BIO-IMITAITON OF MEXICAN MIGRATION ROUTES TO THE USA WITH SLIME MOULD ON 3D TERRAINS

ANDREW ADAMATZKY AND GENARO J. MARTÍNEZ

Final and edited version of this paper is published in Adamatzky A. and Martinez G. J. Bio-Imitation of Mexican Migration Routes to the USA with Slime Mould on 3D Terrains. J Bionic Engineering 10 (2013) 242–250.

Abstract. Plasmodium of Physarum polycephalum is a large single cell visible by unaided eye. It shows sophisticated behavioural traits in foraging for nutrients and developing an optimal transport network of protoplasmic tubes spanning sources of nutrients. When placed in an environment with distributed sources of nutrients the cell 'computes' an optimal graph spanning the nutrients by growing a network of protoplasmic tubes. P. polycephalum imitates development of man-made transport networks of a country when configuration of nutrients represents major urban areas. We employ this feature of the slime mould to imitate mexican migration to USA. The Mexican migration to USA is the World’s largest migration system. We bio-physically imitate the migration using slime mould Physarum polycephalum. In laboratory experiments with 3D Nylon terrains of USA we imitated development of migratory routes from Mexico-USA border to ten urban areas with high concentration of Mexican migrants. From results of laboratory experiments we extracted topologies of migratory routes, and highlighted a role of elevations in shaping the human movement networks.

Keywords: migration, routes, Mexico, USA, slime mould, unconventional computing

1. Introduction

Natural systems are renown for their abilities to reach optimal solutions of complex dynamical problems. They are exploited in the fields of bionics, bioengineering and bio-computing to develop emerging mechanics of information processing and uncover novel designs of engineering systems. Theoretical part of the bio-inspired information processing field is very well elaborated [1, 2]. Experimental part is rather underdeveloped. There is just a few of experimental laboratory prototypes, e.g. maze-solving micro-fluidic circuits [3], molecular logical gates and circuits [4, 5], chemical reaction–diffusion processors [6]. Experimental prototypes of novel computing devices are so rare because most novel computing substrates used are somewhat difficult to experiment with.

When in 2001 Nakagaki with colleagues published a paper on shortest path approximation with live plasmodium of Physarum polycephalum [7], and then three years later Tsuda, Aono and Gunji implemented Boolean logical gates with live slime mould [8], the scientific community got a unique living computing and actuating substrate, which is easy to cultivate and handle, monitor and experiment with. Slime mould P. polycephalum is an ideal biological substrate for developing biocomputing and bioengineering devices, because the slime mould is ‘simple enough to be studied as spatially extended non-linear
media yet robust and rich behaving to implement a wide range of computational and actuating procedures [9, 10, 11].

Plasmodium is a vegetative stage of acellular slime mould *P. polycephalum*, a single cell with many nuclei, which feeds on microscopic particles [12]. When foraging for its food the plasmodium propagates towards sources of food, surrounds them, secretes enzymes and digests the food; it may form a congregation of protoplasm covering the food source. When several sources of nutrients are scattered in the plasmodium’s range, the plasmodium forms a network of protoplasmic tubes connecting the masses of protoplasm at the food sources. A structure of the protoplasmic networks is apparently optimal, in a sense that it covers all sources of nutrients and provides a robust and speedy transportation of nutrients and metabolites in the plasmodium’s body [7].

Plasmodium’s foraging behaviour can be interpreted as a computation [9] as follows. Data are represented by spatial configurations of attractants and repellents. Results are represented by structure of protoplasmic network. Plasmodium can solve computational problems with natural parallelism, e.g. related to shortest path [7] and hierarchies of planar proximity graphs [13], computation of plane tessellations [9, 14, 15], execution of logical computing schemes [8, 16], planar shapes and concave hulls [16], and natural implementation of spatial logic and process algebra [17].

In previous issues of *Journal of Bionic Engineering* we demonstrate how slime mould *P. polycephalum* could be used to intelligently manipulate objects on a water surface [11] and generate sensible sound patterns [10]. The slime mould’s behaviour also inspired a range of software implementations of novel approaches towards design of communication and transport networks [18, 19].

