PARAMETRIX FOR WAVE EQUATIONS
ON A ROUGH BACKGROUND
I
REGULARITY OF THE PHASE AT INITIAL TIME
II
CONSTRUCTION AND CONTROL AT INITIAL TIME

Jérémie SZEFTEL
PARAMETRIX FOR WAVE EQUATIONS
ON A ROUGH BACKGROUND

I
REGULARITY OF THE PHASE AT INITIAL TIME

II
CONSTRUCTION AND CONTROL AT INITIAL TIME

Jérémie SZEFTEL
Articles soumis en avril 2012 et acceptés en avril 2023.

Mathematical Subject Classification (2010). — 83C05, 35Q75, 58J45 83C05, 35S30, 58J40.

Keywords. — Einstein equations, wave equation, mean curvature flow, rough solutions, parametrix, Fourier integral operator.

Mots-clés. — Équations d’Einstein, équation des ondes, flot par courbure moyenne, solutions peu régulières, paramétrix, opérateur intégral de Fourier.
PARAMETRIX FOR WAVE EQUATIONS
ON A ROUGH BACKGROUND

I
REGULARITY OF THE PHASE AT INITIAL TIME
II
CONSTRUCTION AND CONTROL AT INITIAL TIME

by Jérémie SZEFTEL

Abstract. — This book is dedicated to the construction and the control of a parametrix to the homogeneous wave equation $\square_g \phi = 0$, where g is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes L^2 bounds on the curvature tensor R of g is a major step of the proof of the bounded L^2 curvature conjecture proposed in [10], and solved jointly with S. Klainerman and I. Rodnianski in [17]. On a more general level, this book deals with the control of the eikonal equation on a rough background, and with the derivation of L^2 bounds for Fourier integral operators on manifolds with rough phases and symbols, and as such is also of independent interest.

Abstract. (Parametrix pour l’équation des ondes sur un espace-temps peu régulier : I. Régularité de la phase à l’instant initial. II. Construction et contrôle à l’instant initial) — Cet ouvrage est dédié à la construction et au contrôle d’une paramétrix pour l’équation des ondes homogène $\square_g \phi = 0$, où g est une métrique peu régulière satisfaisant les équations d’Einstein dans le vide. Le contrôle d’une telle paramétrix ainsi que du terme d’erreur associé lorsque l’on suppose seulement des bornes L^2 sur le tenseur de courbure R de g est une étape cruciale de la preuve de la conjecture de courbure L^2 proposée dans [10], et résolue conjointement avec S. Klainerman et I. Rodnianski dans [17]. Plus généralement, cet ouvrage concerne le contrôle de l’équation eikonale sur un espace-temps peu régulier et la dérivation de bornes L^2 pour des opérateurs intégraux de Fourier sur des variétés avec une phase et un symbole peu réguliers, et possède de ce point de vue un intérêt propre.
CONTENTS

Part I. Regularity of the phase at initial time xi

1. Introduction ... 1

2. Main results .. 7
 2.1. Modification of R and k near the asymptotic end 7
 2.2. Geometry of the foliations generated by u on \mathcal{M} and by $u|_{\Sigma}$ on Σ .. 8
 2.3. Structure equations of the foliation generated by a function u on Σ . 9
 2.4. Commutation formulas ... 11
 2.5. The choice of $u(0,x,\omega)$.. 12
 2.6. Main results ... 13
 2.7. Coordinate systems on P_u and Σ 15
 2.8. Additional estimates ... 15

3. Calculus inequalities .. 19
 3.1. The Sobolev embedding on Σ 19
 3.2. Embeddings compatible with the foliation generated by u on Σ 20
 3.3. The Bochner identity and consequences ... 26
 3.4. Parabolic and elliptic estimates ... 27

4. Construction of the foliation and regularity with respect to x 31
 4.1. A priori estimates for lower order derivatives 32
 4.2. A priori estimates for higher order derivatives 36
 4.3. Construction of the foliation on a small strip 36
 4.4. Proof of Theorem 2.4 .. 37

5. Littlewood-Paley theory on P_u and consequences 39
 5.1. Properties of the geometric Littlewood-Paley projections P_j 39
 5.2. Control of K in $L^\infty_w H^{-\frac{1}{2}}(P_u)$... 44
 5.3. Estimates for the commutator $[\nabla_{aN}, P_j]$ 52
 5.4. Product estimates ... 53
 5.5. Estimates for parabolic equations on S ... 54

6. Estimates for $\nabla_N u$ and $\nabla_N^2 u$ (proof of Theorem 2.5) 63
 6.1. Proof of Proposition 6.2 ... 64
 6.2. Proof of Proposition 6.3 ... 65
 6.3. Proof of Lemma 6.5 ... 70
 6.4. Proof of Lemma 6.6 ... 71
6.5. Proof of Lemma 6.7 .. 72

7. Regularity of the foliation with respect to ω 75
 7.1. First order derivatives with respect to ω 76
 7.2. Second order derivatives with respect to ω 93
 7.3. Third order derivatives with respect to ω 103

8. A global coordinate system on P_u and Σ 113
 8.1. Proof of Proposition 2.8 .. 113
 8.2. The control of the Christoffel symbols 116
 8.3. Proof of Proposition 2.9 .. 117

9. Additional estimates ... 119
 9.1. Proof of Proposition 2.10 ... 119
 9.2. Proof of Proposition 2.11 ... 123
 9.3. Proof of Proposition 2.12 ... 124

A. Proof of Proposition 4.2 and Theorem 4.4 127
 A.1. Proof of (4.47) for $j = 2$.. 127
 A.2. End of the proof of Proposition 4.2 129
 A.3. Proof of Lemma A.1 .. 132
 A.4. Proof of Lemma A.2 .. 133
 A.5. Proof of Theorem 4.4 .. 135
 A.6. Proof of Lemma A.3 .. 138
 A.7. Proof of Lemma A.5 .. 140
 A.8. Proof of Lemma A.6 .. 141
 A.9. Proof of Lemma A.7 .. 144

B. Proof of the estimates for the commutator $[\nabla_a N, P_j]$ 147
 B.1. Proof of Proposition 5.14 .. 147
 B.2. Proof of Proposition 5.15 .. 149
 B.3. Proof of Corollary 5.16 ... 151
 B.4. Proof of Proposition 5.17 .. 152
 B.5. Proof of Proposition 5.18 .. 154
 B.6. Proof of Proposition 5.19 .. 155
 B.7. Proof of Proposition 5.20 .. 158

C. Product estimates ... 161
 C.1. Proof of Proposition 5.21 .. 161
 C.2. Proof of Proposition 5.22 .. 162
 C.3. Proof of Proposition 5.23 .. 164
 C.4. Proof of Proposition 5.24 .. 165
 C.5. Proof of Lemma 5.25 .. 166
 C.6. Proof of Lemma 5.26 .. 167
 C.7. Proof of Lemma 5.27 .. 168
 C.8. Proof of Lemma 5.28 .. 170