Current development of material base and technology enables different ways to improve heat-insulating properties of existing packing constructions of the building. Particular ways are different among themselves concerning the service life. This contribution deals with the appreciation of additional thermal insulation while taking into account the return of financial expenses in the relation to its service life. Basic calculation formulas and their graphical illustration (which gauges economical effectiveness) are presented.

Introduction

Securing thermal ratios suitable for the workplace or for technological processes is an important condition for the operation and derived value of a building. Current energy costs are an incentive to reduce energy consumption in the heating of buildings. The augmentation of heat-insulating properties of existing packing covering of these buildings can help to fulfil this requirement.

The augmentations of heat-insulating properties of these constructions have technical and economical limitations. This contribution aims at improving and realizing cost effective heat-insulating properties of packing construction in a building.

1. The borders of economical effectiveness

The basic heat-insulating property of circumferential constructions is their thermal resistance. The size of thermal resistance determines heat thermal transmittance \(k \) (W. m\(^{-2}\).K\(^{-1}\)) which influences the heat-insulating properties of circumferential construction in the calculation of thermal loses of the building (according to STN 060210). Therefore, a higher thermal resistance of circumferential constructions has a direct influence on the decrease of the energy consumption of the heating.

It we augment the width of the heat-insulating layer (i.e. we improve the heat-technical properties of wall constructions), though the expense for their making increase, the expenses for the
stúpajú sice ich náklady na zhotovenie, súčasne sa však znižujú náklady na vyhotovenie vykurovacé sústavy a náklady na vykurovanie. Z tepelného-ekonomického hľadiska sa považuje za najvyhodnejšie taa konštrukcia, ktoréj je súčet uvedených nákladov čo najmenší.

Pri postupe podľa STN 730549 sa používa obvykle metóda súčasnej hodnoty, kedy sa všetky náklady (náklady na vyhotovanie konštrukcie a náklady spojené s udržbou konštrukcie a vykurovaním budovy), vztiahnuté na 1 m² vonkajšej stenovej konštrukcie, prepočítajú k jednému časovému okamžiku, najčastejšie k obdobiu dokončenia budovy. Prevažkové náklady pozostávajú z pravidelných ročných výdavkov sa prepočítávajú na súčasnú hodnotu a spolu s nadobúdacimi počiatočnými finančnými nákladmi tvoria základ tepelného-ekonomického hodnotenia.

Všeobecné sa teda predpokladá, že tie obvodové steny, ktoré zohladňujú náklady na vyhotovenie a náklady na vykurovanie, sú tepelné-economické. Takto hodnotenie sa považuje za rozhodujúce vtedy, ak tepelný odpor steny vychádza väčší než je požadovaný najmenší dovolený odpor R (m².K.W⁻¹), určený normatívnym predpisom pre klimatickú oblasť, v ktorej sa budova nachádza. Predpokladajme, že na vyhotovenie dodatočného zateplenia vynaložíme finančné prostriedky o výške K (Sk).

Týmto finančným nákladom budú zodpovedať úspory na tepelnej energii dodanej vykurovacou sústavou do budovy. Tieto úspory nech predstavujú ročné zniženie vykurovacích nákladov o Δm (Sk). Dodatočná úprava konštrukcií - zateplenie - je potom ekonomicky a tepelné-energeticky efektívna, ak v čase životnosti takejto úpravy konštrukcie budú dosahované úspory Δm (Sk) rovné prípadne väčšie než boli vynaložené finančné prostriedky na jej vyhotovenie. Tuto závislosť možno vyjadriť nasledovným vzťahom:

\[
K \leq \Delta m \left[\frac{1}{i} - \frac{1}{i(1+i)^n} \right] \tag{1}
\]

v ktorom
\(i\) - je priemerná miera kapitálových nákladov na investíciu (diskontná miera investora %)
\(n\) - je počet rokov v ktorých získame ročné zniženie nákladov o Δm (Sk).

