Supersingular conjectures for the Fricke group

Patrick Morton

May 30, 2021

Abstract

A proof is given of several conjectures from a recent paper of Nakaya concerning the supersingular polynomial $ss_p^{(N*)}(X)$ for the Fricke group $\Gamma_0^*(N)$, for $N \in \{2, 3, 5, 7\}$. One of these conjectures gives a formula for the square of $ss_p^{(N*)}(X)$ (mod p) in terms of a certain resultant, and the other relates the primes p for which $ss_p^{(N*)}(X)$ splits into linear factors (mod p) to the orders of certain sporadic simple groups.

1 Introduction.

This paper is devoted to proving several of the conjectures appearing in Nakaya’s paper [17]. These conjectures concern the supersingular polynomial $ss_p^{(N*)}(X)$ for the Fricke group $\Gamma_0^*(N)$, where $N \in \{2, 3, 5, 7\}$. This polynomial is defined as follows. (See [19, p. 2254] and [17, p. 486].) Define the polynomials

\[
R_2(X,Y) = X^2 - X(Y^2 - 207Y + 3456) + (Y + 144)^3,
\]

\[
R_3(X,Y) = X^2 - XY(Y^2 - 126Y + 2944) + Y(Y + 192)^3,
\]

\[
R_5(X,Y) = X^2 - X(Y^5 - 80Y^4 + 1890Y^3 - 12600Y^2 + 7776Y + 3456)
+ (Y^2 + 216Y + 144)^3,
\]

\[
R_7(X,Y) = X^2 - XY(Y^2 - 21Y + 8)(Y^4 - 42Y^3 + 454Y^2 - 1008Y - 1280)
+ Y^2(Y^2 + 224Y + 448)^3.
\]

For each N and each prime $p \neq N$, the polynomial $R_N(X,Y)$ is absolutely irreducible over \mathbb{F}_p and defines a correspondence (in the sense of algebraic geometry) between the projective line $\mathbb{P}^1(\mathbb{F}_p)$ and itself; or equivalently, between the rational function field $\mathbb{F}_p(x)$ and itself (see [6]). In this correspondence, the points in \mathbb{F}_p corresponding to the j-invariants of supersingular elliptic curves are the supersingular invariants j^* for $\Gamma_0^*(N)$, and they are roots of a polynomial $ss_p^{(N*)}(X) \in \mathbb{F}_p[X]$:

\[
ss_p^{(N*)}(X) = \prod_{R_N(j^*)=0, ss_p(j)=0} (X - j^*) \in \mathbb{F}_p[X];
\]
the product running over the distinct roots \(j^* \) of \(R_N(j, j^*) = 0 \) in \(\mathbb{F}_p \), as \(j \) runs over the supersingular \(j \)-invariants in characteristic \(p \). (See [18], [19], [17].) It is well-known that the roots of \(ss_p(X) \) lie in \(\mathbb{F}_{p^2} \), and it was shown in [14, Section 6] that the values \(j^* \) lie in \(\mathbb{F}_{p^2} \), for \(N \in \{2, 3, 5, 7\} \). (See Tables 2 and 3 below for \(N = 5, 7 \).) Consequently, the above correspondence can be defined over \(\mathbb{F}_{p^2} \).

Nakaya’s Conjecture 4 takes the general form

\[
A_{N,p}(Y) \text{Res}_X(R_N(X,Y), ss_p(X)) = B_{N,p}(Y)ss_p^{(N^*)}(Y)^2 \pmod{p},
\]

where \(A_{N,p}(Y) \) and \(B_{N,p}(Y) \) are explicit polynomials of low degree which depend on \(N \) and the residue class of \(p \) \((\mod 12N)\). This formula arises from the fact that the correspondence \(X \to Y \) is generally 2−1, i.e. two values of \(X \) correspond to a single value of \(Y \). Exceptions occur where the correspondence is “ramified”, i.e., when \(j = 0 \) or \(j = 1728 \) is supersingular in characteristic \(p \), and for several other values of \(j \) in characteristic \(p \), depending on \(N \).

The proof of the above formula requires knowing a number of ring class polynomials \(H_d(X) \) explicitly (see [5]), and uses Deuring’s fundamental theorem [7] that if \(j \) is the \(j \)-invariant of an elliptic curve in characteristic 0 with complex multiplication by the imaginary quadratic order \(\mathcal{O} = \mathbb{R}_d \) of discriminant \(d \), then the reduction \(j \equiv j \pmod{p} \), modulo a prime divisor \(p \) of \(p \), is supersingular if and only if the Legendre symbol \(\left(\frac{d}{p} \right) \neq 1 \). Thus, part of the proof involves recognizing several ring class polynomials and their associated discriminants. See Lemmas 2 and 4 and their proofs. The proof also requires the fact that two isogenous elliptic curves in characteristic \(p \) are both supersingular when one of them is (see [20]). In the cases \(N = 5, 7 \) this requires that we exhibit an explicit isogeny between the Tate normal form \(E_N \) for a point of order \(N \) and its isogenous curve \(E_{N,N} = E_N/(0,0) \), in order to calculate their \(j \)-invariants. For \(N = 5 \) this isogeny has been worked out in [11] and [13]. For \(N = 7 \) we give a summary of the calculation in Section 3 (see Fact 7).

In Section 2 (Theorem 1) we work out the case \(N = 5 \), and in Section 3 (Theorem 3) we deal with the case \(N = 7 \). The cases \(N = 2, 3 \) are handled in Section 4 (Theorem 5). Taken together, these theorems cover all four cases of Nakaya’s Conjecture 4.

In Section 5 we give a simple proof of Nakaya’s Conjecture 2 [17], which says that in the cases \(N = 5, 7 \) the primes for which \(ss_p^{(N^*)}(X) \) splits into linear factors over \(\mathbb{F}_p \) coincide with the prime divisors of the order of a specific sporadic simple group (the Harada-Norton group \(HN \) and the Held group \(He \), respectively; see [4, Ch. 10]). Nakaya proved the analogous results for \(N = 2, 3 \) in [17] using an explicit formula for the number of linear factors of \(ss_p^{(N^*)}(X) \) over \(\mathbb{F}_p \) and a class number estimate. The proof given in Theorem 6 below is elementary, uses nothing about class numbers, and is also valid for the cases \(N = 2, 3 \) discussed by Nakaya. It shows that the set of primes for which \(ss_p^{(N^*)}(X) \)
splits into linear factors modulo p is always a subset of the primes for which the supersingular polynomial $ss_p(X)$ splits (mod p), so that the proof of Nakaya’s Conjecture 2 requires only a modest calculation.

2 The case $N = 5$.

Let the curve $R_5(X,Y) = 0$ be defined by

$$R_5(X,Y) = X^2 - X(Y^5 - 80Y^4 + 1890Y^3 - 12600Y^2 + 7776Y + 3456) + (Y^2 + 216Y + 144)^3.$$

This is a curve of genus 0 parametrized by the equations

$$X = -\frac{(z^2 + 12z + 16)^3}{z + 11}, \quad Y = -\frac{z^2 + 4}{z + 11}.$$

See [14, p. 263]. We have

\begin{align*}
\text{disc}_X R_5(X,Y) &= Y^2(Y - 4)^2(Y - 18)^2(Y - 36)^2(Y^2 - 44Y - 16) \quad (1) \\
\text{disc}_Y R_5(X,Y) &= 5^5 X^4(X - 1728)^4(X + 32^3)^2(X - 66^3)^2(X + 96^3)^2 \\
&= 5^5 X^4(X - 1728)^4 H_{-11}(X)^2 H_{-16}(X)^2 H_{-19}(X)^2. \quad (2)
\end{align*}

Define

\begin{align*}
\mu_5 &= \frac{1}{2} \left(1 - \left(-\frac{5}{p}\right)\right) \quad (3) \\
\delta &= \frac{1}{2} \left(1 - \left(-\frac{3}{p}\right)\right) \quad (4) \\
\varepsilon &= \frac{1}{2} \left(1 - \left(-\frac{4}{p}\right)\right). \quad (5)
\end{align*}

In this section we will prove the following theorem, conjectured by Nakaya [17, Conjecture 4].

Theorem 1. If $p \geq 7$ is a prime and $ss_p(X)$ denotes the supersingular polynomial in characteristic p, then

\begin{align*}
(Y^2 - 44Y - 16)^{\mu_5} \text{Res}_X (ss_p(X), R_5(X,Y)) &\equiv (6)
(Y^2 + 216Y + 144)^{\delta} (Y^2 - 540Y - 6480)\varepsilon ss_p^{(5^*)}(Y)^2 \quad \text{(mod } p). \quad (7)
\end{align*}

Lemma 2. We have the following class equations:

\begin{align*}
H_{-20}(X) &= X^2 - 1264000X - 681472000, \\
H_{-75}(X) &= X^2 + 654403829760X + 5209253090426880, \\
H_{-100}(X) &= X^2 - 44031499226496X - 292143758886942437376.
\end{align*}
Proof. For $H_{-20}(X)$, see [15, p. 8]. For $H_{-75}(X)$, note from [2, p. 311] that

$$
\gamma_2\left(\frac{3 + \sqrt{75}}{2}\right) = \left(j\left(\frac{3 + \sqrt{75}}{2}\right)\right)^{1/3} = -32 \cdot 3^{1/6} \left(\frac{69 + 31\sqrt{5}}{2}\right).
$$

Then $H_{-75}(X)$ is the minimal polynomial of the quadratic irrationality

$$
\gamma_2\left(\frac{3 + \sqrt{75}}{2}\right) = \left(j\left(\frac{3 + \sqrt{75}}{2}\right)\right)^{1/3} = -32 \cdot 3^{1/6} \left(\frac{69 + 31\sqrt{5}}{2}\right).
$$

To compute the class equation $H_{-100}(X)$ we use the Rogers-Ramanujan continued fraction $r(\tau)$. From [8, p. 138] we have the well-known value of Ramanujan,

$$
r(i) = \sqrt{\frac{5 + \sqrt{5}}{2}} - \frac{1 + \sqrt{5}}{2},
$$

whose minimal polynomial is

$$
f(x) = x^4 + 2x^3 - 6x^2 - 2x + 1.
$$

The minimal polynomial $f_5(x)$ of $r(5i)$ can be found using the identity

$$
r^5(r) = r^4 - 3r^3 + 4r^2 - 2r + 1,
$$

where $r = r(5\tau)$.

