Instance Explainable Temporal Network For Multivariate Timeseries

Naveen Madiraju
AVLab
San Diego, California
naveen@avlab.ai

Homa Karimabadi
AVLab
San Diego, California
homa@avlab.ai

ABSTRACT
Although deep networks have been widely adopted, one of their shortcomings has been their blackbox nature. One particularly difficult problem in machine learning is multivariate time series (MVTS) classification. MVTS data arise in many applications and are becoming ever more pervasive due to explosive growth of sensors and IoT devices. Here, we propose a novel network (IETNet) that identifies the important channels in the classification decision for each instance of inference. This feature also enables identification and removal of non-predictive variables which would otherwise lead to overfit and/or inaccurate model. IETNet is an end-to-end network that combines temporal feature extraction, variable selection, and joint variable interaction into a single learning framework. IETNet utilizes an 1D convolutions for temporal features, a novel channel gate layer for variable-class assignment using an attention layer to perform cross channel reasoning and perform classification objective. To gain insight into the learned temporal features and channels, we extract region of interest attention map along both time and channels. The viability of this network is demonstrated through a multivariate time series data from N body simulations and spacecraft sensor data.

KEYWORDS
Explainable AI, Multivariate TimeSeries, Deep Learning, Classification, Temporal Convolution, Attention

1 INTRODUCTION
Deep learning has become the dominant approach to supervised learning of labeled data [7] [11]. One of the main drawbacks in deep networks has been the difficulty in making the underlying reasons and logic for their decision making human understandable. The primary focus of research, both in designs of networks as well as the explainability, has been on images, sequence data, and unstructured data while relatively less attention has been paid to learning of complex, multivariate time series data (MVTS). MVTS encompasses many areas of science and engineering such as financial trading, medical monitoring, and event detection [1] and have become pervasive due to rise of sensors/IoT devices.

This combination of factors has left a gap in technology for accurate learning of multivariate time series data. The problem of multivariate time series classification is particularly challenging. In imaging, one can have 3 channels representing the color, and there is strong similarity in the learnable features across widely differing domains such as classification of anomalies in medical imaging and natural images. This enables transfer learning where networks can be trained on natural images where there exists large labeled data and fine tune on specific domain applications where one often is faced with a paucity of labeled data. In contrast, no two MVTS are alike and there is considerable variations in the relevant features, temporal scales, and dimensionality. Further, time series data from real world applications are often noisy, can have temporal gaps, and may be collected from multiple sensors with different resolution and data lengths. The data noise can be due to the data acquisition method and/or the inherent nature of the data [2]. As a result, while there exists heavily used standard labeled data sets for image classification such as MNIST, ImageNet, and CIFAR10, there is no such equivalent training sets for MVTS and even if they are created, the associated lift from transfer learning is not expected to be as effective as in imaging problems.

Our contribution here is directed at developing the ability to disentangle in the MVTS classification the relevant input channels that contribute to an instance of classification. This would be quite valuable across many application domains. For example, in financial markets, this could enable uncovering the key signals from a large list that contribute to classification of a given market regime. Or in the medical domain, one can learn which clinical inputs from a patient led to a specific diagnosis.

2 RECENT WORK
Recently there has been rising interest to apply neural networks in time series applications [8] [5][12]. Further, CNNs are increasingly taking place of recurrent networks like RNN and LSTM for time series data and optimal means to incorporate temporal information into CNNs remains an active area of research. Recently, a general architecture for sequences model by convolutional networks, the Temporal Convolution Network (TCN) [4], was proposed. The paper empirically shows that CNN outperforms LSTM’s on a wide variety of benchmarks for timeseries applications. Use of shared TCN also reduced the number of trainable parameters, which is also useful in MVTS where there is a paucity of labeled data sets.

Despite development of generalized architectures for univariate time series, very few translate to MVTS. This is partly due to the non-linear interaction among variable in MVTS. A common approach to MVTS is to cast variables as separate channels into a CNN-type architecture but the drawback is that such architectures do not fully account for non-local and non-linear interactions between channels. Recently, relational networks [10] and its variants including transformer [14] and non-local networks [15], have become popular for reasoning tasks such as visual question answering. These architectures attain efficiency by reducing the number of parameters by leveraging dot product and stability by using normalization and skip connections. This efficient use of parameters is ideal for multivariate applications which require pairwise
combinatorial reasoning (or higher order). Variants of this architecture have been successfully applied to multi-modal problems like video-speech problems [18] [13] but not for MVTS.