Vzťah (1) môžeme zjednodušiť do tvaru:

\[
K \leq \Delta m \cdot h \tag{2}
\]

v ktorom
\[
h = \frac{1}{i} - \frac{1}{i(1+i)^n} = \frac{1}{i} \left[1 - \frac{1}{(1+i)^n} \right]. \tag{3}
\]

Analyzujeme teraz vzťah životnosti dodatočnej úpravy steny zvyšeným jej tepelnizolačnej schopnosti a diskontnej miery investora. making of the heating system and the expenses for heating decrease. We regard wall constructions (at which the sum of noticed expenses is smallest) as the best solution for this economical problem.

We usually use the method of current value (at the course according to STN 730549) for all expenses (the expenses for the making of the building and expenses connected with the construction service and building heating) applied at 1 m² of exterior wall construction and calculated to one instant in time (usually the time when the building is finished).

Working expenses which consist of periodical annual outlay are calculated at current value and together with the investment of the initial cost make the base of thermal-economic appreciation.

Generally, we can expect that those circumferential walls which don’t take the expenses for their making and the expenses for the heating into account are thermal-economic. This appreciation is regarded as crucial in the case when thermal resistance of the wall is higher than the required smallest allowed thermal resistance R (m².K. W⁻¹) determined by the normative rule for climatic area in which the building is located.

Suppose , that we give financial resources K (Sk) for the making of additional thermal insulation . The savings at thermal energy given through heating system into the building correspond with these financial expenses. These savings represent an annual decrease of heating expenses of about Δm (Sk). Additional correction of the constructions - warming will be afterwards economical and thermal-energetic effective if in the time of service life of this construction, corrections have reached the savings Δm (Sk) equal to or higher than the given financial resources for its making. We can express this connection as follows:

\[
K \leq \Delta m \left[\frac{1}{i} - \frac{1}{i(1+i)^n} \right] \tag{1}
\]

in which
\(i\) - is average rate of capital expense for the investment (discount rate of investor %)
\(n\) - is the rate of the years in which we gain annual decrease of the expenses about Δm (Sk).

We can simplify the relation (1) to the form :

\[
K \leq \Delta m \cdot h \tag{2}
\]

And now let's analyze the relation of service life of additional wall repair by the augmentation of its heat-insulating ability and discount rate of the investor.

\[
h = \frac{1}{i} - \frac{1}{i(1+i)^n} = \frac{1}{i} \left[1 - \frac{1}{(1+i)^n} \right]. \tag{3}
\]
Dôležitou skutočnosťou je tu potom zdroj financovania investície, pretože z neho sa odvíja diskontná miera investora. Nie je tož jedno, či investor financuje investíciu z vlastných finančných zdrojov, alebo vykonáva práce finančnými prostriedkami získanými z úveru, pripadne výnimčných dotácií.

Predpokladajme, že životnosť stavebných objektov je 77 rokov od časového okamžiku ich postavenia. Životnosť vykurovacej sústavy sa uvažuje asi polovičná v porovnaní so životnosťou budovy. Čo znamená, že po 38 rokoch je nutné počítať s finančnými nákladmi na rekonštrukciu vykurovacej sústavy.

Z uvedeného vyplýva, že životnosť vyhotovenia dodatočných úprav na zlepšenie tepelnomizolačných vlastností obvodových konštrukcií sa môže pohybovať v maximálnom rozsahu do 77 rokov. Z grafického znázornenia vztahu (3), ktorý je na obr. č. 1 môžeme potom určiť hraničné hodnoty ekonomickej efektívnosti vynaložených finančných prostriedkov na zníženie tepelných strát vykurovaného objektu v závislosti od konkrétnej diskontnej mier investor i (%) a počtu rokov, počas ktorých využívame takúto dodatočnú úpravu.

The source for financing the investment is an important item because discount rate (of the investor) goes on it. Because it is not the same whether the investor finances the investment from their own financial sources or he does the work by dint of financial resources gained from the credit or special endowments.

Suppose the service life of building objects is 77 years from the time when their were built. The service life of the heating system is approximately half in comparison to the service life of the building. It means that after 38 years it is necessary to count on financial expenses for the reconstruction of heating system.

