A Full Asymptotic Series of European Call Option Prices in the SABR Model with $\beta = 1$

Z. Guo, H. Schellhorn

November 17, 2018
Preliminaries on Option Pricing
 Stochastic Alpha Beta Rho (SABR) Model
 The Black-Scholes Theory
 Generalization of Hull-White Formula
Preliminaries on Malliavin Calculus
 Exponential Formula
Option Pricing Formula for SABR Model
 Derivation for G_s
 Conditional Expectation of $\Lambda_s G_s$: $E[\Lambda_s G_s | \mathcal{F}_t]$
 A Formula by Marc Yor
 Full Expression of Option Price
 Approximation of Option Price
Another Look at The Correction Term
References
Appendix
The SABR model is an extension of the Black Scholes model in which the volatility parameter follows a stochastic process:

\[dS_t = rS_t dt + \sigma_t S_t^\beta (\rho dW_t + \sqrt{1 - \rho^2} dZ_t), \]

\[d\sigma_t = \alpha \sigma_t dW_t. \]
Approximation for Implied Volatilities of SABR Model

Hagan et al. derived, with perturbation techniques, an approximating direct formula for this implied volatility under the SABR model in [5]:

\[
\sigma_{BS}(S_0, K) = \frac{\sigma_0}{(S_0 K)^{\frac{1-\beta}{2}} \left[1 + \frac{(1-\beta)^2}{24} \ln^2 \frac{S_0}{K} + \frac{(1-\beta)^4}{1920} \ln^4 \frac{S_0}{K} + \cdots \right]} \times z(x(z))
\]

\[
1 + \left(\frac{(1-\beta)^2}{24} \frac{\sigma_0^2}{(S_0 K)^{1-\beta}} + \frac{1}{4} \frac{\rho \beta \alpha \sigma_0}{(S_0 K)^{(1-\beta)/2}} + \frac{2 - 3 \rho^2}{24} \frac{\alpha^2}{\sigma_0^2} \right) \tau + O(\tau^2)
\]

where \(z := -\frac{\alpha}{\sigma_0}(S_0 K)^{\frac{1-\beta}{2}} \ln \left(\frac{S_0}{K} \right) \) and \(x(z) = \ln \left(\frac{\sqrt{1 - 2\rho z + z^2 + z - \rho}}{1 - \rho} \right) \).
In the special case $\beta = 1$, the SABR implied volatility formula reduces to

$$\sigma_{BS}(S_0, K) = \sigma_0 \frac{y}{f(y)} \left[1 + \left(\frac{1}{4} \rho \alpha \sigma_0 + \frac{2 - 3 \rho^2}{24} \alpha^2 \right) \tau + O(\tau^2) \right], \quad (4)$$

where $y := -\frac{\alpha}{\sigma_0} \ln\left(\frac{S_0}{K} \right)$ and $f(y) = \ln \left(\frac{\sqrt{1 - 2 \rho y + y^2} + y - \rho}{1 - \rho} \right)$.

European call: $BS(t, x, \sigma_{BS}) = e^x N(d_+) - Ke^{-r(T-t)} N(d_-)$.
The Black-Scholes Theory

\[dS_t = rS_t dt + \sigma S_t dW_t. \] \hspace{1cm} (5)

Let \(X_t = \ln S_t \) denote the logarithm of stock price. The price of an European call option with payoff \((X_T - K)_+\) at time \(t \) satisfy the Black-Scholes-Merton equation:

\[\mathcal{L}_{BS}(\sigma)BS(t, x, \sigma) = 0, \] \hspace{1cm} (6)

where \(\mathcal{L}_{BS}(\sigma) = \mathcal{L}_{BS}(\sigma) = \frac{\partial}{\partial t} + \frac{1}{2} \sigma^2 \frac{\partial^2}{\partial x^2} + \left(r - \frac{1}{2} \sigma^2 \right) \frac{\partial}{\partial x} - r \cdot \) is the Black-Scholes differential operator. And the closed-form solution of above PDE (6) is

\[BS(t, x, \sigma) = e^x N(d_+) - Ke^{-r(T-t)} N(d_-). \] \hspace{1cm} (7)
Consider the model under a risk-neutral probability:

$$dS_t = rS_t dt + \sigma_t S_t (\rho dW_t + \sqrt{1 - \rho^2} dZ_t), \ t \in [0, T]$$ \hspace{1cm} (8)$$

Where W_t and Z_t are independent standard Brownian motions defined in a probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})$, $\mathcal{F}_t = \mathcal{F}_t^W \cup \mathcal{F}_t^Z := \sigma \{ W_s, Z_s, s \leq t \}$, and σ_t is a square integrable process adapted to $\{\mathcal{F}_t^W\}$.
Assume that hypotheses (H1) to (H4) in [1] by Alòs hold. Then, for all $t \in [0, T]$,

$$V_t = E[BS(t, X_t, v_t)|\mathcal{F}_t] + \frac{\rho}{2} \int_t^T e^{-r(s-t)} E\left[H(s, X_s, v_s) \Lambda_s \bigg| \mathcal{F}_t \right] ds$$ \hspace{1cm} (9)$$

where $v_s^2 = \frac{1}{T-s} \int_s^T \sigma_u^2 du$ is the future average volatility, and

$$H(s, X_s, v_s) := \left(\frac{\partial^3}{\partial x^3} - \frac{\partial^2}{\partial x^2} \right) BS(s, X_s, v_s),$$

$$\Lambda_s := \left(\int_s^T D_s^W \sigma_r^2 dr \right) \sigma_s.$$

We denote $V_{s,T} = v_s^2(T-s) = \int_s^T \sigma_u^2 du$ and $V_{t,s} = \int_t^s \sigma_u^2 du$.