Our contribution is two-fold. We have adapted the transformer attention architecture to perform MVTS classification, modeling the interaction between various channels. Secondly, we have incorporated this architecture into an end to end neural net that provides not just instance specific but class specific heatmap of the contributing channels. This latter feature provides a useful level of explainability and insight into how the network is making its decisions. Previously work on explainability include [3] that proposed convolutional solution based on grad-CAM to provide a heatmap. [17] and [16] proposed attention based architectures to perform classification and to also gain some insights into the inner workings of the network. However, in an important distinction to our work, these networks do not provide class and instance specific channels of interest. Our novel network, IETNet, provides not just instance specific but class specific heatmap of the channels of importance.

3 METHOD

3.1 Feature Extractor

The first element of the network consists of mapping the input to feature representations. This is done using a shared Temporal Convolution Networks (TCN) which extracts time domain features of each channel independently. As described in [4], we make use of causal 1D convolutions in the network. That means in each layer, the output at a particular time \(t \) is convolved only with the inputs from time \(t \) and earlier. Moreover, the architecture consists of dilated convolutions which exponentially expand the receptive field of the network. When dilation \(d = 1 \), the network reduces to a regular convolution. Using larger \(d \)’s enables the network to capture a wide range of inputs. Standard practice is to stack exponentially increasing dilations with \(d = 2^i \) along each layer. This ensures top layer of the network is able to see all of the input. We also make use of ReLU activations and skip connections to make network more stable. Finally, average pooling is used to collapse temporal axis for each variable. Number of layers and complexity can be adjusted based to the problem. Figure 1 illustrates the resulting architecture. Note that each variable in MVTS shares the same TCN network, which is fully convolutional, thereby effectively reducing the number of parameters. This addresses the attendant problem of over parametrization and resultant overfitting in MVTS data.

3.2 Channel Gate and Classification

The output of the previous layer is a time collapsed feature vector. We now stack together these vectors for all channels. This multivariate features \(M \) has dimensions \(\text{[batchsize, channels, features]} \). Up to this point, there is no interaction between the channels. In this layer, we want each class to choose which channels represent it the most. To realize this, we pass \(M \) through a multi-headed dot product attention. Here the attention performs pairwise reasoning between each and every channel. After entangling the channels, using a feed forward layer, we collapse the features into a class score for each channel. We next perform softmax along the channel axis to get the most useful channels for each class. We call this tensor channel gate with dimensions \(\text{[batchsize, channels, class]} \).

Figure 1: The feature extractor for proposed algorithm. The temporal convolutional network is shared across all the variables. The architecture of residual block is illustrated above. This block with various dilations are stacked together to extract features. The features along temporal axis are collapsed and each variable is concatenated as shown.

Here channel scores sum to 1 for each class. Since our example is binary classification in figure 2, we have one row for channel gate. Now we use this channel gate to filter the multivariate feature vector \(M \) and then perform global average pooling to get final class score. The architecture is illustrated in 2 for a binary classification problem.

Note that we want attention to just create channel scores which we use to filter the multivariate features \(M \). Hence the class score is highly dependent on what channels the attention layer chooses. In a way the network can only perform classification if it chooses the right channels.

4 EXPERIMENTS AND ANALYSIS

4.1 Implementation

The TCN layer has 16 filters with kernel size of 2 along with dilations of \([1, 2, 4, 8, 16, 32, 64, 128, 256, 512]\) and with skip connections. Each variable in MVTS shares the same TCN network, making it quite light weight, with only 27,648 total weights in our implementation. As needed, deeper variants can be readily implemented due to the modular structure of the network and skip connections that enable stacking convolutions.
We then get a channel score using a feed forward layer and with ReLU activation and 1 head. We adapted the following publicly available code for attention architecture\(^1\) using noam scheme \([14]\). A dropout of 1 and fourth channel strongly.

We used ReLU’s for the activations, glorot normal initialization and adam optimizer with a learning rate which cycles between 0.0001, 0.001 using noam scheme \([14]\). A dropout of .5 was applied during training. We have used publicly available implementation of TCN\(^1\). For multiheaded attention, we used same feature size of 16 with ReLU activation and 1 head. We adapted the following publicly available code for attention architecture\(^2\).

