DISCRETE SOLITARY WAVES IN SYSTEMS WITH NONLOCAL INTERACTIONS AND THE PEIERLS-NABARRO BARRIER

M. JENKINSON AND M.I. WEINSTEIN

Abstract. We study a class of discrete focusing nonlinear Schrödinger equations (DNLS) with general nonlocal interactions. We prove the existence of onsite and offsite discrete solitary waves, which bifurcate from the trivial solution at the endpoint frequency of the continuous spectrum of linear dispersive waves. We also prove exponential smallness, in the frequency-distance to the bifurcation point, of the Peierls-Nabarro energy barrier (PNB), as measured by the difference in Hamiltonian or mass functionals evaluated on the onsite and offsite states. These results extend those of the authors for the case of nearest neighbor interactions to a large class of nonlocal short-range and long-range interactions. The appearance of distinct onsite and offsite states is a consequence of the breaking of continuous spatial translation invariance. The PNB plays a role in the dynamics of energy transport in such nonlinear Hamiltonian lattice systems. Our class of nonlocal interactions is defined in terms of coupling coefficients, \(J_m \), where \(m \in \mathbb{Z} \) is the lattice site index, with \(J_m \sim m^{-1-2s}, s \in [1, \infty) \) and \(J_m \sim e^{-\gamma|m|}, s = \infty, \gamma > 0 \), (Kac-Baker). For \(s \geq 1 \), the bifurcation is seeded by solutions of the (effective / homogenized) cubic focusing nonlinear Schrödinger equation (NLS). However, for \(1/4 < s < 1 \), the bifurcation is controlled by the fractional nonlinear Schrödinger equation, FNLS, with \((-\Delta)_1^s \) replacing \(-\Delta \). The proof is based on a Lyapunov-Schmidt reduction strategy applied to a momentum space formulation. The PNB barrier bounds require appropriate uniform decay estimates for the discrete Fourier transform of DNLS discrete solitary waves. A key role is also played by non-degeneracy of the ground state of FNLS, recently proved by Frank, Lenzmann & Silvestre.

Key words. Discrete nonlocal nonlinear Schrödinger equation, onsite and offsite solitary waves, bifurcation from continuous spectrum, Peierls-Nabarro energy barrier, intrinsic localized modes

1. Introduction. In this paper we study the discrete, focusing and cubically nonlinear Schrödinger equations with nonlocal interactions. We consider the both short-range and long-range interactions. We prove the existence of onsite and offsite discrete solitary waves, which bifurcate from the trivial solution at the endpoint frequency of the continuous spectrum of linear dispersive plane waves. This is the limit of long waves of small amplitude. The profile of such states is, at leading order, expressible in terms of the ground state of the continuum, in general fractional, nonlinear Schrödinger equation. Further, we prove exponential smallness, in the frequency-distance to the bifurcation point, of the Peierls-Nabarro energy barrier (PNB), as measured by the difference in Hamiltonian or mass functionals evaluated on the onsite and offsite states.

The appearance of both onsite and offsite states is a discreteness effect, in particular a consequence of the breaking of continuous translation invariance, and is therefore not captured by continuum approximations (homogenization, effective media). The PNB has played a role in a physical understanding of the dynamics of energy transport in nonlinear Hamiltonian lattice systems since the pioneering work of Peyrard and Kruskal [40]. In particular, the PNB is interpreted as the energy a localized discrete wave must expend (shed to dispersive radiation) in order to transit from one lattice site to the next.

Such radiation damping is the mechanism through which a traveling discrete localized structure slows and eventually gets trapped and pinned to a lattice site; see the discussion in the introduction to [23] and, for example, see [23] [28] [29]. On the general subject of the role of radiation damping in extended Hamiltonian systems and applications see, for example, [41] [42] [43] [44].

1.1. DNLS and FNLS. We consider the discrete and nonlocal nonlinear Schrödinger equation (DNLS)

\[
 i\partial_t u_n(t) = -(\mathcal{L}u)_n(t) - |u_n(t)|^2 u_n(t), \text{ } n \in \mathbb{Z}, \text{ } t \geq 0
\]

(1.1)

Here, \(\mathcal{L} \) is a linear and nonlocal interaction operator:

\[
 (\mathcal{L}u)_n = \sum_{m \in \mathbb{Z}} J_{|m-n|} (u_m - u_n).
\]

(1.2)

The range of the nonlocal interaction is characterized by the rate of decay of the coupling sequence, \(\{J_m\} \). Nonlocal interactions arising in applications typically have coupling sequences, \(J_m = J_m^0 \) with polynomial decay \(J_m^0 \approx m^{-1-2s} \), \(0 < s < \infty \), or exponential (Kac-Baker) decay: \(J_m^\infty \approx e^{-\gamma m}, \gamma > 0 \). We refer to the case \(s > 1 \) as the short-range interaction case, and the case \(0 < s < 1 \) as long-range interaction case. The case \(s = 1 \) is the critical or marginal range interaction. The case \(J_0 = 0, J_\pm 1 = 1 \) and \(J_m = 0, |m| \geq 1 \), the operator \(\mathcal{L} \) corresponds to the nearest-neighbor discrete Laplacian.
DNLS is a Hamiltonian system, expressible in the form
\[i\partial_t u = \frac{\delta H[u, \bar{u}]}{\delta u}, \text{ where} \]
\[H[u, \bar{u}] = \frac{1}{2} \sum_{n \in \mathbb{Z}} \sum_{m \neq n} J_{|m-n|} |u_m - u_n|^2 - \frac{1}{2} |u_n|^4. \]

We note the following basic result concerning \(L \) acting on \(L^2(\mathbb{Z}) \).

Proposition 1.1. Assume \(J = \{J_m\}_{m \in \mathbb{Z}} \) is non-negative \((J_m \geq 0) \), symmetric \((J_m = J_{-m}) \), and \(J \in l^1(\mathbb{Z}) \). Then,
1. \(L \) is a bounded linear operator on \(L^2(\mathbb{Z}) \).
2. \(L \) is self-adjoint.
3. \(-L\) is non-negative.
4. The spectrum of \(-L\) is continuous and equal to \([0, M_s] \), where \(M_s = 4 \max_{q \in [-\pi, \pi]} \sum_{m=1}^{\infty} J_m \sin^2 \left(\frac{2\pi m}{2} \right) \).

Proof: Young’s inequality implies boundedness. The other details of the proof are presented in Appendix C.

The initial value problem is globally well-posed, in the sense that for each \(J = \{J_m\}_{m \in \mathbb{Z}} \in l^2(\mathbb{Z}) \) there exists a unique global solution \(u(t) = \{u_n(t)\}_{n \in \mathbb{Z}} \in C^1([0, \infty), l^2(\mathbb{Z})) \). Time translation invariance implies that \(H[u, \bar{u}] \) is time-invariant on solutions and the invariance \(u \mapsto e^{it}u \) implies the time-invariance of
\[N[u, \bar{u}] = \sum_{n \in \mathbb{Z}} |u_n|^2. \]

In [28] it was proved by Kirkpatrick, Lenzmann and Staffilani that on any fixed time interval, \([0, T]\), the family of solutions which is parametrized by a discretization parameter tending to zero, converges in some norm to the solution of the initial value problem for the, in general, fractional nonlinear Schrödinger equation (FNLS) with focusing cubic nonlinearity:
\[i\partial_t u(x,t) = (-\Delta_x)^s u(x,t) - |u(x,t)|^2 u(x,t), \quad x \in \mathbb{R}, \quad t \in \mathbb{R}. \]

where \(p = p(s) = \min(1, s) \) depends on the interaction range parameter, \(s \). (In terms of the Fourier transform, \(F \) and its inverse \(F^{-1} \), we define \((-\Delta)^s v(x) = F^{-1} [q^p F v(q)] (x) \).) Thus, if the interaction is sufficiently short-range \((s \geq 1) \), the limiting equation is the standard cubic nonlinear Schrödinger equation, while if interactions are longer range \((0 < s < 1) \) the limiting equation is the fractional nonlinear Schrödinger equation (FNLS) with fractional Laplacian, \((-\Delta)^s \).

Remark 1.1 (Discrete nonlinear systems as physical models). Discrete nonlinear dispersive systems arise in nonlinear optics, e.g. [2, 10, 11, 12, 13, 14], the dynamics of biological molecules, e.g. [7, 7], and condensed matter physics. For example, they arise in the study of intrinsic localized modes in anharmonic crystal lattices, e.g. [3, 29]. See also [4, 20]. In these fields, discrete systems arise either as phenomenological models or as tight-binding approximations; see also [33, 34]. There is also a natural interest in such systems as discrete numerical approximations of continuum equations.

Nonlocal discrete models such as nonlocal DNLS addressed in this paper are of particular interest in several of the fields above where atomic interactions occur at length scales considerably larger than those accounted for by models with nearest-neighbor coupling [18, 24, 10, 24, 10].

A case of particular interest with respect to the coupling potential \((1.17) \) is \(s = 1 \), which corresponds to dipole-dipole interactions in biopolymers [18]; this is the threshold value of \(s \) which marks the transition between the standard and fractional continuum Laplacian limits; see Theorem 3.1. The case of Coulomb interactions corresponding to \(s = 0 \) is also of interest in this context, though we do not address it here. The exponential (Kac-Baker) coupling sequence is of considerable interest in both models of statistical physics and again in the dynamics of lattice models of biopolymers [16, 24, 18].

Continuum models with nonlocal effects such as FNLS also arise in several contexts including path-integral formulations of quantum mechanics [17], deep water internal and small-amplitude surface wave fluid dynamics [4, 27, 52], semi-relativistic quantum mechanics (astrophysics) [32, 17], and as the continuum limits of the aforementioned long-range discrete models [28, 50, 51, 7, 7].
Cubic FNLS has, for $1/4 < p \leq 1$ and for any frequency $\omega < 0$, a standing wave solution:

$$u_\omega(x,t) = e^{-i\omega t} \psi_{|\omega|}(x),$$ \hspace{1cm} (1.7)

where $\psi_{|\omega|}(x)$ is the unique positive nonlinear ground state solution to the nonlinear eigenvalue problem

$$(-\Delta x)^p \psi_{|\omega|}(x) - \psi_{|\omega|}(x)^3 = \omega \psi_{|\omega|}(x), \quad u \in H^p(\mathbb{R})$$ \hspace{1cm} (1.8)

This solution is radially symmetric and decreasing to zero at spatial infinity \cite{13, 14}; see also Proposition \ref{prop:radial}.

Thus, $\psi_{|\omega|}(x) = \sqrt{|\omega|} \; \psi_1 \left(|\omega|^{1/2p} x \right) = \sqrt{|\omega|} \; \psi \left(|\omega|^{1/2p} x \right)$, where we adopt the abbreviated notation: $\psi(x) \equiv \psi_1(x)$.

Remark 1.2. Although the dynamics \eqref{1.1} are defined for any choice of $\{J_m\}_{m \in \mathbb{N}}$ in $l^1(\mathbb{N})$, we shall restrict our attention to the case $\{J_m^p\}_{m \in \mathbb{N}}$ in \eqref{1.17} for $s > 1/4$. The constraint on the range of the nonlocal interaction is the range for which the limiting fractional NLS equation has nonlinear bound state solutions. See Proposition \ref{prop:continuum} Theorem \ref{thm:continuum} and Remark \ref{rem:continuum}.

A key recent advance in the analysis of fractional / nonlocal equations, which plays a central role in the current work, are the results of Frank, Lenzmann and Silvestrie \cite{14} on the uniqueness and non-degeneracy of the ground state solitary waves of FNLS. Our bifurcation results are perturbative about the FNLS limit and are based on an application of an implicit function theorem to a nonlinear mapping acting on a space of functions defined on momentum space. That the differential of this mapping, evaluated at the FNLS ground state, is an isomorphism between appropriate spaces is a consequence of this non-degeneracy.

Remark 1.3. The continuum nonlinear Schroedinger equation (NLS), with local dispersion corresponding to $p = 1$ is Galilean invariant. Hence, any solitary standing wave of NLS can be boosted to a solitary traveling wave; see \cite{25}. In \cite{24, 21}, non-deforming traveling solitary waves of FNLS $i\partial_t u(x,t) = (-\Delta x)^p u(x,t) - |u(x,t)|^2 u(x,t), \quad 1/2 \leq p < 1$ were shown to exist. This is in direct contrast with the discrete setting, where the PNB phenomenon occurs due to the breaking of continuous translational symmetries. In \cite{29}, traveling waves of the form $u(x,t) = e^{it} U_{\omega,v}(x-\gamma t)$, $|v| < 1$ are shown to occur for $p = 1$. In \cite{21}, waves of the form $u(x,t) = e^{-it(|v|^{2p} - \omega^2 p)} U_{\omega,v} \{x - 2t|v|^{2p-2} v\}$, $\omega > 0, v \in \mathbb{R}$ for $1/2 < p < 1$, are constructed.

1.2. Discrete nonlocal solitary standing waves near the continuum limit. In analogy with the case of nearest-neighbor DNLS \cite{23}, we seek discrete solitary standing waves of DNLS with nonlocal interactions:

$$u_n(t) = e^{-i\omega t} G_n, \quad n \in \mathbb{Z} \quad \text{where} \quad \omega < 0.$$ \hspace{1cm} (1.9)

Thus, $G = \{G_n\}_{n \in \mathbb{Z}}$ satisfies the nonlinear algebraic eigenvalue problem:

$$-(\mathcal{L}^* G)_n - |G_n|^2 G_n = \omega G_n, \quad n \in \mathbb{Z}; \quad G \in l^2(\mathbb{Z}),$$ \hspace{1cm} (1.10)

where \mathcal{L}^* is defined by \eqref{1.2} and $J_m^p \simeq m^{-1-2s}$, for $0 < s < \infty$ and $J_m^\infty \simeq e^{-\gamma m}, \quad \gamma > 0$ for $s = \infty$. The precise expressions for J_m^p is displayed below in \eqref{1.17}.

The goal of this work is to obtain a precise understanding of the onsite symmetric and offsite symmetric discrete solitary standing waves of DNLS with short- and long-range nonlocal interactions.

Definition 1.2 (Onsite symmetric and offsite symmetric states in one spatial dimension).

Let $G = \{G_n\}_{n \in \mathbb{Z}}$.

1. A solution to equation \eqref{1.10} is referred to as onsite symmetric if for all $n \in \mathbb{Z}$, it satisfies $G_n = G_{-n}$. In this case, G is symmetric about $n = 0$.

2. A solution to equation \eqref{1.10} is referred to as offsite symmetric or bond-centered symmetric if for all $n \in \mathbb{Z}$, it satisfies $G_n = G_{-n+1}$. In this case, G is symmetric about the point halfway between $n = 0$ and $n = 1$.
Substituting (1.11) for α power 1 in (1.10) and long-range coupling ($s = 0.5$, dashed line). Here, there is large scale separation between the width of the discrete standing wave and the unit lattice spacing. Solutions are expected to approach a (homogenized or averaged) continuum FNLS equation with fractional power $1/4 < p \leq 1$ to be determined.

We seek spatially localized onsite and offsite solutions of (1.10) in the long wave limit as $\omega \to 0$. Examples of such states are displayed in figure 1.1. Here, there is large scale separation between the width of the discrete standing wave and the unit lattice spacing. Solutions are expected to approach a (homogenized or averaged) continuum FNLS equation with fractional power $1/4 < p \leq 1$ to be determined.

We study the limit $\omega \to 0$ through the introduction of a single small parameter, $\alpha > 0$. Introduce the continuous function where $\kappa_s(\alpha) = -\omega > 0$, where $\kappa_s(\alpha) \to 0$ as $\alpha \downarrow 0$ is appropriately chosen. Then, $G = \{G_n\}_{n \in \mathbb{Z}}$ satisfies the nonlinear eigenvalue problem

$$-\kappa_s(\alpha) G_n = -(\mathcal{L}^*G)_n - |G_n|^2G_n, \quad G \in l^2(\mathbb{Z}).$$

The precise form of $\kappa_s(\alpha)$ is displayed below in (1.21) and depends on whether the coupling interaction operator \mathcal{L}^* is long-range ($1/4 < s < 1$), short-range ($1 < s \leq \infty$), or critical ($s = 1$). Thus, the study of nonlocal DNLS in the limit $\omega \to 0^-$ is equivalent to the study of $\alpha \to 0^+$. Onsite and offsite nonlinear bound states of (1.11) arise as bifurcations of non-trivial localized states from the zero state at frequency $\kappa_s(0) = 0$, the bottom of the continuous spectrum of $-\mathcal{L}^*$ (Proposition 1.1).

Remark 1.4. In [28], Kirkpatrick et. al. address the so-called continuum limit, $h \to 0$ of the following nonlocal DNLS equation:

$$i\partial_tv_n(t) = -\frac{1}{\kappa_s(h)} (\mathcal{L}v)_n(t) - |v_n(t)|^2v_n(t), \quad n \in \mathbb{Z}, \quad t \geq 0, \quad h > 0. \quad (1.12)$$

Here, $h > 0$ is the lattice spacing. This is a limit of interest in numerical computations. Solutions $v_n(t) = v_n^h(t) = v^h(mh, t)$ are expected to approach, as $h \to 0$, those of continuum FNLS, $u^{h=0}(x, t)$, with fractional power $1/4 < p \leq 1$ to be determined. Equation (1.12) may be mapped to (1.1) via the substitution $v_n(t) = \kappa_s(h)^{-1/2} u_n(\kappa_s(h)^{-1} t)$.

Time-periodic bound states $v_n(t) = e^{-i\omega t} g_n$, $\omega < 0$ of (1.12) satisfy

$$\omega g_n = -\frac{1}{\kappa_s(h)} (\mathcal{L}g)_n - |g_n|^2g_n, \quad \{g_n\}_{n \in \mathbb{Z}} \in l^2(\mathbb{Z}). \quad (1.13)$$

Substituting $g_n = \kappa_s(h)^{-1/2} G_n$ and taking $\kappa_s(\alpha) = \omega \kappa_s(h)$, we obtain (1.11).

1.3. Main results. Our main results concern the existence and energetic properties of localized solutions of (1.11) for α, and therefore $\kappa_s(\alpha)$, small.
1. **Theorem 3.1** Bifurcation of onsite and offsite states of nonlocal DNLS: Let the sequence of coupling coefficients, \(\{J_n\}_{n \in \mathbb{Z}} \), of nonlocal DNLS be (1) the polynomially decaying sequence (1.17) with coupling decay rate \(1/4 < s < \infty \), or (2) the exponentially decaying sequence (1.17) for which we set \(s = \infty \). Then there exist families of onsite (vertex-centered) symmetric and offsite (bond-centered) symmetric solitary standing waves of (1.11) (in the sense of Definition 1.2), which bifurcate for \(\alpha \geq 0 \) from the continuum limit ground state solitary wave of fractional NLS (1.8) with fractional power \(p = \min(1, s) \).

2. **Theorem 3.2** Exponential smallness of the Peierls-Nabarro barrier: Let \(\eta = \min(1, 2s) \). Then, there exist positive constants \(\alpha_0 \) and \(C > 0 \) such that for all \(0 < \alpha < \alpha_0 \), we have:

\[
\begin{align*}
\| \mathcal{H}[G_{\alpha, \text{on}}] - \mathcal{H}[G_{\alpha, \text{off}}] \| & \leq \frac{\kappa_s(\alpha)}{\alpha} e^{-C/\alpha^p}, \\
\| N[G_{\alpha, \text{on}}] - N[G_{\alpha, \text{off}}] \| & \leq \frac{\kappa_s(\alpha)}{\alpha} e^{-C/\alpha^p}.
\end{align*}
\]

(1.14)

Remark 1.5. Theorem 3.2 is subtle - to any polynomial order in the small parameter, \(\alpha \), \(G_{\alpha, \text{on}} \) and \(G_{\alpha, \text{off}} \) are discrete translates of one another by a half integer, but differ at exponentially small order in \(\alpha \).

Figure 1.2. Left: bifurcation of onsite symmetric solutions of nonlocal discrete NLS for \(s = 5, 1, 0.5, 0.375 \) (respectively from bottom to top along the vertical axis). Right: bifurcation of offsite symmetric solutions of nonlocal discrete NLS for \(s = 5, 1, 0.5, 0.375 \) (respectively from bottom to top along the vertical axis).

1.4. **Strategy of proofs of Theorem 3.1 and Theorem 3.2** The limit \(\kappa_s(\alpha) \downarrow 0 \) for \(\alpha \to 0 \) in (3.3) is related to the continuum FNLS limit. In order to compare the spatially discrete and spatially continuous problems, it is natural to work with the discrete and continuous Fourier transforms respectively; both are functions of a continuous (momentum) variable.

Let \(\hat{g}(q) = \mathcal{F}_D[g](q) \) denote the discrete Fourier transform on \(\mathbb{Z} \) of the sequence \(g = \{g_n\}_{n \in \mathbb{Z}} \) and let \(\hat{f}(q) = \mathcal{F}_C[f](q) \) denote the continuous Fourier transform on \(\mathbb{R} \) of \(f : \mathbb{R} \to \mathbb{C} \); see Section 1.8.1 for definitions and Appendix B for a discussion of key properties. The following proposition characterizes onsite symmetric and offsite symmetric states on the integer lattice, \(\mathbb{Z} \), in terms of the discrete Fourier transform. The proof follows from a direct calculation using the definition of the discrete Fourier transform and its inverse [24].

Proposition 1.3.

(a) Let \(G = \{G_n\}_{n \in \mathbb{Z}} \in L^2(\mathbb{Z}) \) be real and onsite symmetric in the sense of Definition 1.2. Then, \(\hat{G}(q) \), the discrete Fourier transform of \(G \), is real-valued and symmetric. Conversely, if \(G(q) \) is real and symmetric, then \(\mathcal{F}_D^{-1}[G] \), its inverse discrete Fourier transform, is real and onsite symmetric.
(b) If $G = \{G_n\}_{n \in \mathbb{Z}} \in l^2(\mathbb{Z})$ is real and offsite symmetric in the sense of Definition \([1,2]\) then

$$
\hat{G}(q) = e^{-i q/2} \hat{K}(q),
$$

(1.15)

where $\hat{K}(q)$ is real and symmetric. Conversely, if $\hat{G}(q) = e^{-i q/2} \hat{K}(q)$, where $\hat{K}(q)$ is real and symmetric, then $\mathcal{F}^{-1}_D [\hat{G}]$ is real and offsite symmetric.

Motivated by Proposition \([1,3]\), we first rewrite the equation for a DNLS standing wave profile (onsite or offsite) $G = G^{\sigma, \alpha, s} \in l^2(\mathbb{Z})$, \([1.11]\), in discrete Fourier space for $\hat{G}(q) = e^{-i q/2} \hat{K}(q)$, where $K = \hat{K}^{\sigma, \alpha}$ satisfies $K(q + 2\pi) = \hat{K}(q)$. Here, $\sigma = 0$ corresponds to the onsite case and $\sigma = 1/2$ to the offsite case. Note that $\hat{K}(q)$ is determined by its restriction, $\hat{c}(q)$, to the fundamental cell $q \in B = [-\pi, \pi]$ (Brillouin zone): we often suppress the dependence on α, s, and σ for notational convenience.

We obtain the following equation for $\hat{c}(q)$, defined for $q \in \mathbb{R}$:

$$
[k_s(\alpha) + \text{the}(q)] \hat{c}(q) - \frac{\chi_s(q)}{4\pi^2} \left(\hat{\phi} \ast \hat{\phi} \ast \hat{\phi} \right)(q)
- \frac{\chi_s(q)}{4\pi^2} \sum_{m=\pm1} e^{2m \pi i \sigma} \left(\hat{\phi} \ast \hat{\phi} \ast \hat{\phi} \right)(q - 2m \pi) = 0.
$$

(1.16)

where $\chi_s(q)$ is the characteristic function on $B = [-\pi, \pi]$. Here, $M^s(q)$ is the discrete Fourier symbol of the operator $-\mathcal{L}^s$: $M^s(q) = 4 \sum_{m=1}^{\infty} J^s_m \sin^2(qm/2)$; see \([3.1]\) and Lemma \([C.1]\). In particular, we take

$$
J^s_m = \begin{cases}
C^s_{\alpha}^{-1} m^{-1-2s} & : 1/4 < s < \infty \\
C^s_{\alpha}^{-1} e^{-\gamma m} & : s = \infty; \quad \gamma > 0, \quad \text{constant}.
\end{cases}
$$

(1.17)

The positive constant, C^s_{α}, is chosen so that the expansion of $M^s(q)$, for small q, leads to an effective limiting ($\alpha \downarrow 0$) continuum equation in which $(-\Delta)^s$ has a coefficient equal to one (unit effective mass).

Toward a formal determination of a limiting equation, we introduce rescalings of the momentum: $Q = q/\alpha$ and $\hat{\Phi}(Q) = \rho(\alpha) \hat{c}(q/\alpha)$, where $\rho(\alpha)$ is to be determined. Substitution into \((1.16)\) and dividing by $\kappa_s(\alpha) \rho(\alpha)$, we obtain the following equation for $\hat{\Phi}(Q)$:

$$
D^{\sigma, \alpha}[\hat{\Phi}] \equiv [1 + M^s_{\alpha}(Q)] \hat{\Phi}(Q) - \frac{\chi_{s_{\alpha}}(Q)}{4\pi^2} \left(\frac{\alpha^2 \rho(\alpha)^2}{\kappa_s(\alpha)} \right) \left(\hat{\Phi} \ast \hat{\Phi} \ast \hat{\Phi} \right)(Q)
+ \left(\frac{\alpha^2 \rho(\alpha)^2}{\kappa_s(\alpha)} \right) \left[R^s_{\alpha} \hat{\Phi}(Q) \right] = 0.
$$

(1.18)

Here, $\chi_{s_{\alpha}}(Q)$ is characteristic function of B_{α}, $M^s_{\alpha}(Q) = \frac{1}{\kappa_s(\alpha)} M^s(Q \alpha)$ and

$$
R^s_{\alpha} \hat{\Phi}(Q) = -\frac{\chi_{s_{\alpha}}(Q)}{4\pi^2} \sum_{m=\pm1} e^{2m \pi i \sigma} \left(\hat{\Phi} \ast \hat{\Phi} \ast \hat{\Phi} \right)(Q - 2m \pi / \alpha).
$$

(1.19)

Note that the dependence of the nonlinear operator, $\hat{\Phi} \mapsto D^{\sigma, \alpha}[\hat{\Phi}]$ on σ designates the case of onsite or offsite states. Note that for $\alpha |Q| \ll 1$:

$$
M^s(Q \alpha) = \begin{cases}
\alpha^2 s |Q|^{2s} & : 1/4 < s < 1 \\
(- \log(\alpha)) s |Q|^2 & : s = 1 \\
\alpha^2 |Q|^2 & : 1 < s \leq \infty
\end{cases}
$$

(1.20)

Therefore, choosing $\kappa_s(\alpha)$ to depend on the nonlocality parameter, s:

$$
\kappa_s(\alpha) = \begin{cases}
\alpha^2 s & : 1/4 < s < 1 \quad \text{(long \mbox{\nobreakdash\textendash}range)} \\
(- \log(\alpha)) \alpha^2 & : s = 1 \quad \text{(critical/marginal)} \\
\alpha^2 & : 1 \leq s \leq \infty \quad \text{(short \mbox{\nobreakdash\textendash}range)}
\end{cases}
$$

(1.21)
we obtain the formal scaled convergence as $\alpha \downarrow 0$,

$$M^s_\alpha(Q) \rightarrow |Q|^{2\min(1,s)} \text{, or equivalently } \mathcal{F}^{-1} M^s_\alpha(Q) \mathcal{F} \rightarrow (-\Delta)^{\min(1,s)}$$

(1.22)

Returning to equation (1.18), we obtain a formal balance of terms in the equation $\alpha \downarrow 0$ by choosing $\rho = \rho_s(\alpha)$ so that $2^2 \rho_s(\alpha)^2 = 1$ or equivalently $\rho_s(\alpha) = \sqrt{\frac{2}{\alpha^2}}$. The formal limit of (1.18) is then

$$(1 + |Q|^{2p}) \ddot{\psi}(Q) - \frac{1}{4\pi^2} \left(\ddot{\psi} \ast \ddot{\psi} \ast \ddot{\psi} \right)(Q) = 0, \text{ where } p = p(s) \equiv \min(1, s)$$

(1.23)

the equation for $\ddot{\psi}(Q)$, the Fourier transform on \mathbb{R} of the continuum FNLS solitary wave, $\psi(x)$. Here, we have used: (a) $M^s_\alpha(Q) \rightarrow |Q|^{2p}$, for bounded Q, as $\alpha \rightarrow 0$, (b) $\mathcal{B}_\alpha \rightarrow \mathbb{R}$ as $\alpha \rightarrow 0$, and (c) $\chi_{\mathcal{B}_\alpha}(Q) R^s_\alpha[\dot{\Phi}](Q) \rightarrow 0$ as $\alpha \rightarrow 0$ for $\dot{\Phi}(Q)$ localized; see Lemma 5.7. We therefore expect, for small α, that $\dot{\Phi}^{\alpha,\sigma} \approx \ddot{\psi}(Q)$.

