guidelines (i.e. 1998). However, more recently the minimal approach is being preferred by most international and North American RCTs, and bigger trials, such as those involving more than one country and more than 50 participating centers. It is relevant to point up that the use of the intensive follow-up is still present in almost 45% of new generation RCTs.

A possible limit of our study may be represented by the choice of studies written in English, although the vast majority of RCTs are currently published in this language and in scientific journal indexed in PubMed. In addition, it should be underlined that it is likely the statistic analysis could be not completely reliable, considering that in some of the subcategories considered in the study, the number of eligible RCTs is low.

Table 1 Description of follow-up procedures in RCTs

Follow-up data	Yes	NO	P value
No. (%)			
Geographic location			
International	13 (68)	6 (32)	0.06
North America (USA and Canada)	10 (48)	11 (52)	
Western Europe	38 (79)	10 (21)	
East Asia (Japan, Vietnam, China)	5 (56)	4 (44)	
Number of participating countries			
1 country+	43 (66)	22 (34)	0.49
> 1 country	23 (74)	8 (26)	
Number of participating centers			
≤ 50	29 (81)	7 (19)	0.75
> 50	17 (77)	5 (23)	
Industry sponsorship			
Yes	37 (75)	12 (25)	0.64
No	29 (69)	13 (31)	
Number of enrolled patients			
≤ 1000 patients	34 (76)	11 (24)	0.14
> 1000 patients	32 (62)	20 (38)	

Legends: RCTs = randomized clinical trials.

Table 2 Follow-up methodologies in RCTs

Follow-up Approach	Yes	NO	P value
No. (%)			
Geographic location			
International	12 (92)	1 (8)	0.001
North America (USA and Canada)	7 (70)	3 (30)	
Western Europe	13 (34)	25 (66)	
East Asia (Japan, Vietnam, China)	1 (20)	4 (80)	
Number of participating countries			
1 country	16 (37)	27 (63)	0.004
> 1 country	17 (74)	6 (26)	
Number of participating centers			
≤ 50	11 (38)	18 (62)	0.173
> 50	10 (59)	7 (42)	
Industry sponsorship			
Yes	18 (49)	19 (51)	0.80
No	15 (52)	14 (48)	
Number of enrolled patients			
≤ 1000 patients	14 (41)	20 (58)	0.14
> 1000 patients	19 (59)	13 (41)	
Date of beginning of patients enrollment			
From 1981 to 1997	23 (48)	25 (52)	0.58
From 1998 to 2002	10 (56)	8 (44)	

Legends: RCTs = randomized clinical trials.
Table 3 Follow-up methodologies in RCTs according to the date of beginning of patients enrollment

Date of beginning of patients enrollment	Follow-up approach		Follow-up approach			
	Minimal	Intensive	P value	Minimal	Intensive	P value
	No. (%)	No. (%)		No. (%)	No. (%)	
Geographic location						
International	7 (87)	1 (13)	0.07	5 (100)	-	0.01
North America (USA and Canada)	3 (60)	2 (40)	-	4 (80)	1 (20)	0.01
Western Europe	12 (37)	20 (63)	-	1 (16)	5 (83)	0.07
East Asia (Japan, Vietnam, China)	1 (33)	2 (67)	-	2 (100)	-	0.07
Number of participating countries						
1 country	13 (39)	20 (60)	0.08	3 (30)	7 (70)	0.01
> 1 country	10 (66)	5 (33)	-	7 (87)	1 (87)	0.02
Number of participating centers						
≤ 50	11 (46)	13 (54)	0.63	-	5 (100)	0.07
> 50	6 (54)	5 (46)	0.37	1 (33)	2 (67)	0.06
Industry sponsorship						
Yes	9 (41)	13 (59)	-	9 (60)	6 (40)	0.40
No	14 (54)	12 (46)	0.37	1 (33)	2 (67)	0.40
Number of enrolled patients						
≤ 1000 patients	13 (45)	16 (55)	-	1 (20.0)	4 (80.0)	0.06
> 1000 patients	10 (53)	9 (47)	0.60	9 (69)	4 (31)	0.06

Figure 2 Multiple correspondence analysis of possible relationships among all variables.
Table 4 Frequency of different exams from year 1 to 5 of follow-up

