THE HUREWICZ MAP IN MOTIVIC HOMOTOPY THEORY

UTSAV CHOUDHURY AND AMIT HOGADI

Abstract. For an \mathbb{A}^1-connected pointed simplicial sheaf \mathcal{X} over a perfect field k, we prove that the Hurewicz map $\pi^A_1(\mathcal{X}) \to H^A_1(\mathcal{X})$ is surjective. We also observe that the Hurewicz map for \mathbb{P}^1_k is the abelianisation map. In the course of proving this result, we also show that for any morphism ϕ of strongly \mathbb{A}^1-invariant sheaves of groups, the image and kernel of ϕ are also strongly \mathbb{A}^1-invariant.

1. Introduction

For a field k, let Sm/k denote the category of smooth k-varieties with Nisnevich topology. Let $\Delta^{op} Sh(Sm/k)$ denote the category of simplicial sheaves on the category Sm/k. This category with its \mathbb{A}^1-model structure as defined in [6] is one of the main objects of study in \mathbb{A}^1-homotopy theory. For any pointed simplicial sheaf \mathcal{X} in $\Delta^{op} Sh(Sm/k)$ one defines the \mathbb{A}^1-homotopy group sheaves, $\pi^A_i(\mathcal{X})$, to be the sheaves of simplicial homotopy groups of a fibrant replacement of \mathcal{X} in the \mathbb{A}^1-model structure. Morel, in his foundational work in [5, Ch. 6] has defined, for every integer i, \mathbb{A}^1-homology groups $H^A_i(\mathcal{X})$ and canonical Hurewicz morphisms

$$\pi^A_i(\mathcal{X}) \to H^A_i(\mathcal{X})$$

The above maps are analogous to the Hurewicz map that we have in topology. In the topological setup, the Hurewicz morphism for $i = 1$ is known to be the abelianisation when the underlying space is connected. We will refer to this result as the Hurewicz theorem. Hurewicz theorem is expected in \mathbb{A}^1-homotopy theory (see [5, 6.36]), but not yet known. However the following theorem by Morel is the closest known result to the Hurewicz theorem.

Theorem 1.1. [5, 6.35] For a connected simplicial sheaf \mathcal{X}, the Hurewicz morphism

$$\pi^A_1(\mathcal{X}) \to H^A_1(\mathcal{X})$$

is a universal map to a strictly \mathbb{A}^1-invariant sheaf of abelian groups.

Recall that a sheaf of groups G is called strongly \mathbb{A}^1-invariant if for $i = 0, 1$ the maps

$$H^i(U, G) \to H^i(U \times \mathbb{A}^1, G)$$

are bijective for all U in Sm/k. If G is abelian, then it is called strictly \mathbb{A}^1-invariant if the above isomorphism holds for all $i \geq 0$. $\pi^A_1(\mathcal{X})$ is strongly \mathbb{A}^1-invariant and $H^A_1(\mathcal{X})$ is known to be strictly \mathbb{A}^1-invariant (see [5, 6.1, 6.23]).

In topology, the surjectivity of the Hurewicz map is almost a direct consequence of the definitions. This is not the case in \mathbb{A}^1-homotopy theory. The main source of difficulty lies in the non-explicit nature of \mathbb{A}^1-fibrant replacements; non-explicit from the viewpoint of making explicit calculations. In this paper we prove this surjectivity by using Giraud’s theory of non-abelian cohomology.

Theorem 1.2. Let k be a perfect field and \mathcal{X} be a pointed simplicial sheaf on Sm/k in the Nisnevich topology. Then the Hurewicz map $\pi^A_1(\mathcal{X}) \to H^A_1(\mathcal{X})$ is surjective.

The above theorem will be deduced from the following result, which is of independent interest.

Theorem 1.3. Let k be a perfect field. Let G be a strongly \mathbb{A}^1-invariant sheaf of groups on Sm/k and $G \to H$ be an epimorphism. Then H is strongly \mathbb{A}^1-invariant iff it is \mathbb{A}^1-invariant.

