Abstract

Consider an urban scenario in which N aerial UAVs, each with limited radius of observation R, must patrol $M > N$ targets moving on the surface. The movement of the UAVs is free while the movement of targets is restricted to certain paths, such as urban roads. Targets are friends who can, for example, be attacked by enemies. In this scenario, it can be assumed that the positions of the targets and the observers, obtained from GPS, are transmitted to a central command, and that the targets are collaborative, not avoiding the presence of the observers. This scenario is a new instance of the Cooperative Target Observation (CTO) problem. This work investigates a centralized algorithm, modified hill climbing, to command the UAVs with a view to maximize the average number of targets observed by at least one observer. The average performance of the proposed algorithm is superior to that of similar algorithms in this new problem setting.

References

1. Joao P B Andrade, Robson Oliveira, Thayanne F da Silva, Jos´e E Bessa Maia, and
Gustavo AL de Campos. Organization/fuzzy approach to the cto problem. In 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), pages 444–449. IEEE, 2018.

2. Rashi Aswani, Sai Krishna Munnangi, Praveen Paruchuri, and Hilton San Francisco. Improving surveillance using cooperative target observation. In AAAI, pages 2985–2991, 2017.

3. Christoph Briese, Andreas Seel, and Franz Andert. Vision-based detection of non-cooperative uavs using frame differencing and temporal filter. In 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pages 606–613. IEEE, 2018.

4. Andrew Callam. Drone wars: Armed unmanned aerial vehicles. International Affairs Review, 18, 2015.

5. Jesús Capitán, Luis Merino, and Aníbal Ollero. Cooperative decision-making under uncertainties for multi-target surveillance with multiples uavs. Journal of Intelligent & Robotic Systems, 84(1-4):371–386, 2016.

6. Victor Catano and Jeffery Gauger. Information fusion: Intelligence centers and intelligence analysis. In Information Sharing in Military Operations, pages 17–34. Springer, 2017.

7. Levi P Figueiredo and José E B Maia. Busca hill-climbing modificada aplicada à observação de alvos cooperativos (cto) movendo-se sobre um grafo planar [in Portuguese]. In 2020 11o COMPUTER ON THE BEACH (COTB ’20), pages –. Universidade do Vale do Itajaí, 2020.

8. Patricia K Freeman and Robert S Freeland. Agricultural uavs in the us: potential, policy, and hype. Remote Sensing Applications: Society and Environment, 2:35–43, 2015.

9. Jinwen Hu, Lihua Xie, Kai-Yew Lum, and Jun Xu. Multiagent information fusion and cooperative control in target search. IEEE Transactions on Control Systems Technology, 4(21):1223–1235, 2013.

10. Sungsik Huh, Sungwook Cho, Yeondeuk Jung, and David Hyunchul Shim. Vision-based sense-and-avoid framework for unmanned aerial vehicles. IEEE Transactions on Aerospace and Electronic Systems, 51(4):3427–3439, 2015.

11. Asif Khan, Bernhard Rinner, and Andrea Cavallaro. Cooperative robots to observe moving targets. IEEE Transactions on Cybernetics, 48(1):187–198, 2018.

12. Der-Tsai Lee and Arthur K Lin. Generalized delaunay triangulation for planar graphs. Discrete & Computational Geometry, 1(3):201–217, 1986.

13. Sean Luke, Claudio Cioffi-Revilla, Keith Sullivan Liviu Panait, and Gabriel Balan. Mason: A multi-agent simulation environment. Simulation: Transactions of the society for Modeling and Simulation International, 82(7):517–527, 2005.

14. Sean Luke, Keith Sullivan, Liviu Panait, and Gabriel Balan. Tunably decentralized algorithms for cooperative target observation. In Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pages 911–917. ACM, 2005.

15. Hamid Memouar, Ismail Guvenc, Kemal Akkaya, A Selcuk Uluagac, Abdullah Kadri, and Adem Tuncer. Uav-enabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Communications Magazine, 55(3):22–28, 2017.

16. Timothy L Molloy, Jason J Ford, and Luis Mejias. Detection of aircraft below the horizon for vision-based detect and avoid in unmanned aircraft systems. Journal of Field Robotics, 34(7):1378–1391, 2017.

17. Beulah Moses. Convergence of annealing algorithms for cooperative uavs. Recent Adv. Appl. Theor. Math., pages 109–116, 2013.

18. Beulah Moses and Lakhmi C Jain. Cooperative target observation of uavs using
simulated annealing. International Journal of Intelligent Defence Support Systems, 1(2):116–129, 2008.

19. Sai Krishna Munnangi and Praveen Paruchuri. Improving wildlife monitoring using a multi-criteria cooperative target observation approach. In Proceedings of the 53rd Hawaii International Conference on System Sciences, 2020.

20. Francesco Nex and Fabio Remondino. Uav for 3d mapping applications: a review. Applied geomatics, 6(1):1–15, 2014.

21. Lynne E Parker. Cooperative robotics for multi-target observation. Intelligent Automation & Soft Computing, 5(1):5–19, 1999.

22. Carlos Paucar, Lilia Morales, Katherine Pinto, Marcos S´anchez, Rosalba Rod´iguez, Marisol Gutierrez, and Luis Palacios. Use of drones for surveillance and reconnaissance of military areas. In International Conference of Research Applied to Defense and Security, pages 119–132. Springer, 2018.

23. James C Rosser Jr, Vudatha Vignesh, Brent A Terwilliger, and Brett C Parker. Surgical and medical applications of drones: A comprehensive review. JSLS: Journal of the Society of Laparoendoscopic Surgeons, 22(3), 2018.

24. Yunhui Wang, Zhijuan Zhan, and Bing Xue. Operation method of electronic warfare uav. In Global Intelligence Industry Conference (GIIC 2018), volume 10835, page 108351L. International Society for Optics and Photonics, 2018.

Index Terms

Computer Science

Information Sciences

Keywords

Cooperative target observation, Centralized command of UAVs, Modified hill climbing, Moving over a planar graph