A fresh look at the biodiversity lexicon for fiddler crabs (Decapoda: Brachyura: Ocypodidae). Part 1: Taxonomy

Michael S. Rosenberg
Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284-2030, USA

Correspondence: M. Rosenberg; e-mail: monsberg@vcu.edu

(Received 5 April 2019; accepted 18 July 2019)

ABSTRACT

Fiddler crabs (Ocypodidae) have gone through a gradual series of taxonomic revisions and refinements over the last 40 years, culminating most recently with an expansion from a single genus into eleven different genera. I examine the opportunities presented by these revisions with respect to establishing formal names for previously established clades at a variety of taxonomic levels that were otherwise previously impossible to name due to historical compression of these crabs into a single genus, including the establishment or reestablishment of three tribes (Ucini, Gelasimini, and Minucini) and ten subgenera: Uca (Uca), Uca (Acanthoplax), Gelasimus (Gelasimus), Gelasimus (Mesuca), Austruca (Austruca), Austruca (Ganuca), Austruca (Sinduca), Tubuca (Tubuca), Tubuca (Australuca), and Tubuca (Augustuca). A previously overlooked synonymy between Gelasimus excisa (Nobili, 1906) and G. neocultrimana (Bott, 1973) is discussed, and the former name is adopted as valid.

Key Words: Gelasimus, ghost crabs, new tribes, new subgenera, systematics, Uca

INTRODUCTION

Fiddler crabs (Ocypodidae Rafinesque, 1815) are well-known brachyuran crabs inhabiting shorelines worldwide across the tropics and well into the temperate zones. Despite their rather small size and somewhat shy nature around humans, their colorful markings, aggressive waving and fighting behaviors, and the seemingly absurd claw asymmetry found in males makes them a charismatic group, popular with both amateur naturalists as well as in scientific studies. As with many other groups of organisms, the taxonomy of fiddler crabs has gradually shifted over time as new studies, technologies, and scientific attitudes have led to new and different insights into the evolutionary history of these species. The last truly comprehensive revision and study of the taxonomy of fiddler crabs (Crane, 1975) has served as a benchmark for all subsequent works of Crane (1975) and Bott (1973); Crane’s names were more widely recognized, and the goal of this work is to consider the current status of fiddler crab taxonomy in light of these recent changes, identify opportunities in our current classification for better describing known and likely clades, clarify a taxonomic ambiguity that has been left unresolved, and highlight places where more work is necessary.

ABOVE AND BEYOND THE GENUS: THE HIGHER-LEVEL TAXONOMY

Fiddler crab species have usually been considered members of a single genus: Gelasimus Latreille, 1817 for most of the 19th century and Uca Leach, 1814 starting after 1897 when the priority of this name was recognized (Rathbun, 1897). Proposed subdivisions within the genus largely started with the split of the Eastern Pacific species into two subgenera by Bott (1954): Uca (the narrow-front species) and Minuca Bott, 1954 (the broad-front species). More widespread divisions of the genus began with the competing works of Crane (1975) and Bott (1973); Crane’s names were more

© The Author(s) 2019. Published by Oxford University Press on behalf of The Crustacean Society. All rights reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
widely recognized and thought to better represent true systematic clusters, but Bott’s names had taxonomic priority (von Hagen, 1976; Rosenberg, 2001). Since the mid-1990s, as additional morphological characterization and formal molecular phylogenetic methods were applied to the genus, a number of studies proposed to contract or expand the various subgenera (Rosenberg, 2001; Beilich & von Hagen, 2006; Spivak & Cuesta, 2009; Shih, 2015; Shih et al., 2015). Outside of a number of largely ignored, informal superspecies designations by Crane (1975), little additional effort was made to further subdivide the species within subgenera. Because Crane (1975) treated many of the now-recognized species as subspecies the subsequent literature often refers to the larger groups of formerly-single-species-under-Crane as semi-formally recognized taxa, e.g., the vocas species complex (Shih et al., 2010, 2016a; Rosenberg, 2013) or the lactea species complex (Shih et al., 2009, 2010; 2013b; Naderloo et al., 2010, 2016). Because all fiddler crabs were otherwise considered a single genus, higher-level taxonomic names only served to express relationships between fiddler crabs and closely related clades such as ghost crabs (Ocypode Weber, 1795) and mangrove crabs (Ucides Rathbun, 1897).

Shih et al. (2016b) upended this system with their conclusion that fiddler crabs were paraphyletic without the inclusion of ghost crabs. This paraphyly had been seen in earlier works with that fiddler crabs were paraphyletic without the inclusion of phylogenetically contained within another; see below). Shih all fiddlers (one of the former subgenera was abandoned as it was genus monophyly forced them to abandon the traditional concept of the higher-order names across fiddler crabs. The lack of fiddler crab error likely not reflecting the true evolutionary history of these crabs. With their larger data set and high phylogenetic support, Shih et al. (2016b) embraced this result and used it to reorganize higher-order names across fiddler crabs. The lack of fiddler crab monophyly forced them to abandon the traditional concept of the genus Uca as a single taxonomic name capturing all fiddler crabs; instead all but one of the former subgenera were raised to generic status and no single taxonomic name can be used to refer to all fiddlers (one of the former subgenera was abandoned as it was phylogenetically contained within another, see below). Shih et al. (2016b) organized these genera into two subfamilies: Ocypodinae Rafinesque, 1815 (containing the fiddler crab genera Uca and Afruca Crane, 1975 as well as the ghost crabs, predominantly the genus Ocypode) and the Gelasminae Miers, 1886 (containing the other nine fiddler crab genera) (Fig. 1). A third subfamily, Ucidinae Dana, 1851, contains the mangrove crab genus Ucides. The relationship between Uca, Afruca, and Ocypode was left unresolved by Shih et al. (2016b), such that it was not clear whether the two fiddler crab genera formed a clade separate from Ocypode. The World Register of Marine Species (WoRMS, 2019) currently assumes these two fiddler crab genera are a clade, represented by the subfamily Ucinae Dana, 1851, reserving Ocypodinae for just the ghost crabs (Fig. 1).

The hypothesis/result that fiddler crabs are paraphyletic with respect to ghost crabs is not without controversy. To many researchers (MSR, unpublished data), this result seems biologically implausible (although by no means impossible), as it appears to have written off the result as a taxonomic reconstruction (1996) and Sturmbauer et al. 2009, 2010; 2013b; Naderloo et al., 2010, 2016). Because all fiddler crabs were otherwise considered a single genus, higher-level taxonomic names only served to express relationships between fiddler crabs and closely related clades such as ghost crabs (Ocypode Weber, 1795) and mangrove crabs (Ucides Rathbun, 1897).

