ON THE SELMER GROUP ATTACHED TO A MODULAR FORM
AND AN ALGEBRAIC HECKE CHARACTER

Yara Elias

Department of Mathematics, McGill University
yara.elias@mail.mcgill.ca

Abstract

We construct an Euler system of generalized Heegner cycles to bound the Selmer group
associated to a modular form and an algebraic Hecke character. The main argument is based on
Kolyvagin’s method adapted by Bertolini and Darmon [2] and by Nekovář [17] while the key
object of the Euler system, the generalized Heegner cycles, were first considered by Bertolini,
Darmon and Prasanna in [4].

Contents

1 Introduction ... 2
2 Motive associated to a modular form and a Hecke character 5
3 p-adic Abel-Jacobi map ... 7
4 Generalized Heegner cycles ... 8
5 Euler system properties ... 10
6 Kolyvagin cohomology classes 13
7 Global extensions by Kolyvagin classes 16
8 Complex conjugation ... 19
9 Local to Global study .. 21
10 Reciprocity law and local triviality 25

Acknowledgments. It is a pleasure to thank my advisor Henri Darmon for numerous discus-
sions of the subject of this article as well as for his suggestions, corrections and valuable feedback
on the writing of this monograph. I am grateful to Olivier Fouquet, Eyal Goren, Ariel Shnidman
and the anonymous referees for many corrections and suggestions. This work was finalized at the
Max Planck Institute for Mathematics, I am thankful for its hospitality.

1Supported by a doctoral scholarship of the Fonds Québécois de la Recherche sur la Nature et les Technologies.
1 Introduction

Kolyvagin [14, 11] constructs an Euler system based on Heegner points and uses it to bound the size of the Selmer group of certain (modular) elliptic curves E defined over \mathbb{Q}, over imaginary quadratic fields K assuming the non-vanishing of a suitable Heegner point. In particular, this implies that

$$\text{rank}(E(K)) = 1,$$

and the Tate-Shafarevich group $\text{III}(E/K)$ is finite. Bertolini and Darmon adapt Kolyvagin’s descent to Mordell-Weil groups over ring class fields [2]. More precisely, they show that for a given character χ of $\text{Gal}(K_c/K)$ where K_c is the ring class field of K of conductor c,

$$\text{rank}(E(K_c)^{\chi}) = 1$$

assuming that the projection of a suitable Heegner point is non-zero. More generally, one can associate to a modular form f of even weight $2r$ and level $\Gamma_0(N)$ a p-adic Galois representation $T_p(f)$ [13, 22]. For a given number field K, there is a p-adic Abel-Jacobi map

$$\Phi_{f,K} : \text{CH}^r(X/K)_0 \rightarrow H^1(K, T_p(f)),$$

where

- X is the Kuga-Sato variety of dimension $2r - 1$, that is, a compact desingularization of the $2r-2$-fold fibre product of the universal generalized elliptic curve over the modular curve $X_1(N)$,
- $\text{CH}^r(X/K)_0$ is the r-th Chow group of X over K, that is the group of homologically trivial cycles on X defined over K of codimension r modulo rational equivalence,
- $H^1(K, T_p(f))$ stands for the first Galois cohomology group of $\text{Gal}(\overline{K}/K)$ acting on $T_p(f)$.

Nekovář [17] adapts the method of Euler systems to modular forms of higher even weight to describe the image by the Abel-Jacobi map $\Phi_{f,K}$ of Heegner cycles on the associated Kuga-Sato varieties, hence showing that

$$\dim_{\mathbb{Q}_p}(\Phi_{f,K}(e_f \text{CH}^r(X/K)_0) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) = 1$$

for a suitable projector e_f, assuming the non-vanishing of a suitable Heegner cycle. In Article [8], we combined these two approaches to study modular forms of higher even weight twisted by ring class characters χ of imaginary quadratic fields and showed that

$$\dim_{\mathbb{Q}_p}(\Phi_{f,\chi,K}(e_{f,\chi} \text{CH}^r(X/K)_0) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) = 1$$

for a suitable projector $e_{f,\chi}$, assuming the non-vanishing of a suitable generalized Heegner cycle.

In this article, we study the Selmer group associated to a modular form of even weight $r + 2$ and
an unramified algebraic Hecke character \(\psi \) of \(K \) of infinity type \((r,0) \). Our setting involves the generalized Heegner cycles introduced by Bertolini, Darmon and Prasanna in [4].

Our motivation stems from the Beilinson-Bloch-Kato conjecture that predicts that

\[
\dim_{\mathbb{Q}_p}(\Phi_{f, \psi, K}(e_{f, \psi} \text{CH}^r(W/K)_0) \otimes \mathbb{Z}_p \mathbb{Q}_p) = \text{ord}_{s=r+1} L(f \otimes \theta_{\psi}, s),
\]

where

\[
\theta_{\psi} = \sum_{a \in O_K} \psi(a)q^{N(a)}
\]
is the theta series associated to \(\psi \) [20], \(W \) is a Kuga-Sato like variety, and \(e_{f, \psi} \) is a suitable projector.

Let \(f \) be a normalized newform of level \(\Gamma_0(N) \) where \(N \geq 5 \) and even weight \(r+2 > 2 \). Denote by \(K = \mathbb{Q}(\sqrt{-D}) \) an imaginary quadratic field with odd discriminant satisfying the Heegner hypothesis, that is primes dividing \(N \) split in \(K \). For simplicity, we assume that

\[
|\mathcal{O}_K^\times| = 2.
\]

Let

\[
\psi : \mathbb{A}_K^\times \rightarrow \mathbb{C}^\times
\]
be an unramified algebraic Hecke character of \(K \) of infinity type \((r,0) \). There is an elliptic curve \(A \) defined over the Hilbert class field \(K_1 \) of \(K \) with complex multiplication by \(\mathcal{O}_K \). We further assume that \(A \) is a \(\mathbb{Q} \)-curve, that is \(A \) is \(K_1 \)-isogenous to its conjugates in \(\text{Aut}(K_1) \). This is possible by the assumption on the parity of \(D \), (see [9, Section 11]). Consider a prime \(p \) not dividing \(ND\phi(N)N_AN_\psi \), where \(N_A \) is the conductor of \(A \) and \(N_\psi \) is the conductor of \(\psi \). We denote by \(V_f \) the \(f \)-isotypic part of the \(p \)-adic étale realization of the motive associated to \(f \) by Scholl [22] and Deligne [7] twisted by \(\frac{r+2}{2} \) and by \(V_\psi \) the \(p \)-adic étale realization of the motive associated to \(\psi \) twisted by \(\frac{r}{2} \). More precisely, \(V_\psi \) is the \(\psi \)-isotypic component of the first Galois cohomology group of

\[
\text{res}_{K_1/Q}(A) = \prod_{\sigma \in \text{Gal}(K_1/Q)} A^\sigma
\]
where \(A^\sigma \) is the \(\sigma \)-conjugate of \(A \), (see Section 2 for more details). Let \(\mathcal{O}_F \) be the ring of integers of

\[
F = \mathbb{Q}(a_1, a_2, \ldots, b_1, b_2, \ldots),
\]
where the \(a_i \)'s are the coefficients of \(f \) and the \(b_i \)'s are the coefficients of the theta series

\[
\theta_{\psi} = \sum_{a \in \mathcal{O}_K} \psi(a)q^{N(a)}
\]
associated to \(\psi \). Then \(V_f \) and \(V_\psi \) will be viewed (by extending scalars appropriately) as free \(\mathcal{O}_F \otimes \mathbb{Z}_p \)-modules of rank 2. We denote by

\[
V = V_f \otimes_{\mathcal{O}_F} \mathbb{Z}_p V_\psi
\]
the p-adic étale realization of the tensor product of V_f and V_ψ and let V_{ρ} be its localization at a prime ρ in F dividing p. Let $\mathcal{O}_{F,\rho}$ be the localization of \mathcal{O}_F at ρ. Then V_{ρ} is a four dimensional representation of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ over $\mathcal{O}_{F,\rho}$ with coefficients in

$$\text{End}(\text{Res}_{K_1,\mathbb{Q}}(A)/\mathbb{Q}) = \bigoplus_{\sigma \in \text{Gal}(K_1/\mathbb{Q})} \text{Hom}(A,A^\sigma),$$

(see Section 2).

By the Heegner hypothesis, there is an ideal N of \mathcal{O}_K satisfying $\mathcal{O}_K/N = \mathbb{Z}/N\mathbb{Z}$. We can therefore fix $\Gamma_1(N)$ level structure on A over K_1 which is a point of exact order N defined over the ray class field L_1 of K of conductor N. Consider a pair (ϕ_1,A_1) where A_1 is an elliptic curve defined over K_1 with level N structure and $\phi_1 : A \rightarrow A_1$ is an isogeny over \overline{K}. We associate to it a codimension $r + 1$ cycle on V

$$\Upsilon_{\phi_1} = \text{Graph}(\phi_1)^r \subset (A \times A_1)^r \simeq (A_1)^r \times A^r$$

and define a generalized Heegner cycle of conductor 1

$$\Delta_{\phi_1} = e_r \Upsilon_{\phi_1},$$

where e_r is an appropriate projector (1). Then Δ_{ϕ_1} is defined over L_1. We consider the corestriction

$$P(\phi_1) = \text{cor}_{L_1,K} \Phi_{f,\psi,L_1}(\Delta_{\phi_1}) \in H^1(K,V_{\rho}/p)$$

where Φ_{f,ψ,L_1} is the p-adic étale Abel-Jacobi map. The Selmer group

$$S \subseteq H^1(K,V_{\rho}/p)$$

consists of the cohomology classes which localizations at a prime v of K lie in

$$\begin{cases}
H^1(K_v^\ur/\mathcal{O}_v,V_{\rho}/p) \text{ for } v \text{ not dividing } NN_A N_{\psi} p \\
H^1_f(K_v,V_{\rho}/p) \text{ for } v \text{ dividing } p
\end{cases}$$

where K_v is the completion of K at v, and $H^1_f(K_v,V_{\rho}/p) = H^1_{\text{cris}}(K_v,V_{\rho}/p)$ is the finite part of $H^1(K_v,V_{\rho}/p)$ [5]. Note that the assumptions we make will ensure that $H^1(K_v^\ur/K_v,V_{\rho}/p) = 0$ for v dividing $NN_A N_{\psi}$. We denote by $Fr(v)$ the arithmetic Frobenius element generating $\text{Gal}(K_v^\ur/K_v)$, and by $I_v = \text{Gal}(\overline{K_v}/K_v^\ur)$.

