Research Article

Finite-Time H_2/H_∞ Control Design for Stochastic Poisson Systems with Applications to Clothing Hanging Device

Yan Qi,1 Shiyu Zhong,2,3 and Zhiguo Yan2,4

1School of Fine Arts and Design, University of Jinan, Jinan 250022, China
2School of Electrical Engineering and Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
3College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
4School of Control Science and Engineering, Shandong University, Jinan 250061, China

Correspondence should be addressed to Zhiguo Yan; yanzg500@sina.com

Received 11 April 2020; Accepted 2 June 2020; Published 14 July 2020

Guest Editor: Xiaodi Li

Copyright © 2020 Yan Qi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the design of finite-time H_2/H_∞ controller for linear Itô stochastic Poisson systems is considered. First, the definition of finite-time H_2/H_∞ control is proposed, which considers the transient performance, H_2 index, and H_∞ index simultaneously in a predetermined finite-time interval. Then, the state feedback and observer-based finite-time H_2/H_∞ controllers are presented and some new sufficient conditions are obtained. Moreover, an algorithm is given to optimize H_2 and H_∞ index simultaneously. Finally, a simulation example indicates the effectiveness of the results.

1. Introduction

It is known to all that stochastic systems have been studied extensively and applied to biological network [1], power systems [2], financial systems [3, 4], and other fields. There are also many other applications of stochastic systems (see, e.g., [5–7]). In the past few decades, stochastic systems driven by Wiener noise have been widely investigated. For example, Shaikin [8] solved the optimization problem for multiplicative stochastic systems with several external disturbances and vector Wiener processes. Xiang et al. [9] introduced the finite-time properties and state feedback H_∞ control problem for switched stochastic systems with Wiener noise. Yan et al. [10] were concerned with finite-time H_2 control of the Markovian stochastic systems with Wiener noise. However, in the real world, an actual physical system is inevitably affected by Wiener noise and Poisson jump noise. At present, some achievements have been made in the research of stochastic Poisson systems (see, e.g., [11–14]).

On the other hand, H_2/H_∞ optimization control is one of the most important problems in the controlled system. The H_2 optimal control system has good system performance, while the H_∞ control theory can deal with the system robustness problem well. In view of this, Bernstein and Haddad [15] proposed the H_2/H_∞ mixed control problem, which can solve both the problems of system performance and robustness. Since then, the H_2/H_∞ control has been developed and used extensively (see, e.g., [16–19]). Besides, in some engineering research, such as communication system [20–23], robotic operating system [24], and industrial production system [25], more attention should be paid to the system transient performance. In order to describe system transient performance clearly, the concepts of finite-time stability (FTS) and finite-time boundedness (FTB) are proposed, which reflect the specific system behavior in a relatively short time interval. Nowadays, the problems of FTS and FTB have been deeply investigated (see, e.g., [26–36]). In consideration of the merits of FTB and H_2/H_∞ control, the finite-time H_2/H_∞ control for stochastic systems with Wiener noise is first presented in [37], which satisfies both FTB and H_2/H_∞ performance index. However, in many practical systems, it is not only disturbed...
by Wiener noise, but also by Poisson noise. So far, there are few literature studies to investigate this problem of stochastic Poisson systems affected by both Wiener and Poisson noises.

Motivated by aforementioned discussions, the problems of finite-time H_2/H_{∞} control for stochastic Poisson systems with both Wiener noise and Poisson noise are considered in this paper. The main work of this paper consists of the following three aspects:

(i) Unlike the model considered in [37], this paper studies the model of stochastic Poisson systems with Wiener and Poisson noises. The former considers only Wiener noise, and the latter considers both Wiener and Poisson noises. Moreover, in the former model, the measurement output $y(t)$ is composed of only the state, but the measurement output considered in the latter model is composed of both the state and external interference. The latter model is more general than the former model in [37], which is used to model many real systems.

(ii) The two theorems (Theorems 2 and 4) are obtained to guarantee the existence of state feedback finite-time (SFFT) and observer-based finite-time (OBFT) H_2/H_{∞} controllers, respectively. The two theorems (Theorems 2 and 4) contain the parameters both α and Poisson jump intensity λ, which are complex than the corresponding conditions in [37]. By adjusting the two parameters, the most satisfying finite-time H_2/H_{∞} controllers will be designed.

(iii) A new optimization algorithm constrained by matrix inequality is proposed to demonstrate the relationships among α, λ, and optimal H_2/H_{∞} index, which is more complex than that in [37].

Notations: the notations presented in this work are standard. For specific contents, one can refer to [37].

2. Preliminaries

Consider a continuous-time stochastic Poisson system

\[
\begin{array}{l}
dx(t) = \begin{bmatrix} A_{11} & B_{11} \\ A_{12} & B_{12} \end{bmatrix} x(t) + \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} r(t) \, dt + \begin{bmatrix} A_{11} & B_{11} \\ A_{12} & B_{12} \end{bmatrix} v(t) + \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} r(t) \, d\mathcal{W}(t) \\
+ \begin{bmatrix} A_{11} & B_{11} \\ A_{12} & B_{12} \end{bmatrix} v(t) + \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} r(t) \, d\mathcal{N}(t), \\
y(t) = C_{11} x(t) + D_{11} r(t), \\
z(t) = C_{12} x(t) + D_{12} v(t), \\
x(0) = x_0 \in \mathbb{R}^n,
\end{array}
\]

where $A_{11}, A_{12}, B_{11}, B_{12}, C_{11}, C_{12}, D_{11}, D_{12}, F_1, F_2$, and F_3 are known constant matrices. $x(t) \in \mathbb{R}^n$, $y(t) \in \mathbb{R}^n$, $z(t) \in \mathbb{R}^n$, and $v(t) \in \mathbb{R}^n$ are the state vector, measurement output, control output, and control input, respectively. x_0 is the initial condition of the system. $\mathcal{W}(t)$ presents one-dimensional standard Wiener process and $\mathcal{N}(t)$ is the marked Poisson process with Poisson jump intensity λ. $r(t) \in \mathbb{R}^p$ is the disturbance input which satisfies the following equation:

\[
\int_0^t r'(s) r(s) \, ds < f, \quad (f > 0).
\]

Next, the definition of mean-square FTB of system (1) is introduced.