Figure 1. Outline of the phylogeny of fiddler, ghost, and mangrove crabs (after Shih et al., 2016), indicating subfamily designations as given in Shih et al. (2016b) and World Register of Marine Species (WoRMS) (5 April 2019).
It has long been accepted that fiddler crabs consist of three primary groups corresponding to broad geographic distributions (Levinton et al., 1996; Rosenberg, 2001). The first group to diverge consists of the Eastern Atlantic species ($Afriuca$) and the American narrow-front species (Uca) (equivalent to Ucinae above), combined into a clade with Oxypodidae by Shih et al. (2016b). The remaining fiddler crabs form a clade (Gelasiminae) with two major subclades: the American broad-front species and the Indian and Western Pacific oceans species (Indo-West Pacific, or IWP, region). The American broad-front and IWP clades have long been recognized (Levinton et al., 1996; Sturmbauer et al., 1996; Rosenberg, 2001) but remain formally unnamed, in part due to taxonomic limitations imposed by the tradition of treating all fiddler crabs as a single genus.

With the expansion of fiddler crab species to multiple genera and subfamilies and to aid in clarity of communication it seems clear that these latter two subclades should receive formal names, with tribe being the obvious rank. The American broad-front species should be referred to as the tribe Minucini tribus nov. with tribe being the obvious rank. The American broad-front species and the Indian and Western Pacific species (Indo-West Pacific, or IWP, region). The American broad-front and IWP clades have long been recognized (Levinton et al., 1996; Sturmbauer et al., 1996; Rosenberg, 2001) but remain formally unnamed, in part due to taxonomic limitations imposed by the tradition of treating all fiddler crabs as a single genus.

The American broad-front species form a clade (Gelasiminae) with two major subclades: the American broad-front species and the Indian and Western Pacific species (Indo-West Pacific, or IWP, region). The American broad-front and IWP clades have long been recognized (Levinton et al., 1996; Sturmbauer et al., 1996; Rosenberg, 2001) but remain formally unnamed, in part due to taxonomic limitations imposed by the tradition of treating all fiddler crabs as a single genus.

With the expansion of fiddler crab species to multiple genera and subfamilies and to aid in clarity of communication it seems clear that these latter two subclades should receive formal names, with tribe being the obvious rank. The American broad-front species should be referred to as the tribe Minucini tribus nov. (containing Minuca, Lepitca Bott, 1973 and Petruca Shih, Ng & Christy, 2015), and the IWP species should be referred to as the tribe Gelasmianes Miers, 1886 status nov. (containing Tubuca, Xeruca Shih, 2015, Gelasimus, Cranuca Beinlich & von Hagen, 2006, Paraleptuca Bott, 1973, and Austruca Bott, 1973). One could alternatively reserve Gelasmianes for just the IWP species and use Minucini for the American broad-front species, but that division would fail to recognize the clear relationship of those two clades relative to the Ucinae and Ocypodinae. For rank consistency across all of the groups, the tribe Ucini Dana, 1851 would contain Uca and Afruca (Fig. 2), following the WoRMS (2019) classification under the assumption that Uca and Afruca form a monophyletic group. The latter tribe was originally used by Pretzmann (1983) for all fiddler crabs when he accepted the multiple genera of Bott (1973) but would be restricted to only these two genera under the current system.

A clear advantage of these tribes is taxonomic stability as, unlike the subfamilies, the tribes would likely retain their identical meaning whether fiddler crabs are monophyletic or paraphyletic. If future studies find fiddler crabs to be monophyletic, Ucinae would have priority as the subfamily representing all fiddler crabs, with the subtribe Gelasmianes status nov., with the superfamilies Ucinae and Ocypodinae serving the role currently occupied by Ucinae.

THE SUBGENERA ARE DEAD, LONG LIVE THE SUBGENERA

With the former subgenera raised to generic status, there is now potentially room within the new genera for further delineation, which would seem useful in a few cases. Previous researchers have questioned the need for subgenera (e.g., von Hagen, 1976) and the majority of scientific publications since they were broadly introduced in the 1970s have tended to ignore them. It is fair to question whether increasing the complexity of our taxonomy by designating new subgenera is necessary now, when we have concluded splitting a single genus into multiple genera. In a few cases, I believe it is readily justified because we already use informal names to refer to some of these groups, e.g., the vocans species complex. Another important point to note is that the use of subgenera can be viewed as condition-dependent. Researchers can use them when they provide value or clarity but choose to ignore them when they do not.

For each genus discussed below, the initial designated subgenus is already a well-recognized group in the literature, with additional support from the phylogeny of Shih et al. (2016b). Additional subgenera are suggested as place-holders for the remaining species in the genus, generally based on strongly supported clades from that same phylogeny (exceptions will be noted).

Gelasimus currently consists of eight species; seven of these make up what has generally been referred to as the vocans species complex (Shih et al., 2010, 2016a; Rosenberg, 2013), defined as the subspecies grouped into a single species by Crane (1975). This group can be formally designated the subgenus Gelasimus Latreille, 1817 status nov., consisting of the species *G. bocarisi* (Crane, 1975), *G. damipi* (Crane, 1975), *G. excisa* (Nobili, 1906), *G. hesperia* (Crane, 1975), *G. jocelynae* (Shih, Naruse & Ng, 2010), *G. vocans* (Linnaeus, 1758), and *G. xeruca* (McNeill, 1920). The single remaining species in the genus, *G. tetragonon* (Herbst, 1790), is placed in the monotypic subgenus Mesuca Bott, 1973 status nov.

Austruca currently consists of 12 species; eight of these make up what has generally been referred to as the lactea species complex (Shih et al., 2009, 2010, 2013b; Naderloo et al., 2010, 2016), defined as the subspecies grouped into a single species by Crane (1975). This group can formally be designated the subgenus Austruca, consisting of *A. albimana* (Kossmann, 1877), *A. annulipes* (H. Milne Edwards, 1837), *A. crytica* (Naderloo, Türky & Chen, 2010; see Naderloo et al., 2010), *A. iranica* (Pretzmann, 1971), *A. lactea* (De Haan, 1835), *A. mjobergi* (Rathbun, 1924), *A. occidentalis* (Naderloo, Schubart & Shih, 2016), and *A. perplexa*.

![Figure 2](https://academic.oup.com/jcb/article-abstract/39/6/729/5614985/731)
The four other species in the genus can be divided among two additional new subgenera: Caneatoca subgen. nov., consisting of A. triangularis (A. Milne-Edwards, 1873), A. bengali (Crane, 1975), and A. variegata (Heller, 1862); and Sinduca subgen. nov., consisting of A. sindsensis (Alcock, 1900). The former is derived from the Latin for tapering (describing the sharppointing anterior-lateral angles of these species) and represents the pair of species formerly considered subspecies of Uca triangularis by Crane (1975) (the “triangularis-species complex” according to Shih et al., 2019), as well as A. variegata, a recently recognized (Shih et al. 2019) long-lost relative. In keeping with the current informal naming convention, Shih et al. (2019) suggest renaming this group the variegata species complex, demonstrating that a formal taxonomic name would be useful. Austruca sindensis is placed in its own subgenus because it occupies a basal division and does not appear to be closely related to any of the other species within the genus (Shih et al., 2016b); Sinduca derives its name from the same source as the type species, the Indus River where it was first found.

