Density operators and selective measurements.

Wlodzimierz M. Tulczyjew
Valle San Benedetto, 2
62030 Monte Cavallo, Italy
Associated with
Division of Mathematical Methods in Physics
University of Warsaw
Hoża 74, 00-682 Warszawa
and
Istituto Nazionale di Fisica Nucleare,
Sezione di Napoli
Complesso Universitario di Monte Sant’Angelo
Via Cintia, 80126 Napoli, Italy
tulczy@libero.it

1. Introduction.

It is widely believed that statistical interpretation of quantum mechanics requires that density operators representing quantum states be normalized. We present a description of selective measurements in terms of density operators. The description is inspired by Schwinger’s Algebra of Microscopic Measurements [1], (see also [2]). Density operators used are not normalized. We do not know applications of density operators requiring normalization.

2. Beams of particles.

The physical space is an affine space \(M \) of dimension 3 modelled on a vector space \(V \). There is an Euclidean metric tensor \(g: V \to V^* \).

We consider beams of particles of mass \(m \) and constant energy \(E \) in the direction of a unit vector \(z \in V \). The internal states of the particles are elements of a unitary vector space \(U \) of dimension \(r \) over the field \(\mathbb{C} \) of complex numbers. The elements of \(U \) are \textit{kets} \(|u⟩\) and elements of the dual space \(U^* \) are \textit{bras} \(⟨a| \). The unitary structure establishes an antilinear isomorphism of \(U \) with \(U^* \) assigning to each ket \(|u⟩\) a unique bra \(⟨u^†| \). The number

\[
⟨u^†_1|u_2⟩
\]

is the \textit{scalar product} of vectors \(|u_1⟩\) and \(|u_2⟩\).

We introduce a sequence of points

\[
x_0, x_1, x_2, \ldots, x_n
\]

satisfying inequalities

\[
⟨g(z), x_i - x_{i-1}⟩ > 0,
\]

and a corresponding sequence of planes

\[
X_i = \{x \in M; ⟨g(z), x - x_i⟩ = 0\}.
\]

In the immediate neighbourhood of each plane \(X_i \) the beam is not subject to external interaction and is represented by a plane wave

\[
|ψ_i(x)⟩ = |A_i⟩ \exp (ik⟨g(z), x - x_0⟩ + δ_i), \quad |A_i⟩ \in U, \quad k = \frac{\sqrt{2mE}}{\hbar}
\]

with time dependence separated. The probability flux through a unit surface element of the plane \(X_i \) is expressed by

\[
\frac{\hbar k}{m} ⟨A_i^†|A_i⟩.
\]
Between the plane \(X_{i-1}\) and the plane \(X_i\) the beam passes through a selective device. Its action on the wave function is described as the action of a linear transition operator

\[
M_i : U \rightarrow |\psi_{i-1}(x)\rangle \mapsto |\psi_i(x)\rangle = M_i |\psi_{i-1}(x)\rangle. \tag{8}
\]

If \(M_1, M_2, M_3, \ldots, M_n\) is the sequence of transition operators and

\[
|\psi_0(x)\rangle = |A_0\rangle \exp (ik\langle g(z), x - x_0 \rangle) \tag{10}
\]

is the initial state, then

\[
|M_i \cdots M_2 M_1 |A_0\rangle \exp (ik\langle g(z), x - x_0 \rangle) \tag{11}
\]

and

\[
\langle \psi_i^\dagger(x)|\psi_i(x)\rangle = \langle A_0^\dagger|M_1^\dagger M_2^\dagger \cdots M_i^\dagger M_i \cdots M_2 M_1 |A_0\rangle \tag{12}
\]

The flux of particles through unit surface element of \(X_i\) is given by

\[
\frac{\hbar k}{m} \langle A_0^\dagger|M_1^\dagger M_2^\dagger \cdots M_i^\dagger M_i \cdots M_2 M_1 |A_0\rangle. \tag{13}
\]

3. Mixed states and density operators.

The expression (13) can be presented in the form

\[
\frac{\hbar k}{m} \text{tr} (M_i \cdots M_2 M_1 |A_0\rangle \langle A_0^\dagger|M_1^\dagger M_2^\dagger \cdots M_i^\dagger) = 1 \tag{14}
\]

In this new expression the pure initial state is represented by the density operator \(|A_0\rangle \langle A_0^\dagger|\) and can be replaced by a mixed state represented by a positive Hermitian density operator \(T\). The expression

\[
\frac{\hbar k}{m} \text{tr} (M_i \cdots M_2 M_1 T M_1^\dagger M_2^\dagger \cdots M_i^\dagger) \tag{15}
\]

is the result.

