The char of migration inhibitory factor and Cathepsin B from Asian swamp eel (Monopterus albus) and their response to challenge with Aeromonas hydrophila

Zongjun Du¹ | Tianzhu Wang¹ | Rongnan Lin² | Wei Luo¹ | Qing Wu¹ | Dongjie Wang¹ | Zhou Xu¹ | Anxiang Wen²

¹College of Animal Science, Sichuan Agricultural University, Chengdu, China
²College of Life Sciences, Sichuan Agricultural University, Ya’an, China

Abstract

Aeromonas hydrophila causes sepsis and is responsible for significant economic losses in Asian finless eel (Monopterus albus) aquaculture. Previous studies have found that macrophage migration inhibitory factor (MIF) and Cathepsin B (CTSB) may be expressed in many vertebrate tissues and organs. However, there have been no reports discussing the importance of MIF and CTSB in Asian swamp eel. The complete ORF sequences of MAMIF and MACTSB were found to be 348 and 993 bp, respectively. The adaptive analysis showed that the sequences of MAMIF and MACTSB were highly conserved, and only two positive selection sites were identified in MAMIF. Quantitative real time polymerase chain reaction (qRT-PCR) demonstrated that MAMIF and MACTSB genes were expressed in all tissues evaluated with the highest expression occurring in the head kidney, spleen and liver. Challenge with Aeromonas hydrophila resulted in a significant increase in the expression of MAMIF and MACTSB in skin, liver, head kidney and spleen that peaked at 12-h post-infection. The results show that MAMIF and...
Immunity is one of the most significant physiological responses of animals. MIF is an important mediator of innate immunity and macrophage reaction and plays an important role in amplifying LPS-driven cytokine responses and controlling infection (Das et al., 2013; Kudrin & Ray, 2008). MIF can cause the aggregation, proliferation, and activation of inflammatory cells such as T cells and macrophages (Schwartz et al., 2009). Many downstream processes support the immune functions of MIF, including regulation of glucocorticoid-counter regulating activity, inhibition of EGF (Epidermal growth factor) binding to its receptor, and inhibition of p53-dependent apoptosis (Mitchell et al., 2002; Zheng et al., 2015). MIF has also been found to upregulate macrophage TLR4 (Toll-like receptor 4) expression, which can initiate excessive inflammatory reactions and cause septicemia (Calandra & Roger, 2003). MIF production by dendritic cells is also differentially regulated by TLR and TNF-α (Tumor necrosis factor-α) and is increased during inflammation (Popa et al., 2006). In obesity and wound repair, MIF contributes to adipose tissue inflammation by modulating the functions of adipose tissue macrophages (Kim, Pallua, Bernhagen, & Bucala, 2015). The release of MIF has been demonstrated to increase due to stimulation of macrophages and lymphocytes with either cytokines, microbial endotoxins, or exotoxins (Xie et al., 2016).

During an immune reaction, endo-lysosomal proteases are important (Conus & Simon, 2010). Cathepsin B (CTSB) is considered an intracellular lysosomal protease, which is responsible for intracellular and extracellular proteolysis, and associated with inflammatory response, antigen processing (Brix, 2005), protein activation, and degradation (Mort & Buttle, 1997). CTSB is required in the TLR9 responses, production of TNF-α, and activation of autophagy initiation kinase (ULK1) for clearance of bacteria (Qi et al., 2016). CTSB is inhibited by Spi2A (Serine protease inhibitor 2A) and controls the persistence of memory CD8+ T lymphocytes (Byrne et al., 2012). Earlier studies have shown that CTSB is associated with various diseases, such as malignant tumors, cancer, and acute pancreatitis (Halangk et al., 2000). CTSB induces proteolytic cleavage, which is both a prerequisite for TLR signaling and TNF-α production (Conus & Simon, 2010). Hence, the functional studies of MIF and CTSB in inflammatory responses may further reveal the immune function in aquatic animals.

Asian swamp eel (Monopterus albus) was tentatively identified as belonging to the synbranchid genus Monopterus and was regarded as the unique representative of Synbranchidae (Collins, Trexler, Nico, & Rawlings, 2002). It is one of the most economically important freshwater fishes in East Asia because of its medicinal and food value (Zhou et al., 2002). M. albus is affected by the bacterial pathogen Aeromonas hydrophila (A. hydrophila), causing disease that could be responsible for major economic losses in the aquaculture industry (Chen, Lai, Wang, Wei, & Zhong, 2018). A. hydrophila infection can be treated with antibiotics, but this has raised concerns regarding antibiotic resistance and public health security due to antibiotic residue in fish and the environment. Improving the function of the immune system using immune stimulants has become an important tool for preventing bacterial disease in fish (Veenstra et al., 2018). Many studies have reported the genes involved in immune response, such as MHC I and MHC II (major histocompatibility complex I and II), chitinase 1, complement component, β-galactoside-binding lectin, and C-type lysozyme (Li, Sun, Tang, Li, & Liu, 2011). However, there is little known about the function of MIF and CTSB in fish immune responses, which could contribute to a broader understanding of the specific infection mechanism of M. albus.

In the present study, we first cloned the full-length cDNA of MAMIF and MACTSB from M. albus and determined their structures. Moreover, to understand the fish immune system and a possible role in immune responses, we examined the expression levels of these genes after injection with A. hydrophila. Our results are the first to report in...
detail the expression characteristics of MAMIF and MACTSB from M. albus exposed to A. hydrophila. It therefore provides a theoretical basis for further exploration of the mechanism of action of these two genes in hemorrhagic septicemia and provides a guide for M. albus molecular breeding and development of immune vaccines.