Tubuca also appears to be readily divisible into three subgenera based on Shih et al. (2016b): 1) subgenus Tubuca Bott, 1973 status nov., consisting of a clade of 11 species: T. alocoki Shih, Chan & Ng, 2018, T. arcuata (De Haan, 1833), T. capricornis (Crane, 1975), T. coerulata (H. Milne Edwards, 1832), T. demani (Ortmann, 1897), T. ducommieri (H. Milne Edwards, 1852), T. flammula (Crane, 1975), T. festipata (Adams & White, 1848), T. paradoxussaneri (Bott, 1973), T. typhoni (Crane, 1975) and T. uvariles (H. Milne Edwards, 1852); 2) subgenus Austruca Crane, 1975 status nov., consisting of a clade of seven species, T. bellator (White, 1847), T. elegans (George & Jones, 1982), T. hissitanus (George & Jones, 1982), T. longidigitum (Kingsley, 1880), T. polita (Crane, 1975), T. sessinella (Crane, 1975), and T. signata (Hess, 1865) (this subgenus was previously abandoned when Tubuca as a whole was considered a subgenus; with Tubuca now representing a full genus, the concept of Austruca can be reestablished within this new genus); and 3) subgenus Angustuca subgen. nov., consisting of three species, T. acuta (Stimpson, 1858), T. rhizophorae (Tweedie, 1950), and T. rosea (Tweedie, 1937). The phylogeny of Shih et al. (2016b) has these last three species basal to the remainder of the genus. In this tree (Shih et al., 2016b: fig. 2) these three species would be considered paraphyletic, but only due to a poorly-supported branch (as defined therein) under both Bayesian and Maximum Likelihood inference. I tentatively place them here in a single subgenus. The clustering of these three species is not novel; Crane (1975) treated them as the informal superspecies acuta, but since that is not particularly appropriate for a subgeneric designation (and would potentially confound and confuse older species/subspecies designations with subgenus/species designations), I propose the name Angustuca for the subgenus, derived from the Latin for “narrow” (and a synonym of “acute”).

The genus Uca has one clear, differentiated subgroup consisting of three species, which can be considered the subgenus Acanthophlos Milne Edwards, 1852: U. insignis (H. Milne Edwards, 1852), U. maracoani (Latreille, 1803), and U. ornata (Smith, 1870). These species are among the largest of all fiddler crabs and have uniquely shaped major claws, with extraordinarily wide and flat dactyl and pollex that more resembled pruningshears than the major claws of most other species. The remaining six species are tentatively placed in the subgenus Uca: U. heteroleuca (Smith, 1870), U. intermedia von Prahl & Toro, 1905, U. major (Herbst, 1702), U. monilifera Rathbun, 1915, U. princeps (Smith, 1870), and U. stylifera (H. Milne Edwards, 1852). The relationships among the species in this genus are generally not yet well enough known for confident subdivision.

Of the remaining seven genera, four are monospecific (Afruca, Canna, Xeruca, and Pituca); while the other three (Leftuca, Miuca, and Peraeuflexuca) currently lack the systematic clarity necessary for further subdivision.

Species Taxonomic Notes

As with many other groups, named species of fiddler crab have gone through waves of consolidation and expansion. Over the last few decades, the relationships among most of the historical names have largely stabilized with taxonomic advances mostly revolving around the recognition/discovery of cryptic species within formerly recognized single species (Novak & Salmon, 1974; Thurman, 1981; Naderoo et al., 2010, 2016; Shih et al., 2009, 2010, 2012, 2013a, 2018, 2019; Thurman et al., 2018); although a few purely novel species have been described as well (George & Jones, 1982; von Prahl & Toro, 1985; von Hagen, 1987; Landstorfer & Schubart, 2010).

One currently recognized species requires some discussion with respect to historical names and nomenclature: Gelasimus excisa (Nobili, 1906) versus G. neocultrimana (Bott, 1973).

Desmarest (1817) described a fossil crab under the Latin name Goneplax nitida (using “Goneplace huant” as a common name in French). Desmarest (1822) subsequently renamed this fossil Gelasima nitida, a reassignment later accepted by Milne Edwards (1837). Dana (1851) subsequently described a new species from Fiji as Gelasimus nitidus, apparently without reference or knowledge of Desmarest’s earlier name. Dana’s species became part of a complex of names, in particular with Uca marionis (Desmarest, 1823) and U. cultrimana (Adams & White, 1848), which were used for the same and/or very similar species or forms, all of which were eventually synonymized with Uca vocans by the 1970s.

Crane (1975) recognized six subspecies of Uca vocans, including a supposedly new subspecies, Uca vocans pacificiens Crane, 1975, found in Fiji. This name was later found to be a junior synonym of Metuca (Latuca) neocultrimana Bott, 1973, also described from Fiji (Rosenberg, 2004; Shih et al., 2010). Shih et al. (2016b) further sub-divided this species into two: U. neocultrimana with a range restricted to Fiji and nearby islands (American Samoa, Tuvalu, Tonga, Wallis and Futuna), and U. jocelynae, ranging throughout most of the Western Pacific islands west of Fiji, including Vanuatu, New Caledonia, Taiwan, the Philippines, Papua New Guinea, and the eastern half of Indonesia. The revision of Shih et al. (2016b) moved these species back to Gelasimus. Gelasimus neocultrimana is the only member of the group (subgenus Gelasimus as defined herein) found in Fiji; the other three or four species of fiddler crabs though to be found in Fiji are quite easily distinguished from G. neocultrimana.

Lost in all of these revisions was the fact that Dana’s (1851) Gelasimus nitidus was from Fiji. That being the case, Gelasimus nitidus should clearly be viewed as a synonym of G. neocultrimana and not a synonym of G. vocans. Gelasimus nitidus Dana 1851, however, cannot have priority because, as already mentioned, it is a junior homonym of Gelasima nitida Desmarest, 1822. This homonym was originally recognized by Nobili (1906: 313), who specifically and clearly suggested replacing Dana’s name nitida with the name excisa.

> “Le G. cultrimanus dans le sens de Kingsley et de Ortmann est identique avec le G. nitidus Dana. Ce dernier nom serait donc le nom de cette espèce ou variété, mais comme il y a déjà un Gelasimus nitidus Desmarest, espèce fossile, je propose pour cette forme le nom d’excisa.”