When inoculated in an environment with scattered sources of nutrients the slime mould spans the nutrients with a network of protoplasmic tubes resembling human-made transport networks. Previously, we have conducted a large-scale experimental study to uncover analogies between biological and human-made transport networks and to project behavioural traits of biological networks onto development of vehicular transport networks, see collection of results in [20]. Using living slime mould we imitated major road networks in Africa, Australia, Belgium, Brazil, Canada, China, Germany, Iberia, Italy, Malaysia, Mexico, The Netherlands, UK, and USA. We found that for all regions studied [20], networks of protoplasmic tubes grown by plasmodium match, at least partly, the networks of man-made transport routes. The shape of a country and the exact spatial distribution of urban areas, represented by sources of nutrients, may play a key role in determining the exact structure of the plasmodium network.

Being encouraged by results of imitating the transport networks with slime mould we decided to undertake an analog modelling of human migration. The analog modelling devices built of the slime mould imitates large-scale migration of humans via analogical propagation and foraging of living slime mould. We used Mexican migration to the USA as benchmark task the Physarum analog modeller.

A migration from Mexico to the USA is the largest people-flow system in the World [21]. Every third of Mexicans has been in USA at some stage of their life. The scale of migration is unprecedented. Over eighty percent of migrants are undocumented migrants (there are about 6.2 million of undocumented Mexican migrants amongst estimated 11 millions of all undocumented migrants in the US) [22]. There are several reasons for
the migration. First reason is that culture of migration is deeply rooted in Mexican society \[23\]. Second is that even despite one and a half century passed after Treaty of Guadalupe Hidalgo there remains a high degree of ‘internal’ migration to North Mexican territories detached in the result of the Treaty. Three more reasons for the migration are highlighted in \[24\]: market consolidation, social capital formation (people related to USA migrated are more likely to migrate), and human capital formation (if some has previous experience of migration he will more likely to migrate again).

The migrations shapes economical and social structures of the USA and thus investigation of migratory patterns becomes an issue of great importance. A range of theoretical and analytical models are developed. The models provide a predictive analysis of migration \[25, 26\], statistical estimates \[27, 28\], evaluate integral patterns of migration \[29, 30\]. Such models make a priceless contribution towards deciding on what measures of controlling migration should be taken, e.g. intensity of a border control might affect migration levels \[31\] and duration of circular migrants staying in the USA \[32\]. Most models of Mexican migrations deal rather with integral numbers of migrants, sometimes attributed to particulars states, however neither of models published considered spatial geographic routes of migration.

In present we paper we apply our experience on bio-physical imitation routes \[20\] to imitate Mexican migration. Also, we go a step further experimentally, comparing to our previous works, — we take into account configuration of elevations and grow slime mould on a 3D terrain of the USA. We discuss functioning of the Physarum analog modeller, which consists of a living slime mould, 3D plastic model of USA and source of nutrients. Usage of 3D terrain in laboratory experiment bring the analogous modelling closer to reality. The slime mould reacts to 3D topography because \(P.\ polycephalum\) is gravisensitive and positively geotropic \[33, 38\]. Plasmodium shows morphological geopolarity \[34\]: the ectoplasmic wall of a slime mould tube to earth. We expected that being placed on a 3D terrain with a source of nutrients slime mould propagates towards the source of nutrients and navigates around elevations due to positive geotropism and relatively lower humidity of the elevations.

2. Methods

Terrain of USA used in our experiments is 20 cm wide, 10.8 cm long and 5 cm high. 3D terrain of USA was ordered in \url{http://www.printablegeography.com/}. The terrain was produced as follows. The elevation data are downloaded from DIVA-GIS \(\url{http://www.diva-gis.org/gdata}\), original source is CGIAR \(\url{http://srtm.csi.cgiar.org/}\). The data are projected with Mercator, and the terrain is printed using Selective Laser Sintered PA 2200 with Nylon 12. To highlight a role of 3D terrain in defining migratory patterns we conducted experiments on a flat agar plate shaped as USA. Solution of 2% Aldrich Select Agar was poured in 12 cm square Petri dishes, allowed to cool and then shaped of USA were cut out. We have conducted 14 experiments on flat agar plates and 12 experiments on 3D terrain. It takes slime 3-5 days to colonise all source of nutrients on flat agar, and 5-10 days to colonise the nutrients on 3D terrain.