2000 Mathematics Subject Classification. 14F42.
Remark 1.4. If \(k \) is perfect field, a theorem of Morel [5, 5.46] says that any strongly \(\mathbb{A}^1 \)-invariant Nisnevich sheaf of abelian groups on \(\text{Sm}/k \) is also strictly \(\mathbb{A}^1 \)-invariant. Unfortunately it is not yet known if this statement holds for imperfect fields. This is the sole reason for assuming \(k \) to be perfect in Theorems 1.3 and 1.2. Also note that strongly \(\mathbb{A}^1 \)-invariant is a stronger notion than just \(\mathbb{A}^1 \)-invariant. In particular, there exists \(\mathbb{A}^1 \)-invariant sheaves which are not strongly \(\mathbb{A}^1 \)-invariant (see [7, Lemma 5.6]).

For a morphism of strongly \(\mathbb{A}^1 \)-invariant abelian sheaves over a perfect field, the kernel and image of the morphism are also strongly \(\mathbb{A}^1 \)-invariant. This result is a consequence of a nontrivial theorem of Morel (see [5, 6.24]) that the category of strongly \(\mathbb{A}^1 \)-invariant sheaves of abelian groups is an abelian category, as it is obtained as a heart of a \(t \)-structure. The theorem below, can be viewed as a generalization of this result for non-abelian strongly \(\mathbb{A}^1 \)-invariant sheaves. Moreover the proof of this generalization is completely different and is more direct in the sense that it does not appeal to the existence of \(t \)-structures.

Theorem 1.5. Let \(G \xrightarrow{\phi} H \) be a morphism of strongly \(\mathbb{A}^1 \)-invariant sheaves of groups. Then the image and the kernel of \(\phi \) are strongly \(\mathbb{A}^1 \)-invariant.

Proof. The image \(\text{Image}(\phi) \) is \(\mathbb{A}^1 \)-invariant, since it is a subsheaf of an \(\mathbb{A}^1 \)-invariant sheaf \(H \). Thus by Theorem 1.3 it is strongly \(\mathbb{A}^1 \)-invariant. The kernel \(K \) is strongly \(\mathbb{A}^1 \)-invariant as it fits in the following exact sequence
\[
1 \to K \to G \to \text{Image}(\phi) \to 1
\]
where the other two sheaves are strongly \(\mathbb{A}^1 \)-invariant. \(\square \)

Acknowledgement: We thank Fabien Morel, Tom Bachmann and O. Röndigs for their comments.

2. Preliminaries on Gerbes and Giraud’s non-abelian cohomology

Let \(\mathcal{C} \) be any small site (e.g. \(\text{Sm}/k \) with Nisnevich topology) and \(\Delta^\text{op}(\mathcal{C}) \) be the category of simplicial sheaves on \(\mathcal{C} \). The goal of this section is to recall the main results of Giraud on non-abelian cohomology. Everything in this section is a subset of [3]. We work with the following definition of a gerbe.

Definition 2.1. A simplicial sheaf \(\mathcal{X} \) on \(\mathcal{C} \) is called a gerbe if it is connected and if for any \(U \in \mathcal{C} \) and any \(x \in \mathcal{X}(U) \), the homotopy sheaves of groups \(\pi_i(\mathcal{X}_U, x) = 0 \) for all \(i \in \mathbb{N} \).

Given any simplicial sheaf \(\mathcal{X} \) (not necessarily a gerbe), one gets a category fibered in groupoids over \(\mathcal{C} \) defined by the fundamental groupoid construction: i.e. for every \(U \in \mathcal{C} \), the fiber category \(\mathcal{X}_U \) is the fundamental groupoid of the space \(\mathcal{X}(U) \), a category whose objects are elements of \(\mathcal{X}(U) \) and morphisms are paths up to homotopy. This category fibered in groupoids is in fact a gerbe in the sense of [4, 3.2] if \(\mathcal{X} \) is connected. If \(\mathcal{X} \) was a gerbe to start with, then it can be recovered, up to weak equivalence, using this category fibered in groupoids using the simplicial nerve construction. A gerbe \(\mathcal{X} \), is called neutral if it has a global section. In this case, by making a choice of a global section, one can define the fundamental group of \(\mathcal{X} \). Since \(\mathcal{X} \) is connected, a different choice gives a fundamental group which can be canonically identified with the previous one, modulo an inner automorphism.