Variable	1° year	2° year	3° year	4° year	5° year					
	Min_ Follow-up times/year	Int_ Follow-up times/year								
History/physical examination 46 RCTs	Median 4.0	4.0	2.0	4.0	2.0	2.0	2.0	2.0	2.0	2.0
	Lower-Higher limit 1.0-4.0	1.0-4.0	2.0-4.0	1.0-4.0	2.0-2.0	1.0-4.0	2.0-2.0	1.0-4.0	2.0-2.0	1.0-4.0
Physical examination 18 RCTs	Median 3.0	3.5	2.5	3.0	2.0	2.5	2.0	2.0	2.0	2.0
	Lower-Higher limit 1.0-4.0	3.0-4.0	1.0-4.0	2.0-4.0	2.0-4.0	3.0-4.0	1.0-4.0	1.0-3.0	1.0-4.0	1.0-3.0
Chest radiograph 33 RCTs	Median 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Lower-Higher limit 1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0	1.0-2.0	1.0-2.0	1.0-2.0	1.0-2.0	1.0-2.0	1.0-2.0
Bone scan 19 RCTs	Median 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Lower-Higher limit 1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0
Liver sonography 24 RCTs	Median 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Lower-Higher limit 1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0	1.0-2.0	1.0-2.0	1.0-2.0	1.0-2.0	1.0-2.0	1.0-2.0

Legends: Min_ = minimal; Int_ = intensive.
Conclusions
Current breast cancer follow-up guidelines, which are based on RCTs, suggest a minimal follow-up approach for surveillance of early breast cancer patients, but this suggestion is not widely applied neither in phase III RCTs of adjuvant treatments nor in real-world clinical practice. Whether the minimal follow-up approach will still be the recommended option in the future, is to be confirmed. In fact, more effective and sophisticated diagnostic procedures may be useful to point out severe long-term side effects of new molecularly targeted agents as well as an early detection of oligometastatic disease might be suitable for cure with newer therapeutic strategies, as it has been suggested for other neoplasms [143]. Finally, it would be highly desirable that in the near future the follow-up procedures will be homogeneous in RCTs and everyday clinical settings.

Abbreviations
DFS: Disease-free survival; MCA: Multiple correspondence analysis; OR: Odds ratio; RCTs: Randomized clinical trials.

Competing interests
The authors have no potential conflicts of interest to declare.

Authors' contributions
IS supervised the data collection, performed the statistical analyses and revised the manuscript; AG, MDT and GC performed literature search and data extraction; NT and TG wrote the manuscript; PV and SI critically revised the manuscript; CN conceived the study and critically revised the manuscript. All authors read and approved the final manuscript.

Acknowledgments
Supported by the Consorzio Interuniversitario Nazionale per Bio-Oncologia (CINBO). The authors are grateful to Mrs. Camille St. Pierre for careful reviewing of the manuscript.

Author details
1Unit of Biostatistics, Regina Elena National Cancer Institute, Rome 00144, Italy. 2Division of Medical Oncology B, Regina Elena National Cancer Institute, Rome 00144, Italy. 3Medical Oncology Unit, Department of Experimental and Clinical Sciences, University ‘G. d’Annunzio’, Chieti 66013, Italy. 4Department of Oncology, “S.S. Trinita” Hospital, Sora (FR) 00039, Italy. 5Department of Oncology, “S.S. Annunziata” Hospital, Chieti 66013, Italy.

