Long-term effects of bariatric surgery on cardiovascular risk factors in Singapore

Vinay Pandav¹, MBBS, Asim Shabbir², MMed, FRCS, Ivandito Kuntjoro³, MD, FAMS, Eric Yin Hao Khoo¹, MBChB, MRCP, Jimmy Bok Yan So²,⁴, MBChB, FRCSEd, Kian Keong Poh³,⁴, MBBChir, FACC

¹Department of Medicine, National University Health System, ²Department of Surgery, National University Hospital, ³Department of Cardiology, National University Heart Centre, National University Health System, ⁴NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Correspondence: A/Prof Poh Kian Keong, Senior Consultant, Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228. kian_keong_poh@nuhs.edu.sg

Singapore Med J 2020, 1–11
https://doi.org/10.11622/smedj.2020047
Published ahead of print: 3 April 2020

Online version can be found at http://www.smj.org.sg/online-first
ABSTRACT

Introduction: Bariatric surgery is considered an effective treatment for weight loss and improving the metabolic profile of obese patients. Obesity-related comorbidities such as hyperlipidaemia and type 2 diabetes mellitus (DM) are significant cardiovascular risk factors. Additionally, statins have increased the onset of DM in prospective clinical trials, and many obese patients are on statins. We retrospectively examined the effect of bariatric surgery on lipid profile, DM control and weight loss at five years’ follow-up.

Methods: A total of 104 patients (n = 104) undergoing bariatric surgery in 2008–2012 were retrospectively studied. 36 patients were on preoperative statins. Their lipid profile, DM control and weight loss were examined at the one-year and five-year follow-up.

Results: Both high-density lipoprotein (HDL) and triglyceride levels showed significant improvement at the one-year and five-year follow-up (p = 0.01). Total cholesterol showed significant improvement at the one-year follow-up (−0.30 mmol/dL, p = 0.0338); however, better control was not sustained at the five-year follow-up (−0.15 mmol/dL, p = 0.133). Low-density lipoprotein did not show any considerable improvement at the one- and five-year follow-up (−0.27 mmol/dL, p = 0.150; −0.24 mmol/dL, p = 0.138, respectively). There was a statistically significant improvement in DM control in these patients and in those on preoperative statins. Weight loss was sustained at one and five years.

Conclusion: Bariatric surgery does not confer a uniform improvement in lipid profile in the long term. It does, however, induce efficient weight loss and improvement in diabetic profile, even in those on preoperative statins.

Keywords: bariatric surgery, cardiovascular risk factors, diabetes mellitus, lipids, long term
INTRODUCTION

Obesity is recognised to be a global epidemic that has seen increasing rates in recent years.\(^1\)\(^\text{-}^4\) It is considered as a severe health hazard and a risk factor for chronic conditions such as type 2 diabetes mellitus (DM), hypertension and hyperlipidaemia, as well as an established independent risk factor for cardiovascular diseases.\(^5\)\(^,\)\(^6\) Bariatric procedures are reportedly the most effective strategy to reduce weight loss and have been demonstrated to be more effective compared to non-surgical means.\(^7\)\(^,\)\(^8\) Many studies have documented the benefits of bariatric surgery on weight loss and its associated comorbidities. However, most of the studies are based on follow-up data of two years’ duration or less.\(^9\) Both the intermediate and long-term impact of bariatric surgery on hyperlipidaemia and its comorbidities are limited, especially in the Asian population.\(^10\) We aimed to evaluate the impact of bariatric surgery on lipid profile, glycaemic control and weight loss at five-years’ follow-up.

METHODS

Patients undergoing bariatric surgery from 2008 to 2012 at National University Hospital, Singapore, were evaluated for this study. We included patients undergoing different types of bariatric surgery, including sleeve gastrectomy, gastric bypass and gastric banding. A total of 104 patients were enrolled. Basic demography, preoperative statin use, lipid profile and DM status were recorded. Subsequently, lipid and glycaemic profile were evaluated at one- and five-year intervals. Some patients were lost to follow-up during the study period. At the one- and five-year intervals, 76 patients and 72 patients were evaluated, respectively. We further evaluated a subgroup of patients who were on statins preoperatively. Approval was obtained from the institutional ethics review board.

