Prevalence of insomnia (symptoms) in T2D and association with metabolic parameters and glycemic control: meta-analysis

Anitra DM Koopman¹, Joline W Beulens¹,², Tine Dijkstra¹, Frans Pouwer³,⁴,⁵, Marijke A Bremmer⁶, Annemieke van Straten² and Femke Rutters¹

¹Amsterdam UMC, location VUmc, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
²Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
³University of Southern Denmark, Department of Psychology, Odense, Denmark
⁴Deakin University, School of Psychology, Geelong, Australia
⁵STENO Diabetes Center Odense, Odense, Denmark
⁶Amsterdam UMC, location VUmc, Department of Psychiatry, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
⁷Vrije Universiteit, Faculty of behavioural and movement sciences & Amsterdam Public Health Research Institute, the Netherlands

Address for correspondence and reprints request:
Anitra D.M. Koopman, Amsterdam UMC, location VUmc, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
De Boelelaan 1089a, 1081 HV Amsterdam, the Netherlands
+31 20 4442822
ad.koopman@vumc.nl

Disclosure: The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Abstract

Objective: We aimed to determine the prevalence of insomnia and insomnia symptoms and its association with metabolic parameters and glycemic control in people with T2D in a systematic review and meta-analysis. Datasources: A systematic literature search was conducted in Pubmed/Embase until March, 2018. Studyselection: Included studies described prevalence of insomnia or insomnia symptoms and/or its association with metabolic parameters or glycemic control in adults with T2D. Dataextraction: Data extraction was performed independently by two reviewers, on a standardized, pre-piloted form. An adaptation of Quality Assessment Tool for Quantitative Studies was used to assess the methodological quality of the included studies. Datasynthesis: When possible, results were meta-analyzed using random-effects analysis and rated using GRADE. Results: A total of 11,329 titles/abstracts were screened and 224 were read full text in duplicate, of which 78 studies were included. The pooled prevalence of insomnia (symptoms) in people with T2D was 39% (95%CI:34-44) with I^2 statistic of 100% ($P<0.00001$), with a very low GRADE of evidence. Sensitivity analyses identified no clear sources of heterogeneity. Meta-analyses showed that in people with T2D, insomnia (symptoms) were associated with higher HbA1c levels (mean difference (MD): 0.23% (0.1-0.4)) and higher fasting glucose levels (MD: 0.40 mmol/l (0.2-0.7)), with a low GRADE of evidence. The relative low methodological quality and high heterogeneity of the studies included in this meta-analysis however complicate the interpretation of our results. Conclusions: The prevalence of insomnia (symptoms) is 39% (95%CI:34-45) in the T2D population and may be associated with deleterious glycemic control.
Using a systematic review and meta-analysis, we showed that the prevalence of insomnia (symptoms) is 39% (95%CI:34-45) in the T2D population and may be associated with deleterious glycemic control.
Introduction

Insomnia is defined as chronic difficulty of falling asleep, staying asleep or waking up early, despite opportunity to sleep, for at least 3 times a week during 1 month, resulting in daytime impairment [1]. In the general population the prevalence of symptoms of insomnia ranges from 30-40% [1-3], while the prevalence of insomnia is about 6-20% [3-5]. Insomnia and insomnia symptoms are thought to affect a wide range of body functions, including metabolic (decreased glucose tolerance, insulin resistance) [6] and endocrine regulation (elevated cortisol levels) [7]. Cross-sectional studies have shown that in healthy people, insomnia (symptoms) are associated with an increased risk of obesity with odds ratios ranging between 1.07 (1.0-1.1) [8] and 1.66 (1.4-1.9) [9] as well as disturbances in glucose homeostasis, with insomnia being associated with HOMA-S 0.03% (0.0-0.1) [10]. In addition, in the general population insomnia (symptoms) are associated with an increased risk of T2D, with odds ranging between 1.52 (1.05-2.20) and 2.98 (1.36–6.53), as well as with an increased risk of cardiovascular disease with a Risk Ratio of 1.05 (1.01-1.08) for hypertension incidence [11-15].

While the association between insomnia (symptoms) and the increased risk of developing T2D is consistently shown [16], it is still unclear whether people with T2D also have an increased risk of having insomnia and insomnia symptoms. Despite plenty of studies examining this association, the prevalence rates of insomnia and insomnia symptoms in people with T2D are inconclusive, ranging from 6% [17] to 80% [18]. This range could be due to different study populations, measurement instruments and co-morbidities, however this was never studied. Also the non-consistent definition of insomnia, using insomnia, insomnia symptoms and low sleep quality interchangeably might explain the range. In this review, we will use therefore the terms insomnia and insomnia symptoms.
A recent meta-analysis [19] did show that low sleep quality, assessed with the Pittsburgh sleep quality index (PSQI) questionnaire, is associated with higher HbA$_{1c}$ levels in adults with T2D. However, there is a lack of meta-analytic evidence on the other parameters of glycemic control and metabolic parameters such as: fasting glucose levels, high-density lipoprotein (HDL) / low-density lipoprotein (LDL) / total cholesterol levels, triglyceride levels, BMI, waist circumference and blood pressure (systolic and diastolic). Also this meta-analysis did not include other measures of insomnia symptoms or insomnia, such as self-report and other questionnaires and did not study the prevalence of insomnia. Therefore, the aim of our current study is to determine the prevalence of insomnia and insomnia symptoms and its association with metabolic parameters and glycemic control in people with T2D in a systematic review and meta-analysis.

Methods

Data sources and searches

A systematic search of the literature was conducted in MEDLINE (Pubmed) and Embase until March, 2018 by the investigators AK and FR, assisted by a librarian. Reference lists of included studies were searched manually for additional studies. In short, the search strategy focused on a combination of these terms and their synonyms: (Type 2 diabetes OR NIIDM OR T2DM OR diabetes) AND (Insomnia OR sleep quality OR disturbed sleep). The full search strategy is provided in File 1. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed for experimental studies [20] and the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines for observational studies [21]. The protocol of this review was registered in the PROSPERO database under number CRD42018089917.
Selection of studies

Studies were included if: 1) the study population consisted of adults (≥18 years) with T2D; 2) article was available as full text, either via our library or upon request authors; 3) the article was written in English or Dutch; 4) prevalence of insomnia or insomnia symptoms was reported as a percentage or could be calculated from the results and/or 5) the association between insomnia (symptoms) and glycemic control, defined as HbA1c levels and fasting plasma glucose levels, or metabolic parameters were studied, defined as BMI, waist circumference, levels of triglycerides, LDL/ HDL/ (total) cholesterol levels and/or systolic/ diastolic blood pressure. Studies were excluded if they reported solely on patients with Obstructive Sleep Apnea (OSA) and/or sleep apnea. When results from a study were reported more than once, the most recent article was used.

All studies identified in the literature search were screened for eligibility on title and abstract by two reviewers (TD and FR or AK). The full text versions of potentially eligible studies were independently assessed for inclusion by two reviewers (TD and FR or AK). Discrepancies were resolved through discussion, consulting a third reviewer, FR or AK.

Data extraction

Data extraction was performed independently by two reviewers, TD and FR or AK. A standardized, pre-piloted form was used to extract data from the included studies. Data extraction included: setting, country, years when data was collected, number of participants (% men), age, diabetes duration, diabetes diagnosis (e.g. self-report or clinically diagnosed), diabetes treatment, insomnia or insomnia symptoms measure and metabolic and glycemic control parameters. If studies reported multiple outcomes, all were extracted and reported separately. Discrepancies identified during the duplicate data extraction were resolved through discussion, consulting a third reviewer, JB.
Methodological quality assessment

An adaptation of the Quality Assessment Tool for Quantitative Studies, as developed by the Effective Public Health Practice Project (EPHPP), was used to assess the methodological quality of the included studies [22]. This nineteen-item tool, adapted by Mackenbach et al. 2014, is suitable for assessing the methodological quality of studies of observational and experimental design [23]. It contains eight domains of methodological quality on which studies were assessed: 1) study design; 2) blinding; 3) representativeness with regard to selection bias; 4) representativeness with regard to withdrawals/dropouts; 5) confounders; 6) data-collection; 7) data-analysis; and 8) reporting. The quality assessment was based on the outcome of interest, independent of the primary aim of the particular study.

The methodological quality was assessed separately for insomnia and insomnia symptoms prevalence and the association with metabolic parameters or glycemic control resulting in two ratings for methodological quality when a study examined both outcomes. For the assessment of prevalence studies, we scored ‘no rate’ on the domains confounders and data-analysis, because these domains were not applicable. Consequently, the prevalence outcome could only have four to six component ratings, while studies containing metabolic or glycemic control parameters could have six to eight component ratings, resulting in one overall rating, ranging from low risk of bias (high methodological quality) to high risk of bias (low methodological quality). If four ratings were given, the overall rating was scored as follows: high methodological quality was attributed to those studies with no ‘weak’ rating and at least two ‘strong’ ratings; moderate methodological quality was attributed to those studies with one ‘weak’ rating or fewer than two ‘strong’ ratings; low methodological quality was attributed to those studies with two or more ‘weak’ ratings. If six ratings were given, the overall rating was the same, except that there should be at least three ‘strong’ ratings to be scored as a study with high methodological quality.
All included studies were independently assessed for methodological quality by two raters, AK and FR/JB. The ratings of each domain and the overall ratings were compared between the two raters to reach consensus.

The measurement of insomnia and insomnia symptoms
The primary aim was to determine the prevalence of insomnia and insomnia symptoms in adults with T2D. Insomnia or having insomnia symptoms is defined as having the following symptoms: chronic difficulty of falling asleep, staying asleep or waking up early, for at least 3 times a week during 1 month [1], although an unequivocal way to for measuring insomnia (symptoms) does not exist. The PSQI questionnaire was most frequently used, with the questionnaire aiming to assess overall sleep quality, with a score of >5 points on the PSQI indicating poorer sleep quality, often referred to as insomnia (symptoms). But as depicted in Table 1A and 1B also other methods are used, such as self-report on having insomnia, the Insomnia Severity Index (ISI) and the Medical Outcomes Study - Sleep Scale.

Quantitative data synthesis and analysis
Meta-analyses were performed, using Review Manager 5.3 [Nordic Cochrane Center]. Since the inclusion criteria allowed for a large range of studies (i.e. all countries and all types of adults with T2D), random-effects meta-analyses were performed [24]. Prevalence data were entered on a log scale to correct for studies with a low variance due to a high or low prevalence. The level of evidence was applied to the GRADE (Grading of Recommendations Assessment, Development and Evaluation) criteria and reported. As is customary with GRADE, randomized control trials start as high quality and observational studies as low quality. While no trials were included, all studies start off with a low GRADE quality.

Statistical heterogeneity was assessed with the I² statistic, with the I² reflecting the percentage of the variability in effect estimates that is due to heterogeneity rather than
sampling error (chance), with 0% reflecting no heterogeneity and 100% high heterogeneity [25]. A P-value <0.05 was considered statistically significant. Funnel plots were used to assess publication bias.

Prevalence of insomnia and insomnia symptoms

Sensitivity analyses were performed to gain insight into how certain subgroups influenced the prevalence of insomnia and insomnia symptoms and to identify sources of heterogeneity. The sensitivity analysis for methodological quality of the studies (low/moderate/high) was pre-specified. In addition, due to the high heterogeneity, sensitivity analyses were performed on age of participants (age ≥60y), presence of comorbidities (e.g. lower limb amputation, neuropathy), geographical location (Asia versus Europe/America), year of analysis (year ≥2010), sample size (N<100, N=100–199, N=200–299, N=300–999, N>1000) and insomnia or insomnia symptoms measurement method (PSQI or not). Several studies have used different cut-off points for the PSQI, however we could not assess the effect of these different cut-offs in a sensitivity analysis, as the studies in this meta-analysis using a higher cut-off are mostly Asian studies and in Asia the validated PSQI cut-off is >8 instead of >5. After these primary sensitivity analyses, variables that explained most of the heterogeneity were selected and stratified for some of the remaining variables that could still make a large enough subgroup, to assess if more heterogeneity could be explained.