2 | MATERIALS AND METHODS

2.1 | Fish and challenge experiments

Healthy M. albus (100.00 ± 10 g mean weight) was obtained from the department of Zoology, Sichuan Agricultural University (Chengdu, China). All fish were cultivated in eight tanks (80 × 80 × 50 cm³) with 200 L of domestic water with aeration (17–20 °C) for a week. Fish were fed twice a day, at 8:00 a.m. and 6:00 p.m., with commercial floating pellets (Tongwei, China). Three healthy, disease-free, robust eels were randomly selected for the gene cloning and tissue expression analysis of MAMIF and MACTSB genes. Tissues, including heart, head kidney, spleen, skin, muscle, liver, and intestine were sampled and frozen immediately in liquid nitrogen and stored at −80 °C.

A. hydrophila (ATCC 7966, Microbial Culture Collection Center, Beijing, China) was cultured in LB broth at 28 °C for 18–24 h with constant shaking. The cells were harvested by centrifugation at 10,000g for 10 min at 4 °C followed by two washes in phosphate buffered saline (PBS, pH 7.2). Viable cell count was determined by counting colony forming units (CFU) from 10-fold serial dilutions plated on nutrient agar.

A total of 108 M. albus were randomly and equally divided into two groups, with three tanks (80 cm × 80 cm × 50 cm) per group and 18 fish per tank. The M. albus in one sample group was intramuscularly injected with 0.2 mL of A. hydrophila (1.5 × 10⁶ CFU/mL). The second group was injected with an equal volume of normal saline to serve as a control. At 0, 4, 8, 12, 24, and 48 hr post-injection (hpi), head kidney, spleen, liver, and skin were sampled (three biological replicates at each time point in each group, three fish per replicate). During the bacterial challenge, the fish were cultured in a fishbowl at 17–20 °C. All samples from each group were frozen in liquid nitrogen and stored below −80 °C prior to being used for RNA isolation.

All animals used during the study were treated in compliance with the requirements of the Animal Ethics Committee of Sichuan Agricultural University, China.

2.2 | RNA isolation and first cDNA synthesis

Total RNA was prepared from 50 to 100 mg frozen tissue samples by grinding them to a powder with liquid nitrogen. Total RNA was extracted using the RNeasy Plus kit as per the manufacturer’s recommendations. The quality and quantity of RNA of each sample was analyzed using a Nano Vue™ Plus (GE, England). The A260/280 ratio of each of the isolated samples was between 1.8 and 2.1. cDNA was synthesized using a PrimeScript™ RT Reverse Transcription kit with gDNA Eraser as per the supplied protocol.

2.3 | The complete open reading frame (ORF) sequence clone

The complete ORF sequences of MAMIF and MACTSB were obtained directly by homology-based cloning. Premier 5.0 software was used to design the primers for MAMIF based on MIF sequences from Oplegnathus fasciatus (JX273154.1), Epinephelus coioides (GU988719.1), Larimichthys crocea (FJ404723.1), and Sciaenops ocellatus (FJ447488.1) (Table 1). The primer design for MACTSB was based on the 906 bp EST sequence (GW584813) obtained from NCBI, which is homologous to CTSB sequences from Oplegnathus fasciatus (HM060314), Scophthalmus maximus (KM261797), and Larimichthys crocea (KF753237) (Table 1). Each 25 μL reaction was composed of 0.5 μL Ex Taq® (Takara, Dalian, China), 1 μL each forward and reverse primers (10 mM), 1.5 μL cDNA, 2.5 μL of 10 × PCR buffer (Mg²⁺ plus), 0.7 μL dNTPs, and 17.8 μL
ultrapure water. The reaction conditions were as follows: initial denaturation at 94°C for 3 min, followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 53°C for 40 s and extension at 72°C for 30 s; the last cycle was followed by 10 min incubation at 72°C for final extension. The PCR products were subsequently sequenced (Invitrogen, Shanghai, China).

2.4 | Bioinformation analysis of MAMIF and MACTSB

ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/) was used to analyze the obtained sequences. The deduced amino acid sequences from the ORFs were aligned by BLASTP against the NCBI protein sequence data bank with no repetitions (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The molecular mass (MM) and theoretical isoelectric point (pl) were calculated using ProtParam (http://www.expasy.ch/tools/protparam.html). The signal peptide was predicted using SignalP 4.0 (http://www.cbs.dtu.dk/services/SignalP/). The deduced amino acid sequences were checked for conserved domains using the SMART algorithm (http://smart.embl-heidelberg.de/). Multiple protein sequence alignment was performed using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2). Identity and similarity matrices were calculated using the EMBOSS Needle Series in Pair Array instrument (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Phylogenetic and molecular evolutionary analyses were performed by the adjacent method in the Molecular Evolutionary Genetics Analysis (MEGA7) software with 1,000 bootstraps. Adaptive evolution analysis was performed using the PAML software package analysis, specifically the CODEML program (which is widely used in estimating the rate of synonymous and non-synonymous substitutions of protein coding sequences and detecting whether a sequence has undergone positive selection). This study used the CODEML program to perform site model analysis to detect changes in the selection pressure that genes have undergone during evolution.