Z. Guo, H. Schellhorn

A Full Asymptotic Series of European Call Option Prices in the Stochastic Alpha Beta Rho(SABR) Model
Theorem

Suppose $F \in \mathbb{D}_\infty([0, T])$ satisfies the following condition:

$$
\frac{(T - t)^{2n}}{(2^n n!)^2} E \left[\left(\sup_{u_1, \ldots, u_n \in (t, T)} |(D_{u_n} \cdots D_{u_1} F)(\omega^t)| \right)^2 \right] \xrightarrow{n \to \infty} 0,
$$

for fixed $t \in [0, T]$, then

$$
E[F|\mathcal{F}_t] = \sum_{n=0}^{\infty} \frac{1}{2^n n!} \int_{[t, T]^n} (D_{s_n}^2 \cdots D_{s_1}^2 F)(\omega^t) ds_n \cdots ds_1.
$$

(10)
Freezing Operator

Definition
Given \(\omega \in \Omega \), a freezing operator \(\omega^t \) is defined as:

\[
W(s, \omega^t(\omega)) = \begin{cases}
W(s, \omega), & \text{if } s \leq t; \\
W(t, \omega), & \text{if } t \leq s \leq T.
\end{cases}
\] (11)

The freezing operator \(\omega^t \) is a mapping from \(\Omega \) to \(\Omega \).
Apply Exponential Formula to $F = H(s, X_s, v_s) \Lambda_s$

Goal: $E[H(s, X_s, v_s) \Lambda_s | \mathcal{F}_t]$, recall that

$$V_t = E[BS(t, X_t, v_t) | \mathcal{F}_t] + \frac{\rho}{2} \int_t^T e^{-r(s-t)} E[H(s, X_s, v_s) \Lambda_s | \mathcal{F}_t] \, ds.$$

Let $F = H(s, X_s, v_s) \Lambda_s$, using iterated conditioning:

$$E[F | \mathcal{F}_t] = E \left[E \left[H(s, X_s, v_s) \Lambda_s | \mathcal{F}_T^W \cup \mathcal{F}_T^Z \right] | \mathcal{F}_t \right] = E[\Lambda_s G_s | \mathcal{F}_t],$$

where $G_s = G(s, X_s, v_s) = E[H(s, X_s, v_s) | \mathcal{F}_T^W \cup \mathcal{F}_T^Z]$ depends only on Brownian motion $\{Z_t\}_{t \geq 0}$.

Z. Guo, H. Schellhorn
A Full Asymptotic Series of European Call Option Prices in the
Apply Exponential Formula to $F = H(s, X_s, v_s)\Lambda_s$

Then the option price formula (9) becomes:

$$V_t = E[BS(t, X_t, v_t)|\mathcal{F}_t] + \frac{\rho}{2} \int_t^T e^{-r(s-t)} E[\Lambda_s G_s|\mathcal{F}_t] ds,$$

(14)

where

$$\Lambda_s := \int_s^T D_s^W \sigma_t^2 dr \sigma_s = \int_s^T 2\alpha \sigma_t^2 dr \sigma_s = 2\alpha \sigma_s V_s, T,$$

(15)

$$G_s = \sum_{n=0}^{\infty} \frac{1}{2^n n!} \omega^t_Z \circ \int_{[t, T]^n} D^{2n, Z}_{\tau \otimes n} H(s, X_s, v_s) d\tau \otimes n, \ t \leq s.$$

(16)

Goal: $E[G_s \Lambda_s|\mathcal{F}_t]$
The Faà di Bruno’s formula can be generalized to Malliavin derivative in the following way:
If f and g are functions with a sufficient number of derivatives, then for a random variable $F \in D^N([0, T])$ and $\forall n \leq N$, by chain rule and Faà di Bruno’s formula we have

$$D_t^n f(g(F)) = \sum_{k=1}^{n} f^{(k)}(g(F)) \cdot B_{n,k}(g'(F), \ldots, g^{n-k+1}(F)) D_t^n F,$$

where $B_{n,k}(x_1, \ldots, x_{n-k+1})$ are the incomplete exponential Bell polynomials.
Malliavin derivative of H_s: $D^{2n}_{\tau \otimes n} H(s, X_s, \nu_s)$

\[H_s = \left(\frac{\partial^3}{\partial x^3} - \frac{\partial^2}{\partial x^2} \right) BS(s, X_s, \nu_s) = \frac{-d_-}{\sqrt{2\pi V_{s,T}}} e^{X_s - \frac{d_+^2}{2}}. \]