Association between insomnia, insomnia symptoms and metabolic parameters and glycemic control

The quantitative association between insomnia, insomnia symptoms and metabolic parameters or glycemic control was examined in two ways. First, we included studies that examined the association by means of adjusted regression analyses, resulting in a beta-coefficient or risk
estimate with 95% confidence intervals (CI). Studies were pooled in case of three or more studies reported on the same metabolic or glycemic control parameter, with the same regression analyses (logistic or linear). Second, we included studies that compared insomnia (symptoms) versus no insomnia (symptoms) and estimated the mean difference or risk ratio and 95% CI. When median values instead of mean values were reported, the mean and standard deviation was estimated from the sample size, median and interquartile range according to the method of Wan et al. 2014 [26]. Studies were pooled in case of three or more studies reported on the same outcome.

Subgroup analyses were performed to examine possible sources of heterogeneity by excluding poor quality studies and outliers. In addition, for the analyses on the mean differences, a sensitivity analysis was performed on studies with a reported mean versus a calculated mean.

Results

Description of included studies

The systematic literature search identified 11,329 articles. After screening titles and abstracts, 224 potentially eligible articles were read full text. As three studies reported the prevalence of insomnia and insomnia symptoms in the same population [27-29], only the most recent [28] was included. In total, 78 studies met the inclusion criteria and were therefore included in this systematic review (see Figure 1). Of these 78 studies, 71 reported on the insomnia and insomnia symptoms prevalence in T2D and 35 on the associations with metabolic parameters or glycemic control. An overview of the 147 excluded studies and reason for exclusion is provided in File 2.

An overview of the characteristics of the included studies is shown in Table 1 and 2. Sample sizes ranged from 35 [30] to 18,888 [31] participants, with only six studies reporting
on >1000 participants. Both male and female participants were included except for two studies, which included only women [32] or men [33]. Most studies were conducted in Asia (35 studies). Thirty-two studies were conducted in outpatient and diabetes clinics and 11 studies were conducted in the general population.

As shown in Table 1 and 2, insomnia and insomnia (symptoms) were measured differently among the studies. Of the 78 studies, 50 used the PSQI questionnaire to determine insomnia symptoms. Among others, also self-reported diagnosis of insomnia by a physician, the Medical Outcomes Study-Sleep Scale (MOS-SS) and the Athens Insomnia Scale (AIS) were used and additionally only once a diagnostic interview was used to assess insomnia and insomnia symptoms.

Methodological quality rating

An overview of the methodological quality assessment of the studies is presented in Table 3. With regard to the prevalence outcome, the methodological quality of the studies was considered to be strong (low risk of bias) in 31 studies, moderate (moderate risk of bias) in 36 studies and weak (high risk of bias) in four studies. With regard to metabolic parameters or glycemic control, the quality assessment resulted in six strong methodological quality studies, nine moderate quality studies and 20 weak studies. Only two studies adjusted for age, sex and diabetes duration and were therefore rated as strong regarding the domain confounding in the methodological quality assessment. The other studies did not adjust for diabetes duration and were therefore rated as moderate, but these studies did adjust for other confounders such as BMI and insulin use.
Prevalence of insomnia and insomnia symptoms in T2D

A random-effects meta-analysis of 71 studies with 84 prevalence estimates, revealed an insomnia and insomnia symptoms prevalence of 39% with a 95% CI of 34% - 44%. Heterogeneity between the 71 studies was high with an I^2 statistic of 100% (p<0.00001%) (Table 4). Visual examination of the funnel plot showed there was no publication bias (Figure 2).

Sensitivity analyses showed that the prevalence of insomnia and insomnia symptoms was higher when age was ≥60 years (44%), when the study was conducted in 2010 or later (42%). When the PSQI questionnaire was used (46%), when the methodological quality of the studies was weak (44%) and when participants with comorbidities (lower limb amputation, neuropathy) were studied (60%) (Table 4). Stratifying for geographical location showed the prevalence was 49% versus 40% in Asia versus Europe/America. Stratifying for sample size showed that in studies with >1000 participants, the prevalence was the lowest (24%), however no clear pattern of larger studies reporting a lower prevalence of insomnia and insomnia symptoms was observed. Although in some subgroups (comorbidities and PSQI use) differences were observed, the I^2 statistic remained 100% in almost all subgroups. Due to limited reporting in the original papers, we could not investigate type of population (population-based or hospital), type of diabetes medication or glycemic control as possible sources of heterogeneity. Also due to the large unexplained heterogeneity, we did not test for statistical differences in prevalence between the subgroups.

Since the first set of sensitivity analyses showed that the presence of comorbidities was the largest source of heterogeneity, followed by using the PSQI or not, we performed an additional sensitivity analysis, including only the studies without comorbidities, that used the PSQI, were of strong methodological quality and had a sample size of more than 200 participants to examine the prevalence in the most reliable subset of studies (n=17). This
sensitivity analysis resulted in a prevalence of insomnia and insomnia symptoms of 39% (95%CI: 30–51). However, heterogeneity remained very high with an \(I^2 \) statistic of 100% (p<0.00001). The level of evidence for the prevalence of insomnia and insomnia symptoms by GRADE was very low quality due to the findings being downgraded due to heterogeneity.

Insomnia and insomnia symptoms in T2D and metabolic parameters and glycemic control

Insomnia and insomnia symptoms and glycemic control unadjusted for confounders

We investigated whether an elevated level of insomnia and insomnia symptoms were associated with glycemic control. For the meta-analysis of the HbA1c levels, the data are presented in two ways in Figure 3; as a dichotomized and as a continuous variable. Data from seven cross-sectional studies [34-40] showed that insomnia and insomnia symptoms were associated with an increased risk of an elevated HbA1c level (Figure 3A), defined as HbA1c levels \(>6.5\% \) (\(>48 \text{ mmol/mol} \)) or \(\geq 7\% \) (\(>53 \text{ mmol/mol} \)) (Risk ratio: 1.18; 95%CI: 1.0-1.4; \(I^2 = 73\% \) (p=0.001)). Similar results were observed when HbA1c levels from 14 studies were analyzed as a continuous variable [35, 37, 41-52]; compared to people with T2D without insomnia (symptoms), those with insomnia (symptoms) showed significantly higher HbA1c levels with a mean difference (MD) of: 0.23\% (95%CI: 0.1-0.4); \(I^2 = 76\% \), p<0.00001 (Figure 3B).

The pooled data of 10 studies [35, 41, 44-47, 49, 50, 52-54] on fasting glucose levels showed that fasting glucose levels were 0.40 mmol/l (95%CI: 0.2-0.7) higher in people with T2D and insomnia (symptoms), compared to people with T2D without insomnia (symptoms) (\(I^2 = 57\% \), p=0.01) (Figure 3C).
Insomnia, insomnia symptoms and BMI and waist circumference

The pooled data of 14 studies [35, 36, 41, 44-47, 49-52, 55-57] on BMI showed that people with T2D and insomnia (symptoms) had a significantly higher BMI, compared to those without insomnia (symptoms) (MD: 0.38 kg/m²; 95%CI: 0.1-0.7; I² =47%, p=0.03) (Figure 4A).

Studies on waist circumference could not be pooled in a meta-analysis as there were only two studies reporting on waist circumference [41, 57].

Insomnia, insomnia symptoms and lipid levels

The pooled data of eight studies [35, 41, 44, 46, 47, 49, 50, 52] on triglyceride levels showed that there were no differences in triglyceride levels between the groups (Figure 4B). Similarly, for levels of HDL [41, 44, 46, 47, 49, 50, 52] and LDL [41, 44, 46, 48-50, 52], the meta-analysis showed no differences for people with T2D with and without insomnia (symptoms) (Figure 4C and D).

The pooled data of five studies [41, 44, 47, 49, 56] on total cholesterol levels showed that people with T2D and insomnia (symptoms) had significantly higher total cholesterol levels, compared to people with T2D without insomnia (symptoms) (MD: 0.15 mmol/l; 95%CI: 0.03-0.3; I²=0%, p=0.43) (Figure 4E).

Insomnia, insomnia symptoms and blood pressure

The pooled data on blood pressure showed that the systolic [41, 44, 46-50, 52, 58] blood pressure was 2.69 mmHg higher (95%CI: 0.1-5.3) in people with T2D and insomnia (symptoms), compared to those without insomnia (symptoms) (Figure 4F). We observed a non-significant difference in diastolic blood pressure [41, 44, 46-50, 52] of 1.13 mmHg (95%CI: -0.1-2.3) (Figure 4G), higher in people with T2D and insomnia (symptoms),
compared to those without insomnia (symptoms). \(I^2\) statistic was 60% (\(p=0.01\)) and 25% (\(p=0.23\)) for respectively the systolic and diastolic blood pressure.

Insomnia, insomnia symptoms and glycemic control corrected for possible confounders

Of the 12 studies that performed regression analysis adjusted for confounders, eight studies could not be included in the meta-analysis, because less than three studies reported on the same parameter and/or with same type of regression analysis. Only for HbA1c levels the data of the adjusted association could be pooled. A random-effects meta-analysis of four studies [39, 40, 52, 59] showed that people with T2D and insomnia (symptoms), according to the PSQI, had a higher, albeit non-significant, odds (Odds Ratio (OR): 1.38, 95\% CI 0.9-2.0) for poor glycemic control, defined as HbA1c levels >7/8.5\% (>53/69 mmol/mol), compared to people with T2D and insomnia (symptoms). Heterogeneity between studies was high with \(I^2\) statistic of 89\% (\(p<0.00001\)) (Figure 3D). Excluding the study [59] that defined poor glycemic control as HbA1c >8.5\% (>69 mmol/mol) and included only people with T2D with poor glycemic control, did not affect the OR; 1.38 (95\% CI 0.9-2.1) with \(I^2\) statistic of 91\%.

Excluding the study [39] with a small sample size of only 46 people with T2D, decreased the OR to 1.29 (95\% CI: 0.9-1.9), with \(I^2=92\%\).

Sensitivity analyses

Table 5 shows that, when excluding studies with low methodological quality, the mean difference between people with diabetes and with or without insomnia (symptoms) remained significant and increased for HbA1c levels, fasting glucose levels and systolic blood pressure compared to those with T2D and no insomnia (symptoms). The differences in triglycerides, HDL levels and diastolic blood pressure were not significant and remained non-significant after removing the studies with low quality. The difference in BMI and total cholesterol attenuated to non-significant when excluding low methodological quality studies and for LDL.
levels the opposite association was observed. However, in general, excluding low quality studies resulted in a small number of studies left that could be pooled.

Sensitivity analyses performed on studies with a reported mean versus a calculated mean had small effects on the mean differences, for example the mean HbA1c level difference changed from 0.23% (0.1 – 0.4) to 0.12% (-0.1- 0.3). The overall level of evidence for the association of insomnia, insomnia symptoms, metabolic parameters and glycemic control by GRADE was low quality due to the studies being observational, with no reasons to upgrade.

Discussion
This systematic review with meta-analysis aimed to determine the prevalence of insomnia and insomnia symptoms and the association with metabolic parameters and glycemic control in people with T2D. First, we identified 78 studies and our meta-analysis revealed a prevalence of 39% (95%CI: 34-44) of insomnia and insomnia symptoms with a very high degree of heterogeneity, with an I² of 100%. Second, we showed that in unadjusted studies people with T2D and insomnia (symptoms) had a small, but significantly higher level of fasting glucose, HbA1c and total cholesterol and a higher BMI and systolic blood pressure, compared to people with T2D without insomnia (symptoms). Overall, these results show a high prevalence of insomnia and insomnia symptoms in the T2D population, which may be associated with deleterious glycemic control. Due to the cross-sectional nature of the papers included in the review (as is standard with GRADE) and the large heterogeneity for the prevalence estimates, the level of evidence by GRADE was downgraded to (very) low, so the findings should be interpreted as (very) uncertain and likely to change after future research.

The first point of discussion is the high degree of heterogeneity of the insomnia and insomnia symptoms prevalence estimate, which could not be accounted for by a range of sensitivity analyses. One of the main sources of the high heterogeneity seems to be the
presence of comorbidities, with people with comorbidities having a higher prevalence of insomnia (symptoms) as well as poorer metabolic parameters or poorer glycemic control (3).