Definition 1. Given some scalars $b_2 > b_1 > 0$ and $T > 0$ and a matrix $R > 0$, the above stochastic system (1) with $v(t) \equiv 0$ is mean-square FTB w.r.t. (b_1, b_2, T, R, f), if

\[
\mathbb{E} [x'(0) R x(0)] \leq b_1 \implies \mathbb{E} [x'(t) R x(t)] < b_2, \quad \forall t \in [0, T].
\]

Remark 1. From Definition 1, we can know that the concept of FTB describes the specific behavior of the stochastic system (1) in a prescribed time interval.

Lemma 1 (see [38]). Let $\mathcal{T}(t, x) \in C^2(R^1, R^n)$ and $\mathcal{T}(t, x) > 0$. Consider the following system

\[
dx(t) = A_1(x) dt + A_2(x) d\mathcal{W}(t) + A_3(x) d\mathcal{N}(t),
\]

its stochastic differential of $\mathcal{T}(t, x)$ is given by

\[
\mathcal{T}(t, x) = \frac{\partial \mathcal{T}(t, x)}{\partial t} + \frac{\partial \mathcal{T}(t, x)}{\partial x} A_1(x) + \frac{1}{2} A_2(x) \left(\frac{\partial^2 \mathcal{T}(t, x)}{\partial x^2} A_2(x) + \lambda \left[\mathcal{T}(t, x + A_3(x)) - \mathcal{T}(t, x) \right] \right),
\]
3. Design of SFFT H_2/H_∞ Controller

In this section, a SFFT H_2/H_∞ controller for system (1) is designed. Consider a linear SF controller

$$v(t) = Kx(t),$$

where K is the required SF gain matrix.

Substituting (7) into (1), the following closed-loop system is obtained:

$$
\begin{align*}
\dot{x}(t) &= \left[\bar{A}_{11} x(t) + F_1 r(t)\right]dt + \left[\bar{A}_{12} x(t) + F_2 r(t)\right]dW(t) + \left[\bar{A}_{13} x(t) + F_3 r(t)\right]dV(t), \\
y(t) &= C_{11} x(t) + D_{11} r(t), \\
z(t) &= \bar{C} x(t), \\
x(0) &= x_0 \in \mathbb{R}^n,
\end{align*}
$$

where $\bar{A}_{11} = A_{11} + B_{11} K$, $\bar{A}_{12} = A_{12} + B_{12} K$, $\bar{A}_{13} = A_{13} + B_{13} K$, and $\bar{C} = C + D_z K$.

Next, we choose the following H_2 cost function:

$$J_1(x(t), v(t)) = \mathbb{E}\int_0^T [x'(t)G_1 x(t) + v'(t)G_2 v(t)]dt,$$

where $G_1 > 0$ and $G_2 > 0$ are known weighting scalars or positive matrices.

Similarly, substituting the SF controller (7) into (9), the following formula is obtained:

$$J_1(x(t)) = \mathbb{E}\int_0^T [x'(t)G_1 x(t) + x'(t)K^T G_2 K x(t)]dt.$$

Given $\gamma > 0$ and assuming zero initial condition, the control output $z(t)$ and the disturbance input $r(t)$ satisfy the following equation:

$$\mathbb{E}\int_0^T z'(t)z(t)dt < \gamma^2 \mathbb{E}\int_0^T r'(t)r(t)dt.$$

Based on the above preparations, the definition of the SFFT H_2/H_∞ controller is introduced.

Definition 2. Given positive scalars b_1, b_2, T, and f and a matrix $R > 0$, if there exist a nonnegative scalar α and two matrices $N \succ 0$ and K such that

$$
\begin{bmatrix}
\mathcal{F}_1 & F_1 & \bar{N}A_{12}' & \sqrt{\bar{N}}(\bar{A}_{13} + I)' \\
* & -\gamma^2 I & F_2 & \sqrt{\bar{N}} F_3' \\
* & * & -\bar{N} & 0 \\
* & * & * & -\bar{N}
\end{bmatrix} < 0,
$$

$$
\begin{bmatrix}
\mathcal{F}_2 & \bar{N}A_{12}' & \sqrt{\bar{N}}(\bar{A}_{13} + I)' \\
* & -\bar{N} & 0 \\
* & * & -\bar{N}
\end{bmatrix} < 0,
$$

$$
\frac{b_1}{\lambda_{\min}(N)} + f \gamma^2 < \frac{b_2}{\lambda_{\max}(N)} e^{-\alpha T},
$$

hold, where $\bar{N} = R^{-1/2}NR^{-1/2}$, $\mathcal{F}_1 = \bar{A}_{11}' \bar{N} + \bar{N}A_{11}' - \lambda \bar{N} - \alpha \bar{N} + \bar{N}C_N \bar{C}_N$, and $\mathcal{F}_2 = \bar{A}_{11}' \bar{N} + \bar{N}A_{11}' - \lambda \bar{N} - \alpha \bar{N} + \bar{N}G_1' \bar{N} + \bar{N}K' \bar{G}_2 \bar{K} \bar{N}$, then $v(t) = K x(t)$ is said to be a SFFT H_2/H_∞ controller and we can get the upper bound of H_2 index, that is, $J^*_{\text{state}} = \lambda_{\max}(N^{-1})b_1 e^{\alpha T}$.

Proof. Here are three steps to prove Theorem 1.

Step 1: prove that system (3) is mean-square FTB.

Obviously,

$$
\begin{bmatrix}
\bar{N}C_N \bar{C}_N & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} \geq 0.
$$

Therefore, condition (12) means...
where $\mathcal{F}_1 = \tilde{A}_1 \tilde{N} + \tilde{N} \tilde{A}_1^{-1} - \lambda \tilde{N} - \alpha \tilde{N}$.