It can be seen from experience that the service life of making the additional repairs for the improvement of heat-insulating properties of circumferential construction can be in the maximum range up to 77 years. We determine from the graphic illustration the relation (3) which is on Fig. 1. marginal values of economical effectiveness of given financial resources for the decrease of thermal losses of heated building in connection with concrete discount rate of the investor i (%) and the rate of the years during which we exploit this additional correction.

![Fig.1 Graphical illustration of the course h for i = 8 % and the rate of the years n.](image)

V grafickom znázornení závislostí na obr. č. 1 nie sú zohľadnené nárasty cien tepelnej energie v čase sledovania. Predpokladajme, že majiteľ budovy chce zatepliť budovu a požiča si v peňažnom ústave peniaze na túto investíciu. Uvažujme s úrokovou sadzbou za takýto úver i = 8 %. Nech sa rozhodne vykonať zateplenie budovy po 20 rokoch od jeho postavenia. Potom bude teoretická doba využívania takéto investície 50 rokov za predpokladu rovnakej životnosti dodatočného zateplenia.

Hodnota koeficientu h podľa vzťahu (3) je potom 12,3. Po dosadení do vzťahu (2) získame nasledovnú podmienku: na dodatočné zateplenie uvažované budovy je výhodné každé technické, a preto je len úplne logické, že investície v tejto oblasti sú zároveň ekonomické.

The increase of the prices of thermal energy in a selected period is not taken into account in the graphical illustration on Fig. 1. Suppose the owner of the building wants to give thermal insulation to the building and he borrows cash from a financial institute for this investment. He takes the offered rate into account for this credit i = 8 %. He decides to do this thermal insulation of the house 20 years from the time when the building was built.

Then the theoretical time of the exploitation of this investment is 50 years granted the same service life of the additional thermal insulation. The value of the coefficient h according to the equation (3) is 12,3. After we give it into the
technicko-prevádzkové opatrenie, ktoré nestoji viac ako 12.3 násobok ním umožných ročných úspor Δm (Sk) na vykurovanie. Ak budeme uvažovať teoreticky neobmedzenú životnosť dodatočného zateplenia, čo znamená, že v časovo neobmedzenom úseku budeme ziskovať úsporu Δm (Sk) ročne, potom sa bude koeficient h v rovnici (3) blížiť k hodnote h ≈ 1 / i. Pri úrovnej sadzbe i = 8 % tým ziskame hodnotu h = 12.5. Toto hodnota sa odsúhlasuje iba malo od hodnoty ktorú ziskame pre 50 ročnú životnosť.

Stúpajúce podmienky v oblasti zásobovania energií možno charakterizovať stavom liberalizácie trhu. Dodávateľ energie v takomto liberalizovanom prostredí obyčajne reaguje na meniace sa potreby zákazníka vhodnejšou štruktúrou cien. Centrálna štruktúra v prvom rade zodpovedá záujmom a potrebám energetického systému a v druhom rade požiadavkám zákazníkov. Cieľom takéto cenovej politiky je účinne pôsobiť v nasledujúcych oblastiach:

- Ovládanie ponúk a dopyt. Pri návrhu cien zohľadniť záujem štátu ako aj záujem výrobcu a distribútoru energie, prípadne spotrebitela.
- Regulovanie dopyt po energii, pretože záleží na dostupnosti výrobca a primerany zisk. Pokrytie nákladov energetických podnikov s primeránym ziskom potom zabezpečí až všetci stavy.
- Ceny energie musia zabezpečiť fungovanie energetického systému a záujmov zákazníkov.
- Ceny energie musia zabezpečovať schopnosť vzájomnej konkurencie jednotlivých palív medzi sa sa využitie toho, ktoré je možné. Osobitne v prípade elektriny, zemného plynu a tepla pre rybierskou energetiku.

Každý štát v rámci svojej politiky má vypracovanú stratégiu dosiahnutia vyššieho úrovniah vyššieho úrovniah. Európska únia sa v prvej etape platnej do roku 2000 sa na Slovensku uvažuje továrné leto a energia. Jedná sa o vynovenie nízkej úrovne stravových cien s vzniku ziskových cien. V druhom etape do roku 2002 bude prijatý nový tarifný systém. Tretia etapa po roku 2003 bude obdobím uplatňovania standardnej cenovej regulácie.