Let h be the class number of K, and let a_1, \ldots, a_h be a set of representatives of the ideal classes of \mathcal{O}_K. For a cohomology class c in $H^1(K,V_{\rho}/p)$, we define

$$e^v = \frac{1}{h} \sum_{i=1}^h \psi^{-1}(a_i) \cdot a_i \cdot c$$
where $a_i \cdot c$ is the image of c by the map $H^1(K, V_{\rho}/p) \rightarrow H^1(K, V_{\rho}/p/V_{\rho}/p[a_i])$ induced by the projection map

$$V_{\rho}/p \rightarrow V_{\rho}/p/V_{\rho}/p[a_i].$$

Then $(c^w)^{\psi} = c^w$ and it is independent of the choice of representatives a_1, \cdots, a_n.

Theorem 1.1. Let p be such that

$$(p, ND\phi(N)\Lambda_N) = 1.$$

Suppose that V_{ρ}/p is a simple $\text{Aut}_{L,1}(V_{\rho}/p)$-module and suppose that $\text{Gal}(\overline{L}/L)$ does not act trivially on V_{ρ}/p. Suppose further that the eigenvalues of $\text{Fr}(v)$ acting on V_{ρ}^k are not equal to 1 modulo p for v dividing $NN_A\Lambda_N$. Assume that $P(\phi_1)^w \neq 0$ in $H^1(K, V_{\rho}/p)^w$. Then the ψ-eigenspace of the Selmer group S^ψ has rank 1 over $\mathcal{O}_{F,\rho}/p$.

To prove Theorem 1.1 we first consider the p-adic étale realization of the twisted motive V associated to f and ψ in the middle étale cohomology of the associated Kuga-Sato variety. This provides us with a p-adic Abel-Jacobi map that lands in the Selmer group S. Next, we construct an Euler system of generalized Heegner cycles which were first considered by Bertolini, Darmon and Prasanna in [4]. These algebraic cycles lie in the domain of the p-adic Abel Jacobi map. In order to bound the rank of the ψ-eigenspace of the Selmer group S^ψ, we apply Kolyvagin’s descent using local Tate duality, the local reciprocity law, an appropriate global pairing of S and Cebotarev’s density theorem.

Our development is an adaptation of Nekovář’s techniques [17] and Bertolini and Darmon’s approach [2]. The main novelty is that the algebraic Hecke character ψ is of infinite type. In particular, the Galois representation associated to V is four-dimensional over $\mathcal{O}_{F,\rho}/p$.

2 Motive associated to a modular form and a Hecke character

In this section, we describe the construction of the four dimensional $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$-representation

$$V_{\rho} = (V_f \otimes \mathcal{O}_{F} \otimes \mathbb{Z}_p) V_{\psi},$$

where ρ is a prime of F dividing p. Denote by $Y_1(N)$ the affine modular curve over \mathbb{Q} parametrising elliptic curves with level $\Gamma_1(N)$. Let $j : Y_1(N) \rightarrow X_1(N)$ be its proper compact desingularization classifying generalized elliptic curves of level $\Gamma_1(N)$. The assumption $N \geq 5$ allows for the definition of the generalized universal elliptic curve $\pi : \mathcal{E} \rightarrow X_1(N)$. Denote by W_r the Kuga-Sato variety of dimension $r + 1$, that is a compact desingularization of the r-fold fiber product of \mathcal{E} over $X_1(N)$. We let W be the $2r + 1$-dimensional variety defined by

$$W = W_r \times A^r,$$

where A is as in Section 1. We denote by $[\alpha]$ the element of $\text{End}_{K_1}(A) \otimes \mathbb{Z} \otimes \mathbb{Q}$ corresponding to an element α of K. Given two non-singular varieties X and Y over a number field, the group of correspondences $\text{Corr}^m(X, Y) = \text{CH}^{\dim(X) + m}(X \times Y)$ is the group of algebraic cycles of codimension
\[\dim(X) + m \text{ on } X \times Y \text{ modulo rational equivalence, (see [3] Section 2) for more details). Consider the projectors} \]
\[e^{(1)}_A = \left(\frac{\sqrt{-D} + \sqrt{-D}}{2\sqrt{-D}} \right)^r \quad \text{and} \quad e^{(2)}_A = \left(\frac{\sqrt{-D} - \sqrt{-D}}{2\sqrt{-D}} \right)^r, \]
and
\[e_A = e^{(1)}_A \circ e^{(2)}_A \]
in \(\mathbb{Q}[\text{End}(A)]^r \). These projectors \(e^{(1)}_A, e^{(2)}_A \) and \(e_A \) belong to the group of correspondences
\[\text{Corr}^0(A', A')_{\mathbb{Q}} = \text{Corr}^0(A', A') \otimes \mathbb{Z} \mathbb{Q} \]
from \(A' \) to itself. Let
\[\Gamma_r = (\mathbb{Z}/N \rtimes \mu_2)^r \rtimes \Sigma_r \]
where \(\mu_2 = \{ \pm 1 \} \) and \(\Sigma_r \) is the symmetric group on \(r \) elements. Then \(\Gamma_r \) acts on \(W_r \), (see [22] Sections 1.1.0 and 1.1.1) for more details.) The projector \(e_W \) in \(\mathbb{Z} \left[\frac{1}{2Nr!} \right][\Gamma_r] \) associated to \(\Gamma_r \), called Scholl’s projector, belongs to the group of zero correspondences \(\text{Corr}^0(W_r, W_r)_{\mathbb{Q}} \) from \(W_r \) to itself over \(\mathbb{Q} \), (see [3] Section 2.1). Let
\[e_r = e_W e_A, \] (1)
be the projector in the group of zero correspondences \(\text{Corr}^0(W, W)_{\mathbb{Q}} \) from \(W \) to itself over \(\mathbb{Q} \). We consider the sheafs
\[\mathcal{F} = j_* \text{Sym}^r(R^1\pi_* \mathbb{Z}_p) \quad \text{and} \quad \mathcal{F}_A = j_* \text{Sym}^r(R^1\pi_* \mathbb{Z}_p) \otimes e_A H^r_{\text{et}}(\overline{A'}, \mathbb{Z}_p). \]

Proposition 2.1. The étale cohomology group
\[H^1_{\text{et}}(X_1(N) \otimes \overline{\mathbb{Q}}, \mathcal{F}_A) \]
is isomorphic to
\[e_r H^{2r+1}_{\text{et}}(\overline{W} \otimes \overline{\mathbb{Q}}, \mathbb{Z}_p) \]
and
\[H^1_{\text{et}}(X_1(N) \otimes \overline{\mathbb{Q}}, \mathcal{F}) \otimes e_A H^r_{\text{et}}(\overline{A'}, \mathbb{Z}_p). \]

Also, we have
\[e_r H^i_{\text{et}}(\overline{W} \otimes \overline{\mathbb{Q}}, \mathbb{Z}_p) = 0 \]
for all \(i \neq 2r + 1 \).

Proof. The proof is a combination of [22] theorem 1.2.1 and [4] proposition 2.4]. Note that the proof in [22] theorem 1.2.1 involves \(\mathbb{Q}_p \) coefficients but it is still valid in our setting, (see the Remark following [17] Proposition 2.1). \(\square \)
Let $B = \Gamma_0(N)/\Gamma_1(N)$. We define
\[
\tilde{V} = e_B H^1_\text{et}(X_1(N) \otimes \mathbb{Q}, \mathbb{F}_A)(r+1)
\]
where $e_B = \frac{1}{|B|} \sum_{b \in B} b$. Given rational primes ℓ coprime to $NN_A N_{\psi}$, the Hecke operators T_ℓ provide correspondences on $X_1(N)$ [22], inducing endomorphisms of \tilde{V}. Letting
\[
I = \text{Ker} \{ T_\ell \mapsto a_\ell b_\ell, \ \forall \ell \nmid NN_A N_{\psi} \},
\]
we can define the (f, ψ)-isotypic component of \tilde{V} by
\[
V = \tilde{V}/I\tilde{V}.
\]
Hence, there is a map $m : \tilde{V} \to V$ that is equivariant under the action of Hecke operators T_ℓ, for ℓ not dividing $NN_A N_{\psi}$ and under the action of the Galois group Gal(\mathbb{Q}/\mathbb{Q}). The f-isotypic component of $e_B H^1_\text{et}(X_1(N) \otimes \mathbb{Q}, \mathbb{F}_A)(r+1)$ gives rise (by extending scalars appropriately) to V_f and $e_A H^1_\text{et}(\mathbb{N}, \mathbb{Z}_p)(r+1)$ gives rise to V_ψ. They are free $\mathcal{O}_F \otimes \mathbb{Z}_p$-modules of rank 2. Hence,
\[
V_\phi = (V_f \otimes \mathcal{O}_F \otimes \mathbb{Z}_p, V_\psi)_\phi
\]
is a four dimensional representation of Gal(\mathbb{Q}/\mathbb{Q}) over \mathcal{O}_F, ϕ with coefficients in
\[
\text{End}(A/\mathbb{Q}) = \bigoplus_{\sigma \in \text{Gal}(\mathbb{Q}/\mathbb{Q})} \text{Hom}(A, A^\sigma).
\]

3 p-adic Abel-Jacobi map

We use Proposition [24] to view the p-adic étale realization of the twisted motive V associated to f and ψ in the middle étale cohomology of the associated Kuga-Sato varieties. For an integer n with $(n, pNN_A N_{\psi}) = 1$, let
\[
L_n = L_1 \cdot K_n
\]
be the compositum of the ring class field K_n of K of conductor n with the ray class field L_1 of K of conductor N. Consider the p-adic étale Abel-Jacobi map
\[
\text{CH}^{r+1}(W/L_n)_0 \to H^1(L_n, H^{2r+1}_{\text{et}}(W \otimes \mathbb{Q}, \mathbb{Z}_p(r+1)))
\]
where $\text{CH}^{r+1}(W/L_n)_0$ is the group of homologically trivial cycles of codimension $r+1$ on W defined over L_n, modulo rational equivalence. This map factors through $e_r(\text{CH}^{r+1}(W/L_n)_0 \otimes \mathbb{Z}_p)$ as the Abel-Jacobi map commutes with correspondences on W. Composing the Abel-Jacobi map with the projectors e_r and e_B and with $m : \tilde{V} \to V$, we obtain a map
\[
\Phi_{f, \psi, L_n} : e_r(\text{CH}^{r+1}(W/L_n)_0 \otimes \mathbb{Z}_p) \to H^1(L_n, V),
\]
which is $T[\text{Gal}(L_n/\mathbb{Q})]$-equivariant.
Conjectures and motivation. Beilinson [1, Conjecture 5.9] predicts that
\[\dim Q e_r CH^{r+1}(W/K)_0 = \ord_{s=r+1} L(f \otimes \theta_{\psi}, s). \]

Bloch and Kato [5] conjecture that
\[\Phi_{f,\psi,K} : e_r CH^{r+1}(W/K)_0 \otimes Q_{\mathbb{Q}} \rightarrow S \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \]
is an isomorphism. As a consequence, one expects that
\[\dim Q_p (\text{Im}(\Phi_{f,K}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) = \ord_{s=r+1} L_p(f \otimes \theta_{\psi}, s). \]

In certain settings to be relaxed in his forthcoming work, Shnidman [23, Remark X.2] relates
\[L'(f \otimes \theta_{\psi}, r+1) \] to the complex valued height \[\langle \cdot, \cdot \rangle_B \] of \[\Delta_{\phi_1} \] defined by Beilinson [1], that is
\[L'(f \otimes \theta_{\psi}, r+1) = \langle \Delta_{\phi_1}, \Delta_{\phi_1} \rangle_B \]
up to an explicit constant. However, it is worth noting that the pairing \[\langle \cdot, \cdot \rangle_B \] is not known to be non-degenerate.