Received: 3 September 2013 Accepted: 7 November 2013
Published: 11 November 2013

References
1. De Angelis R, Tavilla A, Verdechcia A, Scoppa S, Hachey M, Feuer EJ, Mariotto AB: Breast cancer survivors in the United States: geographic variability and time trends, 2005–2015. Cancer 2009, 115(9):1954–1966.
2. Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013. CA Cancer J Clin 2013, 63(1):11–30.
3. Piscitelli P, Barba M, Crespi M, Di Maio M, Santoriello A, DiAlito M, Fucito A, Losco A, Pentimalli F, Mananta P, et al: The burden of breast cancer in Italy: mastectomies and quadrantectomies performed between 2001 and 2008 based on nationwide hospital discharge records. J Exp Clin Cancer Res 2012, 31(6):104.
4. Vrdoljak E, Węgrzynkiewicz MZ, Pięcikowski T, Bodgys G, Benzine P, Finek J, Todorovic V, Borjoevic N, Coronna A: Cancer epidemiology in Central, South and Eastern European countries. Croat Med J 2011, 52(4):478–487.
5. Australian Institute of Health and Welfare: Cancer in Australia: Actual incidence data from 1991 to 2009 and mortality data from 1991 to 2010 with projections to 2012. Asia Pac J Clin Oncol 2013, 9(3):199–213.
6. van Hezewijk M, Hille ET, Scholtens AN, Marijnen CA, Stiggelbout AM, van de Velde CJ: Professionals’ opinion on follow-up in breast cancer patients: perceived purpose and influence of patients’ risk factors. Eur J Surg Oncol 2011, 37(3):217–224.
7. Armitage NB, Harbert JC, Byrne PJ: Efficacy of bone and liver scanning in breast cancer patients treated with adjuvant chemotherapy. Cancer 1984, 54(10):2243–2247.
8. Evans DM, Wright DJ: The role of bone and liver scans in surveying patients with breast cancer for metastatic disease. Am Surg 1987, 53(10):603–605.
9. Feig SA: Imaging techniques and guidelines for evaluation and follow-up of breast cancer patients. Crit Rev Diagn Imaging 1987, 27(1):1–16.
10. Kunkler IH, Merrick MV, Rodger A: Bone scintigraphy in breast cancer: a nine-year follow-up. Clin Radiol 1985, 36(3):279–282.
11. The GIVIO Investigators: Impact of follow-up testing on survival and health-related quality of life in breast cancer patients. A multicenter randomized controlled trial. JAMA 1994, 271(20):1587–1592.
12. Rosselli Del Turco M, Palli D, Carlidi A, Ciarto S, Pacini P, Distante V: Intensive diagnostic follow-up after treatment of primary breast cancer. A randomized trial. National Research Council Project on Breast Cancer Follow-up. JAMA 1994, 271(20):1593–1597.
13. Rojas MP, Telaro E, Russo A, Fossati R, Conflanieri C, Liberati A: Follow-up strategies for women treated for early breast cancer. Cochrane Database Syst Rev 2000, 4, CD001768.
14. Rojas MP, Telaro E, Russo A, Moschetti I, Coe L, Fossati R, Palli D, Roselli TM, Liberati A: Follow-up strategies for women treated for early breast cancer. Cochrane Database Syst Rev 2005, 1, CD001768.
15. Grunfeld E, Fitzpatrick R, Mant D, Yudkin P, Adewuyi-Dalton R, Stewart J, Cole D, Vessey M: Comparison of breast cancer patient satisfaction with follow-up in primary care versus specialist care: results from a randomized controlled trial. Br J Gen Pract 1999, 49:446:705–710.
16. Grunfeld E, Mant D, Yudkin P, Adewuyi-Dalton R, Cole D, Stewart J, Fitzpatrick R, Vessey M: Routine follow-up of breast cancer in primary care: randomised trial. BMJ 1996, 313(7058):665–669.
17. Gulliford T, Opomu M, Wilson E, Hanham I, Epstein R: Popularity of less frequent follow up for breast cancer in randomised study: initial findings from the hotline study. BMJ 1997, 314(7075):174–177.
18. Palli D, Russo A, Saieva C, Ciarto S, Rosselli Del Turco M, Distante V, Pacini P: Intensive vs clinical follow-up after treatment of primary breast cancer: 10-year update of a randomized trial. National Research Council Project on Breast Cancer Follow-up. JAMA 1999, 281(17):1586.
19. Khtcherreresian JL, Hurley P, Bantug E, Esserman LJ, Grunfeld E, Halberg F, Hantel A, Henny NL, Musi HB, Smith TJ, Vogel VG, Wolf AC, Somerfield MR, Davidson NE: American Society of Clinical Oncology: Breast cancer follow-up and management after primary treatment: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2013, 31(7):961–965.
20. Grunfeld E, Dhesy-Thind S, Levine M: Clinical practice guidelines for the care and treatment of breast cancer: follow-up after treatment for breast cancer. (summary of the 2005 update). CMAJ 2005, 172(10):1319–1320.
21. Montgomery DA, Kruka A, Cooke TG: Follow-up in breast cancer: does routine clinical examination improve outcome? A systematic review of the literature. Br J Cancer 2007, 97(12):1652–1641.
22. de Bock GH, Bonnema J, van der Lage H, Kiviet J, van de Velde CJ: Effectiveness of routine visits and routine tests in detecting isolated locoregional recurrences after treatment for early-stage invasive breast cancer: a meta-analysis and systematic review. J Clin Oncol 2004, 22(19):4010–4018.
23. Collins RF, Bekker HL, Dodwell DJ: Follow-up care of patients treated for breast cancer: a structured review. Cancer Treat Rev 2004, 30(19):19–35.
24. Molino A: What is the best follow-up methodology in early breast cancer? Breast 2008, 17(1):1–2.
25. Leoni C, Sadacharan R, Louis D, Falcini F, Rabowitza C, Ciabani L, De Palma R, Yuen E, Gilli R: Variation among local health units in follow-up care of breast cancer patients in Emilia-Romagna, Italy. Tumori 2013, 99(1):30–34.
26. Grandjand I, Kwast AB, de Vries H, Klaase J, Schoevers WJ, Siesling S: Evaluation of the adherence to follow-up care guidelines for women with breast cancer. Eur J Oncol Nurs 2012, 16(3):281–285.
27. Margenthaler JA, Allam E, Chen L, Virgo KS, Kulkarni UM, Patel AP, Johnson FE: Surveillance of patients with breast cancer after curative-intent primary treatment: current practice patterns. J Oncol Pract 2012, 8(2):79–83.
negative breast cancer: a randomized trial. J Natl Cancer Inst 2002, 94(14):1054–1065.

53. International Breast Cancer Study Group (IBCSG), Castiglione Gersich M, ÖNeill A, Price KN, Goldhirsh A, Coates AS, Colleni M, Nasi ML, Bonetti M, Gelber RD. Adjuvant Chemotherapy Followed by Goserelin Versus Either Modality Alone for Premenopausal Lymph Node-Negative Breast Cancer: A Randomized Trial. J Natl Cancer Inst 2003, 95(24):1813–1846.