Although we explored several potential sources of heterogeneity, not all possible sources of heterogeneity could be assessed in this meta-analysis, such as whether people were treated in primary, secondary or tertiary care, with the latter 2 groups representing those with many more comorbidities. Most of the studies included in the review did not provide information on the true source of people with T2D, which made it impossible to determine if they came from primary, secondary or tertiary care. Second, information regarding important possible confounding factors such as (diabetes) medication or other sleep problems were not reported on, and could be a source of heterogeneity. For example, obstructive sleep apnea, a highly prevalent comorbid condition in T2D, has been associated with increased HbA1c levels [60, 61] and is associated with insomnia and insomnia symptoms. Participants could be reporting insomnia (symptoms), which could be due to sleep apnea. Finally, information on certain mediating factors has not been reported in most studies, such as the comorbidities restless leg syndrome, depression, or hypoglycemia [51], which are prevalent comorbidities in people with T2D [62] and can affect sleep as well as glycemic control [63].

Second point of discussion is that the method of insomnia and insomnia symptoms measurement seems to play an important role in the high heterogeneity. Most methods define insomnia and insomnia symptoms in liberal terms, such as the PSQI [64, 65], which solely focus on the presence of nocturnal sleep disturbances e.g. sleep initiation or maintenance difficulties, whereas the more conservative definitions [4, 66] require additional functional impairment e.g. sleep dissatisfaction. In addition, as insomnia (symptoms) is a combination of symptoms, the heterogeneity might be due to differences in presence of certain symptoms, i.e. is a patient with high sleep latency but low daytime dysfunction the same as a patient with low sleep latency and high daytime dysfunction, while both are defined as having insomnia.
(symptoms). We chose not to define specific inclusion criteria for the insomnia and/or insomnia symptoms measure, resulting in included studies that used a wide range of measures to assess insomnia and insomnia symptoms. While in our meta-analysis most of the measures used liberal terms, this may suggest that our meta-analysis provided a pooled prevalence of 39% with a 95% CI of 34% - 44% for insomnia symptoms rather than insomnia. These estimates are slightly higher, compared to the prevalence estimates in the general population [3-5]. For future research insomnia and insomnia symptoms should be operationalized more clearly with less variation in measures of insomnia or a clear definition of insomnia symptoms and insomnia, for example by using 1 instrument to measure them, i.e. the Insomnia Severity Index [67].

Final point of discussion is, that the four studies that we could meta-analyze, that adjusted for confounders, showed no significant association between insomnia, insomnia symptoms and poor glycemic control, although a trend towards an increased risk was visible. However, in addition to real confounders, corrections also included mediators, such as neuropathy, depression and BMI. Data from strong methodological studies, correcting or stratifying for at least age, sex and diabetes duration are therefore necessary to draw firm conclusions regarding the association between insomnia, insomnia symptoms and metabolic parameters and glycemic control. Overall, this study adds to the previous meta-analysis of Lee et al. 2017[19], while we studied the prevalence of insomnia, insomnia symptoms as well as the association with metabolic parameters.

Possible mechanisms

The mechanisms underlying the association between insomnia, insomnia symptoms and glycemic control are complex and bidirectional. In other words, T2D can cause sleep disorders for example via nightly hypoglycemia, neuropathic pain and nocturia [68]. On the other hand, insomnia and insomnia symptoms can disturb glycemic control, via several
physiological pathways [69], including decreased brain glucose utilization, which leads to hyperglycemia. Second, via activation of the hypothalamic-pituitary-adrenal axis, which in turn promotes insulin resistance and hyperglycemia[69]. Third, via an alteration in appetite-regulating hormones, including ghrelin and leptin[69]. Fourth, via behavioral changes such as suboptimal self-care activities, with fatigue leading to impaired decision-making (e.g., unhealthy food choice and sedentary behaviors) [70] and less medication adherence [71], which in turn may lead to poorer glycemic control. Finally, concomitant sleep disorders to insomnia and insomnia symptoms, such as sleep fragmentation and intermittent hypoxia arising might trigger some of the changes in glycemic control. However, further research is required to explore whether improving insomnia and insomnia symptoms improves glycemic control as well as the underlying mechanisms.

Implications

Our results suggest that while insomnia and insomnia symptoms are common in T2D and associated with metabolic parameters and glycemic control, this may offer an opportunity for improvement of T2D treatment. Health care providers should be more aware of the magnitude and impact of insomnia and insomnia symptoms. Efforts towards educating people with T2D about the importance of sleep could be a first strategy to help patients to improve their glycemic control. Furthermore, an improvement of insomnia and insomnia symptoms by improvement of sleep hygiene, cognitive behavioral therapy or certain types of sleep medication will improve quality of life. In addition, improvement of insomnia symptoms could improve glycemic control, although not many studies have been conducted [72, 73]. To assess which treatment to improve insomnia symptoms is optimal and if glycemic control is improved, we need intervention studies in people with T2D.
Strengths and limitations

This is the first systematic review and meta-analysis to quantify and assess – when weighted for risk of bias – the prevalence of insomnia, insomnia symptoms and associated metabolic parameters and glycemic control (other than HbA1c levels) in adults with T2D. Strengths of this review include the methodological quality assessment of each individual study, the inclusion of 78 publications and inclusion of studies from all continents. However, some limitations must be taken into account. First, the grey literature was not captured, since unpublished reports and non-English or non-Dutch papers were not included. Second, most studies that investigated metabolic parameters and glycemic control were of low methodological quality, because they scored weak on the domains confounding and data-analysis. Third, there was little consensus regarding the choice of confounders and lack of adjustment may have overestimated the observed association between insomnia, insomnia symptoms and metabolic parameters and glycemic control. Fourth, there was a lack of a clear conceptualization of the term insomnia and insomnia symptoms and standardization of the measurement of these constructs, which results in a combined construct, possibly complicating the interpretation of our results. Finally, even after stratifying, the included prevalence studies were characterized by a high heterogeneity, with an I^2 of 100%.

In conclusion, the prevalence of symptoms of insomnia and insomnia is 39% (95%CI: 34-45) in the T2D population and may be associated with deleterious glycemic control. Future prospective studies should aim to explain the heterogeneity and account for confounding factors. Overall, these findings point towards insomnia and insomnia symptoms screening in care for adults with T2D, where treatment could help minimize its negative metabolic impact.
Author contributions

ADMK performed the literature search, study selection, data extraction, quality assessment and data synthesis, and drafted the manuscript, tables and figures. TD performed study selection, data extraction and data synthesis. JWB performed the quality assessment, provided support in design and execution of the review and meta-analyses and made major revisions to the manuscript. FP, MAB and AvS provided support in design and execution of the review and meta-analyses, and made major revisions to the manuscript. FR performed study selection and quality assessment, made major revisions to the manuscript, is the guarantor of this work and takes responsibility for the integrity of the work and analyses. This manuscript has not been submitted elsewhere and it is original.
References

1. Roth, T., *Insomnia: definition, prevalence, etiology, and consequences*. J Clin Sleep Med, 2007. 3(Suppl): p. S7-10.
2. Walsh, J.K., et al., *Nighttime insomnia symptoms and perceived health in the America Insomnia Survey (AIS)*. Sleep, 2011. 34(8): p. 997-1011.
3. Ohayon, M.M., *Epidemiology of insomnia: what we know and what we still need to learn*. Sleep Med Rev, 2002. 6(2): p. 97-111.
4. Buysse, D.J., *Insomnia*. JAMA, 2013. 309(7): p. 706-16.
5. Knutson, K.L., et al., *Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus*. Arch Intern Med, 2006. 166(16): p. 1768-74.
6. Meisinger, C., et al., *Sleep disturbances as a predictor of type 2 diabetes mellitus in men and women from the general population*. Diabetologia, 2005. 48(2): p. 235-41.
7. Khan, B., et al., *New approach for analyzing self-reporting of insomnia symptoms reveals a high rate of comorbid insomnia across a wide spectrum of chronic diseases*. Sleep Medicine, 2015. 16(11): p. 1332-1341.
8. Cappuccio, F.P., et al., *Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis*. Diabetes Care, 2010. 33(2): p. 414-20.
9. Moher, D., et al., *Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement*. Ann Intern Med, 2009. 151(4): p. 264-9, W64.
10. Stroup, D.F., et al., *Meta-analysis of observational studies in epidemiology: a proposal for reporting*. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA, 2000. 283(15): p. 2008-12.
22. Thomas, B.H., et al., A process for systematically reviewing the literature: providing the research evidence for public health nursing interventions. Worldviews Evid Based Nurs, 2004. 1(3): p. 176-84.
23. Mackenbach, J.D., et al., Obesogenic environments: a systematic review of the association between the physical environment and adult weight status, the SPOTLIGHT project. BMC Public Health, 2014. 14: p. 233.
24. Riley, R.D., J.P. Higgins, and J.J. Deeks, Interpretation of random effects meta-analyses. BMJ, 2011. 342: p. d549.
25. Cuijpers, P., Meta-analyses in mental health research. A practical guide. 2016.
26. Sun, N., et al., Prevalence and determinants of depressive and anxiety symptoms in adults with type 2 diabetes in China: a cross-sectional study. BMJ Open, 2016. 6(8): p. e012540.
27. Zhang, P., et al., Combined effects of sleep quality and depression on quality of life in patients with type 2 diabetes. BMC Fam Pract, 2016. 17: p. 40.
28. Zhao, J., et al., Biological interaction between sleep quality and depression in type 2 diabetes. Eur Rev Med Pharmacol Sci, 2016. 20(14): p. 3087-91.
29. Cuellar, N.G. and S.J. Ratcliffe, A comparison of glycemic control, sleep, fatigue, and depression in type 2 diabetes with and without restless legs syndrome. J Clin Sleep Med, 2008. 4(1): p. 50-6.
30. Grandner, M.A., et al., Obesity, diabetes, and exercise associated with sleep-related complaints in the American population. 2 Gesund Wiss, 2011. 19(5): p. 463-474.
31. Chang, C.J., et al., Correlates of Nocturia and Relationships of Nocturia With Sleep Quality and Glycemic Control in Women With Type 2 Diabetes. J Nurs Scholarsh, 2017. 49(4): p. 400-410.
32. Fukui, M., et al., Andropausal symptoms in men with Type 2 diabetes. Diabet Med, 2012. 29(8): p. 1036-42.
33. Cunha, M.C., M.L. Zanetti, and V.J. Hass, Sleep quality in type 2 diabetics. Rev Lat Am Enfermagem, 2008. 16(5): p. 850-5.
34. Keskin, A., et al., Effects of Sleep Disorders on Hemoglobin A1c Levels in Type 2 Diabetic Patients. Chin Med J (Engl), 2015. 128(24): p. 3292-7.
35. Lou, P., et al., Association of sleep quality and quality of life in type 2 diabetes mellitus: a cross-sectional study in China. Diabetes Res Clin Pract, 2015. 107(1): p. 69-76.
36. Nefs, G., et al., Subjective sleep impairment in adults with type 1 or type 2 diabetes: Results from Diabetes MILES–The Netherlands. Diabetes Res Clin Pract, 2015. 109(3): p. 466-75.
37. Shamshirgaran, S.M., et al., Quality of sleep and its determinants among people with type 2 diabetes mellitus in Northwest of Iran. World J Diabetes, 2017. 8(7): p. 358-364.
38. Tsai, Y.W., et al., Impact of subjective sleep quality on glycemic control in type 2 diabetes mellitus. Fam Pract, 2012. 29(1): p. 30-5.
39. Tang, Y., et al., Interaction of sleep quality and sleep duration on glycemic control in patients with type 2 diabetes mellitus. Chin Med J (Engl), 2014. 127(20): p. 3543-7.
40. Aribas, A., et al., The relationship between serum asymmetric dimethylarginine levels and subjective sleep quality in normotensive patients with type 2 diabetes mellitus. Korean J Intern Med, 2015. 30(3): p. 316-24.
41. Bani-Issa, W., A.M. Al-Shujairi, and L. Patrick, Association Between Quality of Sleep and Health-Related Quality of Life in Persons with Diabetes Mellitus Type 2. J Clin Nurs, 2017.
42. Gozashti, M.H.M., et al., Sleep Pattern, Duration and Quality in Relation with Glycemic Control in People with Type 2 Diabetes Mellitus. Iran J Med Sci, 2016. 41(6): p. 531-538.
43. Huang, Y., et al., Poor Sleep Quality Is Associated with Dawn Phenomenon and Impaired Circadian Clock Gene Expression in Subjects with Type 2 Diabetes Mellitus. Int J Endocrinol, 2017. 2017: p. 4578973.
45. Jain, S.K., et al., The effect of sleep apnea and insomnia on blood levels of leptin, insulin resistance, IP-10, and hydrogen sulfide in type 2 diabetic patients. Metab Syndr Relat Disord, 2012. 10(5): p. 331-6.