Kolyvagin’s results [14] combined with those of Gross and Zagier [12] prove the Birch and Swinnerton-Dyer conjecture for analytic rank less than or equal to 1. This is the particular case of the Beilinson-Bloch-Kato conjectures where the modular form \(f \) is associated to an elliptic curve and \(\psi \) is the trivial character. Nekovář’s results [17, 18] that correspond to the setting where \(\psi \) is trivial provide further evidence towards a \(p \)-adic analog of the Beilinson-Bloch-Kato conjecture of the form
\[\dim Q_p (\text{Im}(\Phi_{f,K}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) = \ord_{s=r+1} L_p(f \otimes \theta_{\psi}, s) \]
due to Perrin-Riou [6, section 2.8], [19]. Shnidman [23] relates the order of vanishing
\[\ord_{s=r+1} L_p(f \otimes \theta_{\psi}, s) \]
of the \(p \)-adic \(L \)-function at \(s = r + 1 \) to the height of the image by the \(p \)-adic Abel-Jacobi map of an appropriate generalized Heegner cycle of conductor 1. In this article, we prove that
\[\dim Q_p (\text{Im}(\Phi_{f,K}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) = 1. \]

4 Generalized Heegner cycles

We describe the construction of generalized Heegner cycles following Bertolini, Darmon and Prasanna [4]. Consider pairs \((\phi_i, A_i)\) where \(A_i \) is an elliptic curve with level \(N \) structure and
\[\phi_i : A \rightarrow A_i \]
is an isogeny over \(\mathbb{K} \). Two pairs
\[(\phi_i, A_i), (\phi_j, A_j) \]
are said to be *isomorphic* if there is a K-isomorphism $\alpha : A_i \rightarrow A_j$ satisfying $\alpha \circ \varphi_i = \varphi_j$. Recall that \mathcal{N} is an ideal of \mathcal{O}_K such that $\mathcal{O}_K / \mathcal{N} = \mathbb{Z} / N\mathbb{Z}$. Let $\text{Isog}^K(A)$ denote the isomorphism classes of pairs (φ_i, A_i) with $\ker(\varphi_i) \cap A[\mathcal{N}]$ trivial. For (φ_i, A_i) in $\text{Isog}^K(A)$, we associate a codimension $r + 1$ cycle on W

$$\Upsilon_{\varphi_i} = \text{graph}(\varphi_i) \subset (A \times A_i)' \simeq (A_i)' \times A' \subset W_r \times A'$$

and define a *generalized Heegner cycle*

$$\Delta_{\varphi_i} = e_r \Upsilon_{\varphi_i}.$$

We view $\text{graph}(\varphi_i)$ as a subset of $A_i \times A$. Denote by D_{A_i} the element

$$(\text{graph}(\varphi_i) - 0 \times A - \deg(\varphi_i)(A_i \times 0)) \text{ in } NS(A_i \times A),$$

where $NS(A_i \times A)$ is the Néron-Severi group of $A_i \times A$. Then by an adaptation of [18, Paragraph II.3.2], we have

$$\Delta_{\varphi_i} = D_{A_i}'$$

Let us assume that the index i of A_i indicates that $\text{End}(A_i)$, which is an order in \mathcal{O}_K, has conductor i. Then Δ_{φ_i} is defined over the compositum of the abelian extension \tilde{K} of K over which the isomorphism class of A is defined, with the ring class field K_i of conductor i. Since \tilde{K} is the smallest extension of K_1 over which $\text{Gal}(\tilde{K} / \tilde{K})$ acts trivially on $A[\mathcal{N}]$, it is equal to the ray class field L_1 of K of conductor \mathcal{N}. Therefore, Δ_{φ_i} is defined over

$$L_i = L_1 K_i;$$

Hence,

$$\Delta_{\varphi_i} \text{ belongs to } \text{CH}^{r+1}(W/L_i).$$

In fact, Δ_{φ_i} is homologically trivial on W as shown in [4, proposition 2.7]. In the rest of this section, we consider elements (φ_i, A_i) and (φ_j, A_j) in $\text{Isog}^K(A)$.

Lemma 4.1. Consider the map

$$g \times I : A_i \times A \rightarrow A_j \times A,$$

where $g : A_i \rightarrow A_j$ is an isogeny of elliptic curves and $I : A \rightarrow A$ is the identity map. Then

$$(g \times I)_* D_{A_i} = \deg(g) \frac{\deg(\varphi_i)}{\deg(\varphi_j)} D_{A_j};$$

Proof. We denote the intersection pairing of two divisors by a dot. We have

$$(g \times I)_* D_{A_i} \cdot (g \times I)_* D_{A_i} = \deg(g)^2 D_{A_i} \cdot D_{A_i};$$
where

\[D_{A_i} \cdot D_{A_i} = (\text{graph}(\varphi_i) - 0 \times A - \deg(\varphi_i)A_i \times 0) \cdot (\text{graph}(\varphi_i) - 0 \times A - \deg(\varphi_i)A_i \times 0) \]

\[= \text{graph}(\varphi_i) \cdot \text{graph}(\varphi_i) + 0 \times A \cdot 0 \times A + \deg(\varphi_i)A_i \times 0 \cdot \deg(\varphi_i)A_i \times 0 \]

\[- 2 \text{graph}(\varphi_i) \cdot 0 \times A - 2 \text{graph}(\varphi_i) \cdot \deg(\varphi_i)A_i \times 0 + 2 \deg(\varphi_i)A_i \times 0 \cdot 0 \times A \]

\[= 0 + 0 - 2 \deg^2(\varphi_i) - 2 \deg(\varphi_i) + 2 \deg(\varphi_i) \]

\[= -2 \deg^2(\varphi_i). \]

In the previous computation, the equality \(\text{graph}(\varphi_i) \cdot \text{graph}(\varphi_i) = 0 \) follows from the implication

\[(x, \varphi_i(x)) = (x, \varphi_i(x) + P) \implies P = 0 \]

for a translation of \(\varphi_i(x) \) by some quantity \(P \). Hence,

\[(g \times I)_* D_{A_i} \cdot (g \times I)_* D_{A_i} = -2 \deg(g)^2 \deg^2(\varphi_i). \]

The induced map

\[(g \times I)_*: NS(A_i \times A) \to NS(A_j \times A) \]

respects the subgroups generated by complex multiplication cycles. Then, since

\[(g \times I)_* D_{A_i} = k D_{A_j}, \]

where \(A_j = g(A_i) \) and \(k > 0 \), we have

\[(g \times I)_* D_{A_i} \cdot (g \times I)_* D_{A_i} = k^2 D_{A_j} \cdot D_{A_j} = -2k^2 \deg^2(\varphi_j). \]

The equality \(-2 \deg(g)^2 \deg^2(\varphi_i) = -2k^2 \deg^2(\varphi_j)\) then implies that

\[k = \deg(g) \frac{\deg(\varphi_i)}{\deg(\varphi_j)}, \]

and

\[(g \times I)_* D_{A_i} = \deg(g) \frac{\deg(\varphi_i)}{\deg(\varphi_j)} D_{A_j}. \]

\[\square \]

5 Euler system properties

We study certain global and local norm compatibilities of generalized Heegner cycles satisfying the properties of Euler systems. We have \(\mathcal{O}_F \otimes \mathbb{Z}_p = \bigoplus_{p \mid \mathfrak{p}} \mathcal{O}_{F, \mathfrak{p}} \), where \(\mathcal{O}_{F, \mathfrak{p}} \) is the completion of
\(\mathcal{O}_F \) at the prime \(\wp \) dividing \(p \). Recall that \(V_\wp = (V_f \otimes \mathcal{O}_F V_\wp)_{\wp} \) where \(\wp \) is a prime of \(F \) dividing \(p \).

For a Galois representation \(V \),

\[
F(V)
\]

will designate the smallest extension of \(F \) such that \(\text{Gal}(\overline{F}/F(V)) \) acts trivially on \(V \). We denote by \(\text{Frob}_v(F_1/F_2) \) the conjugacy class of the Frobenius substitution of the prime \(v \in F_2 \) in \(\text{Gal}(F_1/F_2) \) and by \(\text{Frob}_\infty(F_1/\mathbb{Q}) \) the conjugacy class of the complex conjugation \(\tau \) in \(\text{Gal}(F_1/\mathbb{Q}) \). A rational prime \(\ell \) is called a Kolyvagin prime if

\[
(\ell, NDN_{A\mathbb{F}} p) = 1 \quad \text{and} \quad a_\ell b_\ell \equiv \ell + 1 \equiv a_\ell^2 - b_\ell^2 + 4 \equiv 0 \mod p.
\]

Let

\[
L = K(\mu_p)(V_\wp/p),
\]

where \(\mu_p \) is the group of \(p \)-th roots of unity. Condition (2) is equivalent to

\[
\text{Frob}_\ell (L/\mathbb{Q}) = \text{Frob}_\infty (L/\mathbb{Q}).
\]

Indeed, it is enough to compare the characteristic polynomial of the complex conjugation \((x^2 - 1)^2 = x^4 - 2x^2 + 1 \) acting on \(V_\wp/p \) with roots \(-1, 1\), each with multiplicity 2, with the twist by \(r + 1 \) of the characteristic polynomial of the Frobenius substitution at \(\ell \) acting on \(V_\wp/p \) with roots

\[
\alpha_1,\alpha_2, \alpha_3, \alpha_4 \quad \text{and} \quad \alpha_2 \alpha_4
\]

satisfying

\[
\alpha_1 \alpha_2 = \ell', \quad \alpha_1 + \alpha_2 = b_\ell, \quad \alpha_3 \alpha_4 = \ell^{r+1}, \quad \alpha_3 + \alpha_4 = a_\ell.
\]

The characteristic polynomial of \(\text{Frob}(\ell) \) acting on \(V_\wp/p \) is

\[
(x - \alpha_1)(x - \alpha_2)(x - \alpha_3)(x - \alpha_4)
\]

\[
= (x^2 - (\alpha_1 \alpha_3 + \alpha_1 \alpha_4)x + \alpha_1^2 \alpha_3 \alpha_4)(x^2 - (\alpha_2 \alpha_3 + \alpha_2 \alpha_4)x + \alpha_2^2 \alpha_3 \alpha_4)
\]

\[
= (x^2 - \alpha_2 \alpha_4 x + \ell^{r+1} \alpha_1^2)(x^2 - \alpha_2 \alpha_1 x + \ell^{r+1} \alpha_2^2)
\]

