TIME AND FREQUENCY ACTIVITIES AT
THE U.S. NAVAL OBSERVATORY

Demetrios Matsakis
Time Service Department
U.S. Naval Observatory
Washington, DC 20392, USA

Abstract

The U.S. Naval Observatory (USNO) has provided timing for the Navy since 1830
and, in cooperation with other institutions, has also provided timing for the United
States and the international community. Its Master Clock (MC) is the source of UTC
(USNO), USNO’s realization of Coordinated Universal Time (UTC), which has stayed
within 5 ns rms of UTC since 1999 and within 3.1 ns rms in 2008. The data used to
generate UTC (USNO) are based upon 70 cesium and 24 hydrogen maser frequency
standards in four buildings at two sites. USNO disseminates time via voice, telephone
modem, LORAN, Network Time Protocol (NTP), GPS, and Two-Way Satellite Time
Transfer (TWSTT). This paper describes some of the changes being made to meet the
future needs for precision, accuracy, and robustness. Further details and explanations
of our services can be found online at http://tycho.usno.navy.mil, which will shortly be
transformed to http://www.usno.navy.mil.

I. TIME GENERATION

The most important part of USNO’s Time Service Department is its staff, which currently
consists of 33 positions. Of these, the largest group, almost half the staff, is directly involved in
time transfer. The rest are fairly evenly divided between those who service the clocks, those who
monitor them, and those who are working to develop new ones.

The core stability of USNO time is based upon the clock ensemble. We currently have 69
HP5071 cesium clocks made by Hewlett-Packard/Agilent/Symmetricom, and 24 cavity-tuned
“Sigma-Tau/Datum/Symmetricom” hydrogen maser clocks, which are located in three
Washington, D.C. buildings and at the USNO Alternate Master Clock (AMC), located at
Schriever Air Force Base in Colorado. The clocks used for the USNO timescale are kept in 19
environmental chambers, whose temperatures are kept constant to within 0.1 degree C and whose
relative humidities (for all masers and most cesiums) are kept constant to within 1%. The
timescale is based only upon the clocks located in Washington, D.C. On 12 December 2008, 62
of those standards were weighted in the timescale computations.

The clock outputs are sent to the measurement systems using cables that are phase-stable and of
low temperature coefficient and, where possible, all the connectors are SMA (screw-on). The
operational system is based upon switches and counters that compare each clock against each of
three master clocks once per hour and store the data on multiple computers, each of which
generates a timescale and is capable of controlling the master clocks. The measurement noise is about 25 picoseconds (ps) rms, which is less than the variation of a cesium clock over an hour. Because the maser clocks only vary by about 5 ps over an hour, we also measure them using a system to generate comparisons every 20 seconds, with a measurement noise of 2 ps. For robustness, duplicate low-noise systems measure each maser, with different master clocks as references. All clock data and time transfer data are gathered by redundant parallel computer systems that are protected by a firewall and backed up nightly on magnetic tape.

Before averaging data to form a timescale, real-time and postprocessed clock editing is accomplished by analyzing deviations in terms of frequency and time; all the clocks are detrended against the average of the best detrended cesiums [1]. A maser average represents the most precise average in the short term, and the detrending ensures that it is equivalent to the cesium average over periods exceeding a few months. A.1 is USNO’s operational timescale; it is dynamic in the sense that it weights recent maser and cesium data by their inverse Allan variance at an averaging time (tau) equal to the age of the data. Plottable files of both A.1 and the maser mean are available at http://tycho.usno.navy.mil.

UTC (USNO) is created by frequency-steering the A.1 timescale to UTC using a steering strategy called “gentle steering” [2-4], which minimizes the control effort used to achieve the desired goal, although at times the steers are so small that they are simply inserted. To realize UTC (USNO) physically, we use the one pulse per second (1-PPS) output of a frequency divider fed by a 5-MHz signal from an Auxiliary Output Generator (AOG). The AOG creates its output from the signal of a cavity-tuned maser steered to a timescale that is itself steered to UTC [2-5]. The MC has a backup maser and an AOG in the same environmental chamber. On 29 October 2004, we changed the steering method so that state estimation and steering are achieved hourly with a Kalman filter with a gain function as described in [6]. A second master clock (mc), duplicating the MC, is located in an adjacent chamber. In a different building, we have the same arrangement for a third mc, which is steered to the MC. Its backup AOG is steered to a mean timescale, based only on clocks in that building, which is itself steered to the MC.

