A remark on contracting inverse semigroups

Giuliano Boava¹ · Ruy Exel¹

Received: 15 February 2023 / Accepted: 28 April 2023 / Published online: 16 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
A semi-lattice is said to be tree-like when any two of its elements are either orthogonal or comparable. Given an inverse semigroup S whose idempotent semi-lattice is tree-like, and such that all tight filters are ultra-filters, we present a necessary and sufficient condition for S to be contracting which looks closer in spirit to the notion of contracting actions than a condition found by the second named author and E. Pardo.

Keywords Inverse semigroup · Semi-lattice · Tight spectrum · Tight filter · Ultra-filter · Contracting actions

1 Introduction

In a paper by the second named author and Pardo [4], the notion of locally contracting groupoids introduced by Anantharaman-Delaroche in [1] was extended to inverse semigroups [4, Definition 6.4], as well as to actions of inverse semigroups on topological spaces [4, Definition 6.2]. Given an inverse semigroup S, these concepts were shown to relate to each other via the standard action of S on \hat{E}_{tight}, the tight spectrum of its idempotent semi-lattice. To be precise it was shown in [4, Theorem 6.5] that S is locally contracting if and only if the standard action of S on \hat{E}_{tight} is locally contracting (the “if” part in fact requires that all tight filters be ultra-filters, a condition that has been referred to by the name of compactable in [5]).

¹ Departamento de Matemática, Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina 88040-970, Brazil
In [4, Proposition 6.7], another condition (rephrased here as Theorem 4(iii)), which is a lot nicer to state, and which follows the general paradigm of local contractiveness more closely, was shown to be sufficient for the local contractiveness of \(\mathcal{S} \). In our main result, Theorem 4 below, we take a closer look at this condition and show it to be also necessary, provided the inverse semigroup is tree-like.

One of the key tools to prove our main result is Theorem 1, a curious combinatorial fact which we suspect may be known to specialist in Combinatorial Analysis, but which we have not found anywhere in the literature.

Tree-like inverse semigroups are quite common, especially in the theory of graph C*-algebras (see e.g. [2, Lemma 35.8]), so we feel that this class of inverse semigroups deserves further study.

This paper is written under the assumption that the reader is acquainted with [4], and to a certain extent also with [3], from where the basic theory of tight representations of inverse semigroups is drawn.

2 A combinatorial Lemma

In this short section we will prove a crucial combinatorial result to be used in our main result below.

Theorem 1 Let \(X \) be a set which is decomposed as a finite disjoint union

\[
X = \bigsqcup_{i=1}^{n} X_i,
\]

where each \(X_i \) is a nonempty subset, and let \(f : X \to X \) be a one-to-one map such that for every integer \(m \geq 0 \) and every \(i, j = 1, \ldots, n \), one has that either

\[
\begin{cases}
 f^m(X_i) \cap X_j = \emptyset, & \text{ or } \\
 f^m(X_i) \subseteq X_j, & \text{ or } \\
 f^m(X_i) \supseteq X_j.
\end{cases}
\]

(1)

Then:

(i) there exist \(i \in \{1, \ldots, n\} \) and \(m > 0 \) such that \(f^m(X_i) \subseteq X_i \),

(ii) if \(f \) is not surjective, there exist \(i \in \{1, \ldots, n\} \) and \(m > 0 \) such that \(f^m(X_i) \nsubseteq X_i \).

Proof Let us begin by proving (i). For each \(m > 0 \), let \(A^m = \{A^m_{i,j}\}_{i,j} \) be the \(n \times n \) matrix defined by

\[
A^m_{i,j} = \begin{cases}
1 & \text{if } f^m(X_i) \cap X_j \neq \emptyset, \\
0 & \text{otherwise}.
\end{cases}
\]

Case 1 Suppose that there exists some \(m > 0 \) such that every row of \(A^m \) has at most one (hence exactly one) nonzero entry. In this case, for every \(i \in \{1, \ldots, n\} \), we
have that $f^m(X_i)$ intersects a single X_j, so it must be contained in that X_j. We may therefore define a function

$$k : \{1, \ldots, n\} \to \{1, \ldots, n\}$$

such that

$$f^m(X_i) \subseteq X_{k(i)}, \forall i \in \{1, \ldots, n\}.$$

From this it easily follows that

$$f^{pm}(X_i) \subseteq X_{k_p(i)}, \forall i \in \{1, \ldots, n\}, \forall p > 0. \quad (2)$$