We use the equality \((\alpha_1 + \alpha_2)^2 = \alpha_1^2 + \alpha_2^2 + 2\alpha_1 \alpha_2\) that is \(b_\ell^2 - 2\ell' = \alpha_1^2 + \alpha_2^2 \) to conclude that the latter equals

\[
x^4 - (\alpha_2 a_\ell + \alpha_4 a_\ell) x^3 + (\ell^{r+1} \alpha_2^2 + \ell^{r+1} \alpha_2^2 + \alpha_1 \alpha_2 a_\ell^2) x^2
\]

\[
- \ell^{r+1} (\alpha_1 a_\ell \alpha_2^2 + \alpha_2 a_\ell \alpha_1^2) x + \ell^{2r+2} \alpha_1^2 \alpha_2^2
\]

\[
= x^4 - a_\ell b_\ell x^3 + (\ell^{r+1} b_\ell^2 - 2\ell^{2r+1} + a_\ell^2 \ell') x^2 - \ell^{2r+1} a_\ell (\alpha_1 + \alpha_2)x + \ell^{4r+2}
\]

\[
= x^4 - a_\ell b_\ell x^3 + (\ell^{r+1} b_\ell^2 - 2\ell^{2r+1} + a_\ell^2 \ell') x^2 - \ell^{2r+1} b_\ell a_\ell x + \ell^{4r+2}.
\]

To twist this characteristic polynomial by \(\ell^{r+1} \), it is enough to map \(x \mapsto \ell^{r+1}x \). We obtain

\[
\ell^{4r+4} x^4 - a_\ell b_\ell \ell^{3r+3} x^3 + \ell^{2r+2} (\ell^{r+1} b_\ell^2 - 2\ell^{2r+1} + a_\ell^2 \ell') x^2 - \ell^{3r+2} b_\ell a_\ell x + \ell^{4r+2}
\]

\[
= \ell^{4r+4} \left(x^4 - a_\ell b_{\ell_0} \ell^{3r+3} x^3 + \frac{\ell^{r+1} b_\ell^2 - 2\ell^{2r+1} + a_\ell^2 \ell'}{\ell^{2r+2}} x^2 - \frac{b_\ell a_\ell}{\ell^{2r+2}} x + \frac{1}{\ell^2} \right).
\]
On the one hand, using the congruences
\[a_\ell b_\ell \equiv \ell + 1 \equiv a_\ell^2 - b_\ell^2 + 4 \equiv 0 \mod p, \]
we find that the characteristic polynomial
\[x^4 - 2x^2 + 1 \]
of the complex conjugation \(\tau \) acting on \(V_p/p \) is congruent to the characteristic polynomial of \(\text{Frob}(\ell) \) acting on \(V_p/p \). On the other hand, comparing the action of the Frobenius element \(\text{Frob}_\ell \) and the complex conjugation \(\tau \) on \(\zeta_p \), where \(\zeta_p \) is a \(p \)-th root of unity, we obtain
\[\zeta_p^\ell = \text{Frob}(\zeta_p) = \text{Frob}_1(\zeta_p) = \zeta_p^{-1}. \]
This implies that \(\ell \equiv -1 \mod p \). As a consequence, Condition (2) is necessary to satisfy Equality (3).

Let \(n = \ell_1 \cdots \ell_k \) be a squarefree integer where \(\ell_i \) is a Kolyvagin prime for \(i = 1, \ldots, k \). The Galois group \(\text{Gal}(K_n/K_1) \) is the product over the primes \(\ell \) dividing \(n \) of the cyclic groups
\[G_\ell = \text{Gal}(K_\ell/K_1) \]
of order \(\ell + 1 \). We denote by \(\sigma_\ell \) a generator of \(G_\ell \). The extensions \(L_\ell \) and \(K_\ell \) are disjoint over \(K_1 \). Indeed, if \(I = L_1 \cap K_\ell \) is a non-trivial extension of \(K_1 \), then \(\text{Gal}(I/K_1) = \prod_{\ell} \text{Gal}(K_{\ell_i}/K) \) for some \(\ell_i \) dividing \(n \). This implies that the primes \(\ell_i \) ramify in \(I \) and hence also in \(L_1 \), a contradiction since \((n,N) = 1 \). Hence
\[G_n = \text{Gal}(L_n/L_1) \cong \text{Gal}(K_n/K_1). \]

The Frobenius condition on \(\ell \) implies that it is inert in \(K \). Denote by \(\lambda \) the unique prime in \(K \) above \(\ell \). Writing \(n = n \ell m \), we have that \(\lambda \) splits completely in \(L_m \) since it is unramified in \(L_m \) and has the same image as \(\text{Frob}_\infty(L/K) = \tau^2 = Id \) by the Artin map. A prime \(\lambda_m \) of \(L_m \) above \(\lambda \) ramifies completely in \(L_n \). We denote by \(\lambda_n \) the unique prime in \(L_n \) above \(\lambda_m \). Consider the image of \(\Delta_{\phi_n} \) by the Abel-Jacobi map
\[\Phi_{f,\psi,L_n} : c_f(CH^{r+1}(W/L_n)0 \otimes \mathbb{Z}_p) \rightarrow H^1(L_n,V). \]

Proposition 5.1. Consider \((A_n, \varphi_n) \sim (A_m, \varphi_m) \in \text{Isog}^V(A)\) where \(n = \ell m \) for an odd prime \(\ell \). Then
\[T_\ell \Phi_{f,\psi,L_m} (\Delta_{\phi_n}) = \text{cor}_{L_n,L_m} \Phi_{f,\psi,L_n} (\Delta_{\phi_n}) = a_\ell b_\ell \Phi_{f,\psi,L_m} (\Delta_{\phi_n}). \]

Proof. By [21, corollary 11.4],
\[T_\ell (\Delta_{\phi_n}) = \sum_{n_i} \Delta_{\phi_{n_i}}, \]
where the generalized Heegner cycles \(\Delta_{\phi_n} \) correspond to elements
\[(A_{n_i}, \varphi_{n_i}) \sim (A_m, \varphi_m)\]
in $\text{Isog}^\nu(A)$ for elliptic curves A_n that are ℓ-isogenous to A_m respecting level N structure. These elliptic curves A_n correspond to gA_m where

$$g \in \text{Gal}(L_n/L_m) \cong \text{Gal}(K_n/K_m) \cong \text{Gal}(K_1/K_1).$$

Hence

$$\sum n_i \Delta_{\phi_n} = \sum_{g \in \text{Gal}(L_n/L_m)} g \Delta_{\phi_n} = \text{cor}_{L_n/L_m}(\Delta_{\phi_n}) = a_\ell b_\ell \Delta_{\phi_n},$$

where the last equality follows from the action of T_ℓ on V. Finally, we apply the p-adic Abel-Jacobi map which commutes with T_ℓ to obtain $T_\ell \Phi_{f,\psi,L_n}(\Delta_{\phi_n}) = \text{cor}_{L_n/L_m} \Phi_{f,\psi,L_n}(\Delta_{\phi_n}). \quad \Box$

For an element $c \in H^1(F,M)$, we denote by $\text{res}_n(c) \in H^1(F_v,M)$ the image of c by the restriction map $H^1(F,M) \rightarrow H^1(F_v,M)$ induced from the inclusion

$$\text{Gal}(\overline{F}/F_v) \rightarrow \text{Gal}(\overline{F}/F).$$

Proposition 5.2. Consider $(A_n, \phi_n) \sim (A_m, \phi_m) \in \text{Isog}^\nu(A)$ where $n = \ell m$. Then

$$\text{res}_{\lambda_m} \Phi_{f,\psi,L_n}(\Delta_{\phi_n}) = k \text{Frob}_\ell(L_n/L_m) \text{res}_{\lambda_m} \Phi_{f,\psi,L_m}(\Delta_{\phi_m})$$

for $k = \ell \frac{\deg(\phi_i)}{\deg(\phi_j)}$.

Proof. Since λ_m completely ramifies in L_n, we have

$$\mathfrak{q}_{L_n}/\lambda_m \cong \mathfrak{q}_{L_m}/\lambda_m,$$

which is isomorphic to the finite field with ℓ^2 elements as ℓ is inert in K. As a consequence, the reductions of the elliptic curves A_n and A_m at λ_m and λ_m are supersingular. Hence the ℓ-isogeny from A_n to A_m reduces to the Frobenius morphism Frob_ℓ. Therefore, we have $\text{Frob}_\ell(A_m) \equiv A_n \mod \lambda_n$. By Proposition 4.1, this implies

$$(\text{Frob}_\ell \times I)_* D_{\lambda_m} \equiv k D_{\lambda_n} \mod \lambda_n$$

where $k = \ell \frac{\deg(\phi_i)}{\deg(\phi_j)}$ from which the result follows. \quad \Box

6 Kolyvagin cohomology classes

We denote by

$$\Phi_{f,\psi,L_n}(\Delta_{\phi_n}) \in H^1(L_n,V_{\phi_n})$$

the image of $\Phi_{f,\psi,L_n}(\Delta_{\phi_n}) \in H^1(L_n,V)$ by the map $H^1(L_n,V) \rightarrow H^1(L_n,V_{\phi_n})$ induced by the projection $V \rightarrow V_{\phi_n}$. Let

$$y_{\phi_n} = \text{red}(\Phi_{f,\psi,L_n}(\Delta_{\phi_n}) \in H^1(L_n,V_{\phi_n}/p)$$
be the image of $\Phi_{f,\psi,L_n}(\Delta_{\phi_n}) \in H^1(L_n, V_{\psi})$ by the map $H^1(L_n, V_{\psi}) \to H^1(L_n, V_{\psi}/p)$ induced by the projection $V_{\psi} \to V_{\psi}/p$. We use certain operators \(^{[4]}\) defined by Kolyvagin in order to lift the cohomology classes $\gamma_{\phi_n} \in H^1(L_n, V_{\psi}/p)$ to Kolyvagin cohomology classes $P(\phi_n) \in H^1(K, V_{\psi}/p)$, for appropriate n.

Lemma 6.1. For all n,

$$H^0(L_n, V_{\psi}/p) = H^0(L_1, V_{\psi}/p) = 0$$

and $\text{Gal}(L_n(V_{\psi}/p)/L_n) \cong \text{Gal}(L_1(V_{\psi}/p)/L_1)$

Proof. The extensions L_n/L_1 and $L_1(V_{\psi}/p)/L_1$ are unramified outside primes dividing n and $N_\psi N_p$. Therefore, $L_n \cap L_1(V_{\psi}/p)$ is unramified over L_1 and is hence contained in L_1, the maximal unramified extension of K of conductor \mathcal{N}. Hence,

$$H^0(L_n, V_{\psi}/p) = H^0(L_1, V_{\psi}/p).$$

The result follows from the assumption that V_{ψ}/p is a simple $\text{Aut}_{L_1}(V_{\psi}/p)$-module and $\text{Gal}(L_1/L_1)$ does not act trivially on V_{ψ}/p. \(\square\)

Proposition 6.2. The restriction map

$$\text{res}_{L_1, L_n} : H^1(L_1, V_{\psi}/p) \to H^1(L_n, V_{\psi}/p)^{G_n}$$

is an isomorphism.