46. Meng, L.L., et al., Impact of inflammatory markers on the relationship between sleep quality and incident cardiovascular events in type 2 diabetes. J Diabetes Complications, 2015. 29(7): p. 882-6.

47. Osonoi, Y., et al., Poor sleep quality is associated with increased arterial stiffness in Japanese patients with type 2 diabetes mellitus. BMC Endocr Disord, 2015. 15: p. 29.

48. Telford, O., et al., The relationship between Pittsburgh Sleep Quality Index subscales and diabetes control. Chronic Illn, 2018: p. 1742395318759587.

49. Wan Mahmood, W.A., et al., Association between Sleep Disruption and Levels of Lipids in Caucasians with Type 2 Diabetes. Int J Endocrinol, 2013. 2013: p. 341506.

50. Wei, H., et al., Serum brain-derived neurotrophic factor levels and sleep disorders in Chinese healthy and newly diagnosed type 2 diabetic subjects. J Diabetes, 2017. 9(2): p. 180-189.

51. Hayashino, Y., et al., High frequency of non-nocturnal hypoglycemia was associated with poor sleep quality measure by Pittsburg Sleep Quality Index in patients with diabetes receiving insulin therapy: Diabetes Distress and Care Registry at Tenri (DDCRT 4). Exp Clin Endocrinol Diabetes, 2013. 121(10): p. 628-34.

52. Zhu, B.Q., et al., Sleep quality and its impact on glycaemic control in patients with type 2 diabetes mellitus. International Journal of Nursing Sciences, 2014. 1(3): p. 260-265.

53. Lecube, A., et al., Daytime sleepiness and quality of sleep in type 2 diabetes mellitus: The role of related questionnaires to evaluate its negative effect on sleep breathing. Diabetes, 2015. 64 SUPPL. 1: p. A129.

54. Lopes, L.A., et al., Restless legs syndrome and quality of sleep in type 2 diabetes. Diabetes Care, 2005. 28(11): p. 2633-6.

55. Cheng, H.P., et al., Gender differences in the relationship between walking activity and sleep disturbance among community-dwelling older adult with diabetes in Taiwan. J Women Aging, 2017: p. 1-9.

56. Han, S.Y., et al., Insomnia in diabetic hemodialysis patients. Prevalence and risk factors by a multicenter study. Nephron, 2002. 92(1): p. 127-32.

57. Sokwalla, S.M., et al., Quality of sleep and risk for obstructive sleep apnoea in ambulant individuals with type 2 diabetes mellitus at a tertiary referral hospital in Kenya: a cross-sectional, comparative study. BMC Endocr Disord, 2017. 17(1): p. 7.

58. Colbay, G., et al., Type 2 diabetes affects sleep quality by disrupting the respiratory function. J Diabetes, 2015. 7(5): p. 664-71.

59. Torrella, M., et al., Intermittent hypoxia is an independent marker of poorer glycaemic control in patients with uncontrolled type 2 diabetes. Diabetes Metab, 2015. 41(4): p. 312-8.

60. Aronsohn, R.S., et al., Impact of untreated obstructive sleep apnoea on glucose control in type 2 diabetes. Am J Respir Crit Care Med, 2010. 181(5): p. 507-13.

61. Kent, B.D., et al., Diabetes mellitus prevalence and control in sleep-disordered breathing: the European Sleep Apnea Cohort (ESADA) study. Chest, 2014. 146(4): p. 982-990.

62. Talbot, F. and A. Nouwen, A review of the relationship between depression and diabetes in adults: is there a link? Diabetes Care, 2000. 23(10): p. 1556-62.

63. Pouwer, F. and F.J. Snoek, Association between symptoms of depression and glycaemic control may be unstable across gender. Diabet Med, 2001. 18(7): p. 595-8.

64. Klink, M.E., et al., Risk factors associated with complaints of insomnia in a general adult population. Influence of previous complaints of insomnia. Arch Intern Med, 1992. 152(8): p. 1634-7.

65. Quera-Salva, M.A., et al., Insomnia and use of hypnotics: study of a French population. Sleep, 1991. 14(5): p. 386-91.

66. Ohayon, M.M., M. Caulet, and C. Guilleminault, How a general population perceives its sleep and how this relates to the complaint of insomnia. Sleep, 1997. 20(9): p. 715-23.
67. Morin, C.M., et al., The Insomnia Severity Index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep, 2011. 34(5): p. 601-8.
68. Lamond, N., M. Tiggemann, and D. Dawson, Factors predicting sleep disruption in Type II diabetes. Sleep, 2000. 23(3): p. 415-6.
69. Neutrakul, S. and E. Van Cauter, Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann N Y Acad Sci, 2014. 1311: p. 151-73.
70. Larcher, S., et al., Sleep habits and diabetes. Diabetes Metab, 2015. 41(4): p. 263-71.
71. Chasens, E.R., et al., Effect of poor sleep quality and excessive daytime sleepiness on factors associated with diabetes self-management. Diabetes Educ, 2013. 39(1): p. 74-82.
72. Tannas, Type 2 diabetes and insomnia: impact on metabolic control. Wayne State University Dissertations., 2012.
73. Toi, N., et al., Improvement of glycemic control by treatment for insomnia with suvorexant in type 2 diabetes mellitus. J Clin Transl Endocrinol, 2019. 15: p. 37-44.
74. Abdelgadir, M., et al., Health related quality of life and sense of coherence in Sudanese diabetic subjects with lower limb amputation. Tohoku J Exp Med, 2009. 217(1): p. 45-50.
75. Al-Tannir, M., et al., Characterizing sleeping habits and disturbances among Saudi adults. Saudi Med J, 2016. 37(12): p. 1372-1380.
76. Bedi, U., et al., Daytime sleepiness and quality of sleep in Punjabi diabetic population. Journal of Clinical and Diagnostic Research, 2011. 5(5): p. 1051-1055.
77. Bener, A., et al., Sleep quality and excessive daytime sleepiness in a arab diabetic population. Biomedical Research, 2010. 21(4): p. 333-340.
78. Bhaskar, S., D. Hemavathy, and S. Prasad, Prevalence of chronic insomnia in adult patients and its correlation with medical comorbidities. J Family Med Prim Care, 2016. 5(4): p. 780-784.
79. Budhiraja, R., et al., Prevalence and polysomnographic correlates of insomnia comorbid with medical disorders. Sleep, 2011. 34(7): p. 859-67.
80. Celik, G., et al., Findings of multidimensional instruments for determining psychopathology in diabetic and non-diabetic hemodialysis patients. Int J Clin Exp Med, 2012. 5(4): p. 346-54.
81. Cho, E.H., et al., Sleep disturbances and glycoregulation in patients with type 2 diabetes. J Korean Med Sci, 2014. 29(2): p. 243-7.
82. El-Aghoury, A.A., et al., Characterization of abnormal sleep patterns in patients with obesity, type 2 diabetes, or combined. Alexandria Journal of Medicine (2017). Date of Publication: 2017.
83. Ford, E.S., et al., Trends in insomnia and excessive daytime sleepiness among U.S. adults from 2002 to 2012. Sleep Med, 2015. 16(3): p. 372-8.
84. Fritschi, C., et al., Early declines in physical function among aging adults with type 2 diabetes. J Diabetes Complications, 2017. 31(2): p. 347-352.
85. Hood, M.M., S. Neutrakul, and S.J. Crowley, Night eating in patients with type 2 diabetes. Associations with glycemic control, eating patterns, sleep, and mood. Appetite, 2014. 79: p. 91-6.
86. Hung, H.C., et al., The relationship between impaired fasting glucose and self-reported sleep quality in a Chinese population. Clin Endocrinol (Oxf), 2013. 78(4): p. 518-24.
87. Hyypia, M.T. and E. Kronholm, Quality of sleep and chronic illnesses. J Clin Epidemiol, 1989. 42(7): p. 633-8.
88. Johnson, S.T., et al., Objectively measured sleep and health-related quality of life in older adults with type 2 diabetes: a cross-sectional study from the Alberta’s Caring for Diabetes Study. Sleep Health, 2017. 3(2): p. 102-106.
89. Kara, B. and O. Kilic, Predictors of poor sleep quality and excessive daytime sleepiness in Turkish adults with type 2 diabetes. J Clin Nurs, 2015. 24(9-10): p. 1436-9.
90. Kasenova, A.S., et al., The influence of sleep disorders on cognitive functions of a brain at patients with Type 2 diabetes. Drug Invention Today, 2017. 9(3): p. 26-29.
91. Keskin, A., et al., Effects of sleep disorders and 25-OH vitamin D levels on HbA1c levels in geriatric type 2 diabetic patients. Biomedical Research. (2016) 27(2): p. 537-542.
92. Khosravan, S., A. Alami, and S. Golchin Rahni, Effects of continuous care model based non-pharmacological intervention on sleep quality in patients with type 2 diabetes mellitus: a randomized controlled clinical trial. Int J Community Based Nurs Midwifery, 2015. 3(2): p. 96-104.
93. Knutson, K.L., et al., Cross-sectional associations between measures of sleep and markers of glucose metabolism among subjects with and without diabetes: the Coronary Artery Risk Development in Young Adults (CARDIA) Sleep Study. Diabetes Care, 2011. 34(5): p. 1171-6.
94. Koyanagi, A., et al., Chronic conditions and sleep problems among adults aged 50 years or over in nine countries: a multi-country study. PLoS One, 2014. 9(12): p. e114742.
95. Lou, P., et al., Relation of sleep quality and sleep duration to type 2 diabetes: a population-based cross-sectional survey. BMJ Open, 2012. 2(4).
96. Luyster, F.S. and J. Dunbar-Jacob, Sleep quality and quality of life in adults with type 2 diabetes. Diabetes Educ, 2011. 37(3): p. 347-55.
97. Manoppitipong, A., et al., Night-shift work is associated with poorer glycaemic control in patients with type 2 diabetes. J Sleep Res, 2017. 26(6): p. 764-772.
98. Medeiros, C., et al., Excessive daytime sleepiness in type 2 diabetes. Arq Bras Endocrinol Metabol, 2013. 57(6): p. 425-30.
99. Narisawa, H., et al., Prevalence, symptomatic features, and factors associated with sleep disturbance/insomnia in Japanese patients with type-2 diabetes. Neuropsychiatr Dis Treat, 2017. 13: p. 1873-1880.
100. Rajendran, A., et al., Prevalence and correlates of disordered sleep in southeast asian indians with type 2 diabetes. Diabetes Metab J, 2012. 36(1): p. 70-6.
101. Ramos, A.R., et al., Associations between sleep disturbances and diabetes mellitus among blacks with metabolic syndrome: Results from the Metabolic Syndrome Outcome Study (MetSO). Ann Med, 2015. 47(3): p. 233-7.
102. Ramtahal, R., et al., Prevalence of self-reported sleep duration and sleep habits in type 2 diabetes patients in South Trinidad. J Epidemiol Glob Health, 2015. 5(4 Suppl 1): p. S35-43.
103. Sakamoto, R., et al., Association of usual sleep quality and glycemic control in type 2 diabetes in Japanese: A cross sectional study. Sleep and Food Registry in Kanagawa (SOREKA). PLoS ONE, 2018. 13:1 Article Number: e0191771.
104. Seligowski, A.V., et al., Sleep quality as a potential mediator between psychological distress and diabetes quality of life in veterans with type 2 diabetes. J Clin Psychol, 2013. 69(10): p. 1121-31.
105. Shim, U., et al., Sleep disorder and cardiovascular risk factors among patients with type 2 diabetes mellitus. The Korean journal of internal medicine, 2011. 26(3): p. 277.
106. Skomro, R.P., et al., Sleep complaints and restless legs syndrome in adult type 2 diabetics. Sleep Med, 2001. 2(5): p. 417-22.
107. Song, Y., et al., Disturbed subjective sleep in Chinese females with type 2 diabetes on insulin therapy. PLoS One, 2013. 8(1): p. e54951.
108. Sridhar, G.R. and K. Madhu, Prevalence of sleep disturbances in diabetes mellitus. Diabetes Res Clin Pract, 1994. 23(3): p. 183-6.
109. Sudore, R.L., et al., Symptom burden of adults with type 2 diabetes across the disease course: diabetes & aging study. J Gen Intern Med, 2012. 27(12): p. 1674-81.
110. Taheri Tanjani, P., et al., The prevalence of diabetes mellitus (DM) type II among Iranian elderly population and its association with other age-related diseases, 2012. Arch Gerontol Geriatr, 2015. 60(3): p. 373-9.
111. Thongsai, S., S. Watanabenjasopa, and M. Youjaiyen, Depression in patients with type II diabetes: case study at diabetic outpatient clinic, in Samut Prakan. Glob J Health Sci, 2013. 6(1): p. 127-34.
112. Trento, M., et al., *Sleep abnormalities in type 2 diabetes may be associated with glycemic control*. Acta Diabetol, 2008. 45(4): p. 225-9.
113. Tsujimura, T., et al., *Correlations of sleep disturbance with the immune system in type 2 diabetes mellitus*. Diabetes Res Clin Pract, 2009. 85(3): p. 286-92.
114. Vernon, M.K., et al., *Reliability, validity, and responsiveness of the daily sleep interference scale among diabetic peripheral neuropathy and postherpetic neuralgia patients*. J Pain Symptom Manage, 2008. 36(1): p. 54-68.
115. Yagi, A., et al., *The role of sleep disturbance and depression in patients with type 2 diabetes*. Sleep and Biological Rhythms, 2011. 9(4): p. 320.
116. Zelman, D.C., N.A. Brandenburg, and M. Gore, *Sleep impairment in patients with painful diabetic peripheral neuropathy*. Clin J Pain, 2006. 22(8): p. 681-5.
117. Zhu, B., L. Quinn, and C. Fritschi, *Relationship and variation of diabetes related symptoms, sleep disturbance and sleep-related impairment in adults with type 2 diabetes*. J Adv Nurs, 2018. 74(3): p. 689-697.
Table legends

Table 1. Characteristics of included studies in the systematic review (n=78), studies A t/m K.

