Lifestyle factors and reversion to normoglycaemia by prediabetes type in PREDAPS study.

CURRENT STATUS: POSTED

LUCIA CEA SORIANO
Universidad Complutense de Madrid Facultad de Medicina
Email: luciaceife@gmail.com
Corresponding Author
ORCID: https://orcid.org/0000-0002-7051-0730

Carolina Giráldez-García
Universidad Complutense de Madrid Facultad de Medicina

Romana Albadalejo
Universidad Complutense de Madrid Facultad de Medicina

Josep Franch-Nadal
Universitat de Barcelona Facultat de Medicina i Ciencies de la Salut

Manel Mata-Cases
La Mina Health Center Barcelona

Javier Díez-Espino
Tafalla Health Center Navarra

Sara Artola
Jose Marvá Health Center Madrid

Rosario Serrano
martín de vargas health center Madrid

Enrique Regidor
Universidad Complutense de Madrid Facultad de Medicina

DOI:
10.21203/rs.2.17828/v1

SUBJECT AREAS
Endocrinology & Metabolism

KEYWORDS
Prediabetes, reversion to normoglycaemia, lifestyle factors, cohort study, HbA1c, fasting plasma glucose
Abstract

Background There is little evidence on how healthy lifestyle factors can explain the variation in the proportion of patients reverting to normal glucose regulation according to type of prediabetes.

Aims To study the role of lifestyle factors on the reversion to normal glucose regulation according to type of prediabetes.

Design and Setting Observational prospective cohort study. The Cohort study in Primary Health Care on the Evolution of Patients with Prediabetes from 2012-2015.

Methods Participants were classified, according to the definition established by ADA using either fasting plasma glucose (FPG) levels between 100-125 mg/dL or HbA1c between 39-47 mmol/mol (5.7%–6.4%), in three groups. Reversion to normal glucose regulation was calculated at third year of follow-up. Relationship of lifestyle factor and type of prediabetes with reversion was estimated by means of Odds Ratios (OR) using three sequential models.

Results Proportion of reversion rates were 31% for FPG group, 31% for HbA1c group and 7.9% for both altered parameters group, respectively. BMI<25 kg/m2[OR (95% CI): 1.90 (1.20-3.01)], high adherence to Mediterranean diet 1.78 (1.21-2.63) and absence of abdominal obesity 1.70 (1.19-2.43) were the strongest lifestyle predictors for reversion. Compared with those with both altered parameters, OR of reversion of prediabetes was 4.87 (3.10-7.65) for FPG group and 3.72 (2.39-5.78) for HbA1c group. These estimates remained almost the same after further adjustment for biochemical parameters and lifestyle factors.

Conclusions Although optimal lifestyle factors showed to be a positive predictor, those do not seem to explain the differences according to the type of prediabetes.

Background

The global prevalence of diabetes among adults aged 18 and beyond, has risen from 4.7% in 1980 to 8.5% in 2014, representing almost 422 million people by 2014 [1]. Together with this trend, mortality of diabetes has scaled up to be positioned in the eight causes of dead rank worldwide [2]. Risk factors for developing diabetes type 2 have been well established and characterized [3–5], therefore interventions towards controlling some of them have been spread.

Prediabetes status has been associated with a higher risk of developing diabetes type 2. This stage is characterized by either an impaired fasting plasma glucose (IFG) or impaired glucose tolerance (IGT),
or elevated glycated haemoglobin A1c (HbA1c) depending on the established diagnostic criteria [6]. Prior research on this topic highlight optimal lifestyle factors and drug therapies (majority oral antidiabetic medications) implementations as effective predictive positive factors to conversion to normal glucose regulation in subjects with prediabetes [4, 7–8]. However, those interventions do not seem to play the same role depending on the type of prediabetes. For example, some studies have found a better response to glucose regulation after applying lifestyle modifications only in individuals with IGT [9]. In addition, a recent study observed how individuals with HbA1c levels in range of prediabetes were less likely to revert to normal glycaemia after physical activity recommendations [10].

This apparent heterogeneous association, between optimal lifestyles and reversion to normal glycaemia regulation according prediabetes type, could be the cornerstone for individualized prevention strategies in subjects with prediabetes. However, there is little evidence on how healthy lifestyle factors can explain the variation in the proportion of patients reverting to normal glucose regulation according to type of prediabetes. In order to understand better the restore to normal glycaemia in individuals with prediabetes, this study aims to evaluate the key role of lifestyle factors on predicting reversion to normal glycaemia by type of prediabetes using a prospective cohort of individuals with prediabetes followed up by primary care physicians in Spain.