See [1] p. 93. Setting

$$
g(x, y) = (y^4 + 2y^3 + 4y^2 + 3y + 1)x^5 - y(y^4 - 3y^3 + 4y^2 - 2y + 1),
$$

the polynomial $f_5(x)$ must divide the resultant

$$
\text{Res}_t(f(t), g(t, x)) = x^{20} + 510x^{19} - 13590x^{18} + 32280x^{17} - 82230x^{16} + 153522x^{15} - 302910x^{14} + 273540x^{13} - 412830x^{12} + 268230x^{11} - 262006x^{10} - 268230x^9 - 412830x^8 - 273540x^7 - 302910x^6 - 153522x^5 - 82230x^4 - 32280x^3 - 13590x^2 - 510x + 1.
$$

This polynomial is irreducible, and so equals $f_5(x)$. Now $j(5i)$ can be found from the relation

$$
F(r, j) = (r^{20} - 228r^{15} + 494r^{10} + 228r^{5} + 1)^3 + j(r)r^5(r^{10} + 11r^5 - 1)^5 = 0.
$$

(See [8] p. 138]). Taking the resultant

$$
\text{Res}_t(f_5(t), F(t, X)) = 5^{300}(X^2 - 44031499226496X - 292143758886942437376)^{10}
$$
shows that $H_{-100}(X)$, which is the minimal polynomial of $j(5i)$, is given by the polynomial in the lemma. See also the values for $j(5i)$ given in [3, p. 58] and [10, p. 202].

A similar proof may be given for $H_{-75}(X)$ starting with the value $r(\rho)$ in place of $r(i)$, where $\rho = -\frac{1+\sqrt{5}}{2}$:

$$r(\rho) = e^{-\pi i/5} \left(\frac{\sqrt{30} + 6\sqrt{5} - 3 - \sqrt{5}}{4} \right),$$

whose fifth power has the minimal polynomial

$$g_3(x) = x^4 - 228x^3 + 494x^2 + 228x + 1.$$

See [8, Eq. (2.4)]. □

The proof of Theorem 1 is given in the course of verifying the following facts.

Fact 1. All the roots of $(Y^2 - 44Y - 16)^{\mu_5} \text{Res}_X(ss_p(X), R_5(X,Y))$ are roots of $ss_p^{(5*)}(Y)$.

This is clear by definition for the resultant. The factor $Y^2 - 44Y - 16$ arises from roots X of $H_{-20}(X)$, since

$$\text{Res}_Y(R_5(X,Y), Y^2 - 44Y - 16) = (X^2 - 1264000X - 681472000)^2 = H_{-20}(X)^2.$$

Furthermore,

$$\text{Res}_X(H_{-20}(X), R_5(X,Y)) = (Y^2 - 44Y - 16)h_{20}(Y), \quad (8)$$

where

$$h_{20}(Y) = Y^{10} - 1262660Y^9 - 1454280320Y^8 - 69099329600Y^7 - 10276940953600Y^6 + 460141172243456Y^5 - 3888238950420480Y^4 - 12956776173404160Y^3 - 415176163957145600Y^2 - 345243549014425600Y - 512182838955606016.$$

Since the roots of $H_{-20}(X)$ are supersingular j-invariants in characteristic p exactly when $\left(\frac{-5}{p}\right) = -1$ (for primes $p > 7$), i.e., when $\mu_5 = 1$, we see that the roots of $Y^2 - 44Y - 16 = 0$ are roots of $ss_p^{(5*)}(X)$ in this case.

Fact 2. Since $R_5(X,Y)$ is quadratic in X, each root y of $ss_p^{(5*)}(Y) = 0$ arises from exactly two roots x of $R_5(X,y) = 0$, except for the following values, which
are all roots of the discriminant in equation (1).

\[y = 0 \] corresponds to \(x = 1728 \), since \(R_5(1728, Y) = Y^2 h_4(Y)^2 \)
\[= Y^2 (Y^2 - 540Y - 6480)^2 \] and \(R_5(X, 0) = (X - 1728)^2 \);
\[y = 4 \] corresponds to \(x = -324 \), since \(R_5(-324, Y) = (Y - 4)^2 h_{11}(Y) \)
\[= (Y - 4)^2 (Y^4 + 33424Y^3 - 2213664Y^2 + 53951744Y + 74373376) \]
and \(R_5(X, 4) = (X + 324)^2 \);
\[y = 18 \] corresponds to \(x = 663 \), since \(R_5(663, Y) = (Y - 18)^2 h_{16}(Y) \)
\[= (Y - 18)^2 (Y^4 - 286812Y^3 + 12814524Y^2 + 21146832Y + 25204736) \]
and \(R_5(X, 18) = (X - 663)^2 \);
\[y = 36 \] corresponds to \(x = -963 \), since \(R_5(-963, Y) = (Y - 36)^2 h_{19}(Y) \)
\[= (Y - 36)^2 (Y^4 + 885456Y^3 - 6886944Y^2 + 39004416Y + 606341376) \]
and \(R_5(X, 36) = (X + 963)^2 \).

It follows that for these values \((Y - y)^2 \) exactly divides the resultant in (6), when the corresponding \(X \)-value is supersingular (corresponding to quadratic discriminants \(d = -4, -11, -16, -19 \), see (2)), and so are accounted for in (7) by the factor \(s_{pp}(5^*) (Y)^2 \). This requires that we take \(p \) to be a prime not dividing the values at \(y \) of each of the cofactors of \((Y - y)^2 \) in these four cases:

- \(y = 0 : h_4(0) = -6480 = -2^4 \cdot 3^4 \cdot 5 \)
- \(y = 4 : h_{11}(4) = 256901120 = 2^{20} \cdot 5 \cdot 7^2 \)
- \(y = 18 : h_{16}(18) = 3112013520 = 2^4 \cdot 3^8 \cdot 5 \cdot 7^2 \cdot 11^2 \)
- \(y = 36 : h_{19}(36) = 34398535680 = 2^{20} \cdot 3^8 \cdot 5 \)

Hence, we must require that \(p \notin \{2, 3, 5, 7, 11\} \).

Finally, each of the roots of \(Y^2 - 44Y - 16 \) arises from only one value of \(X \), by the first resultant calculation in Fact 1. The second resultant calculation (8) shows that this factor occurs only to the first power in \(\text{Res}_X(s_{sp}(X), R_5(X, Y)) \), when \(p \notin \{2, 5, 11, 13, 17, 19\} \), which is the set of primes dividing the integer resultant

\[\text{Res}_Y(Y^2 - 44Y - 16, h_{20}(Y)) = 2^{60} \cdot 5^6 \cdot 11^6 \cdot 13^4 \cdot 17^4 \cdot 19^2. \]

Hence, \(Y^2 - 44Y - 16 \) and \(h_{20}(Y) \) have no factor in common when \(p > 19 \) and \(\mu_5 = 1 \); then the factor \((Y^2 - 44Y - 16)^2 \) exactly divides (6) and is accounted for by the same factor of \(s_{sp}(5^*) (Y)^2 \) in (7). Otherwise, \(\mu_5 = 0 \) and the roots of \(H_{-20}(X) \) are not supersingular for \(p \), in which case the factor \(Y^2 - 44Y - 16 \) does not occur.

Note that the \(Y \)-values above are distinct for primes \(p > 19 \), since

\[\text{Disc}_Y(Y(Y - 4)(Y - 18)(Y - 36)(Y^2 - 44Y - 16)) = 2^{56} \cdot 3^{12} \cdot 5^3 \cdot 7^2 \cdot 11^6 \cdot 19^2. \]
Similarly, the above X-values, i.e. the roots of (2), are distinct for $p > 19$ and $p \neq 43, 67$, since

$$\text{disc}_X(X(X - 1728)(X + 32^3)(X - 66^3)(X + 96^3)) = 2^{152} \cdot 3^{56} \cdot 7^{12} \cdot 11^8 \cdot 13^2 \cdot 19^4 \cdot 43^2 \cdot 67^2.$$

Fact 3. If y is a root of (6) corresponding to two distinct X-values, and one of these values x is a root of $ss_p(X)$, then the second value is also.

This can be seen as follows. It suffices to show this for the resultant in (6). It can be checked on Maple that

$$R_5 \left(X, \frac{-z^2 + 4}{z + 11} \right) = \left(X + \frac{(z^2 + 12z + 16)^3}{z + 11} \right) \left(X + \frac{(z^2 - 228z + 496)^3}{(z + 11)^5} \right).$$

By [13] Eqs. (5), (8) and [11] pp. 258-259, the roots of (9), namely

$$j_5 = -\frac{(z^2 + 12z + 16)^3}{z + 11} \quad \text{and} \quad j_{5,5} = -\frac{(z^2 - 228z + 496)^3}{(z + 11)^5},$$

are the j-invariants of the isogenous elliptic curves

$$E_5 : Y^2 + (1 + b)XY + bY = X^3 + bX^2, \quad z = b - \frac{1}{b},$$

(this is the Tate normal form for a point of order 5) and

$$E_{5,5} : Y^2 + (1 + b)XY + 5bY = X^3 + 7bX^2 + 6(b^3 + b^2 - b)X + b^5 + b^4 - 10b^3 - 29b^2 - b.$$

If j_5 is supersingular, then $j_{5,5}$ is supersingular, and vice-versa.