Table 2. Characteristics of included studies in the systematic review (n=78), studies L t/m Z.

NR = not reported; PSQI = Pittsburgh Sleep Quality Index; DM = Diabetes Mellitus; OAD = Oral Antidiabetic Drugs; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders-IV; GLP = Glucagon-like peptide; AIS = Athens Insomnia Scale; NHANES = National Health and Nutrition Examination Survey; PHQ9 = Patient Health Questionnaire; CES-D = Center for Epidemiologic Studies Depression scale; MOS-SS = Medical Outcomes Study - Sleep Scale; UAE = United Arab Emirates; GDS = Geriatric Depression Scale; NA = not applicable.

Table 3. Methodological quality rating per domain per study.

Table 4. Prevalence, 95% confidence intervals (CI) and I² statistic overall and for several sensitivity analyses.

PSQI=Pittsburgh Sleep Quality Index

Table 5. Sensitivity analyses of the mean difference analyses in metabolic and glycemic parameters between type 2 diabetes patients with and without insomnia (symptoms).

MD=mean difference; CI=confidence interval. *For poor glycemic control it is not the mean difference but the Risk ratio. Bold=P<0.05
Figure legends

Figure 1. Flowchart of the search and selection process.

Figure 2. Funnel plot of the studies with prevalence estimates.

Figure 3. Forest plots of meta-analyses of mean differences and regression analysis of metabolic and glycemic parameters between people with T2D with and without insomnia symptoms. **A:** Poor glycemic control. **B:** HbA1c levels. **C:** Fasting plasma glucose levels. **D:** BMI. **E:** Odds Ratio for poor glycemic control. IV= inverse variance; Random= random effects model; CI= confidence interval.

A: Poor glycemic control: HbA1c levels >6.5 / 7.0% (>48 / 53 mmol/mol)

D: Odds Ratio for poor glycemic control: HbA1c levels >7 / 8.5% (>53 / 69 mmol/mol)

Figure 4. Forest plots of meta-analyses of mean differences and regression analysis of metabolic and glycemic parameters between people with T2D with and without insomnia symptoms. **A:** BMI. **B:** Triglyceride levels. **C:** HDL levels. **D:** LDL levels. **E:** Total cholesterol levels. **F:** Systolic blood pressure. **G:** Diastolic blood pressure. IV= inverse variance; Random= random effects model; CI= confidence interval.
Author (year), reference	Setting - Country (period of analysis)	N (%men) - age±SD/IQR	Diabetes duration - Diabetes diagnosis - Diabetes treatment	Insomnia or insomnia symptoms measure - Distribution/cut-off	Metabolic parameters and glycemic control							
Abdelgadir (2009) [74]	Outpatient clinic - Sudan (NR)	60 (67%) - 57y	- 16±NR - Clinically diagnosed - NR	- MOS-SS - Insomnia yes/no	HbA1 FPG BMI Waist HDL LDL Chol SBP DBP							
Al Tannir (2016) [75]	General population - Saudi Arabia (2014-2015)	161 DM (42% in general population)	- NR - Self-report - NR	- Unknown questionnaire - Sleep disturbance yes or maybe/no	x							
Aribas (2015) [41]	Outpatient clinic - Turkey (NR)	78 (39%) - 50±9y	- 6[2-12]y - Clinically diagnosed - NR	- PSQI - PSQI >5 = insomnia symptoms	x x x x x x x x							
Bani-Issa (2017) [42]	Community health care setting - UAE (NR)	268 (38%) - 42±13y	- 75% = 0-10 y - Clinically diagnosed - NR	- PSQI - PSQI ≥5 = insomnia symptoms	x							
Bedi (2011) [76]	Outpatient clinic - India (NR)	201 (50%) - 40-60y	- NR - Clinically diagnosed - 100% oral medication	- PSQI - PSQI >5 = insomnia symptoms	x							
Bener (2010) [77]	Health care center /primary care - Qatar (2009)	847 (47%) - 59% = 40-59y	- NR - Clinically diagnosed - 100% oral medication	- PSQI - PSQI >5 = insomnia symptoms	x							
Bhaskar (2016) [78]	Outpatient clinic - India (2015)	68 (NR) - 18-60y	- NR - NR - NR	- AIS - score >6 = insomnia	x							
Bilge (2016) [18]	Outpatient clinic - Turkey (2015)	40 (30%) - 48±10y	- NR - NR - NR	- PSQI - PSQI >5 = insomnia symptoms	x							
Budhiraja (2011) [79]	General population - USA (<2010)	207 (NR) - General population: 42±13y	- NR - Self-report - NR	- DSM-IV insomnia criteria - yes/no	x							
Celik (2012) [80]	Tertiary care - Turkey (NR)	46 (52%) - 59±12y	- NR - Clinically diagnosed - NR	- PSQI - PSQI >5 = insomnia symptoms	x							
Study	Setting	Country/Year	Sample Size	Age	Sex	Follow-up	BMI	Type of Sleep Disturbance	Insomnia Variable 1	Self-report	Insomnia Variable 2	PSQI
------------------------	------------------	--------------------	-------------	-----	-----	------------	-----	--------------------------	----------------------	-------------	---------------------	-----------------------------
Chang (2017) [32]	Secondary care	Taiwan (2013-2014)	275 (0%)	58±8y	-	≥3 months	-	Clinically diagnosed	PSQI >6 = insomnia symptoms	x	x	
Cheng (2017) [55]	Secondary care	Taiwan (2014-2016)	201 (52%)	70±6.9y	-	-	-	Self-report + insulin	PSQI >6 = insomnia symptoms	x		
Cho (2014) [81]	Secondary care	South-Korea (2011)	614 (62%)	60±11y	-	Clinically diagnosed	-	Self-report	PSQI >6 = insomnia symptoms	x	x	
Colbay (2015) [58]	Secondary care	Turkey (2011)	53 (42%)	51±8y	-	-	-	Clinically diagnosed	PSQI >5 = insomnia symptoms	x		
Cuellar (2008) [30]	Secondary care	USA (2004-2005)	35 (44%)	61±11y	-	-	-	Clinically diagnosed	PSQI >6 = insomnia symptoms	x		
Cunha (2008) [34]	Secondary care	Brazil (2005)	50 (24%)	-	Median: 62 (range 44–79)y	-	Clinically diagnosed	PSQI >5 = insomnia symptoms	x			
El-Aghoury (2017) [82]	NR	Egypt (NR)	46 (NR)	48±7y	-	-	-	Clinically diagnosed	NHANES sleep questionnaire	x		

Insomnia variable 1:
- Self-report
- Insomnia = difficulty falling asleep, maintaining sleep, early morning waking and non-restorative sleep ≥3 times/week

Insomnia variable 2:
- PSQI
- PSQI ≥5 = insomnia symptoms
| Study | Setting | Country | Year(s) | Population Size | Age Range | Methodology | | |
|---|---|---|---|---|---|---|---|---|
| Ford (2015) [83] | General population | USA | 2002, 2007, 2012 | 2179 (43%) | 45±7y | Self-report, “During the past 12 months, have you regularly had insomnia or trouble sleeping?” |
| Fritschi 2017 [84] | Veteran Hospital + flyers | USA | 2012-2013 | 80 (53%) | 64±10y | Actigraph: sleep efficiency, wake after sleep onset - not applicable |
| Fukui (2012) [33] | Outpatient clinic | Japan | NR | 296 (100%) | 63±11y | PSQI >5 = insomnia symptoms |
| Gozashti (2016) [43] | Outpatient clinic | Iran | 2014 | 118 (76%) | NR | PSQI >5 = insomnia symptoms |
| Grandner (2011) [31] | General population | USA | 2006 | 18888 DM (41%) | ±53y | Self-report, Sleep complaints: reporting difficulty falling asleep, staying asleep or sleeping too much ≥6 days over 2 weeks |
| Han (2002) [56] | Hospital | Korea | NR | 82 (61%) | 50±9y | Self-report, Reporting difficulty falling asleep, awakening during the night, or/and early morning awakening for ≥2 months = insomnia |
| Hayashino (2013) [51] | Outpatient clinic | Japan | 2009-2010 | 1513 (51%) | 63±13y | PSQI >5 = insomnia symptoms |
| Hood (2014) [85] | Endocrinology clinic | USA | NR | 194 (30%) | 58±13y | PSQI >5 = insomnia symptoms |
| Authors (Year) | Setting | Diagnosis Criteria | Mean Age ± SD | History of Insomnia | Insomnia Variable 1: | Comment |
|---------------|---------|--------------------|---------------|---------------------|---------------------|---------|
| Huang (2017) | Endocrinology department in hospital - China (2014-2015) | - Clinically diagnosed - Diet or OAD | 66±10y | - Clinical diagnosis | - PSQI >7 = insomnia symptoms | x x x x x x x |
| Hung (2013) | Prevention Health Center - Taiwan (2002-2006) | - Clinically diagnosed - NA: newly diagnosed | 56±9y | - Clinical diagnosis | - PSQI >5 = insomnia symptoms | x |
| Hyyppa (1989) | Diabetics born and living in a particular district - Finland (NR) | - Clinically diagnosed - NR | 45-65y | - Clinical diagnosis | - Questionnaire on sleep habits 1. Sleep latency >50 min 2. Habitual insomnia 3. Difficulty maintaining sleep | x |
| Jain (2012) | Diabetic clinic - USA (NR) | - Clinically diagnosed - 0% insulin | 6±50y | - Clinical diagnosis | - History of insomnia - yes/no | x x x |
| Johnson (2017)| Diabetic clinic - USA (NR) | - Clinically diagnosed - NR | 66±10y | - Clinical diagnosis | - Self-report - ‘Ever been told by a doctor or health professional that you have a sleep disorder?’ | x |
| Kara (2015) | Outpatient clinic - Turkey (2013-2014) | - Clinically diagnosed - NR | 55±17y | - Clinical diagnosis | - PSQI >5 = insomnia symptoms | x |
| Kasenova (2017)| NR - Kazakhstan (NR) | - Clinically diagnosed - NR | 59±6y | - Clinical diagnosis | Insomnia variable 1: - PSQI - PSQI >5 = insomnia symptoms | x |
| Study (Year) | Study Type / Location | Participants | Follow-up | Insomnia Variable 1 | Insomnia Variable 2 |
|--------------|-----------------------|--------------|-----------|---------------------|---------------------|
| Katic (2015) [17] | Websurvey - USA (2013) | 405 DM (49%) - 56±10y | 11±9y - Self-report - NR | Self-report - At risk for insomnia: waking up unrefreshed, difficulty falling asleep, waking in the middle of the night or waking too early at least a few nights/week and affecting daily activities | |
| Keskin (2015) [35] | Family medicine clinics - Turkey (2014) | 575 (33%) - 57[50–64]y | 7[3–12]y - Clinically diagnosed - 66% OAD - 30% insulin | PSQI - PSQI ≥5 = insomnia symptoms | |
| Keskin (2016) [91] | Outpatient clinic - Turkey (2014) | 208 (29%) - Adult group: 53±9y; Geriatric group: 71±5y | NR - Clinically diagnosed - NR | PSQI - PSQI ≥5 = insomnia symptoms | |
| Khosravan (2015) [92] | Diabetes Clinic - Iran (2012) | 1600 (NR) - 35–70y | NR - Clinically diagnosed - NR | PSQI - PSQI >5 = insomnia symptoms | |
| Knutson (2011) [93] | General population - USA (2003–2006) | 40 DM (30%) - 46±4y | NR - Clinically diagnosed - NR | PSQI + actigraph - Insomnia: not falling asleep <30 min >3 times/week or waking up in the middle of the night >3times/week + sleep efficiency <80% | |
| Knutson (2006) [6] | Tertiary care - USA (NR) | 161 (26%) - 57±13y | 11±9y - Clinically diagnosed - 48% insulin or in combination with OAD | PSQI - PSQI >5 = insomnia symptoms | |
| Study | Setting | Country | Participants | Age | Sex | Diagnosis | Outcome measure | Comments |
|-------|---------|---------|--------------|-----|-----|-----------|----------------|----------|
| Koyanagi (2014) | General population | Finland, Poland, Spain (2011-2012), China, Ghana, India, Mexico, Russia, South Africa (2007-2010) | 3285 DM (NR) | Median: 60-65y | NR | Self-report | - Sleep problems: severe or extreme problems with falling asleep, waking up frequently during the night or waking up too early in the morning the last 30 days | x |
| Lecube (2016) | Outpatient clinic | Spain (2013-2014) | 135 (44%) | >5y | Clinically diagnosed | PSQI >5 = insomnia symptoms | x |
| Lopes (2005) | Outpatient clinic | Brazil (NR) | 100 (27%) | 10±8y | Clinically diagnosed | PSQI ≥6 = insomnia symptoms | x |
| Lou (2012) | General population | China (2008) | 954 DM (43%) | 49±13y | NR | Clinically diagnosed | Self-report | x |
| Lou (2015) | Health centers | China (NR) | 114 (43%) | 64±10y | NR | Clinically diagnosed | Self-report | x |
| Luyster (2011) | NR | USA (NR) | 300 (43%) | 64±10y | NR | Clinically diagnosed | Insomnia: 35% | X |
| Manodpitipong (2017) | Hospital | Thailand (2014) | 189 (40%) | Unemployed: 65±8 Day work: 53±9 | Unemployed: 14±10 Day work: 9±8 | Clinically diagnosed | PSQI ≥ 5 = insomnia symptoms | X |
| Mahmood (2013) | Diabetes clinic | Ireland (NR) | 114 (64%) | Healthy: 64±11 Insomnia: 66±10 | NR | Clinically diagnosed | PSQI ≥ 6 = insomnia symptoms | X |

