RESEARCH ARTICLE

Evaluation of simulated O$_3$ production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NO$_x$ emissions in Korea

Yujin J. Oak*, Rokjin J. Park*, Jason R. Schroeder1†, James H. Crawford‡, Donald R. Blake§, Andrew J. Weinheimer¶, Jung-Hun Woo**, Sang-Woo Kim***, Huidong Yeo**, Alan Fried**, Armin Wisthaler**‡‡ and William H. Brune**§§

We examine O$_3$ production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KOReA-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O$_3$ production. To examine the role of VOCs and NO$_x$ in O$_3$ chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O$_3$ mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O$_3$ production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O$_3$ production rate by ~10%. In addition, increasing NO$_x$ emissions by 50% in the model shows best performance in reproducing O$_3$ production characteristics, which implies that NO$_x$ emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NO$_x$ emissions in Korea increases the O$_3$ production efficiency throughout the country, making rural regions ~2 times more efficient in producing O$_3$ per NO$_x$ consumed. Simulated O$_3$ levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NO$_x$ and VOCs emissions by 30%, O$_3$ decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NO$_x$ and VOCs in order to effectively reduce O$_3$ levels in Korea.

Keywords: Ozone; Ozone production efficiency (OPE); KORUS-AQ; Chemical Transport model

1. Introduction

Air pollution in East Asia has been an important issue especially for densely populated mega-cities with the rapid development over the past few decades. Although stringent air pollution controls have been executed in countries including Japan, Korea, and recently China, surface ozone (O$_3$), which is a key secondary air pollutant that affects human health and the ecosystem, has shown an increasing trend over the past two decades (2000–2017) (Chang et al., 2017; Li et al., 2019). Moreover, key controlling factors for the O$_3$ formation still remain uncertain especially in East Asia (Park and Kim, 2014).

O$_3$ is photochemically produced in the lower troposphere from the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides (NO$_x$ = NO + NO$_2$) (WHO, 2003). Identifying sources of O$_3$ precursors and quantifying the effect of the reduction of emissions on ambient O$_3$ levels are necessary to address the environmental threat that O$_3$ pollution poses to the public.

Reducing precursor emissions does not always lead to a reduction in O$_3$ levels because of the nonlinear relationship of O$_3$ with its precursor concentrations (Lin et al., 1988). The Korean government has put an effort on regulating major emission sectors such as mobile and industrial sources since the 1990s. As a result, emissions and ambient concentrations of NO$_x$ and VOCs showed significant
decreases in the Seoul Metropolitan Area (SMA), where almost half the population reside in (Kim and Lee, 2018). However, despite the successful reductions of precursor emissions, urban O_3 levels have consistently increased nationwide during the past two decades (Susaya et al., 2013). Therefore, understanding the regional characteristics of photochemical O_3 production based on the ambient VOCs or NOx concentrations is essential to formulate an effective control policy (Liu et al., 1987).

There have been several studies using observed O_3, NOx, and total reactive nitrogen (NOy) from field campaigns to investigate the features of O_3 production in both rural, urban, and industrial areas in the United States and Europe (Imhoff et al., 1995; Kleinman et al., 1994; Nunnermacker et al., 2000; Olszyna et al., 1994; Rickard et al., 2002; Trainer et al., 1993). In Korea, most studies have focused on identifying the contribution of various chemical and physical factors to explain O_3 production characteristics in the SMA, as the increasing trend in ground level O_3 is more evident in urban areas (Lee et al., 2007; Ryu et al., 2013). Kim et al. (2018) stated that the increasing trend of O_3 is mainly because of NOx reductions, and Shin et al. (2013) suggested a control strategy on solvent and traffic emissions of VOCs to reduce O_3 levels in Seoul. Susaya et al. (2013) conducted a trend analysis of urban air quality for six additional major cities, but did not cover any suburban or rural areas.

Along with observations, chemical transport models (CTMs) and box model simulations have been used to test the nonlinear sensitivity of O_3 production to ambient conditions (Kleinman et al., 2002; Mazzuca et al., 2016; Ninneman et al., 2017; Zaveri et al., 2003). CTMs have been used as an effective tool for evaluating the emissions inventory and testing the atmospheric response to changes in precursor emissions (Jeong et al., 2012; Kim et al., 2015; Kim, 2011). However, simulated O_3 concentrations in Korea and East Asia have generally been underestimated in CTMs (Han et al., 2008; Kang et al., 2016), which might be due to a combination of several factors including horizontal and vertical resolutions, uncertainty in meteorological parameters, vertical mixing schemes, and chemical mechanisms (Han et al., 2008; Kang et al., 2016).

In this study, we examine the characteristics of photochemical O_3 production in Korea using aircraft (DC-8) measurements during the international KOREa-US cooperative Air Quality field study in Korea (KORUS-AQ). During the campaign, high O_3 episodes exceeding 100 ppbv were reported along with high levels of reactive precursor (e.g., NOx, aromatic VOCs) mixing ratios. We compare the results of an observation-constrained 0-D photochemical box model with a 3-D global CTM to analyze the sensitivity of O_3 production to various atmospheric processes including chemical mechanisms, emissions, and vertical mixing. We also conduct several sensitivity simulations by perturbing emissions of O_3 precursors and suggest the possible implication for future O_3 levels based on the emissions reduction plan by the Korean Ministry of Environment.

2. Methods

2.1 KORUS-AQ field campaign

The atmospheric chemical composition over the Korean peninsula is influenced by a combination of many different sources. Due to the high population density, local anthropogenic emissions are dominant in urban cities, such as the SMA and Busan. Local emissions from power plants, petrochemical and other manufacturing industries also affect regional air quality (NIER and NASA, 2017). Furthermore, a large proportion of the country is covered with mountains, which serve as a profound source of biogenic emissions (Kim et al., 2014) (Figure 1). Meanwhile, due to the geographic location and meteorological conditions, Korea is often influenced by anthropogenic emissions and soil dust transported from China (Lee et al., 2019) and biomass burning from Siberia (Jung et al., 2016).

Figure 1: Spatial distribution of observed and simulated O_3. Spatial distribution of the observed and simulated O_3 mixing ratios along the DC-8 flight track during 13–16 LST (averaged below 1.5 km). Geographic locations of industrial and populated large cities are indicated with white circles. DOI: https://doi.org/10.1525/elementa.394.f1
KORUS-AQ is an international air quality field study that was held in Korea, May–June 2016, which aimed to understand the factors controlling air quality across urban, rural, and coastal interfaces. During the campaign, extensive surface and airborne observations with high temporal resolutions were conducted using various instruments.