Define two real-valued functions $p(\cdot)$ and $q(\cdot)$ such that $q(p(s, X_s, \nu_s)) = H_s$,

\[p(s, X_s, \nu_s) = X_s - \frac{d_+^2}{2} + \ln(-d_-), \quad (18) \]

\[q(x) = \frac{1}{\sqrt{2\pi V_{s,T}}} e^{x}. \quad (19) \]
Malliavin derivative of H_s: $D_{n}^{2n,Z} H(s, X_s, v_s)$

\[
D_{\tau}^{Z} X_s = D_{\tau} \int_{t}^{s} \sigma_u \sqrt{1 - \rho^2} dZ_u = \sigma_{\tau} \sqrt{1 - \rho^2} \mathbb{1}_{\{\tau \leq s\}}, \quad \text{(20)}
\]

Then by Faà di Bruno’s formula,

\[
D_{\tau \bigotimes n}^{2n,Z} H_s = D_{\tau \bigotimes n}^{2n,Z} q(p(s, X_s, v_s))
= \sum_{k=1}^{2n} q^{(k)}(p(s, X_s, v_s)) \cdot B_{2n,k} \left(b_1, \ldots, b_{2n-k+1} \right) D_{\tau \bigotimes n}^{2n,Z} X_s
= (1 - \rho^2)^n H_s B_{2n}(b_1, \ldots, b_{2n}) \prod_{i=1}^{n} \sigma_{\tau_i}^2 \mathbb{1}_{\{\tau_i \leq s\}} \quad \text{(21)}
\]

where $b_k = p^{(k)}(s, X_s, v_s), \ k = 1, \ldots, 2n$
Expression of G_s

$$G_s = \sum_{n=0}^{\infty} \frac{1}{2^n n!} \omega_t^Z \circ \int_{[t,T]^n} D_{\tau \otimes n}^{2n,Z} H(s, X_s, v_s) d\tau \otimes n$$

$$= \sum_{n=0}^{\infty} \frac{(1 - \rho^2)^n}{2^n n!} H_s^\omega B_{2n}(b_1^\omega, \ldots, b_{2n}^\omega) \int_t^s \prod_{i=1}^n \sigma_{\tau_i}^2 d\tau \otimes n$$

$$= H_s^\omega \sum_{n=0}^{\infty} \frac{(1 - \rho^2)^n}{2^n n!} V_{t,s}^n B_{2n}(b_1^\omega, \ldots, b_{2n}^\omega).$$

$$b_j = \frac{1}{\sqrt{V_s, T d_-(s, X_s, v_s))j}} \begin{cases} (-1)^{j+1} - d_-(s, X_s, v_s), & j = 1, 2; \\ (-1)^{j+1}(j-1)!, & j \geq 3. \end{cases}$$
Interpretation of $\Lambda_s G_s$

Notice that

$$X^\omega_s := X_t + r(s-t) - \frac{1}{2} V_{t,s} + \frac{\rho}{\alpha} (\sigma_s - \sigma_t) + \omega^t_Z \circ \int_t^s \sigma_u \sqrt{1 - \rho^2} dZ_u$$

$$= X_t + r(s-t) - \frac{1}{2} V_{t,s} + \frac{\rho}{\alpha} (\sigma_s - \sigma_t) \quad (22)$$

$$d^\omega_\pm(s, X_s, \nu_s) := \omega^t_Z \circ d_\pm((s, X_s, \nu_s)) = d_\pm(s, X^\omega_s, \nu_s)$$

$$= \frac{X^\omega_s - \ln K + r(T-s) \pm \frac{1}{2} V_{s,T}}{\sqrt{V_{s,T}}} \quad (23)$$

and recall that $\Lambda_s = 2\alpha V_{s,T} \sigma_s$, thus $\Lambda_s G_s$ is a function that depends on $\sigma_s, V_{t,s} = \int_t^s \sigma_u^2 du$ and $V_{s,T} = \int_s^T \sigma_u^2 du$. Z. Guo, H. Schellhorn
Joint Density of \(\left(\int_0^t e^{\sigma W_s} ds, W_t \right) \)

Proposition 2 In [6] by Yor (1992): the joint density of \(\left(\int_0^t e^{\sigma W_s} ds, W_t \right) \) has been derived for the case \(\sigma = 2 \),

\[
\phi_{t,\sigma}(x, y) := \frac{1}{dx\,dy} \mathbb{P}\left(\int_0^t e^{\sigma W_s} ds \in dx, W_t \in dy \right) = \frac{\sigma}{2x} e^{-\frac{2}{\sigma^2 x} (1 + e^{\sigma y})} \cdot \theta\left(\frac{4e^{\sigma y}/2}{\sigma^2 x}, \frac{\sigma^2 t}{4} \right), \quad (24)
\]

for \(x > 0, y \in \mathbb{R}, t > 0 \), where

\[
\theta(r, t) = \frac{r}{\sqrt{2\pi^3 t}} e^{\frac{\pi^2}{2t}} \int_0^\infty e^{-\frac{\xi^2}{2t}} \cdot e^{-r \cosh \xi \sinh \xi} \sin \frac{\pi \xi}{t} d\xi, \quad r, t > 0.
\]