Proof. Recall that $G_n = \text{Gal}(L_n/L_1)$ and let $G = \text{Gal}(\overline{\mathbb{Q}}/L_1)$. The result follows from the inflation-restriction sequence

$$0 \to H^1(L_n/L_1, (V_{\psi}/p)^G) \xrightarrow{\text{inf}} H^1(L_1, V_{\psi}/p) \xrightarrow{\text{res}} H^1(L_n, V_{\psi}/p)^{G_n} \to H^2(L_n/L_1, (V_{\psi}/p)^G),$$

since $H^0(L_n, V_{\psi}/p) = 0$ by Lemma 6.1 \(\square\)

Let

$$\text{Tr}_\ell = \sum_{i=0}^{\ell} \sigma_i^\ell, \quad D_\ell = \sum_{i=1}^{\ell} i \sigma_i^\ell \quad \text{in } \mathbb{Z}[G_\ell]. \quad (4)$$

They are related by

$$(\sigma_\ell - 1)D_\ell = \ell + 1 - \text{Tr}_\ell. \quad (5)$$

Define

$$D_n = \prod_{\ell \mid \mathfrak{p}} D_\ell \in \mathbb{Z}[G_n].$$

14
Proposition 6.3.

\[D_n y_{\varphi_n} \in H^1(L_n, V_{\rho}/p)^{G_n}. \]

Proof. It is enough to show that for all \(\ell \) dividing \(n \),

\[(\sigma_\ell - 1)D_n y_{\varphi_n} = 0. \]

We have

\[(\sigma_\ell - 1)D_n = (\sigma_\ell - 1)D_lD_m = (\ell + 1 - \text{Tr}_\ell)D_m, \]

where the last equality follows by Relation (5). Since \(\text{res}_{L_m,L_n} \circ \text{cor}_{L_n,L_m} = \text{Tr}_\ell \),

\[(\ell + 1 - \text{Tr}_\ell)D_m = (\ell + 1)D_m \text{red}_{L_m}(\Phi_{f,\varphi,L_m}(\Delta_{\varphi_m})). \]

As a consequence, the cohomology classes \(D_n y_{\varphi_n} \in H^1(L_n, V_{\rho}/p)^{G_n} \) can be lifted to cohomology classes \(c(\varphi_n) \in H^1(L_1, V_{\rho}/p) \) such that

\[\text{res}_{L_1,L_n} c(\varphi_n) = D_n y_{\varphi_n}. \]

We define

\[P(\varphi_n) = \text{cor}_{L_1,K} c(\varphi_n) \text{ in } H^1(K, V_{\rho}/p). \]

For a place \(v \) of \(K \) and a cohomology class \(c \) in \(H^1(K, V_{\rho}/p) \), we denote by \(\text{res}_v(c) \) the image of \(c \) by the map \(H^1(K, V_{\rho}/p) \to H^1(K_v, V_{\rho}/p) \) induced by the inclusion \(G_{K_v} \hookrightarrow G_K \).

Proposition 6.4. Let \(v \) be a prime of \(L_1 \).

1. If \(v \vert N_A N y_{\varphi} N \), then \(\text{res}_v(P(\varphi_n)) \) is trivial.

2. If \(v \nmid N_A N y_{\varphi} N p \), then \(\text{res}_v(P(\varphi_n)) \) lies in \(H^1(K_v^w, V_{\rho}/p) \).

Proof. 1. We denote by

\[V_{\rho}/p^{\text{dual}} = \text{Hom}(V_{\rho}/p, \mathbb{Z}/p\mathbb{Z}(1)) \]

the local Tate dual of \(V_{\rho}/p \). The local Euler characteristic formula \([16]\) Section 1.2] yields

\[|H^1(K_v, V_{\rho}/p)| = |H^0(K_v, V_{\rho}/p)| \times |H^2(K_v, V_{\rho}/p)|. \]

Local Tate duality then implies

\[|H^1(K_v, V_{\rho}/p)| = |H^0(K_v, V_{\rho}/p)| \times |H^0(K_v, V_{\rho}/p^{\text{dual}})| = |H^0(K_v, V_{\rho}/p)|^2 \]
as V_{ρ}/p is self-dual. The Weil conjectures and the assumption on $Fr(v)$ imply that

$$(V_{\rho}/p)^{Fr(v)} = 0$$

where $< Fr(v) > = \text{Gal}(K^{ur}_v/K_v)$ and $I = \text{Gal}(\overline{K_v}/K^{ur}_v)$ is the inertia group. Therefore,

$$H^0(K_v,V_{\rho}/p) = ((V_{\rho}/p)^{Fr(v)}) = 0.$$

2. If v does not divide $N_\Lambda N_\Psi N_p$, then

$$\text{res}_{L_{1,v},L_{n,v}} c(\phi_h) = \text{res}_v D_n y_n \in H^1(\overline{L_{n,v'}}/L_{n,v}, V_{\rho}/p)$$

for v' above v in L_n. The exact sequence

$$\cdots \rightarrow H^1(L_{n,v'/L_{n,v}}, (V_{\rho}/p)^I) \rightarrow H^1(L_{n,v'}, V_{\rho}/p) \rightarrow \text{res}_{V} H^1(\overline{L_{n,v'}/L_{n,v}}, V_{\rho}/p) \rightarrow \cdots$$

allows us to view the cohomology class $\text{res}_v D_n y_n$ that belongs to $\text{Ker}(\text{res})$ as an element in

$$H^1(\overline{L_{n,v'}/L_{n,v}}, V_{\rho}/p).$$

Since v is unramified in L_n/L_1, then $\text{res}_v c(\phi_h)$ belongs to $H^1(\overline{L_{1,v'}/L_{1,v}}, V_{\rho}/p)$.

\[\square\]

7 Global extensions by Kolyvagin classes

We consider the restriction d of an element c of $H^1(K,V_{\rho}/p)$ to $H^1(L,V_{\rho}/p)$. Then d factors through some finite extension \tilde{L} of L. We denote by

$$L(c) = \tilde{L}^{\ker(d)}$$

the subfield of \tilde{L} fixed by $\ker(d)$. Note that $L(c)$ is an extension of L. In this section, we study extensions of L by Kolyvagin cohomology classes c and $P(\phi_\eta)$, where $P(\phi_\eta)$ will play a crucial role in the proof of Theorem 11. We recall the statement of the theorem.

Theorem 11. Let p be such that

$$(p, ND\phi(N)N_\Lambda) = 1.$$

Suppose that V_{ρ}/p is a simple $\text{Aut}_{L_1}(V_{\rho}/p)$-module and suppose that $\text{Gal}(\overline{L_1}/L_1)$ does not act trivially on V_{ρ}/p. Suppose further that the eigenvalues of $Fr(v)$ acting on V_{ρ}^L are not equal to 1 modulo p for v dividing $NN_\Lambda N_\Psi$. If $P(\phi_\eta)^\Psi$ is non-zero in $H^1(K,V_{\rho}/p)^\Psi$, then the Ψ-eigenspace of the Selmer group S^Ψ has rank 1 over $\delta_{F,\rho}/p$.

Recall that $L = K(\mu_p)(V_{\rho}/p)$.

16
Lemma 7.1. We have
\[H^1(\text{Aut}_K(V_{\rho}/p), V_{\rho}/p) = H^1(L/K, V_{\rho}/p) = 0. \]

Proof. First note that if \(p \nmid |\text{Aut}_K(V_{\rho}/p)| \), then
\[H^1(\text{Aut}_K(V_{\rho}/p), V_{\rho}/p) = 0. \]
If \(p \) divides \(|\text{Aut}_K(V_{\rho}/p)|\), then since \(V_{\rho}/p \) is irreducible as an \(\text{Aut}_K(V_{\rho}/p) \)-module, Dickson’s lemma [24, Theorem 6.21] implies that \(\text{Aut}_K(V_{\rho}/p) \) contains \(\text{SL}_2(F_q) \) for some \(q \). In particular, it contains \(2I \) where \(I \) is the identity map. Sah’s lemma [15, 8.8.1] states that if \(G \) is a group, \(M \) a \(G \)-representation, and \(g \) an element of Center(\(G \)), then the map \(x \mapsto (g^{-1})x \) is the zero map on \(H^1(G,M) \). Therefore, by Sah’s lemma, the map \(x \mapsto (2I-I)x = Ix \) is the zero map on \(H^1(\text{Aut}_K(V_{\rho}/p), V_{\rho}/p) \) implying that \(H^1(\text{Aut}_K(V_{\rho}/p), V_{\rho}/p) = 0 \). As a consequence, \(H^1(K(\mu_p), V_{\rho}/p) = 0 \) since \(p \) does not divide \(|\text{Gal}(K(\mu_p)/K)| = p-1 \).

We denote the Galois group \(\text{Gal}(L/K) \) by \(G \). The restriction map
\[r : H^1(K, V_{\rho}/p) \rightarrow H^1(L, V_{\rho}/p)^G = \text{Hom}_G(\text{Gal}(\overline{Q}/L), V_{\rho}/p) \]
has kernel
\[\text{Ker}(r) = H^1(L/K, V_{\rho}/p) = 0 \]
by Lemma 7.1. Consider the evaluation pairing
\[[,] : r(S) \times \text{Gal}(\overline{Q}/L) \rightarrow V_{\rho}/p. \] (6)
We denote by \(\text{Gal}_S(\overline{Q}/L) \) the annihilator of \(r(S) \). Let \(L^S \) be the extension of \(L \) fixed by \(\text{Gal}_S(\overline{Q}/L) \) and \(G_S \) the Galois group \(\text{Gal}(L^S/L) \).

Remark 7.2. The element \(P(\varphi_1) \) belongs to \(S \) by Proposition 6.4. Also, \(L(P(\varphi_1)) \) is a subfield of \(L^S \). Indeed, assume \(\rho \in \text{Gal}_S(\overline{Q}/L) \), then \([s, \rho] = 0 \) for all \(s \in S \). Hence, \(P(\varphi_1) \) defines a cocycle of \(S \) by
\[\rho \mapsto \rho(P(\varphi_1)) - P(\varphi_1) = 0. \]
This implies that \(\rho \) fixes \(L(P(\varphi_1)) \), a subfield of \(L^S \).

