Association Between Increased Platelet P-Selectin Expression and Obesity in Patients With Type 2 Diabetes

A BARI 2D (Bypass Angioplasty Revascularization Investigation 2 Diabetes) substudy

David J. Schneider, MD
Regina M. Hardison, MS
Neuza Lopes, MD
Burton E. Sobel, MD
Maria Mori Brooks, PhD
The Pro-Thrombosis Ancillary Study Group

OBJECTIVE — To determine whether obesity increases platelet reactivity and thrombin activity in patients with type 2 diabetes plus stable coronary artery disease.

RESEARCH DESIGN AND METHODS — We assessed platelet reactivity and markers of thrombin generation and activity in 193 patients from nine clinical sites of the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D). Blood taken at the time of enrollment was used for assay of the concentration of prothrombin fragment 1.2 (PT1.2, released when prothrombin is activated) and fibrinopeptide A (FPA, released when fibrinogen is cleaved). Platelet activation was identified with the use of flow cytometry in response to 0, 0.2, and 1 μmol/l adenosine diphosphate (ADP).

RESULTS — Concentrations of FPA, PT1.2, and platelet activation in the absence of agonist were low. Greater BMI was associated with higher platelet reactivity in response to 1 μmol/l ADP as assessed by surface expression of P-selectin (r = 0.29, P < 0.0001) but not reflected by the binding of fibrinogen to activated glycoprotein IIb-IIIa. BMI was not associated with concentrations of FPA or PT1.2. Platelet reactivity correlated negatively with A1C (P < 0.04), was not related to the concentration of triglycerides in blood, and did not correlate with the concentration of C-reactive peptide.

CONCLUSIONS — Among patients enrolled in this substudy of BARI 2D, a greater BMI was associated with higher platelet reactivity at the time of enrollment. Our results suggest that obesity and insulin resistance that accompanies obesity may influence platelet reactivity in patients with type 2 diabetes.
agulated with 32 μg/ml corn trypsin inhibitor (CTI; Enzyme Research, South Bend, IN). CTI is a specific inhibitor of Factor XIa without effect on other coagulation factors (11) and was used as the anticoagulant because we have shown that the activation of platelets is altered by conventional anticoagulants such as citrate (12).

Activation of platelets was identified with the use of flow cytometry by the binding to platelets of fluorescein isothiocyanate–labeled fibrinogen (that binds to the activated conformation of glycoprotein IIb-IIIa) and phycoerythrin-labeled anti-CD62 that binds to P-selectin on the surface of activated platelets (Becton-Dickinson) as previously described (5,13,14). Platelets were identified based on size and binding of a peridinin chlorophyll protein (PerCP)-labeled anti-CD61 (Becton Dickinson), which binds to glycoprotein IIa regardless of activation and does not interfere with the binding of fibrinogen.

To quantify nonspecific association of proteins with platelets and to define a threshold above which activation-dependent association occurs, control samples containing phycoerythrin-conjugated nonimmune mouse IgG and fluorescein isothiocyanate–conjugated albumin were assayed in samples from each subject. Assays were performed in duplicate. Activation of platelets was reported as the percentage of platelets that bound fluorescein isothiocyanate–labeled fibrinogen or phycoerythrin–anti-CD62. This measure of platelet activation correlates with subsequent cardiac risk (13) and with platelet activation reported as the mean fluorescence intensity (14).

FPA and PT1.2

Blood to be analyzed for PT1.2 and FPA was added immediately to SCAT-1 tubes (Hematologic Technologies, Essex, VT). These tubes prevent protease activity and activation of coagulation factors. Aliquots of plasma were stored at −80°C until assay.

Concentrations of PT1.2 and FPA were determined with the use of commercial enzyme-linked immunosorbent assay (ELISA) kits (Dade Behring [Marburg, Germany] for PT1.2 and Vitro Chemie [Toernooiveld, the Netherlands] for FPA).

Biochemical parameters

Concentrations of C-reactive protein (CRP) were determined with the use of a high-sensitivity colorimetric competitive ELISA as previously described (15). Concentrations of insulin were determined by ELISA (ALPCO, Salem, NH). Concentrations of fibrinogen were determined by nephelometry (Siemens Healthcare Diagnostics, Deerfield, IL).

Fasting lipid profile and A1C assays were performed by the Biochemistry Core Laboratory at the University of Minnesota, Minneapolis. Triglycerides were analyzed enzymatically. A1C concentrations were analyzed by high-performance liquid chromatography. For those patients for whom the core lab measures were unavailable, an estimate based on sitespecific regression of the clinical site measure was used. This estimation was used for 2.5% of the triglycerides samples and 0.5% for A1C samples.