(25)
Joint Density of \(\left(\int_0^t e^{\sigma W_s - \mu s} ds, W_t \right) \)

A straightforward application of the Cameron-Martin-Girsanov theorem implies that the joint density of \(\left(\int_0^t e^{\sigma W_s - \mu s} ds, W_t \right) \), \(\sigma > 0, \mu \in \mathbb{R} \), which we denote by \(\phi_{t,\sigma,\mu}(x, y) \), \(x > 0, y \in \mathbb{R} \), can be connected with the density \(\phi_{t,\sigma,0}(x, y) = \phi_{t,\sigma,0}(x, y) \) through the formula

\[
\phi_{t,\sigma,\mu}(x, y) = e^{-\frac{\mu}{\sigma}y + \frac{\mu^2}{2\sigma^2} t} \phi_{t,\sigma,0}(x, y - \frac{\mu}{\sigma} t) \tag{26}
\]
Calculation of $E[\Lambda_s G_s | \mathcal{F}_t]$

Define $h(V_{t,s}, v_s, \sigma_s) = \Lambda_s G_s$, then $E[\Lambda_s G_s | \mathcal{F}_t]$ can be calculated as follows:

$$E[\Lambda_s G_s | \mathcal{F}_t] = E[h(V_{t,s}, v_s, \sigma_s) | \mathcal{F}_t] = E[E[h(V_{t,s}, v_s, \sigma_s) | \mathcal{F}_s] | \mathcal{F}_t]$$

$$= E \left[\int_0^\infty h(V_{t,s}, \frac{v}{\sqrt{T-s}}, \sigma_s) F'_{V_s,T}(v) dv \bigg| \mathcal{F}_t \right]$$

$$= \int_0^\infty dx \int_{-\infty}^\infty dy \int_0^\infty dv \ h(\sigma_t^2 x, \frac{v}{\sqrt{T-s}}, \sigma_s(y)) F'_{V_s,T}(v) \phi_{s-t,2\alpha,\alpha^2}(x,y)$$

where $\sigma_s(y) = \sigma_t \exp(\alpha y - \frac{1}{2} \alpha^2(s-t))$.
Marginal Density of $\int_0^t e^{\sigma W_s - \mu s} ds$

The conditional density of $V_{s,T}$ is $F_{V_{s,T}}'(v) = \frac{1}{\sigma_s^2} \psi_{V_{s,T}}(\frac{v}{\sigma_s^2})$, where

$$\psi_{V_{s,T}}(v) = \int_{\mathbb{R}} \phi_{T-s,2\alpha,\alpha^2}(v, z) dz,$$

and

$$F_{V_{s,T}}(v) = \mathbb{P}\left(V_{s,T} \leq v \mid \mathcal{F}_s \right) = \mathbb{P}\left(\int_s^T \sigma_u^2 du \leq v \mid \sigma_s \right)$$

$$= \mathbb{P}\left(\int_s^T \sigma_s^2 e^{2\alpha(W_u-W_s)-\alpha^2(u-s)} du \leq v \mid \sigma_s \right)$$

$$= \mathbb{P}\left(\int_0^{T-s} e^{2\alpha(W_u)-\alpha^2 u} du \leq \frac{v}{\sigma_s^2}, W_{T-s} < \infty \right)$$

$$= \int_0^{\frac{v}{\sigma_s^2}} \int_{-\infty}^{\infty} \phi_{T-s,2\alpha,\alpha^2}(x, z) dz dx. \quad (27)$$
Marginal Density of $\int_0^t e^{\sigma W_s - \mu s} ds$

One straightforward application of (27) is using the conditional density of $V_{t,T}$ to obtain the first conditional expectation in (9):

$$E[BS(t, X_t, v_t)|\mathcal{F}_t] = \int_0^\infty BS\left(t, X_t, \sqrt{\frac{v}{T-t}}\right) F'_{V_{t,T}}(v) dv$$

$$= \int_0^\infty BS\left(t, X_t, \sqrt{\frac{v}{T-t}}\right) \frac{1}{\sigma_t^2} \psi_{V_{t,T}}\left(\frac{v}{\sigma_t^2}\right) dv$$

$$= \int_0^\infty \int_{-\infty}^{\infty} \frac{1}{\sigma_t^2} BS\left(t, X_t, \sqrt{\frac{v}{T-t}}\right) \phi_{T-t, 2\alpha, \alpha^2} \left(\frac{v}{\sigma_t^2}, z\right) dz dv \quad (28)$$
A Formula for European Call Option Price

\[V_t = E[BS(t, X_t, v_t)|F_t] + \frac{\rho}{2} \int_t^T e^{-r(s-t)} E[\Lambda_s G_s|F_t] ds. \]