2.5 | Expression analysis of MAMIF and MACTSB by real-time PCR

Primer 5 software was used to design gene specific primers based on MAMIF and MACTSB sequences (Table 1). GAPDH (FJ873738.1) and β-actin (AY345056) of M. albus were used as reference genes for standardization.
FIGURE 1 Legend on next page.
RT-qPCRs were performed on a CFX96™ Real-time PCR detection system with SYBR® Premix Ex Taq™ II (Takara, Dalian, China) as per the manufacturer's instructions. The reaction conditions were: 95°C for 30 s, followed by 35 cycles of 95°C for 5 s and 61°C for 30 s. A melting point curve was generated and analyzed, and the specificity of the PCR was verified by the presence of a single peak. Serial dilutions of cDNA were used to plot a standard curve and to measure the amplification efficiency of the system (Bustin et al., 2009). The expression levels of MAMIF and MACTSB were analyzed by an optimized comparative Ct (2−ΔΔCt) value method and analyzed using ANOVA in the SPSS 20.0 software (SPSS Inc., Chicago, IL, USA). All data are presented as mean ± standard error.

3 | RESULTS

3.1 | Characterization of MAMIF and MACTSB

The ORF of MAMIF (KY318075) was 348 bp long and encoded a 115 amino acid, with an estimated molecular weight (MW) of 12.49 kDa, and theoretical isoelectric point of 6.89. No signal peptide or conserved domain could be predicted. The ORF of MACTSB (KY318074) was 993 bp long and encoded a peptide of 330 amino acids, with an estimated MW of 36.28 kDa, and theoretical isoelectric point of 5.54. The deduced amino acid sequence contained a signal peptide from residues 1 to 18 and a C1-peptidase from amino acids 79 to 328.

3.2 | Amino acid sequence alignment

The predicted amino acid sequence of MAMIF showed highest identity with Oplegnathus fasciatus (90.5%), followed by Oreochromis niloticus (81.7%), Danio rerio (81.0%), and Homo sapiens (69.8%). Multiple sequence alignment analysis revealed that conserved proline (P) and lysine (K) residues were present in each of the analyzed MIFs (Figure 1(a)). MACTSB shared approximately 70–90% identity and general characteristics with Cathepsin B of several vertebrates, such as Epinephelus coioides (84.8%), Larimichthys crocea (87%), and D. rerio (87%). Furthermore, multiple sequence alignment showed that MACTSB had the active site residues (C107, H277, and N297) required for protease activity (Figure 1(b)).

3.3 | Phylogenetic analysis of the MAMIF and MACTSB

Phylogenetic trees were constructed using MAMIF and MACTSB sequences from selected vertebrates. The proteins were classified into two primary groups, one contained fish's proteins, while the other comprised mammalian, amphibian, reptilian, and avian proteins. The distribution of the phylogenetic trees confirmed the developmental relationship among different groups (Figure 2).

FIGURE 1 Multiple sequence alignment of MAMIF and MACTSB. (a) Multiple sequence alignment of MAMIF with different species with the following accession numbers: Oreochromis niloticus (XP_003444421), Danio rerio (NP_001036786), Gallus gallus (NP_001292020), and Homo sapiens (CAG30406). C27ALC60 for oxidoreductase activity is marked with a box. The sites of catalytic activity (P) and isomerase activity (K) are marked with “▲.” (b) Multiple sequence alignment of MACTSB with other species with the following accession numbers: O. niloticus (XP_003454569), D. rerio (NP_998501), G. gallus (NP_990702), and H. sapiens (AAH10240). The predicted signal peptide is marked with a box and the occluding loop is underlined. The active site residues (C107, H277, N297) required for protease activity are marked with “▲.” Sequence identities are shown in black (100%), dark gray (≥75%), light gray (≥50%), and white (≥33%), as determined by ClustalW and DNAMAN.
Phylogenetic trees of MAMIF and MACTSB were constructed by MEGA7 software, and PAML software was used to analyze the selection pressures that MAMIF and MACTSB experienced during evolution (Table 2). The M0 and M3 likelihood ratio tests of the first pair of models show that $2\Delta\ln L = 69.39$, $df = 4$, and $p < .01$. Therefore, model M3 is significantly better than model M0, indicating that the selection pressure experienced between sites is heterogeneous. Model M7 and M8 comparison results show that model M8 is significantly better than M7 ($2\Delta\ln L = 9.14$, $df = 2$, $p = .014$), so the alternative hypothesis model M8 was established, and its $\omega = 1.48681 > 1$, indicated that the MAMIF gene is under selection pressure during evolution, and that there are positive selection sites (28C, 92T). However, no positive selection sites were found in the MACTSB analysis.

FIGURE 2 The neighborhood-joining phylogenetic tree of MIF (a) and Cathepsin B (b) based on their amino acid sequences

3.4 Positive selected sites analysis of MAMIF and MACTSB
TABLE 2 MAMIF and MACTSB protein adaptive evolution analysis and positive selected sites

