Transcriptome Signatures Reveal Candidate Key Genes in the Peripheral Blood Mononuclear Cells of Patients With Coronary Artery Disease

Vijayakrishna Kolur
Vihaan Heart care & Super Specialty Centre, Vivekananda General Hospital, Deshpande Nagar, Hubli, Karnataka 580029, India.

Basavaraj Vastrad
Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India.

Chanabasayya Vastrad (✉️ channu.vastrad@gmail.com)
Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka 580001, India.

Iranna Kotturshetti
Department of Ayurveda, Rajiv Gandhi Education Society’s Ayurvedic Medical College, Ron, Karnataka 562209, India.

Anandkumar Tengli
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka 570015, India

Research Article

Keywords: coronary artery disease, bioinformatics analysis, differentially expressed genes, protein-protein interaction network, pathway enrichment analysis

DOI: https://doi.org/10.21203/rs.3.rs-122558/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Coronary artery disease (CAD) is one of the most common disorders in the cardiovascular system. This study aims to explore potential signaling pathways and important biomarkers that drive CAD development.

Methods

The CAD GEO Dataset GSE113079 was featured to screen differentially expressed genes (DEGs). The pathway and Gene Ontology (GO) enrichment analysis of DEGs were analyzed using the ToppGene. We screened hub and target genes from protein-protein interaction (PPI) networks, target gene - miRNA regulatory network and target gene - TF regulatory network, and Cytoscape software. Validations of hub genes were performed to evaluate their potential prognostic and diagnostic value for CAD.

Results

1,036 DEGs were captured according to screening criteria (525 upregulated genes and 511 downregulated genes). Pathway and Gene Ontology (GO) enrichment analysis of DEGs revealed that these up and down regulated genes are mainly enriched in thyronamine and iodothyronamine metabolism, cytokine-cytokine receptor interaction, nervous system process, cell cycle and nuclear membrane. Hub genes were validated to find out potential prognostic biomarkers, diagnostic biomarkers and novel therapeutic target for CAD.

Conclusions

In summary, our findings discovered pivotal gene expression signatures and signaling pathways in the progression of CAD. CAPN13, ACTBL2, ERBB3, GATA4, GNB4, NOTCH2, EXOSC10, RNF2, PSMA1 and PRKAA1 might contribute to the progression of CAD, which could have potential as biomarkers or therapeutic targets for CAD.

Introduction

Coronary artery disease (CAD) remains the one of leading healthy issues worldwide and 23.3 million people will die of CAD by 2030 [1]. The risk factors for CAD mainly smoking, high blood pressure, high blood cholesterol levels, diabetes, overweight or obesity, physical inactivity, high stress and unhealthy diet [2]. At present, surgery has been applied to improve survival of CAD patients [3]. However, the molecular pathogenesis of CAD advancement is still largely unknown.

As an inventive and high-throughput investigation facilitate the concurrent analysis of expression changes in thousands of genes in CAD samples and contributes to diagnosis, prognosis and new drug discovery [4]. In current years, there have been huge research on the molecular pathogenesis of CAD
occurrence and progression by finding and analyzing differentially expressed genes (DEGs) with microarray technologies. Genes such as human paraoxonase/arylesterase (HUMPONA) [5], apolipoprotein E (apo E) [6], MMP-2, MMP-3, MMP-9 and MMP-12 [7], endothelial nitric oxide synthase (eNOS) [8] and angiotensin II type 1 (AT1) receptor [9] were associated with CAD progression. Signaling pathway such TLR4 signaling pathway [10], mTOR signaling pathway [11], CXCR4 signaling pathway [12], eNOS-activating pathways [13] and Akt pathway [14] were involved in development of CAD. However, certain essential genes and pathways of CAD have not been completely investigated. More investigations are necessary to enlighten these hub genes and pathways to add available therapeutic targets for the treatment of CAD.

In the current investigation, gene expression profile GSE113079 dataset was downloaded from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) [15]. The current investigation finds the differentially expressed genes (DEGs) at CAD based on the expression profile data of GSE113079. Subsequently, Pathway and gene ontology (GO) enrichment analysis for DEGs were carried out. A protein-protein interaction (PPI) network, target gene - miRNA regulatory network and target gene - TF regulatory network were constructed and analyzed. Finally hub genes were validated by immunohistochemical analysis and receiver operating characteristic (ROC) curve analysis. The current investigation aimed to find certain other essential genes and pathways in CAD and study potential therapeutic targets of the disease.

Materials And Methods

Microarray data and data preprocessing

Raw expression profile data from the Agilent microarray file GSE113079 [16] were downloaded from the public NCBI GEO database and executed on the GPL20115 platform. GSE113079 contains 93 CAD patients and 48 healthy controls. The raw expression files of microarray dataset was pre-processed according to the loess and quantile method [17] and probe identification numbers were converted to gene symbols using as a reference the Agilent-067406 Human CBC IncRNA + mRNA microarray V4.0 (Probe name version). When multiple probes compare to the same gene, the probe with the high p value from the downstream differential analysis was picked to resolve the differential gene expression value.

Identification of DEGs

The linear models for microarray data Limma package in Bioconductor [18] was used to identify DEGs by comparing the expression values between peripheral blood mononuclear cells from CAD patients and peripheral blood mononuclear cells from healthy control. The corresponding P value of the gene symbols after t test were used, and adjusted P < 0.05 and |logFC| > 0.97 for up regulated genes, and |logFC| < -0.963 for down regulated genes were used as the selection criteria.

Pathway enrichment analyses of DEGs
BIOCYC (https://biocyc.org/) [19], Kyoto Encyclopedia of Genes and Genomes (KEGG; http://www.genome.jp/kegg/) [20], Pathway Interaction Database (PID, http://pid.nci.nih.gov/) [21], Reactome (https://reactome.org/PathwayBrowser/) [22], Molecular signatures database (MSigDB, http://software.broadinstitute.org/gsea/msigdb/) [23], GenMAPP (http://www.genmapp.org/) [24], Pathway Ontology (https://bioportal.bioontology.org/ontologies/PW) [25], PantherDB (http://www.pantherdb.org/) [26] and Small Molecule Pathway Database (SMPDB) (http://smpdb.ca/) [27] are databases resource for understanding high-level functions and biological systems from large-scale molecular datasets generated by high-throughput experimental technologies. The ToppGene (ToppFun) (https://toppgene.cchmc.org/enrichment.jsp) [28] in online tool was used to perform the pathway enrichment analyses of the DEGs. P < 0.05 was considered statistically significant.

Gene ontology (GO) enrichment analysis of DEGs

The GO (http://www.geneontology.org/) [29] is a represented terminology of terms defines gene products according to the biological process (BP), molecular function (MF), and cellular component (CC). We used ToppGene (ToppFun) (https://toppgene.cchmc.org/enrichment.jsp) [28], a web-accessible program that integrates functional genomic annotations, to view the GO enrichment of DEGs; a p value <0.05 was considered statistically significant.

PPI network construction and module analysis

STRING (https://string-db.org/) [30] is a protein-protein interaction (PPI) network analysis online tool. The current version of the STRING PPI database is 11.0, which screen more than 5,090 species and 24.6 million proteins and holds the upload of genome level data sets. To resolve which proteins encoded by the DEGs acts a dominant role in CAD, the DEGs were applied to STRING v.11.0 with medium confidence scores of 0.4. To find the hub genes, we visualized the PPI network using Cytoscape v.3.7.2 software (http://www.cytoscape.org/) [31] and analyzed the topological properties of these nodes using the Network Analyzer tool. Then we selected the nodes with high degrees centrality [32], high betweenness centrality [33], high stress centrality [34], high closeness centrality [35] and low clustering coefficient [36] values as hub genes. The PEWCC1 [37] built in Cytoscape is an automated method that was used to evaluate highly interconnected modules as molecular complexes or clusters. The analysis parameters were establish by default. The pathway and GO enrichment analysis was executed for DEGs, from which four significant modules of genes were diagnosed with p < 0.05 set as the threshold.

Construction of target gene - miRNA regulatory network

The NetworkAnalyst (https://www.networkanalyst.ca/) [38] online platform was used combine the results of mRNA (DEGs) with known miRNAs of human to construct the target gene - miRNA network and to predict target genes with differential expression miRNAs. In addition, we predicted the target genes for miRNAs using two online software: DIANA-TarBase (http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index) [39] and miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/php/download.php) [40]. All 3 procedural predicted genes were
selected as targets for DEGs to construct differentially expressed miRNA. Target genes were arranged into the miRNA regulatory network separately to access each miRNA regulatory network which were visualized using Cytoscape (http://www.cytoscape.org/) [31]. DEGs (up and down regulated) interaction with more number of miRNAs consider as target genes.

Construction of target gene - TF regulatory network

Transcription factor gene data of the NetworkAnalyst (https://www.networkanalyst.ca/) [38] was used to identify the transcription factor regulatory networks linked with the target genes. The NetworkAnalyst describes transcription factor (TF) to genes from the perspective of ChEA database (http://amp.pharm.mssm.edu/lib/chea.jsp) [41] database resource. The NetworkAnalyst illustrate a more extensive transcription factor regulation network. Target genes were arranged into the TF regulatory network separately to access each transcription factor regulatory network which were visualized using Cytoscape (http://www.cytoscape.org/) [31]. DEGs (up and down regulated) interaction with more number of TFs consider as target genes.

Validations of hub genes

The human protein atlas database (HPA) (www.proteinatlas.org) [42] was used to analyze protein expression of hub genes in peripheral blood mononuclear cells in bone marrow. A receiver operating characteristic (ROC) curve was produce using the pROC package of the R software [43], and the area under the curve (AUC) was determined using generalized linear model (GLM) in machine learning algorithms to assess the predictive accuracy of hub genes.

Results

Data preprocessing and identification of DEGs

The gene expression profile with accession numbers GSE113079 was downloaded from GEO database. The results of before and after normalizing the microarray gene expression are shown in Fig. 1A and Fig. 1B. DEGs between peripheral blood mononuclear cells from CAD patients and peripheral blood mononuclear cells from healthy control were screened using limma package in R bioconductor (P-value <0.05, |logFC| > 0.97 for up regulated genes, and |logFC| < - 0.963 for down regulated genes). In this study, 1,036 total DEGs (525 up regulated genes and 511 down regulated genes, respectively) in GSE113079 was screened. The total number of DEGs collected for each subject in the differential gene expression analysis is given in Table 1. A volcano diagram was constructed for the DEGs and is shown in Fig. 2. The DEGs (up and down regulated genes) are presented by a cluster heatmap in Fig. 3 and Fig. 4.