![Diagram](image.png)

Figure 2: Illustrates channel Gate and classification for the N body problem. The matrix in top represents time collapsed multivariate features \(M\), where red represent higher magnitude of activate and blue represents lower. The attention performs pairwise reasoning between each and every channel. We then get a channel score using a feed forward layer and softmax. Finally we perform gating and global pooling to get class score. We can see the channel gate here picked second and fourth channel strongly.

4.2 Evaluation Metrics

For classification, we use ROC curves and confusion matrix. For evaluation of the accuracy of the channel localization, we use mean average precision at k retrieved objects, which is the standard evaluation metric in information retrieval. In our problem, we want to evaluate whether given the predicted class, is the model retrieving the relevant channels. We use the following equation to compute the average precision at various k.

\[
AP@k = \frac{1}{GTP}\sum_{i=1}^{k} \frac{TP_{seen}}{i}
\]

Here \(k\) is number of relevant channels to retrieve. This can be set based on any prior knowledge of the problem or can be determined by the counting the number of highly precise channels and ignoring the low precision ones. \(GTP\) is the ground truth positives, \(TP_{seen}\) is the number of observed hits/true positives, and \(i\) is the number of channels retrieved. We score the predictions by their confidence and take top \(k\) channels as the retrieved channels.

4.3 N-body

We created MVTS data using a two-dimensional N-body gravitational simulation. The data consists of 8 channels and 2 classes:

1. **class 0** All 8 channels are positions sampled from a 4 body problem \((x_1^1, x_2^1, y_1^1, y_2^1, x_3^1, x_4^1, y_3^1, y_4^1)\).
2. **class 1** First 4 channels are positions of 2 bodies sampled from a 2-body simulation. Next 4 channels are positions of 2 bodies sampled from a 4 body simulation \((x_1^2, x_2^2, y_1^2, y_2^2, x_3^2, x_4^2, y_3^2, y_4^2)\).

With this data construct, the important channels in class 1 are the first 4 channels and provides a way for us to assess the accuracy of the channel localization of IETNet.

The Data is generated by simulations for 2-body with masses = \([1, \frac{1}{2}]\) and 4-body with masses = \([1, \frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]\), respectively. The positions and velocities are randomly initialized with coordinates between \([-1, 1]\). Further, we compute the positions for 2000 times steps using a gravitational constant of 1. This forms the individual simulations. From these, the multivariate time series consisting of various classes is created by grouping as described above as classes. The training, test and validation sets consist of samples sizes of 183, 244, and 183, respectively. The goal is to determine the efficacy of the channel localizer when the data is from a 2-body class.

Classification performance of the IETNet on the N-body problem is shown using the confusion matrix in figure 3a. The model is seen to have very high accuracy with only one misclassified example. Channel gate results of IETNet are shown in figure 3b. Each horizontal bar shows the relative importance of the variables/channels for each class as picked by the channel gate, aggregated over the entire test set. As shown in the bottom horizontal bar in 3b, the network has correctly picked \(x_2\) and \(y_2\) for the test set when the predicted class is 1 (2-body class). In case of class 0 (4-body class), the network has picked \(x_2, y_2, y_4\). The ground truth for this class is less clear but the chosen channels do make physical sense in that one needs to look at channels beyond the first four to identify the class.

Next, we use the mean average precision at k retrieved objects to further assess the efficacy of the channel localizer. This is shown

\[\text{https://github.com/philipperemy/keras-tcn}\]

\[\text{https://github.com/Kyubyong/transformer}\]
in figure 3c along with standard deviation of the retrieved channels. We included $x_1^y, x_2^y, y_1^y, y_2^y$ as a part of ground truth channels in case of class 1. The model is observed to have a very high precision when retrieving top few channels, with the score gradually decreasing as we retrieve more number of channels. The trend shows high agreement of retrieved channels to ground truth channels.

4.4 Spacecraft Data

In the previous section, we demonstrated the technique using synthetic planetary data. Here, we apply the technique to a challenging MCTS data that were collected from NASA’s recent and ongoing Magnetospheric Multiscale Mission which is obtaining high resolution data of the Earth’s space environment.

In situ measurements of this multi-spacecraft mission, made through magnetometer and plasma instruments on-board the spacecraft, serve as probes in the space environment surrounding the spacecraft. This sensor data is challenging since the space environment is turbulent and has many embedded transients that can mask the events of interest. One of the event types of interest is the so-called flux transfer events (FTEs) [9] which are formed due to the magnetic reconnection process, a main driver of space weather effects.