Table 2. Characteristics of included studies in the systematic review (n=78), studies L t/m Z.
Study	Type of care	Country (Years)	Sample Size	Mean Age	Follow-up	Diagnosis Method	PSQI Category	Symptom Criteria	Results
Medeiros (2013) [98]	Outpatient clinic	Brazil (NR)	110 (35%)	58±11y	NR	Clinically diagnosed	PSQI >6	insomnia symptoms	x
Meng (2015) [46]	Hospital	China (2014-2015)	332 (57%)	59±9y	7±7y	Clinically diagnosed	PSQI ≥7	insomnia symptoms	x x x x x
Narisawa (2017) [99]	Outpatient clinic	Japan (2014)	622 (76%)	57±10y	10% OAD	27% insulin	PSQI >5.5	insomnia symptoms	x
Nefs (2015) [37]	Websurvey	Netherlands (2011)	361 (54%)	62±9	11±8y	Self-report 44% OAD 49% insulin	PSQI >5	insomnia symptoms	x
Osonoi (2015) [47]	Outpatient clinic	Japan (2013-2014)	724 (63%)	58±9y	10±7y	Clinically diagnosed 86% OAD/insulin/both	PSQI ≥9	insomnia symptoms	x x x x x
Rajendran (2012) [100]	Tertiary care	India (2010-2011)	120 (54%)	54±9y	7±6y	Clinically diagnosed 100% OAD/insulin/both	PSQI ≥5	insomnia symptoms	x
Ramos (2015) [101]	Registry black	USA (NR)	612 (NR)	62±14y	NR	Clinically diagnosed	Unspecified	insomnia symptoms	yes/no
Ramtahal (2015) [102]	Outpatient clinics	Trinidad and Tobago (2013)	291 (33%)	59±11y	10 [6–19]y	Clinically diagnosed 30% OAD 17% insulin 47% both	NHANES sleep questionaire	Insomnia = patients answered 'often' or 'almost always' to sleep related questions	x
Study	Setting	Location/Year	Sample Size	Mean Age (SD)	Sex Distribution	Sleep History Criteria	Insomnia Symptoms		
-------------------------------	--------------------------	------------------------	-------------	---------------	------------------	---	------------------		
Sakamoto (2018) [103]	Hospital	Japan (2014-2016)	3294	65[55-72]y	61%	- 11[5-17]y Clinically diagnosed 60% OAD 29% insulin/GLP - PSQI >5 = insomnia symptoms	x		
Seligowski (2013) [104]	Primary care	USA (NR)	86	62±8y	97%	- NR Clinically diagnosed 100% insulin or OAD - PSQI >5 = insomnia symptoms	x		
Shamshirgaran (2017) [38]	Diabetes clinic	Iran (2013-2014)	256	54±9y	29%	- NR Clinically diagnosed 58% OAD 29% OAD + insulin - PSQI >5 = insomnia symptoms	x		
Shim (2011) [105]	Outpatient clinic	Korea (2008)	784	54±12y	50%	- 9±7y Clinically diagnosed 0% insulin - PSQI >5 = insomnia symptoms	x		
Skomro (2001) [106]	Outpatient clinic	Canada (NR)	58	57±15y	50%	- 10y Clinically diagnosed - NR - Interview Difficulty with sleep onset or maintenance ≥3 times/week	x		
Sokwalla (2017) [57]	Outpatient clinic	Kenya (2012)	228	57±12y	42%	- 10±8y Clinically diagnosed 36% OAD 13% insulin 50% insulin + OAD - PSQI >5 = insomnia symptoms	x		
Song (2013) [107]	Outpatient clinic	China (2012)	140	57±14y	59%	- 20% = >10y Clinically diagnosed 100% insulin - PSQI >5 = insomnia symptoms	x		
Sridhar (1994) [108]	Diabetes centre	India (NR)	184	46±NR	82%	- Normal sleep: 5±6y Abnormal sleep: 4±5y Clinically diagnosed - NR - Self-report - **Variable 1**: difficulty falling asleep ≥3 times/week for ≥2 weeks - **Variable 2**: difficulty in maintaining sleep: interrupted sleep ≥2/night and problems going back to sleep	x		
Study (Year)	Setting	Country	Sample Size	Age	Follow-up	Diagnosis	Sleep Assessment	Insomnia Criteria	Notes
-------------	---------	---------	-------------	-----	-----------	------------	------------------	------------------	-------
Sudore (2012) [109]	Diabetes registry	USA (2005–2006)	- 13171 (52%)	- 10±8y	- Clinically diagnosed	- PHQ9	Sleep disturbance= almost every day difficulty initiating or maintaining sleep or excessive sleep	x	
Tang (2014) [40]	Hospital	China (2013-2014)	- 551 (55%)	- 9±8y	- Clinically diagnosed	- PSQI	PSQI >5 = insomnia symptoms	x	
Tanjani (2015) [110]	General population	Iran (2012)	- 297 DM (41%)	- NR	- Self-report	- GDS	Insomnia: yes/no	x	
Telford (2018) [48]	Primary care clinic	USA (NR)	- 281 (52%)	- NR	- Clinically diagnosed	- PSQI	PSQI >5 = insomnia symptoms	x	
Thongsai (2013) [111]	Outpatient clinic	Thailand (2013)	- 209 (40%)	- 62±9y	- Clinically diagnosed	- CES-D questionnaire	Difficulty sleeping (never, sometimes, quite often, always)	x	
Torella (2015) [59]	Diabetes clinic	Spain (2011-2013)	- 145 (51%)	- 14±10y	- Clinically diagnosed	- PSQI	PSQI >5 = insomnia symptoms	x	
Trento (2008) [112]	NR	Italy (NR)	- 47 (68%)	- 61±5y	- Clinically diagnosed	- Actigraphy: sleep efficiency + sleep latency	NA	x	
Tsai (2012) [39]	Outpatient clinic	Taiwan (2009)	- 46 (61%)	- >1y	- Clinically diagnosed	- PSQI	PSQI >8 = insomnia symptoms	x	
Tsujimura (2009) [113]	NR	Japan (NR)	- 19 (58%)	- 7 (1-20)y	- Clinically diagnosed	- Actigraphy: sleep efficiency + wake after sleep onset	NA	x	
Vernon (2008) [114]	Clinical centers	North America, Australia, Germany, Hungary, Poland,	- 388 (±58)	- ±11y	- Clinically diagnosed	- MOS-SS questionnaire	MOS score >52.5 = sleep disturbance	x	
Study	Setting	Country/Region	Sample Size	Age	Duration	Diagnosed Year	Insulin Use	PSQI/Clinical Diagnosed	Sleep Disturbance
-----------------------	------------------------------	-------------------------	-------------	-----	----------	----------------	-------------	------------------------	-------------------
Wei (2017) [50]	Outpatient clinic	South Africa, United Kingdom	206 (50%)	60±63y	2015	Newly diagnosed	WHO 1999	0% OAD	PSQI >5 = insomnia
Yagi (2011) [115]	Outpatient clinic	Japan (baseline 1996-1998)	270 (55%)	67±10y	1996-1998	Clinically diagnosed	41% insulin	PSQI >5.5 = insomnia symptoms	
Zelman (2006) [116]	Tertiary care	USA (2003)	255 (45%)	61±13y	2003	Clinically diagnosed	NR	MOS-SS	No, some or sleep problems
Zhang (2016) [28]	T2D registry	China (2012)	944 (39%)	64±10y	2012	Clinically diagnosed	12% insulin	PSQI ≥7 = insomnia symptoms	
Zhu (2014) [52]	Hospital	China (2013-2014)	206 (66%)	57±11y	2013-2014	Clinically diagnosed	60% insulin	PSQI ≥8 = insomnia symptoms	
Zhu (2018) [117]	Convenience sample	USA (2013-2014)	90 (48%)	57±8y	2013-2014	Self-report	NR	PROMIS	Sleep disturbance = perceived difficulties in getting or staying asleep