This motivates the following definition by Giraud.

Definition 2.2. [3, 1.1.3] For two sheaves of groups \(F \) and \(G \), let \(\text{Isexc}(F,G) \) denote the set of isomorphisms from \(F \) onto \(G \) modulo the action of inner automorphisms of \(F \) (acting on the left) and the action of inner automorphisms of \(G \).

Consider the pre-stack whose objects over \(U \) are sheaves of groups over \(U \) (small w.r.t to a fixed universe) with morphisms between \(F \) and \(G \) defined as elements of \(\text{Isexc}(F,G) \). One can stackify this pre-stack (see [4]) and objects of this stack are called bands. In particular, every sheaf of groups defines a band. Since every band is represented locally by a sheaf of groups, all those concepts related to sheaves of groups which are local in nature (e.g. exact sequence, epimorphism, kernel, center)
also make sense for bands. It is a simple exercise to show that the center of a band is necessarily represented by a sheaf of groups. The 'fundamental group' of any gerbe \mathcal{X} (neutral or not) is always defined as a band. For a band L, a gerbe banded by L (or simply an L-gerbe) will mean a gerbe together with an isomorphism of L with the band defined by \mathcal{X}. An equivalence of L-gerbes means an equivalence of the gerbes compatible with the given isomorphisms of their bands with L.

Definition 2.3. [3, 3.1.1] For a band L on a site C, let $H^2(C, L)$ or simply $H^2(L)$ denote the equivalence class of L-gerbes. The subset represented by neutral classes in $H^2(C, L)$ is denoted by $H^2(C, L) \sim$ or simply $(H^2(L) \sim)$.

Remark 2.4. Note that $H^2(L) \sim$ is non-empty if and only if L can be represented by a sheaf of groups (see [3, 3.2.4]), in which case it is a singleton set, as can be seen for e.g. by Theorem 2.8 stated below.

Remark 2.5. If a band L is representable by a sheaf of abelian groups A, then $H^2(L)$ defined above is in canonical bijection with the $H^2(A)$ as defined by sheaf cohomology [3, 3.4].

Given an exact sequence of sheaves of groups

$$1 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 1$$

one has a long exact sequence

$$1 \to H^0(A) \to H^0(B) \to H^0(C) \to H^1(A) \to H^1(B) \to H^1(C).$$

One of the goals of introducing the non-abelian H^2 is to extend this exact sequence on the right. We first note that B acts on itself by inner automorphisms. Since A is normal in B, this action also induces an action on A. Thus B also acts on band(A), where band(A) denotes the band defined by A. This action factors through C.

We need the following definition to state the result extending the above long exact sequence to H^2:

Definition 2.6. [3, 4.2.3] For an epimorphism of bands $v : M \to N$, one defines a pointed set $O(v) := N(v)/R$

where

1. $N(v)$ is the set of all triples (K, L, u) where K is a gerbe with band L and $u : L \to M$ is a monomorphism which makes the following sequence exact

$$1 \to L \xrightarrow{u} M \xrightarrow{\alpha} N \to 1.$$

2. R is the equivalence relation defined by declaring $(K, L, u) \sim (K', L', u')$ if there exists a morphism of gerbes $\alpha : K \to K'$ such that the induced morphism $\alpha : L \to L'$ on bands makes the following diagram commute

$$\begin{array}{ccc}
L & \xrightarrow{u} & M \\
\alpha \downarrow & & \downarrow \\
L & \xrightarrow{u'} & M
\end{array}$$

3. $O(v)'$ denotes the subset of $O(v)$ defined by all those (K, L, u) where K is a neutral L-gerbe.

Now one has the following general result.

Theorem 2.7. [3, 4.2.8, 4.2.10] Given an exact sequence of sheaves of groups $1 \to A \xrightarrow{f} B \xrightarrow{g} C \to 1$, we have the following long exact sequence

$$1 \to H^0(A) \to H^0(B) \to H^0(C) \to H^1(A) \to H^1(B) \to H^1(C) \xrightarrow{d} O(g) \to H^2(B) \to H^2(C).$$

where the map d is as defined in [3, 4.7.2.4] and exactness of the sequence is defined similar to that in the case of pointed sets with subsets $O(g)'$ and $H^2(B)'$, $H^2(C)'$ playing the role of base points. When the action of C on band(A) is trivial, on has a canonical bijection $O(g) \cong H^2(A)$.