Space physicists identify the FTEs in the data by first transforming the raw magnetic field data into the boundary normal coordinates based on the model of the Earth’s magnetopause. The three components of the magnetic field (B_x, B_y, B_z) are transformed into (B_N, B_M, B_L) where B_N is the component along the magnetopause normal, B_M is tangential to the magnetopause, and B_M forms the third orthogonal coordinate. In this transformed frame, FTEs exhibit a bipolar signature in B_N which makes it easier to identify the FTEs visually (Fig. 4). It is important to note that it would be difficult to visually identify FTEs in the original frame as evident in Fig. 4. As such, this data set is ideal for testing and validation of our approach for identification of important channels. The most important channel for identification of FTEs is B_N and the model should highlight that as such. For the relative importance of various variables to the classification of FTEs, we refer the reader to [6].

Our data consists of 15 variables in the following order $B_x, B_y, B_z, B_L, B_M, B_N, B_{mag}, V_x, V_y, V_z, V_{mag}, n_p, T_{par}, T_{per}, T_p$. The V’s refer to components of the ion velocity in the original frame and its magnitude, n is the plasma density, T_{par}, T_{per} refer to ion temperature parallel and perpendicular to the magnetic field, respectively, and T_p refers to the total ion temperature. Data is labeled by whether a given time window has FTE events (class 1) or no events (class 0). We do not specify the beginning or end of the event. A given interval with FTEs may have one or more FTEs. The labels were created by space physicists through visual inspection of the data.

Data consists of 184 samples of class 0 and 227 samples of class 1 time series with an equal length of 1440. This data is divided into 295 train samples (169 class 1’s), validation size of 33 (20 class 1’s), and test size of 83 (38 class 1’s).

In the first experiment on this data, we keep all 15 variables and then check whether the network selects B_N as the most important channel. One can imagine that the accuracy of the classifier could impact the accuracy of the channel importance component. To disentangle this effect, we first plot the ROC of the classifier on the test set. This is shown in figure 5a where the optimal operating point is marked in green (obtained using validation set). The AUC is 0.84 and is significantly better than AUC of 0.72 for a standard LSTM.

Using this operating point, we show in figure 5b the channel localization by the model aggregated over the entire test set. The effect of using different operating points will be demonstrated in section 5.2. The top and bottom bars show the aggregated channel localization for class 0 (no event) and class 1 (event), respectively. For class 1, the network has picked the magnetic field channels with the strongest importance given to B_N as expected. Note that the second highest importance is given to B_z which is the closest to B_N in the original frame. In class 0 cases, there would be nothing...
unique about B_N or other magnetic field components and correctly
the network has selected channels with plasma variables such as
density and temperature as the most important.

The importance of the magnetic field variables in class 1 events,
as identified by the model, is further illustrated in 5c. We included
B_x, B_y, B_z, B_L, B_M, B_N, B_{mag} as a part of ground truth channels
in case of class 1. As we can see the model has high precision
when it retrieves top few channels and the score gradually decrease
as we look at more number of channels. The trend shows high
agreement of retrieved channels to ground truth channels. We also
map the standard deviation of hit rate across test set of the retrieved
channels to have a better understanding of model performance.

5 DISCUSSION

5.1 Variable Persistence

To test the robustness of the channel localizer, we conducted sev-
eral experiments where we judiciously removed certain channels,
retrained and reran the model, and examined the impact on the
relative importance of the remaining channels. We saw that B_N and
B_x are the two most important channels. Removing B_x, the new
model still selects B_N as the most prominent channel as shown in
6a. Similarly, removing B_N, the new model correctly selects B_x as
the most prominent channel. In our third experiment, we remove
both B_N and B_x. Interestingly, the model now selects plasma vari-
ables such as n_p and B_{mag} as the most informative channels as
shown in figure 6c. This makes sense from physical understanding
of FTEs. In the absence of highly informative magnetic field compo-
nents, one has to rely more on plasma variables for identification
of FTEs. Note that all 15 variables have predictive power but the
most prominent ones are the magnetic field variables.