54. International Breast Cancer Study Group PO. Toremifene and tamoxifen are equally effective for early-stage breast cancer: first results of International Breast Cancer Study Group Trials 12–93 and 14–93. Ann Oncol 2004, 15(12):1749–1759.

55. International Breast Cancer Study Group CM, Gelber S, Goldhirsh A, Aebi S, Castiglione Gersich M, Price KN, Coates AS, Gelber RD, Tamoxifen After Adjuvant Chemotherapy for Premenopausal Women With Lymph Node-Positive Breast Cancer: International Breast Cancer Study Group Trial 13–93. J Clin Oncol 2006, 24(9):1332–1341.

56. Basser RL, ÖNeill A, Martellini G, Green MD, Pecoratto F, Cineri S, Coates AS, Gelber RD, Aebi S, Castiglione-Gertsch M, Viale G, Price KN, Goldhirsh A. Multicycle dose-intensive chemotherapy for women with high-risk primary breast cancer: results of International Breast Cancer Study Group Trial 15–95. J Clin Oncol 2006, 24(3):370–377.

57. Jakesz R, Hausmaninger H, Kubista E, Grant M, Menzel C, Bauernhofer T, Seifert Sperduti et al. Journal of Experimental & Clinical Cancer Research 2013, 32:89

58. Love RR, Duc NB, Allred DC, Binh NC, Dinh NV, Kha NN, Thuan TV, Mohsin SK, Le Roanh D, Khang HX, Tran TL, Quy TT, Thy NV, Thel PN, Cau TT, Tung ND, Huong DT, Le Quang M, Hien NN, Thuong L, Shen TZ, Yin X, Zhang Q, Havighurst TC, Yang YT, Hiller BE, Debbi DL, Oophorectomy and Tamoxifen Adjuvant Therapy in Premenopausal Vietnamese and Chinese Women With Operable Breast Cancer. J Clin Oncol 2002, 20(10):2559–2566.

59. Martin M, Segui MA, Anton A, Ruiz A, Ramos M, Adrover E, Aranda I, Rodriguez Lescure A, Grose R, Calvo L, Barnadas A, Isla D, Martinez Del Prado P, Ruiz Borrego M, Zalksu J, Arcusa A, Muhou M, Lopez Vega JM, Mel JR, Munizat B, Llorca J, Caba J, Alba E, Flarian JI, Luisi J, Lopez Garcia Asenjo JA, Saez A, Rios MJ, Almenar S, Peiro G, Lluch A. GECAM 9808 Investigators: Adjuvant Doctaxel for High-Risk, Node-Negative Breast Cancer. N Engl J Med 2010, 363(23):2200–2210.

60. Martin M, Rodriguez-Lescure A, Ruiz A, Alba E, Calvo L, Ruiz-Borrego M, Munizat B, Rodriguez CA, Cerpio C, de la Vega A, Lopez-Garcia JA, Gunin MT, Almenar S, Gonzalez-Palacios JF, Vera F, Palacios I, Ramos M, Gracia Marco JM, Lluch A, Alvarez I, Segui MA, Mayordomo JJ, Antion A, Baena JM, Plazasola A, Modigliani M, Perez A, Mel JR, Aranda E, Adrover E, Alvarez J, Garcia Puche JL, Sanchez-Rovira P, Gonzalez S, Lopez-Vega JM, GECAM 9906 Study Investigators: Randomized Phase 3 Trial of Fluorouracil, Epirubicin, and Cyclophosphamide Alone or Followed by Paclitaxel for Early Breast Cancer. J Natl Cancer Inst 2008, 100(11):885–894.

61. Martín MP, Mackey J, Pawlik MJ, Gustail_JP, Weaver C, Tornik E, Al-Tweigeri T, Chap L, Juhos E, Guevin R, Howell A, Forandert T, Hainsworth J, Colemain R, Vinholes J, Modiano M, Pinter T, Tang SC, Colwell B, Prady C, Provencher L, Walde D, Rodriguez-Lescure A, Hugh J, Loret C, Rupin M, Blitz S, Jacobs P, Murawsky M, Riva A, Vogel C, Breast Cancer International Research Group 001 Investigators: Adjuvant Doctaxel for Node-Negative Breast Cancer. N Engl J Med 2005, 352(22):2302–2313.

62. Nitz UA, Mohrmann S, Fischer J, Lindemann W, Berdel WE, Jackisch C, Werner C, Ziske C, Kirchner H, Mettner B: Comparison of rapidly cycled tandem high-dose chemotherapy plus peripheral-blood stem-cell support versus dose-dense conventional chemotherapy for adjuvant treatment of high-risk breast cancer: results of a multicentre phase III trial. Lancet 2003, 362(9381):1537–1542.