4. Selective measurements.

We set the density operator \(T\) in the expression (15) equal to

\[
T = \frac{m}{\hbar kr} I, \tag{16}
\]

where \(I\) is the identity operator. The operator \(T\) is normalized in the sense that

\[
\frac{\hbar k}{m} \text{tr} T = 1 \tag{17}
\]

although this normalization is of no importance. The expression

\[
P_i = \frac{\hbar k}{m} \text{tr} (M_i \cdots M_2 M_1 T M_1^\dagger M_2^\dagger \cdots M_i^\dagger) = \frac{1}{r} \text{tr} (M_i \cdots M_2 M_1 M_1^\dagger M_2^\dagger \cdots M_i^\dagger) \tag{18}
\]

represents the probability of detecting a particle crossing a unit surface element of the plane \(X_i\) in unit time. The state of the initial beam emitted by a source at \(X_0\) is totally mixed.
We want to describe the following experimental arrangement. The initial beam emitted at \(X_0 \) undergoes a preliminary selection by a sequence of devices represented by the sequence of operators
\[
M_1, M_2, \ldots, M_j.
\] (19)
The beam undergoes further selection passing through a sequence of devices represented by operators
\[
N_1 = M_{j+1}, N_2 = M_{j+2}, \ldots, N_{n-j} = M_n.
\] (20)
The particles are detected at \(X_n \) by a non selective detector. After the preliminary selection the state of the beam is represented by the density operator
\[
N = M_j M_{j-1} \cdots M_1 T M_1 \cdots M_{j-1} M_j = \frac{m}{\hbar k r} M_j M_{j-1} \cdots M_1 M_1 \cdots M_{j-1} M_j
\] (21)
with the probability of non selective detection
\[
P_{in} = \frac{\hbar k}{m} \text{tr}(M_j M_{j-1} \cdots M_1 T M_1 \cdots M_{j-1} M_j) = \frac{\hbar k}{m} \text{tr} M
\] (22)
The beam arrives at \(X_n \) in a state represented by the density operator
\[
N_{n-j} N_{j-1} \cdots N_1 M_j M_{j-1} \cdots M_1 T M_1 \cdots M_{j-1} M_j N_1 \cdots N_{n-j-1} N_{n-j}
\] (23)
It is detected with the probability
\[
P_{out} = \frac{\hbar k}{m} \text{tr}(N_{n-j} N_{j-1} \cdots N_1 M_j M_{j-1} \cdots M_1 T M_1 \cdots M_{j-1} M_j N_1 \cdots N_{n-j-1} N_{n-j})
\]
\[
= \frac{\hbar k}{m} \text{tr}(N_1 \cdots N_{n-j-1} N_{n-j} N_{n-j-1} \cdots N_1 M_j M_{j-1} \cdots M_1 T M_1 \cdots M_{j-1} M_j)
\] (24)
\[
= \frac{\hbar k}{m} \text{tr}(NM)
\]
with
\[
N = N_1 \cdots N_{n-j-1} N_{n-j} N_{n-j-1} \cdots N_1.
\] (25)
The density operator \(N \) characterizes the selective detector. The probability \(P_{out} \) is measured at \(X_j \) by the selective detector. This measurement is performed on the mixed state represented by the operator \(M \). The relative probability
\[
P_{out}/P_{in} = \text{tr}(NM)/\text{tr} M
\] (26)
should be considered the result of the selective measurement described. Arbitrary normalization can be imposed on \(M \). Normalization of \(N \) would distort the result of the measurement.

5. An example.
In addition to the metric tensor
\[
g : V \rightarrow V^*
\] (27)
we introduce in the model space \(V \) of the physical space \(M \) an orientation \(o \) defined as an equivalence class of bases.
We analyse the internal states of a beam of particles of spin 1/2. States of particles are represented by wave functions with values in an unitary space of complex dimension 2. The set of hermitian traceless operators in \(U \) is a real vector space \(S \) of dimension 3.