Therefore, the onsite and offsite discrete standing solitary waves, $\hat{G}^s(\chi) = e^{-iq\sigma} \hat{\psi}(q) = e^{-iq\sigma} \sqrt{\frac{\kappa_s(\alpha)}{\alpha^2}} \dot{\Phi}(\frac{q}{\alpha}) \sim e^{-iq\sigma} \sqrt{\frac{\kappa_s(\alpha)}{\alpha^2}} \ddot{\psi}(\frac{q}{\alpha})$, $q \in \mathcal{B}$, where $\sigma = 0, 1/2$, respectively and inverting the discrete Fourier transform.

The proof of bounds on the Peierls-Nabbaro (PN) barrier (Theorem 3.2) follows the outline [23] for the case of nearest-neighbor interaction. The PN barrier bounds depend on exponential decay bounds, uniformly in α small, for $\dot{\Phi}^{\alpha,\sigma}(Q)$, $\sigma = 0, 1/2$. The extension of these bounds to the nonlocal case is presented in Appendix F.

Reduction to $p-$ FNLS employs a Lyapunov-Schmidt reduction strategy. We first solve for the high frequency components of $\hat{E}^\sigma_{\text{FNLS}}(Q)$ for $\lambda_s(\alpha)^{-1} \leq |Q| \leq \pi/\alpha$, ($\lambda_s(\alpha) > \alpha$ and $\lambda_s(\alpha) \downarrow 0$ as $\alpha \rightarrow 0$) in terms of those for $0 \leq |Q| \leq \lambda_s(\alpha)^{-1}$ (low frequency components of $\hat{E}^\sigma_{\text{FNLS}}$). This yields a closed system for the low-frequency components, which we study perturbatively about the continuum FNLS limit using the implicit function theorem.

1.5. Extensions.

1.5.1. General coupling sequences. We note that our results for non-local coupling sequences $\{J^s_m\}_{m \in \mathbb{Z}}$ can be extended to general non-local coupling sequences $\{J^s_m\}_{m \in \mathbb{Z}}$ with asymptotic decay rate $\sim |m|^{-1-2s}$. If $1/4 < s \leq 1$, one may only extend under appropriate assumptions on the rate of decay of $J^s_m / (J^s_m)^{-1} \rightarrow \infty$ as $|m| \rightarrow \infty$.

The results may also be extended to coupling sequences $\{J^Z_m\}_{m \in \mathbb{Z}}$ with asymptotic decay faster than any algebraic power in m. Note that this case includes any coupling sequence with compact support, including that of the nearest-neighbor (centered-difference) Laplacian.

1.5.2. Higher dimensional cubic lattices. In [23], our results apply to cubic DNLS with nearest-neighbor coupling in dimensions $d = 1, 2, 3$. This range of spatial dimensions corresponds to those for which the continuum NLS equation has a non-trivial ground state, as seen using classical virial identities. For the current context of nonlocal lattice equations, we expect our results on the one-dimensional cubic nonlocal DNLS to extend to dimensions, d, satisfying: $2 \leq d < 4p$; see Remark 2.2.

1.6. Outline of the paper. In Section 1.3 we provide a summary of basic facts about the discrete and continuous Fourier transforms and also provide a list of notations and conventions used throughout the paper.

In Section 2, we summarize the properties of the continuum FNLS solitary standing wave.

In Section 3 we state our result on the bifurcation of onsite and offsite solitary waves, Theorem 3.1. The exponentially small bound on the PN-barrier, the l^2 energy difference between onsite and offsite solutions, is stated in Theorem 3.2.

Sections 4 through 6 contain the proof of Theorem 3.1.

Sections 5 and 6 construct the corrector in the rigorous asymptotic expansion of the solution to DNLS.

In Section 5, we derive equations for the corrector. We also construct the high frequency component of the corrector as a functional of the low frequency components and the small parameter α.

In Section 6, we construct the low frequency component of the corrector and map our asymptotic expansion back to the solution to DNLS, completing the proof of Theorem 3.1.

In Section 8, we outline the steps required to prove Theorem 8.3, which generalizes the leading order expansion given in Theorem 3.1 to a higher order expansion in the small parameter α.

There are several appendices. Appendix A contains an elementary and very useful subadditivity lemma. In Appendix B, we discuss properties of the discrete Fourier transform. In Appendix C, we discuss spectral properties of the operator L. In Appendix D, we provide a formulation of the implicit function theorem, which we can apply directly to our setting. In Appendix E, we discuss the asymptotic properties of several special functions, which are related to the dispersion relation for discrete and nonlocal NLS. Appendix F addresses the important exponential decay properties of solitary waves in Fourier (momentum) space.

1.7. Acknowledgements. This work was supported in part by National Science Foundation grants DMS-1412560 and DGE-1069420 (the Columbia Optics and Quantum Electronics IGERT), and a grant from the Simons Foundation (#376319, MIW). The authors thank O. Costin, R. Frank, and P. Kevrekides for very stimulating discussions.

1.8. Preliminaries, Notation and Conventions.

1.8.1. Discrete Fourier Transform. For a sequence $f = \{f_n\}_{n \in \mathbb{Z}} \in l^1(\mathbb{Z}) \cap l^2(\mathbb{Z})$, define the discrete Fourier transform (DFT)

$$\hat{f}(\xi) = \mathcal{F}_d[f](\xi) = \sum_{n \in \mathbb{Z}} f_n e^{-i\xi n}, \quad \xi \in \mathbb{R}. \quad (1.24)$$

Since $\hat{f}(\xi + 2\pi) = \hat{f}(\xi)$, we shall view $\hat{f}(\xi)$ as being defined on the torus $\mathbb{T} \equiv B/\pi \mathbb{Z}$, where B is fundamental period cell (Brillouin zone), $B \equiv [-\pi, \pi]$; \hat{f} is completely determined by its values on B. We shall also make use of the scaled Brillouin zone $B_\alpha \equiv \left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha} \right]$, with $\mathbb{T} \equiv B_\alpha / \pi \mathbb{Z}$. The inverse discrete Fourier transform is given by

$$f_n = \left(\mathcal{F}_d^{-1} \hat{f} \right)_n = \frac{1}{2\pi} \int_B \hat{f}(\xi) e^{i\xi n} d\xi. \quad (1.25)$$

A summary of key properties of the discrete Fourier transform is included in Appendix B. For a and b in $L^1_{loc}(\mathbb{R})$, we define the convolution on B_α by

$$(a *_{\alpha} b)(\xi) = \int_{B_\alpha} a(\xi - \eta) b(\eta)d\eta, \quad (1.26)$$

PROPOSITION 1.4. Let $a(\eta), b(\eta)$, and $c(\eta)$ denote $2\pi \sigma/\alpha$- pseudo-periodic functions. Then, $a *_{\alpha} b = b *_{\alpha} a$ and $(a *_{\alpha} b) *_{\alpha} c = a *_{\alpha} (b *_{\alpha} c)$.

1.8.2. Continuous Fourier Transform on \mathbb{R}. For $f \in L^2(\mathbb{R})$, the continuous Fourier transform and its inverse are given by

$$\hat{f}(\xi) = \mathcal{F}_c[f](\xi) = \int_{\mathbb{R}} f(x) e^{-i\xi x} dx, \quad \text{and} \quad f(x) = \mathcal{F}_c^{-1}[\hat{f}](x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\xi) e^{i\xi x} d\xi. \quad (1.27)$$

The standard convolution of functions on \mathbb{R} is defined by

$$(F \ast G)(\xi) = \int_{\mathbb{R}} F(\xi - \eta) G(\eta)d\eta = \int_{\mathbb{R}} F(\eta) G(\xi - \eta)d\eta = (G \ast F)(\xi) \quad (1.28)$$

Since our differential equations are cubically nonlinear, we must often work with the expression for a triple convolution:

$$(F \ast G \ast H)(\xi) = \int \int F(\xi - \eta - \zeta) G(\eta) H(\zeta) d\eta d\zeta \quad (1.29)$$
1.8.3. Notations, Conventions and a useful Lemma.

1. A function \(F(q), q \in \mathbb{R} \) is \(2\pi \)-periodic if for all \(q \), \(F(q) = F(q + 2\pi) \). For \(\sigma \in \mathbb{R} \), a function \(F(q), q \in \mathbb{R} \) is \(2\pi \sigma \)-pseudo-periodic if \(F(q) = e^{2\pi i \sigma} F(q + 2\pi) \) for all \(q \in \mathbb{R} \).

2. The inner product on \(L^2(\mathcal{B}) \) is given by \(\langle f, g \rangle = \langle f, g \rangle_{L^2(\mathcal{B})} = \int_{\mathcal{B}} \overline{f(q)} g(q) \, dq \), where \(\overline{f} \) is the complex conjugate of \(f \).

3. \(\|f\|_{L^2(\mathbb{Z})}^2 = \sum_{n \in \mathbb{Z}} |f_n|^2 \).

4. \(L^2(A) \), the space of functions satisfying \(\|f\|_{L^2(A)} = \left(\int_A |f(x)|^2 \, dx \right)^{1/2} < \infty \).

5. \(H^1(A) \), the space of functions satisfying \(\|f\|_{L^2(A)} = \left(\|f\|_{L^2(A)}^2 + \|\nabla f\|_{L^2(A)}^2 \right)^{1/2} < \infty \).

6. \(L^{2,\alpha}(A) \), the space of functions satisfying \(\|f\|_{L^{2,\alpha}(A)} = \left(\int_A (1 + |q|^2)^{\alpha} |f(q)|^2 \, dq \right)^{1/2} < \infty \), where \(L^{2,0}(A) = L^2(A) \).

7. \(H^{\alpha}_{\text{even}} \) and \(L^{2,\alpha}_{\text{even}} \) are subspaces of \(H^\alpha \) and \(L^{2,\alpha} \) consisting of functions, \(f \), which satisfy \(f(x) = f(-x) \). We also refer to these as symmetric functions.

8. \(H^\alpha(\mathbb{R}) \), the space of functions such that \(\tilde{f} = \mathcal{F}_C[f] \in L^{2,\alpha}(\mathbb{R}) \), with \(\|f\|_{H^\alpha(\mathbb{R})} = \|\tilde{f}\|_{L^{2,\alpha}(\mathbb{R})} \).

9. For \(f : \mathbb{Z} \to \mathbb{C} \), \(f = \{f_n\}_{n \in \mathbb{Z}} \), define the forward difference operator \((\delta f)_n = (\delta_1 f)_n = f_{n+1} - f_n \).

10. \(\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases} \), the indicator function for a set \(A \), and \(\chi_A = 1 - \chi_A \).

11. \(f(\alpha) = O(\alpha^\gamma) \) if for all \(n \geq 1 \), \(f(\alpha) = O(\alpha^n) \).

12. For \(a, b \in \mathbb{R} \), we write \(a \leq b \) if there exists a constant \(C > 0 \), independent of \(a \) and \(b \), such that \(a \leq C b \).

13. We shall frequently derive norm bounds of the type \(\|f\|_X \leq \|g\|_Y \). Here, the implied constant is independent of \(f \) and \(g \) but may depend on the spaces \(X \) and \(Y \).

14. Generic constants are denoted by \(C_1, C_2 \) etc.

15. We shall often write, for example, \(\|Q^m f(Q; \alpha)\|_{L^2(\mathbb{R}^Q)} \) rather than \(\| \cdot |^m f(\cdot; \alpha)\|_{L^2(\mathbb{R})} \)

We shall make frequent use of the following lemma.

Lemma 1.5.

1. \(f \in H^\alpha(\mathbb{R}) \) if and only if \(\tilde{f} \in L^{2,\alpha}(\mathbb{R}) \).

2. Fix \(a > d/2 \). Then, if \(f_1, f_2 \in H^\alpha(\mathbb{R}) \) then, the product \(f_1 f_2 \in H^\alpha(\mathbb{R}) \). Moreover, we have

\[
\|f_1 f_2\|_{H^\alpha(\mathbb{R})} \leq \|f_1\|_{H^\alpha(\mathbb{R})} \|f_2\|_{H^\alpha(\mathbb{R})}.
\]

(1.30)

3. Fix \(a > d/2 \). If \(\tilde{f}_1, \tilde{f}_2 \in L^{2,\alpha}(\mathbb{R}) \) then, their convolution \(\tilde{f}_1 * \tilde{f}_2 \in L^{2,\alpha}(\mathbb{R}) \) and we have:

\[
\|\tilde{f}_1 * \tilde{f}_2\|_{L^{2,\alpha}(\mathbb{R})} \leq \|\tilde{f}_1\|_{L^{2,\alpha}(\mathbb{R})} \|\tilde{f}_2\|_{L^{2,\alpha}(\mathbb{R})}.
\]

(1.31)

The implied constants in (1.30) and (1.31) are independent of \(f_1 \) and \(f_2 \), but depend on \(a \).

Finally, we find it convenient to record certain \(\alpha \)- and \(s \)-dependent functions, \(\epsilon_s, \xi_s, \eta_s \to 0 \) as \(\alpha \to 0 \). These arise throughout the our analysis.
Moreover, \(\psi \) is real-valued, symmetric about \(\alpha \) is real-valued, and decaying to zero at infinity. Therefore, the ground state of \(\psi \) is a ground state solution of \(\text{(1.8)} \).

2. Properties of the continuum solitary wave of FNLS, \(\psi_{|\omega|} \), on \(\mathbb{R} \). The following results summarize properties of the FNLS ground state solitary wave (“soliton”) and its Fourier transform on \(\mathbb{R} \). See, for example, references \([13, 14]\).

A central role is played by the characterization of the continuum FNLS standing wave, and the linearized operator about a solution of \(\text{(1.8)} \) \(\omega = -1 \):

\[
f \mapsto L_{+} f \equiv \left(1 + (-\Delta)^p - 3(\psi(x))^2 \right) f(x).
\]

Definition 2.1. Let \(1/4 < p \leq 1 \). Let \(\psi_{1} \in H^{p}(\mathbb{R}) \) denote a solution of \(\text{(1.8)} \) governing FNLS solitary standing waves with frequency \(\omega = -1 \). If \(\psi_{1} \) is real-valued, \(\psi_{1} \geq 0 \), \(\psi_{1} \neq 0 \), and \(L_{+} \) (with \(\psi = \psi_{1} \)) has exactly one negative eigenvalue (counting multiplicity), i.e. \(\psi_{1} \) has Morse index equal to one, then we say that \(\psi_{1} \) is a ground state solution of \(\text{(1.8)} \).

Remark 2.1. Ground states of \(\text{(1.8)} \) may be constructed via unconstrained minimization of an appropriate functional defined on \(H^{p}(\mathbb{R}) \), which characterizes the optimal constant in a fractional Gagliardo-Nirenberg-Sobolev inequality \([13, 14]\).

Theorem 2.2 (FNLS Ground State).

Let \(1/4 < p \leq 1 \) and consider the equation \(\text{(1.8)} \) governing FNLS solitary standing waves. For \(\omega = -1 \), there exists a unique ground state solution \(\psi_{1}(x) \) of \(\text{(1.8)} \) which is real-valued, symmetric about \(x = 0 \) and decaying to zero at infinity. Therefore, the ground state of \(\text{(1.8)} \) with arbitrary frequency \(\omega < 0 \) is given by \(\psi_{|\omega|}(x) = \sqrt{\omega} \psi_{1}(|\omega|^{1/2}x) \). Moreover, the following properties hold:

1. \(\psi_{1}(x) \in H^{2p+1}(\mathbb{R}) \) and satisfies the decay estimate: \(|\psi_{1}(x)| \lesssim (1 + |x|^{1+2p})^{-1} \).
2. For all \(k \geq 0 \), \(\psi_{1}(x) \in H^{k}(\mathbb{R}) \).
3. Any positive solution of \(\text{(1.8)} \) is of the form \(\psi_{|\omega|}(x - x_{0}) \) for some \(x_{0} \in \mathbb{R} \).

Remark 2.2. A well-known argument based on “Pohozaev” / virial identities shows that the equation \((-\Delta)^p u + u - u^m = 0\) does not admit non-trivial \(H^{2p+1}(\mathbb{R}^d) \cap L^{m+1}(\mathbb{R}^d) \) solutions when \(m \geq (d+2p)/(d-2p) \) (where if \(d - 2p \leq 0 \), all \(m \geq 0 \) are admissible). For the cubic case \(m = 3 \) in dimension \(d = 1 \), this implies \(p > 1/4 \); see \([42, 43, 44]\).

The following result concerning \(\tilde{\psi}_{|\omega|} = \mathcal{F}_{c}[\psi_{|\omega|}] \), the Fourier transform of \(\psi_{|\omega|} \), is a consequence of Proposition 2.2 and Lemma A.2 of Appendix E.

Proposition 2.3 (Fourier transform of FNLS Ground State).

Fix \(1/4 < p \leq 1 \). The Fourier transform, \(\tilde{\psi}_{|\omega|}(Q) = \mathcal{F}_{c}[\psi_{|\omega|}](Q) \), satisfies the equation

\[
(|\omega| + |Q|^{2p}) \tilde{\psi}_{|\omega|}(Q) - \frac{1}{4\pi^2} \tilde{\psi}_{|\omega|} * \tilde{\psi}_{|\omega|} * \tilde{\psi}_{|\omega|}(Q) = 0, \quad \tilde{\psi}_{|\omega|} \in L^{2,0}(\mathbb{R}).
\]

Moreover, \(\tilde{\psi}_{|\omega|} \) satisfies the following properties:
1. Scaling:

\[\tilde{\psi}_{\omega}(Q) = |\omega|^{(p-1)/2p} \tilde{\psi}_1 \left(\frac{Q}{|\omega|^{1/2p}} \right) = |\omega|^{(p-1)/2p} \tilde{\psi} \left(\frac{Q}{|\omega|^{1/2p}} \right). \quad (2.3) \]

2. Exponential decay: Let \(a > 1/2 \) and set \(\eta = \eta(s) = \min(1, 2s) \). Then, there exists a positive constant \(\mu = \mu(\|\tilde{\psi}\|_{L^2(\mathbb{R})}) \) such that

\[\|e^{\mu |Q|^n} \tilde{\psi}(Q)\|_{L^{2,n}(\mathbb{R}^2)} \leq \|\tilde{\psi}(Q)\|_{L^{2,n}(\mathbb{R}^2)}. \quad (2.4) \]

We require, in particular, a characterization of the \(L^2(\mathbb{R}) \)-kernel of \(L_+ \). This was obtained in \([30]\) for the case \(p = 1 \) and more generally in the important recent work \([13, 14]\). In Fourier space, we define the associated operator

\[\tilde{f}(Q) \rightarrow \tilde{L}_+ \tilde{f}(Q) \equiv \left(1 + |Q|^{2p} - \frac{3}{4\pi^2} \tilde{\psi} \ast \tilde{\psi}^* \right) \tilde{f}(Q) \quad (2.5) \]

Proposition 2.4.

1. The continuous spectrum of \(L_+ \) is given by the half-line \([1, \infty)\).
2. Zero is an isolated eigenvalue of \(\tilde{L}_+ \) with corresponding eigenspace, \(\ker(L_+) = \text{span}\{e_x \tilde{\psi}(x)\} \).
3. Zero is an isolated eigenvalue of \(\tilde{L}_+ \) with corresponding eigenspace, \(\ker(\tilde{L}_+) = \text{span}\{Q \tilde{\psi}(Q)\} \).
4. \(L_+ : H^0_{\text{even}}(\mathbb{R}) \rightarrow H^{2p-2p}_{\text{even}}(\mathbb{R}) \) is an isomorphism.
5. \(\tilde{L}_+ : L^2_{\text{even}}(\mathbb{R}) \rightarrow L^2_{\text{even}}(\mathbb{R}) \) is an isomorphism.

3. Main results. For \(1/4 < s < \infty \), set \(J_m^s = C^{-1}_s m^{-1-2s} \) giving

\[(L_s G)_n = \frac{1}{C_s} \sum_{m \in \mathbb{Z} \setminus m \neq n} \frac{(G_m - G_n)}{|m-n|^{1+2s}}, \quad \text{where} \quad C_s = \begin{cases} -2\Gamma(-2s) \cos(\pi s) & : 1/4 < s < 1 \\ 1 & : s = 1 \\ \zeta(2s-1) & : s > 1 \end{cases}. \quad (3.1) \]

For \(s = \infty \), set \(J_m^\infty = C^{-1}_\infty e^{-\gamma m}, \gamma > 0 \) giving

\[(L_\infty G)_n = \frac{1}{C_\infty} \sum_{m \in \mathbb{Z}} e^{-\gamma |m-n|} (G_m - G_n), \quad \text{where} \quad C_\infty = \frac{\exp(\gamma)(\exp(\gamma) + 1)}{(\exp(\gamma) - 1)^3}. \quad (3.2) \]

Theorem 3.1. (Nonlocal DNLS solitary waves on \(\mathbb{Z} \)) Consider the nonlinear eigenvalue problem governing real-valued standing waves of the discrete nonlocal DNLS \((1.11)\):

\[-\kappa_s(\alpha) G_n^\alpha = -(L_\alpha G^\alpha)_n - (G^\alpha_n)^3, \quad G^\alpha \in l^2(\mathbb{Z}). \quad (3.3) \]

where \(1/4 < s \leq \infty \) and \(\kappa_s(\alpha) \) is the \(s \)-dependent scaling displayed in \((1.21)\). Let \(p = p(s) = \min(s, 1) \) and denote by \(\tilde{\psi}(x) \equiv \tilde{\psi}_1(x) \) denote the ground state of the \(p(s) \)-FNLS equation, \((1.8)\); see Proposition \(2.3\).

Then, there exists \(\alpha_0 = \alpha_0[s] > 0 \) such that for all \(0 < \alpha < \alpha_0 \), nonlocal DNLS has two real-valued solitary wave solutions to \((3.3)\). These are onsite (lattice point-centered) and offsite (bond-centered) symmetric states. To leading order in \(\alpha \), these are given by \(\sigma = 0, 1/2 \) translates of \(\tilde{\psi}(\alpha x) \) sampled on \(\mathbb{Z} \). The leading order expansions with correctors are given by:

Onsite symmetric (vertex-centered):

\[G_n^{\alpha, \text{on}} = \kappa_s(\alpha)^{1/2} \tilde{\psi}(\alpha n) + \mathcal{E}_n^{\alpha, \text{on}}, \quad n \in \mathbb{Z} \]

Offsite symmetric (bond-centered):

\[G_n^{\alpha, \text{off}} = \kappa_s(\alpha)^{1/2} \tilde{\psi}(\alpha [n - 1/2]) + \mathcal{E}_n^{\alpha, \text{off}}, \quad n \in \mathbb{Z}. \]

11
Here, \(\|E^{\alpha, \text{on}}\|_{L^2(\mathbb{Z})} + \|E^{\alpha, \text{off}}\|_{L^2(\mathbb{Z})} \leq \varepsilon_s(\alpha) \to 0 \) as \(\alpha \to 0 \), where the \(s \)-dependent rate \(\varepsilon_s(\alpha) \) is given in (3.2). Note: the relative \(L^2(\mathbb{Z}) \) norm of the corrector to the leading term, \(\varepsilon_s(\alpha) \), is given in (3.2).

Remark 3.1. In Theorem 3.1, we assume \(s > 1/4 \). For cubic nonlinearity in one space dimension do not expect a bifurcation of discrete solitary waves from the zero frequency for \(s \leq 1/4 \). Indeed, the \(\kappa_s(\alpha) \to 0 \) rescaled-limit of such bifurcating waves is the solitary standing wave solution of continuum fractional NLS, satisfying \((-\Delta)^s u + u + u^3 = 0 \). A well-known argument based on “Pohozaev”/virial identities [4, 48, 49] implies that the equation \((-\Delta)^s u + u + u^m = 0 \) has \(H^{2p+1}(\mathbb{R}^d) \) solutions only if \(m < (d + 2p)/(d - 2p) \). For the case of cubic nonlinearity, \(m = 3 \), with \(d = 1 \), this implies \(p = \min(1, s) > 1/4 \).

Theorem 3.2. [Exponential smallness of Peierls-Nabarro barrier] Let \(\eta = \min(2s, 1) \). There exist constants \(\alpha_0 > 0 \), \(C > 0 \) and \(D > 0 \) such that for all \(0 < \alpha < \alpha_0 \),

\[
\left| \mathcal{N}[G^{\alpha, \text{off}}] - \mathcal{N}[G^{\alpha, \text{on}}] \right| \leq \left\| G^{\alpha, \text{off}} \right\|^2_{L^2(\mathbb{Z})} - \left\| G^{\alpha, \text{on}} \right\|^2_{L^2(\mathbb{Z})} \leq D \left(\frac{\kappa_s(\alpha)}{\alpha} \right) e^{-C/\alpha^\eta}, \quad \text{and}
\]

\[
\left| \mathcal{H}[G^{\alpha, \text{off}}] - \mathcal{H}[G^{\alpha, \text{on}}] \right| \leq D \left(\frac{\kappa_s(\alpha)}{\alpha} \right) e^{-C/\alpha^\eta}.
\]

(3.4)

4. Beginning of the proof of Theorem 3.1: formulation of nonlocal DNLS in Fourier space. The proof follows the general strategy of our study of the local (nearest-neighbor) DNLS [23] and refer to it when convenient. Applying the discrete Fourier transform \((1.24) \) to equation (3.3) governing \(G = G^{s, \alpha} \), we obtain an equivalent equation for the discrete Fourier transform, \(\hat{G}(q) = \hat{G}^{s, \alpha}(q) \):

\[
\hat{D}\hat{N}\hat{L}\hat{S}\hat{S}[\hat{G}](q) \equiv \left[\kappa_s(\alpha) + M^s(q) \right]\hat{G}(q) - \left(\frac{1}{2\pi} \right)^2 \hat{G}, \hat{G}^s, \hat{G}(q) = 0,
\]

(4.1)

Here, \(M^s(q) \) denotes the (discrete) Fourier symbol of the operator \(\mathcal{L}^s \) (see Lemma C.1),

\[
M^s(q) \hat{G}(q) = -\mathcal{L}^s G(q) = 4 \sum_{m=1}^\infty J_m^s \sin^2(qm/2) \hat{G}(q),
\]

(4.2)

and \(f \ast g \) denotes the convolution on \(\mathcal{B} = B_1 \); see (1.26) and Appendix B.

By Proposition 1.3

1. \(G \) is onsite symmetric iff \(\hat{G}(q) = \hat{K}(q) \), where \(\hat{K}(q) \) is real and symmetric, and

2. \(G \) is offsite symmetric iff \(\hat{G}(q) = e^{-i\pi q/2} \hat{K}(q) \), where \(\hat{K}(q) \) is real and symmetric.

Hence we seek \(\hat{G}(q) \) in the form

\[
\hat{G}^\sigma(q) = e^{-i\sigma q} \hat{K}^\sigma(q), \quad \sigma = 0, 1/2
\]

(4.3)

\[
\hat{K}^\sigma(q) = \hat{K}^\sigma(-q), \quad \hat{K}^\sigma(q) = \hat{K}^\sigma(q)
\]

(4.4)

The following result (Proposition 4.3 of [23]) states that it suffices to solve (4.1), projected onto \(\mathcal{B} = [-\pi, \pi] \).