Fact 4. The only roots y of $ss_p(5^5)(Y)$ which occur to a power higher than the second in (6) are those which correspond to the roots of the discriminant (2), because $R_5(x, Y)$ must have the square factor $(Y - y)^2$ for at least one of the X-values x corresponding to $Y = y$.

We have already discussed these roots in Fact 2, except for $x = 0$. We can ignore the cofactors $h_{11}(Y), h_{16}(Y), h_{19}(Y)$ in Fact 2 for $x = -32^3, 66^3, -96^3$ (corresponding to $y = 4, 18, 36$) when the prime $p \notin \{2, 3, 5, 7, 11, 13, 19, 43, 67\}$, since this set contains the prime factors of the discriminants of these polynomials (as well as the discriminants of $h_4(Y)$ and $Y^2 + 216Y + 144$; see below). For all other primes, these cofactors do not have multiple roots; and since their factors do not occur to a power higher than the first for the other roots $x \in \{-32^3, 66^3, -96^3\}$ of (2), they cannot occur to a power higher than the second in (6), unless one of these roots also occurs for $x = 0$ or $x = 1728$. Any such roots will be covered by the cases $x = 1728$ and $x = 0$ considered next.

The multiple roots y corresponding to $x = 1728$ in Fact 2 come from the factorization

$$R_5(1728, Y) = Y^2(Y^2 - 540Y - 6480)^2.$$
Note that
\[
\text{Res}_Y(R_5(X,Y), Y^2 - 540Y - 6480) = (X - 1728)^2(X^2 - 44031499226496X - 29214375888694237367) = (X - 1728)^2 H_{-100}(X),
\]
by Lemma 2. The roots of \(H_{-100}(X) \) are supersingular (for \(p \geq 7 \)) exactly when \(\left(\frac{-100}{p} \right) = \left(\frac{-1}{p} \right) = -1 \), i.e. when \(\varepsilon = 1 \). Moreover, the factor \(Y^2 - 540Y - 6480 \) occurs to only the first power in \(\text{Res}_X(H_{-100}(X), R_5(X,Y)) = (Y^2 - 540Y - 6480)h_{100}(Y) \)
\[
= (Y^2 - 540Y - 6480)(Y^{10} - 44031499224660Y^9 - 292192545788083696320Y^8
- 111045241276874215905600Y^7 - 64831872214747570823193600Y^6
- 35633053928236823323495040Y^5 - 19661658654621205173476830924800Y^4
+ 201660043546253015259243029094400Y^3
- 6725337940769529512012174852096000Y^2
+ 1082713527360852989716901652332544000Y
- 131778453697588401178483478416916480),
\]
for primes not dividing \(\text{Res}_Y(Y^2 - 540Y - 6480, h_{100}(Y)) = 2^{68} \cdot 3^{42} \cdot 5^2 \cdot 7^{12} \cdot 11^6 \cdot 19^4 \cdot 23^2 \cdot 47^2 \cdot 59^2 \cdot 71^2 \cdot 83^2 \).

Hence, when \(\varepsilon = 1 \) and \(p \notin \{2, 3, 5, 7, 11, 19, 23, 47, 59, 71, 83\} \),
the factor \(Y^2 - 540Y - 6480 \) occurs to exactly the third power in (6): twice for \(x = 1728 \) and once for \(H_{-100}(X) \), when these are supersingular. This explains the factor \((Y^2 - 540Y - 6480)^2 \) in (7), since \(Y^2 - 540Y - 6480 \) exactly divides \(ss_p(5x) \).

The multiple roots \(y \) corresponding to \(x = 0 \) arise from
\[
R_5(0,Y) = (Y^2 + 216Y + 144)^3,
\]
while
\[
\text{Res}_Y(R_5(X,Y), Y^2 + 216Y + 144) = X^2 H_{-75}(X) = X^2(X^2 + 654403829760X + 5209253090426880).
\]
The roots of \(H_{-75}(X) \) are supersingular (for \(p \geq 7 \)) exactly when \(\left(\frac{-75}{p} \right) = \)
\(\left(\frac{-3}{p} \right) = -1 \), i.e. when \(\delta = 1 \). Further,

\[
\text{Res}_X(H_{-75}(X), R_5(X, Y)) = (Y^2 + 216Y + 144)h_{75}(Y)
\]
\[
= (Y^2 + 216Y + 144)(Y^{10} + 654403830840Y^9 + 5439603238969680Y^8
\]
\[
- 194933820163113600Y^7 + 473463907652088230400Y^6
\]
\[
- 104049869016988552310784Y^5 + 228745192464039048606720Y^4
\]
\[
- 12397696227185754855757760Y^3 + 5190628191876349645557104600Y^2
\]
\[
- 19466555674891160362178969600Y + 279141650822621456977854726144)
\]

where

\[
\text{Res}_Y(Y^2 + 216Y + 144, h_{75}(Y)) = 2^{102} \cdot 3^{26} \cdot 5^2 \cdot 11^8 \cdot 17^2 \cdot 23^2 \cdot 47^2 \cdot 59 \cdot 71.
\]

It follows that the exact power of \(Y^2 + 216Y + 144 \) dividing (6) is the fourth, when \(\delta = 1 \) and \(p > 71 \), which explains the presence of the factor \((Y^2 + 216Y + 144)^2 \) in (7).

Facts 1-4 prove the equality in (6) and (7) for all primes \(p \) not in the set

\(S_5 = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 43, 47, 59, 67, 71, 83\} \).

Using Tables 1 and 2 we check Theorem 1 directly for the 12 primes \(\geq 7 \) in \(S_5 \). This completes the proof of Theorem 1.

3 The case \(N = 7 \).

Let the curve \(R_7(X, Y) = 0 \) be defined by

\[
R_7(X, Y) = X^2 - XY(Y^2 - 21Y + 8)(Y^4 - 42Y^3 + 454Y^2 - 1008Y - 1280)
\]
\[
+ Y^2(Y^2 + 224Y + 448)^3.
\]

This is a curve of genus 0 parametrized by the equations

\[
X = \frac{(z^2 - 3z + 9)(z^2 - 11z + 25)^3}{z - 8}, \quad Y = \frac{z^2 - 3z + 9}{z - 8}
\]

See [14] p. 264. We have

\[
\text{disc}_XR_7(X, Y) = (Y + 1)(Y - 27)Y^2(Y - 2)^2(Y - 8)^2(Y - 24)^2
\]
\[
\times (Y^2 - 16Y - 8)^2
\]
\[
\text{disc}_YR_7(X, Y) = -7^7X^6(X - 1728)^4(X - 54000)^2(X + 96)^3
\]
\[
\times (X + 12288000)^2(X^2 - 4834944X + 14670139392)^2
\]
\[
= -7^7X^6(X - 1728)^4H_{-12}(X)^2H_{-19}(X)^2H_{-27}(X)^2H_{-24}(X)^2.
\]
Table 1: $ss_p(x)$ for $3 < p < 100$.

p	$ss_p(x) \mod p$
5	x
7	$x + 1$
11	$x(x + 10)$
13	$x + 8$
17	$x(x + 9)$
19	$(x + 1)(x + 12)$
23	$x(x + 4)(x + 20)$
29	$x(x + 4)(x + 27)$
31	$(x + 8)(x + 27)(x + 29)$
37	$(x + 29)(x^2 + 31x + 31)$
41	$x(x + 9)(x + 13)(x + 38)$
43	$(x + 2)(x + 35)(x^2 + 19x + 16)$
47	$x(x + 3)(x + 11)(x + 37)(x + 38)$
53	$x(x + 3)(x + 7)(x^2 + 50x + 39)$
59	$x(x + 11)(x + 12)(x + 31)(x + 42)(x + 44)$
61	$(x + 11)(x + 20)(x + 52)(x^2 + 38x + 24)$
67	$(x + 1)(x + 14)(x^2 + 8x + 45)(x^2 + 44x + 24)$
71	$x(x + 5)(x + 23)(x + 30)(x + 31)(x + 47)(x + 54)$
73	$(x + 17)(x + 64)(x^2 + 57x + 8)(x^2 + 68x + 9)$
79	$(x + 10)(x + 15)(x + 58)(x + 62)(x + 64)(x^2 + 14x + 62)$
83	$x(x + 15)(x + 16)(x + 33)(x + 55)(x + 66)(x^2 + 7x + 73)$
89	$x(x + 23)(x + 37)(x + 76)(x + 82)(x + 83)(x^2 + 26x + 56)$
97	$(x + 77)(x + 96)(x^2 + 7x + 45)(x^2 + 32x + 67)(x^2 + 42x + 8)$
Table 2: $ss_{p}^{(5*)}(Y)$ for $p \in S_{5} - \{2, 3, 5\}$.

p	$ss_{p}^{(5*)}(Y) \mod p$
7	$Y(Y + 3)$
11	$(Y + 3)(Y + 4)(Y + 7)$
13	$(Y + 3)(Y + 9)(Y^2 + 8Y + 10)$
17	$(Y + 13)(Y^2 + 7Y + 1)(Y^2 + 12Y + 8)$
19	$Y(Y + 1)(Y + 2)(Y + 9)(Y + 11)(Y + 15)$
23	$Y(Y + 5)(Y^2 + 9Y + 6)(Y^2 + 12Y + 6)$
43	$Y(Y + 3)(Y + 14)(Y + 25)(Y + 28)(Y + 39)(Y + 41)$
	$\times (Y^2 + 6Y + 40)(Y^2 + 19Y + 13)$
47	$Y(Y + 29)(Y^2 + 12Y + 3)(Y^2 + 17Y + 2)$
	$\times (Y^2 + 24Y + 6)(Y^2 + 28Y + 3)(Y^2 + 34Y + 2)$
59	$Y(Y + 3)(Y + 16)(Y + 19)(Y + 20)(Y + 23)(Y + 28)(Y + 30)(Y + 41)$
	$\times (Y + 58)(Y^2 + 15Y + 1)(Y^2 + 24Y + 35)(Y^2 + 58Y + 51)$
67	$Y(Y + 3)(Y + 12)(Y + 25)(Y + 28)(Y + 31)(Y + 49)(Y + 54)(Y + 62)$
	$\times (Y^2 + 14Y + 47)(Y^2 + 20Y + 47)(Y^2 + 44Y + 16)(Y^2 + 63Y + 19)$
71	$Y(Y + 1)(Y + 2)(Y + 3)(Y + 6)(Y + 21)(Y + 26)(Y + 35)(Y + 53)(Y + 66)$
	$\times (Y + 70)(Y^2 + 3Y + 6)(Y^2 + 11Y + 9)(Y^2 + 12Y + 2)(Y^2 + 27Y + 27)$
83	$Y(Y + 11)(Y + 39)(Y + 79)(Y^2 + 12Y + 31)(Y^2 + 23Y + 28)$
	$\times (Y^2 + 24Y + 1)(Y^2 + 35Y + 26)(Y^2 + 41Y + 77)$
	$\times (Y^2 + 50Y + 61)(Y^2 + 57Y + 10)(Y^2 + 65Y + 26)$
Define
\[\mu_7 = \frac{1}{2} \left(1 - \left(-\frac{7}{p} \right) \right). \] (12)

We want to prove the following.