Given that the set $\{k_p(1) : p > 0\}$ is finite, we may choose integers p and q, with $0 < p < q$, and $k_p(1) = k^q(1)$. Defining

$$i := k^p(1) = k^q(1),$$

we then have that both $f^{pm}(X_1)$ and $f^{qm}(X_1)$ are contained in X_i. Setting $r = q - p$, observe that

$$X_i \supseteq f^{qm}(X_1) = f^{(r+p)m}(X_1) = f^{rm}(f^{pm}(X_1)) \subseteq f^{rm}(X_i).$$

The nonempty set $f^{qm}(X_1)$ is therefore contained in both X_i and $f^{rm}(X_i)$, whence

$$\emptyset \neq X_i \cap f^{rm}(X_i) \quad \overset{\text{Eq.} (2)}{\subseteq} \quad X_i \cap X_{k^r(i)}.$$

As the X_j’s are pairwise disjoint, we deduce that $k^r(i) = i$, which is to say that

$$f^{rm}(X_i) \subseteq X_i,$$

concluding the proof of (i) in the present case.

Case 2 Failing the condition characterizing Case 1 above, we are left with the assumption that, for every $m > 0$, at least one row of A^m has two or more nonzero entries. Since A^m is a 0-1 matrix, of which there are only finitely many (there are exactly 2^{n^2} such matrices), there must be repetitions among the A^m, meaning that there are integers m_1 and m_2, with $0 < m_1 < m_2$, and $A^{m_1} = A^{m_2}$. Let p be the index of any row of A^{m_1} possessing two or more nonzero entries, and let Q be the set formed by the indices of the columns where such nonzero entries appear, so that $|Q| \geq 2$, and

$$A_{p,j}^{m_1} = 1 \iff j \in Q.$$
In particular \(f^{m_1}(X_p) \) has a nonempty intersection with \(X_q \), for each \(q \) in \(Q \). Notice that for any such \(q \), it is impossible that

\[
f^{m_1}(X_p) \subseteq X_q,
\]

since the \(X_i \)'s are pairwise disjoint and \(f^{m_1}(X_p) \) must intersect at least another \(X_i \), given that \(|Q| \geq 2 \). Thus, given \(q \) in \(Q \), when comparing \(f^{m_1}(X_p) \) with \(X_q \) from the point of view of Eq. (1), the only remaining alternative is that

\[
f^{m_1}(X_p) \supseteq X_q.
\]

Since \(f^{m_1}(X_p) \) does not intersect \(X_j \), for \(j \not\in Q \), we deduce that

\[
f^{m_1}(X_p) = \bigcup_{q \in Q} X_q.
\]

Observe that \(Q \) cannot be equal to \(\{1, \ldots, n\} \), or else \(f^{m_1}(X_p) = X \), and there would be no room for the image of the other \(X_i \) under the injective map \(f^{m_1} \). Consequently

\[
2 \leq |Q| < n.
\]

Recalling that \(A^{m_1} = A^{m_2} \), the above argument also proves that

\[
f^{m_2}(X_p) = \bigcup_{q \in Q} X_q.
\]

Defining \(m := m_2 - m_1 \), notice that

\[
f^m \left(\bigcup_{q \in Q} X_q \right) = f^m \left(f^{m_1}(X_p) \right) = f^{m+m_1}(X_p) = f^{m_2}(X_p) = \bigcup_{q \in Q} X_q,
\]

so we may restrict \(f^m \) to

\[
X' := \bigcup_{q \in Q} X_q
\]

obtaining an injective map

\[
f^m : X' \to X',
\]

satisfying all of the assumptions of the statement, with \(X' \) decomposing into a smaller number of pairwise disjoint components \(X_q \)'s. Therefore the result follows immediately by induction on \(n \).

In order to prove (ii), we may now use (i) and hence we may assume that

\[
f^m(X_i) \subseteq X_i,
\]
for some \(i \in \{1, \ldots, n\} \), and some \(m > 0 \). In case the above is a proper inclusion we are done, so we assume the contrary, meaning that \(f^m(X_i) = X_i \). Setting

\[
X' = \bigcup_{j \neq i} X_j,
\]

and recalling that \(f^m \) is injective, we then have that

\[
f^m(X') \subseteq X'.
\]

Observe that this must is a proper inclusion since otherwise \(f^m \) would be surjective, contradicting the hypothesis. Therefore, the conclusion follows again by induction on \(n \).