Proposition 4.1. Let \(\hat{\phi}^\sigma(q) = \chi_s(q) \hat{\phi}^\sigma(q) \) satisfy:

\[
\left[\alpha^2 + M^s(q) \right] \hat{\phi}^\sigma(q) - \frac{\chi_s(q)}{4\pi^2} \left(\hat{\phi}^\sigma \ast \hat{\phi}^\sigma \ast \hat{\phi}^\sigma \right)(q)
\]

\[
- \frac{\chi_s(q)}{4\pi^2} \sum_{m=\pm 1} e^{2m\pi i\sigma} \left(\hat{\phi}^\sigma \ast \hat{\phi}^\sigma \ast \hat{\phi}^\sigma \right)(q - 2m\pi) = 0,
\]

(4.5)

Then (4.1) is solved by \(\hat{G}(q) = e^{-i\pi q} \hat{K}^\sigma(q) \), where

\[
\hat{K}^\sigma(q) = \sum_{m\in\mathbb{Z}} \chi_s(q - 2m\pi) \hat{\phi}^\sigma(q - 2m\pi) e^{2m\pi i\sigma},
\]

(4.6)
4.1. Rescaled equation for \(\hat{\phi}^\sigma \). As discussed in Section 4.4, we expect that for \(\alpha \ll 1 \):

\[
\hat{\phi}^\sigma(q) \sim \left(\frac{\kappa_s(\alpha)^{1/2}}{\alpha^p} \right) \hat{\psi}_{\alpha^2}(q) = \left(\frac{\kappa_s(\alpha)^{1/2}}{\alpha} \right) \hat{\psi}(\frac{q}{\alpha}),
\]

(4.7)

see (1.8) and Proposition 2.2. We therefore study (4.5) using a rescaling which makes explicit the relation between DNLS and the continuum (FNLS) limit for \(\alpha \) small.

Rescalings:

Rescaled momentum: \(Q \equiv q/\alpha \), \(Q \in B_\alpha = [-\pi/\alpha, \pi/\alpha] \),

Rescaled projection: \(\chi_{\beta_\alpha}(Q) \equiv \chi_\alpha(Q\alpha) = \chi_{[-\pi, \pi]}(Q) \),

Rescaled wave: \(\hat{\phi}^\sigma(Q) \equiv \left(\frac{\alpha}{\kappa_s(\alpha)^{1/2}} \right) \hat{\phi}^\sigma(Q\alpha) = \left(\frac{\alpha}{\kappa_s(\alpha)^{1/2}} \right) \hat{\phi}^\sigma(q) \),

Rescaled discrete Fourier symbol: \(M^s_\alpha(Q) \equiv \frac{1}{\kappa_s(\alpha)} M^s(Q\alpha) = \frac{4}{\kappa_s(\alpha)} \sum_{m=1}^{\infty} J_m^s \sin^2(2m\pi Q\alpha/2) \) (4.8)

The following proposition is a reformulation of Proposition 4.1 in terms of the rescaled quasi-momentum, \(Q \):

Proposition 4.2. Equation \((4.5)\) for \(\hat{\phi}^\sigma(q) \) on \(q \in B \) is equivalent to the following equation for \(\hat{\Phi}(Q) = \chi_{\beta_\alpha}(Q) \hat{\phi}^\sigma(Q) \), supported on \(B_\alpha = [-\pi/\alpha, \pi/\alpha] \):

\[
\mathcal{D}^{\sigma,\alpha}[\hat{\Phi}](Q) \equiv [1 + M^s_\alpha(Q)] \hat{\Phi}(Q) - \frac{\chi_{\beta_\alpha}(Q)}{4\pi^2} \left(\hat{\Phi} * \hat{\Phi} * \hat{\Phi} \right)(Q) + R^s_1[\hat{\Phi}](Q) = 0,
\]

(4.9)

Here, \(R^s_1[\hat{\Phi}] \) contains the \(\pm 1 \)-sideband contributions:

\[
R^s_1[\hat{\Phi}](Q) \equiv -\frac{\chi_{\beta_\alpha}(Q)}{4\pi^2} \sum_{m=\pm 1} e^{2m\pi i \alpha} \left(\hat{\Phi} * \hat{\Phi} * \hat{\Phi} \right)(Q - 2m\pi\alpha).
\]

(4.10)

Proof of Proposition 4.2 We use the following lemma to rescale the convolutions in (4.5).

Lemma 4.3. Suppose that \(\hat{a}(q) = \hat{A}(Q) \), \(\hat{b}(q) = \hat{B}(Q) \), and \(\hat{c}(q) = \hat{C}(Q) \), where \(Q = q/\alpha \). Then

\[
\left(\hat{a} * \hat{b} * \hat{c} \right)(q) = \alpha^2 \left(\hat{A} * \hat{B} * \hat{C} \right)(Q).
\]

(4.11)

Applying the rescalings (4.8) and Lemma 4.3 to (4.5) and then dividing by \(\kappa_s(\alpha)^{3/2}/\alpha \), we obtain (4.9). \(\square \)

The next proposition states the sense in which \(M^s_\alpha(Q) \to |Q|^{2p} \) (\(p = \min(1, s) \)) as \(\alpha \to 0 \). This facilitates the solution of \(\mathcal{D}^{\sigma,\alpha}[\hat{\Phi}](Q) = 0 \) for \(\hat{\phi}^\sigma(Q) \), perturbatively about the solution of the limiting \(p(s) \)– FNLS limit equation (2.3).

Proposition 4.4. Let \(0 < \eta \ll 1 \) and fix \(p = \min(1, s) \). Suppose \(e^{C|Q|^\eta} \hat{g}(Q) \in L^{2,a}_\alpha(BQ) \) for some \(C > 0 \). Then, as \(\alpha \to 0 \),

\[
\left\| \chi_{\beta_\alpha}(Q) \left[M^s_\alpha(Q) - |Q|^{2p} \right] \hat{g}(Q) \right\|_{L^{2,a}(BQ)} \lesssim \left(\frac{\alpha}{\kappa_s(\alpha)} \right)^{1/2} \epsilon_\alpha(\alpha).
\]

(4.12)

Proof of Proposition 4.4 The heart of the matter is Proposition E.5 which states that for \(|Q| \leq \pi/\alpha \),
(Q ∈ B_α), there exists a function f_α(Q; α) such that max_{Q∈B_α} |f_α(Q; α)| ≤ 1 and

\[M_α^*(Q) = \frac{1}{C_s \kappa_*(α)} M_α(Q) = |Q|^{2p} + \begin{cases} \alpha^{2-2s} f_α(Q; α) |Q|^2 & : s < 1 \\ \frac{1}{\log(α)} f_α(Q; α) \left(\frac{1}{2} - \log(|Q|) \right) |Q|^2 & : s = 1 \\ \alpha^{2s-2} f_α(Q; α) |Q|^{2s} & : 1 < s < 2 \\ (-\log(α)) \alpha^2 f_α(Q; α) |Q|^4 & : s = 2 \\ \alpha^2 f_α(Q; α) |Q|^4 & : 2 < s \leq \infty \end{cases} \] \tag{4.13}

Using \[4.13\], \(\chi_{B_α}(Q) \left[M_α^*(Q) - |Q|^{2p} \right] \hat{g}(Q) \) can be bounded by \((α/\kappa_*(α))^{1/2} \epsilon_*(α) \) (see \[1.32\]) times a constant in terms of \(\left| |Q|^{2j} \hat{g}(Q) \right|_{L^{2s}(\mathbb{R})}, \left| (\log(|Q|)) |Q|^{2j} \hat{g}(Q) \right|_{L^{2s}(\mathbb{R})} \) \((j = 1, 2) \), which is finite by the hypothesis on \(\hat{g} \). This completes the proof of Proposition 4.4. □

5. Bifurcation analysis and the proof of Theorem 5.1. Our main results on bifurcation are derived from the following:

THEOREM 5.1. Fix \(a > 1/2 \). Consider the nonlinear eigenvalue problem \[3.3\] for onsite symmetric (σ = 0) and offsite symmetric (σ = 1/2) bound states of nonlocal DNLS with interaction parameter \(s \in (1/2, \infty) \). Let \(p = \min(1, s) \). Let \(\psi \) denote the ground state of the \(p \)-FNLS equation, \[2.2\], \(\psi + (-\Delta)^p \psi - \psi^3 = 0 \), and let \(\hat{\psi} \) be its continuous Fourier transform. Then there exist a constant \(\alpha_0 = \alpha_0[a, \sigma, s] > 0 \), and a unique, real-valued function \(\hat{E}_{\alpha, \sigma} \in L_{even}^{2, a}(\mathbb{R}) \), with \(\hat{E}_{\alpha, \sigma} = \chi_{B_α} \hat{E}_{\alpha, \sigma} \), defined for all \(0 < \alpha < \alpha_0 \), such that

\[\hat{E}_{\alpha, \sigma}(Q) = \chi_{B_α}(Q) \hat{\psi}(Q) + \hat{E}_{\alpha, \sigma}(Q), \] \tag{5.1}

solves \[4.9\], with corrector bound: \(\left\| \hat{E}_{\alpha, \sigma} \right\|_{L^{2s}(\mathbb{R})} \leq (α/\kappa_*(α))^{1/2} \epsilon_*(α) \to 0 \) \(α \to 0 \). \(\epsilon_*(α) \) is displayed in \[1.32\].

5.1. Equation for the remainder, \(\hat{E}_{\alpha, \sigma} \). For \(\hat{Φ} = \hat{E}_{\alpha, \sigma} \) we take the ansatz

\[\hat{Φ}(Q) = \chi_{B_α}(Q) \hat{ψ}(Q) + \hat{E}_{\alpha, \sigma}(Q) = S(Q) + \hat{E}(Q). \] \tag{5.2}

Here, \(S(Q) = \chi_{B_α}(Q) \hat{ψ}(Q) \). To prove Theorem 5.1, we derive an equation for \(\hat{E}(Q) \) and then construct and bound its solution. Recall, by Proposition 4.2, that \(\hat{Φ} \) must satisfy \(D_{\alpha, \sigma} \hat{Φ}(Q) = 0 \); see \[4.9\]. Substitution of the ansatz \[5.2\] into this equation yields the required equation for \(\hat{E}(Q) \).

PROPOSITION 5.2. \(D_{\alpha, \sigma} \hat{Φ} = 0 \) is equivalent to the following equation for \(\hat{E}(Q) = \chi_{B_α}(Q) \hat{E}(Q) \):

\[[1 + M_α^*(Q)] \hat{E}(Q) - 3 \chi_{B_α}(Q) \frac{1}{(2π)^2} \hat{ψ} * \hat{ψ} * \hat{E}(Q) = \mathcal{R}_1^\sigma \left[α, \hat{E} \right](Q), \quad \hat{E} \in L^{2s}(\mathbb{R}). \] \tag{5.3}

where

\[\mathcal{R}_1^\sigma \left[α, \hat{E} \right] = D_{\alpha, \sigma}^s[S] + R_1^\sigma \left[α, \hat{E} \right] + R_{NL}^\sigma \left[α, \hat{E} \right]. \] \tag{5.4}
R^σ_L is linear in \hat{E} and of order $O(1)$ in α on $Q \in B_n$. R^σ_{NL} contains terms which are nonlinear in \hat{E}:

$$
R^\sigma_L[\alpha, \hat{E}] (Q) \equiv \chi_{\alpha,\sigma} (Q) \frac{3}{4\pi^2} \left[\sum_{m=-1}^{1} e^{2\pi i \sigma} \left(S * S * \hat{E} \right) (Q - 2m\pi/\alpha) - \left(\bar{\psi}_1 * \bar{\psi}_1 * \hat{E} \right) (Q) \right],
$$

$$
R^\sigma_{NL}[\alpha, \hat{E}] (Q) \equiv \chi_{\beta,\sigma} (Q) \left(\frac{1}{2\pi} \right)^2 \sum_{m=-1}^{1} e^{2\pi i \sigma} \left[3 \left(S * \hat{E} * \hat{E} \right) (Q - 2m\pi/\alpha) + \left(\hat{E} * \hat{E} * \hat{E} \right) (Q - 2m\pi/\alpha) \right].
$$

Remark 5.1. Note that the operator on the left-hand side has formal limit \hat{L}_+, where L_+ is the linearized continuum FNLS operator displayed in Proposition 2.4.

5.2. Coupled system for high and low frequency components of $\hat{E} = E^{\alpha,\sigma}$.

We now embark on the construction $\hat{E} = E^{\alpha,\sigma} \in L^{2,\sigma}(\mathbb{R})$ for $\alpha > 0$ sufficiently small. Our strategy is to reformulate the equation for \hat{E} as an equivalent coupled system for its high and low frequency components.

Let r be such that $0 < r < 1$. Define the spectral cutoff parameter:

$$
\lambda(\alpha) = \lambda_s(\alpha) \equiv \begin{cases}
\alpha^{1-r} & : s \neq 1 \\
\frac{1}{\log(\alpha)} & : s = 1
\end{cases}.
$$

(5.6)

Note that $\lambda_s(\alpha) \to 0$ as $\alpha \to 0$.

Next, define the sharp spectral cutoffs onto low and high frequency regimes:

$$
\chi_{lo}(Q) = \chi \left(|Q| \leq \frac{1}{\lambda_s(\alpha)} \right) \quad \text{and} \quad \chi_{hi}(Q) = \chi \left(|Q| > \frac{1}{\lambda_s(\alpha)} \right),
$$

(5.7)

where $1 = \chi_{lo}(Q) + \chi_{hi}(Q)$. Note that $\chi_{lo} \chi_{\beta,\sigma} = \chi_{lo}$, while $\chi_{hi} \chi_{\beta,\sigma} = \chi_{\beta,\sigma} - \chi_{lo}$. For general \hat{A}, defined on \mathbb{R}, introduce its localizations near and away from $Q = 0$:

$$
\hat{A}_{lo}(Q) = \left(\chi_{lo} \hat{A} \right)(Q) \equiv \chi_{lo}(Q) \hat{A}(Q),
$$

(5.8)

$$
\hat{A}_{hi}(Q) = \left(\chi_{hi} \hat{A} \right)(Q) \equiv \chi_{hi}(Q) \hat{A}(Q),
$$

(5.9)

In particular, we use χ_{lo} and χ_{hi} to localize $\hat{E} = \hat{E}^{\alpha,\sigma}$, where $|Q| \leq \lambda_s(\alpha)$ and where $|Q| > \lambda_s(\alpha)$:

$$
\hat{E}_{lo}(Q) = \chi_{lo}(Q) \hat{E}(Q) \quad \text{and} \quad \hat{E}_{hi}(Q) = \chi_{hi}(Q) \hat{E}(Q),
$$

(5.10)

and therefore $\hat{E}(Q) = \hat{E}_{lo}(Q) + \hat{E}_{hi}(Q)$.

NOTE: Since the analysis for the cases $\sigma = 0$ (onsite) and $\sigma = 1/2$ (offsite) in sections 5.2 - 6.3 are very similar, in order to keep the notation less cumbersome we omit the superscripts α and σ when the context is clear, and shall instead write:

$$
\hat{E}(Q) = \hat{E}^{\alpha,\sigma}(Q), \quad \hat{E}_{lo}(Q) = \hat{E}_{lo}^{\sigma}(Q), \quad \hat{E}_{hi}(Q) = \hat{E}_{hi}^{\sigma}(Q).
$$

(5.11)

The following Proposition is obtained by applying the spectral projections χ_{lo} and χ_{hi} to (5.3).

Proposition 5.3. If \hat{E} is a solution of (5.3) then its low and high frequency components, \hat{E}_{lo} and \hat{E}_{hi},
satisfy the coupled system:

Low Frequency Equation:

\[
[1 + M_\alpha^*(Q)] \hat{E}_\infty(Q) - \chi_{\infty}(Q) \frac{3}{4\pi^2} \left(\hat{\psi} \ast \hat{\psi} \ast \hat{E}_\infty(Q) + \hat{\psi} \ast \hat{\psi} \ast \hat{E}_0(Q) \right) = \chi_{\infty}(Q) R_1^\alpha [\alpha, \xi_\infty + \hat{E}_\infty](Q),
\]

(5.12)

High Frequency Equation:

\[
[1 + M_\alpha^*(Q)] \hat{E}_0(Q) - \chi_{\infty}(Q) \chi_{\infty}(Q) \frac{3}{4\pi^2} \left(\hat{\psi} \ast \hat{\psi} \ast \hat{E}_\infty(Q) + \hat{\psi} \ast \hat{\psi} \ast \hat{E}_0(Q) \right) = \chi_{\infty}(Q) R_1^\alpha [\alpha, \xi_\infty + \hat{E}_\infty](Q).
\]

(5.13)

Here, \(R_1^\alpha \) is defined in (5.4). Conversely, if \((\hat{E}_\infty, \hat{E}_0) \) solves (5.12), then \(\hat{E} \equiv \hat{E}_\infty + \hat{E}_0 \) solves (5.3).

We solve (5.12) and (5.13) via the Lyapunov-Schmidt reduction strategy used in [23]; see Section 1.4.

5.3. Reduction to a closed equation for the low frequency projection, \(\hat{E}_\infty \)

We first solve for \(\hat{E}_\infty = \hat{E}_\infty[\alpha, \xi_\infty] \) as a functional of \(\hat{E}_\infty \), by viewing the equation of \(\hat{E}_\infty \) as depending on \(\alpha \in \mathbb{R}, |\alpha| \ll 1 \) and \(\Gamma(Q) = \hat{E}_\infty(Q) \in L^{2,\alpha}(\mathbb{R}) \).

\[
[1 + M_\alpha^*(Q)] \hat{E}_\infty(Q) - \chi_{\infty}(Q) \chi_{\infty}(Q) \frac{3}{4\pi^2} \left(\hat{\psi} \ast \hat{\psi} \ast \hat{E}_\infty(Q) + \hat{\psi} \ast \hat{\psi} \ast \hat{E}_0(Q) \right)
\]

\[
- \chi_{\infty}(Q) R_1^\alpha [\alpha, \Gamma + \hat{E}_\infty](Q) = 0.
\]

(5.14)

In the following proposition, we construct the mapping \(\hat{E}_\infty \rightarrow \hat{E}_\infty[\alpha, \xi_\infty] \).

Proposition 5.4. Set \(0 < r < 1, p = \min(s, 1), \) and \(\eta = \min(2\alpha, 1) \).

1. There exist constants \(\alpha_0, \beta_0 > 0 \), such that for all \(\alpha \in (0, \alpha_0) \), equation (5.14) defines a mapping \((\alpha, \Gamma) \rightarrow \hat{E}_\infty[\alpha, \Gamma], \hat{E}_\infty : [0, 1] \times B_{\beta_0}(0) \rightarrow L^{2,\alpha}(\mathbb{R}) \) where \(B_{\beta_0}(0) \subset L^{2,\alpha}(\mathbb{R}) \) such that \(\hat{E}_\infty[\alpha, \Gamma] \) is the unique solution to (5.14) (see also (5.13)). Moreover, if \(\Gamma \in L^{2,\alpha}_{\text{even}} \), then \(\hat{E}_\infty[\alpha, \Gamma] \in L^{2,\alpha}_{\text{even}} \).

2. The mapping is \(C^1 \) with respect to \(\Gamma \), and there exists \(C > 0 \), such that for all \((\alpha, \Gamma) \in [0, \alpha_0) \times B_{\beta_0}(0) \)

\[
\left\| \hat{E}_\infty[\alpha, \Gamma] \right\|_{L^{2,\alpha}(\mathbb{R})} \leq \begin{cases} \alpha^{2p(1-r)} \left\| \Gamma \right\|_{L^{2,\alpha}(\mathbb{R})} + e^{-C/\lambda_0(\alpha)\eta} & : s \neq 1 \\ \frac{1}{-\log(\alpha)} & : s = 1 \end{cases}
\]

(5.15)

\[
\left\| D\Gamma \hat{E}_\infty[\alpha, \Gamma] \right\|_{L^{2,\alpha}(\mathbb{R})} \rightarrow L^{2,\alpha}(\mathbb{R}) \leq \begin{cases} \alpha^{2p(1-r)} & : s \neq 1 \\ \frac{1}{-\log(\alpha)} & : s = 1 \end{cases}
\]

(5.16)

Here, \(\lambda_0(\alpha) \rightarrow 0 \) as \(\alpha \rightarrow 0 \) and is given by (5.6). The implicit constants depend only on \(\alpha_0 \) and \(\beta_0 \).

3. \(\hat{E}_\infty[\alpha, \Gamma] \) is supported on \(Q \in \left[-\frac{\pi}{\alpha}, -\frac{1}{\lambda_0(\alpha)}\right] \cap \left(\frac{1}{\lambda_0(\alpha)}, \frac{\pi}{\alpha}\right]; \hat{E}_\infty[\alpha, \Gamma](Q) = \chi_{\infty} \chi_{\infty} \hat{E}_\infty[\alpha, \Gamma]. \)

Proof of Proposition 5.4. The proof follows that given in [23] for nearest-neighbor DNLS. We summarize the proof and elaborate where the proof differs. Since \(0 < 1 \leq 1 + M_\alpha^*(Q) \) for all \(\alpha \) positive and small, we may rewrite (5.14) as

\[
\hat{E}_\infty(Q) - \chi_{\infty}(Q) [1 + M_\alpha^*(Q)]^{-1} \left(\chi_{\infty}(Q) \frac{3}{4\pi^2} \left(\hat{\psi} \ast \hat{\psi} \ast \Gamma(Q) + \hat{\psi} \ast \hat{\psi} \ast \hat{E}_\infty(Q) \right) \right)
\]

\[
- \mathcal{R}_1^\alpha [\alpha, \Gamma + \hat{E}_\infty](Q) = 0.
\]

(5.17)
The following results (Propositions[5.5,5.8] and Lemma5.7) are the essential ingredients required to extend the arguments of23 to the DNLS with non-local interactions.

Proof of Proposition 5.5. For any function \(\hat{f} \in L^{2,\alpha}(\mathbb{R}) \), we have

\[
\left\| \chi_{B_n} \chi_{\theta_n} \left[1 + M_n^\alpha(Q) \right]^{-1} \hat{f} \right\|_{L^{2,\alpha}(\mathbb{R})} \lesssim \begin{cases}
\alpha^{2p(1-\tau)} & : s \neq 1 \\
\frac{1}{(-\log(\alpha))^{\eta_p}} & : s = 1
\end{cases}
\tag{5.18}
\]

Proof of Proposition 5.5. We require the following lemma.

Lemma 5.6. Let \(p = \min(1, s) \). There exists a constant, \(C = C_\epsilon \), such that for \(s \neq 1 \) and \(Q \in B_n \), \(M_n^\alpha(Q) \geq C |Q|^{2p} \). If \(s = 1 \), then \(M_n^\alpha(Q) \geq \frac{C}{(-\log(\alpha))^{\eta_p}} |Q|^2 \).

We defer the proof of Lemma 5.6 until the end of this section. Recall that \(\chi_{B_n} \) projects onto the set \(|Q| \geq \frac{1}{\lambda_\epsilon(\alpha)} \), where \(\lambda_\epsilon(\alpha) \to 0 \), is given by [5.6]. Now let \(s \neq 1 \). From Lemma 5.6 we have \(\chi_{B_n}(Q) \chi_{\theta_n}(Q) \left[1 + M_n^\alpha(Q) \right] \geq C \chi_{B_n}(Q) \chi_{\theta_n}(Q) |Q|^{2p} \geq C \lambda_\epsilon(\alpha)^{-2p} = C \alpha^{2p(1-\tau)} \). Next, let \(s = 1 \). Then Lemma 5.6 gives \(\chi_{B_n}(Q) \chi_{\theta_n}(Q) \left[1 + M_n^\alpha(Q) \right] \geq \chi_{B_n}(Q) \chi_{\theta_n}(Q) \left(\frac{C}{(-\log(\alpha))^{\eta_p}} |Q|^2 \right) \). Proposition 5.5 now follows.

We also require the following lemma, stated generally due to its broader use, which establishes exponential smallness of “shifted” \((m = \pm 1 \text{ by our convention})\) convolutions of exponentially decaying functions.

Lemma 5.7. Fix \(0 < \eta \leq 1 \) and \(a > 1/2 \). Let \(\hat{f} \in L^{2,\alpha}(\mathbb{R}) \) be such that \(e^{C|Q|^\eta} \hat{f}(Q) \in L^{2,\alpha}(\mathbb{R}) \) for some \(C > 0 \). Then, (a) for \(m = \pm 1 \),

\[
\left\| \chi_{B_n}(Q) \left(\hat{f} * \hat{f} \right) (Q - 2m\pi/a) \right\|_{L^{2,\alpha}(\mathbb{R})} \lesssim e^{-C\pi^\eta/a^\eta} \left\| e^{C|Q|^\eta} \hat{f}(Q) \right\|_{L^{2,\alpha}(\mathbb{R})}^3 \tag{5.19}
\]

and (b)

\[
\left\| \chi_{B_n}(Q) \left(\hat{f} * \hat{f} \right) (Q) \right\|_{L^{2,\alpha}(\mathbb{R})} \lesssim e^{-C/(\lambda_\epsilon(\alpha)^{\eta_p})} \left\| e^{C|Q|^\eta} \hat{f}(Q) \right\|_{L^{2,\alpha}(\mathbb{R})}^3 \tag{5.20}
\]

Proof of Lemma 5.7. We first prove (a). For any \(\xi, \zeta \in \mathbb{R} \) we have \(|Q - 2m\pi/a|^\eta \leq |Q - \xi - \zeta - 2m\pi/a|^\eta + |\xi|^\eta + |\zeta|^\eta \), since \(0 < \eta \leq 1 \) (Lemma A.1). Therefore, \(1 \leq e^{-C|Q - 2m\pi/a|^\eta} e^{C|Q - \xi - \zeta - 2m\pi/a|^\eta} e^{C|\xi|^\eta} e^{C|\zeta|^\eta} \). Moreover, if \(|Q| \leq \pi/a \), it follows that \(|Q - 2m\pi/a| \geq \pi/a \) and therefore \(\chi_{B_n}(Q) e^{-C|Q - 2m\pi/a|^\eta} \leq e^{-C\pi^\eta/a^\eta} \). Now applying 1.29 and distributing the exponentials we have

\[
\chi_{B_n}(Q) \left(\hat{f} * \hat{f} \right) (Q - 2m\pi/a) = \chi_{B_n}(Q) \int \hat{f}(Q - 2m\pi/a - \xi - \zeta) \hat{f}(\xi) \hat{f}(\zeta) d\xi d\zeta
\]

\[
= \chi_{B_n}(Q) \int \int e^{-C|Q - 2m\pi/a|^\eta} e^{C|Q - 2m\pi/a - \xi - \zeta|^\eta} \hat{f}(Q - 2m\pi/a - \xi - \zeta) e^{C|\xi|^\eta} \hat{f}(\xi) e^{C|\zeta|^\eta} \hat{f}(\zeta) d\xi d\zeta
\]

Therefore,

\[
\left\| \chi_{B_n}(Q) \left(\hat{f} * \hat{f} \right) (Q - 2m\pi/a) \right\|_{L^{2,\alpha}(\mathbb{R})} \leq e^{-C\pi^\eta/a^\eta} \left\| e^{C|\xi|^\eta} \hat{f}(\xi) \right\|_{L^{2,\alpha}(\mathbb{R})}^2 \left\| e^{C|\zeta|^\eta} \hat{f}(\zeta) \right\|_{L^{2,\alpha}(\mathbb{R})}^2 \left\| e^{C|Q - 2m\pi/a - \xi - \zeta|^\eta} \hat{f}(Q - 2m\pi/a - \xi - \zeta) \right\|_{L^{2,\alpha}(\mathbb{R})}^2
\]

To complete the proof of (a) we integrate over all \(Q \in \mathbb{R} \) and apply Lemma 1.5 twice. The proof of (b) is very similar. Here, \(m = 0 \), but \(\chi_{B_n} \) localizes the integrand on the set \(|Q| \geq 1/\lambda_\epsilon(\alpha) \). On this set we then use

\[
1 \leq e^{-C|Q|^\eta} e^{C|Q - \xi - \zeta|^\eta} e^{C|\xi|^\eta} e^{C|\zeta|^\eta} \leq e^{-C/(\lambda_\epsilon(\alpha)^{\eta_p})} e^{C|Q - \xi - \zeta|^\eta} e^{C|\xi|^\eta} e^{C|\zeta|^\eta} \]

to complete the proof. □
Finally, we bounded the forcing terms in \(\chi_s \mathcal{R}_s^\alpha [\sigma, \Gamma + \hat{E}_s] \) which drive \(\hat{E}_s \).