Theorem 3. For a prime \(p \geq 5 \) and \(p \neq 7 \) we have the following congruence modulo \(p \):

\[(Y + 1)^{p^r}(Y - 27)^{p^r} \text{Res}_X (ss_p(X), R_7(X, Y)) \equiv \] (13)
\[(Y^2 + 224Y + 448)^{28}(Y^4 - 528Y^3 - 9024Y^2 - 5120Y - 1728) \cdot ss_p(7^r)(Y)^2. \] (14)

Lemma 4. We have the following class equations:

\[H_{-7}(X) = X + 15^3, \]
\[H_{-28}(X) = X - 255^3, \]
\[H_{-24}(X) = X^2 - 4834944X + 14670139392, \]
\[H_{-147}(X) = X^2 + 348850555289600X + 1135680038948048000000, \]
\[H_{-196}(X) = X^4 - 12626092121367165696X^3 \]
\[+ 44864481851299856707307347968X^2 \]
\[+ 25085070195783776512539510177792X \]
\[- 2108010653658430719613224868701536256. \]

Proof. See Cox [5, p. 237] for \(H_{-7}(X), H_{-28}(X) \). For \(H_{-24}(X) \) see Fricke [9, III, p. 401] or [13, p. 1191]. One may also use Berwick [3, p. 57], according to which

\[j \left(\sqrt{6}i \right) = 2^6 \cdot 3^3 \cdot (1 + \sqrt{2})^5(-1 + 3\sqrt{2})^3, \]

and whose minimal polynomial is \(H_{-24}(X) \). From Berwick [3 pp. 58] we also have

\[j \left(\frac{-1 + 7\sqrt{3}i}{2} \right) = -3\sqrt{21} \cdot 2^{15} \cdot 15^3 \cdot \left(\frac{5 + \sqrt{21}}{2} \right)^9(-2 + \sqrt{21})^3, \]

and its minimal polynomial is \(H_{-147}(X) \).

To verify the polynomial \(H_{-196}(X) \) we use the same method as in Lemma 2. The value \(r(i) \) has minimal polynomial

\[f(x) = x^4 + 2x^3 - 6x^2 - 2x + 1. \]

This time we use Yi’s relation from [21, Thm. 3.3] between \(u = r(\tau) \) and \(v = r(7\tau) \) given by \(P_7(u, v) = 0 \), where

\[P_7(u, v) = u^8v^7 + (-7v^5 + 1)u^7 + 7u^6v^3 + 7(-v^6 + v)u^5 + 35u^4v^4+ 7(v^7 + v^2)u^3 - 7u^2v^5 - (v^8 + 7v^3)u - v, \]
to compute the resultant of $f(t)$ and $P_7(t,y)$:

$$\text{Res}_t(f(t), P_7(t,y)) = y^{32} + 6526y^{31} - 560286y^{30} + 1894660y^{29} - 1558920y^{28} + 97188y^{27} + 1383158y^{26} - 16089708y^{25} + 33009225y^{24} - 23680900y^{23} + 11485610y^{22} + 17984710y^{21} - 116298560y^{20} + 132435800y^{19} - 75016500y^{18} + 109981440y^{17} + 28870465y^{16} - 109981440y^{15} + 75016500y^{14} - 132435800y^{13} - 116298560y^{12} - 17984710y^{11} + 11485610y^{10} + 23680900y^9 + 33009225y^8 + 16089708y^7 + 1383158y^6 - 97188y^5 - 1558920y^4 - 1894660y^3 - 560286y^2 - 6526y + 1.
$$

This is the minimal polynomial $f_{196}(y)$ of $r(7i)$. Now $H_{-196}(X)$ may be computed using the resultant

$$\text{Res}_y(f_{196}(y), F(y, X)) = 5^{1480}(X^4 - 12626092121367165696X^3 - 4486448185129985670730749768X^2 + 250850701957837760512539510177792X - 2108010653658430719613224868701536256)^8.$$

Alternatively, one may use the polynomial $p_{196}(x)$ from [16, Section 5, Ex. 3]:

$$p_{196}(x) = x^{16} + 14x^{15} + 64x^{14} + 84x^{13} - 35x^{12} - 14x^{11} + 196x^{10} + 672x^9 + 1029x^8 - 672x^7 + 196x^6 + 14x^5 - 35x^4 - 84x^3 + 64x^2 - 14x + 1;$$

which is the minimal polynomial of the value $r\left(-\frac{4i+7i}{p}\right) = r\left(\frac{14i}{p}\right)$, and compute that

$$\text{Res}_y(p_{196}(y), F(y, X)) = 5^{120}H_{-196}(X)^4.$$

□

We turn now to the proof of Theorem 3.

Fact 5. All the roots of $(Y + 1)^{\mu_7}(Y - 27)^{\mu_7}\text{Res}_X(ss_p(X), R_7(X,Y))$ are roots of $ss_p^{(7^*_p)}(Y)$.

As in Fact 1 we just have to consider the factor $(Y + 1)(Y - 27)$ in (13). We have from Lemma 4 that

$$\text{Res}_Y((Y + 1)(Y - 27), R_7(X,Y)) = (X + 15^3)^2(X - 225^3)^2 = H_{-7}(X)^2H_{-28}(X)^2.$$

Hence, the factors $Y + 1, Y - 27$ occur as factors of $ss_p^{(7^*_p)}(Y)$, for $p \neq 7$ if and only if $\left(\frac{-7}{p}\right) = -1$, i.e. if and only if $\mu_7 = 1$.

Furthermore,

$$R(-15^3, Y) = (Y + 1)h_7(Y) = (Y + 1)(Y^7 + 4046Y^6 - 647999Y^5 + 16442335Y^4 + 14883071Y^3 + 199370017Y^2 - 45950625Y + 11390625),$$

$$R(225^3, Y) = (Y - 27)h_{28}(Y) = (Y - 27)(Y^7 - 16580676Y^6 + 597100245Y^5 - 6151819849Y^4 + 14341109983Y^3 - 2649367371Y^2 - 383438155625Y - 10183036921875).$$

13
Since \(h_7(-1) = 3^{10} \cdot 5^4 \cdot 7 \) and \(h_{28}(27) = -3^8 \cdot 5^4 \cdot 7 \cdot 17^4 \cdot 19^2 \), then for primes \(p > 19 \) the factors \(Y + 1 \) and \(Y - 27 \) occur to exactly the second power in (13) when \(\mu_7 = 1 \), and so are accounted for by \(ss_p^{(7^*)}(Y)^2 \) in (14).

Fact 6. Since \(R_7(X,Y) \) is quadratic in \(X \), each root \(y \) of \(ss_p^{(7^*)}(Y) = 0 \) arises from exactly two roots \(x \) of \(R_7(X,y) = 0 \), except for the following values, which are all roots of the discriminant in equation (10).

The argument here is similar to the argument in Fact 2:

\[
y = 0 \text{ corresponds to } x = 0, \text{ since } R_7(0,Y) = Y^3 h_3(Y)^2 \\
= Y^2(Y^2 + 224Y + 448)^3 \text{ and } R_7(X,0) = X^2;
\]

\[
y = 2 \text{ corresponds to } x = 54000, \text{ since } R_7(54000,Y) = (Y - 2)^2 h_{12}(Y) \\
= (Y - 2)^2(Y^6 - 53324Y^5 + 3340572Y^4 - 47158880Y^3 + 453452848Y^2 \\
+ 867240000Y + 729000000)
\]

and \(R_7(X,2) = (X - 54000)^2 \);

\[
y = 8 \text{ corresponds to } x = -96^3, \text{ since } R_7(-96^3,Y) = (Y - 8)^2 h_{19}^*(Y) \\
= (Y - 8)^2(Y^6 + 885424Y^5 - 41419776Y^4 + 481543168Y^3 + 799436800Y^2 \\
+ 2916089856Y + 12230590464)
\]

and \(R_7(X,8) = (X + 96^3)^2 \);

\[
y = 24 \text{ corresponds to } x = -12288000, \text{ since } R_7(-12288000,Y) \\
= (Y - 24)^2 h_{27}(Y) \\
= (Y - 24)^2(Y^6 + 12288720Y^5 - 184134144Y^4 + 610171904Y^3 \\
+ 1748692992Y^2 + 21626880000Y + 26214400000)
\]

and \(R_7(X,24) = (X + 12288000)^2 \).