Let $\mathcal{F}(x(t)) = x'(t) \tilde{N}^{-1} x(t)$, and applying Lemma 1 for $\mathcal{F}(x(t))$, the $\mathcal{L}_1 \mathcal{F}(x(t))$ of system (8) is given by

$$
\mathcal{L}_1 \mathcal{F}(x(t)) = \begin{bmatrix} Z_1 & Z_2 \\ * & * \end{bmatrix} \begin{bmatrix} x(t) \\ r(t) \end{bmatrix},
$$

where $Z_1 = \tilde{A}_1 \tilde{N}^{-1} + \tilde{N}^{-1} \tilde{A}_1 + A_{12} \tilde{N}^{-1} \tilde{A}_{12} + \lambda (\tilde{A}_{13} + I) \tilde{N}^{-1} (\tilde{A}_{13} + I) - \lambda \tilde{N}^{-1}$, $Z_2 = \tilde{A}_1 \tilde{N}^{-1} F_1 + A_{12} \tilde{N}^{-1} \tilde{F}_2 + \tilde{N}^{-1} \tilde{F}_1$, and $Z_3 = \tilde{F}_1 \tilde{N}^{-1} F_1 + \tilde{F}_1 \tilde{N}^{-1} F_2$.

Pre- and postmultiplying (16) by diag($\tilde{N}^{-1}, I, \tilde{N}^{-1}$), we can get the following inequality:

$$
\mathcal{F}(x(t)) < a \mathcal{F}(x(0)) + \alpha t + \gamma^2 t r'(s) r(s) ds.
$$

Utilizing Gronwall inequality in [26], it follows

$$
\mathcal{F}(x(t)) < \mathcal{F}(x(0)) e^{at} + \gamma^2 e^{at} \int_0^t r'(s) r(s) ds.
$$

On the basis of above conditions, we have

$$
\mathcal{F}(x(t)) = \mathcal{F}[x'(t) \tilde{N}^{-1} \tilde{K} \tilde{N}^{-1} x(t)] \geq \lambda_{\min} \left(\tilde{N}^{-1} \right) E[x'(t) \tilde{N}^{-1} \tilde{K} \tilde{N}^{-1} x(t)],
$$

where $\lambda_{\min} \left(\tilde{N}^{-1} \right) = \lambda_{\min}(N^{-1})$. The pre and postmultiplying (16) by diag($\tilde{N}^{-1}, I, \tilde{N}^{-1}$), we can get the following inequality:

$$
\mathcal{F}(x(t)) < a \mathcal{F}(x(0)) + \alpha t + \gamma^2 t r'(s) r(s) ds.
$$

From (22) to (25), the following inequality is obtained:

$$
\mathcal{F}[x'(t) \tilde{N}^{-1} \tilde{K} \tilde{N}^{-1} x(t)] \leq \lambda_{\max}(N) e^{at} \left(\frac{b_1}{\lambda_{\max}(N)} + f \gamma^2 \right).
$$

According to condition (14), we get that (26) leads to $\mathcal{F}[x'(t) \tilde{K} \tilde{N}^{-1} x(t)] < b_2$ for all $t \in [0, T]$. So, system (8) is mean-square FTB w.r.t. (b_1, b_2, T, R, f).

Step 2: prove that the H_2 cost function (10) satisfies $J_1(x(t)) \leq J_1'$ under $r(t) = 0$ condition.
Because (38) and (39), it yields
\[
\mathcal{L}_1 \left[e^{-at} \mathcal{F}(x(t)) \right] < 0.
\]

From (31), we get
\[
\mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] < \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] + a \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] dt.
\]

Combining (33) and (34), it is obtained that
\[
J_1(x(t)) < \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] + \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] dt.
\]

Step 3: prove that the non-zero disturbance and the control output satisfy inequality (11).

Pre- and postmultiplying (12) respectively by \(\text{diag}\{\hat{N}^{-1}, I, \hat{N}^{-1}, \hat{N}^{-1}\} \), and then using Schur complement, we have
\[
\begin{bmatrix}
\mathcal{F}_4 & \mathcal{F}_5 \\
\mathcal{F}_6 & \mathcal{F}_7
\end{bmatrix} < 0,
\]

where
\[
\mathcal{F}_k = A_{11}^{-1} + \hat{N}^{-1}A_{11} + \hat{N}^{-1}A_{12} + \hat{N}^{-1}A_{11}^{-1}A_{11} + \lambda(A_{11} + I)\hat{N}^{-1}(A_{11} + I) + \hat{C}_i \hat{C}^\top - \lambda \hat{N}^{-1} - \hat{N}.
\]

Combining (17), (36), we get
\[
\mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] < \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] + \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] dt.
\]

Pre- and postmultiplying (37) by \(e^{-ut} \), one has
\[
e^{-ut} \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] < a e^{-ut} \mathcal{F}(x(t)) + e^{-ut} \left[2 \gamma^2 r^T(t) r(t) - z^T(t) z(t) \right].
\]

By applying Lemma 1, we obtain
\[
\mathcal{L}_1 \left[e^{-ut} \mathcal{F}(x(t)) \right] = -a e^{-ut} \mathcal{F}(x(t)) + e^{-ut} \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right].
\]

According to (38) and (39), it yields
\[
\mathcal{L}_1 \left[e^{-ut} \mathcal{F}(x(t)) \right] < 0.
\]

Because \(e^{-ut} \) is between 0 and 1, for (40), we have
\[
\mathcal{L}_1 \left[e^{-ut} \mathcal{F}(x(t)) \right] < 0.
\]

Integrating from 0 to \(t \) on both sides of (41), then taking mathematical expectation, the following inequality can be obtained under zero initial condition:
\[
e^{-ut} \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] < 0.
\]

We know that \(e^{-ut} \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] > 0 \), so it yields
\[
\int_0^t e^{-ut} \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] dt < 0.
\]

This completes the proof.

It is obvious that conditions (12)–(14) are not linear matrix inequalities. In order to simplify the solving process, the following theorem is given.