Of note is that Crane (1975) recognized that her name Uca vocans pacificiens could be a junior synonym of Dana’s species but felt that nitida should be avoided due to the confusion with Desmarest’s name. Crane (1975) also rejected use of excisa by Nobili (1906) as a replacement for nitida, because she claimed Nobili’s meaning was unclear and not tied to specific type specimens or locations. Her reasoning was unfortunately faulty as Nobili specifically suggested a replacement name for Dana’s species, thus inheriting his name-bearing type and type locality.
FRESH LOOK AT FIDDLER CRAB TAXONOMY

Gelasimus neocultrimana (Bott, 1973) should therefore be recognized as a junior synonym of the senior name, *Gelasimus excisa* (Nobili, 1906).

THE FUTURE OF FIDDLER-CRAB SYSTEMATICS

While this work has been predominantly focused on taxonomy, three areas of inquiry with respect to the systematics of fiddler crabs stand out as critical to the next generation of studies.

1) What is the phylogenetic relationship between fiddler crabs and ghost crabs? Is it actually paraphyletic as suggested by Shih et al. (2016b) or was that result a data artifact?

2) What are the relationships of species within the genera and subgenera? A lot of progress has been made on understanding the broader relationships among the genera, but on the whole the species-level relationships are still quite uncertain, particularly within *Minuca* (18 species) and *Leptuca* (30 species).

3) Where will the next cryptic species be found? As molecular systematics have been more broadly applied to fiddler crabs, a number of geographically widespread species have recently been split into sets of more regional similar/cryptic species (Shih et al., 2009, 2010, 2012, 2018, 2019; Naderloo et al., 2010, 2016; Thurman et al., 2018), and it is likely more are waiting to be found. Species such as *Uca (Uca) princeps* (Crane, 1975; MSR, unpublished data), *Tabuca (Tabuca) forcipata* (MSR, unpublished data; H.T. Shih, personal communication), and *Minuca euad/onius* (Barnwell, 1968) have all been observed to encompass enough variation to raise questions as to whether they represent multi-species complexes currently hidden under a single name.

OUTLINE OF THE TAXONOMIC HIERARCHY OF FIDDLER CRABS

The lists of synonymous names and prior usages of each taxon are not included below as this outline, with the sole exception of *Gelasimus* (*Gelasimus*) excisa discussed above, does not change or challenge other recent revisions that otherwise contain identical such lists (e.g., Shih et al., 2016b). Species marked with † are only currently hidden under a single name.

Family Ocypodidae Rafinesque, 1815

Subfamily Ucininae Dana, 1851

Tribe Ucini Dana, 1851

Type genus: *Uca* Leach, 1814

Genus Uca Leach, 1814

Type species: *Uca (Uca) major* (Herbst, 1782)

See Shih et al. (2016b) for a recent diagnosis and description.

Subgenus Uca (Uca) Leach, 1814

Type species: *Uca (Uca) major* (Herbst, 1782)

Species included: *Uca (Uca) heteropleura* (Smith, 1870), *Uca (Uca) intermedia* von Prahl & Toro, 1985, *Uca (Uca) major* (Herbst, 1782), *Uca (Uca) monilifera* Rathbun, 1915, *Uca (Uca) oldroydi* Rathbun, 1926, *Uca (Uca) princeps* (Smith, 1870), *Uca (Uca) stylifera* (H. Milne Edwards, 1852)

Diagnosis: Medium to very large sized species (carapace breadth 25–50 mm); front narrow; dactyl, pollex of major chela of males somewhat broad, flat; dactyl with mildly convex upper margin, concave lower margin; upper margin of pollex often flat for half its length, but all species with clear gape when claw is closed.

Remarks: This subgenus is readily distinguished from subgenus *Acanthoplax* by the shape of the major chela, with the claws of *Uca* more similar to those of other fiddler crab species rather than the broad and flat shear-like shape of *Acanthoplax*. *Uca (Uca) monilifera* has a chela shape midway between the rest of the *Uca* and *Acanthoplax* making its placement within this subgenus tentative.

Subgenus Uca (Acanthoplax) H. Milne Edwards, 1852

Type species: *Uca (Acanthoplax) insignis* (H. Milne Edwards, 1852)

Species included: *Uca (Acanthoplax) antiqua* Brito, 1972, *Uca (Acanthoplax) insignis* (H. Milne Edwards, 1852), *Uca (Acanthoplax) maracoani* (Latreille, 1803), *Uca (Acanthoplax) mariae* Domínguez Alonso, 2008, *Uca (Acanthoplax) ornata* (Smith, 1870)

Diagnosis: Medium to very large sized species (carapace breadth 25–50 mm); front narrow; dactyl, pollex of major chela on males broad, flat; dactyl with strongly convex upper margin, markedly straight lower margin, generally with height exceeding that of pollex; upper margin of pollex also straight for 2/3 of its length, together leaving little-to-no gape when claw is closed.

Remarks: Among the largest fiddler crabs, the subgenus *Acanthoplax* is readily distinguished from the sister subgenus *Uca* by the unique shape of the major chela, with only *Uca (Uca) monilifera* having a shape approaching those of the *Acanthoplax*.

Genus Afruca Crane, 1975

Type species: *Afruca tangeri* (Eydox, 1835)

Species included: *Afruca miocenica* (Artal, 2008), *Afruca tangeri* (Eydox, 1835)

See Shih et al. (2016b) for a recent diagnosis and description.

Subfamily Gelasiminae Miers, 1886

Tribe Gelasimini Miers, 1886 *status nov.*

Type genus: *Gelasimus* Latreille, 1817

Diagnosis: Small-to-medium sized species (carapace breadth 10–40 mm); front narrow or broad; gastric mill without large brownish setae at base of posterior tooth plate; pleonal locking mechanism present or absent.

Remarks: The tribe Gelasimini is geographically restricted to the Indian and central-to-western Pacific oceans and includes all fiddler crab genera within these regions. It can be distinguished from its sister tribe, the American Minucini, by the absence of two large brownish setae at the base of the posterior tooth plate on the gastric mill.

Genus Gelasimus Latreille, 1817

Type species: *Gelasimus (Gelasimus) vocans* (Linnaeus, 1758)

See Shih et al. (2016b) for a recent diagnosis and description.

Subgenus Gelasimus (Gelasimus) Latreille, 1817 *status nov.*

Type species: *Gelasimus (Gelasimus) vocans* (Linnaeus, 1758)
Species included: Gelasmus (Gelasmus) boësisis (Crane, 1975), Gelasmus (Gelasmus) dampedii (Crane, 1973), Gelasmus (Gelasmus) excissa (Nobili, 1906), Gelasmus (Gelasmus) hepatica (Crane, 1973), Gelasmus (Gelasmus) jozefinae (Shih, Naruse & Ng, 2010), Gelasmus (Gelasmus) vocans (Linnaeus, 1758), Gelasmus (Gelasmus) vomeris (McNeill, 1920)

Diagnosis: Medium sized species (carapace breadth 20-20 mm); front narrow; dactyl, pollex of major chela in males flattened, with strong groove on external surface of pollex; generally, 1, 2 large distinct teeth from mid-to-proximal end of pollex, although these can be lost in regenerated chela; presence of pronounced tuberculate ridge on inside of the pollex, and the relatively long fingers and gape in the minor chela.