Analysis of data

We report results from patients in which at least 80% of significant baseline data points were available for analysis (n = 201). Patients treated with either ticlopidine or clopidogrel were excluded from this analysis (n = 8) because a primary measure was ADP-induced activation of platelets. This study group (n = 193) enabled us to identify for 1 SD change in the independent variable a regression coefficient of 0.20 for 1 SD change in a dependent variable with a power of 0.77.

Because platelet reactivity results and those for markers of thrombosis were not available, an estimate based on site-specific regression of the clinical site measure was used. This estimation was used for 2.5% of the triglycerides samples and 0.5% for A1C samples.

Table 1—Demographic and clinical characteristics

Characteristic	Value
Female (%)	31.8
Age at study entry (years)	62.5 ± 9.1
Duration of diabetes (years)	10 ± 8.7
Hypertension requiring treatment (%)	84.0
History of myocardial infarction (%)	37.0
Prior coronary artery bypass grafting (%)	2.0
Prior percutaneous coronary intervention (%)	19.9
Current smoker (%)	6.0
BMI	30.5 ± 5.4
BMI categories (%)	
Low, <20	1.0
Normal, 20 to <25	11.0
Overweight, 25 to <30	37.0
Class 1 obesity, 30 to <35	33.0
Class 2 obesity, 35 to <40	11.5
Class 3/4 obesity, ≥40	6.5
Waist circumference (cm)	104.8 ± 13.1
Metabolic syndrome (%)	93.0
PVD (%)	32.1
A1C (%)	7.8 ± 1.7
Total cholesterol (mg/dl)	172 ± 41
Triglycerides (mg/dl) [median (Q1–Q3)]	179 (108–212)
HDL cholesterol (mg/dl)	37 ± 9
LDL cholesterol (mg/dl)	101 ± 34
Systolic blood pressure	139.3 ± 24.7
Diastolic blood pressure	80.2 ± 14.3
Blood pressure >130/80 mmHg (%)	62.3
Heart rate (bpm)	68.3 ± 12.3
Baseline medications (%)	
Aspirin	89.4
ß-Blocker	72.6
Calcium-channel blocker	29.9
ACE/angiotensin receptor blocker	71.1
Nitrates	40.8
Statin	72.6
Insulin	25.9
Oral hypoglycemic	81.1

Data are means ± SD unless otherwise stated. n = 193. Metabolic syndrome is defined by two of the following: large waist circumference, high triglycerides, low HDL cholesterol, or high blood pressure. PVD is defined as any of ABI ≤ 0.9, carotid stent, carotid disease, carotid surgery, intermittent claudication, and non-coronary vascular surgery. IQR, interquartile range; Q1, first quartile; Q3, third quartile.
Platelet reactivity correlates with BMI in diabetes

Table 2—Biochemical markers

	n	Median	First quartile	Third quartile
PT 1.2 (mmol/l)	161	0.84	0.60	1.26
FPA (ng/ml)	127	6.75	3.92	17.36
Fibrinogen	191	361	308	415
P-selectin 0 μmol/l ADP	180	0.1	0.0	0.4
P-selectin 0.2 μmol/l ADP	180	1.8	0.7	4.45
P-selectin 1 μmol/l ADP	180	7.90	3.0	19.85
Fibrinogen binding 0 μmol/l ADP	180	0.85	0.1	2.80
Fibrinogen binding 0.2 μmol/l ADP	180	17.55	9.30	30.45
Fibrinogen binding 1 μmol/l ADP	180	58.05	38.60	77.70
CRP (μg/ml)	191	2.05	0.73	5.06
Triglycerides (mg/dl)	193	146	108	212
A1C (%)	293	7.6	6.3	8.9

normally distributed, Spearman's rank correlation estimates were used to evaluate relationships among the thrombosis markers and other variables of interest including BMI, A1C, lipids, and insulin. A P value of 0.05 was considered significant.

RESULTS

Patient characteristics

Clinical characteristics of patients are shown in Table 1.

Markers of thrombosis and platelet reactivity

Evidence of thrombin generation (PT1.2) and thrombin activity (FPA) was limited in these patients with stable coronary artery disease (Table 2). Similarly, evidence of platelet activation in the absence of agonist was minimal, whether assessed by the percentage of platelets that bound fibrinogen (reflecting activation of glycoprotein IIb-IIIa) or the surface expression of P-selectin (Table 2). The concentration of fibrinogen correlated positively with the percentage of platelets that bound fibrinogen with no agonist and in response to 0.2 μmol/l ADP was 0.31; between 0.2 and 1 μmol/l ADP, it was 0.64 (P < 0.0001 for both). The correlation coefficient between no agonist and 1 μmol/l ADP was 0.12 (P = 0.12).