\(\square \)

3 Preliminaries on semi-lattices and inverse semigroups

In this section we will freely use the notation introduced in [4]. Our main goal will be to introduce the class of inverse semigroups to which our main result applies. We will also prove some basic related results.

Definition 1 A semi-lattice \(\mathcal{E} \) with zero is called *tree-like* if, for any \(e \) and \(f \) in \(\mathcal{E} \), one has that

\[
e \perp f, \quad e \leq f, \quad \text{or} \quad e \geq f.
\]

If \(S \) is an inverse semigroup whose idempotent semi-lattice is tree-like, we will say that \(S \) is *tree-like*.

Given \(e \) and \(f \) in a semi-lattice, it is easy to see that

\[
e \leq f \implies D^\theta_e \subseteq D^\theta_f.
\]

The converse of this fact is however not true. For example, if \(S \) is obtained by adding a zero element to an inverse semigroup without a zero, then

\[
\xi := \mathcal{E} \setminus \{0\}
\]

is the only ultra-filter on \(\mathcal{E} \). Consequently, \(\hat{\mathcal{E}}_{\text{tight}} = \{\xi\} \), and then \(D^\theta_e = \{\xi\} \) for every nonzero idempotent \(e \), so the converse of Eq. (3) is seen to fail badly. However, in a tree-like inverse semigroup, it is easy to see that

\[
D^\theta_e \not\supseteq D^\theta_f \implies e \leq f,
\]

simply because, under the assumption that \(D^\theta_e \not\supseteq D^\theta_f \), alternatives “\(e \perp f \)” and “\(e \geq f \)” are clearly excluded.
The strict inclusion above has other interesting consequences. Assuming that $D^\theta_f \setminus D^\theta_e$ is indeed nonempty, and noticing that it is an open subset of $\hat{\mathcal{E}}_{\text{tight}}$, we may find an ultra-filter ξ there, meaning that $f \in \xi$ and $e \notin \xi$. By [3, Lemma 12.3], it follows that there exists some $d \in \xi$ such that $d \perp e$, and upon replacing d with df, we may clearly assume that $d \leq f$.

Definition 2 Given e and f in a semi-lattice \mathcal{E}, we will say that $e \ll f$, whenever $e \leq f$, and there exists a nonzero $d \leq f$ such that $d \perp e$.

Using this terminology we may then state the following fact:

Proposition 2 Let \mathcal{E} be a tree-like semi-lattice. Then

$$D^\theta_e \subsetneq D^\theta_f \Rightarrow e \ll f, \forall e, f \in \mathcal{E}.$$

There is another slightly annoying question related to the converse of Eq. (3) which we would like to get out of our way as soon as possible:

Proposition 3 Given any inverse semigroup S, and given $s \in S$, and $e \in \mathcal{E}$, we have that:

(i) if $e \leq s^*s$, then D^θ_e is contained in the domain of θ_s, and $\theta_s(D^\theta_e) = D^\theta_{ses^*}$.

(ii) if D^θ_e is contained in the domain of θ_s, then $\theta_s(D^\theta_e) = D^\theta_{ses^*}$.

Proof The first assertion in (i) is obvious. As for the second, recall that θ_e is the identity map on D^θ_e so, in particular, the range of θ_e is D^θ_e. Thus,

$$\theta_s(D^\theta_e) = \theta_s(\text{Ran}(\theta_e)) = \text{Ran}(\theta_s\theta_e) = \text{Ran}(\theta_{se}) = D^\theta_{ses^*} = D^\theta_{ses^*},$$

proving (i).

As the reader may have already anticipated, the catch in (ii) is that it is assumed that $D^\theta_e \subseteq D^\theta_{s^*s}$, but not necessarily that $e \leq s^*s$. Fortunately, this can be easily circumvented as follows:

$$\theta_s(D^\theta_e) = \theta_s(D^\theta_e \cap D^\theta_{s^*s}) = \theta_s(D^\theta_{es^*s}) \overset{(i)}{=} D^\theta_{(es^*s)s^*} = D^\theta_{ses^*}.$$

\[\square\]

4 The main result

Given the above preparations, we are now ready to prove our main result.