It follows that for these values \((Y-y)^2\) exactly divides the resultant in (13), when the corresponding \(X\)-value is supersingular (corresponding to quadratic discriminants \(d = -3, -12, -19, -27\); see (11)), and so are accounted for in (14) by the factor \(ss_p^{(7^*)}(Y)^2 \). As in Fact 2, this will be true for the primes which do not divide the following values, which are the values of each of the above four cofactors of \((Y-y)^2\) evaluated at \(y\):

\[
y = 0: \ h_3(0) = 448 = 2^6 \cdot 7;
\]

\[
y = 2: \ h_{12}(2) = 3951763200 = 2^8 \cdot 3^6 \cdot 5^2 \cdot 7 \cdot 11^2;
\]

\[
y = 8: \ h_{19}(8) = 192631799808 = 2^{22} \cdot 3^8 \cdot 7;
\]

\[
y = 24: \ h_{27}(24) = 46982810828800 = 2^{22} \cdot 5^2 \cdot 7 \cdot 11^2 \cdot 23^2.
\]

For the last factor \(Y^2 - 16Y - 8\) in (10) we have

\[
\text{Res}_Y(R_7(X,Y), Y^2 - 16Y - 8) = (X^2 - 4834944X + 14670139392)^2 = H_{-24}(X)^2
\]

14
and

\[\text{Res}_X (H_{-24}(X), R_7(X, Y)) = (Y^2 - 16Y - 8)^2 h_{24}(X) \]
\[= (Y^2 - 16Y - 8)^2(Y^{12} - 4833568Y^{11} + 11571739408Y^{10} - 2012852637952Y^9 + 15204068799424Y^8 + 493204380225536Y^7 + 11141216141178880Y^6 - 31850426719240192Y^5 + 18490090819144992Y^4 + 1598968808958984Y^3 + 7770514603029626880Y^2 - 2102123472092135424Y + 3362702965323595776); \]

where

\[\text{Res}_Y (Y^2 - 16Y - 8), h_{24}(Y)) = 2^{54} \cdot 3^{20} \cdot 7^2 \cdot 13^4 \cdot 17^2 \cdot 19^4 \cdot 23^2. \]

Hence, the factor \(Y^2 - 16Y - 8 \) is also accounted for in the factorization of (14), for primes \(p > 23 \).

Note that the above \(y \)-values are distinct for \(p > 23 \), since

\[\text{disc}_Y (Y(Y + 1)(Y - 27)(Y - 8)Y^2 - 24Y - 8)) = 2^{57} \cdot 3^{32} \cdot 5^8 \cdot 7^2 \cdot 11^2 \cdot 17^4 \cdot 19^2 \cdot 23^2. \]

Fact 7. For values \(y \) corresponding to two distinct \(X \)-values, both \(X \)-values are supersingular when one of them is.

This follows from the factorization

\[R_7 \left(X, \frac{z^2 - 3z + 9}{z - 8} \right) = \left(X - \frac{(z^2 - 3z + 9)(z^2 - 11z + 25)^3}{z - 8} \right) \times \left(X - \frac{(z^2 - 3z + 9)(z^2 + 229z + 505)^3}{(z - 8)^3} \right). \]

This is because, with

\[z = \frac{8d^3 - 15d^2 - 9d + 8}{d^3 - 8d^2 + 5d + 1}, \]

the quantity

\[j_7 = \frac{(z^2 - 3z + 9)(z^2 + 229z + 505)^3}{(z - 8)^3} \]
\[= \frac{(d^2 - d + 1)^3(d^6 - 11d^5 + 30d^4 - 15d^3 - 10d^2 + 5d + 1)^3}{(d^3 - 8d^2 + 5d + 1)(d - 1)^7d^7} \]

is the \(j \)-invariant of the Tate normal form for a point of order 7:

\[E_7 : Y^2 + (1 + d - d^2)XY + (d^2 - d^3)Y = X^3 + (d^2 - d^3)X^2; \]

and

\[j_{7,7} = \frac{(z^2 - 3z + 9)(z^2 - 11z + 25)^3}{z - 8} \]
\[= \frac{(d^2 - d + 1)^3(d^6 + 229d^5 + 270d^4 - 1695d^3 + 1430d^2 - 235d + 1)^3}{d(d - 1)(d^3 - 8d^2 + 5d + 1)^7} \]
is the j-invariant of the isogenous curve

$$E_{7,7} : Y^2 + (1 + d - d^3)XY + 7(d^2 - d^3)Y = X^3 - d(d - 1)(7d + 6)X^2$$

$$- 6d(d - 1)(d^2 - 2d^4 - 7d^3 + 9d^2 - 3d + 1)X$$

$$- d(d - 1)(d^3 - 2d^8 - 34d^7 + 153d^6 - 229d^5 + 199d^4 - 111d^3 + 28d^2 - 7d + 1).$$

The j-invariants in (17) and (19) can be verified using the formulas in [20, p. 42] (in which the formula for b_2 should read $b_2 = a_1^2 + 4a_2$). The fact that E_7 and $E_{7,7}$ are isogenous can be seen using the method of [11, Section 5]. Let τ be the following translation automorphism of the function field $F(x, y)$ defined by the equation (18) for E_7:

$$(x, y)^\tau = (x, y) + (0, 0) = \left(\frac{d^2(d - 1)y}{x^2}, \frac{d^4(d - 1)^2(x^2 - y)}{x^3}\right).$$

Then τ has order 7 and by [11, Prop. 3.4] the fixed field inside $F(x, y)$ of the group (τ) is the field $F(u, v)$, where

$$u = \sum_{i=0}^{6} x^i, \quad \frac{A(x)}{x^2(d^2 - d - x)^2(d^2 - d^2 - x)^2};$$

$$v = \sum_{i=0}^{6} y^i, \quad \frac{B(x) + d(d - 1)C(x)y}{x^3(d^2 - d - x)^3(d^2 - d^2 - x)^3};$$

The polynomial $A(x)$ is given by

$$A(x) = x^7 + d(d - 1)(d^5 - 2d^4 - 7d^3 + 9d^2 - 3d + 1)x^5$$

$$- d^2(d - 1)^2(4d^4 - 17d^3 + 12d^2 - 5d + 1)x^4$$

$$+ d^4(d - 1)^3(5d^5 - 3d^4 - 4d^2 - 3d - 1)x^3$$

$$- d^6(d - 1)^4(d + 1)(d^2 - 3d - 3)x^2 + d^8(d - 1)^5(d^2 - 3d - 3)x$$

$$+ d^{10}(d - 1)^6.$$}

The polynomials $B(x)$ and $C(x)$ are given by

$$B(x) = (x^3 + (d^2 - d)x^2 - (d^5 - 3d^4 + 2d^3)x - d^7 + 2d^6 - d^5)$$

$$\times (x^3 - 4(d^3 - d^2)x^2 - (d^7 - 7d^6 + 10d^5 - 3d^4 - d^3)x - 2d^8 + 6d^7 - 6d^6 + 2d^5)$$

$$\times (x^3 + (d^3 - 5d^2 + 4d)x^2 + (2d^4 - 3d^3 + d)x - d^6 + 3d^5 - 3d^4 + d^3);$$

$$C(x) = \frac{A(x)}{x^2(d^2 - d - x)^2(d^2 - d^2 - x)^2}.$$
and

\[
C(x) = (d^3 + d - 1)x^9 + (d^7 - 3d^6 - 7d^5 + 13d^4 - 5d^3 + 2d^2 + 2d - 1)x^8 \\
- d^2(d - 1)(6d^6 - 32d^5 + 28d^4 - 15d^3 + 5d^2 + 18d - 2)x^7 \\
+ d^3(d - 1)^2(3d^7 - 13d^6 + 4d^5 - 23d^4 - 7d^3 + 52d^2 + 9d + 3)x^6 \\
- d^4(d - 1)^3(d^8 - 5d^7 + 11d^6 - 28d^5 - 44d^4 + 63d^3 + 41d^2 + 16d + 1)x^5 \\
+ d^5(d - 1)^4(d^9 + 5d^8 - 52d^7 + 15d^6 + 60d^5 + 36d^4 + 5)x^4 \\
- d^6(d - 1)^5(3d^5 - 10d^4 - 21d^3 + 33d^2 + 41d + 10)x^3 \\
+ d^7(d - 1)^6(d^4 - 8d^3 + 2d^2 + 23d + 10)x^2 \\
+ d^2^2(d - 1)^7(2d^2 - 5d - 5)x \\
+ d^14(d - 1)^8.
\]

A calculation on Maple shows that if \(P = (x, y) \) is a point on \(E_7 \), then \(\varphi(P) = (u, v) \) is a point on \(E_{7,7} \). This shows that \(\varphi : E_7 \to E_{7,7} \) is an isogeny, and therefore that \(j_7 \) is supersingular if and only if \(j_{7,7} \) is supersingular.

Fact 8. The only roots \(y \) of \(s_{ss}^{(7^*)}(Y) \) which occur to a power higher than the second in (13) are those which correspond to the roots of the discriminant (11).