\[= \int_0^\infty \int_{-\infty}^{\infty} \frac{1}{\sigma_t^2} BS\left(t, X_t, \sqrt{\frac{v}{T-t}}\right) \phi_{T-t,2\alpha,\alpha^2} \left(\frac{v}{\sigma_t^2}, z\right) dzdv \]

\[+ \rho \alpha \int_t^T \int_0^\infty \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} l(s, v, z, x, y) dydxdzdvds, \quad (29) \]

\[l(\cdot) = \frac{e^{-r(s-t)}}{\sigma_s(y)} \cdot f\left(s, X_s^{x,y}, \sqrt{\frac{v}{T-s}}\right) \cdot \phi_{T-s,2\alpha,\alpha^2} \left(\frac{v}{\sigma_s^2}, z\right) \cdot \phi_{s-t,2\alpha,\alpha^2}(x, y), \]

\[f(s, X_s, v_s) = V_{s,T} H_s^{\omega} \sum_{n=0}^{\infty} \frac{(1 - \rho^2)V_{t,s}^n}{2^n n!} B_{2n}(b_1^{\omega}, \ldots, b_{2n}^{\omega}). \]

Z. Guo, H. Schellhorn

A Full Asymptotic Series of European Call Option Prices in the SABR Model with \(\beta = 1 \)
Parameters of Approximation Results

In the following tables we compare the values of the approximate option prices. We have chosen $T - t = 1$, $\ln X_t = 100$, $r = 0.1$, $\sigma_t = 0.3$, $\alpha = 1$, $\rho = 0, \pm 0.5$ and varying values for the strike price K.

- Column 1: Strike price K;
- Column 2: Monte Carlo Simulation with number of simulation times $N = 10^6$;
- Column 3: Approximated prices obtained by Black-Scholes formula with volatility approximated by (4);
- Column 4: Approximated prices obtained by formula (29) with $f(\cdot)$ approximated by (40).
\(\rho = 0 \)

K	Monte Carlo	Hagan	formula (29)
90	23.573138	23.415000	23.626726
95	20.440334	20.337570	20.457574
100	17.562962	17.624483	17.594033
105	15.066565	15.291032	15.063452
110	12.885739	13.322697	12.875527
\[\rho = -0.5 \]

K	Monte Carlo	Hagan	1st order approx.
90	23.972526	22.025500	23.762565
95	20.640584	19.229952	20.539753
100	17.500136	16.889528	17.505670
105	14.688296	14.952772	14.836533
110	12.121686	13.353472	12.884976
\(\rho = 0.5 \)

K	Monte Carlo	Hagan	1st order approx.
90	22.352943	24.228522	22.979063
95	20.035690	20.836574	20.304502
100	17.186214	17.691469	17.555458
105	15.172375	14.842598	14.965057
110	13.080356	12.333288	12.802697

Z. Guo, H. Schellhorn

A Full Asymptotic Series of European Call Option Prices in the
Recall that

\[V_t = E[BS(t, X_t, v_t)|F_t] + J, \]

where

\[J := \frac{\rho}{2} \int_t^T e^{-r(s-t)} E[H_s \wedge_s |F_t] ds \]

\[= \frac{\rho}{2} \int_t^T e^{-r(s-t)} \frac{2\alpha}{\sqrt{2\pi}} E\left[\sigma_s E\left[-d_- e^{X_s - d_-^2} |F_T \cup F^{W}_t \cup F^{Z}_t \right] |F_t \right] ds \]

\[= C_1 \int_t^T E\left[\sigma_s E\left[-d_- e^{-d_-^2} |F_T \cup F^{W}_t \cup F^{Z}_t \right] |F_t \right] ds \quad (30) \]

for \(d_\pm \) evaluated at \((s, X_s, v_s)\), where \(C_1 = \frac{1}{\sqrt{2\pi}} \rho \alpha K e^{-(T-t)} \).
Second Approach to Calculate $E[H_s \Lambda_s \mid \mathcal{F}_t]$

Denote $Q_s ::= E\left[-d_- e^{-\frac{d_-^2}{2}} \mid \mathcal{F}_W^T \cup \mathcal{F}_Z^T \right]$, then the correction term can be written as $J = C_1 \int_t^T E\left[\sigma_s Q_s \mid \mathcal{F}_t \right] ds$.