Pathway enrichment analyses of DEGs

Pathway enrichment analyses were performed using ToppGene, analyzing the pathway classification of DEGs (up and down regulated genes). Pathways of up regulated were mainly enriched in thyronamine and iodothyronamine metabolism, trehalose degradation, cytokine-cytokine receptor interaction, Olfactory
transduction, FOXA1 transcription factor network, lissencephaly gene (LIS1) in neuronal migration and
development, signaling by GPCR, GPCR downstream signaling, C21 seroid hormone metabolism,
androgen and estrogen metabolism, ensemble of genes encoding extracellular matrix and extracellular
matrix-associated proteins, ensemble of genes encoding ECM-associated proteins including ECM-
affiliated proteins, ECM regulators and secreted factors, corticotropin releasing factor receptor
signaling pathway, 5HT4 type receptor mediated signaling pathway, corticotropin-releasing hormone
signaling, G protein signaling via galphaq family, ornithine transcarbamylase deficiency (OTC deficiency
and intracellular signaling through PGD2 receptor and prostaglandin D2 according to the BIOCYC, KEGG,
PID, Reactome, MSigDB, GenMAPP, Pathway Ontology, PantherDB and SMPDB pathway analysis results
(Table 2), whereas pathways of down regulated were mainly enriched in inosine-5'-phosphate
biosynthesis, sulfate activation for sulfonation, antigen processing and presentation, graft-versus-host
disease, Fc-epsilon receptor I signaling in mast cells, TGF-beta receptor signaling, signaling by
interleukins, generic transcription pathway, glycosaminoglycan degradation, sterol biosynthesis, ras-
independent pathway in NK cell-mediated cytotoxicity, hypoxia and p53 in the cardiovascular system, FAS
signaling pathway, angiogenesis, pathway of folate cycle/metabolism, vascular endothelial growth factor
signaling, sarcosinemia and purine metabolism according to the BIOCYC, KEGG, PID, Reactome, MSigDB,
GenMAPP, Pathway Ontology, PantherDB and SMPDB pathway analysis results (Table 3).

Gene ontology (GO) enrichment analysis of DEGs

The Gene Ontology (GO) enrichment analyses were conducted using online tool ToppGene. GO terms of
the up regulated and down regulated genes were listed in Table 4 and Table 5, respectively. Gene
Ontology (GO) enrichment analysis showed that the up regulated genes were mainly associated with
nervous system process, G protein-coupled receptor signaling pathway, intrinsic component of plasma
membrane, extracellular matrix, transmembrane signaling receptor activity and receptor regulator activity.
The down regulated genes were mainly associated with cell cycle, regulation of immune system process,
nuclear membrane, nuclear chromatin, DNA-binding transcription factor activity, RNA polymerase II-
specific and signaling receptor binding.

PPI network construction and module analysis

The PPI network of the up and down regulated genes was analyzed by using online STRING database.
The result of PPI network of up regulated was illustrated in Fig 5. A total of 3715 nodes with 6518 edges
were reflected in this well-established network system. The statistical results and scatter plot for node
degree distribution, betweenness centrality, stress centrality, closeness centrality and clustring coefficient
are shown in Fig. 6A - 6E and indicated that CAPN13, EGFR, ACTBL2, ACTL8, ERBB3, PRMT5, GATA4,
RHOV, CHD5, MAGEL2, THNSL2, SLC38A8, THPO and SPTSSB were the hub genes with high node degree
distribution, betweenness centrality, stress centrality, closeness centrality and low clustring coefficient in
the network are listed in Table 6. The top hub genes in this PPI network were selected for further pathway
and GO enrichment analyses using the ToppGene database. The results indicated that the hub genes
were mainly enriched in developmental biology, cytokine-cytokine receptor interaction, huntington
disease, epithelial cell differentiation, calcium signaling pathway, E2F transcription factor network, notch-mediated HES/HEY network, receptor regulator activity, cation transport and Jak-STAT signaling pathway. The result of PPI network of down regulated was illustrated in Fig 7. A total of 5135 nodes with 10628 edges were reflected in this well-established network system. The statistical results and scatter plot for node degree distribution, betweenness centrality, stress centrality, closeness centrality and clustering coefficient are shown in Fig. 8A - 8E and indicated that FYN, PAK2, CUL3, RPS6, NOTCH2, PDE4D, SPATA21, MYBL1, SMURF1, PDGFRB, DLG3, ADHFE1, NMB, SLC25A36, MLLT1 and RNF2 were the hub genes with high node degree distribution, betweenness centrality, stress centrality, closeness centrality and low clustering coefficient in the network are listed in Table 6. The top hub genes in this PPI network were selected for further pathway and GO enrichment analyses using the ToppGene database. The results indicated that the hub genes were mainly enriched in natural killer cell mediated cytotoxicity, Fc-epsilon receptor I signaling in mast cells, signaling by interleukins, mTOR signaling pathway, notch signaling pathway, purine metabolism, gene expression, endocytosis, cytokine-cytokine receptor interaction, regulation of hydrolase activity, signaling receptor binding, organelle envelope, nuclear chromatin and post-translational protein modification.

Four significant modules were selected for each up and down regulated genes using the PEWCC1E plug-in. The top four modules for up regulated genes were selected (module 13, 105 nodes and 235 edges; module 20, 77 nodes and 97 edges; module 21, 73 nodes and 81 edges; module 34, 53 nodes and 58 edges) are shown in Fig. 9. The results revealed that hub genes (ACTG2, GATA4, EGFR, TP73, ACTBL2, FOXJ1, BMP7 and CDK5R2) in these significant modules were mostly enriched in the muscle contraction, notch-mediated HES/HEY network, cytokine-cytokine receptor interaction, E2F transcription factor network, actin cytoskeleton, epithelial cell differentiation, biological adhesion and neuron projection. Similarly, top four modules for down regulated genes were selected (module 1, 92 nodes and 186 edges; module 2, 56 nodes and 187 edges; module 5, 49 nodes and 144 edges; module 11, 29 nodes and 57 edges) are shown in Fig. 10. The results revealed that hub genes (RPS6, PAK2, PODN, LMNA, EIF1AX, RPS27, HSPA8, FYN and LMNB1) in these significant modules were mostly enriched in the mTOR signaling pathway, Fc-epsilon receptor I signaling in mast cells, ensemble of genes encoding extracellular matrix and extracellular matrix-associated proteins, caspase cascade in apoptosis, postsynapse, cell cycle, regulation of immune system process and positive regulation of signal transduction.

Construction of target gene - miRNA regulatory network

NetworkAnalyst was applied to screen the miRNAs of the up and down regulated genes. The miRNAs predicted by at least two databases (among the following databases: DIANA-TarBase and miRTarBase) were diagnosed as the miRNAs of the target genes. Then, Cytoscape software was used to draw the target gene - miRNA regulatory network. The target gene - miRNA regulatory network for up regulated genes included 1867 nodes and 3735 edges (Fig. 11). As shown in Table 7, TRIM72 regulates 123 miRNAs (ex,hsa-mir-4537), TET3 regulates 105 miRNAs (ex,hsa-mir-3148), NFIB regulates 89 miRNAs (ex,hsa-mir-4517), SLC19A3 regulates 80 miRNAs (ex,hsa-mir-4500) and SMOC1 regulates 123 miRNAs (ex,hsa-mir-6133) were considered as target gene. We performed pathway and GO enrichment analysis of
these predicted target genes, which mainly enriched in muscle contraction, FOXA1 transcription factor network, intrinsic component of plasma membrane and biological adhesion. The target gene - miRNA regulatory network for down regulated genes included 2529 nodes and 10243 edges (Fig.12). As shown in Table 7, PPP1R15B regulates 168 miRNAs (ex, hsa-mir-7150), WEE1 regulates 167 miRNAs (ex, hsa-mir-3926), RPRD2 regulates 152 miRNAs (ex, hsa-mir-4452), LCOR regulates 146 miRNAs (ex, hsa-mir-4310) and SAR1A regulates 145 miRNAs (ex, hsa-mir-5698) were considered as target gene. We performed pathway and GO enrichment analysis of these predicted target genes, which mainly enriched in regulation of hydrolase activity, cell cycle, gene expression, nuclear chromatin and protein processing in endoplasmic reticulum.

Construction of target gene - TF regulatory network

NetworkAnalyst was applied to screen the TFs of the up and down regulated genes. The TFs predicted by database (ChEA database) was diagnosed as the TFs of the target genes. Then, Cytoscape software was used to draw the target gene - TF regulatory network. The target gene - TF regulatory network for up regulated genes included 539 nodes and 5790 edges (Fig. 13). As shown in Table 8, ACTL8 regulates 145 TFs (ex, EGR1), LHFPL3 regulates 132 TFs (ex, SOX2), CXCL12 regulates 119 TFs (ex, SUZ12), GLI2 regulates 117 TFs (ex, AR) and C7 regulates 114 TFs (ex, TP53) were considered as target gene. We performed pathway and GO enrichment analysis of these predicted target genes, which mainly enriched in epithelial cell differentiation, cytokine-cytokine receptor interaction, pathways in cancer and innate immune system. The target gene - TF regulatory network for down regulated genes included 608 nodes and 10262 edges (Fig. 14). As shown in Table 8, PRIM2 regulates 218 TFs (ex, SOX2), regulates 211 TFs (ex, MYC), GMDS regulates 210 TFs (ex, SPI1), C5ORF58 regulates 190 TFs (ex, RUNX1) and C10orf88 regulates 180 TFs (ex, FLI1) were considered as target gene. We performed pathway and GO enrichment analysis of these predicted target genes, which mainly enriched in metabolic pathways, gene expression, asparagine N-linked glycosylation and cell cycle.

Validations of hub genes

The ten hub genes (up and down regulated) were selected for further validation of their potential prognostic value. Upon comparing the expression of hub genes in the human protein atlas database (Fig. 15), it showed that CAPN13, ACTBL2, ERBB3, GATA4 and GNB4 were highly expressed in peripheral blood mononuclear cells of bone marrow, while NOTCH2, EXOSC10, RNF2, PSMA1 and PRKAA1 were less expressed in peripheral blood mononuclear cells of bone marrow. ROC analysis was performed from the 10 hub genes from GSE113079. The ROC curves of these ten hub genes all indicated favorable prognostic values for CAD. In addition, the area under ROC curve (AUC) of CAPN13, ACTBL2, ERBB3, GATA4, GNB4, NOTCH2, EXOSC10, RNF2, PSMA1 and PRKAA1 were 0.855 (p = 2.406664e-08), 0.923 (p = 5.413565e-10), 0.829 (p = 2.857413e-08), 0.903 (p = 4.513268e-09), 0.918 (p = 6.358925e-09), 0.891 (p = 4.367291e-09), 0.927 (p = 1.344048e-10), 0.911 (p = 5.076899e-10), 0.892 (3.057148e-08) and 0.904 (p = 1.902203e-08), respectively (Fig. 16).
Discussion

Currently, genetic and genomics related researches progress rapidly and provide new viewpoint to illuminate the molecular pathogenesis of CAD. And bioinformatics analysis also has show and devotes to search for candidate biomarkers to provide more precise screening, prompt diagnosis, sophisticated prognostic and new therapeutic targets for CAD based on massive genetic and genomics data [44]. In the present study, 1,036 DEGs were identified in the CAD group compared with normal control samples, including 525 up regulated genes and 511 down regulated gene. Genes such as PTGDS (prostaglandin D2 synthase) [45] and PDE4D [46] were responsible for development of stroke. Oncostatin M receptor (OSMR) was liable for progression of atherosclerosis [47]. Genes such as SLC19A3 [48] and RCN2 [49] were liable for progression of diabetes, but these genes may be responsible for advancement of CAD. Genes such as KLKB1 [50], PRMT5 [51], F2R [52] and IL18RAP [53] were liable for progression of CAD. AKAP5 was associated with progression of hypertension [54], but this gene may be identified with progression of CAD.