Proposition 7.3. There is a Kolyvagin prime \(q \) such that
\[\text{res}_\beta P(\varphi_1)^w \neq 0, \]
where \(\beta \) is a prime dividing \(q \) in \(K \).
Proof. By Ceboratév’s density theorem, there is a Kolyvagin prime \(q \) such that

\[
\text{Frob}_q(L^S / \mathbb{Q}) = \tau h, \quad h^{1+\tau} \notin \text{Gal}(L^S / L(P(\varphi_1)^\psi))
\]

for some \(h \) in \(\text{Gal}(L^S / L) \). The restriction of \(\tau h \) to \(L \) is indeed \(\tau \). Let \(\beta \) be a prime of \(L \) above \(q \). Since \(\text{Frob}_\beta(L(P(\varphi_1)^\psi) / L) = (\tau h)^2 \) does not fix \(P(\varphi_1)^\psi \), \(\beta \) is not in the kernel of the Artin map. Hence \(\beta \) does not split completely in \(L(P(\varphi_1)^\psi) \). Therefore, \(\text{res}_\beta P(\varphi_1)^\psi \neq 0 \). \(\square \)

Consider the following extensions

\[
\begin{align*}
H_0 &= H_1 H_2 \\
H_1 &= L(P(\varphi_1)) & v_0 & H_2 = L(P(\varphi_q)) \\
L &= K(\mu_p)(V_{\wp}/p)
\end{align*}
\]

where \(q \) is a Kolyvagin prime satisfying

\[
\text{res}_\beta P(\varphi_1)^\psi \neq 0
\]

for some \(\beta \) in \(L \) above \(q \) (see Proposition (7.3)). We define

\[
V_i = \text{Gal}(H_i/F) \quad \text{for } i = 0, 1, 2.
\]

An automorphism of \(L(P(\varphi_1))/L \) corresponds to the multiplication of the generators of \(L(P(\varphi_1)) \) over \(L \) by an element of \((V_\wp)_p \simeq V_\wp/p \). Hence

\[
V_1 = \text{Gal}(L(P(\varphi_1))/L) \simeq V_\wp/p.
\]

Similarly, we have \(V_2 \simeq V_\wp/p \). We recall that \(h \) is the class number of \(K \), and \(a_1, \cdots, a_h \) are a set of representatives of the ideal classes of \(\mathcal{O}_K \). For a cohomology class \(c \) in \(H^1(K, V_\wp/p) \), we defined

\[
c^\psi = \frac{1}{h} \sum_{i=1}^{h} \psi^{-1}(a_i) a_i \cdot c,
\]

where \(a_i \cdot c \) is the image of \(c \) by the map \(H^1(K, V_\wp/p) \rightarrow H^1(K, V_\wp/p/V_\wp/p [a_i]) \) induced by the projection map

\[
V_\wp/p \rightarrow V_\wp/p/V_\wp/p [a_i].
\]
Note that c^ψ is independent of the choice of representatives a_1, \ldots, a_h. Furthermore, $(c^\psi)^\psi = c^\psi$ lies in $H^1(K, V_{\phi}/p)^\psi$. We denote by
\[
H_1^\psi = L(P(\phi_1)^\psi), \quad H_2^\psi = L(P(\phi_q)^\psi), \quad H_2^\psi = L(P(\phi_q)^\psi),
\]
and we let
\[
V_i^\psi = \text{Gal}(H_i^\psi/H_i), \quad V_i^\psi = \text{Gal}(H_i^\psi/H_i), \quad \text{for } i = 1, 2.
\]
We will show that
\[
H_1^\psi \cap H_2^\psi = L.
\]

Lemma 7.4. There is an isomorphism of $\mathcal{O}_{F,\psi}/p$-modules
\[
H^1(K_{\lambda}^u/K_{\lambda}, V_{\phi}/p) \rightarrow H^1(K_{\lambda}^u, V_{\phi}/p)
\]
mapping $\text{res}_\lambda P(\phi_m)$ to $\text{res}_\lambda P(\phi_m)$. Also, $\text{res}_\lambda P(\phi_1)$ is ramified.

Proof. This is an adaptation of [8, Section 5] that uses the properties of the Euler system considered in Proposition 5.1 and Proposition 5.2.

Recall that τ denotes complex conjugation.

Proposition 7.5. The extensions H_1^ψ and H_2^ψ are linearly disjoint over L.

Proof. Linearly independent cocycles c_1 and c_2 of $H^1(K, V_{\phi}/p)$ over $\mathcal{O}_{F,\psi}/p$ can be viewed by Lemma (7.1) as linearly independent homomorphisms h_1 and h_2 in $\text{Hom}_{\text{Gal}(L/K)}(L, V_{\phi}/p)$ over $\mathcal{O}_{F,\psi}/p$. Linearly independent homomorphisms h_1 and h_2 induce linearly disjoint extensions $\mathcal{I}_{\text{Ker}(h_1)}$ and $\mathcal{I}_{\text{Ker}(h_2)}$ of L. Hence, if H_1 and H_2 were not linearly disjoint over L, we would have that
\[
u_1 c_1 + \nu_2 c_2 = 0, \quad \text{for some } \nu_1, \nu_2 \text{ in } (\mathcal{O}_{F,\psi}/p)^*,
\]
where
\[
c_1 = F(\phi_1)^\psi \quad \text{and} \quad c_2 = F(\phi_q)^\psi.
\]
Lemma (7.3) implies that $\text{res}_\beta P(\phi_q) = \text{res}_\beta P(\phi_1)$ is ramified for $\beta \in K$ dividing q and provides an isomorphism sending $\text{res}_\beta P(\phi_q)$ to $\text{res}_\beta P(\phi_q)$. The latter implies by Proposition (7.3) that $\text{res}_\beta P(\phi_q)$ is non-zero. This is inconsistent with the equality $u_1 c_1 + u_2 c_2 = 0$ since the nontrivial cocycles c_1, c_2 have different ramification properties.

8 Complex conjugation

We study the action of complex conjugation on the image by the p-adic Abel-Jacobi map of generalized Heegner cycles. Recall that D_{A_j} is the element
\[
(\text{graph}(\phi_j) - 0 \times A - \text{deg}(\phi_j)(A_j \times 0)) \text{ in } \text{NS}(A_j \times A).
\]
In this section, we write D_{A_j, ϕ_j} instead of D_{A_j} alone in order to keep track of the underlying map ϕ_j.

19
Lemma 8.1. There is an element σ in $\text{Gal}(K_j/K)$ such that

$$\tau \Phi(\Delta_{\phi_j})_{\rho} = (-1)^{\frac{\epsilon_L}{2}} \epsilon_L N^{r/2} \text{deg}^{-r}(\sigma) \sigma \Phi(\Delta_{\phi_j})_{\rho},$$

where ϵ_L is the sign of the functional equation of $L(f,s)$.

Proof. We have that $(\tau \times I)_*(D_{A_j,\phi_j}) = D_{\tau(A_j),\Phi_j}$. Article [10] shows that $\tau A_j = W_N(\sigma A_j)$ for some σ in $G(K_j/K)$, hence

$$(\tau \times I)_*(D_{A_j,\phi_j}) = D_{\tau(A_j),\Phi_j} = D_{W_N(\sigma A_j),W_N(\sigma \circ \phi_j)}.$$

Consider the map

$$W \times I : W_N \times A \rightarrow W_N \times A : ((E,P),A) \rightarrow ((E/\langle P \rangle,P'),A),$$

where P' is such that the Weil pairing $<P,P'>$ of P with P' satisfies $<P,P'> = \zeta_N$ for some choice ζ_N of an N-th root of unity ζ_N. Note that W has degree N. Also,

$$W,f(\tau)d_\tau d_\zeta = (-1)^{\frac{\epsilon_L}{2}} \epsilon_L N^{r/2} f(\tau)d_\tau d_\zeta.$$

This implies as in [17] Proposition 6.2] that

$$(W \times I)_* D_{W_N(\sigma A_j),W_N(\sigma \circ \phi_j)} = (-1)^{\frac{\epsilon_L}{2}} \epsilon_L N^{r/2} D_{W_N(\sigma A_j),W_N(\sigma \circ \phi_j)},$$

while Proposition [3.1] implies that the former equals $N^{r} \frac{\text{deg}^r(\phi_j)}{\text{deg}^r(\phi_j)} D_{\sigma A_j,\sigma \circ \phi_j}$. Hence,

$$D_{W_N(\sigma A_j),W_N(\sigma \circ \phi_j)} = (-1)^{\frac{\epsilon_L}{2}} \epsilon_L k_1 N^{r/2} D_{\sigma A_j,\sigma \circ \phi_j},$$

where $k_1 = \frac{\text{deg}^r(\phi_j)}{\text{deg}^r(\phi_j)}$. Applying Proposition [4.1] to the map $(\sigma \times I)$, we obtain

$$(\sigma \times I)_* (D_{A_j,\phi_j}) = k_2 D_{\sigma A_j,\sigma \circ \phi_j},$$

where $k_2 = \frac{\text{deg}^r(\sigma)}{\text{deg}^r(\phi_j)} = \text{deg}^r(\sigma) k_1$. Hence,

$$(\tau \times I)_* (D_{A_j,\phi_j}) = D_{W_N(\sigma A_j),W_N(\sigma \circ \phi_j)} = (-1)^{\frac{\epsilon_L}{2}} \epsilon_L N^{r/2} \text{deg}^{-r}(\sigma)(\sigma \times I)_*(D_{A_j,\phi_j}).$$

Therefore

$$\tau \Phi(\Delta_{\phi_j})_{\rho} = (-1)^{\frac{\epsilon_L}{2}} \epsilon_L N^{r/2} \text{deg}^{-r}(\sigma) \sigma \Phi(\Delta_{\phi_j})_{\rho}. \qed$$
Lemma 8.2. Let $\varepsilon = (-1)^{r_2} \varepsilon_k$ and $k = \deg^{-1}(\sigma) N^{r/2}$. Then

$$\tau P(\varphi_1)^\psi = \varepsilon k \sigma P(\varphi_1)^\overline{\psi} \text{ and } \tau P(\varphi_q)^\psi = -\varepsilon k \sigma P(\varphi_q)^\overline{\psi}.$$

Proof. For an element c in $H^1(K, V_{\psi}/p)$, we have that

$$\tau \cdot c^\psi = \frac{1}{h} \sum_{i=1}^{h} \overline{\psi}^{-1}(a_i) \tau \cdot (a_i \cdot c) = \frac{1}{h} \sum_{i=1}^{h} \overline{\psi}^{-1}(a_i) \tau (a_i \cdot c)\tau^{-1} = \frac{1}{h} \sum_{i=1}^{h} \overline{\psi}^{-1}(a_i) a_i \cdot \tau c \tau^{-1} = (\tau c)^\overline{\psi}.$$