Measurements of reactive gaseous species onboard the NASA DC-8 aircraft enable a comprehensive analysis on the chemical formation and distribution of air pollutants. Airborne measurements used in this study include O₃, NO, NO₂, NOₓ, OH, HO₃, and speciated VOCs. O₃, NO₂, and NOₓ measurements were conducted using the NCAR NO–NOₓ instrument which uses the chemiluminescence of NO by reaction with O₃ with a detection limit of 5–10 pptv/s (Ridley and Grahek, 1990). OH and HO₃ were measured using the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) with a detection limit of 0.01 and 0.1 pptv (Brune et al., 1995).

Speciated VOCs including alcanes, alcanes, and aromatic hydrocarbons were collected in Whole Air Samples (WAS) and identified by laboratory analysis using gas chromatography with flame ionization detection, electron capture detection, and mass spectrometric detection. The detection limits for the VOCs are 2–3 pptv (https://airbornescience.nasa.gov/instrument/WAS_UCI). Isoprene, acetaldehyde (CH₃CHO), and formaldehyde (HCHO) measurements were also conducted using the Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) (Müller et al., 2014) and the Compact Atmospheric Multispecies Spectrometer (CAMS) (Richter et al., 2015).

All research flights during the campaign landed and returned back to the air base at 16 LST (Local Standard Time), and O₃ observations showed highest values in the planetary boundary layer (PBL) during 13–16 LST. In order to focus on O₃ and its production characteristics, we used 60 second averaged DC-8 observations for cases where the plane flew over inland areas or near the coast with an altitude below 1.5 km during the photochemically active hours, 13–16 LST, in our analysis.

2.2 O₃ production efficiency (OPE) during KORUS-AQ

The production of O₃ varies nonlinearly with VOCs and NOₓ concentrations (Lin et al., 1988). The OPE, which is an effective metric to examine the nonlinearity of O₃ production (Lin et al., 1988), is defined as the number of O₃ molecules produced per NOₓ molecules consumed, P_{O_3}/L_{NO_x}, assuming a steady state for NOₓ. Values are typically high (>10) in a clean rural region and low (<5) in a polluted urban region (Kleinman et al., 2002). In this study, we use this metric to understand the characteristics of O₃ formation in Korea.

Several observation-based studies used the regression slopes of the observed concentrations of O₃ versus NOₓ oxidation products (NOₓ = NO₂ + NO₃) to obtain the OPE, and reported values ranging from 2 to 12, where the lowest values were observed in plumes with high NOₓ conditions (Zaveri et al., 2003). However, this approach may lead to an ambiguous interpretation because observations contain air parcels with different photochemical histories and ages (Trainer et al., 2000). Furthermore, the magnitude of NOₓ mixing ratios may differ depending on reactive nitrogen species that are included in defining NOₓ (NOₓ, PANs, HONO, HNO₃, NO₂, NH₃, NO), organic nitrates, particulate nitrate, etc.). To avoid such issues, we explicitly calculate the instantaneous formation (F_{O_3}), destruction (D_{O_3}), net production rates of O₃ ($P_{O_3} = F_{O_3} - D_{O_3}$) and the loss rate of NOₓ (L_{NO_x}) using equations (1–4) below in 3-D chemical transport simulations that we discuss in detail in section 2.3.

Equation (1) describes the daytime O₃ formation starting with the reaction of NO with the hydroperoxy radical (HO₂) and organic peroxy radicals (RO₂) to produce NOₓ. Equation (2) represents the O₃ destruction rate, which includes the photolysis (followed by the reaction of O(1D) with H₂O) and the reaction of O₃ with HO₂, OH, VOCs (alkenes) and NO (followed by the reaction of NO₃ with OH). NOₓ loss rate is calculated by equation (4), where NOₓ is oxidized by OH to produce HNO₃, which is scavenged by wet or dry deposition (Finlayson-Pitts and Pitts Jr, 2000).

$$F_{O_3} = k_{NO+HO_2} [NO] [HO_2] + \sum k_{NO+ROO} [NO] [ROO]$$

$$D_{O_3} = k_{O_3+H_2O} [O(1D)] [H_2O] + k_{O_3+NO} [NO] [HO_2] + k_{O_3+OH} [OH] + \sum k_{O_3+VOC} [VOC] + k_{NO_3+OH} [NO_3] [OH]$$

$$P_{O_3} = F_{O_3} - D_{O_3}$$

$$L_{NO_x} = k_{NO_3+OH} [NO_3] [OH]$$

Instantaneous OPE is the rate of net O₃ production per the rate of NOₓ loss, which can be obtained using equation (5).

$$OPE = P_{O_3} / L_{NO_x}$$

Time-dependent observation-constrained 0-D photochemical box modeling was conducted by the NASA Langley Research Center (LaRC) to simulate the oxidation and photochemical processes during KORUS-AQ. Model inputs derived from 1 second-merged DC-8 measurements of temperature, pressure, photolysis rates, O₃, CO, NO, NOₓ, CH₄, H₂O, HNO₃, PAN, HCHO, and VOCs were used as constraints to calculate diurnal steady state concentrations of radical species. Using a customized chemical mechanism with reaction rates based on NASA JPL 2012 (https://jpl-dataeval.jpl.nasa.gov/index.html) and IUPAC 2006 recommendations, concentrations of NOₓ, OH, HO₂, and RO₂ were simulated (Crawford et al., 1999; Schroeder et al., 2017). The model also calculated instantaneous production and loss rates of O₃ and NOₓ as described in equations (1–4). The box model calculations include dry deposition loss, and rainout loss based on Logan et al. (1981), but do not include any heterogeneous chemistry and convection. A full list of detailed chemical mechanisms used in the box model can be found in the supporting information of Schroeder et al. (2017).

Using the box model results and DC-8 measurements, instantaneous F_{O_3}, D_{O_3}, net P_{O_3}, and L_{NO_x} rates were calculated along the DC-8 flight track. Box model predictions...
of NO3, OH, and peroxy radicals are in good agreements with observations (Figure S1), and are further discussed in (Schoeder et al., in prep.). Therefore, we assume that the observation-constrained box model represents the true atmosphere and we use the box-model calculated OPE values to evaluate 3-D model simulations.

2.3 GEOS-Chem Chemical Transport Model

We use a 3-D global chemical transport model (GEOS-Chem v10-01) (Bey et al., 2001) and its nested configuration to simulate gas and aerosol species in Korea during the campaign. The model is driven by GEOS-FP (Forward Processing) assimilated meteorology provided by the GMAO at NASA Goddard Space Flight Center. The nested model covers the East Asian domain (70°E–140°E, 15°N–55°N) with a horizontal resolution of 0.25° × 0.3125° and 47 vertical layers. Boundary conditions are provided from a global simulation with 2° × 2.5° horizontal resolution. A one-month spin-up was conducted for both the global and nested simulations.