Theorem 2. Given positive scalars \(b_1, b_2, T, \) and \(f \) and a matrix \(R > 0 \), if there exist two scalars \(m > 0 \) and \(\alpha > 0 \) and two matrices \(N > 0 \) and \(Y \) such that
\[
\begin{bmatrix}
\mathcal{F}_4 & \mathcal{F}_5 & \mathcal{F}_6 & \mathcal{F}_7 \\
\mathcal{F}_6 & \mathcal{F}_7 & -\hat{N} & 0 \\
\mathcal{F}_7 & -\hat{N} & 0 & 0
\end{bmatrix} < 0,
\]

then
\[
\begin{bmatrix}
f \gamma^2 - b_2 e^{-ut} \sqrt{\mathcal{F}_8} \\
\mathcal{F}_4 \mathcal{F}_5 \mathcal{F}_6 \mathcal{F}_7
\end{bmatrix} < 0,
\]

\[
\mathcal{L}_1 \left[e^{-at} \mathcal{F}(x(t)) \right] < \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] - m e^{-ut}.
\]

\[
\int_0^t e^{-ut} \mathcal{L}_1 \left[\mathcal{F}(x(t)) \right] dt < 0.
\]

Proof. Let \(Y = K \hat{N} \), inequalities (12) and (13) can be obtained from (44) and (45), respectively, and (14) in Theorem 1 can be obtained from (46) and (47) easily. This ends the proof.

Remark 3. In Theorem 2, when \(\alpha \) is fixed, (44)–(47) can be treated as LMIs which are easy to solve.
4. Design of OBFT H_2/H_{∞} Controller

In some practical cases, not all states can be measured directly. Therefore, the design of OBFT H_2/H_{∞} controller is necessary. Typically, an OB dynamic controller is given by

$$\begin{align*}
\dot{x}(t) &= [A_{11} \bar{x}(t) + B_{11}v(t) + L(y(t) - C_{11} \bar{x}(t))]dt, \\
v(t) &= K\bar{x}(t), \\
\bar{x}(0) &= 0,
\end{align*}$$

(48)

where $\bar{x}(t) \in \mathbb{R}^n$ is the estimation of $x(t)$ and L is the desired estimator gain.

Substituting the OB controller (48) into system (1), we will obtain the following closed-loop system:

$$\begin{align*}
\dot{\bar{x}}(t) &= \bar{A}_{11} \bar{x}(t) + \bar{W}_1 r(t) + \bar{W}_2 r(t) \dot{\bar{r}}(t) + \bar{W}_3 r(t) \dot{\bar{r}}'(t), \\
\bar{z}(t) &= H\bar{x}(t),
\end{align*}$$

(49)

and then we get the closed-loop cost function

$$J_2(\bar{x}(t)) = \mathcal{E}^T \bar{x}(t) \mathcal{E}(t) dt,$$

(50)

where

$$\bar{x}(t) = \begin{bmatrix} x(t) \\ \bar{x}(t) \end{bmatrix},$$

$$\bar{A}_{11} = \begin{bmatrix} A_{11} & B_{11}K \\ LC_{11} & A_{11} + B_{11}K - LC_{11} \end{bmatrix},$$

$$\bar{W}_1 = \begin{bmatrix} F_1 \\ LD_{11} \end{bmatrix},$$

$$\bar{A}_{12} = \begin{bmatrix} A_{12} & B_{12}K \\ 0 & 0 \end{bmatrix},$$

$$\bar{W}_2 = \begin{bmatrix} F_2 \\ 0 \end{bmatrix},$$

$$\bar{A}_{13} = \begin{bmatrix} A_{13} & B_{13}K \\ 0 & 0 \end{bmatrix},$$

$$\bar{W}_3 = \begin{bmatrix} F_3 \\ 0 \end{bmatrix},$$

$$H = \begin{bmatrix} C_{12} K' D_{12}' \\ G_1 \\ 0 \end{bmatrix},$$

$$\Xi = \begin{bmatrix} K' G_1 K \end{bmatrix}.$$

(51)

Assuming that the initial state is zero, the control output $\bar{z}(t)$ and the arbitrary nonzero disturbance input $r(t)$ satisfy the following equation:

$$\mathcal{E}^T \bar{z}'(t) \bar{z}(t) dt < \mathcal{E}^T \bar{z}(t) \bar{z}(t) dt.$$

(53)

Then, we give the definition of OBFT H_2/H_{∞} control.

Definition 3. Given positive scalars b_1, b_2, T, and f and a matrix $\bar{R} > 0$, if there exist a nonnegative scalar β and a positive matrix P such that

$$\begin{bmatrix}
\bar{X}_1 \bar{P} W_1 \bar{A}_{12} \bar{P} \sqrt{\lambda} (\bar{A}_{13} + I) \bar{P} \\
\ast & -\gamma^2 I & W_2^T \bar{P} & \sqrt{\lambda} W_3^T \bar{P} \\
\ast & \ast & -\bar{P} & 0 \\
\ast & \ast & \ast & -\bar{P}
\end{bmatrix} < 0,$$

(54)

$$\bar{A}_{11} \bar{P} + \bar{P} \bar{A}_{11} + \bar{A}_{13}^T \bar{P} \bar{A}_{12} + \lambda (\bar{A}_{13} + I)^T \bar{P} (\bar{A}_{13} + I) - \lambda \bar{P} - \beta \bar{P} + \Xi < 0,$$

(55)

$$\lambda_{\max}(P) b_1 + f \gamma^2 < \lambda_{\min}(P) b_2 e^{-\beta T},$$

(56)

hold, where $\bar{P} = \bar{R}^{1/2} \bar{P} \bar{R}^{1/2}$ and $\bar{X}_1 = \bar{A}_{11}^T \bar{P} + \bar{P} \bar{A}_{11} + H' H - \beta \bar{P} - \lambda \bar{P}$, then (48) is said to be an OBFT H_2/H_{∞} controller and we can get the upper bound of H_2 index, that is, $J_2^* = \lambda_{\max}(P) b_1 e^{\beta T}$.

Proof. Here are three steps to prove the theorem.

Step 1: prove that system (49) is mean-square FTB.
Let \(\mathcal{F}(\bar{x}(t)) = \bar{x}'(t)P \bar{x}(t) \) where \(P > 0 \). Applying generalized Itô formula for \(\mathcal{F}(\bar{x}(t)) \), the \(L_3 \mathcal{F}(\bar{x}(t)) \) of system (49) is given by

\[
L_3 \mathcal{F}(\bar{x}(t)) = \begin{bmatrix} \bar{x}(t) \\ r(t) \end{bmatrix} \begin{bmatrix} \bar{Z}_1 & \bar{Z}_2 & \bar{Z}_3 \\ * & * & * \end{bmatrix} \begin{bmatrix} \bar{x}(t) \\ r(t) \end{bmatrix},
\]

(57)

where \(\bar{Z}_1 = \bar{A}_1'P + P\bar{A}_1 + \bar{A}_1'P\bar{A}_1 + \lambda(\bar{A}_1 + I)P(\bar{A}_1 + I) - \lambda \bar{P} \), \(\bar{Z}_2 = \bar{P}W_1 + \bar{A}_1'PW_2 + \lambda(\bar{A}_1 + I)\bar{P}W_3 \), and \(\bar{Z}_3 = W_2\bar{P}W_2 + \lambda W_3\bar{P}W_3 \).