Theorem 4 Let S be a tree-like inverse semigroup such that every tight filter in \mathcal{E} is an ultra-filter. Then the following are equivalent:

(i) S is locally contracting;

(ii) The standard action $\theta : S \curvearrowright \hat{\mathcal{E}}_{\text{tight}}$ is locally contracting;
(iii) For every nonzero $e \in \mathcal{E}$, there exist an idempotent $f \leq e$ and an element $s \in S$ such that $f \leq s^*s$ and $sfs^* \ll f$.

Proof The equivalence between (i) and (ii) follows from [4, Theorem 6.5].

In order to prove that (iii) implies (i), given a nonzero $e \in \mathcal{E}$, let f and s be as in (iii). Since $sfs^* \ll f$, there exists a nonzero $f_0 \leq f$ such that $f_0 \perp sfs^*$, and then we see that f_0 together with $f_1 := f$ obeys the conditions of [4, Proposition 6.7], from where one deduces that S is locally contracting, proving (i).

The most delicate part of this proof is the implication (i) \Rightarrow (iii), which we take up next. Given a nonzero $e \in \mathcal{E}$, let $U = D_e^\theta$, and choose s and V as in [4, Definition 6.2] so that,

$$V \subseteq U, \quad \overline{V} \subseteq D_{s^*s}^\theta, \quad \text{and} \quad \Theta_s(\overline{V}) \not\subseteq V. \quad (5)$$

In the first part of the proof we will show that V may be chosen to be of the form

$$V = \bigcup_{f \in F} D_f^\theta,$$

where F is a finite set of idempotents satisfying $f \leq es^*s$. In order to achieve this, for each ξ in $\Theta_s(V)$, choose a neighborhood of ξ contained in V. By hypothesis we have that ξ is an ultra-filter, and by [4, Proposition 2.5] we may suppose that such a neighborhood is of the form $D_{f_\xi}^\theta$, for some $f_\xi \in \mathcal{E}$, whence

$$\xi \in D_{f_\xi}^\theta \subseteq V,$$

so we see that the $D_{f_\xi}^\theta$ form an open cover for $\Theta_s(V)$. Since

$$V \subseteq U \cap D_{s^*s}^\theta = D_e^\theta \cap D_{s^*s}^\theta = D_{es^*s}^\theta, \quad (6)$$

then also each $D_{f_\xi}^\theta \subseteq D_{es^*s}^\theta$, and therefore,

$$D_{f_\xi}^\theta = D_{es^*s}^\theta \cap D_{f_\xi}^\theta = D_{es^*sf_\xi}^\theta.$$

Upon replacing each f_ξ by

$$f_\xi' := es^*sf_\xi,$$

we may therefore assume that $f_\xi \leq es^*s$.

Being a closed subset of $D_{s^*s}^\theta$, observe that \overline{V} is compact, and hence so is $\Theta_s(\overline{V})$. We may then take a finite subcover of the above cover, say

$$\Theta_s(\overline{V}) \subseteq \bigcup_{f \in F'} D_f^\theta, \quad (7)$$

where F' is a finite set consisting of some of the f_ξ.
We next claim that there exists a nonzero idempotent $f_0 \leq es^*s$ such that
\begin{equation}
D^\theta_{f_0} \subseteq V \setminus \theta_s(V).
\end{equation}

To see this, first observe that $V \setminus \theta_s(V)$ is open and nonempty, since V is open, $\theta_s(V)$ is closed and $\theta_s(V) \subseteq V$ by the choice of V satisfying Eq. (5). Even without assuming that all tight filters are ultra-filters, we may use the density of the set formed by the latter to find some ultra-filter ξ in $V \setminus \theta_s(V)$. An application of [4, Proposition 2.5] then provides f_0 in E such that
\begin{equation}
\xi \subseteq D^\theta_{f_0} \subseteq V \setminus \theta_s(V),
\end{equation}
and, again by Eq. (6), we may assume that $f_0 \leq es^*s$. Adding f_0 to F', we form the set
\begin{equation}
F := \{f_0\} \cup F',
\end{equation}
with which we define
\begin{equation}
W := \bigcup_{f \in F} D^\theta_f.
\end{equation}
We then have that W is clopen, and that
\begin{equation}
\theta_s(V) \subseteq W \subseteq V,
\end{equation}
where the proper inclusion above is a consequence of Eq. (9) and the fact that we have included f_0 in F. Applying θ_s to the sets above we then deduce that
\begin{equation}
\theta_s(W) \subseteq \theta_s(V) \subseteq \theta_s(V) \subseteq W.
\end{equation}
This completes the task outlined at the beginning of the proof.