Remarks: The species in this subgenus are readily distinguished from the sister subgenus *Mesuca* by the shape of the major chela, the tuberculate ridge on the inside of the major palm, the strong groove running along the outside of the pollex, and the relatively long fingers and gape in the minor chela.

Subgenus Gelasmus (Mesuca) Bott, 1973

Type species: Gelasmus (Mesuca) tetrogonon (Herbst, 1790)

Species included: Gelasmus (Mesuca) tetrogonon (Herbst, 1790)

Diagnosis: Medium sized species (carapace breadth 20-30 mm); front narrow; dactyl, pollex of major chela in males rounded, tapering; long, distinct groove on pollex absent; pronounced tuberculate ridge on inside of major palm absent; no large teeth on pollex; fingers of minor chela short; pleon panoramic mechanism absent.

Remarks: The single species in the subgenus, *Gelasmus (Mesuca) tetrogonon*, is easily distinguishable from the species in the sister subgenus *Gelasmus* by the shape of the major chela, the lack of a strong groove on the outer pollex, the tuberculate ridge inside the major palm, and by the length of the fingers on the minor chela.

Genus Austruca Bott, 1973

Type species: Austruca (Austruca) lactea (De Haan, 1835)

See Shih et al. (2016b) for a recent diagnosis and description.

Subgenus Austruca (Austruca) Bott, 1973

Type species: Austruca (Austruca) lactea (De Haan, 1835)

Species included: Austruca (Austruca) alliniana (Kossmann, 1877), Austruca (Austruca) annulipes (H. Milne-Edwards, 1837), Austruca (Austruca) cryptica (Naderloo, Türkay & Chen, 2010; see Naderloo et al., 2010), Austruca (Austruca) ironica (Pretzmann, 1971), Austruca (Austruca) lactea (De Haan, 1835), Austruca (Austruca) majoergi (Rathbun, 1924), Austruca (Austruca) occidentalis (Naderloo, Schubart & Shih, 2016), Austruca (Austruca) perplexa (H. Milne Edwards, 1852)

Diagnosis: Small sized species (carapace breadth 10-20 mm); front broad; vertical row of predistal tubercles on posterior minor merus absent; projecting terminal tube on gonopod absent; pleon panoramic locking mechanism present.

Remarks: The subgenus *Austruca* represents the “lactea species complex.” It is generally distinguishable from the other subgenera by the lack of a projecting tube on the distal end of the gonopod; it is also distinguishable from subgenus *Caneuta* by its carapace shape and the lack of a tuberculate row on the minor merus. It is sister to the subgenus *Caneuta*.

Subgenus Austruca (Caneuta) subgen. nov.

Type species: Austruca (Caneuta) triangularis (A. Milne-Edwards, 1873)

Species included: Austruca (Caneuta) variegata (Heller, 1862), Austruca (Caneuta) bengali (Crane, 1973), Austruca (Caneuta) triangularis (A. Milne-Edward, 1873)

Diagnosis: Very small to small sized species (carapace breadth 5-20 mm); front broad; orbits strongly slanting; anterolateral margins strongly acute; vertical row of predistal tubercles on posterior minor merus present; projecting terminal tube on gonopod; pleon panoramic locking mechanism present.

Remarks: The subgenus *Caneuta* represents the “triangularis species complex.” It can be distinguished from the other subgenera within the genus by the distinct carapace shape (weak to strong, obliquely slanted orbits, with moderate to strong acute anterolateral angles on the corner), as well as the row of tubercles on the minor merus. It can further be distinguished from subgenus *Austruca* by the presence of the long terminal tube on the gonopod. It is sister to the subgenus *Austruca*.

Nomenclatural statement: A life science identifier (LSID) number was obtained for the new subgenus: urn:lsid:zoobank.org:pub: 40936747-60A4-4A47-91D4-1F2481D6E80D.

Subgenus Austruca (Sinduca) subgen. nov.

Type species: Austruca (Sinduca) sindensis (Alcock, 1900)

Species included: Austruca (Sinduca) sindensis (Alcock, 1900)

Diagnosis: Very small to small sized species (carapace breadth 5-20 mm); front broad; anterolateral margins not strongly acute; projecting terminal tube on gonopod present; pleon panoramic locking mechanism present.

Remarks: This monospecific subgenus is distinguishable from the subgenus *Austruca* by the presence of a projecting tube on the distal end of the gonopod, while it differs from *Caneuta in both* carapace shape and the lack of a tuberculate row on the minor merus. Phylogenetically, it is basal to the other two subgenera and appears to be a distant link between those subgenera and other fiddler crab genera in Gelasimini.

Nomenclatural statement: A life science identifier (LSID) number was obtained for the new subgenus: urn:lsid:zoobank.org:pub: 40936747-60A4-4A47-91D4-1F2481D6E80D.

Genus Cranuca Beinlich & von Hagen, 2006

Type species: Cranuca inversa (Hoffmann, 1874)

Species included: Cranuca inversa (Hoffmann, 1874)

See Shih et al. (2016b) for a recent diagnosis and description.

Genus Paraleptuca Bott, 1973

Type species: Paraleptuca chlorophthalmus (H. Milne Edwards, 1837)

Species included: Paraleptuca boninensis Shih, Komai & Liu, 2013 (see Shih et al. 2013a), Paraleptuca chlorophthalmus (H. Milne Edwards, 1837), Paraleptuca crassipes (White, 1847), Paraleptuca splendidula (Stimpson, 1858)

See Shih et al. (2016b) for a recent diagnosis and description.
FRESH LOOK AT FIDDLER CRAB TAXONOMY

Genus Tubuca Bott, 1973

Type species: Tubuca bellator (White, 1847)

See Shih et al. (2016b) for a recent diagnosis and description.

Subgenus Tubuca (Tubuca) Bott, 1973 status nov.

Type species: Tubuca (Tubuca) bellator (White, 1847)

Species included: Tubuca bellator (White, 1847), Tubuca elegans (Jones, 1870), and Tubuca longidigitum (Jones, 1870). This subgenus represents the "acute species complex." It diverges basally from the other subgenera within the genus.

Genus Xeruca Shih, 2015

Type species: Xeruca formosensis (Rathbun, 1921)

Species included: Xeruca formosensis (Rathbun, 1921). See Shih et al. (2016b) for a recent diagnosis and description.