We update the default NO3-Hydrocarbon-Aerosol mechanism to extend gas phase aromatic chemistry from that of Henze et al. (2008). The default mechanism includes abbreviated aromatic (benzene, toluene, xylene) oxidation chemistry, which does not fully represent the chemistry in Korea. One of important findings during the KORUS-AQ campaign is that aromatic species mixing ratios, especially toluene, are particularly high in Korea (NIER and NASA, 2017). This is also consistent with a recent observation-based study, which reported that toluene and xylenes are the most abundant aromatic hydrocarbons in Seoul (Khan et al., 2018), emphasizing the role of these reactive compounds in NO3-VOC chemistry. Based on Porter et al. (2017), we include 7 additional intermediate species and corresponding gas phase kinetic and photolysis reactions in the model to simulate more explicit aromatic chemistry. A detailed list of additional mechanisms and species are summarized in Tables S2 and S3.

We use anthropogenic emissions of CO, NOx, SO2, NH3, and VOCs for East Asia from the KORUS v2.0 inventory, developed by Konkuk University (Jang et al., 2019), who updated the inventory from its’ previous version, using detailed regional segmentation, GIS data, and 2015 control policies for Korea. Monthly emissions for South Korea were estimated by projecting the 2012 Korean national emissions inventory (Clean Air Policy Support System) with 3-year growth factors. Emissions from other countries including China and North Korea were from the NIER/KU-CREATE inventory (Woo et al., 2012). The anthropogenic emissions of CO, NOx, SO2, NH3, and VOCs in South Korea are 941, 1000, 351, 286, and 1023 Gg/yr, respectively. Biomass burning emissions are taken from the daily GFED4 (Global Fire Emissions Database 4) inventory (R. van der Werf et al., 2010) and biogenic emissions are calculated by MEGAN (Model of Emissions of Gases and Aerosols from Nature) v2.1 (Guenther et al., 2012).

We conduct several model simulations including the baseline and sensitivity simulations which are summarized in Table 1. The first is conducted using GEOS-Chem v10-01 with anthropogenic and biogenic emissions discussed above. The latter are done using models with several updates and perturbations including updated aromatic chemistry, constrained PBL heights, and different anthropogenic NOx emissions in the peninsula to examine the sensitivity of simulated O3 and its characteristics. All the simulations are run for April 1st to June 10th, 2016 and we focus our analysis on the results for 20 research flights during the campaign. For a comparison of the simulations against airborne observations, we archive model results every minute for grid boxes corresponding to the 60 second averaged DC-8 flight track. Therefore, all the simulated and observed concentrations used in our analysis below are temporally and spatially coherent.

3. Effect of aromatic chemistry on simulated O3 production

We first evaluate the baseline model (BASE) performance by comparing observed and simulated O3 mixing ratios during the campaign. Figure 1 shows the spatial distribution of observed and simulated mean O3 mixing ratios averaged for 13–16 LST of the campaign below 1.5 km along the DC-8 flight track. The model generally captures the observed spatial distributions, i.e., high in urban areas and low in rural areas, but fails to capture the magnitude of measurements.

Figure 2 shows scatter-plot comparisons of the observed and simulated O3 and NOx mixing ratios during the campaign. The BASE model significantly underestimates O3 and NOx although no significant low biases are shown for reactive VOCs (Figure S2). We find that the update of aromatic chemistry in the model (AROM) substantially increases O3 mixing ratios, which are in better agreements with the observations relative to those of the BASE model. This increase in O3 production mainly results from more NO to NO2 conversion driven by aromatic VOCs oxidation, especially by toluene and xylene, which show decreases with the update in the model. As a result, we find a large low bias of simulated NOx levels in the AROM model. This

Table 1: Summary of the model (GEOS-Chem) simulations conducted in this study. DOI: https://doi.org/10.1525/elementa.394.t1

Model name	Chemistry	PBL height	Emissions
BASE	Default	Default	Default
AROM	Updated aromatic chemistry	Default	Default
PBL	Updated aromatic chemistry	Scaled PBL height	Default
PBL+NOx	Updated aromatic chemistry	Scaled PBL height	50% increased NOx
is also associated with increased formation of organic nitrates and PAN (Figure S2), which are important NO reservoirs produced during the oxidation of VOCs. Despite the decrease in NO mixing ratios, we find that the chemistry update effectively converts NO to organic nitrates, resulting in better agreements with observations.

We compare the instantaneous O₃ formation, O₃ destruction, and NO loss rates from the model as calculated using equations (1–4) with results from the observation-constrained box model described in section 2.2. Each term comprises the OPE and mean values averaged during the campaign are shown in Figure 3.

The O₃ formation rate, \(F_{O_3} \), is calculated as the sum of the reaction rates of peroxy radicals and NO. Compared to the BASE simulation, updated aromatic chemistry increases both "HO₂+NO" and "RO₂+NO" terms but still underestimates \(F_{O_3} \) compared to the box model. Figure S1 shows that RO₂ is overestimated and HO₂ is underestimated in GEOS-Chem. Therefore, NO underestimation appears to be the main cause of the low formation rates compared to the box model.

While the O₃ destruction rate, \(D_{O_3} \), is also underestimated in GEOS-Chem, O₃ losses by the "O₃+HO₂" and "NO₂+OH" reactions show largest discrepancies between the two models (Figure 3 (b)). An O₃ destruction increase by the "O₃+HO₂" reaction in the AROM model is associated with the increase in HO₂ mixing ratios. Despite the increase in the AROM model, the "O₃+HO₂" term is still smaller in GEOS-Chem than that of the box model, which can be explained by the underestimation of O₃ and HO₂ mixing ratios (Figure S1). The overestimation of >C3 alkenes (Figure S2) causes the overestimation of the "O₃+VOCs" term. The "NO₂+OH" contribution, which represents an O₃ loss by the reaction with NO, does not show a significant change from the BASE model to the AROM model. In both model runs, the underestimation of NO shown in Figure 2 is the main contributor to the underestimation of O₃ loss rates by the "NO₂+OH" reaction relative to the box model result.

The difference between \(F_{O_3} \) and \(D_{O_3} \) is the net \(O_3 \) production rate, which is shown in Figure 3 (c). Updated aromatic chemistry increases the simulated net \(O_3 \) production and NO loss rates in GEOS-Chem by 37% and 22%. This explains the increase in O₃, and the decrease in NO mixing ratios shown in Figure 2. However, because NO is highly underestimated in GEOS-Chem, \(L_{NO} \) underestimation still exists.

NO underestimation may imply either the underestimation of emissions or model uncertainties in chemical, thermodynamic or physical processes such as NO recycling, NO partitioning or boundary layer mixing (Bertram et al., 2013), which will be further discussed in section 4.2.

4. Sensitivity of the model to PBL height and NO emissions

4.1 Model sensitivity to PBL height

The PBL height (i.e., mixing layer height) is a key factor that controls the vertical mixing and surface concentrations of pollutants (Tong et al., 2011). In this section, we examine the sensitivity of the model to changes in PBL heights, which are constrained by the lidar observations. In addition, we conduct model sensitivity analyses to anthropogenic NO emission changes and their effects on the simulated O₃ formation.
Previous studies have reported that air quality models generally overestimate the daytime evolution of the PBL heights compared to lidar or ceilometer measurements (Haman et al., 2014; Scarino et al., 2014). Scarino et al. (2014) described that the discrepancy could be due to model resolutions, which are generally too coarse to account for the sub-grid scale variation of terrain heights, while Haman et al. (2014) explained that the modeled PBL showed too rapid growth driven by faster wind speeds than observations.