Methods
Study design
The Cohort study in Primary Health Care on the Evolution of Patients with Prediabetes (PREDAPS Study) is a prospective study encompassing two cohorts of patients: those with prediabetes status and those free of prediabetes and diabetes. Details on information and design have been published elsewhere [11]. Briefly, this prospective study conducted at the primary care setting, started in 2012. To be member of the prediabetes cohort individuals aged 30 to 74 years old were included when meeting the following prediabetes criteria based on the definition established by American Diabetes Association [12] using FPG and HbA1c parameters. First group, namely i) both altered parameters group, included all individuals with HbA1c 39–47 mmol/mol (5.7–6.4%) and FPG 100–125 mg/dl;
second group, ii) isolated elevated HbA1c group, included all individuals with HbA1c 39–47 mmol/mol (5.7–6.4%) and FPG < 100 mg/dl; and third group, iii) isolated IFG group, included all individuals with HbA1c < 39 mmol/mol (< 5.7%) and FPG 100–125 mg/dl. Individuals aged 30 to 74 years old with HbA1c < 39 mmol/mol (< 5.7%) and FPG < 100 mg/dl were assigned to the normoglycaemia cohort. Individuals with the following criteria were excluded to be members of the study cohort: if they had diabetes, terminal disease, pregnancy, surgery, or hospital admission in the previous 3 months at study entry, or any hematologic disease, which could alter HbA1c values. The study was classified by the Spanish Drug and Health Product Agency as a Non-Interventional (Observational) Post-Authorization Study, and the protocol was approved by the Parc de Salut Mar Clinical Research Ethics Committee in Barcelona. A total of 2022 individuals gave their written informed consent for participation: 1184 subjects with prediabetes and 838 without impaired glucose metabolism. The present study analysed the relationship between lifestyle and other variables measured at baseline and the situation of reversion to normal glycaemia in the third year of follow-up among the cohort of subjects with prediabetes. Thus, out of 1184 subjects with prediabetes, a total of 948 (80.1%) attended their third follow up visit and were retained to be members of the final cohort, therefore remaining patients were excluded.

Covariates
At baseline, information on biographical data, family and personal history of diabetes, smoking, alcohol consumption, diet, physical activity, drug treatment, social support and socio-economic position was obtained from each participant’s clinical history and from the personal interview conducted by the physician at their practices. During the medical visit a physical examination was performed, which included anthropometry and determination of blood pressure. Similarly, blood and urine analyses were requested to determine FPG, HbA1c, lipid profile, transaminases, blood count, iron levels and renal function.
Smoking habit was classified into three mutually exclusive categories: current smoker, former smoker, and never smoker. Individuals were asked to state which of the following alternatives best reflected their alcohol consumption frequency: never drinker, former drinker, occasional drinker, or
daily drinker. For the present analysis individuals were classified into non-drinkers, occasional drinkers and daily drinkers. Physical activity data were collected based on the frequency -number of times in the last two weeks- and amount -mean time in minutes for each session- of different types of physical activity, and, on the basis of the data collected, the minutes per week of physical activity performed by each participant were estimated. Subjects were classified into two categories according to if they had followed or not the World Health Organization (WHO) physical activity recommendations -accumulate at least 150 minutes per week of moderate aerobic activity or 75 minutes per week of vigorous aerobic activity-, or an equivalent combination of moderate and vigorous activity [13]. Adherence to the diet was estimated through an adaptation of the score used by Panagiotakos in the ATTICA study [14]. In each of the 20 types of food investigated, research subjects were asked about the following frequency consumption options: daily consumption, ≥ 3 times / week, 1-2 times / week, < 1 time / week, never or almost never. A score of 0 was assigned to a less healthy consumption and 4 to the healthiest consumption of each food. A score of 0 is considered minimum adherence, compared to 80, which would be maximum adherence. Adherence to the Mediterranean diet was grouped into three categories low (0-53 points), medium (54-59 points) and high (60-80 points).

Overweight and general obesity was defined as a Body Mass Index (BMI) ≥ 25 g/m², and abdominal obesity as a waist circumference ≥ 102 cm in men and ≥ 88 cm in women. Hypertension was defined as systolic blood pressure ≥ 140 mmHg, or diastolic blood pressure ≥ 90 mmHg, or current use of antihypertensive treatment or having a personal history of hypertension. Hypercholesterolemia was defined as total serum cholesterol ≥ 250 mg/dl, low high-density cholesterol (HDL-C) as < 40 mg/dl in men and < 50 mg/dl in women, and hypertriglyceridemia as serum level of triglycerides ≥ 200 mg/dl