Tribe Minucini tribus nov.

Type genus: Minuca Bott, 1954

Diagnosis: Very small to medium sized species (carapace breadth 5–30 mm); front broad; gastric mill with 2 large brownish setae at base of posterior tooth plate; pleonal locking mechanism absent.

Remarks: The tribe Minucini is geographically restricted to the Americas and outlying islands, and contains all three broad-fronted genera from this region. It can be distinguished from its sister tribe, the Indo-West Pacific Gelasimini, by the presence of two large brownish setae at the base of the posterior tooth plate on the gastric mill.

Genus Minuca Bott, 1954

Type species: Minuca morax (Smith, 1870)

Species included: Minuca argilliola (Crane, 1941), Minuca brevifrons (Stimpson, 1860), Minuca burgessi (Rathbun, 1902), Minuca cuneiformis (Maccagno, 1928), Minuca galapagensis (Rathbun, 1902), Minuca hamlini (Rathbun, 1926), Minuca harradensis (Bott, 1954), Minuca macrocarpa (Smith, 1870), Minuca morax (Smith, 1870), and Minuca osea (Landstorfer & Schubert, 2010). See Shih et al. (2016b) for a recent diagnosis and description.

Genus Leptuca Bott, 1973

Type species: Leptuca stenodactylus (H. Milne Edwards & Lucas, 1843)

Species included: Leptuca batua (Crane, 1941), Leptuca bubei (Crane, 1941), Leptuca coloradensis (Rathbun, 1893), Leptuca cumulanta (Lockington, 1877), Leptuca cumulans (Crane, 1943), Leptuca dunkleyi (Rathbun, 1935), Leptuca longidactyla (von Hagen, 1968), and Leptuca pumilus (Smith, 1870). See Shih et al. (2016b) for a recent diagnosis and description.
(Crane, 1941), Leptuca saltitans (Crane, 1941), Leptuca speciosa (Ives, 1891), Leptuca spinicarpa (Rathbun, 1900), Leptuca stenodactylus (H. Milne Edwards & Lucas, 1843), Leptuca subcyindrica (Stimpson, 1859), Leptuca tallantica (von Hagen, 1968), Leptuca tenuipes (Crane, 1941), Leptuca terpsichoros (Crane, 1941), Leptuca thyensis (Rathbun, 1900), Leptuca tomentosa (Crane, 1941), Leptuca umbritola (Crane, 1941), Leptuca uruguayensis (Nobili, 1901; see Nobili, 1901a)

See Shih et al. (2016b) for a recent diagnosis and description.

Genus Petruca Shih, Ng & Christy, 2015

Type species: Petruca panamensis (Stimpson, 1859)

Species included: Petruca panamensis (Stimpson, 1859)

See Shih et al. (2016b) for a recent diagnosis and description.

ACKNOWLEDGEMENTS

Thanks to Peter Davie and Peter Ng, both of whom helped clarify the complexities of the species-level taxonomies, as well as Mark Gryger and the anonymous reviewers whose comments helped strengthen and clarify the manuscript.

REFERENCES

Adams, A. & White, A. 1848. Crustacea. In Stimpson, 1859)

Artal, P. 2008. *Uca minescens* (Crustacea, Decapoda), nueva especie del Mioceno de la Prov. de Barcelona (Cataluña, España). *Scripta Musei Zoologici* (Zoologica, 10, 6: 3–16.

Barnwell, E.H. 1988. Stereovision of external genitalia in the neotropical coconut-complex of fiddler crabs. *American Zoologist*, 28: 133A.

Barnwell, E.H. & Thurman, C.L. II. 1904. Taxonomy and biogeography of fiddler crabs (Ocyypodidae: genus *Uca*) of the Atlantic and Gulf coasts of eastern North America. *Zoological Journal of the Linnean Society*, 81: 23–87.

Beinlich, B. & von Hagen, H.-O. 2006. Materials for a more stable subdivision of the genus *Uca* Leach. *Zoologischer Mededelingen*, 80: 9–32.

Bose, I.A.G. 1802. *Histoire naturelle des crustacés, contenant leur description et leurs moeurs; avec figures dessinées d'après nature* (Decapoda: Ocypodidae). *Roten Meeres III. Crustacea*, 54: 28–133A.

Breit, I.M. 1972. Contribution au connaissance des crustacés décédé de la formation Pirahs. *II–O gênero *Uca* (Brachyura–Ocypodidae).* *Anuaria da Academia Brasileira de Ciencias*, 44: 95–90.

Crane, J. 1941. Eastern Pacific Expeditions of the New York Zoological Society. XXVI. Crabs of the genus *Uca* from the west coast of Central America. *Zoologica*, 26: 145–208.

Crane, J. 1943. Crabs of the genus *Uca* from Venezuela. *Zoologica*, 28: 33–44.

Crane, J. 1975. Fiddler crabs of the world. *Ocyypodidae: Genus Uca*. Princeton University Press, Princeton, NJ. USA.

Dana, J.D. 1851. Conspicuous Crustaceorum qui in Orbis Terrarum circumnavigatione, Carolo Wilkes et Classe Reipublicae Foederatae Duce, legit et descriptit. *Proceedings of the Academy of Natural Sciences of Philadelphia*, 5: 247–254.

Desmarest, A.-G. 1817. Crustacés fossiles. In: *Nouveau dictionnaire d'histoire naturelle, appliquée aux arts, à l'Agriculture, à l'économie rurale et domestique, à l'inidicine, etc. Par une société de naturalistes et d'agriculteurs*, pp. 539–519, *Vol. 8*. Déterville, Paris.

Desmarest, A.-G. 1818. Crustacés fossiles. In: *Nouveau dictionnaire d'histoire naturelle, appliquée aux arts, à l'Agriculture, à l'économie rurale et domestique, à l'inidicine, etc. Par une société de naturalistes et d'agriculteurs*, pp. 539–519, *Vol. 8*. Déterville, Paris.

Desmarest, A.-G. 1823. Malacostracés, Malacostraca. (Crust.). In: *Dictionnaire des Sciences Naturelles*, *Vol. 28*, pp. 13–425. Levraut & Le Normant, Strasbourg & Paris.

Dominguez Alonso, P. 2008. Nuevo cancero violínquilo (género *Uca*, Ocyypodidae) en el Plio-Pleistoceno del litoral pacífico de Honduras. *Ameghiniana*, 45: 663–676.

Eyddie, F. 1833. Nouvelle espèce de Gélasime. *Magasin de Zoologie*, 5: 29–32.

Fisher-Reid, M.C. & Wiens, J.J. 2011. What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades. *Molecular Phylogenetics and Evolution*, 11: 300 [doi.org/10.1016/j.ymgev.2011.03.008].