Some of the up regulated genes enriched in pathways from different pathway databases. DIO2 was linked with development of hypertension [55], but this gene may be responsible for progression CAD. Enriched genes such as CCR2 [56], CCL19 [57], CX3CL1 [58], CXCL12 [59], IL20 [60], epidermal growth factor receptor (EGFR) [61], ERBB3 [62], adrenomedullin (ADM) [63], SCUBE1 [64], LMAN1L [65] and EGFL7 [66] were responsible for pathogenesis of CAD. Enriched genes such as CXCL6 [67], BMP7 [68], RXFP2 [69], BR50 [70], FFAR3 [71], neuropeptide B (NPB) [72], SPON2 [73], FCN3 [74], REG3A [75] and ornithine carbamoyltransferase (OTC) [76] were culpable for pathogenesis of diabetes, but these genes may be involved in development of CAD. Enriched genes such as COL18A1 [77], cortistatin (CORT) [78], guanine nucleotide binding protein (G protein) [79] and MUC2 [80] were involved in development of obesity, but these genes may be associated with pathogenesis of CAD. Enriched genes such as ADRA1A [81], corticotropin releasing hormone (CRH) [82], CRHR1 [83], GRIN1 [84], HSD3B1 [85] and nerve growth factor (beta polypeptide) (NGF) [86] were answerable for progression of hypertension, but these genes may be linked with development of CAD. ADAMTS2 was associated with progression of myocardial infarction [87], but this gene may be liable for progression of CAD. CFC1 was responsible for development of congenital cardiac disease [88], but this gene may be associated with progression of CAD. Our study found that KIT ligand (KITLG), IFNA4, IL13RA1, IL17B, thrombopoietin (THPO), nuclear factor I/B (NFIB), TFF1, OPN4, OR1J1, OR2J2, ADCY2, ADCYAP1R1, OR4C3, OR5C1, OR3A3, RASAL1, VIPR2, OR8U1, SPTBN4, OR10AD1, OR10W1, AVPR1B, RGS22, SSTR4, PTGER1, glial cell derived neurotrophic factor (GDNF), OR5H1, OR2AG1, GPR31, kalirin, RhoGEF kinase (KALRN), GPR32, OR2AG2, OR5A2, OR2T6, OR10H1, GNB4, OR52K2, GPHB5, CLEC1B, CLEC2L, SEMA5B, COL9A2, MXRA5, COL2BA1, SEMA4G, COL23A1, insulin-like growth factor binding protein, acid labile subunit (IGFALS), CLEC4G, MUC22, MUC3A, MUC4, MEGF11, IL36B, ADAM21, SMOC1, FREM1, TINAGL1, SRPX2, ADAMTS1L, transforming growth factor, alpha (TGFA), eyes shut homolog (Drosophila) (EYS), INSL6, CLEC3B, tenascin XB (TNXB) and guanine nucleotide binding protein (G protein), alpha activating activity polypeptide, olfactory type (GNAL) are up regulated in CAD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Similarly, some of the down regulated genes enriched in pathways from different
pathway data bases. Enriched genes such as HSPA8 [89], HIF1A [90], CCL4 [91], CCL20 [92], IL1B [93], NCAM1 [94], IL18R1 [95], CXCL1 [96], CXCL2 [97], oncostatin M (OSM) [98], CD80 [99], IL27 [100] and lamin A/C (LMNA) [101] were liable for progression of CAD. Enriched genes such as KIR2DL2 [102], KIR3DL1 [103], KLRC3 [104], KLRD1 [105], PIK3R1 [106] and PAK2 [107] were involved in the progression of diabetes, but these genes may be linked with progression of CAD. MAP2K4 was liable for progression of ischemic stroke [108]. Enriched genes such as S1PR1 [109] and CUL3 [110] were involved in progression of hypertension, but these genes may be associated with development of CAD. RAR-related orphan receptor A (RORA) was linked with development of obesity [111], but these genes may be involved in pathogenesis of CAD. Our study found that 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), KIR2DS2, KIR2DL4, KIR2DS3, KIR2DS4, KIR3DL2, KLRC1, regulatory factor X-associated protein (RFXAP), PDIA3, KIR2DL5A, WIPF1, FYN oncogene related to SRC, FGR, YES (FYN), Cas-Br-M (murine) ecotropic retroviral transforming sequence b (CBLB), platelet-derived growth factor receptor, beta polypeptide (PDGFRB), CCL3L3, IL1A, PSMA1, SPTBN1, PSME4, BRWD1, IDS (iduronate 2-sulfatase), PARP4, PARP2, LMNB1, 6-pyruvoyltetrahydropterin synthase (PTS) and sarcosine dehydrogenase (SARDH) are down regulated in CAD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target.

Some of the up regulated genes enriched in GO terms. Enriched genes such as noggin (NOG) [112], very low density lipoprotein receptor (VLDLR) [113] and AQP10 [114] were responsible for progression of obesity, but these genes may be involved in development of CAD. Enriched genes such as TRPM5 [115], crystallin, alpha A (CRYAA) [116], PAX6 [117], SORBS1 [118], SLC38A1 [119], complement component 7 (C7) [120] and PAX8 [121] were linked with advancement of diabetes, but these genes may be associated with pathogenesis of CAD. Enriched genes such as KCNJ11 [122], PKD2L1 [123], CSMD1 [124], SLC6A2 [125] and ATP2B3 [126] were liable for advancement of hypertension, but these genes may be involved in progression CAD. ASGR1 was linked with advancement of CAD [127]. Our study found that SHROOM4, SHISA6, amphiphysin (AMPH), TMPRSS11E, CRYBB3, crystallin, gamma A (CRYGA), BARHL1, IGSF9B, LYNX1, LRRN4, SHANK1, GRIK5, LCN1, GRK1, GRIP2, LY6H, B3GNT3, KCNK9, PROM2, TRPV6, FXYD1, FXYD3, SYT3, AQP8, SLC4A1, ATP1A4, CALHM3, TSPAN9, PROM1, protein tyrosine phosphatase, receptor type, S (PTPRS), KCNJ16, PCDHB8, TM4SF5, SLC17A5, trehalase (brush-border membrane glycoprotein) (TREH), basal cell adhesion molecule (Lutheran blood group) (BCAM), SLC4A11, EPHA8, ANTXR1, PLA2R1 and IL17REL are up regulated in CAD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target. Similarly, some of the down regulated genes enriched in GO terms. Enriched genes such as CDKN1C [128], NR4A1 [129] and ZNF627 [130] were responsible for progression of myocardial infarction, but these genes may be associated with development of CAD. Enriched genes such as PPP1R15A [131], protein kinase C, theta (PRKACQ) [132], LPIN1 [133], NOTCH2 [134], Shwachman-Bodian-Diamond syndrome (SBDS) [135], SOX13 [136] and FOXP4 [137] were culpable for advancement of diabetes, but these genes may be linked with progression of CAD. Enriched genes such as ABCB1 [138], CAMK2N1 [139], HES1 [140], TNFAIP3 [141], proliferating cell nuclear antigen (PCNA) [142], IKZF2 [143], ZNF208 [144], NRF1 [145], EGR3 [146] and SMAD7 [147] were important for progression of CAD. Filamin A (FLNA) was involved in development of hypertension [148], but this gene may be responsible for
progression of CAD. Enriched genes such as PHLDA1 [149], PLK2 [150], IER3 [151] and thymopoietin (TMPO) [152] were identified with development of ischemic cardiomyopathy, but these genes may be involved in progression of CAD. TOR1AIP1 was associated with heart failure [153]. Enriched genes such as CERS6 [154], KLF3 [155] and NUCKS1 [156] were responsible for advancement of obesity, but these genes may be involved in progression of CAD. cAMP responsive element modulator (CREM) was linked with progression of cardiac arrhythmia [157], but this gene may be important for development CAD. Our study found that CHAF1B, CCND1, STAG1, RPS6, TFD3, NCAPH2, HIR histone cell cycle regulation defective homolog A (S. cerevisiae) (HIRA), BOD1, CEP78, HACE1, SERTAD1, farnesyltransferase, CAAX box, alpha (FNTA), WEE1, TRIAP1, PKP4, ZNF365, Wilms tumor 1 associated protein (WTAP), CCCTC-binding factor (zinc finger protein) (CTCF), CSNK1A1, PRIM2, PRKAA1, SENP6, CDK5RAP1, tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase (TNKS), RIOK2, MYBL1, TJPL, ZNF268, ZNF207, SMARCAD1, SMC5, junction mediating and regulatory protein, p53 cofactor (JMY), CEPI20, ANGEL2, CAB39L, NCAPD3, destrin (actin depolymerizing factor) (DSTN), CLASP1, CHMP1B, KIF3A, RNF2, KHLHC2, OSBP1L8, ZBTB1, FAM169A, suppressor of cancer cell invasion (SCAI), IP3R3, YBX1, SYNE1, ZNF671, recombination signal binding protein for immunoglobulin kappa J region-like (RBPJL), ZNF595, TXK tyrosine kinase (TXK), MLLT1, ZNF548, THAP6, ZNF567, ZNF680, ZFP37, zinc finger protein, X-linked (ZFX), ZNF430, ZNF26, ZFP1, ZNF83, ZBTB11, ligand dependent nuclear receptor corepressor (LCOR), BNC2, SP2, ZNF148, thymocyte selection-associated high mobility group box (TOX), HOP homeobox (HOPX), ZNF25, ZNF730, ZFP82, NR1D2, retinoic acid receptor, beta (RARB), ZNF354A, IKZF5, ZBED6, ZNF197 and RAR-related orphan receptor B (RORB) are down regulated in CAD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target.