Statistical analysis
Distribution of demographic characteristics, lifestyle variables, obesity, and hypertension and biochemical parameters according to type of prediabetes was compared using the chi-square test. Then it was calculated the percentage of subjects who reverted to normal glycaemia according to these variables and type of prediabetes. Reversion to normal glucose regulation, was considered if FPG and HbA1c values were FPG < 100 mg /dl and HbA1c < 39 mmol/mol (< 5.7%), respectively, at
third year of follow up. The relationship between demographic characteristics, lifestyle variables, obesity, hypertension and biochemical parameters and the reversion to normal glycaemia was estimated by odds ratio (OR) adjusted for age and sex. Relationship between type of prediabetes and the reversion to normal glycaemia was estimated using three sequential models: adjusting for age and sex (Model A); hypertension, hypercholesterolemia, HDL levels and triglycerides (Model B), and alcohol consumption, smoking, BMI, abdominal obesity, physical activity, adherence to Mediterranean diet (Model C). Each successive model included the factors from the previous model. Finally, the criteria diagnostic of prediabetes was subdivided using as cut-off levels FPG < 110 and ≥ 110 mg/dl and HbA1c < 42 and ≥ 42 mmol/mol (< 6 and ≥ 6%), respectively, and the relationship between subtype of prediabetes and the reversion to normal glycaemia was also estimated by models A, B y C. Statistical analyses were performed using the STATA package version 12.0 (StataCorp LP, College Station, TX, USA).

Results
Baseline characteristics
Among our cohort of prediabetes, mean age was 58.7 years (median: 60 years). Out of them, 21% of patients were classified as having isolated IFG, 27.6% as isolated elevated HbA1c levels and 50.9% as both altered parameters. Table 1 shows the baseline characteristics of study cohort according to type of prediabetes. There was an inverse proportion of men and women according to each prediabetes criteria, while 61% of those with isolated IFG were men, corresponding percentages by isolated elevated HbA1c and both parameters were 38.9% and 50.3%, respectively (p < 0.001). Distribution of age was similar within groups, although those with isolated IFG tended to be younger. In terms of alcohol consumption, the proportion of daily drinkers were 29% among those with both altered parameters compared to 19.5% among those with isolated elevated HbA1c and 34% among those with isolated IFP. Those with both altered parameters had higher proportions of BMI > 25 kg/m² and abdominal obesity. There were no differences in distribution of remaining lifestyle factors as smoking, physical activity and adherence to diet. Those with both altered parameters had a higher frequency of hypertension and triglycerides levels and there were no differences in distribution of
hypercholesterolemia or HDL levels.

Characteristics	Both altered parameters FPG: 100–125 mg/dl and HbA1c: 39–47 mmol/mol	Isolated elevated FPG: <100 mg/dl and HbA1c: 39–47 mmol/mol	Isolated IFG FPG: 100–125 mg/dl and HbA1c: <39 mmol/mol	p value*			
N	%	N	%	N	%	p value*	
Sex							
Women	240	49.7	160	61.1	79	38.9	< 0.001
Men	243	50.3	102	38.9	124	61.1	
Age							
30–49 years	60	12.4	43	16.4	46	22.7	0.003
50–64 years	241	49.9	137	52.3	104	51.2	
65+ years	182	37.7	82	31.3	53	26.1	
Smoking						0.053	
Current smoker	77	15.9	52	19.8	28	13.8	
Former smoker	180	37.3	94	35.9	96	47.3	
Never smoker	229	46.8	116	44.3	79	38.9	
Alcohol consumption						0.003	
Daily drinker	140	29	51	19.5	69	34	
Occasionally drinker	187	38.7	116	44.3	84	41.4	
Never drinker	156	32.3	95	36.3	50	24.6	
BMI						< 0.001	
Overweight/Obese (> 25 kg/m²)	169	92.8	212	80.9	448	83.3	
Normal weight (up to 25 kg/m²)	34	7.2	50	19.1	35	16.7	
Obesity abdominal						< 0.001	
Waist ≥ 88/102 cm	362	74.9	161	61.5	119	58.6	
Waist <	121	25.1	101	38.5	84	41.4	
Reversion rates according to type of prediabetes

At third year of follow up, there were a total of 165 (17.4%) patients who reverted to normal glucose regulation. When stratifying by type of prediabetes, the proportion of patients reverting to normal glycaemia defined by both -HbA1c and FPG- criteria had the lowest proportion of reversion (7.9%) compared with those defined with isolated IFG (31.0%) or isolated elevated HbA1c (24.4%), respectively (Fig. 1). We subdivided the diagnostic criteria of prediabetes using as cut-off levels FPG < 110 and > 110 mg/dl and HbA1c < 42 and ≥ 42 mmol/mol (< 6 and ≥ 6%), respectively. Individuals with HbA1c levels ≥ 42 mmol/mol (< 6%) had the lowest reversion rates (3.2% for those with FPG: 100-125 mg/dl and 8.7% with FPG < 100 mg/dl), while those with isolated FPG < 110 mg/dl and isolated HbA1c < 42 mmol/mol (< 6%) obtained the highest reversion rates (40.7% and 32.9%)
Factors associated with the reversion to normoglycemria