Another important result of Giraud we need is the following.
Theorem 2.8. [3, 3.3.3] Let L be a band and C be its center. Then one has a canonical action of $H^2(C)$ on $H^2(L)$ which is free and transitive.

This theorem, loosely speaking, says that the non-abelian cohomology set $H^2(L)$ is essentially all abelian as it “comes from” its center. Note however that if $H^2(L)$ has no class represented by a neutral gerbe, then there is no canonical bijection between $H^2(L)$ and $H^2(C)$.

The following is a direct consequence of the above theorem and the definition of

Lemma 2.9. Let $1 \to A \overset{g}{\to} B \overset{f}{\to} C \to 1$ be an exact sequence of sheaves of groups. Assume that $H^2(A)$ is trivial. Then $O(g)^{\prime} = O(g)$.

Proof. Let (K, L, u) be any triple where L is a band which fits in the exact sequence

$$
1 \to L \overset{u}{\to} \text{band}(B) \to \text{band}(C) \to 1
$$

and K is an L-gerbe. To prove the theorem it is enough to show that K is neutral. However we note that center $Z(L)$ coincides with $Z(A)$, the center of A. The result then directly follows from the above theorem. □

3. Strong \mathbb{A}^1-invariance of the center and applications

The goal of this section is to prove the theorems mentioned in the introduction. We start by proving the following.

Theorem 3.1. Let G be a strongly \mathbb{A}^1-invariant sheaf of groups on $S\text{m}/k$. Then $Z(G)$, the center of G is also strongly \mathbb{A}^1-invariant.

Proof. Since G is strongly \mathbb{A}^1-invariant, BG is \mathbb{A}^1-local. By choosing a simplicially fibrant model for BG we may further assume, without loss of generality, that BG is \mathbb{A}^1-fibrant. To show $Z(G)$ is strongly \mathbb{A}^1-invariant, we need to show $BZ(G)$ is \mathbb{A}^1-local. Let $BZ(G) \overset{u}{\to} \mathcal{X}$ be an \mathbb{A}^1-fibrant replacement (in the category of pointed spaces). Thus u is a trivial \mathbb{A}^1-cofibration. To prove the theorem, it suffices to show that u is a simplicial weak equivalence. Equivalently, it suffices to show that the map on sheaves of fundamental groups

$$
\pi_1(BZ(G)) \to \pi_1(\mathcal{X}) (=: H)
$$

is an isomorphism. Since BG is \mathbb{A}^1-fibrant and u is a trivial \mathbb{A}^1-cofibration, we have a factorization h as below

$$
\begin{array}{ccc}
BZ(G) & \overset{u}{\to} & BG \\
& \downarrow \cong & \downarrow \exists h \\
\mathcal{X} & \overset{\exists h}{\to} & BG
\end{array}
$$

which gives a commutative diagram of the maps induces on the fundamental groups

$$
\begin{array}{ccc}
Z(G) & \overset{u}{\to} & G \\
& \downarrow \cong & \downarrow h_* \\
H & \overset{h_*}{\to} & BG
\end{array}
$$

In the above diagram, if we show that the image of h_* is $Z(G)$, then it will follow that $Z(G)$ is a retract of the strongly \mathbb{A}^1-invariant sheaf H and hence is itself strongly \mathbb{A}^1-invariant. Thus it suffices to show that image of h_* is contained in $Z(G)$. This is equivalent to showing that for every smooth k-scheme U and an element $g \in G(U)$, the map $h_{|U}$ is homotopic to the composite of

$$
\mathcal{X}_{|U} \overset{h_{|U}}{\to} BG_{|U} \overset{x \mapsto gxg^{-1}}{\to} BG_{|U}.
$$
But note that the base change functor from $\Delta^{op}(Sh(k)) \to \Delta^{op}(Sh(U))$ preserves trivial \mathbb{A}^1-cofibrations since it is a left quillen functor. Moreover it also preserves \mathbb{A}^1-fibrations. Thus