In the PPI network, hub genes with a high node degree distribution, betweenness centrality, stress centrality, closeness centrality and low clustering coefficient were selected. GATA4 was important for progression of CAD [158]. Genes such as MAGEL2 [159], ADHFE1 [160] and neuromedin B (NMB) [161] were associated with development of obesity, but these genes may be liable for progression of CAD. SMURF1 was liable for advancement of hypertension [162], but this may be involved in pathogenesis of CAD. In addition, modules were extracted from PPI network, which involved 17 up regulated genes and 20 down regulated genes. TBX2 was involved in the progression of hypertension [163], but this gene may be associated with development of CAD. Genes such as podocan (PODN) [164] and PAS domain containing serine/threonine kinase (PASK) [165] were liable for progression of diabetes, but these genes may be linked with progression of CAD. In the target gene - miRNA regulatory network, 5 up regulated genes and 5 down regulated genes with a high node degree was chosen as target gene. TRIM72 was associates with development of cardiac fibrosis [166], but this gene may be liable for development of CAD. TET3 was responsible for progression of CAD [167]. PPP1R15B was important for progression of diabetes [168], but this gene may be involved in advancement of CAD. CAPN13, ACTBL2, ACTL8, ras homolog gene family, member V (RHOV), CHD5, THNSL2, SLC38A8, serine palmitoyltransferase, small subunit B (SPTSSB), SPATA21, DLG3, SLC25A36, ACTG2, ACTL6B and RAS, EF-hand domain containing (RASEF), LHX9, FOXJ1, TP73, CDK5R2, EIF1AX, HNRNPA0, RPS27, LGR6, granzyme B (GZMB), RPRD2 and SAR1A are the novel biomarkers for CAD.
In the target gene - TF regulatory network, 5 up regulated genes and 5 down regulated genes with a high node degree was chosen as target gene. GLI2 was linked with progression of obesity [169], but this gene may be responsible for advancement of CAD. Our study found that LHFPL3 is up regulated in CAD and has potential as a novel diagnostic and prognostic biomarker, similarly, our study found that EXOSC10, GDP-mannose 4,6-dehydratase (GMDS), C5orf58 and C10orf88 are down regulated in CAD and has potential as a novel diagnostic and prognostic biomarker, and therapeutic target.

We used immune histochemical (IHC) analysis, receiver operating characteristic (ROC) curve and RT-PCR to analyze the association of 5 up and 5 down regulated hub genes expression in CAD. The results showed that only 5 up (CAPN13, ACTBL2, ERBB3, GATA4 and GNB4) and 5 down (NOTCH2, EXOSC10, RNF2, PSMA1 and PRKAA1) regulated hub genes were related to the CAD. We then evaluated the prognostic value of these only 5 up (CAPN13, ACTBL2, ERBB3, GATA4 and GNB4) and 5 down (NOTCH2, EXOSC10, RNF2, PSMA1 and PRKAA1) regulated hub genes using the ROC curve, indicating that they have potential diagnostic value for CAD.

In conclusion, 1,036 DEGs (525 up rand 511 down regulated gene) were screened out from the GSE113079 dataset, which may contain hub genes contributing to the pathogenesis of CAD. Through our bioinformatics analysis, hub genes including CAPN13, ACTBL2, ERBB3, GATA4, GNB4, NOTCH2, EXOSC10, RNF2, PSMA1 and PRKAA1 might contribute to the progression of CAD, which could serve as novel diagnostic and prognostic biomarkers and therapeutic targets for CAD.

Declarations

Acknowledgement

I thank Lin Li, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Xicheng District, Beijing, China, very much, the author who deposited their microarray dataset, GSE113079, into the public GEO database.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent because this study does not contain human or animals participants.

Availability of data and materials
The datasets supporting the conclusions of this article are available in the GEO (Gene Expression Omnibus) (https://www.ncbi.nlm.nih.gov/geo/) repository. [(GSE113079) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113079)]

Consent for publication

Not applicable.

Funding

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author Contributions

V. K. - Methodology and validation

B. V. - Writing original draft, and review and editing

C. V. - Software and investigation

I. K. - Supervision and resources

A. T. – Software, and review and editing

References

1. Guo Y, Yin F, Fan C, Wang Z. Gender difference in clinical outcomes of the patients with coronary artery disease after percutaneous coronary intervention: A systematic review and meta-analysis. Medicine (Baltimore). 2018;97(30):e11644. doi:1097/MD.0000000000011644

2. Chen C, Wei J, AlBadri A, Zarrini P, Bairey Merz CN. Coronary Microvascular Dysfunction - Epidemiology, Pathogenesis, Prognosis, Diagnosis, Risk Factors and Therapy. Circ J. 2016;81(1):3–11. doi:1253/circj.CJ-16-1002

3. Kandaswamy E, Zuo L. Recent Advances in Treatment of Coronary Artery Disease: Role of Science and Technology. Int J Mol Sci. 2018;19(2):424. doi:3390/ijms19020424

4. Balashanmugam MV, Shivanandappa TB, Nagarethinam S, Vastrad B, Vastrad C. Analysis of Differentially Expressed Genes in Coronary Artery Disease by Integrated Microarray Analysis. Biomolecules. 2019;10(1):E35. doi:3390/biom10010035

5. Serrato M, Marian AJ. A variant of human paraoxonase/arylesterase (HUMPONA) gene is a risk factor for coronary artery disease. J Clin Invest. 1995;96(6):3005–3008. doi:1172/JCI118373
6. Arslan Ince FD, Atay A, Köseoğlu M, Yeşil M, Deveci E. Relationship between severity of coronary artery disease and apolipoprotein E gene polymorphism. Anadolu Kardiyol Derg. 2010;10(3):202–208. doi:10.5152/akd.2010.058

7. Lamblin N, Bauters C, Hermant X, Lablanche JM, Helbecque N, Amouyel P. Polymorphisms in the promoter regions of MMP-2, MMP-3, MMP-9 and MMP-12 genes as determinants of aneurysmal coronary artery disease. J Am Coll Cardiol. 2002;40(1):43–48. doi:10.1016/s0735-1097(02)01909-5

8. Li X, Lin Y, Zhang R. Associations between endothelial nitric oxide synthase gene polymorphisms and the risk of coronary artery disease: A systematic review and meta-analysis of 132 case-control studies. Eur J Prev Cardiol. 2019;26(2):160–170. doi:10.1177/2047487318780748

9. Amant C, Hamon M, Bauters C, Richard F, Helbecque N, McFadden EP, Escudero X, Lablanche JM, Amouyel P, Bertrand ME. The angiotensin II type 1 receptor gene polymorphism is associated with coronary artery vasoconstriction. J Am Coll Cardiol. 1997;29(3):486–490. doi:10.1016/s0735-1097(96)00535-9

10. Jia SJ, Niu PP, Cong JZ, Zhang BK, Zhao M. TLR4 signaling: a potential therapeutic target in ischemic coronary artery disease. Int Immunopharmacol. 2014;23(1):54–59. doi:10.1016/j.intimp.2014.08.011

11. Tarantino G, Capone D. Inhibition of the mTOR pathway: a possible protective role in coronary artery disease. Ann Med. 2013;45(4):348–356. doi:10.3109/07853890.2013.770333

12. Walter DH, Haendeler J, Reinhold J, Rochwalsky U, Seeger F, Honold J, Hoffmann J, Urbich C, Lehmann R, Arentz-Seisdesdos F, Aicher A. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res. 2005;97(11):1142–1151. doi:10.1161/01.RES.0000193596.94936.2c

13. Besler C, Heinrich K, Rohrer L, Doerries C, Riwanto M, Shih DM, Chroni A, Yonekawa K, Stein S, Schaefer N et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Invest. 2011;121(7):2693–2708. doi:10.1172/JCI42946

14. Hamamdzic D, Fenning RS, Patel D, Mohler III ER, Orlova KA, Wright AC, Llano R, Keane MG, Shannon RP, Birnbaum MJ et al. Akt pathway is hypoactivated by synergistic actions of diabetes mellitus and hypercholesterolemia resulting in advanced coronary artery disease. Am J Physiol Heart Circ Physiol. 2010;299(3):H699–H706. doi:10.1152/ajpheart.00071.2010

15. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41(Database issue):D991–D995. doi:10.1093/nar/gks1193

16. Li L, Wang L, Li H, Han X, Chen S, Yang B, Hu Z, Zhu H, Cai C, Chen J et al. Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis. 2018;275:359–367. doi:10.1016/j.atherosclerosis.2018.06.866

17. Do JH, Choi DK. Normalization of microarray data: single-labeled and dual-labeled arrays. Mol Cells. 2006;22(3):254–261.

18. Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
19. Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, Keseler IM, Krummenacker M, Midford PE, Ong Q et al (2019) The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform 20(4):1085-1093. doi:1093/bib/bbx085

20. Aoki-Kinoshita KF, Kanehisa M (2007) Gene annotation and pathway mapping in KEGG. Methods Mol Biol 396:71-91. doi:1007/978-1-59745-515-2_6

21. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009;37(Database issue):D674-D679. doi:1093/nar/gkn653

22. Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39(Database issue):D691-D697. doi:1093/nar/gkq1018

23. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12):1739-1740. doi:1093/bioinformatics/btr260

24. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31(1):19-20. doi:1038/ng0502-19

25. Petri V, Jayaraman P, Tutaj M, Hayman GT, Smith JR, De Pons J, Laulederkind SJ, Lowry TF, Nigam R, Wang SJ et al (2014) The pathway ontology - updates and applications. J Biomed Semantics 5(1):7. doi:1186/2041-1480-5-7

26. Mi H, Muruganujan A, Thomas PD (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41(Database issue):D377-D386. doi:1093/nar/gks1118

27. Jewison T, Su Y, Disfany FM, Liang Y, Knox C, Maciejewski A, Poelzer J, Huynh J, Zhou Y, Arndt D et al (2014) SMPDB 2.0: big improvements to the Small Molecule Pathway Database. Nucleic Acids Res 42(Database issue):D478–D484. doi:1093/nar/gkt1067

28. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37(Web Server issue):W305-W311. doi:1093/nar/gkp427

29. Lewis SE (2017) The Vision and Challenges of the Gene Ontology. Methods Mol Biol 1446:291–302. doi:1007/978-1-4939-3743-1_21

30. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:1093/nar/gky1131

31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498-2504. doi:1101/gr.1239303
32. Zhao B, Wang J, Li M, Wu FX, Pan Y. Prediction of essential proteins based on overlapping essential modules. IEEE Trans Nanobioscience. 2014;13(4):415–424. doi:10.1109/TNB.2014.2337912

33. Hsu CW, Juan HF, Huang HC. Characterization of microRNA-regulated protein-protein interaction network. Proteomics. 2008;8(10):1975–1979. doi:10.1002/pmic.200701004

34. Shi Z, Zhang B. Fast network centrality analysis using GPUs. BMC Bioinformatics. 2011;12:149. doi:10.1186/1471-2105-12-149

35. Ning K, Ng HK, Srihari S, Leong HW, Nesvizhskii Al. Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology. BMC Bioinformatics. 2010;11:505. doi:10.1186/1471-2105-11-505

36. Li M, Lu Y, Niu Z, Wu FX. United Complex Centrality for Identification of Essential Proteins from PPI Networks. IEEE/ACM Trans Comput Biol Bioinform. 2017;14(2):370–380. doi:10.1109/TCBB.2015.2394487

37. Zaki N, Efimov D, Berengueres J (2013) Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC. Bioinformatics 14:163. doi:10.1186/1471-2105-14-163

38. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. doi:10.1093/nar/gkz240

39. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D et al (2015) DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 43(Database issue):D153-D159. doi:10.1093/nar/gku1215

40. Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH et al (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46(D1):D296-D302. doi:10.1093/nar/gkx1067

41. Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma’ayan A (2010) ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26(19):2438-2444. doi:10.1093/bioinformatics/btq466

42. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28(12):1248-1250. doi:10.1038/nbt1210-1248

43. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi:10.1186/1471-2105-12-77