Table 2 shows the percentage of reversion according to each baseline characteristic factor as well as the OR of reversion. We did not observe any association with sex. There was a trend towards a decreased likelihood of reversion with the increase in age. Lifestyle factors such as BMI < 25 kg/m² [OR 1.90 (95% CI:1.20–3.01)], absence of abdominal obesity [OR 1.70 (95% CI 1.19–2.43)], adherence to Mediterranean diet [OR 1.78 (95% CI 1.21-2.63)] and physical activity [OR 1.48 (95% CI:1.04–2.10)] showed to be positive predictive factors associated with reversion to normal glycaemia. Not having hypertension shown to be associated with reversion to normoglycaemia, and there was no association with biochemical parameters such as hypercholesterolemia, HDL low levels or hypertriglyceridemia

Table 2
Percentage of reversion to normal glucose regulation and odds ratio (OR) according to the
Table 2
Percentage of reversion to normal glucose regulation and odds ratio (OR) according to the characteristics of the subjects

Characteristics	Percentage of reversion	Odds ratio (95% confidence interval)*
Sex		
Women	16.7	1.00
Men	18.1	1.06 (0.75–1.49)
Age		
30–49 years	31.5	2.92 (1.82–4.69)
50–64 years	15.6	1.17 (0.78–1.76)
65 + years	13.6	1.00
Smoking		
Current smoker	17.2	1.00
Former smoker	17.8	1.23 (0.74–2.04)
Never smoker	17.1	1.19 (0.71–1.99)
Alcohol consumption		
Daily drinker	14.6	1.00
Occasionally drinker	19.9	1.33 (0.85–2.07)
Never drinker	16.6	1.10 (0.66–1.82)
BMI		
Overweight/Obese (> 25 kg/m²)	16.2	1.00
Normal weight (up to 25 kg/m²)	26.1	1.90 (1.20–3.01)
Physical Activity		
Do not follow OMS	14.9	1.00
recommendations		
Follow OMS recommendations	19.4	1.48 (1.04–2.10)
Adherence to Mediterranean diet		
Low/Medium	17.9	1.00
High	17.2	1.78 (1.21–2.63)
Obesity abdominal		
Waist >= 88/102 cm	14.8	1.00
Waist < 88/102 cm	22.9	1.70 (1.19–2.43)
Hypertension		
Yes	14.7	1.00
No	23.1	1.53 (1.06–2.19)
Hypercholesterolemia		
Yes	17.3	1.00
No	17.5	1.02 (0.72–1.45)
Low HDL levels		
Yes	18.5	1.00
No	17.1	0.98 (0.65–1.47)
Hypertriglyceridemia		
Yes	14.6	1.00
No	18.5	1.38 (0.93–2.05)

* Sex and age adjusted odds ratio, except the odds ratios according sex and age

Role of Lifestyle factors on reversion according to type of prediabetes

Compared with participants with both FPG and HbA1c criteria, when adjusting by age and sex, the OR of reversion of prediabetes was 4.87 (95% CI: 3.10–7.65) among those with isolated IFG and 3.72 (95% CI: 2.39–5.78) for those with isolated elevated HbA1c. When adding biochemical parameters as
well as hypertension (Model B), OR remained almost constant: 4.78 (95% CI: 3.03–7.55) and 3.59 (95% CI: 2.30–5.60), respectively. Finally, when including lifestyle factors (Model C), OR did remain almost the same: 4.52 (95% CI: 2.84–7.18) for isolated IFG group and 3.43 (95% CI: 2.17–5.42) for isolated elevated HbA1c group (Table 3). Also, when subdividing prediabetes cohort according to levels of FPG and HbA1c, the OR in de Model C was similar to OR in the Model B. Taking as reference those with HbA1c levels ≥ 42 mmol/mol (≥ 6%) and FPG 100–125 mg/dl, the OR for reversion after adjusting for all factors (Model C) were as follows: isolated FPG < 110 mg/dl: 18.21 (95% CI: 8.08–41.06), isolated FPG ≥ 110 mg/dl: 5.75 (95% CI: 2.30-14.37), isolated HbA1c < 42 mmol/mol (< 6%): 13.34 (95% CI: 6.03–29.52), isolated HbA1c ≥ 42 mmol/mol (≥ 6%): 2.70 (95% CI: 0.97–7.51), and HbA1c < 42 mmol/mol (< 6%) and FPG 100–125 mg/dl: 4.36 (95% CI: 1.94–9.80).

Table 3
Reversion to normal glucose regulation. Odds ratio (and 95% confidence interval) according prediabetes type and according prediabetes subtype.