Proposition 5.8. Assume \(s > 1/4 \). Let \(p = \min(1, s) \), \(\eta = \min(1, 2s) \) and let the spectral cutoff parameter, \(\lambda_s(\alpha) \), be given as in (5.6). Let the operator \(\mathcal{D}^{\sigma, \alpha} \) be defined in (4.5) and set \(S(Q) = \chi_{s_n}(Q) \tilde{\psi}(Q) \). Then, there exists \(C > 0 \), such that \(\| \chi_s(Q) \left(1 + M_s(Q) \right)^{-1} \mathcal{D}^{\sigma, \alpha}[S](Q) \|_{L^{2, \infty}(\mathbb{R}^4)} \leq e^{-C/\lambda(\alpha)^\eta} \).

Proof of Proposition 5.8. Recall from Proposition 2.3 that for some \(\mu > 0 \), \(\| e^{\mu Q} \tilde{\psi}(Q) \|_{L^{2, \infty}(\mathbb{R}^4)} \leq 1 \), where \(\eta = \min(2s, 1) \). By the definition of \(\mathcal{D}^{\sigma, \alpha}[S] \) displayed in (4.9) we have

\[
\left(1 + M_s(Q) \right)^{-1} \mathcal{D}^{\sigma, \alpha}[S] = S(Q) - \frac{\chi_{s_n}(Q)}{4\pi^2} \sum_{m=-1,0,1} e^{2m\pi i \sigma} \left(S * S * S \right)(Q) - 2m\pi / \alpha .
\]

To conclude the proof, we observe that the \(m = \pm 1 \) terms and the \(m = 0 \) term are bounded, respectively, by parts (a) and (b) of Lemma 5.7.

We conclude this section with the proof of Lemma 5.6. Recall the expression for \(M_s(Q) \) in (4.8) and \(\kappa_s(\alpha) \) in (1.21). For \(s > 1 \), \(\kappa_s(\alpha) = \alpha^2 \) and therefore \(4 \sin^2(q/2) \geq \frac{4}{\pi^2} \left| q \right|^2 \), \(q \in [\pi, \pi] \) gives \(M_s(Q) \geq \frac{4}{\pi^2} J_1 \sin^2(Q \alpha/2) \geq \frac{4q^2}{\alpha^4} |Q|^2 \). Next assume \(s = 1 \). Then \(\kappa_s(\alpha) = (\log(\alpha)) \alpha^2 \), \(C_s = 1 \), and similarly, \(M_s(Q) \geq \frac{4}{\pi^2(\log(\alpha))} \sin^2(Q \alpha/2) \geq \frac{4q^2}{\alpha^4} |Q|^2 \). Finally, suppose that \(s < 1 \) (thus \(p(s) = \min(1, s) = s \)). We work with \(M^s(q) \) in the original variable \(q \in \mathcal{B} = [\pi, \pi] \). First consider \(|q| \geq 1 \), where \(|q|^2 \geq |q|^{2s} \). Then

\[
M^s(q) = \frac{1}{C_s} \sum_{m=1}^{\infty} \frac{4 \sin^2(qm/2)}{m^{1+2s}} \geq \frac{4}{C_s} \sin^2(q/2) \geq \frac{4}{C_s \pi^2} |q|^2 \geq \frac{4}{C_s \pi^2} |q|^{2s}, \quad 1 \leq |q| \leq \pi.
\]

For \(0 \leq |q| < 1 \), Proposition 5.5 (and Remark 5.1 for \(s = 1/2 \)) give

\[
M^s(q) = |q|^{2s} + \frac{2}{C_s} \sum_{j=1}^{\infty} \frac{\zeta(1+2s-2j)}{(2j)!} (-1)^{j+1} |q|^{2j} = |q|^{2s} \left(1 + \frac{2}{C_s} \sum_{j=1}^{\infty} \frac{\zeta(1+2s-2j)}{(2j)!} (-1)^{j+1} |q|^{2j-2s} \right).
\]

If we let \(|q| \leq q_s = \min \left\{ 1, \left(\frac{4}{C_s} \sum_{j=1}^{\infty} \frac{\zeta(1+2s-2j)}{(2j)!} \right) \right\} \), where \(q_s > 0 \),

\[
\frac{2}{C_s} \sum_{j=1}^{\infty} \frac{\zeta(1+2s-2j)}{(2j)!} (-1)^{j+1} |q|^{2j-2s} \leq \frac{2}{C_s} \sum_{j=1}^{\infty} \frac{|\zeta(1+2s-2j)|}{(2j)!} |q|^{2j-2s} \leq \frac{2}{C_s} \sum_{j=1}^{\infty} \frac{|\zeta(1+2s-2j)|}{(2j)!} |q|^{2j-2s} \leq \frac{1}{2},
\]

such that by (5.23),

\[
M^s(q) = |q|^{2s} \left(1 + \frac{2}{C_s} \sum_{j=1}^{\infty} \frac{\zeta(1+2s-2j)}{(2j)!} (-1)^{j+1} |q|^{2j-2s} \right) \geq \frac{|q|^{2s}}{2}, \quad |q| \leq q_s.
\]

It remains to address \(q_s \leq |q| < 1 \) (if \(q_s = 1 \), we are done for \(s < 1 \)). On this interval, we need to find \(C_s > 0 \) such that

\[
M^s(q) = \frac{1}{C_s} \sum_{m=1}^{\infty} \frac{4 \sin^2(qm/2)}{m^{1+2s}} \geq \frac{4}{C_s \pi^2} |q|^2 \geq C_s |q|^{2s}, \quad q_s \leq |q| < 1.
\]
where we have again used $\sin^2(q/2) \geq \frac{1}{\pi}|q|^2$. Take $C_\# \equiv \min_{q_\# \leq |q| < 1} \left(\frac{4 |q|^2}{C\# \pi^2} \right) = \frac{4 |q|^2}{C\# \pi^2} > 0$, and let $C \equiv \min \left\{ C\#, \frac{1}{\pi}, \frac{1}{2}, C\# \right\}$. Therefore, from (5.22), (5.25), and (5.26), and with the rescaling $Q = q/\alpha$, there exists some $C > 0$ such that we have for $s < 1$,

$$M^*(q) = \frac{1}{C_s} \sum_{m=1}^{\infty} \frac{4 \sin^2(q m/2)}{m^{1+2s}} \geq C |q|^{2s}, \quad q \in B = [-\pi, \pi]$$

$$\implies M_\#^*(Q) = \frac{1}{C^2_s} \sum_{m=1}^{\infty} \frac{4 \sin^2(Q m/2)}{m^{1+2s}} \geq C |Q|^{2s}, \quad Q \in B, = \left[-\frac{\pi}{\alpha}, \frac{\pi}{\alpha} \right]. \quad (5.27)$$

This completes the proof of Lemma 5.6 \(\square \)

6. Solution of the low frequency equation for \hat{E}_m.

6.1. Equation for \hat{E}_m as a perturbation of the continuum FNLS limit. Insertion of the map $\hat{E}_m[\alpha, \hat{E}_m]$ (Proposition 5.4) into equation (5.12) yields a closed equation for \hat{E}_m:

$$[1 + M_\#^*(Q)] \hat{E}_m(Q) - \chi_m(Q) \left(\frac{3}{4\pi^2} \hat{\psi} * \hat{\psi} * \hat{E}_m(Q) \right) = \chi_m(Q) R_1^\alpha \left[\alpha, \hat{E}_m + \hat{E}_m[\alpha, \hat{E}_m] \right](Q) + \chi_m(Q) \left(\frac{3}{4\pi^2} \hat{\psi} * \hat{\psi} * \left(\hat{E}_m[\alpha, \hat{E}_m] \right) \right)(Q). \quad (6.1)$$

Here, $R_1^\alpha[\alpha, \hat{E}]$ is displayed in (5.4).

Now note that the operator on the left-hand-side of (6.1) has a formal $\alpha \downarrow 0$ limit equal to the linearized continuum FNLS operator, \hat{L}_+. Hence, we now reexpress (6.1) as a small α perturbation of this limit:

PROPOSITION 6.1. Let $p = p(s) = \min(s, 1)$. There exists $0 \leq \alpha_1 \leq \alpha_0$ and $0 < r < 1$ such that:

1. Equation (6.1) for \hat{E}_m may be rewritten as

$$\hat{L}_+ \hat{E}_m(Q) = R_2^\alpha[\alpha, \hat{E}_m](Q), \quad (6.2)$$

$$R_2^\alpha[\alpha, \hat{E}_m](Q) = \chi_m(Q) \left[\alpha, \hat{E}_m + \hat{E}_m[\alpha, \hat{E}_m] \right](Q) + R_{\text{pert}} \left[\alpha, \hat{E}_m \right](Q), \quad \text{and} \quad (6.3)$$

$$R_{\text{pert}} \left[\alpha, \hat{E}_m \right](Q) = \chi_m(Q) \left[|Q|^{2p} - M_\#^*(Q) \right] \hat{E}_m(Q) - \chi_m(Q) \left(\frac{3}{4\pi^2} \hat{\psi} * \hat{\psi} * \hat{E}_m(Q) \right). \quad (6.4)$$

2. $R_2^\alpha \left[\alpha, \hat{E}_m \right](Q)$ is continuous at $(0, 0) \in [0, \alpha_1) \times L^2(\mathbb{R})$. Furthermore, the mapping $\hat{E}_m \mapsto R_2^\alpha \left[\alpha, \hat{E}_m \right]$ is Fréchet differentiable, where $D_{\hat{E}_m} R_2^\alpha \left[\alpha, \hat{E}_m \right]$ is displayed in (6.23) below. Finally, we have the bounds

$$\left\| R_2^\alpha \left[\alpha, \hat{E}_m \right]\right\|_{L^2(\alpha \to 2p(\mathbb{R}))} \lesssim \left(\frac{\alpha}{\chi_{\#}(\alpha)} \right)^{1/2} c_s(\alpha) + \left\| \hat{E}_m \right\|_{L^2(\alpha(\mathbb{R}))}^2 + \left\| \hat{E}_m \right\|_{L^2(\alpha(\mathbb{R}))}^2 \quad (6.5)$$

$$D_{\hat{E}_m} R_2^\alpha \left[\alpha, \hat{E}_m \right]\|_{L^2(\alpha(\mathbb{R}) \to L^2(\alpha \to 2p(\mathbb{R}))} \lesssim \mathcal{E}_s(\alpha) + \left\| \hat{E}_m \right\|_{L^2(\alpha(\mathbb{R}))}^2 + \left\| \hat{E}_m \right\|_{L^2(\alpha(\mathbb{R}))}^2 \quad (6.6)$$

where $c_s(\alpha)$ and $\mathcal{E}_s(\alpha)$ are defined in (1.32).

Proposition 6.1 is proven in Sections 6.1.1 through 6.2. In Section 6.1 we derive equation (6.2). In Section 6.1.3 we provide tools used in Section 6.2 to prove estimates (6.5) and (6.6).

We then proceed to solve (6.2) in Proposition 6.1.4 of Section 6.3 using the strategy detailed in Section 6.1.2.
6.1.1. Derivation of equation \((6.2)\) for \(\hat{E}_{\nu}\). We follow the derivation of the low-frequency equation found in [23], and rewrite equation \((6.1)\) in the form \((6.2)\). First, we use that \(\chi_{hi} = 1 - \chi_{lo}\) to get

\[
\chi_{lo}(Q) \hat{\psi} \ast \hat{\psi} \ast \hat{E}_{\nu}(Q) = \hat{\psi} \ast \hat{\psi} \ast \hat{E}_{\nu}(Q) - \chi_{hi}(Q) \hat{\psi} \ast \hat{\psi} \ast \hat{E}_{\nu}(Q).
\]

(6.7)

Since \(\chi_{hi} \hat{E}_{\nu} = 0\), we may write:

\[
M^*_{\alpha}(Q) \hat{E}_{\nu}(Q) = |Q|^{2p} \hat{E}_{\nu}(Q) + \chi_{lo} \left[M^*_{\alpha}(Q) - |Q|^{2p} \right] \hat{E}_{\nu}(Q).
\]

(6.8)

We now express the left-hand side of \((6.1)\) via \((6.7)\) and \((6.8)\) in the form: \(\hat{L}_t \hat{E}_{\nu}(Q) - R_{\alpha} \left[\alpha, \hat{E}_{\nu} \right](Q)\), where the linear operator \(\hat{L}_t \mapsto R_{\alpha} \left[\alpha, \hat{E}_{\nu} \right] \) is given in \((6.4)\). Equation \((6.1)\) may be written in the desired form \((6.2)\), where \(R_{\alpha} \left[\alpha, \hat{E}_{\nu} \right]\) is given by \((6.3)\). Finally, the expression for \(D_{\hat{E}_{\nu}} R_{\alpha}^{\ast} \left[\alpha, \hat{E}_{\nu} \right]\) is displayed in \((6.23)\) and is bounded, together with \(R_{\alpha}^{\ast} \left[\alpha, \hat{E}_{\nu} \right]\) in Section 6.2.

6.1.2. Strategy for solving the low frequency equation. We study the solvability of the low frequency equation \((6.2)\): \(\mathcal{M}[\alpha, \hat{E}_{\nu}] = \hat{L}_t \hat{E}_{\nu} - R_{\alpha}^{\ast} \left[\alpha, \hat{E}_{\nu} \right] = 0\) by applying a following variant of the implicit function theorem (a consequence of Theorem D.1 of Appendix D) [23].

Lemma 6.2. Consider the equation

\[
\mathcal{M}[\alpha, f] = \mathcal{L}f - R[\alpha, f] = 0, \quad f \in L^{2,a}_{\text{even}}(\mathbb{R}),
\]

(6.9)

1. \(\mathcal{L} : L^{2,a}_{\text{even}}(\mathbb{R}) \rightarrow L^{2,a-2p}_{\text{even}}(\mathbb{R})\) be an isomorphism for \(0 < p \leq 1\)
2. \(\mathcal{R} : [0, \alpha_1] \times L^{2,a}_{\text{even}}(\mathbb{R}) \rightarrow L^{2,a-2p}_{\text{even}}(\mathbb{R})\) is continuous at \((0, 0)\), Fréchet differentiable with respect to \(f \in L^{2,a}_{\text{even}}(\mathbb{R})\),
3. \(\mathcal{R}[0, 0] = 0\) and satisfies the bounds:

\[
\| \mathcal{R}[\alpha, f] \|_{L^{2,a-2p}_{\text{even}}(\mathbb{R})} \leq \mathcal{R}(\alpha) + \| f \|_{L^{2,a}_{\text{even}}(\mathbb{R})} + \| f \|_{L^{2,a}_{\text{even}}(\mathbb{R})}^2,
\]

(6.10)

\[
\| Df \mathcal{R}[\alpha, f] \|_{L^{2,a}_{\text{even}}(\mathbb{R}) \rightarrow L^{2,a-2p}_{\text{even}}(\mathbb{R})} \leq \mathcal{R}(\alpha) + \| f \|_{L^{2,a}_{\text{even}}(\mathbb{R})} + \| f \|_{L^{2,a}_{\text{even}}(\mathbb{R})}^2,
\]

(6.11)

for some continuous function \(\mathcal{R}(\alpha) > 0\), satisfying \(\mathcal{R}(0) = 0\), \(\mathcal{R}(\alpha) \rightarrow 0\) as \(\alpha \rightarrow 0\).

Then there exists a constant \(\alpha_2 \leq \alpha_1\) such that for all \(0 < \alpha < \alpha_2\), the equation \((6.9)\), \(\mathcal{M}[\alpha, f] = 0\), has a unique solution \(f = f[\alpha] \in L^{2,a}_{\text{even}}(\mathbb{R})\) satisfying

\[
\| f[\alpha] \|_{L^{2,a}_{\text{even}}(\mathbb{R})} \leq \mathcal{R}(\alpha).
\]

(6.12)

In order to construct \(\hat{E}_{\nu}\) by application of Lemma 6.2, we must verify the hypotheses for \(\mathcal{M}[\alpha, f] = \hat{L}_t f - R_{\alpha}^{\ast} \left[\alpha, f \right]\) with \(\mathcal{L} = \hat{L}_t\) and \(\mathcal{R} = R_{\alpha}^{\ast} \left[\alpha, f \right]\). Note, by Proposition 2.4 that the mapping \(\hat{L}_t : L^{2,a}_{\text{even}}(\mathbb{R}) \rightarrow L^{2,a-2p}_{\text{even}}(\mathbb{R})\) is an isomorphism. Hence it remains to verify that \((\alpha, f) \mapsto R_{\alpha}^{\ast} \left[\alpha, f \right]\) satisfies the necessary hypotheses. This is done in the remainder of Section 6 concluding in Proposition 6.11.

6.1.3. Tools for estimation of the low frequency equation. To establish the properties of \(R_{\alpha}^{\ast}\) given in Proposition 6.1, we require a number of general tools. Recall that \(\chi_{lo} = 1 - \chi_{hi}\), where \(\chi_{hi} \equiv \chi_{[\lambda_{\alpha}^{-1}, \lambda_{\alpha}^{-1}]}\) where \(\lambda_{\alpha}\) is defined in \((5.6)\). Note first that since \((1 + |Q|^{2p}) \leq |Q|^{2p}\), we have

Lemma 6.3. Let \(0 < p \leq 1\). For any function \(\hat{g} \in L^{2,a-2p}_{\text{even}}(\mathbb{R})\) such that \(|Q|^{-2p} \hat{g} \in L^{2,a}_{\text{even}}(\mathbb{R})\), we have

\[
\| \hat{g} \|_{L^{2,a-2p}} \leq \| |Q|^{-2p} \hat{g}(Q) \|_{L^{2,a}_{\text{even}}(\mathbb{R})}.
\]

(6.13)

The bound \(\chi_{lo}(Q)|Q|^{-2p} \leq \lambda(\alpha)^{2p}\) and Lemma 6.3 imply:

Lemma 6.4. Let \(0 < p \leq 1\). For any function \(\hat{g} \in L^{2,a}_{\text{even}}(\mathbb{R})\), we have

\[
\| \chi_{lo}(Q) \hat{g}(Q) \|_{L^{2,a-2p}} \leq \lambda(\alpha)^{2p} \| \hat{g} \|_{L^{2,a}_{\text{even}}(\mathbb{R})}.
\]

(6.14)
LEMMA 6.5. Let $0 < r < 1$ and $p = \min(1, s)$. For any function $\hat{g} \in L^{2, \alpha}(\mathbb{R})$, we have
\[
\left\| x_{w}(Q) \left[|Q|^{2p} - M_{\alpha}^{s}(Q) \right] \hat{g}(Q) \right\|_{L^{2, \alpha-2p}(\mathbb{R}_{Q})} \lesssim \delta_{s}(\alpha) \left\| \hat{g} \right\|_{L^{2, \alpha}(\mathbb{R})},
\] (6.15)
where $\delta_{s}(\alpha) \to 0$ as $\alpha \to 0$ is displayed in (1.33).

Proof of Lemma 6.5. Recall $p = p(s) = \min(s, 1)$. Proposition 6.3 implies there exists $f_{s}(Q; \alpha)$ such that $\sup_{Q \in \mathbb{R}_{s}} |f_{s}(Q; \alpha)| \lesssim 1$ and $M_{\alpha}^{s}(Q) - |Q|^{2p(s)}$ is equal to $f_{s}(Q; \alpha)$ times a function of α and Q, displayed in (4.13). Recall that $p = p(s) = \min(s, 1)$ and $\lambda_{\alpha}(\alpha) = \{ \alpha^{\frac{1-r}{\log(\alpha)}} : s \neq 1 \}$. Furthermore, recall that $\chi_{w}(Q) = \chi(|Q| \leq \lambda(\alpha)^{-1})$, and that $\lambda(\alpha)^{-1} \leq \pi / \alpha$ for α sufficiently small, implying $\sup_{Q} \chi_{w}(Q) |f_{s}(Q; \alpha)| \lesssim 1$.

First, suppose that $s \neq 1$. We apply Lemma 6.3 to get
\[
\left\| x_{w}(Q) \left[|Q|^{2p} - M_{\alpha}^{s}(Q) \right] \hat{g}(Q) \right\|_{L^{2, \alpha-2p}(\mathbb{R}_{Q})} \lesssim \left\| x_{w}(Q) |Q|^{-2p} \left[|Q|^{2p} - M_{\alpha}^{s}(Q) \right] \hat{g}(Q) \right\|_{L^{2, \alpha}(\mathbb{R}_{Q})}.
\] (6.16)
Hence, by (4.13) to prove the desired bound it suffices to bound the supremum of
\[
\chi_{w}(Q) |Q|^{-2p} \left[|Q|^{2p} - M_{\alpha}^{s}(Q) \right] = \chi_{w}(Q)
\]
\[
\begin{array}{ll}
|f_{s}(Q; \alpha) \alpha|^{2(1-s)} : s < 1, \\
|f_{s}(Q; \alpha) \alpha|^{2(s-1)} : 1 < s < 2, \\
\left(-\log(\alpha)\right) f_{s}(Q; \alpha) \alpha \left|Q\right|^{2} : s = 2, \\
\left|f_{s}(Q; \alpha) \alpha\right|^{2} : 2 < s < \infty.
\end{array}
\] (6.17)
For $s \neq 1, \chi_{w}(Q)$ projects onto the set where $|\alpha| Q \leq \alpha \lambda_{\alpha}(\alpha)^{-1} = \alpha^{s}$ and (6.15) follows in this case.

Finally, consider the case where $s = 1$. In this case, $p = \min(s, 1) = 1$. Here we take $\lambda_{\alpha}(\alpha)^{-1} = -\log(\alpha) > 1$. To manage the logarithmic term in (6.16), note that
\[
\left|\log(|Q|)\right| \left|Q\right|^{2} \leq \frac{1}{2e} \quad \text{when} \quad |Q| \leq 1,
\]
and $\left|\log(|Q|)\right| \leq \log(-\log(\alpha))$ when $1 < |Q| \leq \lambda(\alpha)^{-1} = -\log(\alpha)$. (6.18)
We therefore address the intervals $|Q| \leq 1$ and $|Q| \geq 1$ separately via projections. We use Lemma 6.3 and the fact that $(1 + |Q|^{2})^{-2} \leq 1$ to get
\[
\left\| x_{w}(Q) \left[|Q|^{2} - M_{\alpha}^{s}(Q) \right] \hat{g}(Q) \right\|_{L^{2, \alpha-2}(\mathbb{R}_{Q})} \lesssim \left\| x_{w}(Q) \left[|Q|^{2} - M_{\alpha}^{s}(Q) \right] \hat{g}(Q) \right\|_{L^{2, \alpha}(\mathbb{R}_{Q})}.
\] (6.19)
The term localized on $|Q| \leq 1$ is bounded, using the first estimate in (6.18) and (6.16), by $\chi(|Q| \leq 1) \left| |Q|^{2} - M_{\alpha}^{s}(Q) \right| \lesssim \frac{1}{-\log(\alpha)}$. The term localized to $|Q| \geq 1$ is bounded using the second estimate in (6.18) and (6.16), by $\chi(|Q| \geq 1) \chi_{w}(Q) \left|Q\right|^{2} \left| |Q|^{2} - M_{\alpha}^{s}(Q) \right| \lesssim \frac{\log(-\log(\alpha))}{(-\log(\alpha))}$. Lemma 6.5 is proved. □

LEMMA 6.6. Suppose that $\hat{f}_{1} \in L^{2, \alpha}(\mathbb{R})$ and $c|Q|^\gamma \hat{f}_{1}(Q) \in L^{2, \alpha}(\mathbb{R}_{Q})$ for some $\eta, C > 0$. Further, let $\hat{f}_{1}, \hat{f}_{3} \in L^{2, \alpha}(\mathbb{R})$. Then, with $\chi_{w_{\alpha}}(Q) = \chi(|Q| > \pi / \alpha)$, we have
\[
\left\| \chi_{w_{\alpha}} \hat{f}_{1} \right\|_{L^{2, \alpha}(\mathbb{R})} \lesssim e^{-C|Q|^\gamma / \alpha^\gamma},
\] (6.20)
\[
\left\| \chi_{w_{\alpha}} \hat{f}_{1} \ast \hat{f}_{2} \ast \hat{f}_{3} \right\|_{L^{2, \alpha-2p}(\mathbb{R})} \lesssim e^{-C|Q|^\gamma / \alpha^\gamma},
\] (6.21)
The bound \(6.20\) follows from \(\chi_{B_n} (Q) e^{-C|Q|^\alpha} e^{C|Q|^\mu} \leq e^{-C \pi^\gamma/\alpha^\eta} e^{C|Q|^\nu}\). The second follows from the first and \(1.31\).

6.2. Part 2 of the proof of Proposition 6.1 Analysis of \(R_2^\sigma\) and derivation of estimates \(6.5\) and \(6.6\). To bound \(R_2^\sigma : \mathbb{R} \times L^{2,\alpha} (\mathbb{R}) \to L^{2,\alpha-2p} (\mathbb{R})\), we use estimates \(6.15\) and \(6.16\) from Proposition \(5.4\) which are valid for \(0 < \alpha < \alpha_0\). Note from \(6.2\) that

\[
\widehat{E}_n (Q) = \chi_{I_n} (Q) \widehat{E}_n (Q).
\]

(6.22)

For any \(f \in L^{2,\alpha} (\mathbb{R})\), a direct computation using \(6.3\), \(6.22\), and the linearity of \(R_N^\sigma\) and \(R_{\text{pert}}\) in their second argument gives

\[
D_{E_n} R_2^\sigma [\alpha, \widehat{E}_n] \hat{f} (Q) = \chi_{I_n} (Q) R_N^\sigma [\alpha, \chi \hat{f}] (Q) + \chi_{I_n} (Q) R^\sigma_L [\alpha, (D_{E_n} \widehat{E}_n [\alpha, \widehat{E}_n]) \hat{f}] (Q) + R_{\text{pert}} [\alpha, \hat{f}] (Q) + D_{E_n} \left(\chi_{I_n} R_N^\sigma [\alpha, \widehat{E}_n + \widehat{E}_n [\alpha, \widehat{E}_n]] \right) \hat{f} (Q).
\]

(6.23)

Here,

\[
D_{E_n} \left(\chi_{I_n} R_N^\sigma [\alpha, \widehat{E}_n + \widehat{E}_n [\alpha, \widehat{E}_n]] \right) \hat{f} (Q) = \chi_{I_n} (Q) \left(\frac{1}{2\pi} \right)^2 \sum_{m=1}^1 e^{2\pi i \sigma} \left\{ 6 S^\sigma \ast E^\sigma_j \ast \hat{f} (Q - 2m\pi/\alpha) + 3 \widehat{E}_n \ast \widehat{E}_n \ast \hat{f} (Q - 2m\pi/\alpha) + 6 S^\sigma \ast \widehat{E}_n \ast (D_{E_n} \widehat{E}_n [\alpha, \widehat{E}_n] \cdot \hat{f}) (Q - 2m\pi/\alpha) + 3 \widehat{E}_n \ast \widehat{E}_n \ast (D_{E_n} \widehat{E}_n [\alpha, \widehat{E}_n] \cdot \hat{f}) (Q - 2m\pi/\alpha) \right\}.
\]

(6.24)

We now proceed to bound \(R_2^\sigma\), given in \(6.3\) and \(D_{E_n} R_2^\sigma\), given in \(6.23\), as maps from \(L^{2,\alpha}\) to \(L^{2,\alpha-2p}\).