An important part of operations is the USNO Alternate Master Clock (AMC), located at Schriever AFB in Colorado, adjacent to the GPS Master Control Station. The AMC’s mc is kept in close communication with the MC through use of Two-Way Satellite Time Transfer (TWSTT) and modern steering theory [7]. The difference is often less than 1 nanosecond (ns). In 2005, we installed the hardware for replacement and upgrade of the switched and low-noise measurements systems, the dc backup power systems, and the computer infrastructure. We have not yet integrated the three masers and 12 cesiums at the AMC into USNO’s Washington, D.C., timescale, but it remains a possibility that carrier-phase TWSTT or GPS techniques can be made reliable and accurate enough to attempt this.

The operational unsteered timescale (A.1) is based upon averaging only the better clocks, which are first detrended using past performance. As a result of a study conducted in 2000 [8], we have widened the definition of a “good clock” and are recharacterizing the clocks less frequently, and new methods of clock characterization are under development [9]. We are also continuing to work on developing algorithms to combine optimally the short-term precision of the masers with the longer-term precision of the cesiums and the accuracy of International Atomic Time (TAI) itself, which is frequency-calibrated using the primary (fully calibrated) frequency standards operated by other institutions. It is planned to implement an algorithm that steers the MC hourly and tightly to a timescale based only upon masers, which is steered to a cesium-only timescale that itself is steered to UTC using the information in the Circular T [6,10]. The steered cesium-
only timescale would be based upon a Kalman filter [12]. Individual masers would be steered to the cesium-only timescale before being averaged to create the maser-only timescale.

II. STABILITY OF UTC (USNO)

Figure 1 shows how UTC (USNO) has compared to UTC and also how its fractional frequency has compared to the unsteered maser mean, relative to an overall constant offset.

![Figure 1](image.png)

Figure 1. Interplay between the time and fractional frequency stability of the USNO Master Clock, from February, 1997 to the present.

The top plot of Figure 1 is UTC – UTC (USNO) from the International Bureau of Weights and Measure’s (BIPM’s) Circular T. The lower plot shows the fractional frequency difference of the Master Clock against the maser mean, derived by subtracting an arbitrary constant (for plot display) from the difference between the Master Clock and mean frequencies, measured in Hz and divided by the 5-MHz frequency of the signal-realization. The rising curve previous to MJD 51000 is due to the graduated introduction of the 1.7×10^{-14} blackbody correction to the primary frequency measurements. The steering time constant for the time deviations between the Master Clock and the mean was halved to 25 days on MJD 51050. Beginning about 51900, the mean has usually been steered so as to remove only half the predicted difference with UTC each month. Less aggressive clock characterization was implemented at around 52275. Hourly steers were implemented on 53307. Vertical lines indicate the times of these changes. UTC (USNO) has stayed within 5 ns rms of UTC for 5 years.
Most of our users need and desire access to only UTC (USNO), which is accessible via GPS and other time transfer modes. Other users are interested in UTC, and for those we make predictions of UTC – UTC (USNO) available on the Web pages. The Web pages also provide the information needed for users who are interested in using the MC to measure absolute frequency. For those users interested mostly in frequency stability, we have made available the difference between the MC and the maser mean using anonymous ftp.