Prediabetes type	Model A	Model B	Model C
Both altered parameters	1.00	1.00	1.00
Isolated elevated HbA1c	3.72 (2.39–5.78)	3.59 (2.30–5.60)	3.43 (2.17–5.42)
Isolated IFG	4.87 (3.10–7.65)	4.78 (3.03–7.55)	4.52 (2.84–7.18)
Predictive subtype			
HbA1C ≥ 42 mmol/mol and FPG 100–125 mg/dl	4.54 (2.03–10.17)	4.46 (1.99–9.99)	4.36 (1.94–9.80)
Isolated HbA1c ≥ 42 mmol/mol	2.81 (1.02–7.74)	2.75 (0.99–7.61)	2.70 (0.97–7.51)
Isolated HbA1c < 42 mmol/mol			
Model A: Adjusted by sex and age			
Model B: Model A plus hypertension, hypercholesterolemia, HDL levels and Triglycerides
Model C: Model B plus alcohol consumption, smoking, BMI, abdominal obesity, physical activity, adherence to

Summary
The current prospective cohort study included a total of 948 individuals with a prediabetes status. At the third year of follow-up, compared with the group of subjects with both altered parameters, FPG and HbA1c, the reversion to normal glucose regulation was almost four times higher in subjects with isolated elevated HbA1c and almost five times higher in subjects with isolated IFG.

Strengths and limitations
This study has several strengths and limitations that deserve some comment. To best of our knowledge, this is the first study evaluating the role of optimal lifestyle factors in the reversion to normal glucose regulation according type of prediabetes. Our study highlights the feasibility of conducting a prospective observational study, with data collected nation-wide by primary care physicians during routine clinical practice. Regarding to lab data, analytical determinations of FPG, HbA1c and covariates were performed at different laboratories. This fact could result in some source of misclassification. Of note, since each patient was assigned to the same laboratory during the follow-up, this limitation should be minor and expected to be non-differential in relation to the outcome, as it is unlikely that the reversion could be related to the methods employed by specific laboratories. Finally, the percentage of dropout was 21% in subjects with prediabetes defined by both HbA1c and FPG criteria, 16% in subjects defined by only HbA1c and 19% in subjects defined by only FGP. If reversion were lower in the subjects who dropped out than in the subjects who followed, the differences found in the reversion according to the type of prediabetes would be underestimated.

Comparison with existing literature
Despite there are prior studies evaluating the proportion of reversion to normoglycaemia, all them were heterogeneous in design, duration of follow-up and criteria definition yielding a broad range of reversion rates [15-19], and only few did it according to prediabetes status criteria [10, 20]. The latter, a Japanese study [20] using four prediabetes subgroups according to elevated HbA1c and/or IFG, observed a greater proportion of reversion rates among those with elevated HbA1c levels. In contrast, our results showed an opposite trend resulting in lower rates for individuals with HbA1c levels above 42 mmol/mol (6.0%) regardless FPG levels, similar to the results provided by a British study [10].
A potential source of misclassification when classifying patients according to FPG levels cannot be ruled out. While FPG is subjected to not only intra-individual variability but also daily variation levels [21], HbA1c reflects average plasma glucose over the previous eight to 12 weeks [22] acting as a more established parameter. In the current study, among those classified with isolated FPG levels, more than half had FPG levels < 110 mg/dl presenting the highest reversion rate, and 2.3-fold times higher likelihood of reversion compared with those with FPG ranging from 110-125 mg/dl, respectively. If any substantial impact of misclassification, we would not be able to see this difference.

A recent study, that applied the same prediabetes criteria than ours, observed how individuals who reverted to normal glycaemia regulation after five years of follow up, had a low insulin resistance and optimal beta-cell function at baseline [23]. Following this reasoning, is probable, that in our study population, individuals with HbA1c ≥ 42 mmol/mol (≥ 6%) at baseline had an increased insulin resistance and/or a decreased beta cell function, based on the lowest reversion rates found regardless FPG levels. However, we were not able to measure such physiological markers.

In the present study, baseline characteristics such as age less than 50 years, normal weight, absence of abdominal obesity, physical activity, adherence to Mediterranean diet and absence of hypertension have been associated with a higher likelihood to normal glucose regulation. There are prior studies evaluating reversion to glucose regulation using an interventional design mainly focus on optimal lifestyle actions in a prediabetes population. However, only few are focused on this relationship using a fixed period (i.e. baseline levels). The vast majority, although not all [10, 24], draw similar conclusions than ours [3, 15–16, 18–19, 25]. Both, obesity and body fat distribution, are critical factors to decrease insulin sensitivity and B cells function [26]. In contrast, physical activity causes increased glucose uptake into active muscles balanced by hepatic glucose production and it improves insulin action resulting in preventing insulin resistance [27]. In addition, there is evidence that a low-glycaemic-index diet, such as Mediterranean, improves insulin sensitivity and prevents from diabetes [28]. It is therefore probable that individuals reverting to normal glucose regulation followed an optimal lifestyle behaviour long time before baseline state.
Implications for research and/or practice

There is a gap in knowledge about the extent to which healthy lifestyles explain the reversion to normal glucose regulation, according to the type of prediabetes. The current study found that adjustment for lifestyles did not modify markedly the magnitude of association between type of prediabetes and reversion, which suggests that the excess restore to normal glucose in individuals with isolated IFG or isolated elevated HbA1c cannot be explained via these factors. Therefore, our findings suggest that beyond optimal lifestyles, FPG and HbA1c could be in themselves key markers to revert to normal glycaemia in subjects with prediabetes, especially the FPG level below 110 mg/dl and the HbA1c level below 42 mmol/mol (6.0%).