$$d_- (s, X_s, v_s) = \lambda(V_s, T) Z + \gamma(V_{t,s}, V_s, T, \sigma_s). \quad (31)$$

where $Z = \int_t^s \sigma_u dZ_u$ is conditional normal with variance $V_{t,s}$ i.e. $Z \sim \mathcal{N}(0, V_{t,s})$,

$$\gamma(V_{t,s}, V_s, T, \sigma_s) := \frac{\kappa + \frac{\rho}{\alpha} (\sigma_s - \sigma_t) - \frac{1}{2} (V_{t,s} + V_s, T)}{\sqrt{V_{s,T}}},$$

$$\lambda(V_s, T) := \sqrt{1 - \rho^2} \frac{1}{V_{s,T}}.$$
Calculation of Q_s

Goal: $E[R(s, X_s, \nu_s)|\mathcal{F}_t]$

$$Q_s = \int_{\mathbb{R}} -(\lambda z + \gamma)e^{-\frac{(\lambda z + \gamma)^2}{2}} \frac{1}{\sqrt{2\pi V_{t,s}}} e^{-\frac{z^2}{2V_{t,s}}} dz = C_2 \gamma e^{C_3 \gamma^2}$$

where $C_2 = -\frac{1}{(2-\rho^2)^{3/2}}$, $C_3 = -\frac{1}{2(2-\rho^2)}$. Thus we have

$$J = C_1 \int_t^T E\left[\sigma_s Q_s \middle| \mathcal{F}_t\right] ds = C_1 C_2 \int_t^T E\left[R_s \middle| \mathcal{F}_t\right] ds. \quad (32)$$

where $R_s := R(s, X_s, \nu_s) = \sigma_s \gamma e^{C_3 \gamma^2}$ is a random variable depends only on Brownian motion $\{W_t\}_{t \geq 0}$.
Goal: \(E[R(s, X_s, \nu_s)|\mathcal{F}_t] \).

Now we can apply exponential formula (10) to \(R(s, X_s, \nu_s) \) such that:

\[
E\left[R(s, X_s, \nu_s) \bigg| \mathcal{F}_t \right] = \sum_{n=0}^{\infty} \frac{1}{2^n n!} r_n(s, X_t, \nu_t), \quad t \leq s, \quad (33)
\]

where \(r_n(s, X_t, \nu_t) = \omega^t_\mathcal{W} \circ \int_{[t, T]^n} D^{2n, W}_\tau \otimes_n R(s, X_s, \nu_s) d\tau \otimes^n. \)
First Order Approximation of $E \left[R(s, X_s, v_s) \mid \mathcal{F}_t \right]$

Let $f(x, y) = yxe^{C_3 x^2}$, then $R(s, X_s, v_s) = f(\gamma, \sigma_s)$, and

$$D^2_t W R_s = f_x(\gamma, \sigma_s) D^2_t W \gamma + f_{xx}(\gamma, \sigma_s)(D^t W \gamma)^2 + f_y(\gamma, \sigma_s) D^2_t W \sigma_s$$

By the structure of σ_t for $t \in [0, T]$, we have the following results:

$$D^W_t \sigma_s = \alpha \sigma_s 1_{\{\tau \leq s\}}$$
$$D^W_t V_{s,T} = 2\alpha V_{\tau \wedge s, T}$$
$$D^W_t V_{t,s} = 2\alpha V_{\tau, s} 1_{\{\tau \leq s\}}$$

$$D^2_t W \sigma_s = \alpha^2 \sigma_s 1_{\{\tau \leq s\}}$$
$$D^2_t W V_{s,T} = 4\alpha^2 V_{\tau \wedge s, T}$$
$$D^2_t W V_{t,s} = 4\alpha^2 V_{\tau, s} 1_{\{\tau \leq s\}}.$$
Therefore, \(J = \frac{\rho}{2} \int_t^T e^{-r(s-t)} E[H_s \wedge s | \mathcal{F}_t] ds = C_1 C_2 \int_t^T E[R_s | \mathcal{F}_t] ds \)

\[
\approx C_1 C_2 \int_t^T \sum_{n=0}^{1} \frac{1}{2^n n!} \omega^t W \circ \int_{[t,T]^n} D_{2n}^2 W R(s, X_s, \nu_s) d\tau \otimes^n ds
\]

\[
= C_1 C_2 \int_t^T 1 + \frac{1}{2} \int_t^T D_{2}^2 W R^\omega d\tau ds
\]

\[
= \frac{1}{2} C_1 C_2 \left[\int_t^T p_1(s) + p_2(s) ds + 2(T-t) \right]. \quad (34)
\]

where \(p_1(s) := \omega^t W \circ \int_t^s D_{2n}^2 W R_s d\tau, \quad p_2(s) := \omega^t W \circ \int_s^T D_{2n}^2 W R_s d\tau \)
Conclusion

- Convergence Analysis
- Stochastic Volatility F.B.M
References

E. Alòs. A generalization of Hull and White formula with applications to option pricing approximation. Finance and Stochastics 10 (3) (2006) 353-365.

A. Lyasoff Another look at the integral of exponential Brownian motion and the pricing of Asian options. Finance and Stochastics, 20(4), 1061–1096 (2016).

J.-P. Fouque, G. Papanicolaou, K. R. Sircar Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, 2000.

S. Jin, Q. Peng, H. Schellhorn A Representation Theorem for Expectations of Functionals of Brownian Motion. Stochastics, vol. 88(5), 651–79 (2016).