PBL heights are commonly observed by the inversion of the potential temperature profile or as a peak in low level wind (Grossman and Gamage, 1995; Holzworth, 1964). Lidar backscatter profiles are also widely used to examine the structure and variability of PBL heights (Brooks, 2003). During the campaign, PBL heights were measured at Seoul National University (SNU, 126.95°E, 37.46°N) using lidar observations with the retrieval algorithm introduced by Brooks (2003) and are used for the model evaluation in this study. Figure 4 compares simulated versus observed hourly PBL heights at SNU averaged for the campaign and we find large discrepancies of up to a factor 1.3 during 13–15 LST in the model relative to the lidar-derived values.

Figure 3: Comparison of simulated F_O, D_O, and OPE. Average a) O_3 formation rate, b) O_3 destruction rate, and c) OPE during the campaign. Different shades indicate each term that comprises the total quantities. DOI: https://doi.org/10.1525/elementa.394.f3
The lidar-derived PBL height indicates the height of transition from a particle-rich layer near the surface to a cleaner layer aloft. Therefore, lidar-derived PBL heights are often higher than the meteorological transition heights during the nighttime when the residual layer and mixing layer coexist (Bravo-Aranda et al., 2017). Due to the residing or transported aerosol layer existing above 0.7–0.8 km, there could be few cases where the retrieved nighttime PBL heights might be overestimated. However, these cases did not affect the average diurnal profile of the whole period and even for our analysis, which mainly focuses on the daytime.

In order to test the effect of boundary layer mixing within the PBL in the model, we used average diurnal profiles of the PBL to calculate hourly scale factors based on the discrepancy between the model and lidar observations at SNU. Although the hourly scale factors are based on model evaluation at only one grid box, the same scale factors were applied to other grid boxes for the rest of South Korea. The scaled PBL heights are lower in the daytime and higher in the nighttime compared to the PBL heights in the baseline model, reducing the gap between the model and lidar observations as shown in Figure 4.

Constraining the daytime PBL heights based on the lidar-derived observations increases O3 and its precursors mixing ratios in the model. Correspondingly, both the \(P_{O_3}\) and \(L_{NO_x}\) terms increase and show better agreements with the box model results (Figure 3).

Figure 4 shows the mean vertical profiles of NO mixing ratios averaged in urban and rural regions, respectively, and over the whole Korea. Urban regions include major metropolitan cities such as the SMA, Busan, Daegu and Ulsan (indicated in Figure 1). The AROM model fails to capture the vertical gradient shown in DC-8 observations.
and shows that model underestimation is mostly located near the surface. Although the simulated NO₃ mixing ratios show a 5% increase when the PBL height is scaled based on the observation (Figure 2), this is not large enough to reduce the discrepancy in the model. Moreover, NO₃ levels are still significantly underestimated in the model for both urban and rural areas.

4.2 Model sensitivity to local NOₓ emissions

Based on the model underestimation of surface NOₓ levels we increased NOₓ emissions in South Korea by 50%. Figure 5 shows that when the emissions are increased, simulated NOₓ mixing ratios are significantly enhanced and become much closer to the observations especially above 1 km. It appears that the model still underestimates observed NOₓ levels at the surface and the further increase in NOₓ emissions could decrease the simulated discrepancy, but our analysis of total reactive nitrogen (NOₓ) and O₃ production characteristics below does not allow for this.

We further separated the analyses into four different periods (dynamic weather, stagnant, extreme pollution, blocking pattern) based on synoptic weather conditions during the campaign (Peterson et al., in review) to separate the effects of transboundary transport versus local emissions on ambient NOₓ and NOₓ levels in Korea. Figure S3 shows mean sea level pressures (SLP) and wind vectors in the model for each period. Unlike the dynamic weather period, the influence of local emissions was dominant for the Korean peninsula during the stagnant period due to weak wind speeds and inefficient mixing associated with a persistent high pressure system located over East Asia. We found the highest levels of surface pollutants such as O₃ and PM₁₀, during the extreme pollution period, exceeding the Korea air quality standards (NIER and NASA, 2017). During this period, due to weakening of the polar jet stream over Central Asia and the weaker vertical motion, direct transport from China accompanied with the westerlies was important, causing high levels of pollutants in surface air in Korea (Peterson et al., in review).

Figure 6 shows that during the dynamic weather and extreme pollution periods, modeled NOₓ and NOₓ levels are higher than observations in all four sensitivity simulations. In contrast, during the stagnant and blocking pattern periods with dominant effects of local emissions, model results with increased NOₓ emissions show better agreement with observations, especially in urban areas. This indicates that local NOₓ sources are likely underestimated in the inventory.

Model results from the PBL+NOₓ model show increases in NOₓ mixing ratios as well as LNOₓ (Figures 2 and 3). We find model improvements in the regression slope of LNOₓ (0.83) and correlation (0.58) with the box model relative to other simulations. Model performance in simulating O₃ also shows improvements in terms of both the normalized mean bias (−11%) and correlation (0.70) with observations.

Despite the 50% increase in NOₓ emissions, Figure 2 shows that the model still underestimates NOₓ mixing ratios compared to the observations. Recent studies suggest that additional mechanisms such as nitryl chloride chemistry (Sarwar et al., 2012) and nitrate photolysis (Ye et al., 2017) can improve the simulations of nitrogen chemistry in air quality models. Choi et al. (2019) implemented particulate nitrate photolysis in GEOS-Chem using parameters from Ye et al. (2017) and found a significant improvement in particulate nitrate, HONO, and NOₓ simulations. Our study focuses on constraining NOₓ emissions based on the model evaluation regarding O₃ production characteristics, but there still remains a limitation. A further study is necessary to account for the additional NOₓ chemistry that is currently absent in the model.

Figure 7 shows the VOCs and NOₓ dependency of instantaneous OPEs calculated in the box model and GEOS-Chem. VOCs include ethane, propane, large alkanes.
 (>C4), large alkenes (>C3), benzene, toluene, xylene, isoprene, monoterpenes, methyl ethyl ketone (MEK), and acetaldehyde. In the observation-constrained box model, low OPE values are shown above the 10:1 line, indicating that urban areas in Korea are VOC-limited. Rural areas tend to have higher OPE values that are located below the 10:1 line. General characteristics of the observed OPE dependency on precursor concentrations also appear in GEOS-Chem. However, due to the underestimation of NOx, GEOS-Chem results are slightly shifted to a NOx-limited regime compared to the box model.