The criteria of prediabetes are still a controversial topic, based on multiple changes in its definition. Controversy especially lies on the cut-off value levels to define IFG levels < 110 mg/dl [29, 30]. Keeping in mind that almost half of the subjects with those IFG levels reverted to normal glycaemia, this might lead into an overestimation of the true prevalence of this status. Of note, those patients would not be the specific target for intensification of optimising lifestyle factors and other actions such as initiating antidiabetic therapy. In addition to existing doubts about the adequacy of FPG levels below 110 mg/dl to define prediabetes, our findings add new arguments to this controversy given the limited role of optimal lifestyles in the differences to the reversion according to the type of prediabetes. Further studies evaluating reversion to normal glucose regulation and the role of optimal lifestyle factors, together with, clinical outcomes associated to prediabetes diagnostic criteria, are warranted to not only harmonize definitions on prediabetes but also to better identify specific subjects with a low probability of normalizing glycaemia levels.

In conclusion, optimal lifestyle factors showed to be a positive factor to reversion to normoglycaemia after three years of follow up in our prediabetes cohort however, they do not seem to explain differences in the reversion to normal glucose regulation according type of prediabetes.

Declarations

Declaration of interest

The authors declare that they have no conflict of interest.
Author contribution statement

CG-G and LC-S originated and designed the study, contributed to the analysis of the data and to the drafting of the paper. FJ-N, MM, FJS, JD-ES, SA and RS collected data of the study and contributed to the interpretation of the results and to the drafting of the paper. FJGS and RS collected data of the study and coordinated the writing of the article. RA, and ER contributed to the analysis of the data and to the drafting of the paper. All authors contributed to the final version of the article. All authors have seen and approved the final version. ER is the guarantor of the study.