While the long-term stability of the Master Clock is set by steering to UTC, the exceptional stability of USNO’s unsteered mean can also be used to attempt to diagnose issues involving the long-term stability of UTC itself. The dense purple line in Figure 2 shows the fractional frequency difference between our unsteered cesium average and EAL, which is the unsteered timescale generated by BIPM that is steered to primary frequency standards so as to create UTC. Since the contribution of the USNO-DC cesiums to EAL (and, therefore, UTC) is about 25%, the resulting reduction of the difference was allowed for by a 25% scaling. Also plotted are the unsteered cesium average fractional frequencies against the SI second as measured by primary frequency standards at National Institute of Standards and Technology (NIST) and the Physikalisch-Technische Bundesanstalt (PTB). Initially, it appeared that the HP5071 beam tubes

![Figure 2. Fractional frequency of unsteered average of USNO-DC cesiums against that of EAL and also against several primary frequency standards. The frequencies have been shifted in the vertical direction for display, and the difference with the cesium average has been scaled to remove the contribution of USNO-DC cesiums to EAL.](image-url)
had a very small frequency drift; however, since MJD 52500, the pattern has become less clear. The differences are likely due to the contribution of masers and other high-drift clocks to TAI [12].

In order to improve timescale operations, USNO has a staff of five developing rubidium-based atomic fountains [13]. Figure 3 shows the performance of the prototype fountain over a 40-day period, while housed in a room subject to several-degree temperature variations.

III. TIME TRANSFER

Table 1 shows how many times USNO was queried by various time-transfer systems in the past year. The fastest-growing service is the Internet service Network Time Protocol (NTP). Until 2005, the number of individual requests doubled every year since the program was initiated. The billions of requests correspond to at least several million users. Unfortunately, in late 2004 the NTP load reached 5000 queries per second at the Washington, DC site, which saturated the Internet connections [14]. Due to this saturation, perhaps a third of the NTP requests sent to the Washington site were not responded to. In August 2005, the Defense Information Services Agency (DISA) provided higher-bandwidth Internet access and the measured query rate increased to over 5000 packet requests/second. An increase to almost 6000 requests/second was recently observed when a fourth server was added behind the load balancer. The access rate is much higher at the start of each hour. Although the query rate seems to have leveled off, future upgrades of Internet capacity may be required to cope with growth. An indication of the potential
for increased demand is that late in 2008, we experienced a quadrupling of the request rate for several hours.

Table 1. Yearly access rate of low-precision time distribution services.

Service	Access Rate
Telephone Voice-Announcer	800,000
Leitch Clock System	90,000
Telephone Modem	200,000
Web Server	1500 million
Network Time Protocol (NTP)	200 billion

As an example of NTP time transfer accuracy, Figure 4 shows the error between our AMC and Washington facilities, which are separated by about 2500 km.

![Graph showing error in NTP Time transfer between USNO-DC and USNO-AMC.](image)

AMC. Blue plot shows 0.1-day averages when the 10% of the data exceeding 0.4 ms error are removed. Red dots are simple 0.1-day averages of all the data, of which 5% exceed 0.5-ms deviation.

Greater precision is required for two services for which USNO is the timing reference: GPS and LORAN. USNO monitors LORAN at its Washington, DC site. With some assistance from USNO, the U.S. Coast Guard has developed its Time of Transmission Monitoring (TOTM)
system so it can steer using data taken near the point of transmission using UTC (USNO) via GPS. Direct USNO monitoring at its three points of reception is used as a backup and crude check [15], and USNO is pursuing a collaborative effort with the Loran Support Unit (LSU) to test an Enhanced Loran (eLORAN) receiver system.

GPS is an extremely important vehicle for distributing UTC (USNO). This is achieved by a daily upload of GPS data to the Second Space Operations Squadron (2SOPS), where the Master Control Station uses the information to steer GPS Time to UTC (USNO) and to predict the difference between GPS Time and UTC (USNO) in subframe 4, page 18 of the broadcast navigation message. GPS Time itself was designed for use in navigational solutions and is not adjusted for leap seconds. As shown in Figure 5, users can achieve tighter access to UTC (USNO) by applying the broadcast corrections. For subdaily measurements, it is a good idea, if possible, to examine the age of each satellite’s data so that the most recent correction can be applied. The continuous real-time sampling by highly precise systems was increased in 2006 when USNO-DC became a full-fledged GPS monitor site, in cooperation with the National Geospatial-Intelligence Agency (NGA). The NGA is installing improved GPS receivers, which would make possible an alternate means of providing time directly to GPS, both at the Washington site and at the AMC. Although the architecture of GPS III has not yet been finalized, it is likely that closer and more frequent ties between GPS Time and UTC (USNO) will be established.