For $c = P(\varphi_j)$ and σ in $\text{Gal}(K_j/K)$, we have that

$$\sigma \cdot c^\psi = \frac{1}{h} \sum_{i=1}^{h} \psi^{-1}(a_i) \sigma \cdot (a_i \cdot c) = \frac{1}{h} \sum_{i=1}^{h} \psi^{-1}(a_i) \sigma (a_i \cdot c)\sigma^{-1} = \frac{1}{h} \sum_{i=1}^{h} \psi^{-1}(a_i) a_i \cdot \sigma c \sigma^{-1} = (\sigma c)^\psi.$$

Hence

$$\tau P(\varphi_1)^\psi = (\tau P(\varphi_1))^\overline{\psi} = \varepsilon k \sigma P(\varphi_1)^\overline{\psi}.$$

The identity $\tau D_q = -D_q \tau$ indicates that

$$\tau P(\varphi_q)^\psi = (\tau P(\varphi_q))^\overline{\psi} = -\varepsilon k \sigma P(\varphi_q)^\overline{\psi}.$$

\[\square\]

For $(v_{11}, v_{12}, v_{21}, v_{22})$ in $V_1^\psi V_2^\psi V_1^\psi V_2^\psi$, we define

$$\tau(v_{11}, v_{12}, v_{21}, v_{22}) = (\varepsilon k \sigma \tau v_{12}, \varepsilon k \sigma \tau v_{11}, -\varepsilon k \sigma \tau v_{22}, -\varepsilon k \sigma \tau v_{21}).$$

We define

$$U_0 = \{(v_{11}, v_{12}, v_{21}, v_{22}) \mid \varepsilon k \sigma \tau v_{1i} + v_{1i}, -\varepsilon k \sigma \tau v_{2j} + v_{2j}, i, j = 1, 2 \text{ generate } V_{\psi}/p\}.$$

Then U_0^+ generates V_0^+. We let

$$L(U_0) = \{\ell \text{ rational prime } \mid \text{Frob}_\ell(H_0/\mathbb{Q}) = [\tau u, u \in U_0]\}.$$

9 Local to Global study

Local Tate duality. Let K_λ be a local field with residue field F_q and let A be a finite group with an unramified action of $\text{Gal}(K_\lambda^s/K_\lambda)$ killed by a prime p. Assume p divides $q - 1$ so that $\mu_p \subset K_\lambda$ and let $A' = \text{Hom}(A, \mu_p)$. We denote by K_λ^p, the maximal tamely ramified extension of K_λ, and by $H^1_{ur}(K_\lambda, *)$, the group $H^1(K_\lambda^p/K_\lambda, *)$. The natural pairing $A \times A' \rightarrow \mu_p$ yields the cup product pairing

$$H^1(K_\lambda, A) \times H^1(K_\lambda, A') \rightarrow H^2(K_\lambda, \mu_p) = \mathbb{Z}/p\mathbb{Z}$$.
which induces a perfect local Tate pairing

\[H^1(K_{\lambda}^{ur}/K_{\lambda}, A) \times H^1(K_{\lambda}', A') / H^1(K_{\lambda}^{ur}/K_{\lambda}, A) \rightarrow \mathbb{Z}/p\mathbb{Z}. \]

Let

\[\alpha : H^1(K_{\lambda}^{ur}/K_{\lambda}, A) \xrightarrow{\sim} A/(\phi - 1)A \]

be the evaluation map at the Frobenius element \(\phi \) where

\[Gal(K_{\lambda}^{ur}/K_{\lambda}) = \langle \phi \rangle. \]

Then \(\alpha \) is an isomorphism. The exact sequence of Galois groups

\[0 \rightarrow Gal(K_{\lambda}/K_{\lambda}') \rightarrow Gal(K_{\lambda}^{ur}/K_{\lambda}') \rightarrow Gal(K_{\lambda}^{ur}/K_{\lambda}) \rightarrow 0 \]

induces the exact sequence

\[H^1(K_{\lambda}'/K_{\lambda}^{ur}, A') \rightarrow H^1(K_{\lambda}^{ur}, A') \rightarrow H^1(K_{\lambda}'/K_{\lambda}^{ur}, A') \rightarrow 0, \]

where \(H^1(K_{\lambda}', A') = 0 \) since \(Gal(K_{\lambda}/K_{\lambda}') \) is a pro-\(q \) group. Therefore,

\[H^1(K_{\lambda}^{ur}, A') \simeq H^1(K_{\lambda}'/K_{\lambda}^{ur}, A') \simeq \text{Hom}(\mathbb{Z}/p\mathbb{Z}(1), A') \simeq \text{Hom}(\mu_p, A'). \]

Hence we have an isomorphism

\[H^1(K_{\lambda}^{ur}, A') \xrightarrow{\sim} \text{Hom}(\mu_p, A'). \]

The exact sequence of Galois cohomology groups

\[0 \rightarrow H^1(K_{\lambda}^{ur}/K_{\lambda}, A') \rightarrow H^1(K_{\lambda}, A') \rightarrow H^1(K_{\lambda}^{ur}/K_{\lambda}, A')^\phi \rightarrow 0 \]

allows us to identify \(H^1(K_{\lambda}, A')/H^1(K_{\lambda}^{ur}/K_{\lambda}, A') \) with

\[H^1(K_{\lambda}^{ur}, A')^\phi \simeq \text{Hom}(\mu_p, A')^\phi. \]

Hence, we obtain a perfect local pairing

\[\langle \cdot, \cdot \rangle_\lambda : H^1(K_{\lambda}^{ur}/K_{\lambda}, A) \times H^1(K_{\lambda}^{ur}, A')^\phi \rightarrow \mathbb{Z}/p\mathbb{Z}. \]

Set up of the proof. Given a Kolyvagin prime \(\ell \), the Frobenius condition implies that it is inert in \(K \). We denote by \(\lambda \) the prime of \(K \) lying above \(\ell \). We have a perfect local pairing

\[\langle \cdot, \cdot, \cdot \rangle_\ell : H^1(K_{\lambda}^{ur}/K_{\lambda}, (V_{\ell}/p)^{I_{\lambda}}) \times H^1(K_{\lambda}^{ur}/V_{\ell}/p) \rightarrow \mathbb{Z}/p, \]

where \(I_{\lambda} = Gal(K_{\lambda}/K_{\lambda}') \) and \(\mathcal{O}_{F, \ell} \)-linear isomorphisms

\[\{H^1(K_{\lambda}^{ur}/V_{\ell}/p)^{I_{\lambda}} \}_{\text{dual}} \simeq H^1(K_{\lambda}'/K_{\lambda}, (V_{\ell}/p)^{I_{\lambda}}) \simeq (V_{\ell}/p)^{I_{\lambda}}/(\phi - 1), \quad (7) \]
where ϕ generates $\text{Gal}(K^\text{ur}/K_{\lambda})$. We denote by
\[
\text{res}_{\lambda} : H^1(K, V_{\wp}/p) \longrightarrow H^1(K_{\lambda}, V_{\wp}/p)
\]
the restriction map from $H^1(K, V_{\wp}/p)$ to $H^1(K_{\lambda}, V_{\wp}/p)$ induced by the embedding $\text{Gal}(K_{\lambda}/K_{\lambda}) \hookrightarrow \text{Gal}(K/K)$.

Restricting the domain of res_{λ} to the Selmer group S, we obtain
\[
\text{res}_{\lambda} : S \longrightarrow H^1(K^\text{ur}_{\lambda}/K_{\lambda}, (V_{\wp}/p)^{I_{\lambda}}).
\]
Taking the $\mathbb{Z}/p\mathbb{Z}$-dual of this map, we obtain a homomorphism
\[
\omega_\ell : H^1(K^\text{ur}_{\lambda}, V_{\wp}/p) \longrightarrow S^{\text{dual}}.
\]
We denote
\[
X_\ell = \omega_\ell(H^1(K^\text{ur}_{\lambda}, V_{\wp}/p))
\]
in S^{dual}. We aim to bound the size of $S^{\text{dual}, \psi}$ by studying the set
\[
\{X_\psi^\ell\}_{\ell \in L(U_0)}.
\]

Proposition 9.1. The modules $\{X_\ell\}_{\ell \in L(U_0)}$ generate S^{dual}.

Proof. Let $G = \text{Gal}(L/K)$. Consider an element s of S. The restriction map
\[
H^1(K, V_{\wp}/p) \overset{\text{res}}{\longrightarrow} H^1(L, V_{\wp}/p)^G
\]
is injective by Lemma (7.1) as
\[
\text{Ker}(\text{res}) = H^1(L/K, V_{\wp}/p) = 0.
\]
We identify s with its image by restriction in
\[
H^1(L, V_{\wp}/p)^G \subset \text{Hom}_G(L, V_{\wp}/p).
\]
We will show that
\[
\{\text{res}_\ell\}_{\ell \in L(U_0)} : S \longrightarrow \{H^1(K^\text{ur}_{\lambda}/K_{\lambda}, (V_{\wp}/p)^{I_{\lambda}})\}_{\ell \in L(U_0)}
\]
is injective. As a consequence, the induced map between the duals
\[
\{H^1(K^\text{ur}_{\lambda}, V_{\wp}/p)\}_{\ell \in L(U_0)} \longrightarrow S^{\text{dual}}
\]
is surjective. Hence, it is enough to show that $\text{res}_\ell(s) = 0$ for all $\ell \in L(U_0)$ implies $s = 0$. Consider \overline{H}_0, the minimal Galois extension of \mathbb{Q} containing H_0 such that s factors through $\text{Gal}(\overline{H}_0/L)$. Let
\(x \) be an element of \(\text{Gal}(\overline{H}_0/L) \) such that \(x|_{\overline{H}_0} \) belongs to \(U_0 \). By Cebotarev’s density theorem, there exists \(\ell \) in \(L(U_0) \) such that \(\text{Frob}_\ell(\overline{H}_0/\mathbb{Q}) = [\tau x] \). The hypothesis \(\text{res}_\lambda(s) = 0 \) implies that \(s(\text{Frob}_\ell(\overline{H}_0/L)) = 0 \) for \(\lambda_L \) above \(\ell \) in \(L \) since \(\text{Frob}_\ell(\overline{H}_0/L) \) is a generator of \(\text{Gal}(\overline{H}_0,\lambda_{\overline{H}_0}/L_{\lambda_L}) \), where \(\lambda_{\overline{H}_0} \) is above \(\lambda_L \) in \(\overline{H}_0 \). In fact,

\[
\text{Frob}_\ell(\overline{H}_0/L) = (\tau x)^{|D(L/\mathbb{Q})|} = (\tau x)^2 = x^\tau x = (x^+)^2,
\]

where \(|D(L/\mathbb{Q})| \) is the order of the decomposition group \(D(L/\mathbb{Q}) \), also the order of the residue extension. Therefore, \(s(x^+) = 0 \) for all \(x \in \text{Gal}(\overline{H}_0/L) \) such that \(x|_{\overline{H}_0} \) belongs to \(U_0 \). Since \(U_0^+ \) generates \(V_0^+ \), we have that \(s \) vanishes on \(\text{Gal}(\overline{H}_0/L)^+ \). Hence, \(\text{Im}(s) \) lies in \(V_0/p^{-} \), the minus eigenspace of \(V_{p^2}/p \) for the action of \(\tau \). In particular, it cannot be a proper \(G \)-submodule of \(V_{p^2}/p \).

\[\square \]

Proposition 9.2. The elements

\[
\text{res}_\lambda P(\phi_1)^\psi \text{ and } \text{res}_\lambda P(\phi_2)^\psi
\]

generate \(H^1(K_{\lambda}^\psi, V_{p^2}/p)^\psi \).