Gene	Models	np	lnL	Estimates of parameters	Model compared	df	2ΔlnL	p-value	Positive sites
MIF	M0	32	-2,823.20	$\omega_0 = 0.78630$	M0/M3	4	69.39	< .01	Not allowed
	M3	36	-2,788.51	$p_0 = 0.49196, p_1 = 0.49102, p_2 = 0.01703$					
$\omega_0 = 0.34645, \omega_1 = 1.38897, \omega_2 = 2.41614$									
	M1a	33	-2,792.38	$p_0 = 0.40439, p_1 = 0.59561$					
$\omega_0 = 0.25497, \omega_1 = 1.00000$	M1a/M2a	2	7.70	.021	Not allowed				
	M2a	35	-2,788.53	$p_0 = 0.48208, p_1 = 0.08145, p_2 = 0.43646$					
$\omega_0 = 0.34258, \omega_1 = 1.00000, \omega_2 = 1.48240$									
	M7	33	-2,792.85	$p = 0.11281, q = 0.02641$	M7/M8	2	9.14	.0104	28C 0.983a
92T 0.989a									
	M8	35	-2,788.28	$p_0 = 0.54088, p = 3.21566, q = 4.88740 (p_1 = 0.45912), \omega = 1.48681$					
CTSB	M0	26	-2,315.74	$\omega_0 = 0.09753$	M0/M3	4	150.07	< .01	Not allowed
	M3	30	-2,315.70	$p_0 = 0.76886, p_1 = 0.23114, p_2 = 0.00000$					
$\omega_0 = 0.02111, \omega_1 = 0.44977, \omega_2 = 1.17823$									
	M1a	27	-2,256.28	$p_0 = 0.79339, p_1 = 0.20661$					
$\omega_0 = 0.03420, \omega_1 = 1.00000$	M1a/M2a	2	0	1.0	Not allowed				
	M2a	29	-2,256.28	$p_0 = 0.79339, p_1 = 0.10951, p_2 = 0.09710$					
$\omega_0 = 0.03420, \omega_1 = 1.00000, \omega_2 = 1.00000$									
	M7	33	-2,258.76	$p = 0.41410, q = 1.95981$	M7/M8	2	0	.9997	Not allowed
	M8	35	-2,258.76	$p_0 = 0.99999, p = 0.41411, q = 1.95988 (p_1 = 0.00000), \omega = 1.00000$					

Abbreviations: 2ΔlnL, twice the log likelihood difference of the models compared; np, number of free parameters.
a95% levels inferred positive selection sites.
MAMIF was observed in all the tissues examined, with higher expression levels in liver and head kidney, moderate levels in heart, spleen, intestine, and muscle, and the lowest levels in the skin (Figure 3(a)). The MACTSB was highly expressed in liver, spleen, and head kidney, but with lower expression levels in intestine, muscle, heart, and skin (Figure 3(b)).
3.6 Temporal expression analysis of MAMIF and MACTSB after A. hydrophila challenge

The expression of MAMIF in skin was upregulated at 8 hpi ($p < .05$) and peaked at 12 hpi reaching a 7.9-fold increase ($p < .01$). There after levels decreased until there was no significant difference at 24 hpi when compared with the control group (Figure 4(a)). The expression of MAMIF in liver and skin was similar (Figure 4(b)). The expression of MAMIF in head kidney was upregulated at 4 hpi ($p < .05$), and peaked at 12 hpi reaching 11.3-fold ($p < .01$). Although levels then decreased, the difference was still extremely significant at 24 hpi ($p < .01$) and 48 hpi ($p < .01$) when compared with the control group (Figure 4(c)). The expression of MAMIF in spleen was increased significantly at 8 hpi ($p < .01$) and peaked at 15.13-fold at 12 hpi ($p < .01$), subsequently, the expression level decreased at 24 hpi and still significantly higher than the control group, but at 48 hpi, there was no significant difference from the control group ($p < .01$) (Figure 4(d)).

The expression of MACTSB in skin was upregulated at 4 hpi ($p < .05$), and peaked at 8.0-fold at 12 hpi ($p < .01$), and then decreased although the difference was still significant at 24 hpi ($p < .01$) and 48 hpi ($p < .05$) when compared with the control group (Figure 5(a)). The expression of MACTSB in liver was upregulated at 4 hpi ($p < .05$) and peaked at 10-fold at 12 hpi ($p < .01$), and then decreased slightly but the difference was still extremely significant at 24 hpi ($p < .01$) and 48 hpi ($p < .01$) when compared with the control group (Figure 5(b)). The expression of MACTSB in head kidney had a similar trend to that seen in the liver (Figure 5(c)). The expression of MACTSB in spleen was increased significantly at 8 hpi ($p < .01$) and peaked at 15.13-fold at 12 hpi ($p < .01$), subsequently, the expression level decreased at 24 hpi and still significantly higher than the control group, but at 48 hpi, there was no significant difference from the control group ($p < .01$) (Figure 5(d)).
DISCUSSION

MIF has previously been shown to be conserved among vertebrates, which may result from its functional significance. *MIF* was considered to be a unique cytokine produced by T cells and involved in the immune response to inflammation and promoted the secretion or expression of many other pro-inflammatory markers, such as IL-6, IL-1β, and TNF-α (Calandra & Roger, 2003; Jankauskas, Wong, Bucala, Djudjaj, & Boor, 2019). In this study, the identified *MAMIF* gene encodes a protein having structural features that are similar to the vertebrate *MIF* family due to the presence of sites for catalytic (P2) and isomerase activity (K35), and the CXXC motif C57-ALC60, thus conferring certain immunologic properties to *MIF* (Kleemann et al., 1998) (Figure 1(a)). In addition, *MAMIF* does not have a signal peptide cleavage site for secretion or an internal secretory sequence, which indicates that it is secreted by a non-conventional leaderless pathway (Lue, Kleemann, Calandra, Roger, & Bernhagen, 2002). The presence of *MAMIF* in this study further demonstrated that *MIF* is evolutionarily conserved.