Proposition 6.7. Let \(0 < r < 1\), and \(0 < \alpha < \alpha_0\). \(R_{\text{pert}} [\alpha, \hat{f}]\), defined in \(6.4\), satisfies

\[
\| R_{\text{pert}} [\alpha, \hat{f}] \|_{L^{2,\alpha-2p} (\mathbb{R})} \leq \mathcal{E}_s (\alpha) \left\| \hat{f} \right\|_{L^{2,\alpha} (\mathbb{R})}.
\]

(6.25)

Here, \(\mathcal{E}_s (\alpha) \to 0\) as \(\alpha \to 0\) is displayed in \(1.32\).

This proposition follows from Lemmata \(6.4\) and \(6.5\), and Proposition \(1.31\). Note that \(\mathcal{E}_s (\alpha) = d_s (\alpha) + \lambda (\alpha)^{3p}\), where \(d_s (\alpha)\) is given in \(1.33\).

Proposition 6.8. Let \(0 < \alpha < 1\) and \(\eta = \min (2s, 1)\). Let \(R_2^\sigma\) be defined in \(5.5\), and let \(\hat{f} \in L^{2,\alpha} (\mathbb{R})\). Then there exist \(\alpha_0, C > 0\) such that for \(0 < \alpha < \alpha_0\),

\[
\left\| \chi_{I_n} R_L^\sigma [\alpha, \chi \hat{f}] \right\|_{L^{2,\alpha-2p} (\mathbb{R})} \leq e^{-C/\alpha^\eta} \left\| \hat{f} \right\|_{L^{2,\alpha} (\mathbb{R})},
\]

(6.26)

and

\[
\left\| \chi_{I_n} R_L^\sigma [\alpha, \hat{f}] \right\|_{L^{2,\alpha-2p} (\mathbb{R})} \leq \left\| \hat{f} \right\|_{L^{2,\alpha} (\mathbb{R})}.
\]

(6.27)

where \(R_L^\sigma\) is given in \(5.5\).

Proof of Proposition 6.8. We use \(1.31\) extensively. From \(5.5\), we have for any \(\hat{f} \in L^{2,\alpha} (\mathbb{R})\),

\[
\chi_{I_0} (Q) R_2^\sigma [\alpha, \hat{f}] (Q) = \chi_{I_0} (Q) \chi_{B_n} (Q) 3 \frac{3}{4\pi^2} \left\{ \sum_{m=-1,0,1} e^{2\pi i \sigma} S \ast S \ast \hat{f} (Q - 2m\pi/\alpha) - \tilde{\psi} \ast \tilde{\psi} \ast \hat{f} (Q) \right\},
\]

(6.28)
which is linear in its second argument. First, we address the \(m = 0 \) term. Recall that \(S(Q) = \chi_{R_n}(Q) \hat{\psi}(Q) \). Since \(\chi_{R_n} + \chi_{R_n} = 1 \), we have \(S \ast S \hat{f} - \hat{\psi} \ast \hat{\psi} \ast \hat{f} = -2 \left(\chi_{R_n} \hat{\psi} \right) \ast \left(\chi_{R_n} \hat{\psi} \right) \ast \hat{f} \). Therefore, by Lemma 6.6

\[
\left\| S \ast S \hat{f} - \hat{\psi} \ast \hat{\psi} \ast \hat{f} \right\|_{L^2, a(\mathbb{R})} \lesssim e^{-C/\alpha^q} \left\| \hat{f} \right\|_{L^2, a(\mathbb{R})}.
\]

(6.29)

For the \(m = \pm 1 \) terms, first note that by (1.31),

\[
\left\| S \ast S \hat{f}(Q - 2m\pi/\alpha) \right\|_{L^2, a(\mathbb{R})} \lesssim \left\| \hat{f} \right\|_{L^2, a(\mathbb{R})}.
\]

(6.30)

Estimates (6.29) and (6.30) together imply (6.27).

To prove (6.26) we consider the \(m = \pm 1 \) terms. The integral to be bounded has variables \(Q, \xi, \zeta \in \mathbb{R} \) constrained by \(|\xi| \leq \frac{\alpha}{\alpha}, |\zeta| \leq \frac{\alpha}{\alpha}, |Q| \leq \frac{\alpha}{\alpha}, |\xi + \zeta - Q - 2m\pi/\alpha| \leq \frac{\alpha}{\alpha}, \). First assume \(m = 1 \). Then, \(\xi + \zeta - Q - \frac{2\pi}{\alpha} \geq \frac{\alpha}{\alpha} + Q \geq \frac{\alpha}{\alpha} \left(1 - \frac{\alpha}{\alpha} \right) \). Similarly when \(m = -1 \). Then, \(-\xi - \zeta - Q - \frac{2\pi}{\alpha} \geq -\frac{\alpha}{\alpha} - Q \geq \frac{\alpha}{\alpha} \left(1 - \frac{\alpha}{\alpha} \right) \). Note also, by the expression for \(\lambda_0(\alpha) \) in (5.6), that \(\alpha/\lambda_0(\alpha) \to 0 \) as \(\alpha \to 0 \). Therefore, in either case \(m = \pm 1 \), taking \(\alpha \) small enough that \(\alpha/\lambda_0(\alpha) \leq 1/2 \) gives (using Lemma A.1), \(|\xi|^n + |\zeta|^n \geq |\xi + \zeta - Q - 2m\pi/\alpha|^n \). Hence, under these constraints on \(Q, \xi, \zeta \), we have \(1 = e^{C|\xi|^n} e^{C|\zeta|^n} e^{-C(|\xi|^n + |\zeta|^n)} \lesssim e^{-C\pi^2/\alpha^q} \). Therefore,

\[
\left| \chi_{\alpha}(Q) S \ast S \left(\chi_{\alpha} \hat{f} \right) (Q - 2m\pi/\alpha) \right| \leq \chi_{\alpha}(Q) \int_{\mathbb{R}} \left| (\chi_{\alpha} S)(\xi) \right| \left| (\chi_{\alpha} S)(\zeta) \right| \left| (\chi_{\alpha} \hat{f})(Q - \xi - \zeta - 2m\pi/\alpha) \right| d\xi d\zeta
\]

\[
\lesssim e^{-C\pi^2/\alpha^q} \int_{\mathbb{R}} e^{C|\xi|^n} \left| S(\xi) \right| e^{C|\zeta|^n} \left| S(\zeta) \right| \left| \hat{f}(Q - \xi - \zeta - 2m\pi/\alpha) \right| d\xi d\zeta
\]

(6.31)

which using (1.31) gives, for some \(C > 0 \),

\[
\left| \chi_{\alpha}(Q) S \ast S \left(\chi_{\alpha} \hat{f} \right) (Q - 2m\pi/\alpha) \right|_{L^2, a = 2p(\mathbb{R})} \lesssim e^{-C/\alpha^q} \left\| S(Q) \right\|_{L^2, a(\mathbb{R})}^2 \left\| \hat{f} \right\|_{L^2, a(\mathbb{R})}.
\]

(6.32)

Estimates (6.29) and (6.32) complete the proof of Proposition 6.8. \(\square \)

Proposition 6.9. Let \(0 < r < 1 \). Let \(R_n^\alpha \) be defined in (5.5) and recall its derivative given in (6.24). Then there exists \(\alpha_0, C > 0 \) such that for \(0 < \alpha < \alpha_0 \),

\[
\left\| \chi_{\alpha} R_n^\alpha \left[\alpha, \hat{E}_{\alpha} + \hat{E}_{\alpha} \left[\alpha, \hat{E}_{\alpha} \right] \right] \right\|_{L^2, a = 2(\mathbb{R})} \lesssim e^{-C/\lambda(\alpha)^q} + e^{-C/\lambda(\alpha)^q} \left\| \hat{E}_{\alpha} \right\|_{L^2, a(\mathbb{R})}^2 + \left\| \hat{E}_{\alpha} \right\|_{L^2, a(\mathbb{R})}^3;
\]

(6.33)

\[
\left\| D_{\hat{E}_{\alpha}} \left(\chi_{\alpha} R_n^\alpha \left[\alpha, \hat{E}_{\alpha} + \hat{E}_{\alpha} \left[\alpha, \hat{E}_{\alpha} \right] \right] \right) \right\|_{L^2, a(\alpha) \to L^2, a = 2(\mathbb{R})} \lesssim e^{-C/\lambda(\alpha)^q} + \left\| \hat{E}_{\alpha} \right\|_{L^2, a(\mathbb{R})}^2 + \left\| \hat{E}_{\alpha} \right\|_{L^2, a(\mathbb{R})}^3.
\]

(6.34)

This follows from estimates (5.15) and (5.16), using (1.31).

Proposition 6.10. Let \(p = \min(1, s) \) and \(0 < r < 1 \). Recall \(\varepsilon_s(\alpha) \), given in (1.32). Let \(D_{s, \alpha} \) be defined in (4.9). There exists \(\alpha_0 > 0 \) such that for \(0 < \alpha < \alpha_0 \),

\[
\left\| \chi_{\alpha} D_{s, \alpha} \left[S \right] \right\|_{L^2, a = 2p(\mathbb{R})} \lesssim \left(\frac{\alpha}{R_s(\alpha)} \right)^{1/2} \varepsilon_s(\alpha).
\]

(6.35)
Proof of Proposition 6.10: We follow the proof from the nearest-neighbor case \([23]\) and use \(\|\hat{f}\|_{L^{2,\alpha}\left(\mathbb{R}\right)} \leq \|\hat{f}\|_{L^{2,\alpha}\left(\mathbb{R}\right)} \leq e^{-C/\alpha^n}\).\(^{(6.36)}\) Recall from \(\{4.9\}\) that
\[
\mathcal{D}^{\sigma,\alpha}[S](Q) = R_{F,1}[\alpha] + R_{F,2}^{\sigma}[\alpha] \quad \text{(6.36)}
\]
where we have defined
\[
R_{F,1}[\alpha] = \chi_{B_{\alpha}}(Q) \left(-[1 + M_{\alpha}^{\ast}(Q)] S(Q) + \left(\frac{1}{2\pi}\right)^{2} (S * S * S)(Q)\right),
\]
\[
R_{F,2}^{\sigma}[\alpha] = \chi_{B_{\alpha}}(Q) \left(\frac{1}{2\pi}\right)^{2} \sum_{m=\pm 1} e^{2m\pi i \sigma} (S * S * S)(Q - 2m\pi/\alpha). \quad \text{(6.37)}
\]
By Lemma 5.7 we have for some \(C > 0\),
\[
\left\| \chi_{\alpha} R_{F,2}^{\sigma} \right\|_{L^{2,\alpha}\left(\mathbb{R}\right)} \leq \left\| R_{F,2}^{\sigma} \right\|_{L^{2,\alpha}\left(\mathbb{R}\right)} \leq e^{-C/\alpha^n}. \quad \text{(6.38)}
\]
Next, we write \(S(Q) = \tilde{\psi}(Q) - \overline{B_{\alpha}}(Q) \tilde{\psi}(Q)\). Substituting into \(\{6.37\}\), we have
\[
\chi_{\alpha}(Q) R_{F,1}[\alpha] = \chi_{\alpha}(Q) \left(-[1 + M_{\alpha}^{\ast}(Q)] \tilde{\psi}(Q) + \left(\frac{1}{2\pi}\right)^{2} \tilde{\psi} * \tilde{\psi} * \tilde{\psi}(Q)\right),
\]
\[
- \chi_{\alpha}(Q) \left(\frac{1}{2\pi}\right)^{2} \left[3 \left(\overline{B_{\alpha}} \tilde{\psi}\right) * \tilde{\psi} * \tilde{\psi}(Q) \right.
+ 3 \left(\overline{B_{\alpha}} \tilde{\psi}\right) * \tilde{B_{\alpha}}(Q) * \tilde{\psi}(Q) \\
+ \left. \left(\overline{B_{\alpha}} \tilde{\psi}\right) * \tilde{B_{\alpha}}(Q) * \tilde{B_{\alpha}}(Q)\right] \quad \text{(6.39)}
\]
To all convolutions involving \(\overline{B_{\alpha}} \tilde{\psi}\), we apply Lemma 6.6 to get another exponentially small bound \(\leq e^{-C\pi^n/\alpha^n}\) in \(L^{2,\alpha}\left(\mathbb{R}\right)\).

We finally turn our attention to the remaining terms in \(\{6.39\}\):
\[
\chi_{\alpha}(Q) \left(-[1 + |Q|^{2p}] \tilde{\psi}(Q) + \left(\frac{1}{2\pi}\right)^{2} \tilde{\psi} * \tilde{\psi} * \tilde{\psi}(Q) + \left[|Q|^{2p} - M_{\alpha}^{\ast}(Q)\right] \tilde{\psi}(Q)\right)
\]
\[
= \chi_{\alpha}(Q) \left[|Q|^{2p} - M_{\alpha}^{\ast}(Q)\right] \tilde{\psi}(Q), \quad \text{(6.40)}
\]
We apply Proposition 4.4 to obtain \(\left\| \chi_{\alpha}(Q) \left[|Q|^{2p} - M_{\alpha}^{\ast}(Q)\right] \tilde{\psi}(Q) \right\|_{L^{2,\alpha}(\mathbb{R}^{d})} \leq (\alpha/\kappa_{s}(\alpha))^{1/2} \varepsilon_{s}(\alpha)\). This completes the proof of Proposition 6.10 \(\square\)

We now apply Propositions 6.7 through 6.10 and estimates \(\{5.12\}\) and \(\{5.16\}\) to \(\{6.3\}\) and \(\{6.23\}\). This implies estimates \(\{6.5\}\) and \(\{6.6\}\) and concludes the proof of Proposition 6.1.

6.3. Solution of the low frequency equation. We may now apply the implicit function theorem, Lemma \(\{6.2\}\) to the rescaled low frequency equation \(\{6.2\}\).

PROPOSITION 6.11. Let \(a > 1/2, p = \min(s,1),\) and \(0 < r < 1\). Then there exists \(0 < \alpha_{2} < \alpha_{1}\) such that for all \(\alpha \in (0, \alpha_{2})\), there exists an even (symmetric) solution \(\tilde{E}_{\alpha}\) to \(\{6.2\}\) which satisfies
\[
\left\| \tilde{E}_{\alpha} \right\|_{L^{2,\alpha}(\mathbb{R})} \leq \left(\frac{\alpha}{\kappa_{s}(\alpha)}\right)^{1/2} \varepsilon_{s}(\alpha), \quad \text{(6.41)}
\]
where $\epsilon_s(\alpha) \to 0$ is given in (1.32). Furthermore, we have that $\widetilde{E}_n = \chi_n \widetilde{E}_n$; that is, $\widetilde{E}_n(Q)$ is supported on $Q \in \left[-\frac{1}{\lambda(\alpha)} , \frac{1}{\lambda(\alpha)} \right]$, where $\lambda(\alpha) \to 0$ as $\alpha \to 0$ is defined by $\lambda(\alpha) = \left\{ \begin{array}{ll} \alpha^{r-1} & 0 < r < 1 \\
 & s \neq 1 \\
 & s = 1 \end{array} \right.$

Proof of Proposition 6.1. By Proposition 2.4, $\widetilde{L}_+ : L^{2,a}_{\text{even}}(\mathbb{R}) \to L^{2,a}_{\text{even}}(\mathbb{R})$ is an isomorphism. Moreover, by Proposition 6.1, the mapping $(\alpha, \tilde{E}_n) \mapsto \mathcal{R}_n^{\alpha}[\alpha, \tilde{E}_n]$, maps $L^{2,a}_{\text{even}}(\mathbb{R})$ to $L^{2,a}_{\text{even}}(\mathbb{R})$, and is continuous at $(\alpha, \tilde{E}_n) = (0,0)$. Furthermore, by choosing $\alpha < \alpha_1$, the estimates (6.9) and (6.10) on $\mathcal{R}_n^{\alpha}[\alpha, \tilde{E}_n]$ hold. Hence, hypotheses (6.10) and (6.11) of Lemma 6.2 are satisfied. Lemma 6.2 implies, for $0 < \alpha < \alpha_2 \leq \alpha_1$, the existence of \tilde{E}_n satisfying the bound (6.41). □

We now complete the proofs of Theorems 3.1 and 3.2. From Proposition 5.1 we obtain $\tilde{E}_n[\alpha, \tilde{E}_n] \in L^{2,a}_{\text{even}}(\mathbb{R})$. Then, $\tilde{E}^{\alpha,\sigma}(Q) = \tilde{E}_n(Q) + \tilde{E}_n[\alpha, \tilde{E}_n](Q)$ solves the corrector equation (5.3), and

$$\tilde{E}^{\alpha,\sigma}(Q) = \chi_n(Q) \tilde{\psi}(Q) + \tilde{E}^{\alpha,\sigma}(Q) \in L^{2,a}_{\text{even}}(\mathbb{R}),$$

(6.42)

is a solution to (4.9). As discussed in Section 4, $G^{\alpha,\sigma}(q), \sigma = 0,1/2$, is constructed from $\tilde{\phi}^{\alpha,\sigma}(q)$ via

$$\tilde{\phi}^{\alpha,\sigma}(q) = \chi_n(q) \tilde{\phi}^{\alpha,\sigma}(q) + \left(\frac{\kappa_n(q)}{\alpha^2} \right)^{1/2} \left[\chi_n(q) \tilde{\psi}(\frac{q}{\alpha}) + \tilde{E}^{\alpha,\sigma}(\frac{q}{\alpha}) \right].$$

(6.43)

These details are similar to those in the local discrete case and we refer to Sections 6.4 and 6.5 of [23].

7. **Bound on the Peierls-Nabarro barrier - Proof of Theorem 3.2.** We now prove the differences $\mathcal{N}[G^{\alpha,\text{on}}] - \mathcal{N}[G^{\alpha,\text{off}}]$ and $\mathcal{H}[G^{\alpha,\text{on}}] - \mathcal{H}[G^{\alpha,\text{off}}]$ are bounded in magnitude by a quantity of order: $(\kappa_n(q)/\alpha) \cdot e^{-C/\alpha^2}$, for small α. Here, $G^{\alpha,\text{on}} = \{ G_n^{\alpha,\text{on}} \}_{n \in \mathbb{Z}}$ and $G^{\alpha,\text{off}} = \{ G_n^{\alpha,\text{off}} \}_{n \in \mathbb{Z}}$ are, respectively, onsite and offsite solutions of the nonlocal DNLS equation. The parameter $\eta = \eta(s) = \min(2s,1)$ governs the exponential decay rate of the continuum limit ground state solitary wave $p(s) - \text{FNLS}$; see Proposition 2.3.

Proposition 7.1. Suppose $G = \{ G_n \}_{n \in \mathbb{Z}}$ is real-valued and solves non-local DNLS equation with interaction parameter $s: 0 = \kappa_n(q) G_n - (L^4 G)_n - (G_n)^3$, $n \in \mathbb{Z}$. Then,

$$\sum_{n \in \mathbb{Z}} |G_n|^4 = \kappa_n(q) \sum_n |G_n|^2 + \frac{1}{2} \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} J_m |G_{m+n} - G_n|^2$$

(7.1)

Proof of Proposition 7.1: Multiply the system by G_n, sum over all $n \in \mathbb{Z}$ and then sum by parts. □

Using Proposition 7.1 and following the arguments of [23] (in particular, equation (7.9) of [23]) we obtain:

$$\left| \mathcal{N}[G^{\alpha,\text{off}}] - \mathcal{N}[G^{\alpha,\text{on}}] \right| + \left| \mathcal{H}[G^{\alpha,\text{off}}] - \mathcal{H}[G^{\alpha,\text{on}}] \right| \leq \left(\frac{\kappa_n(q)}{\alpha} \right) \left\| \tilde{\phi}^{\alpha,\sigma} - \tilde{\phi}^{\alpha,\sigma}_n \right\|_{L^2,\alpha}(\mathbb{R})^2.$$ (7.2)

Therefore, bounds on the PN-barrier are reduced to bounds on $\tilde{\phi}^{\alpha,\sigma} - \tilde{\phi}^{\alpha,\sigma}_n$ in $L^2,\alpha(\mathbb{R})$. Here, $\tilde{\phi}^{\alpha,\sigma}_n \equiv \tilde{\phi}^{\alpha,\sigma,0}$ and $\tilde{\phi}^{\alpha,\sigma} \equiv \tilde{\phi}^{\alpha,\sigma,1}/\sqrt{2}$. Theorem 3.2 now follows directly from the following proposition, proved in the next section.

Proposition 7.2. Let $\alpha_0 > 0$ be that prescribed in Theorem 3.2 and fix $\eta = \min(2s,1)$. Then for $0 < \alpha < \alpha_0$, there exists a constant $C > 0$ such that

$$\left\| \tilde{\phi}^{\alpha,\sigma} - \tilde{\phi}^{\alpha,\sigma}_n \right\|_{L^2,\alpha}(\mathbb{R}) \leq e^{-C/\alpha^2}.$$ (7.3)
7.1. Estimation of the difference $\Phi_{\text{off}} - \Phi_{\text{on}}$; proof of Proposition 7.3. The idea is to derive a non-homogeneous equation for $\Phi_{\text{diff}} = \Phi_{\text{off}} - \Phi_{\text{on}}$. We shall prove that this equation is driven by terms which are exponential small in α due to uniform decay bounds on $e^{\mu |Q|} \Phi_{\sigma,\alpha}(Q)$, $\eta = \min(s, 1)$, for some $\mu > 0$.

Proposition 7.3. Let $0 < \alpha < \alpha_0$. Then $\Phi_{\text{diff}} = \Phi_{\text{off}} - \Phi_{\text{on}}$ solves the following linear equation:

$$
[1 + M_{\alpha}^*(Q)] \Phi_{\text{diff}}(Q) = - \frac{1}{(2\pi)^2} \sum_{m = \pm 1} \chi_{s_\alpha}(Q) \mu \Phi_{\text{diff}}(Q - 2m\pi/\alpha) + \Phi_{\text{on}} * \Phi_{\text{diff}}(Q) = R_{\text{diff}} \left[\Phi_{\text{off}}, \Phi_{\text{on}} \right](Q),
$$

where the inhomogeneous right-hand side, involving only $m = \pm 1$ side-band terms, is given by

$$
R_{\text{diff}} \left[\Phi_{\text{off}}, \Phi_{\text{on}} \right](Q) = - \frac{1}{(2\pi)^2} \sum_{m = \pm 1} \chi_{s_\alpha}(Q) \mu \Phi_{\text{diff}}(Q - 2m\pi/\alpha) + \Phi_{\text{on}} * \Phi_{\text{diff}}(Q - 2m\pi/\alpha).
$$

Recall from Theorem 5.1 that $\Phi_{\sigma,\alpha} \in L^2_{\alpha}(\mathbb{R})$ is well-defined, $\|\Phi_{\sigma,\alpha}\|_{L^2(\mathbb{R})}$ is small, and satisfies equation (4.9). Note that $\Phi_{\sigma,\alpha}$ is supported on $B_\alpha = [-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}]$, an interval which grows as $\alpha \downarrow 0$. We begin by proving a uniform decay bound for $\Phi_{\sigma,\alpha}$.

Proposition 7.4. For $0 < \alpha < \alpha_2$, let $\Phi_{\sigma,\alpha} \in L^2_{\alpha}$, $\alpha > 1/2$ denote the onsite ($\sigma = 0$) and offsite ($\sigma = 1/2$) nonlocal DNLS solitary waves obtained in Theorem 3.7. Let $\eta = \min(2s, 1)$. Then there exist constants $\mu = \mu \left(\|\Phi_{\sigma,\alpha}\|_{L^2(\mathbb{R})}\right)$ and $C_1 > 0$, independent of $\Phi_{\sigma,\alpha}$ and α, such that

$$
\|e^{\mu |Q|} \Phi_{\sigma,\alpha}\|_{L^2_{\alpha}(\mathbb{R})} \leq C_1 \|\Phi_{\sigma,\alpha}\|_{L^2_{\alpha}(\mathbb{R})}.
$$

Proof of Proposition 7.4. Φ solves

$$
(1 + M_{\alpha}^*(Q)) \Phi(Q) = - \frac{1}{(2\pi)^2} \sum_{m = 1} \chi_{s_\alpha}(Q) \Phi(Q - 2m\pi/\alpha).
$$

We shall apply Lemma 5.2 from Appendix F with the identifications $M(Q) = M_{\alpha}^*(Q)$, $A = B_\alpha$, $\tau_m = -2m\pi/\alpha$, and $m = -1, 0, 1$. We need to check that there exists $D_M > 0$ such that

$$
(a) \quad \frac{\chi_{s_\alpha}(Q) |\Phi(Q)|}{1 + M_{\alpha}^*(Q)} \leq D_M, \quad (b) \quad \frac{\chi_{s_\alpha}(Q) |\Phi(Q)|}{1 + M_{\alpha}^*(Q)} \leq \frac{1}{Q - 2m\pi/\alpha}, \quad m = -1, 0, 1.
$$

We need only focus on $Q \in B_\alpha$. Consider the cases (i) $1/2 \leq s \leq \infty$, $s \neq 1$, (ii) $1/4 < s < 1/2$, $s \neq 1$, (iii) $s = 1$. First, (b) holds for $Q \in B_\alpha = [-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}]$ easily.

Next, we prove (a) : $\|e^{\mu |Q|} \Phi_{\sigma,\alpha}\|_{L^2_{\alpha}(\mathbb{R})} \leq C_1 \|\Phi_{\sigma,\alpha}\|_{L^2_{\alpha}(\mathbb{R})}$ for $s \geq 1/2$ and $s \neq 1$. Here, $\eta = \min(1, 2s) = 1$, and we apply Lemma 5.2 to equation (4.9) for $\Phi_{\sigma,\alpha}$, which gives decay $\sim e^{-C|Q|}$ for $\Phi_{\sigma,\alpha}$.

To see that the hypotheses of the lemma are satisfied, first note that for $m = 1$ and $Q \in B_\alpha$, $|Q| \leq |Q - 2m\pi/\alpha|$. For $s \neq 1$ and $p = \min(1, s)$, recall from Lemma 5.6 that there exists $C > 0$ such that $M_{\alpha}^*(Q) \geq C|Q|^{2p}$, $Q \in B_\alpha$. This implies that, by maximization over Q,

$$
\frac{\chi_{s_\alpha}(Q) |\Phi(Q)|}{1 + M_{\alpha}^*(Q)} \leq \frac{\chi_{s_\alpha}(Q) |\Phi(Q)|}{1 + C|Q|^{2p}} \leq \frac{1}{2p} C^{1/2p} (2p - 1)^{(2p-1)/2p},
$$

where we understand the right-hand side to mean C^{-1} for $s = p = 1/2$.

26
Next, we prove (a) for $1/4 < s < 1/2$ such that $\eta = \min(1, 2s) = 2s$. We again apply Lemma F.2 which gives weaker decay $\sim e^{-C|Q|^{2s}}$ for $\Phi^{[\sigma, \alpha]}$. We again recall from Lemma 5.6 (since for $s < 1$, $p = \min(1, s) = s$) that there exists $C > 0$ such that $M^{s}_{\alpha}(Q) \geq C|Q|^{2s}$, $Q \in B_{\alpha}$. This implies that

$$\frac{\chi_{s_{\alpha}}(Q) |Q|^{2s}}{1 + M^{s}_{\alpha}(Q)} \leq \frac{\chi_{s_{\alpha}}(Q) |Q|^{2s}}{1 + C |Q|^{2s}} \leq \frac{1}{C}. \quad (7.10)$$

Finally, to satisfy (a) from (7.8) when $s = 1$, we require the following proposition.

Proposition 7.5. Let $s = 1$ and let the spectral cutoff projections $\chi_{s_{\alpha}}$ and $\chi_{s_{\alpha}}$ be as defined in (5.7). Then for α sufficiently small, there exists some $C > 0$ such that

(a) $\chi_{s_{\alpha}}(Q) \chi_{s_{\alpha}}(Q) M^{s}_{\alpha}(Q) \geq C|Q|$ and (b) $\chi(|Q| > 1) \chi_{s_{\alpha}}(Q) M^{s}_{\alpha}(Q) \geq C|Q|^{2}$.