P. S. Hagan, D. Kumar, A. S. Lesniewski, and D. E. Woodward, Managing smile risk. Wilmott, pp. 84-108. (2002)

M. Yor On some exponential functionals of Brownian motion. Adv. Appl. Probab., 24 (1992), pp. 509–531.
Lemma: Faà di Bruno’s formula

Faà di Bruno’s formula. If f and g are functions with a sufficient number of derivatives, then

$$
\frac{d^n}{dx^n} f(g(x)) = \sum \frac{n!}{\Pi_{i=1}^{n} m_i!} f(\sum_{k=1}^{n} m_k) (g(x))^\cdot \prod_{j=1}^{n} \left(\frac{g^{(j)}(x)}{j!} \right)^{m_j},
$$

subject that all nonnegative integers (m_1, \ldots, m_n) satisfying the constraint $\sum_{k=1}^{n} km_k = n$. A simpler formula expressed in terms of Bell polynomials $B_{n,k}(x_1, \ldots, x_{n-k+1})$:

$$
\frac{d^n}{dx^n} f(g(x)) = \sum_{k=1}^{n} f^{(k)}(g(x)) \cdot B_{n,k} \left(g'(x), \ldots, g^{n-k+1}(x) \right).
$$

(35)
Exponential Bell polynomials

The partial or incomplete exponential Bell polynomials are a triangular array of polynomials given by

\[B_{n,k}(x_1, x_2, \ldots, x_{n-k+1}) = \sum \frac{n!}{\prod_{i=1}^{n-k+1} j_i!} \prod_{i=1}^{n-k+1} (\frac{x_i}{j_i!})^{j_i}, \quad (37) \]

where the sum is taken over all sequences \(j_1, j_2, \ldots, j_{n-k+1} \) non-negative integers such that these two conditions are satisfied: \(\sum_{i=1}^{n-k+1} j_i = k \) and \(\sum_{i=1}^{n-k+1} i \cdot j_i = n \). The sum

\[B_n(x_1, \ldots, x_n) = \sum_{k=1}^{n} B_{n,k}(x_1, x_2, \ldots, x_{n-k+1}) \quad (38) \]

is called the \(n \)th complete exponential Bell polynomials.
1st order approximation of \(f(\cdot) \) and option prices

Let \(m > 0 \), define \(L^\omega_s = v_s^2(T - s)H^\omega_s \) and

\[
f_m(s, X_s, v_s) := L^\omega_s \sum_{n=0}^{m} \frac{((1 - \rho^2)V_{t,s})^n}{2^n n!} B_{2n}(p'(X_s^\omega), \ldots, p^{2n}(X_s^\omega)) \tag{39}
\]

then the first order approximation \(f_1(s, v_s, X_s) \) is then calculated as following:

\[
f_1(s, X_s, v_s) = L^\omega_s \left(1 + \frac{(1 - \rho^2)V_{t,s}}{2} \left[(p^{(1)}(X_s^\omega))^2 + p^{(2)}(X_s^\omega) \right] \right)
\]

\[
= -d^\omega_- e^{X_s^\omega} - \frac{d^{\omega^2}_-}{2} \left(1 + \frac{(1 - \rho^2)V_{t,s}}{2} \frac{d^{\omega^2}_- - 3}{V_{s,T}} \right) \tag{40}
\]

for \(d^\omega_\pm \) evaluated at \((s, X_s, v_s)\).
Convergence Analysis

- Conditions on the convergence of the series

\[
\frac{(T - t)^{2n}}{(2^n n!)^2} E \left[\left(\sup_{u_1, \ldots, u_n \in (t, T)} |(D_{u_n}^2 \ldots D_{u_1}^2 F)(\omega^t)| \right)^2 \right] \xrightarrow{n \to \infty} 0, \\
\frac{c^{2n}}{n!^2} E \left[\left(\sup_{\tau_i \in (t, T)} |H_s B_{2n}(b_1^\omega, \ldots, b_{2n}^\omega) \prod_{i=1}^n \sigma_{\tau_i}^2 \mathbb{1}_{\{\tau_i \leq s\}} \right)^2 \right] \xrightarrow{n \to \infty} 0,
\]

where \(c = \frac{(T-t)^{\sqrt{1-\rho}}}{\sqrt{2}} \), and \(b_j = p(j)(s, X_s, v_s) \) for \(j = 1, \ldots, 2n \).
Full expression of $p_1(s)$

\[
p_1(s) := \omega_t \circ \int_t^s D_{\tau}^2 W R_\tau^\omega d\tau
\]

\[
= R_\tau^\omega \left[\alpha^2(s-t) + \left(\frac{1}{\alpha^2} + 2C_3 \gamma \right) \right] \left[\frac{\rho \alpha^2(s-t)}{\sqrt{1-e^{-\alpha^2(T-t)}}} - \frac{2\alpha \sigma_t \left(\frac{1}{\alpha^2} (1-e^{-\alpha^2(s-t)}) - (s-t)e^{-\alpha^2(s-t)}) \right)}{\sqrt{e^{-\alpha^2(s-t)} - e^{-\alpha^2(T-t)}}} \right]
\]