The other members of the PREDAPS Study Group are: Margarita Alonso (CS De la Ería, Asturias), Beatriz Álarez (CS Andrés Mellado, Madrid), Fernando Álvarez (CS La Calzada 2, Asturias), J Carlos Álvarez (CS Eras de Renueva, León), Mª del Mar Álvarez (CS Hereza, Madrid), J Joaquín Antón (CS Murcia-Centro, Murcia), Oriol Armengol (EAP Poblenou, Barcelona), Luis Ávila (Consultorio Almazar, Málaga), Carmen Babace (CS Rodríguez Paterna, La Rioja), Lourdes Barutell (CS Andrés Mellado, Madrid), Mª Jesús Bedoya (CS Hereza, Madrid), Belén Benito (EAP Raal Sud, Barcelona), Beatriz Bilbeny (EAP Raal Sud, Barcelona), Martí Birules (EAP Poblenou, Barcelona), Concepción Blanco (CS Sada, A Coruña), Mª Isabel Bobé (EAP La Mina, Barcelona), Carmen Boente (CS Porriño, Pontevedra), Antonia Borras (CS Canal Salat, Baleares), Remei Bosch (EAP Girona 2, Girona), Mª Jesús Brito (CS La Matanza, Baleares), Pilar Buil (EAP Azpilagaña, Navarra), J José Cabré (EAP Reus-1, Tarragona), Ainoha Cambra (CS Arrabal, Zaragoza), Francisco Carbonell (CS Mislata, Valencia), Francisco Carramiñana (CS San Roque, Badajoz), Lourdes Carrillo (CS La Victoria de Acentejo, Santa Cruz de Tenerife), Ana Casarrrián (CS Fuente de San Luis, Valencia), Rafael Colas (CS Santoña, Cantabria), Blanca Cordero (CS Sta. María de Benquerencia, Toledo), Xavier Cos (EAP Sant Martí de Provençals, Barcelona), Gabriel Cuatrecasas (CAP de Sarrià, Barcelona), Cristina De Castro (CS Sta. María de Benquerencia, Toledo), Manuel De la Flor (CS Ntra. Sra. de Gracia, Sevilla), Carlos De la Sen (Consultorio San Gabriel, Alicante), Rosa Mar De Miguel (EAP Pubillas Casas, Barcelona), A María De Santiago (Unidad Docente de Atención Familiar y Comunitaria, Guadalajara), Mercedes Del Castillo
(CS Andrés Mellado, Madrid), Mª Carmen Durán (CS Lavadores Vigo, Pontevedra), Patxi Ezkurra (CS Zumaia, Guipúzcoa), Paula Gabriel (EAP Badia del Vallès, Barcelona), Javier Gamarra (CS Medina del Campo Rural, Valladolid), Francisco García (CS Don Benito Este, Badajoz), Luis García-Giralda (CS Murcia Centro, Murcia), F Javier García-Soidán (CS Porriño, Pontevedra), Mª Teresa Gijón (CS Los Yébenes, Madrid), Albert Goday (Endocrinología Hospital del Mar, Barcelona), Ángel Gómez (CS Lasarte, Guipúzcoa), María del Carmen Gómez (CS Vélez-Málaga Norte, Málaga), J Carles González (Girona 3, Girona), María González (CS Alcantarilla Sangonera, Murcia), Esteban Granero (CS Vista Alegre Murcia, Murcia), Ángela Trinidad Gutiérrez (CS El Calero, Las Palmas), Félix Gutiérrez (CS Bombarda-Monsalud, Zaragoza), Luisa Gutiérrez (CS Beraun, Guipúzcoa), M Ángel Gutiérrez (CS Ávila Sur Oeste, Ávila), Ana Mª Hernández (CS El Calero, Las Palmas), Mercedes Ibáñez (CS Vandel, Madrid), Rosario Iglesias (CS Lain Entralgo, Madrid), Dimas Igual (CS Manuel Encinas, Cáceres), Jaime Innenaaraty (CS Hereza Leganes, Madrid), Yon Iriarte (CS Aizarnazabal-Getaria, Guipúzcoa), Ángeles Jurado (CS Salvador Caballero, Granada), Rafael Llanes (Villanueva de la Cañada, Madrid), Flora López (EAP Martorell, Barcelona), Riánsares López (CS Artilleros, Madrid), Ángela Lorenzo (CS Alcalá de Guadaira, Madrid), Carmen Losada (UGC Adoratrices, Huelva), Ramón Macía (CS Roces Montevil, Asturias), Fernando Malo (CS Ares, A Coruña), José Mancera (CS Ciudad Jardín, Málaga), Mª José Mansilla (CS Martín de Vargas, Madrid), Mª Teresa Marín (CS General Ricardos, Madrid), José Luis Martín (CS Salvador Caballero, Granada), F Javier Martínez (CS Federica Monseny, Madrid), Juan Martínez (CS Yecla, Murcia), Rosario Martínez (CS Oñati, Guipúzcoa), Mª Soledad Mayayo (CS Martín de Vargas, Madrid), J Javier Mediavilla (CS Burgos Rural, Burgos), Luis Mendo (CS Cadreita, Navarra), J Manuel Millaruelo (CS Torrero La Paz, Zaragoza), Alicia Monzón (CS Vecindario, Las Palmas), Ana Moreno (CAP San Roque, Badajoz), Pedro Muñoz (Unidad Docente de Medicina Familiar y Comunitaria, Cantabria), Xavier Mundet (EAP Carmel, Barcelona), Teresa Mur (CAP Terrasa Sud, Barcelona), Emma Navarro (CS Añaza, Santa Cruz de Tenerife), Jorge Navarro (CS Salvador Pau, Valencia), Pedro Nogales (CS Las Águilas, Madrid), J Carlos Obaya (CS Chopera, Madrid), Francisco Javier Ortega (CS Campos-Lampreana, Zamora), Francisca Paniagua (CS Ciudad Jardín, Málaga), José Luis Pardo (CS Orihuela I, Alicante), Francisco Carlos Pérez (CS Martín de Vargas, Madrid), Pedro P
Pérez (CS Mallen, Sevilla), Neus Piulats (EAP Raval Sud, Barcelona), Raquel Plana (CS Ponteareas, Pontevedra), Nuria Porta (CAP Terrassa Sud, Barcelona), Santiago Poveda (CS Jumilla, Murcia), Luis Prieto (CS Cáceres-La Mejostilla, Cáceres), Ramón Pujol (EAP Tremp, Lleida), Jazmín Ripoll (CS Fuente de San Luis, Valencia), Antonio Rodríguez (EAP Anglès, Girona), J José Rodríguez (CS Villaviciosa de Odón, Madrid), Mª Angeles Rollán (CS Los Yébenes, Madrid), Laura Romera (EAP Raval Nord, Barcelona), José Félix Rubio (CS Lasarte, Guipúzcoa), Antonio Ruiz (CS Pinto, Madrid), Irene Ruiz (EAP La Torrassa, Barcelona), Manuel Antonio Ruiz (CS Agost, Alicante), Isabel Sáenz (CS Espronceda, Madrid), Julio Sagredo (CS Los Rosales, Madrid), Alejandro Salanova (CS Fuente de San Luis, Valencia), L Gabriel Sánchez (CS Carballeda, Zamora), Manuel Sánchez (CS Vista Alegre Murcia, Murcia), Gloria Sanz (CS San José centro, Zaragoza), Mateu Seguí (UBS Es Castell, Baleares), Dulce Suárez (CS El Calero, Las Palmas), Eduard Tarragó (EAP Bellvitge, Barcelona), Jesús Torrecilla (CS Bombarda-Monsalud, Zaragoza), José Luis Torres (CS Rodríguez Paterna, La Rioja), Merè Villaró (CAP Terrassa sud, Barcelona), Carmen Yuste (EAP Badia del Vallès, Barcelona).