![Figure 5](image)

Figure 5. Recent daily averages of UTC (USNO) minus GPS Time and UTC minus GPS’s delivered prediction of UTC (USNO).
Figure 6 shows the rms stability of GPS Time and that of GPS’s delivered prediction of UTC (USNO) as a function of averaging period. Note that the rms corresponds to the component of the “Type A” (random) component of a user’s achievable uncertainty.

Figure 6. The precision of GPS Time and of GPS’s delivered prediction of UTC (USNO), using TTR-12 data since 12 July 2002, measured by the attainable external precision (rms, mean not removed) as a function of averaging time, and referenced to UTC (USNO). Improved performance in accessing UTC (USNO) could be realized if only the most recently updated navigation messages are used. The accuracy attainable over a given averaging time also depends upon the calibration of the user’s receivers.

Figure 7 shows the rms frequency accuracy along with the frequency stability, as measured by the Allan deviation (ADEV) over the same time period as Figure 6. The ADEV is shown for comparison; however, there is little justification for its use, since the measured quantity is stationary. In this case, the rms is not only unbiased – it is the most widely accepted estimator of the true deviation. Improved performance with respect to the predictions of the USNO Master Clock’s frequency can be realized if the most recently updated navigation messages are used in the data reduction.
Since 9 July 2002, the official GPS Precise Positioning Service (PPS) monitor data have been taken with the TTR-12 GPS receivers, which are all-in-view and dual-frequency [16]. The standard setup includes temperature-stable cables and flat-passband, low-temperature-sensitivity antennas. Our single-frequency Standard Positioning Service (SPS) receivers are now the BIPM-standard “TTS” units, and we are calibrating and evaluating temperature-stabilizing circuits. Operational antennas are installed on a 4-meter-tall structure built to reduce multipath by locating GPS antennas higher than the existing structures on the roof.

Although not directly required by frequency transfer users, all users ultimately benefit from calibrating a time transfer system, because repeated calibrations are the best way to verify long-term precision. For this reason, we are working with the U.S. Naval Research Laboratory (NRL), BIPM, and others to establish absolute calibration of GPS receivers [17]. Although we are always trying to do better, bandpass dependencies, subtle impedance-matching issues, power-level effects, and even multipath within anechoic test chambers could preclude significant reduction of 2.5 ns 1-sigma errors at the L1 and L2 frequencies [18]. Since this error is largely uncorrelated between the two GPS frequencies, the error in ionosphere-corrected data becomes 6.4 ns. Experimental verification by side-by-side comparison contributes an additional $\sqrt{2}$. For this reason, relative calibration, by means of traveling GPS receivers, is a better operational technique, provided care is taken that there are no systematic multipath differences between antennas. We strongly support BIPM’s relative calibration efforts for geodetic GPS receivers, and in particular are looking forward to comparisons with the multipath-free TWSTT calibrations.
In 2003, the Wide-Area Augmentation System (WAAS) became operational. USNO has been collecting data on WAAS network time (WNT). Daily averages generated by averaging WNT with WAAS-corrected time from GPS satellites are very similar to WNT-only averages. WNT obtained by narrow-beam antenna may be the optimal solution for a non-navigational user for whom interference is a problem or jamming may be a threat.

USNO has been participating in discussions involving the interoperability of GPS, Galileo, QZSS (Quasi-Zenith Satellite System), and GLONASS. In December of 2006, a Galileo monitor station was installed, and detailed plans have been made to monitor the GPS/GNSS timing offset (GGTO) \[19\] in parallel and in concert with the Galileo Precise Timing Facilities (GPTF). The GGTO will be measured by direct comparison of the received satellite timing, and by the use of TWSTT to measure the 1-pps offset between the time signals at USNO and GPTF. The GGTO will eventually be broadcast by both GPS and Galileo, for use in generating combined position and timing solutions. To exchange similar information with the QZSS system, plans are underway to establish a TWSTT station in Hawaii.