V oblasti vývoja cien v energetike prijala rada EÚ smernicu č. 90/377 EEC o postupe pri zdokonávaní priehľadnosti cien a elektriny. Nazovania tiež pojmenovaných konečných spotrebiteľom. Jej opatrenia začnú platit v členských štátoch EÚ od februára 1999. Pre porovnanie uvedieme napr. ceny elektrickej energie z roku 1996 v rôznych krajinách obr. č. 2. Cena elektrickej energie na Slovensku podľa tohto patri medzi najnižšie z hodnotených krajin a je preto predpoklad jej nárastu na ceny platné v EÚ.

Predpokladá sa prítom zvýšenie ceny elektrického energie v časom horizonte do roku 2002 nasledovn: rok 1999 o +33 %, rok 2000 o + 10 %, rok 2001 o +14 % a rok 2002 o + 4 %. Ősťa sa predpokladá dôsledné stanovenie cien energie, ktoré bude vychádzať zo vzájomných zamestnávateľstván jednotlivých palív, a to relation (2) we achieve the following condition: every technical, technical - working rate which doesn’t cost more than 12.3 multiple by it enabled annual savings Δm (Sk) at the heating is effective at additional thermal insulation of the selected building.

If we debate theoretically limitless service life of additional thermal insulation it means that we gain (in time limitless stretch the saving Δm (Sk) annually then the coefficient h (in the equation (3))) will come closer to the value h ≈ 1 / i. We gain the value h = 12.5 with the offered rate i = 8 %. This value is different only a little bit from the value which we gain for 50 years service life.

Current conditions in the realm of energy supply can be characterized by the condition of market liberalization. The energy contractor usually acts (in this liberalized surrounding) at the changing needs of the customers by price structuring. The price structure in the first case corresponds to the interests and the needs of the energetic system and in the second case to the demands of the customers. The goal of this price politics is to act efficiently in the following realms:

- To influence the demand and supply. To take (at the price system) the interest of the state as also the interest of the producer and distributor of the energy (or the consumer) into account.
- To control the demand for the energy because any endowments into the energy prices lead to wrong habits of the users at the energy consumption.
- The energy prices must reflect the expenses of the production, distribution and proper profit. The expenses covered by energetic companies (with proper profit) will secure also the resources for the state budget.
- The energy prices must secure the ability of mutual competition of particular fuels among themselves everywhere where it is possible. Particularly in the case of electricity, natural gas and the heat for the building heating.

Every country in its own politics already has a strategy for the achievement of noticed goals. We consider the first stage valid till the year 2000 as the so-called "balance of price levels". It is the balance of low level of loss prices to the level of profit prices. In the second stage till the year 2002 a new rate system will be made. The third stage after the year 2003 will be the time of the enforcement of standard price regulation.

The EU council accepted in the realm of price development in energy the guideline no. 90/377/EEC about the process at the improvement of the transparency of the prices: of gas and electricity charged to the final consumer. Its measure will be valid in the states of the membership of EU from February 1999. We are going to write here (for the consumption) the energy prices from the year 1996 in different countries Fig. 2. The price of electric energy in Slovakia according to this belongs among the lowest of the rated countries.

Hence, we suppose its increase on the prices valid in EU. We presume that the price increase of electric energy in the time horizon till the year 2002 as follows: the year 1999 about + 33 %,
nejmä elektriny, zemného plynu a tepla produkovaného centrál-
nymi zdrojmi na vykurovanie budov. Z uvedených dôvodov je
zejme, že časový priebeh ročných energetických úspor Δm
nebude v takýchto podmienkach konštantný, pretože ceny za
energiu ročne narastajú.

Pôvodné uvažované úspory Δm budú potom narastať ročne
o $\Delta m \cdot (1 + r_x)$, kde r_x je koeficient nárastu ceny energie, ktorý
môže byť v každom roku iný. Táto skutočnosť vo svojej časovej
následnosti je uvedená v tab. č. 1.