Note that

\[
\begin{bmatrix} H' & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} H' & H' \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \geq 0.
\]

(58)

Therefore, inequality (54) means

\[
[\mathcal{H}_2 \bar{P}W_1 + \bar{A}_1'\bar{P} \sqrt{1}(\bar{A}_1 + I)^\prime \bar{P}] \\
\begin{bmatrix} -\gamma^2 I & -\bar{P} \\ -\bar{P} & 0 \end{bmatrix} < 0.
\]

(59)

where \(\mathcal{H}_2 = \bar{A}_1'\bar{P} + \bar{P}\bar{A}_1 - \bar{\beta} \bar{P} - \lambda \bar{P} \).

By utilizing Schur complement, (59) can be converted into

\[
\begin{bmatrix} \bar{Z}_1 - \beta \bar{P} & \bar{Z}_2 \\ * & -\gamma^2 I + \bar{Z}_3 \end{bmatrix} < 0.
\]

(60)

Combining (57) and (60), we get

\[
L_3 \mathcal{F}(\bar{x}(t)) < 2\mathcal{F}(\bar{x}(t)) + \gamma^2 r'(t)r(t).
\]

(61)

Integrating from 0 to \(t \) on both sides of (61), then taking mathematical expectation, the following inequality is obtained:

\[
\mathbb{E}\mathcal{F}(\bar{x}(t)) < \mathbb{E}\mathcal{F}(\bar{x}(0)) + \beta \int_0^t \mathbb{E}\mathcal{F}(\bar{x}(s))ds + \gamma^2 \int_0^t \mathbb{E}r'(s)r(s)ds.
\]

(62)

According to Gronwall inequality, it yields

\[
\mathbb{E}\mathcal{F}(\bar{x}(t)) < \mathbb{E}\mathcal{F}(\bar{x}(0))e^{\beta t} + \gamma^2 e^{\beta t} \int_0^t \mathbb{E}r'(s)r(s)ds.
\]

(63)

According to known conditions, it yields

\[
\mathbb{E}\mathcal{F}(\bar{x}(t)) \geq \lambda_{\min}(P)\mathbb{E}\left[\bar{x}'(t)\bar{R}^{1/2}\bar{P}^{1/2}\bar{x}(t)\right],
\]

(64)

\[
\mathbb{E}\mathcal{F}(\bar{x}(0))e^{\beta t} \leq \lambda_{\max}(P)\mathbb{E}\left[\bar{x}'(0)\bar{R}^{1/2}\bar{P}^{1/2}\bar{x}(0)\right]e^{\beta t}
\]

\[
\leq \lambda_{\max}(P)b_1 e^{\beta t},
\]

\[
\gamma^2 e^{\beta t} \int_0^t \mathbb{E}r'(s)r(s)ds < e^{\beta t} f y^2.
\]

(65)

From (63) to (66), we obtain

\[
\mathbb{E}[\bar{x}'(t)\bar{R}\bar{x}(t)] < \frac{\lambda_{\max}(P)b_1 e^{\beta t} + f y^2 e^{\beta t}}{\lambda_{\min}(P)}.
\]

(67)

According to (56) and (67), we get \(\mathbb{E}[\bar{x}'(t)\bar{R}\bar{x}(t)] < b_2 \) for all \(t \in [0, T] \). So, system (49) is FTB w.r.t. \((b_1, b_2, T, \bar{R}, f)\).

Step 2: prove that the H₂ cost function (50) satisfies \(J_2(\bar{x}(t)) \leq J_2^1 \) under \(r(t) = 0 \) condition.

When \(r(t) = 0 \), we get that the \(L_3 \mathcal{F}(\bar{x}(t)) \) of system (49) is given by

\[
L_3 \mathcal{F}(\bar{x}(t)) = \bar{x}'(t)\left[\bar{A}_1'\bar{P} + \bar{P}\bar{A}_1 + \bar{A}_1'\bar{P}\bar{A}_1 + \lambda(\bar{A}_1 + I)\bar{P}(\bar{A}_1 + I) - \lambda \bar{P}\right]\bar{x}(t).
\]

(68)

According to (55), we have

\[
L_4 \mathcal{F}(\bar{x}(t)) - \beta \mathcal{F}(\bar{x}(t)) + \bar{x}'(t)\bar{x}(t) < 0.
\]

(69)

Integrating from 0 to \(t \) on both sides of (69), then taking mathematical expectation, it yields

\[
\mathbb{E}\mathcal{F}(\bar{x}(t)) + \beta \int_0^t \mathbb{E}\mathcal{F}(\bar{x}(s))ds + \gamma^2 \int_0^t \mathbb{E}r'(s)r(s)ds.
\]

(70)

From (70), we have

\[
\mathbb{E}\mathcal{F}(\bar{x}(t)) < \mathbb{E}\mathcal{F}(\bar{x}(0)) + \beta \mathbb{E}\int_0^t \mathcal{F}(\bar{x}(s))ds.
\]

(71)

\[
\mathbb{E}\int_0^t \bar{x}'(t)\bar{x}(t)ds < \mathbb{E}\mathcal{F}(\bar{x}(0)) + \beta \mathbb{E}\int_0^t \mathcal{F}(\bar{x}(s))ds.
\]

(72)

Using Gronwall inequality for (71), one has

\[
\mathbb{E}\mathcal{F}(\bar{x}(t)) < \mathbb{E}\mathcal{F}(\bar{x}(0))e^{\beta t}.
\]

(73)

From (72) and (73), we have
complexity in theorem 3 is difficult to solve, we transform the inequality (53). Let $\Sigma_3 \mathcal{T} (\tilde{x}(t)) < \beta \beta \mathcal{T} (\tilde{x}(0)) + \gamma \gamma' t(t) - \gamma' (t) \tilde{x}(t)$.