We have placed oat flakes, to act as sources of nutrients and attractants, in the sites of the 3D terrain and flat agar plate corresponding to the following areas (Fig. 1a):

1. New York area: New York, Philadelphia, Baltimore, Washington;
Figure 1. (a) Configuration of attractor-sites. Site of plasmodium inoculation is shown by rhomb. (b) Scheme of major migration routes from Ciudad Juárez, and Nuevo Laredo, generalised from maps [35]. (c) Scheme of state proportion of Mexican born population in the USA, stripes 21%-37%, fine stripes 3%-7%, grey 1%-3%, modified from [36].
(2) Jacksonville area: Jacksonville, FL;
(3) Chicago area: Chicago, Detroit, Indianapolis, Columbus, Columbus, Louisville;
(4) Dallas area: Dallas, Fort Worth;
(5) Houston area: Houston, San Antonio, Austin;
(6) Denver area: Denver,
(7) Albuquerque area: Albuquerque, Santa Fe;
(8) Phoenix area: Phoenix, El Paso, Tucson;
(9) Los Angeles area: Los Angeles, San Diego;
(10) San Jose area: San Jose, San Francisco.

The attractor areas selected correspond to typical destinations of Mexican-born migrants (Fig. 1a) and also reflect current distribution of Mexican population in USA (Fig. 1b). In each experiment we inoculated plasmodium between Ciudad Juárez and Nuevo Laredo. We decided to use a single inoculation site to avoid interference or even competition between plasmodium growing from several sites of inoculation. The position of inoculation site chosen in experiments allows to cover most possible routes of migration, as illustrated in Fig. 1c.

Containers with experimental setups were kept in closed yet naturally ventilated containers with water added to keep high humidity. We did not wetted the 3D terrain or covered it with agar gel: the plasmodium grown on a bare Nylon surface. The terrains were kept in darkness, at temperature 22-27°C, except for observation and image recording. Configurations of plasmodium networks were photographed with FujiFilm FinePix 6000 camera and scanned with an Epson Perfection 4490 scanner.

3. Results

When colonising a flat substrate plasmodium is guided only by a configuration of attractant fields, generated by sources of nutrients, and possibly humidity distribution in the USA-shaped agar plates (Fig. 2). A typical scenario of colonisation is following. Plasmodium propagates from the inoculation site towards Phoenix area and either Dallas area or Houston area. After colonising Phoenix area plasmodium grows towards Albuquerque area and Los Angeles area. San Jose area is usually colonised by slime mould which propagated from Denver area or Los Angeles area, and in few trials from Albuquerque area (Fig. 2a–d). This matches well historical migration of Mexicans to Dallas or Houston areas, which are inhabited now by millions of Mexican migrants. Phoenix is a strategic point of migration to Los Angeles and Albuquerque areas.

When propagating east plasmodium grows from Dallas area or Houston area to Jacksonville area and then from Jacksonville area to New York area. Also, very characteristically, the plasmodium makes a branching while propagating from Dallas area to Jacksonville area. Typically a branching site is located south of Louisiana. East branch continues towards Jacksonville area while north branch growth towards Chicago area. In few experiments we observed grows from the branching site to New York area (Fig. 2). A protoplasmic link between New York area and Chicago area is established either by plasmodium growing from New York area to Chicago area or from Chicago area to New York area. A transport route connecting Chicago area and Denver area is usually developed by slime at the final stages of colonisation. Frequencies of routes observed in experimental laboratory trials are visualised in Fig. 2. Chicago city is one of the most
Figure 2. (a–d) Snapshots of protoplasmic tubes spanning nutrients in U. (e) Weighted graph representing occurrences of slime mould links between areas of U. Thickness of an edge is proportional to a number of trials where the edge is represented by a protoplasmic tube. Site of plasmodium inoculation is shown by rhomb.
important cities for Mexican migrants and bears substantial economically influence on Mexican community in USA. Migratory links between Chicago area and New York area serves social and economical needs of Mexican migrants for years; an anecdotal demonstration of the Chicago area’s importance is an abundance of Spanish languages signs in transport and TV.