CTSB is a lysosomal cysteine protease with the form of zymogen, which can be involved in protein hydrolysis and other physiological processes especially in the body’s immune response (Qiu, Liu, Hu, & Sun, 2013). In all identified vertebrates, including *M. albus*, residues P179 to G199 in *CTSB* contain a closed occluding loop with 21 amino acid residues. This includes a histidine residue that creates a positive charge at the C-terminus, restricting *CTSB* active nick sites after tertiary structure formation, thus conferring peptidase activity on *MACTSB* (Zhang et al., 2008). In addition, multiple sequence alignment indicated that *MACTSB* has conserved active site residues (C107, H277, and N297) (Figure 1(b)). Previous studies have shown that these active sites play crucial roles in the formation and stabilization of the catalytic site of the activated enzyme (Lecaille, Kaleta, & Brömme, 2002). Moreover, bioinformatics analysis indicated that *MACTSB* is a secreted protein and has a signal peptide of 18 amino acid residues. The signal peptide is thought to transport the ribosomal expressed proenzyme to the endoplasmic reticulum (Turk, Turk, & Turk, 2000).

The phylogenetic trees showed that *MAMIF* and *MACTSB* were both first clustered with Perciformes, and then clustered with Cyprinodontidae and Cypriniformes (Figure 2). The sequence analysis confirms the structural conservation between *MAMIT* and *MACTSB* and other vertebrates. These results were consistent with other reported genes of *M. albus* (Li, Sun, et al., 2011; Li, Sun, Meng, & Hong, 2014) and traditional taxonomy of fish (http://fishdb.sinica.edu.tw/AjaxTree/tree.php). Conservation of amino acid sequence and genomic structure of MIFs and CTSBs between *M. albus* and teleost fish suggests that they might have a similar immunological function. This study used site model to detect selection pressure. The results showed that only two positive selection sites were detected in MIF (Table 2). It can be seen that the protein encoded by the MIF gene is mainly affected by neutral drift and purification selection at the overall level. No positive selection site was identified in CTSB. It is speculated that the functions encoded by the MIF and CTSB genes are important, and the amino acid sequence is relatively conserved.

MAMIF and *MACTSB* were both ubiquitously expressed in various tissues (Figure 3), especially *MAMIF* shows constitutive expression and is highly expressed in immune-related organs, such as head kidney and spleen. These organs are considered to be the most important immune organs of fish, suggesting that these genes may be important in immunological supervision (Huang et al., 2016; Ito, Yoshiura, Ototake, & Nakanishi, 2008; Zhan, Jakovlic, & Wang, 2019). Immune supervision is one of the most basic functions of the immune system, responsible for identifying, resisting, and killing pathogens. These results were consistent with most previous studies in various fish (Huang et al., 2016; Jin, Xiang, & Shao, 2007; Wang et al., 2013). Antigen-presenting cells largely reside in the kidney and spleen, which are major sites of innate and adaptive immune responses in fish (Luo et al., 2016). In addition, high level expression of *MAMIF* and *MACTSB* was detected in the liver in the present study. Liver is not a typical immune organ in vertebrates, although it contains a large amount of innate lymphocytes, including both natural killer T cells and T cells (Wang et al., 2013; Whang et al., 2011). Moreover, a moderate level expression of *MAMIF* and *MACTSB* was detected in muscle. This result was different from other reported immune-related genes in *M. albus*, such as MHC Ia, MHC IIb, and hepcidin, which are only minimally or negligibly expressed in the muscle (Li et al., 2011; Li et al., 2013; Li et al., 2015; Mao et al., 2010). This was also different from *MIF* and *CTSB* expression in other fish.
species, such as sea cucumber *Apostichopus japonicus* and striped murrel *Channa striatus* (Arockiaraj et al., 2014; Chen et al., 2017; Parisi et al., 2012). The reason may be involved in the special evolution pattern of the immune system. It is possible that a small number of phagocytes are dotted sporadically throughout these tissues, but this requires future demonstration by histological studies. This study verified the role of the MIF and CTSB genes in sepsis, and further studies will provide strategies for the treatment of sepsis.

In the process of antigen presentation, macrophages recognize antigens through non-specific immune responses, and endocytose antigens to form phagosomes, after entering the lysosome, phagosomes fuse with lysosomes to form phagolysosomes; the antigen can be degraded in phagolysosomes to form immunogenic peptides (Lah et al., 2000). When an organism is stimulated by antigens such as gram-negative bacteria, lipopolysaccharide, or immune, factors such as TNF-α, IFN-γ, and macrophages release MIF, a multifunctional pro-inflammatory factor, which can regulate innate immunity and specific immunity. MIF can promote the activation of macrophages, and activated macrophages may secrete more MIF, in a positive feedback loop. However, the overexpression of MIF can aggravate fish sepsis to a certain extent (Noels, Bernhagen, & Weber, 2009; Schwartz et al., 2009). CTSB participates in the antigen presentation process through the degradation of endocytic antigen protein processing and li chain processing (Villadangos et al., 1999).

In the present study, challenge with *A. hydrophila* resulted in a significant increase in the expression of MIF and CTSB in the liver, spleen, head kidney, and skin within 12 hpi, followed by a decrease from 12 to 48 hpi (Figure 4 and Figure 5). The expression levels of MAMIF and MACTSB in the liver, spleen, and head kidney tissues increased first and then decreased after *A. hydrophila* challenge. MIF is constitutively expressed when stimulated by an antigen from *A. hydrophila*. Such stimuli cause macrophages in tissues such as the head kidney, spleen, and liver to release MIF with a bell-shaped structure. The initial dose is relatively small, and the release afterwards shows a trend of rising first and then falling (Buonocore et al., 2010; Oh et al., 2013). These results were similar to other studies on fish species such as *O. fasciatus* (Whang et al., 2011), orange-spotted grouper, *Epinephelus coioides* (S. Wei et al., 2014), Chinese giant salamanders *Andrias davidianus* (Wang et al., 2013), and blunt snout bream (Luo et al., 2014). Collectively, the wide distribution and upregulation of MAMIF and MACTSB suggested not only a role involved in the acute inflammatory responses but also key responses in the pathogen triggered immune response after pathogen entry and recognition (Chen et al., 2017). In the present study, significant increases of expression in liver, spleen, and head kidney imply that these organs are important in defending against pathogenic antigens. These results indicated that MAMIF and MACTSB were respond to *A. hydrophila* infection in all tested organs, but the temporal expression and duration of MAMIF and MACTSB for immune response triggered by the pathogen are different in various organs.

