Particle Correlations in Nucleus -Nucleus Interactions at (4.1-4.5)A GeV/c

S. S. Abdel-Aziz

Physics Department, Faculty of Science, Cairo University, Cairo, Egypt,
Present address: Al Jouf University, Faculty of Science ,Physics Department, Saudi Arabia.
E-mail: Sayed_saleh_ssa@yahoo.com

Abstract. Analysis of correlations and fluctuations plays an important role in studies of the colored medium produced in ultra relativistic heavy-ion collisions. In the present study, particle correlations for the multiparticle emitted in the interactions of 12C, 16O, 28Si (4.5 A GeV/c), and 22Ne (4.1 A GeV/c) projectiles with emulsion have been investigated in both of the pseudo rapidity interval and the azimuthal interval. The results are showed formation of hadronic or baryonic cluster which may reflect the sideward flow of nuclear matter.

1. Introduction

The motivation of studying high energy nucleus-nucleus interaction is to learn about the space-time development of high-energy reactions within very small distances and short time from impact. At very high energies, the projectile does not have a chance to terminate an interaction with a nucleon before it starts to reach with another. This should produce an intensive mixing of color degrees of freedom of nucleons forming quark-gluon plasma (QGP) domain or clusters. The decolouring process needs certain time during which an intermediate system may be formed. This hadronic excited cluster may collect target nucleons in its way inside the nucleus, which leads to observation of baryonic clusters in the process of target nucleus destruction [1]. The study of correlation effects in heavy-ion collisions at high energies gives valuable information about the mechanism of interaction forming a multiparticle production and a hot nuclear matter. The search for cluster formation in nuclear interactions may shed light on the mechanisms of QGP formation [2].

Analysis of correlations and fluctuations plays an important role in studies of the colored medium produced in ultra relativistic heavy-ion collisions [3–5]. In-medium modification of patron scattering and fragmentation of energetic partons by the bulk medium produced in heavy-ion collisions may significantly alter large-momentum scale two-particle correlations relative to those observed in p–p collisions. Large-momentum scale correlations may result from initial-state multiple scattering [6, 7], in-medium dissipation of scattered energetic partons [8] and hadronization of the colored medium to final-state hadrons. J. Adams et al. [9], present the first measurements of charge dependent correlations on angular difference variables η1 – η2 (pseudorapidity) and (Φ1 – Φ2) (azimuth) for primary charged hadrons with transverse momentum 0.15 ≤ PT ≤ 2GeV/c and |η| ≤ 1.3 from Au–Au collisions. In the present work the distributions of angle intervals of shower and grey particles emitted from the interactions 12C, 16O, 28Si (4.5 A GeV/c), and 22Ne (4.1 -4.5)A GeV/c projectiles with Emulsion nuclei. A comparison between these experimental distributions and the corresponding
independent particle emission (IPE) distributions was done. The study of two particle correlations between the spatial emission angle ϑ of the produced particles for the same interactions is also analyzed.

2. Experimental Techniques

In the investigation of the multifragmentation at relativistic energies, the possibilities of observing the final states consisting of charged fragments and their spectroscopy are defined by the accuracy of angular measurements. Nuclear emulsion stacks of the type Br-2 were exposed to different projectiles (4.1A GeV/c 22Ne and 4.5A GeV/c 12C, 16O and 28Si beams) at the Dubna Synchrophasotron. The pellicles have dimensions of 20 cm x 10 cm x 600 ~ (undeveloped emulsion). The intensity of the beam was about 10^4 particles per 1 cm2 and its diameter was about one centimeter. The track scanning was carried out. All charged secondary particles have been classified, according to the velocity $\beta = v/c$, the range L in the emulsion and the relative ionization $I_r = I/I_0$ where I is the particle track ionization and I_0 is that for a singly charged relativistic shower track in the narrow forward cone of an opening angle $\Delta \eta \sim 3^\circ$ [10]. The groups of particles are: shower (s) particles having $1.4 \leq L \leq 5$ ($\beta > 0.7c$), grey (g) particles, having $I_r > 1.4$, $(0.3c \leq \beta \leq 0.7c)$, these are charged recoil nucleons and black (b) particles, having $(\beta < 0.3c)$, these are slow nucleons and nuclear target fragments. The sum of b and g particles is called heavily ionizing tracks producing particles “h-particles”. The determination of the momentum of s-particles emitted within $\theta \leq 3^0$ enables the separation of produced pions from the noninteracting single-charged particle fragment [11, 12]. The grey particles emitted within $\theta \leq 3^0$ and having $L > 2cm$ are considered to be projectile fragments having $Z = 2$. The b-particles, of $\theta \leq 3^0$ and $L > 1cm$, are due to projectile fragments having $Z \geq 3$. Thus all the particles have been adequately divided into projectile fragments, target fragments, and the generated shower particles.