The simulated results with scaled PBL heights shown in Figure 7 (c) and (d) show larger scatters compared to Figure 7 (b), elongating the location of the points diagonally, which is caused by the lower PBL height. Decreased PBL heights tend to decrease species mixing ratios in upper levels (~1.5 km) compared to the base PBL simulation. This results in decreases of NOx and VOCs mixing ratios around 1.5 km, which correspond to the data points located in the lower left corners in Figure 7 (c) and (d). The overall comparison of GEOS-Chem to the observation-constrained box model indicates that the PBL+NOx model (Figure 7 (d)) shows the best performance in reproducing the observed O3 production regimes in Korea.

Considering the underestimation of aromatic VOCs in GEOS-Chem (Figure S2), we additionally doubled toluene emissions to investigate the sensitivity of OPE to aromatic VOCs emissions. Although we see a slight increase in the OPE, a negligible change is found compared to Figure 7 (d) and therefore we conclude that the OPE is more sensitive to NOx emissions than aromatic VOCs emissions in Korea.

5. Sensitivity of OPE to emission changes in Korea

The Korean government aims to achieve a 30% reduction of domestic emissions (from industries, powerplants, diesel cars, etc) by 2022 as part of the PM2.5 concentrations reduction policy (Ministry of Environment, 2017). However, this emission change may also have a profound impact on O3 levels in Korea. To estimate the effect of regulation we conduct sensitivity simulations and investigate the change in O3 and the OPE with respect to emissions control in the future. Using our best-performing model (PBL+NOx) as the base run, we compare the results with 30% decreased NOx and anthropogenic VOCs emissions over Korea.

Figure 8 shows the spatial distributions of simulated ground level OPEs during May 2016. Typical features of the OPE such as high in clean regions and low in polluted regions are well captured. In the base run, we find maximum OPE of ~20 along the mountain range located in the middle, where biogenic VOCs emissions are dominant, and minimum values in high NOx regions such as the SMA. In both the sensitivity runs the reduction in emissions increases the OPE throughout the country. When only NOx emissions are controlled, the OPE reaches up
to 30 in rural regions, indicating that these NO_x-limited regions become much more efficient in producing O_3 with the same amount of NO_3. With NO_3 and VOCs emissions controlled together, the OPE increase is less prominent, showing a maximum of ~25.

Figure 9 shows the OPE, O_3 mixing ratios, and NO_x lifetime changes as a response to the emissions control. We find that the decrease in precursor emissions does not have a linear impact on O_3. In rural regions where NO_3 plays the major role in O_3 production, O_3 mixing ratios decrease and the NO_x lifetime increases due to less oxidation by OH (i.e., decrease in NO_x loss). In urban (e.g., Seoul, Busan) and industrial areas (e.g., Daesan, Pohang, Ulsan, Yeosu) which are under VOC-limited conditions, O_3 increases (~6

![Figure 8: Spatial distributions of simulated OPEs and responses to emission change.](https://doi.org/10.1525/elementa.394.f8)

Figure 8: Spatial distributions of simulated OPEs and responses to emission change. Spatial distributions of simulated OPE at surface level and responses to NO_x and VOCs emission changes in South Korea. All simulations are run using the same configuration as the PBL+NO_x model. Major metropolitan and industrial areas are indicated with stars and circles, respectively. DOI: https://doi.org/10.1525/elementa.394.f8

![Figure 9: Spatial distributions of simulated OPE, O_3, and NO_x lifetime changes.](https://doi.org/10.1525/elementa.394.f9)

Figure 9: Spatial distributions of simulated OPE, O_3, and NO_x lifetime changes. Spatial distributions of changes (modified emissions run minus base run) in simulated surface a) OPE, b) O_3 levels, and c) NO_x lifetime as a response to emission changes. Major metropolitan and industrial areas are indicated with stars and circles, respectively. DOI: https://doi.org/10.1525/elementa.394.f9
ppbv) and NO₃ lifetimes show noticeable decreases as a result of NO₂ reductions. With concurrent VOCs reductions, although there are some signals of O₃ increase in industrial areas the magnitudes are significantly smaller than those without VOCs reductions, and O₃ decreases are shown in major metropolitan areas.

Table 2 summarizes the changes of O₃ production characteristics that appear in different regimes in the sensitivity simulations. In VOC-limited regions (i.e., urban and industrial), a decrease in NOₓ emissions results in an increase in O₃ levels. Two contributing factors, an increase of the O₃ formation rate due to faster NO₂ recycling (i.e., higher OPE) and a decrease of the O₃ destruction rate via NO₃ titration result in an increase of O₃ mixing ratios. Despite the decrease in ambient NOₓ mixing ratios (-36%), \(F_{O₃}\) shows an increase (+9%) due to the efficient \(HO₅\cdot NO₃\) cycling. Because the decrease in \(L_{NO₃}\) (-19%) reflects the decrease of NO₃ titration, we can imply that the impact of less titration is the predominant factor that causes the O₃ increase in these areas. With an additional VOCs reduction, the decrease in O₃ precursors results in a decrease of net production. On the other hand, NO₃ titration is of less importance for O₃ levels in NOₓ-limited regions. The 30% decrease in precursor emissions does not directly decrease O₃ mixing ratios by 30% because of the nonlinear chemistry. However, the simulation results show that the tendency of O₃ production follows the change in precursor emissions in rural areas.

6. Summary and Conclusions
An observation-constrained box model and a 3-D chemical transport model (GEOS-Chem), were used to obtain instantaneous O₃ production efficiencies (\(OPE = P_{O₃}/L_{NO₃} \)) in Korea during May–June 2016. The sensitivity of simulated OPE was tested to examine the effect of aromatic chemistry and anthropogenic NOₓ and VOCs emissions on O₃ production.

Based on box model calculations, O₃ production in urban areas in Korea showed VOC-limited characteristics and OPE values were less than 10 in general. In rural areas, O₃ production tended to be more NOₓ-limited and OPE values were higher than 20. Average OPE values over Korea calculated from the box model and GEOS-Chem with default chemistry and updated aromatic chemistry were 19.8, 16.5, and 17.2, respectively.

Our model evaluation showed that aromatic chemistry itself can increase the average net O₃ production in Korea by 37%. The overestimation of the daytime PBL height in the model was found to be responsible for ~10% decrease in both the net O₃ production and NOₓ loss rates. The vertical distribution of simulated and observed NOₓ mixing ratios and comparison of O₃ production regimes in different model runs clearly showed the underestimation of NOₓ was mainly caused by the underestimation of NOₓ emissions in the current inventory. Increasing 50% of NOₓ emissions in the model improved model performance in reproducing the observed O₃ production and NOₓ loss rates.

Sensitivity tests showed that the 30% decrease in anthropogenic emissions increases the OPE throughout the country, making rural regions ~2 times more efficient in producing O₃. However, without the VOCs emissions reduction, the NOₓ emissions reduction alone can result in significant increases in O₃ levels in both urban and industrial regions. This implies the importance of concurrent emission reductions for both NOₓ and VOCs in order to effectively reduce O₃ levels in Korea.