We defer the proof until later in this section. Proposition 7.5 implies that

$$\frac{\chi_{s_{\alpha}}(Q) |Q|}{1 + M^{s}_{\alpha}(Q)} = \chi_{s_{\alpha}}(Q) \left(\frac{\chi(|Q| \leq 1) |Q|}{1 + M^{s}_{\alpha}(Q)} + \frac{\chi(|Q| > 1) |Q|}{1 + M^{s}_{\alpha}(Q)} \right) \leq 1 + \chi_{s_{\alpha}}(Q) \left(\frac{\chi(|Q| > 1) |Q|}{1 + M^{s}_{\alpha}(Q)} \right) \leq 1 + \frac{\chi(|Q| > 1) \chi_{s_{\alpha}}(Q) |Q|}{1 + M^{s}_{\alpha}(Q)} \leq 1 + \frac{\chi(|Q| > 1) \chi_{s_{\alpha}}(Q) |Q|}{1 + C|Q|^{2}} \leq 1 + \frac{1}{C^{1/2} + 1} = D_{s=1}, \quad (7.11)$$

such that the hypotheses of Lemma F.2 are again satisfied when $s = 1$.

This completes the proof of Proposition 7.4. □

Proof of Proposition 7.5. Recall that for $s = 1$, the the spectral projections give

$$\chi_{s_{\alpha}}(Q) |Q| \leq (- \log(\alpha)), \quad \chi_{s_{\alpha}}(Q) |Q| \geq (\log(\alpha)). \quad (7.12)$$

Furthermore, recall from Lemma 5.6 that for $s = 1$, $\chi_{s_{\alpha}}(Q) M^{s}_{\alpha}(Q) \geq \frac{C}{(- \log(\alpha))} |Q|^{2}$, such that

$$\chi_{s_{\alpha}}(Q) \chi_{s_{\alpha}}(Q) M^{s}_{\alpha}(Q) \geq \frac{C}{(- \log(\alpha))} \chi_{s_{\alpha}}(Q) |Q|^{2} \geq C|Q|. \quad (7.13)$$

This proves (a). Next, we use the expansion from Proposition E.5 for $s = 1$ and $Q \in B_{\alpha} = [-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}]$:

$$M^{s}_{\alpha}(Q) = |Q|^{2} + \frac{1}{\log(\alpha)} f_{s}(Q; \alpha) \left(\frac{3}{2} - \log(|Q|) \right) |Q|^{2} \quad (7.14)$$

$$= |Q|^{2} \left[1 + \frac{1}{\log(\alpha)} f_{s}(Q; \alpha) \left(\frac{3}{2} - \log(|Q|) \right) \right], \quad |f_{s}(Q; \alpha)| \leq 1. \quad (7.15)$$

Recall that $\lambda(\alpha) = \frac{1}{(\log(\alpha))}$ for $s = 1$. Furthermore, recall that $\chi_{s_{\alpha}}(Q) = \chi(|Q| \leq \lambda(\alpha)^{-1})$, where $\lambda(\alpha)^{-1} \leq \pi/\alpha$ for α sufficiently small, which implies that $\chi_{s_{\alpha}}(Q) |f_{s}(Q; \alpha)| \leq 1$. Therefore, we have

$$\chi(|Q| > 1) \chi_{s_{\alpha}}(Q) \left| \frac{1}{\log(\alpha)} f_{s}(Q; \alpha) \left(\frac{3}{2} - \log(|Q|) \right) \right| \leq 1 + \frac{\log(- \log(\alpha))}{(- \log(\alpha))} \approx 1. \quad (7.16)$$

such that for α sufficiently small, there exists $C > 0$ such that

$$\chi(|Q| > 1) \chi_{s_{\alpha}}(Q) \left(1 + \frac{1}{\log(\alpha)} f_{s}(Q; \alpha) \left(\frac{3}{2} - \log(|Q|) \right) \right) \geq C. \quad (7.17)$$

This completes the proof of Proposition 7.5. □
Next, we derive the equation for \(\Phi_{\text{diff}} = \Phi_{\text{off}} - \Phi_{\text{on}} \).

Proposition 7.6. Let \(0 < \alpha < \alpha_0 \) and \(\eta = \min(2s,1) \). Then, the non-homogeneous source term in equation (7.14) for \(\Phi_{\text{diff}}(Q) \) and satisfies the bound: \(\| R_{\text{diff}} \|_{L^2(\mathbb{R})} \leq e^{-C\pi^2/\alpha^2} \).

Proof of Proposition 7.6: We apply Lemma 5.7 and Proposition 7.4. This gives

\[
\left\| \chi_{\alpha}(Q) \Phi^{\sigma} \Phi^{\sigma} \Phi^{\sigma}(Q - 2m\pi/\alpha) \right\|_{L^2(\mathbb{R})} \leq e^{-C\pi^2/\alpha^2}, \quad m = \pm 1.
\]

We now use Proposition 7.6 to prove the exponential bound (7.3) on \(y \). Let \(\Phi_{\text{diff}}(Q) \) satisfies an inhomogeneous equation forced by \(\Phi_{\text{diff}} \). We use a Lyapunov-Schmidt reduction argument, analogous to that used in the proof of Theorem 5.1. We summarize the argument since the details are now quite familiar. Introduce

\[
\Phi_{\text{diff}}(Q) = \chi_{\alpha}(Q) \Phi_{\text{diff}}(Q), \quad \text{and} \quad \Phi_{\text{diff}}(Q) = \chi_{\alpha}(Q) \Phi_{\text{diff}}(Q).
\]

Solving for \(\Phi_{\text{diff}} \) as a functional of \(\Phi_{\text{diff}} \) and estimation of the mapping yields:

\[
\left\| \Phi_{\text{diff}} \right\|_{L^2(\mathbb{R})} \leq \left\{ \begin{array}{ll}
\alpha^{2\eta(1-s)} \left(\left\| \Phi_{\text{diff}} \right\|_{L^2(\mathbb{R})} + e^{-C\pi^2/\alpha^2} \right) : s \neq 1 \\
\frac{1}{\log(\alpha)} \left(\left\| \Phi_{\text{diff}} \right\|_{L^2(\mathbb{R})} + e^{-C\pi^2/\alpha^2} \right) : s = 1
\end{array} \right.
\]

(7.19)

\(\Phi_{\text{diff}} \) satisfies an inhomogeneous equation forced by \(\chi_{\alpha} R_{\text{diff}} \Phi_{\text{diff}} \Phi_{\text{diff}} \) which satisfies the exponential bound of Proposition 7.6. A simple bootstrap argument using (7.19) and the bounds on \(\Phi_{\text{diff}} \) and \(\Phi_{\text{diff}} \) give \(\left\| \Phi_{\text{diff}} \right\|_{L^2(\mathbb{R})} \leq e^{-C\pi^2/\alpha^2} \), for \(\alpha \) sufficiently small. Since \(\Phi_{\text{diff}} = \Phi_{\text{diff}} + \Phi_{\text{diff}} \), the bound (7.19) implies the assertion of Proposition 7.6. \(\square \)

This completes the proof of Theorem 3.2.

8. Higher order expansions in \(\alpha \) of \(G^{\alpha,\sigma} \) and \(G^{\alpha,\text{off}} \)

In this section, we provide a general outline for how to extend the expansion of \(G^{\alpha,\sigma} \) to higher order in \(\alpha \), for \(\alpha \) small. The structure of the expansion, and in particular the precise expansion parameter, depends on the analytic properties of \(M^s(\alpha) \), which is expressible in terms of the polylogarithms (see Appendix E). We have

Proposition 8.1. Let \(M^s(\alpha) \) be given in (4.2) with \(J_m \) given in (1.17). Then for \(|Q| \leq \pi/\alpha \),

\[
M^s(\alpha) = \left\{ \begin{array}{ll}
|Q|^{2s} + \frac{2}{C_s} \sum_{j=1}^{\infty} \left(\frac{1+2s-2j}{(2j)!} \right) (-1)^{j+1} \alpha^{2j-2s} |Q|^{2j} : s < 1 \\
\frac{1}{2} \left(\frac{3}{2} - \log(|Q|) \right) |Q|^2 + \frac{2}{C_s} \sum_{j=2}^{\infty} \left(\frac{1+2s-2j}{(2j)!} \right) (-1)^{j+1} \alpha^{2j-2s} |Q|^{2j} : s = 1
\end{array} \right.
\]

(8.1)

\[
|Q|^{2s} + \frac{2(-1)^s}{C_s} \cos(\pi s) \alpha^{2s-2} |Q|^{2s} + \frac{2}{C_s} \sum_{j=2}^{\infty} \left(\frac{1+2s-2j}{(2j)!} \right) (-1)^{j+1} \alpha^{2j-2s} |Q|^{2j} : 1 < s < \infty, \ s \notin \mathbb{N}
\]

(8.1)

\[
|Q|^{2s} + \frac{2(-1)^s}{C_s} \cos(\pi s) \alpha^{2s-2} |Q|^{2s} + \frac{2}{C_s} \sum_{j=2}^{\infty} \left(\frac{1+2s-2j}{(2j)!} \right) (-1)^{j+1} \alpha^{2j-2s} |Q|^{2j} : 1 < s < \infty, \ s \in \mathbb{N}
\]

\[
|Q|^{2s} + \frac{2}{C_s} \sum_{k=1}^{\infty} \left(\sum_{m=1}^{\infty} m^{2k+2} e^{-\gamma m} \right) \frac{(-1)^k \alpha^{2k} |Q|^{2k+2}}{(2k+2)!} : s = \infty
\]

\(\square \)
Proof of Proposition 8.1: We follow the approach in Appendix 4 and Proposition E.5.

Let \(q = Q \alpha \in \mathbb{B} = [-\pi, \pi] \). Recall that \(M^s(q) = \frac{1}{C_s} \sum_{m=1}^{\infty} \frac{4\sin^2(qm/2)}{\gamma + \frac{1}{\gamma}} \alpha^2 \) for \(0 < s < \infty \) and \(M^s(q) = \frac{1}{C_s} \sum_{m=1}^{\infty} 4e^{-\gamma m} \sin^2(qm/2), \gamma > 0 \), for \(s = \infty \). Here, \(C_s > 0 \) is defined in (3.1). Also recall that \(\kappa_s(\alpha) \) is defined in (1.21).

Case 1: Let \(1 + 2s \notin \mathbb{N}, s \neq \infty \). Expand \(4\sin^2(qm/2) = 2 - e^{iqm} - e^{-iqm} \), and note that since \(|q| \leq \pi < 2\pi \), we may apply Lemma E.3 to obtain (E.6):

\[
C_s \ M^s(q) = -2\Gamma(-2s) \cos(\pi s) \ |q|^{2s} + 2 \sum_{j=1}^{\infty} \frac{\zeta(1 + 2s - 2j)}{(2j)!} \ (1 - \frac{1}{2})^{j+1} \ |q|^{2j}.
\] (8.2)

Applying the rescaling \(q = Q \alpha \) gives

\[
M^s(Q) = \frac{1}{\kappa_s(\alpha)} M^s(Q \alpha) = -2\Gamma(-2s) \cos(\pi s) \ \frac{\alpha^2}{C_s \kappa_s(\alpha)} \ |Q|^{2s} + \sum_{j=1}^{\infty} \frac{\zeta(1 + 2s - 2j)}{C_s \kappa_s(\alpha) \ (2j)!} \ (1 - \frac{1}{2})^{j+1} \alpha^{2j} \ |Q|^{2j}.
\] (8.3)

The series is absolutely convergent on \(Q = q/\alpha \in [-\pi, \pi] \) due to Proposition E.2. To obtain (8.1), for \(1 + 2s \notin \mathbb{N}, s \neq \infty \), recall that \(C_s = -2\Gamma(-2s) \cos(\pi s), \kappa_s(\alpha) = \alpha^2 \) for \(s < 1 \) and \(C_s = \zeta(2s-1), \ \kappa_s(\alpha) = \alpha^2 \) for \(s > 1 \).

Case 2: Let \(1 + 2s \in \mathbb{N}, s \neq \infty \). Again expand \(4\sin^2(qm/2) = 2 - e^{iqm} - e^{-iqm} \), and note that since \(|q| \leq \pi < 2\pi \), we may apply Lemma E.4 to obtain (E.8):

\[
M^s(q) = 2 \cos(\pi s) \ \frac{1}{(2s)!} \left[- \left(\sum_{j=1}^{2s} \frac{1}{j} \right) \log(|q|) \right] \ |q|^{2s} + \frac{\pi \cos(\pi(s - 1/2))}{(2s)!} \ \ |q|^{2s} + 2 \sum_{j=1}^{\infty} \frac{\zeta(1 + 2s - 2j)}{(2j)!} \ (1 - \frac{1}{2})^{j+1} \ |q|^{2j}.
\] (8.4)

Applying the rescaling \(q = Q \alpha \) gives

\[
M^s(Q) = \frac{1}{\kappa_s(\alpha)} M^s(Q \alpha) = 2 \cos(\pi s) \ \frac{1}{C_s \kappa_s(\alpha) \ (2s)!} \left[- \left(\sum_{j=1}^{2s} \frac{1}{j} \right) \log(\alpha) + \log(|Q|) \right] \alpha^2 \ |Q|^{2s} + \frac{\pi \cos(\pi(s - 1/2))}{C_s \kappa_s(\alpha) \ (2s)!} \alpha^2 \ |Q|^{2s} + 2 \sum_{j=1}^{\infty} \frac{\zeta(1 + 2s - 2j)}{C_s \kappa_s(\alpha) \ (2j)!} \ (1 - \frac{1}{2})^{j+1} \alpha^{2j} \ |Q|^{2j}.
\] (8.5)

The infinite series is absolutely convergent on \(Q = q/\alpha \in [-\pi, \pi] \) due to Proposition E.2. To obtain (8.1) for \(1 + 2s \in \mathbb{N}, s \neq \infty \), recall that \(C_s = -2\Gamma(-2s) \cos(\pi s), \kappa_s(\alpha) = \alpha^2 \) for \(s = 1/2 \) and \(C_s = \zeta(2s-1), \ \kappa_s(\alpha) = \alpha^2 \) for \(s > 1 \). For \(s = 1 \), recall that \(C_s = 1 \) and \(\kappa_s(\alpha) = (-\log(\alpha))^2 \). We now repeat Remark E.1 here.

Remark 8.1. Note that one of the first two terms in (E.9) will be zero, depending on whether \(s \in \mathbb{N} \) or \(s = (2k+1)/2 \) for \(k \in \mathbb{N} \).

Furthermore, in the case where \(s = (2k+1)/2 \) for \(k \in \mathbb{N} \), the series in (E.9) is finite. To see this, observe from Proposition E.2 that the “trivial zeros” of the zeta function on the real line lie occur at negative even integers. In the series above, this occurs when \(1 + 2s - 2j \leq -2 \implies j \geq s + 3/2 \).

We also note that for \(s = (2k+1)/2 \) for \(k \in \mathbb{N} \), the expansion (E.9) is compatible with the expansion (E.7) where we assumed that \(1 + 2s \notin \mathbb{N} \). To see this we use Euler’s reflection formula from Proposition E.7 to obtain, for \(k \in \mathbb{N} \), equation (E.10):

\[
\lim_{s \to (2k+1)/2} -2 \Gamma(-2s) \cos(\pi s) = \frac{\pi(-1)^{s-1/2}}{(2s)!} \bigg|_{s=(2k+1)/2}.
\] (8.6)
Case 3: Finally, let $s = \infty$. We have $M_\alpha^s(q) = \frac{1}{C_s} \sum_{m=1}^{\infty} m^2 e^{-\gamma m} \sin^2 Q m \alpha/2$, $\gamma > 0$, $\kappa_\alpha = \alpha^2$, and $Q \in [-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}]$. Taylor expansion about $Q \alpha = 0$ gives

$$
\frac{4 \sin^2(Q m \alpha/2)}{\alpha^2} = 2 \sum_{k=0}^{\infty} (-1)^k \frac{\alpha^{2k} m^{2k+2} |Q|^{2k+2}}{(2k+2)!}.
$$

(8.7)

In turn,

$$
M_\alpha^s(Q) = \frac{1}{C_s} \left(\sum_{m=1}^{\infty} m^2 e^{-\gamma m} \right)^2 + \sum_{k=1}^{\infty} \left(\sum_{m=1}^{\infty} m^{2k+2} e^{-\gamma m} \right) \frac{(-1)^k \alpha^{2k} |Q|^{2k+2}}{(2k+2)!}.
$$

(8.8)

Observe that

$$
\left(\sum_{m=1}^{\infty} m^2 e^{-\gamma m} \right)^2 = \frac{\exp(\gamma)(\exp(\gamma) + 1)}{(\exp(\gamma) - 1)^3} = C_\infty.
$$

(8.9)

This gives (8.1) for $s = \infty$. This completes the proof of Proposition 8.1.

Consider the equation (4.9), $\mathcal{D}^{s,\alpha} \hat{\Phi} = 0$, for the rescaled s-nonlocal DNLS solitary wave $\hat{\Phi}(Q)$ supported on \mathcal{B}_α. Consider the case where $s \notin \mathcal{N}, s = b_1/b_2$ where $b_1, b_2 \in \mathbb{N}$. By Lemma 5.7 and Proposition 7.4 we have

$$
\|R^n_\tau \hat{\Phi}\|_{L^2,\alpha(\mathbb{R})} \lesssim \mathcal{O}(\alpha^\infty).
$$

(8.10)

Furthermore, we have

Lemma 8.2. Let $s \notin \mathbb{N}$ and $s = b_1/b_2$ reduced rational for $b_1, b_2 \in \mathbb{N}$. Then for $\tau = 2/b_2$ and $Q \in \mathcal{B}_\alpha$, there exists a sequence $M_k \in \mathbb{R}$, $k = 1, 2, \ldots$, such that $\{M_k\}_{k \in \mathbb{N}} \in L^1(\mathbb{N})$ and

$$
M_\alpha^s(Q) = |Q|^{2p} + \sum_{k=1}^{\infty} M_k \alpha^{j_\tau} |Q|^{j_\tau+2p}.
$$

(8.11)

Proof of Lemma 8.2 First consider the case $1/4 < s < 1$. Then $p = \min(1, s) = s$ and by (8.1) with $\tau = 2/b_2$,

$$
M_\alpha^s(Q) = |Q|^{2s} + \sum_{j=1}^{\infty} \frac{\zeta(1+2s-2j)}{(2j)!} (-1)^{j+1} \alpha^{2j-2s} |Q|^{2j-2s} |Q|^{2s}
$$

$$
= |Q|^{2s} + \sum_{j=1}^{\infty} \frac{\zeta(1+2s-2j)}{(2j)!} (-1)^{j+1} \alpha^{r(b_2j-b_1)} |Q|^{r(b_2j-b_1)} |Q|^{2s}.
$$

(8.12)

Taking $M_k = \frac{2 \zeta(1+2s-2j)}{(2j)!} (-1)^{j+1}$ if $k = b_2j - b_1$ and $M_k = 0$ otherwise completes the proof for $1/4 < s < 1$.

Next, consider $1 < s < \infty, s \notin \mathbb{N}$. Then $p = \min(1, s) = 1$ and by (8.1) with $\tau = 2/b_2$,

$$
M_\alpha^s(Q) = |Q|^2 + \sum_{j=2}^{\infty} \frac{\zeta(1+2s-2j)}{(2j)!} (-1)^{j+1} \alpha^{2j-2} |Q|^{2j-2} |Q|^2
$$

$$
+ \sum_{j=2}^{\infty} \frac{\zeta(1+2s-2j)}{(2j)!} (-1)^{j+1} \alpha^{r(b_1-b_2)} |Q|^{r(b_1-b_2)} |Q|^2.
$$

(8.13)
Taking $M_k = \frac{-2\Gamma(-2s) \cos(\pi s)}{C_s}$ if $k = b_1 - b_2$, $M_k = \frac{2 \zeta(1+2s-2j)}{C_s (2J)^{1+2s-2j}} (-1)^{j+1}$ if $k = b_2(j-1)$ and $M_k = 0$ otherwise completes the proof of Lemma 8.2 for $1 < s < \infty$, $s \notin \mathbb{N}$. □

Using the above expansion of $M'_p(Q)$, we construct sequence of solutions to (4.9), which to arbitrary order $(\alpha^s)^j$, can be approximated by a sum of the form:

$$S_j^\sigma = \chi_{s_n}(Q)F_0(Q) + \sum_{j=1}^{J} \chi_{s_n}(Q) \alpha^{j^2} F_j(Q), \quad J \in \mathbb{N}, \quad (8.14)$$

with decreasing residuals: $\|D^{\alpha,s} [S_j^\sigma]\|_{L^2} = \mathcal{O}(\alpha^{s(J+1)})$ and higher order corrector:

Theorem 8.3. Let $s \notin \mathbb{N}$ and $s = b_1/b_2$ reduced rational for $b_1, b_2 \in \mathbb{N}$. Then there exists, for any $J \geq 1$, S_j^σ given by (8.14), such that $\|D^{\alpha,s} [S_j^\sigma]\|_{L^2} = \mathcal{O}(\alpha^{s(J+1)})$. Furthermore, $\Phi^{\sigma,\alpha}$, the solution of (4.9), is given by $\Phi^{\sigma,\alpha} = S_j^\sigma + E_j^\alpha$, where $\|E_j^\alpha\|_{L^2} \leq \alpha^{2^J+2}$.

We next explain the construction of the sequence $F_j(Q)$, $j \geq 0$. The proof of Theorem 8.3 uses a Lyapunov-Schmidt strategy analogous to that used in the proof of Theorem 5.1. The steps in the proof are analogous to those of the nearest neighbor case; see [23].

To construct the sequence F_j, we use Lemma 8.2 and consider the related equation

$$[1 + M'_p(Q)] F(Q) - \frac{1}{4\pi^2} (F * F) (Q) = 0. \quad (8.15)$$

Using the power series expansion from Lemma 8.2, we may construct a formal power series expansion in α^{s} for $F^{\alpha}(Q)$:

$$F^{\alpha}(Q) = F_0(Q) + \sum_{j=1}^{\infty} \alpha^{j^{2}} F_j(Q), \quad (8.16)$$

Substituting (8.16) into (8.15), we obtain a hierarchy of equations for $F_j(Q)$ at each order of α^{s}, $j \geq 0$. Each term $F_j(Q)$ will have support on all \mathbb{R} and can be shown to decay exponentially as $|Q| \to \infty$. The deviation of (8.15) from the equation (4.9), $D^{\alpha,s} [\Phi] = 0$, for the rescaled s-nonlocal DNLS solitary wave $\Phi(Q)$ are terms of the form:

$$- \left(1 - \chi_{s_n}(Q)\right) [1 + M'_p(Q)] F(Q) + \frac{1}{4\pi^2} \left(1 - \chi_{s_n}(Q)\right) (F^{\alpha} * F^{\alpha} * F^{\alpha})*(Q) + R_j^{s,\alpha}[F^{\alpha}](Q), \quad (8.17)$$

whose norms at each order in α^{s} can be shown to be beyond all polynomial orders in α as $\alpha \to 0$, i.e. $\mathcal{O}(\alpha^{m})$, for all $m \geq 1$, in $L^{2,s}([\mathbb{R}dQ])$ with $a > 1/2$. Therefore, we expect that if $\Phi^{\alpha,\alpha}(Q)$ is a solution of (4.9), then the function $\chi_{s_n}(Q) F^{\alpha}(Q)$, where F^{α} solves (8.15), formally solves (4.9) with an error which is beyond all polynomial orders in α^{2}, i.e.

$$\left\|D^{\alpha,s} \left[\chi_{s_n} F^{\alpha} \right] \right\|_{L^2} = \mathcal{O}(\alpha^{\infty}). \quad (8.18)$$

We proceed by outlining the derivation of the formal asymptotic expansion. Substituting (8.16) into (8.17), we obtain a hierarchy of equations for F_j:

$\mathcal{O}(\alpha^0)$ equation:

$$\left[1 + |Q|^{2p}\right] F_0(Q) - \left(\frac{1}{2\pi}\right)^2 F_0 * F_0 * F_0(Q) = 0. \quad (8.19)$$
Equation (8.19) is the Fourier transform of continuum FNLS (1.8). Denote by
\[F_0(Q) = \tilde{\psi}(Q) = F_\mathcal{E} \left[\psi \right](Q), \] (8.20)
where \(\psi(x) \) is the unique (up to translation) positive and decaying solution of NLS. \(\psi(x) \) is real-valued and radially symmetric about some point, which we take to be \(x = 0 \). By Proposition 2.3 there exists \(C_0 > 0 \) such that for \(\eta = \min(1, 2s) \),
\[e^{C_0|Q|^\eta} \tilde{\psi}(Q) \in L^2,0(\mathbb{R}). \] (8.21)

At each order in \(\alpha^2 \), we shall derive an equation for \(F_j(Q) \) of the general form:
\[\tilde{\mathcal{L}}_+ F_j(Q) = F_j(Q). \] (8.22)

It is important for us to understand how decay properties \(F^\alpha(Q) \) propagate to the solution \(F^j(Q) \).

Proposition 8.4. Fix a \(> 1/2 \) and \(\eta = \min(1, 2s) \). Suppose that \(F^\alpha(Q) \in L^2_{\text{evn}}(\mathbb{R}; dQ) \) and that there exists a constant \(C_{\alpha} > 0 \) such that \(e^{C_{\alpha}|Q|^{\eta}} F^\alpha(Q) \in L^2_{\text{evn}}(\mathbb{R}; dQ) \). Then there exists a solution of \(F_j(Q) \), \(F^j(Q) \in L^2_{\text{evn}}(\mathbb{R}; dQ) \). Furthermore, we have \(e^{C_{\alpha}|Q|^{\eta}} F^j(Q) \in L^2_{\text{evn}}(\mathbb{R}; dQ) \).

Since \(F^\alpha(Q) \) is even it is \(L^2(\mathbb{R}; dQ) \) orthogonal to the kernel of \(\tilde{\mathcal{L}}_+ = \text{span}\{Q \tilde{\psi}(Q)\} \). Therefore, \(F^\alpha = \left(\tilde{\mathcal{L}}_+ \right)^{-1} F_j \in L^2_{\text{evn}}(\mathbb{R}; dQ) \); see Proposition 2.4. A detailed proof that the exponential decay rate is preserved is given for the case of nearest-neighbor DNSL in [22]. The idea is to break \(F^\alpha \) into its low \((|Q| \leq \epsilon^{-1})\) and high \((|Q| \geq \epsilon^{-1})\) frequency components, \(F_{\text{low}} \) and \(F_{\text{hi}} \). The norm \(e^{C_{\alpha}|Q|^{\eta}} F_{\text{hi},\epsilon} \) is bounded in terms of \(\| F^\alpha \|_{L^{2,0}} \). The norm \(e^{C_{\alpha}|Q|^{\eta}} F_{\text{hi},\epsilon} \|_{L^{2,0}} \) is controlled by a bootstrap argument using that \(\chi(|Q| \geq \epsilon^{-1}) (1 + |Q|^{2p})^{-1} F_0 \ast F_0 \ast F_{\text{hi},\epsilon} \) has \(L^{2,0} \)-norm which is bounded by \(\sim \epsilon^{2p} \| e^{C_{\alpha}|Q|^{\eta}} F_{\text{hi},\epsilon} \|_{L^{2,0}} \).

We now turn to the hierarchy of equations at order \(\alpha^{j+1} \), beginning with \(j = 1 \). We find
\[|1 + |Q|^{2p}| F_1(Q) - \frac{3}{4\pi^2} \tilde{\psi} * \tilde{\psi} * F_1(Q) = -M_1 |Q|^{2p+\tau} \tilde{\psi}(Q), \] (8.23)
or
\[O(\alpha^j) \text{ equation:} \quad \tilde{\mathcal{L}}_+ F_j(Q) = -M_1 |Q|^{2p+\tau} \tilde{\psi}(Q). \] (8.24)

Here, \(\tilde{\mathcal{L}}_+ = (-\Delta_x)^p + 1 - 3\psi^2(x) \), is the linearization of the continuum NLS operator about \(\psi(x) \). By Proposition 8.4, \(F_1(Q) = -\left(\tilde{\mathcal{L}}_+ \right)^{-1} \left(M_1 |Q|^{2p+\tau} \tilde{\psi}(Q) \right) \in L^2_{\text{even}}(\mathbb{R}) \). Since \(\tilde{\mathcal{L}}_+ \) has real-valued forcing, \(F_1 \) is real-valued. Let \(C_1 = 3C_0/4 \) and note \(e^{C_1|Q|^{\eta}} |Q|^{2p+\tau} \tilde{\psi}(Q) \|_{L^{2,0}} \leq \| e^{C_1|Q|^{\eta}} \tilde{\psi}(Q) \|_{L^{2,0}} \). Therefore, \(e^{C_1|Q|^{\eta}} F_1(Q) \in L^2_{\text{even}}(\mathbb{R}; dQ) \) for \(a > 1/2 \).