Časové vyjadrenie nekonštantných ročných úspor z dôvodov zniženia nákladov na vykurovanie.

Rok	Úspory vykurovacích nákladov v jednotlivých rokoch	Poznámka
0	Vykurov. zateplenia	
1	$\Delta m \cdot (1 + r_1)$	
2	$\Delta m \cdot (1 + r_1) \cdot (1 + r_2)$	
3	$\Delta m \cdot (1 + r_1) \cdot (1 + r_2) \cdot (1 + r_3)$	

Pre zjednodušenie predpokladame, že ceny za energiu budú
v každom roku využívania zateplenia narastať rovnakým koefi-

Legenda: 1 - Rakúsko, 2 - Švajčiarsko, 3 - Česká republika, 4 - Francúzsko, 5 - Veľká Británia, 6 - Grécko, 7 - Írsko, 8 - Izrael, 9 - Taliansko, 10 - Luxembursko, 11 - Polsko, 12 - Rumunsko, 13 - Slovinsko, 14 - Slovensko.

It can be seen from the noticed reasons that the time course of annual energetic savings Δm will not, in these conditions, be constant because the prices for the energy increase annually. Originally considered savings Δm will then increase about $\Delta m \cdot (1 + r_x)$, where r_x is the coefficient of price increase of the energy which can be different every year. This fact (is its time sequence) is noticed in chart no. 1.

Time expression of inconstant annual savings from the reasons of expenses reduction for the heating.

Year	The saving of heated expenses in particular years	Comment
0	$\Delta m \cdot (1 + r_1)$	The rating of the warming
1	$\Delta m \cdot (1 + r_1) \cdot (1 + r_2)$	
2	$\Delta m \cdot (1 + r_1) \cdot (1 + r_2) \cdot (1 + r_3)$	

Fig. 2 The comparison of the prices of electric energy for businessmen in the year 1996 in several countries.
We suppose for simplification that the energy prices will increase in every year of the thermal heating exploitation by the same increase coefficient \(r \) (%). The additional thermal insulation will be energetically efficient when the size of finances \(K \) (Sk) given for its making will be lower or equal to the size of achieved savings according to [5] as follows:

\[
K \leq \Delta m \frac{1+r}{1+i} + \Delta m \frac{(1+r)^2}{(1+i)^2} + \Delta m \frac{(1+r)^3}{(1+i)^3} + \ldots + \Delta m \frac{(1+r)^n}{(1+i)^n}
\]

(4)

We can rewrite this into the form:

\[
K \leq \Delta m \cdot d
\]

(5)

in which

\[
d = \frac{1 + r - (1 + r) \cdot [(1 + r)/(1 + i)]^n}{i - r}
\]

(6)

The mutual connections (among the average measure of financial expenses at additional thermal insulation, the time of benefit exploitation from additional thermal insulation and the coefficient of annual increase of the energy price for the heating) are written in equation (6). Suppose, the average annual increase of energy price in the same way as our previous reflection for the years 1999-2002 about \(r = 15 \) % and the average measure of capital expenses of the investor \(i = 8 \) %. If we take (at these conditions) the benefit from additional thermal insulation only in the years 2000, 2001 and 2002 then every investment (for the improvement of heat insulation) will be advantageous (for the investor) which does not cost more than 3.4 multiple by it caused annual reduction of the expenses for the heating.

\[
\text{Fig. 3. Graphical illustration of the course } d \text{ for } i = 8 \text{ %, } \ r = 15 \text{ % and the rate of the years } n.
\]
Túto hodnotu možno odčítať z grafického znázornenia vzťahu (6) pre uvažované podmienky. Ak budeme brať úžitok z vynaloženej investície na zateplenie pri nezmenených a konštantných hodnotách r (%), i (%) počas lubovoľného dĺžšieho obdobia, môžeme z obr. č. 3. odčítať podmienku pre vhodnú výšku investície na dodatočné zateplenie uvažovanej vykurovanej budovy.