We may restrict our attention to the values of \(y \) corresponding to \(x = 0 \) and \(x = 1728 \), since the roots \(x = 54000, -96^3, 12288000 \) and the roots of \(H_{-24}(X) \) have been handled in Fact 6. As in the discussion of Fact 4 above, the polynomials \(h_{12}(Y), h_{19}(Y), h_{27}(Y) \) and \(h_{24}(Y) \) occur to the first power in the calculations in Fact 6 and have distinct roots for primes not in the set

\[\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 61, 67, 71, 89, 109, 113, 137, 139, 157, 163\}. \]

For \(x = 0 \) we have \(R_7(0, Y) = Y^2(Y^2 + 224Y + 448)^3 \) and

\[
\text{Res}_Y(R_7(X, Y), Y^2 + 224Y + 448) = X^2H_{-147}(X) \\
= X^2(X^2 + 3484850552896000X + 113568003894804800000000).
\]

Hence, the factor \(h_3(Y) = Y^2 + 224Y + 448 \) occurs in \(s_{ss}^{(7^*)}(Y) \) if and only if \(\frac{-3}{p} = \frac{-147}{p} = -1 \), i.e., if and only if \(\delta = 1 \). Furthermore,

\[
\text{Res}_X(H_{-147}(X), R_7(X, Y)) = (Y^2 + 224Y + 448)h_{147}(Y),
\]

for a factor \(h_{147}(Y) \) of degree 14 for which

\[
\text{Res}_Y(g(Y), h_{147}(Y)) = 2^{108} \cdot 3^{32} \cdot 5^{20} \cdot 7^2 \cdot 11^6 \cdot 17^7 \cdot 23^2 \cdot 29^2 \cdot 47 \cdot 71^2 \cdot 83 \cdot 131. \tag{20}
\]

When \(h_3(Y) \) occurs, it occurs to the fourth power: three times for \(x = 0 \) and once for the roots of \(H_{-147}(X) \). This accounts for the factor \((Y^2 + 224Y + 448)^{26} \) in (14), for the primes not dividing (20).
For \(x = 1728 \) we note that
\[
R_7(1728, Y) = (Y^4 - 528Y^3 - 9024Y^2 - 5120Y - 1728)^2
\]
and
\[
\text{Res}_Y(R_7(X,Y), Y^4 - 528Y^3 - 9024Y^2 - 5120Y - 1728) = (X - 1728)^4 \\
\times (X^4 - 12626092121367165696X^3 - 44864481851299856707307347968X^2 \\
+ 250850701957837760512539510177792X \\
- 2108010653658430719613224868701536256) \\
= (X - 1728)^4 H_{-196}(X),
\]
by Lemma 4. Thus, the factor
\[
g(Y) = Y^4 - 528Y^3 - 9024Y^2 - 5120Y - 1728
\]
occurs as a factor in (13) if and only if \(\left(-\frac{4}{p} \right) = \left(-\frac{196}{p} \right) = -1 \), i.e., if and only if \(\varepsilon = 1 \). When it occurs, it does so to the third power: twice for \(x = 1728 \) and once for the roots of \(H_{-196}(X) \), since
\[
\text{Res}_X(H_{-196}(X), R_7(X,Y)) = g(Y) h_{196}(Y),
\]
for a factor \(h_{196}(Y) \) of degree 28, for which
\[
\text{Res}_Y(g(Y), h_{196}(Y)) = 2^{276} \cdot 3^{182} \cdot 7^4 \cdot 11^{30} \cdot 19^{14} \cdot 23^{22} \cdot 31^6 \cdot 43^2 \cdot 47^4 \\
\cdot 59^2 \cdot 71^4 \cdot 79^2 \cdot 83^2 \cdot 107^2 \cdot 131^4 \cdot 151^2 \cdot 167^2 \cdot 179^2 \cdot 191^2. \quad (21)
\]
This accounts for the factor \(g(Y)^\varepsilon \) in (14), for the primes not dividing the resultant in (21).

Taken together, Facts 5-8 prove Theorem 3, for the primes \(p \) not in the set
\[
S_7 = \{ 2, 3, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 79, \\
83, 89, 107, 109, 113, 131, 137, 139, 151, 157, 163, 167, 179, 191 \}.
\]

For the 32 primes \(p \in S_7 \) we can check the assertion of Theorem 3 directly. Table 3 contains the polynomials \(ss_p^{(7*)}(Y) \) for the 19 primes in \(S_7 \) satisfying \(p \leq 83 \). For larger primes \(ss_p^{(7*)}(Y) \) can be calculated using the fact that
\[
ss_p(X) \equiv X^4(X - 1728)^2 J_p(X), \\
J_p(X) \equiv \sum_{k=0}^{n_p} \frac{(2n_p + \varepsilon)}{2k + \varepsilon} \left(\frac{2n_p - 2k}{n_p - k} \right) (-432)^{n_p - k}(t - 1728)^k \quad (\text{mod } p),
\]
where \(n_p = \lfloor p/12 \rfloor \). (See [11].) To verify the congruence of Theorem 3 for \(p \), it is only necessary to check that the factors which occur to the first power in
\[
\text{Res}_X(ss_p(X), R_7(X,Y))
\]

18
or to a power higher than the second agree with the extra factors in (13) and (14). This completes the proof of Theorem 3.

Corollary. The degree of \(ss_p^{(7\ast)}(Y) \) is given by

\[
\deg(ss_p^{(7\ast)}(Y)) = \frac{1}{3} \left(p - \left(\frac{-3}{p} \right) \right) + \mu_7.
\]

Proof. Let \(d_p = \deg(ss_p^{(7\ast)}(Y)) \). The formula of Theorem 3 gives directly on taking degrees that

\[
2d_p + 4\delta + 4\varepsilon = 2\mu_7 + 8\deg(ss_p(X)),
\]

since \(R_7(X,Y) \) is monic and has degree 8 in \(Y \). Thus

\[
d_p = 4\deg(ss_p(X)) - 2\delta - 2\varepsilon + \mu_7.
\]

Now use the fact that

\[
\deg(ss_p(X)) = \frac{1}{12} (p - 1 - 4\delta - 6\varepsilon) + \delta + \varepsilon.
\]

This yields

\[
d_p = \frac{1}{3} (p - 1 - 4\delta - 6\varepsilon) + 2\delta + 2\varepsilon + \mu_7
\]

\[= \frac{1}{3} (p - 1 + 2\delta) + \mu_7,
\]

which agrees with the assertion. □

The statement in the above corollary is contained in Nakaya’s Conjectures 1 and 6 in [17].

4 The cases \(N = 2 \) and \(N = 3 \).

Let the polynomial \(R_2(X,Y) \) be defined by

\[
R_2(X,Y) = X^2 - X(Y^2 - 207Y + 3456) + (Y + 144)^3,
\]

where

\[
disc_X R_2(X,Y) = Y(Y - 256)(Y - 81)^2 \tag{22}
\]

\[
disc_Y R_2(X,Y) = 4X^2(X - 1728)(X + 15^3)^2 = 4X^2(X - 1728)H_7(X)^2 \tag{23}
\]

The curve \(R_2(X,Y) = 0 \) is parametrized by

\[
X = \frac{2^8(z^2 - z + 1)^3}{z^2(z - 1)^2}, \quad Y = \frac{16(z + 1)^4}{z(z - 1)^2}.
\]
Table 3: $ss_p^{(7)}(Y)$ for $p \in S_7 - \{2, 3, 7\}$ and $p \leq 83.$

p	$ss_p^{(7)}(Y)$ mod p
5	$Y(Y + 1)(Y + 3)$
11	$Y(Y + 9)(Y^2 + 4Y + 8)$
13	$(Y + 1)(Y + 5)(Y + 12)(Y^2 + 10Y + 5)$
17	$Y(Y + 1)(Y + 7)(Y + 10)(Y + 11)(Y + 13)(Y + 15)$
19	$(Y + 1)(Y + 8)(Y + 11)(Y^2 + 3Y + 11)(Y^2 + 4Y + 8)$
23	$Y(Y + 8)(Y + 21)(Y + 22)(Y^2 + 3Y + 20)(Y^2 + 17Y + 11)$
29	$Y(Y + 5)(Y + 21)(Y^2 + 18Y + 8)(Y^2 + 21Y + 13)(Y^2 + 26Y + 12)$
31	$(Y + 1)(Y + 4)(Y + 8)(Y + 23)(Y + 30)(Y^2 + 4Y + 8)(Y^2 + 20Y + 4)$
	$\times (Y^2 + 23Y + 30)$
37	$(Y + 8)(Y + 14)(Y + 27)(Y + 29)(Y^2 + 21Y + 29)(Y^2 + 23Y + 26)$
	$\times (Y^2 + 31Y + 29)(Y^2 + 34Y + 8)$
41	$Y(Y + 1)(Y + 8)(Y + 12)(Y + 13)(Y + 14)(Y + 17)(Y + 29)(Y + 31)$
	$\times (Y + 33)(Y + 39)(Y^2 + Y + 18)(Y^2 + 37Y + 26)$
43	$(Y + 8)(Y + 27)(Y^2 + 3Y + 8)(Y^2 + 17Y + 41)(Y^2 + 18Y + 42)$
	$\times (Y^2 + 27Y + 35)(Y^2 + 34Y + 11)(Y^2 + 40Y + 11)$
47	$Y(Y + 1)(Y + 10)(Y + 16)(Y + 20)(Y + 23)(Y + 26)(Y + 31)(Y + 34)$
	$\times (Y + 44)(Y + 45)(Y^2 + 15Y + 42)(Y^2 + 26Y + 15)(Y^2 + 27Y + 33)$
53	$Y(Y + 8)(Y + 9)(Y + 18)(Y + 29)(Y + 45)(Y + 48)(Y + 51)(Y^2 + 23)$
	$\times (Y^2 + 12Y + 24)(Y^2 + 13Y + 8)(Y^2 + 37Y + 25)(Y^2 + 50Y + 3)$
59	$Y(Y + 1)(Y + 8)(Y + 32)(Y + 35)(Y + 47)(Y + 51)(Y + 52)(Y + 54)(Y + 55)$
	$\times (Y + 57)(Y^2 + 4Y + 8)(Y^2 + 19Y + 23)(Y^2 + 26Y + 14)$
	$\times (Y^2 + 39Y + 50)(Y^2 + 40Y + 40)$
61	$(Y + 1)(Y + 3)(Y + 8)(Y + 34)(Y + 58)(Y^2 + 5Y + 9)(Y^2 + 14Y + 38)$
	$\times (Y^2 + 23Y + 58)(Y^2 + 27Y + 53)(Y^2 + 30Y + 34)(Y^2 + 45Y + 53)$
	$\times (Y^2 + 53Y + 33)(Y^2 + 54Y + 28)$
67	$(Y + 8)(Y + 59)(Y + 62)(Y + 64)(Y^2 + 9Y + 3)(Y^2 + 27Y + 8)(Y^2 + 29Y + 45)$
	$\times (Y^2 + 44Y + 40)(Y^2 + 51Y + 59)(Y^2 + 58Y + 9)(Y^2 + 62Y + 58)$
	$\times (Y^2 + 66Y + 27)(Y^2 + 66Y + 52)$
71	$Y(Y + 47)(Y + 62)(Y + 63)(Y + 64)(Y + 69)(Y^2 + 18)(Y^2 + 4Y + 8)$
	$\times (Y^2 + 9Y + 65)(Y^2 + 11Y + 22)(Y^2 + 23Y + 37)(Y^2 + 26Y + 37)$
	$\times (Y^2 + 27Y + 62)(Y^2 + 31Y + 4)(Y^2 + 63Y + 3)$
79	$(Y + 62)(Y + 71)(Y^2 + 4Y + 8)(Y^2 + 11Y + 21)(Y^2 + 12Y + 57)(Y^2 + 17Y + 10)$
	$\times (Y^2 + 19Y + 62)(Y^2 + 23Y + 58)(Y^2 + 27Y + 52)(Y^2 + 47Y + 69)$
	$\times (Y^2 + 56Y + 38)(Y^2 + 57Y + 78)(Y^2 + 71Y + 58)(Y^2 + 78Y + 14)$
83	$Y(Y + 5)(Y + 3)(Y + 17)(Y + 24)(Y + 34)(Y + 41)(Y + 54)(Y + 56)(Y + 59)$
	$\times (Y + 72)(Y + 74)(Y + 81)(Y^2 + 9Y + 52)(Y^2 + 21Y + 60)$
	$\times (Y^2 + 25Y + 34)(Y^2 + 26Y + 1)(Y^2 + 31Y + 41)(Y^2 + 45Y + 65)$
	$\times (Y^2 + 72Y + 52)(Y^2 + 74Y + 7)$
Similarly, the polynomial
\[R_3(X, Y) = X^2 - XY(Y^2 - 126Y + 2944) + Y(Y + 192)^3, \]
has
\[
\begin{align*}
\text{disc}_X R_3(X, Y) &= Y(Y - 108)(Y - 8)^2(Y - 64)^2, \\
\text{disc}_Y R_3(X, Y) &= -27X^2(X - 1728)^2(X - 8000)^2(X + 32768)^2 \\
&= -27X^2(X - 1728)^2H_{-8}(X)^2H_{-11}(X); \quad (24)
\end{align*}
\]
and the curve \(R_3(X, Y) = 0 \) is parametrized by
\[
X = \frac{z^3(z^3 - 24)^3}{z^3 - 27}, \quad Y = \frac{z^6}{z^3 - 27}.
\]

