Reference Inventory of 210Pb in Soils of Chinese Mainland

B J Yang1,2, W Sun2, X L Wang2 and M L Zhang2*

1West Anhui University, Luan 237012, Anhui, China
2Nanjing Normal University, Nanjing 210023, Jiangsu, China
Email: geozhml@163.com

Abstract. Naturally occurring fallout 210Pb is strongly adsorbed by soils and has been widely used as a tracer to soil erosion and deposited sediments in various sedimentary environments. The determination of reference inventory is the premise and basis of soil erosion research using this technique, it is directly related to the accuracy of erosion rate calculation. This paper starting reports from the selection of 210Pb reference inventory sampling points, the distribution of 210Pb reference inventory in Chinese mainland is summarized. It is pointed out that the reference inventory is mainly affected by the location of land and sea, climate, topography and other factors.

1. Introduction

In the early 20th century, using of 137Cs to tracer soil erosion started in the United States, and in recent years it has been widely used in the study of soil erosion and accumulation in many parts of the world. However, 137Cs is not a tracer nuclide that exists in nature. It is an artificial radionuclide produced by nuclear tests or nuclear leakage in the 1950s and 1970s. The inventory of 137Cs in the soil decreased with the development of time, and the difficulty of testing continued to increase. And the low 137Cs inventory in the southern hemisphere makes testing more difficult. The nuclear elements that can trace the rate of soil erosion in the medium and long term will be gradually replaced by 210Pb [1-7].

210Pb is a natural product of 238U decay series with a half-life of 22.26 years, and its parent 222Rn is an inert gas. The 210Pb that settle through the atmosphere and are absorbed by soil particles are often referred to as "non-carrier sources". 210Pb$_{ex}$ and 137Cs are both environmental radionuclides, and the tracer principle is very similar. The tracer method is as follows: by comparing the inventory of 210Pb$_{ex}$ at the sampling point with the inventory of nearby undisturbed or fixed reference inventory, the percentage of decrease and increase of 210Pb$_{ex}$ at each point is obtained. The reduced sample points indicate the occurrence of soil erosion, and the increased sample points indicate the occurrence of soil deposition, Then the percentage decrease or increase of 210Pb$_{ex}$ is converted into soil erosion or deposition through quantitative model [8].

The precondition of applying 210Pb$_{ex}$ technology to soil erosion research is to determine the 210Pb$_{ex}$ reference inventory of the research area scientifically and accurately. The reference inventory of 210Pb$_{ex}$ can be defined as the atmospheric deposition flux of 210Pb$_{ex}$ per unit area or the area concentration of 210Pb$_{ex}$ of undisturbed soil in a certain area. Based on the existing literature in China, this study combed the data of 210Pb$_{ex}$ background value in the soil. To explore the reference inventory and distribution characteristics of 210Pb$_{ex}$ in soils of mainland.
2. Selection of Reference Inventory Sample Points
The location of the reference inventory is the key to success. The ideal reference inventory area is one with neither soil loss nor soil deposition. The total merely reflects the decay of radionuclides directly fed into the atmosphere over time. The reference inventory selects an area with flat terrain and long-term vegetation coverage. In general, choose flat grass and low grass near the sampling point. An average of a certain number of sample points is usually required to represent the reference inventory of 210Pbex well [8].

The 210Pbex in the soil comes from atmospheric deposition, and the atmospheric deposition of 210Pb in a specific area is mainly related to precipitation. Therefore, there are seasonal differences, but the annual settling flux of 210Pb is relatively consistent over a long period [9-10]. Assuming that 210Pb deposited from atmosphere are retained in the topsoil, only by radioactive decay. Therefore, by collecting rainwater samples to measure the atmospheric settling flux, we can also calculate the amount of 210Pbex in the stable soil, as the reference inventory.