Data Accessibility Statement
Observational data from KORUS-AQ used in this study can be downloaded in the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) format through the data archive website (https://www-air.larc.nasa.gov/cgi-bin/arcview/korusaq).

Supplemental files
The supplemental files for this article can be found as follows:

- Figure S1. Comparison of observed and simulated NO₂ and radical species. DOI: https://doi.org/10.1525/elementa.394.s1
- Figure S2. Comparison of observed and simulated organic nitrates, PAN, and speciated VOCs. DOI: https://doi.org/10.1525/elementa.394.s1
- Figure S3. Mean sea level pressures (SLP) and wind vectors in GEOS-Chem during four different synoptic weather patterns in East Asia. DOI: https://doi.org/10.1525/elementa.394.s1
- Table S1. Gas phase reactions of aromatic chemistry in GEOS-Chem based on Henze et al. (2008). DOI: https://doi.org/10.1525/elementa.394.s1
- Table S2. Gas phase reactions of aromatic chemistry added in GEOS-Chem based on Porter et al. (2017). DOI: https://doi.org/10.1525/elementa.394.s1
- Table S3. Aromatic species and reaction intermediates added in GEOS-Chem. DOI: https://doi.org/10.1525/elementa.394.s1

Table 2: Relative differences of O₃, NOₓ, O₃ production, and destruction terms with respect to the base run. DOI: https://doi.org/10.1525/elementa.394.t2

Urban & Industrial areas	30% NOₓ decrease	30% NOₓ & VOCs decrease	Rural areas
O₃	+3%	0%	–1%
NOₓ	–36%	–36%	–34%
F₉₀₃	+9%	–9%	–14%
D₉₀₃	–9%	–13%	–12%
P₉₀₃	+13%	–8%	–15%
L₉₀₃	–19%	–21%	–36%
OPE	+40%	+18%	+32%

*The relative difference between the base and sensitivity run is calculated as \(\text{Difference} = \frac{S - B}{B} \times 100\% \), where S indicates the sensitivity run and B indicates the base run value.
Acknowledgements
We thank all members of the KORUS-AQ team for their contributions during the field campaign and the agencies operating the measurements onboard DC-8. PTR-ToF-MS measurements aboard the NASA DC-8 during KORUS-AQ were supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FGF). The PTR-ToF-MS instrument team (P. Eichler, L. Kaiser, T. Mikoviny, M. Müller) is acknowledged for their support with field work and data processing.

Funding information
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2018004494).

Competing interests
The authors have no competing interests to declare.

Author contributions
• Contributed to conception and design: YJO, RJP
• Contributed to acquisition of data: JRS, JHC, DRB, AJW, J-HW, SWK, HY, AF, AW, WHB
• Contributed to analysis and interpretation of data: YJO, RJP, JRS, JHC
• Drafted and/or revised the article: YJO, RJP, JHC, SWK
• Approved the submitted version for publication: RJP, JHC

References
Bertram, TH, Perring, AE, Wooldridge, PJ, Dibb, J, Avery, MA and Cohen, RC. 2013. On the export of reactive nitrogen from Asia: NO partitioning and effects on ozone. Atmos Chem Phys 13(9): 4617–4630. DOI: https://doi.org/10.5194/acp-13-4617-2013

Bey, I, Jacob, DJ, Yantosca, RM, Logan, JA, Field, BD, Fiore, AM, Li, Q, Liu, HY, Mickley, LJ and Schultz, MG. 2001. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research: Atmospheres 106(D19): 23073–23095. DOI: https://doi.org/10.1029/2001JD000807

Bravo-Aranda, JA, de Arruda Moreira, G, Navas-Guzmán, F, Granados-Muñoz, MJ, Guerrero-Rascado, JL, Pozo-Vázquez, D, Arbizu-Barrena, C, Olmo Reyes, FJ, Mallet, M and Alados Arboledas, L. 2017. A new methodology for PBL height estimations based on lidar depolarization measurements: Analysis and comparison against MWR and WRF model-based results. Atmos Chem Phys 17(11): 6839–6851. DOI: https://doi.org/10.5194/acp-17-6839-2017

Brooks, IM. 2003. Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles. Journal of Atmospheric and Oceanic Technology 20(8): 1092–1105. DOI: https://doi.org/10.1175/1520-0426(2003)020<1092:FBLT>2.0.CO;2

Brune, WH, Stevens, PS and Mather, JH. 1995. Measuring OH and HO, in the Troposphere by Laser-Induced Fluorescence at Low Pressure. Journal of the Atmospheric Sciences 52(19): 3328–3336. DOI: https://doi.org/10.1175/1520-0469(1995)052<3328:MOAHT>2.0.CO;2

Chang, K-I, Petropavlovskikh, I, Copper, OR, Schultz, MG and Tao, W. 2017. Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia. Elem Sci Anth 5: 50. DOI: https://doi.org/10.1525/elementa.243

Choi, J, Park, RJ, Lee, H-M, Lee, S, Jo, DS, Jeong, JI, Henze, DK, Woo, J-H, Ban, S-J, Lee, M-D, Park, M-K, Shin, HJ, Cho, S, Peterson, D and Song, C-K. 2019. Impacts of local vs. trans-boundary emissions from different sectors on PM10 exposure in South Korea during the KORUS-AQ campaign. Atmospheric Environment 203: 196–205. DOI: https://doi.org/10.1016/j.atmosenv.2019.02.008

Crawford, J, Davis, D, Olson, J, Chen, G, Liu, S, Gregory, G, Barrick, J, Sachse, G, Sandholm, S, Heikes, B, Singh, H and Blake, D. 1999. Assessment of upper tropospheric HO, sources over the tropical Pacific based on NASA GTE/PEM data: Net effect on HO, and other photochemical parameters. Journal of Geophysical Research: Atmospheres 104(D13): 16255–16273. DOI: https://doi.org/10.1029/1999JD900106

Finlayson-Pitts, BJ and Pitts, JN, Jr. 2000. CHAPTER 6 – Rates and Mechanisms of Gas-Phase Reactions in Irradiated Organic – NO, – Air Mixtures. Chemistry of the Upper and Lower Atmosphere, 179–263. San Diego: Academic Press. DOI: https://doi.org/10.1016/B978-012257060-5/50008-3

Grossman, RL and Gamage, N. 1995. Moisture flux and mixing processes in the daytime continental convective boundary layer. Journal of Geophysical Research: Atmospheres 100(D12): 25665–25674. DOI: https://doi.org/10.1029/95JD00853

Guenther, AB, Jiann, X, Heald, CL, Sakulyanontvittaya, T, Duhl, T, Emmons, LR and Wang, X. 2012. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development 5(6): 1471–1492. DOI: https://doi.org/10.5194/gmd-5-1471-2012