44. Zhang X, Cheng X, Liu H, Zheng C, Rao K, Fang Y, Zhou H, Xiong S. Identification of key genes and crucial modules associated with coronary artery disease by bioinformatics analysis. Int J Mol Med. 2014;34(3):863–869. doi:10.3892/ijmm.2014.1817
45. Hira K, Ueno Y, Tanaka R, Miyamoto N, Yamashiro K, Inaba T, Urabe T, Okano H, Hattori N. Astrocyte-Derived Exosomes Treated With a Semaphorin 3A Inhibitor Enhance Stroke Recovery via Prostaglandin D2 Synthase. Stroke. 2018;49(10):2483–2494. doi:1161/STROKEAHA.118.021272

46. Li N, He Z, Xu J, Liu F, Deng S, Zhang H. Association of PDE4D and IL-1 gene polymorphism with ischemic stroke in a Han Chinese population. Brain Res Bull. 2010;81(1):38–42. doi:1016/j.brainresbull.2009.09.009

47. Zhang X, Li J, Qin JJ, Cheng WL, Zhu X, Gong FH, She Z, Huang Z, Xia H, Li H. Oncostatin M receptor β deficiency attenuates atherogenesis by inhibiting JAK2/STAT3 signaling in macrophages. J Lipid Res. 2017;58(5):895–906. doi:1194/jlr.M074112

48. Porta M, Toppila I, Sandholm N, Hosseini SM, Forsblom C, Hietala K, Borio L, Harjutsalo V, Klein BE, Klein R et al. Variation in SLC19A3 and Protection From Microvascular Damage in Type 1 Diabetes. Diabetes. 2016;65(4):1022–1030. doi:2337/db15-1247

49. Chang Z, Yan G, Yan H, Zheng J, Liu Z. Reticulocalbin 2 enhances osteogenic differentiation of human vascular smooth muscle cells in diabetic conditions. Life Sci. 2019;233:116746. doi:1016/j.lfs.2019.116746

50. Gittleman HR, Merkulova A, Alhalabi O, Stavrou EX, Veigl ML, Barnholtz-Sloan JS, Schmaier AH. A Cross-sectional Study of KLKB1 and PRCP Polymorphisms in Patient Samples with Cardiovascular Disease. Front Med (Lausanne). 2016;3:17. doi:3389/fmed.2016.00017

51. Tan B, Liu Q, Yang L, Yang Y, Liu D, Liu L, Meng F. Low expression of PRMT5 in peripheral blood may serve as a potential independent risk factor in assessments of the risk of stable CAD and AMI. BMC Cardiovasc Disord. 2019;19(1):31. doi:1186/s12872-019-1008-4

52. Gigante B, Bellis A, Visconti R, Marino M, Morisco C, Trimarco V, Galasso G, Piscione F, De Luca N, Prince JA et al. Retrospective analysis of coagulation factor II receptor (F2R) sequence variation and coronary heart disease in hypertensive patients. Arterioscler Thromb Vasc Biol. 2007;27(5):1213–1219. doi:1161/ATVBAHA.107.140541

53. Grisoni ML, Proust C, Alanne M, DeSuremain M, Salomaa V, Kuulasmaa K, Cambien F, Nicaud V, Wiklund PG, Virtamo J et al. Lack of association between polymorphisms of the IL18R1 and IL18RAP genes and cardiovascular risk: the MORGAM Project. BMC Med Genet. 2009;10:44. doi:1186/1471-2350-12-44

54. Nichols CB, Rossow CF, Navedo MF, Westenbroek RE, Catterall WA, Santana LF, McKnight GS. Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circ Res. 2010;107(6):747–756. doi:1161/CIRCRESAHA.109.216127

55. Gumieniak O, Perlstein TS, Williams JS, Hopkins PN, Brown NJ, Raby BA, Williams GH. Ala92 type 2 deiodinase allele increases risk for the development of hypertension. Hypertension. 2007;49(3):461–466. doi:1161/01.HYP.0000256295.72185.fd

56. Gao L, Xu Z, Yin Z, Chen K, Wang C, Zhang H. Association of hydrogen sulfide with alterations of monocyte chemokine receptors, CCR2 and CX3CR1 in patients with coronary artery disease. Inflamm
57. Cai W, Tao J, Zhang X, Tian X, Liu T, Feng X, Bai J, Yan C, Han Y. Contribution of homeostatic chemokines CCL19 and CCL21 and their receptor CCR7 to coronary artery disease. Arterioscler Thromb Vasc Biol. 2014;34(9):1933–1941. doi:10.1161/ATVBAHA.113.303081

58. Jin SG, Chen GL, Yang SL, Zhao MY. Gene-gene interactions among CX3CL1, LEPR and IL-6 related to coronary artery disease in Chinese Han population. Int J Clin Exp Pathol. 2015;8(5):5968–5973.

59. Döring Y, van der Vorst EP, Duchene J, Jansen Y, Gencer S, Bidzhekov K, Atzler D, Santovito D, Rader DJ, Saleheen D et al. CXCL12 Derived From Endothelial Cells Promotes Atherosclerosis to Drive Coronary Artery Disease. Circulation. 2019;139(10):1338–1340. doi:10.1161/CIRCULATIONAHA.118.037953

60. Caligiuri G, Kaveri SV, Nicoletti A. IL-20 and atherosclerosis: another brick in the wall. Arterioscler Thromb Vasc Biol. 2006;26(9):1929–1930. doi:10.1161/01.ATV.0000237564.81178.bb

61. Wang S, He W, Wang C. MiR-23a Regulates the Vasculogenesis of Coronary Artery Disease by Targeting Epidermal Growth Factor Receptor. Cardiovasc Ther. 2016;34(4):199–208. doi:10.1111/1755-5922.12187

62. Maitusong B, Xie X, Ma YT, Fu ZY, Yang YN, Li XM, Liu F, Chen BD, Gai MT. Association between ErbB3 genetic polymorphisms and coronary artery disease in the Han and Uyghur populations of China. Int J Clin Exp Med. 2015;8(9):16520–16527.

63. Iacobellis G, Di Gioia CR, Di Vito M, Petramala L, Cotesta D, De Santis V, Vitale D, Tritapepe L, Letizia C. Epicardial adipose tissue and intracoronary adrenomedullin levels in coronary artery disease. Horm Metab Res. 2009;41(12):855–860. doi:10.1055/s-0029-1231081

64. Dai DF, Thajeb P, Tu CF, Chiang FT, Chen CH, Yang RB, Chen JJ. Plasma concentration of SCUBE1, a novel platelet protein, is elevated in patients with acute coronary syndrome and ischemic stroke. J Am Coll Cardiol. 2008;51(22):2173–2180. doi:10.1016/j.jacc.2008.01.060

65. Patel AJ, Liu HH, Lager RA, Malkovska V, Zhang B. Successful percutaneous coronary intervention in a patient with combined deficiency of FV and FVIII due to novel compound heterozygous mutations in LMAN1. Haemophilia. 2013;19(4):607–610. doi:10.1111/hae.12128

66. Sezer Zhmurov Ç, Timirci-Kahraman Ö, Amadou FU, Fazlıoğluları O, Başaran C, Catal T, Zeybek Ü, Bermek H. Expression of Egfl7 and miRNA-126-5p in Symptomatic Carotid Artery Disease. Genet Test Mol Biomarkers. 2016;20(3):125–129. doi:10.1089/gtmb.2015.0252

67. Sun MY, Wang SJ, Shen YL, Lu JR, Tian XH, Rahman K, Zhang LJ, Nian H, Zhang H. CXCL6 Promotes Renal Interstitial Fibrosis in Diabetic Nephropathy by Activating JAK/STAT3 Signaling Pathway. Front Pharmacol. 2019;10:224. doi:3389/fphar.2019.00224

68. Freedman BI, Bowden DW, Ziegler JT, Langefeld CD, Lehtinen AB, Rudock ME, Lenchik L, Hruska KA, Register TC, Carr JJ. Bone morphogenetic protein 7 (BMP7) gene polymorphisms are associated with inverse relationships between vascular calcification and BMD: the Diabetes Heart Study. J Bone Miner Res. 2009;24(10):1719–1727. doi:10.1359/jbmr.090501
69. Dschietzig TB, Krause-Relle K, Hennequin M, von Websky K, Rahnenführer J, Ruppert J, Grön HJ, Armbruster FP, Bathgate RA, Aschenbach JR et al. Relaxin-2 does not ameliorate nephropathy in an experimental model of type-1 diabetes. Kidney Blood Press Res. 2015;40(1):77–88. doi:1159/000368484

70. González N, Moreno P, Jensen RT. Bombesin receptor subtype 3 as a potential target for obesity and diabetes. Expert Opin Ther Targets. 2015;19(9):1153–1170. doi:1517/14728222.2015.1056154

71. Remely M, Aumueller E, Merold C, Dworzak S, Hippe B, Zanner J, Pointner A, Brath H, Haslberger AG. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene. 2014;537(1):85–92. doi:1016/j.gene.2013.11.081

72. Grzelak T, Wedrychowicz A, Grupinska J, Pelczynska M, Sperling M, Mikulska AA, Naughton V, Czyzewska K. Neuropeptide B and neuropeptide W as new serum predictors of nutritional status and of clinical outcomes in pediatric patients with type 1 diabetes mellitus treated with the use of pens or insulin pumps. Arch Med Sci. 2019;15(3):619–631. doi:5114/aoms.2018.75818

73. Kahvecioglu S, Guclu M, Ustundag Y, Gul CB, Dogan I, Dagel T, Esen B, Akturk Esen S, Celik H, Esen I. Evaluation of serum Spondin 2 levels in the different stages of Type 2 diabetic nephropathy. Nephrology (Carlton). 2015;20(10):721–726. doi:1111/nep.12507

74. Barkai LJ, Sipter E, Csuka D, Prohaszka Z, Pilely K, Garred P, Hosszúfalusi N. Decreased Ficolin-3-mediated Complement Lectin Pathway Activation and Alternative Pathway Amplification During Bacterial Infections in Patients With Type 2 Diabetes Mellitus. Front Immunol. 2019;10:509. doi:3389/fimmu.2019.00509

75. Wu Y, Quan Y, Liu Y, Liu K, Li H, Jiang Z, Zhang T, Lei H, Radek KA, Li D et al. Hyperglycaemia inhibits REG3A expression to exacerbate TLR3-mediated skin inflammation in diabetes. Nat Commun. 2016;7:13393. doi:1038/ncomms13393

76. Grünert SC, Villavicencio-Lorini P, Wermuth B, Lehnert W, Sass JO, Schwab KO. Ornithine transcarbamylase deficiency combined with type 1 diabetes mellitus - a challenge in clinical and dietary management. J Diabetes Metab Disord. 2013;12(1):37. doi:1186/2251-6581-12-37

77. Errera FI, Canani LH, Yeh E, Kague É, Armelin-Corrêa LM, Suzuki OT, Tschiedel B, Silva ME, Sertié AL, Passos-Bueno MR. COL18A1 is highly expressed during human adipocyte differentiation and the SNP c.1136C > T in its "frizzled" motif is associated with obesity in diabetes type 2 patients. An Acad Bras Cienc. 2008;80(1):167–177. doi:1590/s0001-37652008000100012