3. Spatial Distribution of 210Pb Reference Inventory in Chinese Mainland

3.1. Horizontal Distribution
Using 210Pb to tracer study conducted by Zhang Xinbao et al. found that the reference inventory of 210Pb on the Loess Plateau is 5730Bq/m². In Chinese mainland, the reference inventory increases from northwest to southeast. The high inventory area is concentrated in Yingtan of Jiangxi and Zhenjiang of Jiangsu, the lower values are in the Qinghai-Tibet Plateau and the Loess Plateau. On the one hand, it is consistent with the variation trend of precipitation in mainland China. On the other hand, it also accords with the trend that the deposition flux of 210Pb increases from west to east on land [11].

The data from the study in Yingtan, Jiangxi province, showed that were larger. The author explains several reasons: (1) Discard some samples during the pretreatment before sample testing, however, most of these samples are coarse particles with low bonding degree, leading to high test value; (2) There are errors in the process of reading test data; (3) The activity of standard source used in experimental measurement is high; (4) During the measurement, marin cup is used to fill the soil so that the center of gravity of the test sample is higher, which affects the detection efficiency.

3.2. Vertical Distribution
He and Walling et al. (1997) showed of profiles of some permanent meadows in the UK. The 210Pb profile distribution depth is above 15cm, the concentration of 210Pb decreases as the depth increases [10]. Zhang X B et al. also found in the Loess Plateau that the nuclide concentration in the upper part of the soil profile was the highest and decreased exponentially downward [7]. In the loess plateau region of China, the 210Pb deposit depth in the loess grassland soil profile is 24 cm, there is an exponential decrease from surface to depth. Data from Jiangsu and Jiangxi provinces in China suggest the same.

4. The Main Factors Influencing the Distribution of 210Pb Reference Inventory in Chinese Mainland

4.1. Location of the Land and Sea
It is believed that the annual deposition flux of 210Pb is less because the land-borne 210Pb is carried over the ocean only by air mass movement, to some extent, the 210Pb deposition increases from west to east on a continent, the reference inventory of 210Pb in terrestrial soils increased from west to east. As shown in table 1, Jiangsu and Jiangxi province, which are located in the eastern part of Chinese mainland, have a high 210Pb reference inventory. The westernmost Qinghai-Tibet Plateau and the Three-Rivers Headwaters region are the lowest.
Table 1. Reference inventory of 210Pb in parts of Chinese mainland.

Study area	Reference inventory (Bq m$^{-2}$)	Mean annual precipitation (mm)	Researcher
Zhenjiang, Jiangsu Province	29068.26	1006	Wang [12]
The Three-Rivers Headwaters region	2612-7377	86-786	Li et al. [2]
Xilin Gol League, Inner Mongolia	8112	365	Hu et al. [1]
Northeast Qinghai-Tibet Plateau	4617.76	300-580	Hu [13]
Kunming, Yunnan Province	21207.94	785	Duan [14]
Yingtian, Jiangxi Province	44383.83	1842	Cui [15]
Jianyang, Sichuan Province	12589.9	850	Zhang et al. [4]
Neijiang, Sichuan Province	18902.2	1064	Zhen et al. [6]
Keshan, Heilongjiang Province	6600	499	Wang [16]
Zhaogou, Loess Plateau	5730	517	Zhang et al. [7]
Changchun, Jilin Province	8950	642	Yang [5]

4.2. Climatic Factor

After several years of precipitation in the atmosphere, 210Pb reached the surface and reached equilibrium in the soil. Since the 210Pb inventory in soil is derived from atmospheric wet deposition and dry deposition, the dry deposition in each region is settled into the soil by the movement of atmospheric circulation. Assuming that the amount of 210Pb reaching the ground through dry deposition is the same everywhere. The variation of 210Pb reference inventory in the soil is mainly determined by the wet precipitation, namely the annual average precipitation. Chen et al. found that 210Pb atmospheric deposition flux is mainly related to precipitation. Its expression is: $y=16.598xe^{0.0019x}$. This indicates that atmospheric wet deposition is one of the main factors affecting the 210Pb reference inventory in the soil.

In the measured data of 210Pb reference inventory in Chinese mainland, the highest reference inventory is 44383.83Bq/m2 in Jiangxi province, and the annual rainfall of 1842mm is also the maximum value of all measured sites. The Three-Rivers Headwaters region and the Qinghai-Tibet Plateau region have the lowest rainfall and lowest background values.