With the use of multiple GNSS systems, problems involving receiver and satellite biases will become more significant. These have been shown to be related to the complex pattern of delay variations across the filtered passband, and correlator spacing. In principle, every satellite would have a different bias for every receiver/satellite combination \[20\]. USNO has analyzed how calibration errors associated with the Timing Group Delay (TGD) bias measurements of GPS result in a noticeable offset in GPS Time vs. UTC, as measured in BIPM’s Circular T (Figure 8) \[21\].

The most accurate means of operational long-distance time transfer is TWSTT \[22-25\], and USNO has strongly supported BIPM’s switch to TWSTT for TAI generation. We routinely calibrate and recalibrate the TWSTT at 20 sites each year, and in particular we maintain the calibration of the transatlantic link with the Physikalisch-Technische Bundesanstalt (PTB) through comparisons with observations at a second TWSTT frequency \[26\] and with the carrier-phase GPS receivers whose IGS designations are USNO, USN3, and PTBB. For improved robustness, we have begun constructing loop-back setups at USNO, moved electronics indoors where possible, and developed temperature-stabilizing equipment to test on some of the outdoor electronics packages. For improved precision, we have made some efforts to develop carrier-phase TWSTT \[27\], although it appears the most promising technology would include a frequency standard in the satellite \[28\].

The Time Service Department of USNO has also actively pursued development of GPS carrier-phase time transfer, in cooperation with the International GPS Service (IGS). With assistance from the Jet Propulsion Laboratory (JPL), USNO developed continuous filtering of timing data and showed that it can be used to greatly reduce the day-boundary discontinuities in independent daily solutions without introducing long-term systematic variations \[23\]. Working with the manufacturer, USNO has helped to develop a modification for the TurboRogue/Benchmark receivers, which preserve timing information through receiver resets. Using IGS data, USNO has developed a timescale that is now an IGS product \[29\]. USNO is currently contributing to real-time carrier-phase systems run by JPL/NASA \[30\] and the Canadian real-time NRCan networks \[31\].
Figure 8. UTC – GPS as reported in the Circular T, and UTC – GPS inferred by subtracting UTC (USNO) – GPS from UTC – UTC (USNO). UTC (USNO) – GPS can be obtained from the satellite broadcasts, as in Figure 5, and is also measured directly at USNO.

While the promise of Carrier Phase GNSS for time transfer is on its way to fulfillment, one of the greatest impediments to subnanosecond operations is receiver instabilities. For example, the receivers used at USNO and elsewhere have exhibited both sudden and gradual variations at the 1-ns level [32]. All of these were designed in the 20th century and, therefore, USNO is experimenting with more modern components [33]. By working with manufacturers, it is possible that still more stable equipment can be developed. While several algorithms are insensitive to short-term variations of the receiver’s pseudo-range calibration [22,34,35], only human intervention in the form of calibration monitoring and recalibration can correctly account for non-transient receiver variations.

Despite receiver variations, it has been shown that carrier-phase GPS analysis can be improved by appropriate algorithmic innovations. Frequency transfer has been shown to be achievable at a few parts in 10^{-16} if one removes the discontinuities at day boundaries, which are largely due to instabilities in the pseudorange reception [36]. Simulations have shown that, in the absence of receiver calibration variations, frequency errors due to misestimating of satellite orbits, Earth orientation, receiver position, and other effects can be reduced still further if sufficient signal to noise exists to enable double-difference ambiguity resolution [35]. Given these theoretical advances, we suspect that UTC’s stability would be improved on all but the longest scales if
BIPM had available data from timing laboratories that were extracted from several improved receivers, which are observing all available frequencies, in thermally, humidity, and multipath-optimized environments.

IV. MEASURES TO SECURE THE ROBUSTNESS OF THE MASTER CLOCK

The most common source of non-robustness is the occasional failure of the environmental chambers. In order to minimize such variations, and to house the fountain clocks, we are equipping a new clock building (Figure 9), whose ribbon-cutting ceremony was held on November 7, 2008 [37]. The building has redundant environmental controls designed to keep the entire building constant to within 0.1 deg C and 3% relative humidity even when an HVAC unit is taken offline for maintenance. The clocks themselves will be kept on vibration-isolated piers. Standardized instrument racks will facilitate rapid and accurate repairs.

Figure 9. New clock building.