The trace \(\text{tr}(ab) \) of a product is a non negative real number and the mapping
\[
S \times S \rightarrow \mathbb{R} : (a, b) \mapsto \text{tr}(ab)
\] (28)
is bilinear and symmetric. The spectrum of an operator \(a \in S \) is a pair \(\{ \alpha, -\alpha \} \) of real numbers and the spectrum of the operator \(aa \) is the set \(\{ \alpha^2, \alpha^2 \} \). It follows that \(\text{tr}(aa) = 0 \) if and only if \(a = 0 \). In conclusion we have a Euclidean scalar product

\[(|) : S \times S \to \mathbb{R} : (a, b) \mapsto (a|b) = \frac{1}{2} \text{tr}(ab). \]

(29)

We introduce the Pauli morphism

\[\sigma : V \to S. \]

(30)

This morphism is an isometry such that the operator

\[\frac{1}{2} \sigma(w) : U \to U \]

(31)

associated with each unit vector \(w \in V \) is the spin operator in the direction \(w \). Its spectrum is the set \(\{ 1/2, -1/2 \} \) and its eigenvectors represent states of the particle with spin \(1/2 \) and \(-1/2 \) in the direction of \(w \).

We introduce a number of operators in the space \(U \):

1) The projection operator

\[K(w) = \frac{1}{2} (I + \sigma(w)) \]

(32)

associated with a unit vector \(w \in V \). This operator projects onto the space of eigenstates of the spin operator \(1/2 \sigma(w) \) corresponding to the eigenvalue \(1/2 \).

2) A phase shift operator

\[D(\delta) = \exp(i\delta)I. \]

(33)

3) An attenuation operator

\[R(\rho) = \exp(-\rho/2)I. \]

(34)

4) A unitary unimodular operator

\[G : U \to U. \]

(35)

This operator represents a rotation

\[E : V \to V \]

(36)

in the sense that

\[G \sigma(w) G^{-1} = \sigma(Ew). \]

(37)

5) The operator

\[Q(w) = \frac{1}{2} (I + \sigma(w)) \]

(38)

associated with a vector \(w \in V \) of norm \(\|w\| \neq 1 \). This operator is not a projection operator.

Consider a beam undergo a preliminary selection by devices represented by \(M_1 = K(w) \) and \(M_2 = D(\delta) \). The vector \(w \) is orthogonal to the direction of the beam and the first of the devices is a Stern-Gerlach filter. It is accompanied by an unavoidable phase shift. The state prepared by these devices is a pure state represented by the density operator

\[M = M_2 M_1^T M_1^\dagger M_2^\dagger = \frac{m}{2\hbar k} K(w). \]

(39)

The selective detector is composed of devices represented by operators \(N_1 = R(\rho), N_2 = D(\delta'), \) and \(N_3 = K(w') \). The attenuation \(R(\rho) \) my be due to the beam passing through a potential barrier. The density operator

\[N = N_1^\dagger N_2^\dagger N_3^\dagger N_3 N_2 N_1 = \exp(-\rho) K(w') \]

(40)
represents the selective detector. The result of the selective measurement is the relative probability

\[P_{\text{out}}/P_{\text{in}} = \frac{\text{tr}(NM)}{\text{tr} M} = \frac{1}{2} (1 + (w'|w)) \]

since

\[\text{tr} M = 1 \]

and

\[\text{tr}(NM) = \text{tr}(\exp(-\rho)K(w')K(w)) \]
\[= \frac{1}{4} \text{tr}(\exp(-\rho)(I + \sigma(w'))(I + \sigma(w))) \]
\[= \frac{1}{4} \text{tr}(\exp(-\rho)(I + \sigma(w') + \sigma(w) + \sigma(w')\sigma(w))) \]
\[= \frac{1}{2} (1 + (w'|w)) \]

6. References.

[1] J. Schwinger, The Algebra of Microscopic Measurements, Proc. Natl. Acad. Sc. US, 45 (1959)
[2] F. A. Kaempfier, Concepts in Quantum Mechanics, Academic Press, New York and London (1965)