3. Results and discussion:

To search for hadronic clusters we can use the quantitative method of pseudo rapidity intervals $\Delta \eta$. For this purpose the pseudorapidity $\eta = -\ln(\tan(\theta/2))$ was calculated for each shower particle produced in the interactions of 4.1 A GeV/c 22Ne-Em and 4.5A GeV/c 12C and 28Si, the $\Delta \eta$ distribution should be uniform in the studied range of $\Delta \eta$. In the present work, the $\Delta \eta$-distribution was found to be flat, within the experimental errors, in the range of η in (0.56 to 3.07). This enables us to calculate $\Delta \eta$ in the given range.

$$ (\Delta \eta)^k_{ij} = \eta_i - \eta_j $$

(1)

The quantity $(\Delta \eta)^k_{ij}$ means the pseudorapidity interval between the i^{th} and j^{th} particles such that k particles are laying between them ($i \neq j$, $i, j = 1, 2$.) The values of $\Delta \eta$ were resealed in each event such that,

$$ (\Delta \eta)^k_i = (\eta_i - \eta_{\min})/(\eta_{\max} - \eta_{\min}); \quad \eta_{\min} \leq \eta_i \leq \eta_{\max} $$

(2)

Taking values from zero to unity, where η_{\min} and η_{\max} are the minimum and maximum values of η in the considered event. If the shower particles are emitted independently and no correlations exist between them, their η distribution will have a binomial shape, so that the experimental data are compared with the (IPE) $\Delta \eta$-distribution is given by:

$$ ((dN)/(d\eta))^n_k = C_n^{k-1} \eta^k (1-\eta)^{n-k-1} $$

(3)

Where $C_n^{k-1} = (n-l)l!(n-k-l)!$. The normalized $\Delta \eta$ - distributions were obtained for different values of n and k (Table (1)). A deviation between the positions of maxima of the experimental $\Delta \eta$ distribution and the IPE one was observed. From these figures, it is seen that the experimental $\Delta \eta$ distribution (histogram) is shifted to the left, i.e. to the lower values of $\Delta \eta$ with respect to the IPE one (solid curve). This is indicates a correlation between the emitted shower particles in the considered interval which may be interpreted as a formation and a subsequent decay of a big hadronic cluster during the multiple production process. This is consistent with the formation of excited hadronic
cluster, which acquires greater size while moving inside the target nucleus [11]. To investigate whether the motion of hadronic cluster inside the target nucleus is accompanied by a baryonic one, which may be, formed from the target nucleus nucleons [1], the same mathematical method utilized in searching for hadronic cluster was used. So for each event we defined the azimuthal angle intervals $(\Delta \Phi)^k_{ij}$ for the grey particles putting Φ in eq.(1) instead of η. The IPE $(\Delta \Phi)^k_{ij}$ distribution is obtained according to eq. (2), making sure that the $\Delta \Phi$–distribution of grey particles is uniform. The values of $\Delta \Phi$ were resealed in each event such that, $(\Delta \Phi)^k_{ij} = (\Phi^i - \Phi_{\text{min}}) / (\Phi_{\text{max}} - \Phi_{\text{min}}) ; \Phi_{\text{min}} \leq \Phi^i \leq \Phi_{\text{max}}$ (4)

Figures 1 (a, b) illustrate the statistical significance for ^{22}Ne, ^{28}Si, respectively, From these figures, it is observed that there is a shift in experimental $\Delta \Phi$–distributions to the left from that of IPE one. This indicates the existence of strong correlation between grey particles, which may be due to the formation of baryonic clusters. It is consistent with the previous data [10].