Repeating the proof process of Step 3 in Theorem 1, it yields

$$\mathcal{G} \int_0^t \gamma' (s) \xi(s) ds < \psi' \mathcal{G} \int_0^t \gamma' \xi(t) ds.$$ (77)

This completes the proof.

Because the nonlinear problem of inequalities (54)–(56) in Theorem 3 is difficult to solve, we transform the inequalities (54)–(56) into LMIs.

Theorem 4. Given positive scalars $b_1, b_2, T,$ and f, if there exist two positive scalars β and ζ and three matrices $\bar{P}_{ii} > 0$, $\bar{P}_{ii} > 0$, and M such that

$$\begin{bmatrix}
\Sigma_{11} & \Sigma_{12} & \Sigma_{13} \\
\Sigma_{22} & \Sigma_{23} & 0 \\
0 & \Sigma_{33}
\end{bmatrix} < 0,$$ (78)

$$\begin{bmatrix}
Y_{11} - (\beta + \lambda) \bar{P}_{11} & Y_{12} \\
* & Y_{22} - (\beta + \lambda) \bar{P}_{22}
\end{bmatrix} < 0,$$ (79)

$$e^{\sigma T} (\zeta b_1 + f \gamma) \gamma - b_2 < 0,$$ (80)

$$I < \text{diag}(P_{11}, P_{22}),$$ (81)

hold, where $\Sigma_{11} = A_{11} \bar{P}_{11} + \bar{P}_{11} A_{11} + A_{12} \bar{P}_{11} A_{12} + C_{11} C_{12} + \lambda (A_{11} + I) \bar{P}_{11} (A_{11} + I) - (\beta + \lambda) \bar{P}_{11},$ $\Sigma_{12} = C_{11} M' + \bar{P}_{11}$ $B_{11} K + A_{12} \bar{P}_{11} B_{12} K + C_{12} D_{12} K + \lambda (A_{11} + I) \bar{P}_{11} B_{13} K,$ $\Sigma_{22} = (A_{11} + B_{11} K)' \bar{P}_{22} + \bar{P}_{22} (A_{11} + B_{11} K) + K' B_{12}' \bar{P}_{11} B_{12} K + \lambda K' B_{12}' \bar{P}_{11} B_{12} K + \lambda K' B_{12}' \bar{P}_{11} B_{12} K + \lambda \bar{P}_{22} = D_{11} - C_{11} M' + K' D_{12} K + (\beta + \lambda) \bar{P}_{22},$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} E_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = M D_{11} + K' B_{12}' \bar{P}_{11} F_2 + K' B_{12}' \bar{P}_{11} F_3,$ $\Sigma_{33} = -G_1,$ $G_1 = 5, G_2 = 4, D_{11} = 8, D_{12} = 10, b_1 = 1, b_2 = 4, T = 1, R = I, f = 0.4,$ $I = 0.4, \lambda = 2.5.$

6.1. Design of SFT H_2/H_∞ Controller. By using the above algorithm in Section 5, the relationships of α and ξ (Figure 1), a and γ (Figure 2), and ξ and γ (Figure 3) are derived, respectively. It can be seen from Figure 1 that the value of ξ increases with the increase of α. Besides, it is obvious that...
Algorithm 1: Optimization algorithm.

\[
\begin{align*}
\text{Step 1:} & \quad \text{given } b_1, b_2, R, T, f, \text{ and } \lambda. \\
\text{Step 2:} & \quad \text{take an appropriate step size } d_\alpha \text{ for } \alpha, \text{ and then the values of } \alpha \text{ are expressed as } \alpha_i. \\
\text{Step 3:} & \quad \text{let } i = 1. \\
\text{Step 4:} & \quad \text{if } \alpha_i \text{ makes the following problems min}_{x \in (37)-(40)} (\xi = \text{feasible}, \text{ then store } \alpha_i \text{ into } U(i), \xi_{\text{min}} \text{ into } V(i), \text{ and } \gamma_{\text{min}} \text{ into } W(i), \text{ and let } \alpha_{i+1} = \alpha_i + d_\alpha, \text{ loop. Otherwise, go to Step 5.} \\
\text{Step 5:} & \quad \text{exit.}
\end{align*}
\]

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{ξ versus α.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{γ versus α.}
\end{figure}

\[\xi = 1 \text{ when } \alpha = 0 \text{ and } \xi \approx 3.0344 \text{ when } \alpha = 1.11, \text{ that is, the minimum and maximum values of } H_2 \text{ performance index are } 1 \text{ and } 3.0344, \text{ respectively. Also, the range of } \alpha \text{ is } [0, 1.11].\]

As you can see from Figure 2, the value of γ decreases first and then increases with the increase of α. When $\alpha = 0.85$, γ can take the minimum value of 0.8688; at this point, we can get the optimal value of H_∞ performance index. When $\alpha = 1.11$, γ can take the minimum value of 0.8822. Also, α can be taken within $[0, 1.11]$.

In fact, Figure 3 reflects the relation between ξ and γ. As shown in Figure 3, with the increase of ξ, the value of γ decreases first, and at the point of $\xi = 2.3397$, the value of γ begins to increase. From Figures 1 to 3, we can see how to choose the right state feedback finite-time H_2/H_∞ controller. If the cost problem is mainly considered, a smaller α can be selected. If the ability to suppress interference is mainly considered, we need to refer to Figure 2 to select the appropriate α.

Next, substituting $\alpha = 0$ into Theorem 2, we get
\[
N = \begin{bmatrix} 0.8673 & -0.0135 \\ -0.0135 & 0.8946 \end{bmatrix}, \quad Y = \begin{bmatrix} -0.0366 & 0.0770 \end{bmatrix}, \quad m = 0.5237.
\]

Then, we get the controller gain matrix as follows:
\[
K = \begin{bmatrix} -0.0409 & 0.0854 \end{bmatrix}.
\]

Because the state $x(t)$ in this example is two-dimensional, we make $x(t) = [x_1(t) x_2(t)]^T$. Figure 4 describes the trajectories of $x_1(t)$, $x_2(t)$, and $E[x^2(t)R_x(t)]$ with stochastic fluctuation driven by both Wiener and Poisson noises in Figures 5 and 6 versus the dimensionless time λt. From Figure 4, we can see that the trajectory of $E[x^2(t)R_x(t)]$ does not exceed $b_1 = 4$ in the time interval $\lambda T = 2.5$. Obviously, when the time interval is $T = 1$, the trajectory does not exceed the given range, so we conclude that system (8) is mean-square FTB w.r.t. (1, 4, 1, 0.4).