Statistical analysis was performed using the Stata 14 system (StataCorp, College Station, TX, USA). Continuous data was presented as median (interquartile range) if the variables
followed a non-normal distribution. Categorical variables were expressed as percentage. The Wilcoxon signed-rank test for paired samples was employed as a non-parametric equivalent of the paired sample t-test used for continuous variables.

RESULTS

The demographic profile and comorbidities of our study population are presented in Table I. The patients had a median age of 39.5 years. Patients were predominantly of Chinese ethnicity (34.6%), and slightly over half of all the patients were female. The most common associated comorbidity was hypertension (58.7%), followed by DM (42.3%). 34.2% of the patients were on statins preoperatively. The majority underwent sleeve gastrectomy (81.7%). Gastric bypass surgery was the next most common surgery (15.4%), followed by gastric banding (2.9%).

Changes in the lipid profile, glycaemic status and weight profile of our study population at baseline and at one- and five-year intervals are presented in Table II. Both high-density lipoprotein (HDL) and triglyceride (TG) levels showed significant improvement at the one- and five-year follow-up. Total cholesterol (TC) showed significant improvement at the one-year follow-up (−0.30 mmol/dL, p = 0.0338); however, better control was not sustained at the five-year follow-up (−0.15 mmol/dL, p = 0.133). Low-density lipoprotein (LDL) did not improve at both the one-year and five-year follow-up (−0.27 mmol/dL, p = 0.150 and −0.24 mmol/dL, p = 0.138, respectively).

Table I. Clinical and demographic characteristics of patients who underwent gastric banding, sleeve gastrectomy and Roux-en-Y gastric bypass (n = 104).

Characteristic	No. (%)
Male gender	44 (42.3)
Age* (yr)	40 (31–49)
Ethnicity	
Chinese	36 (34.6)
Malay	30 (28.8)
Indian	30 (28.8)
Other	8 (7.7)
Hypertension 61 (58.7)
Diabetes mellitus 44 (42.3)

Surgery type
- Gastric banding 3 (2.9)
- Roux-En-Y gastric bypass 16 (15.4)
- Sleeve gastrectomy 85 (81.7)

*Data presented as median (interquartile range).

Table II. Changes in metabolic profile at one year and five years post surgery.

Variable	Preoperative (n = 104)	At 1 yr (n = 76)	p-value	At 5 yr (n = 72)	p-value
Total cholesterol* (mmol/L)	4.92 ± 1.88	4.62 ± 1.42	0.0338	4.77 ± 1.58	0.133
Triglycerides* (mmol/L)	1.66 ± 1.60	1.02 ± 0.98	0.01	1.22 ± 1.24	0.01
High-density lipoprotein* (mmol/L)	1.14 ± 0.52	1.37 ± 0.62	0.01	1.40 ± 0.62	0.01
Low-density lipoprotein* (mmol/L)	3.05 ± 1.82	2.78 ± 1.22	0.150	2.81 ± 1.30	0.138
Weight* (kg)	112.3 ± 46.2	86.1 ± 36.1	0.01	89.9 ± 38.7	0.01
Body mass index* (kg/m²)	38.03 ± 15.26	30.88 ± 13.92	0.01	32.50 ± 12.96	0.01
Excess weight loss* (%)	NA	23.50 ± 19.69	NA	20.90 ± 22.74	NA
HbA1c*;‡ (%)	8.9 ± 2.6	6.1 ± 2.7	0.01	6.5 ± 2.5	0.01

*Data presented as *mean ± 2 SD and †mean ± SD. ‡Analysis performed on 44 patients diagnosed with diabetes mellitus. One-year and five-year p-values are referenced against preoperative values. HbA1c: glycated haemoglobin; NA: not applicable; SD: standard deviation

Patients with DM experienced a significant improvement in glycaemic control. Weight loss was sustained at one-year and five-year intervals (−26.2 kg, p = 0.01 and −22.4 kg, p = 0.01, respectively) with a corresponding sustained improvement in body mass index. Percentage excess weight loss postoperatively was 23.50% and 20.90% at the one-year and five-year time points, respectively.

Table III details the profile of a subgroup of patients who were on statins preoperatively. This group had a median age of 49 years and was predominantly female (61.1%). Patients who
were on preoperative statins showed significantly better DM control at one-year and five-year intervals (−2.7% HbA1c, \(p = 0.01 \) and −2.5% HbA1c, \(p = 0.01 \), respectively). Patients also had sustained weight loss at one-year and five-year intervals.