78. Luque RM, Cordoba-Chacon J, Pozo-Salas AI, Porteiro B, De Lecea L, Nogueiras R, Gahete MD, Castaño JP. Obesity- and gender-dependent role of endogenous somatostatin and cortistatin in the regulation of endocrine and metabolic homeostasis in mice. Sci Rep. 2016;6:37992. doi:1038/srep37992

79. Strassheim D, Palmer T, Milligan G, Houslay MD. Alterations in G-protein expression and the hormonal regulation of adenylate cyclase in the adipocytes of obese (fa/fa) Zucker rats. Biochem J. 1991;276 (Pt 1):197–202. doi:1042/bj2760197
80. Hartmann P, Seebauer CT, Mazagova M, Horvath A, Wang L, Llorente C, Varki NM, Brandl K, Ho SB, Schnabl B. Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity. Am J Physiol Gastrointest Liver Physiol. 2016;310(5):G310–G322. doi:10.1152/ajpgi.00094.2015

81. He L, Huang C. MiR-19b and miR-16 cooperatively signaling target the regulator ADRA1A in Hypertensive heart disease. Biomed Pharmacother. 2017;91:1178–1183. doi:10.1016/j.biopha.2017.04.041

82. Yosten GL, Samson WK. Neural circuitry underlying the central hypertensive action of nesfatin-1: melanocortins, corticotropin-releasing hormone, and oxytocin. Am J Physiol Regul Integr Comp Physiol. 2014;306(10):R722–R727. doi:10.1152/ajpregu.00396.2013

83. Byers HM, Dagle JM, Klein JM, Ryckman KK, McDonald EL, Murray JC, Borowski KS. Variations in CRHR1 are associated with persistent pulmonary hypertension of the newborn. Pediatr Res. 2012;71(2):162–167. doi:10.1038/pr.2011.24

84. Diana MC, Santoro ML, Xavier G, Santos CM, Spindola LN, Moretti PN, Ota VK, Bressan RA, Abilio VC, Belangero SI. Low expression of Gria1 and Grin1 glutamate receptors in the nucleus accumbens of Spontaneously Hypertensive Rats (SHR). Psychiatry Res. 2015;229(3):690–694. doi:10.1016/j.psychres.2015.08.021

85. Verwoert GC, Hofland J, Amin N, Mattace-Raso FU, Sijbrands EJ, Hofman A, van den Meiracker AH, Uitterlinden AG, van Duijn CM, de Jong FH et al. Expression and gene variation studies deny association of human HSD3B1 gene with aldosterone production or blood pressure. Am J Hypertens. 2015;28(1):113–120. doi:10.1093/ajh/hpu103

86. Supowit SC, Zhao H, DiPette DJ. Nerve growth factor enhances calcitonin gene-related peptide expression in the spontaneously hypertensive rat. Hypertension. 2001;37(2 Pt 2):728–732. doi:10.1161/01.hyp.37.2.728

87. Lee CW, Hwang I, Park CS, Lee H, Park DW, Kang SJ, Lee SW, Kim YH, Park SW, Park SJ. Expression of ADAMTS-2, -3, -13, and -14 in culprit coronary lesions in patients with acute myocardial infarction or stable angina. J Thromb Thrombolysis. 2012;33(4):362–370. doi:10.1007/s11239-011-0673-7

88. Wang B, Wang J, Liu S, Han X, Xie X, Tao Y, Yan J, Ma X. CFC1 mutations in Chinese children with congenital heart disease. Int J Cardiol. 2011;146(1):86–88. doi:10.1016/j.ijcard.2009.07.034

89. He M, Guo H, Yang X, Zhou L, Zhang X, Cheng L, Zeng H, Hu FB, Tanguay RM, Wu T. Genetic variations in HSPA8 gene associated with coronary heart disease risk in a Chinese population. PLoS One. 2010;5(3):e9684. doi:10.1371/journal.pone.0009684

90. López-Reyes A, Rodríguez-Pérez JM, Fernández-Torres J, Martínez-Rodríguez N, Pérez-Hernández N, Fuentes-Gómez AJ, Aguilar-González CA, Álvarez-León E, Posadas-Romero C, Villarreal-Molina T et al. The HIF1A rs2057482 polymorphism is associated with risk of developing premature coronary artery disease and with some metabolic and cardiovascular risk factors. The Genetics of Atherosclerotic Disease (GEA) Mexican Study. Exp Mol Pathol. 2014;96(3):405–410. doi:10.1016/j.yexmp.2014.04.010
91. Chang TT, Chen JW. Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes?. Cardiovasc Diabetol. 2016;15(1):117. doi:1186/s12933-016-0439-9

92. Safa A, Rashidinejad HR, Khalili M, Dabiri S, Nemati M, Mohammadi MM, Jafarzadeh A. Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease. Cytokine. 2016;83:147–157. doi:1016/j.cyto.2016.04.006

93. Rios DL, Cerqueira CC, Bonfim-Silva R, Araújo LJ, Pereira JF, Gadelha SR, Barbosa AA. Interleukin-1 beta and interleukin-6 gene polymorphism associations with angiographically assessed coronary artery disease in Brazilians. Cytokine. 2010;50(3):292–296. doi:1016/j.cyto.2010.02.012

94. Tur MK, Etschmann B, Benz A, Leich E, Waller C, Schuh K, Rosenwald A, Ertl G, Kienitz A, Haaf AT et al. The 140-kD isoform of CD56 (NCAM1) directs the molecular pathogenesis of ischemic cardiomyopathy. Am J Pathol. 2013;182(4):1205–1218. doi:1016/j.ajpath.2012.12.027

95. Grisoni ML, Proust C, Alanne M, DeSuremain M, Salomaa V, Kuulasmaa K, Cambien F, Nicaud V, Wiklund PG, Virtamo J et al. Lack of association between polymorphisms of the IL18R1 and IL18RAP genes and cardiovascular risk: the MORGAM Project. BMC Med Genet. 2009;10:44. doi:1186/1471-2350-10-44

96. Zhou Z, Subramanian P, Sevilmis G, Globke B, Soehnlein O, Karshovska E, Megens R, Heyll K, Chun J, Saulnier-Blache JS et al. Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing CXCL1 from the endothelium. Cell Metab. 2011;13(5):592–600. doi:1016/j.cmet.2011.02.016

97. Guo LY, Yang F, Peng LJ, Li YB, Wang AP. CXCL2, a new critical factor and therapeutic target for cardiovascular diseases. Clin Exp Hypertens. 2019;1–10. doi:1080/10641963.2019.1693585

98. Li X, Zhang X, Wei L, Xia Y, Guo X. Relationship between serum oncostatin M levels and degree of coronary stenosis in patients with coronary artery disease. Clin Lab. 2014;60(1):113–118. doi:7754/clin.lab.2013.121245

99. Dopheide JF, Sester U, Schlitt A, Horstick G, Rupprecht HJ, Münzel T, Blankenberg S. Monocyte-derived dendritic cells of patients with coronary artery disease show an increased expression of costimulatory molecules CD40, CD80 and CD86 in vitro. Coron Artery Dis. 2007;18(7):523–531. doi:1097/MCA.0b013e3282eff1ad

100. Miura K, Saita E, Suzuki-Sugihara N, Miyata K, Ikemura N, Ohmori R, Ikegami Y, Kishimoto Y, Kondo K, Momiyama Y. Plasma interleukin-27 levels in patients with coronary artery disease. Medicine (Baltimore). 2017;96(43):e8260. doi:1097/MD.0000000000008260

101. Hisama FM, Lessel D, Leistritz D, Friedrich K, McBride KL, Pastore MT, Gottesman GS, Saha B, Martin GM, Kubisch C et al. Coronary artery disease in a Werner syndrome-like form of progeria characterized by low levels of progerin, a splice variant of lamin A. Am J Med Genet A. 2011;155A(12):3002–3006. doi:1002/ajmg.a.34336

102. Ramos-Lopez E, Scholten F, Aminkeng F, Wild C, Kalhes H, Seidl C, Tonn T, Van der Auwera B, Badenhoop K. Association of KIR2DL2 polymorphism rs2756923 with type 1 diabetes and
preliminary evidence for lack of inhibition through HLA-C1 ligand binding. Tissue Antigens. 2009;73(6):599–603. doi:1111/j.1399-0039.2009.01252.x

103. Qin H, Wang Z, Du W, Lee WH, Wu X, Riggs AD, Liu CP. Killer cell Ig-like receptor (KIR) 3DL1 down-regulation enhances inhibition of type 1 diabetes by autoantigen-specific regulatory T cells. Proc Natl Acad Sci U S A. 2011;108(5):2016–2021. doi:1073/pnas.1019082108

104. Shalaby D, Saied M, Khater D, Abou Zeid A. The Expression of Activating Receptor Gene of Natural Killer Cells (KLRC3) in Patients with Type 1 Diabetes Mellitus (T1DM). Oman Med J. 2017;32(4):316–321. doi:5001/omj.2017.60

105. Nakata S, Imagawa A, Miyata Y, Yoshikawa A, Kozawa J, Okita K, Funahashi T, Nakamura S, Matsubara K, Iwahashi H et al. Low gene expression levels of activating receptors of natural killer cells (NKG2E and CD94) in patients with fulminant type 1 diabetes. Immunol Lett. 2013;156(1-2):149–155. doi:1016/j.imlet.2013.10.004

106. Thauvin-Robinet C, Auclair M, Duplomb L, Caron-Debarle M, Avila M, St-Onge J, Le Merrer M, Le Luyer B, Heron D, Mathieu-Dramard M et al. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Am J Hum Genet. 2013;93(1):141–149. doi:1016/j.ajhg.2013.05.019

107. Varshney P, Dey CS. Resveratrol regulates neuronal glucose uptake and insulin sensitivity via P21-activated kinase 2 (PAK2). Biochem Biophys Res Commun. 2017;485(2):372–378. doi:1016/j.bbrc.2017.02.070

108. Gu L, Wu Y, Hu S, Chen Q, Tan J, Yan Y, Liang B, Tang N. Analysis of Association between MAP2K4 Gene Polymorphism rs3826392 and IL-1b Serum Level in Southern Chinese Han Ischemic Stroke Patients. J Stroke Cerebrovasc Dis. 2016;25(5):1096–1101. doi:1016/j.jstrokecerebrovasdis.2015.12.035

109. Meissner A. S1PR (Sphingosine-1-Phosphate Receptor) Signaling in the Regulation of Vascular Tone and Blood Pressure: Is S1PR1 Doing the Trick?. Hypertension. 2017;70(2):232–234. doi:1161/HYPERTENSIONAHA.117.09200

110. Khalek WA, Rafael C, Loisel-Ferreira I, Kouranti I, Clauser E, Hadchouel J, Jeunemaitre X. Severe Arterial Hypertension from Cullin 3 Mutations Is Caused by Both Renal and Vascular Effects. J Am Soc Nephrol. 2019;30(5):811–823. doi:1681/ASN.2017121307