Correlation between platelet reactivity, thrombin activity, and BMI

Greater BMI was associated with greater platelet reactivity as assessed by the surface expression of P-selectin (Fig. 2). After adjustment for age, sex, A1C, use of insulin, and duration of diabetes in a linear model of platelet reactivity, the relationship between platelet reactivity and BMI remained significant (Table 3). A similar magnitude of increase was seen in the small group (n = 19) of subjects who were not taking aspirin at the time when blood was taken (data not shown). Identification of platelet activation based on the binding of fibrinogen (activation of glycoprotein IIb-IIIa) did not correlate with BMI. The concentration of FPA and PT1.2 did not correlate with BMI. By contrast, the concentration of fibrinogen correlated with BMI (r = 0.21, P = 0.004).

Obesity has been associated with poor glycem control, hypertriglyceridemia, inflammation (reflected by an increased CRP), and insulin resistance (16,17). A1C correlated negatively with platelet reactivity in response to 1.0 μmol/l ADP (r = −0.16, P < 0.04). The effects of A1C and BMI were independent. The concentration in blood of triglycerides was not correlated with platelet reactivity. Similarly, the concentration of CRP did not correlate with platelet reactivity. The fasting concentration of insulin did not correlate with platelet reactivity (r = 0.14, P = 0.07).

CONCLUSIONS—In this substudy of BARI 2D, we assessed markers of thrombin generation and activity as well

Figure 1—Distribution of platelet activation in response to ADP. The activation of platelets induced by 0.2 μmol/l ADP and 1 μmol/l ADP was quantified with the use of flow cytometry based on the surface expression of P-selectin or the binding of fluorochrome-labeled fibrinogen. Each box plot of the distribution of the percentage of platelets activated shows the median (line), the 25th and 75th percentile (box), and the 10th and 90th percentile (error bars).
as platelet reactivity in blood from patients with type 2 diabetes and stable coronary artery disease. Activity of the coagulation cascade was limited, as was evidence of platelet activation in the absence of agonist. We assessed platelet reactivity by determining the propensity of platelets to activate in response to an agonist (0.2 and 1 μmol/l ADP). We found that greater BMI was associated with progressively greater platelet reactivity when platelet activation was assessed by the surface expression of P-selectin induced by 1 μmol/l ADP. A1C correlated negatively with this measure of platelet reactivity. Triglycerides did not correlate with platelet reactivity. Thus, our results suggest that obesity increases platelet P-selectin expression in patients with type 2 diabetes.

Aspirin was used in the majority (89%) of the subjects we studied. The relationship between obesity and platelet reactivity was of similar magnitude in patients regardless of aspirin use or nonuse. These results are consistent with the limited efficacy of aspirin in patients with diabetes (20). One mechanism that may contribute to limited efficacy of antiplatelet therapy in such patients is persistently increased platelet reactivity. Our results suggest that obesity may be a cause of persistently increased platelet reactivity in patients with diabetes and thereby contribute to a lack of efficacy of aspirin.

We did not identify an association between the concentration in blood of CRP and platelet reactivity. By contrast, evidence of platelet activation has been associated with concentrations of CRP in obese women without diabetes (21). In our study, all patients had type 2 diabetes, and platelet reactivity was assessed ex vivo. The previous study compared markers of platelet activation in vivo in obese and nonobese women without diabetes. In addition, the consistent use of statins may have decreased CRP and obscured a potential interaction (22). Thus, differences in the clinical characteristics of patients and the methods used to assess platelet reactivity may account for the lack of association in our study.

Table 3—Linear model of log (platelet surface expression of P-selectin [activation]) in response to 1 μmol/l ADP

Coefficient from multivariable model	P	
$R^2 = 0.1169$		
BMI (per 5 units)	0.27	0.0002
Age (per 10 years)	0.05	0.60
Female sex	-0.15	0.37
A1C	-0.10	0.044
Insulin use	0.14	0.48
Diabetes duration (years)	0.006	0.55

$n = 179$.

Aspirin was used in the majority (89%) of the subjects we studied. The relationship between obesity and platelet reactivity was of similar magnitude in patients regardless of aspirin use or nonuse. These results are consistent with the limited efficacy of aspirin in patients with diabetes (20). One mechanism that may contribute to limited efficacy of antiplatelet therapy in such patients is persistently increased platelet reactivity. Our results suggest that obesity may be a cause of persistently increased platelet reactivity in patients with diabetes and thereby contribute to a lack of efficacy of aspirin.