Table III. Demographic characteristics of patients on preoperative statins showing body weight and DM control at one year and five years post surgery (n = 36).

Variable	Mean ± 2 SD	p-value
Male gender*	14 (38.9)	NA
Age† (yr)	49 (41–53)	NA
HbA1c (%)		
Preoperative	8.9 ± 3.6	NA
1 yr	6.2 ± 2.6	0.01
5 yr	6.4 ± 3.2	0.01
Weight (kg)		
Preoperative	107.5 ± 44.2	NA
1 yr	85.0 ± 36.5	0.01
5 yr	88.9 ± 36.5	0.01
Body mass index (kg/m²)		
Preoperative	40.00 ± 13.18	NA
1 yr	31.12 ± 8.82	0.01
5 yr	32.80 ± 10.76	0.01

*Data presented as no. (%) and †median (interquartile range). One-year and five-year p-values are referenced against preoperative values. DM: diabetes mellitus; HbA1c: glycated haemoglobin; NA: not applicable; SD: standard deviation

Among the cohort of patients who were on preoperative statins, we further analysed the difference in the metabolic profile of patients who continued to be on statins postoperatively and those whose statins were stopped after the operation (Table IV). No significant difference between the two cohorts was found in all components of the lipid profile as well as DM profile and weight loss at the one- and five-year points. Additionally, no new onset of DM was noted in patients with preoperative statin use.
Table IV. Differences in the metabolic profiles of patients who were on and not on postoperative statins at one year and five years post surgery.

Variable	Mean ± 2 SD	p-value	
	Postoperative statins (n = 19)	No postoperative statins (n = 17)	
Age* (yr)	51 (42–54)	45 (39–52)	NA
Male gender†	6 (31.6)	8 (47.1)	NA
Total cholesterol (mmol/L)			
Preoperative	4.59 ± 1.81	4.96 ± 1.74	0.277
1 yr	4.84 ± 1.27	4.60 ± 1.26	0.232
5 yr	5.15 ± 1.73	4.67 ± 1.66	0.128
Triglycerides (mmol/L)			
Preoperative	1.84 ± 0.863	1.98 ± 1.03	0.856
1 yr	1.16 ± 0.716	1.12 ± 0.691	0.988
5 yr	1.51 ± 0.726	1.29 ± 0.629	0.289
High-density lipoprotein (mmol/L)			
Preoperative	1.25 ± 0.496	1.08 ± 0.432	0.05
1 yr	1.44 ± 0.682	1.22 ± 0.336	0.0925
5 yr	1.48 ± 0.776	1.32 ± 0.360	0.132
Low-density lipoprotein (mmol/L)			
Preoperative	2.60 ± 1.61	2.97 ± 1.80	0.267
1 yr	2.87 ± 1.06	2.87 ± 1.22	0.739
5 yr	2.98 ± 1.31	2.76 ± 1.51	0.334
Weight (kg)			
Preoperative	111.0 ± 58.0	105.0 ± 31.0	0.735
1 yr	83.8 ± 44.4	88.2 ± 23.6	0.234
5 yr	89.4 ± 44.1	86.8 ± 21.3	0.557
Body mass index (kg/m²)			
Preoperative	41.33 ± 15.40	39.33 ± 10.98	0.284
1 yr	31.82 ± 15.10	32.10 ± 9.28	0.911
5 yr	34.15 ± 14.48	32.93 ± 9.88	0.624
HbA1c (%)			
Preoperative	8.9 ± 3.6	9.1 ± 3.7	0.915
1 yr	6.3 ± 3.4	6.1 ± 1.5	0.542
5 yr	6.7 ± 4.0	6.0 ± 1.2	0.714

*Data presented as *median (interquartile range) and †no. (%). One-year and five-year p-values are referenced against preoperative values. HbA1c: glycated haemoglobin; NA: not applicable; SD: standard deviation