Monopterus albus is a fish species without scales, and the naked skin has numerous glands that can secrete mucus. In this work, it was also found that the expression of MACTSB in the skin was significantly increased from 4 to 48 hpi, while MAMIF increased significantly from 8 to 12 hpi, indicating that MACTSB plays a more important role in skin immunity than MAMIF. Interestingly, CTSB extracted from skin mucus has been shown to be a potential bacteriolysin, which is involved in nonspecific immunity of fish (Aranishi, 1999). Generally, the intestinal tract, skin, and gills have all been proposed as natural routes of entry for bacterial infections (Chen, Yan, Wang, Zhuang, & Wang, 2008; Ringø et al., 2007). In this study, the application of intramuscular injection was equivalent to simulating the skin route.

In summary, we successfully cloned the full-length cDNA of MIF and CTSB genes from *M. albus* and investigated the expression of MIF and CTSB in various tissues in response to infection with the pathogenic bacteria *A. hydrophila*. Collectively, MAMIF and MACTSB were not only involved in the acute inflammatory responses but also played key roles in the pathogen triggered immune response after *A. hydrophila* infection. Further study concerning the mechanism of action of MAMIF and MACTSB within the host immune system may elucidate their exact immunological roles and provide a vehicle for the prevention of viral and bacterial infections among aquaculture stocks, and provide technical support for future investigation of molecular vaccines for disease resistance, or screening of *M. albus* molecular breeding.

ACKNOWLEDGMENTS

This study was supported by aquatic breeding projects of the Sichuan province in 13th Five-Year Plan (2016NYZ0047).
REFERENCES

Aranishi, F. (1999). Lysis of pathogenic bacteria by epidermal cathepsins L and B in the Japanese eel. *Fish Physiology and Biochemistry*, 20, 37–41.

Arockiaraj, J., Kumaresan, V., Chaurasia, M. K., Bhatt, P., Palanisamy, R., Pasupuleti, M., ... Kasi, M. (2014). Molecular characterization of a novel cathepsin B from striped murrel *Channa striatus*: Bioinformatics analysis, gene expression, synthesis of peptide and antimicrobial property. *Turkish Journal of Fisheries and Aquatic Sciences*, 14, 379–389.

Brix, K. (2005). Lysosomal proteases: Revival of the sleeping beauty. *Eukaryotic Cell*, 4, 259–264.

Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., & Shipley, G. L. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. *Clinical Chemistry*, 55, 611–622.

Buonocore, F., Randelli, E., Facchiano, A. M., Pallavicini, A., Modonut, M., & Scapigliati, G. (2010). Molecular and structural characterisation of a macrophage migration inhibitory factor from sea bass (*Dicentrarchus labrax* L.). *Veterinary Immunology and Immunopathology*, 136, 297–304.

Byrne, S. M., Aucher, A., Alyahya, S., Elder, M., Olson, S. T., Davis, D. M., & Ashton-Rickardt, P. G. (2012). Cathepsin B controls the persistence of memory CD8+T lymphocytes. *The Journal of Immunology*, 189, 1133–1143.

Calandra, T., & Roger, T. (2003). Macrophage migration inhibitory factor: A regulator of innate immunity. *Nature Reviews Immunology*, 3, 791–800.

Chen, H., Lv, M., Lv, Z., Li, C., Xu, W., Zhang, W., ... Jin, C. (2017). Molecular cloning and functional characterization of cathepsin B from the sea cucumber *Apostichopus japonicus*. *Fish and Shellfish Immunology*, 60, 447–457.

Chen, Q., Yan, Q., Wang, K., Zhaung, Z., & Wang, X. (2008). Portal of entry for pathogenic vibrio alginolyticus into large yellow catfish (*Pseudosciaena crocea*). *Microbiology and Pathogenesis*, 5, 181–188.

Chen, X., Lai, C., Wang, Y., Wei, L., & Zhong, Q. (2018). Disinfection effect of povidone-iodine in aquaculture water of swamp eel (*Plecoglossus altivelis albofasciatus*). *PeerJ*, 6, e5523.

Collins, T. M., Trexler, J. C., Nico, L. G., & Rawlings, T. A. (2002). Genetic diversity in a morphologically conservative invasive taxon: Multiple introductions of swamp eels to the southeastern United States. *Conservation Biology*, 16, 1024–1035.

Conus, S., & Simon, H. U. (2010). Cathepsins and their involvement in immune responses. *Swiss Medical Weekly*, 140, w13042.

Das, R., Koo, M. S., Kim, B. H., Jacob, S. T., Subbian, S., Yao, J., ... Bucala, R. (2013). Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to *Mycobacterium tuberculosis*. *Proceedings of the National Academy of Sciences of the United States of America*, 110, E2997–E3006.

Halangk, W., Lerch, M. M., Brandt-Nedelev, B., Roth, W., Ruthenbuerger, M., Reinecke, T., ... Deussing, J. (2000). Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. *Journal of Clinical Investigation*, 106, 773–781.