George, R.W. & Jones, D.S. 1982. A revision of the fiddler crabs of Australia (Ocyypodinae: *Uca*). *Record of the Western Australian Museum*, Supplement, 14: 1–99.

Haan, W. de. 1833–1850. Crustacea. *Fauna Japonica sine Descriptio Animalium, qua in Itinerre per Japoniam, Jupiu et Aegyptius Superiorum, qui Summun in India Batta Imperium Territor, Scepte, Annis 1823–1830 Colleget, Notis, Observationibus et Adumbrationibus Illustratet (P.F. von Siebold, ed.). Lugduni-Batavorum [= Leiden].

Herbst, J.F.W. 1782–1804. Versuch einer Naturgeschichte der Krabben und Krebse nebst einer systematischen Beschreibung ihrer verschieden Arten. Gottlieb, Auguts und Lange, Berlin & Stralsund.

Heller, C. 1862. Neue Crustaceen, gesammelt während der Weltumsiegung der k. k. Fregatte Novara. Zweiter vorläufiger Bericht. *Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien*, 12: 519–528.

Hess, W. 1865. Beiträge zur Kenntniss der Decapoden-Krebs ost-Australiens. *Archiv für Naturgeschichte*, 31: 127–173.

Hoffmann, T. 2013. Misled by the mitochondrial genome: A phylogenetic study in *Topaza* hummingbirds. M.S. Thesis, University of Gothenburg, Sweden.

Hoffmann, C.K. 1874. Crustacés et Echinodermes de Madagascar et de l'île de la Réunion. In: *Recherches sur la Faune de Madagascar et de ses dépendances d'après les découvertes de François P. L. Pollen et D. C. van Dam* (F.HL. Pollen & D.C. van Dam, eds.), *Part 5*. Brill, Leiden, The Netherlands.

Holthuis, L.B. 1967. On a new species of *Uca* from the West Indian region (Crustacea, Brachyura, Ocyypodidae). *Zoologische Mededelingen*, 42: 51–54.

Ives, J.E. 1891. Crustacea from the northern coast of Yucatan, the harbor of Vera Cruz, the west coast of Florida and the Bermuda Islands. *Proceedings of the Academy of Natural Sciences of Philadelphia*, 1880: 135–159.

Kossman, R. 1877. *Zoologische Ergebnisse einer Reise in die Küstengegenden des Roten Meeres III. Crustacea*. Wilhelm Engelmann, Leipzig.

Landstorfer, R.B. & Schubart, C.D. 2010. A phylogeny of Pacific fiddler crabs of the subgenus Minuca (Crustacea, Brachyura, Ocyypodidae: *Uca*) with the description of a new species from a tropical gulf in Pacific Costa Rica. *Journal of Zoological Systematics and Evolutionary Research*, 48: 214–218.

Latreille, P.A. 1803. *Histoire naturelle, générale et particulière des crustacés et des insectes: ouvrage faisant suite aux oeuvres de Leclerc de Buffon, et partie du cours complet d'histoire naturelle rédigé par C. S. Sonnini*. *Supplement, 7*.

Laine, C.S. 2016. *Crustaceology*. M.S. Thesis, University of Gothenburg, Sweden.

Le Conte, J. 1853. On a new species of *Gelasimus*. *Proceedings of the Academy of Natural Sciences of Philadelphia*, 5: 214–218.

Leach, W.E. 1814. *Crustacology*. In: *The Edinburgh Encyclopædia* (D. Brewster, ed.), *Vol. 7*, pp. 383–437. William Blackwood, Edinburgh.

Levinton, J.S., Sturmbauer, C. & Christy, J.H. 1996. Molecular data and biogeography: Resolution of a controversy over evolutionary history
of a pan-tropical group of invertebrates. *Journal of Experimental Marine Biology and Ecology*, **203**: 117–131.

Lockington, W.N. 1877. Remarks on the Crustacea of the west coast of North America, with a catalogue of the species in the museum of the California Academy of Sciences. *Proceedings of the California Academy of Sciences*, **1**: 145–156.

Maccagno, T. 1928. Crustacci Decapodi. Le specie del genere *Uca* Leach conservate nel Regio Museo Zoologico di Torino. *Bollettino dei Musei di Zoologia ed Anatomia Comparata della R. Università di Torino*, **41**: 1–52.

McNeill, F.A. 1920. Studies in Australian carcinology. No. 1. *Records of the Australian Museum*, **13**: 105–109.

Milne-Edwards, A. 1837. Recherches sur la faune carcinologique de la Nouvelle-Caledonie. *Nouvelles Archives de Muséum d’Histoire Naturelle*, **9**: 156–332.

Milne-Edwards, H. 1837. *Histoire naturelle des crustacés comprenant l’anatomie, la physiologie et la classification des ces animaux*, *Vol. 3*. Librairie Encyclopédique de Roret, Paris.

Milne-Edwards, H. 1852. Observations sur les affinités zoologiques et la classification naturelle des crustacés. *Annales des Sciences Naturelles, Zoologie*, *Série 3*, **18**: 109–166.

Milne-Edwards, H. & Lucas, H. 1843. Crustacés. In: *Voyage dans l’Amérique Meridionale* (Le Brésil, la République centrale de l’Uruguay, la République Argentine, la Patagonie, la République du Chili, la République de Bolivie, la République du Pérou). (A.D. d’Orbigny, ed.), pp. 1–36, *Vol. 6*, Part 1. Strasbourg.

Morgan, C.C., Creevey, C.J. & O’Connell, M.J. 2014. Mitochondrial data are not suitable for resolving placental mammal phylogeny. *Mammalian Genome*, **25**: 636–647.

Naderloo, R., Schubart, C.D. & Shih, H.-T. 2016. Mitochondrial data for the recognition of two fiddler crabs, *Uca spinicauda* Rathbun, 1900, and *U. bispinosa* Crane, 1975 (*Crustacea: Brachyura: Ocypodidae*). *Zootaxa*, **3716**: 494–500.

Rathbun, M.J. 1904. Descriptions of three new species of American crabs. *Proceedings of the Biological Society of Washington*, **17**: 161–162.

Rathbun, M.J. 1915. New genera and species of American Brachyuranous crabs. *Proceedings of the United States National Museum*, **47**: 117–129.

Rathbun, M.J. 1921. New species of crabs from Formosa. *Proceedings of the Biological Society of Washington*, **34**: 155–156.

Rathbun, M.J. 1924. Results of Dr. E. Mjöberg’s Swedish scientific expeditions to Australia 1910–1913. 37. Brachyura, Albanidae and Porcellanidae. *Arkiv för Zoologi*, **16**: 1–33.

Rathbun, M.J. 1926. The fossil stalk-eyed Crustacea of the Pacific slope of North America. *United States National Museum Bulletin*, **138**: 1–155.