The clocks in all Washington, DC buildings are protected by an electrical power system whose design includes multiple parallel and independent pathways, each of which is capable of supplying the full electrical power needs of the Master Clock. The components of each pathway are automatically interchangeable, and the entire system is supplemented by local batteries at the clocks that can sustain performance long enough for staff to arrive and complete most possible
repairs. Although we have never experienced a complete failure of this system, most of the components have failed at least once. Our ability to maintain continuous operations while bringing about quick replacement of the failed components, and periodic testing, give some confidence in the robustness of the system.

The common design in all the operations and improvements is reliance upon multiple parallel redundant systems continuously operated and monitored. Such a scheme can be no more reliable than the monitoring process. For this reason, we have also ordered the parts to create a system wherein we will have two fully real-time interchangeable and redundant computer systems in two different buildings. Each would be capable of carrying the full load of operations and sensing when the other has failed so it can instantly take control. Each computer could access data continuously being stored in either of two mirrored disk arrays in the two buildings, and each of those disk arrays has redundant storage systems, so that three components would have to fail before data are lost. In addition, we do a daily tape backup of all data, and maintain a restrictive firewall policy. Additional measures for robustness, beyond the scope of this paper, have also been taken.

V. DISCLAIMER

Although some manufacturers are identified for the purpose of scientific clarity, USNO does not endorse any commercial product, nor does USNO permit any use of this document for marketing or advertising. We further caution the reader that the equipment quality described here may not be characteristic of similar equipment maintained at other laboratories, nor of equipment currently marketed by any commercial vendor.

VI. ACKNOWLEDGMENTS

I thank the staff of USNO’s Time Service Department for their skill and dedication in maintaining, operating, and improving the USNO Master Clock.

VII. REFERENCES

[1] L. A. Breakiron, 1992, “Timescale Algorithms Combining Cesium Clocks and Hydrogen Masers,” in Proceedings of the 23rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, 3-5 December 1991, Pasadena, California, USA (NASA Conference Publication 3159), pp. 297-305.

[2] D. N. Matsakis, M. Miranian, and P. A. Koppang, 2000, “Alternative Strategies for Steering the U.S. Naval Observatory (USNO) Master Clock,” in Proceedings of the ION 56th Annual Meeting, 26-28 June 2000, San Diego, California, USA (Institute of Navigation, Alexandria, Virginia), pp. 791-795.

[3] D. N. Matsakis, M. Miranian, and P. A. Koppang, 2000, “Steering the U.S. Naval Observatory (USNO) Master Clock,” in Proceedings of 1999 ION National Technical Meeting, 25-27 January 2000, San Diego, California, USA (Institute of Navigation, Alexandria, Virginia), pp. 871-879.
[4] P. A. Koppang and D. N. Matsakis, 2000, “New Steering Strategies for the USNO Master Clocks,” in Proceedings of the 31st Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 7-9 December 1999, Dana Point, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 277-284.

[5] P. Koppang, D. Johns, and J. Skinner, 2004, “Application of Control Theory in the Formation of a Timescale,” in Proceedings of the 35th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2-4 December 2003, Long Beach, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 319-325.

[6] J. Skinner, D. Johns, and P. Koppang, 2005, “Robust Control of Frequency Standards in the Presence of Systematic Disturbances,” in Proceedings of the 2005 Joint IEEE International Frequency Control Symposium and the 37th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 29-31 August 2005, Vancouver, Canada (IEEE Publication 05CH37664C), pp. 639-641.

[7] J. G. Skinner and P. A. Koppang, 2002, “Effects of Parameter Estimation and Control Limits on Steered Frequency Standards,” in Proceedings of the 33rd Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 27-29 November 2001, Long Beach, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 399-405.

[8] L. A. Breakiron and D. N. Matsakis, 2001 “Performance and Characterization of USNO Clocks,” in Proceedings of the 32nd Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 28-30 November 2000, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 269-288.

[9] J. Skinner, D. Johns, and P. Koppang, 2008, “Statistics of Modeling Errors in an Ensemble Mean,” presented at the 40th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 1-4 December 2008, Reston, Virginia, USA, but not submitted for publication.