Huang, W., Duan, L., Huang, B., Wang, K., Zhang, C., Jia, Q., ... Wang, T. (2016). Macrophage migration inhibitory factor (MIF) family in arthropods: Cloning and expression analysis of two MIF and one D-dopachrome tautomerase (DDT) homologues in mud crabs, *Scylla paramamosain*. *Fish and Shellfish Immunology*, 50, 142–149.

Ito, K., Yoshiura, Y., Ototake, M., & Nakanishi, T. (2008). Macrophage migration inhibitory factor (MIF) is essential for development of zebrafish, *Danio rerio*. *Developmental and Comparative Immunology*, 32, 664–672.

Jankauskas, S. S., Wong, D. W. L., Bucala, R., Djudjaj, S., & Boor, P. (2019). Evolving complexity of MIF signaling. *Cellular Signalling*, 57, 76–88.

Jin, H., Xiang, L., & Shao, J. (2007). Molecular cloning and identification of macrophage migration inhibitory factor (MIF) in teleost fish. *Developmental and Comparative Immunology*, 31, 1131–1144.

Kim, B. S., Pallua, N., Bernhagen, J., & Bucala, R. (2015). The macrophage migration inhibitory factor protein superfamily in obesity and wound repair. *Experimental and Molecular Medicine*, 47, 1–10.

Kleemann, R., Kapurniotu, A., Frank, R. W., Gessner, A., Mischke, R., Flieger, O., ... Bernhagen, J. (1998). Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. *Journal of Molecular Biology*, 280, 85–102.

Kudrin, A., & Ray, D. (2008). Cunning factor: Macrophage migration inhibitory factor as a redox-regulated target. *Immunology and Cell Biology*, 86, 232–238.

Lah, T. T., Kalman, E., Najjar, D., Gorodetsky, E., Brennan, P., Somers, R., & Daskal, I. (2000). Cells producing cathepsins D, B, and L in human breast carcinoma and their association with prognosis. *Human Pathology*, 32, 149–160.

Lecaille, F., Kaleta, J., & Brömme, D. (2002). Human and parasitic papain-like cysteine proteases: Their role in physiology and pathology and recent developments in inhibitor design. *Chemical Reviews*, 102, 4459–4488.

Li, C., Song, L., Tan, F., Su, B., Zhang, D., Zhao, H., & Peatman, E. (2015). Identification and mucosal expression analysis of cathepsin B in channel catfish (*Ictalurus punctatus*) following bacterial challenge. *Fish and Shellfish Immunology*, 47, 751–757.
Li, D., Li, C., Shao, S., Zhang, G., Tang, Y., Zhou, D., & Li, X. (2013). Effects of dietary vitamin D3 on MHC-II-β2 gene expression in immune tissues of Monopterus albus. *Journal of Animal and Veterinary Advances*, 12, 215–220.

Li, W., Jin, X., He, L., Wang, Y., Chen, L., Jiang, H., & Wang, Q. (2011). Molecular cloning, characterization and expression analysis of macrophage migration inhibitory protein (MIF) in Chinese mitten crab, Eriocheir sinensis. *Fish and Shellfish Immunology*, 30, 324–329.

Li, W., Sun, W., Meng, L., & Hong, D. (2014). Molecular cloning, genomic structure, polymorphism and expression analysis of major histocompatibility complex class II α gene of swamp eel Monopterus albus. *Biologia (Poland)*, 69, 236–246.

Li, W., Sun, W., Tang, F., Li, C., & Liu, C. (2011). Molecular characterization and expression analysis of a hepcidin gene from rice field eel (Monopterus albus). *African Journal of Biotechnology*, 10, 7953–7961.

Lue, H., Kleemann, R., Calandra, T., Roger, T., & Bernhagen, J. (2002). Macrophage migration inhibitory factor (MIF): Mechanisms of action and role in disease. *Microbes and Infection*, 4, 449–460.

Luo, W., Wang, X., Qu, H., Qin, G., Zhang, H., & Lin, Q. (2016). Genomic structure and expression pattern of MHC IIX and IIL genes reveal an unusual immune trait in lined seahorse Hippocampus erectus. *Fish and Shellfish Immunology*, 58, 521–529.

Luo, W., Zhang, J., Wen, J., Liu, H., Wang, W., & Gao, Z. (2014). Molecular cloning and expression analysis of major histocompatibility complex class I, IIA and IIB genes of blunt snout bream (Megalobrama amblycephala). *Developmental and Comparative Immunology*, 42, 169–173.

Mao, Y., Xu, B., Su, Y., Zhang, Z., Ding, S., Wang, D., & Wang, J. (2010). Cloning and mRNA expression of macrophage migration inhibitory factor (MIF) gene of large yellow croaker (Pseudosciaena crocea). *Acta Oceanologica Sinica*, 29, 63–73.

Mitchell, R. A., Liao, H., Chesney, J., Fingerle-Rowsor, G., Baugh, J., David, J., & Bucala, R. (2002). Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: Regulatory role in the innate immune response. *Proceedings of the National Academy of Sciences of the United States of America*, 99, 345–350.

Mort, J. S., & Buttle, D. J. (1997). Cathepsin B. *International Journal of Biochemistry and Cell Biology*, 29, 715–720.

Noels, H., Bernhagen, J., & Weber, C. (2009). Macrophage migration inhibitory factor: A noncanonical chemokine important in atherosclerosis. *Trends in Cardiovascular Medicine*, 19, 76–86.