We did not identify an association between the concentration in blood of CRP and platelet reactivity. By contrast, evidence of platelet activation has been associated with concentrations of CRP in obese women without diabetes (21). In our study, all patients had type 2 diabetes, and platelet reactivity was assessed ex vivo. The previous study compared markers of platelet activation in vivo in obese and nonobese women without diabetes. In addition, the consistent use of statins may have decreased CRP and obscured a potential interaction (22). Thus, differences in the clinical characteristics of patients and the methods used to assess platelet reactivity may account for the lack of association in our study.
Although we did not specifically measure insulin sensitivity, obesity and increased concentrations of insulin in fasting blood have been associated with insulin resistance (16). The strong positive association that we observed between obesity and platelet reactivity is consistent with our hypothesis that insulin sensitivity influences platelet reactivity when identified based on the surface expression of P-selectin and only in response to 1 μmol/l ADP. This correlation was not apparent when activation of platelets was identified based on the binding of fibrinogen. The mechanism responsible for this difference is not apparent. However, we have previously observed that platelet activation identified based on surface expression of P-selectin is altered by associated conditions or treatments (5,23). One mechanism potentially contributing is that activation of glycoprotein Ib-IIIa occurs with a low concentration of agonist (13). Thus, the low threshold for activation of glycoprotein Ib-IIIa may limit sensitivity for detection of changes. As seen in Fig. 1, surface expression of P-selectin was limited in response to 0.2 μmol/l ADP. Thus, the discrimination of inter-individual differences is reduced when the range of platelets activated is limited. Accordingly, we postulate that the lack of statistical significance between BMI and surface expression of P-selectin in response to 0.2 μmol/l ADP reflected the limited discrimination between individuals because of the limited range of activation.

Our study does not identify the mechanism by which insulin resistance increases platelet reactivity. Previous work has associated obesity with impaired synthesis and activity of cyclic nucleotides (i.e., cyclic adenosine monophosphate and cyclic guanosine monophosphate), which are key signaling molecules involved in the activation of platelets (24).

In summary, we found that obesity is associated with greater platelet reactivity in patients with type 2 diabetes and stable coronary artery disease. Our results extend previous observations made in subjects without diabetes to subjects with diabetes and suggest that insulin resistance that is associated with obesity increases platelet reactivity that may in turn increase the risk of subsequent cardiac events in patients with type 2 diabetes.

Acknowledgments — This study was supported by the National Heart, Lung, and Blood Institute (NHLBI) grant numbers R01 HL69146 (D.S., principal investigator [PI]) and R01 HL71306 (B.S., PI)]. The BARI 2D trial is funded by the NHLBI, grant numbers U01 HL017467, U01 HL017174, and U01 HL06384 and receives substantial funding from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), grant number HL061744.

BARI 2D receives significant supplemental funding from GlaxoSmithKline, Bristol-Myers Squibb Medical Imaging, Astellas Pharma US, Merck, Abbott Laboratories, and Pfizer and generous financial support from Abbott Laboratories, MedSense Products, Bayer Diagnostics, Becton Dickinson, J.R. Carlson Laboratories, Centocor, Elhl Lilly, Liposcience, Merck, Santh, Novartis Pharmaceuticals, and Novo Nordisk. No other potential conflicts of interest relevant to this article were reported. The authors thank investigators who enrolled subjects in this substudy, including Charanjit Rithal (Mayo Clinic, Rochester, MN), Francisco Fuentes (University of Texas at Houston, Houston, TX), Karen Smith (University of Florida, Gainesville, FL), Frederic Bric (New York University, New York, NY), Raymond Magorien (Ohio State University, Columbus, OH), Kodangudi Ramanathan (University of Tennessee), and Alice Jacobs (Boston University, Boston, MA).