$$BZ(G)|_U \xrightarrow{\nu|_U} X|_U$$

is a trivial \mathbb{A}^1-cofibration. Since $Z(G)$ is the center of G, the map $BZ(G)|_U \xrightarrow{\nu|_U} BG|_U$ is homotopic (in fact equal) to the composite

$$BZ(G)|_U \to BG|_U \xrightarrow{x \mapsto gx^{-1}} BG|_U.$$

The proof now follows from commutative diagram below, using the fact that $BG|_U$ is a \mathbb{A}^1-local by Lemma 3.2.

$$\begin{array}{c}
BZ(G)|_U \xrightarrow{\nu|_U} BG|_U \xrightarrow{x \mapsto gx^{-1}} BG|_U \\
\downarrow \ h|_U \\
X|_U \end{array}$$

Lemma 3.2. Let $U \in Sm/k$. Then the restriction functor $\Delta^{op}(Sh(k)) \to \Delta^{op}(Sh(U))$ takes \mathbb{A}^1-fibrant objects to \mathbb{A}^1-local objects.

Proof. Let $Y \in \Delta^{op}(Sh(k))$ be an \mathbb{A}^1-fibrant object. Then $Y|_U$ has BG property, since BG property is defined in terms of Nisnevich distinguished triangles and every Nisnevich distinguished triangle in the category Sm/U is also a Nisnevich distinguished triangle in Sm/k. Moreover, since $Y(V \times \mathbb{A}^1) \to Y(V)$ is a weak equivalence for every V/U. Thus by arguments given as in [5, A.6], $Y|_U$ is \mathbb{A}^1-local. □

Proof of 1.3. Let K denote the kernel of the the epimorphism $G \to H$. Thus we have a short exact sequence of Nisnevich sheaves of groups

$$1 \to K \to G \to H \to 1.$$

Step 1: For every smooth k-scheme U, this gives us an exact sequence (see [3, 3.3.1]) of pointed cohomology sets

$$1 \to H^0(U, K) \to H^0(U, G) \to H^0(U, H) \to H^1(U, K) \to H^1(U, G) \to H^1(U, H).$$

Using functoriality of the above exact sequence in the case when U is Hensel local, we deduce that the \mathbb{A}^1-invariance of H implies (in fact is equivalent to) strong \mathbb{A}^1-invariance of K. By Theorem 3.1, $Z(K)$, the center of K is strictly \mathbb{A}^1-invariant sheaf.

Step 2: To show strong \mathbb{A}^1-invariance of H, it is enough to show that for all henselian local essentially smooth schemes U/k, $H^1(U \times \mathbb{A}^1, H)$ is trivial. By [3, 4.7.2.4], we have an exact sequence of pointed sets

$$\to H^1(U \times \mathbb{A}^1, G) \to H^1(U \times \mathbb{A}^1, H) \to O(\phi).$$

where ϕ denotes restriction of $G \to H$ to the over-category $(Sm/k)/U \times \mathbb{A}^1$ which will be denoted by $Sm_k/U \times \mathbb{A}^1$ for simplicity and $O(\phi)$ is as defined in 2.6. It is enough to show $O(\phi)$ is trivial. This follows from Lemma 2.9 and the strict \mathbb{A}^1-invariance of $Z(K)$. □

Let \mathcal{F} be a sheaf on Sm/k. For $U \in Sm/k$ we say $\alpha, \beta \in \mathcal{F}(U)$ are naive \mathbb{A}^1-homotopic if there exists a $\gamma \in \mathcal{F}(U \times \mathbb{A}^1)$ such that

$$\alpha = \sigma_0(\gamma) \quad \text{and} \quad \beta = \sigma_1(\gamma)$$

where $\sigma_0, \sigma_1 : U \to U \times \mathbb{A}^1$ are the sections defined by 0 and 1 respectively. As in [2, 2.9], let $S(\mathcal{F})$ denote the sheaf associated to the presheaf

$$U \mapsto \frac{\mathcal{F}(U)}{\sim}.$$
where \(\sim \) denotes the equivalence relation generated by naive \(\mathbb{A}^1 \)-homotopies. There is a canonical epimorphism \(F \to S(F) \). Let

\[
S^\infty(F) := \lim_{n \to \infty} S^n(F)
\]

The following lemma is straightforward to check.