References

1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387:1513–30.
2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS med. 2006;3:e442.
3. Perreault L, Kahn SE, Christophi CA, et al. Diabetes Prevention Program Research Group. Regression from prediabetes to normal glucose regulation in the diabetes prevention program. Diabetes Care. 2009;32:1583–8.
4. Knowler WC, Barrett-Connor E, Fowler SE, et al. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.
5. Meigs JB, Muller DC, Nathan DM, et al. Baltimore Longitudinal Study of Aging. The natural history of progression from normal glucose tolerance to type 2 diabetes in the Baltimore Longitudinal Study of Aging. Diabetes. 2003;52:1475–84.
6. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in
Diabetes Care. 2018;41:13–27.

7. DREAM (Diabetes. REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, Bosch J, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 2006; 368:1096–105.

8. Ramachandran A, Snehalatha C, Mary S, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49:289–97.

9. Engberg S, Glümer C, Witte DR, et al. Differential relationship between physical activity and progression to diabetes by glucose tolerance status: the Inter99 Study. Diabetologia. 2010;53:70–8.

10. Færch K, Witte DR, Brunner EJ, et al. Physical activity and improvement of glycemia in prediabetes by different diagnostic criteria. J Clin Endocrinol Metab. 2017;102:3712–21.

11. Serrano R, García-Soidán FJ, Díaz-Redondo A, et al. Grupo de Estudio PREDADS Cohort Study in Primary Health Care on the Evolution of Patients with Prediabetes (PREDAPS): basis and methodology. Rev Esp Salud Publica. 2013;87:121–35.

12. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34:62–9.

13. World Health Organization. Global recommendations on physical activity for health. World Health Organization 2010; Geneva.

14. Panagiotakos DB, Pitsavos C, Stefanadis C. Dietary patterns: a mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr Metab Cardiovasc Dis. 2006;16:559–68.

15. Wong MS, Gu K, Heng D, et al. The Singapore impaired glucose tolerance follow-up study: does the ticking clock go backward as well as forward? Diabetes Care. 2003;26:3024–30.

16. Janghorbani M, Amini M. Normalization of glucose intolerance in first-degree relatives of patients with type 2 diabetes. Diabetes Res Clin Pract. 2010;88:295–301.

17. Tabák AG, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379:2279–90.

18. Perreault L, Pan Q, Mather KJ, et al Diabetes Prevention Program Research Group. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: results from the Diabetes Prevention Program Outcomes Study. Lancet. 2012;379:2243–51.

19. Guo VY, Yu EY, Wong CKh, et al. Validation of a nomogram for predicting regression from impaired fasting glucose to normoglycaemia to facilitate clinical decision making. Fam Pract. 2016;33:401–7.
Heianza Y, Arase Y, Fujihara K, et al. Screening for pre-diabetes to predict future diabetes using various cut-off points for HbA(1c) and impaired fasting glucose: the Toranomon Hospital Health Management Center Study 4 (TOPICS 4). Diabet Med. 2012;29:e279–85.

21.

Mooy JM, Grootenhuis PA, de Vries H, et al. Intra-individual variation of glucose, specific insulin and proinsulin concentrations measured by two oral glucose tolerance tests in a general Caucasian population: the Hoorn Study. Diabetologia. 1996;39:298–305.

22.

World Health Organization. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. World Health Organization 2011; Geneva.

23.

Kim CH, Kim HK, Kim EH, et al. Longitudinal changes in insulin resistance, beta-cell function and glucose regulation status in prediabetes. Am J Med Sci. 2018;355:54–60.

24.

Kowall B, Rathmann W, Heier M, et al. Impact of weight and weight change on normalization of prediabetes and on persistence of normal glucose tolerance in an older population: the KORA S4/F4 study. Int J Obes (Lond). 2012;36:826–33.

25.

Alvarsson M, Hilding A, Ostenson CG. Factors determining normalization of glucose intolerance in middle-aged Swedish men and women: a 8-10-year follow-up. Diabet Med. 2009;26:345–53.

26.

Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes. 2014;7:587–91.

27.

Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–79.

28.

Kirpitch AR, Maryniuk MD. The 3 R’s of glycemic index: recommendations, research, and the real world. Clinical Diabetes. 2011;29:155–9.

29.

Van den Bruel A. The triumph of medicine: how overdiagnosis is turning healthy people into patients. Fam Pract. 2015;32:127–8.

30.

Yudkin JS. “Prediabetes”: are there problems with this label? Yes, the label creates further problems! Diabetes Care. 2016;39:1468-71.