Also, set
\[\mu_2 = \frac{1}{2} \left(1 - \left(\frac{-2}{p} \right) \right). \]

Theorem 5. The following formulas hold for primes \(p \geq 5 \):
\[
Y^5(Y - 256)^6 \text{Res}_X(ss_p(X), R_2(X, Y)) \equiv (Y + 144)^2(Y - 648)^5 ss_p^{(2^e)}(Y)^2 \pmod{p}; \quad (26)
\]
\[
Y^5(Y - 108)^6 \text{Res}_X(ss_p(X), R_3(X, Y)) \equiv (Y + 192)^2(Y^2 - 576Y - 1728)^5 ss_p^{(3^e)}(Y)^2 \pmod{p}. \quad (27)
\]

Proof of (26). Formula (26) is proved according to the pattern established for the proofs of Theorems 1 and 3.

1. The roots of the left side of (26) are roots of \(ss_p^{(2^e)}(X) \) when \(e = 1 \), respectively \(\mu_2 = 1 \), since \(R_2(1728,0) = 0 \) and 1728 is supersingular when \(e = 1 \); and \(R_2(20^3,256) = 0 \), where \(20^3 \) is supersingular when \(\mu_2 = 1 \), since \(H_{-8}(X) = X - 20^3 \). (See Cox, [5, p. 23].)

2. The values of \(Y \) arising from only one value of \(X \) are the roots of (22):
\[
\begin{align*}
y = 0 & \text{ corresponds to } x = 1728, \text{ since } R_2(1728,Y) = Y(Y - 648)^2 \\
& \quad \text{ and } R_2(X,0) = (X - 1728)^2; \\
y = 256 & \text{ corresponds to } x = 20^3, \text{ since } R_2(20^3,Y) = (Y - 256)h_8(Y) \\
& \quad = (Y - 256)(Y^2 - 7312Y - 153664) \text{ and } R_2(X,256) = (X - 20^3)^2; \\
y = 81 & \text{ corresponds to } x = -15^3, \text{ since } R_2(-15^3,Y) = (Y - 81)^2(Y + 3969) \\
& \quad \text{ and } R_2(X,81) = (X + 15^3)^2.
\end{align*}
\]
All other roots of the left side of (26) occur for two distinct values of x. Note that Y and $Y - 256$ occur to exactly the first power in the resultant in (26), when $p \notin \{2, 3, 5, 7\}$, since 0 and 256 are not roots of the respective cofactors for these primes. This explains the factors Y^e and $(Y - 256)^{e_2}$ in (26).

3. The roots of

$$R_2\left(X, \frac{16(z + 1)^4}{z(z - 1)^2}\right) = \left(X - \frac{2^8(z^2 - z + 1)^3}{z^2(z - 1)^2}\right)\left(X - \frac{16(z^2 + 14z + 1)^3}{z(z - 1)^4}\right)$$

are the j-invariants

$$j_2 = j(E_2) = \frac{2^8(z^2 - z + 1)^3}{z^2(z - 1)^2} \quad \text{and} \quad j'_2 = j(E'_2) = \frac{16(z^2 + 14z + 1)^3}{z(z - 1)^4}$$

of the respective elliptic curves

$$E_2 : Y^2 = X(X - 1)(X - 1 + z),$$
$$E'_2 : V^2 = (U - 1 + z)(U^2 - 4U - 4z + 4).$$

Furthermore, the formulas

$$u = \frac{x^2 + z - 1}{x - 1}, \quad v = \frac{(x^2 - 2x - z + 1)y}{(x - 1)^2}$$

define an isogeny from E_2 to E'_2. Thus, the values j_2, j'_2 are both supersingular when one is.

4. The factors $Y - y$ which occur to a power higher than the second in (26) correspond to the roots x of (23). For $x = 0$ we have $R_2(0, Y) = (Y + 144)^3$ and

$$R_2(X, -144) = X(X - 54000) = XH_{-12}(X);$$

where

$$R_2(54000, Y) = (Y + 144)(Y^2 - 53712Y + 18974736).$$

Thus, $Y + 144$ occurs to the fourth power when p does not divide

$$\text{Res}_Y(Y + 144, Y^2 - 53712Y + 18974736) = 2^4 \cdot 3^5 \cdot 5^2 \cdot 11$$

and $\left(\frac{-3}{p}\right) = \left(\frac{-12}{p}\right) = -1$, i.e. $\delta = 1$; this explains the factor $(Y + 144)^{2\delta}$ in (26).

For $x = 1728$ we have $R_2(1728, Y) = Y(Y - 648)^2$ and

$$R_2(X, 648) = (X - 1728)(X - 663) = (X - 1728)H_{-16}(X),$$
$$R_2(663, Y) = (Y - 648)(Y^2 - 286416Y - 126023688),$$
$$\text{Res}_Y(Y - 648, Y^2 - 286416Y - 126023688) = -2^3 \cdot 3^3 \cdot 7^2 \cdot 11^2.$$
Hence, $Y - 648$ occurs to exactly the third power in (26), for primes $p \not\in \{2, 3, 7, 11\}$, when \(\left(\frac{-3}{p}\right) = \left(\frac{-16}{p}\right) = -1\), i.e., when $\varepsilon = 1$. This explains the factor $(Y - 648)^3$ in (26).

The last root $x = -15^3$ has been handled in 2. It only remains to check the formula for the primes $p = 5, 7, 11$. This can be checked directly:

\[
(Y - 216)\text{Res}_X(X, R_2(X, Y)) \equiv (Y + 4)^4 \equiv (Y + 4)^2 s_{\delta}^{(2*)}(X)^2 \pmod{5};
\]

\[
Y(Y + 3)\text{Res}_X(X + 1, R_2(X, Y)) \equiv Y^2(Y + 3)^3 \equiv (Y + 3)s_{\delta}^{(2*)}(X)^2 \pmod{7};
\]

\[
Y\text{Res}_X(X + 10), R_2(X, Y)) \equiv Y^2(Y + 1)^5 \equiv (Y + 1)^3 s_{11}^{(2*)}(X)^2 \pmod{11}.
\]

This completes the proof of (26).

Proof of (27).

5. The values $y = 0$ and $y = 108$ of the left side of (27) are roots of $ss_p^{(3*)}(Y)$ when $\delta = 1$, since

\[
R_3(X, 0) = X^2 \quad \text{and} \quad R_3(X, 108) = (X - 54000)^2 = H_{-12}(X)^2.
\]

6. The values of Y arising from only one value of X are the roots of (24):

- $y = 0$ corresponds to $x = 0$, since $R_3(0, Y) = Y(Y + 192)^3$ and $R_3(X, 0) = X^2$;
- $y = 108$ corresponds to $x = 54000$, since

\[
R_3(54000, Y) = (Y - 108)(Y^3 - 53316Y^2 + 1156464Y - 27000000)
\]

and $R_3(X, 108) = (X - 54000)^2$;

- $y = 8$ corresponds to $x = 20^3$, since $R_3(20^3, Y) = (Y - 8)^2 h_8(Y)$

\[
= (Y - 8)^2(Y^2 - 7408Y + 1000000) \quad \text{and} \quad R_3(X, 8) = (X - 20^3)^2;
\]

- $y = 64$ corresponds to $x = -2^{15}$, since $R_3(-2^{15}, Y) = (Y - 64)^2 h_{11}(Y)$

\[
= (Y - 64)^2(Y^2 + 33472Y + 262144) \quad \text{and} \quad R_3(X, 64) = (X + 2^{15})^2.
\]

All other roots of the left side of (27) occur for two distinct values of x. Note that Y and $Y - 108$ occur to exactly the first power in the resultant in (27), when $p \not\in \{2, 3, 5, 11\}$, since 0 and 108 are not roots of the respective cofactors for these primes. This explains the factors Y^3 and $(Y - 108)^3$ in (27).