DISCUSSION

There is limited data on whether bariatric surgery leads to a sustained improvement in the lipid profile of patients in the long term. In this retrospective analysis, we found that the improvement in lipid profile was not uniform. HDL and TG levels showed significant improvement, while TC
and LDL did not show any improvement at the five-year follow-up. This trend in lipid profile following bariatric surgery has also been shown in other studies. In an analysis of lipid profile after sleeve gastrectomy by Zhang et al, it was reported that only HDL and TG levels improved significantly.\(^{(11)}\) A meta-analysis of the impact of bariatric surgery on lipid profile also did not find that TC improved significantly.\(^{(9)}\) One possible explanation is that outcomes were procedure-related. The majority of our subjects underwent sleeve gastrectomy, but Roux-En-Y gastric bypass (RYGB) has been shown to be more effective in lowering lipid level.\(^{(12-14)}\) In a study comparing the effect of RYGB with that of sleeve gastrectomy, it was found that RYGB reduced all lipid fractions, whereas LDL did not improve significantly in patients who underwent sleeve gastrectomy.\(^{(15)}\)

The benefits of bariatric surgery on weight loss and glycaemic control have been studied,\(^{(16-19)}\) and our results were consistent with the published literature: there was sustained weight loss and improved glycaemic control at the one- and five-year intervals. The significant improvement in glycaemic level is attributed to a myriad of factors, including changes in absorption of metabolites after surgery and changes in gut-related hormones leading to increased insulin sensitivity and associated weight loss.\(^{(7)}\)

Overall, our analysis points towards sustained and durable improvements in HDL and TG profile, glycaemic control and weight loss over a five-year duration. Our findings add to the growing body of evidence that improvements in metabolic comorbidity are indeed sustained over time. A recent study by Ikramuddin et al\(^{(20)}\) demonstrated improvements in HbA1c, LDL and systolic blood pressure at five years’ post RYGB. Additionally, a recent seven-year analysis of health outcomes in the Longitudinal Assessment of Bariatric Surgery Study found durable improvements in all five comorbidities evaluated (DM, high LDL, high TG, low HDL and hypertension).\(^{(21)}\) It is interesting to note that these two long-term studies examined patients who predominantly underwent RYGB, whereas our study population predominantly underwent sleeve gastrectomy.
gastrectomy. Hence, there seem to be sustained improvements across the different types of bariatric surgery.

Statins have been associated with increased risk of development of DM in prospective clinical trials,(22) which puts patients who undergo bariatric surgery at higher risk, since many of them are on statins. However, in our analysis, patients who continued taking statins postoperatively and those for whom statins were stopped had similar improvements in their glycaemic control. This improvement in glycaemia despite being on statin therapy is similar to the findings of Taylor et al, who reported that DM resolves with bariatric surgery more often in patients who are on preoperative statins.(23) Additionally, we found that there was no significant worsening of the metabolic profile of patients who were continued on statins postoperatively compared to those whose statins were stopped. Furthermore, the improved metabolic profile leads to improved cardiovascular outcomes and therefore the cardioprotective benefits of bariatric surgery.(24-27)

One of the limitations of our study was the relatively small sample size. As such, it may be underpowered to determine an improvement in glycaemic control between patients who were continued on postoperative statins and those who were not. Additionally, we did not adjust for multiple variables that could have impacted glycaemic control, such as weight loss, type of surgery affecting the absorption of metabolites and increased health consciousness of patients.

The strength of our study was that it described the metabolic profiles of patients in our local population who underwent bariatric surgery at a relatively long five-year time point. Also, our study was one of the first to describe the metabolic profiles of patients who were continued on statins postoperatively with those whose statins were stopped. Cardiovascular risk scores such as Reynolds and Framingham scores were not used to assess improvement in cardiovascular risk profiles in view of the younger age of our study population.
In conclusion, although there are studies detailing the short-term effects of bariatric surgery on obesity-related comorbidities, long-term data on its effect in the Asian population remains sparse. Our study demonstrated that bariatric surgery confers sustained weight loss and improved glycaemic control. However, it did not lead to a uniform improvement in lipid profile at the five-year follow-up. Clinicians should be mindful of the durable benefits of bariatric surgery and consider its use for obese patients with suboptimal metabolic profiles.