Notice that for any f_1 and f_2 in F, we have by (i) that
\begin{equation}
f_1 \perp f_2, \quad f_1 \leq f_2, \quad \text{or} \quad f_1 \geq f_2,
\end{equation}
in which case
\begin{equation}
D^\theta_{f_1} \cap D^\theta_{f_2} = \emptyset, \quad D^\theta_{f_1} \subseteq D^\theta_{f_2}, \quad \text{or} \quad D^\theta_{f_1} \supseteq D^\theta_{f_2},
\end{equation}
respectively. Replacing F by the subset of its maximal elements we may then assume that F is formed by pairwise orthogonal idempotents, in which case Eq. (10) is a disjoint union.

In order to proceed, let us consider two cases.

Case 1 Assuming that $|F| = 1$, say $F = \{f\}$, we have that $W = D^\theta_f$, and then
\begin{equation}
\theta_s(D^\theta_f) = \theta_s(W) \subseteq W = D^\theta_f.
\end{equation}
A remark on contracting inverse... 551

Proposition 2 implies that $sfs^* \ll f$, concluding the proof.

Case 2 Assuming that $|F| > 1$, let us consider θ_s as a function

$$\theta_s : W \to W,$$

observing that it is an injective but not surjective map, by Eq. (11). Using Theorem 1 and the fact that Eq. (10) is a disjoint union, we have that

$$\theta^m_s(D^\theta_f) \subsetneq D^\theta_f,$$

for some integer $m > 0$, and some f in F. We next notice that

$$\theta^m_s(D^\theta_f) = \theta^m_s(D^\theta_f) \stackrel{Prop. 3(ii)}{=} D^\theta_{s^mfs^m},$$

so we deduce from the above that

$$D^\theta_{s^mfs^m} \subsetneq D^\theta_f,$$

and then Proposition 2 implies that $s^mfs^m \ll f$.

To conclude we must still address the requirement that $f \leq s^m s^m$. For this, observe that since W is contained in the domain of θ_s, and since W is invariant under θ_s, we have that W is also contained in the domain of θ^m_s, namely

$$W \subseteq D^\theta_{s^m s^m}.$$

Recalling that we are working under the hypothesis that $|F| > 1$, we have that D^θ_f is a proper subset of W, so

$$D^\theta_f \subsetneq W \subseteq D^\theta_{s^m s^m},$$

and then $f \ll s^m s^m$, by Proposition 2.

The main point we would like to make in the present work is that, even though the definition of locally contracting actions given in [4, Definition 6.2] is syntactically closer to Theorem 4(iii), from a logical point of view, the former is closer to the notion of locally contracting inverse semigroup described in [4, Definition 6.4], since these are equivalent to each other under broader conditions, as proved in [4, Theorem 6.5].

As seen in Theorem 4, above, all of these are equivalent to each other under the rather strong assumption that S is tree-like, but it would be highly desirable to decide if the tree-like property is indeed necessary for the proof of Theorem 4.

A related problem is to decide conditions under which the converse of [4, Proposition 6.3] also holds.
References

1. Anantharaman-Delaroche, C.: Purely infinite C*-algebras arising from dynamical systems. Bull. Soc. Math. France 125(2), 199–225 (1997)
2. Exel, R.: Partial Dynamical Systems, Fell Bundles and Applications. Mathematical Surveys and Monographs, vol. 224. American Mathematical Society, Providence, RI, Florianópolis-SC, Brazil (2017)
3. Exel, R.: Inverse semigroups and combinatorial C*-algebras. Bull. Braz. Math. Soc. (N.S.) 39(2), 191–313 (2008). https://doi.org/10.1007/s00574-008-0080-7
4. Exel, R., Pardo, E.: The tight groupoid of an inverse semigroup. Semigroup Forum 92, 274–303 (2016). https://doi.org/10.1007/s00233-015-9758-5
5. Lawson, M.V.: Compactable semilattices. Semigroup Forum 81, 187–199 (2010). https://doi.org/10.1007/s00233-010-9245-y

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.