63. Neill A, Martinelli G, Green MD, Peccatori F, Coates AS, Gelber RD, Nitz UA, Martinelli G, Green MD, Peccatori F, Coates AS, Gelber RD, Provence L, Walde D, Rodriguez-Lescure A, Hugh J, Loret C, Rupin M, Blitz S, Jacobs P, Murawsky M, Riva A, Vogel C, Breast Cancer International Research Group 001 Investigators: Adjuvant Doctaxel for Node-Negative Breast Cancer. N Engl J Med 2005, 352(22):2302–2313.

64. Piccart-Gebhart MJM, Leyland-Jones B, Goldhirsh A, Untch M, Smith I, Gianni L, Baselga J, Belli J, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger H, Huang CS, Andersen M, Inbar M, Lichinister M, Lang I, Nitz U, Iwata H, Thomsen C, Lohisch T, Suter TM, Rüschoff J, Suto T, Goretzke V, Ward C, Strachoe H, McFadden D, Dolci MS, Gelber RD, Herceptin Adjuvant (HERA) Trial Study Team: Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer. N Engl J Med 2005, 353(16):1699–1707.

65. Proctor M, Jakesz R, Hausmaninger H, Kohl P, Steurer M, Fridrik M, Steindorfer P, Grant M, Haid K, Kubista E, Samonigg H, Austrian Breast And Colorectal Cancer Study Group: Randomised Trial: One cycle of anthracycline-containing adjuvant chemotherapy compared with six cycles of CMF treatment in node-positive, hormone receptor-negative breast cancer patients. Oncology 2003, 60(2):115–119.

66. Polyzoa A, Malamos N, Boukouvias I, Adamou A, Ziras N, Kalbaksi K, Kakolyris S, Syrigos K, Papakonstantou P, Kouroussis C, Karvounis N, Vamvakas L, Paclitaxel Compared With Doxorubicin Plus Paclitaxel Followed by Weekly Paclitaxel As Adjuvant Therapy for Women With High-Risk Breast Cancer. J Clin Oncol 2010, 28(18):2958–2965.
Christophiylakis C, Athanasiadis A, Varathlitis I, Georgoulias V, Mavroudis D. FEC versus sequential docetaxel followed by epirubicin/cyclophosphamide as adjuvant chemotherapy in women with axillary node-positive early breast cancer: a randomized study of the Hellenic Oncology Research Group (HORG). Breast Cancer Res Treat 2010, 119(1):159–65.

77. Pritchard KI, Shepherd LE, Chapman JA, Norris BD, Cantin J, Goss PE, Dent SF, Walde D, Vandenbog T, Findlay B, O'Reilly SE, Wilson CF, Han L, Piura E, Whelan TJ, Pollack MN: Randomized trial of tamoxifen versus combined tamoxifen and octreotide LAR therapy in the adjuvant treatment of early-stage breast cancer in postmenopausal women: NOP C1 TGMA-14. J Clin Oncol 2011, 29(39):3860–6.

78. Roché H, Fumeau P, Spielmann M, Canon JL, Delozer T, Serin D, Symann M, Kerbrat P, Soullé P, Eichler F, Wiens P, Monnier A, Vanvegogh A, Campone M, Goudier MJ, Bonneterre J, Ferrero JM, Martin AL, Genève J, Asselin B: Sequential Adjuvant Epirubicin-Based and Docetaxel Chemotherapy for Node-Positive Breast Cancer Patients: The FNCLCC PACS 01 Trial. J Clin Oncol 2006, 24(36):5664–71.

79. Rodenhuis S, Bontenbal M, Beex LV, Wagstaff J, Richel DJ, Nooij MA, Voest EE, Hupplerets P, Van Tinteren H, Peterse HL, TenVergert EM, De Vries EG: Netherlands Working Party on Autologous Transplantation in Solid Tumors: High-Dose Chemotherapy with hematopoietic Stem-Cell Rescue for High-Risk Breast Cancer. N Engl J Med 2003, 349(1):7–16.

80. Rydén L, Jonsson P-E, Chebil G, Duhmats M, Femrni M, Jirstrom K, Källström A-C, Landberg G, Stähl O, Thorstensen S, Nordenskjöld B: Two years of adjuvant tamoxifen in premenopausal patients with breast cancer: a randomised, controlled trial with long-term follow-up. Eur J Cancer 2005, 41(2):256–264.

81. Sacco MWM, Belfiglio M, Pellerini F, Der Beaudis G, Francioso M, Nicollucci A, Italian Interdisciplinary Group for Cancer Care Evaluation: Randomized Trial of 2 Versus 5 Years of Adjuvant Tamoxifen for Women Aged 50 Years or Older With Early Breast Cancer: Italian Interdisciplinary Group for Cancer Evaluation Study of Adjuvant Treatment in Breast Cancer 01. J Clin Oncol 2003, 21(12):2276–2281.