In addition, the 210Pb reference inventory is also related to rainfall type, topography, soil characteristics and other factors. In a specific region, the 210Pb reference inventory is a combination of many influencing factors, the influence degree of each factor needs to be further studied.

5. Conclusions

The spatial distribution of 210Pb reference inventory is unbalanced in Chinese mainland, appearance from west to east and from north to south gradually increased. There is an exponential decrease from surface to depth in the soil profile. The size of 210Pb reference inventory is affected by the location of land and sea, climate and so on.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos.41103047), a project funded by the Natural Science Research Project of Anhui Higher Education (Grant Nos.KJ2014A280).

References

[1] Hu Y and Zhang Y 2019 Using 137Cs and 210Pbex to investigate the soil erosion and accumulation moduli on the southern margin of the Hunshandake sandy land in Inner Mongolia Acta Geographica Sinica 74 (9) 1890-1903 (in Chinese).
[2] Li J, Li Y, Wang Y and Wu J 2009 Study of soil erosion on the east-west transects in the three-rivers head waters region using 137Cs and 210Pbex tracing Research of Environmental Sciences 22 (12) 1452-9 (in Chinese).

[3] Chen R, Zhang M and Yang H 2013 Dynamic equilibrium model of 210Pbex background value in soil Research of Soil and Water Conservation 20 (5) 73-6 (in Chinese).

[4] Zhang X, Qi Y, Walling D, He X, Wen A and Fu J 2006 A preliminary assessment of the potential for using 210Pb measurement to estimate soil redistribution rates on cultivated slopes in the Sichuan hilly basin of China Catena 68 (1) 0-9.

[5] Yang Y, Yan B and Zhu H 2011 Estimating soil erosion in Northeast China using 137Cs and 210Pbex Research of Soil and Water Conservation 20 (5) 73-6 (in Chinese).

[6] Zhang X, Qi Y, Walling D, He X, Wen A and Fu J 2006 A preliminary assessment of the potential for using 210Pb measurement to estimate soil redistribution rates on cultivated slopes in the Sichuan hilly basin of China Catena 68 (1) 0-9.

[7] Yang Y, Yan B and Zhu H 2011 Estimating soil erosion in Northeast China using 137Cs and 210Pbex Pedosphere 21 (6) 706-11.

[8] Nozaki Y, Demaster D, Lewis D and Turekian K 1978 Atmospheric 210Pb fluxes determined from soil profiles Journal of Geophysical Research Oceans 83 (C8).

[9] Wang X, Tian J and Yang M 2003 The distribution of 210Pbex in soils and its application in estimating soil erosion Chinese Journal of Soil Science 34 (6) 581-5 (in Chinese).

[10] Cui W 2012 Double Nuclide Tracer Soil Erosion in Red Soil Area of Jiangxi Province (Nanjing Normal University) (in Chinese).

[11] Wang L 2011 Investigating the Soil Erosion Rates in the Zhenjiang Region of China Using 137Cs and 210Pbex Measurements (Nanjing Normal University) (in Chinese).

[12] Hu J 2016 Trace Study the Soil Erosion and Distribution Characteristics of 210Pb in the High-Cold Steppe (Qinghai Institute of Salt Lakes, Chinese Academy of Sciences) (in Chinese).

[13] Duan C 2019 Study on Soil Erosion with Dual Nuclide Tracer in Yunnan Small Watershed (Yunnan Normal University) (in Chinese).

[14] Cui W 2012 Double Nuclide Tracer Soil Erosion in Red Soil Area of Jiangxi Province (Nanjing Normal University) (in Chinese).

[15] Wang Y 2010 Investigating the Soil Erosion Rates on the Cultivated Slopes in the Northeast Black Soil Region of China Using 137Cs and 210Pbex Measurements (Graduate University Academy of Chinese Academy of Sciences, Institute of Soil and Water Conservation) (in Chinese).