Lemma 3.3. (see [2, 2.13]) The canonical morphism \(F \to S^\infty(F) \) is an epimorphism and is a universal map from \(F \) to an \(\mathbb{A}^1 \)-invariant sheaf. Moreover if \(F \) is a sheaf of groups, then so is \(S^\infty(F) \).

Proof of Theorem 1.2. By lemma 3.3, the map \(\pi_{A^1_1}(X) \xrightarrow{h} H_{A^1_1}(X) \) factors uniquely through \(\pi_{A^1_1}(X) \xrightarrow{s} S^\infty(\pi_{A^1_1}(X)^{ab}) \).

Since the map \(s \) is an epimorphism, Theorem 1.3 implies that \(S^\infty(\pi_{A^1_1}(X)^{ab}) \) is strongly \(A^1 \)-invariant sheaf of abelian groups. Thus \(s \) is a universal map to strictly \(A^1 \)-invariant sheaf of abelian groups. However by [5, 6.35], so is \(h \). Thus the induced map from \(S^\infty(\pi_{A^1_1}(X)^{ab}) \to H_{A^1_1}(X) \) must be an isomorphism. In particular \(h \) must be an epimorphism. \(\square \)

4. Hurewicz map for \(P^1_k \)

In this section we reserve the notation \(H \) to denote the Hurewicz map for \(P^1 \), i.e. \(\pi_1^A(P^1) \xrightarrow{H} H_{A^1_1}(P^1) \). The goal of this section is to prove the following propositions

Proposition 4.1. The kernel of the Hurewicz map for \(P^1_k \),

\[
\pi_1^A(P^1) \xrightarrow{H} H_1^A(P^1)
\]

is equal to the commutator subgroup of \(\pi_1^A(P^1) \).

As a consequence of the explicit computation of the Hurewicz map we obtain the following :

Proposition 4.2. The sequence of Nisnevich sheaves

\[
0 \to hK_2^{MW} \to K_2^{MW} \xrightarrow{\eta} K_1^{MW}
\]

is exact.

Remark 4.3. We do not know if there is an elementary way to prove the above proposition, using generator and relations. In particular we do not know if

\[
0 \to hK_n^{MW} \to K_n^{MW} \xrightarrow{\eta} K_{n-1}^{MW}
\]

is exact for every \(n \geq 1 \). However, as pointed out to us by O. Röndigs, it is possible that the above short exact sequence is induced by a cofiber sequence given in [1, Prop. 11].

The most difficult part of the computation in the above propositions is the universality of the Hurewicz map and the computation of \(\pi_1^A(P^1) \) itself, both of which has been elegantly done in [5, 6.35, 7.3]. We first restate Morel’s computation of \(\pi_1^A(P^1) \) as it will also help us to build notation for use in subsequent calculation.

Let \(F_{A^1_1}(1) := \pi_1^A(P^1) \). First we recall the following two maps defined by Morel:

1. A map \(\theta : \mathbb{G}_m \to F_{A^1_1}(1) \) which is a result of an \(A^1 \)-equivalence \(\mathbb{P}^1_k \sim \Sigma(\mathbb{G}_m) \).

2. A map \(K_2^{MW} \to F_{A^1_1}(1) \) which is a result of applying \(\pi_1 \) to the map \(\mathbb{A}^2 - 0 \to \mathbb{P}^1 \) and a theorem of Morel which shows \(K_2^{MW} \cong \pi_1^A(\mathbb{A}^2 - 0) \).

In what follows, we will freely use standard notation for denoting elements of \(K_1^{MW} \) used in [5, Chapter 3], e.g. \(\langle -1 \rangle, h, [U] \) etc.
Thus it is enough to show that
\[
1 \to K_2^{MW} \to F^{\lambda^1}(1) \xrightarrow{\gamma} \mathbb{G}_m \to 1
\]
is exact and is a central extension.