Being placed on a 3D terrain with a source of nutrients slime mould would propagate towards the source of nutrients and navigate around elevations due to positive geotropism and relatively lower humidity of the elevations (Fig. 3). The slime mould usually grows around mountains or cross mountains in the site of lowest elevation. Trajectories of protoplasmic tubes recorded in laboratory experiments are shown in Fig. 4. We can select three main stages of USA colonisation recorded in experiments with 3D terrain. Each stage takes 1-3 days of plasmodium growth. At the first stage, plasmodium develops protoplasmic links from inoculation site to Dallas area, Houston area, Albuquerque area, and Phoenix area. At the second stage, slime mould propagates from Dallas area to Houston area, or sometimes from Houston area to Dallas area; from Houston area to Jacksonville area and Chicago area; from Dallas area to Chicago area and Denver area; from Albuquerque area to Denver area; and, from Phoenix area to Los Angeles area. At the third stage, the plasmodium grows from Jacksonville area to New York area; from Chicago area to Denver area and New York area; from Denver area to Los Angeles area; and, from Los Angeles area to San Jose area. When all source of nutrients colonised the plasmodium may also develop a long-distant link between Chicago area and San Jose area (Fig. 4).

Strong components, observed in over 40% of laboratory experiments with flat agar and 3D terrain are shown in Fig. 5ab. In experiments with flat agar there are strong pathways from the entry point (inoculation site) to Phoenix area, Houston area and Dallas area (Fig. 5a). From Phoenix area the migratory route develops to Los Angeles area and then further north to San Jose area. Migration from Dallas area and Houston area proceed to Jacksonville area, and from Jacksonville area to New York area. Also, there are well-established migratory pathways from Dallas area to Chicago area (via branching point in south Louisiana), and from Chicago area to Denver area (Fig. 5a).

Migratory routes developed by *P. polycephalum* on a 3D terrain include most of the strong routes observed in experiments with flat substrate. Topology of protoplasmic routes reflect configurations of elevations in the routes’ vicinity (Fig. 5b). Thus we witness remarkable avoidance of the Appalachian Mountains; Sierra Nevada, Cascade Range, Rocky Mountains and Ozark Plateau (Figs. 4 and 5b). Also, additional strong pathways observed in experiments with 3D terrain include links connecting New York area and Chicago area, Dallas area and Denver area, Denver area and Albuquerque area.

A skeleton of migration links, with proposed directions of inward migration, is shown in Fig. 5c. The skeleton includes only edges observed in strong components of migratory graphs observed in both flat agar and 3D terrains experiments. The skeleton of migration consists of three components: links connecting the entry site to Dallas area, Houston area and Phoenix area; west coast migration from Phoenix area to Los Angeles area to San Jose area; east coast migration from Houston area to Jacksonville area and further to New York area (Fig. 5c).
Figure 3. (a–c) Photographs of 3D terrain of USA colonised by slime mould.
4. Discussions

Slime mould *P. polycephalum* is now well recognised amorphous biological computer which works remarkable well in experimental laboratory conditions. We presented an experimental laboratory prototype for analog modelling of human migration at a large scale. The prototype developed is a bionic devices, consisting of a living slime and a 3D plastic model of the USA. Experiments detailed in the paper can be classified as bio-computing, future and emergent computing paradigms, bionics and analog computing and modelling. A protoplasmic network of slime mould *Physarum polycephalum* transport nutrients and metabolites. The network plays a role of a primitive distributed sensorial and nervous system, responsible for a choice of appropriate habitat and avoidance of harsh environmental conditions. Contents of the protoplasmic network is always in the flux. We speculate that the protoplasmic network is a good biological model of a migration network emerged in a transnational communities of people living between Mexico and USA [37].

In laboratory experiment with the slime mould we imitated Mexican migration on a flat agar and 3D Nylon terrain. Migratory links developed on a flat substrate may represent air transportation while routes on 3D terrain signify ground transportation. We found that the plasmodium imitates human movements amongst elevations because *P. polycephalum* is gravisensitive and positively geotropic [33, 38] and geopolar [34].

The experimental setup adopted well represents principle mechanics of migration [24]:

- To imitate a social capital formation we place oat flakes in areas with high population of Mexican migrants.
Human capital formation is imitated by *P. polycephalum* via self-reinforcing of protoplasmic tubes: ticker tubes become thicker and thinner become weaker.

Market consolidation trends are ‘hard-wired’ in the slime mould behaviour via its foraging activity.