111. Klar J, Äsling B, Carlsson B, Ulvsbäck M, Dellsén A, Ström C, Rhedin M, Forslund A, Annerén G, Ludvigsson JF, et al. RAR-related orphan receptor A isoform 1 (RORA1) is disrupted by a balanced translocation t(4;15)(q22.3;q21.3) associated with severe obesity. Eur J Hum Genet. 2005;13(8):928–934. doi:1038/sj.ejhg.5201433

112. Blázquez-Medela AM, Jumabay M, Rajbhandari P, Sallam T, Guo Y, Yao J, Vergnes L, Reue K, Zhang L, Yao Y et al. Noggin depletion in adipocytes promotes obesity in mice. Mol Metab. 2019;25:50–63. doi:1016/j.molmet.2019.04.004

113. Kim OY, Lee SM, Chung JH, Do HJ, Moon J, Shin MJ. Arginase I and the very low-density lipoprotein receptor are associated with phenotypic biomarkers for obesity. Nutrition. 2012;28(6):635–639. doi:1016/j.nut.2011.09.012
114. Gotfryd K, Mósca AF, Missel JW, Truelsen SF, Wang K, Spulber M, Krabbe S, Hélix-Nielsen C, Laforenza U, Soveral G et al. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat Commun. 2018;9(1):4749. doi:10.1038/s41467-018-07176-z

115. Ketterer C, Müssig K, Heni M, Dudziak K, Randrianarisoa E, Wagner R, Machicao F, Stefan N, Holst JJ, Fritsche A et al. Genetic variation within the TRPM5 locus associates with prediabetic phenotypes in subjects at increased risk for type 2 diabetes. Metabolism. 2011;60(9):1325–1333. doi:10.1016/j.metabol.2011.02.002

116. Ruebsam A, Dulle JE, Myers AM, Sakrikar D, Green KM, Khan NW, Schey K, Fort PE. A specific phosphorylation regulates the protective role of α-A-crystallin in diabetes. JCI Insight. 2018;3(4):e97919. doi:1172/jci.insight.97919

117. Peter NM, Leyland M, Mudhar HS, Lowndes J, Owen KR, Stewart H. PAX6 mutation in association with ptosis, cataract, iris hypoplasia, corneal opacification and diabetes: a new variant of familial aniridia?. Clin Exp Ophthalmol. 2013;41(9):835–841. doi:1111/ceo.12109

118. Chang TJ, Wang WC, Hsiung CA, He CT, Lin MW, Sheu WH, Chang YC, Quertermous T, Chen YD, Rotter JI et al. Genetic variation of SORBS1 gene is associated with glucose homeostasis and age at onset of diabetes: A SAPPHIRe Cohort Study. Sci Rep. 2018;8(1):10574. doi:10.1038/s41598-018-28891-z

119. Yang X, Tao Z, Zhu Z, Liao H, Zhao Y, Fan H. MicroRNA-593-3p regulates insulin-promoted glucose consumption by targeting Slc38a1 and CLIP3. J Mol Endocrinol. 2016;57(4):211–222. doi:1530/JME-16-0090

120. Sircar M, Rosales IA, Selig MK, Xu D, Zsengeller ZK, Stillman IE, Libermann TA, Karumanchi SA, Thadhani RI. Complement 7 Is Up-Regulated in Human Early Diabetic Kidney Disease. Am J Pathol. 2018;188(10):2147–2154. doi:10.1016/j.ajpath.2018.06.018

121. Martin-Montalvo A, López-Noriega L, Jiménez-Moreno C, Herranz A, Lorenzo PI, Cobo-Vuilleumier N, Tamayo A, González-Guerrero C, Hofsteede JS, Lebretón F et al. Transient PAX8 Expression in Islets During Pregnancy Correlates With β-Cell Survival, Revealing a Novel Candidate Gene in Gestational Diabetes Mellitus. Diabetes. 2019;68(1):109–118. doi:2337/db18-0285

122. Kane GC, Behfar A, Dyer RB, O'Cochlain DF, Liu XK, Hodgson DM, Reyes S, Miki T, Seino S, Terzic A. KCNJ11 gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension. Hum Mol Genet. 2006;15(15):2285–2297. doi:1093/hmg/ddl154

123. Lu Z, Cui Y, Wei X, Gao P, Zhang H, Wei X, Li Q, Sun F, Yan Z, Zheng H et al. Deficiency of PKD2L1 (TRPP3) Exacerbates Pathological Cardiac Hypertrophy by Augmenting NCX1-Mediated Mitochondrial Calcium Overload. Cell Rep. 2018;24(6):1639–1652. doi:1016/j.celrep.2018.07.022

124. Hong KW, Go MJ, Jin HS, Lim JE, Lee JY, Han BG, Hwang SY, Lee SH, Park HK, Cho YS et al. Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are related to blood pressure and/or hypertension in two Korean cohorts. J Hum Hypertens. 2010;24(6):367–372. doi:1038/jhh.2009.86

125. Zolk O, Ott C, Fromm MF, Schmieder RE. Effect of the rs168924 single-nucleotide polymorphism in the SLC6A2 catecholamine transporter gene on blood pressure in Caucasians. J Clin Hypertens
126. Beuschlein F, Boukloun S, Osswald A, Wieland T, Nielsen HN, Lichtenauper UD, Benton D, Schack VR, Amar L, Fischer E et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet. 2013;45(4):440–444.e4442. doi:10.1038/ng.2550

127. Nioi P, Sigurdsson A, Thorleifsson G, Helgason H, Agustsdottir AB, Norddahl GL, Helgadottir A, Magnusdottir J, Jonasdottir A, Grettarsdottir S et al. Variant ASGR1 Associated with a Reduced Risk of Coronary Artery Disease. N Engl J Med. 2016;374(22):2131–2141. doi:10.1056/NEJMoa1508419

128. Lalem T, Zhang L, Scholz M, Burkhardt R, Sacchetti V, Thiery J, Devaux Y. Cyclin dependent kinase inhibitor 1 C is a female-specific marker of left ventricular function after acute myocardial infarction. Int J Cardiol. 2019;274:319–325. doi:10.1016/j.ijcard.2018.07.042

129. Hilgendorf I, Gerhardt LM, Tan TC, Winter C, Holderried TA, Chousterman BG, Iwamoto Y, Liao R, Zirlik A, Scherer-Crosbie M et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res. 2014;114(10):1611–1622. doi:10.1161/CIRCRESAHA.114.303204

130. Wu N, Zhang X, Jia P, Jia D. The SNP rs4804611 in ZNF627 gene and the risk of myocardial infarction: a meta-analysis. Int J Clin Exp Med. 2015;8(4):5520–5526.

131. Marciniak S, Patel V, Chambers J, Everden A, Garces C, Dalton L, Gribble F. Inactivation of Ppp1r15a minimises weight gain and insulin resistance during caloric excess in female mice. Sci Rep. 2019;9(1):2903. doi:10.1038/s41598-019-39562-y

132. Chalfant CE, Ciardaldi TP, Watson JE, Nikouliina S, Henry RR, Cooper DR. Protein kinase Ctheta expression is increased upon differentiation of human skeletal muscle cells: dysregulation in type 2 diabetic patients and a possible role for protein kinase Ctheta in insulin-stimulated glycogen synthase activity. Endocrinology. 2000;141(8):2773–2778. doi:1210/endo.141.8.7591

133. Zhang R, Jiang F, Hu C, Yu W, Wang J, Wang C, Ma X, Tang S, Bao Y, Xiang K et al. Genetic variants of LPIN1 indicate an association with Type 2 diabetes mellitus in a Chinese population. Diabet Med. 2013;30(1):118–122. doi:1111/j.1464-5491.2012.03758.x

134. Rasheed MA, Kantoush N, Abd El-Ghaffar N, Farouk H, Kamel S, Ibrahim AA, Shalaby A, Mahmoud E, Raslan HM, Saleh OM. Expression of JAZF1, ABC8, KCNJ11 and Notch2 genes and vitamin D receptor polymorphisms in type 2 diabetes, and their association with microvascular complications. Ther Adv Endocrinol Metab. 2017;8(6):97–108. doi:1177/204218817708910

135. Rosendahl J, Teich N, Mossner J, Edelmann J, Koch CA. Compound heterozygous mutations of the SBDS gene in a patient with Shwachman-Diamond syndrome, type 1 diabetes mellitus and osteoporosis. Pancretology. 2006;6(6):549–554. doi:1159/000096798

136. Davis TM, Mehta Z, Mackay IR, Cull CA, Bruce DG, Fida S, Rowley MJ, Holman RR. Autoantibodies to the islet cell antigen SOX-13 are associated with duration but not type of diabetes. Diabet Med. 2003;20(3):198–204. doi:1046/j.1464-5491.2003.00897.x

137. Spaeth JM, Hunter CS, Bonataksis L, Guo M, French CA, Slack I, Hara M, Fisher SE, Ferrer J, Morrisey EE et al. The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell
proliferation and function in mice. Diabetologia. 2015;58(8):1836–1844. doi:10.1007/s00125-015-3635-3

138. Zhai Y, He H, Ma X, Xie J, Meng T, Dong Y, Lu J. Meta-analysis of effects of ABCB1 polymorphisms on clopidogrel response among patients with coronary artery disease. Eur J Clin Pharmacol. 2017;73(7):843–854. doi:10.1007/s00228-017-2235-1

139. Alfazema N, Barrier M, de Procé SM, Menzies RI, Carter R, Stewart K, Diaz AG, Moyon B, Webster Z, Bellamy CO et al. Camk2n1 Is a Negative Regulator of Blood Pressure, Left Ventricular Mass, Insulin Sensitivity, and Promotes Adiposity. Hypertension. 2019;74(3):687–696. doi:1161/HYPERTENSIONAHA.118.12409

140. Zhang Y, Peng B, Han Y. MiR-182 alleviates the development of cyanotic congenital heart disease by suppressing HES1. Eur J Pharmacol. 2018;836:18–24. doi:10.1016/j.ejphar.2018.08.013

141. Boonyasrisawat W, Eberle D, Bacci S, Zhang YY, Nolan D, Gervino EV, Johnstone MT, Trischitta V, Shoeelson SE, Doria A. Tag polymorphisms at the A20 (TNFAIP3) locus are associated with lower gene expression and increased risk of coronary artery disease in type 2 diabetes. Diabetes. 2007;56(2):499–505. doi:2337/db06-0946

142. Miniati DN, Hoyt EG, Feeley BT, Poston RS, Robbins RC. Ex vivo antisense oligonucleotides to proliferating cell nuclear antigen and Cdc2 kinase inhibit graft coronary artery disease. Circulation. 2000;102(19 Suppl 3):III237–III242. doi:1161/01.cir.102.suppl_3.iii-237

143. Ye H, Hong Q, Li Y, Xu X, Huang YI, Xu L, Zhou A, Deng Y, Duan S. A lack of association between the IKZF2 rs12619285 polymorphism and coronary heart disease. Exp Ther Med. 2015;9(4):1309–1313. doi:3892/etm.2015.2282

144. Song Y, Yan M, Li J, Li J, Jin T, Chen C. Association between TNIP1, MPHOSPH6 and ZNF208 genetic polymorphisms and the coronary artery disease risk in Chinese Han population. Oncotarget. 2017;8(44):77233–77240. doi:18632/oncotarget.20432

145. Jia H, Cheng J, Zhou Q, Peng J, Pan Y, Han H. Fibroblast growth factor 21 attenuates inflammation and oxidative stress in atherosclerotic rat via enhancing the Nrf1-ARE signaling pathway. Int J Clin Exp Pathol. 2018;11(3):1308–1317.