82. Schmid MJ, Samonigio H, Kubista E, Grant M, Menzel C, Seifert M, Haider K, Taucher S, Milnerich B, Steindorfer P, Kwasny W, Stierer M, Tausch C, Frölich M, Wette V, Steiger G, Hausmaninger H: Randomized Trial of Tamoxifen Versus Tamoxifen Plus Aminoglutethimide as Adjuvant Treatment in Postmenopausal Breast Cancer Patients With Hormone Receptor-Positive Disease: Austrian Breast and Colorectal Cancer Study Group Trial 6. J Clin Oncol 2003, 21(9):984–990.

83. Schmid P, Untrcht M, Kosse V, Bondar G, Vassiliev L, Taritovin V, Lehmann U, Maubach L, Meurer J, Wallwiener D, Possinger K: Leuproleron Acetate Every 3-Months Depot Versus Cyclophosphamide, Methotrexate, and Fluorouracil As Adjuvant Treatment in Premenopausal Patients With Node-Positive Breast Cancer: The TABLE Study. J Clin Oncol 2007, 25(18):2509–2515.

84. Schmid P, Untrcht M, Wallwiener D, Kosse V, Bondar G, Vassiliev L, Taritovin V, Kienle E, Luftner D, Possinger K: TABLE-study (Takeda Adjuvant Breast Cancer: Results of the FNCLCC-PACS 04 Trial. Breast Cancer Res Treat 2010, 124(3):6134.

85. Winzer KJ, Sauder R, Sauter B, Schneller E, Jaeger W, Braun M, Dunst J, Liersch T, Zedelius M, Brunnert K, Gusti H, Schmoller F, Schumacher M, German Breast Cancer Study Group: Radiation therapy after breast-conserving surgery. Eur J Cancer 2004, 40(7):998–1005.

86. Zander ARN, Schmoller F, Krüger W, Möbus V, Fröhlich N, Metzner B, Schultz L, Berdel WE, Koenigsmann M, Thiell E, Wandel H, Possinger K, Trümper L, Kienenberg R, Carstensen M, Schmidt EJ, Janiec F, Schumacher M, Jonat W: High-Dose Chemotherapy With Autologous Hemopoietic Stem-Cell Support Compared With Standard-Dose Chemotherapy in Breast Cancer Patients With 10 or More Positive Lymph Nodes: First Results of a Randomised Phase 3 Trial. J Clin Oncol 2004, 22(12):2273–2283.

87. van de Velde CJ, Reis D, Szymańska C, Putter H, Hasenburg A, Vannetzel MJ, Paridaens R, Markopoulos C, Hozzary Y, Hilleit E, Kieback DG, Aslam L, Smeets J, Nor-tier JV, Hadji P, Bartlett JM, Jones SE: Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet 2011, 377(9762):321–331.

88. Kerbrat P, Roché H, Bonneterre J, Veyret C, Lorothaly A, Monnier A, Fumeau P, Fargeot P, Namier M, Chollet P, Guastalla JP, French Adjuvant Study Group: Neoadjuvant Chemotherapy in Premenopausal Patients With Early Breast Cancer: Results of the ECOG 369–95 Study. Breast Cancer Res Treat 2007, 106(2):163–170.

89. Albain KS, Barlow WE, Ravdin PM, Farar WB, Burton GV, Ketchel SJ, Cobau CD, Levine EG, Ingle JN, Martino S, Livingston R, Onega TL, Greer AL, Carperter J, Hurd DA, Holland JF, Smith BL, Sartor GI, Leung EHH, Abrams J, Schlisky RJ, Mass-HB, Norton L: Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 2003, 21(14):1431–1439.

90. Coleman RE, Marshall H, Cameron D, Dodwell D, Burkinshaw R, Keane M, Gilmore A, Boulton L, Greenall M, Frikirk M, Wette V, Steger G, Hausmaninger H, Henderson IC, Muss HB, Green SJ, Lew D, Livingston RB, Martino S, Osborne CK, Breast Cancer Intergroup of North America: Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet 2009, 374(9697):2055–2063.

91. Citron ML, Berry DA, Cirrinicone C, Hadi C, Winer EP, Gradasch WJ, Davidson NE, Martin S, Livingston R, Ingle JN, Perez EA, Carpenter J, Hurd DA, Holland JF, Smith BL, Sartor GI, Leung EHH, Abrams J, Schlisky RJ, Mass-HB, Norton L: Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 2003, 21(14):1431–1439.

92. Coleman RE, Marshall H, Cameron D, Dodwell D, Burkinshaw R, Keane M, Gilmore A, Boulton L, Greenall M, Frikirk M, Wette V, Steger G, Hausmaninger H, Henderson IC, Muss HB, Green SJ, Lew D, Livingston RB, Martino S, Osborne CK, Breast Cancer Intergroup of North America: Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet 2009, 374(9697):2055–2063.
A Randomized Controlled Trial in Postmenopausal Patients With Endocrine-Responsive Early Breast Cancer From the Austrian Breast and Colorectal Cancer Study Group. J Clin Oncol 2012, 30(7):722–728.