REFERENCES

1. Kinlen D, Cody D, O’Shea D. Complications of obesity. QJM 2018; 111:437-43.
2. Eckersley RM. Losing the battle of the bulge: causes and consequences of increasing obesity. Med J Aust 2001; 174:590-2.
3. Wilkinson KM. Increasing obesity in children and adolescents: an alarming epidemic. JAAPA 2008; 21:31-6, 38.
4. Sturm R, Ringel JS, Andreyeva T. Increasing obesity rates and disability trends. Health Aff (Millwood) 2004; 23:199-205.
5. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 1983; 67:968-77.
6. Must A, Spadano J, Coakley EH, et al. The disease burden associated with overweight and obesity. JAMA 1999; 282:1523-9.
7. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 2004; 292:1724-37.
8. Monteforte MJ, Turkelson CM. Bariatric surgery for morbid obesity. Obes Surg 2000; 10:391-401.
9. Heffron SP, Parikh A, Volodarskiy A, et al. Changes in lipid profile of obese patients following contemporary bariatric surgery: a meta-analysis. Am J Med 2016; 129:952-9.

10. Moustarah F, Gilbert A, Després JP, Tchernof A. Impact of gastrointestinal surgery on cardiometabolic risk. Curr Atheroscler Rep 2012; 14:588-96.

11. Zhang F, Strain GW, Lei W, et al. Changes in lipid profiles in morbidly obese patients after laparoscopic sleeve gastrectomy (LSG). Obes Surg 2011; 21:305-9.

12. Nguyen NT, Goldman C, Rosenquist CJ, et al. Laparoscopic versus open gastric bypass: a randomized study of outcomes, quality of life, and costs. Ann Surg 2001; 234:279-91.

13. Buchwald H, Varco RL, Matts JP, et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolema. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med 1990; 323:946-55.

14. Gleysteen JJ. Results of surgery: long-term effects on hyperlipidemia. Am J Clin Nutr 1992; 55(2 Suppl):591S-593S.

15. Benaiges D, Flores-Le-Roux JA, Pedro-Botet J, et al. Impact of restrictive (sleeve gastrectomy) vs hybrid bariatric surgery (Roux-en-Y gastric bypass) on lipid profile. Obes Surg 2012; 22:1268-75.

16. Seki Y, Kasama K, Haruta H, et al. Five-year-results of laparoscopic sleeve gastrectomy with duodenojejunal bypass for weight loss and type 2 diabetes mellitus. Obes Surg 2017; 27:795-801.

17. Ersoz F, Duzkoylu Y, Deniz MM, Boz M. Laparoscopic Roux-en-Y gastric bypass with ileal transposition - an alternative surgical treatment for type 2 diabetes mellitus and gastroesophageal reflux. Wideochir Inne Tech Maloinwazyjne 2015; 10:481-5.
18. Quan Y, Huang A, Ye M, et al. Efficacy of laparoscopic mini gastric bypass for obesity and type 2 diabetes mellitus: a systematic review and meta-analysis. Gastroenterol Res Pract 2015; 2015:152852.

19. Lee PC, Tan HC, Pasupathy S, et al. Effectiveness of bariatric surgery in diabetes prevention in high-risk Asian individuals. Singapore Med J 2018; 59:472-5.

20. Ikramuddin S, Korner J, Lee WJ, et al. Lifestyle intervention and medical management with vs without Roux-en-Y gastric bypass and control of hemoglobin A1c, LDL cholesterol, and systolic blood pressure at 5 years in the Diabetes Surgery Study. JAMA 2018; 319:266-78.

21. Shubeck S, Dimick JB, Telem DA. Long-term outcomes following bariatric surgery. JAMA 2018; 319:302-3.

22. Wang KL, Liu CJ, Chao TF, et al. Statins, risk of diabetes, and implications on outcomes in the general population. J Am Coll Cardiol 2012; 60:1231-8.

23. Taylor BA, Ng J, Stone A, et al. Effects of statin therapy on weight loss and diabetes in bariatric patients. Surg Obes Relat Dis 2017; 13:674-80.

24. Ashrafian H, le Roux CW, Darzi A, Athanasiou T. Effects of bariatric surgery on cardiovascular function. Circulation 2008; 118:2091-102.

25. Kwok CS, Pradhan A, Khan MA, et al. Bariatric surgery and its impact on cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Cardiol 2014; 173:20-8.

26. Vest AR, Heneghan HM, Agarwal S, Schauer PR, Young JB. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart 2012; 98:1763-77.

27. Buchwald H, Estok R, Fahrbach K, Banel D, Sledge I. Trends in mortality in bariatric surgery: a systematic review and meta-analysis. Surgery 2007; 142:621-35.