Among them, we assume that $r(t) = \sin t \left(\int_0^t \sin^2 t \text{d}t < f = 0.4 \right)$.

6.2. Design of OBFT H_2/H_∞ Controller. As in the case of state feedback, similar results can be obtained in the case of observer-based finite-time H_2/H_∞ control. The relationships of β and ξ (Figure 7), β and γ (Figure 8), and ξ and γ (Figure 9) are derived, respectively. It can be seen from Figure 7 that the value of ξ increases with the increase of β. Besides, it is obvious that $\xi = 1$ when $\beta = 0$ and $\xi = 2.5857$ when $\beta = 0.95$, that is, the minimum and maximum values of H_2 performance index are 1 and 2.5857, respectively.

Also, the range of β is $[0, 0.95]$. As you can see from Figure 8, the value of γ decreases first and then increases with the increase of β. When $\beta = 0.72$, γ can take the minimum value of 1.1456, and at this point, we can get the optimal value of H_∞ performance index. Besides, the maximum value of H_∞ performance index is 1.1650 when $\beta = 0.95$. Also, the range of β is $[0, 0.95]$.

In fact, Figure 9 reflects the relation between ξ and γ. As shown in Figure 9, with the increase of ξ, the value of γ decreases first, and at the point of $\xi = 2.0544$, the value of γ begins to increase. From Figures 7 to 9, we can see how to
choose the right OBFT H_2/H_∞ controller. If the cost problem is mainly considered, select the smaller β with reference to Figure 7. If the ability to suppress interference is mainly considered, we need to refer to Figure 8 to select the appropriate β.
Substituting $\beta = 0$ into Theorem 4, we have

$$P_{11} = \begin{bmatrix} 1.3326 & 0.0458 \\ 0.0458 & 1.5739 \end{bmatrix},$$

$$P_{22} = \begin{bmatrix} 1.4821 & -0.0298 \\ -0.0298 & 1.7362 \end{bmatrix},$$

$$M = \begin{bmatrix} -0.0326 \\ 0.1348 \end{bmatrix},$$

$$\zeta = 2.7271.$$

Then, we obtain the following observer gain matrix:

$$L = \begin{bmatrix} -0.0205 \\ 0.0773 \end{bmatrix}.$$ \hfill (87)

Because the state \tilde{x} in this example is two-dimensional, we make $\tilde{x} = [\tilde{x}_1 \tilde{x}_2]$. Figure 10 describes the trajectories of \tilde{x}_1, \tilde{x}_2, and $E[\tilde{x}'(t)R\tilde{x}(t)]$ with stochastic fluctuation driven by both Wiener and Poisson noises in Figures 5 and 6 versus the dimensionless time λt. From Figure 10, it is obvious that the trajectory of $E[\tilde{x}'(t)R\tilde{x}(t)]$ does not exceed $b_2 = 4$ in the time interval $\lambda T = 2.5$. Obviously, when the time interval is $T = 1$, the trajectory does not exceed the given range, so we draw a conclusion that system (8) is mean-square FTB w.r.t. $(1, 4, 1, 1, 0.4)$. Among them, we assume that $r(t) = \sin t (\int_0^1 \sin^2 t dt < f = 0.4)$.

7. Conclusions

In this paper, state feedback and observer-based finite-time H_2/H_∞ controllers for stochastic Poisson systems have been designed, respectively. Two sufficient conditions for guaranteeing the existence of controllers have been proposed and converted to matrix inequality constrained optimization problems, and an algorithm for all theorems has been provided to derive the optimal H_2 index and H_∞ index under the condition of the finite-time boundedness.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant nos. 61877062 and 61977043), China Postdoctoral Science Foundation (Grant no. 2017M610425), and Open Foundation of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education of China (Grant no. KF201419).

References

[1] B. Chen, S. Wong, and C. Li, "On the calculation of system entropy in nonlinear stochastic biological networks," *Entropy*, vol. 17, no. 10, pp. 6801–6833, 2015.

[2] S. Mei, W. Wei, and F. Liu, "On engineering game theory with its application in power systems," *Control Theory and Technology*, vol. 15, no. 1, pp. 1–12, 2017.

[3] Y. Yang, J. Xia, J. Zhao, X. Li, and Z. Wang, "Multiobjective nonfragile fuzzy control for nonlinear stochastic financial systems with mixed time delays." *Nonlinear Analysis: Modelling and Control*, vol. 24, no. 5, 2019.

[4] C.-F. Wu, B.-S. Chen, and W. Zhang, "Multiobjective investment policy for a nonlinear stochastic financial system: a fuzzy approach," *IEEE Transactions on Fuzzy Systems*, vol. 25, no. 2, pp. 460–474, 2017.

[5] Y. Tang, X. Wu, P. Shi, and F. Qian, "Input-to-state stability for nonlinear systems with stochastic impulses," *Automatica*, vol. 113, no. 3, Article ID 108766, 2020.