Two particle correlation can be investigated by using the normalized two-particle correlation function,

$$R_2(\eta_1, \eta_2) = \frac{N_{\text{pair}}(\eta_1, \eta_2)}{N_{\eta_1}N_{\eta_2}} - 1$$ (5)

Where N_{pair} is the total number of events in the sample, N_{η_1} and N_{η_2} are the total number of particles for all events, $N_{\text{pair}}(\eta_1, \eta_2)$ is the total number of particle pairs with one particle at η_1 and the other at η_2 in the same event, summed over all events. A non-zero value of $R_2(\eta_1, \eta_2)$ means that the particles considered are correlated. From figures (3, 4) it is seen that there is a relatively strong correlation at lower values of pseudorapidity, such that $\Delta \eta$ has negative-values (peaked at $\Delta \eta \approx -2$). At higher values of the rapidity this correlation disappears.

4. Conclusions

From the study of the interactions of ^{12}C, ^{16}O, ^{28}Si (4.5 A GeV/c), and ^{22}Ne (4.1 A GeV/c) projectiles with emulsion, correlations has been observed in the pseudorapidity distribution for shower particles. Similar correlations have been observed in the azimuthal angle distribution for grey particles. These correlations indicate the formation and the subsequent decay of big hadronic and baryonic clusters. This interpretation is consistent with a physical picture in which a hetrophase state of hadronic and quark gluon plasma has been formed during the collisions of heavy ions with nuclei at high energies. The formation of a big baryonic cluster may explain the phenomenon of complete destruction of heavy target nuclei. The two particle correlation function, in the rapidity space, is positive except in the projectile fragmentation region, i.e. the most forward region (at high values of pseudorapidity).

References

[1] Ahrar H., Zafar M. and Shafi M., Phys. Scr.33(1986) 29.
[2] Bannik et al., J.Phys.G14(1988)578.
[3] R. Stock, Nucl. Phys. A 661 (1999) 282c,
H.Heiselberg, Phys. Rep. 351 (2001) 161.
[4] A. Dumitr, R. Pisarski, Phys. Lett. B 504(2001) 282.
[5] L.M. Bettencourt, K. Rajagopal, J.V. Steele,Nucl. Phys. A 693 (2001) 825,
J. Adams et al., Physics Letters B 634 (2006) 347.
[6] M. Gazdzicki, A. Leonidov, G. Roland, Eur.Phys. J. C 6 (1999) 365.
[7] X.-N. Wang, M. Gyulassy, Phys. Rev. D 44(1991) 3501.
[8] Q.J. Liu, T. A Train Physics Letters B 634(2006) 347–355or, Phys. Lett. B 567 (2003)184.
[9] J. Adams et al ., Physics Letters B 634 (2006)347–355.
[10] El-Naghy et al., IL Nuvo Cim. No 2 (1994)279.
[11] Kalinkin B.N., Cherbu A.V. and Shmonin V.L,Acta Phys.Pol.B (1979) 247.
[12] S. S. Abdel-Aziz, Can.J.Phys , 84 (2006) 925.
Table 1. The values of (η_{max}) for the Experimental and (η_{max}) for IPE distributions (i.e. the theoretical calculations from eq. (3)) obtained for the interactions of 12C, 16O, 28Si (4.5 A GeV/c), and 22Ne (4.1 A GeV/c) projectiles with Ag(Br).

n	k	Projectile	(η_{max}) for Experimental	(η_{max}) for IPE
30	13	12C	0.38	0.47
30	20	12C	0.30	0.37
30	13	16O	0.31	0.39
30	20	16O	0.38	0.47
30	13	22Ne	0.35	0.45
30	20	22Ne	0.60	0.75
30	13	28Si	0.35	0.45
30	20	28Si	0.55	0.65

Figure 1. (a,b): Illustrate the statistical significance for 22Ne, 28Si, respectively.

Figures 2. (a,b): Show the experimental azimuthal angular intervals $\Delta \Phi$ distributions for grey particles together with the corresponding IPE ones for 22Ne, 28Si interactions respectively.
Figures 3. Represents the dependence of $R_2(\eta_1, \eta_2)$ on η_1 for 22Ne, and 28Si-Em interactions.

Figures 4. Shows the dependence of $R_2(\eta_1, \eta_2)$ on $(\eta_1 - \eta_2)$ for 22Ne, and 28Si-Em interactions.