[10] P. A. Koppang, J. G. Skinner, and D. Johns, 2007, “USNO Master Clock Design Enhancements”, in Proceedings of the 38th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 5-7 December 2006, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 185-192.

[11] J. G. Skinner and P. A. Koppang, 2007, “Analysis of Clock Modeling Techniques for the USNO Cesium Mean”, in Proceedings of the 38th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 5-7 December 2006, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 373-378.

[12] G. Petit, 2007, “The Long Term Stability of EAL and TAI (Revisited),” in Proceedings of TimeNav’07, the 21st European Frequency and Time Forum (EFTF) Joint with 2007 IEEE International Frequency Control Symposium (FCS), 29 May-1 June 2007, Geneva, Switzerland (IEEE Publication CH37839), pp. 391-394.

[13] C. S. Peil, S. Crane, T. Swanson, and C. Ekstrom, 2005, Design and Preliminary Characterization of the USNO Rubidium Fountain, in Proceedings of the 2005 Joint IEEE International Frequency Control Symposium and the 37th Annual Precise Time and Time
40th Annual Precise Time and Time Interval (PTTI) Meeting

[14] R. Schmidt, 2005, “Reflections on Ten Years of Network Time Service,” in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 7-9 December 2004, Washington, D.C. (U.S. Naval Observatory, Washington, D.C.), pp. 123-137.

[15] D. Matsakis and H. Chadsey, 2003, “Time for Loran,” in Proceedings of the 31st Annual Convention and Technical Symposium of the International Loran Association, 27-30 October 2002, Washington, D.C., USA (International Loran Association, Santa Barbara, California), http://www.loran.org/Meetings/Meeting2002/ILA2002CDFiles/A-Index/HTMLBrowserIndex.htm

[16] M. Miranian, E. Powers, L. Schmidt, K. Senior, F. Vannicola, J. Brad, and J. White, 2001, “Evaluation and Preliminary Results of the New USNO PPS Timing Receiver,” in Proceedings of the 32nd Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 28-30 November 2000, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 79-90.

[17] J. White, R. Beard, G. Landis, G. Petit, G., and E. Powers, 2001, “Dual Frequency Absolute Calibration of a Geodetic GPS Receiver for Time Transfer,” in Proceedings of the 15th European Frequency and Time Forum (EFTF), 6-8 March 2001, Neuchatel, Switzerland (Swiss Foundation for Research in Microtechnology, Neuchâtel), pp. 167-172.

[18] P. Landis and J. White, 2003, “Limitations of GPS Receiver Calibration,” in Proceedings of the 34th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 3-5 December 2002, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 325-332.

[19] J. Hahn and E. Powers 2006, “Implementation of the GPS to Galileo Time Offset (GGTO)”, in Proceedings of the 2005 Joint IEEE International Frequency Control Symposium and the 37th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 29-31 August 2005, Vancouver, Canada (IEEE Publication 05CH37664C), pp. 33-37.

[20] C. Hegarty, E. Powers, and B. Fonville, 2005, “Accounting for the Timing Bias Between GPS, Modernized GPS, and Galileo Signals,” in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 7-9 December 2004, Washington, D.C. (U.S. Naval Observatory, Washington, D.C.) , pp. 307-317.

[21] D. Matsakis, 2007, “The Timing Group Delay Correction (TGD) and GPS Timing Biases,” in Proceedings of the 63rd Annual ION National Technical Meeting, 23-25 April, 2007, Cambridge, Massachusetts, USA (Institute of Navigation, Alexandria, Virginia).

[22] D. Kirchner, 1999, “Two Way Satellite Time and Frequency Transfer (TWSTFT),” Review of Radio Science (Oxford Science Publications), pp. 27-44.

[23] L. A. Breakiron, A. L. Smith, B. C. Fonville, E. Powers, and D. N. Matsakis, 2005, “The Accuracy of Two-Way Satellite Time Transfer Calibrations,” in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 7-9
December 2004, Washington, D.C. (U.S. Naval Observatory, Washington, D.C.), pp. 139-148.