2. Záver

Zohľadnenie nárastu cien energie spotrebované na vykurovanie budovy má za následok požiadavku podstatne zvýšiť finančné náklady na zlepšenie tepelnej izolácie tejto budovy. Ak zavedieme nasledovné vypočetové zjednodušenia:

- Cena za energiu spotrebovanú na vykurovanie budovy bude v čase konštántna, alebo sa bude meniť zanedbateľne r = 0 %.
- Budeme predpokladať neobmedzenú životnosť dodatočného zateplenia počas existencie budovy.

Na základe tohto môžeme vyslovíť potom ekonomickú podmienku, že výhodné je každé zlepšenie tepelnoizolačných vlastností, na ktoré nemusíme vynaložiť viac finančných prostriedkov, ako 1/i - násobok ním umožnených ročných úspor na vykurovanie.

Literatúra

[1] BEŤKO. B., TOMAŠOVIČ. P.: Stavebná tepelná technika, Stavebná akustika, Vydavateľstvo STU Bratislava 1993, SR.
[2] HALAHYJA, M., CHMÚRNY, I., STERNOVÁ, Z.: Stavebná tepelná technika, JAGA Bratislava 1998
[3] ZAJAC, J.: Stavebná fyzika, ES Žilinska univerzita, 1997.
[4] BIELEK, M.: Budova a energia, Vidas, spol. s r. o., Banská Bystrica , 1995.
[5] SCHNEIDER, E.: Wirtschaftlichkeitsrechnung, Theorie der Investition 8. Aufl. Tübingen 1973.
[6] Ministerstvo hospodárstva Slovenskej republiky: Energetika Slovenskej republiky v číslicách (roky 1990 až 1996) Bratislava, máj 1998.
[7] BLAKE, D.: Analýza finančných trhů, Grada, Praha 1995
[8] BREALEY, R. A., MYERS, S. C.: Teorie a praxe firemnič financií, Victoria Publishing, Praha '94
[9] SHARPE, W. T., ALEXANDER, G. J.: Investice, Victoria Publishing, Praha 1994

Recenzenti: J. Zajac, J. Svrček

This value can be seen from the graphical illustration of equation (6) for the mentioned conditions. If we take the benefit from given investment for the thermal insulation at the same and constant values r (%), i (%) during any longer time, we can see from Fig. 3. the condition for suitable investment size for additional thermal insulation of that heating building.

2. Conclusion

If we take the increase of the prices of consumed energy for the heating of the building into account, its consequence will be the requirement for increased financial expenses for the improvement of heat insulation of this building. If we use the following calculation simplification:

- The price for the consumed energy for the building heating will be in time constant or will change negligible r = 0%.
- We will presume unlimited life service of additional thermal insulation during the building’s existence.

We can say on the strength of this one economic condition that every improvement of heat insulating properties for which we must not give more financial resources than 1/i - multiple by it enabled annual savings for the heating is efficient.

References

[1] BEŤKO. B., TOMAŠOVIČ. P.: Stavebná tepelná technika, Stavebná akustika, Vydavateľstvo STU Bratislava 1993, SR.
[2] HALAHYJA, M., CHMÚRNY, I., STERNOVÁ, Z.: Stavebná tepelná technika, JAGA Bratislava 1998
[3] ZAJAC, J.: Stavebná fyzika, ES Žilinska univerzita, 1997.
[4] BIELEK, M.: Budova a energia, Vidas, spol. s r. o., Banská Bystrica , 1995.
[5] SCHNEIDER, E.: Wirtschaftlichkeitsrechnung, Theorie der Investition 8. Aufl. Tübingen 1973.
[6] Ministerstvo hospodárstva Slovenskej republiky: Energetika Slovenskej republiky v číslicách (roky 1990 až 1996) Bratislava, máj 1998.
[7] BLAKE, D.: Analýza finančných trhů, Grada, Praha 1995
[8] BREALEY, R. A., MYERS, S. C.: Teorie a praxe firemnič financií, Victoria Publishing, Praha '94
[9] SHARPE, W. T., ALEXANDER, G. J.: Investice, Victoria Publishing, Praha 1994

Reviewed by: J. Zajac, J. Svrček