Strong component of migration routes extracted from laboratory experiments, represent all types of migration [39]:

- ‘internal’ migration to North Mexican ex-territories (routes Phoenix area to Los Angeles area and San Jose area);
- diaspora migrations, e.g. links between Denver area and Albuquerque area, New York area and Chicago area, Dallas area and Houston area, New York area and Jacksonville area, Chicago area and Dallas area, Jacksonville area and Houston area;
- returned migration, e.g. links connecting the migrants’ entry point to Phoenix area, Albuquerque area, Dallas area and Houston area.
5. Acknowledgement

This work was supported by the EU research project “Physarum Chip: Growing Computers from Slime Mould” (FP7 ICT Ref 316366).

References

[1] Calude C.S., J. Casti, M. Dinneen (eds.). Unconventional Models of Computation, Springer-Verlag, Singapore, 1998.
[2] Calude C.S., M. J. Dinneen, M. J. Perez Jimene, G. Paun, G. Rozenberg (Eds.). Proc. 4th International Conference Unconventional Computation, Lecture Notes Comput. Sci. 3699, Springer, Heidelberg, 2005.
[3] M. J. Fuerstman, P. Deschatelets, R. Kane, A. Schwartz, P. J. A. Kenis, J. M. Deutsch, and G. M. Whitesides, “Solving mazes using microfluidic networks,” Langmuir, vol. 19, pp. 4714–4722, 2003.
[4] Stojanovic M. N., Mitchell Y. E., and Stefanovic D. Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124 (2002) 3555–355.
[5] Lederman H., Macdonald J., Stefanovic D., and Stojanovic M. N. Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45 (2006) 1194–1199.
[6] Adamatzky A., De Lacy Costello B., Asai T. Reaction-Diffusion Computers (Elsevier, 2005).
[7] Nakagaki T., Yamada H., and Toth A., Path finding by tube morphogenesis in an amoeboid organism. Biophysical Chemistry 92 (2001) 47–52.
[8] Tsuda S., Aono M., Gunji Y.-P. Robust and emergent Physarum logical-computing. BioSystems 73 (2004) 45–55.
[9] Adamatzky A. Physarum Machines (World Scientific, 2010).
[10] Miranda, E., Adamatzky, A. and Jones, J. (2011) ‘Sounds Synthesis with Slime Mould of Physarum Polycephalum’ Journal of Bionic Engineering, (8), 2, p. 107-113.
[11] Adamatzky, A. and Jones, J. (2008) ‘Towards Physarum robots: computing and manipulating on water surface’. Published in Journal of Bionic Engineering, (5), 4, p. 348-357.
[12] Stephenson S. L. and Stempen H. Myxomycetes: A Handbook of Slime Molds. (Timber Press, 2000).
[13] A. Adamatzky, Developing proximity graphs by Physarum Polycephalum: Does the plasmodium follow Toussaint hierarchy? Parallel Processing Letters 19 (2008), 105–127.
[14] T. Shirakawa, A. Adamatzky, Y.-P. Gunji, Y. Miyake, On simultaneous construction of Voronoi diagram and Delaunay triangulation by Physarum polycephalum, Int. J. Bifurcation Chaos 9 (2009), 3109–3117.
[15] T. Shirakawa, Y.-P. Gunji, and Y. Miyake, An associative learning experiment using the plasmodium of Physarum polycephalum, Nano Communication Networks 2 (2011) 99–105.
[16] Adamatzky A. Advances in Physarum Machines Gates, Hulls, Mazes and Routing with Slime Mould. In: Koen De Bosschere, Erik H. D’Hollander, Gerhard R. Joubert, David Padua, Frans Peters, Mark Sawyer (Editors) Applications, Tools and Techniques on the Road to Exascale Computing Advances in Parallel Computing, vol. 22, 2012, 41–54.
[17] A. Schumann and A. Adamatzky, Physarum spatial logic, New Mathematics and Natural Computation 7 (2011) 483–498.
[18] Jones J. Influences on the formation and evolution of Physarum polycephalum inspired emergent transport networks. Natural Computing 10 (2011) 1345–1369.
[19] Becker M. Design of fault tolerant networks with agent-based simulation of Physarum polycephalum. 2011 IEEE Congress on Evolutionary Computation (CEC) 2011, 285–291.
[20] Adamatzky A. (Ed.) Bio-Evaluation of World Transport Networks (World Scientific, 2012).
