A Self-Adaptive Morphological Filter without Consideration of Window Size for Airborne LiDAR Point Clouds

Yong Li
School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
Email: liyong@hhu.edu.cn

Abstract. Light detection and ranging (LiDAR) has the capability of rapidly collecting dense and accurate three-dimensional geospatial information, and therefore it is widely applied in various fields of geospatial applications. The morphological filtering approaches can filter non-ground points effectively, which is crucial for many tasks such as land cover classification and digital elevation model generation. A series of different windows are generally in need for removing non-ground objects with different sizes. In order to avoid the limitation of choosing the filtering windows, we adopt the geodesic transformations of mathematical morphology for filtering LiDAR point clouds. This algorithm enhances the robustness and automation without consideration of how to choose different windows. Experimental results demonstrate that this filtering algorithm is capable of effectively preserving terrain details and filtering various non-ground objects.

Keywords. LiDAR; mathematical morphology; point clouds; filtering.

1. Introduction
The dense and accurate three-dimensional spatial data covering large area can be rapidly collected by airborne light detection and ranging (LiDAR). In particular, the LiDAR are able to penetrate tree canopy and have no effects of shadowing and surrounding light conditions. Fewer control points are in need, which make LiDAR work well in forest, marsh or desert [1-3]. Thus, LiDAR has been employed in many fields such as urban planning, natural hazard assessment, topographic mapping, land management, forestry, communications, civil engineering and geology [4-7].

For various geospatial applications and analysis, the first and essential process is generally LiDAR data filtering which is to separate non-ground and ground points [5-16]. A large number of attention and efforts from many researches have been put on the challenging problem of LiDAR data filtering over the past decades. Researchers have developed various significant filtering approaches such as morphological approaches, interpolation-based approaches, triangulated irregular network (TIN) densification approaches, and slope-based approaches [9, 16-21]. The morphological approaches have been proven to be capable of filtering non-ground points effectively, which are easily implemented because of the advantages of simple concepts [8, 22-25]. The structuring element in mathematical morphology, namely the filtering window, plays a crucial role for the success of filtering. On one hand, the filtering windows need to be large enough to filter the objects. On the other hand, the changing features of terrain such as mountain peaks and ridges are more likely to be removed by using the larger filtering windows. The results of filtering are inclined to be influenced by choice of windows [12, 25, 26]. Hence a series of varied window sizes are utilized by most morphological algorithms to filter progressively, and the size of the largest object is needed to be known beforehand for determining the maximum window size. In order to avoid the dependence on different window
sizes, we make use of geodesic transformations of mathematical morphology for filtering LiDAR point clouds. The advantages of this approach is that the choice of different windows and determination of the maximum window size are not necessary because only elementary filtering window is used, which cause this approach has more robustness in practical applications.

The following is organized as follows. Our filtering approach is presented in Section 2, and then Section 3 elaborates on the test experiments. Finally, this research is briefly concluded in Section 4.

2. Methodology

LiDAR points are irregularly distributed, and points contained within a survey strip are usually up to several millions. Therefore, a kind of efficient reorganization is in need to build the topology of irregularly distributed points, which is important for subsequent spatial analysis and calculation. In order to avoid the accuracy loss as well as make use of the simplicity of regular grid, this study employs a simple grid index to restructure point cloud. The average point spacing is generally known and used to construct a regular grid, and the points contained within each grid cell are determined according to its coordinate. In the course of the subsequent processing, the index grid cell is firstly determined by the point coordinates, and then LiDAR points stored in the certain grid cells are picked out to implement operations.

The filtering results are likely to be influenced by low outliers. Due to the laser rangefinder malfunction or multi-reflection of laser pulses in complex environments, point clouds often contain low outliers [9]. The outliers are generally scattered and have relatively far small heights, and thus the outliers are differentiated based on the characteristics.

Compared with the continuous and smooth ground surface, the non-ground objects often cause the drastic elevation changes. Morphological gradients are employed for the irregularly distributed points because of the merit of easily calculation. Morphological gradients can be further divided into two categories, namely internal gradient and external gradient [27]. Different transition points of height changes can be indicated by the two morphological gradients. Points a, c of figure 1, namely the lower jump points generally have larger external gradient compared with neighbors, while points b, d of figure 1, namely the higher jump points generally have larger internal gradient.

Figure 1. Different transition points of height changes.