Oh, M., Kasthuri, S. R., Wang, Q., Bathige, S. D. N. K., Whang, I., Lim, B. S., ... Lee, J. (2013). Characterization of MIF family proteins: MIF and DDT from rock bream, Oplegnathus fasciatus. *Fish and Shellfish Immunology*, 35, 458–468.

Parisi, M. G., Toubiana, M., Mangano, V., Parietello, N., Cammarata, M., & Roch, P. (2012). MIF from mussel: Coding sequence, phylogeny, polymorphism, 3D model and regulation of expression. *Developmental and Comparative Immunology*, 36, 688–696.

Papa, C., Van Lieshout, A. W., Roelofs, M. F., Geurts-Moespot, A., Van Riel, P. L., Calandra, T., ... Radstake, T. R. (2006). MIF production by dendritic cells is differentially regulated by toll-like receptors and increased during rheumatoid arthritis. *Cytokine*, 36, 51–56.

Qiu, X., Man, S. M., Malireddi, R. K., Karki, R., Lupter, C., Gurung, P., ... Kanneganti, T. D. (2016). Cathepsin B modulates lysoosomal biogenesis host defense against Francisella novicida infection. *Journal of Experimental Medicine*, 213, 2081–2097.

Qiu, R., Liu, X., Hu, Y., & Sun, B. (2013). Expression characterization and activity analysis of a cathepsin B from Pacific abalone *Haliotis discus hannah*. *Fish and Shellfish Immunology*, 34, 1376–1382.

Ringa, E., Salinas, I., Olsen, R. E., Nyhaug, A., Myklebust, R., & Mayhew, T. M. (2007). Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro exposure to pathogenic and probiotic bacterial strains. *Cell and Tissue Research*, 328, 109–116.

Schwarz, V., Lue, H., Kraemer, S., Krohn, R., Ohl, K., ... Bernhagen, J. (2009). A functional heteromeric MIF receptor formed by CD74 and CXCR4. *FEBS Letters*, 583, 2749–2757.

Turk, B., Turk, D., & Turk, V. (2000). Lysoosomal cysteine proteases: More than scavengers. *Biochimica et Biophysica Acta – Protein Structure and Molecular Enzymology*, 1477, 98–111.

Veenstra, K. A., Wang, C., Wang, T., Tubbs, L., Ben Arous, J., & Secomes, C. J. (2018). Rainbow trout (Oncorhynchus mykiss) adipose tissue undergoes major changes in immune gene expression following bacterial infection or stimulation with pro-inflammatory molecules. *Developmental and Comparative Immunology*, 81, 83–94.

Villadangos, J. A., Bryant, R. A. R., Deussing, J., Driessen, C., Lennon-Dumenil, A. M., Riese, R. J., ... Ploegh, H. L. (1999). Proteases involved in MHC class II antigen presentation. *Immunological Reviews*, 172, 109–120.

Wang, L., Yang, H., Li, F., Zhang, Y., Yang, Z., Li, Y., & Liu, X. (2013). Molecular characterization, tissue distribution and functional analysis of macrophage migration inhibitory factor protein (MIF) in Chinese giant salamanders Andrias davidianus. *Developmental and Comparative Immunology*, 39, 161–168.

Wei, S., Huang, Y., Huang, X., Cai, J., Yan, Y., Guo, C., & Qin, Q. (2014). Characterization of cathepsin B gene from orange-spotted grouper, Epinephelus coioides involved in SGIV infection. *Fish and Shellfish Immunology*, 36, 194–205.

Whang, I., De Zoysa, M., Nikapitiya, C., Lee, Y., Kim, Y., Lee, S., ... Lee, J. (2011). Molecular characterization and expression analysis of Cathepsin B and L cysteine proteases from rock bream (Oplegnathus fasciatus). *Fish and Shellfish Immunology*, 30, 763–772.
Xie, B., Fu, M., Zhao, C., Shi, J., Shi, G., Jiao, Z., & Qiu, L. (2016). Cloning, characterization, and expression of the macrophage migration inhibitory factor gene from the black tiger shrimp (Penaeus monodon). *Fish and Shellfish Immunology, 56*, 489–495.

Zhan, F., Jakovic, I., & Wang, W. (2019). Identification, characterization and expression in response to Aeromonas hydrophila challenge of five interferon regulatory factors in Megalobrama amblycephala. *Fish and Shellfish Immunology, 86*, 204–212.

Zhang, F., Zhang, Y., Chen, Y., Zhu, R., Dong, C., Li, Y., ... Gui, J. (2008). Expressional induction of Paralichthys olivaceus cathepsin B gene in response to virus, poly I:C and lipopolysaccharide. *Fish and Shellfish Immunology, 25*, 542–549.

Zheng, Y., Li, X., Qian, X., Wang, Y., Lee, J. H., Xia, Y., ... Lu, Z. (2015). Secreted and O-GlcNAcylated MIF binds to the human EGF receptor and inhibits its activation. *Nature Cell Biology, 17*, 1348–1355.

Zhou, R., Cheng, H., Zhang, Q., Guo, Y., Cooper, R. K., & Tiersch, T. R. (2002). SRY-related genes in the genome of the rice field eel (Monopterus albus). *Genetics Selection Evolution, 34*, 129–137.

How to cite this article: Du Z, Wang T, Lin R, et al. The char of migration inhibitory factor and Cathepsin B from Asian swamp eel (Monopterus albus) and their response to challenge with Aeromonas hydrophila. *J World Aquac Soc.* 2021;1–15. https://doi.org/10.1111/jwas.12781