PSQI: Pittsburgh Sleep Quality Index, OAD: Oral Antidiabetic Drugs, NR: Not reported, T2D: Type 2 Diabetes, MOS-SS: MOS Sleep Scale, PROMIS: PatientReported Outcomes Measurement Information System.
Author, year (ref)	Prevalence outcome (P)	Metabolic/glycemic (M)	SD	BL	RSB	RWD	CF	DC	DA	RP	OVERALL
Abdelgadir 2009 [74]	P	M	NR	W	NR	NR	S	NR	M		moderate
Al Tannir 2016 [75]	P	M	NR	M	NR	W	NR	S			moderate
Aribas 2015 [41]	P	M	NR	W	NR	S	NR	S			moderate
Aribas 2015	M	M	NR	W	NR	W	M	S		weak	
Bani-Issa 2017 [42]	P	M	NR	S	NR	S	NR	S			strong
Bani-Issa 2017	M	M	NR	S	NR	W	W	M		weak	
Bedi 2011 [76]	P	M	NR	W	NR	S	NR	S			moderate
Bener 2010 [77]	P	M	NR	M	NR	S	NR	S			strong
Bhaskar 2016 [78]	P	M	NR	S	NR	M	S			strong	
Bilge 2016 [18]	P	M	NR	W	NR	S	NR	S			moderate
Budhiraja 2011 [79]	P	M	NR	S	NR	S	NR	S			strong
Celik 2012 [80]	P	M	NR	W	NR	S	NR	S			moderate
Chang 2017 [32]	P	M	NR	W	NR	S	NR	S			moderate
Cheng 2017 [55]	P	M	NR	W	NR	W	NR	S		weak	
Cheng 2017	M	M	NR	W	W	M	S			weak	
Cho 2014 [81]	P	M	NR	M	NR	S	NR	S			strong
Colbay 2015 [58]	P	M	NR	M	NR	M	NR	S		moderate	
Colbay 2015	M	M	NR	M	NR	W	S	M		moderate	
Cuellar 2008 [30]	P	M	NR	W	NR	S	NR	S			moderate
Cunha 2008 [34]	P	M	NR	W	NR	S	NR	S			moderate
Cunha 2008	M	M	NR	W	NR	W	W	W		weak	
El Aghoury 2017 [82]	P	M	NR	W	NR	S	NR	S			moderate
Ford 2015 [83]	P	M	NR	S	NR	W	NR	S			moderate
Fritschi 2017 [84]	M	M	NR	M	NR	W	M	M		weak	
Fukui [33]	P	M	NR	W	NR	S	NR	M			moderate
Gozashti 2016 [43]	P	M	NR	W	NR	S	NR	S			moderate
Gozashti 2016	M	M	NR	W	NR	W	S	S		weak	
Study	Direction	M	NR	S	NR	W	NR	S	Effect Size		
-------------------------------	-----------	---	----	---	----	----	----	---	-------------		
Grandner 2011 [31]	P	M	NR	S	NR	W	NR	S	moderate		
Han 2002 [56]	P	M	NR	W	NR	W	NR	S	weak		
Han 2002	M	M	NR	W	NR	W	M	M	weak		
Hayashino 2013 [51]	P	M	NR	M	NR	S	NR	S	strong		
Hayashino 2013	M	M	NR	M	NR	W	W	M	weak		
Hood 2014 [85]	P	M	NR	M	NR	S	NR	S	strong		
Huang 2017 [44]	P	M	NR	W	NR	S	NR	S	moderate		
Huang 2017	M	M	NR	W	NR	W	M	S	weak		
Hayashino 1989 [87]	P	M	NR	M	NR	S	NR	S	strong		
Jain 2012 [45]	P	M	NR	M	NR	W	NR	M	moderate		
Jain 2012	M	M	NR	M	NR	W	W	M	weak		
Johnson 2017	P	M	NR	S	NR	W	NR	M	moderate		
Kara 2015 [89]	P	M	NR	M	NR	S	NR	S	strong		
Kasenova 2017 [90]	P	M	NR	W	NR	M	NR	S	moderate		
Katic 2015 [17]	P	M	NR	M	NR	M	NR	S	moderate		
Keskin 2016 [91]	P	M	NR	S	NR	S	NR	S	strong		
Keskin 2016	M	M	NR	S	NR	M	M	S	strong		
Keskin 2015 [35]	P	M	NR	S	NR	S	NR	S	strong		
Keskin 2015	M	M	NR	S	NR	W	S	M	moderate		
Khosravan 2015 [92]	P	M	NR	M	NR	S	NR	S	moderate		
Knutson 2006 [6]	P	M	NR	S	NR	S	NR	S	strong		
Knutson 2006	M	M	NR	S	NR	M	S	S	strong		
Knutson 2011 [93]	P	M	NR	M	NR	S	NR	S	strong		
Knutson 2011	M	M	NR	M	NR	M	S	S	strong		
Koyagani 2014 [94]	P	M	NR	S	NR	W	NR	S	moderate		
Lecube 2016 [53]	P	M	NR	W	NR	S	NR	S	moderate		
Lecube 2016	M	M	NR	W	NR	W	W	W	weak		
Lopes 2005 [54]	P	M	NR	M	NR	S	NR	S	strong		
Lopes 2005	M	M	NR	M	NR	W	W	W	weak		
Lou 2012 [95]	P	M	NR	M	NR	M	NR	S	moderate		
Study Reference	Type	M	NR	S	NR	S	NR	S	Strength		
-----------------	------	---	----	---	----	---	----	---	----------		
Lou 2015 [36]	P	M	NR	S	NR	S	NR	S	strong		
Lou 2015	M	M	NR	S	NR	W	S	M	moderate		
Luyster 2011 [96]	P	M	NR	W	NR	S	NR	S	moderate		
Mahmood 2013 [49]	P	M	NR	S	NR	S	NR	S	strong		
Mahmood 2013	M	M	NR	S	NR	M	W	S	moderate		
Manodpitipong 2017 [97]	M	M	NR	M	NR	S	S	S	strong		
Medeiros 2013 [98]	P	M	NR	S	NR	S	NR	S	strong		
Meng 2015 [46]	P	M	NR	W	NR	S	NR	S	moderate		
Meng 2015	M	M	NR	W	NR	W	M	M	weak		
Narisawa 2017 [99]	P	M	NR	S	NR	S	NR	S	strong		
Nefs 2015 [37]	P	M	NR	M	NR	S	NR	S	strong		
Nefs 2015	M	M	NR	M	NR	W	W	M	weak		
Osonoi 2015 [47]	P	M	NR	M	NR	S	NR	S	strong		
Osonoi 2015	M	M	NR	M	NR	M	M	S	weak		
Rajendran 2012 [100]	P	M	NR	W	NR	S	NR	S	moderate		
Ramos 2015 [101]	P	M	NR	W	NR	S	NR	S	moderate		
Ramtahal 2015 [102]	P	M	NR	S	NR	S	NR	S	strong		
Sakamoto 2018 [103]	P	M	NR	S	NR	S	NR	S	strong		
Seligowski 2013 [104]	M	M	NR	M	NR	W	W	M	weak		
Shamshirgaran 2017 [38]	P	M	NR	W	NR	S	NR	S	moderate		
Shamshirgaran 2017	M	M	NR	W	NR	W	W	M	weak		
Shim 2011 [105]	P	M	NR	M	NR	S	NR	S	strong		
Skomro 2001 [106]	P	M	NR	W	NR	S	NR	M	moderate		
Sokwalla 2017 [57]	P	M	NR	M	NR	S	NR	S	strong		
Sokwalla 2017	M	M	NR	M	NR	W	S	M	moderate		
Song 2013 [107]	P	M	NR	W	NR	S	NR	S	moderate		
Sridhar 1994 [108]	P	M	NR	W	NR	S	NR	M	moderate		
Sudore 2012 [109]	P	M	NR	S	NR	M	NR	S	strong		
Tang 2014 [40]	P	M	NR	M	NR	S	NR	S	strong		
Tang 2014	M	M	NR	M	NR	S	M	S	strong		
Tanjani 2015 [110]	P	M	NR	W	NR	W	NR	M	weak		
Study	Type	M	NR	W	NR	S	NR	S	Mod		
-----------------------	------	---	----	---	----	---	----	---	------		
Telford 2018 [48]	P	M	NR	W	NR	S	NR	S	moderate		
Telford 2018	M	M	NR	W	NR	M	M	S	S	moderate	
Thongsai 2013 [111]	P	M	NR	W	NR	W	NR	S	weak		
Torrella 2015 [59]	P	M	NR	W	NR	S	NR	S	moderate		
Torrella 2015	M	M	NR	W	NR	M	M	S	S	moderate	
Trento 2015 [112]	M	M	NR	W	NR	W	W	M	S	weak	
Tsai 2012 [39]	P	M	NR	M	NR	S	NR	S	strong		
Tsai 2012	M	M	NR	M	NR	M	M	S	S	moderate	
Tsujimura 2009 [113]	M	M	NR	W	NR	W	M	M	weak		
Vernon 2008 [114]	P	M	NR	W	NR	S	NR	S	moderate		
Wei 2017	M	M	NR	W	NR	W	S	M	S	weak	
Yagi 2011 [115]	P	M	NR	M	NR	S	NR	S	strong		
Zelman 2006 [116]	P	M	NR	W	NR	S	NR	M	moderate		
Zhang 2016 [28]	P	M	NR	M	NR	S	NR	S	strong		
Zhu 2014 [52]	P	M	NR	M	NR	S	NR	S	strong		
Zhu 2014	M	M	NR	M	NR	S	S	S	strong		
Zhu 2018 [117]	M	M	NR	W	NR	W	W	M	M	weak	
Table 4

	Number of prevalence estimates	Prevalence (%)	95% CI	I² (p-value)
Overall	84	39	34 - 44	100% (p<0.00001)
Sensitivity analyses				
Age <60 years	56	37	31 – 44	100% (p<0.00001)
Age ≥60 years	28	44	36 – 55	
Year of analysis <2010	31	35	31 – 40	100% (p<0.00001)
Year of analysis ≥2010	53	42	32 – 54	
PSQI	48	46	35 – 62	100% (p<0.00001)
Other than PSQI	36	31	27 – 36	
Strong quality	34	39	33 – 47	100% (p<0.00001)
Moderate quality	46	39	32 – 48	100% (p<0.00001)
Weak quality	4	44	29 – 68	99% (p<0.00001)
With comorbidities	9	60	46 – 79	99% (p<0.00001)
No comorbidities	74	37	33 – 43	100% (p<0.00001)
N < 100	22	40	25 – 64	100% (p<0.00001)
N = 100 – 199	21	55	46 – 67	99% (p<0.00001)
N = 200 – 299	14	46	38 – 55	99% (p<0.00001)
N = 300 – 999	18	32	22 – 47	100% (p<0.00001)
N > 1000	9	24	17 – 34	100% (p<0.00001)
Studies with no comorbidities, with PSQI, of strong quality and with sample size >200	17	39	30 - 51	100% (p<0.00001)
Table 5

Metabolic parameter	Type of analysis	Number of studies (left)	MD*	95% CI	I² (p-value)
HbA1c levels (%)	Overall	14	0.23	0.1 – 0.4	76% (p<0.00001)
	Excluding studies with calculated mean	12	0.12	-0.1 – 0.3	68% (p=0.0006)
	Excluding studies with weak quality	5	0.49	0.2 – 0.8	77% (p=0.002)
Poor glycemic control (risk ratio)	Overall	7	1.18	1.0 – 1.4	73% (p=0.001)
	Excluding studies with weak quality	4	1.22	1.1 – 1.3	30% (p=0.23)
	Excluding outlier	6	1.22	1.1 – 1.3	0% (p=0.44)
Fasting glucose levels (mmol/l)	Overall	11	0.40	0.2 – 0.7	57% (p=0.01)
	Excluding studies with calculated mean	8	0.33	0 – 0.7	50% (p=0.05)
	Excluding studies with weak quality	4	0.64	0.3 – 1.0	50% (p=0.11)
BMI (kg/m²)	Overall	14	0.38	0.1 – 0.7	47% (p=0.03)
	Excluding studies with calculated mean	12	0.34	0.1 – 0.6	5% (p=0.40)
	Excluding studies with weak quality	4	0.63	-0.01 – 1.3	67% (p=0.01)
Triglycerides (mmol/l)	Overall	8	0.16	-0.1 – 0.5	91% (p<0.00001)
	Excluding studies with calculated mean	4	0.02	-0.4 – 0.5	68% (p=0.02)
	Excluding studies with weak quality	4	0.33	-0.04 – 0.7	91% (p<0.00001)
	Excluding outlier	7	0.26	-0.02 – 0.5	90% (p<0.00001)
HDL levels (mmol/l)	Overall	7	0.02	-0.01 – 0.1	0% (p=0.43)
	Excluding studies with calculated mean	6	0.02	-0.01 – 0.1	10% (p=0.35)
	Excluding studies with weak quality	3	0.05	0 – 0.1	0% (p=0.96)
LDL levels (mmol/l)	Overall	7	0.05	-0.1 – 0.2	48% (p=0.08)
	Excluding studies with calculated mean	6	0.09	-0.03 – 0.2	28% (p=0.23)
	Excluding studies with weak quality	3	0.18	0.04 – 0.3	0% (p=0.64)
Total cholesterol levels (mmol/l)	Overall	5	0.15	0.03 – 0.3	0% (p=0.43)
	Excluding studies with weak quality	2	0.21	-0.01 – 0.4	42% (p=0.19)
Systolic blood pressure (mmHg)	Overall	9	2.69	0.1 – 5.3	60% (p=0.01)
	Excluding studies with calculated mean	8	3.14	0.3 – 6.0	62% (p=0.01)
	Excluding studies with weak quality	5	4.42	0.1 – 8.7	72% (p=0.006)
	Overall	8	1.13	-0.1 – 2.3	25% (p=0.23)
Diastolic blood pressure (mmHg)	Excluding studies with calculated mean	7	1.00	-0.5 – 2.5	34% (p=0.27)
---------------------------------	---------------------------------------	---	------	----------	--------------
Excluding studies with weak quality	4	1.28	-1.1 – 3.6	54% (p=0.09)	
Figure 1