Proof. We have

\[
H^1(K_{\lambda}^\psi, V_{p^2}/p) \simeq V_{p^2}/p(K_{\lambda})
\]

by (7). The module \(V_{p^2}/p(K_{\lambda})^\psi \) is of rank 2 over \(\mathcal{O}_{F,p}/p \), hence, so is \(H^1(K_{\lambda}^\psi, V_{p^2}/p)^\psi \). The Frobenius condition on \(\ell \) implies that

\[
g_1 = \text{res}_\lambda P(\phi_1)^\psi \text{ and } g_2 = \text{res}_\lambda P(\phi_2)^\psi
\]

are linearly independent in \(H^1(K_{\lambda}^\psi, V_{p^2}/p)^\psi \) over \(\mathcal{O}_{F,p}/p \). Indeed, if they were linearly dependent, then

\[
g_1^{(\tau x_1)^2} - g_1, \text{ and } g_2^{(\tau x_2)^2} - g_2
\]

where \(\text{Frob}_\ell(H_0/\mathbb{Q}) = \tau u = (\tau x_1, \tau x_2, \tau x_2, \tau x_2) \) would also be linearly dependent. The Frobenius condition implies that

\[
\{\text{Frob}_\ell(H_1/L) = x_1, x_2 = (\tau x_1)^2, \ i = 1, 2\}
\]

generate \((V_{p^2}/p) \), which yields a contradiction since \((\tau x_1)^2 \) acts on \(\text{res}_\lambda P(\phi_1)^\psi \) which generates \(H_1^1 \) by \(g_1^{(\tau x_1)^2} - g_1 \) and \((\tau x_2)^2 \) acts on \(\text{res}_\lambda P(\phi_2)^\psi \) which generates \(H_1^1 \) by \(g_2^{(\tau x_2)^2} - g_2 \). Therefore, by Lemma (7.4), \(\text{res}_\lambda P(\phi_1)^\psi \) and \(\text{res}_\lambda P(\phi_2)^\psi \) are linearly independent in \(H^1(K_{\lambda}^\psi, V_{p^2}/p)^\psi \) over \(\mathcal{O}_{F,p}/p \).

\[\square \]
10 Reciprocity Law and Local Triviality

In this section, we use the local reciprocity law as well as the local properties of the Kolyvagin cohomology classes \(P(\varphi_n) \) to study the modules \(X_\ell \) for \(\ell \in L(U_0) \).

Proposition 10.1. We have
\[
\sum_{\lambda \mid \ell \mid n} <s_{\lambda}^{\psi}, \text{res}_\lambda P(\varphi_n)^{\psi}>_{\lambda} = 0.
\]

Proof. The proof follows [17, proposition 11.2(2)] where both the reciprocity law and the ramification properties of \(P(\varphi_n) \) in proposition 6.4 are used.

Proposition 10.2. 1. The element \(\omega_\ell(\text{res}_\lambda P(\varphi^{\psi}_\ell)) \) vanishes in \(X^{\psi}_\ell \) for \(\ell \in L(U_0) \).
2. The modules \(\{X^{\psi}_\ell\}_{\ell \in L(U_0)} \) are generated over \(O_{F, p} / p \) by \(\omega_q(\text{res}_\beta P(\varphi^{\psi}_{\ell q})) \).
3. The module \(S^{\psi} \) is of rank 1 over \(O_{F, p} / p \).

Proof. 1. Recall that \(\lambda \) is the prime above \(\ell \) in \(K \). The image of \(\text{res}_\lambda P(\varphi^{\psi}_\ell) \) by the map \(\omega_\ell : H^1(K^{ur}_\lambda, V_{p, \ell}/p) \rightarrow X^{\psi}_\ell \) is the homomorphism
\[
S \rightarrow \mathbb{Z}/p\mathbb{Z} : s^{\psi} \mapsto <s_{\lambda}^{\psi}, P(\varphi^{\psi}_\ell)>_{\lambda}.
\]

Proposition 10.1 implies that
\[
<s_{\lambda}^{\psi}, P(\varphi^{\psi}_\ell)>_{\lambda} = 0.
\]

Hence, the image by \(\omega_\ell \) of \(\text{res}_\lambda P(\varphi^{\psi}_\ell) \), one of the two generators of \(H^1(K^{ur}_\lambda, V_{p, \ell}/p) \) by proposition 9.2 vanishes.

2. Let \(\beta \) be the prime above \(q \) in \(K \). Proposition 10.1 implies that
\[
<s_{\lambda}^{\psi}, P(\varphi^{\psi}_{\ell q})>_{\lambda} + <s_{\beta}^{\psi}, P(\varphi^{\psi}_{\ell q})>_{\beta} = 0.
\]

Hence,
\[
\omega_q(\text{res}_\lambda P(\varphi^{\psi}_{\ell q})) + \omega_q(\text{res}_\beta P(\varphi^{\psi}_{\ell q})) = 0.
\]

Therefore, \(X^{\psi}_\ell \) is generated by \(\omega_q(\text{res}_\beta P(\varphi^{\psi}_{\ell q})) \) for all \(\ell \in L(U_0) \). As a consequence,
\[
\{X^{\psi}_\ell\}_{\ell \in L(U_0)} \subseteq X^{\psi}_q,
\]
where the rank one module \(X^{\psi}_q \) is generated over \(O_{F, p} / p \) by \(\omega_q(\text{res}_\beta P(\varphi^{\psi}_{\ell q})) \) for some \(\ell_0 \) in \(L(U_0) \).

3. By proposition 9.1, the set \(\{X^{\psi}_\ell\}_{\ell \in L(U_0)} \) generates \(S^{\text{dual}, \psi} \). Furthermore, \(P(\varphi_1)^{\psi} \) belongs to \(S^{\psi} \) by Proposition 6.4 and is non-zero by the hypothesis on \(P(\varphi_1)^{\psi} \) and Proposition 8.2. Therefore,
\[
\text{rank}(S^{\psi}) = \text{rank}(S^{\text{dual}, \psi}) = 1
\]
over \(O_{F, p} / p \).

\[\square\]
References

[1] A. A. Be˘ılinson. Height pairing between algebraic cycles. In *K-theory, arithmetic and geometry (Moscow, 1984–1986)*, volume 1289 of *Lecture Notes in Math.*, pages 1–25. Springer, Berlin, 1987.

[2] Massimo Bertolini and Henri Darmon. Kolyvagin’s descent and Mordell-Weil groups over ring class fields. *J. Reine Angew. Math.*, 412:63–74, 1990.

[3] Massimo Bertolini, Henri Darmon, and Kartik Prasanna. Chow-Heegner points on CM elliptic curves and values of p-adic L-functions. *International Mathematics Research Notices*, 2012.

[4] Massimo Bertolini, Henri Darmon, and Kartik Prasanna. Generalized Heegner cycles and p-adic Rankin L-series. *Duke Math. J.*, 162(6):1033–1148, 2013.

[5] Spencer Bloch and Kazuya Kato. L-functions and Tamagawa numbers of motives. In *The Grothendieck Festschrift, Vol. I*, volume 86 of *Progr. Math.*, pages 333–400. Birkhäuser Boston, Boston, MA, 1990.

[6] Pierre Colmez. Fonctions L p-adiques. *Séminaire Bourbaki*, 41:21–58, 1998-1999.

[7] Pierre Deligne. Formes Modulaires et Representations de GL(2). In *Modular Functions of One Variable II*, volume 349 of *Lecture Notes in Math.*, pages 55–105. Springer Berlin Heidelberg, 1973.

[8] Yara Elias. Kolyvagin’s method for Chow groups of Kuga-Sato varieties over ring class fields. *Ann. Math. Qué.*, pages 1–21, 2015.

[9] Benedict H. Gross. *Arithmetic on Elliptic Curves with Complex Multiplication*. PhD thesis, Harvard University, 1980.

[10] Benedict H. Gross. Heegner points on $X_0(N)$. In *Modular forms (Durham, 1983)*, Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., pages 87–105. Horwood, Chichester, 1984.

[11] Benedict H. Gross. Kolyvagin’s work on modular elliptic curves. In *L-functions and arithmetic (Durham, 1989)*, volume 153 of *London Math. Soc. Lecture Note Ser.*, pages 235–256. Cambridge Univ. Press, Cambridge, 1991.

[12] Benedict H. Gross and Don B. Zagier. Heegner points and derivatives of L-series. *Invent. Math.*, 84(2):225–320, 1986.

[13] Uwe Jannsen. Algebraic cycles, K-theory, and extension classes. In *Mixed Motives and Algebraic K-Theory*, volume 1400 of *Lecture Notes in Math.*, pages 57–188. Springer Berlin Heidelberg, 1990.
[14] Victor A. Kolyvagin. *Euler Systems*, volume 2 of *The Grothendieck Festschrift*. Birkhäuser Boston, Boston, MA, 1990.

[15] Serge Lang. *Fundamentals of Diophantine Geometry*. Springer, 1983.

[16] James S. Milne. *Arithmetic Duality Theorems*. Perspectives in mathematics. Academic Press, 1986.

[17] Jan Nekovář. Kolyvagin’s method for Chow groups of Kuga-Sato varieties. *Invent. Math.*, 107(1):99–125, 1992.

[18] Jan Nekovář. On the p-adic height of Heegner cycles. *Math. Ann.*, 302(1):609–686, 1995.

[19] Bernadette Perrin-Riou. Points de Heegner et dérivées de fonctions L p-adiques. *Invent. Math.*, 89(3):455–510, 1987.

[20] Peter Schneider. Introduction to the Beilinson conjectures. *Perspectives in Mathematics*, 4:1–36, 1988.

[21] Chad Schoen. On the computation of the cycle class map for nullhomologous cycles over the algebraic closure of a finite field. *Ann. Sci. éc. Norm. Supér.*, 28(1):1–50, 1995.

[22] Anthony J. Scholl. Motives for modular forms. *Invent. Math.*, 100(1):419–430, 1990.

[23] Ariel Shnidman. p-adic heights of generalized Heegner cycles. *arXiv: 1407.0785v2*, pages 1–34, 2014.

[24] Michio Suzuki. *Group theory*. Number vol. 1 in Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1982.