106. Ellis P, Barrett-Lee PJ, Johnson L, Cameron D, Wardley A, O'Reilly S, Vernill M, Smith J, Yarnold J, Coleman R, Earl H, Carney P, Twelves C, Poole C, Broomfield D, Hopwood P, Johnston S, Dowsett M, Bartlett J, Ellis J, Peckitt C, Hall E, Bliss JM. TACT Trial Management Group: TACT Trialists. Sequential docetaxel as adjuvant chemotherapy for early breast cancer (TACT): an open-label, phase III, randomised controlled trial. Lancet Oncol 2009, 10(6):618–6192.

111. Francis P, Crown J, Di Leo A, Bayes M, Balli A, Andersson M, Nordenström B, Lang I, Jakesz R, Vorobiov D, Galizzi J, van Hazel G, Dolci S, Jamin S, Bendahan M, Gelberg RD, Goldhirsch A, Castiglione-Gertsch M, Piccart-Gebhart M, Big BO-98 Collaborative Group: Adjuvant Chemotherapy With Sequential or Concurrent Anthracycline and Docetaxel: Breast International Group 02 98 Randomized Trial. J Natl Cancer Inst 2008, 100(2):1213–1231.

112. Grant M, Milneritsh B, Schippinger W, Luschn-Enbeergreuth G, Postberger S, Menzel C, Jakesz R, Seifert M, Hubalek M, Bjeilic-Radic S, Samonigg H, Tausch C, Eichmann H, Steger G, Kwarsny W, Dubsky P, Fridrik M, Fitza F, Steier M, Rückerling E, Greil R. ASCO-12 Trial Investigators, Marth C: Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med 2009, 360(7):679–691.

117. Shulman LN, Cirrincione CT, Berry DA, Becker HP, Perez EA, O'Toole EA. Autologous Stem-Cell Transplantation in High-Risk Breast Cancer. J Natl Cancer Inst 2009, 101(8):539–547.

118. Sawaki M, Tokudome N, Mizuno T, Nakayama T, Taia N, Bando H, Murakami S, Yamamoto Y, Kashiwaba M, Iwata H, Uemura Y, Ohashi Y: Evaluation of trastuzumab without chemotherapy as a post-operative adjuvant therapy in HER2-positive elderly breast cancer patients: a randomized controlled trial (RESPECT-NAS-BC07). Jpn J Clin Oncol 2011, 41(5):709–712.

119. Shulman LN, Cirrincione CT, Berry DA, Becker HP, Perez EA, O'Toole EA. Autologous Stem-Cell Transplantation in High-Risk Breast Cancer. J Natl Cancer Inst 2009, 101(8):539–547.

120. Tominaga T, Toi M, Abe O, Ohashi Y, Uchino J, Hayasaka H, Abe R, Izuo M, Watanabe T, Sano M, Takashima S, Kitaya T, Tokuda Y, Yoshimoto M, Kohno W, Gradishar WJ, Pisansky TM, Fetting J, Paietta E, Lazarus HM: Conventional Adjuvant Chemotherapy With or Without trastuzumab in early stage breast cancer patients: results from a multicenter randomized controlled trial. Int J Cancer 2002, 102(5):712–725.

121. Watanabe T, Sano M, Takashima S, Kitaya T, Tokuda Y, Yoshimoto M, Kohno N, Nakagami K, Iwata H, Shimosima K, Sonoo H, Tsuda H, Sakamoto G, Ohashi Y: Oral U2ral and Tegafur Compared With Classic Cyclophosphamide, Methotrexate, Fluorouracil As Postoperative Chemotherapy in Patients With Node-Negative, High-Risk Breast Cancer: National Surgical Adjuvant Breast Study for Breast Cancer 01 Trial. J Clin Oncol 2002, 20(9):1368–1374.

122. Shirih A, A’Hern R, Coombes R, Bliss JM, Hickish T, Petterson T, Crawford M, O’Brien M, Irons T, Ebb S, Skene A, Laing R, Smith IE: A randomised comparative trial of infusional ECI/S versus conventional FEC as adjuvant chemotherapy in early breast cancer: the TRACIC trial. Ann Oncol 2010, 21(6):1623–1629.
123. Tada K, Yoshimoto M, Nishimura S, Takahashi K, Makita M, Iwase T, Takahashi S, Ito Y, Hatake K, Ueno M, Nakagawa K, Kusumi F. Comparison of two-year and five-year tamoxifen use in Japanese post-menopausal women. Eur J Surg Oncol 2004, 30(10):1077–1083.

124. Adjuvant Breast Cancer Trials Collaborative Group: Polychemotherapy for early breast cancer: results from the international adjuvant breast cancer chemotherapy randomized trial. J Natl Cancer Inst 2007, 99(7):586–595.