(i) For two units \(U, V \) in any field extension \(F \) of \(k \), the following hold
\[
\theta(U)\theta(V)^{-1} = [-U][-V]\theta(U^{-1}V^{-1})
\]
\[
\theta(U)^{-1}\theta(V) = [U^{-1}][-V]\theta(U^{-1}V).
\]

The following is the main calculation in the proof of Proposition 4.1.

Lemma 4.5. For any essentially smooth field extension \(F/k \), the commutator subgroup of \(F^{\lambda^1}(1)(F) \) is equal to \(hK_2^{MW}(F) \).

Proof. Since \(K_2^{MW}(F) \) is in the center of \(F^{\lambda^1}(1)(F) \), we have that the commutator subgroup
\[
[F^{\lambda^1}(1)(F), F^{\lambda^1}(1)(F)] = \langle \theta(U)\theta(V)\theta(U)^{-1}\theta(V)^{-1} | U, V \in F \rangle
\]
where the angle brackets on RHS denote subgroup generated by the elements within.
\[
\theta(U)\theta(V) = (-1)[U][V]\theta(UV) \quad \text{...(by [5, 7.31])}
\]
\[
\theta(V)\theta(U) = (-1)[U][V]\theta(UV) \quad \text{...(by [5, 7.31])}
\]
\[
\theta(U)\theta(V)\theta(U)^{-1}\theta(V)^{-1} = (-1)[U][V]\theta(UV) \cdot (- (-1)[V][U]\theta(UV))^{-1}
\]
\[
= (-1)([U][V] - [V][U]) \quad \text{...((\because K_2^{MW} is in the center)}
\]
\[
= h(h-1)(U)[V]...
\]
\[
\therefore h = 1 + (-1)
\]

Thus we have
\[
[F^{\lambda^1}(1)(F), F^{\lambda^1}(1)(F)] = \langle h(h-1)[U][V] | U, V \in F \rangle
\]
\[
= h(h-1)K_2^{MW}(F) \quad \text{...((\because h - 1 = -1) is a unit by [5, 3.5(4)])}
\]

Proof of Proposition 4.1. Recall that \(H \) is a universal map from \(\pi_1^A(\mathbb{P}^1) \) to a strongly \(A^1 \)-invariant sheaf of abelian groups. Thus it is enough to show that the abelianisation of \(\pi_1^A(\mathbb{P}^1) \) is strongly \(A^1 \)-invariant. \(\pi_1^A(\mathbb{P}^1)^{ab} \) is a quotient of a strongly \(A^1 \)-invariant sheaf therefore by Theorem 1.3, we need to show that \(\pi_1^A(\mathbb{P}^1)^{ab} \) is homotopy invariant. However by (4.4) and Lemma 4.5, \(\pi_1^A(\mathbb{P}^1)^{ab} \) fits in the following exact sequence
\[
0 \to \frac{K_2^{MW}}{hK_2^{MW}} \to \pi_1^A(\mathbb{P}^1)^{ab} \to \mathbb{G}_m \to 0.
\]

Thus it is enough to show that \(\frac{K_2^{MW}}{hK_2^{MW}} \) is \(A^1 \)-invariant or equivalently \(hK_2^{MW} \) is strongly \(A^1 \)-invariant. However this follows from [5, 3.32].

The following lemmas give explicit description of the Hurewicz morphism \(H \).

Lemma 4.6. There exists an isomorphism \(\phi : H_2^A(\mathbb{P}^1) \cong K_2^{MW} \) such that
\[
\phi \circ H([U][V]\theta(W)) = \eta [U^{-1}][V] + [W]
\]
where \(U, V, W \) are sections of \(\mathbb{G}_m \) on an object in \(\mathbb{G}_m \).
Proof. Since there is an A^1-equivalence $P^1_k \cong \Sigma \mathbb{G}_m$, we have

$$H^1_{\mathbb{A}^1}(P^1_k) \cong H^1_{\mathbb{A}^1}(\Sigma \mathbb{G}_m) \cong \tilde{H}^1_{\mathbb{A}^1}(\mathbb{G}_m)$$

where the second isomorphism is due to A^1-suspension theorem for homology [5, 6.30]. In the above statement \mathbb{G}_m is considered as a sheaf of sets pointed by 1. By the definition of A^1-homology groups, $\tilde{H}^1_{\mathbb{A}^1}(\mathbb{G}_m)$ is the strictly A^1-invariant sheaf of abelian groups generated by the pointed sheaf \mathbb{G}_m.