5.2 Impact of Operating Point

Next, we examine the impact of operating point selection on the
channel localization. Figure 5a shows the results at three operating
points marked in Fig. 7. The channel importance for each instance
would be affected by the accuracy of the classifier on that instance.
And similarly, we would expect the aggregated channel importance
to be a mix of channel importance for class 0 and 1, with the balance
dependent on the operating point. The operating point selects the
balance between the true positive and false positive rates. At low
threshold, the classifier has high sensitivity at the expense of higher
false positive rate. In such a case, one would expect the aggregated
channel importance to have a stronger influence from class 0, with

Figure 4: An example of flux transfer event (FTE), most visible due to its bipolar signature in B_N.
the opposite expected at high threshold (low sensitivity but low false positive rate). This is exactly what is observed. Recall that for class 0 the plasma variables are the most prominent, whereas for class 1, \(B_N\) and \(B_x\) are the most prominent channels. \(B_N\) becomes increasingly dominant in aggregated test set as one moves up the ROC curve and then starts to decrease in importance relative to plasma variables, while remaining an important variable, past the optimal threshold.

6 CONCLUSION

Here we proposed a new neural network, IETNet, capable of identifying the most important channels for each classification instance of multivariate time series data. The efficacy of this network was demonstrated through two examples, N body problem and in situ spacecraft measurements from a recent NASA mission. Detailed analysis of the model on N body simulation and NASA spacecraft sensor data reveals high degree of agreement between our prior knowledge of important channels and channels picked by the model. As most natural stimuli are time-continuous and multivariate, the approach promises to be of great utility in real-world applications.

We plan to extend this network so that rather than the mean, it would predict the probability distribution function which can then be used to further quantify the significance of each channel localization instance. Generalization to various publicly available data sets is another direction of future research.

REFERENCES

[1] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. 2015. Time-series clustering—A decade review. Information Systems 53 (2015), 16–38.
[2] Cláudia M Antunes and Arlindo L Oliveira. 2001. Temporal data mining: An overview. In KDD workshop on temporal data mining, Vol. 1. 13.
[3] Roy Assaf and Anika Schumann. 2019. Explainable deep neural networks for multivariate time series predictions. In Proceedings of the 28th International Joint Conference on Artificial Intelligence. AAAI Press, 6488–6490.
[4] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018).
[5] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Samuel Harford. 2018. Multivariate LSTM-FCNs for Time Series Classification. (2018). arXiv:arXiv:1801.04503
[6] H Karimabadi, TB Sipes, Y Wang, B Lavraud, and A Roberts. 2009. A new multivariate time series data analysis technique: Automated detection of flux transfer events using Cluster data. Journal of Geophysical Research: Space Physics 114, A6 (2009).
[7] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature 521, 7553 (2015), 436–444.
Instance Explainable Temporal Network For Multivariate Timeseries

Figure 7: Impact of operating point

(a) Low threshold
(b) Optimal threshold
(c) High threshold

[8] Naveen Sai Madiraju, Seid M Sadat, Dimitry Fisher, and Homa Karimabadi. 2018. Deep Temporal Clustering: Fully unsupervised learning of time-domain features. arXiv preprint arXiv:1802.01019 (2018).
[9] Christopher T Russell and RC Elphic. 1979. ISEE observations of flux transfer events at the dayside magnetopause. Geophysical Research Letters 6, 1 (1979), 33–36.
[10] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, and Timothy Lillicrap. 2017. A simple neural network module for relational reasoning. In Advances in neural information processing systems. 4967–4976.
[11] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural networks 61 (2015), 85–117.
[12] Huan Song, Deepa Rajan, Jayaraman J Thiagarajan, and Andreas Spanias. 2018. Attention and diagnose: Clinical time series analysis using attention models. In Thirty-Second AAAI Conference on Artificial Intelligence.
[13] Yao-Hung Hubert Tsai, Paul Pu Liang, Amir Zadeh, Louis-Philippe Morency, and Rual Salakhutdinov. 2018. Learning factorized multimodal representations. arXiv preprint arXiv:1806.06176 (2018).
[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems. 5998–6008.
[15] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 7794–7803.
[16] Yunbo Xu, Siddharth Biswal, Shirparasad R Deshpande, Kevin O Maher, and Jimeng Sun. 2018. Raim: Recurrent attentive and intensive model of multimodal patient monitoring data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2565–2573.
[17] Ye Yuan, Guangxu Xun, Fenglong Ma, Yaqing Wang, Nan Du, Kebin Jia, Lu Su, and Aidong Zhang. 2018. Muvan: A multi-view attention network for multivariate temporal data. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 717–726.
[18] Amir Zadeh, Paul Pu Liang, Navonil Mazumder, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency. 2018. Memory fusion network for multi-view sequential learning. In Thirty-Second AAAI Conference on Artificial Intelligence.