\[
- 2\alpha^2 \left(\frac{\gamma^2}{\alpha^2} (e^{-\alpha^2(s-t)} - e^{-\alpha^2(T-t)}) + \gamma \right) \left[\frac{\frac{1}{\alpha^2} (1-e^{-\alpha^2(s-t)}) - (s-t)e^{-\alpha^2(T-t)})}{e^{-\alpha^2(s-t)} - e^{-\alpha^2(T-t)}} \right] + (6C_3 + 4C_3^2 \gamma \omega) \cdot \left(\rho \alpha - \frac{1}{2} \alpha^2(s-t) + \sigma_t e^{-\alpha^2(s-t)} \right)^2 (s-t) - 2\sigma_t e^{-\alpha^2(T-t)} \left(\frac{1}{\alpha^2} (1-e^{-\alpha^2(s-t)}) - (s-t)e^{-\alpha^2(T-t)}) \right)
\]

\[
- 2\sigma_t^3 \rho e^{-\frac{1}{2} \alpha^2(s-t)} \left(\frac{1}{\alpha^2} (1-e^{-\alpha^2(s-t)}) - (s-t)e^{-\alpha^2(T-t)}) \right) A_1^\omega
\]

\[
+ \frac{4\sigma_t^4}{\alpha^4} \left[\left(\frac{1}{2} (1+e^{-2\alpha^2(s-t)}) + (e^{-\alpha^2(T-t+s-t)} - e^{-\alpha^2(s-t)} - e^{-\alpha^2(T-t)}) + \alpha^2 e^{-2\alpha^2(T-t+s-t)}(s-t) \right) A_1^\omega
\]

\[
+ \left(\frac{1}{2} (1-e^{-2\alpha^2(s-t)}) + 2(e^{-\alpha^2(T-t+s-t)} - e^{-\alpha^2(T-t)}) + \alpha^2 e^{-2\alpha^2(T-t)(s-t)} \right) A_3^\omega \right]
\]

Z. Guo, H. Schellhorn A Full Asymptotic Series of European Call Option Prices in the
Full expression of $p_2(s)$

$$p_2(s) := \omega^t_W \circ \int_s^T D^2_{\tau,W} R^\omega_{\tau} \, d\tau = D^2_{\tau,W} R^\omega_{\tau} \int_s^T d\tau$$

$$= R^\omega_{s} \left[\left(\frac{1}{\gamma^\omega} + 2C_3 \gamma^\omega \right) \left(-2\alpha^2 \left(\sqrt{V^\omega_{s,T}} + \gamma^\omega \right) \right) + A^\omega_{3} \left(2\alpha V^\omega_{s,T} \right)^2 \right] (T - s)$$

$$= R^\omega_{s} \left[-2\alpha^2 \left(2C_3 (\gamma^2 \omega + \sqrt{V^\omega_{s,T}} \gamma^\omega) + 1 + \frac{\sqrt{V^\omega_{s,T}}}{\gamma^\omega} \right) + \alpha^2 B^\omega_{3} \right] (T - s) \quad (42)$$

where

$$B^\omega_{3} = 4V^\omega_{s,T}^2 A^\omega_{3} = 4 \left(C_3^2 \gamma^3 + (2C_3^2 \sqrt{V^\omega_{s,T}} + 3C_3) \gamma^2 + (C_3^2 V^\omega_{s,T} + 4C_3 \sqrt{V^\omega_{s,T}}) \gamma^\omega \right)$$

$$+ 6C_3 V^\omega_{s,T} + 3 + \frac{2 \sqrt{V^\omega_{s,T}}}{\gamma^\omega}. \quad (43)$$
\[A_1^\omega := \omega^t W \circ A_1 = \frac{4 C_3^2 \gamma^\omega^2 + (4 C_3^2 \sqrt{V_{s,T}^\omega} + 8 C_3)\gamma^\omega + 6 C_3 \sqrt{V_{s,T}^\omega}}{\sqrt{V_{s,T}^\omega}^3} + \frac{1}{\sqrt{V_{s,T}^\omega}^3 \gamma^\omega}, \]

\[A_2^\omega := \omega^t W \circ A_2 = \frac{C_3 (2 C_3^2 \gamma^\omega^2 + (V_{s,T}^\omega + 2 C_3 \sqrt{V_{s,T}^\omega} + 3)\gamma^\omega + 3 \sqrt{V_{s,T}^\omega})}{\sqrt{V_{s,T}^\omega}^3} + \frac{1}{2 \sqrt{V_{s,T}^\omega} \gamma^\omega}, \]

\[A_3^\omega := \omega^t W \circ A_3 = \frac{C_3^2 \gamma^\omega^3 + (2 C_3^2 \sqrt{V_{s,T}^\omega} + 3 C_3)\gamma^\omega^2 + (C_3^2 V_{s,T}^\omega + 4 C_3 \sqrt{V_{s,T}^\omega})\gamma^\omega}{V_{s,T}^\omega^2} \]

\[+ \frac{6 C_3 V_{s,T}^\omega + 3}{4 V_{s,T}^\omega^2} + \frac{1}{2 \sqrt{V_{s,T}^\omega}^3 \gamma^\omega}. \]