LITERATURE SEARCH N=16311
05-03-2018
Pubmed (N=5241)
Embase (N=11070)

Exclusion duplicates
N=4902

Screening title/abstract
N=11329

Exclusion based on
title/abstract
N=11105

Full text read
N=224

Exclusion after full text reading
N=147

Inclusion bibliography check
N=1

Final inclusion
N=78

Studies with metabolic outcomes
N=35

Studies with prevalence estimates
N=71 with 84 data estimates

Mean difference meta-analysis
N=25

Regression meta-analysis
N=4
Figure 2

Funnel plot (18-12-2018)
Figure 3

A:

Study or Subgroup	Risk Ratio	Risk Ratio
	IV, Random, 95% CI	IV, Random, 95% CI
Curns 2005	0.64 [0.24, 1.21]	1.18 (1.02, 1.36)
Keskin 2015	1.16 (1.02, 1.37)	1.09 (0.93, 1.15)
Liu 2015	1.33 (1.04, 1.71)	1.20 (0.98, 1.45)
Neelin 2015	1.27 (1.05, 1.54)	1.87 (1.41, 2.41)
Shamshiripan 2017	1.20 (0.98, 1.45)	1.27 (1.05, 1.54)
Tang 2014	1.27 (1.05, 1.54)	1.87 (1.41, 2.41)
Tsai 2012	1.87 (1.41, 2.41)	1.27 (1.05, 1.54)
Total (95% CI)	**1.18 [1.02, 1.36]**	

Total events

Heterogeneity: Tau² = 0.02; Chisq = 22.48, df = 6 (P = 0.001), I² = 73%.
Test for overall effect: Z = 2.19 (P = 0.03)

Favours [poor sleep] Favours [good sleep]

B:

Study or Subgroup	Mean Difference	Mean Difference
	IV, Random, 95% CI	IV, Random, 95% CI
Arbab 2015	-0.40 [-0.55, 0.25]	-0.40 [-0.55, 0.25]
Besharat 2017	0.04 [0.33, 0.41]	0.04 [0.33, 0.41]
Goebel 2016	0.20 [0.29, 0.09]	0.20 [0.29, 0.09]
Hayashino 2013	0.00 [0.13, 0.13]	0.00 [0.13, 0.13]
Huang 2017	0.30 [0.06, 0.54]	0.30 [0.06, 0.54]
Jain 2012	-0.40 [-0.66, 0.06]	-0.40 [-0.66, 0.06]
Kesten 2015	0.56 [0.33, 0.79]	0.56 [0.33, 0.79]
Meng 2015	-0.15 [-0.52, 0.23]	-0.15 [-0.52, 0.23]
Nefed 2015	0.20 [0.07, 0.43]	0.20 [0.07, 0.43]
Osmon 2015	0.20 [0.00, 0.40]	0.20 [0.00, 0.40]
Tisba 2010	0.10 [0.32, 0.52]	0.10 [0.32, 0.52]
Watan 2011	0.60 [0.17, 1.03]	0.60 [0.17, 1.03]
Wei 2017	0.54 [0.26, 0.81]	0.54 [0.26, 0.81]
Zhu 2014	1.23 [0.60, 1.76]	1.23 [0.60, 1.76]
Total (95% CI)	**0.23 [0.06, 0.40]**	

Heterogeneity: Tau² = 0.07; Chisq = 54.26, df = 13 (P < 0.00001), I² = 76%.
Test for overall effect: Z = 2.64 (P = 0.008)

Favours [poor] Favours [good]

C:

Study or Subgroup	Mean Difference	Mean Difference
	IV, Random, 95% CI	IV, Random, 95% CI
Arbab 2015	0.44 [-1.22, 2.09]	-0.44 [-1.22, 2.09]
Huang 2017	0.70 [0.15, 1.24]	0.70 [0.15, 1.24]
Jain 2012	0.15 [-0.66, 0.96]	0.15 [-0.66, 0.96]
Keskin 2015	0.80 [0.47, 1.33]	0.80 [0.47, 1.33]
Laccab 2010	0.89 [0.14, 1.53]	0.89 [0.14, 1.53]
Lopes 2005	-0.04 [-1.00, 0.70]	-0.04 [-1.00, 0.70]
Meng 2015	-0.13 [-0.52, 0.26]	-0.13 [-0.52, 0.26]
Osmon 2015	0.22 [0.00, 0.44]	0.22 [0.00, 0.44]
Watan Mahmood 2013	0.80 [0.14, 1.34]	0.80 [0.14, 1.34]
Wei 2017	0.20 [-0.01, 0.41]	0.20 [-0.01, 0.41]
Zhu 2014	0.20 [0.32, 1.30]	0.20 [0.32, 1.30]
Total (95% CI)	**0.40 [0.15, 0.65]**	

Heterogeneity: Tau² = 0.06; Chisq = 23.05, df = 10 (P = 0.01), I² = 57%.
Test for overall effect: Z = 3.10 (P = 0.002)

Favours [poor] Favours [good]
Study or Subgroup	log(Odds Ratio)	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Tang 2014	0.0469	0.0204	42.2%	1.05 [1.01, 1.09]	1.47 [1.43, 1.51]
Torelli 2015	0.3148	0.3664	15.1%	1.37 [1.23, 1.52]	0.80 [0.68, 0.94]
Total 2012	1.3573	0.8783	3.5%	6.04 [1.92, 7.22]	1.59 [1.35, 1.88]
Zhu 2014	0.4862	0.0844	39.2%	1.86 [1.46, 2.35]	0.75 [0.63, 0.89]
Total (95% CI)	100.0%	1.38 [0.94, 2.00]			

Heterogeneity: Tau² = 0.09, Chi² = 27.34, df = 5 (P = 0.000001); I² = 89%
Test for overall effect: Z = 1.66 (P = 0.10)
Figure 4

A: BMI

Study or Subgroup	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI
Arbas 2015	1.40 [-1.48, 3.20]	
Cheng 2017	-0.60 [-1.71, 0.51]	
Han 2002	-0.10 [-1.36, 1.16]	
Hayashi 2013	0.80 [-0.09, 1.19]	
Huang 2017	0.80 [-1.19, 2.28]	
Jain 2012	-0.25 [-2.96, 2.90]	
Keskin 2015	1.05 [-0.86, 2.94]	
Lou 2015	0.50 [-0.17, 0.51]	
Meng 2015	0.15 [-0.04, 0.19]	
Oesnol 2015	1.40 [-0.36, 3.42]	
Sokwalska 2017	0.50 [-0.15, 0.25]	
Wam Mahmood 2013	0.25 [-1.82, 2.42]	
Wei 2017	-0.03 [-0.49, 0.43]	
Zhu 2014	-0.04 [-1.03, 0.95]	
Total (95% CI)	0.38 [0.06, 0.71]	

Heterogeneity: $\tau^2 = 0.14$, $\chi^2 = 24.86$, df = 13 ($P = 0.03$); $P = 4.7\%$

Test for overall effect $Z = 2.32$ ($P = 0.02$)

B: Triglyceride levels

Study or Subgroup	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI
Arbas 2015	0.27 [0.11, 0.70]	
Huang 2017	0.30 [0.22, 0.28]	
Keskin 2015	0.37 [0.25, 0.79]	
Meng 2015	0.43 [0.10, 0.83]	
Oesnol 2015	0.09 [0.03, 0.25]	
Wam Mahmood 2013	0.33 [0.01, 0.65]	
Wei 2017	-0.01 [-0.15, 0.13]	
Zhu 2014	-0.18 [-0.35, 0.71]	
Total (95% CI)	0.16 [-0.13, 0.45]	

Heterogeneity: $\tau^2 = 0.14$, $\chi^2 = 7.32$, df = 6 ($P < 0.00001$), $P = 91\%$

Test for overall effect $Z = 1.10$ ($P = 0.27$)

C: HDL

Study or Subgroup	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI
Arbas 2015	-0.03 [-0.15, 0.09]	
Huang 2017	-0.10 [-0.23, 0.03]	
Meng 2015	0.03 [-0.02, 0.10]	
Oesnol 2015	0.05 [-0.04, 0.14]	
Wam Mahmood 2013	0.07 [-0.05, 0.19]	
Wei 2017	0.00 [-0.07, 0.07]	
Zhu 2014	0.05 [0.04, 0.14]	
Total (95% CI)	0.02 [-0.01, 0.05]	

Heterogeneity: $\tau^2 = 0.00$, $\chi^2 = 0.80$, df = 6 ($P = 0.43$), $P = 0\%$

Test for overall effect $Z = 1.23$ ($P = 0.22$)
D: LDL

Study or Subgroup	Mean Difference	Mean Difference
	IV, Random, 95% CI	IV, Random, 95% CI
Artesas 2015	0.18 [0.16, 0.21]	-
Huang 2017	0.03 [0.20, 0.30]	-
Meng 2015	-0.11 [-0.31, 0.09]	-
Telford 2018	0.23 [0.01, 0.47]	-
Wan Mahmood 2013	0.22 [0.03, 0.47]	-
Wei 2017	-0.10 [-0.23, 0.03]	-
Zhu 2014	0.08 [0.17, 0.33]	-
Total (95% CI)	**0.05 [-0.07, 0.17]**	**-**

Heterogeneity: Tau² = 0.01; Chi² = 11.46, df = 6 (P = 0.08); I² = 48%
Test for overall effect: Z = 0.80 (P = 0.43)

E: Total cholesterol levels

Study or Subgroup	Mean Difference	Mean Difference
	IV, Random, 95% CI	IV, Random, 95% CI
Artesas 2015	0.28 [0.13, 0.89]	-
Hani 2002	-0.03 [-0.48, 0.42]	-
Huang 2017	-0.10 [-0.60, 0.40]	-
Oosanai 2015	0.13 [-0.03, 0.29]	-
Wan Mahmood 2013	0.37 [0.06, 0.68]	-
Total (95% CI)	**0.15 [0.03, 0.28]**	**-**

Heterogeneity: Tau² = 0.00; Chi² = 3.82, df = 4 (P = 0.43); I² = 0%
Test for overall effect: Z = 2.42 (P = 0.02)

F: Systolic blood pressure

Study or Subgroup	Mean Difference	Mean Difference
	IV, Random, 95% CI	IV, Random, 95% CI
Artesas 2015	-2.00 [-7.57, 3.57]	-
Colbay 2015	12.10 [9.94, 20.26]	-
Huang 2017	2.10 [-3.21, 7.41]	-
Meng 2015	3.69 [-0.86, 9.04]	-
Oosanai 2015	5.00 [1.03, 8.07]	-
Telford 2018	-0.70 [-5.23, 3.83]	-
Wan Mahmood 2013	8.88 [3.16, 16.66]	-
Wei 2017	-0.67 [-5.63, 4.29]	-
Zhu 2014	-0.49 [-3.31, 1.43]	-
Total (95% CI)	**2.60 [-5.50, 5.34]**	**-**

Heterogeneity: Tau² = 9.43; Chi² = 23.11, df = 6 (P = 0.010); I² = 62%
Test for overall effect: Z = 2.00 (P = 0.05)

G: Diastolic blood pressure

Study or Subgroup	Mean Difference	Mean Difference
	IV, Random, 95% CI	IV, Random, 95% CI
Artesas 2015	-2.03 [-5.08, 0.20]	-
Huang 2017	1.10 [2.15, 4.35]	-
Meng 2015	1.82 [0.85, 3.19]	-
Oosanai 2015	2.00 [0.30, 3.00]	-
Telford 2018	2.20 [0.80, 3.69]	-
Wan Mahmood 2013	3.61 [-0.54, 7.75]	-
Wei 2017	1.65 [-0.30, 3.72]	-
Zhu 2014	-1.92 [-4.79, 0.95]	-
Total (95% CI)	**1.13 [-0.95, 2.34]**	**-**

Heterogeneity: Tau² = 0.78; Chi² = 9.32, df = 7 (P = 0.23); I² = 25%
Test for overall effect: Z = 1.82 (P = 0.07)
K Odds Ratio for poor glycemic control: HbA1c levels >7 / 8.5% (>