[21] Massey, D.S., Arango, J., Hugo, G., Kouaouchi, A., Pellegrino, A. and Taylor, J.E. (2005) Worlds in Motion: Understanding International Migration at the End of the Millennium. Oxford: Clarendon Press.
[22] Passel J.S. The Size and Characteristics of the Unauthorized Migrant Population in the U.S.: Estimates Based on the March 2005 Current Population Survey, Pew Hispanic Center, Washington, DC (2006). Cited from [10].
[23] Wilson T. D. The culture of Mexican migration. Critique of Anthropology 30 (2010) 399–420.
[24] Massey D. S., Espinosa K. E. Whats driving Mexico-US migration? A theoretical empirical and policy analysis. American Journal of Sociology, 102 (1997) 4, 939–999.
[25] Massey D. S. and Zenteno R. M. The dynamics of mass migration. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5328-35.
[26] Graves P. E. and Knapp T. A. A theory of international migration flows: United States immigration from Mexico. Rev Reg Stud 14 (1984) W1–7.
[27] Colussi A. An estimable model of illegal Mexican immigration (January 1, 2004). Dissertations available from ProQuest. Paper AAI3137997. http://repository.upenn.edu/dissertations/AAI3137997
[28] Rivero-Fuentes E. A Comparison of Three Models of Internal Migration in Mexico In: XXV International Population Conference, Tours, France, 2005. iussp2005.princeton.edu/papers/51590
[29] Hanson G. H. and McIntosh C. The demography of Mexican migration to the US. School of International Relations and Pacific Studies. University of California, San Diego. irps.ucsd.edu/assets/033/10614.pdf
[30] Chang S. H. The effect of migrant networks on Mexican migration (2010).
[31] Eichler S. How many illegal Mexican immigrants enter the United States, where, and why? Forum for Research and Empirical International Trade WP 177 (2010). http://www.freit.org/WorkingPapers/Papers/Immigration/FREIT177.pdf
[32] Thom K. Repeated circular migration: Theory and evidence from undocumented migrants. New York University, 2007.
[33] Block I., Briegeleb W., Wohlfarth-Bottermann K. E. Gravisensitivity of the acellular slime mold Physarum polycephalum demonstrated on the fast-rotating clinostat. Eur J Cell Biol. 1986;41:44-50.
[34] Block I. and Briegeleb W. Potential sites for the perception of gravity in the acellular slime mold Physarum polycephalum. Advances in Space Research 9 (1989) 75–78.
[35] La migración a Estados Unidos. Maps y Estadísticas. Instituto Politécnico Nacional. Accessed August, 2012. http://oncetv-ipn.net/migrantes/mapas/#
[36] State Proportion of the Mexican Immigrant Population in the United States and Metropolitan Areas with 250,000 Mexican Immigrants or More, 2010. 2001-2012 Migration Policy Institute. http://www.migrationinformation.org/datahub/maps.cfm
[37] Conway D. and Cohen J. H. Consequences of migration and remittances for Mexican transnational communities. Economical Geograph 74 (1998) 26–44.
[38] Block I., Rabien H. and Ivanova K. Involvement of the second messenger cAMP in the gravity-signal transduction in Physarum. Adv. Space Res. 21 (1998) 1311-1314.
[39] Pries L. The disruption of social and geographic space : Mexican-US migration and the emergence of transnational social spaces. International Sociology 16 (2001) 55–74.
[40] Sandersen M. and Utz R. The globalization of economic production and international migration. An empirical analysis of undocumented Mexican migration to the United States. International Journal of Comparative Sociology 50 (2009) 137–154.

(Adamatzky) DEPARTMENT OF COMPUTER SCIENCES, UNIVERSITY OF THE WEST OF ENGLAND, BRISTOL, UNITED KINGDOM
E-mail address: andrew.adamatzky@uwe.ac.uk

(Martínez) ESCUELA SUPERIOR DE COMPUTO, INSTITUTO POLITÉCNICO NACIONAL, MÉXICO. DEPARTMENT OF COMPUTER SCIENCES, UNIVERSITY OF THE WEST OF ENGLAND, BRISTOL, UNITED KINGDOM
E-mail address: genaro.martinez@uwe.ac.uk