Some ground points of drastic changes, e.g. point e in figure 1 also have relatively large gradients. In order to distinguish the steep slope points and the low transition points, the gradient of external gradients can be expressed as the following formula:

$$\triangle (\rho^*_B) = \rho^*_B - \min\{\rho^*_B (x+i, y+j) | i,j \in D_B ; (x+i), (y+j) \in D_f\}$$

Since the ground elevation changes are gradually, the slope points have smaller $\triangle (\rho^*_B)$ than the low transition points.

In order to avoid the dependence on the choice of window sizes, we take with geodesic transformations for LiDAR data filtering in this study, which only utilize an elementary 3x3 window for operating elementary erosions and dilations. The morphological reconstruction operations can be categorized to reconstruction by dilation and reconstruction by erosion. A new morphological primitive used for this filtering approach can be constructed by combining the reconstruction
operations as figure 2. Only the top slope θ and the height h need to be predefined without consideration of the width of primitives. As shown by the objects a, c of figure 2, various objects can be fit naturally and closely by the primitive which sequentially carrying out the morphological reconstruction operations.

The two sides of non-ground objects generally both have abrupt gradient changes. Therefore, the portions a, c in point clouds are classified as objects since they are higher than the whole primitive. Ground surface usually have no drastic gradient changes, so the portion b is classified as ground. Specially, one side of ground surface may be steep (e.g. cliffs), so the portion d is judged as ground because of only some part beneath the primitive.

![Figure 2](image-url)
Figure 2. LiDAR data filtering by using the morphological primitive: (a) The cross section profile of point cloud f; (b) different portions are fit by the morphological primitive.

3. Experimental Results

The practical point clouds collected by the Actueel Hoogtebestand Nederland (AHN) (http://www.ahn.nl) are utilized to evaluate the filtering results of this proposed approach. An industrial procedure has been carried out to classify the point clouds. The used dataset is located at the Meerssen City as shown in figure 3. The reason of choosing the area is that it covers complicated landscapes such as buildings, steep slopes, and dense vegetation. The data contains 333,729 points. The average point density is 1.4 points/m2. Thus, the grid cell for reorganizing point cloud is $0.5m \times 0.5m$. The two parameters, i.e. height h and slope θ for morphological primitive are set to $0.1 \times \text{pointSpacing}$ and $\arctan(0.3)$, respectively.

Figure 3 shows the DEMs created from true ground points and the filtering results of the proposed approach. The results indicate that the significant features of ground can be retained effectively, and various objects can be successfully removed. Reasonable results can be expected to be produced by this filtering approach within complicated area.
Figure 3. Filtering performance using this approach: (a) DSM created by AHN data; (b) DEM created by true ground points; (c) DEM created by this filtering approach.

4. Conclusions
The dense and accurate three-dimensional spatial data covering large area can be rapidly collected by LiDAR. Thus, LiDAR obtain widely attentions and applications within various fields. For various geospatial applications and analysis, the first and essential process is generally LiDAR data filtering. The morphological approaches have been proven to be capable of filtering non-ground points effectively, which are easily implemented because of the advantages of simple concepts. Aimed at solve the problem of choosing windows, we make use of geodesic transformations of mathematical morphology for filtering LiDAR point clouds. The geodesic transformation converges through a finite number of iterations until stability making the choice of window size unnecessary. The advantages of this approach is that the choice of different windows and determination of the maximum window size are not necessary because only elementary filtering window is used, which cause this approach has more robustness in practical applications. The experimental results demonstrate that the significant features of ground can be retained effectively, and various objects can be successfully removed.
Acknowledgments
Our research has been supported by the National Key Research and Development Program (Grant No. 2016YFA0601504) approved by Ministry of Science and Technology of China, the National Natural Science Foundation of China (Grant No. 41977394), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20161504), the Fundamental Research Funds for the Central Universities (Grant No. 2018B18514).