Rathbun, M.J. 1933. Preliminary description of six new species of crabs from the Pacific coast of America. *Proceedings of the Biological Society of Washington*, **48**: 49–52.

Rosenberg, M.S. 2001. The systematics and taxonomy of fiddler crabs: A phylogeny of the genus *Uca*. *Journal of Crustacean Biology*, **21**: 839–869.

Rosenberg, M.S. 2013. The nomenclatural status of the two “spiny-wristed” fiddler crabs, *Uca spinicauda* Rathbun, 1900, and *U. bispinosa* Crane, 1975 (*Crustacea: Brachyura: Ocypodidae*). *ZOOTAXA*, *Vol. 3736*: 10–19.

Rosenberg, M.S. 2014. Contextual cross-referencing of species names for fiddler crabs (genus *Uca*): An experiment in cyber-taxonomy. *PLoS ONE*, **9**: e101704 [doi.org/10.1371/journal.pone.0101704].

Satoh, M. & Asaishi, S.P. 1986. Behavioral, morphological and ecological evidence for two new species of fiddler crabs (genus *Uca*) from the Gulf Coast of the United States. *Proceedings of the Biological Society of Washington*, **81**: 275–290.

Shih, H.-T. 2015. *Uca (Xeruca)*, a new subgenus for the Taiwanese fiddler crab *Uca formosensis* Rathbun, 1921 (*Crustacea: Decapoda*). *ZOOTAXA*, **3974**: 151–165.

Shih, H.-T., Chan, B.K.K. & Ng, P.K.L. 2018. *Tubuca alcocki*, a new pseudocryptic species of fiddler crab from the Indian Ocean, sister to the southeastern African *T. urothelius* (H. Milne Edwards, 1832) (*Crustacea, Decapoda, Brachyura, Ocypodidae*). *Zootaxa*, **4747**: 41–62.

Shih, H.-T., Kamrani, E., Davie, P.J.F. & Liu, M.-Y. 2009. Genetic evidence for the recognition of two fiddler crabs, *Uca irusana* and *U. albicans* (*Crustacea: Brachyura: Ocypodidae*), from the northwestern Indian Ocean, with notes on the *U. lacta* species-complex. *Hydrobiologia*, **635**: 373–382.

Shih, H.-T., Komai, T. & Liu, M.-Y. 2013a. A new species of fiddler crab from the Ogasawara (Bonin) Islands, Japan, separated from the widely-distributed sister species *Uca (Paralichthodes) crostape* (White, 1847) (*Crustacea: Decapoda: Brachyura: Ocypodidae*). *Zootaxa*, **3746**: 175–193.

Shih, H.-T., Lee, J.-H., Ho, P.-H., Liu, H.-C., Wang, C.-H., Suzuki, H. & Teng, S.-J. 2016a. Species diversity of fiddler crabs, genus *Uca Leach*, 1814 (*Crustacea: Ocypodidae*), from Taiwan and adjacent islands, with notes on the Japanese species. *Zootaxa*, **4083**: 57–82.

Shih, H.-T., Naruse, T. & Ng, P.K.L. 2010. *Uca panamensis* sp. nov., a new species of fiddler crab (*Crustacea: Brachyura: Ocypodidae*) from the Western Pacific. *Zootaxa*, **2337**: 47–62.

Shih, H.-T., Ng, P.K.L. & Christy, J.H. 2015. *Uca (Paretoc)*, a new subgenus for the rock fiddler crab *Uca panamensis* (Stimpson, 1859) from Central America, with comments on some species of the American broad-fronted subgenera. *Zootaxa*, **4034**: 471–494.

Shih, H.-T., Ng, P.K.L., Davie, P.J.F., Schubart, C.D., Türkay, M., Naderloo, R., Jones, D.S. & Liu, M.-Y. 2016b. Systematics of the family Ocypodidae Rafinesque, 1815 (*Crustacea: Brachyura*), based on phylogenetic relationships, with a reorganization of subfamily rankings and a review of the taxonomic status of *Uca Leach*, 1814, sensu lato and its subgenera. *Raffles Bulletin of Zoology*, **64**: 139–175.

Shih, H.-T., Ng, P.K.L. & Liu, M.-Y. 2013b. Systematics of the Indo-West Pacific broad-fronted fiddler crabs (*Crustacea: Ocypodidae*: genus *Uca*, *Raffles Bulletin of Zoology*, **61**: 641–649.

Shih, H.-T., Ng, P.K.L., Ravichandran, S. & Prema, M. 2019. Resurrection of *Gelasimus maculatus* Heller, 1862, a fiddler crab closely related to *Austraen bengali* (Crate, 1975) and *A. triangulans* (A. Milne-Edwards, 1837).
Shih, H.-T., Ng, P.K.L., Wong, K.J.H. & Chan, B.K.K. 2012. Gelasimus splendidus Stimpson, 1858 (Crustacea: Brachyura: Ocypodidae), a valid species of fiddler crab from the northern South China Sea and Taiwan Strait. Zoosystema, 34(3): 30–47.

Spivak, E.D. & Cuesta, J.A. 2009. The effect of salinity on larval development of Uca tangeri (Eydoux, 1835) (Brachyura: Ocypodidae) and new findings of the zoeal morphology. Scientia Marina, 73: 297–305.

Thurman, C.L. II. 1982. On the distinctness of the fiddler crabs Uca minax (LeConte) and Uca longimana Salmon & Atsaiides in their region of sympatry (Decapoda Brachyura, Ocypodidae). Crustacea, 43: 37–50.

Thurman, C.L. II, Hopkins, M.J., Brase, A.L. & Shih, H.-T. 2018. The unusual case of the widely distributed fiddler crab Minuca rapax (Smith, 1870) from the western Atlantic: An exemplary polytypic species. Invertebrate Systematics, 32: 1465–1490.

Tweedie, M.W.F. 1937. On the crabs of the family Ocypodidae in the collection of the Raffles Museum. Bulletin of the Raffles Museum, 13: 140–170.

Tweedie, M.W.F. 1950. Grapsoid crabs from Labuan and Sarawak. Sarawak Museum Journal, 5: 338–369.

von Hagen, H.-O. 1968. Studien an peruanischen Winkerkrabben (Uca). Zoologische Jahrbücher. Abteilung für Systematik, Ökologie und Geographie der Tiere, 95: 395–468.

von Hagen, H.-O. 1976. Jocelyn Crane, Fiddler Crabs of the World. Ocypodidae: Genus Uca. Crustacea, 31: 221–224.

von Hagen, H.-O. 1987. Morphologie und Winkbalz einer neuen Uca-Art (Crustacea, Brachyura) aus dem Staat Espirito Santo (Brasilien). Mitteilungen aus dem hamburgischen zoologischen Museum und Institut, 84: 81–94.