By [5, 3.2], this must be isomorphic to K_{MW}^1. Now recall that we have the following commutative diagram

\[\begin{array}{ccc}
\mathbb{G}_m & \xrightarrow{\theta} & \pi_1(\Sigma \mathbb{G}_m) \\
U \mapsto (U) & & \pi_1^A(P^1_k) \\
\end{array} \]

The diagram commutes because all morphisms in this diagram are a result of some universal property. The commutativity of the diagram gives us the formula

(1) $\phi(H([U])) = [W]$

Now, using the following equality proved in [5, 7.29(1)]

$$\theta(U^{-1})^{-1}\theta(U^{-1}V)\theta(V)^{-1} = [U][V]$$

we get

$$\phi(H([U][V]\theta(W))) = \phi(H(\theta(U^{-1})^{-1}\theta(U^{-1}V)\theta(V)^{-1}\theta(W)))$$

$$= -[U^{-1}] + [U^{-1}V] - [V] + [W] \quad \text{...}(\text{using eqn}(1) \ \text{above})$$

$$= \eta[U^{-1}][V] + [W] \quad \text{...}(\text{using [5, 3.1(2)])}$$

□

To state the next lemma, recall that K_{MW}^2 is the free strongly A^1-invariant sheaf of abelian groups generated by the pointed sheaf of sets $\mathbb{G}_m \wedge \mathbb{G}_m$. Thus any automorphism of $\mathbb{G}_m \wedge \mathbb{G}_m$ gives rise to an automorphism of K_{MW}^2. In particular, the automorphism of K_{MW}^2 induced by

$$\begin{array}{c}
\mathbb{G}_m \wedge \mathbb{G}_m \rightarrow \mathbb{G}_m \wedge \mathbb{G}_m \\
(U, V) \mapsto (U^{-1}, V)
\end{array}$$

will be denoted by τ.

Lemma 4.7. Let $\tau : K_{MW}^2 \rightarrow K_{MW}^2$ denote the automorphism which sends $[U][V] \mapsto [U^{-1}][V]$. Then the restriction of the Hurewicz map H to K_{MW}^2 coincides with the composition

$$K_{MW}^2 \xrightarrow{\tau} K_{MW}^2 \xrightarrow{\eta} K_{MW}^1$$

Proof. This follows directly from the explicit formula for H in the above lemma. □

Proof of Proposition 4.2. By universality of H, as noted before, the map $F^\mathbb{A}^1(1) \xrightarrow{\gamma} \mathbb{G}_m$ factors through H. Thus

$$\text{Ker}(H) \subset \text{Ker}(\gamma) = K_{MW}^1$$

$\text{Ker}(H)$ must coincide with the kernel of restriction of H to K_{MW}^2. Now the proposition follows from Lemmas 4.5 and 4.7. □
References

[1] A. Ananyevskiy, O. Röndigs, P. Østvær; On very effective hermitian K-theory. Math. Z. 294 (2020), no. 3-4, 1021–1034.

[2] Chetan Balwe, Amit Hogadi and Anand Sawant; A^1-connected components of schemes. Adv. Math. 282 (2015), 335–361.

[3] Giraud, Jean; Cohomologie non abélienne. Die Grundlehren der mathematischen Wissenschaften, Band 179. Springer-Verlag, Berlin-New York, 1971.

[4] G. Laumon, L. Moret-Bailly; Champs algébriques. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 39. Springer-Verlag, Berlin, 2000.

[5] F. Morel, A^1-algebraic topology over a field, LNM 2052, Springer, Heidelberg, 2012.

[6] F. Morel, V. Voevodsky, A1-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math. No. 90 (1999), 45–143 (2001).

[7] U. Choudhury; Connectivity of motivic H-spaces. Algebraic and Geometric Topology 14 (2014) 37–55.