Haman, CL, Couzo, E, Flynn, JH, Vizuete, W, Heffron, B and Lefer, BL. 2014. Relationship between boundary layer heights and growth rates with ground-level ozone in Houston, Texas. Journal of Geophysical Research: Atmospheres 119(10): 6230–6245. DOI: https://doi.org/10.1002/2013JD020473

Han, Z, Sakurai, T, Ueda, H, Carmichael, GR, Streets, D, Hayami, H, Wang, Z, Holloway, T, Engardt, M, Hozumi, Y, Park, SU, Kajino, M, Sartelet, K, Fung, C, Bennet, C, Thongboonchoo, N, Tang, Y, Chang, A, Matsuda, K and Amann, M. 2008. MICS-Asia II: Model intercomparison and evaluation

Gill, RE. 1982. Atmospheres. San Diego: Academic Press. DOI: https://doi.org/10.1016/B978-012257060-5/50008-3
of ozone and relevant species. *Atmospheric Environment* **42**(15): 3491–3509. DOI: https://doi.org/10.1016/j.atmosenv.2007.07.031

Henze, DK, Seinfeld, JH, Ng, NL, Kroll, JH, Fu, TM, Jacob, DJ and Heald, CL. 2008. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: High- vs. low-yield pathways. *Atmos Chem Phys* **8**(9): 2405–2420. DOI: https://doi.org/10.5194/acp-8-2405-2008

Holzworth, GC. 1964. Estimates of mean maximum mixing depths in the contiguous United States. *Monthly Weather Review* **92**(5): 235–242. DOI: https://doi.org/10.1175/1520-0493(1964)092<0235:EOMMMDO>.4.T{:}P2

Imhoff, RE, Valente, R, Meagher, JF and Luria, M. 1995. The production of O₃ in an urban plume: Airborne sampling of the Atlanta urban plume. *Atmospheric Environment* **29**(17): 2349–2358. DOI: https://doi.org/10.1016/1352-2310(94)00305-5

Jang, Y, Lee, Y, Kim, J, Kim, Y and Woo, J-H. 2019. Improvement China Point Source for Improving Bottom-Up Emission Inventory. *Asia-Pacific Journal of Atmospheric Sciences* DOI: https://doi.org/10.1007/s13143-019-00115-y

Jeong, Y-M, Lee, S-H, Lee, H-W and Jeon, W-B. 2012. Numerical Study on the Process Analysis of Ozone Production due to Emissions Reduction over the Seoul Metropolitan Area. *Journal of Environmental Science International* **21**(3): 339–349. DOI: https://doi.org/10.5132/JES.2012.21.3.339

Jung, J, Lyu, Y, Lee M, Hwang, T, Lee, S and Oh, S. 2016. Impact of Siberian forest fires on the atmosphere over the Korean Peninsula during summer 2014. *Atmospheric Chemistry and Physics* **16**: 6757–6770. DOI: https://doi.org/10.5194/acp-16-6757-2016

Kang, Y-H, Oh, I, Jeong, J-H, Bang, J-H, Kim, Y-K, Kim, S, Kim, E, Hong, J-H and Lee, D-G. 2016. Comparison of CMAQ Ozone Simulations with Two Chemical Mechanisms (SAPRC99 and CB05) in the Seoul Metropolitan Region. *Journal of Environmental Science International* **25**(1): 85–97. DOI: https://doi.org/10.5322/JESI.2016.25.1.85

Khan, A, Szulejko, JE, Kim, K-H and Brown, RJC. 2018. Airborne volatile aromatic hydrocarbons at an urban monitoring station in Korea from 2013 to 2015. *Journal of Environmental Management* **209**: 525–538. DOI: https://doi.org/10.1016/j.jenvman.2017.12.055

Kim, J, Sung Ghim, Y, Han, J, Park, S-M, Shin, H-J, Sang Bo Lee, S-B, Kim, J and Lee, G. 2018. Long-term Trend Analysis of Korean Air Quality and Its Implication to Current Air Quality Policy on Ozone and PM10. *Journal of Korean Society for Atmospheric Environment* **34**: 1–15. DOI: https://doi.org/10.5572/KOSAE.2018.34.1.001

Kim, MJ, Park, RJ, Ho, C-H, Woo, J-H, Choi, K-C, Song, C-K and Lee, J-B. 2015. Future ozone and oxidants change under the RCP scenarios. *Atmospheric Environment* **101**: 103–115. DOI: https://doi.org/10.1016/j.atmosenv.2014.11.016

Kim, S. 2011. Ozone Simulations over the Seoul Metropolitan Area for a 2007 June Episode, Part I: Evaluating Volatile Organic Compounds Emissions Speciated for the SAPRC99 Chemical Mechanism. *Journal of Korean Society for Atmospheric Environment* **27**. DOI: https://doi.org/10.5572/KOSAE.2011.27.5.580

Kim, S, Kim, SY, Lee, M, Shim, H, Wolfe, GM, Guenther, A, He, A, Hong, Y and Han, J. 2014. Urban-rural interactions in a South Korean forest: Uncertainties in isoprene-OH interactions limit understanding of ozone and secondary organic aerosol production. *Atmospheric Chemistry and Physics Discussions* **14**: 16691–16729. DOI: https://doi.org/10.5194/acpd-14-16691-2014

Kim, Y and Lee, G. 2018. Trend of Air Quality in Seoul: Policy and Science. *Aerosol and Air Quality Research* **18**. DOI: https://doi.org/10.4209/aqr.2018.03.0081

Kleinman, L, Daum, PH, Lee, Y-N, Nunnermacker, LJ, Springer, SR, Weinstein-Lloyd, J and Rudolph, J. 2002. Ozone production efficiency in an urban area. *Journal of Geophysical Research: Atmospheres* **107**(D23): ACH 23-1 ACH 23–12. DOI: https://doi.org/10.1029/2002JD002529

Kleinman, L, Lee, Y-N, Springer, SR, Nunnermacker, L, Zhou, X, Brown, R, Hallock, K, Klotsz, P, Leahy, D, Lee, JH and Newman, L. 1994. Ozone formation at a rural site in the southeastern United States. *Journal of Geophysical Research: Atmospheres* **99**(D2): 3469–3482. DOI: https://doi.org/10.1029/93JD02991

Lee, H-J, Jo, H-Y, Park, S-Y, Jo, Y-J, Jeon, W, Ahn, J-Y and Kim, C-H. 2019. A Case Study of the Transport/Transformation of Air Pollutants Over the Yellow Sea During the MAPS 2015 Campaign. *Journal of Geophysical Research: Atmospheres* **124**(12): 6532–6553. DOI: https://doi.org/10.1029/2018JD029751

Lee, JH, Han, JS, Yun, HK and Cho, SY. 2007. Evaluation of Incremental Reactivity and Ozone Production Contribution of VOCs Using the PAMS Data in Seoul Metropolitan Area. *Journal of Korean Society for Atmospheric Environment* **23**: 286–296. DOI: https://doi.org/10.5572/KOSAE.2007.23.3.286