We now proceed to inductively construct and bound the sequence \(F_j(Q) \), \(j \geq 1 \) using Proposition 8.4 and the following two lemmata, which are proved in detail in [22] for the case \(\eta = 1 \). The generalization follows the same proof.

Lemma 8.5. Fix a \(> 1/2 \) and \(\eta = \min(1, 2s) \). Suppose that \(\tilde{f}_1, \tilde{f}_2 \in L^2_{\text{even}}(\mathbb{R}) \). Then \(\tilde{f}_1, \tilde{f}_2 \in L^2_{\text{even}}(\mathbb{R}) \). Suppose further that there exist \(c_1, c_2 > 0 \) such that \(e^{c_1|Q|^{\eta}} \tilde{f}_1(Q) \in L^2_{\text{even}}(\mathbb{R}) \), \(e^{c_2|Q|^{\eta}} \tilde{f}_2(Q) \in L^2_{\text{even}}(\mathbb{R}) \). Then for \(c_3 = \min(c_1, c_2) \), we have \(e^{c_3|Q|^{\eta}} \tilde{f}_1 \ast \tilde{f}_2(Q) \in L^2_{\text{even}}(\mathbb{R}) \) and
\[\| e^{c_3|Q|^{\eta}} \tilde{f}_1 \ast \tilde{f}_2(Q) \|_{L^2_{\text{even}}(\mathbb{R})} \leq \| e^{c_3|Q|^{\eta}} \tilde{f}_1(Q) \|_{L^2_{\text{even}}(\mathbb{R})} + \| e^{c_3|Q|^{\eta}} \tilde{f}_2(Q) \|_{L^2_{\text{even}}(\mathbb{R})}. \] (8.25)

Lemma 8.6. Fix a \(> 1/2, \eta = \min(1, 2s), \) and \(k \in \mathbb{N} \). Suppose that \(\tilde{f} \in L^2_{\text{even}}(\mathbb{R}) \) and that there exists \(c_1 > 0 \) such that \(e^{c_1|Q|^{\eta}} \tilde{f}(Q) \in L^2_{\text{even}}(\mathbb{R}) \). Then \(|Q|^{2k} \tilde{f} \in L^2_{\text{even}}(\mathbb{R}) \) and for any \(0 < c_2 < c_1 \), we have
\[\| e^{c_2|Q|^{\eta}} |Q|^{2k} \tilde{f} \|_{L^2_{\text{even}}(\mathbb{R})} \leq e^{-\frac{2k}{\eta}} \left(\frac{2k}{\eta(c_1 - c_2)} \right)^{2k/\eta} \| e^{c_1|Q|^{\eta}} \tilde{f}(Q) \|_{L^2_{\text{even}}(\mathbb{R})}. \] (8.26)
Lemma 8.6 follows from $e^{c_2 |Q|^{\eta} |Q|^{2k} |\tilde{f}(Q)|} \leq e^{-\frac{2k}{\eta}} \left[\frac{2k}{\eta(\alpha_1 - c_2)} \right]^{2k/\eta} e^{c_1 |Q|^{\eta} |\tilde{f}(Q)|}$ and then taking the $L^{2,\alpha}$ norm.

Proposition 8.7. Let $j \geq 1$. The equation for F_j at order $\mathcal{O}(\alpha^j)$, independent of α and σ, is given by

$$\mathcal{O}(\alpha^j) \text{ equation : } \tilde{L}_+ F_j(Q) = - \sum_{k=0}^{j-1} M_{j-k} |Q|^{(j-k)\tau+2p} F_k(Q),$$

$$+ \frac{1}{(2\pi)^2} \sum_{k+l+z=j \atop 0 \leq k,l,z < j} F_k \ast F_l \ast F_z(Q) \equiv H_j [F_0, \ldots, F_{j-1}](Q), \tag{8.27}$$

and has the unique solution

$$F_j = \left(\tilde{L}_+ \right)^{-1} \left(H_j [F_0, \ldots, F_{j-1}] \right) \in L^{2,\alpha}_{\text{even}}(\mathbb{R}; dQ). \tag{8.28}$$

Furthermore, F_j is real-valued and $e^{C_j |Q|^{\eta}} F_j(Q) \in L^{2,\alpha}(\mathbb{R}; dQ)$, where $C_j \equiv C_0 \left(\frac{1}{2} + \frac{1}{2^{j+1}} \right) \geq \frac{C_0}{2}$ and $C_0 > 0$ is as in (8.21).

Proof of Proposition 8.7. We induct to solve at each order in α^j. Let $F_0(Q) \equiv \tilde{\psi}(Q)$, which solves (8.19), is real-valued, and satisfies $e^{C_0 |Q|^{\eta}} F_0(Q) \in L^{2,\alpha}(\mathbb{R}; dQ)$. Fix $m \geq 2$ and assume that for $1 \leq j \leq m-1$, $F_j(Q) \in L^{2,\alpha}_{\text{even}}(\mathbb{R})$ satisfies (8.27) and is real-valued. Furthermore, assume that

$$e^{C_j |Q|^{\eta}} F_j(Q) \in L^{2,\alpha}(\mathbb{R}; dQ), \quad C_j \equiv C_0 \left(\frac{1}{2} + \frac{1}{2^{j+1}} \right) \geq \frac{C_0}{2}. \tag{8.29}$$

We have already proven above that these inductive hypotheses hold for $j = 1$. We expand

$$M_\alpha(Q) = |Q|^{2p} \sum_{j=1}^{\alpha} \alpha^j M_j |Q|^j |Q|^{j+2p}, \quad F^\alpha(Q) = \sum_{j=0}^{\infty} \alpha^j F_j(Q), \tag{8.30}$$

and substitute into (8.15). Using (8.19) for $F_0(Q) \equiv \tilde{\psi}(Q)$ we obtain

$$\sum_{j=1}^{\alpha} \alpha^j \tilde{L}_+ F_j(Q) = - \sum_{j=1}^{\alpha} \sum_{k=0}^{\alpha} \alpha^{j+k} M_j |Q|^{j+2p} F_k(Q) + \sum_{j=1}^{\alpha} \alpha^{2j} \frac{1}{(2\pi)^2} \sum_{k+l+z=j \atop 0 \leq k,l,z < j} F_k \ast F_l \ast F_z(Q) \tag{8.31}.$$
Since \(\tau j - \tau (m + 1) \geq 0 \) for \(j \geq m + 1 \), the bracketed terms with coefficient \(\alpha^r \) are \(O(\alpha^r) \). Therefore the terms of order precisely \(\alpha^m \) are given by (8.27). This establishes the case: \(j = m \).

We now prove that (8.27) has a solution, \(F_m \) satisfying (8.29) with \(j = m \). First, applying Lemmata 8.5 and 8.6 to the right hand side of (8.27) for \(j = m \), \(H_m \), we have that \(H_m \in L^{2,\alpha}_{\text{even}} \) with the bound:

\[
\left\| e^{C_m|Q|^\eta} H_m [F_0, \ldots, F_{m-1}] (Q) \right\|_{L^{2,\alpha}(\mathbb{R};dQ)} \leq \lambda_m, \tag{8.33}
\]

where \(C_m = C_0 \left(1 + \frac{1}{2m+1} \right) \) and

\[
\begin{align*}
\lambda_m &= 2 \sum_{k=0}^{m-1} e^{-\frac{2k}{\eta_1}} \left[-\frac{2k}{\eta_1} \right]^{\frac{2k}{\eta_1}} \left| e^{C_k|Q|^\eta} F_k(Q) \right|_{L^{2,\alpha}(\mathbb{R}^2)} \\
&\quad + \frac{1}{(2\pi)^2} \sum_{k + i + l = m} e^{C_k|Q|^\eta} F_k(Q) \left| e^{C_l|Q|^\eta} F_l(Q) \right|_{L^{2,\alpha}(\mathbb{R}^2)}.
\end{align*} \tag{8.34}
\]

Proposition 8.4 implies that there exists a unique solution \(F_m(Q) \in L^{2,\alpha}(\mathbb{R}) \) to equation (8.27) with \(e^{C_m|Q|^\eta} F_m(Q) \in L^{2,\alpha}(\mathbb{R}) \). Finally, to see that \(F_m \) is real-valued, note that equation (8.27) for \(F_m \) is a linear with inhomogeneous forcing on the right hand side given by \(H_m [F_0, \ldots, F_{m-1}] \), which is necessarily real-valued for \(F_j \) real-valued, \(j = 0, \ldots, m-1 \). This completes the proof of Proposition 8.7. \(\square \)

Appendix A. A subadditivity inequality.

Lemma A.1. For \(x, y \in \mathbb{R} \) and \(0 < p \leq 1 \), we have \(|x + y|^p \leq |x|^p + |y|^p \).

Proof of Lemma A.1. The result is trivial for \(\eta = 1 \). The result also holds trivially for \(x = 0 \) or \(y = 0 \), so we assume \(x \neq 0 \) and \(y \neq 0 \). First let \(x > 0 \) and \(y < 0 \) or \(x < 0 \) and \(y > 0 \). Then \(|x + y|^p \leq \max \{|x|^p, |y|^p\} \leq |x|^p + |y|^p \). Now let \(x > 0 \) and \(y > 0 \). Then

\[
|x + y|^p = \frac{|x + y|}{|x + y|^{1-p}} \leq \left(\frac{|x|}{|x + y|} \right)^{1-n} |x|^p + \left(\frac{|y|}{|x + y|} \right)^{1-n} |y|^p \leq |x|^p + |y|^p, \tag{A.1}
\]

where we have used that \(|x||x + y|^{1-1} \leq 1 \), \(|y||x + y|^{1-1} \leq 1 \), for \(x > 0 \), \(y > 0 \). \(\square \)

Appendix B. Properties of the Discrete Fourier Transform. In this section, we prove some general properties of the discrete Fourier transform as defined in (1.24).

Lemma B.1. For \(u = \{u_n\}_{n \in \mathbb{Z}} \in l^1(\mathbb{Z}) \cap l^2(\mathbb{Z}) \) and \(v_n = -u_{n+1} + u_n \), \(\hat{v}(q) = (e^{-iqm} - 1) \hat{u}(q) \).

Lemma B.2. For any two functions \(u, v \in l^1(\mathbb{Z}) \cap l^2(\mathbb{Z}) \), and with their product given by \(u \cdot v = \{u_n v_n\}_{n \in \mathbb{Z}} \), \(\mathcal{F}_D[u \cdot v](q) = \overline{\hat{u}(q)} (2\pi)^{-1} \hat{v} \ast \hat{u}(q) \), where the periodic convolution \(\ast \) is defined in (1.26).

Lemma B.3.
1. Assume \(\hat{u}, \hat{v} \in L^1_{\text{loc}}(\mathbb{R}) \). Then, for any constant \(C \), \((e^{C} \hat{u}) \ast (e^{C} \hat{v})(q) = e^{C \hat{u}}(q) \).
2. (Commutativity) For \(2\pi \)-periodic functions \(\hat{u}, \hat{v} \in L^1_{\text{loc}}(\mathbb{R}) \), we have

\[
\hat{u} \ast \hat{v}(q) = \hat{v} \ast \hat{u}(q). \tag{B.1}
\]

Lemma B.4. For three functions \(\hat{u}, \hat{v}, \hat{w} \in L^1_{\text{loc}}(\mathbb{R}) \), we have \(\hat{u} \ast \hat{v} \ast \hat{w}(q) = \hat{v} \ast \hat{u} \ast \hat{w}(q) \). Note that \(\hat{u}, \hat{v}, \) and \(\hat{w} \) need not be periodic.

Lemma B.5. Let \(\hat{u}, \hat{v} \in L^1_{\text{loc}}(\mathbb{R}) \) be even such that \(\hat{u}(-q) = \hat{v}(q) \) and \(\hat{v}(-q) = \hat{v}(q) \). Then \(\hat{u} \ast \hat{v} \) is also even. That is, \(\hat{u} \ast \hat{v}(-q) = \hat{u} \ast \hat{v}(q) \).

Appendix C. Properties of the operator \(\mathcal{L} \)- proof of Proposition 1.1 In this section, we prove Proposition 1.1 on properties of the non-local linear difference operator \(\mathcal{L} \) given by

\[
(\mathcal{L} u)_n = \sum_{m \in \mathbb{Z}} J_{|m-n|} (u_m - u_n), \quad \{J_m\}_{m \in \mathbb{Z}} \in l^1(\mathbb{Z}), \quad J_0 = 0, \ J_m \geq 0. \tag{C.1}
\]
Boundness, \(\|Lu\|_{l^2(\mathbb{Z})} \leq \|J\|_{l^1(\mathbb{Z})} \|u\|_{l^2(\mathbb{Z})} \), follows by Young’s inequality.

Self-adjointness of \(L \) on \(l^2(\mathbb{Z}) \) follows since \((Lu)_n = \sum_{m \in \mathbb{Z}} L_{mn} u_m \), where \(L_{mn} = J_{m-n} - \|J\|_{l^1(\mathbb{Z})} \delta_{mn} \).

Non-negativity of \(-L \): By Young’s inequality, \(\langle Lu, u \rangle = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} J_{m-n} u_m u_n - \|J\|_{l^1(\mathbb{Z})} \|u\|_{l^2(\mathbb{Z})}^2 \leq 0 \).

Dispersion relation of \(-L \): This is a consequence of the following

Lemma C.1. Assume \(J = \{J_m\}_{m \in \mathbb{Z}} \) is non-negative, real-valued, symmetric (such that \(J_m = J_{-m} \), and in \(J \in l^1(\mathbb{Z}) \). Then for any function \(u \in l^1(\mathbb{Z}) \cap l^2(\mathbb{Z}) \),

\[
(\mathcal{L}u)(q) = -4 \sum_{m=1}^{\infty} J_m \sin(qm/2) \tilde{u}(q).
\] (C.2)

Proof of Lemma C.1. First, observe that

\[
\mathcal{F}_D \left[\sum_{m \neq n} J_{|m-n|} u_n \right](q) = \sum_{n \in \mathbb{Z}} e^{-iqn} \sum_{m \neq n} J_{|m-n|} u_n = \sum_{n \in \mathbb{Z}} e^{-iqn} J_{|n|} u_n
\]

\[
= 2 \left(\sum_{m=1}^{\infty} J_m \right) \left(\sum_{n \in \mathbb{Z}} e^{-iqn} u_n \right) = 2 \left(\sum_{m=1}^{\infty} J_m \right) \tilde{u}(q).
\] (C.3)

Next

\[
\mathcal{F}_D \left[\sum_{m \neq n} J_{|m-n|} u_m \right](q) = \sum_{n \in \mathbb{Z}} e^{-iqn} \sum_{m \neq n} J_{|m-n|} u_m = \sum_{n \in \mathbb{Z}} e^{-iqn} \sum_{n \neq m} J_{|n|} e^{-iqn} u_m
\]

\[
= \left(\sum_{n=1}^{\infty} J_n \right) \left(e^{-iqn} + e^{iqn} \right) \left(\sum_{n \in \mathbb{Z}} e^{-iqn} u_m \right) = \left(\sum_{m=1}^{\infty} J_m \right) \left(e^{-iqm} + e^{iqm} \right) \tilde{u}(q).
\] (C.4)

Therefore, since \(4 \sin^2(qm/2) = 2 - e^{-iqm} - e^{iqm} \), we have

\[
\mathcal{F}_D [-Lu](q) = \left(\sum_{m=1}^{\infty} J_m \left(e^{-iqm} + e^{iqm} - 2 \right) \right) \tilde{u}(q) = -4 \sum_{m=1}^{\infty} J_m \sin^2(qm/2) \tilde{u}(q).
\] (C.5)

Appendix D. Implicit Function Theorem. In this section, we state a variant of the implicit function theorem which is used in the proofs in Section 3.

Theorem D.1. (Implicit Function Theorem) Assume the following hypotheses.

1. \(X, Y, \) and \(Z \) are Banach spaces.
2. The mapping \(f : [0,1] \times X \times Y \to Z, (\alpha, x, y) \mapsto f(\alpha, x, y) \), satisfies \(f(0,0,0) = 0 \) and is continuous at \((0,0,0) \).
3. For all \((\alpha, x) \in [0,1] \times X \), the mapping \(y \mapsto f(\alpha, x, y) \) is Fréchet differentiable which we denote \(D_y f(\alpha, x, y) : Y \to Z \). Furthermore, the mapping \((\alpha, x, y) \mapsto D_y f(\alpha, x, y) \) is continuous at \((0,0,0) \).
4. \(D_y f(0,0,0) \) is an isomorphism of \(Y \) onto \(Z \).

Then there exist \(\alpha_0, \delta, \kappa > 0 \) such that for \((\alpha, x) \in [0, \alpha_0) \times B_\delta(0) \), there exists a unique map \(y_\ast : [0, \alpha_0) \times B_\delta(0) \to Y \) such that \(y_\ast[\alpha, x] \) is well-defined on \([0, \alpha_0) \times B_\delta(0) \) and

\[
y_\ast[0,0] = 0, \quad \|y_\ast[\alpha, x]\|_Y \leq \kappa, \quad \lim_{(\alpha, x) \to (0,0)} y_\ast[\alpha, x] = y_\ast[0,0] = 0, \quad f(\alpha, x, y_\ast[\alpha, x]) = 0. \quad \text{(D.1)}
\]

Suppose also that

5. For all \((\alpha, y) \in [0,1] \times Y \), the mapping \(x \mapsto f(\alpha, x, y) \) is Fréchet differentiable, which we denote \(D_x f(\alpha, x, y) : X \to Z \). Furthermore, the mapping \((\alpha, x, y) \mapsto D_x f(\alpha, x, y) \) is continuous at \((0,0,0) \).
Then $D_yf_\alpha[x, y] : X \to Y$ exists and is continuous.

This variant of the standard implicit function theorem [30] is directly applicable to our setting. In particular, we include the parameter $\alpha > 0$ explicitly and require only that $f(\alpha, x, z)$ and $D_yf(\alpha, x, y)$ be continuous at the origin. The complete proof may be found in [23].

Appendix E. Special functions $\text{Li}_s(z)$, $\zeta(z)$, $\Gamma(z)$; the dispersion relation $M^*(q)$ of $-\mathcal{L}^a$.

This section contains key calculations for the proofs of Proposition E.1 and Lemma E.5 on the asymptotics of the scaled dispersion relation $M^*_\alpha(Q) : M^*_\alpha(Q) \approx |Q|^{2p}$ as $\alpha \to 0$ for $p = \min(1, s)$ and $0 < s \leq \infty$. The key result is given in Proposition E.2.

Recall that $M^*(q)$ is the dispersion relation for the operator $-\mathcal{L}^a$. Recall from Lemma E.1 that $M^*(q) = \frac{1}{2\pi} \sum_{m=1}^{\infty} \frac{4 \sin^2(qm/2)}{m^{s+2}}$ for $0 < s < \infty$ and $M^*(q) = \frac{1}{2\pi} \sum_{m=1}^{\infty} 4e^{-\gamma m} \sin^2(qm/2), \; \gamma > 0$, for $s = \infty$. As noted in Section 1.4, the factor C_s and the s-dependent rescalings are introduced so that the asymptotic coefficient of $|Q|^{2p}$ is one.

We introduce the polylogarithm:

$$\text{Li}_s(z) = \sum_{m=1}^{\infty} \frac{z^m}{m^s}.$$

(E.1)

for $z \in \mathbb{C}$, $s \in \mathbb{R}$. Observe in particular that for cases in which $|z| = 1$ and $s > 1$, the series $\text{Li}_s(z)$ clearly converges. We also make use of the ζ and Γ functions, defined to be the analytic continuation on $z \in \mathbb{C}$ of the functions defined by

$$\zeta(z) = \sum_{j=1}^{\infty} \frac{1}{j^s}, \; \text{for Re } z > 1, \quad \Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx \; \text{for Re } z > 0.$$

(E.2)

The following two propositions ensure that the ζ and Γ functions are well-behaved in all of their appearances in this paper, in the sense that they are not singular or do not grow asymptotically when they appear in infinite series.

Proposition E.1 (Properties of the Γ function on \mathbb{R}, [19]).

1. For $z \in \mathbb{R}$ fixed with $z > 0$, $\Gamma(z)$ is continuous and finite.
2. (Euler’s reflection formula) For any $z \notin \mathbb{Z}$, we have $\Gamma(z) \Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$.

Proposition E.2 (Properties of the ζ function on \mathbb{R}, [3]).

1. For $z \in \mathbb{R}$ fixed with $z \neq 1$, $\zeta(z)$ is continuous and finite.
2. For $z \in \mathbb{R}$ fixed with $z > 1$, $|\zeta(z)| \leq 1 + \frac{1}{z-1}$.
3. For $z \in \mathbb{R}$, $\lim_{z \to \infty} \zeta(z) = 0$.
4. (Trivial zeroes) Let $z = -2n$ for $n \in \mathbb{N}$. Then $\zeta(z) = 0$.

We require the following lemmata which express the polylogarithm of an exponential function.

Lemma E.3. [55] Let $s \notin \mathbb{N}$, $s > 1$. Let $|\mu| < 2\pi$. Then

$$\text{Li}_s(e^{\mu}) = \Gamma(1-s)(-\mu)^{-\mu} + \sum_{j=0}^{\infty} \frac{\zeta(s-j)}{j!} \mu^j.$$

(E.3)

Lemma E.4. [56] Let $s \in \mathbb{N}$, $s > 1$. Let $|\mu| < 2\pi$. Then

$$\text{Li}_s(e^{\mu}) = \frac{\mu^{s-1}}{(s-1)!} \left[\sum_{j=1}^{s-1} \frac{1}{j} - \log(-\mu) \right] + \sum_{j=0}^{\infty} \frac{\zeta(s-j)}{j!} \mu^j.$$

(E.4)

We now use Proposition E.1 through Lemma E.4 to prove the following result on the asymptotics of the scaled dispersion relation $M^*_\alpha(Q)$.

Proposition E.5. Let $Q \in \mathbb{B}_\alpha = [-\frac{\alpha}{2}, \frac{\alpha}{2}]$, let $C_s > 0$ be defined in [3.1], and let $\kappa_s(\alpha) > 0$ be defined in [1.21]. Then there exists a function $f_\alpha(Q; \alpha)$ such that $|f_\alpha(Q; \alpha)| \leq 1$ and

$$M^*_\alpha(Q) = \frac{1}{\kappa_s(\alpha)} M^*(Q\alpha) = |Q|^{2p} + \left\{ \begin{array}{ll}
\alpha^{2-2s} f_\alpha(Q; \alpha) |Q|^2 & : s < 1 \\
\frac{\alpha^2}{\log(\alpha)} f_\alpha(Q; \alpha) \left(\frac{2}{s} - \log(|Q|) \right) |Q|^2 & : s = 1 \\
\alpha^{s-2} f_\alpha(Q; \alpha) |Q|^{2s} & : 1 < s < 2 \\
(-\log(\alpha)) \alpha^2 f_\alpha(Q; \alpha) |Q|^4 & : s = 2 \\
\alpha^2 f_\alpha(Q; \alpha) |Q|^4 & : 2 < s \leq \infty
\end{array} \right..$$

(E.5)

36
Proof of Proposition [E.5] Let \(q = Q\alpha \in \mathbb{B} = [-\pi, \pi] \). Recall that \(M^s(\alpha) = \frac{1}{C_s} \sum_{m=1}^{\infty} \frac{4\sin^2(qm/2)}{m^{1+2s}} \) for \(0 < s < \infty \) and \(M^s(q) = \frac{1}{C_s} \sum_{m=1}^{\infty} 4e^{-\alpha m} \sin^2(qm/2), \gamma > 0 \), for \(s = \infty \). Here, \(C_s > 0 \) is to be determined.

Case 1: Let \(1 + 2s \notin \mathbb{N}, s \neq \infty \). Expand \(4\sin^2(qm/2) = 2 - e^{iqm} - e^{-iqm} \), and note that since \(|q| \leq \pi < 2\pi \), we may apply Lemma [E.3]

\[
C_s M^s(q) = 4 \sum_{m=1}^{\infty} \frac{\sin^2(qm/2)}{m^{1+2s}} = 2(2s + 1) \left[\sum_{m=1}^{\infty} \frac{2}{m^{1+2s}} - \sum_{m=1}^{\infty} \frac{e^{iqm}}{m^{1+2s}} - \sum_{m=1}^{\infty} \frac{e^{-iqm}}{m^{1+2s}} \right] = 2\zeta(2s + 1) - \text{Li}_{1+s}(e^{iq}) - \text{Li}_{1+s}(e^{-iq})
\]

For \(s \geq 0 \), we have \(\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s} \), and for \(s > 1 \), the series is absolutely convergent, so we may apply Lemma [E.3]

\[
M^s(Q) = \frac{1}{\kappa_s(\alpha)} M^s(q) = \frac{2\zeta(2s + 1)}{C_s \kappa_s(\alpha)} \alpha^{2s} |Q|^{2s} + \sum_{j=1}^{\infty} \frac{\zeta(1 + 2s - j)}{C_s \kappa_s(\alpha)(2j)!} (-1)^{j+1} \alpha^{2j} |Q|^{2j}.
\]

Applying the rescaling \(q = Q\alpha \) gives

\[
M^s(Q) = \frac{1}{\kappa_s(\alpha)} M^s(Q\alpha) = \frac{2\zeta(2s + 1)}{C_s \kappa_s(\alpha)} \alpha^{2s} |Q|^s + \sum_{j=1}^{\infty} \frac{\zeta(1 + 2s - j)}{C_s \kappa_s(\alpha)(2j)!} (-1)^{j+1} \alpha^{2j} |Q|^{2j}.
\]

The series is absolutely convergent on \(Q = q/\alpha \in [-\pi, \pi] \) due to Proposition [E.2]. Taking \(C_s = -2\Gamma(-2s) \cos(\pi s) \), \(\kappa_s(\alpha) = \alpha^{2s} \) for \(s < 1 \) and \(C_s = \zeta(2s - 1) \), \(\kappa_s(\alpha) = \alpha^{2s} \) for \(s > 1 \) gives [E.5] for \(1 + 2s \notin \mathbb{N}, s \neq \infty \).

Case 2: Let \(1 + 2s \in \mathbb{N}, s \neq \infty \). Again expand \(4\sin^2(qm/2) = 2 - e^{iqm} - e^{-iqm} \), and note that since \(|q| \leq \pi < 2\pi \), we may apply Lemma [E.4]

\[
M^s(q) = 4 \sum_{m=1}^{\infty} \frac{\sin^2(qm/2)}{m^{1+2s}} = 2\zeta(1 + 2s) - \text{Li}_{1+s}(e^{iq}) - \text{Li}_{1+s}(e^{-iq})
\]

For \(s \geq 0 \), we have \(\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s} \), and for \(s > 1 \), the series is absolutely convergent, so we may apply Lemma [E.4]

\[
M^s(Q) = \frac{1}{\kappa_s(\alpha)} M^s(Q\alpha) = \frac{2\zeta(1 + 2s - j)}{C_s \kappa_s(\alpha)(2j)!} (-1)^{j+1} \alpha^{2j} |Q|^{2j}.
\]

37
Applying the rescaling \(q = Q\alpha \) gives

\[
M'_\alpha (Q) = \frac{1}{\kappa_s(\alpha)} M^s(\alpha) = \frac{2 \cos(\pi s)}{C_s \kappa_s(\alpha) (2s)!} \left[-\sum_{j=1}^{2s} \frac{1}{j} + \log(\alpha) + \log(|Q|) \right] \alpha^{2s} |Q|^{2s} + \frac{\pi \cos(\pi (s-1/2))}{C_s \kappa_s(\alpha) (2s)!} \alpha^{2s} |Q|^{2s} + 2 \sum_{j=1}^{\infty} \frac{\zeta(1 + 2s - 2j)}{C_s \kappa_s(\alpha) (2j)!} (-1)^{j+1} \alpha^{2j} |Q|^{2j}.
\]

(E.9)

The infinite series is absolutely convergent on \(Q = q/\alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}] \) due to Proposition E.2

Let \(C_s = -2\Gamma(-2s) \cos(\pi s) \), \(\kappa_s(\alpha) = \alpha^{2s} \) for \(s = 1/2 \) and \(C_s = \zeta(2s-1) \), \(\kappa_s(\alpha) = \alpha^{2} \) for \(s > 1 \). For \(s = 1 \), take \(C_s = 1 \) and \(\kappa_s(\alpha) = (-\log(\alpha))^2 \). This gives (E.5) for \(1 + 2s \in \mathbb{N}, s \neq 0 \).