References
[1] Meng X, Wang L, Silvan-Cardenas J L and Currit N 2009 A multi-directional ground filtering algorithm for airborne LIDAR ISPRS Journal of Photogrammetry and Remote Sensing 64 117-124.
[2] Shan J and Sampath A 2005 Urban DEM generation from raw lidar data: A labeling algorithm and its performance Photogrammetric Engineering & Remote Sensing 71 217-226.
[3] Filin S and Pfeifer N 2006 Segmentation of airborne laser scanning data using a slope adaptive neighborhood ISPRS Journal of Photogrammetry and Remote Sensing 60 71-80.
[4] Zeng Z, Wan J and Liu H 2016 An entropy-based filtering approach for airborne laser scanning data Infrared Physics & Technology 75 87-92.
[5] Sirmacek B, Taubenbock H, Reinarz P and Ehlers M 2012 Performance evaluation for 3-D city model generation of six different DSMs from air-and spaceborne sensors IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 59-70.
[6] White S A and Wang Y 2003 Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline Remote Sensing of Environment 85 39-47.
[7] Stoker J M, Greenlee S K, Gesch D B and Menig J C 2006 CLICK: The new USGS center for lidar information coordination and knowledge Photogrammetric Engineering & Remote Sensing 72 613-616.
[8] Zhang K, Chen S C, Whitman D, Shyu M L, Yan J and Zhang C 2003 A progressive morphological filter for removing nonground measurements from airborne LIDAR data IEEE Transactions on Geoscience and Remote Sensing 41 872-882.
[9] Sithole G and Vosselman G 2004 Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds ISPRS Journal of Photogrammetry and Remote Sensing 59 85-101.
[10] Nie S, Wang C, Dong P, Xi X, Luo S and Qin H 2017 A revised progressive TIN densification for filtering airborne LiDAR data Measurement 104 70-77.
[11] Shirowzhan S, Lim S and Trinder J 2015 Enhanced autocorrelation-based algorithms for filtering airborne lidar data over urban areas Journal of Surveying Engineering 142 04015008.
[12] Zhao X, Guo Q, Su Y and Xue B 2016 Improved progressive TIN densification filtering algorithm for airborne LIDAR data in forested areas ISPRS Journal of Photogrammetry and Remote Sensing 117 79-91.
[13] Chen Q, Wang H, Zhang H, Sun M and Liu X 2016 A point cloud filtering approach to generating DTM for steep mountainous areas and adjacent residential areas Remote Sensing 8 71.
[14] Qin L, Wu W, Tian Y and Xu W 2017 LiDAR filtering of urban areas with region growing based on moving-window weighted iterative least-squares fitting IEEE Geoscience and Remote Sensing Letters 14 841-845.
[15] Yan W Y, Shaker A and El-Ashmawy N 2015 Urban land cover classification using airborne LiDAR data: A review Remote Sensing of Environment 158 295-310.
[16] Hui Z, Hu Y, Yevenyo Y Z and Yu X 2016 An improved morphological algorithm for filtering airborne LIDAR point cloud based on multi-level kriging interpolation Remote Sensing 8 35.
[17] Zhang K and Whitman D 2005 Comparison of three algorithms for filtering airborne lidar data Photogrammetric Engineering & Remote Sensing 71 313-324.
[18] Bartels M and Wei H 2010 Threshold-free object and ground point separation in LiDAR data Pattern Recognition Letters 31 1089-1099.
[19] Silvan-Cardenas J L and Wang L 2006 A multi-resolution approach for filtering LiDAR altimetry data ISPRS Journal of Photogrammetry and Remote Sensing 61 11-22.
[20] Meng X, Currit N, and Zhao K 2010 Ground filtering algorithms for airborne LiDAR data: A review of critical issues Remote Sensing 2 833-860.
[21] Shan J and Toth C K 2008 Topographic Laser Ranging and Scanning: Principles and Processing (CRC Press).
[22] Arefi H and Hahn M 2005 A morphological reconstruction algorithm for separating off-terrain points from terrain points in laser scanning data International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 120-125.
[23] Chen Q, Gong P, Baldocchi D and Xie G 2007 Filtering airborne laser scanning data with morphological methods Photogrammetric Engineering & Remote Sensing 73 175-185.
[24] Kobler A, Pfeifer N, Ogrinc P, Todorovski L, Oštir K and Džeroski S 2007 Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain Remote Sensing of Environment 108 9-23.
[25] Yang B, Huang R, Dong Z, Zang Y and Li J 2016 Two-step adaptive extraction method for ground points and breaklines from lidar point clouds ISPRS Journal of Photogrammetry and Remote Sensing 119 373-389.
[26] Chen C, Li Y, Yan C, Dai H, Liu G and Guo J 2016 An improved multi-resolution hierarchical classification method based on robust segmentation for filtering ALS point clouds International Journal of Remote Sensing 37 950-968.
[27] Soille P 2003 Morphological Image Analysis: Principles and Applications (New York: Springer-Verlag, Inc.).