Li, K, Jacob, DJ, Liao, H, Shen, L, Zhang, Q and Bates, KH. 2019. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. *Proceedings of the National Academy of Sciences* **116**(2): 422–427. DOI: https://doi.org/10.1073/pnas.1812168116

Lin, X, Trainer, M and Liu, SC. 1988. On the nonlinearity of the tropospheric ozone production. *Journal of Geophysical Research: Atmospheres* **93**(D12): 15879–15888. DOI: https://doi.org/10.1029/JD093iD12p15879

Liu, SC, Trainer, M, Feisenfeld, FC, Parrish, DD, Williams, EJ, Fahey, DW, Hubler, G and Murphy, PC. 1987. Ozone production in the rural troposphere and the implications for regional and global ozone distributions. *Journal of Geophysical Research: Atmospheres* **92**(D4): 4191–4207. DOI: https://doi.org/10.1029/JD092iD04p04191
production efficiencies in the marine boundary layer at two European coastal sites under different pollution regimes. *Journal of Atmospheric Chemistry* **43**(2): 107–134. DOI: https://doi.org/10.1023/A:1019970123228

Ridley, BA and Grahek, FE. 1990. A Small, Low Flow, High Sensitivity Reaction Vessel for NO Chemiluminescence Detectors. *Journal of Atmospheric and Oceanic Technology* **7**(2): 307–311. DOI: https://doi.org/10.1175/1520-0426(1990)007<0307:ASLFRH>2.0.CO;2

 Ryu, Y-H, Baik, J-J, Kwak, K-H, Kim, S and Moon, N. 2013. Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area. *Atmos Chem Phys* **13**(4). DOI: https://doi.org/10.5194/acp-13-2177-2013

 Sarwar, G, Simon, H, Bhave, P and Yarwood, G. 2012. Examining the impact of heterogeneous nitril chloride production on air quality across the United States. *Atmos Chem Phys* **12**(14): 6455–6473. DOI: https://doi.org/10.5194/acp-12-6455-2012

 Scarino, AJ, Obland, MD, Fast, JD, Burton, SP, Ferrare, RA, Hostetler, CA, Berg, LK, Lefer, B, Haman, C, Hair, JW, Rogers, RR, Butler, C, Cook, AL and Harper, DB. 2014. Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES. *Atmos Chem Phys* **14**(11): 5547–5560. DOI: https://doi.org/10.5194/acp-14-5547-2014

 Schroeder, JR, Crawford, JH, Fried, A, Walega, J, Weinheimer, A, Wisthaler, A, Müller, M, Mikoviny, T, Chen, G, Shook, M, Blake, DR and Tonnesen, GS. 2017. New insights into the column CH$_3$O/NO$_2$ ratio as an indicator of near-surface ozone sensitivity. *Journal of Geophysical Research: Atmospheres* **122**(16): 8885–8907. DOI: https://doi.org/10.1002/2017JD026781

 Shin, HJ, Kim, JC, Lee, SJ and Kim, YP. 2013. Evaluation of the optimum volatile organic compounds control strategy considering the formation of ozone and secondary organic aerosol in Seoul, Korea. *Environmental Science and Pollution Research* **20**(3): 1468–1481. DOI: https://doi.org/10.1007/s11356-012-1108-5

 Susaya, J, Kim, K-H, Shon, Z-H and Brown, RJ. 2013. Demonstration of long-term increases in tropospheric O$_3$ levels: Causes and potential impacts. *Chemosphere* **92**(11): 1520–1528. DOI: https://doi.org/10.1016/j.chemosphere.2013.04.017

 Tong, NYO, Leung, DYC and Liu, C-H. 2011. A Review on Ozone Evolution and Its Relationship with Boundary Layer Characteristics in Urban Environments. *Water, Air, & Soil Pollution* **214**(1): 13–36. DOI: https://doi.org/10.1007/s11270-010-0438-5

 Trainer, M, Parrish, DD, Buhr, MP, Norton, RB, Fehsenfeld, FC, Anlauf, KG, Bottenheim, JW, Tang, YZ, Wiebe, HA, Roberts, JM, Tanner, RL, Newman, L, Bowersox, VC, Meagher, JF, Olszyna, KJ, Rodgers, MO, Wang, T, Berresheim, H, Demerjian, ...
KL and Roychowdhury, UK. 1993. Correlation of ozone with NO\textsubscript{y} in photochemically aged air. Journal of Geophysical Research: Atmospheres 98(D2): 2917–2925. DOI: https://doi.org/10.1029/92JD01910

Trainer, M, Parrish, DD, Goldan, PD, Roberts, J and Fehsenfeld, FC. 2000. Review of observation-based analysis of the regional factors influencing ozone concentrations. Atmospheric Environment 34(12): 2045–2061. DOI: https://doi.org/10.1016/S1352-2310(99)00459-8

van der Werf, GR, Randerson, JT, Giglio, L, Collatz, GJ, Mu, M, Kasibhatla, PS, Morton, DC, DeFries, RS, Jin, Y and van Leeuwen, TT. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10(23): 11707–11735. DOI: https://doi.org/10.5194/acp-10-11707-2010

WHO. 2003. Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide, Report on a WHO Working Group.

Woo, J-H, Choi, K-C, Kim, HK, Baek, BH, Jang, M, Eum, J-H, Song, CH, Ma, Y-I, Sunwoo, Y, Chang, L-S and Yood, SH. 2012. Development of an anthropogenic emissions processing system for Asia using SMOKE. Atmospheric Environment 58: 5–13. DOI: https://doi.org/10.1016/j.atmosenv.2011.10.042

Ye, C, Zhang, N, Gao, H and Zhou, X. 2017. Photolysis of Particulate Nitrate as a Source of HONO and NO\textsubscript{y}. Environmental Science & Technology 51(12): 6849–6856. DOI: https://doi.org/10.1021/acs.est.7b00387

Zaveri, RA, Berkowitz, CM, Kleinman, LI, Springerston, SR, Doskey, PV, Lonneman, WA and Spicer, CW. 2003. Ozone production efficiency and NO\textsubscript{y} depletion in an urban plume: Interpretation of field observations and implications for evaluating O\textsubscript{3}-NO\textsubscript{y}-VOC sensitivity. Journal of Geophysical Research: Atmospheres 108(D14). DOI: https://doi.org/10.1029/2002JD003144

How to cite this article: Oak, YJ, Park, RJ, Schroeder, JR, Crawford, JH, Blake, DR, Weinheimer, AJ, Woo, J-H, Kim, S-W, Yeo, H, Fried, A, Wisthaler, A and Brune, WH. 2019. Evaluation of simulated O\textsubscript{3} production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NO\textsubscript{y} emissions in Korea. Elem Sci Anth, 7: 56. DOI: https://doi.org/10.1525/elementa.394