[6] X. Wu, Y. Tang, and J. Cao, "Input-to-state stability of time-varying switched systems with time delays," *IEEE
Transactions on Automatic Control, vol. 64, no. 6, pp. 2537–2544, 2019.
[7] X. Wu, Y. Tang, J. Cao, and X. Mao, “Stability analysis for continuous-time switched systems with stochastic switching signals,” IEEE Transactions on Automatic Control, vol. 63, no. 9, pp. 3083–3090, 2018.
[8] M. E. Shaikin, “Multiplicative stochastic systems with multiple external disturbances,” Automation and Remote Control, vol. 79, no. 2, pp. 300–310, 2018.
[9] Z. Xiang, C. Qiao, and M. S. Mahmoud, “Finite-time analysis and H∞ control for switched stochastic systems,” Journal of the Franklin Institute, vol. 349, no. 3, pp. 915–927, 2012.
[10] Z. Yan, J. H. Park, and W. Zhang, “Finite-time guaranteed cost control for Itô Stochastic Markovian jump systems with incomplete transition rates,” International Journal of Robust and Nonlinear Control, vol. 27, no. 1, pp. 66–83, 2017.
[11] M. Hafayed, A. Abba, and S. Abbas, “On mean-field stochastic maximum principle for near-optimal controls for Poisson jump diffusion with applications,” International Journal of Dynamics and Control, vol. 2, no. 3, pp. 262–284, 2014.
[12] X. Yang and Q. Zhu, “pth moment exponential stability of stochastic partial differential equations with Poisson jumps,” Asian Journal of Control, vol. 16, no. 5, pp. 1482–1491, 2014.
[13] X. Lin and R. Zhang, “H_{∞} control for stochastic systems with Poisson jumps,” Journal of Systems Science and Complexity, vol. 24, no. 4, pp. 683–700, 2011.
[14] A. Anguraj, K. Ravikumar, and D. Baleanu, “Approximate controllability of a semilinear impulsive stochastic system with nonlocal conditions and Poisson jumps,” Advances in Difference Equations, vol. 2020, no. 1, 2020.
[15] D. S. Bernstein and W. M. Haddad, “LQG control with an H_{∞} performance bound: a Riccati equation approach,” IEEE Transactions on Automatic Control, vol. 34, no. 3, pp. 293–305, 1989.
[16] B.-S. Chen and W. Zhang, “Stochastic H_2/H_{∞} control with state-dependent noise,” IEEE Transactions on Automatic Control, vol. 49, no. 1, pp. 45–57, 2004.
[17] H. Ma, W. Zhang, and T. Hou, “Infinite horizon H_2/H_{∞} control for discrete-time time-varying Markov jump systems with multiplicative noise,” Automatica, vol. 48, no. 7, pp. 1447–1454, 2012.
[18] Y. Huang, W. Zhang, and G. Feng, “Infinite horizon H_2/H_{∞} control for stochastic systems with Markovian jumps,” Automatica, vol. 44, no. 3, pp. 857–863, 2008.
[19] W. Zhang, L. Xie, and B. Chen, Stochastic H_2/H_{∞} Control: A Nash Game Approach, CRC Press, Boca Raton, FL, USA, 2017.
[20] X. Yang, Q. Song, Y. Liu, and Z. Zhao, “Finite-time stability analysis of fractional-order neural networks with delay,” Neurocomputing, vol. 152, pp. 19–26, 2015.
[21] A. Elahi and A. Alfi, “Finite-time H_{∞} control of uncertain networked control systems with randomly varying communication delays,” ISA Transactions, vol. 69, pp. 65–88, 2017.
[22] X. Li, J. Shen, and R. Rakkiyappan, “Persistent impulsive effects on stability of functional differential equations with finite or infinite delay,” Applied Mathematics and Computation, vol. 329, pp. 14–22, 2018.
[23] X. Li and M. Bohner, “An impulsive delay differential inequality and applications,” Computers & Mathematics with Applications, vol. 64, no. 6, pp. 1875–1881, 2012.
[24] M. Galicki, “Finite-time trajectory tracking control in a task space of robotic manipulators,” Automatica, vol. 67, pp. 165–170, 2016.
[25] H. Garg and S. P. Sharma, “Stochastic behavior analysis of complex repairable industrial systems utilizing uncertain data,” ISA Transactions, vol. 51, no. 6, pp. 752–762, 2012.
[26] Z. Yan, G. Zhang, and W. Zhang, “Finite-time stability and stabilization of linear Itô stochastic systems with state and control-dependent noise,” Asian Journal of Control, vol. 15, no. 1, pp. 270–281, 2013.
[27] Z. Yan, W. Zhang, and G. Zhang, “Finite-time stability and stabilization of Itô stochastic systems with markovian switching: mode-dependent parameter approach,” IEEE Transactions on Automatic Control, vol. 60, no. 9, pp. 2428–2433, 2015.
[28] Y.-j. Ma, B.-w. Wu, and Y.-E. Wang, “Finite-time stability and finite-time boundedness of fractional order linear systems,” Neurocomputing, vol. 173, no. 3, pp. 2076–2082, 2016.
[29] M. Li and J. Wang, “Finite time stability of fractional delay differential equations,” Applied Mathematics Letters, vol. 64, pp. 170–176, 2017.
[30] Z. Yan, Y. Song, and X. Liu, “Finite-time stability and stabilization for Itô-type stochastic Markovian jump systems with generally uncertain transition rates,” Applied Mathematics and Computation, vol. 321, pp. 512–525, 2017.
[31] X. Yang, X. Li, X. Xi, and P. Duan, “Review of stability and stabilization for impulsive delayed systems,” Mathematical Biosciences & Engineering, vol. 15, no. 6, pp. 1495–1515, 2018.
[32] X. Li, X. Yang, and T. Huang, “Persistence of delayed cooperative models: impulsive control method,” Applied Mathematics and Computation, vol. 342, pp. 130–146, 2019.
[33] D. Yang, X. Li, and J. Qiu, “Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback,” Nonlinear Analysis: Hybrid Systems, vol. 32, pp. 294–305, 2019.
[34] Z. Yan, M. Zhang, Y. Song, and S. Zhong, “Finite-time H_{∞} control for Itô-type nonlinear time-delay stochastic systems,” IEEE Access, vol. 8, pp. 83622–83632, 2020.
[35] R. Nie, Q. Ai, S. He, Z. Yan, X. Luan, and F. Liu, “Robust finite-time control and estimation for uncertain time-delayed switched systems by observer-based sliding mode technique,” Optimal Control Applications and Methods, 2020.
[36] R. Wang, J. Xing, and Z. Xiang, “Finite-time stability and stabilization of switched nonlinear systems with asynchronous switching,” Applied Mathematics and Computation, vol. 316, pp. 229–244, 2018.
[37] Z. Yan, S. Zhong, and X. Liu, “Finite-time H_2/H_{∞} control for linear Itô stochastic systems with x, u, v-dependent noise,” Complexity, vol. 2018, Article ID 1936021, 13 pages, 2018.
[38] F. Hanson, Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation, SIAM, Philadelphia, PA, USA, 2007.