[24] D. Matsakis, K. Senior, and P. Cook, 2002, “Comparison of Continuously Filtered GPS Carrier Phase Time Transfer with Independent GPS Carrier-Phase Solutions and with Two-Way Satellite Time Transfer,” in Proceedings of the 33rd Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 27-29 November 2001, Long Beach, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 63-87.

[25] Matsakis, D., Breakiron, L., Bauch, A., Piester, D., and Jiang, Z, 2009, “TWSTT Calibration Constancy from Closure Sums,” in Proceedings of the 40th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 1-4 December 2008, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 587-604.

[26] D. Piester, A. Bauch, J. Becker, T. Polewka, A. McKinley, and D. Matsakis, 2004, “Time Transfer Between USNO and PTB: Operation and Results,” 2004, in Proceedings of the 35th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2-4 December 2003, Long Beach, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 93-102.

[27] B. Fonville, D. Matsakis, W. Shäfer, and A. Pawlitzki, 2005, “Development of Carrier-Phase-Based Two-Way Satellite Time and Frequency Transfer (TWSTFT),” in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 7-9 December 2004, Washington, D.C. (U.S. Naval Observatory, Washington, D.C.), pp. 149-164.

[28] Y. Takahashi, M. Imae, T. Gotoh, F. Nakagawa, M. Fujieda, H. Kiuchi, M. Hosokawa, H. Noda, and K. Sano, 2004, “Development of Time Comparison Equipment for ETS-VII Satellite,” in Proceedings of the Conference on Precision Electromagnetic Measurements, 27 June-2 July 2004, London, England, UK (IEEE Publication), pp. 232-233.

[29] K. Senior, P. A. Koppang, D. Matsakis, and J. Ray, 2001, “Developing an IGS Time Scale,” in Proceedings of the 2001 IEEE & PDA Exhibition International Frequency Control Symposium, 6-8 June 2001, Seattle, Washington, USA (IEEE Publication 01CH37218), pp. 211-218.

[30] E. Powers, K. Senior, Y. Bar-Server, W. Bertiger, R. Muellerschoen, and D. Stowers, 2003, “Real Time Ultra-Precise Time Transfer to UTC Using the NASA Differential GPS System,” in Proceedings of the 16th Annual European Frequency and Time Forum (EFTF), March 2002, St. Petersburg, Russia.

[31] F. Lahaye, P. Collins, P. Héroux, M. Daniels, and J. Popelar, 2002, “Using the Canadian Active Control System (CACS) for Real-Time Monitoring of GPS Receiver External Frequency Standards,” in Proceedings of ION-GPS 2001, 11-14 September 2001, Salt Lake City, Utah, USA (Institute of Navigation, Alexandria, Virginia), pp. 2220-2228.

[32] D. Matsakis, M. Lee, R. Dach, U. Hugentobler, and Z. Jiang, 2006, “GPS Carrier Phase Analysis Noise on the USNO-PTB Baselines,” in Proceedings of the 2006 IEEE International Frequency Control Symposium, 5-7 June 2006, Miami, Florida, USA (IEEE Publication), pp. 631-636.
[33] B. Fonville, E. Powers, and F. Vannicola, 2008, “Evaluation of Carrier Phase GNSS Timing Receivers for TAI Applications,” in Proceedings of the 39th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 26-29 November 2007, Long Beach, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 331-337.

[34] C. Hackman and J. Levine, 2006, “Towards Sub-10⁻¹⁶ Transcontinental GPS Carrier-Phase Frequency Transfer: a Simulation Study,” in Proceedings of the 2006 IEEE International Frequency Control Symposium, 5-7 June 2006, Miami, Florida, USA (IEEE Publication), pp. 779-787.

[35] R. Dach, T. Schildknecht, U. Hugentobler, L.-G. Bernier, and G. Dudle, 2006, “Continuous Geodetic Time Transfer Analysis Method,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-53, 1250-1259.

[36] C. Hackman, J. Levine, T. E. Parker, D. Piester, and J. Becker, 2006, “A Straightforward Frequency-Estimation Technique for GPS Carrier-Phase Time Transfer,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-53, 1570-1583.

[37] W. Walls, 2009, “The Master Clock Building and USNO Infrastructure,” in Proceedings of the 40th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 1-4 December 2008, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 17-28.