References

1. Sobel BE, Taatjes DJ, Schneider DJ. Intramural plasminogen activator inhibitor type-1 and coronary athrosclerosis. Arterioscler Thromb Vasc Biol 2003;23:1979–1989
2. Fallow GD, Singh J. The prevalence, type and severity of cardiovascular disease in diabetic and non-diabetic patients: a matched-paired retrospective analysis using coronary angiography as the diagnostic tool. Mol Cell Biochem 2004;261:263–269
3. Silva JA, Escobar A, Collins TJ, Ramee SR, White CJ. Unstable angina: a comparison of angioscopic findings between diabetic and nondiabetic patients. Circulation 1995;92:1731–1736
4. Angiulli DJ, Fernandez-Ortiz A, Bernardo E, Ramirez C, Sabate M, Jimenez-Quevedo P, Hernandez R, Moreno R, Escaned J, Alfonso F, Banuelos C, Costa MA, Bass TA, Macaya C. Platelet function profiles in patients with type 2 diabetes and coronary artery disease on combined aspirin and clopidogrel treatment. Diabetes 2005;54:2430–2435
5. Keating FK, Whitaker DA, Kabbani SS, Ricci MA, Sobel BE, Schneider DJ. Relation of augmented platelet reactivity to the magnitude of distribution of atherosclerosis. Am J Cardiol 2004;94:723–728
6. Librenti MC, D’Angelo A, Micossi P, Garriberti B, Mannucci PM, Pozza G. Beta-thromboglobulin and fibrinopeptide A in diabetes mellitus as markers of vascular damage. Acta Diabetol Lat 1985;22:39–45
7. Jones RL. Fibrinopeptide-A in diabetes mellitus: relation to levels of blood glucose, fibrinogen disappearance, and hemodynamic changes. Diabetes 1985;34:836–843
8. Brooks MM, Frye RL, Genuith S, Detre KM, Nesto R, Sobel BE, Kelsey SF, Orchard TJ, the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Trial Investigators. Hypotheses, design, and methods for the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Trial. Am J Cardiol 2006;97:9G–19G
9. Basili S, Pacini G, Guagnano MT, Manigrasso MR, Santilli F, Pettinella C, Ciabattoni G, Patrono C, Davi G. Insulin resistance as a determinant of platelet activation in obese women. J Am Coll Cardiol 2006;48:2531–2538
10. Murakami T, Horigome H, Tanaka K, Nakata Y, Ohkawara K, Katayama Y, Matsui A. Impact of weight reduction on production of platelet-derived microparticles and fibrinolytic parameters in obesity. Thromb Res 2007;119:45–53
11. Rand MD, Lock JB, Veer CV, Gaffney DP, Mann KG. Blood clotting in minimally altered whole blood. Blood 1996;88:3432–3445
12. Schneider DJ, Tracy PB, Mann KG, Sobel BE. Differential effects of anticoagulants on the activation of platelets ex vivo. Circulation 1997;96:2877–2883
13. Kabbani SS, Watkins MW, Ashikaga T, Terrien EF, Holoch PA, Sobel BE, Schneider DJ. Platelet reactivity characterized prospectively: a determinant of outcome 90 days after percutaneous coronary intervention. Circulation 2001;104:181–186
14. Schneider DJ, Baumann PQ, Holmes MB, Taatjes DJ, Sobel BE. Time and dose dependent augmentation of inhibitory effects of abciximab by aspirin. Thromb Haemost 2001;85:309–313
15. Macy E, Hayes T, Tracy R. Variability in the measurement of C-reactive protein in healthy subjects: implications for reference intervals and epidemiological applications. Clin Chem 1997;43:52–58
16. Olefsky J, Reaven GM, Farquhar JW. Effects of weight reduction on obesity: studies of lipid and carbohydrate metabolism in normal and hyperlipoproteinemic subjects. J Clin Invest 1974;53:64–76
17. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA 1999;282:2131–2135
18. Thaulow E, Erikssen J, Cohn PF. Blood platelet counts and function are related to
total and cardiovascular death in apparently healthy men. Circulation 1991;84: 613–617
19. Trip MD, Cats VM, van Capelle FJ, Vreeken J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N Engl J Med 1990;322:1549–1554
20. Ogawa H, Nakayama M, Morimoto T, Uemura S, Kanauchi M, Doi N, Jinnouchi H, Sugiyama S, Saito Y, the Japanese Primary Prevention of Atherosclerosis With Aspirin for Diabetes (JPAD) Trial Investigators. Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial. JAMA 2008;300:2134–2141
21. Davì G, Guagnano MT, Ciabattoni G, Basilì S, Falco A, Marinopiccoli M, Nutini M, Sensi S, Patrono C. Platelet activation in obese women: role of inflammation and oxidant stress. JAMA 2002;288:2008–2014
22. Albert MA, Danielson E, Rifai N, Ridker PM, the PRINCE Investigators. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA 2001;286:64–70
23. Keating FK, Dauerman HL, Whitaker DA, Sobel BE, Schneider DJ. Increased expression of platelet P-selectin and formation of platelet-leukocyte aggregates in blood from patients treated with unfractionated heparin plus epifibatide compared with bivalirudin. Thromb Res 2006;118:361–369
24. Anfossi G, Russo I, Massucco P, Mattiello L, Doronzo G, De Salve A, Trovati M. Impaired synthesis and action of antiaggregating cyclic nucleotides in platelets from obese subjects: possible role in platelet hyperactivation in obesity. Eur J Clin Invest 2004;34:482–489