7. The roots of the polynomial

\[
R_2\left(X, \frac{z^6}{z^3 - 27}\right) = \left(X - \frac{z^3(z^3 - 24)}{z^3 - 27}\right) \left(X - \frac{z^3(z^3 + 216)}{(z^3 - 27)^3}\right),
\]

namely,

\[
j_3 = \frac{z^3(z^3 - 24)^3}{z^3 - 27} \quad \text{and} \quad j_3' = \frac{z^3(z^3 + 216)^3}{(z^3 - 27)^3},
\]

are the j-invariants of the isogenous elliptic curves

\[E_3 : Y^2 + zXY + Y = X^3 \quad \text{and} \quad E_3' : V^2 + zUV + 3V = U^3 - 6zU - z^3 - 9,\]
by [12] p. 252. Thus, the values j_3, j'_3 are both supersingular when one is.

8. The factors $Y - y$ which occur to a power higher than the second in (27) correspond to the roots x of (25). For $x = 0$ we have $R_3(0, Y) = Y(Y + 192)^3$ and

$$R_3(X, -192) = X(X + 12288000) = XH_{-27}(X),$$
$$R_3(-12288000, Y) = (Y + 192)(Y^3 + 12288384Y^2 - 3907547136Y + 786432000000),$$
$$\text{Res}_Y(Y + 192, Y^3 + 12288384Y^2 - 3907547136Y + 786432000000) = 2^{22} \cdot 3 \cdot 5^4 \cdot 11 \cdot 23.$$

Hence, $Y + 192$ occurs to the fourth power in (27) when $p \not\in \{2, 3, 5, 11, 23\}$ and

$$\left(\frac{-3}{p}\right) = \left(\frac{-27}{p}\right) = -1,$$

i.e. $\delta = 1$; this explains the factor $(Y + 192)^{2\delta}$ in (27).

For $x = 1728$ we have $R_3(1728, Y) = (Y^2 - 576Y - 1728)^2$, where

$$\text{Res}_Y(R_3(X, Y), Y^2 - 576Y - 1728) = (X - 1728)^2(X^2 - 153542016X - 1790957481984),$$
$$\text{Res}_X(H_{-36}(X), R_3(X, Y)) = (Y^2 - 576Y - 1728)h_{36}(Y)$$
$$= (Y^2 - 576Y - 1728)(Y^6 - 153540288Y^5 - 1948490040384Y^4 - 677563234836480Y^3 - 40825063551397484Y^2 + 53661008686742765568Y - 1856208739742169956352),$$

and

$$\text{Res}_Y(Y^2 - 576Y - 1728, h_{36}(Y)) = 2^{58} \cdot 3^6 \cdot 7^{12} \cdot 11^6 \cdot 19^2 \cdot 23^2 \cdot 31^2.$$

Now the fact that $X^2 - 153542016X - 1790957481984 = H_{-36}(X)$ follows from [3] p. 57] or [10] p. 201]; according to the latter reference,

$$j(3i) = 2^4 \cdot 3\sqrt{3}(1 + \sqrt{3})^4(1 + 2\sqrt{3})^3(2 + 3\sqrt{3})^3,$$

which is a root of the above quadratic. It follows that $Y^2 - 576Y - 1728$ divides (27) to the third power, when

$$\left(\frac{-4}{p}\right) = \left(\frac{-36}{p}\right) = -1,$$

i.e. $\varepsilon = 1$; this explains the factor $(Y^2 - 576Y - 1728)^{3\varepsilon}$ in (27).

The remaining values $x = 20^3$ and -2^{15} have been discussed in point 6 above. The corresponding factors $Y - 8$ and $Y - 64$ occur to exactly the second power in (27) for primes $p \not\in \{2, 3, 5, 7\}$. This proves (27) for primes p not in the set

$$S_3 = \{2, 3, 5, 7, 11, 19, 23, 31\}.$$

For these primes (27) can be checked directly using the supersingular polynomials in Table 1. This completes the proof of Theorem 5.
5 Proof of Nakaya’s Conjecture 2.

Theorem 6. (a) The polynomial \(ss_p^{(5)}(X) \) splits into linear factors over \(\mathbb{F}_p \) if and only if \(p \in \{2, 3, 5, 7, 11, 19\} \), i.e., if and only if \(p \) divides the order of the Harada-Norton group \(HN \).

(b) The polynomial \(ss_p^{(7)}(X) \) splits into linear factors over \(\mathbb{F}_p \) if and only if \(p \in \{2, 3, 5, 7, 17\} \), i.e., if and only if \(p \) divides the order of the Held group \(He \).

Proof. (a) The roots of \(ss_p^{(5)}(X) \) are the roots \(y \) of the polynomial
\[
R_5(x, y) = y^6 + (-x + 648)y^5 + (80x + 1024400)y^4 + (-1890x + 10264320)y^3 \\
+ (12600x + 20217600)y^2 + (-7776x + 13436928)y + x^2 - 3456x + 2985984,
\]
as \(x \) ranges over the roots of \(ss_p(X) \). If all the roots of \(R_5(x, y) \) lie in \(\mathbb{F}_p \), then the coefficients certainly lie in \(\mathbb{F}_p \); and considering the coefficient of \(y^3 \) shows that \(x \in \mathbb{F}_p \), for all supersingular \(j \)-invariants \(x \). Thus, \(p \) can only be one of the primes in the set
\[
\mathcal{S} = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71\}.
\]

Direct computation using Theorem 1 and the polynomials in Table 1 shows that \(p \) is one of the 6 primes in the assertion. Also see [15, Table 10].

The proof of (b) is the same using
\[
R_7(x, y) = y^8 + (-x + 672)y^7 + (63x + 151872)y^6 + (-1344x + 11841536)y^5 \\
+ (10878x + 68038656)y^4 + (-23520x + 134873088)y^3 \\
+ (-18816x + 89915392)y^2 + 10240xy + x^2
\]
and Theorem 3. \(\square \)

The same argument can be used to prove Nakaya’s Theorem 5 in [17], using the fact that the coefficients of \(y^2 \) and \(y^3 \) in the respective polynomials \(R_5(X, Y) \) and \(R_4(X, Y) \) are \(-X\) plus a constant. This eliminates the need to use any class number estimates.

References

[1] George E. Andrews and Bruce C. Berndt, Ramanujan’s Lost Notebook, Part I, Springer, 2005.

[2] Bruce C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, 1998.

[3] W. E. Berwick, Modular invariants expressible in terms of quadratic and cubic irrationalities, Proc. London Math. Soc. 28 (1927), 53-69.
[4] J. H. Conway and N. J. A. Sloane, *Sphere Packings, Lattices and Groups*, Third edition, Grundlehren der Math. Wissenschaften 290, Springer, 1999.

[5] David A. Cox, *Primes of the Form $x^2 + ny^2$; Fermat, Class Field Theory, and Complex Multiplication*, 2nd edition, John Wiley & Sons, 2013.

[6] M. Deuring, Arithmetische Theorie der Korrespondenzen algebraischer Funktionenkörper, I, J. reine angew. Math. 177 (1937), 161-191.

[7] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hamb. 14 (1941), 197-272.

[8] W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42, No. 2 (2005), 137-162.

[9] R. Fricke, *Lehrbuch der Algebra*, I, II, III, Vieweg, Braunschweig, 1928.

[10] R. Fricke, *Die elliptischen Funktionen und ihre Anwendungen*, Dritter Teil, Anwendungen, Springer, 2012.

[11] P. Morton, Explicit identities for invariants of elliptic curves, J. Number Theory 120 (2006), 234-271.

[12] P. Morton, The cubic Fermat equation and complex multiplication on the Deuring normal form, Ramanujan J. 25 (2011), 247-275.

[13] P. Morton, Solutions of diophantine equations as periodic points of p-adic algebraic functions, II: the Rogers-Ramanujan continued fraction, New York J. Math. 25 (2019), 1178-1213.

[14] P. Morton, On the Hasse invariants of the Tate normal forms E_5 and E_7, J. Number Theory 218 (2021), 234-271.

[15] P. Morton, The Hasse invariant of the Tate normal form E_5 and the class number of $\mathbb{Q}(\sqrt{-5l})$, J. Number Theory 227 (2021), 94-143.

[16] P. Morton, Solutions of diophantine equations as periodic points of p-adic algebraic functions, III, New York J. Math. 27 (2021), 787-816.

[17] T. Nakaya, The number of linear factors of supersingular polynomials and sporadic simple groups, J. Number Theory 204 (2019), 471-496.

[18] Y. Sakai, The Atkin orthogonal polynomials for the low-level Fricke groups and their application, Int. J. Number Theory 7 (2011), 1637-1661.

[19] Y. Sakai, The Atkin orthogonal polynomials for the Fricke groups of levels 5 and 7, Int. J. Number Theory 10 (2014), 2243-2255.
[20] J.H. Silverman, *The Arithmetic of Elliptic Curves*, 2nd ed., Springer, 2009.

[21] J. Yi, Modular Equations for the Rogers-Ramanujan Continued Fraction and the Dedekind Eta-Function, Ramanujan J. Math. 5 (2001), 377-384.

Dept. of Mathematical Sciences, LD 270
Indiana University - Purdue University at Indianapolis (IUPUI)
Indianapolis, IN 46202
e-mail: pmorton@iupui.edu