125. Adjuvant Breast Cancer Trials Collaborative Group: Ovarian ablation or suppression in premenopausal early breast cancer: results from the international adjuvant breast cancer ovarian ablation or suppression randomized trial. J Natl Cancer Inst 2007, 99(7):586–595.

126. Martini M, Villar A, Solé-Calvo A, González R, Maseda B, Lizon J, Campos C, Carnero A, Casado A, Candel MT, Albarrán J, Aranda J, Munarriz B, Campbell J, Díaz-Rubio E. GECIS Group: Spanish Breast Cancer Research Group. Spain: Doxorubicin in combination with fluorouracil and cyclophosphamide (i.v. FAC regimen, day 1, 21) versus methotrexate in combination with fluorouracil and cyclophosphamide (i.v. CMF regimen, day 1, 21) as adjuvant chemotherapy for operable breast cancer: a study by the GECIS group. Ann Oncol 2003, 14(8):833–842.

127. Linden HM, Haskell CM, Green SJ, Osborne CK, Shapiro CL, Ingle JN, Lew D, Hutchins LF, Livingston RB, Martin S. Sequenced Compared With Simultaneous Anthracycline and Cyclophosphamide in High-Risk Stage I and II Breast Cancer: Final Analysis From INT-0137 (S9133). J Clin Oncol 2007, 25(6):656–661.

128. Recommended breast cancer surveillance guidelines: American Society of Clinical Oncology. J Clin Oncol 1997, 15(3):2149–2156.

129. Oltra A, Santaballa A, Munarriz B, Pastor M, Montalar J. Cost-benefit analysis of a follow-up program in patients with breast cancer: a randomized prospective study. Breast J 2007, 13(6):571–574.

130. van Hezewijk M, van den Akker ME, van de Velde CJ, Scholten AN, Hille ET. Costs of different follow-up strategies in early breast cancer: a review of the literature. Breast 2012, 21(6):695–700.

131. Kokko R, Hakama M, Holl K. Follow-up cost of breast cancer patients with localized disease after primary treatment: a randomized trial. Breast Cancer Res Treat 2005, 93(3):255–260.

132. Pagani O, Senkus E, Wood W, Colleoni M, Cufer T, Kyriakides S, Costa A, Winer EP, Cardoso F. International Guidelines for Management of Metastatic Breast Cancer: Can Metastatic Breast Cancer Be Cured? J Natl Cancer Inst 2010, 102(7):456–463.

133. Ogawa Y, Ikeda K, Izumi T, Okuma S, Ichiki M, Ikeya T, Morimoto J, Nishiguchi Y, Ikeha T. First indicators of relapse in breast cancer: evaluation of the follow-up program at our hospital. Int J Clin Oncol 2012, 18(3):447–53.

134. Banni S, Venturini M, Molino A, Donadio M, Rizzoli S, Maiello E, Gori S. Importance of adherence to guidelines in breast cancer clinical practice. The Italian experience (AIOC). Tumori 2011, 97(3):559–563.

135. Donnelly P, Hiller L, Bathers S, Bowden S, Coleman R. Questioning specialists’ attitudes to breast cancer follow-up in primary care. Ann Oncol 2007, 18(9):1467–1476.

136. Montgomery DA, Krupa K, Cooke TG. Alternative methods of follow up in breast cancer: a systematic review of the literature. Br J Cancer 2007, 96(11):1625–1632.

137. Geurts SM, De Veegt F, Siesling S, Flobbe K, Aben KK, Van Der Heijden Van Der Loo M, Verbeek AL, Van Dijck JA, Tjan Heijnen VC. Pattern of follow-up care and early relapse detection in breast cancer patients. Breast Cancer Res Treat 2012, 136(3):859–868.

138. Dewar JA, Kerr GR. Value of routine follow up of women treated for early carcinoma of the breast. Br Med J Clin Res Edi 1985, 291(6507):1464–1467.

139. Pandya KJ, McFadden ET, Kalish LA, Tomney DC, Taylor SG, Falkson G. A retrospective study of earliest indicators of recurrence in patients on Eastern Cooperative Oncology Group adjuvant chemotherapy trials for breast cancer. A preliminary report. Cancer 1985, 55(1):202–205.

140. Schapira DV, Urban N. A minimalist policy for breast cancer surveillance. JAMA 1991, 265(3):380–382.

141. Zwaveling A, Albers GH, Felthuis W, Hermans J. An evaluation of routine follow-up for detection of breast cancer recurrences. J Surg Oncol 1987, 34(3):194–197.

127. Linden HM, Haskell CM, Green SJ, Osborne CK, Shapiro CL, Ingle JN, Lew D, Hutchins LF, Livingston RB, Martin S. Sequenced Compared With Simultaneous Anthracycline and Cyclophosphamide in High-Risk Stage I and II Breast Cancer: Final Analysis From INT-0137 (S9133). J Clin Oncol 2007, 25(6):656–661.