Remark E.1. Note that one of the first two terms in (E.9) will be zero, depending on whether \(s \in \mathbb{N} \) or \(s = (2k + 1)/2 \) for \(k \in \mathbb{N} \).

Furthermore, in the case where \(s = (2k + 1)/2 \) for \(k \in \mathbb{N} \), the series in (E.9) is finite. To see this, observe from Proposition E.2 that the “trivial zeros” of the zeta function on the real line lie occur at negative even integers. In the series above, this occurs when \(1 + 2s - 2j \leq -2 \implies j \geq s + 3/2 \).

We also note that for \(s = (2k + 1)/2 \) for \(k \in \mathbb{N} \), the expansion (E.9) is compatible with the expansion (E.7) where we assumed that \(1 + 2s \notin \mathbb{N} \). To see this we use Euler’s reflection formula from Proposition E.7 to get, for \(k \in \mathbb{N} \),

\[
\lim_{s \to \frac{2k}{2s+1}} -2 \Gamma(-2s) \cos(\pi s) = \lim_{s \to \frac{2k-1}{2s+1}} -2\pi \cos(\pi s) = \frac{-2\pi \cos(\pi s)}{\sin((2s + 1)\pi) \Gamma(2s + 1)} = \lim_{s \to \frac{2k}{2s+1}} \frac{2\pi \cos(\pi s)}{\sin(\pi(2s + 1)) \Gamma(2s + 1)} = \lim_{s \to \frac{2k-1}{2s+1}} \frac{\pi}{\sin(\pi(k - 1/2)) \Gamma(2k)} = \frac{\pi(-1)^{k+1}}{(2k)!} \left[2 \right]^{k-1/2} \Gamma(2s + 1) = \frac{\pi(-1)^{k+1}}{(2s)!} \left[2 \right]^{k-1/2} \Gamma(2s + 1).
\]

(E.10)

Case 3: Finally, let \(s = \infty \). We have \(M^s(q) = \frac{1}{C_s} \sum_{m=1}^{\infty} 4e^{-\gamma m} \sin^2(qm/2), \gamma > 0 \) and \(q \in [-\pi, \pi] \). Note that \(\frac{1}{\pi} \sin^2(qm/2) = -\frac{1}{2} m^4 \cos(qm) \). Expanding about \(q = 0 \), Taylor’s Theorem implies that there exists \(z \in [-\pi, \pi] \) such that \(4\sin^2(qm/2) = m^2 |q|^2 - 2m^4 \cos(zm) |q|^4 \), on \(q \in [-\pi, \pi] \). In turn,

\[
M^s(q) = \frac{1}{C_s} \sum_{m=1}^{\infty} 4e^{-\gamma m} \sin^2(qm/2) = \frac{1}{C_s} \sum_{m=1}^{\infty} m^2 e^{-\gamma m} |q|^2 - \frac{2}{C_s} \sum_{m=1}^{\infty} m^4 \cos(zm) |q|^4.
\]

(E.11)

Therefore, for \(Q \in [-\frac{\pi}{\alpha}, \frac{\pi}{\alpha}] \) and \(M'_{\alpha}(Q) = \frac{1}{\kappa(\alpha)} M^s(Q)\alpha \),

\[
M'_{\alpha}(Q) = \frac{1}{C_s \kappa_s(\alpha)} \left(\sum_{m=1}^{\infty} m^2 e^{-\gamma m} \right) \alpha^2 |Q|^2 - \frac{2}{C_s \kappa_s(\alpha)} \sum_{m=1}^{\infty} m^4 \cos(zm) e^{-\gamma m} \alpha^4 |Q|^4.
\]

(E.12)

Observe that

\[
\left(\sum_{m=1}^{\infty} m^2 e^{-\gamma m} \right) = \frac{\exp(\gamma)(\exp(\gamma) + 1)}{(\exp(\gamma) - 1)^2} = C_s,
\]

\[
\sum_{m=1}^{\infty} m^4 \cos(zm) e^{-\gamma m} \leq \sum_{m=1}^{\infty} m^4 e^{-\gamma m} \leq 1.
\]

(E.13)

Taking \(\kappa_s(\alpha) = \alpha^2 \) gives (E.5) for \(s = \infty \). This completes the proof of Proposition E.5

Appendix F. Exponential decay of solitary waves in Fourier space. We are interested in bounding solutions to the following two equations:

1. The Fourier transform of continuum FNLS for \(d = 1, 2, 3 \) and frequency \(\omega = -1 \), (2.2)

\[
[1 + |Q|^{2p}] \hat{\psi}(Q) - \left(\frac{1}{2\pi} \right)^{2d} \hat{\psi} * \hat{\psi}(Q) = 0, \quad Q \in \mathbb{R}^d.
\]

(F.1)

Here, \(K = 1, C_1 = (-1/2\pi)^{2d}, \tau_1 = 0, A = \mathbb{R}^d \), and \(M(Q) = |Q|^{2p} \).
2. The rescaled Fourier transform of DNLS localized to the Brillouin zone for $d = 1$:

$$[1 + M_\alpha^p(Q)] \hat{\Phi}(Q) - \frac{\chi_{\alpha}(Q)}{4\pi^2} \sum_{m=-1}^{1} e^{2\pi i \sigma m} \hat{\Phi} * \hat{\Phi}(Q - 2m\pi/\alpha) = 0, \quad Q \in \mathbb{R}. \quad (F.2)$$

Here, $K = 3$, $C_k = (-1/4\pi^2) e^{2\pi i \sigma m_k}$ for $m_k \in \{-1, 0, 1\}$, $\tau_k = 2m_k\pi/\alpha$, $A = B_\alpha$, and $M(Q) = M_\alpha^p(Q) = \frac{4}{\kappa_x(\alpha)} \sum_{m=1}^{\infty} \sin^2(Q m\alpha/2) m^{-2} e^{i \alpha k}.$

In this section, we prove the exponential decay of solutions to an equation of the general form,

$$[1 + M(Q)] \Phi(Q) + \chi_A(q) \sum_{k=1}^{K} C_k \Phi * \Phi(Q + \tau_k) = 0. \quad (F.3)$$

where $0 < \eta \leq 1$, $K \geq 1$ is an integer, and $C_k \in \mathbb{R}$, $\tau_k \in \mathbb{R}^d$ are constants for $1 \leq k \leq K$, $A \subset \mathbb{R}^d$ and $M(Q)$ is a continuous function which satisfies, for some constants $0 < \eta \leq 1$ and $D_M > 0$,

$$\frac{|Q|^\eta}{1 + M(Q)} \leq D_M, \quad \text{and} \quad |Q| \leq |Q + \tau_k|, \quad \text{for} \quad Q \in A. \quad (F.4)$$

We obtain the exponential decay

$$\|e^{\mu \eta \eta |Q|^\eta} \Phi(Q)\|_{L^{2,\alpha}(\mathbb{R}^d)} \leq \|\Phi\|_{L^{2,\alpha}(\mathbb{R}^d)}, \quad \mu > 0. \quad (F.5)$$

We follow an approach similar to that given in [12] and motivated by the approach to proving exponential decay estimates in [5]. In particular, we make use of the following identity.

Lemma F.1. (Abel’s identity) For any constants $c_1, c_2 \neq 0$, we have

$$\sum_{k=0}^{n} \binom{n}{x} (x + c_1)^{x-1} (y - x + c_2)^{y-x-1} = \frac{c_1 + c_2}{c_1 c_2} (y + c_1 + c_2)^{y-1}. \quad (F.6)$$

Remark F.1. We use $\|fg\|_{L^2(\mathbb{R}^d)} \leq |f|_{L^2(\mathbb{R}^d)} |g|_{L^2(\mathbb{R}^d)}$ since we seek to show $\|\Phi^{\text{eff}} - \Phi^{\text{on}}\|_{L^2(\mathbb{R}^d)} \leq \|\Phi^{\text{eff}} - \Phi^{\text{on}}\|_{L^2(\mathbb{R}^d)}$. In [12], Frank et. al. obtain the equivalent result in $L^1(\mathbb{R})$ using Young’s inequality: $\|f_1 * f_2\|_{L^1(\mathbb{R})} \leq \|f_1\|_{L^1(\mathbb{R})} \|f_2\|_{L^1(\mathbb{R})}$. We may also perform our analysis in $L^1(\mathbb{R})$.

We seek to show $\Phi(Q) \sim e^{-\eta \eta |Q|^\eta}$, $Q \in \mathbb{R}^d$, $\mu > 0$. To prove this, we will estimate the moments of Φ, given by $|Q|^\eta \Phi(Q)$, $j \in \mathbb{N}$, inductively in $L^{2,\alpha}(\mathbb{R}^d)$, and then use these estimates to bound the Taylor expansion of $e^{\mu \eta |Q|^\eta}$ for an appropriate choice of $C > 0$.

Lemma F.2. Let $a > d/2$, $0 < \eta \leq 1$, $K \geq 1$ be an integer, and $C_k \in \mathbb{R}$, $\tau_k \in \mathbb{R}^d$ be constants for $1 \leq k \leq K$. Let $A \subset \mathbb{R}^d$ and $M(Q) \geq 0$ be a continuous function which satisfies, for some constant $D_M > 0$,

$$\frac{|Q|^\eta}{1 + M(Q)} \leq D_M, \quad \text{and} \quad |Q| \leq |Q + \tau_k|, \quad \text{for} \quad Q \in A. \quad (F.7)$$

Let $\Phi \in L^{2,\alpha}(\mathbb{R}^d)$ be the solution to

$$[1 + M(Q)] \Phi(Q) + \chi_A(Q) \sum_{k=1}^{K} C_k \Phi * \Phi(Q + \tau_k) = 0. \quad (F.8)$$

Then there exists a constant $\mu = \mu \left(\|\Phi\|_{L^{2,\alpha}(\mathbb{R}^d)} \right) > 0$ such that

$$\|e^{\mu \eta \eta |Q|^\eta} \Phi(Q)\|_{L^{2,\alpha}(\mathbb{R}^d)} \leq \|\Phi\|_{L^{2,\alpha}(\mathbb{R}^d)}. \quad (F.9)$$

Proof of Lemma F.2. Our strategy is to estimate the moments $|Q|^\eta \Phi(Q)$, $j \geq 0$. Observe that by Taylor expansion, for any $\mu > 0$,

$$\left| e^{\mu \eta \eta |Q|^\eta} \Phi(Q) \right|_{L^{2,\alpha}(\mathbb{R}^d)} \leq \sum_{j=0}^{\infty} \frac{\mu^j}{j!} |Q|^\eta \Phi(Q) \left|_{L^{2,\alpha}(\mathbb{R}^d)} \right. \quad (F.10)$$
We then have the following proposition.

Proposition F.3. There exists a constant \(b = b \left(\| \Phi \|_{L^2(\mathbb{R}^d)} \right) > 0 \) such that \(\Phi \in L^2(\mathbb{R}^d) \) satisfies the estimates

\[
\left\| Q^{j \eta} \Phi(Q) \right\|_{L^2(\mathbb{R}^d)} \leq b^j (2j + 1)^{j-1} \| \Phi \|_{L^2(\mathbb{R}^d)}, \quad j \in \mathbb{N}, \quad j \geq 0. \tag{F.11}
\]

The proof of Proposition [F.3] is found below. By Proposition [F.3] and (F.10), for any \(\mu > 0 \),

\[
\left\| e^{n|Q|\eta} \Phi(Q) \right\|_{L^2(\mathbb{R}^d)} \leq \| \Phi \|_{L^2(\mathbb{R}^d)} \sum_{j=0}^{\infty} A_j,
\]

where \(A_j = \frac{\mu}{j+1} b^j (2j + 1)^{j-1} \), and \(\mu \) is to be determined so that the sum converges. The ratio test gives

\[
\lim_{j \to \infty} \frac{A_{j+1}}{A_j} = \lim_{j \to \infty} \frac{b \mu (2j + 3)^j}{(j + 1)(2j + 1)^j} = 2b \mu e. \tag{F.13}
\]

If \(\mu < \frac{1}{2eb(\| \Phi \|_{L^2(\mathbb{R}^d)})} \), (F.12) is convergent, completing the proof of Lemma [F.2].

Proof of Proposition F.3. Rewrite equation (F.8) as

\[
\Phi(Q) = \frac{\chi_{A}(Q)}{1 + M(Q)} \sum_{k=1}^{K} C_k \Phi * \Phi(Q + \tau_k). \tag{F.14}
\]

We prove (F.11) by induction. Define

\[
W(Q) = \Phi * \Phi(Q). \tag{F.15}
\]

Let \(m \geq 1 \) and multiply equation (F.14) by \(|Q|^{m \eta} \) to get

\[
|Q|^{m \eta} \Phi(Q) = \frac{\chi_{A}(Q) |Q|^{m \eta}}{1 + M(Q)} \sum_{k=1}^{K} C_k W * \Phi(Q + \tau_k). \tag{F.16}
\]

Note that (F.11) holds trivially for \(j = 0 \) if we choose \(b > 0 \). Now assume, for all \(0 \leq j \leq m - 1 \), that there exists a constant \(b > 0 \) such that (F.11) holds. We will prove that (F.11) holds for \(j = m \).

Observe that by (F.7),

\[
\frac{\chi_{A}(Q) |Q|^{m \eta}}{1 + M(Q)} \leq |Q|^{(m-1) \eta} \frac{\chi_{A}(Q) |Q|^{m \eta}}{1 + M(Q)} = |Q|^{(m-1) \eta} \chi_{A}(Q) D_M \leq D_M |Q + \tau_k|^{(m-1) \eta}. \tag{F.17}
\]

Next, by Lemma [A.1] and \(|\tilde{Q}|^{m-1} \leq \sum_{l=0}^{m-1} \left(\frac{m - l}{l} \right) |\tilde{Q} - \xi|^l |\xi|^{m-l-1} \),

\[
|\tilde{Q}|^{(m-1) \eta} \leq \sum_{l=0}^{m-1} \left(\frac{m - l}{l} \right)^{\eta} |\tilde{Q} - \xi|^l |\xi|^{(m-l-1) \eta} \leq \sum_{l=0}^{m-1} \left(\frac{m - l}{l} \right)^{\eta} |\tilde{Q} - \xi|^l |\xi|^{(m-l-1) \eta}. \tag{F.18}
\]

Combining (F.18) (for \(\tilde{Q} = Q + \tau_k \)) with (F.16) and (F.17), we have

\[
|Q|^{m \eta} \Phi(Q) \leq D_M \sum_{k=1}^{K} |C_k| |Q + \tau_k|^{(m-1) \eta} \int_{\mathbb{R}^d} W(Q + \tau_k - \xi) \Phi(\xi) d\xi \leq D_M \sum_{k=1}^{K} |C_k| \sum_{l=0}^{m-1} \left(\frac{m - l}{l} \right) (|\xi|^{(m-l) \eta} |W|) * \xi (|\xi|^{(m-l-1) \eta} |\Phi|) (Q + \tau_k), \tag{F.19}
\]

40
and therefore by the inductive hypothesis (F.11) (which holds for \(0 \leq m - l - 1 \leq m - 1\)), we have

\[
\| \mathcal{Q}^{m, q} \Phi(Q) \|_{L^2, a(\mathbb{R}^d)} \leq K D_a D_M \max_{k=1, \ldots, K} \|[C_k]\| \sum_{l=0}^{m-1} \left(\begin{array}{c} m - 1 \\ l \end{array} \right) \| |\xi|^{\eta l} W(\xi) \|_{L^2, a(\mathbb{R}^d)} \| |\xi|^{(m-l-1)\eta} \Phi(\xi) \|_{L^2, a(\mathbb{R}^d)}
\]

Next, we must estimate \(|\xi|^{\eta l} W(\xi)|. Equations (F.15) and (F.18) give

\[
|\xi|^{\eta l} W(\xi) \leq \sum_{k=0}^{l} \left(\begin{array}{c} l \\ k \end{array} \right) (|\xi|^{k\eta} |\Phi|) \Phi \left(\frac{|\xi|^{(l-k)\eta} |\Phi|}{(l-k)\eta} \right) (\xi),
\]

which in turn gives, by the inductive hypothesis (F.11) (for \(0 \leq k \leq l \leq m - 1\) and \(0 \leq l - k \leq m - 1\)) and Abel’s identity (F.11)

\[
\left| |\xi|^{\eta l} W(\xi) \right|_{L^2, a(\mathbb{R}^d)} \leq D_a \sum_{k=0}^{l} \left(\begin{array}{c} l \\ k \end{array} \right) \| |\xi|^{\eta k} \Phi(\xi) \|_{L^2, a(\mathbb{R}^d)} \| |\xi|^{(l-k)\eta} \Phi(\xi) \|_{L^2, a(\mathbb{R}^d)}
\]

Combining (F.22) with (F.20), along with Abel’s identity again, gives

\[
\| \mathcal{Q}^{m, q} \Phi(Q) \|_{L^2, a(\mathbb{R}^d)} \leq 2 K D_M D_a^2 \max_{k=1, \ldots, K} \|[C_k]\| \|\Phi\|^3_{L^2, a(\mathbb{R}^d)}
\]

To complete the proof that (F.11) is satisfied for \(j = m \geq 1\), we need to show that this quantity is bounded by \(b^m (2m + 1)^{m-1} \|\Phi\|^3_{L^2, a(\mathbb{R}^d)}\). It will then follow that

\[
\| \mathcal{Q}^{m, q} \Phi(Q) \|_{L^2, a(\mathbb{R}^d)} \leq b^m (2m + 1)^{m-1} \|\Phi\|^3_{L^2, a(\mathbb{R}^d)}.
\]

Condition (F.24) is satisfied if for any \(m \geq 1, b_2\), dependent on \(\|\Phi\|_{L^2, a(\mathbb{R}^d)}\), satisfies

\[
3 K D_M D_a^2 \max_{k=1, \ldots, K} \|[C_k]\| \|\Phi\|^3_{L^2, a(\mathbb{R}^d)} \leq b (2m + 1), \quad \forall m \geq 1.
\]

It suffices to satisfy (F.25) for \(m = 1\) by choosing \(b > 0\) sufficiently large. Recall that \(b > 0\) satisfies (F.11) trivially for \(j = 0\). This completes the proof of Proposition (F.3).
REFERENCES

[1] A.B. Aceves, C. De Angelis, G.G. Luther, and A.M. Rubenchik, Modulational instability of continuous waves and one-dimensional temporal solitons in fiber arrays, Optics Letters, 19 (1994), pp. 1186–1188.

[2] A.B. Aceves, C. De Angelis, A.M. Rubenchik, and S.K. Turitsyn, Multidimensional solitons in fiber arrays, Optics Letters, 19 (1994), pp. 329–331.

[3] Jr. A.S. Barker and A.J. Sievers, Optical studies of the vibrational properties of disordered solids, Reviews of Modern Physics, 47 Suppl. 2 (1975).

[4] T.B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), pp. 559–562.

[5] J. Bona and Y. Li, Decay and analyticity of solitary waves, J. Math. Pures Appl., 76 (1997), pp. 377–430.

[6] A.S. Davydov, Theory of Molecular Excitons, Plenum Press, New York, 1971.

[7] A.S. Davydov and N.I. Kislukha, Solitary excitons in one-dimensional molecular chains, Phys. Stat. Sol. (b), 59 (1973), pp. 465–470.

[8] H.M. Edwards, Riemann’s Zeta Function, Dover Books on Mathematics, Dover Publications, Mineola, NY, 2001.

[9] J.C. Eilbeck, P.S. Lomdahl, and A.C. Scott, The discrete self-trapping equation, Physica D, 16 (1985), pp. 318–338.

[10] H.S. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J.S. Aitchison, Discrete spatial optical solitons in waveguide arrays, Phys. Rev. Lett., 81 (1998), pp. 3383–3386.

[11] ———, Dynamics of discrete solitons in optical waveguide arrays, Phys. Rev. Lett., 83 (1999), pp. 2726–2729.

[12] R. Frank and E. Lenzmann, On ground states for the l^2-critical boson star equation, eprint arXiv:0910.2721, 2010.

[13] ———, Uniqueness and nondegeneracy of ground states $(-\delta)^s u + q \cdot u - g |u|^{s-1} u = 0$ in \mathbb{R}, Acta. Math., 210 (2013), pp. 261–318.

[14] R. Frank, E. Lenzmann, and L. Silvestre, Uniqueness of radial solutions for the fractional laplacian, Comm. Pure Appl. Math., (to appear).

[15] J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), pp. 1691–1705.

[16] Jr. G.A. Baker, One-dimensional order-disorder which approaches a second-order phase transition, Phys. Rev., 122 (1961), p. T477.

[17] Yu. Gaididei, S. Mingaleev, P. Christiansen, and K. Rasmussen, Effect of nonlocal dispersion on self-interacting excitations, Phys. Lett. A, 222 (1996), pp. 152–156.

[18] ———, Effect of nonlocal dispersion on self-trapping excitations, Phys. Rev. E, 55 (1997), pp. 6141–6150.

[19] J. Havil, Gamma: Exploring Euler’s Constant, Princeton University Press, Princeton, NJ, 2003.

[20] H. Hennig, J. Dorignac, and D.K. Campbell, Transfer of bose-einstein condensates through discrete breathers in an optical lattice, Phys. Rev. A, 82 (2010), pp. 053604–053612.

[21] Y. Hong and Y. Sire, A new class of traveling solitons for cubic fractional nonlinear schrodinger equations, arXiv:1501.01415, 2015.

[22] M. Jenkinson, Bifurcation of On-site and Off-site Solitary Waves of Discrete Nonlinear Schrödinger Type Equations, PhD thesis, Columbia University, 2015.

[23] M. Jenkinson and M.I. Weinstein, On-site and off-site bound states of the discrete nonlinear schrödinger equation and the peierls-nabarro barrier, Nonlinearity, 29 (2015), pp. 27–86.

[24] M. Kac and E. Helfand, Study of several lattice systems with long-range forces, J. Math. Phys., 4 (1963), pp. 1078–1088.

[25] P. Kevrekidis, The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, vol. 232 of Springer Tracts in Modern Physics, Springer, Berlin Heidelberg, 2009.

[26] P.G. Kevrekidis, Y.B. Gaididei, A.R. Bishop, and A. Saxena, Effects of competing short- and long-range dispersive interactions on discrete breathers, Phys. Rev. E, 64 (2001), p. 066606.

[27] P. Kevrekidis and M.I. Weinstein, Dynamics of lattice kinks, Physica D, 142 (2000), pp. 113–152.

[28] K. Kirkpatrick, E. Lenzmann, and G. Staffilani, On the continuum limit for discrete nls with long-range lattice interactions, Comm. Math. Phys., 317 (2012), pp. 563–591.

[29] J. Krieger, E. Lenzmann, and P. Raphael, Nondispersive solutions to the l^2-critical half-wave equation, Arch. Rat. Mech. Anal., 209 (2013), pp. 61–129.

[30] M.K. Kwong, Uniqueness of positive solutions of $-\delta u + a u = u^p$ in \mathbb{R}^n, Arch. Rat. Mech. Anal., 105 (1989), pp. 243–266.

[31] N. Laskin, Fractional schrödinger equation, Physical Review E, 66 (2002), pp. 056108–056125.

[32] E.H. Lieb and H.-T. Yau, The chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), pp. 147–174.

[33] R. MacKay, G. Schneider, and D. Pelinovsky, Justification of the lattice equation for a nonlinear elliptic problem with a periodic potential, Comm. Math. Phys., 284 (2008), pp. 803–831.

[34] S. Mingaleev, P. Christiansen, Y. Gaididei, M. Johannson, and K. Rasmussen, Models for energy and charge transport and storage in biomolecules, J. Biol. Phys., 25 (1999), pp. 41–63.

[35] U. Naether and R.A. Vicençio, Mobility of high-power solitons in saturable nonlinear photonic lattices, Optics Letters, 36 (2011), pp. 1467–1469.

[36] L. Nirenberg, Topics in Nonlinear Functional Analysis, vol. 6 of Courant Institute Lecture Notes, American Mathematical Society, Providence, Rhode Island, 2001.
[37] H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, 39 (1975), pp. 1082–1091.
[38] O.F. Oxtoby and I.V. Barashenkov, Moving solitons in the discrete nonlinear schrödinger equation, Phys. Rev. E, 76 (2007), p. 036603.
[39] D. Pelinovsky and G. Schneider, Bounds on the tight-binding approximation for the gross-pitaevskii equation with a periodic potential, J. Differential Equations, 248 (2010), pp. 837–849.
[40] M. Peyrard and M.D. Kruskal, Kink dynamics in the highly discrete sine-gordon system, Physica D, 14 (1984), pp. 88–102.
[41] J. Riordan, Combinatorial Identities, Johny Wiley & Sons, New York, 1968.
[42] X. Ros-Oton and J. Serra, The pohozaev identity for the fractional laplacian, Archive for Rational Mechanics and Analysis, 213 (2014), pp. 587–628.
[43] A. Smerzi, A. Trombettoni, P.G. Kevrekidis, and A.R. Bishop, Dynamical superfluid-insulator transition in a chain of weakly coupled bose-einstein condensates, Phys. Rev. Lett., 89 (2002), pp. 175504–175508.
[44] A. Soffer and M.I. Weinstein, Resonances, radiation damping and instability in hamiltonian nonlinear wave equations, Invent. Math., 136 (1999), pp. 9–74.
[45] ———, Theory of nonlinear dispersive waves and selection of the ground state, Phys. Rev. Lett., 95 (2001), p. 213905.
[46] ———, Selection of the ground state for nonlinear schrödinger equations, Rev. Math. Phys., 16 (2004), pp. 977–1071.
[47] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), pp. 144–162.
[48] C. Sulem and P.L. Sulem, The Nonlinear Schrödinger equation: Self-Focusing and Wave Collapse, vol. 139 of Series in Mathematical Sciences, Springer-Verlag, New York, 1999.
[49] S. Takeno, K. Kisoda, and A.J. Sievers, Intrinsic localized vibrational modes in anharmonic crystals, Prog. Theor. Phys., 94 (1988), pp. 242–269.
[50] V.E. Tarasov, Continuous limit of discrete systems with long-range interaction, J. Phys. A, 39 (2006), pp. 14895–14910.
[51] V.E. Tarasov and G.M. Zaslavsky, Fractional dynamics of systems with long-range interaction, Commun. Nonlinear Sci. Numer. Simul., 11 (2006), pp. 885–989.
[52] M.I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Comm. Partial Differential Equations, 12 (1987), pp. 1133–1173.
[53] ———, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity, 12 (1999), pp. 673–691.
[54] ———, Localized states and their dynamics in the nonlinear Schroedinger / Gross-Pitaevskii equation: Analysis and applications, in Dynamics of Partial Differential Equations, C.K.R.T. Jones, B. Sandstede, and L.-S. Young, eds., vol. 3 of Frontiers in Applied Dynamical Systems, Springer-Verlag, 2015, ch. 2, pp. 41–74.
[55] M.I. Weinstein and B. Yeary, Excitation and dynamics of pulses in coupled fiber arrays, Phys. Lett. A, 222 (1996), pp. 157–162.
[56] D.C. Wood, The computation of polylogarithms, Tech. Report 15-92*, University of Kent, Computing Laboratory, University of Kent, Canterbury, UK, June 1992.