146. Li X, Ma YT, Xie X, Yang YN, Ma X, Zheng YY, Pan S, Liu F, Chen BD. Association of Egr3 genetic polymorphisms and coronary artery disease in the Uygur and Han of China. Lipids Health Dis. 2014;13:84. doi:1186/1476-511X-13-84

147. Wei L, Zhao S, Wang G, Zhang S, Luo W, Qin Z, Bi X, Tan Y, Meng M, Qin H et al. SMAD7 methylation as a novel marker in atherosclerosis. Biochem Biophys Res Commun. 2018;496(2):700–705. doi:1016/j.bbrc.2018.01.121

148. Hirashiki A, Adachi S, Nakano Y, Kamimura Y, Ogo T, Nakanishi N, Morisaki T, Morisaki H, Shimizu A, Toba K et al. Left main coronary artery compression by a dilated main pulmonary artery and left coronary sinus of Valsalva aneurysm in a patient with heritable pulmonary arterial hypertension and FLNA mutation. Pulm Circ. 2017;7(3):734–740. doi:1177/2045893217716107
149. Wang J, Wang F, Zhu J, Song M, An J, Li W. Transcriptome Profiling Reveals PHLDA1 as a Novel Molecular Marker for Ischemic Cardiomyopathy. J Mol Neurosci. 2018;65(1):102–109. doi:10.1007/s12031-018-1066-6

150. Zhao D, Shun E, Ling F, Liu Q, Warsi A, Wang B, Zhou Q, Zhu C, Zheng H, Liu K et al. Plk2 Regulated by miR-128 Induces Ischemia-Reperfusion Injury in Cardiac Cells. Mol Ther Nucleic Acids. 2019;19:458–467. doi:10.1016/j.omtn.2019.11.029

151. Zhou Q, Hahn JK, Neupane B, Aidery P, Labeit S, Gawaz M, Gramlich M. Dysregulated IER3 Expression is Associated with Enhanced Apoptosis in Titin-Based Dilated Cardiomyopathy. Int J Mol Sci. 2017;18(4):723. doi:3390/ijms18040723

152. Taylor MR, Slavod D, Gajewski A, Vlcek S, Ku L, Fain PR, Carniel E, Di Lenarda A, Sinagra G, Boucek MM et al. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat. 2005;26(6):566–574. doi:1002/humu.20250

153. Ghaoui R, Benavides T, Lek M, Waddell LB, Kaur S, North KN, MacArthur DG, Clarke NF, Cooper ST. TOR1AIP1 as a cause of cardiac failure and recessive limb-girdle muscular dystrophy. Neuromuscul Disord. 2016;26(8):500–503. doi:1016/j.nmd.2016.05.013

154. Hammerschmidt P, Ostkotte D, Nolte H, Gerl MJ, Jais A, Brunner HL, Sprenger HG, Awazawa M, Nicholls HT, Turpin-Nolan SM et al. CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity. Cell. 2019;177(6):1536–1552.e23. doi:1016/j.cell.2019.05.008

155. Ling J, Brey C, Schilling M, Lateef F, Lopez-Dee ZP, Fernandes K, Thiruchelvam K, Wang Y, Chandel K, Rau K et al. Defective lipid metabolism associated with mutation in klf-2 and klf-3: important roles of essential dietary salts in fat storage. Nutr Metab (Lond). 2017;14:22. doi:1186/s12986-017-0172-8

156. Huang P, Cai Y, Zhao B, Cui L. Roles of NUCKS1 in Diseases: Susceptibility, Potential Biomarker, and Regulatory Mechanisms. Biomed Res Int. 2018;2018:7969068. doi:1155/2018/7969068

157. Schulte JS, Fehrmann E, Tekook MA, Kranick D, Fels B, Li N, Wehrens XH, Heinick A, Seidl MD, Schmitz W et al. Cardiac expression of the CREM repressor isoform CREM-Ib in mice leads to arrhythmogenic alterations in ventricular cardiomyocytes. Basic Res Cardiol. 2016;111(2):15. doi:1007/s00395-016-0532-y

158. Li RG, Li L, Qiu XB, Yuan F, Xu L, Li X, Xu YJ, Jiang WF, Jiang JQ, Liu X. GATA4 loss-of-function mutation underlies familial dilated cardiomyopathy. Biochem Biophys Res Commun. 2013;439(4):591–596. doi:1016/j.bbrc.2013.09.023

159. O'Neill MA, Farooqi IS, Wevrick R. Evaluation of Prader-Willi Syndrome gene MAGEL2 in severe childhood-onset obesity. Obes Res. 2005;13(10):1841–1842. doi:1038/oby.2005.224

160. Kim JY, Tillison KS, Zhou S, Lee JH, Smas CM. Differentiation-dependent expression of Adhfe1 in adipogenesis. Arch Biochem Biophys. 2007;464(1):100–111. doi:1016/j.abb.2007.04.018

161. Pigeyre M, Bokor S, Romon M, Gotttrand F, Gilbert CC, Valdueña J, Gómez-Martínez S, Moreno LA, Amouyel P, Dallongeville J et al. Influence of maternal educational level on the association between
the rs3809508 neuromedin B gene polymorphism and the risk of obesity in the HELENA study. Int J Obes (Lond). 2010;34(3):478–486. doi:1038/ijo.2009.260

162. Baptista R, Marques C, Catarino S, Enguita FJ, Costa MC, Matafome P, Zuzarte M, Castro G, Reis A, Monteiro P et al. MicroRNA-424(322) as a new marker of disease progression in pulmonary arterial hypertension and its role in right ventricular hypertrophy by targeting SMURF1. Cardiovasc Res. 2018;114(1):53–64. doi:1093/cvr/cvx187

163. Nimmakayalu M, Major H, Sheffield V, Solomon DH, Smith RJ, Patil SR, Shchelochkov OA. Microdeletion of 17q22q23.2 encompassing TBX2 and TBX4 in a patient with congenital microcephaly, thyroid duct cyst, sensorineural hearing loss, and pulmonary hypertension. Am J Med Genet A. 2011;155A(2):418–423. doi:1002/ajmg.a.33827

164. Nio Y, Okawara M, Okuda S, Matsuo T, Furuyama N. Podocan Is Expressed in Blood and Adipose Tissue and Correlates Negatively With the Induction of Diabetic Nephropathy. J Endocr Soc. 2017;1(7):772–786. doi:1210/js.2017-00123

165. Sabatini PV, Lynn FC. All-encomPASsing regulation of \(\beta \)-cells: PAS domain proteins in \(\beta \)-cell dysfunction and diabetes. Trends Endocrinol Metab. 2015;26(1):49–57. doi:1016/j.tem.2014.11.002

166. Chen X, Su J, Feng J, Cheng L, Li Q, Qiu C, Zheng Q. TRIM72 contributes to cardiac fibrosis via regulating STAT3/Notch-1 signaling. J Cell Physiol. 2019;234(10):17749–17756. doi:1002/jcp.28400

167. Zhang P, Chen X, Zhang Y, Su H, Zhang Y, Zhou X, Sun M, Li L, Xu Z. Tet3 enhances IL-6 expression through up-regulation of 5-hmC in IL-6 promoter in chronic hypoxia induced atherosclerosis in offspring rats. Life Sci. 2019;232:116601. doi:1016/j.lfs.2019.116601

168. Khan R, Kadamkode V, Kesharwani D, Purkayastha S, Banerjee G, Datta M. Circulatory miR-98-5p levels are deregulated during diabetes and it inhibits proliferation and promotes apoptosis by targeting PPP1R15B in keratinocytes. RNA Biol. 2020;17(2):188–201. doi:1080/15476286.2019.1673117

169. Shi Y, Long F. Hedgehog signaling via Gli2 prevents obesity induced by high-fat diet in adult mice. Elife. 2017;6:e31649. Published 2017 Dec 5. doi:7554/eLife.31649

Tables

Due to technical limitations, table docx is only available as a download in the Supplemental Files section.

Figures
Figure 1

Box plots of the gene expression data before (A) and after normalization (B). Vertical axis represents the sample symbol and the horizontal axis represents the gene expression values. The black line in the box plot represents the median value of gene expression. (A1-A48 = healthy controls; B1-B93 = CAD patients)
Figure 2

Volcano plot of differentially expressed genes. Genes with a significant change of more than two-fold were selected.

Figure 3

Heat map of up regulated genes. Legend on the top left indicate log fold change of genes. (A1-A48 = healthy controls; B1-B93 = CAD patients)
Figure 4

Heat map of down regulated genes. Legend on the top left indicate log fold change of genes. (A1-A48 = healthy controls; B1-B93 = CAD patients)

Figure 5
Protein–protein interaction network of up regulated genes. Green nodes denotes up regulated genes.

Figure 6

Scatter plot for up regulated genes. (A- Node degree; B- Betweenness centrality; C- Stress centrality ; D- Closeness centrality; E- Clustering coefficient)

Figure 7

Protein–protein interaction network of down regulated genes. Red nodes denotes down regulated genes.
Figure 8

Scatter plot for down regulated genes. (A- Node degree; B- Betweenness centrality; C- Stress centrality ; D- Closeness centrality; E- Clustering coefficient)

Figure 9

Modules in PPI network. The green nodes denote the up regulated genes
Figure 10

Modules in PPI network. The red nodes denote the down regulated genes.

Figure 11

The network of up regulated genes and their related miRNAs. The green circles nodes are the up regulated genes, and chocolate color diamond nodes are the miRNAs.
Figure 12

The network of down regulated genes and their related miRNAs. The red circles nodes are the down regulated genes, and blue diamond nodes are the miRNAs.

Figure 13

TF - gene network of predicted target up regulated genes. (Lavender triangle - TFs and green circles - target up regulated genes)
Figure 14

TF - gene network of predicted target down regulated genes. (Blue triangle - TFs and red circles- target up regulated genes)

Figure 15

Immune histochemical analyses of hub genes were produced using the human protein atlas (HPA) online platform.
Figure 16

ROC curve validated the sensitivity, specificity of hub genes as a predictive biomarker for CAD prognosis. A) CAPN13 B) ACTBL2 C) ERBB3 D) GATA4 E) GNB4 F) NOTCH2 G) EXOSC10 H) RNF2 I) PSMA1 J) PRKAA1

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- BMCCardiovascularDisorderstables.docx